0033_PROFIL_2017: Statistical Analysis of the Metabolome in Relation to Renal Complications

 $Tommi\ Suvitaival,\ tommi. raimo. leo. suvitaival@regionh.dk,\ Steno\ Diabetes\ Center\\ Copenhagen$

2019-10-02

Abstract

This document is Supplementary Material to the paper Sugar Derivatives and Branched-Chain Amino Acids Are Associated with Present and Future Renal Impairment in Type 1 Diabetes by Nete Tofte, Tommi Suvitaival, Kajetan Trost, Ismo Mattila, Simone Theilade, Signe A. Winther, Tarun S. Ahluwalia, Marie Frimodt-M{o}ller, Cristina Legido-Quigley and Peter Rossing.

Contents

1	Ste	p 1: Cross-Sectional Analysis of All Metabolites	G
	1.1	Albuminuria Groups	Ć
		1.1.1 Crude Model	Ć
		1.1.1.1 Table of Model Coefficients	1
		1.1.2 Adjusted Model	17
		1.1.2.1 Table	19
	1.2		25
			25
			27
			30
			$\frac{1}{3}$
			36
		3	4
	1.3		44
			44
			46
			49
		1.3.2.1 Table	5
2	Sto	p 2: Survival Analysis of Combined Renal Endpoint in Relation to Prioritized	
4			54
	2.1	•	54 54
	2.1	1	56
	2.2		58
	2.2	1 0	6.
	2.3		6:
	2.0	Combined Potest 1 lot from Crude and Adjusted Models	U•
3		p 3: Survival Analysis of Specific Renal Endpoints in Relation to Prioritized Metabo-	
	lite	*	65
	3.1	1 0	65
			65
		3.1.1.1 Table	67
		3.1.1.2 Forest Plot	69
		o	70
		3.1.2.1 Table	7:

			3.1.2.2 Forest Plot	
		3.1.3	Combined Forest Plot from Crude and Adjusted Models	75
	3.2	Step 3	BB: All-Cause Mortality	77
		3.2.1	Crude Model	77
			3.2.1.1 Table	
			3.2.1.2 Forest Plot	
		3.2.2	Adjusted Model	81
		0.2.2	3.2.2.1 Table	
			3.2.2.2 Forest Plot	
		3.2.3	Combined Forest Plot from Crude and Adjusted Models	
	2.2		Combined Forest Flot from Crude and Adjusted Models	
	3.3	-	Crude Model	
		3.3.1		
		0.00	3.3.1.1 Table	
		3.3.2	Forest Plot	
		3.3.3	Adjusted Model	
			3.3.3.1 Table	
			3.3.3.2 Forest Plot	
		3.3.4	Combined Forest Plot from Crude and Adjusted Models	
	3.4	Step 3	BD: End-Stage Renal Disease	
		3.4.1	Crude Model	99
			3.4.1.1 Table	101
			3.4.1.2 Forest Plot	102
		3.4.2	Adjusted Model	103
			3.4.2.1 Table	105
			3.4.2.2 Forest Plot	106
		3.4.3	Combined Forest Plot from Crude and Adjusted Models	
	3.5	Comp	ilation Forest Plot from Steps 3A-D	
	Step		etailed Assessment of the Top-Metabolites in Relation to Outcomes	115
4	4.1	Step 4	4.1: First Top-Metabolite in Relation to eGFR Decline	115
4		4.1.1	Step 4.1A: Analysis of Full Cohort	
4			Stop 11111 111101/1919 of Fair Conord Fire Fire Fire Fire Fire Fire Fire Fire	115
4			4.1.1.1 Survival Model with Details	
4			4.1.1.1 Survival Model with Details	115
4			4.1.1.1 Survival Model with Details	115 118
4			4.1.1.1 Survival Model with Details	115 118 119
4		4.1.2	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint	115 118 119 121
4		4.1.2	4.1.1.1 Survival Model with Details	115 118 119 121 123
4		4.1.2	4.1.1.1 Survival Model with Details	115 118 119 121 123 129
4		4.1.2	4.1.1.1 Survival Model with Details	115 118 119 121 123 129 132
4		4.1.2	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model	115 118 119 121 123 129 132 133
4		4.1.2	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint	115 118 119 121 123 129 132 133 135
4	4.9		4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1.4 Boxplots	115 118 119 121 123 129 132 133 135 137
4	4.2	Step 4	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1.4 Boxplots 4.2: Second Top-Metabolite in Relation to eGFR Decline (> 30 %)	115 118 119 121 123 129 132 133 135 137
4	4.2		4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1.4 Boxplots 4.1.2.1.4 Boxplots 4.2: Second Top-Metabolite in Relation to eGFR Decline (> 30 %) Step 4.2A: Analysis of Full Cohort	115 118 119 121 123 129 132 133 135 137 140
4	4.2	Step 4	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1.4 Boxplots 4.2: Second Top-Metabolite in Relation to eGFR Decline (> 30 %) Step 4.2A: Analysis of Full Cohort 4.2.1.1 Survival Model with Details	115 118 119 121 123 129 132 133 135 137 140 140
4	4.2	Step 4	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1.4 Boxplots 4.2.1.5 Second Top-Metabolite in Relation to eGFR Decline (> 30 %) Step 4.2A: Analysis of Full Cohort 4.2.1.1 Survival Model with Details 4.2.1.1 Forest Plot with Clinical Variables	115 118 119 121 123 129 132 133 135 137 140 140 143
4	4.2	Step 4	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1.4 Boxplots 4.2.2.3 Second Top-Metabolite in Relation to eGFR Decline (> 30 %) Step 4.2A: Analysis of Full Cohort 4.2.1.1 Survival Model with Details 4.2.1.1.1 Forest Plot with Clinical Variables 4.2.1.1.2 Diagnostics of the Survival Model	115 118 119 121 123 132 133 135 137 140 140 143 144
4	4.2	Step 4	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1.4 Boxplots 4.2: Second Top-Metabolite in Relation to eGFR Decline (> 30 %) Step 4.2A: Analysis of Full Cohort 4.2.1.1 Survival Model with Details 4.2.1.1.1 Forest Plot with Clinical Variables 4.2.1.1.2 Diagnostics of the Survival Model 4.2.1.1.3 Kaplan-Maier Curve with Median Cutpoint	115 118 119 121 123 132 133 135 137 140 140 143 144 144
4	4.2	Step 4 4.2.1	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1.4 Boxplots 1.2: Second Top-Metabolite in Relation to eGFR Decline (> 30 %) Step 4.2A: Analysis of Full Cohort 4.2.1.1 Survival Model with Details 4.2.1.1.1 Forest Plot with Clinical Variables 4.2.1.1.2 Diagnostics of the Survival Model 4.2.1.1.3 Kaplan-Maier Curve with Median Cutpoint 4.2.1.0 Other Model Fits	115 118 119 121 123 129 132 133 135 137 140 140 143 144 146 148
4	4.2	Step 4	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1.4 Boxplots 4.2.2.1 Survival Model with Details 4.2.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1 Survival Model with Details 4.2.1.1 Survival Model with Details 4.2.1.1 Survival Model with Clinical Variables 4.2.1.1.2 Diagnostics of the Survival Model 4.2.1.1.3 Kaplan-Maier Curve with Median Cutpoint 4.2.1.1 Other Model Fits Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort	115 118 119 121 123 129 132 133 135 137 140 140 143 144 146 148 151
4	4.2	Step 4 4.2.1	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1.4 Boxplots 4.2: Second Top-Metabolite in Relation to eGFR Decline (> 30 %) Step 4.2A: Analysis of Full Cohort 4.2.1.1 Survival Model with Details 4.2.1.1.2 Diagnostics of the Survival Model 4.2.1.1.3 Kaplan-Maier Curve with Median Cutpoint 4.2.1.1 Other Model Fits Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.2.1.1 Survival Model with Details	115 118 119 121 123 129 132 133 135 137 140 140 143 144 146 148 151 158
4	4.2	Step 4 4.2.1	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1.4 Boxplots 4.2: Second Top-Metabolite in Relation to eGFR Decline (> 30 %) Step 4.2A: Analysis of Full Cohort 4.2.1.1 Survival Model with Details 4.2.1.1.1 Forest Plot with Clinical Variables 4.2.1.1.2 Diagnostics of the Survival Model 4.2.1.1.3 Kaplan-Maier Curve with Median Cutpoint 4.2.1.1 Other Model Fits Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.2.2.1 Survival Model with Details 4.2.2.1.1 Forest Plot with Clinical Variables	115 118 119 121 123 129 132 133 135 137 140 140 143 144 146 148 151 158 160
4	4.2	Step 4 4.2.1	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1.4 Boxplots 4.2: Second Top-Metabolite in Relation to eGFR Decline (> 30 %) Step 4.2A: Analysis of Full Cohort 4.2.1.1 Survival Model with Details 4.2.1.1.1 Forest Plot with Clinical Variables 4.2.1.1.2 Diagnostics of the Survival Model 4.2.1.1.3 Kaplan-Maier Curve with Median Cutpoint 4.2.1.1 Other Model Fits Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.2.2.1 Survival Model with Details 4.2.2.1.1 Forest Plot with Clinical Variables 4.2.2.1 Survival Model with Details 4.2.2.1.1 Forest Plot with Clinical Variables 4.2.2.1.1 Forest Plot with Clinical Variables	115 118 119 121 123 129 132 133 135 137 140 140 143 144 146 148 151 158 160 161
4	4.2	Step 4 4.2.1	4.1.1.1 Survival Model with Details 4.1.1.1.1 Forest Plot with Clinical Variables 4.1.1.1.2 Diagnostics of the Survival Model 4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.1.2.1 Survival Model with Details 4.1.2.1.1 Forest Plot with Clinical Variables 4.1.2.1.2 Diagnostics of the Survival Model 4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint 4.1.2.1.4 Boxplots 4.2: Second Top-Metabolite in Relation to eGFR Decline (> 30 %) Step 4.2A: Analysis of Full Cohort 4.2.1.1 Survival Model with Details 4.2.1.1.1 Forest Plot with Clinical Variables 4.2.1.1.2 Diagnostics of the Survival Model 4.2.1.1.3 Kaplan-Maier Curve with Median Cutpoint 4.2.1.1 Other Model Fits Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort 4.2.2.1 Survival Model with Details 4.2.2.1.1 Forest Plot with Clinical Variables	115 118 119 121 123 129 132 133 135 137 140 140 143 144 146 148 151 158 160 161

This document is Supplementary Material to the paper <text> Sugar Derivatives and Branched-Chain Amino Acids Are Associated with Present and Future Renal Impairment in Type 1 Diabetes} by Nete Tofte, Tommi Suvitaival, Kajetan Trost, Ismo Mattila, Simone Theilade, Signe A. Winther, Tarun S. Ahluwalia, Marie Frimodt-M $\{o\}$ ller, Cristina Legido-Quigley and Peter Rossing.

```
data.loaded <-
  read.table(
    file = "L:/LovbeskyttetMapper/PROFILmetab/Data/metabolomics/0033 PROFIL 2017 metabolomics data--kNN
    header = TRUE,
    sep = "\t",
    stringsAsFactors = FALSE,
    comment.char = "",
    check.names = FALSE
  )
data.design <-
 haven::read_sas( data_file="L:/LovbeskyttetMapper/PROFILmetab/Data/profil_nb.sas7bdat" )
### Follow-up data from SAS file
data.follow.up <-
  haven::read_sas( data_file="L:/LovbeskyttetMapper/PROFILmetab/Data/follow-up-180311/profil_kidney.sas
data.follow.up.new.albu <-
 haven::read_sas( data_file="L:/LovbeskyttetMapper/PROFILmetab/Data/follow-up-180311/profil__new_albu_
# Log-transform data
rownames( data.loaded ) <- data.loaded$"Name"</pre>
names.metabolites <-
  colnames( data.loaded )[ grepl( x = colnames( data.loaded ), pattern = "; " ) ]
data.metabolites.only <- data.loaded[ , names.metabolites ]</pre>
data.metabolites.only[ data.metabolites.only <= 0 ] <- NA
data.metabolites.only <- log2( data.metabolites.only )</pre>
data.metabolites.only <-
  data.frame( data.metabolites.only,
              check.names = FALSE,
              stringsAsFactors = FALSE )
data.scaled <- data.loaded
data.scaled[ , names.metabolites ] <-</pre>
  data.metabolites.only[ rownames( data.scaled ), names.metabolites ]
## Cleanup clinical data
data.design <-
  data.frame(
    lapply(
      X = data.design,
      FUN = function(x) { x[is.nan(x)] \leftarrow NA; return(x) }
```

```
),
    check.names = FALSE,
    stringsAsFactors = FALSE
  )
data.design[ which( data.design$"bmi"==133.11 ), "bmi" ] <- NA
### Create additional clinical variables
data.design$"Group" <- data.design$"Albuminuri 3 groups"</pre>
data.design[ which( data.design$"Control_vs_patients"==5 ), "Group" ] <- 5</pre>
data.design$"Group" <-
 factor(
    x = data.design$"Group",
    levels = c( "1", "3", "4", "5" ),
    labels = c( "T1D Control", "T1D Micro", "T1D Macro", "Healthy Control" )
  )
data.design$"Group.continuous" <- data.design$"Group"</pre>
data.design[ which( data.design$"Group.continuous" == "Healthy Control" ),
             "Group.continuous" ] <- NA
data.design$"Group.continuous" <- as.numeric( data.design$"Group.continuous" ) - 1
data.design$"sex" <- as.factor( data.design$"sex" ) # NB: Not complete; Use "Gender" instead.
data.design$"Gender"[ data.design$"Gender"=="" ] <- NA</pre>
data.design$"Gender" <- as.numeric( as.character( data.design$"Gender" ) )</pre>
# NB: "uacr" not complete; use "logUAER" instead.
data.design$"uacr" <- as.numeric( as.character( data.design$"uacr" ) )</pre>
data.design$"Albuminuria.in.T1D" <-</pre>
  factor(
    x = ( data.design$"Group"=="T1D Micro" | data.design$"Group"=="T1D Macro" ),
    levels = c( FALSE, TRUE ),
    labels = c( "No Albuminuria", "Albuminuria" ) )
data.design$"Albuminuria.in.T1D"[ data.design$"Group"=="Healthy Control" ] <- NA
data.design$"Insulin_use" <- ( data.design$"Insulin_day_dose" > 0 )*1
data.design$"Log1plus.Beat_to_beat" <- log10( 1 + data.design$"Beat_to_beat" )</pre>
data.design$"Log.MeanPWV" <- log10( data.design$"MeanPWV" )</pre>
###
### Part 3: Merge data sets
###
data.follow.up <-
```

```
merge(
    x = data.follow.up,
    y = data.follow.up.new.albu,
   by = "id_profil",
    incomparables = NA
data <-
  merge(
   x = data.design,
   y = data.follow.up,
   by.x = "corenr",
   by.y = "id_profil",
    incomparables = NA
# Other
data$"Date_num" <- as.numeric( data$"DATE" )</pre>
data.scaled$"Batch" <- as.factor( data.scaled$"Batch" )</pre>
data$"log_Blood_TGA" <- log2( data$"Blood_TGA" )</pre>
data$"logUAER" <- data$"logUAER" * log2( 10 ) # log10 => log2
data$"slope_albuminuria_profil" <- data$"slope_albuminuria_profil" * log2( exp( 1 ) )</pre>
data$"slope_gfr_profil" <- data$"slope_gfr_profil" * log2( exp( 1 ) )</pre>
data$"loglogUAER" <- log2( data$"logUAER" )</pre>
data$"RAAS.original" <- data$"RAAS"</pre>
data$"RAAS" <- data$"RAAS" - 1</pre>
data <-
  merge(
   x = data
    y = data.scaled,
   by.x = "corenr",
   by.y = "Label",
    incomparables = NA
  )
data.w.healthy.control <- data</pre>
data <- data[ which( data$"Group" != "Healthy Control" ), ]</pre>
```

```
names.mapping <-
  data.frame(
    Original = names.metabolites,
    Made = make.names( names.metabolites ),
    stringsAsFactors = FALSE
  )
rownames( names.mapping ) <- names.mapping$"Made"</pre>
names.mapping$"Cleaned" <-</pre>
  stringr::str_split_fixed(
    string = names.mapping$"Original",
    pattern = "; [0-9]",
    n = 2
  )[,1]
names.mapping$"Cleaned" <-</pre>
  stringr::str_replace(
    string = names.mapping$"Cleaned",
    pattern = ", [0-9]*TMS",
    replacement = ""
names.mapping$"Cleaned" <-</pre>
  stringr::str_replace(
    string = names.mapping$"Cleaned",
    pattern = "[0-9]*TMS",
    replacement = ""
  )
names.mapping$"Cleaned" <-</pre>
  stringr::str_replace(
    string = names.mapping$"Cleaned",
    pattern = " MeOX",
    replacement = ""
  )
tmp <- table( names.mapping$"Cleaned" )</pre>
tmp <- names( which( tmp > 1 ) )
if ( length( tmp ) > 0 ) {
  for ( i in 1:length( tmp ) ) {
    tmp.i <- which( names.mapping$"Cleaned" == tmp[ i ] )</pre>
    names.mapping[ tmp.i, "Cleaned" ] <-</pre>
      paste(
        names.mapping[ tmp.i, "Cleaned" ],
        1:length( tmp.i ),
        ")",
```

```
sep = ""
)
}
```

1 Step 1: Cross-Sectional Analysis of All Metabolites

1.1 Albuminuria Groups

1.1.1 Crude Model

```
design.test <-
  data.frame(
    data.w.healthy.control[ ,
                                 "Group",
                                 "Age",
                                 "Gender",
                                 "Hba1c_baseline",
                                 "egfr",
                                 "CALSBP",
                                 "bmi",
                                 "Smoking",
                                 "Statin",
                                 "log_Blood_TGA",
                                 "Total cholesterol"
                              )
                              ]
  )
tmp <-
  apply(
    X = !is.na( design.test ),
    MAR = 1,
    FUN = all
  )
design.test <- design.test[ tmp, ]</pre>
design.test <- droplevels( design.test )</pre>
# data.test <- t( data.w.healthy.control[ tmp, names.metabolites ] )</pre>
data.test <- data.w.healthy.control[ tmp, names.metabolites ]</pre>
data.test <- scale( x = data.test )</pre>
data.test <- t( data.test )</pre>
dm <-
  stats::model.matrix(
    object = ~ Group,
    data = design.test
  )
mFit <-
  limma::lmFit(
    object = data.test,
    design = dm
  )
```

```
mEbFit <- limma::eBayes( mFit )</pre>
dim( dm )
## [1] 665
apply( X=dm, MAR=2, FUN=range )
        (Intercept) GroupT1D Micro GroupT1D Macro GroupHealthy Control
## [1,]
## [2,]
                  1
                                 1
                                                1
                                                                      1
tableone::CreateTableOne( data = design.test )
##
##
                                   Overall
##
                                      665
    n
##
     Group (%)
        T1D Control
                                      290 (43.6)
##
##
        T1D Micro
                                      152 (22.9)
##
        T1D Macro
                                      178 (26.8)
        Healthy Control
##
                                      45 (6.8)
##
     Age (mean (sd))
                                   54.07 (12.74)
     Gender (mean (sd))
##
                                     0.54(0.50)
##
     Hba1c_baseline (mean (sd))
                                     7.88 (1.31)
##
     egfr (mean (sd))
                                    83.67 (27.64)
     CALSBP (mean (sd))
                                 131.45 (17.41)
##
                                   25.24 (4.00)
##
     bmi (mean (sd))
##
     Smoking (mean (sd))
                                    0.20 (0.40)
##
     Statin (mean (sd))
                                    0.56 (0.50)
     log_Blood_TGA (mean (sd))
##
                                    0.00 (0.69)
##
     Total_cholesterol (mean (sd)) 4.71 (0.87)
```

1.1.1.1 Table of Model Coefficients

```
results.group <- mEbFit</pre>
for ( i in 2:ncol( mEbFit ) ) {
  name.effect <- colnames( mEbFit$"coefficients" )[ i ]</pre>
  table.result.group <-
    limma::topTable(
      fit = mEbFit,
      coef = name.effect,
      confint = TRUE,
      number = Inf,
      adjust.method = "BH"
  table.result.printed <- table.result.group</pre>
  colnames( table.result.printed )[ colnames( table.result.printed )=="logFC" ] <-</pre>
    "Effect"
  table.result.printed <-
    signif(
      x = table.result.printed,
      digits = 3
    )
  table.result.printed$"Name" <- rownames( table.result.printed )</pre>
  table.result.printed$"Name" <-</pre>
    stringr::str_sub(
      string = table.result.printed$"Name",
      start = 1,
      end = 25
    )
  table.result.printed <-</pre>
    table.result.printed[ ,
                            c(
                              "Name",
                              "Effect",
                              "CI.L",
                              "CI.R",
                              "AveExpr",
                              "P. Value",
                              "adj.P.Val"
                              )
                           ]
  print(
    knitr::kable(
      x = table.result.printed,
    row.names = FALSE,
```

```
caption = name.effect
    )
  )
}
##
##
## Table: GroupT1D Micro
##
## Name
                                    Effect
                                                  CI.L
                                                             CI.R
                                                                    AveExpr
                                                                                P.Value
                                                                                           adj.P.Val
## 3,4-Dihydroxybutanoic aci
                                   0.44400
                                               0.24900
                                                           0.6380
                                                                           0
                                                                               7.70e-06
                                                                                            0.000575
## Ribitol; 70
                                   0.36700
                                               0.17300
                                                           0.5620
                                                                           0
                                                                               2.15e-04
                                                                                            0.006200
## 2,4-Dihydroxybutanoic aci
                                                                           0
                                   0.36400
                                               0.16900
                                                           0.5580
                                                                               2.48e-04
                                                                                            0.006200
## Ribitol; 71
                                   0.34500
                                               0.15000
                                                           0.5390
                                                                           0
                                                                               5.11e-04
                                                                                            0.009590
                                                                           0
## 4-Deoxytetronic acid; 32
                                   0.32100
                                               0.12600
                                                           0.5150
                                                                               1.22e-03
                                                                                            0.018300
## 4-Hydroxybenzeneacetic ac
                                                                           0
                                   0.31400
                                               0.11900
                                                           0.5080
                                                                               1.56e-03
                                                                                            0.019200
## Myo inositol 6TMS; 1
                                   0.30700
                                               0.11300
                                                           0.5010
                                                                           0
                                                                               1.98e-03
                                                                                            0.019200
## Creatinine; 50
                                   0.30600
                                               0.11100
                                                           0.5000
                                                                           0
                                                                               2.05e-03
                                                                                            0.019200
## Heptadecanoic acid; 60
                                  -0.26400
                                              -0.45900
                                                          -0.0700
                                                                           0
                                                                               7.68e-03
                                                                                            0.060100
                                                                               8.02e-03
## Ribonic acid; 72
                                   0.26300
                                               0.06860
                                                           0.4580
                                                                           0
                                                                                            0.060100
## Glutamic acid, 3TMS; 8
                                   0.24900
                                               0.05480
                                                           0.4440
                                                                           0
                                                                               1.20e-02
                                                                                            0.081900
## 4-Hydroxyphenyllactic aci
                                   0.22200
                                               0.02760
                                                           0.4170
                                                                           0
                                                                               2.52e-02
                                                                                            0.157000
## Pyroglutamic acid; 69
                                   0.21400
                                               0.01930
                                                           0.4080
                                                                               3.12e-02
                                                                                            0.180000
## Threonine, 3TMS; 12
                                  -0.20900
                                              -0.40400
                                                          -0.0146
                                                                           0
                                                                               3.51e-02
                                                                                            0.188000
## Alanine, 2TMS; 25
                                   0.18700
                                              -0.00746
                                                           0.3810
                                                                           0
                                                                               5.95e-02
                                                                                            0.286000
## Malic acid, 3TMS; 11
                                                                           0
                                   0.18600
                                              -0.00862
                                                           0.3800
                                                                               6.11e-02
                                                                                            0.286000
## 2-hydroxy Isovaleric acid
                                  -0.17800
                                              -0.37200
                                                           0.0164
                                                                               7.28e-02
                                                                                            0.321000
## Fumaric acid, 2TMS; 9
                                   0.17000
                                              -0.02490
                                                           0.3640
                                                                           0
                                                                               8.74e-02
                                                                                            0.355000
## Nonanoic acid; 67
                                  -0.16700
                                              -0.36200
                                                           0.0273
                                                                           0
                                                                               9.21e-02
                                                                                            0.355000
## alpha-ketoglutaric acid,
                                                                           0
                                   0.16600
                                              -0.02870
                                                           0.3600
                                                                               9.47e-02
                                                                                            0.355000
## 11-Eicosenoic acid; 35
                                   0.15900
                                              -0.03530
                                                           0.3540
                                                                           0
                                                                               1.09e-01
                                                                                            0.383000
## Arachidic acid; 46
                                  -0.15500
                                              -0.35000
                                                           0.0391
                                                                           0
                                                                               1.17e-01
                                                                                            0.383000
## Glycine, 3TMS; 17
                                   0.15300
                                              -0.04100
                                                           0.3480
                                                                           0
                                                                               1.22e-01
                                                                                            0.383000
## Linoleic acid, TMS; 4
                                  -0.15200
                                              -0.34600
                                                           0.0427
                                                                           0
                                                                               1.26e-01
                                                                                            0.383000
## Glyceryl-glycoside; 59
                                              -0.04670
                                                                           0
                                                                               1.37e-01
                                   0.14800
                                                           0.3420
                                                                                            0.383000
## Isoleucine, 2TMS; 18
                                  -0.14700
                                              -0.34100
                                                           0.0477
                                                                           0
                                                                               1.39e-01
                                                                                            0.383000
## Dodecanoic acid; 54
                                              -0.04910
                                                                           0
                                                                               1.43e-01
                                   0.14500
                                                           0.3400
                                                                                            0.383000
## 3-Indoleacetic acid; 40
                                   0.14500
                                              -0.04920
                                                           0.3400
                                                                               1.43e-01
                                                                                            0.383000
## Succinic acid, 2TMS; 7
                                              -0.05100
                                                           0.3380
                                                                           0
                                                                               1.48e-01
                                                                                            0.383000
                                   0.14300
## Valine, 2TMS; 20
                                  -0.13600
                                              -0.33100
                                                           0.0581
                                                                           0
                                                                               1.69e-01
                                                                                            0.423000
## Hydroxyproline; 64
                                                                           0
                                   0.13300
                                              -0.06160
                                                           0.3270
                                                                               1.80e-01
                                                                                            0.436000
## Serine, 3TMS; 14
                                  -0.12800
                                              -0.32200
                                                           0.0666
                                                                               1.97e-01
                                                                                            0.461000
## Heptadecanoic acid; 61
                                                                           0
                                  -0.12600
                                              -0.32000
                                                           0.0685
                                                                               2.04e-01
                                                                                            0.461000
## Cholesterol, TMS; 23
                                  -0.12500
                                              -0.31900
                                                           0.0698
                                                                           0
                                                                               2.09e-01
                                                                                            0.461000
                                                                           0
## Stearic acid, TMS; 2
                                              -0.31700
                                                                               2.18e-01
                                  -0.12200
                                                           0.0723
                                                                                            0.468000
## Pyruvic acid; 31
                                   0.11900
                                              -0.07530
                                                           0.3140
                                                                               2.30e-01
                                                                                            0.479000
## Palmitic acid, TMS; 5
                                                                           0
                                  -0.11500
                                              -0.30900
                                                           0.0799
                                                                               2.48e-01
                                                                                            0.485000
## Leucine, 2TMS; 19
                                  -0.11400
                                              -0.30900
                                                           0.0803
                                                                           0
                                                                               2.50e-01
                                                                                            0.485000
## Methionine, 2TMS; 16
                                  -0.11300
                                              -0.30700
                                                           0.0816
                                                                           0
                                                                               2.55e-01
                                                                                            0.485000
## Bisphenol A; 48
                                              -0.30700
                                                                           0
                                                                               2.59e-01
                                  -0.11200
                                                           0.0824
                                                                                            0.485000
```

-0.08600

-0.08740

0.3030

0.3010

0

2.74e-01

2.81e-01

0.501000

0.501000

0.10800

0.10700

Benzeneacetic acid; 47

Lactic acid; 29

##	Phenylalanine, 2TMS; 13	0.10000	-0.09440	0.2940	0	3.13e-01	0.533000
##	Campesterol; 49	0.09870	-0.09580	0.2930	0	3.20e-01	0.533000
##	Tyrosine; 75	-0.09780	-0.29200	0.0967	0	3.24e-01	0.533000
##	Docosahexaenoic acid; 53	-0.09720	-0.29200	0.0972	0	3.27e-01	0.533000
##	Glycerol; 57	-0.08830	-0.28300	0.1060	0	3.73e-01	0.591000
##	1-Monopalmitin; 37	0.08740	-0.10700	0.2820	0	3.78e-01	0.591000
##	2-Hydroxybutyric acid, 2T	-0.08300	-0.27700	0.1110	0	4.03e-01	0.617000
##	Arachidonic acid, TMS; 24	-0.07390	-0.26800	0.1210	0	4.56e-01	0.685000
##	Citric acid, 4TMS; 6	0.05680	-0.13800	0.2510	0	5.67e-01	0.832000
##	Glycerol; 58	-0.05540	-0.25000	0.1390	0	5.77e-01	0.832000
##	Ethanolamine; 56	0.05250	-0.14200	0.2470	0	5.97e-01	0.844000
##	Tridecanoic acid; 74	0.04610	-0.14800	0.2410	0	6.42e-01	0.874000
##	Aminomalonic acid; 45	0.04600	-0.14800	0.2400	0	6.43e-01	0.874000
##	Arabinopyranose; 51	0.04470	-0.15000	0.2390	0	6.52e-01	0.874000
##	Eicosapentaenoic acid; 55	0.03770	-0.15700	0.2320	0	7.04e-01	0.916000
##	Myristoleic acid; 65	0.03650	-0.15800	0.2310	0	7.13e-01	0.916000
##	3-Indolepropionic acid; 4	-0.03550	-0.23000	0.1590	0	7.20e-01	0.916000
##	3-Hydroxybutyric acid, 2T	-0.03290	-0.22700	0.1620	0	7.40e-01	0.917000
	Oleic acid, TMS; 3	-0.03180	-0.22600	0.1630	0	7.48e-01	0.917000
	Decanoic acid; 52	0.03050	-0.16400	0.2250	0	7.58e-01	0.917000
	Octanoic acid; 68	-0.02500	-0.21900	0.1690	0	8.01e-01	0.932000
	4-Deoxytetronic acid; 33	0.02470	-0.17000	0.2190	0	8.03e-01	0.932000
##	Hydroxylamine; 62	0.02410	-0.17000	0.2190	0	8.08e-01	0.932000
	2-Palmitoylglycerol; 39	0.02160	-0.17300	0.2160	0	8.28e-01	0.938000
	1,3-Propanediol; 34	0.02020	-0.17400	0.2150	0	8.38e-01	0.938000
	1-Dodecanol; 36	-0.01500	-0.20900	0.1790	0	8.80e-01	0.971000
	alpha-Tocopherol; 26	-0.01220	-0.20700	0.1820	0	9.02e-01	0.979000
	4-Hydroxybutanoic acid; 4	0.01080	-0.18400	0.2050	0	9.14e-01	0.979000
	Proline, 2TMS; 21	0.00897	-0.18500	0.2030	0	9.28e-01 9.48e-01	0.980000
	Nonadecanoic acid; 66	0.00643 0.00551	-0.18800 -0.18900	0.2010 0.2000	0	9.46e-01 9.56e-01	0.982000 0.982000
	Glyceric acid; 30 L-5-Oxoproline; 63	-0.00331	-0.19800	0.1910	0	9.73e-01	0.985000
##		0.00330	-0.19300	0.1910	0	9.85e-01	0.985000
##	rar tronic acid, 75	0.00104	0.13300	0.1300	O	J.00e 01	0.303000
##							
	Table: GroupT1D Macro						
##	rabio. droupilb madro						
	Name	Effect	CI.L	CI.R	AveExpr	P.Value	adj.P.Val
##							
##	3,4-Dihydroxybutanoic aci	0.86600	0.68100	1.05000	0	0.00e+00	0.00e+00
	Ribonic acid; 72	0.79000	0.60500	0.97500	0	0.00e+00	0.00e+00
##	Myo inositol 6TMS; 1	0.77300	0.58800	0.95700	0	0.00e+00	0.00e+00
##		0.74100	0.55700	0.92600	0	0.00e+00	0.00e+00
##	Ribitol; 71	0.65600	0.47100	0.84100	0	0.00e+00	0.00e+00
##	4-Hydroxybenzeneacetic ac	0.63800	0.45300	0.82300	0	0.00e+00	0.00e+00
	4-Deoxytetronic acid; 32	0.47000	0.28500	0.65500	0	6.00e-07	6.40e-06
##	4-Deoxytetronic acid; 33	0.46800	0.28400	0.65300	0	7.00e-07	6.40e-06
##	Creatinine; 50	0.43600	0.25100	0.62100	0	3.70e-06	3.12e-05
##	Glyceryl-glycoside; 59	0.42300	0.23800	0.60800	0	7.30e-06	5.51e-05
##	Hydroxyproline; 64	0.40500	0.22000	0.59000	0	1.78e-05	1.21e-04
##	Valine, 2TMS; 20	-0.38400	-0.56800	-0.19900	0	4.79e-05	2.99e-04
##	3-Indolepropionic acid; 4	-0.37400	-0.55900	-0.18900	0	7.37e-05	4.25e-04
##	Methionine, 2TMS; 16	-0.34900	-0.53300	-0.16400	0	2.20e-04	1.18e-03
	Docosahexaenoic acid; 53	-0.32700	-0.51200	-0.14200	_	5.21e-04	2.61e-03

```
## Ribitol; 70
                                   0.31200
                                               0.12700
                                                           0.49700
                                                                            0
                                                                                9.33e-04
                                                                                             4.37e-03
## Octanoic acid; 68
                                  -0.30800
                                              -0.49300
                                                          -0.12300
                                                                            0
                                                                                1.09e-03
                                                                                             4.56e-03
                                  -0.30800
   Cholesterol, TMS; 23
                                              -0.49300
                                                          -0.12300
                                                                            0
                                                                                1.09e-03
                                                                                             4.56e-03
  2-hydroxy Isovaleric acid
                                                                            0
                                                                                1.37e-03
                                  -0.30200
                                              -0.48700
                                                          -0.11700
                                                                                             5.41e-03
## Threonine, 3TMS; 12
                                  -0.29400
                                              -0.47900
                                                          -0.10900
                                                                            0
                                                                                1.85e-03
                                                                                             6.95e-03
## Eicosapentaenoic acid; 55
                                                                            0
                                                                                2.32e-03
                                                                                             8.30e-03
                                  -0.28700
                                              -0.47200
                                                          -0.10200
## Serine, 3TMS; 14
                                  -0.27300
                                              -0.45800
                                                          -0.08850
                                                                            0
                                                                                3.76e-03
                                                                                             1.28e-02
## 4-Hydroxyphenyllactic aci
                                   0.26700
                                               0.08160
                                                           0.45100
                                                                            0
                                                                                4.72e-03
                                                                                             1.51e-02
## 3-Indoleacetic acid; 40
                                   0.26600
                                               0.08090
                                                           0.45100
                                                                            0
                                                                                4.85e-03
                                                                                             1.51e-02
## Proline, 2TMS; 21
                                   0.25600
                                               0.07160
                                                           0.44100
                                                                            0
                                                                                6.56e-03
                                                                                             1.95e-02
## Tyrosine; 75
                                  -0.25600
                                              -0.44000
                                                          -0.07060
                                                                            0
                                                                                6.76e-03
                                                                                             1.95e-02
                                                                            0
## Isoleucine, 2TMS; 18
                                  -0.24800
                                              -0.43300
                                                          -0.06360
                                                                                8.44e-03
                                                                                             2.34e-02
## Citric acid, 4TMS; 6
                                                                            0
                                                                                1.13e-02
                                                                                             3.03e-02
                                   0.23900
                                               0.05400
                                                           0.42400
                                  -0.22900
                                              -0.41400
## L-5-Oxoproline; 63
                                                          -0.04370
                                                                            0
                                                                                1.54e-02
                                                                                             3.98e-02
                                                                            0
## Glyceric acid; 30
                                  -0.22600
                                              -0.41000
                                                          -0.04070
                                                                                1.68e-02
                                                                                             4.16e-02
## Fumaric acid, 2TMS; 9
                                   0.22500
                                               0.03990
                                                           0.41000
                                                                            0
                                                                                1.72e-02
                                                                                             4.16e-02
  Aminomalonic acid; 45
                                                                            0
                                                                                2.08e-02
                                                                                             4.88e-02
                                  -0.21800
                                              -0.40300
                                                          -0.03320
  Pyroglutamic acid; 69
                                               0.02480
                                                           0.39500
                                                                            0
                                                                                2.62e-02
                                                                                             5.96e-02
                                   0.21000
## Malic acid, 3TMS; 11
                                   0.20300
                                                           0.38800
                                                                            0
                                                                                3.15e-02
                                                                                             6.95e-02
                                               0.01800
## 1-Dodecanol; 36
                                  -0.19200
                                              -0.37700
                                                          -0.00715
                                                                            0
                                                                                4.18e-02
                                                                                             8.95e-02
                                                                                4.34e-02
## Glutamic acid, 3TMS; 8
                                   0.19100
                                               0.00561
                                                           0.37500
                                                                            0
                                                                                             9.05e-02
## Linoleic acid, TMS; 4
                                                                                6.07e-02
                                  -0.17700
                                              -0.36200
                                                           0.00796
                                                                            0
                                                                                             1.23e-01
## alpha-Tocopherol; 26
                                              -0.34500
                                                           0.02510
                                                                            0
                                                                                9.03e-02
                                                                                             1.78e-01
                                  -0.16000
## Nonadecanoic acid; 66
                                  -0.15500
                                              -0.34000
                                                           0.02980
                                                                            0
                                                                                1.00e-01
                                                                                             1.91e-01
   4-Hydroxybutanoic acid; 4
                                   0.15400
                                              -0.03120
                                                           0.33900
                                                                            0
                                                                                1.03e-01
                                                                                             1.91e-01
## Tridecanoic acid; 74
                                  -0.15300
                                              -0.33800
                                                           0.03180
                                                                            0
                                                                                1.05e-01
                                                                                             1.91e-01
## Leucine, 2TMS; 19
                                                                            0
                                  -0.14600
                                              -0.33100
                                                           0.03930
                                                                                1.23e-01
                                                                                             2.16e-01
## Benzeneacetic acid; 47
                                   0.14500
                                              -0.03980
                                                           0.33000
                                                                            0
                                                                                1.24e-01
                                                                                             2.16e-01
## 2-Hydroxybutyric acid, 2T
                                  -0.14200
                                              -0.32600
                                                           0.04330
                                                                            0
                                                                                1.33e-01
                                                                                             2.27e-01
## Heptadecanoic acid; 60
                                              -0.32100
                                                                            0
                                                                                1.50e-01
                                                                                             2.49e-01
                                  -0.13600
                                                           0.04900
## Glycerol; 58
                                   0.12900
                                              -0.05570
                                                           0.31400
                                                                            0
                                                                                1.71e-01
                                                                                             2.74e-01
## Succinic acid, 2TMS; 7
                                   0.12900
                                              -0.05600
                                                                            0
                                                                                1.72e-01
                                                                                             2.74e-01
                                                           0.31400
  Arachidic acid; 46
                                  -0.11900
                                              -0.30300
                                                           0.06640
                                                                            0
                                                                                2.09e-01
                                                                                             3.27e-01
  Heptadecanoic acid; 61
                                  -0.10600
                                              -0.29100
                                                           0.07880
                                                                            0
                                                                                2.61e-01
                                                                                             3.96e-01
   3-Hydroxybutyric acid, 2T
                                              -0.07960
                                                                            0
                                   0.10500
                                                           0.29000
                                                                                2.64e-01
                                                                                             3.96e-01
  alpha-ketoglutaric acid,
                                   0.09180
                                              -0.09310
                                                           0.27700
                                                                            0
                                                                                3.30e-01
                                                                                             4.86e-01
## Hydroxylamine; 62
                                   0.08820
                                              -0.09670
                                                           0.27300
                                                                            0
                                                                                3.50e-01
                                                                                             5.05e-01
## Ethanolamine; 56
                                                                            0
                                                                                3.69e-01
                                  -0.08470
                                              -0.27000
                                                           0.10000
                                                                                             5.17e-01
  Alanine, 2TMS; 25
                                   0.08200
                                              -0.10300
                                                           0.26700
                                                                            0
                                                                                3.85e-01
                                                                                             5.17e-01
  Bisphenol A; 48
                                                                            0
                                                                                3.86e-01
                                                                                             5.17e-01
                                  -0.08170
                                              -0.26700
                                                           0.10300
  Arabinopyranose; 51
                                   0.08140
                                              -0.10300
                                                           0.26600
                                                                            0
                                                                                3.88e-01
                                                                                             5.17e-01
  Glycine, 3TMS; 17
                                                                            0
                                                                                3.93e-01
                                   0.08050
                                              -0.10400
                                                           0.26500
                                                                                             5.17e-01
## Lactic acid; 29
                                   0.07030
                                              -0.11500
                                                           0.25500
                                                                            0
                                                                                4.56e-01
                                                                                             5.85e-01
                                                                            0
  Arachidonic acid, TMS; 24
                                   0.06900
                                              -0.11600
                                                           0.25400
                                                                                4.65e-01
                                                                                             5.85e-01
## 11-Eicosenoic acid; 35
                                   0.06850
                                              -0.11600
                                                           0.25300
                                                                            0
                                                                                4.68e-01
                                                                                             5.85e-01
                                                                            0
## Glycerol; 57
                                  -0.06180
                                              -0.24700
                                                           0.12300
                                                                                5.13e-01
                                                                                             6.30e-01
                                                                                5.21e-01
## 1-Monopalmitin; 37
                                  -0.06060
                                              -0.24600
                                                           0.12400
                                                                            0
                                                                                             6.30e-01
## Pyruvic acid; 31
                                   0.05150
                                              -0.13300
                                                           0.23600
                                                                            0
                                                                                5.85e-01
                                                                                             6.82e-01
## Tartronic acid; 73
                                  -0.05150
                                              -0.23600
                                                           0.13300
                                                                            0
                                                                                5.85e-01
                                                                                             6.82e-01
## Decanoic acid; 52
                                  -0.05070
                                              -0.23600
                                                           0.13400
                                                                            0
                                                                                5.91e-01
                                                                                             6.82e-01
                                                                            0
                                  -0.04810
                                                           0.13700
                                                                                6.10e-01
                                                                                             6.93e-01
  Palmitic acid, TMS; 5
                                              -0.23300
## Myristoleic acid; 65
                                   0.04470
                                              -0.14000
                                                           0.23000
                                                                            0
                                                                                6.35e-01
                                                                                             7.11e-01
## Stearic acid, TMS; 2
                                  -0.03080
                                              -0.21600
                                                           0.15400
                                                                            0
                                                                                7.44e-01
                                                                                             8.10e-01
## Nonanoic acid; 67
                                  -0.03070
                                              -0.21600
                                                           0.15400
                                                                                7.45e-01
                                                                                             8.10e-01
```

шш	Q	0.01020	0 16700	0.00000		0 10- 01	0 00- 01
	Campesterol; 49 Oleic acid, TMS; 3	0.01830 0.01730	-0.16700 -0.16800	0.20300		0 8.46e-01 0 8.54e-01	9.03e-01 9.03e-01
	1,3-Propanediol; 34	0.01730	-0.17400	0.20200		0 8.54e-01 0 9.05e-01	9.03e-01 9.23e-01
	Dodecanoic acid; 54	0.01130	-0.17400	0.19600		0 9.03e-01 0 9.08e-01	9.23e-01 9.23e-01
	Phenylalanine, 2TMS; 13	-0.01090	-0.17400	0.19600		0 9.00e-01 0 9.10e-01	9.23e-01 9.23e-01
	2-Palmitoylglycerol; 39	0.00626	-0.19000			0 9.10e-01 0 9.47e-01	9.47e-01
##	2-Faimitoyigiyceidi, 39	0.00020	-0.17900	0.19100		0 9.476-01	9.47e-01
##							
	Table: GroupHealthy Control						
##	Table: Glouphealthy Control						
	Name	Effect	CI.L	CI.R	AveExpr	P.Value	adj.P.Val
	2,4-Dihydroxybutanoic aci	-0.67000	-0.9810	-0.3590	0	2.46e-05	0.00158
	Arabinopyranose; 51	-0.65000	-0.9610	-0.3390	0	4.22e-05	0.00158
	Campesterol; 49	-0.58300	-0.8940	-0.2720	0	2.40e-04	0.00600
	3-Hydroxybutyric acid, 2T	-0.53500	-0.8470	-0.2240	0	7.43e-04	0.01310
	Glycine, 3TMS; 17	-0.52900	-0.8400	-0.2170	0	8.70e-04	0.01310
##	1-Dodecanol; 36	0.48500	0.1740	0.7960	0	2.26e-03	0.02820
##	4-Hydroxybenzeneacetic ac	-0.44700	-0.7580	-0.1360	0	4.88e-03	0.05170
##	Malic acid, 3TMS; 11	-0.44100	-0.7520	-0.1290	0	5.52e-03	0.05170
##	Ribitol; 71	-0.41200	-0.7230	-0.1010	0	9.44e-03	0.07870
##	3,4-Dihydroxybutanoic aci	-0.37700	-0.6880	-0.0655	0	1.77e-02	0.13300
##	2-Palmitoylglycerol; 39	0.36200	0.0509	0.6730	0	2.26e-02	0.14100
##	Decanoic acid; 52	-0.36200	-0.6730	-0.0508	0	2.26e-02	0.14100
##	Ethanolamine; 56	-0.34500	-0.6560	-0.0336	0	2.99e-02	0.17300
	Lactic acid; 29	-0.33900	-0.6510	-0.0283	0	3.25e-02	0.17400
	Tridecanoic acid; 74	-0.30900	-0.6200	0.0025	0	5.19e-02	0.25900
	Myo inositol 6TMS; 1	-0.29800	-0.6090	0.0134	0	6.07e-02	0.27000
	Arachidonic acid, TMS; 24	0.29700	-0.0141	0.6080	0	6.13e-02	0.27000
	Citric acid, 4TMS; 6	-0.28900	-0.6000	0.0221	0	6.86e-02	0.27800
	Creatinine; 50	0.28300	-0.0285	0.5940	0	7.50e-02	0.27800
	Arachidic acid; 46	-0.27800	-0.5890	0.0331	0	7.98e-02	0.27800
	Valine, 2TMS; 20	0.27800	-0.0331	0.5890	0	7.99e-02	0.27800
	Aminomalonic acid; 45	-0.27600	-0.5880	0.0346	0	8.16e-02	0.27800
	Glyceric acid; 30	0.27200	-0.0396	0.5830	0	8.71e-02	0.28400
	1,3-Propanediol; 34	0.26300	-0.0481	0.5740	0	9.76e-02	0.30500
	Fumaric acid, 2TMS; 9	-0.25500	-0.5660	0.0559	0	1.08e-01	0.32400
	1-Monopalmitin; 37	0.24800	-0.0627	0.5600	0	1.18e-01	0.33200
	Serine, 3TMS; 14	-0.24700	-0.5580	0.0639	0	1.19e-01	0.33200
	Glutamic acid, 3TMS; 8	0.24300	-0.0681	0.5540	0	1.26e-01	0.33700
	4-Hydroxyphenyllactic aci	0.22800	-0.0828	0.5390	0	1.50e-01	0.38900
	Myristoleic acid; 65	0.22300	-0.0885 -0.0907	0.5340	0	1.61e-01	0.39900
	Leucine, 2TMS; 19	0.22000		0.5320	0	1.65e-01	0.39900 0.44400
	Octanoic acid; 68 Isoleucine, 2TMS; 18	-0.20800 0.20300	-0.5200 -0.1080	0.1030 0.5140	0	1.89e-01 2.01e-01	0.44400
	Oleic acid, TMS; 3	-0.20100	-0.5130	0.3140	0	2.01e 01 2.04e-01	0.45100
	Stearic acid, TMS; 2	0.20100	-0.1170	0.5050	0	2.04e 01 2.22e-01	0.47500
	Benzeneacetic acid; 47	-0.18500	-0.1170	0.3030	0	2.22e-01 2.44e-01	0.47300
	Cholesterol, TMS; 23	0.16800	-0.1430	0.1200	0	2.89e-01	0.58700
	Proline, 2TMS; 21	-0.16200	-0.4740	0.1490	0	3.06e-01	0.60400
	Nonadecanoic acid; 66	0.16200	-0.1530	0.1430	0	3.19e-01	0.61300
##	4-Deoxytetronic acid; 32	0.15400	-0.1570	0.4650	0	3.32e-01	0.61400
	Glycerol; 58	-0.15300	-0.4640	0.1590	0	3.36e-01	0.61400
	11-Eicosenoic acid; 35	-0.15000	-0.4610	0.1610	0	3.44e-01	0.61400
	 ,		. = *		-	=	

##	3-Indoleacetic acid; 40	-0.14500	-0.4560	0.1660	0	3.60e-01	0.62800
##	Eicosapentaenoic acid; 55	0.13900	-0.1720	0.4500	0	3.81e-01	0.64200
##	Pyruvic acid; 31	-0.13700	-0.4480	0.1740	0	3.88e-01	0.64200
##	Succinic acid, 2TMS; 7	-0.13400	-0.4450	0.1770	0	3.99e-01	0.64200
##	3-Indolepropionic acid; 4	0.13200	-0.1790	0.4430	0	4.06e-01	0.64200
##	Bisphenol A; 48	0.13000	-0.1810	0.4410	0	4.14e-01	0.64200
##	4-Deoxytetronic acid; 33	-0.12800	-0.4390	0.1830	0	4.19e-01	0.64200
##	Hydroxylamine; 62	0.12100	-0.1900	0.4320	0	4.45e-01	0.65500
##	alpha-Tocopherol; 26	-0.12100	-0.4320	0.1900	0	4.46e-01	0.65500
##	2-Hydroxybutyric acid, 2T	-0.10000	-0.4110	0.2110	0	5.29e-01	0.76300
##	Hydroxyproline; 64	0.09470	-0.2160	0.4060	0	5.51e-01	0.76700
##	Tartronic acid; 73	0.09390	-0.2170	0.4050	0	5.54e-01	0.76700
##	L-5-Oxoproline; 63	0.09200	-0.2190	0.4030	0	5.62e-01	0.76700
##	2-hydroxy Isovaleric acid	0.08860	-0.2230	0.4000	0	5.77e-01	0.77300
##	4-Hydroxybutanoic acid; 4	-0.08200	-0.3930	0.2290	0	6.05e-01	0.79600
##	Pyroglutamic acid; 69	0.05960	-0.2510	0.3710	0	7.07e-01	0.86200
##	Docosahexaenoic acid; 53	-0.05840	-0.3700	0.2530	0	7.13e-01	0.86200
##	Glyceryl-glycoside; 59	-0.05660	-0.3680	0.2550	0	7.22e-01	0.86200
##	Tyrosine; 75	0.05630	-0.2550	0.3670	0	7.23e-01	0.86200
##	Glycerol; 57	0.05400	-0.2570	0.3650	0	7.34e-01	0.86200
##	Dodecanoic acid; 54	0.05360	-0.2580	0.3650	0	7.36e-01	0.86200
##	Linoleic acid, TMS; 4	-0.05360	-0.3650	0.2580	0	7.36e-01	0.86200
##	Ribitol; 70	-0.03530	-0.3460	0.2760	0	8.24e-01	0.95100
##	Alanine, 2TMS; 25	0.02810	-0.2830	0.3390	0	8.59e-01	0.96100
##	Palmitic acid, TMS; 5	-0.02380	-0.3350	0.2870	0	8.81e-01	0.96100
##	Heptadecanoic acid; 61	0.02250	-0.2890	0.3340	0	8.87e-01	0.96100
##	Threonine, 3TMS; 12	0.02070	-0.2900	0.3320	0	8.96e-01	0.96100
##	Methionine, 2TMS; 16	-0.01730	-0.3280	0.2940	0	9.13e-01	0.96100
##	Phenylalanine, 2TMS; 13	-0.01730	-0.3280	0.2940	0	9.13e-01	0.96100
##	Ribonic acid; 72	-0.01300	-0.3240	0.2980	0	9.35e-01	0.96100
##	Heptadecanoic acid; 60	-0.01290	-0.3240	0.2980	0	9.35e-01	0.96100
##	alpha-ketoglutaric acid,	0.00379	-0.3070	0.3150	0	9.81e-01	0.99400
##	Nonanoic acid; 67	-0.00101	-0.3120	0.3100	0	9.95e-01	0.99500

1.1.2 Adjusted Model

```
design.test <-
  data.frame(
    data.w.healthy.control[ ,
                                "Group",
                                "Age",
                                "Gender",
                                "Hba1c_baseline",
                                "egfr",
                                "CALSBP",
                                "bmi",
                                "Smoking",
                                "Statin",
                                "log_Blood_TGA",
                                "Total_cholesterol"
                              ]
    )
tmp <-
  apply(
    X = !is.na( design.test ),
    MAR = 1,
    FUN = all
  )
design.test <- design.test[ tmp, ]</pre>
design.test <- droplevels( design.test )</pre>
# data.test <- t( data.w.healthy.control[ tmp, names.metabolites ] )</pre>
data.test <- data.w.healthy.control[ tmp, names.metabolites ]</pre>
data.test <- scale( x = data.test )</pre>
data.test <- t( data.test )</pre>
dm <-
  stats::model.matrix(
    object=
      ~ Group +
      Age +
      Gender +
      Hba1c_baseline +
      egfr +
      CALSBP +
      bmi +
      Smoking +
      Statin +
      log_Blood_TGA +
      Total_cholesterol,
    data = design.test )
```

```
mFit <-
  limma::lmFit(
    object = data.test,
    design = dm
mEbFit <- limma::eBayes( mFit )</pre>
dim( dm )
## [1] 665 14
apply( X = dm, MAR = 2, FUN = range )
        (Intercept) GroupT1D Micro GroupT1D Macro GroupHealthy Control
##
## [1,]
                  1
                                                                        0 19.39
## [2,]
                  1
                                  1
                                                  1
                                                                        1 85.23
##
        Gender Hba1c_baseline
                                    egfr CALSBP
                                                 bmi Smoking Statin
                                             91 16.98
## [1,]
             0
                           4.7 11.03376
                                                             0
## [2,]
                          15.0 167.62905
                                            191 43.29
        log_Blood_TGA Total_cholesterol
##
## [1,]
            -2.643856
## [2,]
             2.720278
                                     9.2
tableone::CreateTableOne( data = design.test )
##
##
                                    Overall
##
                                       665
     n
##
     Group (%)
##
        T1D Control
                                       290 (43.6)
        T1D Micro
##
                                       152 (22.9)
##
        T1D Macro
                                       178 (26.8)
##
        Healthy Control
                                        45 (6.8)
##
     Age (mean (sd))
                                     54.07 (12.74)
##
     Gender (mean (sd))
                                      0.54(0.50)
     Hba1c_baseline (mean (sd))
                                      7.88 (1.31)
##
##
     egfr (mean (sd))
                                     83.67 (27.64)
##
     CALSBP (mean (sd))
                                    131.45 (17.41)
##
     bmi (mean (sd))
                                     25.24 (4.00)
##
     Smoking (mean (sd))
                                      0.20 (0.40)
##
     Statin (mean (sd))
                                      0.56 (0.50)
##
     log_Blood_TGA (mean (sd))
                                      0.00 (0.69)
##
     Total_cholesterol (mean (sd))
                                     4.71 (0.87)
```

1.1.2.1 Table

```
results.group <- mEbFit</pre>
# for ( i in 2:ncol( mEbFit ) ) {
for ( i in 2:4 ) {
  name.effect <- colnames( mEbFit$"coefficients" )[ i ]</pre>
  # print( name.effect )
  table.result.group <-</pre>
    limma::topTable(
      fit = mEbFit,
      coef = name.effect,
      confint = TRUE,
      number = Inf,
      adjust.method = "BH"
  table.result.printed <- table.result.group</pre>
  colnames( table.result.printed )[ colnames( table.result.printed )=="logFC" ] <-</pre>
    "Effect"
  table.result.printed <-
    signif(
      x = table.result.printed,
      digits = 3
  table.result.printed$"Name" <- rownames( table.result.printed )</pre>
  table.result.printed$"Name" <-</pre>
    stringr::str_sub(
      string = table.result.printed$"Name",
      start = 1,
      end = 25
    )
  table.result.printed <-
    table.result.printed[ ,
                            c(
                              "Name",
                              "Effect",
                              "CI.L",
                              "CI.R",
                              "AveExpr",
                              "P. Value",
                              "adj.P.Val"
                            ]
  print(
```

```
knitr::kable(
      x = table.result.printed,
      row.names = FALSE,
      caption = name.effect
  )
}
##
##
## Table: GroupT1D Micro
##
## Name
                                                             CI.R
                                                                                          adj.P.Val
                                    Effect
                                                  CI.L
                                                                     AveExpr
                                                                               P. Value
##
                                   0.32200
                                               0.13200
                                                           0.5120
                                                                           0
                                                                                0.00093
                                                                                             0.0698
## 3,4-Dihydroxybutanoic aci
## 4-Deoxytetronic acid; 32
                                   0.30600
                                               0.10800
                                                           0.5040
                                                                                0.00245
                                                                                             0.0911
## Ribitol; 70
                                   0.29600
                                               0.09650
                                                           0.4950
                                                                           0
                                                                                0.00364
                                                                                             0.0911
## Heptadecanoic acid; 60
                                  -0.28200
                                              -0.48200
                                                          -0.0814
                                                                           0
                                                                               0.00587
                                                                                             0.1100
                                                                           0
## 2,4-Dihydroxybutanoic aci
                                   0.21400
                                               0.02570
                                                           0.4020
                                                                                0.02590
                                                                                             0.3890
## Creatinine; 50
                                   0.19900
                                               0.00525
                                                           0.3930
                                                                           0
                                                                                0.04410
                                                                                             0.5510
## Dodecanoic acid; 54
                                   0.18200
                                              -0.01630
                                                           0.3810
                                                                           0
                                                                                0.07200
                                                                                             0.6530
## Threonine, 3TMS; 12
                                  -0.18000
                                              -0.38100
                                                           0.0204
                                                                           0
                                                                                0.07830
                                                                                             0.6530
## 11-Eicosenoic acid; 35
                                   0.17500
                                              -0.02600
                                                           0.3750
                                                                           0
                                                                                0.08800
                                                                                             0.6530
## 4-Hydroxybenzeneacetic ac
                                              -0.02970
                                                                           0
                                                                                0.09740
                                   0.16300
                                                           0.3550
                                                                                             0.6530
## Myo inositol 6TMS; 1
                                   0.15500
                                              -0.03400
                                                           0.3430
                                                                           0
                                                                               0.10800
                                                                                             0.6530
## Ribitol; 71
                                   0.15400
                                              -0.03510
                                                           0.3430
                                                                           0
                                                                               0.11000
                                                                                             0.6530
## Glycine, 3TMS; 17
                                   0.15700
                                              -0.03920
                                                           0.3540
                                                                                0.11700
                                                                                             0.6530
## Pyroglutamic acid; 69
                                              -0.04230
                                                           0.3560
                                                                           0
                                                                               0.12300
                                   0.15700
                                                                                             0.6530
## Ribonic acid; 72
                                              -0.04860
                                   0.14200
                                                           0.3320
                                                                           0
                                                                                0.14400
                                                                                             0.6530
## 4-Hydroxyphenyllactic aci
                                                                           0
                                              -0.05210
                                                           0.3460
                                                                                0.14800
                                   0.14700
                                                                                             0.6530
## Malic acid, 3TMS; 11
                                   0.14300
                                              -0.05600
                                                           0.3420
                                                                                0.15900
                                                                                             0.6530
## 2-hydroxy Isovaleric acid
                                              -0.34000
                                                                           0
                                  -0.14000
                                                           0.0592
                                                                               0.16800
                                                                                             0.6530
## Isoleucine, 2TMS; 18
                                  -0.13600
                                              -0.33100
                                                           0.0584
                                                                           0
                                                                               0.17000
                                                                                             0.6530
## Glutamic acid, 3TMS; 8
                                   0.13500
                                              -0.05990
                                                           0.3300
                                                                           0
                                                                               0.17400
                                                                                             0.6530
## Methionine, 2TMS; 16
                                  -0.13000
                                              -0.32800
                                                           0.0685
                                                                           0
                                                                                0.19900
                                                                                             0.6620
                                                                           0
## Valine, 2TMS; 20
                                  -0.12500
                                              -0.31900
                                                           0.0689
                                                                                0.20700
                                                                                             0.6620
## alpha-ketoglutaric acid,
                                   0.12900
                                              -0.07160
                                                           0.3300
                                                                           0
                                                                                0.20700
                                                                                             0.6620
## Succinic acid, 2TMS; 7
                                   0.12800
                                              -0.07300
                                                           0.3290
                                                                           0
                                                                                0.21200
                                                                                             0.6620
## Fumaric acid, 2TMS; 9
                                              -0.07710
                                                                           0
                                                                                0.22800
                                   0.12300
                                                           0.3230
                                                                                             0.6740
## Tyrosine; 75
                                  -0.12000
                                              -0.32100
                                                           0.0798
                                                                           0
                                                                                0.23800
                                                                                             0.6740
## Arachidic acid; 46
                                                                           0
                                  -0.11700
                                              -0.31800
                                                           0.0833
                                                                               0.25100
                                                                                             0.6740
## Tridecanoic acid; 74
                                   0.11700
                                              -0.08320
                                                           0.3180
                                                                           0
                                                                                0.25200
                                                                                             0.6740
## Lactic acid; 29
                                   0.11200
                                              -0.08760
                                                           0.3110
                                                                           0
                                                                               0.27200
                                                                                             0.6740
## Glycerol; 57
                                  -0.11100
                                              -0.31300
                                                           0.0902
                                                                           0
                                                                                0.27900
                                                                                             0.6740
## Nonanoic acid; 67
                                              -0.30900
                                                                           0
                                                                               0.29700
                                  -0.10700
                                                           0.0945
                                                                                             0.6740
## Leucine, 2TMS; 19
                                  -0.10400
                                              -0.30100
                                                           0.0932
                                                                                0.30100
                                                                                             0.6740
                                                                           0
## Docosahexaenoic acid; 53
                                  -0.10300
                                              -0.30000
                                                           0.0938
                                                                               0.30500
                                                                                             0.6740
## Arachidonic acid, TMS; 24
                                  -0.10400
                                              -0.30500
                                                           0.0966
                                                                           0
                                                                               0.30900
                                                                                             0.6740
## Alanine, 2TMS; 25
                                   0.10200
                                              -0.09730
                                                           0.3020
                                                                           0
                                                                               0.31500
                                                                                             0.6740
## Palmitic acid, TMS; 5
                                  -0.09630
                                              -0.29500
                                                           0.1020
                                                                                0.34200
                                                                                             0.6820
## 1-Monopalmitin; 37
                                   0.09620
                                              -0.10500
                                                           0.2980
                                                                           0
                                                                                0.34900
                                                                                             0.6820
## 2-Hydroxybutyric acid, 2T
                                  -0.09160
                                              -0.28800
                                                           0.1040
                                                                           0
                                                                                0.35900
                                                                                             0.6820
```

-0.09210

-0.29300

0.1090

0.36800

0.6820

Heptadecanoic acid; 61

	Decanoic acid; 52	0.08960	-0.10900	0.2880	0	0.37600	0.6820
	Benzeneacetic acid; 47	0.08530	-0.11400	0.2850	0	0.40100	0.6820
	4-Deoxytetronic acid; 33	-0.08170	-0.27700	0.1140	0	0.41200	0.6820
	Glyceric acid; 30	0.08130	-0.11500	0.2780	0	0.41700	0.6820
	Proline, 2TMS; 21	-0.07970	-0.27800	0.1180	0	0.42900	0.6820
##	Glycerol; 58	-0.08010	-0.28200	0.1220	0	0.43700	0.6820
	Bisphenol A; 48	-0.07880	-0.28100	0.1230	0	0.44500	0.6820
	Stearic acid, TMS; 2	-0.07670	-0.27600	0.1230	0	0.45100	0.6820
	Linoleic acid, TMS; 4	-0.07670	-0.27700	0.1230	0	0.45200	0.6820
	Aminomalonic acid; 45	0.07590	-0.12200	0.2740	0	0.45200	0.6820
	Pyruvic acid; 31	0.07620	-0.12400	0.2760	0	0.45500	0.6820
	Hydroxyproline; 64	0.07200	-0.12800	0.2720	0	0.48000	0.7060
	3-Hydroxybutyric acid, 2T	-0.06460	-0.26600	0.1360	0	0.52900	0.7520
	Glyceryl-glycoside; 59	0.06340	-0.13500	0.2620	0	0.53200	0.7520
	4-Hydroxybutanoic acid; 4	0.06210	-0.13900	0.2630	0	0.54400	0.7530
	Tartronic acid; 73	0.06000	-0.13800	0.2580	0	0.55200	0.7530
##	Campesterol; 49	0.05460	-0.14100	0.2500	0	0.58300	0.7700
	1-Dodecanol; 36	0.05570	-0.14500	0.2560	0	0.58600	0.7700
	3-Indolepropionic acid; 4	0.05390	-0.14500	0.2530	0	0.59500	0.7700
	Serine, 3TMS; 14	-0.05200	-0.25200	0.1480	0	0.61000	0.7710
	1,3-Propanediol; 34	0.05070	-0.15100	0.2520	0	0.62200	0.7710
	L-5-Oxoproline; 63	0.04960	-0.15100	0.2500	0	0.62700	0.7710
	3-Indoleacetic acid; 40	0.03610	-0.16200	0.2340	0	0.72100	0.8560
	2-Palmitoylglycerol; 39	0.03610	-0.16500	0.2370	0	0.72400	0.8560
	Arabinopyranose; 51	-0.03500	-0.23400	0.1640	0	0.73000	0.8560
	Citric acid, 4TMS; 6	0.03010	-0.16600	0.2270	0	0.76400	0.8820
	Oleic acid, TMS; 3	-0.02320	-0.22300	0.1760	0	0.81900	0.8920
	Myristoleic acid; 65	0.02200	-0.17600	0.2200	0	0.82800	0.8920
	Ethanolamine; 56	0.02050	-0.18000	0.2210	0	0.84200	0.8920
	Octanoic acid; 68	0.01960	-0.18000	0.2200	0	0.84800	0.8920
	Phenylalanine, 2TMS; 13	0.01970	-0.18100	0.2210	0	0.84800	0.8920
##	alpha-Tocopherol; 26 Hydroxylamine; 62	-0.01880 -0.01700	-0.21500 -0.21800	0.1780	0	0.85200	0.8920
		-0.01700	-0.21800	0.1840 0.1750	0	0.86800 0.87300	0.8920 0.8920
	Eicosapentaenoic acid; 55	-0.01500	-0.21000	0.1750	0	0.88000	0.8920
	Nonadecanoic acid; 66	0.00367	-0.21000	0.1000	0	0.88000	0.8920
##	Nonadecanoic acid, 00	0.00307	0.19700	0.2040	U	0.9/100	0.9/10
##							
	Table: GroupT1D Macro						
##	Table: droapilb hadro						
	Name	Effect	CI.L	CI.R	AveExpr	P.Value	adj.P.Val
##							
##	3,4-Dihydroxybutanoic aci	0.521000	0.31100	0.73100	0	1.20e-06	9.33e-05
##	Ribonic acid; 72	0.430000	0.22000	0.64000	0	6.21e-05	2.33e-03
##	2,4-Dihydroxybutanoic aci	0.364000	0.15700	0.57200	0	5.94e-04	1.48e-02
##	Myo inositol 6TMS; 1	0.342000	0.13400	0.55000	0	1.30e-03	2.43e-02
##	4-Hydroxybenzeneacetic ac	0.318000	0.10600	0.53000	0	3.36e-03	5.04e-02
##	4-Deoxytetronic acid; 32	0.295000	0.07640	0.51300	0	8.19e-03	1.02e-01
##	Valine, 2TMS; 20	-0.272000	-0.48600	-0.05800	0	1.27e-02	1.37e-01
##	Threonine, 3TMS; 12	-0.267000	-0.48800	-0.04570	0	1.81e-02	1.70e-01
##	Methionine, 2TMS; 16	-0.248000	-0.46600	-0.02870	0	2.67e-02	2.22e-01
##	Docosahexaenoic acid; 53	-0.227000	-0.44400	-0.01000	0	4.03e-02	3.01e-01
##	3-Indolepropionic acid; 4	-0.226000	-0.44500	-0.00590	0	4.42e-02	3.01e-01
##	Ribitol; 70	0.222000	0.00179	0.44100	0	4.82e-02	3.01e-01

```
## Tyrosine; 75
                                  -0.218000
                                               -0.43900
                                                            0.00258
                                                                                  5.27e-02
                                                                                               3.04e-01
## 4-Hydroxybutanoic acid; 4
                                   0.214000
                                               -0.00759
                                                            0.43600
                                                                             0
                                                                                  5.84e-02
                                                                                               3.13e-01
## Hydroxyproline; 64
                                                                                  7.20e-02
                                   0.202000
                                               -0.01810
                                                            0.42300
                                                                                               3.60e-01
   2-hydroxy Isovaleric acid
                                                                             0
                                                                                  8.94e-02
                                                                                               3.98e-01
                                  -0.191000
                                               -0.41100
                                                            0.02940
## Proline, 2TMS; 21
                                   0.186000
                                               -0.03250
                                                            0.40400
                                                                             0
                                                                                  9.53e-02
                                                                                               3.98e-01
                                                                             0
## Nonadecanoic acid; 66
                                               -0.40700
                                                                                  1.00e-01
                                                                                               3.98e-01
                                  -0.186000
                                                            0.03590
  Aminomalonic acid: 45
                                  -0.183000
                                               -0.40200
                                                            0.03560
                                                                             0
                                                                                  1.01e-01
                                                                                               3.98e-01
## Heptadecanoic acid; 60
                                  -0.179000
                                               -0.40000
                                                            0.04180
                                                                             0
                                                                                  1.12e-01
                                                                                               4.19e-01
   4-Deoxytetronic acid; 33
                                   0.166000
                                               -0.04970
                                                            0.38200
                                                                             0
                                                                                  1.31e-01
                                                                                               4.56e-01
   Octanoic acid; 68
                                  -0.167000
                                               -0.38700
                                                            0.05400
                                                                             0
                                                                                  1.39e-01
                                                                                               4.56e-01
## Eicosapentaenoic acid; 55
                                  -0.162000
                                               -0.37800
                                                            0.05320
                                                                             0
                                                                                  1.40e-01
                                                                                               4.56e-01
                                                                             0
   1-Dodecanol; 36
                                  -0.161000
                                               -0.38200
                                                            0.06000
                                                                                  1.53e-01
                                                                                               4.68e-01
                                               -0.38300
## Phenylalanine, 2TMS; 13
                                  -0.161000
                                                                             0
                                                                                  1.56e-01
                                                                                               4.68e-01
                                                            0.06140
## Glyceryl-glycoside; 59
                                   0.153000
                                               -0.06660
                                                            0.37200
                                                                             0
                                                                                  1.72e-01
                                                                                               4.96e-01
## Ribitol; 71
                                                                             0
                                   0.138000
                                               -0.07120
                                                            0.34600
                                                                                  1.96e-01
                                                                                               5.45e-01
## 11-Eicosenoic acid; 35
                                   0.134000
                                               -0.08710
                                                            0.35600
                                                                             0
                                                                                  2.34e-01
                                                                                               6.27e-01
## Stearic acid, TMS; 2
                                                                             0
                                                                                  2.90e-01
                                                                                               7.14e-01
                                   0.119000
                                               -0.10100
                                                            0.33900
## Malic acid, 3TMS; 11
                                   0.119000
                                                            0.33800
                                                                                  2.90e-01
                                                                                               7.14e-01
                                               -0.10100
  4-Hydroxyphenyllactic aci
                                   0.112000
                                               -0.10800
                                                            0.33100
                                                                             0
                                                                                  3.19e-01
                                                                                               7.14e-01
## 2-Palmitoylglycerol; 39
                                   0.113000
                                               -0.10900
                                                            0.33400
                                                                             0
                                                                                  3.19e-01
                                                                                               7.14e-01
## Ethanolamine; 56
                                  -0.112000
                                               -0.33400
                                                            0.10900
                                                                             0
                                                                                  3.20e-01
                                                                                               7.14e-01
## L-5-Oxoproline; 63
                                  -0.111000
                                               -0.33200
                                                            0.11000
                                                                                  3.24e-01
                                                                                               7.14e-01
## Cholesterol, TMS; 23
                                               -0.31400
                                                            0.10800
                                                                             0
                                                                                  3.39e-01
                                                                                               7.15e-01
                                  -0.103000
  Arabinopyranose; 51
                                  -0.102000
                                               -0.32100
                                                            0.11700
                                                                             0
                                                                                  3.61e-01
                                                                                               7.15e-01
## Fumaric acid, 2TMS; 9
                                   0.103000
                                               -0.11800
                                                            0.32300
                                                                             0
                                                                                  3.62e-01
                                                                                               7.15e-01
   alpha-ketoglutaric acid,
                                   0.103000
                                               -0.11900
                                                            0.32400
                                                                             0
                                                                                  3.63e-01
                                                                                               7.15e-01
  Tridecanoic acid; 74
                                                                             0
                                  -0.099900
                                               -0.32100
                                                            0.12100
                                                                                  3.76e-01
                                                                                               7.15e-01
## Succinic acid, 2TMS; 7
                                   0.097400
                                               -0.12400
                                                            0.31900
                                                                             0
                                                                                  3.89e-01
                                                                                               7.15e-01
                                                                             0
## Glutamic acid, 3TMS; 8
                                   0.094200
                                               -0.12100
                                                            0.30900
                                                                                  3.91e-01
                                                                                               7.15e-01
## Lactic acid; 29
                                   0.093400
                                               -0.12700
                                                                             0
                                                                                  4.05e-01
                                                                                               7.23e-01
                                                            0.31300
## Isoleucine, 2TMS; 18
                                  -0.086300
                                               -0.30100
                                                            0.12900
                                                                             0
                                                                                  4.31e-01
                                                                                               7.35e-01
  Alanine, 2TMS; 25
                                  -0.085400
                                               -0.30600
                                                            0.13500
                                                                             0
                                                                                  4.47e-01
                                                                                               7.35e-01
   Campesterol; 49
                                  -0.083000
                                               -0.29800
                                                            0.13200
                                                                             0
                                                                                  4.50e-01
                                                                                               7.35e-01
  Arachidic acid; 46
                                  -0.085100
                                               -0.30700
                                                            0.13600
                                                                             0
                                                                                  4.51e-01
                                                                                               7.35e-01
   Citric acid, 4TMS; 6
                                   0.081100
                                               -0.13600
                                                            0.29800
                                                                             0
                                                                                  4.63e-01
                                                                                               7.35e-01
                                                                             0
## Glycerol; 58
                                   0.078900
                                               -0.14400
                                                            0.30200
                                                                                  4.88e-01
                                                                                               7.35e-01
## Decanoic acid; 52
                                   0.077100
                                               -0.14200
                                                            0.29600
                                                                             0
                                                                                  4.90e-01
                                                                                               7.35e-01
## Linoleic acid, TMS; 4
                                               -0.29800
                                                                             0
                                                                                               7.35e-01
                                  -0.077600
                                                            0.14300
                                                                                  4.90e-01
   3-Hydroxybutyric acid, 2T
                                                                             0
                                                                                               7.42e-01
                                   0.074500
                                               -0.14700
                                                            0.29600
                                                                                  5.10e-01
                                                                             0
   alpha-Tocopherol; 26
                                               -0.28900
                                                                                  5.14e-01
                                                                                               7.42e-01
                                  -0.072100
                                                            0.14500
  Benzeneacetic acid; 47
                                   0.066900
                                               -0.15300
                                                            0.28700
                                                                                  5.51e-01
                                                                                               7.79e-01
  Serine, 3TMS; 14
                                                                             0
                                                                                               7.92e-01
                                  -0.062500
                                               -0.28300
                                                            0.15800
                                                                                  5.78e-01
## Pyruvic acid; 31
                                   0.060700
                                               -0.16000
                                                            0.28100
                                                                             0
                                                                                  5.90e-01
                                                                                               7.92e-01
                                                                             0
                                                                                               7.92e-01
  Tartronic acid; 73
                                   0.059700
                                               -0.15900
                                                            0.27800
                                                                                  5.92e-01
## Dodecanoic acid; 54
                                   0.056000
                                               -0.16300
                                                            0.27500
                                                                             0
                                                                                  6.17e-01
                                                                                               8.11e-01
                                                                             0
## Oleic acid, TMS; 3
                                   0.051100
                                               -0.16900
                                                            0.27100
                                                                                  6.49e-01
                                                                                               8.30e-01
                                                            0.26900
## 3-Indoleacetic acid; 40
                                   0.050100
                                               -0.16900
                                                                             0
                                                                                  6.53e-01
                                                                                               8.30e-01
## 1,3-Propanediol; 34
                                   0.040400
                                               -0.18200
                                                            0.26300
                                                                             0
                                                                                  7.22e-01
                                                                                               8.82e-01
## Palmitic acid, TMS; 5
                                   0.038400
                                               -0.18100
                                                            0.25800
                                                                             0
                                                                                  7.31e-01
                                                                                               8.82e-01
  Heptadecanoic acid; 61
                                  -0.037700
                                               -0.25900
                                                            0.18400
                                                                             0
                                                                                  7.38e-01
                                                                                               8.82e-01
                                                                             0
## Myristoleic acid; 65
                                   0.034000
                                                            0.25300
                                                                                  7.61e-01
                                                                                               8.82e-01
                                               -0.18500
## Leucine, 2TMS; 19
                                  -0.033700
                                               -0.25100
                                                            0.18400
                                                                             0
                                                                                  7.62e-01
                                                                                               8.82e-01
## Nonanoic acid; 67
                                   0.034000
                                               -0.18900
                                                            0.25700
                                                                             0
                                                                                  7.65e-01
                                                                                               8.82e-01
## 1-Monopalmitin; 37
                                  -0.031400
                                               -0.25400
                                                            0.19100
                                                                                  7.82e-01
                                                                                               8.89e-01
```

##	2-Hydroxybutyric acid, 2T	-0.027700	-0.24400	0.18900	(0 8.02e-01	8.97e-01
	Creatinine; 50	0.023900	-0.19000			0 8.27e-01	
	Hydroxylamine; 62	-0.021000	-0.24300	0.20100	(0 8.52e-01	9.14e-01
	Pyroglutamic acid; 69	0.020800	-0.19900	0.24100	(0 8.53e-01	9.14e-01
##	Bisphenol A; 48	-0.018000	-0.24100	0.20500	(0 8.74e-01	9.18e-01
	Glycerol; 57	-0.016900	-0.23900	0.20500	(0 8.81e-01	9.18e-01
##	Arachidonic acid, TMS; 24	-0.003760	-0.22500	0.21800	(9.73e-01	
##	Glycine, 3TMS; 17	-0.001020	-0.21800	0.21600	(9.93e-01	9.98e-01
##	Glyceric acid; 30	0.000256	-0.21600	0.21700	(9.98e-01	9.98e-01
##							
##							
##	Table: GroupHealthy Control						
##							
##	Name	Effect	CI.L	CI.R	AveExpr	P.Value	adj.P.Val
##							
##	Tridecanoic acid; 74	-0.64200	-1.0100	-0.27800	0	0.000558	0.0383
	Decanoic acid; 52	-0.59700	-0.9570	-0.23700	0	0.001170	0.0383
	2,4-Dihydroxybutanoic aci	-0.55200	-0.8940	-0.21100	0	0.001530	0.0383
	3-Hydroxybutyric acid, 2T	-0.49200	-0.8570	-0.12700	0	0.008260	0.1550
##	Campesterol; 49	-0.45900	-0.8130	-0.10500	0	0.011200	0.1620
##	Valine, 2TMS; 20	0.44600	0.0946	0.79800	0	0.012900	0.1620
##	2-Palmitoylglycerol; 39	0.41900	0.0540	0.78300	0	0.024500	0.2620
	Arachidic acid; 46	-0.39900	-0.7630	-0.03450	0	0.031900	0.2990
##	Octanoic acid; 68	-0.38300	-0.7460	-0.02050	0	0.038400	0.3050
##	1-Dodecanol; 36	0.37900	0.0155	0.74300	0	0.041000	0.3050
##	11-Eicosenoic acid; 35	-0.37300	-0.7370	-0.00884	0	0.044700	0.3050
##	Glycine, 3TMS; 17	-0.35300	-0.7100	0.00371	0	0.052400	0.3280
	Isoleucine, 2TMS; 18	0.33600	-0.0180	0.68900	0	0.062800	0.3480
	Malic acid, 3TMS; 11	-0.34100	-0.7020	0.02110	0	0.064900	0.3480
	4-Deoxytetronic acid; 33	-0.31800	-0.6730	0.03640	0	0.078500	0.3560
	Alanine, 2TMS; 25	0.31500	-0.0472	0.67800	0	0.088200	0.3560
	4-Hydroxybutanoic acid; 4	-0.31600	-0.6810	0.04890	0	0.089600	0.3560
	Arachidonic acid, TMS; 24	0.31400	-0.0501	0.67900	0	0.090800	0.3560
##	Oleic acid, TMS; 3	-0.30900	-0.6710	0.05290	0	0.094200	0.3560
	Leucine, 2TMS; 19	0.30200	-0.0563	0.66000	0	0.098500	0.3560
	4-Hydroxybenzeneacetic ac	-0.29300	-0.6420	0.05580	0	0.099600	0.3560
	Arabinopyranose; 51	-0.29200	-0.6520	0.06920	0	0.113000	0.3860
	3,4-Dihydroxybutanoic aci	-0.26900	-0.6140	0.07670	0	0.127000	0.4020
	Tyrosine; 75	0.28200	-0.0817	0.64500	0	0.129000	0.4020
	Fumaric acid, 2TMS; 9	-0.27000	-0.6330	0.09320	0	0.145000	0.4180
	Ribitol; 71	-0.25400	-0.5970	0.08960	0	0.147000	0.4180
	Docosahexaenoic acid; 53	-0.26200	-0.6190	0.09520	0	0.150000	0.4180
	Creatinine; 50	0.25100	-0.1010	0.60300	0	0.163000	0.4350
	Glutamic acid, 3TMS; 8	0.23000	-0.1240	0.58400	0	0.203000	0.4910
	alpha-Tocopherol; 26	-0.23100	-0.5870	0.12600	0	0.205000	0.4910
	Aminomalonic acid; 45	-0.22900	-0.5890	0.13000	0	0.212000	0.4910
	Linoleic acid, TMS; 4	-0.22900	-0.5920	0.13400	0	0.215000	0.4910
	Glycerol; 57	0.23000	-0.1350	0.59600	0	0.216000	0.4910
	Nonadecanoic acid; 66	0.22700	-0.1380	0.59100	0	0.223000	0.4910
	Lactic acid; 29	-0.22000	-0.5820	0.14200	0	0.233000	0.5000
	Hydroxylamine; 62	0.21200	-0.1530	0.57700	0	0.255000	0.5320
	Myo inositol 6TMS; 1	-0.19500	-0.5370	0.14800	0	0.265000	0.5370
	Succinic acid, 2TMS; 7	-0.17100	-0.5360	0.19400	0	0.358000	0.7070
##	Pyruvic acid; 31	-0.15700	-0.5200	0.20600	0	0.395000	0.7600

##	Serine, 3TMS; 14	-0.14400	-0.5070	0.21800	0	0.435000	0.8150
##	Citric acid, 4TMS; 6	-0.13000	-0.4870	0.22600	0	0.474000	0.8320
##	Ethanolamine; 56	-0.12600	-0.4910	0.23800	0	0.496000	0.8320
##	1-Monopalmitin; 37	0.12600	-0.2400	0.49200	0	0.500000	0.8320
##	Ribitol; 70	-0.12300	-0.4840	0.23900	0	0.505000	0.8320
##	Phenylalanine, 2TMS; 13	0.11500	-0.2500	0.48000	0	0.536000	0.8320
##	Myristoleic acid; 65	0.11400	-0.2470	0.47400	0	0.536000	0.8320
##	Heptadecanoic acid; 61	-0.11500	-0.4800	0.25000	0	0.536000	0.8320
##	1,3-Propanediol; 34	0.11500	-0.2510	0.48100	0	0.537000	0.8320
##	Bisphenol A; 48	0.11400	-0.2530	0.48100	0	0.544000	0.8320
##	Stearic acid, TMS; 2	0.10600	-0.2560	0.46900	0	0.565000	0.8470
##	3-Indoleacetic acid; 40	-0.10200	-0.4610	0.25800	0	0.580000	0.8520
##	Glyceryl-glycoside; 59	0.09340	-0.2680	0.45400	0	0.612000	0.8820
##	Benzeneacetic acid; 47	-0.08980	-0.4520	0.27200	0	0.626000	0.8860
##	Nonanoic acid; 67	-0.08530	-0.4520	0.28100	0	0.648000	0.8920
##	Pyroglutamic acid; 69	0.08040	-0.2810	0.44200	0	0.663000	0.8920
##	4-Hydroxyphenyllactic aci	0.07960	-0.2820	0.44100	0	0.666000	0.8920
##	4-Deoxytetronic acid; 32	-0.07470	-0.4340	0.28500	0	0.684000	0.8990
##	Cholesterol, TMS; 23	-0.06780	-0.4150	0.27900	0	0.701000	0.9040
##	alpha-ketoglutaric acid,	-0.06870	-0.4330	0.29500	0	0.711000	0.9040
##	Tartronic acid; 73	-0.05340	-0.4130	0.30600	0	0.771000	0.9420
##	Glyceric acid; 30	0.05140	-0.3050	0.40800	0	0.777000	0.9420
##	Palmitic acid, TMS; 5	-0.05030	-0.4110	0.31000	0	0.784000	0.9420
##	Heptadecanoic acid; 60	0.04720	-0.3160	0.41100	0	0.799000	0.9420
##	Glycerol; 58	-0.04420	-0.4110	0.32300	0	0.813000	0.9420
##	Hydroxyproline; 64	0.04150	-0.3210	0.40400	0	0.823000	0.9420
##	Proline, 2TMS; 21	0.03960	-0.3200	0.39900	0	0.829000	0.9420
##	L-5-Oxoproline; 63	0.02970	-0.3340	0.39300	0	0.873000	0.9510
##	Threonine, 3TMS; 12	-0.02910	-0.3930	0.33500	0	0.876000	0.9510
##	Methionine, 2TMS; 16	0.02770	-0.3320	0.38800	0	0.880000	0.9510
##	Dodecanoic acid; 54	0.02150	-0.3390	0.38200	0	0.907000	0.9510
##	Ribonic acid; 72	-0.02030	-0.3660	0.32500	0	0.908000	0.9510
##	2-Hydroxybutyric acid, 2T	0.01920	-0.3370	0.37500	0	0.916000	0.9510
##	Eicosapentaenoic acid; 55	-0.01680	-0.3710	0.33800	0	0.926000	0.9510
##	2-hydroxy Isovaleric acid	-0.00418	-0.3670	0.35800	0	0.982000	0.9910
##	3-Indolepropionic acid; 4	0.00216	-0.3590	0.36300	0	0.991000	0.9910

1.2 eGFR

1.2.1 Crude Model

```
design.test <-</pre>
  data.frame(
    data[ ,
           c(
             "egfr",
             "Age",
             "Gender",
             "Hba1c_baseline",
             "logUAER",
             "CALSBP",
             "bmi",
             "Smoking",
             "Statin",
             "log_Blood_TGA",
             "Total_cholesterol"
           )
           ]
  )
tmp <-
  apply(
   X = !is.na( design.test ),
   MAR = 1,
    FUN = all
design.test <- design.test[ tmp, ]</pre>
design.test <- droplevels( design.test )</pre>
# data.test <- t( data[ tmp, names.metabolites ] )</pre>
data.test <- data[ tmp, names.metabolites ]</pre>
data.test <- scale( x = data.test )</pre>
data.test <- t( data.test )</pre>
dm <-
  stats::model.matrix(
    object = ~ egfr,
    data = design.test
mFit <-
  limma::lmFit(
    object = data.test,
    design = dm
mEbFit <- limma::eBayes( mFit )</pre>
```

```
dim( dm )
## [1] 586
apply( X = dm, MAR = 2, FUN = range )
##
       (Intercept)
                        egfr
## [1,]
                 1 11.03376
## [2,]
                 1 167.62905
tableone::CreateTableOne( data = design.test )
##
##
                                  Overall
##
                                    586
    egfr (mean (sd))
##
                                  82.04 (28.24)
##
    Age (mean (sd))
                                  55.37 (12.11)
##
    Gender (mean (sd))
                                  0.54 (0.50)
    Hba1c_baseline (mean (sd))
                                  8.03 (1.16)
##
##
     logUAER (mean (sd))
                                   4.73 (2.31)
##
    CALSBP (mean (sd))
                                131.91 (17.48)
    bmi (mean (sd))
##
                                 25.20 (4.06)
    Smoking (mean (sd))
##
                                  0.21 (0.41)
    Statin (mean (sd))
##
                                  0.61 (0.49)
##
    log_Blood_TGA (mean (sd)) 0.01 (0.69)
##
    Total_cholesterol (mean (sd)) 4.69 (0.88)
```

1.2.1.1 Table

```
results.egfr <- mEbFit</pre>
for ( i in 2:ncol( mEbFit ) ) {
  name.effect <- colnames( mEbFit$"coefficients" )[ i ]</pre>
  # print( name.effect )
  table.result.egfr <-
    limma::topTable(
      fit = mEbFit,
      coef = name.effect,
      confint = TRUE,
      number = Inf,
      adjust.method = "BH"
    )
  table.result.printed <- table.result.egfr</pre>
  colnames( table.result.printed )[ colnames( table.result.printed )=="logFC" ] <-</pre>
    "Effect"
  table.result.printed <-</pre>
    signif(
      x = table.result.printed,
      digits = 3
    )
  table.result.printed$"Name" <- rownames( table.result.printed )</pre>
  table.result.printed$"Name" <-</pre>
    stringr::str_sub(
      string = table.result.printed$"Name",
      start = 1,
      end = 25
    )
  table.result.printed <-
    table.result.printed[ ,
                            c(
                              "Name",
                              "Effect",
                              "CI.L",
                              "CI.R",
                              "AveExpr",
                              "P. Value",
                              "adj.P.Val"
                            )
                            ]
  print(
    knitr::kable(
```

```
x = table.result.printed,
      row.names = FALSE,
      caption = name.effect
    )
  )
}
##
##
## Table: egfr
##
                                                                CI.R
                                                                                    P.Value
## Name
                                     Effect
                                                    CI.L
                                                                        AveExpr
                                                                                               adj.P.Val
## Myo inositol 6TMS; 1
                                  -1.83e-02
                                              -2.10e-02
                                                                              0
                                                           -0.015500
                                                                                   0.00e+00
                                                                                               0.00e+00
## Ribitol; 71
                                  -1.72e-02
                                              -1.99e-02
                                                           -0.014400
                                                                              0
                                                                                   0.00e+00
                                                                                               0.00e+00
   2,4-Dihydroxybutanoic aci
                                  -1.66e-02
                                              -1.93e-02
                                                           -0.013800
                                                                              0
                                                                                   0.00e+00
                                                                                               0.00e+00
                                  -1.63e-02
                                                                                               0.00e+00
## Ribonic acid; 72
                                              -1.91e-02
                                                                              0
                                                                                   0.00e+00
                                                           -0.013500
## Creatinine; 50
                                  -1.47e-02
                                               -1.74e-02
                                                           -0.011900
                                                                              0
                                                                                   0.00e+00
                                                                                               0.00e+00
## 3,4-Dihydroxybutanoic aci
                                  -1.43e-02
                                              -1.70e-02
                                                           -0.011500
                                                                              0
                                                                                   0.00e+00
                                                                                               0.00e+00
## 4-Hydroxybenzeneacetic ac
                                  -1.32e-02
                                              -1.59e-02
                                                           -0.010400
                                                                               0
                                                                                   0.00e+00
                                                                                               0.00e+00
## 4-Deoxytetronic acid; 33
                                                           -0.007790
                                                                                   0.00e+00
                                                                                               0.00e+00
                                  -1.06e-02
                                              -1.34e-02
                                                                              0
## 4-Deoxytetronic acid; 32
                                  -1.03e-02
                                               -1.31e-02
                                                           -0.007480
                                                                              0
                                                                                   0.00e+00
                                                                                               0.00e+00
## Isoleucine, 2TMS; 18
                                   9.17e-03
                                               6.35e-03
                                                            0.012000
                                                                              0
                                                                                   0.00e+00
                                                                                               0.00e+00
## Valine, 2TMS; 20
                                   9.11e-03
                                               6.30e-03
                                                            0.011900
                                                                                   0.00e+00
                                                                                               0.00e+00
## Citric acid, 4TMS; 6
                                                                              0
                                                                                   0.00e+00
                                                                                               0.00e+00
                                  -8.85e-03
                                               -1.17e-02
                                                           -0.006040
## 3-Indoleacetic acid; 40
                                  -8.78e-03
                                              -1.16e-02
                                                           -0.005970
                                                                                   0.00e+00
                                                                                               0.00e+00
## 4-Hydroxyphenyllactic aci
                                                           -0.005760
                                                                               0
                                                                                   0.00e+00
                                                                                               0.00e+00
                                  -8.57e-03
                                              -1.14e-02
## Pyroglutamic acid; 69
                                                           -0.005220
                                                                                   0.00e+00
                                  -8.04e-03
                                              -1.09e-02
                                                                               0
                                                                                               1.00e-07
## Glyceryl-glycoside; 59
                                  -7.37e-03
                                              -1.02e-02
                                                           -0.004550
                                                                               0
                                                                                   3.00e-07
                                                                                               1.50e-06
## 2-Hydroxybutyric acid, 2T
                                   6.78e-03
                                               3.96e-03
                                                            0.009610
                                                                               0
                                                                                   2.60e-06
                                                                                               1.17e-05
## Serine, 3TMS; 14
                                                                               0
                                                                                               1.82e-05
                                   6.63e-03
                                               3.81e-03
                                                            0.009460
                                                                                   4.40e-06
## Fumaric acid, 2TMS; 9
                                  -6.55e-03
                                              -9.37e-03
                                                           -0.003720
                                                                               0
                                                                                   5.70e-06
                                                                                               2.26e-05
## Leucine, 2TMS; 19
                                   6.42e-03
                                               3.60e-03
                                                            0.009250
                                                                              0
                                                                                   8.70e-06
                                                                                               3.26e-05
## Hydroxyproline; 64
                                  -6.19e-03
                                              -9.02e-03
                                                           -0.003360
                                                                               0
                                                                                   1.82e-05
                                                                                               6.50e-05
## Methionine, 2TMS; 16
                                   5.85e-03
                                               3.02e-03
                                                            0.008670
                                                                               0
                                                                                   5.17e-05
                                                                                               1.76e-04
## 2-hydroxy Isovaleric acid
                                               2.73e-03
                                                            0.008380
                                                                               0
                                                                                   1.20e-04
                                                                                               3.92e-04
                                   5.56e-03
## Malic acid, 3TMS; 11
                                  -5.54e-03
                                               -8.36e-03
                                                           -0.002710
                                                                               0
                                                                                   1.28e-04
                                                                                               3.99e-04
## Glycine, 3TMS; 17
                                              -7.96e-03
                                                                                   3.80e-04
                                                                                               1.14e-03
                                  -5.13e-03
                                                           -0.002310
                                                                               0
## Benzeneacetic acid; 47
                                  -4.69e-03
                                              -7.52e-03
                                                           -0.001860
                                                                               0
                                                                                   1.17e-03
                                                                                               3.38e-03
## Octanoic acid; 68
                                   4.35e-03
                                               1.52e-03
                                                            0.007180
                                                                              0
                                                                                   2.60e-03
                                                                                               7.23e-03
## Succinic acid, 2TMS; 7
                                  -4.17e-03
                                               -7.00e-03
                                                           -0.001340
                                                                              0
                                                                                   3.93e-03
                                                                                               1.05e-02
## Ribitol; 70
                                  -4.07e-03
                                              -6.90e-03
                                                           -0.001240
                                                                               0
                                                                                   4.89e-03
                                                                                               1.27e-02
## Phenylalanine, 2TMS; 13
                                                           -0.000759
                                                                                   1.30e-02
                                                                                               3.25e-02
                                  -3.59e-03
                                              -6.43e-03
                                                                               0
                                                           -0.000692
## Alanine, 2TMS; 25
                                                                               0
                                                                                   1.48e-02
                                                                                               3.55e-02
                                  -3.53e-03
                                               -6.36e-03
## Cholesterol, TMS; 23
                                   3.51e-03
                                               6.79e-04
                                                            0.006350
                                                                               0
                                                                                   1.51e-02
                                                                                               3.55e-02
                                                                               0
## Tyrosine; 75
                                   3.22e-03
                                               3.89e-04
                                                            0.006060
                                                                                   2.58e-02
                                                                                               5.74e-02
## Glycerol; 58
                                  -3.22e-03
                                               -6.05e-03
                                                           -0.000385
                                                                                   2.60e-02
                                                                                               5.74e-02
## 2-Palmitoylglycerol; 39
                                                                              0
                                                                                   3.23e-02
                                                                                               6.92e-02
                                   3.10e-03
                                               2.62e-04
                                                            0.005930
## Threonine, 3TMS; 12
                                   3.05e-03
                                               2.17e-04
                                                            0.005890
                                                                               0
                                                                                   3.49e-02
                                                                                               7.26e-02
## 3-Indolepropionic acid; 4
                                   2.77e-03
                                              -6.75e-05
                                                            0.005600
                                                                               0
                                                                                   5.57e-02
                                                                                               1.13e-01
## Stearic acid, TMS; 2
                                              -1.27e-04
                                                            0.005540
                                                                               0
                                                                                   6.12e-02
                                                                                               1.21e-01
                                   2.71e-03
## 11-Eicosenoic acid; 35
                                  -2.64e-03
                                               -5.47e-03
                                                            0.000200
                                                                               0
                                                                                   6.85e-02
                                                                                               1.32e-01
## Myristoleic acid; 65
                                              -4.94e-03
                                  -2.11e-03
                                                            0.000728
                                                                                   1.45e-01
                                                                                               2.72e-01
```

```
## alpha-ketoglutaric acid,
                                  -1.96e-03
                                              -4.79e-03
                                                            0.000880
                                                                              0
                                                                                   1.76e-01
                                                                                               3.20e-01
## Glycerol; 57
                                                                                               3.20e-01
                                   1.94e-03
                                              -8.94e-04
                                                            0.004780
                                                                              0
                                                                                   1.79e-01
                                  -1.86e-03
## Aminomalonic acid; 45
                                              -4.69e-03
                                                            0.000979
                                                                              0
                                                                                   1.99e-01
                                                                                               3.48e-01
## Bisphenol A; 48
                                                                              0
                                                                                   2.10e-01
                                                                                               3.55e-01
                                   1.81e-03
                                              -1.02e-03
                                                            0.004650
## Tartronic acid; 73
                                  -1.80e-03
                                              -4.64e-03
                                                            0.001030
                                                                              0
                                                                                   2.13e-01
                                                                                               3.55e-01
## Heptadecanoic acid; 60
                                              -4.61e-03
                                                            0.001070
                                                                              0
                                                                                   2.21e-01
                                                                                               3.61e-01
                                  -1.77e-03
## Ethanolamine; 56
                                   1.68e-03
                                              -1.15e-03
                                                            0.004520
                                                                              0
                                                                                   2.44e-01
                                                                                               3.90e-01
## L-5-Oxoproline; 63
                                   1.65e-03
                                              -1.19e-03
                                                            0.004490
                                                                              0
                                                                                   2.54e-01
                                                                                               3.97e-01
## Palmitic acid, TMS; 5
                                   1.57e-03
                                              -1.26e-03
                                                            0.004410
                                                                              0
                                                                                   2.76e-01
                                                                                               4.23e-01
## Nonadecanoic acid; 66
                                  -1.40e-03
                                              -4.24e-03
                                                            0.001430
                                                                              0
                                                                                   3.32e-01
                                                                                               4.94e-01
## 1-Dodecanol; 36
                                   1.39e-03
                                              -1.44e-03
                                                            0.004230
                                                                              0
                                                                                   3.36e-01
                                                                                               4.94e-01
## Heptadecanoic acid; 61
                                  -1.35e-03
                                              -4.19e-03
                                                            0.001480
                                                                              0
                                                                                   3.50e-01
                                                                                               4.98e-01
## Campesterol; 49
                                  -1.33e-03
                                              -4.17e-03
                                                            0.001510
                                                                              0
                                                                                   3.58e-01
                                                                                               4.98e-01
## Oleic acid, TMS; 3
                                  -1.33e-03
                                              -4.16e-03
                                                            0.001510
                                                                              0
                                                                                   3.59e-01
                                                                                               4.98e-01
## Dodecanoic acid; 54
                                                                              0
                                  -1.29e-03
                                              -4.13e-03
                                                            0.001550
                                                                                   3.73e-01
                                                                                               5.09e-01
## Eicosapentaenoic acid; 55
                                   1.26e-03
                                              -1.57e-03
                                                            0.004100
                                                                              0
                                                                                   3.82e-01
                                                                                               5.10e-01
## 4-Hydroxybutanoic acid; 4
                                  -1.25e-03
                                              -4.09e-03
                                                                              0
                                                                                   3.87e-01
                                                                                               5.10e-01
                                                            0.001590
## Linoleic acid, TMS; 4
                                   1.22e-03
                                              -1.62e-03
                                                            0.004060
                                                                                   4.00e-01
                                                                                               5.17e-01
## Glyceric acid; 30
                                                                                   4.68e-01
                                              -1.79e-03
                                                            0.003890
                                                                              0
                                                                                               5.95e-01
                                   1.05e-03
## Decanoic acid; 52
                                  -8.00e-04
                                              -3.64e-03
                                                            0.002040
                                                                              0
                                                                                   5.81e-01
                                                                                               7.17e-01
## Lactic acid; 29
                                   7.93e-04
                                              -2.04e-03
                                                            0.003630
                                                                              0
                                                                                   5.84e-01
                                                                                               7.17e-01
## 1-Monopalmitin; 37
                                                            0.003600
                                                                                   5.96e-01
                                                                                               7.21e-01
                                   7.67e-04
                                              -2.07e-03
                                                                              0
## Pyruvic acid; 31
                                                                                               7.56e-01
                                  -6.75e-04
                                              -3.51e-03
                                                            0.002160
                                                                              0
                                                                                   6.41e-01
## Hydroxylamine; 62
                                  -6.66e-04
                                              -3.50e-03
                                                            0.002170
                                                                              0
                                                                                   6.45e-01
                                                                                               7.56e-01
## Proline, 2TMS; 21
                                  -5.83e-04
                                              -3.42e-03
                                                            0.002250
                                                                              0
                                                                                   6.87e-01
                                                                                               7.93e-01
## 3-Hydroxybutyric acid, 2T
                                  -5.44e-04
                                              -3.38e-03
                                                            0.002290
                                                                              0
                                                                                   7.07e-01
                                                                                               8.04e-01
## Arabinopyranose; 51
                                                            0.002370
                                                                              0
                                                                                   7.45e-01
                                                                                               8.28e-01
                                  -4.71e-04
                                              -3.31e-03
## Nonanoic acid; 67
                                  -4.60e-04
                                              -3.30e-03
                                                            0.002380
                                                                              0
                                                                                   7.50e-01
                                                                                               8.28e-01
                                                                              0
## Arachidonic acid, TMS; 24
                                  -4.03e-04
                                              -3.24e-03
                                                            0.002430
                                                                                   7.80e-01
                                                                                               8.48e-01
## Glutamic acid, 3TMS; 8
                                  -3.56e-04
                                              -3.19e-03
                                                            0.002480
                                                                              0
                                                                                   8.06e-01
                                                                                               8.63e-01
## Tridecanoic acid; 74
                                  -2.43e-04
                                              -3.08e-03
                                                            0.002590
                                                                              0
                                                                                   8.67e-01
                                                                                               9.03e-01
## 1,3-Propanediol; 34
                                  -2.37e-04
                                              -3.07e-03
                                                            0.002600
                                                                              0
                                                                                   8.70e-01
                                                                                               9.03e-01
## Arachidic acid; 46
                                   2.21e-04
                                              -2.62e-03
                                                            0.003060
                                                                              0
                                                                                   8.79e-01
                                                                                               9.03e-01
                                                                              0
## Docosahexaenoic acid; 53
                                   1.28e-04
                                              -2.71e-03
                                                            0.002960
                                                                                   9.30e-01
                                                                                               9.42e-01
## alpha-Tocopherol; 26
                                  -3.31e-05
                                              -2.87e-03
                                                            0.002800
                                                                                   9.82e-01
                                                                                               9.82e-01
```

1.2.2 Adjusted Model

```
design.test <-
  data.frame(
    data[ ,
           c(
             "egfr",
             "Age",
             "Gender",
             "Hba1c_baseline",
             "logUAER",
             "CALSBP",
             "bmi",
             "Smoking",
             "Statin",
             "log_Blood_TGA",
             "Total_cholesterol"
           )
          ]
  )
tmp <-
  apply(
    X = !is.na( design.test ),
    MAR = 1,
    FUN = all
  )
design.test <- design.test[ tmp, ]</pre>
design.test <- droplevels( design.test )</pre>
# data.test <- t( data[ tmp, names.metabolites ] )</pre>
data.test <- data[ tmp, names.metabolites ]</pre>
data.test <- scale( x = data.test )</pre>
data.test <- t( data.test )</pre>
dm <-
  stats::model.matrix(
    object =
      ~ egfr +
      Age +
      Gender +
      Hba1c_baseline +
      logUAER +
      CALSBP +
      bmi +
      Smoking +
      Statin +
      log_Blood_TGA +
      Total_cholesterol,
    data = design.test
  )
```

```
mFit <-
 limma::lmFit(
  object = data.test,
   design = dm
 )
mEbFit <- limma::eBayes( mFit )</pre>
dim( dm )
## [1] 586 12
apply( X = dm, MAR = 2, FUN = range )
                        egfr Age Gender Hba1c_baseline logUAER CALSBP
##
       (Intercept)
## [1,]
                 1 11.03376 19.39 0 5.2 0.5849625
## [2,]
                 1 167.62905 85.23
                                   1
                                                  15.0 13.0138461
                                                                     191
         bmi Smoking Statin log_Blood_TGA Total_cholesterol
##
                               -2.643856
## [1,] 16.98
                   0
                         0
                                                      2.3
## [2,] 43.29
                   1
                          1
                                2.720278
                                                       9.2
tableone::CreateTableOne( data = design.test )
##
                                 Overall
##
##
                                    586
##
    egfr (mean (sd))
                                  82.04 (28.24)
    Age (mean (sd))
##
                                  55.37 (12.11)
##
    Gender (mean (sd))
                                  0.54 (0.50)
##
    Hba1c baseline (mean (sd))
                                  8.03 (1.16)
    logUAER (mean (sd))
                                  4.73 (2.31)
##
##
    CALSBP (mean (sd))
                                131.91 (17.48)
##
    bmi (mean (sd))
                                 25.20 (4.06)
##
    Smoking (mean (sd))
                                  0.21 (0.41)
    Statin (mean (sd))
##
                                   0.61 (0.49)
    log_Blood_TGA (mean (sd)) 0.01 (0.69)
##
##
    Total_cholesterol (mean (sd)) 4.69 (0.88)
```

1.2.2.1 Table

```
results.egfr <- mEbFit</pre>
# for ( i in 2:ncol( mEbFit ) ) {
for ( i in 2:2 ) {
  name.effect <- colnames( mEbFit$"coefficients" )[ i ]</pre>
  # print( name.effect )
  table.result.egfr <-
    limma::topTable(
      fit = mEbFit,
      coef = name.effect,
      confint = TRUE,
      number = Inf,
      adjust.method = "BH"
  table.result.printed <- table.result.egfr</pre>
  colnames( table.result.printed )[ colnames( table.result.printed )=="logFC" ] <-</pre>
    "Effect"
  table.result.printed <-
    signif(
      x = table.result.printed,
      digits = 3
  table.result.printed$"Name" <- rownames( table.result.printed )</pre>
  table.result.printed <-
    table.result.printed[ ,
                           c(
                             "Name",
                             "Effect",
                             "CI.L",
                             "CI.R",
                             "AveExpr",
                             "P. Value",
                             "adj.P.Val"
                           )
                           ]
  if ( i == 2 ) {
    write.table(
      x = table.result.printed,
      file = "results/table-eGFR-adjusted.tsv",
      na = "",
      quote = FALSE,
      row.names = FALSE,
```

```
sep = "\t"
    )
  }
  table.result.printed$"Name" <-</pre>
    stringr::str_sub(
      string = table.result.printed$"Name",
      start = 1,
      end = 25
    )
  print(
    knitr::kable(
     x = table.result.printed,
     row.names = FALSE,
      caption = name.effect
    )
  )
  print( sum( table.result.printed$"adj.P.Val" < 0.01 ) )</pre>
  print( sum( table.result.printed$"adj.P.Val" < 0.05 ) )</pre>
  print( sum( table.result.printed$"adj.P.Val" < 0.10 ) )</pre>
##
```

##							
##	Table: egfr						
##							
##	Name	Effect	CI.L	CI.R	AveExpr	P.Value	adj.P.Val
##							
##	Myo inositol 6TMS; 1	-1.63e-02	-1.94e-02	-0.013100	0	0.00e+00	0.00e+00
##	Ribitol; 71	-1.52e-02	-1.84e-02	-0.012000	0	0.00e+00	0.00e+00
##	Creatinine; 50	-1.51e-02	-1.83e-02	-0.011900	0	0.00e+00	0.00e+00
##	2,4-Dihydroxybutanoic aci	-1.47e-02	-1.79e-02	-0.011500	0	0.00e+00	0.00e+00
##	Ribonic acid; 72	-1.36e-02	-1.67e-02	-0.010400	0	0.00e+00	0.00e+00
##	3,4-Dihydroxybutanoic aci	-1.13e-02	-1.45e-02	-0.008140	0	0.00e+00	0.00e+00
##	4-Deoxytetronic acid; 33	-1.12e-02	-1.45e-02	-0.007980	0	0.00e+00	0.00e+00
##	4-Hydroxybenzeneacetic ac	-1.11e-02	-1.44e-02	-0.007920	0	0.00e+00	0.00e+00
##	Isoleucine, 2TMS; 18	9.74e-03	6.49e-03	0.013000	0	0.00e+00	0.00e+00
##	4-Deoxytetronic acid; 32	-9.00e-03	-1.23e-02	-0.005730	0	1.00e-07	6.00e-07
##	Pyroglutamic acid; 69	-8.92e-03	-1.22e-02	-0.005630	0	1.00e-07	8.00e-07
##	Citric acid, 4TMS; 6	-8.79e-03	-1.21e-02	-0.005530	0	1.00e-07	9.00e-07
##	2-Hydroxybutyric acid, 2T	7.92e-03	4.68e-03	0.011200	0	1.80e-06	1.05e-05
##	4-Hydroxyphenyllactic aci	-7.80e-03	-1.11e-02	-0.004510	0	3.60e-06	1.91e-05
##	Valine, 2TMS; 20	7.60e-03	4.37e-03	0.010800	0	4.30e-06	2.14e-05
##	3-Indoleacetic acid; 40	-7.48e-03	-1.08e-02	-0.004200	0	8.20e-06	3.86e-05
##	Hydroxyproline; 64	-6.49e-03	-9.79e-03	-0.003180	0	1.22e-04	5.17e-04
##	Glyceryl-glycoside; 59	-6.45e-03	-9.74e-03	-0.003160	0	1.24e-04	5.17e-04
##	Leucine, 2TMS; 19	6.25e-03	2.98e-03	0.009520	0	1.87e-04	7.37e-04
##	Serine, 3TMS; 14	6.23e-03	2.93e-03	0.009540	0	2.24e-04	8.39e-04
##	Glycine, 3TMS; 17	-5.90e-03	-9.18e-03	-0.002620	0	4.29e-04	1.53e-03
	Fumaric acid, 2TMS; 9	-5.83e-03	-9.13e-03	-0.002520	0	5.56e-04	1.90e-03

##	Eicosapentaenoic acid; 55	5.13e-03	1.89e-03	0.008370	0	1.93e-03	6.29e-03
##	Stearic acid, TMS; 2	4.99e-03	1.69e-03	0.008300	0	3.08e-03	9.54e-03
##	Methionine, 2TMS; 16	4.94e-03	1.66e-03	0.008230	0	3.18e-03	9.54e-03
##	Malic acid, 3TMS; 11	-4.29e-03	-7.59e-03	-0.000985	0	1.10e-02	3.16e-02
##	Benzeneacetic acid; 47	-4.00e-03	-7.30e-03	-0.000697	0	1.76e-02	4.89e-02
##	Octanoic acid; 68	3.84e-03	5.45e-04	0.007140	0	2.24e-02	5.88e-02
##	Palmitic acid, TMS; 5	3.82e-03	5.34e-04	0.007110	0	2.27e-02	5.88e-02
##	Tyrosine; 75	3.72e-03	4.14e-04	0.007030	0	2.75e-02	6.86e-02
##	Glycerol; 57	3.69e-03	3.65e-04	0.007020	0	2.97e-02	7.18e-02
##	Aminomalonic acid; 45	-3.57e-03	-6.85e-03	-0.000293	0	3.28e-02	7.68e-02
##	Alanine, 2TMS; 25	-3.52e-03	-6.82e-03	-0.000214	0	3.69e-02	8.39e-02
##	Cholesterol, TMS; 23	3.26e-03	7.04e-05	0.006450	0	4.52e-02	9.96e-02
##	2-hydroxy Isovaleric acid	3.12e-03	-1.91e-04	0.006430	0	6.47e-02	1.39e-01
##	Glycerol; 58	-3.09e-03	-6.42e-03	0.000247	0	6.95e-02	1.45e-01
##	2-Palmitoylglycerol; 39	3.03e-03	-2.89e-04	0.006350	0	7.35e-02	1.49e-01
##	Succinic acid, 2TMS; 7	-2.82e-03	-6.14e-03	0.000492	0	9.51e-02	1.88e-01
##	Campesterol; 49	-2.73e-03	-5.98e-03	0.000516	0	9.91e-02	1.88e-01
##	Glutamic acid, 3TMS; 8	2.72e-03	-5.25e-04	0.005970	0	1.00e-01	1.88e-01
##	Phenylalanine, 2TMS; 13	-2.39e-03	-5.71e-03	0.000935	0	1.59e-01	2.91e-01
##	Docosahexaenoic acid; 53	2.25e-03	-1.00e-03	0.005510	0	1.75e-01	3.12e-01
##	Glyceric acid; 30	1.86e-03	-1.39e-03	0.005120	0	2.61e-01	4.56e-01
##	alpha-Tocopherol; 26	1.50e-03	-1.76e-03	0.004750	0	3.67e-01	6.25e-01
##	Decanoic acid; 52	1.45e-03	-1.85e-03	0.004740	0	3.89e-01	6.48e-01
##	Threonine, 3TMS; 12	1.43e-03	-1.89e-03	0.004750	0	3.98e-01	6.49e-01
##	Oleic acid, TMS; 3	1.34e-03	-1.96e-03	0.004640	0	4.25e-01	6.78e-01
##	Ribitol; 70	-1.24e-03	-4.54e-03	0.002070	0	4.63e-01	7.24e-01
##	Bisphenol A; 48	1.07e-03	-2.27e-03	0.004400	0	5.31e-01	7.88e-01
##	1,3-Propanediol; 34	1.03e-03	-2.29e-03	0.004360	0	5.43e-01	7.88e-01
##	Pyruvic acid; 31	9.78e-04	-2.33e-03	0.004290	0	5.62e-01	7.88e-01
##	Heptadecanoic acid; 60	-9.65e-04	-4.28e-03	0.002350	0	5.68e-01	7.88e-01
##	Myristoleic acid; 65	9.46e-04	-2.34e-03	0.004230	0	5.72e-01	7.88e-01
##	3-Indolepropionic acid; 4	9.44e-04	-2.35e-03	0.004240	0	5.75e-01	7.88e-01
##	Nonanoic acid; 67	-9.40e-04	-4.27e-03	0.002390	0	5.80e-01	7.88e-01
##	11-Eicosenoic acid; 35	-9.14e-04	-4.24e-03	0.002410	0	5.89e-01	7.88e-01
##	1-Monopalmitin; 37	8.93e-04	-2.44e-03	0.004220	0	5.99e-01	7.88e-01
##	Tridecanoic acid; 74	-8.42e-04	-4.16e-03	0.002470	0	6.18e-01	8.00e-01
##	Hydroxylamine; 62	-7.79e-04	-4.10e-03	0.002550	0	6.46e-01	8.21e-01
##	Ethanolamine; 56	7.40e-04	-2.58e-03	0.004060	0	6.62e-01	8.27e-01
##	Linoleic acid, TMS; 4	6.27e-04	-2.67e-03	0.003930	0	7.10e-01	8.72e-01
##	alpha-ketoglutaric acid,	5.74e-04	-2.74e-03	0.003890	0	7.34e-01	8.88e-01
##	Heptadecanoic acid; 61	-4.97e-04	-3.81e-03	0.002820	0	7.69e-01	9.08e-01
##	L-5-Oxoproline; 63	4.84e-04	-2.83e-03	0.003800	0	7.74e-01	9.08e-01
##	Arabinopyranose; 51	3.61e-04	-2.94e-03	0.003660	0	8.30e-01	9.33e-01
##	Lactic acid; 29	3.58e-04	-2.95e-03	0.003660	0	8.32e-01	9.33e-01
##	Tartronic acid; 73	3.04e-04	-2.97e-03	0.003580	0	8.55e-01	9.33e-01
##	Arachidic acid; 46	3.06e-04	-3.01e-03	0.003620	0	8.56e-01	9.33e-01
##	Proline, 2TMS; 21	2.87e-04	-2.99e-03	0.003570	0	8.64e-01	9.33e-01
##	Arachidonic acid, TMS; 24	2.76e-04	-3.04e-03	0.003590	0	8.70e-01	9.33e-01
##	4-Hydroxybutanoic acid; 4	2.25e-04	-3.10e-03	0.003540	0	8.94e-01	9.45e-01
##	Dodecanoic acid; 54	1.59e-04	-3.14e-03	0.003460	0	9.25e-01	9.52e-01
		1.52e-04	-3.16e-03	0.003470	0	9.28e-01	9.52e-01
	1-Dodecanol; 36	-1.30e-04	-3.46e-03	0.003200	0	9.39e-01	9.52e-01
##	3-Hydroxybutyric acid, 2T	3.68e-05	-3.30e-03	0.003370	0	9.83e-01	9.83e-01
##	[1] 25						

```
## [1] 27
## [1] 34

names.egfr.metabolites <-
    rownames(
    limma::topTable(
        fit = mEbFit,
        coef = "egfr",
        confint = TRUE,
        number = Inf,
        adjust.method = "BH",
        p.value = 0.01
    )
)
names.egfr.clinical <- colnames( design.test )</pre>
```

1.2.3 Technical-Adjusted Model

```
design.test <-
  data.frame(
    data[ ,
           c(
             "egfr",
             "Age",
             "Gender",
             "Hba1c_baseline",
             "logUAER",
             "CALSBP",
             "bmi",
             "Smoking",
             "Statin",
             "log_Blood_TGA",
             "Total_cholesterol",
             "Batch.Manual",
             "Run.Number"
           )
           ]
  )
tmp <- apply( X = !is.na( design.test ), MAR = 1, FUN = all )</pre>
design.test <- design.test[ tmp, ]</pre>
design.test <- droplevels( design.test )</pre>
# data.test <- t( data[ tmp, names.metabolites ] )</pre>
data.test <- data[ tmp, names.metabolites ]</pre>
data.test <- scale( x = data.test )</pre>
data.test <- t( data.test )</pre>
tmp <- names( which( table( design.test$"Batch.Manual" ) > 2 ) )
tmp <- ( design.test$"Batch.Manual" %in% tmp )</pre>
design.test <- design.test[ tmp, ]</pre>
design.test <- droplevels( design.test )</pre>
data.test <- data.test[ , tmp ]</pre>
dm <-
  stats::model.matrix(
    object =
       ~ egfr +
      Age +
      Gender +
      Hba1c_baseline +
      logUAER +
      CALSBP +
      bmi +
```

```
Smoking +
      Statin +
      log_Blood_TGA +
      Total_cholesterol +
      Batch.Manual * Run.Number,
    data = design.test
mFit <- limma::lmFit( object = data.test, design = dm )</pre>
mEbFit <- limma::eBayes( mFit )</pre>
dim( dm )
## [1] 585 81
apply( X = dm, MAR = 2, FUN = range )
                         egfr Age Gender Hba1c_baseline
                                                              logUAER CALSBP
        (Intercept)
## [1,]
                  1 11.03376 19.39
                                      0
                                                      5.2 0.5849625
## [2,]
                  1 167.62905 85.23
                                          1
                                                      15.0 13.0138461
                                                                          191
          bmi Smoking Statin log_Blood_TGA Total_cholesterol
## [1,] 16.98
                    0
                           0
                                  -2.643856
                                                          2.3
                                  2.720278
                                                           9.2
## [2,] 43.29
                           1
        Batch.Manual[121,151) Batch.Manual[151,176) Batch.Manual[176,191)
## [1,]
## [2,]
        Batch.Manual[191,206) Batch.Manual[206,225) Batch.Manual[225,248)
## [1,]
                             0
## [2,]
                             1
                                                   1
##
        Batch.Manual [248,279) Batch.Manual [279,322) Batch.Manual [322,348)
## [1,]
## [2,]
        Batch.Manual [348,369) Batch.Manual [369,381) Batch.Manual [381,390)
## [1,]
## [2,]
##
        Batch.Manual [390,420) Batch.Manual [420,464) Batch.Manual [464,474)
## [1,]
##
        Batch.Manual[474,479) Batch.Manual[479,485) Batch.Manual[485,501)
## [1,]
## [2,]
                             1
                                                   1
        Batch.Manual[501,535) Batch.Manual[535,546) Batch.Manual[546,591)
## [1,]
## [2,]
                                                   1
                             1
##
        Batch.Manual[591,594) Batch.Manual[594,635) Batch.Manual[635,649)
## [1,]
## [2,]
##
        Batch.Manual [680,694) Batch.Manual [694,751) Batch.Manual [751,766)
## [1,]
## [2,]
##
        Batch.Manual [766,807) Batch.Manual [807,891) Batch.Manual [83,121)
## [1,]
                                                                         0
## [2,]
        Batch.Manual[891,907) Batch.Manual[907,917) Batch.Manual[917,941)
##
```

```
## [1,]
## [2,]
                             1
##
        Batch.Manual [941, Inf) Run.Number Batch.Manual [121,151):Run.Number
                              0
##
  [1,]
##
   [2,]
        Batch.Manual[151,176):Run.Number Batch.Manual[176,191):Run.Number
##
## [1,]
## [2,]
                                       175
                                                                          190
##
        Batch.Manual[191,206):Run.Number Batch.Manual[206,225):Run.Number
## [1,]
                                         0
                                                                            0
## [2,]
                                       205
                                                                          223
        Batch.Manual[225,248):Run.Number Batch.Manual[248,279):Run.Number
##
## [1,]
## [2,]
                                       245
                                                                          278
##
        Batch.Manual[279,322):Run.Number Batch.Manual[322,348):Run.Number
## [1,]
                                         0
   [2,]
                                       321
##
##
        Batch.Manual [348,369):Run.Number Batch.Manual [369,381):Run.Number
                                         0
## [1,]
##
   [2,]
                                       368
                                                                          380
##
        Batch.Manual[381,390):Run.Number Batch.Manual[390,420):Run.Number
## [1,]
## [2,]
                                       389
                                                                          419
        Batch.Manual[420,464):Run.Number Batch.Manual[464,474):Run.Number
##
## [1,]
   [2,]
                                       460
##
        Batch.Manual[474,479):Run.Number Batch.Manual[479,485):Run.Number
## [1,]
   [2,]
                                       478
##
                                                                          484
##
        Batch.Manual [485,501):Run.Number Batch.Manual [501,535):Run.Number
## [1,]
## [2,]
                                       500
                                                                          533
##
        Batch.Manual [535,546):Run.Number Batch.Manual [546,591):Run.Number
##
  [1,]
##
                                       545
        Batch.Manual [591,594):Run.Number Batch.Manual [594,635):Run.Number
##
## [1,]
## [2,]
                                       593
                                                                          634
##
        Batch.Manual[635,649):Run.Number Batch.Manual[680,694):Run.Number
                                         0
## [1,]
                                                                            0
## [2,]
                                       647
        Batch.Manual [694,751):Run.Number Batch.Manual [751,766):Run.Number
##
## [1,]
                                       750
##
   [2,]
                                                                          765
        Batch.Manual[766,807):Run.Number Batch.Manual[807,891):Run.Number
##
## [1,]
                                         0
##
   [2,]
                                       804
##
        Batch.Manual[83,121):Run.Number Batch.Manual[891,907):Run.Number
## [1,]
                                        0
                                                                           0
##
   [2,]
                                      119
                                                                         906
        Batch.Manual[907,917):Run.Number Batch.Manual[917,941):Run.Number
##
## [1,]
                                         0
                                                                            0
## [2,]
                                       916
                                                                          940
##
        Batch.Manual[941, Inf):Run.Number
```

```
## [2,]
                                         949
tableone::CreateTableOne( data = design.test )
##
##
                                      Overall
##
                                         585
     n
     egfr (mean (sd))
                                       82.04 (28.26)
##
##
     Age (mean (sd))
                                       55.38 (12.12)
     Gender (mean (sd))
##
                                        0.54(0.50)
##
     Hba1c_baseline (mean (sd))
                                        8.03 (1.16)
##
     logUAER (mean (sd))
                                        4.73 (2.31)
     CALSBP (mean (sd))
##
                                      131.91 (17.50)
##
     bmi (mean (sd))
                                       25.19 (4.05)
     Smoking (mean (sd))
##
                                        0.21 (0.41)
##
     Statin (mean (sd))
                                        0.61(0.49)
##
     log_Blood_TGA (mean (sd))
                                        0.01 (0.69)
##
     Total_cholesterol (mean (sd))
                                        4.69 (0.88)
##
     Batch.Manual (%)
##
                                           7 (1.2)
         [-Inf,83)
                                          18 (3.1)
##
         [121, 151)
##
         [151, 176)
                                          18 (3.1)
##
         [176, 191)
                                          13 (2.2)
                                          10 (1.7)
##
         [191,206)
                                          16 (2.7)
##
         [206, 225)
##
         [225,248)
                                          16 (2.7)
##
         [248, 279)
                                          22 (3.8)
##
         [279, 322)
                                          30 (5.1)
##
         [322,348)
                                          16 (2.7)
##
         [348, 369)
                                          14 (2.4)
##
         [369,381)
                                          10 (1.7)
##
         [381,390)
                                           8 (1.4)
##
         [390,420)
                                          20 (3.4)
         [420,464)
##
                                          23 (3.9)
##
         [464,474)
                                           7 (1.2)
                                           3 (0.5)
##
         [474,479)
                                           4 (0.7)
##
         [479,485)
##
         [485,501)
                                          10 (1.7)
##
                                          17 (2.9)
         [501,535)
                                           8 (1.4)
##
         [535,546)
                                          22 (3.8)
##
         [546,591)
##
                                           3 (0.5)
         [591,594)
                                          24 (4.1)
##
         [594,635)
                                           9 (1.5)
##
         [635,649)
##
         [680,694)
                                          12 (2.1)
##
         [694,751)
                                          40 (6.8)
##
         [751,766)
                                          13 (2.2)
##
         [766,807)
                                          24 (4.1)
##
         [807,891)
                                          53 (9.1)
##
         [83,121)
                                          26 (4.4)
                                          23 (3.9)
##
         [891,907)
##
         [907,917)
                                          16 (2.7)
##
         [917,941)
                                          23 (3.9)
```

0

[1,]

##

[941, Inf)

7 (1.2)

Run.Number (mean (sd)) 519.35 (269.10)

1.2.3.1 Table

```
results.egfr <- mEbFit</pre>
# for ( i in 2:ncol( mEbFit ) ) {
for ( i in 2:2 ) {
  name.effect <- colnames( mEbFit$"coefficients" )[ i ]</pre>
  # print( name.effect )
  table.result.egfr <-
    limma::topTable(
      fit = mEbFit,
      coef = name.effect,
      confint = TRUE,
      number = Inf,
      adjust.method = "BH"
  table.result.printed <- table.result.egfr</pre>
  colnames( table.result.printed )[ colnames( table.result.printed )=="logFC" ] <-</pre>
    "Effect"
  table.result.printed <- signif( x = table.result.printed, digits = 3 )</pre>
  table.result.printed$"Name" <- rownames( table.result.printed )</pre>
  table.result.printed$"Name" <-</pre>
    stringr::str_sub(
      string = table.result.printed$"Name",
      start = 1,
      end = 25
    )
  table.result.printed <-
    table.result.printed[ ,
                           c(
                              "Name",
                              "Effect",
                              "CI.L",
                              "CI.R",
                              "AveExpr",
                              "P. Value",
                              "adj.P.Val"
                           )
                           ]
  print(
    knitr::kable(
      x = table.result.printed,
      row.names = FALSE,
      caption = name.effect
```

```
)
  print( sum( table.result.printed$"adj.P.Val" < 0.01 ) )</pre>
  print( sum( table.result.printed$"adj.P.Val" < 0.05 ) )</pre>
  print( sum( table.result.printed$"adj.P.Val" < 0.10 ) )</pre>
}
##
##
## Table: egfr
##
## Name
                                                    CI.L
                                     Effect
                                                                 CI.R
                                                                          AveExpr
                                                                                      P. Value
                                                                                                 adj.P.Val
## Myo inositol 6TMS; 1
                                  -1.69e-02
                                               -2.01e-02
                                                            -0.013600
                                                                        -2.09e-03
                                                                                     0.00e+00
                                                                                                  0.00e+00
                                                                         5.59e-03
                                                                                     0.00e+00
                                                                                                  0.00e+00
## Creatinine; 50
                                  -1.62e-02
                                               -1.95e-02
                                                            -0.012900
## Ribitol; 71
                                  -1.55e-02
                                               -1.87e-02
                                                            -0.012300
                                                                        -2.11e-03
                                                                                     0.00e+00
                                                                                                  0.00e+00
## 2,4-Dihydroxybutanoic aci
                                  -1.51e-02
                                               -1.83e-02
                                                           -0.011800
                                                                        -2.64e-03
                                                                                     0.00e+00
                                                                                                  0.00e+00
## Ribonic acid; 72
                                  -1.45e-02
                                               -1.78e-02
                                                           -0.011300
                                                                         1.54e-03
                                                                                     0.00e+00
                                                                                                  0.00e+00
## 3,4-Dihydroxybutanoic aci
                                  -1.19e-02
                                               -1.51e-02
                                                            -0.008600
                                                                         2.80e-03
                                                                                     0.00e+00
                                                                                                  0.00e+00
## 4-Hydroxybenzeneacetic ac
                                  -1.20e-02
                                               -1.53e-02
                                                            -0.008660
                                                                        -5.39e-05
                                                                                     0.00e+00
                                                                                                  0.00e+00
                                                            -0.008600
                                                                        -2.25e-03
## 4-Deoxytetronic acid; 33
                                  -1.20e-02
                                               -1.53e-02
                                                                                     0.00e+00
                                                                                                  0.00e+00
## 4-Deoxytetronic acid; 32
                                  -1.04e-02
                                               -1.38e-02
                                                            -0.007020
                                                                        -2.69e-03
                                                                                     0.00e+00
                                                                                                  0.00e+00
## Pyroglutamic acid; 69
                                  -9.09e-03
                                               -1.24e-02
                                                            -0.005760
                                                                         6.04e-03
                                                                                                  8.00e-07
                                                                                     1.00e-07
## Citric acid, 4TMS; 6
                                  -9.04e-03
                                               -1.24e-02
                                                            -0.005700
                                                                        -2.41e-03
                                                                                     1.00e-07
                                                                                                  9.00e-07
## Isoleucine, 2TMS; 18
                                   8.96e-03
                                               5.59e-03
                                                            0.012300
                                                                        -9.44e-04
                                                                                     2.00e-07
                                                                                                  1.30e-06
## 2-Hydroxybutyric acid, 2T
                                   7.81e-03
                                                4.43e-03
                                                            0.011200
                                                                        -2.70e-03
                                                                                     6.30e-06
                                                                                                  3.64e-05
## Valine, 2TMS; 20
                                                4.35e-03
                                                                         2.84e-04
                                                                                     7.70e-06
                                   7.72e-03
                                                            0.011100
                                                                                                  4.11e-05
## 4-Hydroxyphenyllactic aci
                                               -1.09e-02
                                                                        -2.43e-03
                                                                                                  9.18e-05
                                  -7.48e-03
                                                            -0.004070
                                                                                     1.84e-05
## 3-Indoleacetic acid; 40
                                  -7.41e-03
                                               -1.08e-02
                                                            -0.004000
                                                                        -2.57e-03
                                                                                     2.20e-05
                                                                                                  1.03e-04
## Serine, 3TMS; 14
                                                                        -3.05e-03
                                   7.42e-03
                                                3.96e-03
                                                            0.010900
                                                                                     2.78e-05
                                                                                                  1.23e-04
## Glyceryl-glycoside; 59
                                  -6.59e-03
                                               -9.90e-03
                                                            -0.003270
                                                                         6.97e-04
                                                                                     1.03e-04
                                                                                                  4.29e-04
## Leucine, 2TMS; 19
                                   6.58e-03
                                                3.19e-03
                                                            0.009980
                                                                        -1.51e-03
                                                                                     1.50e-04
                                                                                                  5.92e-04
## Methionine, 2TMS; 16
                                   6.08e-03
                                                2.70e-03
                                                            0.009470
                                                                         1.58e-03
                                                                                     4.42e-04
                                                                                                  1.66e-03
## Hydroxyproline; 64
                                  -6.12e-03
                                               -9.58e-03
                                                            -0.002650
                                                                        -2.27e-03
                                                                                     5.54e-04
                                                                                                  1.98e-03
## Fumaric acid, 2TMS; 9
                                                            -0.002130
                                  -5.55e-03
                                               -8.98e-03
                                                                        -3.03e-03
                                                                                     1.50e-03
                                                                                                  5.11e-03
## Eicosapentaenoic acid; 55
                                   5.37e-03
                                                2.03e-03
                                                            0.008720
                                                                        -2.46e-03
                                                                                     1.69e-03
                                                                                                  5.50e-03
## Glycine, 3TMS; 17
                                  -5.15e-03
                                               -8.54e-03
                                                            -0.001770
                                                                        -2.24e-03
                                                                                     2.89e-03
                                                                                                  9.03e-03
## Stearic acid, TMS; 2
                                                                         2.51e-03
                                                                                     3.75e-03
                                   5.09e-03
                                                1.65e-03
                                                            0.008520
                                                                                                  1.13e-02
## Malic acid, 3TMS; 11
                                  -4.56e-03
                                               -8.02e-03
                                                            -0.001100
                                                                        -5.50e-06
                                                                                     9.88e-03
                                                                                                  2.85e-02
                                   4.49e-03
## 2-hydroxy Isovaleric acid
                                                1.01e-03
                                                            0.007960
                                                                        -2.41e-03
                                                                                     1.14e-02
                                                                                                  3.17e-02
## Palmitic acid, TMS; 5
                                   4.32e-03
                                                8.98e-04
                                                            0.007740
                                                                        -3.58e-03
                                                                                     1.34e-02
                                                                                                  3.59e-02
## Glycerol; 57
                                   4.37e-03
                                                8.86e-04
                                                            0.007860
                                                                         2.51e-04
                                                                                     1.40e-02
                                                                                                  3.63e-02
## Succinic acid, 2TMS; 7
                                  -4.04e-03
                                               -7.43e-03
                                                            -0.000649
                                                                         2.60e-03
                                                                                     1.96e-02
                                                                                                  4.90e-02
## Tyrosine; 75
                                                6.22e-04
                                                            0.007510
                                                                        -2.86e-04
                                                                                     2.07e-02
                                   4.06e-03
                                                                                                  5.01e-02
## Benzeneacetic acid; 47
                                  -3.87e-03
                                               -7.31e-03
                                                            -0.000429
                                                                         2.87e-03
                                                                                     2.75e-02
                                                                                                  6.37e-02
                                                            -0.000420
## Aminomalonic acid; 45
                                  -3.89e-03
                                               -7.35e-03
                                                                         1.66e-04
                                                                                     2.80e-02
                                                                                                  6.37e-02
## Octanoic acid; 68
                                   3.79e-03
                                               3.17e-04
                                                            0.007270
                                                                         1.94e-03
                                                                                     3.25e-02
                                                                                                  7.17e-02
## 2-Palmitoylglycerol; 39
                                   3.39e-03
                                                4.20e-06
                                                            0.006770
                                                                         8.15e-03
                                                                                     4.97e-02
                                                                                                  1.07e-01
                                                                                     6.72e-02
## Cholesterol, TMS; 23
                                   2.99e-03
                                               -2.12e-04
                                                            0.006190
                                                                        -2.93e-03
                                                                                                  1.39e-01
## Threonine, 3TMS; 12
                                   3.15e-03
                                               -2.40e-04
                                                            0.006540
                                                                        -2.43e-03
                                                                                     6.85e-02
                                                                                                  1.39e-01
## Alanine, 2TMS; 25
                                  -3.18e-03
                                               -6.64e-03
                                                            0.000288
                                                                        -2.52e-03
                                                                                     7.23e-02
                                                                                                  1.43e-01
## Glycerol; 58
                                  -3.22e-03
                                               -6.76e-03
                                                            0.000323
                                                                        -6.63e-04
                                                                                     7.48e-02
                                                                                                  1.44e-01
```

```
## Decanoic acid; 52
                                   2.90e-03
                                              -4.84e-04
                                                            0.006290
                                                                         3.27e-03
                                                                                    9.29e-02
                                                                                                 1.74e-01
                                                                         5.90e-03
## Glutamic acid, 3TMS; 8
                                              -7.82e-04
                                                                                    1.34e-01
                                                                                                 2.45e-01
                                   2.54e-03
                                                            0.005860
## Myristoleic acid; 65
                                   2.55e-03
                                              -8.78e-04
                                                            0.005980
                                                                        -2.14e-03
                                                                                    1.45e-01
                                                                                                 2.58e-01
## Hydroxylamine; 62
                                  -2.52e-03
                                              -5.99e-03
                                                            0.000942
                                                                        -1.14e-03
                                                                                    1.53e-01
                                                                                                 2.66e-01
## Campesterol; 49
                                  -2.46e-03
                                              -5.85e-03
                                                            0.000938
                                                                        -2.18e-03
                                                                                    1.56e-01
                                                                                                 2.66e-01
## Docosahexaenoic acid; 53
                                                                        -2.34e-03
                                   2.15e-03
                                              -1.13e-03
                                                            0.005430
                                                                                    1.99e-01
                                                                                                 3.31e-01
## Oleic acid, TMS; 3
                                   1.94e-03
                                              -1.52e-03
                                                            0.005400
                                                                         3.51e-03
                                                                                    2.72e-01
                                                                                                 4.43e-01
## Glyceric acid; 30
                                   1.68e-03
                                              -1.68e-03
                                                            0.005050
                                                                         1.08e-03
                                                                                    3.27e-01
                                                                                                 5.22e-01
## Phenylalanine, 2TMS; 13
                                  -1.68e-03
                                              -5.12e-03
                                                            0.001770
                                                                         1.12e-03
                                                                                    3.40e-01
                                                                                                 5.32e-01
  alpha-Tocopherol; 26
                                   1.53e-03
                                              -1.85e-03
                                                            0.004920
                                                                        -2.20e-03
                                                                                    3.74e-01
                                                                                                 5.72e-01
## Nonanoic acid; 67
                                  -1.18e-03
                                              -4.68e-03
                                                            0.002310
                                                                         5.03e-03
                                                                                    5.07e-01
                                                                                                 7.60e-01
## 1-Monopalmitin; 37
                                   1.05e-03
                                              -2.47e-03
                                                            0.004560
                                                                         3.90e-03
                                                                                    5.59e-01
                                                                                                 8.23e-01
## Ribitol; 70
                                                                                                 8.36e-01
                                  -9.79e-04
                                              -4.45e-03
                                                            0.002490
                                                                         3.34e-03
                                                                                    5.80e-01
## Bisphenol A; 48
                                                            0.004280
                                                                        -2.71e-03
                                   8.74e-04
                                              -2.53e-03
                                                                                    6.15e-01
                                                                                                 8.65e-01
## Heptadecanoic acid; 60
                                  -8.48e-04
                                              -4.29e-03
                                                            0.002590
                                                                        -3.26e-03
                                                                                    6.29e-01
                                                                                                 8.65e-01
## Dodecanoic acid; 54
                                   8.20e-04
                                              -2.66e-03
                                                            0.004300
                                                                        -2.73e-03
                                                                                    6.44e-01
                                                                                                 8.65e-01
## 3-Indolepropionic acid; 4
                                              -2.65e-03
                                                            0.004270
                                   8.11e-04
                                                                         4.81e-04
                                                                                    6.46e-01
                                                                                                 8.65e-01
## Proline, 2TMS; 21
                                   7.78e-04
                                              -2.66e-03
                                                            0.004220
                                                                        -2.04e-04
                                                                                    6.58e-01
                                                                                                 8.65e-01
## 3-Hydroxybutyric acid, 2T
                                   7.42e-04
                                              -2.78e-03
                                                            0.004260
                                                                        -2.39e-03
                                                                                    6.79e-01
                                                                                                 8.75e-01
## Ethanolamine; 56
                                   7.11e-04
                                              -2.77e-03
                                                            0.004190
                                                                        -9.30e-04
                                                                                    6.88e-01
                                                                                                 8.75e-01
## Nonadecanoic acid; 66
                                   6.64e-04
                                              -2.81e-03
                                                            0.004140
                                                                         1.72e-03
                                                                                    7.08e-01
                                                                                                 8.79e-01
## Linoleic acid, TMS; 4
                                   6.21e-04
                                              -2.85e-03
                                                            0.004100
                                                                         9.38e-04
                                                                                    7.26e-01
                                                                                                 8.79e-01
## 1-Dodecanol; 36
                                              -2.83e-03
                                                            0.004050
                                                                        -2.85e-03
                                                                                    7.27e-01
                                                                                                 8.79e-01
                                   6.12e-04
## 11-Eicosenoic acid; 35
                                  -4.84e-04
                                              -3.95e-03
                                                            0.002980
                                                                        -9.66e-05
                                                                                    7.84e-01
                                                                                                 9.23e-01
## Arachidonic acid, TMS; 24
                                   4.70e-04
                                              -2.95e-03
                                                            0.003890
                                                                        -3.10e-03
                                                                                    7.87e-01
                                                                                                 9.23e-01
## Lactic acid; 29
                                   4.30e-04
                                              -3.03e-03
                                                            0.003890
                                                                        -7.77e-04
                                                                                    8.08e-01
                                                                                                 9.32e-01
## Arabinopyranose; 51
                                  -3.73e-04
                                              -3.83e-03
                                                            0.003080
                                                                        -9.02e-05
                                                                                    8.32e-01
                                                                                                 9.46e-01
                                  -2.80e-04
                                              -3.68e-03
## Tartronic acid; 73
                                                            0.003120
                                                                        -2.27e-04
                                                                                    8.72e-01
                                                                                                 9.76e-01
## alpha-ketoglutaric acid,
                                 -1.99e-04
                                              -3.56e-03
                                                            0.003170
                                                                         4.43e-04
                                                                                    9.08e-01
                                                                                                 9.77e-01
## Arachidic acid; 46
                                              -3.26e-03
                                                            0.003650
                                                                        -2.71e-03
                                                                                    9.11e-01
                                                                                                 9.77e-01
                                   1.96e-04
## L-5-Oxoproline; 63
                                  -1.89e-04
                                              -3.61e-03
                                                            0.003230
                                                                        -7.87e-04
                                                                                    9.14e-01
                                                                                                 9.77e-01
## Pyruvic acid; 31
                                   1.67e-04
                                              -3.31e-03
                                                            0.003650
                                                                         3.74e-04
                                                                                    9.25e-01
                                                                                                 9.77e-01
## 4-Hydroxybutanoic acid; 4
                                  -7.08e-05
                                              -3.47e-03
                                                            0.003330
                                                                         7.17e-05
                                                                                    9.67e-01
                                                                                                 9.97e-01
## 1,3-Propanediol; 34
                                  -3.30e-05
                                              -3.53e-03
                                                            0.003470
                                                                        -2.62e-03
                                                                                    9.85e-01
                                                                                                 9.97e-01
## Tridecanoic acid; 74
                                   3.12e-05
                                              -3.39e-03
                                                            0.003450
                                                                        -1.89e-03
                                                                                    9.86e-01
                                                                                                 9.97e-01
## Heptadecanoic acid; 61
                                  -6.10e-06
                                              -3.50e-03
                                                            0.003490
                                                                        -3.31e-03
                                                                                    9.97e-01
                                                                                                 9.97e-01
## [1] 24
## [1] 30
```

[1] 34

1.3 logUAER – Continuous Albuminuria

1.3.1 Crude Model

```
design.test <-
  data.frame(
    data[ ,
          c(
             "egfr",
             "Age",
             "Gender",
             "Hba1c_baseline",
             "logUAER",
             "CALSBP",
             "bmi",
             "Smoking",
             "Statin",
             "log_Blood_TGA",
             "Total_cholesterol"
          )
          ]
  )
tmp <- apply( X = !is.na( design.test ), MAR = 1, FUN = all )</pre>
design.test <- design.test[ tmp, ]</pre>
design.test <- droplevels( design.test )</pre>
# data.test <- t( data[ tmp, names.metabolites ] )</pre>
data.test <- data[ tmp, names.metabolites ]</pre>
data.test <- scale( x = data.test )</pre>
data.test <- t( data.test )</pre>
dm <-
  stats::model.matrix(
   object = ~ logUAER,
    data = design.test
mFit <- limma::lmFit( object = data.test, design = dm )</pre>
mEbFit <- limma::eBayes( mFit )</pre>
dim( dm )
## [1] 586
apply( X = dm, MAR = 2, FUN = range )
        (Intercept) logUAER
## [1,]
             1 0.5849625
## [2,]
                  1 13.0138461
```

tableone::CreateTableOne(data = design.test)

```
##
##
                                  Overall
##
                                     586
    egfr (mean (sd))
                                  82.04 (28.24)
##
##
    Age (mean (sd))
                                  55.37 (12.11)
##
    Gender (mean (sd))
                                  0.54 (0.50)
##
    Hba1c_baseline (mean (sd))
                                  8.03 (1.16)
     logUAER (mean (sd))
##
                                   4.73 (2.31)
##
    CALSBP (mean (sd))
                                131.91 (17.48)
##
    bmi (mean (sd))
                                 25.20 (4.06)
##
    Smoking (mean (sd))
                                  0.21 (0.41)
    Statin (mean (sd))
                                  0.61 (0.49)
##
    log_Blood_TGA (mean (sd)) 0.01 (0.49) 0.01 (0.69)
##
    Total_cholesterol (mean (sd)) 4.69 (0.88)
##
```

1.3.1.1 Table

```
results.uaer <- mEbFit
for ( i in 2:ncol( mEbFit ) ) {
  name.effect <- colnames( mEbFit$"coefficients" )[ i ]</pre>
  table.result.uaer <-
    limma::topTable(
      fit = mEbFit,
      coef = name.effect,
      confint = TRUE,
      number = Inf,
      adjust.method = "BH"
  table.result.printed <- table.result.uaer</pre>
  colnames( table.result.printed )[ colnames( table.result.printed )=="logFC" ] <-</pre>
    "Effect"
  table.result.printed <- signif( x = table.result.printed, digits = 3 )</pre>
  table.result.printed$"Name" <- rownames( table.result.printed )</pre>
  table.result.printed$"Name" <-</pre>
    stringr::str_sub(
      string = table.result.printed$"Name",
      start = 1,
      end = 25
    )
  table.result.printed <-
    table.result.printed[ ,
                           c(
                              "Name",
                              "Effect",
                              "CI.L",
                              "CI.R",
                              "AveExpr",
                              "P. Value",
                              "adj.P.Val"
                           )
                           ]
  print(
    knitr::kable(
      x = table.result.printed,
     row.names = FALSE,
      caption = name.effect
    )
  )
```

}

##		
##	Table:	logUAER

##

##							
## ##	Name	Effect	CI.L	CI.R	AveExpr	P.Value	adj.P.Val
	3,4-Dihydroxybutanoic aci	0.135000	0.10000	0.170000	0	0.00e+00	0.00e+00
	2,4-Dihydroxybutanoic aci	0.104000	0.06930	0.139000	0	0.00e+00	2.00e-07
	Ribitol; 71	0.103000	0.06780	0.137000	0	0.00e+00	2.00e-07
	Ribonic acid; 72	0.098300	0.06340	0.133000	0	0.00e+00	6.00e-07
	Glyceric acid; 30	-0.095600	-0.13000	-0.060800	0	1.00e-07	1.10e-06
	Myo inositol 6TMS; 1	0.089100	0.05420	0.124000	0	5.00e-07	6.80e-06
	4-Deoxytetronic acid; 32	0.074700	0.03990	0.110000	0	2.65e-05	2.61e-04
		0.074500	0.03960	0.109000	0	2.79e-05	2.61e-04
		-0.073500	-0.10800	-0.038700	0	3.53e-05	2.94e-04
	Creatinine; 50	0.071600	0.03680	0.106000	0	5.64e-05	4.13e-04
		-0.071300	-0.10600	-0.036500	0	6.05e-05	4.13e-04
	Glutamic acid, 3TMS; 8	0.068800	0.03400	0.104000	0	1.08e-04	6.73e-04
	4-Deoxytetronic acid; 33	0.065100	0.03020	0.099900	0	2.51e-04	1.45e-03
	Octanoic acid; 68	-0.064500	-0.09930	-0.029600	0	2.86e-04	1.53e-03
##	·	-0.063300	-0.09820	-0.028500	0	3.68e-04	1.74e-03
##		0.063300	0.02840	0.098100	0	3.71e-04	1.74e-03
##		0.063000	0.02810	0.097800	0	3.98e-04	1.75e-03
##		-0.056300	-0.09110	-0.021400	0	1.55e-03	6.47e-03
##		-0.055000	-0.08980	-0.020200	0	1.98e-03	7.80e-03
	Ribitol; 70	0.048000	0.01320	0.082900	0	6.90e-03	2.53e-02
	L-5-Oxoproline; 63	-0.047900	-0.08270	-0.013000	0	7.08e-03	2.53e-02
	Methionine, 2TMS; 16	-0.047200	-0.08210	-0.012400	0	7.86e-03	2.68e-02
	Proline, 2TMS; 21	0.046500	0.01170	0.081400	0	8.83e-03	2.88e-02
		-0.043700	-0.07860	-0.008900	0	1.39e-02	4.33e-02
		-0.043100	-0.07790	-0.008270	0	1.53e-02	4.59e-02
##		-0.041100	-0.07590	-0.006220	0	2.09e-02	6.03e-02
##		-0.040100	-0.07490	-0.005250	0	2.41e-02	6.70e-02
		-0.038200	-0.07300	-0.003340	0	3.17e-02	8.50e-02
	_	-0.037800	-0.07260	-0.002960	0	3.35e-02	8.65e-02
##		-0.035100	-0.07000	-0.000280	0	4.82e-02	1.20e-01
##	1-Dodecanol; 36	-0.034100	-0.06900	0.000710	0	5.49e-02	1.30e-01
##		-0.034000	-0.06890	0.000803	0	5.55e-02	1.30e-01
##		0.033400	-0.00146	0.068200	0	6.04e-02	1.37e-01
	2-Hydroxybutyric acid, 2T	-0.033100	-0.06790	0.001780	0	6.29e-02	1.39e-01
	Threonine, 3TMS; 12	-0.029800	-0.06470	0.005000	0	9.32e-02	2.00e-01
	Glycerol; 58	0.029300	-0.00551	0.064200	0	9.89e-02	2.03e-01
	Linoleic acid, TMS; 4	-0.029200	-0.06410	0.005630	0	1.00e-01	2.03e-01
##		0.029000	-0.00585	0.063800	0	1.03e-01	2.03e-01
	Campesterol; 49	-0.024800	-0.05960	0.010100	0	1.63e-01	3.14e-01
		-0.024200	-0.05910	0.010600	0	1.73e-01	3.24e-01
	Heptadecanoic acid; 60	-0.023600	-0.05850	0.011200	0	1.83e-01	3.31e-01
	Arachidic acid; 46	-0.023500	-0.05840	0.011200	0	1.85e-01	3.31e-01
		-0.020400	-0.05530	0.014400	0	2.50e-01	4.32e-01
	Fumaric acid, 2TMS; 9	0.020300	-0.01460	0.055100	0	2.54e-01	4.32e-01
	4-Hydroxybutanoic acid; 4	0.020000	-0.01480	0.054900	0	2.60e-01	4.32e-01
	Arachidonic acid, TMS; 24	-0.019800	-0.05470	0.015000	0	2.65e-01	4.32e-01
		0.010000	0.00110	0.01000	J	2.000 01	1.020 01

#:	# Palmitic acid, TMS; 5	-0.015200	-0.05010	0.019600	0	3.92e-01	6.18e-01
#:	# Alanine, 2TMS; 25	0.015100	-0.01970	0.049900	0	3.95e-01	6.18e-01
#:	# Succinic acid, 2TMS; 7	-0.014600	-0.04950	0.020200	0	4.11e-01	6.20e-01
#:	# Lactic acid; 29	-0.014500	-0.04940	0.020300	0	4.14e-01	6.20e-01
#:	# Phenylalanine, 2TMS; 13	0.013900	-0.02090	0.048800	0	4.33e-01	6.20e-01
#:	# Glycine, 3TMS; 17	-0.013800	-0.04860	0.021000	0	4.38e-01	6.20e-01
#:	# Nonadecanoic acid; 66	-0.013800	-0.04860	0.021100	0	4.38e-01	6.20e-01
#:	# Hydroxylamine; 62	0.013300	-0.02150	0.048100	0	4.54e-01	6.31e-01
#:	# 3-Hydroxybutyric acid, 2T	0.012700	-0.02210	0.047600	0	4.73e-01	6.45e-01
#:	# 4-Hydroxyphenyllactic aci	0.012300	-0.02250	0.047200	0	4.87e-01	6.50e-01
#:	# Malic acid, 3TMS; 11	0.012200	-0.02270	0.047000	0	4.94e-01	6.50e-01
#:	# Isoleucine, 2TMS; 18	-0.011700	-0.04650	0.023200	0	5.12e-01	6.62e-01
#:	# Bisphenol A; 48	-0.011200	-0.04600	0.023700	0	5.29e-01	6.73e-01
#:	# Nonanoic acid; 67	-0.009330	-0.04420	0.025500	0	6.00e-01	7.41e-01
#:	# 1,3-Propanediol; 34	0.009260	-0.02560	0.044100	0	6.02e-01	7.41e-01
#:	Decanoic acid; 52	-0.008510	-0.04330	0.026300	0	6.32e-01	7.65e-01
#:	# Glycerol; 57	-0.007880	-0.04270	0.027000	0	6.58e-01	7.83e-01
#:	# Benzeneacetic acid; 47	-0.007350	-0.04220	0.027500	0	6.79e-01	7.96e-01
#:	# alpha-ketoglutaric acid,	0.006600	-0.02820	0.041400	0	7.10e-01	8.20e-01
#:	# Pyruvic acid; 31	-0.004330	-0.03920	0.030500	0	8.08e-01	9.18e-01
#:	# Pyroglutamic acid; 69	0.003370	-0.03150	0.038200	0	8.50e-01	9.39e-01
#:	# Oleic acid, TMS; 3	0.003200	-0.03160	0.038000	0	8.57e-01	9.39e-01
#:	Dodecanoic acid; 54	-0.003040	-0.03790	0.031800	0	8.64e-01	9.39e-01
#:	# 2-Palmitoylglycerol; 39	-0.002770	-0.03760	0.032100	0	8.76e-01	9.39e-01
#:	# Leucine, 2TMS; 19	-0.002360	-0.03720	0.032500	0	8.94e-01	9.43e-01
#:	# Myristoleic acid; 65	0.001810	-0.03300	0.036700	0	9.19e-01	9.43e-01
#:	# 1-Monopalmitin; 37	0.001720	-0.03310	0.036600	0	9.23e-01	9.43e-01
#:	# 11-Eicosenoic acid; 35	-0.001550	-0.03640	0.033300	0	9.31e-01	9.43e-01
#:	# Citric acid, 4TMS; 6	0.000832	-0.03400	0.035700	0	9.63e-01	9.63e-01

1.3.2 Adjusted Model

```
design.test <-
  data.frame(
    data[ ,
           c(
             "egfr",
             "Age",
             "Gender",
             "Hba1c_baseline",
             "logUAER",
             "CALSBP",
             "bmi",
             "Smoking",
             "Statin",
             "log_Blood_TGA",
             "Total_cholesterol"
           )
          ]
  )
tmp <- apply( X = !is.na( design.test ), MAR = 1, FUN = all )</pre>
design.test <- design.test[ tmp, ]</pre>
design.test <- droplevels( design.test )</pre>
# data.test <- t( data[ tmp, names.metabolites ] )</pre>
data.test <- data[ tmp, names.metabolites ]</pre>
data.test <- scale( x = data.test )</pre>
data.test <- t( data.test )</pre>
  stats::model.matrix(
    object =
       ~ logUAER +
      Age +
      Gender +
      Hba1c_baseline +
      egfr +
      CALSBP +
      bmi +
      Smoking +
      Statin +
      log_Blood_TGA +
      Total_cholesterol,
    data = design.test
mFit <- limma::lmFit( object = data.test, design = dm )</pre>
mEbFit <- limma::eBayes( mFit )</pre>
```

```
dim( dm )
## [1] 586 12
apply( X = dm, MAR = 2, FUN = range )
                                                               egfr CALSBP
        (Intercept)
                      logUAER
                                Age Gender Hba1c_baseline
## [1,]
                 1 0.5849625 19.39 0
                                                     5.2 11.03376
                                                                        92
## [2,]
                 1 13.0138461 85.23
                                       1
                                                     15.0 167.62905
                                                                       191
         bmi Smoking Statin log_Blood_TGA Total_cholesterol
## [1,] 16.98
                   0
                          0
                                -2.643856
                                                        2.3
## [2,] 43.29
                   1
                          1
                                 2.720278
                                                        9.2
tableone::CreateTableOne( data = design.test )
##
##
                                  Overall
##
                                     586
     egfr (mean (sd))
##
                                   82.04 (28.24)
##
     Age (mean (sd))
                                   55.37 (12.11)
##
    Gender (mean (sd))
                                   0.54 (0.50)
    Hba1c_baseline (mean (sd))
##
                                    8.03 (1.16)
##
     logUAER (mean (sd))
                                    4.73 (2.31)
     CALSBP (mean (sd))
##
                                  131.91 (17.48)
                                   25.20 (4.06)
##
     bmi (mean (sd))
##
     Smoking (mean (sd))
                                   0.21 (0.41)
     Statin (mean (sd))
                                    0.61 (0.49)
##
                               0.01 (0.69)
##
     log_Blood_TGA (mean (sd))
##
    Total_cholesterol (mean (sd)) 4.69 (0.88)
```

1.3.2.1 Table

```
results.uaer <- mEbFit
# for ( i in 2:ncol( mEbFit ) ) {
for ( i in 2:2 ) {
 name.effect <- colnames( mEbFit$"coefficients" )[ i ]</pre>
  # print( name.effect )
  table.result.uaer <-
    limma::topTable(
      fit = mEbFit,
      coef = name.effect,
      confint = TRUE,
     number = Inf,
      adjust.method = "BH"
  table.result.printed <- table.result.uaer</pre>
  colnames( table.result.printed )[ colnames( table.result.printed )=="logFC" ] <-</pre>
    "Effect"
  table.result.printed <- signif( x = table.result.printed, digits = 3 )</pre>
  table.result.printed$"Name" <- rownames( table.result.printed )</pre>
  table.result.printed <-
    table.result.printed[ ,
                             "Name",
                             "Effect",
                             "CI.L",
                             "CI.R",
                             "AveExpr",
                             "P. Value",
                             "adj.P.Val"
                           ]
 if ( i == 2 ) {
    write.table(
      x = table.result.printed,
     file = "results/table-logUAER-adjusted.tsv",
     na = "",
      quote = FALSE,
     row.names = FALSE,
      sep = "\t"
    )
 }
```

```
table.result.printed$"Name" <-
    stringr::str_sub(
        string = table.result.printed$"Name",
        start = 1,
        end = 25
)

print(
    knitr::kable(
        x = table.result.printed,
        row.names = FALSE,
        caption = name.effect
    )
)</pre>
```

##

Table: logUAER

##							
##	Name	Effect	CI.L	CI.R	AveExpr	P.Value	adj.P.Val
##							
##	3,4-Dihydroxybutanoic aci	0.073400	0.033400	0.11300	0	0.000326	0.0245
##	4-Deoxytetronic acid; 32	0.063800	0.022900	0.10500	0	0.002240	0.0840
##	Campesterol; 49	-0.055500	-0.096100	-0.01490	0	0.007380	0.1850
##	Octanoic acid; 68	-0.051700	-0.092900	-0.01040	0	0.014100	0.2320
##	Ribonic acid; 72	0.047600	0.007800	0.08740	0	0.019100	0.2320
	Glyceric acid; 30	-0.047300	-0.088000	-0.00666	0	0.022600	0.2320
##	Docosahexaenoic acid; 53	-0.046000	-0.086700	-0.00527	0	0.026900	0.2320
##	2-hydroxy Isovaleric acid	-0.045600	-0.087000	-0.00425	0	0.030700	0.2320
##	Aminomalonic acid; 45	-0.044700	-0.085700	-0.00368	0	0.032700	0.2320
##	2-Hydroxybutyric acid, 2T	-0.043900	-0.084500	-0.00338	0	0.033800	0.2320
##	Tyrosine; 75	-0.044700	-0.086000	-0.00336	0	0.034100	0.2320
##	Glutamic acid, 3TMS; 8	0.041800	0.001170	0.08240	0	0.043800	0.2730
##	2,4-Dihydroxybutanoic aci	0.040100	0.000466	0.07980	0	0.047400	0.2730
##	Arachidonic acid, TMS; 24	-0.040100	-0.081500	0.00138	0	0.058100	0.3110
##	3-Indolepropionic acid; 4	-0.038600	-0.079800	0.00263	0	0.066500	0.3320
##	Tridecanoic acid; 74	-0.037700	-0.079100	0.00374	0	0.074600	0.3500
##	Ribitol; 71	0.033800	-0.005810	0.07350	0	0.094300	0.4110
##	Valine, 2TMS; 20	-0.034000	-0.074400	0.00642	0	0.099200	0.4110
##	Ethanolamine; 56	-0.034400	-0.075800	0.00710	0	0.104000	0.4110
##	Lactic acid; 29	-0.033400	-0.074700	0.00786	0	0.112000	0.4110
##	L-5-Oxoproline; 63	-0.033300	-0.074700	0.00813	0	0.115000	0.4110
##	1,3-Propanediol; 34	0.030300	-0.011200	0.07190	0	0.152000	0.5060
##	Ribitol; 70	0.029900	-0.011400	0.07120	0	0.155000	0.5060
##	4-Hydroxybutanoic acid; 4	0.028300	-0.013200	0.06980	0	0.181000	0.5540
##	Hydroxyproline; 64	0.027900	-0.013400	0.06920	0	0.185000	0.5540
##	Methionine, 2TMS; 16	-0.027100	-0.068200	0.01390	0	0.195000	0.5630
##	1-Dodecanol; 36	-0.027000	-0.068600	0.01460	0	0.203000	0.5630
##	Heptadecanoic acid; 61	-0.025700	-0.067100	0.01580	0	0.225000	0.5800
##	Proline, 2TMS; 21	0.025300	-0.015700	0.06630	0	0.227000	0.5800
##	Pyroglutamic acid; 69	-0.025000	-0.066100	0.01620	0	0.234000	0.5800

##	alpha-Tocopherol; 26	-0.023400	-0.064100	0.01720	0	0.259000	0.5800
##	Glycerol; 58	0.023200	-0.018500	0.06480	0	0.276000	0.5800
##	Arachidic acid; 46	-0.022900	-0.064300	0.01850	0	0.277000	0.5800
##	Creatinine; 50	0.022000	-0.018300	0.06230	0	0.284000	0.5800
##	Glyceryl-glycoside; 59	0.022400	-0.018700	0.06350	0	0.285000	0.5800
##	Heptadecanoic acid; 60	-0.022500	-0.064000	0.01890	0	0.287000	0.5800
##	4-Hydroxyphenyllactic aci	-0.022000	-0.063100	0.01910	0	0.294000	0.5800
##	Myo inositol 6TMS; 1	0.021100	-0.018300	0.06060	0	0.294000	0.5800
##	Cholesterol, TMS; 23	-0.020000	-0.059800	0.01990	0	0.325000	0.6250
##	Succinic acid, 2TMS; 7	-0.020200	-0.061600	0.02130	0	0.340000	0.6370
##	Threonine, 3TMS; 12	-0.018900	-0.060400	0.02260	0	0.371000	0.6580
##	Linoleic acid, TMS; 4	-0.018600	-0.059900	0.02260	0	0.376000	0.6580
##	1-Monopalmitin; 37	0.018500	-0.023100	0.06020	0	0.383000	0.6580
	Glycine, 3TMS; 17	-0.018100	-0.059100	0.02290	0	0.386000	0.6580
	Citric acid, 4TMS; 6	-0.017300	-0.058100	0.02340	0	0.404000	0.6740
##		0.016200	-0.025200	0.05770	0	0.442000	0.7210
##	4-Deoxytetronic acid; 33	0.015400	-0.025200	0.05600	0	0.458000	0.7300
##		0.013700	-0.026700	0.05410	0	0.506000	0.7900
##	Decanoic acid; 52	0.012100	-0.029100	0.05320	0	0.565000	0.8640
	3-Indoleacetic acid; 40	0.011700	-0.029300	0.05270	0	0.577000	0.8650
	Palmitic acid, TMS; 5	-0.010400	-0.051500	0.03070	0	0.619000	0.9060
	Arabinopyranose; 51	0.009620	-0.031700	0.05090	0	0.647000	0.9060
	2-Palmitoylglycerol; 39	0.009170	-0.032300	0.05070	0	0.665000	0.9060
	Malic acid, 3TMS; 11	0.008210	-0.033100	0.04950	0	0.696000	0.9060
##		0.008090	-0.033300	0.04950	0	0.702000	0.9060
##		-0.008040	-0.049300	0.03320	0	0.703000	0.9060
##		0.007890	-0.032700	0.04850	0	0.703000	0.9060
	Dodecanoic acid; 54	-0.007840	-0.049000	0.03340	0	0.709000	0.9060
	Benzeneacetic acid; 47	-0.007740	-0.049000	0.03350	0	0.713000	0.9060
	Fumaric acid, 2TMS; 9	-0.007330	-0.048600	0.03400	0	0.728000	0.9100
	Stearic acid, TMS; 2	-0.006850	-0.048100	0.03440	0	0.745000	0.9160
##	Hydroxylamine; 62	-0.006070	-0.047600	0.03550	0	0.775000	0.9170
	Tartronic acid; 73	0.005530	-0.035400	0.04650	0	0.791000	0.9170
##		0.005160	-0.036100	0.04650	0	0.807000	0.9170
	Oleic acid, TMS; 3	0.005130	-0.036100	0.04640	0	0.807000	0.9170
	Nonanoic acid; 67	0.004590	-0.037000	0.04620	0	0.829000	0.9170
	Myristoleic acid; 65	-0.004490	-0.045600	0.03660	0	0.830000	0.9170
	Pyruvic acid; 31	-0.004320	-0.045700	0.03710	0	0.838000	0.9170
	3-Hydroxybutyric acid, 2T	-0.004190	-0.045800	0.03750	0	0.844000	0.9170
	11-Eicosenoic acid; 35	0.003330	-0.038200	0.04490	0	0.875000	0.9370
	Leucine, 2TMS; 19	0.002320	-0.038600	0.04320	0	0.911000	0.9630
	Phenylalanine, 2TMS; 13	-0.002010	-0.043500	0.03950	0	0.924000	0.9630
	Bisphenol A; 48	0.002010	-0.040200	0.04310	0	0.924000	0.9640
	Eicosapentaenoic acid; 55	0.001430	-0.039300	0.04170	0	0.953000	0.9640
	Glycerol; 57	0.0001210	-0.040600	0.04250	0	0.964000	0.9640
πĦ	diyooloi, or	0.000330	0.040000	0.04200	U	0.001000	0.3040

2 Step 2: Survival Analysis of Combined Renal Endpoint in Relation to Prioritized Metabolites from Step 1

2.1 Step 2A: Crude Model

```
names.tested <-
 rownames(
    limma::topTable(
      fit = results.egfr,
      coef = "egfr",
      number = Inf,
      p = 0.05
  )
names.tested <-
    names.tested,
    rownames(
      limma::topTable(
        fit = results.egfr,
        coef = "logUAER",
        number = Inf,
        p = 0.05
      )
   )
  )
names.tested <- unique( names.tested )</pre>
names.model <- NULL
data.survival <-
 data[ ,
        c(
          names.model,
          colnames( data.follow.up )[ colnames( data.follow.up ) != "id_profil" ],
          names.tested
colnames( data.survival ) <- make.names( names = colnames( data.survival ) )</pre>
data.survival$"censor_komb_nyre_endepunkt_p.reversed" <-</pre>
 factor( x = as.character( data.survival$"censor_komb_nyre_endepunkt_p" ),
          levels = c(1, 0),
          labels = c( "eos/udvandring i profil" , "event" ) )
data.survival$"censor_komb_nyre_endepunkt_p.reversed.numeric" <-</pre>
  as.numeric( data.survival$"censor_komb_nyre_endepunkt_p.reversed" ) - 1
names.tested <- make.names( names.tested )</pre>
```

```
for ( i in 1:length( names.tested ) ) {
  name.i <- names.tested[ i ]</pre>
  model.survival <-</pre>
    survival::coxph(
      formula =
        as.formula(
          paste( "survival::Surv( time = t_komb_nyre_endepunkt_p, event = censor_komb_nyre_endepunkt_p.
        )
      data = data.survival
  tmp <- summary( model.survival )</pre>
  if ( i == 1 ) {
    result.survival <-
      array(
        dim =
          c(
            length( names.tested ),
            ncol( tmp$"coefficients" )
      )
    rownames( result.survival ) <- names.tested</pre>
    colnames( result.survival ) <- colnames( tmp$"coefficients" )</pre>
    result.survival.CI <- array( dim = c( length( names.tested ), 2 ) )</pre>
    rownames( result.survival.CI ) <- names.tested</pre>
    colnames( result.survival.CI ) <- c( "lower .95", "upper .95" )</pre>
  }
  result.survival[ name.i, ] <- tmp$"coefficients"[ name.i, ]</pre>
  result.survival.CI[ name.i, ] <-</pre>
    tmp$"conf.int"[ name.i, c( "lower .95", "upper .95" ) ]
}
result.survival <-
  data.frame(
    result.survival,
    result.survival.CI,
    check.names = FALSE
result.survival$"p.adj" <- p.adjust( p=result.survival$"Pr(>|z|)" )
```

2.1.1 Table

```
table.result.printed <- result.kidney.crude <- result.survival
table.result.printed <-
  table.result.printed[
    order(
      table.result.printed$"Pr(>|z|)",
      decreasing = FALSE
    ),]
table.result.printed <- signif( x = table.result.printed, digits = 3 )</pre>
table.result.printed$"Name" <-</pre>
  names.mapping[ rownames( table.result.printed ), "Original" ]
table.result.printed <-
  table.result.printed[ ,
                        c(
                          "Name",
                          "exp(coef)",
                          "lower .95",
                          "upper .95",
                          "Pr(>|z|)",
                          "p.adj"
                        )
                        ]
print(
  knitr::kable(
   x = table.result.printed,
    row.names = FALSE,
    caption = "Crude survival model for combined renal endpoint."
  )
)
##
## Table: Crude survival model for combined renal endpoint.
##
## Name
                                      exp(coef)
                                                  lower .95
                                                              upper .95
                                                                          Pr(>|z|)
                                                                                        p.adj
## Ribonic acid; 72
                                          2.400
                                                      1.940
                                                                  2.980
                                                                          0.00e+00
                                                                                     0.00e+00
## 3,4-Dihydroxybutanoic acid; 27
                                          3.380
                                                      2.500
                                                                  4.570
                                                                          0.00e+00
                                                                                     0.00e+00
## Myo inositol 6TMS; 1
                                          3.280
                                                      2.390
                                                                  4.510
                                                                          0.00e+00
                                                                                     0.00e+00
## Ribitol; 71
                                          2.660
                                                      2,000
                                                                  3.520
                                                                          0.00e+00
                                                                                     0.00e+00
## 2,4-Dihydroxybutanoic acid; 28
                                                                  3.430
                                                                          0.00e+00 0.00e+00
                                          2.560
                                                      1.910
## 4-Hydroxybenzeneacetic acid; 42
                                          1.520
                                                      1.300
                                                                  1.780
                                                                          2.00e-07 4.10e-06
                                                                          2.90e-06 6.95e-05
## Isoleucine, 2TMS; 18
                                                                  0.741
                                          0.597
                                                      0.481
## Valine, 2TMS; 20
                                          0.384
                                                      0.257
                                                                  0.573 2.90e-06 6.95e-05
## Leucine, 2TMS; 19
                                          0.564
                                                      0.439
                                                                  0.725 8.00e-06 1.77e-04
## Creatinine; 50
                                                                  2.160 8.80e-06 1.84e-04
                                          1.710
                                                      1.350
## Methionine, 2TMS; 16
                                          0.630
                                                      0.498
                                                                  0.795
                                                                          1.04e-04
                                                                                     2.09e-03
## Glyceryl-glycoside; 59
                                          1.800
                                                      1.330
                                                                  2.450 1.66e-04 3.15e-03
```

##	2-Hydroxybutyric acid, 2TMS; 22	0.706	0.571	0.874	1.33e-03	2.40e-02
##	Fumaric acid, 2TMS; 9	2.080	1.310	3.310	1.92e-03	3.26e-02
##	Hydroxyproline; 64	1.360	1.110	1.660	3.50e-03	5.60e-02
##	4-Hydroxyphenyllactic acid; 44	1.570	1.150	2.160	5.13e-03	7.69e-02
##	4-Deoxytetronic acid; 32	1.420	1.110	1.820	5.70e-03	7.98e-02
##	Malic acid, 3TMS; 11	1.650	1.150	2.370	6.39e-03	8.31e-02
##	4-Deoxytetronic acid; 33	1.230	1.030	1.470	2.55e-02	3.06e-01
##	3-Indoleacetic acid; 40	1.280	1.030	1.590	2.66e-02	3.06e-01
##	2-hydroxy Isovaleric acid; 38	0.876	0.769	0.997	4.56e-02	4.56e-01
##	Palmitic acid, TMS; 5	1.860	0.944	3.680	7.28e-02	6.55e-01
##	Citric acid, 4TMS; 6	1.400	0.964	2.030	7.78e-02	6.55e-01
##	Pyroglutamic acid; 69	1.230	0.963	1.580	9.58e-02	6.70e-01
##	Succinic acid, 2TMS; 7	1.590	0.921	2.750	9.58e-02	6.70e-01
##	Serine, 3TMS; 14	0.699	0.456	1.070	1.01e-01	6.70e-01
##	Eicosapentaenoic acid; 55	0.863	0.719	1.030	1.12e-01	6.70e-01
##	Glycine, 3TMS; 17	1.130	0.686	1.870	6.26e-01	1.00e+00
##	Stearic acid, TMS; 2	1.180	0.480	2.890	7.20e-01	1.00e+00
##	Glycerol; 57	1.040	0.700	1.550	8.44e-01	1.00e+00

2.2 Step 2B: Adjusted Model

```
names.tested <-
  rownames(
    limma::topTable(
      fit = results.egfr,
      coef = "egfr",
      number = Inf,
      p = 0.05
  )
names.tested <-
  c(
    names.tested,
    rownames(
      limma::topTable(
        fit = results.egfr,
        coef = "logUAER",
        number = Inf,
        p = 0.05
    )
names.tested <- unique( names.tested )</pre>
names.model <-</pre>
  c(
    "logUAER",
    "egfr",
    "Age", "Gender",
    "Hba1c_baseline",
    "CALSBP",
    "bmi",
    "Smoking",
    "Statin",
    "log_Blood_TGA",
    "Total_cholesterol"
data.survival <-
  data[ ,
        c(
          names.model,
          colnames( data.follow.up )[ colnames( data.follow.up ) != "id_profil" ],
          names.tested
        ]
colnames( data.survival ) <- make.names( names = colnames( data.survival ) )</pre>
data.survival$"censor_komb_nyre_endepunkt_p.reversed" <-</pre>
```

```
factor(
    x = as.character( data.survival$"censor_komb_nyre_endepunkt_p" ),
    levels = c(1, 0),
    labels = c( "eos/udvandring i profil" , "event" )
  )
data.survival$"censor_komb_nyre_endepunkt_p.reversed.numeric" <-</pre>
  as.numeric( data.survival$"censor_komb_nyre_endepunkt_p.reversed" ) - 1
names.tested <- make.names( names.tested )</pre>
for ( i in 1:length( names.tested ) ) {
  name.i <- names.tested[ i ]</pre>
  model.survival <-</pre>
    survival::coxph(
      formula =
          paste( "survival::Surv( time = t_komb_nyre_endepunkt_p, event = censor_komb_nyre_endepunkt_p.
                  name.i,
                  "+ logUAER",
                  "+ egfr",
                  "+ Age",
                  "+ Gender",
                  "+ Hba1c_baseline",
                  "+ CALSBP",
                  "+ bmi",
                  "+ Smoking",
                  "+ Statin",
                  "+ log_Blood_TGA",
                  "+ Total_cholesterol"
          )
        )
      data = data.survival
  tmp <- summary( model.survival )</pre>
  if ( i == 1 ) {
    result.survival <-
      array(
        dim =
          c(
            length( names.tested ),
            ncol( tmp$"coefficients" )
          )
      )
    rownames( result.survival ) <- names.tested</pre>
    colnames( result.survival ) <- colnames( tmp$"coefficients" )</pre>
```

```
result.survival.CI <- array( dim = c( length( names.tested ), 2 ) )
rownames( result.survival.CI ) <- names.tested
colnames( result.survival.CI ) <- c( "lower .95", "upper .95" )
}

result.survival[ name.i, ] <- tmp$"coefficients"[ name.i, ]

result.survival.CI[ name.i, ] <-
    tmp$"conf.int"[ name.i, c( "lower .95", "upper .95" ) ]
}

result.survival <-
data.frame(
    result.survival,
    result.survival.CI,
    check.names = FALSE
)

result.survival$"p.adj" <- p.adjust( p=result.survival$"Pr(>|z|)" )
```

2.2.1 Table

```
table.result.printed <- result.kidney.adjusted <- result.survival
table.result.printed <-
  table.result.printed[
   order(
      table.result.printed$"Pr(>|z|)",
      decreasing = FALSE
    ),]
table.result.printed <- signif( x = table.result.printed, digits = 3 )</pre>
table.result.printed$"Name" <-</pre>
  names.mapping[ rownames( table.result.printed ), "Original" ]
table.result.printed <-
  table.result.printed[ ,
                       c(
                         "Name",
                         "exp(coef)",
                         "lower .95",
                         "upper .95",
                         "Pr(>|z|)",
                         "p.adj"
                       )
                       ]
print(
 knitr::kable(
   x = table.result.printed,
   row.names = FALSE,
    caption = "Adjusted survival model for combined renal endpoint."
  )
)
##
## Table: Adjusted survival model for combined renal endpoint.
##
                                                                        Pr(>|z|)
## Name
                                     exp(coef)
                                                 lower .95
                                                            upper .95
                                                                                     p.adj
## ----- ----
## Leucine, 2TMS; 19
                                                    0.463
                                                                0.753
                                                                        2.06e-05
                                                                                   0.000618
                                         0.591
## Ribonic acid; 72
                                         1.750
                                                    1.340
                                                                2.300
                                                                        4.62e-05 0.001340
## Isoleucine, 2TMS; 18
                                         0.611
                                                    0.470
                                                                0.794
                                                                        2.36e-04
                                                                                   0.006620
## Valine, 2TMS; 20
                                         0.432
                                                    0.271
                                                                0.689
                                                                        4.26e-04 0.011500
## Myo inositol 6TMS; 1
                                                                2.710 4.96e-03 0.129000
                                        1.800
                                                    1.190
## Methionine, 2TMS; 16
                                        0.734
                                                    0.559
                                                                0.964 2.60e-02 0.650000
                                                                0.971
## 2-Hydroxybutyric acid, 2TMS; 22
                                         0.761
                                                    0.596
                                                                        2.82e-02 0.677000
## 3,4-Dihydroxybutanoic acid; 27
                                                    1.040
                                                                2.280 2.94e-02 0.677000
                                         1.540
## 4-Deoxytetronic acid; 33
                                         0.799
                                                    0.652
                                                                0.980 3.13e-02 0.688000
## 2,4-Dihydroxybutanoic acid; 28
                                                                1.980
                                                                       9.89e-02 1.000000
                                        1.360
                                                    0.943
## Palmitic acid, TMS; 5
                                         1.810
                                                    0.819
                                                                3.990
                                                                        1.43e-01
                                                                                   1.000000
## Malic acid, 3TMS; 11
                                         1.340
                                                    0.896
                                                                2.000 1.55e-01 1.000000
```

##	Fumaric acid, 2TMS; 9	1.430	0.856	2.400	1.70e-01	1.000000
##	Creatinine; 50	1.170	0.933	1.460	1.77e-01	1.000000
##	Ribitol; 71	1.250	0.887	1.750	2.04e-01	1.000000
##	Hydroxyproline; 64	1.110	0.894	1.390	3.37e-01	1.000000
##	4-Hydroxyphenyllactic acid; 44	1.140	0.803	1.620	4.63e-01	1.000000
##	Glyceryl-glycoside; 59	1.110	0.806	1.520	5.26e-01	1.000000
##	4-Hydroxybenzeneacetic acid; 42	1.060	0.889	1.250	5.37e-01	1.000000
##	Glycine, 3TMS; 17	0.843	0.483	1.470	5.46e-01	1.000000
##	Succinic acid, 2TMS; 7	1.180	0.653	2.150	5.77e-01	1.000000
##	Stearic acid, TMS; 2	1.260	0.497	3.210	6.25e-01	1.000000
##	4-Deoxytetronic acid; 32	1.070	0.793	1.430	6.69e-01	1.000000
##	Citric acid, 4TMS; 6	0.913	0.601	1.390	6.70e-01	1.000000
##	Pyroglutamic acid; 69	0.957	0.742	1.240	7.37e-01	1.000000
##	Glycerol; 57	1.070	0.721	1.590	7.41e-01	1.000000
##	Serine, 3TMS; 14	0.924	0.572	1.490	7.46e-01	1.000000
##	Eicosapentaenoic acid; 55	0.968	0.773	1.210	7.80e-01	1.000000
##	2-hydroxy Isovaleric acid; 38	1.000	0.857	1.180	9.54e-01	1.000000
##	3-Indoleacetic acid; 40	1.000	0.780	1.290	9.70e-01	1.000000

2.3 Combined Forest Plot from Crude and Adjusted Models

```
tmp <- result.kidney.crude</pre>
tmp$"Name" <- names.mapping[ rownames( tmp ), "Cleaned" ]</pre>
tmp$"Model" <- rep( x = "Crude", times = nrow( tmp ) )</pre>
data.plot <- tmp
tmp <- result.kidney.adjusted
tmp$"Name" <- names.mapping[ rownames( tmp ), "Cleaned" ]</pre>
tmp$"Model" <- rep( x = "Adjusted", times = nrow( tmp ) )</pre>
data.plot <- rbind( data.plot, tmp )</pre>
data.plot$"Model" <-</pre>
  factor(
    x = data.plot$"Model",
    levels = c( "Crude", "Adjusted" )
  )
data.plot$"Name" <-</pre>
  factor(
    x = data.plot$"Name",
    levels = sort( x = unique( data.plot$"Name" ), decreasing = TRUE )
data.plot$"Significance" <- rep( x = "None", times = nrow( data.plot ) )</pre>
data.plot[ data.plot$"p.adj" < 0.05, "Significance" ] <-</pre>
  "Multiple-testing-corrected p < 0.05"
data.plot$"Event" <-</pre>
  rep(
    x = "Combined Renal Endpoint",
    times = nrow( data.plot )
  )
colnames( data.plot )[ colnames( data.plot )=="exp(coef)"] <- "HR"</pre>
colnames( data.plot ) <- make.names( colnames( data.plot ) )</pre>
plot <-
  ggplot2::ggplot(
    data = data.plot,
    mapping =
      ggplot2::aes(
        x = Name,
        y = HR,
        ymin = lower...95,
        ymax = upper...95,
```

```
colour = Significance
)
) +
ggplot2::geom_pointrange() +
ggplot2::geom_hline( yintercept = 1, lty = "dashed" ) +
ggplot2::facet_grid( facets = Event ~ Model ) +
ggplot2::scale_colour_manual( values=c( "red", "black" ) ) +
# ggplot2::scale_colour_manual( values=c( "red", "orange", "black" ) ) +
ggplot2::coord_flip() +
ggplot2::theme( legend.position = "top" ) +
ggplot2::ylab( label = "Hazard Ratio (95 % CI)" ) +
ggplot2::xlab( label = "" )
```


3 Step 3: Survival Analysis of Specific Renal Endpoints in Relation to Prioritized Metabolites from Step 2A

3.1 Step 3A: Albuminuria Group Progression

3.1.1 Crude Model

```
names.tested <-
 rownames( result.kidney.crude[ result.kidney.crude$"p.adj" < 0.05, ] )</pre>
names.model <- NULL
data.survival <-
 data.frame(
    data,
    stringsAsFactors = FALSE,
    check.names = TRUE
 )
data.survival <-
  data.survival[ ,
                 c(
                   names.model,
                   colnames( data.follow.up )[ colnames( data.follow.up ) != "id profil" ],
                   names.tested
                 ]
data.survival$"censor_alb_prog.reversed" <- data.survival$"censor_alb_prog_a"
data.survival$"censor_alb_prog.reversed" <-</pre>
  factor(
    x = as.character( data.survival$"censor_alb_prog.reversed" ),
    levels = c(2, 0),
    labels = c( "eos/udvandring i profil" , "event" )
data.survival$"censor_alb_prog.reversed.numeric" <-</pre>
  as.numeric( data.survival$"censor_alb_prog.reversed" ) - 1
for ( i in 1:length( names.tested ) ) {
 name.i <- names.tested[ i ]</pre>
 model.survival <-</pre>
    survival::coxph(
      formula =
        as.formula(
          paste(
            "survival::Surv( time = t_alb_prog_a, event = censor_alb_prog.reversed.numeric ) ~",
            name.i
```

```
data = data.survival
  tmp <- summary( model.survival )</pre>
  if ( i == 1 ) {
    result.survival <-
      array(
        dim =
          c(
            length( names.tested ),
            ncol( tmp$"coefficients" )
      )
    rownames( result.survival ) <- names.tested</pre>
    colnames( result.survival ) <- colnames( tmp$"coefficients" )</pre>
    result.survival.CI <- array( dim = c( length( names.tested ), 2 ) )</pre>
    rownames( result.survival.CI ) <- names.tested</pre>
    colnames( result.survival.CI ) <- c( "lower .95", "upper .95" )</pre>
  }
  result.survival[ name.i, ] <- tmp$"coefficients"[ name.i, ]</pre>
  result.survival.CI[ name.i, ] <-</pre>
    tmp$"conf.int"[ name.i, c( "lower .95", "upper .95" ) ]
}
result.survival <-
  data.frame(
    result.survival,
    result.survival.CI,
    check.names = FALSE
  )
result.survival$"p.adj" <- p.adjust( p=result.survival$"Pr(>|z|)" )
```

3.1.1.1 Table

```
table.result.printed <- result.4.albuminuria.crude <- result.survival
table.result.printed <-
     table.result.printed[
         order(
              table.result.printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\printed\p
              decreasing = FALSE
         ),
         ]
table.result.printed <- signif( x = table.result.printed, digits = 3 )</pre>
table.result.printed$"Name" <- rownames( table.result.printed )</pre>
table.result.printed <-
     table.result.printed[ ,
                                                             "Name",
                                                             "exp(coef)",
                                                             "lower .95",
                                                             "upper .95",
                                                             "Pr(>|z|)",
                                                             "p.adj"
                                                        )
                                                        ]
print(
    knitr::kable(
         x = table.result.printed,
         row.names = FALSE,
         caption = "Survival model for albuminuria group progression."
     )
)
##
## Table: Survival model for albuminuria group progression.
##
                                                                                           exp(coef)
                                                                                                                       lower .95 upper .95 Pr(>|z|) p.adj
## ----- ---- ---- ---- -----
## Valine..2TMS..20
                                                                                                     0.571
                                                                                                                                 0.251
                                                                                                                                                               1.30
                                                                                                                                                                                       0.183
## Glyceryl.glycoside..59
                                                                                                     0.815
                                                                                                                                 0.590
                                                                                                                                                              1.13
                                                                                                                                                                                   0.214
                                                                                                                                                                                                                   1
## Isoleucine..2TMS..18
                                                                                                     0.761
                                                                                                                                 0.491
                                                                                                                                                              1.18
                                                                                                                                                                                   0.222
## Ribonic.acid..72
                                                                                                                                                              1.75
                                                                                                     1.190
                                                                                                                                 0.815
                                                                                                                                                                                   0.364
                                                                                                                                                                                                                    1
## Creatinine..50
                                                                                                     1.220
                                                                                                                                 0.785
                                                                                                                                                               1.90
                                                                                                                                                                                      0.373
## X4.Hydroxybenzeneacetic.acid..42
                                                                                                                                                              1.48
                                                                                                   1.120
                                                                                                                                 0.855
                                                                                                                                                                                   0.403
                                                                                                                                                                                   0.495
## Leucine..2TMS..19
                                                                                                     0.832
                                                                                                                                 0.491
                                                                                                                                                              1.41
## X3.4.Dihydroxybutanoic.acid..27
                                                                                                     0.854
                                                                                                                                 0.484
                                                                                                                                                               1.50
                                                                                                                                                                                   0.584
                                                                                                                                                                                                                    1
## X2.Hydroxybutyric.acid..2TMS..22
                                                                                                     0.910
                                                                                                                                 0.578
                                                                                                                                                               1.43
                                                                                                                                                                                     0.685
                                                                                                                                                                                                                   1
## Ribitol..71
                                                                                                     1.100
                                                                                                                                 0.665
                                                                                                                                                              1.81
                                                                                                                                                                                   0.719
                                                                                                                                                                                                                   1
## Methionine..2TMS..16
                                                                                                     1.090
                                                                                                                                 0.636
                                                                                                                                                              1.85
                                                                                                                                                                                   0.764
                                                                                                                                                                                                                   1
## Fumaric.acid..2TMS..9
                                                                                                                                                                                   0.767
                                                                                                                                                               2.08
                                                                                                     0.878
                                                                                                                                 0.370
                                                                                                                                                                                                                    1
## Myo.inositol.6TMS..1
                                                                                                     0.919
                                                                                                                                0.497
                                                                                                                                                              1.70
                                                                                                                                                                                  0.787
```

X2.4.Dihydroxybutanoic.acid..28

0.947

0.556

1.61

0.842

1

3.1.1.2 Forest Plot

```
result.survival <-
  data.frame( result.survival,
              Name = rownames( result.survival ) )
# result.survival <-</pre>
   data.frame( result.survival,
#
                 Name = names.mapping[ rownames( result.survival ), 3 ] )
plot <-
  ggplot2::ggplot( data = result.survival,
                    mapping = ggplot2::aes( x = Name, y = exp.coef.,
                                              ymin = lower...95, ymax = upper...95) +
  ggplot2::geom_pointrange() +
  ggplot2::geom_hline( yintercept = 1, lty = "dashed" ) +
  ggplot2::coord_flip() +
  ggplot2::ylab( label = "Hazard Ratio (95 % CI)" ) +
ggplot2::xlab( label = "" )
print( plot )
```


3.1.2 Adjusted Model

```
names.tested <-
  rownames( result.kidney.crude[ result.kidney.crude$"p.adj" < 0.05, ] )</pre>
names.model <-
  c(
    "logUAER",
    "egfr",
    "Age",
    "Gender",
    "Hba1c_baseline",
    "CALSBP",
    "bmi",
    "Smoking",
    "Statin",
    "log_Blood_TGA",
    "Total_cholesterol"
  )
data.survival <-
  data.frame(
    data,
    stringsAsFactors = FALSE,
    check.names = TRUE
  )
data.survival <-
  data.survival[ ,
                  c(
                    colnames( data.follow.up )[ colnames( data.follow.up ) != "id_profil" ],
                   names.tested
                  )
                  ]
data.survival$"censor_alb_prog.reversed" <- data.survival$"censor_alb_prog_a"
data.survival$"censor_alb_prog.reversed" <-</pre>
  factor(
    x = as.character( data.survival$"censor_alb_prog.reversed" ),
    levels = c(2, 0),
    labels = c( "eos/udvandring i profil" , "event" )
  )
data.survival$"censor_alb_prog.reversed.numeric" <-</pre>
  as.numeric( data.survival$"censor_alb_prog.reversed" ) - 1
for ( i in 1:length( names.tested ) ) {
  name.i <- names.tested[ i ]</pre>
 model.survival <-</pre>
```

```
survival::coxph(
      formula =
        as.formula(
          paste(
             "survival::Surv( time = t_alb_prog_a, event = censor_alb_prog.reversed.numeric ) ~",
            name.i,
             "+ logUAER",
             "+ egfr",
             "+ Age",
            "+ Gender",
             "+ Hba1c_baseline",
             "+ CALSBP",
             "+ bmi",
             "+ Smoking",
             "+ Statin",
             "+ log_Blood_TGA",
             "+ Total_cholesterol"
          )
        ),
      data = data.survival
  tmp <- summary( model.survival )</pre>
  if ( i == 1 ) {
    result.survival <-
      array(
        dim =
          c(
            length( names.tested ),
            ncol( tmp$"coefficients" )
          )
      )
    rownames( result.survival ) <- names.tested</pre>
    colnames( result.survival ) <- colnames( tmp$"coefficients" )</pre>
    result.survival.CI <- array( dim=c( length( names.tested ), 2 ) )</pre>
    rownames( result.survival.CI ) <- names.tested</pre>
    colnames( result.survival.CI ) <- c( "lower .95", "upper .95" )</pre>
  }
  result.survival[ name.i, ] <- tmp$"coefficients"[ name.i, ]</pre>
  result.survival.CI[ name.i, ] <-</pre>
    tmp$"conf.int"[ name.i, c( "lower .95", "upper .95" ) ]
}
result.survival <-
  data.frame(
```

```
result.survival,
  result.survival.CI,
  check.names = FALSE
)

result.survival$"p.adj" <- p.adjust( p=result.survival$"Pr(>|z|)" )
```

3.1.2.1 Table

```
table.result.printed <- result.4.albuminuria.adjusted <- result.survival
table.result.printed <-
 table.result.printed[
   order(
     table.result.printed$"Pr(>|z|)",
     decreasing = FALSE
   ),]
table.result.printed <- signif( x = table.result.printed, digits = 3 )</pre>
table.result.printed$"Name" <- rownames( table.result.printed )</pre>
table.result.printed <-
 table.result.printed[ ,
                         "Name",
                         "exp(coef)",
                         "lower .95",
                         "upper .95",
                         "Pr(>|z|)",
                         "p.adj"
                       )
                       ]
print(
 knitr::kable(
   x = table.result.printed,
   row.names = FALSE,
    caption = "Survival model for albuminuria group progression."
 )
)
##
##
## Table: Survival model for albuminuria group progression.
##
## Name
                                     exp(coef)
                                                 lower .95 upper .95
                                                                       Pr(>|z|)
                                                                                   p.adj
## -----
                                                -----
                                                                       -----
## X3.4.Dihydroxybutanoic.acid..27
                                         0.397
                                                     0.193
                                                                 0.816
                                                                          0.0120
                                                                                   0.168
## Glyceryl.glycoside..59
                                         0.708
                                                     0.492
                                                                 1.020
                                                                          0.0626
                                                                                   0.814
## Myo.inositol.6TMS..1
                                         0.512
                                                     0.246
                                                                 1.060
                                                                          0.0732
                                                                                   0.878
## X2.4.Dihydroxybutanoic.acid..28
                                         0.549
                                                     0.264
                                                                 1.140
                                                                         0.1080
                                                                                   1.000
                                                                          0.2840
## Fumaric.acid..2TMS..9
                                         0.600
                                                     0.236
                                                                 1.530
                                                                                   1.000
## X4.Hydroxybenzeneacetic.acid..42
                                         0.870
                                                     0.657
                                                                 1.150
                                                                          0.3300
                                                                                   1.000
## Ribitol..71
                                         0.823
                                                                          0.4750
                                                     0.482
                                                                 1.400
                                                                                   1.000
## Methionine..2TMS..16
                                         1.260
                                                     0.645
                                                                 2.460
                                                                          0.4980
                                                                                   1.000
## X2.Hydroxybutyric.acid..2TMS..22
                                         0.836
                                                     0.479
                                                                 1.460
                                                                          0.5280
                                                                                    1.000
## Ribonic.acid..72
                                         0.938
                                                     0.571
                                                                 1.540
                                                                          0.8000
                                                                                   1.000
## Valine..2TMS..20
                                         0.905
                                                     0.333
                                                                 2.450
                                                                          0.8440
                                                                                   1.000
## Isoleucine..2TMS..18
                                         1.060
                                                     0.550
                                                                 2.040
                                                                          0.8650
                                                                                   1.000
## Creatinine..50
                                          1.040
                                                     0.623
                                                                 1.750
                                                                          0.8740
                                                                                    1.000
## Leucine..2TMS..19
                                         0.994
                                                     0.480
                                                                 2.060
                                                                          0.9870
                                                                                   1.000
```

3.1.2.2 Forest Plot

```
result.survival <-
  data.frame( result.survival,
              Name = rownames( result.survival ) )
# result.survival <-</pre>
   data.frame( result.survival,
#
                 Name = names.mapping[ rownames( result.survival ), 3 ] )
plot <-
  ggplot2::ggplot( data = result.survival,
                    mapping = ggplot2::aes( x = Name, y = exp.coef.,
                                              ymin = lower...95, ymax = upper...95) +
  ggplot2::geom_pointrange() +
  ggplot2::geom_hline( yintercept = 1, lty = "dashed" ) +
  ggplot2::coord_flip() +
  ggplot2::ylab( label = "Hazard Ratio (95 % CI)" ) +
ggplot2::xlab( label = "" )
print( plot )
```


3.1.3 Combined Forest Plot from Crude and Adjusted Models

```
tmp <- result.4.albuminuria.crude</pre>
tmp$"Name" <- rownames( tmp )</pre>
tmp$"Model" <- rep( x = "Crude", times = nrow( tmp ) )</pre>
data.plot <- tmp
tmp <- result.4.albuminuria.adjusted</pre>
tmp$"Name" <- rownames( tmp )</pre>
tmp$"Model" <- rep( x = "Adjusted", times = nrow( tmp ) )</pre>
data.plot <- rbind( data.plot, tmp )</pre>
data.plot$"Model" <-</pre>
  factor(
    x = data.plot$"Model",
    levels = c( "Crude", "Adjusted" )
  )
data.plot$"Name" <-</pre>
  factor(
    x = data.plot$"Name",
    levels = sort( x = unique( data.plot$"Name" ), decreasing = TRUE )
data.plot$"Significance" <- rep( x = "None", times = nrow( data.plot ) )</pre>
data.plot[ data.plot$"p.adj" < 0.05, "Significance" ] <-</pre>
  "Multiple-testing-corrected p < 0.05"
data.plot$"Event" <-</pre>
  rep(
    x = "Albuminuria\nGroup\nProgression",
    times = nrow( data.plot )
  )
colnames( data.plot )[ colnames( data.plot ) == "exp(coef)"] <- "HR"</pre>
colnames( data.plot ) <- make.names( colnames( data.plot ) )</pre>
forest.step4.compilation <- data.plot</pre>
plot <-
  ggplot2::ggplot( data = data.plot,
                    mapping = ggplot2::aes( x = Name, y = HR,
                                               ymin = lower..95, ymax = upper..95,
                                               colour = Significance ) ) +
  ggplot2::geom_pointrange() +
  ggplot2::geom_hline( yintercept = 1, lty = "dashed" ) +
```

```
ggplot2::facet_grid( facets= ~ Model ) +
ggplot2::scale_colour_manual( values=c( "red", "black" ) ) +
# ggplot2::scale_colour_manual( values=c( "red", "orange", "black" ) ) +
ggplot2::coord_flip() +
ggplot2::theme( legend.position = "top" ) +
ggplot2::ylab( label = "Hazard Ratio (95 % CI)" ) +
ggplot2::xlab( label = "" )
```

Significance | None

3.2 Step 3B: All-Cause Mortality

3.2.1 Crude Model

```
names.tested <-
  rownames( result.kidney.crude[ result.kidney.crude$"p.adj" < 0.05, ] )</pre>
names.model <- NULL
data.survival <-
  data.frame(
    data,
    stringsAsFactors = FALSE,
    check.names = TRUE
data.survival <-
  data.survival[ ,
                  c(
                    names.model,
                    colnames( data.follow.up )[ colnames( data.follow.up ) != "id_profil" ],
                    names.tested
                  ]
data.survival$"censor_doed_profil.reversed" <-</pre>
    x = as.character( data.survival$"censor_doed_profil" ),
    levels = c(1, 0),
    labels = c( "eos/udvandring i profil" , "event" )
data.survival$"censor_doed_profil.reversed.numeric" <-</pre>
  as.numeric( data.survival$"censor_doed_profil.reversed" ) - 1
for ( i in 1:length( names.tested ) ) {
  name.i <- names.tested[ i ]</pre>
  model.survival <-</pre>
    survival::coxph(
      formula =
        as.formula(
          paste(
            "survival::Surv( time = t_doed_profil, event = censor_doed_profil.reversed.numeric ) ~",
            name.i
          )
        ),
      data = data.survival
  tmp <- summary( model.survival )</pre>
```

```
if ( i == 1 ) {
    result.survival <-
      array(
        dim =
          c(
            length( names.tested ),
            ncol( tmp$"coefficients" )
          )
      )
    rownames( result.survival ) <- names.tested</pre>
    colnames( result.survival ) <- colnames( tmp$"coefficients" )</pre>
    result.survival.CI <- array( dim = c( length( names.tested ), 2 ) )</pre>
    rownames( result.survival.CI ) <- names.tested</pre>
    colnames( result.survival.CI ) <- c( "lower .95", "upper .95" )</pre>
  }
  result.survival[ name.i, ] <- tmp$"coefficients"[ name.i, ]</pre>
 result.survival.CI[ name.i, ] <-</pre>
    tmp$"conf.int"[ name.i, c( "lower .95", "upper .95" ) ]
}
result.survival <-
  data.frame(
   result.survival,
   result.survival.CI,
    check.names = FALSE
result.survival$"p.adj" <- p.adjust( p=result.survival$"Pr(>|z|)" )
```

3.2.1.1 Table

```
table.result.printed <-
  table.result.printed[
    order(
      table.result.printed$"Pr(>|z|)",
      decreasing = FALSE
   ),]
table.result.printed <- signif( x = table.result.printed, digits = 3 )</pre>
table.result.printed$"Name" <- rownames( table.result.printed )</pre>
table.result.printed <-
  table.result.printed[ ,
                          "Name",
                          "exp(coef)",
                          "lower .95",
                          "upper .95",
                          "Pr(>|z|)",
                          "p.adj"
                        )
                        ]
print(
  knitr::kable(
   x = table.result.printed,
   row.names = FALSE,
    caption = "Crude survival model for all-cause mortality."
  )
)
##
##
## Table: Crude survival model for all-cause mortality.
##
## Name
                                       exp(coef)
                                                   lower .95 upper .95
                                                                           Pr(>|z|)
                                                                                         p.adj
## -----
                                                  -----
                                                              _____
## Ribonic.acid..72
                                           2.030
                                                       1.500
                                                                   2.760
                                                                           5.40e-06
                                                                                      7.58e-05
## Ribitol..71
                                           2.550
                                                       1.700
                                                                   3.810
                                                                           5.60e-06
                                                                                      7.58e-05
## X3.4.Dihydroxybutanoic.acid..27
                                                       1.660
                                                                   3.980
                                                                           2.47e-05
                                                                                      2.97e-04
                                           2.570
## X2.4.Dihydroxybutanoic.acid..28
                                           2.360
                                                       1.550
                                                                   3.570
                                                                           5.61e-05
                                                                                      6.18e-04
                                                                           2.38e-04
                                                                                      2.38e-03
## X4.Hydroxybenzeneacetic.acid..42
                                                       1.220
                                                                   1.920
                                           1.530
## Myo.inositol.6TMS..1
                                           2.310
                                                       1.460
                                                                   3.640
                                                                           3.30e-04
                                                                                      2.97e-03
## X2.Hydroxybutyric.acid..2TMS..22
                                                                   0.805
                                                                           6.36e-04
                                                                                      5.09e-03
                                           0.601
                                                       0.449
## Isoleucine..2TMS..18
                                           0.654
                                                       0.490
                                                                   0.873
                                                                           3.94e-03
                                                                                      2.76e-02
## Creatinine..50
                                                                           9.26e-03
                                           1.570
                                                       1.120
                                                                   2.210
                                                                                      5.56e-02
## Valine..2TMS..20
                                           0.458
                                                       0.252
                                                                   0.830
                                                                           1.00e-02
                                                                                      5.56e-02
## Glyceryl.glycoside..59
                                           1.690
                                                       1.080
                                                                   2.640
                                                                           2.04e-02
                                                                                      8.18e-02
## Fumaric.acid..2TMS..9
                                           2.080
                                                       1.060
                                                                   4.070
                                                                           3.33e-02
                                                                                      9.98e-02
## Leucine..2TMS..19
                                                                           4.23e-02
                                           0.699
                                                       0.494
                                                                   0.988
                                                                                      9.98e-02
                                                       0.669
                                                                           9.85e-01
## Methionine..2TMS..16
                                           0.996
                                                                   1.480
                                                                                      9.85e-01
```

table.result.printed <- result.4.mortality.crude <- result.survival

3.2.1.2 Forest Plot

```
result.survival <-
 data.frame(
   result.survival,
   Name = rownames( result.survival )
 )
# plot <-
# ggplot2::ggplot( data = result.survival,
#
                    mapping = ggplot2::aes(x = Name, y = exp.coef.,
#
                                           ymin = lower...95, ymax = upper...95)) +
# ggplot2::geom_pointrange() +
# ggplot2::geom_hline( yintercept = 1, lty = "dashed" ) +
# ggplot2::coord_flip() +
# ggplot2::ylab( label = "Hazard Ratio (95 % CI)" ) +
# ggplot2::xlab( label = "" )
# print( plot )
```

3.2.2 Adjusted Model

```
names.tested <-
  rownames( result.kidney.crude[ result.kidney.crude$"p.adj" < 0.05, ] )</pre>
names.model <-
  c(
    "logUAER",
    "egfr",
    "Age",
    "Gender",
    "Hba1c_baseline",
    "CALSBP",
    "bmi",
    "Smoking",
    "Statin",
    "log_Blood_TGA",
    "Total_cholesterol"
  )
data.survival <-
  data.frame(
    data,
    stringsAsFactors = FALSE,
    check.names = TRUE
  )
data.survival <-
  data.survival[ ,
                  c( names.model,
                     colnames( data.follow.up )[ colnames( data.follow.up ) != "id_profil" ],
                     names.tested
                  ]
data.survival$"censor_doed_profil.reversed" <-</pre>
  factor(
    x = as.character( data.survival$"censor_doed_profil" ),
    levels = c(1, 0),
    labels = c( "eos/udvandring i profil" , "event" )
data.survival$"censor_doed_profil.reversed.numeric" <-</pre>
  as.numeric( data.survival$"censor_doed_profil.reversed" ) - 1
for ( i in 1:length( names.tested ) ) {
  name.i <- names.tested[ i ]</pre>
  model.survival <-</pre>
    survival::coxph(
      formula =
        as.formula(
```

```
paste( "survival::Surv( time = t_doed_profil, event = censor_doed_profil.reversed.numeric ) ~
                  name.i,
                  "+ logUAER",
                  "+ egfr",
                  "+ Age",
                  "+ Gender",
                  "+ Hba1c_baseline",
                  "+ CALSBP",
                  "+ bmi",
                  "+ Smoking",
                  "+ Statin",
                  "+ log_Blood_TGA",
                  "+ Total_cholesterol"
        ),
      data = data.survival
  tmp <- summary( model.survival )</pre>
  if ( i == 1 ) {
    result.survival <-
      array(
        dim =
          c(
            length( names.tested ),
            ncol( tmp$"coefficients" )
      )
    rownames( result.survival ) <- names.tested</pre>
    colnames( result.survival ) <- colnames( tmp$"coefficients" )</pre>
    result.survival.CI <- array( dim = c( length( names.tested ), 2 ) )</pre>
    rownames( result.survival.CI ) <- names.tested</pre>
    colnames( result.survival.CI ) <- c( "lower .95", "upper .95" )</pre>
  }
  result.survival[ name.i, ] <- tmp$"coefficients"[ name.i, ]</pre>
  result.survival.CI[ name.i, ] <-</pre>
    tmp$"conf.int"[ name.i, c( "lower .95", "upper .95" ) ]
}
result.survival <-
  data.frame(
    result.survival,
    result.survival.CI,
    check.names = FALSE
  )
```

result.survival\$"p.adj" <- p.adjust(p=result.survival\$"Pr(>|z|)")

3.2.2.1 Table

```
table.result.printed <- result.4.mortality.adjusted <- result.survival
table.result.printed <-
 table.result.printed[
   order(
     table.result.printed$"Pr(>|z|)",
     decreasing = FALSE
   ),]
table.result.printed <- signif( x = table.result.printed, digits = 3 )</pre>
table.result.printed$"Name" <- rownames( table.result.printed )</pre>
table.result.printed <-
 table.result.printed[ ,
                         "Name",
                         "exp(coef)",
                         "lower .95",
                         "upper .95",
                         "Pr(>|z|)",
                         "p.adj"
                       )
                       ]
print(
 knitr::kable(
   x = table.result.printed,
   row.names = FALSE,
    caption = "Adjusted survival model for all-cause mortality."
 )
)
##
##
## Table: Adjusted survival model for all-cause mortality.
##
## Name
                                     exp(coef)
                                                lower .95 upper .95
                                                                      Pr(>|z|)
                                                                                  p.adj
## -----
                                                ## X2.Hydroxybutyric.acid..2TMS..22
                                         0.646
                                                    0.460
                                                                0.907
                                                                          0.0117
                                                                                  0.163
## Ribonic.acid..72
                                         1.570
                                                    1.060
                                                                2.320
                                                                          0.0233
                                                                                  0.303
## Isoleucine..2TMS..18
                                         0.694
                                                    0.477
                                                                1.010
                                                                        0.0568
                                                                                  0.681
## Ribitol..71
                                         1.600
                                                    0.930
                                                                2.740
                                                                        0.0901
                                                                                  0.991
## Leucine..2TMS..19
                                         0.750
                                                    0.505
                                                                1.110
                                                                          0.1530
                                                                                  1.000
## Myo.inositol.6TMS..1
                                         1.560
                                                    0.846
                                                                2.880
                                                                          0.1540
                                                                                  1.000
## Fumaric.acid..2TMS..9
                                                                3.400
                                                                          0.1800
                                         1.640
                                                    0.795
                                                                                  1.000
## Creatinine..50
                                         1.320
                                                    0.866
                                                                2.000
                                                                          0.1990
                                                                                  1.000
## X2.4.Dihydroxybutanoic.acid..28
                                         1.430
                                                    0.824
                                                                2.490
                                                                          0.2030
                                                                                  1.000
## Glyceryl.glycoside..59
                                         1.360
                                                    0.828
                                                                2.240
                                                                          0.2230
                                                                                  1.000
## Valine..2TMS..20
                                         0.668
                                                    0.341
                                                                1.310
                                                                          0.2390
                                                                                  1.000
## X3.4.Dihydroxybutanoic.acid..27
                                         1.340
                                                    0.769
                                                                2.320
                                                                          0.3040
                                                                                  1.000
## X4.Hydroxybenzeneacetic.acid..42
                                         1.100
                                                    0.857
                                                                1.410
                                                                          0.4590
                                                                                   1.000
## Methionine..2TMS..16
                                         0.952
                                                    0.598
                                                                1.520
                                                                          0.8370
                                                                                  1.000
```

3.2.2.2 Forest Plot

3.2.3 Combined Forest Plot from Crude and Adjusted Models

```
tmp <- result.4.mortality.crude</pre>
tmp$"Name" <- rownames( tmp )</pre>
tmp$"Model" <- rep( x = "Crude", times = nrow( tmp ) )</pre>
data.plot <- tmp</pre>
tmp <- result.4.mortality.adjusted</pre>
tmp$"Name" <- rownames( tmp )</pre>
tmp$"Model" <- rep( x = "Adjusted", times = nrow( tmp ) )</pre>
data.plot <- rbind( data.plot, tmp )</pre>
data.plot$"Model" <-</pre>
  factor(
    x = data.plot$"Model",
    levels = c( "Crude", "Adjusted" )
  )
data.plot$"Name" <-</pre>
  factor(
    x = data.plot$"Name",
    levels =
      sort(
        x = unique( data.plot$"Name" ),
        decreasing = TRUE
      )
  )
data.plot$"Significance" <- rep( x = "None", times = nrow( data.plot ) )</pre>
data.plot[ data.plot$"p.adj" < 0.05, "Significance" ] <-</pre>
  "Multiple-testing-corrected p < 0.05"
data.plot$"Event" <-</pre>
  rep( x = "All-Cause Mortality", times = nrow( data.plot ) )
colnames( data.plot )[ colnames( data.plot )=="exp(coef)"] <- "HR"</pre>
colnames( data.plot ) <- make.names( colnames( data.plot ) )</pre>
forest.step4.compilation <- rbind( forest.step4.compilation, data.plot )</pre>
plot <-
  ggplot2::ggplot(
    data = data.plot,
    mapping =
      ggplot2::aes(
        x = Name,
```

```
y = HR,
ymin = lower..95,
ymax = upper..95,
colour = Significance
)
) +
ggplot2::geom_pointrange() +
ggplot2::geom_hline( yintercept = 1, lty = "dashed" ) +
ggplot2::facet_grid( facets = ~ Model ) +
ggplot2::scale_colour_manual( values=c( "red", "black" ) ) +
# ggplot2::scale_colour_manual( values=c( "red", "orange", "black" ) ) +
ggplot2::coord_flip() +
ggplot2::theme( legend.position = "top" ) +
ggplot2::ylab( label = "Hazard Ratio (95 % CI)" ) +
ggplot2::xlab( label = "" )
```


3.3 Step 3C: eGFR Decline > 30 %

3.3.1 Crude Model

```
names.tested <-
  rownames( result.kidney.crude[ result.kidney.crude$"p.adj" < 0.05, ] )</pre>
names.model <- NULL
data.survival <-
  data.frame(
    data,
    stringsAsFactors = FALSE,
    check.names = TRUE
data.survival <-
  data.survival[ ,
                 c(
                    names.model,
                    colnames( data.follow.up )[ colnames( data.follow.up ) != "id_profil" ],
                   names.tested
                  ) ]
colnames( data.survival ) <- make.names( names=colnames( data.survival ) )</pre>
data.survival$"censor_gfrfald30_p.reversed" <- data.survival$"censor_gfrfald30_p"
data.survival$"censor_gfrfald30_p.reversed" <-</pre>
  factor(
    x = as.character( data.survival$"censor_gfrfald30_p.reversed" ),
    levels = c(2, 0),
    labels = c( "eos/udvandring i profil" , "event" )
data.survival$"censor_gfrfald30_p.reversed.numeric" <-</pre>
  as.numeric( data.survival$"censor_gfrfald30_p.reversed" ) - 1
for ( i in 1:length( names.tested ) ) {
  name.i <- names.tested[ i ]</pre>
  model.survival <-</pre>
    survival::coxph(
      formula =
        as.formula(
            "survival::Surv( time = t_gfrfald30_p, event = censor_gfrfald30_p.reversed.numeric ) ~",
            name.i
        ),
      data = data.survival
```

```
tmp <- summary( model.survival )</pre>
  if ( i == 1 ) {
    result.survival <-
      array(
        dim =
          c(
            length( names.tested ),
            ncol( tmp$"coefficients" )
      )
    rownames( result.survival ) <- names.tested</pre>
    colnames( result.survival ) <- colnames( tmp$"coefficients" )</pre>
    result.survival.CI <- array( dim = c( length( names.tested ), 2 ) )</pre>
    rownames( result.survival.CI ) <- names.tested</pre>
    colnames( result.survival.CI ) <- c( "lower .95", "upper .95" )</pre>
  }
  result.survival[ name.i, ] <- tmp$"coefficients"[ name.i, ]</pre>
  result.survival.CI[ name.i, ] <-</pre>
    tmp$"conf.int"[ name.i, c( "lower .95", "upper .95" ) ]
}
result.survival <-
  data.frame(
    result.survival,
    result.survival.CI,
    check.names = FALSE
  )
result.survival$"p.adj" <- p.adjust( p=result.survival$"Pr(>|z|)" )
```

3.3.1.1 Table

Leucine..2TMS..19

Fumaric.acid..2TMS..9

X2.Hydroxybutyric.acid..2TMS..22

table.result.printed <- result.4.egfr.crude <- result.survival

```
table.result.printed <-
  table.result.printed[
    order(
     table.result.printed$"Pr(>|z|)",
     decreasing = FALSE
   ),]
table.result.printed <- signif( x = table.result.printed, digits = 3 )</pre>
table.result.printed$"Name" <- rownames( table.result.printed )</pre>
table.result.printed <-
  table.result.printed[ ,
                         "Name",
                         "exp(coef)",
                         "lower .95",
                         "upper .95",
                         "Pr(>|z|)",
                         "p.adj"
                       ) ]
print(
 knitr::kable(
   x = table.result.printed,
   row.names = FALSE,
    caption = "Crude survival model for eGFR decline > 30 %"
  )
)
##
## Table: Crude survival model for eGFR decline > 30 %
##
                                     exp(coef)
                                                 lower .95
                                                           upper .95
                                                                       Pr(>|z|)
                                                                                      p.adj
## -----
                                                -----
                                                                                  _____
## Ribonic.acid..72
                                         2.510
                                                     1.950
                                                                 3.230
                                                                        0.000000
                                                                                   0.00e+00
## Myo.inositol.6TMS...1
                                         4.060
                                                     2.760
                                                                 5.970 0.000000
                                                                                   0.00e+00
## X3.4.Dihydroxybutanoic.acid..27
                                         3.700
                                                     2.580
                                                                 5.300
                                                                       0.000000
                                                                                   0.00e+00
## Ribitol..71
                                                     1.810
                                                                 3.480 0.000000
                                                                                   3.00e-07
                                         2.510
## X2.4.Dihydroxybutanoic.acid..28
                                                     1.840
                                                                 3.620
                                                                        0.000000
                                                                                   4.00e-07
                                         2.580
## X4.Hydroxybenzeneacetic.acid..42
                                                     1.170
                                                                 1.690
                                                                        0.000218
                                                                                   1.96e-03
                                         1.410
## Methionine..2TMS..16
                                         0.611
                                                     0.466
                                                                 0.800
                                                                        0.000345
                                                                                   2.76e-03
                                                                 2.640
                                                                        0.000705
## Glyceryl.glycoside..59
                                         1.850
                                                     1.300
                                                                                   4.94e-03
## Creatinine..50
                                         1.620
                                                     1.230
                                                                 2.150
                                                                        0.000734
                                                                                   4.94e-03
## Isoleucine..2TMS..18
                                                                 0.861
                                                                        0.002010
                                                                                   1.01e-02
                                         0.664
                                                     0.512
## Valine..2TMS..20
                                         0.515
                                                     0.309
                                                                 0.857
                                                                        0.010700
                                                                                   4.28e-02
```

0.765

1.560

0.874

0.557

0.910

0.667

1.050

2.670

1.150

0.096100

0.106000

0.332000

2.88e-01

2.88e-01

3.32e-01

3.3.2 Forest Plot

3.3.3 Adjusted Model

```
names.tested <-
  rownames( result.kidney.crude[ result.kidney.crude$"p.adj" < 0.05, ] )</pre>
names.model <-
  c(
    "logUAER",
    "egfr",
    "Age",
    "Gender",
    "Hba1c_baseline",
    "CALSBP",
    "bmi",
    "Smoking",
    "Statin",
    "log_Blood_TGA",
    "Total_cholesterol"
  )
data.survival <-
  data.frame(
    data,
    stringsAsFactors = FALSE,
    check.names = TRUE
  )
data.survival <-
  data.survival[ ,
                 c(
                    colnames( data.follow.up )[ colnames( data.follow.up ) != "id_profil" ],
                   names.tested
                 )
                 ]
data.survival$"censor_gfrfald30_p.reversed" <- data.survival$"censor_gfrfald30_p"
data.survival$"censor_gfrfald30_p.reversed" <-</pre>
  factor(
    x = as.character( data.survival$"censor_gfrfald30_p.reversed" ),
    levels = c(2, 0),
    labels = c( "eos/udvandring i profil" , "event" )
  )
data.survival$"censor_gfrfald30_p.reversed.numeric" <-</pre>
  as.numeric( data.survival$"censor_gfrfald30_p.reversed" ) - 1
for ( i in 1:length( names.tested ) ) {
  name.i <- names.tested[ i ]</pre>
 model.survival <-</pre>
```

```
survival::coxph(
      formula =
        as.formula(
          paste(
             "survival::Surv( time = t_gfrfald30_p, event = censor_gfrfald30_p.reversed.numeric ) ~",
            name.i,
             "+ logUAER",
            "+ egfr",
            "+ Age",
            "+ Gender",
             "+ Hba1c_baseline",
             "+ CALSBP",
             "+ bmi",
             "+ Smoking",
             "+ Statin",
             "+ log_Blood_TGA",
             "+ Total_cholesterol"
          )
        ),
      data = data.survival
  tmp <- summary( model.survival )</pre>
  if ( i == 1 ) {
    result.survival <-
      array(
        dim = c(
          length( names.tested ),
          ncol( tmp$"coefficients" )
        )
      )
    rownames( result.survival ) <- names.tested</pre>
    colnames( result.survival ) <- colnames( tmp$"coefficients" )</pre>
    result.survival.CI <- array( dim=c( length( names.tested ), 2 ) )</pre>
    rownames( result.survival.CI ) <- names.tested</pre>
    colnames( result.survival.CI ) <- c( "lower .95", "upper .95" )</pre>
  }
  result.survival[ name.i, ] <- tmp$"coefficients"[ name.i, ]</pre>
  result.survival.CI[ name.i, ] <-</pre>
    tmp$"conf.int"[ name.i, c( "lower .95", "upper .95" ) ]
}
result.survival <-
  data.frame(
    result.survival,
```

```
result.survival.CI,
  check.names = FALSE
)

result.survival$"p.adj" <- p.adjust( p=result.survival$"Pr(>|z|)" )
```

3.3.3.1 Table

Glyceryl.glycoside..59

Fumaric.acid..2TMS..9

```
table.result.printed <- result.4.egfr.adjusted <- result.survival
table.result.printed <-
  table.result.printed[
    order(
      table.result.printed$"Pr(>|z|)",
      decreasing = FALSE
    ),]
table.result.printed <- signif( x = table.result.printed, digits = 3 )</pre>
table.result.printed$"Name" <- rownames( table.result.printed )</pre>
table.result.printed <-
  table.result.printed[ ,
                          "Name",
                          "exp(coef)",
                          "lower .95",
                          "upper .95",
                          "Pr(>|z|)",
                          "p.adj"
                        ) ]
print(
  knitr::kable(
    x = table.result.printed,
    row.names = FALSE,
    caption = "Adjusted survival model for eGFR decline > 30 %."
  )
)
##
## Table: Adjusted survival model for eGFR decline > 30 %.
##
                                       exp(coef)
                                                   lower .95
                                                             upper .95
                                                                         Pr(>|z|)
                                                                                         p.adj
                                                  -----
                                                                                     _____
## Ribonic.acid..72
                                           2.220
                                                       1.640
                                                                   2.990
                                                                           2.00e-07
                                                                                      2.60e-06
                                                                   4.340 8.69e-05
## Myo.inositol.6TMS..1
                                           2.660
                                                       1.630
                                                                                      1.13e-03
## X3.4.Dihydroxybutanoic.acid..27
                                           1.890
                                                       1.180
                                                                   3.030
                                                                         8.34e-03
                                                                                      1.00e-01
                                           1.680
## X2.4.Dihydroxybutanoic.acid..28
                                                       1.080
                                                                   2.610 2.05e-02
                                                                                      2.25e-01
## Isoleucine..2TMS..18
                                           0.739
                                                       0.556
                                                                   0.983
                                                                           3.75e-02
                                                                                      3.75e-01
## Valine..2TMS..20
                                                                           4.05e-02
                                           0.552
                                                       0.313
                                                                   0.975
                                                                                      3.75e-01
## X2.Hydroxybutyric.acid..2TMS..22
                                           0.764
                                                       0.548
                                                                   1.070
                                                                           1.13e-01
                                                                                      9.01e-01
## Methionine..2TMS..16
                                           0.769
                                                       0.544
                                                                   1.090
                                                                           1.35e-01
                                                                                      9.48e-01
## Ribitol..71
                                           1.320
                                                       0.886
                                                                   1.950
                                                                           1.74e-01
                                                                                      1.00e+00
## Creatinine..50
                                                       0.920
                                                                   1.520
                                                                           1.90e-01
                                                                                      1.00e+00
                                           1.180
## X4.Hydroxybenzeneacetic.acid..42
                                           1.120
                                                       0.921
                                                                   1.370
                                                                           2.49e-01
                                                                                      1.00e+00
## Leucine..2TMS..19
                                           0.880
                                                       0.655
                                                                   1.180
                                                                           3.98e-01
                                                                                      1.00e+00
```

1.160

0.804

0.778

0.441

1.740

1.470

4.63e-01

4.76e-01

1.00e+00

1.00e+00

3.3.3.2 Forest Plot

3.3.4 Combined Forest Plot from Crude and Adjusted Models

```
tmp <- result.4.egfr.crude</pre>
tmp$"Name" <- rownames( tmp )</pre>
tmp$"Model" <- rep( x = "Crude", times = nrow( tmp ) )</pre>
data.plot <- tmp
tmp <- result.4.egfr.adjusted</pre>
tmp$"Name" <- rownames( tmp )</pre>
tmp$"Model" <- rep( x = "Adjusted", times = nrow( tmp ) )</pre>
data.plot <- rbind( data.plot, tmp )</pre>
data.plot$"Model" <-</pre>
  factor(
    x = data.plot$"Model",
    levels = c( "Crude", "Adjusted" )
  )
data.plot$"Name" <-</pre>
  factor(
    x = data.plot$"Name",
    levels = sort( x = unique( data.plot$"Name" ), decreasing=TRUE )
data.plot$"Significance" <- rep( x = "None", times = nrow( data.plot ) )</pre>
data.plot[ data.plot$"p.adj" < 0.05, "Significance" ] <-</pre>
  "Multiple-testing-corrected p < 0.05"
data.plot$"Event" <-</pre>
  rep( x = "eGFR Decline (> 30 %)", times = nrow( data.plot ) )
colnames( data.plot )[ colnames( data.plot ) == "exp(coef)"] <- "HR"</pre>
colnames( data.plot ) <- make.names( colnames( data.plot ) )</pre>
forest.step4.compilation <- rbind( forest.step4.compilation, data.plot )</pre>
plot <-
  ggplot2::ggplot(
    data = data.plot,
    mapping =
      ggplot2::aes(
        x = Name,
        y = HR,
        ymin = lower...95,
        ymax = upper...95,
        colour = Significance
```

```
)
) +
ggplot2::geom_pointrange() +
ggplot2::geom_hline( yintercept = 1, lty = "dashed" ) +
ggplot2::facet_grid( facets = ~ Model ) +
ggplot2::scale_colour_manual( values = c( "red", "black" ) ) +
# ggplot2::scale_colour_manual( values=c( "red", "orange", "black" ) ) +
ggplot2::coord_flip() +
ggplot2::theme( legend.position = "top" ) +
ggplot2::ylab( label = "Hazard Ratio (95 % CI)" ) +
ggplot2::xlab( label = "" )

print( plot )
```


3.4 Step 3D: End-Stage Renal Disease

3.4.1 Crude Model

```
names.tested <-
  rownames( result.kidney.crude[ result.kidney.crude$"p.adj" < 0.05, ] )</pre>
names.model <- NULL
data.survival <-
  data.frame(
    data,
    stringsAsFactors = FALSE,
    check.names = TRUE
data.survival <-
  data.survival[ ,
                  c(
                    names.model,
                    colnames( data.follow.up )[ colnames( data.follow.up ) != "id_profil" ],
                    names.tested
colnames( data.survival ) <- make.names( names=colnames( data.survival ) )</pre>
for ( i in 1:length( names.tested ) ) {
  name.i <- names.tested[ i ]</pre>
  model.survival <-</pre>
    survival::coxph(
      formula =
        as.formula(
            "survival::Surv( time = t_ESRD_profil, event = censor_ESRD_profil == 0 ) ~",
            name.i
          )
      data = data.survival
    )
  tmp <- summary( model.survival )</pre>
  if ( i == 1 ) {
    result.survival <-
      array(
        dim =
          c(
            length( names.tested ),
            ncol( tmp$"coefficients" )
```

```
)
    rownames( result.survival ) <- names.tested</pre>
    colnames( result.survival ) <- colnames( tmp$"coefficients" )</pre>
    result.survival.CI <- array( dim = c( length( names.tested ), 2 ) )</pre>
    rownames( result.survival.CI ) <- names.tested</pre>
    colnames( result.survival.CI ) <- c( "lower .95", "upper .95" )</pre>
  }
  result.survival[ name.i, ] <- tmp$"coefficients"[ name.i, ]</pre>
  result.survival.CI[ name.i, ] <-</pre>
    tmp$"conf.int"[ name.i, c( "lower .95", "upper .95" ) ]
}
result.survival <-
  data.frame(
    result.survival,
    result.survival.CI,
    check.names = FALSE
result.survival$"p.adj" <- p.adjust( p=result.survival$"Pr(>|z|)" )
```

3.4.1.1 Table

##

##

```
table.result.printed <- result.4.esrd.crude <- result.survival</pre>
table.result.printed <-</pre>
  table.result.printed[
    order(
      table.result.printed$"Pr(>|z|)",
      decreasing = FALSE
    ),]
table.result.printed <- signif( x = table.result.printed, digits = 3 )</pre>
table.result.printed$"Name" <- rownames( table.result.printed )</pre>
table.result.printed <-</pre>
  table.result.printed[ ,
                           "Name",
                           "exp(coef)",
                           "lower .95",
                            "upper .95",
                           "Pr(>|z|)",
                           "p.adj"
                         ) ]
print(
 knitr::kable(
    x = table.result.printed,
    row.names = FALSE,
    caption = "Crude survival model for end-stage renal disease."
  )
)
```

Table: Crude survival model for end-stage renal disease.

##	Name	exp(coef)	lower .95	upper .95	Pr(> z)	p.adj
##						
##	Myo.inositol.6TMS1	8.310	3.930	17.500	0.00e+00	4.00e-07
##	X3.4.Dihydroxybutanoic.acid27	7.360	3.530	15.400	1.00e-07	1.40e-06
##	Ribonic.acid72	3.870	2.310	6.500	3.00e-07	3.70e-06
##	X2.4.Dihydroxybutanoic.acid28	6.300	3.100	12.800	3.00e-07	3.80e-06
##	Creatinine50	3.760	2.140	6.600	4.10e-06	4.08e-05
##	X4.Hydroxybenzeneacetic.acid42	2.490	1.680	3.680	4.90e-06	4.42e-05
##	Ribitol71	4.000	2.070	7.710	3.66e-05	2.92e-04
##	Glyceryl.glycoside59	4.000	1.880	8.510	3.28e-04	2.29e-03
##	X2.Hydroxybutyric.acid2TMS22	0.492	0.326	0.740	6.69e-04	4.01e-03
##	Methionine2TMS16	0.500	0.307	0.813	5.23e-03	2.61e-02
##	Isoleucine2TMS18	0.576	0.383	0.868	8.34e-03	3.34e-02
##	Fumaric.acid2TMS9	4.310	1.450	12.800	8.58e-03	3.34e-02
##	Valine2TMS20	0.340	0.137	0.840	1.94e-02	3.88e-02
##	Leucine2TMS19	0.557	0.333	0.931	2.56e-02	3.88e-02

3.4.1.2 Forest Plot

3.4.2 Adjusted Model

```
names.tested <-
  rownames( result.kidney.crude[ result.kidney.crude$"p.adj" < 0.05, ] )</pre>
names.model <-
  c(
    "logUAER",
    "egfr",
    "Age",
    "Gender",
    "Hba1c_baseline",
    "CALSBP",
    "bmi",
    "Smoking",
    "Statin",
    "log_Blood_TGA",
    "Total_cholesterol"
  )
data.survival <-
  data.frame(
    data,
    stringsAsFactors = FALSE,
    check.names = TRUE
  )
data.survival <-
  data.survival[ ,
                  c(
                    colnames( data.follow.up )[ colnames( data.follow.up ) != "id_profil" ],
                    names.tested
                  ) ]
for ( i in 1:length( names.tested ) ) {
  name.i <- names.tested[ i ]</pre>
  model.survival <-</pre>
    survival::coxph(
      formula =
        as.formula(
          paste(
            "survival::Surv( time = t_ESRD_profil, event = censor_ESRD_profil == 0 ) ~",
            "+ logUAER",
            "+ egfr",
            "+ Age",
            "+ Gender",
            "+ Hba1c_baseline",
            "+ CALSBP",
            "+ bmi",
```

```
"+ Smoking",
             "+ Statin",
             "+ log_Blood_TGA",
             "+ Total_cholesterol"
        ),
      data = data.survival
  tmp <- summary( model.survival )</pre>
  if ( i == 1 ) {
    result.survival <-
      array(
        dim = c(
          length( names.tested ),
          ncol( tmp$"coefficients" )
        )
      )
    rownames( result.survival ) <- names.tested</pre>
    colnames( result.survival ) <- colnames( tmp$"coefficients" )</pre>
    result.survival.CI <- array( dim=c( length( names.tested ), 2 ) )</pre>
    rownames( result.survival.CI ) <- names.tested</pre>
    colnames( result.survival.CI ) <- c( "lower .95", "upper .95" )</pre>
  }
  result.survival[ name.i, ] <- tmp$"coefficients"[ name.i, ]</pre>
  result.survival.CI[ name.i, ] <-</pre>
    tmp$"conf.int"[ name.i, c( "lower .95", "upper .95" ) ]
}
result.survival <-
  data.frame(
    result.survival,
    result.survival.CI,
    check.names = FALSE
result.survival$"p.adj" <- p.adjust( p=result.survival$"Pr(>|z|)" )
```

3.4.2.1 Table

##

```
table.result.printed <- result.4.esrd.adjusted <- result.survival
table.result.printed <-</pre>
  table.result.printed[
    order(
      table.result.printed$"Pr(>|z|)",
      decreasing = FALSE
    ),]
table.result.printed <- signif( x = table.result.printed, digits = 3 )</pre>
table.result.printed$"Name" <- rownames( table.result.printed )</pre>
table.result.printed <-</pre>
  table.result.printed[ ,
                           "Name",
                           "exp(coef)",
                           "lower .95",
                           "upper .95",
                           "Pr(>|z|)",
                           "p.adj"
                         ) ]
print(
 knitr::kable(
   x = table.result.printed,
    row.names = FALSE,
    caption = "Adjusted survival model for end-stage renal disease."
  )
)
##
```

Table: Adjusted survival model for end-stage renal disease.

##	Name	exp(coef)	lower .95	upper .95	Pr(> z)	p.adj
##						
##	Ribitol71	0.459	0.222	0.946	0.0349	0.489
##	Methionine2TMS16	0.606	0.320	1.150	0.1250	1.000
##	Valine2TMS20	0.423	0.126	1.420	0.1640	1.000
##	X4.Hydroxybenzeneacetic.acid42	0.664	0.373	1.180	0.1640	1.000
##	X2.Hydroxybutyric.acid2TMS22	0.699	0.360	1.360	0.2900	1.000
##	Isoleucine2TMS18	0.778	0.467	1.290	0.3330	1.000
##	Fumaric.acid2TMS9	1.770	0.443	7.090	0.4180	1.000
##	Leucine2TMS19	0.840	0.546	1.290	0.4280	1.000
##	Glyceryl.glycoside59	0.705	0.284	1.750	0.4500	1.000
##	Creatinine50	0.890	0.561	1.410	0.6210	1.000
##	X3.4.Dihydroxybutanoic.acid27	1.260	0.421	3.780	0.6770	1.000
##	Ribonic.acid72	0.878	0.434	1.770	0.7170	1.000
##	Myo.inositol.6TMS1	0.978	0.310	3.080	0.9700	1.000
##	X2.4.Dihydroxybutanoic.acid28	0.991	0.331	2.960	0.9870	1.000

3.4.2.2 Forest Plot

3.4.3 Combined Forest Plot from Crude and Adjusted Models

```
tmp <- result.4.esrd.crude</pre>
tmp$"Name" <- rownames( tmp )</pre>
tmp$"Model" <- rep( x = "Crude", times = nrow( tmp ) )</pre>
data.plot <- tmp</pre>
tmp <- result.4.esrd.adjusted</pre>
tmp$"Name" <- rownames( tmp )</pre>
tmp$"Model" <- rep( x = "Adjusted", times = nrow( tmp ) )</pre>
data.plot <- rbind( data.plot, tmp )</pre>
data.plot$"Model" <-</pre>
  factor(
    x = data.plot$"Model",
    levels = c( "Crude", "Adjusted" )
data.plot$"Name" <-</pre>
  factor(
    x = data.plot$"Name",
    levels = sort( x = unique( data.plot$"Name" ), decreasing = TRUE )
data.plot$"Significance" <- rep( x = "None", times = nrow( data.plot ) )</pre>
data.plot[data.plot$"p.adj" < 0.05, "Significance"] <- "Multiple-testing-corrected p < 0.05"
data.plot$"Event" <-</pre>
  rep( x = "End-Stage Renal Disease", times = nrow( data.plot ) )
colnames( data.plot )[ colnames( data.plot ) == "exp(coef)"] <- "HR"</pre>
colnames( data.plot ) <- make.names( colnames( data.plot ) )</pre>
forest.step4.compilation <- rbind( forest.step4.compilation, data.plot )</pre>
plot <-
  ggplot2::ggplot(
    data = data.plot,
    mapping =
      ggplot2::aes(
        x = Name,
        y = HR,
        ymin = lower..95,
        ymax = upper...95,
        colour = Significance
```

```
ggplot2::geom_pointrange() +
ggplot2::geom_hline( yintercept = 1, lty = "dashed" ) +
ggplot2::facet_grid( facets = ~ Model ) +
ggplot2::scale_colour_manual( values = c( "red", "black" ) ) +
# ggplot2::scale_colour_manual( values=c( "red", "orange", "black" ) ) +
ggplot2::coord_flip() +
ggplot2::theme( legend.position = "top" ) +
ggplot2::ylab( label = "Hazard Ratio (95 % CI)" ) +
ggplot2::xlab( label = "" )
```


3.5 Compilation Forest Plot from Steps 3A-D

```
forest.step4.compilation$"Name.character" <-</pre>
  as.character( forest.step4.compilation$"Name" )
forest.step4.compilation$"Name" <-</pre>
  names.mapping[forest.step4.compilation$"Name.character", "Cleaned"]
forest.step4.compilation$"Name" <-</pre>
  factor(
    x = forest.step4.compilation$"Name",
    levels =
      sort(
        x = unique(x = forest.step4.compilation$"Name"),
        decreasing = TRUE
      )
  )
forest.step4.compilation$"Significance" <-</pre>
    x = forest.step4.compilation$"Significance",
    levels = c( "Multiple-testing-corrected p < 0.05", "None" )</pre>
plot <-
  ggplot2::ggplot(
    data = forest.step4.compilation,
    mapping =
      ggplot2::aes(
        x = Name,
        y = HR,
        ymin = lower...95,
        ymax = upper...95,
        colour = Significance
      )
  ) +
  ggplot2::geom_pointrange() +
  ggplot2::geom_hline( yintercept = 1, lty = "dashed" ) +
  ggplot2::facet_grid( facets = Event ~ Model ) +
  ggplot2::scale_colour_manual( values = c( "red", "black" ), drop = FALSE ) +
  # ggplot2::scale_colour_manual( values=c( "red", "orange", "black" ), drop=FALSE ) +
  ggplot2::scale_x_discrete( drop = FALSE ) +
  ggplot2::coord_flip() +
  ggplot2::theme( legend.position = "top" ) +
  ggplot2::ylab( label = "Hazard Ratio (95 % CI)" ) +
  ggplot2::xlab( label = "" )
print( plot )
```



```
plot <- plot + ggplot2::scale_y_log10()
print( plot )</pre>
```



```
forest.step4.compilation <-
  forest.step4.compilation[
   forest.step4.compilation$"Event" != "Albuminuria\nGroup\nProgression", ]

plot <-</pre>
```

```
ggplot2::ggplot(
    data = forest.step4.compilation,
    mapping =
      ggplot2::aes(
        x = Name,
        y = HR,
        ymin = lower..95,
        ymax = upper..95,
        colour = Significance
  ) +
  ggplot2::geom_pointrange() +
  ggplot2::geom_hline( yintercept = 1, lty = "dashed" ) +
  ggplot2::facet_grid( facets = Event ~ Model ) +
  ggplot2::scale_colour_manual( values = c( "red", "black" ), drop = FALSE ) +
   \begin{tabular}{ll} \# \ ggplot2::scale\_colour\_manual(\ values=c(\ "red",\ "orange",\ "black"\ ),\ drop=FALSE\ )\ + \\ \end{tabular} 
  ggplot2::scale_x_discrete( drop = FALSE ) +
  ggplot2::coord_flip() +
  ggplot2::theme( legend.position = "top" ) +
  ggplot2::ylab( label = "Hazard Ratio (95 % CI)" ) +
  ggplot2::xlab( label = "" )
print( plot )
```



```
plot <- plot + ggplot2::scale_y_log10()
print( plot )</pre>
```


- 4 Step 4: Detailed Assessment of the Top-Metabolites in Relation to Outcomes
- 4.1 Step 4.1: First Top-Metabolite in Relation to eGFR Decline
- 4.1.1 Step 4.1A: Analysis of Full Cohort
- 4.1.1.1 Survival Model with Details

```
names.model <-
  data.frame(
    original =
      c(
        "Age",
        "bmi",
        "CALSBP",
        "Total_cholesterol",
        "egfr",
        "Hba1c_baseline",
        "Statin",
        "Gender",
        "Smoking",
        "log_Blood_TGA",
        "logUAER"
      ),
    cleaned =
      c(
        "Age",
        "BMI",
        "BP_Systolic",
        "Cholesterol",
        "eGFR",
        "HbA1c",
        "Medication_Statins",
        "Sex",
        "Smoking",
        "TG_total_log",
        "UAER log"
      ),
    stringsAsFactors = FALSE
names.model.cleaned <- names.model</pre>
data.survival <-
  data.frame(
    stringsAsFactors = FALSE,
    check.names = TRUE
  )
data.survival <-
 data.survival[ ,
```

```
names.model$original,
                  colnames( data.follow.up )[ colnames( data.follow.up ) != "id_profil" ],
                  "Ribonic.acid..72"
                ) ]
names.model$"cleaned"
colnames( data.survival ) <- make.names( names=colnames( data.survival ) )</pre>
data.survival$"censor_gfrfald30_p.reversed" <-</pre>
 factor(
   x = as.character( data.survival$"censor_gfrfald30_p" ),
   levels = c(2, 0),
   labels = c( "eos/udvandring i profil" , "event" )
data.survival$"censor_gfrfald30_p.reversed.numeric" <-</pre>
 as.numeric( data.survival$"censor_gfrfald30_p.reversed" ) - 1
colnames( data.survival )[ colnames( data.survival ) == "Ribonic.acid..72" ] <-</pre>
 "Ribonic acid"
model.survival <-
 survival::coxph(
   formula =
     survival::Surv(
       time = t_gfrfald30_p,
       event = censor_gfrfald30_p.reversed.numeric
     Ribonic_acid +
     Age +
     BMI +
     BP_Systolic +
     Cholesterol +
     eGFR +
     HbA1c +
     Medication_Statins +
     Sex +
     Smoking +
     TG_total_log +
     UAER_log,
   data = data.survival
 )
print( summary( model.survival ) )
## survival::coxph(formula = survival::Surv(time = t_gfrfald30_p,
      event = censor_gfrfald30_p.reversed.numeric) ~ Ribonic_acid +
      Age + BMI + BP_Systolic + Cholesterol + eGFR + HbA1c + Medication_Statins +
##
##
      Sex + Smoking + TG_total_log + UAER_log, data = data.survival)
```

```
##
##
    n= 586, number of events= 87
##
     (51 observations deleted due to missingness)
##
##
                          coef exp(coef) se(coef)
                                                        z Pr(>|z|)
                      0.795932 2.216505 0.152741 5.211 1.88e-07 ***
## Ribonic acid
                     -0.013717 0.986377 0.012771 -1.074 0.282806
## Age
## BMI
                     -0.004863 0.995149 0.029311 -0.166 0.868227
## BP_Systolic
                      0.025752 1.026086 0.006728 3.828 0.000129 ***
## Cholesterol
                      0.166837 1.181562 0.132443 1.260 0.207782
## eGFR
                     -0.008983 0.991057 0.004990 -1.800 0.071824 .
                      0.421594 1.524389 0.084607 4.983 6.26e-07 ***
## HbA1c
## Medication_Statins 0.631948 1.881271 0.312823 2.020 0.043368 *
## Sex
                      0.160840 1.174496 0.241443 0.666 0.505309
## Smoking
                      0.520134 1.682253 0.259836 2.002 0.045309 *
## TG_total_log
                     -0.133156 0.875328
                                          0.156426 -0.851 0.394635
                      0.250605 1.284803 0.049331 5.080 3.77e-07 ***
## UAER_log
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
                     exp(coef) exp(-coef) lower .95 upper .95
## Ribonic_acid
                        2.2165
                                   0.4512
                                             1.6431
                        0.9864
                                   1.0138
                                             0.9620
                                                        1.011
## Age
## BMI
                        0.9951
                                   1.0049
                                             0.9396
                                                        1.054
## BP Systolic
                        1.0261
                                   0.9746
                                             1.0126
                                                        1.040
## Cholesterol
                        1.1816
                                   0.8463
                                             0.9114
                                                        1.532
## eGFR
                        0.9911
                                   1.0090
                                             0.9814
                                                        1.001
## HbA1c
                        1.5244
                                   0.6560
                                            1.2915
                                                        1.799
## Medication_Statins
                                   0.5316
                        1.8813
                                            1.0190
                                                        3.473
## Sex
                        1.1745
                                   0.8514
                                             0.7317
                                                        1.885
## Smoking
                        1.6823
                                   0.5944
                                             1.0109
                                                        2.799
## TG_total_log
                        0.8753
                                   1.1424
                                             0.6442
                                                        1.189
## UAER_log
                        1.2848
                                   0.7783
                                             1.1664
                                                        1.415
##
## Concordance= 0.856 (se = 0.032)
## Rsquare= 0.25
                 (max possible= 0.828 )
## Likelihood ratio test= 168.2 on 12 df,
## Wald test
                       = 148.9 on 12 df,
                                            p=0
## Score (logrank) test = 193 on 12 df,
```

4.1.1.1.1 Forest Plot with Clinical Variables

```
forest.RA <-
survminer::ggforest(
  model = model.survival,
  main="Hazard Ratios for eGFR decline > 30 %"
)
```

Hazard Ratios for eGFR decline > 30 %

print(forest.RA)

4.1.1.1.2 Diagnostics of the Survival Model

```
survminer::ggsurvplot(
  fit = survival::survfit( formula = model.survival ),
  data = data.survival
)
```



```
survminer::ggcoxdiagnostics(
  fit = model.survival,
  type = "schoenfeld",
  ox.scale = "time"
)
```


4.1.1.1.3 Kaplan-Maier Curve with Median Cutpoint

```
data.km <- data.survival</pre>
data.km$"Ribonic_acid" <-</pre>
  cut(
    x = data.km$"Ribonic_acid",
   breaks = c( -Inf, median( data.km$"Ribonic_acid", na.rm=TRUE ), Inf ),
    labels = c( " <50\%", " >50\%" )
  )
data.km$"Ribonic_acid" <- relevel( x = data.km$"Ribonic_acid", ref = " >50%" )
model.km <-
  survival::survfit(
    survival::Surv(
     time = t_gfrfald30_p,
      event = censor_gfrfald30_p.reversed.numeric
      Ribonic_acid,
    data = data.km
plot <-
  survminer::ggsurvplot(
   fit = model.km,
    data = data.km,
    ggtheme = ggplot2::theme_minimal(),
    palette = "Set1",
   risk.table = TRUE,
   cumevents = TRUE,
    pval = FALSE,
    risk.table.height = 0.15,
    cumevents.height = 0.15,
    conf.int = TRUE
  )
plot$"table" <- plot$"table" + survminer::theme_cleantable()</pre>
plot$"cumevents" <- plot$"cumevents" + survminer::theme_cleantable()</pre>
print( plot )
```


plot.km.Ribonic.acid <- plot</pre>

4.1.2 Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort

```
idx.case <-
  which(
    data.survival$"censor_gfrfald30_p.reversed" == "event" &
      apply(
        X = !is.na(
          data.survival[ ,
                            "Ribonic_acid",
                            "censor_gfrfald30_p.reversed",
                            names.model$"cleaned"
                          ]
        ),
        MAR = 1,
        FUN = all
      )
  )
idx.matched.control <- NULL</pre>
idx.pool <-
  which(
    data.survival$"censor_gfrfald30_p.reversed" == "eos/udvandring i profil" &
      apply(
        X = !is.na(
          data.survival[ ,
                            "Ribonic_acid",
                            "censor_gfrfald30_p.reversed",
                            names.model$"cleaned"
                          ]
        ),
        MAR = 1,
        FUN = all
      )
  )
names.matching.variables <- c( "BP_Systolic", "HbA1c", "UAER_log" )</pre>
S <-
  cov(
   x = data.survival[ idx.pool, names.matching.variables ],
    use = "pairwise.complete.obs"
  )
tmp <- idx.pool</pre>
for ( i in 1:length( idx.case ) ) {
 tmp2 <-
```

```
stats::mahalanobis(
    x = data.survival[ tmp, names.matching.variables ],
    center = unlist( data.survival[ idx.case[ i ], names.matching.variables ] ),
    cov = S,
    inverted = FALSE
)

tmp2 <- which.min( tmp2 )

idx.matched.control <- c( idx.matched.control, tmp[ tmp2 ] )

tmp <- tmp[ -tmp2 ]

}

ggplot2::qplot(
    x = data.survival[ idx.case, "BP_Systolic"],
    y = data.survival[ idx.matched.control, "BP_Systolic"],
    color = data.survival[ idx.case, "Sex" ]
)</pre>
```



```
ggplot2::qplot(
  x = data.survival[ idx.case, "HbA1c"],
  y = data.survival[ idx.matched.control, "HbA1c" ],
  color = data.survival[ idx.case, "Sex" ]
)
```



```
ggplot2::qplot(
  x = data.survival[ idx.case, "UAER_log"],
  y = data.survival[ idx.matched.control, "UAER_log" ],
  color = data.survival[ idx.case, "Sex" ]
)
```



```
t.test(
  x = data.survival[ idx.case, "BP_Systolic" ],
  y = data.survival[ idx.matched.control, "BP_Systolic" ],
  paired = TRUE
)
##
##
   Paired t-test
##
## data: data.survival[idx.case, "BP_Systolic"] and data.survival[idx.matched.control, "BP_Systolic"]
## t = 1.9697, df = 86, p-value = 0.05209
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01150946 2.49426809
## sample estimates:
## mean of the differences
##
                  1.241379
t.test(
  x = data.survival[ idx.case, "HbA1c" ],
  y = data.survival[ idx.matched.control, "HbA1c" ],
  paired = TRUE
)
##
```

##

##

Paired t-test

```
## data: data.survival[idx.case, "HbA1c"] and data.survival[idx.matched.control, "HbA1c"]
## t = 3.5465, df = 86, p-value = 0.0006347
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.06465628 0.22959659
## sample estimates:
## mean of the differences
##
                 0.1471264
t.test(
 x = data.survival[ idx.case, "UAER_log" ],
 y = data.survival[ idx.matched.control, "UAER_log" ],
 paired = TRUE
##
## Paired t-test
##
## data: data.survival[idx.case, "UAER_log"] and data.survival[idx.matched.control, "UAER_log"]
## t = 2.6454, df = 86, p-value = 0.0097
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.04758177 0.33532528
## sample estimates:
## mean of the differences
                 0.1914535
data.survival.stratified <- data.survival[ c( idx.case, idx.matched.control ), ]</pre>
summary(
  glm(
   formula =
      censor_gfrfald30_p.reversed.numeric ~
      Ribonic_acid +
      Age +
      BMI +
      BP Systolic +
      Cholesterol +
      eGFR +
      HbA1c +
      Medication_Statins +
      Sex +
      Smoking +
      TG_total_log +
      UAER_log,
    data = data.survival.stratified
  )
)
## Call:
## glm(formula = censor_gfrfald30_p.reversed.numeric ~ Ribonic_acid +
       Age + BMI + BP_Systolic + Cholesterol + eGFR + HbA1c + Medication_Statins +
##
       Sex + Smoking + TG_total_log + UAER_log, data = data.survival.stratified)
##
## Deviance Residuals:
```

```
Median
                1Q
                                 3Q
                                        Max
## -0.8455 -0.4372
                    0.1147
                             0.4262
                                     0.8077
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                    -4.0993491 1.1131140 -3.683 0.000315 ***
## (Intercept)
## Ribonic acid
                     ## Age
                    -0.0030646 0.0037464 -0.818 0.414560
## BMI
                     0.0072583 0.0098849
                                          0.734 0.463844
## BP_Systolic
                     0.0017581 0.0022430 0.784 0.434311
## Cholesterol
                     0.0735053 0.0449518 1.635 0.103961
## eGFR
                     0.0003542 0.0015430
                                           0.230 0.818732
## HbA1c
                     ## Medication_Statins 0.1708596 0.0954080
                                          1.791 0.075199 .
                    -0.0138969 0.0793396 -0.175 0.861176
## Sex
## Smoking
                    -0.0090528 0.0889141
                                          -0.102 0.919030
## TG_total_log
                    -0.0582056 0.0653695 -0.890 0.374575
## UAER_log
                    -0.0092884 0.0175963 -0.528 0.598322
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.2334169)
##
      Null deviance: 43.50 on 173 degrees of freedom
## Residual deviance: 37.58 on 161 degrees of freedom
## AIC: 255.12
##
## Number of Fisher Scoring iterations: 2
summary(
 lm(
   formula =
     Ribonic_acid ~
     censor_gfrfald30_p.reversed.numeric +
     Age +
     BMI +
     BP_Systolic +
     Cholesterol +
     eGFR +
     HbA1c +
     Medication_Statins +
     Sex +
     Smoking +
     TG_total_log +
     UAER_log,
   data = data.survival.stratified
 )
)
##
## Call:
## lm(formula = Ribonic_acid ~ censor_gfrfald30_p.reversed.numeric +
      Age + BMI + BP_Systolic + Cholesterol + eGFR + HbA1c + Medication_Statins +
##
##
      Sex + Smoking + TG_total_log + UAER_log, data = data.survival.stratified)
##
```

```
## Residuals:
##
       Min
                 1Q Median
                                  30
                                         Max
## -3.12668 -0.50130 0.06296 0.56076 1.76793
## Coefficients:
##
                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                     21.594329  0.894405  24.144  < 2e-16
                                                0.124509 4.060 7.64e-05
## censor_gfrfald30_p.reversed.numeric 0.505526
                                                         2.121
## Age
                                      0.013026 0.006142
                                                                  0.0355
                                     -0.007618 0.016413 -0.464
## BMI
                                                                  0.6432
## BP_Systolic
                                     -0.004314 0.003712 -1.162
                                                                  0.2469
## Cholesterol
                                     -0.131182
                                                0.074467 -1.762
                                                                  0.0800
## eGFR
                                    -0.014280 0.002299 -6.211 4.32e-09
## HbA1c
                                                         0.504 0.6150
                                     0.027012 0.053599
## Medication_Statins
                                    -0.332646
                                                0.157662 -2.110
                                                                  0.0364
## Sex
                                      0.038533
                                                0.131583
                                                          0.293
                                                                  0.7700
                                     0.024815
                                                0.147479
                                                         0.168
## Smoking
                                                                  0.8666
## TG_total_log
                                      0.166543
                                                0.107903
                                                         1.543 0.1247
## UAER_log
                                      0.012077 0.029198 0.414 0.6797
## (Intercept)
## censor_gfrfald30_p.reversed.numeric ***
## Age
## BMI
## BP Systolic
## Cholesterol
## eGFR
                                     ***
## HbA1c
## Medication_Statins
## Sex
## Smoking
## TG_total_log
## UAER_log
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8014 on 161 degrees of freedom
## Multiple R-squared: 0.3672, Adjusted R-squared: 0.3201
## F-statistic: 7.787 on 12 and 161 DF, p-value: 2.516e-11
```

4.1.2.1 Survival Model with Details

```
model.survival <-
survival::coxph(
  formula =
    survival::Surv(
     time = t_gfrfald30_p,
     event = censor_gfrfald30_p.reversed.numeric
    )
    Ribonic_acid +
    Age +
    BMI +
    BP_Systolic +</pre>
```

```
Cholesterol +
     eGFR +
     HbA1c +
     Medication Statins +
     Sex +
     Smoking +
     TG_total_log +
     UAER_log,
   data = data.survival.stratified
 )
print( summary( model.survival ) )
## Call:
## survival::coxph(formula = survival::Surv(time = t_gfrfald30_p,
      event = censor_gfrfald30_p.reversed.numeric) ~ Ribonic_acid +
      Age + BMI + BP_Systolic + Cholesterol + eGFR + HbA1c + Medication_Statins +
##
      Sex + Smoking + TG_total_log + UAER_log, data = data.survival.stratified)
##
##
    n= 174, number of events= 87
##
##
                          coef exp(coef) se(coef)
                                                        z Pr(>|z|)
## Ribonic_acid
                      0.647424 1.910612 0.139489 4.641 3.46e-06 ***
                     -0.022737 0.977520 0.012590 -1.806
                                                            0.0709
## Age
## BMI
                      0.017895 1.018056 0.030824 0.581
                                                            0.5615
                                1.012342 0.006593 1.861
## BP_Systolic
                      0.012267
                                                            0.0628
## Cholesterol
                      0.302785 1.353623 0.141856 2.134
                                                            0.0328 *
## eGFR
                     -0.005625 0.994390 0.004827 -1.165
                                                            0.2439
## HbA1c
                      0.092383 1.096785 0.090216 1.024
                                                            0.3058
## Medication_Statins 0.739185 2.094229
                                          0.306796 2.409
                                                            0.0160 *
## Sex
                      0.074701 1.077561 0.237519 0.315
                                                            0.7531
## Smoking
                      0.340014 1.404967 0.267334 1.272
                                                            0.2034
## TG_total_log
                     -0.245832 0.782054 0.166331 -1.478
                                                            0.1394
## UAER log
                      0.071898 1.074546 0.049898 1.441
                                                            0.1496
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
                     exp(coef) exp(-coef) lower .95 upper .95
## Ribonic acid
                        1.9106
                                   0.5234
                                             1.4536
                                                        2.511
                        0.9775
                                   1.0230
                                             0.9537
                                                        1.002
## Age
## BMI
                        1.0181
                                   0.9823
                                             0.9584
                                                        1.081
## BP_Systolic
                                                        1.026
                        1.0123
                                   0.9878
                                             0.9993
## Cholesterol
                        1.3536
                                   0.7388
                                           1.0251
                                                        1.787
## eGFR
                        0.9944
                                   1.0056
                                             0.9850
                                                        1.004
## HbA1c
                        1.0968
                                   0.9118
                                             0.9190
                                                        1.309
## Medication_Statins
                        2.0942
                                   0.4775
                                             1.1478
                                                        3.821
## Sex
                        1.0776
                                   0.9280
                                             0.6765
                                                        1.716
                        1.4050
                                   0.7118
                                                        2.373
## Smoking
                                             0.8320
## TG_total_log
                        0.7821
                                   1.2787
                                             0.5645
                                                        1.083
## UAER log
                        1.0745
                                   0.9306
                                             0.9744
                                                        1.185
##
## Concordance= 0.692 (se = 0.034)
## Rsquare= 0.229
                   (max possible= 0.988 )
## Likelihood ratio test= 45.2 on 12 df,
                                           p=9.511e-06
```

```
## Wald test = 40.35 on 12 df, p=6.3e-05 ## Score (logrank) test = 41.67 on 12 df, p=3.786e-05
```

4.1.2.1.1 Forest Plot with Clinical Variables

```
forest.RA <-
  survminer::ggforest(
  model = model.survival,
  main = "Hazard Ratios for eGFR decline > 30 %"
)
```

Hazard Ratios for eGFR decline > 30 %

print(forest.RA)

4.1.2.1.2 Diagnostics of the Survival Model

```
survminer::ggsurvplot(
  fit = survival::survfit( formula = model.survival ),
  data = data.survival.stratified
)
```



```
survminer::ggcoxdiagnostics(
  fit = model.survival,
  type = "schoenfeld",
  ox.scale = "time"
)
```


4.1.2.1.3 Kaplan-Maier Curve with Median Cutpoint

```
data.km <- data.survival.stratified</pre>
data.km$"Ribonic_acid" <-</pre>
  cut(
    x = data.km$"Ribonic_acid",
   breaks = c( -Inf, median( x = data.km$"Ribonic_acid", na.rm = TRUE ), Inf ),
    labels = c( " <50\%", " >50\%" )
  )
data.km$"Ribonic_acid" <- relevel( x = data.km$"Ribonic_acid", ref = " >50%" )
model.km <-
  survival::survfit(
    survival::Surv(
      time = t_gfrfald30_p,
      event = censor_gfrfald30_p.reversed.numeric
      Ribonic_acid,
    data = data.km
plot <-
  survminer::ggsurvplot(
   fit = model.km,
    data = data.km,
    ggtheme = ggplot2::theme_minimal(),
    palette = "Set1",
   risk.table = TRUE,
   cumevents = TRUE,
    pval = FALSE,
    risk.table.height = 0.15,
    cumevents.height = 0.15,
    conf.int = TRUE
  )
plot$"table" <- plot$"table" + survminer::theme_cleantable()</pre>
plot$"cumevents" <- plot$"cumevents" + survminer::theme_cleantable()</pre>
km.RA <- plot
print( plot )
```


4.1.2.1.4 Boxplots

```
data.plot <- data.survival.stratified</pre>
data.plot$"Outcome" <-</pre>
 factor(
   x = data.plot$"censor_gfrfald30_p",
   levels = c( "2", "0" ),
   labels = c( "Censored", "eGFR Decline (> 30 %)" )
  )
ggplot2::ggplot(
  data = data.plot,
  mapping =
   ggplot2::aes(
     x = Outcome,
     y = Ribonic_acid
    )
) +
  ggplot2::geom_violin( draw_quantiles = c( 0.25, 0.50, 0.75 ) ) +
  ggplot2::geom_jitter(
   width = 0.1,
   fill = "black",
   stroke = 0,
   shape = 16,
   size = 2,
   alpha = 0.25
  ) +
  ggplot2::ylab( label = "Ribonic Acid" ) +
  ggplot2::xlab( label = "Outcome" )
```



```
data.plot$"Gender" <-</pre>
  factor(
    x = data.plot$"Sex",
    levels = c(0, 1),
    labels = c( "Female", "Male" )
  )
data.plot$"Outcome.and.Gender" <-</pre>
  base::interaction( data.plot$"Outcome", data.plot$"Gender" )
levels( data.plot$"Outcome.and.Gender" ) <-</pre>
  stringr::str_replace(
    string = levels( data.plot$"Outcome.and.Gender" ),
    pattern = "\\.",
    replacement = "\n"
  )
ggplot2::ggplot(
  data = data.plot,
  mapping =
    ggplot2::aes(
      x = Outcome.and.Gender,
      y = Ribonic_acid,
      size = Age,
      color = Gender
```

```
ggplot2::geom_violin( draw_quantiles = c( 0.25, 0.50, 0.75 ) ) +
ggplot2::geom_jitter(
   width = 0.1,
   stroke = 0,
   shape = 16,
   alpha = 0.25
) +
ggplot2::scale_color_brewer( palette = "Dark2", direction = -1 ) +
ggplot2::ylab( label = "Ribonic Acid" ) +
ggplot2::xlab( label = "Outcome by Gender" ) +
ggplot2::theme( legend.position = "top" )
```


4.2 Step 4.2: Second Top-Metabolite in Relation to eGFR Decline (> 30 %)

4.2.1 Step 4.2A: Analysis of Full Cohort

4.2.1.1 Survival Model with Details

```
names.model <-
  data.frame(
    original =
      c(
        "Age",
        "bmi",
        "CALSBP",
        "Total_cholesterol",
        "egfr",
        "Hba1c_baseline",
        "Statin",
        "Gender",
        "Smoking",
        "log_Blood_TGA",
        "logUAER"
      ),
    cleaned =
      c(
        "Age",
        "BMI",
        "BP_Systolic",
        "Cholesterol",
        "eGFR",
        "HbA1c",
        "Medication_Statins",
        "Sex",
        "Smoking",
        "TG_total_log",
        "UAER_log"
      ),
    stringsAsFactors = FALSE
names.model.cleaned <- names.model</pre>
data.survival <-
  data.frame(
    data,
    stringsAsFactors = FALSE,
    check.names = TRUE
data.survival <-
  data.survival[ ,
                    names.model$original,
                    colnames( data.follow.up )[ colnames( data.follow.up ) != "id_profil" ],
                    "Myo.inositol.6TMS..1"
```

```
names.model$"cleaned"
colnames( data.survival ) <- make.names( names = colnames( data.survival ) )</pre>
data.survival$"censor_gfrfald30_p.reversed" <-</pre>
 factor(
   x = as.character( data.survival$"censor_gfrfald30_p" ),
   levels = c(2, 0),
   labels = c( "eos/udvandring i profil" , "event" )
 )
data.survival$"censor_gfrfald30_p.reversed.numeric" <-</pre>
 as.numeric( data.survival$"censor_gfrfald30_p.reversed" ) - 1
colnames( data.survival )[ colnames( data.survival ) == "Myo.inositol.6TMS..1" ] <-</pre>
 "Myo_Inositol"
model.survival <-
 survival::coxph(
   formula =
     survival::Surv(
       time = t_gfrfald30_p,
       event = censor_gfrfald30_p.reversed.numeric
     Myo_Inositol +
     Age +
     BMI +
     BP_Systolic +
     Cholesterol +
     eGFR +
     HbA1c +
     Medication_Statins +
     Sex +
     Smoking +
     TG_total_log +
     UAER_log,
   data = data.survival
 )
print( summary( model.survival ) )
## Call:
## survival::coxph(formula = survival::Surv(time = t_gfrfald30_p,
      event = censor_gfrfald30_p.reversed.numeric) ~ Myo_Inositol +
##
      Age + BMI + BP_Systolic + Cholesterol + eGFR + HbA1c + Medication_Statins +
##
      Sex + Smoking + TG_total_log + UAER_log, data = data.survival)
##
    n= 586, number of events= 87
##
##
     (51 observations deleted due to missingness)
##
```

```
##
                         coef exp(coef) se(coef)
                                                     z Pr(>|z|)
## Myo_Inositol
                    0.979015 2.661832 0.249455 3.925 8.69e-05 ***
                    ## Age
## BMI
                    -0.002433 0.997570 0.028700 -0.085 0.932436
## BP_Systolic
                     0.022613 1.022870 0.006742 3.354 0.000796 ***
## Cholesterol
                     0.088395 1.092420 0.125917 0.702 0.482674
                    -0.010354 0.989699 0.005316 -1.948 0.051459 .
## eGFR
## HbA1c
                     0.358775 1.431575 0.087124 4.118 3.82e-05 ***
## Medication_Statins 0.523254 1.687511 0.310927 1.683 0.092398 .
## Sex
                    0.182704
                              1.200459 0.235690 0.775 0.438229
## Smoking
                     0.417360 1.517950 0.258445 1.615 0.106335
## TG_total_log
                              -0.088135
## UAER_log
                     0.237250 1.267759 0.049452 4.798 1.61e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
                    exp(coef) exp(-coef) lower .95 upper .95
## Myo_Inositol
                       2.6618
                                 0.3757
                                          1.6325
                       0.9896
                                 1.0105
                                          0.9657
                                                     1.014
## Age
## BMI
                       0.9976
                                 1.0024
                                          0.9430
                                                     1.055
## BP_Systolic
                       1.0229
                                 0.9776
                                          1.0094
                                                     1.036
## Cholesterol
                       1.0924
                                 0.9154
                                          0.8535
                                                     1.398
## eGFR
                       0.9897
                                 1.0104
                                          0.9794
                                                     1.000
## HbA1c
                                          1.2069
                       1.4316
                                 0.6985
                                                     1.698
## Medication_Statins
                      1.6875
                                 0.5926
                                          0.9175
                                                     3.104
## Sex
                       1.2005
                                 0.8330
                                          0.7564
                                                     1.905
## Smoking
                                 0.6588
                                          0.9147
                                                     2.519
                       1.5179
## TG_total_log
                       0.9156
                                 1.0921
                                          0.6647
                                                     1.261
## UAER_log
                       1.2678
                                          1.1506
                                 0.7888
                                                     1.397
##
## Concordance= 0.847 (se = 0.032)
## Rsquare= 0.232
                  (max possible= 0.828 )
## Likelihood ratio test= 154.8 on 12 df,
                                         p=0
## Wald test
                      = 152.3 on 12 df,
                                         p=0
## Score (logrank) test = 189.5 on 12 df,
                                         p=0
```

4.2.1.1.1 Forest Plot with Clinical Variables

```
forest.MyoI <-
   survminer::ggforest(
   model = model.survival,
   main = "Hazard Ratios for eFRR decline (> 30 %)"
)
```

Hazard Ratios for eFRR decline (> 30 %)

print(forest.MyoI)

4.2.1.1.2 Diagnostics of the Survival Model

```
survminer::ggsurvplot(
  fit = survival::survfit( formula = model.survival ),
  data = data.survival
)
```



```
survminer::ggcoxdiagnostics(
  fit = model.survival,
  type = "schoenfeld",
  ox.scale = "time"
)
```


4.2.1.1.3 Kaplan-Maier Curve with Median Cutpoint

```
data.km <- data.survival</pre>
data.km$"Myo_Inositol" <-</pre>
  cut(
    x = data.km$"Myo_Inositol",
   breaks = c( -Inf, median( x = data.km$"Myo_Inositol", na.rm = TRUE ), Inf ),
    labels = c( " <50\%", " >50\%" )
  )
data.km$"Myo_Inositol" <- relevel( x = data.km$"Myo_Inositol", ref = " >50%" )
model.km <-
  survival::survfit(
    survival::Surv(
     time = t_gfrfald30_p,
      event = censor_gfrfald30_p.reversed.numeric
      Myo_Inositol,
    data = data.km
plot <-
  survminer::ggsurvplot(
   fit = model.km,
    data = data.km,
    ggtheme = ggplot2::theme_minimal(),
    palette = "Set1",
   risk.table = TRUE,
   cumevents = TRUE,
    pval = FALSE,
    risk.table.height = 0.15,
    cumevents.height = 0.15,
    conf.int = TRUE
  )
plot$"table" <- plot$"table" + survminer::theme_cleantable()</pre>
plot$"cumevents" <- plot$"cumevents" + survminer::theme_cleantable()</pre>
print( plot )
```


plot.km.Myo.Inositsol <- plot</pre>

4.2.1.2 Other Model Fits

```
model.km <-
  survival::coxph(
   survival::Surv(
    time = t_gfrfald30_p,
     event = censor_gfrfald30_p.reversed.numeric
     Myo_Inositol,
   data = data.km
print( summary( model.km ) )
## Call:
## survival::coxph(formula = survival::Surv(time = t_gfrfald30_p,
      event = censor_gfrfald30_p.reversed.numeric) ~ Myo_Inositol,
##
      data = data.km)
##
   n= 637, number of events= 91
##
##
                      coef exp(coef) se(coef)
##
                                             z Pr(>|z|)
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
                   exp(coef) exp(-coef) lower .95 upper .95
##
## Myo_Inositol <50%
                     0.2607
                                 3.836
                                        0.1612
##
## Concordance= 0.653 (se = 0.027)
## Rsquare= 0.054 (max possible= 0.82)
## Likelihood ratio test= 35.66 on 1 df, p=2.352e-09
            = 30 \text{ on } 1 \text{ df}, p=4.324e-08
## Wald test
## Score (logrank) test = 34.72 on 1 df, p=3.811e-09
summary(
 glm(
   formula =
     censor_gfrfald30_p.reversed.numeric ~
     Myo_Inositol +
     Age +
     BMI +
     BP Systolic +
     Cholesterol +
     eGFR +
     HbA1c +
     Medication_Statins +
     Sex +
     Smoking +
     TG_total_log +
     UAER_log,
   data = data.survival
  )
```

```
## Call:
## glm(formula = censor_gfrfald30_p.reversed.numeric ~ Myo_Inositol +
      Age + BMI + BP_Systolic + Cholesterol + eGFR + HbA1c + Medication_Statins +
##
      Sex + Smoking + TG_total_log + UAER_log, data = data.survival)
##
## Deviance Residuals:
##
       Min
                  1Q
                        Median
                                     3Q
                                              Max
## -0.64186 -0.17645 -0.07273
                               0.03479
                                          1.01620
##
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                     -2.4903314 0.5778984 -4.309 1.93e-05 ***
## Myo_Inositol
                     -0.0015975 0.0012690 -1.259 0.208611
## Age
## BMI
                     -0.0003500 0.0035255 -0.099 0.920953
## BP_Systolic
                     0.0021111 0.0008320 2.538 0.011426 *
## Cholesterol
                      0.0111586 0.0165547 0.674 0.500557
                     -0.0009119 0.0006131 -1.487 0.137493
## eGFR
## HbA1c
                      0.0459983 0.0126206
                                           3.645 0.000292 ***
## Medication_Statins 0.0289055 0.0312215 0.926 0.354929
                      0.0051173 0.0282786 0.181 0.856464
                      0.0091989 0.0336190 0.274 0.784474
## Smoking
## TG total log
                      0.0076032 0.0223770 0.340 0.734150
## UAER_log
                      0.0356352  0.0069800  5.105  4.50e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 0.1027996)
##
##
      Null deviance: 74.084 on 585 degrees of freedom
## Residual deviance: 58.904 on 573 degrees of freedom
    (51 observations deleted due to missingness)
## AIC: 344.71
## Number of Fisher Scoring iterations: 2
summary(
 lm(
   formula =
     Myo Inositol ~
     censor_gfrfald30_p.reversed.numeric +
     Age +
     BMI +
     BP Systolic +
     Cholesterol +
     eGFR +
     HbA1c +
     Medication_Statins +
     Sex +
     Smoking +
     TG_total_log +
     UAER_log,
   data = data.survival
```

##

```
##
## Call:
## lm(formula = Myo_Inositol ~ censor_gfrfald30_p.reversed.numeric +
##
      Age + BMI + BP_Systolic + Cholesterol + eGFR + HbA1c + Medication_Statins +
##
      Sex + Smoking + TG_total_log + UAER_log, data = data.survival)
##
## Residuals:
##
       Min
                 1Q
                    Median
                                  30
## -2.01490 -0.28018 -0.00498 0.25886 1.88430
## Coefficients:
                                       Estimate Std. Error t value Pr(>|t|)
##
                                     19.7966675 0.2783172 71.130 < 2e-16
## (Intercept)
## censor_gfrfald30_p.reversed.numeric 0.2222437 0.0613826
                                                           3.621 0.00032
                                      0.0041051 0.0018806
                                                            2.183 0.02945
## BMI
                                     -0.0048505 0.0052352 -0.927
                                                                   0.35457
## BP_Systolic
                                     -0.0001693 0.0012432 -0.136 0.89175
## Cholesterol
                                     ## eGFR
                                     -0.0087509 0.0008365 -10.462
                                                                   < 2e-16
## HbA1c
                                      0.0102942 0.0189661
                                                            0.543
                                                                   0.58750
## Medication_Statins
                                     -0.0215989 0.0464228 -0.465 0.64192
## Sex
                                     -0.0621546 0.0419444 -1.482 0.13893
                                     -0.0636181 0.0498921 -1.275 0.20279
## Smoking
## TG_total_log
                                      0.0478027 0.0331968
                                                          1.440 0.15042
## UAER log
                                      0.0036953 0.0106048 0.348 0.72763
##
## (Intercept)
## censor_gfrfald30_p.reversed.numeric ***
## Age
## BMI
## BP_Systolic
## Cholesterol
## eGFR
## HbA1c
## Medication_Statins
## Sex
## Smoking
## TG_total_log
## UAER_log
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4765 on 573 degrees of freedom
    (51 observations deleted due to missingness)
## Multiple R-squared: 0.2976, Adjusted R-squared: 0.2829
## F-statistic: 20.24 on 12 and 573 DF, p-value: < 2.2e-16
```

4.2.2 Step 4.1B: Analysis of a Blood Pressure, HbA1c and logUAER-Matched Subcohort

```
idx.case <-
  which(
    data.survival$"censor_gfrfald30_p.reversed" == "event" &
      apply(
        X =
          !is.na(
             data.survival[ ,
                               "Myo_Inositol",
                               "censor_gfrfald30_p.reversed",
                               names.model$"cleaned"
                            ]
          ),
        MAR = 1,
        FUN = all
      )
  )
idx.matched.control <- NULL</pre>
idx.pool <-</pre>
  which(
    data.survival$"censor_gfrfald30_p.reversed" == "eos/udvandring i profil" &
      apply(
        X =
           !is.na(
             data.survival[ ,
                               "Myo_Inositol",
                               "censor_gfrfald30_p.reversed",
                               names.model$"cleaned"
                            ]
          ),
        MAR = 1,
        FUN = all
      )
  )
names.matching.variables <- c( "BP_Systolic", "HbA1c", "UAER_log" )</pre>
S <-
  cov(
    x = data.survival[ idx.pool, names.matching.variables ],
    use = "pairwise.complete.obs"
  )
tmp <- idx.pool</pre>
for ( i in 1:length( idx.case ) ) {
```

```
tmp2 <-
    stats::mahalanobis(
      x = data.survival[ tmp, names.matching.variables ],
      center = unlist( data.survival[ idx.case[ i ], names.matching.variables ] ),
      cov = S,
      inverted = FALSE
    )
  tmp2 <- which.min( tmp2 )</pre>
  idx.matched.control <- c( idx.matched.control, tmp[ tmp2 ] )</pre>
  tmp <- tmp[ -tmp2 ]</pre>
}
ggplot2::qplot(
  x = data.survival[ idx.case, "BP_Systolic"],
  y = data.survival[ idx.matched.control, "BP_Systolic" ],
  color = data.survival[ idx.case, "Sex" ]
)
```



```
ggplot2::qplot(
  x = data.survival[ idx.case, "HbA1c"],
  y = data.survival[ idx.matched.control, "HbA1c" ],
  color = data.survival[ idx.case, "Sex" ]
```



```
t.test(
  x = data.survival[ idx.case, "BP_Systolic" ],
  y = data.survival[ idx.matched.control, "BP_Systolic" ],
  paired = TRUE
)
##
##
   Paired t-test
##
## data: data.survival[idx.case, "BP_Systolic"] and data.survival[idx.matched.control, "BP_Systolic"]
## t = 1.9697, df = 86, p-value = 0.05209
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01150946 2.49426809
## sample estimates:
## mean of the differences
##
                  1.241379
t.test(
  x = data.survival[ idx.case, "HbA1c" ],
  y = data.survival[ idx.matched.control, "HbA1c" ],
  paired = TRUE
)
##
```

##

##

Paired t-test

```
## data: data.survival[idx.case, "HbA1c"] and data.survival[idx.matched.control, "HbA1c"]
## t = 3.5465, df = 86, p-value = 0.0006347
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.06465628 0.22959659
## sample estimates:
## mean of the differences
##
                 0.1471264
t.test(
 x = data.survival[ idx.case, "UAER_log" ],
 y = data.survival[ idx.matched.control, "UAER_log" ],
 paired = TRUE
##
## Paired t-test
##
## data: data.survival[idx.case, "UAER_log"] and data.survival[idx.matched.control, "UAER_log"]
## t = 2.6454, df = 86, p-value = 0.0097
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.04758177 0.33532528
## sample estimates:
## mean of the differences
                 0.1914535
data.survival.stratified <-
  data.survival[ c( idx.case, idx.matched.control ), ]
summary(
 glm(
   formula =
      censor_gfrfald30_p.reversed.numeric ~
      Myo_Inositol +
      Age +
      BMI +
      BP_Systolic +
      Cholesterol +
      eGFR. +
      HbA1c +
      Medication_Statins +
      Sex +
      Smoking +
      TG_total_log +
      UAER_log,
   data = data.survival.stratified
  )
)
##
## Call:
## glm(formula = censor_gfrfald30_p.reversed.numeric ~ Myo_Inositol +
##
       Age + BMI + BP_Systolic + Cholesterol + eGFR + HbA1c + Medication_Statins +
##
       Sex + Smoking + TG_total_log + UAER_log, data = data.survival.stratified)
##
```

```
## Deviance Residuals:
##
      Min 1Q Median
                                 30
                                         Max
## -0.8055 -0.4603 0.0940 0.4648
                                      0.7881
##
## Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
##
                    -5.7226697 1.6058638 -3.564 0.000482 ***
## (Intercept)
                    0.2886231 0.0781982 3.691 0.000305 ***
## Myo_Inositol
## Age
                    -0.0022160 0.0037539 -0.590 0.555813
## BMI
                     0.0055595 0.0099665 0.558 0.577746
## BP_Systolic
                     0.0012697 0.0022555 0.563 0.574266
## Cholesterol
                     0.0558232 0.0450728
                                          1.239 0.217329
## eGFR
                     0.0007326 0.0016386 0.447 0.655412
## HbA1c
                     0.0132720 0.0328348 0.404 0.686598
## Medication_Statins 0.1293175 0.0954127
                                           1.355 0.177205
## Sex
                     -0.0012794 0.0799892 -0.016 0.987258
## Smoking
                    0.0061972 0.0896848 0.069 0.944996
## TG_total_log
                    -0.0387143 0.0655796 -0.590 0.555790
                    ## UAER_log
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 0.2372424)
##
##
      Null deviance: 43.500 on 173 degrees of freedom
## Residual deviance: 38.196 on 161 degrees of freedom
## AIC: 257.95
## Number of Fisher Scoring iterations: 2
summary(
 lm(
   formula =
     Myo_Inositol ~
     censor_gfrfald30_p.reversed.numeric +
     Age +
     BMI +
     BP_Systolic +
     Cholesterol +
     eGFR +
     HbA1c +
     Medication_Statins +
     Sex +
     Smoking +
     TG_total_log +
     UAER_log,
   data = data.survival.stratified
 )
)
##
## Call:
## lm(formula = Myo_Inositol ~ censor_gfrfald30_p.reversed.numeric +
##
      Age + BMI + BP_Systolic + Cholesterol + eGFR + HbA1c + Medication_Statins +
##
      Sex + Smoking + TG_total_log + UAER_log, data = data.survival.stratified)
```

```
##
## Residuals:
      Min
              1Q Median
## -1.8629 -0.2757 -0.0401 0.2915 1.3326
## Coefficients:
                                    Estimate Std. Error t value Pr(>|t|)
                                   19.363219  0.526059  36.808  < 2e-16
## (Intercept)
## censor_gfrfald30_p.reversed.numeric 0.270294
                                              0.073232 3.691 0.000305
                                    0.005314 0.003612 1.471 0.143248
## Age
## BMI
                                    0.001369 0.009654 0.142 0.887393
## BP_Systolic
                                              0.002183 -0.458 0.647883
                                   -0.000999
## Cholesterol
                                   ## eGFR
                                              0.001352 -7.787 7.92e-13
                                   -0.010530
## HbA1c
                                   0.052056
                                              0.031525
                                                       1.651 0.100640
## Medication_Statins
                                   -0.061589
                                              0.092732 -0.664 0.507533
## Sex
                                              0.077392 -0.253 0.800651
                                   -0.019574
## Smoking
                                   -0.037295 0.086742 -0.430 0.667801
## TG_total_log
                                   0.036917
                                              0.063465
                                                       0.582 0.561594
                                   ## UAER_log
##
## (Intercept)
## censor_gfrfald30_p.reversed.numeric ***
## Age
## BMI
## BP_Systolic
## Cholesterol
## eGFR
                                   ***
## HbA1c
## Medication_Statins
## Sex
## Smoking
## TG_total_log
## UAER_log
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4714 on 161 degrees of freedom
## Multiple R-squared: 0.4139, Adjusted R-squared: 0.3702
## F-statistic: 9.476 on 12 and 161 DF, p-value: 9.388e-14
```

4.2.2.1 Survival Model with Details

```
model.survival <-
 survival::coxph(
   formula =
     survival::Surv(
       time = t_gfrfald30_p,
       event = censor_gfrfald30_p.reversed.numeric
     Myo_Inositol +
     Age +
     BMI +
     BP_Systolic +
     Cholesterol +
     eGFR +
     HbA1c +
     Medication_Statins +
     Sex +
     Smoking +
     TG_total_log +
     UAER log,
   data = data.survival.stratified
 )
print( summary( model.survival ) )
## Call:
## survival::coxph(formula = survival::Surv(time = t_gfrfald30_p,
      event = censor_gfrfald30_p.reversed.numeric) ~ Myo_Inositol +
##
##
      Age + BMI + BP_Systolic + Cholesterol + eGFR + HbA1c + Medication_Statins +
##
      Sex + Smoking + TG_total_log + UAER_log, data = data.survival.stratified)
##
##
    n= 174, number of events= 87
##
##
                          coef exp(coef) se(coef)
                                                       z Pr(>|z|)
## Myo_Inositol
                      0.974990 2.651140 0.248029 3.931 8.46e-05 ***
                     -0.015145 0.984969 0.012083 -1.253
## Age
                                                           0.210
## BMI
                      0.023558 1.023837 0.031015 0.760
                                                           0.448
## BP Systolic
                     0.008866 1.008905 0.006846 1.295
                                                         0.195
## Cholesterol
                     0.192384 1.212136 0.135369 1.421
                                                         0.155
## eGFR
                     -0.004974 0.995038 0.005090 -0.977
                                                          0.328
                      0.064293 1.066405 0.090056 0.714 0.475
## HbA1c
## Medication_Statins 0.442379 1.556406 0.298951 1.480
                                                        0.139
                     0.051528 1.052879 0.236473 0.218
                                                         0.828
## Sex
## Smoking
                     0.329798 1.390687 0.264734 1.246
                                                           0.213
## TG_total_log
                   -0.217046 0.804893 0.173527 -1.251
                                                         0.211
## UAER_log
                     0.073467 1.076233 0.050074 1.467 0.142
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
                     exp(coef) exp(-coef) lower .95 upper .95
## Myo_Inositol
                        2.6511
                                  0.3772
                                            1.6305
                                                       4.311
## Age
                        0.9850
                                  1.0153
                                            0.9619
                                                       1.009
## BMI
                        1.0238
                                  0.9767
                                          0.9635
                                                      1.088
```

```
## BP_Systolic
                       1.0089
                                  0.9912
                                            0.9955
                                                       1.023
## Cholesterol
                                            0.9297
                       1.2121
                                  0.8250
                                                       1.580
## eGFR
                                  1.0050
                                            0.9852
                                                       1.005
                        0.9950
## HbA1c
                        1.0664
                                  0.9377
                                            0.8939
                                                       1.272
## Medication_Statins
                        1.5564
                                  0.6425
                                            0.8663
                                                       2.796
## Sex
                        1.0529
                                  0.9498
                                            0.6624
                                                       1.674
## Smoking
                        1.3907
                                  0.7191
                                            0.8277
                                                       2.337
## TG_total_log
                        0.8049
                                  1.2424
                                            0.5728
                                                       1.131
## UAER_log
                        1.0762
                                  0.9292
                                            0.9756
                                                       1.187
##
## Concordance= 0.67 (se = 0.034)
## Rsquare= 0.197 (max possible= 0.988)
## Likelihood ratio test= 38.1 on 12 df,
                                          p=0.0001481
## Wald test
                       = 35.21 on 12 df, p=0.0004341
## Score (logrank) test = 36.58 on 12 df,
                                           p=0.0002617
```

4.2.2.1.1 Forest Plot with Clinical Variables

```
forest.RA <-
  survminer::ggforest(
  model = model.survival,
  main = "Hazard Ratios for eGFR decline (> 30 %)"
)
```

Hazard Ratios for eGFR decline (> 30 %)

print(forest.RA)

4.2.2.1.2 Diagnostics of the Survival Model

```
survminer::ggsurvplot(
  fit = survival::survfit( formula = model.survival ),
  data = data.survival.stratified
)
```



```
survminer::ggcoxdiagnostics(
  fit = model.survival,
  type = "schoenfeld",
  ox.scale = "time"
)
```


4.2.2.1.3 Kaplan-Maier Curve with Median Cutpoint

```
data.km <- data.survival.stratified</pre>
data.km$"Myo_Inositol" <-</pre>
  cut(
    x = data.km$"Myo_Inositol",
    breaks = c( -Inf, median( x = data.km$"Myo_Inositol", na.rm = TRUE ), Inf ),
    labels = c( " <50\%", " >50\%" )
  )
data.km$"Myo_Inositol" <- relevel( x = data.km$"Myo_Inositol", ref = " >50%" )
model.km <-
  survival::survfit(
    survival::Surv(
     time = t_gfrfald30_p,
      event = censor_gfrfald30_p.reversed.numeric
      Myo_Inositol,
    data = data.km
plot <-
  survminer::ggsurvplot(
   fit = model.km,
    data = data.km,
    ggtheme = ggplot2::theme_minimal(),
    palette = "Set1",
   risk.table = TRUE,
   cumevents = TRUE,
    pval = FALSE,
    risk.table.height = 0.15,
    cumevents.height = 0.15,
    conf.int = TRUE
  )
plot$"table" <- plot$"table" + survminer::theme_cleantable()</pre>
plot$"cumevents" <- plot$"cumevents" + survminer::theme_cleantable()</pre>
km.RA <- plot
print( plot )
```


4.2.2.1.4 Boxplots

```
data.plot <- data.survival.stratified</pre>
data.plot$"Outcome" <-</pre>
 factor(
   x = data.plot$"censor_gfrfald30_p",
   levels = c( "2", "0" ),
   labels = c( "Censored", "eGFR Decline (> 30 %)" )
  )
ggplot2::ggplot(
  data = data.plot,
  mapping = ggplot2::aes(
   x = Outcome,
   y = Myo_Inositol
    )
  ) +
  ggplot2::geom_violin( draw_quantiles = c( 0.25, 0.50, 0.75 ) ) +
  ggplot2::geom_jitter(
   width = 0.1,
   fill = "black",
   stroke = 0,
   shape = 16,
   size = 2,
   alpha = 0.25
  ) +
  ggplot2::ylab( label="Myo-Inositol" ) +
  ggplot2::xlab( label="Outcome" )
```



```
data.plot$"Gender" <-</pre>
  factor(
    x = data.plot$"Sex",
    levels = c(0, 1),
    labels = c( "Female", "Male" )
  )
data.plot$"Outcome.and.Gender" <-</pre>
  base::interaction( data.plot$"Outcome", data.plot$"Gender" )
levels( data.plot$"Outcome.and.Gender" ) <-</pre>
  stringr::str_replace(
    string = levels( data.plot$"Outcome.and.Gender" ),
    pattern = "\\.",
    replacement = "\n"
  )
ggplot2::ggplot(
  data = data.plot,
  mapping = ggplot2::aes(
    x = Outcome.and.Gender,
    y = Myo_Inositol,
    size = Age,
    color = Gender
  )
) +
```

```
ggplot2::geom_violin( draw_quantiles = c( 0.25, 0.50, 0.75 ) ) +
ggplot2::geom_jitter(
  width = 0.1,
  stroke = 0,
  shape = 16,
  alpha = 0.25
) +
ggplot2::scale_color_brewer( palette = "Dark2", direction = -1 ) +
ggplot2::ylab( label = "Myo-Inositol" ) +
ggplot2::xlab( label = "Outcome by Gender" ) +
ggplot2::theme( legend.position = "top" )
```

