

HLK-LD2410B 人体存在感应模组 串口通信协议

版本: V1.06 修改日期: 2023-2-21 版权所有@深圳市海凌科电子有限公司

目 录

1	通信接口简介	
	1.1 引脚定义	4
	1.2 使用和配置	4
	1.2.1 典型应用电路	4
	1.2.2 配置参数的作用	5
	1.2.3 可视化配置工具说明	6
2	通信协议	7
	2.1 协议格式	7
	2.1.1 协议数据格式	7
	2.1.2 命令协议帧格式	7
	2.2 发送命令与ACK	8
	2.2.1 使能配置命令	3
	2.2.2 结束配置命令	8
	2.2.3 最大距离门与无人持续时间参数配置命令	8
	2.2.4 读取参数命令	S
	2.2.5 使能工程模式命令	10
	2.2.6 关闭工程模式命令	10
	2.2.7 距离门灵敏度配置命令	10
	2.2.8 读取固件版本命令	11
	2.2.9 设置串口波特率	12
	2.2.10 恢复出厂设置	12
	2.2.11 重启模块	13
	2.2.12 蓝牙设置	13
	2.2.13 获取mac地址	14
	2.2.14 获取蓝牙权限	14
	2.2.15 设置蓝牙密码	15
	2.2.16 距离分辨率设置	15
	2.2.17 查询距离分辨率设置	16
	2.2.18 辅助控制功能设置	16
	2.2.19 查询辅助控制功能配置	17
	2.3 雷达数据输出协议	18
	2.3.1 上报数据帧格式	18
	2.3.2 目标数据组成	18
	2.4 雷达命令配置方式	20
	2.4.1 雷达命令配置步骤	20
3	修订记录	21
4	· 技术支持和联络方式	21

图表索引

表	1	引脚定义表	4
表	2	发送命令协议帧格式	
表	3	发送帧内数据格式	
表	4	ACK命令协议帧格式	
表	5	ACK帧内数据格式	
表	6	串口波特率选择	12
表	7	出厂默认配置值	13
表	8	距离分辨率选择	1
表	9	辅助控制功能设置的命令值	16
表	10	上报数据帧格式	18
表	11	帧内数据帧格式	18
表	12	数据类型说明	18
表	13	目标基本信息数据组成	19
表	14	目标状态值说明	19
表	15	工程模式目标数据组成	19
图	1	模块引脚定义图	4
冬	2	雷达命令配置流程	20

1 通信接口简介

1.1 引脚定义

图 1 模块引脚定义图

引脚	符号	名称	功能
1	OUT	目标状态输出	检测到有人体存在:输出高电平 无人体存在:输出低电平
2	UART_Tx	串口Tx	串口Tx引脚
3	UART_Rx	串口Rx	串口Rx引脚
4	GND	电源地	电源地
5	VCC	电源输入	供电输入 5V

表 1 引脚定义表

1.2 使用和配置

1.2.1 典型应用电路

LD2410B模组直接通过一个IO引脚输出检测到的目标状态(有人高电平,无人低电平),同时也可通过 串口按照规定的协议进行检测结果数据的输出,串口输出数据中包含有目标状态和距离辅助信息等,用户 可根据具体应用场景灵活使用。

模块供电电压5V,输入电源的供电能力要求大于200mA。

模块IO输出电平为3.3V。串口默认波特率256000, 1停止位,无奇偶校验位。

1.2.2 配置参数的作用

用户可通过LD2410B的串口给模块修改配置参数,来适应不同的应用需求。可配置的雷达探测参数包括如下几个:

最远探测距离

设置最远可探测的距离,只有在此最远距离内出现的人体目标才会被探测到并输出结果。 以距离门为单位进行设置,最大8个距离门,可配置距离分辨率(每距离门0.2m或0.75m)。 包括运动探测最远距离门和静止探测最远距离门,可设置范围为1~8,例如设置最远距离门为2, 距离分辨率为0.75m,则只有在1.5m内有人体存在才会有效探测到并输出结果。

灵敏度

探测到的目标能量值(范围0~100)大于灵敏度值时才会判定为目标存在,否则忽略。

灵敏度值可设置范围0~100。每个距离门可独立设置灵敏度,即可对不同距离范围内的探测进行精准调节,局部精准探测或对特定区域干扰源的过滤。

另外如果将某个距离门的灵敏度设置为100时,可达到不识别此距离门下目标的效果。例如将距离门3和距离门4的灵敏度设置为20,其他距离门的灵敏度都设置为100,距离分辨率为0.75m,则可实现仅对距离模块2.25~3.75m范围内的人体进行探测。

无人持续时间

雷达在输出从有人到无人的结果中,会持续一段时间上报有人,若在此时间段雷达测试范围内持续无人,雷达上报无人;若在此时间段雷达检测到有人,则重刷新此时间,单位秒。相当于无人延时时间,人离开后,保持无人超过此持续时间后才会输出状态为无人。

1.2.3 可视化配置工具说明

为便于用户快速高效的对模块进行测试和配置,提供了PC端的上位机配置工具,用户可使用此工具 软件连接模块的串口,对模块进行参数读取和配置,也可接收模块上报的探测结果数据,并进行实时的可 视化展示,极大的方便的了用户的使用。

上位机工具使用方法:

- 1.用USB转串口工具正确连接模组串口;
- 2.上位机工具中选中对应的串口号,设置波特率256000,选中工程模式,点击连接设备;
- 3.连接成功后,点击开始按钮,右侧图形界面会显示检测结果和数据;
- 4.在连接上后,未点击开始按钮时,或者开始后点击停止,可对模式参数信息进行读取或设置;

注意:点击开始后不能对参数进行读取和配置,需停止后才可进行配置。

上位机工具的界面和常用功能如下图:

圆球为目标状态输出指示:红色代表有人为运动目标,紫色代表有人为静止目标; 绿色代表无人

绿色线:设置的灵敏度 蓝色线:每个距离门上的运动目标能量值 红色线:每个距离门上的静止目标能量值

2 通信协议

本通信协议主要供需脱离可视化工具进行二次开发的用户使用。LD2410B通过串口(TTL电平)与外界通信。雷达的数据输出与参数配置命令均在本协议下进行。雷达串口默认波特率为256000, 1停止位,无奇偶校验位。

2.1 协议格式

2.1.1 协议数据格式

LD2410B的串口数据通信使用小端格式,以下表格中所有数据均为十六进制。

2.1.2 命令协议帧格式

协议定义的雷达配置命令和ACK命令格式如表1至表4所示。

表 2 发送命令协议帧格式

帧头	帧内数据长度	帧内数据	帧尾
FD FC FB FA	2字节	见表 3	04 03 02 01

表 3 发送帧内数据格式

命令字 (2字节)	命令值 (N字节)
-----------	-----------

表 4 ACK命令协议帧格式

帧头	帧内数据长度	帧内数据	帧尾
FD FC FB FA	2字节	见表 5	04 03 02 01

表 5 ACK帧内数据格式

发送命令字 0x0100 (2字节)	返回值(N字节)
----------------------	----------

2.2 发送命令与ACK

2.2.1 使能配置命令

对雷达下发的任何其他命令必须在此命令下发后方可执行,否则无效。

命令字: 0x00FF 命令值: 0x0001

返回值: 2字节ACK状态 (0成功, 1失败) + 2字节协议版本 (0x0001) + 2字节缓冲区大小 (0x0040)

发送数据:

FD FC FB FA 04 00	FF 00	01 00	04 03 02 01
-------------------	-------	-------	-------------

雷达ACK(成功):

D FC FB FA 08 00 FF 0	00 00	01 00	40 00	04 03 02 01
-----------------------	-------	-------	-------	-------------

2.2.2 结束配置命令

结束配置命令,执行后雷达恢复工作模式。如需再次下发其他命令,需要先发送使能配置命令。

命令字: 0x00FE

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA 02 00 FE 00 04 03 02 01

雷达ACK(成功):

FD FC FB FA	04 00	FE 01	00 00	04 03 02 01
-------------	-------	-------	-------	-------------

2.2.3 最大距离门与无人持续时间参数配置命令

此命令设置雷达最大探测距离门(运动&静止)(配置范围2~8),以及无人持续时间参数(配置范围0~65535秒)。具体参数字请参考下表。此配置值掉电不丢失。

命令字: 0x0060

命令值: 2 字节最大运动距离门字 +4 字节最大运动距离门参数 +2 字节最大静止距离门字 +4 字

节最大静止距离门参数 +2 字节无人持续时间字 +4 字节无人持续时间参数

返回值: 2字节ACK状态 (0成功, 1失败)

0x0060协议参数字

参数名称	参数字
最大运动距离门	0x0000
最大静止距离门	0x0001
无人持续时间	0x0002

发送数据:最大距离门8(运动&静止),无人持续时间5秒

雷达ACK (成功):

FD FC FB FA 04 00	60 01	00 00	04 03 02 01
-------------------	-------	-------	-------------

2.2.4 读取参数命令

此命令可以读取雷达当前的配置参数。

命令字: 0x0061

命令值:无

返回值: 2 字节 ACK 状态(0 成功, 1 失败) + 头 (0xAA) + 最大距离门 N(0x08) + 配置最大运动距离门+配置最大静止距离门+ 距离门 0 运动灵敏度 (1字节) + …+距离门 N 运动灵敏度 (1字节) + 距离门 0 静止灵敏度 (1字节) + N 静止灵敏度 (1字节)

+ 无人持续时间(2字节)

发送数据:

雷达ACK: (成功,最大距离门 8,配置运动距离门 8,静止距离门 8,0~8运动灵敏度 20,0~8静止灵敏度 25,无人持续时间 5 秒)

Ву	⁄te 1~4	Byte 5, 6	Byte 7, 8	Byte 9, 10	Byte 11	Byte 12	Byte 13	Byte 14	Byte 15	Byte 16	Byte 17	Byte 18
FD FO	C FB FA	1C 00	61 01	00 00	AA	08	08	08	14	14	14	14
Byte 19	Byte 20	Byte 21	Byte 22	Byte 23	Byte 24	Byte 25	Byte 26	Byte 27	Byte 28	Byte 29	Byte	e 30
14	14	14	14	14	19	19	19	19	19	19	1	9
Byte 31	Byte 32	Byte 33, 34	Byte 35~38									
19	19	05 00	04 03 02 01									

2.2.5 使能工程模式命令

此命令打开雷达工程模式。打开工程模式后,雷达上报数据中将添加各距离门能量值,详细格式请参考2.3.2目标数据组成。模块上电后工程模式默认是关闭的,此配置值掉电丢失。

命令字: 0x0062

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA 02 00	62 00	04 03 02 01
-------------------	-------	-------------

雷达ACK(成功):

FD FC FB FA 04 00	62 01	00 00	04 03 02 01
-------------------	-------	-------	-------------

2.2.6 关闭工程模式命令

此命令关闭雷达工程模式。关闭后,雷达上报数据格式请参考2.3.2目标数据组成。

命令字: 0x0063

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA 02 00 63 00 04 03 02 01

雷达ACK(成功):

FD FC FB FA	04 00	63 01	00 00	04 03 02 01
-------------	-------	-------	-------	-------------

2.2.7 距离门灵敏度配置命令

此命令配置距离门的灵敏度,配置值掉电不丢失。既支持对各个距离门进行单独配置,也支持将所有 距离门同时配置成统一的数值。若同时设置所有距离门灵敏度为同一值,需将距离门值设置为0xFFFF。

命令字: 0x0064

命令值: 2字节距离门字 +4字节距离门值 +2字节运动灵敏度字 +4字节运动灵敏度值 +2字节静止

灵敏度字 + 4字节静止灵敏度值

返回值: 2字节ACK状态 (0成功, 1失败)

0x0064协议参数字

参数名称	参数字
距离门	0x0000
运动灵敏度字	0x0001
静止灵敏度字	0x0002

发送数据:配置距离门3的运动灵敏度40,静止灵敏度40

FD FC FB FA 14 00 64 00 00 00	03 00 00 00 01 00	28 00 00 00 02 00	28 00 00 00	04 03 02 01
-------------------------------	-------------------	-------------------	-------------	-------------

雷达ACK (成功):

FD FC FB FA 04 00	64 01	00 00	04 03 02 01
-------------------	-------	-------	-------------

发送数据:配置所有距离门的运动灵敏度40,静止灵敏度40

FD FC FB FA	14 00 64 00	FD FC FB FA	00 00	FF FF 00 00	01 00	28 00 00 00	02 00	28 00 00 00	04 03 02 01
-------------	-------------	-------------	-------	-------------	-------	-------------	-------	-------------	-------------

雷达ACK (成功):

FD FC FB FA	04 00	64 01	00 00	04 03 02 01

2.2.8 读取固件版本命令

此命令读取雷达固件版本信息。

命令字: 0x00A0

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败) +2字节固件类型 (0x0001) +2字节主版本号 +4字节次

版本号

发送数据:

雷达ACK(成功):

对应的版本号为V1.02.22062416

2.2.9 设置串口波特率

此命令用来设置模块串口的波特率,配置值掉电不丢失,配置值在重启模块后生效。

命令字: 0x00A1

命令值: 2字节波特率选择索引

返回值: 2字节ACK状态 (0成功, 1失败)

表 6 串口波特率选择

波特率选择索引值	波特率
0x0001	9600
0x0002	19200
0x0003	38400
0x0004	57600
0x0005	115200
0x0006	230400
0x0007	256000
0x0008	460800

出厂默认值为0x0007, 即256000

发送数据:

FD FC FB FA 04 00 A1 00 07 00 04	01
----------------------------------	----

雷达ACK(成功):

FD FC FB FA	04 00	A1 01	00 00	04 03 02 01

2.2.10恢复出厂设置

此命令用来将所有配置值恢复未出厂值,配置值在重启模块后生效。

命令字: 0x00A2

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	02 00	A2 00	04 03 02 01
-------------	-------	-------	-------------

雷达ACK(成功):

FD FC FB FA 04 00 A2 01 00 00 04 03 02 01

出厂默认配置值如下:

表 7 出厂默认配置值

配置项	默认值
最大运动距离门	8
最大静止距离门	8
无人持续时间	5
串口波特率	256000
距离分辨率	0.75m

配置项	默认值 配置项		默认值
距离门0的运动灵敏度	50	距离门0的静止灵敏度	-(不可设置)
距离门1的运动灵敏度	50	距离门1的静止灵敏度	-(不可设置)
距离门2的运动灵敏度	40	距离门2的静止灵敏度	40
距离门3的运动灵敏度	30	距离门3的静止灵敏度	40
距离门4的运动灵敏度	20	距离门4的静止灵敏度	30
距离门5的运动灵敏度	15	距离门5的静止灵敏度	30
距离门6的运动灵敏度	15	距离门6的静止灵敏度	20
距离门7的运动灵敏度	15	距离门7的静止灵敏度	20
距离门8的运动灵敏度	15	距离门8的静止灵敏度	20

2.2.11重启模块

模块收到此命令,将会在应答发送完成后自动重启。

命令字: 0x00A3

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	02 00	A3 00	04 03 02 01

雷达ACK(成功):

FD FC FB FA	04 00	A3 01	00 00	04 03 02 01
-------------	-------	-------	-------	-------------

2.2.12蓝牙设置

此命令用于控制蓝牙的开启或关闭,模块的蓝牙功能默认为开启。配置值掉电不丢失,配置值在重启模块后生效。

命令字: 0x00A4

命令值: 0x0100 打开蓝牙 0x0000关闭蓝牙

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	04 00	A4 00	01 00	04 03 02 01
表示打开蓝牙				
雷达ACK(成功):				
FD FC FB FA	04 00	A4 01	00 00	04 03 02 01

2.2.13获取mac地址

此命令用于查询MAC地址

命令字: 0x00A5

命令值: 0x0001

返回值: 2字节ACK状态 (0成功, 1失败) + 1字节固定类型 (0x00) +3字节 MAC地址 (大端序)

发送数据:

FD FC FB FA 04 00	A5 00	01 00	04 03 02 01
-------------------	-------	-------	-------------

雷达ACK(成功):

FD FC FB FA	0A 00	A5 01	00 00	8F 27	2E B8	0F 65	04 03 02 01
-------------	-------	-------	-------	-------	-------	-------	-------------

查询到的mac地址是: 8F 27 2E B8 0F 65

2.2.14获取蓝牙权限

此命令用于获取蓝牙权限,获取成功后可以使用APP通过蓝牙获取设备信息和调试参数

命令字: 0x00A8

命令值: 6个字节的密码值 (每2个字节小端序)

返回值: 2字节ACK状态 (0成功, 1失败)

默认密码是 "HiLink" , 则对应的值为 0x4869 (Hi) 0x4c69 (Li) 0x6e6b (nk)

发送数据:

FD FC FB FA	08 00	A8 00	48 69	4c 69	6e 6b	48 69	04 03 02 01

雷达ACK(成功):

FD FC FB FA 04 00	A8 01	00 00	04 03 02 01	
-------------------	-------	-------	-------------	--

注意:该回应只向蓝牙应答,不向串口应答

2.2.15设置蓝牙密码

此命令用于设置蓝牙控制的密码。配置值掉电不丢失,配置值在重启模块后生效。

命令字: 0x00A9

命令值: 6个字节的密码值 (每个字节为小端序)

返回值: 2字节ACK状态 (0成功, 1失败)

发送数据:

FD FC FB FA	08 00	A9 00	48 69	4c 69	6e 6b	04 03 02 01
-------------	-------	-------	-------	-------	-------	-------------

雷达ACK(成功):

FD FC FB FA 04 00	A9 01	00 00	04 03 02 01
-------------------	-------	-------	-------------

2.2.16距离分辨率设置

设置模块的距离分辨率,即每个距离门代表多远距离,配置值掉电不丢失,配置值在重启模块后生效。可配置为每个距离门0.75m或0.2m,最大支持的距离门个数都是8。

命令字: 0x00AA

命令值: 2字节的距离分辨率选择索引

返回值: 2字节ACK状态 (0成功, 1失败)

表 8 距离分辨率选择

距离分辨率选择索引值	距离分辨率(每个距离门代表的距离)
0x0000	0.75m
0x0001	0.2m

出厂默认值为0x0001,即0.75m

发送数据:

FD FC FB FA	04 00	AA 00	01 00	04 03 02 01
-------------	-------	-------	-------	-------------

雷达ACK(成功):

FD FC FB FA 04 00	AA 01	00 00	04 03 02 01
-------------------	-------	-------	-------------

2.2.17查询距离分辨率设置

查询模块的当前的距离分辨率设置,即每个距离门代表多远距离。

命令字: 0x00AB

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败) + 2字节距离分辨率选择索引

返回值定义同<表8 距离分辨率选择>

发送数据:

FD FC FB FA	02 00	AB 00	04 03 02 01
重决ACK(成功):			

雷达ACK(成功):

FD FC FB FA	06 00 AB 01	00 00	01 00	04 03 02 01
-------------	-------------	-------	-------	-------------

代表当前设置的距离分辨率为0.2m

2.2.18辅助控制功能设置

本模块自带光敏二极管,可用来检测输出光感值(请参考<u>表 15 工程模式目标数据组成</u>),用户还可配置开启光感辅助控制功能;

开启光感辅助控制功能,OUT脚的输出同时受雷达检测结果和光感控制逻辑的影响:

OUT脚输出从无人变为有人,需要满足: 雷达检测到有人且光感辅助控制逻辑条件满足;

OUT脚输出从有人变为无人,需要满足:雷达检测到无人;

光感控制逻辑可选择检测到光感值小于设置的光感阈值,或者检测到光感值大于设置的光感阈值; OUT脚的默认输出电平也可配置;

命令字: 0x00AD

命令值: 4字节的配置值

返回值: 2字节ACK状态 (0成功, 1失败)

表 9 辅助控制功能设置的命令值

第一个字节	说明
0x00	关闭光感辅助控制功能,OUT脚输出不受光感影响
开启光感辅助控功能,当检测光感值小于设置阈值时辅助控制条件满足	
0x01	第二个字节为要设置的光感阈值(范围0x00~0xFF)
002	开启光感辅助控功能,当光感检测值大于设置阈值时辅助控制条件满足;
0x02	第二个字节为要设置的光感阈值(范围0x00~0xFF)

出厂默认值为0x00,即关闭光感辅助控制功能

第二个字节	说明
0x00 ~ 0xFF	要设置的光感阈值(范围0~255),默认为0x80

OUT脚默认电平配置

第三个字节配置值	说明
0x00	OUT脚默认为低电平,无目标触发时输出低电平,有目标触发时输出高电平
0x01	OUT脚默认为高电平,无目标触发时输出高电平,有目标触发时输出低电平

默认值为0x00,即OUT脚默认为低电平

发送数据:

FD FC FB FA 06 00	AD 00	01 60 00 00	04 03 02 01
-------------------	-------	-------------	-------------

表示设置为当检测光感值小于设置阈值时辅助控制条件满足;光感阈值设置为0x060;OUT默认电平为低电平

雷达ACK(成功):

FD FC FB FA	04 00	AD 01	00 00	04 03 02 01
-------------	-------	-------	-------	-------------

2.2.19查询辅助控制功能配置

查询模块当前的辅助控制配置值

命令字: 0x00AE

命令值:无

返回值: 2字节ACK状态 (0成功, 1失败) + 4字节配置值

配置值定义同<表9 辅助控制功能设置的命令值>

发送数据:

FD FC FB FA 02 00	AE 00	04 03 02 01
-------------------	-------	-------------

雷达ACK(成功):

	FD FC FB FA	08 00	AE 01	00 00	01 60 01 00	04 03 02 01
--	-------------	-------	-------	-------	-------------	-------------

表示当前设置为当检测光感值小于设置阈值时辅助控制条件满足;光感阈值设置为0x060;OUT默认电平为高电平

2.3 雷达数据输出协议

LD2410B通过串口输出雷达探测结果,默认输出目标基本信息,包括目标状态、运动能量值、静止能量值、运动距离、静止距离等信息。如果配置雷达为工程模式,雷达会额外输出各距离门能量值(运动&静止)。雷达数据按照规定帧格式输出。

2.3.1 上报数据帧格式

协议定义的雷达上报消息帧格式如表10和11所示。正常工作模式和工程模式下,上报数据类型值的定义如表12所示。

表 10 上报数据帧格式

帧头部	帧内数据长度	帧内数据	帧尾部
F4 F3 F2 F1	2字节	见表11	F8 F7 F6 F5

表 11 帧内数据帧格式

数据类型	头部	目标数据	尾部	校验
1字节(见表12)	0xAA	见表13,表15	0x55	0x00

表 12 数据类型说明

数据类型值	说明
0x01	工程模式数据
0x02	目标基本信息数据

2.3.2 目标数据组成

雷达上报的目标数据内容会根据雷达的工作模式而改变。正常工作模式下,雷达默认输出目标的基本信息数据;配置为工程模式后,雷达会在目标的基本信息数据之后添加各距离门能量值信息。因此,目标的基本信息总会在雷达上报数据中输出,而距离门能量值信息需要命令使能才会输出。

正常工作模式下,雷达上报的目标数据组成如表13所示,目标状态值的定义如表14所示。工程模式下目标数据帧的组成如表15所示,在正常工作模式上报的数据基础上追加了一些数据。

表 13 目标基本信息数据组成

目标状态	运动目标距离 (厘米)	运动目标能量值	静止目标距离 (厘米)	静止目标能量	探测距离 (厘米)
1字节 (见表14)	2字节	1字节	2字节	1字节	2字节

表 14 目标状态值说明

目标状态值	说明
0x00	无目标
0x01	运动目标
0x02	静止目标
0x03	运动&静止目标

表 15 工程模式目标数据组成

在表13的目标基本信息数据后追加如下数据

 最大运动 距离门N	最大静止 距离门N	运动距 离门0 能量值	 运动距 离门N 能量值	静止距 离门0 能量值	 静止距 离门N 能量值	光敏检测值	OUT脚输 出状态
 1字节	1字节	1字节	 1字节	1字节	 1字节	1字节	1字节

光敏检测值范围: 0~255, OUT脚输出状态: 0 无人, 1 有人

上报数据实例:

正常工作模式上报数据:

帧头部	帧内数据长度	帧内数据	帧尾部
F4 F3 F2 F1	0D 00	02 AA 02 51 00 00 00 00 3B 00 00 55 00	F8 F7 F6 F5

工程模式下上报数据:

帧头部	帧内数据长度	帧内数据	帧尾部
F4 F3 F2 F1	23 00	01 AA 03 1E 00 3C 00 00 39 00 00 08 08 3C 22 05 03 03 04 03 06 05 00 00 39 10 13 06 06 08 04 60 01 55 00	F8 F7 F6 F5

2.4 雷达命令配置方式

2.4.1 雷达命令配置步骤

LD2410B雷达执行一条配置命令的过程包含上位机"发送命令"与雷达"回复命令ACK"两个环节。 若雷达无ACK回复或回复ACK失败,则说明雷达执行配置命令失败。

如前所述,向雷达发送任何其他命令前,开发者需先发送"使能配置"命令,然后在规定时间内发送配置命令。命令配置完成之后,发送"结束配置"命令告知雷达配置已经结束。

例如,若要读取雷达配置参数,首先上位机发送"使能配置"命令;待收到雷达ACK成功后,再发送"读取参数"命令;待收到雷达ACK成功后,最后发送"结束配置"命令;待雷达ACK成功后,表明完整的读取参数动作结束。

雷达命令配置流程如下图所示。

图 2 雷达命令配置流程

3 修订记录

日期	版本	修改内容
2022-6-24	1.01	初始版本
2022-7-1	1.02	修正部分错误描述,添加重启和恢复出厂命令
2022-7-19	1.03	修正部分命令实例的长度值
2022-8-26	1.04	增加距离分辨率配置命令说明
2022-9-20	1.05	增加蓝牙部分的协议
2023-2-21	1.06	添加光感值输出说明,增加辅助控制功能设置命令

4 技术支持和联络方式

深圳市海凌科电子有限公司

地址:深圳市龙华区民治街道民乐社区星河WORLD E栋大厦17层1705

电话: 0755-23152658/83575155

网址: www.hlktech.com

