G. Math, math everywhere

time limit per test: 5 seconds memory limit per test: 512 megabytes input: standard input output: standard output

If you have gone that far, you'll probably skip unnecessary legends anyway...

You are given a binary string and an integer . Find the number of integers k, $0 \le k < N$, such that for all i = 0, 1, ..., m - 1

Print the answer modulo $10^9 + 7$.

Input

In the first line of input there is a string *s* consisting of 0's and 1's $(1 \le |s| \le 40)$.

In the next line of input there is an integer n ($1 \le n \le 5 \cdot 10^5$).

Each of the next n lines contains two space-separated integers p_i , α_i ($1 \le p_i$, $\alpha_i \le 10^9$, p_i is prime). All p_i are distinct.

Output

A single integer — the answer to the problem.

Examples

```
input

1
2
2 1
3 1

output

2
```

```
input

01
2
3 2
5 1

output

15
```

```
input

1011
1
3 1000000000

output
411979884
```