

LICENCIATURA: NUTRICIÓN APLICADA ASIGNATURA: ESTADÍSTICA BÁSICA

ESTUDIANTE:

Guillermo de Jesús Vázquez Oliva

MATRICULA: ES231107260

GRUPO:

NA-NEBA-2301-B1-012

ASESOR(A): ANA DELIA MONROY GARCÍA.

ACTIVIDAD:

Evidencia de aprendizaje. Reporte estadístico

FECHA DE ENTREGA:

25 de marzo de 2023

INTRODUCCION

La media, también conocida como promedio, es una medida estadística que se calcula sumando todos los valores de un conjunto de datos y dividiéndolos entre el número total de datos. Es una medida comúnmente utilizada para representar el valor central de un conjunto de datos.

La moda es el valor que aparece con mayor frecuencia en un conjunto de datos. Es una medida útil para describir la tendencia central de un conjunto de datos cuando hay valores atípicos o extremos que pueden sesgar la media.

La mediana es el valor que se encuentra justo en el medio de un conjunto de datos cuando estos se ordenan de menor a mayor. Es una medida robusta que no se ve afectada por valores extremos o atípicos.

La varianza es una medida de dispersión que mide cuánto se alejan los datos individuales del valor medio. Se calcula como la suma de los cuadrados de las desviaciones de cada valor con respecto a la media, dividido por el número total de datos.

La desviación estándar es la raíz cuadrada de la varianza y representa la medida de dispersión más comúnmente utilizada. Es útil para evaluar la variabilidad de los datos en torno al valor medio.

En nutrición, estas medidas estadísticas se utilizan para analizar los datos relacionados con la ingesta alimentaria, el peso corporal, la composición corporal, los niveles de lípidos en sangre, la glucemia, entre otros. Por ejemplo, la media se utiliza para calcular la ingesta promedio de energía o nutrientes en una población. La moda se puede usar para identificar los alimentos o patrones de alimentación más comunes en una población. La mediana se puede utilizar para calcular el peso corporal medio de una población y la desviación estándar se puede utilizar para evaluar la variabilidad en el peso corporal o la ingesta de energía.

DESARROLLO DE LA ACTIVIDAD

LISTA 3			
Nombre	Apellido(s)		
CARLOS	NUÑEZ LUNA		
ADRIANA	OLVERA VENADO		
MAYRA	ORTIZ ROMERO		
JULIAN	PARRA DELGADO		
BLANCA LILIA	PEREZ CAMACHO		
ROCIO	PEREZ HERNANDEZ		
CELIA LORENA	POTENCIANO MONTERO		
ITZEL RUBI	QUINTANAR DIAZ		
ALMA DELIA	RAMIREZ ARZOLA		
JOSE ANDRES	RAMOS SALGADO		
VIVANI	RICCI PEREZ		
LORENA ELENA	RODRIGUEZ BALBUENA		
JAVIER ARMANDO	ROJO ROJO		
RENATA	ROSALES ALVAR		
HORACIO	SAGAHON GUEVARA		
MIRANDA MIROSLAVA	SANCHEZ ESPINOSA		
ALAN JOSUE	SANCHEZ MEJIA		
MAYRA GUADALUPE	SANCHEZ PICEN		
LUZ REYNA	SANTANA SPINDOLA		
PAOLA SVETLANA	SANTOS HERNANDEZ		
SINDY LILIANA	SERRALTA QUINTANILLA		
ANA KAREN	SORIANO GUTIERREZ		
PATRICIA	TETITLA TORRES		
ANAYELI	TRUJILLO ENRIQUEZ		
SALVADOR IVAN	VALENCIA CIME		
EDLIN ARIADNE	VARELA MARTINEZ		
KENIA YUNUEN	VARGAS MIRANDA		
KARINA	VAZQUEZ DE LA PAZ		
GUILLERMO DE JESUS	VAZQUEZ OLIVA		
ANDREA	VIDAL CASTILLO		
SONIA	VILLARREAL GARCIA		
MARIA DEL ROSARIO	XOCHICALE VALLEJO		

NO	PESO	TALLA	IMC	INTERPRETACION	
1	64	1.73	21.38	NORMAL	
2	86	1.60	33.59	OBESIDDAD 1	
3	103	1.65	37.83	OBESIDAD 2	
4	60	1.68	21.26	NORMAL	
5	50	1.56	20.55	NORMAL	
6	87	1.62	33.15	OBESIDAD 1	
7	78	1.69	27.31	SOBREPESO	
8	50	1.50	22.22	NORMAL	
9	76	1.72	25.69	SOBREPESO	
10	60	1.65	22.04	NORMAL	
11	80	1.62	30.48	OBESIDAD 1	
12	83	1.58	33.25	OBESIDAD 1	
13	68	1.62	25.91	SOBREPESO	
14	80	1.70	27.68	SOBREPESO	
15	67	1.65	24.61	NORMAL	
16	52	1.69	18.21	DESNUTRICION 1	
17	61	1.54	25.72	SOBREPESO	
18	68	1.89	19.04	NORMAL	
19	105	1.68	37.20	OBESIDAD 2	
20	88	1.71	30.09	OBESIDAD 1	
21	70	1.56	28.76	SOBREPESO	
22	54	1.73	18.04	DESNUTRICION 1	
23	101	1.63	38.01	OBESIDAD 2	
24	98	1.65	36.00	OBESIDAD 2	
25	78	1.68	27.64	SOBREPESO	
26	54	1.60	21.09	NORMAL	
27	89	1.69	31.16	OBESIDAD 1	
28	65	1.50	28.89	SOBREPESO	
29	90	1.69	31.51	OBESIDAD 1	
30	67	1.64	24.91	NORMAL	

PESO		TALLA	IMC
MEDIA	74.4	1.648	27.432
MODA	50,54,60,67,68,78,80	1.65 y 1.69	No hay moda.
MEDIANA	73	1.65	27.475
VARIANZA	263.62	0.00609	35.313
DESVIACION	16.23	0.078	5.94
ESTANDAR			

Nota: En este trabajo tome la base de datos como una muestra y no como una población.

CONCLUSIONES

En la nutrición, la media, moda, mediana, varianza y desviación estándar se utilizan para analizar los datos y obtener información sobre la distribución de los datos. A continuación, se describen algunos ejemplos de cómo se utilizan estas medidas estadísticas en la nutrición:

Análisis de consumo alimentario: La media se utiliza para determinar la ingesta promedio de nutrientes y alimentos. La moda se utiliza para identificar los alimentos y bebidas más consumidos, y la mediana se utiliza para determinar la ingesta típica de nutrientes y alimentos. La varianza y la desviación estándar se utilizan para medir la variabilidad en la ingesta de nutrientes y alimentos.

Estudios de intervención nutricional: La media, la moda y la mediana se utilizan para describir las características de la población de estudio, como la edad, el peso y la ingesta de nutrientes antes de la intervención. Después de la intervención, estas medidas se utilizan para determinar si ha habido cambios significativos en la ingesta de nutrientes o en las características de la población de estudio. La varianza y la desviación estándar se utilizan para evaluar la variabilidad en los resultados de la intervención y para determinar la precisión de las estimaciones de los efectos de la intervención.

En resumen, la media, moda, mediana, varianza y desviación estándar son herramientas valiosas para analizar los datos en la investigación en nutrición. Se utilizan para describir la distribución de los datos y evaluar los efectos de los cambios en la dieta o la ingesta de nutrientes en la población de estudio. La capacidad de interpretar y comunicar los resultados de estas medidas estadísticas es fundamental para una investigación rigurosa en nutrición y para la toma de decisiones informadas en la salud pública.

FUENTES DE CONSULTA

Básica, E. (s/f). Guillermo Ayala Universidad de Valencia. Www.uv.es. Recuperado el 31 de enero de 2023, de https://www.uv.es/ayala/docencia/nmr/nmr13.pdf

(S/f). Up.ac.pa:8080. Recuperado el 31 de enero de 2023, de http://uprid2.up.ac.pa:8080/xmlui/bitstream/handle/123456789/1570/Fundamentos%20B% C3%A1sicos%20de%20Estad%C3%ADsticaLibro.pdf?sequence=1&isAllowed=y

Universidad Abierta y a Distancia de México. (s.f.). Módulo III: Estadística aplicada a la nutrición. Recuperado de https://dmd.unadmexico.mx/contenidos/DCSBA/BLOQUE1/NA/01/NEBA/unidad_03/desca rgables/NEBA_U3_Contenido.pdf