DEPARTMENT OF ELECTRICAL ENGINEERING

Laboratory manual for PROGRAMMING LAB (EE233)

COLLEGE OF ENGINEERING THIRUVANANTHAPURAM 695 016

JULY 2020

Preface

This is the first volume of the second edition of the Software laboratory manual released by the Department of Electrical Engineering, College of Engineering, Thiruvananthapuram. This is only a reference material, which will cater to the immediate needs of the students to meet the curriculum requirements of the B.Tech. Degree students. A manual covering all programs in this book is being prepared for the faculty for verification and reference. Every effort has been taken for the correctness of the subject dealt with, suggestions and remarks are welcome.

Chief Co-ordinator : **Dr. Sreejaya P.**

Head of the Department

Prepared and compiled by : Dr. MAYADEVI N. & Prof. Shenil P. S.

Assistant Professor

Department Vision and Mission

Vision

❖ Be a centre of excellence and higher learning in Electrical Engineering and allied areas.

Mission

- To impart quality education in Electrical Engineering and bring-up professionally competent engineers.
- ❖ To mould ethically sound and socially responsible Electrical Engineers with leadership qualities.
- ❖ To inculcate research attitude among students and encourage them to pursue higher studies

Course Outcomes

	Programme: Engineering.	B.Tech – Electrical a	nd Electronic	Semester: 2		
Course	Code: EST 102	Course Type: T	Course Type: Theory			
Course	Title: Programmi	g Lab				
		Assessment				
Credits:	Internal Marks	: - 50 University Exa	am Marks:-	Total Marks:150		
Course Outcom	At the end of the	At the end of the course, the student should be able to:				
CO1	, ,	Design, implement, test, debug, and document programs in C using basic input output and decision control statements				
C02		Design, implement, test and debug programs in C using loop and switch statements				
CO3	Build diversified	Build diversified solutions using array ,strings and matrices				
CO4		Understand the concept of functions and build programs using functions and recursive functions				
CO5	Design and deve	Design and develop C Programs with pointers and files.				
CO6	Build basic progr	Build basic programs using Python				

Index

Cycle	SI. no	Experiment	Page no.
a. Coding Standard Used in the Software Lab			6
b. Exper	riments		
	1	Conversion of temperature	7
	2	Find the largest of three numbers	7
	3	Square a number with LSB 5	8
	4	Swap the values of two variables	8
ycle	5	Convert an integer to a character	9
1 st Cycle	6	Count specific numbers	9
7	7	Perform arithmetic functions	10
	8	Check a number for prime or not	10
	9	Evaluate sine and cosine series	11
	10	Solve a Quadratic Equation	12
Cycle	11	Sort an array in ascending order	13
	12	Evaluate the length of a string	13
	13	Copy contents of a string to another	14
	14	Compare two strings	14
2 nd	15	Concatenate two strings	15
	16	Reverse a given string	15
	17	Check a palindrome string	16
3 rd Cycle	18	Generate Fibonacci series	16
	19	Factorial of a given number using recursion	17
	20	Subtraction of matrices	18
	21	Transpose a matrix	18
	22	Multiplication of two matrices	19

	23	Inverse of a matrix	19
	24	Demonstrate working of pointers	20
	25	Swap two integers using functions and pointers	
	26	Length of a character string using pointers	21
	27	Sum of all elements stored in an array using pointers	22
4 th Cycle	28	Operations with file	22
	29	Solution of Differential Equation (Euler's Method)	23
	30	Solution of Differential Equation (Runge-Kutta method)	24
	31	Solve by numerical integration (Trapezoidal rule)	25
	32	Solve by numerical integration (Simpson's rule)	26
	33	Find root of an equation (Newton-Raphson method)	26
	34	Find root of an equation (Bisection method)	27
c. Standard References			33

Coding Standard Used in the Software Lab

Program Header

// **	*******	*******	*******	***	
//	Program name		:	.c	*
//	Author	:		*	
//	Date written		:		*
//	Date complied		:		*
//	Aim of the program	:		*	
//	Revision history		:		*
//	Version	Author Rem	arks	*	
//					
//	0.1	XYZ	Initial draft		*
//	1.0	ABC	First release		*
//	1.1	XYZ	Modified on date		*
//					*
//***	**********	*******	********	:***	
//***	**********	*******	********	:***	
Funct	tion Header				
//***	**********	*******	********	:***	
//	Function Name		:		*
//	Purpose		:		*
//	Input Argument		:		*
//					
//	Return type		:		*
//***	*******	******	*******	***	

Expt 1: Conversion of temperature

Aim: Convert the temperature in degree Celsius to Fahrenheit

Algorithm

- Read temperature in degree Celsius into a variable C
- Calculate F using the formula F = 9/5 C + 32
- Display the result.

Expt 2: Find the largest of 3 numbers

Aim: To find the largest of three numbers

- Read 3 numbers A,B,C
- Assign Large = A
- Check if B > Large , if Yes Large = B
- Check if C > Large , if Yes Large = C
- Display the value of large as the largest number

Expt 3: Square a number with LSB 5

Aim: To calculate the square of the number entered by the user, if the least significant digit of that number is 5

Algorithm

- · Read the number
- With Modular division operation, last digit is separated to confirm whether its
 5 or not
- If it is '5', then square the number, else display LSB not 5 and exit
- Display the result

Expt. 4: Swap the values of two variables

Aim: To swap the values of two variables without using a third variable

- Read and assign to variables
- Sum of variables stored to the 1st variable
- Difference of the current 1st variable and 2nd variable is stored as the new 2nd variable
- The difference of the current variables are stored as the 1st variable
- Display the result

Expt 5: Convert an integer to a character

Aim: To convert an integer to a character

Algorithm

- Declare a variable as type integer
- · Read its value through the keyboard
- The entered number and ASCII value are checked
- If there is a match, display the ASCII value

Expt. 6: Count specific numbers

Aim: To count numbers between 1 and 100 which are not divisible by 2, 3 and 5

- Numbers from 1 to 100 are checked in a loop
- Each time perform mod operation with 2,3 and 5
- If the remainder is not zero, increment the counter
- End loop
- Display the counter, as the result

Expt 7: Perform arithmetic functions

Aim: To perform various arithmetic functions such as Addition, Subtraction, Multiplication, Division, Remainder Calculation etc.

Algorithm

- Display a menu with 5 options and request the user to enter the choice
- Go to suitable sections based on the entered choice
- Prompt the user to enter two numbers
- Perform the relevant operation
- Display the result
- Warn the user with "Invalid Choice", if the entered choice is wrong

Expt 8: Check a number for prime or not

Aim: To check whether the given number is prime or not

- Enter the number n
- Perform the 'mod' operation from 2 to (n-1).
- If remainder is zero, 'n' is not a prime number.
- If remainder is non-zero, then 'n' is a prime number

Expt 9: Evaluate sine and cosine series

Aim: To evaluate sine and cosine series

Algorithm

(a) Sine Series

- Input the angle in degrees and number of terms as X and N respectively
- Convert angle to radians and assign it to X
- Assign the 1st term as angle in radians
- Initialize the sum variable as 1st term
- Vary a counter from 2 to N-1 with an increment two (Set the counter as i)
- Set the increment value as Incr
- Update Incr with Incr *X²/ (i * (i + 1)
- Add sum with Incr until i = N 1
- End loop
- Display sum as the result

(b) Cosine Series

- Input the angle in degrees and the number of terms as X and N respectively
- Convert angle to radians
- Initialize the sum variable as 1
- Vary a counter from 2 to N with an increment 2
- Set the counter as i
- Set the increment values as Incr

Department of Electrical Engineering, College of Engineering, Thiruvananthapuram

- Update Incr = Incr *X²/ (i * (i 1)
- Add sum with Incr until i = N
- End loop
- Display sum as the result

Expt 10: Solve a Quadratic Equation

Aim: To solve a quadratic equation

Algorithm

- Read in the values of the coefficients as A, B and C
- Evaluate D = B^2 4 * A * C
- Check if D>0

If Yes , the 1st root = R1 = -B +
$$\sqrt{D}$$
 /2A

$$2^{nd}$$
 root = R2 = -B + \sqrt{D} /2A

• If D=0

$$R = -B/2A$$

Display roots

• If D < 0

Display the roots as imaginary

Expt. 11: Sort an array in ascending order

Aim: To sort an array of N integers in ascending order

Algorithm

- Store N integers in an array
- First element taken, compared with all other elements of the same array, the process is continued till the last element, in a loop
- Interchange the elements if required
- End loop
- Display the final sorted array

Expt 12: Evaluate the length of a string

Aim: To find the length of a given string

- Read in the string through the keyboard
- Count the number of characters in the string using a loop
- Display the value of counter as the length

Expt 13: Copy contents of a string to another

Aim: To copy the contents of a string to another without using a library function

Algorithm

- · Declare two arrays of same length
- Use a loop and copy each character of the source string to the destination string
- Display both the strings

Expt 14: Compare two strings

Aim: To compare two strings without any standard function and if the strings are not identical, display the position where the characters are different

- Read in the two strings
- Using a loop, check the corresponding characters of both the strings
- If identical, loop is continued
- Otherwise, a counter variable 'diff' is incremented
- Display the locations where the strings are non identical
- Display the no: of places, where two strings are different

Expt 15: Concatenate two strings

Aim: To concatenate two strings without a standard function

Algorithm

- Read in the two strings
- Declare a 3rd string to store the concatenated string
- Use a loop, store the 1st string to the third
- Store the 2nd string to the 3rd, starting from the current position
- Display the third string

Expt 16: Reverse a given string

Aim: To reverse a given string

- Read in a string, 'str'
- Declare a 2nd string, 'rev_str'
- Using a loop, position a variable 'i' to the last position of original string (not the null character
- Assign j=0
- Copy the contents of the given string 'str' onto the reverse string 'rev_str', using the relation rev_str [j] = str [i]
- Increment j and decrement i till i>=0
- Display rev_str as the result

Expt 17: Check a palindrome string

Aim: To check whether the given string is a palindrome or not

(Hint: Palindrome word reads same from left to right and right to left)

Algorithm

- · Read in a string
- String length is found and assigned to a variable
- Use a condition inside a loop to check for the 1st and last character equality
- 2 Separate variables are used to point to the first and last characters
- One variable incremented and the other decremented
- If found unequal, exit display not palindrome
- If found equal, display a palindrome

Expt 18: Generate Fibonacci series

Aim: To generate a Fibonacci series

- Read n, the number of terms to be generated.
- Term 1 = 0, term2 = 1.
- Display term1, term2.
- Vary the counter in a loop from 0 to (n 1) incremented by 1.

- Term = term1 + term2.
- Display term.
- Term 1 =term2.
- Term 2 = term -->
- End loop

Expt 19: Factorial of a given number

Aim: To find the factorial of a given number using recursion

- Read the value of 'n', whose factorial is to be found
- Function call F=factorial (n);
- Inside the function factorial (x) define a local variable x
- If (X==1) return 1
- Else fact = x* fact (x-1)
- Return fact
- Display fact

Expt 20: Subtraction of matrices

Aim: To read two matrices of order 2×2 and subtract one from the other using functions

Algorithm

- Pass the 2 dimensional arrays as argument to functions
- Size of row is optional, but the column size is must
- Read the first array using 'input' function (use arrays)
- Input the 2nd array using the same function (use arrays)
- Subtraction is done by passing the 2 matrices / arrays to the 'sub' function
- Element by Element Subtraction is done inside the 'sub' function
- · Display the resultant matrix

Expt 21: Transpose a matrix

Aim: To find the transpose of an 'n x n' matrix

Algorithm

- Read in the size of the matrix
- Read in he matrix elements (using arrays)
- Interchange Rows and Columns, using two loops

(Hint: The rows elements become column elements and vice versa)

- Display the row elements as columns elements
- Display the column elements as row elements

Expt 22: Multiplication of two matrices

Aim: To multiply two matrices

Algorithm

- Read in the order of matrix A as M and N
- Read the order of matrix B as N1 and L
- If N1 = ! N, display multiplication is not possible
- Display error message and prompt to enter the new size
- Read in the elements of A matrix into an array
- Read in the elements of B matrix into an array
- Find C = A * B (Use proper loops)
- Display the matrix C

Expt 23: Inverse of a matrix

Aim: To find the inverse of a matrix

- Read in the order of the matrix (n x n) say 'A'
- Read in the matrix elements
- Formula used is A A⁻¹ = I (identity Matrix)
- Let B denote the matrix in RHS
- Assign B = I

- Do the required transformation for A and continue the same for B also, so that finally A is reduced to identity matrix
- Display matrix B, which will be the inverse of A

Expt 24: Example to demonstrate working of pointers

Aim: To demonstrate working of pointers

- Define the pointer
- Display the address and value of the defined variable
- Store address of the variable to pointer
- Display the address and value of the pointer
- Assign a new value to the memory that addressed by the pointer (the variable)
- Display the Display change in the value of the variable

Expt 25: Swap two integers using functions

Aim: To swap two integers using functions by Pass by value and Pass by reference

Algorithm

- Function named 'swap' which accepts two arguments declared
- (Hint:swap(x,y))
- 'swap' is called in the main program in 2 ways
 - (a) The actual value of x and y are copied to the function where swapping is done
 - (b) The swapping is reflected in the actual parameters by passing reference. The original variable is passed and not a copy

.

Expt 26: Length of a character string using pointers.

Aim: Program using pointers to determine the length of a character string

- Define a pointer
- Initialize a character string
- While loop defined to find out the end of the character string
- Each element in the string along with their address displayed with the help of while loop
- Length of the string found out from the difference between the pointers
- Display the result

Expt 27: Sum of all elements stored in an array using pointers

Aim: Program using pointers to compute the sum of all elements stored in an array

Algorithm

- Define a pointer
- Read array elements
- Perform addition of all elements stored in an array, using pointers
- Display the result

Expt 28: Operations with a file

Aim: Write a program which create a file for students (name, Roll No, marks) and then perform the following operation

- (1) Store the name, Roll No and marks of 5 students onto file
- (2) Print the contents of the file
- (3) Add one student information into file
- (4) Display number of students in the file
- (5) Modify any student information

- Declare the Struct 'students' with all information of student and with functions 'getdata' and 'printdata'
- Open file, call the 'getdata' function and store in the data
- Write to the file the data using a function 'write-to-file()'

- Turn off the EOF flag
- Add one more student data use function 'add-data-to-file ()'
- Display the appended file from beginning
- Using 'seek' function, modify the student file
- Display the updated file

Expt 29: Solution of Differential Equation (Euler's Method)

Aim: To solve a differential equation using Euler's method

Algorithm

- Define the differential Equation df (x, y)
- Input values of x0, y0, h, x

```
(Hint: x0 \rightarrow initial value of x
```

y0 →initial value of y

h → increment

 $x \rightarrow$ final value of x for which y has to be found)

- Assign x1 = x0
- Assign y1= y0
- Is x1 > x0 If Yes-stop
- Else, Set y1 = y1 + h * df(x1, y1)
- Set x1 = x1 +h
- Print x1, y1
- Continue the loop till x1 >x is true

Expt 30: Solution of Differential Equation (Runge-Kutta method)

Aim: To solve a differential equation Runge-Kutta method

- Define the function f (x, y)
- Input values of x₀, y₀, h, x_n
- Is $x > x_n$ if Yes Stop.
- Else, Set k1 = h * f(x, y)
- Set k2 = h * f(x+h/2, y + k1/2)
- Set k3 = h * f(x+h/2, y + k2/2)
- Set k4 = h * f(x+h, y + k 3)
- K = (k1 + (k2 + k3) *2 + k4)/6
- Set x= y + h
- Set y = y + k
- Print x and y
- Continue the loop till $x = x_n$

Expt 31: Solve by numerical integration (Trapezoidal rule)

Aim: To solve numerical integration by trapezoidal rule

Algorithm

- Y (x) is the function to be integrated
- Get values of x0 , xn and n

 $x_0 \rightarrow$ initial value

 $X_n \rightarrow final value$

 $n \rightarrow no.$ of intervals

- Assign $h = (x_n x_0) / n$
- Assign $s = y(x_0) + y(x_n)$
- Loop for i =1 to n-1
- Assign $s = s + 2 * y (x_0 + i* h)$
- Endloop i
- Print the solution as s * h /2

Expt 32: Solve by numerical integration (Simpson's rule)

Aim: To solve a numerical integration by Simpson's rule

Algorithm

Y(x) is the function to be integrated

- Get values of x₀, x_n, and n
- Assign $h = (x_n x_0) / n$
- Assign $s = y_0 + y_n + 4y_1$
- Loop for i = 3 to n-1 in steps of 2
- Assign $s = s + 4*y_i + 2*y_{(i-1)}$
- End loop i
- Print the solution as s * h / 3

Expt 33: Find root of an equation (Newton-Raphson method)

Aim: To find the root of an equation using Newton-Raphson method

- Define the equation F(X) = 0 whose root is to be found
- Define d f (x), the derivative of f (x) w.r.t x
- Input the values of x₀, aerr, maxitr
- (Hint aerr = allowed error)

- Loop for itr = 1 to maxitr
- Assign $h = f(x_0) / df(x_0)$
- $x_1 = x_0 -$
- Print itr and x1
- If (h< aerr) yes, print solution and stop
- Else
- Assign x₀= x₁
- End loop itr
- Print solution does not converge and stop

Expt 34: Find root of an equation (Bisection Method)

Aim: To find the root of an equation using Bisection Method

- · Define the function
- Read x0,x1 and e
- y0 = f(x0)
- y1=f(x1)
- if sign(y0)=sign(y1) then stop
- Else while | (x1-x0)/x1 | > e do steps 7 to 9
- x2 = (x0+x1)/2
- y2 = f(x2)
- i=i+1
- if sign(y0)=sign(y2) then x0=x2 else x1=x2
- write x2,y2

Standard References

- 1. E. Balaguruswamy, Programming in ANSI C, Tata McGraw Hill, New Delhi
- 2. Kernighan, Brian W., and Dennis M. Ritchie. The C programming language. Vol. 2. Englewood Cliffs: prentice-Hall, 1988.
- 3. Introduction to computation and programming using Python, John V. Guttag, PHI Learning, New Delhi
- 4. Downey, Allen, Jeffrey Elkner, and Chris Meyers. How to think like a computer scientist: learning with python. John Wiley 2015.
- 5. Lambert, Kenneth. Fundamentals of Python: first programs. Cengage Learning, 2011.
- 6. Yaswant Kanitkar, "Let us C", BPB Publications.
- 7. Ashok N. Kamthane, "Programming with *ANSI* and TURBO C", Pearson Education
- 8. Schaums Outline series to C Programming
- 9. Stephen G Kochan , "Programming in C", CBS Publishing Co.
- 10. Brian W Kernighan & Dennis M Ritchie, "The C Programming language" Pretice Hall India-1986
- 11. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, "Numerical Recipes in C"