UNIVERSIDAD LAICA "ELOY ALFARO" DE MANABÍ

TECNOLOGÍAS DE LA INFORMACIÓN INTELIGENCIA ARTIFICIAL TEMA:

Algoritmos de búsqueda

ESTUDIANTES:

Alcivar Rivas Maria Judith Chávez Simaleza José Raúl DOCENTE:

Ing. César Sinchiguano

02/05/2024

Importancia de los Algoritmos de Búsqueda

Los algoritmos de búsqueda son fundamentales en el campo de la informática y la inteligencia artificial debido a su capacidad para encontrar soluciones eficientes a problemas complejos. Su importancia radica en:

Resolución de Problemas: Los algoritmos de búsqueda permiten encontrar soluciones a problemas donde se requiere identificar un estado objetivo a partir de un estado inicial, como en los juegos, planificación de rutas, optimización, entre otros.

Eficiencia: Ayudan a encontrar la solución más óptima en términos de tiempo y recursos, lo que es crucial en aplicaciones del mundo real.

Base Teórica: Los algoritmos de búsqueda forman la base de muchas otras áreas de la informática, incluyendo la inteligencia artificial, la optimización y el aprendizaje automático.

Propiedades de los Algoritmos de Búsqueda

Las propiedades clave de los algoritmos de búsqueda incluyen:

Completitud: Un algoritmo es completo si siempre encuentra una solución si esta existe.

Optimalidad: Un algoritmo es óptimo si encuentra la solución de menor costo entre todas las soluciones posibles.

Tiempo de Ejecución: Se refiere al tiempo que tarda el algoritmo en encontrar una solución.

Espacio de Búsqueda: La cantidad de memoria o espacio requerido por el algoritmo para realizar la búsqueda.

Funcionamiento de los Algoritmos de Búsqueda

Los algoritmos de búsqueda trabajan explorando un espacio de estados desde un estado inicial hacia un estado objetivo siguiendo reglas específicas. Esto implica:

Inicialización: Comienza desde un estado inicial.

Expansión de Nodos: Genera sucesores (nuevos estados) a partir del estado actual.

Prueba de Objetivo: Verifica si el estado actual es el estado objetivo deseado.

Control de Visitados: Evita ciclos y estados repetidos para optimizar la búsqueda.

Tipos de Algoritmos de Búsqueda

Los algoritmos de búsqueda se pueden clasificar en dos categorías principales:

Algoritmos de Búsqueda Desinformados

Estos algoritmos exploran el espacio de búsqueda sin utilizar información específica sobre la ubicación del estado objetivo. Ejemplos incluyen:

Búsqueda en Amplitud (Breadth-First Search, BFS): Explora todos los nodos vecinos antes de pasar a los nodos más profundos.

Búsqueda en Profundidad (Depth-First Search, DFS): Explora tanto como sea posible a lo largo de cada rama antes de retroceder.

Algoritmos de Búsqueda Informados (Heurísticos)Estos algoritmos utilizan información adicional (heurística) sobre la ubicación del estado objetivo para guiar la búsqueda de manera más eficiente. Ejemplos incluyen:

Búsqueda A* (A-star): Utiliza una función heurística para estimar el costo desde el estado actual hasta el objetivo.Búsqueda Best-First: Selecciona el nodo más prometedor según una función de evaluación heurística.Estos algoritmos juegan un papel crucial en resolver problemas complejos y son esenciales en la ciencia de la computación y la ingeniería de software.