Gemischbildung Ottomotor

Keywords

- √ Gemischbildungssysteme
- ✓ Betriebszustände
- √ Mischungsverhältnis
- ✓ Luftverhältnis
- √ Gemischzusammensetzung
- √ Leistungsregelung
- ✓ Arten der Benzineinspritzung
- ✓ Öffnung der Einspritzventile
- ✓ Zündanlage
- √ Sensoren und Aktoren

1 Gemischbildungssysteme

sollen für jeden Betriebszustand des Motors ein Kraftstoff-Luft-Gemisch herstellen, das in der *Menge ausreichend* ist und im Motor möglichst *vollständig verbrannt* wird.

2 Betriebszustände

- Kaltstart
 - Kraftstoff kondensiert an kalten Saugrohr- und Zylinderwänden
 - \rightarrow sehr fettes Gemisch (bis $\lambda = 0.3$) nötig

Warmlauf

- Kondensationsverluste verringert sich
- → Kraftstoffmenge wird temperaturabhängig verringert

• Leerlauf

• Übergang, Beschleunigung

- beim Öffnen der Drosselklappe magert das Gemisch kurzzeitig ab
- \rightarrow kurzzeitig mehr Kraftstoff einspritzen
- Teillast
- Volllast
 - maximale Motorleistung bei voll geöffneter Drosselklappe
 - → Anreicherung des Gemisches auf $\lambda = 0.85...0.95$

• Schubabschaltung

- Drosselklappe geschlossen bei hoher Drehzahl (Bergab fahren oder Fuß vom Gas bei hoher Geschwindigkeit)
- → keine Einspritzung von Benzin bis Drosselklappe wieder geöffnet

3 Mischungsverhältnis

beschreibt die Zusammensetzung des Kraftstoff-Luft-Gemisches. Man unterscheidet ein theoretisches und ein praktisches Mischungsverhältnis.

- 1. Theoretisches Mischungsverhältnis (stöchiometrisches Verhältnis):
 - zur vollständigen Verbrennung von 1 kg Super werden 14,7 Kg Luft benötigt

2. Praktisches Mischungsverhältnis

- weicht je nach Betriebszustand vom theoretischen Verhältnis ab
- Fettes Gemisch (Luftmangel): z. B. 1:13
- Mageres Gemisch (Luftüberschuss): z. B. 1 : 16

4 Luftverhältnis

 λ ist das Verhältnis zwischen der tatsächlich der Verbrennung zugeführten Luftmasse und der zur vollständigen Verbrennung theoretisch erforderlichen Luftmasse

- Luftverhältnis $\lambda = \frac{\text{zugeführte Luftmasse in [kg]}}{\text{theoretische Luftmasse in [kg]}}$
- Beim theoretischen Mischungsverhältnis 1 : 14,7 ist $\lambda = 1$
- $\lambda = \frac{16 \ kg}{14.7 \ kg} > 1 \ (mager)$

Mischungsverhältnisse für Super

Abb. 1: Mischungsverhältnis

5 Gemischzusammensetzung

1. Homogenes Gemisch

- im gesamten Brennraum ist die Gemischzusammensetzung gleich
- Einspritzung im Ansaugtakt
- braucht Zeit für eine gleichmäßige Durchmischung des Kraftstoff-Luft-Gemisches

2. Heterogenes Gemisch

- im Brennraum gibt es Bereiche unterschiedlicher Gemischzusammensetzung (Schichtladung)
 - Fettes Gemisch in der Nähe der Zündkerze ($\lambda = 1$)
 - Mageres Gemisch im äußeren Bereich ($\lambda > 1,3$)
 - späte Einspritzung während des Verdichtungstaktes
- Saugrohrklappe geschlossen

• man kann sehr mager fahren, um Sprit zu sparen

Ort der Gemischbildung

- 1. Äußere Gemischbildung Kraftstoff wird in das Saugrohr eingespritzt
 - Homogenes Gemisch
- 2. Innere Gemischbildung Kraftstoff wird direkt in den Brennraum eingespritzt
 - Heterogenes Gemisch
 - späte Einspritzung während des Verdichtungstaktes kurz vor Zündung
 - Kraftstoff und Luft kann sich nicht gleichmäßig vermischen
 - Homogenes Gemisch
 - Einspritzung zu Beginn des Ansaugtaktes
- 3. Kombi aus äußere und innere Gemischbildung

6 Leistungsregelung

- 1. Quantitätsregelung Motoren mit äußerer Gemischbildung und homogenem Gemisch
 - Je nach Lastzustand ändert sich die Drosselklappe und damit die angesaugte Luftmenge.
 - Die Zusammensetzung des Gemisches muss dabei nahezu gleich bleiben ($\lambda = 1$)
- 2. Qualitätsregelung Motoren mit innerer Gemischbildung und heterogenem Gemisch
 - Bei geöffneter Drosselklappe wird verschieden viel Kraftstoff eingespritzt. Die angesaugte Luftmenge bleibt dabei nahezu gleich
 - Die Zusammensetzung des Gemisches im Brennraum ändert sich somit je nach Lastzustand.

7 Arten der Benzineinspritzung

Vergaser

Luft wird angesaugt vom Motor, vor der Drosselklappe gibt es eine Verengung, durch die Verengung erhöht sich die Strömungsgeschwindigkeit der angesaugten Luft (Venturi-Rohr). Der Kraftstoff im Vergaser gelangt über eine Düse in Tropfenform in das Ansaugluftgemisch. Durch die hohe Strömungsgeschwindigkeit der angesaugten Luft wird der Kraftstoff mitgerissen.

Vorzerstäubung, Feinzerstäubung → Kraftstoff-Luft-Gemisch

Die Luftdurchflussmenge wird über Luftdruck (Luftdichte) und Temperatur gemessen. Daraus wird die Düsengröße berechnet und damit die Kraftstoffmenge.

Indirekte Einspritzung

Einzelpunkteinspritzung

- vor der Drosselklappe befindet sich ein Einspritzventil
- die angesaugte Luft wird mit Kraftstoff versetzt, sodass ich hier ein Gemisch gebildet habe
- Gemischzusammensetzung war nicht so genau, durch unterschiedliche Ansaugwege

lab. 1		
#	Beschreibung	
Art der Einspritzung	SPI = Single Point Injection	
Ort der Einspritzung	Indirekt - vor der Drosselklappe	
Gemischzusammensetzung	homogen	

Mehrpunkteinspritzung

- die angesaugte Luft strömt durch die Drosselklappe in das Verteilerrohr
- Kraftstoffverteilerrohr mit einzelne Einspitzventilen, die direkt in das Saugrohr einspritzen
- Gemischzusammensetzung ist gleich (gleiche Ansaugwege)

Tab. 2		
#	Beschreibung	
Art der Einspritzung	MPI = Multi Point Injection	
Ort der Einspritzung	Indirekt - vor das Einlassventil	
Gemischzusammensetzung	homogen	

Direkte Einspritzung

Thema: Gemischbildung Ottomotor

Tab. 3		
#	Beschreibung	
Art der Einspritzung	MPI = Multi Point Injection	
Ort der Einspritzung	Direkt - in den Zylinder	
Gemischzusammensetzung	homogen oder heterogen	

8 Öffnung der Einspritzventile

- Simultane Einspritzung
- Sequenzielle Einspritzung
- Zylinderselektive Einspritzung

9 Zündanlage

Zündanlage mit Unterbrecherkontakt

Bat. 12 $V \rightarrow Z$ ündspannung 40.000 V

Batterie - 30 - Zündschalter - 15 - Zündspule

- 1 Unterbrecherkontakt Masse wird geschaltet durch Nocken
 - geschlossen in Primärspule baut sich Magnetfeld auf
 - offen Magnetfeld bricht zusammen, es wird eine Spannung in der Sekundärspule indiziert Spannung geht weiter an den Zündverteiler
- 4 Zündverteiler Zündkerze Zündfunken Masse

Zündanlage mit Einzelfunkzündspule

- Eingabe Wann soll gezündet werden?
 - Positionsgeber an Nockenwelle und Fahrpedal
- Verarbeitung erfolgt im Steuergerät
 - Kennfeld abhängig von Drehzahl und Last wird ein Zündwinkel berechnet
- Ausgabe an Zündspule

10 Sensoren und Aktoren

Tab. 4

#	Sensoren	Aktoren
Zentraleinspritzung	Drehzahlgeber	Drosselklappenansteller
	Motortemperaturfühler	Regenerierventil
	Lufttemperaturfühler	Einspritzventil
	Drosselklappenpotentiometer	
	Lambdasonde	
	OT-Geber	
MED - Motronic	Luftmassenmesser	Kraftstoffpumpe
	Saugrohrdrucksensor	E-Gas Stellmotor
	Differenzdrucksensor	Lambdasondenheizung
	Fahrpedalsensor	NOx-Sensorheizung
	NOx-Sensor	Tankentlüftungsventil
	Abgastemperatursensor	Abgasrückführventil
	Saugrohrklappenpotentiometer	Kraftstoffdruckregelventil
		Saugrohrklappenventil