

- θ [°]
- $\Delta\theta$ [°]
- δ [°]
 - [-]
 - $[\mu]$
 - $[\mu]$
 - $[\mu]$

- Γ [–]
- Γ [-]
- Γ [-]
- Γ [-]

$$\delta = \frac{\circ}{\circ}$$

[] [] ν [-]

$$= \pi \sigma \frac{+}{-\nu}$$

$$= -\nu$$

$$\sigma = \frac{-\nu}{-\nu} \varepsilon$$

$$\Delta = |\Delta - \Delta|$$

$$\Delta = |\Delta - \Delta|$$

$$\beta = \begin{pmatrix} \cdot \\ - \\ \cdot \end{pmatrix}$$

$$\Delta = (\beta)\Delta + (\beta)\Delta\Delta_{\theta} = -(\beta)\Delta + (\beta)\Delta$$

$$= (\beta) + (\beta)_{\theta} = - (\beta) + (\beta)$$

$$=\frac{\Delta}{\delta}=\frac{\theta\Delta_{\theta}}{\delta}=.\leftrightarrow\Delta=\delta$$

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{G_{PSF}}{E}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{-1}}{G_{0}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

 $\delta = .^{\circ}_{\text{Normalized energy release rate} \frac{G_{+}}{G_{+}} \text{ as function of crack angular semi-aperture } \Delta \theta, \text{ calculated with in-house force-based VCCT and Abaqus built-in 3-Integral ("CONTOUR INTEGRAL) post-processing routines}$

$$\delta=\cdot^{\circ}$$
 Normalized energy release rate $\frac{G_1}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface.

$$\delta=\cdot^{\circ}$$
 Normalized energy release rate $\frac{G_1}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface.

$$\delta=\cdot^{\circ}$$
 Normalized energy release rate $\frac{G_1}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface.

 $(...)\delta = .$ Symmalized energy release rate $\frac{G_{11}}{G_{12}}$ as function of crack angular semi-specture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the filter side of the interface

$$\delta=\cdot^{\circ}$$
 Normalized energy release rate $\frac{G_1}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the inter-

$$\delta=\cdot^\circ$$
 Normalized energy release rate $\frac{G_1}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the inter-

$$\delta=\cdot^{\circ}$$
 Normalized energy release rate $\frac{G_1}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the inter-

 $(...)\delta=.$ Symmlined energy release rate $\frac{G_{ij}}{G_{ij}}$ as function of crack angular remis-specture $\Delta\theta$, calculated with in house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{G_{PSF}}{C}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{(\cdot)}}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

 $\delta = .^{\circ}_{\text{Normalized energy release rate} \frac{G_{+}}{G_{+}} \text{ as function of crack angular semi-aperture } \Delta \theta, \text{ calculated with in-house force-based VCCT and Abaqus built-in 3-Integral ("CONTOUR INTEGRAL) post-processing routines}$

$$\delta=\cdot^{\circ}_{\text{Normalized energy release rate} \frac{G_{1}}{G_{2}}}$$
 as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

$$\delta=\cdot^{\circ}$$
 Normalized energy release rate $\frac{G_1}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface.

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_1}{G_2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

 $(...)\delta=.$ Summified energy release rate $\frac{G_{11}}{G_{21}}$ as function of crack angular sensi-operture $\Delta\theta$, adequated with in house force-based AVCT post-processing contines with stresses extracted on the filter side of the interface

$$\delta = \cdot^{\circ}_{\text{Normalized energy release rate} \frac{G_{1}}{G_{2}} \text{ as function of crack angular semi-aperture } \Delta \theta, \text{ calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the inter-$$

$$\delta=\cdot^\circ_{ ext{Normalized energy release rate} rac{G_0^2}{G_0^2}}$$
 as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the inter-

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{11}}{G_{1}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interf

 $(...)\delta=.$ Symmalized energy release rate $\frac{g_{ij}}{g_{ij}}$ as function of crack angular semi-spectury $\Delta\theta$, calculated with in-bosse force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{Grox}{C}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{(+)}}{G_{(+)}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_0}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT and Abaqus built-in J-Integral (*CONTOUR INTEGRAL) post-processing routines

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{+}}{G_{+}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{i+1}}{d_{i+1}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_1}{G_2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

(...) $\delta = \delta$ ormalized energy release rate $\frac{G_1}{G_2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-bouse force-based and stress-based VCCT post-processing routines with stresses extracted on the filter side of the interface

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{i+1}}{G_{i+1}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interf

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{cl}}{G_{cl}}$ as function of crack angular semi-sperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interf

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{i+}}{G_i}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interf

 $(...)\delta=.$ Symmalized energy release rate $\frac{a_{ij}}{a_{ij}}$ as function of crack angular semi-spectrure $\Delta\theta$, calculated with in-bouse force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{Gigg}{Ga}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{+1}}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{ij}}{G_{ij}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT and Abaqus built-in J-Integral (*CONTOUR INTEGRAL) post-processing routines

 $\delta = \cdot^{\circ}_{\text{Normalized energy release rate} \frac{G_{1}}{G_{2}} \text{ as function of crack angular semi-aperture } \Delta \theta, \text{ calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface of the content of the content$

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{i,j}}{G_{i,j}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

 $\delta=\cdot^{\circ}$ Normalized energy release rate $\frac{G_1}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

 $(...)\delta = .$ Symmalized energy release rate $\frac{G_{11}}{G_{12}}$ as function of crack angular semi-specture $\Delta \theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the filter side of the interface

 $\delta=\cdot^\circ$ Normalized energy release rate $\frac{G_1}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the inter-

 $\delta=\cdot^\circ$ Normalized energy release rate $\frac{G_1}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the inter-

 $\delta=\cdot^\circ$ Normalized energy release rate $\frac{G_1}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the inter-

 $(...)\delta=.$ Symmalized energy release rate $\frac{a_{ij}}{a_{ij}}$ as function of crack angular semi-spectrure $\Delta \theta$, calculated with in-bouse force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

 $\delta = .^{\circ}$

Normalized total energy release rate $\frac{G_{CR}}{G_{CR}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

 $\delta = .^{\circ}$

Normalized energy release rate $\frac{G_{(-)}}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

 $\delta=.^\circ_{\text{Normalized energy release rate}\frac{G_{+}}{G_{+}}\text{ as function of crack angular semi-aperture }\Delta\theta, calculated with in-house force-based VCCT and Abaqus built-in 3-Integral (*CONTOUR INTEGRAL) post-processing routines$

$$\delta=.^\circ$$

Normalized energy release rate ^{G₁}/_{G₂} as function of crack angular semi-aperture Δθ, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

$$\delta=.^\circ$$

 $(...)\delta = .$ Symmalized energy release rate $\frac{a_{ii}}{a_{ii}}$ as function of crack angular semi-specture $\Delta\theta$, calculated with in-home force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_0}{G_0}$ as function of crack angular semi-aperture Δθ, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the inter-

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{ij}}{G_{ij}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the inter-

$$\delta = 0.0$$

 $(...)\delta=.$ Symmalized energy release rate $\frac{Q_{11}}{Q_{12}}$ as function of crack angular semi-specture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{G_{TOT}}{C_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

 $\delta = .^{\circ}$

Normalized energy release rate $\frac{G_{(-)}}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

$$\delta = 0.0$$

Normalized energy release rate $\frac{G_{i}}{G_{i}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT and Abaqus built-in J-Integral (*CONTOUR INTEGRAL) post-processing routines

$$\delta = 0.0$$

Normalized energy release rate $\frac{G_{ij}}{G_{ij}}$ as function of crack angular semi-aperture Δθ, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{(+)}}{L_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

$$\delta = 0.0$$

* Normalized energy release rate $\frac{G_0}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

 $(...)\delta = .$ Symmalized energy release rate $\frac{G_{11}}{G_{12}}$ as function of crack angular semi-specture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the filter side of the interface

$$\delta = 0.0$$

Normalized energy release rate $\frac{G_{+}}{G_{-}}$ as function of crack angular semi-aperture Δθ, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interf

$$\delta = 0.0$$

• Normalized energy release rate $\frac{G_1}{G_2}$ is function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the inter-

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{i+1}}{G_0}$ as function of crack angular semi-aperture Δθ, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interf

 $(...)\delta=.$ Symmalized energy release rate $\frac{G_{ab}}{G_{ab}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

$$\sigma\delta = .^{\circ}$$

 $\delta = .^{\circ}$

Normalized total energy release rate $\frac{Grox}{Gr}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{-1}}{G_{-}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{ij}}{G}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT and Abaqus built-in J-Integral (*CONTOUR INTEGRAL) post-processing routines

$$\delta = .^{\circ}$$

Normalized energy release rate ^G_{t-1} as function of crack angular semi-aperture Δθ, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

$$\delta = .^{\circ}$$

V — Normalized energy release rate $\frac{G_{ij}}{G_{ij}}$ as function of crack angular semi-aperture Δθ, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_1}{G_2}$ as function of crack angular semi-aperture Δθ, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

(...) $\delta = \delta$ ormalized energy release rate $\frac{G_1}{G_2}$ as function of cruck angular semi-aperture $\Delta \theta_1$ calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the filter side of the interface

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{12}}{4}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interf

$$\delta = 0.0$$

* Normalized energy release rate $\frac{G_1}{G_2}$ as function of crack angular semi-aperture Δθ, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interf

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{i+}}{G_{i+}}$ as function of crack angular semi-aperture Δθ, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interf

 $(...)\delta=.$ Symmalized energy release rate $\frac{Q_{11}}{Q_{21}}$ as function of crack angular semi-specture $\Delta\theta$, calculated with in-loose force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized total energy release rate $\frac{G_{DOS}}{C}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with Abaqus built-in J-Integral post-processing routine (*CONTOUR INTEGRAL)

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{(-)}}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{i,j}}{G_{i,j}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT and Abaqus built-in J-Integral (*CONTOUR INTEGRAL) post-processing routines

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{12}}{G_{12}}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

$$\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

* Normalized energy release rate $\frac{G_0}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the fiber side of the interface

 $(...)\delta=.$ Germalized energy release rate $\frac{G_{11}}{G_{12}}$ as function of crack angular sumi-operture $\Delta\theta$, cubalated with in home force-based and stress-based VCCT post-processing routines with stresses extracted on the filter side of the interface

$$\delta = 0.0$$

Normalized energy release rate $\frac{G_{ij}}{G_{ij}}$ as function of crack angular semi-aperture $\Delta \theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interference of the contract of th

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_1}{G_2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interf

$$\delta=.^\circ$$

Normalized energy release rate $\frac{G_{i+}}{2}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interf

 $(...)\delta=.$ Symmalized energy release rate $\frac{g_{ij}}{g_{ij}}$ as function of crack angular semi-spectury $\Delta\theta$, calculated with in-bosse force-based and stress-based VCCT post-processing routines with stresses extracted on the matrix side of the interface

$$\sigma\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

$$\delta = .^{\circ}$$

Normalized energy release rate $\frac{G_{(1)}}{G_0}$ as function of crack angular semi-aperture $\Delta\theta$, calculated with in-house force-based VCCT post-processing routine

Normalized energy release rate $\frac{G}{L}$ as function of crack angular semi-aperture $\Delta\theta$, $VF_f = 7.9 \cdot 10^{-5}$, $\frac{L}{L} \sim 100$ calculated with in-house force-based VCCT post-processing routine

Error of of normalized energy release rate with respect to BEM results $\Delta \frac{G_0}{G_0} = \frac{G_0}{G_0}|_{EEM} - \frac{G_0}{G_0}|_{BEM}$ as function of crack angular semi-aperture $\Delta \theta$, $VF_f = 7.9 \cdot 10^{-5}$, $\frac{1}{R_f} \sim 100$ calculated with in-house force-based VCCT post-

Normalized energy release rate $\frac{G_H}{G_C}$ as function of crack angular semi-aperture $\Delta\theta$, $VF_f = 7.9 \cdot 10^{-5}$, $\frac{I}{g_c} \sim 100$ calculated with in-house force-based VCCT post-processing routine

Error of of normalized energy release rate with respect to BEM results $\Delta \frac{G}{G_0} = \frac{G}{G_0}|_{IEM} - \frac{G}{G_0}|_{IEM}$ as function of crack angular semi-aperture $\Delta \theta$, $VF_f = 7.9 \cdot 10^{-5}$, $\frac{I}{H_f} \sim 100$ calculated with in-house force-based VCCT post-1

Normalized energy release rate $\frac{G_{12}G_{22}}{E_{1}}$ as function of crack angular semi-aperture $\Delta\theta$, $VF_{f} = 7.9 \cdot 10^{-5}$, $\frac{f}{E_{f}} \sim 100$ calculated with in-house force-based VCCT post-processing routine

Error of of normalized energy release rate with respect to BEM results $\frac{\Delta}{a} \frac{G_{12}^{(1)}}{G_{21}} |_{FEM} - \frac{G_{12}^{(1)}}{G_{21}}|_{FEM} - \frac{G_{12}^{(1)}}{G_{21}}|_{FEM}$ as function of crack angular semi-aperture $\Delta\theta$, $VF_f = 7.9 \cdot 10^{-5}$, $\frac{1}{k_f} \sim 100$ calculated with in-house force-based V

