4.2. Generalization and Regularization

Lecture based on "Dive into Deep Learning" http://D2L.AI (Zhang et al., 2020) and C.M. Bishop, Pattern Recognition and Machine Learning

Prof. Dr. Christoph Lippert

Digital Health & Machine Learning

Training and generalization error

- Training error: The error calculated on the training data set
- Generalization error: The expectation of our model's error on additional data points drawn from the same underlying data distribution.
- Problem: we can never calculate the generalization error exactly
- ullet o apply model to an independent test set, withheld from training

Example (Coin Toss)

- Dataset $\{0, 1, 1, 1, 0, 1\} \rightarrow \text{Predict the } \textit{majority class (here: 1)} \text{ with error of only } \frac{1}{3}.$
- With more samples it would go to $\frac{1}{2}$.

Generalization is the fundamental problem in machine learning.

Drawing training and validation samples

In **supervised learning**, we usually assume that both the training data and the test data are drawn *independently* from *identical* distributions (i.i.d.).

- Sampling process has no memory
- ullet 2nd and 3rd samples are no more correlated than 2nd and nth sample

Example

Covid-19 mortality risk predictor on data collected from patients from Charité Berlin, and apply it on patients from Mt. Sinai.

Example

Face recognition trained only on students and then applied in an elderly home

Goal: Find a function that fits training set well, but generalizes well on unseen data

Underfitting or overfitting

Aim: Model, where training error and validation error are both substantial but there is a little gap between them.

- ullet Model too simple: unable to reduce the training error o **Underfitting**
- ullet Model too complex: Training error «validation error o **Overfitting**
- Over- or underfitting depends on size of training data and model complexity

Care more about validation error and find tradeoff

Underfitting or overfitting

Example (Polynomial regression)

Given training data consisting of a single feature \boldsymbol{x} and a corresponding real-valued label \boldsymbol{y}

ullet find the polynomial of degree M

$$\hat{y} = \sum_{j=0}^{M} x^{j} w_{j}$$

$$= \sum_{j=0}^{M} \phi_{j}(x) w_{j}$$

$$= \mathbf{w}^{\top} \mathbf{x} + b$$

 Higher-order polynomial: More model parameters, lower training error

The degree ${\cal M}$ of the polynomial is crucial.

(C.M. Bishop, Pattern Recognition and Machine Learning)

The degree ${\cal M}$ of the polynomial is crucial.

(C.M. Bishop, Pattern Recognition and Machine Learning)

The degree ${\cal M}$ of the polynomial is crucial.

(C.M. Bishop, Pattern Recognition and Machine Learning)

The degree ${\cal M}$ of the polynomial is crucial.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Train vs. Test error

- Split sample in training and test set.
- ullet Choose M based on test error.

K-fold Cross validation:

- \bullet randomly assign samples $(\mathbf{x}^{(i)}, y^{(i)}$ to K sets of equal size
- for each set $s \in S$ (e.g. K = 4 sets) and $m \in [1, ..., M]$:
 - train model on K-1 remaining sets
 - predict on s and compute loss.
- compute average MSE for degree m.
- pick m with lowest loss.

Get more data

Others ways to avoid overfitting and fit complex model for limited number of observations? **Regularization of weights**

Regularize the regression weights.

$$\text{Loss function:} \qquad \underbrace{\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (\mathbf{w}^{\top} \mathbf{x}^{(i)} + b - y^{(i)})^2}_{l(\mathbf{w},b)} \qquad + \underbrace{\frac{\lambda}{2} \sum_{j=1}^{d} w_j^2}_{l_2\text{-norm regularizer}}$$

where $\sqrt{\sum_{j=1}^d w_j^2}$ is the l_2 -norm of \mathbf{w} .

What effect does this have? How will the learned weights be different?

- Penalizes large weights.
- \bullet Reduces the complexity of the function that associates x with y, i.e. learn parsimonious model.
- Also known as shrinkage or weight decay.

Loss function:

$$\underbrace{\frac{1}{N}\sum_{i=1}^{N}\frac{1}{2}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b-y^{(i)})^{2}}_{l(\mathbf{w},b)} + \underbrace{\frac{\lambda}{2}\sum_{j=1}^{d}w_{j}^{2}}_{l_{2}\text{-norm regularizer}}$$

The stochastic gradient descent updates for L2-regularised regression are as follows:

$$\mathbf{w} \leftarrow \left(1 - \frac{\eta \lambda}{|\mathcal{B}|}\right) \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \mathbf{x}^{(i)} \left(\mathbf{w}^{\top} \mathbf{x}^{(i)} + b - y^{(i)}\right),$$

Weight decay

Figure: Training without regularization

Figure: Training with L2-regularization

$$\underbrace{\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (\mathbf{w}^{\top} \mathbf{x}^{(i)} + b - y^{(i)})^{2}}_{l(\mathbf{w},b)} + \underbrace{\frac{\lambda}{2} \sum_{j=1}^{d} w_{j}^{2}}_{l_{2}\text{-norm regularizer}}$$

Question: How to chose an optimal λ ?

Answer: Look at the test error!

(C.M. Bishop, Pattern Recognition and Machine Learning)

A more general regularization:

$$\underbrace{\frac{1}{N}\sum_{i=1}^{N}\frac{1}{2}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b-y^{(i)})^{2}}_{l(\mathbf{w},b)} + \underbrace{\frac{\lambda}{2}\sum_{j=1}^{d}|w_{j}|^{q}}_{l_{q}\text{-norm regularizer}}$$

(C.M. Bishop, Pattern Recognition and Machine Learning)