Definition
$$f'(x) = \lim_{y \to x} \frac{f(y) - f(x)}{y - x}$$

 $= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $= \int_{0}^{\infty} f(x)$

Interpretations

· slope of tangent line

linear approximation $f(x) \propto f(a) + f'(a) (x-a)$

· instanteous vate of change / variability

Sum rule
$$(f(x) + g(x))' = f'(x) + g'(x)$$

constant multiple rule $(c + f(x))' = c + f'(x)$

k rule
$$(c f(x))^{3/2} = c f'(x)$$

$$(x^n)' = n x^{n-1}$$

product rule
$$(x^{\alpha})' = \alpha x^{\alpha-1}$$

 $(f(x)q(x))' = f(x)$

product rule
$$(f(x)g(x))' = f(x)g(x) + f(x)g'(x)$$
quotient rule $(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/g(x)^2$
chain rule $g(f(x))' = g'(f(x))f'(x)$
revse function rule $(f^{-1}(x))' = f'(f^{-1}(x))$

$$g(f(x))' = g'(f(x)) f'(x)$$

 $(f^{-1}(x))' = f'(f^{-1}(x))$

power rule

$$(c)'=0$$

$$x' = 1$$

$$\chi' = 1$$
 $(1/x)' = -1/x^2$

$$Sin(x)' = cos(x)$$
 $tan(x)' = sec^2(x)$
 $cos(x)' = -sin(x)$ $cot(x)' = -csc^2(x)$

$$tan(x)' = sec^2(x)$$
 $sec(x)' = tan(x) sec(x)$
 $cot(x)' = -cot(x) csc(x)$

$$(e^{x})' = e^{x}$$
 $(a^{x})' = \ln(a) a^{x}$ $\ln(x)' = \frac{1}{x}$
 $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$ $|x|' = Sqn(x)$
 $Sin^{-1}(x)' = \sqrt{1-x^{2}}$ $cos^{-1}(x)' = -\frac{1}{\sqrt{1-x^{2}}}$ $tan^{-1}(x)' = \frac{1}{1+x^{2}}$