PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

DIMENSIONS IN CLUSTERING

CLUSTERING: DIMENSIONS (1)

Where are the three clusters?

CLUSTERING: DIMENSIONS (2)

Simple assignment based on a 1D distribution

CLUSTERING: DIMENSIONS (3)

Simple assignment based on a 1D distribution

CLUSTERING: DIMENSIONS (4)

What if this was not a 1D distribution?

CLUSTERING: DIMENSIONS (5)

The distribution is in 2D. Some points differ in the 2nd D

CLUSTERING: DIMENSIONS (6)

If the difference is minor, we still get the same clusters

CLUSTERING: DIMENSIONS (7)

The difference could be significant

CLUSTERING: DIMENSIONS (8)

A big difference in the 2nd D can lead to different clusters

CLUSTERING: DIMENSIONS (9)

We can introduce another D by color coding. This is a Boolean Dimension

CLUSTERING: DIMENSIONS (10)

Create a 3rd Dimansion

CLUSTERING: DIMENSIONS (11)

Create a 3rd Dimansion

CLUSTERING: DIMENSIONS (12)

Where are the 3 clusters now?

CLUSTERING: DIMENSIONS (13)

If the 3rd is small, then the clustering is the same as in 2D

CLUSTERING: DIMENSIONS (14)

If the 3rd is big, then the clustering differs from 2D

PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

Dimensions in Clustering

BREAK

HTTP://SCIENTIFICMARKETER.COM

COPYRIGHT @ NICHOLAS J RADOLIFFE 2007. ALL RIGHTS RESERVED. *WITH APOLOGIES TO MR SPOCK & STAR TREK.

UNIVERSITY of WASHINGTON

Normalization in Clustering

NORMALIZATION OF A LINEAR RELATIONSHIP (1)

```
X Y
0 10
1 0
2 40
3 50
4 40
5 50
6 40
7 50
8 90
9 100
10 80
```


NORMALIZATION OF A LINEAR RELATIONSHIP (2)

NORMALIZATION OF A LINEAR RELATIONSHIP (3)

NORMALIZATION OF A LINEAR RELATIONSHIP (4)

X	Υ
0	0.1
0.1	0
0.2	0.4
0.3	0.5
0.4	0.4
0.5	0.5
0.6	0.4
0.7	0.5
0.8	0.9
0.9	1
1	0.8

NORMALIZATION OF A LINEAR RELATIONSHIP (5)

10

80

0.8

1

NORMALIZATION OF A LINEAR RELATIONSHIP (6)

NORMALIZATION OF A LINEAR RELATIONSHIP (7)

Normalize Input $X = 2 \rightarrow X' = 0.2$

Predict Output X' = 0.2 -> Y' = 0.26

Denormalize Output $Y' = 0.26 \rightarrow Y = 26$

NORMALIZATION OF A LINEAR RELATIONSHIP (8)

Normalize Input X = 2 -> X' = 0.2

Predict Output X' = 0.2 -> Y' = 0.26

Denormalize Output Y' = 0.26 -> Y = 26

Prediction in Original Space: X = 2 -> Y = 26

NORMALIZATION OF A LINEAR RELATIONSHIP (1)

Original data in 2D: Find 2 clusters

NORMALIZATION OF A LINEAR RELATIONSHIP (2)

Found 2 Clusters

NORMALIZATION OF A LINEAR RELATIONSHIP (3)

Clusters segment the image

NORMALIZATION OF A LINEAR RELATIONSHIP (4)

Non-normalized 2D data

NORMALIZATION OF A LINEAR RELATIONSHIP (5)

Non-normalized 2D data

Normalize the data: Search for 2 Clusters

NORMALIZATION OF A LINEAR RELATIONSHIP (6)

Non-normalized 2D data

Found 2 Clusters in the normalized data

NORMALIZATION OF A LINEAR RELATIONSHIP (6)

Non-normalized 2D data

Clusters Segment the Image

NORMALIZATION OF A LINEAR RELATIONSHIP (7)

Clustering before normalization

Clustering after normalization

NORMALIZATION OF LINEAR AND NON-LINEAR OUTCOMES

- > Non-linear (Normalization can change outcome):
 - K-Means
 - Neural Net
- > Linear (Normalization should not change outcome):
 - Logistic Regression
 - Linear Regression
 - Mixture of Gaussians
- > https://en.wikipedia.org/wiki/Linearity
- > https://en.wikipedia.org/wiki/Linear function

UNIVERSITY of WASHINGTON

Normalization in Clustering

Normalization in K-Means

- > Download L07-2-KMeansNorm_Incomplete.py from Canvas and load into Spyder.
- > Run the script: Some results will be wrong
- > Add code to normalize each input dimension
- > Add code to de-normalize the output
- > Specifically, replace all lines that say: "Replace this line with code".
- > Run the script: Results should be correct

- 1. L07-2-KMeansNorm Incomplete.py
 - a. Get mean and standard deviation of point dimensions. Use the np.mean and np.std functions
 - b. Z-Normalize points and centroid guesses based on distribution of points
 - c. Let the KMeans function determine the labels and the centroids in normalized space
 - d. De-normalize the centroids
 - e. Return the labels and the de-normalized centroids

2. Answer the following questions

- a) What is the single most obvious difference between the distributions of the first and second dimensions?
- b) Does separation of clusters in Test 1 occur along the x, y, or both dimensions? Why?
- c) Does separation of clusters in Test 2 occur along the x, y, or both dimensions? Why?
- d) Does separation of clusters in Test 3 occur along the x, y, or both dimensions? Why?
- e) Does separation of clusters in Test 4 occur along the x, y, or both dimensions? Why?

- 3. Why is normalization important in K-means clustering?
- 4. How do you encode categorical data in a K-means clustering?
- 5. Why is clustering un-supervised learning as opposed to supervised learning?

