Rachunek Prawdopodobieństwa

Prof. dr hab. Mieczysław Wodecki

Zasady zaliczeń

Forma zaliczenia – zaliczenie na ocenę (kolokwium - na ostatnim wykładzie).

Termin poprawkowy – w sesji.

Rachunek Prawdopodobieństwa*(w. 15)

- 1. Elementy statystyki miary położenia, rozproszenia
- 2. Przestrzeń zdarzeń elementarnych. Własności prawdopodobieństwa. Prawdopodobieństwo klasyczne i geometryczne
- 3. Prawdopodobieństwo warunkowe. Wzór Bayesa. Niezależność zdarzeń.
- 4. Zmienne losowe (rozkłady: dwumianowy, Poissona, normalny, wykładniczy).
- 5. Parametry zmiennych losowych, standaryzacja, tablice.
- 6. Wartości oczekiwane, wariancje, mediany i kwartale wybranych rozkładów.
- 7. Zmienne losowe dwuwymiarowe. Rozkłady brzegowe. Niezależność zmiennych losowych. Współczynnik korelacji.
- 8. Ciągi zmiennych losowych: sumowanie niezależnych zmiennych losowych. Prawo wielkich liczb (słabe).

<u>Literatura</u>

- 1. H. Jasiulewicz, W. Kordecki, Rachunek prawdopodobieństwa i statystyka matematyczna.
- 2. A. Plucińska, E. Pluciński, Probabilistyka, WNT, Warszawa 2006.

Rachunek Prawdopodobieństwa, Wykład 1.

^{*} dokładny program oraz pełny spis literatury są zamieszczone w Sylabusie.

Rachunek prawdopodobieństwa (inaczej probabilistyka) jest działem matematyki, który zajmuje się modelowaniem zjawisk (zdarzeń) przypadkowych (losowych). Czyli takich, których wyniku zakończenia nie da się w sposób jednoznaczny przedstawić.

Poszukuje się prawidłowości dotyczących możliwości uzyskania oczekiwanego wyniku zdarzeń losowych. Powstanie tego działu matematyki (XVII wiek) było związane z hazardem i poznania szans na wygranie w konkretnej grze losowej.

Dziś osiągnięcia tej dziedziny nauki wykorzystuje się w wielu innych dziedzinach, takich jak nauki przyrodnicze, społecznych i techniczne.

Elementy rachunku prawdopodobieństwa są stosowane, między innymi w:

- metodach Monte Carlo,
- sieciach neuronowych,
- uczeniu maszynowym,
- różnego rodzaju zadaniach optymalizacji i klasyfikacji.

Elementy probabilistyki są także stosowane w informatyce:

- modelowanie procesów z niepewnymi (np. losowymi) parametrami,
- algorytmy zrandomizowane (losowy wybór w trakcie działanie), np. algorytm: genetyczny, mrówkowy, symulowanego wyżarzania, itd.,
- analiza probabilistyczna algorytmu ("zachowanie" algorytmu na losowych danych),
- losowe eksperymenty (porównywanie wyników algorytmów – metody statystyki opisowej).

Opracowanie danych statystycznych

<u>Statystyka</u> zajmuje się zbieraniem, opracowywaniem i analizą danych o zjawiskach masowych (nieprzewidywalnych), tj. zjawiskach powtarzających się dużą liczbę razy.

Badanie statystyczne umożliwia ustalenie pewnych prawidłowości (regularności), charakterystycznych wartości oraz tendencji w obserwowanych procesach. Nie można ich zazwyczaj ustalić na podstawie pojedynczych obserwacji.

Badaniu podlega <u>populacja</u> (zbiorowość statystyczna) – zbiór elementów (jednostek statystycznych) mających wspólną własność (cechę).

Cecha może przyjmować wartości:

- a) dyskretne (skokowe) np. liczba dzieci w rodzinie, liczba braków, liczba wypadków,
- b) ciągłe (z pewnego przedziału) np. zużycie wody, energii.

Badanie statystyczne można przeprowadzić:

- 1. poddając obserwacji wszystkie elementy populacji,
- 2. poddać obserwacji pewną reprezentację (próbę z populacji) i na tej podstawie wyciągnąć wnioski dotyczące całej populacji.

Ponieważ populacje bywają bardzo duże, stąd zazwyczaj stosuje się 2-gą metodę.

Rachunek Prawdopodobieństwa, Wykład 1.

Statystyczne Opracowanie Wyników

Niech X będzie badaną cechą w pewnej populacji.

 x_1, x_2, \dots, x_n ciąg n wartości obserwacji cechy X (wartości próby) nazywamy szeregiem statystycznym (szczegółowym).

Po uporządkowaniu (rosnąco lub malejąco) otrzymujemy uporządkowany szereg statystyczny.

Charakterystyki liczbowe rozkładu cechy w populacji

Analiza danych statystycznych powinna doprowadzić do zwięzłego przedstawienia wyników. Używa się do tego odpowiednich charakterystyk (liczb) zwanych *parametrami statystycznymi* (parametrami opisu danych statystycznych). Parametry te dzieli się na:

- 1. miary położenia,
- 2. miary zmienności (rozproszenia),
- 3. miary asymetrii,
- 4. miary koncentracji.

Miary położenia

Średnia arytmetyczna

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Dominanta (modalna, moda)

Wielkość D najliczniej występująca w szeregu.

Dla szeregu: 18, 21, 27, 29, 35, 43, 51 dominanta nie istnieje.

Dla szeregu: 8, 1, 2, 2, 3, 1, 4, 1, 7 D=1.

Mediana ("wartość środkowa")

Wielkość M taka, że co najmniej 50% obserwacji nie przekracza M (\leq) oraz co najmniej 50% obserwacji jest nie mniejsza od M (\geq).

Dla szeregu: 18, 21, 27, 29, 35, 43, 51 *M*=29.

Dla szeregu: 18, 21, 27, 29, 35, 43, 51, 59

M=(29+35)/2=32

Kwantyle

Kwantylp-procentowy, to wielkość K_p taka, że co najmniej p% obserwacji nie przekracza K_p (\leq) oraz co najmniej (100-p)% obserwacji jest nie mniejsza od K_p (\geq).

3,4,6,8,13,15,16,20,21,23,25,33,44,51,52,56

$$K_{25\%} = \frac{8+13}{2} = 10.5$$

Miary zmienności (zróżnicowania, rozproszenia)

Wariancja (oznaczana przez s^2, σ^2, D^2)

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Dla Przykładu 1 18, 21, 27, 29, 35, 43, 51, $\bar{x} = 32$.

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{7} [(18 - 32)^{2} + (21 - 32)^{2} + (27 - 32)^{2} + (29 - 32)^{2} + (27 - 32)^{2} + (2$$

$$+(35-32)^2+(43-32)^2+(51-32)^2$$
]= $_{120.2857}$

Odchylenie standardowe (oznaczana przez s, σ, D)

Jest to pierwiastek kwadratowy z wariancji.

Przedział $[\bar{x}-s,\bar{x}+s]$ nazywamy typowym przedziałem zmienności. Należą do niego niemal wszystkie elementy 70% (dużo)

Współczynnik zmienności

$$V(s) = \frac{s}{\overline{x}} \bullet 100\%$$

umożliwia porównywanie zmienności różnych cech.

Szereg rozdzielczy

Najczęściej ze względu na dużą liczbę wartości cechy w szeregu statystycznym, tworzymy szereg rozdzielczy, w których klasami są przedziały.

Dany jest szereg statystyczny x_1, x_2, \dots, x_n . Niech

$$x_{\min} = \min\{x_1, x_2, \dots, x_n\}$$
 oraz $x_{\max} = \max\{x_1, x_2, \dots, x_n\}$.

Różnicę $R = x_{\text{max}} - x_{\text{min}}$ nazywamy rozstępem szeregu.

Przyjmuje się, że <u>liczba klas</u> $k \approx \sqrt{n}$ i zaleca się, aby

Liczba obserwacji n	Liczba klas k
40-60	6-8
60-100	7-10
100-200	9-12
200-500	11-17

Klasy są rozłącznymi przedziałami $[x_{0,i},\ x_{1,i}),\ i=1,2,...,k$, gdzie $x_{0,i}$ oraz $x_{1,i}$ są odpowiednio dolnq i g'ornq granicq klasy.

Różnicę
$$h = x_{1,i} - x_{0,i}$$
 nazywamy rozpiętością klasy,

$$h \approx \frac{x_{\text{max}} - x_{\text{min}}}{k} = \frac{R}{k}.$$

Przykład 1.

Spytano o wiek 20 losowo wybranych pracowników pewnego zakładu.

19, 22, 24, 24, 25, 25, 26, 26, 27, 29, 30, 30, 31, 32, 32, 34, 34, 35, 35, 35

$$n=20, k \approx \sqrt{n} = \sqrt{20} \approx 4.$$

$$x_{\min} = \min\{x_1, x_2, \dots, x_{20}\} = 19,$$

$$x_{\text{max}} = \max\{x_1, x_2, \dots, x_{20}\} = 35.$$

$$R = x_{\text{max}} - x_{\text{min}} = 35 - 19 = 16. h \approx \frac{x_{\text{max}} - x_{\text{min}}}{k} = \frac{R}{k} = \frac{16}{4} = 4.$$

Mamy wiec klasy: [19, 23), [23, 27), [27, 31), [31, 35).

Tabela 1. Szereg rozdzielczy przedziałowy.

Tabela 1. Szereg rozdzieleży przedziałowy.							
numer	Klasa	liczebność	Częstość	liczebność	częstość		
klasy	$[x_{0,i},x_{1,i})$	n_{i}	n_i/n	skumulowana	skumulowana		
			ω_{i}	$n_{sk,i}$	$\omega_{_{sk},i}$		

1	19-23	2	0,1	2	0,1
2	23-27	6	0,3	8	0,4
3	27-31	4	0,2	12	0,6
4	31-35	8	0,4	20	1,0

UWAGI

- 1. Przedstawienie w postaci szeregu rozdzielczego nie jest jednoznaczne.
- 2. Pomiędzy klasami nie może być luk (każdy element szeregu musi należeć do pewnej klasy. Szczególną uwagę należy zwrócić na pierwszą i ostatnią klasę (należy ewentualnie je powiększyć). Liczba elementów w każdej klasie nie może być zbyt mała, ani zbyt duża.
- 3. Zastępując szereg statystyczny szeregiem rozdzielczym tracimy dokładność pewnych informacji. W pewnych praktycznych zastosowaniach nie jest to istotne.
- 4. Liczba klas zazwyczaj nie przekracza 30.

Średnia arytmetyczna

i. Szereg rozdzielczy
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} n_i \Box x_i^s, \qquad x_i^s - \text{środek klasy}$$

Wariancja (oznaczana przez s^2, σ^2, D^2)

A) Szereg rozdzielczy

$$s^{2} = \frac{1}{n} \sum_{i=1}^{k} (x_{i}^{s} - \overline{x})^{2} * n_{i}, \qquad x_{i}^{s} - \text{środek klasy}$$

Asymetria

$$\overline{x} < M < D \overline{x} > M > D$$

$$\overline{x} = M = D$$

Współczynnik koncentracji (skupienia), kurtoza K $K = \frac{M_4}{c^4} - 3$

$$K = \frac{M_4}{s^4} - 3$$

gdzie $M_l = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^l$, a s jest odchyleniem standardowym.

Kurtoza ma wartość 0 dla rozkładu normalnego. Gdy K>0, to rozkład jest bardziej skupiony ("szpiczasty") niż rozkład normalny, gdy K<0, to rozkład jest bardziej spłaszczony niż rozkład normalny.

 $\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$ standardowy rozkład normalny