A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 7EF

Bookmark

Show all steps: (

ON

Problem

Use parts 4 and 6 to explain why the following are true:

- (a) $a^{12} \equiv 1 \pmod{180}$ for every a such that gcd(a, 180) = 1.
- (b) $a^{42} \equiv 1 \pmod{1764}$ if $\gcd(a, 1764) = 1$. (REMARK: $1764 = 4 \times 9 \times 49$.)
- (c) $a^{60} \equiv 1 \pmod{1800}$ if gcd(a, 1800) = 1.

Step-by-step solution

Step 1 of 5

Consider the following result:

If
$$gcd(m, n) = 1$$
, $gcd(a, mn) = 1$, then

$$a^{\phi(m)\phi(n)} \equiv 1 \pmod{mn}$$

If t is a common multiple of $\phi(m)$, $\phi(n)$, then

$$a' \equiv 1 \pmod{mn}$$

For some prime p,

$$\phi(p^n) = p^n - p^{n-1}$$

Comment

Step 2 of 5

(a)

Objective is to show that $a^{12} \equiv 1 \pmod{180}$ for every a such that $\gcd(a, 180) = 1$.

The $180 = 2^2 \times 3^2 \times 5$. Let $l = 2^2$, $m = 3^2$, n = 5 also $\gcd(l, m, n) = 1$. Then, $\phi(l) = 2^2 - 2$ = 2, $\phi(m) = 6$, $\phi(n) = 4$. Let t = 12, which is the common multiple of $\phi(l)$, $\phi(m)$, $\phi(n)$. Then by the above result, it implies that

 $a^{12} \equiv 1 \pmod{180}$

Comment

Step 3 of 5

(b)

Objective is to show that $a^{42} \equiv 1 \pmod{1764}$ for every a such that $\gcd(a, 1764) = 1$.

The $1764 = 2^2 \times 3^2 \times 7^2$. Let $l = 2^2$, $m = 3^2$, $n = 7^2$ also gcd(l, m, n) = 1. Then,

$$\phi(l) = 2^2 - 2$$
$$= 2.$$

$$\phi(m) = 6$$

$$\phi(n) = 6$$
, $\phi(n) = 42$.

Let t=42, which is the common multiple of $\phi(l)$, $\phi(m)$, $\phi(n)$. Then by the above result, it implies that

$$a^{42} \equiv 1 \pmod{1764}$$

Comment

Step 4 of 5

(c)

Objective is to show that $a^{60} \equiv 1 \pmod{1800}$ for every a such that $\gcd(a, 1800) = 1$.

The $180 = 2^3 \times 3^2 \times 5^2$. Let $l = 2^3$, $m = 3^2$, $n = 5^2$ also gcd(l, m, n) = 1. Then,

$$\phi(l) = 2^3 - 2^2$$

$$= 4.$$

$$\phi(m)=6$$
,

$$\phi(n) = 20.$$

Let t = 60, which is the common multiple of $\phi(l)$, $\phi(m)$, $\phi(n)$.

Comment

Then by the above result, it implies that $a^{60} \equiv 1 \pmod{1800}$.
Comment

Step 5 of 5