U.S. Application No. 10/521,025 Atty. Dkt. No. 8947-000122/US

AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A compound for producing a heat-ray cutoff film, comprising:

a dispersion sol including conductive nanoparticles uniformly dispersed in an amphiphilic solvent formed essentially of an amphiphilic material,

wherein the solvent with the conductive nanoparticles dispersed therein has amphiphilic properties.

- 2. (Previously Presented) The compound according to claim 1, wherein the conductive nanoparticles include at least one of ATO, ITO, and AZO.
- 3. (Currently Amended) The compound according to claim 1, wherein the conductive nanoparticles have diameters under 200 nm, and the amphiphilic-solvent is present in a range of about 20 $to[[\sim]]$ 99 wt % relative to the dispersion sol.
- 4. (Currently Amended) The compound according to claim 3, wherein the amphiphilic—solvent includes ethylene glycol monomethyl ether, ethylene glycol monopropyl ether, or ethylene glycol monobutyl ether.
- 5. (Original) The compound according to claim 1, which further comprises an acid for adjusting surface charges of the conductive nanoparticles, the acid including an organic acid, an inorganic acid, or polymeric acid.
 - 6. (Currently Amended) The compound according to claim 5, wherein the

conductive nanoparticles are ATO nanoparticles containing <u>about 5 to[[~]] 20 wt % Sb</u>, and the acid is present in a range of <u>about 5×10^{-4} to[[~]] 3.5×10^{-3} g.</u>

- 7. (Previously Presented) The compound according to claim 1, which further comprises a dispersing agent for stabilizing the conductive nanoparticles.
- 8. (Currently Amended) The compound according to claim 7, wherein the dispersing agent is present in a range of <u>about 1 to[[~]]</u> 30 wt % relative to the dispersion sol, the dispersing agent including a dispersing agent containing an amine radical, a dispersing agent containing an acid radical, or a neutral dispersing agent.
- 9. (Currently Amended) The compound according to claim 7, which further comprises a resin binder selected from a_non-aqueous anti-hydrolic-resin binder, an aqueous hydrolic-resin binder, or an alcoholic resin binder.
- 10. (Currently Amended) The compound according to claim 9, wherein the resin binder is present in a range of about 1 to [-] 95 wt % relative to the compound.
 - 11. (Currently Amended) The compound according to claim 10, wherein:

the <u>aqueous hydrolie</u>-resin binder is selected from a water-soluble alkyd, a polyvinylalcohol, a polybutylalcohol, an acrylic, an acrylylsty[[1]]rene, or a super-acid vinyl;

the alcoholic resin binder is selected from a polyvinylbutyral or a polyvinylacetal; and

the non-aqueous anti-hydrolic-resin binder is a heat-hardening resin binder or

an ultraviolet-hardening resin binder, the heat-hardening resin binder selected from an acrylic, a polycarbonate, a polychloride vinyl, an urethane, a melamine, an alkyd, a polyest[[h]]er, or an epoxy, and the ultraviolet-hardening resin binder selected from an epoxy acrylylate, a polyether acrylyate, a polyest[[h]]er acrylylate, or an urethane-metamorphosed acrylylate.

- 12. (Currently Amended) The compound according to claim 9, wherein the conductive nanoparticles have diameters under 200 nm, and the amphiphilie solvent is present in a range of about 20 to[[~]] 99 wt % relative to the dispersion sol.
- 13. (Currently Amended) The compound according to claim 12, wherein the amphiphilic—solvent includes ethylene glycol monomethyl ether, ethylene glycol monopropyl ether, or ethylene glycol monobutyl ether.
- 14. (Currently Amended) The compound according to claim 12, wherein the conductive nanoparticles are ATO nanoparticles containing <u>about 5 to[[~]] 20 wt % Sb</u>, and the acid is present in a range of <u>about $5 \times 10^{-4} \times 10^{-4} \times 10^{-3} \times 10^{-</u>$
- 15. (Currently Amended) The compound according to claim 12, wherein the dispersing agent is present in a range of <u>about 1 to[[~]]</u> 30 wt % relative to the dispersion sol, the dispersing agent including a dispersing agent containing an amine radical, a dispersing agent containing an acid radical, or a neutral dispersing agent.
 - 16. (Currently Amended) A method of forming a compound for producing a

heat-ray cutoff film, comprising:

uniformly dispersing conductive nanoparticles in an amphiphilie solvent to form a dispersion sol, the solvent formed essentially of an amphiphilic material.

wherein the solvent with the conductive nanoparticles dispersed therein has amphiphilic properties.

- 17. (Currently Amended) The method according to claim 16, wherein the conductive nanoparticles have diameters under 200 nm, and the amphiphilic-solvent is present in a range of about 20 to[[~]] 99 wt % relative to the dispersion sol.
- 18. (Currently Amended) The method according to claim 16, wherein the conductive nanoparticles are dispersed in the amphiphilic—solvent by means of a dispersing agent and surface charges of the conductive nanoparticles are adjusted with an acid.
 - 19. (Currently Amended) The method according to claim 18, wherein:

the conductive nanoparticles are ATO nanoparticles containing <u>about 5 to[[~]]</u> 20 wt % Sb;

the acid is present in a range of <u>about $5x10^{-4} to[[\sim]] 3.5x10^{-3} g$ </u>; and

the dispersing agent is present in a range of <u>about 1 to[[~]]</u> 30 wt % relative to the dispersion sol, the dispersing agent including a dispersing agent containing an amine radical, a dispersing agent containing an acid radical, or a neutral dispersing agent.

20. (Currently Amended) A method of forming a heat-ray cutoff film,

comprising:

mixing the compound formed by the method of claim 19 with a resin binder selected from a_non-aqueous anti-hydrolic-resin binder, an aqueous hydrolic-resin binder, or an alcoholic resin binder to obtain a mixed composite; and

depositing the mixed composite on a substrate and hardening the deposited composite with a chemical ray using ultraviolet radiation, an electronic ray, or heat.

- 21. (Currently Amended) The method according to claim 20, wherein the resin binder is present in a range of about 1 to[[~]] 95 wt % relative to the compound.
 - 22. (Previously Presented) The method according to claim 20, wherein:

the substrate comprises one of glass, a ceramic, a plastic, a metal, and a product of these; and

the mixed composite is formed in a plastic condition at a temperature of about 50 to 500°C.

- 23. (Currently Amended) The method according to claim 20, wherein the substrate is a polycarbonate-series resin, a poly (metha) acrylylester-series resin, a saturated fatty acid, or a cyclo-olefin resin, the substrate hardened by ultraviolet radiation.
- 24. (Currently Amended) The method according to claim 23, wherein the substrate is exposed to ultraviolet radiation in the range of <u>about 500 to[[~]] 1500 mJ/cm</u>, while the substrate is conveyed at a velocity of <u>about 15 to[[~]] 50 m/min</u>.

- 25. (Original) A heat-ray cutoff film manufactured by the method as defined in claim 18.
- 26. (Previously Presented) A heat-ray cutoff film manufactured by the method as defined claim 19.
- 27. (Previously Presented) The heat-ray cutoff film according to claim 26, wherein the film has a surface resistance of 1 x $10^6~\Omega$ ·cm.
- 28. (Currently Amended) The heat-ray cutoff film according to claim 26, wherein the film has a thickness of less than 5 μ m, a pencil <u>hardness intensity</u> above 1H, a visible light transmittance above 50%, and a heat-ray cutoff rate of <u>at least 50</u>%.
 - 29. (Currently Amended) A method of screening heat rays, comprising:

attaching a heat-ray cutoff film on a vessel, the heat-ray cutoff film formed from a dispersion sol including conductive nanoparticles uniformly dispersed in an amphiphilic solvent formed essentially of an amphiphilic material,

wherein the solvent with the conductive nanoparticles dispersed therein has amphiphilic properties.

30. (Currently Amended) A method of screening heat rays with a heat-ray cutoff film, comprising:

forming a compound including a dispersion sol with conductive nanoparticles uniformly dispersed in an amphiphilic solvent formed essentially of an amphiphilic material, wherein the solvent with the conductive nanoparticles dispersed therein has

amphiphilic properties;

mixing the compound with a resin binder selected from a_non-aqueous antihydrolic-resin binder, an aqueous hydrolic-resin binder, or an alcoholic resin binder to obtain a mixed composite;

depositing the mixed composite on a substrate and hardening the deposited composite with a chemical ray using ultraviolet radiation, an electronic ray, or heat to form the heat-ray cutoff film; and

coating the heat-ray cutoff film on a surface of a vessel.

- 31. (Currently Amended) The method according to claim 30, wherein the conductive nanoparticles have diameters under 200 nm, and the amphiphilic-solvent is present in a range of about 20 to[[~]] 99 wt % relative to the dispersion sol.
- 32. (Currently Amended) The method according to claim 30, wherein the conductive nanoparticles are dispersed in the amphiphilic—solvent by means of a dispersing agent and surface charges of the conductive nanoparticles are adjusted with an acid.
 - 33. (Currently Amended) The method according to claim 32, wherein:

the conductive nanoparticles are ATO nanoparticles containing <u>about 5 to[[~]]</u> 20 wt % Sb;

the acid is present in a range of <u>about $5x10^{-4} \text{ to}[[\sim]] 3.5x10^{-3} \text{ g}$;</u> and

the dispersing agent is present in a range of <u>about 1 to[[~]]</u> 30 wt % relative to the dispersion sol, the dispersing agent including a dispersing agent containing an amine radical, a dispersing agent containing an acid radical, or a neutral dispersing

U.S. Application No. 10/521,025 Atty. Dkt. No. 8947-000122/US

agent.

34. (Currently Amended) The method according to claim 30, wherein the resin

binder is present in a range of about 1 $to[[\sim]]$ 95 wt % relative to the compound.

35. (Currently Amended) The method according to claim 30, wherein the

substrate is a polycarbonate-series resin, a poly (metha) acrylylester-series resin, a

saturated fatty acid, or a cyclo-olefin resin, the substrate hardened by ultraviolet

radiation.

36. (Original) The method according to claim 30, wherein the vessel is made of a

metal, a ceramic, or a plastic, containing drinking waters or foods.

37. (New) The compound according to claim 1, wherein the conductive

nanoparticles are present in an amount of at least 20 wt% relative to the dispersion

sol.

38. (New) The method according to claim 16, wherein the conductive

nanoparticles are present in an amount of at least 20 wt% relative to the dispersion

sol.

39. (New) The method according to claim 20, wherein the conductive

nanoparticles are present in an amount of at least 20 wt% relative to the dispersion

sol.

11

U.S. Application No. 10/521,025 Atty. Dkt. No. 8947-000122/US

- 40. (New) The heat-ray cutoff film according to claim 25, wherein the conductive nanoparticles are present in an amount of at least 20 wt% relative to the dispersion sol.
- 41. (New) The heat-ray cutoff according to claim 26, wherein the conductive nanoparticles are present in an amount of at least 20 wt% relative to the dispersion sol.
- 42. (New) The method according to claim 29, wherein the conductive nanoparticles are present in an amount of at least 20 wt% relative to the dispersion sol.
- 43. (New) The method according to claim 30, wherein the conductive nanoparticles are present in an amount of at least 20 wt% relative to the dispersion sol.