Detecting Parkinson's Disease using Machine Learning

Team ID: PNT2022TMID23224

DARSHAN AJIT K R (913119205009)

DINESHKUMAR P (913119205010)

KISHORE KUMAR R (913119205019)

KRITHIK DEIVARAJAN V (913119205020)

INDEX

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

10. ADVANTAGES & DISADVANTAGES 11. CONCLUSION 12. FUTURE SCOPE

13. APPENDIX

Source Code

GitHub & Project Demo Link

1. INTRODUCTION

1.1 Project Overview

More than 10 million people are living with Parkinson's Disease worldwide, according to the Parkinson's Foundation. While Parkinson's cannot be cured, early detection along with proper medication can significantly improve symptoms and quality of life

The researchers found that the drawing speed was slower and the pen pressure is lower among Parkinson's patients. One of the indications of Parkinson's is tremors and rigidity in the muscles, making it difficult to draw smooth spirals and waves. It is possible to detect Parkinson's disease using the drawings alone instead of measuring the speed and pressure of the pen on paper. The goal of this project is to quantify the visual appearance (using HOG method) of these drawings and then train a machine learning model to classify them. In this project, Histogram of Oriented Gradients (HOG) image descriptor is used along with Random Forest and K Nearest Neighbour classifier to automatically detect Parkinson's disease in hand-drawn images of spirals and waves.

1.2 Purpose

In this Python Machine Learning project, a model will be built to detect Parkinson's disease using two of the Classifier techniques known as K Nearest Neighbour Classifier and Random Forest Classifier as our output contains only 1's and 0's. The dataset is loaded, the features and targets are identified and split into training and testing sets and are finally passed to K Nearest Neighbour Classifier and Random Forest Classifier for prediction.

2. LITERATURE SURVEY

2.1 Existing Problem

In the existing system, Parkinson's Disease (PD) is usually only detected at the secondary stage (Dopamine deficiency) which leads to the onset of many comorbidities in the patient. The doctor must manually examine and determine the diagnosis. The symptoms also vary from person to person which makes suggesting medicines a challenge. This leads to a lot of late diagnoses as well as misdiagnoses which makes the treatment process more complex and expensive in addition to leading to health complications for the patient. At the moment, there is no single medical diagnosis test to diagnose PD. Doctors carry a number of tests to rule out the presence or absence of PD. These tests include Single-Photon Emission Computerized Tomography (SPECT) scan

called a dopamine transporter (DAT) scan. A DaTscan involves an injection of a small amount of a radioactive drug and a machine called a single-photon emission computed tomography (SPECT) scanner, similar to an MRI. The drug binds to dopamine transmitters in the brain, showing where in the brain dopaminergic neurons are. Dopaminergic neurons are the source of dopamine in the brain. A loss of dopamine is what leads to Parkinson's. Lab tests, such as blood tests, to rule out other conditions that may be causing the symptoms. Imaging tests such as an MRI, ultrasound of the brain and PET scans also may be used to help rule out other disorders. Imaging tests aren't particularly helpful for diagnosing Parkinson's disease. This results in a high misdiagnosis rate (up to 25% by non-specialists) and many years before diagnosis, people can have the disease. Thus, existing system is not effective in early prediction and accurate medicinal diagnosis to the affected people.

2.2 References

- [1]. Sakshi Jadhav, Seema Thorat, Sakshi Fokane, Rahul Chakre, "Classification of Parkinson's disease using Machine Learning Techniques",2022.
- [2]. Jie Mei et al. "Machine learning for the diagnosis of Parkinson's disease",2021.
- [3]. Atiqur Rahman, Sanam Shahla Rizvi, Aurangzeb Khan, et al. "Parkinson's Disease Diagnosis in Cepstral Domain Using MFCC and Dimensionality Reduction with SVM Classifier",2021.
- [4]. Mosarrat Rumman, Abu Nayeem Tasneemet et al. "Early detection of Parkinson's disease using image processing and artificial neural network",2019.
- [5]. Mahima Thakur, Harisudha Kuresan, Samiappan Dhanalakshmi et al. "Soft Attention Based DenseNet Model for Parkinson's Disease Classification Using SPECT Images",2022.
- [6]. Ankit kurmi, Shreya Biswas, Ram Sarkar et al. "An Ensemble of CNN Models for Parkinson's Disease Detection Using DaTscan Images",2022.
- [7]. Sumeet Shinde, Shweta Prasad, Yash Saboo et al. "Predictive markers for Parkinson's disease using deep neural nets on neuromelanin sensitive MRI",2019.
- [8]. Zhennao Cai, Jianhua Gu, Caiyun Wen, Dong Zhao et al. "An Intelligent Parkinson's Disease Diagnostic System Based on a Chaotic Bacterial Foraging Optimization Enhanced Fuzzy KNN Approach",2018.

2.3 Problem Statement Definition

Instead of monitoring the speed and pressure with which the pen strikes the paper, it is possible to diagnose Parkinson's disease solely by looking at the drawings. The objective is to use the HOG (Histogram of Oriented Gradients) image descriptor method to assess these drawings' visual appearance before training a machine learning model to categorise them. In this research, Random Forest classifier and K Nearest Neighbour classifier are utilized to automatically identify Parkinson's disease in hand-drawn spirals and waves.

Problem Statement (PS)	I am	I'm trying to	But	Because	Which makes me feel
PS-1	A person with mild tremors in my hands	Determine if I have any health issues	Since healthcare and testing is expensive	I am not very financially well off	Anxious that I may have a problem that requires medical assistance, but I might not be able to receive it.
PS-2	A 50year- old man with impaired posture and balance that seems to get worse with time	Seek out a diagnosis for my ailment	I don't live close to a specialty hospital for screening for neuro problems	I live in a rural area which gives me access to a primary health care centre at most.	Worried and concerned that I have parkinsonism and don't have the ability to avail any treatment soon due to lack of diagnosis.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

`An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes. It is a useful tool to helps teams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it.

The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

3.2 Ideation & Brainstorming

Ideation and Brainstorming are performed to generate ideas and solutions. Brainstorming is a group activity unlike ideation.

3.3 Proposed Solution

S. No.	Parameter	Description
1.	Problem Statement (Problem to be	More than 10 million people are living with
	solved)	Parkinson's Disease worldwide, according to
		the Parkinson's Foundation. While
		Parkinson's cannot be cured, early detection
		along with proper medication can
		significantly improve symptoms and quality
		of life. Detecting Parkinson's disease from
		the spirals and waves drawn by the patients
		using a Machine Learning Model is the
		Problem Statement.

2.	Idea / Solution description	One of the major symptoms of Parkinson's disease is tremors or rhythmic shaking of the carpals (hands). This results in slower drawing speed and lower pen pressure in Parkinson's patients. A direct result of this is that the spirals and waves drawn by the Parkinson's patients look significantly different. Thus, the spirals and waves drawn are used to determine if the patient has Parkinson's disease.
3.	Novelty / Uniqueness	Currently, there is no test similar to this in the market. All other available tests are medically invasive in nature and need financial remittance to conduct. This test is completely free making it more accessible.
4.	Social Impact / Customer Satisfaction	This will help countless potential patients get a quicker diagnosis which will result in better quality of life due to being prescribed the correct medication that will help in improving the symptoms.
5.	Business Model (Revenue Model)	Increase in traffic to the website is a direct reflection of the increased users which will ultimately help in increasing the ad revenue of the developer of the website.
6.	Scalability of the Solution	This solution can gradually be expanded to also include diagnoses for diseases like Essential Tremor and Normal Pressure Hydrocephalus, both of which manifest in the form of slowness (bradykinesia), stiffness (rigidity), and resting tremor.

3.4 Problem Solution Fit

4. REQUIREMENT ANALYSIS

4.1 Functional Requirement

	<u> </u>	
FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)
	(Epic)	
FR-1	Home Page	Short description about Parkinson's Disease, its
		different types, and symptoms along with possible
		comorbidity management techniques. If the user
		already has an account, they can log in. Otherwise,
		they are required to sign up.
FR-2	User Registration (Sign in)	User needs to sign up/ register by entering Name,
	Page	Email address, Phone number and Password.
FR-3	User Confirmation &	Verification will be done via Email or OTP.
	Verification	
FR-4	User Login Page	User can enter their credentials (Email and Password)
		and log in to their account.

FR-5	User Dashboard	The logged in user is led to a dashboard where the
		user is asked to upload the image in order to provide
		the diagnosis. The user is also asked for other
		parameters such as age, blood type, mobility issues
		etc for survey purposes. This information is optional
		and is collected only from willing users.
FR-6	Test input (Copy of handdrawn	
	image)	image. It can be uploaded either using a live drawing
		notepad or as the digital copy of an already drawn
		spiral/wave.
		Image quality evaluation is done in this step to
		determine whether the image quality is sufficient for
		processing.
FR-7	User authentication during	User authentication is done using PHP via database in
	login	XAMPP server.
FR-8	Disease prediction by image	Classification is carried out using Digital image
	processing	processing using Histogram of Oriented Gradients
		(HOG) image descriptor along with a random forest
		classifier.
FR-9	Recommendation	The prediction system provides a positive or
		negative diagnosis. It also suggests the specialization
		doctors that need to be consulted. The system arrives
		at the result by analysing the standards defined by
		Movement Disorder Society Unified Parkinson's
		Rating Scale and progression of the disease.

4.2 Non-Functional Requirements

Non-Functional Requirement	Description
Usability	The website can be easily navigated even by the uninitiated user and the functionality that the website provides is simple and easy to understand.
Security	The application is designed to safeguard against threats including unauthorized access and protects the patient's confidentiality by keeping patient details visible only to admin and the patient. Access permissions can only be changed by the system's data administrator.
Reliability	The software will work without failure. It does not
	have any security bugs. The model is trained with different visuals for detecting the disease, which leads to a more accurate assessment of a disease, thereby making the system more reliable for its users.
	Usability Security

NFR-4	Performance	The system is very responsive to user interactions with it and can handle a large traffic without getting overloaded. The user wait time is not prolonged, including capturing and uploading to prediction and providing recommendations.
NFR-5	Availability	The software is always available to the user irrespective of the any new module development. If any backend work requires that the page be unavailable, then a notification is displayed to the user informing when it will up again for use. The software can also be utilized by anyone, regardless of the customer location or other network capabilities.
NFR-6	Scalability	The system has the ability to grow without any negative impact on its performance. The system is designed in a way it can withstand a large number of users at any given moment and if need be, can be scaled up to handle even more users.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

Solution architecture is the process of developing solutions based on predefined processes, guidelines and best practices with the objective that the developed solution fits within the enterprise architecture in terms of information architecture, system portfolios, integration requirements, etc.

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Web user)	Viewing Home Page	USN-1	As a user, I can view the home page which has a description of the disease as well as options to sign up or log in.	I can get to know about the disease and its symptoms as well as navigate to sign up page and log in page from there.	Low	Sprint1
	Sign Up Page	USN-2	As a user, I can register for the application by entering my name, phone number, email, password, and confirming my password.	I can login with my credentials.	High	Sprint1
	Authorization	USN-3	As a user, I will receive confirmation email once I have registered for the application.	I can receive confirmation email & click confirm.	High	Sprint2
	Login	USN-4	As a user, I can log into the application by entering email & password.	I can access my account / dashboard after logging in successfully.	High	Sprint1
	Dashboard	USN-5	As a user, I can upload images of spiral and wave to the website in order to receive a diagnosis.	I can successfully access the dashboard to upload the images.	High	Sprint2
	Results	USN-6	As a user, I can receive a diagnosis in addition to recommendations	I can access the diagnosis and possible available	High	Sprint3

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
	-		on what I should do now.	solutions.		
Administrator	Data Collection	USN-7	I need to collect data (images of spirals and waves drawn by healthy people and Parkinson's patients).	I have sizable amount of data to split into training set and testing set.	High	Sprint2
	Data Pre- Processing	USN-8	I need to clean my data and prepare it for model building by doing preprocessing activities such as resizing, converting from RGB to grayscale etc.	I have the dataset ready for model building.	High	Sprint3
	Model Building	USN-9	I need to build the model using Random Forest Classifier for spiral images and K Nearest Neighbour (KNN) for wave images.	The model is ready for deployment on testing data.	High	Sprint4
	Model Deployment	USN-10	I need to deploy the Machine Learning model that was built.	The model has been deployed successfully.	Medium	Sprint5
	Application Building	USN-11	I need to build the website for the application using HTML, CSS etc.	The website is functional.	High	Sprint3
	Linking Model and Application	USN-12	I can integrate the deployed model and web application using python flask	The web application is fully functional and can be	High	Sprint5
User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release

	server.	used by the	
		user.	

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-4	Viewing Home Page	USN-1	As a user, I can view the home page which has a description of the disease as well as options to sign up or log in.	2	Low	Kishore kumar R Dineshkumar P
Sprint-4	Sign Up Page	USN-2	As a user, I can register for the application by entering my name, phone number, email, password, and confirming my password.	2	High	Krithik Deivarajan V Darshan Ajit K R
Sprint-4	Authorization	USN-3	As a user, I will receive confirmation email once I have registered for the application.	2	High	Kishore kumar R Dineshkumar P
Sprint-4	Login	USN-4	As a user, I can log into the application by entering email & password.	2	High	Krithik Deivarajan V Darshan Ajit K R
Sprint-4	Dashboard	USN-5	As a user, I can upload images of spiral and wave to the website in order to receive a diagnosis.	2	High	Kishore kumar R Dineshkumar P
Sprint-4	Results	USN-6	As a user, I can receive a diagnosis in addition to recommendations on what I should do now.	2	High	Krithik Deivarajan V Darshan Ajit K R

Sprint-1	Data Collection	USN-7	I need to collect data (images of spirals and waves drawn by healthy people and Parkinson's patients).	5	High	Kishore kumar R Dineshkumar P
Sprint-1	Data Pre- Processing	USN-8	I need to clean my data and prepare it for model building by doing preprocessing activities such as resizing, converting from RGB to grayscale etc.	5	High	Krithik Deivarajan V Darshan Ajit K R
Sprint-2	Model Building 1	USN-9	I need to build the model using Random Forest Classifier for spiral images.	8	High	Kishore kumar R Dineshkumar P
Sprint 2	Model Building 2	USN-10	I need to build the model using K Nearest Neighbour (KNN) for wave images.	8	High	Krithik Deivarajan V Darshan Ajit K R
Sprint-3	Model Deployment	USN-11	I need to deploy the Machine Learning model that was built.	13	Medium	Kishore kumar R Dineshkumar P
Sprint-4	Application Building	USN-12	I need to build the website for the application using HTML, CSS and link it to the model.	8	High	Krithik Deivarajan V Darshan Ajit K R

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	10	6 Days	24 Oct 2022	29 Oct 2022	10	29 Oct 2022

Sprint-2	16	6 Days	31 Oct 2022	05 Nov 2022	16	05 Nov 2022
Sprint-3	13	6 Days	07 Nov 2022	12 Nov 2022	13	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3 Reports From JIRA

Roadmap weekly sprint

Roadmap monthly sprint

Burndown Report

Velocity Report

7. CODING & SOLUTIONING

7.1 Feature 1

Two Machine Learning models have been trained, one using spiral image and another using wave image to detect Parkinson's Disease using Random Forest Classifier. Both the models have an average accuracy of 83%.

Training the model for Spiral image:


```
Extracting dataset
  [10] handle_spiral = zf.ZipFile(r'/content/spiral-20221031T093813Z-001.zip')
    handle_spiral.extractall('/content/Spiral')
          handle spiral.close()
          handle_wave = zf.ZipFile(r'/content/wave-20221031T090659Z-001.zip')
          handle_wave.close()

    Load train data and test data

  [11] spiral_train_healthy = os.listdir('/content/Spiral/spiral/training/healthy/')
          spiral_train_park = os.listdir('/content/Spiral/spiral/training/parkinson/')
          fp\_spiral\_train\_healthy = '\_content/Spiral/spiral/training/healthy/ fp\_spiral\_train\_park = '\_content/Spiral/spiral/training/parkinson/'
          spiral test_healthy = os.listdir('/content/Spiral/spiral/testing/healthy/')
spiral_test_park = os.listdir('/content/Spiral/spiral/testing/parkinson/')
          fp_spiral_test_healthy = '/content/Spiral/spiral/testing/healthy/'
fp_spiral_test_park = '/content/Spiral/spiral/testing/parkinson/'

    Quantifying images

  [12] def quantify_image(image):
            features = feature.hog(image,orientations=9,
   Preprocessing
  [13] trainX = []
testX = []
        outputs = []
trainY = []
         for i in spiral_train_healthy:
   image = cv2.imread(fp_spiral_train_healthy+i)
            Image = CV2.Imreau(p_Spin act vall_meatury);
image = cv2.cvtcolor(image , cv2.coLoR_BGR2GRAY)
image = cv2.resize(image , (200,200))
image = cv2.threshold(image , 0, 255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
features = quantify_image(image)
            trainX.append(features)
            trainY.append('healthy')
         for i in spiral train park:
            image = cv2.imread(fp_spiral_train_park+i)
image = cv2.cvtColor(image , cv2.CoLor_BGR2GRAY)
image = cv2.resize(image , (200,200))
                                                                                                                                                                       ↑↓⊖目
            image = cv2.imread(fp_spiral_train_park+i)
            image = cv2.cvtColor(image , cv2.COLOR_BGR2GRAY)
image = cv2.resize(image , (290,290))
image = cv2.threshold(image ,0,255,cv2.THRESH_BINARY_IMV | cv2.THRESH_DTSU)[1]
             features = quantify_image(image)
             trainX.append(features)
             trainy.append('parkinson')
           for i in spiral_test_healthy:
             image = cv2.imread(fp_spiral_test_healthy+i)
            features - quantify_image(image)
             testX.append(features)
             testy.append('healthy')
           for i in spiral_test_park:
             image = cv2.imread(fp_spiral_test_park+i)
             outputs.append(image)
              image = cv2.cvtColor(image , cv2.COLOR BGR2GRAY)
             image = cv2.resize(image , (200,200))
image = cv2.threshold(image ,0,255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
foatures = quantify_image(image)
```

testx.append(features)
testy.append('parkinson')

```
↑ ↓ 🗇 🗖 🛊 🖸
       [14] trainX = np.array(trainX)
                                                         testx = np.array(testx)
                                                            trainy = np.array(trainy)
                                                            testy = np.array(testy)
    [15] trainX
                                                         array([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
                                                                                                                                [0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
       [16] testX
                                                         array([[ə., ə., ə., ..., ə., ə., ə.],
[ə., ə., e., ..., ə., ə., ə.],
                                                                                                                             [8., 8., 8., ..., 8., 8., 8.],
[9., 6., 9., ..., 6., 0., 9.],
[9., 8., 8., ..., 6., 8., 8.]])
                                             array(['healthy', 'healthy', 'parkinson', 'pa
[18] testY
                                                  array(['healthy', 'healthy', 'parkinson', 'parkins
```

Plotting the heatmap

[27] plt.figure(figsize-(5,5))

plt.show()

sns.heatmap(cnf , annot-True , cnap-"coolwarm" , cbar-False)

```
    Calculating the accuracy

         [28] acc = metrics.accuracy_score(testy,preds)
          [29] indexes = np.random.randint(0,30,25)
                                            indexes
       [30] labels = []
                                          for i in indexes:
                                                    pred = le.inverse_transform(preds)[i]
                                                        labels.append(pred)
                                      ['parkinson',
'parkinson',
'parkinson',
'parkinson',
'parkinson',
'parkinson',
'parkinson',
'healthy',
'healthy',
'parkinson',
'parkins
       [32] results = []
                                       for i in range(25):
   image = outputs[i]
                                                  if labels[i] == 'healthy':
  color = (0,255,0)
else:
                                                    image = cv2.resize(image,(128,128))
cv2.putText(image,text,(3,20),cv2.FONT_HERSHEY_SIMPLEX,0.5,color,2)
                                                    results.append(image)
```


Training the model for wave image

```
Import necessary libraries

(1) Xmatplotlib inline

import mumpy as no
import pandas as pd
import matplotlib.pyplot as plt
import scalors as as se
import candon
import cos
impo
```


Load train data and test data

```
[5] wave_train_healthy = os.listdir('/content/Wave/wave/training/healthy/')
wave_train_park - os.listdir('/content/Wave/wave/training/parkinson/')

fp_wave_train_healthy = '/content/Wave/wave/training/healthy/'
fp_wave_train_park = '/content/Wave/wave/training/parkinson/'

wave_test_healthy - os.listdir('/content/Wave/wave/testing/healthy/')
wave_test_park = os.listdir('/content/Wave/wave/testing/parkinson/')

fp_wave_test_healthy - '/content/Wave/wave/testing/healthy/'
fp_wave_test_park = '/content/Wave/wave/testing/parkinson/'
```

· Quantifying images

Preprocessing

```
[7] trainx = []
testx = []
outputs = []
trainv - []
testv = (]

for i in wave_train_healthy:
inage = cvz.cvtcolor(finage , cvz.cvcoR_BRZEGRAY)
inage = cvz.threshold(finage , cvz.cvcoR_BRZEGRAY)
inage = cvz.threshold(finage , cvz.cvcoR_BRZEGRAY)
inage = cvz.cvtcolor(finage , cvz.cvcoR_BRZEGRAY)
i
```

```
[8] trainX - np.array(trainX)
                                                                     testX = np.array(testX)
trainY = np.array(trainY)
testY = np.array(testY)
[9] trainx
                                                                                                                                                                                                                                                                                                                                ],
, 0.
],
, e.
],
                                                                         \begin{array}{c} \operatorname{array}([[\theta_*,\,\theta_*,\,\theta_*,\,0.,\,\dots,\,\theta_*,\,\theta_*,\,\theta_*],\\ [\theta_*,\,\theta_*,\,0.,\,\dots,\,\theta_*,\,\theta_*,\,\theta_*],\\ [\theta_*,\,\theta_*,\,0.,\,\dots,\,\theta_*,\,0.,\,0.,\,\theta_*], \end{array}
                                                                                                                                                                                     [0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
                                                                     array(['healthy', 'healthy', 'hea
                                                                             array(['healthy', 'healthy', 'parkinson', 'parkins
```

```
    Label encoding

 [13] le = LabelEncoder()
 [14] trainV = le.Fit_transform(trainV)
    testY = le.transform(testY)

    Building the model using KNN

 · Fitting the model
     KNeighborsClassifier()

    Predicting using the model

 [19] preds - model.predict(testX)
     array([0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1])

    Building the confusion matrix

 array([[10, 5],
[ 2, 1∃]])
```

```
[26] results = []

for i in range(25):
    image = outputs[i]

if labels[i] == 'healthy':
    color = (0,255,0)
    else:
        color = (0,0,255)

text = str(labels[i])

image = cv2.resize(image,(128,128))
    cv2.putText(image,text,(3,20),cv2.FONT_HERSHEY_SIMPLEX,0.5,color,2)

results.append(image)
```

Predicting using the model [27] montage - build_montages(results,(128,128),(5,5))[9] cv2_imshow(montage) cv2_imshow(montage) partification partition partition partification partition partition

7.2 Feature 2

Our application has the following pages: Login/ Register page, Home page and Predict page.

The user registers and consequently signs in using the login/sign up page. The Home page contains information about Parkinson's Disease as well as the diagnostic method being used to test for it. The next page is the predict page where the user is required to upload the images of spiral and wave following which they get a diagnosis as healthy / having Parkinson's Disease.

Log In Page:

Register Page:

Home page:

Info

PARKINSON'S DISEASE

Parkinson Disease (PD) is a neurodegenarative disorder. This means that neurons in the part of the brain called substantia nigra are affected, which leads to a reduction of dopamine production. Dopamine is a chemical neuro-transmitter that regulates the movements of the body. The causes remain unknown. However, it is very important to remember that PD affects people in many different ways.

Parkinson Disease (NHS)

SYMPTOMS

Symptoms generally develop slowly. Although PD affects patients in many different ways, the most common symptoms are tremor (involuntary shaking of parts of the body), rigidity of the limbs, of parts of the bodyl, ngigitly of the limbs, bradykinesis (slow movements) or balance problems. Some other non-motor symptoms may also be exprienced such as nerve pain, speech difficulties, dysphagia (swallowing difficulties), urinary incontinence, anxiety or depression.

Parkinson Symptoms (NHS)

TREATMENTS

It is possible to live a good quality of life with Parkinson. Your specialist team will tailor your treatment according to your symptoms. You may receive dopaminergic medication such Levodopa® medication such as Levodopa®, Madopar® or Sinemet®, Non-medical treatment are also provided by Physiotherapists. Your specialist will discuss with you if you have the option, at an advance stage, to receive further therapy such as DBS (Deep Brain Stimulation).

Neurosciences Leaflets (OUH)

Pathway

1: Referral

Visit your GP or another medical specialist to get referred to a Parkinson's Specialist Consultant or a Neurology/Geratology Consultant.

🚊 2: Appointment

You will receive an appointment date with the Neurologist or Geratologist at the John Raddiffe Hospital. A diagnosis will be made and you will be referred to your local Parkinson's Disease Specialist Nurse.

Within 6 to 8 weeks after your diagnosis, you will be seen by your Parkinson's Disease Specialist Nurse. You will be given an information pack and be referred to the Multidisciplinary team.

4: Multidisciplinary Team

You may be referred to the First Step Programme, a support group run by people with Parkinson's, in your local area. If required you may be referred to

Physiotherapists (PT)

HOME INFO PREDICT PATE

★ 5: Regular Clinics Appointments

Every year you will receive at least two appointments with your healthcare professional:

- Consultant: Once a year
 Specialist Nurse: Once a year or more frequently if necessary.
- ! Your specialist nurse may see you at home if needed. You are encouraged to contact your Specialist Nurse frequently depending on your needs.

Contacts

You can find here the contact details of Parkinson's Disease Specialists

DR. YUVASRI CHINNUSWAMY

+91 902-342 1803

(Administrator Office)

☑ Neurosciences Offices, West Wing Sri Ramakrishna Hospital, Coimbatore

DR. K RAMADOSS

+91 422-224 0521

☑ Velavan Health Center Specialty Orthopaedic Centre

 ➡ Areas: Pollachi, Coimbatore (city), Tamil
 Nadu

DR. PRANESH UPADHYAY

4 +91 759-891 2803

Dr. Pranesh Clinic Specialty Orthopaedic Centre

Areas: Tiruppur and Pollachi

Maps

SRI RAMAKRISHNA HOSPITAL

☑ 395, Sarojini Naidu Rd, Siddhapudur, Balasundaram Layout, B.K.R.

Nagar Coimbatore, Tamil Nadu 641044

0300 304 7777

Velavan health center POOMBHUKAR NAGAR பூம்புகார் நகர் KAMADHENU ILL + NAGAR காமதேனு

VELAVAN'S HEALTH CENTER

Sivasakthi Colony, Ganapathy, Coimbatore, Tamil Nadu 641006

Prediction page:

TEST CASE ID	FEATURE TYPE	COMPONENT	TEST	PRE-REQUISITE	STEPS TO EXECUTE	TEST DATA	EXPECTED RESULT	ACTUAL RESULT	STATUS	SCOMMENTS ^E
BasicWebPageDesign_TC_C		Home Page	Verily user is able to see the webpage with basic components	Install and setup visual studio code.	Enter URL and click go Verify navbar with components like Home, Info, Predict, Pathway, Contacts, Login is available	http://127.0.0.1:5000/	Basic navbar in the webpage should be displayed	As expected but redirection is not possible	PASS	Webpage is created,
BasicWebPageDesign_TC_C	O2Functional	Home Page	Verify redirection is possible when any components in navbar is clicked	and necessary spackages	Enter UrL and click go Click the components in navbar	http://127.0.0.1:5000/	Redirect to the respective pages when user click the component in the navbar	Logout button is not redirected instead it throws an error		Page not found error is thrown
LoginPage_TC_CO3	UI	Login/Rogiste Page	Verify whether login and register prage is visible with required fields when clicked the URL	Integrate webpage with flask	Enter URL and click enter to go. 2 Application should display login and register tabs with respective fields.	http://127.0.0.1:5000/	Application should show below UI olements: 1.LOGIN tab a. User Id b. Password 2.REGISTER tab a.Email b. User Id(required) c. Password(required	expected	PASS	Successfully created login/register page.
LoginPage_TC_CO4	Functional	Login/Registe Page	Verify whether it is rpossible to enter the valid details.		1.Enter URL(http://127.0.0.1:5000/ and click enter to go. 2.Click register tab 3.Enter invalid email id 4.click register button) Email : reenasajad22≇gmail.com	Should show an error as '@' is missing in email id.		PASS	Error shown as expected.
LoginPage_TC_CO5	Functional	Login/Registe Page	message *User already		1.Enter URL(http://127.0.0.1:5000/ and click enter to go. 2.Click Register tab. 3.Enter already registered username. 4.click Register button	Username : User1 Password : user1	Should show a validation error as the user already exists.	Working as expected	PASS	Validation error message is displayed.
LoginPage_TC_OO6	Functional	Login/Registe Page	exists". Verify user is able to rlog into application with invalid credentials.		1.Enter URL(http://127.0.0.1:5000/ and click enter to go. 2. Enter invalid/valid usemame in respective field. 3.Enter invalid/valid password. 4.click login button) Username : User1 Password : user	Application should show 'Invalid user or password' 'validation mossage.	Working as expected	PASS	
LoginPage_TC_007	Functional	Login/Registe Page	Verify user is able to riog into application with valid credentials.		1.Enter URL(http://127.0.0.1:5000/ and click enter to go.) Username ; User1 Password ; User1	User should navigate to homepage.	Working as expected	PASS	Successfully logged in .
HomePage_TC_OO8	UI	Home Page	Verify user is able to see information on parkinsons disease.		1.Enter URL(http://127.0.0.1:5000/ and click enter to go. 2.Login with valid credentials. 3.Click Home button in navbar) Username : User1 Password : User1	User should be able to see information or parkinsons disease such as symptoms, cause, treatment,	as	PASS	
PredictPage_TC_009	UI	Precict Page	Verify user is able to redirect to predict page	,	1.Enter URL(http://127.0.0.1:5000/ and click enter to go. 2.Login with valid credentials, 3,Click Predict button in navbar	Username : User1 Password : User1	User is able to see choose and predict button in predict page with an NOTE message	as	PASS	
PredictPage_TC_G10	Functional	Predict Page		disease prediction	credentials. 3.Click Predict	Images : https://drive.google.com/drive/folders/1 nogKUOg- Umg1HmHAtkthibUvQJIQYX?	User is able to upload pic from the computer and review the output	Working as expected	PASS	Predicted accurately.
Logout_TC_011	Functional	Legout	Verify user is able to logout	Login page is needed.	1.Enter URL(http://127.0.0.1:5000/ and click enter to go. 2.Login with valid credentials . 3.Click Logour button in navbar.	Username : Saranya Password : Test	User is able to click Logout button and redirect to Login/Regster page	Working as expected	PASS	BUG 1 is resolved
·	- T		Date	3-Nov-22	,		1	·	·	·
			Team ID	PNT2022TMID08567 Project - Detecting						
			Project Name	Parkinson's Disease using Machine Learning						
	1		Maximum Marks	4 marks			1		L	L

8.2 User Acceptance Testing

Acceptance Testing UAT Execution & Report Submission

Date	03 November 2022
Team ID	PNT2022TMID23224
	Project - Detecting Parkinson's Disease using Machine Learning.
Maximum Marks	4 Marks

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the Detecting Parkinson's Disease using Machine Learning project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution Severity		Severity 2	Severity 3	Severity 4	Subtotal
By Design	0	1	1	0	2
Duplicate	0	0	0	0	0
External	2	2	0	1	5
Fixed	1	0	0	0	1
Not Reproduced	0	0	0	0	0
Skipped	0	0	0	0	0
Won't Fix	0	0	0	0	0
Totals	3	3	1	1	8

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

•				
Section	Total Cases	Not Tested	Fail	Pass
Login/Register Page	8	0	0	8
Home Page	1	0	0	1
Logout Page	2	0	1	1
Prediction	10	0	0	10
Version Control	2	0	0	2

9. RESULTS

9.1 Performance Metrics

S.No	Parameter	Values	Screenshot
1.	Metrics	Classification Model:	
		Confusion Matrix - , Accuracy Score- &	To [13]: on = confusion_matrix(y_text, predictions) on Out(13): array(([18, 1],
		Classification Report -	10 14
2.	Tune the Model	Hyperparameter Tuning -	
		GridSearchCV	In [7]: from Mileon and Milection Impact Gridmonths In [22]: model = Handonformstclassifier() In [22]: parenters = {
			20 (20); grid. Sedimenthry(code), prometers, com) 20 (20); grid.SECE_train_v_train) 20 (21); grid.SECE_train_v_train) 20 (21); grid.SECE_train_v_train) 20 (21); grid.SECE_train_v_tra

10.ADVANTAGES & DISADVANTAGES

Advantages

- Parkinson's disease detection using machine learning models could be very effective, cheap, and scalable especially with the advent of transfer learning and pre-trained models which work quite well even with constraints like less data.
- It reduces images to a form which is easier to process without losing features which are critical. Image pre-processing required is much less compared to other algorithms.
- Machine learning does not require the design of handcrafted features, which is one of its biggest advantages.

Disadvantages

- For training and testing, the proposed model requires very high computational time.
- Training the model may be challenging.
- Difficulty in obtaining large datasets to train the model.

- Getting a high level of accuracy is difficult due to limited availability of datasets.
- Chances of misdiagnosis is lo but not entirely non existent.

11.CONCLUSION

In this project, we have built a machine learning model that can detect and classify Parkinson's disease from images of spiral and wave. The model has been integrated into a web application where the user can register to get a diagnosis. The user is required to upload images of spiral and wave drawings. The models are built separately for classifying spiral and wave images using K-Nearest Neighbour and Random Forest respectively. The GUI based application will give the prediction on uploading the image. The system will read the image uploaded by the user, augment it, and use the saved model to detect the presence of Parkinsons disease in the image uploaded by the user. The result is displayed in an easy -tounderstand user-friendly interface.

Parkinson's disease affects the Central Nervous System and motor functions. There is no definitive cure, but an early prognosis helps in slowing down the progression of the disease. Thus, an early detection can vastly help patients. This detection method helps to overcom e the various constraints which could lead to delayed diagnosis and hence improve the quality of life of the patient.

12.FUTURE SCOPE

The realization of machine learning-assisted diagnosis of Parkinsons Disease yields high potential for a more systematic clinical decision-making system, while adaptation of novel biomarkers may give rise to easier access to Parkinsons Disease diagnosis at an earlier stage. Machine learning approaches therefore have the potential to provide clinicians with additional tools to screen, detect or diagnose Parkinsons Disease.

13.APPENDIX

Source Code

.loader {

Static:

```
Main.css
```

```
.img-preview { width:
256px; height: 256px;
position: relative;
border: 5px solid #F8F8F8;
   box-shadow: 0px 2px 4px 0px rgba(0, 0, 0,
0.1); margin-top: 1em; margin-bottom:
1em;
}
.img-preview>div { width:
100%; height: 100%;
background-size: 256px 256px;
background-repeat: no-repeat;
background-position: center;
input[type="file"]
{ display:
none;
.upload-label{
display: inline-block;
padding: 12px 30px;
background: #39D2B4;
color: #fff; font-
size: 1em;
transition: all .4s;
cursor: pointer;
.upload-label:hover{
background: #34495E;
color: #39D2B4;
```

```
border: 8px solid #f3f3f3; /* Light grey */ border-
      top: 8px solid #3498db; /* Blue */ border-radius:
      50%;
      width: 50px;
  height: 50px;
      animation: spin 1s linear infinite;
  }
  @keyframes spin {
      0% { transform: rotate(0deg); }
      100% { transform: rotate(360deg); }
  Style.css
  * {
        margin: 0;
  padding: 0; font-
  family: sans-serif;
   .hero{
  height: 100%;
  width: 100%;
      background-image: linear-gradient (rgba(0,0,0,0.4),
rgba(0,0,0,0.4)),url('img.jpg');
  background-position: center;
  background-size: cover;
  position: absolute;
  } .form-box{
  height: 380px;
  width: 360px;
  position: relative;
  margin: 6% auto;
  background: #fff;
  padding: 5px;
  overflow: hidden;
  .button-box{
      width: 220px;
      margin: 35px auto;
      position: relative;
      box-shadow: 0 0 20px 9px #5f97e51f; border-
  radius: 40px;
```

```
} .toggle-btn{
padding: 10px 30px;
cursor: pointer;
background: transparent;
border: 0;
              outline:
none;
      position:
relative;
} #btn{ top: 0;
left: 0;
          position:
absolute;
             width:
110px;
          height:
100%;
    background: linear-gradient(to right,
#7369ca, #11b1c3); border-radius: 30px;
transition: 0.5s;
} .input-group{
top: 120px;
position: absolute;
width: 280px;
transition: .5s;
} .input-field{
width: 100%;
padding: 10px 0;
margin: 5px 0;
border-left: 0;
border-top: 0;
border-right: 0;
border-bottom: 1px
solid #999;
outline: none;
background:
transparent;
} .submit-btn{
width: 85%;
padding: 10px 30px;
cursor: pointer;
display: block;
margin: auto;
```

```
background: linear-gradient(to right,
  #4e4888, #7bc0c8); border: 0; outline: none;
  border-radius: 30px;
  } .check-box{
                  margin:
  30px 10px 30px 0;
  } span{
            color:
  #777;
            font-size:
  12px; bottom:
  68px;
          position:
  absolute;
  } #login{
  left: 50px; }
  #register{
  left: 450px;
  } .err{
      color:rgb(198, 156, 243);
  margin: 265px 0 0 145px;
  }
  Main.js
  $ (document).ready(function () {
      // Init
      $('.image-section').hide();
      $('.loader').hide();
      $('#result').hide();
      // Upload Preview
  function readURL(input) {
          if (input.files && input.files[0]) {
  var reader = new FileReader();
  reader.onload = function (e) {
                  $('#imagePreview').css('background-image', 'url(' +
e.target.result + ')');
                  $('#imagePreview').hide();
                  $('#imagePreview').fadeIn(650);
              reader.readAsDataURL(input.files[0]);
      }
```

```
$("#imageUpload").change(function () {
        $('.image-section').show();
        $('#btn-predict').show();
        $('#result').text('');
$('#result').hide();
readURL(this);
    });
    // Predict
    $('#btn-predict').click(function () {
        var form data = new FormData($('#upload-file')[0]);
        // Show loading animation
        $(this).hide();
        $('.loader').show();
        // Make prediction by calling api /predict
        $.ajax({
type: 'POST',
url: '/predict',
data: form_data,
contentType: false,
cache: false,
processData: false,
async: true,
success: function (data) {
                // Get and display the result
                $('.loader').hide();
                $('#result').fadeIn(600);
                $('#result').text('Prediction : '+data);
console.log('Success!');
           },
        });
    });
});
Templates Base.html
<html lang="en">
```

```
<head>
           <meta charset="UTF-8">
           <meta name="viewport" content="width=device-width,</pre>
initialscale=1.0">
           <meta http-equiv="X-UA-Compatible" content="ie=edge">
           <title>Predict</title>
           link
href="https://cdn.bootcss.com/bootstrap/4.0.0/css/bootstrap.min.css"
rel="stylesheet">
           <script
src="https://cdn.bootcss.com/popper.js/1.12.9/umd/popper.min.js"></scri</pre>
           <script
src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
           <script
src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></scr</pre>
ip t>
           <link href="{{ url for('static', filename='css/main.css')</pre>
}}" rel="stylesheet">
       <style>
       .bar
              {
  margin: 0px;
  padding:20px;
       background-color:rgb(169, 223,
  241); opacity:0.6;
  color:black;
       font-family:'Roboto', sans-serif;
   font-style: italic; border-
   radius:20px; font-size:25px;
       }
  body{
          background-image:
url("https://img.freepik.com/freephoto/flat-lay-medical-desk-
composition-with-copy-space 23-
2148502943.jpg?w=2000");
  position: relative;
  background-size: cover;
  background-repeat: no-repeat;
  height: 100%;
                             width: 100%;
```

```
}
          h1 {
              font-size:35px;
  text-align:center;
  color:#2596be;
                            font-
  style:Helvetica;
                             font-
  weight:bolder;
          }
  h2 {
              font-size:35px;
  text-align:center;
  color:rgb(17, 196, 227);
                                     font-
  style:italic;
                          font-
  weight:bolder;
          }
  h5{
              font-size:25px;
  text-align:center;
  color:#063970;
                         font-
  style:Helvetica;
                             font-
  weight:bolder;
          }
       a {
          color:black;
       }
      </style>
      </head>
      <body>
      <nav class="navbar navbar-expand-md fixed-top navbar-dark pl-3"</pre>
                     style="color:blue;"
                                           class="navbar-brand"
href="/home"><strong>PARKINSON</strong></a>
                                         type="button"
        <button class="navbar-toggler"</pre>
datatoggle="collapse" data-target="#navbarNav" aria-
controls="navbarNav" aria-expanded="false" aria-label="Toggle
navigation">
          <span class="navbar-toggler-icon"></span>
```

```
</button>
       <div class="collapse navbar-collapse" id="navbarNav">
         <strong><a
                       style="color:black;" class="nav-link"
href="/home">HOME</a></strong>
          <strong><a style="color:black;" class="nav-link"</pre>
href="/home">INFO</a></strong>
          <strong><a style="color:black;" class="nav-link"</pre>
href="/upload">PREDICT</a></strong>
          <strong><a style="color:black;" class="nav-link"</pre>
href="/home">PATHWAY</a></strong>
          <strong><a style="color:black;" class="nav-link"</pre>
href="/home">CONTACTS</a></strong>
          style="color:black;" class="nav-link"
           <strong><a
href="/logout">LOGOUT</a></strong>
          </div>
     </nav>
      <br><br><br><br>>
         <h1>Get a quick diagnosis for a better prognosis!</h1>
         <h2><center>Parkinson Detector</center></h2>
         <h5>Please upload an spiral or wave page drawn by the user
in a white sheet</h5>
        <div class="container">
           <center> <div id="content" style="margin-top:2em">{%
block content %}{% endblock %}</div></center>
        </div>
     </body>
```

```
<footer>
           <script src="{{ url for('static', filename='js/main.js') }}"</pre>
type="text/javascript"></script>
       </footer>
       </html>
   Home.html <!doctype</pre>
   html>
   <html lang="en">
     <head>
       <!-- Required meta tags -->
       <meta charset="utf-8">
       <meta name="viewport" content="width=device-width,</pre>
initialscale=1, shrink-to-fit=no">
       <meta name="Description" content="An information page</pre>
patients diagnosed with Parkinson's Disease and living in Oxfordshire.
You can find the contacts for your nurse specialist, links and your care
pathway with your referrals or clinical appointments.">
       <!-- Google Font -->
       link
href="https://fonts.googleapis.com/css2?family=Abril+Fatface&family=Bar
lo w:wght@400;700&display=swap" rel="stylesheet">
       <!-- Font Awesome -->
       ink
                                                        rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/font-
awesome/5.14.0/css/all.min.css"
                                                      integrity="sha512-
1PKOqIY59xJ8Co8+NE6FZ+LOAZKjy+KY8iq0G4B3CyeY6wYHN3yt9PW0XpSriVlkMXe40PT
Kn XrLnZ9+fkDaog==" crossorigin="anonymous" />
       <!-- Bootstrap CSS -->
       ink
                                                         rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min
            integrity="sha384-
Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
crossorigin="anonymous">
       <!-- CSS file -->
       <link rel="stylesheet" href="./css/index.css">
       <title>Parkinson Prediction and Information Page </title>
     </head>
     <body>
```

```
<!-- Navbar -->
     <nav class="navbar navbar-expand-md fixed-top navbar-dark pl-3"</pre>
  >
                                           class="navbar-brand"
href="#home"><strong>PARKINSON</strong></a>
       <button class="navbar-toggler"</pre>
                                    type="button"
datatoggle="collapse" data-target="#navbarNav" aria-
controls="navbarNav" aria-expanded="false" aria-label="Toggle
navigation">
         <span class="navbar-toggler-icon"></span>
       <div class="collapse navbar-collapse" id="navbarNav">
         <strong><a style="color:grey;" class="nav-link"</pre>
href="/home">HOME</a></strong>
           <strong><a style="color:grey;" class="nav-link"</pre>
href="#info">INFO</a></strong>
           class="nav-item">
            <strong><a style="color:grey;" class="nav-link"</pre>
href="/upload">PREDICT</a></strong>
           <strong><a style="color:grey;" class="nav-link"</pre>
href="#pathway">PATHWAY</a></strong>
           <strong><a style="color:grey;" class="nav-link"</pre>
href="#contacts">CONTACTS</a></strong>
           style="color:grey;" class="nav-link"
            <strong><a
href="/logout">LOGOUT</a></strong>
          </div>
     </nav>
     <!-- Header -->
     <header id="home">
```

Welcome to the Parkinson
Information Page

The researchers found that the drawing speed was slower and the pen pressure is lower among Parkinson's patients. One of the indications of Parkinson's is tremors and rigidity in the muscles, making it difficult to draw smooth spirals and waves. It is possible to detect Parkinson's disease using the drawings alone instead of measuring the speed and pressure of the pen on paper. Our goal is to quantify the visual appearance (using HOG method) of these drawings and then train a machine learning model to classify them. In this project, We are using, Histogram of Oriented Gradients (HOG) image descriptor along with a Random Forest classifier to automatically detect Parkinson's disease in hand-drawn images of spirals and waves. This website was created to help in early and economically feasible detection of Parkinsons' disease.

<div class="card-deck">

<a

<div class="card mb-3">
 <div class="card-body">

<a

<div class="card mb-3">
 <div class="card-body">

% class="card-title text-uppercase font-weightbold">Treatments</h5>

```
dopaminergic medication such as Levodopa©, Madopar© or Sinemet©. Nonmedical treatment are also provided by Physiotherapists. Your specialist will discuss with you if you have the option, at an advance stage, to receive further therapy such as DBS (Deep Brain Stimulation).
```

<a

href="https://www.nhs.uk/conditions/parkinsonsdisease/"
target=" blank" class="btn btn-pink"> Neurosciences Leaflets (OUH)

```
</div>
            </div>
          </div>
        </div>
        <!-- Pathway -->
        <div class="pathway container" id="pathway">
          <div class="section-title">
            <h2 >Pathway</h2>
          </div>
          <!-- Pathway Chart -->
          <div class="d-flex flex-column pathway-chart">
            <!-- 1 - Referral -->
            <div class="pathway-step border border-white">
              <h4><i class="fas fa-notes-medical"></i> 1: Referral
   </h4>
              Visit your GP or another medical specialist to get
referred
           to
               а
                     Parkinson's
                                   Specialist Consultant
                                                               or
Neurology/Geratology Consultant.
            </div>
```

<!-- 2 - Appointment -->

<div class="pathway-step border border-white">

<h4><i class="fas fa-hospital"></i> 2: Appointment</h4>

You will receive an appointment date with the

Neurologist or Geratologist at the John Radcliffe Hospital. A diagnosis will be made and you will be referred to your local Parkinson's Disease Specialist Nurse.

```
Within 6 to 8 weeks after your diagnosis, you will be
seen by your Parkinson's Disease Specialist Nurse. You will be given an
information pack and be referred to the Multidisciplinary team.
           </div>
           <!-- 4 - MDT -->
           <div class="pathway-step border border-white">
             <h4><i class="fas fa-user-plus"></i> 4:
Multidisciplinary Team</h4>
             You may be referred to the First Step Programme, a
support group run by people with Parkinson's, in your local area. If
required you may be referred to therapists such as:
               Physiotherapists (PT) 
                Occupational Therapists (OT)
                Speech and Language Therapists (SALT)
                Dieticians
                Social Services
               <i class="fas fa-exclamation mr-2"></i> Inform your
nurse if you need any of the sevices above.
           </div>
           <!-- 5 - Regular Appointments -->
           <div class="pathway-step border border-white">
             <h4><i class="fas fa-clinic-medical"></i> 5: Regular
Clinics Appointments</h4>
             Every year you will receive at least two appointments
with your healthcare professional:
               <i class="fas fa-user-md"></i> Consultant: Once
a year
                <i class="fas fa-user-nurse"></i> Spcialist
Nurse: Once a year or more frequently if necessary.
               <i
                  class="fas fa-exclamation mr-2"></i>
                                                           Your
specialist nurse may see you at home <em>if needed</em>. You are
encouraged to contact your Specialist Nurse frequently depending on your
needs.
           </div>
         </div>
```

</div>

```
<!-- Contacts -->
      <div class="contacts container" id="contacts">
        <div class="section-title">
         <h2>Contacts</h2>
         You can find here the contact details of Parkinson's
Disease Specialists 
       </div>
        <!-- Cards -->
        <div class="card-deck">
         <div class="card mb-3">
           <div class="card-body">
             <h5 class="card-title text-uppercase font-weight-
  bold">Dr.
Yuvasri Chinnuswamy</h5>
             <i class="fas fa-</pre>
phonealt pr-2"></i>+91 902-342 1803
             (Administrator Office)
                  class="card-text"><i class="far</pre>
                                                    fa-envelope
pr2"></i>Neurosciences Offices, West Wing<br/>Sri Ramakrishna Hospital,
Coimbatore
           </div>
         </div>
         <div class="card mb-3">
           <div class="card-body">
             <h5 class="card-title text-uppercase font-weight-</pre>
  bold">Dr.
K Ramadoss</h5>
             <i class="fas fa-</pre>
phonealt pr-2"></i>+91 422-224 0521
             <i class="far</pre>
faenvelope pr-2"></i>Velavan Health Center <br/> <br/>Specialty Orthopaedic
Centre
             <i class="fas fa-</pre>
mapsigns pr-2"></i>Areas: Pollachi, Coimbatore (city), Tamil Nadu
           </div>
         </div>
         <div class="card mb-3">
           <div class="card-body">
```

```
<h5 class="card-title text-uppercase font-weight-
  bold">Dr.
Pranesh Upadhyay</h5>
             <i class="fas fa-</pre>
phonealt pr-2"></i>+91 759-891 2803
             <i class="far</pre>
faenvelope pr-2"></i>Dr. Pranesh Clinic <br/> Specialty Orthopaedic
Centre
             <i class="fas fa-</pre>
mapsigns pr-2"></i>Areas: Tiruppur and Pollachi
           </div>
         </div>
        </div>
      </div>
      <!-- Maps -->
      <div class="maps container" id="maps">
        <div class="section-title">
         <h2>Maps</h2>
        </div>
        <!-- Cards -->
        <div class="card-deck">
          <div class="card mb-3">
           <iframe
                            class="container-fluid
                                                            "0-xq
src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3916.2062227
11
9704!2d76.97539531407273!3d11.023148657607104!2m3!1f0!2f0!3f0!3m2!1i102
4!
2i768!4f13.1!3m3!1m2!1s0x3ba8584e4d002f0d%3A0x2b94348a8824200f!2sSri%20
Ra makrishna%20Hospital%20(%20Multi-
Speciality%20Hospital%20in%20Coimbatore)!5e0!3m2!1sen!2sin!4v1668579013
70 1!5m2!1sen!2sin"
                    width="400"
                                     height="200"
frameborder="0" style="border:0;" allowfullscreen=""
                                                    aria-
hidden="false" tabindex="0"></iframe>
           <div class="card-body">
             <h5 class="card-title text-uppercase font-weight-</pre>
  bold">Sri
Ramakrishna Hospital</h5>
             <i class="far</pre>
faenvelope pr-2"></i> 395, Sarojini Naidu Rd, Siddhapudur, Balasundaram
Layout, B.K.R Nagar < br > Coimbatore, Tamil Nadu 641044
```

```
<i class="fas fa-</pre>
phonealt pr-2"></i> 0300 304 7777
           </div>
          </div>
          <div class="card mb-3">
           <iframe
                             class="container-fluid
                                                             px-0"
src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3916.111860
862
161!2d76.9736064140728!3d11.030233457475433!2m3!1f0!2f0!3f0!3m2!1i1024
!2i
768!4f13.1!3m3!1m2!1s0x3ba8597c85cadec9%3A0x291d9d0a449d54b7!2sVelavan
      health%20center!5e0!3m2!1sen!2sin!4v1668579195887!5m2!1sen!2sin"
width="600" " width="400" height="200" frameborder="0" style="border:0;"
allowfullscreen="" aria-hidden="false" tabindex="0"></iframe>
            <div class="card-body">
                     class="card-title
                                           text-uppercase font-
weightbold">Velavan's Health center</h5>
              <i class="far</pre>
faenvelope pr-2"></i> Sivasakthi Colony, Ganapathy, Coimbatore, Tamil
Nadu
641006
             <i class="fas fa-</pre>
phonealt pr-2"></i> 0300 304 7777
           </div>
          </div>
        </div>
      </div>
      <!-- Links
      <div class="links container" id="links">
        <div>
          <ima
src="https://pbs.twimg.com/media/E2ALbWqWEAMcu9p.jpg:large"
alt="Illustration about Parkinson's Symptoms" width="800" height="400"
/>
        </div>
      </div> -->
    </main>
```

```
<!-- Footer -->
      <footer>
       <div>
        2022@ All rights reserved.
    </footer>
       <!-- Optional JavaScript -->
       <!-- jQuery first, then Popper.js, then Bootstrap JS -->
       <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js"</pre>
integrity="sha384-
KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN"
crossorigin="anonymous"></script>
       <script
src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.9/umd/popper
.m in.js"
           integrity="sha384-
ApNbqh9B+Y1QKtv3Rn7W3mqPxhU9K/ScQsAP7hUibX39j7fakFPskvXusvfa0b4Q"
crossorigin="anonymous"></script>
       <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.j
s" integrity="sha384-
JZR6Spejh4U02d8jOt6vLEHfe/JQGiRRSQQxSfFWpi1MquVdAyjUar5+76PVCmY1"
crossorigin="anonymous"></script>
    </body>
  </html>
  Index.html
  < h + m 1 >
       <head>
           <title>PARKINSON'S DISEASE </title>
                                                            "stylesheet"
                            rel
href="{{url for('static',filename='css/style.css')}}">
      </head>
       <body style="background-image: pink;">
           <div class="hero">
               <div class="form-box">
                   <div class="button-box">
                       <div id="btn"></div>
                       <button
                                  type="button"
                                                     class="toggle-btn"
onclick="login()">Log In</button>
                       <button
                                  type="button"
                                                      class="toggle-btn"
onclick="register()">Register</button>
                   </div>
```

```
id="login"
                  <form
                                                    class="input-group"
action="/form login" method="post">
                       <input
                                  type="text"
                                                     class="input-field"
placeholder="User Id" name ="userid" required>
                                                     class="input-field"
                       <input
                                  type="password"
placeholder="Password" name="pwd" required>
                                 type="checkbox"
                                                         class="check-
                       <input
box"><span>Remember Password</span>
                       <button type="submit" class="submit-btn"</pre>
value="Login">Login</button>
                   <h6 class="err">{{info}}</h6>
                            id="register"
                   <form
                                                     class="input-group"
action="/form reg" method="post">
                       <input
                                  type="email"
                                                     class="input-field"
placeholder="Email Id">
                                  type="text"
                       <input
                                                     class="input-field"
placeholder="User Id" name ="userid" required>
                               type="password" class="input-field"
                      <input
placeholder="Password" name="pwd" required>
                       <button type="submit" id = "sub"</pre>
class="submitbtn" >Register</button>
                   </form>
                   <h6 class="err">{{info}}</h6>
               </div>
           </div>
  <script>
               var x = document.getElementById("login")
  var y = document.getElementById("register")
  var z = document.getElementById("btn")
   function register(){
                   x.style.left = "-400px";
                   y.style.left = "50px";
                   z.style.left = "110px";
               function login(){
                   x.style.left = "50px";
                   y.style.left = "450px";
                   z.style.left = "0px";
               }
```

```
</script>
       </body>
  </html>
  Pred.html
  {% extends "base.html" %} {% block content %}
  <h2><center>Parkinson Classifier</center></h2>
  <div>
       <form id="upload-file" method="post"</pre>
enctype="multipart/formdata">
       <center> <label for="imageUpload" class="upload-label">
  Choose...
           </label>
           <input type="file" name="file" id="imageUpload"</pre>
accept=".png, .jpg, .jpeg">
      </center></form>
      <center> <div class="image-section" style="display:none;">
           <div class="img-preview">
               <div id="imagePreview">
               </div></center>
           </div>
           <center><div>
               <button type="button" class="btn btn-primary btn-lg "</pre>
id="btn-predict">Predict!</button>
           </div></center>
       </div>
       <div class="loader" style="display:none;"></div>
       <h3 id="result">
           <span> </span>
       </h3>
  </div>
  </div>
```

```
{% endblock %}
App.js
```

```
name1 not in database:
render template('index.html',info='Invalid User!!') else:
render template('index.html',info='Invalid Password!!')
@app.route("/") \frac{1}{\text{def}} about():
@app.route("/home") def home():
@app.route("/upload")
@app.route("/logout") def log():
@app.route('/predict', methods=['GET', 'POST'])
      basepath=os.path.dirname(os.path.realpath(' file ')) #storing the
file in uploads folder
print("[INFO] loading model...")
      model = pickle.loads(open('parkinson Deploy.pkl',
image.copy()
image = cv2.cvtColor(image, cv2.COLOR BGR2GRAY)
cv2.THRESH OTSU)[1]
features = feature.hog(image, orientations=9,
pixels per cell=(10, 10), cells per block=(2, 2),
                                      preds =
```

```
ls=["healthy","parkinson"]
result = ls[preds[0]]
return result         return None
  if __name__ ==
'__main__':         app.run()
```

Git Hub Link

https://github.com/IBM-EPBL/IBM-Project-36250-1660293722

Project Demo Link

https://drive.google.com/file/d/1jFZCdYmlObIevNRseUWLc-vYbZruxphI/view?usp=share_link