CHƯƠNG 4 BÀI TOÁN VỀ TÔ MÀU

Bùi Tiến Lên

Đại học Khoa học Tự nhiên TPHCM

TỔNG QUAN

Nội dung

- 1. TỔNG QUAN
- 2. TÔ ĐỈNH
- 3. TÔ CẠNH
- 4. TÔ MIỀN

Spring 2018

Graph Theory

Các kiểu tô màu cho đồ thị

Trong lý thuyết đồ thị có 3 kiểu **tô màu đồ thị** (graph coloring)

- ► Tô đính (vertex coloring) thường được gọi là tô màu đồ thị
- ► Tô cạnh (edge coloring)
- ► Tô vùng (region coloring) thường được gọi là *tô màu bản đồ*

(a) tô đỉnh

(b) tô canh

Hình 4.1: Các kiểu tô màu

Spring 2018 **Graph Theory**

TÔ ĐỈNH

Tô màu đồ thị (cont.)

Hình 4.2: Sắc số của các đồ thị

Tô màu đồ thị

- Một phép tô màu đồ thị hay tô đỉnh của đồ thị là một cách đánh nhãn cho mỗi đỉnh của đồ thị bằng màu sao cho 2 đỉnh kề nhau phải có màu khác nhau
 - Bài toán tô màu là một loại bài toán thỏa mãn ràng buộc (constraint satisfaction problem)
 - Số màu sắc số (chromatic number) của đồ thị G được ký hiệu là \(\chi(G)\) là số màu ít nhất dùng để tô đồ thi

Spring 2018 Graph Theory

Một số định lý về tô màu đồ thị

Định lý 4.1

- 1. Nếu đồ thị G có ít nhất một cạnh không phải khuyên thì $\chi(G) \geq 2$
- **2.** Nếu $G_1 \subseteq G_2$ thì $\chi(G_1) \leq \chi(G_2)$
- **3.** Đồ thị đủ K_n sẽ có $\chi(K_n) = n$
- **4.** Nếu đồ thị G chứa một đồ thị con đẳng cấu với K_m thì $\chi(G) \geq m$
- 5. Nếu đồ thị G là một đồ thị vòng có n đỉnh thì

$$\chi\left(\mathsf{G}
ight) =\left\{ egin{array}{ll} 2 & \textit{n là số chẵn} \ 3 & \textit{n là số lẻ} \end{array}
ight.$$

Spring 2018 Graph Theory 7 Spring 2018 Graph Theory 8

Một số định lý về tô màu đồ thị (cont.)

Định lý 4.2

Nếu T là cây n đỉnh với $n \geq 2$ thì $\chi(T) = 2$

Định lý 4.3

Cho G là một đồ thị liên thông có số đỉnh $n \geq 2$. Thì $\chi(G) = 2$ khi và chỉ khi G không chứa chu trình sơ cấp có chiều dài lẻ.

Định lý 4.4

Cho G là một đồ thị liên thông có số đỉnh $n \geq 2$. Thì điều kiện và đủ để $\chi(G) = 2$ là G là đồ thị phân đôi.

Định lý 4.5 (Brooks)

Cho đồ thị G, thì $\chi(G) \leq \Delta(G) + 1$

Spring 2018

Graph Theory

g

Thuật toán tô màu đồ thị (cont.)

Cho đồ thị G có n đỉnh

Algorithm 1 Thuật toán heuristic 1 (Welch-Powell)

- 1: Sắp xếp các đỉnh theo bậc giảm dần
- 2: color = 1
- 3: while còn đỉnh chưa tô màu do
- 4: Tô màu tất cả các đỉnh có thể được bằng màu *color*
- 5: color = color + 1

Thuật toán tô màu đồ thị

- Bài toán tô màu đồ thị là bài toán thỏa mãn ràng buộc
- ► Thuật toán tô màu đồ thị với số màu tối ưu có độ phức tạp không phải là đa thức.
- Trong nhiều ứng dụng chỉ cần tô màu đồ thị với số màu "gần tối ưu" và đô phức tạp tiếp nhân được.

Spring 2018 Graph Theory 10

Thuật toán tô màu đồ thị (cont.)

Cho đồ thị G có n đỉnh

Algorithm 2 Thuật toán heuristic 2

- 1: while còn đỉnh chưa tô màu do
- 2: Tô "màu nhỏ nhất" color cho đỉnh có "bậc lớn nhất"
- 3: Ha bâc đỉnh này thành 0,
- 4: Những đỉnh kề với đỉnh này bậc giảm đi 1 và bị cấm tô màu color

Lưu ý

Các thuật toán không đảm bảo tô màu đồ thị với số màu tối ưu (sắc số $\chi(G)$). Nó chỉ cho một giá trị tiệm cận tới sắc số.

Spring 2018 Graph Theory 11 Spring 2018 Graph Theory 12

Ví dụ minh họa

Hình 4.3: Hãy tô màu đồ thị

Spring 2018 Graph Theory 13

TÔ CẠNH

Một số ứng dụng của tô màu đồ thị

- ▶ Bài toán lập lịch thi
- ► Bài toán phân chia tần số

Spring 2018 Graph Theory 14

Tô màu cạnh đồ thị

- Một phép tô màu cạnh của đồ thị là một cách là gán cho mỗi cạnh của đồ thị một màu nào đó sao cho không có 2 cạnh nào cùng đỉnh trùng màu.
 - sắc số cạnh (chromatic index) của đồ thị G được ký hiệu là \(\chi'(G)\) là số màu ít nhất dùng để tô cạnh đồ thị

Spring 2018 Graph Theory 16

Sắc số cạnh của một số đồ thị đặc biệt

- ightharpoonup Đồ thi rỗng G có $\chi'(G)=0$
- ightharpoonup Đồ thị vòng C_n có n đỉnh thì

$$\chi'(C_n) = \begin{cases} 2 & \text{n\'eu } n \text{ ch\'an} \\ 3 & \text{n\'eu } n \text{ l\'e} \end{cases}$$

ightharpoonup Đồ thị đầy đủ K_n thì

$$\chi'(K_n) = \begin{cases} n-1 & \text{n\'eu } n \text{ ch\'an} \\ n & \text{n\'eu } n \text{ l\'e} \end{cases}$$

Spring 2018

Graph Theory

17

Spring 2018

Graph Theory

18

Một số định lý về tô màu cạnh đồ thị (cont.)

Định lý 4.7 (Konig)

Cho G là một đồ thi hai phía thì

$$\chi'(G) = \Delta(G)$$

Chứng minh

Dành cho bạn đọc

Định lý 4.8 (Vizing)

Cho G là một đồ thị đơn

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1$$

Chứng minh

Dành cho bạn đọc ■

Spring 2018 Graph Theory

Một số định lý về tô màu cạnh đồ thị

Định lý 4.6

- **1.** Nếu $G_1 \subseteq G_2$ thì $\chi'(G_1) \leq \chi'(G_2)$
- 2. Nếu đồ thị G là một đồ thị vòng có n đỉnh thì

$$\chi'(G) = \left\{ egin{array}{ll} 2 & ext{n là số chẵn} \ 3 & ext{n là số lẻ} \end{array}
ight.$$

TÔ MIỀN

Tô màu bản đồ

Lịch sử

Năm 1852, De Morgan đưa ra một giả thuyết: "Mọi bản đồ đều có thể tô bằng 4 màu sao cho hai nước láng giềng có màu tô khác nhau"

Hình 4.4: Tô màu các bang của nước Mỹ

Spring 2018 Graph Theory 21

Tô màu bản đồ (cont.)

Một nước phải là một vùng liên thông

Hình 4.6: bản đồ tô bằng 5 màu vì E có hai vùng

Tô màu bản đồ (cont.)

Một số lưu ý trong bài toán tô màu bản đồ

► Hai nước chỉ có điểm chung thì không được xem là láng giềng

Hình 4.5: A và B là láng giềng, A và C không phải láng giềng

Spring 2018 Graph Theory 22

Tô màu bản đồ (cont.)

► Số màu có thể ít hơn 4

Hình 4.7: bản đồ tô bằng 2 màu

Spring 2018 Graph Theory 23 Spring 2018 Graph Theory 24

Tô màu bản đồ (cont.)

Bản đồ được xét trên mặt phẳng hay mặt cầu

Hình 4.8: chỉ xét bản đồ trên mặt phẳng hay mặt cầu, không trên mặt xuyến

Spring 2018 Graph Theory 25

Đồ thị phẳng chuẩn

Định nghĩa 4.1

Đồ thị phẳng chuẩn là đồ thị phẳng với các đỉnh đều có bậc là 3

Hình 4.10: Đồ thị phẳng dạng chuẩn

Định lý hai màu

Định lý 4.9

Điều kiện cần và đủ để một đồ thị liên thông, phẳng G tô đúng 2 màu là bâc của các đỉnh của đồ thi là một số chẵn

Chứng minh

Sinh viên tự chứng minh ■

Hình 4.9: Đồ thị phẳng tô bằng hai màu

Spring 2018 Graph Theory 26

Chuẩn hóa đồ thị sang dạng chuẩn

Thực hiện

- Loại bỏ các đỉnh bậc 2
- Các đỉnh có bậc lớn hơn 3 sẽ tạo ra miền mới

Hình 4.11: Chuẩn hóa đồ thị

Spring 2018 Graph Theory 27 Spring 2018 Graph Theory 28

Định lý ba màu

Định lý 4.10

Điều kiện cần và đủ để một đồ thị phẳng chuẩn G tô đúng 3 màu là các biên của các miền đều có số cạnh chẵn

Spring 2018 Graph Theory 29

Đồ thị đối ngẫu (cont.)

Hình 4.12: Đồ thị và đồ thị đối ngẫu

Đồ thị đối ngẫu

Định nghĩa 4.2

Cho đồ thị phẳng G liên thông. Đồ thị đối ngẫu (dual graph) G' của G là đồ thị được xây dựng như sau:

- ightharpoonup Mỗi đỉnh G' tương ứng với một miền của G
- ► Hai đỉnh của *G'* có cạnh liên kết nếu hai miền tương ứng của chúng là hai láng giềng

Spring 2018 Graph Theory 30

Đồ thị đối ngẫu (cont.)

Nhận xét về đồ thị đối ngẫu

- Dồ thị đối ngẫu của một đồ thị phẳng cũng là một đồ thị phẳng
- Bài toán tô màu bản đồ đã biến thành bài toán tô màu đồ thị phẳng

Spring 2018 Graph Theory 31 Spring 2018 Graph Theory 32

Đồ thị đối ngẫu (cont.)

Hình 4.13: Hãy tô màu các bang nước Úc

Spring 2018 Graph Theory 33

Định lý sáu màu và năm màu (cont.)

► Ta suy ra.

$$3\mathit{n} \leq \mathit{e} \leq 3\mathit{n} - 6$$

Vô lý. Vậy ta có điều phải chứng minh

Định lý sáu màu và năm màu

Bổ đề 4.1

Cho một đồ thị phẳng, liên thông luôn tồn tại ít nhất một đỉnh có bậc không lớn hơn 5

Chứng minh

Chứng minh bằng phản chứng. Giả sử đồ thị G phẳng, liên thông có n đỉnh, e canh và f miền và bâc của các đỉnh không nhỏ hơn 6

- ► Mỗi đỉnh phải kề ít nhất 6 canh
- ► Mỗi canh kề với 2 đỉnh. Do đó

$$6n \le 2e \Rightarrow 3n \le e$$

► Theo hệ quả ta có

$$e \le 3n - 6$$

Spring 2018 Graph Theory 34

Định lý sáu màu và năm màu (cont.)

Định lý 4.11

Cho một đồ thị phẳng, liên thông luôn có thể tô màu đồ thị bằng không quá 6 màu

Chứng minh

Sinh viên tự chứng minh ■

Spring 2018 Graph Theory 35 Spring 2018 Graph Theory 36

Định lý sáu màu và năm màu (cont.)

Định lý 4.12 (định lý Kempe)

Cho một đồ thị phẳng, liên thông luôn có thể tô màu đồ thị bằng không quá 5 màu

Chứng minh

Sinh viên đọc tài liệu [Trần and Dương, 2013] ■

Spring 2018 Graph Theory 3

Định lý sáu màu và năm màu (cont.)

- Nhận thấy phát biểu đúng cho đồ thị có số đỉnh ${\it n}=1,2,3,4,5$
- \blacktriangleright Xét đồ thị G có n>5 với giả thiết quy nạp là các đồ thị có 1,2,3,...,n-1 đều có thể tô không quá 5 màu
- Theo bổ đề luôn tồn tại một đỉnh có bậc không quá 5. Không mất tính tổng quát xét đỉnh P có bậc 5 và các đỉnh kề của nó là A, B, C, D, E
- Trong năm đỉnh A, B, C, D, E phải có ít nhất một cặp đỉnh không kề nhau. Không mất tính tổng quát A và B là 2 đỉnh không kề nhau
- Thực hiện phép biến đổi co 3 đỉnh P, A, B để thành một đỉnh mới PAB của đồ thi G' có n-2 đỉnh

Định lý sáu màu và năm màu (cont.)

Chứng minh

Chứng minh bằng phương pháp quy nạp

Hình 4.14: Đồ thị *G* và *G'*

Spring 2018 Graph Theory 38

Định lý sáu màu và năm màu (cont.)

- Theo giả thiết quy nạp G' có thể tô không quá 5 màu. Không mất tính tổng quát tô các đỉnh như sau C (red), D (green), E (blue) và PAB (black)
- Phục hồi lại các đỉnh A và B của đồ thị G. Tô lại đỉnh P (white)

Spring 2018 Graph Theory 39 Spring 2018 Graph Theory 40

Định lý bốn màu

Định lý 4.13 (định lý Appel-Haken, 1976)

Cho một đồ thị phẳng, liên thông luôn có thể tô màu đồ thị bằng không quá 4 màu

Chứng minh

Sinh viên tự chứng minh ■

Spring 2018 Graph Theory 41

Tài liệu tham khảo (cont.)

- Trần, T. and Dương, D. (2013).

 Giáo trình lý thuyết đồ thị. 2013.

 NXB Đại Học Quốc Gia TPHCM.
- West, D. B. et al. (2001).

 Introduction to graph theory.

 Prentice hall Englewood Cliffs.

Spring 2018 Graph Theory 43

Tài liệu tham khảo

Diestel, R. (2005).

Graph theory. 2005.

Springer-Verlag.

Moore, E. F. (1959).

The shortest path through a maze.

Bell Telephone System.

Rosen, K. H. and Krithivasan, K. (2012).

Discrete mathematics and its applications.

McGraw-Hill New York.

Tarjan, R. (1972).

Depth-first search and linear graph algorithms.

SIAM journal on computing, 1(2):146–160.

Spring 2018 Graph Theory 42