Opakovanie lineárnej algebry

Príklad 1

Majme sústavu vektorov: $\mathbf{x}_1 = (2, 4, -3)^T$, $\mathbf{x}_2 = (1, 0, 5)^T$, $\mathbf{x}_3 = (3, 4, 2)^T$, $\mathbf{x}_4 = (1, 4, -8)^T$.

Úloha: a/ Určte hodnosť sústavy vektorov \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , \mathbf{x}_4 (resp. hodnosť matice, vytvorenej z týchto vektorov). Môžu niektoré z týchto vektorov tvoriť bázu vektorového priestoru V_3 ?

- b/ Zistite, či sú vektory x₁, x₂ lineárne závislé!
- c/ Zistite, či vektor \mathbf{x}_1 je lineárnu kombináciou vektora \mathbf{x}_2 !
- d/ Zistite, či sú vektory x₁, x₂, x₃ lineárne závislé!
- e/ Zistite, či vektor x₂ je lineárnu kombináciou vektorov x₁, x₃, x₄!

Príklad 2

Majme sústavu vektorov: $\mathbf{x}_1 = (-6,16,-2)^T$, $\mathbf{x}_2 = (2,3,1)^T$, $\mathbf{x}_3 = (5,-1,2)^T$, $\mathbf{x}_4 = (4,6,2)^T$, $\mathbf{x}_5 = (-5,9,-2)^T$.

Úloha: a/ Zistite, či sú vektory x₁, x₂, x₃ lineárne závislé

- b/ Zistite, či vektor \mathbf{x}_1 je lineárnu kombináciou vektorov \mathbf{x}_2 , \mathbf{x}_3 , \mathbf{x}_4 .
- c/ Zistite, či vektor x_1 je konvexnou kombináciou vektorov x_3 , x_4 , x_5 .
- d/Zistite, koeficienty rozkladu vektora \mathbf{x}_2 v báze tvorenej z vektorov \mathbf{x}_3 , \mathbf{x}_4 , \mathbf{x}_5 .

Príklad 3

Eliminačnou metódou určte inverznú maticu k maticiam:

$$a / \begin{pmatrix} 5 & 4 \\ 2 & 2 \end{pmatrix} \qquad b / \begin{pmatrix} 6 & 3 \\ 4 & 2 \end{pmatrix} \qquad c / \begin{pmatrix} -6 & 2 & 5 \\ 16 & 3 & -1 \\ -2 & 1 & 2 \end{pmatrix} \qquad d / \begin{pmatrix} 5 & 4 & -5 \\ -1 & 6 & 9 \\ 2 & 2 & -2 \end{pmatrix}$$