Es01B: Misure di tensione, corrente, tempi, frequenza.

Gruppo 1x.By Mario Rossi, Anna Bianchi [non dimenticate i nomi]

23 ottembre 2150

2 Misure di tensione e corrente

2.b	Partitore	con	resistenze	da	circa	1 k	Valori mist	ırati R_1	$e R_2$	e valore	atteso	$\operatorname{di} A$	ovn

$$R_1 = ($$
 \pm $) k\Omega, R_2 = ($ \pm $) k\Omega, A_{\exp} = ($ \pm $)$

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN

Tabella 1: (2.b) Partitore di tensione con resistenze da circa 1k. Tutte le tensioni in V.

(2.b) Inserire il grafico V_{out} vs. V_{in}

Figura 1: (2.b) Grafico V_{out} vs. V_{in} con resistenze di circa 1k

Inserire commento sul confronto tra valori misurati ed attesi.

2.c Partitore con resistenze da circa 4M Valori misurati R_1 e R_2 e valore atteso di $A_{\rm exp}$:

$$R_1 = ($$
 \pm $) k\Omega$, $R_2 = ($ \pm $) k\Omega$, $A_{\text{exp}} = ($ \pm $)$

Inserire commento sul confronto tra valori misurati ed attesi.

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN

Tabella 2: (2.c) Partitore di tensione con resistenze da circa 4M. Tutte le tensioni in V.

(2.c) Inserire il grafico V_{out} vs. V_{in}

Figura 2: (2.c) Grafico V_{out} vs. V_{in} con resistenze da circa 4M

2.d Resistenza di ingresso del tester Usando il modello mostrato nella scheda si ottiene

$$\frac{R_1}{R_T} = \frac{V_{IN}}{V_{OUT}} - (1 + \frac{R_1}{R_2})$$

Con i dati del punto 2.b si ottiene

$$R_1/R_T = \pm \longrightarrow R_1 > k\Omega$$

Con i dati del punto 2.c si ottiene

$$R_1/R_T = \pm \longrightarrow R_1 = (\pm \pm)M\Omega$$

Inserire commento sulla sensibilità sperimentale della misura.

3 Uso dell'oscilloscopio

3.b Misure di tensione Vengono ripetute le misure del punto 2.c ma con pochi punti e senza grafico

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN

Tabella 3: (3.b) Partitore di tensione con resistenze da circa 4M, misura con oscilloscopio. Tutte le tensioni in V

3.d Impedenza di ingresso dell'oscilloscopio Si ripete l'analisi del punto 2.d

$$R_1/R_{IN} = \pm \rightarrow R_{IN} = (\pm \pm)M\Omega$$

4 Misure di frequenza e tempo

4.b Misure di frequenza Misure con onda sinusoidale

Periodo T (s)	$\sigma T (s)$	Frequenza f (Hz)	σ f (Hz)	Misura oscilloscopio (Hz)	Differenza (Hz)

Tabella 4: (4.b) Misura di frequenza di onde sinusoidali e confronto con misurazione interna dell'oscilloscopio

5 Trigger dell'oscilloscopio

Figura 3: (5.b) Relazione temporale tra il segnale pulse e l'onda principale

6 Conclusioni e commenti finali

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.