Data Science Unit 1 Introduction to Python

Python

Guido van Rossum invented Python in December 1989 while looking for a "hobby' programming project that would keep him occupied during the week around Christmas" as his office was closed for holidays.

Python Libraries

matpletlib

Data Science Unit 1 Data Types and Operators

Data Types

Data Type	Definition	Example
Integer	Whole numbers given from negative infinity to infinity	5, 3, -1, 1000
Float	'Floating point number' - has a decimal point in it	3.3, -2.4, 5.0
String	A set of letters, numbers or characters in general- surrounded by quotation marks	'Data is Awesome'
Tuple	Ordered sequence with fixed number of elements- surrounded by parenthesis	(1,2), ('Red', 'Green', 'Blue')
List	Ordered sequence with no fixed number of elements- surrounded by square brackets	[1,2], ['Red', 'Green', 'Blue']
Dictionary	Unordered collection of key value pairs. To access the value you need to use its key	{'Blue':5, 'Red' :2, 'Green':0}

Collections

List

$$\mathbf{x} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ & & & & \\ & & & & \end{bmatrix}$$

Tuple

Dictionary

Collections-Differences

Data Type	Ordered	Mutable	Unique Values	Denoted
Lists	Y	Y	N	[]
Dictionaries	N	Y	N	{}
Tuples	Υ	N	Y	()
Sets	N	Y	Y	{}

Variables

Restrictions

- Variable names cannot be just a number (i.e., 2, 0.01, 10000).
- Variables cannot be assigned the same name as a default or imported function (i.e., 'type', 'print', 'for').
- Variable names cannot contain spaces.

Best Practices

- Variable names should be lowercase.
- A variable's name should be representative of the value(s) it has been assigned.
- If you must use multiple words in your variable name, use an underscore to separate them.

Operators

Operator	What it does	Example
+	Adds	1 + 1 = 2
-	Subtracts	3 - 2 = 1
*	Multiplies	4 * 4 = 16
1	Divides	5/2 = 2.5
//	Quotient (after division rounds down to whole number)	5//2 = 2
**	Exponent	3 ** 2 = 9
=	Assigns value	x = 2
%	Modulo (finds remainder)	5 % 2 = 1

Booleans

$$x = 2$$

Boolean	Outcome
x is 2	True
x is 4	False
x is 2 and x is 4	False
x is not 2	False
x is 2 or x is 4	True

Comparisons

Operator	What it does
==	Equals to
!=	Not equals to
>	Greater than
>=	Greater than or equals to
<	Less than
<=	Less than or equals to

Changing Types

Data Science Unit 1 Strings and Indexing

String

'Hello World'

0 1 23 4 5 6 7 8 9 10

Data Science Unit 1 Collections

List

['Data', 1, 'London', 2.0]

Tuples

(1,2,3)

Dictionary

{'A':2, 'B':5, 'C':10}

Data Science Unit 1 Importing Libraries

Import

```
import math
x = math.cos(2 * math.pi)
print(x)

1.0

from math import pi
```

3.141592653589793

x=pi

print(x)

Data Science Unit 1 Practice

Data Science Unit 1 Control Flow

Control Flow

Indentation

```
if 'one' == 'two':
    print("The string 'one' is equal to the string 'two'.")

print('---')
print('These two lines are not indented, so they are always run next.')
```

If/else

Executes First True Statement

Else is catch all and must be at the end

For

```
numbers=[1,2,3,4,5]
for number in numbers:
    print(number**2)
```

try-except

Program keeps executing!

Functions

```
def arithmetic(num1, num2):
    This function adds, subtracts
    and multiplies num1 and num2.
    print(num1 + num2)
    print(num1 - num2)
    print(num1 * num2)

#arithmetic(3,5)
```

While

```
In [*]: x = 0
while x < 10:
              print (x)
```

List and Dictionary Comprehensions

```
# Create a new list which is an upper case version of the first list
animals=['cat','dog','cow','mouse']
upper animals=[]
for animal in animals:
   upper animals.append(animal.upper())
print(upper_animals)
['CAT', 'DOG', 'COW', 'MOUSE']
```

```
upper_animals=[animal.upper() for animal in animals]
print(upper_animals)
```

```
['CAT', 'DOG', 'COW', 'MOUSE']
```

Data Science Unit 1 Practice