AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method for generating code to perform
2	anticipatory prefetching for data references, comprising:
3	receiving code to be executed on a computer system;
4	analyzing the code to identify data references to be prefetched;
5	calculating a prefetch ahead distance, wherein the prefetch ahead distance
6	includes the ratio of outstanding prefetches to the number of prefetch streams; and
7	inserting prefetch instructions into a preceding basic block of the code in
8	advance of the identified data references based upon the prefetch ahead distance,
9	wherein inserting prefetch instructions involves inserting multiple prefetch
10	instructions for a given cache line, and wherein inserting the prefetch instructions
11	involves,
12	attempting to calculate a stride value for a given data
13	reference within a loop,
14	if the stride value cannot be calculated, setting the stride
15	value to a default stride value, and
16	inserting a prefetch instruction to prefetch the given data
17	reference for a subsequent loop iteration based on the stride value;
18	wherein the stride value is constant for some but not necessarily all loop
19	iterations.

2	user to specify the default stride value.
1	3. (Original) The method of claim 1, wherein calculating the stride value
2	involves:
3	identifying an induction variable for the stride value;
4	identifying a stride function for the stride value; and
5	calculating the stride value based upon the stride function and the
6	induction variable.
1	4. (Original) The method of claim 1, wherein inserting the prefetch
2	instruction based on the stride value involves:
3	calculating a prefetch cover distance by dividing a cache line size by the
4	stride value;
5	calculating a prefetch ahead distance as a function of a prefetch latency,
6	the prefetch cover distance and an execution time of a loop; and
7	calculating a prefetch address by multiplying the stride value by the
8	prefetch cover distance and the prefetch ahead distance and adding the result to an
9	address accessed by the given data reference.
1	5. (Original) The method of claim 1, wherein analyzing the code involves:
2	identifying loop bodies within the code; and
3	identifying data references to be prefetched from within the loop bodies.
1	6. (Original) The method of claim 5, wherein analyzing the code to
2	identify data references to be prefetched involves examining a pattern of data
3	references over multiple loop iterations.

2. (Original) The method of claim 1, further comprising allowing a system

1

2	analyzing the code within a compiler.
1	8. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform a
3	method for generating code to perform anticipatory prefetching for data
4	references, the method comprising:
5	receiving code to be executed on a computer system;
6	analyzing the code to identify data references to be prefetched;
7	calculating a prefetch ahead distance, wherein the prefetch ahead distance
8	includes the ratio of outstanding prefetches to the number of prefetch streams; and
9	inserting prefetch instructions into a preceding basic block of the code in
0	advance of the identified data references based upon the prefetch ahead distance,
1	wherein inserting prefetch instructions involves inserting multiple prefetch
12	instructions for a given cache line, and wherein inserting the prefetch instructions
13	involves,
14	attempting to calculate a stride value for a given data
15	reference within a loop,
16	if the stride value cannot be calculated, setting the stride
17	value to a default stride value, and
18	inserting a prefetch instruction to prefetch the given data
19	reference for a subsequent loop iteration based on the stride value;
20	wherein the stride value is constant for some but not necessarily all loop
21	iterations.
1	9. (Original) The computer-readable storage medium of claim 8, wherein
2	the method further comprises allowing a system user to specify the default stride

7. (Original) The method of claim 1, wherein analyzing the code involves

1

3

value.

i	10. (Original) The computer-readable storage medium of claim 8, wherein
2	calculating the stride value involves:
3	identifying an induction variable for the stride value;
4	identifying a stride function for the stride value; and
5	calculating the stride value based upon the stride function and the
6	induction variable.
1	11. (Original) The computer-readable storage medium of claim 8, wherein
2	inserting the prefetch instruction based on the stride value involves:
3	calculating a prefetch cover distance by dividing a cache line size by the
4	stride value;
5	calculating a prefetch ahead distance as a function of a prefetch latency,
6	the prefetch cover distance and an execution time of a loop; and
7	calculating a prefetch address by multiplying the stride value by the
8	prefetch cover distance and the prefetch ahead distance and adding the result to an
9	address accessed by the given data reference.
1	12. (Original) The computer-readable storage medium of claim 8, wherein
2	analyzing the code involves analyzing the code within a compiler.
1	13. (Currently amended) An apparatus that generates code to perform
2	anticipatory prefetching for data references, comprising:
3	a receiving mechanism that is configured to receive code to be executed or
4	a computer system;
5	an analysis mechanism that is configured to analyze the code to identify
6	data references to be prefetched;

7	a calculating mechanism that is configured to calculate a prefetch ahead
8	distance, wherein the prefetch ahead distance includes the ratio of outstanding
9	prefetches to the number of prefetch streams; and
10	an insertion mechanism that is configured to insert prefetch instructions
11	into a preceding basic block of the code in advance of the identified data
12	references based upon the prefetch ahead distance, wherein the insertion
13	mechanism facilitates inserting multiple prefetch instructions for a given cache
14	line;
15	wherein the insertion mechanism is configured to,
16	attempt to calculate a stride value for a given data reference
17	within a loop,
18	set the stride value to a default stride value if the stride
19	value cannot be calculated, and to
20	insert a prefetch instruction to prefetch the given data
21	reference for a subsequent loop iteration based on the stride value
22	wherein the stride value is constant for some but not necessarily all loop
23	iterations.
1	14. (Original) The apparatus of claim 13, further comprising a
2	configuration mechanism that is configured to receive the default stride value
3	from a system user.
1	15. (Original) The apparatus of claim 13, wherein while calculating the
2	stride value, the insertion mechanism is configured to:
3	identify an induction variable for the stride value;
4	identify a stride function for the stride value; and to
5	calculate the stride value based upon the stride function and the induction
6	variable.

1	16. (Original) The apparatus of claim 13, wherein the insertion mechanism
2	is configured to:
3	calculate a prefetch cover distance by dividing a cache line size by the
4	stride value;
5	calculate a prefetch ahead distance as a function of a prefetch latency, the
6	prefetch cover distance and an execution time of a loop; and to
7	calculate a prefetch address by multiplying the stride value by the prefetch
8	cover distance and the prefetch ahead distance and adding the result to an address
9	accessed by the given data reference.
1	17. (Original) The apparatus of claim 13, wherein the apparatus resides
2	within a compiler.

7

18-45 (Canceled).

1