Experimento 2 - Interrupções Externas

Fundamentação

Interrupções

Interrupções são desvios realizados no programa pelo hardware do microcontrolador, ou seja, uma sub-rotina do programa é chamada quando algum evento acontece no hardware do microcontrolador.

Existem aproximadamente 20 fontes de interrupção nos microcontroladores AVR, com variações dependendo do modelo, as principais são listadas a seguir.

Nome do Vetor	Descrição
ADC_vect	Conversão completa do ADC
ANA_COMP_vect	Comparador Analógico
EE_RDY_vect	EEPROM pronta
INT0_vect	Interrupção externa 0
INT1_vect	Interrupção externa 1
SPI_STC_vect	Transferência serial completa na SPI
SPM_RDY_vect	Memória de programa pronta
TIMER0_OVF_vect	Estouro Timer/Counter 0
TIMER1_CAPT_vect	Captura Timer/Counter
TIMER1_COMPA_vect	Comparação do Timer/Counter 1 A
TIMER1_COMPB_vect	Comparação do Timer/Counter 1 B
TIMER1_OVF_vect	Estouro Timer/Counter 1
TIMER2_COMP_vect	Comparação do Timer/Counter 2
TIMER2_OVF_vect	Estouro Timer/Counter 2
USART_RXC_vect	Caractere recebido na USART
USART_UDRE_vect	Registrador de dados vazio na USART
USART_TXC_vect	Caractere transmitido na USART
TWI_vect	Interface Serial 2-wire

Como exemplo podemos citar a interrupção que ocorre quando o conversor analógico / digital termina sua conversão.

Para que possamos fazer uso das interrupções nos microcontroladores é necessário que o software faça alguns ajustes no hardware. Inicialmente devemos incluir a biblioteca <avr/interrupt.h> e providenciar a sub-rotina de interrupção. As sub-rotinas de interrupção tem o seguinte formato.

```
ISR(vetor de interrupção)
{
}
```

Após construir a sub-rotina de interrupção é necessário habilitarmos a interrupção desejada através do registrador de controle do hardware em questão. Cada dispositivo de hardware tem um registrador de controle específico, cujos detalhes podem ser encontrados no manual do dispositivo.

E o último passo na utilização das interrupções é habilitar o microcontrolador para executar as interrupções. Isto é feito chamando a função sei().

A seguir temos um exemplo onde as interrupções externas 0 e 1 são utilizadas.

```
#include <avr/io.h>
#include <avr/interrupt.h>
int cont;
ISR(INT0_vect)
     cont++;
}
ISR(INT1_vect)
     cont--;
}
int main()
     MCUCR = 0b00001111; // int0 e int1 na subida do sinal
     GICR = 0b11000000; // ativa int0 e int 1
     sei(); // ativa todas as interrupções
     cont=0;
     while(1)
      {
}
}
```

Neste exemplo foi utilizado o registrador "MCUCR", onde são ajustados os níveis de tensão em que a interrupção deve acontecer. E o registrador GICR onde as interrupções são habilitadas. As tabelas a seguir detalham estes registradores.

O registrador MCUCR é o registrador de controle do microcontrolador.

Registra	Registrador MCUCR		
Bit	Significado		
0	ISC00 - Sensibilidade INT0 bit 0		
1	ISC01 - Sensibilidade INT0 bit 1		
2	ISC10 - Sensibilidade INT1 bit 0		
3	ISC11 - Sensibilidade INT1 bit 1		
4	Modo de hibernação bit 0		
5	Modo de hibernação bit 1		
6	Modo de hibernação bit 2		
7	Habilita a hibernação		

Neste exemplo foram utilizados os 4 primeiros bits, as tabelas a seguir apresentam o significado dos registradores ISC00 a ISC11.

ISC01	ISC00	Significado
0	0	O nível baixo em INTO gera a interrupção
0	1	Qualquer mudança em INT0 gera a interrupção
1	0	Uma borda de descida em INTO gera a interrupção
1	1	Uma borda de subida em INTO gera a interrupção

ISC11	ISC10	Significado
0	0	O nível baixo em INT1 gera a interrupção
0	1	Qualquer mudança em INT1 gera a interrupção
1	0	Uma borda de descida em INT1 gera a interrupção
1	1	Uma borda de subida em INT1 gera a interrupção

O registrador GICR é o registrador de controle geral das interrupções.

Registrador GICR		
Bit	Significado	
0	IVSEL – escolha do vetor de interrupção	
1	IVCE – Habilita troca de vetor de interrupção	
2	-	
3	-	
4	-	
5	-	
6	INTO - Habilita interrupção externa 0	
7	INT1 - Habilita interrupção externa 1	

No exemplo foram utilizados os bits 6 e 7, para habilitar as interrupções externas. Para realizarmos os testes neste programa utilizaremos os pinos PD2 e PD3, cujas segundas funções são as interrupções externas 0 e 1.

Parte experimental

Introdução

O objetivo deste experimento é exercitar com os alunos a montagem de circuitos microcontrolados que utilizem as interrupções externas. As interrupções são dispositivos de hardware e software importantes pois permitem aos microcontroladores receber de forma rápida sinais digit ais externos.

Experimento

Construa o circuito conforme diagrama a seguir, conectando dois botões aos pinos PD2 e PD3, e um display de 7 segmentos a porta B.

As conexões do display são apresentadas na figura a seguir.

Para este circuito desenvolva um programa, utilizando como modelo o exemplo de programa apresentado na fundamentação, que utiliza as interrupções externas 0 e 1.

Este programa deve apresentar no display o valor de um contador. O contador deve iniciar em 0 e ser incrementado toda vez que a interrupção externa 0 acontecer, e ser decrementado toda vez que a interrupção externa 1 acontecer. O programa deve limitar os valores do contador para o intervalo de 0 a 9.

Relatório

Após a realização dos experimentos deve ser elaborado um relatório seguindo o modelo disponibilizado. Este relatório deve ser submetido via sistema SIGAA para avaliação, em formato PDF, até a data estipulada em aula.

O modelo do relatório pode ser encontrado em: https://professor.luzerna.ifc.edu.br/ricardo-kerschbaumer/microcontroladores-experimental/

Serão avaliados os seguintes itens no relatório:

- Introdução
- Objetivo
- Fundamentação teórica
- Desenvolvimento
- Componentes utilizados
- Circuito eletrônico
- Código fonte do programa
- Resultados e discussões
- Conclusão