Foglio di esercizi 2 Metodi Matematici per l'IA

03-02-2024

Esercizio 1

Calcolare la serie di Fourier dell'estensione 2π -periodica della restrizione in $[-\pi, \pi]$ delle funzioni:

- $\bullet \ f(x) = |x|,$
- $q(x) = x^2$.

Esercizio 2

Determinare la serie di Fourier della funzione $f: \mathbb{R} \to \mathbb{R}$, 2π -periodica, definita da:

$$f(x) = \chi_{[-\pi/2,\pi/2]}(x)$$
, dove:

$$\chi_A(x) = \begin{cases} 1 & \text{se } x \in A, \\ 0 & \text{se } x \notin A; \end{cases}$$

Esercizio 3: Controesempio per l'integrazione termine a termine (Lemma 2.27)

Si consideri la serie di funzioni definita da $f_n(x) = \frac{n}{1+n^2x^2}$ sull'intervallo [-1,1].

- 1. Studio della convergenza puntuale:
 - (a) Mostra che per ogni $x \neq 0$, $f_n(x)$ converge a 0 quando $n \to \infty$.
 - (b) Qual è la funzione limite f(x) della serie?

2. Studio della convergenza uniforme:

La convergenza di $f_n(x)$ verso f(x) = 0 è uniforme sull'intervallo [-1,1]? Giustifica la tua risposta usando un'analisi rigorosa.

- 3. Calcolo delle integrali:
 - (a) Calcola $\int_{-1}^{1} f_n(x) dx$ per ogni n.
 - (b) Confronta questa integrale con $\int_{-1}^{1} f(x) dx$.
- 4. Conclusione: Perché l'integrazione termine a termine fallisce in questo caso?

Esercizio 4: Controesempio per la derivazione termine a termine (Lemma 2.28)

Si consideri la serie di funzioni definita da $f_n(x) = \frac{\sin(nx)}{n}$ sull'intervallo $[0, 2\pi]$.

1. Studio della convergenza puntuale:

Mostra che la funzione $f_n(x)$ converge puntualmente verso una funzione limite. Qual è questa funzione limite?

2. Studio delle derivate:

- (a) Trova la derivata $f'_n(x)$ di ogni funzione $f_n(x)$.
- (b) Studia la convergenza puntuale delle derivate $f'_n(x)$. Verso cosa convergono?

3. Convergenza uniforme delle derivate:

Analizza la convergenza uniforme delle derivate $f'_n(x)$ su $[0, 2\pi]$. La convergenza è uniforme? Giustifica la tua risposta.

4. Confronto delle derivate:

- (a) Confronta la derivata della somma $\sum_{n=1}^{\infty} f_n(x)$ con la somma delle derivate $\sum_{n=1}^{\infty} f'_n(x)$.
- (b) Spiega perché la derivazione termine a termine fallisce in questo caso.

Esercizio 5: Costruzione di una funzione limite tramite serie

Si consideri la seguente serie di funzioni:

$$g(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2},$$

definita sull'intervallo $[0, 2\pi]$.

1. Convergenza puntuale

Dimostrare che la serie converge puntualmente per ogni $x \in [0, 2\pi]$. Qual è la funzione limite g(x)?

2. Derivazione della serie

Dimostrare che la serie può essere derivata termine per termine per ottenere:

$$g'(x) = \sum_{n=1}^{\infty} \frac{\cos(nx)}{n}.$$

2

3. Studio della convergenza uniforme

- (a) La serie $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$ converge uniformemente su $[0, 2\pi]$?
- (b) Cosa si può dire della convergenza uniforme di $\sum_{n=1}^{\infty} \frac{\cos(nx)}{n} ?$