جلسه سيزدهم

مسئله 49: تعداد جایگشت هایی را که می توان با به کار بردن همه مولفه های a_n بدست آورید. طوری که مولفه های مجاور متمایز باشند a_n می نامیم. یک رابطه بازگشتی برای a_n بدست آورید.

تعریف: عدد استرلینگ نوع اول بدون علامت که آن را با $n \brack k$ نمایش می دهند، مساوی تعداد راه های قرار گرفتن n شخص متمایز دور n میز یکسان است به طوری که هیچ میزی خالی نباشد.

	$\begin{bmatrix} n \\ 0 \end{bmatrix}$	[n] [1]	$\begin{bmatrix} n \\ 2 \end{bmatrix}$	$\begin{bmatrix} n \\ 3 \end{bmatrix}$	[n] [4]
0	1	0	0	0	0
1	0	1	0	0	0
2	0	1	1	0	0
3	0	2	3	1	0
4	0	6	11	6	1

مسئله 51: ثابت كنيد:

$$x^{\bar{n}} = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k$$

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
 که در آن $n + 1 = n!$ نتیجه 53: ثابت کنید

مسئله 54؛

$$\sum_{k=1}^{n-1} H_k = nH_n - n$$

$$0 \le m < n = \sum_{k=m}^{n-1} {k \choose m} H_k = {n \choose m+1} (H_n - \frac{1}{m+1})$$

$$0 \le m \le n = \sum_{k=m}^{n-1} {k \choose m} \frac{1}{n-k} = {n \choose m} (H_n - H_m)$$

جلسه سيزدهم

نتيجه 55: ثابت كنيد:

$$x^{\underline{n}} = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k$$

مسئله 56: تعداد راه های فرش کردن یک مستطیل x (n-1) با موزاییک های x با y زنگ و موزاییک های y با y در حالت های y با y رنگ را y می نامیم. یک رابطه بازگشتی برای y بیابید سپس ثابت کنید در حالت y با y در y با y در y با y در y

. $u_n = f_n$ داريم r = s = 1

نتیجه 57: با استفاده از مسئله قبل رابطه ی زیر را به صورت ترکیبیاتی ثابت کنید.

$$f_{n+m+1} = f_{n+1} f_{m+1} + f_n f_m$$

تعریف: $P_k(n)$ تعداد افراز های عددی n به k جزء و $\overline{P_k}(n)$ تعداد افراز های عددی حداکثر به k جزء.

مسئله 58: ثابت كنيد:

$$P_k(n) = \overline{P_k}(n-k)$$

$$\overline{P_k}(n) = P_k(n+k)$$

یادداشت: نمودار فرررز برای افراز های عددی:

10 = 4 + 3 + 1 + 1 + 1

0000

000

0

0

$$P_k(n) = P_{k-1}(n-1) + P_k(n-k)$$
 مسئله 59: ثابت کنید

مسئله 60: رابطه ی بازگشتی برای T_n تعداد درخت های مرتب دودویی کامل با n برگ بنویسید.

جلسه سيزدهم

مسئله 61: اعداد 61: اعداد

اگر W_n تعداد درخت های نامرتب دودویی کامل v برگی باشد ثابت کنید: