Multiresolution Analysis and Fast Wavelet Transform

Fondamenti di elaborazione del segnale multi-dimensionale

Stefano Ferrari

Università degli Studi di Milano stefano.ferrari@unimi.it

Elaborazione dei Segnali Multi-dimensionali e Applicazioni 2011–2012

Motivations

- ► CWT has valuable properties for signal processing.
- ► However, the use of CWT requires some approximations:
 - inner product computation;
 - scale and translation parameters sampling.
- ▶ A discrete version of wavelet transform (i.e., a wavelet transform that operates with only a dyadic set of wavelets and on a discrete set of samples of the signal) is possible: the Discrete Wavelet Transform (DWT).
- ► The theory that allows to obtain such a transform is better explained starting from the Multi-Resolution Analysis (MRA).
- ▶ A fundamental result of the MRA theory is that, under some conditions, the DWT can be obtained through a digital filtering operation.
- ► This transform is computationally very efficient and, for this reason, it is called Fast Wavelet Transform (FWT).

Multiresolution Analysis — Overview

▶ A Multiresolution Analysis (MRA) defines a sequence of nested spaces of functions, {V_j}:

$$\cdots \subset V_{-1} \subset V_0 \subset V_1 \subset \cdots \subset V_j \subset V_{j+1} \subset \cdots$$

such that lower the index, smoother the functions that belong to the space.

- ▶ This sequence will, at the end, cover the space of the finite energy functions, $L^2(\mathbb{R})$.
- ▶ For each function $f \in L^2(\mathbb{R})$, the best approximation, $P_j[f]$, in each space, V_j , can be defined by projecting the function onto this space.
- ▶ Hence, a sequence of approximating functions, $\{P_j[f]\}$, is obtained, such that:

$$\lim_{j\to\infty} P_j[f] = f$$

Multiresolution Analysis — Overview (2)

► The difference between two consecutive approximations represents the details that are added:

$$Q_{j}[f] = P_{j+1}[f] - P_{j}[f]$$

and can be obtained as the projection of the function f onto an appropriate detail space, W_j .

► Hence, the function *f* can be represented by summing the sequence of the detail projections:

$$f = \sum_{j} Q_{j}[f]$$

▶ The basis of the W_j 's spaces are the wavelets.

Scaling functions — Approximation spaces

A Multiresolution Analysis (MRA) of $L^2(\mathbb{R})$ is defined as the sequence of closed subspaces $V_j \in L^2(\mathbb{R})$, $j \in \mathbb{Z}$, which have the following properties:

- 1. $V_i \subset V_{i+1}$
- 2. $v(x) \in V_i \Leftrightarrow v(2x) \in V_{i+1}$
- 3. $v(x) \in V_0 \Leftrightarrow v(x+1) \in V_0$
- 4. $\bigcup_{j=-\infty}^{\infty} V_j$ is dense in $L^2(\mathbb{R})$ and $\bigcap_{j=-\infty}^{\infty} V_j = \{0\}$
- 5. There is a function $\varphi(x) \in V_0$, having non null integral, such that the set $\{(\varphi(x-k)|k \in \mathbb{Z})\}$ is a Riesz basis for V_0 .

The function $\varphi(\cdot)$ is called *scaling function*.

Scaling functions — Approximation spaces (2)

There is a sequence $\{h_k\} \in I^2(\mathbb{Z})$ for which the scaling function satisfies:

$$\varphi(x) = 2\sum_{k} h_{k} \, \varphi(2x - k)$$

- ▶ The relation is called the *refinement equation*;
 - ▶ aka dilation equation or two-scale difference equation
- Defining

$$\varphi_{j,k}(x) = \sqrt{2^j}\,\varphi(2^j x - k)$$

it can be shown that $\{ \varphi_{j,k}(x) \, | \, k \in \mathbb{Z} \}$ is a Riesz basis for V_j

▶ Hence, $\{\varphi_{j,k}(x) | j, k \in \mathbb{Z}\}$ is a Riesz basis for $L^2(\mathbb{R})$

Scaling functions — Approximation spaces (3)

Hence there are at least three ways to build or identify a MRA:

- ▶ through the description of the V_is spaces;
- by means of the scaling function, φ ;
- ▶ through the coefficients $\{h_k\}$ of the refinement equation.

As it will be shown, in order to obtain an approximation, the coefficients $\{h_k\}$ can be used directly.

- ▶ It is efficient.
- ▶ There is no need of using the scaling function.

However, a more detailed characterization of these coefficients is required.

Properties of the scaling functions

▶ It can be shown that:

$$\sum_k h_k = 1$$

▶ The normalization is a condition usually required:

$$\int_{-\infty}^{\infty} \varphi(x) \, \mathrm{d}x = 1$$

▶ In the frequency domain, this condition is equivalent to:

$$\hat{\varphi}(0) = 1$$

From the refinement equation and the normalization condition, the scaling function is uniquely determined.

Properties of the scaling functions (2)

► In order to be able to approximate simple function (e.g., constants), it is useful to assume that:

$$\forall x \in \mathbb{R}, \ \sum_{k} \varphi(x-k) = 1$$

- the scaling function and its integer translates partition the unit.
- ► This condition is equivalent to:

$$\hat{\varphi}(2\pi k) = 0, \ k \in \mathbb{Z}, \ k \neq 0$$

• or $\hat{\varphi}(2\pi k) = \delta$, $k \in \mathbb{Z}$, due to $\hat{\varphi}(0) = 1$.

Properties of the scaling functions (3)

▶ From the refinement equation, $\varphi(x) = 2 \sum_k h_k \varphi(2x - k)$:

$$\hat{\varphi}(\nu) = H(\nu/2)\hat{\varphi}(\nu/2)$$

where H is a 2π -periodic function defined as:

$$H(\nu) = \sum_{k} h_{k} e^{-\iota k \nu}$$

• Since $\hat{\varphi}(0) = 1$, the recursion on the above property produces:

$$\hat{\varphi}(\nu) = \prod_{j=1}^{\infty} H(2^{-j}\nu)$$

This relation can be used for obtaining φ from $\{h_k\}$.

Properties of the scaling functions (4)

- ▶ It can be shown that H(0) = 1.
 - E.g., from $\hat{\varphi}(\nu) = H(\nu/2)\hat{\varphi}(\nu/2)$.
- ► It can also be shown that a condition for the partition of the unity is:

$$H(\pi) = 0$$
 or $\sum_{k} (-1)^{k} h_{k} = 0$

Approximation at the j-th scale

For each function, its approximation can be obtained projecting it onto an approximation space:

$$\forall f(\cdot) \in L^2(\mathbb{R}), \lim_{j \to \infty} P_j[f(\cdot)] = f(\cdot)$$

$$P_{j}[f(x)] = \sum_{k} \lambda_{j,k} \, \varphi_{j,k}(x)$$

for some $\{\lambda_{j,k}\}$.

Wavelets — Detail spaces

Let W_j be the complementary space of V_j in V_{j+1} , i.e., the space that satisfies:

$$V_{j+1} = V_j \oplus W_j$$

= $\{v_j + w_j \mid v_j \in V_j, w_j \in W_j\}$

The space W_j contains the information about the "details" required for moving from a j-resolution approximation to the j+1-resolution one. As a consequence:

$$\bigoplus_{j} W_{j} = L^{2}(\mathbb{R})$$

Wavelets — Details space (2)

A function $\psi(\cdot)$ is a wavelet if the set of functions $\{\psi(x-k) \mid k \in \mathbb{Z}\}$ is a Riesz basis for the wavelet space W_0 .

$$\{\psi_{j,k}(x) \mid j,k \in \mathbb{Z}\}$$
, where $\psi_{j,k}(x) = \sqrt{2^j} \, \psi(2^j x - k)$, is a Riesz bases for $L^2(\mathbb{R})$.

Since $\psi \in V_1$, there is a sequence $\{g_k\} \in l^2(\mathbb{Z})$ such that:

$$\psi_{0,0}(x) = \psi(x) = 2\sum_{k} g_{k} \varphi(2x - k)$$

The function $\psi(\cdot)$ is called *mother wavelet*.

Properties of the wavelets

▶ The Fourier transform of the wavelet is:

$$\hat{\psi}(\nu) = G(\nu/2)\,\hat{\psi}(\nu/2)$$

where G is a 2π -periodic function given by:

$$G(\nu) = \sum_{k} g_{k} e^{-\iota k \nu}$$

Detail at the *j*-th scale

As for the approximation, the detail at a given scale can be obtained by projecting the function onto a proper wavelet space:

$$\forall f(x) \in L^2(\mathbb{R})$$
:

$$f(x) = \sum_{j} Q_{j}[f(x)] = \sum_{j,k} \gamma_{j,k} \psi_{j,k}(x)$$

Notes:

- ► The above equation is a "discrete" (in the scale and position parameters) inverse wavelet transform.
- ▶ The computational cost for computing the coefficients $\{\gamma_{j,k}\}$ depends by the properties of the wavelets and scaling functions.

Orthogonal wavelets

- ► The use of an orthogonal basis is particularly interesting as it allows to decompose a function in uncorrelated elements.
- ▶ In this case, the coefficient $\lambda_{j,k}$ are obtained by the orthogonal projection of the function f onto the basis element $\varphi_{j,k}$:

$$P_{j}[f(x)] = \sum_{k} \langle f, \varphi_{j,k} \rangle \varphi_{j,k}(x)$$

▶ $P_j[f(\cdot)]$ is the best representation of $f(\cdot)$ in V_j , as:

$$\forall g \in V_j, ||g - f|| \ge ||P_j[f] - f||$$

▶ Similarly, if the wavelets $\{\psi_{j,k}\}$ form an orthogonal basis for W_j , the projection Q_j is an orthogonal projection and the coefficient $\gamma_{j,k}$ can be obtained by orthogonally projecting f onto $\psi_{j,k}$:

$$Q_{j}[f(x)] = \sum_{k} \langle f, \psi_{j,k} \rangle \, \psi_{j,k}(x)$$

Orthogonal wavelets (2)

- ▶ A MRA where the wavelet spaces W_j are defined as the orthogonal complement of V_i in V_{i+1} .
 - As a consequence, the wavelet spaces, $\{W_j\}$, are mutually orthogonal,
 - \triangleright the above defined projections P_i and Q_i are orthogonal, and
 - the expansion

$$f(x) = \sum_{j} Q_{j}[f(x)]$$

is an expansion of orthogonal functions.

▶ If the above mentioned conditions on the scaling function are satisfied, a sufficient condition for the orthogonality of a MRA is:

$$W_0 \perp V_0$$

or

$$\langle \psi(x), \varphi(x-k) \rangle = 0$$

Orthogonal wavelets (3)

▶ Under mild conditions, $\langle \psi(x), \varphi(x-k) \rangle = 0$ is equivalent to:

$$orall
u \in \mathbb{R}, \; \sum_{\mathbf{k}} \hat{\psi}(
u + 2k\pi) \overline{\hat{\varphi}}(
u + 2k\pi) = 0$$

In order to investigate on the properties of the orthogonal wavelets and scaling functions, the following 2π -periodic function is introduced:

$$F(\nu) = \sum_{k} |\hat{\varphi}(\nu + 2k\pi)|^2$$

▶ Since $\{\varphi(x-k) \mid k \in \mathbb{Z}\}$ is a Riesz basis, there are two constants A and B such that:

$$0 < A \le F(\nu) \le B < \infty$$

i.e., $F(\cdot)$ is bounded (and the bounds do not depend on ν).

Orthogonal wavelets (4)

▶ Since $\hat{\varphi}(\nu) = H(\nu/2) \, \hat{\varphi}(\nu/2)$, it derives:

$$F(2\nu) = |H(\nu)|^2 F(\nu) + |H(\nu + \pi)|^2 F(\nu + \pi)$$

which shows that F is actually π -periodic.

▶ The scaling function is orthogonal when

$$\langle \varphi(x), \varphi(x-k) \rangle = \delta_k, \ k \in \mathbb{Z}$$

In this case, $\{\varphi_{j,k} \mid k \in \mathbb{Z}\}$ is an orthonormal basis for V_j .

Under mild conditions, the above relation is equivalent to:

$$\forall \nu \in \mathbb{R}, \; \sum_{k} |\hat{\varphi}(\nu + 2k\pi)|^2 = F(\nu) = 1$$

Hence

$$\forall \nu \in \mathbb{R}, \ |H(\nu)|^2 + |H(\nu + \pi)|^2 = 1$$

which is equivalent to

$$\forall k \in \mathbb{Z}, \ \sum_{j} h_{j} h_{j-2k} = \frac{\delta_{k}}{2}$$

Orthogonal wavelets (5)

- ▶ $\sum_{j} h_{j} h_{j-2k} = \frac{\delta_{k}}{2}$ and $\langle \varphi(x), \varphi(x-k) \rangle = \delta_{k}$ describe the orthogonality necessary conditions in the time domain;
- ▶ $\sum_{k} |\hat{\varphi}(x+2k\pi)|^2 = 1$ and $|H(\nu)|^2 + |H(\nu+\pi)|^2 = 1$ describes the orthogonality necessary conditions in the frequency domain.
- These conditions can be used to build orthogonal scaling functions.
- ▶ Similarly, the basis $\{\psi_{j,k} \,|\, k \in \mathbb{Z}\}$ is an orthonormal basis for W_0 if

$$\langle \psi(\mathbf{x}), \psi(\mathbf{x} - \mathbf{k}) \rangle = \delta_{\mathbf{k}}$$

or, equivalently

$$\sum_{\nu} |\hat{\psi}(\nu + 2k\pi)|^2 = 1$$

from which results the necessary condition:

$$|G(\nu)|^2 + |G(\nu + \pi)|^2 = 1$$

Orthogonal wavelets (6)

- ► The *G* function (and, hence the *g* coefficients), can be better characterized.
- ▶ It can be shown that

$$\forall \nu \in \mathbb{R}, \ G(\nu) \, \overline{H}(\nu) + G(\nu + \pi) \, \overline{H}(\nu + \pi) = 0$$

▶ An important result [Mallat, 1989] show that

$$G(\nu) = A(\nu)\bar{H}(\nu + \pi)$$

where A is a 2π periodic function such that:

$$A(\nu + \pi) = -A(\nu)$$

With the above conditions.

$$|A(\nu)| = 1$$

▶ Hence, the above relations allow to build an orthogonal wavelet given the orthogonal scaling function, for a chosen A.

Orthogonal wavelets (7)

- ► For practical uses, the compactness of the wavelet and scaling function is very important.
- ▶ It can be shown that this can be obtained for

$$A(\nu) = Ce^{-(2k+1)\nu}$$
, for $|C| = 1$ and $k \in \mathbb{Z}$

The standard choice is

$$A(\nu) = e^{-\iota\nu}$$

for which G and H are the transfer functions of a pair of quadrature mirror filters:

$$g_k = (-1)^k \, \bar{h}_k$$

▶ This choice has also the advantage of yielding real coefficients g_k s, provided that also h_k s are reals.

Biorthogonal wavelets

- ► The orthogonality puts strong limitation on the construction of the wavelets (e.g., on compactness of the wavelets).
- More flexibility can be achieved by using biorthogonal wavelets.
- ► The definition on a compact domain allows for an accurate implementation of the transform.
- ► In this case, the wavelet and the scaling function are represented by FIR filters,
 - $ightharpoonup h_k$ and g_k have a finite number of non-null coefficients.

Biorthogonal wavelets — Dual spaces

- ▶ The biorthogonal MRA requires the existence of a *dual scaling* function, $\tilde{\varphi}$, and a *dual wavelet*, $\tilde{\psi}$.
- ▶ They generate a dual multiresolution analysis with subspaces \tilde{V}_i and \tilde{W}_i such that:

$$ilde{V}_j \perp W_j$$
 and $V_j \perp ilde{W}_j$

► Hence

$$\tilde{W}_j \perp W_{j'}$$
 for $j' \neq j$

► The above orthogonality relations imply:

$$\langle \tilde{\varphi}(x), \psi(x-k) \rangle = \langle \tilde{\psi}(x), \varphi(x-k) \rangle = 0$$

Biorthogonal wavelets — Dual spaces (2)

Moreover:

$$\langle \tilde{\varphi}_{j,l}, \, \varphi_{j,k} \rangle = \delta_{l-k} \quad j, k, l \in \mathbb{Z}$$
$$\langle \tilde{\psi}_{j,l}, \, \psi_{i,k} \rangle = \delta_{j-i} \delta_{l-k} \quad j, k, l \in \mathbb{Z}$$

► In particular

$$\langle \tilde{\varphi}(x), \, \varphi(x-k) \rangle = \delta_k \quad k \in \mathbb{Z}$$

$$\langle \tilde{\psi}(\mathsf{x}), \, \psi(\mathsf{x} - \mathsf{k}) \rangle = \delta_{\mathsf{k}} \quad \mathsf{k} \in \mathbb{Z}$$

➤ The properties of the dual wavelet and scaling function, are similar to those of the wavelet and scaling function, respectively.

Biorthogonal wavelets — Dual spaces (3)

- ▶ The role of primal and dual MRA is interchangeable:
 - both can have the role of the primal or the dual MRA;
 - the effects on the transform and the inverse will depend on the characteristics of the primal and the dual.
- ► However, the biorthogonal MRA maintains the main advantage of the orthogonal MRA:
 - the coefficients can be computed by means of orthogonal projections;
 - the dual MRA is used for computing the transform (analysis MRA);
 - ▶ the primal MRA is used reconstructing the signal from the transform coefficients (synthesis).
- ▶ The projection operator P_i and Q_i are here defined as:

$$P_{j}[f(x)] = \sum_{k} \langle f, \tilde{\varphi}_{j,k} \rangle \varphi_{j,k}(x)$$

and

$$Q_{j}[f(x)] = \sum_{k} \langle f, \tilde{\psi}_{j,k} \rangle \, \psi_{j,k}(x)$$

Biorthogonal wavelets — Dual spaces (4)

► Hence, the discrete wavelet transform is:

$$f(x) = \sum_{j,k} \langle f, \tilde{\psi}_{j,k} \rangle \psi_{j,k}(x)$$

Properties and conditions similar to those obtained to the orthogonal MRA can be obtained. In particular:

$$ilde{arphi}(x)=2\sum_{k} ilde{h}_{k} ilde{arphi}(2x-k) ext{ and } ilde{\psi}(x)=2\sum_{k} ilde{g}_{k} ilde{\psi}(2x-k)$$

from which can be obtained

$$\tilde{h}_{k-2l} = \langle \tilde{\varphi}(x-l), \varphi(2x-k) \rangle$$
 and $\tilde{g}_{k-2l} = \langle \tilde{\psi}(x-l), \varphi(2x-k) \rangle$

Biorthogonal wavelets — Dual spaces (5)

▶ In particular, by writing $\varphi(2x - k) \in V_1$ as element of V_0 and W_0 :

$$\varphi(2x-k) = \sum_{l} \tilde{h}_{k-2l} \varphi(x-l) + \sum_{l} \tilde{g}_{k-2l} \psi(x-l)$$

▶ By imposing that h_k , g_k , \tilde{h}_k , \tilde{g}_k have finite components, it can be shown that, under mild conditions:

$$ilde{G}(
u)=e^{-\iota
u}ar{H}(
u+\pi) ext{ and } G(
u)=e^{-\iota
u}ar{ ilde{H}}(
u+\pi)$$

The properties of the orthogonal and biorthogonal MRA can be used to formulate an efficient algorithm for computing the wavelet transform and its inverse.

Fast Wavelet Transform

As $V_j = V_{j-1} \oplus W_{j-1}$, $v_j \in V_j$ can be uniquely write as sum of a function $v_{j-1} \in V_{j-1}$ and a function $w_{j-1} \in W_{j-1}$:

$$v_{j}(x) = \sum_{k} \lambda_{j,k} \varphi_{j,k}(x) = v_{j-1}(x) + w_{j-1}(x)$$
$$= \sum_{k} \lambda_{j-1,k} \varphi_{j-1,k}(x) + \sum_{k} \gamma_{j-1,k} \psi_{j-1,k}(t)$$

for proper coefficients $\{\lambda_{j,k}\}$, $\{\lambda_{j-1,k}\}$, $\{\gamma_{j-1,k}\}$.

- ▶ Hence the same function v_j can be represented either by means the sequence $\{\lambda_{j,k}\}$, and by the sequences $\{\lambda_{j-1,k}\}$ $\{\gamma_{j-1,k}\}$.
- ► This is a key relation for obtaining an efficient algorithm for the analysis and synthesis.

Fast Wavelet Transform (2)

► In fact:

$$\lambda_{j-1,l} = \langle v_j, \tilde{\varphi}_{j-1,l} \rangle = \sqrt{(2)} \langle v_j, \sum_k \tilde{h}_{k-2l} \tilde{\varphi}_{j-1,l} \rangle$$
$$= \sqrt{2} \sum_k \tilde{h}_{k-2l} \lambda_{k-2l}$$

and, similarly,

$$\gamma_{j-1,l} = \sqrt{2} \sum_{k} \tilde{g}_{k-2l} \, \lambda_{k-2l}$$

The refinement equations allow to obtain the inverse transform:

$$\lambda_{j,k} = \sqrt{2} \sum_{l} h_{k-2l} \lambda_{j-1,l} + g_{k-2l} \gamma_{j-1,l}$$

► The recursive application of these formulas provide the Fast Wavelet Transform (FWT) or cascade algorithm.

Fast Wavelet Transform (3)

- It should be noticed that the filters \tilde{h} and \tilde{g} are translated by two positions.
- ▶ Hence the $\lambda_{j-1,l} = \sqrt{2} \sum_{k} \tilde{h}_{k-2l} \lambda_{k-2l}$ do not describe a convolution.
- ► However, they can be computed as a convolution followed by a subsampling.
- ▶ If the signal is defined over an interval, the number of $\lambda_{j,k}$ coefficients will be the double of that of $\lambda_{j-1,k}$ and $\gamma_{j-1,k}$.
- ► The number of coefficients to represent the signal does not change.
- ▶ The inverse transform can be obtained by upsampling the coefficients $\lambda_{j-1,k}$ and $\gamma_{j-1,k}$, putting zeros between the coefficients.

Fast Wavelet Transform (6)

- ▶ A problem is the estimate of the initial coefficients λ_0 .
- ► They should be the inner product of the (mother) scaling function and the signal itself.
- ► A simple choice is using a sampling of the signal for the starting level, *n*:

$$\lambda_{n,l} = f\left(\frac{l}{2^n}\right)$$

- It is equivalent to suppose that the initial scaling function is an approximation of the Dirac's δ .
- It is important to notice that the FWT allows to obtain an *exact* inner product of the signal with the basis functions of the successive levels, by using only the $\lambda_{n,l}$ coefficients.

Plotting the basis functions

- ► The basis functions (wavelet and scaling function) sometimes cannot be expressed analytically.
- ▶ In this case, the cascade algorithm can be used to obtain an approximation of them.
- ▶ In fact, $f \in L^2(\mathbb{R})$ can be represented as:

$$f(x) = \sum_{k} \lambda_{j,k} \varphi_{j,k}(x) + \sum_{l \geq j} \sum_{k} \gamma_{l,k} \psi_{l,k}(x)$$

- ▶ From proper coefficients $\{\lambda\}$ and $\{\gamma\}$, the function f can be reconstructed.
- ▶ The scaling function $\varphi_{j,k}$ is characterized by having only the coefficient $\lambda_{j,k}$ set to 1; all the others are null.
- ▶ Hence, starting from such a sequence, after few iterations of the cascade algorithm a good sampling of the scaling function is obtained.
 - ▶ The number of coefficients doubles at each iteration.

Plotting the basis functions (2)

- ► Similarly, the wavelet can be obtained.
 - ▶ All the λ and γ are set to 0, but one of γ is set to 1.
- ► The Fourier transforms of wavelet and scaling functions can also be obtained.

Fast Wavelet Transform (FWT)

orthogonality or biorthogonality

fast algorithm for wavelet transform computation

function projection

 \rightarrow

FIR filters filtering

$$f \to \begin{bmatrix} \mathsf{g} \\ \mathsf{h} \end{bmatrix} \to \begin{bmatrix} \lambda_{j,k} \\ \gamma_{j,k} \end{bmatrix}$$

transform

$$\begin{cases} \lambda_{j,k} \} & \rightarrow \boxed{g} \\ \{\gamma_{j,k} \} & \rightarrow \boxed{h} \end{cases} \rightarrow f$$

inverse transform

orthogonal MRA

transform

$$\begin{array}{ccc} \{\lambda_{j,k}\} & \to & \texttt{g} \\ \{\gamma_{j,k}\} & \to & \texttt{h} \end{array} \right] \to f$$

inverse transform

biorthogonal MRA

Applications to images

- Wavelet and scaling function can be defined also on a bidimensional domain, by using the tensor product.
 - ▶ They are defined as the product over the two dimensions.
- Hence they can be applied to the two dimensions independently.
 - Like the Fourier transform.

Example:

Applications to images (4)

Applications

- ► Signal representation (e.g., compression)
- ► Signal processing (e.g., filtering, anomalies detection)
- ▶ Pattern recognition (e.g., for feature selection)
- ► Hybrid models (e.g., Wavelet neural networks)

Image compression

Wavelet based image compression algorithms are based on some considerations:

- small detail coefficients (probably) carry unimportant information or noise;
 - ▶ if a detail occurs, the coefficients of all the levels corresponding to its position should be meaningful;
 - thresholding is used to set to zero unimportant coefficients;
 - quantization and encoding (e.g. Huffman) can then be realized.
- ▶ the shorter the wavelet support, the smaller the number of non-zero coefficients generated by an edge;
- orthogonality (and biorthogonality) decorrelates the coefficients.

Image compression (2)

- $f_M = \sum_{j,k} b_{j,k} \psi_{j,k}(x)$ with M non-zero coefficients, $b_{j,k}$
- ▶ From the orthogonality, the reconstruction error is:

$$||f-f_{\mathcal{M}}||_{L^2}=\left(\sum_{j,k}|\langle f,\,\psi_{j,k}
angle-b_{j,k}|^2
ight)^{rac{1}{2}}$$

- ▶ Hence, the larger the $b_{i,k}$'s, the smallest the error.
- ▶ Besov space characterization allows a better estimate of the compression rate wrt. *M*.

Image compression (3)

- ▶ Encoding can take advantage of long sequences of zeros.
- ► The scanning order of the coefficients is critical for maximizing the length of zeros sequences.
- ▶ If a coefficient is zero, also the corresponding coefficients at the higher scales are probably zero.

Image compression (4)

- ► Compression of image sequences can be realized using the 3D wavelet transform.
- Quality can be improved by considering not only a single coefficients, but the value of the coefficients in a neighborhood of each position.

Image denoising

Wavelet denoising is based on three assumptions.

- ► Additive, stationary, and zero-mean noise affects the coefficients of all resolution levels.
- ► Large coefficients describe a good approximation of the original image.
- ▶ Noise should be relatively small.
 - ► Small influence on the large coefficients.

Image denoising - shrinking

- ▶ Shrinking is the approach generally used for denoising:
 - ▶ a threshold for each level and component is chosen;
 - ▶ the coefficients under threshold are set to zero.

- Soft and hard thresholding, and a sophisticated shrinking function.
- ► Soft thresholding is often used.

Image denoising - threshold selection

► For a given level and component (horizontal, vertical, diagonal), the optimal threshold should optimize (MSE):

$$\frac{1}{N}||w_{\delta}-v||^2$$

where:

- w_{δ} are the coefficients after shrinking
- v are the unknown noise-free coefficients
- ▶ The Donoho and Johnstone threshold:

$$\delta = \sqrt{2\log(N)}\sigma$$

where:

- N is the number of coefficients
- $ightharpoonup \sigma$ is the noise standard deviation

Image denoising – threshold selection (2)

► Generalized cross validation can be used for estimating the threshold, by minimizing:

$$\mathsf{GCV}(\delta) = rac{rac{1}{N}||w - w_{\delta}||^2}{\left(rac{N_0}{N}
ight)^2}$$

where:

- $ightharpoonup N_0$ is the number of zero coefficients
- ▶ It mimics the MSE criterion.
- ▶ No estimate for the noise energy, σ , is needed.
- Adaptive techniques for estimating δ from the data can be found in literature.

Image denoising - neighboring

- ► Correlation between neighboring coefficients can be exploited:
 - 1. compute $s_{j,k} = \sum_{t \in \mathcal{N}(k)} w_{j,t}$
 - 2. shrink $w_{i,k}$:

$$w_{j,k} = \left\{ egin{array}{ll} 0, & s_{j,k} < \delta \ w_{j,k} (1 - \delta/s_{j,k}), & ext{otherwise} \end{array}
ight.$$

Image watermarking

- Wavelet coefficients can be perturbed in order to insert a watermark.
- ► The key can than be used in detecting the presence of the watermark.

Modern wavelets

- ▶ Wavelets packets
- ▶ Lifting schema

Stefano Ferrari— Fondamenti di elaborazione del segnale multi-dimensionale— a.a. 2011/12

Wavelet packets

FWT provides a decomposition of a signal f in element of several subspaces (with O(N) computational cost).

Wavelet packets (3)

- ► FWT machinery can be extended for decomposing also the detail coefficients.
- ► This transforms is called *wavelet packet* (and have an $O(N \log(N))$ cost).

Wavelet packets - optimal decomposition

- ► For the FBI fingerprint archive, a three scales wavelet packets based compression is used.
 - ▶ The complete decomposition yields to 64 coefficients sets.

Wavelet packets – optimal decomposition (2)

▶ In order to optimize the storage requirement, the optimal decomposition (best basis selection) can be considered.

|ロト 4回 ト 4 章 ト 4 章 ト 章 のQで

Lifting scheme

- ► The lifting scheme is a method for constructing the so-called second generation wavelets (orthogonal and biorthogonal):
 - they do not make use of Fourier transform (no regularly spaced samples are required);
 - they are not necessarily translates and dilates of the same function.
- ▶ Lifting scheme (LS) has the following advantages:
 - Faster implementation of the wavelet transform
 - ► FWT processes the same sequence with two filters and then subsample both the sequences;
 - ▶ LS splits the sequence before processing.
 - ▶ In-place processing (no additional memory requirement).
 - ▶ Inverse transform is realized inverting the transform operations.

Lifting scheme – analysis

- ▶ Split: $\{\lambda_{j,k}\}$ is split in $\{\lambda_{j-1,k}\}$ and $\{\gamma_{j-1,k}\}$;
 - ▶ the split can be done with any rule, but even and odd samples partition is a sensible choice.
- ▶ Prediction: $\{\lambda_{j-1,k}\}$ is used to predict $\{\gamma_{j-1,k}\}$ through \tilde{s} :
 - the value in the two sequence should be correlated;
 - ▶ this information is used to change the values of $\{\gamma_{i-1,k}\}$.

Lifting scheme – analysis (2)

- ▶ Update: information in the original $\{\gamma_{j-1,k}\}$ that cannot be predicted by $\{\lambda_{j-1,k}\}$ is now in $\{\gamma_{j-1,k}\}$; this can be used for update the value of $\{\lambda_{j-1,k}\}$ through s:
 - downsampling can suffer of aliasing;
 - $\{\lambda_{j-1,k}\}$ can now preserve some features of $\{\lambda_{j,k}\}$ (e.g., the mean);
 - an ad-hoc operator could be hardly invertible.

Lifting scheme – synthesis

- Since the analysis stage can be realized as:
 - 1. $[\{\lambda_{j-1,k}\}, \{\gamma_{j-1,k}\}] := \text{split}(\{\lambda_{j,k}\})$
 - 2. $\{\gamma_{j-1,k}\} := \{\gamma_{j-1,k}\} \tilde{s}(\{\lambda_{j-1,k}\})$
 - 3. $\{\lambda_{j-1,k}\} := \{\lambda_{j-1,k}\} + s(\{\gamma_{j-1,k}\})$
- the synthesis stage can be obtained as:
 - 1. $\{\lambda_{j-1,k}\} := \{\lambda_{j-1,k}\} s(\{\gamma_{j-1,k}\})$
 - 2. $\{\gamma_{j-1,k}\} := \{\gamma_{j-1,k}\} + \tilde{s}(\{\lambda_{j-1,k}\})$ 3. $\{\lambda_{j,k}\} := \text{join}(\{\lambda_{j-1,k}\}, \{\gamma_{j-1,k}\})$

Lifting scheme – irregular sampling

- Second generation wavelets can be applied on irregular sampled data.
- ▶ Low scale approximation of mesh produce a coarsification.

Lifting scheme – mesh processing

- Typical signal processing techniques are possible also on meshes:
 - original, smoothed, stop-banded, enhanced.

Other multiscale approaches

- Curvelets
- ▶ Beamlets
- Tetrolets
- Ridgelets

Bibliography

- ▶ Digital image processing, R.C. Gonzalez and R.E. Woods
- Digital image processing, B. Jähne
- "Wavelets on Irregular Point Sets," I. Daubechies, I. Guskov,P. Schröder, and W. Sweldens
- "The lifting scheme: a construction of second generation wavelets," W. Sweldens, SIAM Journal on Mathematical Analysis
- "Image de-noising by integer wavelet transforms and generalized cross validation," M. Jansen, G. Uytterhoeven, and A. Bultheel, Medical Physics, Vol. 26, No. 4, April 1999
- "Image denoising with neighbour dependency and customized wavelet and threshold," G.Y. Chen, T.D. Bui, A. Krzyzak, Pattern Recognition, 2005
- "Image denoising with an optimal threshold and neighbouring window," Zhou Dengwen, Cheng Wengang, Pattern Recognition Letters, 2008

Bibliography (2)

- "Genetic Algorithm Approach for Wavelet-Based Image Watermarking," M. Nakamoto, S. Fujimoto, A. Doi, T. Hinamoto, ICSP2008 Proceedings
- ► "A wavelet-based image fusion tutorial," G. Pajares, J. Manuel de la Cruz, Pattern Recognition, 2004
- "Multisensor Image Fusion Using the Wavelet Transform," H. Li, S. Manjunath, and S.K. Mitra, Graphical Model and Image Processing, 1995
- "A Review of Curvelets and Recent Applications," J. Ma and G. Plonka
- "Tetrolet Shrinkage with Anisotropic Total Variation Minimization for Image Approximation," J. Krommweha, J. Ma
- "The Finite Ridgelet Transform for Image Representation,"
 M.N. Do and M. Vetterli, IEEE Transactions on Image
 Processing

