

第二章

线性时不变系统的时域分析

§ 2.0 引言

- § 2.1 连续时间LTI系统的时域分析
- § 2.2 离散时间LTI系统的时域分析
- § 2.3 单位冲激/脉冲响应与LTI系统性质
- § 2.4 LTI系统的微分、差分方程描述
- § 2.5 LTI系统的响应分解
- § 2.6 LTI系统的框图表示

2.0 引言

- 本章将讨论一种最基本而又极为有用的LTI系统的分析方法——时域分析方法,即所涉及的信号的自变量都是关于时间t(或n)的一种分析方法。
- 主要目的之一是给出求解LTI系统的一般方法——卷积, 并以此为基础进一步讨论LTI系统的有关性质和相关问题。 通过本章的讨论,将建立LTI系统的时域分析的理论框架。
- 基本思路:利用LTI系统的叠加性和齐次性以及用某一基本信号表示一般信号

- § 2.0 引言
- § 2.1 连续时间LTI系统的时域分析
- § 2.2 离散时间LTI系统的时域分析
- § 2.3 单位冲激/脉冲响应与LTI系统性质
- § 2.4 LTI系统的微分、差分方程描述
- § 2.5 LTI系统的响应分解
- § 2.6 LTI系统的框图表示

任一信号可用无穷多个单位冲激函数的移位、加权之"和"· (即积分)来表示。

$$x(t) \square \hat{x}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) \delta(t - k\Delta) \cdot \Delta$$

冲激函数的线性组合

当 $\Delta \to 0$ 时,(2.2) 式能够精确表示任一信号 x(t) ,即(2.2) 演变为积分的形式(2.3)式。

$$x(t) = \lim_{\Delta \to 0} \hat{x}(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \delta(t-k\Delta) \cdot \Delta$$
$$= \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) \cdot d\tau$$
 (2.3)

单位冲激函数的移位、加权之"和"

如果用以下矩形脉冲近似表示单位冲激函数

$$\delta_{\Delta}(t) = \begin{cases} \frac{1}{\Delta}, & 0 < t < \Delta \\ 0, &$$
其他

显然

$$\delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t)$$
$$\delta(t - \Delta k) = \lim_{\Delta \to 0} \delta_{\Delta}(t - \Delta k)$$

用一系列矩形脉冲来近似,得到的以下近似表达:

$$x(t) \square \hat{x}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \cdot \Delta$$

$$x(t) = \lim_{\Delta \to 0} \hat{x}(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) \cdot d\tau$$

图2-3 $\delta_{\Lambda}(t-k\Delta)\cdot\Delta$ 的形式

图2-4 用矩形脉冲x(t)

卷积方法是LTI系统的最基本的分析方法, 是用于LTI系统求解对激励信号的响应。

• 为了说明其基本原理,考虑以下LTI系统。

其中, h(t) 称为系统的单位冲激响应。

将 x(t) 分解为移位冲激信号的线性组合:

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) \cdot d\tau = \lim_{\Delta \to 0} \sum_{k = -\infty}^{\infty} x(k\Delta) \delta(t - k\Delta) \cdot \Delta$$

• 根据LTI系统的齐次性,有

$$x(k\Delta) \cdot \delta(t-k\Delta) \cdot \Delta \rightarrow x(k\Delta)h(t-k\Delta) \cdot \Delta$$

• 再根据LTI系统的叠加性,我们有

$$\sum_{k=-\infty}^{\infty} x(k\Delta) \delta(t-k\Delta) \cdot \Delta \to \sum_{k=-\infty}^{\infty} x(k\Delta) h(t-k\Delta) \cdot \Delta$$

• 上式取极限,有

$$\lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \delta(t-k\Delta) \cdot \Delta \to \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) h(t-k\Delta) \cdot \Delta$$

• 表示为积分形式

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) \cdot d\tau \to \int_{-\infty}^{\infty} x(\tau) h(t - \tau) \cdot d\tau$$

因此,响应 y(t) 为

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) \cdot d\tau$$

• 上式的数学运算称为卷积积分,简称卷积,通常记为

$$y(t) = x(t) * h(t)$$

卷积积分的意义:

- 1. 原理:将信号分解为移位冲激信号的线性组合,借助系统的单位冲激响应,获得LTI系统对激励的响应解。
- 2. LTI系统对输入信号的响应过程可以看作是两个信号相互 作用的过程: 卷积积分运算。

3. LTI系统的单位冲激响可以完全表征系统的特性。

图 LTI系统的单位冲激响应的表示

4. 单位冲激响给出连续时间LTI系统更一般的描述方法。

【例2.1】已知一线性时不变系统的单位冲激响应为

$$h(t) = e^{-at} \cdot u(t)$$

系统的输入信号为一单边指数信号 $x(t) = e^{-bt}u(t)$, $a \neq b$ 求系统对输入信号的响应输出 y(t) 。

解: 系统的输出 y(t) 为

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} e^{-b\tau} \cdot u(\tau) \cdot e^{-a(t-\tau)} \cdot u(t-\tau) \cdot d\tau$$

由于 $\tau < 0$ 时, $u(\tau) = 0$; 以及 $\tau > t$ 时, $u(t-\tau) = 0$ 。

所以积分变量 τ 的取值区间应为 $0 \le \tau \le t$ 。

在此区间内, $u(\tau) = u(t - \tau) = 1$

故有

$$y(t) = \int_0^t e^{-b\tau} \cdot e^{-a(t-\tau)} \cdot d\tau$$

$$= \int_0^t e^{-at} \cdot e^{(a-b)\tau} \cdot d\tau$$

$$= e^{-at} \int_0^t e^{(a-b)\tau} \cdot d\tau$$

$$= e^{-at} \frac{e^{(a-b)\tau}}{a-b} \Big|_{\tau=0}^t$$

$$= \left(\frac{1}{a-b} e^{-bt} - \frac{1}{a-b} e^{-at}\right) u(t)$$

观察 $x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) \cdot h(t - \tau) \cdot d\tau$ 可得卷积的计算的图示法的一般步骤为:

1. 反转: 卷积积分中 τ 为积分变量,t 为参变量,将函数 x(t)和 h(t) 的自变量用 τ 代换,将 $h(\tau)$ 以纵坐标轴为轴 线反转得 $h(-\tau)$ 。

2. 平移: 为了计算 t时刻的卷积值,将 $h(-\tau)$ 随参变量 t 平移,得 $h(t-\tau)$ 。

3. 相乘: 将 $x(\tau)$ 与 $h(t-\tau)$ 相乘, 得函数 $x(\tau)\cdot h(t-\tau)$

4. 积分:求 $x(\tau)$ 与 $h(t-\tau)$ 乘积 曲线下的面积,即为t时刻的卷 积分值。

5. 选取不同的t值,重复上述**2-4**步骤,可计算出不同的时刻t所对应的卷积和值。

【例2.2】 已知信号x(t)和h(t)如图(a)所示, 求卷积积分: y(t) = x(t) * h(t)

 $h(-\tau)$

解:

1. 先将x(t)和h(t)的自变量更换为 τ ,再将 $h(\tau)$ 反转为 $h(-\tau)$;沿 τ 轴平移得 $h(t-\tau)$;将 $x(\tau)$ 与 $h(t-\tau)$ 相乘,得曲线 $x(\tau)\cdot h(t-\tau)$ 。

2. 由于 $x(\tau)$ 和 $h(\tau)$ 均为有限时宽信号,因此曲线 $x(\tau)h(t-\tau)$ 的非零区(重叠区)将视t的取值不同而有所不同,因此相乘和积分应随不同t的取值范围分几个区间进行。

(1) 当 t < -1 时,由图 (d)所示,知 $x(\tau)$ 与 $h(t - \tau)$ 无重叠部分,乘积为零,所以 y(t) = x(t)*h(t) = 0, t < -1

(2) 当 $-1 \le t \le 1$ 时,由图2-8(e)所示,知 $x(\tau)$ 与 $h(t-\tau)$ 的重叠区为[-1, t],即乘积 $x(\tau)h(t-\tau)$ 在区间 [-1, -t] 上非零,所以:

$$y(t) = \int_{-1}^{t} x(\tau)h(t-\tau) \cdot d\tau = \int_{-1}^{t} 2d\tau = 2(t+1)$$

(3) 当 $1 \le t \le 2$ 时,由图2-8(f)所示,知 $x(\tau)$ 与 $h(t - \tau)$ 的重叠区为[-1, 1],所以:

$$y(t) = \int_{-1}^{1} x(\tau)h(t-\tau) \cdot d\tau = \int_{-1}^{1} 2d\tau = 4$$

(4)当 $2 \le t \le 4$ 时,由图2-8(g)所示,知 $x(\tau)$ 与 $h(t - \tau)$ 的重叠区为[-3 + t, 1] ,所以:

$$y(t) = \int_{-3+t}^{1} x(\tau)h(t-\tau) \cdot d\tau = \int_{-3+t}^{1} 2d\tau = 2(4-t)$$

(5)当 $t \ge 4$ 时,由图2-8(h)所示,知 $x(\tau)$ 与 $h(t-\tau)$ 无重叠区,所以:

$$y(t) = x(t) * h(t) = 0$$

$$y(t) = \begin{cases} 0 & t < -1 \\ 2(t+1) & -1 \le t \le 1 \\ 4 & 1 \le t \le 2 \\ 2(4-t) & 2 \le t \le 4 \\ 0 & t \ge 4 \end{cases}$$

y(t)的波形如图 (i)所示:

MATLAB演示

【例2-24】计算两矩形窗信号的卷积。

图2-36 例2-24的运行结果图

MATLAB演示

T = 0.01; t = -2: T : 5; L = length(t); h = 2*0.5*((sign(t+1)+1)-(sign(t-1)+1));x = 0.5*((sign(t)+1)-(sign(t-3)+1));y = conv(T * h, x); t1 = -4 : T : 10;subplot(3,1,1); plot(t,x);xlabel('t'); ylabel('x(t)'); axis([-2501.5]);subplot(3,1,2); plot(t,h);xlabel('t'); ylabel('h(t)'); axis([-2502.5]);subplot(3,1,3); plot(t1, y);xlabel('t'); ylabel('y(t)'); axis([-25-15]);

卷积积分有一些有用的性质,掌握这些有用的性质可以 简化卷积运算,同时也给信号与系统的分析提供了非常有用 的分析方法,从中可以得出不少重要的结果。

一、卷积代数

• 1. 交换律

$$x(t) * h(t) = h(t) * x(t)$$

$$\int_{-\infty}^{\infty} x(\tau)h(t-\tau)\cdot d\tau = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)\cdot d\tau$$

即:

图2-9 从系统分析的观点解释卷积的交换律

卷积积分的交换律表明: 卷积与两个信号的顺序无关。

• 2. 结合律

$$[x(t) * h_1(t)] * h_2(t) = x(t) * [h_1(t) * h_2(t)]$$

考查如图所示的级联系统

图2-10 卷积结合律及交换律的系统意义

根据卷积积分,有
$$\omega(t) = x(t) * h_1(t)$$
, $y(t) = \omega(t) * h_2(t)$
$$= (x(t) * h_1(t)) * h_2(t)$$

由结合律有
$$y(t) = x(t) * (h_1(t) * h_2(t))$$

= $x(t) * h(t)$

再根据交换律,可得
$$y(t) = x(t) * (h_1(t) * h_2(t))$$

= $x(t) * (h_2(t) * h_1(t))$
= $(x(t) * h_2(t)) * h_1(t)$

重要结论:LTI系统的级联,与各子系统的次序无关,即各子系统连接的顺序可以调换,总的响应为各子系统的卷积。

• 3. 分配律

$$x(t) * [h_1(t) + h_2(t)] = x(t) * h_1(t) + x(t) * h_2(t)$$

考查图2-11所示并联LTI系统

图2-11 分配律的系统意义

我们有
$$y_1(t) = x(t) * h_1(t)$$
 $y_2(t) = x(t) * h_2(t)$

$$y(t) = y_1(t) + y_2(t)$$

= $x(t) * h_1(t) + x(t) * h_2(t)$

根据分配律有

$$y(t) = x(t) * (h_1(t) + h_2(t)) = x(t) * h(t)$$

分配律性质表明,并联LTI系统总的单位冲激响应等于各子系统单位冲激响应之和。

二、卷积的微分与积分特性

• 1. 卷积的微分性质

从上述的卷积的代数性质可知,图所示的两个级联系统是完全等价,即 $y_1(t)=y_2(t)$ 。结合卷积的代数性质,我们有

$$w_{1}(t) = x(t) * h(t) y_{1}(t) = \frac{dw_{1}(t)}{dt} = \frac{d}{dt} [x(t) * h(t)]$$

$$w_{2}(t) = \frac{dx(t)}{dt} y_{2}(t) = w_{2}(t) * h(t) = \frac{dx(t)}{dt} * h(t)$$

由于 $y_1(t) = y_2(t)$ 因此有

$$\frac{d}{dt} [x(t) * h(t)] = \frac{dx(t)}{dt} * h(t)$$

利用交换律,可得

$$\frac{d}{dt}\left[x(t)*h(t)\right] = \frac{d}{dt}\left[h(t)*x(t)\right] = \frac{dh(t)}{dt}*x(t) = x(t)*\frac{dh(t)}{dt}$$

卷积的微分性质:

$$\frac{d}{dt}\left[x(t)*h(t)\right] = \frac{dx(t)}{dt}*h(t) = x(t)*\frac{dh(t)}{dt}$$

• 2. 卷积的积分性质

图2-13 卷积积分的图解说明

与卷积的微分性质相类似,同样我们可得卷积的积分性质:

$$\int_{-\infty}^{t} \left[x(\lambda) * h(\lambda) \right] \cdot d\lambda = \left[\int_{-\infty}^{t} x(\lambda) \cdot d\lambda \right] * h(t) = x(t) * \left[\int_{-\infty}^{t} h(\lambda) \cdot d\lambda \right]$$

其证明与微分性质的证明一样,可利用上面所示的图解说明。

• 3. 推广

应用上述推演方法,可以导出卷积的高阶导数或多重积分的性质:

设
$$r(t) = [x_1(t) * x_2(t)], 则有 $r^{(i)}(t) = x_1^{(j)}(t) * x_2^{(i-j)}(t)$$$

其中,当i、j、i—j取正整数时为导数的阶次,取负整数时为重积分的次数,等式两边必须满足 i = j + (i - j)。

一个特例是取i = 0, j = 1 , i - j = -1 , 或取i = 0 , j = -1 , i - j = 1 , 我们有 $r(t) = r^{(0)}(t) = x_1^{(1)}t * x_2^{(-1)}(t)$

$$r(t) = r^{(0)}(t) = x_1^{(1)}t * x_2^{(-1)}(t)$$
$$= x_1^{(-1)}(t) * x_2^{(1)}(t)$$

$$r(t) = \frac{dx_1(t)}{dt} * \int_{-\infty}^t x_2(t) \cdot dt$$
$$= \int_{-\infty}^t x_1(t) \cdot dt * \frac{dx_2(t)}{dt}$$

三、与冲激函数 $\delta(t)$ 和阶跃函数 u(t)的卷积:

$$x(t) * \delta(t) = x(t)$$
$$x(t) * \delta(t - t_0) = x(t - t_0)$$

对于冲激偶 $\delta'(t)$,有

$$x(t) * \delta'(t) = x'(t) * \delta(t) = x'(t)$$

对于单位阶跃函数u(t),可得:

$$x(t) * u(t) = x(t) * \int_{-\infty}^{t} \delta(t) \cdot dt = \int_{-\infty}^{t} x(t) \cdot dt * \delta(t) = \int_{-\infty}^{t} x(t) \cdot dt$$

推广到更一般的情况, 我们有

$$x(t) * \delta^{(k)}(t) = x^{(k)}(t) * \delta(t) = x^{(k)}(t)$$

$$x(t) * \delta^{(k)}(t - t_0) = x^{(k)}(t) * \delta(t - t_0) = x^{(k)}(t - t_0)$$

当 k 取正整数时表示导数阶次, k 取负整时为重积分的次数。

例如
$$x^{(-1)}(t)$$
表示 $x(t)$ 一次积分。 $\delta^{(-1)}(t) = u(t)$

例2.4

【例2.4】 用卷积性质计算图2-15(a)所示两信号的卷积。

解:利用

$$y(t) = x(t) * h(t) = \frac{d}{dt} x(t) * \int_{-\infty}^{t} h(t) \cdot dt$$

例2.4

浙大信电条

信号与系统 于慧敏教授

- § 2.0 引言
- § 2.1 连续时间LTI系统的时域分析
- § 2.2 离散时间LTI系统的时域分析
- § 2.3 单位冲激/脉冲响应与LTI系统性质
- § 2.4 LTI系统的微分、差分方程描述
- § 2.5 LTI系统的响应分解
- § 2.6 LTI系统的框图表示

2.2.1 离散时间信号的单位脉冲分解

• 展开为:

$$x[n] = \dots + x[-2]\delta[n+2] + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + \dots$$

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \underbrace{\delta[n-k]}$$

Basic Signals

2.2.1 离散时间信号的单位脉冲分解

$$x[n] = x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1]$$

图2-16 一个离散时间信号分解为一组加权的移位脉冲之和

例2.5

【例2.5】 用单位脉冲表示单位阶跃信号u[n]。

$$u[n] = \sum_{k=-\infty}^{\infty} u[k] \delta[n-k]$$

因为k < 0时,u[k] = 0,而 $k \ge 0$ 时,u[k] = 1,上式可表示为

$$u[n] = \sum_{k=0}^{\infty} \delta[n-k]$$

如我们做变量替换n-k=m,u[n] 还可以表示另一种形式,即 $-\infty$ n

$$u[n] = \sum_{m=n}^{-\infty} \delta[m] = \sum_{m=-\infty}^{n} \delta[m]$$

上式表明,u[n]也可表示为单位脉冲信号的累加。

• 为了说明其基本原理,考虑以下LTI系统。

其中,h[n]称为系统的单位脉冲响应。

将x[n]分解为移位冲激信号的线性组合:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k]$$

• 根据LTI系统的齐次性,有

$$x[k] \cdot \delta[n-k] \rightarrow x[k] \cdot h[n-k]$$

• 再根据LTI系统的叠加性,我们有

$$\sum_{k=-\infty}^{\infty} x[k] \mathcal{S}[n-k] \to \sum_{k=-\infty}^{\infty} x[k] h[n-k]$$

有

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k] = x[n] \cdot h[n]$$

卷积和的意义

- 1. 离散时间LTI系统对输入信号的响应过程可以看作是两个信号相互作用的过程: 卷积和运算。
- 2. 单位脉冲响h[n]可以完全表征系统。
- 3. 单位冲激响给出离散时间LTI系统更一般的描述方法。

卷积和图示法:

$$y[3]:$$
 $y[3]:$
 $y[3]:$

- 1.反转: $h[k] \Rightarrow h[-k]$
- 2.平移: h[n-k]
- 3.相乘求和: $\sum_{k=-\infty} x[k]h[n-k]$

MATLAB演示

【例2-23】 己知:
$$x[n] = (0.5)^n u[n]$$
, $h[n] = (0.8)^n u[n]$

求 $y[n] = x[n] * h[n]_{\circ}$

解:源程序如下

$$n = 0:100;$$

$$x = (1/2).^n$$
;

$$h = (0.8).^n$$
;

$$y = conv(x,h);$$

subplot(3,1,1); stem(n, x);

xlabel('n'); ylabel('x[n]');

axis([0 20 0 1.5]); grid on;

stem(0: length(y)-1, y);

xlabel('n'); ylabel('x[n]*h[n]');

axis([0 20 0 1.5]); grid on;

MATLAB演示

图2-35 例2.23的运行结果图

2.2.3 卷积和的性质

- 1. 卷积和的代数性质
- 交換律: x[n]*h[n] = h[n]*x[n]
- 结合律: $x[n]*(h_1[n]*h_2[n])=(x[n]*h_1[n])*h_2[n]$
- 分配律: $x[n]*(h_1[n]+h_2[n])=x[n]*h_1[n]+x[n]*h_2[n]$

图2-19 离散时间LTI系统的级联

2.2.3 卷积和的性质

2. 与冲激脉冲序列 $\delta[n]$ 和阶跃函数u[n]的卷积

$$x[n] * \delta[n] = x[n]$$

进一步有 $x[n] * \delta[n - n_0] = x[n - n_0]$ 任意信号 x[n] 与单位阶跃 u[n] 的**卷积和**,可表示为:

$$x[n] * u[n] = \sum_{k=-\infty}^{n} x[k]$$

推论:

(1)
$$x[n-n_1] * \delta[n-n_2] = x[n-n_1-n_2]$$

(2) 若: x[n]*h[n] = y[n]则: x[n-n]*h[n-n] = y[n-n]-n

- § 2.0 引言
- § 2.1 连续时间LTI系统的时域分析
- § 2.2 离散时间LTI系统的时域分析
- § 2.3 单位冲激/脉冲响应与LTI系统性质
- § 2.4 LTI系统的微分、差分方程描述
- § 2.5 LTI系统的响应分解
- § 2.6 LTI系统的框图表示

2.3.1 LTI系统的可逆性与可逆系统

图2-20 LTI系统的可逆性

LTI逆系统与原系统存在以下关系:

$$h(t) * h_1(t) = \delta(t)$$

$$h[n] * h_1[n] = \delta[n]$$

根据上式,可以构造LTI系统的可逆性及其逆系统。

例2.8

【例2.8】 一个连续时间LTI系统的输入输出关系为

$$y(t) = \frac{dx(t)}{dt} + x(t)$$

试求它的逆系统。

解: 将 $x(t) = \delta(t)$ 代入方程,可得该系统的单位冲激响应h(t)

$$h(t) = \delta'(t) + \delta(t)$$

设该系统的逆系统为 $h_1(t)$,则有

$$h(t) * h_1(t) = \delta(t)$$

将 $h(t) = \delta'(t) + \delta(t)$ 代入上式,再根据 $\delta(t)$ 的卷积性质,有

$$(\delta'(t) + \delta(t)) * h_1(t) = h'_1(t) + h_1(t) = \delta(t)$$

观察上式,可知 $h_1(t)$ 为由方程y'(t) + y(t) = x(t)描述的连续LTI系统的单位冲激响应,故可求得逆系统为

$$y'(t) + y(t) = x(t)$$

例2.9

【例2.9】 一离散时间累加器系统的输入输出关系为 y[n] - y[n-1] = x[n]

试求它的逆系统。

解:根据单位脉冲 $\delta[n]$ 的卷积和性质,可将上述输入输出关系重新写为

$$y[n] * (\delta[n] - \delta[n-1]) = x[n]$$

[A]

将原系统脉冲响应代入上式,得

$$h[n] * (\delta[n] - \delta[n-1]) = \delta[n]$$

根据逆系统的定义,可得逆系统

$$h_1[n] = \delta[n] - \delta[n-1]$$

为一差分器。

实际上,由[A]式,我们可得

$$y[n] * (\delta[n] - \delta[n-1]) * u[n] = x[n] * u[n]$$

等式左边化简得

$$y[n] * (u[n] - u[n-1]) = x[n] * u[n]$$
 [B]

由u[n]的卷积和性质及与 $\delta[n]$ 的关系

$$x[n] * u[n] = \sum_{n=-\infty}^{n} x[n]$$
 $u[n] - u[n-1] = \delta[n]$

式[B]可变为
$$y[n]*\delta[n] = \sum_{n=-\infty}^{n} x[n]$$
,即 $y[n] = \sum_{n=-\infty}^{n} x[n]$,为一累加器。

因此, 累加器的逆系统为一差分器。

• 对于稳定的系统: 有界的输入必产生有界的输出。

• 充要条件为:

$$\int_{-\infty}^{\infty} |h(\tau)| \cdot d\tau < \infty$$

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

证明:

1. 必要条件:

设一具有单位冲激响应h(t)的稳定LTI系统的输入信号为

$$x(t) = \begin{cases} 0, & h(-t) = 0\\ \frac{h(-t)}{|h(-t)|}, & h(-t) \neq 0 \end{cases}$$

显然 x(t) 为一有界信号, $|x(t)| \le 1$, 对所有 t 。 则系统输出为

$$y(t) = \int_{-\infty}^{\infty} h(\tau) \cdot x(t - \tau) \cdot d\tau$$

因此,
$$t=0$$
时,输出 $y(0)$ 为

$$y(0) = \int_{-\infty}^{\infty} h(\tau)x(-\tau) \cdot d\tau = \int_{-\infty}^{\infty} |h(\tau)| \cdot d\tau$$

因为y(0)为稳定系统在t=0时刻上的输出,y(0)必有界。

因此要求上式的右边积分值有界,即

$$\int_{-\infty}^{\infty} |h(\tau)| \cdot d\tau < \infty \tag{2.43}$$

即系统的单位冲激响应绝对可积。

这就证明了(2.43)式是连续LTI系统稳定的必要条件。

2. 充分条件:

设系统的输入x(t) 为有界,即

$$|x(t)| \le B$$
 对所有 t

则系统输出的绝对值为

$$|y(t)| = \left| \int_{-\infty}^{\infty} h(\tau) x(t - \tau) \cdot d\tau \right|$$

$$\leq \int_{-\infty}^{\infty} |h(\tau)| \cdot |x(t - \tau)| \cdot d\tau$$

$$\leq B \int_{-\infty}^{\infty} |h(\tau)| \cdot d\tau$$

如
$$\int_{-\infty}^{\infty} |h(\tau)| \cdot d\tau < \infty$$
 ,有 $|y(t)| \le B \int_{-\infty}^{\infty} |h(\tau)| \cdot d\tau < \infty$

用完全类似的方法可得到离散LTI系统稳定的充要条件为

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

即系统的单位脉冲响应绝对可和。

例2.10

【例2.10】 考查累加器的稳定性。

解:

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

因为累加器的单位脉冲响应 h[n] = u[n] , 因此有

$$\sum_{n=-\infty}^{\infty} |h[n]| = \sum_{n=-\infty}^{\infty} u[n] = \sum_{n=0}^{\infty} 1 = \infty$$

所以累加器是非稳定系统。

2.3.3 LTI系统的因果性

- 一个因果系统的输出仅决定于现在和过去时刻的系统输入值。
- 考虑离散时间LTI系统,其输出可表示为:

$$y[n] = \sum_{k = -\infty}^{\infty} x[k]h[n - k] = \sum_{k = -\infty}^{n} x[k]h[n - k] + \sum_{k = n+1}^{\infty} x[k]h[n - k]$$

分析:

上式中的第二项与将来的输入有关,危保证其输出与将来的输入无关,必使第二项等于零。

即在
$$k > n \square (n-k < 0) \square h(n-k) = 0$$

2.3.3 LTI系统的因果性

• 离散时间LTI系统的因果性的充要条件:

$$h[n] = 0, \qquad n < 0$$

• 同理,一个连续时间LTI系统因果性的充要条件为:

$$h(t) = 0, \qquad t < 0$$

例2.11

【例2.11】 考查系统 $y(t) = x(t - t_0)$ 。

其冲激响应为 $h(t) = \delta(t - t_0)$ 。

当 $t_0 \ge 0$ 时,是因果系统,系统为一延时器; 当 $t_0 < 0$ 时,是非因果系统,系统的输出超前输入。

同样,对于离散LTI系统 $y[n] = x[n - n_0]$,仅当 $n_0 \ge 0$ 时,才是一因果系统,系统是一离散时间的延时器。

2.3.4 LTI系统的单位阶跃响应

• 连续时间LTI系统,其单位阶跃响应为

$$s(t) = u(t) * h(t) = \int_{-\infty}^{t} h(\tau) \cdot d\tau$$

• 离散时间LTI系统,其单位阶跃响应为

$$s[n] = u[n] * h[n] = \sum_{k=-\infty}^{n} h[k]$$

2.3.4 LTI系统的单位阶跃响应

阶跃响应和冲激响应之间的关系:

• 连续时间LTI系统

$$s(t) = \int_{-\infty}^{t} h(\tau) \cdot d\tau \qquad h(t) = \frac{ds(t)}{dt}$$

$$y(t) = x(t) * h(t) = x(t) * \frac{ds(t)}{dt} = \frac{dx(t)}{dt} * s(t)$$

• 离散时间LTI系统

$$s[n] = \sum_{k=-\infty}^{n} h[k] \qquad h[n] = s[n] - s[n-1]$$
$$y[n] = x[n] * h[n] = x[n] * (s[n] - s[n-1]) = (x[n] - x[n-1]) * s[n]$$

卷积运算在数字图像处理中的应用 图像模糊化

$$h = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$y[m,n] = \sum_{u,v} x[u,v]h[m-u,n-v]$$

卷积运算在数字图像处理中的应用

原图

模糊化后图像

卷积运算在数字图像处理中的应用 边缘提取

$$y[m,n] = \sum_{u,v} x[u,v]h[m-u,n-v]$$

卷积运算在数字图像处理中的应用

原图

边缘检测后图像

卷积运算在数字图像处理中的应用 边缘提取

边缘检测中的Sobel算子

$$h = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

$$y[m,n] = \sum_{u,v} x[u,v]h[m-u,n-v]$$

卷积运算在数字图像处理中的应用

原图

边缘检测后图像

卷积运算在数字图像处理中的应用 边缘提取

边缘检测中的Sobel算子

$$h = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$y[m,n] = \sum_{u,v} x[u,v]h[m-u,n-v]$$

卷积运算在数字图像处理中的应用

原图

边缘检测后图像

卷积神经网络人脸识别 (Convolutional Neural Network for Face Recognition)

卷积神经网络人脸识别(目前识别率最好的算法)

