COMP-SCI 5542 (SP17) - Big Data Analytics and Applications

Presentation of Paper 6

VOA: Visual Ouestion Answering

Stanislaw Antol, et al.

(Proceedings of the IEEE International Conference on Computer Vision, 2015)

Team 9: Chen Wang (44) - First Speaker (2-8) Yunlong Liu (22) - (10-17) Dayu Wang (45) - (19-23)

Mar 21st, 2017

Introduction

1

3

Introduction

AI-complete Task:

Ideal task should (i) require multimodal knowledge beyond a single subdomain (ii) have a welldefined quantitative evaluation metric to track progress.

Al-complete Task Multi-modal knowledge Quantitative **Evaluation Metric**

Introduction What kind of cheese is on Fine-grained recognition the pizza? Object detection How many bikes are there? Answers Free-form Is this man crying? and **Activity recognition** openended VQA Knowledge base reasoning Is this a vegetarian pizza? Is this person expecting company? Commonsense reasoning

Related Work

Related Work	VQA Efforts	Text-based Q&A	Describing Visual Content	Other Vision+Language Tasks.
Use	Study visual question answering	Well studied problem in the NLP and text processing communities	Words or sentences are generated to describe visual content	Intersection of vision and language
Limited	fairly restricted settings with small datasets.	Text is the grounding of questions	Captions can often be non-specific	Limited set of visual concepts tend to be captured
Innovation	Involves open- ended, free-form questions and answers provided by humans	VQA requires the understanding of both text vision	VQA require detailed specific information about the image	Richer variety of visual concepts emerge from visual questions and their answers

VQA Dataset Collection

Microsoft Common Objects in Context datasets which containing multiple objects and rich

A new abstract scenes dataset containing 50K

The same train/val/test split strategy as the MC

VQA Dataset Collection The datasets contains five single-sentence Captions captions for all images. Three questions from unique workers were Questions gathered for each image/scene. Gather 10 answers for each question from unique workers, while 8

7

Questions?

The next speaker is Yunlong Liu (22).

VQA Dataset Analysis

questions

VQA Dataset Analysis

answers

commonsense knowledge

9

questions analysis 1. Types of Questions • based on the words that start the question Real Images Abstract Scenes

Answers analysis 1. typical Answers • typical answers using "yes" and "no" • rich diversity of responses • specialized responses Answers with Images

Answers analysis

2. Lengths

	one word	two words	three words
real images	89.32%	6.91%	2.74%
abstract scenes	90.51%	5.89%	2.49%

percentage of the lengths

- 3. 'Yes/No' and 'Number' Answers
- Many questions are answered using either "yes" or "no" (or sometimes "maybe")

 38.37% and 40.66% of the questions on real images and abstract scenes
 respectively. Among these 'yes/no' questions, there is a bias towards "yes" 58.83%
 and 55.86% of 'yes/no' answers are "yes" for real images and abstract scenes.

1

Answers analysis

4. Subject Confidence

 When the subjects answered the questions, we asked "Do you think you were able to answer the question correctly?"

Number of questions per average confidence s not confident, 1 = confident) for real images and abstra (black lines). Percentage of questions where 7 or more are same, 3-7 are same, less than 3 are same (color bars).

• the agreement between subjects increases with confidence.

answers without images some questions can so

 some questions can sometimes be answered correctly using commonsense knowledge alone without the need for an image.

Commonsense Knowledge

Commonsense Knowledge

 the percentage of questions answered correctly when human subjects are given the question and a human-provided caption describing the image, but not the image.

Dataset	Input	All	Yes/No	Number	Other
Real	Question	40.81	67.60	25.77	21.22
	Question + Caption*	57.47	78.97	39.68	44.41
	Question + Image	83.30	95.77	83.39	72.67
Abstract	Question	43.27	66.65	28.52	23.66
	Question + Caption*	54.34	74.70	41.19	40.18
	Question + Image	87.49	95.96	95.04	75.33

Questions?

The next speaker is Dayu Wang (45).

17

18

This is the END of the presentation.

Mar 21st, 2017

Paper 6 Presentation

"VQA: Visual Question Answering" - Stanislaw Antol, et al. (Proceedings of the IEEE International Conference on Computer Vision, 2015)

Team 9: Chen Wang (44), Yunlong Liu (22), and Dayu Wang (45)

Questions?

Thank you!

24