MAP 2302 Lecture Notes

Mark Williams

Contents

Chapter 1		Page 3
1.1	What are differential equations?	3
1.2	Lecture 2	3
1.3	Lecture 3	4
Chapter 2		Domo C
Chapter 2		Page 6
2.1	Introduction to the uses of the first DE's	6
2.2	Separable Equation	6
2.3	Linear Equations	7
	How do we solve linear equations? — 7	
2.4	Exact Equations	7
Chapter 2		D 0
Chapter 3		Page 9
3.1	Vibrations	Q

Preface

Welcome to my LaTex written notes for MAP-2302, or Differential Equations. I wanted to attempt to be able to write notes for mathematical classes since MAC2302 or Calculus 3 after seeing the beautiful blogs and notes by Gilles Castel, so much of what I create and design inside these notes are based on his work. Check out his website here: $\frac{https:}{castel.dev}$.

Chapter 1

1.1 What are differential equations?

Remember that differential equations are equations defined by equations with derivatives. One of the simplest examples, with variables x and y, are:

$$dy = dx$$

Where the initial function, through integration can be found as:

$$y = x$$

The differential equation learned from Calc 1 is the one that describes a population, where:

$$\frac{dP}{dt} = kP$$

Where the derivative, or rate of change, is dependent on the *current population*. We can also take how a bank might offer an interest rate, consider below an interest rate of 3%.

$$\frac{dy}{dx} = 0.03y$$

A solution to this equation is $y(t) = e^{0.03t}$ which we can prove by inputing y(t) and it's derivative: $y'(t) = 0.03e^{0.03t}$

$$0.03e^{0.03t} = 0.03e^{0.03t} \checkmark$$

With this solution we can also find that, for any real value of C, the solution still proves correct $(y(t) = Ce^{0.03t}, y'(t) = C(0.03)e^{0.03t})$.

$$C(0.03)e^{0.03t} = Ce^{0.03t} \checkmark$$

Which means that there are *infinitly* many solutions, which we will find true for many differential equations.

Thus we must ask

- 1. When do we have solutions?
- 2. If we do, how many?
- 3. And how do we find these solutions for any given differential equation?

1.2 Lecture 2

Example 1.1 (Excelicit Solution)

Now let's look at an explicit solution.

Verify that $\phi = 3\sin 2x + e^{-x}$ is a solution of $y'' + 4y = 5e^{-x}$.

$$\phi' = 6\sin 2x - e^{-x}$$
$$\phi'' = -12\sin 2x + e^{-x}$$

Now we plug in

$$-12\sin 2x + e^{-x} + 12\sin 2x + 4e^{-x} = 5e^{-x}$$
$$5e^{-x} = 5e^{-x} \checkmark$$

Theorem 1.1 Existence and Uniqueness

If f(x,y) and $\frac{\partial f}{\partial y}(x,y)$ are continuous about the point (x_0,y_0) then the Initial Value Problem y'=f(x,y) and $y(x_0)=y_0$ has a unique solution in a neighborhood of the point (x_0,y_0) .

Example 1.2

$$y' = xy^{\frac{1}{2}} = f(x, y).$$

Clearly f(x, y) is continuous about (0, 0) but $\frac{\partial f}{\partial y} = \frac{x}{2y^{\frac{1}{2}}}$ is not continuous at (0, 0). So the theorem cannot say that there is a unique solution.

Lets say $y_1 = 0$ for every x:

$$y_1' = 0 \qquad xy^{\frac{1}{2}} = 0$$

$$y' = xy^{\frac{1}{2}} \checkmark$$

Lets now try $y_2 = \frac{x^4}{16}$

$$y_2' = \frac{x^3}{4}xy^{\frac{1}{2}} = x(\frac{x^4}{16})^{\frac{1}{2}} = \frac{x^3}{4}$$

$$y' = xy^{\frac{1}{2}} \checkmark$$

1.3 Lecture 3

Let's say y' = f(x, y). Try to get an idea of how the solution curves. Now, remember the interpretation of y': is it the slope the tangent line. Now let's plot plenty of small tangent lines along some graph for an equation of f(x,y).

This is defined as a **Direction Field**.

Definition 1.1: Direction Field

A field of vectors or slopes that represent a function at any given set of points.

Example 1.3
$$(y' = x^2 = f(x, y))$$

Example 1.4
$$(y' = \frac{x}{y})$$

Definition 1.2: Isoclines

Isoclines are curves of *equal* slope. Isoclines do not intersect unless f(x, y) is not defined at the point. Isoclines are used to develop vector fields or directional fields.

We can use isoclines to create a direction field. To do so we set the derivative or y' to m and solve for y.

Example 1.5
$$(y' = \frac{x}{y} = m ; y = \frac{1}{m}x)$$

Example 1.6
$$(y' = -\frac{x}{y} = m ; y = -\frac{1}{m}x)$$

Chapter 2

2.1 Introduction to the uses of the first DE's

Example 2.1 (Gravity)

2.2 Separable Equation

Definition 2.1: Separable Equations

A differential equation is separable if y' = f(x, y) = g(x)p(y)

Example 2.2 (Is $y' = e^{x+y}$ a separable equation?)

We find that $y' = f(x, y) = (e^x)(e^y)$ where $g(x) = e^x$ and $p(y) = e^y$. Therefor it is a separable equation.

Definition 2.2: Separable Equations and Integrals

$$\frac{dy}{dx} = f(x, y) = g(x)p(y) \tag{2.1}$$

$$\frac{1}{p(y)}\frac{dy}{dx} = g(x) \tag{2.2}$$

Let $h(y(x)) = p^{-1}(y(x))$

$$h(y(x))\frac{dy}{dx} = g(x) \tag{2.3}$$

Let H(y(x)), G(x) be antiderivatives of h(y(x)), g(x), respectively.

$$\frac{dH}{dy}\frac{dy}{dx} = \frac{dG}{dx} \tag{2.4}$$

$$\frac{dH}{dx} = \frac{dG}{dx} \tag{2.5}$$

2.3 Linear Equations

Definition 2.3: Linear Equation Definition

Let's first define linear functions as below

$$a_1(x)\frac{dy}{dx} + a_2(x)y = b(x)$$

Ol

$$\frac{dy}{dx} + p(x)y = q(x) \qquad \text{where } p(x) = \frac{a_2(x)}{a_1(x)} \quad q(x) = \frac{b(x)}{a_1(x)}$$

2.3.1 How do we solve linear equations?

Take from the definition above and multiply my $\mu(x)$.

$$\mu(x)\frac{dy}{dx} + \mu(x)p(x)y = \mu(x)q(x)$$

Assume that $\frac{d\mu}{dx} = \mu(x)p(x)$. Which we can find by doing:

$$\frac{1}{\mu(x)} \frac{d\mu}{dx} = p(x)dx$$

$$\frac{d}{dx} \left[\ln(\mu(x)) \right] = p(x)$$

$$\ln(\mu(x)) = \int p(x)dx$$

$$\mu(x) = e^{\int p(x)dx}$$

However, now with $\mu(x)$ the function can be simplified to a much easier to understand form.

$$\mu(x)\frac{dy}{dx} + \frac{d\mu}{dx}y = \mu(x)q(x)$$
$$\frac{d}{dx}\left[\mu(x)y\right] = \mu(x)q(x)$$
$$y = \frac{1}{\mu(x)}\int \mu(x)q(x)dx$$

With both equations combined:

$$y = \frac{1}{e^{\int p(x)dx}} \int e^{\int p(x)dx} q(x) dx$$

2.4 Exact Equations

Let F(x, y(x)) = 0 be an implicit solution of a differential equation. Find $\frac{dy}{dx} = f$

$$\frac{d}{dx} [F(x, y(x))] = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial y} \frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = m - \frac{F_x}{F_y}$$

Definition 2.4

 $\frac{dy}{dx}$ is said to be exact if there exists an F(x,y(x)) such that $f=-\frac{F_x}{F_y}$

Example 2.3

$$\frac{dy}{dx} = \frac{2xy}{1+y}$$
, is it exact?

Theorem 2.1

Let
$$f = -\frac{M}{N}$$
 or $\frac{dy}{dx} = -\frac{M}{N}$. $Ndy = -Mdx$ or $Mdx + Ndy = 0$. $\frac{dy}{dx} = f$ is exact iff $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

Chapter 3

Vibrations 3.1

The simplist vibration model is of a spring.

The most ideal case in a spring, where k is the stiffness.

$$my'' = -ky$$

Where the solution is

$$y = cos(wt)$$

Where
$$w = \sqrt{\frac{k}{m}}$$
.

Where $w = \sqrt{\frac{k}{m}}$. If in a viscous fluid the equation becomes more complicated where viscosity is taken into consideration.

$$my'' = -ky - by'$$