

Soustava

Identifikace

Regulator
Predikční mode
Regulační záko
Kvadratické

Testován Simulace Soustava

Závě

Regulace hydraulické soustavy prediktivním regulátorem

Ing. Martin Vejvar MBA, PR marketing eXpert

MPC eXpert, Scholtzova 951/13 252 42 Uhříněves EXPERT

20.12.2018

Osnova

Soustava

Identifikad

Regulátor Predikční model Regulační zákon Kvadratické programování Odchylkový tvar

Simulace

- Soustava
- 2 Identifikace
- Regulátor
 - Predikční model
 - Regulační zákon
 - Kvadratické programování
 - Odchylkový tvar
- Testování
 - Simulace
 - Soustava
- 5 Závěr

Soustava

Soustava

Identifikace

Regulátor Predikční model Regulační zákon Kvadratické programování Odchylkový tvar

Simulace Soustava kaskáda dvou nádrží

- čerpadlo na vstupu
- senzor hladiny
- soustava 2. řádu

Soustava

Soustava

Identifikace

Regulátor Predikční model Regulační zákon Kvadratické programování Odchylkový tvar

Simulace Soustava Závěr

- kaskáda dvou nádrží
- čerpadlo na vstupu
- senzor hladiny
- soustava 2. řádu

- cíl
 - regulace hladiny
 - prediktivní reg.

Identifikace

Soustava

Identifikace

Regulátor Predikční model Regulační zákon Kvadratické programování Odchylkový tvar

Simulace

Závě

Přechodová charakteristika

Identifikace

Soustava

Identifikace

Regulátor Predikční model Regulační zákon Kvadratické programování Odchylkový tvar

Simulace Soustava

Závě

Strejcova metoda

Regulátor

Soustava

Identifikace

Regulátor
Predikční mode
Regulační záko
Kvadratické
programování

Testovár Simulace Soustava

Závě

Regulátor - Predikční model

Soustava

Identifikace

Regulátor Predikční model Regulační zákor Kvadratické

Testovár Simulace Soustava

Zave

model soustavy

$$a_0 y_k + \ldots + a_n y_{k-n} = b_0 u_k + \ldots + b_m u_{k-m}$$

predikční model

$$a_0 y_{k+1} + \dots + a_n y_{k+1-n} = b_0 u_{k+1} + \dots + b_m u_{k+1-m}$$

 \vdots

 $a_0 y_{k+N} + ... + a_n y_{k+N-n} = b_0 u_{k+N} + ... + b_m u_{k+N-m}$

maticový zápis

$$AY = BU + \overline{BU} + \overline{AY}$$

Regulátor - Predikční model

Soustava

Regulátor
Predikční model
Regulační zákor
Kvadratické
programování
Odchylkový tvar

Simulace Soustava

Závě

maticový zápis

$$AY = BU + \overline{BU} + \overline{AY}$$

$$Y = A^{-1}BU + \left[A^{-1}\overline{B}A^{-1}\overline{A}\right] \left[\overline{\frac{U}{Y}}\right]$$

$$y = Gu + Fh$$

- G ... vázaná odezva
 - budoucí akční zásahy
- F ... volná odezva
 - historie akčních zásahů a výstupů

Regulátor - Regulační zákon

Soustava

Reguláto

Regulační zákon Kvadratické programování Odchylkový tvar

Simulace Soustava

∠ave

minimalizace účelové funkce

$$J = e^{T} e + \lambda u^{T} u$$

$$= (w - y)^{T} (w - y) + \lambda u^{T} u$$

$$= (w - Gu - Fh)^{T} (w - Gu - Fh) + \lambda u^{T} u$$

$$= u^{T} H u + 2 j^{T} u + l$$

- H ... koef, kvadratické části
- j ... koef. lineární části
- 1 ... absolutní členy (nemá vliv na optimalizaci)
- cíl

$$J(u) \to min$$

Regulátor - Kvadratické programování

Soustava

Regulátor Predikční mode Regulační záko Kvadratické programování

Simulace Soustava

- numerická metoda
- optimalizační problém
- kvadratická účelová funkce

$$J = u^T H u + 2j^T u(+l)$$

lineární omezující podmínky

$$a_1u_1 + a_2u_2 + \dots \le c_1$$

 $b_1u_1 + b_2u_2 + \dots \le c_2$

Regulátor - Odchylkový tvar

Soustava

Identifikac

Regulátor Predikční model Regulační zákor Kvadratické programování Odchylkový tvar

Simulace Soustava

Zave

- integrační charakter
- obecná soustava

$$A(z^{-1})y(k) = B(z^{-1})u(k)$$

převod na odchylkový tvar

$$A(z^{-1})\Delta y(k) = B(z^{-1})\Delta u(k)$$
$$\Delta = 1 - z^{-1}$$

ullet zahrnutí Δ do A

$$\overline{A(z^{-1})}y(k) = B(z^{-1})\Delta u(k)$$

MPC Testování - Simulace

Testování - Reálná soustava

Soustava

Regulátor
Predikční model
Regulační zákor
Kvadratické
programování
Odchylkový tvar

Simulace

7ávě

Závěr

Soustava

Identifikace

Regulátor Predikční mode Regulační záko Kvadratické programování Odchylkový tvar

Simulace Soustava

Závěr

- identifikace
 - Strejcova metoda

$$k = 1.31$$

$$T_1 = 30 \,\mathrm{s}$$

$$T_2 = 45 \,\mathrm{s}$$

- MPC regulátor typu GPC
 - integrační charakter
 - redukce šumu
- regulace hydraulické soustavy
 - zrychlení odezvy na řízení
 - úspora energie