PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-287687

(43) Date of publication of application: 04.11.1997

(51)Int.CI.

F16L 41/08

F02M 55/02 F16L 41/02

(21)Application number : 08-122567

(71)Applicant: USUI INTERNATL IND CO LTD

(22)Date of filing:

19.04.1996

(72)Inventor: USUI MASAYOSHI

ASADA KIKUO

(54) CONNECTING STRUCTURE OF BRANCHING CONNECTION BODY IN HIGH-PRESSURE FUEL RAIL

(57)Abstract:

PROBLEM TO BE SOLVED: To enhance soldering intensity at a connecting part by engaging a connecting head part involving an extended diameter part which has a cross-section arc-shaped wall or a cross-section rectangular wall in a dish-shaped seat part whose cross-section is step-wise, and soldering its contact and engagement part.

SOLUTION: A main tube 1 is formed out of a thick-wall stainless steel tubing material, such as a pressure piping carbon steel pipe and a stainless steel pipe, at whose inside a flow passage 1–1 is formed. At the peripheral wall part over axial direction leading to the flow passage 1–1, the dish-shaped seat part 1–3 of a penetrated hole whose cross-section is step-wise is formed at a single point or a plurality of spaced points. A branch tube 2a is formed out of the same type of steel pipe or steel material as the main tube 1, as

a branching connecting body. The connection head part 2a-1 is constituted of an extended diameter part 2a-2 and a straight cylindrical part 2a-3 whose end part has a wall 2a-2' of arc-shaped cross section. The extended diameter part 2a-2, of its head part is brought into contact with the dish-shaped seat part 1-3, and a mutual contact and engagement part is soldered 3.

LEGAL STATUS

[Date of request for examination]

18.04.2003

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-287687

(43)公開日 平成9年(1997)11月4日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FI	11 100		技術表示箇所
F16L	41/08			F16L	41/08		
F 0 2 M	55/02	3 3 0		F 0 2 M	55/02	3 3 0	С
F16L	41/02	·		F16L	41/02	-	

審査請求 未請求 請求項の数5 FD (全 5 頁)

(21)出願番号	特願平8-122567	(71)出題人 000120249
		白井国際産業株式会社
(22)出顧日	平成8年(1996)4月19日	静岡県駿東郡清水町長沢131番地の2
		(72)発明者 臼井 正佳
		静岡県沼津市本松下843-14
		(72)発明者 浅田 菊雄
		静岡県三島市徳倉738-8
		(74)代理人 弁理士 押田 良久

(54) 【発明の名称】 高圧燃料レールにおける分岐接続体の接続構造

(57) 【要約】

【課題】 接続部での鑑着強度を強固となし、同時に円 弧状断面あるいは矩形断面の拡径部によって分岐接続体 側の接続部附近での疲労応力を効果的に軽減せしめ、配 設下の繰返される高圧流体の供給圧力の急激な変動や加 振或いは相手部材同士の相対寸法変化等にあっても、分 岐接続体側の接続部附近での亀裂を効果的に防止して燃 料の漏れ等生ずる憂いをなくすようにする。

【解決手段】 燃料レール内にあって、内部の流通路に通ずる本管の軸方向にわたる周壁部に設けた単数もしくは複数個所での貫孔を、断面階段状の皿状座部となし、一方、分岐接続体側の端部附近を膨出させて形成した円弧状断面あるいは矩形断面の拡径部となすとともに該拡径部に連なる先端部をストレート筒部となす接続頭部となして該頭部を座部に当接係合せしめ、かつ相互の当接係合部を鑞着して接続構成する。また、前記ストレート筒部を皿状座部に螺合締着し、該螺合締着部も鑞着して接続構成する。

【特許請求の範囲】

【請求項1】 燃料レール内にあって、内部の流通路に 通ずる本管の軸方向にわたる周壁部に設けた少なくとも 1つの個所での貫孔を、断面階段状の皿状座部となし、 一方、分岐接続体側の端部附近を膨出させて前記座部に 嵌合する断面円弧状壁または断面矩形状壁を有する拡径 部となすとともに該拡径部に連なる先端部を前記貫孔に 嵌挿するストレート筒部となす接続頭部となして該頭部 を前記座部に当接係合せしめ、かつ相互の当接係合部を 鐵着して接続構成したことを特徴とする高圧燃料レール 10 における分岐接続体の接続構造。

【請求項2】 前記分岐接続体側の接続頭部のストレート筒部に螺子部を設け、該ストレート筒部を本管側の座部に螺合締着し、該螺合締着部を鑞着して接続構成したことを特徴とする請求項1記載の高圧燃料レールにおける分岐接続体の接続構造。

【請求項3】 前記拡径部のなす直径(D)を、枝管もしくは枝金具の直径(d)の約1.1倍乃至2倍となして形成したことを特徴とする請求項1記載の高圧燃料レールにおける分岐接続体の接続構造。

【請求項4】 前記拡径部の円弧状壁または断面矩形状壁のなす長さ(L)を直径(d)と0.5乃至2.5倍となして形成したことを特徴とする請求項1記載の高圧燃料レールにおける分岐接続体の接続構造。

【請求項5】 前記分岐接続体側の孔径を本管内部の流 通路に開口する貫孔径と略合致させるか、または大径と することを特徴とする請求項1記載の高圧燃料レールに おける分岐接続体の接続構造。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高圧燃料多岐管や 高圧燃料ブロックのような燃料レールにおける分岐枝管 もしくは分岐枝金具等による接続体の接続構造に係り、 特にディーゼル内燃機関での1000kgf/cm²以 上にも及ぶ高圧燃料を供給する高圧燃料レールにおける 分岐接続体の接続構造に関するものである。

[0002]

【従来の技術】従来、この種の分岐接続体の接続構造としては例えば図6に示すように、内部を流通路11-1とする燃料レールとしての本管11の周壁部に設けた該 40流通路に通ずる貫孔11-2を単に断面円孔となして該円孔部とに分岐接続体としての枝管12側の管径そのままの接続端部12-1を嵌挿した状態をもって相互に鑞着13して接続構成していた。

[0003]

【発明が解決しようとする課題】しかしながら、このような従来の技術による接続構造にあっては、1000kgf/cm²以上にも及ぶ高圧流体の絶えず繰返される供給圧力の急激な変動と、特に機関からの加振及び雰囲気温度の上昇、下降による相手部材(相手座面)同士の 50

相対寸法変化に起因して、特に本管11側の管径に比して比較的小径の分岐接続体の場合に、鑞着13部附近での該分岐接続体側に鑞着時の局部過熱による機械的強度の劣化によって振動疲労に伴なう亀裂を生じ易く、しばしば燃料の漏れ等を招く可能性があった。

【0004】本発明は従来技術の有する前記問題に鑑みてなされたものであり、接続部での鑑着強度を強固となし、同時に分岐接続体側の接続部附近での疲労応力を効果的に軽減せしめ、配設状態下の繰返される高圧流体の供給圧力の急激な変動や加振及び温度変化に伴なう相対寸法変化等にあっても、分岐接続体側の接続部附近での亀裂を効果的に防止して燃料の漏れ等の生ずる憂いをなくすことのできる高圧燃料レールにおける分岐接続体の接続構造を提供しようとするものである。

[0005]

【課題を解決するための手段】本発明は上記目的を達成 するため、燃料レール内にあって、内部の流通路に通ず る本管の軸方向にわたる周壁部に設けた少なくとも1つ の個所での貫孔を、断面階段状の皿状座部となし、一 方、分岐接続体側の端部附近を膨出させて前記座部に嵌 合する断面円弧状壁または断面矩形状壁を有する拡径部 となすとともに該拡径部に連なる先端部を前記貫孔に嵌 挿するストレート筒部となす接続頭部となして該頭部を 前記座部に当接係合せしめ、かつ相互の当接係合部を鑞 着して接続構成したことを特徴とする高圧燃料レールに おける分岐接続体の接続構造を要旨とするものであり、 さらに前記分岐接続体側の接続頭部のストレート筒部に 螺子部を設け、該ストレート筒部を本管側の座部に螺合 締着し、該螺合締着部も鑞着して接続構成したり、また 前記拡径部のなす直径(D)を、枝管もしくは枝金具の 直径(d)の約1.1倍乃至2倍となして形成したり、 さらに前記拡径部の円弧状壁または断面矩形状壁のなす 長さ(L)を直径(d)と0.5万至2.5倍となして 形成したり、また前記分岐接続体側の孔径を本管内部の 流通路に開口する貫孔径と略合致させるか、または大径 としたりするものである。

【0006】本発明は燃料レール側のなす前記座部と、分岐接続体側の拡径部付き接続頭部とが当接係合して相互に鑑着した接続構成となしたものであるから、接続部での鑑着強度を強固となすとともに拡径部の円弧状壁または断面矩形状壁によって分岐接続体側の接続部附近での疲労応力を効果的に軽減せしめることとなり、したがって繰返される高圧流体の供給圧力の急激な変動や加振或いは雰囲気温度の上昇、下降による相手部材同士の相対寸法変化等にあっても、分岐接続体側の接続部附近での亀裂を効果的に防止することができ、燃料の漏れ等の生ずる憂いをなくすこととなり、また燃料レール側の管径に比して概して小径となす分岐接続体にあっても有効となすことができるのである。また、高圧にさらされる鑑着部が最小となることにより、鑞着欠陥が生じにく

110

【0007】なお、本発明において、分岐接続体側の拡 径部のなす直径 (D) を、枝管もしくは枝金具の直径

- (d) の約1.1倍乃至2倍となしたのは、耐振性、拡 径加工および本管の管径等を考慮したもので、1.1倍 未満では耐振性に乏しく、他方2倍を超えると拡径加工 に無理を招いて困難となすとともに、燃料レールが本管 の場合当該本管の強度低下をきたすためである。また、 前記拡径部の円弧状壁または断面矩形状壁のなす長さ
- (L) を直径(d) と0.5万至2.5倍となしたのは、疲労応力の軽減効果を考慮したもので、0.5未満では軽減機能に乏しく、他方2.5倍を超えると疲労応力軽減機能にほとんど影響を及ぼさず無意味となすからである。

【0008】また、本発明において、分岐接続体側の孔径を本管内部の流通路に開口する貫孔径と略合致させるか、または大径とするのは、内圧による分岐接続体へのスラスト力を最小とするためである。

[0009]

【発明の実施の形態】以下、本発明の実施例を図面に基 20 づいて説明すれば、図1は本発明の高圧燃料レールにお ける分岐接続体の接続構造に係る枝管による接続部の一 部切欠き断面図、図2は図1の接続構造の他の実施例を 示す図1相当図、図3はさらに他の実施例を示す図1相 当図、図4は図3の接続構造の他の実施例を示す図1相 当図、図5はまたさらに他の実施例を示す枝金具による 接続部の一部切欠き断面図であって、1は燃料レールと しての本管、1-1は流通路、1-2は貫孔、1-3は 階段状の皿状座部、2a、2bは分岐接続体としての枝 管、2a-1、2b-1は接続頭部、2a-2、2b-30 2は拡径部、2a-2′は断面円弧状壁、2b-2′は 断面矩形状壁、2a-3、2b-3はストレート筒部、 2a-4、2b-4は螺合締着部、2a-5、2b-5 は枝管の孔径、3は鑞着、4は分枝金具、5は高圧燃料 噴射管、6はナットである。

【0010】本管1は内部を流通路1-1となして管径30m/m程度以下の圧力配管炭素鋼管あるいはステンレス鋼管等の厚肉鋼管材からなるものである。そしてその該流通路1-1に通じて軸方向にわたる周壁部に単数もしくは間隔をおいた複数個所での貫孔を、階段状の皿状座部1-3となして形成されている。

【0011】次に、分岐接続体としての枝管2a、2b ホール時 および他の実施例としての分岐接続体をなす分枝金具4 用な高品 は、共に管径20m/m程度以下の前記本管(1)と同 る。 【図面の 1 大端部を膨出加工にて断面円弧状壁2a-2′または断 面矩形状壁2b-2′とした拡径部2a-2、2b-2 分岐接続 次き断面 部2a-1、2b-1の形状となし、該頭部の拡径部2 a-2、2b-2を皿状座部1-3に当接係合せしめた 50 である。

1

状態で相互の当接係合部を、さらにストレート筒部2a-3、2b-3と皿状座部1-3との螺合締着部2a-4、2b-4を、それぞれ鑞着3して接続構成するものである。高圧燃料噴射管5は分枝金具4の他端部にナット6によって配設されている。

【0012】かかる構成において、本発明では、前記拡径部2a-2、2b-2のなす直径(D)を耐振性、拡径加工度および本管1の管径、肉厚等を考慮し、枝管2a、2bあるいは分枝金具4の直径(d)の約1.1倍乃至2倍とする。また、前記拡径部の断面円弧状壁2a-2'または断面矩形状壁2b-2'のなす長さ(L)を鑞着強度、拡径加工度並びに疲労応力の軽減効果を考慮して、直径(d)と0.5乃至2.5倍とする。

【0013】また、枝管2a、2bの孔径2a-5、2b-5を本管1の貫孔1-2と略合致させるか、または貫孔1-2より大径とすることにより、内圧による枝管2a、2bへのスラスト力を最小とすることができる。さらに、孔内に露出して高圧にさらされる鑞着3部は極めて僅かであるため鑞着欠陥が生じにくい。

[0014]

【発明の効果】以上説明したように、本発明による高圧 燃料レールにおける分岐接続体の接続構造は、燃料レー ル側としての本管に穿設された貫孔に階段状の皿状座部 を形成し、この皿状座部に枝管あるいは分枝金具側に形 成した断面円弧状壁または断面矩形状壁を有する拡径部 を当接係合せしめて相互に鑞着した接続構造となし、ま た前記拡径部に連なる先端のストレート筒部を前記座部 に螺合締着し当該螺合締着も相互に鑞着した接続構造と なしているので、接続部での鑞着強度を強固となすとと もに拡径部の断面円弧状壁または断面矩形状壁によって 分岐接続体側の接続部附近での疲労応力を効果的に軽減 せしめる効果が得られ、従って配設下の繰返される高圧 流体の供給圧力の急激な変動、加振及び雰囲気温度の上 昇、下降による相手部材同士の相対寸法変化等にあって も、接続部附近での亀裂を効果的に防止して燃料の漏れ 等の生ずる憂いをなすことができ、また内圧による分岐 接続体側へのスラスト力が最小であることにより接続部 の鑞着強度を弱めることもなく、また高圧にさらされる **鑎着が最小であることにより鈕着欠陥が生じにくく、ま** た燃料レール側の管径に比して概して小径となす分岐接 続体にあっても有効となすことができ、さらにオーバー ホール時に接続部からのゴミの侵入がない等、極めて有 用な高圧燃料レールにおける分岐接続体の接続構造であ る。

【図面の簡単な説明】

【図1】本発明の実施例を示す高圧燃料レールにおける 分岐接続体の接続構造に係る枝管による接続部の一部切 欠き断面図である。

【図2】図1の接続構造の他の実施例を示す図1相当図である。

【図3】本発明の他の実施例を示す図1相当図である。

【図4】図3の接続構造の他の実施例を示す図1相当図である。

【図5】本発明の他の実施例を示す枝金具による接続部の一部切欠き断面図である。

【図6】従来例を示す高圧燃料レールにおける分岐接続 体の接続構造の一部切欠き断面図である。

【符号の説明】

1 本管

1-1 流通路

1-2 貫孔

1-3 階段状の皿状座部

【図1】

[図3]

2a、2b 分岐接続体としての枝管

6

- 2a-1、2b-1 接続頭部
- 2a-2、2b-2 拡径部
- 2a-2′ 断面円弧状壁
- 2b-2′ 断面矩形状壁
- 2a-3、2b-3 ストレート筒部
- 2a-4、2b-4 螺合締着部
- 2a-5、2b-5 枝管の孔径
- 3 鑞着
- 10 4 分枝金具
 - 5 高圧燃料噴射管
 - 6 ナット

[図2]

[図4]

【図5】

[図6]

