기초통계학II

- 2. 단일모집단의 기본
 - (1) 모평균에 대한 추론
 - (2) 모분산에 대한 추론
 - (3) 모비율에 대한 추론

□ 모평균 추론에 대한 복습

■ µ의 100(1 - α)% 신뢰구간

不: 知识知

ध्रेमा पारे यह ने रेनेय (धर्मर)

7份旅: 当老世中二十老老是生的时去

-Zd/2 Zd/2

: Metter X+Za/2 m

됐이는데시면실제값계산. 0가는데신 대는 계산가능 * 자유打+机면 (显生317+ H시면)

题对于这个个: 子似于过到了

与 tune 是是 and and affen are 就可以是是

型乳型智量出生以=化剂 136分 P(Hoかは) Hoを) = max 2 を加かを理な: 十二十二元人

◈ 가설검정 절차

- (1) 귀무가설과 대립가설을 설정한다. (생생님, Ho이 맛나고가성) Ho Ho
- (2) 주어진 문제의 특성에 따라 유의수준 α 를 결정한다.
- (3) 표본 자료에서 검정통계량을 계산한다. 판선 가 가 가 가 있다.
- (4) 가설검정결론 : 양사건이 원한 텔는 내가 위한 기는
 - (i) 기각역 사용유의수준에 따라 기각역을 구한다.검정통계량이 기각역에 속하면 H₀를 기각한다.
 - (ii) p 값(유의확률) 사용 : 더 비지사자인가이나를 박혔
 - 검정통계량을 이용하여 p값을 구한다.
 - p ≤ α 이면 H_0 를 기각한다.

 \blacksquare μ 에 대한 가설검정

长智比州外经可是红 长 개经 经可明的产品 -> 일터워스기는으로 가성이 HISH 입니

① 가설	귀 무가설		대립가설
M=M0204713		$H_1: \mu \neq \mu_0$	양측검정(two-sided test)
> 55 M= Mo or ME	H_0 $\mu = \mu_0$	$H_1: \mu > \mu_0$ l	단측검정(one-sided test)
에에 가장가		$H_1: \mu < \mu_0$	근득급성(Olle-Slued (est)

② 유의수준 α 정하기: 0.05, 0.01

经时间对对法司格力发生

③ 검정통계량 귀무가설이 $H_0: \mu = \mu_0$ 인 경우 검정통계량 (胚바狀端 병원)다

小班特地的

σ 를 알 때	σ 를 모를 때, n 이 클 때 $(n\geq 30)$	σ 를 모를 때 $, n$ 이 작을 때 $\%$ 모집단 정규분포 가정		
$Z = rac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$	$Z = rac{\overline{X} - \mu_0}{s/\sqrt{n}} \sim N(0,1)$	$T = \frac{\overline{X} - \mu_0}{s/\sqrt{n}} \sim t(n-1)$		

又≈ 16 (16、41时)急重对的气力设计:以刊次

4. 기각역 및 유의확률

			$H_1: \mu > \mu_0 \qquad H_1: \mu < \mu_0$		$H_1: \mu \neq \mu_0$		
			α 2	α	$\frac{\alpha}{2}$		
	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	기감역	$R = \{z \ge z_{\alpha}\}$	$R = \{z \le -z_{\alpha}\}$	$R = \left\{ \begin{aligned} z &\leq -z_{\alpha/2}, \\ z &\geq z_{\alpha/2} \end{aligned} \right\}$		
검 정 통	$Z = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$	유의확률 (p-값)	$P(Z \geq z)$	$P(Z \leq z)$	$2 imes P(Z\geq z)$ 에고가 아닌 여가 기찬이므ン		
계 량	$T = \frac{\overline{X} - \mu_0}{\sqrt{\overline{X}}}$	기각역	$R = \left\{t \geq t_{lpha,n-1} ight\}$	$R = \left\{t \le -t_{\alpha,n-1}\right\}$	$R = \{ t \geq t_{\alpha/2, n-1}\}$		
	$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$	유의확률 (p-값)	$P(T \geq t)$	$P(T \leq t)$	$2 \times P(T \ge t)$		

山北北北湖东州安敦县 时 川湖水湖 至山堤海

□ 분산(표준편차)

- ullet 모집단 가정: $N(\mu,\sigma^2)$ \leftrightarrows 정규성에 대한 가정확인 필요
- 확률표본 $X_1, X_2, ..., X_n \sim \text{iid } N(\mu, \sigma^2)$

○ 점추정

रिम्धियाः इतिराक्ति ध्राप

* 美国村: 中村华到了州北村里中山北京四

○ 점추정량의 통계적 성질

부분나
$$(n-1)S^2$$
 $= \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sigma^2} \sim \frac{\chi_{n-1}^2}{\chi_{n-1}^2}$ $-\chi_{n-1}^2$: 자유도가 $n-1$ 인 카이제곱(chi-square)분포 \sim 중심축량: $(n-1)S^2/\sigma^2 \sim \chi_{n-1}^2$ 자유도미따라 알타바뀜.

好的好小时的是沙型叫叫些的对数的人

제 12 장 범주형 자료분석

■ 카이제곱분포의 상위 œ의 확률을 주는 값 【

d.t. \ α	,99	,975	,95	,90	,50	,10	,05	,025	,01
U ₁	,0002	,001	,004	,02	, 45	2,71	3,84	5,02	6,63
2	,02	,05	.10	,21	1,39	4,61	5,99	7,38	9, 21
3	,11	,22	,35	,58	2,37	6, 25	7,81	9,35	11,34
4	,30	.48	.71	1,06	3,36	7,78	9,49	11,14	13,28
5	.55	.83	1,15	1,61	4,35	9,24	11,07	12,83	15,09
6	,87	1,24	1,64	2,20	5,35	10,64	12,59	14,45	16,81
7	1,24	1,69	2,17	2,83	6,35	12,02	14,07	16,01	18,48
8	1,65	2,18	2,73	3,49	7,34	13,36	15,51	17,53	20,09
9	2,09	2,70	3,33	4,17	8,34	14,68	16,92	19,02	21,67
10	2,56	3,24	3,94	4,87	9,34	15,99	18,31	20,48	23, 21
11	3,05	3,81	4,57	5,58	10,34	17,28	19,68	21,92	24,72
12	3,57	4.40	5,23	6,30	11,34	18,55	21,03	23,34	26, 22
13	4,11	5,01	5,89	7,04	12,34	19,81	22,36	24,74	27,69
14	4,66	5,62	6,57	7,79	13,34	21,06	23,68	26,12	29,14
15	5,23	6,26	7,26	8,55	14,34	22, 31	25,00	27,49	30,58
16	5,81	6,90	7,96	9,31	15,34	23,54	26,30	28,85	32,00
17	6,41	7,56	8,67	10,09	16,34	24,77	27,59	30,19	33, 41
18	7, 01	8,23	9,39	10,86	17,34	25, 99	28,87	31,53	34,81
19	7,63	8,90	10,12	11,65	18,34	27, 20	30,14	32,85	36,19
20	8,26	9,59	10,85	12,44	19,34	28, 41	31,41	34,17	37,57
21	8,90	10,28	11,59	13,24	20,34	29,62	32,67	35,48	38, 93
22	8,54	10,98	12,34	10,04	21,34	30, 81	33,92	36,78	40, 29
23	10,20	11,69	13,09	14,85	22,34	32,01	35,17	38,08	41,64
24	70,86	12,40	13,85	15,66	23,34	33, 20	36,42	39,36	42,98
25	11,52	13,11	14,61	16,47	24,34	34,38	37,65	40,65	44, 31
26	12,20	13,84	15,38	17,29	25,34	35, 56	38,89	41,92	45, 64
27	12,88	14,57	16,15	18,11	26,34	36,74	40,11	43,19	46,96
28	13,56	15,30	16,93	18,94	27,34	37,92	41,34	44,46	48, 28
29	14,26	16,04	17,71	19,77	28,34	39,09	42,56	45,72	49,59
30	14,95	16,78	18,49	20,60	29,34	40, 26	43,77	46,98	50,89
40	22,16	24,42	26,51	29,05	39,34	51,81	55,76	59,34	63, 69
50	29,71	32,35	34, 76	37,69	49,33	63,17	67,50	71,42	76,15
60	37,48	40,47	43,19	46,46	59,33	74,40	79,08	83,30	88, 38
70	45, 44	48,75	51,74	55,33	69,33	85, 53	90,53	95,02	100,43
80	53,54	57,15	60,39	64,28	79,33	96,58	101,88	106,63	112,33
90	61,75	65,64	69,13	73,29	89,33	107,57	113,15	118,14	124,12
100	70,06	74,22	77,93	82,36	99,33	118,50	124,34	129,56	135,81

P(L< 02<U)=1-0

신뢰구간

 \circ σ^2 의 $100(1-\alpha)\%$ 신뢰구간

$$Q_5 = 2_5$$

52-12121211

: 对北北,好生,阿弘

$$\sigma^2$$
의 $100(1-\alpha)\%$ 신뢰구간 $\frac{1}{\sqrt{2}}$: 전차병, 독실이 $\frac{1-\alpha}{\sqrt{2}}$ $\frac{1-\alpha}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{$

σ의 100(1-α)% 신뢰구간

$$\left(\sqrt{\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}}\,,\,\,\,\sqrt{\frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}}\,\right)$$

얼마같을때신라는 의가장감다.

$$P(\chi_{10}^2 < 3.247) = 0.025$$
, $P(\chi_{10}^2 > 20.483) = 0.025$ (파란선) $P(\chi_{10}^2 < 2.413) = 0.008$, $P(\chi_{10}^2 > 18.866) = 0.042$ (빨간선) 내내시 기계 시기가의 독이 되지만 이 되지만 하는 편의 되지만 이 되지만 하는 편의 들어가는 편의 들어가는 편의 들어가는 된다.

- 생산된 제품의 평균 강도가 어느 수준에서 안정적으로 생산되는지 알아보기 위해 임의로 8개를 선택하여 제품강도를 측정함
 - 안정성은 분산으로 평가

-
$$s^2 = 3.65$$
, $\chi^2_{0.975.7} = 1.690$, $\chi^2_{0.025.7} = 16.013$

 \circ σ^2 의 95% 신뢰구간

$$\left(\frac{7\times3.65}{16.013}, \frac{7\times3.65}{1.690}\right) = (1.596, 15.122)$$

○ σ의 95% 신뢰구간

$$(\sqrt{1}.596, \sqrt{1}5.122) = (1.263, 3.889)$$

가설검정

$$\circ \ H_0: \ \sigma^2=\sigma_0^2 \ \text{vs} \quad H_1: \begin{cases} \textcircled{1} \ \sigma^2>\sigma_0^2 \\ \textcircled{2} \ \sigma^2<\sigma_0^2 \\ \textcircled{3} \ \sigma^2\neq\sigma_0^2 \end{cases}$$

$$\circ$$
 검정통계량 : $X^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$

유의수준을 α라고 하면, 기각역은

$$(2) [0, \chi^2_{1-\alpha, n-1}] \Leftrightarrow \chi^2 \leq \chi^2_{1-\alpha, n-1}$$

52 = Co2 → HOTHEN

● 표준편차가 2미만일 때 안정적인 품질관리가 유지된다고 할 때 품질관리가 유지되는지 검정

$$^{\circ} \quad \mathbf{H}_{0}: \sigma = 2 \quad \mathbf{vs} \quad \mathbf{H}_{1}: \sigma < 2 \quad \ ^{\circlearrowleft} \quad \mathbf{H}_{0}: \sigma^{2} = 4 \quad \mathbf{vs} \quad \mathbf{H}_{1}: \sigma^{2} < 4$$

$$\circ$$
 검정통계량: $X^2 = \frac{(n-1)S^2}{2^2} \sim \chi^2_{n-1}$

'에제 볼트와 너트를 생산하는 한 공장에서는 제품의 품질이 얼마나 균일하게' 유지되는지를 검사하려고 10개의 볼트를 추출하여 지름을 측정하고 그 표준편 차를 구하였더니 0.4였다. σ가 0.2보다 크다고 할 수 있는지 유의수준 0.05로 검정하라.

$$\sigma^2 > 0.2^2$$

① 가설 $H_{\!0}:\sigma\!=\!0.2$ vs $H_{\!1}:\sigma\!>\!0.2$

② 검정통계량 :
$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{9 \times 0.4^2}{0.2^2} = 36$$
 건성통계간이 (건성통계시기)

- ③ 기각역 $R: \chi^2 \ge \chi^2_{0.05}(9) = 16.92$
- ④ 결론 : 검정통계량의 값이 <u>기각역에</u> 포함되므로 주어진 자료로부터 σ가 0.2보다 크다고 할 수 있다.

(Hony, Higher)