Метод конечных элементов для одномерной задачи теплопроводности с использованием комплекс элементов.

Задание

Определить распределение температуры в стержне кругового сечения с граничными условиями 1 рода на левой границе стержня и граничными условиями 3 рода на правой границе стержня и на боковой поверхности с использованием квадратичного и кубического одномерного конечного элемента. Сравнить с аналитическим решением.

Решение

- 1. Проведем дискретизацию области одномерными элементами для квадратичного и кубического элементов:
 - (а) Схема разбиения области для квадратичного элемента:

(b) Схема разбиения области для кубического элемента:

2. Процедура формирования локальных и глобальной матриц теплопроводности Для расчёта локальных матриц используем приведённые выше формулы.

Заметим, что бесконечно малые элементы в силу равномерного распределения температуры в поперечном сечении и равномерном действии ΓV по периметру поперечного сечения можно представить в виде $dV=\pi R^2 dx$ и $dS=2\pi R dx$. Дальше требуется лишь вычислить две локальные матрицы жёсткости и два вектора правых частей.

Глобальная матрица составляется следующим образом: первую локальную матрицу записываем в элементы глобальной матрицы с 1-3 столбцы и строки, вторую в 3-5 строки и столбцы соответственно, но к элементу глобальной матрицы (3,3) прибавляем элемент (1,1) второй локальной матрицы.

При формировании глобальной матрицы учтём ГУ $T_1 = 150$ Для этого обнулим внедиагональные элементы в строках 1, а диагональные положим равными единице.

3. Код программы, реализующий вычисления:

```
import numpy as np
import matplotlib.pyplot as plt
from sympy import symbols, Matrix, integrate, pi
T 1 = 150
a g = 10
T g = 40
lambda = 72
H = 7.5
L = H / 2
T anal = np.array([150, 80.9, 55.4, 46.2, 43.3])
X \text{ anal } = \text{np.array}([0, L/2, L, 3*L/2, 2*L])
R = 1
S = pi * R**2
P = 2 * pi * R
# First element
X = np.array([0, L])
len X = len(X)
x = symbols('x')
N = Matrix.zeros(len X, 3)
for i in range (len X):
    N[i, 0] = (x - X[i] - L/2) *
        (x - X[i] - L) / ((-L/2) * (-L))
    N[i, 1] = (x - X[i]) * (x - X[i] - L) / ((L/2) * (-L/2))
    N[i, 2] = (x - X[i]) * (x - X[i] - L/2) / (L * (L/2))
B = N. diff(x)
K = np.zeros((3, 3, 2))
f = np.zeros((3, 1, 2))
for i in range (len X):
    Ke[:, :, i] = integrate(S * B[i, :].T * lambda * B[i, :],
```

```
(x, X[i], X[i] + L)) + 
        integrate(P * a_g * N[i, :].T * N[i, :], (x, X[i], X[i] + L))
    f_e[:, 0, i] = integrate(P * a_g * T_g * N[i, :],
        (x, X[i], X[i] + L))
\# Global matrix formation
K = np.zeros((5, 5))
F = np.zeros((5, 1))
K[0:3, 0:3] = K e[:, :, 0]
K[3:5, 3:5] = K e[1:3, 1:3, 1]
F[0:3, 0] = f_e[:, 0, 0]
F[3:5, 0] = f_e[1:3, 0, 1]
F[2, 0] += f e[0, 0, 1]
K[2, 2] += K_e[0, 0, 1]
K[2, 3] += K e[0, 1, 1]
K[2, 4] += K e[0, 2, 1]
K[3, 2] += K_e[1, 0, 1]
K[4, 2] += K_e[2, 0, 1]
K[0, 0] = 1
K[0, 1:5] = 0
F[0, 0] = T 1
T = np.linalg.solve(K, F)
\# Second element
L = H / 2
X = np.array([0, L])
\operatorname{len} X = \operatorname{len}(X)
N = Matrix.zeros(len X, 4)
for i in range (len X):
    N[i, 0] = (x - X[i] - L/3) * (x - X[i] - 2*L/3)
        * (x - X[i] - L) / ((-L/3) * (-2*L/3) * (-L))
    N[i, 1] = (x - X[i]) * (x - X[i] - 2*L/3) *
        (x - X[i] - L) / ((L/3) * (-L/3) * (-2*L/3))
    N[i, 2] = (x - X[i]) * (x - X[i] - L/3) *
        (x - X[i] - L) / (2*L/3 * (L/3) * (-L/3))
    N[i, 3] = (x - X[i]) * (x - X[i] - L/3) *
        (x - X[i] - 2*L/3) / (L * (2*L/3) * (L/3))
B = N. diff(x)
K_e = np.zeros((4, 4, 2))
f_e = np.zeros((4, 1, 2))
```

for i in range (len X):

$$\begin{array}{l} K_{-}e[:\,,\,:\,,\,\,i\,] \,=\, integrate\,(S\,*\,B[\,i\,,\,\,:\,]\,.\,T\,\,*\,\,lambda_{-}\,\,*\,\,B[\,i\,,\,\,:\,]\,\,, \\ (x,\,\,X[\,i\,]\,,\,\,X[\,i\,]\,+\,L)) \,+\,\,\,\,\\ integrate\,(P\,*\,a_{-}g\,*\,N[\,i\,,\,\,:\,]\,.\,\,T\,\,*\,\,N[\,i\,,\,\,:\,]\,,\,\,\,(x,\,\,X[\,i\,]\,,\,\,X[\,i\,]\,+\,L)) \\ f_{-}e\,[:\,,\,\,0\,,\,\,i\,] \,=\, integrate\,(P\,*\,a_{-}g\,*\,\,T_{-}g\,*\,\,N[\,i\,,\,\,:\,]\,, \\ (x,\,\,X[\,i\,]\,,\,\,X[\,i\,]\,+\,L)) \\ \#\,\, \textit{Global matrix formation} \\ K \,=\, np\,.\,zeros\,((7\,,\,\,7)) \end{array}$$

$$F = \text{np.zeros}((7, 7))$$
$$F = \text{np.zeros}((7, 1))$$

$$F[3, 0] += f_e[0, 0, 1]$$

$$\begin{array}{llll} K[3\;,\;\;3]\; +=\; K_e[0\;,\;\;0\;,\;\;1] \\ K[3\;,\;\;4]\; +=\; K_e[0\;,\;\;1\;,\;\;1] \\ K[3\;,\;\;5]\; +=\; K_e[0\;,\;\;2\;,\;\;1] \\ K[3\;,\;\;6]\; +=\; K_e[0\;,\;\;3\;,\;\;1] \end{array}$$

$$K[4, 3] += K_e[1, 0, 1]$$

 $K[5, 3] += K_e[2, 0, 1]$
 $K[6, 3] += K_e[3, 0, 1]$

$$K[0, 0] = 1$$

 $K[0, 1:5] = 0$
 $F[0, 0] = T 1$

$$T = np.linalg.solve(K, F)$$

$$X = np.array([0, L/3, 2*L/3, L, 4*L/3, 5*L/3, 2*L])$$

4. Результаты:

(а) Для квадратичного элемента:

$$K = \begin{bmatrix} 1,0000 & 0,0000 & 0,0000 & 0,0000 & 0,0000 \\ -145,1416 & 447,3628 & -145,1416 & 0,0000 & 0,0000 \\ 12,2522 & -145,1416 & 344,3186 & -145,1416 & 12,2522 \\ 0,0000 & 0,0000 & -145,1416 & 447,3628 & -145,1416 \\ 0,0000 & 0,0000 & 12,2522 & -145,1416 & 172,1593 \end{bmatrix}$$

Вектор правой части \mathbf{f}^T равен:

 $\begin{bmatrix} 150,0000 & 6283,1853 & 3141,5927 & 6283,1853 & 1570,7963 \end{bmatrix}$

Решение системы:

№ узла	Температуры, полученные МКЭ	Точные значения температуры
1	150,00	150,00
2	80,86	80,90
3	55,94	55,40
4	46,61	46, 20
5	44,44	43,30

Сравнение численного и аналитического решения:

(b) Для кубического элемента:

[1,0000]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
-271,1206	742,3224	-459,2257	76,3811	0,0000	0,0000	0,0000	0,0000
76, 3811	-459,2257	742,3224	-271,1206	0,0000	0,0000	0,0000	0,0000
-16,9388	76,3811	-271,1206	482,2614	-271,1206	76,3811	-16,9388	0,0000
0,0000	0,0000	0,0000	-271,1206	742,3224	-459,2257	76,3811	-16,9388
0,0000	0,0000	0,0000	76,3811	-459,2257	742,3224	-271,1206	0,0000
0,0000	0,0000	0,0000	0,0000	76,3811	-271,1206	241, 1307	0,0000
[0,0000]	0,0000	0,0000	-16,9388	76,3811	-271,1206	241, 1307	0,0000

Вектор правой части \mathbf{f}^T равен:

 $\begin{bmatrix} 150,0000 & 3534,2917 & 3534,2917 & 2356,1945 & 3534,2917 & 3534,2917 & 1178,0972 \end{bmatrix}$

Решение системы:

№ узла	Температуры, полученные МКЭ	Точные значения температуры
71- y 331a		
1	150,00	150,00
2	96,83	80,90
3	69, 51	55,40
4	55, 52	55,40
5	48,42	46,20
6	45, 15	_
7	44,22	43,30

Сравнение численного и аналитического решения:

