1 Grundlegende Mathematik

1.1 Komplexe Zahlen

Sei
$$z \in \mathbb{Z}$$

Karth. Darstellung $z = x + yi$ $x, y \in \mathbb{R}$

Polardarstellung $z = r[\cos{(\varphi)} + \sin{(\varphi)}i] = r \cdot e^{i\varphi}$

$$r = \sqrt{x^2 + y^2}$$

$$\varphi = arg(z) = \arctan{\left(\frac{x}{y}\right)} = \tan^{-1}{\left(\frac{x}{y}\right)}, z \neq 0$$

Komplex konjugiert $\overline{z} = z^* = x - yi$

Betrag $|z| = \sqrt{x^2 + y^2}$ und $|z| = r$

Karth. \leftrightarrow Polar $x = r \cos{(\varphi)}, y = r \sin{(\varphi)}$

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

$$e^{ix} = \cos{(x)} + i \sin{(x)}$$

Rotationsmatrix $\begin{bmatrix} \cos{\Theta} & -\sin{\Theta} \\ \sin{\Theta} & \cos{\Theta} \end{bmatrix}$

1.2 Ableitungen

2 Signalverarbeitung

2.1 Digitale Signale

Ein Signal kann als eine Funktion definiert werden, die in irgendeiner Weise Information über den Zustand oder das Verhalten eines physikalischen Systems enthält.

AC Signal:
$$x(t)$$
 $t \in \mathbb{R}$ DC Signal: $x[n] = x(nT)$ $t = n \cdot T$ $n \in \mathbb{Z}$

Abtastperiode T := Zeit zwischen Abtastungen dauert T Zeit

Abtastfrequenz $f_s = \frac{1}{T}$ Anzahl der Abtastwerte pro Zeit

Frequenz f Anzahl der Schwingungen pro Zeiteinheit

Normalisierte Frequenz $f_{norm} = \frac{f}{f_s}$

Normalisierte Darstellung x[n]:n ist einheitenloser Index

T[in Sekunden] \rightarrow 1[einheitenlos]

Bandbreite $f_B = f_{\text{max}} - f_{\text{min}}$ Breite des Signals (ohne Wiederholung)

Abtasttheorem $f_s > 2 \cdot f_B \Leftrightarrow f_B < \frac{f_s}{2}$. Gilt $f_B \ge \frac{f_s}{2}$ so kommt es zu Aliasing

Periodische Folge $x[n] = x[n+N], N \in \mathbb{Z}$

Quantisierte Signale $\hat{x}[n]$ Kodierung eines Signals nach Bits

$$\Delta = \frac{2X_m}{2^{B+1}} = \frac{X_m}{2^B} = 2^{-B}X_m, X_m := \max(x[n]),$$

B Bits in Kodierung

Quantisierungsfehler $e[n] = \hat{x}[n] - x[n]$

2.2 LTI Systeme

Ein LTI System ist mathematisch als ein Operator $T(\{\bullet\})$ definiert die bzw. der eine Eingangsfolge mit den Werten x[n] in eine Ausfangsfolge y[n] abbildet

LTI-System $y[n] = T(\{x[m]\}m \in \mathbb{Z}, n) \forall n \in \mathbb{Z}$

Verkürzte Notation $y[n] = T\{x[n]\}$

Eigenschaften LTI-Systeme

- Gedächtnislos $y[n] = T(x[n]) \forall n \in \mathbb{Z}$
- Linear $y_1[n], y_2[n]$ Systemantworten zu $x_1[n], x_2[n]$ dann ist $T(\{\bullet\})$ linear wenn gilt:
 - $T({x_1[m] + x_2[m]}, n)$
 - $= T(\lbrace x_1[m] \rbrace, n) + T(\lbrace x_2[m] \rbrace, n) = y_1[n] + y_2[n] \text{ (Addition)}$
 - $T(\lbrace ax[m]\rbrace, n) = aT(\lbrace x[m]\rbrace, n) = ay[n]$ (Skalierung)
 - $T(\{ax_1[m] + bx_2[m]\}, n) =$

 $aT(\{x_1[m]\}, n) + bT(\{x_2[m]\}, n) = ay_1[n] + by_2[n]$

(Addition + Skalierung)

- **Zeitinvariant** $x_1[n] = x[n n_0], T(\{x_1[m]\}, n) = y_1[n] = y[n n_0]$
- Kausal y[n] darf nur von Werte im Indexbereich $\leq n$ abhängen
- Stabil Ein/Ausgangswerte sin d beschränkt. tldr; Es gibt kein ∞ Zeichen.

$$\begin{array}{lll} \textbf{Einheitsimpuls} & \delta[n] & = \begin{cases} 1 & n=0 \\ 0 & n \neq 0 \end{cases} \\ \textbf{Impulsantwort} & h[n] & = T(\{\delta[m]\}, n) \\ & y[n] & = T(\{\sum\limits_{k=-\infty}^{\infty} x[k]\delta[m-k]\}m \in \mathbb{Z}, n) \end{cases} \\ & \text{Es gilt} & h[n-k] & = T(\{\delta[m-k]\}m \in \mathbb{Z}, n) \\ & \ddot{\textbf{U}} \textbf{berlagerung} & y[n] & = \sum\limits_{k=-\infty}^{\infty} x[k]T(\{\delta[m-k]\}, n) \\ & = \sum\limits_{k=-\infty}^{\infty} x[k]h[n-k] \end{cases} \\ & \textbf{Faltungssumme} & y[n] & = \sum\limits_{k=-\infty}^{\infty} x[k]h[n-k] \\ & y[n] & = x[n]*h[n] \end{cases}$$

Frequenzantwort von LTI-Systemen

$$\begin{array}{ll} \textbf{Eingangsfolge} & x[n] = e^{j\omega n} & \forall n \\ \textbf{Ausgangsfolge} & y[n] = \sum\limits_{k=-\infty}^{\infty} h[k] e^{j\omega(n-k)} \\ & = \sum\limits_{k=-\infty}^{\infty} h[k] e^{j\omega n} e^{-j\omega k} \\ & = e^{j\omega n} (\sum\limits_{k=-\infty}^{\infty} h[k] e^{-j\omega k}) \\ & = H(e^{j\omega}) e^{j\omega n} \\ & = H(e^{j\omega}) \end{aligned}$$

Fourier Transformation

	Folge $x[n]$	Fourier Transformation $X(e^{j\omega})$
1.	$\delta[n]$	1
2.	$\delta[n-n_0]$	$e^{-j\omega n_0}$
3.	$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega + 2\pi k)$
	$a^n[n] (a < 1)$	$k = -\infty$ $\frac{1}{1 - ae^{-j\omega}}$ $\frac{1}{(1 - ae^{j\omega})^2}$
6.	$(n+1)a^n u[n] (a < 1)$	$\frac{1}{(1-ae^{j\omega})^2}$
5.	u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
7.	$\frac{r^n \sin \omega_p(n+1)}{\sin \omega_p} u[n] (r < 1)$	$rac{1}{1-2r \cos \ \omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$
8.	$\frac{\sin \ \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c \mid \omega \le \pi \end{cases}$
9.	$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{sonst} \end{cases}$	$\frac{\sin\left[\omega(M+1)/2\right]}{\sin\left(\omega/2\right)}e^{-j\omega M/2}$
10.	$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
11.	$\cos (\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} \left[\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k) \right]$

3 Bildverarbeitung

Projecttion

f :=berechnet der Brennweite

Abbildungen von 3D auf 2D

3D-Punkt
$$\mathbf{x} = [x,y,z]^T$$
 in homogenen Koordinaten $\mathbf{x} = [xw,yw,zw,w]^T$ inhomogene/Euklidische Koordinaten $\mathbf{x} = [\frac{x}{w},\frac{y}{w},\frac{z}{w}]$ 2D-Punkt $\mathbf{x} = [x,y]^T$ in homogenen Koordinaten $\mathbf{x} = [xw,yw,w]^T$ inhomogene/Euklidische Koordinaten $\mathbf{x} = [\frac{x}{w},\frac{y}{w}]$

3.2Distanzmaße

Euklidische Distanz
$$L_2(x,y) = \sqrt{\sum\limits_{i=1}^n (x_i-y_i)^2}$$
Blockdistanz $L_1(x,y) = \sum\limits_{i=1}^n |x_i-y_i|$
Schachbrettdistanz $L_\infty(x,y) = \max\limits_{1 \leq i \leq n} \left(|x_i-y_i|\right)$

Blockdistanz
$$L_1(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

Schachbrettdistanz
$$L_{\infty}(x,y) = \max_{\substack{1 \le i \le n}} (|x_i - y_i|)$$