

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M32021	К работе допущен	
Студент Жуйк	ов / Лопатенко / Хасан	Работа выполнена	17.10.2022
Преподаватель	Тимофеева Э.О.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №4.06

Эксперимент Фраунгофера. Изучение дифракционной картины

1. Цель работы:

Исследовать физический смысл эксперимента Фраунгофера по получению дифракционной картины от одной щели.

2. Задачи, решаемые при выполнении работы:

- 1. Измерить координаты дифракционных минимумов при фиксированных значениях расстояния между объектом и экраном;
 - 2. Определить расстояния между щелями и погрешности косвенных измерений.
 - 3. Сравнить полученные результаты с теоретическими данными.

3. Объект исследования:

Оптический квантовый генератор, две щели и интерференционные картины.

4. Метод экспериментального исследования:

Прямые измерения периодов интерференционных картин для различных конфигураций установки.

5. Рабочие формулы и исходные данные:

- 1) Разность хода волн: $\Delta \approx b \cdot \theta \approx b \frac{x}{Z}$
- 2) Период дифракционной картины: $\Delta x = x_{m+1} x_m = \frac{\lambda}{b} \cdot Z$
- 3) Координата дифракционного минимума: $x_m = m\lambda \frac{Z}{b}$

6. Измерительные приборы:

№	Наименование	Измерение	Используемый диапазон	$\Delta_{\scriptscriptstyle m H}$
1	Шкала экрана	расстояние	[0, 0.1] м	5 · 10 ⁻⁴ м
2	Шкала направляющей	расстояние	[0, 1] м	25 · 10 ⁻⁴ м

7. Схема установки:

Источником света служит гелий-неоновый лазер 1. В роли вторичных источников выступают две щели на учебно-демонстрационном объекте 2. Для наблюдения дифракционной картины используется экран 3, закрепленный позади объекта на оптическом рельсе

8. Результаты прямых измерений и их обработки:

Таблица 1. Начальные данные установки

Длина волны гелий-неонового лазера λ , нм	632.82 ± 0.01		
Расстояние до экрана $X_{_{\mathfrak{I}}}$, м	0.3		
Расстояние до объекта $X_{_{ m o6}}$, м	0.93		

Таблица 2. Показатели дифракционной картины для разных конфигураций установки

X _{об} ,	Z, M	x_{min}^{-3}	x_{min}^{-2}	x_{min}^{-1}	x_{min}^{1}	x_{min}^2	x_{min}^3	Δx
0,93	0,63	-0,053	-0,035	-0,018	0,018	0,035	0,053	0,0177
0,88	0,58	-0,048	-0,032	-0,016	0,016	0,032	0,048	0,0160
0,83	0,53	-0,044	-0,029	-0,015	0,015	0,029	0,044	0,0147
0,78	0,48	-0,04	-0,026	-0,013	0,013	0,026	0,04	0,0133
0,73	0,43	-0,036	-0,022	-0,008	0,008	0,022	0,036	0,0120

Расчет по МНК значения коэффициента К:

$$K = \frac{\sum\limits_{i=1}^{N} (\Delta x_i)(Z_i)}{\sum\limits_{i=1}^{N} (Z_i)^2} = 0.0278023; \;\;$$
 тогда значение расстояния между щелями $b = \frac{\lambda}{K} = 0.0228$ мм

10. Расчет погрешностей измерений:

$$\Delta K = 2 \sqrt{\frac{\sum_{1}^{N} (\Delta x - KZ)^{2}}{(N-1)\sum_{1}^{N} Z_{i}^{2}}} = 0.0002147 \Rightarrow \Delta b = \sqrt{\left(\frac{\partial b}{\partial K} \cdot \Delta K\right)^{2} + \left(\frac{\partial b}{\partial \lambda} \cdot \Delta \lambda\right)^{2}}$$

$$\Delta b = \sqrt{\left(\frac{-\lambda}{\kappa^2} \cdot \Delta K\right)^2 + \left(\frac{1}{K} \cdot \Delta \lambda\right)^2} = 0.0001579 \text{ mm}$$

11. Графики:

График 1. Зависимость $L(\Delta x)$. Аппроксимация коэффициента K.

12. Окончательные результаты:

Доверительные интервалы к значениям:

$$b = (0.02280 \pm 0.00018) \text{ MM} \quad \epsilon_b = 0.772\% \qquad \alpha = 0.95$$

Истинное значение b:

$$b_{32} = 0.02 \text{ mm}$$

13. Выводы и анализ результатов работы:

В ходе лабораторной работы исследовали явление дифракции через отверстие светового излучения и произвели подсчет размера щели для объекта №32.

Измерения:

$$X_{3} = 30 \text{ cm} = 0.3 \text{ m}$$
 $X_{050} = 93 \text{ cm} = 0.93 \text{ m}$
 $N_{0} = 32$
 $V_{0} = 32$
 V