

Introduction to RL - EECE695

Lecture Note 9 Convolutional Neural Networks

Convolution in Machine Learning

Convolution in continuous-time domain:

$$s(t) = \int x(a)w(t-a)da$$

$$s(t) = (x * w)(t)$$

x(t): input, w(t): kernel

Convolution in discrete-time domain:

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t - a)$$

Two-dimensional convolution:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

cf) Cross-correlation:
$$S(i,j) = (K*I)(i,j) = \sum_m \sum_n I(i+m,j+n)K(m,n)$$

Visualization

2-D Convolution

Sparse Interactions of Convolution

Via convolution, we can

- detect small, meaningful features such as edges
- reduce the memory requirements of the model
- improve the statistical efficiency
- lower the computational complexity

Sparse Interactions of Convolution

As the model becomes deeper...

Sparse Interactions of Convolution

Parameter Sharing in Convolution

Because of the parameter sharing,

- we are learning only one set of parameters
- we can reduce the storage requirement
- we can lower the computational complexity
- we can improve the statistical efficiency

Extracting Essential Features

Efficiency of edge detection

- the right image was formed by taking each pixel and subtracting the value of each pixel's left-pixel ⇒ special case of convolution
- much reduced number of parameters, and computational complexity

Equivariance to Translation of Convolution

Definition of equivariance:

a function f(x) is equivariant to a function g if f(g(x)) = g(f(x))

Convolution is equivariant to the shifting function

- Let the shifting function be defined by I'(x,y) = I(x-1,y).
- (image \rightarrow shifting \rightarrow convolution) = (image \rightarrow convolution \rightarrow shifting).
- If we move the object in the input → its representation will move the same amount in the output.
- useful when applied to multiple locations to do the same job, e.g., finding edges.

Convolution is not naturally equivariant to some other transformations, such as scale changes or rotation changes..

Pooling

Max pooling

- inputs become invariant to small translations
- improves computational efficiency

Pooling

Example of learned invariances

Pooling

Pooling with downsasmpling

• improve the statistical efficiency and reduce memory requirements

Examples

Examples

Appendix

Convolution

Representation of Discrete-Time Signals in Terms of Impulses

Consider the signal

Representation of Discrete-Time Signals in Terms of Impulses

Thus, the signal can be represented by

$$x[n] = \dots + x[-3]\delta[n+3] + x[-2]\delta[n+2] + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + x[3]\delta[n-3] + \dots$$

Or more compactly,

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k].$$

Therefore, an arbitrary discrete-time signal can be represented by a linear combination of shifted unit impulses $\delta[n-k]$, where the weights in this linear combination are x[k]

For example, the unit step function can be written by

$$u[n] = \sum_{k=0}^{+\infty} \delta[n-k],$$

Consider an input

Let h_k [n] denote the response of the linear system to the shifted unit impulse $\delta[n-k]$.

Convolution-Sum Response of Linear Systems

Convolution-Sum Response of Linear Systems

Then, the output can be expressed as

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h_k[n].$$

Thus, if we know the response of a linear system to the set of shifted unit impulses, we can construct the response to an arbitrary input

In time-invariant systems, $h_k[n]$ to time-shifted unit impulses are all time-shifted versions of each other

$$h_k[n] = h_0[n-k].$$

$$h[n] = h_0[n].$$

For an LTI system,

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h_k[n].$$

⇒ Convolution sum (superposition sum)

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k].$$

We will represent this by

$$y[n] = x[n] * h[n].$$