

Tartalom

- Összetett adatszerkezetek halmozása
 - ✓ <u>Mátrixok</u> vektorok vektora
 - ✓ Rekordok vektora
- Halmazzá alakítás
- Halmaz típus elemek felsorolásával
- Halmaz típus logikai vektorral

Feladat:

Egy N×M-es raszterképet nagyítsunk a kétszeresére pontsokszorozással: minden régi pont helyébe 2×2 azonos színű pontot rajzolunk a nagyított képen.

Problémák/válaszok:

- Hogyan ábrázoljunk egy képet?
 A kép rendezett pontokból áll, azaz biztosan valamilyen sorozatként adható meg.
- Nehézkes lenne azonban a pontokra egy sorszámozást adni. Kézenfekvőbb azt megmondani, hogy egy képpont a kép hányadik sorában, illetve oszlopában található, azaz alkalmazzunk dupla indexelést! A kétindexes tömböket hívjuk mátrixnak.

Specifikáció:

- ➤ Bemenet: N,M∈N, $K_{1..N,1..M} \in \mathbb{N}^{N \times M}$
- > Kimenet: $NK_{1..2*N,1..2*M} \in \mathbb{N}^{2*N \times 2*M}$
- ➤ Előfeltétel: –
- ightharpoonup Utófeltétel: $\forall i(1 \le i \le N)$: $\forall j(1 \le j \le M)$:

$$NK_{2*i,2*j}=K_{i,j}$$
 és $NK_{2*i-1,2*j}=K_{i,j}$ és $NK_{2*i,2*j-1}=K_{i,j}$ és $NK_{2*i-1,2*i-1}=K_{i,j}$ és $NK_{2*i-1,2*i-1}=K_{i,j}$

Feladat:

Egy N*M-es raszterképet nagyítsunk a kétszeresére *pontsokszorozás*sal: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen.

$$:=(\mathbb{N}^{\mathrm{M}})^{\mathrm{N}}$$

N - a sorok,

M – az oszlopok száma

Ez a **másolás** tétel egy variációja, csak egy elemből négy elem keletkezik.

Algoritmus – adatleírás:

Konstans

MaxN:**Egész**(???)

MaxM:**Egész**(???)

Típus

TMátrix=Tömb[1..MaxN,1..MaxM:Egész]

Változó

N,M:Egész

K,NK:TMátrix

Megjegyzés: programozási nyelvekben a mátrix indexelésére más jelölés is lehet. Pl. C++ esetén:

typedef int TMatrix MaxN MaxM.

Specifikáció:

➤ Bemenet: $N,M \in N, K_{1...N,1...M} \in N^{N\times M}$

➤ Kimenet: NK_{1,,2*N,1,,2*M}∈N^{2·N×2·M}

Előfeltétel: –

> Utófeltétel: ∀i(1≤i≤N): ∀j(1≤j≤M):

 $NK_{2\cdot i,2\cdot j}=K_{i,j}$ és

 $NK_{2:i-1,2:j} = K_{i,j}$ és

 $NK_{2\cdot i,2\cdot j-1}=K_{i,j}$ és

 $NK_{2,i-1,2,i-1} = K_{i,i}$

Változó

i,j:Egész

Algoritmus:

Specifikáció:

- ➤ Bemenet: $N,M \in N, K_{1...N,1...M} \in N^{N \times M}$
- ➤ Kimenet: NK_{1..2*N.1..2*M}∈N^{2·N×2·M}
- > Előfeltétel: –
- > Utófeltétel: ∀i(1≤i≤N): ∀j(1≤j≤M):

 $NK_{2\cdot i,2\cdot j}=K_{i,j}$ és

 $NK_{2\cdot i-1,2\cdot j}=K_{i,j}$ és

 $NK_{2\cdot i,2\cdot j-1}=K_{i,j}$ és

 $NK_{2\cdot i-1,2\cdot j-1}=K_{i,j}$

 1—1IN		
j=1M		
NK[2*i,2*j]:=K[i,j]		
NK[2*i-1,2*j]:=K[i,j]		

NK[2*i,2*j-1]:=K[i,j]

NK[2*i-1,2*j-1]:=K[i,j]

NT

Megjegyzés: programozási nyelvekben a mátrix elemének elérésére más jelölés is lehet. Pl. C++ esetén K[i][i].

Feladat:

Egy N×M-es raszterképet kicsinyítsünk a felére (N/2×M/2 méretűre) pontátlagolással: a kicsinyített kép minden pontja az eredeti kép 2×2 pontjának "átlaga" legyen!

"átlag": színkódok átlaga

Specifikáció: (másolás)

► Bemenet: N,M∈N, $K_{1..N,1..M}$ ∈N^{N×M}

> Kimenet: $KK_{1..N/2.1..M/2} \in \mathbb{N}^{N/2 \times M/2}$

- ➤ Előfeltétel: PárosE(N) és PárosE(M)
- ➤ Utófeltétel: $\forall i(1 \le i \le N/2)$: $\forall j(1 \le j \le M/2)$:

$$KK_{i,j} = (K_{2*i,2*j} + K_{2*i-1,2*j} + K_{2*i,2*j-1} + K_{2*i-1,2*j-1}) Div 4$$

➤ Definíció: PárosE:N→L

 $P\acute{a}rosE(x):=(x Mod 2)=0$

Feladat:

Egy N*M-es raszterképet kicsinyítsünk a felére (N/2*M/2 méretűre) *pontátlagolás*sal: a kicsinyített kép minden pontja az eredeti kép 2*2 pontjának "átlaga" legyen!

Változó

i,j:Egész

Algoritmus: > Utófeltétel:
$$\forall i(1 \le i \le N/2)$$
: $\forall j(1 \le j \le M/2)$: $KK_{i,j} = (K_{2*i,2*j} + K_{2*i-1,2*j} + K_{2*i,2*j-1} + K_{2*i-1,2*j-1})$ Div 4

i=1..N/2i=1..M/2KK[i,j]:=(K[2*i,2*j]+K[2*i-1,2*j]+K[2*i,2*i-1]+K[2*i-1,2*i-1]) Div 4

Megjegyzés:

- 1) a színes képeknél az átlagolással baj lehet! Milyen szín egy piros és egy kék színű pont átlaga? (hamis színek)
- 2) **RGB** esetén a szín: **Rekord**(piros, zöld, kék: **Egész**); és az átlag? (komponensenkénti átlag)

Feladat:

A Rák-köd képére alkalmazzunk egyféle Rank-szűrőt! Minden pontot helyettesítsünk magának és a 8 szomszédjának maximumával!

Specifikáció: (másolás+maximum-kiválasztás)

> Bemenet: N,M \in N, K_{1.N.1.M} \in N^{N×M}

 \gt Kimenet: $RK_{1..N,1..M} \in \mathbb{N}^{N \times M}$

➤ Előfeltétel: –

ightharpoonup Utófeltétel: $\forall i (1 \le i \le N)$: $\forall j (1 \le j \le M)$:

$$RK_{i,j} = \max_{p=i-1} \max_{q=j-1} K_{p,q}$$
 és

$$\forall j (1 \leq j \leq M): RK_{1,j} = K_{1,j}$$
 és $RK_{N,j} = K_{N,j}$

$$\forall i (1 \le i \le N): RK_{i,1} = K_{i,1}$$
 és $RK_{i,M} = K_{i,M}$

Feladat:

A Rák-köd képére alkalmazzunk egyféle Rank-szűrőt! Minden pontot helyettesítsünk magának és a 8 szomszédjának maximumával!

Algoritmus:

> Utófeltétel: $\forall i (1 \leq i \leq N)$: $\forall j (1 \leq j \leq M)$: $RK_{i,j} = \max_{p=i-1} \max_{q=i-1} K_{p,q} \text{ és}$ $\forall i (1 \leq i \leq N): \forall j (1 \leq j \leq M):$ $RK_{1,j} = K_{1,j} \text{ és } RK_{N,j} = K_{N,j}$ $RK_{i,1} = K_{i,1} \text{ és } RK_{i,M} = K_{i,M}$

Változó max, i,j:Egész

Algoritmus:

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$,
 - $X \in H^N$
- ➤ Kimenet: Max ∈ N
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és

Maximumértékkiválasztás tétel.

	1=2	N-1	
	j=	2M-1	
ma	ux:=0		
	p	=i_1i+1	
		q=j-1j+	1
	I	K[p,q] > r	nax /r
	max	:=K[p,q]	
RI	$\langle [i,j] := m$	ax	

max, i,j:**Egész**

Algoritmus (folytatás):

 $\begin{array}{c} \text{$\blacktriangleright$ Ut\'ofelt\'etel: $\forall i (1 \le i \le N)$: $\forall j (1 \le j \le M)$:} \\ \hline & RK_{i,j} = \max_{j=1}^{i+1} \max_{j=1}^{i+1} K_{p,q} \text{ \'es} \\ \hline & \forall j (1 \le j \le M)$:} \\ RK_{1,j} = K_{1,j} \text{ \'es } RK_{N,j} = K_{N,j} \\ \hline & \forall i (1 \le i \le N)$:} \\ RK_{i,1} = K_{i,1} \text{ \'es } RK_{i,M} = K_{i,M} \end{array}$

•••	
	j=1M
	RK[1,j]:=K[1,j]
	RK[N,j]:=K[N,j]
	i=1N
	RK[i,1]:=K[i,1]
	RK[i,M]:=K[i,M]

Változó i,j:Egész

Feladat:

Egy kép egy adott (fehér színű) tartományát egy (A,B) belső pontjából kiindulva fessük be világoskékre!

Festendők a "**belső pontok**", ha Belső(i,j)=Igaz.

Ahol Belső:
$$\mathbb{N} \times \mathbb{N} \to \mathbb{L}$$

Specifikáció:

- ► Bemenet: N,M∈N, $K_{1..N,1..M}$ ∈N^{N×M}, A,B∈N
- > Kimenet: $KK_{1..N,1..M} \in \mathbb{N}^{N \times M}$
- \triangleright Előfeltétel: $A \in [1..N]$ és $B \in [1..M]$ és $K_{AB} = fehér$
- \rightarrow Utófeltétel: $\forall i(1 \le i \le N)$: $\forall j(1 \le j \le M)$:

Belső(i,j) \rightarrow KK_{i,j}=világoskék és

nem Belső(i,j) $\rightarrow KK_{i,j}=K_{i,j}$

Algoritmus:

KK:=K
Festés(A,B)

Algoritmus:

- > Utófeltétel: $\forall i (1 \le i \le N)$: $\forall j (1 \le j \le M)$:

 Belső(i,j) $\rightarrow KK_{i,j}$ =világoskék és nem Belső(i,j) $\rightarrow KK_{i,j}$ = $K_{i,j}$
- ➤ Definíció:
 Belső(i,j)=(i=A és j=B vagy
 Fehér(i,j) és
 (Belső(i-1,j) vagy Belső(i+1,j) vagy
 Belső(i,j-1) vagy Belső(i,j+1)))

	Festés(i,	j:Egész)
KK[i,j]:=vilá	goskék	
I	KK[i–1,	j]=fehér
Festés(i–1,j)		
I	KK[i+1,	,j]=fehér
Festés(i+1,j)		
I	KK[i,j-1	1]=fehér /N
Festés(i,j–1)		
I	KK[i,j+	1]=fehér
Festés(i,j+1)		<u> </u>

Algoritmus:

- > Utófeltétel: $\forall i (1 \le i \le N)$: $\forall j (1 \le j \le M)$:

 Belső(i,j) $\rightarrow KK_{i,j} = világoskék és$ nem Belső(i,j) $\rightarrow KK_{i,j} = K_{i,j}$
- ➤ Definíció:
 Belső(i,j)=(i=A és j=B vagy
 Fehér(i,j) és
 (Belső(i-1,j) vagy Belső(i+1,j) vagy
 Belső(i,j-1) vagy Belső(i,j+1)))

Festés(i,	:Egész)
KK[i,j]:=világoskék	
i>1 és KI	K[i-1,j]=fehér
Festés(i–1,j)	
i <n ki<="" td="" és=""><td>K[i+1,j]=fehér</td></n>	K[i+1,j]=fehér
Festés(i+1,j)	
j>1 és KI	K[i,j-1] = fehér
Festés(i,j–1)	
j <m ki<="" td="" és=""><td>K[i,j+1] = fehér</td></m>	K[i,j+1] = fehér
Festés(i,j+1)	

Feladat:

Egy adott napon N-szer volt földrengés. Ismerjük az egyes rengések időpontját (időrendben). Mondjuk meg, hogy hány másodpercenként volt földrengés!

Megoldás felé:

Definiálni kellene, mi az idő! Az időt megadhatjuk az (óra, perc, másodperc) hármassal, azaz az idő:

$$Idő=\acute{O}\times P\times Mp, \acute{O}, P, Mp=N$$

> Algoritmikus sablon: **Másolás** tétel!

Specifikáció:

> Bemenet: N∈N, R_1 N∈Idő^N

- \gt Kimenet: $T_1 \sim \mathbb{N}^{N-1}$
- > Előfeltétel: $\forall i(1 \le i \le N)$: $0 \le R_i.\acute{o} \le 23$ és

 $0 \le R_i \cdot p \le 59$ és $0 \le R_i \cdot mp \le 59$ és

$$\forall i(1 \le i \le N): R_i \le R_{i+1}$$

- \triangleright Utófeltétel: $\forall i (1 \le i \le N-1)$: $T_i = R_{i+1} R_i$
- ▶ Definíció: -:Idő×Idő→N

i1 − i2 := ... ??? ...

<:Idő×Idő→L

i1 < i2 := ... ??? ...

Feladat:

Egy adott napon N-szer volt földrengés. Ismerjük az egyes rengések időpontját. Mondjuk meg, hogy hány másodpercenként volt földrengés!

Idők különbsége

- 1. megoldási ötlet:
 - Felfoghatjuk úgy, mint két háromjegyű szám különbsége, ahol a három jegy nem azonos alapú. (Vegyes alapú számrendszer.) Majd másodpercekké konvertáljuk.
- 2. megoldási ötlet:
 - Kifejezzük az időket másodpercben, így már két egész szám különbségét kell kiszámolni.
 - másodpercben(idő):=idő.ó*3600+idő.p*60+idő.mp

Meggondolandó, hogy mekkora egész szám kell hozzá? (24*3600=86 400) Milyen típusú lehet? (>2 byte)

Specifikáció:

> Bemenet: N∈N, R_1 N∈Idő^N

- \gt Kimenet: $T_1 \sim 10^{N-1}$
- \gt Előfeltétel: $\forall i(1 \le i \le N)$: $0 \le R_i.\acute{o} \le 23$ és

$$0 \le R_i \cdot p \le 59$$
 és $0 \le R_i \cdot mp \le 59$ és

$$\forall i (1 \le i < N): R_i < R_{i+1}$$

- \rightarrow Utófeltétel: $\forall i(1 \le i \le N-1)$: $T_i = R_{i+1} R_i$
- > Definíció:

$$i1 - i2 := i1.6*3600+i1.p*60+i1.mp -$$

Algoritmus₁:

```
    > Utófeltétel: ∀i (1≤i≤N-1): T<sub>i</sub>=R<sub>i+1</sub>-R<sub>i</sub>
    > Definíció:

            -:Idő×Idő→N
            i1 - i2 := i1.o*3600+i1.p*60+i1.mp - (i2.o*3600+i2.p*60+i2.mp)
```

```
i=1..N
i=1..N
S[i]:=R[i].ó*3600+
R[i].p*60+R[i].mp
i=1..N-1
T[i]:=S[i+1]-S[i]
```

Megjegyzések:

- 1. Egy S segédtömböt használunk.
- 2. A TIdők közötti "–" operátor az S-en keresztül, közvetve kerül az algoritmusba.

i:Egész

S:Tömb[...]

Algoritmus₂:

- ➤ Utófeltétel: $\forall i \ (1 \le i \le N-1)$: $T_i = R_{i+1} R_i$
- ➤ Definíció:

másodpercben(i):=i.o*3600+i.p*60+i.mp

	Változó
i=1N	i: Egés S:Töm
S[i]:=másodpercben(R[i])	
i=1N-1	
T[i]:=S[i+1]-S[i]	

Megjegyzések:

- 1. A másodpercben függvény implementálandó!
- 2. Ha a különbség (óra, perc, másodperc)-ben kell, akkor T[i]ből vissza kell alakítani! Újabb művelet.

Változó

i:Egész

Algoritmus₃:

- \succ Utófeltétel: $\forall i \ (1 \le i \le N-1)$: $T_i = R_{i+1} R_i$
- ➤ Definíció:

másodpercben(i):=i.o*3600+i.p*60+i.mp

$$i=1..N-1$$

T[i]:=másodpercben(R[i+1])másodpercben(R[i])

Megjegyzés:

A másodpercben függvény segítségével (sőt anélkül is) megspórolható az S segédtömb; és így az előkészítő ciklus... de cserében majdnem minden R[i]-t kétszer számítunk át másodpercekre.

Algoritmus₄:

```
> Utófeltétel: \forall i \ (1 \le i \le N-1): T_i = R_{i+1} - R_i
> Definíció:

- :Idő×Idő→N

i1 - i2 := i1.o*3600 + i1.p*60 + i1.mp - (i2.o*3600 + i2.p*60 + i2.mp)
```

```
i=1..N-1
T[i]:=R[i+1]-R[i]
Változó
i:Egész
```

Megjegyzés:

A – operátort definiálni kell, amelyben a másodpercekben függvény (vagy annak törzse) felhasználható! Az időigényt a művelet és a függvény paraméterátadása növeli.

Sorozat → halmaz transzformáció

Egyes feladatoknál, mint pl. a metszet és unió tételnél a kiinduló adatok halmazban vannak. Ha a bemeneten tetszőleges sorozatot kapunk, akkor szükség lehet rá, hogy abból halmazt készítsünk.

Példa: N vásárlásról ismerjük, hogy egy vásárló milyen terméket vásárolt (Be[1..N]). Adjuk meg a vásárlásokban szereplő termékeket (T[1..Db])!

A megoldás egy **kiválogatás tétel**: válogassuk ki a bemenet azon elemeit, amelyek a kiválogatás eredményében még nem szerepeltek (**eldöntés**)!

Sorozat → halmaz transzformáció

Változó i:Egész

Sorozat → halmaz transzformáció

Értékhalmaz:

Az alaphalmaz (amely az Elemtípus által van meghatározva) iteráltja ("mely elemek lehetnek benne a halmazban").

Az Elemtípus általában valamely véges diszkrét típus lehet, legtöbbször még az elemszámát is korlátozzák (<256).

Ha nyelvi elemként nem létezik, akkor a megvalósításunkban lehet nagyobb elemszámú is.

Műveletek (matematika)

- ➤ metszet (∩)
- > unió (∪)
- különbség (\)
- komplemens nem mindig valósítható meg
- \triangleright eleme (elem benne van-e a halmazban) (\in)
- része (egyik halmaz részhalmaza-e a másiknak) (⊂,⊆)

Műveletek (megvalósítás)

- \blacktriangleright Halmazba (elem hozzá vétele egy halmazhoz): H:=H \cup {e}
- Halmazból (elem elhagyása egy halmazból): H:=H \ {e}
- Beolvasás (halmaz beolvasása)
- Kiírás (halmaz kiírása),
- Üres (üres halmaz létrehozás eljárás), vagy Üres'Halmaztípus előre definiált konstans
- Üres? (logikai értékű függvény).

Halmaz típus ábrázolása₁

Elemek felsorolása

Halmaz(Elemtípus)=

Rekord(db: Egész,

elem: **Tömb**[1..MaxDb:Elemtípus])

A halmaz elemeinek felsorolásával adjuk meg a halmazt, annyi elemű tömbben, ahány elemű éppen a halmaz (pontosabban az első db darab elemében).

Feltesszük, hogy "halmazság" és a méretkorlát teljesül.

Műveletigény számítása:

A ciklus a halmaz elemeinek számaszor fut le, azaz a futási idő a halmaz elemszámával arányos.

Műveletigény számítása:

A ciklus a halmaz elemeinek számaszor fut le, azaz a futási idő a halmaz elemszámával arányos.

Műveletigény számítása:

Nem függ a halmaz elemszámától.

Műveletigény számítása:

Nem függ a halmaz elemszámától.

Az Eldöntés programozási tétel alkalmazása

Műveletigény számítása:

A ciklus a halmaz elemeinek számaszor fut le, azaz a futási idő a halmaz elemszámával arányos.

A Keresés programozási tétel alkalmazása

```
Halmazból(h,e)
                                        Válte
i := 1
       i≤h.db és h.elem[i]≠e
   i := i+1
                i≤h.db
h.elem[i]:=h.elem[h.db]
h.db:=h.db-1
```

Műveletigény számítása:

A ciklus a halmaz elemeinek számaszor fut le, azaz a futási idő a halmaz elemszámával arányos.

i:Egé

Az Eldöntés programozási tétel alkalmazása

```
Eleme (e, h):Logikai
                            Változó
i := 1
 i≤h.db és h.elem[i]≠e
   i := i + 1
Eleme:=i≤h.db
```

Műveletigény számítása:

A ciklus a halmaz elemeinek számaszor fut le, azaz a futási idő a halmaz elemszámával arányos.

Az Eldöntés programozási tétel alkalmazása, eldöntés tulajdonsággal

```
i:=1
i≤a.db és Eleme(a.elem[i],b)
i:=i+1
Része:=i>a.db
```

Műveletigény számítása:

A ciklus az A halmaz elemszámaszor fut le, az Eleme függvény pedig a B halmaz elemszámaszor, azaz a futási idő a két halmaz elemszámának szorzatával arányos.

Másolás +Kiválogatás +Eldöntés

Műveletigény számítása:

A külső ciklus a B halmaz elemszámaszor fut le, az Eleme függvény pedig az A halmaz elemszámaszor, azaz a futási idő a két halmaz elemszámának szorzatával arányos.

i:Egész

c:Halma

Műveletigény számítása:

A ciklus az A halmaz elemszámaszor fut le, az Eleme pedig legrosszabb esetben a B halmaz elemszámaszor, azaz a futási idő a két halmaz elemszámának szorzatával arányos.

Megjegyzések:

Az így ábrázolt halmazok elemtípusára semmilyen megkötést nem kell tennünk, hiszen egy tömbben bármilyen elem elhelyezhető.

Arra sincs korlátozás, hogy mekkora lehet az alaphalmaz számossága, amiből a halmaz elemei származnak. Csak a konkrét halmazok elemszámát korlátozzuk.

Halmaz típus ábrázolása₂

Bittérkép – logikai vektor

Halmaz(Elemtípus)=

Tömb[Min'Elemtípus..Max'Elemtípus:Logikai]

A halmazt {igaz,hamis} (azaz benne van-e) elemekből álló vektorként értelmezzük, ahol **index**ként használjuk az **elem típus**ú értéket vagy indexet számolunk belőle. Elemtípus például lehet:

- egész számok intervalluma (-9..9)
- o karakter-intervallum ("A".."Z")

Az ilyen halmaz mindig rendezett halmaz, definiálható rajta a távolság fogalom (—implementálható a tömb címkiszámító függvénye).

Kérdés: tároljuk-e a halmaz elemszámát is?

(Beolvasás(h)	>
		Változ
	Üres(h)	i: E g
	Be:N	
	i=1N	
	Be:e	
	h[e]:=igaz	

Műveletigény számítása:

Az Üres műveletigénye + a ciklus. A ciklus a halmaz elemeinek számaszor fut le, azaz a futási idő a halmaz elemszámával arányos.

Műveletigény számítása:

A ciklus a halmaz lehetséges elemeinek számaszor fut le, azaz a futási idő a halmaz elemtípusának számosságával arányos.

Mi lenne, ha tárolnánk a halmaz legkisebb és legnagyobb elemét is!

A Másolás programozási tétel alkalmazása

Műveletigény számítása:

A ciklus a halmaz lehetséges elemeinek számaszor fut le, azaz a futási idő a halmaz elemtípusának számosságával arányos.

Az Eldöntés programozási tétel alkalmazása

```
Üres?(h):Logikai

i:=Min'Elemtípus

i≤Max'Elemtípus és nem h[i]

i:=i+1 [=következő Elemtípusú érték]

Üres?:=i>Max'Elemtípus
```

Műveletigény számítása:

A ciklus a halmaz lehetséges elemeinek számaszor fut le, azaz a futási idő a halmaz elemtípusának számosságával arányos.

Ha elemszámot tárolnánk, gyors lehetne (Db=0?).

Műveletigény számítása:

Nem függ a halmaz elemszámától.

Műveletigény számítása:

Nem függ a halmaz elemszámától

Műveletigény számítása:

Nem függ a halmaz elemszámától.

Az Eldöntés programozási tétel alkalmazása

```
Része(a,b):Logikai

i:=Min'Elemtípus

i≤Max'Elemtípus és
  nem (a[i] és nem b[i])

i:=i+1

Része:=i>Max'Elemtípus
```

Műveletigény számítása:

A ciklus a halmaz lehetséges elemeinek számaszor fut le, azaz a futási idő a halmaz elemtípusának számosságával arányos. Gyorsabb az előző ábrázolásnál, ha ez kisebb a két elemszám szorzatánál.

A Másolás programozási tétel alkalmazása:

```
Unió(a,b)

i=Min'Elemtípus..Max'Elemtípus

c[i]:=a[i] vagy b[i]

Unió:=c
```

Műveletigény számítása:

A ciklus a halmaz lehetséges elemeinek számaszor fut le, azaz a futási idő a halmaz elemtípusának számosságával arányos. Gyorsabb az előző ábrázolásnál, ha ez kisebb a két elemszám szorzatánál.

A Másolás programozási tétel alkalmazása

```
i=Min'Elemtípus..Max'Elemtípus
c[i]:=a[i] és b[i]
Metszet:=c
```

Metszet (a,b)

Műveletigény számítása:

A ciklus a halmaz lehetséges elemeinek számaszor fut le, azaz a futási idő a halmaz elemtípusának számosságával arányos. Gyorsabb az előző ábrázolásnál, ha ez kisebb a két elemszám szorzatánál.

Áttekintés

- Összetett adatszerkezetek halmozása
 - ✓ <u>Mátrixok</u> vektorok vektora
 - ✓ Rekordok vektora
- Halmazzá alakítás
- Halmaz típus elemek felsorolásával
- Halmaz típus logikai vektorral

