# Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»



Кафедра прикладной математики

Лабораторная работа №1 по дисциплине «Уравнения математической физики»

# Решение эллиптических краевых задач методом конечных разностей



Факультет: ПМИ

**Группа:** ПМ-63

Студенты: Шепрут И.И.

Вариант: 10

**Преподаватель:** Патрушев И.И.

Новосибирск 2019

#### 1 Цель работы

Разработать программу решения эллиптической краевой задачи методом конечных разностей. Протестировать программу и численно оценить порядок аппроксимации.

#### 2 Задание

- 1. Построить прямоугольную сетку в области в соответствии с заданием. Допускается использовать фиктивные узлы для сохранения регулярной структуры.
- 2. Выполнить конечноразностную аппроксимацию исходного уравнения в соответствии с заданием. Получить формулы для вычисления компонент матрицы А и вектора правой части b.
- 3. Реализовать программу решения двумерной эллиптической задачи методом конечных разностей с учетом следующих требований:
  - язык программирования С++ или Фортран;
  - предусмотреть возможность задания неравномерных сеток по пространству, учет краевых условий в соответствии с заданием;
  - матрицу хранить в диагональном формате, для решения СЛАУ использовать метод блочной релаксации [2, стр. 886], [3].
- 4. Протестировать разработанные программы на полиномах соответствующей степени.
- 5. Провести исследования порядка аппроксимации реализованного методов для различных задач с неполиномиальными решениями. Сравнить полученный порядок аппроксимации с теоретическим.

**Вариант 10:** Область имеет Ш-образную форму. Предусмотреть учет первых и третьих краевых условий.

## 3 Анализ задачи

Необходимо решить задачу:

$$\Delta u = f(x, y)$$

Первые краевые условия записываются в виде:  $u(x,y)|_{\Gamma}=g_1(x,y)$ , где  $g_1(x,y)$  — известная функция.

Третьи краевые условия записываются в виде:  $u'(x,y) + A \cdot u(x,y)|_{\Gamma} = g_3(x,y)$  где  $g_3(x,y)$  — известная функция.

На первом этапе решения задачи нужно построить сетку. Матрица формируется одним проходом по всем узлам, для регулярных узлов заполняется согласно пятиточечному шаблону, для прочих — в соответствии с краевыми условиями.

## 4 Таблицы и графики

Параметры:

- Сетка имеет Ш-образную форму.
- Область сетки:  $[0,1] \times [0,1]$ .
- Количество элементов: 20 по обеим осям.
- Сетка равномерная.

- ullet Точностью решения является норма  $L_2$  разности векторов истинных значений и значений, вычисленных с помощью конечно-разностной аппроксимации.
- ullet СЛАУ решается при помощи метода Гаусса-Зейделя с точностью  $10^{-12}$ , максимальным числом итераций 3000 и параметром релаксации 1.4.

## 4.1 Точность для разных функций

| $u(x,t) \qquad \lambda(u)$ | 1                         | u                                                       | $u^2$                                                   | $u^2+1$                   | $u^3$                                                   | $u^4$                      | $e^u$                       | sinu                      |
|----------------------------|---------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------|---------------------------------------------------------|----------------------------|-----------------------------|---------------------------|
| 3x + t                     | 10<br>0.01                | $\begin{array}{c} 20 \\ 0.28 \cdot 10^{-7} \end{array}$ | $48$ $0.44 \cdot 10^{-4}$                               | $46$ $0.38 \cdot 10^{-4}$ | $51$ $0.63 \cdot 10^{-3}$                               | $62$ $0.67 \cdot 10^{-3}$  | $86$ $0.1 \cdot 10^{-2}$    | 2704<br>19                |
| $2x^2 + t$                 | 10 0.01                   | $40$ $0.35 \cdot 10^{-3}$                               | $53$ $0.31 \cdot 10^{-2}$                               | $50$ $0.27 \cdot 10^{-2}$ | $72$ $0.4 \cdot 10^{-2}$                                | 5010                       | $16$ $2.4 \cdot 10^5$       | $5010$ $2.8 \cdot 10^{2}$ |
| $x^3 + t$                  | $10$ $0.75 \cdot 10^{-2}$ | $39$ $0.13 \cdot 10^{-2}$                               | $64$ $0.84 \cdot 10^{-2}$                               | $58$ $0.61 \cdot 10^{-2}$ | 106<br>0.01                                             | 5010<br>18                 | $\frac{12}{3.8 \cdot 10^5}$ | 5010<br>62                |
| $x^4 + t$                  | 10<br>0.014               | $49 \\ 0.46 \cdot 10^{-2}$                              | 70<br>0.044                                             | 64<br>0.037               | 3074<br>0.061                                           | 5010<br>29                 | 5010<br>nan                 | $5010 \\ 4.5 \cdot 10^2$  |
| $e^x + t$                  | 10<br>0.01                | $36$ $0.18 \cdot 10^{-3}$                               | $46$ $0.99 \cdot 10^{-3}$                               | $45$ $0.87 \cdot 10^{-3}$ | $55$ $0.29 \cdot 10^{-2}$                               | $70$ $0.71 \cdot 10^{-2}$  | $24$ $1.2 \cdot 10^{5}$     | $5010$ $1.1 \cdot 10^{2}$ |
| $3x + t^2$                 | 10<br>0.38                | 17<br>0.062                                             | 38<br>0.011                                             | 38<br>0.01                | $46$ $0.19 \cdot 10^{-2}$                               | $56$ $0.3 \cdot 10^{-3}$   | $64$ $0.38 \cdot 10^{-3}$   | 5010<br>63                |
| $3x + t^3$                 | 10<br>1.4                 | 20<br>0.22                                              | 36<br>0.04                                              | 36<br>0.039               | $43$ $0.74 \cdot 10^{-2}$                               | $49$ $0.6 \cdot 10^{-3}$   | $61$ $0.38 \cdot 10^{-2}$   | $5010$ $2.4 \cdot 10^4$   |
| $3x + e^t$                 | 10<br>0.65                | 20<br>0.081                                             | 40<br>0.011                                             | 40<br>0.011               | $40$ $0.19 \cdot 10^{-2}$                               | $50$ $0.31 \cdot 10^{-3}$  | $74$ $0.15 \cdot 10^{-2}$   | 5010<br>48                |
| 3x + sin(t)                | 10<br>0.17                | 11<br>0.029                                             | $38$ $0.51 \cdot 10^{-2}$                               | $38$ $0.49 \cdot 10^{-2}$ | $45$ $0.67 \cdot 10^{-3}$                               | $56$ $0.42 \cdot 10^{-3}$  | $68$ $0.11 \cdot 10^{-2}$   | 5010<br>24                |
| $e^x + t^2$                | 10<br>0.38                | 29<br>0.06                                              | 38<br>0.013                                             | 38<br>0.012               | $51$ $0.27 \cdot 10^{-2}$                               | $64$ $0.32 \cdot 10^{-2}$  | 81<br>0.011                 | $5010$ $2.7 \cdot 10^{2}$ |
| $e^x + t^3$                | 10<br>1.4                 | 27<br>0.22                                              | 35<br>0.044                                             | 35<br>0.042               | $45$ $0.86 \cdot 10^{-2}$                               | $59$ $0.26 \cdot 10^{-2}$  | 71<br>0.022                 | $5010$ $2.2 \cdot 10^{3}$ |
| $e^x + e^t$                | 10<br>0.65                | 30<br>0.081                                             | 40<br>0.012                                             | 40<br>0.012               | $50$ $0.3 \cdot 10^{-2}$                                | $60$ $0.24 \cdot 10^{-2}$  | 98<br>0.025                 | $5010$ $7.7 \cdot 10^3$   |
| $e^x + sin(t)$             | 10<br>0.17                | 30<br>0.028                                             | $\begin{array}{c} 39 \\ 0.52 \cdot 10^{-2} \end{array}$ | $39$ $0.49 \cdot 10^{-2}$ | $\begin{array}{c} 50 \\ 0.28 \cdot 10^{-2} \end{array}$ | $64 \\ 0.95 \cdot 10^{-2}$ | 82<br>0.032                 | $5010$ $2.5 \cdot 10^{3}$ |

#### 4.2 Зависимость точности от размера сетки







