Lec 15: Square Linear Systems – Analysis

Efficiency

Notation: Big-O and Asymptotic

Let f, q be positive functions defined on \mathbb{N} .

•
$$f(n) = O\left(\underbrace{g(n)}\right)$$
 (" f is b ig-O of g ") as $n \to \infty$ if
$$\frac{f(n)}{g(n)} \leqslant C, \quad \text{for all sufficiently large } n.$$

•
$$f(n) \sim g(n)$$
 ("f is asymptotic to g") as $n \to \infty$ if

•
$$f(n) \sim g(n)$$
 ("f is asymptotic to g") as $n \to \infty$ if $f(n)$

$$\frac{11}{f(n)} = 3 n^3 + 2n^2 + 1$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1.$$

•
$$f(n) = O(n^3)$$
 because $\frac{3n^3 + 2n^2 + 1}{n^3} = 3 + \frac{2}{n} + \frac{1}{n^3} < 4$
• $f(n) \sim 3n^3$ because $\frac{3n^3 + 2n^2 + 1}{3n^3} \rightarrow 1$ as $n \rightarrow \infty$.

•
$$f(n) \sim 3n^{n}$$
 because $\frac{3n^{n}+2n^{2}+1}{3n^{3}} \rightarrow 1$ as $n \rightarrow \infty$

Timing Vector/Matrix Operations - FLOPS

- One way to measure the "efficiency" of a numerical algorithm is to count the number of floating-point arithmetic operations (FLOPS) necessary for its execution.
- The number is usually represented by $\sim cn^p$ where c and p are given explicitly.
- We are interested in this formula when n is large.

FLOPS for Major Operations

Vector/Matrix Operations

Let $x, y \in \mathbb{R}^n$ and $A, B \in \mathbb{R}^{n \times n}$. Then

- (vector-vector) $x^{\mathrm{T}}y$ requires $\sim 2n$ flops.
- (matrix-vector) Ax requires $\sim 2n^2$ flops.
- (matrix-matrix) AB requires $\sim 2n^3$ flops.

$$\overrightarrow{X}^{T} \overrightarrow{y} = \sum_{i=1}^{n} \cancel{x}_{i} y_{i}$$

$$1 \quad \text{multiplication} \Rightarrow n \quad \otimes$$

$$1 \quad \text{add } n \text{ terms}$$

$$= 2n - (\sim 2n Slop)$$

Cost of PLU Factorization

Note that we only need to count the number of *flops* required to zero out elements below the diagonal of each column.

- For each i > j, we replace R_i by $R_i + cR_j$ where $c = -a_{i,j}/a_{j,j}$. This requires approximately 2(n-j+1) flops:
 - 1 division to form c
 - n-j+1 multiplications to form cR_j
 - n-j+1 additions to form R_i+cR_j
- Since $i \in \mathbb{N}[j+1,n]$, the total number of *flops* needed to zero out all elements below the diagonal in the jth column is approximately 2(n-j+1)(n-j).
- Summing up over $j \in \mathbb{N}[1, n-1]$, we need about $(2/3)n^3$ flops:

$$\sum_{j=1}^{n-1} 2(n-j+1)(n-j) \sim 2\sum_{j=1}^{n-1} (n-j)^2 = 2\sum_{j=1}^{n-1} j^2 \sim \frac{2}{3}n^3$$

Cost of Forward Elimination and Backward Substitution

Forward Elimination

- The calculation of $y_i = \beta_i \sum_{j=1}^{i-1} \ell_{ij} y_j$ for i > 1 requires approximately 2i flops:
 - 1 subtraction
 - i-1 multiplications
 - i-2 additions
- Summing over all $i \in \mathbb{N}[2, n]$, we need about n^2 flops:

$$\sum_{i=2}^{n} 2i \sim 2\frac{n^2}{2} = n^2.$$

Backward Substitution

• The cost of backward substitution is also approximately n^2 flops, which can be shown in the same manner.

Cost of G.E. with Partial Pivoting

Gaussian elimination with partial pivoting involves three steps:

- PLU factorization: $\sim (2/3)n^3$ flops
- Forward elimination: $\sim n^2$ flops
- Backward substitution: $\sim n^2$ flops

Summary

The total cost of Gaussian elimination with partial pivoting is approximately

$$\frac{2}{3}n^3 + n^2 + n^2 < \frac{2}{3}n^3$$

flops for large n.

Application: Solving Multiple Square Systems Simultaneously

To solve two systems $A\mathbf{x}_1 = \mathbf{b}_1$ and $A\mathbf{x}_2 = \mathbf{b}_2$.

Method 1.

- Use G.E. for both.
- It takes $\sim (4/3)n^3$ flops.

Method 2.

- Do it in two steps:
 - 1 Do PLU factorization PA = LU.
 - 2 Then solve $LU\mathbf{x}_1 = P\mathbf{b}_1$ and $LU\mathbf{x}_2 = P\mathbf{b}_2$.
- It takes $\sim (2/3)n^3$ flops.

```
%% method 1

x1 = A \ b1;

x2 = A \ b2;
```

```
%% method 2

[L, U, P] = lu(A);

x1 = U \ (L \ (P*b1));

x2 = U \ (L \ (P*b2));
```

```
%% compact implementation
X = A \ [b1, b2];
x1 = X(:, 1);
x2 = X(:, 2);
```