Problem Statement

- Processes with Arrival and Burst Times:
- P1: Arrival = 2, Burst = 6
- P2: Arrival = 5, Burst = 2
- P3: Arrival = 1, Burst = 8
- P4: Arrival = 0, Burst = 3
- P5: Arrival = 4, Burst = 4
- Time Slice: 2 Units

Process	Arrival Time	Burst Time
P1	2	6
P2	5	2
Р3	1	8
P4	0	3
P5	4	4

Step 1 – Initialize Gantt chart

Step 2 - Execute P4

- •Process P4: First 2 units \rightarrow [0, 2]; Remaining 1 unit \rightarrow [2, 3].
- •Add P4 to the Gantt chart.

Step 3 - Execute P1

- •Process P1: Arrival time 2 with burst time 6, executed fully \rightarrow [3, 5].
- •Add P1 to the Gantt chart. Remaining Brust time is 4

Step 4 - Execute P2

- •Process P2: , Arrival time 5 with Burst time $2 \rightarrow [5, 7]$.
- •Add P2 to the Gantt chart.

Step 5 - Execute P1

- •Process P1: With remaining burst time 4, executed fully \rightarrow [7, 9] and [9,11].
- •Add P1 to the Gantt chart.

Step 6 - Execute P5

•Process P5: Arrival time is 4 with burst 4, executed fully \rightarrow [11, 13] and [13,15]. Add P2 to the Gantt chart.

Step 7- Execute P3

- •Process P3:Arrival time is 1 with maximum burst time of 8, executed fully \rightarrow [15,23]
- •Add P1 to the Gantt chart.

Waiting time

For each process:

•**P4**: TAT=3-0=3

•**P1**: TAT=11-2=9

•**P2**: TAT=7-5=2

•**P5**: TAT=15-4=11

•**P3**: TAT=23-1=22

For each process:

Turn-around time

•**P4**: WT=3-3=0

•**P1**: WT=9-6=3

•**P2**: WT=2-2=0

•**P5**: WT=11-4=7

•**P3**: WT=22-8=14

Average WT=Number of Processes/Sum of all WTs
$$=0+3+0+7+14/5=24/5$$
 $=4.8$ units