

Extended

商家煜郑铠奇

Deep Learning Foundation

- 1/ Demo of the project
- 2/ Classification
- 3/ Application

- 1/ Demo of the project
- 2/ Classification
- 3/ Application

Back propagation neural network

- 把每一层权重更新的初始步长设置为 0
 - 输入到隐藏层的权重更新是 $\Delta w_{ij}=0$
 - ullet 隐藏层到输出层的权重更新是 $\Delta W_j=0$
- 对训练数据当中的每一个点
 - 让它正向通过网络,计算输出 \hat{y}
 - ullet 计算输出节点的误差梯度 $\delta^o=(y-\hat{y})f'(z)$ 这里 $z=\sum_j W_j a_j$ 是输出节点的输入。
 - 误差传播到隐藏层 $\delta_i^h = \delta^o W_j f'(h_j)$
 - 更新权重步长:

•
$$\Delta W_j = \Delta W_j + \delta^o a_j$$

$$ullet \Delta w_{ij} = \Delta w_{ij} + \delta^h_j a_i$$

- 更新权重,其中 η 是学习率,m是数据点的数量:
 - $W_j = W_j + \eta \Delta W_j/m$
 - $w_{ij} = w_{ij} + \eta \Delta w_{ij}/m$
- 重复这个过程 e 代。

- 1 Demo of the project
- 2/ Classification
- 3/ Application

How to do classification using neural network

二元分类:

多元分类:

"**softmax** function is a generalization of the <u>logistic function</u> that maps a length-p vector of real values to a length-K vector of values"

$$\sigma(\mathbf{z})_j = \frac{e^{\mathbf{z}_j}}{\sum_{k=1}^{K} e^{\mathbf{z}_k}}$$

How to do classification using neural network

Softmax layer as the output layer

Probability:

- $1 > y_i > 0$
- $\blacksquare \sum_i y_i = 1$

Softmax Layer

How to do classification using neural network

Softmax Predictions

- 1 Demo of the project
- 2/ Classification
- 3/ Application

Autoencoder

图中,虚线蓝色框内就是一个自编码器模型,它由编码器(Encoder)和解码器(Decoder)两部分组成,本质上都是对输入信号做某种变换。编码器将输入信号x变换成编码信号x。即

$$y=f(x)$$

$$\tilde{x} = g(y) = g(f(x))$$

Autoencoder

Sequence-to-Sequence model

Sequence-to-Sequence model

Visual Question Answering

 Aims to solve the holistic scene understanding problem by teaching computers to capture information

Fig.1 Visual Question Answer

Original Image

First Attention Layer Second Attention Layer

注意事项

- •实验报告截止日期:
- •2017.12.06 晚 23:59:59 前提交至 FTP 文件 夹
- •提交文件:
 - •测试集结果: 15*****_wangxiaoming.txt 每一行对应的是测试样例的标签。
 - 实验报告: 15*****_wangxiaoming.pdf
 - 代码: 15*****_wangxiaoming.zip 如果代码分成多个文件,最好写份readme

THANKS

