Kapitel 1 – Grundlagen

- 1. Mathematische Grundlagen
- 2. Beispielrechner ReTI

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert, Dr. Ralf Wimmer

Professur für Rechnerarchitektur WS 2016/17

Mathematische Grundlagen

- Verständigung auf gemeinsame Basis
- Die meisten Begriffe sollten bekannt sein, bzw. werden in anderen Vorlesungen noch formal und im Detail eingeführt.
- Hier: Informale, möglichst intuitive Einführung
 - Mengen, Funktionen, Relationen
 - Boolsche Algebra $(\{0,1\}, \land, \lor, \neg)$
 - Graphen, O-Notation
 - Beweistechniken

"Philosophie" der Mathematik

- Gegeben gewisse Aussagen (Axiome), welche andere Aussagen lassen sich aus ihnen herleiten?
- Sind die Axiome wahr und existiert eine solche Herleitung (Beweis), so sind die Folgerungen unumstößlich und indiskutabel wahr!
- Beschreiben die Axiome etwa ein physikalisches System, so gelten die hergeleiteten Folgerungen für dieses System.
- Die Frage, ob Axiome Realitätsbezug haben, ist aber außerhalb der (reinen) Mathematik!

Menge (Naive Definition)

Definition

Eine Menge ist eine Zusammenfassung von wohldefinierten, paarweise verschiedenen Objekten zu einem Ganzen.

- Die Objekte nennt man Elemente der Menge.
 (Für eine formal vollständige Definition der Menge bräuchte man mehrere Vorlesungsstunden.)
- Notation: Sind $a_1, a_2, ..., a_n$ paarweise verschieden, so schreibt man die Menge M, die aus ihnen besteht, als $M = \{a_1, a_2, ..., a_n\}$.
 - $a_i \in M$ bezeichnet, dass a_i Element von M ist.

Beispiele für Mengen

- Leere Menge: \varnothing (es gibt kein $a \in \varnothing$).
- Menge der natürlichen Zahlen: $\mathbb{N} = \{0, 1, 2, ...\}$.
- Menge der booleschen Werte: $\mathbb{B} = \{0, 1\}$.
- Achtung: Die Anordnung von Elementen der Menge und gegebenenfalls Wiederholungen sind belanglos: $\{a,b,c\} = \{c,a,b\} = \{a,a,b,c,a,b\}.$
- Eine Menge kann Elemente enthalten, die selber Mengen sind, z.B. $\{a,b,\{a\},\{a,b\}\}$.

Spezifikation von Mengen

Man kann eine Menge durch Angabe von Zusatzbedingungen spezifizieren.

Beispiele:

- Menge der ganzen Zahlen: $\mathbb{Z} = \{z, -z \mid z \in \mathbb{N}\}.$
- Menge der rationalen Zahlen: $\mathbb{Q} = \{p/q \mid p \in \mathbb{N}, q \in \mathbb{Z}, q \neq 0, p, q \text{ teilerfremd}\}.$
- Menge der endlichen Zeichenketten: $STRINGS = \{s_1s_2...s_n \mid n \in \mathbb{N}, s_i \text{ ein Buchstabe}\}.$

Untermengen, Potenzmenge, Mächtigkeit

- Menge *U* ist Untermenge von *M*, wenn jedes Element von *U* auch Element von *M* ist.
 - Notation: $U \subset M$ bzw. $M \supset U$
 - Achtung: $\{a\} \subset \{a,b,c\}$, aber $a \in \{a,b,c\}$
- Potenzmenge von $M : Pot(M) = \{m \mid m \subset M\}$.
 - $Pot(\{a,b,c\})$ = $\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$
- Die Anzahl |M| der Elemente einer Menge M heißt Mächtigkeit oder Kardinalität von M.

Operationen auf Mengen 1/2

■ Mengendifferenz: $M_1 \setminus M_2 = \{m \mid m \in M_1 \text{ und } m \notin M_2\}$

■ Mengenschnitt: $M_1 \cap M_2 = \{m \mid m \in M_1 \text{ und } m \in M_2\}$

Operationen auf Mengen 2/2

■ Mengenvereinigung: $M_1 \cup M_2 = \{m \mid m \in M_1 \text{ oder } m \in M_2\}$

Kartesisches Produkt:

$$M_1 \times M_2 = \{(m_1, m_2) \mid m_1 \in M_1 \text{ und } m_2 \in M_2\}$$

- (m_1, m_2) ist ein Tupel, bei dem es, im Gegensatz zu einer Menge $\{m_1, m_2\}$, auf die Reihenfolge ankommt!
- Notation: $M^n = M \times \cdots \times M$ (n mal).

SMILE

Relationen

Definition

Eine Relation R zwischen den Mengen X und Y ist eine Teilmenge von $X \times Y$.

- Notation: Statt $(x,y) \in R$ schreibt man xRy.
- Beispiele:
 - Relation < zwischen $\mathbb N$ und $\mathbb N$.

$$<=\{(0,1),(0,2),\ldots,(1,2),(1,3),\ldots\}$$

 \blacksquare $R = \{(a,b) \mid a,b \in \mathbb{N}, a+b \text{ ungerade } \}$

Funktionen

Definition

Seien X und Y Mengen. Eine Funktion $f: X \to Y$ ist eine Relation zwischen den Mengen X und Y, wobei für jedes $x \in X$ genau ein $y \in Y$ existiert, so dass $(x,y) \in f$.

- X heißt Definitionsbereich, Y Wertebereich von f.
- Notation: Statt $(x,y) \in f$ schreibt man y = f(x).
- Beispiele:
 - Quadratfunktion $f: \mathbb{N} \to \mathbb{N}, f(x) = x^2$. $f = \{(0,0), (1,1), (2,4), (3,9), (4,16), (5,25), \dots\}$
 - Kardinalitätsfunktion $f : Pot(\{a,b,c\}) \rightarrow \mathbb{N}$. $f = \{(\emptyset,0), (\{a\},1), (\{b\},1), (\{c\},1), (\{a,b\},2), (\{a,c\},2), (\{b,c\},2), (\{a,b,c\},3)\}$

Beispiele: Relationen, Funktionen

- Jede Funktion ist auch eine Relation.
- Aber es gibt natürlich Relationen, die keine Funktionen sind.
- Beispiel:
 - $\sin^{-1}(x) = \{(\sin(x), x) \mid x \in \mathbb{R}\}$ ist eine Relation, aber keine Funktion!

Summen und Produkte (Notation)

■ Wir schreiben für $f: \mathbb{N} \to \mathbb{R}$

$$\sum_{i=m}^{n} f(i) = f(m) + f(m+1) + \dots + f(n-1) + f(n)$$

$$\prod_{i=m}^{n} f(i) = f(m) \cdot f(m+1) \cdot \dots \cdot f(n-1) \cdot f(n)$$

■ Beispiel:

$$\sum_{i=0}^{5} i^2 = 0^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$

Schreibweise mit beliebigen Bedingungen:

$$\sum_{i,j>0,j+2i<5} (i^2/j) = (1^2/1) + (1^2/2) + (2^2/1) + (3^2/1) = 14,5$$

Boolesche Algebra ($\{0,1\}, \land, \lor, \neg$) 1/4

Definition

- \blacksquare $\mathbb{B} := \{0,1\}$
- **Konjunktion** (UND-Verknüpfung) $\wedge : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$ $0 \wedge 0 = 0, \quad 0 \wedge 1 = 0, \quad 1 \wedge 0 = 0, \quad 1 \wedge 1 = 1$
- Disjunktion (ODER-Verknüpfung) $\lor : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$ 0 \lor 0 = 0, 0 \lor 1 = 1, 1 \lor 0 = 1, 1 \lor 1 = 1
- Negation $\neg : \mathbb{B} \to \mathbb{B}$ $\neg 0 = 1, \quad \neg 1 = 0$
- Boolescher Ausdruck
 - Die Elemente aus B sind boolesche Ausdrücke.
 - Seien A und B boolesche Ausdrücke, dann sind $(A \land B)$, $(A \lor B)$, $(\neg A)$ wieder boolesche Ausdrücke.

Boolesche Algebra ($\{0,1\}, \land, \lor, \neg$) 2/4

Konventionen

- Man schreibt auch · statt \wedge und + statt \vee .
- Für ¬x sind viele Notationen üblich: $\sim x$, x' oder \overline{x} .
- Zur Vereinfachung der Notation bei booleschen Ausdrücken vereinbaren wir: Negation \sim bindet stärker als Konjunktion \cdot , Konjunktion \cdot bindet stärker als Disjunktion +.

Boolesche Algebra ($\{0,1\}, \land, \lor, \neg$) 3/4

Axiome der booleschen Algebra

Kommutativität: x + y = y + x

$$x \cdot y = y \cdot x$$

Assoziativität: x + (y + z) = (x + y) + z

$$X \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Absorption: $x + (x \cdot y) = x$

$$X \cdot (X + Y) = X$$

Distributivität: $x + (y \cdot z) = (x + y) \cdot (x + z)$

$$X\cdot(y+z)=(X\cdot y)+(X\cdot z)$$

Komplement: $x + (y \cdot \neg y) = x$

$$X\cdot (y+\neg y)=X$$

Boolesche Algebra ($\{0,1\}, \land, \lor, \neg$) 4/4

- Neben der vorgestellten gibt es weitere boolesche Algebren, in denen diese Axiome gelten.
- Die folgenden Regeln sind aus den Axiomen ableitbar:

Weitere Regeln für boolesche Algebren

Doppeltes Komplement: $\neg(\neg x) = x$

Idempotenz: $x + x = x \cdot x = x$

De-Morgan-Regel: $\neg (x+y) = (\neg x) \cdot (\neg y)$

$$\neg(x\cdot y)=(\neg x)+(\neg y)$$

Consensus-Regel: $(x \cdot y) + ((\neg x) \cdot z)$

$$= (x \cdot y) + ((\neg x) \cdot z) + (y \cdot z)$$

 $(x+y)\cdot((\neg x)+z)$

 $= (x+y)\cdot ((\neg x)+z)\cdot (y+z)$

Boolesche Funktion

Definition

Eine boolesche Funktion f in n Variablen und mit m Ausgängen ist eine Funktion

$$f: \mathbb{B}^n \to \mathbb{B}^m (n, m \in \mathbb{N}).$$

Die Menge aller booleschen Funktionen in *n* Variablen mit m Ausgängen ist

$$\mathbb{B}_{n,m} := \{ f \mid f : \mathbb{B}^n \to \mathbb{B}^m \}.$$

- Wir schreiben abkürzend \mathbb{B}_n statt $\mathbb{B}_{n,1}$.
- Ein digitaler Schaltkreis ohne Speicherelemente, mit n Eingängen und *m* Ausgängen realisiert eine solche Funktion! (Details später)

Gerichteter Graph

Definition

G = (V, E) ist ein gerichteter Graph, wenn folgendes gilt:

- V endliche, nichtleere Menge (Knoten)
- E endliche Menge (Kanten)
- Abbildungen $Q : E \rightarrow V$ und $Z : E \rightarrow V$ Q(e) ist Quelle, Z(e) Ziel einer Kante e

Pfade in gerichteten Graphen

- Ein Knoten mit
 - \blacksquare indeg(v) = 0 heißt Wurzel.
 - outdeg(v) = 0 heißt Blatt.
 - \mathbf{v} outdeg(v) > 0 heißt innerer Knoten.
- Ein Pfad (der Länge k) in G ist eine Folge von k Kanten $e_1, e_2, ..., e_k$ ($k \ge 0$) mit $Z(e_i) = Q(e_{i+1})$ für alle i ($k 1 \ge i \ge 1$)

- Ein Zyklus in G ist ein Pfad der Länge ≥ 1 in G, bei dem Ziel und Quelle identisch sind (G heißt azyklisch, falls kein Zyklus in G existiert).
- Die Graph-Tiefe eines azyklischen Graphen ist definiert als die Länge des längsten Pfades in G.

Bäume, Binäre Bäume

Definition

Ein Baum ist ein gerichteter, azyklischer Graph mit genau einer Wurzel w (indeg(w) = 0) und indeg(v) = 1 für alle andere Knoten v. Ein Baum heißt binär (bzw. Binärbaum), wenn für seine innere Knoten v $outdeg(v) \le 2$ gilt.

Beispiele:

Groß-O-Notation (1/2)

- Seien $f,g: \mathbb{R}_0^+ \to \mathbb{R}_0^+$. Man schreibt $f(x) \in O(g(x))$, wenn es $c \in \mathbb{R}_0^+, x_0 \in \mathbb{R}_0^+$ gibt, so dass $f(x) \le c \cdot g(x)$ für alle $x > x_0$ gilt.
 - Beispiel: $5x + 2 \in O(x^2)$ Beweis: Setze $c = 5, x_0 = 1$ $5x + 2 < 5 \cdot x^2$, für x > 1.
- Groß-O-Notation wird verwendet, um Größe von parametrisierten Objekten (z.B. Graphen), Laufzeit von Algorithmen (Anzahl von Rechenschritten in Abhängigkeit von der Eingabe) usw. asymptotisch, d.h. bis auf eine multiplikative Konstante, abzuschätzen.
- Die Notation f(x) = O(g(x)) ist weit verbreitet, aber eigentlich falsch, da O(g(x)) eine Menge ist. So folgt aus f(x) = O(g(x)) und h(x) = O(g(x)) keinesfalls f(x) = h(x)!

Groß-O-Notation (2/2)

Beweistechniken

- Sukzessive Folgerungen bzw. Direkter Beweis
- Indirekter Beweis bzw. Beweis durch Widerspruch
- Vollständige Induktion

Sukzessive Folgerungen

Gegeben Aussage A, es soll Aussage B bewiesen werden.

■ Sukzessive Folgerungen:

Aus A folgt C, aus C folgt D, aus D folgt B, also gilt B.

Beispiel: Sukzessive Folgerungen

■ Gegeben f,g,h, $f(x) \in O(g(x))$, $g(x) \in O(h(x))$. Dann gilt $f(x) \in O(h(x))$.

Beweis:

- Aus $f(x) \in O(g(x))$ folgt die Existenz von $c_f, x_{0f} : f(x) \le c_f \cdot g(x)$ für $x > x_{0f}$. Aus $g(x) \in O(h(x))$ folgt die Existenz von $c_g, x_{0g} : g(x) \le c_g \cdot h(x)$ für $x > x_{0g}$.
- Man setze $x_0 := max\{x_{0f}, x_{0g}\}$. Dann gilt für $x > x_0$ sowohl $f(x) \le c_f \cdot g(x)$ als auch $g(x) \le c_g \cdot h(x)$.
- Man setze $c:=c_f\cdot c_g$. Dann gilt für $x>x_0$: $f(x)\leq c_f\cdot g(x)\leq c_f(c_g\cdot h(x))=c\cdot h(x)$. Dies bedeutet aber gerade $f(x)\in O(h(x))$

Indirekter Beweis 1/2

Es soll Aussage S bewiesen werden.

- Indirekter Beweis: Man nimmt an, ¬S (also die Umkehrung von S) würde gelten. Daraus leitet man einen Widerspruch her (z.B. "es gilt C und ¬C", "31 = 42", ...).
- Da der Widerspruch schrittweise aus $\neg S$ logisch hergeleitet wurde, kann $\neg S$ nicht gelten und somit muss S gelten.

Indirekter Beweis 2/2

- Betrachte den Spezialfall $S = A \Rightarrow B$.
 - Dann ist $\neg S = A \land \neg B$. Man nimmt also an, dass A gilt, aber $\neg B$.
 - Ergibt sich aus der Annahme ein Widerspruch, dann muss aus der Gültigkeit von A die Gültigkeit von B folgen.
 - Ergibt sich der Widerspruch speziell durch Herleitung von $\neg A$ aus $\neg B$, dann reduziert sich der Widerspruchsbeweis auf den Spezialfall Beweis der "Kontraposition" $\neg B \Rightarrow \neg A$.
 - $A \Rightarrow B$ und $\neg B \Rightarrow \neg A$ sind logisch äquivalent.
 - Implizit setzt man immer die Gültigkeit sämtlicher Axiome voraus. Sei *Ax* die Aussage "Sämtliche Axiome gelten".
 - Dann ist $S' = (A \land Ax) \Rightarrow B$ zu beweisen.
 - Annahme ist dann also: $\neg S' = A \land Ax \land \neg B$ gilt.

Beispiel: Indirekter Beweis

■ Zu zeigen: $x^2 \notin O(x)$

Beweis:

Wir nehmen an, dass $x^2 \in O(x)$ wäre. Dann gibt es c und x_0 , so dass für $x > x_0$ gilt:

$$x^2 \le c \cdot x \tag{1}$$

- Nun suchen wir ein x_1 , für das $x_1^2 = c \cdot x_1$. Dies ist für $x_1 = c$ der Fall.
- Für alle $x > x_1 = c$ ist $x^2 > c \cdot x$. Man wähle ein $x_2 > max\{x_0, x_1\}$. Dann gilt auch für x_2 :

$$x_2^2 > c \cdot x_2 \tag{2}$$

 Andererseits muss für x₂ auch (1) gelten. Widerspruch! Somit kann die Annahme nicht stimmen.

Vollständige Induktion

- Die vollständige Induktion ist eine Beweismethode für Aussagen, die für alle natürlichen Zahlen n gelten sollen.
- Zuerst wird die Aussage für den Basisfall n = 0 beweisen (manchmal auch n = 1 oder höher).
- Dann wird der Induktionsschritt durchgeführt: Unter der Annahme, dass die Aussage für n gilt (Induktionsvoraussetzung) wird bewiesen, dass die Aussage auch für n+1 gilt.
- Daraus folgt die Gültigkeit der Aussage für alle natürlichen Zahlen.

Vollständige Induktion: Beispiel (1/2)

■ Behauptung:

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$
 gilt für alle $n \in \mathbb{N}$.

Induktionsanfang:

Zeige die Behauptung für n = 1.

$$\sum_{k=1}^{1} \frac{1}{k(k+1)} = \frac{1}{1(1+1)} = \frac{1}{2} = \frac{1}{1+1}$$

Vollständige Induktion: Beispiel (2/2)

■ Induktionsvoraussetzung (IV):

Nehme an, die Behauptung gilt für ein $n \in \mathbb{N}$.

Also: Es gibt ein *n* für das gilt: $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$

Induktionsschritt:

Zeige die Behauptung für n+1.

$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{1}{k(k+1)} + \frac{1}{(n+1)(n+2)} \stackrel{\text{IV}}{=} \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$$
$$= \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2+2n+1}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{(n+1)}{(n+2)} = \frac{(n+1)}{(n+1)+1} \square$$