Wen Han Xu CS711008Z Date: 2018/10/12

1 Problem 1

Algorithm Description 1.1

Let S_1, S_2 be the data sets in 2 separate databases. Query() takes a data set as its first input, and a number k indicating the k-th smallest number the server is supposed to return. The algorithm to solve this question is as follows.

Algorithm 1 Finding-Joint-Median

```
1: procedure GETJOINTMEDIAN(S_1, S_2, n)
             k_1 \leftarrow \frac{n}{2}
 2:
             k_2 \leftarrow \frac{\tilde{n}}{2}
 3:
             for i \leftarrow 2 \ to \ \log n \ \mathbf{do}
 4:
                   m_1 \leftarrow Query(S_1, k_1)
 5:
                   m_2 \leftarrow Query(S_2, k_2)
 6:
                   if m_1 \leq m_2 then
 7:
                         k_1 \leftarrow k_1 + \frac{n}{2^i}
k_2 \leftarrow k_2 - \frac{n}{2^i}
 8:
 9:
                   else
10:
                         k_1 \leftarrow k_1 - \frac{n}{2^i} \\ k_2 \leftarrow k_2 + \frac{n}{2^i}
11:
12:
             if m_1 \leq m_2 then
13:
14:
                   return m_1
             else
15:
16:
                   return m_2
```

1.2 Sub-problem Reduction Graph

Figure 1: Sub-problem reduction graph

1.3 Analysis

1.3.1 Proof of Correctness

We start by querying the $\frac{n}{2}th$ smallest number of S_1, S_2 , which yields 2 medians m_1, m_2 . For convenience, we assume that $m_1 \leq m_2$. It's easy to notice that the median of the joint data sets $\{S_1, S_2\}$ is located within the range $[m_1, m_2]$. We can then search for the $\frac{3n}{4}th$ smallest number of S_1 (in the range $[\frac{n}{2}, n]$) and the $\frac{n}{4}th$ smallest number of S_2 (in the range $[0, \frac{n}{2}]$), which again narrows down the search range for the actual median by half. We keep running this queries until the search range convers only 1 elemnt. After $\log n$ queries, m_1, m_2 is the nth and (n+1)th smallest number in the entire data set.

1.3.2 Time Complexity

As each iteration step in the above algorithm GetJointMedian takes constant time, the overall time complexity of our algorithm is the same as the iteration depth, which is $O(\log n)$.

2 Problem 2

2.1 Algorithm Description

Let T denote the given binary tree, to find the maximum distance of any two node in a binary tree T_k , we introduce $MaxDepth_L$, $MaxDepth_R$ to represents the maximum depth of T_k 's left and right sub-trees. It's easy to notice that the maximum distance of nodes in T_k that travels through its root is $MaxDepth_L + MaxDepth_R + 1$. The algorithm to solve the given problem is as follows.

Algorithm 2 Finding Maximum Distance

```
1: global variables
       dist_{max} \leftarrow 0
3: end global variables
   procedure FINDMAXDIST(T)
       if T is a empty tree then
5:
          return 0
6:
7:
       MaxDepth_L \leftarrow FindMaxDist(T.left)
       MaxDepth_R \leftarrow FindMaxDist(T.right)
8:
       if MaxDepth_L + MaxDepth_R > dist_{max} then
9:
          dist_{max} \leftarrow MaxDepth_L + MaxDepth_R + 1
10:
       return max(MaxDepth_L, MaxDepth_R)
11:
12: Output dist_{max} + 1 as the final answer
```

2.2 Sub-problem Reduction Graph

2.3 Analysis

2.3.1 Proof of Correctness

FindMaxDist recursively calculates the maximum depth of a sub-tree of the input binary tree from bottom to top. As we stated before, the maximum distance between nodes in the binary tree is continuously updated.

2.3.2 Time Complexsity

T(n)=2T(n/2)+c, according to the Master Theorem, the time complexity of algorithm 2 is O(n)

3 Problem 6

3.1 Algorithm Description

The algorithm given below returns the required filling scheme.

Algorithm 3 Filling Table

```
1: procedure LFILL(2^n)
           if n=2 then
2:
                 return (1,1),(1,2),(2,1)
3:
           S \leftarrow LFill(2^{n-1})
4:
           S_1 \leftarrow \text{Rotate } S \text{ by } 90 \text{ degrees}
5:
           S_2 \leftarrow \text{Rotate } S \text{ by } 270 \text{ degrees}
6:
          S_3 \leftarrow \text{move } S \text{ by } 2^{n-1} \times 2^{n-1} \text{ blocks}

mid \leftarrow (2^{n-1}, 2^{n-1}), (2^{n-1} + 1, 2^{n-1}), (2^{n-1}, 2^{n-1} + 1)
7:
8:
          return S \cup S_1 \cup S_2 \cup S_3 \cup mid
9:
```

3.2 Sub-problem Reduction Graph

Figure 3: Problem reduction of a $2^3 \times 2^3$ table

3.3 Analysis

3.3.1 Proof of Correctness

We noticed that the original problem to find the filling method for $2^n \times 2^n$ blocks (size T(n)) can be divided into solving a sub-problem for $2^{n-1} \times 2^{n-1}$ blocks. As is shown in figure 3 below, the problem of a $2^3 \times 2^3$ table consists of 4 $2^2 \times 2^2$ table. 2 of them is the rotation of the original solution by 90 or 270 degrees. The empty blocks left in the center of the table can then be filled by one L-shaped block. Thus, the output from algorithm 3 is the correct answer to the given problem.

3.4 Time Complexity

The rotation of the 2 sub-tables each takes $O(\frac{n}{2})$ time, the movement of the last sub-table takes $O(\frac{n}{2})$ time, thus the time complexity of this algorithm is $T(n) = T(n/2) + O(\frac{3n}{2})$. Applying the results of Master Theorem yields T(n) = O(n).