Inhaltsverzeichnis

ded for calculation of signals

specifiv time values (Abb. 3).

1	Definitions		1	
2	ODEs			
	2.1	How to solve an ODE?	4	
	2.2	How to get $G(s)$?	4	
	2.3	Solvers	4	
3	DFT	_	4	

Time discrete means that a signal is only defined at

Abbildung 3: Time discrete signal: A y-value exists only for specific x-values.

1 Definitions

Simulation is the imitation of the operation of a real world process or system over time (e.g. via MATLAB/Simulink)

Hardware in the loop (HiL) means testing of software in combination with an existing hardware component OR: HiL is a technique for testing a embedded system by simulating the real environment around the embedded system. (Abb. 1)

Abbildung 1: Hardware in the loop (HiL)

Time continuos means that a signal is defined for the whole time or for an specific interval (Abb. 4).

Abbildung 4: Time continuos signal: A y-value exists for every x-value (in the intervall).

Software in the loop (SiL) is a simulation technique for software models only with a simulated hardware and not with a realworld existing hardware OR SiL is a technique for testing software by simulating the target hardware (Abb. 2).

Abbildung 2: Software in the loop (SiL)

Model is an abstraction from realworld objects; mostly easier to display.

Fourier-Transform transforms time domain based signals into frequency domain based signals; nee-

Discrete values A signal can be measured in time ranges (time continuos) (Abb. 5) or at specific time values (time discrete)(Abb. 6). Each y-value in one time range has got the same value. Discrete values can be counted.

Abbildung 5: Continuos X, discrete Y

gnals into frequency domain based signals; nee- Continuos values can be measured and can take any

Idea: Laura, Carina

Abbildung 6: Discrete X, discrete Y

value ((Abb. 7) and (Abb. 8))

Abbildung 7: Continuos X, discrete Y

Abbildung 8: Discrete X, continuos Y

Discrete Fourier Transform (DFT) is a stand alone definition for time discrete signals of limited duration besides the Fourier Transform (Abb. 9).

Abbildung 9: images/Discrete Fourier Transform (DFT)

Dirac distribution $\delta(t)$ ist not function, but a distribution. It cannot be defined directly, but has to be described indirectly e.g. by intregration.

1.
$$\delta(t) = 0$$
 for all $t \neq 0$ and $\int_{-\infty}^{+\infty} \delta(t) dt = 1$

Abbildung 10: Dirac

2. Sifting property (similar to window function) $\int_{-\infty}^{+\infty} f(t) \cdot \delta(t) dt = f(0)$

3.
$$\delta(t) = \int_{-\infty}^{+\infty} (\lim_{n \to \infty} \frac{1}{2\varepsilon} [s(t+\varepsilon) - s(t-\varepsilon)]); \varepsilon > 0$$

Abbildung 11: Dirac2

Dirac comb III_1 is a periodic funtion of the Dirac distribution. The ideal sampling can be described by Dirac distributions located with distances T_s which results in a spectrum of Dirac distributions having the distance $\frac{1}{T_s}$ (Abb. 12).

Abbildung 12: Dirac Comb

Idea: Laura, Carina 2 / 5

Algorithm is a self-contained step by step set of operations to be performed in order to get a solution. Algorithms perform calculations, data processing and/or automated reasoning tasks.

DFT/FFT The Fast Fourier Transform (FFT) is a special algorithm for calculating the DFT.

Sequence is a ordered collection of objects in which repetitions are allowed. The number of elements is called the length n of a sequence and can be infinite. The position of the elements is called index. E.g. prim numbers until 41:

The Length of this sequence is n = 13.

Sampling converts a continuous time signal into a discrete time signal. Sampling is done by a multiplication of the signal u(t) with the dirac comb. A multiplication in the time domain results in a convolution in frequency domain. It is performed over a limieted time.

Time domain and frequency domain The function values of a signal in time domain depend on time values. In the frequency domain the function values depend n frequency values.

$$f(t) \circ - F(f)$$
 with $f = \frac{1}{t}$

Periodic funtion repeats itself after a period of time. Examples: $\sin(x), \cos(x)$

Limited function is only defined for a specific time range. A limited function in time domain contains an unlimited spectrum of frequencies in frequency domain.

Convolution is a mathematical operation on two functions, similar to cross-correlation (system theory). The slution is a third function being the first function modified by the second one. Multiplication in time domain \rightarrow Convolution in frequency domain.

Frequency spectrum is a composition of different frequencies.

Abbildung 13: Example of a function with discontinuities

Amplitude spectrum is the absolut value of a frequency spectrum OR is a composition of different amplitudes.

Discontinuities appear where a function is not continuous (Abb. 13).

Sifting property of Dirac distribution means that the function value f(t=0) can be extracted with the mulitplication of the function with the Dirac distribution.

$$\begin{array}{lll} \int_{-\infty}^{+\infty} f(t) \cdot \delta(t) dt &=& f(0) \ \ \text{because of} \ \ \delta(t) &=\\ \left\{ \begin{array}{ll} 0, & t \neq 0 \\ \infty, & t = 0 \end{array} \right. \ \ \text{and} \ \int_{-\infty}^{+\infty} \delta(t) dt = 1 \end{array}$$

Window function is a rectangular function used as a window for calculating a DFT. When a function is multiplied by a window function, the product is zero-valued outside of the window's interval; all that is left ist the part where they overlap, the "view though the window" (Abb. 14).

Abbildung 14: Use of a window function

Zero padding adds zeros to the end of signals to compress the signal (Abb. 15).

Abbildung 15: Zero padding

Idea: Laura, Carina 3 / 5

2 ODEs

2.1 How to solve an ODE?

An ODE of n-th order is given. Change it to n ODEs of 1st order via substitution. Now you can use MAT-LAB to solve it.

Example: $y^{(3)} + a_2y'' + a_1y' + a_0y = b$					
Substitution	Derivation				
$y_1 = y$	$y'_1 = y'_1 = y_2$				
$y_2 = y'$	$y_2' = y'' = y_3$				
$y_3 = y''$	$y_3' = y^{(3)} = b - a_2 y_3 - a_1 y_2 - a_0 y_1$				

Abbildung 16: Complex conjugated values

3 DFT

Fourier Transform transforms time continuos values in time domain into values in frequency domain.

$$u(t) \circ - \underline{U}(f) = \int_{-\infty}^{+\infty} u(t) \cdot e^{-j2\pi ft} dt$$

2.2 How to get G(s)?

Transform the ODE from the time into the frequency domain.

Derivatives	Integrals
$y(t) \circ - Y(s)$	$\int y(t)dt \circ - \bullet \frac{1}{s}Y(s)$
$y'(t) \circ - sY(s)$	$\int \int y(t)dt \circ - \bullet \frac{1}{s^2} Y(s)$
$y''(t) \circ - s^2 Y(s)$	$\int \int \int y(t)dt \circ - \bullet \frac{1}{s^3} Y(s)$
and so on	and so on

Exclude the output signal and calculate $G(s) = \frac{output}{input}$.

Example:
$$y^{(3)} + a_2 y'' + a_1 y' + a_0 y = b$$
 with b as input signal and y as output signal. Laplace Transform:
$$s^3 Y(s) + s^2 a_2 Y(s) + s a_1 Y(s) + a_0 Y(s) = B(s)$$

$$Y(s)(s^3 + s^2 a_2 + s a_1 + a_0) = B(s)$$

$$G(s) = \frac{Y(s)}{B(s)} = \frac{1}{s^3 + s^2 a_2 + s a_1 + a_0}$$

If the input signal is 0, then integrate and solve the equation for the output variable.

2.3 Solvers

To learn the different solvers, please go to 3.3 - 3.9 in your notes of the lecture.

Discrete Fourier Transform is the Fourier Transform for time discrete values.

$$u(kT_s) \circ - \tilde{\underline{U}}(\frac{n}{N.T}) = \sum_{k=0}^{N-1} u(kT_s) \cdot e^{-j2\pi n \frac{k}{N}}$$

with N: number of sampled values and n = 0, 1, 2, ..., N - 1.

Quantity of must-calculate-values: $\frac{N}{2} + 1$ (Abb. 16)

Solution vector for N = 8:

$$\underline{\tilde{U}}(\frac{n}{N \cdot T_s}) = \begin{pmatrix} \underline{\tilde{U}}(\frac{0}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{1}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{2}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{3}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{4}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{5}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{6}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{7}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{8}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{8}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{9}{N \cdot T_s}) \\ \vdots \end{pmatrix} = \text{complex conjugated of } \underline{\tilde{U}}(\frac{3}{N \cdot T_s}) \\ \text{complex conjugated of } \underline{\tilde{U}}(\frac{1}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{9}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{1}{N \cdot T_s}) \\ \underline{\tilde{U}}(\frac{1}{N \cdot T_s}) \\ \vdots \\ \vdots \end{pmatrix}$$

Here you have to calculate $\frac{8}{2} + 1 = 5$ values (namely n = 0, 1, 2, 3, 4). from who the other ones (namley n = 5, 6, 7) can be deduced. The N-th value is the same as n = 0 because of the periodic repitition.

Idea: Laura, Carina 4 / 5

Inverse discrete Fourier Transform calculates the values in time domain out of the DFT.

$$u(kT_s) = \frac{1}{N} \sum_{n=0}^{N-1} \underline{\tilde{U}}(\frac{n}{N \cdot T_s}) \cdot e^{j2\pi n \frac{k}{N}}$$

with
$$k = 0, 1, 2, ..., N - 1$$
.

Idea: Laura, Carina 5/5