Mega16熔丝位相关

一. 熔丝位介绍

ATmega16有两个熔丝位字节。Table 1 - Table 2简单地描述了所有熔丝位的功能以及他们是如何映射到熔丝字节的。如果熔丝位被编程则读返回值为"0"。

熔丝位高字节	位号	描述	默认值
OCDEN	7	使能 OCD	1. (未编程, OCD 禁用)
JTAGEN	6	使能 JTAG	0(编程,JTAG 使能)
SPIEN	5	使能串行程序和数据下载	0(被编程,SPI 编程使能)
СКОРТ	4	振荡器选项	1 (未编程)
EESAVE	3	执行芯片擦除时 EEPROM 的内容保	1(未被编程),EEPROM 内容不保留
		留	
BOOTSZ1	2	选择 Boot 区大小	0 (被编程)
BOOTSZ0	1	选择 Boot 区大小	0 (被编程0)
BOOTRST	0	选择复位向量	1 (未被编程)
熔丝位低字节	位号	描述	默认值
BODLEVEL	7	BOD 触发电平	1 (未被编程)
BODEN	6	BOD 使能	1 未被编程,BOD 禁用)
SUT1	5	选择启动时间	1(未被编程)
SUT0	4	选择启动时间	8 (被编程)
CKSEL3	3	选择时钟源	0(被编程)
CKSEL2	2	选择时钟源	0 (被编程)
CKSEL1	1	选择时钟源	0(被编程)
CKSEL0	0	选择时钟源	1 (未被编程)

http://www.mcustudio.com.cn 厦门智控

二. 时钟源选择

ATmega16芯片有如下几种通过 Flash 熔丝位进行选择的时钟源。时钟输入到 AVR 时钟发

生器,再分配到相应的模块。

器件时钟选项	CKSEL30
外部晶体/陶瓷振荡器	1111-1010
外部低频晶振	1001
外部 RC 振荡器	1000-0101
标定的内部 RC 振荡器	0100-0001
外部时钟	0000

Note: 1.对于所有的熔丝位, "1"表示未编程, "0"代表已编程。 缺省时钟源: 器件出厂时 CKSEL = "0010", SUT = "10"。这个缺省设置的时 钟源是1 MHz 的内部 RC 振荡器,启动时间为最长。这种设置保证用户可以通过 ISP 或并行编程器得到所需的时钟源。

http://www.mcustudio.com.cn 厦门智控

三.晶体振荡器晶体振荡器连接如图:

振荡器可以工作于三种不同的模式,每一种都有一个优化的频率范围、工作模式通过熔丝

位 CKSEL3..1来选择:

晶体振荡器工作模式:

СКОРТ	CKSEL31	频率范围(MHz)	使用晶体时电容 C1和 C2的推荐范围(pF)
1	101	0.4-0.9	
1	110	0.9-3.0	12-22
1	111	3.0-8.0	12-22
0	101, 110, 111	1.0	12-22

熔丝位 CKSEL0以及 SUT1..0用于选择启动时间。

晶体振荡器时钟选项对应的启动时间:

CKSEL0	SUT1.0	掉电与节电模式下	复位时额外的延迟时	推荐用法
		的启动时间	间()	
			FI ()	
0	00	258CK	4.1ms	陶瓷谐振器,电源快速上升
0	01	258CK	65ms	陶瓷谐振器,电源缓慢上升
0	10	1K CK	_	陶瓷谐振器, BOD 使能
0	11	1K CK	4.1ms	陶瓷谐振器,电源快速上升
1	00	1K CK	65ms	陶瓷谐振器,电源缓慢上升
1	01	16K CK	_	石英振荡器, BOD 使能
1	10	16K CK	4.1ms	石英振荡器, 电源快速上升
1	11	16K CK	65ms	石英报警器, 电源慢速上升

四. 程序及数据存储器锁定位

ATmega16提供了6个锁定位,根据其被编程("0")还是没有被编程("1")的情况可以获得列出的附加性能。锁定位只能通过芯片擦除命令擦写为"1"。

锁定位字节	位号	描述	默认值
	7	ı	1 (未编程)
	6		1(未编程)
BLB12	5	Boot 锁定位	1 (未编程)
BLB11	4	Boot 锁定位	1 (未编程)

http://www.mcustudio.com.cn 厦门智控

BLB02	3	Boot 锁定位	1 (未编程)
BLB01	2	Boot 锁定位	1 (未编程)
LB2	1	锁定位	1(未编程)
LB1	0	锁定位	1 (未编程)

锁定位保护模式

存储器锁定位			保护类型
LB 模式	LB2	LB1	
1	1	1	没有使能存储器保护特性
2	1	0	在并行和 SPI/JTAG 串行编程模式中
			Flash 和 EEPROM 的进一步编程禁止,
			熔丝位被锁定。
3	0	0	在并行和 SPI/JTAG 串行编程模式中
			Flash 和 EEPROM 的进一步编程及验
			证被禁止,锁定位和熔丝位被锁定
BLB0模式	BLB02	BLB	
		01	
1	1	1	SPM 和 LPM 对应用区的访问没有限
			制
2	1	0	充允许 SPM 对应用区进行写操作
3	0	0	木允许 SPM 指令对应用区进行写操
		_ / /	作,也不允许运行于 Boot Loader 区的
			LPM 指令从应用区读取数据。若中断
			向量位于 Boot Loader 区, 那么执行应
			用区代码时中断是禁止的。
4	0	1	不允许运行于 Boot Loader 区的 LPM
			指令从应用区读取数据。若中断向量
			位于 Boot Loader 区,那么执行应用区
			代码时中断是禁止的。
BLB1模式	BLB12	BLB	
		11	
1	1	1	允许 SPM/LPM 指令访问 Boot Loader
			区
2	i i	0	不允许 SPM 指令对 Boot Loader 区进
	1		行写操作
3	0	0	不允许 SPM 指令对 Boot Loader 区进
			行写操作,也不允许运行于应用区的
			LPM 指令从 Boot Loader 区读取数据。
			若中断向量位于应用区,那么执行
			Boot Loader 区代码时中断是禁止的。
4	0	1	不允许运行于应用区的 LPM 指令从
			Boot Loader 区读取数据。若中断向量
			位于应用区,那么执行 Boot Loader 区
			代码时中断是禁止的。