Zusammenfassung

v308 - Spulen und Magnetfelder

 $\label{eq:max_rademacher} \begin{aligned} & \text{Max Rademacher} \\ & \text{max.rademacher@tu-dortmund.de} \end{aligned}$

21.06.2024

TU Dortmund – Fakultät Physik

1 Ziel

Messung der Magnetfelder verschiedener Spulenanordnungen

2 Theorie

2.1 Allgemein

- Bewegte Ladungen erzeugen Magnetfelder
- Manche Materialien besitzen grundliegendes mag. Moment durch Elektronenbewegung
 - mag. Momente können durch Wärmebewegung statistisch verteilt sein

$$- \vec{B} = \mu \cdot \vec{H}; \qquad \mu = \mu_0 \cdot \mu_r$$

 $\bullet\,$ jeder stromdurchflossene Leiter erzeugt Magnetfeld

$$- d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{l} \times \vec{r}}{r^3}$$

2.2 Solenoid

- langgestreckte stromdurchflossene Spule
- Magnetfeld in Mitte der Spule konstant, Feldlinien parallel zur Symmetrieachse
- Feld ist innen homogen:

–
$$B = \mu_r \mu_0 \frac{n}{l} I;$$
 $n : \text{Windungszahl}, l : \text{Länge}$

• außen inhomogen (fächert sich breit auf)

2.3 Toroid

- ringförmiges Solenoid
- ist $r_T << l,$ dann keine Randeffekte \rightarrow kein Feld außerhalb des Toroids
- homogenes Magnetfeld innerhalb

$$-B = \mu_r \mu_0 \frac{n}{2\pi r_T} I; \qquad l = 2\pi r_T$$

2.4 Helmholtzspulenpaar

- zwei gleichsinnig durchflossene Kreisspulen, Strom ${\cal I}$
- Abstand der Spulen R = Radius der Kreisspulen (optimal)
- Ursprung in Zemtrum beider Spulen, wenn $d \neq R$:

$$-B(0) = B(x) + B(-x) = \frac{\mu_0 I R^2}{(R^2 + x^2)^{3/2}}$$

- homogenes Magnetfeld im Zentrum entlang Symmetrieachse
- Feldgradient im Idealfall auf Symmetrieachse vernachlässigbar:

$$- \ {\textstyle \frac{{\rm d}B}{{\rm d}x}} = -3 \mu_0 I R^2 \frac{x}{(R^2 + x^2)^{5/\!2}} \label{eq:dB}$$

2.5 Diamagnetismus

- erst magnetische Dipole durch anliegendes Magnetfeld
 - richten sich antiparallel zum Magnetfeld aus
- Suszeptibilität $\chi_{\rm Dia} < 0; \chi_{\rm Dia} = {\rm const}$

2.6 Paramagnetismus

- magnetische Momente richten sich im Magnetfeld aus \rightarrow Magnetfeld wird verstärkt
- Suszeptibilität $\chi_{\text{Para}} > 0; \chi_{\text{Para}}$ temperaturabhängig

–
$$\chi_{\text{Para}} = \frac{C}{T}$$
; $C:$ Materialkonstante

2.7 Ferromagnetismus

- fundamentale Dipole in weißschen Bezirken \rightarrow permanentes Magnetfeld, aber durch statistische Verteilung der weißschen Bezirke ist das Gesamtmagnetfeld null
- Dipole richten sich bei äußerem Magnetfeld aus
 - eigen generiertes Magnetfeld abhängig von äußerem Magnetfeld
 - wenn in Spule gebracht, lautet $\vec{B} = \mu_0(\vec{H} + \vec{M})$, \vec{M} ist Magnetisierung $\vec{M} = \chi \cdot \vec{H}$
 - relative Permeabilität von Ferromagneten bei $10^2\,\mathrm{V}\,\mathrm{s}/(\mathrm{A}\,\mathrm{m}) 10^7\,\mathrm{V}\,\mathrm{s}/(\mathrm{A}\,\mathrm{m})$

2.8 Hysteresekurve

- ferromagnetische Materialien können permanent magnetisiert werden, μ_r hoch, nichtlinear
- Hysteresekurve für Material nicht eindeutig, von Vorgeschichte abhängig
- bei Erhöhung von äußerem Magnetfeld steigt Magnetisierung des Materials an bis Sättigungswert B_S erreicht ist (Neukurve)
- Verringerung von Magnetfeld bildet entgegengesetzte Dipole im Material \rightarrow Magnetisierung sinkt (2)
- bei abgeschaltetem Magnetfeld verbleibt Remanenz $B_r,$ aufhebbar durch Koerzitivkraft ${\cal H}_c$
- durch weiteres senken des Magnetfeldes ins negative wird Magnetisierung negativ bis zur Sättigung $-B_S$
- bei erneuter Erhöhung entsteht symmetrische Kurve zu (2), materialabhängig
- differentielle Permeabilität $\mu_{\mathrm{diff}} = \frac{1}{\mu_0} \frac{\mathrm{d}B}{\mathrm{d}H}$

Abbildung 1: Hysteresekurve

2.9 Funktionalität einer Hall-Sonde

- Steuerstrom fließt in x-Richtung durch dünne Leiterplatte
- B-Feld fließt senkrecht in z-Richtung dazu
- $\bullet \implies$ Elektronen des Stroms werden durch Lorentzkraft abgelenkt (y-Richtung) \rightarrow Elektronenüberschuss und -Mangel auf jeweils einer Seite \rightarrow Hallspannung

Abbildung 2: Hallsonde

3 Durchführung/Auswertung

3.1 Magnetfeld von Spulenpaar

3.1.1 Durchführung

 ${\bf Abbildung \ 3: \ Spulenpaar.}$

• Spulen werden in Reihe geschaltet (damit gleicher Strom [5 A] an beiden Spulen)

• drei verschiedene Spulenabstände, Vermessung von B-Feld inner- und außerhalb der Spule mit transversaler Hallsonde

3.1.2 Auswertung

- Magnetfeldstärke ist abhängig von Position relativ zum Spulenpaar und Abstand der Spulen
- Werte lagen relativ nah an der Theorie

Abbildung 4: Spulenpaar bei kleinstem Abstand

Abbildung 5: Spulenpaar bei größtem Abstand

3.2 Hysterese

3.2.1 Durchführung

• Toroidspule mit Eisenkern innerhalb, Netzgerät zur Regelung des Spulenstroms und transversale Hallsonde in Zwischenraum der Spule

- Aufnehmen der Neukurve: schrittweises Erhöhen des anliegenden Stroms bis Sättigungswert B_S erreicht ist
- Reduzieren des Stroms auf 0 A \rightarrow Ablesen der Remanenz von Eisenkern
- Umpolen der Spule \to Aufnahme der Koerzitivkraft, wenn generiertes B-Feld = null \to Erhöhung des Stroms bis negativ. Sättigungswert $-B_S$ erreicht
- $\bullet\,$ Redizieren des Stroms \to Umpolung und Erhöhung zum Sättigungswert

3.2.2 Auswertung

Abbildung 6: Hysterese

- Sättigungswert bei $B_S \approx 700\,\mathrm{mT}$
- Koerzitivkraft bei $H_K \approx 400\,\mathrm{A/m}$
- μ_{diff} durch lineare Ausgleichsgerade $\rightarrow \mu_{diff} \approx 100\,\mathrm{T\,m/A}$
- Versuch war schlecht durchzuführen, da Hysteresekurve von Vorgeschichte des Materials abhängig → es blieb eine Restmagnetisierung des Eisenkerns am Anfang übrig, die Ergebnisse verfälscht
- \bullet Strom konnte nicht voll aufgedreht werden \to es konnte nicht vollständig ein Sättigungswert erreicht werden

3.3 Spulen

3.3.1 Durchführung

- kurze und lange Spule, Netzgerät zur Spannungs- und Stromregelung
- Einstellen eines konstanten Spulenstroms \rightarrow Vermessung des Magnetfeldes innerhalb der Spule mittels longitudinaler Hallsonde

3.3.2 Auswertung

Abbildung 7: lange Spule

Abbildung 8: kurze Spule

• Ermittlung der Spulenlänge mittels der Messwerte

$$- l = \mu_r \mu_0 \frac{n \cdot I}{B}$$

- $B_{kurz} \approx 1.5 \,\mathrm{mT}$
- $B_{lang} \approx 2 \, \mathrm{mT}$
- experimentelle Werte waren nah an der theoretischen Vorhersage

4 Allgemeines zur Diskussion

- Auswirkungen des Erdmagnetfeldes sind zu vernachlässigen (1 mT >> $B_{erd}=70\,\mathrm{\mu T})$