ECUACIONES DIFERENCIALES ORDINARIAS (521218) Listado $N^{\circ}6$ (Problemas de Vibraciones).

Problemas a resolver en práctica

1. Movimiento libre sin amortiguamiento: Un cuerpo se acopla a un resorte que cuelga del techo, produciendo un estiramiento de $\frac{1}{2}$ [cm]. De repente el cuerpo es soltado desde un punto a $\frac{2}{3}$ [cm] por debajo de la posición de equilibrio con una velocidad inicial hacia arriba de $\frac{4}{3}$ [cm/s]. Despreciando el amortiguamiento del medio, determine la ecuación de movimiento del cuerpo. ¿En qué instante pasará el cuerpo por su posición de equilibrio, por segunda vez? ¿En qué instante el resorte se elonga (comprime) lo máximo posible, por primera vez? Considerar g = 980 [cm/s²].

Solución: Consideremos un sistema de referencia orientado positivamente en la dirección de la gravedad, con origen en el punto de equilibrio del centro de masa del cuerpo. Además, se definen las variables de trabajo

t: instante de tiempo, medido en segundos,

x(t): posición del centro de masa en centímetros, en el instante t.

Del enunciado, se obtiene que el cuerpo produce un estiramiento $l=\frac{1}{2}\left[cm\right]$ al equilibrio. Usando la condición de equilibrio $k\,l=m\,g$ obtenemos

$$\frac{k}{m} = \frac{g}{l} = \frac{980 \left[cm/s^2 \right]}{\frac{1}{2} \left[cm \right]} = 1960 \left[(rad/s)^2 \right] \iff \omega_0 = 14\sqrt{10} \left[rad/s \right].$$

A partir de aquí, como $x_0 = \frac{2}{3} [cm]$ y $v_0 = -\frac{4}{3} [cm/s]$ (el signo menos refleja el hecho que la velocidad apunta hacia arriba), se deduce que x(t) satisface el siguiente PVI (se recuerda que se está ante un movimiento libre sin amortiguamiento),

$$\begin{cases} x''(t) + 1960 x(t) &= 0, \quad t > 0, \\ x(0) &= x_0 = \frac{2}{3} [cm], \\ x'(0) &= v_0 = -\frac{4}{3} [cm/s] \end{cases}$$
 (1)

La solución de este PVI está dada, para todo $t \ge 0$, por

$$x(t) = x_0 \cos(\omega_0 t) + \frac{v_0}{\omega_0} \sin(\omega_0 t) = \left[\frac{2}{3} \cos(14\sqrt{10}t) - \frac{\sqrt{10}}{105} \sin(14\sqrt{10}t) \right] [cm].$$

Para saber los instante donde el cuerpo pasará por su posición de equilibrio, se debe resolver la ecuación

$$x(t) = 0, \quad t \ge 0 \iff \frac{2}{3}\cos(14\sqrt{10}\,t) - \frac{\sqrt{10}}{105}\sin(14\sqrt{10}\,t) = 0, \quad t \ge 0$$

$$\iff \operatorname{tg}(14\sqrt{10}\,t) = \frac{2 \times 105}{3\sqrt{10}} = 7\sqrt{10}, \quad t \ge 0$$

$$\iff 14\sqrt{10}\,t_k = \operatorname{Arctg}(7\sqrt{10}) + k\,\pi, \quad k \in \mathbb{Z}_0^+$$

$$\iff t_k = \left[\frac{\operatorname{Arctg}(7\sqrt{10})}{14\sqrt{10}} + k\,\frac{\pi}{14\sqrt{10}}\right][s], \quad k \in \mathbb{Z}_0^+.$$

Así, el instante en que pasará el cuerpo por su posición de equilibrio por primera vez (sin considerar la posición inicial) está dado por $t_0 = \frac{\operatorname{Arctg}(7\sqrt{10})}{14\sqrt{10}} [s] \approx 0,034 [s]$ y el instante en que pasará por segunda vez está dado por

$$t_1 = \left[\frac{\text{Arctg}(7\sqrt{10})}{14\sqrt{10}} + \frac{\pi}{14\sqrt{10}} \right] [s] \approx 0.105 [s].$$

Por otro lado, dado que al cuerpo se le ha inyectado una velocidad inicial hacia arriba, la máxima elongación/compresión ocurre cuando la velocidad es nula y además, primero se da la compresión máxima. Recordemos que la velocidad en todo instante de tiempo $t \geq 0$ está dada por

$$x'(t) = \left[-\frac{28\sqrt{10}}{3} \operatorname{sen}(14\sqrt{10}t) - \frac{4}{3} \cos(14\sqrt{10}t) \right] [cm/s], \quad \forall t \ge 0,$$

se debe resolver la ecuación,

$$x'(\widetilde{t}) = 0, \quad \widetilde{t} \ge 0 \iff -\frac{28\sqrt{10}}{3} \operatorname{sen}(14\sqrt{10}\,\widetilde{t}\,\,) - \frac{4}{3} \cos(14\sqrt{10}\,\widetilde{t}\,\,) = 0, \quad \widetilde{t} \ge 0$$

$$\iff \operatorname{tg}(14\sqrt{10}\,\widetilde{t}\,\,) = -\frac{4}{28\sqrt{10}} = -\frac{\sqrt{10}}{70}, \quad \widetilde{t} \ge 0$$

$$\iff 14\sqrt{10}\,\widetilde{t_n} = -\operatorname{Arctg}\left(\frac{\sqrt{10}}{70}\right) + n\,\pi, \quad n \in \mathbb{Z}^+$$

$$\iff \widetilde{t_n} = -\frac{\sqrt{10}}{140}\operatorname{Arctg}\left(\frac{\sqrt{10}}{70}\right) + \frac{n\,\sqrt{10}\,\pi}{140}\,[s], \quad n \in \mathbb{Z}^+.$$

Notamos que puesto que para n=0 se obtiene un \tilde{t}_0 negativo, la solución correspondiente no se toma en cuenta. De esta manera, los primeros instantes de máxima compresión y elongación están dados, respectivamente, por

$$t_{\text{com},1} = \widetilde{t_1} = \left[-\frac{\sqrt{10}}{140} \operatorname{Arctg} \left(\frac{\sqrt{10}}{70} \right) + \frac{\sqrt{10} \pi}{140} \right] [s] \approx 0,070 [s],$$

$$t_{\text{elon},1} = \widetilde{t_2} = \left[-\frac{\sqrt{10}}{140} \operatorname{Arctg} \left(\frac{\sqrt{10}}{70} \right) + \frac{\sqrt{10} \pi}{70} \right] [s] \approx 0,141 [s]$$

2. Movimiento libre con amortiguamiento: Un cuerpo que pesa 19,6 [N] se une a un resorte de 5 [m] de longitud, el cual cuelga de cierto techo. En la posición de equilibrio, el resorte mide 9,9 [m]. Si el cuerpo se eleva y se suelta desde el reposo 2 [m] por arriba de la posición de equilibrio, determine los máximos relativos del desplazamiento, x(t). Considere que el medio que rodea al sistema ofrece una resistencia $\mu = 1 [N \cdot s/m]$ ¿Cuál es su máximo desplazamiento con respecto del equilibrio? Considerar $g = 9.8 [m/s^2]$.

Solución: Usaremos las mismas notaciones y sistema de referencia que en el problema anterior. Del enunciado se obtiene que el cuerpo produce al equilibrio un estiramiento l = 9.9 [m] - 5 [m] = 4.9 [m] y la masa está dada por

$$m = \frac{m g}{g} = \frac{19.6 [N]}{9.8 [m]} = 2 [kg].$$

Usando la condición de equilibrio k l = m g, tenemos

$$\frac{k}{m} = \frac{g}{l} = \frac{9.8 [m/s^2]}{4.9 [m]} = 2 [rad/s].$$

Se recuerda que se está ante un movimiento libre con amortiguamiento, la EDO que modela el movimiento del cuerpo es $x''(t) + 2\lambda x'(t) + \frac{k}{m}x(t) = 0$, t > 0, con

$$\lambda = \frac{\mu}{2m} = \frac{1}{4} [s^{-1}].$$

A partir de aquí, como $x_0 = -2[m]$ y $v_0 = 0[m/s]$ (se suelta el cuerpo desde el reposo), se deduce que x satisface el siguiente PVI

$$\begin{cases} x''(t) + \frac{1}{2}x'(t) + 2x(t) &= 0, \quad t > 0, \\ x(0) &= -2[m], \\ x'(0) &= 0[m/s] \end{cases}$$
 (2)

La ecuación característica asociada a la EDO para x está dada por

$$r^{2} + \frac{1}{2}r + 2 = 0 \iff r_{1} = -\frac{1}{4} + \frac{\sqrt{31}}{4}i, \quad r_{2} = -\frac{1}{4} - \frac{\sqrt{31}}{4}i,$$

de donde la solución general de la EDO es

$$x(t) = e^{-t/4} \left[C_1 \cos \left(\frac{\sqrt{31}}{4} t \right) + C_2 \sin \left(\frac{\sqrt{31}}{4} t \right) \right] [m], \quad \forall t \ge 0, \quad \text{con } C_1, C_2 \in \mathbb{R}.$$

Notemos que la primera derivada de la solución general está dada por

$$x'(t) = e^{-t/4} \left\{ \frac{\sqrt{31} C_2 - C_1}{4} \cos \left(\frac{\sqrt{31}}{4} t \right) - \frac{\sqrt{31} C_1 + C_2}{4} \sin \left(\frac{\sqrt{31}}{4} t \right) \right\} [m/s]$$

Imponiendo las condiciones iniciales, se obtiene el sistema de ecuaciones

$$\begin{cases} C_1 = -2 \\ \frac{\sqrt{31}C_2 - C_1}{4} = 0 \end{cases} \iff \begin{cases} C_1 = -2 \\ C_2 = \frac{C_1}{\sqrt{31}} = -\frac{2\sqrt{31}}{31} \end{cases}$$

Por lo tanto, la ecuación de movimiento del cuerpo está dada por

$$x(t) = e^{-t/4} \left[-2 \cos \left(\frac{\sqrt{31}}{4} t \right) - \frac{2\sqrt{31}}{31} \sin \left(\frac{\sqrt{31}}{4} t \right) \right] [m], \quad \forall t \ge 0.$$

Ahora bien, notemos que los máximos relativos del **desplazamiento** (que está dada por la función |x|) ocurren cuando la velocidad es nula, pues tanto los puntos de máximo relativo y de mínimo relativo de x son puntos de máximo relativo de |x|; o bien, en t=0 (esto es porque al optimizar una función de clase C^1 en un intervalo cerrado del tipo $[a, +\infty[$, t=a es candidato a un punto de extremo relativo de la función). Recordemos que la velocidad en todo instante de tiempo t>0 está dada por (usando los valores de C_1 y C_2 ya conocidos)

$$x'(t) = \frac{16\sqrt{31}}{31} e^{-t/4} \operatorname{sen}\left(\frac{\sqrt{31}}{4}t\right) [m/s], \quad \forall t \ge 0,$$

de donde, se debe resolver la ecuación,

$$x'(t) = 0, \quad t \ge 0 \iff \frac{16\sqrt{31}}{31} e^{-t/4} \operatorname{sen}\left(\frac{\sqrt{31}}{4}t\right) = 0, \quad t \ge 0$$

$$\iff \operatorname{sen}\left(\frac{\sqrt{31}}{4}t\right) = 0, \quad t \ge 0$$

$$\iff \frac{\sqrt{31}}{4}t_k = k\pi, \quad k \in \mathbb{N}$$

$$\iff t_k = \frac{4k\sqrt{31}\pi}{31}[s], \quad k \in \mathbb{N}.$$

siendo estos los puntos de extremos relativos de x. Finalmente, se concluye que el máximo desplazamiento ocurre en el instante $t_0 = 0$, pues la amplitud va **decreciendo** a medida que avanza el tiempo. Esto no nos sorprende, pues al poseer el cuerpo velocidad inicial nula y ser el sistema amortiguado, **necesariamente** el máximo desplazamiento ocurre en t = 0.

3. Movimiento forzado con amortiguamiento: Un cuerpo, que tiene una masa de 1 [kg], se une a un resorte que cuelga del techo, haciendo que el resorte se estire 5 [m] para llegar al estado de reposo en equilibrio. En el instante t = 0, el cuerpo es desplazado 2 [m] por debajo de la posición de equilibrio, con una velocidad ascendente de 3 [m/s]. A partir de ese mismo instante entra en acción una fuerza externa $(0, +\infty) \ni t \mapsto F(t) = 5 \cos(t) + sen(2t) [N]$ sobre el sistema. Si la constante de amortiguamiento para el sistema es $3 [N \cdot s/m]$, determine el desplazamiento del cuerpo para cada instante de tiempo. Considerar $g = 10 [m/s^2]$.

Solución:

En el estado de equilibrio del sistema cuerpo-resorte tenemos

$$k \ell = m g \Rightarrow k = \frac{1 \times 10}{5} Kg/s^2 = 2 Kg/s^2.$$

Sea $X\left(t\right)$ el desplazamiento del resorte (en metros) transcurridos t segundos, con respecto a la posición de equilibrio del sistema cuerpo-resorte y con sentido coincidente con la dirección de la fuerza de gravedad. Entonces, usando la segunda ley de Newton obtenemos que para todo $t\geq0$,

$$X''(t) + 3X'(t) + 2X(t) = 5\cos(t) + \sin(2t).$$

Como el cuerpo es desplazado 2 [m] por debajo de la posición de equilibrio,

$$X(0) = 2.$$

Ya que al cuerpo se le imprime una velocidad ascendente de 3 [m/s],

$$X'(0) = -3.$$

Resolviendo el PVI obtenido con el método de aniquiladores (HACERLO), llegamos a

$$X\left(t\right) = \frac{11\,\mathrm{e}^{-2\,t}}{4} - \frac{11\,\mathrm{e}^{-t}}{10} + \frac{\cos\left(t\right)}{2} + \frac{3\,\sin\left(t\right)}{2} - \frac{\sin\left(2\,t\right)}{20} - \frac{3}{20}\cos\left(2\,t\right)\,\left[m\right] \quad \forall\,t\geq0\,.$$

4. Movimiento forzado sin amortiguamiento: ¿Para qué valores de m el sistema masa – resorte, modelado por la ecuación diferencial $m y''(t) + 64y(t) = 15 \operatorname{sen}(\zeta t)$ manifiesta resonancia, si $\operatorname{sen}(\zeta t)$ tiene una frecuencia de f = 12 [Hz] ($\zeta = 2 \pi f$)?

Solución: Dado que la frecuencia de la fuerza excitante es de $f=12\,[Hz]$, su frecuencia angular está dada por

$$\zeta = 2 \pi f = 24 \pi [rad/s].$$

Además, dado la EDO propuesta, deducimos que la constante de rigidez del resorte es $k=64\,[N/m]$. Luego la frecuencia angular natural del sistema masa – resorte está dada por

$$\omega_0 = \sqrt{\frac{64}{m}} \left[rad/s \right].$$

Por lo tanto, el sistema forzado presentará resonancia si, y sólo si,

$$\zeta = \omega_0 \iff 24 \pi \left[rad/s \right] = \sqrt{\frac{64}{m}} \iff m = \frac{64}{(24\pi)^2} = \frac{1}{9\pi^2} \left[kg \right] \approx 0.011 \left[kg \right].$$

Problemas propuestos para el estudiante:

- 1. Movimiento horizontal libre sin amortiguamiento: Un cuerpo de masa 2[kg] se desplaza en el plano horizontal y está unida a un resorte con rigidez k = 50[N/m] sujeto a una pared. La masa se desplaza (1/4)[m] a la izquierda del punto de equilibrio y recibe una velocidad de 1[m/s] hacia la izquierda. Desprecie el amortiguamiento y determine la ecuación de movimiento de la masa. ¿Cuánto tiempo después de su liberación pasa la masa por su posición de equilibrio por primera vez?
- 2. Movimiento forzado sin/con amortiguamiento: Un cuerpo que pesa 490 [dina] queda suspendido de un resorte, alargándolo 49 [cm]. De pronto, el cuerpo es desplazado 3 [cm] por debajo del punto de equilibrio y es liberado. En este instante se aplica al sistema una fuerza externa $F(t) := 8 \cos(6t) [dina], \forall t > 0$. Considerando $g = 980 [cm/s^2]$, determine y esboce una gráfica de la función que describe el desplazamiento del sistema, suponiendo:
 - (a) que no hay amortiguamiento
 - (b) que existe amortiguamiento igual a 4 veces la velocidad del cuerpo.
- 3. Movimiento forzado con amortiguamiento: Un cuerpo, que tiene una masa de 2[kg], se une a un resorte que cuelga del techo, haciendo que el resorte se estire 20[cm] hasta llegar en reposo al equilibrio. En el instante t=0, el cuerpo es desplazado 5[cm] por debajo de la posición de equilibrio y es liberado. En ese mismo instante se aplica una fuerza externa $(0, +\infty) \ni t \mapsto F(t) := 0, 3\cos(t)[N]$ al sistema. Si la constante de amortiguamiento para el sistema es $5[N \cdot s/m]$, encuentre la ecuación de movimiento para el sistema. Determine el desplazamiento del sistema masa-resorte, en cualquier instante de tiempo.

4. **Resonancia sin amortiguamiento:** Considere el sistema de masa-resorte modelado por

$$10 X''(t) + k X(t) = f(t), \quad t > 0,$$

donde la la función de forzamiento es $f(t) = \cos(\omega t) + 2 \sin(\omega t/2)$. Conociendo que $\cos(\omega t)$ oscila con una frecuencia entre 20 y 80 [Hz]. ¿Qué valores de k pueden llevar al sistema a la resonancia?

5. Cicuito eléctrico RLC. Un circuito eléctrico RLC (Resistencia - Capacitor - Inductor) conectado en serie a un generador es gobernado por la ecuación diferencial

$$L\frac{di}{dt} + Ri + q/C = E (3)$$

donde L representa a la constante de inductancia medida en Faradios [F], R la constante de resistencia medida en Ohms $[\Omega]$, C es la capacidad eléctrica del capacitor medida en Henrios [H], i la intensidad de corriente eléctrica en el circuito medida en Amperes [A], q es la carga eléctrica medida en Coulombs [C], E es la fuerza electromotriz del sistema medida en Volts [V] y t es el tiempo medido en segundos [s]. Además, como la corriente eléctrica es el flujo de carga se tiene que $i = \frac{dq}{dt}$. De esta manera, la ecuación (3) se puede escribir como

$$L\ddot{q} + R\dot{q} + \frac{q}{C} = E \tag{4}$$

o bien, derivando con respecto al tiempo

$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{i}{C} = \frac{dE}{dt}$$
 (5)

- (a) Utilice la ecuación (4) o (5) para plantear una equivalencia con el sistema mecánico masa amortiguador resorte.
- (b) Se tiene un sistema eléctrico que consta de una fuerza electromotriz $E(t) = 100 \sin(\omega t)[V]$, una resistencia de $R = 2[\Omega]$, un inductor de L = 0.1[H] y un condensador de C = 1/260[F]. Si la corriente y la carga inicial del condensador son cero, determinar la carga del condensador en el instante t > 0. ¿Para qué valor de ω el sistema manifiesta resonancia?

20/09/2022 RBP//rbp