Data Mining Exam

March 20, 2021

Kasper Rosenkrands

Aalborg University Denmark

Agenda

Clustering

Introduction

K-Means

Implementation of K-Means

An example of the K-Means algorithm

Hierarchical Clustering

Shrinkage

Classification

Trees

Support Vector Machines

Neural Networks

- ► Clustering is a way to categorize data to impose structure.
- ► A use case is recommender systems (Amazon, Spotify, Netflix), where a user is recommended items that bought/listened to/watched by other users with similar interests.

Clustering K-Means

Given $D = (x_1, ..., x_n)$ where $x_i \in \mathbb{R}^p$, $K \in \mathbb{N}$ and let $C_1, ..., C_K$ denote different groups of the x_i 's.

The K-Means algorithm tries to solve

$$\min_{C_1,\ldots,C_K} \left\{ \sum_{k=1}^K W(C_k) \right\},\tag{1}$$

where $W(C_k)$ denotes the **within cluster variation**, in other words the dissimilarity of the group.

The most common dissimilarity measure is the is the squared Euclidean distance

$$W(C_k) := \frac{1}{|C_k|} \sum_{i,j \in C} \sum_{i=1}^{p} (x_{i,j} - x_{i',j})^2.$$
 (2)

Clustering K-Means

You have reaced slide 18 lecture 2, keep going from there!

Clustering Implementation of K-Means

Figure: Iteration 01

Figure: Iteration 02

Figure: Iteration 03

Figure: Iteration 04

Figure: Iteration 05

Figure: Iteration 06

Figure: Iteration 07

Figure: Iteration 08

Figure: Iteration 09

Figure: Iteration 10

Figure: Iteration 11

Figure: Iteration 12

Figure: Iteration 13

Clustering Hierarchical Clustering

Kasper Rosenkrands | Data Mining Exam

Shrinkage

Shrinkage Ridge Regression

Shrinkage Elastic Net

Classification

Linear Discriminant Analysis (LDA)

Classification

Quadratic Discriminant Analysis (QDA)

Classification Naive Bayes

Trees Classification and Regression Trees (CART)

Kasper Rosenkrands | Data Mining Exam

Trees Bagging

Trees Random Forest

Kasper Rosenkrands | Data Mining Exam

Trees Boosting

Support Vector Machines

Neural Networks

