Gaspare FERRARO

CyberSecNatLab

Matteo ROSSI

Politecnico di Torino

Attacks on RSA

License & Disclaimer

License Information

This presentation is licensed under the Creative Commons BY-NC License

To view a copy of the license, visit:

http://creativecommons.org/licenses/by-nc/3.0/legalcode

Disclaimer

- We disclaim any warranties or representations as to the accuracy or completeness of this material.
- Materials are provided "as is" without warranty of any kind, either express or implied, including without limitation, warranties of merchantability, fitness for a particular purpose, and non-infringement.
- Under no circumstances shall we be liable for any loss, damage, liability or expense incurred or suffered which is claimed to have resulted from use of this material.

Goal

- Present different methods to exploit RSA algorithm based on:
 - Modulo
 - Oracles
 - Public/private exponents
 - External information (time and error)

Prerequisites

Lectures:

- > CR_0.1 Number Theory and modular arithmetic
- > CR_2.3 RSA

Outline

- > Attacks on the modulus
- Oracles
- Attacks on small public exponents
- Attacks on small private exponents (sketch)
- Implementation attacks (sketch)

Outline

- Attacks on the modulus
- Oracles
- Attacks on small public exponent
- Attacks on small private exponent (sketch)
- Implementation attacks (sketch)

Attacks on the modulus

- Recall that the security of RSA is based on the hardness of factoring integers
- The most natural way to attack it, is to directly factorize the modulus
- In this section, we describe the problem of factoring and some particularly weak instances regarding RSA

Factoring

- Direct factorization of composite numbers is still considered hard
- In general there is no chance to factor composite numbers with 1024 or more bits
- There are particular cases for which it is feasible, for example:
 - If the primes are reused
 - If all but (at most) one prime are small
 - > If two primes are very close

Direct Factorization

- One of the best known algorithms is the General Number Field Sieve (GNFS), but it is still NP
- An implementation can be found in the CADO-NFS software (http://cado-nfs.gforge.inria.fr/)
- Installation and use of CADO-NFS can be a little bit tedious and in general not required in CTFs

Direct Factorization

- Easier-to-use alternatives to CADO-NFS are:
 - > Factordb.com database of numbers and their factorization
 - just a database, not a factoring software
 - > The factor function in SageMath
 - Available also online (with limited execution time)
 - > The YAFU software
 - Available for Linux and Windows (https://github.com/DarkenCode/yafu)

A particularly easy case

- Let's write p = a + b and q = a b for integers a, b
- The RSA modulus becomes $N = a^2 b^2$, that is $a^2 N = b^2$
- If b is small enough, we can actually bruteforce on a or b to get the factorization
- This is called Fermat's factorization method, and it is implemented in YAFU as the "fermat" function

Common Prime Attack

- Lenstra et al. In 2012 published the paper "Ron was wrong, Whit is right", stating"two out of every one thousand RSA moduli that we collected offer no security"
- They showed that in real life it is common that two RSA keys share one of the prime factors

Common Prime Attack

- Why is this a problem?
 - Figure 6. Given $(N_1 = p \times q, N_2 = p \times r)$ we can factorize the two modules as $p = GCD(N_1, N_2)$
 - The Euclidean Algorithm runs in polynomial time!
 - \triangleright Once we have p, the two RSA keys are completely broken

Common Modulus Attack

- What happens when the entire modulus is reused?
- In practice, since the exponent is fixed to 65537, this is not an issue
- But what if the two exponents are different?

Bézout's Identity

- In order to understand the solution, we need the following:
 - **Bézout's Identity:** Let a and b be integers with greatest common divisor d. Then there exist integers x and y such that ax + by = d

Common Modulus Attack

- Suppose to have two keys (N, e_1) , (N, e_2) , for simplicity with $GCD(e_1, e_2) = 1$, and two ciphertexts coming from the same plaintext c_1, c_2
 - \triangleright By Bézout's identity, we can compute u and v such that:
 - $\triangleright u \times e_1 + v \times e_2 = 1$
 - \triangleright Computing $c_1^u + c_2^v \mod N$ reveals the plaintext!
 - Notice that this can be an issue even with $GCD(e_1,e_2)>1$ but small! (More on this in the Attacks on small public exponent section)

Outline

- > Attacks on the modulus
- Oracles
- Attacks on small public exponent
- Attacks on small private exponent (sketch)
- Implementation attacks (sketch)

Oracles

- In this section we analyze the security of RSA in the presence of oracles.
- This happens in particular with:
 - Encryption oracles
 - Decryption oracles
 - Padding oracles

Modulus Recovery

- Scenario 1: we have an encryption oracle that encrypt with a fixed secret key.
- Can we recover the modulus?
 - \triangleright Encrypt two chosen messages x and y
 - > Use the fact that the standard RSA exponent is 65537 to compute x^e and y^2 (without modular reduction)
 - Notice that $x^e Enc(x)$ is a multiple of N
 - > Compute $GCD(x^e Enc(x), y^e Enc(y))$ to find small multiple of N
 - Repeat with different values if necessary

Homomorphic properties of RSA

- Scenario 2: we have a decryption oracle that does not allow to decrypt messages containing sensible data.
- Can we decrypt an arbitrary ciphertext c?
 - Encrypt a chosen plaintext x (locally!)
 - \triangleright Ask the server to decrypt $x^e \times c$
 - Notice that $D(x^e \times c) = D(x^e) \times D(c) = x \times D(x)$ and recover the message
- This is called Homomorphic Property of RSA

LSB Oracles

- Scenario 3: we have a decryption oracle that gives a partial decryption: only the least significant bit.
- Can we recover the plaintext?
 - \triangleright The idea is to "binary search" the answer using the fact that N is odd
 - Decrypt $2^e \times c$: if the result is 1, then 2m > N and so N/2 < m < N, otherwise 0 < m < N/2
 - \triangleright Repeat with $4^e \times c$, $8^e \times c$ and so on
 - \triangleright We can recover the message in $O(\log N)$ steps
- This technique can be easily extended to leakages of the k least significant bits

Padding oracles (sketch)

- As CBC mode, also RSA padding schemes have been exploited in the past.
- The most famous attacks were:
 - Coppermith's attack against short padding schemes (1997)
 - Bleichenbacher's attack against PKCS#1 v1.5 (1998)
 - Manger's attack against PKCS#1 v2.0 (2001)

Outline

- Attacks on the modulus
- Oracles
- Attacks on small public exponent
- Attacks on small private exponent (sketch)
- Implementation attacks (sketch)

Attacks on small public exponent

In this section we show why the choice of e=3, while being the best computationally speaking, has been replaced by 65537

Direct cube root

- Scenario 1: we have an unpadded implementation of RSA with e=3 and an encrypted message that comes from a "short message"
- Can we decrypt it?
 - > If the number of bits in the message is less than $log_2 N / 3$, the modulus has no effect!
 - We can simply compute an integer cube root to find the message

Hastad's broadcast attack

- Scenario 2: 3 parties have 3 distinct RSA keys $(N_1, 3), (N_2, 3), (N_3, 3)$
- The same message is sent to them without padding
- Knowing the 3 ciphertexts can we decrypt them?
 - > This follows from a direct application of the Chinese Remainder Theorem: we can get $m^3 \mod N_1 \times N_2 \times N_3$
 - > Since $m < \min(N_1, N_2, N_3)$ this boils down again to an integer cube root
 - > This works also for exponents different from 3!

Outline

- Attacks on the modulus
- Oracles
- Attacks on small public exponent
- Attacks on small private exponent (sketch)
- Implementation attacks (sketch)

Attacks on small private exponent

- To reduce decryption time, we may wish to have small private exponents
 - > Wiener showed that if $3 \times d < N^{\frac{1}{4}}$ then d can be efficiently recovered
 - ightharpoonup Boneh and Durfee improved this bound to $d < N^{0.292}$
 - > The best bound is believed to be $d < N^{0.5}$, but no one proved it yet (it is an open research problem!)
 - The details on these attacks are tedious and outside the scope of this presentation

Outline

- Attacks on the modulus
- Oracles
- Attacks on small public exponent
- Attacks on small private exponent (sketch)
- Implementation attacks (sketch)

Implementation Attacks (Sketch)

- In this last section we turn our attention to an entirely different class of attacks: impementation attacks
- Rather than attacking the underlying structure of RSA, we attack its implementation

Timing Attacks (Sketch)

- P. Kocher in 1996 showed that it is possible to recover RSA private exponents by measuring the timing of the decryption
- The main problem is that the "repeated squaring" algorithm to compute exponentiations is slower when the exponent has more ones in its binary representation
- Kocher's exploitation technique is based on correlation between a locally generated sample set and observed values

Fault Injections (Sketch)

- Recall that exponentiation is usually done in two parts via Chinese Remainder Theorem
- Boneh et al. In 1997 showed that if there's a glitch on the decrypting computer that miscalculates exactly one of the two parts, then the modulus can be factored efficiently

Gaspare FERRARO

CyberSecNatLab

Matteo ROSSI

Politecnico di Torino

Attacks on RSA

