Задание номер 2.

Построить конечный автомат, используя прямое произведение

Ответом на данное задание является конечный автомат, распознающий описанный язык. Требуется, чтобы он был построен при помощи прямого произведения ДKA и его свойств.

1.
$$L_1 = \{w \in \{a, b\} \mid ||w|_a \ge 2 \land |w|_b \ge 2\}$$

Рассмотрим отдельно автоматы:

$$L = \{ w \in \{a,b\} \mid |w|_a \ge 2 \}$$

Построим ДКА для данного языка:

$$\mathcal{L} = \{ \ \mathbf{w} \in \{\mathbf{a},\!\mathbf{b}\} \quad | \quad | \ |\mathbf{w}|_b {\geq 2} \ \}$$

Построим ДКА для данного языка:

$$\begin{array}{llll} \mathbf{A}_1 &=& \{w \in \{\mathbf{a},\mathbf{b}\} & | & | & |\mathbf{w}|_A \geq \ 2 \ \} \ \Sigma_A &=& \{a,b\}, Q_A = q0, q1, q2, s_A = \{q0\}, T_A = \{q2\}. \\ \mathbf{B}_1 &=& \{w \in \{\mathbf{a},\mathbf{b}\} & | & |\mathbf{w}|_B \geq \ 2 \ \} \ \Sigma_B = \{a,b\}, Q_B = q0, q1, q2, s_B = \{q0\}, T_B = \{q2\}. \end{array}$$

Запишем прямое произведение A_{11} .

$$L_1 = A_1 * B_1$$

$$\sigma = \Sigma_A \cup \Sigma_B = \{a, b\}$$

$$Q = Q_A * Q_B = \{q0q0, q0q1, q0q2, q1q0, q1q1, q1q2, q2q0, q2q1, q2q2\}$$

$$s = \langle s_A, s_B \rangle = \{q0q0\}$$

$$T = \langle T_A, T_B \rangle = \{q2q2\}$$

L1	a	b
q0q0	q1q0	q0q1
q0q1	q1q1	q0q2
q0q2	q1q2	q0q2
q1q0	q2q0	q1q1
q1q1	q2q1	q1q2
q1q2	q2q2	q1q2
q2q0	q2q0	q2q1
q2q1	q2q1	q2q2
q2q2	q2q2	q2q2

2. $L_2 = \{w \in \{a,b\}^* \mid ||w| \ge 3 \land |w| \text{ nev\"{e}mhoe}\}$

Рассмотрим отдельно атоматы.

 $L = \{ w \in \{a,b\}^* \mid ||w| \geq 3 \}$ Построим ДКА для данного языка:

 $\mathbf{L} = \{ \ \mathbf{w} \in \{a,b\}^* \ | \ ||w| \$ нечётное $\}$ Построим ДКА для данного языка:

 $A_1 = \{w \in \{a,b\}^* \mid ||w| \geq 3\} \Sigma_A = \{a,b\}, Q_A = \{q0,q1,q2,q3\}, s_A = \{q0\}, T_A = \{q3\}.$ $B_1 = \{w \in \{a,b\}^* \mid ||w| \text{ neuëmnoe}\} \Sigma_B = \{a,b\}, Q_B = \{q0,q1\}, s_B = \{q0\}, T_B = \{q1\}.$

Запишем прямое произведение A₁₁.

$$\begin{split} & \mathbf{L}_1 = A_1 * B_1 \\ & \sigma = \Sigma_A \cup \Sigma_B = \{a,b\} \\ & \mathbf{Q} = \mathbf{Q}_A * Q_B = \{q0q0,q0q1,q1q0,q1q1,q2q0,q2q1,q3q0,q3q0\} \\ & \mathbf{s} = \langle \mathbf{s}_A, s_B \rangle = \{q0q0\} \\ & \mathbf{T} = \langle \mathbf{T}_A, T_B \rangle = \{q3q1\} \end{split}$$

L1	a	b
q0q0	q1q1	q1q1
q0q1	q1q0	q1q0
q1q0	q2q1	q2q1
q1q1	q2q0	q2q0
q2q0	q3q1	q3q1
q2q1	q3q0	q3q0
q3q0	q3q1	q3q1
q3q1	q3q0	q3q0

3. $L_3 = \{w \in \{a,b\}^* \mid ||w|_a$ чётно $\land |w|_b$ кратно трём $\}$

Рассмотрим отдельно атоматы.

 $L = \{ w \in \{a, b\}^* \mid ||w|_a$ чётно $\}$

Построим ДКА для данного языка:

 $\mathbf{L} = \{ \ \mathbf{w} \in \{a,b\}^* \ | \ ||w|_b \ \mathit{кратно mp\"{e}m} \}$ Построим ДКА для данного языка:

 $\mathbf{A}_1 = \{w \in \{a,b\}^* \mid ||w|_a$ чётно $\}\Sigma_A = \{a,b\}, Q_A = \{q0,q1\}, s_A = \{q0\}, T_A = \{q0$ $\{q0\}.$

 ${\bf \hat{B}}_1 = \{w \in \{a,b\}^* \mid ||w|_b$ кратно трём $\}\Sigma_B = \{a,b\}, Q_B = \{q0,q1,q2\}, s_B = \{q0,q1,q2\}, s$ $\{q0\}, T_B = \{q0\}.$

Запишем прямое произведение A₁₁.

$$\mathbf{L}_1 = A_1 * B_1$$

$$\Sigma = \Sigma_A \cup \Sigma_B = \{a, b\}$$

$$s = \langle s_A, s_B \rangle = \{q0q0\}$$

$$T = \langle T_A, T_B \rangle = \{q0q0\}$$

L1	a	b
q0q0	q1q0	q0q1
q0q1	q1q1	q0q2
q0q2	q1q2	q0q0
q1q0	q0q0	q1q1
q1q1	q0q1	q1q2
q1q2	q0q2	q1q0

4.
$$L_4 = \bar{L}_3$$

$$\begin{split} \mathbf{L}_4 &= A_1 * B_1 \\ \Sigma &= \Sigma_A \cup \Sigma_B = \{a,b\} \\ \mathbf{Q} &= \mathbf{Q}_A * Q_B = \{q0q0,q0q1,q0q2,q1q0,q1q1,q1q2\} \\ \mathbf{s} &= \langle \mathbf{s}_A,s_B \rangle = \{q0q0\} \\ \mathbf{T} &= \langle \mathbf{T}_A,T_B \rangle = \{q0q1,q0q2,q1q0,q1q1,q1q2\} \end{split}$$

L1	a	b
q0q0	q1q0	q0q1
q0q1	q1q1	q0q2
q0q2	q1q2	q0q0
q1q0	q0q0	q1q1
q1q1	q0q1	q1q2
q1q2	q0q2	q1q0

5.
$$L_5 = L_2 \backslash L_3$$

$$egin{aligned} \mathbf{L}_5 &= L_2 * L_4 \\ \mathbf{\Pi} \mathbf{K} \mathbf{A} \ \mathbf{\Pi} \mathbf{\pi} \ \mathbf{L}_2 \end{aligned}$$

ДКА для L_4


```
\begin{split} & \mathcal{L}_5 = L_2 * L_4 \\ & \sigma = \Sigma_A \cup \Sigma_B = \{a,b\} \\ & \mathcal{Q} = \mathcal{Q}_A * \mathcal{Q}_B = \{ \\ & q0q0, q0q1, q0q2, q0q3, q0q4, q0q5, \\ & q1q0, q1q1, q1q2, q1q3, q1q4, q1q5, \\ & q2q0, q2q1, q2q2, q2q3, q2q4, q2q5, \\ & q3q0, q3q1, q3q2, q3q3, q3q4, q3q5, \\ & q4q0, q4q1, q4q2, q4q3, q4q4, q4q5, \\ \} \\ & \mathbf{s} = <\mathbf{s}_A, s_B > = \{q0q0\} \\ & \mathbf{T} = <\mathbf{T}_A, T_B > = \{q3q1, q3q2, q3q3, q3q4, q3q5\} \end{split}
```

L1	a	b
q0q0	q1q3	q1q1
q0q0 q0q1	q1q3 q1q0	q1q1
q0q1 q0q2	q1q0 q1q5	q1q4 q1q0
q0q3	q1q2	q1q3
q0q4	q1q1	q1q5
q0q5	q1q4	q1q2
q1q0	q1q3	q1q1
q1q1	q1q0	q1q4
q1q2	q1q5	q1q0
q1q3	q1q2	q1q3
q1q4	q1q1	q1q5
q1q5	q1q4	q1q2
q2q0	q1q3	q1q1
q2q1	q1q0	q1q4
q2q2	q1q5	q1q0
q2q3	q1q2	q1q3
q2q4	q1q1	q1q5
q2q5	q1q4	q1q2
q3q0	q1q3	q1q1
q3q1	q1q0	q1q4
q3q2	q1q5	q1q0
q3q3	q1q2	q1q3
q3q4	q1q1	q1q5
q3q5	q1q4	q1q2
q4q0	q1q3	q1q1
q4q1	q1q0	q1q4
q4q2	q1q5	q1q0
q4q3	q1q2	q1q3
q4q4	q1q1	q1q5
q4q5	q1q4	q1q2

