Wat is de formule van het terbiumsulfaat waarin de terbiumionen hetzelfde oxidatiegetal bezitten als in $Tb_2(HPO_4)_3$?

ANTWOORD

- O Tb₂SO₄
- O TbSO₄
- Tb₂(SO₄)₃
- \bigcirc Tb(SO₄)₂

$$80^{3-} \rightarrow \text{HHPO}_{4}^{2-}$$
 $\Rightarrow Tb_{2} (\text{HPO}_{4})_{3}$
 $= 2 \times 3$
 $= 3 \times 4$
 $\Rightarrow Tb_{3} (\text{SO}_{4})_{3}$

In een mengsel van de isotopen ⁵⁴Fe en ⁵⁸Fe, is de verhouding

$$\frac{\text{aantal neutronen}}{\text{aantal protonen}} = \frac{29}{26}$$

Wat is het percentage ⁵⁴Fe in dat isotopenmengsel?

$$54$$
 Fc: $54 - 26 = 28 \text{ M}$
e, is de verhouding 58 Fc: $58 - 26 = 32 \text{ M}$

$$28 = 29 - 1$$
 $(29 - 1)x + (29 + 3)y = 29$
 $32 = 29 + 3$ $29x - x + 29y + 3y = 29$

ANTWOORD

$$-x+3y=0$$

$$x+y=1$$

$$3x+y=1$$

In de volgende moleculen bezitten alle atomen een edelgasconfiguratie.

Welke van deze moleculen heeft in de gasfase een lineaire structuur en is ook polair?

ANTWOORD

- Cl₂O met O als centrale atoom
- N₂O met een van de N-atomen als centrale atoom
- OF₂ met O als centrale atoom
- CS₂ met C als centrale atoom

S = C = S -> linear man perfect symmetrish -> meestal niet golan

Men brengt 1,0 mol Cu in 200 mL H_2SO_4 -oplossing met $c = 6,0 \text{ mol } L^{-1}$.

Door verwarming van dit mengsel wordt er SO_2 -gas gevormd volgens de aflopende reactie:

$$Cu_{(s)} + 2 H_2SO_{4 (aq)} \rightarrow CuSO_{4 (aq)} + SO_{2 (g)} + 2 H_2O_{(l)}$$

$$2 \mu d$$

Welke hoeveelheid SO₂ wordt er gevormd?

ANTWOORD

O 0,40 mol

- O 0,80 mol
- O 1,00 mol

2 mol Kr. Son -> 1 mol 802 0,28.6 mol/ = 1,2 mol 1/2 Son

1,2 2 0,6 mol 502

De meest gangbare wetenschappelijke naam voor lachgas is distikstofmonoxide.

Van welke stof bevat de gegeven massa evenveel moleculen als 22 g lachgas?

suol z getal van Avogadio # moleane

N20 -> 2.14 + 16 = 44 / mol

-> 229 HzO -> = mol HzB

ANTWOORD

- 40 g argongas
- 34 g ammoniakgas
- 32 g zuurstofgas

14 g stikstofgas 40 g An > 40 9/mol - 1 mol

34 g HHz -> 14 * 5.1 = 17 9/mol ->

32 g O2 -> 2. Mb = 32 -> 1 mol

14 g H2 -> 2.14 > 28 -> 1/2 mol

Gegeven is een evenwichtsreactie waarvan de reactie naar rechts endotherm is.

Welke uitspraak is correct wat betreft de activeringsenergieën van deze evenwichtsreactie?

ANTWOORD

- O Voor de reactie naar rechts is de activeringsenergie dezelfde als voor de reactie naar links.
- Voor de reactie naar rechts is de activeringsenergie groter dan de reactie-energie.
- Onder invloed van een katalysator wordt de O activeringsenergie verlaagd voor de reactie naar rechts en verhoogd voor de reactie naar links.
- O Door verhoging van de temperatuur neemt de activeringsenergie voor beide reacties toe.

Gegeven is de evenwichtsreactie: NiO $_{(s)}$ + CO $_{(g)}$ \rightleftharpoons Ni $_{(s)}$ + CO_{2 $_{(g)}$}

De waarde van K_c voor deze reactie is 4,54 · 10³ bij 936 K en 1,58 · 10³ bij 1125 K.

Is de vorming van vast nikkel volgens deze reactie exo- of endotherm en waaruit besluit je dat?

ANTWOORD

- O Exotherm omdat bij verhoging van de temperatuur het evenwicht naar rechts verschuift.
- O Endotherm omdat bij verhoging van de temperatuur het evenwicht naar rechts verschuift.
- Exotherm omdat bij verhoging van de temperatuur het evenwicht naar links verschuift.
- O Endotherm omdat bij verhoging van de temperatuur het evenwicht naar links verschuift.

(N:0] [(0)] [Ni][(O2] < [NiO](CO] endobleme lat = lits exolorne lat = reelts

Wat geldt voor elke waterige oplossing bij 25 °C?

ANTWOORD

O $[H_3O^+] = [OH^-]$

x > oplowing! -> ale the der lept dit wel

 $pH = 14 + log[OH^-]$

O $[OH^-] = 10^{-14} \times [H_3O^+]$

O $[H_3O^+] = 10^{pH}$

PH + POH 2/14

15 - 69 [OH]

pM-logCOMJ=14 pH=14+logCOM-J

Gegeven is de niet-uitgebalanceerde redoxreactie:

...
$$ClO_3^-(aq) + ... I_{2(aq)} + ... H_2O_{(I)} \rightarrow ... IO_3^-(aq) + ... Cl^-(aq) + ... H^+(aq)$$

Hoeveel elektronen worden er in totaal uitgewisseld wanneer deze redoxreactie met zo klein mogelijke gehele coëfficiënten uitgebalanceerd wordt?

ANTWOORD

- 0 6
- O 12
- O 24
- 30

 $Clo_3 \rightarrow Cl : + \sqrt{\rightarrow} - I : + 6e$ $T_{\ell} \rightarrow TO_3 : O \rightarrow + V : -5e$ La leleinte genneen veel voord vous 6 en 5

De structuurformule van 3,4dimethoxyfenylpyrodruivenzuur wordt hieronder afgebeeld.

Tot welke verschillende klassen organische verbindingen behoort deze stof op basis van de aanwezige functionele groepen?

ANTWOORD

- O Alcohol, ether en keton
- O Aldehyde, carbonzuur en ester
- O Alcohol, ester en ether

geen ideen waaron?