[Max. Marks: 100]

Total No. of Printed Pages:2

[Duration: Three Hours]

F.E. (Semester- II) (Revised Course 2007-08) EXAMINATION Aug/Sept 2019 Basic Mechanical Engineering

Instructions :-		 Attempt in all five questions. At least one question to be attempted from each module. 	
		ii) Assume missing data, if any with proper justification.	
		iii) Illustrate with neat sketches where appropriate.	
		MODULE -I	
1	a)	State the first law of thermodynamics. List out its limitations and explain how they are overcome in second law.	5
	b)	Derive the expression for the first law of thermodynamics applied to a condenser.	5
	c)	Plot the following processes on a P-V diagram:	5
		i) Constant volume	3
		ii) Constant pressure	
		iii) Isothermal process	
		iv) Adiabatic process	
		v) Polytropic process	
	d)	A heat pump while operating in a cycle gives the following information:	5
		• Heat added = 150 kJ	
		• Heat rejected = 1000 kJ	
	8	• Cyclic work transfer = 800 kJ	
		Apply the first and second law to this heat pump and report your findings.	
2	a)	Prove that $COP_{HP} = COP_{ref} = 1$, where COP is coefficient of Performance, HP is heat pump and ref is refrigerator.	4
	b)	Answer the following:	12
		i) List down the assumptions made for analysis of air standard cycle.	
33 36		ii) Define:	
	8,8	a. Efficiency of heat engine	
		b. Coefficient of performance of heat pump and refrigerator	
		iii) Define the terms compression ratio, clearance volume, swept volume and total volume.	
S 15 5 5 6 6		iv) Differentiate between work transfer and heat transfer	

Paper / Subject Code: FE214 / Basic Mechanical Engineering

FE214

	c)	What is first law of thermodynamics? Write down the expression for the first law applied to:	4
		i) A cycle	
		ii) A process MODULE -II	
3	a)	An air standard otto cycle has a compression ratio of 8. At the start of the compression process the temperature is 25°C and the pressure is 1.5 bar. If the maximum temperature of the cycle is 1000 K, calculate i) Net output	8
		ii) Thermal efficiency. Take $C_v = 0.718$	
	b)	Distinguish between two stroke and four stroke engine.	6
	c)	Explain with neat sketch the working principle of steam power plant.	6
4	a)		6
	b)	What is the function of carburetor & fuel pump I.C. Engine?	
	c)		6 8
		MODULE -III	
5	b)	With a neat sketch, explain the construction & working of a single plate clutch.	6 6 8
6	a)	Write a short note on emission control in automobiles.	6
	b)	Explain the construction and working of differential in an automobile.	8
\$		MODULE- IV	
7	b)	With neat sketches, explain direct and indirect extrusion processes.	6 8 6
8	a)	Describe the relative motion between the wok piece and the tool with neat sketches for the following process: i) Milling ii) Drilling iii) Knurling iv) Taper turning	8
	b)	With neat sketches explain the hot and cold chamber die casting processes.	8
) (c)	Explain the difference between soldering and brazing.	4