Práctica 2. Redes neuronales

Sistemas Inteligentes – Ester Martínez Martín Curso 2019/2020

Objetivo

Diseñar una red neuronal que determine el sexo de las personas que aparecen en una imagen

Qué vamos a usar

female

female

female

female

female

female

female

171	159	146	145	139	130	0	0	0	0
165	160	154	8	9	3	2	108	50	33
167	160	11	22	4	135	0	101	49	35
172	166	15	110	184	161	83	37	52	36
171	165	2	109	21	94	44	50	49	35
158	164	159	116	168	144	144	53	38	67
172	165	60	70	116	142	135	49	22	43
69	64	66	68	122	107	55	45	20	75
66	69	75	74	67	154	42	42	21	87
57	83	77	70	80	75	40	43	16	111

en la capa de entrada = Número de píxeles

Número de

neuronas

en la imagen

40 43

16 111

Clase DataSet

```
// Creación de un objeto de la clase Dataset DataSet dataset;
```

// Indicamos el nombre del fichero que contiene nuestro dataset

dataset.set_data_file_name("nuestraDataset.d
at");

// Indicamos cómo se han separado los datos

Clase Dataset - Modificar atributos

```
Variables* variables pointer =
dataset.get variables pointer();
variables pointer->set name(index Column,
"NameAtribute");
variables pointer->set units(index_Column,
"AtributeUnit"); // Ej. "centimeters"
variables pointer->set use(index Column,
AtributeUse); // Variables::Input - Variables::Target
```

Clase Dataset - Visualizar atributos

```
const Matrix<string> inputs_information = variables_pointer-
>get_inputs_information();
const Matrix<string> targets_information = variables_pointer-
>get_targets_information();
```

```
cout << "Input information" << endl << inputs_information << endl; cout << "Target information" << endl << targets_information << endl;
```

Clase Dataset - Dividir datos

```
Instances* instances_pointer =
dataset.get_instances_pointer();
```

```
// %training, %selection, %test instances_pointer->split_random_indices(0.7, 0.15, 0.15);
```

Clase NeuralNetwork

```
// Crea una red neuronal con un perceptron de 2 capas
NeuralNetwork neural_network(num_input, num_neuronas_oculta,
num_output);
```

```
// Indicamos las entradas y las salidas
Inputs* inputs_pointer = neural_network.get_inputs_pointer();
inputs_pointer->set_information(inputs_information);
Outputs* outputs_pointer = neural_network.get_outputs_pointer();
outputs_pointer->set_information(targets_information);
```

Clase NeuralNetwork

NeuralNetwork neural_network;

```
MultilayerPerceptron multLayer;
Vector<int> initialiceMultPercept;
initialiceMultPercept.push_back(num_input);
initialiceMultPercept.push_back(num_neuronas_ocultas_capaN);
initialiceMultPercept.push_back(num_ouput);
```

```
neural_network.set(multLayer);
```

Cómo lo vamos a hacer Clase NeuralNetwork

```
neural_network.construct_scaling_layer();
neural_network.construct_unscaling_layer();
```


Cómo lo vamos a ha $\int_{\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}} for j = 1, ..., K.}$

Clase NeuralNetwork

// Para el reconocimiento de patrones
neural_network.construct_probabilistic_layer();
ProbabilisticLayer* probabilistic_layer_pointer =
neural_network.get_probabilistic_layer_pointer();
probabilistic_layer_pointer>set_probabilistic_method(ProbabilisticLayer::Softmax);

Probabilities

Training Strategy

- Estrategia de entrenamiento
 - Se encarga del entrenamiento de la red
 - Está compuesta de dos clases:
 - LossIndex: tipo de error
 - TrainingAlgorithm: tipo de entrenamiento
 - La elección del tipo de error y el de entrenamiento dependen de la aplicación

Training Strategy

TrainingStrategy training_strategy(&neural_network, &dataset);

Por defecto:

LossIndex - NORMALIZED_SQUARED_ERROR TrainingAlgorithm - QUASI_NEWTON_METHOD

Training Strategy

TrainingStrategy training_strategy(&neural_network, &dataset);

Para cambiarlos:

```
TipoESTRATEGIA* ptro =
training_strategy.get_ESTRATEGIA_pointer();
QuasiNewtonMethod* quasi_Newton_method_pointer =
training_strategy.get_quasi_Newton_method_pointer();
```

Training Algorithm - Opciones

- GRADIENT_DESCENT
- CONJUGATE_GRADIENT
- NEWTON METHOD
- QUASI_NEWTON_METHOD
- LEVENBERG_MARQUARDT_ALGORITHM

Training Algorithm -

Gradient_Descent

El descenso de gradiente es un algoritmo de optimización iterativo de primer orden para encontrar el mínimo de una función muy utilizado en Machine Learning. Para encontrar el mínimo local de una función que utiliza el descenso de

gradiente, uno tor gradiente (o gradiente punto actual

Training Algorithm -

Conjugate_gradient

El método de gradiente conjugado es un algoritmo para la solución numérica de sistemas particulares de ecuaciones lineales, es decir, aquellos cuya matriz es simétrica y positiva definida. El método de gradiente conjugado a menudo se implementa como un algoritmo iterativo, aplicable a sistemas dispersos que son demasiado grandes para ser manejados por una implementación directa u otros métodos directos como la descomposición de Cholesky. Los

Training Algorithm -

Newton_method

El método de Newton es un método iterativo para encontrar las raíces de una función diferenciable f, que son soluciones a la ecuación f(x) = 0. Más específicamente, en la optimización, el método de Newton se aplica a la derivada f' de la función doble diferenciable f para encontrar las raíces de la derivada (soluciones a f'(x) = 0), también conocidas como los puntos estacionarios de f. Estas soluciones pueden ser mínimas, máximas o puntos de silla de montar.

Training Algorithm -

Quasi_Newton_method

Los métodos cuasi-Newton son métodos que se usan para encontrar ceros o máximos y mínimos locales de funciones, como una alternativa al método de Newton. Se pueden usar si el jacobiano o el hessiano no están disponibles o son demasiado caros para calcularlos en cada iteración. El método de Newton "completo" requiere que el jacobiano busque ceros, o la arpillera para encontrar los extremos.

Training Algorithm -

Levenberg_Marquardt_Algorithm

El algoritmo de Levenberg-Marquardt (LMA o simplemente LM) se utiliza para resolver problemas de mínimos cuadrados no lineales. Estos problemas de minimización surgen especialmente en el ajuste de curvas de mínimos cuadrados.

Loss Index - Opciones

- SUM SQUARED ERROR
- MEAN_SQUARED_ERROR
- ROOT MEAN SQUARED ERROR
- NORMALIZED SQUARED ERROR
- MINKOWSKI_ERROR
- WEIGHTED_SQUARED_ERROR
- ROC AREA ERROR
- CROSS_ENTROPY_ERROR

Training Strategy

Para entrenar la red:

```
TrainingStrategy::Results results =
training_strategy.perform_training();
```

Model Selection

La selección del modelo se aplica para encontrar una red neuronal con una topología que minimice el error para nuevos datos. Hay dos formas de obtener una topología óptima:

la selección de orden: obtiene el

Model Selection

 Construcción del modelo de selección ModelSelection model_selection(&training_strategy);

 La selección de modelo por defecto consiste en un algoritmo de

Model Selection

 Construcción del modelo de selección ModelSelection model_selection(&training_strategy);

Para cambiar la estrategia de selección:

Input Selection - Opciones

- GROWING_INPUTS
- PRUNING_INPUTS
- GENETIC_ALGORITHM

Order Selection - Opciones

- INCREMENTAL ORDER
- GOLDEN SECTION
- SIMULATED_ANNEALINGGENETIC_ALG ORITHM

Model Selection

Ejecutar el modelo de selección
// Selección de entradas
model_selection.perform_inputs_selectio
n();

// Número de neuronas del percepton model_selection.perform_order_selectio

Testing Analysis

El propósito de las pruebas es comparar los resultados de la red neuronal con los objetivos en un conjunto de pruebas independientes. Esto mostrará la calidad del modelo antes de su implementación.

Testing Analysis

Constructor
TestingAnalysis
testing_analysis(&neural_network, &dataset);

Problemas de clasificación – Regresión lineal

Vector<TestingAnalysis::LinearRegressionAnaly

Testing Analysis

Constructor
TestingAnalysis
testing_analysis(&neural_network, &dataset);

Problemas de reconocimiento de patrones – Matriz de confusión Matrix<size_t> confusion_matrix =

Entrega

24 de mayo de 2020

Código fuente Memoria