Estructuras algebraicas

26 de abril de 2007

Grupos

Un **grupo** es un caso particular de una estructura algebraica. Veremos que esta noción rescata ampliamente las propiedades de estructuras tales como $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$ y $(\mathbb{R}, +)$.

Dedicaremos una sección especial a grupos, debido a que las particularidades que poseen nos permiten conocer muy bien sus propiedades, las cuales son bastantes.

Grupo

Sea (G,*) una estructura algebraica. Diremos que es un grupo si

- * es asociativa.
- \blacksquare (G, *) posee neutro $e \in G$.
- Todo elemento $x \in G$ posee inverso $x^{-1} \in G$.

Además, si * es conmutativa, llamaremos a (G, *) grupo abeliano.

A modo de ejemplo, notemos que (\mathbb{R},\cdot) no es un grupo pues 0 no posee inverso. Sin embargo, $(\mathbb{R}\setminus\{0\},\cdot)$ sí es un grupo.

Si (G, *) es un grupo, entonces cumple las siguientes propiedades (las cuales ya vimos):

- El inverso de cada elemento es único
- 2 $(\forall x \in G) (x^{-1})^{-1} = x$
- $(\forall x, y \in G) (x * y)^{-1} = y^{-1} * x^{-1}$
- Todo elemento $x \in G$ es cancelable.

Grupos: Propiedades

Si (G, *) es un grupo, las siguientes propiedades se agregan a las mencionadas:

Propiedades

Dado (G, *) grupo, entonces:

Para todo $a, b \in G$, las ecuaciones

$$a * x_1 = b$$

 $x_2 * a = b$

tienen solución única. Ellas son $x_1 = a^{-1} * b$ y $x_2 = b * a^{-1}$

2 El único elemento idempotente de G es su neutro.

Demostración.

11 Consideremos sólo el caso de la primera ecuación. Como G es grupo, a posee neutro a^{-1} . Luego tendremos:

$$a^{-1} * (a * x_1) = a^{-1} * b \Leftrightarrow (a^{-1} * a) * x_1 = a^{-1} * b$$
 Por asociativida.
 $\Leftrightarrow e * x_1 = a^{-1} * b$ Por definición de inverso.
 $\Leftrightarrow x_1 = a^{-1} * b$ Por definición de neutro.

Y esta última expresión es única, pues a^{-1} es único.

2 Si a es un elemento idempotente, satisface: a * a = a.
Pero esto es precisamente una ecuación como la anterior (con b = a y a nuestra incógnita). Luego sabemos que la solución es única y es:

$$a = a^{-1} * a = e$$
.

Subgrupos

Subgrupo

Sea (G, *) un grupo, y sea $H \subseteq G$, $H \neq \emptyset$. Diremos que H es **subgrupo** de G si (H, *) también es grupo.

Si consideramos el grupo $(\mathbb{R},+)$, entonces un posible subgrupo es $(\mathbb{Q},+)$. También tenemos a $(\{-1,1\},\cdot)$ como subgrupo de $(\mathbb{R}\setminus\{0\},\cdot)$.

Todo grupo (G, *) tiene dos subgrupos a los cuales llamaremos **triviales**:

$$(G,*)$$
 y $(\{e\},*)$

donde e es el neutro de (G, *).

Propiedades

Sea (G,*) un grupo, y (H,*) un subgrupo de él. Un par de propiedades básicas que salen de ver los elementos de H como elementos de G:

- 11 Si $e \in G$ es el neutro de G y $e_H \in H$ es el neutro de H, entonces $e = e_H$.
- 2 Además, sea $x \in H$. Si $x^{-1} \in G$ es el inverso de x en (G, *) y $\tilde{x} \in H$ es el inverso de x en (H, *), entonces $x^{-1} = \tilde{x}$.

Estas propiedades quedan propuestas como ejercicios.

Subgrupos: Caracterización

En principio, si uno quisiera demostrar que un conjunto $H \subseteq G$, $H \neq \emptyset$, forma un subgrupo de (G, *), tendría que demostrar que (H, *) cumple todas las propiedades de la definición de grupo, además de mostrar (el cual es el punto de partida) que

$$(\forall x, y \in H) \ x * y \in H$$

A esta propiedad se le conoce como **cerradura**, y es lo que nos permite decir que * es una ley de composición interna también en H.

La siguiente es una forma compacta para determinar si (H, *) es subgrupo de (G, *).

Teorema

Sea $H \neq \emptyset$. Entonces

$$(H,*)$$
 es subgrupo de $(G,*) \iff (\forall x,y \in H) \ x * y^{-1} \in H$

Demostración.

La implicancia \Rightarrow se verifica directamente. Sin embargo, la propiedad fuerte es la implicancia \Leftarrow . Para demostrarla, supongamos que $\forall x, y \in H, \ x * y^{-1} \in H$. Debemos probar que (H, *) es grupo. Notemos que la asociatividad se hereda automáticamente del hecho que (G, *) sea grupo. Nos basta entonces probar que:

- \blacksquare (H, *) es una estructura algebraica (cerradura de * en H).
- \blacksquare (H, *) admite un neutro (que por las propiedades anteriores, sabemos que debe ser el neutro de G).
- Todo elemento en *H* tiene inverso **en** *H*.

Continúa...

Subgrupos: Caracterización

Continuación demostración.

Probaremos estas afirmaciones en un orden distinto:

■ Veamos primero que, si $e \in G$ es el neutro de (G, *), entonces $e \in H$. Con esto e será el neutro de H. En efecto, como $H \neq \emptyset$, tomando $h \in H$, por hipótesis se tiene que

$$h * h^{-1} = e \in H$$
.

■ Ahora probemos que dado $h \in H$, éste admite un inverso en H. Sabemos que h^{-1} es inverso de h, pero sólo para (G, *). O sea, no sabemos si pertenece a H. Pero usando la hipótesis con x = e e y = h, tenemos que:

$$e * h^{-1} \in H \Leftrightarrow h^{-1} \in H$$
.

■ Finalmente, probamos la cerradura de * en H.

Dados $x, y \in H$. Por lo que vimos antes, $y^{-1} \in H$. Así que aplicando la hipótesis para x e y^{-1} , tenemos que:

$$\mathbf{x} * (\mathbf{y}^{-1})^{-1} \in \mathbf{H} \Leftrightarrow \mathbf{x} * \mathbf{y} \in \mathbf{H}.$$

Concluímos de esta manera que (H, *) es subgrupo de (G, *).

Ejemplo: \mathbb{Z}_n como grupo

Propiedad

Sea $n \ge 2$. Entonces $(\mathbb{Z}_n, +_n)$ es un grupo.

Demostración.

Demostraremos que $+_n$ es asociativa, y que posee neutro. Las otras propiedades necesarias quedan de ejercicio para el lector.

Asociatividad: Sean $[x]_n, [y]_n, [z]_n \in \mathbb{Z}_n$. Se tiene que

$$([x]_n +_n [y]_n) +_n [z]_n = [x + y]_n +_n [z]_n$$

= $[(x + y) + z]_n$

Como + es asociativa en \mathbb{Z} y $x, y, z \in \mathbb{Z}$ entonces

$$(x+y)+z=x+(y+z)$$

Entonces

$$([x]_n +_n [y]_n) +_n [z]_n = [x + (y + z)]_n$$

= $[x]_n +_n [y + z]_n$
= $[x]_n +_n ([y]_n +_n [z]_n)$

Continúa...

Ejemplo: \mathbb{Z}_n como grupo

Continuación demostración.

Neutro: Demostraremos que $[0]_n \in \mathbb{Z}_n$ es neutro para $+_n$.

En efecto, si $[x]_n \in \mathbb{Z}_n$

$$[x]_n +_n [0]_n = [x + 0]_n = [x]_n$$

 $[0]_n +_n [x]_n = [0 + x]_n = [x]_n$

Teorema de Lagrange

Sea (G, *) un grupo. Diremos que es un grupo **finito** si G es un conjunto finito. A |G| se le llama **orden** del grupo. Por ejemplo, \mathbb{Z}_3 es un grupo finito de orden 3.

Teorema de Lagrange

Sea (G, *) un grupo finito y (H, *) un subgrupo cualquiera de él. Entonces |H| divide a |G|.

Demostración.

Definamos primero, dado $g \in G$, la **traslación izquierda** de H como el conjunto $g * H = \{g * h \mid h \in H\}$. Notemos que dado que g es cancelable, |H| = |g * H|.

Además, definimos las siguiente relación \mathcal{R} sobre G por:

$$g_1\mathcal{R}g_2 \Leftrightarrow (\forall g_1,g_2 \in G) g_2 \in g_1 * H.$$

Lo cual equivale a $(\exists h \in H)$ $g_2 = g_1 * h$ y también a $g_1^{-1} * g_2 \in H$ (Verifíquelo). Se tiene que \mathcal{R} es una relación de equivalencia. En efecto:

- Refleja. Sea $g \in G$. Como H es subgrupo, $e \in H$ y g = g * e, pero esto es exactamente que gRg.
- Simétrica. Sean $g_1, g_2 \in G$ tales que $g_1 \mathcal{R} g_2 \Leftrightarrow g_1^{-1} * g_2 \in H$. Pero como H es subgrupo, el inverso de este último término también pertence a H. Es decir:

$$(g_1^{-1} * g_2)^{-1} = g_2 - 1 * g_1 \in H.$$

Así, $g_2 \mathcal{R} g_1$. Continúa...

Teorema de Lagrange

Continuación demostración.

■ Transitiva. Supongamos que $g_1 \mathcal{R} g_2$ y $g_2 \mathcal{R} g_3$. Esto se traduce en que

$$g_1^{-1} * g_2, \ g_2^{-1} * g_3 \in H.$$

Y como *H* es cerrado para *, se deduce que:

$$(g_1^{-1} * g_2) * (g_2^{-1} * g_3) = g_1^{-1} * g_3 \in H.$$

De donde se conlcluye que $g_1 \mathcal{R} g_3$.

Ahora, dado que \mathcal{R} es de equivalencia podemos calcular, para $g \in G$:

$$[g]_{\mathcal{R}} = \{ g' \in G \mid g\mathcal{R}g' \}$$

= $\{ g' \in G \mid (\exists h \in H) \ g' = g * h \}$
= $g * H$.

Luego, $|[g]_{\mathcal{R}}| = |H|$.

Sean entonces $[g_1]_{\mathcal{R}}$, $[g_2]_{\mathcal{R}}$, ..., $[g_s]_{\mathcal{R}}$ las clases de equivalencia de \mathcal{R} .

Sabemos que estas clases conforman una partición de G, es decir: $G = [g_1]_{\mathcal{R}} \cup [g_2]_{\mathcal{R}} \cup \cdots \cup [g_s]_{\mathcal{R}}$. Luego:

$$|G| = \sum_{i=1}^{s} |[g_i]_{\mathcal{R}}|$$
$$= \sum_{i=1}^{s} |H| = s|H|.$$

De donde se concluye el resultado.

Ejemplo: diferencia simétrica

Antes de seguir:

Observación

Como implicancia de este teorema, tenemos por ejemplo que $(\mathbb{Z}_3, +_3)$ sólo puede tener subgrupos de orden 1 ó 3. Si $(H, +_3)$ es un subgrupo de orden 1, entonces debe tenerse que $H = \{[0]_3\}$, y si $(H, +_3)$ es un subgrupo de orden 3, entonces necesariamente $H = \mathbb{Z}_3$ (ejercicio para el lector). Es decir, los únicos subgrupos que tiene $(\mathbb{Z}_3, +_3)$ son los triviales. Este resultado es también válido para $(\mathbb{Z}_p, +_p)$ con p primo.

Sea A un conjunto no vacío. Veamos que $(\mathcal{P}(A), \Delta)$ es un grupo abeliano, donde Δ denota la diferencia simétrica

$$X\Delta Y = (X \setminus Y) \cup (Y \setminus X) = (X \cup Y) \setminus (X \cap Y)$$

Demostración.

Es claro que Δ es una ley de composición interna en $\mathcal{P}(A)$. De nuestro estudio de teoría de conjuntos, sabemos que Δ es asociativa y conmutativa.

Si $X \subseteq A$, entonces $X \Delta \emptyset = (X \cup \emptyset) \setminus (X \cap \emptyset) = X \setminus \emptyset = X$. Concluimos así que \emptyset es el neutro de Δ .

Además, notando que $X \triangle X = (X \setminus X) \cup (X \setminus X) = \emptyset \cup \emptyset = \emptyset$, obtenemos que todo $X \in \mathcal{P}(A)$ es invertible, y que $X^{-1} = X$ (es decir, cada elemento es su propio inverso).

Morfismos

Sean (A, *) y (B, \triangle) dos estructuras algebraicas, y sea $f : A \to B$ una función. Sabemos que si $x, y \in A$ entonces $f(x), f(y) \in B$. Como sobre A tenemos definida una operación *, podemos hacernos la pregunta: ¿cuánto vale f(x * y)?

Los morfismos serán las funciones de A en B tales que f(x*y) se construye operando f(x) y f(y), es decir tales que $f(x*y) = f(x) \triangle f(y)$ (recordemos que como f(x), $f(y) \in B$, entonces la operación que podemos aplicarles no es *, sino \triangle).

Morfismo

Una función $f: A \rightarrow B$ es un **homomorfismo**, o simplemente un **morfismo**, si

$$(\forall x, y \in A) \ f(x * y) = f(x) \triangle f(y)$$

Isomorfismo

Si $f: A \rightarrow B$ es un morfismo, y además es una función biyectiva, entonces le llamaremos **isomorfismo**.

Si existe un isomorfismo $f: A \to B$, diremos que (A, *) y (B, \triangle) son **estructuras isomorfas**, lo cual denotaremos $(A, *) \cong (B, \triangle)$. \cong resulta ser una relación de equivalencia entre estructuras algebraicas con una operación.

Morfismos

Propiedad

$$(\mathbb{R}_+,\cdot)\cong (\mathbb{R},+)$$

Demostración.

Consideremos la función

$$\begin{array}{ccc} \log: & \mathbb{R}_+ & \to & \mathbb{R} \\ & x & \to & \log(x) \end{array}$$

 \log es una función biyectiva, y cumple $\log(x \cdot y) = \log(x) + \log(y)$ para $x, y \in \mathbb{R}_+$.

Morfismos sobreyectivos

Propiedades

Sean (A, *) y (B, \triangle) estructuras algebraicas, y sea $f : A \rightarrow B$ un morfismo sobreyectivo. Se tiene que:

- Si * es asociativa, entonces △ también.
- 2 Si ∗ es conmutativa, entonces △ también.
- 3 Si (A, *) tiene neutro $e \in A$, entonces (B, \triangle) también tiene neutro, el cual es f(e).
- Sea (A, *) es asociativa con neutro e, y sea $a \in A$. Si a posee inverso a^{-1} , entonces f(a) también posee inverso, y más aún, $(f(a))^{-1} = f(a^{-1})$.

Demostración.

Demostraremos lo segundo.

Sean $b_1, b_2 \in B$. Como f es sobreyectiva, entonces existen $a_1, a_2 \in A$ tales que

$$f(a_1) = b_1 \quad \wedge \quad f(a_2) = b_2$$

Entonces

$$b_1 \triangle b_2$$
= $f(a_1) \triangle f(a_2)$
= $f(a_1 * a_2)$ (f es morfismo)
= $f(a_2 * a_1)$ (* es conmutativa)
= $f(a_2) \triangle f(a_1)$ (f es morfismo)
= $b_2 \triangle b_1$