JEE EXPERT

ANSWER KEY RANK ELEVATOR TEST SERIES

(REFT/FT-01) 12TH (Zenith X01 & X02) Date 15.09.2019

PHYSICS									
11110100									
1	(C)	2	(D)	3	(A)	4	(B)	5	(D)
6	(D)	7	(A)	8	(C)	9	(A)	10	(C)
11	(A)	12	(B)	13	(B)	14	(C)	15	(A)
16	(B)	17	(B)	18	(B)	19	(B)	20	(D)
21	(0006)	22	(0008)	23	(0004)	24	(0005)	25	(0001)
CHEMISTRY									
CHEMISTRI									
26	(B)	27	(A)	28	(B)	29	(C)	30	(A)
31	(C)	32	(C)	33	(A)	34	(A)	35	(B)
36	(B)	37	(B)	38	(C)	39	(B)	40	(D)
41	(B)	42	(A)	43	(D)	44	(C)	45	(A)
46	(8500)	47	(0045)	48	(0040)	49	(0006)	50	(0002)
MATHEMATICS									
51	(C)	52	(C)	53	(C)	54	(B)	55	(B)
56	(B)	57	(C)	58	(D)	59	(B)	60	(C)
61	(D)	62	(A)	63	(A)	64	(B)	65	(C)
66	(C)	67	(C)	68	(A)	69	(D)	70	(D)
71	(1240)	72	(0002)	73	(0101)	74	(0059)	75	(0008)

JEE EXPERT

SOLUTIONS RANK ELEVATOR TEST SERIES

(REFT/FT-01) 12TH (Zenith X01 & X02) Date 15.09.2019

PART - I [PHYSICS]

1. **Sol. (C)** Initially system is at rest net momentum = 0 when it is released, m & 3m gains speed. spring force is internal force

we have
$$\vec{F}_{ext} = \frac{d}{dt} (\vec{P}_f - \vec{P}_i)_{system}$$

•:•

$$\vec{F}_{ext} = 0$$

$$\Rightarrow \qquad \vec{P}_{f_{\text{system}}} = \vec{P}_{i_{\text{system}}} = 0$$

momentum of m & 3 m are opposite but equal in magnitude. So

- Sol. (D) Particle will reach upto D due to conservation of energy. 2. (there is no dissipative forces, only conservative forces are there.)
- 3. Sol. (A)

Speed of A just before colliding to B = $\sqrt{2gh_0}$ and it is horizontal.

When A & B stick together, their combined horizontal

speed =
$$\frac{\sqrt{2gh_0}}{2} = \sqrt{\frac{gh_0}{2}} = \sqrt{\frac{10}{2} \times \frac{24}{100}} = \sqrt{1.2}$$
 m/s

Horizontal speed $\sqrt{1.2} < \sqrt{2gR} = \sqrt{10}$

So in this case mass will oscillate maximum height reached = x

Applying conservation of energy, $\frac{1}{2}(2m)u^2 = (2m)gx$

$$\Rightarrow x = \frac{u^2}{2g} = \frac{1.2}{2 \times 10} = \frac{6}{100} \text{ meter} = 6 \text{ cm}$$

4.

F is sinusoidal function of time, so it is periodical μ mg > F. So, a = 0

5. Sol. (D)

Force of engine = F = (20 M)K 1M = 1000 kg

K = constant,

Retardation of last box =
$$\frac{(4M)K}{4M} = K$$

Acceleration of train for 3200 meter =
$$\frac{20MK}{16M} = \frac{20K}{16}$$

Speed of rest train for this distance = 3200 meter

$$v_1^2 = v^2 + \left(\frac{5}{4}K\right) 3200$$

Retardation there after =
$$\frac{(16M)K}{16M} = K$$

$$v^2 = u^2 + 2as$$

$$0 = v^2 + \left(\frac{5K}{4}\right) 3200 - 2K(s); S = \frac{v^2}{2K} + \frac{5}{8}(3200)$$

Distance travelled by last box till it stops

$$S_1 = \frac{v^2}{2K}$$

Total distance =
$$3200 - \frac{v^2}{2K} + 5$$

$$N - mg \cos 60^{\circ} = m(3)$$

N = 400 Newton

in kg 40 kg

$$40 = 10x$$

$$x = 4$$

7. Sol. (A)

$$mg = Kx_0$$
 (i

All force are conservative force & mass m is pulled down slowly.

Here applying principle of conservation of work, we have

$$\begin{split} W_{man} + W_{mg} + W_{spring \, force} &= change \, in \, K.E. = 0 \\ \Rightarrow W_{man} &= W_{mg} - W_{spring \, force} \\ &= - \, mg \, y + \left\{ \frac{1}{2} K (x_0 + y)^2 - \frac{1}{2} K x_0^2 \right\} \qquad \, (ii) \end{split}$$

from (i) & (ii)

$$W_{max} = \frac{1}{2} \frac{mg}{x_0} y$$

8. Sol. (C)

F.B.D. of platform

F.B.D. of platform

F.B.D. of mass M

Equation of motion for platform $f_k + f_s = M \times 0.2 \text{ g}$ F.B.D. of mass M

or
$$\mu_k Mg + f_s = 0.2 Mg$$

or
$$0.1 \text{ Mg} + f_s = 0.2 \text{ Mg}$$
 \Rightarrow $f_s = 0.1 \text{ Mg}$ (1

Equation of motion for 4 M,
$$\frac{F}{2} - f_s = 4M \times 0.2Mg$$

Here 4 M has same acceleration as platform.

$$\frac{F}{2}$$
 = 0.8Mg + f_s = 0.9 Mg (From (i) \Rightarrow F = 1.8 Mg

9. Sol. (A)

Let CM of only square without semicircular portion is at distance x right side from origin then

$$\left(M - \frac{M}{4\ell^2} \times \frac{\pi\ell^2}{2}\right) X = \frac{M}{4\ell^2} \times \frac{\pi\ell^2}{2} \left(\ell - \frac{4\ell}{3\pi}\right)$$

$$x = \frac{\frac{\pi}{8} \left(1 - \frac{4}{3\pi} \right) \ell}{\left(1 - \frac{\pi}{8} \right)} = \frac{(3\pi - 4)\ell}{3(\pi - 8)}$$

Now,
$$X_{CM} = M \frac{M \left(1 - \frac{\pi}{8}\right) (-) \frac{(3\pi - 4) \ell}{3(\pi - 8)} + \frac{\pi M}{8} \cdot \left(\ell + \frac{4\ell}{3\pi}\right)}{M} = \frac{\ell}{3} = 4 \text{ cm}$$

10. Sol. (C)

We can write $\vec{F} = 40 \left(\cos \omega t \right) \hat{i} + (\sin \omega t) \hat{j} \right)$

where $\omega = 2 \text{ rad/sec.}$

$$\Rightarrow$$
 F_x = 40 cos 2t & F_y = 40 sin 2t
Here F_y, N & mg balances each other

So
$$F_x = m \frac{dV}{dt} = 40 \cos 2t$$

integrating mV = 40 $\frac{\sin 2t}{2}\Big|_{0}^{t=\frac{\pi}{4\omega}}$

$$5 \times V = 40 \times \frac{1}{2\sqrt{2}}$$
 \Rightarrow $V = 2\sqrt{2}$

$$\therefore \frac{V^2}{8} = 1 \text{ Ans.}$$

11. Sol. (A)

 $y_1 = a \sin kx \cos \omega t$

$$k=\frac{2\pi}{\lambda};\lambda=\left(\frac{2\pi}{k}\right)$$

$$\frac{\lambda}{2} \Rightarrow \left(\frac{\pi}{k}\right)$$

Particles at x_1 and x_2 are in opposite phase as $x_2 > \frac{\lambda}{2}$ and $x_1 < \frac{\lambda}{2}$ and x = 0 is a node.

So $\phi_1 = \pi$.

Travelling wave $y_2 = a \sin(\omega t - kx)$

$$\Delta x = \frac{3\pi}{2k} - \frac{\pi}{3k} = \frac{7\pi}{6k}$$

$$\lambda = \frac{2\pi}{k}$$

$$\Delta \varphi = 2\pi \times \frac{\Delta x}{\lambda} = 2\pi \times \frac{7\pi}{\frac{6k}{2\pi/k}}$$

$$\phi_2 \Rightarrow \frac{7\pi}{6}$$

$$\frac{\varphi_1}{\varphi_2} = \frac{\pi}{\frac{7\pi}{6}} = \frac{6}{7}$$

12. Sol. (B)

By COM

$$\frac{p^2}{2(m+m)} \; + \; \frac{1}{2} \, k \! \left(\frac{A\sqrt{3}}{2} \right)^{\! 2} \; = \; \frac{1}{2} \, k x^2$$

where x is new amplitude

$$\frac{\left[m\omega\sqrt{A^2 - \left(\frac{A\sqrt{3}}{2}\right)^2}\right]}{2 \times 2m} + \frac{1}{2}k\frac{A^23}{4} = \frac{1}{2}kx^2$$
 Solving we get $x = A\sqrt{\frac{7}{8}}$]

13. Sol. (B)

Spring const. of wire = $K_1 = \frac{AY}{\ell}$

As
$$F = \left(\frac{AY}{\ell}\right) \Delta \ell$$

Net spring const. =
$$\frac{K_1K}{K + K_1}$$

14. Sol. (C)

When frequency (apparent) of A decreases, number of beats increases.

$$\left| n_{A} \left(\frac{V - V_{0}}{V - V_{s}} \right) - n_{B} \right| = 6$$

$$\left| 500 \left(\frac{340}{340 - 4} \right) - n_B \right| = 6$$

$$\left| 500 \left(\frac{340}{340 + 4} \right) - n_B \right| = 18$$

$$500\left(\frac{340}{340-4}\right) - 500\left(\frac{340}{340+4}\right) = 505.95 - 494.186 \approx 12$$

So frequency of B is 512.

15. Sol. (A)

Adhesive force of water-wax is less then that of water glass.

16. Sol. (B)

17. Sol. (B) 18. Sol. (B)

Here
$$2t + 6t = \frac{2x}{3} \Rightarrow t = \frac{x}{12}$$

average velocity = $\frac{x}{\frac{x}{3 \times 4} + t + t} = \frac{x}{\frac{x}{12} + \frac{2x}{12}} = 4m/s$

20. Sol. (D)

21. Sol. (0006)
$$\frac{1}{2}I\omega^2 = mg\frac{L}{2}$$

(Energy conservation)

$$\omega^2 = \frac{mgL}{I} = \frac{mgL}{\frac{mL^2}{3}} = \frac{3g}{L}$$

$$\alpha = \frac{\tau}{I} = \frac{mg\frac{L}{2}}{\frac{ML^2}{3}} = \frac{3g}{2L}$$

 $C \rightarrow COM$,

$$m\omega^2 \frac{L}{2}$$
 = Horizontal comp. of reaction = $\frac{m3g}{L}\frac{L}{2} = \frac{3mg}{2}$

Vertical acn. of COM = $\alpha \frac{L}{2} = \frac{3g}{4}$

Net vertical force = mg – (Vertical comp. of reaction) = $m\left(\frac{3g}{4}\right)$

Vertical comp. = $\frac{mg}{4}$, tan α = vertical comp./Hori. comp. = $\frac{mg}{4} / \frac{3mg}{2} = \frac{2}{12} = \frac{1}{6}$

22. Sol. (0008)
$$\vec{L} = \vec{L}_{COM} + M_{total} (\vec{r}_{COM} \times \vec{V}_{COM}) = + (\frac{1}{2} mR^2) \omega - M(6\omega R^2) = -\frac{11}{2} mR^2 \omega$$

or $\vec{L} = \left(-\frac{11}{2}mR^2\omega\right)\hat{k}$ (Note the direction of ω)

23. Sol. (0004)

$$\sqrt{2}~\lambda_0^{}T_1^{}=\lambda_0^{}T_2^{}$$

$$\frac{T_2}{T_1} = \sqrt{2}$$

$$\frac{A_2}{A_1} = \left(\frac{T_2}{T_1}\right)^4 = 4$$

24. Sol. (0005)
$$F = 2\rho sv^2 = 2 \times 1000 \times 10^{-4} \times 5 \times 5 = 5 \text{ N}$$

25. Sol. (0001)

$$T = 2\pi \sqrt{\frac{\ell}{g}}$$

$$\frac{\Delta T}{T} = \frac{1}{2} \frac{\Delta \ell}{\ell} - \frac{1}{2} \frac{\Delta g}{g}$$

$$\Delta T = 0$$

$$\Rightarrow \quad \frac{\Delta \ell}{\ell} = \frac{\Delta g}{g}$$

$$\frac{\Delta g}{g} = \frac{2h}{R}$$
 if h << R

$$\alpha(10) = \frac{2h}{R}$$

$$\frac{5\alpha R}{h} = \frac{1}{2}$$