

EXERCISE 9

1. Bounding Volumes

(a) Discuss the advantages and disadvantages of the bounding volume types

sphere,
AABB,
OBB, and
Sphere: allows for trans and rot, interference detection is cheap and easy, updates are cheap not tightly bound, so not a good approximation

• k-DOP AABB: comparatively cheap, tighter than sphere, low-dim approximation for interference det,

with regard to how well they are suited for not allow for rotation as axes are fixed

• translation and OBB: suited for both trans and rot, axes orientations

• rotation. can be changed, updates are

(b) Sketch one algorithm each for constructing a separating plane needs to be found.

• bounding sphere, 2F+E^2 possible candidates = 15 for OBB

ullet AABB, and $k ext{-DOP:}$ not suited for rotation as directions are fixed,

• OBB overlap tests and updates are both

for objects that are represented as triangle meshes. good fit

2. Overlap Test

Sketch an algorithm that checks whether the two bounding volumes overlap.

(a) Bounding spheres:

|c1 - c2| > r1 + r2, then no overlap

(b) AABB:

Must overlap along each 1D axes

(c) OBB:

3. Accelerating Structures

Construct an acceleration structure for the following objects that are already organized in separate AABBs.

(a) Create a sensible BVH consisting of AABBs using a binary tree.

(b) Create a Quadtree with each leaf node containing at most one of the AABBs.

4. Computational Costs

Consider the following ways of organizing multiple objects, i.e., triangle meshes, in a scene:

- one single array of individual triangles,
- one AABB per object, and
- AABBs organized in a BVH, one AABB per object as the leafs.

Discuss briefly their impact on the computational cost for collision detection. Do not consider update costs.