

# ResNet-IoT-Based solution for Lung Cancer Diagnosis



# There's a "U Can" in Lung Cancer



Submitted for MTH2175 project **Submitted to: Dr. Samah El-Tantawy** 

1 Abstract

Lung cancer is a significant public health concern, emphasizing the importance of early detection, treatment and prevention to enhance survival rates. This motivated



us to establish a software tool to speed up the diagnosis process. In our AI-IoT based solution, the patient is required to input their CT scans to the model and it detects the presence of a tumor and its nature, whether malignant or benign. The patient info then will be published on a server connecting laboratories with hospitals and cancer treatment centers.

CT scan

### Pathway to registry



### 3 101

• Database:

personal and contact information of the patient besides its prognosis.



IOT all scenario

- Server: MQTT broker.
- Relevant authorities: our model is the publisher and the specialized hospitals are the subscribers.

### Methodological Symphony

#### Math behind CNN

The training process consists of a sequence of three fundamental stages:

#### > Forward propagation and backpropagation



#### > Updating weights & bias

$$\omega_{ijk}^{new} = \omega_{ijk}^{old} - \alpha \cdot \frac{\partial E}{\partial \omega_{ijk}}$$

$$b_j^{new} = b_j^{old} - \alpha \cdot \frac{\partial E}{\partial b_j}$$

#### The problem of Vanishing Gradients



ResNet50 solves this issue using two different techniques:

#### > Residual connections

$$\frac{\partial E}{\partial x} = \frac{\partial E}{\partial y} \cdot \frac{\partial (F(x) + x)}{\partial x} = \frac{\partial E}{\partial y} \cdot F'(x) + \frac{\partial E}{\partial y}$$
with skip connection

000

#### > Batch Normalization



• Gradient of larger parameter dominates the update

Dataset

# Both parameters can be updated in equal proportions

### Results & Analysis

#### > Evaluation criteria:

- Accuracy.
- Misdiagnosis rate.
- Sensitivity or recall.
- Precision.
- F1 score.



#### > normal and tumor classification



#### > malignant and benign classification



#### > Training, validation accuracy vs epochs



• we can observe that as the number of epochs increases, both the validation and training accuracy increases.

## 7 Conclusion

- Our study presents a novel approach for lung cancer diagnosis using the ResNet-50 architecture.
- We confirmed higher accuracy with more training epochs. Our model effectively detects whether tumors are malignant or benign.
- Adding the part of IoT, we established a network connecting patients with specialized hospitals to speed-up the registration process.

# 8 Future work

- 1. Perform a comparative analysis of ResNet-50 against competing models
- 2. Evaluate the adaptability of our ResNet-50 model across diverse datasets
- 3. Employ a one-level multi-class classification approach.
- 4. Enable Palestinian cancer patients to access our IoT platform and publish their info on the server to get notified about empty places.

## sis we

# **Evaluation our Model for Lung Cancer Diagnosis we used Two Datasets:**

#### Dataset 1

- 364 CT scan images
- 238 lung cancer cases,126 healthy cases Collected from an Iranian hospital

#### Dataset 2

- 1097 CT scan images
- 120 benign cases, 561 malignant cases, 416 normal Collected from two specialist hospitals in Iraq

#### Reference

[1] K. He, X. Zhang, S. Ren and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016

#### Team members:

Erini Hosny Eman Yasser
Manar Abdo Mennatallah Karam
Hana Maged Yara Ayman

Aya Hassan Hana Khaled Yara Soliman