CT303 - Digital Communications Autumn 2020

Submit by: 13/9/20 12 noon.

- 1. Let X(n) be a random process. Let us verify the wide-sense stationarity of this process computationally. Generate N realizations/sample functions of this random process (use numpy.random library), and compute (a) the mean $m_X(n)$, and (b) autocorrelation function $R_X(n_1,n_2)$. Verify if the following stochastic processes are wide-sense stationary or not, and compare them against theoretically obtained mean and autocorrelation. Plot the estimated density functions for a few random variables X(k) using the function numpy.histogram.
 - (a) $X(n) = \cos(0.2\pi n + \theta), \theta \sim U[-\pi, \pi], n \in [0, 9].$
 - (b) $X(t) = A\cos(0.25\pi n), A \sim U[-5, 5], n \in [0, 7].$
 - (c) X(n) = A(n), where $A(n) \sim \mathcal{N}(0,1)^1$ are independent random variables.
- 2. In the file Gandhinagar_RainfallData.xls, average rainfall for every month of the year between 1901 and 2001 is available. Treating the average rainfall every month in Gandhinagar as a Stochastic process, estimate the mean and covariance and conclude whether the stochastic process is stationary (either wide-sense or strict-sense). You might have to learn how to import data from excel file into Python for this.
- 3. A matrix $A \in \mathbb{R}^{n \times n}$ is said to be Symmetric Positive Definite(SPD) if $A = A^T$ and $y^T Ay > 0$, $\forall y \in \mathbb{R}^n$, $y \neq 0$, and is said to be Symmetric Positive Semi-definite if $A = A^T$ and $y^T Ay \geq 0$, $\forall y \in \mathbb{R}^n$. Given n random variables X_{t_i} , $i = 1, \ldots, n$ (belonging to a random process), the autocorrelation and autocovariance function of the random vector $x = (X_{t_i})_{i=1,\ldots,n}$ can be written as a matrix $R = \mathbb{E}[xx^T]$ and $C = \mathbb{E}[(x-m)(x-m)^T]$, where $m \in \mathbb{R}^n$ is the vector of means, respectively.
 - (a) Analytically show that the two matrices are symmetric positive semi-definite. Verify the same computationally for the two examples from the previous question².
 - (b) Try to observe an additional pattern in the autocorrelation/autocovariance matrix of a wide-sense stationary process. What is such a matrix called?

 $^{{}^{1}\}mathcal{N}(0,1)$ denotes a normal distribution with zero mean and unit variance.

²An equivalent definition for a symmetric matrix to be positive definite (semi-definite) is that all its eigenvalues are positive (non-negative).