Contents

1	Bel	lle II e acceleratore SKB (SuperKEKB)						
	1.1	Progr	gramma di fisica alle B-Factory					
		1.1.1	Ricerche di nuova fisica (BSM)	5				
		1.1.2	Fisica del flavor	5				
		1.1.3	Materia oscura	5				
	1.2	Accele	eratore SuperKEKB	5				
		1.2.1	Luminosità	5				
		1.2.2	Energia dei fasci	5				
		1.2.3	Schema "Nano-beam"	5				
		1.2.4	Iniezione	5				
		1.2.5	Alcune ulteriori modifiche rispetto a KEKB	5				
		1.2.6	Sistemi di monitoraggio del background	5				
	1.3	Il rive	latore Belle II	5				
		1.3.1	Vertex Detector (VXD)	5				
		1.3.2	Central Drift Chamber (CDC)	5				
		1.3.3	Particle identification system (TOP e ARICH)	5				
		1.3.4	Calorimetro elettromagnetico (ECL)	5				
		1.3.5	K_L muon detector (KLM)	5				
		1.3.6	Sistema di trigger	5				
	1.4	Stato	attuale e prospettive delle prese dati	5				

2	$\mathbf{Up}_{\mathbf{g}}$	Upgrade di Belle II							
	2.1	Sorgenti di background e limitazioni di Belle II							
		2.1.1 Effetto Touschek	6						
		2.1.2 Beam-gas scattering	6						
		2.1.3 Radiative Bhabha scattering e processi a due fotoni \dots	6						
		2.1.4 Radiazione di sincrotrone (SR) \dots	6						
		2.1.5 Instabilità "Head-tail"	6						
		2.1.6 Stato attuale del background e implicazioni future	6						
	2.2	2 Motivazioni per l'upgrade							
	2.3	Sommario di possibili upgrade	6						
		2.3.1 DEPFET	6						
		2.3.2 Thin sensor	6						
		2.3.3 CMOS MAPS	6						
		2.3.4 SOI	6						
3	Il r	Il rivelatore VTX							
	3.1	Layout del rivelatore VTX	7						
		3.1.1 iVTX	7						
		3.1.2 oVTX	7						
	3.2	2 Simulazioni di performance							
	3.3	Caratteristiche chip sensore	7						
	3.4	Struttura meccanica	7						
4	Sensori CMOS MAPS								
	4.1	Rivelatori a semiconduttore	8						
4.2		Sensori a pixel monolitici/ibridi							
	4.3	Tecnologia CMOS MAPS	8						
	4.4	Storia degli sviluppi di Monopix	8						
5	Caratterizzazione di TJ-Monopix 2								
	5.1	Matrice e flavor	9						

6	Cor	ıclusio	ni 10
		5.3.1	Calibrazione della capacità di iniezione
	5.3	Carat	erizzazione con le sorgenti radioattive
		5.2.5	Curve del Time Over Threshold (TOT) e fit
		5.2.4	Noise and Equivalent Noise Charge (ENC)
			5.2.3.4 HV-Normal FE
			5.2.3.3 HV-Cascode FE
			5.2.3.2 Cascode FE
			5.2.3.1 Normal FE
		5.2.3	Curva S e threshold
			iniettate superiori a 140 DAC
		5.2.2	Misura dello shift medio sul valore di threshold per cariche
		5.2.1	Problema nel circuito di iniezione
	5.2	Carat	erizzazione tramite l'iniezione
		5.1.3	Confronto degli andamenti con le simulazioni
			5.1.2.2 Registri principali (e conversioni?)
			5.1.2.1 Reset del BCID
		5.1.2	Readout analogico e digitale
		0.1.1	Funzionamento della maschera per i pixel rumorosi

Abstract

1. Belle II e acceleratore SKB (SuperKEKB)

- 1.1 Programma di fisica alle B-Factory
- 1.1.1 Ricerche di nuova fisica (BSM)
- 1.1.2 Fisica del flavor
- 1.1.3 Materia oscura
- 1.2 Acceleratore SuperKEKB
- 1.2.1 Luminosità
- 1.2.2 Energia dei fasci
- 1.2.3 Schema "Nano-beam"
- 1.2.4 Iniezione
- 1.2.5 Alcune ulteriori modifiche rispetto a KEKB
- 1.2.6 Sistemi di monitoraggio del background
- 1.3 Il rivelatore Belle II
- 1.3.1 Vertex Detector (VXD)
- 1.3.2 Central Drift Chamber (CDC)
- 1.3.3 Particle identification system (TOP e ARICH)
- 1.3.4 Calorimetro elettromagnetico (ECL)
- 1.3.5 K_L muon detector (KLM)
- 1.3.6 Sistema di trigger
- 1.4 Stato attuale e prospettive delle prese dati

2. Upgrade di Belle II

- 2.1 Sorgenti di background e limitazioni di Belle II
- 2.1.1 Effetto Touschek
- 2.1.2 Beam-gas scattering
- 2.1.3 Radiative Bhabha scattering e processi a due fotoni
- 2.1.4 Radiazione di sincrotrone (SR)
- 2.1.5 Instabilità "Head-tail"
- 2.1.6 Stato attuale del background e implicazioni future
- 2.2 Motivazioni per l'upgrade
- 2.3 Sommario di possibili upgrade
- 2.3.1 **DEPFET**
- 2.3.2 Thin sensor
- 2.3.3 CMOS MAPS
- 2.3.4 SOI

3. Il rivelatore VTX

- 3.1 Layout del rivelatore VTX
- 3.1.1 iVTX
- 3.1.2 oVTX
- 3.2 Simulazioni di performance
- 3.3 Caratteristiche chip sensore
- 3.4 Struttura meccanica

4. Sensori CMOS MAPS

- 4.1 Rivelatori a semiconduttore
- 4.2 Sensori a pixel monolitici/ibridi
- 4.3 Tecnologia CMOS MAPS
- 4.4 Storia degli sviluppi di Monopix

5. Caratterizzazione di TJ-Monopix 2

5.	1	N/I -	tri	00	ъ A	avo	'n
.) .		IVI	1. 1. 1 10		- 11	$\mathbf{A} \mathbf{V} \mathbf{U}$	

- 5.1.1 Funzionamento della maschera per i pixel rumorosi
- 5.1.2 Readout analogico e digitale
- 5.1.2.1 Reset del BCID
- 5.1.2.2 Registri principali (e conversioni?)
- 5.1.3 Confronto degli andamenti con le simulazioni
- 5.2 Caratterizzazione tramite l'iniezione
- 5.2.1 Problema nel circuito di iniezione
- 5.2.2 Misura dello shift medio sul valore di threshold per cariche iniettate superiori a 140 DAC
- 5.2.3 Curva S e threshold
- 5.2.3.1 Normal FE
- 5.2.3.2 Cascode FE
- 5.2.3.3 HV-Cascode FE
- 5.2.3.4 HV-Normal FE
- 5.2.4 Noise and Equivalent Noise Charge (ENC)
- 5.2.5 Curve del Time Over Threshold (TOT) e fit
- 5.3 Caratterizzazione con le sorgenti radioattive

Fe55, Am241, Cd109, Sr190

5.3.1 Calibrazione della capacità di iniezione

6. Conclusioni