Les bases du shell

Sébastien GAGNÉ, Université d'Orléans

L1 Pratique du système UNIX — S2

shell et UNIX

UNIX est un système d'exploitation multi-tâches et multi-utilisateurs, qui date des années 1970.

Le noyau du système (le **kernel**) gère les ressources et permet aux composants de communiquer.

Le **shell** est une interface entre l'utilisateur et le noyau. L'utilisateur lance des commandes via le shell.

La famille UNIX

source : https://fr.wikipedia.org/wiki/Type_Unix

Sitographie - Histoire d'UNIX

Genèse d'UNIX

- https://tuteurs.ens.fr/unix/histoire.html
- https://fr.wikipedia.org/wiki/Unix

Type UNIX

https://fr.wikipedia.org/wiki/Type_Unix

Les co-créateurs d'UNIX

- https://fr.wikipedia.org/wiki/Ken_Thompson
- https://fr.wikipedia.org/wiki/Dennis Ritchie

En mode console

Avant les interfaces graphiques, le shell était LE moyen de communication entre utilisateur et noyau.

```
Ubuntu 24.04.1 LTS OR-ST-LIFO-SGAGNElinux ttu3
OR-ST-LIFO-SGAGNElinux login: p103199
Password:
Welcome to Ubuntu 24.04.1 LTS (GNU/Linux 6.8.0-51-generic x86 64)
* Documentation: https://help.ubuntu.com
                   https://landscape.canonical.com
* Management:
 * Support:
                   https://ubuntu.com/pro
La maintenance de sécurité étendue pour Applications n'est pas activée.
0 mise à jour peut être appliquée immédiatement.
10 mises à jour de sécurité supplémentaires peuvent être appliquées avec ESM Apps.
En savoir plus sur l'activation du service ESM Apps at https://ubuntu.com/esm
p103199@OR-ST-LIFO-SGAGNElinux:~$ cd Documents/univ/L1
p103199@OR-ST-LIFO-SGAGNElinux: "/Documents/univ/L1$ ls -1
druxruxr-х 9 p103199 p103199 4096 déc. 3 09:18 algoprog
druxruxr-х 12 p103199 p103199 4096 sept. 5 21:24 mise_a_niveau
drwxrwxr-x 3 p103199 p103199 4096 déc. 16 20:35 unix
p103199@OR-ST-LIFO-SGAGNElinux: "/Documents/univ/L1$
```

Les shell classiques

- Le shell historique : le **Bourne shell sh** (1977, Stephen Bourne) équipe la version 7 d'UNIX;
- Le shell csh (1978, Bill Joy, Berkeley). Il permet d'accéder à l'historique des commandes passées;
- Le shell ksh (1983, David Korn). Ajoute des fonctions de script élaborées;
- Le Bourne-again shell ou bash (<u>projet GNU</u>, 1988) : le shell par défaut dans nos salles TP.

Utilisation d'un terminal

Le **terminal** est une **interface graphique** qui permet **l'émulation de la console**. C'est une console "graphique".

Il communique les commandes au shell, qui les exécute. Le shell reçoit les réponses et les retransfère au terminal.

sans interface graphique

avec interface graphique

Utilisation d'un terminal

Le terminal installé sur nos machines est GNOME terminal

```
p103199@OR-ST-LIFO-SGAGNElinux: ~
p103199@OR-ST-LIFO-SGAGNElinux:~$ pwd
/home/p103199
p103199@OR-ST-LIFO-SGAGNElinux:~$ whoami
D103199
p103199@OR-ST-LIFO-SGAGNElinux:~$ ls -l Documents/univ/L1
total 12
drwxrwxr-x 9 p103199 p103199 4096 déc. 3 09:18 algoprog
drwxrwxr-x 12 p103199 p103199 4096 sept. 5 21:24 mise_a_niveau
drwxrwxr-x 4 p103199 p103199 4096 déc. 17 10:30 unix
p103199@OR-ST-LIFO-SGAGNElinux:~$ echo $SHELL
/bin/bash
p103199@OR-ST-LIFO-SGAGNElinux:~$ _
           le shell par défaut pour
           l'utilisateur p103199
```

Arborescence de fichiers

- Le système de fichiers est présenté sous la forme d'une **arborescence unique**;
- La racine de cette arborescence est notée /;
- Cette arborescence est composée de fichiers et de répertoires;
- Tout fichier ou répertoire peut être désigné par un unique chemin absolu depuis la racine;
- On peut accéder à tout emplacement à partir de n'importe où (chemin relatif).

Exemple d'arborescence

Chemin relatif / absolu

Chemin absolu vers le fichier CM1.pdf :
 /home/p103199/Documents/univ/L1/unix/CM1/CM1.pdf

• Chemin relatif de **prog_algo** vers **S2** :

```
../../administratif/EDT/S2
```

• Chemin relatif de **CM1.txt** vers **CM1.pdf** :

```
./CM1.pdf
```

désigne le répertoire courant désigne le répertoire parent

Les fichiers UNIX

Un fichier UNIX est caractérisé par :

- son nom;
- le chemin absolu qui mène à lui;

son numéro d'inode

son inode représenté par un numéro d'inode;

```
p103199@OR-ST-LIFO-SGAGNElinux:-/Documents/univ/L1/algoprog/revisions Q = - - - ×
p103199@OR-ST-LIFO-SGAGNElinux:-$ cd Documents/univ/L1/algoprog/revisions/
p103199@OR-ST-LIFO-SGAGNElinux:-/Documents/univ/L1/algoprog/revisions$ pwd
/home/p103199/Documents/univ/L1/algoprog/revisions
p103199@OR-ST-LIFO-SGAGNElinux:-/Documents/univ/L1/algoprog/revisions$ ls -li
total 220
14817052 drwxrwxr-x 2 p103199 p103199 4096 oct. 23 11:01 images
14817088 -rw-rw-r-- 1 p103199 p103199 120345 oct. 23 11:05 revisions_23_10_25.odt
14817082 drwxrwxr-x 2 p103199 p103199 90789 oct. 23 11:05 revisions_23_10_25.pdf
14817082 drwxrwxr-x 2 p103199 p103199 4096 oct. 23 10:55 scripts
p103199@OR-ST-LIFO-SGAGNElinux:-/Documents/univ/L1/algoprog/revisions$ _

Chaque "fichier" a
```

Les inodes

- Un inode est une structure de données correspondant à un fichier et contenant de nombreux champs qui le caractérisent;
- Chaque fichier a son numéro d'inode qui l'identifie dans le système de fichiers;
- Par contre, plusieurs fichiers peuvent avoir le même numéro d'inode. Dans ce cas, ces fichiers sont des liens physiques du même fichier;
- L'inode contient notamment les blocs d'adresses et de données définissant le contenu du fichier;

Les types de fichiers

Sous UNIX, tout est fichier. Les principaux types sont

- les fichiers classiques : concrètement, des séquence d'octets quelconques sur un espace de stockage : CM1.pdf ou CM1.txt;
- les répertoires : Documents, univ, L1, ...;
- les liens symboliques : des alias définis par un chemin (des fichiers contenant un chemin);

Les types de fichiers

```
+
               p103199@OR-ST-LIFO-SGAGNElinux: ~/Documents/univ/L1/unix/CM
p10319900R-ST-LIFO-SGAGNElinux:~$ cd Documents/univ/L1/unix/CM
p103199@OR-ST-LIFO-SGAGNElinux:~/Documents/univ/L1/unix/CMS ls
CMO CM1 cours1 pdf planning CM.ods
p103199@OR-ST-LIFO-SGAGNElinux:~/Documents/univ/L1/unix/CMS ls -li
total 24
14843762 drwxrwxr-x 4 p103199 p103199 4096 déc. 15 20:22 CM0
14843903 drwxrwxr-x 4 p103199 p103199 4096 déc. 22 21:33 CM1
14818718 lrwxrwxrwx 1 p103199 p103199 12 déc. 22 21:40 cours1 -> pdf/CM_1.pdf
14843893 drwxrwxr-x 2 p103199 p103199 4096 déc. 22 21:38 pdf
14818715 -rw-rw-r-- 1 p103199 p103199 11470 déc. 22 21:29 planning CM.ods
p103199@OR-ST-LIFO-\GAGNElinux:~/Documents/univ/L1/unix/CM$
                           d → répertoire (directory)
                           l → lien symbolique
                           - → fichier classique
```

- D'autres types de fichiers existent. Voir plus tard.
- Is -li affiche les détails et le numéro d'inode.

Données et métadonnées

- Un fichier "classique" contient des données.
 Par exemple un fichier texte qui contient les caractères "Pratique du système UNIX";
- Il possède aussi des **métadonnées** qui sont des renseignements divers sur le fichier.

```
p103199@OR-ST-LIFO-SGAGNElinux: ~/Documents/univ/L1/unix/CM/CM1
p103199@OR-ST-LIFO-SGAGNElinux:~/Documents/univ/L1/unix/CM/CM1$ ls -li
total 16
14824092 drwxrwxr-x 2 p103199 p103199 4096 déc. 25 20:51 divers
14824082 -rw-rw-r-- 1 p103199 p103199 25 déc. 25 21:30 fichier CM1.txt
14843904 drwxrwxr-x 2 p103199 p103199 4096 déc. 25 21:24 images
14843905 drwxrwxr-x 2 p103199 p103199 4096 déc. 25 21:24 latex
p103199@OR-ST-LIFO-SGAGNElinux:~/Documents/univ/L1/unix/CM/CM1S cat fichier CM1.txt
Pratique du systeme UNIX
p10319900R-ST-LIF0-SGAGNElinux:~/Documents/univ/L1/unix/CM/CM1S echo " - CM1 : 10/01/25" >> fichier CM1.txt
p103199@OR-ST-LIFO-SGAGNElinux:~/Documents/univ/L1/unix/CM/CM1$ cat fichier_CM1.txt
Pratique du systeme UNIX
                                        → données du fichier
- CM1 : 10/01/25
p103199@OR-ST-LIFO-SGAGNElinux:~/Documents/univ/L1/unix/CM/CM1S ls -li fichier CM1.txt
14824082 -rw-rw-r-- 1 p103199 p103199 42 déc. 25 21:31 fichier_CM1.txt
                                                                                   → métadonnées du fichier
p103199@OR-ST-LIFO-SGAGNElinux:~/Documents/univ/L1/unix/CM/CM1S _
```

Détails des métadonnées

Les métadonnées importantes du fichier :

Permissions sur les fichiers

Un mécanisme de permissions gère "qui peut faire quoi" sur les fichiers.

Les permissions par paquets de 3 caractères : les 3 premiers pour l'utilisateur (u), les 3 suivants pour son groupe (g) et les 3 derniers pour les autres (o).

permission	fichier	répertoire
r	lire le contenu	lister les fichiers
W	modifier le contenu	supprimer / créer des fichiers
х	exécuter le fichier	traverser le répertoire
-	pas de permission	pas de permission

Permissions sur les fichiers

Analysez les permissions sur les fichiers et répertoires listés ci-dessous, pour l'utilisateur p103199, pour le groupe p103199 et pour tous les autres utilisateurs :

```
p103199@OR-ST-LIFO-SGAGNElinux:~/Documents/univ/L1/u... Q = - - ×

p103199@OR-ST-LIFO-SGAGNElinux:~/Documents/univ/L1/unix/CM/CM1$ ls -l
total 20
-rwxrw-r-- 1 p103199 p103199 6 déc. 27 13:52 cmd1
drwxrwxr-x 2 p103199 p103199 4096 déc. 28 15:37 divers
-rw-r-- 1 p103199 p103199 42 déc. 25 21:31 fichier_CM1.txt
drwxr-xr-x 2 p103199 p103199 4096 déc. 29 16:20 images
drwxr-x--- 2 p103199 p103199 4096 déc. 29 16:42 latex
p103199@OR-ST-LIFO-SGAGNElinux:~/Documents/univ/L1/unix/CM/CM1$_
```

Commande UNIX de base

Une commande UNIX de base est lancée avec des **options** (ou non) et des **paramètres** (ou non) :

La commande est interprétée par le shell qui interagit avec le noyau et produit (parfois affiche) les résultats.

Nous avons déjà exécuté dans ce cours quelques commandes : ls, pwd, whoami, cd, cat, echo.

- whoami affiche l'utilisateur actuel;
- pwd donne le chemin absolu du répertoire de travail actuel;
- date donne la date actuelle du système;
- echo affiche le(s) paramètre(s) sur la sortie standard (console);

- cat fichier1 : affiche le contenu de fichier1 ;
- **touch** *fichier1* : crée le fichier (vide) décrit par le chemin *fichier1* ;
- **rm** *fichier1* : supprime le fichier décrit par le chemin *fichier1* ;
- mv fichier1 fichier2 : renomme (ou déplace, selon le contexte) le fichier1 en fichier2;
- cp fichier1 fichier2 : crée une copie du fichier1 en fichier2 (mêmes données, inodes différents);

- Is rep1 : liste le contenu du répetoire rep1 décrit par un chemin. Voir les options -l, -i, -a;
- cd rep1 : change le répertoire de travail en celui décrit par le chemin donné (rep1);
- mkdir rep1 : crée le répertoire décrit par le chemin rep1;
- rmdir rep1 : supprime le répertoire (qui doit être vide) dont le chemin est en paramètre;

La commande **chmod** est importante car elle modifie les permissions d'un fichier.

Exemples d'utilisations "symboliques" :

- On peut ajouter le droit x à l'utilisateur sur unFichier par chmod u+x unFichier;
- On peut ajouter le droit w à l'utilisateur et au groupe par chmod ug+w unFichier;
- On peut ajouter le droit x et retirer le droit w à l'utilisateur et aux autres utilisateurs par chmod uo+x-w unFichier;

Exemples d'utilisations "octales" :

On peut donner les droits rwx à l'utilisateur, rw- au groupe et
 r- - aux autres sur unFichier par chmod 764 unFichier;

- De façon générale, on peut coder les droits en donnant la valeur 4 au droit r, la valeur 2 au droit w et la valeur 1 au droit x. Si la permission n'est pas donnée, la valeur est 0;
- Ainsi on peut donner une suite de 3 valeurs entre 0 et 7 pour les droits u, g et o.

- la commande man donne la page du manuel relative à la commande passée en paramètre.
- Par exemple, la commande man ls présente toutes les options possibles de la commande ls.

Programmes

Un **programme** est un fichier **exécutable** composé d'instructions en *binaire*. Le répertoire /usr/bin en regroupe beaucoup, par exemple ls;

Programmes

Un fichier **texte** composé d'une suite d'instructions écrites dans un langage de programmation pouvant être compilé (comme C), ou interprété (comme python) est un **script** et pourra, par extension, aussi être considéré comme un **programme**.

```
programme.py

1  n = int(input("entrez un entier positif : "))
2  res = ""
3  while n > 0:
4     r = n % 3
5     n = n // 3
6     res = str(r) + res
7  print(res)
```

exemple de programme python (interprété)

Programmes

Le script *somme.c* est compilé en un exécutable *somme*.

```
C somme.c
      #include <stdlib.h>
      #include <stdio.h>
     int main() {
           int a, b;
           printf("entrez l'entier a : "); scanf("%d", &a);
           printf("entrez l'entier b : "); scanf("%d", &b);
           printf("La somme de %d et %d est %d.\n", a, b, a + b);
           return EXIT SUCCESS:
      p103199@OR-ST-LIFO-SGAGNElinux: ~/Documents/univ/L1/unix/CM/CM...
 p103199@OR-ST-LIFO-SGAGNElinux:~/Documents/univ/L1/unix/CM/CM1/scripts$ ls -l
 total 20
 -rwxrwxr-x 1 p103199 p103199 16064 janv. 2 17:20 somme
 -rw-rw-r-- 1 p103199 p103199 260 janv. 2 17:20 somme.c
 p10319900R-ST-LIF0-SGAGNElinux:~/Documents/univ/X1/unix/CM/CM1/scripts$
             fichier texte destiné à être compilé
                                                fichier compilé exécutable (binaire)
```

Processus

- Un **processus** est une instance d'un exécutable en cours d'exécution dans le système;
- Un programme qui s'exécute devient un processus, avec ses caractéristiques (mémoire allouée, ...). Le processus est l'aspect dynamique du programme (qui demeure statique);
- un processus a un identifiant (PID ou Process IDentifier) unique;
- il a un cycle de vie (actif, endormi, arrêté, ...)

Exemples de processus

- L'exécutable **somme** peut être lancé dans un terminal par l'instruction ./somme;
- Cela génère un processus qui disparaît à la fin de l'exécution;
- La commande **ps** liste les processus liés au terminal en cours ;
- pour "voir" le processus **somme**, on lance le programme en *arrière-plan* par ./somme&
- La commande fg le ramène au premier plan.

Variables d'environnement

- Les variables d'environnement sont des paires clé/valeur d'informations liées à l'environnement du processus qui s'exécute;
- Elles sont accessibles à tous les processus créés par le terminal en cours;
- On peut en créer de nouvelles ou en modifier, voire en supprimer;
- Sauf action spécifique, toute modification, création, suppression n'est valable que pour la session shell en cours.

Variables d'environnement

Variable	Description	
PATH	Chemins de recherche des exécutables	
HOME	Répertoire personnel de l'utilisateur connecté	
USER	Nom de l'utilisateur connecté.	
PWD	Répertoire de travail actuel	
SHELL	Le shell utilisé par l'utilisateur connecté	
LANG	Définition des paramètres régionaux (localisation, langue)	
TERM	Type de terminal utilisé	

Quelques variables d'environnement

Variables d'environnement

- echo \$PATH : affiche la variable PATH;
- export VAR="uneValeur" : crée la variable d'environnement VAR et lui donne une valeur (VAR accessible aux processus fils);
- VAR2="uneAutreValeur" : crée la variable VAR2 (locale ≠ d'environnement) et lui donne une valeur (non accessible aux processus fils);
- unset VAR : supprime la variable VAR;

Caractères "magiques"

Les caractères magiques ou métacaractères sont des symboles qui permettent de définir des modèles (des "patterns") et ainsi rechercher de façon générique des fichiers.

Caractère	Description
*	Correspond à un certain nombre (≥ 0) de caractères (sauf /)
?	Correspond à un seul caractère (sauf /)
[]	Définit une plage ou un ensemble de caractères autorisés
[^]	Correspond à tout caractère sauf ceux mentionnés dans les crochets
{}	Correspond à plusieurs options définies, séparées par des virgules
\	Échappe les métacaractères pour les traiter comme des caractères normaux

Caractères "magiques"

