A Summary Table

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	

3.10 GPU Implementations

In the year 2005 paper that established the value of GPGPU for machine learning, several publications described more efficient ways to train convolutional neural networks using GPUs. In 2011, they were refined and implemented on a GPU, with impressive results. In 2012, Ciresan et al. significantly improved on the best performance in the literature for multiple image databases, including the MNIST (Modified National Institute of Standards and Technology database) database, the NORB database, the HWDB1.0 dataset (Chinese characters), the CIFAR10 dataset (dataset of 60000 32x32 labeled RGB images), and the ImageNet dataset.