Getting Credit For Your Hard Work

Objective

Learn the wrap-up steps to publish/archive a research compendium with a DOI. Understand reproducible computational environment. Learn renv and discuss Docker (concept).

Lesson Outline

- · Why share code?
 - ► Facilitate discussion
 - ▶ Show figure from B. Maitner *et al.* [1]
 - Higher citations
 - ▶ To "pay it forward" to other researchers
 - To demonstrate your skills
 - ► To facilitate error correction
- Getting credit for code
 - Code is not cited often, but partly because it's not made easy to cite
- · CITATION.cff
 - ▶ Show CITATION.cff files for this repo and maybe one for a research compendium
 - ▶ Show "cite this" button on GitHub
 - ► Show CITATION.cff creation tool CFFINIT
 - Maybe mention cffr::cff_validate()
- Archiving
 - Most participants probably won't be ready to follow along with their own repos, but we will be there to help when they are ready
 - Demo archiving a repo with Zenodo using this repo
 - Add DOI badge to readme
 - ▶ Update CITATION.cff with DOI
- renv
 - Discuss why
 - Ask students to activate renv for a project and inspect files it creates (have co-instructor share screen)
 - ► Explain how renv works, especially renv::status(), and renv::snapshot()
 - Clone co-instructor's repo with renv files
 - Show that no packages are available initially (project is isolated)
 - run renv::restore()

- Docker (if time)
 - ▶ Conceptual overview of what it is
 - Discuss how tools like renv and Docker both help and hinder reproducibility

Homework

• Prep for showcase session

Bibliography

[1] B. Maitner *et al.*, "Code sharing increases citations, but remains uncommon," 2023, doi: 10.21203/rs.3.rs-3222221/v1.