Homeworks presentation

Natural Language Processing course

Homework 1

Named Entity Recognition (NER)

Task description

In Named Entity Recognition (NER) we are interested in locate and classify **named entities** mentioned in a text.

A **named entity** is a real-world object that can be denoted with a proper name. We consider six types of entities:

person, corporation, location, product, group and creative work

Model architectures

Model architectures: Baseline parameters

Word embedding tested: word2vec-google-news-300 glove.6B.100d (17% unknown words) (2% unknown words) 220 **BiLSTM - Hidden size:** 100 300 **BiLSTM - Number of layers:**

Model architectures: Baseline + POS Tagger parameters

POS Tagging:

- Performed with nltk library
- Penn Treebank tagset
- POS Tags with one-hot encoding

Dense layer changes w.r.t. baseline:

- BiLSTM output + POS Tags as input
- Increased the number of dense layers from 1 to 3
 - Hidden layer of size (300 x 300)
 - ReLU activation function

HW1 - PROPOSED SOLUTION

Training: Baseline

Cross entropy weighted loss, Adam optimizer Ir=0.001, dropout 50%, I2=5e-05

Training: **Baseline + POS Tagger**

Cross entropy weighted loss, Adam optimizer Ir=0.001, dropout 50%, I2=1e-05

Results: Baseline

Baseline				
	precision	recall	f1-score	support
CORP	0.51	0.61	0.56	133
CW	0.40	0.59	0.48	170
GRP	0.64	0.67	0.65	190
LOC	0.67	0.81	0.74	243
PER	0.82	0.86	0.84	300
PROD	0.35	0.56	0.43	149
micro avg	0.58	0.71	0.64	1185
macro avg	0.57	0.68	0.62	1185
weighted avg	0.61	0.71	0.65	1185

Results: **Baseline + POS Tagger**

POS Tagger increases macro F1-score by 3%

Baseline	+	P ₀ S	Tagger
----------	---	------------------	--------

	precision	recall	f1-score	support
CORP	0.56	0.59	0.58	133
CW	0.55	0.49	0.52	170
GRP	0.69	0.69	0.69	190
LOC	0.81	0.80	0.81	243
PER	0.78	0.87	0.82	300
PROD	0.51	0.52	0.51	149
micro avg	0.68	0.70	0.69	1185
macro avg	0.65	0.66	0.65	1185
weighted avg	0.68	0.70	0.69	1185

HW1 - RESULTS

Homework 2

Semantic Role Labeling (SRL)

Task description

In Semantic Role Labeling (SRL) we are interested in analyzing the **predicate-argument structures** within a sentence.

PREDICATE: Word or a multi-word expression denoting an event or an action

ARGUMENT: Part of the text linked in some way to the predicate

Task description: Pipeline

SRL can be seen as a pipeline of four subtasks:

1) Predicate identification

Obama went to Italy

2) Predicate disambiguation

Obama went to Italy

3) Argument identification

Obama went to Italy

4) Argument classification

SRL scenarios

We consider two different scenarios

SRL_34: Predicate identification and disambiguation have already been done

SRL_234: Only predicate identification has already been done

SRL_34 Model: Sentence encoding

SRL_34 Model: **Add additional information**

Add additional information: Positional embedding

SRL_234: Predicate disambiguation

To perform step 2, SRL_234 uses a sub-model SRL_2 similar to SRL_34

SRL_234: **Overall model**

Results: Performance comparison

SRL_34 Tasks	P	R	F 1
arg_ident	90.57	88.69	89.62
arg_class	85.96	84.18	85.06

SRL_234 Tasks	P	R	F 1
pred_disamb	88.37	88.09	88.23
arg_ident	91.26	88.37	89.79
arg_class	85.04	82.35	83.67

Results: Confusion matrix SRL_34

Best accuracy argument classification on:

- EXPERIENCER

Worst accuracy argument classification on:

INSTRUMENT
 (46% of the time is a false positive)

Confusion matrix SRL_34: True positive INSTRUMENT

Example of true positive INSTRUMENT argument class

Confusion matrix SRL_34: False positive INSTRUMENT

Example of false positive argument identification.

Results: Confusion matrix SRL_234 drop

Drop accuracy argument classification on:

EXPERIENCER
 (12% of the time assigned to AGENT)

Confusion matrix SRL_234 drop: **EXPERIENCER**

SRL_234 performs worse due to wrong predictions of SRL_2.

Thanks for your attention

End of the presentation

Results: Confusion Matrices

Confusion matrix SRL_34: False positive INSTRUMENT - 2

Second example of false positive argument identification.

Results: Confusion matrix SRL_234 drop

Drop accuracy argument classification on:

- EXPERIENCER (12% of the time assigned to AGENT)
- CAUSE (25% of the time assigned to AGENT)*

*only 4 samples in validation set

Confusion matrix SRL_234 drop: **EXPERIENCER**

SRL_234 performs worse due to wrong predictions of SRL_2.

Confusion matrix SRL_234 drop: CAUSE

SRL_234 performs worse due to wrong predictions of SRL_2

