Package xAct`xPerm` version 1.2.3, {2015, 8, 23}

CopyRight (c) 2003—2020, Jose M. Martin—Garcia, under the General Public License.

Connecting to external linux executable...

Connection established.

Package xAct`xTensor` version 1.2.0, {2021, 10, 17}

CopyRight (c) 2002—2021, Jose M. Martin—Garcia, under the General Public License.

Package xAct`xPlain` version 0.0.0—developer, {2025, 8, 24}

CopyRight © 2023, Will Barker and Sebastian Zell, under the General Public License.

These packages come with ABSOLUTELY NO WARRANTY; for details type

Disclaimer 1. This is free software, and you are welcome to redistribute

General solution

it under certain conditions. See the General Public License for details.

Original basis used for our work

We first consider the basis.

 $\lambda_0 \, O_0 + \lambda_1 \, O_1 + \lambda_2 \, O_2 + \lambda_3 \, O_3 + \lambda_4 \, O_4 + \lambda_5 \, O_5$

(1)

Here is the general solution.

$$\lambda_2 \rightarrow -\frac{\lambda_0 \left(-6 + \mathcal{D} + 2 s\right) + \lambda_1 \left(-2 + s \left(-3 + \mathcal{D} + s\right)\right)}{\left(-1 + s\right) \left(-4 + \mathcal{D} + s\right)} \tag{2}$$

$$\lambda_3 \to -\lambda_5$$
 (3)

$$\lambda_4 \to \frac{2 \lambda_0 + 2 \lambda_1 - \lambda_5 (-1 + s) (-4 + \mathcal{D} + s)}{2 (-1 + s) (-4 + \mathcal{D} + s)} \tag{4}$$

Here is the case of "s=1". Note that there are fewer operators than six in the case of "s=1" and "s=2".

$$\lambda_1 \to -\lambda_0 \tag{5}$$

The specific case of "s=3".

$$\lambda_2 \to \frac{\mathcal{D}\,\lambda_0 - 2\,\lambda_1 + 3\,\mathcal{D}\,\lambda_1}{2 - 2\,\mathcal{D}}\tag{6}$$

$$\lambda_5 \rightarrow \frac{\lambda_0 + \lambda_1 - 2(-1 + \mathcal{D})(\lambda_3 + \lambda_4)}{3(-1 + \mathcal{D})} \tag{7}$$

Alternative Fronsdal-type basis

Here we define a basis, where the Fronsdal combination and the trace of Fronsdal have their own coefficients. This makes it manifest that these coefficients completely disappear from the system which you provided.

$$\lambda_0 \to \mathcal{F}_1$$
 (8)

$$\lambda_1 \to c_1 - \mathcal{F}_1 \tag{9}$$

$$\lambda_2 \to c_2 + \mathcal{F}_1 \tag{10}$$

$$\lambda_3 \to \mathcal{F}_2$$
 (11)

$$\lambda_4 \to \frac{1}{2} \left(2 c_4 + \mathcal{F}_2 \right) \tag{12}$$

$$\lambda_5 \to c_5 - \mathcal{F}_2 \tag{13}$$

Here is the transformation of the operator sum.

$$c_1 O_1 + c_2 O_2 + \mathcal{F}_1 (O_0 - O_1 + O_2) + c_4 O_4 + \mathcal{F}_2 \left(O_3 + \frac{O_4}{2} - O_5 \right) + c_5 O_5$$
 (14)

Here is the general solution. Notice how the Fronsdal-type coefficients completely disappear.

$$c_2 \to -\frac{c_1 \left(-2 + s \left(-3 + \mathcal{D} + s\right)\right)}{\left(-1 + s\right) \left(-4 + \mathcal{D} + s\right)} \tag{15}$$

$$c_4 \to \frac{c_1}{(-1+s)(-4+\mathcal{D}+s)}$$
 (16)

$$c_5 \to 0 \tag{17}$$

Here is the case of "s=1". Note that there are fewer operators than six in the case of "s=1" and "s=2".

$$c_1 \to 0 \tag{18}$$

The specific case of "s=3".

$$c_2 \to \frac{c_1 \left(2 - 3\mathcal{D}\right)}{2\left(-1 + \mathcal{D}\right)} \tag{19}$$

$$c_5 \to \frac{1}{3} \left(-2 c_4 + \frac{c_1}{-1 + \mathcal{D}} \right) \tag{20}$$

System coefficients

Here are the coefficients of the system of equations for general spin and dimension.

```
Pochhammer \left[3-\frac{\mathcal{D}}{2}-s,n\right]
              2^{-1-n} \left(-2n+s\right) \left(2+2n(-3+\mathcal{D}+s)-s(-3+\mathcal{D}+s)\right) Gamma \left[3-\frac{\mathcal{D}}{2}-s\right]
                                                              Gamma \left[4-\frac{\mathcal{D}}{2}+n-s\right]
                              2^{-1-n} (2n-s) (1+2n-s) (-4+\mathcal{D}+s) \text{ Gamma} \left[3-\frac{\mathcal{D}}{2}-s\right]
                                                                Gamma \left[4-\frac{\mathcal{D}}{2}+n-s\right]
                                                2^{1-n} n \left(-4+\mathcal{D}+s\right) \text{ Gamma} \left[3-\frac{\mathcal{D}}{2}-s\right]
                                                                Gamma \left[3-\frac{\mathcal{D}}{2}+n-s\right]
                             2^{-n} n (2n-s) (-5+\mathcal{D}+s) (-4+\mathcal{D}+s) \text{ Gamma} \left[3-\frac{\mathcal{D}}{2}-s\right]
                                                                Gamma \left[4-\frac{\mathcal{D}}{2}+n-s\right]
2^{-1-n} n \left(-4+\mathcal{D}+s\right) \left(-2 n \left(-3+s\right) + \left(-4+s\right) \left(3+s\right) + \mathcal{D}\left(2-2 n+s\right)\right) \mathsf{Gamma} \left[3-\frac{\mathcal{D}}{2}-s\right]
                                                              Gamma\left[4-\frac{\mathcal{D}}{2}+n-s\right]
```

Here is a grid of discrete ranks.

- \bigcirc Power: Infinite expression $\stackrel{-}{\stackrel{}{\scriptstyle -}}$ encountered. \bigcirc
- Power: Infinite expression encountered.

 0
- First: {} has zero length and no first element.

```
(0 1 2 X 3 3 3 3
0 1 2 2 3 3 3 3
                                                                             (22)
0 1 2 2 3 3 3 3
 1 2 2 3 3 3 3
0 1 2 2 3 3 3 3
(0 1 2 2 3 3 3 3)
```

Key observation: This is the end of the script.