CLAIMS

We claim:

1. A compound of formula I:

or a pharmaceutically acceptable salt thereof, wherein: E' is -CO- or -SO₂-;

A is selected from H; Ht; $-R^1-Ht$; $-R^1-C_1-C_6$ alkyl, which is optionally substituted with one or more groups independently selected from hydroxy, C_1-C_4 alkoxy, Ht, -O-Ht, $-NR^2-CO-N(R^2)_2$, $-SO_2-R^2$ or $-CO-N(R^2)_2$; $-R^1-C_2-C_6$ alkenyl, which is optionally substituted with one or more groups independently selected from hydroxy, C_1-C_4 alkoxy, Ht, -O-Ht, $-NR^2-CO-N(R^2)_2$ or $-CO-N(R^2)_2$; or R^7 ;

each R^1 is independently selected from -C(0)-, $-S(0)_2$ -, -C(0)-C(0)-, -O-C(0)-, -O- $S(0)_2$, $-NR^2$ - $S(0)_2$ -, $-NR^2$ -C(0)- or $-NR^2$ -C(0)-C(0)-;

each Ht is independently selected from C_3-C_7 cycloalkyl; C_5-C_7 cycloalkenyl; C_6-C_{14} aryl; or a 5-7 membered saturated or unsaturated heterocycle, containing one or more heteroatoms selected from N, O, or S; wherein said aryl or said heterocycle is optionally fused to Q; and wherein any member of said Ht is optionally substituted with one or more substituents independently selected from oxo, $-OR^2$, SR^2 , $-R^2$, $-N(R^2)$ (R^2) , $-R^2$ -OH, -CN,

 $-\text{CO}_2\text{R}^2, -\text{C}(\text{O}) - \text{N}(\text{R}^2)_2, -\text{S}(\text{O})_2 - \text{N}(\text{R}^2)_2, -\text{N}(\text{R}^2) - \text{C}(\text{O}) - \text{R}^2, -\text{N}(\text{R}^2) - \text{C}(\text{O}) - \text{R}^2, -\text{N}(\text{R}^2) - \text{C}(\text{O})_n - \text{R}^2, -\text{C}(\text{O})_n - \text{R}^2, -\text{C}(\text{O})_n - \text{Q}, \\ \text{methylenedioxy}, -\text{N}(\text{R}^2) - \text{S}(\text{O})_2(\text{R}^2), \text{halo}, -\text{CF}_3, -\text{NO}_2, \text{Q}, -\text{OQ}, \\ -\text{OR}^7, -\text{SR}^7, -\text{R}^7, -\text{N}(\text{R}^2)(\text{R}^7) \text{ or } -\text{N}(\text{R}^7)_2; \\ \end{aligned}$

each Q is independently selected from a 3-7 membered saturated, partially saturated or unsaturated carbocyclic ring system; or a 5-7 membered saturated, partially saturated or unsaturated heterocyclic ring containing one or more heteroatoms selected from O, N, or S; wherein Q is optionally substituted with one or more groups selected from oxo, $-OR^2$, $-R^2$, $-SO_2R^2$, $-SO_2-N(R^2)_2$, $-N(R^2)_2$, $-N(R^2)-C(O)-R^2$, $-R^2-OH$, -CN, $-CO_2R^2$, $-C(O)-N(R^2)_2$, halo, $-CF_3$;

each R^2 is independently selected from H, or C_1 - C_4 alkyl,; and wherein said alkyl, when not a substituent of Q, is optionally substituted with Q or $-OR^3$; wherein when said R^2 is an $-OR^3$ substituted moiety, said R^3 in $-OR^3$ may not be $-OR^2$ substituted;

B, when present, is $-N(R^2)-C(R^3)_2-C(0)-$; each x is independently 0 or 1;

each R^3 is independently selected from H, Ht, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl; wherein any member of said R^3 , except H, is optionally substituted with one or more substituents selected from $-OR^2$, $-C(O)-NH-R^2$, $-S(O)_n-N(R^2)(R^2)$, $-N(R^2)_2$, $-N(R^2)-C(O)-O(R^2)$, $-N(R^2)-C(O)-N(R^2)$, $-N(R^2)-C(O)-R^2$;

each n is independently 1 or 2;

G, when present, is selected from H, R^7 or C_1-C_4 alkyl, or, when G is C_1-C_4 alkyl, G and R^7 are optionally bound to one another either directly or through a C_1-C_3 linker to form a heterocyclic ring; or

when G is not present, the nitrogen to which G is attached is bound directly to the R^7 group in $-OR^7$ with the concomitant displacement of one -ZM group from R^7 ;

D is selected from Q; C_1 - C_6 alkyl optionally substituted with one or more groups selected from C_3 - C_6 cycloalkyl, $-OR^2$, -S-Ht, $-R^3$, -O-Q or Q; C_2 - C_4 alkenyl optionally substituted with one or more groups selected from $-OR^2$, -S-Ht, $-R^3$, -O-Q or Q; C_3 - C_6 cycloalkyl optionally substituted with or fused to Q; or C_5 - C_6 cycloalkenyl optionally substituted with or fused to Q;

D' is selected from C_{1} - C_{15} alkyl, C_{2} - C_{15} alkenyl or C₂-C₁₅ alkynyl, each of which contains one or more substituents selected from oxo, halo, -CF3, -OCF3, -NO2, azido, -SH, $-SR^3$, $-N(R^3)-N(R^3)_2$, $-O-N(R^3)_2$, $-(R^3)N-O-(R^3)$, $-N(R^3)_2$, -CN, $-CO_2R^3$, $-C(O)-N(R^3)_2$, $-S(O)_n-N(R^3)_2$, $-N(R^3) C(O) - R^3$, $-N(R^3) - C(O) - N(R^3)_2$, $-N(R^3) - C(O) - S(R^3)$, $-C(O) - R^3$, $-S(O)_{n}-R^{3}$, $-N(R^{3})-S(O)_{n}(R^{3})$, $-N(R^{3})-S(O)_{n}-N(R^{3})_{2}$, $-S-NR^{3} C(0)R^3$, $-C(S)N(R^3)_2$, $-C(S)R^3$, $-NR^3-C(0)OR^3$, $-O-C(0)OR^3$, $-O-C(0)OR^3$ $C(O)N(R^3)_2$, $-NR^3-C(S)R^3$, =N-OH, $=N-OR^3$, $=N-N(R^3)_2$, $=NR^3$, $=NNR^3C(O)N(R^3)_2$, $=NNR^3C(O)OR^3$, $=NNR^3S(O)_p-N(R^3)_2$, $-NR^3 C(S) OR^3$, $-NR^3 - C(S) N(R^3)_2$, $-NR^3 - C[=N(R^3)] - N(R^3)_2$, $-N(R^3) C[=N-NO_2]-N(R^3)_2$, $-N(R^3)-C[=N-NO_2]-OR^3$, $-N(R^3)-C[=N-CN]-OR^3$, $-N(R^3)-C[=N-CN]-(R^3)_2$, $-OC(O)R^3$, $-OC(S)R^3$, $-OC(O)N(R^3)_2$, $-C(O)N(R^3)-N(R^3)_2$, $-O-C(O)N(R^3)-N(R^3)_2$, $O-C(O)N(OR^3)(R^3)$, $N(R^3) - N(R^3) C(O) R^3$, $N(R^3) - OC(O) R^3$, $N(R^3) - OC(O) R^3$, $N(R^3) - OC(O) R^3$ $OC(O)R^3$, $-OC(S)N(R^3)_2$, $-OC(S)N(R^3)(R^3)$, or PO_3-R^3 ; with the proviso that when R^7 is H, E' is $-SO_2$, G is H or alkyl, and when B is present or when B is not present and R1 is -C(0)-, D' may not be C_1 - C_{15} alkyl substituted with one substituent selected from $-N(R^3)_2$, $-SR^3$ or $-S(0)_p-R^3$, or substituted with two $-N(R^3)_2$ substituents;

E is selected from Ht; O-Ht; Ht-Ht; Ht fused with Ht; $-O-R^3$; $-N(R^2)(R^3)$; C_1-C_6 alkyl optionally substituted with one or more groups selected from R^4 or Ht; C_2-C_6 alkenyl optionally substituted with one or more groups selected from R^4 or Ht; C_3-C_6 saturated carbocycle optionally substituted with one or more groups selected from R^4 or Ht; or C_5-C_6 unsaturated carbocycle optionally substituted with one or more groups selected from R^4 or Ht; or C_5-C_6 unsaturated carbocycle optionally substituted with one or more groups selected from R^4 or Ht;

each R^4 is independently selected from $-OR^2$, $-OR^3$, $-SR^2$, $-SOR^2$, $-SO_2R^2$, $-CO_2R^2$, $-C(O)-NHR^2$, $-C(O)-N(R^2)_2$, $-C(O)-NR^2(OR^2)$, $-S(O)_2-NHR^2$, halo, $-NR^2-C(O)-R^2$, $-N(R^2)_2$ or -CN;

each R⁷ is independently selected from hydrogen,

$$- \left[CH_{2} - O \right]_{X} \bigvee_{Y}^{ZM} - Z(M)_{X} \quad \text{or} \quad - \left[CH_{2} - O \right]_{X} \bigvee_{X}^{Q} (R^{9})_{X}M' \quad ;$$

wherein each M is independently selected from H, Li, Na, K, Mg, Ca, Ba, $-N(R^2)_4$, C_1-C_{12} -alkyl, C_2-C_{12} -alkenyl, or $-R^6$; wherein 1 to 4 $-CH_2$ radicals of the alkyl or alkenyl group, other than the $-CH_2$ that is bound to Z, is optionally replaced by a heteroatom group selected from O, S(O), $S(O)_2$, or $N(R^2)$; and wherein any hydrogen in said alkyl, alkenyl or R^6 is optionally replaced with a substituent selected from oxo, $-OR^2$, $-R^2$, $N(R^2)_2$, $N(R^2)_3$, R^2OH , -CN, $-CO_2R^2$, $-C(O)-N(R^2)_2$, $S(O)_2-N(R^2)_2$, $N(R^2)-C(O)-R^2$, $C(O)R^2$, $-S(O)_n-R^2$, OCF_3 , $-S(O)_n-R^6$, $N(R^2)-S(O)_2(R^2)$, halo, $-CF_3$, or $-NO_2$;

M' is H, C_1-C_{12} -alkyl, C_2-C_{12} -alkenyl, or $-R^6$; wherein 1 to 4 -CH₂ radicals of the alkyl or alkenyl group is

optionally replaced by a heteroatom group selected from O, S, S(O), S(O)₂, or N(R²); and wherein any hydrogen in said alkyl, alkenyl or R⁶ is optionally replaced with a substituent selected from oxo, $-OR^2$, $-R^2$, $-N(R^2)_2$, $N(R^2)_3$, $-R^2OH$, -CN, $-CO_2R^2$, $-C(O)-N(R^2)_2$, $-S(O)_2-N(R^2)_2$, $-N(R^2)-C(O)-R_2$, $-C(O)R^2$, $-S(O)_n-R^2$, $-OCF_3$, $-S(O)_n-R^6$, $-N(R^2)-S(O)_2(R^2)$, halo, $-CF_3$, or $-NO_2$;

Z is O, S, $N(R^2)_2$, or, when M is not present, H.

Y is P or S;

X is O or S;

 R^9 is $C(R^2)_2$, O or $N(R^2)$; and wherein when Y is S, Z is not S;

 R^6 is a 5-6 membered saturated, partially saturated or unsaturated carbocyclic or heterocyclic ring system, or an 8-10 membered saturated, partially saturated or unsaturated bicyclic ring system; wherein any of said heterocyclic ring systems contains one or more heteroatoms selected from O, N, S, $S(O)_n$ or $N(R^2)$; and wherein any of said ring systems optionally contains 1 to 4 substituents independently selected from OH, C_1 - C_4 alkyl, $-O-C_1-C_4$ alkyl or $-O-C(O)-C_1-C_4$ alkyl; and

each R^5 is independently selected from hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl or Ht, wherein any R^5 , except for hydrogen, is optionally substituted with -CF₃, -PO₃ R^3 , azido or halo.

2. The compound according to claim 1, having the formula IA:

A
$$\longrightarrow$$
 (B) \xrightarrow{N} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} $\xrightarrow{H_2}$ $\xrightarrow{D'}$ \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} $\xrightarrow{H_2}$ $\xrightarrow{D'}$ (IA)

wherein:

D' is selected from C_{1-15} alkyl, C_{2-15} alkenyl or C_2 - C_{15} alkynyl; each of which is substituted with one to two -CN groups and each of which is optionally substituted with C_3 - C_8 cycloalkyl.

3. The compound according to claim 2 wherein:

D' is selected from C_{1-15} alkyl or C_{2-15} alkenyl; each of which is substituted with one to two -CN groups and each of which is optionally substituted with $C_{3-}C_{8}$ cycloalkyl.

4. The compound according to claim 2 wherein:

D' is C_2 - C_{15} alkynyl which is substituted with one to two -CN groups and each of which is optionally substituted with C_3 - C_8 cycloalkyl.

5. The compound according to claim 1 having the formula IB:

$$A \longrightarrow (B)_{X} N \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow N \longrightarrow SO_{2} \longrightarrow E$$

$$(G)_{X} OR^{7} D'$$
(IB)

wherein:

D' is selected from C_{1} - C_{15} alkyl, C_{2} - C_{15} alkenyl or C₂-C₁₅ alkynyl, each of which contains one or more substituents selected from oxo, halo, -CF3, -OCF3, -NO2, azido, -SH, $-SR^3$, $-N(R^3)-N(R^3)_2$, $-O-N(R^3)_2$, $-(R^3)N-O-(R^3)$, $-N(R^3)_2$, $-CO_2R^3$, $-C(O)-N(R^3)_2$, $-S(O)_p-N(R^3)_2$, $-N(R^3)-C(O)-R^3$, $-N(R^3)-C(O)-N(R^3)_2$, $-N(R^3)-C(O)-S(R^3)$, $-C(O)-R^3$, $-S(O)_n-R^3$, $-N(R^3)-S(O)_{p}(R^3)$, $-N(R^3)-S(O)_{p}-N(R^3)_{2}$, $-S-NR^3-C(O)R^3$, $-C(S)N(R^3)_2$, $-C(S)R^3$, $-NR^3-C(O)OR^3$, $-O-C(O)OR^3$, $-O-C(O)OR^3$ $C(O)N(R^3)_2$, $-NR^3-C(S)R^3$, =N-OH, $=N-OR^3$, $=N-N(R^3)_2$, $=NR^3$, $=NNR^3C(O)N(R^3)_2$, $=NNR^3C(O)OR^3$, $=NNR^3S(O)_n-N(R^3)_2$, $-NR^3 C(S)OR^3$, $-NR^3-C(S)N(R^3)_2$, $-NR^3-C[=N(R^3)]-N(R^3)_2$, $-N(R^3) C[=N-NO_2]-N(R^3)_2$, $-N(R^3)-C[=N-NO_2]-OR^3$, $-N(R^3)-C[=N-CN]-OR^3$, $-N(R^3)-C[=N-CN]-(R^3)_2$, $-OC(O)R^3$, $-OC(S)R^3$, $-OC(O)N(R^3)_2$, $-C(O)N(R^3)-N(R^3)_2$, $-O-C(O)N(R^3)-N(R^3)_2$, $O-C(O)N(OR^3)(R^3)$, $N(R^3) - N(R^3) C(O) R^3$, $N(R^3) - OC(O) R^3$, $N(R^3) - OC(O) R^3$, $N(R^3) OC(O)R^3$, $-OC(S)N(R^3)_2$, $-OC(S)N(R^3)(R^3)$, or PO_3-R^3 ; with the proviso that when R^7 is H, E' is $-SO_2-$, G is H or alkyl, and when B is present or when B is not present and R1 is -C(0)-, D' may not be C_1 - C_{15} alkyl substituted with one substituent selected from $-N(R^3)_2$, $-SR^3$ or $-S(O)_n-R^3$, or substituted with two $-N(R^3)_2$ substituents.

6. The compound according to claim 5 wherein: D' is selected from C_1 - C_{15} alkyl or C_2 - C_{15} alkenyl, each of which contains one or more substituents selected from oxo, halo, -CF₃, -OCF₃, -NO₂, azido, - N(R³)-N(R³)₂, -O-N(R³)₂, -(R³)N-O-(R³), -N(R³)₂, -N(R³)-C(O)-N(R³)₂, -N(R³)-C(O)-S(R³), -C(O)-R³, -S(O)_n-R³, -N(R³)-S(O)_n(R³), -N(R³)-

 $S(O)_{n}-N(R^{3})_{2}$, $-S-NR^{3}-C(O)R^{3}$, $-C(S)N(R^{3})_{2}$, $-C(S)R^{3}$, $-NR^{3}-C(S)R^{3}$ $C(0) OR^3$, $-O-C(0) OR^3$, $-O-C(0) N(R^3)_2$, $-NR^3-C(S) R^3$, =N-OH, =N-OH OR^3 , =N-N(R³)₂, =NR³, =NNR³C(O)N(R³)₂, =NNR³C(O)OR³, $=NNR^3S(O)_n-N(R^3)_2$, $-NR^3-C(S)OR^3$, $-NR^3-C(S)N(R^3)_2$, $-NR^3-C(S)N(R^3)_2$ $C[=N(R^3)]-N(R^3)_2$, $-N(R^3)-C[=N-NO_2]-N(R^3)_2$, $-N(R^3)-C[=N-NO_2]-N(R^3)_2$ OR^3 , $-N(R^3) - C[=N-CN] - OR^3$, $-N(R^3) - C[=N-CN] - (R^3)_2$, $-OC(O)R^3$, $-OC(S)R^3$, $-OC(O)N(R^3)_2$, $-C(O)N(R^3)-N(R^3)_2$, $-O-C(O)N(R^3) N(R^3)_2$, O-C(O)N(OR³)(R³), $N(R^3)$ -N(R³)C(O)R³, $N(R^3)$ -OC(O)R³, $N(R^3) - OC(O)R^3$, $N(R^3) - OC(O)R^3$, $-OC(S)N(R^3)_2$, $-OC(S)N(R^3)$ (R^3), or PO₃-R³; C₂-C₁₅ alkynyl which contains one or more substituents selected from oxo, halo, -CF3, -OCF3, -NO2, azido, -SH, $-SR^3$, $-N(R^3)-N(R^3)_2$, $-O-N(R^3)_2$, $-(R^3)N-O-(R^3)$, $-N(R^3)_2$, $-CO_2R^3$, $-C(O)-N(R^3)_2$, $-S(O)_n-N(R^3)_2$, $-N(R^3)-C(O)-R^3$, $-N(R^3)-C(O)-N(R^3)_2$, $-N(R^3)-C(O)-S(R^3)$, $-C(O)-R^3$, $-S(O)_n-R^3$, $-N(R^3)-S(O)_n(R^3)$, $-N(R^3)-S(O)_n-N(R^3)_2$, $-S-NR^3-C(O)R^3$, $-C(S)N(R^3)_2$, $-C(S)R^3$, $-NR^3-C(O)OR^3$, $-O-C(O)OR^3$, $-O-C(O)OR^3$ $C(O)N(R^3)_2$, $-NR^3-C(S)R^3$, =N-OH, $=N-OR^3$, $=N-N(R^3)_2$, $=NR^3$, $=NNR^{3}C(O)N(R^{3})_{2}$, $=NNR^{3}C(O)OR^{3}$, $=NNR^{3}S(O)_{n}-N(R^{3})_{2}$, $-NR^{3} C(S)OR^3$, $-NR^3-C(S)N(R^3)_2$, $-NR^3-C[=N(R^3)]-N(R^3)_2$, $-N(R^3) C[=N-NO_2]-N(R^3)_2$, $-N(R^3)-C[=N-NO_2]-OR^3$, $-N(R^3)-C[=N-CN]-OR^3$, $-N(R^3)-C[=N-CN]-(R^3)_2$, $-OC(O)R^3$, $-OC(S)R^3$, $-OC(O)N(R^3)_2$, - $C(O)N(R^3)-N(R^3)_2$, $-O-C(O)N(R^3)-N(R^3)_2$, $O-C(O)N(OR^3)(R^3)$, $N(R^3) - N(R^3) C(O) R^3$, $N(R^3) - OC(O) R^3$, $N(R^3) - OC(O) R^3$, $N(R^3) OC(O)R^3$, $-OC(S)N(R^3)_2$, $-OC(S)N(R^3)(R^3)$, or PO_3-R^3 ; with the proviso that when R^7 is H, E' is $-SO_2-$, G is H or alkyl, and when B is present or when B is not present and R1 is -C(0)-, D' may not be C_1 - C_{15} alkyl substituted with one substituent selected from $-N(R^3)_2$ or $-S(0)_n-R^3$, or substituted with two $-N(R^3)_2$ substituents.

7. The compound according to claim 5 wherein:

D' is selected from C_1 - C_{15} alkyl or C_2 - C_{15} alkenyl, each of which contains one or more substituents selected from -SH, -SR³, -CO₂R³, -C(O)-N(R³)₂, -S(O)_n-N(R³)₂ or -N(R³)-C(O)-R³; with the proviso that when R⁷ is H, E' is -SO₂-, G is H or alkyl, and when B is present or when B is not present and R¹ is -C(O)-, D' may not be C_1 - C_{15} alkyl substituted with one substituent selected from -SR³.

- 8. The compound according to any one of claims 1 to 4, wherein E' is SO_2 .
- 9. The compound according to any one of claims 1 to 7, wherein at least one R^7 is selected from:

$$H_2$$
, H_2 ,

$$P_{O}$$
 NMe₃ + O_{O} P_{O} O_{O} , P_{O_3} P

 PO_3 -spermine, PO_3 -(spermidine)₂ or PO_3 -(meglamine)₂.

10. The compound according to claim 8, having the formula II:

11. The compound according to claim 10, wherein:

A is R'-C(O)-; and R' is selected from

12. The compound according to claim 10, wherein:

D' is $-CH_2-R''$; and

R'' is selected from

wherein m is 0 to 3.

13. The compound according to claim 10, wherein ${\tt E}$ is selected from

14. The compound according to claim 10, wherein \mbox{R}^{7} is $-\mbox{PO}_{3}^{2-}.$

15. The compound according to claim 1, having the formula III:

$$Ht-(CH_2)x \xrightarrow{O} N \xrightarrow{H} OR^7 D' SO_2-E$$

$$R^3 \qquad (III).$$

16. The compound according to claim 1, having the formula IV:

(IV);

wherein $R^{3'}$ is selected from H, Ht, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl; wherein any member of said R^3 , except H, is optionally substituted with one or more substituents selected from $-OR^2$, -C(O)-NH- R^2 , $-S(O)_n$ - $N(R^2)$ (R^2), $-N(R^2)_2$, $-N(R^2)$ -C(O)- $O(R^2)$, $-N(R^2)$ -C(O)- $N(R^2)$, $-N(R^2)$ -C(O)- $N(R^2)$, $-N(R^2)$ -C(O)- R^2 , -C(O)- R^2 , -C(O)- R^2 .

- 17. The compound according to claim 11, wherein said compound is selected from any one of compound numbers: 210, 224, 240, 248, 250, 255, 263, 270, 272, 280, 299, 300, 307, 309, 313, 314, 315, 316, 359, 360, 384, 483, 494, 496, 523, 524, 531, 542, 548, 553, 558, 563, 570, 571, 575, 579, 589, 596, 606, 609, 616.
- 18. The compound according to claim 11, wherein said compound is selected from any one of

compound numbers: 12, 16, 25, 29, 30, 31, 35, 39, 41, 42, 47, 100, 124, 375, 378, 421, 459, 464.

- 19. The compound according to claim 17, wherein said compound is selected from any one of compound numbers: 224, 240, 263, 270, 272, 280, 299, 300, 307, 309, 313, 314, 315, 316, 359, 360, 384, 483, 494, 496, 548, 553, 558, 563, 570, 571, 575, 579, 589, 596, 606, 609, 616.
- 20. The compound according to claim 18, wherein said compound is selected from any one of compound numbers: 12, 16, 25, 35, 39, 42, 47, 100, 375, 378, 421, 459, 464.
- 21. The compound according to claim 19, wherein said compound is selected from any one of compound numbers: 224, 240, 272, 299, 314.
- 22. The compound according to claim 20, wherein said compound is selected from any one of compound numbers: 16, 25, 42, 47, 100.
- 23. A composition comprising a compound according to any one of claims 1-22 or a pharmaceutically acceptable salt thereof in an amount sufficient to detectably inhibit aspartyl protease activity in a patient, and a pharmaceutically acceptable carrier.
- 24. The composition according to claim 23, further comprising an additional antiviral agent other than a compound of formula (I).

- 25. The composition according to claim 23, wherein said composition is formulated as a pharmaceutically acceptable, orally available tablet or capsule.
- 26. A method of treating an HIV virus infection in a human comprising the step of administering to said human a composition according to any one of claims 23 to 25.
- 27. The method according to claim 26, comprising the step of administering to said patient an additional antiviral agent other than a compound of formula I, wherein said additional antiviral agent is administered prior to, simultaneously with or following administration of said composition.