CS/ECE/ME532 Period 23 Activity

Estimated Time: 20 minutes for P1, 20 minutes for P2, 10 minutes for P3, 15 minutes for P4.

1. Consider performing regression using all quadratic and lower order functions of a 2-dimensional observation $\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

$$\hat{y} = x_1^2 w_1 + x_2^2 w_2 + \sqrt{2} x_1 x_2 w_3 + \sqrt{2} x_1 w_4 + \sqrt{2} x_2 w_5 + w_6$$

- a) Show that $\hat{y} = \phi^T(x)w$ and find ϕ, w .
- **b)** Show that the "kernel" $\phi^T(\boldsymbol{x}_i)\phi(\boldsymbol{x}_j)$ is identical to $(\boldsymbol{x}_i^T\boldsymbol{x}_j+1)^2$.
- c) The number of multiplications may be used as a crude measure of computational complexity. Compare the number of multiplications required to compute $\phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$ (ignoring the $\sqrt{2}$ terms) to that required to compute $(\mathbf{x}_i^T\mathbf{x}_j+1)^2$.
- **2.** You are given N observations $y_i, \boldsymbol{x}_i, i = 1, 2, \dots, N$ and solve the ridge-regression problem

$$\operatorname{arg\,min}_{\boldsymbol{w}} ||\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{w}||_{2}^{2} + \lambda ||\boldsymbol{w}||_{2}^{2}$$

where
$$\boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$
 and $\boldsymbol{\Phi} = \begin{bmatrix} \boldsymbol{\phi}^T(\boldsymbol{x}_1) \\ \boldsymbol{\phi}^T(\boldsymbol{x}_2) \\ \vdots \\ \boldsymbol{\phi}^T(\boldsymbol{x}_N) \end{bmatrix}$. You know the solution may be expressed

in standard form as

$$\hat{\boldsymbol{w}} = (\boldsymbol{\Phi}^T \boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^T \boldsymbol{y}$$

a) Factor $\mathbf{\Phi}^T$ from the left and the right of $\mathbf{\Phi}^T\mathbf{\Phi}\mathbf{\Phi}^T + \lambda\mathbf{\Phi}^T$ to show that

$$(\boldsymbol{\Phi}^T\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1}\boldsymbol{\Phi}^T = \boldsymbol{\Phi}^T(\boldsymbol{\Phi}\boldsymbol{\Phi}^T + \lambda \boldsymbol{I})^{-1}$$

Hint: we did this a previous activity and you used the result in the breast cancer classification assignment.

b) Use the result of the previous part to show that

$$\hat{\boldsymbol{w}} = \boldsymbol{\Phi}^T (\boldsymbol{\Phi} \boldsymbol{\Phi}^T + \lambda \boldsymbol{I})^{-1} \boldsymbol{y}$$

c) Let the kernel matrix $\mathbf{K} = \mathbf{\Phi}\mathbf{\Phi}^T$. Express the i, j element of \mathbf{K} , $[\mathbf{K}]_{i,j}$ using $\phi(\mathbf{x})$.

- d) Assume $\phi(x)$ is defined as in Problem 1 and find $[K]_{i,j}$ as a function of $x_i^T x_j$.
- e) Recall from Problem 1 that $\hat{y}(\boldsymbol{x}) = \boldsymbol{\phi}^T(\boldsymbol{x})\hat{\boldsymbol{w}}$. Thus, $\hat{y}(\boldsymbol{x}) = \boldsymbol{\phi}^T(\boldsymbol{x})\boldsymbol{\Phi}^T(\boldsymbol{\Phi}\boldsymbol{\Phi}^T + \lambda \boldsymbol{I})^{-1}\boldsymbol{y}$. Show that

$$\hat{y}(\boldsymbol{x}) = \sum_{j=1}^{N} K(\boldsymbol{x}, \boldsymbol{x}_j) \alpha_j$$

where $K(\boldsymbol{x}, \boldsymbol{x}_j) = (\boldsymbol{x}^T \boldsymbol{x}_j + 1)^2$.

- 3. Suppose $\phi(x) = x$. Use the results of the previous problem.
 - a) Find the expression for the corresponding kernel $K(x, x_i)$.
 - **b)** Express $\hat{y}(\boldsymbol{x})$ in terms of α_j and your expression for $K(\boldsymbol{x}, \boldsymbol{x}_j)$. How does each training sample influence the prediction $\hat{y}(\boldsymbol{x})$ at some new value \boldsymbol{x} ?
- 4. The results we developed in this exercise so far show that regression can be expressed entirely in terms of the kernel function $K(\boldsymbol{x}, \boldsymbol{x}_j)$:

$$\hat{y}(\boldsymbol{x}) = \sum_{j=1}^{n} K(\boldsymbol{x}, \boldsymbol{x}_j) \alpha_j$$

where α_j is a function of the kernel matrix K, regularization parameter λ , and data y. This form allows us to perform regression when the high dimensional feature vector $\phi(x)$ is not easily defined, but $K(x, x_j) = \phi^T(x)\phi(x_j)$ is easily defined. One such case is the Gaussian kernel,

$$K(\boldsymbol{x}, \boldsymbol{x}_j) = \exp\left\{-\frac{||\boldsymbol{x} - \boldsymbol{x}_j||_2^2}{2\sigma}\right\}$$

For simplicity this problem assumes \boldsymbol{x} is one dimensional, that is $\hat{y}(x)$ describes a graph of a function of one variable.

- a) Suppose $x_1 = -2, x_2 = 0$, and $x_3 = 2$. Sketch $K(x, x_j)$ as a function of x for j = 1, 2, 3 assuming $\sigma = 1$.
- **b)** Now sketch $\hat{y}(x)$ assuming $\alpha_1 = -1, \alpha_2 = 2$, and $\alpha_3 = 1$.
- c) Fill in the blanks. The expression $\hat{y}(x) = \sum_{j=1}^{n} K(x, x_j) \alpha_j$ interpolates a value y corresponding to x as a _____ sum of ____ functions centered on the _____.