PLANO DE AULA DE MATEMÁTICA	Aula: 10 – 1BIM2022
Título: REVISÃO: POTÊNCIA COM EXPOENTES INTEIROS NEGATIVOS	Prof. Edilson Fonseca

REVISÃO: POTÊNCIA COM EXPOENTES RACIONAIS

1 – Organização da sala: verificar o posicionamento das carteiras, proximidades, alunos no corredor, utilização de máscara, disponibilidade de álcool para as mãos.

2 – Desenvolvimento:

Potência de expoente racional

Para dar significado às potências de expoente racional (como, por exemplo, $3^{\frac{1}{2}}$, $4^{\frac{3}{2}}$, $2^{\frac{1}{3}}$, ...) devemos lembrar que sua definição deve garantir a validade das propriedades operatórias já estudadas neste capítulo

•
$$3^{\frac{1}{2}} \cdot 3^{\frac{1}{2}} = 3^{\frac{1}{2} + \frac{1}{2}} = 3^{\frac{1}{2}} = 3$$
; assim, $\left(3^{\frac{1}{2}}\right)^2 = 3$, ou seja, $3^{\frac{1}{2}}$ é a raiz quadrada aritmética de 3, isto é, $\sqrt{3} = 3^{\frac{1}{2}}$.

•
$$2^{\frac{1}{3}} \cdot 2^{\frac{1}{3}} \cdot 2^{\frac{1}{3}} = 2^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = 2^1 = 2$$
; assim, $\left(2^{\frac{1}{3}}\right)^3 = 2$, ou seja, $2^{\frac{1}{3}}$ é a raiz cúbica aritmética de 2, isto é, $\sqrt[3]{2} = 2^{\frac{1}{3}}$.

Os exemplos anteriores ilustram a seguinte definição: Para $a \in \mathbb{R}$, a > 0 e $n \in \mathbb{N}^*$, temos $a^{\frac{1}{n}} = \sqrt[n]{a}$.

Para
$$a \in \mathbb{R}$$
, $a > 0$ e $n \in \mathbb{N}^*$, temos $a^{\frac{1}{n}} = \sqrt[n]{a}$.

Acompanhe agora os cálculos seguintes:

$$8^{\frac{3}{2}} \cdot 8^{\frac{3}{2}} = 8^{\frac{3}{2} + \frac{3}{2}} = 8^{2 \cdot \frac{3}{2}} = 8^{3}$$

aritmética de 8³ é igual a $8^{\frac{3}{2}}$, ou seja, $\sqrt{8^3} = 8^{\frac{3}{2}}$.

Essas considerações ilustram a seguinte definição:

 $\bullet \Delta^{\frac{2}{3}} \cdot \Delta^{\frac{2}{3}} \cdot \Delta^{\frac{2}{3}} = \Delta^{\frac{2}{3} + \frac{2}{3} + \frac{2}{3}} = \Delta^{\frac{3 \cdot \frac{2}{3}}{3}} = \Delta^2$

Assim, $\left(8^{\frac{3}{2}}\right)^2 = 8^3$ e, portanto, a raiz quadrada

Assim, $\left(4^{\frac{2}{3}}\right)^3 = 4^2$ e, portanto, a raiz cúbica aritmética de 4^2 é igual a $4^{\frac{2}{3}}$, ou seia, $\sqrt{8^3} = 8^{\frac{3}{2}}$.

ou seja, $\sqrt[3]{4^2} = 4^{\frac{2}{3}}$.

Dados um número real positivo a, um número inteiro m e um número natural n ($n \ge 1$), chama-se **potência de base a** e **expoente** $\frac{m}{n}$ a raiz $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ enésima (n-ésima) aritmética de am.

Definição especial:

Sendo
$$\frac{m}{n} > 0$$
, define-se: $0^{\frac{m}{n}} = 0$.

Exemplos:

•
$$5^{\frac{1}{2}} = \sqrt{5}$$

•
$$1^{\frac{7}{5}} = \sqrt[5]{1^7} = 1$$

•
$$64^{-\frac{1}{3}} = \sqrt[3]{64^{-1}} = \sqrt[3]{\frac{1}{64}} = \frac{1}{4}$$

Todas as propriedades conhecidas para expoentes naturais ou inteiros negativos valem para quando expoentes naturais.

EXERCÍCIO RESOLVIDO

3 Calcule o valor de y = $27^{\frac{2}{3}} - 16^{\frac{3}{4}}$

Solução:

Podemos resolver de duas formas:

a) Escrevendo as potências na forma de raízes: $y = \sqrt[3]{27^2} - \sqrt[4]{16^3} = \sqrt[3]{729} - \sqrt[4]{4096} = 9 - 8 = 1$

L5 Qual é o valor de ab,

b) Usando as propriedades das potências: $y = (3^3)^{\frac{2}{3}} - (2^4)^{\frac{3}{4}} = 3^2 - 2^3 = 9 - 8 = 1$

EXERCÍCIOS

a)
$$27^{\frac{1}{3}}$$
 f) $0.25^{\frac{1}{2}}$

b)
$$256^{\frac{1}{2}}$$
 g) $\left(\frac{27}{1000}\right)^{\frac{1}{2}}$

c)
$$32^{\frac{1}{5}}$$
 h) $\left(\frac{1}{81}\right)^{0.2}$

$$\frac{1}{4}$$
 (81)

e)
$$576^{\frac{1}{2}}$$

a)
$$8^{\frac{2}{3}}$$
 f) 0,09

b)
$$144^{-2}$$
 g) 164^{4}

d)
$$16^{\frac{5}{2}}$$
 i) $0,001^{-1}$

sendo
$$a = (\frac{1}{4})^{-2} + (\frac{1}{3})^{-2}$$

b) $144^{-\frac{1}{2}}$ g) $16^{\frac{3}{4}}$
c) $(0,2)^{\frac{1}{2}}$ h) $8^{-\frac{1}{2}}$
d) $16^{\frac{5}{2}}$ i) $0,001^{-\frac{2}{3}}$ e $b = \frac{2 \cdot (\frac{1}{3})^{-1} - 2^2}{(\frac{1}{3})^{-2}}$?

$$ASC = \left(\frac{h \cdot m}{3600}\right)^{\frac{1}{2}}$$

em que ${\bf h}$ é a altura da pessoa em centímetros e ${\bf m}$ é a massa da pessoa em quilogramas.

- a) Calcule a área da superfície corporal de um indivíduo de 1,69 m e 75 kg. Use $\sqrt{3} \approx 1,7$.
- b) Juvenal tem ASC igual a 2 m² e massa 80 kg. Qual é a altura de Juvenal?
- c) Considere dois amigos, Rui e Eli, ambos com 81 kg de massa. A altura de Rui é 21% maior do que a altura de Eli. A ASC de Rui é x% maior do que a ASC de Eli. Qual é o valor de x?

PLANO DE AULA DE MATEMÁTICA	Aula: 10 – 1BIM2022
Título: REVISÃO: POTÊNCIA COM EXPOENTES INTEIROS NEGATIVOS	Prof. Edilson Fonseca