CONGRUENCE 35

Problem 4.30. Show that if $a \equiv b \mod n$ and $c \equiv d \mod n$ then $ac \equiv bd \mod n$.

The converse of Problem 4.30 need not be true. For example, $4 \cdot 7 \equiv 2 \cdot 2 \mod 12$. However 7 is not congruent to 2 modulo 12.

Theorem 4.31. Let $a, b \in \mathbb{Z}$. Then $a \equiv b \mod 3$ if and only if $2a + b \equiv 0 \mod 3$.

Proof. Suppose $a \equiv b \mod 3$. Then there exists $k \in \mathbb{Z}$ such that (a-b) = 3k which implies 2(a-b) = 6k. Moreover, 2a-2b+3b=6k+3b which implies 2a+b=6k+3b=3(2k+b). It follows that $2a+b\equiv 0 \mod 3$. Conversely, suppose $2a+b\equiv 0 \mod 3$. Then there exists $k \in \mathbb{Z}$ such that 2a+b=3k. Hence b=3k-2a. Now

$$a - b = a - (3k - 2a) = 3a - 3k = 3(a - k).$$

Therefore $a \equiv b \mod 3$.

Theorem 4.32. (Fermat's Little Theorem) Let p be a prime and $c \in \mathbb{Z}$. If c is not divisible by p then $c^p \equiv c \mod p$.

Problem 4.33. Determine $5^{17} \mod 17$.