QR Code Authentication System: Original vs. Counterfeit Detection

Author: Soumyadeep Dhali

Institution: Indian Institute of Technology Madras

Date: 25-03-25

1. Introduction

1.1 Problem Significance

Counterfeit QR codes enable product fraud, fake tickets, and phishing attacks. Industry reports indicate:

- 27% increase in QR-based scams since 2022 (Cybersecurity Ventures, 2023)
- \$3.2B annual losses from counterfeit prints (Anti-Counterfeiting Alliance)

1.2 Problem Statement

Given a dataset of OR codes:

- First Print (Original)
- Second Print (Counterfeit)

We develop a classification system to detect counterfeit prints based on visual artifacts, resolution differences, and print degradation.

1.3 Objectives

- 1. Data Analysis: Identify visual differences between original and counterfeit prints.
- 2. Feature Engineering: Extract meaningful features (global & local patterns).
- 3. Model Development: Train and compare Random Forest and CNN models.
- 4. **Evaluation**: Assess performance using accuracy, precision, recall, and F1-score.
- 5. **Deployment**: Discuss real-world implementation considerations.

2. Methodology

2.1 Data Exploration & Analysis

Dataset Statistics

Metric	Value
Total Samples	200
Original Prints	100
Counterfeit Prints	100
Avg Dimensions	300x300 px

Key Visual Differences

• Pixel Intensity: Counterfeit prints show higher variance

Fig. 1a: Pixel Intensity Analysis

- 1. Left: Original print shows uniform pixel distribution
- 2. **Right**: Counterfeit exhibits higher variance (blurring/artifacts)

Edge Sharpness: Originals have cleaner edges (Fig. 1b).

- 1. Left: Original HOG displays clean, structured gradients
- 2. Right: Counterfeit HOG has fragmented edges due to reprinting
- Local Patterns: HOG/LBP features reveal texture differences (Fig. 1c).

- 1. Left: Original shows consistent texture uniformity
- 2. Right: Counterfeit reveals noisy, irregular binary patterns

2.2 Feature Engineering

Global Features

- 1. Mean/Std of Pixel Intensity
- 2. Sharpness (Laplacian Variance)

Local Features

- 1. HOG (Histogram of Oriented Gradients)
 - Captures edge structures (pixels_per_cell=(8,8))
- 2. LBP (Local Binary Patterns)
 - Encodes texture patterns (P=16, R=2)

Feature Importance (Random Forest):

• Top Features: HOG_Edge_Variance, LBP_Uniformity

2.3 Model Development

Approach 1: Random Forest (Traditional ML)

Hyperparameter Tuning:

```
param_grid = {
        'n_estimators': [100, 200],
        'max_depth': [None, 10, 20],
        'min_samples_split': [2, 5]
}
```

Best Model: {'max_depth': None, 'min_samples_split': 5, 'n_estimators': 200}

Approach 2: CNN (Deep Learning)

Architecture:

```
Sequential([
          Conv2D(32, (3,3), activation='relu', input_shape=(64,64,1)),
          MaxPooling2D((2,2)),
          Conv2D(64, (3,3), activation='relu'),
          Flatten(),
          Dense(64, activation='relu'),
          Dense(1, activation='sigmoid')
])
```

• **Training**: 15 epochs, Adam optimizer, batch_size=32

3. Results & Evaluation

3.1 Performance Metrics

Model	Accuracy	Precision	Recall	F1-Score
Random Forest	95.00%	94.74%	94.74%	94.74%
CNN	95.00%	90.48%	100%	95.00%

Confusion Matrices

Random Forest:

```
[[18 1]
[ 1 18]]
```

• CNN:

```
[[19 0]
[ 2 17]]
```

ROC Curves

• Random Forest AUC: 0.98

• CNN AUC: 0.99

Key Insight:

- CNN achieves perfect recall (100%) but has slightly lower precision due to false positives.
- Random Forest offers balanced precision/recall.

4. Deployment Considerations

4.1 Computational Efficiency

Model	Inference Latency	Model Size
Random Forest	2.1 ms	1.2 MB
CNN	8.5 ms	3.7 MB

4.2 Security Recommendations

- 1. **Input Validation**: Sanitize QR code inputs to prevent adversarial attacks.
- 2. **Model Encryption**: Protect intellectual property.
- 3. Rate Limiting: Prevent brute-force attempts.

4.3 Pipeline Export

```
final_pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('model', rf_model) # Best model based on F1-score
])
joblib.dump(final_pipeline, 'qr_authentication_pipeline.pkl')
```

5. Conclusion & Recommendations

Findings

- Both models achieve **95% accuracy**, but CNN has better F1-score (95.00 vs. 94.74).
- Tradeoff: CNN catches all counterfeits (100% recall) but has more false positives.

Recommendations

- 1. For High-Security Systems: Use CNN (prioritize recall).
- 2. For Balanced Performance: Use Random Forest.
- 3. Future Work: Augment data to improve CNN precision.

Appendix

- Full code: https://github.com/soumyadeep-git/QR_Code_Auth
- Dataset: Provided QR image samples
- Libraries: sklearn, tensorflow, opency