Tameez Latib

Problem 1

I, Tameez Latib, declare that this work is my own. I did this work honestly and can fully stand behind everything that I have written.

We will try to find the relative difference between two powers, P_C - the highest input power at which the earth will freeze over, and P_H - the lowest input power at which the earth will be completely covered in water.

To do this, we must first make a few assumptions:

- -The earth consists only of ice or water.
- -At temperature $T = 0^{\circ}C$ (or below), the earth is completely covered in ice.
- -At temperature $T = 20^{\circ}C$ (or above), the earth is completely filled in water.
- -Ice reflects 70% of all radiation it is exposed to.
- -Water reflects 10% of all radiation it is exposed to.
- -Due to a greenhouse effect, 50% of all radiation reflected is re-absorbed.
- -Let P denote the total power coming into the earth.
- -The earth's radius is 40,000km

Now, let's define $P_a(T)$ - the Power Absorbed by the earth (as a function of temperature, since temperature affects the composition of earth). We know Pis the total power coming, and that-depending on the composition of the eartha certain part is reflected outward, let's call this $P_r(T)$. Furthermore, 50% of the amount reflected is re-absorbed.

So
$$P_a(T) = P - P_r(T) + .5 * P_r(T) = P - .5 * P_r(T)$$

We know $P_r(T) = .7 * P$ for $T \leq 0$, as the earth will be entirely composed of ice at these temperatures. And for $T \geq 20$, $P_r(T) = .1 * P$, as the earth will be entirely composed of water at these temperatures.

Let's assume that $P_r(T)$ in between these regions is linear. This makes physical sense as the earth will be a mix of ice and water. Furthermore, $P_r(T)$ should be decreasing in this region. So for 0 < T < 20, let $P_r(T) = \frac{.7*P*(20-T)}{20} + \frac{.1*P*T}{20} = .7*P - \frac{.6*T}{20}$ Now, by the Stefan-Boltzmann Law, the earth emits $P_e(T) = \sigma * \epsilon * (T + 1)$

$$P_r(T) = \frac{.7*P*(20-T)}{20} + \frac{.1*P*T}{20} = .7*P - \frac{.6*T}{20}$$

 $(273)^4 * 4 * \pi * r^2$

Note that we multiple the amount by $4\pi r^2$ as that is the surface area of the earth. Furthermore, T is in Kelvin in this equation, so we convert from Celsius to Kelvin. σ is simply the Stefan-Boltzmann constant. The emissivity of water and ice are .98 and .96 respectively, so for simplicity sake, let's take $\epsilon = .97$. Temperature is directly related to the energy of a system, and power is the rate of change of energy, so we can let $T'(T) = P_a(T) - P_e(T)$

We know that for the input power P_c , we should have earth approach a state of pure ice (from any starting T in the range 0 < T < 20)

Hence,
$$T'(T) \leq 0$$
 for all $0 < T < 20$

In physical terms, no matter what starting Temperature (in the given range), for an input power P_c , the earth should get colder (T decreases, i.e. T' < 0) at least until T=0. We will assume (but not prove) that if T'(T)<0 at T=20for a input power P_c , then T'(T) < 0 for all 0 < T < 20

To solve for P_c , we let T'(20) = 0 (choose the greatest possible value as this maximizes P_a , similar to why one would choose a worst case scenario. If it works in the worst case, it should work in all better cases), and find that

$$P_c = 8.5 * 10^{18} W$$

The graphs (attached) confirm that T'(T) < 0 for all 0 < T < 20. Furthermore, we know this must be the greatest possible value (to 2 significant figures) of P_c , as for any greater value, T'(T) would be positive at values around T = 20.

 P_h can be found in a similar way, except that we set T'(T) > 0 for all 0 < T < 20. The same reasoning applies as before, except that now the input power P_h is the smallest such number. Solving T'(0) = 0, we find that

$$P_h = 9.4*10^{18} W$$

The relative difference is therefore $\frac{P_h - P_c}{P_{average}} = 0.1$

Note about graphs: The green is P_a , and the blue is P_e However, I divided both sides by P, the input power (to make it easier to view).

The first page is with $P = P_c$. As seen in the graph, the blue line is always above the green line (for 0 < T < 20). This indicates that $P_a - P_e = T'(T) < 0$, as it emits more than it absorbs. Therefore, the Temperature will decrease to the point at which T'(T) = 0 which occurs after T < 0

The second page is with $P=P_h$. As seen in the graph, the green line is always above the blue line (for 0 < T < 20). This indicates that $P_a - P_e = T'(T) > 0$, as it absorbs more than it emits. Therefore, the Temperature will increase to the point at which T'(T) = 0 which occurs after T > 20

