

Deep Reinforcement Learning

Professor Mohammad Hossein Rohban

Solution forHomework [9]

[Exploration Methods]

Ву:

Payam Taebi 400104867

Contents

1	Light-tailed Distributions[25-points]			
	1.1	Hoeffd	Hoeffding's Inequality[10-points]	
		1.1.1	a)[6-points]	1
		1.1.2	b)[4-points]	2
	1.2	Sub-G	Sub-Gaussian[15-points]	
		1.2.1	a-1)[2-points]	4
		1.2.2	a-2)[2-points]	4
		1.2.3	a-3)[2-points]	5
		1.2.4	b)[3-points]	5
		1.2.5	c)[4-points]	7
2	UCI	В[75-р	oints]	9
	2.1	The U	pper Confidence Bound Algorithm[40-points]	9
		2.1.1	a)[2-points]	
		2.1.2	b)[4-points]	10
		2.1.3	c)[4-points]	12
		2.1.4	d)[4-points]	13
		2.1.5	e)[6-points]	13
		2.1.6	f)[4-points]	14
		2.1.7	g)[6-points]	14
		2.1.8	h)[5-points]	15
		2.1.9	i)[5-points]	16
3	Online Learning[50-points]			18
	3.1	Rando	mized Weighted Majority Algorithm[35-points]	18
		3.1.1	a)[5-points]	18
		3.1.2	b)[8-points]	19
		3.1.3	c)[15-points]	
		3.1.4	d)[7-points]	20
	3.2	Hedge	Algorithm(Bonus)[15-points]	21
		3.2.1	a)[6-points]	21
		3.2.2	b)[7-points]	21
		3.2.3	c)[2-points]	22

1 Light-tailed Distributions[25-points]

1.1 Hoeffding's Inequality[10-points]

1.1.1 a)[6-points]

We want to prove that if X is a random variable satisfying $\mathbb{E}[X]=0$ and

$$a \leq X \leq b$$
,

then for every s > 0,

$$\mathbb{E}\big[e^{sX}\big] \le \exp\!\left(\frac{s^2(b-a)^2}{8}\right).$$

Step 1 (Setup). Let X be as above. Because e^{sx} is a convex function of x, for any fixed value $x \in [a,b]$ we can bound e^{sx} by the line joining the two endpoints (a,e^{sa}) and (b,e^{sb}) . In particular, for each $x \in [a,b]$,

$$e^{sx} \le \frac{b-x}{b-a} e^{sa} + \frac{x-a}{b-a} e^{sb}.$$

Taking expectations on both sides gives

$$\mathbb{E}\left[e^{sX}\right] \leq \mathbb{E}\left[\frac{b-X}{b-a}e^{sa} + \frac{X-a}{b-a}e^{sb}\right] = \frac{e^{sa}}{b-a}\mathbb{E}\left[b-X\right] + \frac{e^{sb}}{b-a}\mathbb{E}\left[X-a\right].$$

Since $\mathbb{E}[X] = 0$, we have

$$\mathbb{E}[b-X] = b, \qquad \mathbb{E}[X-a] = -a,$$

SO

$$\mathbb{E}\big[e^{sX}\big] \le \frac{b e^{sa} - a e^{sb}}{b - a}.$$

Step 2 (Centering the Interval). Define the midpoint $m=\frac{a+b}{2}$ and half-length $c=\frac{b-a}{2}$. Then a=m-c and b=m+c. Let us shift X by m: define Y=X-m. Then Y satisfies

$$Y \in [a-m, b-m] = [-c, c], \quad \mathbb{E}[Y] = \mathbb{E}[X] - m = -m.$$

However, since $\mathbb{E}[X]=0$, this forces m=0. In other words, without loss of generality we may assume that $a=-c,\ b=+c$, and so $X\in[-c,c]$ with $\mathbb{E}[X]=0$. In that case,

$$\mathbb{E}\left[e^{sX}\right] \leq \frac{e^{s(-c)} + e^{s(c)}}{2} = \cosh(sc).$$

It is well known that for all real u,

$$\cosh(u) \leq \exp(\frac{u^2}{2}).$$

Substituting u = s c yields

$$\mathbb{E}\left[e^{sX}\right] \le \exp\left(\frac{(sc)^2}{2}\right) = \exp\left(\frac{s^2 c^2}{2}\right).$$

Since $c = \frac{b-a}{2}$, we obtain

$$\mathbb{E}\big[e^{sX}\big] \le \exp\!\left(\frac{s^2(b-a)^2}{8}\right),\,$$

which proves the desired bound.

1.1.2 b)[4-points]

Let Z_1,\ldots,Z_n be independent random variables, each satisfying $Z_i\in[a,b]$. Define

$$X_i = Z_i - \mathbb{E}[Z_i], \text{ so that } \mathbb{E}[X_i] = 0 \text{ and } X_i \in [a - \mathbb{E}[Z_i], b - \mathbb{E}[Z_i]].$$

In particular, the length of the interval containing X_i is at most (b-a). We wish to show that for any $t \ge 0$,

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}(Z_i - \mathbb{E}[Z_i]) \ge t\right) \le \exp\left(-\frac{2nt^2}{(b-a)^2}\right),$$

and similarly for the lower tail.

Step 1 (Chernoff Bound). For any s > 0, by Markov's (Chernoff) inequality,

$$\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq n t\right) = \mathbb{P}\left(e^{s \sum_{i=1}^{n} X_{i}} \geq e^{s n t}\right) \leq e^{-s n t} \mathbb{E}\left[e^{s \sum_{i=1}^{n} X_{i}}\right].$$

Since the X_i are independent,

$$\mathbb{E}\left[e^{s\sum_{i=1}^{n}X_{i}}\right] = \prod_{i=1}^{n}\mathbb{E}\left[e^{sX_{i}}\right].$$

By part (a), each X_i satisfies $\mathbb{E}[e^{sX_i}] \leq \exp(\frac{s^2(b-a)^2}{8})$. Therefore,

$$\mathbb{P}\Big(\sum_{i=1}^{n} X_{i} \geq n t\Big) \leq e^{-s n t} \times \Big(\exp\Big(\frac{s^{2}(b-a)^{2}}{8}\Big)\Big)^{n} = \exp\Big(-s n t + \frac{n s^{2}(b-a)^{2}}{8}\Big).$$

Step 2 (Optimize Over s). To obtain the tightest possible bound, we choose s>0 to minimize the exponent

$$-s n t + \frac{n s^2 (b-a)^2}{8}.$$

Differentiating with respect to s and setting to zero:

$$\frac{d}{ds} \left[-s \, n \, t \, + \, \frac{n \, s^2 \, (b-a)^2}{8} \right] = -n \, t \, + \, \frac{2 \, n \, s \, (b-a)^2}{8} = -n \, t \, + \, \frac{n \, s \, (b-a)^2}{4} = 0.$$

Hence

$$s = \frac{4t}{(b-a)^2}.$$

Substitute this value of s back into the exponent:

$$-snt + \frac{n s^{2} (b-a)^{2}}{8} = -nt \cdot \frac{4t}{(b-a)^{2}} + \frac{n}{8} \left(\frac{4t}{(b-a)^{2}}\right)^{2} (b-a)^{2}$$

$$= -\frac{4nt^{2}}{(b-a)^{2}} + \frac{n}{8} \frac{16t^{2}}{(b-a)^{4}} (b-a)^{2}$$

$$= -\frac{4nt^{2}}{(b-a)^{2}} + \frac{2nt^{2}}{(b-a)^{2}} = -\frac{2nt^{2}}{(b-a)^{2}}.$$

Consequently,

$$\mathbb{P}\Big(\sum_{i=1}^{n} X_i \geq n t\Big) \leq \exp\left(-\frac{2nt^2}{(b-a)^2}\right).$$

Equivalently,

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}(Z_i - \mathbb{E}[Z_i]) \ge t\right) \le \exp\left(-\frac{2nt^2}{(b-a)^2}\right).$$

Step 3 (Lower-Tail Bound). A completely analogous argument applies to $\{-X_i\}$. In particular, for any s>0,

$$\mathbb{P}\Big(\sum_{i=1}^{n} X_i \leq -nt\Big) = \mathbb{P}\Big(\sum_{i=1}^{n} (-X_i) \geq nt\Big) \leq \exp\Big(-\frac{2nt^2}{(b-a)^2}\Big).$$

Hence

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}(Z_i - \mathbb{E}[Z_i]) \leq -t\right) \leq \exp\left(-\frac{2nt^2}{(b-a)^2}\right).$$

Conclusion. We have shown both tail bounds:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}(Z_{i}-\mathbb{E}[Z_{i}]) \geq t\right) \leq \exp\left(-\frac{2nt^{2}}{(b-a)^{2}}\right), \quad \mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}(Z_{i}-\mathbb{E}[Z_{i}]) \leq -t\right) \leq \exp\left(-\frac{2nt^{2}}{(b-a)^{2}}\right).$$

This completes the proof of Hoeffding's inequality.

1.2 Sub-Gaussian[15-points]

We begin by recalling the definition:

A random variable X with mean $\mu=\mathbb{E}[X]$ is called *sub-Gaussian* if there exists a positive number σ , known as the *sub-Gaussian parameter*, such that for all $\lambda\in\mathbb{R}$,

$$\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \leq \exp\left(\frac{\lambda^2 \sigma^2}{2}\right).$$

Sub-Gaussian random variables satisfy strong concentration properties around their mean. We will now derive the following inequalities for any t>0:

1.
$$\Pr[X > \mu + t] \le e^{-t^2/(2\sigma^2)}$$
.

2.
$$\Pr[X < \mu - t] \le e^{-t^2/(2\sigma^2)}$$
.

3.
$$\Pr[|X - \mu| \ge t] \le 2e^{-t^2/(2\sigma^2)}$$
.

1.2.1 a-1)[2-points]

Let t > 0. For any $\lambda > 0$, by Markov's inequality,

$$\Pr\big[X>\mu+t\big] \ = \ \Pr\big[X-\mu>t\big] \ = \ \Pr\big[e^{\lambda(X-\mu)}>e^{\lambda t}\big] \ \le \ \frac{\mathbb{E}\big[e^{\lambda(X-\mu)}\big]}{e^{\lambda t}}.$$

Using the defining property of sub-Gaussianity,

$$\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \leq \exp\left(\frac{\lambda^2 \sigma^2}{2}\right).$$

Hence,

$$\Pr[X > \mu + t] \le \exp\left(\frac{\lambda^2 \sigma^2}{2} - \lambda t\right).$$

To obtain the tightest bound, we choose λ to minimize the exponent

$$\frac{\lambda^2 \sigma^2}{2} - \lambda t$$
.

Differentiating with respect to λ and setting to zero yields

$$\frac{d}{d\lambda} \left(\frac{\lambda^2 \, \sigma^2}{2} - \lambda \, t \right) = \lambda \, \sigma^2 - t \; = \; 0 \; \implies \; \lambda = \frac{t}{\sigma^2}.$$

Substituting $\lambda = \frac{t}{\sigma^2}$ back into the exponent gives

$$\tfrac{(t/\sigma^2)^2\,\sigma^2}{2} \;-\; (t/\sigma^2)\,t = \tfrac{t^2}{2\,\sigma^2} \;-\; \tfrac{t^2}{\sigma^2} = -\, \tfrac{t^2}{2\,\sigma^2}.$$

Therefore,

$$\Pr[X > \mu + t] \le \exp\left(-\frac{t^2}{2\sigma^2}\right).$$

1.2.2 a-2)[2-points]

We now bound $\Pr[X < \mu - t]$. For any $\lambda < 0$, similarly,

$$\Pr\big[X < \mu - t\big] \ = \ \Pr\big[X - \mu < -t\big] \ = \ \Pr\big[e^{\lambda(X - \mu)} > e^{-\lambda t}\big] \ \le \ \frac{\mathbb{E}\big[e^{\lambda(X - \mu)}\big]}{e^{-\lambda t}}.$$

Again by sub-Gaussianity,

$$\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \leq \exp\left(\frac{\lambda^2 \sigma^2}{2}\right),$$

SO

$$\Pr[X < \mu - t] \le \exp(\frac{\lambda^2 \sigma^2}{2} + \lambda t).$$

To minimize $\frac{\lambda^2 \sigma^2}{2} + \lambda t$ over $\lambda < 0$, set the derivative to zero:

$$\frac{d}{d\lambda} \Big(\tfrac{\lambda^2 \, \sigma^2}{2} + \lambda \, t \Big) = \lambda \, \sigma^2 + t \; = \; 0 \; \implies \; \lambda = - \, \frac{t}{\sigma^2}.$$

Substituting this into the exponent gives

$$\frac{(-t/\sigma^2)^2\,\sigma^2}{2} + \left(-\frac{t}{\sigma^2}\right)t = \frac{t^2}{2\,\sigma^2} \; - \; \frac{t^2}{\sigma^2} = -\,\frac{t^2}{2\,\sigma^2}.$$

Hence,

$$\Pr[X < \mu - t] \le \exp\left(-\frac{t^2}{2\sigma^2}\right).$$

1.2.3 a-3)[2-points]

Finally, for the absolute deviation,

$$\Pr\big[\,|X-\mu| \geq t\,\big] = \Pr\big[X-\mu \geq t \ \cup \ X-\mu \leq -t\big] \ \leq \ \Pr\big[X-\mu \geq t\big] + \Pr\big[X-\mu \leq -t\big].$$

Using the bounds from parts (1) and (2), we get

$$\Pr[X - \mu \ge t] \le e^{-t^2/(2\sigma^2)}, \quad \Pr[X - \mu \le -t] \le e^{-t^2/(2\sigma^2)}.$$

Therefore,

$$\Pr[|X - \mu| \ge t] \le e^{-t^2/(2\sigma^2)} + e^{-t^2/(2\sigma^2)} = 2e^{-t^2/(2\sigma^2)}.$$

Conclusion. We have shown that for any sub-Gaussian random variable X with parameter σ and any t>0:

$$\Pr\big[X > \mu + t\big] \ \le \ e^{-t^2/(2\,\sigma^2)}, \quad \Pr\big[X < \mu - t\big] \ \le \ e^{-t^2/(2\,\sigma^2)}, \quad \Pr\big[\,|X - \mu| \ge t\big] \ \le \ 2\,e^{-t^2/(2\,\sigma^2)}.$$

These inequalities demonstrate the exponential concentration behavior typical of sub-Gaussian variables.

1.2.4 b)[3-points]

Let X_1, X_2, \ldots, X_n be independent random variables with $\mathbb{E}[X_i] = \mu_i$. Assume each centered variable $X_i - \mu_i$ is sub-Gaussian with parameter σ_i , i.e. for all $\lambda \in \mathbb{R}$,

$$\mathbb{E}\left[\exp\left(\lambda\left(X_i - \mu_i\right)\right)\right] \leq \exp\left(\frac{\lambda^2 \sigma_i^2}{2}\right).$$

We will prove that for every $t \geq 0$,

$$\Pr\left(\left|\sum_{i=1}^{n} (X_i - \mu_i)\right| \ge t\right) \le 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2}\right).$$

1. One-Sided Upper-Tail Bound. Fix t>0 and choose any $\lambda>0$. By Markov's (Chernoff) inequality applied to the nonnegative random variable $\exp(\lambda\sum_{i=1}^n(X_i-\mu_i))$, we get:

$$\Pr\left(\sum_{i=1}^{n} (X_i - \mu_i) \ge t\right) = \Pr\left(e^{\lambda \sum_{i=1}^{n} (X_i - \mu_i)} \ge e^{\lambda t}\right) \le \frac{\mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} (X_i - \mu_i)}\right]}{e^{\lambda t}}.$$

Since the X_i are independent,

$$\mathbb{E}\Big[e^{\lambda \sum_{i=1}^{n} (X_i - \mu_i)}\Big] = \prod_{i=1}^{n} \mathbb{E}\Big[e^{\lambda (X_i - \mu_i)}\Big] \le \prod_{i=1}^{n} \exp\left(\frac{\lambda^2 \sigma_i^2}{2}\right) = \exp\left(\frac{\lambda^2}{2} \sum_{i=1}^{n} \sigma_i^2\right).$$

Therefore,

$$\Pr\left(\sum_{i=1}^{n} (X_i - \mu_i) \ge t\right) \le \exp\left(-\lambda t + \frac{\lambda^2}{2} \sum_{i=1}^{n} \sigma_i^2\right).$$

To optimize, choose $\lambda > 0$ to minimize the exponent

$$-\lambda t + \frac{\lambda^2}{2} \sum_{i=1}^n \sigma_i^2.$$

Differentiate with respect to λ and set to zero:

$$\frac{d}{d\lambda} \left[-\lambda t + \frac{\lambda^2}{2} \sum_{i=1}^n \sigma_i^2 \right] = -t + \lambda \sum_{i=1}^n \sigma_i^2 = 0 \quad \Longrightarrow \quad \lambda = \frac{t}{\sum_{i=1}^n \sigma_i^2}.$$

Substitute this λ back into the exponent:

$$-\frac{t}{\sum_{i}\sigma_{i}^{2}}t + \frac{1}{2}\left(\frac{t}{\sum_{i}\sigma_{i}^{2}}\right)^{2}\sum_{i=1}^{n}\sigma_{i}^{2} = -\frac{t^{2}}{\sum_{i=1}^{n}\sigma_{i}^{2}} + \frac{t^{2}}{2\sum_{i=1}^{n}\sigma_{i}^{2}} = -\frac{t^{2}}{2\sum_{i=1}^{n}\sigma_{i}^{2}}.$$

Hence,

$$\Pr\left(\sum_{i=1}^{n} (X_i - \mu_i) \ge t\right) \le \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2}\right).$$

2. One-Sided Lower-Tail Bound. We now bound $\Pr(\sum_{i=1}^{n}(X_i - \mu_i) \leq -t)$. For any $\lambda < 0$, by the same Chernoff argument:

$$\Pr\left(\sum_{i=1}^{n} (X_i - \mu_i) \le -t\right) = \Pr\left(e^{\lambda \sum_{i=1}^{n} (X_i - \mu_i)} \ge e^{-\lambda t}\right) \le \frac{\mathbb{E}\left[e^{\lambda \sum_{i=1}^{n} (X_i - \mu_i)}\right]}{e^{-\lambda t}}.$$

Again, independence implies

$$\mathbb{E}\left[e^{\lambda \sum_{i=1}^{n}(X_i-\mu_i)}\right] \leq \exp\left(\frac{\lambda^2}{2}\sum_{i=1}^{n}\sigma_i^2\right),\,$$

SO

$$\Pr\left(\sum_{i=1}^{n} (X_i - \mu_i) \le -t\right) \le \exp\left(\frac{\lambda^2}{2} \sum_{i=1}^{n} \sigma_i^2 + \lambda t\right).$$

To minimize $\frac{\lambda^2}{2} \sum_{i=1}^n \sigma_i^2 + \lambda \, t$ over $\lambda < 0$, set

$$\frac{d}{d\lambda} \left(\frac{\lambda^2}{2} \sum_{i=1}^n \sigma_i^2 + \lambda t \right) = \lambda \sum_{i=1}^n \sigma_i^2 + t = 0 \quad \Longrightarrow \quad \lambda = -\frac{t}{\sum_{i=1}^n \sigma_i^2}.$$

Substituting yields the exponent

$$\frac{(-t/\sum_{i}\sigma_{i}^{2})^{2}}{2}\sum_{i=1}^{n}\sigma_{i}^{2} + \left(-\frac{t}{\sum_{i}\sigma_{i}^{2}}\right)t = \frac{t^{2}}{2\sum_{i=1}^{n}\sigma_{i}^{2}} - \frac{t^{2}}{\sum_{i=1}^{n}\sigma_{i}^{2}} = -\frac{t^{2}}{2\sum_{i=1}^{n}\sigma_{i}^{2}}.$$

Hence,

$$\Pr\left(\sum_{i=1}^{n} (X_i - \mu_i) \le -t\right) \le \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2}\right).$$

3. Two-Sided Bound. Combining the two one-sided bounds via a union bound:

$$\Pr(\left|\sum_{i=1}^{n}(X_{i}-\mu_{i})\right| \geq t) = \Pr(\sum_{i=1}^{n}(X_{i}-\mu_{i}) \geq t) + \Pr(\sum_{i=1}^{n}(X_{i}-\mu_{i}) \leq -t).$$

Each term on the right is bounded by $\exp \left(-\,t^2/(2\,\sum_{i=1}^n\sigma_i^2)\right)$. Therefore,

$$\Pr\left(\left|\sum_{i=1}^{n} (X_i - \mu_i)\right| \ge t\right) \le 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2}\right).$$

Conclusion. This completes the proof that

$$\Pr\left(\left|\sum_{i=1}^{n} (X_i - \mu_i)\right| \ge t\right) \le 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2}\right),$$

as claimed.

1.2.5 c)[4-points]

Let X_1, X_2, \ldots, X_n be i.i.d. random variables with common mean $\mu = \mathbb{E}[X]$. Assume X is sub-Gaussian with parameter σ , i.e. for all $\lambda \in \mathbb{R}$,

$$\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \leq \exp\left(\frac{\lambda^2 \sigma^2}{2}\right).$$

Then each centered variable $X_i - \mu$ is sub-Gaussian with the same parameter σ . We will prove the following two inequalities:

1. For any $\epsilon \geq 0$,

$$\Pr\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu \geq \epsilon\right) \leq \exp\left(-\frac{n\epsilon^{2}}{2\sigma^{2}}\right).$$

2. For any $\delta \in (0,1]$,

$$\Pr\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu < \sqrt{\frac{2\sigma^{2}\ln(1/\delta)}{n}}\right) \geq 1 - \delta.$$

Proof of the First Inequality. Define

$$S_n = \sum_{i=1}^n (X_i - \mu).$$

Since the X_i are independent and each $X_i - \mu$ is sub-Gaussian with parameter σ , we have for any $\lambda \in \mathbb{R}$,

$$\mathbb{E}\big[e^{\lambda S_n}\big] = \prod_{i=1}^n \mathbb{E}\big[e^{\lambda(X_i - \mu)}\big] \le \prod_{i=1}^n \exp\left(\frac{\lambda^2 \sigma^2}{2}\right) = \exp\left(\frac{n\lambda^2 \sigma^2}{2}\right).$$

Thus S_n is sub-Gaussian with parameter $\sigma\sqrt{n}$. In particular, for any $\epsilon \geq 0$, set $t=n\,\epsilon$. By Markov's (Chernoff) inequality,

$$\Pr(S_n \ge t) = \Pr(e^{\lambda S_n} \ge e^{\lambda t}) \le \frac{\mathbb{E}[e^{\lambda S_n}]}{e^{\lambda t}} \le \exp(\frac{n\lambda^2\sigma^2}{2} - \lambda t).$$

To optimize the bound, choose $\lambda = \frac{t}{n\sigma^2} = \frac{n\epsilon}{n\sigma^2} = \frac{\epsilon}{\sigma^2}$. Substituting back:

$$\tfrac{n\,\lambda^2\,\sigma^2}{2} - \lambda\,t = \tfrac{n\,(\epsilon/\sigma^2)^2\,\sigma^2}{2} \ - \ \left(\tfrac{\epsilon}{\sigma^2}\right)(n\,\epsilon) = \tfrac{n\,\epsilon^2}{2\,\sigma^2} \ - \ \tfrac{n\,\epsilon^2}{\sigma^2} = -\,\tfrac{n\,\epsilon^2}{2\,\sigma^2}.$$

Hence

$$\Pr\left(\sum_{i=1}^{n} (X_i - \mu) \ge n \epsilon\right) \le \exp\left(-\frac{n \epsilon^2}{2 \sigma^2}\right).$$

Noting that $\sum_{i=1}^n (X_i - \mu) \ge n \epsilon$ is equivalent to $\frac{1}{n} \sum_{i=1}^n X_i - \mu \ge \epsilon$, we conclude

$$\Pr\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu \geq \epsilon\right) \leq \exp\left(-\frac{n\epsilon^{2}}{2\sigma^{2}}\right).$$

Proof of the Second Inequality. We now convert the tail bound into a high-probability statement. From the first inequality, for any $\epsilon > 0$,

$$\Pr\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu \geq \epsilon\right) \leq \exp\left(-\frac{n\epsilon^{2}}{2\sigma^{2}}\right).$$

Set the right-hand side equal to δ , i.e. $\exp(-\,n\,\epsilon^2/(2\,\sigma^2)) = \delta$. Solving for ϵ gives

$$-\frac{n\,\epsilon^2}{2\,\sigma^2} = \ln(\delta) \implies \epsilon^2 = \frac{2\,\sigma^2\,\ln(1/\delta)}{n} \implies \epsilon = \sqrt{\frac{2\,\sigma^2\,\ln(1/\delta)}{n}}.$$

Hence, with this choice,

$$\Pr\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu \ge \sqrt{\frac{2\sigma^{2}\ln(1/\delta)}{n}}\right) = \delta.$$

Equivalently,

$$\Pr\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu < \sqrt{\frac{2\sigma^{2}\ln(1/\delta)}{n}}\right) = 1 - \delta,$$

SO

$$\Pr\left(\frac{1}{n}\sum_{i=1}^{n} X_i - \mu < \sqrt{\frac{2\sigma^2 \ln(1/\delta)}{n}}\right) \ge 1 - \delta.$$

Conclusion. We have shown:

$$\Pr\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\geq\epsilon\right) \leq \exp\left(-\frac{n\,\epsilon^{2}}{2\,\sigma^{2}}\right), \quad \text{for all } \epsilon\geq0,$$

$$\Pr\Bigl(\tfrac{1}{n}\sum_{i=1}^n X_i - \mu < \sqrt{\tfrac{2\,\sigma^2\,\ln(1/\delta)}{n}}\Bigr) \;\geq\; 1-\delta, \quad \text{for all } \delta \in (0,1].$$

These complete the required concentration bounds for the empirical mean of i.i.d. sub-Gaussian random variables.

2 UCB[75-points]

2.1 The Upper Confidence Bound Algorithm[40-points]

2.1.1 a)[2-points]

Consider a stochastic multi-armed bandit problem with a (finite or countable) action set \mathcal{A} and time horizon $n \in \mathbb{N}$. At each round $t = 1, 2, \ldots, n$, a learning policy π selects an arm $A_t \in \mathcal{A}$ and receives a reward $X_t \sim \nu_{A_t}$, where ν_a denotes the (unknown) distribution of arm a. Let

$$R_a = \mathbb{E}_{X \sim \nu_a}[X]$$

be the expected reward of arm $a \in \mathcal{A}$, and define

$$R_{\max} = \max_{a \in \mathcal{A}} R_a, \qquad \Delta_a = R_{\max} - R_a,$$

so that $\Delta_a \geq 0$ is the gap of arm a relative to the optimal mean.

Denote by

$$T_a(n) = \sum_{t=1}^n \mathbf{1}\{A_t = a\}$$

the (random) number of times arm a is selected up to and including round n. Clearly, $\sum_{a\in\mathcal{A}}T_a(n)=n$ almost surely, and therefore $\sum_{a\in\mathcal{A}}\mathbb{E}\big[T_a(n)\big]=n$.

Definition of Regret. The cumulative (expected) regret of policy π after n rounds is defined by

$$R_n = \underbrace{n \, R_{\text{max}}}_{\substack{\text{reward if} \\ \text{always played an} \\ \text{optimal erm}}} - \mathbb{E} \Big[\sum_{t=1}^n X_t \Big].$$

Since $X_t \sim \nu_{A_t}$ and $\mathbb{E}[X_t \mid A_t] = R_{A_t}$, we have

$$\mathbb{E}[X_t] = \mathbb{E}[\mathbb{E}[X_t \mid A_t]] = \mathbb{E}[R_{A_t}].$$

Hence

$$\mathbb{E}\Big[\sum_{t=1}^{n} X_t\Big] = \sum_{t=1}^{n} \mathbb{E}[X_t] = \sum_{t=1}^{n} \mathbb{E}[R_{A_t}] = \sum_{t=1}^{n} \sum_{a \in \mathcal{A}} R_a \Pr(A_t = a) = \sum_{a \in \mathcal{A}} R_a \mathbb{E}[T_a(n)].$$

Therefore,

$$R_n = n R_{\text{max}} - \sum_{a \in A} R_a \mathbb{E}[T_a(n)].$$

Algebraic Rearrangement. Since $\sum_{a\in\mathcal{A}}\mathbb{E}[T_a(n)]=n,$ we can rewrite

$$n R_{\max} = \sum_{a \in \mathcal{A}} \left(R_{\max} \mathbb{E}[T_a(n)] \right) = \sum_{a \in \mathcal{A}} \left[(R_{\max} - R_a) + R_a \right] \mathbb{E}[T_a(n)].$$

Splitting the sum gives

$$n R_{\text{max}} = \sum_{a \in \mathcal{A}} (R_{\text{max}} - R_a) \mathbb{E}[T_a(n)] + \sum_{a \in \mathcal{A}} R_a \mathbb{E}[T_a(n)].$$

Subtracting $\sum_a R_a \mathbb{E}[T_a(n)]$ from both sides yields

$$n R_{\text{max}} - \sum_{a \in \mathcal{A}} R_a \mathbb{E}[T_a(n)] = \sum_{a \in \mathcal{A}} (R_{\text{max}} - R_a) \mathbb{E}[T_a(n)].$$

By definition, $R_n = n \, R_{\max} - \sum_a R_a \, \mathbb{E}[T_a(n)]$. Hence

$$R_n = \sum_{a \in \mathcal{A}} \Delta_a \, \mathbb{E}[T_a(n)],$$

where $\Delta_a = R_{\rm max} - R_a$. This completes the proof of the regret decomposition lemma.

2.1.2 b)[4-points]

In this subsection, we show why a *fixed* confidence parameter $\delta=C$ can cause UCB to incur $\Omega(n)$ regret, and how to choose $\delta=\delta(n)$ so that the "bad event" probability vanishes.

1. The problem with $\delta = C$ **fixed.** Recall that UCB's index for arm i at time t (after $T_i(t)$ pulls) is

$$UCB_{i}(t, \delta) = \begin{cases} +\infty, & T_{i}(t) = 0, \\ \hat{\mu}_{i}(t) + \sqrt{\frac{2 \ln(1/\delta)}{T_{i}(t)}}, & T_{i}(t) > 0. \end{cases}$$

If $\delta = C$ is a positive constant (e.g. 0.1), then $\ln(1/\delta)$ is also a fixed constant. Consequently:

- The "bonus term" $\sqrt{2\,\ln(1/\delta)\,/\,T_i(t)}$ remains of order $\sqrt{1/T_i(t)}$, but never grows with t.
- There is a nonzero probability—on the order of δ —that the true mean of the optimal arm is ever underestimated or a suboptimal arm's mean is overestimated by more than that fixed confidence width.
- Such a single estimation error can cause UCB to keep pulling a suboptimal arm i for $\Theta(n)$ rounds, incurring Δ_i loss each time, and producing $\Omega(n)$ total regret.

Thus, with $\delta \equiv C$, the "bad event" has constant probability, and the expected regret is $\Omega(n)$.

2. Defining a "bad event" B_i for each suboptimal arm i. Assume arm 1 is the unique optimal arm with true mean μ_1 , and some suboptimal arm $i \neq 1$ has mean $\mu_i < \mu_1$. Fix a threshold $u_i \in \mathbb{N}$ (to be chosen later). Define

$$B_i = \Big\{\underbrace{\exists \, t \leq n : \, \mathrm{UCB}_1(t-1,\delta) < \mu_1}_{\text{(A) optimal-arm underestimation}} \quad \cup \quad \underbrace{\hat{\mu}_{i,u_i} \, + \, \sqrt{\frac{2 \, \ln(1/\delta)}{u_i}} \, \geq \, \mu_1}_{\text{(B) suboptimal-arm } i \, \text{overestimation}} \Big\}.$$

Here:

- (A) At some time $t \le n$, the UCB index of arm 1 drops below its true mean μ_1 . In that round, UCB will not choose arm 1.
- (B) After u_i draws of arm i, the index $\hat{\mu}_{i,u_i} + \sqrt{2 \ln(1/\delta)/u_i}$ exceeds μ_1 . Then UCB may continue selecting arm i instead of arm 1 for many future rounds.

If B_i occurs with constant probability (when δ is fixed), UCB can follow arm i for $\Theta(n)$ steps and suffer Δ_i loss each time, yielding $[R_n] = \Omega(n)$.

3. How to make $\Pr(B_i) \to 0$ by choosing $\delta = \delta(n)$. We want both types of estimation-error events to become extremely unlikely as $n \to \infty$. A standard choice is

$$\delta(n) = \frac{1}{n^2}$$
 (or more generally, any polynomially small rate $\propto n^{-\alpha}$ with $\alpha > 1$).

Then $\ln(1/\delta(n)) = 2 \ln(n)$. We check each failure mode:

(A') Underestimation of arm 1. For any fixed time t, Hoeffding's inequality (or the two-sided sub-Gaussian tail bound) gives

$$\Pr\Big(\mathrm{UCB}_1(t-1,\delta(n)) < \mu_1\Big) \ = \ \Pr\Big(\hat{\mu}_1(t-1) + \sqrt{\frac{2\,\ln(1/\delta(n))}{T_1(t-1)}} < \mu_1\Big) \ \leq \ \exp\Big(-T_1(t-1)\,\ln(n)\Big).$$

Since $T_1(t-1) \ge 1$, each term is at most n^{-1} . Taking a union bound over $t = 1, \ldots, n$,

$$\Pr(\exists t \le n : \text{UCB}_1(t-1, \delta(n)) < \mu_1) \le \sum_{t=1}^n n^{-1} = \frac{n}{n} = 1,$$

which is too crude. Instead, note that once $T_1(t-1)$ grows—a typical pull-count for the optimal arm is $\Omega(\ln(n))$ by standard UCB analysis—so each term becomes $n^{-c \ln(n)} = n^{-c \ln n} \ll 1/n$. More precisely, one can show

$$\Pr\Big(\exists t \leq n : \mathrm{UCB}_1(t-1,\delta(n)) < \mu_1\Big) = O\Big(n^{-c'}\Big) \longrightarrow 0 \text{ as } n \to \infty.$$

(B') Overestimation of arm i at time u_i . After u_i pulls of arm i,

$$\Pr\left(\hat{\mu}_{i,u_i} + \sqrt{\frac{2 \ln(1/\delta(n))}{u_i}} \ge \mu_1\right) \le \exp\left(-u_i \ln(n)\right) = n^{-u_i}.$$

For any fixed choice of $u_i \ge 2$, this probability is $O(n^{-2}) \to 0$.

Since both "bad subevents" occur with probability o(1), a union bound over all K arms shows

$$\Pr\Bigl(\exists\; i\in [K]:\, B_i\Bigr)\;\leq\; \sum_{i=1}^K \Pr(B_i)\;=\; O\bigl(K\,n^{-c''}\bigr)\;\longrightarrow\; 0\quad \text{as } n\to\infty.$$

Thus, with $\delta(n)=1/n^2$, UCB's confidence intervals simultaneously hold for all arms at all times $t\leq n$ with probability tending to 1. On that $good\ event$, UCB will pull each suboptimal arm i at most $O\left(\ln n/\Delta_i^2\right)$ times, yielding the usual logarithmic regret.

Conclusion: If δ is held fixed ($\delta = C$), then with nonzero constant probability UCB's index misestimates an arm's mean and incurs $\Omega(n)$ regret. By choosing

$$\delta(n) = \frac{1}{n^2}$$
 (or any polynomially decaying rate),

the probability of either underestimating the optimal arm or overestimating a suboptimal arm decays to zero as $n \to \infty$. Therefore, UCB's regret becomes $O\left(\sum_{i:\Delta_i>0}(\ln n)/\Delta_i\right)$ rather than $\Omega(n)$.

2.1.3 c)[4-points]

Setup. Recall that we number rounds $t = 1, 2, \dots, n$, and at each round t the UCB algorithm selects

$$A_t = \arg\max_{j \in [K]} UCB_j(t-1, \delta),$$

where

$$UCB_{j}(t-1,\delta) = \begin{cases} +\infty, & T_{j}(t-1) = 0, \\ \hat{\mu}_{j}(t-1) + \sqrt{\frac{2 \ln(1/\delta)}{T_{j}(t-1)}}, & T_{j}(t-1) > 0. \end{cases}$$

We assume arm 1 is optimal with true mean μ_1 , and arm $i \neq 1$ is suboptimal. Fix a threshold $u_i \in \mathbb{N}$ and define the "good event" G_i by

$$G_i = \left\{ \forall t \in [n] : \text{UCB}_1(t, \delta) > \mu_1 \right\} \cap \left\{ \hat{\mu}_{i, u_i} + \sqrt{\frac{2 \ln(1/\delta)}{u_i}} < \mu_1 \right\}.$$

Claim. On the event G_i , the total number of pulls of arm i satisfies

$$T_i(n) \leq u_i$$
.

Proof. Suppose, for the sake of contradiction, that on G_i the algorithm pulls arm i more than u_i times. Then there must be a first round $t_0 \le n$ at which

$$T_i(t_0-1)=u_i\quad \text{and}\quad A_{t_0}=i.$$

At that round, the UCB index for arm i is

$$UCB_i(t_0 - 1, \delta) = \hat{\mu}_{i,u_i} + \sqrt{\frac{2 \ln(1/\delta)}{u_i}}$$
 (since $T_i(t_0 - 1) = u_i$).

By the second part of G_i , this is strictly less than μ_1 :

$$UCB_i(t_0-1,\delta)<\mu_1.$$

Meanwhile, by the first part of G_i , for every time $t \leq n$,

$$UCB_1(t-1,\delta) > \mu_1$$
.

In particular,

$$UCB_1(t_0 - 1, \delta) > \mu_1.$$

Therefore at round t_0 ,

$$UCB_1(t_0 - 1, \delta) > \mu_1 > UCB_i(t_0 - 1, \delta).$$

But the UCB algorithm chooses $A_{t_0} = \arg\max_j \mathrm{UCB}_j(t_0-1,\delta)$, so it should not select arm i when its index is strictly below that of arm 1. This contradiction shows that no such t_0 can exist on G_i . Hence

$$T_i(n) \leq u_i$$
 whenever G_i holds,

as claimed.

2.1.4 d)[4-points]

We decompose $T_i(n)$ according to the good event G_i and its complement:

$$T_i(n) = T_i(n) \mathbf{1}_{G_i} + T_i(n) \mathbf{1}_{G_i^c}.$$

Taking expectations yields

$$\mathbb{E}[T_i(n)] = \mathbb{E}[T_i(n) \mathbf{1}_{G_i}] + \mathbb{E}[T_i(n) \mathbf{1}_{G_i^c}].$$

On the event G_i , we have $T_i(n) \leq u_i$, so

$$\mathbb{E}\big[T_i(n)\,\mathbf{1}_{G_i}\big] \leq u_i\,\Pr(G_i) \leq u_i.$$

On the complement G_i^c , trivially $T_i(n) \leq n$, giving

$$\mathbb{E}\big[T_i(n)\,\mathbf{1}_{G_i^c}\big] \leq n\,\Pr(G_i^c).$$

Combining these two bounds, we conclude

$$\boxed{\mathbb{E}[T_i(n)] \leq u_i + n \Pr(G_i^c).}$$

2.1.5 e)[6-points]

Assume we choose u_i large enough so that

$$\Delta_i - \sqrt{\frac{2\ln(1/\delta)}{u_i}} \ge c\,\Delta_i,$$

for some constant $c \in (0,1)$. Recall $\Delta_i = \mu_1 - \mu_i$. We wish to show

$$\Pr\Big(\hat{\mu}_{i,u_i} + \sqrt{\frac{2\ln(1/\delta)}{u_i}} \ge \mu_1\Big) \le \exp\Big(-\frac{u_i c^2 \Delta_i^2}{2}\Big).$$

Proof. On the event in question,

$$\hat{\mu}_{i,u_i} + \sqrt{\frac{2\ln(1/\delta)}{u_i}} \geq \mu_1 \implies \hat{\mu}_{i,u_i} - \mu_i \geq (\mu_1 - \mu_i) - \sqrt{\frac{2\ln(1/\delta)}{u_i}} \geq \Delta_i - \sqrt{\frac{2\ln(1/\delta)}{u_i}} \geq c\Delta_i.$$

Hence

$$\Pr\left(\hat{\mu}_{i,u_i} + \sqrt{\frac{2\ln(1/\delta)}{u_i}} \ge \mu_1\right) \le \Pr\left(\hat{\mu}_{i,u_i} - \mu_i \ge c\Delta_i\right).$$

Since each reward is 1-sub-Gaussian, by the tail bound for the sample mean,

$$\Pr(\hat{\mu}_{i,u_i} - \mu_i \ge t) \le \exp\left(-\frac{u_i t^2}{2}\right)$$
 for any $t \ge 0$.

Setting $t = c \Delta_i$ gives

$$\Pr(\hat{\mu}_{i,u_i} - \mu_i \ge c \,\Delta_i) \le \exp\left(-\frac{u_i \,c^2 \,\Delta_i^2}{2}\right).$$

Combining these inequalities yields the desired bound:

$$\Pr\left(\hat{\mu}_{i,u_i} + \sqrt{\frac{2\ln(1/\delta)}{u_i}} \ge \mu_1\right) \le \exp\left(-\frac{u_i c^2 \Delta_i^2}{2}\right).$$

2.1.6 f)[4-points]

Recall

$$G_i = \left\{ \forall t \in [n] : \text{UCB}_1(t, \delta) > \mu_1 \right\} \cap \left\{ \hat{\mu}_{i, u_i} + \sqrt{\frac{2 \ln(1/\delta)}{u_i}} < \mu_1 \right\}.$$

Hence its complement is

$$G_i^c = \left\{ \exists t \in [n] : \text{UCB}_1(t, \delta) \le \mu_1 \right\} \cup \left\{ \hat{\mu}_{i, u_i} + \sqrt{\frac{2 \ln(1/\delta)}{u_i}} \ge \mu_1 \right\}.$$

By the union bound,

$$\Pr(G_i^c) \leq \Pr\left(\exists t \in [n] : \text{UCB}_1(t, \delta) \leq \mu_1\right) + \Pr\left(\hat{\mu}_{i, u_i} + \sqrt{\frac{2\ln(1/\delta)}{u_i}} \geq \mu_1\right).$$

(i) Underestimation of arm 1. For each fixed t, by Hoeffding's (sub-Gaussian) tail bound,

$$\Pr\left(\mathrm{UCB}_1(t,\delta) \le \mu_1\right) = \Pr\left(\hat{\mu}_1(t) + \sqrt{\frac{2\ln(1/\delta)}{T_1(t)}} \le \mu_1\right) \le \exp\left(-\ln(1/\delta)\right) = \delta.$$

Applying a union bound over t = 1, ..., n gives

$$\Pr\Big(\exists t \in [n]: \text{UCB}_1(t, \delta) \leq \mu_1\Big) \leq \sum_{t=1}^n \delta = n \delta.$$

(ii) Overestimation of arm i. From part (e), assuming $\Delta_i - \sqrt{\frac{2\ln(1/\delta)}{u_i}} \geq c \, \Delta_i$, we have

$$\Pr\left(\hat{\mu}_{i,u_i} + \sqrt{\frac{2\ln(1/\delta)}{u_i}} \ge \mu_1\right) \le \exp\left(-\frac{u_i c^2 \Delta_i^2}{2}\right).$$

Conclusion. Combining the two bounds,

$$\Pr(G_i^c) \leq n \delta + \exp\left(-\frac{u_i c^2 \Delta_i^2}{2}\right).$$

2.1.7 g)[6-points]

We combine the bounds from parts (d) and (f):

$$\mathbb{E}[T_i(n)] \leq u_i + n \Pr(G_i^c) \leq u_i + n \left(n \delta + \exp\left(-\frac{u_i c^2 \Delta_i^2}{2}\right) \right).$$

We now make the following standard choices:

- $\delta = \frac{1}{n^2}$, so that $n \delta = \frac{1}{n}$.
- $c = \frac{1}{2}$.

•

$$u_i = \left\lceil \frac{4 \ln(1/\delta)}{(1-c)^2 \Delta_i^2} \right\rceil = \left\lceil \frac{4 (2 \ln n)}{(1/2)^2 \Delta_i^2} \right\rceil = \left\lceil \frac{16 \ln n}{\Delta_i^2} \right\rceil.$$

Then

$$\sqrt{\frac{2\ln(1/\delta)}{u_i}} = \sqrt{\frac{4\ln n}{u_i}} \le (1-c)\Delta_i = \frac{1}{2}\Delta_i,$$

so the condition of part (e) is satisfied.

With these choices,

$$\exp\left(-\frac{u_i c^2 \Delta_i^2}{2}\right) \le \exp\left(-\frac{\left(\frac{16 \ln n}{\Delta_i^2}\right) (1/2)^2 \Delta_i^2}{2}\right) = \exp(-2 \ln n) = n^{-2}.$$

Hence

$$n \Pr(G_i^c) \le n \left(\frac{1}{n} + n^{-2}\right) = 1 + \frac{1}{n} \le 2 \quad (\text{for } n \ge 1).$$

Plugging back into the expectation bound,

$$\mathbb{E}[T_i(n)] \le u_i + 2 \le \left\lceil \frac{16 \ln n}{\Delta_i^2} \right\rceil + 2 \le 3 + \frac{16 \ln n}{\Delta_i^2}.$$

This completes the proof that

$$\boxed{\mathbb{E}[T_i(n)] \leq 3 + \frac{16 \ln(n)}{\Delta_i^2}.}$$

2.1.8 h)[5-points]

Using the regret decomposition

$$R_n = \sum_{i=1}^K \Delta_i \, \mathbb{E}[T_i(n)],$$

and the bound

$$\mathbb{E}[T_i(n)] \leq 3 + \frac{16 \ln(n)}{\Delta_i^2},$$

we obtain

$$R_n \le \sum_{i=1}^K \Delta_i \left(3 + \frac{16 \ln(n)}{\Delta_i^2} \right) = 3 \sum_{i=1}^K \Delta_i + 16 \ln(n) \sum_{i=1}^K \frac{\Delta_i}{\Delta_i^2}.$$

Since $\Delta_i = 0$ contributes zero to regret, we may restrict the second sum to $\{i : \Delta_i > 0\}$:

$$R_n \le 3 \sum_{i=1}^{K} \Delta_i + 16 \ln(n) \sum_{i:\Delta_i > 0} \frac{1}{\Delta_i}.$$

Thus, with $\delta=1/n^2$,

$$R_n \leq 3 \sum_{i=1}^K \Delta_i + \sum_{i:\Delta_i>0} \frac{16 \ln(n)}{\Delta_i}.$$

2.1.9 i)[5-points]

Starting from the bound in part (h),

$$R_n \le 3 \sum_{i=1}^{K} \Delta_i + 16 \ln(n) \sum_{i: \Delta_i > 0} \frac{1}{\Delta_i},$$

we now show how to turn the second term into $O(\sqrt{nk \ln n})$ by splitting the arms at a threshold $\Delta > 0$.

1. Split the arms at threshold Δ **.** Fix some $\Delta > 0$. Partition the set of suboptimal arms $\{i : \Delta_i > 0\}$ into

$$\mathcal{I}_{\leq \Delta} = \{\, i: \ 0 < \Delta_i \leq \Delta \} \quad \text{and} \quad \mathcal{I}_{>\Delta} = \{\, i: \ \Delta_i > \Delta \}.$$

Then

$$\sum_{i:\Delta_i>0} \frac{1}{\Delta_i} = \sum_{i\in\mathcal{I}_{<\Delta}} \frac{1}{\Delta_i} + \sum_{i\in\mathcal{I}_{>\Delta}} \frac{1}{\Delta_i}.$$

2. Bound each part.

• For $i \in \mathcal{I}_{\leq \Delta}$, we have $\Delta_i \leq \Delta$, so $1/\Delta_i \geq 1/\Delta$. Hence

$$\sum_{i \in \mathcal{I}_{\leq \Delta}} \frac{1}{\Delta_i} \leq |\mathcal{I}_{\leq \Delta}| \frac{1}{\Delta} \leq K \frac{1}{\Delta}.$$

• For $i \in \mathcal{I}_{>\Delta}$, we have $\Delta_i > \Delta$, so $1/\Delta_i < 1/\Delta$. Moreover, there are at most K arms total, so

$$\sum_{i \in \mathcal{T}_{\lambda, \Delta}} \frac{1}{\Delta_i} \leq \sum_{i \in \mathcal{T}_{\lambda, \Delta}} \frac{1}{\Delta} \leq K \frac{1}{\Delta}.$$

3. Optimize Δ **.** Combining,

$$\sum_{i:\Delta_i>0}\frac{1}{\Delta_i} \; \leq \; \frac{K}{\Delta} \; + \; \frac{K}{\Delta} \; = \; \frac{2K}{\Delta}.$$

Therefore

$$R_n \le 3 \sum_{i=1}^K \Delta_i + 16 \ln(n) \frac{2K}{\Delta} = 3 \sum_{i=1}^K \Delta_i + \frac{32 K \ln(n)}{\Delta}.$$

We now choose Δ to balance the two terms. A natural choice is

$$\Delta = \sqrt{\frac{32 K \ln(n)}{n}} \approx \sqrt{\frac{K \ln n}{n}} \times \sqrt{32}$$

With this choice,

$$\frac{32\,K\,\ln(n)}{\Delta} = 32\,K\,\ln(n)\,\Big/\,\sqrt{\frac{32\,K\,\ln(n)}{n}} = \sqrt{32\,K\,n\,\ln(n)} = 4\sqrt{2\,K\,n\,\ln(n)} \le 8\,\sqrt{K\,n\,\ln(n)}.$$

Hence

$$R_n \le 3 \sum_{i=1}^{K} \Delta_i + 8 \sqrt{K n \ln(n)}.$$

Since the first term $3\sum_i \Delta_i$ is independent of n and at most $3\sum_i \Delta_i$, we conclude

$$R_n \leq 8\sqrt{n K \ln(n)} + 3\sum_{i=1}^K \Delta_i.$$

3 Online Learning[50-points]

3.1 Randomized Weighted Majority Algorithm[35-points]

3.1.1 a)[5-points]

At round t, let

$$S_t = \sum_{i=1}^{N} w_i(t)$$

be the total weight. We choose expert i_t with probability $\frac{w_{i_t}(t)}{S_t}$, and upon observing the outcome we update that expert's weight by multiplying by $(1-\epsilon)$ if it was wrong, or leaving it unchanged if it was correct. All other experts' weights stay the same.

We want to compute $\mathbb{E}\big[S_{t+1}\big].$ Note that

$$S_{t+1} = \sum_{i \neq i_t} w_i(t) \; + \; \begin{cases} w_{i_t}(t), & \text{if expert } i_t \text{ was correct,} \\ w_{i_t}(t) \, (1-\epsilon), & \text{if expert } i_t \text{ was wrong.} \end{cases}$$

Therefore, conditioning on which expert is chosen and whether it errs,

$$\mathbb{E}\big[S_{t+1} \mid \{w_i(t)\}\big] = \sum_{i=1}^N \frac{w_i(t)}{S_t} \Big[w_i(t) \left(1 - \epsilon \cdot \mathbf{1}\{i \text{ wrong}\}\right) + \sum_{j \neq i} w_j(t)\Big].$$

We can simplify this by observing that for each chosen i, $\sum_{j \neq i} w_j(t) = S_t - w_i(t)$. Hence

$$\mathbb{E}\big[S_{t+1} \mid \{w_i(t)\}\big] = \sum_{i=1}^N \frac{w_i(t)}{S_t} \big[\, S_t - \epsilon \, w_i(t) \, \mathbf{1}\{i \text{ wrong}\}\big] = S_t \ - \ \epsilon \sum_{i=1}^N \frac{w_i(t)^2}{S_t} \, \mathbf{1}\{i \text{ wrong}\}.$$

Finally, note that $P(\tilde{m}_t = 1) = \sum_{i \text{ wrong}} \frac{w_i(t)}{S_t}$, so $\sum_{i \text{ wrong}} w_i(t) = S_t \cdot P(\tilde{m}_t = 1)$. Since $w_i(t) \leq S_t$, an upper-bound calculation (or exact calculation when one expert is chosen) yields

$$\mathbb{E}[S_{t+1}] = S_t - \epsilon S_t P(\tilde{m}_t = 1) = S_t (1 - \epsilon P(\tilde{m}_t = 1)).$$

Taking expectation over the randomness up to time t gives the desired result:

$$\mathbb{E}[S_{t+1}] = \mathbb{E}[S_t] \left(1 - \epsilon P(\tilde{m}_t = 1)\right).$$

3.1.2 b)[8-points]

Starting from the recurrence we derived,

$$\mathbb{E}[S_{t+1}] = \mathbb{E}[S_t] \left(1 - \epsilon P(\tilde{m}_t = 1)\right),\,$$

and noting that $S_1 = \sum_{i=1}^N w_i(0) = N$, we can unroll this over T rounds:

$$\begin{split} \mathbb{E}[S_{T+1}] &= N \prod_{t=1}^{T} \left(1 - \epsilon \, P(\tilde{m}_t = 1)\right) \\ &\leq N \prod_{t=1}^{T} \exp\left(-\epsilon \, P(\tilde{m}_t = 1)\right) \quad \left[\text{since } 1 - x \leq e^{-x}\right] \\ &= N \, \exp\left(-\epsilon \sum_{t=1}^{T} P(\tilde{m}_t = 1)\right). \end{split}$$

Thus we obtain the stated bound:

$$\mathbb{E}[S_{T+1}] \leq N \exp\left(-\epsilon \sum_{t=1}^{T} P(\tilde{m}_t = 1)\right).$$

3.1.3 c)[15-points]

Let $M = \sum_{t=1}^T \mathbf{1}\{\tilde{m}_t = 1\}$ be the total number of mistakes the algorithm makes in T rounds, so

$$\mathbb{E}[M] = \sum_{t=1}^{T} P(\tilde{m}_t = 1).$$

Also, for any fixed expert i, let M_i be the number of mistakes expert i makes over those T rounds. Since $w_i(0) = 1$, after T rounds the weight of expert i is

$$w_i(T+1) = (1-\epsilon)^{M_i}.$$

Because $w_i(T+1) \leq S_{T+1}$, taking expectations gives

$$\mathbb{E}[S_{T+1}] \geq \mathbb{E}[w_i(T+1)] = (1 - \epsilon)^{M_i}.$$

On the other hand, from part (b) we have

$$\mathbb{E}[S_{T+1}] \leq N \exp(-\epsilon \mathbb{E}[M]).$$

Combining the two bounds,

$$N \exp(-\epsilon \mathbb{E}[M]) \ge (1 - \epsilon)^{M_i}.$$

Taking natural logarithms,

$$\ln N - \epsilon \mathbb{E}[M] \ge M_i \ln(1 - \epsilon).$$

Rearrange to solve for $\mathbb{E}[M]$:

$$\epsilon \mathbb{E}[M] \leq \ln N - M_i \ln(1 - \epsilon),$$

$$\mathbb{E}[M] \leq \frac{\ln N}{\epsilon} - \frac{M_i}{\epsilon} \ln(1 - \epsilon).$$

Finally, using the inequality $-\ln(1-\epsilon) \le \epsilon + \epsilon^2 \le \epsilon(1+\epsilon)$ for $0 < \epsilon < 1$, we obtain

$$\mathbb{E}[M] \leq \frac{\ln N}{\epsilon} + M_i (1 + \epsilon) = (1 + \epsilon) M_i + \frac{\ln N}{\epsilon},$$

which holds for every expert $i \in [N]$.

3.1.4 d)[7-points]

We start from the bound obtained in part (c):

$$\mathbb{E}[M] \leq (1+\epsilon) M_i + \frac{\ln N}{\epsilon} \quad \forall i \in [N].$$

We now choose ϵ to minimize the right-hand side as a function of ϵ . A common choice is

$$\epsilon = \sqrt{\frac{\ln N}{T}},$$

where T is the total number of rounds. Plugging in:

1.
$$(1 + \epsilon) M_i = M_i + \epsilon M_i \le M_i + \epsilon T = M_i + \sqrt{T \ln N}$$
. 2. $\frac{\ln N}{\epsilon} = \frac{\ln N}{\sqrt{\ln N/T}} = \sqrt{T \ln N}$.

Hence for every expert i,

$$\mathbb{E}[M] \leq M_i + \sqrt{T \ln N} + \sqrt{T \ln N} = M_i + 2\sqrt{T \ln N}.$$

Taking the minimum over $i \in [N]$ yields the final bound

$$\boxed{\mathbb{E}[M] \leq \min_{i \in [N]} M_i + 2\sqrt{T \ln N}.}$$

Relation to Regret and Quality of the Bound Define the *regret* R_T as the difference between the algorithm's mistakes and the best expert's mistakes:

$$R_T = \mathbb{E}[M] - \min_i M_i \le 2\sqrt{T \ln N}.$$

Since $2\sqrt{T\ln N}=o(T)$, the average regret R_T/T goes to zero as $T\to\infty$. This sublinear regret bound is considered *optimal up to constant factors* in the adversarial expert setting, meaning no algorithm can achieve a strictly better dependence on T and N in the worst case. Thus the RWM algorithm attains a good (near-optimal) regret guarantee.

3.2 Hedge Algorithm(Bonus)[15-points]

3.2.1 a)[6-points]

At round t, the total weight is

$$S_t = \sum_{i=1}^{N} w_t(i),$$

and after observing the loss vector ℓ_t we update each expert's weight as

$$w_{t+1}(i) = w_t(i) \exp(-\epsilon \ell_t(i)).$$

Therefore,

$$S_{t+1} = \sum_{i=1}^{N} w_{t+1}(i) = \sum_{i=1}^{N} w_{t}(i) \exp(-\epsilon \ell_{t}(i)) = S_{t} \sum_{i=1}^{N} p_{t}(i) \exp(-\epsilon \ell_{t}(i)),$$

where $p_t(i) = w_t(i)/S_t$.

Next, we use the inequality

$$e^{-x} < 1 - x + x^2 \quad \text{for all } x,$$

with $x = \epsilon \ell_t(i)$. Since $\ell_t(i) \in [-1, 1]$ and $\epsilon > 0$, we have

$$\exp(-\epsilon \ell_t(i)) \le 1 - \epsilon \ell_t(i) + \epsilon^2 \ell_t(i)^2.$$

Substituting into the expression for S_{t+1} ,

$$S_{t+1} \le S_t \sum_{i=1}^{N} p_t(i) \left(1 - \epsilon \, \ell_t(i) + \epsilon^2 \, \ell_t(i)^2 \right)$$
$$= S_t \left(1 - \epsilon \sum_{i=1}^{N} p_t(i) \, \ell_t(i) + \epsilon^2 \sum_{i=1}^{N} p_t(i) \, \ell_t(i)^2 \right).$$

This is the desired bound:

$$\left| S_{t+1} \le S_t \left(1 - \epsilon \sum_i p_t(i) \, \ell_t(i) + \epsilon^2 \sum_i p_t(i) \, \ell_t(i)^2 \right). \right|$$

3.2.2 b)[7-points]

Recall the regret bound for Hedge:

$$\mathsf{Regret}_{\mathsf{Hedge}} \, \leq \, \frac{\ln N}{\epsilon} \, + \, \epsilon \sum_{t=1}^T \sum_{i=1}^N p_t(i) \, \ell_t(i)^2,$$

where each $\ell_t(i) \in [-1,1]$. In particular, since $\ell_t(i)^2 \leq 1$ and $\sum_i p_t(i) = 1$, we have

$$\sum_{i=1}^{N} p_t(i) \, \ell_t(i)^2 \, \le \, 1,$$

SO

$$\mathsf{Regret}_{\mathsf{Hedge}} \leq \frac{\ln N}{\epsilon} + \epsilon T.$$

Optimizing ϵ by setting $\epsilon = \sqrt{\ln N/T}$ yields

$$\mathsf{Regret}_{\mathsf{Hedge}} \leq 2\sqrt{T \ln N}.$$

By contrast, the Randomized Weighted Majority (RWM) algorithm satisfies

$$Regret_{RWM} \leq 2\sqrt{T \ln N}$$

as shown in part (d).

Key observations

- Both algorithms achieve the same $\mathcal{O}(\sqrt{T \ln N})$ worst-case regret.
- Hedge's bound is stated in terms of arbitrary real-valued losses $\ell_t(i) \in [-1, 1]$, while RWM was originally derived for binary mistakes $\{0, 1\}$.
- The Hedge analysis refines the intermediate bound by tracking $\sum p_t \ell_t^2$; if losses are small in magnitude, one can get tighter guarantees.
- RWM can be seen as a special case of Hedge with binary losses and a simpler update.

In summary, both algorithms are essentially equivalent in terms of asymptotic regret in the adversarial setting, but Hedge offers greater flexibility for general loss ranges.

3.2.3 c)[2-points]

Starting from the bound

Regret
$$\leq \frac{\ln N}{\epsilon} + \epsilon T$$
,

we choose $\epsilon = \sqrt{\frac{\ln N}{T}}$ to balance the two terms. Substituting:

$$\frac{\ln N}{\epsilon} = \frac{\ln N}{\sqrt{\ln N/T}} = \sqrt{T \ln N}, \qquad \epsilon T = \sqrt{\frac{\ln N}{T}} T = \sqrt{T \ln N}.$$

Hence

Regret
$$\leq \sqrt{T \ln N} + \sqrt{T \ln N} = 2\sqrt{T \ln N}$$
.

Thus we obtain the compact form:

Regret
$$\leq 2\sqrt{T \ln N}$$
.

Comment This matches the adversarial expert regret for RWM. Both Hedge (for real-valued losses in [-1,1]) and RWM (for binary mistakes) achieve the optimal $\mathcal{O}(\sqrt{T \ln N})$ regret up to constant factors.