Estimating GHG fluxes from the UK

Peter Levy ¹ Mark Lunt ² Matt Rigby ² Emily White ² & Alistair Manning ³

¹Centre for Ecology & Hydrology ²University of Bristol ³Met Office

September 15, 2017

Bottom-up and atmospheric GHG flux estimates - Two Methods:

- ▶ Bottom-up GHG flux estimates
 - anthropogenic: from national GHG inventory process
 - biogenic: from biogeochemical models run at national-scale
- Atmospheric GHG flux estimates
 - from inverse modelling of atmospheric GHG concentrations on tall-tower network

How to reconcile differences? How to use both methods to best constrain the national GHG budget?

Spatial patterns by emission sector

Temporal patterns by emission sector: annual

Temporal patterns by emission sector: seasonal

Temporal patterns by emission sector: diurnal

Temporal patterns by emission sector

Spatio-temporal model of emissions by sector

Each emissions sector has a characteristic spatio-temporal pattern.

$$F_t = \sum_{i=1}^{n_{\text{sector}}} F_{i,\text{spatial}} \times \alpha_{it}$$

$$\alpha_{it} = f(\alpha_{i,year}, year) \times f(\alpha_{i,yday}, yday) \times f(\alpha_{i,wday}, wday) \times f(\alpha_{i,hour}, hour)$$

where f(year), f(yday), f(wday) and f(hour) are cubic splines. α is a vector of 44 coefficients: 11 sectors \times 4 temporal scales. We use this simple model to analyse discrepancies between atmospheric observations and bottom-up model predictions

Analyse discrepancies over time and space

Figure: Difference between bottom-up and atmospheric flux estimates for CO_2 , 2014 (left), CH_4 , 2014-2015 (middle) and N_2O , 2013-2016 (right). Atmospheric estimates from NAME, University of Bristol and Met Office.

Bayesian Data assimilation approach

- Combine atmospheric model output with bottom-up model predictions
 - vary the bottom-up model α parameters
 - calculate likelihood (goodness-of-fit)
- produces uncertainty distribution for parameters and estimates of GHG flux

Results - N_2O

Results - N_2O

Results - N_2O

Results - N₂O

Summary

- We have a method for comparing bottom-up and atmospheric models
 - Bayesian data assimilation methodology allows uncertainties to be combined in a consistent way
- Total emissions
 - increased for N₂O, uncertainty decreased
 - unchanged for CH₄, uncertainty increased
 - increased for CO₂, uncertainty increased
- Analysis allows us to attribute discrepancies
 - at sector level
 - e.g. spring peak in agricultural methane
 - at process level
 - e.g. emission factor from N fertilisation