EE24BTECH11005 - Arjun Pavanje

Ouestion:

Find the area of the region in the first quadrant enclosed by the X axis, the line y = x and the circle $x^2 + y^2 = 32$

Variable	Description
h	Point lying on the line
m	Slope of line
e	Eccentricity of conic
F	Focus of conic
f	$\ \mathbf{u}\ ^2 - r^2$
V	A symmetric matrix given by eigenvalue decomposition
u	Centre of circle

TABLE I: Variables Used

Solution: Line equation of form $\mathbf{x} = \mathbf{h} + k\mathbf{m}$

$$\mathbf{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + k \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{1}$$

Equation of parabola of form $\mathbf{x}^{\mathsf{T}}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\mathsf{T}}\mathbf{x} + f = 0$ is

$$\mathbf{u} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, f = ||\mathbf{u}||^2 - r^2, \mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (2)

If a line intersects the conic, k value of intersecting point is given by,

$$k_{i} = \frac{-\mathbf{m}^{\top} (\mathbf{V}\mathbf{h} + \mathbf{u}) \pm \sqrt{[\mathbf{m}^{\top} (\mathbf{V}\mathbf{h} + \mathbf{u})]^{2} - g(h)(\mathbf{m}^{\top}\mathbf{V}\mathbf{m})}}{\mathbf{m}^{\top}\mathbf{V}\mathbf{m}}$$
(3)

On substituting values of u, m, h, V we get,

$$k = \pm 4 \tag{4}$$

Points of intersection with circle are, $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$, $\begin{pmatrix} -4 \\ -4 \end{pmatrix}$

Angle between given line y = x and x axis is 45°

Area bound between the circle, line, X axis, in the first quadrant is,

$$\frac{45}{360}\pi r^2 = 4\tag{5}$$

Required Area = 4 sq. units

Fig. 1: Circle $y^2 + x^2 = 32$, Line x = y