

భారతీయ సాంకేతిక విజ్ఞాన సంస్థ హైదరాబాద్ भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad Indian Institute of Technology Hyderabad

Year: 2023-24 Subject Code : EE1200 Branch : Electrical Engineering

Name : Aditi Dure

Low pass and High pass filter

1 Aim

To plot Frequency response of low pass and high pass filters

2 Apparatus

2.1 Equipments

- 1. Function Generator
- 2. Bread Board
- 3. Oscilloscope
- 4. Multimeter

2.2 Components

- 1. Resistor(150 k Ω)
- 2. Capacitor(220 pF)

3 Circuit Diagram

3.1 Low pass

3.2 High Pass

4 Theory

- 1. An RC low-pass filter allows signals with frequencies below a certain cutoff frequency to pass through while attenuating higher frequencies.
- 2. As the frequency of the input signal approaches the cutoff frequency, the output amplitude of the low-pass filter gradually decreases.
- 3. Conversely, an RC high-pass filter allows signals with frequencies above a certain cutoff frequency to pass through while attenuating lower frequencies.
- 4. As the frequency of the input signal increases beyond the cutoff frequency, the output amplitude of the high-pass filter gradually increases.

5 Procedure

- 1. Set up the circuit as shown taking the output across the capacitor (resistor for high pass filter).
- 2. The input for the filter is taken from output of function generator. It is connected to channel 2 of oscillator.
- 3. Vary the frequency of the input signal over a wide frequency range (keeping the input amplitude fixed). Note the value of each frequency.
- 4. Plot the values of gain vs Frequency and find out cut-off frequency from it. (higher cutoff for low pass filter and lower cutoff for high pass filter.)

6 Calculations

1. Firstly, let us find the cutoff frequency theoretically:

$$f = \frac{1}{2\pi RC} \tag{1}$$

$$=\frac{1}{2\pi \cdot 150 \cdot 10^3 \cdot 220 \cdot 10^{-12}} \tag{2}$$

$$=4825.32$$
Hz (3)

2. Now find corresponding $V_{\rm out}$ for corresponding frequencies and note it down in a table as shown below. Let $V_{\rm in}$ be 5V.

Frequency	$V_{\rm out}({\rm in}~{ m V})$	$A(gain) = \frac{V_{\text{out}}}{V_{\text{in}}}$	Frequency response=20logA(in dB)
500Hz	4.984	0.997	-0.17
1KHz	4.970	0.994	-0.34
2KHz	4.942	0.988	-0.68
4KHz	4.887	0.976	-1.36
5KHz	4.849	0.970	-1.70
6KHz	4.810	0.963	-2.03
10KHz	4.704	0.941	-3.40

Table 1: Observation Table for Low Pass

Frequency	$V_{\text{out}}(\text{in V})$	$A(gain) = \frac{V_{\text{out}}}{V_{\text{in}}}$	Frequency response=20logA(in dB)
500Hz	1.86	0.372	-19.81
1KHz	2.53	0.506	-13.64
2KHz	3.30	0.66	-8.33
4KHz	4.10	0.82	-3.96
5KHz	4.37	0.874	-2.68
6KHz	4.51	0.902	-2.05
10KHz	4.80	0.96	-0.79

Table 2: Observation Table for High Pass

3. Now plot a graph of frequency response versus frequency

Figure 1: For Low pass filter

Figure 2: For High pass filter

 $4.\,$ Cutoff frequency now corresponds to frequency response being -3dB i.e. $4822.88 \mathrm{Hz}.$

7 Result

caculated	measured
$4825.32\mathrm{Hz}$	4822.88Hz

Table 3: Result