From State- to Delta-based Bidirectional Transformations (BXs)

Yingfei Xiong
University of Waterloo
2011

Content

- State-based BXs and related concepts
- Problem of State-based BXs
- Delta-based BXs
- Open Issue: BX laws
- Conclusion

Content

- State-based BXs and related concepts
- Problem of State-based BXs
- Delta-based BXs
- Open Issue: BX laws
- Conclusion

The Problem of Data Interchange

 Tom uses Firefox at home, storing a lot of bookmarks

The Problem of Data Interchange

 While in Tom's office the boss requires everyone to use Internet Explorer

Bill Gates is my brother!
Use IE or be fired!

The Problem of Data Interchange

 So Tom copies the bookmark files from Firefox directory to IE directory

Why the problem

 Data sharing the same information are stored in different formats

Difficulties in Converting Formats

- Data may be stored in a binary format which is rather complex.
 - First 10 bytes is the title following a varying string ended with 0xFFFF

Microsoft

- May be encrypted or indexed.
- Such a format may be a secret to the company.

Wanna know the bookmark format of IE? I won't tell you.

Intermediate Format

- Export to some intermediate format that is easy to read and process
- Text files and CSV files
 - Lack of structure information
 - Lack of general operations to cope with data

Standards for Data Interchange

- A standard for data interchange that
 - Provides a generic data structure to describe data
 - Defines how the data are stored into and loaded from files
 - Provides a set of general APIs to operate data
- Two Standards
 - -W3C XML
 - OMG MOF

XML and MOF

XML

- Proposed by W3C
- Based on the tree data structure
- Widely used in general area

MOF

- Proposed by OMG
- Based on the object data structure
- Originated from Unified Modeling Language
- Intensively used in software engineering area

A Possible IE Model

A Possible Firefox Model

Content

- State-based BXs and related concepts
 - XML and MOF
 - Transformation Languages
 - Bijective Transformations
 - Bidirectional Transformations
- Problem of State-based BXs
- Delta-based BXs
- Open Issue: BX laws
- Conclusion

Transformation Languages

- Common tasks in format conversion
 - Load and store files
 - Locate to certain objects
 - Read attributes
 - **—** ...
- Tedious and error-prone
- Solution: Dedicated Languages for Transformation

Transformation Languages

- Transformation Languages on XML
 - XSLT
 - XQuery
- Transformation
 Languages on MOF
 - QVT
 - ATL

An ATL Transformation:

```
rule Folder2Directory {
 from f: Firefox!Folder
 to d : IE!Directory {
  Name <- f.Name
rule Page2Item {
 from p : Firefox!Page
 to i : IE!Item{
  Name <- p.Name
  Addr <- p.URL
  Owner <- p.Owner
```

Content

- State-based BXs and related concepts
 - XML and MOF
 - Transformation Languages
 - Bijective Transformations
 - Bidirectional Transformations
- Problem of State-based BXs
- Delta-based BXs
- Open Issue: BX laws
- Conclusion

The Backward Transformation Problem

 What if another guy Jerry wants to transform IE Bookmarks into FireFox?

The Simple Solution

FireFox to IE Transformation:

```
rule Folder2Directory {
 from f : Firefox!Folder
 to d : IE!Directory {
  Name <- f.Name
rule Page2Item {
 from p : Firefox!Page
 to i : IE!Item{
  Name <- p.Name,
  Addr <- p.URL,
  Owner <- p.Owner
```

IE to FireFox Transformation:

```
rule Directory2Folder {
 from d : IE!Directory
 to f : Firefox!Folder {
  Name <- d.Name
rule Page2Item {
 from i: IE!Item
 to p : Firefox!Page {
  Name <- i.Name,
  URL <- i.Addr,
  Owner <- i.Owner
```

The two transformations are very similar and contain duplicate information

Bijective Transformations

- Can we generate one transformation from the other?
- The Bijective Transformation Languages
 - Inv
 - BOTL
- Use symmetric rules that can be executed forwardly and backwardly

Content

- State-based BXs and related concepts
 - XML and MOF
 - Transformation Languages
 - Bijective Transformations
 - Bidirectional Transformations
- Problem of State-based BXs
- Delta-based BXs
- Open Issue: BX laws
- Conclusion

The Synchronization Problem

What if Tom changes the IE bookmarks in his office?

Bidirectional Transformations (BXs)

- If the one model is modified, how to reflect the modifications back into the other model
- View Updating in Database
 - When a view is modified, how to reflect the modifications back into original databases
- Bidirectional Transformation Languages on trees
 - Boomerang
 - BiX

- Bidirectional Transformation Languages on graphs
 - QVT
 - TGG

State-based BX

- Consistency Relation
 - R:A×B
- Forward Propgation
 - fPpg : A×A×B→B
- Backward Propagation
 - bPpg : A×B×B→A

Example

Model IE

<u>i2:Item</u>
Name=Google
Addr=google.com
Hotkey=Ctrl+g

i1:Item

Name=Google CN Addr=google.cn Hotkey=Alt+g

Model Firefox

p1:Page

Name=Google
URL=google.com
Desc=Search English

p2:Page

Name=Google CN URL=google.cn Desc=Search Chinese

:bPpg

<u>i2':Item</u>
Name=Google
Addr=google.com
Hotkey=Ctrl+g

i1':Item

Name=Google CN Addr=google.com Hotkey=Alt+g

Model Firefox'

p1':Page Name=Google URL=google.com Desc=Search English

p2':Page

Name=Google CN
URL=google.com
Desc=Search Chinese

BX subsumes Bijective Transformations

Nothing is guaranteed

Model IE

<u>i2:Item</u>
Name=Google
Addr=google.com
Hotkey=Ctrl+g

i1:Item

Name=Google CN Addr=google.cn Hotkey=Alt+g

Model Firefox

p1:Page

Name=Google
URL=google.com
Desc=Search English

p2:Page

Name=Google CN
URL=google.cn
Desc=Search Chinese

:bPpg

<u>12 :1tem</u>
Name=Google
Addr=google.com
Hotkey=Ctrl+g

:21.1+am

i1':Item

Name=<mark>Baidu</mark> Addr=<mark>Baidu.com</mark> Hotkey=Alt+b

Model Firefox'

p1':Page
Name=Google
URL=google.com
Desc=Search English

p2':Page

Name=Google CN
URL=google.com
Desc=Search Chinese

Laws of BX: Consistency

Laws of BX: Identity Propagation

How to write BXs

- Write R, fPpg, bPpg, respectively
 - Duplicated work
 - Error-prone

Bidirectional Languages

Bidirectional Program

Compile

R

fPpg

bPpg

Bidirectional Languages

Atomic BXs + Combinators

Atomic BX: filter[attr]

- R: Left attr = Right
- Filter[HotKey].R

Model IE2	
<u>i2:Item</u>	<u>i1:Item</u>
Name=Google Addr=google.com Hotkey=Ctrl+g	Name=Google CN Addr=google.cn Hotkey=Alt+g

Atomic BX: filter[Hotkey].fPpg

Model IE1

i2:Item

Name=Google
Addr=google.com
Hotkey=Ctrl+g

i1:Item

Name=Google CN Addr=google.cn Hotkey=Alt+g

Model IE2

i2:Item

Name=Google Addr=google.com

i1:Item

Name=Google CN Addr=google.cn

:filter[Hotkey].*f*Ppg

Model IE1'

i2':Item

Name=Google Addr=google.com Hotkey=Ctrl+g

i1':ltem

Name=Google CN Addr=google.com Hotkey=Alt+g

Model IE2

i2':Item

Name=Google
Addr=google.com

i1':ltem

Name=Google CN Addr=google.com

Combinator: Sequential Composition X;Y

- X.R is a function
- (X;Y).R=X.R;Y.R
- (X;Y).fPpg

X;Y satisfies the laws as long as X and Y do

An Example Program

Model IE

i2:Item

Name=Google
Addr=google.com
Hotkey=Ctrl+g

i1:Item
Name=Google CN
Addr=google.cn
Hotkey=Alt+g

Model Firefoxp1:Pagep2:PageName=GoogleName=Google CNURL=google.comURL=google.cnDesc=Search EnglishDesc=Search Chinese

filter[Hotkey]; renameAttribute[Addr, URL]; renameClass[Item, Page]; inverse[filter[Desc]]

Content

- State-based BXs and related concepts
- Problem of State-based BXs
- Delta-based BXs
- Open Issue: BX laws
- Conclusion

Delta Interpretation 1

Model IE

<u>i2:Item</u>
Name=Google
Addr=google.com
Hotkey=Ctrl+g

i1:Item

Name=Google CN Addr=google.cn Hotkey=Alt+g

Model Firefox

p1:Page

Name=Google
URL=google.com
Desc=Search English

p2:Page

Name=Google CN
URL=google.cn
Desc=Search Chinese

:bPpg

Model IE'

Name=Google CN Addr=google.com Hotkey=Alt+g

Model Firefox'

p1':Page Name=Google URL=google.com Desc=Search English

p2':Page

Name=Google CN
URL=google.com
Desc=Search Chinese

Delta Interpretation 2

Model IE

<u>i2:Item</u>
Name=Google
Addr=google.com
Hotkey=Ctrl+g

i1:Item

Name=Google CN Addr=google.cn Hotkey=Alt+g

Model Firefox

p1:Page

Name=Google
URL=google.com
Desc=Search English

p2:Page

Name=Google CN
URL=google.cn
Desc=Search Chinese

:bPpg

Model IE'

<u>ız :item</u>
Name=Google
Addr=google.com
Hotkey=Ctrl+g

:211+am

i1':Item

Name=Google CN Addr=google.com Hotkey=null

Model Firefox'

p2':Page

Name=Google CN
URL=google.com
Desc=Search Chinese

Problem 1 of State-based BX

 Semantics of DD is mixed into DP, complicating the latter

Problem 2 of State-based BX

New deltas are discarded, causing composition problem

Erroneous Sequential Composition

Efficiency: X.bPpg has to compute the delta again **Semantics**: X.bPpg may compute a different delta

filter[Hotkey]; filter[Addr]

Model IE1

i1:Item

Name=Google CN Addr=google.cn Hotkey=Alt+g

Model IE2

i1:Item

Name=Google CN Addr=google.cn

Model IE3

i1:Item

Name=Google CN

:filter[Hotkey].bPpg

Model IE1'

i1':ltem

Name=谷歌中国 Addr=google.cn Hotkey=null i1≠i1′

i1=i1'

Model IE2'

i1':ltem

Name=谷歌中国 Addr=google.cn

:filter[Addr].bPpg

Model IE3'

i1':Item

Name=谷歌中国

Horizontal Delta Interpretation 1

Model IE

i1=p2 i2=p1

lel Firefox

i2:Item

Name=Google Addr=google.com Hotkey=Ctrl+g i1:Item

Name=Google CN Addr=google.com Hotkey=Alt+g p1:Page

Name=Google
URL=google.com
Desc=Search English

p2:Page

Name=Google CN
URL=google.cn
Desc=Search Chinese

i1=i1' i2=i2'

:fPpg

Model IE'

<u>i2':Item</u>

Name=Google

Addr=google.com

Hotkey=Ctrl+g

i1':ltem

Name=Baidu Addr=baidu.com Hotkey=Alt+g Model Firefox'

p1':Page

Name=Google
URL=google.com
Desc=Search English

p2':Page

Name=Baidu
URL=baidu.com

Desc=Search Chinese

Horizontal Delta Interpretation 2

Model IE

i1=p1 i2=p2

lel Firefox

i2:Item

Name=Google Addr=google.com Hotkey=Ctrl+g i1:Item

Name=Google CN Addr=google.com Hotkey=Alt+g p1:Page

Name=Google
URL=google.com
Desc=Search English

p2:Page

Name=Google CN
URL=google.cn
Desc=Search Chinese

i1=i1' i2=i2'

:fPpg

Model IE'

i2':Item

Name=Google

Addr=google.com

Hotkey=Ctrl+g

i1':ltem

Name=Baidu Addr=baidu.com Hotkey=Alt+g Model Firefox'

p1':Page

Name=Baidu
URL=baidu.com
Desc=Search English

p2':Page

Name=Google
URL=google.com
Desc=Search Chinese

Erroneous vertical composition

Content

- State-based BXs and related concepts
- Problem of State-based BXs
- Delta-based BXs
- Open Issue: BX laws
- Conclusion

Delta-based BX

R: a set of deltas between two model spaces

Forward update propagation

Backward update propagation

Benefits

- Honest math model
- Semantics of DD and DP are separated
- No composition problem
- More flexible

From delta- to state-based

Flexibility of Delta-based BX

Delta-based laws: Consistency

Delta-based laws: Identity propagation

Content

- State-based BXs and related concepts
- Problem of State-based BXs
- Delta-based BXs
- Open Issue: BX laws
- Conclusion

BX laws are inadequate

Model IE

<u>i2:Item</u>
Name=Google
Addr=google.com
Hotkey=Ctrl+g

i1:Item

Name=Google CN Addr=google.cn Hotkey=Alt+g

Model Firefox

p1:Page

Name=Google
URL=google.com
Desc=Search English

p2:Page

Name=Google CN URL=google.cn Desc=Search Chinese

:fPpg

Model IE'

<u>i2':ltem</u>
Name=Google
Addr=google.com
Hotkey=Ctrl+g

i1':Item

Name=Google CN Addr=google.com Hotkey=Alt+g

Model Firefox'

p1':Page
Name=Google
URL=google.com
Desc=Search French

p2':Page

Name=Google CN
URL=google.com
Desc=Search Chinese

Extra laws are proposed

B'' = B

- PUTPUT law [Nate et al. 05]
- Invertibility law [Diskin08]
- Composability law [Xiong et al. 07]

Undoability solves the problem

Model IE

<u>i2:Item</u>
Name=Google
Addr=google.com
Hotkey=Ctrl+g

i1:Item

Name=Google CN Addr=google.com Hotkey=Alt+g

Model Firefox

<u>p1:Page</u>
Name=Google
URL=google.com
Desc=Search French

p2:Page

Name=Google CN
URL=google.com
Desc=Search Chinese

:fPpg

Model IE'

<u>ız :item</u>	
Name=Google	Na
Addr=google.com	Ac
Hotkey=Ctrl+g	Н

: 27.14.0.00

<u>i1':ltem</u>

Name=Google CN Addr=google.<mark>cn</mark> Hotkey=Alt+g

Model Firefox'

<u>p1':Page</u>
Name=Google
URL=google.com
Desc=Search French

p2':Page

Name=Google CN
URL=google.cn
Desc=Search Chinese

But is too strong

i1:Item

Name=Google CN Addr=google.cn Hotkey=Alt+g

p2:Page

Name=Google CN URL=google.cn Desc=Search Chinese

:fPpg

:fPpg

i1:Item

Name=Google CN Addr=google.cn Hotkey=Alt+g

p2:Page

Name=Google CN URL=google.cn

Desc=null

Current Status

- Weak undoability and weak invertibility are proposed on delta-based BX [Diskin, Xiong, Czarnecki. MODELS'11]
- Laws are still inadequate

Content

- State-based BXs and related concepts
- Problem of State-based BXs
- Delta-based BXs
- Open Issue: BX laws
- Conclusion

Conclusion

- BXs are useful in data synchronization
- Deltas are crucial in BXs
- Delta-based BXs
 - Honest math model
 - Solve the problems in state-based BXs
 - More Flexible
- BX laws are still an open problem