

THE UNIVERSITY OF KANSAS

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

EECS 645 – Computer Architecture
Fall 2016

Final Project (Single-Cycle MIPS)

Student Name: Student ID:

Final Project

In this project you will be designing the Single-Cycle version of the MIPS processor that supports a subset, 13 instructions, of MIPS ISA by integrating the MIPS components that were covered through all previous homework assignments. The microarchitecture datapath and control path are shown in the following pages. The supported instructions of this version of MIPS are as follows:

- a) 6 Arithmetic/Logical instructions: add, sub, and, or, slt, addi
- b) 2 Memory reference: lw, sw
- c) 5 Control transfer: beq, bne, j, jal, jr

You are required to:

- a) Write the equivalent VHDL code, and
- b) Verify the correct operation through Vivado Simulator by comparing your simulation results with those of MARS runs.

Steps:

- 1) Download the file "Final_Project_MIPS_Single_Cycle.zip" from blackboard and extract its contents.
- 2) Launch Vivado and create a new project, for example "vivado_project", with the default settings.
- 3) Add to the project the VHDL design and simulation source folders; "\Final_Project_MIPS_Single_Cycle\07_MIPS_Single_Cycle\design_sources" and "\Final_Project_MIPS_Single_Cycle\07_MIPS_Single_Cycle\simulation_sources" respectively.
- 4) Edit the VHDL files in the folder "\Final_Project_MIPS_Single_Cycle\07_MIPS_Single_Cycle\design_sources\incomplete\" according to your design such that it describes the required MIPS microarchitecture.
- 5) Set the simulation time to the proper time, e.g. 100 µs, and then launch Vivado Simulator.
- 6) Verify the correctness of your design. You may go back to step 4 to correct your code until your design works properly as required.

Hint:

- Follow MIPS and MARS convention for the memory map as shown in the attached document
 - o The code/text segment should start at address 0x00400000, and
 - o The data segment should start at address 0x10010000
- You could use the provided assembly test program "\Final_Project_MIPS_Single_Cycle\07_MIPS_Single_Cycle\testing_options\fibonacci_recursive _pos_&_neg.asm" to verify your design by comparing your simulation results in Vivado with the run results of the same test program in MARS.
 - ο The proper simulation time for this test program should be set to a value larger than 87 μ s, e.g. 100 μ s.

MIPS Reference Data

1	

CORE INSTRUCTI	CORE INSTRUCTION SET OPCODE											
NAME ARTEMO		FOR-			/ FUNCT							
NAME, MNEMO		MAT R	- (6)	(1)	(Hex) 0 / 20 _{hex}							
Add Immediate	add	K I	R[rd] = R[rs] + R[rt]									
	addi		R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}							
Add Imm. Unsigned		I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}							
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex}							
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}							
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c _{hex}							
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}							
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}							
Jump	j	J	PC=JumpAddr	(5)	2_{hex}							
Jump And Link	jal	J	R[31]=PC+4;PC=JumpAddr	(5)	3_{hex}							
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}							
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	$24_{ m hex}$							
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}							
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	$30_{ m hex}$							
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		fhex							
Load Word	lw	I	R[rt] = M[R[rs]+SignExtImm]	(2)	$23_{\rm hex}$							
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}							
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}							
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	_							
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}							
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}							
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b _{hex}							
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2b _{hex}							
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}							
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}							
Store Byte	sb	Ι	M[R[rs]+SignExtImm](7:0) =	(4)	28 _{hex}							
,			R[rt](7:0)	(2)								
Store Conditional	sc	Ι	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}							
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}							
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}							
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}							
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}							
Subtract Unsigned sub R R[rd] = R[rs] - R[rt] 0 / 23 _{hes} (1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{ib^o}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair, R[rt] = 1 if pair atomic, 0 if not atomic												

BASIC INSTRUCTION FORMATS

R	opcode		rs		rt	rd	shamt	funct	
	31	6 25	21	20	16	15 11	10 6	5 0	
I	opcode		rs		rt		immediate		
	31	6 25	21	20	16	15		0	
J	opcode		address						
	31	26 25						0	

ARITHMETIC CORE INSTRUCTION SET

		/ FMT /FT	ſ
	FOR-	- / FUNCT	
	MAT		
Branch On FP True bolt	FI	if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/-	
Branch On FP False bolf	FI	if(!FPcond)PC=PC+4+BranchAddr(4) 11/8/0/-	
Divide div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] 0///1a	
Divide Unsigned divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6) 0///1b	
FP Add Single add.s	FR	F[fd] = F[fs] + F[ft] 11/10//0)
FP Add	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} + 11/11//0$	n
Double		{F[ft],F[ft+1]}	
FP Compare Single cx.s*	FR	$FPcond = (F[fs] \ op \ F[ft]) ? 1 : 0$ 11/10//y	v
FP Compare	FR	$FPcond = ({F[fs], F[fs+1]}) op$	12
Double		{F[ff],F[ff+1]})?1:0	,
		==, <, or <=) (y is 32, 3c, or 3e)	
	FK	F[fd] = F[fs] / F[ft] 11/10//3	5
FP Divide	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} / $	3
Double	ED	{F[ft],F[ft+1]}	_
FP Multiply Single mul.s	FR	F[fd] = F[fs] * F[ft] 11/10//2	2
FP Multiply Double mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$ $11/11//2$	2
FP Subtract Single sub.s	FR	$\{F[ft],F[ft+1]\}$ $F[fd]=F[fs]-F[ft]$ $11/10//1$	1
FP Subtract		F[fd]-F[fs]-F[fs] = $F[fs],F[fs+1]$ -	
Double sub.d	FR	$\{F[id], F[id+1]\} = \{F[is], F[is+1]\} = \{F[ft], F[ft+1]\}$	1
Load FP Single lwc1	Ī	F[rt]=M[R[rs]+SignExtImm] (2) 31///-	
Load FP	1	E[st]-M[D[so] Con-EntJeron]. (2)	
Double ldc1	I	F[rt+1]=M[R[rs]+SignExtImm+4] (2) 35//	-
Move From Hi mfhi	R	$R[rd] = Hi \qquad 0 ///10$	n
Move From Lo mflo	R	R[rd] = Lo 0///12	-
Move From Control mfc0	R	R[rd] = CR[rs] 10 /0//0	
Multiply mult	R	$\{Hi, Lo\} = R[rs] * R[rt]$ 0///18	
Multiply Unsigned multu	R	$\{Hi, Lo\} = R[rs] * R[rt]$ (6) 0//-19	
Shift Right Arith. sra	R	R[rd] = R[rt] >> shamt 0//-/3	
Store FP Single swc1	I	M[R[rs]+SignExtImm] = F[rt] (2) 39//	
Store FP		M[D[rel+SignEvtImm] - E[rt]: (2)	
Double sdc1	I	M[R[rs]+SignExtImm+4] = F[rt+1] $3d///-$	-
Double		m[re[re] - Dight Athini - 4] = 1 [It+1]	

(2) OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		e	
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

OPCOD	ES, BASE	E CONVER	SION,	ASCII	SYMB	OLS		3	
MIPS	(1) MIPS	(2) MIPS		Deci-	Hexa-	ASCII	Deci-	Hexa-	ASCII
opcode	funct	funct	Binary	mal	deci-	Char-	mal	deci-	Char-
(31:26)	(5:0)	(5:0)		illai	mal	acter	mai	mal	acter
(1)	sll	$\mathtt{add}.f$	00 000		0	NUL	64	40	(a)
		sub.f	00 000		1	SOH	65	41	A
j	srl	mul.f	00 001		2	STX	66	42	В
jal	sra	div.f	00 001		3	ETX	67	43	C
beq	sllv	sqrt.f	00 010		4	EOT	68	44	D E
bne blez	srlv	abs.f	00 010		5	ENQ ACK	69 70	45 46	F
bgtz	srav	mov.f	00 011		7	BEL	71	47	G G
addi	jr	neg.f	00 100		8	BS	72	48	H
addiu	jalr		00 100		9	HT	73	49	I
slti	movz		00 100		a	LF	74	4a	J
sltiu	movn		00 101		b	VT	75	4b	K
andi	syscall	round.w.f	00 110		c	FF	76	4c	L
ori	break	trunc.w.f	00 110		d	CR	77	4d	M
xori		ceil.w.f	00 111		e	SO	78	4e	N
lui	sync	floor.w.f	00 111		f	SI	79	4f	0
	mfhi		01 000		10	DLE	80	50	P
(2)	mthi		01 000		11	DC1	81	51	Q
()	mflo	movz.f	01 001		12	DC2	82	52	Ř
	mtlo	movn.f	01 001	1 19	13	DC3	83	53	S
			01 010	0 20	14	DC4	84	54	T
			01 010	1 21	15	NAK	85	55	U
			01 011	0 22	16	SYN	86	56	V
			01 011	1 23	17	ETB	87	57	W
	mult		01 100		18	CAN	88	58	X
	multu		01 100		19	EM	89	59	Y
	div		01 101		1a	SUB	90	5a	Z
	divu		01 101		1b	ESC	91	5b	
			01 110		1c	FS	92	5c	\
			01 110		1d	GS	93	5d	,
			01 111		1e	RS	94	5e	^
			01 111		1f	US	95	5f	-
1b	add	cvt.s.f	10 000		20	Space	96	60	
lh	addu	$\operatorname{cvt.d} f$	10 000		21	!	97	61	a
lwl lw	sub		10 001		22 23	#	98 99	62 63	b
1bu	subu		10 001		23	# \$	100	64	d
lhu	or	cvt.w.f	10 010 10 010		25	%	100	65	e
lwr	xor		10 010		26	&	102	66	f
TWI	nor		10 011		27	,	103	67	g
sb	1101		10 100		28	(104	68	h
sh			10 100		29)	105	69	i
swl	slt		10 101		2a	*	106	6a	i
SW	sltu		10 101		2b	+	107	6b	k
			10 110	0 44	2c	,	108	6c	1
			10 110	1 45	2d	-	109	6d	m
swr			10 111	0 46	2e		110	6e	n
cache			10 111	1 47	2f	/	111	6f	O
11	tge	c.f.f	11 000	0 48	30	0	112	70	р
lwc1	tgeu	c.un.f	11 000		31	1	113	71	q
lwc2	tlt	c.eq.f	11 001		32	2	114	72	ŕ
pref	tltu	c.ueq.f	11 001		33	3	115	73	S
	teq	c.olt.f	11 010		34	4	116	74	t
ldc1		c.ult. f	11 010		35	5	117	75	u
ldc2	tne	c.ole.f	11 011		36	6	118	76	v
		c.ule.f	11 011	1 55	37	7	119	77	W

c.ngtf(1) opcode(31:26) = 0

swc1

swc2

sdc1

sdc2

11 1000

11 1001

11 1010

11 1011

11 1100

11 1101

11 1110 62 3e

11 1111

56 38 57

58

63

39 9

3a

3b

c.sf.f

c.ngle.

c.seq.f

c.nal.

c.nge.f

c.lt./

c.le.f

120 121

122

123 7b

125 7d 7e 7f

126

127

79

7a

у

DEL

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127,

IEEE Single Precision and Double Precision Formats:

Exponent

0

4

Object

± 0 ± Denorm

IEEE 754 Symbols

Fraction

≠0

DATA ALIGNMENT

	Double Word											
ſ		Wo	rd			W	ord					
	Halfword		Half	word	Halt	fword	Half	word				
	Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte				

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

Name	Cause of Exception	Number	Name	Cause of Exception				
Int	Interrupt (hardware)	9	Bp	Breakpoint Exception				
Adei			DΙ	Reserved Instruction				
Auel	(load or instruction fetch)		KI	Exception				
AdES	Ades	Ades	Ades	Ades	Address Error Exception	11	CnII	Coprocessor
	(store)	111	Сро	Unimplemented				
IDE	Bus Error on	12	Ov	Arithmetic Overflow				
IDE	Instruction Fetch	12	Ov	Exception				
DRE	Bus Error on	13	Tr	Trap				
DBE	Load or Store	13	11					
Sys	Syscall Exception	15	FPE	Floating Point Exception				
	Int AdEL AdES IBE DBE	Int Interrupt (hardware) AdEL (load or instruction fetch) AdEs Error Exception (store) BE Bus Error on Instruction Fetch DBE Load or Store Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval In	Int	Int				

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

PRE- FIX
femto-
atto-
zepto-
yocto-

The symbol for each prefix is just its first letter, except μ is used for micro.

⁽²⁾ opcode(31:26) == 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single); if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$

mips single cycle wave.wcfg _ B 2 X Value Name [40][31:0] [41][31:0] [42][31:0] [43][31:0] [44][31:0] [45][31:0] H [46][31:0] [47][31:0] [48][31:0] H [49][31:0] [50][31:0] [51][31:0] **[52]** [31:0] E [53][31:0] **1** [54][31:0] [55][31:0] **[56]** [31:0] **II** [57][31:0] E [58][31:0] E [59][31:0] [60][31:0] H [61][31:0] **[62]** [31:0] H [63][31:0] **H** [64][31:0] H [65][31:0] **[66]** [31:0] **[67]** [31:0] E [68][31:0] H [69][31:0] **[70]** [31:0] **[71]** [31:0] **[72]** [31:0] **[73]** [31:0] **1** [74][31:0] **[75]** [31:0] F [76][31:0] H [77][31:0] H [78][31:0] **[79]** [31:0] E [80][31:0] H [81][31:0] H [82][31:0] F 4

Extended Main Control Unit

Instr. OP	RegDst	ALUSrc	MemToReg	RegWr	MemRd	MemWr	Beq	Bne	ALUOp	J	Jal	Jr
R-type 000000 & /= 001000	1	0	0	1	0	0	0	0	10	0		
jr 000000 & 001000												
lw 100011	0	1	1	1	1	0	0	0	00	0		
SW 101011	0	1	0	0	0	1	0	0	00	0		
beq 000100	0	0	0	0	0	0	1	0	01	0		
bne 000101												
j 000010	0	0	0	0	0	0	0	0	00	1		
jal 000011												
addi 001000	0	1	0	1	0	0	0	0	00	0		

MIPS Microarchitecture

Extended ALU Control

- Assume 2-bit ALUOp derived from opcode
 - Combinational logic derives ALU control

opcode	rs	rt	rd	shamt	funct
31:26	25:21	20:16	15:11	10:6	5:0

opcode	ALUOp	Operation	funct	ALU function	ALU control
lw ≡ 100011	00	load word	XXXXXX	add	0010
sw ≡ 101011	00	store word	XXXXXX	add	0010
addi ≡ 001000	00	add immediate	XXXXXX	add	0010
beq ≡ 000100	01	branch equal	XXXXXX	subtract	0110
bne ≡ 000101	01	branch not equal	XXXXXX	subtract	0110
R-type ≡ 000000	10	add	100000	add	0010
		subtract	100010	subtract	0110
		AND	100100	AND	0000
		OR	100101	OR	0001
		set-on-less-than	101010	set-on-less-than	0111

MIPS Memory Layout/Map

 $sp_0 = 0x7FFF FFFC \rightarrow$ Stack Standard MIPS MAP Dynamic data Static data prime 3 \$gp rightarrow 0x1000 8000 rightarrow0x1000 0000 → **Text** $PC_0 \to 0x0040\ 0000 \to$ Reserved

MIPS Memory Layout/Map

 $sp_0 = 0x7FFF FFFC \rightarrow$

 $property sp_0 = 0x7FFF EFFC \rightarrow$

MIPS MAP in MARS

.data \rightarrow 0x1001 0000 \rightarrow

product \$product > 0x1000 8000 > 0x10000 8000 > 0x1000 8000 > 0x1000 8000 > 0x10000 8000 > 0x10000 8000 > 0x1000 8000 > 0x1000 8000 > 0x1000 8000 > 0x1000 8000 > 0x1000

0x1000 0000 →

 $PC_0 = 0x0040\ 0000 \rightarrow$

Stack

Dynamic data

Static data

Text

Reserved

Mapping Your Data & Program

Z_{DM} ≡ Allocated size of data memory in 32-bit words (locations) **DM**₀ ≡ First address of data memory, could be anything, e.g. 0 or **0x1001 0000**

 $Z_{program} \equiv$ Allocated size of instruction memory = Size of test program in 32-bit words (instructions) $IM_0 \equiv$ First address of instruction memory, could be anything, e.g. 0 or $0x0040\ 0000 = PC_0$

Mapping Your Program

pro	gram_as	sembly.as	sm program_	assembly_option1.asm	program_assembly_option2.asm
1		addi	\$t0, \$zero, 5	# Instruction 00	
2		addi	\$tl, \$zero, 7	# Instruction 01	
3	start:	sw	\$t0, 0(\$sp)	# Instruction 02	
4		sw	\$t1, -4(\$sp)	# Instruction 03	
5		lw	\$sO, O(\$sp)	# Instruction 04	
6		lw	\$ s1 , -4(\$ s p)	# Instruction 05	
7		beq	\$s0, \$s1, Els	e # Instruction 06	
8		add	\$s3, \$s0, \$sl	# Instruction 07	
9		j	Exit	# Instruction 08	
10	Else:	sub	\$s3, \$s0, \$s1	# Instruction 09	
11	Exit:	add	\$s0, \$s0, \$s3	# Instruction 10	
12		or	\$sl, \$sl, \$s3	# Instruction 11	
13		addi	\$t0, \$t0, 3		
14		addi	\$t1, \$t1, 3	# Instruction 13	
15		addi	\$sp, \$sp, -8	# Instruction 14	
16		j	start	# Instruction 15	

Mapping Your Program - Option 2

```
program_assembly.asm
                         program assembly option1.asm
                                                       program assembly option2.asm
                    $t0, $zero, 5
                                    # Instruction 00 --> Address (00 + x"00400000") = x"00400000"
 1
            addi
            addi
                                    # Instruction 01 --> Address (04 + x"00400000") = x"00400004"
                    $tl, $zero, 7
                                    # Instruction 02 --> Address (08 + x"00400000") = x"00400008"
    start:
                    $t0, 0($sp)
                                    # Instruction 03 --> Address (12 + x"00400000") = x"0040000C"
                    $t1, -4($sp)
 4
            SW
                                    # Instruction 04 --> Address (16 + x"00400000") = x"00400010"
 5
            lw
                    $sO, O($sp)
                    $s1, -4($sp)
                                    # Instruction 05 --> Address (20 + x"00400000") = x"00400014"
            lw
            beq
                    $s0, $s1, Else
                                    # Instruction 06 --> Address (24 + x"00400000") = x"00400018"
                                    # Instruction 07 --> Address (28 + x"00400000") = x"0040001C"
            add
                    $83, $80, $81
 8
            Ť.
                    Exit
                                    # Instruction 08 --> Address (32 + x"00400000") = x"00400020"
                                    # Instruction 09 --> Address (36 + x"00400000") = x"00400024"
   Else:
                    $83, $80, $81
10
            sub
    Exit:
                    $80, $80, $83
                                    # Instruction 10 --> Address (40 + x"00400000") = x"00400028"
            add
11
                    $s1, $s1, $s3
                                    # Instruction 11 --> Address (44 + x"00400000") = x"0040002C"
12
            or
            addi
                    $t0, $t0, 3
                                    # Instruction 12 --> Address (48 + x"00400000") = x"00400030"
13
                                    # Instruction 13 --> Address (52 + x"00400000") = x"00400034"
            addi
                    $t1, $t1, 3
14
            addi
                    $sp, $sp, -8
                                    # Instruction 14 --> Address (56 + x"00400000") = x"00400038"
15
                                    # Instruction 15 --> Address (60 + x"00400000") = x"0040003C"
16
                    start
```

```
\begin{split} & IM_{i} = IM_{0} + 4xI_{i} \\ & \rightarrow I_{i} = (IM_{i} - IM_{0})/4 \\ & IM_{0} = PC_{0} = 0x0040\ 0000\ ,\ IM_{i} = PC_{i} \\ & \rightarrow I_{i} = (PC_{i} - PC_{0})/4 \end{split}
```

```
\begin{split} & DM_{i} = DM_{0} + 4xD_{i} \\ & \Rightarrow D_{i} = (DM_{i} - DM_{0})/4 \\ & DM_{0} = A_{0} = 0x1001\ 0000\ ,\ DM_{i} = A_{i} \\ & \Rightarrow D_{i} = (A_{i} - A_{0})/4 \end{split}
```


Mapping Your Program - Option 2

```
001000000000100000000000000000101
   0010000000010010000000000000111
   10101111101010011111111111111100
   10001111101100011111111111111100
   00000010000100011001100000100000
         000001000000000000000001010
   00000010000100011001100000100010
11
   00000010000100111000000000100000
12
13
   00000010001100111000100000100101
   0010000100001000000000000000011
14
   00100001001010010000000000000011
15
   001000111011110111111111111111000
   000010
         00000100000000000000000010
```

```
001000000000100000000000000000101
  00100000000010010000000000000111
  101011111010100111111111111111100
  10001111101100011111111111111100
  00000010000100011001100000100000
        0000010000000000000000001010
  00000010000100011001100000100010
  00000010000100111000000000100000
11
  00000010001100111000100000100101
13
  0010000100001000000000000000011
  00100001001010010000000000000011
15
  001000111011110111111111111111000
  000010
```

Manually-Assembled Program

$$IM_i = IM_0 + 4xI_i$$

$$\Rightarrow I_i = (IM_i - IM_0)/4$$

$$IM_0 = PC_0 = 0x0040\ 0000$$
, $IM_i = PC_i$
 $\rightarrow I_i = (PC_i - PC_0)/4$

$$DM_i = DM_0 + 4xD_i$$

$$\Rightarrow D_i = (DM_i - DM_0)/4$$

$$DM_0 = A_0 = 0x1001\ 0000$$
, $DM_i = A_i$
 $\Rightarrow D_i = (A_i - A_0)/4$

$$p_0 = DM_0 + 4x(Z_{DM}-1)$$

$$DM_0 = A_0 = 0x1001 0000$$

 $\Rightarrow $sp_0 = A_0 + 4x(Z_{DM}-1)$

