Notas de Cálculo Avanzado

Ramiro Dibur

Índice

1.	Espacios métricos									2									
	1.1.	Sucesiones convergentes																	4

1 Espacios métricos

Definición 1.1. Un *espacio métrico* es un par (X,d), donde X es un conjunto y d : $X \times X \to \mathbb{R}_{\geq 0}$ una función llamada *distancia* (o *métrica*), que satisface las siguientes propiedades para todo $x, y, z \in X$:

- 1. d(x,y) = d(y,x).
- 2. $d(x,z) \le d(x,y) + d(y,z)$.
- 3. d(x,y) = 0 si y sólo si x = y.

Una función $d: X \times X \to \mathbb{R}_{\geq 0}$ es una pseudo-métrica si cumple la simetría, la desigualdad triangular y si además cumple que

si
$$x = y$$
, entonces $d(x, y) = 0$.

Observación. Como se cumple la desigualdad triangular, también se cumple

- $d(x_1, x_n) \le d(x_1, x_2) + d(x_2, x_3) + \cdots + d(x_{n-1}, x_n).$
- $|d(x,z) d(y,z)| \le d(x,y)$.

Veamos algunos ejemplos de espacios métricos.

Ejemplo 1.1.

- Para cualquier conjunto X, la *métrica discreta* está definida por $d(x,y) = \delta_{xy} = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{si } x \neq y \end{cases}$.
- Si (X,d) es un espacio métrico, entonces $d'(x,y) = \min(d(x,y),1)$ también es una métrica en X, llamada métrica acotada equivalente.
- Si $(V, \langle \cdot, \cdot \rangle)$ es un espacio vectorial con producto interno (sobre \mathbb{R} o \mathbb{C}), entonces $||x|| = \sqrt{\langle x, x \rangle}$ es una norma, y d(x,y) = ||x-y|| es una métrica inducida por la norma.
- El espacio $C([a,b],\mathbb{R})$ de funciones continuas $f:[a,b]\to\mathbb{R}$. Junto con la norma

- L^2 : $||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$.
- $\bullet \|f\|_{\infty} = \sup_{x \in [a,b]} |f(x)|.$

Definición 1.2. Definimos

$$B(x,r) = \{ y \in X \mid d(x,y) < r \}$$

como la bola~abierta centrada en x con radio r. Análogamente, la bola~cerrada es

$$\overline{B}(x,r) = \{ y \in X \mid d(x,y) \le r \}.$$

Esto nos lleva a la definición de entorno.

Definición 1.3. Un *entorno* de $x \in X$ es un subconjunto $V \subseteq X$ tal que $x \in V$ y existe una bola $B(x,r) \subseteq V$.

Observación. Notemos que B(x,r) siempre es un entorno de x.

Damos la definición de alguna terminología que utilizaremos más adelante.

Definición 1.4. Sea $A \subseteq X$. Definimos

■ El *interior* de *A* como

$$A^{\circ} = \{x \in X \mid \exists r > 0 \text{ tal que } B(x, r) \subseteq A\}.$$

■ La *clausura* de *A* como

$$\overline{A} = \{x \in X \mid \forall r > 0, B(x,r) \cap A \neq \emptyset\}.$$

■ La *frontera* de *A* como

$$\partial A = \overline{A} - A^{\circ}$$
.

■ El *exterior* de *A* como

$$\operatorname{ext} A = (X - A)^{\circ}.$$

Además,

- Si $A = A^{\circ}$, entonces decimos que A es *abierto*.
- Si $A = \overline{A}$, entonces decimos que A es *cerrado*.

Definimos dos términos relacionados a la distancia.

Definición 1.5. Sea $A \subseteq X$. Definimos el *diámetro* de A como

$$diam(A) = \sup_{a,b \in A} d(a,b).$$

Y la distancia entre un punto y un conjunto.

Definición 1.6. Sea $x \in X$ y $A \subseteq X$. Definimos la *distancia* entre x y A como

$$d(x,A) = \inf_{a \in A} d(x,a).$$

1.1 Sucesiones convergentes

Definición 1.7. Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión en X. Decimos que $\lim_{n\to\infty}x_n=x$ (o $x_n\xrightarrow[n\to\infty]{}x$) si para todo $\varepsilon>0$, existe $N\in\mathbb{N}$ tal que $n\geq N$ implica $d(x_n,x)<\varepsilon$.

Observación. Es equivalente tomar $d(x_n, x) \leq \varepsilon$.

Proposición 1.1. Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión en X. Si

$$\lim_{n\to\infty} x_n = x \quad y \quad \lim_{n\to\infty} x_n = y,$$

entonces x = y.

Demostración. Sea $\varepsilon > 0$. Entonces, existe $N \in \mathbb{N}$ tal que

$$d(x_n, x) \leq \frac{\varepsilon}{2}$$
 y $d(x_n, y) \leq \frac{\varepsilon}{2}$,

para todo $n \ge N$. Por lo tanto,

$$0 \le d(x,y) \le d(x,x_n) + d(x_n,y) < \varepsilon.$$

Entonces, d(x, y) = 0 lo que implica que x = y.

Definición 1.8. Una sucesión $(x_n)_{n\in\mathbb{N}}$ en X es una *sucesión de Cauchy* si para todo $\varepsilon > 0$, existe $N \in \mathbb{N}$ tal que $n, m \geq N$ implica $d(x_n, x_m) < \varepsilon$.

Proposición 1.2. Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión en X. Si (x_n) converge, entonces es de Cauchy.

Demostración. Sea $\lim_{n\to\infty} x_n = x$ y sea $\varepsilon > 0$. Por definición de límite, existe $N \in \mathbb{N}$ tal que $d(x_n, x) < \frac{\varepsilon}{2}$, para todo $n \geq N$. Entonces,

$$d(x_n, x_m) \leq d(x_n, x) + d(x, x_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Por lo tanto, (x_n) es una sucesión de Cauchy.

Definición 1.9. Un espacio métrico (X,d) se dice *completo* si toda sucesión de Cauchy tiene límite en X.

Ejemplo 1.2. Sea (X, δ) un espacio métrico con la métrica discreta. Entonces, (X, δ) es completo.

Solución. Toda sucesión de Cauchy en (X, δ) es eventualmente constante. Por lo tanto, converge a un elemento de X.