

IRideMoto Database Design Document (DDD)

Version 1.0

Prepared by: Diaz, Ven Jabez

Aguila, Dreig Rashid

Pano, Ronen Kenneth

Pascual, Tyrone Grabriel

Revision History

Date	Version	Description	Author
28/02/2025	1.0		Pano, Ronen Kenneth S.

Table of Contents

1	Introdu	ction
	1.1 De	ocument Objectives
	1.2 In	tended Audiences
	1.2 111	tended Addiences
2	Entity F	Relationship Diagram (ERD)2
3	Detailed	l Database Design3
	3.1.1.1	Data dictionary for Element: Customer Table
	3.1.1.2	Data dictionary for Element: Rider Table
	3.1.1.3	Data dictionary for Element: Booking Table
	3.1.1.4	Data dictionary for Element: Payment Table
	3.1.1.5	Data dictionary for Element: Promo Table
	3.2 M	ySQL database design (Relational database)
	3.2.1	Conceptual diagram
	3.2.2	Description
	3.2.3	Purpose of Tables
	3.2.3.1	Purpose of Customer
	3.2.3.2	Purpose of Rider
	3.2.3.3	Purpose of Booking
	3.2.3.4	Purpose of Payment
	3.2.3.5	Purpose of Promo
	3.2.4	Relations
4	Referen	ces

1 Introduction

In today's busy world, where every moment is precious and every urban commute poses numerous challenges, the IRideMoto Motorcycle Booking App has emerged as a reliable solution, providing a smart and practical approach to navigating the daily commute. IRideMoto connects users with certified motorcycle riders at the tap of a button, providing affordable, dependable, and rapid transportation. IRideMoto guarantees that all people, as well as goods, move efficiently through all congested streets. It doesn't matter if it's every commuter rushing to work, every traveler navigating a new city, or every business needing urgent package delivery.

This revolutionary app has a database system that is both forceful and quite well-structured. IRideMoto relies on this database. Passengers and riders can easily interact with the platform because of it. The database is absolutely key to a truly satisfying user experience since it capably manages user accounts, efficiently processes ride requests, accurately tracks real-time locations, and securely handles payments.

It is the plan for building and maintaining the database used by the IRideMoto app. It confirms the database fully meets all the app's requirements and consistently remains scalable, secure, and efficient through the complete outlining of the entire structure, full functionality, and all technical details.

1.1 Document Objectives

- It describes the tables, relationships, and rules that ensure data is stored efficiently and can be accessed or updated easily by the app. This overview also highlights the tools and techniques (like queries, triggers, and stored procedures) used to work with the data.
- This serves as a guide for building the database. It gives developers, database administrators, and stakeholders a clear picture of how everything fits together, making it easier to develop, maintain, and support the app as it grows.

1.2 Intended Audiences

- Passengers: Individuals looking for a fast, affordable, and reliable way to book motorcycle rides for personal travel or commuting.
- Riders: Licensed motorcycle drivers who want to earn income by providing ride-hailing or delivery services through the platform.
- Businesses: Small businesses or individuals needing quick and efficient delivery services for packages or goods.
- Developers and Database Administrators (DBAs): Technical teams responsible for building, maintaining, and optimizing the app's backend and database systems.

2 Entity Relationship Diagram (ERD)

Entity Relationship Diagram

3 Detailed Database Design

3.1.1.1 Data dictionary for Element: Customer Table

Name	Data Type	Constrain	Description
Customer ID (primary key)	String	Min: 4, Max:7	Unique identifier for each customer
Customer Full Name	String		Complete Name of the user
Email	String		Customer's email address for communication and log in
Contact Number	Integer	Starts at (09) Max:11	Customer's phone number
Street	String		More Information about the exact location of the customer
City	String		The city where the customer resides
Zip Code	Integer	Max: 4	The postal code of the customer's location
Password	String		The password of the user

3.1.1.2 Data dictionary for Element: Rider Table

Name	Data Type	Constrain	Description
Rider ID (primary key)	String	Min :4, Max:7	The identifier for each rider
Rider Full Name	String		Complete Name of the Rider
Rider Contact No.	String	Starts at (09) Max:11	Contact No. of the rider
Zip	String	Max: 4	The postal code of the rider's registered location

City	String	The City where the rider operates
Street	String	To determine exact location of the Rider
Plate Number	String	The license plate number of the rider's vehicle
Vehicle	String	Name unit of the Vehicle
Rating	Int	Feedback about the ride
Ship on Time	String	A performance metric that tracks how often the rider arrives on time

3.1.1.3 Data dictionary for Element: Booking Table

Name	Data Type	Constrain	Description
Booking ID	String	Min :4, Max:7	Unique reference number assigned to a booking
Customer ID	String	Min :4, Max:7	ID assigned to a customer by the service provider
Rider ID	String	Min :4, Max:7	To identify the rider assigned to a passenger
Transaction Date	LocalDateTime		The date when the booking was made and the payment was processed
Pick up time	LocalDateTime		Scheduled time at which a service provider or expected to pick a customer
Arrival Time	LocalDateTime		Expected time when a customer reaches its destination

Total Amount	Double	The total amount the customer has paid for the booking
Payment Status	String	Indicates the current status of the payment ("pending", "Paid"&"Failed")

3.1.1.4 Data dictionary for Element: Payment Table

Name	Data Type	Constrain	Description
Payment ID (primary key)	String	Min: 4, Max:7	Unique identifier for each payment
Payment Method	String		Options for customer of how they are going to pay.
Promo	String		Codes that can be used to avail specific discounts.

3.1.1.5 Data dictionary for Element: Promo Table

Name	Data Type	Constrain	Description
Promo	String		Codes that can be used to avail specific discounts.
Percentage (%)	String		Refers to the discount value offered by a promotional code. It is represented as a numerical value (e.g., 20%, 50%)

3.2 MySQL database design (Relational database)

3.2.1 Conceptual diagram

3.2.2 Description

This diagram displays the conceptual model of the **IRideMoto Motorcycle Booking App** database. This database will be created to manage ride bookings, customer and rider information, promotional discounts, and feedback ratings. The system will store user details, including customers, who are currently logged in. Each user will have a unique ID, contact information, and a password for authentication. Customers can apply promotional discounts to their bookings, and riders will be assigned to fulfill those bookings.

The database will store information such as ride details (pickup location, destination, fare, and status), promotional codes, and rider ratings. Each booking will be linked to a customer and a rider, and after completing a booking the customer has the option to rate and give feedbacks to the rider. Selecting the payment option will give promotional discounts that can be applied to bookings, and the system will track payment methods and transaction details.

All sensitive data, such as passwords and payment information, will be encrypted for security. The database contents will be decrypted only when necessary, such as when a user makes a request or when the system

processes a transaction. This ensures data privacy and security while providing a seamless experience for customers and riders.

3.2.3 Purpose of Tables

3.2.3.1 Purpose of Customer

This table stores information regarding customers who use the IRideMoto app to book rides. It includes personal details such as full name, email, contact number, and address (street, city, zip code). The table also contains a password field for secure authentication. Each customer can have multiple bookings over time but is limited to one active booking at a time. Customers can apply promo codes to their rides to receive discounts.

3.2.3.2 Purpose of Rider

This table stores all information related to the riders who fulfil bookings. It includes the rider's full name, contact details, vehicle model, and license plate number. The table also tracks rider performance through a rating system, ensuring accountability and service quality. While a rider can be assigned multiple booking requests over time, they can only accept and complete one booking at a time before taking another request. This ensures efficient ride management and prevents overloading riders with multiple simultaneous tasks.

3.2.3.3 Purpose of Booking

This table records all ride transactions made within the system. It stores details such as the booking ID, the customer who initiated the request, and the rider assigned to fulfil it. The table also keeps track of the transaction date, pickup and destination locations, total fare, payment method used, and booking status (e.g., "Pending", "Completed"). A booking may have a promo code applied, which reduces the total fare.

3.2.3.4 Purpose of Payment

This table stores information about payment methods used by customers for their bookings. It includes details such as the payment ID, payment method (Cash, GCash, Card), and any promo applied to the payment. The table ensures that payments are correctly linked to bookings and that promotional discounts are applied accurately. Each payment is associated with a single booking, ensuring proper tracking of transactions.

3.2.3.5 Purpose of Promo

This table stores promotional discount codes that can be applied to bookings (for one time use only). Each promo code has a corresponding discount percentage, allowing customers to receive fare reductions based on specific conditions, such as time of day or promotional events. The table ensures that promo codes are correctly mapped to bookings for accurate fare calculation.

3.2.4 Relations

From Table	To Table	Relation
Customer	Payment	A customer selects a Payment mode for the fare.
Payment	Promo	A payment gets a promo depending on the selected method.
Promo	Booking	A can be applied to a booking for a certain amount of discount.
Booking	Rider	A booking looks for an available rider in the area.
Rider	Customer	A rider can accept of decline a customer for the booking.

4 References

[1] "Lucidchart," [Online]. Available: http://lucidchart.com/.