第1部分

DIYIBUFEN

上篇

重点专题突破

专题一 集合、常用逻辑用语、平面向量、 复数、算法、合情推理

[高考领航]-

-摸清规律 预测考情

全国卷				考情	预测
2014	2015	2016	2017	~5 I用	2018
(I卷) T ₁ (集合) T ₃ (复量) T ₆ (框框) T ₁ (推移) T ₁ (集复) T ₄ (框框) T ₈ (集合) T ₆ (向 T ₆ (向	(I卷) T ₁ (集合) T ₂ (复量) T ₃ (复图) (II卷) T ₁ (集合) T ₂ (复量) T ₄ (框图)	(I卷) T ₁ (集合) T ₂ (复数) T ₁₀ (框图) T ₁₃ (声量) (II卷) T ₁ (集数) T ₂ (框向世 T ₁₆ (推) T ₁₆ (推) (III卷) T ₁₆ (推) T ₁ (集数) T ₁ (集数) T ₁ (集数) T ₁ (集数) T ₁ (集数) T ₁ (集数) T ₂ (期色)	(I卷) T ₁ (集合) T ₃ (集数) T ₁₀ (框向 (II卷) T ₁ (卷) T ₁ (卷) T ₁ (集数) T ₂ (有推理) T ₁₀ (框) (III卷) T ₁ (集数) T ₁ (制态) T ₂ (制态) T ₃ (制态)	分集考5分, 信: 25~30分 复数图数数 一个。 一个。 一个。 一个。 一个。 一个。 一个。 一个。 一个。 一个。	通年考析测高合要判运为新义化推对国题可2018年,的复框重新题辑合近高分以8集,的复框重新题辑合数图视定转与

解题必备

解题方略

走进高考

限时规范训练

考点一 集合、常用逻辑用语

- 1. 设有限集合 A, card $(A) = n(n \in \mathbb{N}^*)$, 则
- (1)A 的子集个数是 2^n ;
- (2)A 的真子集个数是 $2^{n}-1$;
- (3)A 的非空子集个数是 2^n-1 ;
- (4)A 的非空真子集个数是 $2^{n}-2$;
- (5) $\operatorname{card}(A \cup B) = \operatorname{card} A + \operatorname{card} B \operatorname{card}(A \cap B)$.

- 2. $(1)([_{\mathbf{R}}A) \cap B = B \Leftrightarrow B \subseteq [_{\mathbf{R}}A;$
- $(2)A \cup B = B \Leftrightarrow A \subseteq B \Leftrightarrow A \cap B = A;$
- $(3)[U(A \cup B) = (UA) \cap (UB);$
- $(4)[U(A \cap B) = (UA) \cup (UB).$
- $=\{x|p(x)\}, B=\{x|q(x)\}, 则关于充分条件、必要条件又可叙述为:$
 - (1)若A⊆B,则p是q的充分条件;
 - (2)若 $A \supseteq B$,则 p 是 q 的必要条件;
 - (3)若 A=B,则 p 是 q 的充要条件.

类型一 集合的概念及运算

[典例 1] (2016·高考全国卷 I)设集合 $A = \{x | x^2 - 4x + 3 < 0\}$,

$$B = \{x | 2x - 3 > 0\}, \text{ } \emptyset A \cap B = (D)$$

$$A.\left(-3, -\frac{3}{2}\right)$$
 $B.\left(-3, \frac{3}{2}\right)$

$$C.\left(1, \frac{3}{2}\right) \qquad \qquad D.\left(\frac{3}{2}, 3\right)$$

解析: 通解: (直接法)解 $x^2-4x+3<0$, 即(x-1)(x-3)<0, 得 1< x<3, 故 $A=\{x|1< x<3\}$;

解
$$2x-3>0$$
,得 $x>\frac{3}{2}$,所以 $B=\{x|x>\frac{3}{2}\}$.

如图,用数轴表示两个集合 A, B.

由图可得
$$A \cap B = \{x | \frac{3}{2} < x < 3\}$$
, 选 D.

优解: (排除法)观察选项可知 A, B 两项对应集合中含有负数, C, D 两项对应集合中的元素均为正数.

当 x=-1 时, $2x-3=2\times(-1)-3=-5<0$,故-1\$\equiv B,所以

-1∉ $A \cap B$, 故排除 A, B 两项;

当 x=2 时, $2x-3=2\times2-3=1>0$, $x^2-4x+3=2^2-4\times2+3$

= −1<0, 所以 2∈A,2∈B, 所以 2∈A∩B, 故可排除 C 项. 综上, 选 D.

[母题变式]

将本题的 B 改为 $B = \{x | 2x - 3 \ge 0\}$,则 $A \cap (\mathcal{L}_{\mathbf{R}}B)$,如何选答案?

解析: 选 C.[$_{\mathbf{R}}B = \{x | x < \frac{3}{2}\}$,

$$A \cap [_{\mathbf{R}}B = \{x | 1 < x < \frac{3}{2}\}.$$
 故选 C.

▋规律方法┃

1. 集合的交、并、补运算多与解不等式问题相结合,解决此类问题的思路主要有两个:一是直接法,即先化简后运算,然后利用数轴表示,从而求得集合运算的结果;二是排除法,对于选择题的考查,可根据选项的差异性选取特殊元素进行验证,排除干扰项从而得到正确选项.

- 2. (1)若给定的集合是不等式的解集,用数轴求解.
- (2)若给定的集合是点集,用图象法求解.
- (3)若给定的集合是抽象集合,常用 Venn 图求解.
- 3. (1)正确理解各个集合的含义,弄清集合元素的属性.
- (2)注意"∅"的出现.

[自我挑战]

1. 设集合 $M = \{x | x^2 = x\}$, $N = \{x | \lg x \le 0\}$, 则 $M \cup N = (A)$

A. [0,1]

B. (0,1]

C. [0,1)

D. $(-\infty, 1]$

解析: 选 A. $M = \{x | x^2 = x\} = \{0,1\}, N = \{x | \log x \le 0\} = \{x | 0 < x \le 1\},$ $M \cup N = [0,1]$,故选 A.

2. 设全集 $U = \{x \in \mathbb{N}^* | x \le 4\}$,集合 $A = \{1,4\}$, $B = \{2,4\}$,则[

 $U(A \cap B) = (A)$

A. {1,2,3}

B. {1,2,4}

C. $\{1,3,4\}$

D. $\{2,3,4\}$

解析: 通解: 选 A.本题主要考查集合的基本运算.

因为 $U = \{1,2,3,4\}$, $A \cap B = \{4\}$,所以 $\bigcup_U (A \cap B) = \{1,2,3\}$,故 选 A.

优解: $::A \cap B = \{4\}$. $::A \notin U(A \cap B)$, 排除 B、C、D 只能选A.

类型二 充分、必要条件

[典例 2] (2016·高考四川卷)设 p: 实数 x, y 满足(x-1)²+(y

$$|y| \ge x-1$$
,
 $|y| \le 2$, q : 实数 x , y 满足 $|y| \le 1-x$, 则 p 是 q 的($|A|$) $|y| \le 1$

C. 充要条件

D. 既不充分也不必要条件

解析: 通解: (画出可行域, 数形结合求解)

如图作出p, q 表示的区域,其中 \circ M 及其内部为p 表示的区域, $\triangle ABC$ 及其内部(阴影部分)为 q 表示的区域,故 p 是 q 的必要不充分条件.

优解: q:满足条件的三个边界点分别是 A(0,1), B(2,1), C(1,0)

都适合p;而p中的点O(0,0),不适合q,

故p是q的必要不充分条件,选A.

▋规律方法┃

1. 充要条件的判断先要明确两个条件之间的关系,明确"甲的一个××条件是乙"与"甲是乙的××条件"两种不同叙述方式的差异性,要将其转化为基本的"甲是乙的××条件"的形式,然后进行判断;充要条件判断的实质就是判断两个简单命题的真假,根据条件的不同可以从集合、命题的等价转化角度进行判断.

2. " $p \Rightarrow q$ " \Leftrightarrow " $\neg p \leftarrow \neg q$ ";

 $"q \Rightarrow p" \Leftrightarrow "\neg p \Rightarrow \neg q" ;$

" $p \Leftrightarrow q$ " \Leftrightarrow " $\neg p \Leftrightarrow \neg q$ ".

[自我挑战]

- 3. 下列判断正确的有(B)
- (1) " $x \neq 1$ " 是 " $x^2 3x + 2 \neq 0$ " 的充分不必要条件;
- (2) "a>0,b>0" 是 " $\frac{b}{a}+\frac{a}{b}\geq 2$ " 的充分不必要条件;
- (3) "命题 $p \lor q$ 为假"是"命题 $p \land q$ 为假"的充要条件;
- (4)设 $\{a_n\}$ 是公比为q的等比数列,则"q>1"是" $\{a_n\}$ 为递增数列"的必要不充分条件.

A. 0 个

B. 1个

C. 2个

D. 3个

解析: (1)通解: 选 B.设 $p: x \neq 1$, $q: x^2-3x+2\neq 0$.

当 x=2 时,满足 $x\neq 1$,而 $x^2-3x+2=0$,所以"若 p,则 q" 是假命题;

由 $x^2-3x+2\neq 0$,解得 $x\neq 1$,且 $x\neq 2$,所以"若 q,则 p"是 真命题.

由充要条件的定义可得:p是q的必要不充分条件.故(1)错误.

优解: 设 $A = \{x | x \neq 1\}, B = \{x | x^2 - 3x + 2 \neq 0\}.$

显然 B A, 所以 " $x \neq 1$ " 是 " $x^2 - 3x + 2 \neq 0$ " 的必要不充分条件. 故(1)错误.

(2)记 "
$$a > 0$$
, $b > 0$ " 为 p , " $\frac{b}{a} + \frac{a}{b} \ge 2$ " 为 q .

由基本不等式可得 q 的充要条件是 " $\frac{a}{b} > 0$ ",即 "ab > 0".

显然 p 是 "ab>0"的充分不必要条件,

所以p是q的充分不必要条件. 故(2)正确.

(3)由真值表可知, "命题 $p \lor q$ 为假"的充要条件是"p, q 都为假", 而"命题 $p \land q$ 为假"的充要条件是"p, q 中至少有一个为假".

显然 "p, q 都为假" 是 "p, q 中至少有一个为假"的充分不必要条件,所以"命题 $p \lor q$ 为假"是"命题 $p \land q$ 为假"的充分不必要条件. 故(3)错误.

(4)当 q>1 且 $a_1<0$ 时,数列 $\{a_n\}$ 不是递增数列;

当 0 < q < 1 且 $a_1 < 0$ 时,数列 $\{a_n\}$ 是递增数列,显然此时 q > 1 不成立.

所以"q>1"是" $\{a_n\}$ 为递增数列"的既不充分也不必要条件. 故(4)错误.

综上, 只有(2)正确, 故选 B.

4. "
$$x \in \left[-\frac{3\pi}{4}, \frac{\pi}{4}\right]$$
"是"函数 $y = \sin\left(x + \frac{\pi}{4}\right)$ 为单调递增函数"

的(A)

- A. 充分不必要条件 B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

解析: 通解: 选 A.若函数 $y = \sin\left(x + \frac{\pi}{4}\right)$ 为单调递增函数,则一

$$\frac{\pi}{2} + 2k\pi \leqslant x + \frac{\pi}{4} \leqslant \frac{\pi}{2} + 2k\pi, \quad k \in \mathbb{Z},$$

$$\mathbb{R}^{-\frac{3\pi}{4}+2k\pi} \leq x \leq \frac{\pi}{4}+2k\pi, \quad k \in \mathbb{Z}.$$

从而函数 $y = \sin\left(x + \frac{\pi}{4}\right)$ 的单调递增区间是 $\left[-\frac{3\pi}{4} + 2k\pi, \frac{\pi}{4} + 2k\pi\right]$

 $(k \in \mathbf{Z}).$

因此若
$$x \in \left[-\frac{3\pi}{4}, \frac{\pi}{4}\right]$$
,则函数 $y = \sin\left(x + \frac{\pi}{4}\right)$ 为单调递增函数;

若函数
$$y = \sin\left(x + \frac{\pi}{4}\right)$$
 为单调递增函数 $\Rightarrow x \in \left[-\frac{3\pi}{4}, \frac{\pi}{4}\right]$.

所以 "
$$x \in \left[-\frac{3\pi}{4}, \frac{\pi}{4}\right]$$
" 是 "函数 $y = \sin\left(x + \frac{\pi}{4}\right)$ 为单调递增函

数"的充分不必要条件. 故选 A.

优解: 当
$$x \in \left[-\frac{3\pi}{4}, \frac{\pi}{4} \right]$$
时 $\Rightarrow x + \frac{\pi}{4} \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \Rightarrow y = \sin\left(x + \frac{\pi}{4}\right)$ 为增

函数,

但
$$y = \sin\left(x + \frac{\pi}{4}\right)$$
为增函数^{周期性} $\Rightarrow x + \frac{\pi}{4} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \Rightarrow x \in \left[-\frac{3\pi}{4}, \frac{\pi}{4}\right].$

类型三 命题及逻辑联结词

[典例 3] (1)设命题 $p: \exists n \in \mathbb{N}, n^2 > 2^n, 则 \neg p 为(C)$

A. $\forall n \in \mathbb{N}, n^2 > 2^n$ B. $\exists n \in \mathbb{N}, n^2 \leq 2^n$

C. $\forall n \in \mathbb{N}, n^2 \leq 2^n$ D. $\exists n \in \mathbb{N}, n^2 = 2^n$

解析: 因为" $\exists x \in M$, p(x)"的否定是" $\forall x \in M$, $\neg p(x)$ ",所以命题" $\exists n \in \mathbb{N}$, $n^2 > 2^n$ "的否定是" $\forall n \in \mathbb{N}$, $n^2 \leqslant 2^n$ ". 故选C.

(2)已知命题 p: $\exists x \in \mathbb{R}, 2^x > 3^x$; 命题 q: $\forall x \in \left[0, \frac{\pi}{2}\right]$, $\tan x > 1$

 $\sin x$,则下列是真命题的是(D)

A.
$$(\neg p) \land q$$

B.
$$(\neg p) \lor (\neg q)$$

C.
$$p \wedge (\neg q)$$

D.
$$p \vee (\neg q)$$

解析: 通解: 先判断命题 p、q 的真假, 然后根据选项得出正确结论.

当 x = -1 时, $2^{-1} > 3^{-1}$,所以 p 为真命题;当 $x \in \left[0, \frac{\pi}{2}\right]$ 时,

 $\tan x - \sin x = \frac{\sin x(1 - \cos x)}{\cos x} > 0$,所以 q 为真命题,所以 $p \lor (\neg q)$

是真命题, 其他选项都不正确, 故选 D.

优解: p 为真命题时, p 或任何命题都为真, 故选 D.

┃规律方法┃

- 1. 命题真假的判定方法
- (1)一般命题 p 的真假由涉及的相关知识辨别.
- (2)四种命题真假的判断:一个命题和它的逆否命题同真假,而其他两个命题的真假无此规律.
- (3)形如 $p \lor q$, $p \land q$, $\neg p$ 命题的真假根据p, q 的真假与联结词的含义判定.

- 2. 全称命题与特称命题真假的判定
- (1)全称命题:要判定一个全称命题是真命题,必须对限定集合 M 中的每一个元素 x 验证 p(x)成立,要判定其为假命题时,只需举出一个反例即可.
- (2)特称命题:要判定一个特称命题为真命题,只要在限定集合M中至少能找到一个元素 x_0 ,使得 $p(x_0)$ 成立即可;否则,这一特称命题就是假命题.

[自我挑战]

- 5. 已知命题 $p: \exists x \in \mathbf{R}, \log_2(3^x+1) \leq 0, 则(\mathbf{B})$
- A. p 是假命题; $\neg p$: $\forall x \in \mathbb{R}$, $\log_2(3^x+1) \leq 0$
- B. p 是假命题; $\neg p$: $\forall x \in \mathbb{R}$, $\log_2(3^x + 1) > 0$
- C. p 是真命题; $\neg p$: $\forall x \in \mathbb{R}$, $\log_2(3^x+1) \leq 0$
- D. p 是真命题; $\neg p$: $\forall x \in \mathbb{R}$, $\log_2(3^x+1) > 0$

解析: 选 B. $\because 3^x > 0$, $\therefore 3^x + 1 > 1$, 则 $\log_2(3^x + 1) > 0$, $\therefore p$ 是 假命题; $\neg p: \forall x \in \mathbb{R}$, $\log_2(3^x + 1) > 0$.故应选 B.

6. 不等式组
$$\begin{cases} x+y \ge 1, \\ x-2y \le 4 \end{cases}$$
 的解集记为 D ,有下面四个命题:

$$p_1: \forall (x, y) \in D, x+2y \geqslant -2;$$

$$p_2: \exists (x, y) \in D, x+2y \ge 2;$$

$$p_3$$
: $\forall (x, y) \in D, x+2y \leq 3$;

$$p_4: \exists (x, y) \in D, x+2y \leq -1;$$

其中的真命题是(C)

A.
$$p_2$$
, p_3

B.
$$p_1, p_4$$

C.
$$p_1, p_2$$

D.
$$p_1, p_3$$

解析:通解:选 C.作出不等式组表示的可行域,如图(阴影部分).

得交点 A(2, -1).

目标函数的斜率 $k = -\frac{1}{2} > -1$,

观察直线 x+y=1 与直线 x+2y=0 的倾斜程度,可知 u=x+2y 过点 A 时取得最小值 0.

$$\left(y=-\frac{x}{2}+\frac{u}{2}, \frac{u}{2}$$
表示纵截距).

结合题意知 p_1 , p_2 正确.

优解:在区域D内取一点M(3,2).

则 x+2y=7, 满足 p_2 , 不满足 p_3 , 故选 C.

1. (2017·高考全国卷 I)已知集合 $A = \{x | x < 1\}$, $B = \{x | 3^x < 1\}$,

则(A)

A.
$$A \cap B = \{x | x < 0\}$$
 B. $A \cup B = \mathbb{R}$

B.
$$A \cup B = \mathbf{R}$$

C.
$$A \cup B = \{x | x > 1\}$$
 D. $A \cap B = \emptyset$

D.
$$A \cap B = \emptyset$$

解析: 选 A.: $B = \{x | 3^x < 1\}$, $B = \{x | x < 0\}$.

又 $A = \{x | x < 1\}$, $\therefore A \cap B = \{x | x < 0\}$, $A \cup B = \{x | x < 1\}$. 故选

A.

2. (2017·高考全国卷 I)设有下面四个命题

$$p_1$$
: 若复数 z 满足 $\frac{1}{z} \in \mathbf{R}$,则 $z \in \mathbf{R}$;

$$p_2$$
: 若复数 z 满足 $z^2 \in \mathbb{R}$,则 $z \in \mathbb{R}$;

$$p_3$$
: 若复数 z_1 , z_2 满足 $z_1z_2 \in \mathbb{R}$, 则 $z_1 = \overline{z_2}$;

$$p_4$$
: 若复数 $z \in \mathbb{R}$,则 $z \in \mathbb{R}$.

其中的真命题为(B)

A.
$$p_1, p_3$$

B.
$$p_1, p_4$$

C.
$$p_2$$
, p_3

D.
$$p_2, p_4$$

解析: 选 B.设 $z=a+bi(a, b \in \mathbf{R})$, $z_1=a_1+b_1i(a_1, b_1 \in \mathbf{R})$, $z_2=a_2+b_2i(a_2, b_2 \in \mathbf{R})$.

对于
$$p_1$$
, 若 $\frac{1}{z} \in \mathbf{R}$, 即 $\frac{1}{a+b\mathbf{i}} = \frac{a-b\mathbf{i}}{a^2+b^2} \in \mathbf{R}$, 则 $b=0 \Rightarrow z=a+b\mathbf{i}$

 $=a \in \mathbb{R}$,所以 p_1 为真命题.

对于 p_2 , 若 $z^2 \in \mathbb{R}$, 即 $(a+bi)^2 = a^2 + 2abi - b^2 \in \mathbb{R}$, 则ab = 0. 当a = 0, $b \neq 0$ 时, $z = a + bi = bi \notin \mathbb{R}$,所以 p_2 为假命题.

对于 p_3 , 若 $z_1z_2 \in \mathbf{R}$, 即 $(a_1+b_1\mathbf{i})(a_2+b_2\mathbf{i}) = (a_1a_2-b_1b_2)+(a_1b_2)+(a_2b_1)\mathbf{i} \in \mathbf{R}$, 即 $a_1b_2+a_2b_1=0$.而 $z_1=\overline{z}_2$, 即 $a_1+b_1\mathbf{i}=a_2-b_2\mathbf{i} \Leftrightarrow a_1=a_2$, $b_1=-b_2$.因为 $a_1b_2+a_2b_1=0 \Rightarrow /a_1=a_2$, $b_1=-b_2$, 所以 p_3 为假命题.

对于 p_4 , 若 $z \in \mathbb{R}$, 即 $a+bi \in \mathbb{R}$, 则 $b=0 \Rightarrow z=a-bi=a \in \mathbb{R}$, 所以 p_4 为真命题. 故选 B.

3. (2017·高考北京卷)设 m, n 为非零向量,则"存在负数 λ, 使得 m=λn" 是" $m\cdot n<0$ "的(A)

- A. 充分而不必要条件 B. 必要而不充分条件
- C. 充分必要条件 D. 既不充分也不必要条件

解析: 通解: 选 A.由题意知 $|m| \neq 0$, $|n| \neq 0$.

设m与n的夹角为 θ .

若存在负数 λ , 使得 $m = \lambda n$,

则 m 与 n 反向共线, θ =180°,

 $\therefore m \cdot n = |m||n|\cos \theta = -|m||n| < 0.$

当 90°< θ <180°时, $m \cdot n$ <0,此时不存在负数 λ ,使得 $m = \lambda n$.

故"存在负数 λ ,使得 $m=\lambda n$ "是" $m\cdot n < 0$ "的充分而不必要

条件. 故选 A.

优解: $: m = \lambda n, : m \cdot n = \lambda n \cdot n = \lambda |n|^2.$

∴ $\leq \lambda < 0$, $n \neq 0$ 时, $m \cdot n < 0$.

反之, 由 $m \cdot n = |m||n|\cos\langle m, n\rangle < 0 \Leftrightarrow \cos\langle m, n\rangle < 0 \Leftrightarrow \langle m, n\rangle$

$$|n\rangle \in \left[\frac{\pi}{2}, \pi\right],$$

故"存在负数 λ ,使得 $m=\lambda n$ "是" $m\cdot n<0$ "的充分而不必要条件. 故选 A.

4. (2016·高考全国卷 II)已知集合 $A = \{1,2,3\}$, $B = \{x | (x+1)(x+1)\}$

-2)<0, x∈**Z**}, 则 $A \cup B = ($ C)

A. {1}

B. {1,2}

C. $\{0,1,2,3\}$

D. $\{-1,0,1,2,3\}$

解析: 选 C.由 $(x+1)(x-2) < 0 \Rightarrow -1 < x < 2$, 又 $x \in \mathbb{Z}$,

 $\therefore B = \{0,1\}, \quad \therefore A \cup B = \{0,1,2,3\}.$ 故选 C.

5. (2016·高考浙江卷)命题" $\forall x \in \mathbb{R}$, $\exists n \in \mathbb{N}^*$,使得 $n \ge x^2$ "的否定形式是(\mathbb{D})

- A. $\forall x \in \mathbb{R}$, $\exists n \in \mathbb{N}^*$, 使得 $n < x^2$
- B. $\forall x \in \mathbb{R}$, $\forall n \in \mathbb{N}^*$, 使得 $n < x^2$
- C. $\exists x \in \mathbb{R}$, $\exists n \in \mathbb{N}^*$, 使得 $n < x^2$
- D. $\exists x \in \mathbb{R}$, $\forall n \in \mathbb{N}^*$, 使得 $n < x^2$

解析: 选 D. 先将条件中的全称量词变为存在量词,存在量词 变为全称量词,再否定结论. 故选 D.

6. (2015·高考山东卷)若" $\forall x \in \left[0, \frac{\pi}{4}\right]$, $\tan x \leq m$ "是真命题,

则实数m的最小值为_____.

解析: 若 $0 \le x \le \frac{\pi}{4}$, 则 $0 \le \tan x \le 1$,

$$\because$$
 " $\forall x \in \left[0, \frac{\pi}{4}\right]$, $\tan x \leq m$ "是真命题, $\therefore m \geq 1$.

 \therefore 实数 m 的最小值为 1.

答案: 1

点击进入word版: 限时规范训练

把握高考微点,实现素能提升

配餐作业·单独成册《