NOTES FOR ABSTRACT ALGEBRA

Based on lectures provided by Dima Arinkin on MATH 742 2025 SPRING

Author Wells Guan

Contents

1 Rings and Ideals

1.1 Rings

Definiton 1.1.1. (Ring)

A ring R is an abelian group with an associative multiplication distributive over the addition. (We always assume a ring has a multiplicative identity and commutative if not marked)

A unit is an element u with a reciprocal 1/u such that $u \cdot 1/u = 1$, which is also denoted u^{-1} and called a numtiplicative inverse and the units form a multiplicative group, denoted R^{\times} .

Definition 1.1.2. (Homomorphism)

A ring homomorphism is a ring map $\phi: R \to R'$ which preserving sums, products and 1. If R' = R we call ϕ an endomorphism and if it is also bijective we call it an automorphism.

Definiton 1.1.3. (Subring)

A subset $R'' \subset R$ is a buting if R'' is a ring and the inclusion $R'' \leftarrow R$ is a ring map. We call R a extension of R'' and the inclusion an extension.

Definition 1.1.4. (Algebra)

An R-algebra is a ring R' that comes equipped with a ring homomorphism $\phi: R \to R'$ called the structure map. An R-algebra homomorphism $R' \to R''$ is a ring homomorphism between R-algebras compatible with structure maps.

Definition 1.1.5. (Group action)

A group G is said to act on R if there is a homomorphism given from G into the group of automorphisms of R. The ring of invariants R^G is the subring defined by

$$R^G := \{x \in R | qx = q \text{ for all } q \in G\}$$

Definition 1.1.6. (Boolean)

A ring B is called Boolean if $f^2 = f$ for all $f \in B$, then 2f = 0 since

$$2f = (f+f)^2 = 4f$$

Definition 1.1.7. (Polynomial rings)

Let R be a ring, $P := R[X_1, \dots, X_n]$ the polynomial ring in n variables. P has the Universal Mapping Property (UMP), i.e. given a ring homomorphism $\phi: R \to R'$ and given an element x_i of R' for each i, there is a unique ring map $\pi: P \to R'$ with $\pi|_R = \phi$ and $\pi(X_i) = x_i$.

Similarly, let $X := \{X_{\lambda}\}_{{\lambda} \in {\Lambda}}$ be any set of variables. Set P' := R[X] the elements of P' are the polynomials in any finitely many of X.

Definition 1.1.8. (Ideals)

Let R be a ring. An ideal I is a subset containing 0 of R such that $xa \in I$ for any $x \in R, a \in I$ and closed under addition.

For a subset $S \subset R$, $\langle S \rangle$ means the smallest ideal containing S.

Given a single element a, we say that the ideal $\langle a \rangle$ is principal. For a number of ideals I_{λ} , the sum $\sum I_{\lambda}$ mean the set of all finite linear combinations $\sum x_{\lambda}a_{\lambda}$ for $x_{\lambda} \in R$, $a_{\lambda} \in I_{\lambda}$. If

 Λ is finite, then the product $\prod I_{\lambda}$ means the ideal generated by all products $\prod a_{\lambda}, a_{\lambda} \in I_{\lambda}$. For two ideals I and J, the transporter of J into I mean the set

$$(I:J) := \{x \in R | xJ \subset I\}$$

If $I \subset J$ a subsring such that $I \neq J$, then we call I proper.

For a ring homomorphism $\phi: R \to R'$, $I \subset R$ a subring, denote by IR' or I^e the ideal of R' generated by $\phi(I)$ can we call it the extension of I.

Given an ideal J of R' and its preimage $\phi^{-1}(J)$ is an ideal of R and we call ti the contraction of J denoted with J^c .

Definiton 1.1.9. (Residue Rings)

Let I be an ideal of R and the cosets of I

$$R/I := \{x + I | x \in R\}$$

have a ring structure and it will be called the residue ring or quotient ring or factor ring of R modulo I and the quotient map:

$$\kappa: R \to R/I, \quad \kappa(x) = x + I$$

and κx is called the residue of x.

Proposition 1.1.1.

For $I \subset R$ a subring and a ring homomorphism from R to R', then $\ker(\phi) \supset I$ implies that is a ring homomorphism $\psi : R/I \to R'$ with $\psi \kappa = \phi$.

 ψ is surjective iff ϕ is surjective. ψ is injective iff $I = \ker(\phi)$.

Corollary 1.1.2. $R/\ker(\phi) \cong Im(\phi)$

Proposition 1.1.3.

R/I is universal among R-algebras R' such that IR' = 0, i.e. for $\phi : R \to R'$ such that $\phi(I) = 0$, there is a unique ring homomorphism $\psi : R/I \to R'$ such that $\psi \kappa = \phi$.

Definition 1.1.10. The UMP serves to determine R/I up to unique isomorphism, i.e. if R' equipped with $\phi: R \to R'$ has the UMP too, then R' is isomorphic to R/I.

Proof.

If R' has the UMP among the R-algebras R'' such that IR''=0, then $\phi(I)=0$ and hence there is a unique $\psi:R/I\to R'$ such that $\psi\kappa=\phi$ and since $\kappa I=0$, we know there exists unique ψ' such that $\psi'\phi=\kappa$ and then $(\psi'\psi)\kappa=\kappa$ and hence $\psi'\psi=1$ and we are done by the uniqueness.

Proposition 1.1.4. Let R be a ring, P := R[X] the polynomial ring in one variable, $a \in R$ and $\pi : P \to R$ the R-algebra map define by $\pi(X) := a$, then

- $\ker \pi = \{F(X) \in P | F(a) = 0\} = \langle X a \rangle$
- $P/\langle X a \rangle \cong R$

Definition 1.1.11. (Order of a polynomial)

Let R be a ring, P the polynomial ring in variables X_{λ} for $\lambda \in \Lambda$ and $(x_{\lambda}) \in R^{\Lambda}$ a vector. Let $\phi_{(x_{\lambda})}P \to P$ denote the R-algebra homomorphism defined by $\phi_{(x_{\lambda})}X_{\mu} := X_{\mu} + x_{\mu}$. The order of F at the vector (x_{λ}) is defined as the smallest degree of monomials M in $(\phi_{(x_{\lambda})}F)$.

We know $\operatorname{ord}_{(x_{\lambda})} F = 0$ iff $F(x_{\lambda}) \neq 0$.

Definition 1.1.12. Let R be a ring, I an ideal and κ the quotient map. Given an ideal $J \supset I$ then the cosets

$$J/I := \{b + I | b \in J\} = \kappa(J)$$

and then J/I is an ideal of R/I and also J/I = J(R/I).

Proposition 1.1.5. Given $J \supset I$ and we know

$$\phi: R \to R/I \to (R/I)/(J/I)$$

then we have the commutative diagram:

$$\begin{array}{ccc} R & \longrightarrow & R/J \\ \downarrow & & \downarrow \cong \\ R/I & \longrightarrow & (R/I)/(J/I) \end{array}$$

Proof.

Since $\phi(J) = 0$, so there exists unique $\psi : R/J \to (R/I)/(J/I)$ such that $\psi \kappa_J = \phi$ and since $\kappa_J(I) = 0$ and there exists p such that $p\kappa_I = \kappa_J$ and consider p(J/I) = 0 and there exists p such that $p \kappa_I = \kappa_J$ and consider p(J/I) = 0 and there exists p such that $p \kappa_I = \kappa_J$ and consider p(J/I) = 0 and there exists p such that $p \kappa_I = \kappa_J$ and consider p(J/I) = 0 and there exists p such that $p \kappa_I = \kappa_J$ and consider p(J/I) = 0 and there exists p such that $p \kappa_I = \kappa_J$ by uniqueness and we are done.

Definition 1.1.13. Let R be a ring. Let $e \in R$ be an idempotent, i.e. $e^2 = e$ then Re is a ring with e as multiplication unit, but Re is not a subring unless e = 1.

Let e' := 1 - e, then e' is idempotent and ee' = 0 and we call them complementary idempotents.

Denote Idem(R) the set of all idempotents, which is close under a ring homomorphism.

Proposition 1.1.6. If $e_1, e_2 \in R$ such that $e_1 + e_2 = 1$ and $e_1 e_2 = 0$, then they are complementary idempotents.

Definition 1.1.14. Let $R: R' \times R''$ be a product of two rings with componentwise operations.

Proposition 1.1.7. Let R be a ring and e', e'' complementary idempotents. Set R' := Re' and R'' = Re''. Define $\phi : R \to R' \times R''$ by $\phi(x) = (xe', xe'')$ and then ϕ is a ring isomorphism. R' = R/Re'' and R'' = R/Re'.

Proof.

Check ϕ is surjective and injective.

There is a natrual isomorphism between $I = \{(0, xe'')\} \subset R' \times R''$ and R'', and consider the diagram

$$\begin{matrix} R \longleftrightarrow R' \times R'' \\ \downarrow & \downarrow \\ R/R'' & R' \times R''/I \end{matrix}$$

and use the UMP.

1.2 Prime Ideals

Definition 1.2.1. (Zerodivisors)

Let R be a ring. An element x is called a zerodivisor if there is a nonzero y such that xy = 0; otherwise, x is called a nonzerodivisor. Denote the set of zerodivisors by z.div(R)and the nonzerodivisors by S_0 .

Definition 1.2.2. (Multiplicative subsets, prime ideals)

Let R be a ring. A subset S is called multiplicative if $1 \in S$ and $x, y \in S$ implies $xy \in S$. An ideal P is called prime if its complement R - p is multiplicative, or equivalentely, if $1 \neq P$ and $xy \in P$ implies $x \in P$ or $y \in P$.

Definition 1.2.3. (Fields, domains)

A ring is called a field if $1 \neq 0$ and if every nonzero element is a unit.

A ring is called an integral domain, or a domain if $\langle 0 \rangle$ or equivalently, if R is nonzero and has no nonzero zerodivisors.

Every domain R is a subring of its fraction field $Frac(R) := \{x/y, x, y \in R \text{ and } y \neq 0\}.$

Proposition 1.2.1. Any subring R of a field K is a domain, and for a domain R, Frac(R) has the UMP: the inclusion of R into any field L extends uniquely to an inclusion of Frac(R) into L.

Proof.

For any subring R of a field, $a, b \in R$, if ab = 0, and a nonzero, then b = 0 and we are done

If $\phi: R \hookrightarrow L$, then $\phi(x/y) = \phi(x)\phi(y)^{-1}$ is well-defined and obviously a ring homomorphism and we are done.

Definiton 1.2.4. (Polynomials over a domain)

Let R be a domain, X a set of variable. P := R[X] and then P is a domain, and Frac(P) is called the rational functions.

Definition 1.2.5. (Unique factorization)

Let R be a domain, p a nonzero nonunit. We call p prime if p|xy implies p|x or p|y, which is equivalent with $\langle p \rangle$ is prime.

For $x, y \in R$, we call $d \in R$ their gcd if d|x and d|y and if c|x, c|y then c|d.

p is irreducible if p = yz implies y or z is a unit. We call R is a UFG if every nonzero nonunit factors into a product of irreducibles and the factorization is unique to order and units.

Proposition 1.2.2. If every nonzero nonunit factors have a factorization of a product of irreducible elements, then the factorization is unique up to order and units iff every irreducible element is prime.

Proof.

Lemma 1.2.3. Let $\phi: R \to R'$ be a ring homomorphism, and $T \subset R'$ a subset. If T is multiplicative, then $\phi^{-1}T$ is multiplicative; the converse holds if ϕ is surjective.

Proof.

Proposition 1.2.4. Let $\phi: R \to R'$ be a ring map, and $J \subset R'$ an ideal. Set $I := \phi^{-1}J$. If J is prime, then I is prime; the converse holds if ϕ is surjective.

Corollary 1.2.5. Let R be a ring, I an ideal. Then I is prime iff R/I is a domain.

Proof.

Consider

$$\kappa: R \to R/I$$

the quotient map and I prime implies $\langle 0 \rangle$ is prime in R/I and hence R/I is a domain.

Definition 1.2.6. (Maximal ideal)

Let R be a ring. An ideal I is sai to be maximal if I is proper and there is no proper ideal J such that $I \subset J, I \neq J$.

Proposition 1.2.6. A ring R is a field iff $\langle 0 \rangle$ is a maximal ideal.

Corollary 1.2.7. Let R be a ring, I an ideal. Then I is maximal iff R/I is a field.

Proof.

Only need to check $\langle 0 \rangle$ is maximal in R/I.

Corollary 1.2.8. In a ring, every maximal ideal is prime.

Definition 1.2.7. (Coprime)

Let R be a ring, and $x, y \in R$. We say x and y are coprime if their ideals $\langle x \rangle$ and $\langle y \rangle$ are comaximal.

x and y are coprime if and only if there are $a, b \in R$ such that ax + by = 1.

Definition 1.2.8. A domain R is called a Principal Ideal Domain if every ideal is principal. A PID is a UFD.

Theorem 1.2.9. Let R be a PID. Let P := R[X] be the polynomial ring in one variable X, and I a nonzero prime ideal of P. Then $P = \langle F \rangle$ with F prime, or P is maximal. Assume P is maximal. Then either $P = \langle F \rangle$ with F prime, or $P = \langle p, G \rangle$ with $p \in R$ prime, $pR = P \cap R$ and $G \in P$ prime with iamge $G' \in (R/pR)[X]$ prime.

Theorem 1.2.10. Every proper ideal I is contained in some maximal ideal.

Corollary 1.2.11. Let R be a ring, $x \in R$. Then x is a unit iff x belongs to non maximal ideal.

1.3 Radicals

Definiton 1.3.1. (Radical)

Let R be a ring. Its radical rad(R) is defined to be the intersection of all its maximal ideals.

Proposition 1.3.1. Let R be a ring, I an ideal, $x \in R$ and $u \in R^{\times}$. Then $x \in \operatorname{rad}(R)$ iff $u - xy \in R^{\times}$ for all $y \in R$. In particular, the sum of an element of $\operatorname{rad}(R)$ and a unit is a unit, and $I \subset \operatorname{rad}(R)$ if $1 - I \subset R^{\times}$.

Proof.

For a maximal ideal J, if $u - xy \in J$, then $u \in J$ which is a contradiction and hence u - xy is a unit. Conversely, if there exists J maximal such that $x \in J$, then $\langle x \rangle + J = R$ and hence there exists $m \in J$ such that u - xy = m for some unit u, which is a contradiction.

Corollary 1.3.2. Let R be a ring, I an ideal, $\kappa: R \to R/I$ the quotient map. Assume $I \subset \operatorname{rad}(R)$, then κ is injective on $\operatorname{Idem}(R)$.

Proof.

For $e, e' \in \text{Idem}(R)$ and x = e - e', if $\kappa(x) = 0$, then $x^3 = x$ and hence $x(1 - x^2) = 0$, so $1 - x^2$ is a unit and hence x is 0 and we are done.

Definition 1.3.2. (Local ring)

A ring is called local if it has exactly one maximal ideal, and semilocal if it has at least one and at most finitely many.

By the residue field of a local ring A, we mean the field A/M where M is the maximal ideal of A.

Lemma 1.3.3. Let A be a ring, N the set of nonunits. Then A is local iff N is an ideal, if so, then N is the maximal idal.

Proof.

Only need to check the sufficiency, if A is local, then we know M is contained in N, and if there is $y \in M - N$, then $\langle y \rangle$ is a proper ideal and hence $y \in N$, which is a contradiction and hence M = N and we are done.

Proposition 1.3.4. Let R be a ring, S a multiplicative subset, and I an ideal with $I \cap S = \emptyset$. Set $S := \{J, J \supset I, J \cap S = \emptyset\}$, then S has a maximal element P and every such P is prime.

Proof.

By Zorn's lemma, their is a maximal element P in S, for $x, y \in R - P$, there exists $p, q \in P, a, b \in R$ such that $p + ax \in S, q + by \in S$ and hence $pq + pby + qax + abxy \in S$, and hence $xy \notin P$ and we are done.

Definition 1.3.3. (Saturated multiplicative subsets)

Let R be a ring, and S a multiplicative subset. We say S is saturated if for $x, y \in R, xy \in S$, then $x, y \in S$.

Lemma 1.3.5. Let R be a ring, I a subset of R that is stable under addition and multiplication, and P_1, \dots, P_n ideals such that P_3, \dots, P_n are prime. If I is not contained in P_j for all j, then there is an $x \in I$ such that $x \in P_j$ for j or equivalently, if $I \subset \bigcup_{i=1}^n P_i$, then $I \subset I_i$ for some i.

Proof.

If n=1 then we are done. We may use the induction, assume that $n \geq 2$, then by induction, for each i, there is $x_i \in I$ such that x_i is not in $P_j, i \neq j$ and $x_i \in P_i$, so then $x_1 + x_2 \notin P_2$ if n=2. For other n, we will know $(x_1 \cdots , x_{n-1}) \notin P_j$ for all j.

Definition 1.3.4. Let R be a ring, S a subset, its radical \sqrt{S} is the set

$$\sqrt{S} := \{ x \in R | x^n \in S \text{ for some } n \}$$

If I is an ideal and $I = \sqrt{I}$, then call I to be radical.

We call $\sqrt{0}$ is the nilradical and denoted as $\operatorname{nil}(R)$. We call $x \in R$ nilpotent if $x \in \operatorname{nil}(0)$, we call an ideal I nilpotent if $a^n = 0$ for some $n \ge 1$.

Theorem 1.3.6. Let R be a ring, I an ideal, then

$$\sqrt{I} = \bigcap_{P \supset I, P \text{ prime}} P$$

Proof.

For $x \notin \sqrt{I}$, let S contains all the expotents of x and S is multiplicative, then $I \cap S = \emptyset$ and then there is an P prime containing I with not containing x and hence \sqrt{a} contains the union.

Converse direction is easy.

Proposition 1.3.7. Let R be a ring, I an ideal. Then \sqrt{I} is an ideal.

Definiton 1.3.5. (Minimal primes)

Let R be a ring, I an ideal and P prime. We call P a minimal prime of I if P is minimal in the set of primes containing I, we all P a minimal prime of R if P is a minimal prime of $\langle 0 \rangle$.

Proposition 1.3.8. A ring R is reduced, i.e. 0 is the only nilpotent, and has only one minial prime iff R is a domain.

Proof.

Converse direction is obvious. If 0 is the only nilpotent elements, Q is a minimal prime ideal, then Q = 0 since 0 is the intersection of all the minimal primes, and we are done.

1.4 Modules

Definition 1.4.1. (Modules)

Let R be a ring. An R-module M is an abelian group with a scalar multiplication $R \times M \to M$ which is

- x(m+n) = xm + xn and (x+y)m = xm + ym
- x(ym) = (xy)m
- 1m = m

A submodule N of M closed under scalar multiplication.

Given $m \in M$, its annihilator

$$Ann(m) := \{x \in R | xm = 0\}$$

and the annilhilator of M is

$$Ann(M) := \{x \in R | xm = 0 \text{ for all } m \in M\}$$

We call the intersection of all maximal ideals containing Ann(M) the radical of M, denoted as rad(M).

Proposition 1.4.1. There is a bijection between the maximal ideals containing Ann(M) and the maximal ideals of R/Ann(M), and hence

$$rad(R/Ann(M)) = rad(M)/Ann(M)$$

Proposition 1.4.2. Given a submodule N of M, and then $Ann(M) \subset Ann(N)$ and we also have $Ann(M) \subset Ann(M/N)$.

Definition 1.4.2. (Semilocal)

We call M semilocal if there are only finitely many maximal ideals containing Ann(M). If R is semilocal, so is M and we will know M is semilocal iff R/Ann(M) is a semilocal ring.

Definition 1.4.3. (Polynomials)

The sets of polynomials

$$M[X] := \{ \sum_{i=0}^{n} m_i M_i, M_i \text{ monomials} \}$$

and then M[X] is an R[X] - module.

Definition 1.4.4. (Homomorphisms)

Let R be aring, M and N modules. A R-linear map is a map $\alpha: M \to N$ such that

$$\alpha(xm + yn) = x\alpha m + y\alpha n$$

Let ι : $\ker \alpha \to M$ be the inclusion and then $\ker \alpha$ has the UMP: $\alpha \iota = 0$ and for a homomorphism $\beta: K \to M$ with $\alpha \beta = 0$, there is a unique homomorphism $\gamma: K \to \ker \alpha$ with $\iota \gamma = \gamma$ as shown below

Definition 1.4.5. (Endomorphism)

An endomorphism of M a self-homomorphism denoted as $\operatorname{End}_R(M) \subset \operatorname{End}_{\mathbb{Z}}(M)$. For $x \in R$, let μ_x the self map of multiplication by x and then $x \mapsto \mu_x$ denoted as

$$\mu_R: R \to \operatorname{End}_R(M)$$

and note that $\ker \mu_R = \operatorname{Ann}(M)$. We call M faithful if μ_R is injective.

Definition 1.4.6. For two rings R and R', suppose R' is an R-algebra and M' an R'-module, then M' is also an R-module by $xm := \phi(x)m$.

A subalgebra R'' of R' is a subring such that the structure map owning image in R''. The subalgebra generated by $x_{\lambda} \in R'$ for $\lambda \in \Lambda$ is the smallest R-subalgebra containing x_{λ} and we denote it by $R[\{x_{\lambda}\}]$ and we call x_{λ} the generators.

We say R' is a finitely generated R-algebra if there exists $x_i, 1 \leq i \leq n$ such that $R' = R[x_1, \dots, x_n]$.

Definition 1.4.7. (Residue modules)

Let R be a ring, Ma module and $M' \subset M$ a submodule. Then

$$M/M' := \{m + M' | m \in M\}$$

which is the residue module or M modulo M', form the quotien map

$$\kappa: M \to M/M', \quad m \mapsto m + M'$$

Definiton 1.4.8. (Cyclic Modules)

Let R be a ring. A module M is said to be cyclic if there exists $m \in M$ such that m = Rm, then $\alpha : x \mapsto xm$ induces an isomorphism $R/\mathrm{Ann}(m) \cong M$.

Definition 1.4.9. (Noether Isomorphisms)

Let R be a ring, N a module, and L and M submodules.

Assume $L \subset M$, and

$$\alpha: N \to N/L \to (N/L)/(M/L)$$

and we may know $\ker \alpha = M$. then α factors through the isomorphism β in $N \to N/M \to (N/L)/(M/L)$ since α is surjective and $\ker \alpha = M$, so

$$\begin{matrix} N & \longrightarrow & N/M \\ \downarrow & & \downarrow^{\beta} \\ N/L & \longrightarrow & (N/L)/(M/L) \end{matrix}$$

Assume L not in M and

$$L + M := \{l + m, l \in L, m \in M\}$$

and it will be a submodule, then similarly

$$\begin{array}{ccc} L & \longrightarrow & L/(L \cap M) \\ \downarrow & & \downarrow^{\beta} \\ L+M & \longrightarrow & (L+M)/M \end{array}$$

Definition 1.4.10. (Cokernels, coimages)

Let R be a ring, $\alpha:M\to N$ linear. Associated to α there are its cokernel and its coimage

$$\operatorname{Coker}(\alpha) := N/\operatorname{Im}(\alpha) \quad \operatorname{Coim}(\alpha) := M/\ker \alpha$$

Definition 1.4.11. (Generators, free modules)

Let R be a ring, M a module. Given some submodules N_{λ} , by the sum $\sum N_{\lambda}$, we mean the set of all finite linear combinations $\sum x_{\lambda}m_{\lambda}, m_{\lambda} \in N_{\lambda}$.

Elements m_{λ} are said to be free of linearly independent if the linear combination equals to zero implies zero coefficients. If m_{λ} are said to be form a (free) basis of M, then they are free and generate M and we say M is free on m_{λ} .

We say M is finitely generated if it has a finite set of generators and M is free if it has a free basis.

Theorem 1.4.3. Let R be a PID, E a free module with e_{λ} a basis, and F a submodule, then F is free and has a basis indexed by a subset of λ .

Definition 1.4.12. Let R be a ring, Λ a set, M_{λ} a module for $\lambda \in \Lambda$. The direct product of M_{λ} is the set of any vectors

$$\prod M_{\lambda} := \{ (m_{m_{\lambda}}) \}$$

which is a module under componentwise addition and scalar multiplication.

The direct sum of M_{λ} is the subset of restricted vectors:

$$\bigoplus M_{\lambda} := \{(m_{\lambda}), m_{\lambda} \text{ nonzero for only finite elements}\}$$

Proposition 1.4.4. $\prod M_{\lambda}$ has the UMP, for *R*-homomorphism $\alpha_{\kappa}: L \to M_{\kappa}$, there is a unique *R*-homomorphism $L \to \prod M_{\lambda}$ such that $\pi_{\kappa}\alpha = \alpha_{\kappa}$, in other words, π_{λ} induce a bijection of

$$\operatorname{Hom}(L, \prod M_{\lambda}) \cong \prod \operatorname{Hom}(L, M_{\lambda})$$

Similarly, the direct sum comes equipped with injections

$$\iota_{\kappa} \to \bigoplus M_{\lambda}$$

and it has the UMP: given $\beta_{\kappa}: M_{\kappa} \to N$, there is a unique R-homomorphism $\beta: \bigoplus M_{\lambda} \to N$ such that $\beta \iota_{\kappa} = \beta_{\kappa}$ and ι_{κ} induce the bijection:

$$\operatorname{Hom}(\bigoplus, N) \to \bigoplus \operatorname{Hom}(M_{\lambda,N})$$

1.5 Exact Sequences

Definition 1.5.1. (Exact)

A sequence of module homomorphisms

$$\cdots \to M_{k-1} \stackrel{\alpha_{k-1}}{\to} M_k \stackrel{\alpha_k}{\to} M_{k+1} \to \cdots$$

is said to be exact at M_k if ker $\alpha_k = \text{Im}(\alpha_k)$. The sequence is said to be exact if it is exact at every M_k , except an initial source of final target.

Definition 1.5.2. (Short exact sequences)

A sequence $0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$ is exact if and only if α is injective and $N \cong \operatorname{Coker} \alpha$ or dually if and only if β is surjective and $L = \ker \beta$. Then the sequence is called short exact and we often regard L as a submodule of M and N the quotient M/L.

Proof

Proposition 1.5.1. For $\lambda \in \Lambda$, let $M'_{\lambda} \to M_{\lambda} \to M''_{\lambda}$ be sequence of module homomorphisms. If every sequence is exact, then so are the two induced sequences

$$\bigoplus M'_{\lambda} \to \bigoplus M_{\lambda} \to \bigoplus M''_{\lambda}, \quad \prod M'_{\lambda} \to \prod M_{\lambda} \to \prod M''_{\lambda}$$

Conversely, if either induced sequence is exact then so is every original one.

Proof.

Proposition 1.5.2. Let $0 \to M' \stackrel{\alpha}{\to} M \stackrel{\beta}{\to} M'' \to 0$ be a short exact sequence, and $N \subset M$ a submodule. Set $N' := \alpha^{-1}(N)$ and $N'' := \beta(N)$. Then the induced sequence $0 \to N' \to N \to N'' \to 0$ is short exact.

Definition 1.5.3. (Retraction, section, splits)

A linear map $\rho: M \to M'$ is a retraction of another $\alpha: M' \to M$ if $\rho \alpha = 1_{M'}$, then α is injective and ρ is surjective.

Dually, we call $\sigma: M'' \to M$ a section of another $\beta: M \to M''$ if $\beta \sigma = 1_{M''}$, then β is surjective and σ is injective.

We call a 3-term exact sequence $M' \stackrel{\alpha}{\to} M \stackrel{\beta}{\to} M''$ splits if there is an isomorphism $\phi: M \cong M' \oplus M''$ with $\phi \alpha = \iota_{M'}$ and $\beta = \pi_{M''} \phi$.

Proposition 1.5.3. Let $M' \stackrel{\alpha}{\to} M \stackrel{\beta}{\to} M''$ be a 3-term exact sequence. Then the following conditions are equivalent

- The sequence splits
- There exists a retraction $\rho: M \to M'$ of α and β is surjective.
- There exists a section $\sigma: M'' \to M$ of β and α is injective

Proof.

Assume the sequence is splits, then we have the commuting diagram

$$M' \xrightarrow{\alpha} M \xrightarrow{\beta} M''$$

$$\downarrow^{\iota_{M'}} \downarrow^{\phi(\cong)^{M''}} M''$$

$$M' \oplus M''$$

then let $\rho = \pi_{M'}\phi$, then $\rho\alpha = \pi_{M'}\phi\phi^{-1}\iota_{M'} = 1_{M'}$. Let $\sigma = \phi^{-1}\iota_{M''}$ and then $\beta\sigma = \pi_{M''}\phi\phi^{-1}\iota_{M''} = 1_{M''}$ and then β is surjective and α is injective.

Now assume there is such a retraction ρ and β is surjective, then define $\sigma = 1_M - \alpha \rho$ and $\phi: M \to M' \oplus M''$ by $m \mapsto (\rho(m), \beta \sigma(m))$., if $\phi(m) = 0$, then $\rho(m) = 0$ and $\sigma(m) = m$, which means $\beta(m) = 0$. There exists $a \in M'$ such that $m = \alpha(a)$ and hence a = 0 which means m = 0, so $\ker \phi = 0$. For $(a,b) \in M' \oplus M''$, assume $\beta(m) = b$, then $\phi(\alpha(a) + \sigma(m)) = (a + \rho(m - \alpha \rho(m)), \beta(\alpha(a)) + \beta(\sigma(m))) = (a,b)$ and hence ϕ is surjective. And $\phi\alpha(a) = (a, \beta\sigma\alpha(a)) = (a,0)$ and $\pi_{M''}\phi(m) = \beta(\sigma(m)) = \beta(m)$ and we are done.

Lemma 1.5.4. Consider this commutative diagram with exact rows:

It yields the following exact sequence:

$$\ker \gamma' \overset{\varphi}{\to} \ker \gamma \overset{\psi}{\to} \ker \gamma'' \overset{\partial}{\to} \operatorname{coker} \gamma' \overset{\varphi'}{\to} \operatorname{coker} \gamma \overset{\psi'}{\to} \operatorname{coker} \gamma''$$

Moreover, if α is injective, then so is φ ; dually, if β' is surjective, then so is ψ' .

Proof.

Notice $\alpha'\gamma' = \gamma\alpha, \beta'\gamma = \gamma''\beta$ and let $\varphi = \alpha|_{\ker\gamma'}, \psi = \beta|_{\ker\gamma}$ and we know $\varphi(\ker\gamma') \subset \ker\gamma, \psi(\ker\gamma) \subset \ker\gamma''$. Obviously, $\operatorname{Im}(\varphi) \subset \ker\psi$ and for any $b \in \ker\psi$, it is in $\ker\gamma \cap \operatorname{Im}\alpha$, since α' is injective and hence its preimage has to be contained in $\ker\gamma'$ and hence it is in $\operatorname{Im}(\varphi)$.

 α', β' will induce natural φ', ψ' on $\operatorname{coker} \gamma', \operatorname{coker} \gamma$ by defining $n' + \operatorname{Im} \gamma' \mapsto \alpha'(n') + \operatorname{Im} \gamma, n + \operatorname{Im} \gamma \mapsto \beta'(n) + \operatorname{Im} \gamma''$, which is well-defined since $\alpha'(\operatorname{Im} \gamma') \subset \operatorname{Im} \gamma, \beta'(\operatorname{Im} \gamma) \subset \operatorname{Im} \gamma''$ and the exactness is similarly checked.

Define ∂ by the following, if $\gamma''m''=0$, consider m is one of preimage of m'' and let a to be the preimage of $\gamma(m)$, then let $\partial m''=a+\operatorname{Im}\gamma'$. It is well-defined since if $\beta m=\beta n=m''$, then $m-n\in\ker\beta$, which means the preimages of $\gamma m,\gamma n$ are in the same coset. For $m\in\ker\gamma$, $\partial(\psi(m))=\alpha'^{-1}\gamma(m)+\operatorname{Im}\gamma'=0$ and if $\partial(m'')=0$, then assume $\beta m=m''$ and we know $\alpha^{-1}\gamma(m)\in\operatorname{Im}\gamma'$ and hence there exists $x\in M'$ such that $\gamma\alpha x=\gamma m$ and we know $\beta(m-\alpha(x))=m''$ and $\gamma(m-\alpha x)=0$, which means $\ker\partial=\operatorname{Im}\psi$. If $a=\alpha'^{-1}(\gamma(m))$ with $m''=\beta m\in\ker\gamma''$, then $\varphi'(a+\operatorname{Im}(\gamma'))=\alpha' a+\operatorname{Im}\gamma=0$ and if $\varphi'(a+\operatorname{Im}(\gamma'))=0$, then there exists m such that $\alpha'(a)=\gamma m$ and then $\partial(\beta(m))=a+\operatorname{Im}\gamma'$ and we are done.

Theorem 1.5.5. (Left exactness of Hom)

• Let $M' \to M \to M'' \to 0$ be a sequence of linear maps. Then it is exact iff for all modules N, the following induced sequence is exact

$$0 \to \text{hom}(M'', N) \to \text{hom}(M, N) \to \text{hom}(M', N)$$

• Let $0 \to N' \to N \to N''$ be as sequence of linear maps. Then it is exact iff for all modules M, the following induced sequence is exact.

$$0 \to \text{hom}(M, N') \to \text{hom}(M, N) \to \text{hom}(M, N'')$$

Proof.

Assume $M' \stackrel{\phi}{\to} M \stackrel{\psi}{\to} M''$ and then the induced map will be $\tilde{\psi}: f \mapsto f \circ \psi$ and $\tilde{\phi}: g \mapsto g \circ \phi$. If ψ is surjective, then $\tilde{\psi}$ will be an injective since $f \circ \psi = 0$ implies f = 0, and if $g \circ \phi = 0$, then $\ker \psi = \operatorname{Im} \phi \subset \ker g$ and hence there will be $g': M'' \cong M/\ker \psi \to N$ such that $g'\psi = g$ by the UMP and we are done. We know for $g: M \to N, g \circ \phi = 0$, equivalently $\operatorname{Im} \phi \subset \ker g$ iff there exists unique $g': M'' \to N$ such that $g' \circ \psi = g$, which means $M'' \cong \operatorname{coker} \phi$ and the diagram

$$M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \xrightarrow{} 0$$

$$coker \phi$$

commutes and we are done.

Similarly assume that $N' \xrightarrow{\phi} N \xrightarrow{\psi} N''$, then $\tilde{\phi} : f \mapsto \phi \circ f$ and $\tilde{\psi} : g \mapsto \psi \circ g$, which means $\ker \psi = N' \hookrightarrow N$. It is easy to check $\ker \tilde{\phi} = 0$ and $\operatorname{Im} \tilde{\phi} \subset \ker \tilde{\psi}$. For $g \in \ker \tilde{\psi}$, since $\operatorname{Im} g \subset \ker \psi = \operatorname{Im} \phi$, then let $g' = g|_N$ will satisfy that $\phi \circ g' = g$. For the converse direction, we know for any $g : M \to N$, $\operatorname{Im} g \subset \ker \psi$ iff there exists a unique $g' : M \to N'$ such that

 $\phi \circ g' = g$, then we may, which is

Definition 1.5.4. (Presentation)

A (free) presentation of a module M is an exact sequence

$$G \to F \to M \to 0$$

with G and F free. If G and F are free of finite rank, then the presentation is called finite. If M has a finite presentation, then call M finitely presented.

Proposition 1.5.6. Let R be a ring, M a module, m_{λ} generators. Then there is an exact sequence $0 \to K \to R^{\oplus \Lambda} \xrightarrow{\alpha} M \to 0$ with $\alpha e_{\lambda} = m_{\lambda}$ where e_{λ} the standard basis and there is a presentation.

Remark.

Choose $K = \ker \alpha$ and $k_{\sigma}, \sigma \in \Sigma$ to be generators of K, then

$$R^{\oplus \Sigma} \to R^{\oplus \Lambda} \to M \to 0$$

is a presentation.

Definition 1.5.5. (Projective Module)

A module P is called projective if given any surjective linear map $\beta: M \to N$, every linear map $\alpha: P \to N$ lifts to one $\gamma: P \to M$, i.e. $\alpha = \beta \gamma$.

Theorem 1.5.7. The following conditions on an R-module P are equivalent

- The module P is projective
- Every short exact sequence $0 \to K \to M \to P \to 0$ splits
- There is a module K such that $K \oplus P$ is free
- Every exact sequence $N' \to N \to N''$ induces an exact sequence

$$hom(P, N) \to hom(P, N) \to hom(P, N'')$$

• Every surjective homomorphism $\beta: M \to N$ induces a surjection

$$hom(P, \beta) : hom(P, M) \to hom(P, N)$$

Proof.

By considering the $P \cong M/\ker \phi$ it will induce a section of $\psi: M \to P$ and obviously $\phi: K \to M$ is injective and we are done for (1) implies (2). Use proposition 1.5.6. and we will know there exists K such that $K \oplus P \cong R^{\oplus \Lambda}$ which is free, which is for (2) implies (3).

Assume (3), then there exists Λ such that $K \oplus P \cong R^{\oplus \Lambda}$. Also notice that we will have

$$\prod N_{\lambda}' \to \prod N_{\lambda} \to \prod N_{\lambda}''$$

is exact, which implies that

$$\hom(R^{\oplus \Lambda}, N') \to \hom(R^{\oplus \Lambda}, N) \to \hom(R^{\oplus \Lambda}, N'')$$

is exact since $hom(R^{\oplus \Lambda}, N) \cong \prod N_{\lambda}$ and hence

$$hom(K \oplus P, N') \to hom(K \oplus P, N) \to hom(K \oplus P, N'')$$

which implies

$$hom(K, N') \oplus hom(P, N') \to hom(K, N) \oplus hom(P, N) \to hom(K, N'') \oplus hom(P, N'')$$

by isomorphism and hence the conclusion goes.

Assume (4), we know $M \to N \to 0$ is exact and we are done.

Assume (5), which is exactly the definition of projective module.

Lemma 1.5.8. (Schanuel)

Any two short exact sequences

$$0 \to L \xrightarrow{i} P \xrightarrow{\alpha} M \to 0$$
, $0 \to L' \xrightarrow{i'} P' \xrightarrow{\alpha'} M \to 0$

with P and P' projective are essentially isomorphic; i.e. there is the following commutative diagram

$$0 \longrightarrow L \oplus P' \xrightarrow{i \oplus 1_{P'}} P \oplus P' \xrightarrow{\alpha \oplus 0} M \longrightarrow 0$$

$$\downarrow \cong \beta \qquad \qquad \downarrow \cong \gamma \qquad \qquad \downarrow =$$

$$0 \longrightarrow P \oplus L' \xrightarrow{1_P \oplus i'} P \oplus P' \xrightarrow{0 \oplus \alpha'} M \longrightarrow 0$$

Proof.

Firstly, it is easy to check the two exact sequences are exact. Then consider

$$0 \to K := \ker(\alpha \oplus \alpha') \to P \oplus P' \to M \to 0$$

Notice L is $\ker \alpha$, and for $(p, p') \in L \oplus P'$, denoted $\psi : L \oplus P' \to K$ the induced map by ϕ^{-1} and then $\psi(p, p') = (p - \pi p', p')$ which is in $\ker(\alpha \oplus \alpha')$ and it has inverse obviously, and hence $L \oplus P' \cong K$, and use the similar construction to $P \oplus L'$ and we are done.

Proposition 1.5.9. Let R be a ring, and $0 \to M \to N \to M' \to 0$ an exact sequence. Prove M, M' are finitely generated implies N is finitely generated.

Proposition 1.5.10. Let R be a ring, and $0 \to L \to R^n \to M \to 0$ an exact sequence. Prove M is finitely generated iff L is finitely presented.

Proposition 1.5.11. Let $0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$ be a short exact sequence with L finitely generated and M finitely presented. Then N is finitely presented.

Proof.

There exists $G \to F \to M \to 0$ exact with G, F free of finite rank. Let $\mu : \mathbb{R}^m \to M$ any surjection and $\nu := \beta \mu$, let $K = \ker \nu$ and $\lambda = \mu|_K$, then the diagram

$$0 \longrightarrow K \longrightarrow R^m \stackrel{\nu}{\longrightarrow} N \longrightarrow 0$$

$$\downarrow^{\lambda} \qquad \downarrow^{\mu} \qquad \downarrow^{1_N}$$

$$0 \longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\longrightarrow} N \longrightarrow 0$$

commutes and the snake lemma ensure that $\ker \lambda \cong \ker \mu$, however $\ker \mu$ is finitely generated and hence $\ker \lambda$ is finitely generated, and snake lemma ensured that $\operatorname{coker} \lambda = 0$ and hence $0 \to \ker \lambda \to K \to L \to 0$ is exact and hence K is finitely generated and hence N is finitely presented.

Proposition 1.5.12. Let $0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$ be a short exact sequence with L, N finitely presented. Then M is finitely presented.

Proof.

Let $\lambda: R^l \to L, \nu: R^n \to N$ any two surjections and define $\gamma:=\alpha\lambda$ and since R^n is projective, then define $\delta: R^n \to M$ by lifting ν and $\mu: R^l \oplus R^n \to M$ by $\gamma + \delta$ and the diagram

$$0 \longrightarrow R^{l} \longrightarrow R^{l} \oplus R^{n} \stackrel{\nu}{\longrightarrow} R^{n} \longrightarrow 0$$

$$\downarrow^{\lambda} \qquad \downarrow^{\mu} \qquad \downarrow^{\nu}$$

$$0 \longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\longrightarrow} N \longrightarrow 0$$

commutes, and the snake lemma yields that

$$0 \to \ker \lambda \to \ker \mu \to \ker \nu \to 0$$

exact and $\operatorname{coker} \mu = 0$ and $\ker \lambda$, $\ker \mu$ are finitely generated and hence $\ker \mu$ is ginitely generated and hence M is finitely presented.

1.6 Direct Limits

Definition 1.6.1. (Categories)

A category C is a collection of elements, called objects. Each pair of objects A, B is equipped with a set $hom_{C}(A, B)$ called maps or morphisms. For objects A, B, C, there is a composition law

$$\hom_{\mathcal{C}}(A,B) \times \hom_{\mathcal{C}}(B,C) \to \hom_{\mathcal{C}}(A,C), \quad (a,\beta) \to \beta\alpha$$

and there is a distinguished map $1_B \in \text{hom}_{\mathcal{C}}(B, B)$ such that

$$\gamma(\beta\alpha) = (\gamma\beta)\alpha$$
 for any $\gamma: C \to D$, and $1_B\alpha = \alpha, \beta 1_B = \beta$

and we say α is an isomorphism with inverse $\beta: B \to A$ such that $\alpha\beta = 1_B$ and $\beta\alpha = 1_A$.

Definiton 1.6.2. (Functors)

A map of categories is known as a functor. Namely, given categories \mathcal{C} and \mathcal{C}' , a functor $F: \mathcal{C} \to \mathcal{C}'$ is a rule that assigns to each object A of \mathcal{C} and F(A) of \mathcal{C}' and to each map α such that $F(\alpha): F(A) \to F(B)$

$$F(\beta \alpha) = F(\beta)F(\alpha), \quad F(1_A) = 1_{F(A)}$$

A map of functors is known as a matural transformation. Given two functors $F, F' : \mathcal{C} \to \mathcal{C}'$, a natrual transformation $\theta : F \to F'$ is a collection of maps $\theta(A) : F(A) \to F'(A)$ such that $\theta(B)F(\alpha) = F'(\alpha)\theta(A)$ for any α and $1_{F(A)}$ trivially form a natrual transformation 1_F . We call F and F' isomorphic if there are natural transformation $\theta : F \to F'$ and $\theta' : F' \to F$ such that $\theta'\theta = 1_F$ and $\theta\theta' = 1_{F'}$.

A contravariant functor G from C to C' is a rule similar to F but $G(\alpha):G(B)\to G(A)$ with analogous properties with functors.

Definition 1.6.3. (Adjoint)

Let $F: \mathcal{C} \to \mathcal{C}'$ and $F': \mathcal{C}' \to \mathcal{C}$ be functors. We call (F, F') an adjoint pair, F the left adjoint of F' and F' the right-adjoint of F if for any $A \in \mathcal{C}$ and $A' \in \mathcal{C}'$, there is given a natural bijection

$$\hom_{\mathcal{C}'}(F(A), A') \cong \hom_{\mathcal{C}}(A, F'(A'))$$

here natural means that maps $B \to A$ and $A' \to B'$ induce a commutative diagram:

$$\hom_{\mathcal{C}'}(F(A), A') \xrightarrow{\cong} \hom_{\mathcal{C}}(A, F'(A'))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\hom_{\mathcal{C}'}(F(B), B') \xrightarrow{\cong} \hom_{\mathcal{C}}(B, F'(B'))$$

Proposition 1.6.1. Naturality serves to determine an adjoint up to canonical isomorphism. Namely, let F and G be two left adjoints of F' and then F and G are isomorphic.

Proof

Define $\theta(A): G(A) \to F(A)$ by the image of $1_{F(A)}$ under the isomorphism

$$hom(F(A), F(A)) \cong hom(A, F'F(A)) \cong hom(G(A), F(A))$$

for $\alpha:A\to B$ it will induce the commutative diagram

$$\begin{array}{cccc} \hom_{\mathcal{C}'}(F(A),F(A)) & \stackrel{\cong}{\longrightarrow} \hom_{\mathcal{C}}(A,F'F(A)) & \stackrel{\cong}{\longrightarrow} \hom_{\mathcal{C}'}(G(A),F(A)) \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ \hom_{\mathcal{C}'}(F(A),F(B)) & \stackrel{\cong}{\longrightarrow} \hom_{\mathcal{C}}(A,F'F(B)) & \stackrel{\cong}{\longrightarrow} \hom_{\mathcal{C}'}(G(A),F(B)) \\ & \uparrow & \uparrow & \uparrow \\ \hom_{\mathcal{C}'}(F(B),F(B)) & \stackrel{\cong}{\longrightarrow} \hom_{\mathcal{C}}(B,F'F(B)) & \stackrel{\cong}{\longrightarrow} \hom_{\mathcal{C}'}(G(B),F(B)) \end{array}$$

where we may know $\theta(B)G(\alpha) = F(\alpha)\theta_A$ and hence θ is a natural transformation, similarly, define $\theta': F \to G$ and we will have

$$\begin{array}{cccc} \hom_{\mathcal{C}'}(F(A),F(A)) & \stackrel{\cong}{\longrightarrow} \hom_{\mathcal{C}}(A,F'F(A)) & \stackrel{\cong}{\longrightarrow} \hom_{\mathcal{C}'}(G(A),F(A)) \\ & & \downarrow & & \downarrow \\ \hom_{\mathcal{C}'}(F(A),G(A)) & \stackrel{\cong}{\longrightarrow} \hom_{\mathcal{C}}(A,F'G(A)) & \stackrel{\cong}{\longrightarrow} \hom_{\mathcal{C}'}(G(A),G(A)) \end{array}$$

which is induced by $\theta'(A)$ and then $\theta'(A)\theta(A) = 1_G(A)$ and we are done.

Definiton 1.6.4. (Direct limits)

Let Λ, \mathcal{C} categories and Λ is small, i.e. its objects form a set. Given a functor $\lambda \mapsto M_{\lambda}$ from Λ to \mathcal{C} , its direct limit denoted with $\varinjlim M_{\lambda}$ is defined to be the object of \mathcal{C} universal among objects P equipped with maps $\beta_{\mu}: \overrightarrow{M_{\mu}} \to P$ what are compatible with the transition map $\alpha_{\mu}^{\kappa}: M_{\kappa} \to M_{\mu}$, i.e. there is a unique map β such that all the diagrams

$$M_{\kappa} \xrightarrow{\alpha_{\mu}^{\kappa}} M_{\mu} \xrightarrow{\alpha_{\mu}} \varinjlim M_{\lambda}$$

$$\downarrow^{\beta_{\kappa}} \qquad \downarrow^{\beta_{\mu}} \qquad \downarrow^{\beta}$$

$$P \xrightarrow{1_{P}} P \xrightarrow{1_{P}} P$$

where $\lambda \mapsto M_{\lambda}$ is often called a direct system. We know the limit is determined up to unique isomorphism.

We say \mathcal{C} has direct limits indexed by Λ if for every functor $\lambda \mapsto M_{\lambda}$, the direct limit exists. We say that \mathcal{C} has direct limits if it has direct limits indexed by every small category.

Given a functor $F: C \to C'$, note that a functor $\lambda \mapsto M_{\lambda}$ from Λ to \mathbb{C} yields a functor from Λ to \mathcal{C}' . Furthermore, whenever the corresponding two direct limits exist, the maps $F(\alpha_{\mu}): F(M_{\mu}) \to F(\lim_{n \to \infty} M_{\lambda})$ induce a canonical map

$$\phi_F: \varinjlim F(M_\lambda) \to F(\varinjlim M_\lambda)$$

If ϕ_F is always an isomorphism, we say F preserves direct limits.

Proposition 1.6.2. Assume C has direct limits indexed by Λ . Then, given a natural transformation from $\lambda \mapsto M_{\lambda}$ to $\lambda \mapsto N_{\lambda}$, universality yields unique commutative diagrams

$$\begin{array}{ccc} M_{\mu} & \longrightarrow & \varinjlim M_{\lambda} \\ \downarrow & & \downarrow \\ N_{\mu} & \longrightarrow & \varinjlim N_{\lambda} \end{array}$$

Proof.
We know

$$\theta(\mu): M_{\mu} \to N_{\mu}, \theta(\mu)\alpha_{\mu}^{\lambda} = \beta_{\mu}^{\lambda}\theta(\lambda)$$

and hence consider

$$\begin{array}{cccc} M_{\lambda} & \longrightarrow & M_{\mu} & \longrightarrow & \varinjlim M_{\lambda} \\ \downarrow & & \downarrow & & \downarrow \alpha \\ N_{\lambda} & \longrightarrow & N_{\mu} & \longrightarrow & \varinjlim N_{\lambda} \\ \downarrow & & \downarrow & & \downarrow \\ P & \stackrel{=}{\longrightarrow} & P & \stackrel{=}{\longrightarrow} & P \end{array}$$

Definiton 1.6.5. (Functor category)

The functor category \mathcal{C}^{Λ} , i.e. a category with objects to be the functors from Λ to \mathcal{C} and the maps are the natrual transformation, then lim yields a functor from C^{Λ} to C.

The direct limit functor is the left adjoint of the diagonal function $\Delta: \mathcal{C} \to \mathcal{C}^{\Lambda}$ which send M to the constant functor ΔM which has the same value M at every Λ and 1_M at every map of Λ ; for $\gamma: M \to N$ it caarries γ to $\Delta \gamma: \Delta M \to \Delta N$ which has the same value γ at every λ .

Proof.

By proposition 1.6.2. we assume $\lambda \mapsto M_{\lambda}, \lambda \mapsto N_{\lambda}$ and θ a natural transformation, then

$$\underline{\lim}(\theta): \underline{\lim} M_{\lambda} \to \underline{\lim} N_{\lambda}$$

which is uniquely determined.

Notice

$$\varliminf : \mathcal{C}^{\Lambda} \to \mathcal{C}, \quad \Delta : \mathcal{C} \to \mathcal{C}^{\Lambda}$$

and we want to check

$$hom(\underline{\lim}(\lambda \mapsto M_{\lambda}), N) \cong hom(\lambda \mapsto M_{\lambda}, \Delta N)$$

assume $\gamma: \varinjlim(\lambda \mapsto M_{\lambda}) \to N$ and then we would like $\gamma \mapsto \Delta \gamma$ is an isomorphism, which is obviously an injection and assume $\delta: \lambda \mapsto M_{\lambda} \to \Delta N$ where we know $\delta(\lambda): M_{\lambda} \to N$ which satisfies some commutative diagram and hence there exists a unique $\gamma: \varinjlim(\lambda \mapsto M_{\lambda}) \to N$.

Definition 1.6.6. (Coproduct)

Let \mathcal{C} be a category, Λ a set and M_{λ} an object for each $\lambda \in \Lambda$. The coproduct $\prod_{\lambda \in \Lambda} M_{\lambda}$ is defined as the object of \mathcal{C} universal among objects P equipped with a map $\beta_{\mu}: M_{\mu} \to P$ and the maps $\iota_{\lambda}: M_{\lambda} \to \prod M_{\lambda}$ is call the inclusions.

If Λ is empty then B is an object with a unique map β to other P and such B is called an initial object.

Definiton 1.6.7. (Coequalizers)

Let $\alpha, \alpha' : M \to N$ their coequalizer is the object universal among P with $\eta : N \to P$ such that $\eta \alpha = \eta \alpha'$.

Lemma 1.6.3. A category has direct limits iff it has coproducts and coqualizers. If a category has direct limits, then a functor preserves them iff it preserves coproduct and coequalizers.

Proof.

Let $\Lambda \mapsto M_{\lambda}$ where $\hom(\mu, \nu)$ is empty for any $\mu \neq \nu$ and then the corresponding direct limit is the coproduct. For $M, N \in \mathcal{C}$ and two morphsims, then the inclusion of them two is a small category and the direct limit will be the coequalizer. If F preserves direct limits, since we have shown that coproduct and coequalizer is special direct limits and we are done.

Conversely, if \mathcal{C} has coproducts and coequalizers. Assume Λ a small category and $\lambda \mapsto M_{\lambda}$ a functor, let Σ all transition maps and for each $\sigma = \alpha_{\mu}^{\lambda} \in \Sigma$, set $M_{\Sigma} := M_{\lambda}$ and let $M := \prod M_{\sigma}$ and $N = \prod M_{\lambda}$, for each σ , there are two maps $M_{\sigma} \to N$ which is ι_{λ} and the composition $\iota_{\mu}\alpha_{\mu}^{\lambda}$, then let C be the coequalizer of corresponding maps $\alpha, \alpha' : M \to N$ and $\eta : N \to C$ the insertion. So if $\beta_{\lambda} : M_{\lambda} \to P$ compatible with the transition maps, then there is a unique $\beta : N \to P$ such that $\beta\iota_{\lambda} = \beta_{\lambda}$ and hence $\beta\alpha = \beta\alpha'$ and we are done.

If F preserves coproduct and coeqqualizers, then F preserves the construction and we are done.

Theorem 1.6.4. The categories *R*-module and sets have direct limits.

Theorem 1.6.5. Every left adjoint $F: \mathcal{C} \to \mathcal{C}'$ preserves direct limits.

Proposition 1.6.6. Let \mathcal{C} be a category, Λ and Σ small categories. Assume \mathcal{C} has direct limits indexed by Σ . Then the functor category \mathcal{C}^{Λ} does too.

Theorem 1.6.7. Let \mathcal{C} be a category with direct limits indexed by small categories Σ and Λ . Let $\sigma \mapsto (\lambda \mapsto M_{\sigma\lambda})$ be a functor from Σ to \mathcal{C}^{Λ} . Then

$$\lim_{\sigma} \varinjlim_{\lambda} M_{\sigma\lambda} = \lim_{\lambda} \varinjlim_{\sigma} M_{\sigma\lambda}$$

Corollary 1.6.8. Let Λ be a small category, R a ring, and C is sets or R-modules. Then functor $\lim_{n \to \infty} : C^{\Lambda} \to C$ preserves coproduces and coequalizers.

1.7 Tensor Products

Definition 1.7.1. (Bilinear maps)

Let R be a ring and M, N, P modules. We call a map $\alpha : M \times N \to P$ bilinear if it is lienarin each variable. Denote the set of all these maps by $\text{Bil}_R(M, N; P)$, it is clearly an R-module with sum and scalar multiplication performed valuewise.

Definition 1.7.2. (Tensor product)

Let R be a ring and M, N modules. Their tensor product denoted $M \otimes_R N$ is constructed as the quotient of the free module $R^{\oplus (M \times N)}$ modulo the submodule generated by the following elemants, where (m, n) stands for the standard basis element $e_{(m,n)}$:

$$(m+m',n)-(m,n)-(m',n),(m,n+n')-(m,n)-(m,n'),(xm,n),(m,xn)-x(m,n)$$

and the above construction yields a canonical bilinear map

$$\beta: M \times N \to M \otimes N$$

and set $m \otimes n := \beta(m, n)$

Theorem 1.7.1. (UMP of tensor product)

Let R be a ring, M, N modules. Then $\beta: M \times N \to M \otimes N$ is the universal bilinear

map with source $M \times N$; in fact, β induces a module isomorphism

$$\theta : \hom_R(M \otimes_R N, P) \cong \operatorname{Bil}_R(M, N; P)$$

Corollary 1.7.2. (Bifunctoriality)

Let R be a ring, $\alpha: M \to M'$ and $\alpha': N \to N'$ module homomorphisms. Then there is a canonical commutative diagram:

$$\begin{array}{ccc} M \times N & \xrightarrow{\alpha \times \alpha'} & M' \times N' \\ & \downarrow^{\beta} & & \downarrow^{\beta'} \\ M \otimes N & \xrightarrow{\alpha \otimes \alpha'} & M' \otimes N' \end{array}$$

Proof.

Notice

$$(\alpha \otimes \alpha')(m \otimes n) = \alpha m \otimes \alpha' n$$

Proposition 1.7.3. Let R be a ring, M and N modules,

• Then the switch map $(m, n) \mapsto (n, m)$ induces an isomorphism

$$M \otimes_R N = N \otimes_R M$$

• The multiplication on M induces an isomorphism

$$R \otimes_R M = M$$

Proof.

The switch map induces an isomorphism between $M \otimes_R N = N \otimes_R M$.

Define $\beta: R \times M \to M$ by $\beta(x,m) := xm$, then β is bilinear and we have for any $\alpha: R \times M \to P$, define $\gamma: M \to P$ by $\gamma(m) = \alpha(1,m)$ and then $\alpha = \gamma\beta$, where γ is unique since β surjective and hence $M \cong R \otimes M$ since

$$\begin{array}{c} R \times M \xrightarrow{\beta'} P \\ \downarrow \qquad \qquad \uparrow \\ R \otimes M \end{array} \qquad \begin{array}{c} M \end{array}$$

let P be M and $R \otimes M$ and we are done.

Definition 1.7.3. Let R and R' be rings. An abelian group N is an (R, R')-bimoudle if it is both an R-module and an R'-module if x(x'n) = x'(xn) for all $x \in R, x' \in R'$ and $n \in N$.