《微积分 A》期末考试试卷(A 卷)

2008.6

一、填空(每小题4分,共28分)

1.
$$\ddot{y} f(x,y) = \begin{cases} \frac{2x^3 - 3y^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}, \qquad \ddot{y} f'_x(0,0) = \underline{\qquad},$$

$$f'_y(0,0) = \underline{\qquad}.$$

- 2. 函数 $f(x, y, z) = x^2 + 3y^2 z^2$ 在 P(-2, 2, 1) 点处沿着从 P 到 O(0, 0, 0) 方向 的方向导数为 _______.
- 3 . 设 $f(x,y) = x^3 + 8y^3 3x^2 12y^2$, 则 f(x,y) 取 得 极 小 值 的 点 为______ , f(x,y) 取得极大值的点为_____ .
- 4. 设 L 是曲线弧 $x = e^t \cos t$, $y = e^t \sin t$, $z = e^t$ (0 $\leq t \leq$ 2),则曲线积分 $\int_{L} \frac{dl}{x^2 + y^2 + z^2} = \underline{\hspace{1cm}}.$
- 6. 数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \ln \frac{n+1}{n}$ 是条件收敛、绝对收敛、还是发散?答: ________.
- 二、(8 分) 设 $u = xy + f(xy, \frac{y}{x})$, 其中 f 有连续的二阶偏导数,求 $\frac{\partial u}{\partial x}$ 及 $\frac{\partial^2 u}{\partial y \partial x}$.
- 三、(8 分) 计算二重积分 $I = \iint_D \frac{1}{x^2 y^2} dx dy$, 其中 D 是由曲线 xy = 1 与直线 y = x 和 y = 2 围成的有界闭区域.

- 四、(10 分) 设 Σ 为半球面 $x^2+y^2+z^2=R^2$ $(z \ge 0)$, 计算第一类曲面积分 $I=\iint_{\Sigma}(x^2+y^2)dS.$
- 五、(10 分) 将函数 f(x) = $\begin{cases} 0, & -\pi < x < 0 \\ x, & 0 \le x \le \pi \end{cases}$ 在 $(-\pi, \pi]$ 上展开成傅里叶级数
 - $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$,并求和函数 S(x) 在 $(\pi, 3\pi)$ 内的表达式.
- 七、(10 分) 求幂级数 $\sum_{n=1}^{\infty} \frac{2^n}{2n-1} x^{2n}$ 的收敛区间及和函数.
- 八、 $(8 \, \mathcal{O})$ 设 Ω 是由曲面 $z = x^2 + y^2$ 和平面 z = 2x 所围成的立体,其上质量分布是均匀的(密度为 μ),求 Ω 绕z 轴旋转的转动惯量.
- 九、(8 分)设 f(u)在($-\infty$, $+\infty$) 内有连续的导函数, k 是一个待定常数. 已知 曲线积分 $\int_{\Gamma} (x^2y^3 + 2x^5 + ky) dx + [xf(xy) + 2y] dy$ 与路径无关,且对任意的 t , $\int_{(0,0)}^{(t,-t)} (x^2y^3 + 2x^5 + ky) dx + [xf(xy) + 2y] dy = 2t^2$

求 f(u) 的表达式和 k 的值,并求 $(x^2y^3 + 2x^5 + ky)dx + [xf(xy) + 2y]dy$ 的原函数.