sine basis 07

Design matrix

Statistics: p-values adjusted for search volume

set-level	cluster-level				peak-level					mm mm mm		m
рс	p_{FWE-c}	<i>g</i> corrFDR-co	orr E	p _{uncorr}	p_{FWE-c}	g orrFDR-co	<i>T</i> orr	$(Z_{\equiv}) p_{\text{uncorr}}$				
	1.000	0.780	10	0.316	1.000	0.818	3.33	3.31	0.000	-4	6	74
	1.000	0.780	12	0.272	1.000	0.909	3.24	3.22	0.001	4	64	10
	1.000	0.780	16	0.206	1.000	0.909	3.23	3.21	0.001	-12	-70	46
	1.000	0.780	12	0.272	1.000	0.918	3.21	3.19	0.001	-14	34	32
	1.000	0.780	11	0.293	1.000	0.949	3.18	3.16	0.001	-60	-42	28
	1.000	0.780	13	0.253	1.000	0.959	3.16	3.15	0.001	34	46	14
	1.000	0.780	13	0.253	1.000	0.963	3.14	3.12	0.001	34	-68	-14
	1.000	0.780	15	0.221	1.000	0.963	3.12	3.11	0.001	-56	28	8
	1.000	0.780	13	0.253	1.000	0.995	3.09	3.08	0.001	6	2	-12
	1.000	0.780	18	0.181	1.000	0.995	3.04	3.02	0.001	16	-26	-40
	1.000	0.780	7	0.403	1.000	0.995	3.02	3.00	0.001	16	-20	56
	1.000	0.780	14	0.236	1.000	0.995	2.97	2.96	0.002	54	32	8
	1.000	0.780	20	0.160	1.000	0.995	2.97	2.96	0.002	22	-74	-18
	1.000	0.780	11	0.293	1.000	0.995	2.97	2.96	0.002	-40	-8	32
	1.000	0.780	9	0.341	1.000	0.995	2.97	2.95	0.002	26	54	8
	1.000	0.780	5	0.484	1.000	0.995	2.96	2.95	0.002	-30	-54	38
	1.000	0.780	8	0.370	1.000	0.995	2.94	2.93	0.002	26	-50	-32
	1.000	0.780	15	0.221	1.000	0.995	2.92	2.91	0.002	-44	-6	50
	1.000	0.780	21	0.151	1.000	0.995	2.91	2.90	0.002	38	-16	4
	1.000	0.780	10	0.316	1.000	0.995	2.91	2.89	0.002	-14	16	-6
	1.000	0.780	6	0.440	1.000	0.995	2.90	2.89	0.002	-50	-40	30
	1.000	0.780	15	0.221	1.000	0.995	2.90	2.89	0.002	-42	-32	-4

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Φ) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels FWHM = 6.6 6.5 6.9 mm mm mm; 3.3 3.3 3.4 {voxels}

Expected voxels per cluster, <k> = 10.731 Volume: 1685912 = 210739 voxels = 5237.0 resels

Expected number of clusters, <c> = 220.96Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 37.29 voxels)

FWEp: 5.104, FDRp: Inf, FWEc: 213, FDRo? 48€ 2