Discrete Mathematics Review2 PART I

Liu Ziwei Fall Term 2019

refer to Qiu Tianyu, Yan xinyu

Contents

Functions

- Induction
- Recursive Definition

Counting

- Counting and Cardinality
- Permutation & Combination

Induction

- 1. Principle of Induction (p120-p121)
- Let P(n) be a property, $n_0 \in N$ we can show P(n) holds for all $n_0 \in N (n \ge n_0, n \in N)$ using the following argument structure:
 - 1. Show that P(0)(or P(n0)) holds.
- 2. Show that for arbitrary $n_0 \in N(n \ge n_0, n \in N)$, $P(n) \Rightarrow P(n+1)$ then, it follows for $n_0 \in N(n \ge n_0, n \in N)$, P(n) holds.

Theorem: For all $n \in N, n \ge 1$, $\sum_{k=1}^{\infty} (2k-1) = n^2$ proof: induction

Induction

- 2. Link between induction and the well-orderedness of $(N; \le)$ (p124)
- Well-order: existence of least element
- Correctness of Principle of Induction (proof by contradiction): for all
- $n_0 \in N \text{ with } n \ge n_0$
 - 1. Show that $P(n_0)$ holds
 - 2. Suppose that $\{n \in \mathbb{N} \mid n \geq n_0 \land \neg P(n)\}$ is nonempty and let n' be the least element of this set
 - 3. Let $m \ge n_0$ be such that n' = m+1
 - 4. Show that the fact that P(m) holds implies that P(n') holds, thus obtaining a contradiction

Induction

Theorem:

Let (L, \preceq) be a lattice. If $X \subseteq L$ is finite with $|X| \ge 2$, then X has a least upper bound.

proof: induction, y v xm

3. Strong Induction (p126)

An argument by strong induction that shows that a property A(n) holds for all $n \in N(n \ge n_0)$ proceeds as follows:

- 1. Show that $A(n_0)$ holds.
- 2. Show that for all $n_0 \le k \le n$, A(k) holds, then A(n + 1) holds

Conclude that for all $n \in N$ with $n \ge n_0$, A(n) holds.

Recursive Definitions

Theorem:

For all $n \in \mathbb{N}$ with $n \ge 2$, n is either prime or the product of primes. proof: strong induction

- 4. Recursive Definitions (p128-130)
 - 1. Initial value
- 2. A rule that allows us to obtain the value of f(n + 1) from the values of f(n), f(n 1); ...(General: Construction Rules: C1,C2..Cn)

Recursive Definitions

5. Recursively Defined Sets and Structural Induction (p131-133)

e.g.

- $1.1 \in S$
- 2. if $x \in S$, then $2x \in S$
- 3. if $x \in S$, then $(x^2 1) \in S$

Recursively defined set is a set S that is defined as follows:

- 1. All members of a given set G are in S.
- 2. For some given functions f_k , whenever $s \in S$, then $f_k(s) \in S$ for all k.

*In a recursively defined set, there is no natural linear order- no "first", "second", etc.

red: application of rule 2 blue: application of rule 3

Recursive Definitions

5. Recursively Defined Sets and Structural Induction (p131-133)

Structural Induction is a way of proving that all elements of a recursively defined set have a certain property.

Principle of Structural Induction: Let B be a set and let C_1, \ldots, C_n be construction rules. Let A be recursively defined to be the \subseteq -least set such that $B \subseteq A$ and A is closed under the rules C_1, \ldots, C_n . Let P(x) be a property. If

- (i) for all $b \in B$, P(b) holds
- (ii) for all $a_1, \ldots a_m$ and c and $1 \le i \le n$, if $P(a_1), \ldots, P(a_m)$ all hold and c is obtained from a_1, \ldots, a_m by a single application of the rule C_i , then P(c) holds

Then P(x) holds for every element of A.

1. Subsets of size k (p136-137)

A is a finite set, $0 \le k \le |A|$, $k \notin N$, $n \in N \setminus \{0\}$

1.
$$\mathscr{P}_k(A) = \{x \in \mathscr{P}(A) \mid |x| = k\}$$

The collection of subsets whose cardinality is k of A.

2.
$$[n] = \{0,1,...,n-1\}$$
 $[0] = \emptyset$

3. cardinality of the $\mathscr{P}_k([n])$: $\binom{n}{k}$

2. Pascal's Triangle (p138-139)

Lemma

For all $n \in \mathbb{N}$ and for all $0 \le k \le n$, $\binom{n}{k} = \binom{n}{n-k}$ proof: $F(x) = \lceil n \rceil \setminus x$ bijiection

Theorem

For all $n \in \mathbb{N}$ with $n \ge 1$ and for all $0 < k \le n$,

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

proof: $A = \{x \cup \{n\} \mid x \in \mathcal{P}_{k-1}([n])\}$ and $B = \mathcal{P}_k([n])$

2. Binomial Theorem (p140-p142)

Theorem

(Binomial Theorem) For all $n \in \mathbb{N}$ with $n \ge 1$ and for all numbers x and y,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

proof: induction n=1; n-n+1

Corollary
$$(1+y)^n = \sum_{k=0}^n \binom{n}{k} y^k$$

Corollary
$$\sum_{k=0}^{n} {n \choose k} = 2^n$$

3. Other finite sets (p143-p144)

Theorem $|\mathcal{P}_{n}([2n])| = \sum_{k=0}^{n} \binom{n}{k}^{2}$ $proof: (1+x)^{n} (1+x)^{n} = (1+x)^{2n}$ $\left(\sum_{k=0}^{n} \binom{n}{k} | x^{k} \right) \left(\sum_{k=0}^{n} \binom{n}{k} x^{k} \right) = \sum_{k=0}^{2n} \binom{2n}{k} x^{k} \quad ; \quad \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \binom{2n}{n}$

Theorem

$$|\mathcal{P}([n])| = 2^{n}$$

$$\text{proof: } |\mathscr{P}([n])| = \sum_{k=0}^{n} |\mathscr{P}_{k}([n])| = \sum_{k=0}^{n} {n \choose k} = 2^{n} /$$

$$\text{For every number in } [n] \text{ we can either the proof of the p$$

For every number in [n], we can either put it into A or not.

3. Counting (p146-p147)

Theorem

Let $n, r \in \mathbb{N}$. The number of solutions to the equation $x_1 + \cdots + x_n = r$ with $x_1, \dots, x_n \in \mathbb{N}$ is

$$\binom{n+r-1}{r}$$

proof: allocate balls (n person,n+r balls, at least one per person) /

injective
$$A = \{(x_1, \dots, x_n) \in \mathbb{N}^n | x_1 + \dots + x_n = r\}$$

 $F: A \longrightarrow \mathcal{P}_{n-1}([n+r-1])$
surjective $F(x_1, \dots, x_n) = \{x_1, x_1 + x_2 + 1, \dots, n-2 + \sum_{i=1}^{n-1} x_i\}$
 $\{y_1 < \dots < y_{n-1}\} \in \mathcal{P}_{n-1}([n+r-1]), \text{ then by letting } x_1 = y_1, x_2 = y_2 - (x_1 + 1), \dots, x_{n-1} = y_{n-1} - (x_1 + \dots + x_{n-2} + n - 2)$
and $x_n = r - (x_1 + \dots + x_{n-1})$ we get an element

3. Counting (p148-p149)

Theorem

The number of ways of selecting r objects from n objects when the order does not matter and repetitions are allowed is

$$\binom{n+r-1}{r}$$

proof: equivalent to $x_1 + \cdots + x_n = r$, where $x_1 \cdots x_n \in N$

Theorem

The number of bijections from [n] to [n] is n!. I.e.

$$|\{f \mid f : [n] \longrightarrow [n] \text{ is a bijection}\}| = n!$$

proof: bijection from [n] to [n] can be mapped to a permutation of [n].

3. Counting (p148-p149)

Theorem

Let $n \in \mathbb{N}$ and let $0 \le k \le n$. The number of ordered k-tuples of distinct elements of [n] is

$$\binom{n}{k} k!$$

I.e.
$$|\{(x_1, ..., x_k) \in [n]^k | \text{for all } 0 \le i < j \le k, x_i \ne x_j\}| = {n \choose k} k!$$

- proof: 1.Choose k different numbers from [n]
 - 2. For chosen k numbers consider its permutations.

1. Permutation & Combination with/without repetition

Туре	Repetition Allowed?	Formula	
-permutations	No	$\frac{n!}{(n-r)!}$	
-combinations	No	$\frac{n!}{r!\;(n-r)}$	
-permutations	Yes	n^r	
-combinations	Yes	$\frac{(n+r-1)}{r!(n-1)}$	

1. distinguishable Objects + distinguishable Boxs

The number of ways to distribute n distinguishable objects into k distinguishable boxes,

where there are

 n_1 distinguishable objects in box 1, n_2 distinguishable objects in box 2..., and n_k distinguishable objects in box k

$$C_{n}^{n_{1}} \cdot C_{n-n_{1}}^{n_{2}} \cdot \dots \cdot C_{n_{k}}^{n_{k}}$$

$$= \frac{n!}{n_{1}! n_{2}! \cdots n_{k}!}$$

$$= \frac{P_{n}^{n}}{P_{n_{1}}^{n_{1}} \cdot P_{n_{2}}^{n_{2}} \cdot \dots \cdot P_{n_{k}}^{n_{k}}}$$

2. indistinguishable Objects + distinguishable Boxs

The number of ways to distribute n indistinguishable objects into k distinguishable boxes

$$\binom{n+k-1}{k-1}$$

3. distinguishable Objects + indistinguishable Boxs

 $\sum_{j=1}^{k} \frac{S(n,j)}{\sum_{i=1}^{k} \sum_{j=1}^{n-1} (-1)^{i} n_{C_{i}}(n-i)^{k}}$ (no need to know)

$$n! \ \overline{i=0} \ = rac{1}{n!} [n_{C_0}(n-0)^k - n_{C_1}(n-1)^k + n_{C_2}(n-2)^k + \cdots + (-1)^{n-1} n_{C_{n-1}}(1)^k]$$

4. indistinguishable Objects + indistinguishable Boxs

Enumeration

Distrib	ution of	How many balls boxes can contain		ontain	
k Balls	into n Boxes	No Restrictions	≤ 1 (At most one)	≥ 1 (At least one)	= 1 (Exactly one)
Distinct	Distinct	n ^k	$^{n}P_{k}$	$S(k,n) \times n!$	${}^{n}P_{n} = n!$ if $k = n$ o if $k \neq n$
Identical	Distinct	(k+n-1)C(n-1)	ⁿ C _k	(k-1)C _(n-1)	1 if $k = n$ 0 if $k \neq n$
Distinct	Identical	$\sum\limits_{i=1}^{n}\mathrm{S(k,i)}$	1 if k ≤ n o if k > n	S(k,n)	1 if $k = n$ 0 if $k \neq n$
Identical	Identical	$\sum_{i=1}^n \mathrm{P}(\mathrm{k},\mathrm{i})$	$1 \text{if } k \le n$ $0 \text{if } k > n$	P(k, n)	1 if $k = n$ 0 if $k \neq n$

1. Tool box

1.
$$\binom{n}{r} = \binom{n}{n-r}$$

$$2. \binom{n+1}{r+1} = \binom{n}{r+1} + \binom{n}{r}$$

3.
$$\binom{n}{r} = \frac{n}{r} \binom{n-1}{r-1}$$

$$4. \binom{n}{r} \binom{r}{m} = \binom{n}{m} \binom{n-m}{r-m}$$

5.
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

6.
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

$$7. \binom{n}{r} + \binom{n+1}{r} + \dots + \binom{n+k}{r} = \binom{n+k-1}{r+1} - \binom{n}{r+1}$$

8.
$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$