SEQUENCE LISTING

```
<110> Advisys
     Baylor College of Medicine
<120> SYNTHETIC MUSCLE PROMOTERS WITH ACTIVITIES EXCEEDING NATURALLY OCCURRING
REGULATORY SEQUENCES IN CARDIAC CELLS
<130> 108328.00161 - AVSI-0027
<150> US 60/423,536
<151> 2002-11-04
<160> 22
<170> PatentIn version 3.1
<210> 1
<211> 21
<212> DNA
<213> artificial sequence
<223> SRE control elements used in the promoters.
<400> 1
                                                                    21
gacacccaaa tatggcgacg g
<210> 2
<211> 19
<212> DNA
<213> artificial sequence
<220>
<223> MEF-1 control element used in the promoters
<400> 2
                                                                    19
ccaacacctg ctgcctgcc
<210> 3
<211>
      19
<212> DNA
<213> artificial sequence
<223> MEF-2 control element used in the promoters.
<400> 3
                                                                    19
cgctctaaaa ataactccc
<210> 4
<211> 13
<212> DNA
<213> artificial sequence
<220>
<223> TEF-1 control element used in the promoters.
```

```
<400> 4
                                                                      13
caccattcct cac
<210> 5
<211> 335
<212> DNA
<213> artificial sequence
<223> Nucleic acid sequence of an eukaryotic promoter c5-12.
<400> 5
cggccgtccg ccttcggcac catcctcacg acacccaaat atggcgacgg gtgaggaatg
                                                                      60
gtggggagtt atttttagag cggtgaggaa ggtgggcagg cagcaggtgt tggcgctcta
                                                                     120
aaaataactc ccgggagtta tttttagagc ggaggaatgg tggacaccca aatatggcga
                                                                     180
                                                                     240
cggttcctca cccgtcgcca tatttgggtg tccgccctcg gccggggccg cattcctggg
ggccgggcgg tgctcccgcc cgcctcgata aaaggctccg gggccggcgg cggcccacga
                                                                     300
                                                                     335
gctacccgga ggagcgggag gcgccaagct ctaga
<210> 6
      40
<211>
<212> PRT
<213> artificial sequence
<220>
       This is the artificial sequence for GHRH (1-40)OH.
<223>
<220>
<221> MISC_FEATURE
<222>
       (1)..(1)
<223> Xaa at position 1 may be tyrosine, or histidine
<220>
<221> MISC_FEATURE
<222>
      (2)..(2)
<223> Xaa at position 2 may be alanine, valine, or isoleucine.
<220>
<221> MISC_FEATURE
<222> (15)..(15)
<223> Xaa at position 15 may be alanine, valine, or isoleucine.
<220>
<221> MISC_FEATURE
<222> (27)..(27)
<223> Xaa at position 27 may be methionine, or leucine.
```

<220>

<221> MISC_FEATURE

<222> (28)..(28)

<223> Xaa at position 28 may be serine or asparagine.

<400> 6

Xaa Xaa Asp Ala Ile Phe Thr Asn Ser Tyr Arg Lys Val Leu Xaa Gln
1 5 10 15

Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Xaa Xaa Arg Gln Gln Gly 20 25 30

Glu Arg Asn Gln Glu Gln Gly Ala 35 40

<210> 7

<211> 3534

<212> DNA

<213> artificial sequence

<220>

<223> Nucleic acid sequence for the HV-GHRH plasmid.

<400> gttgtaaaac gacggccagt gaattgtaat acgactcact atagggcgaa ttggagctcc 60 accgcggtgg cggccgtccg ccctcggcac catcctcacg acacccaaat atggcgacgg 120 gtgaggaatg gtggggagtt atttttagag cggtgaggaa ggtgggcagg cagcaggtgt 180 tggcgctcta aaaataactc ccgggagtta tttttagagc ggaggaatgg tggacaccca 240 aatatggcga cggttcctca cccgtcgcca tatttgggtg tccgccctcg gccggggccg 300 cattectggg ggccgggcgg tgctcccgcc cgcctcgata aaaggctccg gggccggcgg 360 cggcccacga gctacccgga ggagcgggag gcgccaagct ctagaactag tggatcccaa 420 ggcccaactc cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggtgct 480 ctgggtgttc ttctttgtga tcctcaccct cagcaacagc tcccactgct ccccacctcc 540 ccctttgacc ctcaggatgc ggcggcacgt agatgccatc ttcaccaaca gctaccggaa 600 ggtgctggcc cagctgtccg cccgcaagct gctccaggac atcctgaaca ggcagcaggg 660 agagaggaac caagagcaag gagcataatg actgcaggaa ttcgatatca agcttatcgg 720 ggtggcatcc ctgtgacccc tccccagtgc ctctcctggc cctggaagtt gccactccag 780 tgcccaccag ccttgtccta ataaaattaa gttgcatcat tttgtctgac taggtgtcct 840 tctataatat tatggggtgg aggggggtgg tatggagcaa ggggcaagtt gggaagacaa 900 cctgtagggc ctgcggggtc tattgggaac caagctggag tgcagtggca caatcttggc 960

1020 tcactgcaat ctccgcctcc tgggttcaag cgattctcct gcctcagcct cccgagttgt tgggattcca ggcatgcatg accaggctca gctaattttt gtttttttgg tagagacggg 1080 gtttcaccat attggccagg ctggtctcca actcctaatc tcaggtgatc tacccacctt 1140 1200 ttttaaaata actataccag caggaggacg tccagacaca gcataggcta cctggccatg 1260 cccaaccggt gggacatttg agttgcttgc ttggcactgt cctctcatgc gttgggtcca 1320 ctcagtagat gcctgttgaa ttcgataccg tcgacctcga gggggggccc ggtaccagct 1380 tttgttccct ttagtgaggg ttaatttcga gcttggcgta atcatggtca tagctgtttc 1440 ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaagt 1500 gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg cgctcactgc 1560 ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg 1620 ggagaggegg tttgegtatt gggegetett cegetteete geteactgae tegetgeget 1680 cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca 1740 cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga 1800 accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgccccct gacgagcatc 1860 1920 acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg 1980 cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat 2040 acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcatagctca cgctgtaggt 2100 atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg 2160 2220 acttatcgcc actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg 2280 gtatotgogo totgotgaag coagttacot toggaaaaag agttggtago tottgatoog 2340 gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca 2400 gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagaaga 2460 2520 actcgtcaag aaggcgatag aaggcgatgc gctgcgaatc gggagcggcg ataccgtaaa gcacgaggaa gcggtcagcc cattcgccgc caagctcttc agcaatatca cgggtagcca 2580 acgctatgtc ctgatagcgg tccgccacac ccagccggcc acagtcgatg aatccagaaa 2640 ageggeeatt ttecaceatg atatteggea ageaggeate geeatgggte aegaegagat 2700 cctegecgte gggcatgege gccttgagee tggcgaacag tteggetgge gegageeeet 2760

gatgetette gtecagatea teetgatega caagacegge ttecateega gtaegtgete 2880 gctcgatgcg atgtttcgct tggtggtcga atgggcaggt agccggatca agcgtatgca gccgccgcat tgcatcagcc atgatggata ctttctcggc aggagcaagg tgagatgaca 2940 3000 ggagatectg ecceggeact tegeceaata geagecagte eetteeeget teagtgacaa 3060 cgtcgagcac agctgcgcaa ggaacgcccg tcgtggccag ccacgatagc cgcgctgcct cgtcctgcag ttcattcagg gcaccggaca ggtcggtctt gacaaaaaga accgggcgcc 3120 cctgcgctga cagccggaac acggcggcat cagagcagcc gattgtctgt tgtgcccagt 3180 catagoogaa tagoototoo acccaagogg coggagaaco tgogtgcaat ccatottgtt 3240 caatcatgcg aaacgatcct catcctgtct cttgatcaga tcttgatccc ctgcgccatc 3300 agateettgg eggeaagaaa gecateeagt ttaetttgea gggetteeea acettaeeag 3360 agggcgcccc agctggcaat tccggttcgc ttgctgtcca taaaaccgcc cagtctagca 3420 actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg gcgaaagggg 3480 gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgac 3534

<400> gttgtaaaac gacggccagt gaattgtaat acgactcact atagggcgaa ttggagctcc 60 accgcggtgg cggccgtccg ccctcggcac catcctcacg acacccaaat atggcgacgg 120 gtgaggaatg gtggggagtt atttttagag cggtgaggaa ggtgggcagg cagcaggtgt 180 tggcgctcta aaaataactc ccgggagtta tttttagagc ggaggaatgg tggacaccca 240 aatatggcga cggttcctca cccgtcgcca tatttgggtg tccgccctcg gccggggccg 300 cattectggg ggccgggcgg tgctcccgcc cgcctcgata aaaggctccg gggccggcgg 360 cggcccacga gctacccgga ggagcgggag gcgccaagct ctagaactag tggatcccaa 420 ggcccaactc cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggtgct 480 ctgggtgttc ttctttgtga tcctcaccct cagcaacagc tcccactgct ccccacctcc 540 ccctttgacc ctcaggatgc ggcggtatat cgatgccatc ttcaccaaca gctaccggaa 600 ggtgctggcc cagctgtccg cccgcaagct gctccaggac atcctgaaca ggcagcaggg 660 agagaggaac caagagcaag gagcataatg actgcaggaa ttcgatatca agcttatcgg 720

<210> 8

<211> 3534

<212> DNA

<213> artificial sequence

<220>

<223> Nucleic acid sequence for the TI-GHRH plasmid.

ggtggcatcc	ctgtgacccc	tccccagtgc	ctctcctggc	cctggaagtt	gccactccag	780	
tgcccaccag	ccttgtccta	ataaaattaa	gttgcatcat	tttgtctgac	taggtgtcct	840	
tctataatat	tatggggtgg	aggggggtgg	tatggagcaa	ggggcaagtt	gggaagacaa	900	
cctgtagggc	ctgcggggtc	tattgggaac	caagctggag	tgcagtggca	caatcttggc	960	
tcactgcaat	ctccgcctcc	tgggttcaag	cgattctcct	gcctcagcct	cccgagttgt	1020	
tgggattcca	ggcatgcatg	accaggctca	gctaattttt	gtttttttgg	tagagacggg	1080	
gtttcaccat	attggccagg	ctggtctcca	actcctaatc	tcaggtgatc	tacccacctt	1140	
ggcctcccaa	attgctggga	ttacaggcgt	gaaccactgc	tcccttccct	gtccttctga	1200	
ttttaaaata	actataccag	caggaggacg	tccagacaca	gcataggcta	cctggccatg	1260	
cccaaccggt	gggacatttg	agttgcttgc	ttggcactgt	cctctcatgc	gttgggtcca	1320	
ctcagtagat	gcctgttgaa	ttcgataccg	tcgacctcga	gggggggccc	ggtaccagct	1380	
tttgttccct	ttagtgaggg	ttaatttcga	gcttggcgta	atcatggtca	tagctgtttc	1440	
ctgtgtgaaa	ttgttatccg	ctcacaattc	cacacaacat	acgagccgga	agcataaagt	1500	
gtaaagcctg	gggtgcctaa	tgagtgagct	aactcacatt	aattgcgttg	cgctcactgc	1560	
ccgctttcca	gtcgggaaac	ctgtcgtgcc	agctgcatta	atgaatcggc	caacgcgcgg	1620	
ggagaggcgg	tttgcgtatt	gggcgctctt	ccgcttcctc	gctcactgac	tegetgeget	1680	
cggtcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	cggttatcca	1740	
cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	aaggccagga	1800	
accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	cegeceeect	gacgagcatc	1860	
acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	agataccagg	1920	
cgtttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	1980	
acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcatagctca	cgctgtaggt	2040	
atctcagttc	ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	cccccgttc	2100	
agcccgaccg	ctgcgcctta	tccggtaact	atcgtcttga	gtccaacccg	gtaagacacg	2160	
acttatcgcc	: actggcagca	gccactggta	acaggattag	cagagcgagg	tatġtaggcg	2220	
gtgctacaga	gttcttgaag	tggtggccta	actacggcta	cactagaaga	acagtatttg	2280	
gtatctgcgc	tctgctgaag	ccagttacct	tcggaaaaag	agttggtago	tcttgatccg	2340	
gcaaacaaac	: caccgctggt	agcggtggtt	tttttgtttg	r caagcagcag	attacgcgca	2400	
gaaaaaaagg	g atctcaagaa	gatcctttga	tcttttctac	: ggggtctgac	gctcagaaga	2460	
actcgtcaag	g aaggcgatag	aaggcgatgc	gctgcgaatc	: gggagcggcg	ataccgtaaa	2520	

gcacgaggaa gcggtcagcc cattcgccgc caagctcttc agcaatatca cgggtagcca 2580 2640 acgctatgtc ctgatagcgg tccgccacac ccagccggcc acagtcgatg aatccagaaa ageggecatt ttecaccatg atatteggea ageaggeate gecatgggte aegaegagat 2700 cctcgccgtc gggcatgcgc gccttgagcc tggcgaacag ttcggctggc gcgagcccct 2760 gatgetette gtecagatea teetgatega caagacegge ttecateega gtaegtgete 2820 gctcgatgcg atgtttcgct tggtggtcga atgggcaggt agccggatca agcgtatgca 2880 gccgccgcat tgcatcagcc atgatggata ctttctcggc aggagcaagg tgagatgaca 2940 ggagatectg ecceggeact tegeceaata geagecagte cetteceget teagtgacaa 3000 cgtcgagcac agctgcgcaa ggaacgcccg tcgtggccag ccacgatagc cgcgctgcct 3060 cgtcctgcag ttcattcagg gcaccggaca ggtcggtctt gacaaaaaga accgggcgcc 3120 cctgcgctga cagccggaac acggcggcat cagagcagcc gattgtctgt tgtgcccagt 3180 catagecgaa tageetetee acceaagegg eeggagaace tgegtgeaat eeatettgtt 3240 caatcatgcg aaacgatect catectgtet ettgateaga tettgateee etgegeeate 3300 agateettgg eggeaagaaa geeateeagt ttaetttgea gggetteeea aeettaeeag 3360 agggcgcccc agctggcaat tccggttcgc ttgctgtcca taaaaccgcc cagtctagca 3420 actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg gcgaaagggg 3480 gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgac 3534

<210> 9

<211> 3534

<212> DNA

<213> artificial sequence

<220>

<223> Nucleic acid sequence for the TV-GHRH plasmid.

<400> 9 gttgtaaaac gacggccagt gaattgtaat acgactcact atagggcgaa ttggagctcc 60 accgcggtgg cggccgtccg ccctcggcac catcctcacg acacccaaat atggcgacgg 120 180 gtgaggaatg gtggggagtt atttttagag cggtgaggaa ggtgggcagg cagcaggtgt tggcgctcta aaaataactc ccgggagtta tttttagagc ggaggaatgg tggacaccca 240 aatatggcga cggttcctca cccgtcgcca tatttgggtg tccgccctcg gccggggccg 300 cattectggg ggccgggcgg tgctcccgcc cgcctcgata aaaggctccg gggccggcgg 360 cggcccacga gctacccgga ggagcgggag gcgccaagct ctagaactag tggatcccaa 420 ggcccaactc cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggtgct 480

ctgggtgttc	ttctttgtga	tectcacect	cagcaacagc	tcccactgct	cccacctcc	540	
ccctttgacc	ctcaggatgc	ggcggtatgt	agatgccatc	ttcaccaaca	gctaccggaa	600	
ggtgctggcc	cagctgtccg	cccgcaagct	gctccaggac	atcctgaaca	ggcagcaggg	660	
agagaggaac	caagagcaag	gagcataatg	actgcaggaa	ttcgatatca	agcttatcgg	720	
ggtggcatcc	ctgtgacccc	tccccagtgc	ctctcctggc	cctggaagtt	gccactccag	780	•
tgcccaccag	ccttgtccta	ataaaattaa	gttgcatcat	tttgtctgac	taggtgtcct	840	
tctataatat	tatggggtgg	aggggggtgg	tatggagcaa	ggggcaagtt	gggaagacaa	900	
cctgtagggc	ctgcggggtc	tattgggaac	caagctggag	tgcagtggca	caatcttggc	960	
tcactgcaat	ctccgcctcc	tgggttcaag	cgattctcct	gcctcagcct	cccgagttgt	1020	
tgggattcca	ggcatgcatg	accaggetea	gctaattttt	gtttttttgg	tagagacggg	1080	
gtttcaccat	attggccagg	ctggtctcca	actcctaatc	tcaggtgatc	tacccacctt	1140	•
ggcctcccaa	attgctggga	ttacaggcgt	gaaccactgc	tecettecet	gtccttctga	1200	
ttttaaaata	actataccag	caggaggacg	tccagacaca	gcataggcta	cctggccatg	1260	
cccaaccggt	gggacatttg	agttgcttgc	ttggcactgt	cctctcatgc	gttgggtcca	1320	
ctcagtagat	gcctgttgaa	ttcgataccg	tcgacctcga	gggggggccc	ggtaccagct	1380	
tttgttccct	ttagtgaggg	ttaatttcga	gcttggcgta	atcatggtca	tagctgtttc	1440	
ctgtgtgaaa	ttgttatccg	ctcacaattc	cacacaacat	acgagccgga	agcataaagt	1500	
gtaaagcctg	gggtgcctaa	tgagtgagct	aactcacatt	aattgcgttg	cgctcactgc	1560	
ccgctttcca	gtegggaaac	ctgtcgtgcc	agctgcatta	atgaatcggc	caacgcgcgg	1620	
ggagaggcgg	tttgcgtatt	gggcgctctt	ccgcttcctc	gctcactgac	tegetgeget	1680	
cggtcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	cggttatcca	1740	
cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	aaggccagga	1800	
accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	cegeeeect	gacgagcatc	1860	
acaaaaatcg	g acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	agataccagg	1920	
cgtttcccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	g cttaccggat	1980	•
acctgtccg	ctttctccct	tcgggaagcg	tggcgctttc	tcatagetea	cgctgtaggt	2040	
atctcagtto	ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	cccccgttc	2100	
agcccgaccg	g ctgcgcctta	tccggtaact	atcgtcttga	gtccaacccg	gtaagacacg	2160	
acttatcgc	actggcagca	gccactggta	a acaggattag	cagagcgagg	tatgtaggcg	2220	
gtgctacaga	a gttcttgaag	tggtggccta	a actacggcta	cactagaaga	a acagtatttg	2280	

gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg 2340 2400 gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagaaga 2460 2520 actegteaag aaggegatag aaggegatge getgegaate gggageggeg atacegtaaa 2580 gcacgaggaa gcggtcagcc cattcgccgc caagctcttc agcaatatca cgggtagcca acgctatgtc ctgatagcgg tccgccacac ccagccggcc acagtcgatg aatccagaaa 2640 2700 ageggeeatt ttecaceatg atatteggea ageaggeate geeatgggte aegaegagat cctcgccgtc gggcatgcgc gccttgagcc tggcgaacag ttcggctggc gcgagcccct 2760 gatgetette gtecagatea teetgatega caagacegge ttecateega gtaegtgete 2820 2880 gctcgatgcg atgtttcgct tggtggtcga atgggcaggt agccggatca agcgtatgca gccgccgcat tgcatcagcc atgatggata ctttctcggc aggagcaagg tgagatgaca 2940 ggagatcctg ccccggcact tcgcccaata gcagccagtc ccttcccgct tcagtgacaa 3000 3060 cgtcgagcac agctgcgcaa ggaacgcccg tcgtggccag ccacgatagc cgcgctgcct 3120 cgtcctgcag ttcattcagg gcaccggaca ggtcggtctt gacaaaaaga accgggcgcc cctgcgctga cagccggaac acggcggcat cagagcagcc gattgtctgt tgtgcccagt 3180 3,240 catagoogaa tagoototoo acccaagogg coggagaaco tgogtgcaat coatottgtt 3300 caatcatgeg aaacgateet cateetgtet ettgateaga tettgateee etgegeeate agateettgg eggeaagaaa geeateeagt ttaetttgea gggetteeea acettaeeag 3360 agggcgcccc agctggcaat tccggttcgc ttgctgtcca taaaaccgcc cagtctagca 3420 actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg gcgaaagggg 3480 3534 gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgac

<210> 10

<211> 3534

<212> DNA

<213> artificial sequence

<220>

<223> Nucleic acid sequence for the 15/27/28 GHRH plasmid.

<400> 10
gttgtaaaac gacggccagt gaattgtaat acgactcact atagggcgaa ttggagctcc 60
accgcggtgg cggccgtccg ccctcggcac catcctcacg acacccaaat atggcgacgg 120
gtgaggaatg gtggggagtt attttagag cggtgaggaa ggtgggcagg cagcaggtgt 180
tggcgctcta aaaataactc ccgggagtta tttttagagc ggaggaatgg tggacaccca 240

aatatggcga cggtteetea eeegtegeea tatttgggtg teegeeeteg geeggggeeg 300 catteetggg ggccgggcgg tgctcccgcc cgcctcgata aaaggctccg gggccggcgg 360 cggcccacga gctacccgga ggagcgggag gcgccaagct ctagaactag tggatcccaa 420 ggcccaactc cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggtgct 480 ctgggtgttc ttctttgtga tcctcaccct cagcaacagc tcccactgct ccccacctcc 540 ccctttgacc ctcaggatgc ggcggtatat cgatgccatc ttcaccaaca gctaccggaa 600 ggtgctggcc cagctgtccg cccgcaagct gctccaggac atcctgaaca ggcagcaggg 660 agagaggaac caagagcaag gagcataatg actgcaggaa ttcgatatca agcttatcgg 720 ggtggcatcc ctgtgacccc tccccagtgc ctctcctggc cctggaagtt gccactccag 780 tgcccaccag ccttgtccta ataaaattaa gttgcatcat tttgtctgac taggtgtcct 840 tctataatat tatggggtgg aggggggtgg tatggagcaa ggggcaagtt gggaagacaa 900 cctgtagggc ctgcggggtc tattgggaac caagctggag tgcagtggca caatcttggc 960 tcactgcaat ctccgcctcc tgggttcaag cgattctcct gcctcagcct cccgagttgt 1020 tgggattcca ggcatgcatg accaggetca gctaattttt gtttttttgg tagagaeggg 1080 gtttcaccat attggccagg ctggtctcca actcctaatc tcaggtgatc tacccacctt 1140 1200 ttttaaaata actataccag caggaggacg tccagacaca gcataggcta cctggccatg 1260 cccaaccggt gggacatttg agttgcttgc ttggcactgt cctctcatgc gttgggtcca 1320 ctcagtagat gcctgttgaa ttcgataccg tcgacctcga gggggggccc ggtaccagct 1380 tttgttccct ttagtgaggg ttaatttcga gcttggcgta atcatggtca tagctgtttc 1440 ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaagt 1500 gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg cgctcactgc 1560 ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg 1620 ggagaggegg tttgegtatt gggegetett eegetteete geteaetgae tegetgeget 1680 cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca 1740 cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga 1800 accytaaaaa gyccycytty ctyycytttt tecatagyet ceyceceet gacyaycate 1860 acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg 1920 egttteecee tggaagetee etegtgeget eteetgttee gaeeetgeeg ettaeeggat 1980 acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcatagctca cgctgtaggt 2040

atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc 2100 agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg 2160 2220 acttatcgcc actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg 2280 gtgctacaga gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg 2340 2400 gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagaaga 2460 actcgtcaag aaggcgatag aaggcgatgc gctgcgaatc gggagcggcg ataccgtaaa 2520 gcacgaggaa gcggtcagcc cattcgccgc caagctcttc agcaatatca cgggtagcca 2580 2640 acgctatgtc ctgatagcgg tccgccacac ccagccggcc acagtcgatg aatccagaaa 2700 ageggeeatt ttecaceatg atatteggea ageaggeate geeatgggte aegaegagat cctcgccgtc gggcatgcgc gccttgagcc tggcgaacag ttcggctggc gcgagcccct 2760 gatgetette gtecagatea teetgatega caagacegge ttecateega gtaegtgete 2820 gctcgatgcg atgtttcgct tggtggtcga atgggcaggt agccggatca agcgtatgca 2880 gccgccgcat tgcatcagcc atgatggata ctttctcggc aggagcaagg tgagatgaca 2940 ggagatectg ceceggeact tegeceaata geagecagte cetteceget teagtgacaa 3000 cgtcgagcac agctgcgcaa ggaacgcccg tcgtggccag ccacgatagc cgcgctgcct 3060 cgtcctgcag ttcattcagg gcaccggaca ggtcggtctt gacaaaaaga accgggcgcc 3120 cctgcgctga cagccggaac acggcggcat cagagcagcc gattgtctgt tgtgcccagt 3180 ` catagoogaa tagoototoo acccaagogg coggagaaco tgogtgcaat coatottgtt 3240 caatcatgcg aaacgatcct catcctgtct cttgatcaga tcttgatccc ctgcgccatc 3300 agateettgg eggeaagaaa geeateeagt ttaetttgea gggetteeea acettaeeag 3360 agggcgcccc agctggcaat tccggttcgc ttgctgtcca taaaaccgcc cagtctagca 3420 actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg gcgaaagggg 3480 3534 gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgac

<210> 11

<211> 2710

<212> DNA

<213> artificial sequence

<220>

<223> Vector with a mouse codon optimized GHRH analog sequence

<400> 11

60 tgtaatacga ctcactatag ggcgaattgg agctccaccg cggtggcggc cgtccgccct cggcaccatc ctcacgacac ccaaatatgg cgacgggtga ggaatggtgg ggagttattt 120 180 ttaqaqcggt gaggaaggtg ggcaggcagc aggtgttggc gctctaaaaa taactcccgg 240 qaqttatttt tagagcggag gaatggtgga cacccaaata tggcgacggt tcctcacccg tcgccatatt tgggtgtccg ccctcggccg gggccgcatt cctgggggcc gggcggtgct 300 360 cccgcccgcc tcgataaaag gctccggggc cggcggcggc ccacgagcta cccggaggag cgggaggcgc caagcggatc ccaaggccca actccccgaa ccactcaggg tcctgtggac 420 ageteaceta getgecatgg tgetetgggt getetttgtg atecteatee teaceagegg 480 cagccactgc agectgcete ceagecetee etteaggatg cagaggeaeg tggaegeeat 540 cttcaccacc aactacagga agctgctgag ccagctgtac gccaggaagg tgatccagga 600 catcatgaac aagcagggcg agaggatcca ggagcagagg gccaggctga gctgataagc 660 ttatcggggt ggcatccctg tgacccctcc ccagtgcctc tcctggccct ggaagttgcc 720 actccagtgc ccaccagcct tgtcctaata aaattaagtt gcatcatttt gtctgactag 780 gtgtccttct ataatattat ggggtggagg ggggtggtat ggagcaaggg gcaagttggg 840 aagacaacct gtagggctcg aggggggcc cggtaccagc ttttgttccc tttagtgagg 900 960 gttaatttcg agettggtet teegetteet egeteactga etegetgege teggtegtte ggctgcggcg agcggtatca gctcactcaa aggcggtaat acggttatcc acagaatcag 1020 gggataacgc aggaaagaac atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa 1080 aggccgcgtt gctggcgttt ttccataggc tccgccccc tgacgagcat cacaaaaatc 1140 gacgeteaag teagaggtgg egaaaceega eaggaetata aagataceag gegttteeee 1200 ctggaagete cetegtgege teteetgtte egaceetgee gettacegga tacetgteeg 1260 cctttctccc ttcgggaagc gtggcgcttt ctcatagctc acgctgtagg tatctcagtt 1320 cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga accccccgtt cagcccgacc 1380 gctgcgcctt atccggtaac tatcgtcttg agtccaaccc ggtaagacac gacttatcgc 1440 1500 cactggcagc agccactggt aacaggatta gcagagcgag gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag aacagtattt ggtatctgcg 1560 ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa 1620 ccaccgctgg tagcggtggt ttttttgttt gcaagcagca gattacgcgc agaaaaaaag 1680 1740 gatctcaaga agatcctttg atcttttcta cggggctagc gcttagaaga actcatccag cagacggtag aatgcaatac gttgagagtc tggagctgca ataccataca gaaccaggaa 1800

acggtcagcc	cattcaccac	ccagttcctc	tgcaatgtca	cgggtagcca	gtgcaatgtc	1860
ctggtaacgg	tctgcaacac	ccagacgacc	acagtcaatg	aaaccagaga	aacgaccatt	1920
ctcaaccatg	atgttcggca	ggcatgcatc	accatgagta	actaccaggt	cctcaccatc	1980
cggcatacga	gctttcagac	gtgcaaacag	ttcagccggt	gccagaccct	gatgttcctc	2040
atccaggtca	tcctggtcaa	ccagacctgc	ttccatacgg	gtacgagcac	gttcaatacg	2100
atgttttgcc	tggtggtcaa	acggacaggt	agctgggtcc	agggtgtgca	gacgacgcat	2160
tgcatcagcc	atgatagaaa	ctttctctgc	cggagccagg	tgagaagaca	gcaggtcctg	2220
acccggaact	tcacccagca	gcagccagtc	acgaccagct	tcagtaacta	catccagaac	2280
tgcagcacac	ggaacaccag	tggttgccag	ccaagacaga	cgagctgctt	catcctgcag	2340
ttcattcaga	gcaccagaca	ggtcagtttt	aacaaacaga	actggacgac	cctgtgcaga	2400
cagacggaaa	acagctgcat	cagagcaacc	aatggtctgc	tgtgcccagt	cataaccaaa	2460
cagacgttca	acccaggctg	ccggagaacc	tgcatgcaga	ccatcctgtt	caatcatgcg	2520
aaacgatcct	catcctgtct	cttgatcaga	tcttgatccc	ctgcgccatc	agatccttgg	2580
cggcaagaaa	gccatccagt	ttactttgca	gggcttccca	accttaccag	agggcgcccc	2640
agctggcaat	tccggttcgc	ttgctgtcca	taaaaccgcc	cagtctagca	actgttggga	2700
agggcgatcg		~	o:			2710

<210> 12

<211> 2713

<212> DNA

<213> artificial sequence

<220>

<223> Vector with a rat codon optimized GHRH analog sequence

<400> tgtaatacga ctcactatag ggcgaattgg agctccaccg cggtggcggc cgtccgccct 60 120 cggcaccatc ctcacgacac ccaaatatgg cgacgggtga ggaatggtgg ggagttattt ttagagcggt gaggaaggtg ggcaggcagc aggtgttggc gctctaaaaa taactcccgg 180 gagttatttt tagagcggag gaatggtgga cacccaaata tggcgacggt tcctcacccg 240 tcgccatatt tgggtgtccg ccctcggccg gggccgcatt cctgggggcc gggcggtgct 300 cccgcccgcc tcgataaaag gctccggggc cggcggcggc ccacgagcta cccggaggag 360 cgggaggcgc caagcggatc ccaaggccca actccccgaa ccactcaggg tcctgtggac 420 agctcaccta gctgccatgg ccctgtgggt gttcttcgtg ctgctgaccc tgaccagcgg 480 aagccactgc agcctgcctc ccagccctcc cttcagggtg cgccggcacg ccgacgccat 540

cttcaccage agetacagga ggatectggg ccagetgtac getaggaage teetgeacga 600 gatcatgaac aggcagcagg gcgagaggaa ccaggagcag aggagcaggt tcaactgata 660 agettategg ggtggcatee etgtgaceee teeccagtge eteteetgge eetggaagtt 720 gccactccag tgcccaccag ccttgtccta ataaaattaa gttgcatcat tttgtctgac 780 taggtgtcct tctataatat tatggggtgg aggggggtgg tatggagcaa ggggcaagtt 840 900 gggaagacaa cctgtagggc tcgagggggg gcccggtacc agcttttgtt ccctttagtg 960 agggttaatt tegagettgg tetteegett cetegeteae tgaetegetg egeteggteg ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta tccacagaat 1020 1080 caggggataa cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta 1140 aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag catcacaaaa 1200 atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac caggcgtttc 1260 cccctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc ggatacctgt 1320 ccgcctttct cccttcggga agcgtggcgc tttctcatag ctcacgctgt aggtatctca 1380 gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca cgaaccccc gttcagcccg accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga cacgacttat 1440 cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta ggcggtgcta 1500 cagagttett gaagtggtgg cetaactacg getacactag aagaacagta tttggtatet 1560 1620 gcgctctgct gaagccagtt accttcggaa aaagagttgg tagctcttga tccggcaaac aaaccaccgc tggtagcggt ggtttttttg tttgcaagca gcagattacg cgcagaaaaa 1680 aaggatetea agaagateet ttgatetttt etaegggget agegettaga agaacteate 1740 cagcagacgg tagaatgcaa tacgttgaga gtctggagct gcaataccat acagaaccag 1800 gaaacggtca gcccattcac cacccagttc ctctgcaatg tcacgggtag ccagtgcaat 1860 1920 gtcctggtaa cggtctgcaa cacccagacg accacagtca atgaaaccag agaaacgacc attotoaaco atgatgttog goaggoatgo atcaccatga gtaactacca ggtootoaco 1980 2040 atcoggcata cgagotttca gaogtgcaaa cagttcagoo ggtgccagac cotgatgtto 2100 ctcatccagg tcatcctggt caaccagacc tgcttccata cgggtacgag cacgttcaat acgatgtttt gcctggtggt caaacggaca ggtagctggg tccagggtgt gcagacgacg 2160 cattgcatca gccatgatag aaactttctc tgccggagcc aggtgagaag acagcaggtc 2220 ctgacccgga acttcaccca gcagcagcca gtcacgacca gcttcagtaa ctacatccag 2280 aactgcagca cacggaacac cagtggttgc cagccaagac agacgagctg cttcatcctg 2340

cagttcattc agagcaccag acaggtcagt tttaacaaac agaactggac gaccctgtgc 2400
agacagacgg aaaacagctg catcagagca accaatggtc tgctgtgccc agtcataacc 2460
aaacagacgt tcaacccagg ctgccggaga acctgcatgc agaccatcct gttcaatcat 2520
gcgaaacgat cctcatcctg tctcttgatc agatcttgat cccctgcgcc atcagatcct 2580
tggcggcaag aaagccatcc agtttacttt gcagggcttc ccaaccttac cagagggcgc 2640
cccagctggc aattccggtt cgcttgctgt ccataaaacc gcccagtcta gcaactgttg 2700
ggaagggcga tcg

<210> 13

<211> 2704

<212> DNA

<213> artificial sequence

<220>

<223> Vector with a bovine codon optimized GHRH analog sequence

<400> 13 tgtaatacga ctcactatag ggcgaattgg agctccaccg cggtggcggc cgtccgccct 60 120 cggcaccatc ctcacgacac ccaaatatgg cgacgggtga ggaatggtgg ggagttattt ttagagcggt gaggaaggtg ggcaggcagc aggtgttggc gctctaaaaa taactcccgg 180 gagttatttt tagagcggag gaatggtgga cacccaaata tggcgacggt tcctcacccg 240 tcgccatatt tgggtgtccg ccctcggccg gggccgcatt cctgggggcc gggcggtgct 300 cccgcccgcc tcgataaaag gctccggggc cggcggcggc ccacgagcta cccggaggag 360 cgggaggcgc caagcggatc ccaaggccca actccccgaa ccactcaggg tcctgtggac 420 ageteaceta getgecatgg tgetgtgggt gttetteetg gtgaceetga eeetgageag 480 eggeteceae ggetecetge ceteceagee tetgegeate cetegetaeg eegaegeeat 540 cttcaccaac agctaccgca aggtgctcgg ccagctcagc gcccgcaagc tcctgcagga 600 catcatgaac cggcagcagg gcgagcgcaa ccaggagcag ggagcctgat aagcttatcg 660 gggtggcatc cctgtgaccc ctccccagtg cctctcctgg ccctggaagt tgccactcca 720 gtgcccacca gccttgtcct aataaaatta agttgcatca ttttgtctga ctaggtgtcc 780 ttctataata ttatggggtg gagggggtg gtatggagca aggggcaagt tgggaagaca 840 acctgtaggg ctcgaggggg ggcccggtac cagcttttgt tccctttagt gagggttaat 900 ttcgagcttg gtcttccgct tcctcgctca ctgactcgct gcgctcggtc gttcggctgc 960 ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata 1020 acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg 1080

cattactaac	gtttttccat	aggeteegee	cccctgacga	gcatcacaaa	aatcgacgct	1140
caagccagag	grggcgaaac	ccgacaggac	tataaagata	ccaggegeee	ccccctggaa	1200
gctccctcgt	gcgctctcct	gttccgaccc	tgccgcttac	cggatacctg	tccgcctttc	1260
tcccttcggg	aagcgtggcg	ctttctcata	gctcacgctg	taggtatctc	agttcggtgt	1320
aggtcgttcg	ctccaagctg	ggctgtgtgc	acgaaccccc	cgttcagccc	gaccgctgcg	1380
ccttatccgg	taactatcgt	cttgagtcca	acccggtaag	acacgactta	tcgccactgg	1440
cagcagccac	tggtaacagg	attagcagag	cgaggtatgt	aggcggtgct	acagagttct	1500
tgaagtggtg	gcctaactac	ggctacacta	gaagaacagt	atttggtatc	tgcgctctgc	1560
tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	1620
ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	1680
aagaagatcc	tttgatcttt	tctacggggc	tagcgcttag	aagaactcat	ccagcagacg	1740
gtagaatgca	atacgttgag	agtctggagc	tgcaatacca	tacagaacca	ggaaacggtc	1800
agcccattca	ccacccagtt	cctctgcaat	gtcacgggta	gccagtgcaa	tgtcctggta	1860
acggtctgca	acacccagac	gaccacagtc	aatgaaacca	gagaaacgac	cattctcaac	1920
catgatgttc	ggcaggcatg	catcaccatg	agtaactacc	aggtcctcac	catccggcat	1980
acgagctttc	agacgtgcaa	acagttcagc	cggtgccaga	ccctgatgtt	cctcatccag	2040
gtcatcctgg	tcaaccagac	ctgcttccat	acgggtacga	gcacgttcaa	tacgatgttt	2100
tgcctggtgg	tcaaacggac	aggtagctgg	gtccagggtg	tgcagacgac	gcattgcatc	2160
agccatgata	gaaactttct	ctgccggagc	caggtgagaa	gacagcaggt	cctgacccgg	2220
aacttcaccc	agcagcagcc	agtcacgacc	agcttcagta	actacatcca	gaactgcagc	2280
acacggaaca	ccagtggttg	ccagccaaga	cagacgagct	gcttcatcct	gcagttcatt	2340
cagagcacca	gacaggtcag	ttttaacaaa	cagaactgga	cgaccctgtg	cagacagacg	2400
gaaaacagct	gcatcagagc	aaccaatggt	ctgctgtgcc	cagtcataac	caaacagacg	. 2460
ttcaacccag	gctgccggag	aacctgcatg	cagaccatcc	tgttcaatca	tgcgaaacga	2520
tcctcatcct	gtctcttgat	cagatcttga	teceetgege	catcagatcc	ttggcggcaa	2580
gaaagccatc	cagtttactt	tgcagggctt	cccaacctta	ccagagggcg	ccccagctgg	2640
caattccggt	tcgcttgctg	tccataaaac	cgcccagtct	agcaactgtt	gggaagggcg	2700
atcg						2704

<210> 14 <211> 2704

<212> DNA

<213> artificial sequence

<220>

<223> Vector with a ovine codon optimized GHRH analog sequence

<400> 14 tgtaatacga ctcactatag ggcgaattgg agctccaccg cggtggcggc cgtccgccct 60 120 cggcaccatc ctcacgacac ccaaatatgg cgacgggtga ggaatggtgg ggagttattt 180 ttagageggt gaggaaggtg ggeaggeage aggtgttgge getetaaaaa taacteeegg gagttatttt tagagcggag gaatggtgga cacccaaata tggcgacggt tcctcacccg 240 togocatatt tgggtgtccg coctoggccg gggccgcatt cotgggggcc gggcggtgct 300 cccgcccgcc tcgataaaag gctccggggc cggcggcggc ccacgagcta cccggaggag 360 cgggaggcgc caagcggatc ccaaggccca actccccgaa ccactcaggg tcctgtggac 420 ageteaceta getgecatgg tgetgtgggt gttetteetg gtgaceetga eeetgageag 480 cggaagccac ggcagcctgc ccagccagcc cctgaggatc cctaggtacg ccgacgccat 540 cttcaccaac agctacagga agatcctggg ccagctgagc gctaggaagc tcctgcagga 600 catcatgaac aggcagcagg gcgagaggaa ccaggagcag ggcgcctgat aagcttatcg 660 720 gggtggcatc cctgtgaccc ctccccagtg cctctcctgg ccctggaagt tgccactcca gtgcccacca gccttgtcct aataaaatta agttgcatca ttttgtctga ctaggtgtcc 780 840 ttctataata ttatggggtg gagggggtg gtatggagca aggggcaagt tgggaagaca acctgtaggg ctcgaggggg ggcccggtac cagcttttgt tccctttagt gagggttaat 900 ttcgagcttg gtcttccgct tcctcgctca ctgactcgct gcgctcggtc gttcggctgc 960 1020 ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg 1080 1140 cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct 1200 caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa 1260 gctccctcgt gcgctctcct gttccgaccc tgccgcttac cggatacctg tccgcctttc tcccttcggg aagcgtggcg ctttctcata gctcacgctg taggtatctc agttcggtgt 1320 aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcg 1380 ccttatccgg taactatcgt cttgagtcca acccggtaag acacgactta tcgccactgg 1440 cagcagccac tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct 1500 1560 tgaagtggtg gcctaactac ggctacacta gaagaacagt atttggtatc tgcgctctgc 1620 tgaagccagt taccttcgga aaaagagttg gtagctcttg atccggcaaa caaaccaccg

ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	1680
aagaagatcc	tttgatcttt	tctacggggc	tagcgcttag	aagaactcat	ccagcagacg	1740
gtagaatgca	atacgttgag	agtctggagc	tgcaatacca	tacagaacca	ggaaacggtc	1800
agcccattca	ccacccagtt	cctctgcaat	gtcacgggta	gccagtgcaa	tgtcctggta	1860
acggtctgca	acacccagac	gaccacagtc	aatgaaacca	gagaaacgac	cattctcaac	1920
catgatgttc	ggcaggcatg	catcaccatg	agtaactacc	aggtcctcac	catccggcat	1980
acgagctttc	agacgtgcaa	acagttcagc	cggtgccaga	ccctgatgtt	cctcatccag	2040
gtcatcctgg	tcaaccagac	ctgcttccat	acgggtacga	gcacgttcaa	tacgatgttt	2100
tgcctggtgg	tcaaacggac	aggtagctgg	gtccagggtg	tgcagacgac	gcattgcatc	2160
agccatgata	gaaactttct	ctgccggagc	caggtgagaa	gacagcaggt	cctgacccgg	2220
aacttcaccc	agcagcagcc	agtcacgacc ·	agcttcagta	actacatcca	gaactgcagc	2280
acacggaaca	ccagtggttg	ccagccaaga	cagacgagct	gcttcatcct	gcagttcatt	2340
cagagcacca	gacaggtcag	ttttaacaaa	cagaactgga	cgaccctgtg	cagacagacg	2400
gaaaacagct	gcatcagagc	aaccaatggt	ctgctgtgcc	cagtcataac	caaacagacg	2460
ttcaacccag	gctgccggag	aacctgcatg	cagaccatcc	tgttcaatca	tgcgaaacga	2520
tcctcatcct	gtctcttgat	cagatcttga	teceetgege	catcagatcc	ttggcggcaa	2580
gaaagccatc	cagtttactt	tgcagggctt	cccaacctta	ccagagggcg	ccccagctgg	2640
caattccggt	tegettgetg	tccataaaac	cgcccagtct	agcaactgtt	gggaagggcg	2700
atcg		• 0		. *		2704

<210> 15

<211> 2713

<212> DNA

<213> artificial sequence

<220>

<223> Vector with a chicken codon optimized GHRH analog sequence

<400> 15
tgtaatacga ctcactatag ggcgaattgg agctccaccg cggtggcggc cgtccgcct 60
cggcaccatc ctcacgacac ccaaatatgg cgacggtga ggaatggtgg ggagttattt 120
ttagagcggt gaggaaggtg ggcaggcagc aggtgttggc gctctaaaaa taactcccgg 180
gagttattt tagagcggag gaatggtgga cacccaaata tggcgacggt tcctcacccg 240
tcgccatatt tgggtgtccg ccctcggccg gggccgcatt cctgggggc gggcggtgct 300
cccgcccgcc tcgataaaag gctccggggc cggcggcgc ccacgagcta cccggaggag

cgggaggcgc	caagcggatc	ccaaggccca	actccccgaa	ccactcaggg	tcctgtggac	420
agctcaccta	gctgccatgg	ccctgtgggt	gttctttgtg	ctgctgaccc	tgacctccgg	480
aagccactgc	agcctgccac	ccagcccacc	cttccgcgtc	aggcgccacg	ccgacggcat	540
cttcagcaag	gcctaccgca	agctcctggg	ccagctgagc	gcacgcaact	acctgcacag	600
cctgatggcc	aagcgcgtgg	gcagcggact	gggagacgag	gccgagcccc	tgagctgata	660
agcttatcgg	ggtggcatcc	ctgtgacccc	tccccagtgc	ctctcctggc	cctggaagtt	720
gccactccag	tgcccaccag	ccttgtccta	ataaaattaa	gttgcatcat	tttgtctgac	780
taggtgtcct	tctataatat	tatggggtgg	aggggggtgg	tatggagcaa	ggggcaagtt	840
gggaagacaa	cctgtagggc	tcgagggggg	gcccggtacc	agcttttgtt	ccctttagtg	900
agggttaatt	tcgagcttgg	tcttccgctt	cctcgctcac	tgactcgctg	cgctcggtcg	960
ttcggctgcg	gcgagcggta	tcagctcact	caaaggcggt	aatacggtta	tccacagaat	1020
caggggataa	cgcaggaaag	aacatgtgag	caaaaggcca	gcaaaaggcc	aggaaccgta	1080
aaaaggccgc	gttgctggcg	tttttccata	ggctccgccc	ccctgacgag	catcacaaaa	1140
atcgacgctc	aagtcagagg	tggcgaaacc	cgacaggact	ataaagatac	caggcgtttc	1200
cccctggaag	ctccctcgtg	cgctctcctg	ttccgaccct	gccgcttacc	ggatacctgt	1260
ccgcctttct	cccttcggga	agcgtggcgc	tttctcatag	ctcacgctgt	aggtatctca	1320
gttcggtgta	ggtcgttcgc	tccaagctgg	gctgtgtgca	cgaacccccc	gttcagcccg	1380
accgctgcgc	cttatccggt	aactatcgtc	ttgagtccaa	cccggtaaga	cacgacttat	1440
cgccactggc	agcagccact	ggtaacagga	ttagcagagc	gaggtatgta	ggcgġtgcta	1500
cagagttctt	gaagtggtgg	cctaactacg	gctacactag	aagaacagta	tttggtatct	1560
gcgctctgct	gaagccagtt	accttcggaa	aaagagttgg	tagctcttga	tccggcaaac	1620
aaaccaccgc	tggtagcggt	ggttttttg	tttgcaagca	gcagattacg	cgcagaaaaa	1680
aaggatctca	agaagatcct	ttgatctttt	ctacggggct	agcgcttaga	agaactcatc	1740
cagcagacgg	tagaatgcaa	tacgttgaga	gtctggagct	gcaataccat	acagaaccag	1800
gaaacggtca	gcccattcac	cacccagttc	ctctgcaatg	tcacgggtag	ccagtgcaat	1860
gtcctggtaa	.cggtctgcaa	cacccagacg	accacagtca	atgaaaccag	agaaacgacc	1920
attctcaacc	atgatgttcg	gcaggcatgc	atcaccatga	gtaactacca	ggtcctcacc	1980
atccggcata	. cgagctttca	gacgtgcaaa	cagttcagcc	ggtgccagac	cctgatgttc	2040
ctcatccagg	tcatcctggt	caaccagacc	tgcttccata	cgggtacgag	cacgttcaat	2100
acgatgttt	gcctggtggt	caaacggaca	ggtagctggg	tccagggtgt	gcagacgacg	2160

cattgcatca gccatgatag aaactttctc tgccggagcc aggtgagaag acagcaggtc	2220
ctgacccgga acttcaccca gcagcagcca gtcacgacca gcttcagtaa ctacatccag	2280
aactgcagca cacggaacac cagtggttgc cagccaagac agacgagctg cttcatcctg	2340
cagttcattc agagcaccag acaggtcagt tttaacaaac agaactggac gaccctgtgc	2400
agacagacgg aaaacagctg catcagagca accaatggtc tgctgtgccc agtcataacc	2460
aaacagacgt tcaacccagg ctgccggaga acctgcatgc agaccatcct gttcaatcat	2520
gogaaacgat cotcatootg totottgato agatottgat cocotgogoo atcagatoot	2580
tggcggcaag aaagccatcc agtttacttt gcagggcttc ccaaccttac cagagggcgc	2640
cccagctggc aattccggtt cgcttgctgt ccataaaacc gcccagtcta gcaactgttg	2700
ggaagggcga tcg	2713
*	
<210> 16 <211> 382	
<212> DNA	
<213> artificial sequence	
<220>	
<223> This is the synthetic promoter c1-26.	
<400> 16 ggcggccgag ggcggcgggg caggcagcag gtgttggcac cattectcac cgctctaaaa	60
·	120
ataactcccg tgaggaatgg tgccgtcgcc atatttgggt gtcgacaccc aaatatggcg	
acgggtgagg aatggtgggc aggcagcagg tgttgggaca cccaaatatg gcgacggcca	180
acacctgctg cctgccggga gttattttta gagcggggag ttatttttag agcggtgagg	240
aatggtggac acccaaatat ggcgacggcc ggggccgcat tcctgggggc cgggcggtgc	300
tecegecege etegataaaa ggeteegggg eeggeggegg eecaegaget acceggagga	360
gcgggaggcg ccaagctcta ga	382
<210> 17	
<211> 218 <212> DNA	
<213> artificial sequence	
<220>	
<223> This is the synthetic promoter sequence for c2-26.	
<400> 17 cggccgtcgc catatttggg tgtccgctct aaaaataact cccgacaccc aaatatggcg	60
acggggcagg cagcaggtgt tgggacaccc aaatatggcg acggccgggg ccgcattcct	120
gggggccggg cggtgctccc gcccgcctcg ataaaaggct ccggggccgg cggcggccca	180

egagetacee ggaggagegg gaggegeeaa getetaga	218
<210> 18 <211> 230 <212> DNA <213> artificial sequence	
<220> <223> This is the synthetic sequence for c2-27.	
<400> 18 cggccgtcgc catatttggg tgtcggcagg cagcaggtgt tggcaccatt cctcacccgt	60
cgccatattt gggtgtcggc aggcagcagt gttgggacac ccaaatatgg cgacggccgg	120
ggccgcattc ctgggggccg ggcggtgctc ccgcccgcct cgataaaagg ctccggggcc	180
ggcggcggcc cacgagctac ccggaggagc gggaggcgcc aagctctaga	230
<210> 19 <211> 231 <212> DNA <213> artificial sequence <220> <223> This is the synthetic promoter for c5-5.	
<400> 19 cggccgtccg ccctcgggac acccaaatat ggcgacgggt gaggaatggt gcaccattcc	60
tcacgggagt tatttttaga gcggtgagga atggtggaca cccaaatatg gcgacggccg	120
gggccgcatt cctgggggcc gggcggtgct cccgcccgcc tcgataaaag gctccggggc	180
cggcggcggc ccacgagcta cccggaggag cgggaggcgc caagctctag a	231
<210> 20 <211> 255 <212> DNA <213> artificial sequence	
<220> <223> This is the synthetic promter for c6-5.	
<400> 20 cggccgtcgc catatttggg tgtcccaaca cctgctgcct gccccgtcgc catatttggt	60
gtcggcaggc agcaggtgtt ggccaacacc tgctgcctgc cgggagttat ttttagagcg	120
gacacccaaa tatggcgacg gccggggccg cattcctggg ggccgggcgg tgctcccgcc	180
cgcctcgata aaaggctccg gggccggcgg cggcccacga gctacccgga ggagcgggag	240
gcgccaaget ctaga	255

<212>	283 DNA	10750				
<220>	artificial sequ	ience				
	This is the syn	nthetic prom	noter for ce	5-16.		•
	cgc catatttggg	tgtccgctct	aaaaataact	ccccaacac	ctgctgcctg	6
	gcc atatttgggt					12
	cct gctgcctgcc					18
	ggg ccgggcggtg				gccggcggcg	24
gcccacg	agc tacccggagg	agcgggaggc	gccaagctct	aga		. 28:
<211> <212>	22 263 DNA					
•	artificial sequ	ience				
<220> <223>	This is the syr	nthetic prom	noter for ce	5-39.		
	22 ccg ccctcggggg	agttatttt	agagcgccaa	cacctgctgc	ctgcccgtc	6
gccatat	ttg ggtgtcggca	ggcagcaggt	gttgggggag	ttatttttag	agcgccgtcg	12
ccatatt	tgg gtgtcccgag	ggcggacggc	cggggccgca	ttcctggggg	ccgggcggtg	18
ctcccgc	ccg cctcgataaa	aggeteeggg	gccggcggcg	gcccacgagc	tacccggagg	24
agcggga	ggc gccaagctct	aga				26