

Capacidad de un disco ✓ La capacidad de un disco esta dada por: ✓ Cantidad de Caras: W ✓ Cantidad de Pistas: X ✓ Cantidad de Sectores por Pista: Y ✓ Tamaño del Sector: Z Capacidad = W * X * Y *Z

Acceso a un Disco ✓ Para realizar una Entrada/Salida, por ejemplo un acceso a disco, se requiere de una Llamada al Sistema. En la misma se especifica: ✓ Tipo de Operación (E o S) ✓ Dirección en disco para la transferencia (file descriptor). El file descriptor se obtuvo al hacer la apertura del archivo. ✓ Dirección en memoria para la transferencia (de donde se lee o escribe). ✓ Numero de bytes a transmitir. ✓ Este requerimiento es pasado por el kernel al sub-sistema de E/S quien lo traduce en: (# Cara , # Cilindro, # Sector)

Tiempo de Acce	eso a un Disco (cont.)
✓ Latency: Si este tiempo no se cor que es igual a lo que el disco taro vuelta.✓ Ej:	noce se considera da en dar media
Disco de 5400 RPM (5400 Vueltas € 5400 → 1′ = 60″ = 60.000 ms 1⁄2 → X? = 5,5 ms.	,

Tiempo de Acceso a un Disco (cont.) ✓ Archivo almacenado de manera secuencial Seek + Latency + (Tiempo_Trans_1_bloque * #Bloques) ✓ Archivo almacenado de manera aleatoria (Seek + Latency + Tiempo_Trans_1_bloque) * #Bloques

Prefijos Binarios ✓ Nos permiten crear múltiplos binarios (basados en potencias de 2)						
☑ Son similares en concepto, aunque difieren en valor a los prefijos del Sistema Internacional (SI) basados en potencias de 10 (kilo, mega, giga)						
☑ En la práctica vamos a adoptar el sistema de Prefijos Binarios						
Unidades básicas de información (en bytes) Prefijos del Sistema Internacional Prefijo binario						
			Múltiplo - (Símbolo) Valor			
Múltiplo - (Símbolo)	Estándar SI 10 ³	Binario 2 ¹⁰	- '	2 ¹⁰		
kilobyte (kB)		-	kibibyte (KiB)			
megabyte (MB)	10 ⁶	2 ²⁰	mebibyte (MiB)	2 ²⁰		
gigabyte (GB)	109	2 ³⁰	gibibyte (GiB)	2 ³⁰		
terabyte (TB)	10 ¹²	240	tebibyte (TiB)	240		
_						

Tiempo de Acceso a un Disco - Ejemplos ✓ Supongamos un disco con 6 platos, con 2 caras útiles, 1500 pistas por cara y 700 sectores por pista de 256 bytes cada uno ✓ Si queremos calcular la capacidad total del disco, hacemos: #Caras Total * #Pistas por cara * #Sectores por pista * Tamaño del sector = Tamaño del Disco (6 * 2) * 1500 * 700 * 256 bytes = 225600000 bytes = 3,00407 GiB (Gibibytes)

Tiempo de Acceso a un Disco - Ejemplos ✓ Supongamos un disco con 6 platos, con 2 caras útiles, 1500 pistas por cara y 700 sectores por pista de 256 bytes cada uno ✓ Si queremos saber cuántas caras ocupará un archivo de 513 Mebibytes almacenado de manera contigua a partir del primer sector de la primera pista de una cara determinada : ✓ Lo primero que tenemos que hacer es ver cuánta información podemos almacenar en 1 cara 1500 * 700 * 256 bytes = 268800000 bytes □Una vez que tenemos este dato, lo dividimos por el tamaño del archivo que queremos almacenar: 513 MiB = 537919488 bytes 537919488 / 268800000 = 2,00118 → 3 Caras

Tiempo de Acceso a un Disco - Ejemplos ✓ Supongamos un disco con 6 platos, con 2 caras útiles, 1500 pistas por cara y 700 sectores por pista de 256 bytes cada uno ✓ El disco gira a 12600 RPM, tiene un tiempo de posicionamiento (seek) de 2 milisegundos y una velocidad de transferencia de 15 Mib/seg (Mebibits por Segundo) ✓ Si queremos saber Cuantos milisegundos se tardarían en transferir un archivo almacenado de manera contigua de 4500 sectores: ✓ Recordemos las formulas: Seek + Latency + (Tiempo_Trans_1_bloque * #Bloques) ■ De estos datos tenemos: Seek: 2 ms ■ Latencia: 12600 vueltas → 1 Minuto = 60 Segundos = 60000 ms 0,5 vueltas → x = 2,3809

Tiempo de Acceso a un Disco – Ejemplos (cont., ✓ Supongamos un disco con 6 platos, con 2 caras útiles, 1500 pistas por cara y
700 sectores por pista de 256 bytes cada uno
☑ El disco gira a 12600 RPM, tiene un tiempo de posicionamiento (seek) de 2 milisegundos y una velocidad de transferencia de 15 Mib/seg (Mebibits por
Segundo) ☑ Si queremos saber Cuantos milisegundos se tardarían en transferir un archivo almacenado de manera contigua de 4500 sectores :
✓ Recordemos las formulas:
Seek + Latency + (Tiempo_Trans_1_bloque * #Bloques) Tiempo de transferencia de 1 bloque:
15 Mebibits → 1 Segundo = 1000 ms
256 bytes → X
15728640 Bits → 1 Segundo = 1000 ms
2048 Bits → X = 0,1302 ■ Si tengo 4500 bloques:
0,1302 * 4500 = 585,9 ms. ← Tiempo_Trans_1_bloque * #Bloques
Facultad de Informática UNIVERSIDAD INACONAL DE LA PIATA

☑ Supongamos un disco con 6 platos, con 2 caras útiles, 1500 pistas por cara y 700 sectores por pista de 256 bytes cada uno ✓ El disco gira a 12600 RPM, tiene un tiempo de posicionamiento (seek) de 2 milisegundos y una velocidad de transferencia de 15 Mib/seg (Mebibits por Segundo) ☑ Si queremos saber Cuantos milisegundos se tardarían en transferir un archivo almacenado de manera aleatoria de 4500 sectores : ✓ Recordemos las formulas: (Seek + Latency + Tiempo_Trans_1_bloque) * #Bloques Juntando los datos: ☐ Seek: 2 ms □ Latencia: 2,3809 □ Tiempo de Transferencia de 1 Bloque: 0,1302 milisegundos ☐ Cantidad de Bloques: 4500 (2 + 2,3809 + 0,1302) * 4500 = 20299,95 ms.Planificación de Requerimientos ☑ Seek Time → Parámetro que mas influye en el tiempo de acceso al disco ☑ El SO: ✓ Es responsable de utilizar el hardware en forma eficiente. Para los discos, esto significa obtener el menor tiempo de atención del requerimiento. ✓ Debe por lo tanto minimizar el Seek Time → implica menor distancia recorrida por el brazo. Algoritmos □Objetivo: ☐Minimizar el movimiento de la cabeza □Como: □Ordenando lógicamente los requerimientos pendientes a disco, considerando el número de cilindro de cada requerimiento

Algoritmos – Atención de Fallos de Página ✓ Existen requerimientos especiales que deben atenderse con urgencia (PF o Fallos de Página): ✓En FCFS: Se atiende el PF instantáneamente y luego se sigue en orden FCFS ✓En SSTF: Se atiende el PF instantáneamente y luego se sigue con el requerimiento que menor tiempo de seek genere a partir del PF

	Algoritmos – Atención de Fallos de Página (cont.)		
V	Existen requerimientos especiales que deben atenderse con urgencia (PF o Fallos de Página):		
	V En SCAN: Se atiende el PF instantáneamente inclusive si esto implica cambiar el sentido de giro:		
	 Si hubo que cambiar el sentido de giro, una vez atendido el PF se sigue barriendo los requerimientos con el nuevo sentido de giro (cambia el sentido) 		
	 En C-SCAN: Se atiende el PF instantáneamente inclusive s esto implica cambiar el sentido de giro: 		
	 Si hubo que cambiar el sentido de giro, una vez atendid el PF se vuelve al sentido de giro original (no cambia el sentido) 		
	✓ En LOOK: Idem a SCAN		
	✓ En C-Look: Idem a C-SCAN		
	^		
•	Facultad de Informática UNIVERSIDAD MACIONAL DE LA PLATA		

Algoritmos – Atención de Fallos de Página (cont.) ✓ Suponga un disco rígido con 100 pistas (0..99), donde la cabeza se encuentra en la pista 20 y viene de la 18. Sea la siguiente la secuencia de atención a requerimientos: { 55, 75, 25^{PF}, 45, 10 }. Luego de 30 movimientos entra { 52^{PF}, 60 } y luego de 10 movimientos mas entra {90} ✓ Realice los diagramas de planificación de disco teniendo en cuenta los siguientes algoritmos. Indique para cada uno la cantidad total de movimientos: ✓ FCFS ✓ SSFT ✓ C-LOOK ✓ SCAN

