

УНИВЕРЗИТЕТ У НОВОМ САДУ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА У НОВОМ САДУ

Мијановић Бојан

Дизајн и имплементација *Blockchain* механизма са криптовалутом

ДИПЛОМСКИ РАД - Основне академске студије -

Садржај

1	Уво,	Д	3
2	Осн	ове <i>Rust</i> програмског језика	4
	2.1	Увод у <i>Rust</i> програмски језик	4
	2.2	Зашто Rust за blockchain?	4
3	Уво	д у blockchain технологију	6
	3.1	Основни принципи и концепти	6
	3.2	Поређење са традиционалним базама података	6
4	Архитектура апликације		8
	4.1	Блокови	8
		4.1.1 Генесис блок	9
		4.1.2 Рударење	9
		4.1.3 Хеш функција	10
	4.2	Ланац	10
		4.2.1 Валидација више ланаца	11
5	Лит	ература	13
6	Под	аци о кандидату	14

1 Увод

Blockchain технологија представља дистрибутивну, децентрализовану и јавну базу свих трансакција [1].

Први концепт *blockchain* технологије помиње се у 1982. години, када је Давид Чаум у својој дисертацији описао дистрибуирану базу података која користи криптографију [2]. Овај рани рад није био директно повезан са дигиталним валутама, али је поставио темеље за будући развој *blockchain* - а.

Права револуција долази 2008. године када Сатоши Накамото објављује рад "Bitcoin: Peer-to-peer електронски готовински систем", уводећи први модерни blockchain и криптовалуту Bitcoin. Генесис блок, први блок Bitcoin blockchain - а, ископан је 3. јануара 2009. године, означавајући почетак blockchain технологије какву данас познајемо [3].

Etherium, лансиран 2015. године од стране Виталика Бутерина, увео је паметне уговоре који омогућавају сложеније трансакције и аутоматизацију различитих процеса. Овај развој проширио је примену blockchain технологије далеко изван дигиталних валута, омогућавајући креирање децентрализованих апликација [4].

Blockchain технологије су се од свог настанка имплементирале у различитим програмским језицима и окружењима. У својим раним фазама, blockchain технологије су се углавном развијале користећи језике као што су C++ и Java, захваљујући њиховој ефикасности и широкој употреби у индустрији. Касније, с појавом паметних уговора, Solidity је постао стандард за развој на Etherium платформи.

Овај рад се фокусира на имплементацију основних концепата *blockchain* технологије у програмском језику *Rust*, који је познат по својој сигурности, перформансама и могућности превенције грешака при руковању меморијом.

Рад је структуиран Х целина

2 Основе *Rust* програмског језика

Rust је савремени програмски језик који је развијен да буде безбедан и брз. Развијен од стране Mozilla Research-a, Rust је од свог настанка привукао велику пажњу због својих изузетних безбедносних карактеристика и перформанси [5].

2.1 Увод у Rust програмски језик

Rust је системски програмски језик, а уместо интерпретираног језика, као што су JavaScript или Ruby, има компајлер, као што имају Go, C или Swift. Не комбинује активни runtime, али обезбеђује језичку ергономију. Све је ово могуће захваљујући компајлеру који спречава грешке било којег типа и осигурава да не дође до проблема у меморији пре него што се покрене апликација [6].

Rust обезбеђује перформансе (нема runtime, нити прикупљање "смећа"), безбедност (компајлер осигурава да је све безбедно за меморију, чак и у асинхроним окружењима) и продуктивност (његове уграђене алатке за тестирање, документацију и "менаџер" пакета чине га лаким за израдз и одржавање) [6].

2.2 Зашто Rust за blockchain?

Када је у питању развој blockchain апликација, *Rust* се истиче као одличан избор из неколико разлога:

- 1. **Безбедност меморије**: *Rust*-ов систем власништва и провера за време компилације осигуравају да програмери избегну уобичајене грешке у раду са меморијом, што је критично за сигурност *blockchain* система [7].
- 2. **Перформансе**: *Rust* је дизајниран да буде брз и ефикасан. Његов минималан *overhead* и високо оптимизован компајлер резултирају брзим извршавањем кода, што је важно за обраду великог броја трансакција у реалном времену [7].
- 3. Паралелизам и конкурентност: Rust нуди снажну подршку за паралелно и конкурентно програмирање, омогућавајући оптимално коришћење мултијезгарних процесора [7].

Rust нуди низ алата и библиотека које олакшавају развој сложених апликација. Две од најзначајнијих библиотека за развој blockchain апликација су Tokio и libp2p. Ове библиотеке пружају подршку за асинхроне позиве и peer-to-peer комуникацију, што је кључно за функционалност и ефикасност blockchain система.

Слика 2.1 прииказује технички стек који је укључен у одабир радног оквира. **Warp** је довољно мали да се "склони са пута", довољно се користи да се њиме управља активно и има активну заједницу. Заснован је на *Tokio runtime* - у.

Слика 2.1: Warp веб радни оквир

libp2p је модуларни мрежни стек који омогућава *peer-to-peer* комуникацију. У контексту *blockchain-*а, *libp2p* се користи за омогућавање комуникације између различитих чворова у мрежи. Ова библиотека је флексибилна и подржава различите протоколе за пренос података, што је чини идеалном за развој децентрализованих апликација.

3 Увод у blockchain технологију

Blockchain технологија представља савремен приступ складиштењу и дистрибуцији података. Основни принципи и концепти blockchain технологије нуде дубоку промену у начину на који се информације похрањују, проверавају и дистрибуирају путем децентрализоване мреже рачунара.

3.1 Основни принципи и концепти

Blockchain се може дефинисати као дистрибуисана дигитална књига трансакција. Основна идеја је стварање низа блокова који садрже податке. Блкови су криптографски повезани тако да је немогуће мењати податке у претходним блоковима без мењања свих следећих блокова [8].

Кључни елементи blockchain-а укључују:

- 1. **Децентрализација**: Подаци се похрањују и управљају путем мреже чворова уместо централизованог ауторитета, што осигурава транспарентност и отпорност на цензуру.
- 2. **Дистрибуираност**: Сваки чвор у мрежи садржи комплетан или део *blockchain*-а, омогућујући свима у мрежи да виде исте податке. Ово спречава појединачне тачке квара и повећава отпорност на нападе.
- 3. **Сигурност**: Криптографски алгоритми осигуравају да је свака промена у *blockchain*-у лако проверљива, а трансакције се потврђују кроз консензус мреже.
- 4. **Неповратност**: Након што је трансакција забележена у *blockchain*-у, тешко ју је променити или обрисати без сагласности већине чворова у мрежи, чиме се осигурава поверење и интегритет података.

3.2 Поређење са традиционалним базама података

Насупрот традиционалним базама података које су често централизоване и ослањају се на поверење у једну јединицу, *blockchain* нуди неколико кључних разлика:

- 1. **Централизација у односу на децентрализацију**: Традиционалне базе података често су централизоване под контролом једне организације. *Blockcha-in* дистрибуише податке широм мреже, елиминишући потребу за централним ауторитетом.
- 2. **Транспарентност и проверљивост**: *Blockchain* омогућава свим корисницима увид у све трансакције које су се догодиле, што повећава транспарентност и смањује могућност манипулације.

- 3. **Сигурност и отпорност**: Због своје дистрибуиране природе, *blockchain* је отпорнији на нападе и кварове у поређењу са традиционалним базама података које су осетљиве на појединачне тачке квара.
- 4. **Ефикасност и трошкови**: Иако *blockchain* може бити спорији у обради података у поређењу са централизованим базама података, његова сигурност и транспарентност могу надмашити трошкове и ризике традиционалних система.

4 Архитектура апликације

Blockchain технологија се састоји од неколико кључних компоненти које омогућавају њено функционисање. Основне јединице података су блокови, који садрже информације о трансакцијама, временским ознакама и криптографским хеш функцијама претходних блокова. Ови блокови су повезани у секвенцијални ланац, познат као blockchain, који осигурава неповредивост података.

Дистрибуирана мрежа чворова заједнички одржава и верификује blockchain, омогућавајући децентрализацију. Консензус алгоритми, као што су Proof of Work (PoW) и Proof of Stake (PoS), омогућавају учесницима мреже да се сложе око валидности нових блокова. Криптографија осигурава сигурност и приватност података унутар blockchain -а, користећи хеш функције и дигиталне потписе.

У наредним подсецијама, детаљно ћемо описати сваку од ових компоненти, укључујући процесе као што су PoW и мајнинг, који су кључни за додавање нових блокова у ланац.

4.1 Блокови

Блокови су основне јединице података у *blockchain* технологији. Сваки блок садржи скуп података који су повезани са трансакцијама и другим важним информацијама. У контексту *blockchain*-а, блокови су организовани у ланац, где сваки блок садржи хеш претходног блока, што обезбеђује интегритет и сигурност података. Следећи код приказује структуру блока у Rust програмском језику:

```
pub struct Block {
    pub timestamp: DateTime<Utc>,
    pub last_hash: String,
    pub hash: String,
    pub data: Vec<Transaction>,
    pub nonce: u64,
    pub difficulty: u64,
}
```

Атрибути блока су:

- **timestamp**: Време када је блок креиран. Овај атрибут омогућава праћење хронологије трансакција у *blockchain*-у.
- last_hash: Хеш вредност претходног блока у ланцу. Овај атрибут обезбеђује да сваки блок буде повезан са својим претходником, чиме се осигурава интегритет ланца.

- hash: Хеш вредност тренутног блока. Ова вредност се добија применом хеш функције на садржај блока и служи као јединствени идентификатор блока.
- data: Податке у блоку, који обично укључују трансакције. У овом случају, то је вектор трансакција (Vec<Transaction>).
- **nonce**: Произвољни број који рудари мењају током процеса рударења како би добили хеш вредност блока која задовољава критеријуме тешкоће.
- **difficulty**: Ниво тежине који одређује колико је сложено пронаћи важећи хеш за блок. Тежина рударења се прилагођава да би се одржала константна брзина креирања блокова у мрежи.

4.1.1 Генесис блок

Генесис блок је први блок у ланцу блокова и служи као темељ целокупног blockchain система (Слика 4.1). Он нема претходника и обично је ручно креиран од стране креатора blockchain-а. Генесис блок обично садржи посебне параметре и почетне вредности које су специфичне за дат blockchain. Његова важност лежи у чињеници да сваки наредни блок у ланцу зависи од њега кроз хеш вредности.

Слика 4.1: Приказ генесис блока у blockchain-у

4.1.2 Рударење

Рударење је процес додавања нових блокова у blockchain. Рудари користе своју рачунарску снагу да реше комплексне математичке проблеме који су потребни за валидацију нових трансакција и креирање нових блокова. Овај процес захтева значајну количину енергије и ресурса, али је кључан за одржавање безбедности и децентрализације blockchain мреже. У процесу рударења, рудари се такмиче да пронађу одговарајући nonce који ће произвести хеш вредност која испуњава одређене критеријуме тешкоће.

4.1.3 Хеш функција

Хеш функција је критичан елемент у blockchain технологији, јер обезбеђује сигурност и интегритет података у блоковима. Хеш функција узима улазне податке произвољне дужине и генерише фиксну дужину излазне вредности, која је јединствена за те улазне податке. У контексту blockchain-а, хеш функција се користи да повезује сваки блок са претходним блоком, чиме се обезбеђује да свака промена у подацима било ког блока одмах утиче на све наредне блокове, што чини blockchain изузетно отпорним на манипулацију.

4.2 Ланац

Blockchain је структура података која се састоји од низа повезаних блокова, где сваки блок садржи хеш претходног блока, чиме се обезбеђује интегритет и сигурност ланца. Следећи код приказује структуру blockchain-а у Rust програмском језику:

```
pub struct Blockchain {
    pub chain: Vec<Block>,
}
```

Атрибут *chain* је вектор који чува редоследно повезане блокове, формирајући ланац блокова. Слика 4.2 приказује структуру ланца са генесис блоком на почетку.

Слика 4.2: Приказ идеје blockchain-a

4.2.1 Валидација више ланаца

Идеја овог механизма је да подржи више доприносиоца, при чему ће више доприносиоца додавати блокове у *blockchain*. Сваки рудар ће имати своју верзију истог ланца. Када један рудар дода нови блок у ланац, мораће да пошаље тај нови блок осталим ланцима у систему како би они прихватили ту промену и ажурирали целокупни систем. На тај начин сви добијају ажурирану копију са тим новим блоком, чиме се осигурава да сви ланци буду конзистентни.

Слика 4.3: Приказ дељења ланаца

Међутим, да би сви рудари прихватили ове нове ланце, мора постојати неки облик валидације који ће осигурати да је нови блок валидан и да треба да буде прихваћен. Главни облик валидације је прихватање дужих ланаца који стигну. На пример, ако сви имају договорени blockchain који је већ дуг три блока, и један рудар дода два блока у ланац, док други рудар дода само један блок у исто време, систем ће прихватити дужи ланац. На тај начин се осигурава да договорени ланац за све увек буде онај који садржи највише података.

Слика 4.4: Стање пре валидације

Слика 4.5: Стање после валидације

Ово такође решава проблем рачвања у ланцу. На пример, ако две одвојене инстанце blockchain-а истовремено произведу један блок на основу претходног блока, настаје рачвање у систему где оба рудара производе блок на основу истог претходног блока (слика 4.6а). Пола рудара ће имати ланац који је произвео рудар А, а друга половина ће имати ланац који је произвео рудар Б (слика 4.6b). Коначно, систем треба да дође до договора о томе који ланац ће прихватити. Ако неко дода неколико блокова на ланац рудара А, тај ланац ће сада бити дужи од свих осталих у систему (слика 4.6c). Сви ће морати да прихвате најдужи ланац, који садржи блок од рудара А, чиме се решава рачвање прихватањем оригиналног блока од рудара А (слика 4.6d).

Слика 4.6: Решавање рачвања

Ово не значи да блокови са ланца рудара Б губе оригиналне податке, јер се блок који није укључен у рачвање може сада додати на крај новоприхваћеног ланца.

Други облик валидације је провера вредности хеша произведених за сваки блок ланца. Сваки blockchain има приступ хеш функцији која генерише хеш на основу података блока. Када blockchain прими нови ланац, може осигурати да је хеш исправно генерисан тако што ће сам поново генерисати тај хеш. Ако се хешеви не поклапају, вероватно су подаци мењани, и због тога blockchain неће прихватити нови ланац.

5 Литература

- [1] Zheng, Zibin, Shaoan Xie, Hong Ning Dai, Xiangping Chen, i Huaimin Wang: An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. strana 1, Jun 2017.
- [2] Sherman, Alan, Farid Javani, Habin Zhang, i Enis Golaszewski: *On the Origins and Variations of Blockchain Technologies*. University of Maryland, Baltimore County (UMBC) Baltimore, Maryland 21250, Octobar 2018.
- [3] Nakamoto, Satoshi: *Bitcoin: A Peer-to-Peer Electronic Cash System*. Cryptography Mailing list at https://metzdowd.com, Mart 2009.
- [4] Sixt, Elfriede: Ethereum, strane 189-194. Januar 2017, ISBN 978-3-658-02843-5.
- [5] Rust (programming language). https://en.wikipedia.org/wiki/Rust_ (programming_language). прегледано 16. јул 2024.
- [6] Gruber, Bastian: Rust Web Development. Manning, 2023, ISBN 978-1617299001.
- [7] The Rust Reference. https://doc.rust-lang.org/reference. прегледано 16. јул 2024.
- [8] Aggarwal, Shubhani i Neeraj Kumar: Chapter Seven Basics of blockchain M. U: Aggarwal, Shubhani, Neeraj Kumar, i Pethuru Raj (urednici): The Blockchain Technology for Secure and Smart Applications across Industry Verticals, tom 121 iz Advances in Computers, strane 129–146. Elsevier, 2021. https://www.sciencedirect.com/science/article/pii/S0065245820300620.

6 Подаци о кандидату

Кандидат Бојан Мијановић је рођен 2002. године у Зрењанину. Завршио је средњу школу у Зрењанину, 2020. године као ђак генерације. Факултет Техничких Наука у Новом Саду је уписао 2020. године. Испунио је све обавезе и положио је све испите предвиђеним студијским програмом са просечном оценом од 9.75.