QUESTION (HD 2101) (1) Let *D* be a domain. How to show that $D[X^{2}, X^{3}] \cong D[Y, Z]/(Y^{2} - Z^{3})$?

(2) Let $R = Z_{(p)} + (X;Y)Q[[X,Y]]$ and M = (X,Y)Q[[X,Y]]. Why is $R[1/p] = Q[[X,Y]] = R_M$?

ANSWER: There are two answers to each of (1) and (2). One based on a suggestion by Shiqi Xing of Sichuan Normal University, Chengdu, China and the other as a comment on these questions by Tiberiu Dumitrescu of Universitatea Bucuresti, Romania.

Xings Answer: Let $\phi: D[Y,Z] \to D[X^2,X^3]$ defined by $\phi(Y)=X^3$ and $\phi(Z)=X^2$. Then ϕ is onto. Indeed $\ker \phi \supseteq (Y^2-Z^3)$. We need to show that every element g=g(Y,Z) in $\ker \phi$ is divisible by (Y^2-Z^3) . For this we first note that g(0,0)=(0). That is there is no nonzero constant term. Express g as a polynomial in Y as: $g=f_n(Z)Y^n+f_{n-1}(Z)Y^{n-1}+...+f_0(Z)$. Suppose that g is not divisible by (Y^2-Z^3) . Then, $g=q(Y,Z)(Y^2-Z^3)+f(Y,Z)$ and degree of f is less than 2. Hence $\partial f=1$ or 0 in Y. So $f=f_1(Z)Y+f_0(Z)$. Because g(Y,Z)=(0) on setting $Y=X^3$ and $Z=X^2$, we have $f_1(X^2)X^3+f_0(X^2)=(0)$. But this forces $f_1(X^2)X^3=0=f_0(X^2)$, because one is of odd degree and the other of even. Of course as $X^3\neq 0$ we have $f_1(X^2)=(0)$. Whence $f_1(Z)=(0)$ and $f_0(Z)=0$. Forcing f(Y,Z)=0. But then $g=q(Y,Z)(Y^2-Z^3)\in (Y^2-Z^3)$.

(2). Note that $\cap p^n R = \cap (p^n Z_{(p)} + (X;Y)Q[[X;Y]]) \supseteq M = (X;Y)Q[[X;Y]]$ and there is no prime between $\cap p^n R$ and M = (X;Y)Q[[X;Y]] because $\cap p^n Z_{(p)} = (0)$ and indeed there is no prime between pR and M Thus $M = \cap p^n R$. But as M misses powers of p we have $R_M = R[1/p] = Q + M = Q + (X,Y)[[X,Y]] = Q[[X,Y]]$.

Tiberiu's comments around hd2101

Question 1. Let D be a domain. How to show that

$$D[X^2, X^3] = D[Y, Z]/(Y^2 - Z^3)?$$

We can approach this question as follows. Let A be a domain and $d \in A$ such that $\sqrt{d} \notin A$. We get the well-known isomorphism

(*)
$$A[Y]/(Y^2 - d) \simeq A[\sqrt{d}].$$

Indeed, if u is the ring epimorphism $A[Y] \to A[\sqrt{d}]$ sending Y into \sqrt{d} and if $f \in ker(u)$, we divide f by $Y^2 - d$, to get $f = (Y^2 - d)g + aY + b$ with $g \in A[Y]$, $a, b \in A$, to get $0 = f(\sqrt{d}) = a + b\sqrt{d}$, so a = b = 0, thus $f = (Y^2 - d)g$. This is essentially the proof in HD2101. Taking A = D[Z] and $d = Z^3$ in (*), we get

$$D[Z][Y]/(Y^2 - Z^3) \simeq D[Z][\sqrt{Z^3}] \simeq D[X^2, X^3]$$

thus answering Question 1. The case $D = \mathbb{Z}$, that is,

$$(**) \mathbb{Z}[X^2, X^3] = \mathbb{Z}[Y, Z]/(Y^2 - Z^3)$$

is generic in the sense that, given a commutative ring B, we just tensor (**) by B over \mathbb{Z} to get $B[X^2,X^3]=B[Y,Z]/(Y^2-Z^3)$. Note that (**) can be obtained from the epimorphism of rings

$$\mathbb{Z}[Y,Z]/(Y^2-Z^3) \to \mathbb{Z}[X^2,X^3]$$

observing that both rings are two-dimensional domains.

Question 2. Let $R = \mathbb{Z}_{(p)} + (X,Y)\mathbb{Q}[[X;Y]]$ and $M = (X,Y)\mathbb{Q}[[X,Y]]$. Why is

$$R[1/p] = \mathbb{Q}[[X,Y]] = R_M?$$

The first equality is clear because $\mathbb{Z}_{(p)}[1/p] = \mathbb{Q}$. The second equality comes from the following basic fact (for D = R, $S = \{p^n \mid n \ge 1\}$ and P = M).

If D is a domain, $S \subset D$ a multiplicative set and P a prime ideal of D disjoint if S, then QE is a prime ideal of the fraction ring $E = D_S$ and $D_P = E_Q$.

I am thankful to these gentlemen for coming to my rescue at a time when it is hard to concertate due to my current health problems.