You are given a rectangle. This rectangle is sheared 30 degree in the direction of x axis. You are given a point (20, 5). Find out the new co-ordinates of the point (20,5) after the transformation. [hint: First, move the object to the origin, then apply the shearing, then move the object the actual position. So, there will be total 3 steps.]

translate,	10-107
to origin :-	0 1 -10-0
	001

$$= \begin{bmatrix} 1 & 0 & +10 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & tan 30 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -10 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 20 \\ 5 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{1}{\sqrt{3}} & -10 + 10 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 20 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 20 + \frac{5}{\sqrt{3}} \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 22.89 \\ 5 \\ 1 \end{bmatrix}$$

e will be total 3 steps. J	(10)	
A(10,5) \ A'	B(20,5) \(\sigma \(\beta \)	1
30/		
,	·	

$$= \begin{bmatrix} 20 + \frac{5}{13} \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 22.89 \\ 5 \\ 1 \end{bmatrix}$$

Between solid and shell modeling which one calculates faster?

shell model because it only calculates the surface

- - 2. Suppose, you rotated an object θ degree anti-clockwise. Now derive the rotation matrix (7)for this case. [You have to clearly show each steps of your derivation]

Given & degree anti-chockwise rotation.

: 00 = 0BCOSO = COSO

OA = OB 21

$$\top (1.0) \rightarrow (\cos \theta, \sin \theta)$$