

Silan High Performance Power Mosfet

Silan Power MOSFET: The idea of development

Road Map of Silan Power MOSFET

What is the key issue of high voltage Power MOSFET? Why it is a problem?

R _{DS(on)} Analysis				
$V_{DS} \approx 30V$	V _{DS} ≈ 600V			
R _S * ≈ 7 %	R _S * ≈ 0.5%			
$R_{n^+} \approx 6 \%$	$R_{n^+} \approx 0.5 \%$			
$R_{ch}^{"} \approx 28 \%$	R _{ch} ≈ 1.5 %			
$R_a \approx 23 \%$	R _a ≈ 0.5 %			
$R_{epi} \approx 29 \%$	$R_{epi} \approx 96.5 \%$			
$R_{\text{sub}} \approx 7 \%$	$R_{\text{sub}} \approx 0.5 \%$			
R _S * = packaging				

96.5% of Rds(on) for high voltage standard MOSFET determined by the epitaxial resistance

- * Rds(on) / Area $\propto V_{(BR)DSS}^{2.4\sim2.6}$
- * From IBM Power & Cooling Symposium 2005

Super Junction MOSFETs use charge compensation principle

When Mosfet is turning on

The main current path is more heavily doped (by a factor of 10) than for a conventional high-voltage MOSFET.

When Mosfet is turning off

Depletion region forms with merging of carriers from doping in n+ region and p+ region.

^{*} Rds(on) / Area $\propto V_{(BR)DSS}^{1.25}$

^{*} From Jpn. J. Appl. Phys. Vol. 36(1997) pp. 6254-6262

Power Mosfet Design Points

Design Points for Reduction of power loss

Reduce of On Resistance [RDS(on)]
X Gate-Drain Charge[Qgd]

Figure of Merit FOM=Ron X Qgd [Ω nC]

$$Ploss = (Irms^{2} \times R_{DS(on)}) + (I \times \frac{Qgd1 + Qgd2}{Ig} \times V_{DS} \times fc) + (Qg \times V_{GS} \times fc)$$

Conductive Loss

Switching Loss

Gate Drive Loss

FOM against Competitor 600V SJ MOSFET

	ST	Silan	Infineon
Device	STP13NM60N	SVS11N60F	SPA11N60C3
Package	TO-220F	TO-220F	TO-220F
Vds	600V	600V	600V
Vgs	±25V	±30V	±20V
Id	11A	11A	11A
Vth	3.1V	3.1V	3.0V
Rds(on).typ	0.3Ω	0.32 Ω	0.28Ω
Qg.typ	24.4 nC	21 nC	42 nC
Qgd.typ	12 nC	10.8 nC	20.1 nC
FOM: Qgd*Rds	3.6 ΩnC	3.45 ΩnC	5.628 ΩnC

System Efficiency and Power losses

Application: PC Power **Test condition:**

Vin: 220VAC 60Hz

➤ Input: 50W~280W

Gate resistance : 240hm

EMI performance — Conduction Test

Test condition: Vin: 220VAC 60Hz; Input: 280W

Frequency

30.00

[HHz]

EMI performance — Radiation Test

Test condition: Vin: 220VAC 60Hz; Input: 280W

SPA11N60C3 1DB margin V SVS11N60F Over 1DB STP13NM60N Over 3DB

Silan DPMOS Cross Reference

Silan DPMOS Technology development

DPMOS has low rdson and rich package, can support more efficient and compact design of power supply.

DPMOS I / II Line UP

	Part Number	Parameter		Package		Compreti
Vds		ID	RDSON (TYP)	Symbol : Package type	Status	Generati on
600V	SVS2N60D/M	2A	1.4Ω	D: TO-252-2L;M:TO-251-3L	MP	DPMOS I
	SVS4N60D/M	4A	Ω88.0	D: TO-252-2L;M:TO-251-3L	MP	DPMOS I
	SVS6N60D/M	6A	0.6Ω	D: TO-252-2L;M:TO-251-3L	MP	DPMOS I
	SVS7N60D/MJ	7A	0.48Ω	D: TO-252-2L;MJ:TO-251J-3L	MP	DPMOS I
	SVS11N60F	11A	0.32Ω	F:TO-220F-3L	MP	DPMOS I
	SVS20N60F/PT	20A	0.16Ω	F:TO-220F-3L; PN:TO-3PN	MP	DPMOS I
	SVS24N60F/PT	24A	0.14Ω	F:TO-220F-3L; PN:TO-3PN	MP	DPMOS I
	SVS47N60PN	47A	0.055Ω	PN:TO-3P	MP	DPMOS I
650V	SVS4N65D/M	4A	1.1Ω	D: TO-252-2L;M:TO-251-3L	MP	DPMOS I
	SVS7N65D/MJ	7A	0.6Ω	D: TO-252-2L;MJ:TO-251J-3L	MP	DPMOS I
	SVS11N65F	11A	0.4Ω	F:TO-220F-3L	MP	DPMOS I
	SVS20N65F/PT	20A	0.2Ω	F:TO-220F-3L; PT:TO-3PN	MP	DPMOS I
700V	SVS6N70M/D	6A	1.05Ω	D: TO-252-2L;M:TO-251-3L	Sample	DPMOS II
	SVS7N70M	7A	0.78Ω	M:TO-251-3L	Sample	DPMOS II
900\/	SVS13N80F	12A	0.95Ω	F:TO-220F-3L	Coming	DPMOS II
800V	SVS8N80F	6A	0.45Ω	F:TO-220F-3L	soon	DPMOS II

DPMOS Reliability Test Items

Test items	Explanation	Testing conditions and duration	Size	Reference document
HTRB	High Temperature Reverse Bias	TJ = 150°C/ specified TJ(max) 80% Reverse bias junction breakdown voltage; 1000 hrs	22/45/77	JESD22A-108 AEC - Q101
HTGB	High Temperature Gate Bias	TJ = 150°C/specified TJ(max) 100%Grid voltage; 1000hrs	22/45/77	JESD22A-108 AEC - Q101
тс	Temperature Cycling	-65°Cto +150 °C,1000cycs	22/45/77	JESD22A-104 AEC - Q101
UHAST	Unbiased Temperature/Humidity	130°C,85% RH ,96hrs	22/45/77	JESD22A -118
H3TRB	High Humidity High Temp Reverse Bias	85°C / 85% RH 80%Reverse bias junction breakdown voltage, 100V MAX; 1000 hrs	22/45/77	JESD22A-101 AEC -Q101
HAST	Highly Accelerated Stress Test	130°C/ 85% RH 80%Reverse bias junction breakdown voltage(42V max); 96hrs	22/45/77	JESD22A-110 AEC -Q101
RSH	Resistance to Solder Heat	SMD: Reflow soldering ,top temperature,260°C keep 10s,3cycle	22	AEC-Q101 001
SD	Solderability	245±3°C,5s, solder area>95%	22	AEC-Q101 001

DPMOS Reliability Test Flow

DPMOS Reliability Test Equipment

Equipment	Manufacturer	Application	QTY
Oven	ESPEC /LC-233	HTOL,HTRB,HTGB, HTSL/IOL	15
High/low temperature alternating temperature humidity test chamber	ESPEC/ESL-02KA	H3TRB,THB	1
Highly Accelerated stress tester	ESPEC/EHS-221	HAST,UHAST	2
Small ultra-low temperature test chamber	ESPEC/MC-711	LTOL,LTSL	1
Thermal Shock Chamber	ESPEC/TSE-11-A	TC	2
HTRB Monitoring System	ESPEC/SILAN /HTR-21A1000B	HTRB	2
Reflow oven	SUN EAST	Reflow , RSH	1
Model Power Cycle System	Gaoyu/PC-10A300B	IOL, PC	1
Lead-free Solder Furnace	СТ	SD	1

DPMOS Reliability Test Equipment

Small ultra-low temperature test chamber(ESPEC MC-711)

Reflow Solder SUN (EAST Reflow Oven)

High temperature test chamber (ESPEC PH-101)

High temperature test chamber (ESPEC LC-233)

High/low temperature alternating temperature humidity test chamber (ESPEC ESL-02KA)

Thermal Shock Chamber (ESPEC TSE-11-A)

Highly Accelerated stress tester (ESPEC EHS-221)

DPMOS HTRB monitoring system

HTRB Monitoring System

Leakage current analysis

Real-time detection of leakage current of each test device

Up to 77*21 devices at the same time for aging

Silan FA Tool-1

SEM + EDX (Hitachi S-4700)

FIB (FEI FIB-200)

WET STATION

CURVE TRACER(HP 4145B)

CURVE TRACER(Tektronix 576)

MIROSCOPE

Thanks!

http://www.silan.com.cn