

Estrutura

- Máquina de Turing
- Linguagens Reconhecidas

Teoria da Computação

- De todos os modelos conhecidos, a "Máquina de Turing" é o mais poderoso
 - Alan Turing (1936)
- O que acontece se for usada no reconhecimento de linguagens formais?

3

Máquina de Turing

- Nenhum outro modelo matemático é capaz de representar mais linguagens do que ela
- São usadas como base para o estudo teórico dos limites dos computadores reais criados pelo homem. Acredita-se, por exemplo, que nunca haverá um computador capaz de resolver mais problemas do que as máquinas de Turing

Princípio de Funcionamento das MTs

- Parecidas com os autômatos estudados
- · Possuem uma memória linear infinita chamada de fita
 - cada posição da fita guarda algum símbolo
 - os símbolos são lidos em seqüência, um por vez, como faz a "cabeça" ou "cabeçote" com as fitas magnéticas reais
- A palavra de entrada da máquina de Turing é automaticamente gravada na fita quando a máquina é iniciada. Como a fita é infinita, as (infinitas) posições mais à esquerda e mais à direita da palavra são preenchidas com um símbolo especial que chamaremos de símbolo branco.

slide 5

Máquina de Turing

- Formalismo reconhecedor, extensão dos autômatos estudados
- A diferença é que a fita é usada não só para leitura, mas também para escrita
 - Entrada
 - Saída
 - Memória auxiliar

Máquina de Turing

- Fita
 - Inicialmente, recebe a palavra a ser reconhecida
 - Limitada à esquerda
 - Representação do início da fita: \$
 - Infinita à direita
 - Símbolos brancos β, após a palavra

7

Máquina de Turing

- Fita
 - Pode ser lida ou escrita uma posição por vez
 - Alfabeto (símbolos terminais)
 - Alfabeto auxiliar
 - Após uma operação, anda uma posição
 - Esquerda ou Direita
 - Não pode ir para a esquerda se estiver em \$

Função de Transição

- · Recebe como entrada
 - O estado atual
 - O símbolo da posição atual
- Resultados
 - O próximo estado
 - Símbolo a ser gravado
 - Direção do movimento da fita
 - D: direita
 - E: esquerda

9

Princípio de Funcionamento das MTs

 Se considerarmos que a palavra de entrada é abab e que o símbolo branco é representado por □, a fita da MT seria iniciada assim:

A cada etapa, a MT faz três ações na fita: ela lê o símbolo que está sob a cabeça, escreve outro símbolo sobre ele (substituindo-o) e move a cabeça uma única posição, para a esquerda ou para a direita.

Representação da MT

Cada transição tem um rótulo:

X / Y, M, onde:

- X é o símbolo que precisa ser lido da fita (pela cabeça)
- Y é símbolo que será escrito na fita (substituindo X)
- M indica a direção para onde a cabeça se moverá na fita, podendo assumir apenas dois valores:
 - E, para "esquerda" (também pode ser usado L, do inglês left)
 - D, para "direita" (também pode ser usado R, do inglês right)

slide 11

Máquina de Turing

exemplo de MT, que aceita palavras sobre o alfabeto {a,b}:

Máquina de Turing

Vamos começar analisando o comportamento da MT dada quando ela recebe a palavra **aab** como entrada. A configuração inicial da MT é exibida graficamente abaixo:

slide 13

Máquina de Turing

Entrada: ab

MT - Definição Formal

$$T = (Q, Σ, Γ, δ, s, □, F)$$
, onde:

- Q é conjunto finito de estados
- Σ (sigma) é o conjunto dos símbolos de entrada
- Γ (gama) é o conjunto dos símbolos de fita, que são os símbolos que podem ser lidos e escritos na pilha, incluindo todo o conjunto Σ
- δ (delta) é a função de transição, que deixaremos para descrever melhor abaixo
- s é o elemento de Q que serve de estado inicial
- \square é o **símbolo branco**, que é um elemento de Γ mas não de Σ , ou seja, ele aparece na fita mas não pode aparecer em palavras de entrada
- F é o conjunto de estados de aceitação ou estados finais

slide 15

MT - Função de Transição

$$\delta$$
 : Q x $\Gamma \rightarrow$ Q x {E,D}

recebe como argumento um par assim $\bar{o}(q,X)$, onde:

- q é o estado de onde sai a transição
- X é o símbolo na próxima posição da fita

O valor da função, se estiver definido, é uma tripla (p,Y,M) onde:

- **p** é o próximo estado
- Y é o símbolo que será escrito sobre o X (substituindo-o)
- M é a direção de movimento da cabeça, podendo assumir apenas os valores E (esquerda) ou D (direita)

$$\bar{o}(q_0,X) = (q_1,Y,D)$$

MT - Função de Transição

$$\bar{o}(q_0,X) = (q_1,Y,D)$$

slide 17

MT - Representação Formal

Os estados de T1 são facilmente identificáveis: {q0, q1, q2} q0 é estado inicial

conjunto de estados de aceitação é o conjunto unitário $\{q1\}$ Símbolos de entrada $\{a,b\}$.

símbolos da fita incluem todos os símbolos usados: $\{a,b,X,\Box\}$

	а	b	Х	
q ₀	(q ₂ , a, D)	(q ₀ , X, E)	-	(q ₁ , □, E)
q ₁	-	-	-	-
q ₂	(q ₀ , a, D)	(q ₀ , b, D)	(q ₀ , X, D)	(q ₀ , □, D)

se houver a tripla, a MT faz o movimento; se não houver, a MT pára $\mathsf{MT} = \mathsf{DETERMIN} \mathsf{ISTICAS!}$

slide 19

MT

Palavra abc é aceita? Palavra aabc é aceita? Palavra aabbc é aceita?

MT

Questão 2: Represente formalmente o autômato T2 do exemplo de loop.

slide 21

MT

Questão 3: Tomando como base a máquina de Turing T4 com alfabeto de entrada {a,b} dada abaixo, mostre a computação de cada uma das seguintes cadeias e diga se cada cadeia é aceita:

- a) aa
- b) abba
- c) aab
- d) bb

Reconhecimento

- A Máquina de Turing é não-determinística pois permite transições múltiplas para um mesmo símbolo
- Além disso, algumas Máquinas de Turing podem entrar em loop infinito

23

Hierarquia de Chomsky

• Completamos o estudo da hierarquia de Chomsky

