Interpolation surfacique Santé et prévention

Baptiste Jacquin 41107

Comment repérer une victime de nuit ?

Schéma de notre solution

- ✓ Taille et masse
- ✓ Débit de données
- ✓ Sobriété énergitique
- ✓ Coût
- X Résolution

Augmente la résolution pour permettre un pilotage fluide

Problématiques

Peut-on réaliser un système adapté à notre usage ?

Comment traiter le signal de sortie de notre système ?

Quantification des contraintes

Contrainte	Maximum
Masse	250 g
Volume	$8 \times 10^{-3} \text{m}^3$
Tension d'alimentation	10 V

Choix des composants

Interfaces entre les composants

Système final

Image thermique produite

Interpolation surfacique

$$\mathcal{I}(\mathbf{M}) = \sum_{\mathbf{P} \in \mathcal{D}} \phi_{\mathbf{M}}(\mathbf{P}) \cdot \mathcal{I}(\mathbf{P})$$

Interpolation par inverse des distances

$$\phi_{\mathrm{M}}(\mathrm{P}) \propto \mathrm{distance}(\mathrm{M},\mathrm{P})^{-1}$$
 $\Theta(n^4 g^2)$

Inverse des distances

Interpolation bilinéaire

Succession de deux interpolations linéaires

$$\mathcal{I}(\mathrm{M}) = \sum_{i=1}^{4} rac{\mathcal{A}_{\mathrm{M}}(P_i)}{\mathcal{A}} \cdot \mathcal{I}(P_i)$$
 $\Theta(n^2 g^2)$

Implémentation et résultat

Deux fonctions auxiliaires
lineaire
transpose

Bilinéaire

Interpolation par voisins naturels

Détermination d'un ensemble ${\cal V}$ de voisins naturels

$$\mathcal{I}(\mathrm{M}) = \sum_{\mathrm{P} \in \mathcal{V}} \phi_{\mathrm{M}}(\mathrm{P}) \cdot \mathcal{I}(\mathrm{P})$$
 $\Theta(n^2 g^2)$

Diagramme de Voronoï

$$\begin{aligned} \operatorname{Vor}(P,\mathcal{D}) &= \{ M \in \mathbb{R}^2, \forall Q \in \mathcal{D}, \quad \|M - P\| \leq \|M - Q\| \} \\ &= \bigcap_{Q \in \mathcal{D} \setminus \{P\}} D(P,Q) \end{aligned}$$

Détermination des voisins ${\mathcal V}$

$$\begin{split} \mathcal{V}(\mathbf{M}) &= \{ \text{Points limitrophes de Vor}(\mathbf{M}, \mathcal{D} \cup \{\mathbf{M}\}) \} \\ &\simeq \{ P_1, P_2, P_3, P_4 \} \end{split}$$

Pondération de Sibson et de Laplace

$$\phi_{\mathrm{M}}(\mathrm{P}_3) \propto \mathcal{A}(\mathrm{Vor}(P_3, \mathcal{D}) \cap \mathrm{Vor}(\mathrm{M}, \mathcal{D} \cup \{\mathrm{M}\}))$$
 (Sibson)
 $\propto \frac{\mathrm{Longueur\ de\ l'interface}}{\mathrm{Distance\ entre\ les\ points}}$ (Laplace)

Stratégie d'implémentation

Voisins naturels

Pondération périodique

Symétries axiales

Centre du cercle circonscrit

Organigramme de l'implémentation

Résultats

Pondération de Sibson

Pondération de Laplace

Conclusion

Prototype fonctionnel correspondant aux contraintes Communication logicielle établie

Trois interpolations différentes implémentées Analyse de complexité et du rendu

Affichage avec PyQtGraph Interpolation temporelle

Annexe - Domaine de validité

$$\begin{split} \mathcal{A} &= 2 \cdot \mathcal{A}_{\mathrm{carr\acute{e}}} - \mathcal{A}_{\mathrm{disque}} \\ &= 2 d^2 - \pi r^2 \\ &= (2 - \frac{\pi}{2}) \cdot \mathcal{A}_{\mathrm{carr\acute{e}}} \end{split}$$

Annexe - Erreur d'approximation

$$\phi_{\mathrm{M}}(\mathrm{P}) pprox 0.070$$
 (Sibson) $pprox 0.025$ (Laplace) $\ll 1$

Annexe - Conditions de cocyclicité

M, A, B, C cocycliques

$$\iff \exists (O,R), \forall P \in \{M,A,B,C\}, \quad (x_{P} - x_{O})^{2} + (y_{P} - y_{O})^{2} = R^{2}$$

$$\iff \exists (\alpha,\beta,\gamma), \forall P \in \{M,A,B,C\}, \quad x_{P}^{2} + y_{P}^{2} + \alpha x_{P} + \beta y_{P} + \gamma = 0$$

$$\iff \exists (\alpha,\beta,\gamma), \quad \underbrace{\begin{pmatrix} x_{M}^{2} + y_{M}^{2} & x_{M} & y_{M} & 1 \\ x_{A}^{2} + y_{A}^{2} & x_{A} & y_{A} & 1 \\ x_{B}^{2} + y_{B}^{2} & x_{B} & y_{B} & 1 \\ x_{C}^{2} + y_{C}^{2} & x_{C} & y_{C} & 1 \end{pmatrix}}_{N} \begin{pmatrix} 1 \\ \alpha \\ \beta \\ \gamma \end{pmatrix} = 0$$

$$\iff \det(N) = 0$$

$$\iff (x_{M}^{2} + y_{M}^{2})\Delta - \begin{vmatrix} x_{A}^{2} + y_{A}^{2} & y_{A} & 1 \\ x_{B}^{2} + y_{B}^{2} & y_{B} & 1 \\ x_{C}^{2} + y_{C}^{2} & y_{C} & 1 \end{vmatrix} \times_{M} + \underbrace{\begin{vmatrix} x_{A}^{2} + y_{A}^{2} & x_{A} & 1 \\ x_{B}^{2} + y_{B}^{2} & x_{B} & 1 \\ x_{C}^{2} + y_{C}^{2} & x_{C} & 1 \end{vmatrix}}_{X_{M}^{2} + y_{C}^{2} + y_{C}^{2} & x_{C} & 1} y_{M} - \tilde{\Delta} = 0$$

Annexe - Coordonnées du centre d'un cercle circonscrit

$$x_O = \frac{\alpha}{-2} = \frac{1}{2\Delta} \begin{vmatrix} x_A^2 + y_A^2 & y_A & 1 \\ x_B^2 + y_B^2 & y_B & 1 \\ x_C^2 + y_C^2 & y_C & 1 \end{vmatrix}$$

$$y_O = \frac{\beta}{-2} = \frac{-1}{2\Delta} \begin{vmatrix} x_A^2 + y_A^2 & x_A & 1 \\ x_B^2 + y_B^2 & x_B & 1 \\ x_C^2 + y_C^2 & x_C & 1 \end{vmatrix}$$

Annexe - Affichage avec PyQtGraph

