Вопросы к зачоту по структурам

1 Асимптотические оценки времени работы алгоритмоги и их смысл

Пусть f, g функции принимающие только положитльные значения

Определение 1 (Тета) $f = \Theta(g): \exists c_1, c_2 > 0 n_0: \forall n > n_0 \ c_1 g(n) \leq f(n) \leq c_2 g(n)$

Пример 1.1

$$\frac{n^2}{2} - 3n = \Theta(n^2).$$

Чтоб доказать нужно найти нужные константы

$$c_1 n^2 \le \frac{n^2}{2} - 3n \le c_2 n^2.$$

$$c_1 < \frac{1}{2} - \frac{3}{n} \le c_2.$$

$$c_1 = 1/4.$$

$$c_2 = 1/2.$$

 $npu \ n \ge 12$

Пример 1.2

$$c_1 2^n \le 2^{n+1} \le c_2 2^n$$
.
 $c_1 \le 2 \le c_2$.

Определение 2 (О)

$$f = O(g) : \exists c \ n_0 \forall n > n_0 : f(n) \le cg(n).$$

Определение 3 (Омега)

$$f = \Omega(n) : \exists c, n_0 \forall n > n_0 f(n) \ge cg(n).$$

Определение 4 (о-малое)

$$f = o(g) : \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

2 Теорема о рекурсии

Есть рекурсивный алгоритм. Его время работы зависит от параметра n (размера входных данных)

- 1. Если n < k, k = const решаем задачу нерекурсивно относительно п
- 2. иначе разбиваем задачу на a подзадач размера $\frac{n}{b}$ каждую решаем рекрсувно Время работы такого алгоритма описываем такой формулой

$$T(n) = \begin{cases} g(n), n < k \\ a * T(\frac{n}{b}) + f(n), n \ge k \end{cases}.$$

g(n) время для нерекурсивного решения , f(n) время для определения подзадач и собирания результатов рекурсивных вызовов

Теорема 1 Пусть время работы рекурсивного алгоритма выражается формулой

$$T(n) = aT(\frac{n}{b}) + f(n).$$

- 1. Если $f(n) = O(n^c), c < \log_b a$ то $T(n) = \Theta(n^{\log_b a})$
- 2. Если $f(n) = \Theta(n^c(\log_b a)^k$ для $k \geq 0, c = \log_b a$, то $T(n) = \Theta(n^c(\log n)^{k+1})$

3. $f(n) = \Omega(n^c)c > \log_b a$, то $T(n) = \Theta(f(n))$ для это еще должно быть

$$af(\frac{n}{b}) < kf(n) \ k < 1.$$

Частный случай при a=b

$$T(n) = aT(\frac{n}{a}) + f(n).$$

- 1. Если $f(n) = O(n^c), c < 1$ то $T(n) = \Theta(n)$
- 2. Если $f(n) = \Theta(n)$ то $T(n) = \Theta(n \log n)$
- 3. Если $f(n) = \Omega(n^c), c > 1$, То $T(n) = \Theta(f(n))$

Пример 1.1

$$T(n) = 9T(\frac{n}{3}) + n.$$

$$\log_b a = 2.$$

$$n = O(n) \iff T(n) = \Theta(n^2).$$

Пример 1.2

$$T(n) = T(\frac{2n}{3}) + 1.$$

$$f(n) = 1.$$

$$a = 1.$$

$$b = \frac{3}{2}.$$

$$\log_{3/2} 1 = 0.$$

3 Сортировка слиянием

Оценка времени работы $T(n) = 2T(\frac{n}{2}) + n$

$$n = \Theta(n)$$
.

По теореме $T = \Theta(\log n)$

4 Длинная арифметика

Число представляем как список int, каждое число меньше некого числа, которое помешается в int. $a = \{a_0, a_1, \dots, a_{n-1}\}, \forall i < n-1 \ a_i < b$

$$a = \sum_{i=0}^{n-1} a_i b^i.$$

За b удобно брать большую степень 10 , например миллион. Еще удобнее брать большую степень двух как пример 2^{31}

4.1 Сложение

Сложение двух длинных чисел происходит точно так как в столибик. Для сложения нужно сделать n элементарных операций, где n количесвто цифр самого длинного числа.

4.2 Деление с остатотком

Опять алгоритм деления в столбик

4.3 Умножение

Если умножать в столбик, придется сделать n^2 элементарных операций

4.3.1 Алгоритм карацубы

Пусть есть числа a,b длины n,c основание системы счисления

$$x = c^{n/2}.$$

$$a = \alpha_1 x + \alpha_2.$$

$$b = \beta_1 x + \beta_2.$$

$$ab = \alpha_1 \beta x^2 + \alpha_1 \beta_2 x + \alpha_2 \beta_1 x + \alpha_2 \beta_2 = \alpha_1 \beta_1 x^2 + (\alpha_1 \beta_2 + \alpha_2 \beta_1) x + \alpha_2 \beta_2.$$

$$T(n) = 4T(n/2) + O(n).$$

$$\log_2 4 = 2.$$

$$T(n) = \Theta(n^2).$$

$$\alpha_1 \beta_1 x^2 + (\alpha_1 \beta_2 + \alpha_2 \beta_1) x + \alpha_2 \beta_2 = \alpha_1 \beta_1 x^2 + ((\alpha_1 + \beta_1)(\alpha_2 + \beta_2) - \alpha_1 \beta_1 - \alpha_2 \beta_2) + \alpha_2 \beta_2.$$

$$T(n) = 3T(\frac{n}{2}) + O(n).$$

5 Алгоритм рабина карпа

Есть строка, есть подстрока, есть хешфункция, все хеши подстрок нужной длины сранвивем с хешем искомой, если равны, сравниваем посимвольно. Для опитимизации, надо сделать хорошую хеш функцию, чтоб было малок коллизий, чтобы она например зависела от позиций.

6 Грамматики, Регулярные выражения

Можно определить язык через регулярные выражения. Рассмотрим регулярки в джаве. В джаве есть класс Pattern и класс Mathcher. Pattern содержит компилированны выражения, Mathcer ищут в тексте штуки по регулярке.

Рассмотрим задачу, есть строка s, нужно проверить подходит ли под регулярку s . mathcher (" kjdskjdsk ");

такая фигня возвращает boolean

7 Задача

Есть две квадратные матрицы, хотим сосчитать произведение. За какое время можем сделать Наивный алгоритм $\Theta(n^3)$

7.1 Алгоритм Штрассена для умножения матриц

Сначала рассмотрим умножение комплексных чисел

$$c_1 = (a + bi).$$

$$c_2 = (c + di).$$

Хотим меньше умножений

$$A_1 = (a+b)(c-d).$$

$$A_2 = ad.$$

$$A_3 = bc.$$

$$(ac-bd) = (ac+bc-ad-bd) + ad-bc = A_1 + A_2 - A_3.$$

$$ad+bc = A_2 + A_3.$$

Мы уменшили количество умножений, за счет увеличений количеств сложений. Пусть есть две вещественно значные матрицы, считаем что размер матрицы есть степень 2, если не степень, дополняем нулями. Каждую матрицу делим на 4 квадрата

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

$$B = \begin{pmatrix} e & g \\ f & h \end{pmatrix}.$$

$$A \times B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & g \\ f & h \end{pmatrix} = \begin{pmatrix} ae + bf & ag + bh \\ ce + df & cg + dh \end{pmatrix}.$$

Потребовалось 8 матричных умножений и n^2 сложений

$$T(n) = 8T(\frac{n}{2}) + \Theta(n^2).$$

по теореме о рекурии $T(n) = \Theta(n^3)$. Херня полная, нужно уменшить рекурсивные вызовы до 7

$$r = ae + bg.$$

$$s = ag + bh.$$

$$t = ce + df.$$

$$u = cg + dh.$$

i	A_i	B_i	$P_i = A_i \times B_i$	-
1	a	g - h	ag - ah	Бля, лень в випедии посмотрю
2	a+b	h	ah + bh	

У булевых матриц используют прикол, так как у булевых операций нет вычитания. Булевы значения меняют на 0,1 перемножают ка числовые и ненули заменяют на true

8 Алгоритм без полиноминального решения

Такие алгоритмы при больших числа не имеют смысла, поэтому используют приближенный алгоритм

8.1 Задача коммивояжера

Есть связный граф, вершины соеденны ребрами. Есть вершина, надо пройти по всем хотя бы один раз и вернуться в исходную. Так е все ребра имееют вес,

Задача, решается, если в графе выполняется неравенство треугольника

- 1. Можно пребрать все гамильтоновы циклы, очень долго и гавно вообще.
- 2. Жадный алгоритм, дает рещультат не более чем в два раза хуже оптимального.
- 3. Построение пути по минимальному скелету, не более чем в два раза хуже оптимального
- 4. Линейное программирование, но может скатиться в полнй перебор

8.2 Жадный алгоритм

Жадный алгоритм на каждом шаге пытается доавить в имеющийся цикл одну вершину, ближайшую к циклу. Этот алгоримт хорошо работает в случае полного графа

9 Слова и алфавиты

Алфавит
$$A=\{a_1,a_2,\ldots,a_n\}.$$
 $b\in A.$

множество симвлов (букв)

Слово
$$\alpha = a_1 a_2 \dots a_k$$
.

Последоватлеьность символов

$$\mid \alpha \mid := k.$$

длина слова

$$\mid \epsilon \mid := 0.$$

пустое слово, не содержит символов

$$A^k$$
.

множество слов над алфавитом A длины k Введем операцию котенации (конкатенации)

$$\alpha = a_1 a_2 \dots a_n \in A^n.$$

$$\beta = b_1 b_2 \dots b_m \in A^m.$$

$$\alpha \beta = a_1 a_2 \dots a_n b_1 b_2 \dots b_m \in A^{n+m}.$$

$$\alpha \epsilon = \epsilon \alpha = \alpha.$$

$$A^+ := \bigcup_{i=1}^{\infty} A^i.$$

Множество всех непустых слов над алфавитом A

$$A^* := \bigcup_{i=0}^{\infty} A^i.$$

Множество всех слов над алавитом A

$$\alpha \in A^*, \beta \in B^* \alpha \beta \in (A \cup B)^*.$$

 $L \subset A^*$ Язык над алфавитом.

$$L, M \subset A^*$$
.

$$LM = \{ \alpha\beta \mid \alpha \in L, \beta \in M \}.$$

котенация языков

9.1 Регуляные язык

Рассмотрим алфавит $A = \{a, b, \dots, \}$. Регулярные выражения включают символы языка и операции объединения и котенации

- 1. Выражение $a \in A$ задает язык $L = \{a\}$
- 2. E_1 выражение задает язык L_1 , E_2 задает язык L_2

$$E_1|E_2$$
, задает $L_1 \cup L_2$.

- 3. E_1E_2 задает L_1L_2
- 4. *, + переносятся с выражений на языки

9.1.1 Примеры

1. A=a,b,c,E=a(a|b|c|)*c задает язык, определяющй множество слов, которые начинаются на а,кончаются на с

$$A = a|b|c$$
.

$$E = aA^*c.$$

2.

$$\lambda = \{\epsilon\}.$$

$$[A] = A|\lambda.$$

$$A^{[k]} = \bigcup_{i=0}^k A^i.$$

$$A = \{0, 1, 2, \dots, 9, +, -, E, .\}.$$

Задаем регулярку для правильных вещественных чисел

$$D = 0|1|\dots|9.$$

$$[+|-]D^{+}[.D^{+}][E[+-]D^{+}].$$

9.2 Графическое задание регулярного выражения

Регулярное выражение можно задать с помощью графа, где есть сток и исток