ITS64304 Theory of Computation

School of Computer Science Taylor's University Lakeside Campus

Lecture 1: Language and Grammar

Dr Raja..

Learning outcomes

At the end of this topic students should be able to:

- define a formal language for a given grammar*
- Write a regular grammar for a given regular expression or language*
- * Aligns to Module Learning Outcome 1 (MLO1)

- A <u>language</u> is a set of strings
- Definition 1: An <u>alphabet</u> is a finite set of symbols.
- Examples:
 - Roman: {a, b, c, d, e, f, ... z}
 - Greek: $\{\alpha, \beta, \gamma, \delta...\}$
 - Binary: {0,1}
 - Numeric: {0,1, 2, 3, 4, 5, 6, 7, 8, 9}
 - Alphanumeric: {a-z, A-Z, 0-9}
 - C Tokens

- A string is a set of symbols
- Definition 2: A <u>string</u> over an alphabet ∑ is a finite sequence of symbols from ∑

e.g:

- watermelon and banana are strings over {a, b, c, d, e, f, ...z}
- 1011010111 and 110 are strings over {0,1}
- if ((x += 1) >= y) while z is a string of C tokens
- $w_1 = \text{``}(3+2) \text{'`}(9-7)\text{''}$ and $w_2 = \text{``}72) + 3(\text{'`'})$ are strings over \sum where, $\sum = \{0,1,...9, (,), +, -, *, =\}$ for basic arithmetic language
- w_1 is in the language of arithmetic, <u>but w_2 is not</u>.

How to determine this

- Strings can be empty; we denote the empty string by λ
- The set of all strings over the alphabet ∑ (including λ) is denoted by ∑*
- ∑* represents all possible strings, some of which may not make sense
- A language places restrictions on what set of strings are valid (or legal)
 - For example, this sentence is not a valid English sentence,
 - 'although almost is it'.
 - "Grave danger you are in. Impatient you are"

Example

- Let $\Sigma = \{a, b, c\}$. The elements of Σ^* include
 - Length 0: λ
 - Length 1: a b c
 - Length 2: aa ab ac ba bb bc ca cb cc
 - Length 3: aaa aab aac aba abb abc aca ...

Kleene star *

Let X be a set. Then

Stephen Cole Kleene

$$X^* = \bigcup_{i=0}^{\infty} X_i \qquad X^+ = \bigcup_{i=1}^{\infty} X_i$$

X^{*} = set contains all strings that can be built from the elements of X

 X^+ = set of all non-null strings over $X = XX^*$

- The syntax of programming languages places restrictions on the ordering of constructs
- Natural languages can be very difficult to get right:
 - incorrect syntax: An arrow like flies time
 - correct syntax: An arrow flies like time
 - sensible semantics: Time flies like an arrow
 - sensible semantics (?): fruit flies like a banana

- Definition 3: A <u>language</u> over an alphabet ∑ is a subset of ∑*
- Hence a language is just a "certain class" of strings over ∑ e.g.:
 - $\Sigma = \{0, 1\}, L = \{0, 01, 011, 0111, 01111, ...\}$
 - $\Sigma = \{a,...z\}, L = \{ab,cd,efghi,s,z\}$
 - $\Sigma = \{0, 1\}, L = \{ \text{ (representations of) primes} \}$
 - ∑ = C Tokens, L = { legal C programs }
 - $\Sigma = \{0, 1\}, L = \{\text{strings containing at least 2 0's}\}$
 - $\Sigma = \{a,...z\}, L = \emptyset$
- In general, the following format is used to specify a language:
 - L = $\{w \in \Sigma^* \mid w \text{ has property P}\}$
- Hence to define a language, two elements needed:
 - building blocks/alphabets and
 - rules for correct sequence of letters from alphabet

Specifying languages

Several approaches

- Strings matched by a particular regular expressions
 - Sequence or concatenation e.g., '0' followed by '1' (w₁ w₂)
 - Selection or alternation e.g., 'either 00 or 11' (w₁ | w₂)
 - Repetition w* e.g., (01)*
 (w zero or more times called Kleene star))
- Strings generated by some rules in a formal grammar
 - A sentence contains a subject followed by a verb phrase
 - <sentence> <noun_phrase>
 - E.g., David went home
- Strings accepted by some automaton
- Strings for which some YES/NO algorithm output's "YES"

Describing a Languages

- We need to have some mechanism to describe what are the valid strings within a language.
- Consider the "language" of correct mathematical expressions (infix notation), involving variable names, *, + (,)
- How can we describe legal phrases in this language?
 - Examples of valid strings:

•
$$a * (b * c + d)$$

$$\cdot$$
 $(c+d)$

- Examples of invalid strings:
 - *+a
 - + b + *
 - (* c d

Rule form used in the textbook:

- $E \rightarrow E + E$
- E → E * E
- \blacksquare $E \rightarrow (E)$
- \blacksquare E \rightarrow id
- BNF form

- <id>::= string
- Other conventions for specifying language rules include:
 - DTD's (Data Type Definitions) for languages (e.g.: HTML)
 - Regular Expressions
 - An expression that describes a set of strings
 - simple languages with only union, concatenation, repetition

Regular Expressions

- ø represents the empty language
- Hence regular expressions are strings over the alphabet $\{(,), \emptyset, \lambda, U, *\} \cup \Sigma$

A set of strings is regular if it can be generated from the empty set, the set containing the null string, and sets containing a single element of alphabet, using union, concatenation and the kleene star operation.

Definition 4:

- 1. \emptyset , λ and each member of Σ is a regular expression
- If α and β are regular expressions, then so is $(\alpha\beta)$ [concatenation]
- 3. If α and β are regular expressions, then so is (α U β) [union]
- 4. If α is a regular expression, then so is α^* [kleene star]
- 5. Nothing else is a regular expression
- Regular expressions are used as a finite representation of languages
- A language is called regular if it is defined by a regular set
 Theory of Computation, Lecture 1

Concatenation of Languages

 <u>Definition:</u> The concatenation of languages X and Y, denoted XY is the language

$$XY = \{uv \mid u \in X \text{ and } v \in Y\}$$

The concatenation of X with itself n times is denoted X^n . (X length n)

 X^0 is defined as $\{\lambda\}$ (X length 0, hence empty)

Example:

- Let X = {a, b, c} and Y = {abb, ba}. Then
 - XY = {aabb, babb, cabb, aba, bba, cba)
 - $X^0 = \{\lambda\}$
 - $X^1 = X = \{a, b, c\}$
 - X² = XX ={aa, ab, ac, ba, bb, bc, ca, cb, cc}
 - $X^3 = X^2X = \{$ aaa, aab, aac, aba, abb, abc, aca, acb, $\}$

Kleene star of Languages

Kleene star of a language, L, denoted by L^* .

L* is the set of all strings obtained by concatenating zero or more strings from L

Example:

```
L = {a}
L* = {e, a, aa, aaa, aaaa,...}
L = {a, bb}
L* = {e, a, bb, aa, bbbb, abb, bba, aabb, abbbb, bbaa, bbbaa, bbbaa...}
```

Definition 5:

The language L(a) of a regular expression is defined as:

```
1. L(\emptyset) = \emptyset. L(\alpha) = \{\alpha\} for each \alpha \in \Sigma
```

- If α and β are regular expressions, then $L(\alpha\beta) = L(\alpha)L(\beta)$.
- If α and β are regular expressions, then L(α U β) = L(α) U L(β).
- 4. If α is a regular expression, then $L(\alpha^*) = L(\alpha)^*$.

```
    L((a U b)*a) = {a, aa, ba, aaa, aba, baa, bba,...} = {w ∈ {a, b}* | w ends in a } = {1, 01, 011, 0101, 01011,...} = {w | w does not contain 00}
    L(0*(10*)*) = {0, 1, 00, 01, 10, 11, 001,...} = {0, 1}*
```

- There can be many different regular expressions for a given language
- For example,
 (0 U 1)*
 = ((0 U 1)*)*
 = (0 U 1)*(0 U 1)*
 = (0* U 1*)*

Different regular expressions for the same language

- We often want the "simplest" expression to represent languages
 - (usually minimal number of nested Kleene stars)
- Used in search facilities (vi editor, emacs, grep, egrep, fgrep, . . .) and in compilers
- There are languages that cannot be defined by any regular expression
- for example, there is no regular expression for $L = \{0^n1^n \mid n \ge 0\}$

Formalism to specify languages

- Many formalisms to specify languages
 - Regular expressions, grammars, automata...
- Language: a set of words / strings from a known alphabet
- Need a way to specify correct subset of strings
 - Regular expression is one way where a string must match a regular expression
 - Grammar is another, where a string must be generated from rules
 - Others.... Such as automata

Generating Language Strings

Consider the language defined by a(a* U b*)b

(1)

- First output 'a'.
- Then output string of 'a"s or string of 'b"s.
- Then output 'b'
- Let S = a string, M = the "middle part", A = a string of a's, B = a string of b's
- S → aMb
- $\blacksquare M \to A \tag{2}$
- $\blacksquare M \to B \tag{3}$
- $\bullet A \to aA \tag{4}$
- $\bullet \quad \mathsf{A} \to \lambda \tag{5}$
- $\bullet \quad \mathsf{B} \to \mathsf{bB} \tag{6}$
- $\bullet \quad \mathsf{B} \to \lambda \tag{7}$

To generate the string aaab:

S
aMb rule (1)
aAb rule (2)
aaAb rule (4)
aaaAb rule (4)
aaab rule (5)

- Context free grammars: Rules can be applied to symbols (e.g. A) regardless of context of symbol
- This makes them computationally useful
- e.g: Even length strings over {a,b}

$$S \rightarrow aO \mid bO \mid e$$

 $O \rightarrow aS \mid bS$

$$S \Rightarrow aO \Rightarrow abS \Rightarrow abbO \Rightarrow abbbS \Rightarrow abbb$$

Strings with an even number of b's (i.e. a*(ba*ba*)*)

$$S \rightarrow aS \mid bB \mid \lambda$$

B \rightarrow aB \rightarrow bS

$$S \Rightarrow aS \Rightarrow abB \Rightarrow abbS \Rightarrow abbbaB \Rightarrow abbbabS \Rightarrow abbbab$$

Strings not containing abc

$$S \rightarrow aB \mid bS \mid cS \mid \lambda$$

 $B \rightarrow aB \mid bC \mid cS \mid \lambda$
 $C \rightarrow aB \mid bS \mid e$

$$S \Rightarrow aB \Rightarrow abC \Rightarrow abaB \Rightarrow abacS \Rightarrow abac$$

Palindromic strings, w = w^R, over {a,b}

 $S \rightarrow a \mid b \mid \lambda$

 $S \rightarrow aSa \mid bSb$

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa$

Formal Definition

- A context-free grammar G is a quadruple (V,∑,R,S) where
- V is a finite set of symbols (terminals and non-terminals)
- Σ is the set of terminal symbols (the symbols of the language)
- S is a distinguished element of V ∑ called the start symbol, and
- R is a set of rules
- Members of V ∑ are called non-terminals
- The set of rules, R is a finite subset of
- V ∑ × V * (from nonterminals to a string of nonterminals and terminals)

e.g:

- Grammar G consists of rules {S → aSb | S → λ}.
- Using these rules we can get:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$

The language of G, denoted L(G), is the set $\{w \in \Sigma^* \mid S \Rightarrow w\}$.

- This is clearly {aⁿbⁿ : n ≥ 0}.
- Recall that a regular expression can't specify this language

Parse Trees and Derivations

- Derivations can be written in a graphical form as a parse tree
- Given a grammar and a string, there may be different derivations to get the same string
- Equivalent derivations (same meaning) have the same parse tree
- Any parse tree has unique leftmost and rightmost derivations
- Grammars with strings having 2 or more parse trees are ambiguous
- Some ambiguous grammars can be rewritten as equivalent unambiguous grammars

Parse Trees and Derivations

Example Derivation as Parse Tree

- $S \rightarrow AS \mid SB \mid \lambda$
- $A \rightarrow aB \mid bA \mid \lambda$
- $B \rightarrow bS \mid c \mid \lambda$
- $S \Rightarrow AS \Rightarrow bAS \Rightarrow baBS \Rightarrow bacS \Rightarrow bac$
- A parse tree of S ⇒ w is obtained as follows:
- The parse tree has root S
- If S → AS is the rule applied to S,
 then add A and S as children of S.
- A → bA, then add b and A as children of A ...
- If A → λ is the rule applied to A,
 then add λ as the only child of A

Equivalent Derivations

- Consider the simple grammar
- G = (V, S,R,S) where V = {S, (,)},
- $S = \{(,)\}, R = \{S \rightarrow SS \mid (S) \mid \lambda\}$
- The string (())() can be derived from S by several derivations, e.g...

$$(D1) S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow (())S \Rightarrow (())(S) \Rightarrow (())(S$$

$$(D2) S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow ((S))(S) \Rightarrow (())(S) \Rightarrow (())(S) \Rightarrow ((S))S \Rightarrow ((S$$

$$(D3) S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow ((S))(S) \Rightarrow ($$

$$(D4) S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)(S) \Rightarrow ((S))(S) \Rightarrow (())(S) \Rightarrow (()$$

$$(D5) S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)(S) \Rightarrow ((S))(S) \Rightarrow ($$

$$(D6) S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)(S) \Rightarrow (S)() \Rightarrow ((S))() \Rightarrow (())()$$

$$(\mathsf{D7})\,\mathsf{S}\Rightarrow\mathsf{SS}\Rightarrow(\mathsf{S})\mathsf{S}\Rightarrow(\mathsf{S})(\mathsf{S})\Rightarrow((\mathsf{S}))(\mathsf{S})\Rightarrow(())(\mathsf{S})(\mathsf{S})\Rightarrow(())(\mathsf{S})(\mathsf{S$$

$$(D8) \ S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)(S) \Rightarrow ((S))(S) \Rightarrow ((S))() \Rightarrow (())()$$

(D9)
$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)(S) \Rightarrow (S)(S) \Rightarrow ((S))() \Rightarrow (())()$$

$$(D10) S \Rightarrow SS \Rightarrow S(S) \Rightarrow S() \Rightarrow (S)() \Rightarrow ((S))() \Rightarrow (())()$$

Equivalent Derivations

These all have the same parse tree

Derivations

- Derivations, D and D' are similar if they can be transformed into each other via switching the order in which the rules are applied
- CFG always has 1 leftmost derivation and 1 rightmost derivation (D1 leftmost, D10 rightmost, above)
- To get leftmost derivation, always replace leftmost non-terminal in current string

Ambiguous Grammars

Recall the grammar G = V, S,R,S where

$$V = *, +, (,), E$$

 $S = *, +, (,)$
 $R = S \rightarrow E$
 $E \rightarrow E + E \mid E * E \mid (E) \mid id$

The string id + id * id can be generated by this grammar according to two different parse trees.

 Only one of these (a) corresponds to the "natural" semantics of id + id * id, where * takes precedence over +.

Ambiguous Languages

- Many ambiguous grammars (such as the one on the previous slide) can easily be converted to an unambiguous grammar representing the same language.
- Some context free languages have the property that all grammars that generate them are ambiguous.
 Such languages are inherently ambiguous.
- Inherently ambiguous languages are not useful for programming languages, formatting languages, or other languages which must be parsed automatically

Parsing

- Given a context-free grammar G and input w determine if w ∈ L(G).
- How do we determine this for all possible strings?
- Multiple derivations may exist
- Must also discover when no derivation exists
- A procedure to perform this function is called a parsing algorithm or parser.
- Some grammars allow deterministic parsing, i.e. each sentential form has at most one derivation

Ambiguity and Parsing

- A grammar is unambiguous if at each step in a leftmost derivation there is only one rule which can lead to the desired string.
- Deterministic parsing is based upon determining which rule to apply.

Conclusion

- Grammars are simple rules
- Simple for machines to process
- Need to avoid ambiguous grammars

Q&A

Read your lesson materials....

Next: Attempt Tutorial 1