

โครงงานวิทยาศาสตร์ เรื่อง กล่องเก็บอุณหภูมิจากโฟมเปลือกส้มโอ

(Insulated food container from pomelo peel foam)

โดย 1. นางสาวชลันภรณ์ ถากว้าง

2. นางสาวโรจนรัตน์ วงศ์กระจ่าง

3. นางสาวรุจิรา แก้วบุญเรื่อง

โรงเรียนยุพราชวิทยาลัย อำเภอเมือง จังหวัดเชียงใหม่

รายงานฉบับนี้เป็นส่วนประกอบของโครงงานวิทยาศาสตร์ ระดับมัธยมศึกษาตอนปลาย ในงานเวทีวิชาการนวัตกรรมสะเต็มศึกษาขั้นพื้นฐานแห่งชาติครั้งที่ 1 (ออนไลน์)

The 1st National STEM Innovation E-Forum 2021 วันที่ 18-19 กันยายน พ.ศ.2564

โครงงานวิทยาศาสตร์ เรื่อง กล่องเก็บอุณหภูมิจากโฟมเปลือกส้มโอ

(Insulated food container from pomelo peel foam)

โดย 1. นางสาวชลันภรณ์ ถากว้าง

2. นางสาวโรจนรัตน์ วงศ์กระจ่าง

3. นางสาวรุจีรา แก้วบุญเรื่อง

อาจารย์ที่ปรึกษา นางสาวสุทธีวรรณ เมืองนสุวรรณ

ชื่อโครงงาน กล่องเก็บอุณหภูมิจากโฟมเปลือกส้มโอ

ชื่อนักเรียน นางสาวชลันภรณ์ ถากว้าง

นางสาวโรจนรัตน์ วงศ์กระจ่าง

นางสาวรุจีรา แก้วบุญเรื่อง

ชื่ออาจารย์ที่ปรึกษา นางสาวสุทธิวรรณ เมืองนสุวรรณ

โรงเรียน ยุพราชวิทยาลัย

ที่อยู่ 238 ถนนพระปกเกล้า ตำบลศรีภูมิ อำเภอเมืองเชียงใหม่ จังหวัดเชียงใหม่ 50200

โทรศัพท์ 053-418673-5 โทรสาร 053-418673-5 ต่อ 111

ระยะเวลาทำโครงงาน ตั้งแต่ วันที่ 1 พฤศจิกายน 2563 - วันที่ 30 มิถุนายน 2564

บทคัดย่อ

โครงงานนี้มีวัตถุประสงค์เพื่อผลิตกล่องเก็บอุณหภูมิจาก โฟมเปลือกส้ม โอที่สามารถย่อยสลายได้ ทางชีวภาพ และศึกษาประสิทธิภาพของ โฟมเปลือกส้ม โอในการเก็บรักษาอุณหภูมิเพื่อใช้ทดแทนฉนวน ความร้อนจาก โฟม PSP ที่ไม่สามารถย่อยสลายได้ และมีผลเสียต่อสิ่งแวดล้อม โดยได้จัดทำผงเปลือกส้มโอ จากเปลือกส่วนที่เป็นสีขาวนำมาหั่นเป็นชิ้นเล็กแล้วอบด้วยเครื่องอบที่อุณหภูมิ 80°C เวลา 1 ชั่วโมง จากนั้น นำมาบดด้วยเครื่องปั่นจนเป็นผงละเอียด จากนั้นทำการผสม โพลีไวนิล แอลกอฮอล์ : กลีเซอรีน : น้ำ : ผง เปลือกส้มโอ ด้วยอัตราส่วน 11 : 6 : 15 : 10 นำมาผสมให้ข้ากัน แล้วทำการขึ้นรูปเป็นแผ่นเพื่อนำไปใส่ใน กล่องเก็บอุณหภูมิ โดยมีความหนา 0.5-1 นิ้ว จากนั้นนำไปอบที่อุณหภูมิ 150°C เวลา 15 นาที นำแผ่นโฟมที่ ได้ไปใส่ในกล่องผ้าที่เย็บไว้ตามรูปทรงของกล่องเก็บอุณหภูมิทั่วไปตามท้องตลาด

การทดสอบประสิทธิภาพในการเก็บรักษาอุณหภูมิแบ่งเป็น 2 ชุดการทดลอง คือ การเก็บความร้อน และความเย็น จากผลการทดสอบพบว่า เมื่อทดสอบกับอาหารร้อนการลดลงของอุณหภูมิต่อหนึ่งหน่วยเวลา ของอาหารในกล่องเก็บอุณภูมิทั่วไป กล่องเก็บอุณหภูมิโฟมส้มโอ อาหารที่วางไว้ในอุณหภูมิห้อง มีค่าเฉลี่ย 0.225, 0.226 และ 0.304 ตามลำดับ เมื่อทดสอบกับอาหารเย็นพบว่าการเพิ่มขึ้นของอุณหภูมิต่อหนึ่งหน่วย เวลาของอาหารในกล่องเก็บอุณภูมิทั่วไป กล่องเก็บอุณหภูมิโฟมส้มโอ และอาหารที่วางไว้ในอุณหภูมิห้อง มีค่าเฉลี่ย0.185, 0.183 และ 0.219 ตามลำดับ ดังนั้นกล่องเก็บอุณหภูมิจากโฟมส้มโอจึงสามารถเก็บอุณหภูมิ ได้ดีใกล้เคียงกับกล่องเก็บอุณหภูมิทั่วไปตามท้องตลาดสามารถนำไปใช้แทนกันได้โดยกล่องโฟมที่ผลิตขึ้น นี้สามารถย่อยสลายได้ทางชีวภาพอีกด้วย

กิตติกรรมประกาศ

โครงงานวิทยาศาสตร์เรื่องการผลิตกล่องเก็บอุณหภูมิจากเปลือกส้มโอ จัดทำขึ้นเพื่อศึกษาการผลิต โฟมเพื่อนำมาทำเป็นกล่องเก็บอุณหภูมิที่สามารถใช้ได้จริง

โดยได้รับการสนับสนุนจากกุณกรู สุทธิวรรณ เมืองนสุวรรณ กุณกรูที่ปรึกษาโครงงานที่ได้ช่วยให้ ข้อเสนอแนะ อำนวยความสะดวก คอยช่วยเหลือ แก้ไข ให้คำปรึกษา บอกข้อผิดพลาดของโครงงานที่ทาง กณะผู้จัดทำได้ทำพลาดไป ทำให้สามารถรู้จุดบกพร่อง จึงทำให้แก้ไขปรับปรุงจนโครงงานเล่มนี้เสร็จ สมบูรณ์ ผู้ศึกษาจึงขอกราบขอบพระคุณเป็นอย่างสูง

ขอกราบขอบพระกุณพ่อ กุณแม่ และผู้ปกครอง ที่ให้กำปรึกษาในเรื่องต่างๆรวมทั้งเป็นกำลังใจที่ดี เสมอมา ขอบคุณเจ้าหน้าที่ในโรงเรียน โรงเรียนยุพราชวิทยาลัย ที่ช่วยสละเวลา และคอยช่วยเหลือในด้าน ต่างๆ สำหรับโครงงานนี้

คณะผู้จัดทำ

สารบัญ

เรื่อง	หน้า
บทคัดย่อ	ก
กิตติกรรมประกาศ	ป
สารบัญ	ค
สารบัญตาราง	9
สารบัญรูปภาพ	จ
บทที่ 1 บทนำ	1
1.1 ที่มาและความสำคัญของโครงงาน	
1.2 วัตถุประสงค์ของโครงงาน	
1.3 สมมติฐานของการศึกษา	
1.4 ขอบเขตของการศึกษา	
1.5 ประโยชน์ที่คาคว่าจะได้รับ	
บทที่ 2 เอกสารที่เกี่ยวข้อง	2
2.1 โฟมพลาสติกและโฟมชีวภาพ	
2.2 ส้มโอ	
2.3 ฉนวนกันความร้อน	
2.4 งานวิจัยที่เกี่ยวข้อง	
บทที่ 3 วิธีการดำเนินงาน	5
3.1 วัสคุ/อุปกรณ์	
3.2 ขั้นตอนการคำเนินงาน	
บทที่ 4 ผลการดำเนินงาน	7
4.1 ผลการทคสอบการเก็บอุณหภูมิความร้อน	
4.2 ผลการทคสอบการเก็บอุณหภูมิความเย็น	
บทที่ 5 อภิปรายและสรุปผลการศึกษา	9
5.1 อภิปรายผล	
5.2 สรุปผลการคำเนินงาน	
5.3 ข้อเสนอแนะ	
บรรณานุกรม	10
ภาคผนวก	11

สารบัญตาราง

ตารางที่	หน้า
4.1 ค่าเฉลี่ยของอุณหภูมิที่เปลี่ยนแปลงจากผลการ	7
ทคสอบการเก็บความร้อน 3 ครั้ง	
4.2 ค่าเฉลี่ยของอุณหภูมิที่เปลี่ยนแปลงจากผลการ	8
ทดสอบการเกีบความเย็น 3 ครั้ง	

สารบัญรูปภาพ

ภาพที่		หน้า
3.2.1.1	หั่นส้มโอเป็นแผ่นบางๆ	5
3.2.1.2	อบแห้งคั่วยเครื่อง Drying oven	5
3.2.1.3	นำมาปั่นจนกลายเป็นผง	5
4.1	กราฟการลดลงของอุณหภูมิต่อหนึ่งหน่วยเวลาของ	7
	กล่องเก็บอุณหภูมิทั่วไป กล่องเก็บอุณหภูมิโฟมส้มโอ	
	และอาการที่ตั้งไว้ที่อุณหภูมิห้อง	
4.2	กราฟการเพิ่มขึ้นของอุณหภูมิต่อหนึ่งหน่วยเวลาของ	8
	กล่องเก็บอุณหภูมิทั่วไป กล่องเก็บอุณหภูมิโฟมส้มโอ	
	และอาการที่ตั้งไว้ที่อุณหภูมิห้อง	

บทที่ 1

บทน้ำ

1.1 ที่มาและความสำคัญของโครงงาน

ในปัจจุบันกล่องเก็บอุณหภูมิ เข้ามามีบทบาทในชีวิตประจำวันของมนุษย์มากขึ้น โดยได้รับความ นิยมในการนำมาใช้ในการเก็บรักษาอุณหภูมิของอาหารมากขึ้น เนื่องจากวิถีชีวิตและพฤติกรรมการบริโภค ของมนุษย์เปลี่ยนแปลงไปตามการเจริญเติบโตทางเสรษฐกิจและ เทคโนโลยี โดยด้านในกล่องเก็บอุณหภูมิ เหล่านี้ส่วนใหญ่ โดยโฟมบรรจุอาหารเหล่านี้ส่วนใหญ่ผลิตจาก Polystyrene Paper Foam (PSP foam) เป็น วัสดุที่ไม่สามารถย่อยสลายได้ การรีไซเคิลทำได้ยาก ยังเป็นสาเหตุของการเกิดโรคมะเร็งในมนุษย์หาก นำโฟม PSP มาบรรจุอาหารที่ร้อนจัดและมีน้ำมันเป็นส่วนประกอบจะทำให้โฟมเหล่านี้เกิดการสลายตัวให้ สารสไตรีนออกมาปนเปื้อนในอาหารที่บรรจุในภาชนะโฟม ซึ่งสารสไตรีนนี้เป็นสาเหตุของการเกิดโรคมะเร็งได้และเห็นโด้อกส้มโอมาเป็นตัวเก็บรักษาอุณหภูมิไว้ด้านในกล่องแทนฟรอยล์ ด้านใน

จากผลกระทบต่างๆ ของการใช้โฟม PSP ที่มีต่อสิ่งแวคล้อมและสุขภาพอนามัยของมนุษย์โดยคิดค้น ผลิตจากเปลือกส้มโอส่วนที่เป็นสีขาว ซึ่งเหลือทิ้ง นำมาใช้รับประทาน สามารถย่อยสลายได้ตามธรรมชาติ และไม่เป็นพิษต่อมนุษย์ โดยนำโฟมจากส้มโอมาเป็นตัวกักเก็บอุณหภูมิไว้ด้านใน เป็นสิ่งที่ดีต่อสิ่งแวคล้อม และสุขภาพอนามัยของมนุษย์ ทำให้ผู้วิจัยมีความสนใจในการพัฒนากล่องเก็บอุณหภูมิจากเปลือกส้มโอ

1.2 วัตถุประสงค์ของโครงงาน

- 1. เพื่อผลิตกล่องเก็บอุณหภูมิจากเปลือกส้มโอ
- 2. เพื่อศึกษาประสิทธิภาพของโฟมจากเปลือกส้มโอที่ใช้ในการเก็บรักษาอุณภูมิของอาหาร

1.3 สมมติฐานของการศึกษา

โฟมจากเปลือกส้มโอสามารถเก็บรักษาอุณภูมิของอาหารได้

1.4 ขอบเขตของการศึกษา

การศึกษาในครั้งนี้ เพื่อการแปรรูปเปลือกส้มโอที่เหลือทิ้งให้เป็นผงเปลือกส้มโอซึ่งเป็นสารไฮโดรคลอ ลอยค์นำไปขึ้นรูปเป็นโฟมแป้งชีวภาพ โดยเปลือกส้มโอสามารถหาได้ตามท้องถิ่น รับจากพ่อค้าแม่ค้าผลไม้ รายย่อยในจังหวัดเชียงใหม่

สถานที่ทำการทดลอง คือ โรงเรียนยุพราชวิทยาลัย จังหวัดเชียงใหม่

1.5 ประโยชน์ที่คาดว่าจะได้รับ

- 1. ได้กล่องเก็บอุณหภูมิจากเปลือกส้มโอที่สามารถย่อยสลายได้
- 2. ได้ทราบประสิทธิภาพของโฟมจากเปลือกส้มโอที่ใช้ในการเก็บรักษาอุณภูมิในกล่องอาหาร

บทที่ 2

เอกสารและงานวิจัยที่เกี่ยวข้อง

ในการศึกษาโครงงานเรื่องการผลิตกล่องเก็บอุณหภูมิจากโฟมเปลือกส้มโอ ผู้ศึกษาได้กันคว้า รวบรวมเอกสารที่เกี่ยวข้อง โดยมีเนื้อหาดังนี้

1. โฟมพลาสติก (Plastic Foam) และโฟมชีวภาพ

1.1 ความหมายและคำจำกัดความ

โฟม หรือ โฟมพลาสติก เป็นวัสดุที่ได้รับความนิยมมากขึ้นเรื่อยๆเนื่องจากเป็น วัสดุที่น้ำหนักเบา เคลื่อนย้ายง่ายและนำมาใช้ได้อย่างกว้างขวาง เช่น กล่องใส่อาหาร ถ้วยขนม หวาน นอกจากนี้ยังใช้เป็นรอง กนการกระแทกในภาชนะบรรจุภัณฑ์และฉนวนกันความร้อน โฟมพลาสติกเป็นผลิตภัณฑ์ที่หาซื้อได้ง่าย ผิวเรียบ สะอาด และสวยงาม เก็บรักษาความร้อนหรือความเย็นของผลิตภัณฑ์อาหารไว้ได้ดูดน้ำ และน้ำมัน มีความเป็นกลางและปลอดภัยในการสัมผัสอาหาร แต่ทว่าก็ยังมีข้อเสียอีกหลายประการ คือเหมาะต่อการ บรรจุอาหารร้อนจัดที่มีอุณหภูมิสูงกว่า 85°C เป็นบรรจุภัณฑ์แบบใช้ครั้งเคียวแล้วทิ้ง (มยุรา, 2547)

การเกิดโฟมในขั้นตอนแรก คือ การก่อตัวของฟองก๊าซเล็กๆ จำนวนมากในเนื้อของพอลิเมอร์เหลว อาจเกิดได้เองจากการสลายตัวของสารเคมีซึ่งจะคายความร้อนออกมาทำให้แรงตึงผิวของพอลิเมอร์เหลวลด ต่ำลงหรือจากการกระตุ้นโดยของแข็งที่อนุภาคเล็กๆ การเกิดฟองเล็กๆ พบได้บริเวณผิวสัมผัสระหว่าง ของเหลวกับของแข็ง โดยการแพร่กระจายไปในเนื้อของเหลวอย่างรวดเร็ว หลังจากที่มีฟองเล็กๆเกิดขึ้นจนใกล้จุดอื่มตัว ฟองก๊าซจะเริ่มขยายตัว (Bubble Growth) ใหญ่ขึ้นโดยมีปัจจัยต่างๆ ได้แก่ การขยายตัว เนื่องจากกวามร้อน การแพร่ของก๊าซจากพอลิเมอร์เหลวเข้าสู่ฟองก๊าซ การขยายตัวเนื่องจากการลดลงของ ความคัน แรงตึงผิวของพอลิเมอร์ พบว่าลดต่ำลงจากการคายความร้อนของสารเคมี ถ้าแรงตึงผิวต่ำการ ขยายตัวของฟองก๊าซจะทำได้ดีขึ้น และการรวมตัวเข้าด้วยกันเอง เนื่องจากแรงคันที่ต่างกันของฟองก๊าซ ซึ่ง ฟองก๊าซขนาดเล็ก จะมีแรงคันมากจึงสามารถขยายขนาดใหญ่ขึ้นได้เรื่อยๆ และ สามารถรวมเข้ากับฟองก๊าซ อื่นๆ ทำให้ได้ขนาดใหญ่กว่าเดิม

1.2 ประเภทของโฟม

โฟมสามารถจำแนกประเภทได้เป็น 2 ประเภท ดังนี้

- 1. โฟมเทอร์โมเซต (Thermoset Foam) เป็นโฟมพลาสติกที่ไม่สามารถนำกลับมารีไซเคิลได้ ที่รู้จัก กันดี ได้แก่ โฟมพอลิยุรีเทน และโฟมยาง หรือฟองน้ำยาง เป็นต้น
- 2. โฟมเทอร์โมพลาสติก (Thermoplastic Foam) เป็นโฟมพลาสติกที่สามารถนำ กลับมารีไซเคิลได้ เช่น โฟมพอลิสไตลีน โฟมพอลิเอททิลีน เป็นต้น

2. ส้มโอ (Pomelo)

ผลรูปทรงกลมหรือรูปแพร์ เส้นผ่านศูนย์กลาง 11-17 ซม. บริเวณขั้วผลนูนขึ้นเป็นกระจุก ผลอ่อนมีสี เขียวพอแก่มีสีเขียวอมเหลือง เปลือกผลหนา 1-2 ซม. ผิวผลเรียบ มีต่อมน้ำมันมาก ข้างในมีเยื่อสีขาวหรือสี ชมพู ลักษณะหยุ่นนุ่มรสหวานหรือขมเล็กน้อยกั้นเนื้อผลที่เป็นถุงน้ำ เปลือกผล มีรสขมเฝื่อน ปร่า หอม ร้อน

โดยส่วนที่นำมาผลิตโฟมในโครงงานนี้คือ Mesocarp เป็นเนื้อเยื่อชั้นกลางของเปลือก ถัดจาก เปลือกชั้นนอก (exocarp) เนื้อเยื่อชั้นนี้ จะเป็นเนื้อเยื่อหนากลายเป็นเนื้อของผลไม้ เช่น มะม่วง พุทรา มีโซ คาร์บของผลบางชนิดเป็นเนื้อเยื่อนุ่ม เช่น เปลือกของส้มโอส่วนที่เป็นสีขาว แต่บางชนิดเป็นเส้นใยเหนียว เช่น มะพร้าว ช่วยป้องกันผลจากการกระแทก

3. ฉนวนกันความร้อน (Thermal insolation)

ฉนวนกันความร้อน คือ วัตถุหรือวัสคุที่มีความสามารถในการสกัดกั้นความร้อนไม่ให้ส่งผ่านจาก ด้านใคด้านหนึ่งไปยังอีกด้านหนึ่งได้ง่าย ฉนวนกันความร้อนที่คืจะทำหน้าที่ต้านทานหรือป้องกันมิให้ พถังงานความร้อนส่งผ่านจากด้านหนึ่งไปยังอีกด้านหนึ่งได้สะดวก

1. อะลูมิเนียมฟอยส์ (Aluminium Foil)

มีความมันวาวของผิวแผ่นฟอยล์ เป็นแผ่นเคลือบอะลูมิเนียมที่ถูกทำให้หนาขึ้น เพื่อเพิ่ม ประสิทธิภาพในการป้องกันความร้อนและรังสียูวี มีความเหนียวคงทนไม่ขาดง่าย ราคาประหยัด ตามขนาด และคุณสมบัติ

2. โฟมโพลียูริเทน (Polyurethane)

โฟมชนิดนี้เรียกกันสั้นๆว่า โฟม PU เป็นวัสดุป้องกันความร้อน-เย็น รั่วซึม และลดเสียงดังได้ดี ทนทานต่อกรดและค่าง น้ำหนักเบา แข็งแรง สามารถคงสภาพเดิมได้แม้จะโดนน้ำหรือความชื้น โดย โครงสร้างเป็นเซลล์ปิด(Closed Cell) มีช่องอากาศเป็นโพรง เรียกว่า Air Gap เป็นจำนวนมาก

3. ฉนวนใยแก้ว (Microfiber)

ประกอบด้วยเส้นใยไฟเบอร์เล็กๆ โพรงอากาศเล็กๆ จำนวนมาก ซึ่งแทรกอยู่ระหว่างเส้นใยแก้ว ทำ หน้าเก็บกักความร้อนไว้ มีประสิทธิภาพทนความร้อนสูง จึงสามารถช่วยลดปริมาณความร้อนที่จะผ่านเข้า ได้มาก รวมถึงป้องกันความชื้นสูง มีความยืดหยุ่นได้ดีเมื่อถูกกดทับจะสามารถคืนตัวได้เร็ว มีน้ำหนักเบา ทนทาน ไม่เสื่อมสภาพ และป้องกันแมลงหรือเชื้อราได้

4. ฉนวนใยหิน (Mineral Wool)

จัดเป็นเส้นใยจากธรรมชาติที่ ไม่มีสารประกอบของแอสเบสตอส (Asbestos) จึงปลอดภัยต่อสุขภาพ สามารถกันความร้อนและดูดซับเสียง เทียบเท่ากับฉนวนกันความร้อนใยแก้ว และสามารถทนไฟได้ดีกว่า

4. งานวิจัยที่เกี่ยวข้อง

จักรกริสน์ (2554) ได้ทำการวิจัยเชิงทดลองมีวัตถุประสงค์เพื่อเปรียบเทียบประสิทธิภาพของฉนวน ความร้อนที่ผลิต จากใบยางพารากับฉนวนความร้อนที่นิยมใช้กันโดยทั่วไป การศึกษาดำเนินการโดยใช้ ห้องทดลองขนาดกว้าง 3.50 ม. ขาว 5.00 ม. สูง 2.50 ม. ภายในแบ่งเป็นห้องทดลองขนาด 1.00 x 2.00 ม. จำนวน 4 ห้องทดลอง ห้องทดลองถูกป้องกันความร้อนด้านทิศเหนือ ทิศตะวันออก และทิศตะวันตก โดย ด้านทิศใต้เป็นเพียงด้านเดียว ที่ติดตั้งวัสดุทดลอง ห้องทดลองมีสภาพแวดล้อมที่ใกล้เคียงกันและไม่มีการ ปรับอากาศ ห้องทดลองที่ 1 ติดตั้ง ฉนวนใบขางพาราหนา 1 นิ้ว และอีก 3 ห้องทดลองติดตั้งฉนวนใยแก้ว หนา 2 นิ้ว ฉนวนใยเซลโลกรีตหนา 1 นิ้ว และฉนวนโพลียูรีเทนโฟมหนา 1 นิ้ว ตามลำดับ การเก็บข้อมูลใช้ เครื่องวัดอุณหภูมิ เก็บข้อมูลทุกๆ 2 นาที เป็นเวลา 2 วัน หรือ 48 ชั่วโมง จากการทดลองพบว่า ฉนวนกันความ ร้อนที่ผลิตจากใบขางพารา มีประสิทธิภาพในการ ป้องกันการถ่ายเทความร้อนได้ใกล้เคียงกับฉนวนใยแก้วที่ ความหนา 2 นิ้ว จากงานวิจัยนี้สามารถนำไปประยุกต์ ใช้เป็นแนวทางในการผลิตและพัฒนาฉนวนความร้อน จากใบขางพาราหรือวัสดุที่เหลือใช้ทางการเกษตรอื่นๆเพื่อการประหยัดพลังงานภายในอาคาร โดยที่ เกษตรกร และประชาชนโดยทั่วไปที่สนใจสามารถผลิตขึ้นใช้ได้เอง

อนุภา (2559) ศึกษาความเป็นไปได้ในการนำซังข้าวโพคมาผลิตเป็นแผ่นฉนวนกันความร้อนโคยใช้ น้ำยางพารางเป็นตัวประสานในอัตราส่วนที่แตกต่างกัน แล้วนำไปทคสอบและวิเคราะห์สมบัติเชิงกายภาพ เชิงกลและเชิงความร้อนแล้วเปรียบความสามารถในการป้องกันความร้อนกับฉนวนในท้องตลาค ผลการวิจัยพบว่า แผ่นฉนวนที่ใช้น้ำยางและน้ำสัดส่วนน้ำยางต่อน้ำ 1:0 และ 2:1 มีการยึดจับกันภายในได้ ดีกว่าสัดส่วนอื่นๆ และผลการเปรียบเทียบความสามารถในการป้องกันความร้อนของแผ่นฉนวนซังข้าวโพค ที่ใช้น้ำนางและน้ำสัดส่วน 2:1 ที่มีความหนา 1.5 ซม. และมีความหนาแน่น 300 กิโลกรัมต่อลูกบาศก์เมตร กับฉนวนโฟมโพลีเอทธิลีนหนา 1 ซม. พบว่าสามารถลดความร้อนได้ใกล้เคียงกัน

โรสลีลา (2559) ศึกษางานวิจัยนี้เพื่อผลิตฉนวนกันความร้อนจากเส้นใยธรรมชาติโดยทดสอบ สมบัติทางกายภาพ และสมบัติเชิงกลความร้อนของฉนวนกันความร้อนที่ผลิตจากเส้นใยหญ้าคา ใยมะพร้าว กาบกล้วย ฟางข้าว และกาบหมาก และใช้น้ำยางพาราเป็นตัวประสานให้วัสดุสามารถยึดติดแผ่น ฉนวนที่ ผลิตได้มีลักษณะเป็นแผ่นเรียบ ผลการทดสอบพบว่า ฉนวนกันความร้อนจากเส้นใยธรรมชาติมีความ หนาแน่นอยู่ในช่วง 0.020-0.021 g/cm³ ค่าการดูดซึมน้ำของหญ้าคา ใยมะพร้าว กาบกล้วย ฟางข้าว และกาบ หมาก มีค่าเท่ากับ 5.76%, 6.06%, 7.08% ,3.12%, 6.45% ตามลำดับ ค่าทนต่อแรงดึงสูงสุดที่ฉนวนกันความร้อนจากเส้นใยธรรมชาตินั้นมีค่าเท่ากับ 0.003 Mpa, 0.0013 Mpa, 0.0014 Mpa, 0.0016 Mpa, 0.0034 Mpa และ 0.0006 Mpa ตามลำดับ ค่าประสิทธิ์การนำความร้อนมีค่าเท่ากับ 0.022 W/m·K ,0.023 W/m·K ,0.028 W/m·K ,0.021 W/m·K ดูกการนำความร้อนจากเส้นใย ธรรมชาติ มีค่าการนำความร้อนที่น้อยกว่าฉนวนใยแก้ว จากผลการวิจัยพบว่า สามารถนำวัสดุธรรมชาติทั้ง ร มาผลิตเป็นฉนวนกันความร้อนที่น้อยกว่าฉนวนใยแก้ว จากผลการวิจัยพบว่า สามารถนำวัสดุธรรมชาติทั้ง ร มาผลิตเป็นฉนวนกันความร้อนใด้ และผลการวิเคราะห์ สภาพพื้นผิวจาก ภาพถ่าย SEM ได้ผลสอดคล้องว่า ฉนวนกันความร้อนจากกาบหมากเป็นฉนวนที่ดีที่สุดในงานวิจัยนี้

บทที่ 3 วิธีการดำเนินงาน

3.1 วัสดุ / อุปกรณ์

1.	ส้มโอ	5	ត្តូព	10. แท่งแก้วคนสาร	2	แท่ง
2.	อุปกรณ์สำหรับหั่น	1	ชุด	11. เครื่องชั่งสาร	1	เครื่อง
3.	กะละมัง	2	ใบ	12. ปีกเกอร์ ขนาด 100 ml	5	ใบ
4.	เครื่อง Drying oven	1	เครื่อง	13. ผ้าขนาด 1 เมตร	1	ผืน
5.	เครื่องปั่น	1	เครื่อง	14. อุปกรณ์เย็บผ้า	1	ชุค
6.	Glycerin 99.5%	1	ถิตร	15. น้ำเปล่าแช่เย็น	1	แก้ว
7.	PVA แบบน้ำ	1	ถิตร	16. ข้าวต้ม	1	ถ้วย
8.	น้ำ	1	ถิตร	17. เทอร์โมมิเตอร์สำหรับ	1	อัน
9.	กล่องเก็บอุณหภูมิ	1	กล่อง	วัคอุณหภูมิอาหาร		
				18. กระบอกตวง	3	ใบ

3.2 ขั้นตอนการดำเนินงาน

ในการจัดทำโครงงาน เรื่อง การผลิตกล่องเก็บอุณหภูมิจากเปลือกส้มโอ ผู้จัดทำโครงงานมีวิธีการ ดำเนินโครงงานตามขั้นตอนดังนี้

3.2.1 ขั้นตอนการผลิตผงเปลือกส้มโอ

ขั้นตอนนี้นำเปลือกส้มโอเฉพาะส่วนที่เป็นสีขาว (pomelo albedo) มาหั่นเป็นแผ่นบางๆขนาดเล็ก นำเปลือกส้มโอที่หั่นเสร็จเรียบร้อยแล้วไปอบแห้งด้วยเครื่อง Drying oven อุณหภูมิ 80 องศาเซลเซียส เป็น เวลา 1 ชั่วโมง จนเปลือกส้มโอมีลักษณะแห้งกรอบ จากนั้นนำมาบดละเอียดด้วยเครื่องปั่นจนกลายเป็นผง

3.2.2 ขั้นตอนการผลิตเป็นกล่องเก็บอุณหภูมิ

- 1. กำหนดขนาดของชิ้นส่วนที่จะมาประกอบเป็นกล่องเก็บอุณหภูมิ โดยวัดความกว้างยาว ของแต่ละส่วน จะได้ส่วนที่เป็นชิ้นพื้นกับฝา 2 ชิ้น ด้านกว้าง 2 ชิ้น และด้านยาว 2 ชิ้น
- 2. กำหนดอัตราส่วนของ Polyvinyl alcohol : Glycerin : น้ำ : แป้ง เป็น 11 : 6 : 15 : 10
- 3. เตรียมเครื่องชั่งสาร ชั่งสารตามอัตราส่วนที่กำหนด โดยคิดปริมาณทั้งหมดจะใช้ Polyvinyl alcohol 143 มิลลิลิตร , Glycerin 78 มิลลิลิตร , น้ำ 195 มิลลิลิตร และแป้ง 130 กรัม
- 4. นำทั้งหมดมาผสมกันในกะลามัง
- 5. คนทุกอย่างให้เข้ากัน
- 6. นำมาปั้นเป็นรูปทรงสี่เหลี่ยม หนาประมาณ 0.5-1 นิ้ว
- 7. นำเข้าเครื่อง Drying oven ใช้อุณหภูมิ 150 องศาเซลเซียส เป็นเวลา 15 นาที
- 8. ใช้ผ้าเย็บหุ้มชิ้นส่วนให้เป็นทรงสี่เหลี่ยมแล้วนำมาประกอบให้ได้ทรงและขนาดเหมือน แม่แบบ

3.2.3 ขั้นตอนการทดสอบประสิทธิภาพการเก็บอุณหภูมิของกล่อง

เราจะทำการทดสอบการเก็บความร้อนและความเย็นของกล่องเก็บอุณหภูมิ 2 ชนิด ได้แก่ กล่องเก็บอุณหภูมิทั่วไป และกล่องเก็บอุณหภูมิที่ทำมาจากโฟมเปลือกส้มโอ และชุดควบคุมที่นำ อาหารวางไว้บนโต๊ะที่อุณหภูมิห้อง

- 1. ออกแบบตารางการทดลอง
- 2. กำหนดตัวแปรต้น ตัวแปรตาม และตัวแปรควบคุม

<u>ทคสอบการเก็บความร้อน</u>

- ตัวแปรตั้น คือ กล่องเก็บอุณหภูมิ
- ตัวแปรตาม คือ อุณหภูมิที่วัดได้โดย Thermometer
- ตัวแปรควบคุม คือ ข้าวต้ม 1 ถ้วยและเวลา

ทคสอบการเก็บความร้อน

- ตัวแปรต้น คือ กล่องเก็บอุณหภูมิ
- ตัวแปรตาม คือ อุณหภูมิที่วัดได้โดย Thermometer
- ตัวแปรควบคุม คือ น้ำเปล่าแช่เย็น 200 มิลลิลิตร 1 แก้ว และเวลา
- 3. ทำการทดลอง เริ่มจากกล่องเก็บอุณหภูมิแบบปกติ นำของที่ต้องการจะเก็บอุณหภูมิและ Thermometerสำหรับวัดอุณหภูมิของอาหาร วัดอุณหภูมิเริ่มต้น จากนั้นปิดฝานับเวลาให้ กรบ 30 60 และ 90 นาที ตามลำดับ บันทึกอุณหภูมิที่วัดได้ ทำซ้ำอีก 2 ครั้ง แล้วหาค่าเฉลี่ย กล่องเก็บอุณหภูมิที่ทำมาจากเปลือกสัมโอก็ทำเช่นเดียวกัน

บทที่ 4 ผลการศึกษา

จากการทคลอง กล่องเก็บอุณหภูมิจากโฟมเปลือกส้มโอ ซึ่งได้ดำเนินการทคสอบเก็บความร้อน และความเย็นของกล่องเก็บอุณหภูมิ 2 ชนิด ได้แก่ กล่องเก็บอุณหภูมิทั่วไปตามท้องตลาด และกล่องเก็บ อุณหภูมิที่ทำมาจากโฟมเปลือกส้มโอ

4.1 ผลการทดสอบการเก็บอุณหภูมิความร้อน

	ค่าเฉลี่ยอุณหภูมิข้าวต้ม (°C)							
เวลา (นาที่)	กล่องเก็บอุณหภูมิทั่วไป ตามท้องตลาด	กล่องเก็บอุณหภูมิจาก โฟมเปลือกส้มโอ	ตั้งไว้ที่อุณหภูมิห้อง					
0	59.5	59.3	58.2					
30	48.06	47.53	41.26					
60	39.16	39.03	32.7					
90	35.9	35.5	30.6					

ตารางที่ 4.1 ค่าเฉลี่ยของอุณหภูมิที่เปลี่ยนแปลงจากผลการทคสอบการเก็บความร้อน 3 ครั้ง

ภาพที่ 4.1 กราฟการลคลงของอุณหภูมิต่อหนึ่งหน่วยเวลาของกล่องเก็บอุณหภูมิทั่วไป กล่องเก็บอุณหภูมิโฟมส้มโอ และอาการที่ตั้งไว้ที่ อุณหภูมิห้อง

จากภาพที่ 4.1 ผลการศึกษาเฉลี่ยการลดลงของอุณหภูมิต่อหนึ่งหน่วยเวลาของอาหารในกล่องเก็บอุณหภูมิทั่วไป กล่องเก็บอุณหภูมิโฟมส้มโอ อาหารตั้งไว้ในอุณหภูมิห้อง มีค่าเท่ากับ 0.265, 0.266 และ 0.304 ตามลำดับ

	ಡ	9	ಡ
4.2 ผลการทดสอบกา	รเก าเอก	บหคบดา	16131161
T.2 MOID IS HIND OF IT	ബാറ്റ	0 110,04110	1040U PO

	ค่าเฉลี่ยอุณหภูมิน้ำเย็น (°C)							
เวลา (นาที่)	กล่องเก็บอุณหภูมิทั่วไป ตามท้องตลาด	กล่องเก็บอุณหภูมิจาก โฟมเปลือกส้มโอ	ตั้งไว้ที่อุณหภูมิห้อง					
0	7.36	7.63	7.6					
30	14.46	15.53	20.9					
60	20.3	21.2	25.6					
90	23.93	24.06	27.93					

ตารางที่ 4.2 ค่าเฉลี่ยของอุณหภูมิที่เปลี่ยนแปลงจากผลการทดสอบการเก็บความเย็น 3 ครั้ง

ภาพที่ 4.2 กราฟการเพิ่มขึ้นของอุณหภูมิต่อหนึ่งหน่วยเวลาของกล่องเก็บอุณหภูมิทั่วไป กล่องเก็บอุณหภูมิโฟมส้มโอ และอาการที่ตั้งไว้ที่ อุณหภูมิห้อง

จากภาพที่ 4.2 ผลการศึกษาเฉลี่ยการเพิ่มของอุณหภูมิต่อหนึ่งหน่วยเวลาของอาหารในกล่องเก็บอุณภูมิ ทั่วไป กล่องเก็บอุณหภูมิโฟมส้มโอ อาหารตั้งไว้ในอุณหภูมิห้อง มีค่าเท่ากับ 0.185, 0.183 และ 0.219 ตามลำดับ

บทที่ 5

อภิปรายและสรุปผลการศึกษา

ในการจัดทำโครงงานวิทยาศาสตร์ เรื่องกล่องเก็บอุณหภูมิจากโฟมเปลือกส้มโอนี้สามารถอภิปราย สรุปผลการดำเนินงานและข้อเสนอแนะได้ดังนี้

5.1 อภิปรายผล

จากผลการทดลองพบว่า เมื่อทดสอบกับอาหารร้อน การลดลงของอุณหภูมิต่อหนึ่งหน่วยเวลาของ อาหารในกล่องเก็บอุณหภูมิทั่วไป กล่องเก็บอุณหภูมิไฟมส้มโอ และอาหารที่วางไว้ในอุณหภูมิห้อง พบว่า กล่องเก็บอุณหภูมิทั่วไปและกล่องเก็บอุณหภูมิส้มโอสามารถเก็บอุณหภูมิของอาหารได้ใกล้เคียงกันมาก และเมื่อทดสอบกับอาหารเย็น การเพิ่มขึ้นของอุณหภูมิต่อหนึ่งหน่วยเวลาของอาหารในกล่องเก็บอุณหภูมิ ทั่วไป กล่องเก็บอุณหภูมิโฟมส้มโอ และอาหารที่วางไว้ในอุณหภูมิห้อง พบว่ากล่องเก็บอุณหภูมิทั่วไปและ กล่องเก็บอุณหภูมิโฟมส้มโอก็สามารถเก็บอุณหภูมิของอาหารได้ใกล้เคียงกันเหมือนกัน ซึ่งสอดคล้องกับ สมมติฐานที่ตั้งไว้ และสอดคล้องกับการศึกษาของ อนุภา (2559) ที่ผลิตฉนวนโฟมจากซังข้าวโพด เปรียบเทียบประสิทธิภาพกับฉนวนโฟมโพลีเอทธีลีน ซึ่งพบว่าสามารถลดความร้อนได้ใกล้เคียงกัน

5.2 สรุปผลการดำเนินงาน

จากการทดลองกล่องเก็บอุณหภูมิจากโฟมเปลือกส้มโอสามารถเก็บอุณหภูมิใค้ดีใกล้เกียง กับกล่อง เก็บอุณหภูมิทั่วไปตามท้องตลาดสามารถนำไปใช้แทนกันได้ โดยกล่องโฟมที่ผลิตขั้นนี้สามารถ ย่อยสลาย ได้ทางชีวภาพอีกด้วย

5.3 ข้อเสนอแนะ

เนื่องจากโฟมส้มโอย่อยสถายได้ทางชีวภาพที่ได้ยังมีข้อจำกัดทางด้านการใช้งานกับผลิตภัณฑ์ที่มี ความชื้นมาก ไม่กันน้ำ ควรศึกษาเพิ่มเติมเกี่ยวกับอายุการใช้งานและอัตราส่วนการย่อยสถายหลังจากมีการ ใช้งานแล้ว

บรรณานุกรม

- Encyclopedia. (2019). ฉนวนกันความร้อน (Sound insulation) กับคุณสมบัติที่น่ารู้ก่อนจะนำเอาไปใช้งาน.
 สืบค้นข้อมูลเมื่อ 13 มิถุนายน 2564, จาก https://www.wazzadu.com/article/1367?fbclid
 =IwAR0GgXqL6Axo7a42qB-1aIk7ZC8ehsVYrnNEZdUR4Kq6MFX8DWDnJa1cyOU
- พิมพ์เพ็ญ พรเฉลิมพงศ์, นิธิยา รัตนาปนนท์. **Mesocarp / มีโซคาร์บ.** สืบค้นข้อมูลเมื่อ 13 มิถุนายน 2564, จาก http://www.foodnetworksolution.com/wiki/word/2753/mesocarp-มีโซๆ
 nาร์บ?fbclid=IwAR1h8fnRm-r9LKv9MP3IBeNZw2mHJ-WIab3U6LFgq_-
 NTAPO0W0Q_TDZVpM
- โรสลีนา จาราแว. (2016). **การพัฒนาฉนวนกันความร้อนจากพืชในเขตท้องถิ่น**. สืบค้นข้อมูลเมื่อ 13 มิถุนายน 2564, จาก http://wb.yru.ac.th/bitstream/yru/249/1/16โรสลีนา.

 pdf?fbclid=IwAR3pChvXbFndUYvOZiJOYRDoSmLQJo2NyDCij078trkzXdP95eP9xV1dWd4
- พรรณพิสุทธิ์ สันติภราคร. (2016). **บทความเผยแพร่ความรู้สู่ประชาชน กล่องโฟมบรรจุอาหาร อันตราย อย่ามองข้าม**. สืบค้นข้อมูลเมื่อ 13 มิถุนายน 2564, จาก https://pharmacy.mahidol.ac.th /th/knowledge/article/317/กล่องโฟมบรรจุอาหารอันตรายอย่ามองข้าม/
- จักรกริศน์ พิสูตรเสียง. **ประสิทธิภาพการป้องกันความร้อนของฉนวนใบยางพารา.** สิบค้นข้อมูลเมื่อ 24 มิถุนายน 2564, จาก http://eservices.dpt.go.th/eservice_6/ejournal/34/34-07.pdf?journal&fbclid=IwAR2u1xOIMtjEQL5zFYWrEYmsQWzyLL4Br8m-lAz_7yz73JRZlcjq2GVql1E
- อนุภา สกุลพาณิชย์. (2015). **การพัฒนาฉนวนกันความร้อนสู่อาคารจากซังข้าวโพดและน้ำยางธรรมชาติ.**สืบค้นข้อมูลเมื่อ 13 มิถุนายน 2564, จาก http://ithesis-ir.su.ac.th/dspace/bitstream
 /123456789/690/1/57054228%20%20อนุภา%20%20สกุลพาณิชย์.pdf

ภาคผนวก

ก. แสดงภาพผลิตภัณฑ์ที่จัดทำจากเปลือกส้มโอที่ใช้ในการศึกษา

ภาพที่ 1 แผ่น โฟมจากเปลือกส้ม โอ

ภาพที่ 2 โฟมส้มโอเทียบขนาดกับกล่องเก็บอุณหภูมิทั่วไปตามท้องตลาด

ภาพที่ 3 กระเป้าเก็บอุณภูมิโฟมส้มโอที่เสร็จสมบูรณ์

ภาพที่ 4 ทคสอบเก็บความร้อนจากข้าวต้ม

ข. ตารางบันทึกผลการทดลองเรื่องการเก็บอุณหภูมิของโฟมเปลือกส้มโอ

1. ผลการทคสอบการเก็บอุณหภูมิความเย็น

					ઉ	ุณหภูมิทิ	์ เว็คไค้ (°C	C)				
เวลา (นาที)	ลา (นาที) กล่องเก็บอุณหภูมิทั่วไป			กล่องโฟมเปลือกส้มโอ				วางไว้อุณหภูมิห้อง				
	1	2	3	เฉลี่ย	1	2	3	เฉลี่ย	1	2	3	เฉลี่ย
0	8.6	6.5	7.0	7.36	8.9	6.5	7.5	7.63	8.4	7.7	6.9	7.6
30	15.9	14.9	12.6	14.46	16.9	15.8	13.9	15.53	19.7	22.7	20.3	20.9
60	21.3	20.7	18.9	20.3	21.9	21.5	20.2	21.2	25.3	26.7	24.8	25.6
90	24.5	24.2	23.1	23.93	24.3	24.3	23.6	24.06	27.8	28.6	27.4	27.93

2. ผลการทดสอบการเก็บอุณหภูมิความร้อน

					Ę	ุณหภูมิทิ	าวัคได้ (°C	C)				
เวลา (นาที)	กล่องเก็บอุณหภูมิทั่วไป				กล่องโฟมเปลือกส้มโอ				วางไว้อุณหภูมิห้อง			
	1	2	3	เฉลี่ย	1	2	3	เฉลี่ย	1	2	3	เฉลี่ย
0	68.7	53.8	56	59.5	68.9	54.8	54.3	59.3	66.3	54.3	54.0	58.2
30	52.8	44.8	46.6	48.06	52.4	45.0	45.5	47.63	44.3	38.6	40.9	41.26
60	39.3	38.9	39.3	39.16	39.3	39.2	38.6	39.03	32.2	32.6	33.3	32.7
90	36.3	35.9	35.5	35.9	36.2	35.7	35.2	35.7	30.7	30.5	30.6	30.6