Filtros Activos

Teoría

Autor: José Cabrera Peña

Definición y clasificaciones

- Un filtro es un sistema que permite el paso de señales eléctricas a un rango de frecuencias determinadas e impide el paso del resto.
- Se utilizan para:
 - Acondicionamiento de señal de entrada.
 - Digitalización de señales.
 - Acondicionamiento de señal producida.
- En función a la función de transferencia se clasifican en:
 - Paso Bajo
 - Paso Alto
 - Paso Banda
 - Eliminada Banda.
- En función a la tecnología.
- En función al tipo de implementación.

Filtros ideales

Ingeniería en Automática y Electrónica Industrial-Sistemas Analógicos-Curso04/05

Campos de aplicación.

Funciones de Transferencia.

- Consideremos un filtro paso bajo.
- Función de transferencia:

$$F(s) = \frac{Vout}{Vin} = \frac{\frac{1}{RC}}{s + \frac{1}{RC}}$$

La frecuencia de corte será:

$$f = \frac{1}{2.\pi \cdot R.C}$$

 Para frecuencias superiores a la de corte, la amplitud de salida se reducirá con una pendiente de 20dB/déc

Funciones de Transferencia.

Si consideramos 3 filtros paso baja en cascada, la función de transferencia sería:

$$F(s) = \frac{1}{(1+s.R_1.C_1).(1+s.R_2.C_2).(1+s.R_3.C_3)}$$

si los valores de las resistencias y condensadores fueran iguales, la respuesta en frecuencia resultante sería:

Respuesta en frecuencia.

En la figura observamos la respuesta en frecuencia del módulo y de la fase de un filtro paso baja de primer y cuarto orden; comparándola con la respuesta ideal de un filtro de cuarto orden.

Respuesta en frecuencia.

- En comparación con el filtro ideal, los filtros reales adolecen de los siguientes defectos:
 - La transición entre la banda que se quiere dejar pasar y la que se quiere eliminar no es abrupta, sino que tiene una determinada pendiente que depende del número de orden del filtro.
 - La respuesta en fase no es linear, esto aumenta la distorsión de la señal significativamente.
- La ganancia y la fase de un filtro puede ser optimizada para satisfacer uno de los siguientes tres criterios:
 - Una respuesta máxima plana en la banda de paso.
 - Una transición rápida entre la banda de la señal deseada y la no deseada.
 - Una respuesta de fase lineal.

Respuesta en Frecuencia.

Para conseguir este propósito, la función de transferencia deberá tener polos complejos:

$$F(s) = \frac{A_0}{\left(1 + a_1 \cdot s + b_1 \cdot s^2\right) \cdot \left(1 + a_2 \cdot s + b_2 \cdot s^2\right) \cdot \dots \cdot \left(1 + a_n \cdot s + b_n \cdot s^2\right)}$$

Los filtros que se pueden implementar a partir de este polinomio serán:

- Butterworth. Optimiza la respuesta plana en la banda de paso.
- Tschebyscheff. Tiene una respuesta más abrupta. Optimiza, por tanto, la transición.
- Bessel. Optimiza la respuesta en fase.

La función de transferencia de un filtro pasivo RC no nos sirve. La única forma de generar polos complejos conjugados, sería utilizar redes LCR; pero a bajas frecuencias el inductor es demasiado grande. Por ello debemos usar Filtros Activos.

Filtro paso baja Butterworth.

Debido a su respuesta plana, se suele usar en los filtros anti-aliasing y en aplicaciones de conversión de datos; en general, donde sea necesario conseguir una buena precisión de medida en la banda de paso.

Filtro paso bajo Tschebyscheff

La transición a partir de la frecuencia es muy abrupta, pero en la banda de paso tenemos un rizado. Su utilización se restringirá a aquellas aplicaciones en el que el contenido de frecuencias es más importante que la magnitud.

Filtro paso bajo Bessel.

Tiene una respuesta lineal con respecto a la fase, lo cual resulta en un retardo constante en todo el ancho de banda deseado.

Retardos y ganancias normalizados.

Factor de Calidad Q.

- Un diseño de filtro puede ser especificado por su factor de calidad en vez del número de orden necesario para conseguir un efecto determinado.
- En filtros pasa banda se definirá el factor de calidad como:

$$Q = \frac{f_m}{(f_2 - f_1)}$$

donde fm es la frecuencia central y f1,f2 son las frecuencias de corte inferior y superior respectivamente.

• En filtros paso-baja o paso-alto el factor de calidad se definirá:

$$Q = \frac{\sqrt{b_i}}{a_i}$$

y representaría la calidad del polo.

• Los valores altos de Q se pueden calcular gráficamente como la distancia entre la línea de 0dB y el punto de pico de la respuesta del filtro.

Factor de Calidad. (Gráficamente)

Válido sólo para valores altos de Q.

Filtro Paso-Bajo de primer orden.

$$F(s) = \frac{1 + \frac{R_2}{R_1}}{1 + w \cdot R_1 \cdot Cs}$$

Paso-Baja de primer orden no inversor.

$$F(s) = \frac{\frac{-R_{2}}{R_{1}}}{1 + wR_{2} \cdot C \cdot s}$$

Filtro Paso-Bajo de primer orden, inversor

Filtro Paso-Bajo de segundo orden. Estructura Sallen-Key

Para el circuito de ganancia unidad, los coeficientes serían:

$$A_0 = 1$$

 $a_1 = w_c$. $C_1(R_1 + R_2)$
 $b_1 = w_c^2$. R_1 . R_2 . C_1 . C_2

Dándole valores a C1 y C2: $R_{1,2} = \frac{a_{1}.C_{2} \pm \sqrt{a_{1}^{2}.C_{2}^{2} - 4b_{1}.C_{1}.C_{2}}}{4.\pi.f_{1}.C_{1}.C_{2}}$

Para obtener valores reales: $C_2 \ge C_1 \cdot \frac{4b_1}{a_2^2}$

Filtro Paso-Bajo de segundo orden. Ejemplo.

Diseñar un filtro paso baja de segundo orden Tschebyscheff con una frecuencia de corte de 3Khz y un rizado de 3dB.

Los coeficientes (mirando la tabla) serían a1= 1.065 y b1=1.9305. Elijo C1=22nF con lo que:

$$R_{1} = \frac{1,065.150.10^{-9} - \sqrt{\left(1,065.150.10^{-9}\right)^{2} - 4.1,9305.22.10^{-9}.150.10^{-9}}}{4. \ pi. \ 3..10^{3}.22.10^{-9}.150.10^{-9}} = 1,26 \ K \ (normalizado)$$

$$R_{2} = \frac{1,065.150.10^{-9} + \sqrt{\left(1,065.150.10^{-9}\right)^{2} - 4.1,9305.22.10^{-9}.150.10^{-9}}}{4.\ pi.\ 3..10^{3}.22.10^{-9}.150.10^{-9}} = 1,3\ K\ (normalizado\)$$

Filtro Paso-Bajo de segundo orden. Estructura MFB (Multiple-Feedback) o Rauch.

Filtro paso-baja de segundo orden MFB

La función de transferencia y los coeficientes serían:

$$F(s) = \frac{-\frac{R_{2}}{R_{1}}}{1 + w_{c} \cdot C_{1} \cdot \left(R_{2} + R_{3} + \frac{R_{2} \cdot R_{3}}{R_{1}}\right) \cdot s + w_{c}^{2} \cdot C_{1} \cdot C_{2} \cdot R_{2} \cdot R_{3} \cdot s^{2}}$$

$$A_{0} = \frac{-R_{2}}{R_{1}}$$

$$a_{1} = w_{c} \cdot C_{1} \cdot \left(R_{2} + R_{3} + \frac{R_{2} \cdot R_{3}}{R_{1}}\right)$$

$$b_{1} = w_{c}^{2} \cdot C_{1} \cdot C_{2} \cdot R_{2} \cdot R_{3}$$

Filtro Paso-Bajo de segundo orden. Estructura MFB (Multiple-Feedback) o Rauch.

$$R_{2} = \frac{a_{1} \cdot C_{2} - \sqrt{a_{1}^{2} - 4 \cdot b_{1} \cdot C_{1} \cdot C_{2} \cdot (1 - A_{0})}}{4 \cdot \pi \cdot f_{c} \cdot C_{1} \cdot C_{2}}$$

$$R_{1} = \frac{R_{2}}{-A_{0}}$$

$$R_{3} = \frac{b_{1}}{4 \cdot \pi^{2} \cdot f_{c}^{2} \cdot C_{1} \cdot C_{2} \cdot R_{2}}$$

Para obtener valores reales de R2, debemos calcular C2 siguiendo la condición:

$$C_2 \ge C_1.4.b_{-1}.\frac{\left(1-A_0\right)}{a_{-1}^2}$$

Filtro Paso-Bajo de segundo orden. Estructura Rauch. Cálculo simplificado.

Rauch 2° Orden Paso-Baja

Para simplificar se suele hacer R1=R2=R3=R Con lo que hay que determinar un valor Co de referencia de la forma siguiente:

$$C_0 = \frac{1}{w_0 \cdot R}$$

donde wo es la pulsación de corte nominal.

A partir de este dato y, dependiendo del tipo de filtro que deseemos, se calcularán los valores de cada condensador con los coeficientes correspondientes:

$$C_i = K_1 \cdot C_0$$

Filtro Paso-Bajo de tercer orden. Estructura Rauch.

Rauch 3er Orden Paso-Baja

Para simplificar también se han hecho las 4 resistencias iguales El valor Co de referencia se calcula de la forma siguiente:

$$C_0 = \frac{1}{w_0 \cdot R}$$

donde wo es la pulsación de corte nominal.

A partir de este dato y, dependiendo del tipo de filtro que deseemos, se calcularán los valores de cada condensador con los coeficientes correspondientes:

$$C_i = K_1 \cdot C_0$$

Filtros de orden superior.

Se pueden resolver mediante la colocación en serie de filtros de primer y segundo orden en serie hasta conseguir el número de orden necesario.

Ejemplo: Diseñar un filtro paso-bajo de 5º orden Butterworth con una frecuencia de corte de 50Khz.

Solución: según la tabla los coeficientes serían:

a1 = 1

a2= 1,618; b2=1

a3=0,618; b3=1

Para el primer filtro, ajustaremos el valor de C=1nF (por ej.) y calculamos R

$$R_{1} = \frac{a_{1}}{2.\pi. f_{c}. C_{1}} = \frac{1}{2.\pi. 50.000.1.10^{-9}} = 3,18K (3,16K normalizado serie E192)$$

Filtros de orden superior.

Segundo filtro. Usaremos una estructura Sallen-Key.

Elegimos C1=820pF

$$C_2 \ge C_1 \cdot \frac{4 \cdot b_2}{a_2^2} = 820 \cdot 10^{-12} \cdot \frac{4 \cdot 1}{1,618^2} = 1,26 \, nF \, (1,5 \, nF \, normalizado)$$

Con C1=820pF y C2=1,5nF

$$R_{1} = \frac{1,618.1,5.10^{-9} - \sqrt{\left(1,618.1,5.10^{-9}\right)^{2} - 4.1.820.10^{-12}.1,5.10^{-9}}}{4.\pi.50.10^{3}.1.10^{-9}.1,5.10^{-9}} = 1,87 K (normalizado)$$

$$R_{2} = \frac{1,618.1,5.10^{-9} + \sqrt{\left(1,618.1,5.10^{-9}\right)^{2} - 4.1.820.10^{-12}.1,5.10^{-9}}}{4.\pi.50.10^{3}.1.10^{-9}.1,5.10^{-9}} = 4,42K (normalizado)$$

Filtros de orden superior.

Tercer filtro. Usaremos una estructura Sallen-Key también.

Elegimos C1=470pF

$$C_2 \ge C_1 \cdot \frac{4 \cdot b_3}{a_3^2} = 470.10^{-12} \cdot \frac{4.1}{0.618^2} = 4.9 \, nF \, (5.1 \, nF \, normalizado)$$

Con C1=470pF y C2=5,1nF

$$R_{1} = \frac{0.618.5, 1.10^{-9} - \sqrt{(0.618.5, 1.10^{-9})^{2} - 4.1.470.10^{-12}.5, 1.10^{-9}}}{4.\pi.50.10^{3}.470.10^{-12}.5, 1.10^{-9}} = 1,72 K (normalizado)$$

$$R_{2} = \frac{0.618.5, 1.10^{-9} + \sqrt{(0.618.5, 1.10^{-9})^{2} - 4.1.470.10^{-12}.5, 1.10^{-9}}}{4.\pi.50.10^{3}.470.10^{-12}.5, 1.10^{-9}} = 5.9K (normalizado)$$

Diseño final

Diseño de filtros paso-alta. Filtro de orden 1.

la función de transferencia sería:

$$F(s) = \frac{A_{\infty}}{1 + \frac{a_{i}}{s}}$$

$$F(s) = \frac{1}{1 + \frac{1}{w_{c} \cdot R \cdot C} \cdot \frac{1}{s}}$$

$$a_{1} = \frac{1}{w_{c} \cdot R \cdot C}$$

$$R = \frac{1}{2 \cdot \pi \cdot f_{c} \cdot a_{1} \cdot C}$$

Diseño de filtros paso-alta. Orden 2. Estructura Sallen-Key.

Nota: C1=C2 (suele hacerse)

$$F(s) = \frac{A_{\infty}}{\left(1 + \frac{a_{i}}{s} + \frac{b_{i}}{s^{2}}\right)}$$

$$F(s) = \frac{1}{1 + \frac{R_{2} \cdot (C_{1} + C_{2})}{w_{c} \cdot R_{1} \cdot R_{2} \cdot C_{1} \cdot C_{2}} \cdot \frac{1}{s} + \frac{1}{w_{c}^{2} \cdot R_{1} \cdot R_{2} \cdot C_{1} \cdot C_{2}} \cdot \frac{1}{s^{2}}}$$

$$a_{1} = \frac{2}{w_{c} \cdot R_{1} \cdot C}$$

$$b_{1} = \frac{1}{w_{c}^{2} \cdot R_{1} \cdot R_{2} \cdot C^{2}}$$

$$R_{1} = \frac{1}{\pi \cdot f_{c} \cdot C \cdot a_{1}}$$

$$R_{2} = \frac{a_{1}}{4 \cdot \pi \cdot f_{c} \cdot C \cdot b_{1}}$$

Diseño de filtros paso-alta. Orden 2 y 3. Estructura MFB ó Rauch.

Rauch 3er Orden Paso-Alta

Para simplificar se suelen hacer los condensadores iguales.

Con lo que hay que determinar un valor Ro de referencia de la forma siguiente:

$$R_0 = \frac{1}{w_0.C}$$

donde wo es la pulsación de corte nominal.

A partir de este dato y, dependiendo del tipo de filtro que deseemos, se calcularán los valores de cada resistencia con los coeficientes correspondientes:

$$R_i = \frac{R_0}{K_i}$$

Diseño de filtros paso-alta. Topología MFB

Cuando se necesita un alto factor de calidad, se usa esta topología.

$$F(s) = \frac{-\frac{C}{C_2}}{1 + \frac{2C + C_2}{w_c \cdot R_1 \cdot C \cdot C_2} \cdot \frac{1}{s} + \frac{2C + C_2}{w_c \cdot R_1 \cdot C \cdot C_2} \cdot \frac{1}{s^2}}$$

$$A_{\infty} = \frac{C}{C_{2}}$$

$$a_{1} = \frac{2C + C_{2}}{w_{c}.R_{1}.C.C_{2}}$$

$$b_{1} = \frac{2C + C_{2}}{w_{c}.R_{1}.C.C_{2}}$$

$$con \quad lo \quad que$$

$$R_{1} = \frac{1 - 2A_{\infty}}{2\pi f_{c}.C.a_{1}}$$

$$R_{2} = \frac{a_{1}}{2\pi . f_{c}.b_{1}.C_{2}.(1 - 2A_{\infty})}$$

Diseño de filtros paso-banda.

- Normalmente se usarían filtros paso-baja en serie con filtros paso-alta de los órdenes adecuados.
- Si se necesitara un ancho de banda estrecho, podríamos usar las topologías pasobanda Sallen-Key o la MFB.

Diseño de filtros paso-banda.

La función de transferencia genérica sería:

$$F(s) = \frac{\frac{A_m}{Q} \cdot s}{1 + \frac{1}{Q} \cdot s + s^2}$$

y unos ejemplos de ganancias normalizadas serían:

Diseño de filtros paso-banda. Topología Sallen-Key

La función de transferencia sería:

$$F(s) = \frac{G.R..Cw_m.s}{1 + R.C.w_m(3 - G).s + R^2.C^2w_m^2.s^2}$$

la frecuencia central: $f_m = \frac{1}{2 \cdot \pi \cdot R \cdot C}$

la ganancia propia: $G=1+\frac{R_2}{R_1}$

la ganancia a frecuencia central: $A_m = \frac{G}{3-G}$

factor de calidad del filtro: $Q = \frac{1}{3-G}$

Diseño de filtros paso-banda. Topología Sallen-Key. Cálculos.

Debemos especificar fm y C y entonces resolver R

$$R = \frac{1}{2\pi f_m C}$$

Como R2 depende de Q y de Am, tenemos dos opciones a la hora de resolverlo. Una sería fijando la ganancia a frecuencias medias y la otra sería especificando un factor de calidad determinado.

$$R_{2} = \frac{2A_{m} - 1}{1 + A_{m}}$$

$$R_{2} = \frac{2Q - 1}{Q}$$

Diseño de filtros paso-banda. Topología MFB.

Tiene la siguiente función de transferencia:

$$F(s) = \frac{\frac{-R_{2}R_{3}}{R_{1} + R_{3}} \cdot C \cdot w_{m} \cdot s}{1 + \frac{2R_{1}R_{3}}{R_{1} + R_{3}} \cdot C \cdot w_{m} s + \frac{R_{1}R_{2}R_{3}}{R_{1} + R_{3}} \cdot C^{2} \cdot w_{m}^{2} s^{2}}$$

y los coeficientes serían:

$$f_{m} = \frac{1}{2\pi C} \sqrt{\frac{R_{1} + R_{3}}{R_{1}R_{2}R_{3}}}$$

$$A_{m} = \frac{-R_{2}}{2R_{1}}$$

$$Q = \pi f_{m}R_{2}C$$

$$B = \frac{1}{\pi R_{3}C}$$

vemos que se puede ajustar Q, Am y fm independientemente

Diseño de filtros paso-banda de cuarto orden.

La función de transferencia general para un filtro de cuarto orden sería:

$$F(s) = \frac{\frac{A_{mi}}{Q_i} \alpha s}{\left[1 + \frac{\alpha s}{Q_1} + (\alpha s)^2\right]} \cdot \frac{\frac{A_{mi}}{Q_i} \frac{s}{\alpha}}{\left[1 + \frac{s}{\alpha} \frac{1}{Q_1} + \left(\frac{s}{\alpha}\right)^2\right]}$$

esto representa la conexión de dos filtros paso-banda en serie.

- Ami=ganancia a la frecuencia media (fmi) de cada filtro.
- Qi = factor de calidad de cada filtro.
- α y $1/\alpha$ = factores de deriva de las frecuencias medias de cada filtro con respecto a la frecuencia media del filtro deseado. Este factor se determina a partir de aproximaciones sucesivas usando la ecuación:

$$\alpha^{2} + \left[\frac{\alpha \cdot \Delta \Omega \cdot a_{1}}{b_{1}(1 + \alpha^{2})} \right]^{2} + \frac{1}{\alpha^{2}} - 2 - \frac{(\Delta \Omega)^{2}}{b_{1}} = 0$$

Diseño de filtros paso-banda de cuarto orden. Cálculos.

Para facilitar los cálculos se usa la tabla siguiente:

Bessel					Butterworth				Tschebyscheff			
a ₁	1.3617 0.6180			a ₁	1.4142 1.0000			a ₁	1.0650 1.9305			
b ₁				b ₁				b ₁				
Q	100	10	1	Q	100	10	1	Q	100	10	1	
$\Delta\Omega$	0.01	0.1	1	$\Delta\Omega$	0.01	0.1	1	$\Delta\Omega$	0.01	0.1	1	
α	1.0032	1.0324	1.438	α	1.0035	1.036	1.4426	α	1.0033	1.0338	1.39	

donde:

fm1= frecuencia central del filtro 1

fm2= frecuencia central del filtro 2

Ami= ganancia de cada filtro

Am= ganancia del filtro resultante

$$f_{ml} = \frac{f_m}{\alpha}$$

$$f_{m2} = f_m \cdot \alpha$$

$$Q_i = Q \cdot \frac{\left(1 + \alpha^2\right)b_{-1}}{\alpha \cdot a_{-1}}$$

$$A_{mi} = \frac{Q_i}{Q} \cdot \sqrt{\frac{A_m}{b_{-1}}}$$

Diseño de filtros paso-banda de cuarto orden. Ejemplo

Diseño de filtros elimina-banda.

Ocurre lo mismo que con el pasa-banda. Podríamos hacer un filtro elimina-banda con la combinación de un paso-alta con un paso-baja de la siguiente forma: (por ejemplo)

Pero no podremos conseguir una buena selectividad

Diseño de filtros elimina-banda.

La función de transferencia sería:

$$F(s) = \frac{A_0 \cdot (1 + s^2)}{1 + \frac{1}{Q} \cdot s + s^2}$$

donde:

$$Q = \frac{f_m}{B}$$

Diseño de filtros elimina-banda. Doble T

Filtro activo doble T:

La red pasiva doble T sólo tiene un Q=0,25

Si se le añade un operacional podremos incrementar el Q

Diseño de filtros elimina-banda. Doble T

La función de transferencia sería:

$$F(s) = \frac{k(1+s^{2})}{1+2(2-k)s+s^{2}}$$

$$donde \quad k = 1 + \frac{R_{2}}{R_{1}}$$

con lo que los parámetros equivalentes a la función de transferencia genérica:

$$f_{m} = \frac{1}{2\pi R C}$$

$$G = 1 + \frac{R_{2}}{R_{1}}$$

$$A_{0} = 1 + \frac{R_{2}}{R_{1}}$$

$$Q = \frac{1}{2(2-G)}$$

con lo que el factor de calidad Q, puede ser ajustado mediante el control del valor de la ganancia. Realmente esto es engañoso.

Diseño de filtros elimina-banda. Wien-Robinson.

Al igual que ocurre con el doble T, el factor de calidad es de sólo 0,25.

También se puede mejorar con una red activa:

Diseño de filtros elimina-banda. Wien-Robinson.

La función de transferencia sería:

$$F(s) = \frac{-\frac{\beta}{1+\alpha}(1+s^2)}{1+\frac{3}{1+\alpha}s+s^2} \quad donde \quad \alpha = \frac{R_2}{R_3} \quad y \quad \beta = \frac{R_2}{R_4}$$

los parámetros serían:

$$f_{m} = \frac{1}{2\pi R} C A_{0} = \frac{-\beta}{1+\alpha} Q = \frac{1+\alpha}{3}$$

el procedimiento de diseño podría ser:

- Definir fm, C, Q y A0;y, entonces...

$$R = \frac{1}{2\pi f_m C} \rightarrow \alpha = 3Q - 1 \rightarrow \beta = -A_0.3Q \rightarrow R_3 = \frac{R_2}{\alpha} \rightarrow R_4 = \frac{R_2}{\beta}$$

en comparación con el doble T, podemos modificar la ganancia a frecuencias medias A0 sin que ésto afecte a Q.

Diseño de filtros elimina-banda. Comparativa.

En la figura se puede observar la diferencia entre la respuesta en frecuencia de un filtro pasivo con Q=0,25 y el mismo filtro pero ayudado de un circuito activo.

Selección de amplificadores operacionales.

Reglas a la hora de calcular los parámetros fundamentales necesarios para seleccionar un determinado amplificador operacional:

- Producto ganancia-ancho de banda (GBW).
- Filtro de primer orden (A es la ganancia en lazo cerrado):

$$GBW = 100. A. f_{c}$$

Filtro de segundo orden con Q inferior a 1

$$GBW = 100. A. f_{c}. k_{i} k_{i} = \frac{f_{ci}}{f_{c}}$$

Filtro de segundo orden con Q superior a 1

$$GBW = 100 \cdot A \cdot \frac{f_c}{a_1} \cdot \sqrt{\frac{Q_i^2 - 0.5}{Q_i^2 - 0.25}}$$

Velocidad de subida (SR)

$$SR = \pi . V_{pp}. f_c$$

Tablas de coeficientes para filtros tipo Sallen-Key.

n = el orden del filtro

i = número del filtro parcial

ai, bi = los coeficientes del filtro

Ki = cociente entre la frecuencia de corte de cada filtro parcial con respecto a la frecuencia de corte del filtro total.

Qi = factor de calidad de cada filtro parcial

Tgro = retardo normalizado para los filtros pasa-todo

	T	schebyscheff		1-dB			T	schebyscheff		2-dB	
n	1	aį	рI	k _i = f _{Ci} /f _C	Q ₁	n	ī	a į	b i	k _i = fCi / fC	Qį
1	1	1.0000	0.0000	1.000	-	1	1	1.0000	0.0000	1.000	
2	1	1.3022	1.5515	1.000	0.96	2	1	1.1813	1.7775	1.000	1.13
3	1	2.2156	0.0000	0.451		3	1	2.7994	0.0000	0.357	
	2	0.5442	1.2057	1.353	2.02		2	0.4300	1.2036	1.378	2.5
4	1	2.5904	4.1301	0.540	0.78	4	1	2.4025	4.9862	0.550	0.9
	2	0.3039	1.1697	1.417	3.56		2	0.2374	1.1896	1.413	4.5
5	1	3.5711	0.0000	0.280	_	5	1	4.6345	0.0000	0.216	_
	2	1.1280	2.4896	0.894	1.40		2	0.9090	2.6036	0.908	1.7
	3	0.1872	1.0814	1.486	5.56		3	0.1434	1.0750	1.493	7.2
6	1	3.8437	8.5529	0.366	0.76	6	1	3.5880	10.464	0.373	0.9
	2	0.6292	1.9124	1.082	2.20		2	12.022	8	1000	12.1
	3	0.1296	1.0766	1.493	8.00		2	0.4925 0.0995	1.9622 1.0826	1.085 1.491	2.8
7	1	4.9520	0.0000	0.202		-	1				
	2	1.6338	4.4899	0.655	1.30	7	2	6.4760 1.3258	0.0000 4.7649	0.154 0.665	1.6
	3	0.3987	1.5834	1.213	3.16		3	0.3067	1.5927	1.218	4.
	4	0.0937	1.0432	1.520	10.90		4	0.0714	1.0384	1.523	14
8	1	5.1019	14.760 8	0.276	0.75	8	1	4.7743	18.151 0	0.282	0.6
	2	0.8916	3.0426	0.849	1.96		2	0.6991	3.1353	0.853	2.
	3	0.2806	1.4334	1.285	4.27		3	0.2153	1.4449	1.285	5.
	4	0.0717	1.0432	1.520	14.24		4	0.0547	1.0461	1.518	18
9	1	6.3415	0.0000	0.158	<u></u>	9	1	8.3198	0.0000	0.120	_
	2	2.1252	7.1711	0.514	1.26		2	1.7299	7.6580	0.522	1.
	3	0.5624	2.3278	0.994	2.71		3	0.4337	2.3549	0.998	3.
	4	0.2076	1.3166	1.346	5.53		4	0.1583	1.3174	1.349	7.
	5	0.0562	1.0258	1.533	18.03		5	0.0427	1.0232	1.536	23
10	1	6.3634	22.746 8	0.221	0.75	10	1	5.9618	28.037 6	0.226	0.
	2	1.1399	4.5167	0.694	1.86		2	0.8947	4.6644	0.697	2.
	3	0.3939	1.9665	1.093	3.56		3	0.3023	1.9858	1.094	4.
	4	0.1616	1.2569	1.381	6.94		4	0.1233	1.2614	1.380	9.
	5	0.0455	1.0277	1.532	22.26		5	0.0347	1.0294	1.531	29

	T	schebyscheff		3-dB			T	schebyscheff		0.5-dB	
n	i	a i	b i	k _i = f _{Ci} / f _C	Qi	n	ř	aį	bј	k _i = f _{CI} /f _C	Qi
1	1	1.0000	0.0000	1.000	=======================================	1	1	1.0000	0.0000	1.000	3
2	1	1.0650	1.9305	1.000	1.30	2	1	1.3614	1.3827	1.000	0.86
3	1	3,3496	0.0000	0.299	<u>=</u>	3	1	1.8636	0.0000	0.537	_
	2	0.3559	1.1923	1.396	3.07		2	0.0640	1.1931	1.335	1.71
4	1	2.1853	5.5339	0.557	1.08	4	1	2.6282	3.4341	0.538	0.71
	2	0.1964	1.2009	1.410	5.58		2	0.3648	1.1509	1.419	2.94
5	1	5.6334	0.0000	0.178	=	5	1	2.9235	0.0000	0.342	-
	2	0.7620	2.6530	0.917	2.14		2	1.3025	2.3534	0.881	1.18
	3	0.1172	1.0686	1.500	8.82		3	0.2290	1.0833	1.480	4.54
6	1	3.2721	11.677	0.379	1.04	6	1	3.8645	6.9797	0.366	0.6
	200	0.1077	3	4.000	00.40		2	0.7528	1.8573	1.078	1.8
	2	0.4077 0.0815	1.9873 1.0861	1.086 1.489	3.46 12.78		3	0.1589	1.0711	1.495	6.5
7	1	7.9064	0.0000	0.126	-	7	1	4.0211	0.0000	0.249	_
E	2	1.1159	4.8963	0.670	1.98		2	1.8729	4.1795	0.645	1.09
	3	0.2515	1.5944	1.222	5.02		3	0.4861	1.5676	1.208	2.58
	4	0.0582	1.0348	1.527	17.46		4	0.1156	1.0443	1.517	8.8
8	1	4.3583	20.294 8	0.286	1.03	8	1	5.1117	11.960 7	0.276	0.66
	2	0.5791	3.1808	0.855	3.08		2	1.0639	2.9365	0.844	1.6
	3	0.1765	1.4507	1.285	6.83		3	0.3439	1.4206	1.284	3.4
	4	0.0448	1.0478	1.517	22.87		4	0.0885	1.0407	1.521	11.5
9	1	10.175	0.0000	0.098		9	1	5.1318	0.0000	0.195	8===
	2	9 1.4585	7.8971	0.526	1.93		2	2.4283	6.6307	0.506	1.0
	3	0.3561	2.3651	1.001	4.32		3	0.6839	2.2908	0.989	2.2
	4	0.1294	1.3165	1.351	8.87		4	0.2559	1.3133	1.344	4.4
	5	0.0348	1.0210	1.537	29.00		5	0.0695	1.0272	1.532	14.5
10	1	5.4449	31.378 8	0.230	1.03	10	1	6.3648	18.369 5	0.222	0.6
	2	0.7414	4.7363	0.699	2.94		2	1.3582	4.3453	0.689	1.5
	3	0.2479	1.9952	1.094	5.70		3	0,4822	1.9440	1.091	2.8
	4	0.1008	1.2638	1.380	11.15		4	0.1994	1.2520	1.381	5.6
	5	0.0283	1.0304	1.530	35.85	-74	5	0.0563	1.0263	1.533	17.9

	В	utterworth					В	essel			
n	Î	aį	БТ	k _i = f _{Ci} /f _C	Qı	n	Ŀ	aį	bį	k _i = f _{Ci} /f _C	C
1	ī	1.0000	0.0000	1.000	0 =3	1	1	1.0000	0.0000	1.000	
2	1	1.4142	1.0000	1.000	0.71	2	1	1.3617	0.6180	1.000	0
3	1	1.0000	0.0000	1.000	19 -1-	3	1	0.7560	0.0000	1.323	
	2	1.0000	1.0000	1.272	1.00		2	0.9996	0.4772	1.414	0
4	1	1.8478	1.0000	0.719	0.54	4	1	1.3397	0.4889	0.978	0
	2	0.7654	1.0000	1.390	1.31		2	0.7743	0.3890	1.797	(
5	1	1.0000	0.0000	1.000	~ ~	5	1	0.6656	0.0000	1,502	
	2	1.6180	1.0000	0.859	0.62		2	1.1402	0.4128	1.184	(
	3	0.6180	1.0000	1.448	1.62		3	0.6216	0.3245	2.138	(
6	1	1.9319	1.0000	0.676	0.52	6	1	1.2217	0.3887	1.063	
8	2	1.4142	1.0000	1.000	0.71		2	0.9686	0.3505	1.431	(
	3	0.5176	1.0000	1.479	1.93		3	0.5131	0.2756	2.447	
7	1	1.0000	0.0000	1.000	62 <u></u>	7	1	0.5937	0.0000	1.648	
	2	1.8019	1.0000	0.745	0.55		2	1.0944	0.3395	1.207	(
	3	1.2470	1.0000	1.117	0.80		3	0.8304	0.3011	1.695	(
	4	0.4450	1.0000	1.499	2.25		4	0.4332	0.2381	2.731	
8	1	1.9616	1.0000	0.661	0.51	8	1	1.1112	0.3162	1.164	1
	2 3	1.6629	1.0000	0.829	0.60		2	0.9754	0.2979	1.381	(
	3	1,1111	1.0000	1.206	0.90		3	0.7202	0.2621	1.963	(
	4	0.3902	1.0000	1.512	2.56		4	0.3728	0.2087	2.992	
9	1	1.0000	0.0000	1.000	0.	9	1	0.5386	0.0000	1.857	
	2	1.8794	1.0000	0.703	0.53		2	1.0244	0.2834	1.277	(
	3	1.5321	1.0000	0.917	0.65		3	0.8710	0.2636	1.574	(
	4	1.0000	1.0000	1.272	1.00		4	0.6320	0.2311	2.226	(
	5	0.3473	1.0000	1.521	2.88		5	0.3257	0.1854	3.237	
10	1	1.9754	1.0000	0.655	0.51	10	1	1.0215	0.2650	1.264	(
	2	1.7820	1.0000	0.756	0.56		2	0.9393	0.2549	1.412	(
	3	1.4142	1.0000	1.000	0.71		3	0.7815	0.2351	1.780	(
	4	0.9080	1.0000	1.322	1.10		4	0.5604	0.2059	2.479	(
	5	0.3129	1.0000	1.527	3.20		5	0.2883	0.1665	3.466	

Tablas de coeficientes para filtros tipo Rauch.

Rassal	
DCSSC	١.

Orden	K1	K2	K3	K4	K5	K6	K7
1	1						
2	1	0.33					
3	1.19	0.69	0.16				
4	0.51	0.21	0.71	0.12			
5	0.76	0.39	0.12	0.64	0.09		
6	0.35	0.15	0.4	0.12	0.59	0.06	
7	0.71	0.25	0.09	0.37	0.09	0.56	0.05

Butterworth.

Orden	K1	K2	K3	K4	K5	K6	K7
1	1						
2	2.12	0.47					
3	2.37	2.59	0.32				
4	3.19	0.25	1.62	0.61			
5	2.16	4.31	0.21	1.85	0.54		
6	5.79	0.17	2.12	0.47	1.55	0.64	
7	2.1	6.05	0.15	2.4	0.41	1.66	0.6

Tablas de coeficientes para filtros tipo Rauch.

Tschebyscheff de 0.5dB

Orden	K1	K2	K3	K4	K5	K6	K7
1	2.86						
2	2.1	0.31					
3	3.37	4.54	0.18				
4	8.55	0.1	3.54	0.79			
5	5.58	13.14	0.07	5.11	0.41		
6	19.31	0.05	7.07	0.24	5.17	1.23	
7	7.84	26.03	0.03	9.39	0.15	6.5	0.6

Tschebyscheff de 1dB

Orden	K1	K2	K3	K4	K5	K6	K7
1	1.96						
2	2.73	0.33					
3	4.21	5.84	0.16				
4	10.75	0.09	4.45	0.8			
5	6.96	16.56	0.06	6.4	0.36		
6	24.12	0.04	8.82	0.2	6.46	1.24	
7	9.77	32.5	0.03	11.7	0.13	8.1	0.53

Tablas de coeficientes para filtros tipo Rauch.

Tschebyscheff de 2dB

Orden	K1	K2	K3	K4	K5	K6	K7
1	1.3						
2	3.73	0.42					
3	5.56	7.93	0.14				
4	14.3	0.08	5.92	0.76			
5	9.2	22.05	0.05	8.49	0.3		
6	31.9	0.03	11.7	0.16	8.55	1.17	
7	12.9	43.1	0.02	15.5	0.1	10.7	0.44

Tschebyscheff de 3dB

Orden	K1	K2	K3	K4	K5	K6	K7
1	1						
2	4.65	0.3					
3	6.81	9.87	0.12				
4	17.6	0.06	7.29	0.7			
5	11.3	27.23	0.04	10.44	0.25		
6	39.24	0.03	14.36	0.13	10.51	1.07	
7	15.83	53.14	0.02	19.02	80.0	13.16	0.37

Series normalizadas.

E6	1,0	1,5	2,2	3,3	4,7	6,8										
E12	1,0	1,2	1,5	1,8	2,2	2,7	3,3	3,9	4,7	5,6	6,8	8,2				
E24	1,0	1,1	1,2	1,3	1,5	1.6	1,8	2,0	2,2	2,4	2,7	3,0	3,3	3,6	3,9	4,3
	4,7	5,1	5,6	6,2	6,8	7,5	8,2	9,1		SERVICE			00000			
E48	100	105	110	115	121	127	133	140	147	154	162	169	178	187	196	209
	215	226	237	249	261	274	287	301	316	332	348	365	383	402	422	442
	464	487	511	536	562	590	619	649	681	715	750	787	825	866	909	953
E96	100	102	105	107	110	113	115	118	121	124	127	130	133	137	140	143
	147	150	154	158	162	165	169	174	178	182	187	191	196	200	205	21
	215	221	226	232	237	243	249	255	261	267	274	280	287	294	301	309
	316	324	332	340	348	357	365	374	383	392	402	412	422	432	442	45
	464	475	487	499	511	523	536	549	562	576	590	604	619	634	649	66
	681	698	715	732	750	768	787	806	825	845	866	887	909	931	953	976
E192	100	101	102	104	105	106	107	109	110	111	113	114	115	117	118	120
	121	123	124	126	127	129	130	132	133	135	137	138	140	142	143	14
	147	149	150	152	154	156	158	160	162	164	165	167	169	172	174	176
	178	180	182	184	187	189	191	193	196	198	200	203	205	208	210	213
	215	218	221	223	226	229	232	234	237	240	243	246	249	252	255	258
	261	264	267	271	274	277	280	284	287	291	294	298	301	305	309	313
	316	320	324	328	332	336	340	344	348	352	357	361	365	370	374	37
	383	388	392	397	402	407	412	417	422	427	432	437	442	448	453	45
	464	470	475	481	487	493	499	505	511	517	523	530	536	542	549	55
	562	569	576	583	590	597	604	612	619	626	634	642	649	657	665	673
	681	690	698	706	715	723	732	741	750	759	768	777	787	796	806	81
	825	835	845	856	866	876	887	898	909	920	931	942	953	965	976	98

Los condensadores suelen usar solamente la serie E24