Um estudo sobre métricas de produto e vulnerabilidades para tomada de decisões

Arthur Del Esposte Carlos Bezerra Paulo Meirelles Hilmer Neri Universidade de Brasília - Faculdade UnB Gama, Brasil

Resumo

Neste texto apresentamos os resultados intermediários de um Trabalho de Conclusão de Curso de Engenharia de Software da UnB. Assim, é explorada a importância da utilização de métricas estáticas de código-fonte para suportar a tomada de decisões, tanto a nível técnico quanto gerencial a respeito do design e segurança do software. Além disso, é proposta uma nova técnica para realizar medições que será viabilizada a partir da evolução de duas ferramentas de monitoramento de código-fonte.

Design, Segurança e Métricas de Software

- Qualidade interna é um dos principais fatores de sucesso de projetos de software
 - Mais testes automatizados
 - ▶ Legibilidade e compreensão
 - ▶ Reduzem riscos de inserção de bugs
 - ▶ Aumentam as oportunidades de encontrar e tratar vulnerabilidades
- ▶ 80% das vulnerabilidades exploráveis estão ligadas à má codificação segundo o estudo ICAT/NIST (2005)
- A qualidade interna do software está, portanto, relacionado a sua segurança. A aplicação de princípios de segurança podem envolver a aplicação de princípios de design. Assim, a aplicação de práticas e técnicas de design são fundamentais para o desenvolvimento de códigos seguros.
- ► A medição pode ser utilizada como ferramenta para apoiar o acompanhamento e tomada de decisões sobre a segurança e qualidade interna, através de indicadores e metas que indiquem oportunidades de melhorias.

Figura : Proposta de uso de métricas como práticas ágeis

Dificuldades: grande quantidade de métricas, coletas manuais, poucos recursos de visualização, dificuldades de compreensão de valores, interpretações errôneas e uso de métricas isoladas.

Cenários de Decisão

- ▶ Os Cenários de Decisão visam nomear e mapear estados observáveis através de métricas de código-fonte que indicam a existência de determinada característica dentro do software, classe ou método, potencializando o uso de métricas para tomada de decisões em projetos. A estrutura dos cenários consistem em:
 - ▶ Nome: Identificação única do cenário
 - Métricas Envolvidas: Métricas necessárias para a caracterização do cenário
 - ▶ Nível: Abstração envolvida (projeto, classe, método)
 - Descrição: Discuti os problemas, princípios envolvidos e a caracterização
 - ▶ Caracterização com Métricas: Define e discuti como as métricas envolvidas devem ser utilizadas para identificar o cenário
 - Ações Sugeridas: Propõe um conjunto de ações específicas tais como uma refatoração, a utilização de um padrão de projeto, prática e aplicação de princípios
- Neste sentido, projetos podem utilizar cenários de referência ou até mesmo definir novos cenários de acordo com parâmetros de qualidade do projeto

FLOSS in SBES (Brazil)

- ➤ 378 papers analyzed: 206 main track papers between 1999 and 2010, 142 tools session papers between 2001 and 2010, and 30 FEES papers from 2008 to 2010
- ► Matchers: software(s) livre(s), ferramenta(s) livre(s), ferramenta(s) aberta(s), software(s) aberto(s), código aberto, repositório(s) de software, free software, open source, open software, libre software, software repository, OSS, FLOSS, FOSS, and OSSD

Tabala :	Main	++> =	nanarc	analı	,,,,,,d	by year
Tabela :	iviaiii	track	papers	allaly	yzeu,	by year

Year	Analyzed	Mention FLOSS	Relative frequency
1999	26	0	0.00
2001	20	0	0.00
2002	18	2	0.11
2004	17	1	0.06
2005	21	2	0.10
2006	19	0	0.00
2007	23	2	0.09
2008	19	1	0.05
2009	24	6	0.25
2010	19	11	0.58

Tabela: Analysis of research papers mentioning FLOSS

rabeta i / marysis or research papers mentioning i 2000									
Category	2002	2004	2005	2007	2008	2009	2010	Total	
Reference	0	0	0	1	0	1	1	3	
Example or Comparison	1	0	0	0	0	1	1	3	
Running FLOSS tools	1	1	2	0	1	1	0	6	
FLOSS tool as target	0	0	0	1	0	0	3	4	
Data from FLOSS	0	0	0	0	0	2	3	5	
Research about FLOSS	0	0	0	0	0	1	3	4	
Total	2	1	2	2	1	6	11	25	

Tabela: Tool papers analyzed, by year

Year	Analyzed	Mention	FLOSS	Relative	frequency
2001	18		0		0.00
2002	19		3		0.16
2004	15		2		0.13
2005	12		2		0.17
2006	25		7		0.28
2007	14		2		0.14
2008	11		3		0.27
2009	12		4		0.33
2010	16		7		0.44

Tabela: Analysis of tools papers mentioning FLOSS

Context	2002	2004	2005	2006	2007	2008	2009	2010	Total
Reference	1	0	0	0	1	0	0	0	2
Promise to be FLOSS	0	0	1	1	0	1	0	1	4
use FLOSS	1	1	0	0	0	0	1	1	4
FLOSS (fake*)	0	1	0	5	1	2	2	3	14
FLOSS	1	0	1	1	0	0	1	2	6
Total	3	2	2	7	2	3	4	7	30

- ► The Brazilian Software Engineering community could be taking more advantage of the FLOSS research opportunities
 - ▶ We are late in comparison with the international scenario

Agenda

- ► Public Data: Encouraging that software research uses public data and FLOSS tools to process and analyze data
- ► Venues: Increase the number of venues welcoming results from FLOSS research
- ► Tools: Creating a repository for publishing the FLOSS tools presented in the tools sessions of Brazilian software engineering conferences and workshops
- ► Educational Material: creating a repository of educational material and a forum where SE educators can discuss and share experiences in the use of FLOSS (see: softwarelivre.org/sbc)
- ► FLOSSCC: Fostering the creation of FLOSS Competence Centers throughout the country