Optimization Theory and Applications

Kun Zhu (zhukun@nuaa.edu.cn)

October 24, 2018

Notations

- X is a set, $x \in X$ means x is an element of X, otherwise $x \notin X$
- Also, we use $\{x1, x2, x3, ...\}$ to represent a set
- Alternatively, we can use $\{x : x \in R, x > 5\}$
- X, Y are sets, $X \subset Y$ denotes X is a subset of Y
- The notation f: X-> Y means f is a function from the set X into the set Y
- The symbol ≜ means "equals by definition"

· We define a column n-vector by

$$a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

- A row n-vector is denoted as $[a_1, a_2, \dots, a_n]$
- Transpose of a vector \mathbf{a}^T , e.g., $\mathbf{a}^T = [a_1, a_2, \dots, a_n]$

- The sum of two vectors \mathbf{a} , \mathbf{b} is $\mathbf{a} + \mathbf{b} = [a_1 + b_1, a_2 + b_2, \dots, a_n + b_n]^T$
- The operation of addition of vectors has the following properties
 - Commutative: $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$
 - Associative: $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$

- We define an operation of *multiplication* of a vector $\mathbf{a} \in \mathbb{R}^n$ by a real scalar $\alpha \in \mathbb{R}$ as $\alpha \mathbf{a} = [\alpha a_1, \alpha a_2, \dots, \alpha a_n]^T$
- The operation has the following properties
 - Distributive for any real scalars α and β : $\alpha(\mathbf{a} + \mathbf{b}) = \alpha \mathbf{a} + \alpha \mathbf{b}$ $(\alpha + \beta)\mathbf{a} = \alpha \mathbf{a} + \beta \mathbf{a}$
 - Associative: $\alpha(\beta \mathbf{a}) = (\alpha \beta) \mathbf{a}$

- A set of vectors $\{\mathbf{a}_1, \dots, \mathbf{a}_k\}$ is said to be *linearly* independent if the equality $\alpha_1 \mathbf{a}_1 + \alpha_2 \mathbf{a}_2 + \dots + \alpha_k \mathbf{a}_k = 0$ implies that all coefficients α_i are equal to zero.
- A set of vectors $\{a_1, \dots, a_k\}$ is linearly dependent if it is not *linearly independent*
- A vector \mathbf{a} is said to be a *linear combination* of vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ if there are scalars $\alpha_1, \dots, \alpha_k$ such that $\mathbf{a} = \alpha_1 \mathbf{a}_1 + \alpha_2 \mathbf{a}_2 + \dots + \alpha_k \mathbf{a}_k$
- **Proposition:** A set of vectors $\{\mathbf{a}_1, \dots, \mathbf{a}_k\}$ is linearly dependent if and only if one of the vectors from the set is a linear combination of the remaining vectors

- A subset V of Rⁿ is called a subspace of Rⁿ if V is closed under the operations of vector addition and scalar multiplication
 - That is if a and b are vectors in V, then the vectors a + b and αa are also in V for every scalar α
- Every subspace contains the zero vector 0
- Question: Any example of subspace?

• In \mathbb{R}^3 , the intersection of two-dimensional subspaces is one-dimensional

- Let $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ be arbitrary vectors in \mathbb{R}^n . The set of all their linear combinations is called the **span** of $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ (a subspace spanned by these vectors) and is denoted by $\operatorname{span}[\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k] = \{\sum_{i=1}^k \alpha_i \mathbf{a}_i : \alpha_1, \ldots, \alpha_k \in \mathbb{R}\}$
- Given a vector \mathbf{a} , the subspace span[\mathbf{a}] is composed of the vectors $\alpha \mathbf{a}$, where α is an arbitrary real number $\alpha \in R$
- If \mathbf{a} is a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$, then span $[\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k, \mathbf{a}] = \text{span}[\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k]$
- The span of any set of vectors is a subspace

- Given a subspace \mathbb{V} , a *basis* of the subspace \mathbb{V} is any set of linearly independent vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k\} \subset \mathbb{V}$ such that $\mathbb{V} = span[\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k]$
- Two factors:
 - $\{a_1, a_2, \dots, a_k\} \subset \mathbb{V}$ are Linearly independent
 - \mathbb{V} can be spanned by $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k\}$
- Question: Is the basis of a subspace unique?

- All bases of a subspace V contain the same number of vectors. This number is called the *dimension* of V, denoted dim V
- **Proposition**: if $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k\}$ is a basis of \mathbb{V} , then any vector \mathbf{a} of \mathbb{V} can be represented uniquely as $\mathbf{a} = \alpha_1 \mathbf{a}_1 + \alpha_2 \mathbf{a}_2 + \dots + \alpha_k \mathbf{a}_k$, where $\alpha_i \in R$

• The standard basis for \mathbb{R}^n is the set of vectors

$$m{e}_1 = egin{bmatrix} 1 \ 0 \ 0 \ 0 \ \vdots \ 0 \ 0 \end{bmatrix}, \;\; m{e}_2 = egin{bmatrix} 0 \ 1 \ 0 \ \vdots \ 0 \ 0 \end{bmatrix}, \; \ldots, \; m{e}_n = egin{bmatrix} 0 \ 0 \ 0 \ \vdots \ 0 \ 0 \end{bmatrix}$$

• The vectors \boldsymbol{u} and \boldsymbol{v} are a basis for the two-dimensional subspace of \mathbb{R}^3

• A $m \times n$ matrix is denoted by

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

• The transpose of matrix **A** is a $n \times m$ matrix denoted by

$$\boldsymbol{A}^{\top} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Rank of Matrix

- The maximal number of linearly independent columns of A
 is called the *rank* of the matrix A
 - The rank ${\bf A}$ is the dimension of span[${f a}_1,\ldots,{f a}_n$]
- Proposition: The rank of a matrix A is invariant under the following operations:
 - Multiplication of the columns of A by nonzero scalars
 - · Interchange of the columns
 - Addition to a given column a linear combination of other columns

Linear Equations

 Suppose we are given m equations in n unknowns of the form

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2, \\ &\vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m. \end{aligned}$$

• We can represent the set of equations as a vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n = \mathbf{b}$, where

$$m{a}_j = egin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}, \qquad m{b} = egin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Liner Equations

- Associated with the system of equations is the matrix $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n]$
- We can also represent the above system of equations as $\mathbf{A}\mathbf{x} = \mathbf{b}$
- Theorem: The system of equations Ax = b has a solution if and only if rankA = rank[A, b]
- When will the solution be unique?

Inner Product and Norms

• For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we define the *Euclidean inner product* by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i = \mathbf{x}^T \mathbf{y}$$

- The inner product is a *real-valued function* with following properties:
 - Positivity: $\langle \mathbf{x}, \mathbf{x} \rangle > 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = 0$
 - Symmetry: < x, y >=< y, x >
 - Additivity: < x + y, z > = < x, z > + < y, z >
 - Homogeneity: $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$, for every $r \in \mathbb{R}$
- The vectors x and y are said to be orthogonal if $\langle x, y \rangle = 0$

Inner Product and Norms

- The Euclidean norm of a vector \mathbf{x} is defined as $||\mathbf{x}|| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\mathbf{x}^T \mathbf{x}}$
- Theorem Cauchy-Schwarz Inequality: For any two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n , the Cauchy-Schwarz inequality

$$|< x, y > | \le ||x|| ||y||$$

holds. Furthermore, equality holds if and only if $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$

Inner Product and Norms

- The Euclidean norm of a vector ||x|| has the following properties:
 - Positivity: $\|\mathbf{x}\| \ge 0$, $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = 0$
 - Homogeneity: $||r\mathbf{x}|| = |r|||\mathbf{x}||$, for $r \in \mathbb{R}$
 - Triangle inequality: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$

Linear Transformations

- A function $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^m$ is called a *linear transformation* if
 - $\mathcal{L}(\alpha \mathbf{x}) = \alpha \mathcal{L}(\mathbf{x})$, for every $x \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$
 - $\mathcal{L}(\mathbf{x} + \mathbf{y}) = \mathcal{L}(\mathbf{x}) + \mathcal{L}(\mathbf{y})$, for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- Examples

Eigenvalues and Eigenvectors

- Let $\bf A$ be an $n \times n$ real square matrix. A scalar λ (possible complex) and a nonzero vector $\bf v$ satisfying the equation $\bf A \bf v = \lambda \bf v$ are the *eigenvalue* and *eigenvector* of $\bf A$
- For λ to be an eigenvalue it is necessary and sufficient for the matrix λI – A to be singular, that is det[λI – A] = 0, where I is the n × n identity matrix
 - $\det[\lambda \mathbf{I} \mathbf{A}] = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0 = 0$
- Can be easily obtained in Matlab: [v,d] = eig[A]

Eigenvalues and Eigenvectors

Theorem: Suppose the characteristic equation det[λI – A] = 0 has n distinct roots λ₁, λ₂,...,λ_n. Then there exists n linearly independent vectors v₁, v₂,..., v_n such that

$$\mathbb{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i, \quad i = 1, 2, \dots, n$$

Eigenvalues and Eigenvectors

- With the set of linearly independent set of eigenvectors $\{v_1, v_2, \dots, v_n\}$, the matrix A can be diagnosed
 - i.e., $a_{ii} = 0$ for all $i \neq j$
- Let $T = [v_1, v_2, \dots, v_n]^{-1}$, Then

$$egin{aligned} m{T}m{A}m{T}^{-1} &= m{T}m{A}[m{v}_1, m{v}_2, \dots, m{v}_n] \ &= m{T}[m{A}m{v}_1, m{A}m{v}_2, \dots, m{A}m{v}_n] \ &= m{T}m{T}^{-1}egin{bmatrix} \lambda_1 & & 0 \ & \lambda_2 & & \ & \ddots & \ 0 & & \lambda_n \end{bmatrix} \ &= egin{bmatrix} \lambda_1 & & 0 \ & \lambda_2 & & \ & \ddots & \ 0 & & \lambda_n \end{bmatrix} \ &= egin{bmatrix} \lambda_1 & & 0 \ & \lambda_2 & & \ & \ddots & \ &$$

Quadratic Forms

- A *quadratic form* $f: \mathbb{R}^n \to \mathbb{R}$ is a function $f(\mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{x}$, where \mathbf{Q} is an $n \times n$ real matrix, and is symmetric: $\mathbf{Q} = \mathbf{Q}^T$
- A quadratic form x^TQx is positive definite if x^TQx > 0 for all nonzero vectors x
- It is **positive semidefinite** if $\mathbf{x}^T \mathbf{Q} \mathbf{x} \ge 0$ for all \mathbf{x}
- It is *negative definite* if $\mathbf{x}^T \mathbf{Q} \mathbf{x} < 0$ for all \mathbf{x}
- It is *negative semidefinite* if $\mathbf{x}^T \mathbf{Q} \mathbf{x} \leq 0$ for all \mathbf{x}
- · Examples of Quadratic forms

Quadratic Forms

- Quadratic forms have wide applications in optimization
 - Quadratic programming

minimize
$$\mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{c}^T \mathbf{x}$$

subject to $\mathbf{A} \mathbf{x} < b$

· Linear quadratic optimal control

$$\begin{split} \text{Minimize:} \quad J(u,x_0,t_0,t_f) &= \int_{t_0}^{t_f} \left[x^T(t)Q(t)x(t) + u^T(t)R(t)u(t) \right] dt + x(t_f)^T Sx(t_f) \end{split}$$
 s.t.
$$\dot{x} = A(t)x + B(t)u(t) \end{split}$$

Quadratic Forms

- Determining whether a quadratic form is positive definite
- Theorem: A quadratic form x^TQx, and Q = Q^T is positive definite if and only if all the leading principal minors of Q are positive
- Or, the eigenvalues of **Q** are all positive

Concepts From Geometry

 The *line segment* between two points x and y is the set of points on the straight line joining points x and y

Question: How to define a line?

• Let $u_1, u_2, \ldots, u_n, v \in \mathbb{R}$, where at least one of the u_i is nonzero. The set of all points $\mathbf{x} = [x_1, x_2, \ldots, x_n]^T$ that satisfy the linear equation

$$u_1x_1+u_2x_2+\ldots+u_nx_n=v$$

is called a *hyperplane* of the space \mathbb{R}^n

- Question: Is hyperplane a subspace of \mathbb{R}^n ?
- Examples of hyperplane:
 - For n = 2, the hyperplane is a straight line
 - For n = 3, the hyperplane is an ordinary plane
- The hyperplane has dimension n-1

- The hyperplane H divides \mathbb{R}^n into two **half-spaces**
- One contains points satisfying inequality $u_1x_1 + u_2x_2 + \ldots + u_nx_n \ge v$, denoted by $H_+ = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{u}^T\mathbf{x} \ge v\}$
- One contains points satisfying inequality $u_1x_1 + u_2x_2 + \ldots + u_nx_n \le v$, denoted by $H_- = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{u}^T\mathbf{x} < v\}$
- H_+ is called *positive half-space*, H_- is called *negative half-space*

• Let $\mathbf{a} = [a_1, \dots, a_n]^T$ be an arbitrary point of the hyperplane H. Thus, $\mathbf{u}^T \mathbf{a} - v = 0$, and

$$u^{\top}x - v = u^{\top}x - v - (u^{\top}a - v)$$

= $u^{\top}(x - a)$
= $u_1(x_1 - a_1) + u_2(x_2 - a_2) + \dots + u_n(x_n - a_n) = 0$.

 H contains points for which the vector u and x – a are orthogonal

Affine Set

- A set $C \in \mathbb{R}^n$ is **affine** if the line through any two distinct points in C lies in C
 - For any $x_1, x_2 \in C$ and $\theta \in \mathbb{R}$, $\theta x_1 + (1 \theta)x_2 \in C$
 - C contains the linear combination of any two points in C, provided the coefficients sum to one
- The idea can be generalized to more than two points
 - A point of the form $\theta_1 x_1 + \ldots + \theta_k x_k$, where $\theta_1 + \ldots + \theta_k = 1$, is an affine combination of points x_1, \ldots, x_k

- Definition: a set $\Theta \in \mathbb{R}^n$ is *convex* if for all $\mathbf{u}, \mathbf{v} \in \Theta$, the line segment between \mathbf{u} and \mathbf{v} is in Θ . Mathematically, Θ is convex if and only if $\alpha \mathbf{u} + (1 \alpha) \mathbf{v} \in \Theta$ for all $\mathbf{u}, \mathbf{v} \in \Theta$ and $\alpha \in [0, 1]$
- Examples of convex set

Examples of nonconvex set

Is the following set a convex set?

- · Examples of convex set
 - The empty set
 - · A set consisting of a single point
 - · A line or a line segment
 - A subspace
 - A hyperplane
 - A half-space
 - \bullet \mathbb{R}^n

- **Theorem**: Convex subsets of \mathbb{R}^n has following properties:
 - If Θ is a convex set and β is a real number, then the set $\beta\Theta=\{\mathbf{x}:\mathbf{x}=\beta\mathbf{v},\mathbf{v}\in\Theta\}$

is also convex

• If Θ_1 and Θ_2 are convex sets, then the set

$$\Theta_1+\Theta_2=\{\textbf{x}:\textbf{x}=\textbf{v}_1+\textbf{v}_2,\textbf{v}_1\in\Theta_1,\textbf{v}_2\in\Theta_2\}$$

is also convex

• The intersection of any collection of convex set is convex

- We call a point of the form $\theta_1 x_1 + \cdots + \theta_k x_k$, where $\theta_1 + \cdots + \theta_k = 1$ and $\theta_i \ge 0$, a **convex combination** of the points x_1, \ldots, x_k
- A convex combination of points can be thought of as mixture or weighted average of the points, with θ_i as the fraction of x_i in the mixture
- The convex hull of a set C, denoted conv C, is the set of all convex combinations of points in C:

conv
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \ \theta_i \ge 0, \ i = 1, \dots, k, \theta_1 + \dots + \theta_k = 1\}$$

- Question: the convex hull for the following sets
 - x_1, x_2 in \mathbb{R}^2
 - x_1 , x_2 , and x_3 in \mathbb{R}^2
 - x_1, x_2, x_3 , and x_4 in \mathbb{R}^3

How to draw the following figure?

- The convex hull is always convex
- The convex hull is the smallest convex set that contains C
 - If B is any convex set that contains C, then **conv** $C \subset B$
- Convex hull is useful to "convex" a non-convex set

Cone

- A set C is a *cone*, if for every $x \in C$ and $\theta \ge 0$, we have $\theta x \in C$
- A set C is a convex cone if it is convex and a cone
 - For any $x_1, x_2 \in C$ and $\theta_1, \theta_2 \ge 0$, we have $\theta_1 x_1 + \theta_2 x_2 \in C$

Cone

- A point of the form $\theta_1 x_1 + \ldots + \theta_k x_k$ with $\theta_1, \ldots, \theta_k \ge 0$ is called a *conic combination* of x_1, \ldots, x_k
- A set C is a convex cone if and only if it contains all conic combinations of its elements
- The *conic hull* of a set C is the set of all conic combinations of points in C

$$\{\theta_1x_1 + \ldots + \theta_kx_k | x_i \in C, \theta_i \geq 0, i = 1, \ldots, k\}$$

Euclidean Balls and Ellipsoids

• An **Euclidean ball** in \mathbb{R}^n has the form

$$B(\mathbf{x}_c, r) = {\{\mathbf{x} | \|\mathbf{x} - \mathbf{x}_c\|_2 \le r\}}, \text{ where } r > 0$$

- The vector \mathbf{x}_c is the center and the scalar r is the radius
- An ellipsoid have the form

$$\varepsilon = \{\mathbf{x} | (\mathbf{x} - \mathbf{x}_c)^T P^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1\},\$$

where $P = P^T > 0$, i.e., P is symmetric and positive definite

Euclidean Balls and Ellipsoids

An example of application

With column-wise model, the channel uncertainty is modeled by

$$g_{lm}(n) = \{\bar{g}_{lm}(n) + \triangle g_{lm}(n) : |\triangle g_{lm}(n)| \le \varepsilon_{lm}(n)\},\,$$

where $\varepsilon_{lm}(n)$ is the column-wise uncertainty bound. With ellipsoidal model, the channel uncertainty is described by

$$g_{lm}(n) = \left\{ \bar{g}_{lm}(n) + \triangle g_{lm}(n) : \| \triangle g_{lm}(n) \|_{\mathbf{w}_{lm}(n)} \leq \varepsilon_m(n) \right\},$$

where $\|\cdot\|$ denotes the Euclidean norm of a vector and $\mathbf{w}_{lm}(n)$ is a vector of positive weights. Similarly, the uncertainty models for $g_{ik}(n)$, $h_{mk}(n)$, and $h_{km}(n)$ can be obtained.

• A *neighborhood* of a point $\mathbf{x} \in \mathbb{R}^n$ is the set

$$\{\mathbf{y}\in\mathbb{R}^n:\|\mathbf{y}-\mathbf{x}\|<\varepsilon\},$$
 where ε is some positive number.

- The neighborhood is also called a *ball* with radius ε and center \mathbf{x}
- Examples of neighborhood of a point in \mathbb{R}^2 and \mathbb{R}^3

- Definition: A point x ∈ S is said to be an *interior point* of the set S if it contains some neighborhood of x, and all points within the neighborhood are also in S
- The set of all interior points of S is called the interior of S

- A point x is a boundary point of the set S if every neighborhood of x contains a point in S and a point not in S
- The set of all boundary points of S is called the boundary of S
- Question: Is it necessary for a boundary point of S to be an element of S?

- A set S is open if it contains a neighborhood of each of its points (each of its points is an interior point), or equivalently, if S contains no boundary points
- A set S is *closed* if it contains its boundary
- A set that is contained in a ball of finite radius is bounded
- A set is compact if it is both closed and bounded

- Compact set are important in optimization
- **Theorem:** Let $f:\Omega\to\mathbb{R}$ be a continuous function, where $\Omega\subset\mathbb{R}^n$ is a compact set. Then there exists a point $\mathbf{x}_0\in\Omega$ such that $f(\mathbf{x}_0)\leq f(\mathbf{x})$ for all $\mathbf{x}\in\Omega$. In other words, f achieves its minimum on Ω
- You will frequently meet the assumption "the set is convex and compact"

Polytopes and Polyhedra

- Let Θ be a convex set, and suppose y is a boundary point of Θ. A hyperplane passing through y is called a supporting hyperplane of the set Θ if the entire set Θ lies completely in one of the two half-spaces into which this hyperplane divides the space Rⁿ
- A set that can be expressed as the intersection of a finite number half-spaces is called a convex polytope

Polytopes and Polyhedra

- A nonempty bounded polytope is called a polyhedron
- Examples of Polyhedrons

Elements of Calculus: Sequences and Limits

- A **sequence** of real numbers is a function whose domain is the set of natural numbers 1, 2, ..., k, ... and whose range is contained in \mathbb{R}
- A number $x^* \in \mathbb{R}$ is called the *limit* of the sequence $\{x_k\}$ if for any positive ε there is a number K such that for all k > K, $|x_k x^*| < \varepsilon$, and we denote $x^* = \lim_{k \to \infty} x_k$
- A sequence that has a limit is called a convergent sequence
- The definition can be generalized to \mathbb{R}^n . That is $\forall \varepsilon, \exists K$, such that $\forall k > K$, $\|\mathbf{x}_k \mathbf{x}^*\| < \varepsilon$, then we denote $\mathbf{x}^* = \lim_{k \to \infty} \mathbf{x}_k$

- Given $f: \mathbb{R} \to \mathbb{R}$
- The derivative of f is a function $f': \mathbb{R} \to \mathbb{R}$ given by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

if the limit exits

- Also written $\frac{df}{dx}$
- If the derivative exists, we say that f is differentiable
- If f' is continuous, we say that f is continuously differentiable

- Given $f: \mathbb{R}^n \to \mathbb{R}$
- The gradient of f is a function $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ given by

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{bmatrix}$$

- At each \mathbf{x} , $\nabla f(\mathbf{x})$ is a vector in \mathbb{R}^n
- Note that for $f: \mathbb{R}^n \to \mathbb{R}$, we have $\nabla f(\mathbf{x}) = Df(\mathbf{x})^T$

- Given $f: \mathbb{R}^n \to \mathbb{R}^m, f = [f_1, \dots, f_m]^T$
- The derivative of f is a function $Df: \mathbb{R}^n \to \mathbb{R}^{m \times n}$ given by

$$Df(x) = \begin{bmatrix} rac{\partial f_1}{\partial x_1}(x) & \dots & rac{\partial f_1}{\partial x_n}(x) \\ \vdots & & \vdots \\ rac{\partial f_m}{\partial x_1}(x) & \dots & rac{\partial f_m}{\partial x_n}(x) \end{bmatrix}$$

- Sometimes called Jacobian
- At each \mathbf{x} , $Df(\mathbf{x})$ is an $m \times n$ matrix
- If Df is continuous, we say that f is continuously differentiable

- If the derivative of ∇f exits, we say that f is twice differentiable
- Write the second derivative as D²f (or F), and call it the Hessian of f

$$\mathbf{F} = D^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \frac{\partial^2 f}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

- Example: Find the first and second derivatives for $f(x_1, x_2) = 5x_1 + 8x_2 + x_1x_2 x_1^2 2x_2^2$
- The first derivative is

$$Df(\boldsymbol{x}) = (\nabla f(\boldsymbol{x}))^{\top} = \left[\frac{\partial f}{\partial x_1}(\boldsymbol{x}), \frac{\partial f}{\partial x_2}(\boldsymbol{x})\right] = \left[5 + x_2 - 2x_1, 8 + x_1 - 4x_2\right]$$

The second derivative is

$$\boldsymbol{F}(\boldsymbol{x}) = D^2 f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(\boldsymbol{x}) & \frac{\partial^2 f}{\partial x_2 \partial x_1}(\boldsymbol{x}) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(\boldsymbol{x}) & \frac{\partial^2 f}{\partial x_2^2}(\boldsymbol{x}) \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & -4 \end{bmatrix}$$

Level Sets

• The *level set* of a function $f: \mathbb{R}^n \to \mathbb{R}$ at level c is the set of points

$$S = \{ \mathbf{x} : f(\mathbf{x}) = c \}$$

- · Examples of level sets
 - for $f: \mathbb{R} \to \mathbb{R}$, the level sets are usually set of points
 - for $f:\mathbb{R}^2 \to \mathbb{R}$, the level sets are usually curves
 - for $f: \mathbb{R}^3 \to \mathbb{R}$, the level sets are usually surfaces

Level Sets Examples

• The Rosenbrock's function $f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$

• The level sets of f at 0.7, 7, 70, 200, and 700

Level Sets and Gradient

- The vector $\nabla f(\mathbf{x}_0)$ is orthogonal to the tangent vector of the level set determined by $f(\mathbf{x}) = f(\mathbf{x_0})$ at \mathbf{x}_0
- $\nabla f(\mathbf{x}_0)$ is orthogonal to the level set at \mathbf{x}_0

Level Sets and Gradient

• $\nabla f(\mathbf{x}_0)$ is the direction of maximum rate of increase of f at \mathbf{x}_0

Level Sets and Gradient

 The values of the function are represented in black and white, black representing higher values, and its corresponding gradient is represented by blue arrows.

