(19)日本国特許庁 (JP)

5/243

5/202

5/335

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-210360 /

(43)公開日 平成10年(1998)8月7日

(51) Int.Cl.⁶ H 0 4 N 識別記号

FΙ

H 0 4 N 5/243

5/202

5/335

P

審査請求 未請求 請求項の数2 OL (全 32 頁)

(21)出願番号

特願平9-13019

(71)出願人 000006079

ミノルタ株式会社

(22)出願日

平成9年(1997)1月27日

大阪府大阪市中央区安土町二丁目3番13号

大阪国際ビル

(72)発明者 沖須 宜之

大阪市中央区安土町二丁目3番13号 大阪

国際ピル ミノルタ株式会社内

(72)発明者 藤井 真一

大阪市中央区安土町二丁目3番13号 大阪

国際ピル ミノルタ株式会社内

(74)代理人 弁理士 小谷 悦司 (外3名)

(54) 【発明の名称】 デジタルカメラ

(57)【要約】

【課題】 斜め撮影画像を擬似的な正面撮影画像に補正して撮影する場合にも好適な照度ムラの補正を行なう。 【解決手段】 CCD20で撮像されたホワイトボード上の文字情報の斜め撮影画像は斜め画像補正演算部322で擬似的な正面撮影画像に補正された後、画像メモリ324に記憶される。補正後の正面撮影画像は照度ムラを補正すべくγ特性設定部325で複数のブロックに分割されて各ブロック毎にγ特性が設定され、第2γ補正部327によりブロック単位で対応するγ特性によりガンマ補正される。斜め撮影画像の補正で生じた非有効画素を含むブロックに対しては、非有効画素を除いた有効画素のみを用いてγ特性を設定することによりそのブロックのγ特性を非有効画素の影響のない適切な特性とし、γ特性の不適切に基づく照度ムラ補正の弊害を防止するようにした。

【特許請求の範囲】

【請求項1】 複数の光電変換素子からなる画素を有し、被写体光像を画素信号に光電変換して取り込む撮像手段と、上記撮像手段で取り込まれた画像を部分的に拡大又は縮小し、かつ、この縮小処理により不足する画素位置には偽の画素信号を補間して画像の幾何学的歪を補正する歪補正手段とを備えたデジタルカメラであって、上記歪補正手段で補正された画像を複数の小画像に分割する画像分割手段と、上記小画像を構成する画素信号のうち、上記偽の画素信号でない有効な画素信号を抽出する。本語の画素信号抽出手段と、小画像毎に抽出された有効な画素信号を用いてその小画像に対するγ特性を設定手段と、上記γ特性設定手段で設定されたγ特性を用いて対応する小画像を構成する画素信号のガンマ補正を行なうガンマ補正手段とを備えたことを特徴とするデジタルカメラ。

【請求項2】 請求項1記載のデジタルカメラにおいて、上記被写体光像を上記撮像手段の撮像面に結像する撮影レンズと、上記撮像手段の撮像面と被写体面とのなす角度を設定する角度設定手段と、被写体までの距離を測定する測距手段と、上記角度設定手段で設定された角度、上記撮影レンズの焦点距離及び上記測距手段で測定された被写体距離を用いて撮影画面内の撮影倍率の分布を演算する演算手段とを備え、上記歪補正手段は、上記撮影倍率の分布に基づき撮像画像を部分的に拡大又は縮小し、かつ、この縮小処理により不足する画素位置には偽の画素信号を補間して斜め撮影によって生じる遠近法的な歪みを補正するものであることを特徴とするデジタルカメラ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、撮影画像を部分的 に拡大又は縮小して幾何学的歪を補正することのできる デジタルカメラに関するものである。

[0002]

【従来の技術】従来、デジタル複写機等の画像形成装置においては、記録紙に複写された文字や図形等の情報の明瞭度を高めるため、電気信号に光電変換して取り込まれた画像に対して比較的γ値の大きいγ特性(2値化処理に近い特性を有するγ特性)を用いて画像処理(ガンマ補正処理)が行なわれている。また、このガンマ補正処理においては、一般に、照度ムラの影響を低減するため、図51に示すように、撮像画像Gを副走査方向に複数の短冊状のブロックB(1),B(2),…B(n)に分割し、各ブロックB(r)内に含まれる画素データのレベル分布を示すヒストグラムに基づいて各ブロック毎にγ特性γ(1),γ(2), …γ(n)を設定し、各ブロックB(r)(r=1,2,mn)内の画素データは、そのブロックに対するγ特性γ(r)を用いてガンマ補正が行なわれるようになっている。

と 【0003】このガンマ補正により所定レベル以上の白 地部分が一律に一定の白色に恋挽されるとともに 所定

地部分が一律に一定の白色に変換されるとともに、所定 レベル以下の文字部分(黒字部分)が一律に一定の黒色 に変換されるので、2値化処理に近似した画質が得られ

るようになっている。

[0005]

【0004】また、特開平6-113139号公報には、撮像画像を複数の部分画像ブロックに分割し、選択された部分画像ブロック(注目部分画像ブロック)とこの注目部分画像ブロックに隣接する複数の部分画像ブロックについて、ブロック毎にブロック内に含まれる画素データのレベル分布のヒストグラムを作成するとともに、このヒストグラムのデータを用いてニューラルネットワークにより注目部分画像ブロックの閾値を設定し、この閾値を用いて注目部分画像ブロック内の画素データの2値化処理を行なう画像2値化装置が示されている。

【発明が解決しようとする課題】ところで、デジタルカメラは、画像処理により撮影された画像の画質を自在に制御できることから、撮影の目的や被写体の種類に応じて撮影画像の画質の処理を適正に行なうことにより通常の銀塩フィルムに撮影するカメラに比してより好適な画質の画像を取り込むことができるという利点がある。このため、通常の写真撮影のためだけでなく、例えば会議場でホワイトボードに書かれた文字、図形等の情報を写し取るための機器として利用されている。

【0006】デジタルカメラで文字や図形等が書かれたホワイトボードを撮影する場合、その撮影の主目的は専らホワイトボード上の文字や図形等の情報の記録にあるので、このような撮影画像に対しては上記デジタル複写 30 機と同様に白地部分(ホワイトボードの部分)を白く飛ばして情報部分(文字や図形の部分)の明瞭度を高めるようなガンマ補正を行なうことが望ましい。

【0007】この場合、ホワイトボード上の文字密度のバラツキや照度ムラが大きいので、撮像画像を2次元的に複数のブロックに分割し、ブロック単位でガンマ補正を行なうことにより照度ムラの補正(シェーディング補正)を行なうことが望ましい。

【0008】すなわち、部屋の天井灯と窓外の太陽光とによりホワイトボードが照明されているとすると、照明光の不均一により照度ムラが生じ、かつ、また、撮影レンズの入射瞳に角度ωで入射する光軸外物点の像はcos⁴ωに比例して暗くなるという、いわゆるコサイン4乗則による入射光量分布と上記照度ムラとの相乗効果により、CCD等の撮像素子の出力分布は撮像面内で2次元方向に大きく変動する。

【0009】このため、撮像画像を2次元的に複数のブロックに分割し、各ブロック毎にそのブロック内の照度に応じたガンマ補正をして照度ムラ補正を行なうことが望ましい。そして、より好ましくは、隣接するブロック50間でブロック毎に設定されたッ特性が大きく変化する場

合にこのγ特性の急変に起因してブロックの境界に偽線が生じるのを回避するため、ブロックサイズを可及的に小さくして各プロックに適正なγ特性を設定するようにするのがよい。

【0010】一方、例えば会議場において、撮影者の座席の位置関係からホワイトボードに対して斜め方向からホワイトボード上の文字、図形等の情報を撮影した場合、文字等の情報全体にピントが合わないため、撮影画像に遠近法的な幾何学的歪が生じ、情報の判読性が低下する。このような問題を解決する方法として、出願人は 10上記遠近法的な像歪みを補正して撮影する(すなわち、斜め撮影の画像を擬似的な正面撮影の画像(正面から撮影したように見える画像)に補正して撮影する)ことのできるデジタルカメラを提案している(特願平8-101268号~101271号)。

【0011】このデジタルカメラは、カメラに対する被写体の傾斜角、撮影レンズの焦点距離及び被写体距離を用いて撮影画面内の各画素位置の撮影倍率を算出し、この撮影倍率に基づいて撮影画像の一部画像を拡大又は縮小して幾何学的歪を補正するものである。例えばホワイトボードに対して左斜め方向から撮影する場合、撮影画面の中央を基準とすると、左側の画像は近接した画像となり、右側の画像は離隔した画像となるので、左側画像を縮小方向に変倍処理し、右側画像を拡大方向に変倍処理することにより擬似的な正面画像に補正される。

【0012】一般に、会議場でのホワイトボードの撮影では、ホワイトボードが均一な照度で照明されることは殆どなく、しかもホワイトボードに対して正面位置から撮影できる場合も非常に少ないことから、このような撮影シーンの撮影画像に対しては、通常、上述の照度ムラ補正機能及び斜め画像補正機能の両機能による画像処理が適用されることになる。

【0013】この場合、斜め画像を擬似的な正面画像に補正した後、照度ムラ補正機能を行なうと、照度ムラを適切に補正できない場合が生じる。すなわち、縮小処理により斜め画像を補正した部分では画素データが欠落する部分が生じ、この部分にはダミーデータが補充されるため、照度ムラ補正処理において、ダミーデータを含むブロックに対するヒストグラムが得られなくなる。これでは、ダミーデータを含むブロックに対するッ特性が不適切なものとなり、そのブロックの画像のガンマ補正が適切に行なえないばかりか、隣接するブロックとの間で白地レベルの不連続が生じ、ブロックの境界に偽線が生じるという問題が生じる。

【0014】なお、上記問題は斜め撮影した斜め画像の 幾何学的歪を補正する場合抱けでなく、撮像光学系の特 性に起因する幾何学的歪を補正する場合にも同様に生じ るものである。

【0015】上記特開平6-113139号公報に記載

の画像 2 値化装置は、上記従来のデジタル複写機と同様に、主としてコピー機やファクシミリ装置における 2 値化処理に関するもので、装置の構造上、原稿画像が斜め方向から取り込まれることがないので、斜め画像補正機能は備えていない。従って、上述のように照度ムラ補正と斜め画像補正の両補正を行なう際の問題が生じることはないので、かかる問題に関する記載乃至示唆は一切なされていない。

【0016】本発明は、上記課題に鑑みてなされたものであり、幾何学的歪を補正して撮影する場合にも好適な 照度ムラの補正を行なうことのできるデジタルカメラを 提供するものである。

[0017]

【課題を解決するための手段】本発明は、複数の光電変換素子からなる画素を有し、被写体光像を画素信号に光電変換して取り込む撮像手段と、上記撮像手段で取り込まれた画像を部分的に拡大又は縮小し、かつ、この縮小処理により不足する画素位置には偽の画素信号を補間して画像の幾何学的歪を補正する歪補正手段とを備えたデジタルカメラであって、上記歪補正手段で補正された画像を複数の小画像に分割する画像分割手段と、上記へい画像を構成する画素信号を抽出する画素信号抽出手段と、小画像毎に抽出された有効な画素信号を用いてその小画像に対するγ特性を設定するγ特性設定手段と、上記γ特性設定手段で設定されたγ特性を用いて対応する小画像を構成する画素信号のガンマ補正を行なうガンマ補正手段とを備えたものである(請求項1)。

【0018】上記構成によれば、撮像手段で取り込まれた画像は部分的に拡大又は縮小され、かつ、縮小処理により不足する画素位置には偽の画素信号が補間されてその画像に生じている幾何学的歪が補正される。この像歪補正後の画像は、複数の小画像に分割され、各小画像を構成する画像信号を用いてその小画像に対するγ特性が設定される。このとき、各小画像を構成する画素信号のうち、縮小処理により不足する画素位置に補間された偽の画素信号を除いた有効な画素信号のみが抽出され、この有効な画素信号を用いてγ特性が設定される。そして、像歪補正後の画像を構成する各画素信号は小画像毎40に対応するγ特性を用いてガンマ補正が行なわれ、これにより撮像画像の照度ムラ補正が行なわれる。

【0019】また、本発明は、デジタルカメラにおいて、上記被写体光像を上記撮像手段の撮像面に結像する撮影レンズと、上記撮像手段の撮像面と被写体面とのなす角度を設定する角度設定手段と、被写体までの距離を測定する測距手段と、上記角度設定手段で設定された角度、上記撮影レンズの焦点距離及び上記測距手段で測定された被写体距離を用いて撮影画面内の撮影倍率の分布を演算する演算手段とを備え、上記歪補正手段は、上記 撮影倍率の分布に基づき撮像画像を部分的に拡大又は縮

小することにより斜め撮影によって生じる遠近法的な歪 を補正するものである(請求項2)。

【0020】上記構成によれば、撮像手段の撮像面に対して角度 θ で被写体面を傾斜させた状態で撮影された斜め画像は、撮影レンズの焦点距離、傾斜角 θ 及び被写体距離を用いて撮影画面内の撮影倍率の分布が演算され、この演算結果に基づいて撮像画像を部分的に拡大又は縮小することにより斜め撮影によって生じる遠近法的な歪が補正される。すなわち、斜め画像は正面から撮影したような画像に補正される。

【0021】補正された正面撮影画像は複数の小画像に分割され、各小画像を構成する画像信号のうち、有効な画素信号のみを用いてその小画像に対する γ 特性が設定される。そして、像歪補正後の画像を構成する各画素信号は小画像毎に対応する γ 特性を用いてガンマ補正が行なわれ、これにより撮像画像の照度ムラ補正が行なわれる。

[0022]

【発明の実施の形態】図1は、本発明に係るデジタルカメラの外観を示す斜視図である。また、図2は、同デジタルカメラの背面図である。

【0023】同図に示すカメラ1は撮像素子としてCCDエリアセンサを備え、このCCDエリアセンサで撮像された画像データが、図略のPCMCIA準拠のハードディスクカードに記録されるようになっている。なお、本実施の形態では、撮像素子としてエリアセンサを用いた場合について説明するが、ラインセンサにより被写体光像をスキャンして画像データを取り込む構成にしてもよい。

【0024】カメラ1はCCDエリアセンサの撮像面と被写体面とが平行でない被写体の画像(以下、斜め画像という。)を撮像面と被写体面とが平行な被写体の画像(以下、正面画像という。)に補正(以下、この補正を斜め画像補正という。)する機能を備えている。

【0025】すなわち、例えば図3に示すように、ホワイトボード22に対して左斜め前方位置(イ)からこのホワイトボード22に描かれた文字や図等を通常の撮影モードで撮影した場合、撮影画像は撮影画面内の被写体距離の分布が異なることに起因して、図4(a)に示すように、右端側の寸法が左端側の寸法より小さくなる斜め画像Kとなるが、後述する斜め画像補正モードで撮影した場合は、上記斜め画像Kは図4(b)に示すように、ほぼホワイトボード22の正面位置(ロ)から撮影したような正面画像K'に補正される。

【0026】また、カメラ1はホワイトボード上に書かれた文字、図形等の情報(以下、この種の2値情報を文字情報という。)の撮影画像に対してホワイトボードに対する照明光(天井灯や窓外の太陽光等)のムラやCC Dエリアセンサの感度のバラツキに起因する照度ムラの補正機能を備えている。

【0027】すなわち、例えば図5に示すように、部屋の天井灯と窓外の太陽光とによりホワイトボード22が照明されているとすると、照明光の不均一により照度ムラが生じ、かつ、また、撮影レンズの入射瞳に角度ωで入射する光軸外物点の像はcos4ωに比例して暗くなるという、いわゆるコサイン4乗則による入射光量分布とこの照度ムラとの相乗効果により、CCDエリアセンサの出力分布は、図6(a),(b)に示すように、撮像面内で2次元的に大きく変動する。カメラ1では、後述する文字画モードで撮影した場合は、各画素データ毎にあるいは複数の画素データ単位で適切なγ特性を設定し、そのγ特性を用いて各画素データもしくは各画素データ単位でガンマ補正を行なうことにより、2次元的に生じるCCDエリアセンサの出力変動が可及的に低減される。

【0028】なお、図6において、実線はホワイトボード22に何も書かれていない場合で、ホワイトボード22の白地部分の出力分布を示し、点線はホワイトボード22に文字が書かれていた場合の文字部分の出力分布を示している。

【0029】ここで、斜め画像補正の原理について簡単に説明する。なお、説明の便宜上、一次元の画像について説明する。

【0030】図7は、カメラ1の光学系の概略構成図である。カメラ1の光学系は、撮影レンズ2の結像位置に横長長方形のCCDエリアセンサ20(以下、CCD20と略称する。)が配置され、この撮像レンズ2とCCD20との間に絞り21が配設されている。ホワイトボード22に描かれた図等の光像は撮影レンズ2及び絞り21を透過した後、CCD20の撮像面に結像される。【0031】図8は、斜め撮影における撮像系を真上から見た図で、ホワイトボード22の表示面(以下、被写体面という。)とCCD20の撮像面とが角度θ(以

【0032】図8において、一点鎖線の直線上は撮影レンズ2の光軸である。また、N0,N1,N2はそれぞれホワイトボード22上の点P,F,Gを通るCCD20の撮像面に平行な線分である。点Oは撮影レンズ2のレンズ面と光軸Lとの交点、点Qは線分N1と光軸Lとの交点、点Rは線分N2と光軸Lとの交点であり、D,Eはそれぞれ線分N0と線分BFの延長線及び線分GCとの交点である。

下、傾斜角θという。)だけ傾いている場合の撮像系を

示している。

【0033】ホワイトボード22上のFG間の光像はCCD20の撮像面のBC間に結像するが、撮像面と被写体面とは傾斜角θで傾いているので、CCD20の撮像面に結像された光像BCは等価的にDE間の画像をCCD20の撮像面に投影したものとなっている。CCD20の撮像面におけるA,B,Cの各点での撮影倍率をそれぞれmA,mB,mC、被写体距離をそれぞれDA(=O

-

P) , D_B (=OQ) , D_C (=OR) とすると、 $m_B=$ m_A ・OP/OQ= m_A ・ D_A / D_B 、 $m_C=$ m_A ・OP/OR= m_A ・ D_A / D_C であるから、 m_B > m_A > m_C となり、 撮像面に結像される光像は、図4 (a)に示すような斜め画像Kとなり、光像BCの内、完全に焦点が合っているのはA点(光軸Lと撮像面との交点)のみとなっている。

【0034】本実施の形態では、CCD20の撮像面におけるAC間の各点での撮影倍率 $mi(i=1,2,\cdots n)$ 及びBA間の各点での撮影倍率 $mi'(i=1,2,\cdots n')$ を求め、撮影倍率mi' に基づき光像ACの撮像画像の拡大を行なうとともに、撮影倍率 $mi'=m_{\Lambda}\cdot D_{\Lambda}/Di'$

づき光像BAの撮像画像の縮小を行なうことにより斜め 画像補正を行うようにしている。

【0035】CCD20の撮像面におけるBA間の任意の点における被写体距離をDi'、その点の撮影画角(その点及び点Oを通る線分と光軸Lとのなす角度)を α iとすると、DA/Di'=1+ $\tan(\alpha$ i)・ $\tan(\theta)$ であるから、任意の点における撮像倍率 \min は傾斜角 θ 、撮影倍率 \min 从最影的下記(1)式で算出される。

10 【0036】

$$= m_A \cdot \{1 + \tan(\alpha i) \cdot \tan(\theta)\} \cdots (1)$$

【0037】なお、(1)式で、撮影倍率 m_A は m_A = $a\cdot f/D_A$ (a;比例係数, f;焦点距離)より算出される。また、 D_A/D i'= $1+tan(\alpha i)\cdot tan(\theta)$ の式は、図8において、B点に対する被写体距離 D_B 、撮影

画角 α B を 例に 説明すると、 下記数 2 のように 求められる。

【0038】 【数2】

 $OQ = OP - PQ = OP - OQ \cdot tan(\alpha_B) \cdot tan(\theta)$

 $(PQ = FQ \cdot tan(\theta), FQ = OQ \cdot tan(\alpha_B))$

 \therefore OP = OQ \cdot {1 + tan(α _B) \cdot tan(θ)}

 $\therefore D_A / D_B = 1 + \tan(\alpha_B) \cdot \tan(\theta)$

よって、任意の撮影画角αiの位置では、

 $D_{\Lambda}/D_{i'} = 1 + \tan(\alpha_{i}) \cdot \tan(\theta_{i})$

【0039】また、CCD20の撮像面におけるAC間の任意の点における被写体距離をDi、その点の撮影画角を β iとすると、 D_A/D i= $1-tan(\beta$ i)・ $tan(\theta)$ であるから、AC間の任意の点における撮像倍率miはmi= m_A ・ D_A/D i

傾斜角 θ 、撮影倍率 m_A 及び撮影画角 β iから下記(2) 30 式で算出される。

[0040]

【数3】

$$= m_A \cdot \{1 - \tan(\beta i) \cdot \tan(\theta)\} \quad \cdots \quad (2)$$

【0041】なお、 $D_A/D_i = 1 - tan(\beta_i) \cdot tan(\theta)$ の式についても上述と同様の方法で求めることができ

【0042】また、照度ムラ補正について簡単に説明する。文字情報を撮影した画像は主として情報の記録が目 40 的であり、描写性よりも情報の判読性の高い画質が要求されることから、ホワイトボードの白地部分に対する文字情報部分のコントラストを高くして文字情報の明瞭化を図るとともに、照度ムラを低減して全体的に見易くすることが望ましい。

【0043】本実施の形態で、図9に示すように、撮像画像Gを縦横に複数の正方形のブロックB(I)(同図では1=1,2,…18)に分割し、各ブロックB(I)に含まれる画素データのレベル分布のヒストグラムを用いて算出された白地レベルWにより、図10に示すような

γ特性をそのブロック (I)の中心位置O (I)に対するγ特性γ (I)として設定し、更に設定されたγ特性γ (I)を用いて各ブロック B (I)の中心位置O (I)以外の画素位置 P のγ特性γ (P)を補間し、これらのγ特性γ (I), γ (P)を用いて対応する画素位置O (I), P の画素データのガンマ補正を行なうことにより文字情報の明瞭化と照度ムラ補正とを行なうようにしている。

【0044】なお、図10は画素データを8ビットデータにA/D変換した場合のもので、入出力レベルのレベル値「255」は最大値を示している。また、同図に示すγ特性では、入力レベルW以上の画素データは全て最大レベルに飽和した画素データに変換されるので、撮像画像は入力レベルW以上の画素データからなる白地部分が一律に最大明度の白色となる画質に補正され、これにより自地部分に対する文字情報部分のコントラストが強

調され、文字情報の明瞭化が図られる。

【0045】また、必要に応じて照度ムラ補正後の画像 に対し、図11に示すようなy特性を用いてガンマ補正 を行なうことにより文字情報部分の黒字強調が行なわれ る。すなわち、照度ムラ補正後の画像は入力レベルB以 下の画素データからなる黒地部分が一律に最小明度の黒 色となる画質に補正される。これによりホワイトボード 22に書かれた文字、図形等の濃度、線の太さ、線密度 に応じて文字部分の黒色強調がなされ、文字情報の明瞭 化の適正化が図られるようになっている。なお、照度ム ラ補正におけるガンマ補正処理の詳細については後述す

【0046】図1に戻り、カメラ1は前面の略中央にズ ームレンズから成る撮影レンズ2が配設され、その上部 にアクティブ測距方式により被写体距離を測定するため の投光窓4と受光窓5とが配設され、両窓の間に被写体 の輝度を測定するための測光窓3が配設されている。ま た、投光窓4の左側にファインダー対物窓6が配設さ れ、受光窓5の右側にフラッシュ7が配設されている。

【0047】投光窓4は被写体に対して赤外光を照射す る窓であり、受光窓5はこの赤外光の被写体からの反射 光を受光する窓である。なお、本実施の形態では測距方 式としてアクティブ測距方式を採用しているが、パッシ ブ測距方式でもよい。

【0048】カメラ1の側面にはハードディスクカード 13が装着脱されるカード挿入口8が設けられ、このカ ード挿入口8の上部にハードディスクカード13をイジ ェクトするためのカード取出ボタン9が設けられてい る。撮影結果をプリントアウトする場合、カード取出ボ タン9を押してハードディスクカード13をカメラ1か ら取り外し、ハードディスクカードが装着可能なプリン タにこのハードディスクカード13を装着してプリント アウトすることができる。

【0049】なお、カメラ1にSCS1ケーブルのイン ターフェースを設け、カメラ1とプリンタとをSCSI ケーブルで接続して直接、カメラ1からプリンタに画像 データを転送して撮影画像をプリントアウトさせるよう にしてもよい。

【0050】また、本実施の形態では画像データの記録 媒体としてPCMCIA準拠のハードディスクカードを 採用しているが、撮影結果を画像データとして記憶でき るものであれば、メモリカードやミニディスク (MD) 等の他の記録媒体でもよい。

【0051】カメラ1の上面には左端部にシャッタボタ ン10が設けられ、右端部にズームスイッチ11と撮影 /再生スイッチ12が設けられている。シャッタボタン 10は半押しで焦点距離調節、露出制御値設定等の撮影 準備を指示するS1スイッチがONになり、全押しでレ リーズを指示するS2スイッチがONになる操作ボタン である。ズームスイッチ11は左右にスライド可能な3 接点スイッチから成り、ズームスイッチ11をT(TEL E) 側にスライドさせると、望遠側に、また、W (WID E) 側にスライドさせると、広角側に、撮影レンズ2の ズーム比を連続的に変更することができる。

【0052】撮影/再生スイッチ12は撮影モードと再 生モードとを切換設定するスイッチである。撮影/再生 スイッチ12は左右にスライド可能な2接点切換スイッ チから成り、撮影/再生スイッチ12が撮影 (REC) 側 に設定されていると、被写体の撮影(撮像画像のハード ディスクカード13への記録)が可能になり、再生(PL AY) 側に設定されていると、ハードディスクカード13 に記録された撮像画像のLCD表示部19 (図2参照) へのモニター表示が可能になる。

【0053】カメラ1の背面には、図2に示すように、 その上部の左端部と略中央とにそれぞれ電源投入用のメ インスイッチ14とファインダー接眼窓15とが設けら れ、このファインダー接眼窓15の右側にモード設定ス イッチ16が設けられている。

【0054】モード設定スイッチ16は通常の撮影モー ドと斜め画像を正面画像に補正する斜め画像補正モード とを切換設定するとともに、傾斜角 θ (図8参照)を設 定する機能を有している。

【0055】このモード設定スイッチ16は上部に角度 目盛16aが設けられた横長のガイド溝16bとこのガ イド溝16 bに沿って移動可能な操作ボタン16 cとか ら成り、操作ボタン16cを角度目盛16aの所定の角 度位置に設定することにより傾斜角θを設定できるよう になっている。

【0056】なお、角度目盛16aは中央の正面位置 (角度0°)を挟んで左右にそれぞれ15°,30°, 45°の角度が設けられ、左右にそれぞれ3種類の傾斜 角θが設定できるようになっている。ここで、左側の角 度は被写体に向かって左側から撮影する場合(以下、こ の斜め撮影を左斜め撮影という。)の傾斜角であり、右 側の角度は被写体に向かって右側から撮影する場合(以 下、この斜め撮影を右斜め撮影という。) の傾斜角であ る。操作ボタン16 cを正面位置に設定した場合は、傾 斜角が0°であるから、撮影画像に対して斜め画像補正 は行われず、通常の撮影モードの設定となる。

【0057】また、本実施の形態では、撮影者が目分量 で計った傾斜角 θ を離散的に設定し得るようにしている が、操作ボタン16cのスライド量に応じて連続的に傾 斜角θを設定するようにしてもよい。

【0058】また、メインスイッチ14の下部に照度ム ラ補正スイッチ17及び黒色濃度調整スイッチ18が設 けられている。更に、ファインダー接眼窓15の下部に はLCD表示部19が設けられている。

【0059】照度ムラ補正スイッチ17は上述した照度 ムラ補正を指示するスイッチである。照度ムラ補正スイ 50 ッチ17は操作ボタンが左右にスライドするON/OF

orgovo (16. govo), reginativita (19. km. tration kalifo rozatia), adoparatabasa e teres o bezaratabelek elikeko askek

Fスイッチで構成されている。照度ムラ補正スイッチ1 7により照度ムラ補正が指示されると、撮影画像を複数 のブロック(小画像)に分割し、ブロック毎にそのブロ ックに含まれる画素データを用いて設定された図10に 示すような y 特性を用いてガンマ補正が行なわれる。一 方、照度ムラ補正スイッチ17がOFFになっていると きは、予め設定された通常の写真撮影に適したッ特性 (被写体の有する階調を可能な限り忠実に再生し得る描 写性の高い画質が得られるようなγ特性)を用いて撮像 画像のガンマ補正処理が行なわれる。

11

【0060】照度ムラ補正は、ホワイトボードに書かれ た文字情報を撮影する際の照度ムラによる画質劣化を改 善するもので、主としてこのような文字情報を撮影する ときに適用される。従って、文字、図形等の情報を撮影 した画像を「文字画」とし、風景や人物を撮影した画像 を「自然画」として撮影画像の内容を2種類に分ける と、照度ムラ補正スイッチ17は撮影画像の画像処理 (特にガンマ補正処理) を文字画モードと自然画モード とに切り換えるスイッチとなっている。

【0061】撮影者は文字画を撮影するときは、照度ム ラ補正スイッチ17を「ON」に設定することにより文 字画に適した画質(白地部分を白く飛ばして文字等の情 報が適切に強調された画質)の撮影画像を得ることがで き、自然画を撮影するときは、照度ムラ補正スイッチ1 7を「OFF]に設定することにより自然画に適した画 質(描写性の高い画質)の撮影画像を得ることができ る。

【0062】黒色濃度調整スイッチ18は、照度ムラ補 正後の画像に対して黒色強調のガンマ補正におけるγ特 性の黒色飽和レベルB (図11参照)を調整するスイッ チである。黒色濃度調整スイッチ18は操作ボタンが左 右にスライドする3接点スイッチで構成されている。黒 色濃度調整スイッチ18は照度ムラ補正スイッチ17が 「ON」に設定されているとき(文字画モードが設定さ れているとき)にのみ機能する。文字画モードにおい て、黒色濃度調整スイッチ18がOFF状態に設定され ているときは、図12に示すように、γ特性の黒色飽和 レベルは予め設定された所定レベルBOに設定され、黒 色濃度調整スイッチ18が「濃」に設定されると、γ特 性の黒色飽和レベルは所定レベルB0より大きい所定の レベルB1 (>B0) に切換設定され、「淡」に設定さ れると、y特性の黒色飽和レベルは所定レベルBOより 小さい所定レベルB2(<BO)に切換設定される。

【0063】文字画モードの画像処理では、下地部分を 白く飛ばすようにγ特性の白色飽和レベルが自動調整さ れるが、更に黒色濃度調整スイッチ18により黒色飽和 レベルを変更することにより文字部分の濃度を変更して 下地(白地)とのコントラストを調整することができ る。

稿に書かれた文字とを比較すると、一般にホワイトボー ドの文字の方が原稿の文字よりも太く、大きいから、原 稿を撮像した場合にホワイトボードの場合と同様のガン マ補正を行なうと、下地に対する文字のコントラストが ホワイトボードの場合に比して低下することになる。従 って、原稿を撮影する場合は、黒色濃度調整スイッチ1 8を「濃」に設定することにより文字部分の黒色を強調 し、下地に対する文字部分のコントラストを好適に調整 することができる。

12

【0065】なお、本実施の形態では、黒色飽和レベル を2段階に切換設定するようにしているが、多段切換方 式でもよく、連続的に切り換えられるようにしてもよ

【0066】 LCD表示部19は撮像画像をモニター表 示するものである。撮影/再生スイッチ12が再生側に 設定されると、図略の選択スイッチにより指定されたコ マの撮像画像がハードディスクカード13から読み出さ れてLCD表示部19に再生表示される。

【0067】図13は、本発明に係るカメラ1のブロッ 20 ク構成図である。同図において、上述した部材と同一部 材には同一の番号を付している。また、CCD駆動部3 1は、CPU30から入力される露出制御値のシャッタ ースピードに基づいてCCD20の撮像動作を制御する ものである。CCD20はカラーエリアセンサから成 り、CCD駆動部31から入力される制御信号に基づき 撮像動作(電荷蓄積動作)を行ない、R, G, Bの各色 成分の画素信号を時系列信号に変換して画像処理部32 に出力する。

【0068】画像処理部32はCCD20から出力され 30 た画素信号に所定の信号処理を施してハードディスクカ ード13に出力するものである。画像処理部32はA/ D変換器321、斜め画像補正演算部322、データ有 効領域演算部323、画像メモリ324、第1γ特性設 定部325、第2γ特性設定部326、第1γ補正部3 27、第2γ補正部328及びスイッチ回路329を有 し、斜め画像に対する斜め画像補正も行なう。また、照 度ムラ補正が指示されているときは、ブロック毎に照度 ムラ補正用のγ特性を設定し、そのγ特性を用いてガン マ補正を行なう。このとき、ブロックの中心位置間の部 40 分に対するγ特性が補間され、この部分の画像信号を補 間されたγ特性を用いてガンマ補正することによりブロ ック間の γ 特性の相違に基づく画質の不連続が緩和され る。

【0069】A/D変換器321はCCD20から読み 出された画像信号に含まれる各画素信号をデジタルの信 号 (以下、画素データという。) に変換するものであ

【0070】斜め画像補正演算部322は斜め画像補正 モードが設定されたとき、斜め画像の補正処理を行なう 【0064】例えばホワイトボードに書かれた文字と原 50 ものである。斜め画像補正演算部322は、撮影された

集団がた アービス かんけんご

斜め画像について、上述した斜め画像補正の原理に基づ き横方向(図3、x軸方向)及び縦方向(図3、y軸方 向) にそれぞれ拡大及び縮小の変倍処理を行ない、擬似 的な正面画像に補正する。

【0071】図16は、撮影された斜め画像を擬似的な 正面画像に補正するための画像処理の方法を示す図で、

(a) は補正前の画像を示す図、(b) は補正後の画像 を示す図である。

【0072】同図において、xy座標はCCD20で撮 像された画像G(画素データで構成される画像)に仮設 された直交座標で、原点が画像Gの中心に設定されてい る。画像G内に含まれる斜めに撮影された画像K(ホワ イトボード22に相当)は斜め画像補正の対象となる画 像(以下、補正対象画像という。)である。

【0073】本実施の形態においては、カメラ1の焦点 調節位置は撮影画面の中央(xy座標の原点〇)に設定 されているので、図16 (a) においては補正対象画像 Kで正確に焦点が合っているのはy軸上の部分で、この y軸より左側の画像K1はカメラ1側に近接するように 傾斜した画像であり、y軸より右側の画像K2はカメラ 側から離隔するように傾斜した画像である。

【0074】従って、同図(b)に示すように、画像G のうち、y軸より左側の画像G1についてはx軸及びy 軸の両方向についてそれぞれ圧縮し、画像G1'となる ように変倍処理を行なうことにより、台形状の斜め画像 K1が矩形の縮小画像K1′に補正され、y軸より右側 の画像G2についてはx軸及びy軸の両方向についてそ れぞれ伸長し、画像G2'となるように変倍処理を行な うことにより、台形状の斜め画像K2が矩形の拡大画像 K 2′に補正される。

【0075】斜め画像補正における撮影画像の拡大及び 縮小の処理方法については、例えば特開平8-1647 $k i = 1 / \{ \{1 - \tan(\beta i) \cdot \tan(\theta)\} \cdot \cos(\theta) \} \cdots (3)$

$$=\cos(\beta i)/\cos(\beta i + \theta)$$

【0080】また、圧縮処理の場合、図8において、B A間の任意の画素位置における縮小倍率ki'はA点に おける撮影倍率mAに対する画素位置における撮影倍率 mi'の比の逆数(mA/mi')と斜め画像を正面画 像に補正する補正係数($1/\cos(\theta)$)との積、すなわ ち、 $ki' = (m_A/mi')/cos(θ)$ として表され る。一方、上記(1)式より、

$$k i' = 1 / \{ \{ 1 + \tan(\alpha i) \cdot \tan(\theta) \} \cdot \cos(\theta) \} \cdots (5)$$

$$= \cos(\alpha i) / \cos(\alpha i - \theta) \cdots (6)$$

【0082】本実施の形態では、上述のように変倍処理 により斜め撮影画像の補正を行なうようにしているが、 例えば、既知の画素データを増加すべき画素データに補 間して画像の拡大を行なう、いわゆる画像水増し法や画 素データを間引いて画像の圧縮を行なう、いわゆる画素 間引き法により斜め撮影画像の補正を行なうようにして もよい。また、本実施の形態では、拡大及び圧縮の両処

22号に説明がなされている方法で行なわれる。 すなわ ち、y軸方向においては被写体面がCCD20の撮像面 に対して傾斜していないので、撮像画像を倍率k(> 1) で伸長した画像に補正する処理は撮像画像(補正前 の画像)を構成する各画素データを、原画像を倍率 k で 拡大した画像を撮像した場合の撮像画像を構成する各画

【0076】y軸方向における撮像画像を倍率k(< 1) で圧縮した画像に補正する処理も撮像画像を構成す る各画素データを、原画像を倍率kで縮小した画像を撮 像した場合の撮像画像を構成する各画素データに置換す ることにより行なわれる。

素データに置換することにより行なわれる。

【0077】 x 軸方向における画像の伸長及び圧縮の変 倍処理についてもу軸方向における画像の伸長及び圧縮 の変倍処理と同様の考え方で行なうことができるが、x 軸方向においては、撮影倍率mi, mi′が変化し、倍 率kが各画素毎に異なるので、各画素毎の倍率kiを用 いて画像の伸長及び圧縮の変倍処理が行なわれる。

【0078】拡大処理の場合、図8において、AC間の 任意の画素位置における拡大倍率kiはA点における撮 影倍率mAに対する画素位置における撮影倍率m i の比 の逆数(mA/mi)と斜め画像を正面画像に補正する 補正係数 $(1/\cos(\theta))$ との積、すなわち、ki = (m_A/m_i) $/\cos(\theta)$ として表される。一方、上記 (2) 式より、

 $m i/m_A = 1 - tan(\beta i) \cdot tan(\theta)$ $=\cos(\beta i + \theta) / (\cos(\beta i) \cdot \cos(\theta))$ であるから、拡大倍率kiは下記(3), (4)式で算 出される。

[0079]

【数4】

... (4) $mi'/m_A = 1 + tan(\alpha i) \cdot tan(\theta)$ $=\cos(\alpha i - \theta)/(\cos(\beta i) \cdot \cos(\theta))$

... (6)

であるから、縮小倍率ki'は下記(5), (6)式で 算出される。

[0081]

【数5】 40

> 理を行なって斜め撮影画像の補正を行なうようにしてい るが、拡大又は圧縮のいずれか一方の処理のみで斜め撮 影画像の補正を行なうようにしてもよい。

【0083】なお、画像G1を圧縮するように変倍処理 すると、補正後の画像に画素データの欠落した部分(図 16 (b) の斜線で示す領域 ΔG 1 参照) が生じ、補正 50 後の画像をモニターテレビやプリンタに出力した場合、

は後述する。

不自然な画像となる。図16(b)の例では、領域 ΔG 1の部分にはノイズレベルの画素データが出力されるこ とになるので、再生時にこの部分の画質が不安定とな り、全体的に見栄えの良くない画像となる。このため、 補正処理時に領域ΔG1には、例えば画素データとして 白色のダミーデータを設定し、欠落部分が白色となるよ うにするとよい。

【0084】また、領域 ΔG1は上下に楔形の形状を有 し、不自然な感じを与えるので、より好ましくは、図1 7に示すように、補正後の画像G'の左辺部、上辺部及 び下辺部(場合によっては周辺部)に上記領域△G1を 包含し得る帯状の余白領域ΔGOを設け、この余白領域 ΔGOに白色等の特定色のダミーデータを設定するよう にするとよい。このようにすれば、再生画像が縁取られ たように見えるので、不自然感を低減することができ る。

【0085】なお、通常の撮影モードが設定されている ときは、斜め画像補正演算部322では補正処理が行な われず、A/D変換器321から入力された画素データ はそのまま画像メモリ324に出力される。

【0086】データ有効領域演算部323は斜め画像補 正後の画像におけるダミーデータ以外の領域(図16の ΔG1を除く領域、図17のΔG0を除く領域。以下、 データ有効領域という。)を算出するものである。斜め 画像を正面画像に補正した後、ブロック毎に照度ムラ補 正用のy特性を設定する際、ダミーデータを含むブロッ クではダミーデータのために正確なγ特性が得られない ので、本実施の形態では、後述するようにそのようなブ ロックではダミーデータを除く有効な画素データのみを 用いてγ特性を設定するようにしている。データ有効領 30 域演算323により算出されたデータ有効領域の情報は 各ブロック内の有効な画素データを抽出する際に用いら れる。

【0087】画像メモリ324は斜め画像補正演算部3 22から出力された画素データを記憶するものである。 画像メモリ324は、撮像画像1枚分の画素データを記 憶し得る容量を有し、撮像画像の画像処理が一括して行 なえるようになっている。

【0088】なお、ブロックに分割した際、ブロックの 行単位で画像処理を成し得るように、メモリの画像メモ リ324の容量を、設定され得る最大のブロックサイズ で撮像画像を複数のブロックに分割した際、少なくとも 1行に配置されるブロックに含まれる画素データを記憶 し得る容量とし、メモリの削減を図るようにしてもよ い。すなわち、図18に示すように、例えば撮像画像G が最大ブロックサイズで3×3個のブロックB(1)~B (9)に分割されるとすると、画像メモリ324の容量を 各行に配置されるブロックB(1)~B(3), ブロックB (4)~B(6), ブロックB(7)~B(9)に含まれる画素デー タを記憶し得る容量としてもよい。

【0089】第1γ特性設定部325は撮像画像の照度 ムラ補正用のγ特性を設定するものである。第1γ特性 設定部325は撮像画像を複数のブロックに分割し、ブ ロック毎に各ブロック内に含まれる画素データを用いて 照度ムラ補正用のγ特性を設定する。第2γ特性設定部 3 2 6 は照度ムラ補正後の画像の黒色濃度強調用の γ 特 性を設定するものである。第2γ特性設定部326はC PU30から入力される黒色濃度調整スイッチ18の操 作情報に基づいて黒色濃度強調用のγ特性を設定する。 【0090】また、第1γ補正部327は自然画に対す るガンマ補正を行なう回路であり、第2γ補正部328 は文字画に対するガンマ補正を行なう回路である。第1 γ補正部327は予め設定された自然画に適したγ特性 を用いて画像メモリ324から読み出された画素データ のガンマ補正を行なう。第2γ補正部328は、文字画 の撮像画像を複数のブロックに分割し、ブロック毎に第 1γ特性設定部325で設定された照度ムラ補正用のγ 特性を用いて撮像画像を構成する画素データのガンマ補 正を行なった後、第2ヶ特性設定部326で設定された 黒色濃度強調用のγ特性を用いて画素データのガンマ補 20

【0091】また、スイッチ回路329は画像メモリ3 24と第1、第2γ補正部327, 328との接続を切 り換えるものである。スイッチ回路329の切換制御は 照度ムラ補正スイッチ17の設定状態に対応してCPU 30から出力される制御信号により行なわれ、照度ムラ 補正スイッチ17が「OFF」に設定されている(自然 画モードが設定されている)と、画像メモリ324と第 1 y 補正部327とが接続され、照度ムラ補正スイッチ 17が「ON」に設定されている(文字画モードが設定 されている)と、画像メモリ324と第2γ補正部32 8とが接続される。

正を行なう。なお、文字画に対するガンマ補正について

【0092】ここで、文字画に対するガンマ補正(照度 ムラ補正及び黒色強調補正)の方法について説明する。 上述したように、文字画の場合は、白地部分に対して相 対的に文字部分の明瞭度を大きくすることが望ましいの で、白地部分を白く飛ばすために、図10に示すよう に、所定の入力レベルWで出力レベルを飽和させたγ特 性が用いられる。

【0093】このγ特性における白色飽和レベルWは、 例えば文字画の画像を構成する緑色成分の画素データの レベル分布のヒストグラムを作成し、白地部分に相当す る範囲内で最大頻度を有する階級が設定される。すなわ ち、文字、図形等の描かれたホワイトボード22を撮影 した画像について、緑色成分の画素データのレベル分布 のヒストグラムを作成すると、図19に示すように、一 般に白地部分(ボード部分)に相当する山ひと黒字部分 (文字部分) に相当する山Cとを有する二山分布にな

50 り、白地部分に相当する山Uのピークに対応するレベル

the state of the s

n tha the structures of a property of the

wがγ特性の白色飽和レベルWとして設定される。

17

gramusta op is at lakelji e s

【0094】撮像画像全体を構成する緑色成分の画素データのヒストグラムから白色飽和レベルWを決定したッ特性を設定し、このッ特性を用いて撮像画像全体のガンマ補正を行なうようにしてもよいが、ホワイトボード22に手書きされたものは文字密度(白地部分に対する文字部分の比率)のバラツキが大きく、しかも写真撮影の場合は、照明装置を備えた複写機等の場合と異なり、光源が一定でなく、画面内で照度分布が大きく変化することから、撮像画面内の照度ムラが大きくなるので、好ましくは撮像画像を複数のブロックに分割し、各ブロック毎に設定したッ特性を用いてブロック単位でガンマ補正することにより照度ムラを補正することが望ましい。

【0095】本実施の形態に係るカメラ1では、図20に示すように、撮像画像Gを縦横にn(=K(縦)×L(横))個のブロックB(I,J)($I=1,2,\cdots K,J=1,2,\cdots L$)に分割し、各ブロックB(I,J)毎にそのブロックB(I,J)を代表する照度ムラ補正用の γ 特性を設定するようにしている。この場合、ブロックB(I,J)のサイズ(面積)は略9(= 3×3)個の文字が入るサイズに設定されている。このようにブロックB(I,J)のサイズを文字数との関係で相対的に設定しているのは、ブロック内の画素データを用いてヒストグラムを作成した場合に、ホワイトボード22に相当する部分の山 Uが適度に急峻な山形となり、その山Uのピーク位置wを確実に検出できるようにするためである。

【0096】すなわち、図21(a)に示すように、ブロックサイズを文字に対して相対的に小サイズに設定すると、ブロックB(I,J)内の文字部分の占める面積が大きく、ヒストグラムのホワイトボード22に相当する部分の山Uが低くなるので、山Uのピーク位置wが誤検出されるおそれがあり、同図(b)に示すように、ブロックサイズを文字に対して相対的に大サイズに設定すると、ブロックB(I,J)内での照度ムラが大きく、ヒストグラムのホワイトボード22に相当する部分の山Uがなだらかになるので、この場合も山Uのピーク位置wが誤検出されるおそれがあるからである。

【0097】ブロックサイズを決定するには撮影画面に投影された文字の大きさを知る必要があるが、撮影画面に投影された文字の大きさッ/はホワイトボード22に書かれた文字の大きさッ及び撮影倍率mからッ/=y・mで算出することができ、しかもホワイトボード22に書かれる文字の大きさッは個人差があるとはいっても一定の範囲内にあると考えられるので、ホワイトボード22に書かれる文字の大きさッの代表値y0と撮影倍率m0とを実験的に決定しておけば、撮影画面に投影された文字の大きさッ/は撮影倍率mから一意的に決定することができる。

【0098】本実施の形態では、ある撮影倍率m0でのレベルであり、撮影画面に投影された文字の大きさy0に基づいて基準50 最大値である。

となるブロックサイズSOを決定しておき、任意の撮影 倍率mにおけるブロックサイズSを撮影倍率m0及びブロックサイズS0からS=SO・m/m0の演算式で算 出するようにしている。従って、ブロックサイズS0の ブロック内に縦横(i×j)個の画素データが含まれて いるとすると、ブロックサイズSに含まれる画素データ の縦方向の個数 i'はi・m/m0個、横方向の個数 j'はj・m/m0となる。

【0099】なお、本実施の形態ではブロック内の文字数が9個となるように、ブロックサイズSを設定しているが、これは一例であって、ホワイトボード22に書かれる文字の大きさyの代表値y0を変更すれば、ブロック内の文字数も変化するものである。従って、ブロックサイズSは代表値y0の設定に応じて適宜、適当な文字数が含まれるように設定される。

【0100】また、本実施の形態では、撮影倍率mに応じてブロックサイズSを変更するようにしているが、ブロックサイズS0を固定しておき、文字画の撮影においては撮影倍率mがブロックサイズS0に対する所定値m0となるように調整するようにしてもよい。すなわち、図22に示すように、ファインダー視野枠42内にブロックサイズS0に相当するブロック枠43を表示させ、撮影者がこのブロック枠43内のホワイトボード22に書かれた文字が9個入るように、撮影レンズ2のズーム比もしくは被写体距離を調整するようにしてもよい。なお、ブロック枠43は常時、表示させるようにしてもよいが、文字画モードが設定されたときにのみ表示させるようにしてもよい。

【0101】次に、緑色成分の画素データのヒストグラ 30 ムから照度ムラ補正用のγ特性を決定する方法について 説明する。

【0102】ブロックB(I, J)内に含まれる($i \times j$) 個の画素データg(1,1), g(1,2), …g(i-1,j), g(i,j)の内、最大レベルから低レベル側に積算して予め設定されたX(%)分の画素データを除去し、残りの画素データを用いてレベル分布のヒストグラムが作成される。例えばブロック内に含まれる総画素データ数を10000個とし、X=3%とすると、最大レベルqの画素データから低レベル側に順次、積算して得られる300個の画素データを除去し、残りの9700個の画素データを用いてヒストグラムが作成される。ハイレベル側のX%の画素データを除去するのは、ノイズ等の悪影響を回避するためである。

【0103】このヒストグラムは、一般に、図23に示すように二山分布となり、ハイレベル側の山Uはホワイトボード22の下地部分に相当し、ローレベル側の山Cは文字部分に相当している。なお、同図における階級pはブロックB(I,J)内に含まれる画素データの内の最大レベルであり、階級q(<p)はヒストグラムの階級の最大値である。

【0104】ヒストグラムが作成されると、最大階級 p から低レベル側に予め設定された範囲 d に含まれる分布 内で最も頻度の高い階級wが算出され、この階級wが照 度ムラ補正用のγ特性の白色飽和レベルWに設定される。上記範囲 d は、ブロックサイズが文字数との関係で 所定サイズに設定されているので、通常の照度で撮影されているブロックであれば、ハイレベル側の山 U のみが 確実に含まれると推定される範囲である。例えば画素データが8ビットで、0~255の階調を有している場合、上記範囲 d はおよそ48程度に設定される。

【0105】従って、例えば最大階級 q が 200 であれば、階級範囲 152~200 内で最大頻度を有する階級 wが算出され、この階級 wが、例えば w=180 であれば、白色飽和レベルw=180 に設定され、図 24 に示すような y 特性が決定される。

【0106】なお、斜め画像補正モードにおいては、圧縮処理がなされた部分にダミーデータの存在する領域が生じる。このダミーデータを含むブロックにおいて、ダミーデータを含めた全画素データのヒストグラムを用いて白色飽和レベルWを設定すると、正しい白色飽和レベルWが設定されないことになるので、ダミーデータを含むブロックについてはダミーデータを除いた有効な画素データのみでヒストグラムを作成し、このヒストグラムを用いて白色飽和レベルWが設定される。

【0107】ところで、ホワイトボード22が完全に白色でなく、僅かに色が着いていたり、カメラ1のホワイトバランス調整が不適切であると、照度ムラ補正用のッ特性と黒色強調用のッ特性とを用いて行なわれるガンマ補正の等価的なッ特性のγ値は比較的大きいので、緑色成分の画素データを用いて設定された照度ムラ補正用のッ特性を赤色成分の画素データ及び青色成分の画素データのガンマ補正に適用することはできない。

【0108】すなわち、ホワイトボード22のある領域

での撮影データが完全に白色でなく、R, G, Bの各色成分の画素データのレベルDR, DG, DBが、例えば $(D_R, D_G, D_B) = (130, 140, 125)$ であり、緑色成分の画素データを用いて設定された照度ムラ補正用のγ特性と黒色強調用のγ特性との等価的なγ特性(両γ特性を重ね合わせたγ特性)が、例えば図25のように設定された場合、このγ特性を用いて赤色成分の画素データ及び青色成分の画素データのガンマ補正を行なうと、各色成分の出力は、同図に示すように、(DR, DG, DB) = (185, 255, 140) となり、ガンマ補正後の画像は黄緑色に大きく色ずれを起こすことになる。

【0109】図25に示すッ特性のγ値が小さければ (傾斜が緩やかであれば)、ガンマ補正後の各色成分の 出力差は小さいので、色ずれは殆ど問題にならないが、 文字画モードに適用されるγ特性は2値化処理に近いガ ンマ補正を行なうものであるため、γ値が比較的大きく 設定されるため、緑色成分の画素データを用いて設定されたγ特性を赤色成分の画素データ及び青色成分の画素 データのガンマ補正に適用することは困難となる。

【0110】上記のような白色部分の着色現象を回避する方法として、R, G, Bの各色成分の画素データを輝度データと色差データとに変換し、輝度データのみでガンマ補正を行なった後、再度、R, G, Bの色成分の画素データに逆変換する方法が考えられるが、この方法では色差データが保存されるため、例えばホワイトボード上に書かれた文字がインクの掠れた薄い色の文字である場合はガンマ補正後もその文字の薄い状態が残り、薄い文字を明瞭に再現することは困難となる。

【0111】本実施の形態では、緑色成分の画素データにより設定された照度ムラ補正用の γ 特性を補正して各色成分に専用の γ 特性を設定し、各色成分毎に専用の γ 特性でガンマ補正することにより薄い色の文字であっても明瞭に再現することができるようにしている。

【0112】なお、各色成分に対する γ 特性は、例えばレベルの余裕値を「5」とし、入力レベル(D_R-5 , D_G-5 , D_B-5)が白色飽和レベルとなるように、各色成分の画素データを用いて設定される。例えば図25に示す γ 特性の例では、図26(a) \sim (c)に示すように、R,G,Bの各色成分の入力レベル(125,135,120)が白色飽和レベル255となるように、R,G,Bの各色成分の γ 特性が設定される。

【0113】なお、着色された白地部分が白色となるようにガンマ補正するため、着色部分は本来の色よりずれることになるが、文字画では色の再現性より情報性が重視されるので、多少の色ずれは許容されるものと考えられる。

【0114】また、上記説明では、ブロック内に含まれる画素データのレベル分布のヒストグラムを作成し、このヒストグラムを用いて白色飽和レベルWを決定する(すなわち、γ特性を設定する)ようにしているが、ヒストグラムの代りに画素データの演算によってγ特性を設定するようにしてもよい。

【0115】さて、上述の方法により各ブロックB(I, J)毎に照度ムラ補正用のγ特性を設定し、このγ特性を 用いてブロック単位で画像のガンマ補正を行なうと、ブロック毎に照度ムラ補正用のγ特性が異なるので、ブロックの境界で画質が急変し、これによって境界線(偽線)が生じるおそれがある。すなわち、ブロックの境界で白地レベルが急変し、この白地レベルの不連続が境界線として生じるおそれがある。

【0116】そこで、本実施の形態では、各ブロックB (I, J)毎に設定された照度ムラ補正用のγ特性をそのブロックB(I, J)の中心位置の画素データに対するγ特性とし、隣接するブロックの中心位置間の画素データに対する照度ムラ補正用のγ特性を両ブロックの照度ムラ補50 正用のγ特性を用いで線形補間し、この線形補間したγ

特性で中心位置以外の画素データをガンマ補正することによりブロック間のγ特性の相違に基づく画質の不連続を緩和するようにしている。

【0117】すなわち、図27に示すように、ブロック B(I, J), B(I, J+1), B(I+1, J), B(I+1, J+1)の各中心 位置をA, B, C, Dとすると、ABCDで囲まれた領域AR1内の任意の位置Pに対する照度ムラ補正用の γ 特性を、ブロックB(I, J), B(I, J+1), B(I+1, J), B(I+1, J+1)毎に設定された照度ムラ補正用の γ 特性を用いて線形補間し、この補間した γ 特性を用いて位置Pの 10 画素データのガンマ補正が行なわれる。

$$W_{p} = (1-m) \times \{ (1-n) \times W_{A} + n \times W_{C} \}$$

+ m \times \{ (1-n) \times W_{B} + n \times W_{D} \times \cdots (7)

【0120】なお、上記内分法では撮像画像の周辺に位置するブロックB(1,1)~B(1,L),B(2,L)~B(K,L),B(K,L-1)~B(K,1),B(K-1,1)~B(2,1)において、各ブロックの中心位置より外側の部分のγ特性が補間されないが、この部分については外分法によりγ特性の線形補間を行なうようにすればよい。

【0121】また、各ブロックB(I,J)の中心位置を除く全ての位置について γ 特性を補間してもよいが、各ブロックB(I,J)の中心位置以外の部分を複数の画素データ(例えば 4×4 画素乃至 6×6 画素等)が含まれるブロックに分割し、このブロック単位で γ 特性を線形補間するようにして補間演算の時間を短縮するようにしてもよい。

【0122】なお、上述の照度ムラ補正用のγ特性の補間処理は、各画素位置についてγ特性を設定しているので、各画素位置を中心とするブロックを設定し、そのブロックに含まれる画素データのレベル分布のヒストグラムを用いてγ特性を設定しても同様の結果が得られるが、この方法は、撮像画像Gに非常に沢山のブロックが設定されるため、γ特性の演算に長時間を要する欠点がある。また、隣接するブロック間では画素データの殆どが重複するため、作成されたヒストグラムに殆ど差異が見られないため、両ブロックについてそれぞれヒストグラムを作成する実益もないので、本実施の形態では、より高速演算が可能で、しかもメモリ容量の低減が可能なγ特性の線形補間処理を採用している。

【0123】図14はカラー画像の画像処理を行なうための斜め画像補正演算部322~第1,第2γ補正部327,328までの構成を示すブロック構成図である。

【0124】斜め画像補正演算部322、画像メモリ324、第1γ特性設定部325、第1,第2γ補正部327,328及びスイッチ回路329はそれぞれR,

G, Bの各色成分の画素データに対して3個の同一構造 の処理回路を有している。

【0125】例えばRの色成分の画素信号は斜め画像補 正演算部322Aで像歪みが補正された後、画像メモリ 324Aに一時的に記録される。自然画モードにおいて 【0118】位置Pに対する補間された照度Aラ補正用の γ 特性は、ブロックB(I, J),B(I, J+I),B(I+I, J),B(I+I, J+I)についてそれぞれ算出された白色飽和レベル W_A , W_B , W_C , W_D は位置A,B,C,Dに対するものとして扱われるので、これらの白色飽和レベル W_A , W_B , W_C , W_D から位置A,B,C,Dに対して位置Pに内分する値 W_P を下記(T)式により算出して設定される。

22

[0119]

【数6】

は、画像メモリ322Aに記憶されたRの色成分の画素 データはスイッチ回路329を介して第1γ補正部32 7Aに読み出され、所定の自然画用のγ特性を用いてガ ンマ補正が行なわれる。

【0126】一方、文字画モードにおいては、第1γ特性設定部325Aによりブロック毎に各ブロックに含まれるRの画素データのレベル分布のヒストグラムから照度ムラ補正用のγ特性が設定され、第2γ特性設定部326により黒色濃度調整スイッチ17の調整値に基づき黒色調整用のγ特性が設定される。そして、画像メモリ322Aに記憶されたRの色成分の画素データはスイッチ回路329を介して第2γ補正部328Aに読み出され、ブロック毎に照度ムラ補正用のγ特性を持ついてガンマ補正が行なわれた後、黒色濃度調整用のγ特性を用いてガンマ補正が行なわれる。

【0127】G, Bの各色成分の画素信号についても上 30 述のRの色成分の画素信号と同様に進行処理が行なわれる。

【0128】また、図15は、上記第1γ特性設定部3 25の内部構成を示すブロック図である。

【0129】同図において、ブロックサイズ設定部325aは撮像画像を小画像のブロックB(I,J)に分割するためのブロックサイズを設定するものである。ブロックサイズ設定部325aは、CPU30から入力される撮像倍率mと予め設定された基準サイズS0及び基準撮影倍率m0とを用いてブロックサイズSを設定する。

【0130】アドレス生成部325bは、ブロックサイズ設定部325aで設定されたブロックサイズS0に基づいて各ブロックB(I,J)に含まれる画素データのアドレスを生成するものである。このアドレスデータは、画像メモリ324からの画素データの読出制御と白色飽和レベル補間演算部325eにおける補間演算とに用いられる。

【0131】ヒストグラム作成部325cは、各ブロックB(I, J)毎にそのブロックに含まれる画素データのレベル分布のヒストグラム(図23参照)を作成するものである。白色飽和レベル設定部234dは、ヒストグラ

24

ム作成部 325c で作成されたヒストグラムを用いて各ブロック B(I,j) の中心位置に対する γ 特性の白色飽和レベルW(図 24 参照)を設定するものである。白色飽和レベル補間演算部 325c は、ブロック B(I,j) 毎に設定された γ 特性の白色飽和レベルWを用いて各ブロック B(I,j) の中心位置以外の部分に対する γ 特性の白色飽和レベルWを補間設定するものである。

【0132】 y 特性設定部325 f は、白色飽和レベル設定部325 d 及び白色飽和レベル補間演算部325 e により設定された白色飽和レベルWを用いて撮像画像の各画素データに対する照度ムラ補正用の y 特性を設定するものである。

【0133】図13に戻り、カード駆動部33は画像データを記録するべくハードディスクカード13の駆動を制御するものである。発光制御部34はフラッシュ7の発光を制御するものである。

【0134】また、LCD駆動部35はCPU30からの制御信号に基づき撮像画像のLCD表示部19へのモニター表示を制御するものである。メモリ36はCPU30で演算された斜め画像補正を行なうために必要なデータ(CCD20の各画素位置における被写体距離Di及び撮影倍率mi)を記憶するものである。

【0135】レンズ駆動部37はCPU30から入力されるAF制御値に基づき撮影レンズ2の合焦動作を制御するものである。また、ズーム駆動部38はCPU30から入力される駆動信号に基づき撮影レンズ2のズーム動作を制御するものである。絞り駆動部39はCPU30から入力される露出制御値の絞り値Avに基づき絞り21の開口量を制御するものである。

【0136】測光部40は測光窓3の後方位置に設けられたSPC等の受光素子からなり、被写体の輝度を測光するものである。測距部41は被写体距離を検出するもので、投光窓4の後方位置に設けられ、赤外光を発光する投光部411と、受光窓5の後方位置に設けられ、被写体で反射した赤外光を受光する受光部412とからなる。

【0137】CPU30はカメラの撮影動作を集中制御するものである。CPU30は撮影倍率演算部301を有し、斜め画像補正モードにおいて、測距部41で検出された測距点(CCD20の撮像面の中央位置A)における被写体距離DA及びその測距点における撮影倍率mAを演算するとともに、他の各画素位置における撮影倍率mi,mi'を演算する。また、CPU30は露出制御値演算部302を有し、測光部40で検出された被写体の輝度情報に基づき露出制御値(絞り値Av、シャッタースピードTv)を演算し、その演算結果をそれぞれ絞り駆動部39とCCD駆動部31とに出力する。また、CPU30はAF制御値演算部303を有し、測距部41で検出された被写体距離DAに基づき撮影レンズ2を合焦位置に設定するためのレンズ駆動量を演算し、その

演算結果をAF制御値としてレンズ駆動部37に出力する。

【0138】次に、上記カメラ1の撮影制御について、図28~図32のフローチャートを用いて説明する。なお、撮影/再生スイッチ12は撮影側に設定されているものとする。

【0139】メインスイッチ14をオンにし、カメラ1を起動すると、撮影可能の状態となる。この状態でズームスイッチ11が操作されると(#2でYES)、その操作方向及び操作量に応じて撮影レンズ2内のズームレンズが駆動され、ズーム比が変更される(#4)。この後、シャッタボタン10が半押しされ、S1スイッチがオンになると(#6でYES)、ステップ#8に移行し、撮影準備のための処理が行なわれる。

【0140】すなわち、まず、モード設定スイッチ16 の操作ボタン16 c の設定位置から斜め画像撮影モード であるか否かが判別され(#8)、斜め画像撮影モード であれば(#8でYES)、操作ボタン16cの設定位 置から傾斜角θが取り込まれ(#10)、斜め画像撮補 正演算部322に補正演算処理が指示される(#1 2)。一方、斜め画像撮影モードでなければ(#8でN O)、上記ステップ#10,#12はスキップされる。 【0141】続いて、照度ムラ補正が指示されているか (照度ムラ補正スイッチ17が「ON」に設定されてい るか) 否かが判別され(#14)、照度ムラ補正が指示 されていれば(#14でYES)、黒色濃度調整スイッ チ18の設定位置から文字部分に関する濃度情報が取り 込まれる(#16)。続いて、第1γ特性設定部325 が処理可能に設定されるとともに、上記濃度情報が第2 y 特性設定部326に入力され、この濃度情報に基づい て黒色強調用のγ特性が設定され、この黒色強調用のγ 特性は第2γ補正部328に入力される(#18)。更 にγ補正部が第1γ補正部327から第2γ補正部32 8に切り換えられる(#20)。一方、照度ムラ補正が 指示されていなければ(#14でNO)、上記ステップ #16~#20はスキップされる。

【0142】続いて、測距部41の投光部411から被写体に向けて測距用の赤外光が投光され(#22)、その赤外光の被写体からの反射光を測距部41の受光部412で受光して測距用のデータが取り込まれる(#24,#26)。

【0143】続いて、斜め画像補正モードであるか否かが判別され(図29, #28)、斜め画像補正モードであれば(#28でYES)、取り込まれた測距用のデータから撮像画面中央(図16 (a) のO点)における撮像面から被写体までの距離 D_A (図8における距離OP) が演算されるとともに、CCD20の各画素位置に対する撮影画角 α i, β iが演算される。

【0144】そして、この撮影画角 α i、 β i、被写体距 β 0 離 β 0 離 β 0 離 β 0 を各画素位置における被写体距離

Di (すなわち、撮像画面内の被写体距離分布) が演算され、更に焦点距離 f と被写体距離 D_A とから測距点における撮影倍率 m_A が演算され、この撮影倍率 m_A 、傾斜角 θ 及び撮影画角 α i, β i から上記(1)及び(2)の演算式により各画素位置における撮影倍率m i,m i'(すなわち、撮像画面内の撮影倍率分布)が演算される。また、上記(4)及び(6)の演算式により倍率 k i,k i'が演算される(#30)。

25

【0145】続いて、図31に示すサブルーチン「データ有効領域演算」のフローチャートを用いて斜め画像補正後の画像における有効な画素データの領域(ダミーデータの画素位置を除く領域。以下、データ有効領域という。)が算出される(#32)。

【0146】データ有効領域の演算は、まず、画素位置をカウントするカウンタKが「1」に設定され(#90)、画素位置K=1における被写体距離Di、傾斜角 θ 及び撮影レンズ2の焦点距離fからその画素位置K=1の画像の補正後の画素位置(i', j')が演算される(#92)。なお、図33に示すように、画素位置(i, j)の画素データをg(i, j)で表すと、データ有効領域の演算は、画素位置(1, 1)からラスター方向に行なうようにしているので、K=L・(1-1)+Jとなり、画素データg(I, J)は画素データg(L·(I-1)+J)に対応している。

【0147】続いて、算出された補正後の画素位置 (i', j') が有効画像領域内であるか否かが判別される (#94)。この判別は、有効画像領域が $(1\sim n, 1\sim m)$ であることから、 (i', j') が $(1\sim n, 1\sim m)$ の範囲に含まれるか否かにより判別される。そして、補正後の画素位置 (i', j') が有効画 30 像領域内にあれば (#94 CYES)、その画素位置 (i', j') のデータがメモリ36に記憶され (#96) 、補正後の画素位置 (i', j') が有効画像領域内になければ (#94 CNO)、ステップ#96はスキップされる。

【0149】図29のフローチャートに戻り、ステップ#28の判別で通常の撮影モードであれば(#28でNO)、更に照度ムラ補正が指示されているか否かが判別され(#34でNO)、上記ステップ#30,#32をスキップし、照度ムラ補正が指示されていれば(#34でY

ES)、上記ステップ#30,#32をスキップするとともに、発光制御部34に発光禁止の制御信号が出力されてフラッシュ7の発光が禁止される(#36)。通常の撮影モードで、かつ、照度ムラ補正が指示されているときにフラッシュ7の発光を禁止するようにしているのは、例えばホワイトボード22に対して正面から撮影するシーンではフラッシュ7が自動発光される可能性があるが、この撮影シーンでは、フラッシュ光がホワイトボード22で全反射されて撮像画像の文字が判読不能になる恐れがあるので、このような撮影ミスを防止するためである。

【0150】続いて、被写体距離DAに基づいて撮影レンズ2を合焦位置に設定するためのレンズ駆動量が演算され(#38)、更に測光部40で検出された測光データに基づき露出制御値が演算され(#40)、これにより撮影準備処理は終了し、レリーズ待機状態となる。

【0151】このレリーズ待機状態で、シャッタボタン 10が全押しされてS2スイッチがオンになると(#4 2でYES)、ステップ#46に移行してレリーズ動作 20 が行なわれる。一方、シャッタボタン10の半押し状態 が継続され、S1スイッチがオン状態であれば、レリー ズ待機状態が継続され(#42, #44のループ)、シャッタボタン10の操作が解除され、S1スイッチがオ フになると(#44でNO)、ステップ#2に戻る。

【0152】レリーズ動作に移行すると、まず、レンズ駆動量のデータがレンズ駆動部37に出力され、撮影レンズ2の焦点調節が行なわれた後(#46)、露出制御値の絞り値Avのデータが絞り駆動部39に出力され、絞り21の開口量が調節される(#48)。

30 【0153】続いて、照度ムラ補正が指示されているか否かが判別され(#50)、照度ムラ補正が指示されていれば(#50でYES)、撮像画像を複数のブロックに分割する際のブロックサイズが設定される(#52)。ブロックサイズの設定は、画面中央について算出された撮影倍率maと予め設定された基準の撮影倍率mO及びブロックサイズSOとを用いて画面中央でのブロックサイズS(=S0・ma/m0)を設定し、このブロックサイズを他の位置におけるブロックサイズとして適用することにより行なわれる。すなわち、画面の位置40によってブロックサイズを変更することなく画面中央で設定されたサイズのブロックにより撮像画像が分割される

【0154】更に撮影倍率miの分布情報と設定されたブロックサイズとに基づき斜め画像補正モードにおいて縮小処理が行なわれる領域内の画素データが欠落するブロック(補正後にダミーデータが含まれるブロック)が抽出される(#54)。すなわち、図34に示すように、同図(a)の斜め画像Gが同図(b)の正面画像G'に補正され、例えばこの画像G'が45(=5×

ップし、照度ムラ補正が指示されていれば(#34でY 50 9)個のブロックに分割される場合、縮小処理された画

像G'の左半分の領域内の11個のブロックB(1,1)~ B(1,4), B(5,1)~B(5,4), B(5,1)~B(5,4)が画素 データの欠落ブロックとして抽出される。一方、照度ム ラ補正が指示されていなければ(#50でNO)、ブロ ック毎の画像処理は行なわれないので、ステップ#5 2, #54はスキップされる。

【0155】続いて、ステップ#40で算出されたシャ ッタスピードのデータがCCD駆動部31に出力され、 CCD20による撮像動作(積分動作)が開始される

(#56)。CCD20は、CCD駆動部31からの駆 動制御信号に基づき感光部の電荷をリセットした後、所 定の時間だけ感光部に電荷を蓄積(電荷積分)すること により被写体を撮像する。

【0156】CCD20による撮像動作が終了すると、 感光部の各画素に蓄積された電荷(画素データ)の画像 処理部32への読出しが開始される(#58)。 CCD 20の画素データは、図33に示すように、縦ライン毎 に矢印方向に順次、読み出されて画像処理部32に入力 される。

【0157】続いて、斜め画像補正モードであるか否か が判別され(図30, #60)、斜め画像補正モードで あれば(#60でYES)、CCD20から読み出され た画素データに対して斜め画像補正演算部322により 斜め画像の補正処理が行なわれる(#62)。斜め画像 補正は、縦ライン単位で行なわれる。圧縮処理が行なわ れる領域では画素データの欠落する領域が生じるが、こ の領域には予め設定されたダミーデータ(例えば白色デ ータ)を補充して斜め画像補正が行なわれる。なお、図 35に示すように、縦方向の画素データの欠落が生じる 画素位置(同図(a)の斜線で示す位置)に対して、例 えばライン両端の画素データg1, g1', g2, g2' をダミーデータg3, g3' として補間し、横方向 の画素データの欠落が生じる画素位置(同図(b)の斜 線で示す位置) に対して、例えば既知のラインの画素デ ータg4全体をダミーデータg5として補間するように してもよい。そして、斜め画像補正後の画素データは画 像メモリ324に記憶される。

【0158】続いて、ステップ#54で画素データの欠 落するブロックが抽出されている場合は、そのブロック 毎にデータ有効領域が算出される(#64)。

【0159】続いて、照度ムラ補正が指示されているか 否かが判別され(#66)、照度ムラ補正が指示されて いなければ(#66でYES)、図32に示すサブルー チン「y特性設定」のフローチャートに従って第1y特 性設定部325により各ブロック毎の照度ムラ補正用の γ特性が設定される(#68)。

【0160】各ブロックの照度ムラ補正用のγ特性の設 定は、まず、ブロック数をカウントするカウンタMが

「1」に設定される(#110)。なお、γ特性設定処 理におけるブロックの順番は、図20に示すブロック分 50 このヒストグラムから照度ムラ補正用の γ 特性の白色飽

割においてラスター方向に行なうようにしているので、 $M = L \cdot (I - 1) + J \geq x$ J = x J = y JロックB(L·(I-1)+J)に対応している。

【0161】続いて、ブロックB(M)内に含まれるデー タ有効領域の画素データが全て読み出され (#11 2) 、これらの画素データの内、ハイレベル側のX%を 除いた画素データを用いて図23に示すようなヒストグ ラムが作成される(#114)。続いて、ヒストグラム の白地部分に対応する山Uのピーク値に対応する階級w 10 が算出され (#116)、この階級wがブロック(M)に 対するγ特性の白色飽和レベルW(M)として記憶される (#118)

【0162】続いて、カウンタMのカウント値が「1」 だけインクリメントとされた後(#120)、このカウ ント値Mが総ブロック数n(=K・L)より大きいか否 かが判別され (#122)、M≤nであれば (#122 でNO)、ステップ#110に戻り、次のブロックB (M)について白色飽和レベルW(I)の設定が行なわれる (#112~#120)。そして、M>nになると(# 122でYES)、全ブロックB(M)についてγ特性の 白色飽和レベルW(M)の設定が終了したと判断して、リ ターンする。

【0163】図30のフローチャートに戻り、続いて、 ブロックB(I)毎に設定された照度ムラ補正用のγ特性 の白色飽和レベルW(I)の補間演算が行なわれ、各ブロ ックB(I)の中心位置以外の画素位置における照度ムラ 補正用のγ特性が設定される(#70)。続いて、設定 されたγ特性は第2γ補正部328に入力される一方、 画像メモリ324から第2γ補正部328に画素データ 30 が読み出され、この画素データはその画素位置に対応す る照度ムラ補正用のγ特性を用いてガンマ補正が行われ た後、更に黒色強調用のγ特性を用いてガンマ補正が行 なわれる(#72)。

【0164】一方、ステップ#66で照度ムラ補正が指 示されていれば (#66でNO)、画像メモリ324か ら第1γ補正部327に画素データが読み出され、この 画素データは予め設定された自然画用のγ特性によりガ ンマ補正が行なわれる(#74)。

【0165】そして、ガンマ補正等の画像処理が行なわ 40 れた画素データは順次、ハードディスクカード13に書 き込まれ(#66~#76のループ)、全画素データに ついてハードディスクカード13への書込みが完了とす ると (#76でYES)、CCD駆動部31に画素デー タの読出終了の制御信号が出力されるとともに、カード 駆動部33に画素データの書込終了の制御信号が出力さ れて(#78)、1枚の撮影動作が終了し、次の撮影処 理を行なうべくステップ#2に戻る。

【0166】なお、上記実施の形態では、設定された各 ブロックB(I, J)について全てヒストグラムを作成し、

和レベルWを設定するようにしていたが、縦方向につい ては比較的照度ムラが少なく、横方向にのみ照度ムラが 大きい場合は、図36に示すように、撮像画像Gの中央 を通る横方向のブロックB(3,1), B(3,2), …B(3,9) についてのみヒストグラムを作成してそのヒストグラム からγ特性の白色飽和レベルWを設定し、他のブロック B(I, J) ($I = 1, 2, 4, 5, J = 1, 2, \dots 9$) Eついては、そのブロックが含まれる列で設定されたブロ ックB(3, r)で設定された y 特性を適用するようにして もよい。例えば第1列目に含まれるブロックB(1,1), B(2,1), B(4,1), B(5,1)についてはブロックB(3,1) で設定されたγ特性を適用する。

【0167】また、逆に縦方向については比較的照度ム ラが少なく、横方向にのみ照度ムラが大きい場合は、図 37に示すように、撮像画像Gの中央を通る縦方向のブ ロックB(1,5), B(2,5), …B(5,5)についてのみヒス トグラムを作成してそのヒストグラムからγ特性の白色 飽和レベルWを設定し、他のブロックB(I, J)(I= 1, 2, ... 5, $J = 1 \sim 4$, $6 \sim 9$) についてはそのブ ロックが含まれる行で設定されたブロックB(r,5)で設 定されたγ特性を適用するようにしてもよい。例えば第 1 行目に含まれるブロックB(1,1), B(1,2), B(1, 3), B(1,4), B(1,6), B(1,7), B(1,8), B(1,9) (ついてはブロックB(1,5)で設定された y 特性を適用す る。このようにすると、y特性の演算時間の短縮及び設 定されたγ特性を記憶するメモリの容量の低減を図るこ とができる。

【0168】また、上記実施の形態では、撮像画像G全 体をマトリックス状に均等に分割してブロックB(I, J) を連続的に設定していたが、図38に示すように、撮像 画面G内に複数のブロックB(I, J)を離散的に設定する ようにしてもよい。このようにすると、ブロック数が少 なくなるので、上記例と同様にy特性設定のための演算 時間を短縮することができるとともに、演算されたγ特 性を記憶するためのメモリの容量を低減することができ

【0169】また、上記実施の形態では、斜め補正処理 後の画像に対する照度ムラ補正において、ダミーデータ が含まれるブロックでは有効な画素データのみを用いて レベル分布のヒストグラムを作成し、このヒストグラム 40 ある。また、最近接のブロックのγ特性を適用するの から決定される白色飽和レベルWを用いてそのブロック に対する照度ムラ補正用のγ特性を設定するようにして いたが、このようなブロックについてはブロックに含ま れる画素データのレベル分布に基づいて照度ムラ補正用 のγ特性を設定せず、ダミーデータが含まれない近接ブ ロックで設定された照度ムラ補正用のγ特性を適用する ようにしてもよい。

【0170】すなわち、図34(b)において、例えば ブロックB(1,1), B(1,2), B(2,1)はダミーデータが 含まれるので、これらのブロックB(1,1), B(1,2), B *50* にならず、ホワイトボード22の白地レベルを正確に検

(2,1)についてはダミーデータが含まれない最近接のブ ロックB(2,2)で設定された照度ムラ補正用のγ特性を 適用するようにする。同様にブロックB(1,3)について はダミーデータが含まれない最近接のブロックB(2,3) で設定された照度ムラ補正用のγ特性を適用し、ブロッ クB(3,1)についてはダミーデータが含まれない最近接 のブロック B (3, 2) で設定された照度ムラ補正用のγ特 性を適用する。

【0171】この場合は、図15で、以下のように画素 10 データの処理が行なわれる。すなわち、アドレス生成部 325bにおいて、ブロックサイズ設定部325aから 入力されるブロックサイズにより撮像画像を複数のブロ ックB(I, J)に分割し、データ有効領域演算部323か ら入力されるデータ有効領域の情報に基づきダミーデー タが含まれるブロックB(I, J)を抽出させるとともに、 抽出された各ブロックB(I,J)についてダミーデータが 含まれない最近接のブロックB(I,J)を演算させる。こ の演算結果は、同図の点線で示すように、アドレス生成 部325bから白色飽和レベル設定部325dに入力さ 20 れる。

【0172】そして、画像メモリ324からダミーデー タが含まれないブロック B (I, J)についてのみブロック 単位で画素データを読み出し、ヒストグラム作成部32 5 c でそのブロックに含まれる全画素データのレベル分 布のヒストグラムを作成し、白色飽和レベルWを設定す る。白色飽和レベル設定部325dはアドレス生成部3 25bから入力されたダミーデータを含むブロックB (I, J)に対するダミーデータを含まない最近接のブロッ クB(I, J)の情報に基づいてダミーデータを含む各ブロ 30 ックB(I, J)に対し、対応する最近接のブロックB(I, J) について設定された白色飽和レベルWを設定する。

【0173】ブロック内のデータ有効領域における白地 部分の面積が小さい場合には、データ有効領域内の画素 データのレベル分布のヒストグラムに白地部分の山Uが 明瞭に表れないことがあり、このヒストグラムから設定 される照度ムラ補正用のy特性の白色飽和レベルWの信 頼性に問題があるが、ダミーデータを含まない最近接の ブロックで設定されたγ特性を適用する方法はこのよう なy特性の信頼性の問題を解消することができる利点が で、ブロック間のγ特性の急激な変化による画質の不連 続による偽の境界線発生させることもない。

【0174】ところで、上述したように、撮像画像をブ ロック分割し、各ブロックに含まれる画素データのレベ ル分布のヒストグラムからそのブロック内の下地(白 色)をレベルを検出する方法では、ブロック内にホワイ トボード22以外の白地部分(例えばホワイトボードの 背後にある白壁等の背景部分)が含まれていると、ヒス トグラムの形状が図19に示すような典型的な二山分布 出することは困難となる。

【0175】このため、例えばモノクロ撮影の場合で照 度ムラ補正を行なうと、特にホワイトボードと背景部分 とが含まれるブロックでは、ホワイトボード部分に黒く 色が着くことがある。このような偽の着色現象が生じる 原因はヒストグラムにより設定される白色飽和レベルが 不適切であるからである。

31

【0176】すなわち、図39に示すように、ホワイト ボードと背景部分とが含まれるブロックにおいては、画 素データのレベル分布のヒストグラムは、図40に示す ように、ホワイトボード及び背景部分に対応して灰色乃 至白色の領域に2つの山U1, U2を有する形となる。 なお、図40のヒストグラムは、ホワイトボードの文字 等が書かれてない周縁部分のブロックであるため、図1 9で示した文字部分に相当する山Cは表れていない。

【0177】例えばホワイトボードが反射率の高い白壁 の前に配置されているように、背景部分の輝度がホワイ トボード部分のそれよりも高い場合は、山U1は背景部 分に対応し、山U2はホワイトボード部分に対応するこ とになるので、山U1のピーク値に対応する階級wが白 色飽和レベルWとして設定されたγ特性を用いてガンマ 補正が行われると、背景部分の白色飽和レベルW以上の 部分は一律に所定の白色に変換されるが、白色飽和レベ ルW以下のホワイトボード部分は灰色領域で所定の灰色 に変換されることになる。

【0178】従って、この後、更に黒色強調用のγ特性 によりガンマ補正が行なわれると、ホワイトボード部分 の黒色飽和レベルBより低い部分が黒色に変換され、こ れがホワイトボード部分の黒色着色となって表れること になる。

【0179】図41は、上述の照度ムラ補正用のガンマ 補正と黒色強調用のガンマ補正とによる黒色着色を説明 するための図で、(a)はヒストグラムを示す図、

(b) はヒストグラムに基づき設定された照度ムラ補正 用のy特性を示す図、(c)は黒色強調用のy特性を示 す図である。

【0180】同図(b)に示すγ特性の白色飽和レベル Wは、同図(a)に示すヒストグラムの背景部分に相当 する山U1のピーク値に対応する階級w(=200)の 値が設定されている。従って、ホワイトボード部分に相 当する山U2のピーク値に対応する階級w' (=10 0)をホワイトボード部分を代表する白色レベルとする と、同図(b)に示すッ特性によりレベル値「100+ を有するホワイトボード部分はレベル値「127」にガ ンマ補正される。この後、黒色飽和レベルが「170」 に設定された黒色強調用のy特性を用いてガンマ補正が 行なわれると、黒色飽和レベルより低レベルのホワイト ボード部分はレベル値「0」に変換され、黒色に変換さ れることになる。

トボード部分のレベルは背景部分のレベルよりも低い が、ブロック内でのホワイトボード部分の面積が背景部 分の面積よりも広く、同図(b)に示すように、ホワイ トボード部分に相当する山U2のピーク値に対応する階 級w′ (=100)がγ特性の白色飽和レベルWに設定 された場合は、図41 (c) のy特性と同一の黒色強調 用のγ特性で黒色強調が行なわれても、照度ムラ補正用 のγ特性でレベル値「255」に変換されたホワイトボ ード部分のレベル値が「0」に変換されることなく、レ ベル値「255」に保持されるので、ホワイトボード部 分を好適に白く飛ばすことができる。

【0182】カラー撮影では、R, G, Bの各色成分毎 に照度ムラ補正用にy特性を設定するので、いずれかの 色成分のy特性の設定において白色飽和レベルが背景部 分のレベルで決定されていると、照度ムラ補正及び黒字 強調のガンマ補正後のホワイトボード部分に偽の着色現 象が生じることになる。

【0183】R, G, Bの各色成分の y 特性の白色飽和 レベルをWR、WG, WBとし、例えば白色飽和レベルWR は図42の例のように設定され、白色飽和レベルWG, WRは図41の例のように設定された場合、例えばR, G, Bの各色成分DR, DG, DBがDR=200, DG= D_B=100であるホワイトボード部分をガンマ補正す ると、このホワイトボード部分の赤色成分は、図42の 例で説明したように、DR=255に変換され、緑色及 青色の成分は、図41の例で説明したように、DG=DB =0に変換されるので、ホワイトボード部分が赤色に着 色されることになる。

【0184】背景を含んでホワイトボードをカラー撮影 30 した場合、画像処理において撮像画像のホワイトボード と背景との境界領域におけるホワイトボード部分に着色 現象が表れたのでは画質が著しく低下し、見辛くなるの で、上記着色現象は可及的に防止することが望ましい。

【0185】上記着色現象を確実に防止するには、撮影 者がホワイトボード全体が撮影画面内に含まれるように 画角構成を行えばよいが、常に、所望の画角を構成し得 るとは限らないので、好ましくは画像処理において着色 現象を低減できるほうがよい。

【0186】画像処理において着色現象を低減する方法 40 としては、ブロック内のホワイトボード以外の部分(背 景部分)の画素データを除いてヒストグラムを作成する 方法が考えられる。この方法では、撮像画像内のホワイ トボード部分のみを認識することが必要になるが、例え ばLCD表示部19にレリーズ待機状態における撮像画 像をモニター表示させるとともに、このモニター表示に 対する領域指定部材を設け、撮影者がこの領域指定部材 によりホワイトボード部分のみを指定して入力できるよ うにするとよい。あるいは、一般にホワイトボードは背 景部分より明るい白色で、背景部分よりも高輝度となる 【0181】一方、図42(a)に示すように、ホワイ 50 ことが多いから、輝度差を利用してホワイトボードを自

動抽出するようにしてもよい。この方法では、通常、画面中央にはホワイトボード部分が配置されるから、例えば画面中央における高輝度の画素データからホワイトボード部分の輝度値を設定し、この輝度値と各画素位置の輝度値(画素データのレベル)とを比較することによりホワイトボード部分のみの領域を抽出することができる。

33

【0187】また、画像処理において着色現象を低減する他の方法としては、ホワイトボードと背景とを含むブロックに対するγ特性として、そのブロックに最近接のブロックであってホワイトボードと背景とを含まないブロックに対するγ特性を適用し、照度ムラ補正において背景部分の画素データの影響を受けないようにしてもよい。

【0188】図43は、第1γ特性設定部325の第2の実施の形態のブロック構成を示す図で、上述の画像処理において着色現象を低減する方法の内、後者の方法を適用したものである。

【0189】同図は、図15のブロック図において、白色飽和レベル設定部32dと白色飽和レベル補間演算部 20325eとの間に白色飽和レベル補正部325hを追加するとともに、この白色飽和レベル補正部325hとヒストグラム作成部325cとの間に境界ブロック抽出部325gを追加したものである。

【0190】境界ブロック抽出部325gは各ブロック毎に作成されたヒストグラムの形からホワイトボードと背景とを含むブロックを抽出するものである。すなわち、ヒストグラムが図41(a)又は図42(a)に示すように、白色領域に2つの山を有する形となるブロックを抽出するとともに、この抽出されたブロックに対して適用すべきγ特性を有するブロックを指定するものである。

【0191】また、白色飽和レベル補正部325hは境界ブロック抽出部325gで抽出されたブロックの白色飽和レベルを境界ブロック抽出部325gで指定されたブロックの白色飽和レベルに変更するものである。この変更はホワイトボードと、背景とを含まないブロックであって抽出されたブロックに近接したブロックで設定された白色飽和レベルをその抽出されたブロックに適用するように白色飽和レベルを変更するものである。

【0192】境界ブロック抽出部325gにおけるホワイトボードと背景とを含むブロックの抽出処理は、図44のフローチャートに従って以下のように行なわれる。

【0193】まず、ブロック数をカウントするカウンタ Mが「1」に設定される(#130)。なお、ブロック 抽出処理におけるブロックの順番は図20に示すブロック分割においてラスター方向に行なうようにしているので、 $M=L\cdot(I-1)+J$ となり、ブロックB(I,J)はブロック $B(L\cdot(I-1)+J)$ に対応している。

【0194】続いて、ブロックB(1)について作成され

たヒストグラムの第1の山のピーク値に対応する階級wが検出される。図40に示すヒストグラムを例にとると、山U1のピーク値に対応する階級wが検出される(#132)。この階級wは照度ムラ補正用のγ特性の白色飽和レベルWを設定するための階級wを算出するのと同様の方法で行なわれる。すなわち、最大階級pから低レベル側に範囲dに含まれる分布内で最も頻度の高い階級wが算出される。なお、図40において、階級p及び範囲dは図23に示すヒストグラムの階級p(ブロックB(1)内に含まれる画素データの内の最大レベルと階級wを検出するための範囲とに相当するものである。

【0195】続いて、山U1と山U2との谷Vが検出される(#134)。この谷Vの検出は、階級wから低レベル側で頻度が予め設定された閾値 t num(例えば山U1ののピーク値 f pnumの20%の頻度)より低い階級を算出し、この算出結果が予め設定された個数 t t (例えば3~5個)以上連続しているか否かを判別することにより行なわれる。閾値 t numより低い階級が t t個以上連続している場合は、その階級範囲が谷Vとして検出される。

【0196】続いて、谷Vが検出されたか否かが判別され (#136)、谷Vが検出されなければ (#136でNO)、ステップ#144に移行し、フラグFLGM (M)が「0」にリセットされる。なお、フラグFLGM (M)はホワイトボードと背景とを含むブロックであることを示すフラグである。

【0197】一方、谷Vが検出されると(#136でYES)、更に第2の山U2のピーク値に対応する階級 w'が検出される(#138)。この階級 w'の検出は、検出された谷Vより低レベル側で頻度が予め設定された閾値 y num(例えばピーク値 f pnumの30%の頻度)より高い階級を算出し、この算出結果が予め設定された個数 y t(例えば3~5個)以上連続しているか否かを判別することにより行なわれる。閾値 y numより高い階級が y t個以上連続している場合は、その階級範囲が第2の山U2として検出される。

【0198】続いて、第2の山U2が検出されたか否かが判別され(#140)、第2の山U2が検出されると(#140でYES)、フラグFLGM(M)が「1」に 40 セットされ(#142)、第2の山U2が検出されなければ(#140でNO)、ステップ#144に移行し、フラグFLGM(M)が「0」にリセットされる。

【 O 1 9 9】続いて、カウンタMのカウント値が「1」だけインクリメントされた後(# 1 4 6)、このカウント値Mが総ブロック数N(=k・L)より大きいか否かが判別され(# 1 4 8)、M≦Nであれば(# 1 4 8でNO)、ステップ# 1 3 2に戻り、次のブロックB(2)について上述と同様の処理が行なわれる(# 1 3 2~#1 4 8)。以下、同様にして各ブロックB(M)について 上述と同様の処理が行なわれ、M>Nになると(# 1 4

8でYES)、全てのブロックについてホワイトボードと背景とを含むか否かの判別が終了したので、続いて各ブロック毎に設定されたフラグFLGM(M)を確認することによりホワイトボードと背景とを含むブロックの抽出が行なわれる(#150~#160)。

35

【0200】このブロック抽出は、まず、ブロック数をカウントするカウンタMが「1」に設定され(#150)、ブロックB(#10)に対するフラグFLGM(#150)が「#10]にセットされているか否が判別され(#150)、フラグFLGM(#10)が「#10]にリセットされていれば(#1500)、ステップ#1500に移行する。

【0201】フラグFLGM(1)が「1」にセットされていれば(#152でYES)、更にブロックB(1)に近接するブロックB(1)のフラグFLGM(1)を確認してホワイトボードと背景とを含むまないブロックが検索される(#154)。この探索は、図45に示すように、ブロックB(M)を中心とする 5×5 のブロックについて行なわれる。また、探索方法は、図46(a)~(d)に示すように、 5×5 のブロックをブロックB(M)が右下隅、左下隅、右上隅、左下隅となる 3×3 のブロックからなる4つのブロック群に分け、各ブロック群毎に行なわれる。

【0202】各ブロック群では、図 $46(a)\sim(d)$ のブロック内に付された番号順にフラグFLGM(I)が確認され、最初にFLGM(I)=0が確認されたブロックB(I)がそのブロックB(I)の γ 特性をブロックB(M)の γ 特性に適用すべきブロックとして抽出される。

【0203】ブロックB(I)の場合、ブロックB(I)は撮像画像の左上隅に位置するから、図46(d)に示すケースの近接ブロックについてFLGM(I)が確認され、例えば3番目のブロック(ブロックB(I)に対して斜め左下のブロック)で最初にFLGM(I)=0となると、このブロックB(I)がそのブロックB(I)の γ 特性をブロックB(M)の γ 特性に適用すべきブロックとして抽出される。

【0204】そして、ブロックB(I)が抽出されると、このブロックB(I)の位置情報がブロックB(I)に対応付けて記憶される(#156)。

【0205】続いて、カウンタMのカウント値が「1」だけインクリメントされた後(#158)、このカウント値Mが総ブロック数Nより大きいか否かが判別され(#148でNO)、ステップ#152に戻り、次のブロックB(2)について上述と同様の処理が行なわれる(#152~#160)。【0206】以下、同様にして各ブロックB(M)について上述と同様の処理が行なわれ、M>Nになると(#160でYES)、全てのホワイトボードと背景とを含むブロックについて γ 特性を適用すべきブロックの指定が終了したと判断して、処理を終了する。

【0207】境界ブロック抽出部325gで抽出されたブロック及びこのブロックに適用すべきγ特性を有するブロックの情報は白色飽和レベル補正部325hに入力され、白色飽和レベル設定部325dで各ブロック毎に設定された白色飽和レベルのうち、ホワイトボードと背景とを含むブロックに対して設定された白色飽和レベルは、白色飽和レベル補正部325hにより、指定されたホワイトボードと背景とを含まないブロックに対して設定された白色飽和レベルで置換される。

10 【0208】以上のように、第2の実施の形態の係る第 1 y 特性設定部325ではホワイトボードと背景とを含むプロックについては、そのブロックに含まれる画素データのレベル分布のヒストグラムを用いてホワイトボードの白地レベルを検出せず、ホワイトボードと背景とを含まないブロックで検出されたホワイトボードの白地レベルを用いてy特性を設定するようにしているので、不適切なy特性の設定に基づくホワイトボードの背景との境界部分での着色を確実に防止することができる。

【0209】ところで、第2の実施の形態に係る第1 γ 特性設定部325では、各ブロックのヒストグラムを用いてそのブロックにホワイトボードと背景とが含まれるか否かを検出するようにしていたが、この検出結果を用いてホワイトボードと背景との境界位置を検出することができる。

【0210】すなわち、各ブロックに対してホワイトボードと背景との境界の有無を示すフラグFLGMを設定するようにしているので、FLGM=1のブロックを抽出することによりホワイトボードと背景との境界を含むブロック(以下、このブロックを境界ブロックとい30 う。)を抽出することができる。

【0211】そして、抽出された境界ブロックを連結することにより境界の形状及び位置の概要を知ることができる。画面中央にホワイトボードが写し込まれた撮像画像を、例えば図47に示すように矩形状のブロックで分割した場合、FLGM=1のブロックを抽出すると、同図の点描で示す境界Sを含む境界ブロックが抽出され、この境界ブロックを連結することにより境界Sの概略形状(略横長の長方形)を判別することができる。

【0212】そこで、各境界ブロックにおける境界位置 が画素単位で推定できれば、撮影画面内の境界位置、すなわち、ホワイトボードの領域を正確に知ることができ、ホワイトボード部分と背景部分とでγ特性を異ならせるようにすれば、撮影画面内に背景が含まれている場合にもホワイトボード内の文字情報に対してより好適な 画質を得ることができる。また、撮影画像を2値化処理して下地部分(白地部分)と文字部分とのコントラストを明瞭にする場合にはホワイトボード部分と背景部分とで2値化の閾値を変更することによって好適な2値化処理を行なうことができる。

50 【 O 2 1 3 】次に、各境界ブロックにおける境界位置を

画素単位で推定する方法について説明する。

【0214】ブロック内の画像が殆どホワイトボードの白色と背景部分の白色(ホワイトボードよりも低輝度)とで構成され、しかもホワイトボード部分と背景部分とに一定の輝度差がある場合、ヒストグラムの分布は、図48に示すようにホワイトボード部分の山U1と背景部分の山U2とを有する二山分布になり、しかも両山U1、U2は比較的尖鋭な形となる。

37

【0215】このような場合、ブロック内のホワイトボード部分の画素データは山U1の回りに集まり、背景部 10分の画素データは山U2の回りの集まるので、山U1と山U2との間の谷t1を基準としてレベルt1以上の領域A1とレベルt1以下の領域A2とに分離し、各領域A1、A2に含まれる度数をそれぞれa1、a2とすると、この度数の比a1:a2はブロック内のホワイトボード部分の面積S1と背景部分S2との比S1:S2に近似した値となる。

【0216】図47において、例えば横方向の境界Sを含む境界ブロックB1について作成されたヒストグラムが、図48のようであると、境界ブロックB1内では境 20 界Sは略水平になっているので、境界ブロックB1を縦方向に度数比a1:a2で内分する位置に境界Sがあると推定することができる。縦方向に境界Sを含む境界ブロックB2についても同様の方法で境界ブロックB2内の境界位置を推定することができる。

【0217】従って、横方向に隣接する境界ブロックB 1間で度数比a1:a2を比較し、略同一乃至近似している場合は、これらのブロックB1は横方向の境界Sのみを含むブロックであると推定する。同様に縦方向に隣接する境界ブロックB2間で度数比a1':a2'を比 30較し、略同一乃至近似している場合は、これらのブロックB2は縦方向の境界Sのみを含むブロックであると推定する。

【0218】一方、ホワイトボードの角を含むブロックB3においては、横方向の境界ブロックB1の度数比a1:a2とも縦方向の境界ブロックB2の度数比a1':a2"が表れるので、このような度数比a1":a2"を有するブロックB3は角部のブロックと推定し、図39に示すように、隣接する横方向のブロックB1の度数比a1:a2と隣接する縦方向のブロックB2の度数比a1':a2'とを用いてブロックB3内を鍵形に内分する位置に境界Sがあると推定する。

【0219】なお、角部のブロックB3は境界ブロックの連結状態から判別できるので、隣接する横方向の境界ブロックB1の度数比a1:a2と隣接する縦方向のブロックB2の度数比a1':a2'とを用いて直ちにブロックB3内を鍵形に内分すして境界Sの位置を推定するようにしてもよい。

【0220】さて、画素データのレベル分布のヒストグ 50 的に求められた階級差の閾値である。

ラムからホワイトボードの白地レベルを検出する方法では、ホワイトボード上に写真、図表などの中間調の資料が貼付されている場合にもホワイトボードの白地レベルを正確に検出することは困難となる。

38

【0221】この理由は、ブロック内の画像が写真等の中間調の場合、大部分の画素データは灰色領域に広がるので、そのブロックについて設定されたヒストグラムは、図49に示すように、白地部分の山Uや文字部分の山Cが明瞭に表われない形となり、図49に示すヒストグラムに対して、図19に示すヒストグラムに対して用いた白地部分の山Uのピーク値に対応する階級wの検出方法を適用しても白地部分の山Uのピーク値に対応する階級wを正確かつ確実に検出することはできないからである。

【0222】その一方、写真等の中間調の画像を含むブロックにおいては、2値化処理に近いγ特性を行なうと、却って写真等の画質が低下し、不自然な画像となるので、このブロックについては自然画に対するのと同様のガンマ補正を行なうことが望ましい。

1 【0223】そこで、まず、各ブロックについて作成されたヒストグラムの形から中間調の画像を含むブロックを抽出し、そのブロックについては予め設定された中間調に対するγ特性(例えば第1γ補正部に適用されるγ特性等)でガンマ補正を行なうようにするとよい。

【0224】ヒストグラムの形からブロックが中間調の 画像を含むブロックであるか否かを判別するには、以下 のような2つの方法を適用することができる。

【0225】第1の方法は、図49に示すように、ヒストグラムの最大頻度fpが所定の閾値thdより小さく、ヒストグラムの山が低い場合に適用されるもので、最大頻度fpを有する階級wから低レベル側に予め設定された範囲bd内の分布について分散を算出し、この算出結果を予め設定された所定の閾値thbと比較して判別するものである。なお、この分散の演算において、範囲bd内の画素データのみを用いるのは、文字情報に相当する画素データの影響を低減するためである。また、閾値thbはホワイトボード部分と推定し得る予め実験的に求められた分散の閾値である。

.【0226】従って、算出された分散が所定の閾値thb よりも大きいときは、そのブロックの画像はホワイトボード部分の画像でないと判断される。

【0227】第2の方法は、ヒストグラムのバラツキが比較的大きい場合に適用されるもので、最大頻度fpを有する階級wから低レベル側において、最大頻度fpの2%(例えば50%)より小さい頻度を有する階級であって最も階級wに近い階級phを算出し、この階級phと最大頻度fpを有する階級wとの階級差Δw(=w-ph)を所定の閾値thphと比較して判別するものである。なお、所定の閾値thphはホワイトボード部分と推定し得る予め実験

【0228】従って、算出された階級差Δwが所定の閾値thphよりも大きいときは、そのブロックの画像はホワイトボード部分の画像でないと判断される。

39

【0229】なお、上記実施の形態では、黒色濃度調整スイッチ18により黒色飽和レベルBが可変設定された黒色強調用のγ特性を用いて照度ムラ補正後の画像のガンマ補正を行なうようにしていたが、この黒色強調用のγ特性に代えて、照度ムラ補正用のγ特性により撮像画像の下地を白く飛ばすようなガンマ補正をした後、画素データの最低レベルト′を算出し、この最低レベルト′と白色飽和レベルwとの間を256階調でレベル変換するγ特性を用いてガンマ補正を行なうようにしてもよい。

【0230】すなわち、照度ムラ補正後の画像について、図50(a)に示すようなヒストグラムが得られたとすると、このヒストグラムから黒色領域の最低輝度となる階級 h'を算出し、この階級 h'と白色飽和レベルwとを用いて同図(b)に示すγ特性を設定する。そして、このγ特性を用いて照度ムラ補正後の画像のガンマ補正を行なうとよい。

【0231】この方法では、照度ムラ補正後の画像の輝度範囲を256階調に拡大するようにガンマ補正が行なわれるので、ダイナミックレンジが広がり、撮像画像の画質を向上させることができる。

【0232】なお、上記実施の形態では斜め撮影における遠近法的な幾何学的歪を補正する像歪補正機能と照度ムラ補正機能とを組み合わせた場合について説明したが、本願発明はこれに限定されず、光学撮像系の光学特性の基づく幾何学的歪や信号処理系の処理特性に基づく幾何学的歪を補正する像歪補正機能と照度ムラ補正機能 30とを組み合わせた場合にも適用することができる。

[0233]

【発明の効果】以上説明したように、本発明によれば、 幾何学的歪を補正することのできるデジタルカメラであって、画像の幾何学的歪を補正した後、その画像を複数 の小画像に分割し、小画像毎に各画像に対応するγ特性 を設定し、小画像単位でガンマ補正を行なうことにより 照度ムラを補正する際、各小画像を構成する画素信号の うち、有効な画素信号のみを用いてγ特性を設定するよ うにしたので、幾何学的歪を補正した後、照度ムラ補正 40 を行なった場合にも照度ムラ補正を好適に行なうことが できる。

【0234】また、本発明によれば、斜め方向から撮影された斜め画像を擬似的な正面撮影の画像に補正した後、照度ムラ補正を行なうようにしたので、例えばホワイトボードに書かれた文字、図形等の情報を斜め撮影した画像であっても斜め撮影による遠近法的な歪がなく、しかも照度ムラの少ない情報価値の高い画像を得ることができる。

【図面の簡単な説明】

- 【図1】本発明に係るデジタルカメラの外観を示す斜視 図である。
- 【図2】本発明に係るデジタルカメラの背面図である。
- 【図3】被写体に対する斜め撮影を示す図である。
- 【図4】斜め画像補正を説明するための図で、(a)は 斜め撮像画像を示す図、(b)は斜め画像補正後の画像 を示す図である。
- 【図5】ホワイトボードの照明光の照明方向の一例を示す図である。
- 70 【図6】撮像素子の出力分布を示すもので、(a)は縦 方向の出力分布を示す図、(b)は横方向の出力分布を 示す図である。
 - 【図7】本発明に係るデジタルカメラの光学系の概略構成図である。
 - 【図8】斜め撮影における撮像系を真上から見た図である。
 - 【図9】撮像画像を複数のブロックに分割した状態を示す図である。
- 【図10】ブロック毎に設定される白地を強調するγ特 20 性の一例を示す図である。
 - 【図11】 黒色部分を強調とする y 特性の一例を示す図である。
 - 【図12】黒色濃度調整スイッチによる黒色調整と黒色 部分を強調とするγ特性との関係を示す図である。
 - 【図13】本発明に係るデジタルカメラのブロック構成 図である。
 - 【図14】カラー画像の画像処理を行なうための斜め画像補正演算部〜第1,第2 γ 補正部までの構成を示すブロック構成図である。
- 30 【図15】第1 y 特性設定部の内部構成を示すブロック 図である。
 - 【図16】斜め画像補正の方法を説明するための図で、
 - (a) は斜め画像を示す図、(b) は斜め画像補正後の画像を示す図である。
 - 【図17】圧縮処理における画素データの欠落部分を修正した補正後の画像を示す図である。
 - 【図18】画像メモリの容量を説明するための図である。
 - 【図19】文字画像を構成する画素データのヒストグラ ムの一般的な形を示す図である。
 - 【図20】撮像画像を複数のブロックの小画像に分割した状態を示す図である。
 - 【図21】不適切なサイズのブロックで撮像画像を分割した状態を示すもので、(a)はブロックサイズが適正値より小さい場合を示す図、(b)はブロックサイズが適正値より大きい場合を示す図である。
 - 【図22】ファインダー視野枠内にブロック枠を表示させた状態を示す図である。
- 【図23】ブロックに分割された小画像を構成する画素 50 データのヒストグラムの一例を示す図である。

【図24】画素データのヒストグラムを用いて決定されるγ特性を示す図である。

【図25】緑色成分の画素データを用いて設定された y 特性の一例を示す図である。

【図26】各色成分の画素データを用いて各色成分毎に 設定された γ 特性を示す図で、(a) は赤色成分の画素 データに対するもの、(b) は緑色成分の画素データに 対するもの、(c) は青色成分の画素データに対するも のである。

【図27】隣接する4個のブロックの中心位置で囲まれた領域内の画素データに対する γ 特性の補間演算を説明するための図である。

【図28】本発明に係るカメラの撮影制御を示すフロー チャートである。

【図29】本発明に係るカメラの撮影制御を示すフローチャートである。

【図30】本発明に係るカメラの撮影制御を示すフローチャートである。

【図31】サブルーチン「データ有効領域演算」のフローチャートである。

【図32】サブルーチン「 γ 特性設定」のフローチャートである。

【図33】CCDの画素データの読出方向を示す図である。

【図34】斜め画像補正の方法を説明するための図で、

(a) は斜め画像を示す図、(b) は斜め画像補正後の 擬似正面画像を示す図である。

【図35】斜め画像補正における画素データの補間処理を説明するための図で、(a)は縦方向の補間処理を示す図、(b)は横方向の補間処理を示す図である。

【図36】横方向に配列されたブロックで設定された照度ムラ補正用のγ特性を用いて他のブロックに対する照度ムラ補正用のγ特性を設定する方法を説明するための図である。

【図37】縦方向に配列されたブロックで設定された照度ムラ補正用の γ 特性を用いて他のブロックに対する照度ムラ補正用の γ 特性を設定する方法を説明するための図である。

【図38】照度ムラ補正を行なうための撮像画像の他の ブロック分割の方法を示す図である。

【図39】ホワイトボードと背景との境界線を含むブロックを示す図である。

【図40】ホワイトボードと境界とを含むブロックについて作成されたヒストグラムの一例を示す図である。

【図41】照度ムラ補正及び黒色強調のためのγ補正処理で着色現象が発生する理由を説明するための図で、

(a) はヒストグラムを示す図、(b) は照度ムラ補正用の γ 特性を示す図、(c) は黒色強調用の γ 特性を示す図である。

【図42】照度ムラ補正及び黒色強調のためのγ補正処 50

理で着色現象が発生しない理由を説明するための図で、 (a)はヒストグラムを示す図、(b)は照度ムラ補正

用のγ特性を示す図、(c)は黒色強調用のγ特性を示す図である。

【図43】照度ムラ補正及び黒色強調補正における着色現象を低減する第 1γ 特性設定部の内部構成を示すブロック図である。

【図44】背景を含むブロックを抽出するための制御を 示す「ブロック抽出」のフローチャートを示す図であ 10 る。

【図45】背景を含むブロックの周辺で背景を含まないブロックを検出するための探索範囲を示す図である。

【図46】背景を含まないブロックの探索順を説明するための図で、(a) は背景を含むブロックに対して左上領域のブロックの探索順を示す図、(b) は背景を含むブロックに対して右上領域のブロックの探索順を示す図、(c) は背景を含むブロックに対して左下領域のブロックの探索順を示す図、(d) は背景を含むロックに対して右下領域のブロックの探索順を示す図である。

20 【図47】ホワイトボードと背景との境界を含むブロックを検出する方法を説明するための図である。

【図48】ホワイトボードと背景とを含むブロックについて作成されたヒストグラムの一例を示す図である。

【図49】写真等の中間調の画像のみを含むブロックについて作成されたヒストグラムの一例を示す図である。

【図50】照度ムラ補正におけるγ補正においてダイナミックレンジを拡張する方法を説明するための図で、

(a) はヒストグラムを示す図、(b) は γ 特性を示す図である。

30 【図51】デジタル複写機における取込画像のブロック 分割方法を示す図である。

【符号の説明】

- 1 カメラ (デジタルカメラ)
- 2 撮影レンズ
- 3 測光窓
- 4 測距用投光窓
- 5 測距用受光窓
- 6 ファインダー対物窓
- 7 フラッシュ
- 40 8 カード挿入口
 - 9 カード取出ボタン
 - 10 シャッタボタン
 - 11 ズームスイッチ
 - 12 撮影/再生スイッチ
 - 13 ハードディスクカード
 - 14 メインスイッチ
 - 15 ファインダー接眼窓
 - 16 モード設定スイッチ (角度設定手段)
 - 17 照度ムラ補正スイッチ
 - 18 黒色濃度調整スイッチ

.2)

- 20 CCDエリアセンサ (撮像手段)
- 21 絞り
- 22 ホワイトボード

19 LCD表示部

- 30 CPU
- 301 撮影倍率演算部 (演算手段)
- 31 CCD駆動部
- 32 画像処理部
- 321 A/D変換器
- 322 斜め画像補正演算部 (歪補正手段)
- 323 データ有効領域演算部
- 324 画像メモリ
- 325 第1y特性設定部
- 325a ブロックサイズ設定部 (画像分割手段)
- 325b アドレス生成部 (画素信号抽出手段)
- 325c ヒストグラム作成部
- 325d 白色飽和レベル設定部 (γ特性設定手段)
- 325e 白色飽和レベル補間演算部

- 325f y特性設定部
- 325g 境界ブロック抽出部
- 325h 白色飽和レベル補正部
- 326 第2γ特性設定部
- 327 第17補正部
- 328 第2γ補正部 (ガンマ補正手段)
- 329 スイッチ回路
- 33 カード駆動部
- 34 発光制御部
- 10 35 LCD駆動部
 - 36 メモリ
 - 37 レンズ駆動部
 - 38 ズーム駆動部
 - 39 絞り駆動部
 - 40 測光部
 - 41 測距部 (測距手段)
 - 42.ファインダー視野枠
 - 43 ブロック枠

Communication and the state of the state of

Confidence for the form of the residence and included in the experience of the

[図44]

