Travaux Dirigés Nº 1

Adressage IPv4

Exercice 1 (Algèbre binaire)

- 1) Quelles-sont les valeurs entières représentables sur un octet ?
- 2) Calculer la valeur entière décimale non signée de chacun des nombres suivants :

binaires	0b00101001	0b00000011	0b11110001	0b01010111
octaux	00644	0o200	00755	00442
hexadécimaux	0x01	0xa0	0xff	0xc8

3) On peut généraliser le codage sur plusieurs octets (particulièrement sur 2 octets). La notation hexadécimale induite est plus condensée et plus commode à utiliser.

Déterminer les valeurs entières (non signées) de : 0x0abc, 0x7fff, 0xa000.

- 4) Déterminer, quand c'est possible, les représentations binaires puis hexadécimales sur un octet des entiers suivants : 114, 86, 191, 314
- 5) Rappeler les tables de vérité des opérations binaires suivantes :
 - a) ET (conjonction): utilise un opérateur binaire noté & (esperluète),
 - b) Ou (disjonction): utilise un opérateur binaire noté | (tube),
 - c) Non (complément à un) qui utilise un opérateur unaire noté ~ (tilde).
- 6) Donner le résultat des opérations binaires suivantes :

0x9b & 0xc6; $\sim 0xff32$; $0x4321 \mid 0x5678$

Exercice 2 (Taille d'un réseau IPv4)

- 1) Une machine A a pour adresse IP 192.168.12.1 et un masque 255.255.25.0. Combien reste-t-il d'adresses disponibles dans ce réseau ?
- 2) Donner pour ce réseau, la valeur des deux adresses interdites en indiquant leur signification.
- 3) On décide d'interconnecter ce réseau avec un routeur. Affecter la dernière adresse disponible à l'interface du routeur raccordée physiquement à ce réseau.
- 4) Donner en écriture CIDR l'adresse de ce réseau.
- 5) Donner la valeur en écriture décimale pointée du masque du réseau 192.168.1.0/25.

Exercice 3 (Utilisation du masque de réseau)

- 1) À quel réseau appartient une machine A qui a pour adresse IP 190.24.12.8/16?
- 2) Idem pour une machine B d'adresse IP 10.0.100.1/8.
- 3) Les machines A et B pourront-elles communiquer directement? Si non, que faut-il faire?
- 4) Donner l'adresse IP d'une machine C qui appartiendrait au même réseau logique que celui de la machine A.
- 5) Idem pour une machine D qui serait reliée au même réseau que celui de B.
- 6) Dessiner le schéma du réseau pour ces quatre machines.
- 7) Proposer une convention d'assignation des adresses pour le réseau 192.168.1.0/24.

L2 MMI Info0305

Exercice 4 (Adressage par classe)

Compléter les tables ci-dessous :

Classe	1 ^{er} octet en binaire	Masque par défaut	Plage d'adr. rés. possibles	Plage d'adr. hôtes possibles	Nbr rés. possibles	Nbr hôtes possibles	Adr. broadcast
A							
В							
С							

Les adresees privées réservées

Classe	Plage d'adresses ré- seaux possibles	Plage d'adresses hôtes possibles	Nombre de réseaux possibles	Nombre de hôtes possibles
A				
В				
С				

Exercice 5 (Sous-réseaux)

Une entreprise a obtenu l'adresse réseau suivante par l'AFNIC : 194.57.242.0

- 1) Quelle est la classe de cette adresse IP?
- 2) Donner toutes les possibilités (en théorie et en pratique) de sous-réseaux et d'adresses de machines possibles, les masques de sous-réseaux, les plages d'adresses des machines, les adresses de broadcast...

Exercice 6 (Concrètement)

Renater nous a attribué une adresse de classe C pour notre centre *Centrino*, 220.156.10.0. Notre centre est composé de 4 établissements A, B, C, D. Chaque établissement veut posséder son propre sous-réseau.

- Le centre A veut pouvoir connecter 4 machines
- Le centre B, 14
- Le centre C, 24
- Le centre D, 34
- 1) Cette classe est-elle suffisante pour réaliser notre adressage?
- 2) Remplissez le tableau suivant pour chacun des réseaux et sous-réseaux de notre centre Centrino.

réseaux	@réseau	masque réseau	@diffusion	adresses des machines
A				
В				
С				
D				

3) Que se passerait-il si l'établissement D voulait connecter 55 machines, 110 machines, 220 machines?