Tree

Arnaud Malapert, Gilles Menez, Marie Pelleau

Master Informatique, Université Côte d'Azur

Tree

Tree

In graph theory, a tree is an undirected, acyclic, connected graph

Tree $\implies n$ vertices, n-1 edges

Search

- Breadth-first search
- Depth-first search
 - Pre-order
 - In-order
 - Post-order

Tree 2 / 11

For binary trees

Three steps:

- (L) Visit the left sub-tree
- (R) Visit the right sub-tree
- (N) Visit the node

Pre-order(v) [NLR]

```
display v
Pre—order(left child of v)
Pre—order(right child of v)
```

Tree 3 / 11

For binary trees

Three steps:

- (L) Visit the left sub-tree
- (R) Visit the right sub-tree
- (N) Visit the node

In-order(v) [LNR]

```
In-order(left child of v) display v
In-order(right child of v)
```

3/11

Tree

For binary trees

Three steps:

- (L) Visit the left sub-tree
- (R) Visit the right sub-tree
- (N) Visit the node

Post-order(v) [LRN]

```
Post-order(left child of v)
Post-order(right child of v)
display v
```

3/11

Tree

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Tree 4 / 11

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Tree 5 / 11

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Post-order (LRN) 4 7 8 5 2 9 6 3 1 In-order (LNR) 4 2 7 5 8 1 3 9 6

Tree

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order X

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

ee 5 / 11

Statement

Given N the number of nodes, M the number of edges and the list of edges, check if an unweighted, undirected graph is a tree

Tree

Example

Input:

3 2

1 2

2 3

Output:

YES

Statement

Given N the number of nodes, M the number of edges and the list of edges, check if an unweighted, undirected graph is a tree

Tree

What problems can arise?

- What do we know of *N*?
- Of M?

Solution 1: Build the graph

Build the graph with the list of edges

Check using BFS that all the nodes are visited once

Solution 2: Check on the list

if it can be a tree then
 Maintain a visit array
 Check that all the nodes are visited exactly once

Tree 7 / 11

More test cases

Input:	Input:	Input:	Input:
5 4	5 5	5 3	5 4
1 3	1 3	1 3	1 3
1 4	1 4	1 4	1 4
4 2	4 2	2 5	2 5
2 5	2 5	Output:	3 4
Output:	3 4	NO NO	Output:
YES	Output:		NO
	NO		

Tree 8 / 11

Exercise 2: Tree order

Statement

Given pre-order, post-order, and in-order traversals, determine if they can be of the same binary tree

Example

Input:

6

124536

452631

425136

Output:

yes

Tree 9 / 11

Exercise 2: Tree order

Solution 1: Build the tree

Given two traversals build the tree

Generate the third traversal Check that it matches the given one

Solution 2: Check the orders

Check the three traversals all at once

Tree

Exercise 2: Tree order

More test cases

yes

Input:	Input:
9	9
124578369	124578369
478529631	475829631
427581396	427581396
Output:	Output:

no

Tree