浙 江 工 业 大 学 线 性 代 数 期 末 试 卷 (A) (2015~ 2016 第一学期)

任证	果教师:	学院	班级:	选课班	中编号:
学与	号:		姓名:	得分	:
	题号	_	11	三	四
	得分				
—.	填空题(每	空 3 分, 共 30 分)	本题得分	}
1.	行列式	$D = \begin{vmatrix} 2 & 1 & 3 & 2 \\ 3 & 0 & 4 & 1 \\ 1 & 2 & 3 & 1 \\ 6 & 0 & 7 & 6 \end{vmatrix}$,则其第匹	丨行 元 素 的:	余子式之和
	$M_{41} + M_{42} +$	$+M_{43} + M_{44} = $			
2.	设α=(-1,2	$(2, 1)^T, \beta = (2, -1)^T$	$\left(1,\;3\right) ^{T}$,则 $\left(lphaeta^{ au} ight)$	2016 =	
3.	设矩阵 <i>A</i> =	$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 2 & 0 \\ 3 & 5 & 0 \end{pmatrix}, \text{M} \ A$	$\mathbf{d}^T = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$, A ⁻¹ =	
4.	设矩阵 <i>A</i> =	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 3 & -1 \end{pmatrix},$	则 R(A) =	,齐次线性	方程组 Ax = 0 的
	基础解系所	f包含向量个数为 <u></u>			
5.	设向量组α	$lpha_1,lpha_2,lpha_3$ 线性无关	, $\mathbb{H} \beta_1 = \alpha_1 + \alpha_2$,	$\beta_2 = \alpha_2 + \alpha_3, \beta_3 = \alpha_3$	$+\alpha_1$,则向量组

 $\beta_1, \beta_2, \beta_3$ 线性______关

- 7. 设A为3阶方阵,且A-E, A+2E, 2A-3E均为奇异矩阵,则|A|=______ $|A^*| =$

二. 单项选择题(每小题 2 分,共 10 分)

本题得分

下列矩阵中,不是初等矩阵的是(

$$(A) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$(B) \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

(A)
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 (B) $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ (C) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

$$\text{(D)} \begin{cases}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 1
 \end{cases}$$

2. 设 $A \cap B$ 都为n阶方阵,则矩阵 $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ 的伴随矩阵是(

(A)
$$\begin{pmatrix} |A|A^* & 0\\ 0 & |B|B^* \end{pmatrix}$$
 (B) $\begin{pmatrix} |B|B^* & 0\\ 0 & |A|A^* \end{pmatrix}$

(B)
$$\begin{pmatrix} |B|B^* & 0 \\ 0 & |A|A^* \end{pmatrix}$$

(C)
$$\begin{pmatrix} |A|B^* & 0 \\ 0 & |B|A^* \end{pmatrix}$$

(C)
$$\begin{pmatrix} |A|B^* & 0\\ 0 & |B|A^* \end{pmatrix}$$
 (D) $\begin{pmatrix} |B|A^* & 0\\ 0 & |A|B^* \end{pmatrix}$

3. 设 A 为方阵, α_1 , α_2 是齐次方程组 Ax = 0 的两个不同的解向量,则以下向量中

一定是A的特征向量的为().

(A)
$$\alpha_1$$

(A)
$$\alpha_1$$
 (B) $\alpha_1 + \alpha_2$ (C) $\alpha_1 - \alpha_2$ (D) α_2

(C)
$$\alpha_1 - \alpha_2$$

(D)
$$\alpha_2$$

4. 设 $\alpha, \beta \in R^n$,则 $\left| \langle \alpha, \alpha \rangle \quad \langle \alpha, \beta \rangle \right|$ 的值().

$$(A) \geq 0$$

$$(B) = 0$$

$$(C) \leq 0$$

$$(A) \ge 0$$
 $(B) = 0$ $(C) \le 0$ (D) 不确定

5. 已知矩阵 A 相似于对角阵 $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 则下列矩阵中可逆矩阵为(

(A)
$$E-A$$

(B)
$$E + A$$

(A)
$$E - A$$
 (B) $E + A$ (C) $2E - A$ (D) $2E + A$

(D)
$$2E + A$$

三、计算题 (每题 10 分, 共 50 分)

1	2	3	4	5	本题总得分

1. 计算行列式
$$D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}$$
.

2. 已知 3 阶方阵
$$A$$
 和 B 满足 $AB = 2B - 7A^*$,且 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 2 \\ 0 & 2 & 1 \end{pmatrix}$,求 B .

3. 已知向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -1 \\ -5 \\ -3 \end{pmatrix}$, 求 $span(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 的

维数和一组基,并求剩余向量在这组基下的坐标.

4. 设有线性方程组
$$\begin{cases} (1+\lambda)x_1 + x_2 + x_3 = 0 \\ x_1 + (1+\lambda)x_2 + x_3 = 3 \\ x_1 + x_2 + (1+\lambda)x_3 = \lambda \end{cases}$$

问λ取什么值时,线性方程组(1)有唯一解;(2)无解;(3)有无穷多解? 并在有无穷多解时,求出该方程组的通解。 5. 设矩阵 $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix}$, 求(1)矩阵 A 的特征值和特征向量;(2)矩阵 A 是

否可以相似对角化?若可以,求出相似变换矩阵P,以及相似对角阵 $\Lambda = P^{-1}AP$;若不可以,说明理由。

四、证明题(每题5分,共10分)

1	2	本题总得分

1. 已知n阶方阵A满足 $2A^2+3A-5E=O$,证明A+2E可逆,并求其逆矩阵.

2. 设 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 是正交向量组,证明 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关.