Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/018437

International filing date: 03 December 2004 (03.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-404472

Filing date: 03 December 2003 (03.12.2003)

Date of receipt at the International Bureau: 27 January 2005 (27.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

03.12.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月 3日

出 願 番 号 Application Number:

特願2003-404472

[ST. 10/C]:

[JP2003-404472]

出 願 人
Applicant(s):

独立行政法人理化学研究所株式会社医学生物学研究所

2005年 1月13日

特許庁長官 Commissioner, Japan Patent Office 1) (1)

【書類名】 特許願 【整理番号】 A31701A

【提出日】平成15年12月 3日【あて先】特許庁長官 殿

【発明者】

【住所又は居所】 埼玉県和光市広沢2番1号 独立行政法人理化学研究所内

【氏名】 宮脇 敦史

【発明者】

【住所又は居所】 長野県伊那市大字手良沢岡字大原1063-103 株式会社医

学生物学研究所 伊那研究所内

【氏名】 唐澤 智司

【発明者】

【住所又は居所】 長野県伊那市大字手良沢岡字大原1063-103 株式会社医

学生物学研究所 伊那研究所内

【特許出願人】

【識別番号】 503359821

【氏名又は名称】 独立行政法人理化学研究所

【特許出願人】

【識別番号】 390004097

【氏名又は名称】 株式会社医学生物学研究所

【代理人】

【識別番号】 110000109

【氏名又は名称】 特許業務法人特許事務所サイクス

【代表者】 今村 正純

【手数料の表示】

【予納台帳番号】 170347 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0316216

【書類名】特許請求の範囲

【請求項1】

以下の(a)又は(b)に示す蛍光蛋白質。

- (a) 配列番号1に記載のアミノ酸配列を有する蛋白質;
- (b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列を有し、配列番号1に記載のアミノ酸配列を有する蛋白質と同等の蛍光特性を有し、かつ単量体で存在する蛋白質。

【請求項2】

以下の(a)又は(b)に示す蛍光蛋白質をコードするDNA。

- (a) 配列番号1に記載のアミノ酸配列を有する蛋白質
- (b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列を有し、配列番号1に記載のアミノ酸配列を有する蛋白質と同等の蛍光特性を有し、かつ単量体で存在する蛋白質。

【請求項3】

以下の(a)又は(b)に示すDNA。

- (a) 配列番号2に記載の塩基配列を有するDNA
- (b)配列番号2に記載の塩基配列において、1から数個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、かつ配列番号2に記載の塩基配列がコードする蛋白質と同等の蛍光特性を有する蛋白質であって、単量体で存在する蛋白質をコードする塩基配列を有するDNA。

【請求項4】

請求項2又は3に記載のDNAを有する組み換えベクター。

【請求項5】

請求項2又は3に記載のDNA又は請求項4に記載の組み換えベクターを有する形質転換体。

【請求項6】

請求項1に記載の蛍光蛋白質と他の蛋白質とから成る融合蛍光蛋白質。

【請求項7】

他の蛋白質が細胞内に局在する蛋白質である、請求項6に記載の融合蛋白質。

【請求項8】

他の蛋白質が細胞内小器官に特異的な蛋白質である、請求項6又は7に記載の融合蛋白質

【請求項9】

請求項6から8の何れか1項に記載の融合蛋白質を細胞内で発現させることを特徴とする 、細胞内における蛋白質の局在または動態を分析する方法。

【請求項10】

請求項1に記載の蛍光蛋白質、請求項2又は3に記載のDNA、請求項4に記載の組み換えベクター、請求項5に記載の形質転換体、又は請求項6から8の何れか1項に記載の融合蛋白質を含む、蛍光試薬キット。

【書類名】明細書

【発明の名称】蛍光蛋白質

【技術分野】

[0001]

本発明は、単量体で存在する新規な蛍光蛋白質に関する。より詳細には、本発明は、クサビライシ(Fungia sp.)由来の蛍光蛋白質に変異を導入することにより単量体化した新規な蛍光蛋白質及びその利用に関する。

【背景技術】

[0002]

クラゲのエクオレア・ビクトリア(Aequorea victoria)に由来する緑色蛍光蛋白質(GFP)は、生物系において多くの用途を有する。最近、ランダム突然変異誘発法および半合理的(semi-rational)突然変異誘発法に基づいて、色を変化させたり、折りたたみ特性を改善したり、輝度を高めたり、あるいはpH感受性を改変したといった様々なGFP変異体が作製されている。遺伝子組み換え技術により他の蛋白質をGFP等の蛍光蛋白質に融合させて、それらの発現および輸送のモニタリングを行うことが行われている。

[0003]

最もよく使用されるGFP変異体の一つとして黄色蛍光蛋白質(YFP)が挙げられる。YFPは、クラゲ(Aequorea)GFP変異体の中でも最長波長の蛍光を示す。大部分のYFPの ε および Φ は、それぞれ $60,000\sim100,000M^{-1}$ cm $^{-1}$ および $0.6\sim0.8$ であり(Tsien, R. Y. (1998). Ann. Rev. Biochem. 67, 509–544)、これらの値は、一般的な蛍光団(フルオレセインおよびローダミンなど)の値に匹敵する。従ってYFPの絶対的輝度の改善は、ほぼ限界に達しつつある。

[0004]

また、GFP変異体の他の例として、シアン色蛍光蛋白質(CFP)があり、ECFP (enhanced cyan fluorescent protein)が知られている。また、イソギンチャク (Discom a sp.) からは赤色蛍光蛋白質(RFP)も単離されており、DasRedが知られている。このように蛍光蛋白質は、緑色、黄色、シアン色、赤色の4種が次々と開発されスペクトルの範囲は大幅に広がっている。

[0005]

先に本発明者らは、クサビライシ(Fungia sp.)の c DNAライブラリーから、既知の 蛍光蛋白のアミノ酸配列に基づいて設計した好適なプライマーを用いて蛍光蛋白質遺伝子を増幅してクローニングすることに成功し、得られたクサビライシ(Fungia sp.)由来の 蛍光蛋白質の蛍光特性を調べた結果、当該蛍光蛋白質が所望の蛍光特性を有することを見出している(国際公開WO03/54191号公報)。

[0006]

【非特許文献 1 】 Tsien, R. Y. (1998). Ann. Rev. Biochem. 67, 509-544 【特許文献 1 】 国際公開WO03/54191号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

国際公開WOO3/54191号公報に記載されたイシサンゴ目のクサビライシより単離された蛍光蛋白質Kusabira-Orange(KO)は分子量測定の結果、70kDa(アミノ酸配列から計算される分子量は26kDa)を示し、通常は二量体を形成していると考えられる。近年、蛍光蛋白質をもちいて細胞や分子のラベルする需要が急速に高まっている。細胞をラベルする際には蛍光蛋白質が多量体を形成しようと、蛍光蛋白質自身は細胞質中に漂っているだけなので問題は起こらないが、分子をラベルする際には問題が生じてくる。例えば、ラベルしたい分子が多量体を形成する場合、ターゲット分子と蛍光蛋白質分子が互いに多量体を形成し合い、巨大なポリマーを形成してしまう可能性がある。また、どちらかの多量体形成が阻害された時には、その多量体形成できない分子が本来の性質を失うことになる。蛍光蛋白質を複数用いた分子内FRET(蛍光エネルギー共鳴移動)のプローブにおい

ても同様に、多量体形成蛍光蛋白質同士を一本のペプチド鎖として発現させた場合に、互 いが多量体形成をしあうためにFRETの観測は困難となる。本発明は、上記した問題を解消 することを解決すべき課題とするものであり、具体的には、多量体を形成することなく単 量体で存在する新規な蛍光蛋白質を提供することを解決すべき課題とした。

【課題を解決するための手段】

[00008]

本発明者らは上記課題を解決するために鋭意検討し、国際公開W〇03/54191号 公報に記載された蛋白質KOのアミノ酸配列から多量体形成界面を予測し、多量体形成界面 のアミノ酸を置換し、なおかつ蛍光特性を保持するようKOの単量体化を行うことに成功し た。さらに本発明者らは、得られた単量体蛍光蛋白質の蛍光特性を調べた結果、所望の蛍 光特性を有することを見出した。本発明はこれらの知見に基づいて完成したものである。

[0009]

即ち、本発明によれば、以下の(a)又は(b)に示す蛍光蛋白質が提供される。

- (a) 配列番号1に記載のアミノ酸配列を有する蛋白質:
- (b)配列番号1に記載のアミノ酸配列において1から数個のアミノ酸が欠失、置換、及 び/又は付加されたアミノ酸配列を有し、配列番号1に記載のアミノ酸配列を有する蛋白 質と同等の蛍光特性を有し、かつ単量体で存在する蛋白質。

[0010]

本発明の別の態様によれば、以下の(a)又は(b)に示す蛍光蛋白質をコードするD NAが提供される。

- (a) 配列番号1に記載のアミノ酸配列を有する蛋白質
- (b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸が欠失、置換、及 び/又は付加されたアミノ酸配列を有し、配列番号1に記載のアミノ酸配列を有する蛋白 質と同等の蛍光特性を有し、かつ単量体で存在する蛋白質。

[0011]

本発明のさらに別の態様によれば、以下の(a)又は(b)に示すDNAが提供される

- (a) 配列番号2に記載の塩基配列を有するDNA
- (b) 配列番号2に記載の塩基配列において、1から数個の塩基の欠失、置換及び/又は 付加を有する塩基配列を有し、かつ配列番号2に記載の塩基配列がコードする蛋白質と同 等の蛍光特性を有する蛋白質であって、単量体で存在する蛋白質をコードする塩基配列を 有するDNA。

[0012]

本発明のさらに別の態様によれば、上記した本発明のDNAを有する組み換えベクター が提供される。

本発明のさらに別の態様によれば、上記した本発明のDNA又は組み換えベクターを有 する形質転換体が提供される。

本発明のさらに別の態様によれば、上記した本発明の蛍光蛋白質と他の蛋白質とから成 る融合蛍光蛋白質が提供される。好ましくは、他の蛋白質は細胞内に局在する蛋白質であ り、さらに好ましくは、他の蛋白質は細胞内小器官に特異的な蛋白質である。

$[0\ 0\ 1\ 3\]$

本発明のさらに別の態様によれば、上記した本発明の融合蛋白質を細胞内で発現させる ことを特徴とする、細胞内における蛋白質の局在または動熊を分析する方法が提供される

本発明のさらに別の態様によれば、上記した本発明の蛍光蛋白質、DNA、組み換えべ クター、形質転換体、又は融合蛋白質を含む、蛍光試薬キットが提供される。

【発明の効果】

$[0\ 0\ 1\ 4\]$

本発明により、単量体で存在することができる新規な蛍光蛋白質が提供されることにな った。二量体の蛍光蛋白質KOによるHeLa細胞でのミトコンドリアラベルにおいて、

ミトコンドリアが粒々にラベルされ、本来のミトコンドリア像は得られない。しかし、単 量体の蛍光蛋白質mKOでミトコンドリアをラベルした場合には正常な細長いひも状のミ トコンドリア像が得られ、ダイナミックなミトコンドリアの動きも観察される。このよう な単量体化による有効性がミトコンドリア分子のラベルにより確認された。

【発明を実施するための最良の形態】

[0015]

以下、本発明の実施の形態について詳細に説明する。

(1) 本発明の蛍光蛋白質

本発明の蛍光蛋白質は、以下の(a)又は(b)の何れかに示す蛋白質である。

- (a)配列番号1に記載のアミノ酸配列を有する蛋白質;
- (b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸が欠失、置換、及 び/又は付加されたアミノ酸配列を有し、配列番号1に記載のアミノ酸配列を有する蛋白 質と同等の蛍光特性を有し、かつ単量体で存在する蛋白質。

[0016]

本発明の蛍光蛋白質は、下記の特性を有することを特徴とする。

- (1) 励起極大波長が548nmであり、蛍光極大波長は559nmである;
- (2) 548 n m におけるモル吸光係数が、51600である;
- (3) 量子収率が0.6である;及び
- (4) 蛍光特性の p H 感受性が p K a = 5. 0 である

クサビライシ (Fungia sp.)はサンゴの1種で、主に西部大西洋に生息し、群体の外形 は多角形で触手が長く、全体が鮮やかなオレンジ色を呈することを特徴とする。

なお、本書中以下の実施例では、クサビライシ (Fungia sp.)を出発材料として上記特 性を有する本発明の蛍光蛋白質を取得したが、クサビライシ (Fungia sp.)以外の蛍光を 発するサンゴから本発明の蛍光蛋白質を取得することができる場合もあり、そのような蛍 光蛋白質も本発明の範囲内である。

[0018]

本明細書で言う「1から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸 配列」における「1から数個」の範囲は特には限定されないが、例えば、1から20個、 好ましくは1から10個、より好ましくは1から7個、さらに好ましくは1から5個、特 に好ましくは1から3個程度を意味する。

[0019]

本明細書で言う「同等の蛍光特性」とは、同等の蛍光強度、同等の励起波長、同等の蛍 光波長、同等の p H 感受性などを有することを意味する。

[0020]

本発明の蛍光蛋白質の取得方法については特に制限はなく、化学合成により合成した蛋 白質でもよいし、遺伝子組み換え技術による作製した組み換え蛋白質でもよい。

組み換え蛋白質を作製する場合には、先ず当該蛋白質をコードするDNAを入手するこ とが必要である。本明細書の配列表の配列番号1に記載したアミノ酸配列並びに配列番号 2に記載した塩基配列の情報を利用することにより適当なプライマーを設計し、それらを 用いて上記した国際公開WO03/54191号公報に記載の蛍光蛋白質のcDNAクロ ーンを鋳型にしてPCRを行うことにより、本発明の蛍光蛋白質をコードするDNAを取 得することができる。本発明の蛍光蛋白質をコードするDNAの一部の断片を上記したP CRにより得た場合には、作製したDNA断片を順番に遺伝子組み換え技術により連結す ることにより、所望の蛍光蛋白質をコードするDNAを得ることができる。このDNAを 適当な発現系に導入することにより、本発明の蛍光蛋白質を産生することができる。発現 系での発現については本明細書中後記する。

[0021]

(2) 本発明のDNA

本発明によれば、本発明の蛍光蛋白質をコードするDNAが提供される。

本発明の蛍光蛋白質をコードするDNAの具体例としては、以下の(a)又は(b)に示す蛋白質をコードするDNAが挙げられる。

- (a) 配列番号1に記載のアミノ酸配列を有する蛋白質
- (b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列を有し、配列番号1に記載のアミノ酸配列を有する蛋白質と同等の蛍光特性を有し、かつ単量体で存在する蛋白質。

[0022]

本発明の蛍光蛋白質をコードするDNAの更なる具体例としては、以下の(a)又は(b)に示すDNAもまた挙げられる。

- (a) 配列番号2に記載の塩基配列を有するDNA
- (b) 配列番号2に記載の塩基配列において、1から数個の塩基の欠失、置換及び/又は付加を有する塩基配列を有し、かつ配列番号2に記載の塩基配列がコードする蛋白質と同等の蛍光特性を有する蛋白質であって、単量体で存在する蛋白質をコードする塩基配列を有するDNA。

[0023]

本発明のDNAは、例えばホスホアミダイト法などにより合成することができるし、特異的プライマーを用いたポリメラーゼ連鎖反応(PCR)によって製造することもできる。本発明のDNA又はその断片の作製方法については、本明細書中上述した通りである。

[0024]

また、所定の核酸配列に所望の変異を導入する方法は当業者に公知である。例えば、部位特異的変異誘発法、縮重オリゴヌクレオチドを用いるPCR、核酸を含む細胞の変異誘発剤又は放射線への露出等の公知の技術を適宜使用することによって、変異を有するDNAを構築することができる。このような公知の技術は、例えば、Molecular Cloning: Alaboratory Mannual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.,1989、並びにCurrent Protocols in Molecular Biology, Supplement 1~38, John Wiley & Sons (1987–1997)に記載されている。

[0025]

(3) 本発明の組み換えベクター

本発明のDNAは適当なベクター中に挿入して使用することができる。本発明で用いるベクターの種類は特に限定されず、例えば、自立的に複製するベクター(例えばプラスミド等)でもよいし、あるいは、宿主細胞に導入された際に宿主細胞のゲノムに組み込まれ、組み込まれた染色体と共に複製されるものであってもよい。

[0026]

好ましくは、本発明で用いるベクターは発現ベクターである。発現ベクターにおいて本発明のDNAは、転写に必要な要素(例えば、プロモータ等)が機能的に連結されている。プロモータは宿主細胞において転写活性を示すDNA配列であり、宿主の種類に応じて適宜することができる。

[0027]

細菌細胞で作動可能なプロモータとしては、バチルス・ステアロテルモフィルス・マルトジェニック・アミラーゼ遺伝子 (Bacillusstearothermophilus maltogenic amylase gene)、バチルス・リケニホルミス α アミラーゼ遺伝子 (Bacillus licheniformis alpha-amylase gene)、バチルス・アミロリケファチエンス・BANアミラーゼ遺伝子 (Bacillus amyloliquefaciens BAN amylase gene)、バチルス・サブチリス・アルカリプロテアーゼ遺伝子 (Bacillus Subtilis alkaline protease gene) もしくはバチルス・プミルス・キシロシダーゼ遺伝子 (Bacillus pumilus xylosldase gene)のプロモータ、またはファージ・ラムダの P_R 若しくは P_L プロモータ、大腸菌の lac、trp若しくはtacプロモータなどが挙げられる。

[0028]

哺乳動物細胞で作動可能なプロモータの例としては、SV40プロモータ、MT-1(メタロチオネイン遺伝子)プロモータ、またはアデノウイルス2主後期プロモータなどが

ある。昆虫細胞で作動可能なプロモータの例としては、ポリヘドリンプロモータ、P10 プロモータ、オートグラファ・カリホルニカ・ポリヘドロシス塩基性蛋白プロモータ、バ キュウロウイルス即時型初期遺伝子1プロモータ、またはバキュウロウイルス39K遅延 型初期遺伝子プロモータ等がある。酵母宿主細胞で作動可能なプロモータの例としては、 酵母解糖系遺伝子由来のプロモータ、アルコールデヒドロゲナーゼ遺伝子プロモータ、T PI1プロモータ、ADH2-4cプロモータなどが挙げられる。

糸状菌細胞で作動可能なプロモータの例としては、ADH3プロモータまたはtpiA プロモータなどがある。

[0029]

また、本発明のDNAは必要に応じて、例えばヒト成長ホルモンターミネータまたは真 菌宿主についてはTPI1ターミネータ若しくはADH3ターミネータのような適切なタ ーミネータに機能的に結合されてもよい。本発明の組み換えベクターは更に、ポリアデニ レーションシグナル(例えばSV40またはアデノウイルス5E1b領域由来のもの)、転 写エンハンサ配列(例えばSV40エンハンサ)および翻訳エンハンサ配列(例えばアデ ノウイルス VA RNA をコードするもの)のような要素を有していてもよい。

本発明の組み換えベクターは更に、該ベクターが宿主細胞内で複製することを可能にす るDNA配列を具備してもよく、その一例としてはSV40複製起点(宿主細胞が哺乳類 細胞のとき)が挙げられる。

[0030]

本発明の組み換えベクターはさらに選択マーカーを含有してもよい。選択マーカーとし ては、例えば、ジヒドロ葉酸レダクターゼ(DHFR)またはシゾサッカロマイセス・ポ ンベTPI遺伝子等のようなその補体が宿主細胞に欠けている遺伝子、または例えばアン ピシリン、カナマイシン、テトラサイクリン、クロラムフェニコール、ネオマイシン若し くはヒグロマイシンのような薬剤耐性遺伝子を挙げることができる。

本発明のDNA、プロモータ、および所望によりターミネータおよび/または分泌シグ ナル配列をそれぞれ連結し、これらを適切なベクターに挿入する方法は当業者に周知であ る。

$[0\ 0\ 3\ 1\]$

(4) 本発明の形質転換体

本発明のDNA又は組み換えベクターを適当な宿主に導入することによって形質転換体 を作製することができる。

本発明のDNAまたは組み換えベクターを導入される宿主細胞は、本発明のDNA構築 物を発現できれば任意の細胞でよく、細菌、酵母、真菌および高等真核細胞等が挙げられ

[0032]

細菌細胞の例としては、バチルスまたはストレプトマイセス等のグラム陽性菌又は大腸 菌等のグラム陰性菌が挙げられる。これら細菌の形質転換は、プロトプラスト法、または 公知の方法でコンピテント細胞を用いることにより行えばよい。

哺乳類細胞の例としては、HEK293細胞、HeLa細胞、COS細胞、BHK細胞 、CHL細胞またはCHO細胞等が挙げられる。哺乳類細胞を形質転換し、該細胞に導入 されたDNA配列を発現させる方法も公知であり、例えば、エレクトロポーレーション法 、リン酸カルシウム法、リポフェクション法等を用いることができる。

[0033]

酵母細胞の例としては、サッカロマイセスまたはシゾサッカロマイセスに属する細胞が 挙げられ、例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevislae)またはサ ッカロマイセス・クルイベリ(Saccharomyces kluyveri)等が挙げられる。酵母宿主への 組み換えベクターの導入方法としては、例えば、エレクトロポレーション法、スフェロブ ラスト法、酢酸リチウム法等を挙げることができる。

$[0\ 0\ 3\ 4\]$

他の真菌細胞の例は、糸状菌、例えばアスペルギルス、ニューロスポラ、フザリウム、

またはトリコデルマに属する細胞である。宿主細胞として糸状菌を用いる場合、DNA構 築物を宿主染色体に組み込んで組換え宿主細胞を得ることにより形質転換を行うことがで きる。DNA構築物の宿主染色体への組み込みは、公知の方法に従い、例えば相同組換え または異種組換えにより行うことができる。

[0035]

昆虫細胞を宿主として用いる場合には、組換え遺伝子導入ベクターおよびバキュロウイ ルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換 えウイルスを昆虫細胞に感染させ、蛋白質を発現させることができる(例えば、Baculovi rus Expression Vectors, A Laboratory Manual;及びカレント・プロトコールズ・イン ・モレキュラー・バイオロジー、Bio/Technology, 6, 47(1988)等に記載)。

[0036]

バキュロウイルスとしては、例えば、ヨトウガ科昆虫に感染するウイルスであるアウト グラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス(Autographa califo rnica nuclear polyhedrosis virus)等を用いることができる。

昆虫細胞としては、Spodoptera frugiperdaの卵巣細胞であるSf9、Sf21〔バキ ュロウイルス・エクスプレッション・ベクターズ、ア・ラボラトリー・マニュアル、ダブ リュー・エイチ・フリーマン・アンド・カンパニー(W. H. Freeman and Company)、ニュ ーヨーク(New York)、(1992)〕、Trichoplusia niの卵巣細胞であるHiFive(インビ トロジェン社製)等を用いることができる。

組換えウイルスを調製するための、昆虫細胞への組換え遺伝子導入ベクターと上記バキ ュロウイルスの共導入方法としては、例えば、リン酸カルシウム法又はリポフェクション 法等を挙げることができる。

[0037]

上記の形質転換体は、導入されたDNA構築物の発現を可能にする条件下で適切な栄養 培地中で培養する。形質転換体の培養物から、本発明の蛍光融合蛋白質を単離精製するに は、通常の蛋白質の単離、精製法を用いればよい。

例えば、本発明の蛋白質が、細胞内に溶解状態で発現した場合には、培養終了後、細胞 を遠心分離により回収し水系緩衝液に懸濁後、超音波破砕機等により細胞を破砕し、無細 胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常の蛋 白質の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈 殿法、ジエチルアミノエチル(DEAE)セファロース等のレジンを用いた陰イオン交換クロマ トグラフィー法、S-Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換ク ロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎 水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフ ィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独ある いは組み合わせて用い、精製標品を得ることができる。

[0038]

(5) 本発明の蛍光蛋白質及びそれを含む融合蛍光蛋白質の利用

本発明は蛍光蛋白質を他の蛋白質と融合させることにより、融合蛍光蛋白質を構築する ことができる。

本発明の融合蛍光蛋白質の取得方法については特に制限はなく、化学合成により合成し た蛋白質でもよいし、遺伝子組み換え技術による作製した組み換え蛋白質でもよい。

組み換え蛋白質を作製する場合には、先ず当該蛋白質をコードするDNAを入手するこ とが必要である。本明細書の配列表の配列番号1に記載したアミノ酸配列及び配列番号2 に記載した塩基配列の情報を利用することにより適当なプライマーを設計し、本発明の蛍 光蛋白質の遺伝子を含むDNA断片を鋳型にしてPCRを行うことにより、本発明の蛍光 蛋白質をコードするDNAを構築するのに必要なDNA断片を作製することができる。ま た同様に、融合すべき蛋白質をコードするDNA断片も入手する。

次いで、これらのDNA断片を順番に遺伝子組み換え技術により連結することにより、

[0040]

本発明の蛍光蛋白質は、特に、標識としての利用価値が高い。即ち、本発明の蛍光蛋白質を被検アミノ酸配列との融合蛋白質として精製し、マイクロインジェクション法などの手法により細胞内に導入し、該融合蛋白質の分布を経時的に観察すれば、被検アミノ酸配列の細胞内におけるターゲッティング活性を検出することが可能である。

[0041]

本発明の蛍光蛋白質を融合させる他の蛋白質(被検アミノ酸配列)の種類は特に限定されるものではないが、例えば、細胞内に局在する蛋白質、細胞内小器官に特異的な蛋白質、ターゲティングシグナル(例えば、核移行シグナル、ミトコンドリアプレ配列)等が好適である。なお、本発明の蛍光蛋白質は、マイクロインジェクション法などにより細胞内に導入する以外に、細胞内で発現させて用いることも可能である。この場合には、本発明の蛍光蛋白質をコードするDNAが発現可能に挿入されたベクターが宿主細胞に導入される。

[0042]

また、本発明の蛍光蛋白質は、レポーター蛋白質としてプロモータ活性の測定に用いることも可能である。即ち、被検プロモータの下流に、本発明の蛍光蛋白質をコードするDNAが配置されたベクターを構築し、これを宿主細胞に導入し、該細胞から発せられる本発明の蛍光蛋白質の蛍光を検出することにより、被検プロモータの活性を測定することが可能である。被検プロモータとしては、宿主細胞内で機能するものであれば、特に制限はない。

[0043]

上記アミノ酸配列のターゲティング活性の検出やプロモータ活性の測定において用いられるベクターとしては、特に制限はないが、例えば、動物細胞用ベクターでは、「pNEO」(P. Southern, and P. Berg (1982) J. MO1. Appl. Genet. 1:327)、「pCAGGS」(H. Niwa, K. Yamamura, and J. Miyazaki. Gene 108, 193-200(1991))、「pRc/CMV」(インビトロゲン社製)、「pCDM8」(インビトロゲン社製)などが、酵母用ベクターでは、「pRS303」、「pRS304」、「pRS305」、「pRS306」、「pRS313」、「pRS314」、「pRS315」、[pRS316](R. S. Sikorski and P. Hieter (1989) Genetics 122: 19-27)、「pRS423」、「pRS424」、「pRS425」、「pRS426」(T. W. Christianson、R. S. Sikorski,M. Dante,J. H. Shero,and P. Hieter (1992) Gene 110: 119-122)などが好適に用いられる。

[0044]

また、使用可能な細胞の種類も特に限定されず、各種の動物細胞、例えば、L細胞、BalbC-3T3細胞、NIH3T3細胞、CHO(Chinese hamster ovary)細胞、HeLa細胞、NRK(normal rat kidney)細胞、「Saccharomyces cerevisiae」などの酵母細胞や大腸菌(E. coli)細胞などを使用することができる。ベクターの宿主細胞への導入は、例えば、リン酸カルシウム法やエレクトロポレーション法などの常法により行うことができる。

[0045]

上記のようにして得た、本発明の蛍光蛋白質と他の蛋白質(蛋白質 X とする)とを融合させた融合蛍光蛋白質を細胞内で発現させ、発する蛍光をモニターすることにより、細胞内における蛋白質 X の局在や動態を分析することが可能になる。即ち、本発明の融合蛍光蛋白質をコードする D N A で形質転換またはトランスフェクトした細胞を蛍光顕微鏡で観察することにより細胞内における蛋白質 X の局在や動態を可視化して分析することができる。

[0046]

例えば、蛋白質Xとして細胞内オルガネラに特異的な蛋白質を利用することにより、核、ミトコンドリア、小胞体、ゴルジ体、分泌小胞、ペルオキソームなどの分布や動きを観察できる。

また、例えば、神経細胞の軸索、樹状突起などは発生途中の個体の中で著しく複雑な走

[0047]

本発明の蛍光蛋白質の蛍光は、生細胞のまま検出することが可能である。この検出は、 例えば、蛍光顕微鏡(カールツァイス社 アキシオフォト フィルターセット09)や画像解 析装置(ATTO デジタルイメージアナライザー)などを用いて行うことが可能である。

顕微鏡の種類は目的に応じて適宜選択できる。経時変化を追跡するなど頻回の観察を必要とする場合には、通常の落射型蛍光顕微鏡が好ましい。細胞内の詳細な局在を追及したい場合など、解像度を重視する場合は、共焦点レーザー顕微鏡の方が好ましい。顕微鏡システムとしては、細胞の生理状態を保ち、コンタミネーションを防止する観点から、倒立型顕微鏡が好ましい。正立顕微鏡を使用する場合、高倍率レンズを用いる際には水浸レンズを用いることができる。

[0048]

フィルターセットは蛍光蛋白質の蛍光波長に応じて適切なものを選択できる。本発明の蛍光蛋白質は、励起極大波長が548nmであり、蛍光極大波長が559nmであることから、励起光 $530\sim550$ nm、蛍光 $550\sim600$ nm程度のフィルターを使用することが好ましい。

[0049]

また、蛍光顕微鏡を用いた生細胞での経時観察を行う場合には、短時間で撮影を行うべきなので、高感度冷却CCDカメラを使用する。冷却CCDカメラは、CCDを冷却することにより熱雑音を下げ、微弱な蛍光像を短時間露光で鮮明に撮影することができる。

[0050]

<u>(6) 本発明の</u>キット

本発明によれば、本明細書に記載した蛍光蛋白質、融合蛍光蛋白質、DNA、組み換えベクター又は形質転換体から選択される少なくとも1種以上を含むことを特徴とする、細胞内成分の局在の分析及び/又は生理活性物質の分析のためのキットが提供される。本発明のキットは、それ自体既知の通常用いられる材料及び手法で調製することができる。

蛍光蛋白質又はDNAなどの試薬は、適当な溶媒に溶解することにより保存に適した形態に調製することができる。溶媒としては、水、エタノール、各種緩衝液などを用いることができる。

以下の実施例により本発明を具体的に説明するが、本発明は実施例によって限定されるものではない。

【実施例】

[0051]

実施例1:点変異導入による多量体形成阻害変異体の作製

KO-1のアミノ酸配列から多量体形成界面を予測し、多量体形成界面のアミノ酸を置換し、なおかつ蛍光特性を保持するようKO-1の単量体化を行った。点変異導入はKO-1を挿入した大腸菌発現ベクター(pRSET B)(国際公開WO03/54191号公報に記載のKO-1をコードするDNAを有する発現ベクター)で点変異導入プライマーを用いて行った。具体的には鋳型プラスミドの片側鎖に複数の変異導入プライマーを同時にアニールさせ、ポリメラーゼで伸長させる。各プライマーにより伸長された各DNA断片を同反応液中でDNA以ガーゼを用いてつなぎ、変異導入された部分以外が鋳型と相補的なものを得るという手法を行った。DNA以ガーゼで各DNA断片をつなぐ際にDNAの末端にリン酸基を必要とするため、用いたプライマーはDNA0のリン酸化を行った。

(1) プライマーの5'リン酸化

 $100\,\mu$ M プライマー $2\,\mu$ l 10 imes T4 polynucleotide kinase buffer $5\,\mu$ l $100\,\mu$ M ATP $0.5\,\mu$ l 滅菌水 41.5 μ l T4 polynucleotide kinase (10 U/ μ l) $1\,\mu$ l

```
[0052]
 上記混合物を37℃で30分間インキュベートした。ここでプライマーとしては、以下の配
列番号3から17に記載の塩基配列を有するプライマーを使用した。
K11R, F13Y
CCAGAGATGAAGATGAGGTACTACATGGACGGC(配列番号3)
CATGAGTTCACAATTGAAGGTGAAGGC (配列番号4)
K32R
GAAGGCACAGGCAGACCTTACGAGGGA (配列番号5)
CCAATGCCTTTCGCGTTTGACTTAGTG (配列番号 6)
T62V
TTAGTGTCACACGTGTTCTGTTACGGC(配列番号7)
Q96E
GAAAGGTCGTTGGAGTTCGAAGATGGT (配列番号8)
F102S, A104S
GAAGATGGTGGGTCCGCTTCAGTCAGTGCG(配列番号9)
C115T, E117Y
AGCCTTAGAGGAAACACCTTCTACCACAAATCCA(配列番号10)
V123T
CAAATCCAAATTTACTGGGGTTAACTTTCCTG(配列番号11)
V133I
GCCGATGGTCCTATCATGCAAAACCAAAGT(配列番号12)
S139V
GCCGATGGTCCTATCATGCAAAACCAAAGTGTTGATTGGGAGCCA(配列番号13)
T150A, C151S
GAGAAAATTACTGCCAGCGACGGAGTTCTGAAG(配列番号14)
F162Y, A166E
GATGTTACGATGTACCTAAAACTTGAAGGAGGCGGCAATCAC(配列番号15)
0190G, F193Y, G195S
CTTAAAATGCCAGGAAGCCATTACATCAGCCATCGCCTCGTCAGG(配列番号16)
C217S
GATGCAGTAGCTCATTCCCTCGAGCACCACCACC(配列番号17)
   [0053]
 (2)点変異導入PCR
                              4\mu 1
5'リン酸化プライマー
template(KO-pRSET B)
                             100ng
                             2.5 \mu 1
10× polymerase buffer
10× DNA ligase buffer
                             2.5 \mu 1
2.5mM dNTPs
                              1 \mu 1
                               1\mu 1
polymerase (pfu) 2.5U/μ1
                             0.5 \mu 1
Tag DNA ligase
                 40U/\mu 1
滅菌水で計50μ1とする。
   [0054]
プログラム:
  サーマルサイクラーはGeneAmp PCR system 9700を使用した。
1) 65°C 5 min
2) 95°C 2 min
```

3) 95℃ 20 sec 4) 52℃ 20 sec

- 5) 65°C 8 min
- 上記の3)~5)を25サイクル繰り返す
- 6) 75°C 7 min
- 7) 4℃ hold

[0055]

(3) Dpn1処理

PCR後のサンプルにDpn1を 1μ 1加えて37^{\mathbb{C}}に1時間インキュベートしてテンプレートプラスミドを切断した。

[0056]

(4) 大腸菌への形質転換

Dpn1処理後のサンプルを大腸菌JM109に形質転換して変異導入後のKO-1を発現させた。

[0057]

(5) 単量体化Kusabira-Orange (mKO) のアミノ酸配列

変異導入後のKO変異体の塩基配列を解析し、アミノ酸配列を決定した。その結果、11番 目のリジン (K) をアルギニン (R) に、13番目のフェニルアラニン (F) をチロシン (Y) に、25番目のバリン(V)をイソロイシン(I)に、32番目のリジン(K)をアルギニン(R)に、55番目のセリン(S)をアラニン(A)に、62番目のトレオニン(T)をバリン(V) に、96番目のグルタミン(Q)をグルタミン酸(E)に、102番目のフェニルアラニン(F) をセリン (S) に、104番目のアラニン (A) をセリン (S) に、115番目のシステイン (C) をトレオニン (T) に、117番目のグルタミン酸 (E) をチロシン (Y) に、123番目のバリ ン (V) をトレオニン (T) に、133番目のバリン (V) をイソロイシン (I) に、139番目の セリン (S) をバリン (V) に、150番目のトレオニン (T) をアラニン (A) に、151番目の システイン (C) をセリン (S) に、162番目のフェニルアラニン (F) をチロシン (Y) に 、166番目のアラニン (A) をグルタミン酸 (E) に、190番目のグルタミン (Q) をグリシ ン (G) に、193番目のフェニルアラニン (F) をチロシン (Y) に、195番目のグリシン (G)をセリン(S)に、217番目のシステイン(C)をセリン(S)に置換されていた。さらに Kozak配列付加のため2番目のセリン (S) の前にバリン (V) を導入した。この変異体をmK 0とした。mKOのアミノ酸配列を配列表の配列番号1に記載し、塩基配列を配列表の配列番 号2に記載する。

[0058]

大腸菌を用いてmKOにHis-Tagを付加した蛋白質を常法により発現させ、Ni-Agaroseを用いて精製した。

[0059]

実施例2:蛍光特性の解析

実施例1で精製したmKO蛋白質の蛍光及び吸収スペクトルを以下の通り測定し、量子収率およびモル吸光係数を算出した。

 $20\,\mu$ M蛍光蛋白、50mM HEPES pH7.5溶液を用いて吸収スペクトルを測定した。このスペクトルのピークの値よりモル吸光係数を計算した。mKOでは548nmに吸収のピークが認められ、500nmにおける吸収が0.0025となるように蛍光蛋白を上記の緩衝液で希釈して、500nmで励起した時の蛍光スペクトルと590nmにおける蛍光による励起スペクトルを測定した。D sRed (CLONTECH) を同様に500nmにおける吸収が0.0025となるようにして蛍光スペクトルを測定し、DsRedの量子収率を0.29としてmKOの量子収率を求めた。

結果を表1、図1及び図2に示す。表1には、国際公開WO03/54191号公報に記載のKO蛋白質(二量体蛋白質)のデータも併記する。

[0060]

【表1】

表1

4	χı	励起極大	蛍光極大	モル吸光係数	量子収率	アミノ酸数	多量体形成	pH感受性
Г	КО	548 nm	561 nm	109750	0.45	217	二量体	pKa<5.0
	mKO	548 nm	559 nm	51600	0.6	218	単量体	pKa=5.0

ページ: 11/E

[0061]

実施例3:超遠心分析による分子量の測定

mKO蛋白質溶液を150mM KC1,50mM HEPES-KOH pH7.4とした。mKOの分子量決定のため超遠心分析をおこなった。超遠心機XL-1(ベックマン・コールター)を用いて25,000rpm、22時間遠心して、mKOの吸収極大(548nm)付近の540nmの吸収を測定した。その測定結果からmKOの分子量は28 k Daと計算された(図 3)。これはアミノ酸配列から予測される26kDaとほぼ一致し、mKOが単量体として存在することが確認された。

[0062]

実施例4:ミトコンドリアへのターゲティング

KOおよびmKOのN末端に、Yeast由来のcytochrome oxidaseサブユニット4のN末端12アミノ酸(MLSLRQSIRFFK)を付加し、HeLa細胞のミトコンドリアへのターゲティングを行い、ミトコンドリアのラベルを行った。KO(二量体)は正確にターゲティングされずに、ミトコンドリアが粒々に染色されているのが確認された(図4)。一方、mKO(単量体)は正確にミトコンドリアにターゲティングされ、細長い糸状のミトコンドリアが観察され、単量体化による有効性が確認された(図5)。

【図面の簡単な説明】

[0063]

【図1】図1は、mKOの吸収スペクトルを示す。

【図2】図2は、mKOの励起スペクトル(点線)及び蛍光スペクトル(実線)を示す

【図3】図3は、超遠心による分子量測定の結果を示す。測定結果より分子量は28kDaであることが分かった。

【図4】図4は、HeLa細胞でKO(二量体)を用いてミトコンドリアをラベルした結果を示す。粒状になり正常なミトコンドリアの形態とは異なる。

【図5】図5は、HeLa細胞でmKO(単量体)を用いてミトコンドリアをラベルした結果を示す。ひも状の正常なミトコンドリアの形態として観察される。

```
【配列表】
 [0064]
SEQUENCE LISTING
<110> RIKEN
<120> Fluorescent protein
<130> A31701A
<160> 17
<210> 1
<211> 218
<212> PRT
<213> Fungia sp.
<400> 1
Met Val Ser Val Ile Lys Pro Glu Met Lys Met Arg Tyr Tyr Met Asp
Gly Ser Val Asn Gly His Glu Phe Thr Ile Glu Gly Glu Gly Thr Gly
                                 25
             20
Arg Pro Tyr Glu Gly His Gln Glu Met Thr Leu Arg Val Thr Met Ala
Lys Gly Gly Pro Met Pro Phe Ala Phe Asp Leu Val Ser His Val Phe
                          55
Cys Tyr Gly His Arg Pro Phe Thr Lys Tyr Pro Glu Glu Ile Pro Asp
Tyr Phe Lys Gln Ala Phe Pro Glu Gly Leu Ser Trp Glu Arg Ser Leu
                 85
Glu Phe Glu Asp Gly Gly Ser Ala Ser Val Ser Ala His Ile Ser Leu
                                 105
Arg Gly Asn Thr Phe Tyr His Lys Ser Lys Phe Thr Gly Val Asn Phe
                             120
        115
Pro Ala Asp Gly Pro Ile Met Gln Asn Gln Ser Val Asp Trp Glu Pro
                                             140
                         135
Ser Thr Glu Lys Ile Thr Ala Ser Asp Gly Val Leu Lys Gly Asp Val
                                         155
                     150
Thr Met Tyr Leu Lys Leu Glu Gly Gly Gly Asn His Lys Cys Gln Phe
                                     170
                165
Lys Thr Thr Tyr Lys Ala Ala Lys Lys Ile Leu Lys Met Pro Gly Ser
                                                     190
                                 185
             180
His Tyr Ile Ser His Arg Leu Val Arg Lys Thr Glu Gly Asn Ile Thr
                                                 205
                             200
Glu Leu Val Glu Asp Ala Val Ala His Ser
    210
                         215
<210> 2
<211> 657
<212> DNA
<213> Fungia sp.
<400> 2
atg gtg agt gtg att aaa cca gag atg aag atg agg tac tac atg gac 48
Met Val Ser Val Ile Lys Pro Glu Met Lys Met Arg Tyr Tyr Met Asp
```

```
Gly Ser Val Asn Gly His Glu Phe Thr Ile Glu Gly Glu Gly Thr Gly
                                 25
             20
aga cct tac gag gga cat caa gag atg aca cta cgc gtc aca atg gcc 144
Arg Pro Tyr Glu Gly His Gln Glu Met Thr Leu Arg Val Thr Met Ala
aag ggc ggg cca atg cct ttc gcg ttt gac tta gtg tca cac gtg ttc 192
Lys Gly Gly Pro Met Pro Phe Ala Phe Asp Leu Val Ser His Val Phe
                                              60
                         55
tgt tac ggc cac aga cct ttt act aaa tat cca gaa gag ata cca gac 240
Cys Tyr Gly His Arg Pro Phe Thr Lys Tyr Pro Glu Glu Ile Pro Asp
                                          75
                     70
tat ttc aaa caa gca ttt cct gaa ggc ctg tca tgg gaa agg tcg ttg 288
Tyr Phe Lys Gln Ala Phe Pro Glu Gly Leu Ser Trp Glu Arg Ser Leu
                 85
gag ttc gaa gat ggt ggg tcc gct tca gtc agt gcg cat ata agc ctt 336
Glu Phe Glu Asp Gly Gly Ser Ala Ser Val Ser Ala His Ile Ser Leu
                                105
            100
aga gga aac acc ttc tac cac aaa tcc aaa ttt act ggg gtt aac ttt 384
Arg Gly Asn Thr Phe Tyr His Lys Ser Lys Phe Thr Gly Val Asn Phe
                                                 125
                            120
cct gcc gat ggt cct atc atg caa aac caa agt gtt gat tgg gag cca 432
Pro Ala Asp Gly Pro Ile Met Gln Asn Gln Ser Val Asp Trp Glu Pro
                        135
tca acc gag aaa att act gcc agc gac gga gtt ctg aag ggt gat gtt 480
Ser Thr Glu Lys Ile Thr Ala Ser Asp Gly Val Leu Lys Gly Asp Val
                                         155
                    150
acg atg tac cta aaa ctt gaa gga ggc ggc aat cac aaa tgc caa ttc 528
Thr Met Tyr Leu Lys Leu Glu Gly Gly Gly Asn His Lys Cys Gln Phe
                                     170
aag act act tac aag gcg gca aaa aag att ctt aaa atg cca gga agc 576
Lys Thr Thr Tyr Lys Ala Ala Lys Lys Ile Leu Lys Met Pro Gly Ser
            180
                                 185
cat tac atc agc cat cgc ctc gtc agg aaa acc gaa ggc aac att act 624
His Tyr Ile Ser His Arg Leu Val Arg Lys Thr Glu Gly Asn Ile Thr
                                                 205
        195
                             200
                                                                 657
gag ctg gta gaa gat gca gta gct cat tcc tga
Glu Leu Val Glu Asp Ala Val Ala His Ser
    210
                         215
<210> 3
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic DNA
<400> 3
                                                           33
ccagagatga agatgaggta ctacatggac ggc
<210> 4
<211> 27
<212> DNA
<213> Artificial Sequence
```

<220>	
<223> Description of Artificial Sequence: Synthetic DNA	
<400> 4	
catgagttca caattgaagg tgaaggc	27
<210> 5	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic DNA	
<400> 5	
gaaggcacag gcagacctta cgaggga	27
<210> 6	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic DNA	
<400> 6	
ccaatgcctt tcgcgtttga cttagtg	27
<210> 7	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic DNA	
<400> 7	0.57
ttagtgtcac acgtgttctg ttacggc	27
<210> 8	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic DNA	
<400> 8	27
gaaaggtcgt tggagttcga agatggt	<i>Δ1</i>
<210> 9	
<211> 30 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic DNA	
<400> 9	
gaagatggtg ggtccgcttc agtcagtgcg	30
<210> 10	
<211> 34	
<211> 54 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic DNA	

<400> 10	
agccttagag gaaacacctt ctaccacaaa tcca	34
<210> 11	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic DNA	
<400> 11	32
caaatccaaa tttactgggg ttaactttcc tg	34
<210> 12	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic DNA	
<400> 12	30
gccgatggtc ctatcatgca aaaccaaagt	50
<210> 13	
<211> 45	
<212> DNA	
<213> Artificial Sequence <220>	
<pre><220> <223> Description of Artificial Sequence: Synthetic DNA</pre>	
<400> 13	
gccgatggtc ctatcatgca aaaccaaagt gttgattggg agcca	45
<210> 14	
<211> 33	
<211> 00 <212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Synthetic DNA</pre>	
<400> 14	
gagaaaatta ctgccagcga cggagttctg aag	33
<210> 15	
<211> 42	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic DNA	
<400> 15	40
gatgttacga tgtacctaaa acttgaagga ggcggcaatc ac	42
<210> 16	
<211> 45	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic DNA	
<400> 16	45
cttaaaatgc caggaagcca ttacatcagc catcgcctcg tcagg	

<210>	17			
<211>	34			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	Description of Artificial Sequence: Synthetic DNA			
<400>	17	34		
gatgcagtag ctcattccct cgagcaccac cacc				

図4 HeLa細胞でのKO(二量体)を用いた ミトコンドリアのラベル 粒状になり正常なミトコンドリア の形態と異なる

【図5】

図5 HeLa細胞でのmKO(単量体)を用いた ミトコンドリアのラベル ひも状の正常なミトコンドリア の形態として観察される

【要約】

【課題】 多量体を形成することなく単量体で存在する新規な蛍光蛋白質を提供すること

【解決手段】 以下の(a)又は(b)に示す蛍光蛋白質。

- (a) 配列番号1に記載のアミノ酸配列を有する蛋白質;
- (b) 配列番号1に記載のアミノ酸配列において1から数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列を有し、配列番号1に記載のアミノ酸配列を有する蛋白質と同等の蛍光特性を有し、かつ単量体で存在する蛋白質。

【選択図】 なし

特願2003-404472

出願人履歴情報

識別番号

[503359821]

1. 変更年月日 [変更理由] 住 所

氏 名

2003年10月 1日 新規登録 埼玉県和光市広沢2番1号 独立行政法人理化学研究所 特願2003-404472

出願人履歴情報

識別番号

[390004097]

1. 変更年月日

1998年 7月22日

[変更理由]

住所変更

住 所

愛知県名古屋市中区丸の内3丁目5番10号 住友商事丸の内

ビル5F

氏 名

株式会社医学生物学研究所