Time Series

MA Weights Distribution

Weights for MA Smoothing with k = 2

Weights for MA Smoothing with k = 4

Weights for MA Smoothing with k = 6

Weights for MA Smoothing with k = 10

Weights for MA Smoothing with k = 15

Weights for Exponential Smoothing with w = 0.1

Weights for Exponential Smoothing with w = 0.3

Weights for Exponential Smoothing with w = 0.5

Weights for Exponential Smoothing with w = 0.7

Weights for Exponential Smoothing with w = 0.9

Weights for Exponential Smoothing with w = 0.99

Exponential Smoothing

- MA distributes the weight equally to the recent observations
- ullet Exponential Smoothing controls the weights of the recent observations by w

$$\hat{s}_t = rac{y_t + w y_{t-1} + w^2 y_{t-2} {+} \ldots {+} w^t y_0}{1/(1-w)}$$

- ullet Smaller w smooths the series more lightly.
- Greater w smooths the series more strongly.

Exponential Smoothing

We have

$$\hat{s}_t = \hat{s}_{t-1} + (1-w)(y_t - \hat{s}_{t-1})$$

= $(1-w)y_t + w\hat{s}_{t-1}$

ullet When w o 0, $\hat{s}_t o y_t$, or little smoothing has taken

Exponential Smoothing with w = 0.1

Exponential Smoothing with w = 0.5

Exponential Smoothing with w = 0.9

Double Exponential Smoothing

We can use double smoothing to identify the trend and forecast linear trend time series as follows.

- Step 1: Create a smoothed series: $\hat{s}_t^{(1)} = (1-w)y_t + w\hat{s}_{t-1}^{(1)}$
- ullet Step 2: Create a double smoothed series: $\hat{s}_t^{(2)} = (1-w)\hat{s}_t^{(1)} + w\hat{s}_{t-1}^{(2)}$
- Step 3: Estimate the trend:

$$b_1 = rac{1-w}{w}(\hat{s}_T^{(1)} - \hat{s}_T^{(2)})$$

• Step 4: Forecast

$$\hat{y}_{T+l} = \hat{s}_T^{(1)} + b_1 \cdot l$$

Example

You are given the following time series

t	1	2	3	4	5	
y_t	1	3	5	8	13	

• Assume that this is a linear trend time series. Using double exponential smoothing with w=.8 to estimate the trend (slope) and forecast y_6 .