

ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICA CIENCIA DE DATOS / BIOINGENIERÍA • ÁLGEBRA LINEAL

Cuestionario No. 2: Espacios vectoriales y aplicaciones lineales Andrés Merino • Semestre 2024-1

ÍNDICE

Indicaciones 1 2 Banco de preguntas 1 1 2 3 4 5 5 6 6

1. INDICACIONES

Se plantean bancos de preguntas orientados a evaluar el **criterio**: «Comprende los conceptos de espacios vectoriales y aplicaciones lineales, incluyendo la base y dimensión, transformaciones lineales y sus propiedades», correspondiente al **resultado de aprendizaje**: Comprender los conceptos fundamentales del Álgebra Lineal, incluyendo el estudio de matrices, determinantes, sistemas de ecuaciones lineales y espacios vectoriales, destacando su importancia en el análisis y resolución de problemas matemáticos.

2. BANCO DE PREGUNTAS

2.1 Vectores en el plano y en Rn

1. Rn-01

¿Cuáles de los siguientes conjuntos representan una base canónica de \mathbb{R}^2 ?

- a) {(1,0), (0,1)} (100%)
- *b*) {(1,1), (0,1)}
- c) {(1,0)}
- $d) \{(1,1),(-1,-1)\}$

2. Rn-02

¿Cuáles de los siguientes conjuntos representan una base canónica de \mathbb{R}^3 ?

- a) {(1,0,0), (0,1,0), (0,0,1)} (100%)
- *b*) {(1,1,1), (0,1,1), (0,0,1)}
- c) $\{(1,0,0),(1,1,0)\}$

$$d) \{(1,1,0),(0,1,1),(1,0,1)\}$$

3. Rn-03

Considerando dos vectores $\mathfrak u$ y $\mathfrak v$ en $\mathbb R^n$, ¿cuál de las siguientes afirmaciones sobre el producto punto $\mathfrak u \cdot \mathfrak v$ es correcta?

- a) El producto punto es conmutativo, es decir, $u \cdot v = v \cdot u$. (100%)
- b) El producto punto es anticonmutativo, es decir, $u \cdot v = -v \cdot u$.
- c) El producto punto es siempre cero.
- d) El producto punto depende del orden de los vectores.

4. Rn-04

¿Qué relación correcta describe el producto punto de un vector $\mathfrak u$ en $\mathbb R^n$ consigo mismo?

- a) El producto punto $u \cdot u$ es igual al cuadrado de la norma de u. (100%)
- b) El producto punto $u \cdot u$ es igual a la norma de u.
- c) El producto punto $u \cdot u$ es siempre igual a 1.
- d) El producto punto $u \cdot u$ es independiente de la norma de u.

5. Rn-05

¿Cuál de los siguientes pares de vectores en \mathbb{R}^2 es ortogonal?

- a) $\{(2,-2),(1,1)\}$ (100%)
- b) $\{(1,2),(-2,3)\}$
- c) $\{(3,-3),(1,-1)\}$
- *d*) {(0,1), (1,1)}

6. Rn-06

¿Cuál es la definición correcta de vectores ortogonales en un espacio vectorial?

- a) Dos vectores son ortogonales si su producto punto es igual a cero. (100 %)
- b) Dos vectores son ortogonales si su suma es igual a cero.
- c) Dos vectores son ortogonales si son linealmente dependientes.
- d) Dos vectores son ortogonales si ambos tienen la misma norma.

2.2 Subespacios vectoriales

1. EspVec-01

¿Cuál de las siguientes opciones describe correctamente un espacio vectorial?

- a) Un conjunto de vectores junto con las operaciones de suma y multiplicación por escalares, que cumple con ciertas propiedades. (100%)
- b) Un conjunto de vectores que pueden ser sumados o multiplicados entre sí.
- c) Un conjunto de vectores que forman un sistema linealmente independiente.
- d) Un conjunto de vectores donde la suma de cualquier par de vectores siempre resulta en un vector fuera del conjunto original.

2. EspVec-02

¿Cuál de las siguientes opciones describe correctamente un subespacio vectorial de un espacio vectorial dado?

- a) Un conjunto no vacío de vectores que es cerrado bajo la suma y la multiplicación por escalar. (100%)
- b) Un conjunto de todos los vectores linealmente independientes en un espacio vectorial.
- c) Cualquier conjunto de vectores que incluya al menos un vector del espacio vectorial mayor.
- d) Un conjunto de vectores donde cada vector es ortogonal a un vector dado del espacio vectorial mayor.

3. EspVec-03

¿Cuál de las siguientes afirmaciones describe correctamente una combinación lineal de vectores?

- a) Una combinación lineal de vectores es una expresión de la forma $a_1v_1 + a_2v_2 + \dots + a_nv_n$, donde v_1, v_2, \dots, v_n son vectores y a_1, a_2, \dots, a_n son escalares. (100%)
- b) Una combinación lineal de vectores ocurre cuando todos los vectores involucrados son mutuamente ortogonales.
- c) Una combinación lineal es cualquier suma de vectores sin incluir multiplicación por escalares.
- d) Una combinación lineal de vectores se define como la suma de dos vectores que son linealmente independientes.

4. EspVec-04

¿Qué es el espacio generado por un conjunto de vectores?

- a) Es el conjunto de todas las combinaciones lineales posibles de esos vectores. (100%)
- b) Es el conjunto de todos los vectores que son ortogonales a esos vectores.
- c) Es el conjunto formado únicamente por los vectores más largos del grupo inicial.
- d) Es el conjunto que contiene solo los vectores linealmente independientes del grupo inicial.

2.3 Independencia lineal

1. IndepLin-01

¿Cuál de las siguientes afirmaciones es correcta respecto a la independencia lineal de un conjunto de vectores?

- a) Un conjunto de vectores es linealmente independiente si la única combinación lineal que produce el vector cero es aquella en la que todos los coeficientes son cero. (100%)
- b) Un conjunto de vectores es linealmente dependiente si todos sus vectores son ortogonales entre sí.

Andrés Merino Cuestionario No. 2: Espacios vectoriales y aplicaciones lineales

- c) Un conjunto de vectores es linealmente independiente si se puede expresar cada vector como una combinación lineal de los demás vectores en el conjunto.
- d) Un conjunto de vectores es linealmente independiente si su número es igual al número de dimensiones del espacio vectorial al que pertenecen.

2. IndepLin-02

¿Cuál es la idea intuitiva detrás de la independencia lineal de un conjunto de vectores?

- a) Un conjunto de vectores es linealmente independiente si todos apuntan en direcciones diferentes. (100 %)
- b) Un conjunto de vectores es linealmente independiente si todos los vectores apuntan en la misma dirección.
- c) Un conjunto de vectores es linealmente independiente si todos los vectores son de la misma longitud.
- d) Un conjunto de vectores es linealmente independiente si pueden ser sumados para obtener cualquier vector en el espacio.

2.4 Bases

1. BasesEspVec-01

¿Cuál de las siguientes afirmaciones describe correctamente una base de un espacio vectorial?

- *a)* Una base es un conjunto de vectores linealmente independientes que genera todo el espacio vectorial. (100 %)
- b) Una base es cualquier conjunto de vectores que incluye el vector cero del espacio.
- c) Una base es un conjunto de vectores donde cada vector es ortogonal a los otros.
- d) Una base es un conjunto de vectores que son todos mutuamente ortogonales y de la misma longitud.

2. BasesEspVec-02

Considera el espacio de polinomios $\mathbb{R}_2[x]$ de grado menor o igual a 2. ¿Cuál de los siguientes conjuntos constituye una base para $\mathbb{R}_2[x]$?

- a) $\{1, x, x^2\}$ (100%)
- b) $\{1, x, 2x, x^2\}$
- c) $\{x, x^2\}$
- d) $\{0, x, x^2\}$

3. BasesEspVec-03

¿Cuál de estos conjuntos puede ser base de \mathbb{R}^2 ?

a) $\{(1,2)\}$

- *b*) {(1,0), (0,1), (1,1)} (100 %)
- c) $\{(1,0),(0,0)\}$
- $d) \{(1,1),(1,-1)\}$

4. BasesEspVec-04

¿Cuál de estos conjuntos puede ser base del espacio de todas las matrices de 2x2?

a)
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$$
b) $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$
c) $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$
d) $\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 3 & 3 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 3 \\ 0 & 0 \end{pmatrix} \right\}$ (100%)

2.5 Dimensión

1. Dimension-01

¿Cuál es la dimensión del espacio vectorial \mathbb{R}^3 ?

3±0√

2. Dimension-02

¿Cuál es la dimensión del espacio vectorial $\mathbb{R}^{2\times 2}$?

4±0√

3. Dimension-03

¿Cuál es la dimensión del espacio vectorial $\mathbb{R}_2[x]$, que consiste en todos los polinomios de grado menor o igual a 2?

3±0√

2.6 Coordenadas y cambio de base

1. CoordVec-01

¿Cuál es la definición correcta de un vector de coordenadas respecto a una base dada?

- a) El vector de coordenadas de un vector respecto a una base es el conjunto de escalares que, multiplicados por los vectores de la base y sumados, dan como resultado el vector original. (100 %)
- b) El vector de coordenadas de un vector respecto a una base es simplemente la suma de los vectores de la base.
- c) El vector de coordenadas es el mayor vector que puede ser formado usando los vectores de la base.

Andrés Merino Cuestionario No. 2: Espacios vectoriales y aplicaciones lineales

d) El vector de coordenadas de un vector respecto a una base es el vector que resulta de multiplicar cada vector de la base por sí mismo.

2. CoordVec-01

Dado el espacio vectorial \mathbb{R}^2 y la base $B = \{(1,1), (-1,2)\}$, si $[v]_B = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$, ¿cuál es el vector v?

- a) (4,-2) (100%)
- b) (2, -2)
- c) (-4,2)
- d) (-2,2)

2.7 Espacios con producto interno

1. ProdInt-01

Considera los vectores $\mathfrak{u}=(3,-2)$ y $\nu=(1,4)$ en \mathbb{R}^2 . ¿Cuál es el valor del producto interno $\langle \mathfrak{u},\nu\rangle$?

-5±0√

2. ProdInt-02

Considera las matrices $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ y $B = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$. ¿Cuál es el valor del producto interno $\langle A, B \rangle$?

7±0√

2.8 Aplicaciones lineales

1. ApLin-01

¿Qué es el núcleo de una aplicación lineal T : $V \rightarrow W$ entre dos espacios vectoriales V y W?

- a) El núcleo de T es el conjunto de todos los vectores ν en V tales que T(ν) = 0 en W. (100%)
- b) El núcleo de T es el conjunto de todas las imágenes w en W tales que existe un v en V con T(v) = w.
- c) El núcleo de T incluye todos los vectores en V y todas sus imágenes en W.
- d) El núcleo de T es el conjunto de todos los escalares que se pueden usar para multiplicar vectores en V para obtener vectores en W.

2. ApLin-02

¿Qué es la imagen de una aplicación lineal T : $V \to W$ entre dos espacios vectoriales $V \lor W$?

a) La imagen de T es el conjunto de todos los vectores v en V tales que T(v)=0 en W.

- b) La imagen de T es el conjunto de todas las imágenes w en W tales que existe un v en V con T(v) = w. (100 %)
- c) La imagen de T incluye todos los vectores en V y todas sus imágenes en W.
- d) La imagen de T es el conjunto de todos los escalares que se pueden usar para multiplicar vectores en V para obtener vectores en W.

3. ApLin-03

Dada una aplicación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$, el núcleo de T es un subconjunto de

- a) \mathbb{R}^3 (100%)
- b) \mathbb{R}^2

4. ApLin-04

Dada una aplicación lineal $T:\mathbb{R}^3\to\mathbb{R}^2$, la imagen de T es un subconjunto de

- a) \mathbb{R}^3
- b) \mathbb{R}^2 (100%)

5. ApLin-05

Considera la aplicación lineal T : $\mathbb{R}^3 \to \mathbb{R}^2$ definida por T(x,y,z) = (x+y,y-z,z+x). ¿Cuál de los siguientes vectores es parte del núcleo de T?

- a) (0,0,1)
- *b*) (1, -1, -1) (100 %)
- c) (1, 0, 1)
- d) (-1,-1,-1)