Вариант № 6.

(№ 1600) На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).

	П1	П2	ПЗ	П4	П5	П6	П7
	III	112		114	113	110	117
П1			25				20
П2						32	18
П3	25						10
П4					19	13	
П5				19			22
П6		32		13			14
П7	20	18	10		22	14	

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину кратчайшего пути из пункта Г в пункт Д.

2 (№ 1630) Логическая функция F задаётся выражением (х $\land \neg y$) \lor (у $\equiv z$) \lor w.

?	3	?	3	F
			1	0
1				0
1	1			0

На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

(№ 1657) В фрагменте базы данных представлены сведения о родственных отношениях. Определите женщину, которая впервые стала матерью в самом раннем возрасте, и запишите в ответе её идентификатор (ID).

3

Таблица 1				
ID	Фамилия_И.О.	Пол	Год рожд.	
240	Черных А.В.	М	1938	
261	Черных Д.И.	М	1997	
295	Черных Е.П.	ж	1939	
325	Черных И.А.	M	1972	
356	Черных Н.Н.	ж	1972	
367	Гунько А.Б.	М	1979	
427	Малых Е.А.	М	2001	
517	Краско М.А.	ж	1967	
625	Соболь О.К.	ж	1988	
630	Краско В.К.	М	1993	
743	Гунько Б.В.	М	1951	
854	Колосова А.Е.	ж	1955	
943	Гунько А.Н	ж	1975	
962	Малых Н.Н.	М	1946	

ID_Родителя	ID_Ребенка
240	325
295	325
325	261
356	261
367	427
240	517
295	517
517	625
517	630
743	367
854	367
943	427
962	356
962	943

- (№ 1682) По каналу связи передаются сообщения, содержащие только семь букв: А, Б, К, О, Т, Р, Я . Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: A - 101, O - 11, A - 011. Какое наименьшее количество двоичных знаков потребуется для кодирования слова КАТОК?
- 5 (№ 1783) На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
 - 1) Строится двоичная запись числа N.
 - 2) Затем справа дописываются два разряда: символы 01, если число N чётное, и 10, если нечётное.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите минимальное число R, большее 62, которое может являться результатом работы этого алгоритма. В ответе это число запишите в десятичной системе.

6 (№ 1806) (А.Г. Минак) Определите, при каком наибольшем введённом значении переменной ѕ программа выведет число, меньшее, чем 1000.

Паскаль	Python	C++
<pre>var s, n: integer; begin readln (s); n := 0; while 400 < s*s do begin s := s - 1; n := n + 3 end;</pre>	<pre>Python s = int(input()) n = 0 while 400 < s*s: s = s - 1 n = n + 3 print(n)</pre>	<pre>#include <iostream> using namespace std; int main() { int s, n = 0; cin >> s; while (400 < s*s) { s = s - 1; n = n + 3; }</iostream></pre>
writeln(n) end.		<pre>cout << n << endl; return 0; }</pre>

- 7 (№ 1878) Музыкальный фрагмент был записан в формате стерео (двухканальная запись), оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла 63 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате моно и оцифрован с разрешением в 5 раз выше и частотой дискретизации в 4,5 раз меньше, чем в первый раз. Сжатие данных не производилось. Укажите размер файла в Мбайт, полученного при повторной записи. В ответе запишите только целое число, единицу измерения писать не нужно.
- (№ 1955) (А.М. Кабанов) Алексей составляет 5-буквенные слова из букв М, А, Г, И, С, Т, Р. Каждую букву можно использовать не более одного раза, при этом в слове нельзя использовать более одной гласной. Сколько различных кодов может составить Алексей?
 (№ 2003) (А. Кабанов) Откройте файл электронной таблицы 9-0.xls, содержащей
- 9 (№ 2003) (А. Кабанов) Откройте файл электронной таблицы 9-0.xls, содержащей результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. В каком количестве измерений в июне в первой половине дня (до 12:00 включительно) температура не превышала 31 градус?
- 10 (№ 2028) (А.Н. Носкин) С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «он» или «Он» в тексте А.П. Чехова «Воры» (файл 10-1.docx). В ответе укажите только число.
- 11 (№ 2077) При регистрации в компьютерной системе каждому пользователю выдаётся идентификатор, состоящий из 10 символов, первый и последний из которых одна из 18 букв, а остальные цифры (допускается использование 10 десятичных цифр). Каждый такой идентификатор в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование; все цифры кодируются одинаковым и минимально возможным количеством бит, все буквы также кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 25 паролей.
- 12 (№ 2131) (С.С. Поляков) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
 - 1. заменить (v, w)
 - 2. нашлось (v)

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (11)
заменить (11, 2)
```

```
заменить (22, 3)
заменить (33, 1)
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой программы к строке вида 1...13...3 (2019 единиц и 2119 троек)?

13 (№ 2166) На рисунке изображена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, 3, И, К, Л, М. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город М, проходящих через город Е?

- 15 (№ 2255) Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула (ДЕЛ(x, A) ∧ ДЕЛ(x, 21)) → ДЕЛ(x, 18)

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

16 (№ 2283) Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = n*n + 4*n + 3, при n > 25

F(n) = F(n+1) + 2*F(n+4), при n \le 25, кратных 3

F(n) = F(n+2) + 3*F(n+5), при n \le 25, не кратных 3
```

Определите количество натуральных значений n из отрезка [1; 1000], для которых сумма цифр значения F(n) равна 24.

- 17 (№ 2295) Рассматривается множество целых чисел, принадлежащих отрезку [1512;13202], которые делятся на 7 и не делятся на 11, 13, 17 и 23. Найдите количество таких чисел и максимальное из них. В ответе запишите два числа через пробел: сначала количество, затем максимальное число.
- 18 (№ 2352) Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.</p>

Исходные данные записаны в файле <u>18-2.xls</u> в виде электронной таблице размером N×N, каждая ячейка которой соответствует клетке квадрата. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой НИЖНЕЙ клетки в правую ВЕРХНЮЮ. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

(№ 2420) (А.Н. Носкин) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень или увеличить количество

19

20 21

22

камней в куче **в два раза**. Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 41. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 41 или больше камней. В начальный момент в первой куче было 9 камней, во второй куче - S камней, $1 \le S \le 31$. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Ответьте на следующие вопросы:

Вопрос 1. Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Назовите минимальное значение S, при котором это возможно.

Bonpoc 2. Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответе в порядке возрастания.

Bonpoc 3. Укажите минимальное значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

(№ 410) Сколько существует таких чисел х, при вводе которых алгоритм печатает сначала 2, а потом 12.

Паскаль	Python	Си
<pre>var x, a, b: integer; begin readln(x); a:=0; b:=0; while x > 0 do begin</pre>	<pre>x = int(input()) a = 0 b = 0 while x > 0: a = a + 1</pre>	<pre>#include <stdio.h> int main(void) { int a, b, x; scanf("%d", &x);</stdio.h></pre>
<pre>a:= a + 1; b:= b + (x mod 10); x:= x div 10; end; writeln(a); write(b); end.</pre>	<pre>b = b + (x % 10) x = x // 10 print(a) print(b)</pre>	<pre>a = 0; b = 0; while (x > 0) { a = a + 1; b = b + (x % 10); x = x / 10; } printf("%d\n%d", a, b); }</pre>

- 23 (№ 2499) Исполнитель Калькулятор преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 3
 - 3. Умножить на 3

Программа для исполнителя Калькулятор – это последовательность команд. Сколько существует программ, для которых при исходном числе 1 результатом является число 15?

- **24** (№ 2553) Текстовый файл <u>24-s1.txt</u> состоит не более чем из 10^6 заглавных латинских букв (A..Z). Текст разбит на строки различной длины. Определите количество строк, в которых буква J встречается чаще, чем буква E.
- (№ 2567) Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [338472; 338494], числа, имеющие ровно 4 различных делителя. В ответе для каждого найденного числа запишите два его наибольших делителя в порядке возрастания.
- 26 (№ 2644) (Е. Джобс) На вход программе поступает набор чисел в диапазоне [10; 10000]. Необходимо узнать сколько чисел в массиве находятся в диапазоне между средним значением и медианой, включая совпадающие с этими показателями значения. Медианой называется такое значение, что ровно половина из оставшихся элементов больше медианы и, соответственно, вторая половина меньше медианы.

Входные данные представлены в файле 26-j2.txt следующим образом. В первой строке записано нечетное число N — количество чисел. В каждой из последующих N строк записано одно число из обрабатываемой последовательности. В качестве ответа вывести одно число — количество чисел, находящихся в диапазоне между средним значением и медианой.

Пример входного файла:

При таких исходных результатом является число 2. Среднее значение равно 50, медиана – 47.

Ответ: 2.

27

Входные данные. Даны два входных файла (файл A и файл B), каждый из которых содержит в первой строке количество пар N ($1 \le N \le 100000$). Каждая из следующих N строк содержит два натуральных числа, не превышающих $10\ 000$.

Пример входного файла:

5 1

Для указанных входных данных значением искомой суммы должно быть число 27, которое в восьмеричной системе счисления записывается как 338.

В ответе укажите два числа: сначала значение искомой суммы для файла А, затем для файла В.

Вариант построен по материалам сайта kpolyakov.spb.ru.