Concept Checking Paper 04

1. What is "math" based on all the math you have learned in your life?

2. If $d \in Z$ and $d \mid 2021$, then d =______.

3. Prove the necessary condition for **Mersenne Prime**, i.e. $2^n - 1 \in P \Rightarrow n \in P$.

4. Special cases for **Dirichlet's Theorem**:

- (i) Prove that there are infinitely many primes of the form 4m + 1, $m \in N$.
- (ii) Prove that there are infinitely many primes of the form 4m-1, $m \in N$.
- 5. Prove the **Division Algorithm:** Given $m,n \in N \setminus \{0\}$, there <u>exist</u> <u>unique</u> integers q and r with $q \ge 0$ and $0 \le r < m$ so that n = qm + r.
 - (i) Existence:

- (ii) Uniqueness:
- 6. Let p be a prime, $m,n \in N \setminus \{0\}$. Prove that:
 - (i) If p|m and p|n, then $gcd(m,n) = pgcd(\frac{m}{p}, \frac{n}{p})$
 - (ii) If $p \mid m$ and $p \nmid n$, then $gcd(m,n) = gcd(\frac{m}{p},n)$

- 7. Let F_n be Fermat numbers, i.e. $F_n = 2^{2^n} + 1$. Prove that they are pairwise coprime, namely $gcd(F_n, F_m) = 1$.
- 8. Use the **Euclidean Algorithm** to find a integer pair (x,y) that 111x-321y=75.

