Problemes de Variable Complexa

FME, curs 2019-20

Tema 3: Teoria Local de Cauchy

- 1. Calculeu les següents integrals al llarg dels contorns γ que s'indiquen.
- (i) $\int_{\gamma} |z|^2 dz$, on γ és la frontera del quadrat amb vèrtexs 0, 1, 1+i, i, orientada en aquest ordre.
- (ii) $\int_{\gamma} \frac{dz}{\overline{z}^2}$, on γ és l'arc de la circumferència unitat de i a 1 pel semiplà superior.
- **2.** Calculeu $\int_C (x^2 iy^2) dz$, sent C:
- (i) La paràbola $y = 3x^2 2x$ des de (1,1) a (2,8).
- (ii) L'unió dels dos segments de (1,1) a (1,8) i de (1,8) a (2,8).
- (iii) El segment de (1,1) a (2,8).
- **3.** Siguin a i b nombres reals amb a > 0. Avalueu les integrals

$$I_1 = \int_0^\infty e^{-ax} \cos(bx) dx, \quad I_2 = \int_0^\infty e^{-ax} \sin(bx) dx$$

integrant la funció $e^{-z(a+ib)}$ al llarg del segment [0,R].

4. Sigui P(z) un polinomi i γ la circumferència de centre z_0 , radi R i orientació positiva. Demostreu que

$$\int_{\gamma} P(z)d\overline{z} = -2\pi i R^2 P'(z_0).$$

5. Sigui f analítica en un $\bar{D}_1(0)$. Demostreu que

$$f(\omega) = \frac{1}{\pi} \int \int_{\bar{D}_1(0)} \frac{f(z)}{(1 - \bar{z}\omega)^2} dS(z), \quad \forall \omega \in D_1(0).$$

6. Calculeu, parametritzant els cercles amb orientació directa,

$$\int_{|z|=1} \frac{e^z}{z^n} dz, \qquad \int_{|z|=2} \frac{z^n}{(1-z)^m} dz, \qquad n, m \in \mathbb{N}.$$

7. Proveu

$$\int_0^{2\pi} \frac{dt}{a^2 \cos^2 t + b^2 \sin^2 t} = \frac{2\pi}{ab}$$

usant $\int_{\gamma} \frac{dz}{z}$ on γ és la corba amb parametrització $z(t) = a\cos t + ib\sin t, \ t\in [0,2\pi].$

8. Calculeu, parametritzant els cercles amb orientació directa,

(i)
$$\int_{|z|=2} \frac{dz}{(z-1)(z+3)}$$
.

(ii)
$$\int_{|z|=4} \frac{dz}{(z-1)(z+3)}$$
.

(iii)
$$\int_{|z|=3} \frac{dz}{z^2 - 1}.$$

9. Sigui γ la frontera del quadrat amb vèrtex
s $\pm 4,\,\pm 4i,$ parametritzada en sentit directe. Calculeu

(i)
$$\int_{\gamma} \frac{e^z}{(z-\pi i)^4} dz.$$

(ii)
$$\int_{\gamma} \frac{\sin(2z)}{(z-\pi)^4} dz.$$

(iii)
$$\int_{\gamma} \frac{e^z \cos z}{(z-\pi)^3} dz.$$

- 10. Trobeu una primitiva holomorfa per la funció $f(z)=z\log z$ (log branca principal del logaritme) i useu-la per calcular $\int_{\gamma}z\log z\,dz$ per a γ definida pel segment de 0 a i.
- **11.** Comproveu que $F(z) = \frac{\mathrm{i}}{2}\log(z+\mathrm{i}) \frac{\mathrm{i}}{2}\log(z-\mathrm{i})$ (log branca principal del logaritme) és una primitiva holomorfa de $\frac{1}{1+z^2}$ en $\mathcal{U} = \{\mathrm{Re}\ (z) > 0\}$. És $F(z) = \arctan z$?
- 12. Demostreu $\int_0^{+\infty} \frac{\sin(x)}{x} dx = \frac{\pi}{2}$. Indicació: Integreu la funció $f(z) = \frac{e^{iz} 1}{z}$ sobre la corba tancada definida per la unió del segment [-R, R] i el semicercle de centre 0 i radi R.
- 13. Integreu $f(z)=e^{\mathrm{i}z^2}$ sobre el sector circular que format pel segment de 0 a R>0, l'arc de circumfèrencia de centre 0 i radi R que va de R a $Re^{\mathrm{i}\pi/4}$ i el segment de $Re^{\mathrm{i}\pi/4}$ a 0. Useu el resultat per calcular les Integrals de Fresnel: $\int_0^{+\infty} \sin(x^2) dx = \int_0^{\infty} \cos(x^2) dx = \frac{\sqrt{2\pi}}{4}.$ (Recordeu que $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$)
- **14.** Integreu $f(z) = e^{-z^2}$ sobre la vora del rectangle de vèrtexs $R, R + \mathrm{i}/2, -R + \mathrm{i}/2$ i -R. Useu el resultat per calcular $\int_{-\infty}^{+\infty} e^{-x^2} \cos x \, dx$. (Recordeu de nou que $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$.)
- **15.** Siguin f i g funcions holomorfes en un obert connex Ω que no s'anul·len en cap punt. Suposeu que existeix una successió $(z_n)_{n\in\mathbb{N}}$, amb tots els termes diferents i que convergeix a $z_0 \in \Omega$, tal que $\frac{f'(z_n)}{f(z_n)} = \frac{g'(z_n)}{g(z_n)}$. Demostreu que existeix $c \in \mathbb{C}$ tal que f(z) = cg(z).

2

- 16. Sigui f una funció holomorfa a tot \mathbb{C} i tal que per a tot $z_0 \in \mathbb{C}$ almenys un dels coeficients de l'expansió $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ és igual a zero. Demostreu que f és un polinomi. (Indicació: Recordeu que $c_n n! = f^{(n)}(z_0)$ i useu un argument d'enumerabilitat.)
- 17. Demostreu que la funció definida per $f(z) = \int_0^\infty t^3 e^{-zt} dt$ és holomorfa al semiplà Re (z) > 0. Trobeu la seva prolongació analítica al pla puntejat $\mathbb{C} \setminus \{0\}$. (Indicació: Integreu per parts per obtenir la prolongació de f.)
- 18. Sigui f una funció holomorfa en D(0,1). Definim el diàmetre de f com

$$d = \sup_{z,w \in D(0,1)} |f(z) - f(w)|$$
.

Demostreu que $2|f'(0)| \le d$. Doneu una funció f diferent de la identitat per a la que se satisfaci la igualtat. (Indicació: Vegeu que podeu combinar la fórmula de Cauchy per f'(0) amb $f'(0) = -\frac{1}{2\pi i} \int_{(|z|=r)^+} \frac{f(-z)}{z^2} dz$, per 0 < r < 1.)

- 19. Trobeu el màxim de |f(z)| en cada cas.
- (i) $f(z) = z^2 3z + 2$ en $|z| \le 1$.
- (ii) $f(z) = z^2 + z$ en el triangle de vèrtex (0,0), (-1,0) i (0,-2).
- **20.** Sigui Ω un obert connex fitat i f una funció holomorfa en Ω , contínua en $\overline{\Omega}$ i que no s'anul·la en $\overline{\Omega}$. Demostreu que si |f| és constant en $\partial\Omega$, aleshores f és constant.
- **21.** Sigui $f: \mathbb{C} \to \mathbb{C}$ una funció holomorfa (es diu que f és entera). Demostreu que que si f no és constant llavors $f(\mathbb{C})$ és un conjunt dens en \mathbb{C} . Doneu un exemple de f entera no constant tal que $f(\mathbb{C}) \neq \mathbb{C}$.
- **22.** Sigui f una funció entera. Suposeu que existeixen r, M, λ nombres reals positius tals que per |z| > r es té $|f(z)| \le M|z|^{\lambda}$. Demostreu que f és un polinomi de grau $\le \lambda$.
- **23.** Sigui f una funció entera tal que Re $(f(z)) \leq M$, per alguna constant M. Demostreu que f és constant. (Indicació: considereu la funció $e^{f(z)}$.)
- **24.** Demostreu que no hi ha cap funció f entera no constant tal que f(z+1) = f(z) i f(z+i) = f(z) per a tot $z \in \mathbb{C}$. (Indicació: Proveu que f és una funció acotada en \mathbb{C} .)
- **25.** Demostreu que f holomorfa i injectiva ha de complir $f'(z) \neq 0$ per a tot z del domini. És cert el recíproc?
- **26.** Determineu el disc més gran centrat en l'origen tal que $f(z) = z^2 + z$ és injectiva.
- 27. Determineu el disc més gran centrat en l'origen tal que $f(z) = e^z$ és injectiva.
- **28.** Sigui f holomorfa entorn del 0 amb $f'(0) \neq 0$. Donat $n \in \mathbb{N}$, proveu que existeix una funció holomorfa g tal que $f(z^n) = f(0) + [g(z)]^n$ localment entorn del zero.