Problem: Trigonometry In Triangles Bài Tập: Hệ Thức Lượng Trong Tam Giác

Nguyễn Quản Bá Hồng*

Ngày 14 tháng 10 năm 2024

Tóm tắt nội dung

This text is a part of the series Some Topics in Elementary STEM & Beyond: URL: https://nqbh.github.io/elementary_STEM.

Latest version:

- Problem: Trigonometry In Triangles Bài Tập: Hệ Thức Lượng Trong Tam Giác.
 - $PDF: \verb|URL:| https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_9/trigonometry/problem/NQBH_trigonometry_problem.pdf.$
- TEX: URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_9/trigonometry/problem/NQBH_trigonometry_problem.tex.
- Problem & Solution: Trigonometry In Triangles Bài Tập & Lời Giải: Hệ Thức Lượng Trong Tam Giác.
 - PDF: URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_9/trigonometry/solution/NQBH_trigonometry_solution.pdf.
- $T_EX: \ \ URL: \ https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_9/trigonometry/solution/NQBH_trigonometry_solution.tex.$

Muc luc

1	1 Số Hệ Thức Lượng về Cạnh & Đường Cao Trong Tam Giác Vuông	1
2	Tỷ Số Lượng Giác của Góc Nhọn	4
3	1 Số Hệ Thức về Cạnh & Góc trong Tam Giác Vuông	6
	Application of Trigonometrical Functions of Acute Angle – Ứng Dụng Của Tỷ Số Lượng Giác Của Góc Nhọn	8
5	Miscellaneous	8
Tà	ài liệu	ę

1 1 Số Hệ Thức Lượng về Cạnh & Đường Cao Trong Tam Giác Vuông

 ΔABC vuông tại A: $a \coloneqq BC$, $b \coloneqq CA$, $c \coloneqq AB$, $b' \coloneqq CH$, $c' \coloneqq BH$, $h \coloneqq AH$. 1 Trong tam giác vuông, bình phương độ dài mỗi cạnh góc vuông bằng tích độ dài cạnh huyền & hình chiếu của cạnh góc vuông đó trên cạnh huyền: $b^2 = ab'$, $c^2 = ac'$. 2 Dinh lý Pythagore thuận: Trong tam giác vuông, bình phương độ dài cạnh huyền bằng tổng bình phương độ dài 2 cạnh góc vuông. Dinh lý Pythagore dao: 1 tam giác là tam giác vuông nếu bình phương 1 cạnh bằng tổng bình phương 2 cạnh còn lại. ΔABC vuông tại $A \Leftrightarrow a^2 = b^2 + c^2$. 3 Trong tam giác vuông, bình phương độ dài đường cao bằng tích độ dài hình chiếu của 2 cạnh góc vuông lên cạnh huyền: $h^2 = b'c'$. 4 Trong tam giác vuông, tích độ dài 2 cạnh góc vuông bằng tích độ dài cạnh huyền với đường cao tương ứng: $ah = bc = 2S_{ABC}$. 5 Trong tam giác vuông, nghịch đảo bình phương độ dài đường cao bằng tổng nghịch đảo bình phương độ dài 2 cạnh góc vuông: $\frac{1}{b^2} = \frac{1}{b^2} + \frac{1}{c^2}$.

- $\textbf{1} \ ([\textbf{Tuy23}], \, \textbf{Thí dụ 1, p. 103}). \ \textit{Cho hình thang ABCD có } \widehat{B} = \widehat{C} = 90^{\circ}, \, \textit{2 đường chéo vuông góc với nhau tại H. Biết AB} = 3\sqrt{5}$ cm, HA = 3 cm. $\textit{Chứng minh: (a) } HA : HB : HC : HD = 1 : 2 : 4 : 8. \ (b) \ \frac{1}{AB^2} \frac{1}{CD^2} = \frac{1}{HB^2} \frac{1}{HC^2}. \ (c) \ \textit{Tính AD, CD. }$
- 2 ([Tuy23], 1., p. 105). Cho hình thang ABCD, $AB \parallel CD$, 2 đường chéo vuông góc với nhau. Biết AC = 16 cm, BD = 12 cm. Tính chiều cao của hình thang.

^{*}A Scientist & Creative Artist Wannabe. E-mail: nguyenquanbahong@gmail.com. Bến Tre City, Việt Nam.

- 3 ([Tuy23], 2., p. 105). Cho $\triangle ABC$ vuông tại A, đường cao AH, đường phân giác AD. Biết BH=63 cm, CH=112 cm, tính HD.
- 4 ([Tuy23], 3., p. 105). Cho $\triangle ABC$ vuông tại A. 2 đường trung tuyến AD,BE vuông góc với nhau tại G. Biết $AB=\sqrt{6}$ cm. Tính cạnh huyền BC.
- 5 ([Tuy23], 4., p. 105). Gọi a, b, c là các cạnh của 1 tam giác vuông, h là đường cao ứng với cạnh huyền a. Chứng minh tam giác có các cạnh a + h, b + c, & h cũng là 1 tam giác vuông.
- $\textbf{6} \ ([\textbf{Tuy23}], 5., \text{p. } 105). \ \textit{Cho} \ \Delta \textit{ABC} \ \textit{vuông tại} \ \textit{A}, \ \textit{đường cao} \ \textit{AH}. \ \textit{Gọi} \ \textit{I}, \textit{K} \ \textit{thứ tự là hình chiếu của} \ \textit{H} \ \textit{trên} \ \textit{AB}, \textit{AC}. \ \textit{Dặt} \ c = \textit{AB}, \\ b = \textit{AC}. \ \textit{(a)} \ \textit{Tính} \ \textit{AI}, \textit{AK} \ \textit{theo} \ \textit{b}, \textit{c}. \ \textit{(b)} \ \textit{Chứng minh} \ \frac{BI}{CK} = \frac{c^3}{b^3}.$
- 7 ([Tuy23], 6., p. 105). Cho $\triangle ABC$, AB=1, $\widehat{A}=105^\circ$, $\widehat{B}=60^\circ$. Trên cạnh BC lấy điểm E sao cho BE=1. Vẽ $ED\parallel AB$, $D\in AC$. Chứng minh: $\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{4}{3}$.
- 8 ([Tuy23], 7., p. 105). Cho hình chữ nhật ABCD, AB=2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Chứng minh: $\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{4AF^2}$.
- **9** ([Tuy23], 8., p. 105). Cho 3 đoạn thẳng có độ dài a, b, c. Dựng đoạn thẳng x sao cho $\frac{1}{x^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$.
- 10 ([Tuy23], 9., p. 105). Cho hình thoi ABCD có $\widehat{A}=120^{\circ}$. 1 đường thẳng d không cắt các cạnh của hình thoi. Chứng minh: tổng các bình phương hình chiếu của 4 cạnh với 2 lần bình phương hình chiếu của đường chéo AC trên đường thẳng d không phụ thuộc vào vị trí của đường thẳng d.
- 11 ([Tuy23], 10., p. 106). Cho $\triangle ABC$ vuông tại A. Từ 1 điểm O ở trong tam giác ta vẽ $OD \perp BC$, $OE \perp CA$, $OF \perp AB$. Xác định vị trí của O để $OD^2 + OE^2 + OF^2$ nhỏ nhất.
- 12 ([Bìn23], VD1, p. 84). Tính diện tích hình thang ABCD có đường cao bằng 12 cm, 2 đường chéo AC,BD vuông góc với nhau, BD = 15 cm.
- 13 ([Bìn23], VD2, p. 85). Hình thang cân ABCD có đáy lớn CD = 10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tính đường cao của hình thang.
- 14 ([Bìn23], VD3, p. 85). Tính diện tích 1 tam giác vuông có chu vi 72 cm, hiệu giữa đường trung tuyến & đường cao ứng với cạnh huyền bằng 7 cm.
- 15 ([Bìn23], 1., p. 86). Chứng minh định lý Pythagore bằng cách đặt 2 tam giác vuông bằng nhau $\Delta ABC = \Delta DCE$:

- 16 ([Bìn23], 2., p. 86). Cho $\triangle ABC$ cân có AB = AC = 9 cm, BC = 12 cm, đường cao AH, I là hình chiếu của H trên AC. (a) Tính độ dài CI. (b) $K\dot{e}$ đường cao BK của $\triangle ABC$. Chứng minh điểm K nằm giữa 2 điểm A, C.
- 17 ([Bìn23], 3., p. 86). Cho $\triangle ABC$ có $\widehat{A} = 120^{\circ}$, BC = a, AC = b, AB = c. Chứng minh $a^2 = b^2 + c^2 + bc$.
- 18 ([Bìn23], 4., p. 86). Tính cạnh đáy BC của $\triangle ABC$ cân biết đường cao ứng với cạnh đáy bằng 15.6 cm & đường cao ứng với cạnh bên bằng 12 cm.
- 19 ([Bìn23], 5., p. 86). Cho $\triangle ABC$ vuông tại A, đường phân giác AD, đường cao AH. Biết BD=7.5 cm, CD=10 cm. Tính AH, BH, DH.
- **20** ([Bìn23], 6., p. 86). Cho $\triangle ABC$ vuông tại A, đường cao AH, AB = 20 cm, CH = 9 cm. Tính độ dài AH.
- **21** ([Bìn23], 7., p. 86). Cho $\triangle ABC$ vuông tại A, đường cao AH. Tia phân giác của \widehat{HAC} cắt HC ở D. Gọi K là hình chiếu của D trên AC. Biết BC=25 cm, DK=6 cm. Tính AB.
- **22** ([Bìn23], 8., p. 86). Cho $\triangle ABC$ có AB=6 cm, AC=8 cm, 2 đường trung tuyến BD, CE vuông góc với nhau. Tính BC.
- **23** ([Bìn23], 9., p. 86). Cho $\triangle ABC$ có $\widehat{B} = 60^{\circ}$, BC = 8 cm, AB + AC = 12 cm. Tính AB, AC.
- **24** ([Bìn23], 10., p. 86). Trong 1 tam giác vuông, đường cao ứng với cạnh huyền chia tam giác thành 2 phần có diện tích bằng 54 cm² & 96 cm². Tính độ dài cạnh huyền.

- **25** ([Bìn23], 11., p. 86). Cho $\triangle ABC$ vuông cân tại A, đường trung tuyến BM. Gọi D là hình chiếu của C trên BM, H là hình chiếu của D trên AC. Chứng minh AH = 3DH.
- **26** ([Bìn23], 12., pp. 86–87). (a) 1 tam giác vuông có tỷ số các cạnh góc vuông bằng k. Tính tỷ số các hình chiếu của 2 cạnh góc vuông trên cạnh huyền. (b) Tính độ dài hình chiếu của các cạnh góc vuông trên cạnh huyền của 1 tam giác vuông, biết tỷ số 2 cạnh góc vuông bằng 5:4 & cạnh huyền dài 82 cm.
- 27 ([Bìn23], 13., p. 87). Trong 1 tam giác vuông, đường phân giác của góc vuông chia cạnh huyền thành 2 đoạn thẳng tỷ lệ với 1:3. Đường cao ứng với cạnh huyền chia cạnh đó theo tỷ số nào?
- **28** ([Bìn23], 14., p. 87). Cho $\triangle ABC$ có độ dài 3 cạnh AB, BC, CA là 3 số tự nhiên liên tiếp tăng dần. Kẻ đường cao AH, đường trung tuyến AM. Chứng minh HM=2.
- **29** ([Bìn23], 15., p. 87). 1 hình thang cân có đường chéo vuông góc với cạnh bên. Tính chu vi & diện tích hình thang biết đáy nhỏ dài 14 cm, đáy lớn dài 50 cm.
- **30** ([Bìn23], 16., p. 87). 1 hình thơi có diện tích bằng $\frac{1}{2}$ diện tích hình vuông có cạnh bằng cạnh của hình thơi. Tính tỷ số của đường chéo dài & đường chéo ngắn của hình thơi.
- 31 ([Bìn23], 17., p. 87). Qua đỉnh A của hình vuông ABCD cạnh a, vẽ 1 đường thẳng cắt cạnh BC ở M & cắt đường thẳng CD ở I. Chứng minh $\frac{1}{AM^2} + \frac{1}{AI^2} = \frac{1}{a^2}$.
- 32 ([Bìn23], 18., p. 87). Cho hình vuông ABCD có cạnh 1 dm. Tính cạnh của $\triangle AEF$ đều có E thuộc cạnh CD & F thuộc cạnh BC.
- 33 ([Bìn23], 19., p. 87). Trong 2 tam giác sau, tam giác nào là tam giác vuông, nếu độ dài 3 đường cao bằng: (a) 3,4,5. (b) 12,15,20.
- **34** (Mở rộng [Bìn23], 19., p. 87). Cho tam giác ABC có 3 đường cao có độ dài lần lượt là h_a, h_b, h_c . Tìm điều kiện cần & đủ theo h_a, h_b, h_c để ΔABC vuông.
- **35** ([Bìn23], 20., p. 87). Chứng minh $\triangle ABC$ là tam giác vuông nếu 2 đường phân giác BD, CE cắt nhau tại I thỏa mãn $BD \cdot CE = 2BI \cdot CI$.
- 36 ([Bìn23], 21., p. 87). Xét các $\triangle ABC$ vuông có cạnh huyền BC=2a. Gọi AH là đường cao của tam giác, D, E lần lượt là hình chiếu của H trên AC, AB. Tìm GTLN của: (a) DE. (b) Diện tích tứ giác ADHE.
- 37 ([Bìn23], 22., pp. 87–88). Chứng minh trong 1 tam giác: (a) Bình phương của cạnh đối diện với góc nhọn bằng tổng các bình phương của 2 cạnh kia trừ đi 2 lần tích của 1 trong 2 cạnh ấy với hình chiếu của cạnh kia trên nó.
- **38** ([Bin23], 23., p. 88). Cho $\triangle ABC$ có BC = a, CA = b, AB = c. Chứng minh: (a) $b^2 < c^2 + a^2 \Rightarrow \widehat{B} < 90^{\circ}$. (b) $b^2 > c^2 + a^2 \Rightarrow \widehat{B} > 90^{\circ}$. (c) $b^2 = c^2 + a^2 \Rightarrow \widehat{B} = 90^{\circ}$.
- **39** ([Bìn23], 24., p. 88). $\triangle ABC$ vuông tại A, đường phân giác BD. Tia phân giác của \widehat{A} cắt BD ở I. Biết $BI=10\sqrt{5}$ cm, $DI=5\sqrt{5}$ cm. Tính diện tích $\triangle ABC$.
- **40** ([Bìn23], 25., p. 88). $\triangle ABC$ vuông tại A, gọi I là giao điểm của 3 đường phân giác. (a) Biết AB=5 cm, CI=6 cm. Tính BC. (b) $Bi\acute{e}t$ $BI=\sqrt{5}$ cm, $CI=\sqrt{10}$ cm. Tính AB, AC.
- 41 ([Bìn23], 26., p. 88). Cho ΔABC vuông tại A, gọi I là giao điểm của 3 đường phân giác, M là trung điểm của BC. (a) Biết AB = 6 cm, AC = 8 cm. Tính \widehat{BIM} . (b) Biết $\widehat{BIM} = 90^{\circ}$. 3 cạnh của ΔABC tỷ lệ với 3 số nào?
- **42** ([Bìn23], 27., p. 88). 1 tam giác vuông có độ dài 1 cạnh bằng trung bình cộng của độ dài 2 cạnh kia. (a) ĐỘ dài 3 cạnh của tam giác vuông đó tỷ lệ với 3 số nào? (b) Nếu độ dài 3 cạnh của tam giác vuông đó là 3 số nguyên dương thì số nào trong 5 số sau có thể là độ dài 1 cạnh của tam giác đó: 17, 13, 35, 41, 22?
- **43** ([Bìn23], 28., p. 88). Cho $\triangle ABC$ vuông tại A, $BC = 3\sqrt{5}$ cm. Hình vuông ADEF cạnh 2 cm có $D \in AB$, $E \in BC$, $F \in CA$. Tính AB, AC.
- 44 ([Bin23], 29., p. 88). $\triangle ABC$ cân tại A, gọi I là giao điểm của 3 đường phân giác. Biết $IA = 2\sqrt{5}$ cm, IB = 3 cm. Tính AB.
- 45 ([Bìn23], 30., p. 88). $\triangle ABC$ cân tại A, đường cao AD, trực tâm H. Tính độ dài AD, biết AH = 14 cm, BH = CH = 30 cm.
- 46 ([Bin23], 31., p. 88). $\triangle ABC$ có BC = 40 cm, đường phân giác AD dài 45 cm, đường cao AH dài 36 cm. Tính BD, CD.
- 47 ([Bìn+23], VD1, p. 5). Cho $\triangle ABC$ vuông tại A, đường cao AH. Biết AB:AC=3:4 & AB+AC=21 cm. (a) Tính các cạnh của $\triangle ABC$. (b) Tính độ dài các đoạn AH,BH,CH.
- 48 (Mở rộng [Bìn+23], VD1, p. 5). Cho $\triangle ABC$ vuông tại A, đường cao AH. Biết AB:AC=m:n & AB+AC=p cm. (a) Tính các cạnh của $\triangle ABC$. (b) Tính độ dài các đoạn AH,BH,CH.

- **49** ([Bìn+23], VD2, p. 6). Cho hình thang ABCD có $\widehat{A} = \widehat{D} = 90^{\circ}$, $\widehat{B} = 60^{\circ}$, CD = 30 cm, $CA \perp CB$. Tính diện tích của hình thang.
- 50 ([Bìn+23], VD3, p. 7). Cho $\triangle ABC$ nhọn, đường cao CK, H là trực tâm. Gọi M là 1 điểm trên CK sao cho $\widehat{AMB} = 90^{\circ}$. S, S_1, S_2 theo thứ tự là diện tích các $\triangle AMB, \triangle ABC, \triangle ABH$. Chứng minh $S = \sqrt{S_1S_2}$.
- 51 ([Bìn+23], 1.1., p. 7). Cho $\triangle ABC$ vuông cân tại A & điểm M nằm giữa B & C Gọi D, E lần lượt là hình chiếu của điểm M lên AB, AC. Chứng minh $MB^2 + MC^2 = 2MA^2$.
- 52 ([Bìn+23], 1.2., p. 7). Cho hình chữ nhật ABCD $\mathscr E$ điểm O nằm trong hình chữ nhật đó. Chứng minh $OA^2 + OC^2 = OB^2 + CD^2$.
- **53** ([Bìn+23], 1.3., p. 8). Cho hình chữ nhật ABCD có AD = 6 cm, CD = 8 cm. Đường thẳng kẻ từ D vuông góc với AC tại E, cắt cạnh AB tại F. Tính độ dài các đoạn thẳng DE, DF, AE, CE, AF, BF.
- 54 ([Bìn+23], 1.4., p. 8). Cho $\triangle ABC$ có AB=3 cm, BC=4 cm, AC=5 cm. Dường cao, đường phân giác, đường trung tuyến của tam giác kẻ từ đỉnh B chia tam giác thành A gam giác không có điểm trong chung. Tính diện tích của mỗi tam giác đó.
- 55 ([Bìn+23], 1.5., p. 8). Trong 1 tam giác vuông tỷ số giữa đường cao \mathcal{E} đường trung tuyến kẻ từ đỉnh góc vuông bằng 40:41. Tính độ dài các cạnh góc vuông của tam giác đó, biết cạnh huyền bằng $\sqrt{41}$ cm.
- 56 ([Bìn+23], 1.6., p. 8). Cho $\triangle ABC$ vuông tại A, đường cao AH. Kể $HE\bot AB$, $HF\bot AC$. Gọi O là giao điểm của AH & EF. Chứng minh $HB \cdot HC = 4OE \cdot OF$.
- 57 ([Bìn+23], 1.7., p. 8). Cho $\triangle ABC$, 2 đường cao BD, CE cắt nhau tại H. Gọi M, N lần lượt là 2 điểm thuộc HC, HB sao cho $\widehat{AMB} = \widehat{ANC} = 90^{\circ}$. $\triangle AMN$ là tam giác gì?
- 58 ([Bìn+23], 1.8., p. 8). Cho hình vuông ABCD, cạnh a. (a) M là 1 điểm trên cạnh AD sao cho $\widehat{ABM} = 30^{\circ}$. Tính AM, BM theo a. (b) Qua A kẻ đường thẳng vuông góc với BM tại F, đường thẳng này cắt CD tại N. Tính độ dài 3 đoạn thẳng AF, MF, BF theo a.
- **59** ([Bìn+23], 1.9., p. 8). Cho hình vuông ABCD & điểm I thay đổi giữa A, B. Tia DI cắt BC tại E. Đường thẳng kẻ qua D vuông góc với DE cắt BC tại F. Chứng minh tổng $\frac{1}{DI^2} + \frac{1}{DE^2}$ không phụ thuộc vào vị trí của điểm I.
- **60** ([Bìn+23], 1.10., p. 8). Cho $\triangle ABC$, đường cao BH. Đặt BC = a, CA = b, AB = c, AH = c'. Chứng minh: (a) Nếu $\widehat{A} < 90^{\circ}$ thì $a^2 = b^2 + c^2 2bc'$. (b) Nếu $\widehat{A} > 90^{\circ}$ thì $a^2 = b^2 + c^2 + 2bc'$.
- **61** ([Bìn+23], 1.11., p. 8). Cho $\triangle ABC$, đường cao AH. Biết AB=8 cm, BC-AC=2 cm, $\widehat{BAH}=30^{\circ}$. Tính diện tích $\triangle ABC$.
- **62** ([Bìn+23], 1.12., p. 8). Cho $\triangle ABC$, các đường cao ứng với các cạnh a, b, c lần lượt là h_a, h_b, h_c . Chứng minh nếu $\frac{1}{h_a^2} = \frac{1}{h_b^2} + \frac{1}{h_c^2}$ thì $\triangle ABC$ vuông tại A.
- 63 ([Bìn+23], 1.13., p. 9). Cho $\triangle ABC$, 2 đường phân giác BD, CE cắt nhau tại I thỏa mãn $BD \cdot CE = 2BI \cdot CI$. $\triangle ABC$ là tam giác gì? Vì sao?
- **64** ([Bìn+23], 1.14., p. 9). Cho $\triangle ABC$, $\widehat{A}=90^{\circ}$, BC=2a, đường cao AH. Kể $HD\bot AC$, $HE\bot AB$. Tìm giá trị lớn nhất của: (a) $D\widehat{\rho}$ dài đoạn thẳng DE. (b) $Di\widehat{\rho}$ n tích tứ giác ADHE.
- **65** ([Bìn+23], 1.15., p. 9). Cho $\triangle ABC$ đều có cạnh bằng 60 cm. Trên đoạn BC lấy điểm D sao cho BD=20 cm. Đường trung trực của AD cắt AB tại E, cắt AC tại F. Tính độ dài các cạnh của $\triangle DEF$.
- 66 ([Bìn+23], 1.16., p. 9). Cho $\triangle ABC$. Đường trung tuyến AD, đường cao BH, đường phân giác CE đồng quy. Chứng minh đẳng thức $(AB+CA)(BC^2+CA^2-AB^2)=2BC\cdot CA^2$ hay $(b+c)(a^2+b^2-c^2)=2ab^2$.
- 67 (Program: Trigonometry in right triangles). Cho ΔABC vuông tại A. (a) Cho trước 2 trong 6 số a, b, c, b', c', h. Tính 4 số còn lại theo 2 số đã cho. (c) Cho trước 2 trong 8 số a, b, c, b', c', h, p, S. Tính 6 số còn lại theo 2 số đã cho. (b) Cho trước 2 trong 14 số a, b, c, b', c', h, m_a, m_b, m_c, d_a, d_b, d_c, p, S với d_a, d_b, d_c lần lượt là 3 đường phân giác ứng với BC, CA, AB. Tính 12 số còn lại theo 2 số đã cho. Viết các chương trình Pascal, Python, C/C++ để mô phỏng.

2 Tỷ Số Lượng Giác của Góc Nhọn

[Thá+24, Chap. IV, §1, pp. 74-81]: HD1. LT1. HD2. LT2. LT3. HD3. HD4. LT4. 1. 2. 3. 4. 5. 6. 7. 8.

- **68** ([Tuy23], Thí dụ 2, p. 107). Cho cot $\alpha = \frac{a^2 b^2}{2ab}$ trong đó α là góc nhọn, a > b > 0. Tính $\cos \alpha$.
- **69** ([Tuy23], 11., p. 108, định lý sin). Cho $\triangle ABC$ nhọn, BC = a, CA = b, AB = c. Chứng minh: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$. Đẳng thức này còn đúng với tam giác vuông & tam giác tù hay không?

- **70** ([Tuy23], 12., p. 108). Chứng minh: (a) $1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$. (b) $1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}$. (c) $\cot^2 \alpha \cos^2 \alpha = \cot^2 \alpha \cdot \cos^2 \alpha$. (d) $\frac{1 + \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 \cos \alpha}$.
- 71 ([Tuy23], 13., p. 108). Rút gọn biểu thức: (a) $A = \frac{1 + 2\sin\alpha \cdot \cos\alpha}{\cos^2\alpha \sin^2\alpha}$. (b) $B = (1 + \tan^2\alpha)(1 \sin^2\alpha) (1 + \cot^2\alpha)(1 \cos^2\alpha)$. (c) $C = \sin^6\alpha + \cos^6\alpha + 3\sin^2\alpha\cos^2\alpha$.
- **72** ([Tuy23], 14., p. 108). Tính giá trị của biểu thức $A = 5\cos^2\alpha + 2\sin^2\alpha$ biết $\sin\alpha = \frac{2}{3}$.
- **73** ([Tuy23], 15., p. 108). Không dùng máy tính hoặc bảng số, tính: (a) $A = \cos^2 20^\circ + \cos^2 30^\circ + \cos^2 40^\circ + \cos^2 50^\circ + \cos^2 60^\circ + \cos^2 70^\circ$. (b) $B = \sin^2 5^\circ + \sin^2 25^\circ + \sin^2 45^\circ + \sin^2 65^\circ + \sin^2 85^\circ$.
- 74 ([Tuy23], 16., p. 108). Cho $0^{\circ} < \alpha < 90^{\circ}$. Chứng minh: $\sin \alpha < \tan \alpha$, $\cos \alpha < \cot \alpha$. Áp dụng: (a) Sắp xếp các số sau theo thứ tự tăng dần: $\sin 65^{\circ}$, $\cos 65^{\circ}$, $\tan 65^{\circ}$. (b) Xác định α thỏa mãn điều kiện: $\tan \alpha > \sin \alpha > \cos \alpha$.
- 75 ([Tuy23], 17., p. 108). Cho $\triangle ABC$ vuông tại A. Biết $\sin B = \frac{1}{4}$, tính $\tan C$.
- **76** ([Tuy23], 18., p. 108). Cho biết $\sin \alpha + \cos \alpha = \frac{7}{5}$, $0^{\circ} < \alpha < 90^{\circ}$, tính $\tan \alpha$.
- 77 ([Tuy23], 19., p. 109). $\triangle ABC$, đường trung tuyến AM. Chứng minh nếu $\cot B = 3 \cot C$ thì AM = AC.
- 78 ([Tuy23], 20., p. 109). Cho $\triangle ABC$, trưc tâm H là trung điểm của đường cao AD. Chứng minh tan $B \tan C = 2$.
- 79 ([Tuy23], 21., p. 109). Cho $\triangle ABC$ nhọn, 2 đường cao BD, CE. Chứng minh: (a) $S_{\triangle ADE} = S_{\triangle ABC}\cos^2 A$. (b) $S_{BCDE} = S_{\triangle ABC}\sin^2 A$.
- 80 ([Tuy23], 22., p. 109). Cho $\triangle ABC$ nhọn. Từ 1 điểm M nằm trong tam giác vẽ $MD \bot BC$, $ME \bot AC$, $MF \bot AB$. Chứng minh $\max\{MA, MB, MC\} \ge 2\min\{MD, ME, MF\}$, trong đó $\max\{MA, MB, MC\}$ là đoạn thẳng lớn nhất trong các đoạn thẳng MA, MB, MC & $\min\{MD, ME, MF\}$ là đoạn thẳng nhỏ nhất trong các đoạn thẳng MD, ME, MF.
- 81 ([Bìn23], VD4, p. 89). Tính tan 15° mà không cần dùng bảng số, không dùng máy tính.
- 82 ([Bìn23], VD4, p. 90). Xét $\triangle ABC$ vuông tại A, AB < AC, $\widehat{C} = \alpha < 45^{\circ}$, đường trung tuyến AM, đường cao AH, MA = MB = MC = a. Chứng minh: (a) $\sin 2\alpha = 2 \sin \alpha \cos \alpha$. (b) $1 + \cos 2\alpha = 2 \cos^2 \alpha$. (c) $1 \cos 2\alpha = 2 \sin^2 \alpha$.
- 83 ([Bìn23], 32., p. 91). Tính sai số của 2 phép dựng: (a) Dựng góc 72° bằng cách dựng góc nhọn của tam giác vuông có 2 cạnh góc vuông bằng 1 cm & 3 cm. (b) Dựng góc 20° bằng cách dựng góc ở đỉnh của tam giác cân có đáy 2 cm, cạnh bên 6 cm.
- **84** ([Bìn23], 33., p. 91). $\triangle ABC$ có đường trung tuyến AM bằng cạnh AC. Tính $\frac{\tan B}{\tan C}$
- **85** ([Bìn23], 34., p. 91). Cho $\tan \alpha = \frac{1}{2}$. Tính $\frac{\cos \alpha + \sin \alpha}{\cos \alpha \sin \alpha}$.
- 86 ([Bìn23], 35., p. 91). Cho hình vuông ABCDN. M, N lần lượt là trung điểm của BC, CD. Tính $\cos \widehat{MAN}$.
- 87 ([Bìn23], 36., p. 91). Cho $\triangle ABC$ vuông tại A, đường cao AH. Gọi D là điểm đối xứng với A qua B. Gọi E là điểm thuộc tia đối của tia AH sao cho HE=2HA. Chứng minh $\widehat{DEC}=90^{\circ}$.
- 88 ([Bìn23], 37., p. 91). Chứng minh trong 1 tam giác, đường phân giác ứng với cạnh lớn nhất nhỏ hơn hoặc bằng đường cao ứng với cạnh nhỏ nhất.
- **89** ([Bìn23], 38., p. 91). Tính tan 22°30′ mà không dùng bảng số hay máy tính.
- **90** ([Bìn23], 39., p. 91). Chứng minh $\cos 15^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$, $\sin 15^{\circ} = \frac{\sqrt{6} \sqrt{2}}{4}$ mà không dùng bảng số hay máy tính.
- **91** ([Bìn23], 40., p. 91). *Tính* cos 36°, cos 72° mà không dùng bảng số hay máy tính.
- 92 ([Bìn+23], VD1, p. 10). $Bi\acute{e}t \sin \alpha = \frac{5}{13}$. $Tinh \cos \alpha, \tan \alpha, \cot \alpha$.
- 93 ([Bìn+23], VD2, p. 11). Cho $\triangle ABC$ nhọn, 2 đường cao AD,BE cắt nhau tại H. Biết HD:HA=1:2, chứng minh $\tan B \tan C=3.$
- **94** ([Bìn+23], VD3, p. 12). $Bi\acute{e}t \sin \alpha \cos \alpha = \frac{12}{25}$. $Tinh \sin \alpha, \cos \alpha, \tan \alpha, \cot \alpha$.
- $\mathbf{95} \ ([\underline{\mathrm{Bin}} + \mathbf{23}], \ 2.1., \ \mathrm{p.} \ 12). \ \ (a) \ Bi\acute{e}t \sin \alpha = \frac{3}{5}, \ tính \ A = 5\sin^2\alpha + 6\cos^2\alpha. \ \ (b) \ Bi\acute{e}t \cos \alpha = \frac{4}{5}, \ tính \ B = 4\sin^2\alpha 5\cos^2\alpha.$
- 96 ([Bìn+23], 2.2., p. 13). (a) $Bi\acute{e}t \tan \alpha = \frac{1}{3}$, $tinh A = \frac{\sin \alpha \cos \alpha}{\sin \alpha + \cos \alpha}$. (b) $Bi\acute{e}t \cot \alpha = \frac{4}{3}$, $tinh B = \frac{\sin \alpha + \cos \alpha}{\sin \alpha \cos \alpha}$.

- 97 ([Bin+23], 2.3., p. 13). Cho $\triangle ABC$, trung tuyến AM. Chứng minh nếu cot B=3 cot C thì AM=AC.
- 98 ([Bin+23], 2.4., p. 13). Cho $\triangle ABC$ có $BC \ge AC \ge AB$, đường phân giác AD, đường cao CH. Chứng minh $CH \ge AD$.
- **99** ([Bìn+23], 2.5., p. 13). Cho $\triangle ABC$ nhọn có BC = a, CA = b, AB = c. Chứng minh $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.
- 100 ([Bìn+23], 2.6., p. 13). Cho $\triangle ABC$, 2 đường cao BD, CE. Chứng minh: (a) $S_{ADE} = S_{ABC}\cos^2 A$. (b) $S_{BCDE} = S_{ABC}\sin^2 A$.
- 101 ([Bìn+23], 2.7., p. 13). Chứng minh diện tích của 1 tam giác bằng $\frac{1}{2}$ tích của 2 cạnh với sin của góc nhọn tạo bởi 2 đường thẳng chứa 2 cạnh ấy.
- 102 ([Bìn+23], 2.8., p. 13). Cho $\triangle ABC$ nhọn, đường phân giác AD. Biết AB = c, AC = b, tính độ dài đoạn AD theo b, c.
- 103 ([Bìn+23], 2.9., p. 13). Cho $\triangle ABC$ nhọn có BC = a, CA = b, AB = c & b+c = 2a. Chứng minh: (a) $2\sin A = \sin B + \sin C$. (b) $\frac{2}{h_a} = \frac{1}{h_b} + \frac{1}{h_c}$, trong đó h_a, h_b, h_c lần lượt là chiều cao của tam giác ứng với cạnh a, b, c.
- 104 ([Bìn+23], 2.10., p. 13). Cho $\triangle ABC$ nhọn & 2 đường trung tuyến BN, CM vuông góc với nhau. Chứng minh $\cot B + \cot C \ge \frac{2}{3}$.
- **105** ([Bìn+23], 2.11., p. 13). Cho $\triangle ABC$ vuông tại A, AB < AC, & trung tuyến AM. Đặt $\widehat{ACB} = \alpha$, $\widehat{AMB} = \beta$. Chứng minh $(\sin \alpha + \cos \alpha)^2 = 1 + \sin \beta$.
- **106** ([Bìn+23], 2.12., p. 14). Không sử dụng các công thức lượng giác, chứng minh $\cos 36^{\circ} \cos 72^{\circ} = \frac{1}{4}$.
- 107 ([Bìn+23], 2.13., p. 14). Tìm góc nhọn α thỏa $\sin \alpha \cos \alpha = \frac{\sqrt{3}}{4}$.
- 108 ([Bìn+23], 2.14., p. 14). Cho $\triangle ABC$ vuông tại A, $\widehat{C} = \alpha < 45^{\circ}$, trung tuyến AM, đường cao AH, BC = a. Chứng minh: $(a) \sin 2\alpha = 2 \sin \alpha \cos \alpha$. $(b) 1 + \cos 2\alpha = 2 \cos^2 \alpha$. $(c) 1 \cos 2\alpha = 2 \sin^2 \alpha$.
- $\textbf{109} \ ([\texttt{Bìn+23}], \ 2.15., \ \texttt{p.} \ 14). \ \textit{Cho} \ \Delta \textit{ABC}. \ \textit{Chứng minh: (a)} \ \sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} \leq \frac{1}{8}. \ \textit{(b)} \ \sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{1}{8} \Leftrightarrow \Delta \textit{ABC} \ \textit{đều}.$

3-1 Số Hệ Thức về Cạnh & Góc trong Tam Giác Vuông

[Thá+24, Chap. IV, §2, pp. 82-87]: HD1. LT1. LT2. HD2. LT3. LT4. LT5. LT6. 1. 2. 3. 4. 5. 6. 7. 8.

- 110 ([Tuy23], Thí dụ 3, p. 109). Từ giác ABCD có 2 đường chéo cắt nhau tại O. Cho biết $\widehat{AOD} = 70^{\circ}$, AC = 5.3 cm, BD = 4 cm. Tính diện tích từ giác ABCD.
- 111 ([Tuy23], 23., p. 110). Chứng minh: (a) Diện tích của 1 tam giác bằng nửa tích của 2 cạnh nhân với sin của góc nhọn tạo bởi các đường thẳng chứa 2 cạnh ấy. (b) Diện tích hình bình hành bằng tích của 2 cạnh kề nhân với sin của góc nhọn tạo bởi các đường thẳng chứa 2 cạnh ấy.
- 112 ([Tuy23], 24., p. 110). Cho hình bình hành ABCD, $BD \perp BC$. $Bi\acute{e}t$ AB=a, $\widehat{A}=\alpha$, tính diện tích hình bình hành đó.
- **113** ([Tuy23], 25., p. 110). Cho $\triangle ABC$, $\widehat{A}=120^{\circ}$, $\widehat{B}=35^{\circ}$, AB=12.25 dm. Giải $\triangle ABC$.
- **114** ([Tuy23], 26., p. 110). Cho $\triangle ABC$ nhọn, $\widehat{A} = 75^{\circ}$, AB = 30 mm, BC = 35 mm. Giải $\triangle ABC$.
- 115 ([Tuy23], 27., p. 110). Cho $\triangle ABC$ cân tại A, đường cao BH. Biết BH=h, $\widehat{C}=\alpha$. Giải $\triangle ABC$.
- 116 ([Tuy23], 28., p. 110). Hình bình hành ABCD có $\widehat{A}=120^{\circ}$, AB=a, BC=b. Các đường phân giác của 4 góc cắt nhau tạo thành tứ giác MNPQ. Tính diện tích tứ giác MNPQ.
- 117 ([Tuy23], 29., p. 110). Cho ΔABC , các đường phân giác AD, đường cao BH, đường trung tuyến CE đồng quy tại điểm O. Chứng minh $AC\cos A = BC\cos C$.
- 118 ([Bìn23], VD6, p. 92). Chứng minh diện tích của 1 tam giác không vuông bằng $\frac{1}{2}$ tích của 2 cạnh nhân với sin của góc nhọn tạo bởi 2 đường thẳng chứa 2 cạnh ấy.
- Chứng minh. Gọi α là góc nhọn tạo bởi 2 đường thẳng AB, AC của $\triangle ABC$ ($\alpha = \widehat{A}$ nếu $\widehat{A} < 90^{\circ}$ & $\alpha = 180^{\circ} \widehat{A}$ nếu $\widehat{A} > 90^{\circ}$). Vẽ đường cao BH, có $BH = AB \sin \alpha$, suy ra $S_{ABC} = \frac{1}{2}AC \cdot BH = \frac{1}{2}AC \cdot AB \sin \alpha = \frac{1}{2}bc \sin \alpha$.
- 119 (Mở rộng [Bìn23], VD6, p. 91). Chứng minh diện tích của 1 tam giác bằng $\frac{1}{2}$ tích của 2 cạnh nhân với sin của góc tạo bởi 2 cạnh ấy.

Chứng minh. Ta xét 3 trường hợp ứng với \widehat{A} , chứng minh công thức ứng với \widehat{B},\widehat{C} hoàn toàn tương tự.

- Trường hợp $\widehat{A}=90^\circ$. Vì $\sin 90^\circ=1$ nên $S_{ABC}=\frac{1}{2}bc=\frac{1}{2}bc\sin 90^\circ=\frac{1}{2}bc\sin A$.
- Trường hợp $\hat{A} < 90^{\circ}$. Đã chứng minh ở bài toán ngay trên.
- $Trường hợp \widehat{A} > 90^{\circ}$. Vì $\sin x = \sin(180^{\circ} x), \forall x \in [0^{\circ}, 180^{\circ}]$ nên theo bài toán ngay trên: $S_{ABC} = \frac{1}{2}bc\sin(180^{\circ} A) = \frac{1}{2}bc\sin A$.

Vậy công thức $S_{ABC} = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C$ đúng cho mọi ΔABC .

* Công thức tính diện tích tam giác tổng quát:

$$S_{ABC} = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C, \ \forall \Delta ABC.$$

120 ([Bìn23], VD7, p. 92). $\triangle ABC$ có $\widehat{A} = \widehat{B} + 2\widehat{C}$ & độ dài 3 cạnh là 3 số tự nhiên liên tiếp. (a) Tính độ dài 3 cạnh của $\triangle ABC$. (b) Tính $\widehat{A}, \widehat{B}, \widehat{C}$.

121 (Tổng quát [Bìn23], VD7, p. 92). Nếu $\triangle ABC$ có \widehat{A} từ & độ dài 3 cạnh là 3 số tự nhiên liên tiếp thì 3 độ dài đó bằng 2,3,4.

122 ([Bìn23], 41., p. 94). Tính: (a) Chiều cao ứng với cạnh 40 cm của 1 tam giác, biết 2 góc kề với cạnh này bằng 40°, 55°. (b) Góc tạo bởi đường cao & đường trung tuyến kẻ từ 1 đỉnh của tam giác, biết 2 góc ở 2 đỉnh kia bằng 60°, 80°.

123 ([Bin23], 42., p. 94). $\triangle ABC$ có $\widehat{A} = 105^{\circ}$, $\widehat{B} = 45^{\circ}$, BC = 4 cm. Tính AB, AC.

124 ([Bìn23], 43., p. 94). $\triangle ABC$ có $\widehat{A} = 60^{\circ}$, AB = 28 cm, AC = 35 cm. Tính BC.

125 ([Bìn23], 44., p. 94). Cho 1 hình vuông có cạnh 1 dm. Cắt đi ở mỗi góc của hình vuông 1 tam giác vuông cân để được 1 bát giác đều. Tính tổng diện tích của 4 tam giác vuông cân bị cắt đi.

126 ([Bìn23], 45., p. 94). $\triangle ABC$ đều có cạnh 60 cm. Trên cạnh BC lấy điểm D sao cho BD=20 cm. Dường trung trực của AD cắt 2 cạnh AB, AC theo thứ tự ở E, F. Tính độ dài 3 cạnh của $\triangle DEF$.

127 ([Bìn23], 46., p. 94). Cho ΔABC có AB=c, CA=b, đường phân giác AD, đường trung tuyến AM. Đường thẳng đối xứng với AM qua AD cắt BC ở N. Tính $\frac{BN}{CN}$.

128 ([Bìn23], 47., p. 94). Độ dài 2 đường chéo của 1 hình bình hành tỷ lệ với độ dài 2 cạnh liên tiếp của nó. Chứng minh các góc tạo bởi 2 đường chéo bằng các góc của hình bình hành.

129 ([Bìn23], 48., p. 94). Tứ giác ABCD có 2 đường chéo cắt nhau ở O & không vuông góc với nhau. Gọi H & K lần lượt là trực tâm của ΔAOB , ΔCOD . Gọi G, I lần lượt là trọng tâm của ΔBOC , ΔAOD . (a) Gọi E là trọng tâm của ΔAOB , F là giao điểm của AH & DK. Chứng minh $\Delta IEG \backsim \Delta HFK$. (b) Chứng minh $IG \bot HK$.

130 ([Bin23], 49., p. 94). Cho $\triangle ABC$ nhọn, 3 điểm D, E, F lần lượt thuộc 3 cạnh AB, BC, CA. Chứng minh trong 3 $\triangle ADF, \triangle BDE, \triangle CEF$, tồn tại 1 tam giác có diện tích $\leq \frac{1}{4}$ diện tích $\triangle ABC$. Khi nào cả 3 tam giác đó cùng có diện tích bằng $\frac{1}{4}$ diện tích $\triangle ABC$?

131 ([Bìn+23], VD1, p. 15). $\triangle ABC$ có $AB=16, AC=14, \widehat{B}=60^{\circ}$. (a) Tính độ dài cạnh BC. (b) Tính diện tích $\triangle ABC$.

 $\textbf{132} \ ([\underline{\texttt{Bin+23}}], \ \text{VD2}, \ \text{p. 15}). \ \textit{Cho} \ \Delta \textit{ABC} \ \textit{nhọn có} \ \widehat{A} = 75^{\circ}, \\ \textit{AB} = 30, \\ \textit{BC} = 35. \ \textit{Giải} \ \Delta \textit{ABC}.$

133 ([Bìn+23], VD3, p. 16). Không dùng bảng số & máy tính. Chứng minh $\sin 75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$.

134 ([Bìn+23], 3.1., p. 17). Cho hình chữ nhật ABCD có $\widehat{BAC}=30^{\circ}, AC=10$. Tính chu vi & diện tích của hình chữ nhật đó.

135 ([Bìn+23], 3.2., p. 17). Cho $\triangle ABC$ vuông tại B, $\widehat{A}=\alpha$, BO là trung tuyến ứng với cạnh huyền AC. Từ B kẻ đường thẳng vuông góc với BO cắt AC tại D. Đặt AC=a. Chứng minh $AD=\frac{a(\cos 2\alpha+1)}{2\cos 2\alpha}$.

136 ([Bìn+23], 3.3., p. 17). Cho $\triangle ABC$, đường cao AA', trực tâm H. Cho biết $\frac{AH}{A'H}=k$. Chứng minh tan $B \tan C=1+k$.

137 ([Bìn+23], 3.4., p. 17). Cho hình bình hành ABCD có $\widehat{A}=45^{\circ}$, AB=BD=18. (a) Tính độ dài cạnh AD. (b) Tính diện tích hình bình hành ABCD.

138 ([Bin+23], 3.5., p. 17). Cho $\triangle ABC$ có góc A nhọn, 2 đường cao BH, CK. Chứng minh nếu AB > AC thì BH > CK.

 $\textbf{139} \ ([\underline{\texttt{Bin}+23}], \ 3.6., \ \text{p. } 17) \textbf{.} \ \textit{Cho} \ \Delta \textit{ABC}, \ \textit{phân giác AD. Biết AB} = c, \ \textit{AC} = b, \\ \widehat{\textit{A}} = 2\alpha \ \textit{với} \ \alpha < 45^{\circ}. \ \textit{Chứng minh AD} = \frac{2bc\cos\alpha}{b+c}.$

- **140** ([Bìn+23], 3.7., p. 17). Cho $\triangle ABC$ vuông tại A, đường cao AH. Đặt BC=a, CA=b, AB=c. Chứng minh: (a) $AH=a\sin B\cos B$, $BH=a\cos^2 B$, $CH=a\sin^2 B$.
- 141 ([Bìn+23], 3.8., p. 17). Cho $\triangle ABC$ nhọn, BC=a, CA=b, AB=c. Chứng minh $b^2=a^2+c^2-2ac\cos B$.
- 142 ([Bìn+23], 3.9., p. 17). Cho $\triangle ABC$ cân tại A, đường cao ứng với cạnh bên có độ dài bằng h, góc ở đáy của tam giác bằng α . Chứng minh $S_{ABC} = \frac{h^2}{4 \sin \alpha \cos \alpha}$.
- 143 ([Bìn+23], 3.10., p. 18). Ở độ cao 920 m, từ 1 máy bay trực thăng, người ta nhìn 2 điểm A, B của 2 đầu 1 chiếc cầu 2 góc so với phương nằm ngang lần lượt là $\alpha = 37^{\circ}, \beta = 31^{\circ}$. Tính chiều dài AB của chiếc cầu.
- **144** ([Bìn+23], 3.11., p. 18). Cho $\triangle ABC$ nhọn, 3 đường cao AH, BI, CK. Chứng minh: $S_{HIK} = (1 \cos^2 A \cos^2 B \cos^2 C)S_{ABC}$.
- **145** ([Bìn+23], 3.12., p. 18). Chứng minh $\triangle ABC$ cân tại $C \Leftrightarrow \frac{\cos^2 A + \cos^2 B}{\sin^2 A + \sin^2 B} = \frac{1}{2}(\cot^2 A + \cot^2 B)$.
- 146 ([Bìn+23], 3.13., p. 18). Cho $\triangle ABC$ vuông tại A. 2 đường trung tuyến AE, BD vuông góc với nhau. Biết AB=1. Tính diện tích $\triangle ABC$.
- **147** ([Bìn+23], 3.14., p. 18). Cho $\triangle ABC$, AB = 8, AC = 7, $\widehat{ABC} = 30^{\circ}$. Giải $\triangle ABC$.
- 148 ([Bìn+23], 3.15., p. 18). (a) Không dùng bảng số, máy tính, tính tan 15°. (b) Cho $\triangle ABC$ có $\widehat{ABC} + \widehat{ACB} = 105^{\circ}$ & $AB + AC\sqrt{2} = 2BC$. Tính \widehat{ABC} , \widehat{ACB} .

4 Application of Trigonometrical Functions of Acute Angle – Ứng Dụng Của Tỷ Số Lượng Giác Của Góc Nhọn

[Thá+24, Chap. IV, §3, pp. 88-91]: LT1. LT2. 1. 2. 3. 4. 5.

5 Miscellaneous

[Thá+24, BTCCIV, pp. 92-93]: 1. 2. 3. 4.

- 149 ([Tuy23], Thí dụ 4, p. 111). Cho $\triangle ABC$ vuông tại A. Gọi M,N lần lượt là 2 điểm trên cạnh AB, AC sao cho $AM=\frac{1}{3}AB$, $AN=\frac{1}{3}AC$. Biết độ dài $BN=\sin\alpha$, $CM=\cos\alpha$ với $0^{\circ}<\alpha<90^{\circ}$. Tính cạnh huyền BC.
- **150** ([Tuy23], 30., p. 112). Cho $\triangle ABC$ nhọn, BC=a, AC=b, CA=b trong đó $b-c=\frac{a}{k}$, k>1. Gọi h_a,h_b,h_c lần lượt là các đường cao hạ từ A,B,C. Chứng minh: (a) $\sin A=k(\sin B-\sin C)$. (b) $\frac{1}{h_a}=k\left(\frac{1}{h_b}-\frac{1}{h_c}\right)$.
- **151** ([Tuy23], 31., p. 112). Giải $\triangle ABC$ biết AB = 14, BC = 15, CA = 13.
- $\textbf{152} \ ([\underline{\textbf{Tuy23}}], \ 32., \ \textbf{p.} \ 112) \textbf{.} \ \textit{Cho hình hộp chữ nhật } ABCD. A'B'C'D'. \ \textit{Biết } \widehat{DC'D'} = 45^{\circ}, \ \widehat{BC'B'} = 60^{\circ}. \ \textit{Tính } \widehat{BC'D}.$
- 153 ([Tuy23], 33., p. 112). Cho $\triangle ABC$, AB = AC = 1, $\widehat{A} = 2\alpha$, $0^{\circ} < \alpha < 45^{\circ}$. Vẽ các đường cao AD, BE. (a) Các tỷ số lượng giác $\sin \alpha, \cos \alpha, \sin 2\alpha, \cos 2\alpha$ được biểu diễn bởi các đoạn thẳng nào? (b) Chứng minh $\triangle ADC \backsim \triangle BEC$, từ đó suy ra các hệ thức sau: $\sin 2\alpha = 2\sin \alpha\cos \alpha$, $\cos 2\alpha = 1 2\sin^2 \alpha = 2\cos^2 \alpha 1 = \cos^2 \alpha \sin^2 \alpha$. (c) Chứng minh: $\tan 2\alpha = \frac{2\tan \alpha}{1 \tan^2 \alpha}$,

$$\cot 2\alpha = \frac{\cot^2 \alpha - 1}{2\cot \alpha}.$$

- **154** ([Tuy23], 34., p. 112). Cho $\alpha = 22^{\circ}30'$, tính $\sin \alpha, \cos \alpha, \tan \alpha, \cot \alpha$.
- **155** ([Tuy23], 35., p. 112). Cho $\triangle ABC$, đường phân giác AD. Biết AB=c, AC=b, $\widehat{A}=2\alpha$, $\alpha<45^\circ$. Chứng minh $AD=\frac{2bc\cos\alpha}{b+c}$.
- 156 ([Kiê21], VD1, p. 9). Cho $\triangle ABC$ vuông tại A, dựng đường cao AH. Tính độ dài các yếu tố còn lại $(a,b,c,h,b',c',\widehat{A},\widehat{B},\widehat{C})$ của $\triangle ABC$ trong mỗi trường hợp: (a) AB = a, $AH = \frac{a\sqrt{3}}{2}$. (b) BC = 2a, $BH = \frac{1}{4}BC$. (c) AB = a, $CH = \frac{3}{2}a$. (d) $AC = a\sqrt{3}$, $AH = \frac{a\sqrt{3}}{2}$. (e) $\frac{AB}{AC} = \frac{3}{4}$, BC = 5a.
- 157 ([Kiê21], VD2, p. 10). Cho $\triangle ABC$ vuông tại A, BC=2a, gọi O là trung điểm của BC. Dựng $AH \perp BC$. (a) Khi $ACB=30^\circ$. Tính độ dài các yếu tố còn lại của tam giác. (b) Khi $\widehat{ACB}=30^\circ$. Gọi M là trung điểm của AC. Tính độ dài BM. (c) Khi $\widehat{ACB}=30^\circ$. 2 đoạn thẳng AO, BM cắt nhau ở điểm G. Tính độ dài CG. (d) Giả sử điểm G thay đổi sao cho $\widehat{BAC}=90^\circ$, BC=2a. $\triangle ABC$ phải thỏa mãn điều kiện gì để diện tích $\triangle AHO$ lớn nhất? (e) Giả sử CG cắt AB tại điểm CG0. Tứ CG0 cắt CG0 cốt CG0

158 ([Kiê21], VD3 p. 10). Cho $\triangle ABC$ vuông tại A, kể đường cao AH. Từ H dựng HM, HN lần lượt vuông góc với AC, AB. Chứng minh: (a) $CM \cdot CA \cdot BN \cdot AB = AH^4$. (b) $CM \cdot BN \cdot BC = AH^3$. (c) $AM \cdot AN = \frac{AH^3}{BC}$. (d) $\frac{AB^3}{AC^3} = \frac{BN}{CM}$. (e)

 $AN\cdot BN + AM\cdot CM = AH^2. \ (\emph{f}) \ \sqrt[3]{BC^2} = \sqrt[3]{BN^2} + \sqrt[3]{CM^2}.$

159 ([Kiê21], VD4, p. 12). Cho $\triangle ABC$ nhọn có 3 đường cao AD, BE, CF cắt nhau tại H, gọi O là trung điểm của BC, I là trung điểm của AH, K là giao điểm của EF, OI biết BC = 2a. Chứng minh: (a) $\triangle IEO, \triangle IFO$ là 2 tam giác vuông. (b) OI là trung trực của EF. (c) $AH^2 = 4IK \cdot IO$. (d) $\frac{EF}{BC} = \cos A$. (e) $\frac{EF}{BC} \cdot \frac{FD}{CA} \cdot \frac{DE}{AB} = \cos A \cos B \cos C$. (f) $\frac{S_{AEF}}{S_{ABC}} = \cos^2 A$. (g)

 $\frac{S_{DEF}}{S_{ABC}} = 1 - (\cos^2 A + \cos^2 B + \cos^2 C). \ (h) \tan B \tan C = \frac{AD}{DH}. \ (i) \ Gi \mathring{a} \ s \mathring{u} \ \widehat{ABC} = 60^\circ, \ \widehat{ACB} = 45^\circ. \ Tinh \ S_{ABC} \ theo \ a. \ (j)$

Gọi M là điểm trên AH sao cho $\widehat{BMC} = 90^{\circ}$. Chứng minh $S_{BMC} = \sqrt{S_{ABC}S_{BHC}}$.

- $\textbf{160} \ ([\text{Kiê21}], \text{VD5, p. 14}). \ \textit{Cho} \ \Delta \textit{ABC} \ \textit{c\'o} \ \textit{BC} = \textit{a}, \textit{CA} = \textit{b}, \textit{AB} = \textit{c}. \ \textit{Ch\'ung minh: (a)} \ a^2 = b^2 + c^2 2bc \cos \textit{A}. \ \textit{(b)} \ \textit{C\^ong th\'uc Heron: } S = \sqrt{p(p-a)(p-b)(p-c)} \ \textit{v\'oi} \ p = \frac{a+b+c}{2}. \ \textit{(c)} \ a^2 + b^2 + c^2 \geq 4\sqrt{3}S. \ \textit{(d)} \ S = \frac{1}{2}ab \sin \textit{C} = \frac{1}{2}bc \sin \textit{A} = \frac{1}{2}ca \sin \textit{B}. \ \textit{(e)}$ $\frac{a}{\sin \textit{A}} = \frac{b}{\sin \textit{B}} = \frac{c}{\sin \textit{C}} = 2R \ \textit{v\'oi} \ \textit{R} \ l\grave{a} \ \textit{b\'on k\'inh d\'u\'ong tr\'on ngoại ti\'ep} \ \Delta \textit{ABC}.$
- 161 ([Kiê21], VD6, p. 16). Cho ΔABC với 3 đỉnh A, B, C & 3 cạnh đối diện với 3 đỉnh tương ứng là a, b, c. Gọi D là chân đường

 $ph\hat{a}n \ gi\acute{a}c \ trong \ g\acute{o}c \ A. \ Ch\acute{u}ng \ minh: \ (a) \ \frac{BD}{AB} = \frac{a}{b+c}. \ \ (b) \sin\frac{A}{2} \leq \frac{a}{b+c}. \ \ (c) \sin\frac{A}{2} \sin\frac{B}{2} \sin\frac{C}{2} \leq \frac{1}{8}. \ \ (d) \ AD = \frac{2bc\cos\frac{A}{2}}{b+c}.$

- **162** ([Kiê21], VD7, p. 19). Cho $\triangle ABC$ cân, $\hat{A} = 20^{\circ}$, AB = AC, AC = b, BC = a. Chứng minh $a^3 + b^3 = 3ab^2$.
- **163** ([Kiê21], VD8, p. 20). *Tinh* sin 22°30′, cos 22°30′, tan 22°30′, cot 22°30′.
- **164** ([Kiê21], VD9, p. 20). Cho $\triangle ABC$. Chứng minh $\widehat{A} = 2\widehat{B} \Leftrightarrow a^2 = b(b+c)$.
- **165** ([Kiê21], VD10, p. 21). Chứng minh $\sin 18^{\circ} = \frac{\sqrt{5} 1}{4}$
- **166** ([Kiê21], VD11, p. 22). Chứng minh $\cos 15^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$, $\sin 15^{\circ} = \frac{\sqrt{6} \sqrt{2}}{4}$.
- **167** ([Kiê21], VD12, p. 22). Chứng minh $\cos 36^{\circ} = \frac{1+\sqrt{5}}{4}$.
- **168** ([Kiê21], VD13, p. 23). Chứng minh hệ thức: (a) $\tan^2 36^\circ + \tan^2 72^\circ = 10$. (b) $\tan^4 36^\circ + \tan^4 72^\circ = 90$.
- **169** ([Kiê21], VD14, p. 23). Cho $\triangle ABC$, có $\widehat{A}=60^{\circ}$ & đường phân giác AD. Chứng minh $\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{3}}{AD}$
- $\textbf{170} \ ([\texttt{Kiê21}], \ \text{VD15}, \ \text{p. 24}). \ \textit{Chứng minh trong } \Delta ABC, \ \widehat{A} = 60^{\circ} \Leftrightarrow a^2 = b^2 + c^2 bc, \ \widehat{A} = 120^{\circ} \Leftrightarrow a^2 = b^2 + c^2 + bc.$
- 171 ([Kiê21], VD16, p. 24). Tính độ dài 3 đường trung tuyến của tam giác, biểu thị qua 3 cạnh của tam giác ấy.
- 172 ([Kiê21], VD17, p. 25). Cho $\triangle ABC$. Chứng minh 2 đường trung tuyến kể từ B,C vuông góc với nhau khi $\mathcal E$ chỉ khi $b^2+c^2=5a^2$.
- 173 ([Kiê21], VD18, p. 25). Cho $\triangle ABC$. Trung tuyến AD, đường cao BH, & phân giác CE đồng quy. Chứng minh đẳng thức $(a+b)(a^2+b^2-c^2)=2ab^2$.
- 174 ([Kiê21], VD19, p. 26). Cho $\triangle ABC$ thỏa $\widehat{A} = 2\widehat{B} = 4\widehat{C}$. Chứng minh $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$.
- 175 ([Kiê21], VD20, p. 26). Cho $\triangle ABC$ vuông tại A, đường cao AH. Độ dài 3 cạnh của tam giác là 3 số nguyên thỏa mãn $\frac{1}{AB} + \frac{1}{AC} + \frac{1}{AH} = 1$. Xác định 3 cạnh của tam giác.
- **176** ([Kiê21], VD21, p. 26). Cho $\triangle ABC$ thỏa mãn $2\hat{B} + 3\hat{C} = 180^{\circ}$. Chứng minh $BC^2 = BC \cdot AC + AB^2$.

Tài liệu

- [Bìn+23] Vũ Hữu Bình, Nguyễn Ngọc Đạm, Nguyễn Bá Đang, Lê Quốc Hán, and Hồ Quang Vinh. *Tài Liệu Chuyên Toán Trung Học Cơ Sở Toán 9. Tập 2: Hình Học.* Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 240.
- $[\text{Bìn23}] \qquad \text{Vũ Hữu Bình. Nâng Cao & Phát $Triển$ Toán 9 Tập 1. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 275.}$
- [Kiê21] Nguyễn Trung Kiên. *Tổng Hợp Chuyên Đề Trọng Tâm Thi Vào 10 Chuyên & Học Sinh Giỏi Hình Học 9*. Tái bản lần 2. Nhà Xuất Bản Đại Học Quốc Gia Hà Nội, 2021, p. 311.
- [Thá+24] Đỗ Đức Thái, Lê Tuấn Anh, Đỗ Tiến Đạt, Nguyễn Sơn Hà, Nguyễn Thị Phương Loan, Phạm Sỹ Nam, and Phạm Đức Quang. *Toán 9 Cánh Diều Tập 1*. Nhà Xuất Bản Giáo Dục Việt Nam, 2024, p. 127.
- [Tuy23] Bùi Văn Tuyên. *Bài Tập Nâng Cao & Một Số Chuyên Đề Toán 9*. Tái bản lần 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 340.