

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: EC-504B

DATA STRUCTURE & C

Time Allotted: 3 Hours

1.

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Multiple Choice Type Questions)

		•	,			
Choo	se the correct alternative for any ten of the following	1×10=10				
(i)	Insert a new node after given a node in a doubly linked list requires					
	(a) four pointer exchanges.	(b)	two pointer exchanges.			
	(c) one pointer exchanges.	(d)	no pointer exchanges.			
(ii)	Maximum possible height of an AVL Tree with 7 nodes is					
	(a) 3	(b)	4			
	(c) 6	(d)	None of these			
(iii)) If a binary tree is threaded for inorder traversal, a right NULL link of any node is replaced by the address of its					
	(a) Successor	(b)	Predecessor			
	(c) Root	(d)	Own			
(iv)	Total nodes in a 2-tree (Strictly binary tree) with 30 leaves will be					
	(a) 60	(b)	58			
	(c) 59	(d)	57			
(v)	The initial configuration of queue is a , b , c , d (' a ' is at the front). To get the configuration d , c , b , a one needs a minimum of					
	(a) 2 deletions and 3 additions	(b)	3 deletions and 2 additions			
	(c) 3 deletions and 3 additions	(d)	3 deletions and 4 additions			

8078

Turn Over

CS/B.Tech/ECE/Odd/SEM-5/EC-504B/2018-19

(vi) A	djacency mat	rix of digraph is				
(a) identify matrix			(b) symmetric matrix			
(c) asymmetric matrix			(d) None of these		
(vii) The Ackerman function, for all non-negative values of m and n is recursively defined as						
		= n+1	if $m=0$			
		= A(m-1, 1)	if $m!=0$ but	n=0		
		= A(m-1, A(m, n-1))	if <i>m</i> !=0 but	n!=0		
T	herefore the v	alue of A(1, 2) is				
) 4	, , ,	(b)			
(c)) 5		(d)	2		
(viii) Which of the following traversal techniques lists the elements of a binary search tree in ascen order?						
(a)) Preorder		(b)	Postorder		
(c)	Inorder	•	(d)	None of these		
(ix) The method of linear probing for collision resolution can lead to						
	Clustering			Efficient storage utilization		
(c)	Overflow		(d)	Underflow		
(x) A complete Binary tree with n leaves contains						
(a)	n nodes		(b)	2n nodes		
(c)	2n-1 nodes		(d)	2 ⁿ nodes		
 (xi) The following sequence of operations performed on a stack: push(1), push(2), pop, push(1), push(2), pop, pop, pop, push(2), pop. The sequence of popped out values are 						
(a)	2,2,1,1,2		(b)	2,2,1,2,2		
(c)	2,1,2,2,1		(d)	2,1,2,2,2		
Character III						

Group - B

(Short Answer Type Questions)

Answer any three of the following.

5×3=15

- 2. Write an algorithm to insert the nth node of a singly linked list. The Error conditions are to be handled properly.
- 3. Each element of an array arr [20][50] requires 4 bytes of storage. Base address of the array arr is 2000. What will be the address of arr [10][10] when the elements are stored in row-major and column-major order?
- 4. What is an Abstract data type? Define as ADT for a list.

2+3=5

5. Given below are the Pre-order and In-order traversals of a binary tree. Draw the actual tree and write its Post-order traversal:

Pre-order Traversal: A B D I E J C F G K
In-order Traversal: D I B E J A F C K G

4+1=5

6. Define sparse matrix. How is sparse matrix efficient for storing data elements? Explain diagrammatically.

Group - C

(Long Answer Type Questions)

Answer any three of the following.

 $15 \times 3 = 45$

7. (a) Let a and b denotes positive integers. Suppose a function Q defined as follows:

0

if a < b

$$Q(a, b) = {Q(a-b, b) + 1 \text{ if } b < = a}$$

Find the value of Q(2, 3) and Q(14, 3).

- (b) Why the Queue data structure is called FIFO?
- (c) Construct the following Queue of characters where Queue is a circular array which is allocated six memory cells:

FRONT = 2 REAR = 4 QUEUE:
$$-$$
, A, C, D $-$, $-$

Describe the following operations take place:

- (i) 'F' is added to the Queue.
- (ii) Two letters are from the Queue.
- (iii) 'K', 'L', 'M' are added to the queue.
- (iv) Two letters are deleted from the queue.
- (v) R is added to the Queue.
- (vi) One letter is deleted from the queue.
- (d) Write an algorithm to add two polynomials using link list.

3+2+6+4=15

8. (a) Show the stages in growth of an order -4 B-Tree when the following keys are inserted in the order given: https://www.makaut.com

(b) How do AVL trees differ from binary search tree?

Build an AVL tree with node inserted in the following order:

Clearly mention different rotations used and balance factor of each node.

(c) Prove that, for any non-empty binary tree T, if n_0 is the number of leaves and n_2 be the number of nodes of degree 2, then $n_0 = n_2 + 1$. 5+(2+4)+4=15

CS/B.Tech/ECE/Odd/SEM-5/EC-504B/2018-19

9. (a) Convert the following infix expression to postfix notation by showing the operator stack and output string after reading each input taken:

$$A * B + C * (D - E) - F * G$$

(b) By applying the algorithm of postfix expression evaluation using stack find the result of the given following postfix expression:

(c) Write a recursive function for the problem of 'Tower of Hanoi'.

5+5+5=15

- 10. (a) Define Hashing.
 - (b) Briefly explain the different commonly used hash functions.
 - (c) Explain with suitable example the collision resolution scheme using linear probing with open addressing.
 - (d) Write an algorithm to delete from a Binary Search Tree.

2+4+4+5=15

11. Answer any three of the following:

5×3=15

- (i) Prim's Algorithm
- (ii) Threaded Binary Tree
- (iii) BFS and DFS
- (iv) Asymptotic notation
- (v) Merge sort

https://www.makaut.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay से