Schools of Parallel Architecture & Amdahl's Law

15-740 FALL'21

NATHAN BECKMANN

Today: Parallel architecture

Different schools of parallel architecture

- I.e., programs are written to expose parallelism explicitly
- History of unconventional parallel architectures
- Convergence to today's multiprocessor systems

We will learn...

- Why parallelism?
- Different models for parallel execution + associated architectures
- Fundamental challenges (communication, scalability) introduced by parallelism

Why parallelism?

For any given processing element, in principle: more processing elements → more performance

High-level challenges:

- Communication
- N processors often $!= N \times \text{better performance}$
- Parallel programming is often hard
- Granularity: many "small and slow" cores vs. few "big and fast" cores
- What type of parallelism does app exploit best?
 (In practice, machines exploit parallelism at multiple levels)

Why study parallel arch & programming?

The Answer from ~15 Years Ago:

- Because it allows you to achieve performance beyond what we get with CPU clock frequency scaling
 - +30% freq/yr vs +40% transistors/yr—10× advantage over 20 yrs
 - In practice, was not enough of a benefit for most apps → explicit parallelism a niche area

The Answer Today:

- Because it seems to be the best available way to achieve higher performance in the foreseeable future
 - CPU clock rates are no longer increasing! (recall: $P = \frac{1}{2}CV^2F$ and $V \propto F \rightarrow P \propto CF^3$)
 - Implicit parallelism is not increasing either!
 - Improving performance on sequential code is very complicated + diminishing returns
- Without explicit parallelism *or* architectural specialization, performance becomes a zero-sum game.
 - Specialization is more disruptive than parallel programming (and is mostly about parallelism anyway)

History: Why parallelism?

Recurring argument from very early days of computing:

Technology is running out of steam; parallel architectures are more efficient than sequential processors (in perf/mm^2, power, etc)

Except...

- ...technology defied expectations
- ...parallelism is more efficient <u>in theory</u>, but getting good parallel programs <u>in practice</u> is hard (architecture doesn't exist in a vacuum; see also: scratchpads vs caches)
 - → Sequential/implicitly parallel arch dominant (until ~15y ago)

History: Different schools of parallelism

Historically, parallel architectures closely tied to programming models

Divergent architectures, with no predictable pattern of growth.

Uncertainty of direction paralyzed parallel software development! (Parallel programming remains a big problem)

Is parallel architecture enough?

NO. Parallel architectures rely on software for performance!

AMBER code for CRAY-1 (vector); ported to Intel Paragon (message-passing)

(slide credit: Culler'99)

Schools of parallelism via an example

Bit-level parallelism

- Apply the same operation to many bits at once
- 4004 4b → 8008 8b → 8086 16b → 80386 32b
- E.g., in 8086, adding two 32b numbers takes 2 instructions (add, adc) and multiplies are 4 (mul, mul, add, adc)
- Early machines used transistors to widen datapath
- Aside: 32b
 64b mostly not for performance, instead...
 - Floating point precision
 - Memory addressing (more than 4GB)

Not what people usually mean by parallel architecture today!

Instruction-level parallelism (ILP)

- Different instructions within a stream can be executed in parallel
- Pipelining, out-of-order execution, speculative execution, VLIW

```
A: LD R2, 0(R1)
                             void decrement all(
   LD R3, 4(R1)
                                int *array,
   SUBI R2, R2, #1
                            int size) {
   SUBI R3, R3, #1
                               for (int i = 0;
   BLTZ R2, B
                                i < size;
   ST R2, 0(R1)
                                i++) {
                            int x = array[i] - 1;
if (x > 0) {
    array[i] = x;
B: BLTZ R3, C
   ST R3, 4(R1)
C: ADDI R1, R1, #8
   SUB R5, R4, R1
   BGTZ R4, A
   RET
```

Instruction-level parallelism (ILP)

- Different instructions within a stream can be executed in parallel
- Pipelining, out-of-order execution, speculative execution, VLIW

```
A: LD R2, 0(R1)
                           void decrement all(
   LD R3, 4(R1)
                               int *array,
   SUBI R2, R2, #1
                          int size) {
   SUBI R3, R3, #1
                             for (int i = 0;
   BLTZ R2, B
                               i < size;
   ST R2, 0(R1)
                               i++) {
                           int x = array[i] - 1;
if (x > 0) {
    array[i] = x;
B: BLTZ R3, C
   ST R3, 4(R1)
C: ADDI R1, R1, #8
   SUB R5, R4, R1
   BGTZ R4, A
   RET
```

Instruction-level parallelism (ILP)

- Different instructions within a stream can be executed in parallel
- Pipelining, out-of-order execution, speculative execution, VLIW

```
A: LD R2, 0(R1)
LD R3, 4(R1)
SUBI R2, R2, #1
SUBI R3, R3, #1
BLTZ R2, B
ST R2, 0(R1)
B: BLTZ R3, C
ST R3, 4(R1)
C: ADDI R1, R1, #8
SUB R5, R4, R1
BGTZ R4, A
RET
```


Limits of conventional ILP

Instruction-level parallelism peaks @ ~4 ins / cycle

Real programs w realistic cache+pipeline latencies, but unlimited resources

Dataflow

Operations communicate directly to dependent ops

No program counter! (Iterations may complete in any order) + array Looks similar to ILP – not a coincidence True Mem[_] ITER: $+ 4 \rightarrow CHECK / LOOP$ < N? CHECK: $\langle N? \rightarrow ITER \rangle$ LOOP: $+ \operatorname{array} \rightarrow \operatorname{LD} / \operatorname{ST}[0]$ Mem[] → SUB LD: - 1 → CMPZERO SUB: CMPZERO: $> 0? \rightarrow ST[1]$ ST: Mem[]:= Mem[_] := _ > 0? True

Data parallel

- Different pieces of data can be operated on in parallel
- Vector processing, array processing
- Systolic arrays, streaming processors

(Not valid assembly)

```
LUI VLR, #2
A: LV V1, 0(R1)
SUBV V1, #1
SLTV V1, #0
SV V1, 0(R1)
ADDI R1, R1, #8
SUB R5, R4, R1
BGTZ R5, A
RET
```


Data parallel

- Different pieces of data can be operated on in parallel
- Vector processing, array processing
- Systolic arrays, streaming processors

(Not valid assembly)

```
LUI VLR, #4
A: LV V1, 0(R1)
SUBV V1, #1
CLTV V1, #0
SV V1, 0(R1)
ADDI R1, R1, #16
SUB R5, R4, R1
BGTZ R5, A
RET
```


Task/Thread parallelism

- Different "tasks/threads" can be executed in parallel
- Multithreading / multiprocessing / multicore

Adjust R1, R5 per thread...

```
A: LD R2, 0(R1)
SUBI R2, #1
BLTZ R2, #0
ST R2, 0(R1)
ADDI R1, R1, #4
SUB R5, R4, R1
BGTZ R4, A
RET
```


Flynn's Taxonomy of Computers

Mike Flynn, "Very High-Speed Computing Systems," 1966

SISD: Single instruction operates on single data element

SIMD: Single instr operates on multiple data elements

- Array processor
- Vector processor

MISD: Multiple instrs operate on single data element

Closest form?: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data elements (multiple instruction streams)

- Multiprocessor
- Multithreaded processor

Parallel programming models

Programming Model

What programmer uses in coding applications

Specifies operations, naming, and ordering – focus on communication and synchronization

Examples:

- Multiprogramming: no communication or synch. at program level
- Shared address space: like bulletin board, need separate synchronization (eg, atomic operations)
- Message passing: like letters or phone calls, explicit point-to-point messages act as both communication and synchronization
- Data parallel: more regimented, global actions on data

Programming model can be realized in hardware, OS software, or user software

Lots of debate about where to implement what functionality (hw vs sw)

Where Communication Happens

Join At:

Shared Address Space (SAS) Architectures

Any processor can directly reference any memory location

Communication occurs implicitly as result of loads and stores

Convenient:

- Location transparency (don't need to worry about physical placement of data)
- Similar programming model to time-sharing on uniprocessors (compatibility again)
 - Except processes run on different processors
 - Good throughput on multi-programmed workloads

Naturally provided on wide range of platforms

- History dates at least to precursors of mainframes in early 60s
- Wide range of scale: few to hundreds of processors

Popularly known as *shared-memory* machines / model

Ambiguous: memory may be physically distributed among processors

SAS Programming Model

Process: virtual address space plus one or more threads of control Portions of address spaces of processes are shared

- Writes to shared address visible to other threads, processes
- OS uses shared memory to coordinate processes

SAS Communication Hardware

Also a natural extension of a uniprocessor

Already have processor, one or more memory modules and I/O controllers connected by hardware interconnect of some sort

Memory capacity increased by adding modules, I/O by controllers

SAS Communication Hardware

Also a natural extension of a uniprocessor

Already have processor, one or more memory modules and I/O controllers connected by hardware interconnect of some sort

Memory capacity increased by adding modules, I/O by controllers

→ Add processors for processing!

SAS History

"Mainframe" approach:

- Motivated by multiprogramming
- Extends crossbar used for memory and I/O
- At first, processor cost limited scaling, then crossbar itself
- + Bandwidth scales with P
- → High incremental cost → use multistage instead

"Minicomputer" approach:

- Almost all microprocessor systems have bus
- Motivated by multiprogramming & task parallelism
- Called symmetric multiprocessor (SMP)
- Latency larger than for uniprocessor
- + Low incremental cost
- Bus is bandwidth bottleneck → caching → coherence problem

Recent ('17) x86 Example

Intel's Core i7 7th generation

- Highly integrated, commodity systems
- On-chip: low-latency, high-bandwidth communication via shared cache
- Current scale = ~4-32 cores (fewer on desktop, more on server)

Scaling Up

- Problem is interconnect: cost (crossbar) or bandwidth (bus)
- "Dance-hall" topologies: Latencies to memory uniform, but uniformly large
 - "Resource disaggregation" is the modern incarnation of this idea
- Distributed memory or non-uniform memory access (NUMA)
 - Construct shared address space out of simple message transactions across a general-purpose network
 - Cache nonlocal data to reduce data movement? Must decide coherence story (hardware vs software)

Example: SGI Altix UV 1000 ('09)

Blacklight at the PSC (4096 cores)

Blade Chassis

256 socket (2048 core) fat-tree (this size is doubled in Blacklight via a torus)

- Scales up to 131,072 Xeon cores
- 15GB/sec links
- Hardware cache coherence for blocks of 16TB with 2,048 cores

8x8 torus

Message Passing Architectures

Complete computer as building block, including I/O

Communication via explicit I/O operations

Programming model:

- directly access only private address space (local memory)
- communicate via explicit messages (send/receive)

High-level block diagram similar to distributed-mem SAS

- But comm. integrated at IO level, need not put into memory system
- Like networks of workstations (clusters), but tighter integration
- Easier to build than scalable SAS

Programming model further from basic hardware ops

Library or OS intervention

Message Passing Abstraction

- Send specifies buffer to be transmitted and receiving process
- Recv specifies sending process and application storage to receive into
- Semantics: Memory to memory copy, but need to name processes
 - Optional tag on send and matching rule on receive
- In simplest form, the send/recv match achieves pairwise synch event
 - Other variants too (asynch message passing)
- Many overheads: copying, buffer management, protection

History of Message Passing

Early machines: FIFO on each link

- Hardware close to programming model
 - synchronous ops
- Replaced by DMA, enabling non-blocking ops
 - Buffered by system at destination until recv

Diminishing role of topology

- Store & forward routing: topology important
- Introduction of pipelined routing made it less so
- Cost is in node-network interface
- Simplifies programming

Example: IBM Blue Gene/Q ('11)

81,920 cores / 5,120 nodes

Each node: 18 cores, 4-way issue @ 1.6GHz, SIMD (vector) instructions, coherence within node

16 user cores (1 for OS, 1 spare)

Top of "green Top500" (2.1GFLOPS/W)

First to achieve 10PFLOPS on real application (100x BQ/L)

Towards Architectural Convergence

Evolution and role of software have blurred boundary

- Send/recv supported on SAS machines via buffers
- Can construct global address space on MP using hashing
- Page-based (or finer-grained) shared virtual memory

Hardware converging too

- Tightly integrated network interface (in hardware)
- At lower level, even hardware SAS passes hardware messages

Programming models distinct, but organizations converging

- Nodes connected by general network and communication assists
- Implementations also converging, at least in high-end machines

Convergence: General Parallel Architecture

A generic modern multiprocessor

Node: processor(s), memory system, plus *communication assist*

- Network interface and communication controller
- Scalable network
- Convergence allows lots of innovation, now within framework
 - Integration of assist with node, what operations, how efficiently...

Intel Single-chip Cloud Computer ('09)

48 cores

2D mesh network

- 24 tiles in 4x6 grid
- 2 cores / tile
- 16KB msg buffer / tile

4 DDR3 controllers

Shared memory + message passing hardware

No hardware coherence

Coherence available through software library

Data-Parallel Systems

Programming model:

- Operations performed in parallel on each element of data structure
- Logically single thread of control, performs sequential or parallel steps
- Conceptually, a processor associated with each data element

Architectural model:

- Array of many simple, dumb, fast processors with little memory each
- Attached to a control processor that issues instructions
- Specialized communication for cheap global synchronization
- Each processor can be implemented in fast, specialized circuits

History of data-parallel arch

Rigid control structure (SIMD in Flynn taxonomy)

Popular when cost savings of centralized sequencer high ('70s - '80s)

- 60s when CPU was a cabinet; replaced by vectors in mid-70s
- Revived in mid-80s when 32-bit datapath slices just fit on chip

Decline in popularity ('90s – '00s)

- Caching, pipelining, and out-of-order (somewhat) weakened this argument
- Simple, regular applications have good locality, can do well anyway
- MIMD machines also effective for data parallelism and more general
- Loss of generality due to hardwiring data parallelism

Resurgence ('10s – now)

- Power dominant concern
- SIMD amortizes fetch & decode energy

Lasting Contributions of Data Parallel

"Multimedia extensions" of ISAs (e.g., SSE)

- Limited SIMD for 4-8 lanes
- Called "vector instructions" but really only a weak imitation of classic "vector architecture"

GPGPU computing

- Programming model looks like MIMD, but processor actually executes multi-threaded SIMD
- GPU jargon: vector lane == "core"
 - **→** 1000s of cores
- Reality: 16-64 multithreaded SIMD (vector) cores

Data-parallelism is key to most accelerator designs

Example: Nvidia Pascal 100 ('16)

60x streaming multiprocessors (SMs)

64 "CUDA cores" each

→ 3840 total "cores"

732 GB/s mem bw using 3D stacking technology

256KB registers / SM

Dataflow Architectures

Represent computation as a graph of essential dependences

- Logical processor at each node, activated by availability of operands
- Message (tokens) carrying tag of next instruction sent to next processor
- Tag compared with others in matching store; match fires execution

History of Dataflow

Key characteristics:

Ability to name operations, synchronization, dynamic scheduling

Problems:

Operations have locality & should be grouped together!!!

[Swanson+, MICRO'03]

Dataflow exposes too much parallelism

[Culler & Arvind, ISCA'88]

- Handling data structures like arrays
- Complexity of matching store and memory units (tons of power burned in token store)

Converged to use conventional processors and memory

- Support for large, dynamic set of threads to map to processors
- Typically shared address space as well
- But separation of programming model from hardware (like data parallel)
- Much of the benefit of dataflow can be realized in software!
 - Loses super fine-grain operations
 much less parallelism

Lasting Contributions of Dataflow

Out-of-order execution (more on this later)

- Most von Neumann processors today contain a dataflow engine inside
- OOO considers dataflow within a bounded region of a program
- Limiting parallelism mitigates dataflow's problems
- ...But also sacrifices the extreme parallelism available in dataflow

Many other research proposals to exploit dataflow

- Dataflow at multiple granularities
- Dataflow amongst many von Neumann tasks

Beyond architecture, many lasting ideas:

- Integration of communication with thread (handler) generation
- Tightly integrated communication and fine-grained synchronization
- Remained useful concept for software (compilers etc.)

Systolic/Spatial Architectures

- Replace single processor with array of regular processing elements
- Orchestrate data flow for high throughput with less memory access

Different from pipelining: Nonlinear array structure, multidirection data flow, each PE may have (small) local instruction and data memory

Different from SIMD: each PE may do something different

Different from dataflow: highly regular structure to computation

Initial motivation: VLSI enables inexpensive special-purpose chips, can represent algorithms directly by chips connected in regular pattern

Example & Lasting Contributions of Systolic

Example: Systolic array for 1-D convolution

- Practical realizations (e.g. iWARP from CMU in late 80s) use general processors
 - Enable variety of algorithms on same hardware
- But dedicated interconnect channels
 - Data transfer directly from register to register across channel
- Specialized, and same problems as SIMD
 - General purpose systems work well for same algorithms (locality etc.)
- Recently, revived interest in neural network accelerators, processing-in-memory
 - E.g., Google's tensor processing unit (TPU)

MIT RAW Processor ('02)

Tiled mesh multicore

Very simple cores

No hardware coherence

Register-to-register messaging

Programmable routers

Programs split across cores

Looks like a systolic array!

Comparison of Parallel Arch Schools

	Naming	Operations	Ordering	Processing Granularity
Sequential	All of memory	Load/store	Program	Large (ILP)
Shared memory	All of memory	Load/store	SC + synch	Large-to-medium
Message passing	Remote processes	Send/receive	Messages	Large-to-medium
Dataflow	Operations	Send token	Tokens	Small
Data parallel	Anything	Simple compute	Bulk-parallel	Tiny
Systolic/ spatial	Local mem + input	Complex compute	Local messages	Small

Fundamental Issues in Parallel Architecture

Parallel Speedup

Time to execute the program with 1 processor

Time to execute the program with *N* processors

Parallel Speedup Example

Computation: $a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$

Assume each operation 1 cycle, no communication cost, each op can be executed in a different processor

How fast is this with a single processor?

Assume no pipelining or concurrent execution of instructions

How fast is this with 3 processors?

Takeaway

To calculate parallel speedup fairly you need to use the **best known algorithm** for each system with N processors

"Scalability! But at what COST?"

[McSherry+, HotOS'15]

Large, distributed research systems are outperformed by an off-the-shelf laptop

Utilization, Redundancy, Efficiency

Traditional metrics

Assume all P processors are tied up for parallel computation

Utilization: How much processing capability is used

U = (# Operations in parallel version) / (processors x Time)

Redundancy: how much extra work is done

• R = (# of operations in parallel version) / (# operations in best uni-processor algorithm version)

Efficiency

- E = (Time with 1 processor) / (processors x Time with P procs)
- \circ E = U/R

Amdahl's law

You plan to visit a friend in Normandy France and must decide whether it is worth it to take the Concorde SST (\$3,100) or a 747 (\$1,021) from NY to Paris, assuming it will take 4 hours Pgh to NY and 4 hours Paris to Normandy.

	Time NY→Paris	
Boeing 747	8.5 hrs	
Concorde SST	3.75 hrs	

Taking the SST (which is 2.2 times faster) speeds up the overall trip by only a factor of 1.4!

Amdahl's law (cont)

Old program (unenhanced)

 T_1 T_2

Old time: $T = T_1 + T_2$

New program (enhanced)

$$T_1' = T_1$$
 $T_2' <= T_2$

New time: $T' = T_1' + T_2'$

 T_1 = time that can NOT be enhanced.

 T_2 = time that can be enhanced.

T₂' = time after the enhancement.

Speedup: S_{overall} = T / T'

Amdahl's law (cont)

Key idea: Amdahl's law quantifies the general notion of diminishing returns. It applies to any metric or activity, not just the performance of computer programs.

Two key parameters:

$$F_{enhanced} = T_2 / T$$
 (fraction of original time that can be improved)
 $S_{enhanced} = T_2 / T_2$ (speedup of enhanced part)

Amdahl's Law:

$$S_{\text{overall}} = T / T' = \frac{1}{(1 - F_{\text{enhanced}}) + \frac{F_{\text{enhanced}}}{S_{\text{enhanced}}}}$$

Amdahl, "Validity of the single processor approach to achieving large scale computing capabilities," AFIPS 1967.

Amdahl's law (cont)

Trip example: Suppose that for the New York to Paris leg, we now consider the possibility of taking a rocket ship (15 minutes) or a handy rip in the fabric of space-time (0 minutes):

	Time NY→Paris	Total Trip Time	Speedup vs. 747
Boeing 747	8.5 hrs	16.5 hrs	-
Concorde SST	3.75 hrs	11.75 hrs	1.4×
Atlas V	0.25 hrs	8.25 hrs	2×
Rip in space-time	0.0 hrs	8 hrs	2.1×

Amdahl's Law for Absolute Limits

Corollary:
$$1 \le S_{overall} \le \frac{1}{1 - F_{enhanced}}$$

F _{enhanced}	Max S _{overall}	F _{enhanced}	Max S _{overall}
0.0	1	0.9375	16
0.5	2	0.96875	32
0.75	4	0.984375	64
0.875	8	0.9921875	128

Moral: It is hard to speed up programs! (Parallelism has limits)

Amdahl's Law for Ideal Parallel Speedup

Amdahl's Law

- f: Parallelizable fraction of a program
- P: Number of processors

Speedup =
$$\frac{1}{1 - f} + \frac{f}{P}$$

 Amdahl, "Validity of the single processor approach to achieving large scale computing capabilities," AFIPS 1967.

Maximum speedup limited by serial portion—aka the **Serial Bottleneck**

Corollary: The Sequential Bottleneck

Why the Sequential Bottleneck?

All parallel machines have the sequential bottleneck

Causes:

Non-parallelizable operations on data

```
for ( i = 0; i < N; i++)
A[i] = (A[i] + A[i-1]) / 2
```

- Synchronization: threads cannot run in parallel all the time
- Load imbalance: "stragglers" slow down program phases
- Resource sharing: threads contend on a common resource

Implications of Amdahl's Law on Design

Accelerate the sequential bottleneck!

[Hill & Marty, IEEE Computer'08]

- Renewed focus on **sequential processor microarchitecture**, despite diminishing returns
 - Dynamically re-configure processor into many small cores vs few big cores?

[Ipek+, ISCA'07]

- Specialize communication & synchronization to reduce stalls
- Hardware support for fine-grain scheduling to reduce load imbalance
- Architectural features to limit resource contention (e.g., cache/bandwidth partitioning)
- Accelerate critical sections, e.g., by migrating them to a faster core

[Suleman+, ASPLOS'09]

Amdahl's Law in the accelerator era

- Amdahl's Law applies equally well to accelerator design
- Speedup from a heterogeneous SoC limited by fraction of program it accelerates
- Hard limits to performance gain from accelerators

Implications of Amdahl's Law on Design

- CRAY-1
- Russell, "The CRAY-1 computer system," CACM 1978.
- Well known as a fast vector machine
 - 8 64-element vector registers

- The fastest SCALAR machine of its time!
 - Reason: Sequential bottleneck!

Why is Parallel Programming Hard?

Little difficulty if parallelism is natural

- "Embarrassingly parallel" applications
- Multimedia, physical simulation, graphics
- Large web services

Big difficulty is in

- Harder-to-parallelize algorithms
- Getting parallel programs to work correctly
- Optimizing performance in the presence of bottlenecks

Much of **parallel computer architecture** is about

- Designing machines that overcome the sequential and parallel bottlenecks to achieve higher performance and efficiency
- Making programmer's job easier in writing correct and high-performance parallel programs
- E.g., hardware transactional memory [Hammond+, ISCA'04]

Self-check questions

Why is parallelism a central focus of computer architecture today, vs. twenty years ago?

Why is sequential performance still important, regardless of the focus on parallelism?

What are the key differences between ILP, data-parallel, and dataflow architectures?

How would cache locality vary between multi-threaded, data-parallel, and dataflow programs? How might you design a memory hierarchy differently for each?