Exercise 16.2

(1) Show that a median of a triangle divides it into two triangles of equal area.

Given Median of the triangle

To Prove: Median divides the triangle into two triangles of equal area.

Proof Make \triangle ABC, with \overline{CD} as median and \overline{CE} as altitude

Statements	Reasons
$m\overline{AD} = m\overline{DB}$ (i)	D is midpoint of m AB
Area of the $\triangle ACD = \frac{1}{2}$. m \overline{AD} . m \overline{CE} (ii)	
Area of the $\triangle BCD = \frac{1}{2}$. m \overline{BD} .m \overline{CE}	
$= \frac{1}{2} . m\overline{AD}.m\overline{CE} \qquad(iii)$	By (i)
$\Delta ACD = \Delta BCD$	By (ii) and (iii)

(2) Prove that a parallelogram is divided by its diagonals into four triangles of equal area.

Given

ligm divided by its diagonals into four triangles

To Prove

Areas of the four triangles are equal

Proof

Statements	Reasons
Area of $\triangle OBC = \frac{1}{2} \text{ mOA}.m \overline{BE}$	
$= \frac{1}{2} \overline{\text{OC}}.\overline{\text{mBE}} \qquad \dots \dots$	
The diagonals of the Ilgm bisect each other	
$\therefore m\overline{OA} \cong m\overline{OC}$	
In $\triangle OAB \leftrightarrow \triangle OCD$	
$m\overline{OB} \cong m\overline{OD}$	
$m\overline{OA} \cong m\overline{OC}$	
<1 ≅ <2	opposite angles
$\Delta \text{ OAB } \cong \Delta \text{OCD}$ (ii)	
$\Delta \text{ OAD } \cong \Delta \text{ OBC}$ (iii)	
\therefore Area \triangle OAB = Area \triangle OBC = Area \triangle OCD = Area \triangle ODA	By (i), (ii),(iii)

(3) Which of the following are true and which are false?

(i) Area of a figure means region enclosed by bounding lines of closed figure.

TRUE

(ii) Similar figures have same area.

FALSE

(iii) Congruent figures have same area.

TRUE

(iv) A diagonal of a parallelogram divides it into two non-congruent triangles.

FALSE

(v) Altitude of a triangle means perpendicular from vertex to the opposite side (base).TRUE

(vi) Area of a parallelogram is equal to the product of base and height.

TRUE

Q.4 Find the area of the following.

