We Claim:

		,
	1	A method of forming a conformal thin film of silicon oxide on a
	2	substrate having spaced conductive lines thereon comprising the steps of:
	3	mounting a substrate onto a substrate support in a vacuum chamber;
	4	forming a plasma in the vacuum chamber in a region above the
	5 A	substrate by means of an electrical power source from a reaction gas comprising a
	16	mixture of tetraethylorthosilicate and a fluorine-containing halocarbon gas selected
/	7	from the group consisting of CX_4 and CX_3 - $(CX_2)_n$ - CX_3 wherein X is hydrogen or
	_8), \	halogen and n is an integer from 0 to 5 with the proviso that at least one X is
	M	fluorine; and
	10	subjecting the substrate to the plasma so as to deposit a layer of silicon
6.01 the fact of t	11	oxide containing at least about 2.5 atomic percent of fluorine onto the substrate
	12	without the formation of voids in the film.
7-11 14-11		•
	1	2. The method of claim 1 wherein the plasma is created from the
	2	tetraethylorthosilicate and C ₂ F ₆ .
	1	3. The method of claim 1 wherein the plasma is created by means
n	2	of two power sources having different frequencies.

4.

5. The method of claim 4 wherein the second power source has a frequency of about 400 kHz.

of one power source having a frequency of about 13.56 MHz and a second power

source having a frequency of between 50 KHz and 1000 KHz.

The method of claim 3 wherein the plasma is created by means

6. The method of claim 1 wherein a single power source having a frequency of about 13.56 MHz is used.

1

2

3

1

2

1

2

1	7. The method of claim 1 wherein said power source is a source of
2	microwave power.
1	A method of forming a conformal thin film of silicon oxide
2	over a substrate having spaced conductive lines thereon in a plasma chamber
3	comprising
4	mounting a substrate in said chamber;
5	introducing into the chamber in a region above said substrate as a
6	plasma precursor gas vaporixed tetraethylorthosilicate in a carrier gas including
\nearrow	oxygen and a fluorocarbon selected from the group consisting of
178	CX_4 and CX_3 - $(CX_2)_n$ - CX_3
3000	wherein X is hydrogen or fluorine and n is an integer from 0 to 5 with
19	the proviso that at least one X is fluorine;
11	and thereafter forming a plasma therefrom, so as to deposit a layer of
12	silicon oxide containing at least about 2.5 atomic percent of fluorine over said
13	conductive lines.
1	9. A method according to claim 8 wherein the plasma precursor
2	gas contains a ratio of silicon:fluorine of about 14:1.
1	10. A method according to claim 8 wherein the conductive lines are
2	less than 1 micron in width and no more than 1 micron apart.
1	11. In a processing chamber, a method of depositing a layer having
2	a predetermined intrinsic stress level over a substrate, the method comprising:
3	(a) distributing a halogen source to said processing chamber at a
4	selected rate, said selected rate being chosen according to said predetermined stress
5	level;
6	(b) introducing a process gas comprising silicon, oxygen and said
7	halogen source into said chamber; and

8	(c) forming a plasma from said process gas to deposit said layer
9	having said predetermined intrinsic stress level over said substrate.
1	12. The method of claim 11 wherein said predetermined stress level
2	is a compressive stress level.
	/ ·
1	13. The method of claim 11 wherein said halogen source comprises
2	a fluorine source.
1	14. The method of claim 13 wherein said fluorine source is selected
2	from the group consisting of CF_4 , C_2F_6 , SiF_4 and $TEFS$.
1	15. The method of claim 14 wherein said silicon source comprises
2	TEOS.
1	16. The method of claim 15 wherein said predetermined intrinsic
2	stress level is between about -1.0x109 dynes/cm2 and -0.5x109 dynes/cm2.
1	17. The method of claim/16 wherein a dielectric constant of said
2	layer is between about 3.8 to 4.1.
1	18. The method of claim 13 further comprising steps of:
2	(d) repeatedly performing steps (a) through (c) to deposit a
3	halogen-doped silicon oxide film on a plurality of substrates;
4	(e) measuring the intrinsic stress of said deposited halogen-doped
5	silicon oxide film on each of said plurality of substrates; and
6	(f) if said intrinsic stress of said deposited halogen-doped silicon
7	oxide films is too high, increasing said selected rate at which said halogen source is
8	introduced during deposition of a halogen-doped silicon oxide film over a
9	subsequently processed substrate to lower the intrinsic stress of said subsequently
10	deposited halogen-doped silicon oxide film, and if said intrinsic stress of said
	1

	\mathcal{N}
11	deposited halogen-doped silicon oxide films is too low, decreasing said selected rate
12	at which said halogen source is introduced during deposition of a halogen-doped
13	silicon oxide film over a subsequently processed substrate to increase the intrinsic
14	stress of said subsequently deposited halogen-doped silicon oxide film.
1	19. The method of claim 13 wherein said selected rate is
2	determined from a database of measured intrinsic stress levels of previously deposited
3	films.
1	20. The method of claim 11 wherein said processing chamber
2	comprises a high-density plasma chemical vapor deposition chamber and said plasma
3	is formed by application of radio-frequency power to a coil.
. 1	21. In a processing chamber, a method of depositing a layer having
2	a selectively varied stress level on a substrate, the method comprising:
3	(a) distributing a halogen source to said processing chamber at a
4	first selected rate, said first selected rate being chosen according to a first
5	predetermined stress level:
6	(b) introducing a process/gas comprising silicon, oxygen and said
7	halogen source into said chamber;
8	(c) forming a plasma from said process gas to deposit a first
9	portion of the layer having said first predetermined intrinsic stress level over said
10	substrate; and then
11	(d) distributing the halogen source to said processing chamber at a
12	second selected rate, said second selected rate being chosen according to a second
13	predetermined stress level to deposit a second portion of the layer on the first portion
14	of the layer, said second portion of the layer having said second predetermined
15	intrinsic stress level.
1	22. The method of claim 21 where said first predetermined stress
2	level is compressive and said second predetermined stress level is tensile.

1	23. The method of claim 21 where said first predetermined stress
2	level is tensile and said second predetermined stress level is compressive.
1	24. A substrate processing system comprising;
2	a housing for forming a vacuum chamber;
3	a substrate holder, located within said housing for holding a substrate
4	a gas delivery system configured to introduce a process gas into said
5	vacuum chamber:
6	a plasma generation system configured to form a plasma from said
7	process gas;
8	a controller for controlling said gas delivery system and said plasma
9	generation system; and
10	a memory coupled to said controller comprising a computer readable
11	medium having a computer readable program embodied therein for directing
12	operation of said substrate processing system, said computer readable program
13	comprising:
14	a first set of instructions for controlling said gas delivery system to
15	introduce a process gas comprising silicon, oxygen, and a halogen source into said
16	gas mixing area; and
17	a second set of instructions for controlling said plasma generation
18	system to form a plasma from said gases by said first set of instructions to deposit a
19	layer over said substrate;
20	whereby said first set of instructions controls said gas delivery system
21	to introduce said halogen source into said gas mixing area at a selected rate so that
22	said deposited layer has a predetermined intrinsic stress level.
1	25. The substrate processing system of claim 24 wherein said first
2	set of instructions controls said gas delivery system to introduce a fluorine source as
3	said halogen source into said gas mixing area at a selected rate so that said deposited
4	layer has a stress level of between -1.0 to -0.5x109 dynes/cm ² .

1	26. The substrate processing system of claim 24 wherein said first
2	set of instructions controls said gas delivery system to introduce said fluorine source
3	into said chamber at a rate that is about 20% or less of the total gas flow into said
4	chamber.
	7
(D)	
0,5	