Algorithm Engineering

July 13, 2015

Datentypen

Getränkeautomat

Automat akzeptiert 1E, ein Getränk kostet 3E Operatoren:

- 1. Init(Reset)
- 2. Akzeptiere1E

 $\mathrm{Init} \to \mathrm{Zustand}$

Semantik: Automat geht in Zustand 0

Akzeptiere1E: ZustandX $\{0,1\} \to \text{ZustandX}\{\text{tue nichts, gib Getänk}\}$ Semantik: Beschreibung durch einen endlichen Automaten.

Stadtplan

Übung 1

Bemerkungen

- Operatoren können partiell Definiert sein. Man gibt Definitionsbereich oft in einer Vorbedingung an.
- Operatoren, bei denen der Datentyp selbst auf der linken Seite nicht vorkommt, heißen <u>Konstruktoren</u>. Sie erzeugen ein neues Objekt (bzw. versetzen den Typ in einem bestimmten Zustand).
 - Create: \rightarrow stack<T>
 - Create: int \rightarrow vector (Vektor bestimmter Dimension)
- Objekt- und Zustandssicht sind beide nützlich. <u>Stack/Getränkeautomat</u> haben internen Zustand, Operatoren können ihn verändern.
 - Integer: Objektsicht besser, Operatoren erzeugen neue Objekte, exisitierende werden nicht geändert.
- stack< T > ist ein parametrisierbarer Datentyp: Stack mit Elementen vom Typ T. Hat eventuell besondere Anforederungen an Typ T, z.B. $x \le y$ in Dictionaries.
- Man kann nun eigentlich schon programmieren, obwohl über die Interpretiernug noch nichts bekannt ist.

Anwendung von stack< T >

Auswertung von Postfix-Ausdrücken

Vereinfachungen: alle Operatoren binär (+-*/), Eingabe nur Zahlen 0-9

Bsp.: $(7-5)*(3+1) \rightarrow 75-31+*$

Defintion eines Datentyps

(In einer Objekt-Orientierten Programmiersprache)

```
class Typname {
    //Definition der Menge der Objekte bzw Zustaende
    private: //Deklaration von Variablen zur Darstellung der Objekte/Zustaende
    public: //Operatoren
    //Kommentare z.B. ueber Effizienz
```

Operatoren

};

Methoden/Memberfunktionen Syntax: Ergebnistyp Name(Argumente...); Spezielle Methoden:

- Kein Ergebnistyp: stack(); stack(size);
- Destruktor: ~ Typname();

Beispiel

 $int_stack \rightarrow stack < T >$

```
class int_stack {
        /* Eine Instanz vom Typ int_stack ist eine Folge von ganzen Zahlen (int). Eine Fol
        private: //Implementierung
        public: stack(int sz); //Konstruktor
        //Erzeugt einen Stack mit maximaler Groesse sz
        stack() //Destruktor
        void push (int x);
        //fuegt x als letzes Element (top) an die Folge an.
        int top() const;
        //liefert das letzte (top) Element
        //Precondition: Stack nicht leer
        int pop();
        //entfernt letztes (top) Element der Folge und gibt es zurueck
        //Precondition: Stack nicht leer
        bool empty() const;
        //true, wenn Stack leer, false sonst.
```

In c++ Spezielle Header Datei, die die Deklarationen ohne Rumpf enthält. Implementierung in .cpp

Implementierung der Klasse int_stack

```
#include "int_stack.h"
int_stack::int_stack(int n) {
        sz=2;
       A = new int[sz];
        t = -1; //leer
int_stack: ~ int_stack(){
        delete [] A;
void int_stack::push(int x){
        if (t = sz-1){
                //stack voll
                int* B=new int [2*sz];
                sz \leftarrow 2*sz;
                for (int i=0; i \le ; i++){
                       B[i] ←
                delete [] A;
       int int_stack::pop(){
        if (t = -1){
               EXCEPTION("Leerer Stack")
        return A[t--];
}
```

Einschub: Variablen, Konstruktoren, Wertzuweisung

ablen Deklaration c++: Aufruf des Konstruktors generiert ein Objekt.

Java: Erst eine Referenz erstellen, dann ein Objekt generieren und auf dieses verweisen.

Wertzuweisung c++: $int_s tacks1, s2; s1 = s2$; Objekt wird kopiert, es gibt 2 Objekte.

Java: $int_s tacks1, s1; s1 = s2$; Referenzen zeigen auf ein einziges Objekt.

semantik in c++: Verwendet Pointer auf ein Objekt.

Test auf Gleichheit (==) Operator

Parameterübergabe sind Pointer

semantik in Java: Parameter by Value, gesamtes Objekt kopiert und dann übergeben.

Korrektheit einer Implementierung

(Hier der Array-Implementierung von int_stack) Eigentlich 2 Datentypen:

- 1. der abstrake Datentyp $int_s tack$
- 2. der konkrete Datentyp Array

Abstrakter Zustand: Folge von int's

Konkreter Zustand: Werte der Variable A,t,sz

Wir garantieren (Invariante), dass nicht die Kombination von A,t,sz möglich sind, sondern nur gültige Zustande

- 1. A ist ein Feld der Länge sz
- 2. $-1 \le t \le sz 1$

Sei Z=Menge der konkreten Zustände und S = Menge der abstrakten Zustände Um die Korrektheit zu zeigen, definieren wir eine Abbildung $F:Z\to S$ $(A,sz,t)\to \left\{ \begin{array}{ll} Folge\ A[0],...,A[t]\ fallst\geq 0 \\ Leere\ Folge,t=-1 \end{array} \right. \ \ \text{Und zeigen:}$

- 1. Konstruktoren erzeugen gültige konkrete Zustände
- 2. Für jede abstrakte Operation und die dazugehörige konkrete Operation f_{op} zeige $F(f_{op}(Z)) = op(F(Z))$ Bsp.: push: $S \times int \to S$ $f_{push}: Z \times int \to Z$

Kommutatives Diagramm:

```
z \xrightarrow{F} s
\downarrow f_{op} \uparrow op
z' \xrightarrow{F} s'
```

Vererbung/Generische Datentypen

Templates/Wiederverwendung von Code

Situation

Man braucht einen Datentyp A, der sehr ähnlich zu einem bereits vorhandenen definierten Typ B ist. A soll:

- einen Teil der Daten/Operationen verwenden
- andere Daten/Operationen anfügen
- einige verändern (auf andere Weise implementieren)

Beispiel

Es existiert die Klasse Polygon (B), implementiert werden soll eine Klasse Rechteck (A). A ist eine Spezialisierung von B Rechteck könnte alle Polygon-Operationen (draw(),translte etc) Einige Operationen können effizienter implementiert werden (Flächeninhalt etc.) Andere sind nur für Rechtecke definiert. Jedes Rechteck ist ein spezielles Polygon.

Allgemein

Ableitungen auch als Baum darstellbar (Shape mit Kindern Polygon/Ellipse/Punkt etc)

Typverträglichkeit

Einer Variable vom Typ B* oder B& (alle Variablen in JAVA vom Typ B) kann ein Opbjekt (Pointer/Referenz) vom Typ A zugewiesen werden.

Alle im Ableitungsbaum erreichbaren Typen können zugewiesen werden (Kinder).

Eine Variable hat 2 Typen: Einen Statischen Typ, der zur Compilezeit bekannt ist. Dynamischer Typ, der zur Laufzeit bekannt ist.

Polymorphe Datenstrukturen

```
polygon* p = new rechteck()
double func(polygon& p){
         return poly.area();}
rechteck rect = new rechteck();
func(rect);

Es wird per dynamischer Bindung die Funktion func der Klasse Rechteck aufgerufen.
C++ benutzt standardmäßig statische Bindung esseidenn Funktion ist "virtual". Bsp.: Feld von Polygonen c++: Polygon** (Ein Pointer auf ein Feld von Pointern) A = new Polygon*[100];
A[0] = new Polygon(...);
A[1] = new Rechteck(...);
```

Abstrakte Klassen werden verwendet um Interfaces zu definieren.

Z.B. Shape als abstrakte Klasse. In C++ werden Methoden als abstrakt markiert, wenn sie bei der Deklaration = 0 gesetzt werden virtual void draw() = 0;

Anwendung auf Algorithmen

```
Lineare Ordnungen durch ein Interface umgesetzt. In C++:
```

Anwendung: Sortiere ein Feld von point

Zum Vergleich benutzt man x.compare(y)

Datenstrukturen, bei denen Comparable sinnvoll ist:

• Binäre Suchbäume, bei denen die Knoten vergleichbar sind.

Weitere Anwendung von Vererbung

```
Generische Datenstrukturen wie z.B. Listen von beliebigen Objekten.
```

Einfach verkettete Liste:

Beobachtung: Implementierung der Operationen (push, pop), ist nicht abhängig vom Typ. Der Wert (int,string,point,...) jedoch schon.

Abstraktion: Liste ohne Werte

1. Basisklasse für allgemeines Listenelement:

2. Basisklasse für allgemeine List:

```
class slist {
    slist_element* first;
    slist() {first = NULL;}

    void push(slist_element* p){
        p->next = first;
        first = p;
}
slist_element* pop(){
        if(first == NULL) return first;
        slist_element* p = first;
        first = first.next;
        return p;
}
```

slist funktionirt auch für alle von slist_elem abgeleiteten Klassen.

Besondere Elemente werden als neue Klassen definiert, die von slist_element erben.

Ein "Point" ist ein "slist_element"

```
slist L;
point* p = new point(x,y);
L.push(p);
```

slist ist Polymorph, es kann als Liste verschiedener Datentypen dienen.

Situationen in denen diese Polymorphie vorteilhaft ist: Grafik-Editor:

```
void drawAll() //Iteriere ueber Liste und rufe draw fuer alle auf
forall x in scene //scene ist die Liste
    x -> draw();
```

Falls wir eine Liste von einem bestimmten Objekt-Typ verwenden wollen (z.B.b point_list) wird diese von slist abgeleitet.

```
class point_list: public slist {
    //neues Interface das nur points erlaubt
    void push(point* p) {slist::push(p);}
    point* pop(){return (point*) slist::pop();}
```

```
//Das Casting ist sicher, da durch push sicher nur points in der Liste sind.
}
Aufwändige Datenstruktur: Balancierte Suchbäume (z.B. AVL)
1. Klasse für die Knoten (benötigt parent, left, right)
class bin_tree_node{
         bin_tree_node* left, right, parent;
};
2. Klasse für den Baum:
class bin_tree {
         virtual int cmp(bin_tree_node* p, bin_tree_node* u) = 0
         //Bsp.: cmp(p,q) = \{-1, wenn p < q; 0, wenn p = q; 1, wenn p > q\}
         void insert(bin_tree_node* p){
                  //fuegt p in den Baum ein, verwendet cmp als Vergleich
         bin_tree_node* lookup(bin_tree_node* p){
                  /* in Schleife:
                  if cmp(q,p) > 0 q=q->left;
                            else q=q->right;
                            */
         }
}
Anwendung auf Point:
class point:public bin_tree_node{
class point_bin_tree:public bin_tree{
         //\operatorname{Definiere} cmp Funktion
         int cmp(bin_tree_node* p, bin_tree_node* q){
                  point* a = (point*)p;
                  point* b = (point*)q;
                  if(a->x < b->x) return -1;
                  if(a\rightarrow x > b\rightarrow x) return 1;
                  if(a\rightarrow y < b\rightarrow y) return -1;
                  if(a\rightarrow y > b\rightarrow y) return 1;
                  return 0;
         void insert(point* p){
                  bin_tree::insert(p);
         point* min() {return (point*)bin_tree::min();}
}
```

Templates

Funktionstemplates

```
template < class T> Beispiel: swap(T& x, T& y) Vertauscht den Inhalt der beiden Variablen swap (T& x, T& y) {  T \ tmp = x; \\ x = y;
```

```
y= tmp;
```

Implementierung ist unabhängig von T.

Klassentemplates

```
template < class T>
class stack{
         T* A; //Feld von T's
         int sz;
         int t;
         public
         void push (T x) \{ \dots \}
         T pop {...}
}
Beispiel für mehrere Typen:
template < class K, class I>
class dictionary {
         //Woerterbuch mit Schluessel vom Typ K und werte vom Typ I
         void insert(K k, I i) \{...\}
         I translate (K \text{ key}) \{ \dots \}
}
```

Anwendungsbeispiel: Word-Count, zählt wie oft einzelne Wörter in einem Text vorkommen. dictionary<string,int? > D; Speichert Wort als Schlüssel, Häufigkeit als Wert.

Fortgeschrittene Datenstrukturen und Algorithmen

LEDA: Library of Efficient Datatypes and Algorithms

Plattform: Algorithmus \rightarrow Programm

Datentypen: Listen, Stacks, Dictionaries, Priority Queue

Efficient: Datenstrukturen

Einfache Benutzung (Pseudocode soll leicht in C++ umsetzbar sein)

Korrektheit: Datentypen (Definition), Program Checker

Weitere Themen: Graph-Datenbanken, -Algorithmen, Geometrie

Spezifikationen von Datentypen in LEDA

Item-Konzept: Viele Datentypen sind Definiert als Menge von Items.

Item: Zugriff über Parameter (Abstraktion von den Begriffen Pointer, Referenz, Index)

Bsp.: dictionary < string, int > D speichert Paare aus Schlüsseln (string) und Informationen (int)

Definition: D ist eine Menge von Items (dictionary-Items)

Operationen:

- D.insert(string s, int i): Falls D kein Item mit Schlüssel s enthält, füge Item (s,i) ein und gib es zurück. Sonst: Ändere Datenwert i und liefere es zurück.
- D.lookup(strin s): liefet das Item mit dem Schlüssel s, falls es nicht existiert, Null.

```
2. Beispiel: Priority Queue priority\_queue < P, I > PQP: Priorität z.B. Zahl, I: Information (z.B. Knoten eines Graphen) Definition: Menge von Items
```

Operationen: insert, find Min (minimale Priorität), prio (setze Priorität), inf (setze Information), delmin, decrease_P

Dijkstra Algorithmus

Eingabe: Graph G=(V,E), Kostenfunktion $cost=E\to int^+$, Startknoten $s\in V$ Ausgabe: Distanzfunktion $dist:V\to int^+$, dist(v)= Kosten eines billigsten Pfades von s nach v. Kosten eines Pfades: Summe der Kanten. Idee von Dijkstra:

- Überschätze Distanzfunktion: 0, falls s=v, inf, falls $s \neq v$.
- Kandidatenlist U: Menge aller Knoten, aus deren Kanten ausgehen können, die eine Abkürzung darstellen.
- Wähle jeweils $u \in U$ mit dist(u) minimal
- Beobachtung: dist(a) ist korrekt.
- Durchlaufe alle aus u ausgehenden Kanten und überprüfe Dreiecksungleichung, reduziere Distanz von v

Kann effizient mit Fibonacci Heap realisiert werden.

Graphalgorithmen in LEDA

Der Datentyp Graph

Dient zur Erstellung von gerichteten Graphen G=(V,E) mit $E\subseteq (V\times V)$

Arten von Objekten

```
Operationen auf einem Graphen G:
Access Operationen:
      node G.source(Edge e): Von welchem Knoten geht die Kante e aus
      node G.target(Edge e): Zu welchem Knoten geht die Kante e
      int G.outdeg(node v): Ausgangsgrad
      int G.indeg(node v): Eingangsgrad
      list<edge>G.out_edges(node v)
Update Operationen:
      node G.new_node()
      edje G.new_edge(node v, node w)
      void G.del_edge(edge e)
      void G.del_node(node v) (entfernt v und alle Kanten)
Iterationen (Laufvariable wird extern deklariert, weil weil):
      forall_nodes(v,G)
      forall_edges(e,G)
      forall_out_edges(e,v)
      forall_in_edges(e,v)
Beispiel: Iteration über alle Nachbarknoten von v:
forall_out_edges(e,v){
          node w = G. target (e)
}
Beispiel: Teste, ob G azyklisch
Idee: Siehe topologisches Sortieren:
      Solange ein Knoten v existiert mit indeg(v)=0, entferne ihn und alle ausgehenden Kanten.
      Falls G leer, dann ist der Graph azyklisch.
```

```
zero \leftarrow \{v \in V \mid indeg(v) = 0\}
while zero \neq \emptyset do
         u <- beliebiger Knoten aus zero
         zero \leftarrow zero \setminus \{u\}
         for all v \in V mit (u, v) \in E
                   entferne (u,v) aus G
                   if indeg(v)=0 then
                            zero \leftarrow zero \cup \{u\}
                   fi
         entferne u aus G
od
Als C++ Programm (oder auch nicht... Näherliegende Gründe):
bool is Acyclic (graph G) // Call by Value, Graph wird kopiert
         stack<node> zero;
         node v;
         for all_nodes (v,G){
                   if (G.indeg(v)==0) zero.push(v);
         while (!zero.empty()){
                   node u = zero.pop();
                   edge e;
                   forall_out_edges(e,u){
                            node v = G. target(e);
                            G. del_edge(e);
                            if (G.indeg(v)==0) zero.push(v);
                   }
         return G. number_of_edges()==0;
}
```

Informationen (Daten) mit den Knoten und Kanten speichern.

Parametrisierter Graph

Netzwerk: Knoten stehen für Objekte vom Typ vtype, Kanten etype. Unterklasse vom gegebenen graph GRAPH < vtype, etype > G;

Node/Edge Array

```
node\_array < T > A(G) Mit G einem Graph edge\_array < T > B(G)
```

Z.B. Kürzester Weg: DIJKSTRA(graph G, $edge_array < int > cost,node startNode, node_array < int > distance);$

Einige Ausgabedaten werden getrennt vom Graphen übergeben.

Erstes konkretes Beispiel: Dijkstra

```
I[s] = PQ.insert(s,0);
node v;
forall_nodes(v,G){
        if(v!=s) dist[s] = MAXINT;
While (!PQ.empty()) {
        node u = PQ. delmin();
        edge e;
        forall_out_edges(e,u){
                 node w = G. target(e);
                 int d = dist[u] + cost[e];
                 if (d<dist [w]) {
                                 //Dreiecksungleichung
                          if (dist [w]==MAXINT) //Wurde schon besucht?
                                  I[w] = PQ.insert(w,d)
                          else PQ. decrease_p(I[w],d)
                          dist[w] = d;
        }
}
```

Analyse: delmin, insert wird n mal ausgeführt. decrease_p wird m mal (für alle nodes und alle deren Kanten) asugeführt.

Ergebnis: $O((m+n)\log n)$

Korrektheit:

Idee: Füge Programmcode hinzu, der für eine konkrete Testeingabe überprüft, ob das Ergebnis korrekt ist. Teste am Ende, ob für jede Kante die Dreiecksungleichung erfüllt ist.

```
\begin{array}{l} edge\ e;\\ for all\_edges\,(e\,,\!G)\{\\ node\ v=G.\,source\,(e);\\ node\ w=G.\,target\,(e);\\ ASSERT(\,dist\,[v]\,+\,cost\,[e]\,>=\,dist\,[w]);\\ \} \end{array}
```

Netzwerkflussprobleme: Maxflow

Graph: Transportnetzwerk

Jede Kante besitzt eine Kapazität (wie viel pro Zeiteinheit über diese Kante transportiert werden kann). Probleme:

- 1. Maximiere den Transport von einem Knoten s (Source) zu einem Knoten t (Senke)
- 2. Minimiere die Transportkosten (min cost flow)

```
Eingabe: Graph G=(V,E), Knoten s,t\in V|s\neq t, Kapazitäten u\to\mathbb{R}_0^+ Schreibweise: u_{ij} für (u:u(i,j)) Ergebnis: Flussfunktion x:E\to\mathbb{R}_0^+ mit:
```

- 1. $\forall (i,j) \in E : 0 \le x_{i,j} \le u_{i,j}$ Kapazitätsbedingung
- 2. $\forall i \in V \setminus \{s,t\} : \sum_{j \in V \text{} mit(i,j) \in E} x_{i,j} = \sum_{k \in V \mid (k,i) \in E} x_{k,i}$ (Die Menge, die aus i rausgeht, muss auch in i reinkommen).

```
Gesucht ist ein Fluss x mit \sum_{i \in V | (s,i) \in V} x_{s,i} - \sum_{j \in V | (j,s) \in V} x_{js} maximal. \forall i \in V \setminus \{s,t\} \delta(i) = 0 maximiere \delta(s) Beobachtung: \delta(t) = -\delta(s)
```

Idee für einen Algorithmus: Erhöhende Pfade

• Starte mit allen x=0 $(\forall (i,j) \in E : x_{i,j} \leftarrow 0)$

• Erhöhe x entlang von Pfaden von s nach t.

<u>Definition</u> Restnetzwerk G(x) (hängt vom aktuellen Fluss x ab), beschreibt die Möglichkeiten x zu verändern. <u>Erhöhende Pfade</u> Pfad P von s nach t in G(x). Erhöung von $\delta = min\{r_{i,j}|(i,j) \in P\}$ Achtung Der reale Pfad in G hat eventuell Kanten in Gegenrichtung. Beispiel:

- 1. $x \leftarrow 0, G(x) = G$ (man lässt sonst alle Kanten mit Kapazität 0 weg)
- 2. Pfad $s \to t$ such
en, z.B. $a \to^5 3 \to^1 2 \to^{10} 4$
- 3. Pfaderhöhung um δ . $\delta=1$, da minimale Kapazität = 1

4. Bestimmung des neuen G(x) (Restkapazitäten)

 $\underline{\text{Korrektheit}}$ x ist immer ein Fluss. Terminiert mit Fluss x, sodass in G(x) kein Pfad von s nach t (bitte was?) Implementierung

- 1 Keine explizite Darstellung von G(x), stattdessen Navigiere im Originalgraphen, verwende ausgehende Kanten, wenn $u_{i,j} > x_{i,j}$, eingehende Kanten, wenn $x_{i,j} > 0$.
- 2 Berechnung eines erhöhten Pfades: Verwende DFS oder BFS vom Knoten s aus, und berechne die Kanten wie in 1. beschrieben. Stoppe, wenn t erreicht.
- 3 Darstellung des Pfades durch pred-Verweise (Vorfahrverweise).

Beispiel Pfaderhöhung (MaxFlow)

Idee: Suche alle im Restnetzwerk erreichbaren Knoten bis t gefunden wurde (mit DFS,BFS o.A.) Algorithmus Labelling:

graph G;edge_array< int > cap; edge_array< int > flow;node_array< bool > label; node_array< edge > predecessor;

//UEbergabeparameter: Startknoten s edge e; forall_edges(e,G) flow[e] \leftarrow 0;

```
node v;
forall_nodes(v,G){
         labelled[v] \leftarrow fale;
         pred[v] \leftarrow NULL;
while (true) {
         queue<node> S;
         S.append(s);
         labelled[s] \leftarrow true;
         while(S.empty() = false)
                  node v = S.pop();
                  //iteriere alle im Restnetzwerk adjazenten Kanten
                  edge e;
                  forall_out_edges(e,V) {
                           if (flow [e] = cap [e]) continue;
                           node w = G. target(e);
                           if (labelled [w]) continue;
                           labelled[w] \leftarrow true;
                           pred[w] \leftarrow e;
                           S.append(w);
                  forall_in_edges(e,V){
                           if(flow[e] = 0) continue;
                           node w = G.source(e);
                           if (labelled [w]) continue;
                           labelled[w] \leftarrow true;
                           pred[w] \leftarrow e;
                           S. append (w);
                  }
         if (labelled [t] == false) break; //t nicht erreichbar
         int delta = MAXINT;
         node v = t;
         while (v != s){
                  edge \ e = pred[v];
                  int r = (G.source(e) = v)? flow[e] : cap[e] - flow[e];
                  if(r < delta) delta = r;
                  v = (G. source() == v) ? G. target(e) : G. source(e) ;
         }
         v = t;
         while (v!=s) {
                  edge \ e = pred[v];
                  if (v=G. target (e)) {
                           flow[e]+=delta;
                           v = G.source(e);
                  } else {
                           flow[e] -= delta;
                           v = G. target(e);
                  }
         }
}
```

Geometrische Algorithmen

```
In \mathbb{R}^2
```

Objekte (Klassen/Typen): Point, segment (Strecken), line (Gerade)

Operationen: Vergleiche, Orientierung (Lage eines 3. Punktes zum Strahl zwsichen den ersten beiden)

Grundoperationen

a.orientation(b,c)

Vergleich von Punkten

a.cmp_xy(b): +1, wenn $a >_{xy} b$, 0 wenn a = b, -1 wenn $a <_{xy} b$

Min/Max in xy: trivial Vergleich von Entfernungen

Ist c oder b näher an a... $sign((d_x^2 + d_y^2) - (d_x^{'2} + d_y^{'2}))$

Bei allen Grundoperationen muss nur +,- und * verwendet werden, schneller und exakt

Anwendung von orientation

Strecke: segment(a,b)

point s.start(), point s.end()

Schnitt von zwei Segmenten:

Zwei Segmente (a,b) (c,d): a, orientation(b,c) != a.orientation(b,d) \land c.orientation(d,a) != c.orientation(d,b)

Konvexe Hülle

Eingabe: Liste von Punkten L

Ausgabe: Kleinstes konvexes Polygon P, das alle Punkte enthält (Polygonecken sind Punkte aus L)

Konvex: Alle Winkel des Polygons > 180 Grad, jede Strecke zwischen zwei Punkten in diesem Polygon liegt

komplett im Polygon.

Ausgabe: Ecken gegen den Urzeigersinn sortiert (und nummeriert)

Algorithmus: Gift wrapping (Ursprünglich im Raum)

Starte bei $Min_{xy}(L)$ **Laufzeit:**O(h*n): h=#Ecken

KH ist mindestens so komplex wie Sortieren von n Zahlen

```
list <point > convexHull(list <point > &L) {
    list <point > P;
    point q0 = L.first();
    point p;
    forall(p in L) {
        if (p.cmp_xy(q) == -1) q0=p;
    }
    P.append(q0); L.del(q0);
    while 1 {
        point q = L.first()
         forall(p in L) {
            if P.last().orientation(q,p) == -1 ||
```

```
(P.last().orientation(q,p) == 0 \&\& P.last().cmp\_dist(q,p) == -1) \\ q = p; \\ \\ L.del(q); \\ if q == q0 break \\ else P.append(q); \\ \\ \\ return P; \\ \\ \end{cases}
```

Verschiedene Algorithmen mit Laufzeit O(n logn) Strategien:

- Inkrementell, Punkt zu Punkt
- Divide and Conquer
- Scan/Sweep

Inkrementell:

Sortiere Punkteliste nach xy. Durchlaufe die Punkte, aktueller Punkt sei p_i

 $CH_i = CH(p_1, ..., p_i)$ ist berechnet

Schritt: Entferne alle von p_{i+1} sichtbaren Ecken aus CH_i , füge p_{i+1} stattdessen an.

Dafür: Finde die Tangenten Berührpunkte o (oben) und u (unten), entferne alle Punkte zwischen o und u. Füge p_{i+1} nach u ein

```
//Datenstruktur
list <point> L;
L. cyclic_succ(p)
L.cyclic_pred(p)
//Punkte in L gegen den Urzeigersinn sortiert
//Initialisierung
//Dreieck aus p123, Annahme: nicht colinear, es muss p1.orientation(2,3) >0
//Schleife
for (int i = 4; i \le n; i++){
        point o = p_{-}\{i-1\}
        while (pi.orientation (o, CH. cyclic_succ (o) <= 0){
                 o = CH. cyclic_succ(o)
        point u = p_{-}\{i-1\}
        while (pi.orientation(u,CH.cyclic_pred(u)) >=0){
                 u = CH. cyclic_pred(u);
        CH. delete_internal(u,o)
        CH. insert_after (pi,u)
```

Analyse: Sortieren in O(n logn), for Schleife (jeder Punkt wirst höchstens einmal entfernt) \rightarrow O(n)

 \rightarrow O(n), falls schon sortiert, ansonsten O(n logn)

Divide and Conquer: p1,...,pn sortiert

```
CH(p1,...,pn)
if (n \le 3) KH
else
m = n/2
A <- CH(p1,...,pm)
B <- CH(pm+1,...,pn)
```