Bachelorarbeit

mein thema

vorgelegt von

Maximilian Huber

am
Institut für Mathematik
der

Universität Augsburg

betreut durch

Prof. Dr. Marco Hien

abgegeben am

noch nicht

stand: 25. November 2012

Inhaltsverzeichnis

Ei	nleitu	ıng	iii		
1	Mathematische Grundlagen				
	1.1	Einige Ergebnise aus der Kommutativen Algebra	1		
	1.2	Weiterführende Definitionen	2		
	1.3	Weyl-Algebra und der Ring $\mathcal D$	2		
		1.3.1 Weyl Algebra als Graduierter Ring	4		
	1.4	Struktur von Links-Idealen auf \mathcal{D}			
	1.5	Lokalisierung eines $\mathbb{C}\{x\}$ -Modules	4		
	1.6	Lokalisierung eines holonomen \mathcal{D} -Modules	4		
2	Der	Meromorpher Zusammenhang	5		
	2.1	Definition	5		
	2.2	Eigenschaften	5		
	2.3	Elementare Meromorphe Zusammenhänge			
3	3 Weiterführende Aussagen				
Aı	nhang		9		
Α	Auf	teilung von	10		

Einleitung

1 Mathematische Grundlagen

Hier werde ich mich auf [6] und [1] beziehen.

1.1 Einige Ergebnise aus der Kommutativen Algebra

In dieser Arbeit spielen die folgenden Ringe eine Große Rolle:

- $\mathbb{C}[x] := \{\sum_{i=1}^{N} a_i x^i | N \in \mathbb{N} \}$
- $\mathbb{C}[x] := \{\sum_{i=1}^{\infty} a_i x^i\}$
- $\mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i | \text{pos. Konvergenz radius} \}$
- $K := \mathbb{C}(\{x\}) := \mathbb{C}\{x\}[x^{-1}]$
- $\hat{K} := \mathbb{C}((x)) := \mathbb{C}[x][x^{-1}]$

wobei offensichtlich gilt $\mathbb{C}[x] \subset \mathbb{C}\{x\} \subset \mathbb{C}[x]$.

Lemma 1.1 (Seite 2). ein paar eigenschaften

1. $\mathbb{C}[x]$ ist ein graduierter Ring, durch die Grad der Polynome. Diese graduierung induziert eine aufsteigende Filtrierung.

alle Ideale haben die form (x-a) mit $a \in \mathbb{C}$

2. wenn \mathfrak{m} das maximale Ideal von $\mathbb{C}[x]$ (erzeugt von x ist), so ist

$$\mathbb{C}[[x]] = \varprojlim_{k} \mathbb{C}[X] \backslash \mathfrak{m}^{k}$$

The ring $\mathbb{C}[[x]]$ ist ein nöterscher lokaler Ring: jede Potenzreihe mit konstantem term $\neq 0$ ist invertierbar.

Der ring ist ebenfalls ein diskreter ??? Ring (discrete valuation ring)

Die Filtrierung nach grad des Maximalen Ideals, genannt \mathfrak{m} -adische Fitration, ist die Filtrierung $\mathfrak{m}^k = \{f \in \mathbb{C}[[x]] | v(f) \geq k\}$

und es gilt $gr_{\mathfrak{m}}(\mathbb{C}[[x]]) = \mathbb{C}[x]$

3. $\mathbb{C}\{x\}\subset\mathbb{C}[[x]]$ ist ein Untering der Potenzreihen, wobei der Konvergenzradius echt positiv ist. ist ähnlich zu $\mathbb{C}[[x]]$

1.2 Weiterführende Definitionen

Definition 1.2 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a, b] = b \cdot a - a \cdot b$$

der Kommutator von a und b genannt.

Definition 1.3 (pull-back). Der pull-back ρ^+M ist der Vektorraum $\rho^*M = \mathbb{C}((u)) \otimes_{\mathbb{C}((u))} M$ mit der pull-back Verknüpfung(connection) $\rho^*\nabla$ definiert durch $\partial_u(1 \otimes m) := \rho'(u) \otimes \partial_t m$

sei nun N ein $\mathbb{C}((u))$ -VR mit Verknüpfung

Definition 1.4 (push-forward). Der push-forward ρ_+N ist definiert durch:

- der $\mathbb{C}((t))$ -VR ρ_*N ist der \mathbb{C} -VR N mit der $\mathbb{C}((t))$ Struktur durch $f(t)\cdot 0:=f(\rho(t))m$
- die wirkung von ∂_t ist die von $\rho'(u)^- 1 \partial_u$

Satz 1.5. es gilt dir Projektionsformel

$$\rho_{+}(N \otimes_{\mathbb{C}((u))} \rho^{+}M) \cong \rho_{+}N \otimes_{\mathbb{C}((t))} M \tag{1.1}$$

TEST für ref

1.5

TEST für eqref

(1.1)

1.3 Weyl-Algebra und der Ring $\mathcal D$

Ich werde hier die Weyl Algebra, wie in [6, Chapter 1], in einer Veränderlichen einführen. Sei $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in \mathbb{C}[x]$ (bzw. $\mathbb{C}[x]$). Man hat die folgende Kommutations-Relation zwischen dem Ableitungsoperator und dem Multiplikations Operator f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{1.2}$$

wobei die Rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$ darstellt. Dies bedeutet für alle $g \in \mathbb{C}[x]$ hat man:

$$[\frac{\partial}{\partial x}, f] \cdot g = \frac{\partial fg}{\partial x} - f \frac{\partial g}{\partial x} = \frac{\partial f}{\partial x} \cdot g$$

Definition 1.6 (Weyl Algebra). Definiere nun die Weyl Algebra $A_1(\mathbb{C})$ (bzw. die Algebra \mathcal{D} von linearen Operatoren mit Koeffizienten in $\mathbb{C}\{x\}$ bzw. die Algebra $\hat{\mathcal{D}}$ (Koeffizienten in $\mathbb{C}[x]$)) als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring zusammen mit dem Element ∂_x , erzeugt wird, Modulo der Relation (1.2).

Wir werden die Notation $A_1(\mathbb{C}) := \mathbb{C}[x] < \partial_x > (\text{bzw. } \mathcal{D} := \mathbb{C}\{x\} < \partial_x > \text{bzw. } \hat{\mathcal{D}} := \mathbb{C}[x] < \partial_x >)$ verwenden.

Lemma 1.7. Sei A einder der 3 soeben eingeführten Objekten, die Addition

$$+: A \times A \rightarrow A$$

und die Multiplikation

$$\cdot: A \times A \to A$$

definieren auf A eine Ringstruktur $(A, +, \cdot)$.

Beweis. Zula Barbara: Kapittel 2 section 1

Bemerkung 1.8. $A_1(\mathbb{C})$, \mathcal{D} und $\hat{\mathcal{D}}$ sind nicht kommutative Algebren.

Lemma 1.9. Es gelten die Formeln

$$\begin{split} &[\partial_x, x^k] = kx^{k-1} \\ &[\partial_x^j, x] = j\partial_x^{j-1} \\ &[\partial_x^j, x^k] = \sum_{i \ge 1} \frac{k(k-1)\cdots(k-i+1)\cdot j(j-1)\cdots(j-i+1)}{i!} x^{k-i} \partial_x^{j-i} \end{split}$$

Beweis. Zula Barbara

Proposition 1.10. Jedes Element in $A_1(\mathbb{C})$ (bzw. \mathcal{D} oder $\hat{\mathcal{D}}$) kann auf eindeutige weiße als P = $\sum_{i=0}^{n} a_i(x) \partial_x^i$, mit $a_i(x) \in A_1(\mathbb{C})$ (bzw. \mathcal{D} oder $\hat{\mathcal{D}}$), geschrieben werden.

Beweis. [6, Proposition 1.2.3]

ein teil des Beweises ist "left as an exersice"

Definition 1.11. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$ gegeben, so definiere

$$\deg P := \max\{i | a_i \neq 0\}$$

In natürlicher Weise erhält man $F_N \mathcal{D} := \{ P \in \mathcal{D} | \deg P \leq N \}$ sowie die entsprechende aufsteigende Filtrierung

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte $gr_k^F \mathcal{D} \stackrel{=}{\underset{\text{def}}{=}} F_N \mathcal{D} / F_{N-1} \mathcal{D} = \{ P \in \mathcal{D} | \deg P = N \} \cong \mathbb{C}\{x\}.$

Beweis. Sei $P \in F_N \mathcal{D}$ so betrachte den Isomorphismus:

$$F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}; [P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$$

Proposition 1.12. Es gilt:

 $gr^F\mathcal{D} \ := \ \bigoplus_{\mathbb{N}\in\mathbb{Z}} gr^F_N\mathcal{D} \ = \ \bigoplus_{\mathbb{N}\in\mathbb{N}_0} gr^F_N\mathcal{D} \ \cong \ \bigoplus_{\mathbb{N}\in\mathbb{N}_0} \mathbb{C}\{x\} \ \cong \ \mathbb{C}\{x\}[\xi] \ = \ \bigoplus_{\mathbb{N}\in\mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N(x) = \mathbb{C}\{x\}[\xi] = \mathbb{C}\{x\}[\xi]$ $isomorph \ als \ grad. \ Ringen$

П

1.3.1 Weyl Algebra als Graduierter Ring

Sei A nun einer der drei Koeffizienten Ringe, welche zuvor behandelt wurden. Der Ring $A < \partial_x >$ kommt zusammen mit einer aufsteigenden Filtrierung, welche wir mit $F(A < \partial_x)$ bezeichen werden. Sei P ein bzgl. 1.10 minimal geschriebener Operator, so ist P in F_k falls der maximale Grad von ∂_x in P kleiner oder gleich k. So definiere den Grad degP von P als die Eindeutige ganze Zahl k mit $P \in F_k A < \partial_x > /F_{k-1} < \partial_x >$

Unabhängigkeit von Schreibung wird in Sabbah Script behauptet

- 1.4 Struktur von Links-Idealen auf \mathcal{D}
- **1.5** Lokalisierung eines $\mathbb{C}\{x\}$ -Modules
- 1.6 Lokalisierung eines holonomen \mathcal{D} -Modules

2 Der Meromorpher Zusammenhang

Quelle ist [6]

2.1 Definition

Definition 2.1 (Meromorpher Zusammenhang). Ein Meromorpher zusammenhang (Bzw. besser Keim eines Meromorphen Zusammenhangs) $(\mathcal{M}_K, \partial)$ besteht aus folgenden Daten:

- \mathcal{M}_K , ein endlich dimensionaler K-Vr
- einer C-linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt *Derivation*. Wobei für alle $f \in K$ und $u \in \mathcal{M}_K$ die *Leibnitzregel*

$$\partial(fu) = f'u + f\partial u \tag{2.1}$$

erfüllt sein soll.

2.2 Eigenschaften

Hier nun einige Eigenschaften von Meromorphen Zusammenhängen.

Lemma 2.2. Sei (M, ∂) ein gegebener Meromorpher Zusammenhang, und φ ein Basisisomorphismus von K^r nach \mathcal{M} , also in der Situation

$$\begin{array}{ccc}
\mathcal{M} & \stackrel{\partial}{\longrightarrow} \mathcal{M} \\
\uparrow & & \uparrow \\
\cong \varphi & & \varphi \cong \\
\mid & & \mid \\
K^r & \stackrel{\varphi^{-1}\partial \varphi}{\longrightarrow} K^r
\end{array}$$

gilt: $(K^r, \varphi^{-1}\partial \varphi)$ ist ebenfalls ein Meromorpher Zusammenhang.

Beweis. TODO, (3. Treffen)

Sind ∂_1 und ∂_2 zwei Meromorphe Zusammenhänge auf $\mathcal{M}_K \cong K^r$. So betrachte $\partial_1 - \partial_2 : \mathcal{M} \to \mathcal{M}$ für alle $f \in K$ und $u \in \mathcal{M}_K$:

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$
$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$
$$= f \cdot (\partial_1 - \partial_2)(u)$$

Lemma 2.3. Da $\partial_1 - \partial_2$ \mathbb{C} -linear und, wie eben gezeigt, $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u)$ allgemein gilt: Die differenz zweier Meromorpher Zusammenhäge ist K-linear.

Insbesondere ist $\frac{d}{dz} - \partial : K^r \to K^r$ K-linear, also es existiert eine Matrix $A \in M(r \times r, K)$ mit $\frac{d}{dz} - \partial = A$, also ist $\partial = \frac{d}{dz} - A$.

Definition 2.4 (Transformationsformel). In der Situation

mit φ, ψ und T K-Linear und $\partial, (\frac{d}{dz} + A)$ und $(\frac{d}{dz} + B)$ \mathbb{C} -Linear, gilt: Der Merom. Zush. $\frac{d}{dz} + A$ auf K^r wird durch Basiswechsel $T \in GL(r, K)$ zu

$$\frac{d}{dz} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dz} + B$$

Definition 2.5. $A \sim B$ differenziell Äquivalent : $\Leftrightarrow \exists T \in GL(r,K) \text{ mit } B = T^{-1} \cdot T' + T^{-1}AT$

$$\begin{array}{l} 1 = TT^{-1} \leadsto T'T^{-1} + T(T^{-1})' = 0 \\ 1 = T^{-1}T \leadsto (T^{-1})'T + T^{-1}T' = 0 \end{array}$$

2.3 Elementare Meromorphe Zusammenhänge

Sabbah redet in [5] von formal meromorphic connenctions

Definition 2.6 (Elementarer formaler Zusammenhang). Zu einem gegebenen $\rho \in u\mathbb{C}[\![u]\!], \varphi \in \mathbb{C}((u))$ und einem endlich dimensionalen $\mathbb{C}((u))$ -Vektorraum R mit regulärem Zusammenhang ∇ , definieren wir den assoziierten Elementaren endlich dimensionalen $\mathbb{C}((t))$ -Vektorraum mit Zusammenhang, durch:

$$El(\rho, \varphi, R) = \rho_{+}(\mathscr{E} \otimes R)$$

3 Weiterführende Aussagen

Lemma 3.1. $\rho: u \mapsto u^p$, $\mu_{\xi}: u \mapsto \xi u$, für alle $\varphi \in \mathbb{C}((u))$ gilt

$$\rho^+ \rho_+ \mathscr{E}^{\varphi} = \bigoplus_{\xi^p = 1} \mathscr{E}^{\varphi \circ \mu_{\xi}}$$

Wir wählen eine $\mathbb{C}((u))$ Basis $\{e\}$ von \mathscr{E}^{φ} und zur vereinfachung nehmen wir an, dass $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$

Dann ist die Familie $e, ue, ..., u^{p-1}e$ eine $\mathbb{C}((t))$ -Basis von $\rho_+\mathscr{E}^{\varphi}$.

Setze $e_k = u^{-k} \otimes_{\mathbb{C}((t))} u^k e$. Dann ist die Familie $\mathbf{e} = (e_0, ..., e_{p-1})$ eine $\mathbb{C}((u))$ -Basis von $\rho^+ \rho_+ \mathcal{E}^{\varphi}$. Zerlege nun $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p) \in u^{-2}\mathbb{C}[u^{-1}]$ mit $\psi_j \in \mathbb{C}[j^{-1}]$ für alle j > 0 und $\psi_0 \in t^{-1}\mathbb{C}[u^{-1}]$ (siehe: Anhang A).

Sei P die Permutationsmatrix, definiert durch $\mathbf{e} \cdot P = (e_1, ..., e_{p-1}, e_0)^{[2]}$. Es gilt:

$$u\partial_u e_k = \sum_{i=0}^{p-1-k} u^i \psi_i(u^p) e_{k+1} + \sum_{i=p-k}^{p-1} u^i \psi_i(u^p) e_{k+i-p}$$

denn:

$$u\partial_{u}e_{k} = u\partial_{u}(u^{-k} \otimes_{\mathbb{C}((t))} u^{k}e)$$

$$= u(-ku^{-k-1} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k} \otimes_{\mathbb{C}((t))} \partial_{t}(\underbrace{u^{k}e}))$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k+1} \otimes_{\mathbb{C}((t))} (pu^{p-1})^{-1}(ku^{k-1}e + u^{k}\varphi'(u)e)$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + u^{-k+1} \otimes_{\mathbb{C}((t))} (ku^{k-1}e + u^{k}\varphi'(u)e)$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + u^{-k+1} \otimes_{\mathbb{C}((t))} ku^{k-1}e + u^{-k+1} \otimes_{\mathbb{C}((t))} u^{k}\varphi'(u)e$$

$$= u^{-k} \otimes_{\mathbb{C}((t))} u^{k}e^{+1}\varphi'(u)e$$

$$= \sum_{i=0}^{p-1} u^{-k} \otimes_{\mathbb{C}((t))} u^{k}u^{i}\psi_{i}(u^{p})e$$

$$= \sum_{i=0}^{p-1} u^{-k} \otimes_{\mathbb{C}((t))} u^{k}u^{i}\psi_{i}(u^{p})e$$

$$\overline{\begin{bmatrix} 1 \end{bmatrix}} \mathscr{E}^{\varphi} = \mathscr{E}^{\psi} \Leftrightarrow \varphi \equiv \psi \mod \mathbb{C}[[u]]$$

$$\begin{bmatrix} 2 \end{bmatrix} P = \begin{pmatrix} 0 & & 1 \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{pmatrix}$$

$$= \sum_{i=0}^{p-1} u^{i} \psi_{i}(u^{p}) (u^{-k} \otimes_{\mathbb{C}((t))} u^{k} e)$$

$$= \sum_{i=0}^{p-1-k} u^{i} \psi_{i}(u^{p}) e_{k+1} + \sum_{i=p-k}^{p-1} u^{i} \psi_{i}(u^{p}) e_{k+i-p}$$

so dass gilt:

$$u\partial_u \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} u^j \psi_j P^j \right]$$

denn:

$$u\partial_{u}\mathbf{e} = (u\partial_{u}e_{0}, \dots, u\partial_{u}e_{p-1})$$

$$= (\sum_{i=0}^{p-1-k} u^{i}\psi_{i}(u^{p})e_{k+1} + \sum_{i=p-k}^{p-1} u^{i}\psi_{i}(u^{p})e_{k+i-p})_{k\in\{0,\dots,p-1\}}$$

$$= \mathbf{e} \begin{pmatrix} u^{p-1}\psi_{p-1}(u^{p}) & \cdots & u^{3}\psi_{3}(u^{p}) & u^{2}\psi_{2}(u^{p}) & u^{1}\psi_{1}(u^{p}) \\ u^{1}\psi_{1}(u^{p}) & u^{p-1}\psi_{p-1}(u^{p}) & \ddots & u^{2}\psi_{2}(u^{p}) \\ u^{2}\psi_{2}(u^{p}) & u^{1}\psi_{1}(u^{p}) & \ddots & \ddots & \vdots \\ u^{2}\psi_{2}(u^{p}) & u^{1}\psi_{1}(u^{p}) & \ddots & \ddots & \vdots \\ \vdots & \ddots & u^{1}\psi_{1}(u^{p}) & u^{p-1}\psi_{p-1}(u^{p}) \\ u^{p-2}\psi_{p-2}(u^{p}) & \cdots & u^{3}\psi_{3}(u^{p}) & u^{2}\psi_{2}(u^{p}) & u^{1}\psi_{1}(u^{p}) & u^{p-1}\psi_{p-1}(u^{p}) \end{pmatrix}$$

$$= \mathbf{e} [\sum_{j=0}^{p-1} u^{j}\psi_{j}(u^{p})P^{j}]$$

Die Wirkung von ∂_u auf die Basis von $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$ ist also Beschrieben durch:

$$\partial_u \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} u^{j-1} \psi_j P^j \right]$$

Diagonalisiere nun
$$TPT^{-1}=D=\begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix}^{[3]},$$
 mit $\xi^p=1$ und $T\in Gl_p(\mathbb{C}).$

So dass gilt:

$$T[\sum_{j=0}^{p-1} u^{j-1} \psi_j(u^p) P^j] T^{-1} = [\sum_{j=0}^{p-1} u^{j-1} \psi_j(u^p) (TPT^{-1})^j]$$
$$= [\sum_{j=0}^{p-1} u^{j-1} \psi_j(u^p) D^j]$$

 $[\]overline{}^{[3]}$ Klar, da mipo $X^p - 1$

$$=\begin{pmatrix} \sum_{j=0}^{p-1} u^{j-1} \psi_{j} & & & \\ & \sum_{j=0}^{p-1} u^{j-1} \psi_{j} \left(\xi^{1}\right)^{j} & & & \\ & & \ddots & & \\ & & \sum_{j=0}^{p-1} u^{j-1} \psi_{j} \left(\xi^{p-1}\right)^{j} \end{pmatrix}$$

$$=\begin{pmatrix} \sum_{j=0}^{p-1} u^{j-1} \psi_{j} & & & \\ & \sum_{j=0}^{p-1} (u\xi^{1})^{j-1} \psi_{j} \xi^{1} & & & \\ & & \ddots & & \\ & & & \sum_{j=0}^{p-1} (u\xi^{p-1})^{j-1} \psi_{j} \xi^{p-1} \end{pmatrix}$$

$$=\begin{pmatrix} \varphi'(u) & & & & \\ & \varphi'(\xi u) \xi^{1} & & & \\ & & \ddots & & \\ & & \varphi'(\xi^{p-1} u) \xi^{p-1} \end{pmatrix}$$

Wie sieht dann die Wirkung auf die Basis von $\bigoplus_{\mathcal{E}^p=1} \mathscr{E}^{\varphi \circ \mu_{\xi}}$ aus?

$$e_{i} \qquad \rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \longleftarrow \cong \longrightarrow \mathbb{C}((u))^{p} \longleftarrow \cong \longrightarrow \bigoplus_{\xi^{p}=1}\mathscr{E}^{\varphi\circ\mu_{\xi}} \qquad \mathbf{e}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\partial_{u} \qquad \sum_{j=0}^{p-1} u^{j-1}\psi_{j}P^{j} \qquad \sum_{j=0}^{p-1} u^{j-1}\psi_{j}D^{j} \qquad \downarrow \qquad \downarrow$$

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \longleftarrow \cong \longrightarrow \mathbb{C}((u))^{p} \longleftarrow \cong \longrightarrow \bigoplus_{\xi^{p}=1}\mathscr{E}^{\varphi\circ\mu_{\xi}} \qquad \mathbf{e}[\sum_{j=0}^{p-1} u^{j-1}\psi_{j}P^{j}]$$

$$? \longleftarrow \longleftarrow (...,0,1,0,...) \qquad (...,0,1,0,...) \longmapsto (...,0,1,0,...)$$

A Aufteilung von ...

Sei $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$, so ist $\varphi' =: \sum_{i=2}^N a_{-i}u^{-i} \in u^{-2}\mathbb{C}[u^{-1}]$ also $u\varphi'(u) = \sum_{i=1}^N a_{-i-1}u^{-i} \in u^{-1}\mathbb{C}[u^{-1}]$, welches wir zerlegen wollen. Zerlege also $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p)$ mit $\psi_j \in \mathbb{C}[t^{-1}]$ für alle j > 0 und $\psi_0 \in t^{-1}\mathbb{C}[t^{-1}]$:

also:

$$\psi_0(u^p) = a_{-(p+1)}u^{-p} + a_{-(2p+1)}u^{-2p} + \dots$$

$$\psi_1(u^p) = a_{-p}u^{-p} + a_{-2p}u^{2p} + \dots$$

$$\vdots$$

$$\psi_{p-1}(u^p) = a_{-2}u^p + a_{-(p+2)}u^{2p} + \dots$$

Literaturverzeichnis

- [1] S.C. Coutinho. A Primer of Algebraic D-Modules. London Mathematical Society Student Texts. Cambridge University Press, 1995.
- [2] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1977.
- [3] H. Matsumura and M. Reid. *Commutative Ring Theory*. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1989.
- [4] C. Sabbah. An explicit stationary phase formula for the local formal Fourier-Laplace transform. *ArXiv e-prints*, June 2007.
- [5] Claude Sabbah. An explicit stationary phase formula for the local formal fourier-laplace transform. Paper.
- [6] Claude Sabbah. Introduction to algebraic theory of linear systems of differential equations. Vorlesungsskript.