

Math for Machine Learning

Linear algebra - Week 3

Vectors
Matrices
Dot product

Matrix multiplication

week 03

Generative Adversorrial Neural Networks

- > mage generation { doep fakea}
- tent to image

Vector Algebra

$$20 + 4b + c = 28$$

$$\begin{bmatrix} 2 & 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 6 \\ C \end{bmatrix} = 28$$

Vector Algebra

System of equations

$$a+b+c=10$$

 $a+2b+c=15$
 $a+b+2c=12$

Matrix product

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 10 \\ 15 \\ 12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 10 \\ 15 \\ 12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 10 \\ 15 \\ 12 \end{bmatrix}$$

Vector Algebra

$$\begin{bmatrix} -1 & 5 & 2 \end{bmatrix} \begin{bmatrix} -3 \\ 6 \\ -4 \end{bmatrix} = 3 + 30 - 8$$

attenibrear je sprahr - naitemrajenart rosnil as assirtan

$$\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ c \end{bmatrix} = 1$$

$$\begin{bmatrix} 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ d \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ c \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ d \end{bmatrix} = 1$$

$$3a+x=1$$

 $3b+d=0$
 $0+2c=0$
 $b+2d=1$

$$a = 2/5$$
 $b = -1/5$
 $c = -1/5$
 $d = 3/5$

$$\begin{bmatrix} 5 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \alpha & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \alpha b \\ c d \end{bmatrix} = 8 \begin{bmatrix} 1/4 & -1/4 \\ -1/2 & 5/8 \end{bmatrix}$$

$$\begin{bmatrix} ab \\ cd \end{bmatrix} = 8 \begin{bmatrix} 1/4 & -1/4 \\ -1/8 & 5/8 \end{bmatrix}$$

$$5a + 2c = 1$$

$$- a + 2c = 0$$

$$4a = 1, a = 1/4$$

$$5b + 2d = 0$$
 $-b + 2d = 1$
 $4b = -1$
 $b = -1/4$

$$2C = -1/4$$

 $C = -1/8$

$$2d = 1+1/4 = 5/4$$

 $d = 5/9$

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 0 & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$a+c=1$$
 $b+d=0$
 $2a+2c=0$ $2b+2d=1$

```
Non singular Matrices always house an inverse (invertible matrices)
                           |M| +0
Singular Matrices de not have an inverse
(non-invertible matrices)
                            |\mathsf{M}| = \mathsf{D}
```

Neural Networks and

Matrices

Spam classfier H win Spam # Lottery not spam /

(1. Win + 1. Lottery = 1.5)

Caustion of the line

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Model		
1	=	
1		

Prod
2
3
0
2
1
1
4
2
3

Check	
Yes	
Yes	
No	
Yes	
No	
No	
Yes	
Yes	
Yes	

AND roperator perceptrom

AND	X	y	
No	٥	0	
No	O	1	•
No	1	٥	
YES	1	1	

Model

07 check > 1.5
1 Threshold