Concours commun Centrale

MATHÉMATIQUES 2. FILIERE MP

Partie I - Représentation intégrale de sommes de séries

I.A -

I.A - 1) a_n existe si et seulement si $n \ge 2$.

$$a_n = \frac{1}{n} - \int_{n-1}^n \frac{dt}{t} = \frac{1}{n} + \ln\left(\frac{n-1}{n}\right) = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) \underset{n \to +\infty}{=} \frac{1}{n} - \left(\frac{1}{n} + O\left(\frac{1}{n^2}\right)\right) \underset{n \to +\infty}{=} O\left(\frac{1}{n^2}\right).$$

Puisque la série de terme général $\frac{1}{n^2}$, $n \ge 1$, converge, il en est de même de la série de terme général a_n , $n \ge 2$.

$$\begin{aligned} \textbf{I.A - 2)} \text{ Soit } n \geqslant 2. \ \sum_{k=2}^n \alpha_k = H_n - 1 - \int_1^n \frac{dt}{t} = H_n - 1 - \ln n. \text{ En posant } \ell = \sum_{k=2}^{+\infty} \alpha_k, \text{ on a donc} \\ H_n &= \lim_{n \to +\infty} \ln(n) + 1 + \ell + o(1). \end{aligned}$$

D'où l'existence d'une constante A telle que $H_n = \ln(n) + A + o(1)$. En particulier, $H_n = \ln(n) + o(\ln n)$ ou encore $H_n \sim \ln(n)$.

$$\mathbf{I.B} - \frac{H_n}{(n+1)^r} \underset{n \rightarrow +\infty}{\sim} \frac{\ln(n)}{n^r} > 0.$$

Si r = 0, la série de terme général $\frac{H_n}{(n+1)^r}$ est grossièrement divergente.

 $\begin{array}{l} \mathrm{Si} \ r = 1, \ \frac{H_n}{(n+1)^r} = \frac{H_n}{n+1} \sum_{n \to +\infty}^{\infty} \frac{\ln n}{n} > 0 \ \mathrm{est} \ \mathrm{pr\acute{e}pond\acute{e}rant} \ \mathrm{devant} \ \frac{1}{n} \ \mathrm{et} \ \mathrm{donc} \ \mathrm{la} \ \mathrm{s\acute{e}rie} \ \mathrm{de} \ \mathrm{terme} \ \mathrm{g\acute{e}n\acute{e}ral} \ \frac{H_n}{(n+1)^r} \ \mathrm{diverge}. \\ \mathrm{Si} \ r \geqslant 2, \ \frac{H_n}{(n+1)^r} \ \underset{n \to +\infty}{=} \ \mathrm{O} \left(\frac{\ln(n)}{n^2} \right) . \ \mathrm{De} \ \mathrm{plus}, \end{array}$

$$n^{3/2} \frac{\ln(n)}{n^2} = \frac{\ln n}{\sqrt{n}} \underset{n \to +\infty}{=} o(1)$$

d'après un théorème de croissances comparées et donc $\frac{H_n}{(n+1)^r} = o\left(\frac{1}{n^{3/2}}\right)$. Puisque la série de terme général $\frac{1}{n^{3/2}}$ converge (série de RIEMANN d'exposant $\frac{3}{2} > 1$), il en est de même de la série de terme général $\frac{H_n}{(n+1)^r}$, $n \geqslant 1$.

En résumé, la série de terme général $\frac{H_n}{(n+1)^r}$, $n \ge 1$, converge si et seulement si $r \ge 2$.

I.C -

I.C - 1) On sait que $\forall t \in]-1,1[,\frac{1}{1-t}=\sum_{n=0}^{+\infty}t^n \text{ et } \ln(1-t)=-\sum_{n=1}^{+\infty}\frac{t^n}{n},$ le rayon de convergence de chacune de ces deux séries étant égal à 1.

I.C - 2) La fonction $t \mapsto -\frac{\ln(1-t)}{1-t}$ est développable en série entière sur] - 1,1[en tant que produit de fonctions développables en série entière sur] - 1,1[. Pour tout $t \in]-1,1[$

$$\begin{split} -\frac{\ln(1-t)}{1-t} &= \left(t + \frac{t^2}{2} + \frac{t^3}{3} + \ldots\right) \left(1 + t + t^2 + t^3 + \ldots\right) \\ &= t + \left(1 + \frac{1}{2}\right) t^2 + \left(1 + \frac{1}{2} + \frac{1}{3}\right) t^3 + \ldots \text{ (produit deCauchy de deux séries entières)} \\ &= \sum_{n=1}^{+\infty} H_n t^n. \end{split}$$

I.D -

 $\textbf{I.D - 1)} \ \mathrm{Soit} \ (p,q) \in \mathbb{N}^2. \ \mathrm{La} \ \mathrm{fonction} \ f_{p,q} \ : \ t \mapsto t^p (\ln t)^q \ \mathrm{est} \ \mathrm{continue} \ \mathrm{sur} \]0,1]. \ \mathrm{De} \ \mathrm{plus},$

$$\sqrt{t}f_{p,q}(t) = t^{p+\frac{1}{2}}(\ln t)^q \underset{t\to 0}{\to} 0$$

d'après un théorème de croissances comparées et donc $f_{p,q}(t) = \int_{t \to 0}^{\infty} o\left(\frac{1}{t^{1/2}}\right)$. Puisque $\frac{1}{2} < 1$, la fonction $t \mapsto \frac{1}{t^{1/2}}$ est intégrable sur un voisinage de 0 à droite et il en est de même de $f_{p,q}$. On a montré que $I_{p,q}$ existe.

I.D - 2) Soit $(p,q) \in \mathbb{N}^2$. Soit $\varepsilon \in]0,1[$. Les deux fonctions $t \mapsto \frac{t^{p+1}}{p+1}$ et $t \mapsto (\ln t)^q$ sont de classe C^1 sur le segment $[\varepsilon,1]$. On peut donc effectuer une intégration par parties qui fournit

$$\begin{split} I^{\epsilon}_{p,q} &= \int_{\epsilon}^{1} t^{p} (\ln t)^{q} dt = \left[\frac{t^{p+1}}{p+1} (\ln t)^{q} \right]_{\epsilon}^{1} - \int_{\epsilon}^{1} \frac{t^{p+1}}{p+1} \times \frac{q}{t} (\ln t)^{q-1} \ dt \\ &= -\frac{q}{p+1} \int_{\epsilon}^{1} t^{p} (\ln t)^{q-1} \ dt - \frac{\epsilon^{p+1}}{p+1} (\ln \epsilon)^{q} = -\frac{q}{p+1} I^{\epsilon}_{p,q-1} - \frac{\epsilon^{p+1} (\ln \epsilon)^{q}}{p+1}. \end{split}$$

 $\textbf{I.D - 3)} \ \mathrm{Soit} \ (p,q) \in \mathbb{N}^2. \ \mathrm{Alors} \ p+1 \geqslant 1 \ \mathrm{et} \ \mathrm{donc} - \frac{\epsilon^{p+1} (\ln \epsilon)^q}{p+1} \ \mathrm{tend} \ \mathrm{vers} \ 0 \ \mathrm{quand} \ \epsilon \ \mathrm{tend} \ \mathrm{vers} \ 0 \ \mathrm{d'après} \ \mathrm{un} \ \mathrm{th\acute{e}or\grave{e}me} \ \mathrm{de} \ \mathrm{croissances} \ \mathrm{compar\acute{e}es}. \ \mathrm{Quand} \ \epsilon \ \mathrm{tend} \ \mathrm{vers} \ 0, \ \mathrm{on} \ \mathrm{obtient} \ \mathrm{alors}$

$$I_{p,q} = -\frac{q}{p+1}I_{p,q-1}.$$

$$\begin{split} \textbf{I.D - 4) Soit } p \in \mathbb{N}. \ I_{p,0} = \int_0^1 t^p \ dt = \frac{1}{p+1} \ \text{puis pour } q \in \mathbb{N}^*, \\ I_{p,q} = \left(-\frac{q}{p+1}\right) \left(-\frac{q-1}{p+1}\right) \ldots \left(-\frac{1}{p+1}\right) I_{p,0} = \frac{(-1)^q q!}{(p+1)^q}, \end{split}$$

ce qui reste vrai quand q = 0.

$$\forall (p,q) \in \mathbb{N}^2, \ I_{p,q} = \frac{(-1)^q q!}{(p+1)^q}.$$

$$\begin{split} \sum_{n=0}^{+\infty} \int_0^1 |g_n(t)| \ dt &= \sum_{n=0}^{+\infty} |a_n I_{n,r-1}| \\ &= (r-1)! \sum_{n=0}^{+\infty} \left| \frac{a_n}{(n+1)^r} \right| \ (d\text{`après la question I.D.4})) \\ &< +\infty \ (\text{par hypothèse de l'énoncé}). \end{split}$$

En résumé,

- $\bullet \text{ la série de fonctions de terme général } g_n,\, n \in \mathbb{N},\, \text{converge simplement vers } g \text{ sur }]0,1]\,;$
- chaque fonction g_n est continue par morceaux sur]0, 1];
- g est continue par morceaux sur]0, 1];
- $\bullet \sum_{n=0}^{+\infty} \int_0^1 |g_n(t)| dt < +\infty.$

D'après un théorème d'intégration terme à terme, g est intégrable sur]0,1], chaque g_n est intégrable sur]0,1], la série de terme général $\int_0^1 g_n(t) \ dt$ converge et

$$\begin{split} \int_0^1 (\ln t)^{r-1} f(t) \ dt &= \int_0^1 g(t) \ dt = \sum_{n=0}^{+\infty} \int_0^1 g_n(t) \ dt \\ &= \sum_{n=0}^{+\infty} \alpha_n \int_0^1 t^n (\ln t)^{r-1} \ dt = \sum_{n=0}^{+\infty} \alpha_n I_{n,r-1} \\ &= (-1)^{r-1} (r-1)! \sum_{n=0}^{+\infty} \frac{\alpha_n}{(n+1)^r} \ (d\text{`après la question I.D.4})) \end{split}$$

I.F -

I.F - 1) Soit $r \ge 2$. La fonction $f: t \mapsto -\frac{\ln(1-t)}{1-t}$. f est développable en série entière sur]-1,1[d'après la question I.C.2) et $\sum_{n=0}^{+\infty} \left| \frac{\alpha_n}{(n+1)^r} \right| = \sum_{n=0}^{+\infty} \frac{H_n}{(n+1)^r} < +\infty$ d'après la question I.B. On peut donc appliquer la question précédente à la fonction f et on obtient

$$S_r = \sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r} = \frac{(-1)^r}{(r-1)!} \int_0^1 (\ln t)^{r-1} \frac{\ln(1-t)}{1-t} \ dt.$$

I.F - 2) Soit $\varepsilon \in \left[0, \frac{1}{2}\right[$. Une intégration par parties licite fournit

$$\begin{split} \int_{\epsilon}^{1-\epsilon} (\ln t)^{r-1} \frac{\ln (1-t)}{1-t} \ dt &= \left[(\ln t)^{r-1} (-(\ln (1-t))^2/2) \right]_{\epsilon}^{1-\epsilon} - (r-1) \int_{\epsilon}^{1-\epsilon} \frac{(\ln t)^{r-2}}{t} (-(\ln (1-t))^2/2) \ dt \\ &= \frac{1}{2} \left(-(\ln (1-\epsilon))^{r-1} (\ln (\epsilon))^2 + (\ln (\epsilon))^{r-1} (\ln (1-\epsilon))^2 + (r-1) \int_{\epsilon}^{1-\epsilon} \frac{(\ln t)^{r-2} (\ln (1-t))^2}{t} \ dt \right) \end{split}$$

Quand ϵ tend vers 0, $-(\ln(1-\epsilon))^{r-1}(\ln(\epsilon))^2 \sim (-1)^r \epsilon^{r-1}(\ln(\epsilon))^2 \rightarrow 0$ car $r-1 \geqslant 1$ et $(\ln(\epsilon))^{r-1}(\ln(1-\epsilon))^2 \sim \epsilon^2(\ln(\epsilon))^{r-1} \rightarrow 0$. Donc, quand ϵ tend vers 0, on obtient

$$\int_0^1 (\ln t)^{r-1} \frac{\ln(1-t)}{1-t} dt = \frac{r-1}{2} \int_0^1 \frac{(\ln t)^{r-2} (\ln(1-t))^2}{t} dt$$

puis

$$S_r = \frac{(-1)^r}{(r-1)!} \int_0^1 (\ln t)^{r-1} \frac{\ln (1-t)}{1-t} \ dt = \frac{(-1)^r}{2(r-2)!} \int_0^1 \frac{(\ln t)^{r-2} (\ln (1-t))^2}{t} \ dt.$$

I.F - 3) Pour r = 2, on a en particulier

$$S_2 = \frac{1}{2} \int_0^1 \frac{(\ln(1-u))^2}{u} \ du = \frac{1}{2} \int_0^1 \frac{(\ln(t))^2}{1-t} \ dt \ (\mathrm{en \ posant} \ t = 1-u).$$

En appliquant la question I.E. à r = 3 et à la fonction $f : t \mapsto \frac{1}{1-t}$, on obtient

$$S_2 = \frac{1}{2} \int_0^1 (\ln(t))^{3-1} \times \frac{1}{1-t} dt = \frac{1}{2} \times 2 \sum_{n=0}^{+\infty} \frac{1}{(n+1)^3} = \sum_{n=1}^{+\infty} \frac{1}{n^3} = \zeta(3).$$

$$\zeta(3) = \sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^2} = \frac{1}{2} \int_0^1 \frac{(\ln t)^2}{1-t} dt.$$

Partie II - La fonction β

II.A - La fonction Γ

II.A - 1) Soit x > 0.

• La fonction $t \mapsto t^{x-1}e^{-t}$ est continue sur $]0, +\infty[$.

• $t^{x-1}e^{-t} = o\left(\frac{1}{t^2}\right)$ d'après un théorème de croissances comparées. Donc, la fonction $t \mapsto t^{x-1}e^{-t}$ est intégrable sur un voisinage de $+\infty$

un voisinage de $+\infty$.

• $t^{x-1}e^{-t}$ $\underset{t\to +\infty}{\sim} t^{x-1} > 0$ avec x-1>-1. Donc, la fonction $t\mapsto t^{x-1}e^{-t}$ est intégrable sur un voisinage de 0 à droite.

Finalement, la fonction $t \mapsto t^{x-1}e^{-t}$ est intégrable sur $]0, +\infty[$. On en déduit l'existence de $\Gamma(x)$.

II.A - 2) Soient x > 0 et $\alpha > 0$. En posant $u = \alpha t$, on obtient

$$\int_{0}^{+\infty} t^{x-1} e^{-\alpha t} dt = \int_{0}^{+\infty} \left(\frac{u}{\alpha}\right)^{x-1} e^{-u} \frac{du}{\alpha} = \frac{\Gamma(x)}{\alpha^{x}}.$$

II.B - La fonction β et son équation fonctionnelle

II.B - 1) Soient x > 0 et y > 0. La fonction $t \mapsto t^{x-1}(1-t)^{y-1}$ est continue et positive sur]0, 1[, équivalente en 0 à t^{x-1} avec x-1>-1 et donc intégrable sur un voisinage de 0 à droite, équivalente en 1 à $(1-t)^{y-1}$ avec y-1>-1 et donc intégrable sur un voisinage de 1 à gauche. Donc, la fonction $t \mapsto t^{x-1}(1-t)^{y-1}$ est intégrable sur]0, 1[. On en déduit l'existence de $\beta(x,y)$.

II.B - 2) Soient x > 0 et y > 0. En posant u = 1 - t, on obtient

$$\beta(y,x) = \int_0^1 t^{y-1} (1-t)^{x-1} dt = \int_1^0 (1-u)^{y-1} u^{x-1} (-du) = \int_0^1 u^{y-1} (1-u)^{x-1} du = \beta(x,y).$$

II.B - 3) Soient x > 0 et y > 0.

$$x\left(\beta(x,y) - \beta(x+1,y)\right) = x\left(\int_0^1 \left((t^x - t^{x+1}\right)(1-y)^{y-1}\right) \ dt\right) = \int_0^1 xt^{x-1}(1-t)^y \ dt$$

Soit $\varepsilon \in \left[0, \frac{1}{2}\right]$. Une intégration par parties licite fournit

$$\begin{split} \int_{\epsilon}^{1-\epsilon} x t^{x-1} (1-t)^y \ dt &= \left[t^x (1-t)^y \right]_{\epsilon}^{1-\epsilon} + y \int_{\epsilon}^{1-\epsilon} t^x (1-t)^{y-1} \ dt \\ &= - (1-\epsilon)^x \epsilon^y + \epsilon^x (1-\epsilon)^y + y \int_{\epsilon}^{1-\epsilon} t^{x-1} (1-t)^y \ dt. \end{split}$$

 $\text{Quand ϵ tend vers 0, on obtient x} \left(\beta(x,y) - \beta(x+1,y)\right) = y\beta(x+1,y) \text{ et donc } \beta(x+1,y) = \frac{x}{x+y}\beta(x,y).$

II.B - 4) Soient x > 0 et y > 0.

$$\beta(x+1,y+1) = \frac{x}{x+y+1}\beta(x,y+1) = \frac{x}{x+y+1}\beta(y+1,x) = \frac{x}{x+y+1}\frac{y}{x+y}\beta(y,x) = \frac{xy}{(x+y)(x+y+1)}\beta(x,y).$$

II.C - Relation entre la fonction β et la fonction Γ

II.C -1) Supposons démontrée la relation (\mathcal{R}) pour x>1 et y>1. Soit $(x,y)\in]0,+\infty[^2$ tel que $x\leqslant 1$ et $y\leqslant 1$. Alors, x+1>1 et y+1>1 puis

$$\beta(x,y) = \frac{(x+y)(x+y+1)}{xy} \beta(x+1,y+1) = \frac{(x+y)(x+y+1)}{xy} \frac{\Gamma(x+1)\Gamma(y+1)}{\Gamma(x+y+2)}$$
$$= \frac{(x+y)(x+y+1)}{xy} \frac{x\Gamma(x)y\Gamma(y)}{(x+y+1)(x+y)\Gamma(x+y)} = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$

et la relation (\mathcal{R}) est encore vérifiée si $x \leq 1$ et $y \leq 1$ et finalement pour tout $(x,y) \in]0, +\infty[^2]$.

 $\begin{aligned} \textbf{II.C -2)} & \text{ Soient } x > 1 \text{ et } y > 1. \text{ La fonction } u \mapsto \frac{u}{1+u} = 1 - \frac{1}{1+u} = t \text{ est une bijection de }]0, +\infty[\text{ sur }]0, 1[\text{, de classe } C^1 \text{ sur }]0, +\infty[\text{, de réciproque la fonction } t \mapsto \frac{1}{1-t} - 1 = \frac{t}{1-t} \text{ qui est de classe } C^1 \text{ sur }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut poser } t = \frac{u}{1+u} \text{ et on obtient }]0, 1[\text{. On peut$

$$\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \int_0^{+\infty} \left(\frac{u}{1+u}\right)^{x-1} \left(1 - \frac{u}{1+u}\right)^{y-1} \frac{du}{(1+u)^2}$$
$$= \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} du$$

II.C -3) Soient x > 1 et y > 1. Pour tout réel positif t, par positivité de l'intégrale,

$$0 \leqslant F_{x,y}(t) = \int_0^t u^{x+y-1} e^{-u} \ du = \Gamma(x+y) - \int_t^{+\infty} u^{x+y-1} e^{-u} \ du \leqslant \Gamma(x+y).$$

II.C -4) Soient x > 1 et y > 1. Pour $(u, a) \in [0, +\infty[\times[0, +\infty[$, posons $g(u, a) = \frac{u^{x-1}}{(1+u)^{x+y}}F_{x,y}((1+u)a)$ de sorte que pour tout réel positif a, $G(a) = \int_{0}^{+\infty} g(u, a) du$.

- Pour tout réel $\mathfrak a$ de $[0,+\infty[$, la fonction $\mathfrak u\mapsto g(\mathfrak u,\mathfrak a)$ est continue par morceaux sur $[0,+\infty[$ (car x-1>0).
- Pour tout réel u de $[0, +\infty[$, la fonction $a \mapsto g(u, a)$ est continue sur $[0, +\infty[$.
- $\begin{aligned} \bullet \ \mathrm{Pour \ tout} \ (u,\alpha) \in [0,+\infty[\times[0,+\infty[,\,|g(u,\alpha)| = \frac{u^{x-1}}{(1+u)^{x+y}} F_{x,y}((1+u)\alpha) \leqslant \frac{u^{x-1}}{(1+u)^{x+y}} \Gamma(x+y) = \phi(u). \ \mathrm{La \ fonction} \ \phi \\ \mathrm{est \ continue \ sur} \ [0,+\infty[,\,\mathrm{\acute{e}quivalente \ en} \ +\infty \ \grave{a} \ \frac{\Gamma(x+y)}{u^{y+1}} \ \mathrm{et \ donc \ est \ int\acute{e}grable \ sur} \ [0,+\infty[\ \mathrm{car} \ y+1>1. \end{aligned}$

D'après le théorème de continuité des intégrales à paramètres, la fonction G est définie et continue sur $[0, +\infty[$.

II.C -5) Avec les notations de la question précédente,

- Pour tout réel a de $[0, +\infty[$, la fonction $\mathfrak{u} \mapsto \mathfrak{g}(\mathfrak{u}, \mathfrak{a})$ est continue par morceaux sur $[0, +\infty[$.
- Pour chaque u de $[0, +\infty[$, $F_{x,y}((1+u)a) = \int_0^{(1+u)a} t^{x+y-1}e^{-t} dt \xrightarrow[a \to +\infty]{} \Gamma(x+y)$ et donc $g(u, a) \xrightarrow[a \to +\infty]{} \phi(u)$ avec ϕ continue par morceaux sur $[0, +\infty[$.
- Pour tout $(\mathfrak{u},\mathfrak{a}) \in [0,+\infty[^2], |g(\mathfrak{u},\mathfrak{a})| \leq \varphi(\mathfrak{u})$ avec φ intégrable sur $[0,+\infty[...]]$

D'après le théorème de convergence dominée généralisée et la question II.C.2),

$$\lim_{\alpha \to +\infty} \int_0^{+\infty} G(\alpha) = \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} \lim_{\alpha \to +\infty} F((1+u)\alpha) \ du = \Gamma(x+y) \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} \ du = \Gamma(x+y)\beta(x,y).$$

II.C -6) En plus des hypothèses vérifiées à la question II.C.4), g admet sur $[0, +\infty[\times[c, d]]$ une dérivée partielle par rapport à α et pour tout $(u, \alpha) \in [0, +\infty[\times[c, d]]$,

$$\frac{\partial g}{\partial a}(u,a) = \frac{u^{x-1}}{(1+u)^{x+y}}(1+u)e^{-(1+u)a}((1+u)a)^{x+y-1} = a^{x+y-1}u^{x-1}e^{-(1+u)a}.$$

- Pour tout $a \in [c, d]$, la fonction $u \mapsto \frac{\partial g}{\partial a}(u, a)$ est continue par morceaux sur $[0, +\infty[$.
- Pour tout $u \in [0, +\infty[$, la fonction $a \mapsto \frac{\partial g}{\partial a}(u, a)$ est continue sur [c, d].
- $\bullet \text{ Pour tout } (u,\alpha) \in [0,+\infty[\times[c,d], \ \left|\frac{\partial g}{\partial \alpha}(u,\alpha)\right| \leqslant d^{x+y-1}u^{x-1}e^{-(1+u)c} = \phi_1(u) \text{ où } \phi_1 \text{ est continue par morceaux et intégrable sur } [0,+\infty[\ (\operatorname{car}\ c>0).$

D'après le théorème de dérivation des intégrales à paramètres, G est de classe C^1 sur tout segment de $]0, +\infty[$ et sa dérivée s'obtient par dérivation sous le signe somme. On en déduit encore que G est de classe C^1 sur $]0, +\infty[$ et sa dérivée s'obtient par dérivation sous le signe somme.

II.C -7) Pour tout a > 0,

$$\begin{split} G'(\alpha) &= \int_0^{+\infty} \frac{\partial g}{\partial \alpha}(u,\alpha) \ du = \alpha^{x+y-1} e^{-\alpha} \int_0^{+\infty} u^{x-1} e^{-u\alpha} \ du \\ &= \alpha^{x+y-1} e^{-\alpha} \frac{\Gamma(x)}{\alpha^x} \ (\text{d'après la question II.A.2})) \\ &= \Gamma(x) \alpha^{y-1} e^{-\alpha}. \end{split}$$

II.C -8) Il existe donc $C \in \mathbb{R}$ tel que pour tout a > 0, $G(a) = C + \Gamma(x) \int_0^a t^{y-1} e^{-t} dt$. Cette égalité reste vraie pour a = 0 par continuité de G sur $[0, +\infty[$. Quand a = 0, on obtient C = 0 et donc pour tout $a \ge 0$,

$$G(\alpha) = \Gamma(x) \int_0^{\alpha} t^{y-1} e^{-t} dt.$$

Quand $\mathfrak a$ tend vers $+\infty$, on obtient $\Gamma(x)\Gamma(y)=\Gamma(x+y)\beta(x,y)$ (d'après la question II.C.5)) et donc $\beta(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$

Partie III - La fonction digamma

III.A - Pour tout réel x > 0, $\Gamma(x+1) = x\Gamma(x)$. En dérivant cette égalité, on obtient pour tout réel x > 0, $\Gamma'(x+1) = \Gamma(x) + x\Gamma'(x)$. En divisant les deux membres ce rte égalité par le réel non nul $\Gamma(x+1)$, on obtient pour tout réel x,

$$\psi(x+1) = \frac{\Gamma'(x+1)}{\Gamma(x+1)} = \frac{\Gamma(x) + x\Gamma'(x)}{\Gamma(x+1)} = \frac{\Gamma(x) + x\Gamma'(x)}{x\Gamma(x)} = \psi(x) + \frac{1}{x},$$

et finalement, pour tout réel x > 0, $\psi(x+1) - \psi(x) = \frac{1}{x}$.

III.B - Sens de variation de ψ

III.B - 1) Soit $x_0 > 0$. Pour tout réel y, $\beta(x_0, y) = \frac{\Gamma(x_0)\Gamma(y)}{\Gamma(x_0 + y)}$. La fonction $y \mapsto \beta(x_0, y)$ est dérivable sur $]0, +\infty[$ en tant que quotient de fonctions dérivables sur $]0, +\infty[$ dont le dénominateur ne s'annule pas sur $]0, +\infty[$ et ceci pour tout $x_0 > 0$.

Ainsi, la fonction β admet sur $]0, +\infty[^2$ une dérivée partielle par rapport à sa deuxième variable y et pour $(x, y) \in]0, +\infty[^2, y]$

$$\begin{split} \frac{\partial \beta}{\partial y}(x,y) &= \Gamma(x) \frac{\Gamma'(y) \Gamma(x+y) - \Gamma(y) \Gamma'(x+y)}{\left(\Gamma(x+y)\right)^2} = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \left(\frac{\Gamma'(y)}{\Gamma(y)} - \frac{\Gamma'(x+y)}{\Gamma(x+y)}\right) \\ &= \beta(x,y) \left(\psi(y) - \psi(x+y)\right). \end{split}$$

III.B - 2) Soit x > 0. Soient y et y' deux réels strictement positifs tels que $y \le y'$.

$$\begin{split} y \leqslant y' &\Rightarrow \forall t \in]0,1[, \ (y-1)\ln(1-t) \geqslant (y'-1)\ln(1-t) \ (\operatorname{car}\ 1-t \in]0,1[\ \operatorname{et}\ \operatorname{donc}\ \ln(1-t) \leqslant 0) \\ &\Rightarrow \forall t \in]0,1[, \ e^{(y-1)\ln(1-t)} \geqslant e^{(y'-1)\ln(1-t)} \Rightarrow \forall t \in]0,1[, \ (1-t)^{y-1} \geqslant (1-t)^{y'-1} \\ &\Rightarrow \forall t \in]0,1[, \ t^{x-1}(1-t)^{y-1} \geqslant t^{x-1}(1-t)^{y'-1} \\ &\Rightarrow \int_0^1 t^{x-1}(1-t)^{y-1} \ \operatorname{d}t \leqslant \int_0^1 t^{x-1}(1-t)^{y'-1} \ \operatorname{d}t \\ &\Rightarrow \beta(x,y) \geqslant \beta(x,y'). \end{split}$$

Pour tout réel x > 0, la fonction $y \mapsto \beta(x, y)$ est décroissante sur $]0, +\infty[$.

III.B - 3) Mais alors, pour tout $(x,y) \in]0, +\infty[^2, \frac{\partial \beta}{\partial y}(x,y)] \le 0$ ou encore

pour tout
$$(x,y) \in]0, +\infty[^2, \beta(x,y)(\psi(y) - \psi(x+y)) \le 0.$$

Maintenant, pour tout $(x,y) \in]0, +\infty[^2, \beta(x,y)]$ est l'intégrale d'une fonction continue, positive et non nulle sur]0,1[. On en déduit que pour tout $(x,y) \in]0, +\infty[^2, \beta(x,y) > 0]$ puis que

pour tout
$$(x, y) \in]0, +\infty[^2, \psi(y) \leq \psi(x + y).$$

Ceci montre que la fonction ψ est croissante sur $]0, +\infty[$.

III.C - Une expression de ψ comme somme d'une série de fonctions

III.C - 1) Soient $n \in \mathbb{N}^*$ et $x \in]-1+\infty[$.

$$\begin{split} (\psi(x+1) - \psi(1)) - (\psi(x+1+n) - \psi(n+1)) &= \sum_{k=1}^n \left((\psi(x+k) - \psi(k)) - (\psi(x+k+1) - \psi(k+1)) \right) \text{ (somme t\'elescopique)} \\ &= \sum_{k=1}^n \left((\psi(k+1) - \psi(k)) - (\psi(x+k+1) - \psi(x+k)) \right) = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+x} \right). \end{split}$$

III.C - 2) Puisque la fonction ψ est croissante sur $]0,+\infty[$ et que $n+x+1\geqslant n,$ on a $\psi(n+x+1)-\psi(n)\geqslant 0.$ D'autre part, $x\leqslant p$ et donc

$$\begin{split} \psi(n+x+1) - \psi(n) & \leqslant \psi(n+p+1) - \psi(n) = \sum_{k=0}^p \left(\psi(n+k+1) - \psi(n+k) \right) = \sum_{k=0}^p \frac{1}{n+k} \\ & = \sum_{k=1}^{n+p} \frac{1}{k} - \sum_{k=1}^{n-1} \frac{1}{k} = H_{n+p} - H_{n-1} \\ & \leqslant \sum_{k=0}^p \frac{1}{n} = \frac{p+1}{n}. \end{split}$$

III.C - 3) Soit x > -1. Pour $n \ge 2$,

$$\begin{split} \psi(1+x) - \left(\psi(1) + \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+x}\right)\right) &= \psi(x+n+1) - \psi(n+1) \\ &= \left(\psi(x+n+1) - \psi(n)\right) - \left(\psi(n+1) - \psi(n)\right) = \left(\psi(x+n+1) - \psi(n)\right) - \frac{1}{n}. \end{split}$$

Puisque $0 \le \psi(x+n+1) - \psi(n) \le \frac{E(x)+2}{n}$, le théorème des gendarmes permet d'affirmer que $\psi(x+n+1) - \psi(n)$ tend vers 0 quand n tend vers $+\infty$. Il en de même de $(\psi(x+n+1) - \psi(n)) - \frac{1}{n}$ et on a montré que $\psi(1+x) - \left(\psi(1) + \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+x}\right)\right)$ tend vers 0 quand n tend vers $+\infty$.

Ainsi, la série de terme général $\frac{1}{n} - \frac{1}{n+x}$, $n \ge 1$, converge et

$$\psi(x+1) = \psi(1) + \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right).$$

III.D - Un développement en série entière

III.D - 1) Pour $n \ge 2$ et $x \in [-1, +\infty[$, posons $g_n = \frac{1}{n} - \frac{1}{n+x}$.

- La série de fonctions de terme général g_n , $n \ge 2$, converge simplement vers g sur $[-1, +\infty[$.
- \bullet Chaque fonction $g_n,\, n\geqslant 2,$ est de classe C^∞ sur $[-1,+\infty[$ et

$$\forall n \ge 2, \ \forall k \in \mathbb{N}^*, \ \forall x \ge -1, \ g_n^{(k)}(x) = \frac{(-1)^{k+1} k!}{(n+x)^{k+1}}.$$

Maintenant, pour tout $n \ge 2$, pour tout $x \in [-1, +\infty[$ et tout $k \in \mathbb{N}^*$, on a

$$\left|g_n^{(k)}(x)\right| = \frac{k!}{(n+x)^{k+1}} \leqslant \frac{k!}{(n-1)^{k+1}}.$$

Puisque $k+1\geqslant 2$, la série numérique de terme général $\frac{k!}{(n-1)^{k+1}},\ n\geqslant 2$, converge. On en déduit que pour chaque $k\in\mathbb{N}^*$, la série de fonctions de terme général $g_n^{(k)},\ n\geqslant 2$, converge normalement et donc uniformément sur $[-1,+\infty[$. D'après une généralisation du théorème de dérivation terme à terme, g est de classe C^∞ sur $[-1,+\infty[$ et ses dérivées successives s'obtiennent par dérivation terme à terme.

Soit $k \in \mathbb{N}^*$.

$$g^{(k)}(0) = \sum_{n=2}^{+\infty} g_n^{(k)}(0) = \sum_{n=2}^{+\infty} \frac{(-1)^{k+1} k!}{n^{k+1}} = (-1)^{k+1} k! \left(\zeta(k+1) - 1 \right).$$

III.D - 2) Soit $x \in]-1,1[$. D'après l'inégalité de TAYLOR-LAGRANGE,

$$\left| g(x) - \sum_{k=0}^{n} \frac{g^{(k)}(0)}{k!} x^{k} \right| \leq \frac{|x||^{n+1} M_{n+1}}{(n+1)!},$$

où M_{n+1} est un majorant de $g^{(n+1)}$ sur]-1,1[. Pour $n \in \mathbb{N}$ et $t \in]-1,1[$,

$$\begin{split} \left| g^{(n+1)}(t) \right| &= (n+1)! \sum_{k=2}^{+\infty} \frac{1}{(k+t)^{n+2}} \\ &\leq (n+1)! \sum_{k=2}^{+\infty} \frac{1}{(k-1)^{n+2}} = (n+1)! \sum_{k=1}^{+\infty} \frac{1}{k^{n+2}} \\ &\leq (n+1)! \sum_{k=1}^{+\infty} \frac{1}{k^2} = (n+1)! \zeta(2). \end{split}$$

puis $\frac{|x|^{n+1}M_{n+1}}{(n+1)!} \le \frac{|x|^{n+1}n+1)!\zeta(2)}{(n+1)!} = \zeta(2)|x|^{n+1}$. On a montré que

$$\forall n \in \mathbb{N}, \ \forall x \in]-1,1[, \ \left|g(x) - \sum_{k=0}^{n} \frac{g^{(k)}(0)}{k!} x^{k}\right| \leqslant \zeta(2) |x|^{n+1}.$$

Soit $x \in]-1,1[$. Alors, $\zeta(2)|x|^{n+1}$ tend vers 0 quand n tend vers $+\infty$. On en déduit que la série de Taylor de g en x converge vers g(x). Ceci montre que g est développable en série entière sur]-1,1[.

III.D - 3) Soit $x \in]-1,1[$. En tenant compte de g(0)=0,

$$\begin{split} \psi(1+x) &= \psi(1) + 1 - \frac{1}{1+x} + g(x) = \psi(1) + \sum_{n=1}^{+\infty} (-1)^{n+1} x^n + \sum_{n=1}^{+\infty} (-1)^{n+1} (n+1)! \left(\zeta(n+1) - 1 \right) x^n \\ &= \psi(1) + \sum_{n=1}^{+\infty} (-1)^{n+1} (n+1)! \zeta(n+1) x^n. \end{split}$$

Partie IV - Expression de S_r en fonction de valeurs entières de ζ

IV.A - Une relation entre B et ψ

Soit x>0. La fonction ψ est dérivable sur $]0,+\infty[$ en tant que quotient de fonctions dérivables sur $]0,+\infty[$ dont le dénominateur ne s'annule pas sur $]0,+\infty[$. Donc, la fonction $y\mapsto \psi(y)-\psi(x+y)$ est dérivable sur $]0,+\infty[$. Ceci montre la fonction $(x,y)\mapsto \psi(y)-\psi(x+y)$ admet une dérivée partielle par rapport à y sur $]0,+\infty[^2$. Puisque la fonction β admet aussi une dérivée partielle par rapport à y sur $]0,+\infty[^2$, la fonction $(x,y)\mapsto \frac{\partial\beta}{\partial y}(x,y)=\beta(x,y)(\psi(y)-\psi(x+y))$ admet une dérivée partielle par rapport à y sur $]0,+\infty[^2$. En particulier, $\frac{\partial^2\beta}{\partial u^2}(x,1)$ est défini pour tout x>0.

D'après la question III.B.1), pour tout $(x, y) \in]0, +\infty[^2,$

$$\begin{split} \frac{\partial^2 \beta}{\partial y^2}(x,y) &= \frac{\partial \beta}{\partial y}(x,y)(\psi(y) - \psi(x+y)) + \beta(x,y)(\psi'(y) - \psi'(x+y)) \\ &= \beta(x,y)(\psi(y) - \psi(x+y))^2 + \beta(x,y)(\psi'(y) - \psi'(x+y)). \end{split}$$

Pour y=1, on obtient en particulier $B(x)=\beta(x,1)\left[(\psi(1)-\psi(x+1))^2+(\psi'(1)-\psi'(x+1))\right]$ avec

$$\beta(x,1) = \frac{\Gamma(x)\Gamma(1)}{\Gamma(x+1)} = \frac{\Gamma(x)\times 1}{x\Gamma(x)} = \frac{1}{x}.$$

On a montré que

$$\forall x > 0, \ xB(x) = (\psi(1) - \psi(x+1))^2 + (\psi'(1) - \psi'(x+1)).$$

Pour tout réel $x \in]-1, +\infty[$, $\psi(1+x)=\psi(1)+1-\frac{1}{1+x}+g(x)$. Puisque g est de classe C^{∞} sur $[-1, +\infty[$ et en particulier sur $]0, +\infty[$, il en est de même de la fonction $x\mapsto \psi(1+x)$. Mais alors, la fonction $B: x\mapsto \frac{1}{x}\left((\psi(1)-\psi(x+1))^2+(\psi'(1)-\psi'(x+1))\right)$ est de classe C^{∞} sur $]0, +\infty[$.

IV.B - Expression de S_r à l'aide de la fonction B

 $\begin{aligned} \mathbf{IV.B - 1)} \ \ \mathrm{Pour} \ x > 0 \ \mathrm{et} \ y > 0, \ \beta(x,y) \int_0^1 t^{x-1} (1-t)^{y-1} \ dt. \ \mathrm{Soit} \ x > 0 \ \mathrm{fix\'e.} \ \mathrm{Pour} \ t \in]0,1[\ \mathrm{et} \ y > 0, \ \mathrm{posons} \ b(t,y) = \\ t^{x-1} (1-t)^{y-1} \ \mathrm{de} \ \mathrm{sorte} \ \mathrm{que} \ \beta(x,y) = \int_0^1 b(t,y) \ dt. \ \mathrm{Soit} \ c > 0. \ \mathrm{Pour} \ (t,y) \in]0,1[\times [c,+\infty[,$

$$\frac{\partial b}{\partial y}(t,y) = \ln(1-t)t^{x-1}(1-t)^{y-1} \text{ et } \frac{\partial^2 b}{\partial y^2}(t,y) = (\ln(1-t))^2 t^{x-1}(1-t)^{y-1}.$$

Pour $(t, y) \in]0, 1[\times [c, +\infty[,$

$$\left|\frac{\partial b}{\partial y}(t,y)\right| \leqslant |\ln(1-t)|t^{x-1}(1-t)^{c-1} = \phi_1(t) \; \mathrm{et} \; \left|\frac{\partial^2 b}{\partial y^2}(t,y)\right| \leqslant (\ln(1-t))^2 t^{x-1}(1-t)^{c-1} = \phi_2(t).$$

Les fonctions ϕ_1 et ϕ_2 sont continues sur]0, 1[, négligeable devant t^{x-1} quand t tend vers 0 avec x-1>-1, et négligeables devant $(1-t)^{-1+\frac{c}{2}}$ quand t tend vers 1 avec $-1+\frac{c}{2}>-1$. Donc, ϕ_1 et ϕ_2 sont intégrables sur]0, 1[. Les autres hypothèses du théorème de dérivation sous le signe somme étant aisément vérifiées et ceci pour tout c>0, pour tout $(x,y)\in]0,+\infty[^2,$

$$\frac{\partial^2 \beta}{\partial y^2}(x,y) = \int_0^1 (\ln(1-t))^2 t^{x-1} (1-t)^{y-1} dt.$$

Pour y = 1, on obtient en particulier

$$\forall x > 0, \ B(x) = \frac{\partial^2 \beta}{\partial y^2}(x, 1) = \int_0^1 (\ln(1 - t))^2 t^{x - 1} \ dt.$$

IV.B - 2) En admettant que l'on puisse sans problème indéfiniment dériver sous le signe somme,

$$\forall p \in \mathbb{N}^*, \ \forall x > 0, \ B^{(p)}(x) = \int_0^1 (\ln(1-t))^2 (\ln t)^p t^{x-1} \ dt.$$

 $\mathbf{IV.B - 3)} \ \mathrm{D'après} \ \mathrm{la} \ \mathrm{question} \ \mathrm{I.F.2}), \ S_{\mathrm{r}} = \frac{(-1)^{\mathrm{r}}}{2(\mathrm{r}-2)!} \int_{0}^{1} \frac{(\ln t)^{\mathrm{r}-2} (\ln (1-t))^{2}}{t} \ dt.$

Il suffit donc de démontrer que $\lim_{x\to 0^+} B^{(r-2)}(x) = \int_0^1 \frac{(\ln t)^{r-2}(\ln(1-t))^2}{t} dt$ sachant que

$$\forall x > 0, \ B^{(r-2)}(x) = \int_0^1 (\ln(1-t))^2 (\ln t)^{r-2} t^{x-1} \ dt.$$

- $\bullet \text{ Pour chaque } x>0, \text{ la fonction } t\mapsto (\ln(1-t))^2(\ln t)^{r-2}t^{x-1} \text{ est continue et intégrable sur }]0,1[.$
- $\bullet \ \mathrm{Pour \ chaque} \ t \in]0,1[, \ \lim_{x \to 0^+} (\ln(1-t))^2 (\ln t)^{r-2} t^{x-1} = \frac{(\ln t)^{r-2} (\ln(1-t))^2}{t}$
- $\bullet \ \mathrm{Pour \ chaque} \ (x,t) \in]0,+\infty[\times]0,1[, \ \left|((\ln(1-t))^2(\ln t)^{r-2}t^{x-1}\right| \leqslant \frac{|\ln t|^{r-2}(\ln(1-t))^2}{t} = \phi(t).$

La fonction ϕ est continue par morceaux sur]0,1[.

Quand t tend vers 0, $\phi(t) \sim t |\ln t|^{r-2} \to 0$ d'après un théorème de croissances comparées. La fonction ϕ se prolonge par continuité en 0 et est en particulier intégrable sur un voisinage de 0.

Quand t tend vers 1, $\phi(t) \sim (t-1)^2 |\ln t|^{r-2} \to 0$ et donc ϕ est intégrable sur un voisinage de 1.

Finalement, φ est intégrable sur]0,1[.

D'après le théorème de convergence dominée généralisée, $\lim_{x\to 0^+} B^{(r-2)}(x)$ existe dans $\mathbb R$ et

$$\lim_{x \to 0^+} B^{(r-2)}(x) = \int_0^1 \lim_{x \to 0^+} (\ln(1-t))^2 (\ln t)^{r-2} t^{x-1} dt = \int_0^1 \frac{(\ln t)^{r-2} (\ln(1-t))^2}{t} dt,$$

puis

$$S_r = \frac{(-1)^r}{2(r-2)!} \lim_{x \to 0+} B^{(r-2)}(x).$$

 $\begin{aligned} \mathbf{IV.B - 4)} &\text{ Pour } r = 2, \text{ on obtient } S_2 = \frac{1}{2} \lim_{x \to 0^+} B(x) = \frac{1}{2} \lim_{x \to 0^+} \frac{\left[(\psi(1+x) - \psi(1))^2 + (\psi'(x) - \psi'(1+x)) \right]}{x}. \\ \psi &\text{ est de classe } C^\infty &\text{ sur }]0, +\infty[&\text{ ou encore la fonction } x \mapsto \psi(1+x) &\text{ est de classe } C^\infty &\text{ sur }]-1, +\infty[. &\text{ En particulier, lest }] \end{aligned}$

 ψ est de classe C^{∞} sur $]0,+\infty[$ ou encore la fonction $x\mapsto \psi(1+x)$ est de classe C^{∞} sur $]-1,+\infty[$. En particulier, les fonction $x\mapsto \psi(1+x)$ et $x\mapsto \psi'(1+x)$ admettent en 0 un développement limité à tout ordre, son développement de Taylor-Young. Donc, quand x tend vers 0,

$$(\psi(1+x)-\psi(1))^2=(O(x))^2$$
,

et

$$\psi'(1+x) - \psi'(1) = \psi''(1)x + o(x)$$

puis

$$B(x) = \frac{O(x^2) - \psi''(1)x + o(x)}{x} = -\psi''(1) + o(1).$$

Donc, $S_2 = \frac{-\psi''(1)}{2}$. Or, pour tout x > 0, $\psi(1+x) = \psi(1) + 1 - \frac{1}{1+x} + g(x)$ et donc, pour tout x > 0, $\psi''(1+x) = -\frac{2}{1+x)^3} + g''(x)$ puis, d'après III.D.1)

$$\psi''(1) = -2 - 2(\zeta(3) - 1) = -2\zeta(3).$$

On retrouve alors $S_2 = \frac{-\psi''(1)}{2} = \zeta(3)$.

IV.C -

IV.C - 1) Puisque ψ est de classe C^{∞} sur $]0, +\infty[$, ϕ est de classe C^{∞} sur $]-1, +\infty[$. Pour tout x>0, $\phi(x)=xB(x)$ D'après la formule de LEIBNIZ, pour tout $n\geqslant$ et tout x>0,

$$\varphi(n)(x) = 2\psi^{(n)}(1+x)((\psi(1+x)-\psi(1)) + \sum_{k=1}^{n-1} \binom{n}{k} \psi^{(k)}(1+x)\psi^{(n-k)}(1+x) - \psi^{(n+1)}(1+x).$$

Pour x = 0, on obtient en particulier

$$\varphi^{(n)}(0) = \left(\sum_{k=1}^{n-1} \binom{n}{k} \psi^{(k)}(1) \psi^{(n-k)}(1)\right) - \psi^{(n+1)}(1).$$

IV.C - 2) Soit $r \ge 3$. Alors, $n = r - 1 \ge 2$ et

$$\varphi^{(r-1)}(0) = \left(\sum_{k=1}^{r-2} \binom{r-1}{k} \psi^{(k)}(1) \psi^{(r-1-k)}(1)\right) - \psi^{(r)}(1).$$

Pour x > 0, $\varphi(x) = xB(x)$. La formule de Leibniz fournit aussi pour $r \geqslant 3$ et x > 0,

$$\varphi^{(n)}(x) = xB^{(n)}(x) + nB^{(n-1)}(x)$$

et donc, $\varphi^{(n)}$ étant continue en 0 et $B^{(n)}$ et $B^{(n-1)}$ ayant une limite réelle en 0 d'après IV.B.3),

$$\phi^{(n)}(0)\phi^{(r-1)}(0) = (r-1)\lim_{x\to 0^+} B^{(r-2)}(x) = 2(r-1)!(-1)^r S_r.$$

$$\mathrm{Donc,\ pour\ } r\geqslant 3,\ 2S_{\mathrm{r}}=\frac{(-1)^{r}}{(r-1)!}\left[\left(\sum_{k=1}^{r-2}\binom{r-1}{k}\psi^{(k)}(1)\psi^{(r-1-k)}(1)\right)-\psi^{(r)}(1)\right].$$

Maintenant, d'après la question III.D.3), la fonction ψ est développable en série entière en 1 et pour tout $k \ge 1$,

$$\frac{\psi^{(k)}(1)}{k!} = (-1)^{k+1} \zeta(k+1).$$

Donc,

$$\begin{split} 2S_r &= \frac{(-1)^r}{(r-1)!} \left[\left(\sum_{k=1}^{r-2} \frac{(r-1)!}{k!(r-1-k)!} (-1)^{k+1} k! \zeta(k+1) (-1)^{r-1-k+1} (r-1-k)! \zeta(r-1-k+1) \right) - (-1)^{r+1} r! \zeta(r+1) \right] \\ &= r \zeta(r+1) - \sum_{k=1}^{r-2} \zeta(k+1) \zeta(r-k). \end{split}$$