ベクトル空間の例

ユークリッド空間 \mathbb{E}^3

 \mathbb{E}^3 を 3 次元ユークリッド空間とする.空間において,点 A と点 B に向かう有向線分 AB を,A を始点,B を終点とするベクトルといい \overrightarrow{AB} で表す.線分 AB の長さをベクトル \overrightarrow{AB} の 大きさ または 長さ といい, $\|\overrightarrow{AB}\|$ で表す.

 \overrightarrow{AB} と $\overrightarrow{A'B'}$ に関して、向きと長さが等しいとき $\overrightarrow{AB} \equiv \overrightarrow{A'B'}$ と書いてベクトルとして等しいという。ただし長さが 0 であるベクトルを $\overrightarrow{0}$ で表す、ベクトル \overrightarrow{a} 、 \overrightarrow{b} に対して和とスカラー倍が定義される。

 \mathbb{E}^3 は \mathbb{R} 上ベクトル空間となることが簡単に示せる.

- (i) $\forall \vec{u}, \vec{v}, \vec{w} \in \mathbb{E}^3; \vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}.$
- (ii) $\forall \vec{u}, \vec{v} \in \mathbb{E}^3 : \vec{u} + \vec{v} = \vec{v} + \vec{u}$.
- (iii) $\exists \vec{0} \in \mathbb{E}^3 \text{ s.t. } \forall \vec{u} \in \mathbb{E}^3; \vec{0} + \vec{u} = \vec{u} + \vec{0} = \vec{u}.$
- (iv) $\forall \vec{u} \in \mathbb{E}^3$; $\exists (-\vec{u}) \in \mathbb{E}^3$ s.t. $\vec{u} + (-\vec{u}) = (-\vec{u}) + \vec{u} = \vec{0}$.
- (v) $\forall a, b \in \mathbb{R}, \forall \vec{u}, \vec{v} \in \mathbb{E}^3$;

$$a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$$
$$(a+b)\vec{u} = a\vec{u} + b\vec{u}$$
$$(ab)\vec{u} = a(b\vec{u})$$
$$1\vec{u} = \vec{u}.$$

数ベクトル空間

F を $\mathbb R$ または $\mathbb C$ としたとき, F の n 個の元 v_1, \cdots, v_n を成分とする n 次元の列ベクトル

$$oldsymbol{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}$$

の全体を F^n と書く. (n,1) 型の行列として和とスカラー倍が定義される.

$$\mathbf{v} + \mathbf{u} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} v_1 + u_1 \\ \vdots \\ v_n + u_n \end{bmatrix} \in F^n$$

$$c\mathbf{v} = \begin{bmatrix} cv_1 \\ cv_2 \\ \vdots \\ cv_n \end{bmatrix} \in F^n$$

また、定義の条件も満たすので F^n は F 上のベクトル空間となる.このベクトル空間を n 次元の**数ベクトル空間**といい, F^n の元を数ベクトルという.

同様にして行べクトル

$$\boldsymbol{u} = [u_1, u_2, \cdots, u_n]$$

の全体も F 上のベクトル空間となる. それは F^n の元の転置行列の全体 とみなせるので、ここではそれを $^tF^n$ と書くことにする.

一般に ${}^tF^1=F=F^1$ である.特に $\mathbb{C}=\mathbb{C}^1$ であるから, \mathbb{C} は \mathbb{R} 上 のベクトル空間とも考えられるが, \mathbb{C} 上のベクトル空間とも考えられる.どの F 上のベクトル空間かによって明確に区別される.

(m, n) 型の行列の全体

F の元を成分とする (m,n) 型の行列全体を M(m,n;F) または $M_{m,n}$ で表す. 任意の (m,n) 型の行列 $\mathbf{A}=[a_{ij}]$, $\mathbf{B}=[b_{ij}]$ と任意の $c\in F$ に関して

$$\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}] , c\mathbf{A} = [ca_{ij}]$$

が定まる. この演算に関して M(m,n;F) は F 上のベクトル空間となる. 特に $M(n,1;F)=F^n$ かつ $M(1,n;F)={}^tF^n$ がなりたつ. また M(1,1;F)=F である.

実数値連続関数全体 $C^0(\mathbb{R})$

実数値連続関数の全体を $C^0(\mathbb{R})$ で表す.

$$C^0(\mathbb{R}) = \{ f \mid f \colon \mathbb{R} \to \mathbb{R} , \text{ exist} \}$$

 $f, g \in C^0(\mathbb{R})$ に対して, f, g の和を

$$(f+g)(t) = f(t) + g(t)$$

とし $c \in \mathbb{R}$ との積を

$$(cf)(t) = cf(t)$$

とする. この演算に関して $C^0(\mathbb{R})$ は \mathbb{R} 上のベクトル空間となる.

ℝ 係数多項式

 $n \in \{0\} \cup \mathbb{N}$ とし、関数 $p: \mathbb{R} \to \mathbb{R}$ を次のように定める.

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

ただし $a_i\in\mathbb{R}, (i=0,1,2\cdots)$ とする. p を \mathbb{R} 上の x を変数とする \mathbb{R} 値 多項式関数という. a_i を p の係数という. n 次以下の多項式関数の全体 からなる集合を考えてみよう. この集合を \mathcal{P}_n と書くことにする.

$$\mathcal{P}_n = \big\{ p \mid p \text{ は } n \text{ 次以下の } \mathbb{R} \text{ 上の多項式関数} \big\}$$

任意の $p,q \in \mathcal{P}_n$ に対して, $p \ge q$ の和を

$$(p+q)(x) = p(x) + q(x)$$

と定め、さらにスカラー $c \in \mathbb{R}$ に対してスカラー倍を

$$(cp)(x) = cp(x)$$

と定める. この演算によって \mathcal{P}_n はベクトル空間となる.

 \mathcal{P}_n の元 p は 係数 $a_0, a_1, a_2, \cdots, a_n \in \mathbb{R}$ が決まれば一つ定まる. 逆 に、 \mathcal{P}_n の元 p に対して、n+1 個の組 $(a_0, a_1, a_2, \cdots, a_n)$ がただ一つ定まる. これは数ベクトル空間 \mathbb{R}^{n+1} の元と多項式関数の全体 \mathcal{P}_n の元が 1 対 1 に対応することを意味する.