

Гибридное моделирование энергосистемы для создания дорожной карты возобновляемой энергетики Казахстана

ИРН АРО9261258

The Ministry of Education and Science of the Republic of Kazakhstan, The Committee of Science

Zhakiyev Nurkhat, PhD

Department of Science and Innovation

Вызовы при моделировании электроэнергетической системы

Оптимизационное моделирование = рациональное поведение. Дефицит маневренных и резервных мощностей, быстрый рост ВИЭ; Имитационный режим работы балансирующего рынка мощности. Отставание госпланов (газификация 2014-> 2020) Низкие тарифы, субсидирование угля.

Нерыночное поведение не смотря на профицит мощностей. Объемы спроса, предложения и заключённых сделок на спот-торгах в режиме «за день вперед»

11-11- 2020

Цель

- Разработать интегрированный гибридный инструмент моделирования энергосистемы, включающий модель долгосрочного планирования энергосистемы и операционную модель электроэнергетической системы;
- Разработать Дорожную карту внедрения ВИЭ на 2030/2050 гг., соответствующую оптимальным параметрам производительности, обеспечивающим надежность, экономическую целесообразность и экологичность энергосистемы.

Задачи

- Обновление долгосрочной модели энергосистемы
- Создание оперативной модели мощности с высокой пространственной, временной, технической дезагрегацией
- Связывание инструментов моделирования
- Разработка дорожной карты возобновляемой энергетики для Казахстана
- Анализ чувствительности и оценка неопределенностей

Методы исследования

- Soft-linking метод гибридного связывания моделей итеративно с использованием в качестве входных параметров результатов расчета одной модели в другой. В исследовании используется модель TIMES (The Integrated MARKET-FORM System), позволяющая моделировать энергетическую систему с подробными технико-экономическими параметрами с полной цепочкой топливно-энергетического баланса по всем отраслям экономики.
- Инструмент моделирования PyPSA, используемый для оперативного моделирования электроэнергетической системы путем расчета оптимального потока мощности, анализа потенциала интеграции возобновляемых источников энергии, оптимизации работы существующих электростанций и выявления возможностей повышения энергоэффективности.

General concept

Objectives:

Integrated hybrid modeling tool of the energy system

- long-term planning model of the energy system
- operational model of the electric power system
- Scenario Analyses

- Roadmap of RE deployment 2030/2050
- optimal allocation and performance parameters
- reliability
- economic feasibility
- environmental friendliness

Scientific novelty and significance

RES	Conventional coal power plants
Intermittent, unstable, specific for location and predictable only to a limited extent.	Limited rapid start-up and hot standby capabilities
Variability and uncertainty in planning and operation, less reliability	Additional operational costs due to RESs

❖It is necessary to consider all the economic and technical consequences of RESs introduction in RE roadmap

Scientific novelty and significance

Long-term energy system models	Operational power models	
Advantages		
investments, operation modes, production & consumption and associated prices	detailed technical constraints	
	time resolution in the range of 15 minutes to one hour	
Disadvantages		
unable to consider short-term changes and limitations associated with increase of RESs	unable to do long-term investment decisions	
	time horizon is limited from one day to one year	

Scientific novelty and significance

❖ The main hypothesis of the study is that hybrid models able provide an exhaustive description of possible scenarios for development of the energy system by considering intertemporal, interregional and intersectoral relations.

Research methods and issues

- Long-term energy system models TIMES (The Integrated MARKAL-EFOM System)
 - Linear programming bottom-up energy models
 - Integrated modeling of the entire energy system
 - Prospective analysis on a long-term horizon (20- 50 yrs)
 - Demand driven (exogenous) in physical units
 - Price-elasticities for end-use demands (optional)
 - Partial and dynamic equilibrium (perfect market)
 - Optimal technology selection
 - Objective-function: Minimization of the total system cost (mono-objective)

Research methods: TIMES

Long-term energy system models - TIMES (The Integrated MARKAL-EFOM System)

Research methods: ELMOD

- ❖ Operational Power Model ELMOD
 - DC Load Flow Optimal Power Flow (DCLF-OPF)
 - Collected data by nodes and in hourly resolution
 - Nodal—zonal prices Tariffs for consumers
 - the OpenMode initiative (PyPSA)
 - Literature Review of the Power Market designs:
 - Comparative analyzes
 - Stochastic behavior of Solar and Wind power plants
 - Integration of energy storage technologies
 - Risk analysis with a large share of RES
 - Criteria check for N-1 network security

Research methods: ELMOD

Operational Power Model - ELMOD

Data input

Electricity demand (residential and industry)

Installed capacity of power plants

Transmission data (lines of four levels of voltage – 1150, 500, 220, 110 kV)

Fuel prices

Solar insolation and wind speed

Objective function

Minimization of total cost including: investment cost for RES, storages new lines; O&M and ramping cost; marginal cost of electricity and CO2 emissions cost

Generation constraints

Generation constraints for each block of conventional and renewable power stations

Energy balance

Generation has to be equal to demand in every hour

Transportation

Hourly flows between nodes should not exceed the line capacities

Output

Power generation and power generation capacity composition

Decisions on plants construction, decomposition and retrofit

CO2 emissions

Total cost and cost composition

Demand and supply Lines utilization

Demand by region

Line utilization. Winter.

Supply by region

Line utilization. Summer.

Моделирование 24-узловой IEEE RTS системы в GAMS для линеаризации переменного тока

Рисунок 1. Генерация активной мощности электростанциями

Рисунок 2. Генерация реактивной мощности электростанциями

Высоковольтные линии электропередачи

Публикации

- 1. S. Zhakiyeva, M. Gabbassov, Y. Akhmetbekov, G. Akybayeva and N. Zhakiyev, "The Development of a Risk Assessment Modeling for the Power System of Kazakhstan," 2021 IEEE International Conference on Smart Information Systems and Technologies (SIST), 2021, pp. 1-4, doi: 10.1109/SIST50301.2021.9465892. (indexed in IEEE, Scopus)
- 2. Amanbek Y., Kalakova A., Zhakiyeva S., Korhan K., Zhakiyev N., Fridrich D. "Distribution-LMP based Transactive Energy Management in Distribution Systems with Smart Prosumers A Multi-Agent Approach" Energies (2022, WoS, Scopus-Q1)
- **3. B. Sarsembayev,** D. Zholtayev, and Ton Duc Do, Maximum Power Tracking of Variable-Speed Wind Energy Conversion Systems based on a Near-Optimal Servomechanism Control System // Optimal Control Applications and Methods (ISSN: 0143-2087, WoS, Q2)
- **4. A. Zhanbolatov, S. Zhakiyeva, N. Zhakiyev, K. Kayisli** (2022) "Blockchain-Based Decentralized Peer-to-Peer Negawatt Trading in Demand-Side Flexibility Driven Transactive Energy System" International Journal of Renewable Energy Research (IJRER), 12(3), 1475-1483. doi:10.20508/ijrer.v12i3.13195.g8530 (Cite score-3.7, Scopus percentile 58, Q2)
- **5. B. Sarsembayev, N. Zhakiyev**, A. Akhmetbayev **and K. Kayisli**, "Servomechanism based Optimal Control System Design for Maximum Power Extraction from WECS with PMSG," 2022 10th International Conference on Smart Grid (icSmartGrid, june 27-29, 2022 Istanbul/Turkiye), 2022, pp. 309-313,
- 6. A. Zhanbolatov, N. Zhakiyev, S. Zhakiyeva, K. Kayisli, B.Azibek, T.Dushayeva. "A Multi-carrier Energy Method for Self-Consumption Enhancement in Residential Buildings" in 11th international conference on renewable energy research and applications. September 18-21, 2022, Istanbul/Turkiye https://ieeexplore.ieee.org/document/9922874
- **7. G.Abdi, N.Zhakiyev,** and S.Toilybayeva "Decarbonization Opportunities and Emerging Carbon Pricing Instruments in Central Asia" (2023) Chapter in "Climate Change and Decarbonization in Central Asia", Springer, Berlin (Apr, **2023**, Chapter in Springer's eBook).
- 8. Nurkhat Zhakiyev, Ayagoz Khamzina, Svetlana Zhakiyeva, Aidyn Bakdolotov, Rocco De Miglio, Carmelina Cosmi. Optimization modelling of the decarbonization scenario of the total energy system of Kazakhstan until 2060. Energies. 2023

Команда

Нурхат Жакиев

Главный исследователь, кандидат физико-математических наук. Начальник отдела науки и инноваций

Айдын Бакдолотов

Старший научный сотрудник, магистр ядерной инженерии (Университет Пердью, США). Директор Центра изменения климата – Институт экономических исследований

Баянды Сарсембаев

Старший научный сотрудник, кандидат наук в области электротехники и электроники (Университет Брюнеля, Великобритания).

Бекжан Мукатов

Старший научный сотрудник, кандидат технических наук (Новосибирский государственный технический университет). Независимый эксперт

Ербол Ахметов

Научный сотрудник, магистр электротехники и электроники (Назарбаев Университет, Казахстан)

Александр Тен

Исследователь, Мэн в области электротехники и вычислительной техники (Университет Британской Колумбии, Канада)

Publications 2021-2022

Publications 2021	Статус
1.N.K. Zhakiyev et.al, The Network Reliability Assessment and Risk Prevention Measures for the Power System of Kazakhstan Due to High Renewables, 27 Nov 2020 Ukraine IEEE ATIT https://doi.org/10.1109/ATIT50783.2020.9349263	Scopus/IEEE опубликовано
1.S. Zhakiyeva, M. Gabbassov, Y. Akhmetbekov, G. Akybayeva and N. Zhakiyev, "The Development of a Risk Assessment Modeling for the Power System of Kazakhstan," 2021 IEEE International Conference on Smart Information Systems and Technologies (SIST), 2021, pp. 1-4, doi: 10.1109/SIST50301.2021.9465892. (indexed in IEEE, Scopus) https://doi.org/10.1109/SIST50301.2021.9465892	Scopus/IEEE опубликовано

Publications 2022	Статус
Amanbek Y., Kalakova A., Zhakiyeva S., Korhan K., Zhakiyev N., Fridrich D. "Distribution-LMP based Transactive Energy Management in Distribution Systems with Smart Prosumers - A Multi-Agent Approach" Energies (2022, https://www.mdpi.com/1996-1073/15/7/2404)	Scopus 85 процентиль, WoS Q3 опубликовано
B. Sarsembayev , D. Zholtayev, and Ton Duc Do, Maximum Power Tracking of Variable-Speed Wind Energy Conversion Systems based on a Near-Optimal Servomechanism Control System // Optimal Control Applications and Methods (ISSN: 0143-2087, Q2), (Jan, 2022). https://doi.org/10.1002/oca.2863 опубликовано)	WoS Q2 Scopus percentile 80, Опубликовано
A. Zhanbolatov, S. Zhakiyeva, N. Zhakiyev, K. Kayisli (2022) "Blockchain-Based Decentralized Peer-to-Peer Negawatt Trading in Demand-Side Flexibility Driven Transactive Energy System" International Journal of Renewable Energy Research (IJRER), 12(3), 1475-1483. doi:10.20508/ijrer.v12i3.13195.g8530 (Cite score-3.7, Scopus percentile 58, Q2)	Scopus Опубликовано Cite score-3.7, Scopus percentile 58, Q2
B. Sarsembayev, N. Zhakiyev, A. Akhmetbayev and K. Kayisli, "Servomechanism based Optimal Control System Design for Maximum Power Extraction from WECS with PMSG," 2022 10th International Conference on Smart Grid (icSmartGrid, june 27-29, 2022 Istanbul/Turkiye), 2022, pp. 309-313, doi: 10.1109/icSmartGrid55722.2022.9848769.	Scopus/IEEE Принята
A. Zhanbolatov, N. Zhakiyev, S. Zhakiyeva, K. Kayisli, B.Azibek, T.Dushayeva. "A Multi-carrier Energy Method for Self-Consumption Enhancement in Residential Buildings" in 11th international conference on renewable energy research and applications. September 18-21, 2022, Istanbul/Turkiye	Scopus/IEEE Принята

Команда исполнителей проекта

Нурхат Жакиев Руководитель проекта, ВНС, PhD по физике

Айдын Бакдолотов
CHC, магистр энергетики,
выпускник Purdue University,
CША. Энергомоделист,
Институт экономических
исследовании

Бибол Жакипбаев CHC, PhD, инженер-технолог, выпускник программы Болашақ, МГУ, Москва.

Баянды Сарсенбаев CHC, к.т.н., MSc Control and Systems Engineering, докторант Brunel University London.

Аршын Жанболатов МНС, Инженер электроэнергии, выпускник Назарбаев Университета

Ерасыл Аманбек НС, Магистр электроэнергии, выпускник Назарбаев Университета

Contact information:

Nurkhat Zhakiyev, PhD
Department of Science and Innovation
Astana IT University
Nur-Sultan, Kazakhstan 010000
nurkhat.zhakiyev@astanait.edu.kz

+7 777-469-8612