UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA DE SÃO CARLOS

Bruno Nicolau Santos

Investigation of Magneto-Optical Traps with reduced number of beams using a Monte Carlo Simulation

São Carlos

Bruno Nicolau Santos

Investigation of Magneto-Optical Traps with reduced number of beams using a Monte Carlo Simulation

Dissertation presented to the Graduate Program in Physics at the Instituto de Física de São Carlos da Universidade de São Paulo, to obtain the degree of Master in Science.

Concentration area: Applied Physics

Advisor: Prof. Dr. Emanuel Alves de Lima

Henn

Original version

São Carlos 2022

Contents

1	INTRODUCTION
1.1	Motivation
1.2	The Thesis
2	LIGHT-MATTER INTERACTION
3	MAGNETO-OPTICAL TRAP 7
4	SIMULATION
5	RESULTS
6	CONCLUSION
	REFERENCES

1 Introduction

1.1 Motivation

The deep understanding of light-matter interaction brought several scientific possibilities such as the control of ultracold atoms. The Nobel Prize of Physics in 1997 was awarded jointly to Steven Chu (1), Claude Cohen-Tannoudji(2), and William D. Phillips(3) for developing methods to cool and trap atoms with laser light, also known as laser cooling (4). This achievement has enabled modern technologies, including accurate atomic clocks (5), qubits for quantum computing (6), and quantum sensors (7). Laser cooling also allowed the experimental confirmation of the degenerate quantum gas known as Bose-Einstein condensation (BEC) (8), motivating the Nobel Prize of Physics in 2001 (9,10).

The workhorse of laser cooling is the magneto-optical trap (MOT) (11): a technique to trap and cool a dilute atomic gas until temperatures in a range of μK . A standard MOT consists of six orthogonal laser beams on a counter-propagating configuration and a magnetic quadrupole field whose origin matches the laser beams interception point. Briefly, the atoms scatter photons from the lasers light through electronic transitions, which causes a momentum exchange. From a semiclassical perspective, the average momentum exchange yields a trapping and drag force on the atoms. The natural linewidth¹ is essential to define how often the momentum exchange will happen, affecting the minimum temperature. MOTs using linewidths closer to the photonic recoil², known as narrow-line magneto-optical traps (nMOTs)(12), can reach lower temperatures at the cost of trapping efficiency. Furthermore, it is possible to produce spin-polarized atomic samples through nMOTs (13), which is desirable to avoid losses due to the dipolar relaxation (14).

The current theories for the MOT based upon the Doppler cooling theory (15) give us a challenging task to predict some experimental quantities. The difficulty arises from the complex three-dimensional light in the presence of a magnetic quadrupole field. Furthermore, the analysis of nMOTs is even more delicate since the typical semiclassical approach fails when one scattering event changes considerably the probability of the next one, which demands treating individuals scatterings. Therefore, there is a considerable interest in quantitative models capable of predicting MOT properties either to nMOTs or more complex systems like molecular MOTs (16). A viable path is to simplify assumptions

The natural linewidth Γ is the full width at half maximum (FWHM) of a Lorentzian spectral line broadening only by the time-energy uncertainty principle. The natural lifetime τ is related to Γ by the expression $\tau = 1/(2\pi\Gamma)$.

The photonic recoil ω_{recoil} is a frequency related to the energy shift ΔE caused by the absorption or emission of a single photon with wave vector k ($\omega_{recoil} = \Delta E/\hbar = \hbar k^2/(2m)$).

about the optical transitions and simulate the MOT dynamics (17), which allows the analysis of usual and unusual MOTs. Recently, a two-species five-beam nMOT (18) employing gravity-assisted trapping was accomplished. That brought possibilities to elaborate MOTs with a reduced number of beams.

1.2 The Thesis

In the thesis, we propose a Monte Carlo simulation to analyse the dynamics of atoms in nMOTs, aiming to predict experimental quantities. Our model assumes the scattering of photons as a stochastic process, specifically a Markov chain. Furthermore, we propose a trapping efficiency parameter to verify the feasibility of MOTs with a reduced number of beams. We obtain simulated data of six-beam nMOTs with dysprosium and strontium in agreement with experimental values. Moreover, we propose four and three-beam nMOTs, using simulated data and a semiclassical analysis to verify trapping efficiency and other properties like temperature and atomic cloud shape.

In the framework of this thesis, we perform a first study of light-matter interaction to understand MOTs and nMOTs from a semiclassical and Quantum Optics perspective. First of all, we deduce the radiation pressure force through the stationary solution of the Optical Bloch Equations. After, we interpret this force as a process of absorption and spontaneous emission of photons. Then, we deduce a net force on the atoms in a low-speed regime, checking the limit for narrow transitions.

The thesis is structured as follows. We initially introduce concepts of light-matter interaction in chapter 2. In particular, the interaction between a two-level atomic system and a classical electromagnetic field. Then, we present the MOT and nMOT theory in chapter 3, introducing a didactic unidimensional model and expending it to a three-dimensional configuration. Afterwards, we model the simulation as a Markov chain in chapter 4, showing an optimized implementation using parallel programming. In chapter 5, we check the simulation comparing simulated data with experimental values of nMOTs. We also present the analysis of nMOTs with four and three beams using a semiclassical picture and simulated results. Furthermore, we summarize our findings and give an outlook to further possibilities in chapter 6.

2 Light-matter Interaction

3 Magneto-Optical Trap

4 Simulation

5 Results

6 Conclusion

References

- 1 CHU, S. Nobel lecture: The manipulation of neutral particles. **Reviews of Modern Physics**, APS, v. 70, n. 3, p. 685, 1998.
- 2 COHEN-TANNOUDJI, C. N. Nobel lecture: Manipulating atoms with photons. Reviews of Modern Physics, APS, v. 70, n. 3, p. 707, 1998.
- 3 PHILLIPS, W. D. Nobel lecture: Laser cooling and trapping of neutral atoms. Reviews of Modern Physics, APS, v. 70, n. 3, p. 721, 1998.
- 4 METCALF, H. J.; STRATEN, P. Van der. Laser cooling and trapping of neutral atoms. **The Optics Encyclopedia: Basic Foundations and Practical Applications**, Wiley Online Library, 2007.
- 5 LUDLOW, A. D. et al. Optical atomic clocks. Reviews of Modern Physics, APS, v. 87, n. 2, p. 637, 2015.
- 6 SCHNEIDER, P.-I.; SAENZ, A. Quantum computation with ultracold atoms in a driven optical lattice. **Physical Review A**, APS, v. 85, n. 5, p. 050304, 2012.
- 7 ZHANG, X.; YE, J. Precision measurement and frequency metrology with ultracold atoms. **National Science Review**, Oxford University Press, v. 3, n. 2, p. 189–200, 2016.
- 8 DALFOVO, F. *et al.* Theory of bose-einstein condensation in trapped gases. **Reviews of modern physics**, APS, v. 71, n. 3, p. 463, 1999.
- 9 CORNELL, E. A.; WIEMAN, C. E. Nobel lecture: Bose-einstein condensation in a dilute gas, the first 70 years and some recent experiments. **Reviews of Modern Physics**, APS, v. 74, n. 3, p. 875, 2002.
- 10 KETTERLE, W. Nobel lecture: When atoms behave as waves: Bose-einstein condensation and the atom laser. **Reviews of Modern Physics**, APS, v. 74, n. 4, p. 1131, 2002.
- 11 KRZYSZTOF, K. et al. Magneto-optical trap: fundamentals and realization. CMST, PSNC, Poznan Supercomputing and Networking Center, n. 2, p. 115–129, 2010.
- 12 LOFTUS, T. H. *et al.* Narrow line cooling and momentum-space crystals. **Physical Review A**, APS, v. 70, n. 6, p. 063413, 2004.
- 13 DREON, D. *et al.* Optical cooling and trapping of highly magnetic atoms: the benefits of a spontaneous spin polarization. **Journal of Physics B: Atomic, Molecular and Optical Physics**, IOP Publishing, v. 50, n. 6, p. 065005, 2017.
- 14 HENSLER, S. *et al.* Dipolar relaxation in an ultra-cold gas of magnetically trapped chromium atoms. **Applied Physics B**, Springer, v. 77, n. 8, p. 765–772, 2003.
- 15 FOOT, C. J. et al. Atomic physics. [S.l.: s.n.]: Oxford University Press, 2005. v. 7.

- 16 BARRY, J. *et al.* Magneto-optical trapping of a diatomic molecule. **Nature**, Nature Publishing Group, v. 512, n. 7514, p. 286–289, 2014.
- 17 HANLEY, R. K. *et al.* Quantitative simulation of a magneto-optical trap operating near the photon recoil limit. **Journal of Modern Optics**, Taylor & Francis, v. 65, n. 5-6, p. 667–676, 2018.
- 18 ILZHÖFER, P. *et al.* Two-species five-beam magneto-optical trap for erbium and dysprosium. **Physical Review A**, APS, v. 97, n. 2, p. 023633, 2018.