In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [2]:

df=pd.read_csv(r"C:\Users\HP\Downloads\used_cars_data.csv")
df

Out[2]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owne
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	
7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	
7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	

7253 rows × 14 columns

In [3]:

1 df.head()

Out[3]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Ty
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	Fi
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	Fi
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	Fi
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	Fi
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Seco
4 0								•

In [4]:

1 df.describe()

Out[4]:

	S.No.	Year	Kilometers_Driven	Seats	Price
count	7253.000000	7253.000000	7.253000e+03	7200.000000	6019.000000
mean	3626.000000	2013.365366	5.869906e+04	5.279722	9.479468
std	2093.905084	3.254421	8.442772e+04	0.811660	11.187917
min	0.000000	1996.000000	1.710000e+02	0.000000	0.440000
25%	1813.000000	2011.000000	3.400000e+04	5.000000	3.500000
50%	3626.000000	2014.000000	5.341600e+04	5.000000	5.640000
75%	5439.000000	2016.000000	7.300000e+04	5.000000	9.950000
max	7252.000000	2019.000000	6.500000e+06	10.000000	160.000000

```
In [5]:
```

```
1 df.info()
2
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 14 columns):

#	Column	Non-Null Coun	t Dtype
0	S.No.	7253 non-null	int64
1	Name	7253 non-null	object
2	Location	7253 non-null	object
3	Year	7253 non-null	int64
4	Kilometers_Driven	7253 non-null	int64
5	Fuel_Type	7253 non-null	object
6	Transmission	7253 non-null	object
7	Owner_Type	7253 non-null	object
8	Mileage	7251 non-null	object
9	Engine	7207 non-null	object
10	Power	7207 non-null	object
11	Seats	7200 non-null	float64
12	New_Price	1006 non-null	object
13	Price	6019 non-null	float64
d+vn/	$ac \cdot float64(2) in$	+64(2) object(۵١

dtypes: float64(2), int64(3), object(9)

memory usage: 793.4+ KB

In [6]:

```
1 df.shape
```

Out[6]:

(7253, 14)

In [7]:

```
1 df.isna().any()
```

Out[7]:

S.No.	False
Name	False
Location	False
Year	False
Kilometers_Driven	False
Fuel_Type	False
Transmission	False
Owner_Type	False
Mileage	True
Engine	True
Power	True
Seats	True
New_Price	True
Price	True
14 1 7	

dtype: bool

```
In [8]:
```

```
1 df.isnull().sum()
```

Out[8]:

S.No. 0 Name 0 Location 0 Year 0 Kilometers_Driven 0 Fuel_Type 0 Transmission 0 Owner_Type 0 2 Mileage Engine 46 Power 46 53 Seats New_Price 6247 Price 1234 dtype: int64

In [9]:

```
1 df.fillna(value=0,inplace=True)
```

In [10]:

```
1 df.isnull().sum()
```

Out[10]:

```
S.No.
                      0
                      0
Name
Location
                      0
                      0
Year
Kilometers_Driven
                      0
Fuel_Type
                      0
Transmission
                      0
                      0
Owner_Type
Mileage
                      0
Engine
                      0
Power
                      0
Seats
                      0
                      0
New_Price
Price
                      0
dtype: int64
```

In [11]:

```
1 df=df[['Year','Price']]
2 df.columns=['yr','pr']
```

In [12]:

1 df.head(10)

Out[12]:

	yr	pr
0	2010	1.75
1	2015	12.50
2	2011	4.50
3	2012	6.00
4	2013	17.74
5	2012	2.35
6	2013	3.50
7	2016	17.50
8	2013	5.20
9	2012	1.95

In [13]:

1 sns.lmplot(x="yr",y="pr",data=df,order=2,ci=None)

Out[13]:

<seaborn.axisgrid.FacetGrid at 0x20fe80ae090>

In [14]:

```
1 df.describe()
```

Out[14]:

	yr	pr
count	7253.000000	7253.000000
mean	2013.365366	7.866665
std	3.254421	10.796286
min	1996.000000	0.000000
25%	2011.000000	2.290000
50%	2014.000000	4.650000
75%	2016.000000	8.400000
max	2019.000000	160.000000

In [15]:

```
1 df.fillna(method='ffill',inplace=True)
```

C:\Users\HP\AppData\Local\Temp\ipykernel_4624\4116506308.py:1: SettingWith
CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

In [16]:

```
1 x=np.array(df['yr']).reshape(-1,1)
2 y=np.array(df['pr']).reshape(-1,1)
```

In [17]:

```
1 df.dropna(inplace=True)
```

C:\Users\HP\AppData\Local\Temp\ipykernel_4624\1379821321.py:1: SettingWith
CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

In [18]:

```
1 X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
2 regr=LinearRegression()
3 regr.fit(X_train,y_train)
4 print(regr.score(X_test,y_test))
```

0.07388164196776581

In [19]:

```
1 y_pred=regr.predict(X_test)
2 plt.scatter(X_test,y_test,color='b')
3 plt.scatter(X_test,y_pred,color='k')
4 plt.show()
```


In [20]:

```
1 df500=df[:][:500]
2 sns.lmplot(x="yr",y="pr",data=df500,order=1,ci=None)
```

Out[20]:

<seaborn.axisgrid.FacetGrid at 0x20fe809d650>

In [21]:

```
df500.fillna(method='ffill',inplace=True)

X=np.array(df500['yr']).reshape(-1,1)

y=np.array(df500['pr']).reshape(-1,1)

df500.dropna(inplace=True)

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)

regr=LinearRegression()

regr.fit(X_train,y_train)

print("Regression:",regr.score(X_test,y_test))

y_pred=regr.predict(X_test)

plt.scatter(X_test,y_test,color='b')

plt.plot(X_test,y_pred,color='k')

plt.show()
```

Regression: 0.13616017792518997

In [22]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
mode1=LinearRegression()
mode1.fit(X_train,y_train)
y_pred=mode1.predict(X_test)
r2=r2_score(y_test,y_pred)
print("R2 score:",r2)
```

R2 score: 0.13616017792518997

In []:

```
1
```