CATION	MPERATURE "C	D.O. (mg/l)	pH	CONDUCTIVIT (µmhos/cm)	(mg/	1)	B.O.D. (mg/l)	NITRATE (mg/l)	(m	(mg/l)	AMMONIA - N (mg/l)	FAECAL COLIFORM (MPN/100 ml)	TOTAL CO (MPN/10	00 ml)	CALCIUM (mg/l)		9/1)	SODIUM (mg/l)	POTAS (m))(I)	CHLORIDE (mg/l)	(mg/l		,	TOTAL ALKALINITY (mg/l)		(mg/l)	(NTU)	TOTAL KJELDAH (mg/l)	(mg/l	is)	TOTAL FIXED SOLIDS (mg/l)	SUSPEND SOLID (mg/l)	DED D	BORON (mg/l)	FLUORIDE (mgf)	SODIUM PERCEN (mg/l)		A.R.	SAPROBITY INDEX	DIVERSIT	x
TA ITAVA			N MIN MAX MEAN		N MIN MAX			MIN MAX ME				MIN MAX ME	AN MIN MA	X MEAN			_	-			-			_	MIN MAX MEAN											MIN MAX MEAN	MIN MAX	MEAN MIN M	AX MEAN N	IN MAX MEAN	MIN MAX N	MEAN MI
IND, IASHTRA		4.8 7.2 6.5	6.86 8.09 7.69	192 630 349		- 3.0	12.0 6.8	0.26 6.65 1.	.54 0.01 0.1	0.19 0.07 0.	01 0.28 0.15	4 550 13	5 12 280	0 541 :	29.0 29.0 29.0	59.0 59	0.0 59.0 15	5.0 15.0 15	.0 4.0 4.0	4.0 19	.5 19.5 1	9.5 23.0 23.0	23.0		74.0 74.0 74.0	88.0 88.0 88.	0 0.0 0.0 0.1	2.0 2.0 2	0 42 42	4.2 254.0 254.0	254.0 168	8.0 168.0 168.0	32.0 32.0	32.0 0.20	0.20 0.20	0.10 0.10 0.10						Η.
PUR DAM,		5.8 7.6 7.0	7.58 8.35 7.92	148 423 212		- 5.0	15.5 6.4	0.01 2.01 0	1.74 0.01 0.2	0.21 0.08 0.	01 0.06 0.04	2 250 2	6 180	0 194 :	24.0 24.0 24.0	52.0 52	E.0 52.0 21	1.0 21.0 21	0 20 20	2.0 80	.0 80.0 8	0.0 8.0 8.0	8.0 -		83.0 83.0 83.0	76.0 76.0 76.0	0 0.3 0.3 0.5	1.0 1.0 1	0 0.8 0.8	0.8 380.0 380.0	380.0 274	4.0 274.0 274.0	20.0 20.0	20.0 0.23	0.23 0.23	0.09 0.09 0.09						. -
D/S, IASHTRA		4.1 7.0 6.0	6.94 8.20 7.55	170 980 485		- 8.0	20.0 12.0	0.09 6.66 1.	.72 0.01 0.1	0.19 0.08 0.	01 0.01 0.01	4 9000 110	7 2 1600	0 2260	26.0 26.0 26.0	50.0 50	0.0 50.0 16	3.0 16.0 16	0 5.0 5.0	5.0 21	.0 21.0 2	1.0 23.0 23.0	23.0		76.0 76.0 76.0	76.0 76.0 76.		1.0 1.0 1	0 3.3 3.3	3.3 238.0 238.0	238.0 172	2.0 172.0 172.0	16.0 16.0	16.0 0.20	0.20 0.20	0.10 0.10 0.10						
MADI GABAD, IASHTRA		6.0 8.2 7.0	7.80 8.92 8.24	235 457 328		- 2.0	5.4 3.7	0.03 2.80 0.	1.56 0.23 0.8	0.80 0.40 0.	21 0.43 0.35	4 7 5	160 460	203	82.0 82.0 82.0	24.0 24	1.0 24.0 30	30.0 30.0	0 4.0 4.0	4.0 31	.5 31.5 3	1.5 29.0 29.0	29.0 -		116.0 116.0 116.0	106.0 106.0 106	10 00 00 01	1.7 1.7 1	7 1.5 1.5	1.5 190.0 190.0	190.0 110	0.0 110.0 110.0	6.0 6.0	6.0 0.10	0.10 0.10	0.01 0.01 0.01						
GAON, IASHTRA		5.7 7.5 6.9	7.47 8.57 8.12	306 405 357		- 2.0	4.6 3.4	0.05 2.37 0.	196 0.23 0.3	0.39 0.33 0.	37 0.38 0.38	6 8 7	175 540	296																												
D, IASHTRA		4.9 7.5 6.7	7.39 8.53 8.07	305 1300 486		- 1.5	4.4 3.5	0.07 4.70 1.	.53 0.18 0.4	0.42 0.32 0.	34 0.42 0.37	5 8 7	200 470	287 1	20.0 120.0 120.	0 300.0 30	0.0 300.0 80	0.0 80.0 80	.0 10.0 10.0	10.0 20	9.0 209.0 20	09.0 168.0 168.0	168.0	:	170.0 170.0 170.0	420.0 420.0 420	0.1 0.1 0.	8.2 8.2 8	2 1.7 1.7	1.7 1038.0 1038.	0 1038.0 996	8.0 998.0 998.0	28.0 28.0	28.0 0.10	0.10 0.10	0.26 0.26 0.26						
ASHTRA		4.5 8.1 6.6	7.32 8.41 7.96	304 500 399		- 2.2	4.9 3.9	0.14 1.35 0.	170 0.28 0.4	0.45 0.37 0.	36 0.38 0.37	4 8 6	175 540	233	74.0 74.0 74.0	26.0 26	3.0 26.0 54	4.0 54.0 54	0.0 6.0	6.0 41	.0 41.0 4	1.0 46.0 46.0	46.0		134.0 134.0 134.0	100.0 100.0 100	0.3 0.3 0.3	8 86.4 86.4 86	4 1.6 1.6	1.6 300.0 300.0	300.0 240	0.0 240.0 240.0	74.0 74.0	74.0 0.10	0.10 0.10	0.26 0.26 0.26						
		3.0 8.7 5.9	6.90 8.50 7.81	244 856 500	5.0 5.0	5.0 0.5	3.0 1.8	0.02 1.57 0.				4 4 4	21 460	169 1		0 100.0 100		3.0 73.0 73	0 5.0 5.0			6.0 43.0 43.0			32.0 32.0 32.0											0.74 0.74 0.74						
RAM, A.P. 2 IUNDRY 2	8 32 28	0.8 6.5 5.5	7.00 8.00 7.60	121 914 262	3.0 9.0	9.0 0.6	1.4 1.1	0.89 12.40 3.	12 0.82 1.3		06 1.34 0.96	1 10000 258	7 9000 2300	0 13368	35.0 196.0 196. 35.0 35.0 35.0	0 12.0 12	10 12.0 36	3.7 66.0 66	0 30 30	3.0 9.	7 128.0 12	28.0 1.0 22.0	10		55.0 80.0 80.0 60.0 60.0 60.0								10.0 10.0			0.08 0.62 0.62						H
	3 31 28	52 69 61	6.68 8.50 7.95	142 265 227	60 60	50 00	16 10	000 122 1	01 000 11		.00 1.50 1.19	900 5000 27	7 11000 2300	0 20167	250 250 250	20.0 20	0 200 25	1 22 1 22	1 10 10		2 142 1	42 17 17	17		65.0 65.0 65.0								12.0 12.0			0.17 0.17 0.17						
ATI IC	3 31 20	J.2 U.F U.I	0.00 0.00 7.00	142 200 227	3.0 3.0	5.0 0.8	1.0 1.0	0.88 1.25 1.	.04 0.20 1.1	1.00 1.	.00 1.30 1.13	300 11	11000 3000	20101	20 20 20	20.0 20	20.0 32			13 14	.5 14.5 1	4.5 1.7 1.7	.,	-	0.0 0.0 0.0	33.0 33.0 33.	0.1 0.1 0.	30 30 3	0 14.0 14.0	14.0 123.0 123.0	1230		12.0 12.0	12.0		0.17 0.17 0.17	03 03	0.5		+		H
WADA . NNAR, WADA.		6.9 7.2 7.1	6.87 7.50 7.19	121 210 166		- 1.2	2.0 1.6	0.35 1.20 0.	1.84 0.02 0.0	0.03 0.03 0.	14 0.35 0.25			-	12.0 26.0 21.2	3.7 8.	.8 6.6			- 8.	0 26.0 1	8.0 9.0 19.0	12.5		45.0 112.0 82.3	45.0 100.0 80.	0 0.6 1.3 0.1	8 4.0 1513.0 75	3.5	- 77.0 370.0	182.0 -		32.0 1360.0	482.7		0.12 0.43 0.28						.
ATI VC ARI AT PATNAM, VADA		7.3 7.3 7.3	6.99 7.50 7.27	125 213 169		- 1.1	2.3 1.7	0.35 1.16 0.	1.83 0.03 0.2	0.28 0.16 0.	.09 0.40 0.21				12.0 28.8 21.6	3 3.7 8.	.8 5.8			- 6.	0 30.0 1	6.0 9.0 20.0	12.7		50.0 116.0 82.0	45.0 108.0 77.	7 0.2 1.4 0.1	8 4.0 1517.0 76	0.5	- 80.0 388.0	188.0 -		36.0 1281.0	454.3 -		0.11 0.19 0.15						H
I RIVER KANI		7.2 7.9 7.6	6.87 7.50 7.17	121 157 141	80.0 80.0	80.0 1.2	2.1 1.8	0.40 1.71 0:	196 0.03 0.0	0.03 0.03 0.	12 0.45 0.33			1.	16.0 30.0 20.0	3.7 15	5.0 8.6		1	- 8.	0 18.0 1	2.7 9.1 25.0	14.5		45.0 92.0 64.3	45.0 84.0 62.	3 0.4 1.6 0.9	5.0 1513.0 73	7.0	- 65.0 424.0	187.7		35.0 298.0	127.0 -		0.34 0.37 0.36						
VADA. RA AT LU. A.P. 2	4 31 28	5.3 7.0 6.4	6.80 8.30 7.68	246 460 343	8.8 20.0	14.4 2.1	3.0 2.5	0.22 2.50 0.	1.66 0.01 0.8	0.88 0.36		3 14000 274	1 75 7800	0 22864	31.3 69.0 50.1	18.4 60	0.0 39.2 21	1.6 27.0 24	3 4.5 4.5	4.5 20	0 24.0 2	2.0 13.2 22.0	17.6		130.0 156.0 143.0	130.0 154.0 142	0 00 00 0	24.0 24.0 24	.0 0.2 0.2	0.2 250.0 258.0	253.0 62	2.0 237.0 149.5	20.0 20.0	20.0 -		0.96 0.96 0.96	0.1 0.3	0.2 0.5 0	.9 0.7			
ERA NEAR	9 29 29	5.6 6.6 6.1	7.10 8.60 7.57					0.26 1.30 0.				3 260 5			85.0 85.0 85.0			5.0 15.0 15		1.8 7.		7.0 10.0 10.0			212.0 212.0 212.0							3.0 48.0 48.0				0.94 0.94 0.94						
DIST., A.P AT D/S KE POINT 2 IR CITY	0 29 26	5.5 8.5 6.7	7.87 8.80 8.34	240 820 539		- 1.0	2.8 1.5	0.06 1.45 0.	1.66 0.01 0.5	0.99 0.30		667 4000 185	58 1000 7670	15058																												
AT GAL U/S, 2	7 27 27	4.9 6.6 6.0	6.47 8.40 7.51	114 660 360	23.0 23.0	23.0 2.2	3.0 2.8	0.40 5.50 2	.58 0.01 0.0	0.02 0.02 0.	05 0.05 0.05	3 3 3	40 110	0 326 3	88.0 388.0 388.	0 100.0 100	0.0 100.0 70	0.0 70.0 70	.0 5.0 5.0	5.0 30	.0 30.0 3	0.0 10.0 10.0	10.0 -		260.0 260.0 260.0	488.0 488.0 488	1.0 0.1 0.1 0.	80.0 80.0 80	.0 1.0 1.0	1.0 338.0 338.0	338.0 45	5.0 45.0 45.0	5.0 5.0	5.0 1.00	1.00 1.00	1.40 1.40 1.40	0.1 0.1	0.1 0.8 0	0.8			
AT PALLI, A. 2	7 31 29	0.5 12.6 6.5	6.12 8.60 7.64	115 1342 469	8.0 8.0	8.0 0.1	5.0 2.3	0.06 3.90 1.	.15	0.	19 0.19 0.19	3 3 3	4 120	56	16.0 16.0 16.0	14.0 14	1.0 14.0 9	.0 9.0 9.	0 1.0 1.0	1.0 34	.0 34.0 3	4.0 2.0 2.0	2.0 -		52.0 52.0 52.0	36.0 36.0 36.		1.0 1.0 1	0 0.2 0.2	0.2 104.0 104.0	104.0 11	1.0 11.0 11.0	6.0 6.0	6.0 -			02 02	0.2 0.4 0	1.4 0.4			
A AT A BRIDGE,		5.2 6.1 5.6	7.62 8.33 7.97	340 694 514		- 2.9	11.5 6.8	4.24 6.40 5.	39 0.84 1.1	1.14 0.99 0.	84 0.90 0.87	26 350 14	2 220 160	0 910	68.0 68.0 68.0	64.0 64	1.0 64.0 34	1.0 34.0 34	.0 18.0 18.0	18.0 58	.0 58.0 5	8.0 17.0 17.0	17.0		118.0 118.0 118.0	132.0 132.0 132	10 02 02 0:	2.0 2.0 2	0 5.0 5.0	5.0 346.0 346.0	346.0 228	8.0 228.0 228.0	24.0 24.0	24.0 -		0.85 0.85 0.85						
SHTRA	3 18 16		7.20 7.80 7.51	228 817 416		- 1.2	29 20	0.06 8.20 1.	.90 0.06 5.8	5.88 1.41		9 75 33	2 39 110	0 384		+		l	+++			-			1	1														_
	3 24 19		7.25 7.80 7.53	239 729 396		- 1.6	2.8 2.0	0.29 3.12 1.	.17 0.03 7.3	7.30 1.35		7 7 7	7 110	0 209		1			1								1	1														
INGA ENCE ANHAN		5.8 6.7 6.1	7.47 9.08 8.20	390 750 574		- 29	11.5 6.3	5.70 7.30 6.	i.58 0.98 1.4	1.48 1.23 1.	.08 1.32 1.20	27 170 94	280 160	0 945 1	28.0 128.0 128.	0 82.0 82	E.0 82.0 76	3.0 76.0 76	0 17.0 17.0	17.0 100	2.0 102.0 10	12.0 7.0 7.0	7.0 -		180.0 180.0 180.0	210.0 210.0 210	0.0 0.0 0.0	1.0 1.0 1	0 9.5 9.5	9.5 538.0 538.0	538.0 416	6.0 416.0 416.0	18.0 18.0	18.0 -		0.97 0.97 0.97						
NGA AT SHTRA		5.5 7.2 6.1	7.78 8.89 8.31	370 718 545		- 2.9	12.0 6.1	2.77 8.23 5.	.58 0.86 1.2	1.28 1.05 0.	43 0.97 0.77	17 140 60	90 160	0 408	42.0 42.0 42.0	50.0 50	0.0 50.0 18	3.3 18.3 18	3 3.7 3.7	3.7 65	.0 65.0 6	5.0 7.5 7.5	7.5 -		102.0 102.0 102.0	92.0 92.0 92.	0 0.1 0.1 0.	1.0 1.0 1	0 3.4 3.4	3.4 266.0 266.0	266.0 168	8.0 168.0 168.0	12.0 12.0	12.0 -		0.62 0.62 0.62						H
BEFORE JENCE HAN AT		5.6 6.2 5.9	8.12 8.89 8.43	480 525 500		- 3.1	7.0 5.1	3.36 6.40 5.	1.08 1.2	1.24 1.16 0.	72 1.45 1.09	33 90 6	1 140 500	258 1	30.0 130.0 130.	0 98.0 98	8.0 98.0 75	5.5 75.5 75	5 12.5 12.9	5 12.5 110	0.0 110.0 11	10.0 36.0 36.0	36.0		160.0 160.0 160.0	228.0 228.0 228	1.0 0.1 0.1 0.	1.0 1.0 1	0 22 22	2.2 488.0 488.0	488.0 396	8.0 398.0 398.0	14.0 14.0	14.0 -		0.48 0.48 0.48						
D/S OF 2	7 28 27	5.3 6.4 6.1	7.64 8.91 8.22	490 660 583	14.0 14.0	14.0 3.2	10.0 5.8	4.39 7.90 6.	i.43 1.34 1.3	1.36 1.35 0.	78 1.48 1.13	14 70 31	110 160	0 540	32.0 32.0 32.0	86.0 86	86.0 84	1.0 84.0 84	0 11.0 11.0	11.0 108	5.0 105.0 10	16.0 29.0 29.0	29.0 -		116.0 116.0 116.0	118.0 118.0 118	1.0 0.1 0.1 0.	1.0 1.0 1	0 22 22	2.2 426.0 426.0	426.0 344	4.0 344.0 344.0	12.0 12.0	12.0 -		0.66 0.66 0.66	0.3 0.3	0.3 1.8 1	1.8 1.8			Ħ
RABHAGA ARPUR		5.4 6.9 6.4	7.60 8.15 7.86	215 1414 873		- 6.0	10.4 8.3	1.60 2.67 2.	16 0.35 0.3	0.39 0.37 0.	29 0.71 0.50	25 900 34	5 115 180	0 695 1	16.0 116.0 116.	0 204.0 20	4.0 204.0 90	0.3 90.3 90	3 2.5 2.5	2.5 18	0.0 180.0 18	80.0 207.5 207.5	207.5 -		300.0 300.0 300.0	320.0 320.0 320	1.0 0.3 0.3 0.3	1.0 1.0 1	0 1.6 1.6	1.6 894.0 894.0	894.0 868	8.0 868.0 868.0	26.0 26.0	26.0 1.58	1.58 1.58	0.33 0.33 0.33		- -	- -			
ABHAGA RPUR		4.2 6.0 5.2	7.45 7.90 7.69	209 1439 875		- 9.0	40.0 18.7	1.20 3.72 2	.47 0.42 0.4	0.42 0.42 0.	33 0.59 0.46	25 550 23	8 130 180	0 718 1	12.0 112.0 112.	0 238.0 238	8.0 238.0 92	2.0 92.0 92	0 2.9 2.9	2.9 198	0.0 190.0 19	90.0 195.5 195.5	195.5	-	280.0 280.0 280.0	350.0 350.0 350	0.3 0.3 0.3	8 1.0 1.0 1	0 1.6 1.6	1.6 1014.0 1014.	0 1014.0 990	0.0 990.0 990.0	24.0 24.0	24.0 2.18	2.18 2.18	0.30 0.30 0.30						
HWAR .		4.9 6.2 5.4	7.78 8.75 8.20	310 838 600		- 3.9	10.0 7.1	4.28 10.20 7.	.12 0.72 1.3	1.36 1.04 0.	68 1.20 0.94	70 300 14	3 280 160	0 820	96.0 66.0 66.0	76.0 76	1.0 76.0 55	5.6 55.6 55	6 10.0 10.0	10.0 65	.0 65.0 6	5.0 10.3 10.3	10.3 -		140.0 140.0 140.0	142.0 142.0 142	1.0 0.1 0.1 0.	1.0 1.0 1	0 4.5 4.5	4.5 382.0 382.0	382.0 302	2.0 302.0 302.0	18.0 18.0	18.0 0.19	0.19 0.19	0.59 0.59 0.59						
T DN N MILL,		5.4 6.5 6.0	7.71 8.93 8.24	463 990 605		- 2.9	14.0 6.4	3.11 9.20 6:	1.18 1.5	1.50 1.34 0.	22 1.56 0.87	26 280 11	0 110 160	0 731 1	22.0 122.0 122.	0 32.0 32	2.0 32.0 67	7.0 67.0 67	0 12.0 12.1	12.0 53	.0 53.0 5	3.0 8.9 8.9	8.9 -		132.0 132.0 132.0	154.0 154.0 154	1.0 0.1 0.1 0.	1.0 1.0 1	0 28 28	2.8 372.0 372.0	372.0 292	2.0 292.0 292.0	16.0 16.0	16.0 -		0.72 0.72 0.72						

http://geb.nic.in/WaterGoderari-2005.htm20112.2007.11.0