UNIVERSAL RESULT IDENTIFY

1. CHECK IF A NUMBER IS AN ARMSTRONG NUMBER

Output:

371 is an Armstrong number.

Test Cases:

Test Cases: 153 → Armstrong,

 $370 \rightarrow Armstrong$,

 $9474 \rightarrow Armstrong$,

123 → Not Armstrong,

 $0 \rightarrow Armstrong$

2. FIND THE SECOND LARGEST NUMBER IN AN ARRAY

Output:

Second largest = 12

Test Cases:

 $[10,5,8,20,12] \rightarrow 12;$

 $[5,5,5] \rightarrow \text{No second largest};$

 $[1] \rightarrow No second largest$

3. COUNT VOWELS AND CONSONANTS IN A STRING

Output:

Vowels: 7Consonants: 13

Test Cases:

Test Cases: "Debugging Competition" \rightarrow Vowels 7, Consonants 13; "Hello World!" \rightarrow 3,7

4. FIND THE GCD (GREATEST COMMON DIVISOR) OF TWO NUMBERS

Output:

GCD of 48 and 18 = 6GCD of 100 and 25 = 25GCD of 7 and 13 = 1GCD of 10 and 0 = 10GCD of 0 and 5 = 5

Test Cases:

Test Cases: $(48,18) \rightarrow 6$; $(100,25) \rightarrow 25$; $(7,13) \rightarrow 1$; $(10,0) \rightarrow 10$; $(0,5) \rightarrow 5$

5. SUM OF DIGITS OF A NUMBER

Output:

Sum of digits of 123 = 6

Test Cases:

Test Cases: $123\rightarrow 6$; $0\rightarrow 0$; $9999\rightarrow 36$; $-456\rightarrow 15$; $1001\rightarrow 2$

6. REVERSE A STRING

Output:

Original: hello | Reversed: olleh

Test Cases:

Test Cases: "hello" \rightarrow olleh; "racecar" \rightarrow racecar; "" \rightarrow ""

7. FACTORIAL OF A NUMBER (ITERATIVE)

Output:

Factorial of 5 = 120Factorial of 0 = 1Factorial of 10 = 3628800Factorial not defined for -3

Test Cases:

Test Cases: $5\rightarrow120$; $0\rightarrow1$; $10\rightarrow3628800$; $-3\rightarrow$ Not defined

8. CHECK IF A NUMBER IS A PALINDROME

Output:

121 is a Palindrome-121 is a Palindrome123 is not a Palindrome0 is a Palindrome10 is not a Palindrome

Test Cases:

Test Cases: 121 \rightarrow Palindrome; -121 \rightarrow Palindrome; 123 \rightarrow Not; 0 \rightarrow Palindrome; 10 \rightarrow Not

9. COUNT FREQUENCY OF EACH CHARACTER IN A STRING (CASE INSENSITIVE)

Output:	
---------	--

p:1r:2o:1g:2a:1m:2i:1n:1

Test Cases:

Test Cases: "Programming"; "Data Structures"; "123abcABC"

10. FIND ALL UNIQUE ELEMENTS IN AN ARRAY

Output:

Unique elements: 1 3 5

Test Cases:

Test Cases: [1,2,2,3,4,4,5]→1 3 5; [7,7,7]→(empty)

11. FIND THE FIRST NON-REPEATING CHARACTER IN A STRING

Output:

First non-repeating character: g

Test Cases:

 $Test \ Cases: "aabbccddeefg" \rightarrow g; "aabbcc" \rightarrow -; "swiss" \rightarrow w$

12. CHECK IF A NUMBER IS A PERFECT NUMBER

Output:

Input: 6 => Is perfect? TrueInput: 28 => Is perfect? TrueInput: 12 => Is perfect? FalseInput: 496 => Is perfect? TrueInput: 100 => Is perfect? FalseInput: 1 => Is perfect? False

Test Cases:

Test Cases: 6→True; 28→True; 12→False; 496→True; 1→False

13. MERGE TWO SORTED ARRAYS

Output:

Merged array: 1 2 3 4 5 6

Test Cases:

Test Cases: $[1,3,5] \& [2,4,6] \rightarrow [1,2,3,4,5,6]$

14. FIND THE MAXIMUM AND MINIMUM ELEMENT IN AN ARRAY

_			
Λ	11+1	กบ	+.
U	ut	υu	ι.

Max: 8Min: 2

Test Cases:

Test Cases: $[3,5,7,2,8] \rightarrow Max \ 8 \ Min \ 2$; $[1] \rightarrow Max \ 1 \ Min \ 1$

15. CONVERT DECIMAL NUMBER TO BINARY

Output:

Decimal: 10 => Binary: 1010

Test Cases:

Test Cases: $0 \rightarrow 0$; $5 \rightarrow 101$; $255 \rightarrow 111111111$

16. REPLACE ALL VOWELS IN A STRING WITH '*'

Output:

Original with vowels replaced: H*ll* W*rld

Test Cases:

Test Cases: 'Hello World' \rightarrow H*ll* W*rld; 'AEIOUaeiou' \rightarrow ***********

17. PASCAL'S TRIANGLE (FIRST N ROWS)

Output:

Prints first 7 rows of Pascal's triangle (formatted)

Test Cases:

Test Cases: n=7 as sample

18. FIND THE SUM OF EVEN NUMBERS IN AN ARRAY

Output:

Sum of even numbers: 18

Test Cases:

Test Cases: $[4,7,2,9,12,15] \rightarrow 18$; $[1,3,5] \rightarrow 0$

19. FIND THE POWER OF A NUMBER (x^n) WITHOUT pow()

Output:

2 raised to the power 5 is 32

Test Cases:

Test Cases: $(2,5) \rightarrow 32$; $(5,0) \rightarrow 1$; $(3,3) \rightarrow 27$

20. TRANSPOSE OF A MATRIX

Output:

Transpose of the matrix:1 4 2 5 3 6

Test Cases:

Test Cases: [[1,2,3],[4,5,6]] \rightarrow see output

21. SIMULATE A SIMPLE ELEVATOR SYSTEM (UP/DOWN)

Output:

Moving Up:Floor 3Floor 4Floor 5Floor 6

Test Cases:

Test Cases: $(2,6) \rightarrow$ moves up; $(5,2) \rightarrow$ moves down; $(3,3) \rightarrow$ already on same floor

22. DIGIT REARRANGEMENT TO FORM MAXIMUM EVEN NUMBER

Output:

Input: 1234Largest even number: 4312

Test Cases:

Test Cases: $1234 \rightarrow 4312$; $531 \rightarrow -1$; $8201 \rightarrow 8210$

23. NumberPalindromeChecker

output:
Number: 12321
Is Palindrome? true
Number: 45654
Is Palindrome? true
Number: 12345
Is Palindrome? false
Number: -121
Is Palindrome? false
Number: 0
Is Palindrome? true
Number: 10
Is Palindrome? false
Number: 1001
Is Palindrome? true
24.PrimeFactorization
_
Output:

Prime factors of 28 are: 2 2 7
Prime factors of 45 are: 3 3 5

Prime factors of 60 are: 2 2 3 5
Prime factors of 13 ar
e: 13
25.PalindromePartitionCounter
Output:
Total palindromic partitions: 2
Test cases:
Input: "aab"
26.NQueensSolver
Output:
0100
0001
1000
0010
Test cases:
Solve
s for N=4

27. Binary Tree In order Traversal

Output.
Inorder traversal: 3 1 4 0 2 5
Test cases:
0
/\
1 2
/\ \
3 4 5
28.TopologicalSort
Output:
Topological Sort: 0 2 4 1 3 5
Test cases:
Graph edges implied by matrix. One possible topological order:
29.Knapsack01
Output:
Max value: 9
Test Case:
Weights = {1,3,4,5}, Values = {1,4,5,7}, Max weight = 7

```
input type
0 0
11
01
10
02
output
Welcome to Tic Tac Toe!
Player X goes first.
 II
 _____
 | \cdot |
Player X, enter row and column (0-2): X | |
-----
 II
_____
 | \cdot |
Player O, enter row and column (0-2): X | |
-----
 0
 \perp
Player X, enter row and column (0-2): X \mid X \mid
-----
```

0
1.1
Player O, enter row and column (0-2): X X
0 0
1.1
Player X, enter row and column (0-2): $X \mid X \mid X$
0 0
1.1
Player X wins!