CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

SIMPLE SHIFTER

EXAMPLE: 4-INPUT SHIFTER

	Control		Data					
	s	d	x_4	x_3	x_2	x_1	x_0	x_{-1}
			1	0	0	1	1	0
No shift	NO	_		0	0	1	1	
Right shift	YES	RIGHT		1	0	0	1	
Left shift	YES	LEFT		0	1	1	0	
				y_3	y_2	\overline{y}_1	y_0	

Shifter Implementation

Shifter Implementation

ADDER MODULES FOR POSITIVE INTEGERS

$$x + y + c_{\rm in} = 2^n c_{\rm out} + z$$

CARRY-RIPPLE ADDER IMPLEMENTATION

(

FULL-ADDER IMPLEMENTATION

x_i	y_i	c_i	c_{i+1}	z_i
0	0	0	-	
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$$z_i = c_{i+1} =$$

FULL ADDER TWO-LEVEL IMPLEMENTATION

ALTERNATIVE IMPLEMENTATION

• SUM IS 1 WHEN NUMBER OF 1'S IN INPUTS (including the carry-in) IS ODD:

$$z_i = x_i \oplus y_i \oplus c_i$$

• CARRY-OUT IS 1 WHEN $(x_i + y_i = 2)$ or $(x_i + y_i = 1)$ and $c_i = 1$:

$$c_{i+1} = x_i y_i + (x_i \oplus y_i) c_i$$

x_i	y_i	c_i	c_{i+1}	z_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

ALTERNATIVE IMPLEMENTATION

$$z_i = x_i \oplus y_i \oplus c_i$$

$$c_{i+1} = x_i y_i + (x_i \oplus y_i) c_i$$

• INTERMEDIATE VARIABLES

PROPAGATE
$$p_i = x_i \oplus y_i$$

GENERATE $g_i = x_i \cdot y_i$

• HALF-ADDER

x_i	y_i	g_i	p_i
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

IMPLEMENTATION WITH HALF-ADDERS

EXPRESSIONS IN TERMS OF $p_i's$, $g_i's$ and $c_i's$

$$z_i = p_i \oplus c_i$$
$$c_{i+1} = g_i + p_i \cdot c_i$$

. .

2's Complement Addition

2'S COMPLEMENT ADDITION:
 RESULT CORRESPONDS TO OUTPUT OF ADDER, DISCARD-ING THE CARRY-OUT

$$\underline{z} = ADD(\underline{x}, \underline{y}, 0)$$

SUBTRACTION IN TWO'S COMPLEMENT SYSTEM

• THE CORRESPONDING DESCRIPTION

$$\underline{z} = ADD_R(\underline{x}, \underline{y'}, 1)$$

EXAMPLE:

2's Complement Operations

OPERATION	2's COMPLEMENT SYSTEM
z = x + y	$\underline{z} = ADD(\underline{x}, \underline{y}, 0)$
z = -x	$\underline{z} = ADD(\underline{x'}, 0, 1)$
z = x - y	$\underline{z} = ADD(\underline{x}, \underline{y'}, 1)$

TWO'S COMPLEMENT ARITHMETIC UNIT

INPUTS:
$$\underline{x} = (x_{n-1}, \dots, x_0), \quad x_j \in \{0, 1\}$$

$$\underline{y} = (y_{n-1}, \dots, y_0), \quad y_j \in \{0, 1\}$$

$$c_{\text{in}} \in \{0, 1\}$$

$$F = (f_2, f_1, f_0)$$

OUTPUTS:
$$\underline{z} = (z_{n-1}, \dots, z_0), \quad z_j \in \{0, 1\}$$

$$c_{\text{out}}, sgn, zero, ovf \in \{0, 1\}$$

FUNCTIONS:

\overline{F}	Operation			
001	ADD	add	z = x + y	
011	SUB	subtract	z = x - y	
101	ADDC	add with carry	$z = x + y + c_{in}$	
110	CS	change sign	z = -x	
010	INC	increment	z = x + 1	

$$sgn = 1$$
 if $z < 0$, 0 otherwise (the sign)
 $zero = 1$ if $z = 0$, 0 otherwise
 $ovf = 1$ if z overflows, 0 otherwise

TWO'S COMPLEMENT ARITHMETIC UNIT

