## Model selection

David L Miller

#### What do we mean by "model selection"?

- Term "selection"
  - Path dependence
  - Shrinkage
- Selection between models
  - Term formulation
  - Selection between structurally different models

### Term selection

#### Term selection via p-values

- Old paradigm select terms using p-values
- p-values are approximate
- 1. treat smoothing parameters as known
- 2. rely on asymptotic behaviour

(p-values in summary.gam() have changed a lot over time — all options except current default are deprecated as of v1.18-13 (i.e., ignore what's in the book!).)

#### Technical stuff

Test of zero-effect of a smooth term

Default p-values rely on theory of Nychka (1988) and Marra & Wood (2012) for confidence interval coverage.

If the Bayesian CI have good across-the-function properties, Wood (2013a) showed that the p-values have:

- almost the correct null distribution
- reasonable power

Test statistic is a form of  $\chi^2$  statistic, but with complicated degrees of freedom.

#### (RE)ML rant again...

Best behaviour when smoothness selection is by ML (REML also good)

Neither of these are the default, so remember to use method = "ML" or method = "REML" as appropriate

### Term selection by shrinkage

#### Shrinkage & additional penalties

- Usually can't remove a whole function when smoothing
- Penalties used act only on range space
- null space of the basis is unpenalised.

Parts of f that don't have  $2^{\mbox{nd}}$  derivatives aren't penalised

$$\int_{\mathbb{R}} \left( \frac{\partial^2 f(x)}{\partial x^2} \right)^2 dx$$

(Note that penalty form depends on the basis!)

#### Double-penalty shrinkage

 $S_j$  penalty matrix j, eigendecompose:

$$\mathbf{S}_{j} = \mathbf{U}_{j} \mathbf{\Lambda}_{j} \mathbf{U}_{j}^{\mathrm{T}}$$

where  $U_j$  is a matrix of eigenvectors and  $\Lambda_j$  a diagonal matrix of eigenvalues (i.e., this is an eigen decomposition of  $S_j$ ).

 $\Lambda_j$  contains some Os due to the spline basis null space — no matter how large the penalty  $\lambda_j$  might get no guarantee a smooth term will be suppressed completely.

#### Shrinkage & additional penalties

mgcv has two ways to penalize the null space ⇒ term selection

- double penalty approach via select = TRUE
- shrinkage approach via special bases "ts" and "cs"

Marra & Wood (2011) review other options.

#### Double-penalty shrinkage

Create a second penalty matrix from  $U_j$ , considering only the matrix of eigenvectors associated with the zero eigenvalues

$$\mathbf{S}_{j}^{*} = \mathbf{U}_{j}^{*}\mathbf{U}_{j}^{*T}$$

Now we can fit a GAM with two penalties of the form

$$\lambda_{j}\beta^{T}\mathbf{S}_{j}\beta + \lambda_{j}^{*}\beta^{T}\mathbf{S}_{j}^{*}\beta$$

In practice, add select = TRUE to your gam() call

#### Shrinkage

- Double penalty ⇒ twice as many smoothing parameters
- Alternative is shrinkage, add small value to zero eigenvalues
- Null space terms to be shrunk at the same time

```
Use s(..., bs = "ts") or s(..., bs = "cs") in mgcv
```

## Selecting between models

## GAMs are Bayesian models

#### Bayesian models

- duh
  - we can build Bayesian GLMs
  - see also INLA and BayesX
- mgcv fits Bayesian models
- penalties are prior precision matrices
- (improper) Gaussian prior on  $oldsymbol{eta}$

#### Empirical Bayes...?

- $\bullet \ \ \text{Improper prior derives from} \ S_j \ \text{not being of full rank} \\$ 
  - $\blacksquare$  zeroes in  $\Lambda_j$ .
- Double penalty and shrinkage smooths make prior proper
  - Double penalty: no assumption as to how much to shrink the null space
  - Shrinkage smooths: assume null space should be shrunk less than the wiggles

#### Practical Bayes

Marra & Wood (2011) show that the double penalty and the shrinkage smooth approaches:

- performed significantly better than alternatives in terms of predictive ability, and
- performed as well as alternatives in terms of variable selection

## AIC

#### AIC

- Use full likelihood of  $\pmb{\beta}$  conditional upon  $\lambda_j$  is used, with the EDF replacing k, the number of model parameters
- This conditional AIC tends to select complex models, especially those with random effects, as the EDF ignores that  $\lambda_j$  are estimated
- Wood et al (2015) suggests a correction that accounts for uncertainty in  $\lambda_i$  (AIC)

## Examples

## Back to the dolphins...

#### Fitting some models

#### Comparing terms by p-value

summary(dolphins\_depth\_xy)

```
Family: Negative Binomial(0.027)
Link function: log
Formula:
count \sim s(x, y) + s(depth) + offset(off.set)
Parametric coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -19.7573 0.6243 -31.65 \stackrel{>}{<}2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
            edf Ref.df Chi.sq p-value
s(x,y) 2.001 2.002 2.259 0.323
s(depth) 5.312 6.416 37.328 2.68e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = -0.0072 Deviance explained = 39.5% -REML = 369.37 Scale est. = 1 n = 387
```

#### Comparing models by AIC

AIC(dolphins\_xy, dolphins\_depth, dolphins\_depth\_xy)

```
df AIC
dolphins_xy 5.044883 775.7682
dolphins_depth 8.248728 744.4248
dolphins_depth_xy 10.417717 746.0289
```

#### Shrinkage (basis)

#### Shrinkage (basis)

summary(dolphins\_depth\_xy\_s)

```
Family: Negative Binomial(0.027)
Link function: log
Formula:
count \sim s(x, y, bs = "ts") + s(depth, bs = "ts") + offset(off.set)
Parametric coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -19.2704  0.4933  -39.06  <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
             edf Ref.df Chi.sq p-value
s(x,y) 0.02385 29 0.017 0.472
s(depth) 4.64835 9 42.845 1.91e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0476 Deviance explained = 36.2%
-REML = 376.26 Scale est. = 1 n = 387
```

#### Shrinkage (extra penalty)

#### Shrinkage (basis)

summary(dolphins\_depth\_xy\_e)

```
Family: Negative Binomial(0.027)
Link function: log
Formula:
count \sim s(x, y) + s(depth) + offset(off.set)
Parametric coefficients:
           Estimate Std. Error z value Pr(>|z|)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
           edf Ref.df Chi.sq p-value
s(x,y) 0.1779 29 0.145 0.421
s(depth) 4.7667 9 46.659 1.5e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0457 Deviance explained = 37.5% -REML = 374.09 Scale est. = 1 n = 387
```

# These last two models were empirical Bayes models

# That's all from the dolphins for now...

