PREGUNTAS AC TEMA 1 – CURSO 2019/2020

1. En la expresión de la ley de Amdalh, $Sp \le p/(1+f(p-1))$, para la ganancia de velocidad de un computador al mejorar uno de sus recursos p puede ser mayor que 1.

RESPUESTA: V

2. En la expresión de la ley de Amdahl, $Sp \le p/(1+f(p-1))$, para la ganancia de velocidad de un computador al mejorar uno de sus recursos, f es la fracción del tiempo antes de la mejora en la que se utiliza el recurso mejorado.

RESPUESTA: F

3. En la expresión de la ley de Amdalh, $Sp \le p/(1+f(p-1))$, para la ganancia de velocidad de un computador al mejorar uno de sus recursos, p es el factor de incremento de prestaciones del recurso que se mejora.

RESPUESTA: V

4. Un multiprocesador puede funcionar como computador MISD con la sincronización adecuada entre sus procesadores.

RESPUESTA: V

- **5.** En la secuencia de instrucciones:
- (a) add r1,r2,r3; $r1 \leftarrow r2 + r3$
- (b) sub r1,r1,r4; $r1 \leftarrow r1 r4$

Hay dependencia WAW entre las instrucciones debido al registro r1.

RESPUESTA: V

- **6.** En la secuencia de instrucciones:
- (a) add r1,r2,r3; $r1 \leftarrow r2 + r3$
- (b) sub r1,r1,r4; $r1 \leftarrow r1 r4$
- **NO** hay dependencia WAR entre las instrucciones debido al registro r1.

RESPUESTA: V

- **7.** En la secuencia de instrucciones:
- (a) add r1,r2,r3; $r1 \leftarrow r2 + r3$
- (b) sub r1,r1,r4; $r1 \leftarrow r1 r4$

Sólo hay dependencia RAW entre las instrucciones debido al registro r1.

RESPUESTA: F

- **8.** En la secuencia de instrucciones que aparecen en el orden indicado en un código:
- (a) add r1,r2,r4; $r1 \leftarrow r2 + r4$
- (b) add r4,r2,r3; $r4 \leftarrow r2 + r3$
- (c) sub r1,r1,r4; r1 \leftarrow r1 r4

Hay dependencia WAR entre las instrucciones i1 e i2 debido al registro r4.

RESPUESTA: V

- **9.** En la secuencia de instrucciones que aparecen en el orden indicado en un código:
- (a) add r1,r2,r4; $r1 \leftarrow r2 + r4$
- (b) add r4,r2,r3; $r4 \leftarrow r2 + r3$
- (c) sub r1,r1,r4; $r1 \leftarrow r1 r4$

Hay dependencia RAW entre las instrucciones i2 e i3 debido al registro r4.

RESPUESTA: V

- 10. En la secuencia de instrucciones que aparecen en el orden indicado en un código:
- (a) add r1,r2,r3; $r1 \leftarrow r2 + r3$
- (b) sub r1,r2,r4; $r1 \leftarrow r2 r4$
- (c) add r3,r2,r1; $r3 \leftarrow r2 + r1$

El registro r1 solo genera una dependencia RAW

RESPUESTA: F

- 11. En la secuencia de instrucciones que aparecen en el orden indicado en un código:
- (a) add r1,r2,r3; $r1 \leftarrow r2 + r3$
- (b) sub r1,r2,r4; r1 \leftarrow r2 r4
- (c) add r3,r2,r1; $r3 \leftarrow r2 + r1$

No hay dependencias debido al uso del registro r2

RESPUESTA: V

- 12. En la secuencia de instrucciones que aparecen en el orden indicado en un código:
- (a) add r1,r2,r3; $r1 \leftarrow r2 + r3$
- (b) sub r1,r2,r4; r1 \leftarrow r2 r4
- (c) add r3,r2,r1; $r3 \leftarrow r2 + r1$

El registro r3 genera una dependencia WAW

RESPUESTA: F

13. Los núcleos de la arquitectura Sunday Bridge de Intel pueden terminar hasta 8 operaciones en coma flotante (FLOP) por ciclo. ¿Cuál es la velocidad pico (en GFLOPS) de un microprocesador con 4 núcleos Sunday Bridge que funciona a una frecuencia de reloj de 2GHz?

RESPUESTA: 64

- **14.** Un computador NUMA, es un multiprocesador donde la memoria está físicamente distribuida. **RESPUESTA: V**
- **15.** En un computador NUMA, la memoria está físicamente distribuida aunque utiliza un modelo de programación de memoria compartida.

RESPUESTA: V

16. Si el bucle siguiente: **for i=1 to N do a(i) = b(i) * c;** se ejecuta en 2 segundos y N=10^11, siendo c, a(), y b() datos en coma flotante, ¿cuánto GFLOPS alcanza la máquina al ejecutar el código?

N/**10^9

RESPUESTA: 50

17. Dado el bucle **for i=1 to N do a(i) = b(i) * c(i)** son números en coma flotante, ¿cuántos GFLOPS consigue un computador que lo ejecuta en 2 segundos cuando N=10^10? **RESPUESTA: 5**

18. Dado el bucle **for i=1 to N do a(i) = b(i) * c(i)** son números en coma flotante, ¿cuántos GFLOPS consigue un computador que lo ejecuta en 2 segundos cuando N=10^12?

RESPUESTA: 500

 $1(\text{operacion_flot}) * 10 \land 12 / ((2 \text{ s}) * 10 \land 9) = 1000/2 = 500 \text{ GFLOPS}$

19. Un cluster de computadores es un computador NUMA.

RESPUESTA: F

20. Las hebras de un proceso necesitan recurrir a llamadas al sistema operativo para comunicarse entre sí.

RESPUESTA: F

21. En un procesador superescalar el valor de CPI puede ser menor que 1.

RESPUESTA: V

22. El paralelismo entre hebras permite aprovechar una granularidad menor que el paralelismo entre procesos.

RESPUESTA: V

23. Los multicomputadores son máquinas MIMD y los multiprocesadores SIMD.

RESPUESTA: F

24. En un computador de tipo NORMA tanto los accesos a memoria local como los de acceso a memoria remota se realizan a través de instrucciones de carga y almacenamiento de datos en memoria.

RESPUESTA: F

25. ¿Cuál es la velocidad pico en MIPS de un procesador que puede terminar hasta dos instrucciones por ciclo y funciona a una frecuencia de reloj de 1GHz?

RESPUESTA: 2000

```
2 (inst/ciclo) * 1 * 10^9 (ciclos/s) * (1/10^6) = 2000 MIPS
```

26. Un programa tiene 1000 millones de instrucciones y se ejecuta en un computador que tiene cinco tipos de instrucciones. Las del tipo 1 necesitan 6 ciclos, las del tipo 2 necesitan 4 ciclos, las del tipo 3 necesitan 3 ciclos, y las del tipo 4 necesitan 5 ciclos y las del tipo 5 necesitan 2. Si entre las instrucciones ejecutadas por el programa hay un 20% de instrucciones de cada uno de los tipos. ¿Cuántos segundos tarda el programa en ejecutarse en el computador si utiliza un reloj de 2GHz? **RESPUESTA: 2**

```
CPI = 0.20 * (6+4+3+5+2) = (1/5) * 20 = 4 (ciclos / instrucción)
T_(CPU) = NI * CPI * Tciclo = 10<sup>9</sup> (instrucciones) * 4 (ciclos/instrucción) * (½) * 10<sup>9</sup> (s/ciclo) = 2s
```

27. Un procesador puede terminar hasta 4 operaciones en coma flotante por ciclo. ¿Cuál es su velocidad pico (en GFLOPS) si funciona a una frecuencia de reloj de 2GHz?

RESPUESTA: 8

```
GFLOPS = 4 op float/ciclo * (2*10^9) ciclos/s * (1/10^9) = 8
```

28. Según la ley de Amdahl, la ganancia máxima de velocidad que se puede conseguir, por mucho que se mejore el recurso es 1/f (f fracción del tiempo de procesamiento en el computador base durante el que NO se puede aprovechar la mejora):

RESPUESTA: V

29. La comunicación entre procesadores en un computador UMA se realiza a través de escrituras y lecturas en la memoria compartida, igual que en un computador NUMA:

RESPUESTA: V

- **30.** Escriba la expresión del tiempo de CPU (Tcpu) en términos del número de instrucciones ejecutadas (NI), el número medio de ciclos por instrucción (CPI) y la frecuencia de reloj (F): **RESPUESTA: Tcpu = NI · CPI** / **F**
- **31.** ¿Cuál es la velocidad pico en MIPS de un procesador que puede terminar hasta cuatro instrucciones por ciclo y funciona a una frecuencia de reloj de 3 GHz? **RESPUESTA: 12000**

MIPS = $4 \text{ int/ciclo} * (3*10^9) \text{ ciclos/s} * (1/10^6) = 12000$