

ρx

$$\phi\left(\P\right)\phi\left(\bigwedge\right) = \phi\left(\bigwedge\right).$$

 $\left(1\varnothing - 2\int_{\bullet}^{\circlearrowleft}\right)^2 = \varnothing - 4\int_{\bullet}^{\circlearrowleft} + 4\int_{\bullet}^{\circlearrowleft} \ge 0.$

$$\left[\left(1 \varnothing - 2 \right)^{2} \right] = \varnothing - 4 + 4 \ge 0.$$

$$\frac{1}{2} - \left[\frac{1}{2} \left(1 \otimes -2 \right)^{2} \right] + \left[\left(\frac{1}{2} - \frac{1}{2} - \frac{1}{3} - \frac{1}{2} \right)^{2} \right] - \left[\frac{1}{2} + \frac{1}{2} - \frac{1}{3} - \frac{1}{2} \right] - \left[\frac{1}{2} + \frac{1}{2} - \frac{1}{3} - \frac{1}{2} - \frac{1}{3} \right] - \left[\frac{1}{2} + \frac{1}{2} - \frac{1}{3} - -$$

 $\llbracket f^2 \rrbracket = \langle cc^{\top}, \llbracket f^2 \rrbracket$

$$\langle M, \llbracket \mathcal{F} \mathcal{F}^{ op}
rbracket
ceil
angle
angle$$

|E(H)|

 $\nabla_{\mathbf{v}} f(x) = \lim_{h \to 0} \frac{f(x+h\mathbf{v}) - f(x)}{h}$

(*H* density in $(G_i - v)$)—(*H* density in G_i)

 $\partial_{\mathbf{v}}H := \lim_{i \to \infty}$

$$\partial_1 = 2 - 2$$

$$\partial_1 - 2$$

$$\partial_1 - 2$$

(*H* density in $(G_i - e)$)—(*H* density in G_i)

 $\partial_{e} H := \lim_{i \to \infty}$

$$\partial_{e} = -2$$

$$\partial_{e} = -2$$

$$\partial_{e} = -2$$

$$\partial_{e} = -6$$

$$\partial_{e} = -6$$

But
$$=$$
 SOS ≥ 0 and $-$ SOS ≥ 0 .

