47. Практическая работа

ПОДГОТОВКА К РАБОТЕ И РЕГУЛИРОВКИ МАШИН ДЛЯ ПОСЛЕУБОРОЧНОЙ ОБРАБОТКИ ЗЕРНА

Цель работы: закрепить знания, полученные при изучении устройств, процесса работы, настроек и регулировок машин для послеуборочной обработки зерна.

Оснащение рабочего места: машина предварительной очистки зерна МПО-50, семяочистительная машина СМ-4, сепаратор аэродинамический САД-4.

Содержание работы: закрепить знания, полученные при изучении устройства, процесса работы, настроек и регулировок машин для послеуборочной доработки зерна, получить навыки подготовки их к работе.

Подготовка машины МПО-50 (СПО-100 и других) к работе

Очистить машину и оборудование от загрязнения, удалить зерновые и соломистые остатки (рис. 47.1). Проверить крепление всех сборочных единиц, наличие смазки в подшипниковых узлах, отрегулировать натяжение механизмов передач. Установить машину горизонтально в продольном и поперечном направлениях, оградить и убедиться в надежности ограждений сборочных единиц и всего оборудования. Оценить параметры исходной массы зернового материала: вид, сорт, количественный и качественный состав. Отрегулировать загрузочное устройство, поставив подпружиненные клапаны в положение, соответствующее расчетной загрузке машины. Отрегулировать воздушный поток дроссельными заслонками, герметичность системы аспирации — подпружиненными клапанами на входе очищенного зерна и подпорными клапанами шнеков отходов.

Перед пуском машины убедитесь в отсутствии посторонних предметов в шнеках, транспортерах. После предварительной работы оценить качество работы машины по выходам очищенного зерна, крупных примесей. В крупных и легких примесях не должно быть зерна основной культуры.

Рис. 47.1. Общее устройство МПО-50:

I – канал вывода крупных примесей; 2 – транспортер сетчатый; 3 – встряхиватель; 4 – устройство распределительное;

5 — шнек распределительный; 6 — вентилятор; 7 — электопривод;

8 – шнек вывода мелких примесей; 9 – заслонка дросельная; 10 – канал выхода основного материала; 11, 12 – вал ведущий и ведомый сетчатого транспортера

Для оценки качества работы зерноочистительных машин используют показатели полноты разделения зерновой массы и потери полноценного зерна в отходах.

Показатель полноты разделения находят из соотношения:

$$\varepsilon_{\rm p} = \frac{m_{\rm n} - m_0}{m_{\rm n}},\tag{47.1}$$

где $m_{\rm II}$ — масса примесей или неполноценных фракций, содержащихся в исходной смеси. г:

 m_0 — масса примесей или фракций, не соответствующих требованиям очищенного (отсортированного) зерна, г.

Для оценки массы $m_{\rm n}$ отбирают из разных зон исходного материала навеску, равную приблизительно 1 кг. После тщательного перемешивания оставляют пробу 25–50 г зерновой массы (меньшие значения соответствуют мелкосемянным, большие – крупносеменным культурам). Из смеси выбирают примеси и определяют их массу $m_{\rm n}$. Массу $m_{\rm 0}$ находят из навески очищенного зерна, полученной в течение 5–10 мин работы отрегулированной машины. Из перемешанной навески выделяют пробу, равную массе пробы, взятой для анализа исходного материала. Выделяют примеси и неполноценные зерна,

взвешиванием определяют их массу m_0 . При использовании решетнопарусных классификаторов и других приборов массу анализируемых навесок из исходного и очищенного материалов берут в 4–5 раз выше приведенных. Показатель ε_p для предварительной очистки зерна должен быть не менее 0,5; для первичной очистки – 0,6; вторичной – 0,8.

Допустимая доля полноценного зерна в отходах машин составляет: 0.2 % — на предварительной очистке, 0.5 % — на первичной очистке и 3 % — на вторичной очистке.

Пропускная способность и производительность машин

За номинальную пропускную способность $q_{0\text{H}}$, указанную в марке машины, принимают массу пшеницы (тонн), очищенную или отсортированную за один час при влажности $w \le 16$ % и указанных выше показателях полноты разделения ε_{p} и доли потерь зерна в отходах. Пропускная способность машины для других культур при исходной влажности $w_1 > 16$ % находят по номинальной пропускной способности $q_{0\text{H}}$, принимая, что с увеличением влажности обрабатываемого зерна на 1 % выше 16 % пропускная способность q_0 снижается на 3 %. Исходя из этого, пропускная способность составит:

$$q_0 = k_{\rm k} q_{\rm OH} \left(1 - \frac{w_1 - 16}{100} 3 \right), \tag{47.2}$$

где $k_{\rm k}$ — коэффициент эквивалентности, учитывающий свойства обрабатываемой культуры (для пшеницы и гороха $k_{\rm k}=1$; ржи и кукурузы — 0,9; ячменя — 0,8; овса — 0,6; гречихи и риса — 0,5; проса и подсолнечника — 0,3; семян трав — 0,2; для овощей $k_{\rm k}=0,1$).

Производительность W зерноочистительных и сортировальных машин определяют по пропускной способности q_0 из выражения:

$$W = \tau_{\rm cm} q_0 , \qquad (47.3)$$

где τ_{cm} — коэффициент использования рабочего времени смены ($\tau_{\text{cm}} = 0.80 \text{--} 0.85$).

Если заданные параметры работы машины не выдерживаются, их необходимо отрегулировать повторно (до их получения).

Подготовка машины СМ-4 к работе и ее регулировки

Машину устанавливают в хорошо освещенном помещении так, чтобы к ней был свободный доступ со всех сторон. Раму машины устанавливают (по уровню) и надежно закрепляют приспособлениями, прилагаемыми к машине.

Машина при работе с самопередвижением должна работать на ровных площадках; в процессе работы нужно следить за тем, чтобы задние ходовые колеса двигались на одном уровне. Перед пуском в работу машину очищают, проверяют состояние и крепление всех сборочных единиц, соединений, легкость вращения и движения рабочих органов, механизмов и передач, работу механизмов регулировки и надежность их фиксации в установленном положении. Проверяют состояние электрооборудования и надежность заземления. Устраняют выявленные неисправности и неполадки. Проверяют смазку машины согласно таблицам смазки. Затем приступают к обкатке машины вхолостую в течение 20—30 мин. Выявленные в процессе обкатки дефекты устраняют и приступают к регулировкам рабочих органов на оптимальный режим работы в зависимости от вида и состояния обрабатываемой культуры (рис. 47.2).

Качество работы машины определяется точностью регулировок рабочих органов. Чтобы получить семенной материал высокой кондиции, необходимо соблюдать рекомендации по регулированию рабочих органов и контролировать их работу (качество получаемого зерна и содержание отходов). Качество очистки зависит от решет. Их нужно подбирать специально для данной партии зернового материала с учетом роли каждого решета в технологическом процессе. Решета подбирают опытным путем, руководствуясь рекомендациями табл. 47.1.

Подбор и установка решет

Верхнее фракционное решето \mathcal{B}_1 (проходное) должно делить исходную смесь на две равные по массе фракции (сходовую и проходовую), отличающиеся друг от друга размерами семян. В проходовой фракции семена меньших размеров, чем в сходовой.

Верхнее решето E_2 должно успевать пропускать сквозь отверстия все семена основной культуры, сходом — выделять крупные посторонние примеси.

I – транспортер; 2, I0 – шнеки; 3 – перегородка подвижная; 4, I3 – камеры отстойные; 5 – вентиляторы; 6, 15 – заслонки; 7 – элеватор; 8, 9 – цилиндры триерные; II – фильтр; I2, I6 – каналы аспирации; I4 – решета; B_1 , B_2 , B, Γ – решета Рис. 47.2. Схемы технологических процессов машины СМ-4:

Решето B (подсевное) должно выделять проходом сквозь отверстия все мелкие посторонние примеси, сходом должны выходить семена основной культуры.

 $\label{eq:2.1} {\it Таблица~47.1}$ Рекомендуемые сменные решета к семяочистительной машине CM-4

Очищаемая	Размер отверстий решет, мм			
культура	Б ₁	Б2	В	Γ
Пшеница	$\Box 2,2-3,0$	□ 3,0–4,0	Ø 2,5	□ 2,0–2,4
Рожь	$\Box 2,2-2,6$	□ 3,0–3,6	Ø 2,5	□ 1,7–2,0
Ячмень	$\Box 2,4-3,0$	□ 3,6–5,0	Ø 2,5	□ 2,2–2,6
Овес	□ 2,0–2,2	□ 2,6–3,6	Ø 2,5	□ 1,7–2,0
Кукуруза (зерно)	Ø 8,0	Ø 8,0	Ø 5,0	Ø 6,5
Просо	□ 1,7–2,0	□ 2,0–2,4	Ø 2,0	□ 1,5–1,7
Горох	Ø 6,5	Ø 8,0	Ø 3,6	Ø 4,5–5,0
Гречиха	Ø 4,5–5,0; 5,5	Δ 5,5–6,0	□ 2,6–3,0; Ø 2,5–3,0	Ø 3,6–4,0
Вико-овсяная смесь	□ 2,6–3,0	Ø 6,5–8,0	Ø 2,5	□ 3,6–5,0
Свекла	Ø 5,0	Ø 8,0	□ 2,0–2,6	□ 2,2–2,6
Лен	□ 0,9–1,0	Ø 3,6–4,0	Ø 2,0	□ 0,8
Клевер. Люцерна	□ 1,0–1,2	□ 1,2–1,3	Ø 1,3	□ 0,8–0,9
Житняк. Пырей	Ø 5,0	Ø 8,0	□ 2,0–2,6	□ 2,2–2,6

^{□ –} решета с прямоугольным сечением ячейки;

Решето Γ (сортировальное) должно выделять проходом щуплые, дробленые семена основной культуры (2-й сорт), сходом должна выходить основная культура.

Размеры выбранных отверстий решет применительно к каждой партии исходного материала уточняют и корректируют, пользуясь набором лабораторных решет или решетным классификатором. Лабораторные решета с выбранными размерами отверстий устанавливают одно над другим в порядке уменьшения размеров отверстий сверху вниз. Внизу устанавливают глухое решето (поддон). Навеску

Ø – решета с круглым сечением ячейки;

 $[\]Delta$ – решета с треугольным сечением ячейки.

исходного материала (200–300 г – для мелкосеменных культур, 1000–1500 г – для крупносеменных) насыпают на верхнее решето и просеивают. По количеству оставшихся на решетах семян основной культуры и посторонних примесей судят о правильности выбора. При необходимости вносят коррективы. При отсутствии лабораторных решет подбор осуществляют на основных решетах, просеивая навеску вручную над брезентом. Выбранные решета устанавливают в машину, предварительно очистив их и протерев насухо чистой тряпкой. Проводят пробную очистку и проверяют правильность подбора решет на основе анализа проб, взятых из соответствующих выходов. Решето, которое не подходит, заменяют другим.

Положение щеток регулируют так, чтобы они плотно и равномерно прижимались к поверхности решета по всей ширине (щетина не должна выходить сквозь отверстия решет больше чем на 1–2 мм). Недостаточное прижатие щеток ухудшает очистку решет, о чем свидетельствует наличие застрявших семян и посторонних примесей; сильное прижатие вызывает повышенный износ самих щеток, направляющих, а также деформацию решет. В машине регулируется только верхний ряд щеток. Требуемая их установка осуществляется поворотом коленчатого вала и механизма регулировки положения щеток. Для этого, ослабив гайки, ключом поворачивают коленчатый вал до требуемого положения и затягивают гайки. Если поворот вала ограничивается пазом регулятора, то его (регулятор) устанавливают обратной стороной.

Регулировка частоты колебаний решетного стана

Качество работы решет, оцениваемое показателем полноты разделения, зависит от вида и состояния обрабатываемой культуры. Высокий показатель полноты разделения — отношение количества семян мелкой фракции, провалившихся сквозь отверстия, к количеству семян мелкой фракции, имеющихся в исходном материале — обеспечивается правильным выбором оптимальной частоты колебаний решет. С увеличением влажности и засоренности обрабатываемого материала частоту колебаний стана следует увеличивать. Кроме того, при обработке легкотекучих и мелкосеменных культур частота колебаний стана должна быть меньше, чем при обработке культур малосыпучих и крупносеменных. Частота колебаний регулируется перестановкой или сменой шкивов.

Регулировка подачи материала в машину

Подачу регулируют так, чтобы была обеспечена оптимальная загрузка решет при возможности максимальной производительности и высокого качества работы. Материал должен равномерно распределяться по ширине и целиком заполнять поверхность решета с уменьшающейся к выходу толщиной слоя. Нужно следить за тем, чтобы сход семян основной культуры с проходных решет был в допустимых пределах, а подвесные решета также были нормально загружены (не перегружались). Подача очищаемого материала регулируется подвижной заслонкой с помощью рукоятки, на которой имеется табличка с делениями для установления визуального контроля. После выбора режима подачи отключающий упор, закрепленный на оси клапана-питателя, переводится в такое положение, чтобы при увеличении подачи материала, то есть большем отклонении клапана, упор воздействовал на ролик конечного выключателя, отключающего механизм передвижения машины.

Регулировка воздушных систем

Скорость воздушного потока в аспирационных камерах должна быть больше критической скорости легких фракций материала, но меньше критической скорости семян основной культуры. Критическая скорость воздушного потока — та скорость, при которой, за счет воздействия воздуха, семена находятся во взвешенном состоянии. Скорость воздушного потока должна быть такой, чтобы в отстойные камеры удалялись легкие примеси и щуплые семена основной культуры. Через каналы первой (предварительной) аспирации должны удаляться пыль, полова, легкие семена сорняков, через каналы второй аспирации — легкие примеси, не успевшие выделиться через каналы первой аспирации, а также легкие, щуплые семена основной культуры.

Воздушный поток в первой аспирации регулируется маховичками заслонок, во второй — заслонкой, при этом скорость потока должна быть такой, чтобы из зернового материала в первой аспирации отделялись соломистые примеси, мякина и легкие семена сорняков, во второй — посторонние легкие примеси и щуплые семена очищаемой культуры. Кроме того, скорость воздушного потока регулируется изменением частоты вращения роторов вентиляторов (клиноременным вариатором).

Регулировка триеров

Высокого качества работы триерных цилиндров добиваются регулированием положения рабочей кромки желобов, поворачивая их за маховички, расположенные на торцах цилиндров.

При высокой установке рабочей кромки в овсюжном триере семена получаются более чистыми, но при этом часть из них остается в цилиндре и сходит вместе с длинными примесями. При низкой установке рабочей кромки желоба в очищенных семенах остается много длинных примесей.

При высокой установке рабочей кромки желоба в кукольном триере короткие примеси не все попадают в желоб и сходят с триерного цилиндра вместе с зерном. При низкой установке вместе с короткими примесями в желоб попадает часть семян.

Завод-изготовитель укомплектовывает машину триерными цилиндрами с ячейками диаметром 5,0 и 9,5 мм (табл. 47.2). Обечайки триерных цилиндров с ячейками других размеров поставляются по специальному заказу. Качество работы триеров зависит не только от размера ячеек и положения рабочей кромки желоба, но и от загрузки. Оптимальная загрузка триерных цилиндров определяется по выходу длинных примесей. Триерный цилиндр по отделению длинных примесей загружают до такого состояния, пока вместе с длинными примесями не начнет выходить основное зерно. Затем загрузку уменьшают до тех пор, пока в отходах уже не будет чистого зерна. Это и есть оптимальный режим работы триерного цилиндра. После работы, а также при переходе от очистки семян одной культуры к другой машина должна быть тщательно очищена от остатков зерна и сора. Для этого она должна поработать вхолостую при максимальных скоростях воздушного потока в каналах.

 $\label{eq:Tabnuqa} {\it Tabnuqa~47.2}$ Диаметры ячеек триеров для отбора коротких (числа в числителе) и длинных (числа в знаменателе) примесей в очищаемой культуре

Наименование культуры	Диаметры ячеек, мм
Ячмень	6,3/11,2
Овес	6,3/8,5
Вико-овсяная смесь, житняк, овсяница	5,0/8,5
Клевер, тимофеевка, люцерна	3,6/5,0
Лен	1,6–1,8/2,8

Подготовка к работе, настройки и регулировки сепаратора аэродинамического САД-4

Подготовка сепаратора аэродинамического к работе предусматривает проверку его технического состояния, подключение электрокоммуникаций (зацепление к общему зацепляющему контуру силового кабеля сети напряжением 380 В), регулировки и настройки на заданное условие работы рабочих органов и механизмов.

При подготовке аэродинамического сепаратора к работе необходимо рычаг 4 (рис. 47.3) установить в положение «закрыто», перекрыв подачу зерна и обеспечив легкий пуск электродвигателя. Положение рычага в момент пуска значения не имеет. Включить сеть (загорается лампочка), нажать «пуск» и последовательно кнопки пуска главного вентилятора, вибролотка. Остановка производится нажатием кнопок в обратной последовательности, аварийное отключение машины производится нажатием соответствующей кнопки. Заполнить бункер-питатель 6, рычаг 4 в первоначальный момент должен быть в положении ноль («закрыто»). Когда уровень заполнения достигает метки \pm 100 мм, нанесенной на смотровом окне бункера-питателя, можно начинать сепарацию.

Регулировка режима сканирования производится регулятором мощности 2 (рис. 47.3), изменяя положение заслонок главных вентиляторов, регулируя мощность струйного генератора 3, разворачивая слой зерна, сходящего с вибролотка 5.

Регулировка режимов работы машины производится путем изменения положения фиксатора шторок 3 (рис. 47.4) для каждого сборника фракций. Машина работает в трех режимах (табл. 47.3–47.5). Каждому режиму соответствует определенное положение шторок 4.

Режим 1 — очистка предварительная. Закрыть сборник промежуточных фракций с помощью шторок. В процессе работы машины в этом режиме отбор семян или зерна происходит в сборники фракций, разделяясь при этом на следующие фракции, которые приведены в табл. 47.3.

Режим 2 – калибровка. Регулировка качества отбора семян производится с помощью регулирования положения шторок путем перемещения их вправо/влево относительно оси и вращения рукоятки регулятора воздуха сепарации. Семена разделяются на следующие фракции (табл. 47.4).

Рис. 47.3. Общий вид аэродинамического сепаратора САД-4:

1 — блок вентиляторов главный; 2 — регулятор мощности струйного генератора;

3 — генератор струйный; 4 — рычаг регулирования заслонки бункера-питателя;

5 — виброблок; 6 — бункер-питатель; 7 — отражатель; 8 — камера рабочая;

9 — рычаги поворотных шторок; 10 — фиксатор поворотных шторок;

11 — сборник фракций основных; 12 — рама; 13 — сборник фракций промежуточных;

14 — крепеж для мешков готовых фракций; 15 — ящик для сбора отходов

 $Puc.\ 47.4$. Технологическая схема работы сепаратора САД-4: I — сборник фракций промежуточных; 2 — сборник фракций основных; 3 — фиксатор положения шторок; 4 — шторки поворотные; 5 — камера рабочая; 6 — отражатель; 7 — бункер-питатель; 8 — вибролоток; 9 — вибратор; 10 — блок сеток; 11 — сопла рабочие; 12 — генератор струйный; 13 — воздуховод; 14 — блок вентиляторов

Режим 3 – очистка и калибровка. В режиме очистки и калибровки положение шторок зависит от отбираемых фракций зерна. Семена разделяются на следующие фракции (табл. 47.5).

Таблица 47.3 Настройка первого режима

Номер сборника фракций	Название фракции	
1	Тяжелые примеси отбираемого материала	
3, 5	Товарное зерно	
7	Фуражное зерно	
9	Отходы	

Настройка второго режима

Таблица 47.4

Номер сборника фракций	Название фракции	
1	Тяжелые примеси отбираемого материала	
3, 5	Посевной материал	
2, 4, 6, 8	Возврат семян на повторную сепарацию	
7	Товарное зерно	
9	Фуражное или товарное	

 Таблица 47.5

 Настройка третьего режима

Номер сборника фракций	Название фракции	
1	Тяжелые примеси	
	Промежуточные фракции, которые	
2, 4, 6, 8	могут отправлять часть зерна на повтор	
	(могут быть как открыты, так и закрыты)	
2, 4, 6, 8	Товарное или посевное	
7	Товарное или фуражное	
9	Отходы или фураж	

Подготовка к работе, настройки и регулировки машины зерноочистительной стационарной M3C-20(25)

После установки машины на место по уровню (с отклонением от горизонтальности \pm $1^{\rm o}$) необходимо произвести ее досборку и привести в рабочее состояние, установить приемный бункер в рабочее

положение, установить электродвигатель, шкив и клиновые ремни. Контур ремней должен быть в одной плоскости (отклонение не более 2 мм). Для нормальной работы прогиб ремней после натяжки при приложении силы 20 Н должен быть 1–12 мм. Далее необходимо проверить затяжку болтовых соединений, а также наличие смазки в подшипниковых узлах. Затем подключить машину к пульту управления зерноочистительным комплексом и обкатать в течение 15 мин на холостом ходу. В процессе эксплуатации машины следует производить регулировки в зависимости от условий, вида обрабатываемых культур и режима работы для установления оптимального режима. Регулировки производят в следующей последовательности.

Подбор и установка решет. При очистке зернового материала решающую роль играет правильный подбор решет, которые следует подбирать для каждой очищаемой культуры и для каждого режима, руководствуясь табл. 47.6. Критерием качества очистки и производительности машины МЗС-20(25) является решето верхнего стана. Оно подбирается таким образом, чтобы полноценное зерно сходом шло не в отходы, а в чистое зерно, и чтобы попадало минимум примесей. Размер ячейки решета верхнего стана для машины устанавливается на порядок выше или того же типоразмера.

Таблица 47.6 Подбор решет для машины M3C-20(25)

Очищаемая	Решето	Решето нижнего стана		
культура	верхнего стана	Верхнее	Нижнее	Малого активатора
1	2	3	4	5
Пшеница	Ø 6,5–9,0	Ø 3,0–3,6	Ø 2,5–3,0	Ø 3,0–3,6
	□ 3,0–4,0	$\Box 2,0-2,4$	0 2,5 5,6	\$ 5,0-5,0
Рожь	Ø 8,0–9,0	Ø 3,0–3,6	Ø 2,5–3,0	Ø 3,0–3,6
	□ 3,0–3,6	$\Box 2,0-2,2$	2,3 3,0	\$ 3,0 3,0
Ячмень	Ø 8,0–9,0	Ø 3,0–3,6	Ø 2,5-3,0	Ø 3,0–3,6
	□ 3,6–4,5	$\Box 2,0-2,6$	0 2,3-3,0	0 3,0-3,0
Овес	Ø 8,0–9,0	Ø 3,0–3,6	Ø 2,5-3,0	Ø 3,0–3,6
		$\Box 1,7-2,0$	0 2,5-5,0	0 5,0-5,0
Кукуруза	Ø 9,0–10,0	Ø 5–7,0	Ø 3,6	Ø 3,6
Гречиха	Ø 4,5–6,5	Ø 3,0–3,6	Ø 2,5-3,0	Ø 2,5–3,6
		$\Box 2,2-2,4$	2,3-3,0	\$\times 2,3-3,0

1	2	3	4	5
Горох	Ø 8,0–10,0	Ø 4,5–7,0	0/26	0.26
		□ 4,0 – 5,0	Ø 3,6	Ø 3,6
Рис	Ø 8,0–9,0	Ø 3,0–3,6	Ø 2,5-3,0	02026
	□ 3,6–4,5	$\Box 2,0-2,6$	0 2,3-3,0	Ø 3,0–3,6
Подсол-	Ø 7,0–9,0	Ø 3,0-3,6	02526	02526
нечник	□ 3,6–4,5	$\Box 1,7-2,4$	Ø 2,5–3,6	Ø 2,5–3,6

- □ решета с прямоугольным сечением ячейки;
- Ø решета с круглым сечением ячейки.

Применяются решета с круглыми отверстиями, ширина между перегородками активатора составляет 186 мм; очистители — шарики. Верхнее решето нижнего стана машины подбирается таким образом, чтобы выделить из зернового материала фураж (шуплое зерно) и подсев (незерновые отходы). Как правило, устанавливается активатор с шириной между перегородками 133 мм, очистители — призмы. Нижнее решето стана — с круглыми отверстиями, активатор с шириной 186 мм, очистители — шарики. Регулировка производительности и распределение материала по ширине решетного стана производится путем открытия заслонки 5 (см. рис. 47.5).

Рис. 47.5. Схема технологического процесса зерноочистительной машины M3C-20(25): I – доска скатная; 2 – стан нижний; 3 – стан верхний; 4 – бункер загрузки; 5 – заслонка 1-го канала; 6 – вентилятор; 7 – заслонка 2-го канала

Регулировка воздушного потока. После того, как установлена подача материала, приступают к регулировке воздушного потока в каналах.

Поднимают заслонку 5 верхнего канала (рис. 47.6) до отказа вверх. Заслонкой 3 канала чистого зерна устанавливают такую скорость воздушного потока, чтобы из зернового материала выделялись пыль, части соломы, легкие сорняки и т. д. Качество регулировки характеризуется составом отходов. Проба берется из отстойной камеры (циклона) системы аспирации.

Рис. 47.6. Воздуховод машины M3C-20(25): I – улитка (2 шт.); 2 – фиксатор; 3, 5 – заслонки; 4, 6 – каналы аспирационные

Конструктивно направление ручки совпадает с положением заслонки в канале. Для стандартных условий заслонка в канале устанавливается примерно под углом 45° и фиксируется фиксатором 2. Затем заслонкой 5 верхнего канала регулируют скорость воздушного потока в канале 6 до достижения оптимального эффекта аспирирования. При остановке машины сначала выключается подающий механизм (нория, транспортер), после выработки остатков зерна машина. Включение осуществляется в обратном порядке. После работы и, особенно, при переходе к работе с другой зерновой культурой машина должна быть тщательно очищена от остатков зерна. Для этого необходимо прокрутить машину вхолостую. Когда сойдут все остатки зернового материала, машину останавливают и вынимают активаторы с решетами. Все узлы тщательно обметывают веником или щеткой. После очистки подбирают решета для новой культуры. Перечень возможных неисправностей или нарушений процесса очистки, причины и способы их устранения приведены в табл. 47.7.

 $\label{eq:2.1} {\it Таблица}~47.7$ Возможные неисправности и методы их устранения

Неисправность	Причины	Способ устранения
Машин	а предварительной очистки МПО-50	
В зерне много	Неправильно подобрана	Увеличить частоту
мелких примесей	частота вращения венти-	вращения вентиля-
	лятора. Малая скорость	тора. Изменить
	воздушного потока	скорость воздушного
	в аспирационном канале	потока перемеще-
		нием заслонки
В мелких приме-	Большая подача массы	Изменить подачу
сях имеется зерно	в машину. Малая частота	в машину заслонкой
	колебаний сетчатого	нории. Увеличить
	решета. Большая ско-	частоту колебаний сет-
	рость сетчатого решета	чатого решета сменой
		приводных звездочек
	мяочистительная машина	ı CM-4
Перегружен	Неправильно отрегу-	Отрегулировать
решетный стан	лирована жесткость	пружину
	пружины клапана	
	распределительного	
	устройства	
Решето \mathbf{F}_1 не раз-	Слишком высокая	Отрегулировать
деляет поступив-	подача на решетный стан.	пружину клапана
шую массу на две		распределительного
приблизительно		устройства.
равные по весу	Неправильно подобрано	Подобрать решето
фракции	решето	
В сходе с решета	Неправильно подобрано	Подобрать решето
Б ₂ имеется зерно	решето	
Большое количе-	Неправильно отрегу-	Изменить положение
ство мелких при-	лирована скорость	воздушной заслонки
месей на решете Г	воздушного потока	канала первой аспи-
	в канале первой аспирации	рации или частоту
		вращения барабана-
		вентилятора

Неисправность	Причины	Способ устранения
В овсюжный триер	Неправильно подобраны	Изменить частоту
попадают короткие	частота вращения триер-	вращения триерных
примеси, в лоток	ных цилиндров и угол	цилиндров и угол
овсюжного триера	установки лотков	установки лотков
попадают длинные		
примеси		
Аэрс	одинамический сепаратор	САД-4
В тяжелых приме-	Неправильно подобрана	Отрегулировать
сях отбираемого	скорость воздушного	скорость воздушного
материала нали-	потока.	потока и изменить по-
чие зерна	Неправильно установлены	ложение шторок 1 и 2
	шторки 1 и 2 сборников	сборников фракций
В товарном зерне	Неправильно подобрана	Отрегулировать
имеется фуражное	скорость воздушного	скорость воздушного
зерно, в фуражном	потока.	потока и изменить по-
зерне имеется	Неправильно установлены	ложение шторок 3-7
товарное	шторки 3-7 сборников	сборников фракций
В фуражном зерне	Неправильно подобрана	Отрегулировать
отходы	скорость воздушного	скорость воздушного
	потока.	потока и изменить по-
	Неправильно установлены	ложение шторок 7–9
	шторки 7-9 сборников	сборников фракций
Зернос	учистительная машина М	3C-20(25)
Сильная вибрация	Не затянуты болты кре-	Проверить затяжку
машины	пления шатунов решет-	болтов, крепящих
	ных станов к головкам,	шатуны решетных
	успокоителей раме	станов к головкам,
	и станам, пружин к раме.	стану; подвески
		станов (пружины) –
		к раме, успокоите-
		лей – к раме и станам.
	Непараллельны шатуны	Проверить парал-
	боковинам станов	лельность шатунов
		боковинам станов
Стук в решетном	Не зафиксированы	Проверить фиксацию
стане	активаторы	активаторов

Неисправность	Причины	Способ устранения
Значительное коли-	Неправильно подоб-	Подбрать правильно
чество полноценного	раны решета	решета. Отрегулиро-
зерна в отходах		вать скорости воздуха
		в каналах
Неравномерное	Неисправно распреде-	Осмотреть распреде-
распределение зерна	лительное устройство	лительное устройство.
по ширине решет-		Возможно попадание
ного стана		посторонних предме-
		тов. Резко открыть
		и закрыть заслонку

Контрольные вопросы

- 1. Каковы назначение и устройство машины МЗС-20(25)?
- 2. Каковы назначение и устройство машины САД-4?
- 3. Каков порядок подбора решет машин СМ-4 и МЗС-20(25)?
- 4. Как устроен верхний решетный стан? Какие его регулировки?
- 5. Каков порядок подготовки машины зерноочистительной стационарной M3C-20(25) к работе?
- 6. Чем регулируется частота колебаний решетного стана машины CM-4?
- 7. Какие регулировки воздухоочистительной системы машины СМ-4 вы можете назвать?
- 8. Чем регулируется частота колебаний решетного стана машины M3C-20(25)?
 - 9. Чем регулируется подача материала в машину САД-4?
 - 10. Чем регулируется частота вращения триеров в машине СМ-4?
- 11. Какое устройство обеспечивает равномерное распределение потока исходного материала в рабочей камере сепаратора аэродинамического?
- 12. Чем регулируется режим калибровки сепаратора аэродинамического?
- 13. Чем очищаются решета решетного стана семяочистительных машин?
 - 14. Чем регулируется подача материала в машину СМ-4?
 - 15. На что влияет угол установки лотков (желобов)?
 - 16. Как класифицируются решета по назначению?