Enhanced loading of single ^{87}Rb atoms into optical microtraps using lambda-enhanced gray molasses

T. Thiele, 1, * M. O. Brown, 1 C. Kiehl, 1 and C. A. Regal 1

¹JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

We achieve enhanced loading of xx.x% of single ^{87}Rb atoms into tightly confined optical microtraps by using a lambda-enhanced grey-molasses technique. The optical microtraps have a depth of 0.5mK, substantially lower than the depth required for other enhanced loading techniques. When further enhanced with real-time rearranging techniques, which we also demonstrate, this technique will allow for the creation of larger arrays of uniformly filled aotms than previous techniques have allowed.

• [History / Motivation]

Supplementary information

- [Enhanced Loading]
 - [Methods]
 - * General Experiment Procedure
 - * Fixed Cooling Parameters
 - \cdot Cooling Power
 - · Cooling Time
 - · Repump Power
 - * Fig: [Level Diagram]
 - * Fig: [Experiment Diagram, for both enhanced loading & rearrangement stuffs]
 - · Show laser lines
 - \cdot Show Control Scheme
 - [Results]
 - * [The Bottom Line: What loading rate can we achieve?]
 - * [Temperatures]
 - * [Loading Rate as a function of...]
 - · [Trap Depth]
 - · [Detuning]
 - · [Other?]
- [Rearranging]
 - [Methods]
 - [Results]
- [Conclusions]

ACKNOWLEDGMENTS