

Chemistry Fundamentals
Lecture 17: Introduction
to Chemical Reactions

Mohamed Kamal

What Are Chemical Reactions?

Definition

Process where reactants are transformed into products with different properties

Key Characteristics

- Bonds are broken and formed
- Energy is absorbed or released
- New substances with different properties are created
- Atoms are rearranged but conserved

Signs of Chemical Reactions

- Color change
- Temperature change
- Gas production (bubbling)
- Precipitate formation
- Light emission

Everyday examples include cooking (Maillard reaction), digestion, photosynthesis ($CO_2 + H_2O \rightarrow glucose + O_2$), and rusting (Fe + $O_2 \rightarrow Fe_2O_3$).

$G_{5} + G_{5}$ $H_{2} = 2H_{2}$ $G_{5} \mid_{1} S_{5} \mid_{1} AQ_{5}$

Chemical Equations - The Language of Chemistry

Basic Format: Reactants → Products

Example: $H_2 + Cl_2 \rightarrow 2HCl$

Essential Components

- Reactants: starting materials (left side)
- Products: substances formed (right side)
- Arrow: shows direction of reaction
- Coefficients: numbers showing relative amounts

State Symbols

- (s) = solid
- (l) = liquid
- (g) = gas
- (aq) = aqueous (dissolved in water)

Example with States: $CaCO_3(s) + 2HCI(aq) \rightarrow CaCI_2(aq) + H_2O(I) + CO_2(g)$

ACIO

Balancing Chemical Equations – Conservation of Mass

Law of Conservation of Mass: Atoms cannot be created or destroyed in chemical reactions

Balancing Rules

- 1. Count atoms of each element on both sides
- 2. Adjust coefficients (never change subscripts)
- 3. Start with most complex molecule
- 4. Balance metals first, then nonmetals, then hydrogen and oxygen
- 5. Use whole number coefficients

Step-by-Step Example: Fe + $O_2 \rightarrow Fe_2O_3$

- Step 1: Fe + O₂ → Fe₂O₃ (unbalanced)
- Step 2: Balance Fe: 2Fe + O₂ → Fe₂O₃
- Step 3: Balance O: 2Fe + 3O₂ → Fe₂O₃ (still unbalanced)
- Step 4: 4Fe + $3O_2 \rightarrow 2Fe_2O_3$ (balanced)

Common Mistakes: Changing subscripts instead of coefficients, using fractions

Types of Chemical Reactions - Synthesis

Synthesis (Combination) Reactions: $A + B \rightarrow AB$

General Pattern: Two or more reactants combine to form one product

Examples

- $2H_2 + O_2 \rightarrow 2H_2O$ (water formation)
- $N_2 + 3H_2 \rightarrow 2NH_3$ (ammonia synthesis Haber process)
- 2Na + Cl₂ → 2NaCl (salt formation)

Energy Considerations: Usually exothermic (release energy)

Industrial Applications

- Haber process: ammonia for fertilizers
- Steel production: Fe + C → steel alloys
- Cement production: CaO + SiO₂ → calcium silicate

Driving Forces: Formation of more stable products, decrease in system energy, entropy changes

Types of Chemical Reactions - Decomposition

Decomposition Reactions: AB → A + B

General Pattern: One reactant breaks down into two or more products

Examples

- 2H₂O → 2H₂ + O₂
 (electrolysis of water)
- CaCO₃ → CaO + CO₂
 (limestone decomposition)
- 2Hg0 → 2Hg + O₂ (mercury oxide decomposition)

Energy Requirements

Usually endothermic (require energy input)

Common Energy Sources:

- Heat (thermal decomposition)
- Light (photochemical decomposition)
- Electricity (electrolysis)

Applications

Biological: Cellular respiration, digestion

Industrial: Metal extraction from ores, production of lime from

limestone

Safety Note: Some decomposition reactions can be explosive

Types of Chemical Reactions - Single and Double Replacement

Single Replacement: A + BC → AC + B

- More reactive element replaces less reactive one
- Example: Zn + CuSO₄ → ZnSO₄ + Cu
- Activity series determines if reaction occurs

Double Replacement: AB + CD → AD + CB

- Ions "switch partners"
- Example: AgNO₃ + NaCl → AgCl + NaNO₃
- Usually occurs in aqueous solution

Driving Forces: Precipitate formation, gas evolution, acidbase neutralization

Example: $Pb(NO_3)_2 + 2KI \rightarrow PbI_2(s) + 2KNO_3$ (yellow PbI_2 precipitate forms)

Acid-Base Example: HCl + NaOH → NaCl + H₂O (neutralization reaction)

Combustion Reactions - A Special Category

Definition: Reaction with oxygen producing heat and light

Hydrocarbon Combustion: $C_xHy + O_2 \rightarrow CO_2 + H_2O$

Complete vs. Incomplete Combustion

Complete (excess oxygen):

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Incomplete (limited oxygen):

$$2CH_4 + 3O_2 \rightarrow 2CO + 4H_2O$$

Danger: CO is toxic

Balancing Combustion Equations

- 1. Balance carbon atoms first
- 2. Balance hydrogen atoms second
- 3. Balance oxygen atoms last
- 4. Adjust coefficients to whole numbers

Energy Release: Highly exothermic reactions

Real-World Applications: Fossil fuel burning for energy, cellular respiration, rocket propulsion

Environmental Impact: CO₂ production contributes to greenhouse effect

Predicting Reaction Products and Spontaneity

Factors Affecting Reactions

- Thermodynamics: energy changes
- Kinetics: reaction rate
- Activation energy barriers

Predicting Ionic Reactions

- Use solubility rules
- Consider gas formation
- Apply acid-base principles

Solubility Rules (Key Points)

- Most nitrates (NO₃⁻) are soluble
- Most chlorides are soluble except AgCl, PbCl₂, Hg₂Cl₂
- Most sulfates are soluble except BaSO₄, PbSO₄, CaSO₄

Activity Series Applications: Metals above hydrogen produce H₂ from acids; more reactive metals displace less reactive ones (e.g., Fe > Cu, so Fe + CuSO₄ \rightarrow reaction occurs)

Spontaneity Indicators: Formation of precipitate, gas evolution, large energy release, increase in entropy

Practice Strategy: Learn patterns rather than memorizing every possible reaction

rity Series of M Displacetend Reactovisons 20.

Copper

Reactustiiny

Disp

Coming Up Next:

Basic Stoichiometry

Mohamed Kamal