# Aljabar Linier [KOMS120301] - 2023/2024

6.2 - Invers dan hubungannya dengan metode Gauss, metode Gauss-Jordan, dan sistem linier

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 6 (Oktober 2023)



# Tujuan pembelajaran

#### Setelah pembelajaran ini, Anda diharapkan dapat:

- mencari invers dengan algoritma eliminasi Gaussian;
- menemukan invers dengan algoritma eliminasi Gauss-Jordan;
- menjelaskan metode mencari solusi sistem linier menggunakan invers;
- mencari solusi sistem linier menggunakan invers;
- memecahkan sistem homogen (ketika vektor konstan adalah vektor nol).

# **Bagian 1:** Algoritma untuk mencari invers

# Algoritma

 Menghitung invers dengan eliminasi Gauss atau Gauss-Jordan (menerapkan OBE secara berulang)

#### Konsep:

Diberikan sebuah matriks persegi yang dapat dibalikkan A. Untuk menghitung  $A^{-1}$ , kita melakukan perhitungan berikut:

$$[A \mid I] \xrightarrow{\mathsf{Eliminasi Gauss}} [I \mid A^{-1}]$$

$$[A \mid I] \quad \xrightarrow{\text{Eliminasi G-J}} \quad [I \mid A^{-1}]$$



# Contoh 1

Tentukan invers dari: 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

# Contoh 1

Tentukan invers dari: 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

#### Solusi:

$$\left[ \begin{array}{ccc|ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{array} \right] \overset{R2-2R1}{\sim} \left[ \begin{array}{ccc|ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & -2 & 5 & -1 & 0 & 1 \end{array} \right] \overset{R3+2R2}{\sim}$$

$$\left[ \begin{array}{ccc|ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{array} \right] \overset{R3/(-1)}{\sim} \left[ \begin{array}{ccc|ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 - & -2 & 1 & 0 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{array} \right] \overset{R1-2R2}{\sim}$$

$$\begin{bmatrix} 1 & 0 & 9 & 5 & -2 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix} \stackrel{R1-2R2}{\sim} \begin{bmatrix} 1 & 0 & 0 & -40 & 16 & 9 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix} = [I \mid A^{-1}]$$



# Contoh 1 (lanjutan)

Dengan demikian, 
$$A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

Dapat diperiksa bahwa:

$$AA^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

# Contoh 2

Terapkan metode G-J untuk mencari invers dari: 
$$A = \begin{bmatrix} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{bmatrix}$$

#### Solusi:

$$\begin{bmatrix} 1 & 6 & 4 & 1 & 0 & 0 \\ 2 & 4 & -1 & 0 & 1 & 0 \\ -1 & 2 & 5 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R2 - 2R1} \begin{bmatrix} 1 & 6 & 4 & 1 & 0 & 0 \\ 0 & -8 & -9 & -2 & 1 & 0 \\ 0 & 8 & 9 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{R2/(-8)} \sim$$

$$\left[ \begin{array}{c|cccc} 1 & 6 & 4 & 1 & 0 & 0 \\ 0 & 1 & 9/8 & 2/8 & -1/8 & 0 \\ 0 & 8 & 9 & 1 & 0 & 1 \end{array} \right] \stackrel{R3-8R2}{\sim} \left[ \begin{array}{c|cccc} 1 & 6 & 4 & 1 & 0 & 0 \\ 0 & 1 & 9/8 & 2/8 & -1/8 & 0 \\ \hline 0 & 0 & 0 & -1 & 1 & 1 \end{array} \right] \stackrel{R2/(-8)}{\sim}$$

Bentuk yang direduksi berisi **baris nol** (oleh karena itu, tidak ada cara untuk membuat matriks identitas di blok kiri).

Ini berarti A tidak memiliki invers.



# Contoh 2 (lanjutan)

Dapat diperiksa bahwa A memiliki determinan nol.

$$det(A) = \begin{vmatrix} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{vmatrix}$$

$$= 1(4)(5) + 6(-1)(-1) + 4(2)(2) - 4(4)(-1) - (-1)(1)(2) - 5(6)(2)$$

$$= 20 + 6 + 16 + 16 + 2 - 60$$

$$= 0$$

# Latihan

Jika ada, tentukan invers matriks berikut!

$$\bullet \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
k_1 & 0 & 0 & 0 \\
0 & k_2 & 0 & 0 \\
0 & 0 & k_3 & 0 \\
0 & 0 & 0 & k_4
\end{bmatrix}$$

# Latihan

Selesaikan sistem linier berikut menggunakan eliminasi Gauss-Jordan:

$$a - b + 2c - d = -1$$

$$2a + b - 2c - 2d = -2$$

$$-a + 2b - 4c + d = 1$$

$$3a - 3d = -3$$

$$\begin{bmatrix} 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -10 & 6 & 12 & 28 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix}$$

# **Bagian 3:** Hubungan dengan Sistem Persamaan Linier

# Hubungan dengan sistem persamaan linier

Ingat bahwa sistem:

dapat dituliskan sebagai operasi matriks:  $A\mathbf{x} = \mathbf{b}$ , di mana A adalah matriks koefisien,  $\mathbf{x}$  adalah vektor variabel, dan  $\mathbf{b}$  adalah matriks konstanta.

#### Catatan:

- Jika A dapat dibalik, maka sistem memiliki solusi tunggal;
- Jika tidak, solusinya <u>tidak</u> tunggal. Kira-kira, mengapa?



# Algoritma penyelesaian SPL dengan invers matriks

#### Permasalahan:

Misalkan kita ingin menyelesaikan:  $A\mathbf{x} = \mathbf{b}$ , di mana  $\det(A) \neq 0$ .

### Penyelesaian:

Kalikan kedua ruas dengan  $A^{-1}$  (dari kiri), diperoleh:

$$(A^{-1}) A\mathbf{x} = (A^{-1}) \mathbf{x}$$
 $I\mathbf{x} = A^{-1} \mathbf{b} \text{ since } AA^{-1} = I$ 
 $\mathbf{x} = A^{-1} \mathbf{b} \text{ since } I\mathbf{x} = \mathbf{x}$ 

Oleh karena itu, solusi sistem  $A\mathbf{x} = \mathbf{b}$  adalah  $\mathbf{x} = A^{-1}\mathbf{b}$ .

# Contoh: mencari solusi sistem linier menggunakan invers

Diberikan sistem linier:

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 5 \\ 2x_1 + 5x_2 + 3x_3 = 3 \\ x_1 + 8x_3 = 1 \end{cases}$$

#### Solusi:

Invers dari matriks berikut telah dihitung sebelumnya:  $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 2 & 3 \end{bmatrix}$ ,

yakni, 
$$A = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$
. Maka, solusinya adalah:

$$\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

Anda harus dapat memeriksa apakah x cocok dengan solusi yang diperoleh menggunakan eliminasi Gaussian atau Gauss-Jordan.

# Kasus homogen

Jika sistemnya homogen (yaitu,  $\mathbf{b} = \mathbf{0}$ ), maka berlaku sebagai berikut:

- Jika A dapat dibalik, maka sistem hanya memiliki solusi trivial;
- Jika A tidak dapat dibalik, maka sistem memiliki solusi non-trivial.

# Contoh sistem homogen

Tunjukkan bahwa sistem homogen berikut hanya memiliki solusi trivial!

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 5x_2 + 3x_3 = 0 \\ x_1 + 8x_3 = 0 \end{cases}$$

Tunjukkan bahwa sistem homogen berikut memiliki solusi tak-trivial!

$$\begin{cases} x_1 + 6x_2 + 4x_3 = 0 \\ 2x_1 + 4x_2 - x_3 = 0 \\ -x_1 + 2x_2 + 5x_3 = 0 \end{cases}$$

# Contoh sistem homogen (lanjutan)

#### Contoh 1:

Sistem homogen memiliki matriks koefisien: 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$
 and 
$$\begin{bmatrix} -40 & 16 & 9 \end{bmatrix}$$

$$\det(A) \neq 0 \text{ with } A^{-1} = \begin{bmatrix} -40 & 16 & 9\\ 13 & -5 & -3\\ 5 & -2 & -1 \end{bmatrix}$$

#### Contoh 2:

Sistem homogen memiliki matriks koefisien:  $A = \begin{bmatrix} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{bmatrix}$  Dapat diverifikasi bahwa  $\det(A) = 0$ , jadi  $A^{-1}$  tidak ada.

Sistem memiliki solusi tak-trivial, misalnya:

$$x_1 = -29, x_2 = 8, x_3 = -9$$



# Keuntungan menggunakan metode invers dalam menyelesaikan sistem linier

Metode invers berguna untuk menyelesaikan sistem linier  $A\mathbf{x} = \mathbf{b}$  dengan matriks koefisien yang sama yakni matriks A, tetapi dengan vektor konstanta  $\mathbf{b}$  yang berbeda.

#### Sebagai contoh:

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 5 \\ 2x_1 + 5x_2 + 3x_3 = 3 \\ x_1 + 8x_3 = 1 \end{cases} \begin{cases} x_1 + 2x_2 + 3x_3 = 10 \\ 2x_1 + 5x_2 + 3x_3 = 0 \\ x_1 + 8x_3 = -2 \end{cases} \begin{cases} x_1 + 2x_2 + 3x_3 = -4 \\ 2x_1 + 5x_2 + 3x_3 = 12 \\ x_1 + 8x_3 = 5 \end{cases}$$

# Keuntungan menggunakan metode invers dalam menyelesaikan sistem linier

Metode invers berguna untuk menyelesaikan sistem linier  $A\mathbf{x} = \mathbf{b}$  dengan matriks koefisien yang sama yakni matriks A, tetapi dengan vektor konstanta  $\mathbf{b}$  yang berbeda.

#### Sebagai contoh:

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 5 \\ 2x_1 + 5x_2 + 3x_3 = 3 \\ x_1 + 8x_3 = 1 \end{cases} \begin{cases} x_1 + 2x_2 + 3x_3 = 10 \\ 2x_1 + 5x_2 + 3x_3 = 0 \\ x_1 + 8x_3 = -2 \end{cases} \begin{cases} x_1 + 2x_2 + 3x_3 = -4 \\ 2x_1 + 5x_2 + 3x_3 = 12 \\ x_1 + 8x_3 = 5 \end{cases}$$

Dapatkah Anda jelaskan mengapa?

• Karena  $\mathbf{x} = A^{-1}\mathbf{b}$ , maka untuk menyelesaikan sistem tersebut, cukup menghitung  $A^{-1}$  once, kemudian mengalikannya dengan vektor yang sesuai  $\mathbf{b}$ .

#### Latihan 1

Selesaikan sistem berikut dengan menggunakan metode invers:

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 5 \\ 2x_1 + 5x_2 + 3x_3 = 3 \\ x_1 + 8x_3 = 1 \end{cases} \begin{cases} x_1 + 2x_2 + 3x_3 = 10 \\ 2x_1 + 5x_2 + 3x_3 = 0 \\ x_1 + 8x_3 = -2 \end{cases} \begin{cases} x_1 + 2x_2 + 3x_3 = -4 \\ 2x_1 + 5x_2 + 3x_3 = 12 \\ x_1 + 8x_3 = 5 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 = -4 \\ 2x_1 + 5x_2 + 3x_3 = 12 \\ x_1 + 8x_3 = 5 \end{cases}$$

### Latihan 2

Selesaikan sistem berikut dengan menggunakan metode invers:

$$a - b + 2c - d = -1$$

$$2a + b - 2c - 2d = -2$$

$$-a + 2b - 4c + d = 1$$

$$3a - 3d = -3$$

$$\bullet \begin{bmatrix}
0 & 0 & -2 & 0 & 7 & 12 \\
2 & 4 & -10 & 6 & 12 & 28 \\
2 & 4 & -5 & 6 & -5 & -1
\end{bmatrix}$$

bersambung...