

TECHNO-SUGAR

FIG. 1

FIGURE TWO "SIGNALS"

FIG. 2A

FIG. 2B

FIG. 3

FIG. 4

FIG. 5

Radioimmunoprecipitation of gp75 from SKBR3 Supernatant

FIG. 6

Radioimmunoprecipitation of Supernatants From Various Cell Lines

FIG. 7

Comparison of Standards in Sandwich IRMA

FIG. 8

Analysis of Nude Mouse Sera In c-erbB-2 IRMA

FIG. 9

Analysis of Nude Mouse Sera in the c-erbB-2 IRMA
Treated vs. Untreated

FIG. 10

Analysis of Normal Human Sera in the c-erbB-2 IRMA

FIG. 11 Analysis of 20 Sera from Human Breast Cancer Patients
Serial Samples Assayed in the Sandwich IRMA

FIG. 12

FIGURE 13: C-erbB-2 Competition ELISA Tab 251 Binding to NIH3T3t Lysate

FIG. 14
C-erbB-2 Competition ELISA Tab 251 Binding to NIH3T3t Lysate

FIG. 15

C-erbB-2 Competition ELISA Tab 251 Binding to NIH3T3t Lysate

1 AATTCTCGAGCTCGTCGACCGGTCGACGAGCTCGAGGGTCGACGAGC
 1 10
 MetGluLeuAlaAlaLeuCysArgTrpGlyLeuLeuLeuAlaLeuLe
 151 ATGGAGCTGGCGGCCTTSTGCCGCTGGGGCTCCTCCTGCCCTCTT
 60
 GlnGlyCysGlnValValGlnGlyAsnLeuGluLeuThrTyrLeuPr
 301 CAGGGCTGCCAGGTGGTGCAGGGAAACCTGGAACTCACCTACCTGCC
 110
 IleValArgGlyThrGlnLeuPheGluAspAsnTyrAlaLeuAlaVa
 451 ATTGTGCGAGGCACCCAGCTCTTGAGGACAACATGCCCTGGCCGT
 160
 GlyGlyValLeuIleGlnArgAsnProGlnLeuCysTyrGlnAspTh
 601 GGAGGGGTCTTGATCCAGCGGAACCCCCAGCTTGCTACCAGGACAC
 210
 GlySerArgCysTrpGlyGluSerSerGluAspCysGlnSerLeuTh
 751 GGCTCCCGCTGCTGGGGAGAGAGTTCTGAGGATTGTCAGAGCCTGAC
 260
 AspCysLeuAlaCysLeuHisPheAsnHisSerGlyIleCysGluLe
 901 GACTGCTGGCCTGCTCCACTCAACCACAGTGGCATCTGTGAGCT
 310
 TyrAsnTyrLeuSerThrAspValGlySerCysThrLeuValCysPr
 1051 TACAAC~~T~~ACCTTCTACGGACGTGGATCTGACCCTCGTCTGCC
 360
 ArgGluValARgAlaValThrSerAlaAsnIleGlnGluPheAlaG1
 1201 CGAGAGGTGAGGGCAGTTACCAGTGCCAATATCCAGGAGTTGCTGG
 410
 GluThrLeuGluGluIleThrGlyTyrLeuTyrIleSerAlaTrpPr
 1351 GAGACTCTGGAAAGAGATCACAGGTTACCTATACATCTCAGCATGGCC
 460
 SerTrpLeuGlyLeuArgSerLeuArgGluLeuGlySerGlyLeuAl
 1501 AGCTGGCTGGGGCTGCGCTCACTGAGGAACTGGCAGTGGACTGGC
 510
 GluAspGluCysValGlyGluGlyLeuAlaCysHisGlnLeuCysAl
 1651 GAGGACGAGGTGTGGCGAGGGCCTGGCCTGCCACCAGCTGTGCGC
 560
 ProArgGluTyrValAsnAlaArgHisCysLeuProCysHisProG1
 1801 CCCAGGGAGTATGTGAATGCCAGGCACTGTTTGCCGTGCCACCCTGA
 610
 ProSerGlyValLysProAspLeuSerTyrMetProIleTrpLysPh
 1951 CCCAGCGGTGTGAAACCTGACCTCTACATGCCCATCTGGAAGTT

FIG. 16A

TCGAGGGCGCGGCCGGCCCCACCCCTCGCAGCACCCGCGCCCCCGC
20 30
uProProGlyAlaAlaSerThrGlnValCysThrGlyThrAspMetLysLe
GCCCCCCCGGAGCCGAGCACCAAGTGTGCACCAGCACAGACATGAAGCT
70 80
oThrAsnAlaSerLeuSerPheLeuGlnAspIleGlnGluValGlnGlyTy
CACCAATGCCAGCCTGTCCTCCTGCAGGATATCCAGGAGGTGCAGGGCTA
120 130
lLeuAspAsnGlyAspProLeuAsnAsnThrThrProValThrGlyAlaSe
GCTAGACAATGGAGACCCGCTGAACAATACCACCCCTGTCACAGGGGCCTC
170 180
rIleLeuTrpLysAspIlePheHisLysAsnAsnGlnLeuAlaLeuThrLe
GATTGTGGAAGGACATCTTCCACAAGAACAAACCAGCTGGCTCTCACACT
220 230
rArgThrValCysAlaGlyGlyCysAlaArgCysLysGlyProLeuProTh
GCGCACTGTCTGTGCCGGTGGCTGTGCCCGCTGCAAGGGGCCACTGCCAC
270 280
uHisCysProAlaLeuValThrTyrAsnThrAspThrPheGluSerMetPr
GCACTGCCCAGCCCTGGTCACCTACAACACAGACACGTTGAGTCCATGCC
320 330
oLeuHisAsnGlnGluValThrAlaGluAspGlyThrGlnArgCysGluLy
CCTGCACAACCAAGAGGTGACAGCAGAGGATGGAACACAGCGGTGTGAGAA
370 380
yCysLysLysIlePheGlySerLeuAlaPheLeuProGluSerPheAspG1
CTGCAAGAACGATCTTGGGAGCCTGGCATTCTGCCGGAGAGCTTGATGG
420 430
oAspSerLeuProAspLeuSerValPheGlnAsnLeuGlnValIleArgG1
GGACAGCCTGCCTGACCTCAGCGTCTTCCAGAACCTGCAAGTAATCCGGGG
470 480
aLeuIleHisHisAsnThrHisLeuCysPheValHisThrValProTrpAs
CCTCATCCACCATAAACACCCACCTTGCTCGTGCACACGGTGCCCTGGGA
520 530
aArgArgAlaLeuLeuGlySerGlyProThrGlnCysValAsnCysSerG1
CCGCAGGGCACTGCTGGGTCAGGGCCCACCCAGTGTGTCAACTGCAGCCA
570 580
uCysGlnProGlnAsnGlySerValThrCysPheGlyProGluAlaAspG1
GTGTCAGCCCCAAGAATGGCTCAGTGACCTGTTTGGACCGGAGGCTGACCA
620 630
eProAspGluGluGlyAlaCysGlnProCysProIleAsnCysThrHisSe
TCCAGATGAGGAGGGCGCATGCCAGCCTGGCCCCATCAACTGCACCCACTC

FIG. 16B

CCTCCCAGCCGGGTCCAGCCGGAGCCATGGGGCCGGAGCCGCAGTGAGCACC
 40 50
 uArgLeuProAlaSerProGluThrHisLeuAspMetLeuArgHisLeuTyr
 GCGGCTCCCTGCCAGTCCCCAGACCCACCTGGACATGCTCCGCCACCTCTAC
 90 100
 rValLeuIleAlaHisAsnGlnValArgGlnValProLeuGlnArgLeuArg
 CGTGCTCATCGCTCACAAACCAAGTGAGGCAGGTCCCCACTGCAGAGGCTGCGG
 140 150
 rProGlyGlyLeuArgGluLeuGlnLeuArgSerLeuThrGluIleLeuLys
 CCCAGGAGGCCTGCGGGAGCTGCAGCTTCGAAGCCTCACAGAGATCTTGAAA
 190 200
 uIleAspThrAsnArgSerArgAlaCysHisProCysSerProMetCysLys
 GATAGACACCAACCGCTCTCGGGCCTGCCACCCCTGTTCTCCGATGTGTAAG
 240 250
 rAspCysCysHisGluGlnCysAlaAlaGlyCysThrGlyProLysHisSer
 TGACTGCTGCCATGAGCAGTGTGCTGCCGGCTGCACGGGCCCAAGCACTCT
 290 300
 oAsnProGluGlyArgTyrThrPheGlyAlaSerCysValThrAlaCysPro
 CAATCCCGAGGGCCGGTATACATTGGCGGCCAGCTGTGTGACTGCCCTGCCCC
 340 350
 sCysSerLysProCysAlaArgValCysTyrGlyLeuGlyMetGluHisLeu
 GTGCAGCAAGCCCTGTGCCCGAGTGTGCTATGGTCTGGGCATGGAGCACTTG
 390 400
 yAspProAlaSerAsnThrAlaProLeuGlnProGluGlnLeuGlnValPhe
 GGACCCAGCCTCCAACACTGCCCGCTCCAGCCAGAGCAGCTCCAAGTGT
 440 450
 yArgIleLeuHisAsnGlyAlaTyrSerLeuThrLeuGlnGlyLeuGlyIle
 ACGAATTCTGCACAATGGCGCCTACTCGCTGACCCCTGCAAGGGCTGGGCATC
 490 500
 pGlnLeuPheArgAsnProHisGlnAlaLeuLeuHisThrAlaAsnArgPro
 CCAGCTTTCGAACCCGCACCAAGCTCTGCTCCACACTGCCAACCGGCCA
 540 550
 nPheLeuArgGlyGlnGluCysValGluGluCysArgValLeuGlnGlyLeu
 GTTCCTTCGGGGCCAGGAGTGCCTGGAGGAATGCCGAGTACTGCAGGGCTC
 590 600
 rCysValAlaCysAlaHisTyrLysAspProProPheCysValAlaArgCys
 GTGTGTGGCCTGTGCCACTATAAGGACCCCTCCCTGCGTGGGCCGCTGC
 640 650
 rCysValAspLeuAspAspLysGlyCysProAlaGluGlnArgAlaSerPro
 CTGTGTGGACCTGGATGACAAGGGCTGCCCGCCGAGCAGAGAGCCAGCCCT

FIG. 16C

660

2101 LeuThrSerIleValSerAlaValValGlyIleLeuLeuValValVa
CTGACGTCCATCGTCTCTGCGGTGGCATTCTGCTGGTCGTGGT

710

2251 ThrProSerGlyAlaMetProAsnGlnAlaGlnMetArgIleLeuLy
ACACCTAGCGGAGCGATGCCAACCAACCAGGCGCAGATGC GGATCCTGAA

760

2401 AlaIleLysValLeuArgGluAsnThrSerProLysAlaAsnLysG1
GCCATCAAAGTGTGAGGGAAAACACATCCCCAAAGCCAACAAAGA

810

2551 MetProTyrGlyCysLeuLeuAspHisValArgGluAsnArgGlyAr
ATGCCCTATGGGTGCTCTTAGACCATGTCCGGGAAAACCGCGGACG

860

2701 ValLeuValLysSerProAsnHisValLysIleThrAspPheGlyLe
GTGCTGGTCAAGAGTCCCAACCATGTCAAAATTACAGACTTCGGGCT

910

2851 HisGlnSerAspValTrpSerTyrGlyValThrValTrpGluLeuMe
CACCAGAGTGATGTGTGGAGTTATGGTGTGACTGTGTGGAGCTGAT

△

3001 ValTyrMetIleMetValLysCysTrpMetIleAspSerGluCysAr
GTCTACATGATCATGGTCAAATGTTGGATGATTGACTCTGAATGTCG

1010

3151 AspSerThrPheTyrArgSerLeuLeuGluAspAspAspMetGlyAs
GACAGCACCTTCTACCGCTCACTGCTGGAGGACGATGACATGGGGGA

1060

3301 SerThrArgSerGlyGlyAspLeuThrLeuGlyLeuGluProSe
TCTACCAGGAGTGGCGGTGGGGACCTGACACTAGGGCTGGAGCCCTC

1110

3451 LeuProThrHisAspProSerProLeuGlnArgTyrSerGluAspPr
CTCCCCACACATGACCCCAGCCCTCTACAGCGGTACAGTGAGGACCC

1160

3601 SerProArgGluGlyProLeuProAlaAlaArgProAlaGlyAlaTh
TCGCCCGAGAGGGCCCTCTGCCTGCTGCCGACCTGCTGGTGCCAC

1210

3751 GlyGlyAlaAlaProGlnProHisProProProAlaPheSerProAl
GGAGGAGCTGCCCTCAGCCCCACCCCTCCTGCCTCAGCCCAGC

1255

3901 LeuAspValProValEND
CTGGACGTGCCAGTGTGAACCAGAAGGCCAAGTCCGCAGAAGCCCTG

4051 CTAAGGAACCTTCCTCCTGCTTGAGTTCCCAGATGGCTGGAAGGGG

4201 CCCTTCCTTCCAGATCCTGGTACTGAAAGCCTAGGGAAGCTGGC

4351 ATGGTGTCA GTATCCAGGCTTGTACAGAGTGCTTTCTGTTAGTT

4501 TTGTCCATTGCAAATATTTGGAAAACAAAAAA

FIG. 16D

670 680
 1 LeuGlyValValPheGlyIleLeuIleLysArgArgGlnGlnLysIleAr
 CTTGGGGGTGGTCTTGATCCTCATCAAGCGACGGCAGCAGAACATCCG
 720 730
 sGluThrGluLeuArgLysValLysValLeuGlySerGlyAlaPheGlyTh
 AGAGACGGAGCTGAGGAAGGTGAAGGTGCTGGATCTGGCGCTTTGGCAC
 770 780
 uIleLeuAspGluAlaTyrValMetAlaGlyValGlySerProTyrValSe
 AATCTTAGACGAAGCATACTGATGGCTGGTGTGGCTCCCCATATGTCTC
 ▲
 830
 gLeuGlySerGlnAspLeuLeuAsnTrpCysMetGlnIleAlaLysGlyMe
 CCTGGGCTCCCAGGACCTGCTGAACTGGTGTATGCAGATTGCCAAGGGGAT
 870 880 ▲
 uAlaArgLeuLeuAspIleAspGluThrGluTyrHisAlaAspGlyGlyLy
 GGCTCGGCTGCTGGACATTGACGAGACAGAGTACCATGCAGATGGGGCAA
 920 930
 tThrPheGlyAlaLysProTyrAspGlyIleProAlaArgGluIleProAs
 GACTTTGGGGCCAAACCTTACGATGGGATCCCAGCCGGAGATCCCTGA
 970 980
 gProArgPheArgGluLeuValSerGluPheSerArgMetAlaArgAspPr
 GCCAAGATTCCGGGAGTTGGTGTCTGAATTCTCCGCATGCCAGGGACCC
 1020 1030
 pLeuValAspAlaGluGluTyrLeuValProGlnGlnGlyPhePheCysPr
 CCTGGTGGATGCTGAGGAGTATCTGGTACCCAGCAGGGCTTCTCTGTCC
 1070 1080
 rGluGluGluAlaProArgSerProLeuAlaProSerGluGlyAlaGlySe
 TGAAGAGGAGGCCAGGTCTCCACTGGCACCCCTCGAAGGGCTGGCTC
 1120 1130
 oThrValProLeuProSerGluThrAspGlyTyrValAlaProLeuThrCy
 CACAGTACCCCTGCCCTCTGAGACTGATGGCTACGTTGCCCTGACCTTG
 1170 1180
 rLeuGluArgAlaLysThrLeuSerProGlyLysAsnGlyValValLysAs
 TCTGGAAAGGGCCAAGACTCTCCCCAGGGAAAGAACATGGGGTCGTCAAAGA
 1220 1230
 aPheAspAsnLeuTyrTyrTrpAspGlnAspProProGluArgGlyAlaPr
 CTTCGACAAACCTCTATTACTGGGACCAGGACCCACCAGAGCGGGGGCTCC

ATGTGTCCTCAGGGAGCAGGGAAAGGCCTGACTTCTGCTGGCATCAAGAGGT
TCCAGCCTCGTTGGAAGAGGAACAGCACTGGGGAGTCTTGTGGATTCTGA
CTGAGAGGGGAAGCGGCCCTAAGGGAGTGTCTAAGAACAAAAGCGACCCAT
TTTACTTTTTTGTTTGTTTTAAAGACGAAATAAGACCCCAGGGGAG

FIG 16E