Introduction to Seaborn

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

What is Seaborn?

- Python data visualization library
- Easily create the most common types of plots

Why is Seaborn useful?

Advantages of Seaborn

- Easy to use
- Works well with pandas data structures
- Built on top of matplotlib

Getting started

```
import seaborn as sns
import matplotlib.pyplot as plt
```

Samuel Norman Seaborn (sns)

• "The West Wing" television show

Example 1: Scatter plot

Example 2: Create a count plot

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Using pandas with Seaborn

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

What is pandas?

- Python library for data analysis
- Easily read datasets from csv, txt, and other types of files
- Datasets take the form of DataFrame objects

Working with DataFrames

```
import pandas as pd

df = pd.read_csv("masculinity.csv")

df.head()
```

participant_id	age	how_masculine	how_important
0 1	18 - 34	Somewhat	Somewhat
1 2	18 - 34	Somewhat	Somewhat
2 3	18 - 34	Very	Not very
3 4	18 - 34	Very	Not very
4 5	18 - 34	Very	Very

Using DataFrames with countplot()

	participant_id	age	how_masculine	how_important
0	1	18 - 34	Somewhat	Somewhat
1	2	18 - 34	Somewhat	Somewhat
2	3	18 - 34	Very	Not very
3	4	18 - 34	Very	Not very
4	5	18 - 34	Very	Very
5	6	18 - 34	Very	Somewhat
6	7	18 - 34	Somewhat	Not very
7	8	18 - 34	Somewhat	Somewhat
8	9	18 - 34	Very	Not at all
9	10	18 - 34	Somewhat	Somewhat

	AMONG ADULT MEN	Unnamed: 1	Adult Men	Age	Unnamed: 4	Unnamed: 5
0				18 - 34	35 - 64	65 and up
1	In general, how masculine or "manly" do you feel?					
2		Very masculine	37%	29%	42%	37%
3		Somewhat masculine	46%	47%	46%	47%
4		Not very masculine	11%	13%	9%	13%
5		Not at all masculine	5%	10%	2%	3%
6		No answer	1%	0%	1%	1%
7	How important is it to you that others see you as masculine?					
8		Very important	16%	18%	17%	13%
9		Somewhat important	37%	38%	37%	32%
10		Not too important	28%	18%	31%	37%
11		Not at all important	18%	26%	15%	18%
12		No answer	0%	0%	1%	0%

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Adding a third variable with hue

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

Tips dataset

```
import pandas as pd
import seaborn as sns
tips = sns.load_dataset("tips")
tips.head()
```

```
total_bill
              tip
                   sex smoker
                                   day
                                          time
                                                size
                               No
                                        Dinner
0
        16.99 1.01
                    Female
                                   Sun
                                        Dinner
                                                   3
        10.34 1.66
                      Male
                               No
                                   Sun
2
                                                   3
                                        Dinner
        21.01
             3.50
                      Male
                               No
                                   Sun
3
        23.68 3.31
                      Male
                                   Sun
                                        Dinner
                                                   2
                               No
        24.59 3.61
                    Female
                                   Sun
                                        Dinner
                               No
                                                   4
```

A basic scatter plot

A scatter plot with hue

Setting hue order

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.scatterplot(x="total_bill",
                y="tip",
                data=tips,
                hue="smoker",
                hue_order=["Yes",
                            "No"])
plt.show()
```


Specifying hue colors

```
import matplotlib.pyplot as plt
import seaborn as sns
hue_colors = {"Yes": "black",
              "No": "red"}
sns.scatterplot(x="total_bill",
                y="tip",
                data=tips,
                hue="smoker",
                palette=hue_colors)
plt.show()
```


Color	Matplotlib name	Matplotlib abbreviation	HTML color code (hex)
blue	"blue"	"b"	#0000ff
green	"green"	"g"	#008000
red	"red"	"r"	#ff0000
green/blue	"cyan"	"c"	#00bfbf
purple	"magenta"	"m"	#bf00bf
yellow	"yellow"	"y"	#bfbf00
black	"black"	"k"	#000000
white	"white"	"w"	#ffffff

Using HTML hex color codes with hue

```
import matplotlib.pyplot as plt
import seaborn as sns
hue_colors = {"Yes": "#808080",
              "No": "#00FF00"}
sns.scatterplot(x="total_bill",
                y="tip",
                data=tips,
                hue="smoker",
                palette=hue_colors)
plt.show()
```


Using hue with count plots

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Introduction to relational plots and subplots

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

Questions about quantitative variables

Relational plots

Height vs. weight

Questions about quantitative variables

Relational plots

- Height vs. weight
- Number of school absences vs. final grade

Questions about quantitative variables

Relational plots

- Height vs. weight
- Number of school absences vs. final grade
- GDP vs. percent literate

Introducing relplot()

Create "relational plots": scatter plots or line plots

```
Why use relplot() instead of scatterplot()?
```

relplot() lets you create subplots in a single figure

scatterplot() vs. relplot()

Using scatterplot()

Using relplot()

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.relplot(x="total_bill",
            y="tip",
            data=tips,
            kind="scatter")
plt.show()
```

Subplots in columns

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.relplot(x="total_bill",
            y="tip",
            data=tips,
            kind="scatter",
            col="smoker")
plt.show()
```


Subplots in rows

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.relplot(x="total_bill",
            y="tip",
            data=tips,
            kind="scatter",
            row="smoker")
plt.show()
```


Subplots in rows and columns

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.relplot(x="total_bill",
            y="tip",
            data=tips,
            kind="scatter",
            col="smoker",
            row="time")
plt.show()
```


Subgroups for days of the week

Wrapping columns

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.relplot(x="total_bill",
            y="tip",
            data=tips,
            kind="scatter",
            col="day",
            col_wrap=2)
plt.show()
```


Ordering columns

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.relplot(x="total_bill",
            y="tip",
            data=tips,
            kind="scatter",
            col="day",
            col_wrap=2,
            col_order=["Thur",
                       "Fri",
                        "Sat",
                       "Sun"])
plt.show()
```


Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Customizing scatter plots

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

Scatter plot overview

Show relationship between two quantitative variables

We've seen:

- Subplots (col and row)
- Subgroups with color (hue)

New Customizations:

- Subgroups with point size and style
- Changing point transparency

Use with both scatterplot() and relplot()

Subgroups with point size

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.relplot(x="total_bill",
            y="tip",
            data=tips,
            kind="scatter",
            size="size")
plt.show()
```


Point size and hue

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.relplot(x="total_bill",
            y="tip",
            data=tips,
            kind="scatter",
            size="size",
            hue="size")
plt.show()
```


Subgroups with point style

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.relplot(x="total_bill",
            y="tip",
            data=tips,
            kind="scatter",
            hue="smoker",
            style="smoker")
plt.show()
```


Changing point transparency

```
import seaborn as sns
import matplotlib.pyplot as plt
# Set alpha to be between 0 and 1
sns.relplot(x="total_bill",
            y="tip",
            data=tips,
            kind="scatter",
            alpha=0.4
plt.show()
```


Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Introduction to line plots

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

What are line plots?

Two types of relational plots: scatter plots and line plots

Scatter plots

 Each plot point is an independent observation

Line plots

 Each plot point represents the same "thing", typically tracked over time

Air pollution data

- Collection stations throughout city
- Air samples of nitrogen dioxide levels

	hour	NO_2_mean
0	1	13.375000
1	2	30.041667
2	3	30.666667
3	4	20.416667
4	5	16.958333

Scatter plot

Line plot

Subgroups by location

	hour	location	NO_2_mean
0	1	East	10.000000
1	1	North	11.666667
2	1	South	21.000000
3	1	West	10.833333
4	2	East	33.333333

Subgroups by location

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.relplot(x="hour", y="NO_2_mean",
            data=air_df_loc_mean,
            kind="line",
            style="location",
            hue="location")
plt.show()
```


Adding markers

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.relplot(x="hour", y="NO_2_mean",
            data=air_df_loc_mean,
            kind="line",
            style="location",
            hue="location",
            markers=True)
plt.show()
```


Turning off line style

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.relplot(x="hour", y="NO_2_mean",
            data=air_df_loc_mean,
            kind="line",
            style="location",
            hue="location",
            markers=True,
            dashes=False)
plt.show()
```


	hour	NO_2	station	location
0	1	15.0	28079004	South
1	1	33.0	28079008	South
2	1	11.0	28079011	South
3	1	12.0	28079016	South
4	1	23.0	28079017	South

Scatter plot

Line plot

Shaded region is the confidence interval

- Assumes dataset is a random sample
- 95% confident that the mean is within this interval
- Indicates uncertainty in our estimate

Replacing confidence interval with standard deviation

Turning off confidence interval

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Count plots and bar plots

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

Categorical plots

- Examples: count plots, bar plots
- Involve a categorical variable
- Comparisons between groups

catplot()

- Used to create categorical plots
- Same advantages of relplot()
- Easily create subplots with col= and row=

countplot() vs. catplot()

countplot() vs. catplot()

Changing the order

```
import matplotlib.pyplot as plt
import seaborn as sns
category_order = ["No answer",
                  "Not at all",
                  "Not very",
                  "Somewhat",
                  "Very"]
sns.catplot(x="how_masculine",
            data=masculinity_data,
            kind="count",
            order=category_order)
plt.show()
```


Bar plots

Displays mean of quantitative variable per category

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="day",
            y="total_bill",
            data=tips,
            kind="bar")
plt.show()
```


Confidence intervals

- Lines show 95% confidence intervals for the mean
- Shows uncertainty about our estimate
- Assumes our data is a random sample

Turning off confidence intervals

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="day",
            y="total_bill",
            data=tips,
            kind="bar",
            ci=None)
plt.show()
```


Changing the orientation

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Creating a box plot

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

What is a box plot?

- Shows the distribution of quantitative data
- See median, spread, skewness, and outliers
- Facilitates comparisons between groups

How to create a box plot

Change the order of categories

```
import matplotlib.pyplot as plt
import seaborn as sns
g = sns.catplot(x="time",
                y="total_bill",
                data=tips,
                kind="box",
                order=["Dinner",
                        "Lunch"])
plt.show()
```


Omitting the outliers using `sym`

```
import matplotlib.pyplot as plt
import seaborn as sns
g = sns.catplot(x="time",
                y="total_bill",
                data=tips,
                kind="box",
                sym="")
plt.show()
```


Changing the whiskers using `whis`

- By default, the whiskers extend to 1.5 * the interquartile range
- Make them extend to 2.0 * IQR: whis=2.0
- Show the 5th and 95th percentiles: whis=[5, 95]
- Show min and max values: whis=[0, 100]

Changing the whiskers using `whis`

```
import matplotlib.pyplot as plt
import seaborn as sns
g = sns.catplot(x="time",
                y="total_bill",
                data=tips,
                kind="box",
                whis=[0, 100])
plt.show()
```


Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Point plots

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

What are point plots?

- Points show mean of quantitative variable
- Vertical lines show 95% confidence intervals

Line plot: average level of nitrogen dioxide over time

Point plot: average restaurant bill, smokers vs. non-smokers

Point plots vs. line plots

Both show:

- Mean of quantitative variable
- 95% confidence intervals for the mean

Differences:

- Line plot has quantitative variable (usually time) on x-axis
- Point plot has **categorical** variable on x-axis

Point plots vs. bar plots

Both show:

- Mean of quantitative variable
- 95% confidence intervals for the mean

Point plots vs. bar plots

Creating a point plot

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="age",
            y="masculinity_important",
            data=masculinity_data,
            hue="feel_masculine",
            kind="point")
plt.show()
```


Disconnecting the points

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="age",
            y="masculinity_important",
            data=masculinity_data,
            hue="feel_masculine",
            kind="point",
            join=False)
plt.show()
```


Displaying the median

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="smoker",
            y="total_bill",
            data=tips,
            kind="point")
plt.show()
```


Displaying the median

```
import matplotlib.pyplot as plt
import seaborn as sns
from numpy import median
sns.catplot(x="smoker",
            y="total_bill",
            data=tips,
            kind="point",
            estimator=median)
plt.show()
```


Customizing the confidence intervals

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="smoker",
            y="total_bill",
            data=tips,
            kind="point",
            capsize=0.2)
plt.show()
```


Turning off confidence intervals

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.catplot(x="smoker",
            y="total_bill",
            data=tips,
            kind="point",
            ci=None)
plt.show()
```


Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Changing plot style and color

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

Why customize?

Reasons to change style:

- Personal preference
- Improve readability
- Guide interpretation

Changing the figure style

- Figure "style" includes background and axes
- Preset options: "white", "dark", "whitegrid", "darkgrid", "ticks"
- sns.set_style()

Default figure style ("white")

Figure style: "whitegrid"

Other styles

Other styles

Other styles

Changing the palette

- Figure "palette" changes the color of the main elements of the plot
- sns.set_palette()
- Use preset palettes or create a custom palette

Diverging palettes

Example (default palette)

```
category_order = ["No answer",
                  "Not at all",
                  "Not very",
                  "Somewhat",
                  "Very"]
sns.catplot(x="how_masculine",
            data=masculinity_data,
            kind="count",
            order=category_order)
plt.show()
```


Example (diverging palette)

```
sns.set_palette("RdBu")
category_order = ["No answer",
                  "Not at all",
                  "Not very",
                  "Somewhat",
                  "Very"]
sns.catplot(x="how_masculine",
            data=masculinity_data,
            kind="count",
            order=category_order)
plt.show()
```


Sequential palettes

Sequential palette example

Custom palettes

Custom palettes

Changing the scale

- Figure "context" changes the scale of the plot elements and labels
- sns.set_context()
- Smallest to largest: "paper", "notebook", "talk", "poster"

Default context: "paper"

Larger context: "talk"

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Adding titles and labels: Part 1

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

Creating informative visualizations

FacetGrid vs. AxesSubplot objects

Seaborn plots create two different types of objects: FacetGrid and AxesSubplot

```
g = sns.scatterplot(x="height", y="weight", data=df)
type(g)
```

> matplotlib.axes._subplots.AxesSubplot

An Empty FacetGrid

FacetGrid vs. AxesSubplot objects

Object Type	Plot Types	Characteristics
FacetGrid	<pre>relplot(), catplot()</pre>	Can create subplots
AxesSubplot	<pre>scatterplot() , countplot() , etc.</pre>	Only creates a single plot

Adding a title to FacetGrid

Adjusting height of title in FacetGrid

```
sns.catplot(x="Region",
                y="Birthrate",
                data=gdp_data,
                kind="box")
g.fig.suptitle("New Title",
               y=1.03)
plt.show()
```


Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Adding titles and labels: Part 2

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

Adding a title to AxesSubplot

FacetGrid

AxesSubplot

Titles for subplots

Titles for subplots

Titles for subplots

```
= sns.catplot(x="Region",
                y="Birthrate",
                data=gdp_data,
                kind="box",
                col="Group")
g.fig.suptitle("New Title",
               y=1.03)
g.set_titles("This is {col_name}")
```


Adding axis labels

```
= sns.catplot(x="Region",
                y="Birthrate",
                data=gdp_data,
                kind="box")
g.set(xlabel="New X Label",
      ylabel="New Y Label")
plt.show()
```


Rotating x-axis tick labels

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Putting it all together

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

Getting started

To import Seaborn:

```
import seaborn as sns
```

To import Matplotlib:

```
import matplotlib.pyplot as plt
```

To show a plot:

```
plt.show()
```


Relational plots

- Show the relationship between two quantitative variables
- Examples: scatter plots, line plots

Categorical plots

- Show the distribution of a quantitative variable within categories defined by a categorical variable
- Examples: bar plots, count plots, box plots, point plots

Adding a third variable (hue)

Setting hue will create subgroups that are displayed as different colors on a single plot.

Adding a third variable (row/col)

Setting row and/or col in relplot() or catplot() will create subgroups that are displayed on separate subplots.

Customization

- Change the background: sns.set_style()
- Change the main element colors: sns.set_palette()
- Change the scale: sns.set_context()

Adding a title

Object Type	Plot Types	How to Add Title
FacetGrid	relplot(), catplot()	<pre>g.fig.suptitle()</pre>
AxesSubplot	<pre>scatterplot() , countplot() , etc.</pre>	<pre>g.set_title()</pre>

Final touches

Add x- and y-axis labels:

```
g.set(xlabel="new x-axis label",
   ylabel="new y-axis label")
```

Rotate x-tick labels:

```
plt.xticks(rotation=90)
```

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Well done! What's next?

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

Where does Seaborn fit in?

Where does Seaborn fit in?

Next Steps: Explore and communicate results

- Seaborn advanced visualizations
- Matplotlib advanced customizations

Next steps: Gather data

- Python
- SQL

Next steps: Transform and clean

- Getting data into Pandas DataFrames
- Cleaning data
- Transforming into tidy format

Next steps: Analyze and build models

- Statistical analysis
- Calculating and interpreting confidence intervals

Congratulations!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

