Total Orbital Angular Momentum

C: $2p^2$ or $\boxed{\uparrow\downarrow}$

Clebsch-Gordan Series: $L = \ell_1 + \ell_2, \, \ell_1 + \ell_2 - 1, \, ..., \, |\ell_1 - \ell_2|$

 $L = |M_L|_{max}$

 $2p^2$: 1 + 1, ..., |1 - 1| = 2, 1, 0 $2p^2$: D, P, S Singlets: $L = |M_L|_{max} = 2$ for a 1D with $M_L = 2,1,0,-1,-2$, leaving $M_L = 0$ to give a 1S term.

Triplets: $L = |M_L|_{max} = 1$ for a ³P with $M_L = 1,0,-1$.

These diagrams don't take into account electron indistinguishability. Schematically for example:

In addition, all degenerate configurations mix as linear combinations (e.g. all the $M_L = 0$ configurations).

configuration: d¹ p¹ for which $\ell_1 = 2$ and $\ell_2 = 1$ L = 2+1,...,|2-1| = 3, 2, 1 or F, D, P+2 +1 0 -1 -2 +2 +1 0 -1 -2 +2 +1 0 -1 -2 +2 +1 0 -1 -2 +2 +1 0 -1 -2 $M_L =$ +1 0 -1 $M_L =$ +1 0 -1 $M_L =$ +1 0 -1+1 0 -1 $M_L =$ +1 0 -1 $M_L =$ \square 3 \square 2 \square \Box 0 \Box 2 0 -2 1 -1 1 0 -1 -2 -3

overall: 3,2,2,1,1,1,0,0,0,-1,-1,-1,-2,-2,-3

 $L = |M_L|_{max} = 3$ with $M_L = 3,2,1,0,-1,-2,-3$

leaving: 2,1,1,0,0,-1,-1,-2

 $L = |M_{L|max} = 2$ with $M_L = 2,1,0,-1,-2$

leaving: 1,0,-1

 $L = |M_L|_{max} = 1$ with $M_L = 1,0,-1$

Degenerate individual configurations combine in the final terms and electron indistinguishability is maintained in the final spin-orbitals, through the use of Slater determinants.