Adhoc Wireless Networks

Routing Protocols

Dr. Ram P Rustagi
Dept of CSE
PES University
rprustagi@pes.edu

AHWN Routing Proto Characteristics

- Fully distributed
- Adaptive to frequent topology changes
- Route computation should involve min nodes
- Avoid global state maintenance
- Loop free and not stale routing
- Quick convergence
- Provide some level of QoS
- Optimal use of resources
 - BW, computing, battery, memory

Classification of Routing Protocol

- Classification categories
 - Routing information update mechanism
 - Use of temporal information for routing
 - Routing topology
 - Utilization of specific resources
- Above classification is not mutually exclusive

Routing Info Update Mechanism

- Proactive or table driven
 - Each node maintains topology in routing tables
 - Routing info is flooded in the whole n/w
 - To reach dst, run path finding algo in the table
- Reactive or on-demand routing
 - Node does not maintaint topology info
 - Node obtains path when required
 - No periodic exchange of routing info
- Hybrid routing (combination above two)
 - Within a zone, use table driven approach
 - Beyond the zone, use on deman routing

Use of Temporal Info for Routing

- Using past temporal info
 - Uses past status of links
 - Availability of wirless links
 - Topology change will break this
- Using future temporal info
 - Future status of wirless links
 - Future status of nodes
 - e.g. Battery status, discharge rate
 - Location prediction

Based on N/W Topology

- Internet topology is hierarchical
 - Reduces size of routing tables
- Adhoc networks are much smaller in size
 - Can use flat or hierarchical topology
- Flat topology routing protocols
 - Flat addressing scheme e.g. IEEE 802.3 LANs
 - Assumes globally unique addresses
- Hierarchical topology routing protocols
 - Logical hierarchy & associated addressing
 - Could be based on hops or geographic info

Utilization of Specific Resources

- Power aware routing
 - Minimize the battery consumption
 - Can consider local power consumption of global power consumption
- Geographical info assisted routing
 - Reduce control overhead using
 - Geographic info
 - Improve routing performance

AHWN Routing Protocols

- Table driven routing
 - DSDV, WRP
- On demand routing
 - DSR, AODV, TORA
- Hybrid Routing
 - CEDAR
- Others
 - Efficient flooding mechanisms based
 - Hierarchical routing
 - Power aware routing

Direct Sequence Distance Vector

- DSDV: the first protocol proposed for AHWN
- Based on distributed Bellman-Ford algo
 - Shortest path from this node to every node
- Node maintains info about all destinations
- Tables are exchanged periodically
- Sequence number based table updates achieve
 - Address Count to Infinity problem
 - Prevent loops
 - Faster convergence

Distance Vector Routing (Review)

- Assumption
 - node knows cost of its connected link
 - A down (or non-existent) link cost is infinity
- Distributed
 - each node receives info from neighbors
 - computes routing and distributes to neighbors
 - no central computation
- *Iterative
 - routing computation stops when no more info
 - it is self terminating no external control
- Asynchronous
 - each node does not work in sync with others
- Based on Bellman-Ford equation

Distance Vector Routing (Review)

- *Router doesn't know exact n/w topology
- *Uses router as signposts along the path to dstⁿ
- Sends periodic updates
- Core of the DV protocol
 - Bellman Ford Algorithm
- Works best in following type of situations
 - network is simple and flat
 - ·does not require hierarchical design
 - administrators don't have enough knowledge
 - ·configure/troubleshoot LSP
 - Worst case convergence time is not a concern

DV Routing - Example

Initial Network

Network	Interface	Нор
10.1.0.0	Fa0/0	0
10.2.0.0	\$0/0/0	0

Network	Interface	Нор
10.2.0.0	\$0/0/0	0
10.3.0.0	\$0/0/1	0

Network	Interface	Нор
10.3.0.0	S0/0/0	0
10.4.0.0	Fa0/0	0

Src: CCNA Module 2

DV Routing - Example

After the exchange of routing packets

Network	Interface	Нор
10.1.0.0	Fa0/0	0
10.2.0.0	\$0/0/0	0
10.3.0.0	\$0/0/0	1
10.4.0.0	\$0/0/0	2

Network	Interface	Нор
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/1	0
10.1.0.0	S0/0/0	1
10.4.0.0	S0/0/1	1

Network	Interface	Нор
10.3.0.0	S0/0/1	0
10.4.0.0	Fa0/0	0
10.2.0.0	S0/0/1	1
10.1.0.0	S0/0/1	2

Src: CCNA Module 2

DV Routing - Loop

- *src: CCNA Mod2/Chap4/4.4.1.1 loop animation
 - what happens when Fa0/0 of R3 goes down
 - R2 informs R3 that it can reach 10.4.0.0
 - R3 makes routing entry for 10.4.0.0 to send to R2

Network	Interface	Нор
10.1.0.0	Fa0/0	0
10.2.0.0	\$0/0/0	0
10.3.0.0	S0/0/0	1
10.4.0.0	S0/0/0	2

Network	Interface	Нор
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/1	0
10.1.0.0	\$0/0/0	1
10.4.0.0	S0/0/1	1

Network	Interface	Нор
10.3.0.0	S0/0/1	0
10.4.0.0	Fa0/0	0
10.2.0.0	S0/0/1	1
10.1.0.0	S0/0/1	2

DV Routing - Count to Infinity

- *aec: CCNA Mod2/Chap4/4.4.2.1 count to infinity
 - what happens when Fa0/0 of R3 goes down
 - R2 informs R3 that it can reach 10.4.0.0
 - R3 makes routing entry for 10.4.0.0
 - R3 updates R2, R2 updated its hop count to 10.4.0.0

Network	Interface	Нор
10.1.0.0	Fa0/0	0
10.2.0.0	S0/0/0	0
10.3.0.0	\$0/0/0	1
10.4.0.0	S0/0/0	2

Network	Interface	Нор
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/1	0
10.1.0.0	S0/0/0	1
10.4.0.0	S0/0/1	3

Network	Interface	Нор
10.3.0.0	S0/0/1	0
10.4.0.0	S0/0/1	2
10.2.0.0	S0/0/1	1
10.1.0.0	S0/0/1	2

DV Routing - Split Horizon

- Solution to count to infinity
 - define some fixed value as infinity
- Split horizon Rule
 - prevents routing loops?
 - "A Router should not advertise a network through the interface from which the update came"
 - Apply this rule to previous example

Count to Infinity with poison reverse

- Stable state
 - $^{\bullet}d_{x}(A)=1, d_{y}(A)=3, d_{z}(A)=4$
- Link X to A fails
 - thus A is not reachable at all

Count to Infinity with poison reverse

- Stable state
 - $d_x(A) = 1$, $d_y(A) = 3$, $d_z(A) = 4$
- Link X to A fails
 - Thus A is not reachable at all

- How does DV work
 - Y learns from Z that it can reach A with cost 4
 - · Y updates its cost to A as 5
 - Y advertises to X that it can reach with cost 5
 - X updates it table, says A is reachable with cost of 7
 - X advertises to Z that updated cost to A is 7
 - Z updates its cost to A 10 (7+3) from 4.
 - The process goes on till infinity
- *Solution: Define infinity as some fixed value

- Table updates are of two types
 - Incremental updates
 - Local topo sess minor changes
 - Full dumps update
 - Topology changes significantly
 - Table updates require more than 1 NPDU
- Each update by destination uses new seq num
- One link break propagates across whole n/w
 - Neighbour node uses odd sequence
- Destination node itself used even sequence

Dest	NextNode	Dist	SeqNo
2	2	1	22
3	2	2	26
4	5	2	32
5	5	1	134
6	6	1	144
7	2	3	162
8	5	3	170
9	2	4	186
10	6	2	142
11	6	3	176
12	5	3	190
13	5	4	198
14	6	3	214
15	5	_ 4 _	256

(a) Topology graph of the network

(b) Routing table for Node 1

()

DestinationID 15 Node 13 14 Movement 12 8 10 6 SourceID

Routing Table for Node 1

Dest	NextNode	Dist	SeqNo
2	2	1	22
3	2	2	26
4	5	2	32
5	5	1	134
6	6	1	144
7	2	3	162
8	5	3	170
9	2	4	186
10	6	2	142
[]]	5	4	180
12	5	3	190
13	5	4	198
14	6	3	214
15	5	4	256

- Maintains the simplicity of Distance Vector
- Guarantee loop freeness
 - New entry for seq number in DV table
- Allow fast reaction to topology changes
 - Immediate advertisement on significant changes
 - Wait with advertiszem of unstable routes
- Seq num originates from destination
 - Ensures loop freeness

- Routing information in advertisement
 - Dstn addr, seq num, metric (hop count)
- Rules to set seq number information
 - On own advertisement, increase seq num by 2
 - Even seq num
 - If a node is not reachable, increase seq by I
 - Set metric (hop count) to ∞
- Routing table update
 - Select route with higher dstn seq num
 - Ensures newest info from dstn
 - Same seq num, selcet better metric route

(A) (C)

Dst	Nxt	Нор	Seq
A	A	0	300
В	В	1	198
C	В	2	100

Dst	Nxt	Нор	Seq
A	A	1	300
В	В	0	198
C	В	1	100

Dst	Nxt	Нор	Seq
A	В	2	300
В	В	1	198
C	C	0	100

DSDV Route Advertisement

A C

Dst	Nxt	Нор	Seq
A	A	0	300
В	В	1	200
С	В	2	100

Dst	Nxt	Нор	Seq
A	A	1	300
В	В	0	200
C	В	1	100

Dst	Nxt	Нор	Seq
A	В	2	300
В	В	1	200
С	С	0	100

DSDV New Node

B C D

Dst	Nxt	Нор	Seq
A	A	0	300
В	В	1	200
С	В	2	100

Dst	Nxt	Нор	Seq
A	A	1	300
В	В	0	200
C	В	1	100

Dst	Nxt	Нор	Seq
A	В	2	300
В	В	1	200
С	С	0	100
D	D	1	0

DSDV New Node Update

B C D

Dst	Nxt	Нор	Seq
A	A	0	300
В	В	1	200
C	В	2	100
D	В	3	0

Dst	Nxt	Нор	Seq
A	A	1	300
В	В	0	200
C	C	1	100
D	C	2	0

Dst	Nxt	Нор	Seq
A	В	2	300
В	В	1	200
C	С	0	100
D	D	1	0

DSDV After Few Updates

(A) (C) (D)

Dst	Nxt	Нор	Seq
A	A	0	400
В	В	1	300
C	В	2	200
D	В	3	100

Dst	Nxt	Нор	Seq
A	A	1	400
В	В	0	300
C	C	1	200
D	С	2	100

Dst	Nxt	Нор	Seq
A	В	2	400
В	В	1	300
C	С	0	200
D	D	1	100

DSDV Link Break

A C X D

Dst	Nxt	Нор	Seq
A	A	0	400
В	В	1	300
C	В	2	200
D	В	3	100

Dst	Nxt	Нор	Seq
A	A	1	400
В	В	0	300
C	С	1	200
D	C	2	100

Dst	Nxt	Нор	Seq
A	В	2	400
В	В	1	300
C	С	0	200
D	D	∞	101

DSDV Immediate Advt

A C X D

Dst	Nxt	Нор	Seq
A	A	0	400
В	В	1	300
C	В	2	200
D	В	∞	101

Dst	Nxt	Нор	Seq
A	A	1	400
В	В	0	300
C	С	1	200
D	C	∞	101

Dst	Nxt	Нор	Seq
A	В	2	400
В	В	1	300
C	С	0	200
D	D	∞	101

DSDV Fluctuations

- Entry for D in A
 - -[D, C, 20, 100]
- D makes Bcast: seq 102
- A receives update from B
 - -[D, B, 21, 102]
 - propagates this route
- A receives udpate from C
 - -[D, C, 20, 102]
 - propages this route
- Leads to unnecessary route advertisements

DSDV Fluctuations

- How to damp fluctuations
 - Record settling time of every route
 - -On first update with new seq num
 - wait for this settling time before advertising it
 - -Propose wait time: 2* avg. settling time
 - Results in avoidance of unnecessary advertisement
 - Saving of bandwidth

DSDV Summary

- Advantages
 - Simple, like distance vector
 - Loop free (thru destination seq number)
 - Quick convergene (no latency in route discovery)
- Disadvantages
 - No sleeping nodes
 - When NI does not communicate with N2
 - Routing table overhead of maintaining this info

AHWN Routing Protocols

- Table driven routing
 - -DSDV, WRP
- On demand routing
 - DSR, AODV, TORA
- Hybrid Routing
 - CEDAR
- Others
 - Efficient flooding mechanisms based
 - Hierarchical routing
 - Power aware routing

Wireless Routing Protocol

- Similar to DSDV
 - Maintains up to date view of network
 - Each node has route to each dstn node
- Differences from DSDV in following
 - Employs unique method of maintaining info
 - Shortest distance to each dstn node
 - Predecessor (penultimate) node for dstn node
 - Uses multiple tables
 - Maintains more accurate info (than topology)
 - Table update process & maintenance
 - Checks for other neighbour's distances

Wireless Routing Protocol - Tables

- Distance table (DT) of a node x contains
 - Distance of each dstn y via each neighbour z
 - Downstream neighbour of z via the path to y
- Routing table (RT) of a node x contains
 - Shortest distance to each dstn y,
 - Predecessor (penultimate) node to dstn y
 - Successor node of x on path to y
 - Path status (simple, invalid, loop)

Wireless Routing Protocol - Tables

- Link Cost Table (LCT) of a node x
 - Cost of link to each neighbour
 - Num of timeouts since last successful update
- Message Retransmission List (MRL)
 - Which neighbour node has not ack'ed update msg
 - Update msg to be retransmitted w/ a counter
 - Counter decremented after each retransmission

Wireless Routing Protocol - Tables

- Mechanism of exchanging info (update msg)
 - Exchange routing tables
 - Link changes info
 - Nodes on MRL need to ack rcpt of update msg
 - If no change in routing table,
 - Node sends Hello msg to ensure connectivity
 - On receiving update msg
 - Node modifies DT, and looks for better path
 - Any new path found is relayed back to orig node
 - -Original node can update its tables
 - On receiving Ack, node updates MRL
 - Consistency check of neighbours on link change
 - Faster convergence

Routing Entry at Each Node for DestinationID 15

Node	NextNode	Pred	Cost
15	15	15	0
14	15	14	5
13	15	13	2
12	15	12	4
11	14	14	8
10	4	12	8
9	13	13	12
8	12	12	5
7	8	12	10
6	10	12	15
5	10	12	13
4	12	12	M 7
3	4	12	X 10
2	4	12	11
1	2	12	14

Routing Entry at Each Node for DestinationID 15

Node	NextNode	Pred	Cost
15	15	15	0
14	15	14	5
13	15	13	2
12	15	12	4
11	14	14	8
10	4	X	8
9	13	13	12
8	12	X	5
7	8	12	10
6	10	12	15
5	10	12	13
4	12	X	X 7
3	4	12	X 1
2	4	12	11
1	2	12	14

Routing Entry at Each Node for DestinationID 15

Node	NextNode	Pred	Cost
15	15	15	0
14	15	14	5
13	15	13	2
12	X 13	X 13	X 5
11	14	14	8
10	X 14	X 14	X 10
9	13	13	12
8	X 13	X 13	X 9
7	8	12	10
6	10	12	15
5	10	12	13
4	X 10	X 14	X 11
3	4	12	X 10
2	4	12	11
1	2	12	14

AHWN 41

DestinationID

Routing Entry at Each Node for DestinationID 15

Node	NextNode	Pred	Cost
15	15	15	0
14	15	14	5
13	15	13	2
12	15	13	5
11	14	14	8
10	4	13	9
9	13	13	12
8	12	13	6
7	8	13	11
6	10	13	16
5	10	13	14
4	12	13	8
3	4	13	11
3 2	4	13	12
1	2	13	15

12 sends update msg to 14,10,4,8,1

10,4 update their routing entries
In turn they update their neighbours

WRP: Advantages & Disadvantages

- Advantages:
 - -Same as DSDV
 - Faster convergence than DSDV
 - Fewer table updates
- Disadvantages
 - Need large memory and more compute power
 - More number of tables.
 - At high mobility, control overhead for updating table entries same as DSDV
 - Not suitable for highly dynamic topology, AHWN

Assignment -01

Adhoc Wifi Network

