Лекція 2

ДІЇ НАД МНОЖИНАМИ

Ми вважаємо, що поняття *множини* є відомим. Нехай A — деяка множина. Для елементів x множини A ми пишемо $x \in A$. Ми також вважаємо, що відомим є поняття yніверсальної множини, яку ми позначаємо Ω . Для тих елементів Ω , які не належать A, ми пишемо $x \notin A$. Для будьякого елемента $x \in \Omega$ і будь-якої множини A виконується твердження

$$[x \in A] \vee [x \notin A].$$

1. Належність множині та рівність множин

Нехай A та B деякі множини. Множина A належить множині B, якщо кожний елемент A належить також і B. З використанням логічних символів ми записуємо це означення так:

$$(2) A \subset B \iff \forall x : x \in A \Rightarrow x \in B.$$

Належність множини A до множини B ми позначаємо $A \subset B$.

Множини A та B є piвними, якщо $A \subset B$ та $B \subset A$:

(3)
$$A = B \iff [\forall x: x \in A \Rightarrow x \in B] \land [\forall y: y \in B \Rightarrow y \in A].$$

⁰Printed from the file [discretka_L=01.tex] on 25.7.2013

2. Означення основних дій над множинами

Доповнення. Нехай A — деяка множина. Доповненням множини A називається множина, яка позначається \overline{A} , і яка складається з тих елементів, які не належать A: таким чином,

$$\forall x: x \in \overline{A} \iff x \notin A.$$

Перетин. Нехай A та B деякі множини. Перетином множин A та B називається множина, яка позначається $A \cap B$ (або AB, або $A \cdot B$), і яка складається з тих елементів, які належать обом множинам A та B:

$$(5) \qquad \forall x: x \in A \cap B \iff [x \in A] \land [x \in B].$$

Часто доводиться розглядати перетин кількох множин. Перетином множин A_1, \ldots, A_n називається множина, яка позначається $A_1 \cap \cdots \cap A_n$ або $\bigcap_{k=1}^n A_k$, і яка складається з елементів, що належать кожній з множин A_1, \ldots, A_n .

Запишемо умову $x \notin A \cap B$:

(6)
$$\forall x: x \notin A \cap B \iff [x \in A \land x \notin B] \lor [x \notin A \land x \in B] \lor [x \notin A \land x \notin B].$$

Дійсно, умова $x \notin A \cap B$ означає, що елемент x не належить зразу обом множинам A та B. Це може бути в одному з трьох випадків: $x \in A, x \notin B$, або $x \notin A, x \in B$, або $x \notin A, x \notin B$. Саме ці випадки і перераховані у правій частині (6).

2.1. Порожня множина. Якщо перетин множин $A \cap B$ не містить жодного елемента, то зручно писати $A \cap B = \emptyset$ і називати \emptyset порожньою множиною.

2.2. Об'єднання. Нехай A та B — деякі множини. O6'еднанням множин A та B називається множина, яка позначається $A \cup B$ (або A + B), і яка складається з тих елементів, які належать принаймні одній з множин A або B:

$$(7) \forall x: x \in A \cup B \iff [x \in A] \lor [x \in B].$$

Часто доводиться розглядати об'єднання кількох множин. Об'єднанням множин A_1, \ldots, A_n називається така множина, яка позначається $A_1 \cup \cdots \cup A_n$ або $\bigcup_{k=1}^n A_k$, що складається з елементів, що належать принаймні одній з множин A_1, \ldots, A_n .

Запишемо умову $x \notin A \cup B$: впр. 1

(8)
$$\forall x: x \notin A \cup B \iff [x \notin A] \land [x \notin B].$$

2.3. Різниця. Нехай A та B деякі множини. Pізницею множин A та B називається множина, яка позначається $A \setminus B$ (або A - B), і яка складається з тих елементів, які належать A, але не належать B:

$$(9) \qquad \forall x: x \in A \setminus B \iff [x \in A] \land [x \notin B].$$

2.4. Симетрична різниця. Нехай A та B деякі множини. Симетричною різницею множин A та B називається множина, яка позначається $A\Delta B$, і яка складається з тих елементів, які належать тільки одній з множин:

(10)
$$\forall x: x \in A \Delta B \iff [(x \in A) \land (x \notin B)] \lor [(x \notin A) \land (x \in B)].$$

3. Взаємозв'язки між діями над множинами

Деякі дії над множинами можна виконати за допомогою інших дій. Наприклад,

$$(11) A \setminus B = A \cap \overline{B}.$$

Доведення рівності (11). Позначимо $C=A\setminus B$ та $D=A\cap \overline{B}$. Згідно з означенням (3) необхідно довести, що $C\subset D$ та $D\subset C$.

Доведення $C \subset D$. Нехай $x \in C$. Тоді $x \in A$, $x \notin B$ згідно з означенням (9). Тому $x \in A$, $x \in \overline{B}$ згідно з означенням (4), тобто $x \in D$ згідно з означенням (5). Тому $C \subset D$ згідно з означенням (2).

Доведення $D \subset C$. Нехай $y \in D$. Тоді $y \in A$, $y \notin B$ згідно з означенням (5). Тому $y \in C$ згідно з означенням (9). Тому $D \subset C$ згідно з означенням (2). □

Інший приклад залежності дій над множинами: впр. 2

(12)
$$A\Delta B = [A \cap \overline{B}] \cup [\overline{A} \cap B].$$

Таким чином всі означені дії над множинами можна виразити через три дії: ∩, ∪ та доповнення. Чи вистачить для цього двох дій? Відповідь позитивна, її можна отримати за допомогою правил де Моргана.

4. Правила де Моргана

Мають місце такі співвідношення, які називається npaвu-лами де Moprana:

$$(13) \overline{A \cup B} = \overline{A} \cap \overline{B},$$

$$(14) \overline{A \cap B} = \overline{A} \cup \overline{B}.$$

Доведення рівності (13). Позначимо $C = \overline{A \cup B}, D = \overline{A} \cap \overline{B}$. Доведення $C \subset D$. Нехай $x \in C$. З означення (4) випливає, що $x \notin A \cup B$, тобто $x \notin A, x \notin B$ згідно з правилом (8).

Доведення $D \subset C$. Нехай $y \in D$. З означення (5) випливає, що $y \in \overline{A}, y \in \overline{B}$, тобто $y \notin A, y \notin B$ згідно з правилом (4) або $y \notin A \cup B$ у відповідності з правилом (8). На підставі означення (4) це і означає, що $y \in \overline{A \cup B}$.

Оскільки $C\subset D$ та $D\subset C$, то з означення (3) випливає, що C=D. впр. 3 \square

Таким чином вистачає двох дій, щоби виразити через них всі інші. Чи вистачить для цього однієї операції? впр. 6

- 5. ДЕЯКІ ВЛАСТИВОСТІ ДІЙ НАД МНОЖИНАМИ
- **5.1. Комутативність.** Дія над множинами \star називається комутативною, якщо $A \star B = B \star A$ для будь-яких множин A та B.

Теорема 1. $\mathcal{A}ii \cap$, \cup та Δ e комутативними. $\mathcal{A}is \setminus$ не e комутативною.

Доведення теореми 1. Доведемо теорему тільки для дії \cap . Позначимо $C = A \cap B, \ D = B \cap A.$

Доведення $C \subset D$. Нехай $x \in C$. З означення (5) випливає, що $x \in A$ та $x \in B$, тобто $x \in B$ та $x \in A$. Знову використаємо означення (5): $x \in D$.

Доведення $D \subset C$. Нехай $y \in D$. З означення (5) випливає, що $y \in B$ та $y \in A$, тобто $y \in A$ та $y \in B$. Знову використаємо означення (5): $y \in C$.

Таким чином C = D згідно з означенням (3). \square

впр. 7

5.2. Асоциативність. Дія над множинами \star називається *асоціативною*, якщо $A \star (B \star C) = (A \star B) \star C$ для будь-яких множин A, B та C.

Теорема 2. $\mathcal{A}ii \cap$, \cup ma Δ ϵ acoujamusними. $\mathcal{A}is \setminus$ не ϵ acoujamusною.

Доведення теореми 2. Доведемо теорему тільки для дії \cap . Позначимо $V = (A \cap B) \cap C$, $W = A \cap (B \cap C)$.

Доведення $V \subset W$. Нехай $x \in V$. З означення (5) випливає, що $x \in A \cap B$, $x \in C$. Ще раз застосуємо означення (5): $x \in A$, $x \in B$, $x \in C$. Тому $x \in A$, $x \in B \cap C$ знову за означенням (5). В останній раз застосуємо означення (5): $x \in V$.

Доведення $W \subset V$. Нехай $y \in W$. З означення (5) випливає, що $y \in A$ та $y \in B \cap C$, тобто $y \in A$, $y \in B$, $y \in C$. Ще двічі застосуємо означення (5): $y \in A$, $y \in B \cap C$, звідки $y \in A$, $y \in B$, $y \in C$. Тепер залишається ще двічі застосувати означення (5): $y \in A \cap B$, $y \in C$, звідки $y \in V$.

Таким чином V = W згідно з означенням (3). \square

впр. 8

5.3. Дистрибутивність. Властивостями комутативності та асоціативності дії над множинами ∩ та ∪ нагадують дії віднімання та додавання для чисел. Аналогію можна продовжити, якщо згадати закон дистрибутивності:

(15)
$$A \cap (B \cup C) = (A \cap C) \cup (B \cap C),$$
$$A \cdot (B + C) = A \cdot C + B \cdot C.$$

Доведення закону (15). Покладемо $V=A\cap (B\cup C),\ W=(A\cap C)\cup (B\cap C).$

Доведення $V \subset W$. Нехай $x \in V$. З означення (5) випливає, що $x \in A$, $x \in B \cup C$. Отримуємо тепер з означення (7), що x належить принаймні одній з множин B, C. Ще раз застосуємо означення (5): x належить принаймні одній з множин $A \cap B$, $A \cap C$. Нарешті використаємо означення (7): $x \in W$.

Доведення $W \subset V$. Нехай $y \in W$. З означення (7) випливає, що y належить принаймні одній з множин $A \cap B$, $A \cap C$. Тепер з означення (5) отримуємо, що y належить принаймні одній з пар множин A, B або A, C, тобто y належить принаймні одній з множин B, C, звідки $y \in B \cup C$ за означенням (7). Застосувавши означення (5), доводимо тепер, що $y \in V$.

Таким чином V = W згідно з означенням (3). \square

Аналогія між діями з числами і множинами не є абсолютною, оскільки наступний закон дистибутивності, двоїстий до (15), для множин виконується, а для чисел — ні:

(16)
$$A \cup (B \cap C) = (A \cup C) \cap (B \cup C),$$
$$A + (B \cdot C) = (A + C) \cdot (B + C).$$

впр. 9

6. Індикаторні функції множини

Iндикаторною функцією множини <math>A називається

(17)
$$\mathbb{I}_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A. \end{cases}$$

6.1. Обчислення індикаторних функцій. Наведемо кілька правил, які дозволяють обчислити характеристичні функції.

$$\mathbb{I}_{\overline{A}} = 1 - \mathbb{I}_A,$$

$$\mathbb{I}_{A\cap B} = \mathbb{I}_A \mathbb{I}_B,$$

$$\mathbb{I}_{A \cup B} = \mathbb{I}_A + \mathbb{I}_B - \mathbb{I}_A \mathbb{I}_B,$$

$$\mathbb{I}_{A \setminus B} = \mathbb{I}_A (1 - \mathbb{I}_B),$$

(22)
$$\mathbb{I}_{A \Delta B} = \mathbb{I}_{A}(1 - \mathbb{I}_{B}) + \mathbb{I}_{B}(1 - \mathbb{I}_{A}).$$

Доведення рівності (18). Доведемо, що $\mathbb{I}_{\overline{A}}(x) = 1 - \mathbb{I}_A(x)$ для всіх x. Дійсно, якщо $x \in A$, то $\mathbb{I}_A(x) = 1$, а $\mathbb{I}_{\overline{A}}(x) = 0$ за означенням (17). Якщо ж $x \notin A$, то $\mathbb{I}_A(x) = 0$, а $\mathbb{I}_{\overline{A}}(x) = 1$ за тим же означенням. \square

впр. 10

вправи

Вправа 1. Довести рівність (8).

Вправа 2. Довести рівність (12).

Вправа 3. Довести рівність (14).

Вправа 4. Довести, що дію \cup можна виразити через \cap та операцію доповнення.

Вправа 5. Довести, що дію \cap можна виразити через \cup та операцію оповнення.

Вправа 6. Придумайте таку дію над множинами, через яку можна виразити всі інші.

Вправа 7. Довести теорему 1 для дій \cup , Δ , \setminus .

Вправа 8. Довести теорему 2 для дій \cup , Δ , \setminus .

Вправа 9. Довести закон дистрибутивності (16).

Вправа 10. Довести рівності (19)-(22).

Вправа 11. Чи існують множини $A,\ B$ і $C,\ для$ яких одночасно виконуються співвідношення

$$C \neq \emptyset$$
, $A \cap B \neq \emptyset$, $A \cap C \neq \emptyset$, $(A \cap B) \setminus C = \emptyset$?

Вправа 12. Довести, що $A \cup B \subseteq C$ тоді і тільки тоді, коли $A \subseteq C$ та $B \subseteq C$.

Вправа 13. Довести, що $(A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B) = A \cup B$.

Вправа 14. Довести, що $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.