

TEST REPORT

Applicant	Guangdong Leetac Electronics Technology Co .,Ltd.
Address	No.15 Danli Road, South District, Zhongshan, Guangdong, China.

Manufacturer or Supplier	Guangdong Leetac Electronics Technology Co .,Ltd.			
Address	o.15 Danli Road, South District, Zhongshan, Guangdong, China.			
Product	Desktop Bluetooth Jukebox			
Brand Name	Victrola, Innovative Technology			
Model	E-6H1A			
Additional Model & Model Difference	VJB-127, ITVS-127; see items 3.1			
Date of tests	Nov. 08, 2017 ~ Nov. 15, 2017			

the tests have been carried out according to the requirements of the following standards:

CONCLUSION: The submitted sample was found to <u>COMPLY</u> with the test requirement

Tested by Andy Zhu	Approved by Glyn He
Project Engineer / EMC Department	Supervisor / EMC Department

Date: Dec. 13, 2017

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

TABLE OF CONTENTS

R	ELEASE (CONTROL RECORD	5
1	SUMMA	ARY OF TEST RESULTS	ε
2	MEASU	JREMENT UNCERTAINTY	6
3	GENER	RAL INFORMATION	7
	3.1 GEN	NERAL DESCRIPTION OF EUT	7
	3.2 DES	SCRIPTION OF TEST MODES	7
	3.2.1.	CONFIGURATION OF SYSTEM UNDER TEST	ç
	3.2.2.	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
	3.3 GEI	NERAL DESCRIPTION OF APPLIED STANDARDS	11
	3.4 DES	SCRIPTION OF SUPPORT UNITS	11
4	TEST 1	YPES AND RESULTS	12
	4.1. COI	NDUCTED EMISSION MEASUREMENT	12
	4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	12
	4.1.2	TEST INSTRUMENTS	12
	4.1.3	TEST PROCEDURES	13
	4.1.4	DEVIATION FROM TEST STANDARD	13
	4.1.5	TEST SETUP	14
	4.1.6	EUT OPERATING CONDITIONS	
	4.1.7	TEST RESULTS	15
	4.2. RAI	DIATED EMISSION AND BANDEDGE MEASUREMENT	17
	4.2.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	17
	4.2.2	TEST INSTRUMENTS	18
	4.2.3	TEST PROCEDURES	19
	4.2.4	DEVIATION FROM TEST STANDARD	20
	4.2.5	TEST SETUP	20
	4.2.6	EUT OPERATING CONDITIONS	21
	4.2.7	TEST RESULTS	22
	4.3. NUI	MBER OF HOPPING FREQUENCY USED	22
	4.3.1.	LIMIT OF HOPPING FREQUENCY USED	30
	4.3.2.	TEST SETUP	30
	4.3.3.	TEST INSTRUMENTS	30
	4.3.4.	TEST PROCEDURES	31

4.3.5.	DEVIATION FROM TEST STANDARD	31
4.3.6.	TEST RESULTS	31
4.4. DW	ELL TIME ON EACH CHANNEL	34
4.4.1	LIMIT OF DWELL TIME USED	34
4.4.2	TEST SETUP	34
4.4.3	TEST INSTRUMENTS	34
4.4.4	TEST PROCEDURES	34
4.4.5	DEVIATION FROM TEST STANDARD	35
4.4.6	TEST RESULTS	35
4.5. CH	ANNEL BANDWIDTH	38
4.5.1	LIMITS OF CHANNEL BANDWIDTH	38
4.5.2	TEST SETUP	38
4.5.3	TEST INSTRUMENTS	38
4.5.4	TEST PROCEDURE	38
4.5.5	DEVIATION FROM TEST STANDARD	38
4.5.6	EUT OPERATING CONDITION	38
4.5.7	TEST RESULTS	39
4.6. HO	PPING CHANNEL SEPARATION	43
4.6.1.	LIMIT OF HOPPING CHANNEL SEPARATION	43
4.6.2.	TEST SETUP	43
4.6.3.	TEST INSTRUMENTS	43
4.6.4.	TEST PROCEDURES	43
4.6.5.	DEVIATION FROM TEST STANDARD	43
4.6.6.	TEST RESULTS	44
4.7. CO	NDUCTED OUTPUT POWER	48
4.7.1	LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT	48
4.7.2	TEST SETUP	48
4.7.3	TEST INSTRUMENTS	48
4.7.4	TEST PROCEDURES	48
4.7.5	DEVIATION FROM TEST STANDARD	48
4.7.6	EUT OPERATING CONDITION	48
4.7.7	TEST RESULTS	49
4.8. OU	T OF BAND EMISSION MEASUREMENT	50
4.8.1	LIMITS OF OUT OF BAND EMISSION MEASUREMENT	50
4.8.2	TEST INSTRUMENTS	50
4.8.3	TEST PROCEDURE	50
4.8.4	DEVIATION FROM TEST STANDARD	50

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

	4.8.5	EUT OPERATING CONDITION	50
	4.8.6	TEST RESULTS	50
5.	PHOTO	OGRAPHS OF THE TEST CONFIGURATION	55
6.	APPEN	DIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE	
	EUT BY	′ THE LAB	56

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF171108N029	Original release	Dec. 13, 2017

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C						
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK			
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit.			
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.			
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.			
15.247(a)(1)	Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	PASS	Meet the requirement of limit.			
15.247(b)	Maximum Peak Output Power	PASS	Meet the requirement of limit.			
15.247(d)& 15.209	Transmitter Radiated Emission	PASS	Meet the requirement of limit.			
15.247(d)	Out of band Emission Measurement	PASS	Meet the requirement of limit.			
15.203	Antenna Requirement	PASS	No antenna connector is used.			

2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.70dB
	9KHz ~ 30MHz	2.90dB
Radiated emissions	30MHz ~ 1GMHz	3.83dB
Nadiated emissions	1GHz ~ 18GHz	4.93dB
	18GHz ~ 40GHz	4.80dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: customerservice.dg@cn.bureauveritas.com

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Desktop Bluetooth Jukebox		
MODEL NO.	E-6H1A		
ADDITIONAL MODE	VJB-127, ITVS-127		
FCC ID	ZXNLEETACE6H1A		
POWER SUPPLY	AC 120V 60Hz		
MODULATION TECHNOLOGY	FHSS		
MODULATION TYPE	GFSK, π/4 DQPSK, 8DPSK		
OPERATING FREQUENCY	2402MHz~2480MHz		
NUMBER OF CHANNEL	79		
PEAK OUTPUT POWER	0.4457mW (Max. Measured)		
ANTENNA TYPE	PCB Antenna, 0dBi Gain		
I/O PORTS	Refer to user's manual		
CABLE SUPPLIED	AC Line: Unshielded, Non-Detachable 1.5cm		

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 3. Please refer to the EUT photo document (Reference No.: 171108N029) for detailed product photo.
- 4. Additional models VJB-127, ITVS-127 are identical in electrical, mechanical and physical construction with the test model E-6H1A except the model number, brand name for trading purpose
 - 1. Basic model: E-6H1A
 - 2. Alternative model: VJB-127, ITVS-127;
 - 3. Brand Name: Leetac, Innovative Technology, Victrola
 - 4. Innovative Technology can be used for ITVS-127;

Victrola can be used for VJB-127;

Leetac can be used for E-6H1A

3.2 DESCRIPTION OF TEST MODES

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1. CONFIGURATION OF SYSTEM UNDER TEST

Please see section 5 photograph of the test configuration for reference.

3.2.2. TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports

The worst case was found when positioned on X axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE	APPLICABLE TO				DECORPORTION
MODE	RE<1G	RE≥1G	PLC	APCM	DESCRIPTION
Α	V	√	√	V	Powered by AC 120V/60Hz

Where RE<1G: Radiated Emission below 1GHz
PLC: Power Line Conducted Emission

RE≥1G: Radiated Emission above 1GHz

APCM: Antenna Port Conducted Measurement

RADIATED EMISSION TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	MODULATION	PACKET
CHANNEL	CHANNEL	TECHNOLOGY	TYPE	TYPE
0 to 78	39	FHSS	GFSK	DH5

For the test results, only the worst case was shown in test report.

RADIATED EMISSION TEST (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0, 39, 78	FHSS	GFSK	DH5
0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

POWER LINE CONDUCTED EMISSION TEST:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	MODULATION TYPE	PACKET
CHANNEL	CHANNEL	TECHNOLOGY		TYPE
0 to 78	Hopping	FHSS	GFSK	DH5

ANTENNA PORT CONDUCTED MEASUREMENT:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0, 39, 78	FHSS	GFSK	DH5
0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE (SYSTEM)	TESTED BY
RE<1G	26deg. C, 50%RH	AC 120V 60Hz	Cheng Zhong
RE≥1G	26deg. C, 50%RH	AC 120V 60Hz	Cheng Zhong
PLC	25deg. C, 60%RH	AC 120V 60Hz	Yang
APCM	20deg. C, 55%RH	AC 120V 60Hz	Sen He

Fax: +86 769 8593 1080
Email: customerservice.dg@cn.bureauveritas.com

Tel: +86 769 8593 5656

Page 10 of 56

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. Section 15.247 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	N/A	N/A	N/A	N/A	N/A

١	10.	DESCRIPTION OF THE ABOVE SUPPORT UNITS
	1	N/A

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

Page 11 of 56

4 TEST TYPES AND RESULTS

4.1. CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED	LIMIT (dBµV)
	Quasi-peak	Average
0.15 ~ 0.5	66 to 56	56 to 46
0.5 ~ 5	56	46
5 ~ 30	60	50

NOTE: 1.The lower limit shall apply at the transition frequencies.

- The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR7	101494	Apr. 05,17	Apr. 04,18
Artificial Mains Network	Rohde&Schwarz	ENV216	101173	Mar. 06,17	Mar. 05,18
Artificial Mains Network	Rohde&Schwarz	ESH3-Z5	100317	Apr. 05,17	Apr. 04,18
Voltage probe	SCHWARZBECK	TK 9421	TK 9421-176	Jan. 04,17	Jan. 03,18
Test software	ADT	ADT_Cond_V7.3.7	N/A	N/A	N/A

NOTE:

- 1. The test was performed in shielded room 553.
- 2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

Page 12 of 56

4.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

4.1.7 TEST RESULTS

CONDUCTED WORST-CASE DATA: GFSK CH39

PHASE	Line	6dB BANDWIDTH	9kHz
-------	------	---------------	------

No	Freq. [MHz]	Corr. Factor	Reading Value [dB (uV)]			n Level (uV)]	Limit [dB (uV)]		Maı (d	gin B)
		(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15225	10.01	35.66	15.00	45.67	25.01	65.88	55.88	-20.21	-30.87
2	0.45664	10.03	27.28	16.71	37.31	26.74	56.75	46.75	-19.44	-20.01
3	1.38050	10.01	28.92	16.06	38.93	26.07	56.00	46.00	-17.07	-19.93
4	2.27625	10.02	12.13	-1.21	22.15	8.81	56.00	46.00	-33.85	-37.19
5	3.68250	10.02	16.08	4.57	26.10	14.59	56.00	46.00	-29.90	-31.41
6	12.05925	10.12	20.85	12.71	30.97	22.83	60.00	50.00	-29.03	-27.17

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

PHASE Neutral 6dB BANDWIDTH 9kHz

No	Freq. [MHz]	Corr. Factor		g Value (uV)]		on Level (uV)]		nit (uV)]		gin B)
		(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.46149	10.23	36.43	30.07	46.66	40.30	56.67	46.67	-10.01	-6.37
2	1.39200	10.22	34.72	28.56	44.94	38.78	56.00	46.00	-11.06	-7.22
3	1.86042	10.22	33.20	21.90	43.42	32.12	56.00	46.00	-12.58	-13.88
4	2.31225	10.22	33.23	25.45	43.45	35.67	56.00	46.00	-12.55	-10.33
5	3.71625	10.22	32.50	16.30	42.72	26.52	56.00	46.00	-13.28	-19.48
6	4.13250	10.22	12.49	2.49	22.71	12.71	56.00	46.00	-33.29	-33.29

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.2. RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

Page 17 of 56

4.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESU40	100449	Mar. 12,17	Mar. 11,18
Signal and Spectrum Analyzer	Rohde&Schwar z	FSV7	102331	Nov. 04,17	Nov. 03,18
Bilog Antenna (30MHz~1GHz)	Teseq	CBL 6111D	30643	Jul. 14, 17	Jul. 13, 18
Loop antenna (9KHz ~30MHz)	Daze	ZN30900A	0708	Mar. 12,17	Mar. 11,18
Horn Antenna (1GHz -18GHz)	ETS -Lindgren	3117	00062558	May 18,17	May 17,18
GPS Generator+ Antenna	TOJOIN	GNSS-5000A	E1-010119	Aug. 08, 17	Aug. 07, 18
3m Semi-anechoic Chamber	ETS-LINDGRE N	9m*6m*6m	NSEMC003	Mar. 12,17	Mar. 11,18
Test Software	ADT	ADT_Radiated _V7.6.15.9.2	N/A	N/A	N/A
Horn Antenna (18GHz-40GHz)	SCHWARZBEC K	BBHA 9170	BBHA9170242	Mar. 15,17	Mar. 14,18
Amplifier (9kHz-1GHz)	SONOMA	310D	186955	Mar. 04,17	Mar. 03, 18
Broadband Preamplifier (1GHz~18GHz)	SCHWARZBEC K	BBV9718	305	Mar. 09,17	Mar. 08,18
Pre-Amplifier (18GHz-40GHz)	EMCI	EMC 184045	980102	Nov. 04,17	Nov. 03,18
Test Software	ADT	ADT_Radiated _V7.6.15.9.2	N/A	N/A	N/A
BLUETOOTH TESTER	Rohde&Schwar z	CBT32	100811	Aug. 08,17	Aug. 07,18

NOTE:

- 1. The test was performed in 966 Chamber.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 3. The horn antenna is used only for the measurement of emission frequency above1GHz if tested.
- 4. The FCC Site Registration No. is 749762.

4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 1.5 meters(above 1GHz) and 0.8 meters(below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. For below 1GHz was used bilog antenna, and above 1GHz was used horn antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- g. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. Bluetooth duty factor correction is not correct as it is based on 79 channels, worst case would be with AFH enabled and device using the minimum of 20 channels. Channel hop rate = 800 hops/second (AFH Mode), Adjusted channel hop rate for DH5 mode = 133.33 hops/second, Time per channel hop = 1 / 133.33 hops/second = 7.5 ms, Time to cycle through all channels = 7.5 x 20 channels = 150 ms, Number of times transmitter hits on one channel = 100 ms / 150 ms = 1 time(s), Worst case dwell time = 7.5 ms, Duty cycle connection factor = 20log10(7.5ms / 100ms) = -22.5 dB. Average value = peak reading + 20log(duty cycle).
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 5. The testing of the EUT was performed on all 3 orthogonal axes; the worst-case test configuration was reported on the file test setup photo.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

4.2.5 TEST SETUP

Below 30MHz test setup

Below 1GHz test setup

Note: For the actual test configuration, please refer to the attached file (Test Setup Photo).

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: customerservice.dg@cn.bureauveritas.com

Page 20 of 56

Above 1GHz test setup

Note: For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: customerservice.dg@cn.bureauveritas.com

Page 21 of 56

4.2.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA:

GFSK DH5

CHANNEL	Channel 39	DETECTOR	Ougoi Pook (OP)
FREQUENCY RANGE	9KHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)	
1	31.55	24.35 QP	40.00	-15.65	2.00 H	90	31.48	-7.13	
2	104.62	22.64 QP	43.50	-20.86	1.80 H	88	35.96	-13.32	
3	252.29	20.10 QP	46.00	-25.90	1.50 H	30	29.47	-9.37	
4	359.55	29.04 QP	46.00	-16.96	2.10 H	190	34.59	-5.55	
5	555.42	31.25 QP	46.00	-14.75	2.00 H	260	30.05	1.20	
6	745.06	33.76 QP	46.00	-12.24	2.10 H	280	28.86	4.90	

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.

CHANNEL	Channel 39	DETECTOR	Quasi Peak (QD)
FREQUENCY RANGE	9KHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)	
1	47.10	23.37 QP	40.00	-16.63	1.20 V	20	39.15	-15.78	
2	113.94	20.99 QP	43.50	-22.51	1.30 V	231	33.40	-12.41	
3	261.62	21.35 QP	46.00	-24.65	2.00 V	310	29.37	-8.02	
4	359.55	29.92 QP	46.00	-16.08	1.60 V	260	35.47	-5.55	
5	560.08	30.90 QP	46.00	-15.10	1.60 V	170	29.27	1.63	
6	754.39	34.28 QP	46.00	-11.72	2.00 V	90	29.48	4.80	

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.

ABOVE 1GHz DATA

BT_GFSK DH5

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	57.85 PK	74.00	-16.15	1.60 H	130	54.79	3.06
2	2390.00	35.35 AV	54.00	-18.65	1.60 H	130	32.29	3.06
3	*2402.00	87.14 PK			1.60 H	130	84.05	3.09
4	*2402.00	64.64 AV			1.60 H	130	61.55	3.09
5	4804.00	55.15 PK	74.00	-18.85	2.36 H	310	49.22	5.93
6	4804.00	32.65 AV	54.00	-21.35	2.36 H	310	26.72	5.93
7	#7206.00	55.37 PK	74.00	-18.63	1.50 H	167	43.19	12.18
8	#7206.00	32.87 AV	54.00	-21.13	1.50 H	167	20.69	12.18
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	64.84 PK	74.00	-9.16	1.50 V	240	61.78	3.06
2	2390.00	42.34 AV	54.00	-11.66	1.50 V	240	39.28	3.06
3	*2402.00	92.02 PK			1.50 V	240	88.93	3.09
4	*2402.00	69.52 AV			1.50 V	240	66.43	3.09
5	4804.00	55.21 PK	74.00	-18.79	1.76 V	230	49.28	5.93
6	4804.00	32.71 AV	54.00	-21.29	1.76 V	230	26.78	5.93
7	#7206.00	56.66 PK	74.00	-17.34	1.34 V	225	44.48	12.18
8	#7206.00	34.16 AV	54.00	-19.84	1.34 V	225	21.98	12.18

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY &	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	87.61 PK			2.20 H	310	84.39	3.22
2	*2441.00	65.11 AV			2.20 H	310	61.89	3.22
3	4882.00	56.53 PK	74.00	-17.47	1.68 H	174	50.47	6.06
4	4882.00	34.03 AV	54.00	-19.97	1.68 H	174	27.97	6.06
5	7323.00	56.84 PK	74.00	-17.16	1.54 H	225	44.15	12.69
6	7323.00	34.34 AV	54.00	-19.66	1.54 H	225	21.65	12.69
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	90.13 PK			1.66 V	135	86.91	3.22
2	*2441.00	67.63 AV			1.66 V	135	64.41	3.22
3	4882.00	56.21 PK	74.00	-17.79	1.34 V	267	50.15	6.06
4	4882.00	33.71 AV	54.00	-20.29	1.34 V	267	27.65	6.06
5	7323.00	54.87 PK	74.00	-19.13	1.34 V	247	42.18	12.69
6	7323.00	32.37 AV	54.00	-21.63	1.34 V	247	19.68	12.69

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	85.08 PK			1.10 H	280	81.73	3.35
2	*2480.00	62.58 AV			1.10 H	280	59.23	3.35
3	2483.50	65.86 PK	74.00	-8.14	1.10 H	280	62.50	3.36
4	2483.50	43.36 AV	54.00	-10.64	1.10 H	280	40.00	3.36
5	4960.00	54.06 PK	74.00	-19.94	2.10 H	200	47.86	6.20
6	4960.00	31.56 AV	54.00	-22.44	2.10 H	200	25.36	6.20
7	7440.00	55.20 PK	74.00	-18.80	1.20 H	220	42.00	13.20
8	7440.00	32.70 AV	54.00	-21.30	1.20 H	220	19.50	13.20
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M	•
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	89.44 PK			1.80 V	210	86.09	3.35
2	*2480.00	66.94 AV			1.80 V	210	63.59	3.35
3	2483.50	69.80 PK	74.00	-4.20	1.80 V	210	66.44	3.36
4	2483.50	47.30 AV	54.00	-6.70	1.80 V	210	43.94	3.36
5	4960.00	54.85 PK	74.00	-19.15	1.69 V	346	48.65	6.20
6	4960.00	32.35 AV	54.00	-21.65	1.69 V	346	26.15	6.20
7	7440.00	55.87 PK	74.00	-18.13	2.67 V	255	42.67	13.20
8	7440.00	33.37 AV	54.00	-20.63	2.67 V	255	20.17	13.20

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

BT_8DPSK 3DH5

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	2390.00	58.64 PK	74.00	-15.36	1.60 H	230	55.58	3.06				
2	2390.00	36.14 AV	54.00	-17.86	1.60 H	230	33.08	3.06				
3	*2402.00	86.04 PK			1.60 H	230	82.95	3.09				
4	*2402.00	63.54 AV			1.60 H	230	60.45	3.09				
5	4804.00	53.20 PK	74.00	-20.80	2.20 H	164	47.27	5.93				
6	4804.00	30.70 AV	54.00	-23.30	2.20 H	164	24.77	5.93				
7	#7206.00	55.13 PK	74.00	-18.87	2.69 H	330	42.95	12.18				
8	#7206.00	32.63 AV	54.00	-21.37	2.69 H	330	20.45	12.18				
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M					
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	2390.00	63.31 PK	74.00	-10.69	1.60 V	167	60.25	3.06				
2	2390.00	40.81 AV	54.00	-13.19	1.60 V	167	37.75	3.06				
3	*2402.00	90.55 PK			1.60 V	167	87.46	3.09				
4	*2402.00	68.05 AV			1.60 V	167	64.96	3.09				
5	4804.00	53.34 PK	74.00	-20.66	1.97 V	340	47.41	5.93				
6	4804.00	30.84 AV	54.00	-23.16	1.97 V	340	24.91	5.93				
7	#7206.00	55.60 PK	74.00	-18.40	1.54 V	227	43.42	12.18				

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)					
1	*2441.00	88.42 PK			1.54 H	230	85.20	3.22					
2	*2441.00	65.92 AV			1.54 H	230	62.70	3.22					
3	4882.00	53.48 PK	74.00	-20.52	1.50 H	120	47.42	6.06					
4	4882.00	30.98 AV	54.00	-23.02	1.50 H	120	24.92	6.06					
5	7323.00	55.12 PK	74.00	-18.88	1.54 H	200	42.43	12.69					
6	7323.00	32.62 AV	54.00	-21.38	1.54 H	200	19.93	12.69					
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	-					
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)					
1	*2441.00	89.50 PK			1.50 V	197	86.28	3.22					
2	*2441.00	67.00 AV			1.50 V	197	63.78	3.22					
3	4882.00	54.36 PK	74.00	-19.64	2.78 V	130	48.30	6.06					
4	4882.00	31.86 AV	54.00	-22.14	2.78 V	130	25.80	6.06					
5	7323.00	56.38 PK	74.00	-17.62	1.39 V	240	43.69	12.69					
6	7323.00	33.88 AV	54.00	-20.12	1.39 V	240	21.19	12.69					

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY 8	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	82.90 PK			1.90 H	210	79.55	3.35
2	*2480.00	60.40 AV			1.90 H	210	57.05	3.35
3	2483.50	68.22 PK	74.00	-5.78	1.90 H	210	64.86	3.36
4	2483.50	45.72 AV	54.00	-8.28	1.90 H	210	42.36	3.36
5	4960.00	54.12 PK	74.00	-19.88	2.46 H	228	47.92	6.20
6	4960.00	31.62 AV	54.00	-22.38	2.46 H	228	25.42	6.20
7	7440.00	55.97 PK	74.00	-18.03	3.54 H	125	42.77	13.20
8	7440.00	33.47 AV	54.00	-20.53	3.54 H	125	20.27	13.20
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	81.34 PK			1.50 V	230	77.99	3.35
2	*2480.00	58.84 AV			1.50 V	230	55.49	3.35
3	2483.50	72.22 PK	74.00	-1.78	1.50 V	230	68.86	3.36
4	2483.50	49.72 AV	54.00	-4.28	1.50 V	230	46.36	3.36
5	4960.00	53.67 PK	74.00	-20.33	2.23 V	310	47.47	6.20
6	4960.00	31.17 AV	54.00	-22.83	2.23 V	310	24.97	6.20
7	7440.00	55.57 PK	74.00	-18.43	2.08 V	100	42.37	13.20
8	7440.00	33.07 AV	54.00	-20.93	2.08 V	100	19.87	13.20

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

4.3 NUMBER OF HOPPING FREQUENCY USED

4.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

4.3.2 TEST SETUP

4.3.3 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Power Sensor	Keysight	U2021XA	MY55060016	May 19,17	May 18,18
Power Sensor	Keysight	U2021XA	MY55060018	May 19,17	May 18,18
Power Meter	Anritsu	ML2495A	1139001	Nov. 04,16	Nov. 03,17
Digital Multimeter	FLUKE	15B	A1220010DG	Oct. 13, 17	Oct.12, 18
Humid & Temp Programmable Tester	Haida	HD-2257	110807201	Sep.05,17	Sep. 04,18
Oscilloscope	Agilent	DSO9254A	MY51260160	Nov. 04,17	Nov. 03,18
Signal Analyzer	Rohde & Schwarz	FSV7	102331	Nov. 04,17	Nov. 03,18
Signal Generator	Agilent	N5183A	MY50140980	Nov. 04,17	Nov. 03,18
Agile Signal Generator	Agilent	8645A	Agilent	Aug.08, 17	Aug.07, 18
Spectrum Analyzer	Keysight	N9020A	MY55400499	Apr. 10,17	Apr. 09,18
MXG-B RF Vector Signal Generator	Keysight	N5182B	MY56200288	Dec.05, 16	Dec. 04, 17
BLUETOOTH TESTER	Rohde&Schwarz	CBT32	100811	Aug.08, 17	Aug.07, 18
Attenuator	MINI	BW-S10W2+	S130129FGE2	N/A	N/A

NOTE:

- 1. The test was performed in RF Oven room.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

4.3.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were completed.

4.3.5 DEVIATION FROM TEST STANDARD

No deviation.

4.3.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

GFSK

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: customerservice.dg@cn.bureauveritas.com

Page 32 of 56

8DPSK

4.4 DWELL TIME ON EACH CHANNEL

4.4.1 LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 TEST SETUP

4.4.3 TEST INSTRUMENTS

Refer to section 4.3.3 to get information of above instrument.

4.4.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 DEVIATION FROM TEST STANDARD

No deviation.

4.4.6 TEST RESULTS

GFSK

	Number of			nsmission number*		Length of	Result	Limit	PASS/
Mode	Hopping Channel	period (sec)	sweep time (sec)	times in a sweep	times in a period	transmission time (msec)	(msec)	(msec)	FAIL
DH1	79	31.6	5	48	303.36	0.204	61.885	400	PASS
DH3	79	31.6	5	25	158.00	1.630	257.540	400	PASS
DH5	79	31.6	5	16	101.12	2.829	286.070	400	PASS

8DPSK

	Number of					Length of	Result	Limit	PASS/
Mode	Hopping Channel	period (sec)	sweep time (sec)	times in a sweep	times in a period	transmission time (msec)	(msec)	(msec)	FAIL
3DH1	79	31.6	5	48	303.36	0.516	156.53	400	PASS
3DH3	79	31.6	5	25	158.00	1.630	257.54	400	PASS
3DH5	79	31.6	5	17	107.44	2.880	309.43	400	PASS

NOTE: Test plots of the transmitting time slot are shown on next page.

GFSK

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: customerservice.dg@cn.bureauveritas.com

Page 36 of 56

8DPSK

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

Page 37 of 56

4.5 CHANNEL BANDWIDTH

4.5.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 TEST SETUP

4.5.3 TEST INSTRUMENTS

Refer to section 4.3.3 to get information of above instrument.

4.5.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 DEVIATION FROM TEST STANDARD

No deviation.

4.5.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

Tel: +86 769 8593 5656

4.5.7 TEST RESULTS

GFSK

CHANNEL	NEL CHANNEL FREQUENCY (MHz) 20dB BANDWIDTH (M	
0	2402	1.05
39	2441	1.04
78	2480	1.33

CH₀

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

Page 39 of 56

CH 39

CH 78

8DPSK

CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (MHz)
0	2402	1.34
39	2441	1.37
78	2480	1.35

CH₀

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

Page 41 of 56

CH 39

CH 78

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: customerservice.dg@cn.bureauveritas.com

Page 42 of 56

4.6 HOPPING CHANNEL SEPARATION

4.6.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 TEST SETUP

4.6.3 TEST INSTRUMENTS

Refer to section 4.3.3 to get information of above instrument.

4.6.4 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

4.6.5 DEVIATION FROM TEST STANDARD

No deviation.

4.6.6 TEST RESULTS

GFSK

CHANNEL	FREQUENCY (MHz)	ADJACENT CHANNEL SEPARATION (MHz)	20dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
0	2402	1.00	1.05	0.70	PASS
39	2441	1.01	1.04	0.69	PASS
78	2480	1.01	1.33	0.89	PASS

NOTE: The minimum limit is two-third 20dB bandwidth.

CH 0

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

Page 44 of 56

CH 39

CH 78

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: customerservice.dg@cn.bureauveritas.com

Page 45 of 56

8DPSK

CHANNEL	FREQUENCY (MHz)	ADJACENT CHANNEL SEPARATION (MHz)	20dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
0	2402	1.01	1.34	0.893	PASS
39	2441	1.00	1.37	0.913	PASS
78	2480	1.01	1.35	0.900	PASS

NOTE: The minimum limit is two-third 20dB bandwidth.

CH₀

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: customerservice.dg@cn.bureauveritas.com

Page 46 of 56

CH 39

CH 78

4.7 CONDUCTED OUTPUT POWER

4.7.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT

The Maximum Output Power Measurement is 125mW.

4.7.2 TEST SETUP

4.7.3 TEST INSTRUMENTS

Refer to section 4.3.3 to get information of above instrument.

4.7.4 TEST PROCEDURES

A peak power sensor was used on the output port of the EUT. A peak power meter was used to read the response of the peak power sensor. Record the peak power level.

4.7.5 DEVIATION FROM TEST STANDARD

No deviation.

4.7.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.7.7 TEST RESULTS

MAXIMUM PEAK OUTPUT POWER

GFSK

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER (dBm)	PEAK POWER (mW)	PEAK POWER LIMIT (mW)	PASS/FAIL
0	2402	-3.88	0.4093	125	PASS
39	2441	-3.51	0.4457	125	PASS
78	2480	-3.85	0.4121	125	PASS

8DPSK

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER (dBm)	PEAK POWER (mW)	PEAK POWER LIMIT (mW)	PASS/FAIL
0	2402	-3.97	0.4009	125	PASS
39	2441	-3.88	0.4093	125	PASS
78	2480	-4.16	0.3837	125	PASS

AVERAGE OUTPUT POWER(FOR REFERENCE)

GFSK

CHANNEL	CHANNEL FREQUENCY (MHz)	AVERAGE POWER (dBm)	AVERAGE POWER (mW)
0	2402	-5.92	0.256
39	2441	-5.43	0.286
78	2480	-5.76	0.265

8DPSK

CHANNEL	CHANNEL FREQUENCY (MHz)	AVERAGE POWER (dBm)	AVERAGE POWER (mW)
0	2402	-10.17	0.096
39	2441	-9.72	0.107
78	2480	-10.52	0.089

4.8 OUT OF BAND EMISSION MEASUREMENT

4.8.1 LIMITS OF OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

4.8.2 TEST INSTRUMENTS

Refer to section 4.3.3 to get information of above instrument.

4.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low loss cable. of Spectrum Analyzer was set RBW to 100 kHz and VBW to 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. Detector = PEAK and Trace mode = Max Hold. The band edges was measured and recorded.

4.8.4 DEVIATION FROM TEST STANDARD

No deviation.

4.8.5 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.8.6 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level. D2 line indicates the 20dB offset below D1. It shows compliance to the requirement.

GFSK

8DPSK

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

Page 52 of 56

GFSK

8DPSK

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: customerservice.dg@cn.bureauveritas.com

Page 54 of 56

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---

Tel: +86 769 8593 5656