Immunology (AIM)
Tcell receptors can only recognise pieces of artigen held by MHC. The MHC modecule 4 cell surface protein - so ded for by MHC bows
& cell surface protein - anded from by MHC locus
JMHC determines whether a transplanted tierre will be accepted on nejetted from the pioneeoring work of Benacerati, Downsort & Snell
→ many alleles of the MHC gres → inhorited allele determines susceptibility to disease. → two classes of MHC molecules
-> two classes of MHC molecules
class I class I
very similar in their quaternary str, but differ in how They attain it from their primary structure
Class I MHC molecules
Oprusent on all nucleated cells (2) specialize in presenting ontigens that oniginate from the eybood, like vired proteins
Class II MHC modecules (1) present only on APCs (2) specialise in presenting outliges from extracellulor spaces that have been engulfed by this cell
1. participale in both cellular 4 humanal responses 2. genes present in the 6 9 n human 4 17 in mice
Nucleated cells
CA T Adde
(RBCs)
APC APC
Class II //

Structure & func. of MHC molecules

- three classes of MHC molecules I, II, III
- · Class I and Class II

 - 1) membrane-bound glycoproteins
 2) highly specialised antigen-presenting molecules with grooves to form
 unusually stable complexes with peptede Egands
- · Clars III
- ① unoubted molecules ② sureted proteins component of complements & inflammatory molecules We cyto Kines

Class I MHC molecules

° 45 KDA α-chain +12 KDA β₂-microglobulin ∘ α chain

- ① ×, ×, ×, × 3 90 amino ocid long each ② transmembrane domain 25 as ③ cyto plasmic anchor segment of 30 as

· B_- microg labelin

- (1) Binul en to «, domain (2) no trunsmembrane region non condently bound to «-chain

of 2 of demains

- o form a platform of eight anti-parallel beta strands spanned by two long x-helical regions
 of structure forms a deep grown on deft with long x-helices as sides & B-strands
 of B-sheet at bottom

 Genough to bind peptide of 8-10 amino acids

03 domain à B-movoglobulin

- o arranged into 16-plated sheets (immunoglobulin fold) o of z is highly conserved among MHC class I molecules → binds to CDS

All of these molecules are essential to the proper folding and expression of the MHC peptide complex on cell surface. (Daudi cell experiment)

Class I MHC molecules

* two different polypeptide chaîns
° 33 KDa x-chain ° 28 KDa Bohain

* has external domaine, transmembrane & cytoplasmic region

o α, f β, close to membrane; bear immunoglobulin growne like α, /β, microglob

«, & β, domains form paptick binding grown for processed antigen—thus similar, but still different because it is encoded by two different proteins instead of one

class II melecules form our open pocket - because it lacks class I conserved sequences that bind to terminal amino acids of peptides 4 binds peptides 13-18 or long

Peromiscuity of Class I & I molecules

- o broad specificity of Birding unlike TCR on autiloody o A single MHC molecule can find several autigenic peptides I some peptides can find to several different MHC molecules
- o association of MHC paptide is very stable under physiological conditions

Class I MHC-peptide interaction

· endogenous procesing pathway - peptides desired from endogenous intracellular prating

transported to ER

interaction with class I MHC

- · each cell expresses several wrique MK class I molecules, each with different peptide promisculty rules set of MHC class I alleles inherited determines which specific peptide fragments from a larger protein will get expressed.
- · characteristics of bound peptides isolated from MHC Class I molecules:

1.8-10 aa in length (mostly novamers)
2. contain sp. amino acid at specific locations along the peptide
(anchon residues)

side chains of anchon amino acids are complementary with the surface features of the binding grove, allowing diverse peptides with different sequences but with the anchon sites.

anchon sites are different for different class I variants

→ anchons are generally hydropholic rusidues with a carbony-terminal

How do they interact? Anchor residues at both ends of the puplide are bronied deep within the birding grown, holding the peptide family in place (nonamers Bird preferentially)

The main contacts between amino acids of class I MHC molecules involve residue (2) at the amino terminal end of residue (9) at the C-terminus end, rest arches away from the floor of the groove, allowing slightly longer on shorter peptides to be accommodated of direct interaction with TCR

Class I MHC - pepfide interaction

· class II MHC molecules bind and present peptides to CDI T cells - can bind a variety of

· peptides are typically derived from exogenous pathway - either from self-membrane bound proteins, on toneign proteins internalised via phagocytosis on receptor mediated endocytosis & then processed via exogenous pathway.

Peptide-binding govore open at both ends	
allows longer peptides (13-1800) to Bird	
• • • • • • • • • • • • • • • • • • •	
peptides bound to MHC class I molecules mountain moughly constant plevation on floor of the binding gnoove	- the
thou of the binding groove	
•	
o central come of 13 on necessary for binding	
o conserved sequence metits and not conserved anchor nesidues	ــــــــــــــــــــــــــــــــــــــ
- hydrogen bonds b/w peptide budbone and binding groom distributed throughou	a
Binding site and not at the ends like in 1.	
o internal sequence of 7-10 amino acids-major contact points o arromatic/hydropholoic sequence at N-terminus and 3 additional hydropholo	0
residues at C terminal end of the peoplide	10
seedow on the paper.	
Points to remember:	
1) Each MHC molecule how only (1) binding site	
2 membrane-bound, Tell-interaction requires cell-cell contact	
3 mature Tells must have a TCR that recognises peptide bound to MHC	
4) cytokines (esp., interferent) increase level of expression of MHC	
5 polymorphism of MHC B required for survival of speaks	
MHC peptide binding away	
edetection of MHC-peptide	
* Cletection of MHC-paptide * Rate aways and cell assay	
	01/
" measures how well a specific peptide binds to a MHC molecule (affinity of peptide	ide)
D Dalos La A V Change . H Lellad - and de Lo de To Allia	~ <u>+</u>
Thorescence I distussation 43 say when I more scenary labelled peptide Diras to MHC.) 45
Fluorescence Polorisation Assay - When fluorescently labelled peptide birds to MHC rotation slows, rusulting in an increase in fluores	· Cerce
FITSA-Based assay-peptides are incubated with soluble MHC molecules, and bine is detected using antibodies specific to the peptide-MHC com	dina
is detected using entitled in a clic to the pertited - MHC com	nden
The paper of the p	T
· determines the proliferation of Talls or the autokine-secretion but calle in the	٩
· determines the proliferation of Talls or the cytokine-secreting by Talls in the presence of potentially immunogenic peptides	

Cellular Expression of MHC molecules

MHC Class I expression

- → expressed constitutively on all nucleated cells of the body, however level of expression differs among cells differe among cells
- → highest levels of class I molecules found on symphocytes, while hep ab cytes, fibroblasts, etc., express very low levels

 → low levels of expression to a litates relative success of liver transplants by reducing the welchood of graft rejection
- → MHC I molecules in non-infected cells display self peptide, in virus-infected cells self-peptide + viral peptide

MHC Class II expression

- → found only on professional APCs, sometimes only after an inducing event → level of expression varies among APCs depending on stage of differentiation on level of activation
- B cells, macrophages, fibroblasts, astrocytes, endothelial cells 4 epithelial cells

Regulation of MHC expression

- · lass I and class I MHC genes: flanked by 5 promoter sequences—that bind to sequence specific transcription factor
- · transcriptional regulation of MHC is mediated by both positive 4 negative elements
- ex, CIITA (A class II MHC transcriptional activator) and RFX-5 can bind to promoter region of MHCII
- · separate exons encode a region of the class I and I proteins

Cytokines

- · interferen (x, b, r)
- *TNFs increase the expression of class I MHC molecule
- "IFN- → also induces expression of class I MHC molecules

 → induces CIITA indurectly to activate class 11 MHC expression on a

 Variety of cells (done with II4)

