Lecture 33 Transformations of Stress (I)

Augstin Louis Cauchy (1787-1857)

Cauchy Stress Tensor,

$$\sigma_{\mathbf{n}} \qquad (2D) \quad \boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} & \tau_{xy} \\ \tau_{yx} & \sigma_{yy} \end{bmatrix}$$

 $(3D) \quad \boldsymbol{\sigma} = \left[\begin{array}{cccc} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{array} \right]$

In Lecture 18:

We shall prove this!

Proof of Cauchy Theorem

 θ is an angle between n-x or t-y;

Step 1:
$$\sum F_n = 0$$
;

$$\sigma_n dA - \sigma_x \cos\theta (dA \cos\theta)$$

$$-\tau_{xy}\sin\theta(dA\cos\theta)$$

$$-\tau_{yx}\cos\theta(dA\sin\theta)$$

$$-\sigma_u \sin\theta (dA\sin\theta) = 0$$

$$\sigma_n = \sigma_x \cos^2 \theta + 2\tau_{xy} \cos \theta \sin \theta + \sigma_y \sin^2 \theta$$

Consider

$$\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta) \quad \sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta) \quad 2\cos \theta \sin \theta = \sin 2\theta$$

We have

$$\sigma_n(\theta) = \frac{1}{2} \left(\sigma_x + \sigma_y \right) + \frac{1}{2} \left(\sigma_x - \sigma_y \right) \cos 2\theta + \tau_{xy} \sin 2\theta \quad (1)$$

$$dA\cos\theta$$
 $dA\cos\theta$
 $dA\cos\theta$

Step 2: $\sum F_t = 0$

$$\tau_n dA + \sigma_x \sin \theta (dA \cos \theta) - \tau_{xy} \cos \theta (dA \cos \theta) + \tau_{xy} \sin \theta (dA \sin \theta) - \sigma_y \cos \theta (dA \sin \theta) = 0$$

$$\tau_n = -\sigma_x \sin\theta \cos\theta + \sigma_y \sin\theta \cos\theta + \tau_{xy} (\cos^2\theta - \sin^2\theta)$$

$$\tau_n(\theta) = -\frac{\sigma_x - \sigma_y}{2}\sin 2\theta + \tau_{xy}\cos 2\theta \tag{2}$$

$$\sigma_n(\theta) = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \qquad (1)$$

Summary

$$\sigma_n(\theta) = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \qquad (1)$$

$$\tau_n(\theta) = -\frac{\sigma_x - \sigma_y}{2}\sin 2\theta + \tau_{xy}\cos 2\theta \tag{2}$$

At which θ , $\sigma_n \rightarrow \sigma_{max}$? $\tau_n \rightarrow \tau_{max}$?

To find σ_{max} or σ_{min} , we take the derivative of σ_n with θ ,

$$\sigma_{n}(\theta) = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \qquad (1)$$

$$\frac{d\sigma_{n}}{d\theta} \Big|_{\theta_{p}} = -(\sigma_{x} - \sigma_{y}) \sin 2\theta + 2\tau_{xy} \cos 2\theta = \cot 2\theta_{p} = \frac{\tau_{xy}}{(\sigma_{x} - \sigma_{y})/2}, \quad (*1)$$

$$R = \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}} \qquad \sin 2\theta_{p} = \frac{\tau_{xy}}{R}$$

$$\cos 2\theta_{p} = \frac{\sigma_{x} - \sigma_{y}}{2R}$$

$$\sigma_{1} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \left(\frac{\sigma_{x} - \sigma_{y}}{2R}\right) + \tau_{xy} \frac{\tau_{xy}}{R}$$

$$\sigma_n(\theta) = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \qquad (1)$$

$$\sigma_1 = \frac{\sigma_x + \sigma_y}{2} + R, \quad \tan 2\theta_p = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2},$$
 (*1)

Remarks:

The range of θ_p is: $0 \le 2\theta_p \le 2\pi$; Eq. (*1) has two solutions:

$$\tan 2\theta_p = \tan(2\theta_p + \pi) = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2}$$

We know that

$$\sin(2\theta_p + \pi) = -\sin 2\theta_p = -\frac{\tau_{xy}}{R}, \quad \cos(2\theta_p + \pi) = -\cos 2\theta_p = -\frac{(\sigma_x - \sigma_y)/2}{R},$$

Substituting them to (1), we have

$$\sigma_2 = \frac{\sigma_x + \sigma_y}{2} - \frac{(\sigma_x - \sigma_y)}{2} \frac{(\sigma_x - \sigma_y)/2}{R} - \tau_{xy} \frac{\tau_{xy}}{R}$$

$$\theta_p + \pi/2 \longleftrightarrow \sigma_2 = \frac{\sigma_x + \sigma_y}{2} - R$$

Substituting

sintuting
$$\sin(2\theta_p) = \frac{\tau_{xy}}{R}, \quad \cos(2\theta_p) = \frac{(\sigma_x - \sigma_y)/2}{R},$$
into
$$\tau_n(\theta) = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

$$\tau_n(\theta_s) = -\frac{\sigma_x - \sigma_y}{2} \frac{\tau_{xy}}{R} + \tau_{xy} \frac{\sigma_x - \sigma_y}{2R} = 0!$$
(2)

Therefore, the definition of the principal planes is:

The principal planes are the planes on which shear stresses are zero.

Note that when you first get the value from the following equation,

$$\tan 2\theta_p = \tan(2\theta_p + \pi) = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2}, \qquad 0 \le \theta_p \le \tau$$

We do not know the angle that we obtained is θ_p or $\theta_p + \pi/2$?

Now consider:
$$\tau_n(\theta) = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$
 (2)

To find τ_{max} or τ_{min} , we take the derivative $\phi f \tau_n$ with θ ,

$$\frac{d\tau_n}{d\theta} = -(\sigma_x - \sigma_y)\cos 2\theta - 2\tau_{xy}\sin \theta = 0$$

$$\tan 2\theta_s = -\frac{(\sigma_x - \sigma_y)/2}{\tau_{xy}},$$

Compare

$$\tan 2\theta_p = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2}$$

$$\frac{\mathbf{R}}{2\theta_p} - (\sigma_x - \sigma_y)/2$$

$$\tau_{xy}$$

tan
$$2\theta_p = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2}$$

$$\sin 2\theta_s = -\frac{(\sigma_x - \sigma_y)/2}{R}$$

$$\cos 2\theta_s = \frac{\tau_{xy}}{R}$$

$$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\tau_{max} = R$$

Remarks:

The range of θ_s is: $0 \le \theta_s \le \pi$; Eq. (*2) has two solutions:

$$\tan 2\theta_s = \tan(2\theta_s + \pi) .$$

$$\cos(2\theta_s + \pi) = -\cos 2\theta_s = -\frac{\tau_{xy}}{R}$$

$$\sin(2\theta_s + \pi) = -\sin 2\theta_s = \frac{(\sigma_x - \sigma_y)/2}{R}$$

$$\tau_n(\theta) = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta \tag{2}$$

$$\tau_n(\theta_s + \pi/2) = \tau_{min} = -\frac{\sigma_x - \sigma_y}{2R} \frac{\sigma_x - \sigma_y}{2} - \tau_{xy} \frac{\tau_{xy}}{R} = -R$$

$$\tau_{min} = -R$$

Substituting

$$\sin(2\theta_s) = -\frac{(\sigma_x - \sigma_y)/2}{R}, \quad \cos(2\theta_s) = \frac{\tau_{xy}}{R},$$

into
$$\sigma_n(\theta) = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
 (1)

$$\sigma_n(\theta_s) = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \frac{(\sigma_{xy})}{R} - \tau_{xy} \frac{(\sigma_x - \sigma_y)}{2R} = \frac{\sigma_x + \sigma_y}{2} \neq 0.$$

Therefore, the normal stresses are NOT zero on the planes on which shear stresses are zero. On the maximum shear stress plane, the normal stress is the average stress, i.e.

$$\sigma_n(\theta_s) = \frac{\sigma_x + \sigma_y}{2} = \sigma_{ave}$$

Relation between principal plane and maximum shear stress plane:

$$\tan 2\theta_p = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2} , \quad \tan 2\theta_s = -\frac{(\sigma_x - \sigma_y)/2}{\tau_{xy}}$$

$$\rightarrow 2(\theta_s - \theta_p) = \pm \frac{\pi}{2} \rightarrow \theta_s = \theta_p \pm \frac{\pi}{4}$$

$$\theta_s = \theta_p \pm \frac{\pi}{4}$$

The maximum shear stress occurs on the plane that forms a 45^{o} angle with the principal planes.

Relation between principal plane and maximum shear stress plane:

$$\tan 2\theta_p = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2} , \quad \tan 2\theta_s = -\frac{(\sigma_x - \sigma_y)/2}{\tau_{xy}}$$

$$\tan 2\theta_p = -\frac{1}{\tan 2\theta_s} \quad \to \quad \frac{\sin 2\theta_p}{\cos 2\theta_p} + \frac{\cos 2\theta_s}{\sin 2\theta_s} = 0 \quad \times \cos 2\theta_p \sin 2\theta_s \quad \to \quad \frac{\sin 2\theta_p}{\sin 2\theta_s} = 0$$

$$\sin 2\theta_s \sin 2\theta_p + \cos 2\theta_s \cos 2\theta_p = 0 \rightarrow \cos 2(\theta_s - \theta_p) = 0$$
.

$$\cos \pm \frac{\pi}{2} = 0 \quad \rightarrow \quad 2(\theta_s - \theta_p) = \pm \frac{\pi}{2} \quad \rightarrow \qquad \qquad \theta_s = \theta_p \pm \frac{\pi}{4}$$

$$heta_s = heta_p \pm rac{\pi}{4}$$

Summary

$$\sigma_1 = \frac{\sigma_x + \sigma_y}{2} + R, \quad \tan 2\theta_p = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2},$$
 (*1)

$$\sigma_2 = \frac{\sigma_x + \sigma_y}{2} - R, \quad \theta_{p2} = \theta_p + \frac{\pi}{2} \tag{*2}$$

$$\tau_n(\theta_p) = 0. \tag{*3}$$

$$\tau_{max} = R, \quad \tan 2\theta_s = -\frac{(\sigma_x - \sigma_y)/2}{\tau_{xy}}, \quad (*4)$$

$$\tau_{min} = -R, \quad \theta_{s2} = \theta_s + \frac{\pi}{2}, \tag{*5}$$

$$\sigma_n(\theta_s) = \frac{\sigma_x + \sigma_y}{2} = \sigma_{ave} . \tag{*6}$$

$$\theta_s = \theta_p \pm \frac{\pi}{4} \tag{*6}$$

Example I

For the state of plane stress shown, determine (a) the principal planes, (b) the principal stresses, (c) the maximum shearing stress and the corresponding normal stress.

SOLUTION:

• Find the element orientation for the principal stresses from

$$\tan 2\theta_p = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

• Determine the principal stresses from

$$\sigma_{\text{max,min}} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Calculate the maximum shearing stress with

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\sigma' = \frac{\sigma_x + \sigma_y}{2}$$

$$\sigma_n(\theta) = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \tag{1}$$

SOLUTION:

$$\tan 2\theta_p = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} = \frac{2(+40)}{50 - (-10)} = 1.333$$
 $2\theta_p = 53.1^\circ, 233.1^\circ$

 $\theta_p = 26.6^{\circ}, 116.6^{\circ}$

Determine the principal stresses from

$$\sigma_x = +50 \text{MPa}$$
 $\tau_{xy} = +40 \text{MPa}$ $\sigma_{y} = -10 \text{MPa}$

$$\sigma_{\text{max, min}} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$= 20 \pm \sqrt{(30)^2 + (40)^2}$$

$$\sigma_{\text{max}} = 70 \text{ MPa}$$

$$\sigma_{\text{min}} = -30 \text{ MPa}$$

$$\sigma_{\min} = 30 \text{ MPa}$$

$$B \qquad \sigma_{\max} = 70 \text{ MPa}$$

$$A \qquad \theta_p = 26.6^{\circ}$$

$$C \qquad C$$

Calculate the maximum shearing stress with

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = \sqrt{(30)^2 + (40)^2}$$

$$\sigma_x = +50 \text{MPa}$$
 $\tau_{xy} = +40 \text{MPa}$ $\sigma_x = -10 \text{MPa}$

$$au_{ ext{max}} = 50 ext{MPa}$$
 $au_{s1} = 26.6 - 45 = -18.4^{\circ}$ $au_{s2} = 26.6 + 45 = 71.6^{\circ}$

$$\theta_{s2} = 26.6 + 45 = 71.6^{\circ}$$

$$\theta_s = -18.4^{\circ}, 71.6^{\circ}$$

• The corresponding normal stress is

$$\sigma' = 20 \text{ MPa}$$

$$\tau_{max} = 50 \text{ MPa}$$

$$\sigma' = 20 \text{ MPa}$$

Applications

$$\sigma_x = -\frac{M_z y}{I_z} \quad \tau_{xy} = -\frac{V(x)Q(y)}{I_z b}$$

Stress	Principal
State	Stresses

Maximum Shear Stresses

$$\rightarrow A \leftarrow \rightarrow A \leftarrow A$$

$$-E \rightarrow E \rightarrow E$$

Opening crack is perpendicular to the maximum stress contour.

Flexural crack

Shear crack

Langer's Lines are the principal stress Trajectories on human body (skin).

langer lines

Langer's lines, Langer lines of skin tension, are topological lines drawn on a map of the human body.

They are parallel to the natural orientation of collagen fibers in the dermis, as well as the underlying muscle fibers.

Karl Langer (1819-1887)

What is the takeaway?

When you can apply the mechanic's principle to Solve practical problems, it becomes beautiful!