(19)日本国特許庁(JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

第2791422号

- (45)発行日 平成10年(1998) 8月27日

(24)登録日 平成10年(1998) 6月19日

(51) Int.Cl.\*

識別記号

G 0 2 F 1/136

500

FΙ

G02F 1/136

500

請求項の数20(全 9 頁)

(21)出願番号

特願平2-418366

(22) 出顧日

£ 77.00

平成2年(1990)12月25日

(65)公開番号

特開平4-242724

(43)公開日

平成4年(1992)8月31日

審査請求日

平成5年(1993)4月22日

審判番号

平8-8111

審判請求日

平成8年(1996)5月23日

(73)特許権者 999999999

株式会社 半導体エネルギー研究所

神奈川県厚木市長谷398番地

(72)発明者 山崎 舜平

神奈川県厚木市長谷398番地 株式会社

半導体エネルギー研究所内

合議体

審判長 豊岡 静男

審判官 東森 秀朋

審判官 横林 秀治郎

(56)参考文献 特開 平1-289917 (JP.A)

小林駿介編著 「カラー液晶ディスプレイ」 産業図書 平成2年12月14日刊

# (54) [発明の名称] 電気光学装置およびその作製方法

1

## (57) 【特許請求の範囲】

【請求項1】第1の基板および第2の基板と、

前記第1の基板と前記第2の基板の間に設けられた電気 光学変調層と、

前記第1の基板上に設けられた複数の薄膜トランジスタと、

前記第1の基板上に設けられ、マトリクス配列され、前記TFTのゲート電極に接続されたX方向配線と、前記TFTのソース電極またはドレイン電極の一方に接続されたY方向配線とで構成される電極と、

前記X方向配線に電気信号を供給する、前記X方向配線に接続された第1の手段と、

前記Y方向配線に電気信号を供給する、前記Y方向配線 に接続された第2の手段とで構成され、

前記第1の手段と前記第2の手段の少なくとも一方は、

2

前記第1の基板に設けられた他の薄膜トランジスタと、 前記第1の基板に設けられた少なくとも一つの半導体チップとを含み、

前記半導体チップに設けられた回路と、前記他の薄膜トランジスタで構成される回路は、異なる機能を有し、前記複数の薄膜トランジスタの少なくとも一つと、前記他の薄膜トランジスタは、結晶性シリコン層を有していることを特徴とする電気光学装置。

【請求項2】請求項1において、前記第1の基板は絶縁 の 表面を有する基板であることを特徴とする電気光学装 置。

【請求項3】請求項1において、前記第1の基板はガラス基板であることを特徴とする電気光学装置。

【請求項4】請求項1において、前記半導体チップに設けられた回路は、アンブ機能を有するものであることと

(2)

特許-2791422

3

を特徴とする電気光学装置。

【請求項5】請求項1において、前記他の薄膜トランジスタで構成される回路は、アナログスイッチアレーを含むものであることを特徴とする電気光学装置。

【請求項6】請求項1において、前記他の薄膜トランン ジスタは、前記複数の薄膜トランジスタと同じプロセス で作製されることを特徴とする電気光学装置。

【請求項7】請求項1において、前記複数の薄膜トランシスタの各々のソースおよびドレイン電極のうち、前記列線に接続されていないものには、画茶電極が設けられ 10 ていることを特徴とする電気光学装置。

【請求項8】請求項1において、電気光学変調層は、液晶であることを特徴とする電気光学装置。

【請求項9】一対の基板と、

前記一対の基板間に設けられた電気光学変調層と、

前記基板の一方の上の各画素に設けられた複数の薄膜半 導体スイッチング素子と、

前記一方の基板上に設けられ、マトリクス状に配置された電極と、

前記薄膜半導体スイッチング素子を前記電極を介して駆 20 動する周辺回路とで構成され、

前記周辺回路は、前記一方の基板上に設けられた少なくとも1つのICチップと前記一方の基板上に設けられた相補型構成の薄膜トランジスタを有し、

前記ICチップに設けられた回路と、前記相補構成の薄膜トランジスタで構成される回路は、異なる機能を有することを特徴とする電気光学装置。

【請求項10】請求項9において、前記一方の基板は絶 縁表面を有する基板であることを特徴とする電気光学装 置。

【請求項11】請求項9において、前記第1の基板はガラス基板であることを特徴とする電気光学装置。

【請求項12】請求項9において、前記ICチップに設けられた回路は、アンプ機能を有するものであることとを特徴とする電気光学装置。

【請求項13】請求項9において、前記相補構成の薄膜トランジスタで構成される回路は、アナログスイッチアレーを含むものであることを特徴とする電気光学装置。

【請求項14】請求項9において、前記相補型構成の薄膜トランジスタは、前記画素の前記複数の薄膜半導体スイッテング素子と同じプロセスで作製されたものであることを特徴とする電気光学装置。

【請求項15】第1の基板および第2の基板と、

前記第1の基板および第2の基板との間に設けられた電 気光学変調層と、

前記第1の基板上に形成され、前記電気光学変調層の複数の画素を画定し、X方向とY方向に配置された複数の 導電線で構成される電極と、

前記基板上の各画素に設けられた複数の薄膜半導体スイ ッチング素子と、 前記電極を介して前記薄膜半導体スイッチング素子を駆 動する周辺回路とでなり、

前記周辺回路は、前記第1の基板に設けられたICチップと、前記第1の基板に直接形成された薄膜半導体素子 とを有し、

前記 I C チップに設けられた回路と、前記薄膜半導体系 子で構成される回路は、異なる機能を有し、

前記周辺回路の前記薄膜半導体素子は、前記画素の薄膜 半導体スイッチング素子と同じプロセスで作製されたも のであることを特徴とする電気光学装置。

【請求項16】請求項15において、前記第1の基板は 絶縁表面を有する基板であることを特徴とする電気光学 装置。

【請求項17】請求項15において、前記第1の基板は ガラス基板であることを特徴とする電気光学装置。

【請求項18】請求項15において、前記ICチップに 設けられた回路は、アンプ機能を有するものであること とを特徴とする電気光学装置。

【請求項19】請求項15において、前記薄膜半導体ス 20 イッチング素子で構成される回路は、アナログスイッチ アレーを含むものであることを特徴とする電気光学装 置。

【請求項20】請求項15において、前記ICチップは 補助基板により支持されていることを特徴とする電気光 学装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は薄膜トランジスタを用いて形成される液晶表示装置に関する。

30 [0002]

【従来の技術】OA機器等のディスプレイとしてCRTに代わりフラットディスプレイが注目され、特に大面積化への期待が強くなってきている。またフラットディスプレイのその他の応用として壁掛けTVの開発も急ピッチで進められている。また、フラットディスプレイのカラー化、高精細化の要求も相当高まってきている。

【0003】このフラットディスプレイの代表例として 液晶表示装置が知られている。これは一対のガラス基板 間に電極を挟んで保持された液晶組成物に電界を加え

びて、液晶組成物の状態を変化させ、この状態の違いを利用して、表示を行う。この液晶の駆動のために薄膜トランジスタ(以下TFTという)やその他のスイッチング素子を設けたものや単純にマトリクス構成を持つものがある。何れの場合も、縦横(X、Y)方向の各配線に対して液晶を駆動するための信号を送り出すドライバー回路がディスプレイ周辺に設けられている。

【0004】このドライバー回路は通常は単結晶シリコンのMOS集積回路(JC)で構成されている。このJCには各ディスプレイ電極に対応するバッド電極が設け 50 られており、この両者の間にプリント基板が介在し、先 10

ず1Cのパッド電極とプリント基板を接続し、次にプリ ント基板とディスプレイを接続していた。このプリント 基板はガラスエポキシや紙エポキシの絶縁物基板または フレキシブルなプラステイックよりなる基板であり、そ の占有面積はディスプレイと同じかまたはそれ以上の面 **碩が必要であった。また、同様に容積も相当大きくする** 必要があった。

## [0005]

رخ چې څې

【発明が解決しようとする課題】このような従来のディ スプレイは前述のような構成のため以下のような欠点を 有していた。

【0006】すなわち、①マトリクス配線のX方向、Y 方向の表示電極またはソース(ドレイン)配線またはゲ ート配線の数と同数の接続がプリント基板との間で行わ れるために、実装技術上接続可能な各接続部間の間隔に 制限があるために、高精細な表示ディスプレイを作製す ることはできなかった。

【0007】②表示ディスプレイ本体以外にプリント基 板、ICおよび接続配線が必要であり、その必要面積お よび必要容積はディスプレイ本体の数倍にも及んでい た.

【0008】③ディスプレイ本体とプリント基板および プリント基板とICとの接続箇所が多く、しかも、かな りの重量があるので接続部分に無理な力が加わり、接続 の信頼性が低かった。

【0009】 一方、このような、欠点を解決する方法と して、ディスプレイ特にアクティブ案子をスイッチング 素子として使用した表示装置において、アクティブ案子 と周辺回路とを同じ基板上にTFTで構成することが提 案されている.しかしながらこの構成によると前述の3 つの欠点はほぼ解決することができるが、新たに以下の ような別の問題が発生した。

【0010】④アクティブ素子以外に周辺回路をもTF T化した為に、同一基板上に形成する素子の数が増し、 TFTの製造歩留りが低下した。従ってディスプレイの 製造歩留りも低下した。

【0011】⑤アクティブ秦子部分の素子構造に比べ周 辺回路部分は非常に複雑な素子構造を取っている。従っ て、回路パターンが複雑になり、製造プロセス技術もよ り高度になり、コストが上昇する。また、当然に多層配 40 線部分が増し、プロセス工程数の増加とTFTの製造歩 留りの低下が起こった。

【0012】⑥周辺回路を構成するトランジスタは早い 応答速度が要求されるため、通常は多結晶半導体を使用 していた。そのため、半導体層を多結晶化するために、 髙温の処理を必要とし、髙価な石英基板等を使用しなけ ればならなかった。

### (00131

【発明の構成】本発明は上記のような6つ問題を適度に バランスよく解決するものであり、コストが低く、製造 50

6

歩留りの高い液晶表示装置に関するものである。

【0014】すなわち、複数のゲート線、複数のソース (ドレイン) 線および相補型構成の薄膜トランジスタを 有する画素マトリクスが形成された第1の基板と前記第 1の基板に対抗して配置された第2の基板と前記一対の 基板間に保持された液晶組成物よりなる液晶表示装置で あって、前記第1の基板上に形成されるXまたはY方向 のマトリクス配線に接続されている周辺回路のうちの少 なくとも一部の周辺回路を前記画素に接続されたアクテ ィブ素子と同様の相補型構成として、同一のプロセスで 形成された薄膜トランジスタとし、残りの周辺回路は半 導体チップで構成されているものであります。

【0015】また、TFT化しない残りの周辺回路とし てのICと基板との接続はICチップを直接基板上に設 けて、各接続端子と接続するCOG法やICチップを1 個毎にフレキシブルな有機樹脂基板上に設け、その樹脂 基板とディスプレイ基板とを接続しするTAB法によ り、実現できる。

【0016】すなわち、本発明は液晶表示装置の周辺回 路の全てをTFT化するのでなく、素子構造の簡単な部 分のみ、または素子数の少ない機能部分のみ、または汎 用のICが入手しにくい回路部分のみ、さらにはICの コストが高い部分のみをTFT化して、液晶表示装置の 製造歩留りを向上させるとともに、製造コストを下げる ことを目的とするものであります。

【0017】また、周辺回路の一部をTFT化すること により、従来では相当な数が必要であった外付けのIC の数を減らし、製造コストを下げるものであります。

【0018】さらにまた、アクティブ素子と周辺回路を 同じプロセスにて作成した相補型構成 (CTFT) の薄 膜トランジスタとしたので、画素駆動の能力が向上し、 周辺回路に冗長性を与えることができ、余裕のある液晶 表示装置の駆動を行うことができた。

【0019】また、周辺回路全部をTFT化するとディ・ スプレイ用の基板の寸法をX方向およびY方向の両方に 大きくする必要があり表示装置全体の専有面積が大きく なるが、一部のみをTFT化するとほんの少しだけ基板 を大きくするだけですみ、表示装置を使用するコンピュ ーターや装置の外形寸法に容易にあわせることができか つ専有面積と専有容積の少ない表示装置を実現できる。

【0020】周辺回路中の素子構造が複雑である部分、 例えば、多層配線が必要な素子構造やアンプの機能を持 たせた部分等をTFT化するのに高度な作製技術が必要 になるが、一部をTFT化することで、技術的に難しい 部分は従来のICを使用し、簡単な素子構造あるいは単 純な機能の部分をTFT化でき、低コストで高い歩留り で表示装置を実現できる。

【0021】また、一部のみTFT化することで、周辺 回路部分の薄膜トランジスタの数を相当減らすことがで きる、単純にX方向、Y方向の周辺回路の機能が同じ場

7

FROM 001-5714342916=RIPLO

合はほぼその数は半数となる。このように、TFT化する素子数を減らすことで、基板の製造歩留りを向上させることができ、かつ基板の面積、容積を減少できた表示装置を低コストで実現することが可能となった。

【0022】さらに、TFTに使用される半導体層を従来から使用されている、多結晶またはアモルファス半導体ではなく、新しい概念のセミアモルファス半導体を使用することで、低温で作製ができ、しかも、キャリアの移動度の非常に大きい、応答速度の早いTFTを実現することができる。

【0023】このセミアモルファス半導体とは、LPC VD法、スパッタ法あるいはPCVD法等により膜形成 の後に熱結晶化処理を施して得られるが、以下にはスパ ッタ法を例にとり説明をする。

【0024】すなわちスパッタ法において単結晶のシリコン半導体をターゲットとし、水素とアルゴンとの混合気体でスパッタをすると、アルゴンの重い原子のスパッタ(衝撃)によりターゲットからは原子状のシリコンが離れ、被形成面を有する基板上に飛しょうするが、同時に数十~数十万個の原子が固まった塊がクラスタとしてターゲットから離れ、被形成面に飛しょうする。

【0025】この飛しょう中は、水素がこのクラスタの外周辺の珪素の不対結合手と結合し、結合した状態で被形成面上に秩序性の比較的高い領域として作られる。すなわち、被膜形成面上には秩序性の高い、かつ周辺にSiーH結合を有するクラスタと純粋のアモルファス珪素との混合物の状態を実現する。これを450  $\mathbb C$   $\mathbb$ 

【0026】この結合はお互い引っぱりあうと同時に、 秩序性の高いクラスタはより高い秩序性の高い状態、す なわち結晶化に相を移そうとする。しかし、隣合ったク ラスタ間は、互いに結合したSi-Siがそれぞれのク ラスタ間を引っぱりあう。その結果は、結晶は格子歪を 持ちレーザラマンでの結晶ピークは単結晶の520cm-1より低波数側にずれて測定される。

【0027】また、このクラス夕間のSi-Si結合は 互いのクラスタをアンカリング(連結)するため、各ク ラスタでのエネルギバンドはこのアンカリングの個所を 経て互いに電気的に連結しあえる。そのため結晶粒界が キャリアのバリアとして働く多結晶シリコンとは根本的 に異なり、キャリア移動度も $10\sim200\,\mathrm{cm}^2/\mathrm{VS}$  $e\,\mathrm{c}$ を得ることができる。

【0028】つまり、かるる定義に基づくセミアモルファス半導体は見掛け上結晶性を持ちながらも、電気的には結晶粒界が実質的にない状態を予想できる。もちろん、アニール温度がシリコン半導体の場合の450℃~700℃という中温アニールではなく、1000℃またはそれ以上の結晶成長をともなう結晶化をさせる時はこ 50

の結晶成長により、膜中の酸素等が粒界に折出し、バリアを作ってしまう。これは、単結晶と同じ結晶と粒界のある材料(多結晶)である。

8

【0029】また、この半導体におけるクラスタ間のアンカリングの程度をより大きくすると、よりキャリア移動度は大きくなる。このためにはこの腹中にある酸素量を $7\times10^{19}$  cm $^{-3}$ 以下にすると、さらに600℃よりも低い温度で結晶化ができるに加えて、高いキャリア移動度を得ることができる。

[0030]

【実施例1】本実施例では図1に示すようなm×nの回路構成の液晶表示装置を用いて説明を行う。すなわち図1のX方向の配線に接続された周辺回路部分のうちアナログスイッチアレー回路部分1のみを画素6に設けられたアクティブ素子と同様にTFT化5し、Y方向配線に接続された周辺回路部分もアナログスイッチアレー回路部分2のみをTFT化しその他の周辺回路部分はIC4で、COG法により基板に接続している。ここで、TFT化した周辺回路部分は画素に設けられたアクティブ素子と同様にCTFT(相補型構成)として形成してある。

【0031】この回路構成に対応する実際の電極等の配置構成を図2に示している。図2は説明を簡単にする為2×2に相当する部分のみ記載されている。

【0032】まず、本実施例で使用する液晶表示装置上のTFTの作製方法を図3を使用して説明する。図3

(A) において、石英ガラス等の高価でない700℃以下、例えば約600℃の熱処理に耐え得るガラス50上にマグネトロンRF(高周波)スパッタ法を用いてプロッキング層51としての酸化珪素膜を1000~3000Aの厚さに作製する。プロセス条件は酸素100%雰囲気、成膜温度15℃、出力400~800W、圧力0.5 Paとした。ターゲットに石英または単結晶シリコンを用いた成膜速度は30~100A/分であった。【0033】この上にシリコン膜をLPCVD(減圧気相)法、スパッタ法またはプラズマCVD法により形式した。減圧気相法で形成する場合、結晶化温度よりも100~200℃低い450~550℃、例えば530℃でジシラン(Si2H6)またはトリシラン(Si3H8)をCVD芸費に供給して成時した。反応炉内圧力は

8) をCVD装置に供給して成膜した。反応炉内圧力は  $30\sim300$  Paとした。成膜速度は  $50\sim250$  A/分であった。NTFTとPTFTとのスレッシュホールド電圧(Vth)に概略同一に制御するため、ホウ素をジポランを用いて  $1\times10^{15}\sim1\times10^{18}$  cm $^{-3}$  の濃度として成膜中に添加してもよい。

34 3 m

た。成膜温度は150℃、周波数は13.56MHz、 スパッタ出力は400~800W、圧力は0、5Paで あった.

【0035】プラズマCVD法により珪素膜を作製する 場合、温度は例えば300℃とし、モノシラン(SiH 4) またはジシラン (Si2H6) を用いた。これらを PCVD装置内に導入し、13.56MHzの高周波電 力を加えて成膜した。

【0036】これらの方法によって形成された被膜は、 酸素が5×10<sup>21</sup>cm<sup>-3</sup>以下であることが好まし い。この酸素濃度が高いと、結晶化させにくく、熱アニ ール温度を高くまたは熱アニール時間を長くしなければ ならない。また少なすぎると、バックライトによりオフ 状態のリーク電流が増加してしまう。そのため4x10 <sup>19</sup>~4×10<sup>21</sup>cm<sup>-3</sup>の範囲とした。水素は4×  $10^{20}\,\mathrm{cm}^{-3}$ であり、珪素 $4\times10^{22}\,\mathrm{cm}^{-3}$ と して比較すると1原子%であった。また、ソース、ドレ インに対してより結晶化を助長させるため、酸素濃度を  $7 \times 10^{19} \, \text{cm}^{-3}$ 以下、好ましくは $1 \times 10^{19} \, \text{c}$ m<sup>-3</sup>以下とし、ピクセル構成するTFTのチャネル形 成領域のみに酸素をイオン注入法により5×10<sup>20</sup>~  $5 \times 10^{21} \, \mathrm{cm}^{-3}$ となるように添加してもよい。そ の時周辺回路を構成するTFTには光照射がなされない ため、この酸素の混入をより少なくし、より大きいキャ リア移動度を有せしめることは、高周波動作をさせるた める有効である。

【0037】次に、アモルファス状態の珪素膜を500 ~5000人、例えば1500人の厚さに作製の後、4 50~700℃の温度にて12~70時間非酸化物雰囲 気にて中温の加熱処理、例えば水素雰囲気下にて600 ℃の温度で保持した。珪素膜の下の基板表面にアモルフ ァス構造の酸化珪素膜が形成されているため、この熱処 理で特定の核が存在せず、全体が均一に加熱アニールさ れる。即ち、成膜時はアモルファス構造を有し、また水 素は単に混入しているのみである。

【0038】アニールにより、珪素膜はアモルファス構 造から秩序性の高い状態に移り、一部は結晶状態を呈す る。特にシリコンの成膜後の状態で比較的秩序性の高い 領域は特に結晶化をして結晶状態となろうとする。しか されるため、珪素同志は互いにひっぱりあう。レーザラ マン分光により測定すると単結晶の珪素のピーク522 cm<sup>-1</sup>より低周波側にシフトしたピークが観察され る。それの見掛け上の粒径は半値巾から計算すると、5 0~500Aとマイクロクリスタルのようになっている が、実際はこの結晶性の高い領域は多数あってクラスタ 構造を有し、各クラスタ間は互いに珪素同志で結合(ア ンカリング)がされたセミアモルファス構造の被膜を形 成させることができた。

【0039】結果として、被膜は実質的にグレインパウ 50

ンダリ(以下GBという)がないといってもよい状態を 呈する。キャリアは各クラスタ間をアンカリングされた 個所を通じ互いに容易に移動し得るため、いわゆる**GB** の明確に存在する多結晶珪素よりも高いキャリア移動度 となる。即ちホール移動度 (μh) = 10~200cm <sup>2</sup>/VSec、電子移動度(μ e)=15~300cm <sup>2</sup>/VSecが得られる。

10

【0040】他方、上記の如き中温でのアニールではな く、900~1200℃の高温アニールにより被膜を多 10 結晶化すると、核からの固相成長により被膜中の不純物 の偏析がおきて、GBには酸素、炭素、窒素等の不純物 が多くなり、結晶中の移動度は大きいが、GBでのバリ ア(障壁)を作ってそこでのキャリアの移動を阻害して しまう。結果として10cm<sup>2</sup>/Vsec以上の移動度 がなかなか得られないのが実情である。即ち、本実施例 ではかくの如き理由により、セミアモルファスまたはセ ミクリスタル構造を有するシリコン半導体を用いてい

【0041】図3(A)において、珪素膜を第1のフォ トマスク①にてフォトエッチングを施し、PTFT用の 領域22(チャネル巾20μm)を図面の右側に、NT FT用の領域13を左側に作製した。

【0042】この上に酸化珪素膜をゲイト絶縁膜として 500~2000 A 例えば1000 A の厚さに形成し た。これはプロッキング層としての酸化珪素膜の作製と 同一条件とした。この成膜中に弗素を少量添加し、ナト リウムイオンの固定化をさせてもよい。

【0043】この後、この上側にリンが1~5×10 <sup>2 1</sup> c m <sup>- 3</sup> の濃度に入ったシリコン膜またはこのシリ コン膜とその上にモリブデン (Mo)、タングステン (W), MoSi2またはWSi2との多層膜を形成し た。これを第2のフォトマスク②にてパターニングして 図3 (B) を得た。PTFT用のゲイト電極55、NT FT用のゲイト電極56を形成した。例えばチャネル長 10μm、ゲイト電極としてリンドープ珪素を0.2μ m、その上にモリブデンを 0. 3 μmの厚さに形成し 図3 (C) において、フォトレジスト57をフォ トマスク③を用いて形成し、PTFT用のソース59ド レイン58に対し、ホウ素を $1\sim5\times10^{15}$ cm $^{-2}$ しこれらの領域間に存在する珪素により互いの結合がな 40 のドーズ量でイオン注入法により添加した。 次に図3 (D) の如く、フォトレジスト61をフォトマスク@を 用いて形成した。NTFT用のソース64、ドレイン6 2としてリンを1~5×10<sup>15</sup>cm<sup>-2</sup>のドーズ量で イオン注入法により添加した。

> 【0044】これらはゲイト絶縁膜54を通じて行っ た。しかし図3(B)において、ゲイト電極55、56 をマスクとしてシリコン膜上の酸化珪素を除去し、その 後、ホウ素、リンを直接珪素膜中にイオン注入してもよ 61.

【0045】次に、600℃にて10~50時間再び加

11

熱アニールを行った。 PTFTのソース 5 9、ドレイン 5 8 NTFTのソース 6 4、ドレイン 6 2 を不純物を活性化して  $P^+$ 、  $N^+$  として作製した。 またゲイト電極 5 5、5 6 下にはチャネル形成領域 6 0、6 3 がセミアモルファス半導体として形成されている.

【0046】かくすると、セルフアライン方式でありながらも、700℃以上にすべての工程で温度を加えることがなくC/TFTを作ることができる。そのため、基板材料として、石英等の高価な基板を用いなくてもよく、本発明の大画案の液晶表示装置にきわめて適したプロセスである。

【0047】本実施例では熱アニールは図3 (A)、

(D) で2回行った。しかし図3 (A) のアニールは求 める特性により省略し、双方を図3 (D) のアニールに より兼ね製造時間の短縮を図ってもよい。図4 (A) に おいて、層間絶縁物65を前記したスパッタ法により酸 化珪素膜の形成として行った。この酸化珪素膜の形成は LPCVD法、光CVD法、常圧CVD法を用いてもよ い、例えば0、2~0、6μmの厚さに形成し、その 後、フォトマスク⑤を用いて電極用の窓66を形成し た。さらに、これら全体にアルミニウムをスパッタ法に より形成し、リード71、72およびコンタクト67、 68をフォトマスク⑥を用いて作製した後、表面を平坦 化用有機樹脂69例えば透光性ポリイミド樹脂を塗布形 成し、再度の電極穴あけをフォトマスクのにて行った。 【0048】図4(B)に示す如く2つのTFTを相補 型構成とし、かつその出力端を液晶装置の一方の画素の 電極を透明電極としてそれに連結するため、スパッタ法 によりITO(インジューム・スズ酸化膜)を形成し た。それをフォトマスク圏によりエッチングし、電極7 0を構成させた。このJTOは室温~150℃で成膜 し、200~400℃の酸素または大気中のアニールに より成就した。かくの如くにしてPTFT22とNTF T13と透明導電膜の電極70とを同一ガラス基板50 上に作製した。得られたTFTの電気的な特性はPTF Tで移動度は20 (cm<sup>2</sup>/Vs)、Vthは-5.9 (V) で、NTFTで移動度は40 (cm<sup>2</sup>/Vs)、 Vthは5.0(V)であった。

【0049】この液晶表示装置の画案部分の電極等の配置を図2に示している。NTFT13を第1の走査線15とデータ線21との交差部に設け、第1の走査線15とデータ線14との交差部にも他の画案用のNTFTが同様に設けられている。一方PTFTは第2の走査線18とデータ線21との交差部に設けられている。また、隣接した他の第1の走査線16とデータ線21との交差部には、他の画案用のNTFTが設けられている。このようなC/TFTを用いたマトリクス構成を有せしめた。NTFT13は、ドレイン64の入力端のコンタクトを介し第1の走査線15に連結され、ゲイト56は多層配線形成がなされたデータ線21に連結されている。

ソース62の出力端はコンタクトを介して画素の電極17に連結している。

【0050】他方、PTFT22はドレイン58の入力端がコンタクトを介して第2の走査線18に連結され、ゲイト55はデータ線21に、ソース59の出力端はコンタクトを介してNTFTと同様に画素電極17に連結している。かくして一対の走査線15、18に挟まれた間(内側)に、透明導電膜よりなる画案23とC/TFTとにより1つのピクセルを構成せしめた。かかる構造を左右、上下に繰り返すことにより、2×2のマトリクスをそれを拡大した640×480、1280×960

【0051】このようにスィッチング素子と同じプロセスで作製されたNTFT13とPTFT22とが設けられたCMOS構成となっている。

といった大画素の液晶表示装置とすることができる。

【0052】上記のようにして、片方の基板を完成し、他方の基板と従来よりの方法で貼り合わせ、STN液晶を基板間に注入する。次に、残りの周辺回路として、IC4を使用する。この1C4はCOGにより基板のX方のの配線およびY方向の配線の各々と接続されている。この1C4には外部から電源、データの供給の為の接続リードが各々に接続されているだけで、基板の一辺全てに接続の為のFPCが張りつけられているようなことはなく、接続部分の数が相当減り信頼性が向上する。上記のようにして、本発明の液晶表示装置を完成した。

【0053】本実施例においては、X方向側の周辺回路のうちアナログスイッチアレー部分1のみをY方向側の周辺回路のうちアナログスイッチアレー部分2のみをTFT化し、スィッチング素子と同じプロセスでC/TFT化し、残りの周辺回路部分をIC4で構成したが、特にこの構成に限定されることはなく、TFT化する際の歩留り、TFT化する際のプロセス技術上の問題等を考慮して、よりTFT化が簡単な部分のみをTFT化すればよい。

【0054】本実施例では半導体膜として、セミアモルファス半導体を使用したので、その移動度は非単結晶半導体を使用したTFTに比べて10倍以上の値が得られている。そのため、早い応答速度を必要とされる周辺の回路のTFTにも、十分使用でき、従来のように、周辺の回路のTFTを特別に結晶化処理する必要もなくアクティブ案子と同じプロセスで作成することができた。【0055】また、液晶の画素に接続されたアクティブ素子として、C/TFT構成としたので、動作マージンが拡大し、画案の電位がふらつくことはなく一定の表示レベルを確保でき、また一方のTFTが不良でも特に目

[0056]

【実施例2】本実施例の液晶表示装置の概略外観図を図 5に示す。基本的な回路等は実施例1と全く同じである。図5において、Y方向の配線に接続された周辺回路

立った欠陥表示都ならない等の利点があった。

(7)

特許-2791422

13

のうちIC4で構成されている部分は、COG法によ り、基板上に直接 I C が形成されている。この I C 4 は 基板の上下の部分に分けて設けられている。

【0057】この場合1C4のバッド電極とY方向配線 との接続にいて、ICを片側のみに形成した場合に比べ てより間隔を狭くできる。その為より高精細な表示画表 を設計できる特徴をもつ。さらに、基板上に10を設け たので、その容積は殆ど増すことがなく、より薄型の液 晶表示装置を提供することができた。

TFTはいずれもCMOS構成としたが、特にこの機成 に限定されることはなく、NTFT、PTFTのみで構 成してもよい、その場合は周辺回路の構成がより素子数 が増すことになる。

【0059】また、基板上にTFTを形成する位置をX 方向またはY方向の配線と繋がっている一方側のみでは なく、もう一方の側にもTFTを形成して、交互にTF Tを接続し、TFTの密度を半分として、TFTの製造 歩留りを向上させることを実現した。

[0060]

2

【発明の効果】本発明により、液晶表示を外部の接続技 術上の制限の為に高精細化できないことはなくなった。 また、X方向の配線またはY方向の配線と外部の周辺回 路との不要な接続を極力へらせることができたので、接 統部分での信頼性が向上した。

【0061】一部の周辺回路のみをTFT化するため、 ディスプレイ基板自身の専有面積をへらすことができ、 かつ必要とされる寸法形状に自由に基板の設計ができ る。また、TFTの製造上の問題を回避して、製造歩留 りの高い部分のみをTFT化できる。よって、製造コス 30 6・・・・・・・・画奏 トを下げることができた。

【0062】 TFTに使用する半導体膜として、セミア モルファス半導体を使用したので、周辺回路用にも十分 使用できる応答速度が得られ、アクティブ素子の作成プ ロセスのまま特別な処理をすることもなく、周辺回路用 のTFTを同時に作成することができた。

14

【0063】本発明は相補型のTFTをマトリクス化さ れた各画素に連結することにより、①しきい値の明確化

②スイッチング速度の増加 ③動作マージンの拡大 ④不良TFTが一部にあってもその補償をある程度行う ことができる。 ⑤作製に必要なフォトマスク数はNT FTのみの従来例に比べて2回多くなるのみである。⑥ 【0058】上記の実施例において、アクティブ素子の 10 キャリアの移動度がアモルファス珪素を用いた場合に比 べ10倍以上も大きいため、TFTの大きさを小さくで き、1つのピクセル内に2つのTFTをつけても開口率 の減少をほとんど伴わない。 という多くの特長を有す **3**.

> 【0064】そのため、これまでのNTFTのみを用い るアクティプTFT液晶装置に比べて、数段の製造歩留 まりと画面の鮮やかさを成就できるようになった。

【図面の簡単な説明】

【図1】実施例のm×nの回路構成の液晶表示装置を示 20 す.

【図2】実施例の液晶表示装置の画素部分の配置の様子 を示す。

【図3】 実施例のTFTの作製工程の概略を示す。

【図4】実施例のTFTの作製工程の概略を示す。...

【図5】本発明のその他の実施例を示す。

### 【符号の説明】

1、2・・・・周辺回路

4 · · · · · · · I C

5·····
TFT化した周辺回路

13 · · · · · · · NTFT

22 · · · · · · · · PTFT

(8)

特許-2791422





[図2]



特許-2791422

[図3]

(9)





