Word embeddings

Rappel Embeddings (pas Word Embeddings)

Embedding

CLASS torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None)

[SOURCE]

A simple lookup table that stores embeddings of a fixed dictionary and size.

This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings.

Est une "lookup table"

Formalisme:

- Index d'un mot: w_i
- Table d'embeddings (lookup matrix): V
- Embedding: **e**_i
- $e_i = V(w_i)$

Représentation d'un mot

Différentes possibilités:

- Vecteur One-hot
 - o *Chat.* [0,0,... 0,**1**,0,0,0,0,0,0,0,0,0]
- Vecteur de context
 - Chat. [1,0,... 0,0,0,0,0,1,0,0,1,0,0...]

(15.1) A bottle of *tesgüino* is on the table. Everybody likes *tesgüino*. *Tesgüino* makes you drunk. We make *tesgüino* out of corn.

"Chap. 15: Vector Semantics." Speech and Language Processing: an Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, by Dan Jurafsky and James H. Martin, Dorling Kindersley Pvt, Ltd., 2014.

sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first **pineapple** well suited to programming on the digital **computer**.

preserve or jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from for the purpose of gathering data and **information** necessary for the study authorized in the

"Chap. 15: Vector Semantics." Speech and Language Processing: an Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, by Dan Jurafsky and James H. Martin, Dorling Kindersley Pvt, Ltd., 2014.

	aardvark	•••	computer	data	pinch	result	sugar	
apricot	0	•••	0	0	1	0	1	
pineapple	0	•••	0	0	1	0	1	
digital	0	•••	2	1	0	1	0	
information	0	•••	1	6	0	4	0	

Figure 15.4 Co-occurrence vectors for four words, computed from the Brown corpus, showing only six of the dimensions (hand-picked for pedagogical purposes). The vector for the word *digital* is outlined in red. Note that a real vector would have vastly more dimensions and thus be much sparser.

"Chap. 15: Vector Semantics." Speech and Language Processing: an Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, by Dan Jurafsky and James H. Martin, Dorling Kindersley Pvt, Ltd., 2014.

Figure 15.5 A spatial visualization of word vectors for *digital* and *information*, showing just two of the dimensions, corresponding to the words *data* and *result*.

"Chap. 15: Vector Semantics." Speech and Language Processing: an Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, by Dan Jurafsky and James H. Martin, Dorling Kindersley Pvt, Ltd., 2014.

- Vecteurs très grands (taille du vocabulaire)
- Contiennent beaucoup de 0
- On cherche donc une manière de réduire la dimensionnalité pour:
 - Efficacité en mémoire
 - Facile d'utilisation pour des classificateurs
 - Moins de paramètres
 - Des dimensions peuvent se recouper

Décomposition en valeurs singulières

$$\begin{bmatrix} X \\ V \end{bmatrix} = \begin{bmatrix} W \\ W \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_V \end{bmatrix} \begin{bmatrix} C \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_V \end{bmatrix} \begin{bmatrix} C \\ V | \times |V| \end{bmatrix}$$

[&]quot;Chap. 15: Vector Semantics." Speech and Language Processing: an Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, by Dan Jurafsky and James H. Martin, Dorling Kindersley Pvt, Ltd., 2014.

On conserve les top *k* valeurs singulières

$$\begin{bmatrix} X \\ X \end{bmatrix} = \begin{bmatrix} W \\ W \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_k \end{bmatrix} \begin{bmatrix} C \\ k \times |V| \end{bmatrix}$$

$$|V| \times |V| \qquad |V| \times k \qquad k \times k$$

[&]quot;Chap. 15: Vector Semantics." Speech and Language Processing: an Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, by Dan Jurafsky and James H. Martin, Dorling Kindersley Pvt, Ltd., 2014.

On utilise ensuite seulement la matrice W

"Chap. 15: Vector Semantics." Speech and Language Processing: an Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, by Dan Jurafsky and James H. Martin, Dorling Kindersley Pvt, Ltd., 2014.

Méthodes à réseaux de neurones

"A weighted least squares regression model"

L'idée est de prédire le nombre de co-occurrences \mathbf{X}_{ij} (ou le log) des mots \mathbf{w}_i et \mathbf{w}_j

S'apparente à Word2Vec (ou encore FastText)

Perte =
$$\mathbf{v}(w_i) * \mathbf{v}(w_j) + b_i + b_j - \log(\mathbf{X}_{ij})$$

Perte =
$$\mathbf{v}(w_i) * \mathbf{v}(w_j) + b_i + b_j - \log(25)$$

Word2Vec

2 algorithmes:

- Skip-Gram
- CBOW (Contextual Bag of Words)

Word2Vec

CBOW

```
class CBOW(nn.Module):
    def __init__(self, vocab_size, embedding_dimension):
        super().__init__()
        self.embeddings = nn.Embedding(vocab_size, embedding_dimension)
        self.projection_layer = nn.Linear(embedding_dimension, vocab_size)

def forward(self, bow):
    embeddings = self.embeddings(bow)
    average_bow = torch.mean(embeddings, dim=1)
    logits = self.projection_layer(average_bow)
    return logits
```

CBOW

$$\sum_{t=1}^{T} \log p\left(w_t \mid C_t\right),\,$$

CBOW - Negative Sampling

CBOW - Negative Sampling

CBOW - Negative Sampling

$$\log\left(1 + e^{-s(w,C)}\right) + \sum_{n \in N_C} \log\left(1 + e^{s(n,C)}\right),\,$$

score entre un mot w et un context C

CBOW - Comment obtenir un score

Produit vectoriel entre v_c et v_w

CBOW - Comment obtenir un score

$$v_w + \frac{1}{|N|} \sum_{n \in N} x_n$$
. = ,

CBOW - Phrase Representations

 $v(New) + v(York) \approx Boston?$

CBOW - Phrase Representations

 $v(New) + v(York) \approx Issshhh?$

CBOW - Phrase Representations

New York => New_York

Démo FastText

Recap FastText

... le petit chat saute sur ...

ELMo

On le verra dans la section modèles de langue..!

Vecteurs de phrases

Comment obtenir la représentation d'une phrase?

- Prendre la moyenne des embeddings de mots
- Utiliser une idée similaire à Skip-Gram!

Idée de base:

- Étant donné un triplet de phrases (s_{i-1}, s_i, s_{i+1})
 - Encoder la phrase s_i
 - Générer les phrases s_{i-1} et s_{i+1}

Au final, on se sert de ça!

Probabilité d'avoir généré la phrase suivante

$$\sum_{t} \log P(w_{i+1}^{t} | w_{i+1}^{< t}, \mathbf{h}_{i}) + \sum_{t} \log P(w_{i-1}^{t} | w_{i-1}^{< t}, \mathbf{h}_{i})$$

Probabilité d'avoir généré la phrase précédente