計量経済 I: 宿題 3

村澤 康友

提出期限: 2025年5月27日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例の結果を正確に再現すること (乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペした場合は提出点を 0 点とし,再提出も認めない。すべての結果を Word に貼り付けて印刷し(A4 縦・両面印刷可・手書き不可・写真 不可・文字化け不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. (教科書 p. 128, 実証分析問題 5-A) gretl で回帰分析を実行する手順は次の通り:
 - (a) メニューから「モデル」→「通常の最小二乗法」を選択.
 - (b)「従属変数」を1つ選択.
 - (c)「説明変数(回帰変数)」を選択.
 - (d) $\lceil OK \rfloor$ $\varepsilon \rho U \cup \rho$.

データセット「 5_1 _income.dta」を gretl に読み込み,教科書 pp. 113-116 の 4 つの単回帰モデルの推定結果を再現しなさい.

- 2. (教科書 p. 128, 実証分析問題 5-B) データセット「5_2_sleep.dta」を gretl に読み込み, 睡眠時間 を通勤時間で説明する回帰分析を実行しなさい.
- 3. (教科書 p. 128, 実証分析問題 5-C) データセット「 5_3 abe.dta」を gretl に読み込み,安倍首相(当時)への支持感情を賃金所得で説明する回帰分析を実行しなさい.

※ただ実行して終わるのでなく、データ分析の際は、以下の点に常に注意すること:

分析前 データの数値を確認し、表・グラフ・統計量でデータの特徴を把握する.

分析後 推定値の統計的有意性・符号・大きさを確認し、分析結果を解釈する.

解答例(この解答例は古いバージョンの gretl を使用し、Word でなく \LaTeX で作成しているので、コピペすると分かります。ご注意下さい。)

係数

係数

1. (a) レベル=レベル

モデル 1: 最小二乗法 (OLS), 観測: 1–4327 従属変数: income

Std. Error t-ratio p值

Std. Error t-ratio p值

const -	-56.8928	19.3568	-2.939	0.0033	1
yeduc	23.1510	1.38425	16.72	0.0000	1
Mean dependent v	ar 263.9	9040 S.I	O. depender	nt var	176.5552
Sum squared resid	1.27e	e+08 S.I	E. of regress	ion	171.1286
R^2	0.060	0744 Ad	ljusted \mathbb{R}^2		0.060527
F(1, 4325)	279.	7095 P-	value(F)		6.85e-61
Log-likelihood	-2838	89.98 Ak	aike criterio	on	56783.96
Schwarz criterion	5679	6.70 Ha	nnan–Quin	n	56788.46

(b) ログ=レベル

モデル 2: 最小二乗法 (OLS), 観測: 1–4327 従属変数: lincome

	const	4.38520	0.100	312	43.72	0.000	0
	yeduc	0.0651801	0.007	17354	9.086	0.000	0
Mean	dependen	t var 5	.288386	S.D. d	dependen	t var	0.895150
Sum sq	quared re	sid 3	401.469	S.E. o	of regressi	on	0.886830
\mathbb{R}^2		0	.018731	Adjus	ted R^2		0.018504
F(1, 43)	325)	8	2.55861	P-valu	$\operatorname{ie}(F)$		1.53e-19
Log-lik	elihood	-5	619.064	Akaik	e criterio	n	11242.13
Schwar	z criterio	on 1	1254.87	Hanna	an–Quinr	ı	11246.63

(c) レベル=ログ

モデル 3: 最小二乗法 (OLS), 観測: 1–4327 従属変数: income

	係数	Std. E	Error t-ra	tio p値	Ĩ
const	-515.478	50.032	29 -10	.30 0.000	00
lyeduc	297.534	19.074	15	.60 0.000	00
Mean dependent	var 263	.9040	S.D. deper	ndent var	176.5552
Sum squared res	id 1.28	se+08	S.E. of reg	ression	171.8089
R^2	0.05	53262	Adjusted A	R^2	0.053043
F(1, 4325)	243	.3176	$\operatorname{P-value}(F$)	2.07e-53
Log-likelihood	-284	07.15	Akaike cri	terion	56818.29
Schwarz criterio	n 568	31.04	Hannan-C	uinn	56822.79

(d) ログ=ログ

モデル 4: 最小二乗法 (OLS), 観測: 1–4327 従属変数: lincome

Std. Error t-ratio p值

係数

	const	3.1594	7	0.2586	86	12.21	0.0000	
	lyeduc	0.8127	27	0.0986	204	8.241	0.0000	
Mean d	lependent	var	5.28	8386	S.D.	dependen	t var	0.895150
Sum sq	uared res	id	3412	2.809	S.E.	of regress	ion	0.888307
\mathbb{R}^2			0.01	5460	Adju	sted \mathbb{R}^2		0.015232
F(1, 43)	25)		67.9	1354	P-va	lue(F)		2.24e-16
Log-like	elihood	_	-5626	5.264	Akai	ke criterio	n	11256.53
Schwar	z criterior	1	1126	9.27	Hanı	nan–Quini	n	11261.03

2. 通勤時間と睡眠時間

モデル 1: 最小二乗法 (OLS), 観測: 1–3726 従属変数: sleep

	係数	Std. Error	$t\operatorname{-ratio}$	p 値
const	431.765	1.29258	334.0	0.0000
commute	-0.553002	0.0314740	-17.57	0.0000
Mean dependent	var 413.0	825 S.D. d	lependent v	var 46.67611
Sum squared resi	id 7494	253 S.E. o	f regression	44.86001
R^2	0.076	551 Adjus	ted R^2	0.076303
F(1,3724)	308.7	091 P-valı	$\operatorname{ie}(F)$	1.87e-66
Log-likelihood	-19457	7.98 Akaik	e criterion	38919.96
Schwarz criterion	n 38932	2.41 Hanna	an–Quinn	38924.39

3. 賃金所得と支持感情

モデル 1: 最小二乗法 (OLS), 観測: 1–4276 従属変数: abe

係對	汝	Std	. Error	$t ext{-ratio}$	ŗ	o 値	
const 43.437	2	0.32	7738	132.5	0.	0000	
income -0.003	05935	0.000	0928663	-3.294	0.	0010	
Mean dependent var	42.6	3681	S.D. de	pendent va	ar	14.4010	06
Sum squared resid	884	349.4	S.E. of	regression		14.3845	50
R^2	0.00	2533	Adjuste	$ed R^2$		0.00229	99
F(1,4274)	10.8	35278	P-value	e(F)		0.00099	95
Log-likelihood	-1740	66.84	Akaike	criterion		34937.6	69
Schwarz criterion	349	50.41	Hannar	n–Quinn		34942.	18