

Introduction to 6D Pose Estimation

Jikai Wang

What is 6D Object Pose Estimation?

Definition:

- 6D Object Pose Estimation is a field of computer vision and robotics that determines the position and orientation of objects in 3D space using 2D images.
- Widely used in Robotics, AR or Auto Driving.

Key Concepts

Position (3D): X, Y, Z coordinates

Orientation (3D): Roll, Pitch, Yaw (Rotation around X, Y, Z axes)

• 6 Degrees of Freedom (DoF): Combination of 3D position and 3D

orientation

Single-Frame Pose Estimation vs. Sequence Pose Tracking

- Single-Frame Pose Estimation: Determining pose from a single image.
 - Advantages: Simpler, less computationally intensive.
 - Use Cases: Static environments, one-time detection.
- Sequence Pose Tracking: Determining pose over a sequence of images.
 - Advantages: More accurate over time, handles motion and changes.
 - Use Cases: Robotics, real-time applications.

Instance-Level vs. Category-Level

- Instance-Level Pose Estimation: Recognizing and estimating pose of a specific, known object.
 - Example: Detecting a specific cup on a table.
- Category-Level Pose Estimation: Recognizing and estimating pose of objects within a category, not specific instances.
 - Example: Detecting any cup regardless of its specific appearance.

Pose

Instance-Level vs. Category-Level

- Instance-Level Pose Estimation: Recognizing and estimating pose of a specific, known object.
 - Example: Detecting a specific cup on a table.
- Category-Level Pose Estimation: Recognizing and estimating pose of objects within a category, not specific instances.
 - Example: Detecting any cup regardless of its specific appearance.

Model-based vs. Model-free

- Model-based Estimation: Uses a pre-defined 3D model of the object.
 - Advantages: High accuracy for known objects.
 - Challenges: Requires detailed models, less flexible.
- Model-free Estimation: Does not rely on a specific model, learns from data.
 - Advantages: Flexible, can handle novel objects.
 - Challenges: Requires large amounts of training data.

Seen Objects vs. Novel Objects

- **Seen Objects**: Objects that the system has encountered and learned before.
 - Use Cases: Controlled environments, industrial applications.
- **Novel Objects**: Objects that the system encounters for the first time.
 - Use Cases: Dynamic environments, consumer applications.

FoundationPose

Unified Framework

Pipeline

Neural Implicit Representation

Neural Implicit Representation

- Geometry function (Ω):
 - This function takes a 3D point (x) as input and outputs a signed distance value (s).
 - The signed distance indicates how far the point is from the object's surface.
 - A value of zero signifies the object's surface,
 - Positive and negative values represent points outside and inside the object, respectively.
- Appearance function (Φ) :
 - This function takes an intermediate feature vector $(f_{\Omega}(x))$ from the geometry network, along with the point normal (n) and view direction (d), and outputs the color (c) of the object at that point.

Large-Scale Synthetic Data Generation

Large-Scale Synthetic Data Generation

3D Model Databases:

- Objaverse (Objects Universe): 800,000 3D objects
- GSO (Google Scanned Objects): 1,030 3D objects

Large Language Models (LLMs):

- Large Language Model (LLM) refers to a type of AI model designed to understand and generate human language.
- ChatGPT: to create descriptions of the objects and their interactions with light and materials.

Diffusion Models:

- Diffusion models are a class of generative models that can progressively transform noise into realistic data.
- TexFusion: a novel method for synthesizing textures for 3D geometries using largescale text-guided image diffusion models.

This process can be iterative, where the updated pose is used to generate a new rendering, which is Pose Hypothes Rendered then compared with the cropped region for further Global pose sampling coarse pose refinement. Encoder Transformer ___ HxWxC Refined pose Conv encoder ResBlock Rotation update Shared weights Patches Transformer ___ Encoder Position encoder Translation embedding update HxWxC

Pose Refinement Network:

branches.

Extract feature maps from the two RGBD input

The feature maps are concatenated and tokenized. Predict the translation update and rotation update.

Pose conditioned input crop

Pose Selection

- After refinement, multiple candidate poses with their corresponding adjustments are available. A pose selection module is tasked with selecting the most accurate pose from this set.
- The pose with the highest score is chosen as the final estimated 6D pose of the object.

Thank You