Team G20

Amal Sony	asony
Mohd Sharique Khan	mkhan8
Siddu Madhure Jayanna	smadhur

Solution 1:

```
a) P(D,B \mid A) = P(D \mid B,A) * P(B \mid A) = P(D \mid B) * P(B) = 0.2 * 0.75 = 0.15

b) P(C) = P(C \mid A) * P(A) + P(C \mid \sim A) * P(\sim A) = 0.3 * 0.5 + 0.5 * 0.6 = 0.45

c) P(F) = P(F \mid C) * P(C \mid A) * P(A) + P(F \mid C) * P(C \mid \sim A) * P(\sim A) + P(F \mid \sim C) * P(\sim C \mid A) * P(\sim A) + P(F \mid \sim C) * P(\sim C \mid \sim A) * P(\sim A) + P(F \mid \sim C) * P(\sim C \mid \sim A) * P(\sim A) + P(F \mid \sim C) * P(\sim C \mid \sim A) * P(\sim A) + P(F \mid \sim C) * P(\sim C \mid \sim A) * P(
```

Solution 2:

767	
(2)	
6	
	2
(i)	$k(\vec{x},\vec{z}) = (1 + a \cdot \vec{x} \cdot \vec{z})$
	(Maxie)
	$\text{Lef } X = (x_1, x_2)$
	Let Z = (z, z)
	7-
	$\therefore k(\vec{X})\vec{z}) = (1 + 2(x_1 z_1 + x_2 z_2))$
	$\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right)\right)\right)$
	2
	ラK(ス,マ)=1+4(ス,マ,+カ2マ2)+4(ス,ス,+カ2マ2)
	• 7
	= 1 + 4x,2,+4x22+4 x,2,+ 2x1x2+ x222
	= 1+ 4 x, 2, + 4x22+ 4x, z, + 8 x, x22, 2 + 4 x22
	= 17 4 x, 2, 7 4x, 2, 7 4x, 2, 7 8 1, 22, 122 + 1, 22, 2
Mate/State	2 2 () () 2 2
8.	= $(1, 2x_1^2, 2x_2, 2x_1, 2x_2, 2\sqrt{2}x_1x_2) \cdot (1, 2z_1^2, 2x_2^2, 2x_2^2)$
	$2z_1, 2z_2, 2(2z_1z_2)$
	$= h(\hat{x}) \cdot o(\hat{z})$
	$= \varphi(x) \cdot \varphi(x)$
	$(1,2x_1^2,2x_2,2x_1,2x_2,2\sqrt{2}x_1x_2)$
	YC / C
	Scapped with
ICS	CamScanner

X1 = (0,1)	1	0	2	0	2	0
X2 = (0,-1)	1	0	2	0	-2	0
X3 = (1,0)	1	2	0	2	0	0
X4 = (-1,0)	1	2	0	-2	0	0

iii)

	het,
	$A = (0,1) \rightarrow \forall -$ $B = (0,-1) \rightarrow -$ $C = (1,0) \rightarrow +$ $D = (-1,0) \rightarrow +$
	We have,
	Calculating the Kesnel function values,
	Since $K(x \cdot z) = (1 + 2 \cdot x \cdot z)^2$ $K(A,A) = (1 + 2 \times 1) = 9$ $K(A,A) = (1 + 2 \times 1)^2 = 1$
	$K(A,A) = (1+2\times1) = 9$ $K(B,A) = (1+2\times-1)^{2} = 1$ $K(C,A) = (1+2\times0)^{2} = 1$ $K(C,A) = (1+2\times0)^{2} = 1$ $K(D,A) = (1+2\times0)^{2} = 1$
	$K(A,B) = (1+2x-1)^{2} = 1$ $K(B,B) = (1+2x-1)^{2} = 9$ $K(C,B) = (1+2x0)^{2} = 1$ $K(O,B) = (1+2x0)^{2} = 1$
	$K(0,B) = (1+2x0)^2 = 1$
CS	$k(A,C) = (1+2x0)^{2} = 1$ $k(B,C) = (1+2x0)^{2} = 1$ k(B,C) = (1+2x1) = 9 $k(D,C)^{her} = (1+2x-1)^{2} = 1$

	$K(A,D) = (1+2x0)^{2} = 1$ $K(B,D) = (1+2x0)^{2} = 1$ $K(C,D) = (1+2x-1)^{2} = 1$
	Equations using the SVM Constrains
	$\sum \alpha_i \gamma_i K(n_i, n) + b = 1 + (for + ve gutter)$ $\sum \alpha_i \gamma_i K(n_i, n) + b = -1 (for - ve gutter)$
	Using these Constrainty: $-9\alpha_{A} - \alpha_{B} + \alpha_{C} + \alpha_{D} + b = -1 - 2$ $-\alpha_{A} - 9\alpha_{B} + \alpha_{C} + \alpha_{D} + b = -1 - 3$
	$-\alpha_{A} - \alpha_{B} + 9\alpha_{C} + \alpha_{D} + b = 1 - 4$ $-\alpha_{A} - \alpha_{B} + \alpha_{C} + 9\alpha_{D} + b = 1 - 6$
	Solving (D, Q, B, G) & E), We have.
	$\frac{\lambda_A}{\lambda_B} = \frac{1}{8}$ $\frac{\lambda_B}{\lambda_C} = \frac{1}{8}$
CS	Scanned with CamScanger

1/00/ $\geq \langle x_i, y_i, \phi(x_i) \rangle$ 0,2,0,2,0 ,0,8,0,-2,0 1,2,0,2,0,0 1,2,0,-2,0,0 0, 1/2, -1/2,0,0,0 Decision Boundary = 2. + b 20 D.B = (0,1/2,-1/2,0,0,0)· P(R) 70 Scanned with CamScanner

Solution 3:

(i)

Linear regression form, $y = w_1x^2 + w_0$

Using least square to determine w₀ and w₁

$$\sum_{i=1}^{n} \frac{\partial}{\partial w_0} (Y_i - (W_1 X_i^2 + W_0))^2 = 0$$

$$\sum_{i=1}^{n} (Y_i - (W_1 X_i^2 + W_0)) = 0$$

On taking summations inside and solving,

W0 =
$$\frac{\sum_{i=1}^{n} (Yi - W1Xi^2)}{n}$$
 -----(1)

$$\sum_{i=1}^{n} \frac{\partial}{\partial W_1} (Y_i - (W_1 X_i^2 + W_0))^2 = 0$$

$$\sum_{i=1}^{n} (Yi - (W1Xi^2 + W0))Xi^2 = 0$$

On taking summations inside and solving,

W1 =
$$\frac{\sum_{i=1}^{n} Xi^{2}(Yi - W0)}{\sum_{i=1}^{n} Xi^{4}}$$
 -----(2)

Use W0 in W1,

W1 =
$$\frac{n \sum_{i=1}^{n} Xi^{2}Yi - \sum_{i=1}^{n} Xi^{2} \sum_{i=1}^{n} Yi}{n \sum_{i=1}^{n} Xi^{4} - (\sum_{i=1}^{n} Xi^{2})^{2}}$$

On substituting values,

W1 =
$$\frac{(3*(-7)) - ((13)*(0))}{(3*97) - (169)}$$

W1 =
$$\frac{(-21)}{(122)}$$

W1 = -0.1721

$$W0 = (0 - (-0.6889 - 1.5489) / 3$$

$$W0 = (2.2378) / 3$$

$$W0 = 0.7459$$

(ii) Calculate the training RMSE for the fitted linear regression.

Final equation,

$$Y = -0.1721 X^2 + 0.7459$$

Given points,

$$(2,5), (0,-2), (3,-3)$$

For
$$X = 2$$

$$Y = 0.0575$$

For
$$X = 0$$

$$Y = 0.7459$$

For
$$X = 3$$

$$Y = -0.8030$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

RMSE = Sqrt of (
$$\frac{24.4283 + 7.5399 + 4.8268}{3}$$
)

RMSE = Sqrt of (
$$\frac{36.7950}{3}$$
)