Leaves

Example task

Short name: lea
Time limit: 1 s
Memory limit: 64 MB

A tree is a connected, undirected and unweighted graph, consisting of n vertices and n-1 edges. The characteristic feature of the tree is that it is connected and acyclic. A leaf in a tree is a vertex that has its degree equal to 1 (that is, only one edge is incident to it). If a rooted tree is given, it means that a certain designated vertex is a root. It is assumed that in a rooted tree the root is not called a leaf (even if its degree is equal to 1). You are given a n - vertex rooted tree. The root is the vertex with index 1. Your task is to calculate the number of it's leaves.

Input

A single integer n ($n \le 2 \cdot 10^5$) denoting the size of the tree. Next n-1 rows contain two numbers stating edges of the tree. $u \ne v$, edges are not repeating.

In the first line of input one number n ($n \le 2 \cdot 10^5$) is given, denoting the number of vertices of the tree. The next n-1 lines contain information about the edges in the tree. There are two different numbers u_i and v_i ($1 \le u_i, v_i \le n$) given on the i-th line, denoting vertices connected by the i-th edge.

Output

Output one number - number of leaves.

Input for test lea0:

6 1 1 2 3 3	
1	2
1	3
2	4
3	5
3	6

Output for test lea0:

Scoring

Subtask	Constraints	Points
1	$n \le 100$	30
2	There are at least 2 edges incident	20
	to the root	
3	no additional constraints	50