Course Notes for

CS 1501 Algorithm Implementation

By
John C. Ramirez
Department of Computer Science
University of Pittsburgh

- These notes are intended for use by students in CS1501 at the University of Pittsburgh and no one else
- These notes are provided free of charge and may not be sold in any shape or form
- These notes are NOT a substitute for material covered during course lectures. If you miss a lecture, you should definitely obtain both these notes and notes written by a student who attended the lecture.
- Material from these notes is obtained from various sources, including, but not limited to, the following:
 - Algorithms in C++ by Robert Sedgewick
 - Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne
 - Introduction to Algorithms, by Cormen, Leiserson and Rivest
 - Various Java and C++ textbooks
 - Various online resources (see notes for specifics)

Double Hashing

Double Hashing

- Idea: When a collision occurs, increment the index (mod tablesize), just as in linear probing. However, now do not automatically choose 1 as the increment value
 - > Instead use a second, different hash function (h2(x)) to determine the **increment**
- This way keys that hash to the same location will likely not have the same increment
 - > h1(x1) == h1(x2) with x1 != x2 is bad luck (assuming a good hash function)
 - > However, ALSO having h2(x1) == h2(x2) is REALLY bad luck, and should occur even less frequently
 - > It also allows for a collided key to move (mostly depending on h2(x)) anywhere in the table
- See example on next slide

Index	Value	Probes
0		
1		1
2		
3		1
4		1
5		1
6		1
7		
8		2
9		
10		2

Double Hashing Example

Compare to Slide 18 of Lecture 5

14
$$h(x) = 3$$

$$| h(x) = 6$$

25
$$|| h(x) = 3 || h2(x) = 5$$

$$37 \qquad | \quad \mathbf{h}(\mathbf{x}) = \mathbf{4}$$

34
$$h(x) = 1$$

16
$$h(x) = 5$$

26
$$|| h(x) = 4 || h2(x) = 6$$

$$h(x) = x \mod 11$$

$$h_2(x) = (x \mod 7) + 1$$

Double Hashing

- Note that we still get collisions with DH
 - And even multiple collisions in one operation
 - In this case we iterate just as we do with LP, using the DH increment multiple times
- However, because h2(x) varies for different keys, it allows us to spread the data throughout the table, even after an initial collision
- But we must be careful to ensure that double hashing always "works"
 - Make sure increment is > 0
 - > Note the +1 in our h2(x): $h2(x) = (x \mod 7) + 1$
 - > Our mod operator can result in 0, which is fine for an absolute address, but not for an increment!

Double Hashing

- Make sure no index is tried twice before all are tried once
 - > Why? Think about this?
 - > Consider table to right and assume:
 - > h(Z) = 3 and h2(Z) = 2
 - > What would happen when we search the table?
 - > How can we fix this?
 - > Make M a prime number
- Note that these were not issues for linear probing, since the increment is clearly > 0 and if our increment is 1 we will clearly try all indices once before trying any twice

Index	Value
0	
1	V
2	
3	W
4	
5	X
6	
7	Υ

Collision Resolution

- As α increases, double hashing shows a definite improvement over linear probing
 - Discuss
- However, as $\alpha \rightarrow 1$ (or as N \rightarrow M), both schemes degrade to Theta(N) performance
 - Since there are only M locations in the table, as it fills there become fewer empty locations remaining
 - Multiple collisions will occur even with double hashing
 - This is especially true for inserts and unsuccessful finds
 - > Both of these continue **until an empty location is found**, and few of these exist
 - > Thus it could take close to M probes before the collision is resolved
 - > Since the table is almost full Theta(M) = Theta(N)

- We have just seen that performance degrades as N approaches M
 - Typically for open addressing we want to keep the table partially empty
 - > For linear probing, $\alpha = 1/2$ is a good rule of thumb
 - > For double hashing, we can go a bit higher (3/4 or more)
 - How can we do this?
 - > Monitor the logical size (number of entries) vs. physical size (array length) to calculate α
 - > Resize the array and rehash all of the values when α gets past the threshold
 - > Rehashing all of the data seems like a LOT of work!
 - > Is this better than leaving it as is?
 - > We will discuss

- What about delete?
 - Why is this a problem?
 - Consider the LP table on the right and assume H(Z) == 2 but it was placed in index 4 due to a collision
 - Search for Z would try 2, 3, 4,
 finding Z at location 4
 - Now delete(Y) and search for Z again
 - > Search would stop at index 3 with not found even though Z is present
 - Deleting Y broke the chain
- How can we fix this?

Index	Value
0	
1	W
2	X
3	Υ
4	Z
5	
6	
7	

- One solution (see p. 471 of text)
 - > Rehash all keys from deleted key to end of cluster
 - Note that in this case Z still hashes to 2 and will move to position 3 and once again be within the chain
 - > Will this be a lot of work?
 - > Discuss
- Will not work with double hashing though – why?
 - What can we do with double hashing?
 - > Discuss

Index	Value
0	
1	W
2	X
3	Υ
4	Z
5	
6	
7	

- Can we use hashing without delete?
 - Yes, in some cases (ex: compiler using language keywords)
 - > We build a hash table, use it for searches, and then throw it away entirely
 - > We never delete individual items

Closed Addressing

- Closed Addressing
 - Recall that in this scheme, each location in the hash table represents a collection of data
 - If we have a collision we resolve it within the collection, without changing hash addresses
 - Most common form is separate chaining
 - Use a simple linked-list at each location in the table
 - Look at example
 - > Using the same data that we previously used for linear probing and separate chaining
 - Discuss placement of nodes in chain

Separate Chaining

Index	Value
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

14	h(x) = 3
17	h(x) = 6
25	h(x) = 3
37	h(x) = 4
34	h(x) = 1
16	h(x) = 5
26	h(x) = 4

$$h(x) = x \bmod 11$$

Separate Chaining

- Performance of separate chaining?
 - Performance is dependent upon chain length
 - Clearly a not found search must traverse entire chain
 - Chain length is determined by the load factor, α
 - > Ave chain length = (total # of nodes)/(M)
 - > But (total # of nodes) == N so
 - > Ave chain length == N/M $= \alpha$
 - As long as α is a small constant, performance is still Theta(1)
 - > Ex: N = 150, M = $100 \rightarrow \alpha = 1.5$
 - > This is still clearly Theta(1)
 - > Note also that N can now be greater than M
 - > More graceful degradation than open addressing schemes

Separate Chaining

- However, if N >> M, then it can still degrade to Theta(N) performance
 - > Ex: N = 1000, M = $10 \rightarrow \alpha = 100$
 - > Thus we **may still need to resize the array** when α gets too big
- A poor hash function can also degrade this into Theta(N)
 - > Think about what will happen in this case
 - > Discuss
- Can we develop a closed addressing scheme that can mitigate the damage caused by a poor hash function?
 - Think about this!

Collision Resolution

What if we used "better" collections at each index?

- Sorted array?
 - Space overhead if we make it large and copying overhead if we need to resize it
 - Inserts require shifting
- BST?
 - Could work
 - Now a poor hash function would lead to a large tree at one index – still Theta(logN) as long as tree is relatively balanced
- But is it worth it?
 - Not really separate chaining is simpler (less overhead)
 and we want a good hash function anyway
 - In this case we should fix the hash function

String Matching

- Basic Idea:
 - Given a pattern string, P, of length M
 - Given a text string, A, of length N
 - Do all characters in P match a substring of the characters in A, starting from some index i?

String Matching

- Brute Force Algorithm:
 - Start at beginning of pattern and text
 - Compare left to right, character by character
 - If a mismatch occurs, **restart process** at:
 - One position over from previous start of text
 - > Did not match from location k so let's try k+1
 - Beginning of pattern
 - > Must still match whole pattern
- ▶ Think about idea of this algorithm how it could be done in pseudocode
- See code on next page

Brute Force String Matching

```
public static int search1(String pat, String txt)
   int M = pat.length();
   int N = txt.length();
   for (int i = 0; i \le N - M; i++)
      int j;
      for (j = 0; j < M; j++)
        if (txt.charAt(i+j) != pat.charAt(j))
           break;
      if (j == M) return i; // found at offset i
   return N; // not found
}
```


Brute Force String Matching

- Performance of Brute Force algorithm?
 - Normal case?
 - May mismatch right away or perhaps after a few char matches

Theta(
$$N + M$$
) = Theta(N) when $N >> M$

Worst case situation and run-time?

$$P = XXXXY$$

- P must be completely compared (M char comps) each time we move one index down in A
- •We start text match at each of 0, 1, 2, ... (N-M) before failing

Total is
$$M(N-M+1) = \frac{\text{Theta}(NM)}{\text{When } N} >> M$$

String Matching

- Java SDK uses this algorithm for indexOf() method
 - More or less
- Improvements?
 - Two ideas
 - Improve the worst case performance
 - Good theoretically, but in reality the worst case does not occur very often for ASCII strings
 - Perhaps for binary strings it may be more important
 - Improve the normal case performance
 - This will be very helpful, especially for searches in long files

