## Московский государственный университет им. М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математических методов прогнозирования

# Задание №2. Низкоплотностные коды

Автор: Арбузова Дарья

*Группа:* 417

## Содержание

| 1        | Цели задания                                                           |             |  |  |
|----------|------------------------------------------------------------------------|-------------|--|--|
| <b>2</b> | 2 Теория помехоустойчивого кодирования                                 |             |  |  |
| 3        | Эксперименты    3.1  Различные расписания и коэффициенты демпфирования | 3<br>3<br>5 |  |  |
| 4        | Использованная литература                                              | 8           |  |  |

## 1 Цели задания

- 1. Реализовать алгоритм декодирования низкоплотностного кода на основе loopy BP;
- 2. Провести эксперименты с различными расписаниями пересчёта сообщений и коэффициентами дэмпфирования;
- 3. Реализовать алгоритм оценки вероятности битовой и блоковой ошибки кода с помощью метода статистических испытаний;
- 4. Провести эксперименты по оцениванию битовой и блоковой ошибки низкоплотностного кода для различных значений параметров;
- 5. Провести эксперименты по сравнению низкоплотностного кода с кодами БЧХ.

## 2 Теория помехоустойчивого кодирования

Рассмотрим решение задачи безошибочной передачи потока битовой информации по каналу с шумом с помощью кодов, исправляющих ошибки.

Пусть передаваемое сообщение разделяется на блоки длины k, и каждый из них кодируется независимо. Для исправления возможных помех при передаче информации необходимо добавить избыточность: пусть каждый блок кодируется словом длины n > k. Таким образом, каждому возможному блоку длины k сопоставляется одно из  $2^k$  кодовых слов длины n. Множество этих слов называется (n,k)-блоковым кодом, а  $r = \frac{k}{n}$  — скоростью кода.

Стадии жизни сообщения:

$$u \in \{0,1\}^k \xrightarrow{\text{кодиро-}} v \in \{0,1\}^n \xrightarrow{\text{канал c}} w \in \{0,1\}^n \xrightarrow{\text{восстановление}} \hat{v} \in \{0,1\}^n \xrightarrow{\text{рование}} \hat{u} \in \{0,1\}^k$$

Рассмотрим следующую модель канала: пусть ошибка в каждом бите совершается с вероятностью  $q \in \left(0; \frac{1}{2}\right)$ . Пропускной способностью канала называется максимальная скорость, с которой может быть осуществлена надёжная передачи информации. В рассматриваемом случае определяется величиной  $c = 1 + q \log_2 q + (1-q) \log_2 (1-q)$ .

Зададим линейный (n,k)—блоковый код его проверочной матрицей  $H \in \{0,1\}^{(n-k)\times n}$ :  $Hv = 0 \pmod 2 \iff v$  — кодовое слово. По ней можно найти порождающую матрицу кода для кодирования блоков  $G \in \{0,1\}^{n\times k}: Gu = v$ . Подробное описание алгоритма можно найти в [1].

Особенностью низкоплотностных кодов является сильная разреженность матрицы H.

Пусть получено сообщение  $w \in \{0,1\}^n$ , и требуется восстановить вектор ошибок  $e \in \{0,1\}^n : w = v + e$ . Назовём синдромом w вектор  $s \in \{0,1\}^{n-k} : s = Hw = H(v+e) = Hv + He = He$ .

Основная задача декодирования состоит в решении уравнения s=He, и делать это можно многими разными способами. В данном задании был исследован метод, использующий аппарат графических моделей.

При использовании побитовой функции потерь  $\lambda(e, \tilde{e}) = \sum_{i=1}^n [e_i \neq \tilde{e}_i]$  оптимальная процедура декодирования связана с максимизацией маргиналов отдельных переменных:  $\hat{e}_i = \arg\max_{e_i} p(e_i|s)$ . Для поиска маргинальных распределений  $p(e_i|s)$  применяется алгоритм sum-product loopy belief propagation на фактор-графе.

В результате работы алгоритма возможны 3 ситуации:

1. Найден вектор ошибок e, удовлетворяющий решаемому уравнению;

- 2. Произошла стабилизация оценок на маргинальные распределения;
- 3. Достигнуто максимальное число итераций.

Отметим, что ни один из этих вариантов не гарантирует правильного (или неправильного) результата декодирования сообщения.

При передаче сообщений в алгоритме возможны две схемы: параллельное расписание (сначала все вершины посылают сообщения во все факторы, а затем все факторы — во все вершины) и последовательное (на каждой итерации алгоритма сообщения обновляются в случайном порядке).

Ещё одной модификацией алгоритма является демпфирование, когда сообщение обновляется выпуклой комбинацией старого сообщения и пересчитанного нового:  $\mu^{t+1} = \lambda \mu_{new} + (1-\lambda)\mu^t$ ,  $\lambda \in (0;1]$ , иными словами, происходит экспоненциальное сглаживание значений.

В экспериментах ниже будет рассмотрено общее поведение представленного алгоритма декодирования, а также влияние различных параметров на качество его работы.

## 3 Эксперименты

### 3.1 Различные расписания и коэффициенты демпфирования

Исследуем поведение алгоритма в зависимости от расписания и коэффициента демпфирования.

Зафиксируем параметры n=50, k=10, q=0.1 и оценим время работы алгоритма декодирования сообщений. Результаты представлены в таблице 1:

| λ              | Параллельное расписание | Последовательное расписание |
|----------------|-------------------------|-----------------------------|
| $\frac{1}{8}$  | 0.1034                  | 0.7213                      |
| $\frac{1}{4}$  | 0.0514                  | 0.7252                      |
| $\frac{3}{8}$  | 0.0325                  | 0.5082                      |
| $\frac{1}{2}$  | 0.0151                  | 0.3162                      |
| 5<br>8<br>3    | 0.0121                  | 0.2048                      |
| $\overline{4}$ | 0.0082                  | 0.1389                      |
| $\frac{7}{8}$  | 0.0049                  | 0.0845                      |
| 1              | 0.0035                  | 0.0582                      |

Таблица 1: Среднее время работы алгоритма декодирования в секундах

Видно, что с ростом  $\lambda$  уменьшается время работы алгоритма, а параллельное расписание работает быстрее последовательного, в частности потому, что допускает лучшую векторизацию.

Исследуем долю стабилизировавшихся beliefs (оценок маргинальных распределений) от номера итерации. Результаты приведены на рисунках 1 - 2:



Рис. 1: Параллельное расписание



Рис. 2: Последовательное расписание

Видно, что при параллельном расписании алгоритм сходится быстрее. Также можно отметить, что выигрывают большие значения  $\lambda$ , однако  $\lambda=1$  — не лучшее из них, то есть учёт информации о предыдущих итерациях имеет смысл.

Заметим, что графики немонотонны, то есть делать вывод о «стабилизации» belief'а на основании сравнения последних двух значений на самом деле нельзя, оно может соответствовать локальному минимуму.

#### 3.2 Теорема Шеннона

Теорема Шеннона

 $\forall r < c$  существует код, такой что вероятность ошибки декодирования стремится  $\kappa$  нулю  $p_{err} \to 0$ , когда длина блока стремится  $\kappa$  бесконечности  $n \to \infty$ .

Проверим работу этой теоремы и исследуем зависимость характеристик кода (вероятности битовой и блоковой ошибки и расходимости алгоритма) от различных параметров. Вероятности будут приближены своей частотной оценкой в ходе математических испытаний методом Монте-Карло.

#### 1. Зависимость от скорости r.

Теорема Шеннона определяет пропускную способность канала как максимально допустимую скорость кода, при которой возможно осуществление надёжной коммуникации.

Зафиксируем параметры  $n=200, q=0.1, \lambda=\frac{7}{8}$  и исследуем эффективность кода (см. рис. 3):



Рис. 3: Характеристики кода в зависимости от r

Действительно, после превышения пропускной способности канала блоковая ошибка становится равной 1.

#### 2. Зависимость от длины кодового слова n.

Теорема Шеннона предполагает, что качество кода растёт при увеличении длины кодового слова n.

Зафиксируем параметры  $r=0.3, q=0.1, \lambda=\frac{7}{8}$  и исследуем эффективность кода (см. рис. 4):



Рис. 4: Характеристики кода в зависимости от n

Действительно, в среднем с увеличением n качество кода растёт.

3. Зависимость от среднего количества единиц в столбце проверочной матрицы j.

Одно из следствий теоремы Шеннона утверждает, что хорошими кодами являются коды со случайной проверочной матрицей H, и, в частности, качество кода должно расти с увеличением среднего количества единиц в столбце этой матрицы.

Проверим это утверждение; зафиксируем параметры  $n=500, k=60, q=0.1, \lambda=\frac{7}{8}$  и исследуем эффективность кода (см. рис. 5):



Рис. 5: Характеристики кода в зависимости от j (err\_block совпадает c diver)

Однако получен обратный эффект, и с увеличением j качество кода быстро падает. Возможно, это связано с тем, что в фактор-графе появляются циклы длины большей трёх, и это усложняет работу алгоритма.

#### 3.3 Сравнение низкоплотностных кодов с БЧХ кодами

Коды Боуза — Чоудхури — Хоквингема [??] также являются линейными (n,k)—блоковыми кодами, сравним их с LDPC-кодами.

#### 1. Зависимость от r.

Зафиксируем параметры  $n=255, q=0.1, \lambda=\frac{7}{8}$ , и будем перебирать k среди таких значений, что пара (n,k) корретно задаёт код БЧХ.



- (а) Вероятности битовой и блоковой ошибок
- (b) Вероятности расходимости алгоритма

Рис. 6: Сравнение характеристик LDPC- и БЧХ-кодов в зависимости от r

Ожидаемо, что при преодолении скоростью пропускной способности канала, вероятность блоковой ошибки становится равной 1.

Видно, что LPDC-коды выигрывают у БЧХ по всем параметрам: вероятность ошибки и расходимости алгоритмов меньше. (В случае БЧХ под «расходимостью» понимаем отказ от декодирования.)

## 2. Зависимость от q.

Зафиксируем параметры  $n = 255, k = 87, \lambda = \frac{7}{8}$ .



- (а) Вероятности битовой и блоковой ошибок
- (b) Вероятности расходимости алгоритма

Рис. 7: Сравнение характеристик LDPC- и БЧХ-кодов в зависимости от q

Очевидно, что с ростом вероятности ошибки в канале ухудшается и качество декодирования сообщений. В рассматриваемом случае LDPC вновь превзошли БЧХ.

#### 4 Использованная литература

- [1] [2] [3]