

CS & IT

Operating Systems

Process Management

Lecture No. 04

By- Dr. Khaleel Khan Sir

TOPICS TO
BE
COVERED

FCFS Scheduling SJF Performance of SJF

Consider three Processes P_1 , P_2 , P_3 arriving in the Ready Queue at time 0 in the order P_1 , P_2 , P_3 . Their service time requirements are 10,20&30 units respectively. Each Process spends 20% of its Service time on I/O followed by 70% of its Service time on Computation at CPU and last 10% on I O before completion. Assuming Concurrent I/O and negligible Scheduling Overhead. Calculate for FCFS Scheduling

- (i) Average TAT of Processes 2m
- (ii) % CPU idleness 2 m

Performance 9 FCFS -> Simple to Implement -> Commay Effect: In general, $\frac{P.No}{1-Q-10}$ Acts in Starvation $\frac{2-Q-10}{4-Q-5}$ Ree, but however $\frac{Q-Q-10}{4-Q-5}$ free, but however In some Gres, FCFS potentially may here Starvation

When all Processes are waiting in the Ready 8' for one trig process running on CPY [Leads to Starvation]

P₁ | P₂ | P₃ | P₄ |

0 10 14 16 21

Av. W.T = 0+10+14+16

Av. R.T = 40 = (0)

CPU
$$P_2 |P_3| P_4 |P_1|$$
AN.W.T = $\frac{4+6+11+0}{4+6+11+0}$

X

= $\frac{21}{4} = (5.25)$

2) Shortest Jot First (SJF)
Shortest Rocers Nemt (SPN)

Sel. Criteria: Burst Jime (B.T)

Mode 9 ofenation: Non-Pre Emplive

Jie breaking: Lower Pid

Tule

Among the Processes in R.D., Select the process having least B.T., Schedule it & run Sill Complition;

P.No	A.T B.T
1-	0 — 4
3-	o — 3
4-	1 — Z
Ć _	5 - 1

Av. w.T =
$$\frac{2+16+5+3+1+6}{6}$$

 $=\frac{33}{6}=5.5$
Av. w.T = $\frac{0+10+4+0+0+2}{6}$
R.Q. R.Y. P. R. R. P. S. $\frac{16}{6}=2.6$

3) Shortest Remaining Jime First (SRTF)
Re Emptive SJF

P.NIO A.T B.T CPM 1-0 84 2-23

SRTF

6 $\frac{9}{4v.TAT} = \frac{6+7}{2}$ $\frac{4v.WT}{2} = \frac{6+7}{2} = \frac{6}{2} = \frac{6}{2}$

AV RT=(2)

Tie breaking: Lower Pid Rule for PreEmption:

Mode gopn - PreEmplive

Sel criteria: BT

"Pre Emption of running
Process is based on
assiral availability of a
Strictly Shorter procen"

CPY $P_1 P_2 P_1$ O 2 5 9

AV TAT = $\frac{7+3}{2} = \frac{6}{4}$ AV.WT = $\frac{3+0}{2} = 1.5$ AV RT = $\frac{0+0}{2} = 0$

S.J.F (N.R)

$$= \frac{12}{14} = \frac{3}{2}$$
Av. R.T = 0+8+4+0=3

Q.

Consider the following processes, with the arrival time and the length of the CPU burst given in milliseconds. The scheduling algorithm used is preemptive Shortest Remaining-Time First (SRTF).

Process	Arrival Time	Burst Time
P1	0	187
P2	3	152
P3	7	1 ×
P4	8	3

The average turnaround time of these processes is $\frac{8.25}{4}$ milliseconds.

Av. Wi = $\frac{10+1+0+2}{4} = \frac{13}{4} = 3.25$

