IUT DE COLMAR

R314

Année 2022-23

Analyse de Fourier

MARTIN BAUMGAERTNER

Table des matières

1	CM 1 - 21 septembre 2022			2
	1.1	Défini	tion	4
	1.2	Exemp	ple	4
		1.2.1	Tracer le signal	4
		1.2.2	Calcul de sa valeur moyenne	4
		1.2.3	Calcul des coefficients de Fourier	,
		1.2.4	Donner sa décomposition en série de Fourier	,
		1.2.5	Donner les 4 premières harmoniques	,

CM 1 - 21 septembre 2022 1

Définition 1.1

Un signal est dit périodique lorsque que nous pouvons retrouver un travers un signal un zone répétée.

La fréquence d'un signal peut se calculer avec : $\nu = f = \frac{1}{T}$

f(t) = signal périodique de période T. Et, on l'écrira de cette manière:

$$f(t) = a_0 + \sum_{n=1}^{+\infty} a_n cos(n\omega t) + b_n sin(n\omega t)$$

Les différents harmoniques de rang n peut s'écrire : $a_n cos(n\omega t) + b_n sin(n\omega t) = hn(t)$

Le calcul des coefficients de Fourier : $a_0 = \frac{1}{T} \int_{\Lambda} f(t) dt$ = valeur moyenne

Ces deux formules servent car nous pouvons calculer les données a_n et b_n pour la grosse formule au dessus avec le petit 1:

$$-a_n = \frac{2}{T} \int_{\Delta} f(t) cos(n\omega t) dt$$
$$-b_n = \frac{2}{T} \int_{\Delta} f(t) sin(n\omega t) dt$$

$$-b_n = \frac{2}{T} \int_{\Delta} f(t) \sin(n\omega t) dt$$

1.2 Exemple

Soit le signal
$$f(t) =$$

$$-1 \operatorname{si} -\pi \leq t \leq 0$$

$$-2 \text{ si } 0 \leq t \leq \pi$$

1.2.1 Tracer le signal

Calcul de sa valeur moyenne

On calcule d'abord $a_O = \frac{1}{T} \int_{\Delta} f(t) dt$

$$T=2\pi$$

$$\triangle = [-\pi; \pi]$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)dt = \frac{1}{2T} (\int_{-\pi}^{0} 1dt + \int_{0}^{\pi} 2dt [0.5\text{cm}] \ a_0$$

- 1.2.3 Calcul des coefficients de Fourier
- 1.2.4 Donner sa décomposition en série de Fourier
- 1.2.5 Donner les 4 premières harmoniques