Bert_Review (1)

August 26, 2020

0.1 Bert

0.1.1 01 what is Bert?

- 1. Bert Architecture
- 2. State of Art

0.1.2 02 Bert Architecture

- 1. Pre-training task
- 2. Input Embedding
- 3. Encoding
- 4. Fine-tuning
- 1. RNN (): hidden layer /
- 2. LSTM: RNN hidden state cell state
- 4. Attention: Transformer
- 5. Bert: Transformer Encoder Self Attenion (Bi-directional),

0.2 BERT (Bi-directional Encoder Representation from Transformers)

Purpose: /

- ELMO
- ELMO: Uni-directional LSTM Model

alt text

Figure 1: The Transformer - model architecture.

alt text

- GPT : left to right, and right to left transformer model
- NLP 11 state of art
- SQuAD
- Transfer Learning Fine -tuning
- Transformer
 - Encoder
 - Speed, Accuracy, Long-term decedency

0.3 BERT ARCHITECTURE

'Attention is All' Transformer Encoding

- 1. Pre-training task
- 2. Fine-Tuning
- 2 : * Bert-Base (L=12, H=768, A=12) * Bert-Large(L=24, H=1024, A=16) * Base

0.4 1. Pre - training

0.4.1 1. pre-training tasks

- * Masked Language Modelling
 - * 15% <MASK>

alt text

- * 80% ['MASK'] Token
- * 10% Random , 10%
- * , mask
- * Next Sentence Prediction
 - * B A
 - * 50%
 - * B A IsNext , NotNext
 - *) Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [S:
 - *) Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less b

0.4.2 2. Embedding:

 $Figure\ 2:\ BERT\ input\ representation.\ The\ input\ embeddings\ is\ the\ sum\ of\ the\ token\ embeddings,\ the\ segmentation\ embeddings\ and\ the\ position\ embeddings.$

Token Vectorize

Input = Token Embedding + Segment Embedding + Position Embedding

- Position Encoding Postion embedding
- Token: Vector
- Segment: / (0, 1 etc)
- Position: /

- : 3
 - (Base 768 Vector Large 1024)
 - + + 768 vector Embedding

0.4.3 3. Encoding Layers

tention: / 1. 768 input vector 12 head 64 Vector Q,K,V . 2. Q K vector .) dog Q [0.3, -0.2 0.4] * 'The' K [0.5, -0.9, 0.2] = 0.4 3. soft max $0 \sim 1$ scaling Score) [0.4 0,6 -0.6] -> [0.4 0.5 0.1] 4. softmax(score) V vector (64) 5. 12 Head 12 64 vector sum 768 vector

Encoding Layer N Layer

2. Add & Normalize

• ResNet: Embedding input vector Self-Attention Normalize

• Normalize: , Layer Stablize

0.5 2. Fine-Tuning

- Bert Tasks:
 - Text similarity: text corpusReply Matching: text corpusBinary Classification
 - Intent Classification : / classification
 - * Sentiment Analysis
 - * Question and Answer
 - * Name Entity Recognition
- Feature-based vs. Fine-tuning
 - Feature-based approach: task network Feature , network (ELMO)
 - Fine-tuning approach: Pre-trained parameter downstream task
 - * NER: Pretrained Bert CONLL (NNP Person, Organization Labelling system) Labelling Supervised Learning

In []: