Row-reduced Echelon Form: Let A be the given matrix. Apply row elementary transformations to the matrix A such that

- First row, first nonzero element should be 1 and all the elements below in that column should be zeros.
- In the reduced matrix, convert the first nonzero element in the second row as 1 and all the elements below in that column should be zeros.
- Continue the same procedure till all the rows are exhausted.
- The final reduced matrix is the Row-reduced Echelon Form of A.

Note 0.1. Let A be the given matrix and C be the row reduced Echelon form of A, then the number of nonzero rows in C is the rank of A.

Hence we can define, the rank of a matrix A is the maximum number of linearly independent rows (or columns) of A.

Note:- Rank of a matrix A is denoted by P(A).

1. Rank of a matrix

Definition 1.1. Let A be a given matrix then **rank** of the matrix A is the maximal number of linearly independent rows or maximal number of linearly independent columns of A. It is denoted by $\rho(A)$.

Example 1.2. Consider a matrix
$$A = \begin{pmatrix} 9 & 9 & 9 \\ 1 & 2 & 3 \\ 2 & 4 & 6 \\ 7 & 7 & 7 \end{pmatrix}$$

$$A = \begin{pmatrix} 9 & 9 & 9 \\ 1 & 2 & 3 \\ 2 & 4 & 6 \\ 7 & 7 & 7 \end{pmatrix}$$

$$R_{1} \rightarrow R_{1}$$

$$R_{3} \rightarrow R_{3}$$

$$R_{3} \rightarrow R_{3}$$

$$R_{3} \rightarrow R_{3} - R_{1}$$

$$R_{4} \rightarrow R_{4} - R_{1}$$

$$R_{1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$

$$R_{2} \rightarrow R_{2} - R_{1}$$

$$R_{3} \rightarrow R_{3} - R_{1}$$

$$R_{4} \rightarrow R_{4} - R_{1}$$

$$R_{4} \rightarrow R_{4} - R_{1}$$

$$R_{5} \rightarrow R_{2} - R_{2}$$

$$R_{6} \rightarrow R_{7} - R_{1}$$

$$R_{7} \rightarrow R_{7} - R_{1}$$

$$R_{8} \rightarrow R_{7} - R_{1}$$

$$R_{8} \rightarrow R_{8} - R_{1}$$

$$R_{9} \rightarrow R_{1}$$

$$R_{1} \rightarrow R_{2} - R_{1}$$

$$R_{2} \rightarrow R_{3} - R_{1}$$

$$R_{3} \rightarrow R_{3} - R_{1}$$

$$R_{4} \rightarrow R_{4} - R_{1}$$

$$R_{5} \rightarrow R_{5} - R_{2}$$

$$R_{7} \rightarrow R_{2} - R_{2}$$

$$R_{7} \rightarrow R_{7} - R_{2}$$

$$R_{8} \rightarrow R_{7} - R_{2}$$

$$R_{8} \rightarrow R_{8} - R_{1}$$

$$R_{9} \rightarrow R_{1}$$

$$R_{1} \rightarrow R_{2} - R_{1}$$

$$R_{2} \rightarrow R_{3} - R_{1}$$

$$R_{3} \rightarrow R_{3} - R_{1}$$

$$R_{4} \rightarrow R_{4} - R_{1}$$

$$R_{5} \rightarrow R_{5} - R_{2}$$

$$R_{7} \rightarrow R_{7} - R_{1}$$

$$R_{8} \rightarrow R_{7} - R_{1}$$

$$R_{9} \rightarrow R_{1} - R_{1}$$

$$R_{1} \rightarrow R_{2} - R_{1}$$

$$R_{2} \rightarrow R_{3} - R_{1}$$

$$R_{3} \rightarrow R_{3} - R_{1}$$

$$R_{4} \rightarrow R_{4} - R_{1}$$

$$R_{5} \rightarrow R_{5} - R_{2}$$

$$R_{5} \rightarrow R_{5} - R_{5}$$

$$R_{5} \rightarrow R_{5} - R_{5}$$

$$R_{7} \rightarrow R_{7} - R_{1}$$

$$R_{7} \rightarrow R_{7} - R_{1}$$

$$R_{8} \rightarrow R_{7} - R_{1}$$

$$R_{9} \rightarrow R_{1} - R_{1}$$

$$R_{1} \rightarrow R_{2} \rightarrow R_{3} - R_{1}$$

$$R_{2} \rightarrow R_{3} - R_{1}$$

$$R_{3} \rightarrow R_{3} - R_{1}$$

$$R_{4} \rightarrow R_{4} - R_{1}$$

$$R_{5} \rightarrow R_{5} - R_{1}$$

$$R_{7} \rightarrow R_{7} - R_{1}$$

$$R_{8} \rightarrow R_{1} - R_{1}$$

$$R_{8} \rightarrow R_{1} - R_{1}$$

$$R_{1} \rightarrow R_{2} - R_{1}$$

$$R_{2} \rightarrow R_{3} - R_{1}$$

$$R_{3} \rightarrow R_{3} - R_{1}$$

$$R_{4} \rightarrow R_{4} - R_{1}$$

$$R_{5} \rightarrow R_{5} - R_{2}$$

$$R_{7} \rightarrow R_{2} - R_{1}$$

$$R_{8} \rightarrow R_{1} - R_{2}$$

$$R_{8} \rightarrow R_{1} - R_{2}$$

$$R_{1} \rightarrow R_{2} - R_{1}$$

$$R_{2} \rightarrow R_{2} - R_{1}$$

$$R_{3} \rightarrow R_{3} - R_{1}$$

$$R_{4} \rightarrow R_{4} - R_{1}$$

$$R_{5} \rightarrow R_{5} - R_{2}$$

$$R_{5} \rightarrow R_{5} - R_{1}$$

$$R_{7} \rightarrow R_{2} - R_{2}$$

$$R_{8} \rightarrow R_{1} - R_{2}$$

$$R_{8} \rightarrow R_{1} - R_{2}$$

$$R_{1} \rightarrow R_{2} - R_{2}$$

$$R_{2} \rightarrow R_{3} - R_{3}$$

$$R_{3} \rightarrow R_{3} - R_{3}$$

$$R_{4} \rightarrow R_{4} - R_{1}$$

$$R_{5} \rightarrow R_{2} - R_{2}$$

$$R_{5} \rightarrow R_{3} - R_{3}$$

$$R_{5} \rightarrow R_{5} - R_{5}$$

$$R_{5} \rightarrow R_{5} - R_{5}$$

$$R_{5} \rightarrow R_{5} - R_{5}$$

$$R$$

1.1. Properties of rank of a matrix

- 1. If A is a square matrix of order n then $\rho(A) \leq n$.
- 2. If A is an $m \times n$ matrix then $\rho(A) \leq \min\{m, n\}$..
- 3. If I_n is an identity matrix of order n then $\rho(I_n) = n$.
- 4. A matrix and its transpose have the same rank.
- 5. If $\rho(A) = 0$ then A is a null matrix.
- **6**. If A is not a null matrix, then $\rho(A) \geq 1$.

Problem 1.3. Using row elementary transformations, find the rank

Problem 1.3. Using row elementary transformations, find the rank of the matrix
$$A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ -1 & 3 & 0 & -4 \\ 2 & 1 & 3 & -2 \\ 1 & 1 & 1 & -1 \end{pmatrix}$$
 (GINCN)

$$\frac{Ans!}{R_2} = R_2 + R_1, R_2 \rightarrow R_3 - 2R_1, R_4 \rightarrow R_4 - R_1$$

$$A \sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 5 & -1 & -4 \\ 0 & -3 & 5 & -2 \\ 0 & -1 & 2 & -1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 5 & -2 \\ 0 & 5 & -1 & -4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -1 & 2 & 1 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & -1 & 2 \\ 0 &$$

 $\mathbf{Contd...}$

ino of nonzero rows =
$$3 = \beta(A)$$

Problem 1.4. Using row elementary transformations, find the rank

of the matrix
$$A = \begin{pmatrix} 2 & -2 & 5 & 3 \\ 4 & -1 & 1 & 1 \\ 3 & -2 & 3 & 4 \\ 1 & -3 & 7 & 6 \end{pmatrix}$$
 (Given) $R \leftrightarrow R_4$

$$\begin{pmatrix}
1 & -3 & 7 & 6 \\
0 & 1 & -27/11 & -23/11 \\
0 & 7 & -18 & -14 \\
0 & 4 & -9 & -9
\end{pmatrix}$$

$$R_3 \rightarrow R_3 - 7R_2$$
, $R_4 \rightarrow R_4 - 4R_5$

Contd...

$$R_{4} \rightarrow R_{4} + R_{3}$$

$$\sim \begin{pmatrix} 0 & -3 & 7 & 6 \\ 0 & 1 & -23/11 & -23/11 \\ 0 & 0 & 9/11 & 7/11 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\text{Echelon form of A}$$

$$\text{Ethelon form of A}$$

$$\text{Here no of non zero rows} = 3$$

$$= P(A)$$

Problem 1.5. Using row elementary transformations, find the rank

of the matrix
$$A = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 2 & 4 & 2 & 6 \\ 0 & 3 & 5 & 1 \end{pmatrix}$$

$$R_2 \rightarrow R_2 \rightarrow R_1$$

$$A \sim \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 5 & 1 \end{pmatrix} R \Leftrightarrow R_{3}$$

mo of nonzero rows =
$$a = p(A)$$

2. Linear Equations

Consider the system of m linear equations in n—unknowns $x_1, x_2, ..., x_n$ as below:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{12}x_2 + \dots + a_{3n}x_n = b_3$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Then the matrix equation of the above system is AX = B where

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_m \end{pmatrix}$$

If B=0 then the system of equations is said to be homogeneous, otherwise non-homogeneous. \checkmark

Any n-tuple $x = (x_1, x_2, ..., x_n)$ which satisfies the above system of equations is called the *solution* of the system.

Note 2.1. It is clear that 0 = (0, 0, ..., 0) is a solution of the system AX = 0, called the trivial solution.

Note 2.2. The set of all solutions of the homogeneous system of linear equations are closed under addition and scalar multiplication.

i.e. If y_1 and y_2 are the solutions of the homogeneous system AX = 0 then $y = c_1y_1 + c_2y_2$ is again a solution of AX = 0.

Definition 2.3. (Augmented Matrix) Consider the system of linear equations AX = B then the augmented matrix is obtained by placing the column matrix B to the right of the matrix A. It is denoted by [A:B] or $[A\mid B]$.

Definition 2.4. (Consistency) A system of linear equations AX = B tis said to be, **consistent** if the system has a solution, otherwise it is **inconsistent**.

Problem 2.5. Test the consistency and solve the system of equations by Gauss elimination method.

Given
$$x+y+z=6$$

 $x-y+2z=5$
 $3x+y+z=8$

Ans:- The matrix eqn of
$$\Re$$
 is

 $Ax = B$ where $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 3 & 1 & 1 \end{pmatrix} \times = \begin{pmatrix} 3 \\ y \\ z \end{pmatrix}$
 $B = \begin{pmatrix} 6 \\ 5 \\ 8 \end{pmatrix}$

Augmented matrix
$$[A;B] = \begin{bmatrix} 1 & 1 & 1 & 5 \\ 1 & -1 & 2 & 5 \\ 3 & 1 & 1 & 8 \end{bmatrix}$$

Contd...

Echelon form of A is $\begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -3 \end{pmatrix}$

 $\therefore P(A) = 3$

ie, f(A) = f(A:B) = 3 = no.of unknowns.: System is consistent and has a unique

Soln.

.. The equivalent matrix eq 1 is,

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} \chi \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ -1 \\ -9 \end{pmatrix}$$

$$\Rightarrow x + y + z = 6 - 0$$

$$-2y + z = -1 - 2$$

$$-3z = -9 - 3$$

$$(3) \Rightarrow z=3$$

$$(2) \Rightarrow y=2$$

(1)
$$\Rightarrow x = 1$$

$$Regld Sollin X = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} //$$

Problem 2.6. Test the consistency and solve the system of equations by Gauss elimination method.

Fiven,
$$x + 2y + 3z = 14$$
 $4x + 5y + 7z = 35$
 $3x + 3y + 4z = 21$

Ang: The matrix eqn of \Re is $AX = B$

Where $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 7 \\ 3 & 3 & 4 \end{pmatrix} X = \begin{pmatrix} 3 & 4 & 5 \\ 2 & 2 & 4 \\ 35 & 21 \end{pmatrix}$

Augmented matrix, $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 4 & 35 & 7 & 35 \\ 3 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 14 & 35 & 7 & 35 \\ 3 & 3 & 4 & 21 \end{pmatrix}$
 $A:B = \begin{pmatrix} 14 & 35 & 7 & 35 \\ 3 & 3 & 4 & 21 \end{pmatrix}$
 $A:B = \begin{pmatrix} 14 & 35 & 7 & 35 \\ 3 & 3 & 4 & 21 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
 $A:B = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -3 & -5 & -21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

$$P[A:B] = 2 \quad \text{Ethelon form of} \quad \begin{cases} 1 & 2 & 3 \\ 0 & -3 & -5 \\ A & 15 \end{cases}$$

Contd... (A) = 2

 $(0; \beta(A:B) = \beta(A) = 2 < 3 = no.of unknowns$

.. System is consistent and have infinitely many solutions.

The equivalent matrix eqn is,

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -5 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \chi \\ y \\ z \end{pmatrix} = \begin{pmatrix} 14 \\ -21 \\ 0 \end{pmatrix}$$

 $\Rightarrow \chi + 2y + 3z = 14 - 0$ -3y - 5z = -21

Let x = k then 2y + 3z = 14 - k. -3y - 5z = -21

Tet z=k be any real no-

from (2) we get -3y = -21 + 5k $\Rightarrow y = 7 + 5/3k$

Contd...

Regid Soln is

$$X = \begin{pmatrix} \frac{k}{3} \\ 7 - \frac{5}{3}k \end{pmatrix}$$

Where k is any read mo.

Problem 2.7. For what values of λ and μ such that the system of equations

Given
$$x+y+z=6$$

 $x+2y+3z=10$
 $x+2y+\lambda z=\mu$

may have,

- 1. unique solution
- 2. infinite number of solutions
- 3. No solution

Ans: The matrix eqn of
$$(A \times B)$$
 is $A \times B$

Where $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 \end{pmatrix} \times = \begin{pmatrix} x & y & y \\ y & 2 & 1 \end{pmatrix}$

B= $\begin{pmatrix} 6 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 & 1 \\ 1$

if f[A:B] = f(A) < 3ie; if f[A:B] = f(A) = 2ie; if A-3=0 and $\mu-10=0$ iii) System has no Sol^n if $f[A:B] \neq f(A)$

 \dot{Q} ; if $\lambda = 3$ and $\mu \neq 10$.