Formulaire PanaMaths (CPGE)

Développements en séries entières usuels

Fonction	Développement en série entière (DSE)	Intervalle de validité du DSE		
$x \mapsto e^x$	$\sum_{n=0}^{+\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots$	\mathbb{R}		
$x \mapsto \mathrm{ch} x$	$\sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + \dots$	\mathbb{R}		
$x \mapsto \operatorname{sh} x$	$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{5040} + \dots$	$\mathbb R$		
$x \mapsto \cos x$	$\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2n}}{\left(2n\right)!} = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \dots$	\mathbb{R}		
$x \mapsto \sin x$	$\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2n+1}}{\left(2n+1\right)!} = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \dots$	\mathbb{R}		

$x \mapsto (1+x)^{\alpha}$ Où $\alpha \in \mathbb{R}$	$1 + \sum_{n=1}^{+\infty} \frac{\alpha (\alpha - 1)(\alpha - 2)(\alpha - (n-1))}{n!} x^{n}$]-1;+1[
$x \mapsto \frac{1}{1-x}$	$\sum_{n=0}^{+\infty} x^n = 1 + x + x^2 + x^3 + \dots$]-1;+1[
$x \mapsto \frac{1}{1 - x^2}$	$\sum_{n=0}^{+\infty} x^{2n} = 1 + x^2 + x^4 + x^6 + \dots$]-1;+1[
$x \mapsto \frac{1}{1+x}$	$\sum_{n=0}^{+\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \dots$]-1;+1[
$x \mapsto \frac{1}{1+x^2}$	$\sum_{n=0}^{+\infty} (-1)^n x^{2n} = 1 - x^2 + x^4 - x^6 + \dots$]-1;+1[
$x \mapsto \frac{1}{\sqrt{1 - x^2}}$	$\sum_{n=0}^{+\infty} \frac{(2n)!}{2^{2n} (n!)^2} x^{2n} = 1 + \frac{x^2}{2} + \frac{3x^4}{8} + \frac{5x^6}{16} + \dots$]-1;+1[
$x \mapsto \frac{1}{\sqrt{1+x^2}}$	$\sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n} \left(2n\right)!}{2^{2n} \left(n!\right)^{2}} x^{2n} = 1 - \frac{x^{2}}{2} + \frac{3x^{4}}{8} - \frac{5x^{6}}{16} + \dots$]-1;+1[

PanaMaths [1-2] Janvier 2010

$x \mapsto \ln(1-x)$	$-\sum_{n=1}^{+\infty} \frac{x^n}{n} = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots$]-1;+1[
$x \mapsto \arg \tanh x$	$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = 1 + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \dots$]-1;+1[
$x \mapsto \ln(1+x)$	$\sum_{n=1}^{+\infty} \frac{\left(-1\right)^{n+1} x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$]-1;+1[
$x \mapsto \arctan x$	$\sum_{n=0}^{+\infty} \left(-1\right)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$]-1;+1[
$x \mapsto \arcsin x$	$\sum_{n=0}^{+\infty} \frac{(2n)!}{2^{2n} (n!)^2} \frac{x^{2n+1}}{2n+1} = x + \frac{x^3}{6} + \frac{3x^5}{40} + \frac{5x^7}{112} + \dots$]-1;+1[
$x \mapsto \arccos x$	$\frac{\pi}{2} - \sum_{n=0}^{+\infty} \frac{(2n)!}{2^{2n} (n!)^2} \frac{x^{2n+1}}{2n+1} = \frac{\pi}{2} - x - \frac{x^3}{6} - \frac{3x^5}{40} - \dots$]-1;+1[
$x \mapsto \arg \sinh x$	$\sum_{n=0}^{+\infty} \frac{\left(-1\right)^{n} \left(2n\right)!}{2^{2n} \left(n!\right)^{2}} \frac{x^{2n+1}}{2n+1} = x - \frac{x^{3}}{6} + \frac{3x^{5}}{40} - \frac{5x^{7}}{112} + \dots$]-1;+1[

PanaMaths [2-2] Janvier 2010