Literature Review: Network Compression

Xin Yu, 2021-8-31

Network compression: find a smaller network as good as a large one

[1] Serra, T., Kumar, A., Xin Y. and Ramalingam, S., 2021. Scaling Up Exact Neural Network Compression by ReLU Stability. arXiv preprint arXiv:2102.07804.

Overview of Network Compression

Background: why to prune networks

- Less resource consuming
 - Deploy to devices of limited resource, e.g., mobile phone, drone.
- Speedup inference
- Approximately same performance as the large network
- With quantization, it can be low-bit further
- Provide an insight into the presentation ability of a network
 - Which subnetwork contribute most to to task?

Why the network pruning is possible?

Redundant information from the input

• Given an image for '0' from MNIST, features of different area can used in the

classification^[1]

Bright pixels: used features for the network

Dark features: unimportant/unused features

Why the network pruning is possible?

- Unimportant/Redundant weights/neurons in networks
 - Stably inactive neurons: the output of the neurons are always 0

Hidden Layers	$\ell_1=0$	$\ell_1=ar\ell/2$	$\ell_1=ar{\ell}$ Accuracy
2 x 100	0% 97.93%	13% 98.14%	23% 97.89%
2 x 200	0% 98.17%	13% 98.33%	26% 98.17%
2 x 400	0% 98.25%	8% 98.35%	24% 98.24%
2 x 800	0% 98.28%		22% 98.29%

^[1] Serra, T., Kumar, A., Xin Y. and Ramalingam, S., 2021. Scaling Up Exact Neural Network Compression by ReLU Stability. arXiv preprint arXiv:2102.07804.

How to prune: branches of Methods

- Pruning
 - After training
 - OBD: Optimal brain damage
 - OBS: Optimal brain surgeon
 - WoodFisher: Efficient Second-Order Approximation for Neural Network Compression
 - Before training
 - SNIP: Single-shot network pruning based on connection sensitivity
 - GraSP: Picking winning tickets before training by preserving gradient flow
- Quantization
- Knowledge distillation
- Low-rank decomposition
- Compact architecture design (similar as architecture search)

Methods: Optimal Brain Damage[1]

Notation

- Denote the dense weights by w
- ullet the new weights after pruning as ${f w}+\delta{f w}$
- The loss (the objective function) of the network
 - before pruning: $L(\mathbf{w})$
 - After pruning: $L(\mathbf{w} + \delta \mathbf{w})$
- The target of pruning a network

$$\min_{\delta \mathbf{w} \in \mathbb{R}^d} \, \delta L \, = \, \min_{\delta \mathbf{w} \in \mathbb{R}^d} \left(L(\mathbf{w} + \delta \mathbf{w}) - L(\mathbf{w}) \right)$$

Methods: Optimal Brain Damage

Approximate the object function after pruning by a Taylor series

$$L(\mathbf{w} + \delta \mathbf{w}) = L(\mathbf{w}) + \nabla_{\mathbf{w}} L^{\top} \delta \mathbf{w} + \frac{1}{2} \delta \mathbf{w}^{\top} \mathbf{H} \delta \mathbf{w} + O(||\delta \mathbf{w}||^{3})$$

- first derivative of the weights: $\nabla_{\mathbf{w}} L$
- second derivative (Hessian matrix): H
- We seek to minimize

$$\delta L = L(\mathbf{w} + \delta \mathbf{w}) - L(\mathbf{w}) \approx \nabla_{\mathbf{w}} L^{\top} \delta \mathbf{w} + \frac{1}{2} \delta \mathbf{w}^{\top} \mathbf{H} \delta \mathbf{w}$$

 Assumption1: the network is pruned at a local optimum, which eliminates the first term

$$\delta L \approx \frac{1}{2} \delta \mathbf{w}^{\top} \mathbf{H} \ \delta \mathbf{w}$$

Methods: Optimal Brain Damage

- Assumption2: Hessians tend to be diagonally- dominant
 - $f: \mathbb{R}^n \to \mathbb{R}$ has second order derivative, $\mathbf{x} = (x_1, \cdots, x_n)^T \in \mathbb{R}^n$
 - Definition of Hessian matrix: $H(\mathbf{x}) = [h_{ij}(\mathbf{x})]$

$$H(\mathbf{x}) = egin{bmatrix} rac{\partial^2 f}{\partial x_1 \partial x_1} & rac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n} \\ rac{\partial^2 f}{\partial x_2 \partial x_1} & rac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_2 \partial x_n} \\ dots & dots & \ddots & dots \\ rac{\partial^2 f}{\partial x_1 \partial x_1} & rac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_2 \partial x_n} \end{bmatrix} \hspace{2cm} H(\mathbf{x}) = egin{bmatrix} rac{\partial^2 f}{\partial x_1 \partial x_1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & rac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \mathbf{0} \\ \vdots & dots & \ddots & dots \\ rac{\partial^2 f}{\partial x_n \partial x_1} & rac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix}$$

The equation reduce to

$$\delta L \approx \frac{1}{2} \sum_{i} h_{ii} \delta \mathbf{w}_{i}^{2}$$

Methods: Optimal Brain Damage

Algorithm

- Train the network until a reasonable solution is obtained
- Compute the second derivatives h_{kk} for each paratmeter
- Compute the saliencies for each parameters: $s_k = h_{kk} \delta \mathbf{w}_i^2 / 2$
- Sort the parameters by saliency and delete the lowest saliency parameters.
- Iterate to step 2 until the total pruning parameters reaches the target pruning ratio.

• Limitation:

Ignored the the non-diagonal elements in the hessian matrix

Methods: Optimal Brain Surgeon[1]

- Calculate the full Hessian matrix
- Rewrite the objective function as

$$\min_{\delta \mathbf{w} \in \mathbb{R}^d} \left(\frac{1}{2} \delta \mathbf{w}^\top \mathbf{H} \delta \mathbf{w} \right), \quad \text{s.t.} \quad \mathbf{e}_q^\top \delta \mathbf{w} + w_q = 0.$$

 As this is a constrained optimization problem, we can consider the Lagrange multiplier for the constraint as

$$\mathcal{L}(\delta \mathbf{w}, \lambda) = \frac{1}{2} \delta \mathbf{w}^{\top} \mathbf{H} \delta \mathbf{w} + \lambda \left(\mathbf{e}_q^{\top} \delta \mathbf{w} + w_q \right)$$

 We can obtain the solution by first differentiating the above equation and setting it to 0

$$\mathbf{H}\delta\mathbf{w} + \lambda\mathbf{e}_q = 0 \implies \delta\mathbf{w} = -\lambda\mathbf{H}^{-1}e_q$$

$$g(\lambda) = \frac{\lambda^2}{2} \mathbf{e}_q^{\mathsf{T}} \mathbf{H}^{-1} \mathbf{e}_q - \lambda^2 \mathbf{e}_q^{\mathsf{T}} \mathbf{H}^{-1} \mathbf{e}_q + \lambda w_q = -\frac{\lambda^2}{2} \mathbf{e}_q^{\mathsf{T}} \mathbf{H}^{-1} \mathbf{e}_q + \lambda w_q.$$

• Maximizing the Lagrange dual function, and obtain $\delta \mathbf{w}^* = \frac{-w_q \mathbf{H}^{-1} \mathbf{e}_q}{[\mathbf{H}^{-1}]_{qq}}$ $\delta L^* = \frac{w_q^2}{2 [\mathbf{H}^{-1}]_{qq}}$

Methods: Optimal Brain Surgeon

- Calculating Hessian matrix for the network o = F(w, in)
 - MSE $E = \frac{1}{2P} \sum_{k=1}^{P} (\mathbf{t}^{[k]} \mathbf{o}^{[k]})^{T} (\mathbf{t}^{[k]} \mathbf{o}^{[k]})$
 - The first derivative

$$\frac{\partial E}{\partial \mathbf{w}} = -\frac{1}{P} \sum_{k=1}^{P} \frac{\partial \mathbf{F}(\mathbf{w}, \mathbf{in}^{[k]})}{\partial \mathbf{w}} (\mathbf{t}^{[k]} - \mathbf{o}^{[k]})$$

The second derivative

$$\mathbf{H} = \frac{\partial^2 E}{\partial \mathbf{w}^2} = \frac{1}{P} \sum_{k=1}^{P} \left[\frac{\partial \mathbf{F}(\mathbf{w}, \mathbf{in}^{[k]})}{\partial \mathbf{w}} \cdot \frac{\partial \mathbf{F}(\mathbf{w}, \mathbf{in}^{[k]})}{\partial \mathbf{w}} - \frac{\partial^2 \mathbf{F}(\mathbf{w}, \mathbf{in}^{[k]})}{\partial \mathbf{w}^2} \cdot (\mathbf{t}^{[k]} - \mathbf{o}^{[k]}) \right]$$

 Use Assumption1 again: the network is pruned at a local optimum, which eliminates the second term

$$\mathbf{H} = \frac{1}{P} \sum_{k=1}^{P} \frac{\partial \mathbf{F}(\mathbf{w}, \mathbf{in}^{[k]})}{\partial \mathbf{w}} \cdot \frac{\partial \mathbf{F}(\mathbf{w}, \mathbf{in}^{[k]})}{\partial \mathbf{w}}^{T}$$

• H is the sample covariance matrix associated with the gradient vector $\mathbf{X}^{[k]} = \frac{\partial \mathbf{F}(\mathbf{w}, \mathbf{in}^{[k]})}{\partial \mathbf{w}}$

Methods: Optimal Brain Surgeon

- Algorithm
 - 1. Train the network until a reasonable solution is obtained
 - 2. Compute
 - 3. Compute \mathbf{H}^{-1} : saliencies for each parameters: $s_k = \frac{w_k^2}{2\left[\mathbf{H}^{-1}\right]_{kk}}$ and find the smallest saliency
 - 4. Use the q from the previous step to update all weights.
 - 5. Iterate to step 2 until the total pruning parameters reaches the target pruning ratio.
- OBS vs. OBD vs magnitude base pruning:
 - When eliminate the same weights:

$$E(mag) \ge E(OBD) \ge E(OBS)$$

- In many cases, OBS will eliminate different weights than those by OBD
- Limitation: inefficient to calculate
 - H: (N_w x N_w x N_data)

Methods: WoodFisher[1]

• Speedup the calculating of H by approaching it with Fisher information matrix.

[1] Singh, S.P. and Alistarh, D., 2020. Woodfisher: Efficient second-order approximation for neural network compression. NeurIPS.

Methods: WoodFisher

Fisher Matrix

$$F = \mathrm{E}_{P_{\mathbf{x}, \mathbf{y}}} \left[\nabla_{\mathbf{w}} \log p_{\mathbf{w}}(\mathbf{x}, \mathbf{y}) \nabla_{\mathbf{w}} \log p_{\mathbf{w}}(\mathbf{x}, \mathbf{y})^{\top} \right].$$

• It can be proved that the Fisher and Hessian matrix are equivalent.

$$F = \mathrm{E}_{P_{\mathbf{x},\mathbf{y}}} \left[-\nabla_{\mathbf{w}}^2 \log p_{\mathbf{w}}(\mathbf{x}, \mathbf{y}) \right]$$

The empirical Fisher.

$$\hat{F} = \mathbf{E}_{\widehat{Q}_{\mathbf{x}}} \left[\mathbf{E}_{\widehat{Q}_{\mathbf{y}|\mathbf{x}}} \left[\nabla \log p_{\mathbf{w}}(\mathbf{y}|\mathbf{x}) \nabla \log p_{\mathbf{w}}(\mathbf{y}|\mathbf{x})^{\top} \right] \right] \stackrel{(a)}{=} \frac{1}{N} \sum_{n=1}^{N} \underbrace{\nabla \ell \left(\mathbf{y}_{n}, f\left(\mathbf{x}_{n}; \mathbf{w}\right) \right)}_{\nabla \ell_{n}} \nabla \ell \left(\mathbf{y}_{n}, f\left(\mathbf{x}_{n}; \mathbf{w}\right) \right)^{\top}$$

• Question:

• WoodFisher vs OBS:
$$\mathbf{H} = \frac{1}{P} \sum_{k=1}^{P} \frac{\partial \mathbf{F}(\mathbf{w}, \mathbf{in}^{[k]})}{\partial \mathbf{w}} \cdot \frac{\partial \mathbf{F}(\mathbf{w}, \mathbf{in}^{[k]})}{\partial \mathbf{w}}^{T}$$

Prune networks vs. train a small network

Pruning

- Unstructured pruning for individual weights
- Structure pruning in filter/channel/layer wise
- Does sparse network structure matter?
 - Argument1^{[1]:} pruning a network and finetuning it can archive better performance than the small network
 - For structured pruning, training a subnetwork from scratching without keep the initialization is possible to perform as good as finetune a pruned network.
- Does the initialization of the original network matter?
 - Argument2^[1]: for unstructured pruning, small learning rate can lead to winning ticket perform better than training from random intialization.
- Can we find a sparse structure without training?

Methods: before training

- Given a network initialized as W_0 and a dataset $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$, how to obtain a subnetwork with a few data without training?
- SNIP: Single-shot network pruning based on connection sensitivity^[1]
 - The objective: ($\|\cdot\|_0$ is L_0 norm.)

$$\min_{\mathbf{w}} L(\mathbf{w}; \mathcal{D}) = \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)),$$
s.t. $\mathbf{w} \in \mathbb{R}^m$, $\|\mathbf{w}\|_0 \le \kappa$.

• Introduce a mask variable on the weights $\mathbf{c} \in \{0,1\}^m$

$$\min_{\mathbf{c}, \mathbf{w}} L(\mathbf{c} \odot \mathbf{w}; \mathcal{D}) = \min_{\mathbf{c}, \mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{c} \odot \mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)),$$
s.t. $\mathbf{w} \in \mathbb{R}^m$,
$$\mathbf{c} \in \{0, 1\}^m, \quad \|\mathbf{c}\|_0 \le \kappa,$$

• Remove a single weight in isolation: $S(\theta_q) = \lim_{\epsilon \to 0} \left| \frac{\mathcal{L}(\boldsymbol{\theta}_0) - \mathcal{L}(\boldsymbol{\theta}_0 + \epsilon \boldsymbol{\delta}_q)}{\epsilon} \right| = \left| \theta_q \frac{\partial \mathcal{L}}{\partial \theta_q} \right|$

[1] Lee, N., Ajanthan, T. and Torr, P.H., 2019. Snip: Single-shot network pruning based on connection sensitivity. ICLR.

Methods: before training

GraSP: Picking winning tickets before training by preserving gradient flow^[1]

- Notation:
 - Output of a neural network: $\mathcal{Z} = f(\mathcal{X}; \boldsymbol{\theta}) \in \mathbb{R}^{nk \times 1}$
 - For a step of gradient decent, $\theta_{t+1} \theta_t = -\eta \nabla_{\theta} f(\mathcal{X}; \theta_t)$ the change to the network's prediction can be approximated with a first-order Taylor approximation:

$$f(\mathcal{X}; \boldsymbol{\theta}_{t+1}) = f(\mathcal{X}; \boldsymbol{\theta}_t) + \nabla_{\boldsymbol{\theta}} f(\mathcal{X}; \boldsymbol{\theta}_t) \nabla_{\mathcal{Z}} \mathcal{L} (\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t) = f(\mathcal{X}; \boldsymbol{\theta}_t) - \eta \boldsymbol{\Theta}_t(\mathcal{X}, \mathcal{X}) \nabla_{\mathcal{Z}} \mathcal{L}$$
$$\boldsymbol{\Theta}_t(\mathcal{X}, \mathcal{X}) = \nabla_{\boldsymbol{\theta}} f(\mathcal{X}; \boldsymbol{\theta}_t) \nabla_{\boldsymbol{\theta}} f(\mathcal{X}; \boldsymbol{\theta}_t)^\top \in \mathbb{R}^{nk \times nk}$$

Gradient flow:

$$\Delta \mathcal{L}(\boldsymbol{\theta}) = \lim_{\epsilon \to 0} \frac{\mathcal{L}\left(\boldsymbol{\theta} + \epsilon \nabla \mathcal{L}(\boldsymbol{\theta})\right) - \mathcal{L}(\boldsymbol{\theta})}{\epsilon} = \nabla \mathcal{L}(\boldsymbol{\theta})^{\top} \nabla \mathcal{L}(\boldsymbol{\theta})$$

Preserving gradient flow after training:

$$\mathbf{S}(\boldsymbol{\delta}) = \Delta \mathcal{L}(\boldsymbol{\theta}_0 + \boldsymbol{\delta}) - \underbrace{\Delta \mathcal{L}(\boldsymbol{\theta}_0)}_{\text{Const}} = 2\boldsymbol{\delta}^{\top} \nabla^2 \mathcal{L}(\boldsymbol{\theta}_0) \nabla \mathcal{L}(\boldsymbol{\theta}_0) + \mathcal{O}(\|\boldsymbol{\delta}\|_2^2)$$
$$= 2\boldsymbol{\delta}^{\top} \mathbf{H} \mathbf{g} + \mathcal{O}(\|\boldsymbol{\delta}\|_2^2),$$

Methods: before training

GraSP: Picking winning tickets before training by preserving gradient flow[IC LR20]

Algorithm

```
Algorithm 1 Gradient Signal Preservation (GraSP).Require: Pruning ratio p, training data \mathcal{D}, network f with initial parameters \theta_01: \mathcal{D}_b = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^b \sim \mathcal{D}> Sample a collection of training examples2: Compute the Hessian-gradient product \mathbf{Hg} (see Eqn. (8))> See Algorithm 23: \mathbf{S}(-\theta_0) = -\theta_0 \odot \mathbf{Hg}> Compute the score of each weight4: Compute p_{\text{th}} percentile of \mathbf{S}(-\theta_0) as \tau> Remove the weights with the largest scores5: \mathbf{m} = \mathbf{S}(-\theta_0) < \tau> Remove the weights with the largest scores6: Train the network f_{\mathbf{m} \odot \theta} on \mathcal{D} until convergence.
```

How to calculate the Hessian-gradient Product

```
Algorithm 2 Hessian-gradient Product.

Require: A batch of training data \mathcal{D}_b, network f with initial parameters \boldsymbol{\theta}_0, loss function \mathcal{L}

1: \mathcal{L}(\boldsymbol{\theta}_0) = \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{D}_b}[\ell(f(\mathbf{x};\boldsymbol{\theta}_0),y)] \triangleright Compute the loss and build the computation graph

2: \mathbf{g} = \operatorname{grad}(\mathcal{L}(\boldsymbol{\theta}_0), \boldsymbol{\theta}_0) \triangleright Compute the gradient of loss function with respect to \boldsymbol{\theta}_0

3: \mathbf{H}\mathbf{g} = \operatorname{grad}(\mathbf{g}^{\top}\operatorname{stop\_grad}(\mathbf{g}), \boldsymbol{\theta}_0) \triangleright Compute the Hessian vector product of \mathbf{H}\mathbf{g}

4: Return \mathbf{H}\mathbf{g}
```

$Comparison^{\hbox{\tiny [1]}}$

Table 1: Comparisons with Random Pruning with VGG19 and ResNet32 on CIFAR-10/100.

Dataset	CIFAR-10				CIFAR-100			
Pruning ratio	95%	98%	99%	99.5%	95%	98%	99%	99.5%
Random Pruning (VGG19)	89.47(0.5)	86.71(0.7)	82.21(0.5)	72.89(1.6)	66.36(0.3)	61.33(0.1)	55.18(0.6)	36.88(6.8)
GraSP (VGG19)	93.04(0.2)	92.19(0.1)	91.33(0.1)	88.61(0.7)	71.23(0.1)	68.90(0.5)	66.15(0.2)	60.21(0.1)
Random Pruning (ResNet32)	89.75(0.1)	85.90(0.4)	71.78(9.9)	50.08(7.0)	64.72(0.2)	50.92(0.9)	34.62(2.8)	18.51(0.43)
GraSP (ResNet32)	91.39(0.3)	88.81(0.1)	85.43(0.5)	80.50(0.3)	66.50(0.1)	58.43(0.4)	48.73(0.3)	35.55(2.4)

Dataset				CIFAR-100		
Pruning ratio	90%	95%	98%	90%	95%	98%
VGG19 (Baseline)	94.23	-		74.16	-	.=.
OBD (LeCun et al., 1990)	93.74	93.58	93.49	73.83	71.98	67.79
MLPrune (Zeng & Urtasun, 2019)	93.83	93.69	93.49	73.79	73.07	71.69
LT (original initialization)	93.51	92.92	92.34	72.78	71.44	68.95
LT (reset to epoch 5)	93.82	93.61	93.09	74.06	72.87	70.55
DSR (Mostafa & Wang, 2019)	93.75	93.86	93.13	72.31	71.98	70.70
SET Mocanu et al. (2018)	92.46	91.73	89.18	72.36	69.81	65.94
Deep-R (Bellec et al., 2018)	90.81	89.59	86.77	66.83	63.46	59.58
SNIP (Lee et al., 2018)	93.63±0.06	93.43±0.20	92.05±0.28	72.84 ± 0.22	71.83 ± 0.23	58.46±1.10
GraSP	93.30 ± 0.14	93.04 ± 0.18	92.19 ± 0.12	71.95 ± 0.18	71.23 ± 0.12	68.90 ± 0.47

[1] Wang, C., Zhang, G. and Grosse, R., 2020. Picking winning tickets before training by preserving gradient flow. ICLR.

 ϵ -ResNet: Learning Strict Identity Mappings

Intuition from ResNet: the performance doesn't increase with the number of layers

[1] Yu, X., Yu, Z. and Ramalingam, S., 2018. Learning strict identity mappings in deep residual networks. CVPR.

 ϵ -ResNet: Use strict identity mapping to compress the network

 ϵ -ResNet: visualization of ResNet750 on Cifar100 after pruning

Blue: retained layers. Red: pruned layers. Compression ration: 3.2 (#all_layers/#remained_layers)

	When	What	How	Action	Performance	Dependency	Why
Epsilon- ResNet[1]	During training	Layers	Magnitude of the feature map	prune- retrain	Approximate	-	Unimportant layers
ScalingUp[2]	After training	Neurons	MILP optimization	None	Lossless	Globally	Unimportant + redundant neurons
NISP[6]	After training	Neurons	Binary integer program	Finetune	Approximate	Down-to-top	
Surrogate[7]	After training	Weights	Hessian-based		Approximate	Independent	Weights which don't change Loss
LotterayTicket [3]	After training	Weights	Magnitude- based	Retrain	Approximate	-	Weight initialization + Data
SNIP[4]	Before training	Weights	Connection sensitivity	Train	Approximate	-	Data
PickingWinnin gTickets[5]	Before training	Weights	Preseve Gradient flow	Train	Approximate	Globally	Data

Thanks! Q&A