Tutorial & Practical 4: Model Selection

Question 1

In this question we are interested in deriving an algorithm for solving Lasso.

Given the model

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $\mathbf{y} \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$ and $\boldsymbol{\epsilon} \in \mathbb{R}^n \sim \mathcal{N}(0, \sigma^2 I_n)$. Let $\hat{\boldsymbol{\beta}}$ be the estimate of $\boldsymbol{\beta}$ obtained by least square estimation.

1. Let $y \in \mathbb{R}$, find the solution $u \in \mathbb{R}$ that minimizes

$$(y-u)^2 + \lambda |u|$$

- 2. Plot the solution as a function of y
- 3. Use this solution to derive an algorithm for solving

$$\min_{\boldsymbol{\beta}} \|\mathbf{y} - X\boldsymbol{\beta}\|^2 + \lambda |\boldsymbol{\beta}|$$

Question 2

Let $Y = (\mathbf{y}_1, ..., \mathbf{y}_n)^{\top}$ be an $n \times q$ matrix of observations for which we postulate the parametric model

$$Y = XB + \varepsilon$$
 where $\operatorname{vec}(\varepsilon) \sim \mathcal{N}(0, \Sigma \otimes I_n)$

where X is a known $n \times k$ design matrix of rank k, B is a $k \times q$ matrix of unknown parameters, ε is the $n \times q$ matrix of errors and Σ is a $q \times q$ matrix of error covariance.

- 1. Give the expression of the log likelihood
- 2. Find the number of parameters involved in the model
- 3. Derive the expressions of AIC and BIC

Question 3

Let $\mathbf{y} \in \mathbb{R}^n$ be a vector of observation for which we postulate the linear model

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $\mathbf{y} \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, $\boldsymbol{\beta} \in \mathbb{R}^k$ and $\boldsymbol{\epsilon} \in \mathbb{R}^n \sim \mathcal{N}(0, \sigma^2 I_n)$. The dimension k of $\boldsymbol{\beta}$ is estimated using AIC.

- 1. Give the form of the AIC criterion
- 2. Derive the expression of the probability of overfitting.