Question 1

$$C \subseteq D \subseteq \mathbb{R};$$

 $(f_n)_{n\in\mathbb{N}}$ is uniformly convergent on C; $\forall i\in\mathbb{N},\ f_i:D\to\mathbb{R}$ is continous

Show $\exists f$ such that $f_n \xrightarrow{\overline{C} \cap D} f$ and f is continous.

Proof. Fix an $\epsilon > 0$ so, by uniform continuity of f,

$$\exists M: p, m \geq M \implies \forall x \in C, |f_p(x) - f_m(x)| < \frac{\epsilon}{3}$$

Fix $p, m \ge M$. Now, fix a $k \in \overline{C} \cap D$ thus, $\exists (x_n) \subseteq C$ such that $x_n \to k$. As each f_i is continous,

$$\exists \delta(i) \text{ s.t. } |x - y| \le \delta \implies |f_i(x) - f_i(y)| < \frac{\epsilon}{3}$$

So, there's K such that

$$i \ge K \implies |f_p(x_i) - f_p(k)| < \frac{\epsilon}{3} \text{ and } |f_m(x_i) - f_m(k)| < \frac{\epsilon}{3}$$

Thus, by triangle inequality,

$$2 \times \frac{\epsilon}{3} > |f_p(x_i) - f_p(k)| + |f_m(x_i) - f_m(k)|$$

$$\geq |f_p(x_i) - f_m(x_i) + f_p(k) - f_m(k)|$$

$$\geq ||f_p(x_i) - f_m(x_i)| - |f_m(k) - f_p(k)||$$

Now, as $|f_p(x_i) - f_m(x_i)| < \frac{\epsilon}{3}, -|f_p(x_i) - f_m(x_i)| > \frac{-\epsilon}{3}$,

$$2 \times \frac{\epsilon}{3} \ge ||f_p(x_i) - f_m(x_i)| - |f_m(k) - f_p(k)||$$

$$\ge |f_p(x_i) - f_m(x_i)| - |f_m(k) - f_p(k)||$$

$$\ge |f_p(x_i) - f_m(x_i)| - \frac{\epsilon}{3}$$

Therefore, $|f_p(x_i) - f_m(x_i)| \le \epsilon$

There's a much better way of doing this though,

Proof. Fix an $\epsilon > 0$ so, by uniform continuity of f,

$$\exists M : p, m \ge M \implies \forall x \in C, |f_p(x) - f_m(x)| < \frac{\epsilon}{4}$$

Fix $p, m \ge M$

Now, fix a $k \in \overline{C} \cap D$. Going to show that (f_n) uniformly converges at k.

As f_p and f_m are continous, in particular at k,

$$\exists \delta_1 \text{ s.t. } |x - k| \le \delta_1 \implies |f_p(x) - f_p(k)| < \frac{\epsilon}{4}$$

$$\exists \delta_2 \text{ s.t. } |x-k| \leq \delta_2 \implies |f_m(x) - f_m(k)| < \frac{\epsilon}{4}$$

Take $\delta := min\{\delta_1, \delta_2\}$

Now, if $k \in C$, then by hypothesis, the given sequence uniformly converges at k. Else, k is a limit point of C. Thus,

$$\exists c \in C \text{ such that } |c - k| < \delta$$

Fix this c and consider the following inequality

$$|f_p(k) - f_m(k)| \le |f_p(k) - f_p(c)| + |f_p(c) - f_m(c)| + |f_m(c) - f_m(k)|$$

Each of the right hand side term is $<\frac{\epsilon}{4}$ (1st,3rd term due to continuity, 2nd term due to uniform convergance on C), forcing the left side to be $<\epsilon$.

Question 2 Prove that $\sum x^n(1-x)$ converges pointwise on [0,1] but not uniformly. While $\sum (-1)^n x^n(1-x)$ converges uniformly on [0,1].

Proof. As $x^n(1-x) = x^n - x^{n+1}$, the first sum telescopes:

$$\sum_{i=1}^{k} x^{n} (1-x) = (x-x^{2}) + (x^{2}-x^{3}) + \dots + (x^{k}-x^{k+1}) = x-x^{k+1}$$

So, for x = 1, every partial sum is 0, and for $0 \le x < 1$,

$$\lim_{k \to \infty} \sum_{i=1}^{k} x^{i} (1 - x) = \lim_{k \to \infty} (x - x^{k+1}) = x$$

Thus, the series converges pointwise on [0,1]. Suppose it also converges uniformly to f. Then, as the k^{th} partial sum is $x - x^{k+1}$, a polynomial, and hence continous on [0,1], it's limit function, f must be continous on [0,1]. But, f is discontinous at 1 as

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} x = 1 \neq 0 = f(1)$$

The partial sums for the second series of functions,

$$\sum_{i=1}^{k} (-x)^{n} (1-x) = -x + 2[(-x)^{2} + (-x)^{3} + \dots + (-x)^{k}] + (-x)^{k+1})$$

So, for x = 1, every partial sum is 0, and for $0 \le x < 1$,

$$\lim_{k \to \infty} \sum_{i=1}^{k} (-x)^{i} (1-x) = x + 2 \lim_{k \to \infty} ((-x)^{k+1} + \sum_{i=1}^{k} (-x)^{i})$$

$$= x + 2 \lim_{k \to \infty} \frac{-x(1 - (-x)^{k})}{1+x}$$

$$= x + \frac{-2x}{1+x}$$

To show uniform convergence, going to use the Drichilet test:

I Take
$$b_n(x) := \frac{x^n}{2} = (\frac{x}{\sqrt[n]{2}})^n$$
. Going to show that

(i)
$$\forall x \in [0,1], b_n(x) \ge b_{n+1}(x)$$
:
As $b_{n+1}(x) - b_n(x) = \frac{x^{n+1}}{n+\sqrt{2}} - \frac{x^n}{\sqrt[n]{2}} = \frac{x^n}{\sqrt[n]{2}} (\frac{x}{\sqrt{2}} - 1) \le 0$

(ii)
$$b_n \Longrightarrow 0(C)$$

Take
$$\delta > \frac{ln2}{ln(\epsilon+1)} \implies ln(\epsilon+1) > \frac{1}{\delta}ln(2)$$

$$\implies \epsilon > \sqrt[\delta]{2}$$

$$|b_n(x) - b_m(x)| = \left| \frac{x}{\sqrt[n]{2}} - \frac{x}{\sqrt[m]{2}} \right| = x\left(\frac{1}{\sqrt[n]{2}} - \frac{1}{\sqrt[m]{2}}\right)$$

$$\leq \left(\frac{1}{\sqrt[n]{2}} - \frac{1}{\sqrt[m]{2}}\right) = \frac{\sqrt[m]{2} - \sqrt[n]{2}}{\sqrt[n]{2}\sqrt[m]{2}} \leq \sqrt[m]{2} - \sqrt[n]{2}$$

$$\leq \sqrt[\delta]{2} - 1 \leq \epsilon$$

II Take
$$a_n(x) := 2(-1)^n (1-x)$$
. So,

$$|(A_n(x))| = |\sum_{i=1}^n a_i(x)| = 2(1-x)|\sum_{i=1}^n (-1)^n|$$

$$= \begin{cases} 0 & n \text{ is even} \\ 2(1-x) & n \text{ is odd} \end{cases}$$

 \therefore for any n,x $|A_n(x)| \le 2$, a_n is uniformly bounded.

III So, Drichilet's test is applicable and

$$\Sigma b_n a_n = \Sigma \frac{x^n}{2} \times 2(-1)^n (1-x)$$

$$= \Sigma (-1)^n x^n (1-x)$$
uniformly converges on [0,1]

Question 3

A is closed and bounded; (f_n) is a sequence of continous functions on A; $(f_n) \xrightarrow{p.w.} f$, with f continous on A; $\forall x \in A, f_n(x) \geq f_{n+1}(x)$, with $n \in \mathbb{N}$;

Prove that $f_n \rightrightarrows f(A)$

Question 4 Construct a sequence of functions, (f_n) on [0,1] such that

- (a) each f_i is discontinuous at every point of [0,1]; and
- (b) $\exists f$, a continuous function on [0,1] such that $f_n \Longrightarrow f$

Proof. Define
$$f_n(x) = \begin{cases} \frac{1}{n} & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

- (a) This sequence is discontinuous on [0,1] as:
 - (i) For $q \in \mathbb{Q}$, take any sequence of irrational numbers, $(p_n) \to q$. So,

$$\lim_{k \to \infty} f_n(p_k) = 0 \neq \frac{1}{n} = f_n(q)$$

(ii) For $p \notin \mathbb{Q}$, take any sequence of rational numbers, $(q_n) \to p$. So,

$$\lim_{k \to \infty} f_n(q_k) = \frac{1}{n} \neq 0 = f_n(q)$$

(b) The defined sequence uniformly converges to 0 as: Fix $\epsilon = \frac{1}{n}$, and choose $\delta > n$,

$$m \ge \delta \implies |f_m(x)| = \frac{1}{m} \le \frac{1}{\delta} < \frac{1}{n} = \epsilon$$

Question 5 Prove If Σa_n is absolutely convergent then $\Sigma \frac{a_n x^n}{1+x^{2n}}$ converges uniformly on \mathbb{R} .