Logic Simplification

Boolean Equation Minimization

BOOLEAN ALGEBRA

SIMPLIFICATION OF CIRCUITS IS IMPERATIVE AS THIS PROCESS CAN HELP IN THE FOLLOWING CONSIDERATIONS:

- SAVE REAL ESTATE
- LOWER COST
- IMPROVE PERFORMANCE

Axioms of Boolean Algebra

$$0 + 0 = 0$$

OR FUNCTION

$$0 + 1 = 1 + 0 = 1$$

$$1 + 1 = 1$$

$$0.0 = 0$$

AND FUNCTION

$$0 \cdot 1 = 1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

NOT FUNCTION

IF
$$x = 0 \rightarrow x = 1$$

IF
$$x = 1 \rightarrow \overline{x} = 0$$

SINGLE VARIABLE THEOREMS

USING THE AXIOMS, WE CAN DEFINE:

$$A + 0 = A$$

$$A + 1 = 1$$

$$A + A = A$$

$$A + \overline{A} = 1$$

$$A \cdot 0 = 0$$

$$A \cdot 1 = A$$

$$A \cdot A = A$$

$$A \cdot \overline{A} = 0$$

$$\overline{\overline{A}} = A$$

NAND Gate - Special Application

NOR Gate - Special Application

DUALITY PRINCIPAL

GIVEN A LOGIC EXPRESSION, ITS DUAL IS OBTAINED BY REPLACING ALL + OPERATORS WITH . OPERATORS AND VICE VERSA, AND BY REPLACING 0's WITH 1's AND VICE VERSA

USING THE DUALITY PRINCIPAL WE CAN GENERATE EQUIVALENT STATEMENTS

EXAMPLE:

$$0 + 0 = 0 \rightarrow 1 \cdot 1 = 1$$

$$0.0 = 0 \rightarrow 1 + 1 = 1$$

SINGLE VARIABLE THEOREMS

USING THE AXIOMS, WE CAN DEFINE (REVISITED):

$$A + 0 = A \rightarrow A \cdot 1 = A$$

$$A + 1 = 1 \rightarrow A \cdot 0 = 0$$

$$A + A = A \rightarrow A \cdot A = A$$

$$A + A' = 1 \rightarrow A \cdot A' = 0$$

Boolean Algebra Properties

Property	Expression
Commutative	Addition: A + B = B + A Multiplication: A B = B A
Associative	Addition: $A + (B+C) = (A+B) + C = A+B+C$ Multiplication: $A(BC) = (AB)C = ABC$
Distributive	A(B+C) = AB + AC $(A + B)(C + D) = AC+BC+AD+BD$

Boolean Algebra Properties

$$A + AB = A$$
 Work the left side
$$A (1 + B) = A (1) = A$$

$$A + A'B = A + B$$
 Work the right side
$$(A + B) = (A + B) (1) = (A + B) (A + A')$$

$$AA + BA + AA' + BA'$$

$$A + AB + O + A'B$$

$$A + A'B$$

Example: Prove that A' + AB = A' + B

Solution: Let $A' = X \rightarrow Thus A = X' \rightarrow Substitute into the equation:$

We get: X + X'B = X + B which has been proven earlier, thus:

$$\checkmark$$
 A' + AB = A' + B

Boolean Algebra Properties

$$AB + AB' = A$$

 $A (B + B') = A (1) = A$

$$(A + B)(A + C) = A + BC$$

$$AA + AC + AB + BC = A + AC + AB + BC$$

$$A + AB + BC = A + BC$$

WE CAN PROVE THE VALIDITY OF THESE PROPERTIES EITHER BY PERFECT INDUCTION OR BY PERFORMING ALGEBRAIC MANIPULATION

INDUCTION METHOD:

TRUTH TABLE FORMAT

ALGEBRAIC MANIPULATION METHOD:

USE AXIOMS, THEOREMS, PROPERTIES TO PROVE VALIDITY BY SHOWING THAT THE LHS = RHS

Rule applied	AABCBBC1 = X
Commutative	AABBBCC1 = X
$A \cdot A = A$	ABC1 = X
A-1 = A	ABC = X

KLMKMKS0 = X
KKKLMMS0 = X
KLMS0 = X
0 = X

Rule Applied

$$CC + BCD + DDCB = X$$

$$A \cdot A = A$$

$$C + BCD + DCB = X$$

Commutative

$$C + BCD + BCD = X$$

$$A + A = A$$

$$C + BCD = X$$

Commutative.

$$C + CBD = X$$

$$A + AB = A$$

$$C = X$$

DCB + 0 = X
DCB = X

Rule Applied	CC + BD + 1 = X
$A \cdot A = A$	C + BD + 1 = X
A + 1 = 1	1 = X

Rule Applied $(C+CB)+(\overline{C}B+C)=X$

$$A + AB = A$$

$$A + AB = A + B$$

Associative.

$$A + A = A$$

$$(C) + (CB + C) = X$$

$$(C) + (C + B) = X$$

$$C + C + B = X$$

$$C + B = X$$

Rule Applied

$$\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + AB\overline{CD} = X$$

$$A + A = A$$

Distributive.

$$A + A = 1$$

$$A \cdot 1 = A$$

$$\overline{ABCD} + \overline{ABCD} + \overline{ABCD} = X$$

 $\overline{ACD}(B + \overline{B}) + \overline{ABCD} = X$
 $\overline{ACD}(1) + \overline{ABCD} = X$
 $\overline{ACD} + \overline{ABCD} = X$

Example # 1:

Develop a circuit and truth table from a Boolean expression

Boolean Expression: X = A B C + A B C

Simplify the Expression:

$$X = ABC + \overline{A}BC$$

$$BC(\overline{A} + A)$$

$$BC(1)$$

Unsimplified Circuit

Example # 1: Unsimplified Example # 1: Simplified

$$X = \overline{A}BC + ABC$$

$$X = B C$$

A	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Α	В	С	X	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Example # 2

Develop a truth table and Boolean Expression from a circuit:

Example # 2

Unsimplified Boolean Expression:

$$X = \overline{A} B C + \overline{C}$$

Simplified Boolean Expression:

$$\overline{A} B C + \overline{C} = \overline{C} + C [\overline{A} B]$$

Let:
$$C = X$$
 and $\overline{A}B = Z$

We get:
$$\overline{X} + XZ = \overline{X} + Z = \overline{C} + \overline{A}B$$

We get:

$$X = \overline{A} B C + \overline{C} = \overline{A} B + \overline{C}$$

DeMorgan's Theorems

$$\overline{A \cdot B} = \overline{A} + \overline{B} \rightarrow \overline{A + B} = \overline{A} \cdot \overline{B}$$

$$A \cdot B = \overline{\overline{A} \cdot B} = \overline{\overline{A} + \overline{B}}$$

$$A + B = \overline{A + B} = \overline{A} \cdot \overline{B}$$

DeMorgan's Theorem #1

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

A	В	A • B	$\overline{\mathbf{A} \bullet \mathbf{B}}$		$\overline{\mathbf{A}}$	$\overline{\mathbf{B}}$	$\overline{\mathbf{A}} + \overline{\mathbf{B}}$
0	0	0	1		1	1	1
0	1	0	1		1	0	1
1	0	0	1		0	1	1
1	1	1	0		0	0	0
EQUAL							

DeMorgan's Theorem #1

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Invert the inputs of an OR gate

NAND Logic

A-O-I ⇒ NAND Only Logic

A-O-I Design Example

A-O-I ⇒ NAND Only Logic

NAND-ONLY Design Example

DeMorgan's Theorem #2

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

A	В	A + B	$\overline{\mathbf{A} + \mathbf{B}}$	$\overline{\mathbf{A}}$	B	$\overline{\mathbf{A}} \mathbf{x} \overline{\mathbf{B}}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

DeMorgan's Theorem #2

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

Invert output of an OR gate

Invert the inputs of an AND gate

NOR Logic

A-O-I \Rightarrow NOR Only

$A-O-I \Rightarrow NOR$

NOR-Only Design Example

DeMorganizing an Expression

$$(A\overline{C}) + (B\overline{C}) + (A+C)(B\overline{C}) = X$$

DeMorg.

Dist.

Dist.

$$A' A = 0$$

 $C' C = 0$

$$(A\overline{C})(\overline{B} + C)(\overline{AC}) + (\overline{B} + C) = X$$
$$(A\overline{C}B + A\overline{C}C)(\overline{AC}) + (\overline{B} + C) = X$$

$$(0+0) + (\overline{B} + C) = X$$

DeMorganizing an Expression

$$(\overline{CB0} + 00) + (\overline{B} + C) = X$$

$$A = 0$$

$$A + 0 = A$$

$$(0) + (\overline{B} + C) = X$$

$$(\overline{B} + C) = X$$

BOOLEAN THEOREMS

1.
$$A + B = B + A$$
 COMMUTATIVITY
 $AB = BA$

2.
$$A + (B + C) = (A + B) + C$$
 ASSOCIATIVITY
 $A(B C) = (A B)C$

3.
$$A(B + C) = AB + AC$$
 DISTRIBUTIVITY
 $(A + B)(C + D) = AC + AD + BC + BD$

1.
$$A \cdot 0 = 0$$

2.
$$A \cdot 1 = A$$

3.
$$A + 0 = A$$

4.
$$A + 1 = 1$$

$$5. \quad A \cdot A = A$$

6.
$$A + A = A$$

7.
$$A \cdot A' = 0$$

8.
$$A + A' = 1$$

9.
$$A'' = A$$

10.
$$A + AB = A$$

$$\mathbf{A}(\mathbf{A} + \mathbf{B}) = \mathbf{A}$$

$$\mathbf{A} + \mathbf{A'B} = \mathbf{A} + \mathbf{B}$$

$$A' + AB = A' + B$$

1.
$$(A + B)' = A' \cdot B'$$

2.
$$(A . B)' = A' + B'$$

3.
$$(A + B) = (A' \cdot B')'$$

4.
$$(A \cdot B) = (A' + B')'$$

←LAWS

RULES

DeMorgan

BUBBLE PUSHING

SYNTHESIS USING AND, OR, NOT GATES

SYNTHESIS USING AND, OR, NOT GATES

CREATE A PRODUCT TERM THAT HAS A VALUE OF 1 FOR EACH TRUTH TABLE ROW THAT CAUSES THE OUTPUT TO BE TRUE (f=1)

f(x1, x2) = x1'x2' + x1'x2 + x1x2 = x1'x2' + x1'x2 + x1x2 + x1'x2

(a) Canonical sum-of-products

$$f(x1, x2) = x2 + x1$$

$$x_1 \longrightarrow f$$

$$x_2 \longrightarrow f$$
(b) Minimal-cost realization

Figure 2.16 Two implementations of a function

CANONICAL FORM SOP → EACH PRODUCT TERM IS A MINTERM (ALL VARIABLES ARE IN THE PRODUCT TERM)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$	0 0 1 1 0 0 1 1	0 1 0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + x_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

Used in SOP Used in POS

 $f \rightarrow 1$ $f \rightarrow 0$

Figure 2.17 Three-variable Minterms and Maxterms

EXAMPLE

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	\parallel 1
7	1	1	1	0

$$f(x3,x2,x1) = x1'x2'x3 + x1x2'x3' + x1x2'x3 + x1x2'x3'$$
 \uparrow

LSB \rightarrow MSB

Figure 2.18 A three-variable function

Derive

(a) A minimal sum-of-products realization

*x*₁

*x*₃

Derive

(b) A minimal product-of-sums realization

Figure 2.19 Two realizations of a function

Example # 3:

Develop a logic circuit and Boolean expression from a truth table

