◇線形代数

固有値分解までは、高校、大学復習という位置づけで理解は容易であった。特異値分解については、解き方は理解したが、本質的な理解には至っていないと感じている。後続の学習を続け、必要に応じて他の教材も活用しながら理解していきたい。

◇確率統計

全体として大学や教養として勉強してきた内容であるが、忘れていた箇所も多かった。利用しなが ら理解していきたい。

◇情報科学

初めて学んだ内容で本質的な理解には及んでいない。後続の学習を続けながら理解していきたい。

应且数字
到草 稳心代数
スケラン 普遍の数 ハクトル 大きさと かきを持つ、 イカー スカラーを表にしたもの ハクトルを重かたる。
例題 (2 1) (1 3) = (2+3 6+2) = (5 7) (4 1) (3 1) = (4+3 12+1) = (5 7) 行動が列り う行目を C 信事な S 行目にも行目の (信を力なる) P 行目と 9 行目を 入れ替える
单位行前 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
1
近面はか存在はから。 (0 -1 1 - 4) 4 - 1 程 (0 -1 1 - 4) 4 人 1 程 (0 -1 - 1 4) 4 人 1 程 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

- で、 行を入り替えると 特易の支わる。
(1)
TABLE DE
321+2x= 2x1
2x2= \(\lambda\)2 = \(\lambda\)3 = \(\lambda\)3 = \(\lambda\)3.
1=0 \ \ \ \ \ \ = \ \ \ \ \ \ \ \ \ \ \ \
X,=Z, x,=-1 X,=0

特累值分解	UV的直交行和I
M \(\vec{u} = \vec{v} \vec{u} \)	=> M= US)V-1
MTV = CU Tappen	TILL STATE SELECTION
MV = VS	MTU = VST
M = USVT	MT=VSTUT
MMT = USVT	V ST UT = VSST UT
MMTE国存值人	一种
$M = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$	
MML = (1 5 3)	22 = 14 10) 对象的
1	X12-100 = (4-X)(24-X).
$\begin{pmatrix} 14 & (0) \\ 10 & 14 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = 4 \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$	14x1+10x2=4x1 10x1+10x2=0
(14 10)(X1) = 24 (X1)	14x+10x2=24x, -10x+10x=00
7=4 (1) Y=54 (1	10x1+14x=24xs 10x,-10x2-0
(11) (4 0) (C 24)	(-11)-1 (UZIII)
(-1 1) (4 0) (0 24)	(-2 + 1 1 1 6 1

生 研率 (客観確率) 八八乙" 確率 (主観確率) 作化の 皮金、1
$P(A) = \frac{n(A)}{n(V)} = \frac{事象 A # 起ころ数}{f \sim 7 \circ 事象 \circ 3 \otimes 5}$ $O \sim 1 \circ p \circ 1$
P(AnB) = P(A)P(B\A)) 1同じ P(RnA) = P(B)P(A\B)) 1同じ 条件付き 研究 - あ3 事象Bからえられた下で Aとなる研究 P(A\B) = P(A n B) P(B) *** ** ** ** ** ** ** ** ** ** ** ** *
P(AnB) = P(A) P(B) A) = P(A) P(B)
P(AUB) = P(A) + P(B) - P(A)B)


```
A敬 Var(f) = E((f(x=1)-E(f))2)
              = E (f'(x=1)) - (E(P))2
 芝柏松 Cov (f. g) = E((f(x=x)-E(f))) (1x-y)-E(g)))
                   = E(fg) - E(f) E(g)
 標準偏差 6=√V+(f)
破率分布
   ハルヌーイ分布
       - 21212014-2"
    P(x/m)= nx(+m)1-x
  力マルチマーイしカテコーリカル)分布・さいころを転かす(メージ)
   二項分布。17-14年初期过行版
   ガウス分布
植定量・パラメータを推定するために和用する数値の計算方に付り
推定値、計算にた値
真の値を日となるとをなる
標本子の一母集団から取り上げ、標本の手円値
棒车分级 古是 (2:-主)2.
不少的分數 92 n-1 = (2:-2)2 = - + = (2:-2)2
```



```
交差エントなどの一
                  ・ドレタンパンションスの一部台を取り出したもの。 ロトフロアの自己付けるまさりの方面で好かしている。
    PKL(P10) = = p(x)(-log(Q(x)))-(-log(p(x)))
                                        H(P,Q) = H(P) + Del (PIA)
           H(P.Q) = - Ex-Ploga(x) = - = P(x) log Q(x)
   【応用数字演習了
   1.1
  1/1 \quad \vec{\alpha} + \vec{\beta} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} + \begin{pmatrix} 5 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \\ 9 \end{pmatrix}
  113 77 = 7 (3) = (42)
 114 8 (a+ B)=8(8)=(48)
 ±1 1-2
 121 A+B=(21)+(14)=(35)
|22 A - 3B = |2| / 3 |2| = (-1 - 1) / 2 - 12 / 12
2.1. A\vec{u} = \begin{pmatrix} 13 & 4 \\ 59 & 6 \\ 3 & 12 \end{pmatrix} \begin{pmatrix} 13 \\ 5 \\ 9 \end{pmatrix} \begin{pmatrix} 13 \\ 5 \\ 9 \end{pmatrix} \begin{pmatrix} 14 \\ 87 \\ 15 \\ 16 \end{pmatrix}
2.12. B\vec{v} = \begin{pmatrix} 10 & 3 \\ 0 & 25 \end{pmatrix} \begin{pmatrix} 13 \\ 9 \\ 15 \end{pmatrix} \begin{pmatrix} 10 \\ 15 \\ 15 \end{pmatrix}
213 BA = (0.25)[\frac{134}{312}] = (10.6)[0.14]
```

0 1 3 3 36)/

3.1. a.ld. 3.2. $pco = (7+3w+450+75)=3co/l$ $3co/12co = 4$ $450/12co = 9 \times 24 = 3/8$ $3co/12co = 9 \times 24 = 3/8$ $411 I = log = $	
3.2 $ 200 - (7x+3)w+ 450+75 = 300/1$ $300/1200 = 4$ $450/1200 = 9 \times 24 = 3/8$ $300/1200 = 4$ $75/1200 = 16$ $4!1 I = log_2 \left(\frac{1}{2}\right) = log_2 2 = 1/4$ $4!2 I = log_2 \left(\frac{1}{2}\right) = log_2 4 = 2/4$ $4!3 I = log_2 \left(\frac{1}{2}\right) = log_2 4 = 2/4$ $5! I = log_2 \left(\frac{1}{2}\right) = log_2 1 n C_1 (\frac{1}{2})^2 = -log_2 \ln (1/2)^2 = -log_2 \ln (1$	DE ROSE
3.2 $ 200 - (7x+3w+450+75) = 300/l$ 30v/1200 = 4 450/1200 = 4 75/1200 = 16 $4.11 I = log = (\frac{1}{2}) = log = 2 = 1/l$ $412 I = log = (\frac{1}{2}) = log = 4 = 2/l$ $413 J = log = 2^n = n/l$ 5.1. 12 - log = n = n/l 5.1. 12 - log = n = n/l $600 = \frac{2}{10} = \frac{1}{5}$ $600 = \frac{2}{10} = \frac{1}{5}$ $600 = \frac{2}{10} = \frac{1}{5}$ $600 = \frac{1}{5}$	3.1.
$300/1200 = 4$ $450/1200 = 9 \times 24 = 3/8$ $300/1200 = 4$ $75/1200 = 16$ $411 $	- and
$300/1200 = 4$ $450/1200 = 9 \times 24 = 3/8$ $300/1200 = 4$ $75/1200 = 16$ $411 $	3-2 1200-175+310+450+75)=300/
450 /1200 = $\frac{9}{24} = \frac{3}{8}$ 300 /1200 = $\frac{1}{4}$ $\frac{1}{1} = \frac{1}{1} = \frac{1}{1$	
$300/200 = \frac{1}{16}.$ $411 I = \log_{2}\left(\frac{1}{2}\right) = \log_{2}2. = 1/2$ $412 E = \log_{2}\left(\frac{1}{2}\right) = \log_{2}2. = 1/2$ $413 J = \log_{2}\left(\frac{1}{2}\right) = \log_{2}4. = 2/2$ $5.1. I = -\log_{2}\left(\frac{1}{2}\right) = \log_{2}\ln f ^{n}) = -\log_{2}\ln + n \text{ (kt)}$ $0 f_{0} = \frac{2}{10} = \frac{1}{5}$ $2 305/7$ $5 21 2 10. P(R _{\frac{1}{2}}) = \frac{1}{3}$ $\frac{1}{3} \frac{1}{3} \frac{1}{3} P(5 A) = \frac{1}{3}$	
$300/200 = \frac{1}{16}.$ $411 I = \log_{2}\left(\frac{1}{2}\right) = \log_{2}2. = 1/2$ $412 E = \log_{2}\left(\frac{1}{2}\right) = \log_{2}2. = 1/2$ $413 J = \log_{2}\left(\frac{1}{2}\right) = \log_{2}4. = 2/2$ $5.1. I = -\log_{2}\left(\frac{1}{2}\right) = \log_{2}\ln f ^{n}) = -\log_{2}\ln + n \text{ (kt)}$ $0 f_{0} = \frac{2}{10} = \frac{1}{5}$ $2 305/7$ $5 21 2 10. P(R _{\frac{1}{2}}) = \frac{1}{3}$ $\frac{1}{3} \frac{1}{3} \frac{1}{3} P(5 A) = \frac{1}{3}$	450 /1200 = 9 × 24 = 3/8
$75/1200 T6$ $411 I = \log_{2}(\frac{1}{4}) = \log_{2} 2 = 1/2$ $412 I = \log_{2}(\frac{1}{4}) = \log_{2} 4 = 2/2$ $413 I = \log_{2}(2^{n} C_{1} + 1) = \log_{2}(n + 1) = \log_{$	
411 $I = log = \left(\frac{1}{4}\right) = log \cdot 2 = 1$ 412 $I = log \cdot \left(\frac{1}{4}\right) = log \cdot 4 = 2$ 413 $I = log \cdot 2n = n$ 5.1. $I = log \cdot 2n = n$ $0 = \frac{1}{5} = \frac{2}{10} = \frac{1}{5}$ $0 = \frac{1}{3} = \frac{1}{3}$	
412. $I = log \cdot 2^n = n$ 413. $I = log \cdot 2^n = n$ 5.1. $I = -log \cdot 2^n = n$ 5.1. $l = -log \cdot 2^n = n$ 6 $l = -log \cdot 2^n = n$ 7 $l = -log \cdot 2^n = n$ 8 $l = -log \cdot 2^n = n$ 9 $l = -log \cdot 2^n = n$ 12 $l = -log \cdot 2^n = n$ 13 $l = -log \cdot 2^n = n$ 15 $l = -log \cdot 2^n = n$ 15 $l = -log \cdot 2^n = n$ 15 $l = -log \cdot 2^n = n$ 16 $l = -log \cdot 2^n = n$ 17 $l = -log \cdot 2^n = n$ 18 $l = -log \cdot 2^n = n$ 19 $l = -log \cdot 2^n = n$ 10 $l = -log \cdot 2^n = n$ 10 $l = -log \cdot 2^n = n$ 10 $l = -log \cdot 2^n = n$ 11 $l = -log \cdot 2^n = n$ 12 $l = -log \cdot 2^n = n$ 12 $l = -log \cdot 2^n = n$ 13 $l = -log \cdot 2^n = n$ 15 $l = -log \cdot 2^n = n$ 16 $l = -log \cdot 2^n = n$ 17 $l = -log \cdot 2^n = n$ 18 $l = -log \cdot 2^n = n$ 19 $l = -log \cdot 2^n = n$ 19 $l = -log \cdot 2^n = n$ 10 $l = -log \cdot 2^n = n$ 11 $l = -log \cdot 2^n = n$ 12 $l = -log \cdot 2^n = n$ 13 $l = -log \cdot 2^n = n$ 14 $l = -log \cdot 2^n = n$ 15 $l = -log \cdot 2^n = n$ 15 $l = -log \cdot 2^n = n$ 16 $l = -log \cdot 2^n = n$ 17 $l = -log \cdot 2^n = n$ 18 $l = -log \cdot 2^n = n$ 18 $l = -log \cdot 2^n = n$ 19 $l = -log \cdot 2^n = n$ 19 $l = -log \cdot 2^n = n$ 20 $l = -log \cdot 2^n = n$ 21 $l = -log \cdot 2^n = n$ 22 $l = -log \cdot 2^n = n$ 23 $l = -log \cdot 2^n = n$ 24 $l = -log \cdot 2^n = n$ 25 $l = -log \cdot 2^n = n$ 26 $l = -log \cdot 2^n = n$ 27 $l = -log \cdot 2^n = n$ 28 $l = -log \cdot 2^n = n$ 29 $l = -log \cdot 2^n = n$ 20 $l = -log \cdot 2^n = n$ 21 $l = -log \cdot 2^n = n$ 22 $l = -log \cdot 2^n = n$ 23 $l = -log \cdot 2^n = n$ 24 $l = -log \cdot 2^n = n$ 25 $l = -log \cdot 2^n = n$ 26 $l = -log \cdot 2^n = n$ 27 $l = -log \cdot 2^n = n$ 28 $l = -log \cdot 2^n = n$ 29 $l = -log \cdot 2^n = n$ 20 $l = -log \cdot 2^n = n$ 20 $l = -log \cdot 2^n = n$ 21 $l = -log \cdot 2^n = n$ 22 $l = -log \cdot 2^n = n$ 23 $l = -log \cdot 2^n = n$ 24 $l = -log \cdot 2^n = n$ 25 $l = -log \cdot 2^n = n$ 27 $l = -log \cdot 2^n$	75/1200 16
412. $I = log \cdot 2^n = n$ 413. $I = log \cdot 2^n = n$ 5.1. $I = -log \cdot 2^n = n$ 5.1. $l = -log \cdot 2^n = n$ 6 $l = -log \cdot 2^n = n$ 7 $l = -log \cdot 2^n = n$ 8 $l = -log \cdot 2^n = n$ 9 $l = -log \cdot 2^n = n$ 12 $l = -log \cdot 2^n = n$ 13 $l = -log \cdot 2^n = n$ 15 $l = -log \cdot 2^n = n$ 15 $l = -log \cdot 2^n = n$ 15 $l = -log \cdot 2^n = n$ 16 $l = -log \cdot 2^n = n$ 17 $l = -log \cdot 2^n = n$ 18 $l = -log \cdot 2^n = n$ 19 $l = -log \cdot 2^n = n$ 10 $l = -log \cdot 2^n = n$ 10 $l = -log \cdot 2^n = n$ 10 $l = -log \cdot 2^n = n$ 11 $l = -log \cdot 2^n = n$ 12 $l = -log \cdot 2^n = n$ 12 $l = -log \cdot 2^n = n$ 13 $l = -log \cdot 2^n = n$ 15 $l = -log \cdot 2^n = n$ 16 $l = -log \cdot 2^n = n$ 17 $l = -log \cdot 2^n = n$ 18 $l = -log \cdot 2^n = n$ 19 $l = -log \cdot 2^n = n$ 19 $l = -log \cdot 2^n = n$ 10 $l = -log \cdot 2^n = n$ 11 $l = -log \cdot 2^n = n$ 12 $l = -log \cdot 2^n = n$ 13 $l = -log \cdot 2^n = n$ 14 $l = -log \cdot 2^n = n$ 15 $l = -log \cdot 2^n = n$ 15 $l = -log \cdot 2^n = n$ 16 $l = -log \cdot 2^n = n$ 17 $l = -log \cdot 2^n = n$ 18 $l = -log \cdot 2^n = n$ 18 $l = -log \cdot 2^n = n$ 19 $l = -log \cdot 2^n = n$ 19 $l = -log \cdot 2^n = n$ 20 $l = -log \cdot 2^n = n$ 21 $l = -log \cdot 2^n = n$ 22 $l = -log \cdot 2^n = n$ 23 $l = -log \cdot 2^n = n$ 24 $l = -log \cdot 2^n = n$ 25 $l = -log \cdot 2^n = n$ 26 $l = -log \cdot 2^n = n$ 27 $l = -log \cdot 2^n = n$ 28 $l = -log \cdot 2^n = n$ 29 $l = -log \cdot 2^n = n$ 20 $l = -log \cdot 2^n = n$ 21 $l = -log \cdot 2^n = n$ 22 $l = -log \cdot 2^n = n$ 23 $l = -log \cdot 2^n = n$ 24 $l = -log \cdot 2^n = n$ 25 $l = -log \cdot 2^n = n$ 26 $l = -log \cdot 2^n = n$ 27 $l = -log \cdot 2^n = n$ 28 $l = -log \cdot 2^n = n$ 29 $l = -log \cdot 2^n = n$ 20 $l = -log \cdot 2^n = n$ 20 $l = -log \cdot 2^n = n$ 21 $l = -log \cdot 2^n = n$ 22 $l = -log \cdot 2^n = n$ 23 $l = -log \cdot 2^n = n$ 24 $l = -log \cdot 2^n = n$ 25 $l = -log \cdot 2^n = n$ 27 $l = -log \cdot 2^n$	411 I - la 1-1-1a 2-1a
4.13 $J = log \cdot 2^n = n$ 5.1. $J = log \cdot 2^n = n$ 5.1. $J = log \cdot 2^n = n$ 6.1. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 8. $J = log \cdot 2^n = n$ 9. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 3. $J = log \cdot 2^n = n$ 4. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 6. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 8. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 3. $J = log \cdot 2^n = n$ 4. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 6. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 3. $J = log \cdot 2^n = n$ 4. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 6. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 8. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 3. $J = log \cdot 2^n = n$ 4. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 6. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 8. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 3. $J = log \cdot 2^n = n$ 4. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 6. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 8. $J = log \cdot 2^n = n$ 9. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 3. $J = log \cdot 2^n = n$ 4. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 6. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 8. $J = log \cdot 2^n = n$	
4.13 $J = log \cdot 2^n = n$ 5.1. $J = log \cdot 2^n = n$ 5.1. $J = log \cdot 2^n = n$ 6.1. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 8. $J = log \cdot 2^n = n$ 9. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 3. $J = log \cdot 2^n = n$ 4. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 6. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 8. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 3. $J = log \cdot 2^n = n$ 4. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 6. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 3. $J = log \cdot 2^n = n$ 4. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 6. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 8. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 3. $J = log \cdot 2^n = n$ 4. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 6. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 8. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 3. $J = log \cdot 2^n = n$ 4. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 6. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 8. $J = log \cdot 2^n = n$ 9. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 1. $J = log \cdot 2^n = n$ 2. $J = log \cdot 2^n = n$ 3. $J = log \cdot 2^n = n$ 4. $J = log \cdot 2^n = n$ 5. $J = log \cdot 2^n = n$ 6. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 7. $J = log \cdot 2^n = n$ 8. $J = log \cdot 2^n = n$	412. I= logs (-1) = logs 4-21
5.1. Iz-log2 (nC, b) =-42 my) =-log2n+n (b) 0 = 70 = 5 2 3(5) 521. 2 5 10. P(P) = 5 2 3 3 4 P(5) A) = 5 2 3 3 4 P(5) A) = 5	A CONTRACTOR OF THE CONTRACTOR
5.1. Iz-log2 (nC, b) =-42 my) =-log2n+n (b) 0 = 70 = 5 2 3(5) 521. 2 5 10. P(P) = 5 2 3 3 4 P(5) A) = 5 2 3 3 4 P(5) A) = 5	413 I= log = 2" = N/
9 305 / P(PI=) = = = = = = = = = = = = = = = = = =	
9 305 / P(PI=) = = = = = = = = = = = = = = = = = =	5.1. 12 n(1) = - 42 (n H) = - log = n + n (bit)
521. 2 5 10. P(PIX) = 5 2 5 2 7 3 10. P(DIA) = 5 2 5 3 7 2 7 (DIA) = 5	0 10 = 7 = +
521. 2 10. P(BIX) = 5 2 5 2 10. P(BIX) = 5	
2 P(5 A)= 1	3(5)
2 P(5 A)= 1	521.2 F 10 P(RI=) - 5 1
5 3 3	73
2 3 \ 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2 5 2 P(D A)-1
	3 /3 //
	2 1/4

-4x1+4x2=5x1	
	ш
4x 9x .	ш
6-1(5) Zx1-2x2=5x2.	ш
[2 D] 2x1= 1x2	ш
15(b) b)	ш
423 = 9. 1/12	ш
17.4 (6)	Ш
7.5 41	ш
	ш
$M^{2}M\left(\frac{1}{2},\frac{3}{2}\right)\left(\frac{1}{3},\frac{3}{2},\frac{3}{2}\right) = \begin{pmatrix} 1 & 8 & 6 \\ 8 & 8 & 8 \\ 6 & 8 & 10 \end{pmatrix} \begin{pmatrix} 1 & 4 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 20 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	ı
11x 2 0 1 0 0 3 1 0 0 1 2	ш
$\begin{vmatrix} 6 & 2 - \lambda & 0 \\ 0 & 2 - \lambda \end{vmatrix} = (1 - \lambda)(2 - \lambda)(3 - \lambda) $	ш
$\begin{vmatrix} 0 & 2 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = (1 - \lambda)(2 - \lambda)(3 - \lambda), \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$	ш
*\	Ш
$\begin{pmatrix} 0 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} \begin{pmatrix} 2\chi_2 = \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} \begin{pmatrix} 2 \\ \chi_2 = \chi_2 \\ \chi_3 \end{pmatrix}$	Ш
	ш
λ=2.	ш
$ \begin{pmatrix} 2 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 2 \begin{pmatrix} x_1 \\ x_4 \\ x_3 \end{pmatrix} = 2x_1 - 2x_2 = 2x_1 $	ш
	Ш
11-x 4 1 2x =0 X3 = 2x =	ш
1-2 3-2 = 0 X=5,-1 -44+x=541 X+x=0	
11-2 113-11-8. 1-4 4 1/20 = + (2) 2x1-2x=500	
(2-2/(X) (x) 2x,-9x=0	
$\frac{(\lambda-1)(\lambda-3)}{\lambda^2-4\lambda+3-8=0} \qquad \left(\begin{array}{cc} 2 & 4 \\ 2 & 4 \end{array}\right) \left(\begin{array}{cc} \chi_1 \\ \chi_2 \end{array}\right) = -\left(\begin{array}{cc} \chi_1 \\ \chi_2 \end{array}\right) \qquad 2\chi_1+4\chi_2=\chi_1 \\ 3\chi_1+4\chi_2=0.$	
12-42-5-28 (1-5)(2+1)=0	W