

Contents

1	Inti	roduction	5
	1.1	About our supplemental material	5
	1.2	Contributing authors	5
2	Dat	a Availability	7
	2.1	Source code	7
	2.2	Training and testing sets	7
	2.3	Experimental results	7
3	Sign	nalGP instruction set	9
	3.1	Default Instructions	10
	3.2	Problem-specific instructions	11
4	Sele	ection scheme diagnostic experiments	13
	4.1	Dependencies	13
	4.2	Setup	14
	4.3	Contradictory objectives diagnostic	20
	4.4	Multi-path exploration diagnostic	32
	4.5	Manuscript figures	43
5	Pro	gram synthesis experiments	51
	5.1	Dependencies	51
	5.2	Setup	52
	5.3	Problem-solving success	58

4 CONTENTS

Chapter 1

Introduction

This is the supplemental material for our submission to Genetic Programming Theory and Practice XX. This is not intended as a stand-alone document, but as a companion to our manuscript.

1.1 About our supplemental material

As you may have noticed (unless you're reading a pdf version of this), our supplemental material is hosted using GitHub pages. We compiled our data analyses and supplemental documentation into this nifty web-accessible book using bookdown.

The source code/configuration files for this supplemental material can be found in this GitHub repository.

Our supplemental material includes the following:

- Data availability (Section 2)
- GP instruction set (Section 3)
- Analysis notebooks for each experiment (including source code)
 - Selection scheme diagnostics (Section 4)
 - Program synthesis problems (Section 5)

1.2 Contributing authors

- Alexander Lalejini
- Matthew Andres Moreno
- Jose Guadalupe Hernandez

• Emily Dolson

Chapter 2

Data Availability

2.1 Source code

The source code for this work is publicly accessible on GitHub: https://github. com/amlalejini/GPTP-2023-phylogeny-informed-evaluation.

2.1.1 Experiment software dependencies

- SignalGP: https://github.com/amlalejini/SignalGP
 - commit hash: 8cc56a79aa6b2655bacefcc7b63ee6a859c730f3
- Empirical: https://github.com/devosoft/Empirical
 - commit hash: 5955a1cae2a5de36aa3a65df060a56b38f575bd0

2.2 Training and testing sets

The training and testing sets used for program synthesis problems can be found on GitHub: https://github.com/amlalejini/GPTP-2023-phylogeny-informed-evaluation/tree/main/experiments/2023-05-08-psynth/hpc/config.

2.3 Experimental results

All of our experimental data is available online from our OSF respository: https://osf.io/wxckn/

Chapter 3

SignalGP instruction set

Below, we document the instruction set used in our GP system for our 2023 GPTP experiments.

Abbreviations:

- EOP: End of program
- Reg: local register
 - Reg[0] indicates the value at the register specified by an instruction's first argument, Reg[1] indicates the value at the register specified by an instruction's second argument, and Reg[2] indicates the value at the register specified by the instruction's third argument.
 - Reg[0], Reg[1], etc: Register 0, Register 1, etc.
- Input: input buffer
 - Follows same scheme as Reg
- Output: output buffer
 - Follows same scheme as Reg
- Global: global memory buffer
 - Follows same scheme as Reg
- Arg: Instruction argument
 - Arg[i] indicates the i'th instruction argument (an integer encoded in the genome)
 - E.g., Arg[0] is an instruction's first argument

Instructions that would produce undefined behavior (e.g., division by zero) are treated as no operations.

3.1 Default Instructions

I.e., instructions used across all diagnostic tasks.

Instruction	Arguments Used	Description
Nop	0	No operation
Not	1	Reg[0] = !Reg[0]
Inc	1	Reg[0] = Reg[0] + 1
Dec	1	Reg[0] = Reg[0] - 1
Add	3	Reg[2] = Reg[0] +
		Reg[1]
Sub	3	$\operatorname{Reg}[2] = \operatorname{Reg}[0]$ -
		Reg[1]
Mult	3	Reg[2] = Reg[0] *
		Reg[1]
Div	3	$\operatorname{Reg}[2] = \operatorname{Reg}[0] /$
		Reg[1]
Mod	3	$\operatorname{Reg}[2] = \operatorname{Reg}[0] \%$
		Reg[1]
Nand	2	$\operatorname{Reg}[2] = !(\operatorname{Reg}[0] \&$
		$\operatorname{Reg}[1])$
TestEqu	3	Reg[2] = Reg[0] ==
		Reg[1]
TestNEqu	3	$\operatorname{Reg}[2] = \operatorname{Reg}[0] !=$
		$\operatorname{Reg}[1]$
TestLess	3	$\operatorname{Reg}[2] = \operatorname{Reg}[0] <$
	_	$\operatorname{Reg}[1]$
TestLessEqu	3	$\operatorname{Reg}[2] = \operatorname{Reg}[0] <=$
		$\operatorname{Reg}[1]$
TestGreater	3	$\operatorname{Reg}[2] = \operatorname{Reg}[0] >$
		$\operatorname{Reg}[1]$
TestGreaterEqu	3	$\operatorname{Reg}[2] = \operatorname{Reg}[0] >=$
G . W	0	$\operatorname{Reg}[1]$
SetMem	2	Reg[0] = Arg[1]
Terminal	1	Reg[0] = double value
		encoded by
a v	9	instruction tag
CopyMem	2	$\operatorname{Reg}[0] = \operatorname{Reg}[1]$
SwapMem	$rac{2}{2}$	Swap(Reg[0], Reg[1])
InputToWorking	$\frac{2}{2}$	Reg[1] = Input[0] Output[1] = Reg[0]
WorkingToOutput	1	Output[1] = Reg[0]
If	1	If $Reg[0] != 0$,
		proceed. Otherwise
		skip to the next Close
		or EOP.

Instruction	Arguments Used	Description
While	1	While $Reg[0] != 0$,
		loop. Otherwise skip
		to next Close or EOP.
Close	0	Indicate the end of a
		control block of code
		(e.g., loop, if).
Break	0	Break out of current
		control flow (e.g.,
		loop).
Call	0	Call a function, using
		this instruction's tag
		to determine which
		function is called.
Routine	0	Same as call, but local
		memory is shared.
		Sort of like a jump
		that will jump back
		when the routine
		ends.
Return	0	Return from the
		current function call.
WorkingToGlobal	2	Global[1] = Reg[0]
GlobalToWorking	2	Reg[1] = Global[0]
FullGlobalToWorking	0	Copy entire global
		memory buffer into
		working memory
		buffer
FullWorkingToGlobal	0	Copy entire working
		memory buffer into
		global memory buffer

Note that Nand performs a bitwise operation.

3.2 Problem-specific instructions

Each problem has problem-specific instructions for producing output.

3.2.1 Fizz Buzz

- SubmitFizz
- \bullet SubmitBuzz

- $\bullet \quad SubmitFizzBuzz\\$
- \bullet SubmitEcho

3.2.2 Median

• SubmitOutput

3.2.3 Grade

- SubmitA
- SubmitB
- SubmitC
- SubmitD
- SubmitF

3.2.4 Small or large

- SubmitSmall
- SubmitLarge
- SubmitNeither

Chapter 4

Selection scheme diagnostic experiments

```
experiment_slug <- "2023-05-10-diagnostics"

working_directory <- paste0(
    "experiments/",
    experiment_slug,
    "/analysis/"
)

if (exists("bookdown_wd_prefix")) {
    working_directory <- paste0(
        bookdown_wd_prefix,
        working_directory
    )
}</pre>
```

4.1 Dependencies

```
## v readr
            2.1.3
                      v forcats 0.5.2
## -- Conflicts -----
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
library(ggplot2)
library(cowplot)
library(RColorBrewer)
library(khroma)
library(rstatix)
##
## Attaching package: 'rstatix'
##
## The following object is masked from 'package:stats':
##
##
      filter
library(knitr)
source("https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd9")
print(version)
##
                 aarch64-apple-darwin20
## platform
## arch
                 aarch64
## os
                 darwin20
                 aarch64, darwin20
## system
## status
## major
                 4
## minor
               2.1
## year
                2022
## month
                06
## day
                23
               82513
## svn rev
## language
                 R
## version.string R version 4.2.1 (2022-06-23)
## nickname
                 Funny-Looking Kid
```

4.2 Setup

4.2. SETUP 15

```
# Configure our default graphing theme
theme_set(theme_cowplot())
# Create a directory to store plots
plot_directory <- pasteO(working_directory, "plots/")
dir.create(plot_directory, showWarnings=FALSE)</pre>
```

4.2.1 Load experiment summary data

```
summary_data_loc <- paste0(working_directory, "data/aggregate.csv")</pre>
summary_data <- read_csv(summary_data_loc)</pre>
## Rows: 520 Columns: 49
## -- Column specification -----
## Delimiter: ","
## chr (5): DIAGNOSTIC, EVAL FIT EST MODE, EVAL MODE, SELECTION, STOP MODE
## dbl (44): ACCURACY, CREDIT, DIAGNOSTIC_DIMENSIONALITY, GENE_LOWER_BND, GENE_...
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
summary_data <- summary_data %>%
 mutate(
   eval_mode_row = case_when(
     EVAL MODE == "full" & TEST DOWNSAMPLE RATE == "1" ~ "down-sample",
     EVAL_MODE == "full" & NUM_COHORTS == "1" ~ "cohort",
     .default = EVAL_MODE
   ),
   evals_per_gen = case_when(
     EVAL_MODE == "cohort-full-compete" ~ 1.0 / NUM_COHORTS,
     EVAL_MODE == "cohort" ~ 1.0 / NUM_COHORTS,
     EVAL_MODE == "down-sample" ~ TEST_DOWNSAMPLE_RATE,
     EVAL_MODE == "full" ~ 1.0
   ),
   EVAL_FIT_EST_MODE = case_when(
     EVAL_FIT_EST_MODE == "ancestor-opt" ~ "ancestor",
     EVAL_FIT_EST_MODE == "relative-opt" ~ "relative",
      .default = EVAL_FIT_EST_MODE
   ),
    .keep = "all"
  ) %>%
  mutate(
   evals_per_gen = as.factor(evals_per_gen),
```

```
eval_mode_row = as.factor(eval_mode_row),
    DIAGNOSTIC = as.factor(DIAGNOSTIC),
    SELECTION = as.factor(SELECTION),
    EVAL_MODE = as.factor(EVAL_MODE),
    NUM_COHORTS = as.factor(NUM_COHORTS),
    TEST_DOWNSAMPLE_RATE = as.factor(TEST_DOWNSAMPLE_RATE),
    EVAL_FIT_EST_MODE = factor(
      EVAL_FIT_EST_MODE,
      levels = c(
        "none",
        "ancestor",
        "relative"
      ),
      labels = c(
        "None",
        "Ancestor",
        "Relative"
    )
  )
# Split summary data on diagnostic
con_obj_summary_data <- filter(</pre>
  summary_data,
 DIAGNOSTIC == "contradictory-objectives"
explore_summary_data <- filter(</pre>
 summary data,
 DIAGNOSTIC == "multipath-exploration"
)
```

4.2.2 Load experiment time series data

4.2. SETUP 17

i Use 'spec()' to retrieve the full column specification for this data.
i Specify the column types or set 'show_col_types = FALSE' to quiet this message.

```
ts_data <- ts_data %>%
  mutate(
   eval_mode_row = case_when(
     EVAL_MODE == "full" & TEST_DOWNSAMPLE_RATE == "1" ~ "down-sample",
     EVAL_MODE == "full" & NUM_COHORTS == "1" ~ "cohort",
      .default = EVAL_MODE
   ),
    evals_per_gen = case_when(
     EVAL_MODE == "cohort-full-compete" ~ 1.0 / NUM_COHORTS,
      EVAL_MODE == "cohort" ~ 1.0 / NUM_COHORTS,
     EVAL_MODE == "down-sample" ~ TEST_DOWNSAMPLE_RATE,
     EVAL_MODE == "full" ~ 1.0
   ),
   EVAL_FIT_EST_MODE = case_when(
      EVAL_FIT_EST_MODE == "ancestor-opt" ~ "ancestor",
      EVAL_FIT_EST_MODE == "relative-opt" ~ "relative",
     .default = EVAL_FIT_EST_MODE
   ),
    .keep = "all"
  ) %>%
  mutate(
    evals_per_gen = as.factor(evals_per_gen),
   DIAGNOSTIC = as.factor(DIAGNOSTIC),
   SELECTION = as.factor(SELECTION),
   EVAL_MODE = as.factor(EVAL_MODE),
   NUM_COHORTS = as.factor(NUM_COHORTS),
   TEST_DOWNSAMPLE_RATE = as.factor(TEST_DOWNSAMPLE_RATE),
    EVAL_FIT_EST_MODE = factor(
      EVAL_FIT_EST_MODE,
      levels = c(
        "none",
        "ancestor",
        "relative"
      ),
      labels = c(
        "None",
        "Ancestor",
        "Relative"
      )
   )
 )
```

```
con_obj_ts_data <- ts_data %>%
  filter(DIAGNOSTIC == "contradictory-objectives")

explore_ts_data <- ts_data %>%
  filter(DIAGNOSTIC == "multipath-exploration")
```

4.2.3 Load estimate source distributions

```
est_source_data <- read_csv(</pre>
 pasteO(working_directory, "data/phylo-est-info.csv")
## Rows: 520 Columns: 38
## -- Column specification -
## Delimiter: ","
## chr (6): OUTPUT_DIR, DIAGNOSTIC, STOP_MODE, SELECTION, EVAL_MODE, EVAL_FIT_...
## dbl (32): SNAPSHOT_INTERVAL, OUTPUT_SUMMARY_DATA_INTERVAL, MUTATE_STD, TARGE...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
est_source_data <- est_source_data %>%
 mutate(
    eval_mode_row = case_when(
      EVAL_MODE == "full" & TEST_DOWNSAMPLE_RATE == "1" ~ "down-sample",
      EVAL_MODE == "full" & NUM_COHORTS == "1" ~ "cohort",
      .default = EVAL_MODE
    ),
    evals_per_gen = case_when(
      EVAL_MODE == "cohort-full-compete" ~ 1.0 / NUM_COHORTS,
      EVAL_MODE == "cohort" ~ 1.0 / NUM_COHORTS,
      EVAL_MODE == "down-sample" ~ TEST_DOWNSAMPLE_RATE,
     EVAL MODE == "full" ~ 1.0
    ),
    EVAL_FIT_EST_MODE = case_when(
      EVAL_FIT_EST_MODE == "ancestor-opt" ~ "ancestor",
     EVAL_FIT_EST_MODE == "relative-opt" ~ "relative",
      .default = EVAL FIT EST MODE
   ),
    .keep = "all"
  ) %>%
 mutate(
```

4.2. SETUP 19

```
evals_per_gen = as.factor(evals_per_gen),
  eval_mode_row = as.factor(eval_mode_row),
 DIAGNOSTIC = as.factor(DIAGNOSTIC),
  SELECTION = as.factor(SELECTION),
  EVAL_MODE = as.factor(EVAL_MODE),
 NUM_COHORTS = as.factor(NUM_COHORTS),
 TEST_DOWNSAMPLE_RATE = as.factor(TEST_DOWNSAMPLE_RATE),
  EVAL_FIT_EST_MODE = factor(
   EVAL_FIT_EST_MODE,
    levels = c(
      "none",
      "ancestor",
      "relative"
   ),
   labels = c(
      "None",
      "Ancestor",
      "Relative"
 )
) %>%
mutate(
 prop_self_lookups = case_when(
    (EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") ~
      self_count / (other_count + ancestor_count + descendant_count + self_count + outside_count
    .default = 0
 ),
 prop_other_lookups = case_when(
    (EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") ~
      other_count / (other_count + ancestor_count + descendant_count + self_count + outside_count
    .default = 0
 ),
 prop_ancestor_lookups = case_when(
    (EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") ~
      ancestor_count / (other_count + ancestor_count + descendant_count + self_count + outside_
    .default = 0
 prop_descendant_lookups = case_when(
    (EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") ~
      descendant_count / (other_count + ancestor_count + descendant_count + self_count + outside
    .default = 0
 ),
 prop_outside_lookups = case_when(
    (EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") ~
      outside_count / (other_count + ancestor_count + descendant_count + self_count + outside_
```

```
.default = 0
    )
)
```

4.3 Contradictory objectives diagnostic

4.3.1 Population-wide satisfactory trait coverage (final)

Satisfactory trait coverage after 50,000 generations:

```
contradictory_obj_final_plt <- ggplot(</pre>
    con_obj_summary_data,
    aes(
     x = EVAL_FIT_EST_MODE,
     y = pop_optimal_trait_coverage,
      fill = EVAL_FIT_EST_MODE
  ) +
 geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
   adjust=1.5
  ) +
  geom_point(
    mapping=aes(color=EVAL_FIT_EST_MODE),
    position = position_jitter(width = .15),
   size = .5,
    alpha = 0.8
  geom_boxplot(
    width = .1,
   outlier.shape = NA,
   alpha = 0.5
 ) +
 scale_y_continuous(
    # limits = c(-0.5, 100)
  ) +
  scale_fill_bright() +
  scale_color_bright() +
 facet_grid(
    eval_mode_row~evals_per_gen,
    # nrow=2,
   labeller=label_both
```

```
theme(
  legend.position = "none",
  axis.text.x = element_text(
    angle = 30,
    hjust = 1
  ),
  panel.border = element_rect(color="gray", size=2)
  )

ggsave(
  filename = pasteO(plot_directory, "contra-obj-final.pdf"),
  plot = contradictory_obj_final_plt + labs(title="Contradictory objectives"),
  width = 15,
  height = 10
)
```

contradictory_obj_final_plt

4.3.1.1 Statistical analysis

First, we create a table of summary values for satisfactory trait coverage in the final generation.

```
con_obj_summary_data %>%
  filter(EVAL_MODE != "full") %>%
  group_by(EVAL_MODE, evals_per_gen, EVAL_FIT_EST_MODE) %>%
  summarize(
    cov_median = median(pop_optimal_trait_coverage),
   cov_mean = mean(pop_optimal_trait_coverage),
   n = n()
 ) %>%
 kable()
```

'summarise()' has grouped output by 'EVAL_MODE', 'evals_per_gen'. You can ## override using the '.groups' argument.

EVAL_MODE	evals_per_gen	EVAL_FIT_EST_MODE	cov_median	cov_mean	n
cohort	0.01	None	2.0	1.9	10
cohort	0.01	Ancestor	4.0	3.9	10
cohort	0.01	Relative	4.0	3.9	10
cohort	0.05	None	5.0	5.0	10
cohort	0.05	Ancestor	15.0	14.8	10
cohort	0.05	Relative	14.0	13.7	10
cohort	0.1	None	5.5	5.5	10
cohort	0.1	Ancestor	22.0	22.4	10
cohort	0.1	Relative	22.0	21.6	10
cohort	0.5	None	16.0	15.9	10
cohort	0.5	Ancestor	34.5	34.5	10
cohort	0.5	Relative	34.0	34.2	10
down-sample	0.01	None	1.0	1.0	10
down-sample	0.01	Ancestor	1.5	2.5	10
down-sample	0.01	Relative	3.5	4.7	10
down-sample	0.05	None	1.0	1.0	10
down-sample	0.05	Ancestor	11.5	11.0	10
down-sample	0.05	Relative	10.0	10.0	10
down-sample	0.1	None	1.0	1.0	10
down-sample	0.1	Ancestor	18.0	18.1	10
down-sample	0.1	Relative	18.0	17.1	10
down-sample	0.5	None	1.0	1.0	10
down-sample	0.5	Ancestor	37.5	37.6	10
down-sample	0.5	Relative	37.5	37.5	10

Next, we perform a Kruskal-Wallis test to determine which comparisons contain statistically significant differences among treatments.

```
con_obj_kw_test <- con_obj_summary_data %>%
 filter(EVAL_MODE != "full") %>%
```

```
group_by(EVAL_MODE, evals_per_gen) %>%
kruskal_test(pop_optimal_trait_coverage ~ EVAL_FIT_EST_MODE) %>%
unite(
   "comparison_group",
   EVAL_MODE,
   evals_per_gen,
   sep = "_",
   remove = FALSE
)
kable(con_obj_kw_test)
```

comparison_group	EVAL_MODE	evals_per_gen	.y.	n	statistic	df	
cohort_0.01	cohort	0.01	pop_optimal_trait_coverage	30	25.55066	2	2.80
cohort_0.05	cohort	0.05	pop_optimal_trait_coverage	30	22.72918	2	1.16
cohort_0.1	cohort	0.1	pop_optimal_trait_coverage	30	21.76615	2	1.88
cohort_0.5	cohort	0.5	pop_optimal_trait_coverage	30	20.05082	2	4.43
down-sample_0.01	down-sample	0.01	pop_optimal_trait_coverage	30	15.17863	2	5.06
down-sample_0.05	down-sample	0.05	pop_optimal_trait_coverage	30	20.38430	2	3.75
down-sample_0.1	down-sample	0.1	pop_optimal_trait_coverage	30	20.29663	2	3.91
down-sample_0.5	down-sample	0.5	pop_optimal_trait_coverage	30	20.31895	2	3.87

Finally, we perform a pairwise Wilcoxon rank-sum test (using a Holm-Bonferroni correction for multiple comparisons). Note that only results from signific

```
sig_kw_groups <- filter(con_obj_kw_test, p < 0.05)$comparison_group

con_obj_stats <- con_obj_summary_data %>%
    unite(
        "comparison_group",
        EVAL_MODE,
        evals_per_gen,
        sep = "_",
        remove = FALSE
) %>%
    filter(EVAL_MODE != "full" & comparison_group %in% sig_kw_groups) %>%
    group_by(EVAL_MODE, evals_per_gen) %>%
    pairwise_wilcox_test(pop_optimal_trait_coverage ~ EVAL_FIT_EST_MODE) %>%
    adjust_pvalue(method = "holm") %>%
    add_significance("p.adj")
```

EVAL_MODE	evals_per_gen	.y.	group1	group2	n1	n2	5
cohort	0.01	pop_optimal_trait_coverage	None	Ancestor	10	10	
cohort	0.01	pop_optimal_trait_coverage	None	Relative	10	10	Ī
cohort	0.01	pop_optimal_trait_coverage	Ancestor	Relative	10	10	
cohort	0.05	pop_optimal_trait_coverage	None	Ancestor	10	10	
cohort	0.05	pop_optimal_trait_coverage	None	Relative	10	10	
cohort	0.05	pop_optimal_trait_coverage	Ancestor	Relative	10	10	
cohort	0.1	pop_optimal_trait_coverage	None	Ancestor	10	10	
cohort	0.1	pop_optimal_trait_coverage	None	Relative	10	10	
cohort	0.1	pop_optimal_trait_coverage	Ancestor	Relative	10	10	
cohort	0.5	pop_optimal_trait_coverage	None	Ancestor	10	10	_
cohort	0.5	pop_optimal_trait_coverage	None	Relative	10	10	_
cohort	0.5	pop_optimal_trait_coverage	Ancestor	Relative	10	10	
down-sample	0.01	pop_optimal_trait_coverage	None	Ancestor	10	10	
down-sample	0.01	pop_optimal_trait_coverage	None	Relative	10	10	_
down-sample	0.01	pop_optimal_trait_coverage	Ancestor	Relative	10	10	
down-sample	0.05	pop_optimal_trait_coverage	None	Ancestor	10	10	
down-sample	0.05	pop_optimal_trait_coverage	None	Relative	10	10	Ī
down-sample	0.05	pop_optimal_trait_coverage	Ancestor	Relative	10	10	
down-sample	0.1	pop_optimal_trait_coverage	None	Ancestor	10	10	
down-sample	0.1	pop_optimal_trait_coverage	None	Relative	10	10	
down-sample	0.1	pop_optimal_trait_coverage	Ancestor	Relative	10	10	
down-sample	0.5	pop_optimal_trait_coverage	None	Ancestor	10	10	
down-sample	0.5	pop_optimal_trait_coverage	None	Relative	10	10	
down-sample	0.5	pop_optimal_trait_coverage	Ancestor	Relative	10	10	_

```
# con_obj_stats %>%
# filter(p.adj <= 0.05) %>%
# arrange(
# desc(p.adj)
# ) %>%
# kable()
```

4.3.2 Population-wide satisfactory trait coverage (over time)

```
contradictory_obj_pop_cov_ts <- ggplot(
    con_obj_ts_data,
    aes(
        x = ts_step,
        y = pop_optimal_trait_coverage,
        fill = EVAL_FIT_EST_MODE,
        color = EVAL_FIT_EST_MODE</pre>
```

```
) +
 stat_summary(
  geom = "line",
   fun = mean
 ) +
 stat_summary(
  geom = "ribbon",
   fun.data = "mean_cl_boot",
  fun.args = list(conf.int = 0.95),
  alpha = 0.2,
   linetype = 0
 ) +
 scale_fill_bright() +
 scale_color_bright() +
 facet_wrap(
   EVAL_MODE ~ evals_per_gen,
   ncol = 1,
   labeller = label_both
 ) +
 theme(
   legend.position = "bottom"
ggsave(
 filename = pasteO(plot_directory, "contra-obj-ts.pdf"),
 plot = contradictory_obj_pop_cov_ts + labs(title="Contradictory objectives"),
 width = 10,
 height = 15
```


4.3.3 Phylogeny estimate source distributions

```
est_source_data %>%
  filter(DIAGNOSTIC == "contradictory-objectives") %>%
 filter(EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") %>%
 ggplot(
      aes(
       x = EVAL_FIT_EST_MODE,
        y = prop_self_lookups
      )
    ) +
    geom_boxplot() +
    geom_point() +
    facet_grid(
      cols = vars(evals_per_gen),
     rows = vars(EVAL_MODE),
     labeller = label_both
    ) +
    scale_y_continuous("Proportion of self lookups") +
    scale_x_discrete("Evaluations per generation") +
    theme bw() +
    theme(legend.position = "none")
```



```
ggsave(
    filename=pasteO(plot_directory, "contra-obj-self-lookups.pdf")
)
```

Saving 6.5 x 4.5 in image

```
est_source_data %>%
  filter(DIAGNOSTIC == "contradictory-objectives") %>%
  filter(EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") %>%
  ggplot(
     aes(
        x = EVAL_FIT_EST_MODE,
        y = prop_ancestor_lookups
   ) +
   geom_boxplot() +
   geom_point() +
   facet_grid(
     cols = vars(evals_per_gen),
     rows = vars(EVAL_MODE),
      labeller = label_both
   ) +
    scale_y_continuous("Proportion of ancestor lookups") +
    scale_x_discrete("Evaluations per generation") +
```

```
theme_bw() +
theme(legend.position = "none")
```



```
ggsave(
   filename=pasteO(plot_directory, "contra-obj-ancestor-lookups.pdf")
```

Saving 6.5×4.5 in image

```
est_source_data %>%
  filter(DIAGNOSTIC == "contradictory-objectives") %>%
 filter(EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") %>%
 ggplot(
      aes(
        x = EVAL_FIT_EST_MODE,
        y = prop_descendant_lookups
      )
    ) +
    geom_boxplot() +
    geom_point() +
   facet_grid(
     cols = vars(evals_per_gen),
      rows = vars(EVAL_MODE),
```

```
labeller = label_both
) +
scale_y_continuous("Proportion of descendant lookups") +
scale_x_discrete("Evaluations per generation") +
theme_bw() +
theme(legend.position = "none")
```



```
ggsave(
    filename=pasteO(plot_directory, "contra-obj-descendant-lookups.pdf")
)
```

Saving 6.5×4.5 in image

```
est_source_data %>%
  filter(DIAGNOSTIC == "contradictory-objectives") %>%
  filter(EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") %>%
  ggplot(
    aes(
        x = EVAL_FIT_EST_MODE,
        y = prop_other_lookups
    )
    ) +
    geom_boxplot() +
```

```
geom_point() +
facet_grid(
 cols = vars(evals_per_gen),
 rows = vars(EVAL_MODE),
 labeller = label_both
) +
scale_y_continuous("Proportion of other lookups") +
scale_x_discrete("Evaluations per generation") +
theme_bw() +
theme(legend.position = "none")
```



```
ggsave(
   filename=pasteO(plot_directory, "contra-obj-other-lookups.pdf")
```

```
## Saving 6.5 \times 4.5 in image
```

```
est_source_data %>%
  filter(DIAGNOSTIC == "contradictory-objectives") %>%
  filter(EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") %>%
  ggplot(
      aes(
        x = EVAL_FIT_EST_MODE,
```

```
y = prop_outside_lookups
)
) +
geom_boxplot() +
geom_point() +
facet_grid(
    cols = vars(evals_per_gen),
    rows = vars(EVAL_MODE),
    labeller = label_both
) +
scale_y_continuous("Proportion of outside lookups") +
scale_x_discrete("Evaluations per generation") +
theme_bw() +
theme(legend.position = "none")
```



```
ggsave(
    filename=pasteO(plot_directory, "contra-obj-outside-lookups.pdf")
)
```

Saving 6.5×4.5 in image

4.4 Multi-path exploration diagnostic

4.4.1 Maximum aggregate score (final)

```
explore_final_score_plt <- ggplot(</pre>
    explore_summary_data,
    aes(
     x = EVAL_FIT_EST_MODE,
     y = max_agg_score,
      fill = EVAL_FIT_EST_MODE
  ) +
 geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
   alpha = .8,
   adjust=1.5
 ) +
 geom_point(
    mapping=aes(color=EVAL_FIT_EST_MODE),
   position = position_jitter(width = .15),
   size = .5,
    alpha = 0.8
 geom_boxplot(
   width = .1,
   outlier.shape = NA,
   alpha = 0.5
 ) +
 scale_y_continuous(
    # limits = c(-0.5, 100)
 ) +
  scale_fill_bright() +
  scale_color_bright() +
 facet_grid(
    eval_mode_row~evals_per_gen,
    # nrow=2,
   labeller=label_both
  ) +
    legend.position = "none",
    axis.text.x = element text(
     angle = 30,
     hjust = 1
```

```
panel.border = element_rect(color="gray", size=2)
)

ggsave(
  filename = pasteO(plot_directory, "explore-final.pdf"),
  plot = explore_final_score_plt + labs(title="Multi-path exploration"),
  width = 15,
  height = 10
)
```

4.4.1.1 Statistical analysis

```
explore_summary_data %>%
  filter(EVAL_MODE != "full") %>%
  group_by(EVAL_MODE, evals_per_gen, EVAL_FIT_EST_MODE) %>%
  summarize(
    score_median = median(max_agg_score),
    score_mean = mean(max_agg_score),
    n = n()
) %>%
  kable()
```

^{## &#}x27;summarise()' has grouped output by 'EVAL_MODE', 'evals_per_gen'. You can
override using the '.groups' argument.

34 CHAPTER 4. SELECTION SCHEME DIAGNOSTIC EXPERIMENTS

EVAL_MODE	evals_per_gen	EVAL_FIT_EST_MODE	score_median	score_mean	n
cohort	0.01	None	1971.7450	1900.3130	10
cohort	0.01	Ancestor	2316.5800	1971.5663	10
cohort	0.01	Relative	2182.5700	2006.6843	10
cohort	0.05	None	2401.0150	2373.2040	10
cohort	0.05	Ancestor	2858.6950	2747.0960	10
cohort	0.05	Relative	3471.8500	3389.0910	10
cohort	0.1	None	3075.5150	3076.6120	10
cohort	0.1	Ancestor	4508.1150	4383.9440	10
cohort	0.1	Relative	5144.5350	5163.0130	10
cohort	0.5	None	8187.5000	8198.1150	10
cohort	0.5	Ancestor	8591.7150	8708.0110	10
cohort	0.5	Relative	8684.2050	8652.1500	10
down-sample	0.01	None	580.4215	532.1152	10
down-sample	0.01	Ancestor	434.8545	430.0114	10
down-sample	0.01	Relative	449.3640	465.0957	10
down-sample	0.05	None	396.0890	445.1163	10
down-sample	0.05	Ancestor	2007.3700	1982.4690	10
down-sample	0.05	Relative	1777.9000	1762.3250	10
down-sample	0.1	None	692.7270	690.7322	10
down-sample	0.1	Ancestor	2423.2200	2451.7950	10
down-sample	0.1	Relative	2529.6100	2542.1340	10
down-sample	0.5	None	1499.9800	1658.0837	10
down-sample	0.5	Ancestor	6976.5950	6972.2630	10
down-sample	0.5	Relative	7309.9450	7120.4160	10

```
explore_kw_test <- explore_summary_data %>%
  filter(EVAL_MODE != "full") %>%
  group_by(EVAL_MODE, evals_per_gen) %>%
  kruskal_test(max_agg_score ~ EVAL_FIT_EST_MODE) %>%
  mutate(
    sig = (p <= 0.05)
) %>%
  unite(
    "comparison_group",
    EVAL_MODE,
    evals_per_gen,
    sep = "_",
    remove = FALSE
)
```

$comparison_group$	EVAL_MODE	evals_per_gen	.y.	n	statistic	df	p	met
$cohort_0.01$	cohort	0.01	max_agg_score	30	0.7045161	2	7.03e-01	Kru
$cohort_0.05$	cohort	0.05	max_agg_score	30	15.5380645	2	4.23e-04	Kru
$cohort_0.1$	cohort	0.1	max_agg_score	30	25.5509677	2	2.80e-06	Kru
$cohort_0.5$	cohort	0.5	max_agg_score	30	5.0348387	2	8.07e-02	Kru
$down$ -sample_0.01	down-sample	0.01	max_agg_score	30	2.6090323	2	2.71e-01	Kru
$down$ -sample_0.05	down-sample	0.05	max_agg_score	30	22.3380645	2	1.41e-05	Kru
down-sample_0.1	down-sample	0.1	max_agg_score	30	19.3780645	2	6.20 e-05	Kru
$down$ -sample_0.5	down-sample	0.5	max_agg_score	30	19.4047630	2	6.11e-05	Kru

```
expl_sig_kw_groups <- filter(explore_kw_test, p < 0.05)$comparison_group

explore_stats <- explore_summary_data %>%
    unite(
    "comparison_group",
    EVAL_MODE,
    evals_per_gen,
    sep = "_",
    remove = FALSE
) %>%
    filter(EVAL_MODE != "full" & comparison_group %in% expl_sig_kw_groups) %>%
    group_by(EVAL_MODE, evals_per_gen) %>%
    pairwise_wilcox_test(max_agg_score ~ EVAL_FIT_EST_MODE) %>%
    adjust_pvalue(method = "holm") %>%
    add_significance("p.adj")

kable(explore_stats)
```

EVAL_MODE	evals_per_gen	.y.	group1	group2	n1	n2	statistic	p	
cohort	0.05	max_agg_score	None	Ancestor	10	10	27	8.90e-02	0.267
cohort	0.05	max_agg_score	None	Relative	10	10	4	1.30e-04	0.00
cohort	0.05	max_agg_score	Ancestor	Relative	10	10	12	3.00e-03	0.01
cohort	0.1	max_agg_score	None	Ancestor	10	10	0	1.08e-05	0.000
cohort	0.1	max_agg_score	None	Relative	10	10	0	1.08e-05	0.000
cohort	0.1	max_agg_score	Ancestor	Relative	10	10	1	2.17e-05	0.000
down-sample	0.05	max_agg_score	None	Ancestor	10	10	0	1.08e-05	0.000
down-sample	0.05	max_agg_score	None	Relative	10	10	0	1.08e-05	0.000
down-sample	0.05	max_agg_score	Ancestor	Relative	10	10	84	9.00e-03	0.036
down-sample	0.1	max_agg_score	None	Ancestor	10	10	0	1.08e-05	0.000
down-sample	0.1	max_agg_score	None	Relative	10	10	0	1.08e-05	0.000
down-sample	0.1	max_agg_score	Ancestor	Relative	10	10	47	8.53e-01	1.000
down-sample	0.5	max_agg_score	None	Ancestor	10	10	0	1.81e-04	0.00
down-sample	0.5	max_agg_score	None	Relative	10	10	0	1.81e-04	0.00
down-sample	0.5	max_agg_score	Ancestor	Relative	10	10	46	7.96e-01	1.00

```
# explore_stats %>%
  filter(p.adj <= 0.05) %>%
# arrange(
    desc(p.adj)
# ) %>%
# kable()
```

4.4.2 Maximum aggregate score (over time)

```
explore_score_ts <- ggplot(
    explore_ts_data,
    aes(
      x = ts_step,
     y = max_agg_score,
     fill = EVAL_FIT_EST_MODE,
      color = EVAL_FIT_EST_MODE
    )
  ) +
  stat_summary(
   geom = "line",
   fun = mean
  ) +
  stat_summary(
    geom = "ribbon",
   fun.data = "mean_cl_boot",
   fun.args = list(conf.int = 0.95),
   alpha = 0.2,
   linetype = 0
  scale_fill_bright() +
  scale_color_bright() +
  facet_wrap(
    EVAL_MODE ~ evals_per_gen,
   ncol = 1,
   labeller = label_both
  ) +
  theme(
    legend.position = "bottom"
  )
ggsave(
 filename = pasteO(plot_directory, "explore-ts.pdf"),
 plot = explore_score_ts + labs(title="Multi-path exploration"),
```

```
width = 10,
            height = 15
 )
 explore_score_ts
                                                                                                                                                                          evals_per_gen: 0.05
                     2600 -
                                                                                                                                                                        EVAL_MODE: cohort
                                                                                                                                                                            evals_per_gen: 0.1
                    2600 -
                                                                                                                                                                        EVAL_MODE: cohort
      max_agg_score
0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_0008x_
                                                                                                                                                                            evals_per_gen: 0.5
                                                                                                                                                       EVAL_MODE: down-sample
                                                                                                                                                                          evals_per_gen: 0.01
                                                                                                                                                       EVAL_MODE: down-sample
                                                                                                                                                                          evals_per_gen: 0.05
                                                                                                                                                        EVAL_MODE: down-sample
                                                                                                                                                                            evals_per_gen: 0.1
                    Z600
                                                                                                                                                       EVAL_MODE: down-sample
                                                                                                                                                                            evals_per_gen: 0.5
                    Z600
                                                                                                                                                                               EVAL_MODE: full
                                                                                                                                                                                evals_per_gen: 1
                     ጀዋበበ
```

4.4.3 Phylogeny estimate source distributions

```
est_source_data %>%
  filter(DIAGNOSTIC == "multipath-exploration") %>%
  filter(EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") %>%
  ggplot(
    aes(
        x = EVAL_FIT_EST_MODE,
        y = prop_self_lookups
    )
    ) +
    geom_boxplot() +
    geom_point() +
    facet_grid(
        cols = vars(evals_per_gen),
        rows = vars(EVAL_MODE),
```

```
labeller = label_both
scale_y_continuous("Proportion of self lookups") +
scale_x_discrete("Evaluations per generation") +
theme_bw() +
theme(legend.position = "none")
```



```
ggsave(
   filename=pasteO(plot_directory, "explore-self-lookups.pdf")
```

Saving 6.5×4.5 in image

```
est_source_data %>%
  filter(DIAGNOSTIC == "multipath-exploration") %>%
  filter(EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") %>%
  ggplot(
      aes(
        x = EVAL_FIT_EST_MODE,
        y = prop_ancestor_lookups
      )
    ) +
    geom_boxplot() +
```

```
geom_point() +
facet_grid(
   cols = vars(evals_per_gen),
   rows = vars(EVAL_MODE),
   labeller = label_both
) +
scale_y_continuous("Proportion of ancestor lookups") +
scale_x_discrete("Evaluations per generation") +
theme_bw() +
theme(legend.position = "none")
```



```
ggsave(
    filename=pasteO(plot_directory, "explore-ancestor-lookups.pdf")
)
```

Saving 6.5 x 4.5 in image

```
est_source_data %>%
  filter(DIAGNOSTIC == "multipath-exploration") %>%
  filter(EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") %>%
  ggplot(
    aes(
    x = EVAL_FIT_EST_MODE,
```

```
y = prop_descendant_lookups
)
) +
geom_boxplot() +
geom_point() +
facet_grid(
    cols = vars(evals_per_gen),
    rows = vars(EVAL_MODE),
    labeller = label_both
) +
scale_y_continuous("Proportion of descendant lookups") +
scale_x_discrete("Evaluations per generation") +
theme_bw() +
theme(legend.position = "none")
```



```
ggsave(
   filename=pasteO(plot_directory, "explore-descendant-lookups.pdf")
)
## Saving 6.5 x 4.5 in image
est_source_data %>%
   filter(DIAGNOSTIC == "multipath-exploration") %>%
```

```
filter(EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") %>%
ggplot(
    aes(
        x = EVAL_FIT_EST_MODE,
        y = prop_other_lookups
    )
) +
geom_boxplot() +
geom_point() +
facet_grid(
    cols = vars(evals_per_gen),
    rows = vars(EVAL_MODE),
    labeller = label_both
) +
scale_y_continuous("Proportion of other lookups") +
scale_x_discrete("Evaluations per generation") +
theme_bw() +
theme(legend.position = "none")
```



```
ggsave(
    filename=pasteO(plot_directory, "explore-other-lookups.pdf")
)
```

Saving 6.5×4.5 in image

```
est_source_data %>%
  filter(DIAGNOSTIC == "multipath-exploration") %>%
  filter(EVAL_MODE != "full" & EVAL_FIT_EST_MODE != "None") %>%
  ggplot(
      aes(
        x = EVAL_FIT_EST_MODE,
        y = prop_outside_lookups
      )
    ) +
    geom_boxplot() +
    geom_point() +
   facet_grid(
      cols = vars(evals_per_gen),
      rows = vars(EVAL_MODE),
     labeller = label_both
    scale_y_continuous("Proportion of outside lookups") +
    scale_x_discrete("Evaluations per generation") +
    theme_bw() +
    theme(legend.position = "none")
```



```
ggsave(
   filename=pasteO(plot_directory, "explore-outside-lookups.pdf")
```

```
## Saving 6.5 \times 4.5 in image
```

4.5 Manuscript figures

```
full_median_size = 1.5

subsample_labeller <- function(subsample_level) {
   return(paste("Subsample level:", subsample_level))
}</pre>
```

4.5.1 Contradictory objectives

Build plot panels (1 cohort, 1 down-sample)

```
build_con_obj_plot <- function(eval_mode) {</pre>
  full_median <- median(</pre>
    filter(
      con_obj_summary_data,
      eval_mode_row == eval_mode & EVAL_MODE == "full"
    )$pop_optimal_trait_coverage
 )
  p <- con_obj_summary_data %>%
    filter(eval_mode_row == eval_mode & EVAL_MODE != "full") %>%
    ggplot(
      aes(
        x = EVAL_FIT_EST_MODE,
        y = pop_optimal_trait_coverage,
        fill = EVAL_FIT_EST_MODE
      )
    ) +
    geom_hline(
      yintercept = full_median,
      size = full_median_size,
     alpha = 0.7,
      color = "black"
    ) +
    geom_flat_violin(
     position = position_nudge(x = .2, y = 0),
     alpha = .8,
     adjust=1.5
```

```
) +
    geom_point(
     mapping=aes(color=EVAL_FIT_EST_MODE),
     position = position_jitter(width = .15),
     size = .5,
      alpha = 0.8
    ) +
    geom_boxplot(
     width = .1,
      outlier.shape = NA,
     alpha = 0.5
    ) +
    scale_y_continuous(
      limits = c(-0.5, 50)
    ) +
    scale_fill_bright() +
    scale_color_bright() +
    facet_wrap(
    ~ evals_per_gen,
   nrow = 1,
    labeller = as_labeller(
      subsample_labeller
    )
    ) +
    labs(
     x = "Estimation mode",
     y = "Satisfactory trait coverage"
    ) +
    theme(
     legend.position = "none",
     axis.text.x = element_text(
       angle = 30,
       hjust = 1
      panel.border = element_rect(color="gray", size=2)
 return(p)
con_obj_ds_plot <- build_con_obj_plot("down-sample")</pre>
con_obj_cohort_plot <- build_con_obj_plot("cohort")</pre>
```

Combine panels into single plot.

```
# Joint title: https://wilkelab.org/cowplot/articles/plot_grid.html
con_obj_title <- ggdraw() +</pre>
 draw_label(
    "Contradictory objectives diagnostic",
    fontface = 'bold',
    x = 0,
   hjust = 0
 ) +
 theme(
    # add margin on the left of the drawing canvas,
   # so title is aligned with left edge of first plot
   plot.margin = margin(0, 0, 0, 7)
con_obj_grid <- plot_grid(</pre>
 con_obj_title,
 con_obj_ds_plot +
    labs(
     title = "Down-sampled lexicase"
    theme(axis.title.x = element_blank()),
  con_obj_cohort_plot +
    labs(
     title = "Cohort lexicase"
    ),
 nrow = 3,
 ncol = 1,
 # align = "h",
 labels = c("", "a", "b"),
 rel_heights = c(0.075, 1, 1)
)
con_obj_grid
```

Contradictory objectives diagnostic Satisfactory trait coveractions and statisfactory trait coverard Down-sampled lexicase ubsample level: 0.0 ubsample level: 0.0 Subsample level: 0. Subsample level: 0.1 50 40 30 20 10 #.D **†**) Ancestor Ancestor Nove Ancestor Ancestor Relative Relative Relative Relative Nove **Cohort lexicase** ubsample level: 0.0 ubsample level: 0.0 Subsample level: 0. Subsample level: 0. Ancestor Ancestor Nove Relative Ancestor Relative Ancestor Relative Nove Move Estimation mode

```
save_plot(
 filename = pasteO(plot_directory, "2023-05-10-diagnostics-con-obj-final-fig.pdf"),
 plot = con_obj_grid,
 base width = 10,
 base_height = 8,
  dpi = 600
```

4.5.2Multi-path exploration

```
build_explore_plot <- function(eval_mode) {</pre>
  full_median <- median(</pre>
    filter(
      explore_summary_data,
      eval_mode_row == eval_mode & EVAL_MODE == "full"
    ) $max_agg_score
  )
  p <- explore_summary_data %>%
    filter(eval_mode_row == eval_mode & EVAL_MODE != "full") %>%
    ggplot(
```

```
aes(
    x = EVAL_FIT_EST_MODE,
   y = max_agg_score,
    fill = EVAL_FIT_EST_MODE
  )
) +
geom_hline(
 yintercept = full_median,
  size = full_median_size,
 alpha = 0.7,
  color = "black"
) +
geom_flat_violin(
 position = position_nudge(x = .2, y = 0),
  alpha = .8,
 adjust=1.5
) +
geom_point(
  mapping=aes(color=EVAL_FIT_EST_MODE),
  position = position_jitter(width = .15),
  size = .5,
  alpha = 0.8
) +
geom_boxplot(
 width = .1,
 outlier.shape = NA,
 alpha = 0.5
) +
scale_y_continuous(
 limits = c(-0.5, 10005)
scale_fill_bright() +
scale_color_bright() +
facet_wrap(
~ evals_per_gen,
nrow = 1,
labeller = as_labeller(
  subsample_labeller
) +
labs(
 x = "Estimation mode",
 y = "Max aggregate score"
) +
theme(
```

```
legend.position = "none",
    axis.text.x = element_text(
        angle = 30,
        hjust = 1
    ),
    panel.border = element_rect(color="gray", size=2)
)

return(p)
}

explore_ds_plot <- build_explore_plot("down-sample")
explore_cohort_plot <- build_explore_plot("cohort")

explore_ds_plot</pre>
```


Combine panels into single plot.

```
# Joint title: https://wilkelab.org/cowplot/articles/plot_grid.html
explore_title <- ggdraw() +
 draw_label(
    "Multi-path exploration diagnostic",
    fontface = 'bold',
    x = 0,
    hjust = 0
  ) +
  theme(
    # add margin on the left of the drawing canvas,
    # so title is aligned with left edge of first plot
    plot.margin = margin(0, 0, 0, 7)
  )
explore_grid <- plot_grid(</pre>
  explore_title,
  explore_ds_plot +
    labs(
      title = "Down-sampled lexicase"
    theme(axis.title.x = element_blank()),
  explore_cohort_plot +
    labs(
```

```
title = "Cohort lexicase"
    ),
 nrow = 3,
 ncol = 1,
  # align = "h",
 labels = c("", "a", "b"),
 rel heights = c(0.075, 1, 1)
explore_grid
```

Multi-path exploration diagnostic


```
save_plot(
 filename = paste0(plot_directory, "2023-05-10-diagnostics-explore-final-fig.pdf"),
 plot = explore_grid,
 base_width = 10,
 base_height = 8,
  dpi = 600
)
```

Chapter 5

Program synthesis experiments

```
experiment_slug <- "2023-05-08-psynth"

working_directory <- paste0(
    "experiments/",
    experiment_slug,
    "/analysis/"
)

if (exists("bookdown_wd_prefix")) {
    working_directory <- paste0(
        bookdown_wd_prefix,
        working_directory
    )
}</pre>
```

5.1 Dependencies

```
library(tidyverse)
library(ggplot2)
library(cowplot)
library(RColorBrewer)
library(khroma)
library(rstatix)
```

```
library(knitr)
source("https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd9
print(version)
## platform
                aarch64-apple-darwin20
## arch
                 aarch64
                darwin20
## os
## system
               aarch64, darwin20
## status
## major
## minor
               2.1
                2022
## year
## month
                06
## day
                23
## svn rev
                82513
## language
                R
## version.string R version 4.2.1 (2022-06-23)
## nickname
            Funny-Looking Kid
```

5.2 Setup

```
# Configure our default graphing theme
theme_set(theme_cowplot())
# Create a directory to store plots
plot_directory <- pasteO(working_directory, "plots/")
dir.create(plot_directory, showWarnings=FALSE)</pre>
```

5.2.1 Load summary data

5.2. SETUP 53

##

"Ancestor",
"Relative"

.keep = "all"

),

```
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
summary_data <- summary_data %>%
 mutate(
   eval mode row = case when(
     EVAL_MODE == "full" & TEST_DOWNSAMPLE_RATE == "1" ~ "down-sample",
     EVAL_MODE == "full" & NUM_COHORTS == "1" ~ "cohort",
      .default = EVAL_MODE
   ),
    evals_per_gen = case_when(
     EVAL_MODE == "cohort" ~ 1.0 / NUM_COHORTS,
     EVAL_MODE == "down-sample" ~ TEST_DOWNSAMPLE_RATE,
     EVAL_MODE == "full" ~ 1.0
   ),
   EVAL_FIT_EST_MODE = case_when(
     EVAL_FIT_EST_MODE == "ancestor-opt" ~ "ancestor",
     EVAL_FIT_EST_MODE == "relative-opt" ~ "relative",
     .default = EVAL_FIT_EST_MODE
   ),
    .keep = "all"
  ) %>%
  mutate(
   evals_per_gen = as.factor(evals_per_gen),
   PROBLEM = as.factor(PROBLEM),
   SELECTION = as.factor(SELECTION),
    EVAL_MODE = as.factor(EVAL_MODE),
   NUM_COHORTS = as.factor(NUM_COHORTS),
   TEST_DOWNSAMPLE_RATE = as.factor(TEST_DOWNSAMPLE_RATE),
   EVAL_FIT_EST_MODE = factor(
     EVAL_FIT_EST_MODE,
      levels = c(
        "none",
        "ancestor",
        "relative"
      ),
      labels = c(
        "None",
```

```
solution_counts <- summary_data %>%
group_by(
   PROBLEM,
   evals_per_gen,
   eval_mode_row,
   EVAL_FIT_EST_MODE,
   EVAL_MODE
) %>%
summarize(
   solution_count = sum(found_solution == "1"),
   replicates = n(),
   no_solution_count = n() - sum(found_solution == "1")
)
```

'summarise()' has grouped output by 'PROBLEM', 'evals_per_gen', 'eval_mode_row',
'EVAL_FIT_EST_MODE'. You can override using the '.groups' argument.

```
print(solution_counts, n=140)
```

```
## # A tibble: 104 x 8
## # Groups: PROBLEM, evals_per_gen, eval_mode_row, EVAL_FIT_EST_MODE [104]
##
      PROBLEM
                     evals_per_gen eval_~1 EVAL_~2 EVAL_~3 solut~4 repli~5 no_so~6
##
       <fct>
                      <fct>
                                    <chr>
                                           <fct>
                                                    <fct>
                                                             <int>
                                                                      <int>
                                                                              <int>
                     0.01
                                                                         30
##
    1 fizz-buzz
                                    cohort None
                                                    cohort
                                                                 0
                                                                                 30
##
    2 fizz-buzz
                     0.01
                                   cohort Ancest~ cohort
                                                                 2
                                                                         30
                                                                                 28
##
    3 fizz-buzz
                     0.01
                                    cohort Relati~ cohort
                                                                 3
                                                                         30
                                                                                 27
    4 fizz-buzz
                     0.01
                                   down-s~ None
                                                                  0
                                                                         30
##
                                                    down-s~
                                                                                 30
##
    5 fizz-buzz
                     0.01
                                    down-s~ Ancest~ down-s~
                                                                  0
                                                                         30
                                                                                 30
##
    6 fizz-buzz
                     0.01
                                    down-s~ Relati~ down-s~
                                                                         30
                                                                                 30
                                                                  0
    7 fizz-buzz
##
                     0.05
                                    cohort
                                           None
                                                    cohort
                                                                 5
                                                                         30
                                                                                 25
##
    8 fizz-buzz
                     0.05
                                    cohort Ancest~ cohort
                                                                 3
                                                                         30
                                                                                 27
    9 fizz-buzz
                     0.05
                                    cohort Relati~ cohort
                                                                 7
                                                                         30
                                                                                 23
##
  10 fizz-buzz
                     0.05
                                    down-s~ None
                                                    down-s~
                                                                 20
                                                                         30
                                                                                 10
   11 fizz-buzz
                     0.05
                                    down-s~ Ancest~ down-s~
                                                                  2
                                                                         30
                                                                                 28
   12 fizz-buzz
                                                                  2
##
                     0.05
                                    down-s~ Relati~ down-s~
                                                                         30
                                                                                 28
  13 fizz-buzz
                     0.1
                                   cohort None
                                                    cohort
                                                                  1
                                                                         30
                                                                                 29
## 14 fizz-buzz
                     0.1
                                   cohort Ancest~ cohort
                                                                         30
                                                                                 27
                                                                  3
   15 fizz-buzz
                     0.1
                                   cohort Relati~ cohort
                                                                 9
                                                                         30
##
                                                                                 21
##
   16 fizz-buzz
                     0.1
                                   down-s~ None
                                                                 8
                                                                         30
                                                                                 22
                                                    down-s~
  17 fizz-buzz
                     0.1
                                   down-s~ Ancest~ down-s~
                                                                  8
                                                                         30
                                                                                 22
##
  18 fizz-buzz
                     0.1
                                   down-s~ Relati~ down-s~
                                                                  7
                                                                         30
                                                                                 23
##
   19 fizz-buzz
                     0.5
                                   cohort None
                                                    cohort
                                                                  0
                                                                         30
                                                                                 30
## 20 fizz-buzz
                     0.5
                                  cohort Ancest~ cohort
                                                                  9
                                                                         30
                                                                                 21
## 21 fizz-buzz
                     0.5
                                   cohort Relati~ cohort
                                                                         30
                                                                  6
                                                                                 24
```

5.2. SETUP 55

##	00 figs byss	0.5	dorma	Mono	dorm a	0	30	30
##	22 fizz-buzz 23 fizz-buzz	0.5	down-s~		down-s~	7	30	23
##				Ancest~ Relati~		7	30	23
	24 fizz-buzz	0.5					30	30
##	25 fizz-buzz	1	cohort down-s~	None	full full	0	30	30
##	26 fizz-buzz	_				0		
##	27 grade	0.01	cohort	None	cohort	20	30	10
##	28 grade	0.01	cohort			18	30	12
##	29 grade	0.01	cohort			23	30	7
##	30 grade	0.01	down-s~		down-s~	1	30	29
##	31 grade	0.01		Ancest~		10	30	20
##	32 grade	0.01		Relati~		11	30	19
##	33 grade	0.05	cohort	None	cohort	18	30	12
##	34 grade	0.05	cohort			13	30	17
##	35 grade	0.05	cohort			19	30	11
##	36 grade	0.05	down-s~		down-s~	22	30	8
##	37 grade	0.05		Ancest~		12	30	18
##	38 grade	0.05	down-s~	Relati~	down-s~	11	30	19
##	39 grade	0.1	cohort	None	cohort	12	30	18
##	40 grade	0.1	cohort	Ancest~	cohort	20	30	10
##	41 grade	0.1	cohort	Relati~	cohort	15	30	15
##	42 grade	0.1	down-s~	None	down-s~	22	30	8
##	43 grade	0.1	down-s~	Ancest~	down-s~	13	30	17
##	44 grade	0.1	down-s~	Relati~	down-s~	11	30	19
##	45 grade	0.5	cohort	None	cohort	4	30	26
##	46 grade	0.5	cohort	Ancest~	cohort	2	30	28
##	47 grade	0.5	cohort	Relati~	cohort	4	30	26
##	48 grade	0.5	down-s~	None	down-s~	5	30	25
##	49 grade	0.5	down-s~	Ancest~	down-s~	9	30	21
##	50 grade	0.5	down-s~	Relati~	down-s~	4	30	26
##	51 grade	1	cohort	None	full	1	30	29
##	52 grade	1	down-s~	None	full	1	30	29
##	53 median	0.01	cohort	None	cohort	0	30	30
##	54 median	0.01	cohort	Ancest~	cohort	22	30	8
##	55 median	0.01	cohort	Relati~	cohort	27	30	3
##	56 median	0.01	down-s~	None	down-s~	8	30	22
##	57 median	0.01	down-s~	Ancest~	down-s~	13	30	17
##	58 median	0.01	down-s~	Relati~	down-s~	14	30	16
##	59 median	0.05	cohort	None	cohort	12	30	18
##	60 median	0.05	cohort	Ancest~	cohort	23	30	7
##	61 median	0.05	cohort	Relati~	cohort	25	30	5
##	62 median	0.05	down-s~	None	down-s~	4	30	26
##	63 median	0.05	down-s~	Ancest~	down-s~	19	30	11
##	64 median	0.05	down-s~	Relati~	down-s~	23	30	7
##	65 median	0.1	cohort	None	cohort	15	30	15
##	66 median	0.1	cohort	Ancest~		26	30	4
##	67 median	0.1	cohort	Relati~		24	30	6

##	68	median	0.1	down-s~	None	down-s~	16	30	14
##	69	median	0.1	down-s~	Ancest~	down-s~	21	30	9
##	70	median	0.1	down-s~	Relati~	down-s~	22	30	8
##	71	median	0.5	cohort	None	cohort	5	30	25
##	72	median	0.5	cohort	Ancest~	cohort	12	30	18
##	73	median	0.5	cohort	Relati~	cohort	13	30	17
##		median	0.5	down-s~	None	down-s~	2	30	28
##		median	0.5		Ancest~		15	30	15
##	76	median	0.5	down-s~	Relati~	down-s~	13	30	17
##		median	1	cohort	None	full	1	30	29
##		median	1	down-s~	None	full	1	30	29
##		small-or-large		cohort	None	cohort	0	30	30
##		small-or-large		cohort	Ancest~		1	30	29
##		small-or-large			Relati~	cohort	0	30	30
##		small-or-large		down-s~		down-s~	0	30	30
##		small-or-large			Ancest~		0	30	30
##		small-or-large		down-s~	Relati~	down-s~	0	30	30
##		small-or-large		cohort	None	cohort	0	30	30
##		small-or-large		cohort	Ancest~		0	30	30
##	87	small-or-large	0.05	cohort	Relati~	cohort	1	30	29
##		small-or-large		down-s~		down-s~	0	30	30
##		small-or-large			Ancest~		0	30	30
##		small-or-large		down-s~	Relati~		0	30	30
##		small-or-large		cohort	None	cohort	0	30	30
##		small-or-large		cohort			0	30	30
##		small-or-large		cohort	Relati~	cohort	0	30	30
##		small-or-large		down-s~		down-s~	0	30	30
##		small-or-large			Ancest~		0	30	30
##		small-or-large			Relati~		0	30	30
##		small-or-large		cohort	None	cohort	0	30	30
##		small-or-large		cohort	Ancest~		0	30	30
##		small-or-large		cohort	Relati~	cohort	0	30	30
##		small-or-large		down-s~	None	down-s~	0	30	30
		small-or-large			Ancest~		0	30	30
		small-or-large		down-s~	Relati~		0	30	30
		small-or-large		cohort	None	full	0	30	30
		small-or-large		down-s~		full	0	30	30
##		with abbrevia						EST_MOD	E,
шш	ш	O. PULL MODE	/	-	7				

5.2.2 Load time series data

Because runs stop when a solution is found, the over time data aren't completely fair to compare across replicates.

3: EVAL_MODE, 4: solution_count, 5: replicates, 6: no_solution_count

5.2. SETUP 57

```
ts_data_loc <- paste0(working_directory, "data/time_series.csv")</pre>
ts_data <- read_csv(ts_data_loc)</pre>
## Rows: 262694 Columns: 24
## -- Column specification -----
## Delimiter: ","
## chr (6): EVAL_FIT_EST_MODE, EVAL_MODE, PROBLEM, SELECTION, TESTING_SET_PATH...
## dbl (18): EVAL_MAX_PHYLO_SEARCH_DEPTH, NUM_COHORTS, SEED, TEST_DOWNSAMPLE_RA...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
ts data <- ts data %>%
 mutate(
   eval_mode_row = case_when(
      EVAL_MODE == "full" & TEST_DOWNSAMPLE_RATE == "1" ~ "down-sample",
      EVAL_MODE == "full" & NUM_COHORTS == "1" ~ "cohort",
      .default = EVAL_MODE
   ),
    evals_per_gen = case_when(
      EVAL_MODE == "cohort" ~ 1.0 / NUM_COHORTS,
      EVAL_MODE == "down-sample" ~ TEST_DOWNSAMPLE_RATE,
     EVAL_MODE == "full" ~ 1.0
   ),
   EVAL FIT EST MODE = case when(
     EVAL_FIT_EST_MODE == "ancestor-opt" ~ "ancestor",
     EVAL_FIT_EST_MODE == "relative-opt" ~ "relative",
      .default = EVAL_FIT_EST_MODE
   ),
    .keep = "all"
  ) %>%
  mutate(
    evals_per_gen = as.factor(evals_per_gen),
    PROBLEM = as.factor(PROBLEM),
   SELECTION = as.factor(SELECTION),
   EVAL_MODE = as.factor(EVAL_MODE),
   NUM_COHORTS = as.factor(NUM_COHORTS),
    TEST_DOWNSAMPLE_RATE = as.factor(TEST_DOWNSAMPLE_RATE),
   EVAL_FIT_EST_MODE = factor(
      EVAL_FIT_EST_MODE,
      levels = c(
        "none",
        "ancestor",
        "relative"
```

```
labels = c(
        "None",
        "Ancestor",
        "Relative"
      )
    ),
    .keep = "all"
avg_across_time_data <- ts_data %>%
  group_by(
   PROBLEM,
    evals_per_gen,
    eval_mode_row,
   EVAL_FIT_EST_MODE,
    EVAL_MODE,
    SEED
  ) %>%
  summarize(
    avg_entropy_selected_ids = mean(entropy_selected_ids),
    avg_genotype_pairwise_distance = mean(mean_genotype_pairwise_distance),
    avg_num_unique_selected = mean(num_unique_selected),
   max_genotype_pairwise_distance = max(mean_genotype_pairwise_distance)
 )
## 'summarise()' has grouped output by 'PROBLEM', 'evals_per_gen', 'eval_mode_row',
## 'EVAL_FIT_EST_MODE', 'EVAL_MODE'. You can override using the '.groups' argument.
```

5.3 Problem-solving success

```
plt_solutions <- function(data, problem) {
  data %>%
    filter(PROBLEM == problem) %>%
    ggplot(
      aes(
          x = EVAL_FIT_EST_MODE,
          y = solution_count,
          fill = EVAL_FIT_EST_MODE
    )
  ) +
  geom_col() +
  scale_y_continuous(
```

```
limits = c(0, 30),
      breaks = seq(0, 30),
      labels = seq(0, 30)
   ) +
   scale_fill_bright() +
    scale_color_bright() +
   facet_grid(
       eval_mode_row ~ evals_per_gen
   labs(title = problem) +
   theme(
     legend.position = "none",
      axis.text.x = element_text(angle = 45, hjust = 1)
   )
  ggsave(
   filename = pasteO(plot_directory, problem, "-final.pdf"),
   height = 15,
   width = 7
 )
}
# plt_solutions(solution_counts, "small-or-large")
plt_solutions(solution_counts, "median")
plt_solutions(solution_counts, "grade")
plt_solutions(solution_counts, "fizz-buzz")
sol_stats_data <- summary_data %>%
 filter(EVAL MODE != "full" & EVAL MODE != "cohort-full-compete") %>%
  # filter(PROBLEM != "small-or-large") %>%
  group_by(
   PROBLEM,
    evals_per_gen,
   EVAL_FIT_EST_MODE,
   EVAL_MODE
  ) %>%
  summarize(
   solution_count = sum(found_solution == "1"),
   replicates = n(),
   no_solution_count = n() - sum(found_solution == "1")
  ) %>%
  unite(
    "grouping",
   PROBLEM,
   EVAL_MODE,
   evals_per_gen,
   sep = "__"
```

```
) %>%
  select(
   !replicates,
  ) %>%
  mutate(
    grouping = as.factor(grouping)
## 'summarise()' has grouped output by 'PROBLEM', 'evals_per_gen',
## 'EVAL_FIT_EST_MODE'. You can override using the '.groups' argument.
fisher_results <- data.frame(</pre>
 comparison = character(),
  group1 = character(),
  group2 = character(),
 n = integer(),
 p = double(),
 p.adj = double(),
 p.adj.signif = character()
groupings <- levels(sol_stats_data$grouping)</pre>
for (g in groupings) {
  ft_results <- sol_stats_data %>%
    filter(grouping == g) %>%
    select(!grouping) %>%
    column_to_rownames(var = "EVAL_FIT_EST_MODE") %>%
    pairwise_fisher_test(
      p.adjust.method = "holm"
    ) %>%
    add_significance("p.adj")
  ft_results <- ft_results %>%
    mutate(
      comparison = rep(g, nrow(ft_results)),
      .keep = "all"
    ) %>%
    relocate(comparison)
  fisher_results <- rbind(</pre>
    fisher_results,
    ft_results
kable(fisher_results)
```

comparison	group1	group2	n	p	p.adj	p.adj.signif
fizz-buzzcohort0.01	None	Ancestor	60	4.92e-01	9.84e-01	ns
fizz-buzzcohort0.01	None	Relative	60	2.37e-01	7.11e-01	ns
fizz-buzzcohort0.01	Ancestor	Relative	60	1.00e+00	1.00e+00	ns
fizz-buzzcohort0.05	None	Ancestor	60	7.06e-01	1.00e+00	ns
fizz-buzzcohort0.05	None	Relative	60	7.48e-01	1.00e+00	ns
fizz-buzzcohort0.05	Ancestor	Relative	60	2.99e-01	8.97e-01	ns
fizz-buzzcohort0.1	None	Ancestor	60	6.12e-01	6.12e-01	ns
fizz-buzzcohort0.1	None	Relative	60	1.22e-02	3.66e-02	*
fizz-buzzcohort0.1	Ancestor	Relative	60	1.04e-01	2.08e-01	ns
fizz-buzzcohort0.5	None	Ancestor	60	1.94e-03	5.82e-03	**
fizz-buzz cohort 0.5	None	Relative	60	2.37e-02	4.74e-02	*
fizz-buzzcohort0.5	Ancestor	Relative	60	5.52e-01	5.52e-01	ns
fizz-buzz down-sample 0.01	None	Ancestor	60	1.00e+00	1.00e+00	ns
fizz-buzz down-sample 0.01	None	Relative	60	1.00e+00	1.00e+00	ns
fizz-buzzdown-sample0.01	Ancestor	Relative	60	1.00e+00	1.00e+00	ns
fizz-buzz down-sample 0.05	None	Ancestor	60	1.90e-06	5.70e-06	****
fizz-buzz down-sample 0.05	None	Relative	60	1.90e-06	5.70e-06	****
fizz-buzzdown-sample0.05	Ancestor	Relative	60	1.00e+00	1.00e+00	ns
fizz-buzzdown-sample0.1	None	Ancestor	60	1.00e+00	1.00e+00	ns
fizz-buzz down-sample 0.1	None	Relative	60	1.00e+00	1.00e+00	ns
fizz-buzz down-sample 0.1	Ancestor	Relative	60	1.00e+00	1.00e+00	ns
fizz-buzz down-sample 0.5	None	Ancestor	60	1.05e-02	3.15e-02	*
fizz-buzzdown-sample0.5	None	Relative	60	1.05e-02	3.15e-02	*
fizz-buzzdown-sample0.5	Ancestor	Relative	60	1.00e+00	1.00e+00	ns
gradecohort0.01	None	Ancestor	60	7.89e-01	1.00e+00	ns
gradecohort0.01	None	Relative	60	5.67e-01	1.00e+00	ns
gradecohort0.01	Ancestor	Relative	60	2.67e-01	8.01e-01	ns
gradecohort0.05	None	Ancestor	60	3.01e-01	6.02e-01	ns
gradecohort0.05	None	Relative	60	1.00e+00	1.00e+00	ns
gradecohort0.05	Ancestor	Relative	60	1.95e-01	5.85e-01	ns
grade cohort 0.1	None	Ancestor	60	6.92e-02	2.08e-01	ns
gradecohort0.1	None	Relative	60	6.04e-01	6.04e-01	ns
gradecohort0.1	Ancestor	Relative	60	2.95e-01	5.90e-01	ns
grade cohort 0.5	None	Ancestor	60	6.71e-01	1.00e+00	ns
grade cohort 0.5	None	Relative	60	1.00e+00	1.00e+00	ns
grade cohort 0.5	Ancestor	Relative	60	6.71e-01	1.00e+00	ns
$\frac{\text{grade} \underline{\hspace{0.2cm}} \text{const}\underline{\hspace{0.2cm}} \text{o.o}}{\text{grade} \underline{\hspace{0.2cm}} \text{down-sample} \underline{\hspace{0.2cm}} 0.01$	None	Ancestor	60	5.58e-03	1.12e-02	*
grade down-sample 0.01	None	Relative	60	2.47e-03	7.41e-03	**
gradedown-sample0.01	Ancestor	Relative	60	1.00e+00	1.00e+00	ns
gradedown-sample0.05	None	Ancestor	60	1.82e-02	3.64e-02	*
gradedown-sample0.05	None	Relative	60	8.87e-03	2.66e-02	*
gradedown-sample0.05	Ancestor	Relative	60	1.00e+00	1.00e+00	ns
gradedown-sample0.1	None	Ancestor	60	3.52e-02	7.04e-02	ns
gradedown-sample0.1	None	Relative	60	8.87e-03	2.66e-02	*
gradedown-sample0.1	Ancestor	Relative	60	7.92e-01	7.92e-01	ns
gradedown-sample0.5	None	Ancestor	60	3.60e-01	7.20e-01	ns
gradedown-sample0.5	None	Relative	60	1.00e+00	1.00e+00	ns
gradedown-sample0.5	Ancestor	Relative	60	2.09e-01	6.27e-01	ns
median cohort 0.01	None	Ancestor	60	0.00e+00	0.27e-01 0.00e+00	****
mediancohort0.01	None	Relative	60	0.00e+00 0.00e+00	0.00e+00 0.00e+00	****
mediancohort0.01	Ancestor	Relative	60	1.81e-01	1.81e-01	ns
$\frac{\text{median} \underline{\hspace{0.2cm}} \text{conort} \underline{\hspace{0.2cm}} 0.01}{\text{median} \text{cohort} 0.05}$	None	Ancestor	60	8.21e-03	1.64e-02	*
mediancohort0.05	None	Relative	60	1.19e-03	3.57e-03	**
	попе	neiative	UU	1.196-03	5.57e-03	·

```
# temp <- sol_stats_data %>%
# filter(grouping == "fizz-buzz_cohort_0.5") %>%
# select(!grouping) %>%
# column_to_rownames(var = "EVAL_FIT_EST_MODE")

# pairwise_fisher_test(temp, p.adjust.method = "holm")
# print(
# solution_counts %>% filter(eval_mode_row == "cohort" & PROBLEM == "fizz-buzz"),
# n = 150
# )

# kable(
# fisher_results %>%
# filter(grepl("cohort", comparison) & grepl("fizz-buzz", comparison))
# )
```