RIT VEXU Core API

Generated by Doxygen 1.10.0

1 Core	1
1.1 Getting Started	1
1.2 Features	1
2 Namespace Index	3
2.1 Namespace List	3
3 Hierarchical Index	5
3.1 Class Hierarchy	5
4 Class Index	9
4.1 Class List	9
5 File Index	3
5.1 File List	3
6 Namespace Documentation 1	5
6.1 PurePursuit Namespace Reference	5
6.1.1 Function Documentation	5
6.1.1.1 estimate_remaining_dist()	5
6.1.1.2 get_lookahead()	6
6.1.1.3 inject_path()	6
6.1.1.4 line_circle_intersections()	6
6.1.1.5 smooth_path()	6
6.1.1.6 smooth_path_cubic()	7
6.1.1.7 smooth_path_hermite()	7
6.2 screen Namespace Reference	7
6.2.1 Typedef Documentation	8
6.2.1.1 draw_func_t	8
	8
6.2.2 Function Documentation	8
6.2.2.1 draw_label()	8
6.2.2.2 draw_widget() [1/2]	9
	9
	9
	9
	9
	9
	20
7 Class Documentation 2	21
7.1 AndCondition Class Reference	21
7.1.1 Constructor & Destructor Documentation	22
7.1.1.1 AndCondition()	

7.1.2 Member Function Documentation	. 22
7.1.2.1 test()	. 22
7.2 Async Class Reference	. 22
7.2.1 Detailed Description	. 23
7.2.2 Constructor & Destructor Documentation	. 24
7.2.2.1 Async()	. 24
7.2.3 Member Function Documentation	. 24
7.2.3.1 run()	. 24
7.3 AutoChooser Class Reference	. 24
7.3.1 Detailed Description	. 25
7.3.2 Constructor & Destructor Documentation	. 26
7.3.2.1 AutoChooser()	. 26
7.3.3 Member Function Documentation	. 26
7.3.3.1 draw()	. 26
7.3.3.2 get_choice()	. 26
7.3.3.3 update()	. 27
7.3.4 Member Data Documentation	. 28
7.3.4.1 choice	. 28
7.3.4.2 height	. 28
7.3.4.3 list	. 28
7.3.4.4 width	. 28
7.4 AutoCommand Class Reference	. 29
7.4.1 Member Function Documentation	. 30
7.4.1.1 on_timeout()	. 30
7.4.1.2 run()	. 31
7.4.1.3 withCancelCondition()	. 31
7.4.1.4 withTimeout()	. 31
7.4.2 Member Data Documentation	. 31
7.4.2.1 default_timeout	. 31
7.4.2.2 timeout_seconds	. 31
7.4.2.3 true_to_end	. 32
7.5 BangBang Class Reference	. 32
7.5.1 Constructor & Destructor Documentation	. 33
7.5.1.1 BangBang()	. 33
7.5.2 Member Function Documentation	. 33
7.5.2.1 get()	. 33
7.5.2.2 init()	. 33
7.5.2.3 is_on_target()	. 33
7.5.2.4 set_limits()	. 34
7.5.2.5 update()	. 34
7.6 BasicSolenoidSet Class Reference	. 34
7.6.1 Detailed Description	. 36

7.6.2 Constructor & Destructor Documentation	. 36
7.6.2.1 BasicSolenoidSet()	. 36
7.6.3 Member Function Documentation	. 36
7.6.3.1 run()	. 36
7.7 BasicSpinCommand Class Reference	. 37
7.7.1 Detailed Description	. 38
7.7.2 Member Enumeration Documentation	. 38
7.7.2.1 type	. 38
7.7.3 Constructor & Destructor Documentation	. 38
7.7.3.1 BasicSpinCommand()	. 38
7.7.4 Member Function Documentation	. 39
7.7.4.1 run()	. 39
7.8 BasicStopCommand Class Reference	. 39
7.8.1 Detailed Description	. 40
7.8.2 Constructor & Destructor Documentation	. 41
7.8.2.1 BasicStopCommand()	. 41
7.8.3 Member Function Documentation	. 41
7.8.3.1 run()	. 41
7.9 Branch Class Reference	. 42
7.9.1 Detailed Description	. 43
7.9.2 Constructor & Destructor Documentation	. 43
7.9.2.1 Branch()	. 43
7.9.2.2 ~Branch()	. 43
7.9.3 Member Function Documentation	. 43
7.9.3.1 on_timeout()	. 43
7.9.3.2 run()	. 44
7.10 screen::ButtonConfig Struct Reference	. 44
7.10.1 Member Data Documentation	. 44
7.10.1.1 onclick	. 44
7.11 screen::ButtonWidget Class Reference	. 44
7.11.1 Detailed Description	. 45
7.11.2 Constructor & Destructor Documentation	. 45
7.11.2.1 ButtonWidget() [1/2]	. 45
7.11.2.2 ButtonWidget() [2/2]	. 45
7.11.3 Member Function Documentation	. 46
7.11.3.1 draw()	. 46
7.11.3.2 update()	. 46
7.12 screen::CheckboxConfig Struct Reference	. 46
7.12.1 Member Data Documentation	. 47
7.12.1.1 onupdate	. 47
7.13 CommandController Class Reference	. 47
7.13.1 Detailed Description	. 47

7.13.2 Constructor & Destructor Documentation	47
7.13.2.1 CommandController() [1/2]	47
7.13.2.2 CommandController() [2/2]	47
7.13.3 Member Function Documentation	48
7.13.3.1 add() [1/3]	48
7.13.3.2 add() [2/3]	48
7.13.3.3 add() [3/3]	48
7.13.3.4 add_cancel_func()	50
7.13.3.5 add_delay()	50
7.13.3.6 last_command_timed_out()	50
7.13.3.7 run()	51
7.14 Condition Class Reference	51
7.14.1 Detailed Description	51
7.14.2 Member Function Documentation	51
7.14.2.1 And()	51
7.14.2.2 Or()	52
7.14.2.3 test()	52
7.15 CustomEncoder Class Reference	52
7.15.1 Detailed Description	53
7.15.2 Constructor & Destructor Documentation	53
7.15.2.1 CustomEncoder()	53
7.15.3 Member Function Documentation	53
7.15.3.1 position()	53
7.15.3.2 rotation()	54
7.15.3.3 setPosition()	54
7.15.3.4 setRotation()	54
7.15.3.5 velocity()	54
7.16 DelayCommand Class Reference	55
7.16.1 Detailed Description	56
7.16.2 Constructor & Destructor Documentation	56
7.16.2.1 DelayCommand()	56
7.16.3 Member Function Documentation	56
7.16.3.1 run()	56
7.17 DriveForwardCommand Class Reference	57
7.17.1 Detailed Description	58
7.17.2 Constructor & Destructor Documentation	58
7.17.2.1 DriveForwardCommand()	58
7.17.3 Member Function Documentation	59
7.17.3.1 on_timeout()	59
7.17.3.2 run()	59
7.18 DriveStopCommand Class Reference	60
7.18.1 Detailed Description	61

7.18.2 Constructor & Destructor Documentation	61
7.18.2.1 DriveStopCommand()	61
7.18.3 Member Function Documentation	61
7.18.3.1 on_timeout()	61
7.18.3.2 run()	61
7.19 DriveToPointCommand Class Reference	62
7.19.1 Detailed Description	63
7.19.2 Constructor & Destructor Documentation	63
7.19.2.1 DriveToPointCommand() [1/2]	63
7.19.2.2 DriveToPointCommand() [2/2]	64
7.19.3 Member Function Documentation	64
7.19.3.1 run()	64
7.20 AutoChooser::entry_t Struct Reference	64
7.20.1 Detailed Description	65
7.20.2 Member Data Documentation	65
7.20.2.1 name	65
7.20.2.2 rect	65
7.21 ExponentialMovingAverage Class Reference	66
7.21.1 Detailed Description	66
7.21.2 Constructor & Destructor Documentation	67
7.21.2.1 ExponentialMovingAverage() [1/2]	67
7.21.2.2 ExponentialMovingAverage() [2/2]	67
7.21.3 Member Function Documentation	67
7.21.3.1 add_entry()	67
7.21.3.2 get_size()	67
7.21.3.3 get_value()	68
7.22 Feedback Class Reference	68
7.22.1 Detailed Description	69
7.22.2 Member Function Documentation	69
7.22.2.1 get()	69
7.22.2.2 init()	69
7.22.2.3 is_on_target()	69
7.22.2.4 set_limits()	70
7.22.2.5 update()	70
7.23 FeedForward Class Reference	70
7.23.1 Detailed Description	71
7.23.2 Constructor & Destructor Documentation	71
7.23.2.1 FeedForward()	71
7.23.3 Member Function Documentation	72
7.23.3.1 calculate()	72
7.24 FeedForward::ff_config_t Struct Reference	72
7.24.1 Detailed Description	72

7.24.2 Member Data Documentation	73
7.24.2.1 kA	73
7.24.2.2 kG	73
7.24.2.3 kS	73
7.24.2.4 kV	73
7.25 Filter Class Reference	73
7.25.1 Detailed Description	74
7.25.2 Member Function Documentation	74
7.25.2.1 add_entry()	74
7.25.2.2 get_value()	74
7.26 Flywheel Class Reference	74
7.26.1 Detailed Description	75
7.26.2 Constructor & Destructor Documentation	75
7.26.2.1 Flywheel()	75
7.26.3 Member Function Documentation	75
7.26.3.1 get_motors()	75
7.26.3.2 get_target()	76
7.26.3.3 getRPM()	76
7.26.3.4 is_on_target()	76
7.26.3.5 Page()	76
7.26.3.6 spin_manual()	76
7.26.3.7 spin_rpm()	77
7.26.3.8 SpinRpmCmd()	77
7.26.3.9 stop()	78
7.26.3.10 WaitUntilUpToSpeedCmd()	78
7.26.4 Friends And Related Symbol Documentation	78
7.26.4.1 FlywheelPage	78
7.26.4.2 spinRPMTask	78
7.27 FlywheelPage Class Reference	79
7.27.1 Constructor & Destructor Documentation	79
7.27.1.1 FlywheelPage()	79
7.27.2 Member Function Documentation	80
7.27.2.1 draw()	80
7.27.2.2 update()	80
7.27.3 Member Data Documentation	80
7.27.3.1 window_size	80
7.28 FlywheelStopCommand Class Reference	81
7.28.1 Detailed Description	82
7.28.2 Constructor & Destructor Documentation	82
7.28.2.1 FlywheelStopCommand()	82
7.28.3 Member Function Documentation	82
7.28.3.1 run()	82

7.29 FlywheelStopMotorsCommand Class Reference	 83
7.29.1 Detailed Description	 84
7.29.2 Constructor & Destructor Documentation	 84
7.29.2.1 FlywheelStopMotorsCommand()	 84
7.29.3 Member Function Documentation	 84
7.29.3.1 run()	 84
7.30 FlywheelStopNonTasksCommand Class Reference	 85
7.30.1 Detailed Description	 86
7.31 FunctionCommand Class Reference	 86
7.31.1 Detailed Description	 87
7.31.2 Constructor & Destructor Documentation	 87
7.31.2.1 FunctionCommand()	 87
7.31.3 Member Function Documentation	 87
7.31.3.1 run()	 87
7.32 FunctionCondition Class Reference	 88
7.32.1 Detailed Description	 88
7.32.2 Constructor & Destructor Documentation	 89
7.32.2.1 FunctionCondition()	 89
7.32.3 Member Function Documentation	 89
7.32.3.1 test()	 89
7.33 screen::FunctionPage Class Reference	 89
7.33.1 Detailed Description	 90
7.33.2 Constructor & Destructor Documentation	 90
7.33.2.1 FunctionPage()	 90
7.33.3 Member Function Documentation	 91
7.33.3.1 draw()	 91
7.33.3.2 update()	 91
7.34 GenericAuto Class Reference	 91
7.34.1 Detailed Description	 92
7.34.2 Member Function Documentation	 92
7.34.2.1 add()	 92
7.34.2.2 add_async()	 92
7.34.2.3 add_delay()	 92
7.34.2.4 run()	 92
7.35 GraphDrawer Class Reference	 93
7.35.1 Constructor & Destructor Documentation	 93
7.35.1.1 GraphDrawer()	 93
7.35.2 Member Function Documentation	 94
7.35.2.1 add_samples() [1/2]	 94
7.35.2.2 add_samples() [2/2]	 94
7.35.2.3 draw()	 94
7.36 PurePursuit::hermite_point Struct Reference	 95

7.36.1 Detailed Description	95
7.36.2 Member Function Documentation	95
7.36.2.1 getPoint()	95
7.36.2.2 getTangent()	95
7.36.3 Member Data Documentation	95
7.36.3.1 dir	95
7.36.3.2 mag	95
7.36.3.3 x	96
7.36.3.4 y	96
7.37 IfTimePassed Class Reference	96
7.37.1 Detailed Description	97
7.37.2 Constructor & Destructor Documentation	97
7.37.2.1 IfTimePassed()	97
7.37.3 Member Function Documentation	97
7.37.3.1 test()	97
7.38 InOrder Class Reference	98
7.38.1 Detailed Description	99
7.38.2 Constructor & Destructor Documentation	99
7.38.2.1 InOrder() [1/3]	99
7.38.2.2 InOrder() [2/3]	99
7.38.2.3 InOrder() [3/3]	99
7.38.3 Member Function Documentation	100
7.38.3.1 on_timeout()	100
7.38.3.2 run()	100
7.39 screen::LabelConfig Struct Reference	100
7.39.1 Member Data Documentation	100
7.39.1.1 label	100
7.40 Lift< T > Class Template Reference	101
7.40.1 Detailed Description	101
7.40.2 Constructor & Destructor Documentation	101
7.40.2.1 Lift()	101
7.40.3 Member Function Documentation	102
7.40.3.1 control_continuous()	102
7.40.3.2 control_manual()	102
7.40.3.3 control_setpoints()	102
7.40.3.4 get_async()	103
7.40.3.5 get_setpoint()	103
7.40.3.6 hold()	103
7.40.3.7 home()	103
7.40.3.8 set_async()	103
7.40.3.9 set_position()	104
7.40.3.10 set_sensor_function()	104

7.40.3.11 set_sensor_reset())4
7.40.3.12 set_setpoint())4
7.41 Lift< T >::lift_cfg_t Struct Reference)5
7.41.1 Detailed Description)5
7.41.2 Member Data Documentation	ე6
7.41.2.1 down_speed	ე6
7.41.2.2 lift_pid_cfg	ე6
7.41.2.3 softstop_down	ე6
7.41.2.4 softstop_up	ე6
7.41.2.5 up_speed	ე6
7.42 Logger Class Reference	ე6
7.42.1 Detailed Description)7
7.42.2 Constructor & Destructor Documentation)7
7.42.2.1 Logger() [1/2])7
7.42.2.2 Logger() [2/2])7
7.42.3 Member Function Documentation	38
7.42.3.1 Log() [1/2]	38
7.42.3.2 Log() [2/2]	38
7.42.3.3 Logf() [1/2]	38
7.42.3.4 Logf() [2/2]	38
7.42.3.5 Logln() [1/2]	ງ9
7.42.3.6 LogIn() [2/2]	ງ9
7.42.3.7 operator=())9
7.42.4 Member Data Documentation	ງ9
7.42.4.1 MAX_FORMAT_LEN	ງ9
7.43 MotionController::m_profile_cfg_t Struct Reference	10
7.43.1 Detailed Description	10
7.43.2 Member Data Documentation	11
7.43.2.1 accel	11
7.43.2.2 ff_cfg	11
7.43.2.3 max_v	11
7.43.2.4 pid_cfg	11
7.44 Mat2 Struct Reference	11
7.44.1 Member Function Documentation	12
7.44.1.1 FromRotationDegrees()	12
7.44.1.2 operator*()	12
7.44.2 Member Data Documentation	12
7.44.2.1 X11	12
7.44.2.2 X12	12
7.44.2.3 X21	12
7.44.2.4 X22	12
7.45 MecanumDrive Class Reference	12

7.45.1 Detailed Description	13
7.45.2 Constructor & Destructor Documentation	13
7.45.2.1 MecanumDrive()	13
7.45.3 Member Function Documentation	13
7.45.3.1 auto_drive()	13
7.45.3.2 auto_turn()	14
7.45.3.3 drive()	15
7.45.3.4 drive_raw()	15
7.46 MecanumDrive::mecanumdrive_config_t Struct Reference	16
7.46.1 Detailed Description	16
7.46.2 Member Data Documentation	16
7.46.2.1 drive_gyro_pid_conf	16
7.46.2.2 drive_pid_conf	16
7.46.2.3 drive_wheel_diam	17
7.46.2.4 lateral_wheel_diam	17
7.46.2.5 turn_pid_conf	17
7.46.2.6 wheelbase_width	17
7.47 motion_t Struct Reference	17
7.47.1 Detailed Description	17
7.47.2 Member Data Documentation	17
7.47.2.1 accel	17
7.47.2.2 pos	18
7.47.2.3 vel	18
7.48 MotionController Class Reference	18
7.48.1 Detailed Description	19
7.48.2 Constructor & Destructor Documentation	19
7.48.2.1 MotionController()	19
7.48.3 Member Function Documentation	20
7.48.3.1 get()	20
7.48.3.2 get_motion()	20
7.48.3.3 init()	20
7.48.3.4 is_on_target()	21
7.48.3.5 Page()	21
7.48.3.6 set_limits()	21
7.48.3.7 tune_feedforward()	21
7.48.3.8 update()	22
7.48.4 Friends And Related Symbol Documentation	22
7.48.4.1 MotionControllerPage	22
7.49 MotionControllerPage Class Reference	23
7.49.1 Constructor & Destructor Documentation	23
7.49.1.1 MotionControllerPage()	23
7.49.2 Member Function Documentation	24

7.49.2.1 draw()	124
7.49.2.2 update()	124
7.50 MovingAverage Class Reference	124
7.50.1 Detailed Description	125
7.50.2 Constructor & Destructor Documentation	126
7.50.2.1 MovingAverage() [1/2]	126
7.50.2.2 MovingAverage() [2/2]	126
7.50.3 Member Function Documentation	126
7.50.3.1 add_entry()	126
7.50.3.2 get_size()	126
7.50.3.3 get_value()	127
7.51 Odometry3Wheel Class Reference	127
7.51.1 Detailed Description	129
7.51.2 Constructor & Destructor Documentation	129
7.51.2.1 Odometry3Wheel()	129
7.51.3 Member Function Documentation	130
7.51.3.1 tune()	130
7.51.3.2 update()	130
7.52 Odometry3Wheel::odometry3wheel_cfg_t Struct Reference	131
7.52.1 Detailed Description	131
7.52.2 Member Data Documentation	131
7.52.2.1 off_axis_center_dist	131
7.52.2.2 wheel_diam	131
7.52.2.3 wheelbase_dist	131
7.53 OdometryBase Class Reference	132
7.53.1 Detailed Description	133
7.53.2 Constructor & Destructor Documentation	133
7.53.2.1 OdometryBase()	133
7.53.3 Member Function Documentation	134
7.53.3.1 background_task()	134
7.53.3.2 end_async()	134
7.53.3.3 get_accel()	134
7.53.3.4 get_angular_accel_deg()	134
7.53.3.5 get_angular_speed_deg()	135
7.53.3.6 get_position()	135
7.53.3.7 get_speed()	135
7.53.3.8 pos_diff()	135
7.53.3.9 rot_diff()	136
7.53.3.10 set_position()	136
7.53.3.11 SetPositionCmd()	136
7.53.3.12 smallest_angle()	136
7.53.3.13 update()	137

37
37
37
37
38
38
38
38
38
38
39
39
40
40
40
40
40
41
42
42
42
43
43
44
44
44
44
45
46
46
47
47
47
48
48
48
48
49
49
50
50
50
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4

7.59 Parallel Class Reference
7.59.1 Detailed Description
7.59.2 Constructor & Destructor Documentation
7.59.2.1 Parallel()
7.59.3 Member Function Documentation
7.59.3.1 on_timeout()
7.59.3.2 run()
7.60 parallel_runner_info Struct Reference
7.60.1 Member Data Documentation
7.60.1.1 cmd
7.60.1.2 index
7.60.1.3 runners
7.61 PurePursuit::Path Class Reference
7.61.1 Detailed Description
7.61.2 Constructor & Destructor Documentation
7.61.2.1 Path()
7.61.3 Member Function Documentation
7.61.3.1 get_points()
7.61.3.2 get_radius()
7.61.3.3 is_valid()
7.62 PID Class Reference
7.62.1 Detailed Description
7.62.2 Member Enumeration Documentation
7.62.2.1 ERROR_TYPE
7.62.3 Constructor & Destructor Documentation
7.62.3.1 PID()
7.62.4 Member Function Documentation
7.62.4.1 get()
7.62.4.2 get_error()
7.62.4.3 get_sensor_val()
7.62.4.4 get_target()
7.62.4.5 init()
7.62.4.6 is_on_target()
7.62.4.7 reset()
7.62.4.8 set_limits()
7.62.4.9 set_target()
7.62.4.10 update()
7.62.5 Member Data Documentation
7.62.5.1 config
7.63 PID::pid_config_t Struct Reference
7.63.1 Detailed Description
7.63.2 Member Data Documentation 161

7.63.2.1 d	161
7.63.2.2 deadband	161
7.63.2.3 error_method	161
7.63.2.4 i	161
7.63.2.5 on_target_time	161
7.63.2.6 p	162
7.64 PIDFF Class Reference	162
7.64.1 Constructor & Destructor Documentation	163
7.64.1.1 PIDFF()	163
7.64.2 Member Function Documentation	163
7.64.2.1 get()	163
7.64.2.2 get_sensor_val()	163
7.64.2.3 get_target()	163
7.64.2.4 init()	163
7.64.2.5 is_on_target()	164
7.64.2.6 reset()	164
7.64.2.7 set_limits()	164
7.64.2.8 set_target()	165
7.64.2.9 update() [1/2]	165
7.64.2.10 update() [2/2]	165
7.64.3 Member Data Documentation	166
7.64.3.1 pid	166
7.65 screen::PIDPage Class Reference	166
7.65.1 Detailed Description	167
7.65.2 Constructor & Destructor Documentation	167
7.65.2.1 PIDPage() [1/2]	167
7.65.2.2 PIDPage() [2/2]	167
7.65.3 Member Function Documentation	167
7.65.3.1 draw()	167
7.65.3.2 update()	168
7.66 point_t Struct Reference	168
7.66.1 Detailed Description	168
7.66.2 Member Function Documentation	168
7.66.2.1 dist()	168
7.66.2.2 operator*()	169
7.66.2.3 operator+() [1/2]	169
7.66.2.4 operator+() [2/2]	169
7.66.2.5 operator-() [1/2]	169
7.66.2.6 operator-() [2/2]	169
7.66.2.7 operator/()	170
7.66.2.8 operator==()	170
7.66.3 Member Data Documentation	170

7.66.3.1 x
7.66.3.2 y
7.67 pose_t Struct Reference
7.67.1 Detailed Description
7.67.2 Member Function Documentation
7.67.2.1 get_point()
7.67.3 Member Data Documentation
7.67.3.1 rot
7.67.3.2 x
7.67.3.3 y
7.68 PurePursuitCommand Class Reference
7.68.1 Detailed Description
7.68.2 Constructor & Destructor Documentation
7.68.2.1 PurePursuitCommand()
7.68.3 Member Function Documentation
7.68.3.1 on_timeout()
7.68.3.2 run()
7.69 Rect Struct Reference
7.69.1 Member Function Documentation
7.69.1.1 center()
7.69.1.2 contains()
7.69.1.3 dimensions()
7.69.1.4 from_min_and_size()
7.69.1.5 height()
7.69.1.6 width()
7.69.2 Member Data Documentation
7.69.2.1 max
7.69.2.2 min
7.70 RepeatUntil Class Reference
7.70.1 Constructor & Destructor Documentation
7.70.1.1 RepeatUntil() [1/2]
7.70.1.2 RepeatUntil() [2/2]
7.70.2 Member Function Documentation
7.70.2.1 on_timeout()
7.70.2.2 run()
7.71 robot_specs_t Struct Reference
7.71.1 Detailed Description
7.71.2 Member Data Documentation
7.71.2.1 correction_pid
7.71.2.2 dist_between_wheels
7.71.2.3 drive_correction_cutoff
7.71.2.4 drive_feedback

7.71.2.5 odom_gear_ratio	80
7.71.2.6 odom_wheel_diam	80
7.71.2.7 robot_radius	80
7.71.2.8 turn_feedback	80
7.72 screen::ScreenData Struct Reference	80
7.72.1 Detailed Description	81
7.72.2 Constructor & Destructor Documentation	81
7.72.2.1 ScreenData()	81
7.72.3 Member Data Documentation	81
7.72.3.1 page	81
7.72.3.2 pages	81
7.72.3.3 screen	81
7.73 screen::ScreenRect Struct Reference	81
7.73.1 Member Data Documentation	82
7.73.1.1 x1	82
7.73.1.2 x2	82
7.73.1.3 y1	82
7.73.1.4 y2	82
7.74 Serializer Class Reference	82
7.74.1 Detailed Description	83
7.74.2 Constructor & Destructor Documentation	83
7.74.2.1 ∼Serializer()	83
7.74.2.2 Serializer()	83
7.74.3 Member Function Documentation	83
7.74.3.1 bool_or()	83
7.74.3.2 double_or()	84
7.74.3.3 int_or()	84
7.74.3.4 save_to_disk()	84
7.74.3.5 set_bool()	84
7.74.3.6 set_double()	85
7.74.3.7 set_int()	85
7.74.3.8 set_string()	85
7.74.3.9 string_or()	86
7.75 screen::SizedWidget Struct Reference	86
7.75.1 Member Data Documentation	87
7.75.1.1 size	87
7.75.1.2 widget	87
7.76 SliderCfg Struct Reference	87
7.76.1 Member Data Documentation	87
7.76.1.1 max	
7.76.1.2 min	87
7.76.1.3 val	87

7.77 screen::SliderConfig Struct Reference	38
7.77.1 Member Data Documentation	38
7.77.1.1 high	38
7.77.1.2 low	38
7.77.1.3 val	38
7.78 screen::SliderWidget Class Reference	38
7.78.1 Detailed Description	39
7.78.2 Constructor & Destructor Documentation	39
7.78.2.1 SliderWidget()	39
7.78.3 Member Function Documentation	39
7.78.3.1 draw()	39
7.78.3.2 update()	39
7.79 SpinRPMCommand Class Reference	90
7.79.1 Detailed Description	91
7.79.2 Constructor & Destructor Documentation	91
7.79.2.1 SpinRPMCommand()	91
7.79.3 Member Function Documentation	92
7.79.3.1 run()	92
7.80 PurePursuit::spline Struct Reference	92
7.80.1 Detailed Description	92
7.80.2 Member Function Documentation	92
7.80.2.1 getY()	92
7.80.3 Member Data Documentation	93
7.80.3.1 a	93
7.80.3.2 b	93
7.80.3.3 c	93
7.80.3.4 d	93
7.80.3.5 x_end	93
7.80.3.6 x_start	93
7.81 screen::StatsPage Class Reference	94
7.81.1 Detailed Description	94
7.81.2 Constructor & Destructor Documentation	95
7.81.2.1 StatsPage()	95
7.81.3 Member Function Documentation	96
7.81.3.1 draw()	96
7.81.3.2 update()	96
7.82 TakeBackHalf Class Reference	97
7.82.1 Detailed Description	98
7.82.2 Constructor & Destructor Documentation	98
7.82.2.1 TakeBackHalf()	98
7.82.3 Member Function Documentation	98
7.82.3.1 get()	ລຂ

7.82.3.2 init()	98
7.82.3.3 is_on_target()	99
7.82.3.4 set_limits()	99
7.82.3.5 update()	99
7.82.4 Member Data Documentation	99
7.82.4.1 first_cross_split	99
7.82.4.2 TBH_gain	200
7.83 TankDrive Class Reference	200
7.83.1 Detailed Description	201
7.83.2 Member Enumeration Documentation	201
7.83.2.1 BrakeType	201
7.83.3 Constructor & Destructor Documentation	201
7.83.3.1 TankDrive()	201
7.83.4 Member Function Documentation	202
7.83.4.1 drive_arcade()	202
7.83.4.2 drive_forward() [1/2]	202
7.83.4.3 drive_forward() [2/2]	203
7.83.4.4 drive_tank()	<u>2</u> 04
7.83.4.5 drive_tank_raw()	<u>2</u> 04
7.83.4.6 drive_to_point() [1/2]	<u>2</u> 04
7.83.4.7 drive_to_point() [2/2]	205
7.83.4.8 DriveForwardCmd() [1/2]	206
7.83.4.9 DriveForwardCmd() [2/2]	206
7.83.4.10 DriveToPointCmd() [1/2]	206
7.83.4.11 DriveToPointCmd() [2/2]	206
7.83.4.12 modify_inputs()	207
7.83.4.13 pure_pursuit() [1/2]	208
7.83.4.14 pure_pursuit() [2/2]	209
7.83.4.15 PurePursuitCmd() [1/2]	10
7.83.4.16 PurePursuitCmd() [2/2]	10
7.83.4.17 reset_auto()	10
7.83.4.18 stop()	10
7.83.4.19 turn_degrees() [1/2]	10
7.83.4.20 turn_degrees() [2/2]	<u>2</u> 11
7.83.4.21 turn_to_heading() [1/2]	12
7.83.4.22 turn_to_heading() [2/2]	12
7.83.4.23 TurnDegreesCmd() [1/2]	13
7.83.4.24 TurnDegreesCmd() [2/2]	13
7.83.4.25 TurnToHeadingCmd() [1/2]	13
7.83.4.26 TurnToHeadingCmd() [2/2]	13
7.84 screen::TextConfig Struct Reference	14
7.84.1 Member Data Documentation	11

7.84.1.1 text	4
7.85 TimesTestedCondition Class Reference	4
7.85.1 Constructor & Destructor Documentation	5
7.85.1.1 TimesTestedCondition()	5
7.85.2 Member Function Documentation	5
7.85.2.1 test()	5
7.86 trapezoid_profile_segment_t Struct Reference	5
7.86.1 Detailed Description	6
7.86.2 Member Data Documentation	6
7.86.2.1 accel	6
7.86.2.2 duration	6
7.86.2.3 pos_after	6
7.86.2.4 vel_after	6
7.87 TrapezoidProfile Class Reference	6
7.87.1 Detailed Description	7
7.87.2 Constructor & Destructor Documentation	8
7.87.2.1 TrapezoidProfile()	8
7.87.3 Member Function Documentation	8
7.87.3.1 calculate()	8
7.87.3.2 calculate_time_based()	8
7.87.3.3 get_accel()	9
7.87.3.4 get_max_v()	9
7.87.3.5 get_movement_time()	9
7.87.3.6 set_accel()	9
7.87.3.7 set_endpts()	9
7.87.3.8 set_max_v()	0
7.87.3.9 set_vel_endpts()	0
7.88 TurnDegreesCommand Class Reference	0
7.88.1 Detailed Description	1
7.88.2 Constructor & Destructor Documentation	2
7.88.2.1 TurnDegreesCommand()	2
7.88.3 Member Function Documentation	2
7.88.3.1 on_timeout()	2
7.88.3.2 run()	2
7.89 TurnToHeadingCommand Class Reference	3
7.89.1 Detailed Description	4
7.89.2 Constructor & Destructor Documentation	4
7.89.2.1 TurnToHeadingCommand()	4
7.89.3 Member Function Documentation	4
7.89.3.1 on_timeout()	4
7.89.3.2 run()	5
7 90 Vector2D Class Reference	5

7.90.1 Detailed Description	225
7.90.2 Constructor & Destructor Documentation	225
7.90.2.1 Vector2D() [1/2]	225
7.90.2.2 Vector2D() [2/2]	226
7.90.3 Member Function Documentation	226
7.90.3.1 get_dir()	226
7.90.3.2 get_mag()	226
7.90.3.3 get_x()	227
7.90.3.4 get_y()	227
7.90.3.5 normalize()	227
7.90.3.6 operator*()	227
7.90.3.7 operator+()	228
7.90.3.8 operator-()	228
7.90.3.9 point()	228
7.91 WaitUntilCondition Class Reference	229
7.91.1 Detailed Description	230
7.91.2 Constructor & Destructor Documentation	230
7.91.2.1 WaitUntilCondition()	230
7.91.3 Member Function Documentation	230
7.91.3.1 run()	230
7.92 WaitUntilUpToSpeedCommand Class Reference	231
7.92.1 Detailed Description	232
7.92.2 Constructor & Destructor Documentation	232
7.92.2.1 WaitUntilUpToSpeedCommand()	232
7.92.3 Member Function Documentation	232
7.92.3.1 run()	232
7.93 screen::WidgetConfig Struct Reference	233
7.93.1 Member Enumeration Documentation	233
7.93.1.1 Type	233
7.93.2 Member Data Documentation	234
7.93.2.1 button	234
7.93.2.2 checkbox	234
7.93.2.3 [union]	234
7.93.2.4 graph	234
7.93.2.5 label	234
7.93.2.6 slider	234
7.93.2.7 text	234
7.93.2.8 type	235
7.93.2.9 widgets	235
7.94 screen::WidgetPage Class Reference	235
7.94.1 Constructor & Destructor Documentation	236
7.94.1.1 WidgetPage()	226

7.94.2 Member Function Documentation	236
7.94.2.1 draw()	236
7.94.2.2 update()	236
8 File Documentation	239
8.1 include/robot_specs.h File Reference	239
8.2 robot_specs.h	239
8.3 include/subsystems/custom_encoder.h File Reference	240
8.4 custom_encoder.h	240
8.5 include/subsystems/flywheel.h File Reference	241
8.6 flywheel.h	241
8.7 include/subsystems/layout.h File Reference	242
8.8 layout.h	242
8.9 include/subsystems/lift.h File Reference	243
8.10 lift.h	243
8.11 include/subsystems/mecanum_drive.h File Reference	246
8.11.1 Macro Definition Documentation	247
8.11.1.1 PI	247
8.12 mecanum_drive.h	247
8.13 include/subsystems/odometry/odometry_3wheel.h File Reference	248
8.14 odometry_3wheel.h	248
8.15 include/subsystems/odometry/odometry_base.h File Reference	249
8.15.1 Macro Definition Documentation	249
8.15.1.1 PI	249
8.16 odometry_base.h	250
8.17 include/subsystems/odometry/odometry_tank.h File Reference	250
8.18 odometry_tank.h	251
8.19 include/subsystems/screen.h File Reference	251
8.20 screen.h	253
8.21 include/subsystems/tank_drive.h File Reference	256
8.21.1 Macro Definition Documentation	256
8.21.1.1 PI	256
8.22 tank_drive.h	256
8.23 include/utils/auto_chooser.h File Reference	258
8.24 auto_chooser.h	258
8.25 include/utils/command_structure/auto_command.h File Reference	259
8.26 auto_command.h	260
8.27 include/utils/command_structure/basic_command.h File Reference	262
8.28 basic_command.h	262
8.29 include/utils/command_structure/command_controller.h File Reference	263
8.30 command_controller.h	264
8.31 include/utils/command_structure/delay_command.h File Reference	265

8.32 delay_command.h
8.33 include/utils/command_structure/drive_commands.h File Reference
8.34 drive_commands.h
8.35 include/utils/command_structure/flywheel_commands.h File Reference
8.36 flywheel_commands.h
8.37 include/utils/controls/bang_bang.h File Reference
8.38 bang_bang.h
8.39 include/utils/controls/feedback_base.h File Reference
8.40 feedback_base.h
8.41 include/utils/controls/feedforward.h File Reference
8.41.1 Function Documentation
8.41.1.1 tune_feedforward()
8.42 feedforward.h
8.43 include/utils/controls/motion_controller.h File Reference
8.44 motion_controller.h
8.45 include/utils/controls/pid.h File Reference
8.46 pid.h
8.47 include/utils/controls/pidff.h File Reference
8.48 pidff.h
8.49 include/utils/controls/take_back_half.h File Reference
8.50 take_back_half.h
8.51 include/utils/controls/trapezoid_profile.h File Reference
8.51.1 Variable Documentation
8.51.1.1 MAX_TRAPEZOID_PROFILE_SEGMENTS
8.52 trapezoid_profile.h
8.53 include/utils/generic_auto.h File Reference
8.53.1 Typedef Documentation
8.53.1.1 state_ptr
8.54 generic_auto.h
8.55 include/utils/geometry.h File Reference
8.56 geometry.h
8.57 include/utils/graph_drawer.h File Reference
8.58 graph_drawer.h
8.59 include/utils/logger.h File Reference
8.59.1 Enumeration Type Documentation
8.59.1.1 LogLevel
8.60 logger.h
8.61 include/utils/math_util.h File Reference
8.61.1 Function Documentation
8.61.1.1 calculate_linear_regression()
8.61.1.2 clamp()
8.61.1.3 covariance()

0.C1 1.4 actimate meth length/)
8.61.1.4 estimate_path_length()
8.61.1.5 lerp()
8.61.1.6 mean()
8.61.1.7 sign()
8.61.1.8 variance()
8.61.1.9 wrap_angle_deg()
8.61.1.10 wrap_angle_rad()
8.62 math_util.h
8.63 include/utils/moving_average.h File Reference
8.64 moving_average.h
8.65 include/utils/pure_pursuit.h File Reference
8.66 pure_pursuit.h
8.67 include/utils/serializer.h File Reference
8.67.1 Variable Documentation
8.67.1.1 MAX_FILE_SIZE
8.67.1.2 serialization_separator
8.68 serializer.h
8.69 include/utils/vector2d.h File Reference
8.69.1 Macro Definition Documentation
8.69.1.1 Pl
8.69.2 Function Documentation
8.69.2.1 deg2rad()
8.69.2.2 rad2deg()
8.70 vector2d.h
8.71 README.md File Reference
8.72 src/subsystems/custom_encoder.cpp File Reference
8.73 src/subsystems/flywheel.cpp File Reference
8.73.1 Function Documentation
8.73.1.1 spinRPMTask()
8.74 src/subsystems/mecanum_drive.cpp File Reference
8.75 src/subsystems/odometry/odometry_3wheel.cpp File Reference
8.76 src/subsystems/odometry/odometry_base.cpp File Reference
8.77 src/subsystems/odometry/odometry_tank.cpp File Reference
8.78 src/subsystems/screen.cpp File Reference
8.79 src/subsystems/tank_drive.cpp File Reference
8.79.1 Variable Documentation
8.79.1.1 captured_position
8.79.1.2 was_breaking
8.80 src/utils/auto_chooser.cpp File Reference
8.81 src/utils/command_structure/auto_command.cpp File Reference
8.82 src/utils/command_structure/basic_command.cpp File Reference
8.83 src/utils/command_structure/command_controller.cop File Reference 30.
- o.oo argama/command-amdome/command-comminer.cod file belefence

8.84 src/utils/command_structure/drive_commands.cpp File Reference
8.85 src/utils/command_structure/flywheel_commands.cpp File Reference
8.86 src/utils/controls/bang_bang.cpp File Reference
8.87 src/utils/controls/feedforward.cpp File Reference
8.87.1 Function Documentation
8.87.1.1 tune_feedforward()
8.88 src/utils/controls/motion_controller.cpp File Reference
8.89 src/utils/controls/pid.cpp File Reference
8.90 src/utils/controls/pidff.cpp File Reference
8.91 src/utils/controls/take_back_half.cpp File Reference
8.92 src/utils/generic_auto.cpp File Reference
8.93 src/utils/graph_drawer.cpp File Reference
8.94 src/utils/logger.cpp File Reference
8.95 src/utils/math_util.cpp File Reference
8.95.1 Macro Definition Documentation
8.95.1.1 PI
8.95.2 Function Documentation
8.95.2.1 calculate_linear_regression()
8.95.2.2 clamp()
8.95.2.3 covariance()
8.95.2.4 estimate_path_length()
8.95.2.5 lerp()
8.95.2.6 mean()
8.95.2.7 sign()
8.95.2.8 variance()
8.95.2.9 wrap_angle_deg()
8.95.2.10 wrap_angle_rad()
8.96 src/utils/moving_average.cpp File Reference
8.97 src/utils/pure_pursuit.cpp File Reference
8.98 src/utils/serializer.cpp File Reference
8.98.1 Function Documentation
8.98.1.1 from_bytes() [1/2]
8.98.1.2 from_bytes() [2/2]
8.98.1.3 sanitize_name()
8.98.1.4 to_bytes()
8.98.1.5 to_bytes< std::string >()
8.99 src/utils/trapezoid_profile.cpp File Reference
8.99.1 Function Documentation
8.99.1.1 calc_pos()
8.99.1.2 calc_vel()
8.99.2 Variable Documentation
8.99.2.1 FPSII ON

	,	ΚXV
8.10	0 src/utils/vector2d.cpp File Reference	316
	8.100.1 Function Documentation	316
	8.100.1.1 deg2rad()	316
	8.100.1.2 rad2deg()	316
Index	· · · · · · · · · · · · · · · · · · ·	317

Chapter 1

Core

This is the host repository for the custom VEX libraries used by the RIT VEXU team

Automatically updated documentation is available at here. There is also a downloadable reference manual.

1.1 Getting Started

In order to simply use this repo, you can either clone it into your VEXcode project folder, or download the .zip and place it into a core/ subfolder. Then follow the instructions for setting up compilation at Wiki/BuildSystem

If you wish to contribute, follow the instructions at Wiki/ProjectSetup

1.2 Features

Here is the current feature list this repo provides:

Subsystems (See Wiki/Subsystems):

- Tank drivetrain (user control / autonomous)
- Mecanum drivetrain (user control / autonomous)
- Odometry
- Flywheel
- Lift
- · Custom encoders

Utilities (See Wiki/Utilites):

- · PID controller
- FeedForward controller
- · Trapezoidal motion profile controller
- Pure Pursuit
- · Generic auto program builder
- Auto program UI selector
- Mathematical classes (Vector2D, Moving Average)

2 Core

Chapter 2

Namespace Index

2.1 Namespace List

Here is a list of all namespaces with brief descriptions:

PurePursuit	 																				15
screen	 																				17

4 Namespace Index

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AutoCommand	29
Async	22
BasicSolenoidSet	34
BasicSpinCommand	37
BasicStopCommand	39
Branch	42
DelayCommand	55
DriveForwardCommand	57
DriveStopCommand	
DriveToPointCommand	62
FlywheelStopCommand	81
FlywheelStopMotorsCommand	
FlywheelStopNonTasksCommand	
FunctionCommand	
InOrder	
OdomSetPosition	144
Parallel	
PurePursuitCommand	
RepeatUntil	
SpinRPMCommand	
TurnDegreesCommand	
TurnToHeadingCommand	
WaitUntilCondition	
WaitUntilUpToSpeedCommand	231
screen::ButtonConfig	44
screen::ButtonWidget	44
screen::CheckboxConfig	46
CommandController	47
Condition	51
AndCondition	21
FunctionCondition	88
IfTimePassed	96
OrCondition	
TimesTestedCondition	
vex::encoder	

6 Hierarchical Index

CustomEncoder	. 52
AutoChooser::entry_t	64
Feedback	68
BangBang	32
MotionController	
PID	
PIDFF	
TakeBackHalf	
FeedForward	70
FeedForward::ff_config_t	72
Filter	73
ExponentialMovingAverage	66
MovingAverage	
Flywheel	
GenericAuto	
GraphDrawer	93
PurePursuit::hermite_point	
screen::LabelConfig	100
Lift <t></t>	101
Lift< T >::lift_cfg_t	105
Logger	
MotionController::m_profile_cfg_t	
Mat2	
MecanumDrive	
MecanumDrive::mecanumdrive_config_t	
motion_t	
Odometry3Wheel::odometry3wheel_cfg_t	
OdometryBase	132
Odometry3Wheel	127
OdometryTank	141
screen::Page	
·	
AutoChooser	
FlywheelPage	
MotionControllerPage	
screen::FunctionPage	
screen::OdometryPage	. 139
screen::PIDPage	166
screen::StatsPage	194
screen::WidgetPage	
	153
• – –	154
1 = 0=	160
· -	168
F	170
Rect	174
robot_specs_t	178
screen::ScreenData	180
screen::ScreenRect	181
Serializer	182
	186
	187
·	188
· · · · · · · · · · · · · · · · · · ·	
3	188
'	192
	200
	214
trapezoid_profile_segment_t	215

3.1 Class Hierarch	vV	7

TrapezoidProfile .				 												 			 		216
Vector2D				 						 						 					225
screen::WidaetConf	fiq			 						 						 			 		233

8 Hierarchical Index

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AndCondition
Async
Async runs a command asynchronously will simply let it go and never look back THIS HAS A
VERY NICHE USE CASE. THINK ABOUT IF YOU REALLY NEED IT
AutoChooser
AutoCommand
BangBang
BasicSolenoidSet
BasicSpinCommand
BasicStopCommand
Branch
Branch chooses from multiple options at runtime. the function decider returns an index into the
choices vector If you wish to make no choice and skip this section, return NO_CHOICE; any
choice that is out of bounds set to NO_CHOICE
screen::ButtonConfig
screen::ButtonWidget
Widget that does something when you tap it. The function is only called once when you first tap it 44
screen::CheckboxConfig
CommandController
Condition
CustomEncoder
DelayCommand
DriveForwardCommand
DriveStopCommand
OriveToPointCommand
AutoChooser::entry t
ExponentialMovingAverage
Feedback
FeedForward
FeedForward::ff config t
Filter
Flywheel
FlywheelPage
FlywheelStopCommand

10 Class Index

FlywheelStopNonTasksCommand	85
FunctionCommand	86
FunctionCondition	
FunctionCondition is a quick and dirty Condition to wrap some expression that should be evalu-	
ated at runtime	88
screen::FunctionPage	
Simple page that stores no internal data. the draw and update functions use only global data	
rather than storing anything	89
GenericAuto	91
GraphDrawer	
PurePursuit::hermite_point	
IfTimePassed	00
IfTimePassed tests based on time since the command controller was constructed. Returns true	
if elapsed time > time s	96
In elapsed time > time_s	90
InOrder runs its commands sequentially then continues. How to handle timeout in this case.	00
Automatically set it to sum of commands timouts?	98
screen::LabelConfig	
Lift< T >	
Lift< T >::lift_cfg_t	105
Logger	
Class to simplify writing to files	106
MotionController::m_profile_cfg_t	110
Mat2	
MecanumDrive	
MecanumDrive::mecanumdrive_config_t	
motion_t	
MotionController	
MotionControllerPage	
MovingAverage	
Odometry3Wheel	
Odometry3Wheel::odometry3wheel_cfg_t	
OdometryBase	132
screen::OdometryPage	
Page that shows odometry position and rotation and a map (if an sd card with the file is on)	139
OdometryTank	141
OdomSetPosition	144
OrCondition	147
screen::Page	
Page describes one part of the screen slideshow	149
Parallel	
Parallel runs multiple commands in parallel and waits for all to finish before continuing. if none	
finish before this command's timeout, it will call on timeout on all children continue	150
parallel runner info	153
. – – –	
PurePursuit::Path	154
PID	155
PID::pid_config_t	160
PIDFF	162
screen::PIDPage	
PIDPage provides a way to tune a pid controller on the screen	166
point_t	168
pose t	170
PurePursuitCommand	172
Rect	174
RepeatUntil	174
robot specs t	178
—· —	1/0
screen::ScreenData	100
Holds the data that will be passed to the screen thread you probably shouldnt have to use it \cdot .	180

4.1 Class List

screen::ScreenRect	181
Serializer	
Serializes Arbitrary data to a file on the SD Card	182
screen::SizedWidget	186
SliderCfg	187
screen::SliderConfig	188
screen::SliderWidget	
Widget that updates a double value. Updates by reference so watch out for race conditions cuz	
the screen stuff lives on another thread	188
SpinRPMCommand	190
PurePursuit::spline	192
screen::StatsPage	
Draws motor stats and battery stats to the screen	194
TakeBackHalf	
A velocity controller	197
TankDrive	200
screen::TextConfig	214
TimesTestedCondition	214
trapezoid_profile_segment_t	215
TrapezoidProfile	216
TurnDegreesCommand	220
TurnToHeadingCommand	223
Vector2D	225
WaitUntilCondition	
Waits until the condition is true	229
WaitUntilUpToSpeedCommand	231
screen::WidgetConfig	233
screen::WidgetPage	235

12 Class Index

Chapter 5

File Index

5.1 File List

Here is a list of all files with brief descriptions:

include/robot_specs.h
include/subsystems/custom_encoder.h
include/subsystems/flywheel.h
include/subsystems/layout.h
include/subsystems/lift.h
include/subsystems/mecanum_drive.h
include/subsystems/screen.h
include/subsystems/tank_drive.h
include/subsystems/odometry/odometry_3wheel.h
include/subsystems/odometry/odometry_base.h
include/subsystems/odometry/odometry_tank.h
include/utils/auto_chooser.h
include/utils/generic_auto.h
include/utils/geometry.h
include/utils/graph_drawer.h
include/utils/logger.h
include/utils/math_util.h
include/utils/moving_average.h
include/utils/pure_pursuit.h
include/utils/serializer.h
include/utils/vector2d.h
include/utils/command_structure/auto_command.h
include/utils/command_structure/basic_command.h
include/utils/command_structure/command_controller.h
include/utils/command_structure/delay_command.h
include/utils/command_structure/drive_commands.h
include/utils/command_structure/flywheel_commands.h
include/utils/controls/bang_bang.h
include/utils/controls/feedback_base.h
include/utils/controls/feedforward.h
include/utils/controls/motion_controller.h
include/utils/controls/pid.h
include/utils/controls/pidff.h
include/utils/controls/take_back_half.h
include/utils/controls/trapezoid_profile.h

14 File Index

src/subsystems/custom_encoder.cpp	297
src/subsystems/flywheel.cpp	297
src/subsystems/mecanum_drive.cpp	298
src/subsystems/screen.cpp	299
src/subsystems/tank_drive.cpp	300
src/subsystems/odometry_3wheel.cpp	298
src/subsystems/odometry_base.cpp	299
src/subsystems/odometry_tank.cpp	299
src/utils/auto_chooser.cpp	301
src/utils/generic_auto.cpp	307
src/utils/graph_drawer.cpp	308
src/utils/logger.cpp	308
src/utils/math_util.cpp	309
src/utils/moving_average.cpp	312
src/utils/pure_pursuit.cpp	312
src/utils/serializer.cpp	313
src/utils/trapezoid_profile.cpp	314
src/utils/vector2d.cpp	316
src/utils/command_structure/auto_command.cpp	302
src/utils/command_structure/basic_command.cpp	302
src/utils/command_structure/command_controller.cpp	303
src/utils/command_structure/drive_commands.cpp	303
src/utils/command_structure/flywheel_commands.cpp	303
src/utils/controls/bang_bang.cpp	304
src/utils/controls/feedforward.cpp	304
src/utils/controls/motion_controller.cpp	305
src/utils/controls/pid.cpp	306
src/utils/controls/pidff.cpp	306
src/utils/controls/take_back_half.cpp	307

Chapter 6

Namespace Documentation

6.1 PurePursuit Namespace Reference

Classes

- · struct hermite point
- class Path
- struct spline

Functions

- std::vector< point_t > line_circle_intersections (point_t center, double r, point_t point1, point_t point2)
- point_t get_lookahead (const std::vector< point_t > &path, pose_t robot_loc, double radius)
- std::vector< point_t > inject_path (const std::vector< point_t > &path, double spacing)
- std::vector< point_t > smooth_path (const std::vector< point_t > &path, double weight_data, double weight_smooth, double tolerance)
- std::vector< point_t > smooth_path_cubic (const std::vector< point_t > &path, double res)
- std::vector< point_t > smooth_path_hermite (const std::vector< hermite_point > &path, double step)
- double estimate_remaining_dist (const std::vector< point_t > &path, pose_t robot_pose, double radius)

6.1.1 Function Documentation

6.1.1.1 estimate_remaining_dist()

Estimates the remaining distance from the robot's position to the end, by "searching" for the robot along the path and running a "connect the dots" distance algoritm

Parameters

path The pure pursuit path the robot is following	
robot_pose	The robot's current position
radius Generated by Doxy	Pure pursuit "radius", used to search for the robot along the path

Returns

A rough estimate of the remaining distance

6.1.1.2 get_lookahead()

Selects a look ahead from all the intersections in the path.

6.1.1.3 inject_path()

Injects points in a path without changing the curvature with a certain spacing.

6.1.1.4 line circle intersections()

Returns points of the intersections of a line segment and a circle. The line segment is defined by two points, and the circle is defined by a center and radius.

6.1.1.5 smooth_path()

Returns a smoothed path maintaining the start and end of the path.

Weight data is how much weight to update the data (alpha) Weight smooth is how much weight to smooth the coordinates (beta) Tolerance is how much change per iteration is necessary to continue iterating.

Honestly have no idea if/how this works. https://medium.com/@jaems33/understanding-robot-motion-path

6.1.1.6 smooth_path_cubic()

6.1.1.7 smooth path hermite()

Interpolates a smooth path given a list of waypoints using hermite splines. For more information: https://www.youtube.com/watch?v=hG0p4XgePSA.

Parameters

path	The path of hermite points to interpolate.	
steps	The number of points interpolated between points.	

Returns

The smoothed path.

6.2 screen Namespace Reference

Classes

- struct ButtonConfig
- class ButtonWidget

Widget that does something when you tap it. The function is only called once when you first tap it.

- struct CheckboxConfig
- class FunctionPage

Simple page that stores no internal data. the draw and update functions use only global data rather than storing anything.

- struct LabelConfig
- · class OdometryPage

a page that shows odometry position and rotation and a map (if an sd card with the file is on)

class Page

Page describes one part of the screen slideshow.

class PIDPage

PIDPage provides a way to tune a pid controller on the screen.

struct ScreenData

The ScreenData class holds the data that will be passed to the screen thread you probably shouldnt have to use it.

- struct ScreenRect
- struct SizedWidget
- struct SliderConfig
- · class SliderWidget

Widget that updates a double value. Updates by reference so watch out for race conditions cuz the screen stuff lives on another thread.

class StatsPage

Draws motor stats and battery stats to the screen.

- struct TextConfig
- · struct WidgetConfig
- class WidgetPage

Typedefs

- using update_func_t = std::function < void(bool, int, int) >
 type of function needed for update
 using draw_func_t = std::function < void(vex::brain::lcd &screen, bool, unsigned int) >
- using draw_tunc_t = std::function < void(vex::brain::icd &screen, bool, unsigned int type of function needed for draw

Functions

- void draw_widget (WidgetConfig &widget, ScreenRect rect)
- void start_screen (vex::brain::lcd &screen, std::vector< Page * > pages, int first_page=0)

Start the screen background task. Once you start this, no need to draw to the screen manually elsewhere.

- void next_page ()
- · void prev_page ()
- void stop_screen ()

stops the screen. If you have a drive team that hates fun call this at the start of opcontrol

- void draw_label (vex::brain::lcd &scr, std::string lbl, ScreenRect rect)
- void draw_widget (vex::brain::lcd &scr, WidgetConfig &widget, ScreenRect rect)
- int in_to_px (double in)

6.2.1 Typedef Documentation

6.2.1.1 draw_func_t

```
using screen::draw_func_t = std::function<void(vex::brain::lcd &screen, bool, unsigned int)>
```

type of function needed for draw

6.2.1.2 update_func_t

```
using screen::update_func_t = std::function<void(bool, int, int)>
```

type of function needed for update

6.2.2 Function Documentation

6.2.2.1 draw_label()

6.2.2.2 draw_widget() [1/2]

6.2.2.3 draw_widget() [2/2]

6.2.2.4 in_to_px()

6.2.2.5 next_page()

```
void screen::next_page ( )
```

6.2.2.6 prev_page()

```
void screen::prev_page ( )
```

6.2.2.7 start_screen()

Start the screen background task. Once you start this, no need to draw to the screen manually elsewhere.

start_screen begins a screen. only call this once per program (a good place is vexcodelnit) This is a set and forget type function. You don't have to wait on it or start it in a new thread

Parameters

screen	reference to the vex screen
pages	drawing pages
first_page	optional, which page to start the program at. by default 0
screen	the brain screen
pages	the list of pages in your UI slideshow
first_page	the page to start on (by default 0)

6.2.2.8 stop_screen()

```
void screen::stop_screen ( )
```

stops the screen. If you have a drive team that hates fun call this at the start of opcontrol

Chapter 7

Class Documentation

7.1 AndCondition Class Reference

Inheritance diagram for AndCondition:

Collaboration diagram for AndCondition:

Public Member Functions

- AndCondition (Condition *A, Condition *B)
- bool test () override

Public Member Functions inherited from Condition

Condition * Or (Condition *b)Condition * And (Condition *b)

7.1.1 Constructor & Destructor Documentation

7.1.1.1 AndCondition()

7.1.2 Member Function Documentation

7.1.2.1 test()

```
bool AndCondition::test ( ) [inline], [override], [virtual]
```

Implements Condition.

The documentation for this class was generated from the following file:

• src/utils/command_structure/auto_command.cpp

7.2 Async Class Reference

Async runs a command asynchronously will simply let it go and never look back THIS HAS A VERY NICHE USE CASE. THINK ABOUT IF YOU REALLY NEED IT.

```
#include <auto_command.h>
```

Inheritance diagram for Async:

Collaboration diagram for Async:

Public Member Functions

- Async (AutoCommand *cmd)
- bool run () override

Public Member Functions inherited from AutoCommand

- virtual void on timeout ()
- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default_timeout = 10.0

7.2.1 Detailed Description

Async runs a command asynchronously will simply let it go and never look back THIS HAS A VERY NICHE USE CASE. THINK ABOUT IF YOU REALLY NEED IT.

7.2.2 Constructor & Destructor Documentation

7.2.2.1 Async()

7.2.3 Member Function Documentation

7.2.3.1 run()

```
bool Async::run ( ) [override], [virtual]
```

Executes the command Overridden by child classes

Returns

true when the command is finished, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/auto_command.h
- src/utils/command_structure/auto_command.cpp

7.3 AutoChooser Class Reference

```
#include <auto_chooser.h>
```

Inheritance diagram for AutoChooser:

Collaboration diagram for AutoChooser:

Classes

· struct entry_t

Public Member Functions

- AutoChooser (std::vector< std::string > paths, size_t def=0)
- void update (bool was_pressed, int x, int y)

 collect data, respond to screen input, do fast things (runs at 50hz even if you're not focused on this Page (only drawn page gets touch updates))
- void draw (vex::brain::lcd &, bool first_draw, unsigned int frame_number)
 draw stored data to the screen (runs at 10 hz and only runs if this page is in front)
- size_t get_choice ()

Protected Attributes

- size_t choice
- std::vector< entry_t > list

Static Protected Attributes

- static const size t width = 380
- static const size_t height = 220

7.3.1 Detailed Description

Autochooser is a utility to make selecting robot autonomous programs easier source: RIT VexU Wiki During a season, we usually code between 4 and 6 autonomous programs. Most teams will change their entire robot program as a way of choosing autonomi but this may cause issues if you have an emergency patch to upload during a competition. This class was built as a way of using the robot screen to list autonomous programs, and the touchscreen to select them.

7.3.2 Constructor & Destructor Documentation

7.3.2.1 AutoChooser()

Initialize the auto-chooser. This class places a choice menu on the brain screen, so the driver can choose which autonomous to run.

Parameters

brain the brain on which to draw the selection boxes
--

7.3.3 Member Function Documentation

7.3.3.1 draw()

draw stored data to the screen (runs at 10 hz and only runs if this page is in front)

Parameters

first_draw	true if we just switched to this page
frame_number	frame of drawing we are on (basically an animation tick)

Reimplemented from screen::Page.

7.3.3.2 get_choice()

```
size_t AutoChooser::get_choice ( )
```

Get the currently selected auto choice

Returns

the identifier to the auto path

Return the selected autonomous

7.3.3.3 update()

```
void AutoChooser::update (
          bool was_pressed,
          int x,
          int y) [virtual]
```

collect data, respond to screen input, do fast things (runs at 50hz even if you're not focused on this Page (only drawn page gets touch updates))

Parameters

was_pressed	true if the screen has been pressed
Х	x position of screen press (if the screen was pressed)
у	y position of screen press (if the screen was pressed)

Reimplemented from screen::Page.

7.3.4 Member Data Documentation

7.3.4.1 choice

```
size_t AutoChooser::choice [protected]
```

the current choice of auto

7.3.4.2 height

```
const size_t AutoChooser::height = 220 [static], [protected]
```

7.3.4.3 list

```
std::vector<entry_t> AutoChooser::list [protected]
```

< a list of all possible auto choices

7.3.4.4 width

```
const size_t AutoChooser::width = 380 [static], [protected]
```

The documentation for this class was generated from the following files:

- include/utils/auto_chooser.h
- src/utils/auto_chooser.cpp

7.4 AutoCommand Class Reference

#include <auto_command.h>

Inheritance diagram for AutoCommand:

Collaboration diagram for AutoCommand:

Public Member Functions

- virtual bool run ()
- virtual void on_timeout ()
- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Public Attributes

- double timeout_seconds = default_timeout
- Condition * true_to_end = nullptr

Static Public Attributes

• static constexpr double default_timeout = 10.0

7.4.1 Member Function Documentation

7.4.1.1 on_timeout()

```
virtual void AutoCommand::on_timeout ( ) [inline], [virtual]
```

What to do if we timeout instead of finishing. timeout is specified by the timeout seconds in the constructor

Reimplemented in InOrder, Parallel, Branch, RepeatUntil, DriveForwardCommand, TurnDegreesCommand, TurnToHeadingCommand, PurePursuitCommand, and DriveStopCommand.

7.4.1.2 run()

```
virtual bool AutoCommand::run ( ) [inline], [virtual]
```

Executes the command Overridden by child classes

Returns

true when the command is finished, false otherwise

Reimplemented in FunctionCommand, WaitUntilCondition, InOrder, Parallel, Branch, Async, RepeatUntil, BasicSpinCommand, BasicStopCommand, BasicSolenoidSet, DelayCommand, DriveForwardCommand, TurnDegreesCommand, DriveToPointCommand, TurnToHeadingCommand, PurePursuitCommand, DriveStopCommand, OdomSetPosition, SpinRPMCommand, WaitUntilUpToSpeedCommand, FlywheelStopCommand, and FlywheelStopMotorsCommand

7.4.1.3 withCancelCondition()

7.4.1.4 withTimeout()

7.4.2 Member Data Documentation

7.4.2.1 default_timeout

```
constexpr double AutoCommand::default_timeout = 10.0 [static], [constexpr]
```

7.4.2.2 timeout_seconds

```
double AutoCommand::timeout_seconds = default_timeout
```

How long to run until we cancel this command. If the command is cancelled, on_timeout() is called to allow any cleanup from the function. If the timeout_seconds <= 0, no timeout will be applied and this command will run forever A timeout can come in handy for some commands that can not reach the end due to some physical limitation such as

- a drive command hitting a wall and not being able to reach its target
- · a command that waits until something is up to speed that never gets up to speed because of battery voltage
- · something else...

7.4.2.3 true_to_end

Condition* AutoCommand::true_to_end = nullptr

The documentation for this class was generated from the following file:

• include/utils/command_structure/auto_command.h

7.5 BangBang Class Reference

#include <bang_bang.h>

Inheritance diagram for BangBang:

Collaboration diagram for BangBang:

Public Member Functions

- BangBang (double thresshold, double low, double high)
- void init (double start_pt, double set_pt, double start_vel=0.0, double end_vel=0.0) override
- double update (double val) override
- double get () override
- void set_limits (double lower, double upper) override
- bool is_on_target () override

7.5.1 Constructor & Destructor Documentation

7.5.1.1 BangBang()

7.5.2 Member Function Documentation

7.5.2.1 get()

```
double BangBang::get ( ) [override], [virtual]
```

Returns

the last saved result from the feedback controller

Implements Feedback.

7.5.2.2 init()

Initialize the feedback controller for a movement

Parameters

start_pt	the current sensor value
set_pt	where the sensor value should be
start_vel	Movement starting velocity
end_vel	Movement ending velocity

Implements Feedback.

7.5.2.3 is_on_target()

```
bool BangBang::is_on_target ( ) [override], [virtual]
```

Returns

true if the feedback controller has reached it's setpoint

Implements Feedback.

7.5.2.4 set_limits()

Clamp the upper and lower limits of the output. If both are 0, no limits should be applied.

Parameters

lower	Upper limit
upper	Lower limit

Implements Feedback.

7.5.2.5 update()

Iterate the feedback loop once with an updated sensor value

Parameters

```
val value from the sensor
```

Returns

feedback loop result

Implements Feedback.

The documentation for this class was generated from the following files:

- include/utils/controls/bang_bang.h
- src/utils/controls/bang_bang.cpp

7.6 BasicSolenoidSet Class Reference

```
#include <basic_command.h>
```

Inheritance diagram for BasicSolenoidSet:

Collaboration diagram for BasicSolenoidSet:

Public Member Functions

- BasicSolenoidSet (vex::pneumatics &solenoid, bool setting)
 - Construct a new BasicSolenoidSet Command.
- bool run () override

Runs the BasicSolenoidSet Overrides run command from AutoCommand.

Public Member Functions inherited from AutoCommand

- virtual void on_timeout ()
- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default timeout = 10.0

7.6.1 Detailed Description

AutoCommand wrapper class for BasicSolenoidSet Using the Vex hardware functions

7.6.2 Constructor & Destructor Documentation

7.6.2.1 BasicSolenoidSet()

Construct a new BasicSolenoidSet Command.

Parameters

solenoid	Solenoid being set
setting	Setting of the solenoid in boolean (true,false)

7.6.3 Member Function Documentation

7.6.3.1 run()

```
bool BasicSolenoidSet::run ( ) [override], [virtual]
```

Runs the BasicSolenoidSet Overrides run command from AutoCommand.

Returns

True Command runs once

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/basic_command.h
- src/utils/command_structure/basic_command.cpp

7.7 BasicSpinCommand Class Reference

#include <basic_command.h>

Inheritance diagram for BasicSpinCommand:

Collaboration diagram for BasicSpinCommand:

Public Types

• enum type { percent , voltage , veocity }

Public Member Functions

BasicSpinCommand (vex::motor &motor, vex::directionType dir, BasicSpinCommand::type setting, double power)

Construct a new BasicSpinCommand.

• bool run () override

Runs the BasicSpinCommand Overrides run from Auto Command.

Public Member Functions inherited from AutoCommand

- virtual void on_timeout ()
- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true to end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

```
• double timeout seconds = default timeout
```

```
• Condition * true_to_end = nullptr
```

Static Public Attributes inherited from AutoCommand

• static constexpr double default_timeout = 10.0

7.7.1 Detailed Description

AutoCommand wrapper class for BasicSpinCommand using the vex hardware functions

7.7.2 Member Enumeration Documentation

7.7.2.1 type

```
enum BasicSpinCommand::type
```

Enumerator

percent	
voltage	
veocity	

7.7.3 Constructor & Destructor Documentation

7.7.3.1 BasicSpinCommand()

```
BasicSpinCommand::BasicSpinCommand (
    vex::motor & motor,
    vex::directionType dir,
    BasicSpinCommand::type setting,
    double power )
```

Construct a new BasicSpinCommand.

a BasicMotorSpin Command

Parameters

motor	Motor to spin
direc	Direction of motor spin
setting	Power setting in volts,percentage,velocity
power	Value of desired power
motor	Motor port to spin
dir	Direction for spining
setting	Power setting in volts,percentage,velocity
power	Value of desired power

7.7.4 Member Function Documentation

7.7.4.1 run()

```
bool BasicSpinCommand::run ( ) [override], [virtual]
```

Runs the BasicSpinCommand Overrides run from Auto Command.

Run the BasicSpinCommand Overrides run from Auto Command.

Returns

True Async running command

True Command runs once

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/basic_command.h
- src/utils/command_structure/basic_command.cpp

7.8 BasicStopCommand Class Reference

```
#include <basic_command.h>
```

Inheritance diagram for BasicStopCommand:

Collaboration diagram for BasicStopCommand:

Public Member Functions

- BasicStopCommand (vex::motor &motor, vex::brakeType setting)
 Construct a new BasicMotorStop Command.
- bool run () override

Runs the BasicMotorStop Command Overrides run command from AutoCommand.

Public Member Functions inherited from AutoCommand

- virtual void on_timeout ()
- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default_timeout = 10.0

7.8.1 Detailed Description

AutoCommand wrapper class for BasicStopCommand Using the Vex hardware functions

7.8.2 Constructor & Destructor Documentation

7.8.2.1 BasicStopCommand()

Construct a new BasicMotorStop Command.

Construct a BasicMotorStop Command.

Parameters

motor	The motor to stop
setting	The brake setting for the motor
motor	Motor to stop
setting	Braketype setting brake,coast,hold

7.8.3 Member Function Documentation

7.8.3.1 run()

```
bool BasicStopCommand::run ( ) [override], [virtual]
```

Runs the BasicMotorStop Command Overrides run command from AutoCommand.

Runs the BasicMotorStop command Ovverides run command from AutoCommand.

Returns

True Command runs once

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/basic_command.h
- src/utils/command_structure/basic_command.cpp

7.9 Branch Class Reference

Branch chooses from multiple options at runtime. the function decider returns an index into the choices vector If you wish to make no choice and skip this section, return NO_CHOICE; any choice that is out of bounds set to NO_CHOICE.

#include <auto_command.h>

Inheritance diagram for Branch:

Collaboration diagram for Branch:

Public Member Functions

- Branch (Condition *cond, AutoCommand *false_choice, AutoCommand *true_choice)
- ∼Branch ()
- bool run () override
- void on_timeout () override

7.9 Branch Class Reference 43

Public Member Functions inherited from AutoCommand

- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

```
• double timeout_seconds = default_timeout
```

```
• Condition * true to end = nullptr
```

Static Public Attributes inherited from AutoCommand

static constexpr double default timeout = 10.0

7.9.1 Detailed Description

Branch chooses from multiple options at runtime. the function decider returns an index into the choices vector If you wish to make no choice and skip this section, return NO_CHOICE; any choice that is out of bounds set to NO_CHOICE.

7.9.2 Constructor & Destructor Documentation

7.9.2.1 Branch()

7.9.2.2 \sim Branch()

```
Branch::\simBranch ( )
```

7.9.3 Member Function Documentation

7.9.3.1 on_timeout()

```
void Branch::on_timeout ( ) [override], [virtual]
```

What to do if we timeout instead of finishing. timeout is specified by the timeout seconds in the constructor

Reimplemented from AutoCommand.

7.9.3.2 run()

```
bool Branch::run ( ) [override], [virtual]
```

Executes the command Overridden by child classes

Returns

true when the command is finished, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/auto_command.h
- src/utils/command_structure/auto_command.cpp

7.10 screen::ButtonConfig Struct Reference

```
#include <screen.h>
```

Public Attributes

• std::function < void() > onclick

7.10.1 Member Data Documentation

7.10.1.1 onclick

```
std::function<void()> screen::ButtonConfig::onclick
```

The documentation for this struct was generated from the following file:

• include/subsystems/screen.h

7.11 screen::ButtonWidget Class Reference

Widget that does something when you tap it. The function is only called once when you first tap it.

```
#include <screen.h>
```

Public Member Functions

• ButtonWidget (std::function< void(void)> onpress, Rect rect, std::string name)

Create a Button widget.

• ButtonWidget (void(*onpress)(), Rect rect, std::string name)

Create a Button widget.

bool update (bool was_pressed, int x, int y)

responds to user input

• void draw (vex::brain::lcd &, bool first_draw, unsigned int frame_number)

draws the button to the screen

7.11.1 Detailed Description

Widget that does something when you tap it. The function is only called once when you first tap it.

7.11.2 Constructor & Destructor Documentation

7.11.2.1 ButtonWidget() [1/2]

Create a Button widget.

Parameters

onpress	the function to be called when the button is tapped
rect	the area the button should take up on the screen
name	the label put on the button

7.11.2.2 ButtonWidget() [2/2]

Create a Button widget.

Parameters

onpress	the function to be called when the button is tapped
rect	the area the button should take up on the screen
name	the label put on the button

7.11.3 Member Function Documentation

7.11.3.1 draw()

draws the button to the screen

7.11.3.2 update()

```
bool screen::ButtonWidget::update (
          bool was_pressed,
          int x,
          int y)
```

responds to user input

Parameters

was_pressed	if the screen is pressed
X	x position if the screen was pressed
У	y position if the screen was pressed

Returns

true if the button was pressed

The documentation for this class was generated from the following files:

- include/subsystems/screen.h
- src/subsystems/screen.cpp

7.12 screen::CheckboxConfig Struct Reference

```
#include <screen.h>
```

Public Attributes

• std::function< void(bool)> onupdate

7.12.1 Member Data Documentation

7.12.1.1 onupdate

```
std::function<void(bool) > screen::CheckboxConfig::onupdate
```

The documentation for this struct was generated from the following file:

• include/subsystems/screen.h

7.13 CommandController Class Reference

```
#include <command_controller.h>
```

Public Member Functions

• CommandController ()

Create an empty CommandController. Add Command with CommandController::add()

CommandController (std::initializer_list< AutoCommand * > cmds)

Create a CommandController with commands pre added. More can be added with CommandController::add()

- void add (std::vector< AutoCommand * > cmds)
- void add (AutoCommand *cmd, double timeout seconds=10.0)
- void add (std::vector< AutoCommand * > cmds, double timeout_sec)
- void add_delay (int ms)
- void add_cancel_func (std::function< bool(void)> true_if_cancel)

add_cancel_func specifies that when this func evaluates to true, to cancel the command controller

- void run ()
- bool last_command_timed_out ()

7.13.1 Detailed Description

File: command_controller.h Desc: A CommandController manages the AutoCommands that make up an autonomous route. The AutoCommands are kept in a queue and get executed and removed from the queue in FIFO order.

7.13.2 Constructor & Destructor Documentation

7.13.2.1 CommandController() [1/2]

```
CommandController::CommandController ( ) [inline]
```

Create an empty CommandController. Add Command with CommandController::add()

7.13.2.2 CommandController() [2/2]

```
\label{lem:commandController} \mbox{CommandController (} \\ \mbox{std::initializer\_list} < \mbox{AutoCommand } * > \mbox{cmds} \mbox{) [inline]}
```

Create a CommandController with commands pre added. More can be added with CommandController::add()

Parameters

cmds

7.13.3 Member Function Documentation

7.13.3.1 add() [1/3]

File: command_controller.cpp Desc: A CommandController manages the AutoCommands that make up an autonomous route. The AutoCommands are kept in a queue and get executed and removed from the queue in FIFO order. Adds a command to the queue

Parameters

cmd	the AutoCommand we want to add to our list
timeout_seconds	the number of seconds we will let the command run for. If it exceeds this, we cancel it and
	run on_timeout

7.13.3.2 add() [2/3]

```
void CommandController::add (
          std::vector< AutoCommand * > cmds )
```

Adds a command to the queue

Parameters

cmd	the AutoCommand we want to add to our list
timeout_seconds	the number of seconds we will let the command run for. If it exceeds this, we cancel it and
	run on_timeout. if it is <= 0 no time out will be applied

Add multiple commands to the queue. No timeout here.

Parameters

add to our list	cmds the AutoCommands we want to a	
-----------------	------------------------------------	--

7.13.3.3 add() [3/3]

```
void CommandController::add (
    std::vector< AutoCommand * > cmds,
    double timeout_sec )
```

7.13 CommandController Class Reference Add multiple commands to the queue. No timeout here.

Parameters

cmds	the AutoCommands we want to add to our list Add multiple commands to the queue. No timeout here.	
cmds	the AutoCommands we want to add to our list	
timeout_sec	timeout in seconds to apply to all commands if they are still the default	

Add multiple commands to the queue. No timeout here.

Parameters

cmds	the AutoCommands we want to add to our list
timeout	timeout in seconds to apply to all commands if they are still the default

7.13.3.4 add_cancel_func()

```
\label{lem:commandController::add_cancel_func (} $$ std::function< bool(void)> true\_if\_cancel )$
```

add_cancel_func specifies that when this func evaluates to true, to cancel the command controller

Parameters

true if cancel a function that return	s true when we want to cancel the command controller
---------------------------------------	--

7.13.3.5 add_delay()

Adds a command that will delay progression of the queue

Parameters

ms	- number of milliseconds to wait before continuing execution of autonomous

7.13.3.6 last_command_timed_out()

```
bool CommandController::last_command_timed_out ( )
```

last_command_timed_out tells how the last command ended Use this if you want to make decisions based on the end of the last command

Returns

true if the last command timed out. false if it finished regularly

7.13.3.7 run()

```
void CommandController::run ( )
```

Begin execution of the queue Execute and remove commands in FIFO order

The documentation for this class was generated from the following files:

- include/utils/command_structure/command_controller.h
- src/utils/command structure/command controller.cpp

7.14 Condition Class Reference

```
#include <auto_command.h>
```

Inheritance diagram for Condition:

Public Member Functions

- Condition * Or (Condition *b)
- Condition * And (Condition *b)
- virtual bool test ()=0

7.14.1 Detailed Description

File: auto_command.h Desc: Interface for module-specifc commands A Condition is a function that returns true or false is_even is a predicate that would return true if a number is even For our purposes, a Condition is a choice to be made at runtime drive_sys.reached_point(10, 30) is a predicate time.has_elapsed(10, vex::seconds) is a predicate extend this class for different choices you wish to make

7.14.2 Member Function Documentation

7.14.2.1 And()

7.14.2.2 Or()

7.14.2.3 test()

```
virtual bool Condition::test ( ) [pure virtual]
```

 $Implemented\ in\ Times Tested Condition,\ Function Condition,\ If Time Passed,\ Or Condition,\ and\ And Condition.$

The documentation for this class was generated from the following files:

- include/utils/command_structure/auto_command.h
- src/utils/command_structure/auto_command.cpp

7.15 CustomEncoder Class Reference

```
#include <custom_encoder.h>
```

Inheritance diagram for CustomEncoder:

Collaboration diagram for CustomEncoder:

Public Member Functions

- CustomEncoder (vex::triport::port &port, double ticks_per_rev)
- void setRotation (double val, vex::rotationUnits units)
- void setPosition (double val, vex::rotationUnits units)
- double rotation (vex::rotationUnits units)
- double position (vex::rotationUnits units)
- double velocity (vex::velocityUnits units)

7.15.1 Detailed Description

A wrapper class for the vex encoder that allows the use of 3rd party encoders with different tick-per-revolution values.

7.15.2 Constructor & Destructor Documentation

7.15.2.1 CustomEncoder()

Construct an encoder with a custom number of ticks

Parameters

port	the triport port on the brain the encoder is plugged into
ticks_per_rev	the number of ticks the encoder will report for one revolution

7.15.3 Member Function Documentation

7.15.3.1 position()

```
double CustomEncoder::position ( {\tt vex::rotationUnits}\ units\ )
```

get the position that the encoder is at

Parameters

units	the unit we want the return value to be in
-------	--

Returns

the position of the encoder in the units specified

7.15.3.2 rotation()

```
double CustomEncoder::rotation ( {\tt vex::rotationUnits}\ units\ )
```

get the rotation that the encoder is at

Parameters

units	the unit we want the return value to be in
-------	--

Returns

the rotation of the encoder in the units specified

7.15.3.3 setPosition()

sets the stored position of the encoder. Any further movements will be from this value

Parameters

val	the numerical value of the position we are setting to
units	the unit of val

7.15.3.4 setRotation()

```
void CustomEncoder::setRotation ( \label{eq:condition} \mbox{double $val$,} \\ \mbox{vex::rotationUnits $units$ )}
```

sets the stored rotation of the encoder. Any further movements will be from this value

Parameters

val	the numerical value of the angle we are setting to
units	the unit of val

7.15.3.5 velocity()

get the velocity that the encoder is moving at

Parameters

units the unit we want the return value to be in

Returns

the velocity of the encoder in the units specified

The documentation for this class was generated from the following files:

- include/subsystems/custom_encoder.h
- src/subsystems/custom_encoder.cpp

7.16 DelayCommand Class Reference

#include <delay_command.h>

Inheritance diagram for DelayCommand:

Collaboration diagram for DelayCommand:

Public Member Functions

- DelayCommand (int ms)
- bool run () override

Public Member Functions inherited from AutoCommand

- virtual void on timeout ()
- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default_timeout = 10.0

7.16.1 Detailed Description

File: delay_command.h Desc: A DelayCommand will make the robot wait the set amount of milliseconds before continuing execution of the autonomous route

7.16.2 Constructor & Destructor Documentation

7.16.2.1 DelayCommand()

Construct a delay command

Parameters

ms the number of milliseconds to delay for

7.16.3 Member Function Documentation

7.16.3.1 run()

```
bool DelayCommand::run ( ) [inline], [override], [virtual]
```

Delays for the amount of milliseconds stored in the command Overrides run from AutoCommand

Returns

true when complete

Reimplemented from AutoCommand.

The documentation for this class was generated from the following file:

• include/utils/command_structure/delay_command.h

7.17 DriveForwardCommand Class Reference

#include <drive_commands.h>

Inheritance diagram for DriveForwardCommand:

Collaboration diagram for DriveForwardCommand:

Public Member Functions

- DriveForwardCommand (TankDrive &drive_sys, Feedback &feedback, double inches, directionType dir, double max_speed=1, double end_speed=0)
- bool run () override
- · void on_timeout () override

Public Member Functions inherited from AutoCommand

- AutoCommand * withTimeout (double t seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

static constexpr double default_timeout = 10.0

7.17.1 Detailed Description

AutoCommand wrapper class for the drive forward function in the TankDrive class

7.17.2 Constructor & Destructor Documentation

7.17.2.1 DriveForwardCommand()

File: drive_commands.h Desc: Holds all the AutoCommand subclasses that wrap (currently) TankDrive functions

Currently includes:

- · drive forward
- · turn_degrees
- · drive_to_point
- · turn_to_heading
- stop

Also holds AutoCommand subclasses that wrap OdometryBase functions

Currently includes:

· set_position Construct a DriveForward Command

Parameters

drive_sys	the drive system we are commanding
feedback	the feedback controller we are using to execute the drive
inches	how far forward to drive
dir	the direction to drive
max_speed	0 -> 1 percentage of the drive systems speed to drive at

7.17.3 Member Function Documentation

7.17.3.1 on_timeout()

```
void DriveForwardCommand::on_timeout ( ) [override], [virtual]
```

Cleans up drive system if we time out before finishing

reset the drive system if we timeout

Reimplemented from AutoCommand.

7.17.3.2 run()

```
bool DriveForwardCommand::run ( ) [override], [virtual]
```

Run drive_forward Overrides run from AutoCommand

Returns

true when execution is complete, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/drive_commands.h
- src/utils/command_structure/drive_commands.cpp

7.18 DriveStopCommand Class Reference

#include <drive_commands.h>

Inheritance diagram for DriveStopCommand:

Collaboration diagram for DriveStopCommand:

Public Member Functions

- DriveStopCommand (TankDrive &drive_sys)
- bool run () override
- void on_timeout () override

Public Member Functions inherited from AutoCommand

- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default timeout = 10.0

7.18.1 Detailed Description

AutoCommand wrapper class for the stop() function in the TankDrive class

7.18.2 Constructor & Destructor Documentation

7.18.2.1 DriveStopCommand()

Construct a DriveStop Command

Parameters

drive_sys the drive system we are commanding

7.18.3 Member Function Documentation

7.18.3.1 on_timeout()

```
void DriveStopCommand::on_timeout ( ) [override], [virtual]
```

What to do if we timeout instead of finishing. timeout is specified by the timeout seconds in the constructor

Reimplemented from AutoCommand.

7.18.3.2 run()

```
bool DriveStopCommand::run ( ) [override], [virtual]
```

Stop the drive system Overrides run from AutoCommand

Returns

true when execution is complete, false otherwise

Stop the drive train Overrides run from AutoCommand

Returns

true when execution is complete, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/drive_commands.h
- src/utils/command_structure/drive_commands.cpp

7.19 DriveToPointCommand Class Reference

#include <drive_commands.h>

Inheritance diagram for DriveToPointCommand:

Collaboration diagram for DriveToPointCommand:

Public Member Functions

- DriveToPointCommand (TankDrive &drive_sys, Feedback &feedback, double x, double y, directionType dir, double max_speed=1, double end_speed=0)
- DriveToPointCommand (TankDrive &drive_sys, Feedback &feedback, point_t point, directionType dir, double max_speed=1, double end_speed=0)
- bool run () override

Public Member Functions inherited from AutoCommand

- AutoCommand * withTimeout (double t seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout seconds = default timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default_timeout = 10.0

7.19.1 Detailed Description

AutoCommand wrapper class for the drive_to_point function in the TankDrive class

7.19.2 Constructor & Destructor Documentation

7.19.2.1 DriveToPointCommand() [1/2]

Construct a DriveForward Command

Parameters

drive_sys	the drive system we are commanding	
feedback the feedback controller we are using to execute the driv		
X	where to drive in the x dimension	
У	y where to drive in the y dimension	
Geglérated by Doxygethe direction to drive		
max_speed	0 -> 1 percentage of the drive systems speed to drive at	

7.19.2.2 DriveToPointCommand() [2/2]

Construct a DriveForward Command

Parameters

drive_sys	the drive system we are commanding
feedback the feedback controller we are using to execute the de	
point	the point to drive to
dir	the direction to drive
max_speed	0 -> 1 percentage of the drive systems speed to drive at

7.19.3 Member Function Documentation

7.19.3.1 run()

```
bool DriveToPointCommand::run ( ) [override], [virtual]
```

Run drive_to_point Overrides run from AutoCommand

Returns

true when execution is complete, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/drive_commands.h
- src/utils/command_structure/drive_commands.cpp

7.20 AutoChooser::entry_t Struct Reference

```
#include <auto_chooser.h>
```

Collaboration diagram for AutoChooser::entry_t:

Public Attributes

- · Rect rect
- std::string name

7.20.1 Detailed Description

entry_t is a datatype used to store information that the chooser knows about an auto selection button

7.20.2 Member Data Documentation

7.20.2.1 name

std::string AutoChooser::entry_t::name

name of the auto repretsented by the block

7.20.2.2 rect

Rect AutoChooser::entry_t::rect

The documentation for this struct was generated from the following file:

• include/utils/auto_chooser.h

7.21 Exponential Moving Average Class Reference

#include <moving_average.h>

Inheritance diagram for ExponentialMovingAverage:

Collaboration diagram for ExponentialMovingAverage:

Public Member Functions

- ExponentialMovingAverage (int buffer_size)
- ExponentialMovingAverage (int buffer_size, double starting_value)
- void add_entry (double n) override
- double get_value () const override
- int get_size ()

7.21.1 Detailed Description

ExponentialMovingAverage

An exponential moving average is a way of smoothing out noisy data. For many sensor readings, the noise is roughly symmetric around the actual value. This means that if you collect enough samples those that are too high are cancelled out by the samples that are too low leaving the real value.

A simple mobing average lags significantly with time as it has to counteract old samples. An exponential moving average keeps more up to date by weighting newer readings higher than older readings so it is more up to date while also still smoothed.

The ExponentialMovingAverage class provides an simple interface to do this smoothing from our noisy sensor values.

7.21.2 Constructor & Destructor Documentation

7.21.2.1 ExponentialMovingAverage() [1/2]

```
 \begin{tabular}{ll} Exponential Moving Average :: Exponential Moving Average ( \\ int $buffer\_size$ ) \end{tabular}
```

Create a moving average calculator with 0 as the default value

Parameters

7.21.2.2 ExponentialMovingAverage() [2/2]

Create a moving average calculator with a specified default value

Parameters

buffer_size	The size of the buffer. The number of samples that constitute a valid reading
starting_value	The value that the average will be before any data is added

7.21.3 Member Function Documentation

7.21.3.1 add_entry()

Add a reading to the buffer Before: [1 1 2 2 3 3] => 2 $^{\wedge}$ After: [2 1 2 2 3 3] => 2.16 $^{\wedge}$

Parameters

n the sample that will be added to the moving average.

Implements Filter.

7.21.3.2 get_size()

```
int ExponentialMovingAverage::get_size ( )
```

How many samples the average is made from

Returns

the number of samples used to calculate this average

7.21.3.3 get_value()

```
double ExponentialMovingAverage::get_value ( ) const [override], [virtual]
```

Returns the average based off of all the samples collected so far

Returns

the calculated average. sum(samples)/numsamples

How many samples the average is made from

Returns

the number of samples used to calculate this average

Implements Filter.

The documentation for this class was generated from the following files:

- include/utils/moving_average.h
- src/utils/moving_average.cpp

7.22 Feedback Class Reference

```
#include <feedback_base.h>
```

Inheritance diagram for Feedback:

Public Member Functions

- virtual void init (double start_pt, double set_pt, double start_vel=0.0, double end_vel=0.0)=0
- virtual double update (double val)=0
- virtual double get ()=0
- virtual void set_limits (double lower, double upper)=0
- virtual bool is_on_target ()=0

7.22.1 Detailed Description

Interface so that subsystems can easily switch between feedback loops

Author

Ryan McGee

Date

9/25/2022

7.22.2 Member Function Documentation

7.22.2.1 get()

```
virtual double Feedback::get ( ) [pure virtual]
```

Returns

the last saved result from the feedback controller

Implemented in BangBang, MotionController, PID, PIDFF, and TakeBackHalf.

7.22.2.2 init()

Initialize the feedback controller for a movement

Parameters

start_pt	the current sensor value
set_pt	where the sensor value should be
start_vel	Movement starting velocity
end_vel	Movement ending velocity

Implemented in MotionController, PIDFF, PID, BangBang, and TakeBackHalf.

7.22.2.3 is_on_target()

```
virtual bool Feedback::is_on_target ( ) [pure virtual]
```

Returns

true if the feedback controller has reached it's setpoint

Implemented in BangBang, MotionController, PID, PIDFF, and TakeBackHalf.

7.22.2.4 set_limits()

Clamp the upper and lower limits of the output. If both are 0, no limits should be applied.

Parameters

lower	Upper limit
upper	Lower limit

Implemented in BangBang, MotionController, PID, PIDFF, and TakeBackHalf.

7.22.2.5 update()

Iterate the feedback loop once with an updated sensor value

Parameters

```
val value from the sensor
```

Returns

feedback loop result

Implemented in MotionController, PID, BangBang, PIDFF, and TakeBackHalf.

The documentation for this class was generated from the following file:

• include/utils/controls/feedback_base.h

7.23 FeedForward Class Reference

```
#include <feedforward.h>
```

Classes

• struct ff_config_t

Public Member Functions

- FeedForward (ff_config_t &cfg)
- double calculate (double v, double a, double pid_ref=0.0)

Perform the feedforward calculation.

7.23.1 Detailed Description

FeedForward

Stores the feedfoward constants, and allows for quick computation. Feedfoward should be used in systems that require smooth precise movements and have high inertia, such as drivetrains and lifts.

This is best used alongside a PID loop, with the form: output = pid.get() + feedforward.calculate(v, a);

In this case, the feedforward does the majority of the heavy lifting, and the pid loop only corrects for inconsistencies

For information about tuning feedforward, I reccommend looking at this post: https://www.←chiefdelphi.com/t/paper-frc-drivetrain-characterization/160915 (yes I know it's for FRC but trust me, it's useful)

Author

Ryan McGee

Date

6/13/2022

7.23.2 Constructor & Destructor Documentation

7.23.2.1 FeedForward()

Creates a FeedForward object.

Parameters

cfg | Configuration Struct for tuning

7.23.3 Member Function Documentation

7.23.3.1 calculate()

```
double FeedForward::calculate ( \label{eq:constraint} \mbox{double } v, \\ \mbox{double } a, \\ \mbox{double } pid\_ref = 0.0 \mbox{) [inline]}
```

Perform the feedforward calculation.

This calculation is the equation: F = kG + kS*sgn(v) + kV*v + kA*a

Parameters

V	Requested velocity of system
а	Requested acceleration of system

Returns

A feedforward that should closely represent the system if tuned correctly

The documentation for this class was generated from the following file:

• include/utils/controls/feedforward.h

7.24 FeedForward::ff_config_t Struct Reference

```
#include <feedforward.h>
```

Public Attributes

- · double kS
- double kV
- double kA
- double kG

7.24.1 Detailed Description

ff_config_t holds the parameters to make the theoretical model of a real world system equation is of the form kS if the system is not stopped, 0 otherwise

- kV * desired velocity
- · kA * desired acceleration
- kG

7.25 Filter Class Reference 73

7.24.2 Member Data Documentation

7.24.2.1 kA

```
double FeedForward::ff_config_t::kA
```

kA - Acceleration coefficient: the power required to change the mechanism's speed. Multiplied by the requested acceleration.

7.24.2.2 kG

```
double FeedForward::ff_config_t::kG
```

kG - Gravity coefficient: only needed for lifts. The power required to overcome gravity and stay at steady state.

7.24.2.3 kS

```
double FeedForward::ff_config_t::kS
```

Coefficient to overcome static friction: the point at which the motor *starts* to move.

7.24.2.4 kV

```
double FeedForward::ff_config_t::kV
```

Veclocity coefficient: the power required to keep the mechanism in motion. Multiplied by the requested velocity.

The documentation for this struct was generated from the following file:

• include/utils/controls/feedforward.h

7.25 Filter Class Reference

```
#include <moving_average.h>
```

Inheritance diagram for Filter:

Public Member Functions

- virtual void add_entry (double n)=0
- virtual double get_value () const =0

7.25.1 Detailed Description

Interface for filters Use add_entry to supply data and get_value to retrieve the filtered value

7.25.2 Member Function Documentation

7.25.2.1 add_entry()

```
virtual void Filter::add_entry ( double n ) [pure virtual]
```

Implemented in MovingAverage, and ExponentialMovingAverage.

7.25.2.2 get_value()

```
virtual double Filter::get_value ( ) const [pure virtual]
```

Implemented in MovingAverage, and ExponentialMovingAverage.

The documentation for this class was generated from the following file:

include/utils/moving_average.h

7.26 Flywheel Class Reference

```
#include <flywheel.h>
```

Public Member Functions

- Flywheel (vex::motor_group &motors, Feedback &feedback, FeedForward &helper, const double ratio, Filter &filt)
- double get_target () const
- double getRPM () const
- vex::motor_group & get_motors () const
- void spin_manual (double speed, directionType dir=fwd)
- void spin_rpm (double rpm)
- void stop ()
- bool is_on_target ()

check if the feedback controller thinks the flywheel is on target

screen::Page * Page () const

Creates a page displaying info about the flywheel.

AutoCommand * SpinRpmCmd (int rpm)

Creates a new auto command to spin the flywheel at the desired velocity.

AutoCommand * WaitUntilUpToSpeedCmd ()

Creates a new auto command that will hold until the flywheel has its target as defined by its feedback controller.

Friends

- class FlywheelPage
- int spinRPMTask (void *wheelPointer)

7.26.1 Detailed Description

a Flywheel class that handles all control of a high inertia spinning disk It gives multiple options for what control system to use in order to control wheel velocity and functions alerting the user when the flywheel is up to speed. Flywheel is a set and forget class. Once you create it you can call spin_rpm or stop on it at any time and it will take all necessary steps to accomplish this

7.26.2 Constructor & Destructor Documentation

7.26.2.1 Flywheel()

Create the Flywheel object using PID + feedforward for control.

Parameters

motors	pointer to the motors on the fly wheel	
feedback	a feedback controleller	
helper	a feedforward config (only kV is used) to help the feedback controller along	
ratio	ratio of the gears from the motor to the flywheel just multiplies the velocity	
filter	the filter to use to smooth noisy motor readings	

7.26.3 Member Function Documentation

7.26.3.1 get_motors()

```
motor_group & Flywheel::get_motors ( ) const
```

Returns the motors

Returns

the motors used to run the flywheel

7.26.3.2 get_target()

```
double Flywheel::get_target ( ) const
```

Return the target_rpm that the flywheel is currently trying to achieve

Returns

target_rpm the target rpm

Return the current value that the target_rpm should be set to

7.26.3.3 getRPM()

```
double Flywheel::getRPM ( ) const
```

return the velocity of the flywheel

7.26.3.4 is_on_target()

```
bool Flywheel::is_on_target ( ) [inline]
```

check if the feedback controller thinks the flywheel is on target

Returns

true if on target

7.26.3.5 Page()

```
screen::Page * Flywheel::Page ( ) const
```

Creates a page displaying info about the flywheel.

Returns

the page should be used for `screen::start_screen(screen, $\{fw.Page()\})$;

7.26.3.6 spin manual()

Spin motors using voltage; defaults forward at 12 volts FOR USE BY OPCONTROL AND AUTONOMOUS - this only applies if the $target_rpm$ thread is not running

Parameters

speed	- speed (between -1 and 1) to set the motor
dir	- direction that the motor moves in; defaults to forward

Spin motors using voltage; defaults forward at 12 volts FOR USE BY OPCONTROL AND AUTONOMOUS - this only applies if the RPM thread is not running

Parameters

speed	- speed (between -1 and 1) to set the motor	
dir	- direction that the motor moves in; defaults to forward	

7.26.3.7 spin_rpm()

starts or sets the target_rpm thread at new value what control scheme is dependent on control_style

Parameters

	rpm	- the target_rpm we want to spin at	the targe	t
--	-----	-------------------------------------	-----------	---

starts or sets the RPM thread at new value what control scheme is dependent on control_style

Parameters

```
input_rpm - set the current RPM
```

7.26.3.8 SpinRpmCmd()

Creates a new auto command to spin the flywheel at the desired velocity.

Parameters

rpm	the rpm to spin at

Returns

an auto command to add to a command controller

7.26.3.9 stop()

```
void Flywheel::stop ( )
```

Stops the motors. If manually spinning, this will do nothing just call spin_mainual(0.0) to send 0 volts

stop the RPM thread and the wheel

7.26.3.10 WaitUntilUpToSpeedCmd()

```
AutoCommand * Flywheel::WaitUntilUpToSpeedCmd ( ) [inline]
```

Creates a new auto command that will hold until the flywheel has its target as defined by its feedback controller.

Returns

an auto command to add to a command controller

7.26.4 Friends And Related Symbol Documentation

7.26.4.1 FlywheelPage

```
friend class FlywheelPage [friend]
```

7.26.4.2 spinRPMTask

```
int spinRPMTask (  {\tt void} \ * \ {\it wheelPointer} \ ) \quad [{\tt friend}]
```

Runs a thread that keeps track of updating flywheel RPM and controlling it accordingly

The documentation for this class was generated from the following files:

- include/subsystems/flywheel.h
- src/subsystems/flywheel.cpp

7.27 FlywheelPage Class Reference

Inheritance diagram for FlywheelPage:

Collaboration diagram for FlywheelPage:

Public Member Functions

- FlywheelPage (const Flywheel &fw)
- void update (bool, int, int) override
- void draw (vex::brain::lcd &screen, bool, unsigned int) override

Static Public Attributes

• static const size_t window_size = 40

7.27.1 Constructor & Destructor Documentation

7.27.1.1 FlywheelPage()

7.27.2 Member Function Documentation

7.27.2.1 draw()

See also

Page::draw

Reimplemented from screen::Page.

7.27.2.2 update()

```
void FlywheelPage::update (
          bool ,
          int ,
          int ) [inline], [override], [virtual]
```

See also

Page::update

Reimplemented from screen::Page.

7.27.3 Member Data Documentation

7.27.3.1 window_size

```
const size_t FlywheelPage::window_size = 40 [static]
```

The documentation for this class was generated from the following file:

• src/subsystems/flywheel.cpp

7.28 FlywheelStopCommand Class Reference

#include <flywheel_commands.h>

Inheritance diagram for FlywheelStopCommand:

Collaboration diagram for FlywheelStopCommand:

Public Member Functions

- FlywheelStopCommand (Flywheel &flywheel)
- bool run () override

Public Member Functions inherited from AutoCommand

- virtual void on_timeout ()
- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default timeout = 10.0

7.28.1 Detailed Description

AutoCommand wrapper class for the stop function in the Flywheel class

7.28.2 Constructor & Destructor Documentation

7.28.2.1 FlywheelStopCommand()

```
\label{limits} FlywheelStopCommand:: FlywheelStopCommand ( \\ Flywheel \& flywheel)
```

Construct a FlywheelStopCommand

Parameters

flywheel the flywheel system we are commanding

7.28.3 Member Function Documentation

7.28.3.1 run()

```
bool FlywheelStopCommand::run ( ) [override], [virtual]
```

Run stop Overrides run from AutoCommand

Returns

true when execution is complete, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/flywheel_commands.h
- src/utils/command_structure/flywheel_commands.cpp

7.29 FlywheelStopMotorsCommand Class Reference

#include <flywheel_commands.h>

Inheritance diagram for FlywheelStopMotorsCommand:

Collaboration diagram for FlywheelStopMotorsCommand:

Public Member Functions

- FlywheelStopMotorsCommand (Flywheel &flywheel)
- bool run () override

Public Member Functions inherited from AutoCommand

- virtual void on_timeout ()
- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true to end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default timeout = 10.0

7.29.1 Detailed Description

AutoCommand wrapper class for the stopMotors function in the Flywheel class

7.29.2 Constructor & Destructor Documentation

7.29.2.1 FlywheelStopMotorsCommand()

```
\label{lem:flywheelStopMotorsCommand::FlywheelStopMotorsCommand (} Flywheel & flywheel )
```

Construct a FlywheeStopMotors Command

Parameters

flywheel the flywheel system we are commanding

7.29.3 Member Function Documentation

7.29.3.1 run()

```
bool FlywheelStopMotorsCommand::run ( ) [override], [virtual]
```

Run stop Overrides run from AutoCommand

Returns

true when execution is complete, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/flywheel_commands.h
- src/utils/command_structure/flywheel_commands.cpp

7.30 FlywheelStopNonTasksCommand Class Reference

#include <flywheel_commands.h>

Inheritance diagram for FlywheelStopNonTasksCommand:

Collaboration diagram for FlywheelStopNonTasksCommand:

Additional Inherited Members

Public Member Functions inherited from AutoCommand

- virtual void on_timeout ()
- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default_timeout = 10.0

7.30.1 Detailed Description

AutoCommand wrapper class for the stopNonTasks function in the Flywheel class

The documentation for this class was generated from the following files:

- include/utils/command structure/flywheel commands.h
- src/utils/command_structure/flywheel_commands.cpp

7.31 FunctionCommand Class Reference

#include <auto_command.h>

Inheritance diagram for FunctionCommand:

Collaboration diagram for FunctionCommand:

Public Member Functions

- FunctionCommand (std::function< bool(void)> f)
- bool run ()

Public Member Functions inherited from AutoCommand

- virtual void on_timeout ()
- AutoCommand * withTimeout (double t seconds)
- AutoCommand * withCancelCondition (Condition *true to end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout seconds = default timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default_timeout = 10.0

7.31.1 Detailed Description

FunctionCommand is fun and good way to do simple things Printing, launching nukes, and other quick and dirty one time things

7.31.2 Constructor & Destructor Documentation

7.31.2.1 FunctionCommand()

```
\label{thm:command::FunctionCommand} \mbox{ (} \\ \mbox{std::function< bool(void)> $f$ ) [inline] \\
```

7.31.3 Member Function Documentation

7.31.3.1 run()

```
bool FunctionCommand::run ( ) [inline], [virtual]
```

Executes the command Overridden by child classes

Returns

true when the command is finished, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following file:

include/utils/command_structure/auto_command.h

7.32 FunctionCondition Class Reference

FunctionCondition is a quick and dirty Condition to wrap some expression that should be evaluated at runtime.

```
#include <auto_command.h>
```

Inheritance diagram for FunctionCondition:

Collaboration diagram for FunctionCondition:

Public Member Functions

- FunctionCondition (std::function< bool()> cond, std::function< void(void)> timeout=[]() {})
- bool test () override

Public Member Functions inherited from Condition

- Condition * Or (Condition *b)
- Condition * And (Condition *b)

7.32.1 Detailed Description

FunctionCondition is a quick and dirty Condition to wrap some expression that should be evaluated at runtime.

7.32.2 Constructor & Destructor Documentation

7.32.2.1 FunctionCondition()

```
FunctionCondition::FunctionCondition (
    std::function< bool()> cond,
    std::function< void(void)> timeout = []() {} ) [inline]
```

7.32.3 Member Function Documentation

7.32.3.1 test()

```
bool FunctionCondition::test ( ) [override], [virtual]
```

Implements Condition.

The documentation for this class was generated from the following files:

- include/utils/command_structure/auto_command.h
- src/utils/command_structure/auto_command.cpp

7.33 screen::FunctionPage Class Reference

Simple page that stores no internal data. the draw and update functions use only global data rather than storing anything.

```
#include <screen.h>
```

Inheritance diagram for screen::FunctionPage:

Collaboration diagram for screen::FunctionPage:

Public Member Functions

- FunctionPage (update_func_t update_f, draw_func_t draw_t)
 Creates a function page.
- void update (bool was_pressed, int x, int y) override update uses the supplied update function to update this page
- void draw (vex::brain::lcd &, bool first_draw, unsigned int frame_number) override draw uses the supplied draw function to draw to the screen

7.33.1 Detailed Description

Simple page that stores no internal data. the draw and update functions use only global data rather than storing anything.

7.33.2 Constructor & Destructor Documentation

7.33.2.1 FunctionPage()

Creates a function page.

FunctionPage.

Parameters

update← _f	the function called every tick to respond to user input or do data collection
draw_t	the function called to draw to the screen
update← _f	drawing function
draw_f	drawing function

7.33.3 Member Function Documentation

7.33.3.1 draw()

draw uses the supplied draw function to draw to the screen

See also

Page::draw

Reimplemented from screen::Page.

7.33.3.2 update()

```
void screen::FunctionPage::update (
          bool was_pressed,
          int x,
          int y ) [override], [virtual]
```

update uses the supplied update function to update this page

See also

Page::update

Reimplemented from screen::Page.

The documentation for this class was generated from the following files:

- include/subsystems/screen.h
- src/subsystems/screen.cpp

7.34 GenericAuto Class Reference

```
#include <generic_auto.h>
```

Public Member Functions

- bool run (bool blocking)
- void add (state_ptr new_state)
- void add_async (state_ptr async_state)
- void add_delay (int ms)

7.34.1 Detailed Description

GenericAuto provides a pleasant interface for organizing an auto path steps of the path can be added with add() and when ready, calling run() will begin executing the path

7.34.2 Member Function Documentation

7.34.2.1 add()

Add a new state to the autonomous via function point of type "bool (ptr*)()"

Parameters

new state	the function to run
-----------	---------------------

7.34.2.2 add async()

Add a new state to the autonomous via function point of type "bool (ptr*)()" that will run asynchronously

Parameters

```
async_state the function to run
```

7.34.2.3 add_delay()

add delay adds a period where the auto system will simply wait for the specified time

Parameters

```
ms how long to wait in milliseconds
```

7.34.2.4 run()

The method that runs the autonomous. If 'blocking' is true, then this method will run through every state until it finished.

If blocking is false, then assuming every state is also non-blocking, the method will run through the current state in the list and return immediately.

Parameters

blocking	Whether or not to block the thread until all states have run
----------	--

Returns

true after all states have finished.

The documentation for this class was generated from the following files:

- · include/utils/generic_auto.h
- src/utils/generic_auto.cpp

7.35 GraphDrawer Class Reference

```
#include <graph_drawer.h>
```

Public Member Functions

GraphDrawer (int num_samples, double lower_bound, double upper_bound, std::vector < vex::color > colors, size_t num_series=1)

Creates a graph drawer with the specified number of series (each series is a separate line)

- void add_samples (std::vector< point_t > sample)
- void add_samples (std::vector< double > sample)
- void draw (vex::brain::lcd &screen, int x, int y, int width, int height)

7.35.1 Constructor & Destructor Documentation

7.35.1.1 GraphDrawer()

```
GraphDrawer::GraphDrawer (
    int num_samples,
    double lower_bound,
    double upper_bound,
    std::vector< vex::color > colors,
    size_t num_series = 1 )
```

Creates a graph drawer with the specified number of series (each series is a separate line)

Parameters

num_samples	the number of samples to graph at a time (40 will graph the last 40 data points)
lower_bound	the bottom of the window when displaying (if upper_bound = lower_bound, auto calculate bounds)
செய ்து அது நடித்து குறுக்கு en	the top of the window when displaying (if upper_bound = lower_bound, auto calculate bounds)
colors	the colors of the series. must be of size num_series
num_series	the number of series to graph

7.35.2 Member Function Documentation

7.35.2.1 add_samples() [1/2]

```
void GraphDrawer::add_samples (
    std::vector< double > sample )
```

add_samples adds a point to the graph, removing one from the back

Parameters

sample	a y coordinate of the next point to graph, the x coordinate is gotten from vex::timer::system(); (time in	
	ms)	

7.35.2.2 add_samples() [2/2]

add_samples adds a point to the graph, removing one from the back

Parameters

sample	an x, y coordinate of the next point to graph
--------	---

7.35.2.3 draw()

```
void GraphDrawer::draw (
    vex::brain::lcd & screen,
    int x,
    int y,
    int width,
    int height )
```

draws the graph to the screen in the constructor

Parameters

X	x position of the top left of the graphed region
У	y position of the top left of the graphed region
width	the width of the graphed region
height	the height of the graphed region

The documentation for this class was generated from the following files:

- include/utils/graph_drawer.h
- src/utils/graph_drawer.cpp

7.36 PurePursuit::hermite_point Struct Reference

#include <pure_pursuit.h>

Public Member Functions

- point_t getPoint () const
- Vector2D getTangent () const

Public Attributes

- double x
- double y
- double dir
- · double mag

7.36.1 Detailed Description

a position along the hermite path contains a position and orientation information that the robot would be at at this point

7.36.2 Member Function Documentation

7.36.2.1 getPoint()

```
point_t PurePursuit::hermite_point::getPoint ( ) const [inline]
```

7.36.2.2 getTangent()

Vector2D PurePursuit::hermite_point::getTangent () const [inline]

7.36.3 Member Data Documentation

7.36.3.1 dir

double PurePursuit::hermite_point::dir

7.36.3.2 mag

double PurePursuit::hermite_point::mag

7.36.3.3 x

double PurePursuit::hermite_point::x

7.36.3.4 y

double PurePursuit::hermite_point::y

The documentation for this struct was generated from the following file:

• include/utils/pure_pursuit.h

7.37 IfTimePassed Class Reference

IfTimePassed tests based on time since the command controller was constructed. Returns true if elapsed time > time_s.

#include <auto_command.h>

Inheritance diagram for IfTimePassed:

Collaboration diagram for IfTimePassed:

Public Member Functions

- IfTimePassed (double time_s)
- bool test () override

Public Member Functions inherited from Condition

```
Condition * Or (Condition *b)Condition * And (Condition *b)
```

7.37.1 Detailed Description

IfTimePassed tests based on time since the command controller was constructed. Returns true if elapsed time > time_s.

7.37.2 Constructor & Destructor Documentation

7.37.2.1 IfTimePassed()

7.37.3 Member Function Documentation

7.37.3.1 test()

```
bool IfTimePassed::test ( ) [override], [virtual]
Implements Condition.
```

The documentation for this class was generated from the following files:

- include/utils/command_structure/auto_command.h
- src/utils/command_structure/auto_command.cpp

7.38 InOrder Class Reference

InOrder runs its commands sequentially then continues. How to handle timeout in this case. Automatically set it to sum of commands timouts?

```
#include <auto_command.h>
```

Inheritance diagram for InOrder:

Collaboration diagram for InOrder:

Public Member Functions

- InOrder (const InOrder &other)=default
- InOrder (std::queue < AutoCommand * > cmds)
- InOrder (std::initializer_list< AutoCommand * > cmds)
- bool run () override
- void on_timeout () override

Public Member Functions inherited from AutoCommand

- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

```
• double timeout_seconds = default_timeout
```

```
• Condition * true to end = nullptr
```

Static Public Attributes inherited from AutoCommand

• static constexpr double default timeout = 10.0

7.38.1 Detailed Description

InOrder runs its commands sequentially then continues. How to handle timeout in this case. Automatically set it to sum of commands timouts?

InOrder runs its commands sequentially then continues. How to handle timeout in this case. Automatically set it to sum of commands timouts?

7.38.2 Constructor & Destructor Documentation

7.38.2.1 InOrder() [1/3]

7.38.2.2 InOrder() [2/3]

```
InOrder::InOrder ( {\tt std::queue} < {\tt AutoCommand} \ * \ > \ cmds \ )
```

7.38.2.3 InOrder() [3/3]

```
InOrder::InOrder ( {\tt std::initializer\_list<~AutoCommand~*>~cmds~)}
```

7.38.3 Member Function Documentation

7.38.3.1 on_timeout()

```
void InOrder::on_timeout ( ) [override], [virtual]
```

What to do if we timeout instead of finishing. timeout is specified by the timeout seconds in the constructor

Reimplemented from AutoCommand.

7.38.3.2 run()

```
bool InOrder::run ( ) [override], [virtual]
```

Executes the command Overridden by child classes

Returns

true when the command is finished, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/auto_command.h
- src/utils/command_structure/auto_command.cpp

7.39 screen::LabelConfig Struct Reference

```
#include <screen.h>
```

Public Attributes

• std::string label

7.39.1 Member Data Documentation

7.39.1.1 label

```
std::string screen::LabelConfig::label
```

The documentation for this struct was generated from the following file:

• include/subsystems/screen.h

7.40 Lift< T > Class Template Reference

```
#include <lift.h>
```

Classes

· struct lift_cfg_t

Public Member Functions

- Lift (motor_group &lift_motors, lift_cfg_t &lift_cfg, map< T, double > &setpoint_map, limit *homing_← switch=NULL)
- void control_continuous (bool up_ctrl, bool down_ctrl)
- void control manual (bool up btn, bool down btn, int volt up, int volt down)
- void control_setpoints (bool up_step, bool down_step, vector< T > pos_list)
- bool set_position (T pos)
- bool set_setpoint (double val)
- double get_setpoint ()
- void hold ()
- void home ()
- bool get async ()
- void set_async (bool val)
- void set sensor function (double(*fn ptr)(void))
- void set_sensor_reset (void(*fn_ptr)(void))

7.40.1 Detailed Description

```
template<typename T> class Lift< T >
```

LIFT A general class for lifts (e.g. 4bar, dr4bar, linear, etc) Uses a PID to hold the lift at a certain height under load, and to move the lift to different heights

Author

Ryan McGee

7.40.2 Constructor & Destructor Documentation

7.40.2.1 Lift()

Construct the Lift object and begin the background task that controls the lift.

Usage example: /code{.cpp} enum Positions {UP, MID, DOWN}; map<Positions, double> setpt_map { {DOWN, 0.0}, {MID, 0.5}, {UP, 1.0} }; Lift<Positions> my_lift(motors, lift_cfg, setpt_map); /endcode

Parameters

lift_motors A set of motors, all set that positive rotation correlates with the lift going up	
lift_cfg	Lift characterization information; PID tunings and movement speeds
setpoint_map	A map of enum type T, in which each enum entry corresponds to a different lift height

7.40.3 Member Function Documentation

7.40.3.1 control_continuous()

Control the lift with an "up" button and a "down" button. Use PID to hold the lift when letting go.

Parameters

up_ctrl	Button controlling the "UP" motion
down_ctrl	Button controlling the "DOWN" motion

7.40.3.2 control_manual()

Control the lift with manual controls (no holding voltage)

Parameters

up_btn	Raise the lift when true
down_btn	Lower the lift when true
volt_up	Motor voltage when raising the lift
volt_down	Motor voltage when lowering the lift

7.40.3.3 control_setpoints()

Control the lift in "steps". When the "up" button is pressed, the lift will go to the next position as defined by pos_list. Order matters!

Parameters

up_step	A button that increments the position of the lift.
down_step	A button that decrements the position of the lift.
pos_list	A list of positions for the lift to go through. The higher the index, the higher the lift should be (generally).

7.40.3.4 get_async()

```
template<typename T >
bool Lift< T >::get_async ( ) [inline]
```

Returns

whether or not the background thread is running the lift

7.40.3.5 get_setpoint()

```
template<typename T > double Lift< T >::get_setpoint ( ) [inline]
```

Returns

The current setpoint for the lift

7.40.3.6 hold()

```
template<typename T >
void Lift< T >::hold ( ) [inline]
```

Target the class's setpoint. Calculate the PID output and set the lift motors accordingly.

7.40.3.7 home()

```
template<typename T >
void Lift< T >::home ( ) [inline]
```

A blocking function that automatically homes the lift based on a sensor or hard stop, and sets the position to 0. A watchdog times out after 3 seconds, to avoid damage.

7.40.3.8 set_async()

Enables or disables the background task. Note that running the control functions, or set_position functions will immediately re-enable the task for autonomous use.

Parameters

val Whether or not the background thread should run the lift

7.40.3.9 set_position()

Enable the background task, and send the lift to a position, specified by the setpoint map from the constructor.

Parameters

```
pos A lift position enum type
```

Returns

True if the pid has reached the setpoint

7.40.3.10 set sensor function()

Creates a custom hook for any other type of sensor to be used on the lift. Example: $/code{.cpp} my_lift.set_{\leftarrow} sensor_function([](){return my_sensor.position();}); /endcode$

Parameters

fn_ptr | Pointer to custom sensor function

7.40.3.11 set_sensor_reset()

Creates a custom hook to reset the sensor used in $set_sensor_function()$. Example: $/code{.cpp} my_lift.set_{\leftarrow} sensor_reset(my_sensor.resetPosition); <math>/code{.cpp} my_lift.set_{\leftarrow} sensor_reset(my_sensor.resetPosition); \\ /code{.cpp} my_lift.set_{\leftarrow} sensor_reset(my_sensor.resetPosition); \\ /code{.cpp} my_lift.set_{\leftarrow} sensor_reset(my_sensor.resetPosition); \\ /code{.cpp} my_lift.set_{\leftarrow} sensor_reset(my_sensor.reset(my_sens$

7.40.3.12 set_setpoint()

Manually set a setpoint value for the lift PID to go to.

Parameters

val Lift setpoint, in motor revolutions or sensor units defined by get sensor. Cannot be outside the softstops.

Returns

True if the pid has reached the setpoint

The documentation for this class was generated from the following file:

• include/subsystems/lift.h

7.41 Lift< T >::lift_cfg_t Struct Reference

```
#include <lift.h>
```

Collaboration diagram for Lift< T >::lift_cfg_t:

Public Attributes

- double up_speed
- double down speed
- · double softstop_up
- double softstop_down
- PID::pid_config_t lift_pid_cfg

7.41.1 Detailed Description

```
template<typename T> struct Lift< T >::lift_cfg_t
```

lift_cfg_t holds the physical parameter specifications of a lify system. includes:

- · maximum speeds for the system
- · softstops to stop the lift from hitting the hard stops too hard

7.41.2 Member Data Documentation

7.41.2.1 down_speed

```
template<typename T >
double Lift< T >::lift_cfg_t::down_speed
```

7.41.2.2 lift_pid_cfg

```
template<typename T >
PID::pid_config_t Lift< T >::lift_cfg_t::lift_pid_cfg
```

7.41.2.3 softstop_down

```
template<typename T >
double Lift< T >::lift_cfg_t::softstop_down
```

7.41.2.4 softstop_up

```
template<typename T >
double Lift< T >::lift_cfg_t::softstop_up
```

7.41.2.5 up_speed

```
template<typename T >
double Lift< T >::lift_cfg_t::up_speed
```

The documentation for this struct was generated from the following file:

• include/subsystems/lift.h

7.42 Logger Class Reference

Class to simplify writing to files.

```
#include <logger.h>
```

Public Member Functions

• Logger (const std::string &filename)

Create a logger that will save to a file.

• Logger (const Logger &I)=delete

copying not allowed

• Logger & operator= (const Logger &I)=delete

copying not allowed

void Log (const std::string &s)

Write a string to the log.

• void Log (LogLevel level, const std::string &s)

Write a string to the log with a loglevel.

void LogIn (const std::string &s)

Write a string and newline to the log.

void LogIn (LogLevel level, const std::string &s)

Write a string and a newline to the log with a loglevel.

• void Logf (const char *fmt,...)

Write a formatted string to the log.

• void Logf (LogLevel level, const char *fmt,...)

Write a formatted string to the log with a loglevel.

Static Public Attributes

static constexpr int MAX_FORMAT_LEN = 512
 maximum size for a string to be before it's written

7.42.1 Detailed Description

Class to simplify writing to files.

7.42.2 Constructor & Destructor Documentation

7.42.2.1 Logger() [1/2]

Create a logger that will save to a file.

Parameters

```
filename the file to save to
```

7.42.2.2 Logger() [2/2]

```
Logger::Logger (  {\tt const\ Logger\ \&\ 1\ )} \quad [{\tt delete}]
```

copying not allowed

7.42.3 Member Function Documentation

7.42.3.1 Log() [1/2]

```
void Logger::Log ( const std::string & s )
```

Write a string to the log.

Parameters

```
s the string to write
```

7.42.3.2 Log() [2/2]

Write a string to the log with a loglevel.

Parameters

level	the level to write. DEBUG, NOTICE, WARNING, ERROR, CRITICAL, TIME
s	the string to write

7.42.3.3 Logf() [1/2]

Write a formatted string to the log.

Parameters

fmt	the format string (like printf)
	the args

7.42.3.4 Logf() [2/2]

```
void Logger::Logf (
          LogLevel level,
```

```
const char * fmt,
... )
```

Write a formatted string to the log with a loglevel.

Parameters

level	the level to write. DEBUG, NOTICE, WARNING, ERROR, CRITICAL, TIME
fmt	the format string (like printf)
	the args

7.42.3.5 LogIn() [1/2]

Write a string and newline to the log.

Parameters

```
s the string to write
```

7.42.3.6 LogIn() [2/2]

Write a string and a newline to the log with a loglevel.

Parameters

level	the level to write. DEBUG, NOTICE, WARNING, ERROR, CRITICAL, TIME
s	the string to write

7.42.3.7 operator=()

copying not allowed

7.42.4 Member Data Documentation

7.42.4.1 MAX_FORMAT_LEN

```
constexpr int Logger::MAX_FORMAT_LEN = 512 [static], [constexpr]
```

maximum size for a string to be before it's written

The documentation for this class was generated from the following files:

- · include/utils/logger.h
- · src/utils/logger.cpp

7.43 MotionController::m_profile_cfg_t Struct Reference

#include <motion_controller.h>

Collaboration diagram for MotionController::m_profile_cfg_t:

Public Attributes

• double max_v

the maximum velocity the robot can drive

· double accel

the most acceleration the robot can do

PID::pid_config_t pid_cfg

configuration parameters for the internal PID controller

FeedForward::ff_config_t ff_cfg

configuration parameters for the internal

7.43.1 Detailed Description

m_profile_config holds all data the motion controller uses to plan paths When motion pofile is given a target to drive to, max_v and accel are used to make the trapezoid profile instructing the controller how to drive pid_cfg, ff_cfg are used to find the motor outputs necessary to execute this path

7.44 Mat2 Struct Reference 111

7.43.2 Member Data Documentation

7.43.2.1 accel

```
double MotionController::m_profile_cfg_t::accel
```

the most acceleration the robot can do

7.43.2.2 ff_cfg

```
FeedForward::ff_config_t MotionController::m_profile_cfg_t::ff_cfg
```

configuration parameters for the internal

7.43.2.3 max v

```
double MotionController::m_profile_cfg_t::max_v
```

the maximum velocity the robot can drive

7.43.2.4 pid_cfg

```
PID::pid_config_t MotionController::m_profile_cfg_t::pid_cfg
```

configuration parameters for the internal PID controller

The documentation for this struct was generated from the following file:

• include/utils/controls/motion_controller.h

7.44 Mat2 Struct Reference

```
#include <geometry.h>
```

Public Member Functions

• point_t operator* (const point_t p) const

Static Public Member Functions

• static Mat2 FromRotationDegrees (double degrees)

Public Attributes

- double X11
- double X12
- double X21
- double X22

7.44.1 Member Function Documentation

7.44.1.1 FromRotationDegrees()

const point_t p) const [inline]

7.44.2 Member Data Documentation

7.44.2.1 X11

double Mat2::X11

7.44.2.2 X12

double Mat2::X12

7.44.2.3 X21

double Mat2::X21

7.44.2.4 X22

double Mat2::X22

The documentation for this struct was generated from the following file:

• include/utils/geometry.h

7.45 MecanumDrive Class Reference

#include <mecanum_drive.h>

Classes

· struct mecanumdrive_config_t

Public Member Functions

- MecanumDrive (vex::motor &left_front, vex::motor &right_front, vex::motor &left_rear, vex::motor &right_rear, vex::rotation *lateral_wheel=NULL, vex::inertial *imu=NULL, mecanumdrive_config_t *config=NULL)
- void drive raw (double direction deg, double magnitude, double rotation)
- void drive (double left y, double left x, double right x, int power=2)
- bool auto_drive (double inches, double direction, double speed, bool gyro_correction=true)
- bool auto_turn (double degrees, double speed, bool ignore_imu=false)

7.45.1 Detailed Description

A class representing the Mecanum drivetrain. Contains 4 motors, a possible IMU (intertial), and a possible undriven perpendicular wheel.

7.45.2 Constructor & Destructor Documentation

7.45.2.1 MecanumDrive()

```
MecanumDrive::MecanumDrive (
    vex::motor & left_front,
    vex::motor & right_front,
    vex::motor & left_rear,
    vex::motor & right_rear,
    vex::rotation * lateral_wheel = NULL,
    vex::inertial * imu = NULL,
    mecanumdrive_config_t * config = NULL )
```

Create the Mecanum drivetrain object

7.45.3 Member Function Documentation

7.45.3.1 auto_drive()

Drive the robot in a straight line automatically. If the inertial was declared in the constructor, use it to correct while driving. If the lateral wheel was declared in the constructor, use it for more accurate positioning while strafing.

Parameters

inches	How far the robot should drive, in inches
direction	What direction the robot should travel in, in degrees. 0 is forward, +/-180 is reverse,
Generated by Doxygen	clockwise is positive.
speed	The maximum speed the robot should travel, in percent: -1.0->+1.0
gyro_correction	=true Whether or not to use the gyro to help correct while driving. Will always be false if no gyro was declared in the constructor.

Drive the robot in a straight line automatically. If the inertial was declared in the constructor, use it to correct while driving. If the lateral wheel was declared in the constructor, use it for more accurate positioning while strafing.

Parameters

inches	How far the robot should drive, in inches
direction	What direction the robot should travel in, in degrees. 0 is forward, +/-180 is reverse, clockwise is positive.
speed	The maximum speed the robot should travel, in percent: -1.0->+1.0
gyro_correction	= true Whether or not to use the gyro to help correct while driving. Will always be false if no gyro was declared in the constructor.

Returns

Whether or not the maneuver is complete.

7.45.3.2 auto_turn()

Autonomously turn the robot X degrees over it's center point. Uses a closed loop for control.

Parameters

degrees	How many degrees to rotate the robot. Clockwise postive.
speed	What percentage to run the motors at: 0.0 -> 1.0
ignore_imu	=false Whether or not to use the Inertial for determining angle. Will instead use circumference
	formula + robot's wheelbase + encoders to determine.

Returns

whether or not the robot has finished the maneuver

Autonomously turn the robot X degrees over it's center point. Uses a closed loop for control.

Parameters

degrees	How many degrees to rotate the robot. Clockwise postive.
speed	What percentage to run the motors at: 0.0 -> 1.0
ignore_imu	= false Whether or not to use the Inertial for determining angle. Will instead use circumference
	formula + robot's wheelbase + encoders to determine.

Returns

whether or not the robot has finished the maneuver

7.45.3.3 drive()

Drive the robot with a mecanum-style / arcade drive. Inputs are in percent (-100.0 -> 100.0) straight from the controller. Controls are mixed, so the robot can drive forward / strafe / rotate all at the same time.

Parameters

left_y	left joystick, Y axis (forward / backwards)
left_x	left joystick, X axis (strafe left / right)
right←	right joystick, X axis (rotation left / right)
_X	
power	=2 how much of a "curve" there should be on drive controls; better for low speed maneuvers. Leave
	blank for a default curve of 2 (higher means more fidelity)

Drive the robot with a mecanum-style / arcade drive. Inputs are in percent (-100.0 -> 100.0) straight from the controller. Controls are mixed, so the robot can drive forward / strafe / rotate all at the same time.

Parameters

left_y	left joystick, Y axis (forward / backwards)
left_x	left joystick, X axis (strafe left / right)
right←	right joystick, X axis (rotation left / right)
_X	
power	= 2 how much of a "curve" there should be on drive controls; better for low speed maneuvers. Leave
	blank for a default curve of 2 (higher means more fidelity)

7.45.3.4 drive_raw()

Drive the robot using vectors. This handles all the math required for mecanum control.

Parameters

direction_deg	the direction to drive the robot, in degrees. 0 is forward, 180 is back, clockwise is positive, counterclockwise is negative.
magnitude	How fast the robot should drive, in percent: 0.0->1.0
rotation	How fast the robot should rotate, in percent: -1.0->+1.0

The documentation for this class was generated from the following files:

include/subsystems/mecanum_drive.h

src/subsystems/mecanum_drive.cpp

7.46 MecanumDrive::mecanumdrive_config_t Struct Reference

#include <mecanum_drive.h>

Collaboration diagram for MecanumDrive::mecanumdrive_config_t:

Public Attributes

- PID::pid_config_t drive_pid_conf
- PID::pid_config_t drive_gyro_pid_conf
- · PID::pid config t turn pid conf
- double drive_wheel_diam
- double lateral_wheel_diam
- double wheelbase_width

7.46.1 Detailed Description

Configure the Mecanum drive PID tunings and robot configurations

7.46.2 Member Data Documentation

7.46.2.1 drive_gyro_pid_conf

PID::pid_config_t MecanumDrive::mecanumdrive_config_t::drive_gyro_pid_conf

7.46.2.2 drive_pid_conf

PID::pid_config_t MecanumDrive::mecanumdrive_config_t::drive_pid_conf

7.46.2.3 drive_wheel_diam

 $\verb|double MecanumDrive::mecanumdrive_config_t::drive_wheel_diam|\\$

7.46.2.4 lateral_wheel_diam

double MecanumDrive::mecanumdrive_config_t::lateral_wheel_diam

7.46.2.5 turn_pid_conf

PID::pid_config_t MecanumDrive::mecanumdrive_config_t::turn_pid_conf

7.46.2.6 wheelbase_width

double MecanumDrive::mecanumdrive_config_t::wheelbase_width

The documentation for this struct was generated from the following file:

• include/subsystems/mecanum_drive.h

7.47 motion_t Struct Reference

#include <trapezoid_profile.h>

Public Attributes

double pos

1d position at this point in time

· double vel

1d velocity at this point in time

· double accel

1d acceleration at this point in time

7.47.1 Detailed Description

motion_t is a description of 1 dimensional motion at a point in time.

7.47.2 Member Data Documentation

7.47.2.1 accel

double motion_t::accel

1d acceleration at this point in time

7.47.2.2 pos

double motion_t::pos

1d position at this point in time

7.47.2.3 vel

double motion_t::vel

1d velocity at this point in time

The documentation for this struct was generated from the following file:

• include/utils/controls/trapezoid_profile.h

7.48 MotionController Class Reference

#include <motion_controller.h>

Inheritance diagram for MotionController:

Collaboration diagram for MotionController:

Classes

• struct m_profile_cfg_t

Public Member Functions

MotionController (m_profile_cfg_t &config)

Construct a new Motion Controller object.

void init (double start_pt, double end_pt, double start_vel, double end_vel) override

Initialize the motion profile for a new movement This will also reset the PID and profile timers.

double update (double sensor_val) override

Update the motion profile with a new sensor value.

- · double get () override
- · void set_limits (double lower, double upper) override
- bool is_on_target () override
- motion_t get_motion () const
- screen::Page * Page ()

Static Public Member Functions

• static FeedForward::ff_config_t tune_feedforward (TankDrive &drive, OdometryTank &odometry, double pct=0.6, double duration=2)

Friends

· class MotionControllerPage

7.48.1 Detailed Description

Motion Controller class

This class defines a top-level motion profile, which can act as an intermediate between a subsystem class and the motors themselves

This takes the constants kS, kV, kA, kP, kI, kD, max_v and acceleration and wraps around a feedforward, PID and trapezoid profile. It does so with the following formula:

out = feedfoward.calculate(motion_profile.get(time_s)) + pid.get(motion_profile.get(time_s))

For PID and Feedforward specific formulae, see pid.h, feedforward.h, and trapezoid_profile.h

Author

Ryan McGee

Date

7/13/2022

7.48.2 Constructor & Destructor Documentation

7.48.2.1 MotionController()

Construct a new Motion Controller object.

Parameters

The definition of how the robot is able to move max_v Maximum velocity the movement is capable of accel Acceleration / deceleration of the movement pid_cfg Definitions of kP, kI, and kD ff_cfg Definitions of kS, kV, and kA

7.48.3 Member Function Documentation

7.48.3.1 get()

```
double MotionController::get ( ) [override], [virtual]
```

Returns

the last saved result from the feedback controller

Implements Feedback.

7.48.3.2 get_motion()

```
motion_t MotionController::get_motion ( ) const
```

Returns

The current postion, velocity and acceleration setpoints

7.48.3.3 init()

Initialize the motion profile for a new movement This will also reset the PID and profile timers.

Parameters

start_pt	Movement starting position
end_pt	Movement ending posiiton
start_vel	Movement starting velocity
end vel	Movement ending velocity

Implements Feedback.

7.48.3.4 is_on_target()

```
bool MotionController::is_on_target ( ) [override], [virtual]
```

Returns

Whether or not the movement has finished, and the PID confirms it is on target

Implements Feedback.

7.48.3.5 Page()

```
screen::Page * MotionController::Page ( )
```

7.48.3.6 set_limits()

Clamp the upper and lower limits of the output. If both are 0, no limits should be applied. if limits are applied, the controller will not target any value below lower or above upper

Parameters

lower	upper limit
upper	lower limiet

Clamp the upper and lower limits of the output. If both are 0, no limits should be applied.

Parameters

lower	Upper limit
upper	Lower limit

Implements Feedback.

7.48.3.7 tune_feedforward()

This method attempts to characterize the robot's drivetrain and automatically tune the feedforward. It does this by first calculating the kS (voltage to overcome static friction) by slowly increasing the voltage until it moves.

Next is kV (voltage to sustain a certain velocity), where the robot will record it's steady-state velocity at 'pct' speed.

Finally, kA (voltage needed to accelerate by a certain rate), where the robot will record the entire movement's velocity and acceleration, record a plot of [X=(pct-kV*V-kS), Y=(Acceleration)] along the movement, and since kA*Accel = pct-kV*V-kS, the reciprocal of the linear regression is the kA value.

Parameters

drive	The tankdrive to operate on
odometry	The robot's odometry subsystem
pct	Maximum velocity in percent (0->1.0)
duration	Amount of time the robot should be moving for the test

Returns

A tuned feedforward object

7.48.3.8 update()

Update the motion profile with a new sensor value.

Parameters

	Value frame the company
sensor_val	Value from the sensor

Returns

the motor input generated from the motion profile

Implements Feedback.

7.48.4 Friends And Related Symbol Documentation

7.48.4.1 MotionControllerPage

```
friend class MotionControllerPage [friend]
```

The documentation for this class was generated from the following files:

- include/utils/controls/motion_controller.h
- src/utils/controls/motion_controller.cpp

7.49 MotionControllerPage Class Reference

Inheritance diagram for MotionControllerPage:

Collaboration diagram for MotionControllerPage:

Public Member Functions

- MotionControllerPage (const MotionController &mc)
- void update (bool was_pressed, int x, int y) override collect data, respond to screen input, do fast things (runs at 50hz even if you're not focused on this Page (only drawn page gets touch updates))
- void draw (vex::brain::lcd &screen, bool first_draw, unsigned int frame_number)
 draw stored data to the screen (runs at 10 hz and only runs if this page is in front)

7.49.1 Constructor & Destructor Documentation

7.49.1.1 MotionControllerPage()

7.49.2 Member Function Documentation

7.49.2.1 draw()

draw stored data to the screen (runs at 10 hz and only runs if this page is in front)

Parameters

first_draw	true if we just switched to this page
frame_number	frame of drawing we are on (basically an animation tick)

Reimplemented from screen::Page.

7.49.2.2 update()

collect data, respond to screen input, do fast things (runs at 50hz even if you're not focused on this Page (only drawn page gets touch updates))

Parameters

was_pressed	true if the screen has been pressed
X	x position of screen press (if the screen was pressed)
У	y position of screen press (if the screen was pressed)

Reimplemented from screen::Page.

The documentation for this class was generated from the following file:

• src/utils/controls/motion_controller.cpp

7.50 MovingAverage Class Reference

```
#include <moving_average.h>
```

Inheritance diagram for MovingAverage:

Collaboration diagram for MovingAverage:

Public Member Functions

- MovingAverage (int buffer_size)
- MovingAverage (int buffer_size, double starting_value)
- void add_entry (double n) override
- · double get_value () const override
- int get_size () const

7.50.1 Detailed Description

MovingAverage

A moving average is a way of smoothing out noisy data. For many sensor readings, the noise is roughly symmetric around the actual value. This means that if you collect enough samples those that are too high are cancelled out by the samples that are too low leaving the real value.

The MovingAverage class provides a simple interface to do this smoothing from our noisy sensor values.

WARNING: because we need a lot of samples to get the actual value, the value given by the MovingAverage will 'lag' behind the actual value that the sensor is reading. Using a MovingAverage is thus a tradeoff between accuracy and lag time (more samples) vs. less accuracy and faster updating (less samples).

7.50.2 Constructor & Destructor Documentation

7.50.2.1 MovingAverage() [1/2]

Create a moving average calculator with 0 as the default value

Parameters

7.50.2.2 MovingAverage() [2/2]

Create a moving average calculator with a specified default value

Parameters

buffer_size	The size of the buffer. The number of samples that constitute a valid reading
starting_value	The value that the average will be before any data is added

7.50.3 Member Function Documentation

7.50.3.1 add_entry()

```
void MovingAverage::add_entry ( \label{eq:double n } \mbox{double } n \mbox{ ) [override], [virtual]}
```

Add a reading to the buffer Before: [1 1 2 2 3 3] => 2 $^{\wedge}$ After: [2 1 2 2 3 3] => 2.16 $^{\wedge}$

Parameters

n the sample that will be added to the moving average.

Implements Filter.

7.50.3.2 get_size()

```
int MovingAverage::get_size ( ) const
```

How many samples the average is made from

Returns

the number of samples used to calculate this average

7.50.3.3 get_value()

```
double MovingAverage::get_value ( ) const [override], [virtual]
```

Returns the average based off of all the samples collected so far

Returns

the calculated average. sum(samples)/numsamples

How many samples the average is made from

Returns

the number of samples used to calculate this average

Implements Filter.

The documentation for this class was generated from the following files:

- include/utils/moving_average.h
- src/utils/moving_average.cpp

7.51 Odometry3Wheel Class Reference

```
#include <odometry_3wheel.h>
```

Inheritance diagram for Odometry3Wheel:

Collaboration diagram for Odometry3Wheel:

Classes

· struct odometry3wheel_cfg_t

Public Member Functions

- Odometry3Wheel (CustomEncoder &lside_fwd, CustomEncoder &rside_fwd, CustomEncoder &off_axis, odometry3wheel_cfg_t &cfg, bool is_async=true)
- pose_t update () override
- void tune (vex::controller &con, TankDrive &drive)

Public Member Functions inherited from OdometryBase

- OdometryBase (bool is_async)
- pose_t get_position (void)
- virtual void set_position (const pose_t &newpos=zero_pos)
- AutoCommand * SetPositionCmd (const pose_t &newpos=zero_pos)
- void end_async ()
- double get_speed ()
- double get_accel ()
- double get_angular_speed_deg ()
- double get_angular_accel_deg ()

Additional Inherited Members

Static Public Member Functions inherited from OdometryBase

- static int background_task (void *ptr)
- static double pos_diff (pose_t start_pos, pose_t end_pos)
- static double rot_diff (pose_t pos1, pose_t pos2)
- static double smallest_angle (double start_deg, double end_deg)

Public Attributes inherited from OdometryBase

bool end_task = false
 end_task is true if we instruct the odometry thread to shut down

Static Public Attributes inherited from OdometryBase

• static constexpr pose t zero pos = {.x=0.0L, .y=0.0L, .rot=90.0L}

Protected Attributes inherited from OdometryBase

- vex::task * handle
- vex::mutex mut
- · pose_t current_pos
- double speed
- double accel
- · double and speed deg
- double ang_accel_deg

7.51.1 Detailed Description

Odometry3Wheel

This class handles the code for a standard 3-pod odometry setup, where there are 3 "pods" made up of undriven (dead) wheels connected to encoders in the following configuration:

```
+ Y - - - - - - - + X
```

Where O is the center of rotation. The robot will monitor the changes in rotation of these wheels and calculate the robot's X, Y and rotation on the field.

This is a "set and forget" class, meaning once the object is created, the robot will immediately begin tracking it's movement in the background.

Author

Ryan McGee

Date

Oct 31 2022

7.51.2 Constructor & Destructor Documentation

7.51.2.1 Odometry3Wheel()

Construct a new Odometry 3 Wheel object

Parameters

lside_fwd	left-side encoder reference
rside_fwd	right-side encoder reference
off_axis	off-axis (perpendicular) encoder reference
cfg	robot odometry configuration
is_async	true to constantly run in the background

7.51.3 Member Function Documentation

7.51.3.1 tune()

A guided tuning process to automatically find tuning parameters. This method is blocking, and returns when tuning has finished. Follow the instructions on the controller to complete the tuning process

Parameters

con	Controller reference, for screen and button control
drive	Drivetrain reference for robot control

A guided tuning process to automatically find tuning parameters. This method is blocking, and returns when tuning has finished. Follow the instructions on the controller to complete the tuning process

It is assumed the gear ratio and encoder PPR have been set correctly

7.51.3.2 update()

```
pose_t Odometry3Wheel::update ( ) [override], [virtual]
```

Update the current position of the robot once, using the current state of the encoders and the previous known location

Returns

the robot's updated position

Implements OdometryBase.

The documentation for this class was generated from the following files:

- include/subsystems/odometry/odometry_3wheel.h
- src/subsystems/odometry/odometry 3wheel.cpp

7.52 Odometry3Wheel::odometry3wheel_cfg_t Struct Reference

#include <odometry_3wheel.h>

Public Attributes

- · double wheelbase_dist
- double off_axis_center_dist
- · double wheel diam

7.52.1 Detailed Description

odometry3wheel_cfg_t holds all the specifications for how to calculate position with 3 encoders See the core wiki for what exactly each of these parameters measures

7.52.2 Member Data Documentation

7.52.2.1 off_axis_center_dist

```
double Odometry3Wheel::odometry3wheel_cfg_t::off_axis_center_dist
```

distance from the center of the robot to the center off axis wheel

7.52.2.2 wheel diam

```
double Odometry3Wheel::odometry3wheel_cfg_t::wheel_diam
```

the diameter of the tracking wheel

7.52.2.3 wheelbase_dist

```
double Odometry3Wheel::odometry3wheel_cfg_t::wheelbase_dist
```

distance from the center of the left wheel to the center of the right wheel

The documentation for this struct was generated from the following file:

• include/subsystems/odometry/odometry_3wheel.h

7.53 OdometryBase Class Reference

#include <odometry_base.h>

Inheritance diagram for OdometryBase:

Collaboration diagram for OdometryBase:

Public Member Functions

- OdometryBase (bool is_async)
- pose_t get_position (void)
- virtual void set_position (const pose_t &newpos=zero_pos)
- AutoCommand * SetPositionCmd (const pose_t &newpos=zero_pos)
- virtual pose_t update ()=0
- void end_async ()
- double get speed ()
- double get_accel ()
- double get_angular_speed_deg ()
- double get_angular_accel_deg ()

Static Public Member Functions

- static int background_task (void *ptr)
- static double pos_diff (pose_t start_pos, pose_t end_pos)
- static double rot_diff (pose_t pos1, pose_t pos2)
- static double smallest_angle (double start_deg, double end_deg)

Public Attributes

bool end_task = false
 end_task is true if we instruct the odometry thread to shut down

Static Public Attributes

• static constexpr pose_t zero_pos = {.x=0.0L, .y=0.0L, .rot=90.0L}

Protected Attributes

- vex::task * handle
- vex::mutex mut
- · pose t current pos
- double speed
- double accel
- double ang_speed_deg
- double ang_accel_deg

7.53.1 Detailed Description

OdometryBase

This base class contains all the shared code between different implementations of odometry. It handles the asynchronous management, position input/output and basic math functions, and holds positional types specific to field orientation.

All future odometry implementations should extend this file and redefine update() function.

Author

Ryan McGee

Date

Aug 11 2021

7.53.2 Constructor & Destructor Documentation

7.53.2.1 OdometryBase()

Construct a new Odometry Base object

Parameters

is_async True to run constantly in the background, false to call update() manually

7.53.3 Member Function Documentation

7.53.3.1 background_task()

Function that runs in the background task. This function pointer is passed to the vex::task constructor.

Parameters

ptr Pointer to OdometryBase object

Returns

Required integer return code. Unused.

7.53.3.2 end_async()

```
void OdometryBase::end_async ( )
```

End the background task. Cannot be restarted. If the user wants to end the thread but keep the data up to date, they must run the update() function manually from then on.

7.53.3.3 get_accel()

```
double OdometryBase::get_accel ( )
```

Get the current acceleration

Returns

the acceleration rate of the robot (inch/s^2)

7.53.3.4 get_angular_accel_deg()

```
double OdometryBase::get_angular_accel_deg ( )
```

Get the current angular acceleration in degrees

Returns

the angular acceleration at which we are turning (deg/s^2)

7.53.3.5 get_angular_speed_deg()

```
double OdometryBase::get_angular_speed_deg ( )
```

Get the current angular speed in degrees

Returns

the angular velocity at which we are turning (deg/s)

7.53.3.6 get_position()

Gets the current position and rotation

Returns

the position that the odometry believes the robot is at

Gets the current position and rotation

7.53.3.7 get_speed()

```
double OdometryBase::get_speed ( )
```

Get the current speed

Returns

the speed at which the robot is moving and grooving (inch/s)

7.53.3.8 pos_diff()

Get the distance between two points

Parameters

start_pos	distance from this point
end_pos	to this point

Returns

the euclidean distance between start_pos and end_pos

7.53.3.9 rot_diff()

Get the change in rotation between two points

Parameters

pos1	position with initial rotation
pos2	position with final rotation

Returns

change in rotation between pos1 and pos2

Get the change in rotation between two points

7.53.3.10 set_position()

Sets the current position of the robot

Parameters

newpos	the new position that the odometry will believe it is at

Sets the current position of the robot

Reimplemented in OdometryTank.

7.53.3.11 SetPositionCmd()

7.53.3.12 smallest_angle()

Get the smallest difference in angle between a start heading and end heading. Returns the difference between -180 degrees and +180 degrees, representing the robot turning left or right, respectively.

Parameters

start_deg	intitial angle (degrees)
end_deg	final angle (degrees)

Returns

the smallest angle from the initial to the final angle. This takes into account the wrapping of rotations around 360 degrees

Get the smallest difference in angle between a start heading and end heading. Returns the difference between -180 degrees and +180 degrees, representing the robot turning left or right, respectively.

7.53.3.13 update()

```
virtual pose_t OdometryBase::update ( ) [pure virtual]
```

Update the current position on the field based on the sensors

Returns

the location that the robot is at after the odometry does its calculations

Implemented in Odometry3Wheel, and OdometryTank.

7.53.4 Member Data Documentation

7.53.4.1 accel

```
double OdometryBase::accel [protected]
```

the rate at which we are accelerating (inch/s^2)

7.53.4.2 ang_accel_deg

```
double OdometryBase::ang_accel_deg [protected]
```

the rate at which we are accelerating our turn (deg/s^2)

7.53.4.3 ang_speed_deg

```
double OdometryBase::ang_speed_deg [protected]
```

the speed at which we are turning (deg/s)

7.53.4.4 current_pos

```
pose_t OdometryBase::current_pos [protected]
```

Current position of the robot in terms of x,y,rotation

7.53.4.5 end_task

```
bool OdometryBase::end_task = false
```

end_task is true if we instruct the odometry thread to shut down

7.53.4.6 handle

```
vex::task* OdometryBase::handle [protected]
```

handle to the vex task that is running the odometry code

7.53.4.7 mut

```
vex::mutex OdometryBase::mut [protected]
```

Mutex to control multithreading

7.53.4.8 speed

```
double OdometryBase::speed [protected]
```

the speed at which we are travelling (inch/s)

7.53.4.9 zero_pos

```
constexpr pose_t OdometryBase::zero_pos = {.x=0.0L, .y=0.0L, .rot=90.0L} [inline], [static],
[constexpr]
```

Zeroed position. X=0, Y=0, Rotation= 90 degrees

The documentation for this class was generated from the following files:

- include/subsystems/odometry/odometry_base.h
- src/subsystems/odometry/odometry_base.cpp

7.54 screen::OdometryPage Class Reference

a page that shows odometry position and rotation and a map (if an sd card with the file is on)

#include <screen.h>

Inheritance diagram for screen::OdometryPage:

Collaboration diagram for screen::OdometryPage:

Public Member Functions

- OdometryPage (OdometryBase &odom, double robot_width, double robot_height, bool do_trail)

 Create an odometry trail. Make sure odometry is initilized before now.
- void update (bool was_pressed, int x, int y) override
- void draw (vex::brain::lcd &, bool first_draw, unsigned int frame_number) override

7.54.1 Detailed Description

a page that shows odometry position and rotation and a map (if an sd card with the file is on)

7.54.2 Constructor & Destructor Documentation

7.54.2.1 OdometryPage()

```
screen::OdometryPage::OdometryPage (
    OdometryBase & odom,
    double robot_width,
    double robot_height,
    bool do_trail )
```

Create an odometry trail. Make sure odometry is initilized before now.

Parameters

odom	the odometry system to monitor
robot_width	the width (side to side) of the robot in inches. Used for visualization
robot_height	the robot_height (front to back) of the robot in inches. Used for visualization
do_trail	whether or not to calculate and draw the trail. Drawing and storing takes a very <i>slight</i> extra amount of processing power

7.54.3 Member Function Documentation

7.54.3.1 draw()

See also

Page::draw

Reimplemented from screen::Page.

7.54.3.2 update()

```
void screen::OdometryPage::update (
          bool was_pressed,
          int x,
          int y ) [override], [virtual]
```

See also

Page::update

Reimplemented from screen::Page.

The documentation for this class was generated from the following files:

- include/subsystems/screen.h
- src/subsystems/screen.cpp

7.55 OdometryTank Class Reference

#include <odometry_tank.h>

Inheritance diagram for OdometryTank:

Collaboration diagram for OdometryTank:

Public Member Functions

- OdometryTank (CustomEncoder &left_custom_enc, CustomEncoder &right_custom_enc, robot_specs_t &config, vex::inertial *imu=NULL, bool is_async=true)
- pose_t update () override
- void set_position (const pose_t &newpos=zero_pos) override

Public Member Functions inherited from OdometryBase

- OdometryBase (bool is async)
- pose_t get_position (void)
- AutoCommand * SetPositionCmd (const pose t &newpos=zero pos)
- void end_async ()
- double get_speed ()
- double get accel ()
- double get_angular_speed_deg ()
- double get_angular_accel_deg ()

Additional Inherited Members

Static Public Member Functions inherited from OdometryBase

- static int background_task (void *ptr)
- static double pos_diff (pose_t start_pos, pose_t end_pos)
- static double rot_diff (pose_t pos1, pose_t pos2)
- static double smallest_angle (double start_deg, double end_deg)

Public Attributes inherited from OdometryBase

bool end_task = false
 end_task is true if we instruct the odometry thread to shut down

Static Public Attributes inherited from OdometryBase

• static constexpr pose t zero pos = {.x=0.0L, .y=0.0L, .rot=90.0L}

Protected Attributes inherited from OdometryBase

- vex::task * handle
- vex::mutex mut
- pose_t current_pos
- double speed
- double accel
- · double ang_speed_deg
- · double ang accel deg

7.55.1 Detailed Description

OdometryTank defines an odometry system for a tank drivetrain This requires encoders in the same orientation as the drive wheels Odometry is a "start and forget" subsystem, which means once it's created and configured, it will constantly run in the background and track the robot's X, Y and rotation coordinates.

7.55.2 Constructor & Destructor Documentation

7.55.2.1 OdometryTank() [1/3]

```
OdometryTank::OdometryTank (
    vex::motor_group & left_side,
    vex::motor_group & right_side,
    robot_specs_t & config,
    vex::inertial * imu = NULL,
    bool is_async = true )
```

Initialize the Odometry module, calculating position from the drive motors.

Parameters

left_side	The left motors
right_side	The right motors
config	the specifications that supply the odometry with descriptions of the robot. See robot_specs_t for what is contained
imu	The robot's inertial sensor. If not included, rotation is calculated from the encoders.
is_async	If true, position will be updated in the background continuously. If false, the programmer will have to manually call update().

7.55.2.2 OdometryTank() [2/3]

Initialize the Odometry module, calculating position from the drive motors.

Parameters

left_custom_enc	The left custom encoder
right_custom_enc	The right custom encoder
config	the specifications that supply the odometry with descriptions of the robot. See robot_specs_t for what is contained
imu	The robot's inertial sensor. If not included, rotation is calculated from the encoders.
is_async	If true, position will be updated in the background continuously. If false, the programmer will have to manually call update().

7.55.2.3 OdometryTank() [3/3]

```
OdometryTank::OdometryTank (
    vex::encoder & left_vex_enc,
    vex::encoder & right_vex_enc,
    robot_specs_t & config,
    vex::inertial * imu = NULL,
    bool is_async = true )
```

Initialize the Odometry module, calculating position from the drive motors.

Parameters

left_vex_enc	The left vex encoder
right_vex_enc	The right vex encoder
config	the specifications that supply the odometry with descriptions of the robot. See robot_specs_t for what is contained
imu	The robot's inertial sensor. If not included, rotation is calculated from the encoders.
is_async	If true, position will be updated in the background continuously. If false, the programmer will have to manually call update().

7.55.3 Member Function Documentation

7.55.3.1 set_position()

set_position tells the odometry to place itself at a position

Parameters

newpos	the position the odometry will take	
--------	-------------------------------------	--

Resets the position and rotational data to the input.

Reimplemented from OdometryBase.

7.55.3.2 update()

```
pose_t OdometryTank::update ( ) [override], [virtual]
```

Update the current position on the field based on the sensors

Returns

the position that odometry has calculated itself to be at

Update, store and return the current position of the robot. Only use if not initializing with a separate thread. Implements OdometryBase.

The documentation for this class was generated from the following files:

- include/subsystems/odometry/odometry tank.h
- src/subsystems/odometry/odometry_tank.cpp

7.56 OdomSetPosition Class Reference

```
#include <drive_commands.h>
```

Inheritance diagram for OdomSetPosition:

Collaboration diagram for OdomSetPosition:

Public Member Functions

- OdomSetPosition (OdometryBase &odom, const pose_t &newpos=OdometryBase::zero_pos)
- bool run () override

Public Member Functions inherited from AutoCommand

- virtual void on timeout ()
- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default_timeout = 10.0

7.56.1 Detailed Description

AutoCommand wrapper class for the set_position function in the Odometry class

7.56.2 Constructor & Destructor Documentation

7.56.2.1 OdomSetPosition()

```
OdomSetPosition::OdomSetPosition (
          OdometryBase & odom,
          const pose_t & newpos = OdometryBase::zero_pos )
```

constructs a new OdomSetPosition command

Parameters

odom	the odometry system we are setting
newpos	the position we are telling the odometry to take. defaults to $(0, 0)$, angle = 90

Construct an Odometry set pos

Parameters

odom	the odometry system we are setting
newpos	the now position to set the odometry to

7.56.3 Member Function Documentation

7.56.3.1 run()

```
bool OdomSetPosition::run ( ) [override], [virtual]
```

Run set_position Overrides run from AutoCommand

Returns

true when execution is complete, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/drive_commands.h
- src/utils/command_structure/drive_commands.cpp

7.57 OrCondition Class Reference

Inheritance diagram for OrCondition:

Collaboration diagram for OrCondition:

Public Member Functions

- OrCondition (Condition *A, Condition *B)
- bool test () override

Public Member Functions inherited from Condition

```
Condition * Or (Condition *b)Condition * And (Condition *b)
```

7.57.1 Constructor & Destructor Documentation

7.57.1.1 OrCondition()

7.57.2 Member Function Documentation

7.57.2.1 test()

```
bool OrCondition::test ( ) [inline], [override], [virtual]
Implements Condition.
```

The documentation for this class was generated from the following file:

• src/utils/command_structure/auto_command.cpp

7.58 screen::Page Class Reference

Page describes one part of the screen slideshow.

#include <screen.h>

Inheritance diagram for screen::Page:

Public Member Functions

- virtual void update (bool was_pressed, int x, int y)
 collect data, respond to screen input, do fast things (runs at 50hz even if you're not focused on this Page (only drawn page gets touch updates))
- virtual void draw (vex::brain::lcd &screen, bool first_draw, unsigned int frame_number)
 draw stored data to the screen (runs at 10 hz and only runs if this page is in front)

7.58.1 Detailed Description

Page describes one part of the screen slideshow.

7.58.2 Member Function Documentation

7.58.2.1 draw()

draw stored data to the screen (runs at 10 hz and only runs if this page is in front)

Parameters

first_draw	true if we just switched to this page	
frame_number	frame of drawing we are on (basically an animation tick)]

Reimplemented in AutoChooser, screen::WidgetPage, screen::StatsPage, screen::OdometryPage, screen::FunctionPage, screen::PIDPage, MotionControllerPage, and FlywheelPage.

7.58.2.2 update()

collect data, respond to screen input, do fast things (runs at 50hz even if you're not focused on this Page (only drawn page gets touch updates))

Parameters

was_pressed	true if the screen has been pressed
X	x position of screen press (if the screen was pressed)
У	y position of screen press (if the screen was pressed)

Reimplemented in AutoChooser, screen::WidgetPage, screen::StatsPage, screen::OdometryPage, screen::FunctionPage, screen::PIDPage, MotionControllerPage, and FlywheelPage.

The documentation for this class was generated from the following file:

• include/subsystems/screen.h

7.59 Parallel Class Reference

Parallel runs multiple commands in parallel and waits for all to finish before continuing. if none finish before this command's timeout, it will call on timeout on all children continue.

```
#include <auto_command.h>
```

Inheritance diagram for Parallel:

Collaboration diagram for Parallel:

Public Member Functions

- Parallel (std::initializer_list< AutoCommand * > cmds)
- bool run () override
- void on_timeout () override

Public Member Functions inherited from AutoCommand

- AutoCommand * withTimeout (double t seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default_timeout = 10.0

7.59.1 Detailed Description

Parallel runs multiple commands in parallel and waits for all to finish before continuing. if none finish before this command's timeout, it will call on_timeout on all children continue.

7.59.2 Constructor & Destructor Documentation

7.59.2.1 Parallel()

```
Parallel::Parallel ( std::initializer\_list < AutoCommand * > cmds \;)
```

7.59.3 Member Function Documentation

7.59.3.1 on_timeout()

```
void Parallel::on_timeout ( ) [override], [virtual]
```

What to do if we timeout instead of finishing. timeout is specified by the timeout seconds in the constructor

Reimplemented from AutoCommand.

7.59.3.2 run()

```
bool Parallel::run ( ) [override], [virtual]
```

Executes the command Overridden by child classes

Returns

true when the command is finished, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/auto_command.h
- src/utils/command_structure/auto_command.cpp

7.60 parallel_runner_info Struct Reference

Collaboration diagram for parallel_runner_info:

Public Attributes

- int index
- std::vector< vex::task * > * runners
- AutoCommand * cmd

7.60.1 Member Data Documentation

7.60.1.1 cmd

AutoCommand* parallel_runner_info::cmd

7.60.1.2 index

int parallel_runner_info::index

7.60.1.3 runners

std::vector<vex::task *>* parallel_runner_info::runners

The documentation for this struct was generated from the following file:

• src/utils/command_structure/auto_command.cpp

7.61 PurePursuit::Path Class Reference

```
#include <pure_pursuit.h>
```

Public Member Functions

```
    Path (std::vector< point_t > points, double radius)
```

```
• std::vector< point_t > get_points ()
```

- double get radius ()
- bool is_valid ()

7.61.1 Detailed Description

Wrapper for a vector of points, checking if any of the points are too close for pure pursuit

7.61.2 Constructor & Destructor Documentation

7.61.2.1 Path()

Create a Path

Parameters

points	the points that make up the path
radius	the lookahead radius for pure pursuit

7.61.3 Member Function Documentation

7.61.3.1 get_points()

```
std::vector< point_t > PurePursuit::Path::get_points ( )
```

Get the points associated with this Path

7.61.3.2 get_radius()

```
double PurePursuit::Path::get_radius ( )
```

Get the radius associated with this Path

7.62 PID Class Reference 155

7.61.3.3 is_valid()

bool PurePursuit::Path::is_valid ()

Get whether this path will behave as expected

The documentation for this class was generated from the following files:

- include/utils/pure_pursuit.h
- src/utils/pure_pursuit.cpp

7.62 PID Class Reference

#include <pid.h>

Inheritance diagram for PID:

Collaboration diagram for PID:

Classes

struct pid_config_t

Public Types

• enum ERROR_TYPE { LINEAR , ANGULAR }

Public Member Functions

- PID (pid_config_t &config)
- void init (double start_pt, double set_pt, double start_vel=0, double end_vel=0) override
- double update (double sensor_val) override
- · double get sensor val () const

gets the sensor value that we were last updated with

- double get () override
- · void set_limits (double lower, double upper) override
- bool is_on_target () override
- void reset ()
- double get error ()
- · double get_target () const
- void set_target (double target)

Public Attributes

· pid_config_t & config

7.62.1 Detailed Description

PID Class

Defines a standard feedback loop using the constants kP, kI, kD, deadband, and on_target_time. The formula is:

```
out = kP*error + kI*integral(d Error) + kD*(dError/dt)
```

The PID object will determine it is "on target" when the error is within the deadband, for a duration of on_target_time

Author

Ryan McGee

Date

4/3/2020

7.62.2 Member Enumeration Documentation

7.62.2.1 ERROR TYPE

```
enum PID::ERROR_TYPE
```

An enum to distinguish between a linear and angular caluclation of PID error.

7.62 PID Class Reference 157

Enumerator

LINEAR	
ANGULAR	

7.62.3 Constructor & Destructor Documentation

7.62.3.1 PID()

Create the PID object

Parameters

r

Create the PID object

7.62.4 Member Function Documentation

7.62.4.1 get()

```
double PID::get ( ) [override], [virtual]
```

Gets the current PID out value, from when update() was last run

Returns

the Out value of the controller (voltage, RPM, whatever the PID controller is controlling)

Gets the current PID out value, from when update() was last run

Implements Feedback.

7.62.4.2 get_error()

```
double PID::get_error ( )
```

Get the delta between the current sensor data and the target

Returns

the error calculated. how it is calculated depends on error_method specified in pid_config_t

Get the delta between the current sensor data and the target

7.62.4.3 get_sensor_val()

```
double PID::get_sensor_val ( ) const
```

gets the sensor value that we were last updated with

Returns

sensor_val

7.62.4.4 get_target()

```
double PID::get_target ( ) const
```

Get the PID's target

Returns

the target the PID controller is trying to achieve

7.62.4.5 init()

Inherited from Feedback for interoperability. Update the setpoint and reset integral accumulation

start_pt can be safely ignored in this feedback controller

Parameters

start_pt	<pre>commpletely ignored for PID. necessary to satisfy Feedback base</pre>	
set_pt	set_pt sets the target of the PID controller	
start_vel	start_vel completely ignored for PID. necessary to satisfy Feedback base	
end_vel	sets the target end velocity of the PID controller	

Implements Feedback.

7.62.4.6 is_on_target()

```
bool PID::is_on_target ( ) [override], [virtual]
```

Checks if the PID controller is on target.

7.62 PID Class Reference 159

Returns

true if the loop is within [deadband] for [on_target_time] seconds

Returns true if the loop is within [deadband] for [on_target_time] seconds

Implements Feedback.

7.62.4.7 reset()

```
void PID::reset ( )
```

Reset the PID loop by resetting time since 0 and accumulated error.

7.62.4.8 set_limits()

Set the limits on the PID out. The PID out will "clip" itself to be between the limits.

Parameters

lower	the lower limit. the PID controller will never command the output go below lower
upper	the upper limit. the PID controller will never command the output go higher than upper

Set the limits on the PID out. The PID out will "clip" itself to be between the limits.

Implements Feedback.

7.62.4.9 set_target()

Set the target for the PID loop, where the robot is trying to end up

Parameters

```
target the sensor reading we would like to achieve
```

Set the target for the PID loop, where the robot is trying to end up

7.62.4.10 update()

Update the PID loop by taking the time difference from last update, and running the PID formula with the new sensor data

Parameters

sensor_val the distance, angle, encoder position or whatever it is we are measuring

Returns

the new output. What would be returned by PID::get()

Implements Feedback.

7.62.5 Member Data Documentation

7.62.5.1 config

```
pid_config_t& PID::config
```

configuration struct for this controller. see pid_config_t for information about what this contains

The documentation for this class was generated from the following files:

- include/utils/controls/pid.h
- src/utils/controls/pid.cpp

7.63 PID::pid_config_t Struct Reference

```
#include <pid.h>
```

Public Attributes

double p

proportional coeffecient p * error()

· double i

integral coeffecient i * integral(error)

• double d

derivitave coeffecient d * derivative(error)

· double deadband

at what threshold are we close enough to be finished

- · double on target time
- ERROR_TYPE error_method

7.63.1 Detailed Description

pid_config_t holds the configuration parameters for a pid controller In addition to the constant of proportional, integral and derivative, these parameters include:

- · deadband -
- on_target_time for how long do we have to be at the target to stop As well, pid_config_t holds an error type
 which determines whether errors should be calculated as if the sensor position is a measure of distance or
 an angle

7.63.2 Member Data Documentation

7.63.2.1 d

```
double PID::pid_config_t::d
```

derivitave coeffecient d * derivative(error)

7.63.2.2 deadband

```
double PID::pid_config_t::deadband
```

at what threshold are we close enough to be finished

7.63.2.3 error_method

```
ERROR_TYPE PID::pid_config_t::error_method
```

Linear or angular. wheter to do error as a simple subtraction or to wrap

7.63.2.4 i

```
double PID::pid_config_t::i
integral coeffecient i * integral(error)
```

7.63.2.5 on_target_time

```
double PID::pid_config_t::on_target_time
```

the time in seconds that we have to be on target for to say we are officially at the target

7.63.2.6 p

double PID::pid_config_t::p

proportional coeffecient p * error()

The documentation for this struct was generated from the following file:

• include/utils/controls/pid.h

7.64 PIDFF Class Reference

#include <pidff.h>

Inheritance diagram for PIDFF:

Collaboration diagram for PIDFF:

7.64 PIDFF Class Reference 163

Public Member Functions

- PIDFF (PID::pid config t &pid cfg, FeedForward::ff config t &ff cfg)
- void init (double start_pt, double set_pt, double start_vel, double end_vel) override
- void set_target (double set_pt)
- · double get_target () const
- double get_sensor_val () const
- double update (double val) override
- double update (double val, double vel_setpt, double a_setpt=0)
- double get () override
- void set_limits (double lower, double upper) override
- · bool is on target () override
- void reset ()

Public Attributes

• PID pid

7.64.1 Constructor & Destructor Documentation

7.64.1.1 PIDFF()

7.64.2 Member Function Documentation

```
7.64.2.1 get()
```

```
double PIDFF::get ( ) [override], [virtual]
```

Returns

the last saved result from the feedback controller

Implements Feedback.

7.64.2.2 get_sensor_val()

```
double PIDFF::get_sensor_val ( ) const
```

7.64.2.3 get_target()

```
double PIDFF::get_target ( ) const
```

7.64.2.4 init()

Initialize the feedback controller for a movement

Parameters

start_pt	the current sensor value	
set_pt	set_pt where the sensor value should be	
start_vel	the current rate of change of the sensor value	
end_vel	the desired ending rate of change of the sensor value	

Initialize the feedback controller for a movement

Parameters

start⊷	the current sensor value
_pt	
set_pt	where the sensor value should be

Implements Feedback.

7.64.2.5 is_on_target()

```
bool PIDFF::is_on_target ( ) [override], [virtual]
```

Returns

true if the feedback controller has reached it's setpoint

Implements Feedback.

7.64.2.6 reset()

```
void PIDFF::reset ( )
```

7.64.2.7 set_limits()

Clamp the upper and lower limits of the output. If both are 0, no limits should be applied.

Parameters

lower	Upper limit
upper	Lower limit

Implements Feedback.

7.64.2.8 set_target()

Set the target of the PID loop

Parameters

set⊷	Setpoint / target value
_pt	

7.64.2.9 update() [1/2]

Iterate the feedback loop once with an updated sensor value. Only kS for feedfoward will be applied.

Parameters

```
val value from the sensor
```

Returns

feedback loop result

Implements Feedback.

7.64.2.10 update() [2/2]

Iterate the feedback loop once with an updated sensor value

Parameters

val	value from the sensor
vel_setpt	Velocity for feedforward
a_setpt	Acceleration for feedfoward

Returns

feedback loop result

7.64.3 Member Data Documentation

7.64.3.1 pid

PID PIDFF::pid

The documentation for this class was generated from the following files:

- include/utils/controls/pidff.h
- src/utils/controls/pidff.cpp

7.65 screen::PIDPage Class Reference

PIDPage provides a way to tune a pid controller on the screen.

```
#include <screen.h>
```

Inheritance diagram for screen::PIDPage:

Collaboration diagram for screen::PIDPage:

Public Member Functions

- PIDPage (PID &pid, std::string name, std::function < void(void) > onchange=[]() {})
 Create a PIDPage.
- PIDPage (PIDFF &pidff, std::string name, std::function < void(void) > onchange=[]() {})
- void update (bool was_pressed, int x, int y) override
- void draw (vex::brain::lcd &, bool first_draw, unsigned int frame_number) override

7.65.1 Detailed Description

PIDPage provides a way to tune a pid controller on the screen.

7.65.2 Constructor & Destructor Documentation

7.65.2.1 PIDPage() [1/2]

```
screen::PIDPage::PIDPage (
          PID & pid,
          std::string name,
          std::function< void(void)> onchange = []() {} )
```

Create a PIDPage.

Parameters

pid	the pid controller we're changing	
name	a name to recognize this pid controller if we've got multiple pid screens	
onchange	a function that is called when a tuning parameter is changed. If you need to update stuff on that change register a handler here	

7.65.2.2 PIDPage() [2/2]

7.65.3 Member Function Documentation

7.65.3.1 draw()

See also

Page::draw

Reimplemented from screen::Page.

7.65.3.2 update()

```
void screen::PIDPage::update (
          bool was_pressed,
          int x,
          int y ) [override], [virtual]
```

See also

Page::update

Reimplemented from screen::Page.

The documentation for this class was generated from the following files:

- include/subsystems/screen.h
- src/subsystems/screen.cpp

7.66 point_t Struct Reference

```
#include <geometry.h>
```

Public Member Functions

```
• double dist (const point_t other) const
```

- point_t operator+ (const point_t &other) const
- point t operator- (const point t &other) const
- point_t operator* (double s) const
- point_t operator/ (double s) const
- point_t operator- () const
- point_t operator+ () const
- bool operator== (const point_t &rhs)

Public Attributes

```
• double x
```

the x position in space

double y

the y position in space

7.66.1 Detailed Description

Data structure representing an X,Y coordinate

7.66.2 Member Function Documentation

7.66.2.1 dist()

dist calculates the euclidian distance between this point and another point using the pythagorean theorem

Parameters

other	the point to measure the distance from
-------	--

Returns

the euclidian distance between this and other

7.66.2.2 operator*()

7.66.2.3 operator+() [1/2]

```
point_t point_t::operator+ ( ) const [inline]
```

7.66.2.4 operator+() [2/2]

Vector2D addition operation on points

Parameters

to add on to this
to add on

Returns

```
this + other (this.x + other.x, this.y + other.y)
```

7.66.2.5 operator-() [1/2]

```
point_t point_t::operator- ( ) const [inline]
```

7.66.2.6 operator-() [2/2]

Vector2D subtraction operation on points

Parameters

```
other the point_t to subtract from this
```

Returns

```
this - other (this.x - other.x, this.y - other.y)
```

7.66.2.7 operator/()

7.66.2.8 operator==()

7.66.3 Member Data Documentation

7.66.3.1 x

```
double point_t::x
```

the x position in space

7.66.3.2 y

```
double point_t::y
```

the y position in space

The documentation for this struct was generated from the following file:

• include/utils/geometry.h

7.67 pose_t Struct Reference

```
#include <geometry.h>
```

Public Member Functions

point_t get_point ()

Public Attributes

```
 double x
```

x position in the world

• double y

y position in the world

• double rot

rotation in the world

7.67.1 Detailed Description

Describes a single position and rotation

7.67.2 Member Function Documentation

7.67.2.1 get_point()

```
point_t pose_t::get_point ( ) [inline]
```

7.67.3 Member Data Documentation

7.67.3.1 rot

```
double pose_t::rot
```

rotation in the world

7.67.3.2 x

```
double pose_t::x
```

x position in the world

7.67.3.3 y

```
double pose_t::y
```

y position in the world

The documentation for this struct was generated from the following file:

• include/utils/geometry.h

7.68 PurePursuitCommand Class Reference

#include <drive_commands.h>

Inheritance diagram for PurePursuitCommand:

Collaboration diagram for PurePursuitCommand:

Public Member Functions

- PurePursuitCommand (TankDrive &drive_sys, Feedback &feedback, PurePursuit::Path path, directionType dir, double max_speed=1, double end_speed=0)
- bool run () override
- void on_timeout () override

Public Member Functions inherited from AutoCommand

- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default timeout = 10.0

7.68.1 Detailed Description

Autocommand wrapper class for pure pursuit function in the TankDrive class

7.68.2 Constructor & Destructor Documentation

7.68.2.1 PurePursuitCommand()

Construct a Pure Pursuit AutoCommand

Parameters

path	The list of coordinates to follow, in order
dir	Run the bot forwards or backwards
feedback	The feedback controller determining speed
max_speed	Limit the speed of the robot (for pid / pidff feedbacks)

7.68.3 Member Function Documentation

7.68.3.1 on_timeout()

```
void PurePursuitCommand::on_timeout ( ) [override], [virtual]
```

Reset the drive system when it times out

Reimplemented from AutoCommand.

7.68.3.2 run()

bool PurePursuitCommand::run () [override], [virtual]

Direct call to TankDrive::pure_pursuit

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/drive_commands.h
- src/utils/command_structure/drive_commands.cpp

7.69 Rect Struct Reference

#include <geometry.h>

Collaboration diagram for Rect:

Public Member Functions

- point_t dimensions () const
- point_t center () const
- · double width () const
- double height () const
- bool contains (point_t p) const

Static Public Member Functions

• static Rect from_min_and_size (point_t min, point_t size)

Public Attributes

- point_t min
- point_t max

7.69 Rect Struct Reference 175

7.69.1 Member Function Documentation

```
7.69.1.1 center()
point_t Rect::center ( ) const [inline]
7.69.1.2 contains()
bool Rect::contains (
            point_t p ) const [inline]
7.69.1.3 dimensions()
point_t Rect::dimensions ( ) const [inline]
7.69.1.4 from_min_and_size()
static Rect Rect::from_min_and_size (
            point_t min,
            point_t size ) [inline], [static]
7.69.1.5 height()
double Rect::height ( ) const [inline]
7.69.1.6 width()
double Rect::width ( ) const [inline]
```

7.69.2 Member Data Documentation

7.69.2.1 max

```
point_t Rect::max
```

7.69.2.2 min

```
point_t Rect::min
```

The documentation for this struct was generated from the following file:

• include/utils/geometry.h

7.70 RepeatUntil Class Reference

#include <auto_command.h>

Inheritance diagram for RepeatUntil:

Collaboration diagram for RepeatUntil:

Public Member Functions

- RepeatUntil (InOrder cmds, size_t repeats)
 - RepeatUntil that runs a fixed number of times.
- RepeatUntil (InOrder cmds, Condition *true_to_end)
 - RepeatUntil the condition.
- bool run () override
- void on_timeout () override

Public Member Functions inherited from AutoCommand

- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

```
• double timeout_seconds = default_timeout
```

```
Condition * true_to_end = nullptr
```

Static Public Attributes inherited from AutoCommand

• static constexpr double default_timeout = 10.0

7.70.1 Constructor & Destructor Documentation

7.70.1.1 RepeatUntil() [1/2]

RepeatUntil that runs a fixed number of times.

Parameters

cmds	the cmds to repeat
repeats	the number of repeats to do

7.70.1.2 RepeatUntil() [2/2]

RepeatUntil the condition.

Parameters

cmds	the cmds to run
true_to_end	we will repeat until true_or_end.test() returns true

7.70.2 Member Function Documentation

7.70.2.1 on_timeout()

```
void RepeatUntil::on_timeout ( ) [override], [virtual]
```

What to do if we timeout instead of finishing. timeout is specified by the timeout seconds in the constructor

Reimplemented from AutoCommand.

7.70.2.2 run()

```
bool RepeatUntil::run ( ) [override], [virtual]
```

Executes the command Overridden by child classes

Returns

true when the command is finished, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/auto_command.h
- src/utils/command_structure/auto_command.cpp

7.71 robot_specs_t Struct Reference

```
#include <robot_specs.h>
```

Collaboration diagram for robot_specs_t:

Public Attributes

· double robot_radius

if you were to draw a circle with this radius, the robot would be entirely contained within it

· double odom_wheel_diam

the diameter of the wheels used for

double odom_gear_ratio

the ratio of the odometry wheel to the encoder reading odometry data

· double dist_between_wheels

the distance between centers of the central drive wheels

· double drive correction cutoff

the distance at which to stop trying to turn towards the target. If we are less than this value, we can continue driving forward to minimize our distance but will not try to spin around to point directly at the target

Feedback * drive feedback

the default feedback for autonomous driving

• Feedback * turn feedback

the defualt feedback for autonomous turning

PID::pid_config_t correction_pid

the pid controller to keep the robot driving in as straight a line as possible

7.71.1 Detailed Description

Main robot characterization struct. This will be passed to all the major subsystems that require info about the robot. All distance measurements are in inches.

7.71.2 Member Data Documentation

7.71.2.1 correction_pid

```
PID::pid_config_t robot_specs_t::correction_pid
```

the pid controller to keep the robot driving in as straight a line as possible

7.71.2.2 dist_between_wheels

```
double robot_specs_t::dist_between_wheels
```

the distance between centers of the central drive wheels

7.71.2.3 drive_correction_cutoff

```
\verb|double robot_specs_t:: | drive_correction_cutoff|
```

the distance at which to stop trying to turn towards the target. If we are less than this value, we can continue driving forward to minimize our distance but will not try to spin around to point directly at the target

7.71.2.4 drive_feedback

```
Feedback* robot_specs_t::drive_feedback
```

the default feedback for autonomous driving

7.71.2.5 odom_gear_ratio

```
double robot_specs_t::odom_gear_ratio
```

the ratio of the odometry wheel to the encoder reading odometry data

7.71.2.6 odom wheel diam

```
double robot_specs_t::odom_wheel_diam
```

the diameter of the wheels used for

7.71.2.7 robot_radius

```
double robot_specs_t::robot_radius
```

if you were to draw a circle with this radius, the robot would be entirely contained within it

7.71.2.8 turn_feedback

```
Feedback* robot_specs_t::turn_feedback
```

the defualt feedback for autonomous turning

The documentation for this struct was generated from the following file:

• include/robot_specs.h

7.72 screen::ScreenData Struct Reference

The ScreenData class holds the data that will be passed to the screen thread you probably shouldnt have to use it.

Public Member Functions

• ScreenData (const std::vector< Page * > &m_pages, int m_page, vex::brain::lcd &m_screen)

Public Attributes

- std::vector< Page * > pages
- int page = 0
- vex::brain::lcd screen

7.72.1 Detailed Description

The ScreenData class holds the data that will be passed to the screen thread you probably shouldnt have to use it.

7.72.2 Constructor & Destructor Documentation

7.72.2.1 ScreenData()

7.72.3 Member Data Documentation

7.72.3.1 page

```
int screen::ScreenData::page = 0
```

7.72.3.2 pages

```
std::vector<Page *> screen::ScreenData::pages
```

7.72.3.3 screen

```
vex::brain::lcd screen::ScreenData::screen
```

The documentation for this struct was generated from the following file:

• src/subsystems/screen.cpp

7.73 screen::ScreenRect Struct Reference

```
#include <screen.h>
```

Public Attributes

- uint32_t x1
- uint32_t y1
- uint32_t x2
- uint32_t y2

7.73.1 Member Data Documentation

7.73.1.1 x1

```
uint32_t screen::ScreenRect::x1
```

7.73.1.2 x2

uint32_t screen::ScreenRect::x2

7.73.1.3 y1

uint32_t screen::ScreenRect::y1

7.73.1.4 y2

```
uint32_t screen::ScreenRect::y2
```

The documentation for this struct was generated from the following file:

· include/subsystems/screen.h

7.74 Serializer Class Reference

Serializes Arbitrary data to a file on the SD Card.

```
#include <serializer.h>
```

Public Member Functions

∼Serializer ()

Save and close upon destruction (bc of vex, this doesnt always get called when the program ends. To be sure, call save_to_disk)

Serializer (const std::string &filename, bool flush_always=true)

create a Serializer

• void save_to_disk () const

saves current Serializer state to disk

void set int (const std::string &name, int i)

Setters - not saved until save_to_disk is called.

void set_bool (const std::string &name, bool b)

sets a bool by the name of name to b. If flush_always == true, this will save to the sd card

void set_double (const std::string &name, double d)

sets a double by the name of name to d. If flush_always == true, this will save to the sd card

void set_string (const std::string &name, std::string str)

sets a string by the name of name to s. If flush_always == true, this will save to the sd card

int int_or (const std::string &name, int otherwise)

gets a value stored in the serializer. If not found, sets the value to otherwise

• bool bool or (const std::string &name, bool otherwise)

gets a value stored in the serializer. If not, sets the value to otherwise

• double double_or (const std::string &name, double otherwise)

gets a value stored in the serializer. If not, sets the value to otherwise

• std::string string_or (const std::string &name, std::string otherwise)

gets a value stored in the serializer. If not, sets the value to otherwise

7.74.1 Detailed Description

Serializes Arbitrary data to a file on the SD Card.

7.74.2 Constructor & Destructor Documentation

7.74.2.1 ∼Serializer()

```
Serializer::~Serializer ( ) [inline]
```

Save and close upon destruction (bc of vex, this doesnt always get called when the program ends. To be sure, call save_to_disk)

7.74.2.2 Serializer()

create a Serializer

Parameters

filename	the file to read from. If filename does not exist we will create that file
flush_always	If true, after every write flush to a file. If false, you are responsible for calling save_to_disk

7.74.3 Member Function Documentation

7.74.3.1 bool_or()

gets a value stored in the serializer. If not, sets the value to otherwise

Parameters

name	name of value
otherwise	value if the name is not specified

Returns

the value if found or otherwise

7.74.3.2 double_or()

gets a value stored in the serializer. If not, sets the value to otherwise

Parameters

name	name of value
otherwise	value if the name is not specified

Returns

the value if found or otherwise

7.74.3.3 int_or()

gets a value stored in the serializer. If not found, sets the value to otherwise

Getters Return value if it exists in the serializer

Parameters

name	name of value
otherwise	value if the name is not specified

Returns

the value if found or otherwise

7.74.3.4 save_to_disk()

```
void Serializer::save_to_disk ( ) const
```

saves current Serializer state to disk

forms data bytes then saves to filename this was openned with

7.74.3.5 set_bool()

sets a bool by the name of name to b. If flush_always == true, this will save to the sd card

Parameters

name	name of bool
b	value of bool

7.74.3.6 set_double()

sets a double by the name of name to d. If flush_always == true, this will save to the sd card

Parameters

name	name of double
d	value of double

7.74.3.7 set_int()

Setters - not saved until save_to_disk is called.

sets an integer by the name of name to i. If flush_always == true, this will save to the sd card

Parameters

name	name of integer
i	value of integer

7.74.3.8 set_string()

sets a string by the name of name to s. If flush_always == true, this will save to the sd card

Parameters

name	name of string
i	value of string

7.74.3.9 string_or()

gets a value stored in the serializer. If not, sets the value to otherwise

Parameters

name	name of value
otherwise	value if the name is not specified

Returns

the value if found or otherwise

The documentation for this class was generated from the following files:

- include/utils/serializer.h
- src/utils/serializer.cpp

7.75 screen::SizedWidget Struct Reference

```
#include <screen.h>
```

Collaboration diagram for screen::SizedWidget:

Public Attributes

- · int size
- WidgetConfig & widget

7.75.1 Member Data Documentation

7.75.1.1 size

int screen::SizedWidget::size

7.75.1.2 widget

WidgetConfig& screen::SizedWidget::widget

The documentation for this struct was generated from the following file:

• include/subsystems/screen.h

7.76 SliderCfg Struct Reference

#include <layout.h>

Public Attributes

- · double & val
- double min
- double max

7.76.1 Member Data Documentation

7.76.1.1 max

double SliderCfg::max

7.76.1.2 min

double SliderCfg::min

7.76.1.3 val

double& SliderCfg::val

The documentation for this struct was generated from the following file:

• include/subsystems/layout.h

7.77 screen::SliderConfig Struct Reference

#include <screen.h>

Public Attributes

- · double & val
- · double low
- · double high

7.77.1 Member Data Documentation

7.77.1.1 high

double screen::SliderConfig::high

7.77.1.2 low

double screen::SliderConfig::low

7.77.1.3 val

double& screen::SliderConfig::val

The documentation for this struct was generated from the following file:

• include/subsystems/screen.h

7.78 screen::SliderWidget Class Reference

Widget that updates a double value. Updates by reference so watch out for race conditions cuz the screen stuff lives on another thread.

```
#include <screen.h>
```

Public Member Functions

• SliderWidget (double &val, double low, double high, Rect rect, std::string name)

Creates a slider widget.

bool update (bool was_pressed, int x, int y)

responds to user input

void draw (vex::brain::lcd &, bool first_draw, unsigned int frame_number)

Page::draws the slide to the screen

7.78.1 Detailed Description

Widget that updates a double value. Updates by reference so watch out for race conditions cuz the screen stuff lives on another thread.

7.78.2 Constructor & Destructor Documentation

7.78.2.1 SliderWidget()

Creates a slider widget.

Parameters

val	reference to the value to modify
low	minimum value to go to
high	maximum value to go to
rect	rect to draw it
name	name of the value

7.78.3 Member Function Documentation

7.78.3.1 draw()

Page::draws the slide to the screen

7.78.3.2 update()

```
bool screen::SliderWidget::update (
          bool was_pressed,
          int x,
          int y)
```

responds to user input

was_pressed	if the screen is pressed
X Generated by Doxyge	x position if the screen was pressed
y	y position if the screen was pressed

Returns

true if the value updated

The documentation for this class was generated from the following files:

- include/subsystems/screen.h
- src/subsystems/screen.cpp

7.79 SpinRPMCommand Class Reference

#include <flywheel_commands.h>

Inheritance diagram for SpinRPMCommand:

Collaboration diagram for SpinRPMCommand:

Public Member Functions

- SpinRPMCommand (Flywheel &flywheel, int rpm)
- bool run () override

Public Member Functions inherited from AutoCommand

- virtual void on timeout ()
- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

```
• double timeout_seconds = default_timeout
```

• Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default_timeout = 10.0

7.79.1 Detailed Description

File: flywheel_commands.h Desc: [insert meaningful desc] AutoCommand wrapper class for the spin_rpm function in the Flywheel class

7.79.2 Constructor & Destructor Documentation

7.79.2.1 SpinRPMCommand()

Construct a SpinRPM Command

Parameters

flywheel	the flywheel sys to command
rpm	the rpm that we should spin at

File: flywheel_commands.cpp Desc: [insert meaningful desc]

7.79.3 Member Function Documentation

7.79.3.1 run()

```
bool SpinRPMCommand::run ( ) [override], [virtual]
```

Run spin_manual Overrides run from AutoCommand

Returns

true when execution is complete, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/flywheel_commands.h
- src/utils/command_structure/flywheel_commands.cpp

7.80 PurePursuit::spline Struct Reference

```
#include <pure_pursuit.h>
```

Public Member Functions

• double getY (double x)

Public Attributes

- double a
- double b
- double c
- double d
- double x_start
- double x_end

7.80.1 Detailed Description

Represents a piece of a cubic spline with $s(x) = a(x-xi)^3 + b(x-xi)^2 + c(x-xi) + d$ The x_start and x_end shows where the equation is valid.

7.80.2 Member Function Documentation

7.80.2.1 getY()

7.80.3 Member Data Documentation

7.80.3.1 a double PurePursuit::spline::a 7.80.3.2 b double PurePursuit::spline::b 7.80.3.3 c double PurePursuit::spline::c 7.80.3.4 d double PurePursuit::spline::d 7.80.3.5 x_end double PurePursuit::spline::x_end 7.80.3.6 x_start double PurePursuit::spline::x_start

The documentation for this struct was generated from the following file:

• include/utils/pure_pursuit.h

7.81 screen::StatsPage Class Reference

Draws motor stats and battery stats to the screen.

#include <screen.h>

Inheritance diagram for screen::StatsPage:

Collaboration diagram for screen::StatsPage:

Public Member Functions

- StatsPage (std::map< std::string, vex::motor & > motors)
 Creates a stats page.
- void update (bool was_pressed, int x, int y) override
- void draw (vex::brain::lcd &, bool first_draw, unsigned int frame_number) override

7.81.1 Detailed Description

Draws motor stats and battery stats to the screen.

7.81.2 Constructor & Destructor Documentation

7.81.2.1 StatsPage()

Creates a stats page.

Parameters

motors a map of string to motor that we want to draw on this page

7.81.3 Member Function Documentation

7.81.3.1 draw()

See also

Page::draw

Reimplemented from screen::Page.

7.81.3.2 update()

```
void screen::StatsPage::update (
          bool was_pressed,
          int x,
          int y ) [override], [virtual]
```

See also

Page::update

Reimplemented from screen::Page.

The documentation for this class was generated from the following files:

- include/subsystems/screen.h
- src/subsystems/screen.cpp

7.82 TakeBackHalf Class Reference

A velocity controller.

#include <take_back_half.h>

Inheritance diagram for TakeBackHalf:

Collaboration diagram for TakeBackHalf:

Public Member Functions

- TakeBackHalf (double TBH_gain, double first_cross_split, double on_target_threshold)
- void init (double start_pt, double set_pt, double, double)
- double update (double val) override
- double get () override
- void set_limits (double lower, double upper) override
- bool is_on_target () override

Public Attributes

- double TBH_gain
 - tuned parameter
- double first_cross_split

7.82.1 Detailed Description

A velocity controller.

Warning

If you try to use this as a position controller, it will fail.

7.82.2 Constructor & Destructor Documentation

7.82.2.1 TakeBackHalf()

7.82.3 Member Function Documentation

7.82.3.1 get()

```
double TakeBackHalf::get ( ) [override], [virtual]
```

Returns

the last saved result from the feedback controller

Implements Feedback.

7.82.3.2 init()

Initialize the feedback controller for a movement

Parameters

start_pt	the current sensor value	
set_pt	where the sensor value should be	
start_vel Movement starting velocity (IGNORED		
end_vel	Movement ending velocity (IGNORED)	

Implements Feedback.

7.82.3.3 is_on_target()

```
bool TakeBackHalf::is_on_target ( ) [override], [virtual]
```

Returns

true if the feedback controller has reached it's setpoint

Implements Feedback.

7.82.3.4 set_limits()

Clamp the upper and lower limits of the output. If both are 0, no limits should be applied.

Parameters

lower	Upper limit
upper	Lower limit

Implements Feedback.

7.82.3.5 update()

Iterate the feedback loop once with an updated sensor value

Parameters

```
val value from the sensor
```

Returns

feedback loop result

Implements Feedback.

7.82.4 Member Data Documentation

7.82.4.1 first_cross_split

double TakeBackHalf::first_cross_split

7.82.4.2 TBH_gain

```
double TakeBackHalf::TBH_gain
```

tuned parameter

The documentation for this class was generated from the following files:

- include/utils/controls/take back half.h
- src/utils/controls/take back half.cpp

7.83 TankDrive Class Reference

```
#include <tank_drive.h>
```

Public Types

enum class BrakeType { None , ZeroVelocity , Smart }

Public Member Functions

- TankDrive (motor_group &left_motors, motor_group &right_motors, robot_specs_t &config, OdometryBase *odom=NULL)
- AutoCommand * DriveToPointCmd (point_t pt, vex::directionType dir=vex::forward, double max_speed=1.0, double end_speed=0.0)
- AutoCommand * DriveToPointCmd (Feedback &fb, point_t pt, vex::directionType dir=vex::forward, double max speed=1.0, double end speed=0.0)
- AutoCommand * DriveForwardCmd (Feedback &fb, double dist, vex::directionType dir=vex::forward, double max speed=1.0, double end speed=0.0)
- AutoCommand * TurnToHeadingCmd (double heading, double max_speed=1.0, double end_speed=0.0)
- AutoCommand * TurnToHeadingCmd (Feedback &fb, double heading, double max_speed=1.0, double end
 _speed=0.0)
- AutoCommand * TurnDegreesCmd (double degrees, double max_speed=1.0, double start_speed=0.0)
- AutoCommand * TurnDegreesCmd (Feedback &fb, double degrees, double max_speed=1.0, double end_←
 speed=0.0)
- AutoCommand * PurePursuitCmd (PurePursuit::Path path, directionType dir, double max_speed=1, double end speed=0)
- AutoCommand * PurePursuitCmd (Feedback &feedback, PurePursuit::Path path, directionType dir, double max_speed=1, double end_speed=0)
- void stop ()
- void drive_tank (double left, double right, int power=1, BrakeType bt=BrakeType::None)
- void drive_tank_raw (double left, double right)
- void drive arcade (double forward back, double left right, int power=1, BrakeType bt=BrakeType::None)
- bool drive_forward (double inches, directionType dir, Feedback &feedback, double max_speed=1, double end_speed=0)
- bool drive_forward (double inches, directionType dir, double max_speed=1, double end_speed=0)
- bool turn degrees (double degrees, Feedback &feedback, double max speed=1, double end speed=0)
- bool turn_degrees (double degrees, double max_speed=1, double end_speed=0)

- bool drive_to_point (double x, double y, vex::directionType dir, Feedback &feedback, double max_speed=1, double end_speed=0)
- bool drive_to_point (double x, double y, vex::directionType dir, double max_speed=1, double end_speed=0)
- bool turn_to_heading (double heading_deg, double max_speed=1, double end_speed=0)
- void reset_auto ()
- bool pure_pursuit (PurePursuit::Path path, directionType dir, Feedback &feedback, double max_speed=1, double end_speed=0)
- bool pure_pursuit (PurePursuit::Path path, directionType dir, double max_speed=1, double end_speed=0)

Static Public Member Functions

• static double modify_inputs (double input, int power=2)

7.83.1 Detailed Description

TankDrive is a class to run a tank drive system. A tank drive system, sometimes called differential drive, has a motor (or group of synchronized motors) on the left and right side

7.83.2 Member Enumeration Documentation

7.83.2.1 BrakeType

```
enum class TankDrive::BrakeType [strong]
```

Enumerator

None	just send 0 volts to the motors
ZeroVelocity	try to bring the robot to rest. But don't try to hold position
Smart	bring the robot to rest and once it's stopped, try to hold that position

7.83.3 Constructor & Destructor Documentation

7.83.3.1 TankDrive()

```
TankDrive::TankDrive (
    motor_group & left_motors,
    motor_group & right_motors,
    robot_specs_t & config,
    OdometryBase * odom = NULL )
```

Create the TankDrive object

left_motors	left side drive motors
-------------	------------------------

Parameters

right_motors	right side drive motors
config	the configuration specification defining physical dimensions about the robot. See robot_specs_t for more info
odom	an odometry system to track position and rotation. this is necessary to execute autonomous paths

7.83.4 Member Function Documentation

7.83.4.1 drive_arcade()

Drive the robot using arcade style controls. forward_back controls the linear motion, left_right controls the turning.

forward_back and left_right are in "percent": -1.0 -> 1.0

Parameters

forward_back	the percent to move forward or backward	
left_right	the percent to turn left or right	
power modifies the input velocities left^power, right^power		
bt	breaktype. What to do if the driver lets go of the sticks	

Drive the robot using arcade style controls. forward_back controls the linear motion, left_right controls the turning.

left_motors and right_motors are in "percent": -1.0 -> 1.0

7.83.4.2 drive_forward() [1/2]

Autonomously drive the robot forward a certain distance

inches	degrees by which we will turn relative to the robot (+) turns ccw, (-) turns cw
dir	the direction we want to travel forward and backward
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power
end_speed	the movement profile will attempt to reach this velocity by its completion

Autonomously drive the robot forward a certain distance

Parameters

inches	degrees by which we will turn relative to the robot (+) turns ccw, (-) turns cw
dir	the direction we want to travel forward and backward
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power
end_speed	the movement profile will attempt to reach this velocity by its completion

Returns

true if we have finished driving to our point

7.83.4.3 drive_forward() [2/2]

Use odometry to drive forward a certain distance using a custom feedback controller

Returns whether or not the robot has reached it's destination.

Parameters

inches	the distance to drive forward
dir	the direction we want to travel forward and backward
feedback	the custom feedback controller we will use to travel. controls the rate at which we accelerate and
	drive.
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power
end_speed	the movement profile will attempt to reach this velocity by its completion

Returns

true when we have reached our target distance

Use odometry to drive forward a certain distance using a custom feedback controller

Returns whether or not the robot has reached it's destination.

inches	the distance to drive forward	
dir	the direction we want to travel forward and backward	
feedback	the custom feedback controller we will use to travel. controls the rate at which we accelerate and	
	drive.	
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power	
end_speed	the movement profile will attempt to reach this velocity by its completion	

7.83.4.4 drive_tank()

Drive the robot using differential style controls. left_motors controls the left motors, right_motors controls the right motors.

left_motors and right_motors are in "percent": -1.0 -> 1.0

Parameters

left	the percent to run the left motors
right	the percent to run the right motors
power modifies the input velocities left^power, right^	modifies the input velocities left^power, right^power
bt	breaktype. What to do if the driver lets go of the sticks

7.83.4.5 drive_tank_raw()

Drive the robot raw-ly

Parameters

left	the percent to run the left motors (-1, 1)
right	the percent to run the right motors (-1, 1)

7.83.4.6 drive_to_point() [1/2]

Use odometry to automatically drive the robot to a point on the field. X and Y is the final point we want the robot. Here we use the default feedback controller from the drive_sys

Returns whether or not the robot has reached it's destination.

x the x position of the target	
--------------------------------	--

Parameters

У	the y position of the target	
dir	the direction we want to travel forward and backward	
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full pover	
end_speed	the movement profile will attempt to reach this velocity by its completion	

Use odometry to automatically drive the robot to a point on the field. X and Y is the final point we want the robot. Here we use the default feedback controller from the drive_sys

Returns whether or not the robot has reached it's destination.

Parameters

X	the x position of the target
У	the y position of the target
dir	the direction we want to travel forward and backward
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power
end_speed	the movement profile will attempt to reach this velocity by its completion

Returns

true if we have reached our target point

7.83.4.7 drive_to_point() [2/2]

Use odometry to automatically drive the robot to a point on the field. X and Y is the final point we want the robot.

Returns whether or not the robot has reached it's destination.

Parameters

X	the x position of the target
y the y position of the target	
dir	the direction we want to travel forward and backward
feedback	the feedback controller we will use to travel. controls the rate at which we accelerate and drive.
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power
end_speed	the movement profile will attempt to reach this velocity by its completion

Use odometry to automatically drive the robot to a point on the field. X and Y is the final point we want the robot. Returns whether or not the robot has reached it's destination.

Parameters

X	the x position of the target	
y the y position of the target		
dir	the direction we want to travel forward and backward	
feedback	the feedback controller we will use to travel. controls the rate at which we accelerate and dr	
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power	
end_speed	the movement profile will attempt to reach this velocity by its completion	

Returns

true if we have reached our target point

7.83.4.8 DriveForwardCmd() [1/2]

7.83.4.9 DriveForwardCmd() [2/2]

7.83.4.10 DriveToPointCmd() [1/2]

```
AutoCommand * TankDrive::DriveToPointCmd (
    Feedback & fb,
    point_t pt,
    vex::directionType dir = vex::forward,
    double max_speed = 1.0,
    double end_speed = 0.0 )
```

7.83.4.11 DriveToPointCmd() [2/2]

7.83.4.12 modify_inputs()

Create a curve for the inputs, so that drivers have more control at lower speeds. Curves are exponential, with the default being squaring the inputs.

Parameters

input	the input before modification
power	the power to raise input to

Returns

input ^ power (accounts for negative inputs and odd numbered powers)

Modify the inputs from the controller by squaring / cubing, etc Allows for better control of the robot at slower speeds

Parameters

input	the input signal -1 -> 1
power	the power to raise the signal to

Returns

input^power accounting for any sign issues that would arise with this naive solution

7.83.4.13 pure_pursuit() [1/2]

Drive the robot autonomously using a pure-pursuit algorithm - Input path with a set of waypoints - the robot will attempt to follow the points while cutting corners (radius) to save time (compared to stop / turn / start)

Use the default drive feedback

Parameters

path	The list of coordinates to follow, in order
dir	Run the bot forwards or backwards
max_speed	Limit the speed of the robot (for pid / pidff feedbacks)
end_speed	the movement profile will attempt to reach this velocity by its completion

Returns

True when the path is complete

Drive the robot autonomously using a pure-pursuit algorithm - Input path with a set of waypoints - the robot will attempt to follow the points while cutting corners (radius) to save time (compared to stop / turn / start)

Use the default drive feedback

Parameters

path	The list of coordinates to follow, in order
dir	Run the bot forwards or backwards
max_speed	Limit the speed of the robot (for pid / pidff feedbacks)

Returns

True when the path is complete

7.83.4.14 pure_pursuit() [2/2]

Drive the robot autonomously using a pure-pursuit algorithm - Input path with a set of waypoints - the robot will attempt to follow the points while cutting corners (radius) to save time (compared to stop / turn / start)

Parameters

path	The list of coordinates to follow, in order
dir	Run the bot forwards or backwards
feedback	The feedback controller determining speed
max_speed	Limit the speed of the robot (for pid / pidff feedbacks)
end_speed	the movement profile will attempt to reach this velocity by its completion

Returns

True when the path is complete

Drive the robot autonomously using a pure-pursuit algorithm - Input path with a set of waypoints - the robot will attempt to follow the points while cutting corners (radius) to save time (compared to stop / turn / start)

Parameters

path	The list of coordinates to follow, in order
dir	Run the bot forwards or backwards
feedback	The feedback controller determining speed
max_speed	Limit the speed of the robot (for pid / pidff feedbacks)

Returns

True when the path is complete

7.83.4.15 PurePursuitCmd() [1/2]

7.83.4.16 PurePursuitCmd() [2/2]

7.83.4.17 reset_auto()

```
void TankDrive::reset_auto ( )
```

Reset the initialization for autonomous drive functions

7.83.4.18 stop()

```
void TankDrive::stop ( )
```

Stops rotation of all the motors using their "brake mode"

7.83.4.19 turn_degrees() [1/2]

Autonomously turn the robot X degrees to counterclockwise (negative for clockwise), with a maximum motor speed of percent_speed (-1.0 -> 1.0)

Uses the defualt turning feedback of the drive system.

Parameters

degrees	degrees by which we will turn relative to the robot (+) turns ccw, (-) turns cw	
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power	
end_speed	the movement profile will attempt to reach this velocity by its completion	

Autonomously turn the robot X degrees to counterclockwise (negative for clockwise), with a maximum motor speed

of percent_speed (-1.0 -> 1.0)

Uses the defualt turning feedback of the drive system.

Parameters

degrees	degrees by which we will turn relative to the robot (+) turns ccw, (-) turns cw	
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power	
end_speed	the movement profile will attempt to reach this velocity by its completion	

Returns

true if we turned te target number of degrees

7.83.4.20 turn_degrees() [2/2]

Autonomously turn the robot X degrees counterclockwise (negative for clockwise), with a maximum motor speed of percent_speed (-1.0 -> 1.0)

Uses PID + Feedforward for it's control.

Parameters

degrees	degrees by which we will turn relative to the robot (+) turns ccw, (-) turns cw	
feedback	the feedback controller we will use to travel. controls the rate at which we accelerate and drive.	
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power	

Autonomously turn the robot X degrees to counterclockwise (negative for clockwise), with a maximum motor speed of percent_speed (-1.0 -> 1.0)

Uses the specified feedback for it's control.

Parameters

degrees	degrees by which we will turn relative to the robot (+) turns ccw, (-) turns cw	
feedback	the feedback controller we will use to travel. controls the rate at which we accelerate and drive.	
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power	
end_speed	the movement profile will attempt to reach this velocity by its completion	

Returns

true if we have turned our target number of degrees

7.83.4.21 turn_to_heading() [1/2]

Turn the robot in place to an exact heading relative to the field. 0 is forward. Uses the defualt turn feedback of the drive system

Parameters

heading_deg	the heading to which we will turn
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power
end_speed	the movement profile will attempt to reach this velocity by its completion

Turn the robot in place to an exact heading relative to the field. 0 is forward. Uses the defualt turn feedback of the drive system

Parameters

heading_deg	the heading to which we will turn
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power
end_speed	the movement profile will attempt to reach this velocity by its completion

Returns

true if we have reached our target heading

7.83.4.22 turn_to_heading() [2/2]

Turn the robot in place to an exact heading relative to the field. 0 is forward.

Parameters

heading_deg	the heading to which we will turn	
feedback	the feedback controller we will use to travel. controls the rate at which we accelerate and drive.	
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power	
end_speed	the movement profile will attempt to reach this velocity by its completion	

Turn the robot in place to an exact heading relative to the field. 0 is forward.

Parameters

heading_deg	the heading to which we will turn	
feedback	the feedback controller we will use to travel. controls the rate at which we accelerate and drive.	
max_speed	the maximum percentage of robot speed at which the robot will travel. 1 = full power	
end_speed	speed the movement profile will attempt to reach this velocity by its completion	

Returns

true if we have reached our target heading

7.83.4.23 TurnDegreesCmd() [1/2]

7.83.4.24 TurnDegreesCmd() [2/2]

7.83.4.25 TurnToHeadingCmd() [1/2]

7.83.4.26 TurnToHeadingCmd() [2/2]

```
AutoCommand * TankDrive::TurnToHeadingCmd (
    Feedback & fb,
    double heading,
    double max_speed = 1.0,
    double end_speed = 0.0 )
```

The documentation for this class was generated from the following files:

- include/subsystems/tank_drive.h
- src/subsystems/tank_drive.cpp

7.84 screen::TextConfig Struct Reference

#include <screen.h>

Public Attributes

• std::function< std::string()> text

7.84.1 Member Data Documentation

7.84.1.1 text

std::function<std::string()> screen::TextConfig::text

The documentation for this struct was generated from the following file:

• include/subsystems/screen.h

7.85 TimesTestedCondition Class Reference

#include <auto_command.h>

Inheritance diagram for TimesTestedCondition:

Collaboration diagram for TimesTestedCondition:

Public Member Functions

- TimesTestedCondition (size_t N)
- · bool test () override

Public Member Functions inherited from Condition

```
    Condition * Or (Condition *b)
```

• Condition * And (Condition *b)

7.85.1 Constructor & Destructor Documentation

7.85.1.1 TimesTestedCondition()

```
\label{total_condition} \mbox{TimesTestedCondition (} \\ \mbox{size\_t $N$ ) [inline]}
```

7.85.2 Member Function Documentation

7.85.2.1 test()

Implements Condition.

```
bool TimesTestedCondition::test ( ) [inline], [override], [virtual]
```

The documentation for this class was generated from the following file:

• include/utils/command_structure/auto_command.h

7.86 trapezoid_profile_segment_t Struct Reference

```
#include <trapezoid_profile.h>
```

Public Attributes

double pos_after

1d position after this segment concludes

· double vel_after

1d velocity after this segment concludes

· double accel

1d acceleration during the segment

double duration

duration of the segment

7.86.1 Detailed Description

trapezoid_profile_segment_t is a description of one constant acceleration segment of a trapezoid motion profile

7.86.2 Member Data Documentation

7.86.2.1 accel

```
double trapezoid_profile_segment_t::accel
```

1d acceleration during the segment

7.86.2.2 duration

```
double trapezoid_profile_segment_t::duration
```

duration of the segment

7.86.2.3 pos_after

```
double trapezoid_profile_segment_t::pos_after
```

1d position after this segment concludes

7.86.2.4 vel_after

```
double trapezoid_profile_segment_t::vel_after
```

1d velocity after this segment concludes

The documentation for this struct was generated from the following file:

• include/utils/controls/trapezoid_profile.h

7.87 TrapezoidProfile Class Reference

```
#include <trapezoid_profile.h>
```

Public Member Functions

• TrapezoidProfile (double max v, double accel)

Construct a new Trapezoid Profile object.

motion_t calculate (double time_s, double pos_s)

Run the trapezoidal profile based on the time and distance that's elapsed.

motion_t calculate_time_based (double time_s)

Run the trapezoidal profile based on the time that's elapsed.

void set endpts (double start, double end)

set_endpts defines a start and end position

void set_vel_endpts (double start, double end)

set start and end velocities

· void set accel (double accel)

set_accel sets the acceleration this profile will use (the left and right legs of the trapezoid)

void set_max_v (double max_v)

sets the maximum velocity for the profile (the height of the top of the trapezoid)

double get_movement_time () const

uses the kinematic equations to and specified accel and max_v to figure out how long moving along the profile would take

- double get max v () const
- double get accel () const

7.87.1 Detailed Description

Trapezoid Profile

This is a motion profile defined by:

- · maximum acceleration
- · maximum velocity
- · start position and velocity
- · end position and velocity

Using this information, a parametric function is generated, with a period of acceleration, constant velocity, and deceleration. The velocity graph usually looks like a trapezoid, giving it its name.

If the maximum velocity is set high enough, this will become a S-curve profile, with only acceleration and decelera-

If the initial velocity is in the wrong direction, the profile will first come to a stop, then continue a normal trapezoid profile.

If the initial velocity is higher than the maximum velocity, the profile will first try to achieve the maximum velocity.

If the end velocity is not achievable, the profile will try to get as close as possible. The end velocity must be in the direction of the end point.

This class is designed for use in properly modelling the motion of the robots to create a feedfoward and target for PID. Acceleration and Maximum velocity should be measured on the robot and tuned down slightly to account for battery drop.

Here are the equations graphed for ease of understanding: https://www.desmos.com/calculator/rkm3ivulyk

Author

Ryan McGee

Date

7/12/2022

7.87.2 Constructor & Destructor Documentation

7.87.2.1 TrapezoidProfile()

Construct a new Trapezoid Profile object.

Parameters

max⊸	Maximum velocity the robot can run at
_v	
accel	Maximum acceleration of the robot

7.87.3 Member Function Documentation

7.87.3.1 calculate()

Run the trapezoidal profile based on the time and distance that's elapsed.

Parameters

time⊷	Time since start of movement
_s	
pos⇔	The current position
_s	

Returns

motion_t Position, velocity and acceleration

7.87.3.2 calculate_time_based()

Run the trapezoidal profile based on the time that's elapsed.

time←	Time since start of movement
_s	

Returns

motion_t Position, velocity and acceleration

7.87.3.3 get_accel()

```
double TrapezoidProfile::get_accel ( ) const
```

7.87.3.4 get_max_v()

```
double TrapezoidProfile::get_max_v ( ) const
```

7.87.3.5 get_movement_time()

```
double TrapezoidProfile::get_movement_time ( ) const
```

uses the kinematic equations to and specified accel and max_v to figure out how long moving along the profile would take

Returns

the time the path will take to travel

7.87.3.6 set_accel()

set_accel sets the acceleration this profile will use (the left and right legs of the trapezoid)

Parameters

accel	the acceleration amount to use
-------	--------------------------------

7.87.3.7 set_endpts()

set_endpts defines a start and end position

start	the starting position of the path
end	the ending position of the path

7.87.3.8 set_max_v()

sets the maximum velocity for the profile (the height of the top of the trapezoid)

Parameters

max⊷	the maximum velocity the robot can travel at
_ <i>v</i>	

7.87.3.9 set_vel_endpts()

set start and end velocities

Parameters

start	the starting velocity of the path
end	the ending velocity of the path

The documentation for this class was generated from the following files:

- include/utils/controls/trapezoid_profile.h
- src/utils/trapezoid_profile.cpp

7.88 TurnDegreesCommand Class Reference

```
#include <drive_commands.h>
```

Inheritance diagram for TurnDegreesCommand:

Collaboration diagram for TurnDegreesCommand:

Public Member Functions

- TurnDegreesCommand (TankDrive &drive_sys, Feedback &feedback, double degrees, double max_speed=1, double end_speed=0)
- bool run () override
- void on_timeout () override

Public Member Functions inherited from AutoCommand

- AutoCommand * withTimeout (double t seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true_to_end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default_timeout = 10.0

7.88.1 Detailed Description

AutoCommand wrapper class for the turn_degrees function in the TankDrive class

7.88.2 Constructor & Destructor Documentation

7.88.2.1 TurnDegreesCommand()

Construct a TurnDegreesCommand Command

Parameters

drive_sys	the drive system we are commanding
feedback	the feedback controller we are using to execute the turn
degrees	how many degrees to rotate
max_speed	0 -> 1 percentage of the drive systems speed to drive at

7.88.3 Member Function Documentation

7.88.3.1 on_timeout()

```
void TurnDegreesCommand::on_timeout ( ) [override], [virtual]
```

Cleans up drive system if we time out before finishing

reset the drive system if we timeout

Reimplemented from AutoCommand.

7.88.3.2 run()

```
bool TurnDegreesCommand::run ( ) [override], [virtual]
```

Run turn_degrees Overrides run from AutoCommand

Returns

true when execution is complete, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/drive_commands.h
- src/utils/command_structure/drive_commands.cpp

7.89 TurnToHeadingCommand Class Reference

#include <drive_commands.h>

Inheritance diagram for TurnToHeadingCommand:

Collaboration diagram for TurnToHeadingCommand:

Public Member Functions

- TurnToHeadingCommand (TankDrive &drive_sys, Feedback &feedback, double heading_deg, double speed=1, double end_speed=0)
- bool run () override
- void on_timeout () override

Public Member Functions inherited from AutoCommand

- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

Additional Inherited Members

Public Attributes inherited from AutoCommand

```
• double timeout_seconds = default_timeout
```

```
• Condition * true_to_end = nullptr
```

Static Public Attributes inherited from AutoCommand

• static constexpr double default timeout = 10.0

7.89.1 Detailed Description

AutoCommand wrapper class for the turn_to_heading() function in the TankDrive class

7.89.2 Constructor & Destructor Documentation

7.89.2.1 TurnToHeadingCommand()

```
TurnToHeadingCommand::TurnToHeadingCommand (
    TankDrive & drive_sys,
    Feedback & feedback,
    double heading_deg,
    double max_speed = 1,
    double end_speed = 0 )
```

Construct a TurnToHeadingCommand Command

Parameters

drive_sys	the drive system we are commanding
feedback	the feedback controller we are using to execute the drive
heading_deg	the heading to turn to in degrees
max_speed	0 -> 1 percentage of the drive systems speed to drive at

7.89.3 Member Function Documentation

7.89.3.1 on timeout()

```
void TurnToHeadingCommand::on_timeout ( ) [override], [virtual]
```

Cleans up drive system if we time out before finishing

reset the drive system if we don't hit our target

Reimplemented from AutoCommand.

7.89.3.2 run()

```
bool TurnToHeadingCommand::run ( ) [override], [virtual]
```

Run turn to heading Overrides run from AutoCommand

Returns

true when execution is complete, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/drive_commands.h
- src/utils/command_structure/drive_commands.cpp

7.90 Vector2D Class Reference

```
#include <vector2d.h>
```

Public Member Functions

- Vector2D (double dir, double mag)
- Vector2D (point_t p)
- double get_dir () const
- double get mag () const
- double get_x () const
- double get_y () const
- Vector2D normalize ()
- point_t point ()
- Vector2D operator* (const double &x)
- Vector2D operator+ (const Vector2D &other)
- Vector2D operator- (const Vector2D &other)

7.90.1 Detailed Description

Vector2D is an x,y pair Used to represent 2D locations on the field. It can also be treated as a direction and magnitude

7.90.2 Constructor & Destructor Documentation

7.90.2.1 Vector2D() [1/2]

Construct a vector object.

226 Class Documentation

Parameters

dir	Direction, in radians. 'foward' is 0, clockwise positive when viewed from the top.	
mag	Magnitude.	

7.90.2.2 Vector2D() [2/2]

Construct a vector object from a cartesian point.

Parameters

```
p | point_t.x , point_t.y
```

7.90.3 Member Function Documentation

7.90.3.1 get_dir()

```
double Vector2D::get_dir ( ) const
```

Get the direction of the vector, in radians. '0' is forward, clockwise positive when viewed from the top.

Use r2d() to convert.

Returns

the direction of the vetctor in radians

Get the direction of the vector, in radians. '0' is forward, clockwise positive when viewed from the top.

Use r2d() to convert.

7.90.3.2 get_mag()

```
double Vector2D::get_mag ( ) const
```

Returns

the magnitude of the vector

Get the magnitude of the vector

7.90.3.3 get_x()

```
double Vector2D::get_x ( ) const
```

Returns

the X component of the vector; positive to the right.

Get the X component of the vector; positive to the right.

7.90.3.4 get_y()

```
double Vector2D::get_y ( ) const
```

Returns

the Y component of the vector, positive forward.

Get the Y component of the vector, positive forward.

7.90.3.5 normalize()

```
Vector2D Vector2D::normalize ( )
```

Changes the magnitude of the vector to 1

Returns

the normalized vector

Changes the magnetude of the vector to 1

7.90.3.6 operator*()

```
Vector2D Vector2D::operator* ( const double & x )
```

Scales a Vector2D by a scalar with the * operator

Parameters

x the value to scale the vector by

Returns

the this Vector2D scaled by x

228 Class Documentation

7.90.3.7 operator+()

Add the components of two vectors together $\frac{\text{Vector2D}}{\text{Vector2D}} = (\text{this.x} + \text{other.x}, \text{this.y} + \text{other.y})$

Parameters

```
other the vector to add to this
```

Returns

the sum of the vectors

7.90.3.8 operator-()

Subtract the components of two vectors together Vector2D - Vector2D = (this.x - other.x, this.y - other.y)

Parameters

Returns

the difference of the vectors

7.90.3.9 point()

```
point_t Vector2D::point ( )
```

Returns a point from the vector

Returns

the point represented by the vector

Convert a direction and magnitude representation to an x, y representation

Returns

the x, y representation of the vector

The documentation for this class was generated from the following files:

- include/utils/vector2d.h
- src/utils/vector2d.cpp

7.91 WaitUntilCondition Class Reference

Waits until the condition is true.

#include <auto_command.h>

Inheritance diagram for WaitUntilCondition:

Collaboration diagram for WaitUntilCondition:

Public Member Functions

- WaitUntilCondition (Condition *cond)
- bool run () override

Public Member Functions inherited from AutoCommand

- virtual void on_timeout ()
- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

230 Class Documentation

Additional Inherited Members

Public Attributes inherited from AutoCommand

```
• double timeout_seconds = default_timeout
```

```
• Condition * true_to_end = nullptr
```

Static Public Attributes inherited from AutoCommand

• static constexpr double default timeout = 10.0

7.91.1 Detailed Description

Waits until the condition is true.

7.91.2 Constructor & Destructor Documentation

7.91.2.1 WaitUntilCondition()

7.91.3 Member Function Documentation

7.91.3.1 run()

```
bool WaitUntilCondition::run ( ) [inline], [override], [virtual]
```

Executes the command Overridden by child classes

Returns

true when the command is finished, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following file:

include/utils/command_structure/auto_command.h

7.92 WaitUntilUpToSpeedCommand Class Reference

#include <flywheel_commands.h>

Inheritance diagram for WaitUntilUpToSpeedCommand:

Collaboration diagram for WaitUntilUpToSpeedCommand:

Public Member Functions

- WaitUntilUpToSpeedCommand (Flywheel &flywheel, int threshold_rpm)
- bool run () override

Public Member Functions inherited from AutoCommand

- virtual void on_timeout ()
- AutoCommand * withTimeout (double t_seconds)
- AutoCommand * withCancelCondition (Condition *true_to_end)

232 Class Documentation

Additional Inherited Members

Public Attributes inherited from AutoCommand

- double timeout_seconds = default_timeout
- Condition * true to end = nullptr

Static Public Attributes inherited from AutoCommand

• static constexpr double default timeout = 10.0

7.92.1 Detailed Description

AutoCommand that listens to the Flywheel and waits until it is at its target speed +/- the specified threshold

7.92.2 Constructor & Destructor Documentation

7.92.2.1 WaitUntilUpToSpeedCommand()

Creat a WaitUntilUpToSpeedCommand

Parameters

flywheel	the flywheel system we are commanding
threshold_rpm	the threshold over and under the flywheel target RPM that we define to be acceptable

7.92.3 Member Function Documentation

7.92.3.1 run()

```
bool WaitUntilUpToSpeedCommand::run ( ) [override], [virtual]
```

Run spin_manual Overrides run from AutoCommand

Returns

true when execution is complete, false otherwise

Reimplemented from AutoCommand.

The documentation for this class was generated from the following files:

- include/utils/command_structure/flywheel_commands.h
- src/utils/command_structure/flywheel_commands.cpp

7.93 screen::WidgetConfig Struct Reference

```
#include <screen.h>
```

Collaboration diagram for screen::WidgetConfig:

Public Types

```
    enum Type {
        Col , Row , Slider , Button ,
        Checkbox , Label , Text , Graph }
```

Public Attributes

```
    Type type
    union {
        std::vector < SizedWidget > widgets
        SliderConfig slider
        ButtonConfig button
        CheckboxConfig checkbox
        LabelConfig label
        TextConfig text
        GraphDrawer * graph
    } config
```

7.93.1 Member Enumeration Documentation

7.93.1.1 Type

```
enum screen::WidgetConfig::Type
```

234 Class Documentation

Enumerator

Col	
Row	
Slider	
Button	
Checkbox	
Label	
Text	
Graph	

7.93.2 Member Data Documentation

7.93.2.1 button

ButtonConfig screen::WidgetConfig::button

7.93.2.2 checkbox

CheckboxConfig screen::WidgetConfig::checkbox

7.93.2.3 [union]

union { ... } screen::WidgetConfig::config

7.93.2.4 graph

GraphDrawer* screen::WidgetConfig::graph

7.93.2.5 label

LabelConfig screen::WidgetConfig::label

7.93.2.6 slider

SliderConfig screen::WidgetConfig::slider

7.93.2.7 text

TextConfig screen::WidgetConfig::text

7.93.2.8 type

Type screen::WidgetConfig::type

7.93.2.9 widgets

std::vector<SizedWidget> screen::WidgetConfig::widgets

The documentation for this struct was generated from the following file:

• include/subsystems/screen.h

7.94 screen::WidgetPage Class Reference

#include <screen.h>

Inheritance diagram for screen::WidgetPage:

Collaboration diagram for screen::WidgetPage:

236 Class Documentation

Public Member Functions

- WidgetPage (WidgetConfig &cfg)
- void update (bool was_pressed, int x, int y) override collect data, respond to screen input, do fast things (runs at 50hz even if you're not focused on this Page (only drawn page gets touch updates))
- void draw (vex::brain::lcd &, bool first_draw, unsigned int frame_number) override
 draw stored data to the screen (runs at 10 hz and only runs if this page is in front)

7.94.1 Constructor & Destructor Documentation

7.94.1.1 WidgetPage()

7.94.2 Member Function Documentation

7.94.2.1 draw()

draw stored data to the screen (runs at 10 hz and only runs if this page is in front)

Parameters

first_draw	true if we just switched to this page
frame_number	frame of drawing we are on (basically an animation tick)

Reimplemented from screen::Page.

7.94.2.2 update()

collect data, respond to screen input, do fast things (runs at 50hz even if you're not focused on this Page (only drawn page gets touch updates))

Parameters

	was_pressed	true if the screen has been pressed
	X	x position of screen press (if the screen was pressed)
ĺ	У	y position of screen press (if the screen was pressed)

Reimplemented from screen::Page.

The documentation for this class was generated from the following file:

• include/subsystems/screen.h

238 Class Documentation

Chapter 8

File Documentation

8.1 include/robot_specs.h File Reference

```
#include "../core/include/utils/controls/pid.h"
#include "../core/include/utils/controls/feedback_base.h"
Include dependency graph for robot_specs.h:
```


Classes

struct robot_specs_t

8.2 robot_specs.h

```
00017 double dist_between_wheels;
00018
00019 double drive_correction_cutoff;
00020
00021 Feedback *drive_feedback;
00022 Feedback *turn_feedback;
00023 PID::pid_config_t correction_pid;
00024
00025 } robot_specs_t;
```

8.3 include/subsystems/custom_encoder.h File Reference

```
#include "vex.h"
Include dependency graph for custom_encoder.h:
```


Classes

· class CustomEncoder

8.4 custom_encoder.h

```
00001 #pragma once
00002 #include "vex.h"
00003
00008 class CustomEncoder : public vex::encoder
00009 {
00010
        typedef vex::encoder super;
00011
00012
        public:
00018
00019
        CustomEncoder(vex::triport::port &port, double ticks_per_rev);
00025
       void setRotation(double val, vex::rotationUnits units);
00026
00032
        void setPosition(double val, vex::rotationUnits units);
00033
       double rotation(vex::rotationUnits units);
00039
00040
00046
       double position(vex::rotationUnits units);
00047
00053
        double velocity(vex::velocityUnits units);
00054
00055
00056
        private:
00057
       double tick_scalar;
00058 };
```

8.5 include/subsystems/flywheel.h File Reference

```
#include "../core/include/utils/controls/feedforward.h"
#include "vex.h"
#include "../core/include/robot_specs.h"
#include "../core/include/utils/controls/pid.h"
#include "../core/include/utils/command_structure/auto_command.h"
#include "../core/include/subsystems/screen.h"
#include <atomic>
Include dependency graph for flywheel.h:
```


Classes

class Flywheel

8.6 flywheel.h

```
00001 #pragma once
00002
00003 #include "../core/include/utils/controls/feedforward.h"
00004 #include "vex.h"
00004 #include "vex.n"
00005 #include "../core/include/robot_specs.h"
00006 #include "../core/include/utils/controls/pid.h"
00007 #include "../core/include/utils/command_structure/auto_command.h"
00008 #include "../core/include/subsystems/screen.h"
00009 #include <atomic>
00010
00018 class Flywheel
00019 {
00020
00021 public:
00022
         // CONSTRUCTORS, GETTERS, AND SETTERS
         Flywheel(vex::motor_group &motors, Feedback &feedback, FeedForward &helper, const double ratio,
       Filter &filt);
00032
00037
         double get_target() const;
00038
00042
         double getRPM() const;
00043
00047
         vex::motor_group &get_motors() const;
00048
00055
         void spin_manual(double speed, directionType dir = fwd);
00056
00062
         void spin rpm(double rpm);
00063
00067
         void stop();
00068
00073
         bool is_on_target()
00074
00075
            return fb.is_on_target();
00076
00077
00082
         screen::Page *Page() const;
00083
00089
         AutoCommand *SpinRpmCmd(int rpm)
00090
00091
00092
            return new FunctionCommand([this, rpm]()
```

```
00093
                                     {spin_rpm(rpm); return true; });
00094
00095
00100
        AutoCommand *WaitUntilUpToSpeedCmd()
00101
         return new WaitUntilCondition(
00102
00103
             new FunctionCondition([this]()
00104
                                    { return is_on_target(); }));
00105
00106
00107 private:
       friend class FlywheelPage;
00108
       friend int spinRPMTask(void *wheelPointer);
00109
00110
00111
       vex::motor_group &motors;
00112
       bool task_running = false;
00113
       Feedback &fb;
00114
       FeedForward &ff;
00115
       vex::mutex fb_mut;
00116
       double ratio;
00117
       std::atomic<double> target_rpm;
00118
       task rpm_task;
00119
       Filter &avger;
00120
00121
       // Functions for internal use only
00126
       void set_target(double value);
00130
       double measure_RPM();
00131
       void spin_raw(double speed, directionType dir = fwd);
00138
00139 };
```

8.7 include/subsystems/layout.h File Reference

```
#include <cmath>
#include <functional>
Include dependency graph for layout.h:
```


Classes

• struct SliderCfg

8.8 layout.h

```
00001 #include <cmath>
00002 #include <functional>
00003
```

```
00004 struct SliderCfg{
00005 double &val;
00006 double min;
00007 double max;
00008 };
00009
00010
00011
```

8.9 include/subsystems/lift.h File Reference

```
#include "vex.h"
#include "../core/include/utils/controls/pid.h"
#include <iostream>
#include <map>
#include <atomic>
#include <vector>
Include dependency graph for lift.h:
```


Classes

- class Lift< T >
- struct Lift< T >::lift_cfg_t

8.10 lift.h

```
00001 #pragma once
00002
00003 #include "vex.h"
00004 #include "../core/include/utils/controls/pid.h"
00005 #include <iostream>
00006 #include <map>
00007 #include <atomic>
00008 #include <vector>
00010 using namespace vex;
00011 using namespace std;
00012
00020 template <typename T> 00021 class Lift
00022 {
00023
00024
00031
         struct lift_cfg_t
00032
00033
           double up_speed, down_speed;
           double softstop_up, softstop_down;
00034
00035
```

```
PID::pid_config_t lift_pid_cfg;
00037
00038
        Lift(motor_group &lift_motors, lift_cfg_t &lift_cfg, map<T, double> &setpoint_map, limit
00060
      *homing_switch=NULL)
00061
        : lift_motors(lift_motors), cfg(lift_cfg), lift_pid(cfg.lift_pid_cfg), setpoint_map(setpoint_map),
      homing_switch (homing_switch)
00062
00063
00064
          is async = true;
          setpoint = 0;
00065
00066
00067
          // Create a background task that is constantly updating the lift PID, if requested.
00068
          // Set once, and forget.
00069
          task t([](void* ptr){
00070
            Lift &lift = *((Lift*) ptr);
00071
00072
            while (true)
00073
00074
              if(lift.get_async())
00075
               lift.hold();
00076
00077
             vexDelay(50);
00078
00079
08000
            return 0;
00081
          }, this);
00082
00083
00084
00093
        void control continuous (bool up ctrl, bool down ctrl)
00094
00095
          static timer tmr;
00096
00097
          double cur_pos = 0;
00098
00099
          // Check if there's a hook for a custom sensor. If not, use the motors.
          if(get_sensor == NULL)
00100
00101
            cur_pos = lift_motors.position(rev);
00102
00103
            cur_pos = get_sensor();
00104
          if(up_ctrl && cur_pos < cfq.softstop up)</pre>
00105
00106
            lift_motors.spin(directionType::fwd, cfg.up_speed, volt);
00107
            setpoint = cur_pos + .3;
00108
00109
            // std::cout « "DEBUG OUT: UP " « setpoint « ", " « tmr.time(sec) « ", " « cfg.down_speed «
00110
      "\n";
00111
00112
            // Disable the PID while going UP.
00113
            is_async = false;
00114
          } else if(down_ctrl && cur_pos > cfg.softstop_down)
00115
            // Lower the lift slowly, at a rate defined by down_speed
00116
00117
            if(setpoint > cfq.softstop down)
00118
              setpoint = setpoint - (tmr.time(sec) * cfg.down_speed);
            // std::cout « "DEBUG OUT: DOWN " « setpoint « ", "
00119
                                                                 « tmr.time(sec) « ", " « cfg.down_speed «
      "\n";
00120
            is_async = true;
00121
          } else
00122
00123
            // Hold the lift at the last setpoint
00124
            is_async = true;
00125
00126
00127
          tmr.reset();
00128
00129
00138
        void control_manual(bool up_btn, bool down_btn, int volt_up, int volt_down)
00139
00140
          static bool down_hold = false;
00141
          static bool init = true;
00142
          // Allow for setting position while still calling this function
00143
00144
          if(init || up_btn || down_btn)
00145
          {
00146
            init = false;
00147
            is_async = false;
00148
00149
00150
          double rev = lift_motors.position(rotationUnits::rev);
00151
00152
          if(rev < cfg.softstop_down && down_btn)</pre>
00153
           down_hold = true;
          else if( !down_btn )
  down_hold = false;
00154
00155
```

8.10 lift.h 245

```
00156
00157
          if(up_btn && rev < cfg.softstop_up)</pre>
00158
            lift_motors.spin(directionType::fwd, volt_up, voltageUnits::volt);
          else if(down_btn && rev > cfg.softstop_down && !down_hold)
00159
00160
           lift_motors.spin(directionType::rev, volt_down, voltageUnits::volt);
00161
          else
00162
            lift_motors.spin(directionType::fwd, 0, voltageUnits::volt);
00163
00164
00165
00177
       void control_setpoints(bool up_step, bool down_step, vector<T> pos_list)
00178
00179
          // Make sure inputs are only processed on the rising edge of the button
00180
         static bool up_last = up_step, down_last = down_step;
00181
00182
         bool up_rising = up_step && !up_last;
00183
         bool down_rising = down_step && !down_last;
00184
         up_last = up_step;
00185
00186
         down_last = down_step;
00187
00188
          static int cur_index = 0;
00189
00190
          // Avoid an index overflow. Shouldn't happen unless the user changes pos_list between calls.
00191
          if(cur_index >= pos_list.size())
00192
           cur_index = pos_list.size() - 1;
00193
00194
          // Increment or decrement the index of the list, bringing it up or down.
00195
          if(up_rising && cur_index < (pos_list.size() - 1))</pre>
00196
           cur_index++;
00197
          else if (down_rising && cur_index > 0)
00198
           cur_index--;
00199
00200
          // Set the lift to hold the position in the background with the PID loop
00201
          set_position(pos_list[cur_index]);
00202
         is_async = true;
00203
00204
00205
00214
       bool set_position(T pos)
00215
00216
         this->setpoint = setpoint_map[pos];
         is_async = true;
00217
00218
00219
          return (lift_pid.get_target() == this->setpoint) && lift_pid.is_on_target();
00220
00221
00228
       bool set_setpoint(double val)
00229
00230
         this->setpoint = val;
00231
         return (lift_pid.get_target() == this->setpoint) && lift_pid.is_on_target();
00232
00233
00237
       double get_setpoint()
00238
00239
         return this->setpoint;
00240
00241
00246
       void hold()
00247
         00248
00249
00250
00251
          if(get_sensor != NULL)
00252
           lift_pid.update(get_sensor());
00253
00254
           lift_pid.update(lift_motors.position(rev));
00255
00256
         // std::cout « "DEBUG OUT: ROTATION " « lift_motors.rotation(rev) « "\n\n";
00257
00258
         lift_motors.spin(fwd, lift_pid.get(), volt);
00259
00260
00265
       void home()
00266
00267
         static timer tmr:
00268
          tmr.reset();
00269
00270
          while(tmr.time(sec) < 3)</pre>
00271
00272
           lift motors.spin(directionType::rev, 6, volt);
00273
00274
            if (homing_switch == NULL && lift_motors.current(currentUnits::amp) > 1.5)
00275
              break;
00276
           else if (homing_switch != NULL && homing_switch->pressing())
00277
             break;
00278
          }
```

```
00280
          if(reset_sensor != NULL)
00281
            reset_sensor();
00282
00283
          lift_motors.resetPosition();
          lift_motors.stop();
00284
00286
00287
00291
        bool get_async()
00292
00293
          return is_async;
00294
00295
00301
        void set_async(bool val)
00302
00303
          this->is_async = val;
00304
00305
00315
        void set_sensor_function(double (*fn_ptr) (void))
00316
00317
          this->get_sensor = fn_ptr;
00318
00319
00326
        void set_sensor_reset(void (*fn_ptr) (void))
00327
00328
          this->reset_sensor = fn_ptr;
00329
00330
        private:
00331
00332
00333
        motor_group &lift_motors;
00334
        lift_cfg_t &cfg;
00335
        PID lift_pid;
       map<T, double> &setpoint_map;
limit *homing_switch;
00336
00337
00338
00339
       atomic<double> setpoint;
00340
       atomic<bool> is_async;
00341
        double (*get_sensor)(void) = NULL;
00342
00343
        void (*reset_sensor)(void) = NULL;
00344
00345
00346 };
```

8.11 include/subsystems/mecanum_drive.h File Reference

```
#include "vex.h"
#include "../core/include/utils/controls/pid.h"
Include dependency graph for mecanum_drive.h:
```


8.12 mecanum_drive.h

Classes

- class MecanumDrive
- · struct MecanumDrive::mecanumdrive_config_t

Macros

#define PI 3.141592654

8.11.1 Macro Definition Documentation

8.11.1.1 PI

```
#define PI 3.141592654
```

8.12 mecanum drive.h

```
00001 #pragma once
00002
00003 #include "vex.h"
00004 #include "../core/include/utils/controls/pid.h"
00005
00006 #ifndef PI
00007 #define PI 3.141592654
00008 #endif
00009
00014 class MecanumDrive
00015 {
00016
00017
        public:
00018
00022
        struct mecanumdrive_config_t
00023
00024
          \ensuremath{//} PID configurations for autonomous driving
00025
          PID::pid_config_t drive_pid_conf;
PID::pid_config_t drive_gyro_pid_conf;
00026
00027
          PID::pid_config_t turn_pid_conf;
00028
00029
          // Diameter of the mecanum wheels
00030
          double drive_wheel_diam;
00031
00032
           // Diameter of the perpendicular undriven encoder wheel
00033
          double lateral_wheel_diam;
00034
00035
           // Width between the center of the left and right wheels
00036
          double wheelbase_width;
00037
00038
00039
00043
        MecanumDrive(vex::motor &left_front, vex::motor &right_front, vex::motor &left_rear, vex::motor
      &right_rear,
00044
                      vex::rotation *lateral_wheel=NULL, vex::inertial *imu=NULL, mecanumdrive_config_t
      *config=NULL);
00045
00054
        void drive_raw(double direction_deg, double magnitude, double rotation);
00055
00066
        void drive(double left_y, double left_x, double right_x, int power=2);
00067
08000
        bool auto_drive(double inches, double direction, double speed, bool gyro_correction=true);
00081
00092
        bool auto_turn(double degrees, double speed, bool ignore_imu=false);
00093
00094
00095
00096
        vex::motor &left_front, &right_front, &left_rear, &right_rear;
00097
00098
        mecanumdrive_config_t *config;
00099
        vex::rotation *lateral_wheel;
```

```
00100          vex::inertial *imu;
00101
00102          PID *drive_pid = NULL;
00103          PID *drive_gyro_pid = NULL;
00104          PID *turn_pid = NULL;
00105
00106          bool init = true;
00107
00108 };
```

8.13 include/subsystems/odometry/odometry_3wheel.h File Reference

```
#include "../core/include/subsystems/odometry/odometry_base.h"
#include "../core/include/subsystems/tank_drive.h"
#include "../core/include/subsystems/custom_encoder.h"
Include dependency graph for odometry_3wheel.h:
```


Classes

- class Odometry3Wheel
- struct Odometry3Wheel::odometry3wheel_cfg_t

8.14 odometry_3wheel.h

```
00001 #pragma once
00002 #include "../core/include/subsystems/odometry/odometry_base.h" 00003 #include "../core/include/subsystems/tank_drive.h" 00004 #include "../core/include/subsystems/custom_encoder.h"
00032 class Odometry3Wheel : public OdometryBase
00033 {
            public:
00034
00035
00040
            typedef struct
00041
00042
                 double wheelbase_dist;
00043
                 double off_axis_center_dist;
00044
                 double wheel_diam;
00046
            } odometry3wheel_cfg_t;
00047
            Odometry3Wheel(CustomEncoder &lside_fwd, CustomEncoder &rside_fwd, CustomEncoder &off_axis,
00057
       odometry3wheel_cfg_t &cfg, bool is_async=true);
00058
00065
            pose_t update() override;
00066
            void tune(vex::controller &con, TankDrive &drive);
00075
00076
00077
            private:
00078
```

8.15 include/subsystems/odometry/odometry_base.h File Reference

```
#include "vex.h"
#include "../core/include/utils/geometry.h"
#include "../core/include/robot_specs.h"
#include "../core/include/utils/command_structure/auto_command.h"
Include dependency graph for odometry_base.h:
```


Classes

class OdometryBase

Macros

• #define PI 3.141592654

8.15.1 Macro Definition Documentation

8.15.1.1 PI

#define PI 3.141592654

8.16 odometry_base.h

Go to the documentation of this file.

```
00001 #pragma once
00002
00003 #include "vex.h"
00004 #include "../core/include/utils/geometry.h'
00005 #include "../core/include/robot_specs.h"
00006 #include "../core/include/utils/command_structure/auto_command.h"
00007
00008 #ifndef PT
00009 #define PI 3.141592654
00010 #endif
00011
00012
00013
00026 class OdometryBase
00027 {
00028 public:
00029
00035
          OdometryBase(bool is_async);
00036
00041
          pose_t get_position(void);
00042
00047
          virtual void set_position(const pose_t& newpos=zero_pos);
00048
          AutoCommand *SetPositionCmd(const pose_t& newpos=zero_pos);
00053
          virtual pose_t update() = 0;
00054
00062
          static int background_task(void* ptr);
00063
00069
          void end asvnc();
00070
00077
          static double pos_diff(pose_t start_pos, pose_t end_pos);
00078
00085
          static double rot_diff(pose_t pos1, pose_t pos2);
00086
00095
          static double smallest_angle(double start_deg, double end_deg);
00096
00098
          bool end_task = false;
00099
00104
          double get_speed();
00105
00110
          double get_accel();
00111
00116
          double get_angular_speed_deg();
00117
00122
          double get_angular_accel_deg();
00123
00127
          inline static constexpr pose t zero pos = {.x=0.0L, .y=0.0L, .rot=90.0L};
00128
00129 protected:
00133
          vex::task *handle;
00134
00138
          vex::mutex mut;
00139
00143
          pose_t current pos;
00144
00145
          double speed;
00146
          double accel;
00147
          double ang_speed_deg;
00148
          double ang_accel_deg;
00149 };
```

8.17 include/subsystems/odometry/odometry tank.h File Reference

```
#include "../core/include/subsystems/odometry/odometry_base.h"
#include "../core/include/subsystems/custom_encoder.h"
#include "../core/include/utils/geometry.h"
#include "../core/include/utils/vector2d.h"
#include "../core/include/utils/moving_average.h"
#include "../core/include/robot_specs.h"
```

8.18 odometry_tank.h 251

Include dependency graph for odometry_tank.h:

Classes

class OdometryTank

8.18 odometry_tank.h

Go to the documentation of this file.

```
00001 #pragma once
00002
00003 #include "../core/include/subsystems/odometry_base.h"
00004 #include "../core/include/subsystems/custom_encoder.h"
00005 #include "../core/include/utils/geometry.h" 00006 #include "../core/include/utils/vector2d.h"
00007 #include "../core/include/utils/moving_average.h"
80000
00009 #include "../core/include/robot_specs.h"
00011 static int background_task(void* odom_obj);
00012
00013
00020 class OdometryTank : public OdometryBase
00021 {
00022 public:
          OdometryTank(vex::motor_group &left_side, vex::motor_group &right_side, robot_specs_t &config,
00031
      vex::inertial *imu=NULL, bool is_async=true);
00032
00042
          OdometryTank(CustomEncoder &left_custom_enc, CustomEncoder &right_custom_enc, robot_specs_t
      &config, vex::inertial *imu=NULL, bool is_async=true);
00043
00053
          OdometryTank(vex::encoder &left_vex_enc, vex::encoder &right_vex_enc, robot_specs_t &config,
      vex::inertial *imu=NULL, bool is_async=true);
00054
          pose_t update() override;
00059
00060
00065
          void set_position(const pose_t &newpos=zero_pos) override;
00066
00067
00068
00069 private:
00073
          static pose_t calculate_new_pos(robot_specs_t &config, pose_t &stored_info, double lside_diff,
      double rside_diff, double angle_deg);
00074
00075
           vex::motor_group *left_side, *right_side;
          CustomEncoder *left_custom_enc, *right_custom_enc;
vex::encoder *left_vex_enc, *right_vex_enc;
00076
00077
00078
          vex::inertial *imu;
00079
          robot specs t &config;
08000
00081
          double rotation_offset = 0;
00082
          ExponentialMovingAverage ema = ExponentialMovingAverage(3);
00083
00084 }:
```

8.19 include/subsystems/screen.h File Reference

```
#include "vex.h"
#include <vector>
```

```
#include <functional>
#include <map>
#include <cassert>
#include "../core/include/subsystems/odometry/odometry_base.h"
#include "../core/include/utils/graph_drawer.h"
#include "../core/include/utils/controls/pid.h"
#include "../core/include/utils/controls/pidff.h"
Include dependency graph for screen.h:
```


Classes

· class screen::ButtonWidget

Widget that does something when you tap it. The function is only called once when you first tap it.

· class screen::SliderWidget

Widget that updates a double value. Updates by reference so watch out for race conditions cuz the screen stuff lives on another thread.

- · struct screen::SliderConfig
- · struct screen::ButtonConfig
- · struct screen::CheckboxConfig
- struct screen::LabelConfig
- · struct screen::TextConfig
- struct screen::SizedWidget
- struct screen::WidgetConfig
- class screen::Page

Page describes one part of the screen slideshow.

- struct screen::ScreenRect
- · class screen::WidgetPage
- · class screen::StatsPage

Draws motor stats and battery stats to the screen.

class screen::OdometryPage

a page that shows odometry position and rotation and a map (if an sd card with the file is on)

· class screen::FunctionPage

Simple page that stores no internal data. the draw and update functions use only global data rather than storing anything.

class screen::PIDPage

PIDPage provides a way to tune a pid controller on the screen.

Namespaces

namespace screen

Typedefs

• using screen::update_func_t = std::function<void(bool, int, int)>

type of function needed for update

using screen::draw_func_t = std::function<void(vex::brain::lcd &screen, bool, unsigned int)>

type of function needed for draw

8.20 screen.h 253

Functions

- void screen::draw_widget (WidgetConfig &widget, ScreenRect rect)
- void screen::start_screen (vex::brain::lcd &screen, std::vector< Page * > pages, int first_page=0)

Start the screen background task. Once you start this, no need to draw to the screen manually elsewhere.

- void screen::next_page ()
- void screen::prev_page ()
- void screen::stop_screen ()

stops the screen. If you have a drive team that hates fun call this at the start of opcontrol

8.20 screen.h

```
00001 #pragma once
00002 #include "vex.h"
00003 #include <vector>
00004 #include <functional>
00005 #include <map>
00006 #include <cassert>
00007 #include "../core/include/subsystems/odometry/odometry_base.h" 00008 #include "../core/include/utils/graph_drawer.h"
00000 #Include ../core/include/utils/controls/pid.h"
00010 #include "../core/include/utils/controls/pidff.h"
00011
00012 namespace screen
00013 {
00015
           class ButtonWidget
00016
           public:
00017
               ButtonWidget(std::function<void(void)> onpress, Rect rect, std::string name) :
00022
      onpress(onpress), rect(rect), name(name) {}
              ButtonWidget(void (*onpress)(), Rect rect, std::string name) : onpress(onpress), rect(rect),
      name(name) {}
00028
               bool update(bool was_pressed, int x, int y);
void draw(vex::brain::lcd &, bool first_draw, unsigned int frame_number);
00034
00036
00037
00038
          private:
00039
              std::function<void(void)> onpress;
00040
               Rect rect;
00041
               std::string name = "";
00042
               bool was_pressed_last = false;
00043
          };
00044
00046
           class SliderWidget
00047
           public:
00048
00055
               SliderWidget(double &val, double low, double high, Rect rect, std::string name) : value(val),
      low(low), high(high), rect(rect), name(name) {}
00056
00062
               bool update(bool was_pressed, int x, int y);
00064
               void draw(vex::brain::lcd &, bool first_draw, unsigned int frame_number);
00065
00066
           private:
00067
               double &value:
00068
00069
               double low;
00070
               double high;
00071
00072
               Rect rect;
00073
               std::string name = "";
00074
           };
00075
00076
           struct WidgetConfig;
00077
00078
           struct SliderConfig
00079
00080
               double &val;
00081
               double low;
00082
               double high;
00083
00084
           struct ButtonConfig
00085
00086
               std::function<void()> onclick;
00087
00088
           struct CheckboxConfig
```

```
00089
          {
00090
              std::function<void(bool)> onupdate;
00091
          };
00092
          struct LabelConfig
00093
          {
00094
              std::string label;
00095
          };
00096
00097
          struct TextConfig
00098
          {
00099
              std::function<std::string()> text;
00100
          };
00101
          struct SizedWidget
00102
          {
00103
              int size;
00104
              WidgetConfig &widget;
00105
          };
00106
          struct WidgetConfig
00107
00108
              enum Type
00109
              {
00110
                  Col,
00111
                  Row,
                  Slider,
00112
00113
                  Button,
00114
                  Checkbox,
00115
                  Label,
00116
                  Text,
00117
                  Graph,
00118
              };
00119
              Type type;
00120
              union
00121
              {
00122
                  std::vector<SizedWidget> widgets;
00123
                  SliderConfig slider;
00124
                  ButtonConfig button;
00125
                  CheckboxConfig checkbox;
00126
                  LabelConfig label;
00127
                  TextConfig text;
00128
                  GraphDrawer *graph;
00129
              } config;
00130
          };
00131
00132
          class Page;
00134
          class Page
00135
          public:
00136
              virtual void update(bool was_pressed, int x, int y);
00145
00153
              virtual void draw(vex::brain::lcd &screen, bool first_draw,
                                unsigned int frame_number);
00154
00155
          };
00156
00157
          struct ScreenRect
00158
              uint32_t x1;
00159
              uint32_t y1;
uint32_t x2;
00160
00161
00162
              uint32_t y2;
00163
00164
          void draw_widget(WidgetConfig &widget, ScreenRect rect);
00165
00166
          class WidgetPage : public Page
00167
00168
          public:
00169
              WidgetPage(WidgetConfig &cfg) : base_widget(cfg) {}
00170
              void update(bool was_pressed, int x, int y) override;
00171
              void draw(vex::brain::lcd &, bool first_draw, unsigned int frame_number) override
00172
00173
              {
00174
                  draw_widget(base_widget, {.x1 = 20, .y1 = 0, .x2 = 440, .y2 = 240});
00175
00176
          private:
00177
00178
              WidgetConfig &base_widget;
00179
00180
00187
          void start_screen(vex::brain::lcd &screen, std::vector<Page *> pages, int first_page = 0);
00188
00189
00190
          void next_page();
00191
          void prev_page();
00192
00194
          void stop_screen();
00195
00197
          using update_func_t = std::function<void(bool, int, int)>;
00198
00200
          using draw func t = std::function<void(vex::brain::lcd &screen, bool, unsigned int)>;
```

8.20 screen.h 255

```
00201
00203
          class StatsPage : public Page
00204
          public:
00205
00208
              StatsPage(std::map<std::string, vex::motor &> motors);
00210
              void update(bool was_pressed, int x, int y) override;
              void draw(vex::brain::lcd &, bool first_draw, unsigned int frame_number) override;
00212
00213
00214
00215
              y, vex::brain::lcd &scr);
00216
00217
              std::map<std::string, vex::motor &> motors;
00218
              static const int y_start = 0;
00219
              static const int per_column = 4;
00220
              static const int row_height = 20;
00221
              static const int row_width = 200;
00222
          };
00223
00227
          class OdometryPage : public Page
00228
          public:
00229
00235
              OdometryPage(OdometryBase &odom, double robot_width, double robot_height, bool do_trail);
              void update(bool was_pressed, int x, int y) override;
void draw(vex::brain::lcd &, bool first_draw, unsigned int frame_number) override;
00237
00239
00240
00241
00242
             static const int path_len = 40;
              static constexpr char const *field_filename = "vex_field_240p.png";
00243
00244
00245
              OdometryBase &odom;
00246
              double robot_width;
00247
              double robot_height;
              uint8_t *buf = nullptr;
int buf_size = 0;
00248
00249
00250
              pose_t path[path_len];
00251
              int path_index = 0;
              bool do_trail;
00252
00253
              GraphDrawer velocity_graph;
00254
          };
00255
00257
          class FunctionPage : public Page
00258
00259
          public:
00263
              FunctionPage(update_func_t update_f, draw_func_t draw_t);
00265
              void update(bool was_pressed, int x, int y) override;
00267
              void draw(vex::brain::lcd &, bool first_draw, unsigned int frame_number) override;
00268
00269
          private:
00270
             update_func_t update_f;
00271
              draw_func_t draw_f;
00272
00273
00275
          class PIDPage : public Page
00276
00277
          public:
00282
              PIDPage(
00283
                  PID &pid, std::string name, std::function<void(void)> onchange = []() {});
00284
00285
                  PIDFF &pidff, std::string name, std::function<void(void)> onchange = []() {});
00286
              void update(bool was_pressed, int x, int y) override;
void draw(vex::brain::lcd &, bool first_draw, unsigned int frame_number) override;
00288
00290
00291
00292
          private:
              void zero_d_f() { cfg.d = 0; }
void zero_i_f() { cfg.i = 0; }
00294
00296
00297
00298
              PID::pid_config_t &cfg;
00299
              PID &pid;
00300
              const std::string name;
00301
              std::function<void(void)> onchange;
00302
00303
              SliderWidget p_slider;
00304
              SliderWidget i slider;
00305
              SliderWidget d_slider;
00306
              ButtonWidget zero_i;
00307
              ButtonWidget zero_d;
00308
00309
              GraphDrawer graph;
00310
          };
00311
00312 }
```

8.21 include/subsystems/tank_drive.h File Reference

```
#include "vex.h"
#include "../core/include/subsystems/odometry/odometry_tank.h"
#include "../core/include/utils/controls/pid.h"
#include "../core/include/utils/controls/feedback_base.h"
#include "../core/include/robot_specs.h"
#include "../core/include/utils/pure_pursuit.h"
#include "../core/include/utils/command_structure/auto_command.h"
#include <vector>
Include dependency graph for tank drive.h:
```


Classes

class TankDrive

Macros

• #define PI 3.141592654

8.21.1 Macro Definition Documentation

8.21.1.1 PI

#define PI 3.141592654

8.22 tank_drive.h

```
0001 #pragma once
00002
00003 #ifndef PI
00004 #define PI 3.141592654
00005 #endif
00006
00007 #include "vex.h"
00008 #include "../core/include/subsystems/odometry/odometry_tank.h"
00009 #include "../core/include/utils/controls/pid.h"
0010 #include "../core/include/utils/controls/feedback_base.h"
0011 #include "../core/include/robot_specs.h"
00012 #include "../core/include/utils/pure_pursuit.h"
00013 #include "../core/include/utils/command_structure/auto_command.h"
00016 using namespace vex;
00017
00022 class TankDrive
00023 {
00024 public:
```

8.22 tank_drive.h

```
00025
        enum class BrakeType
00026
00027
          None,
00028
          ZeroVelocity,
00029
          Smart,
00030
00038
        TankDrive(motor_group &left_motors, motor_group &right_motors, robot_specs_t &config, OdometryBase
      *odom = NULL);
00039
00040
        AutoCommand *DriveToPointCmd(point_t pt, vex::directionType dir = vex::forward, double max_speed =
      1.0, double end_speed = 0.0);
        AutoCommand *DriveToPointCmd(Feedback &fb, point_t pt, vex::directionType dir = vex::forward, double
00041
      max_speed = 1.0, double end_speed = 0.0);
00042
00043
        AutoCommand *DriveForwardCmd(double dist, vex::directionType dir = vex::forward, double max_speed =
      1.0, double end_speed = 0.0);
       AutoCommand *DriveForwardCmd(Feedback &fb, double dist, vex::directionType dir = vex::forward.
00044
      double max_speed = 1.0, double end_speed = 0.0);
00045
00046
        AutoCommand *TurnToHeadingCmd(double heading, double max_speed = 1.0, double end_speed = 0.0);
        AutoCommand *TurnToHeadingCmd(Feedback &fb, double heading, double max_speed = 1.0, double end_speed
00047
      = 0.0);
00048
        AutoCommand *TurnDegreesCmd(double degrees, double max_speed = 1.0, double start_speed = 0.0);
00049
        AutoCommand *TurnDegreesCmd(Feedback &fb, double degrees, double max_speed = 1.0, double end_speed =
00050
00051
00052
        AutoCommand *PurePursuitCmd(PurePursuit::Path path, directionType dir, double max_speed = 1, double
      end_speed = 0);
        AutoCommand *PurePursuitCmd(Feedback &feedback, PurePursuit::Path path, directionType dir, double
00053
      max_speed = 1, double end_speed = 0);
00054
00058
        void stop();
00059
00070
        void drive_tank(double left, double right, int power = 1, BrakeType bt = BrakeType::None);
00076
        void drive_tank_raw(double left, double right);
00077
00089
        void drive_arcade(double forward_back, double left_right, int power = 1, BrakeType bt =
      BrakeType::None);
00090
00102
        bool drive_forward(double inches, directionType dir, Feedback &feedback, double max_speed = 1,
      double end_speed = 0);
00103
00113
        bool drive_forward(double inches, directionType dir, double max_speed = 1, double end_speed = 0);
00114
00125
        bool turn_degrees(double degrees, Feedback &feedback, double max_speed = 1, double end_speed = 0);
00126
00137
        bool turn_degrees(double degrees, double max_speed = 1, double end_speed = 0);
00138
00151
        bool drive_to_point(double x, double y, vex::directionType dir, Feedback &feedback, double max_speed
      = 1, double end_speed = 0);
00152
00165
        bool drive_to_point(double x, double y, vex::directionType dir, double max_speed = 1, double
      end_speed = 0);
00166
00176
        bool turn to heading (double heading deg, Feedback & feedback, double max speed = 1, double end speed
00185
        bool turn_to_heading(double heading_deg, double max_speed = 1, double end_speed = 0);
00186
        void reset_auto();
00190
00191
00200
        static double modify inputs (double input, int power = 2);
00201
00214
        bool pure_pursuit(PurePursuit::Path path, directionType dir, Feedback &feedback, double max_speed =
      1, double end_speed = 0);
00215
00229
        bool pure_pursuit(PurePursuit::Path path, directionType dir, double max_speed = 1, double end_speed
      = 0);
00230
00231 private:
00232
        motor_group &left_motors;
00233
        motor_group &right_motors;
00234
00235
        PID correction_pid;
        Feedback *drive_default_feedback = NULL;
00236
        Feedback *turn_default_feedback = NULL;
00237
00238
00239
        OdometryBase *odometry;
00240
00241
        robot specs t &config;
00242
00243
        bool func_initialized = false;
00244
        bool is_pure_pursuit = false;
00245 };
```

8.23 include/utils/auto_chooser.h File Reference

```
#include "vex.h"
#include <string>
#include <vector>
#include "../core/include/subsystems/screen.h"
#include "../core/include/utils/geometry.h"
Include dependency graph for auto_chooser.h:
```


Classes

- · class AutoChooser
- struct AutoChooser::entry_t

8.24 auto chooser.h

```
00001 #pragma once
00002 #include "vex.h"
00003 #include <string>
00004 #include <vector>
00005 #include "../core/include/subsystems/screen.h"
00006 #include "../core/include/utils/geometry.h"
00007
00016 class AutoChooser : public screen::Page
00017 {
00018 public:
00024
        AutoChooser(std::vector<std::string> paths, size_t def = 0);
00025
00026
        void update(bool was_pressed, int x, int y);
00027
        void draw(vex::brain::lcd &, bool first_draw, unsigned int frame_number);
00028
00033
        size t get choice();
00034
00035 protected:
00039
        struct entry_t
00040
00041
         Rect rect;
00042
         std::string name;
00043
00044
00045
        static const size_t width = 380;
00046
        static const size_t height = 220;
00047
00048
       size_t choice;
00049
       std::vector<entry_t> list ;
00050 };
```

8.25 include/utils/command structure/auto command.h File Reference

```
#include "vex.h"
#include <functional>
#include <vector>
#include <queue>
#include <atomic>
```

Include dependency graph for auto_command.h:

Classes

- · class Condition
- · class AutoCommand
- · class FunctionCommand
- class TimesTestedCondition
- class FunctionCondition

FunctionCondition is a quick and dirty Condition to wrap some expression that should be evaluated at runtime.

class IfTimePassed

IfTimePassed tests based on time since the command controller was constructed. Returns true if elapsed time > time s.

· class WaitUntilCondition

Waits until the condition is true.

· class InOrder

InOrder runs its commands sequentially then continues. How to handle timeout in this case. Automatically set it to sum of commands timouts?

class Parallel

Parallel runs multiple commands in parallel and waits for all to finish before continuing. if none finish before this command's timeout, it will call on_timeout on all children continue.

class Branch

Branch chooses from multiple options at runtime. the function decider returns an index into the choices vector If you wish to make no choice and skip this section, return NO_CHOICE; any choice that is out of bounds set to NO_← CHOICE.

class Async

Async runs a command asynchronously will simply let it go and never look back THIS HAS A VERY NICHE USE CASE. THINK ABOUT IF YOU REALLY NEED IT.

class RepeatUntil

8.26 auto command.h

```
00001
00007 #pragma once
80000
00009 #include "vex.h"
00010 #include <functional>
00011 #include <vector>
00012 #include <queue>
00013 #include <atomic>
00014
00015
00025 class Condition
00026 {
00027 public:
00028
        Condition *Or(Condition *b);
00029
        Condition *And(Condition *b);
00030
       virtual bool test() = 0;
00031 };
00032
00033
00034 class AutoCommand
00035 {
00036 public:
       static constexpr double default_timeout = 10.0;
00043
        virtual bool run() { return true; }
00047
        virtual void on_timeout() {}
        AutoCommand *withTimeout(double t_seconds)
00048
00049
00050
          if (this->timeout_seconds < 0)</pre>
00051
00052
            // should never be timed out
            return this;
00053
00054
00055
          this->timeout_seconds = t_seconds;
00056
          return this:
00057
00058
        AutoCommand *withCancelCondition(Condition *true_to_end){
00059
         this->true_to_end = true_to_end;
00060
         return this;
00061
00071
        double timeout seconds = default timeout;
       Condition *true_to_end = nullptr;
00073 };
00074
00079 class FunctionCommand : public AutoCommand
00080 {
00081 public:
00082
       FunctionCommand(std::function<bool(void)> f) : f(f) {}
        bool run()
00084
00085
         return f();
       }
00086
00087
00088 private:
       std::function<bool(void)> f;
000090 };
00091
00092 // Times tested 3
00093 // Test 1 -> false
00094 // Test 2 -> false
00095 // Test 3 -> true
00096 // Returns false until the Nth time that it is called
00097 // This is pretty much only good for implementing RepeatUntil
00098 class TimesTestedCondition : public Condition
00099 {
00100 public:
00101
        TimesTestedCondition(size_t N) : max(N) {}
        bool test() override
00103
00104
          count++;
          if (count >= max)
00105
00106
00107
            return true;
00108
00109
          return false;
00110
00111
00112 private:
00113
       size t count = 0;
00114
        size_t max;
00115 };
{\tt 00118\ class\ FunctionCondition\ :\ public\ Condition}
```

8.26 auto_command.h

```
00119 {
00120 public:
00121
       FunctionCondition(
00122
           std::function<bool()> cond, std::function<void(void)> timeout = []() {}) : cond(cond),
     timeout(timeout)
00123
00124
00125
       bool test() override;
00126
00127 private:
00128 std::function<bool()> cond;
00129 std::function<void(void)> t
       std::function<void(void)> timeout;
00130 };
00131
00133 class IfTimePassed : public Condition
00134 {
00135 public:
        IfTimePassed(double time s);
00136
00137
       bool test() override;
00138
00139 private:
00140 double time_s;
00141 vex::timer tmr;
00142 };
00143
00145 class WaitUntilCondition : public AutoCommand
00146 {
00147 public:
00148
       WaitUntilCondition(Condition *cond) : cond(cond) {}
00149
        bool run() override
00150
       {
00151
          return cond->test();
00152
00153
00154 private:
00155
       Condition *cond;
00156 };
00157
00160
00163 class InOrder : public AutoCommand
00164 {
00165 public:
       InOrder(const InOrder &other) = default:
00166
        InOrder(std::queue<AutoCommand *> cmds);
00167
        InOrder(std::initializer_list<AutoCommand *> cmds);
00169
        bool run() override;
00170
       void on_timeout() override;
00171
00172 private:
00173 AutoCommand *current_command = nullptr;
00174
        std::queue<AutoCommand *> cmds;
00175
       vex::timer tmr;
00176 };
00177
00180 class Parallel : public AutoCommand
00181 {
00182 public:
00183
        Parallel(std::initializer_list<AutoCommand *> cmds);
00184
       bool run() override;
00185
       void on_timeout() override;
00186
00187 private:
00188
       std::vector<AutoCommand *> cmds;
00189
        std::vector<vex::task *> runners;
00190 };
00191
00195 class Branch : public AutoCommand
00196 {
00197 public:
00198
       Branch(Condition *cond, AutoCommand *false_choice, AutoCommand *true_choice);
00199
        ~Branch();
00200
       bool run() override;
00201
       void on_timeout() override;
00202
00203 private:
00204 AutoCommand *false_choice;
00205
        AutoCommand *true_choice;
00206
        Condition *cond;
       bool choice = false;
bool chosen = false;
00207
00208
00209
       vex::timer tmr;
00210 };
00211
00215 class Async : public AutoCommand
00216 {
00217 public:
00218
       Async(AutoCommand *cmd) : cmd(cmd) {}
```

```
00219 bool run() override;
00220
00221 private:
00222 AutoCommand *cmd = nullptr;
00223 };
00224
00225 class RepeatUntil : public AutoCommand
00226 {
00227 public:
00231
        RepeatUntil(InOrder cmds, size_t repeats);
00235
        RepeatUntil(InOrder cmds, Condition *true_to_end);
00236
        bool run() override;
00237
        void on_timeout() override;
00238
00239 private:
00240 const InOrder emds;
00241 InOrder *working_cmds;
00242 Condition *cond;
00243 };
```

8.27 include/utils/command_structure/basic_command.h File Reference

#include "../core/include/utils/command_structure/auto_command.h"
Include dependency graph for basic command.h:

Classes

- · class BasicSpinCommand
- · class BasicStopCommand
- · class BasicSolenoidSet

8.28 basic_command.h

```
00001
00014 #pragma once
00015
00016 #include "../core/include/utils/command_structure/auto_command.h"
00017
00018 //Basic Motor Classes------
00019
00024 class BasicSpinCommand : public AutoCommand {
00025    public:
```

```
00026
00027
           //Enumurator for the type of power setting in the motor
00028
           enum type {percent, voltage, veocity};
00029
00038
           BasicSpinCommand(vex::motor &motor, vex::directionType dir, BasicSpinCommand::type setting,
     double power);
00039
00046
           bool run() override;
00047
00048
         private:
00049
00050
          vex::motor &motor;
00051
00052
          type setting;
00053
00054
          vex::directionType dir;
00055
00056
           double power;
00057 };
00062 class BasicStopCommand : public AutoCommand{
00063
00064
00071
           BasicStopCommand(vex::motor &motor, vex::brakeType setting);
00072
00079
          bool run() override;
08000
00081
         private:
00082
00083
           vex::motor &motor;
00084
00085
           vex::brakeType setting;
00086 };
00087
00088 //Basic Solenoid Commands-----
00089
00094 class BasicSolenoidSet : public AutoCommand{
00095
         public:
00103
           BasicSolenoidSet(vex::pneumatics &solenoid, bool setting);
00104
00111
          bool run() override;
00112
         private:
00113
00114
00115
          vex::pneumatics &solenoid;
00116
00117
           bool setting;
00118 };
```

8.29 include/utils/command_structure/command_controller.h File Reference

```
#include <vector>
#include <queue>
#include "../core/include/utils/command_structure/auto_command.h"
```

Include dependency graph for command_controller.h:

Classes

· class CommandController

8.30 command_controller.h

```
00001
00010 #pragma once
00011 #include <vector>
00012 #include <queue>
00013 #include "../core/include/utils/command_structure/auto_command.h"
00014
00015 class CommandController
00016 {
00017 public:
00019
         [[deprecated("Use list constructor instead.")]] CommandController() : command_queue({}) {}
00020
        CommandController(std::initializer_list<AutoCommand *> cmds) : command_queue(cmds) {}
[[deprecated("Use list constructor instead. If you need to make a decision before adding new
00023
00029
      commands, use Branch (https://github.com/RIT-VEX-U/Core/wiki/3-%7C-Utilites#commandcontroller)")]]
       void add(std::vector<AutoCommand *> cmds);
00030
         void add(AutoCommand *cmd, double timeout_seconds = 10.0);
00031
      [[deprecated("Use list constructor instead. If you need to make a decision before adding new commands, use Branch (https://github.com/RIT-VEX-U/Core/wiki/3-%7C-Utilites#commandcontroller)")]]
00042
00043
         add(std::vector<AutoCommand *> cmds, double timeout_sec);
00050
         void add_delay(int ms);
00051
00054
        void add_cancel_func(std::function<bool(void)> true_if_cancel);
00055
00060
        void run();
00061
00067
        bool last_command_timed_out();
00068
00069 private:
00070
         std::queue<AutoCommand *> command_queue;
         bool command_timed_out = false;
00072
        std::function<bool()> should_cancel = []()
00073
        { return false; };
00074 };
```

8.31 include/utils/command_structure/delay_command.h File Reference

#include "../core/include/utils/command_structure/auto_command.h"
Include dependency graph for delay_command.h:

Classes

· class DelayCommand

8.32 delay_command.h

Go to the documentation of this file.

```
00008 #pragma once
00009
00010 #include "../core/include/utils/command_structure/auto_command.h"
00011
00012 class DelayCommand: public AutoCommand {
00013 public:
         DelayCommand(int ms): ms(ms) {}
00019
        bool run() override {
00025
00026
         vexDelay(ms);
00027
           return true;
00028
00029
00030 private:
       // amount of milliseconds to wait
int ms;
00031
00032
00033 };
```

8.33 include/utils/command_structure/drive_commands.h File Reference

```
#include "vex.h"
#include "../core/include/utils/geometry.h"
#include "../core/include/utils/command_structure/auto_command.h"
```

#include "../core/include/subsystems/tank_drive.h"
Include dependency graph for drive_commands.h:

Classes

- · class DriveForwardCommand
- · class TurnDegreesCommand
- · class DriveToPointCommand
- class TurnToHeadingCommand
- class PurePursuitCommand
- class DriveStopCommand
- class OdomSetPosition

8.34 drive commands.h

```
00019 #pragma once
00020
00021 #include "vex.h"
00022 #include "../core/include/utils/geometry.h"
00023 #include "../core/include/utils/command_structure/auto_command.h"
00024 #include "../core/include/subsystems/tank_drive.h"
00025
00026 using namespace vex;
00027
00028
00029 // ==== DRIVING ====
00036 class DriveForwardCommand: public AutoCommand
00037 {
       public:
00038
00039
          DriveForwardCommand(TankDrive &drive_sys, Feedback &feedback, double inches, directionType dir,
     double max_speed=1, double end_speed=0);
00040
00046
          bool run() override;
00050
          void on_timeout() override;
00051
00052
       private:
00053
          // drive system to run the function on
00054
          TankDrive &drive sys;
00055
00056
           // feedback controller to use
00057
          Feedback &feedback;
00058
00059
          // parameters for drive_forward
00060
          double inches;
00061
          directionType dir;
00062
          double max_speed;
00063
          double end_speed;
00064 };
00065
00070 class TurnDegreesCommand: public AutoCommand
00071 {
        public:
```

8.34 drive_commands.h

```
00073
          TurnDegreesCommand(TankDrive &drive_sys, Feedback &feedback, double degrees, double max_speed = 1,
     double end_speed = 0);
00074
00080
          bool run() override;
00084
          void on_timeout() override;
00085
00086
00087
00088
         // drive system to run the function on
00089
          TankDrive &drive_sys;
00090
00091
          // feedback controller to use
00092
          Feedback &feedback;
00093
00094
          // parameters for turn_degrees
00095
          double degrees;
00096
          double max_speed;
00097
          double end_speed;
00098 };
00099
00104 class DriveToPointCommand: public AutoCommand
00105 {
        public:
00106
     DriveToPointCommand(TankDrive &drive_sys, Feedback &feedback, double x, double y, directionType dir, double max_speed = 1, double end_speed = 0);
00107
          DriveToPointCommand(TankDrive &drive_sys, Feedback &feedback, point_t point, directionType dir,
     double max_speed=1, double end_speed = 0);
00109
00115
          bool run() override;
00116
00117
        private:
00118
          // drive system to run the function on
00119
          TankDrive &drive_sys;
00120
00124
          void on_timeout() override;
00125
00126
00127
          // feedback controller to use
00128
          Feedback &feedback;
00129
00130
          // parameters for drive_to_point
00131
          double x;
00132
          double v;
00133
          directionType dir;
00134
          double max_speed;
00135
          double end_speed;
00136
00137 };
00138
00144 class TurnToHeadingCommand: public AutoCommand
00145 {
00146
      public:
00147
          TurnToHeadingCommand(TankDrive &drive_sys, Feedback &feedback, double heading_deg, double speed =
     1, double end_speed = 0);
00148
00154
          bool run() override;
00158
          void on_timeout() override;
00159
00160
       private:
00161
00162
          // drive system to run the function on
00163
          TankDrive &drive_sys;
00164
00165
          // feedback controller to use
00166
          Feedback &feedback;
00167
00168
          // parameters for turn_to_heading
00169
          double heading_deg;
00170
          double max speed;
00171
          double end_speed;
00172 };
00173
00177 class PurePursuitCommand: public AutoCommand
00178 {
00179
        public:
        PurePursuitCommand(TankDrive &drive_sys, Feedback &feedback, PurePursuit::Path path, directionType
     dir, double max_speed=1, double end_speed=0);
00189
00193
        bool run() override;
00194
00198
        void on_timeout() override;
00199
00200
00201
        TankDrive &drive_sys;
00202
       PurePursuit::Path path;
00203
        directionType dir;
00204
       Feedback &feedback:
```

```
double max_speed;
00206
       double end_speed;
00207
00208 };
00209
00214 class DriveStopCommand: public AutoCommand
00215 {
00216
00217
          DriveStopCommand(TankDrive &drive_sys);
00218
00224
          bool run() override;
00225
          void on_timeout() override;
00226
00227
00228
          \ensuremath{//}\xspace drive system to run the function on
00229
          TankDrive &drive_sys;
00230 };
00231
00232
00233 // ==== ODOMETRY ====
00234
00239 class OdomSetPosition: public AutoCommand
00240 {
       public:
00241
00247
          OdomSetPosition(OdometryBase &odom, const pose_t &newpos=OdometryBase::zero_pos);
00248
00254
          bool run() override;
00255
00256
       private:
         // drive system with an odometry config
00257
          OdometryBase &odom;
00258
00259
          pose_t newpos;
00260 };
```

8.35 include/utils/command_structure/flywheel_commands.h File Reference

#include "../core/include/subsystems/flywheel.h"
#include "../core/include/utils/command_structure/auto_command.h"
Include dependency graph for flywheel_commands.h:

Classes

- · class SpinRPMCommand
- · class WaitUntilUpToSpeedCommand
- · class FlywheelStopCommand
- class FlywheelStopMotorsCommand
- · class FlywheelStopNonTasksCommand

8.36 flywheel_commands.h

```
00001
00007 #pragma once
80000
00009 #include "../core/include/subsystems/flywheel.h" 00010 #include "../core/include/utils/command_structure/auto_command.h"
00011
00017 class SpinRPMCommand: public AutoCommand {
        public:
00018
00024
        SpinRPMCommand(Flywheel &flywheel, int rpm);
00031
          bool run() override;
00032
00033
           // Flywheel instance to run the function on
00034
00035
          Flywheel &flywheel;
00036
00037
          // parameters for spin_rpm
00038
00039 };
00040
00045 class WaitUntilUpToSpeedCommand: public AutoCommand {
00046
       public:
00052
          WaitUntilUpToSpeedCommand(Flywheel &flywheel, int threshold_rpm);
00053
00059
          bool run() override;
00060
00061
        private:
00062
           // Flywheel instance to run the function on
          Flywheel &flywheel;
00063
00064
00065
          // if the actual speed is equal to the desired speed +/- this value, we are ready to fire
00066
          int threshold_rpm;
00067 };
00068
00074 class FlywheelStopCommand: public AutoCommand {
00075
08000
        FlywheelStopCommand(Flywheel &flywheel);
00081
00087
          bool run() override;
00088
00089
        private:
00090
          // Flywheel instance to run the function on
00091
          Flywheel &flywheel;
00092 };
00093
00099 class FlywheelStopMotorsCommand: public AutoCommand {
00100
        FlywheelStopMotorsCommand(Flywheel &flywheel);
00106
00112
          bool run() override;
00113
00114
        private:
          // Flywheel instance to run the function on
00115
00116
          Flywheel &flywheel;
00117 };
00118
00124 class FlywheelStopNonTasksCommand: public AutoCommand {
00125
        FlywheelStopNonTasksCommand(Flywheel &flywheel);
00126
          bool run() override;
00133
00134
        private:
00135
          // Flywheel instance to run the function on
00136
          Flywheel &flywheel;
00137 }:
```

8.37 include/utils/controls/bang_bang.h File Reference

#include "../core/include/utils/controls/feedback_base.h"
Include dependency graph for bang_bang.h:

Classes

class BangBang

8.38 bang_bang.h

```
Go to the documentation of this file.
```

```
00001 #include "../core/include/utils/controls/feedback_base.h"
00003 class BangBang : public Feedback
00004 {
00005
00006 public:
00007
          BangBang(double thresshold, double low, double high);
          void init(double start_pt, double set_pt, double start_vel [[maybe_unused]] = 0.0, double end_vel
00016
      [[maybe_unused]] = 0.0) override;
00017
00024
          double update(double val) override;
00025
00029
          double get() override;
00030
00037
          void set_limits(double lower, double upper) override;
00038
00042
          bool is_on_target() override;
00043
00044 private:
         double setpt;
00046
          double sensor_val;
00047
          double lower_bound, upper_bound;
00048
          double last_output;
00049
          double threshhold;
00050 };
```

8.39 include/utils/controls/feedback_base.h File Reference

Classes

· class Feedback

8.40 feedback_base.h

8.40 feedback_base.h

Go to the documentation of this file.

```
00001 #pragma once
00002
00010 class Feedback
00011 {
00012 public:
00021
          virtual void init(double start_pt, double set_pt, double start_vel = 0.0, double end_vel = 0.0) =
00022
00029
         virtual double update(double val) = 0;
00030
00034
         virtual double get() = 0;
00035
         virtual void set_limits(double lower, double upper) = 0;
00042
00043
00047
         virtual bool is_on_target() = 0;
00048
00049
00050 };
```

8.41 include/utils/controls/feedforward.h File Reference

```
#include <math.h>
#include <vector>
#include "../core/include/utils/math_util.h"
#include "../core/include/utils/moving_average.h"
#include "vex.h"
```

Include dependency graph for feedforward.h:

Classes

- class FeedForward
- struct FeedForward::ff_config_t

Functions

• FeedForward::ff_config_t tune_feedforward (vex::motor_group &motor, double pct, double duration)

8.41.1 Function Documentation

8.41.1.1 tune_feedforward()

tune_feedforward takes a group of motors and finds the feedforward conifg parameters automagically.

8.42 feedforward.h

Parameters

motor	the motor group to use
pct	Maximum velocity in percent (0->1.0)
duration	Amount of time the motors spin for the test

Returns

A tuned feedforward object

8.42 feedforward.h

Go to the documentation of this file.

```
00001 #pragma once
00002
00003 #include <math.h>
00004 #include <vector>
00005 #include "../core/include/utils/math_util.h"
00006 #include "../core/include/utils/moving_average.h"
00007 #include "vex.h"
80000
00029 class FeedForward
00030 {
           public:
00031
00032
00041
           typedef struct
00042
               double kS;
00044
               double kV;
00045
               double kA;
00046
               double kG;
00047
           } ff_config_t;
00048
00049
00054
           FeedForward(ff_config_t &cfg) : cfg(cfg) {}
00055
00066
           double calculate(double v, double a, double pid_ref=0.0)
00067
00068
               double ks_sign = 0;
00069
               if(v != 0)
00070
                   ks_sign = sign(v);
00071
               else if (pid_ref != 0)
00072
                   ks_sign = sign(pid_ref);
00073
00074
               return (cfg.kS * ks_sign) + (cfg.kV * v) + (cfg.kA * a) + cfg.kG;
00075
00076
00077
           private:
00078
00079
           ff_config_t &cfg;
08000
00081 };
00091 FeedForward::ff_config_t tune_feedforward(vex::motor_group &motor, double pct, double duration);
```

8.43 include/utils/controls/motion_controller.h File Reference

```
#include "../core/include/utils/controls/pid.h"
#include "../core/include/utils/controls/feedforward.h"
#include "../core/include/utils/controls/trapezoid_profile.h"
#include "../core/include/utils/controls/feedback_base.h"
#include "../core/include/subsystems/tank_drive.h"
#include "../core/include/subsystems/screen.h"
```

#include "vex.h"

Include dependency graph for motion_controller.h:

Classes

- class MotionController
- struct MotionController::m_profile_cfg_t

8.44 motion controller.h

```
00001 #pragma once
00002 #include "../core/include/utils/controls/pid.h"
00002 #include "../core/include/utils/controls/pid.n
00003 #include "../core/include/utils/controls/feedforward.h"
00004 #include "../core/include/utils/controls/trapezoid_profile.h"
00005 #include "../core/include/utils/controls/feedback_base.h"
00006 #include "../core/include/subsystems/tank_drive.h"
00007 #include "../core/include/subsystems/screen.h"
00008
00009 #include "vex.h"
00010
00027 class MotionController : public Feedback
00028 {
00029
            public:
00030
00036
            typedef struct
00037
00038
                 double max_v;
00039
                 double accel;
00040
                 PID::pid_config_t pid_cfg;
00041
                 FeedForward::ff_config_t ff_cfg;
00042
            } m_profile_cfg_t;
00043
00053
            MotionController(m_profile_cfg_t &config);
00054
00059
            void init(double start_pt, double end_pt, double start_vel, double end_vel) override;
00060
00067
            double update (double sensor_val) override;
00068
00072
            double get() override;
00073
00081
            void set_limits(double lower, double upper) override;
00082
00087
            bool is on target() override;
00088
00092
            motion_t get_motion() const;
00093
00094
00095
            screen::Page *Page();
00096
            static FeedForward::ff_config_t tune_feedforward(TankDrive &drive, OdometryTank &odometry, double
00115
       pct=0.6, double duration=2);
00116
00117
            private:
00118
00119
            m_profile_cfg_t config;
00120
00121
            PID pid;
00122
            FeedForward ff;
00123
            TrapezoidProfile profile;
00124
00125
            double current_pos;
00126
            double end pt:
00127
00128
            double lower_limit = 0, upper_limit = 0;
```

8.45 include/utils/controls/pid.h File Reference

```
#include "../core/include/utils/controls/feedback_base.h"
#include "vex.h"
#include <cmath>
Include dependency graph for pid.h:
```


Classes

- class PID
- struct PID::pid_config_t

8.46 pid.h

```
00001 #pragma once
00003 #include "../core/include/utils/controls/feedback_base.h" 00004 #include "vex.h"
00005 #include <cmath>
00006
00007 using namespace vex;
80000
00023 class PID : public Feedback {
00024 public:
00029 enum ERROR_TYPE {
           LINEAR,
ANGULAR // assumes degrees
00030
00031
00032
00043
        struct pid_config_t {
00044
          double p;
00045
00046
           double i;
           double d;
00047
           double deadband;
00048
           double on_target_time;
00050
           ERROR_TYPE error_method;
```

```
00052
       };
00053
00058
       PID(pid_config_t &config);
00059
00072
       00073
00074
00082
       double update(double sensor_val) override;
00083
00088
       double get_sensor_val() const;
00089
00095
       double get() override;
00096
00105
       void set_limits(double lower, double upper) override;
00106
00111
       bool is_on_target() override;
00112
00116
       void reset();
00117
00123
       double get_error();
00124
00129
       double get_target() const;
00130
00135
       void set target(double target);
00136
00137
       pid_config_t
00138
           &config;
00140
00141 private:
00142
       double last_error =
00143
          0;
00144
       double accum_error =
00145
           0;
00146
00147
       double last_time = 0;
00148
       double on_target_last_time =
           0;
00149
00150
00151
       double lower_limit =
00152
          0;
00153
       double upper_limit =
00154
           0;
00155
00156
       double target = 0;
00158
       double target_vel = 0;
00160
       double sensor_val = 0;
00162
       double out = 0;
00165
       bool is_checking_on_target =
00166
00167
          false:
00168
00169
      timer pid_timer;
00172 };
```

8.47 include/utils/controls/pidff.h File Reference

```
#include "../core/include/utils/controls/feedback_base.h"
#include "../core/include/utils/controls/feedforward.h"
#include "../core/include/utils/controls/pid.h"
Include dependency graph for pidff.h:
```


8.48 pidff.h 277

Classes

class PIDFF

8.48 pidff.h

Go to the documentation of this file.

```
00001 #pragma once
00002 "program office of the property of the p
00005
00006 class PIDFF : public Feedback {
00007 public:
80000
                          PIDFF(PID::pid_config_t &pid_cfg, FeedForward::ff_config_t &ff_cfg);
00009
                          00018
00019
00020
00025
                          void set_target(double set_pt);
00026
00027
                          double get_target() const;
                         double get_sensor_val() const;
double update(double val) override;
00028
00036
00037
00046
                         double update(double val, double vel_setpt, double a_setpt = 0);
00047
00051
                         double get() override;
00052
00060
                         void set limits (double lower, double upper) override;
00061
00065
                         bool is_on_target() override;
00066
00067
                          void reset();
00068
00069
                         PID pid;
00070
00071 private:
00072
                          FeedForward::ff_config_t &ff_cfg;
00073
00074
                         FeedForward ff;
00075
00076
                         double out;
00077
                         double lower_lim, upper_lim;
```

8.49 include/utils/controls/take_back_half.h File Reference

#include "../core/include/utils/controls/feedback_base.h"
Include dependency graph for take_back_half.h:

Classes

· class TakeBackHalf

A velocity controller.

8.50 take_back_half.h

Go to the documentation of this file.

```
00001 #pragma once 00002 #include "../core/include/utils/controls/feedback_base.h"
00003
00006 class TakeBackHalf : public Feedback
00007 {
80000
00009 public:
           TakeBackHalf(double TBH_gain, double first_cross_split, double on_target_threshold);
void init(double start_pt, double set_pt, double, double);
double update(double val) override;
00010
00019
00026
00027
00031
           double get() override;
00032
           void set_limits(double lower, double upper) override;
00039
00040
00044
           bool is_on_target() override;
00045
00046
           double TBH_gain;
00047
           double first_cross_split;
00048 private:
00049
           double on_target_threshhold;
00050
00051
           double target = 0.0;
00052
00053
           bool first_cross = true;
00054
           double tbh = 0.0;
00055
           double prev_error = 0.0;
00056
00057
           double output = 0.0;
00058
           double lower = 0.0, upper = 0.0;
00059 };
```

8.51 include/utils/controls/trapezoid_profile.h File Reference

Classes

- struct motion_t
- struct trapezoid_profile_segment_t
- · class TrapezoidProfile

Variables

• const int MAX TRAPEZOID PROFILE SEGMENTS = 4

8.51.1 Variable Documentation

8.51.1.1 MAX_TRAPEZOID_PROFILE_SEGMENTS

```
const int MAX_TRAPEZOID_PROFILE_SEGMENTS = 4
```

8.52 trapezoid profile.h

Go to the documentation of this file.

```
00001 #pragma once
00002
00003 const int MAX_TRAPEZOID_PROFILE_SEGMENTS = 4;
00004
00008 typedef struct {
00009
        double pos;
00010
       double vel;
00011
       double accel;
00012
00013 } motion_t;
00014
00019 typedef struct {
00020
       double pos_after;
00021
       double vel_after;
00022
       double accel;
00023
       double duration;
00024 } trapezoid_profile_segment_t;
00025
00063 class TrapezoidProfile {
00064 public:
00071
        TrapezoidProfile(double max v, double accel);
00072
00081
       motion_t calculate(double time_s, double pos_s);
00082
00089
       motion_t calculate_time_based(double time_s);
00090
00097
       void set endpts (double start, double end);
00098
00105
       void set_vel_endpts(double start, double end);
00106
00113
       void set_accel(double accel);
00114
00121
       void set_max_v(double max_v);
00122
00129
       double get movement time() const;
00130
00131
       double get_max_v() const;
00132
       double get_accel() const;
00133
00134 private:
00135
       double si, sf;
00136
       double vi, vf;
00137
       double max_v;
00138
       double accel;
00139
       double duration;
00140
00141
       trapezoid_profile_segment_t segments[MAX_TRAPEZOID_PROFILE_SEGMENTS];
00142
       int num_acceleration_phases;
00143
00144
       bool precalculated;
00145
00151
       bool precalculate();
00152
00163
       trapezoid_profile_segment_t calculate_kinetic_motion(double si, double vi,
00164
00165
00173
       trapezoid_profile_segment_t calculate_next_segment(double s, double v);
00174 };
```

8.53 include/utils/generic_auto.h File Reference

```
#include <queue>
#include <map>
#include "vex.h"
#include <functional>
```

Include dependency graph for generic_auto.h:

Classes

· class GenericAuto

Typedefs

typedef std::function< bool(void)> state_ptr

8.53.1 Typedef Documentation

8.53.1.1 state_ptr

```
typedef std::function<bool(void)> state_ptr
```

8.54 generic_auto.h

```
00001 #pragma once
00002
00003 #include <queue>
00004 #include <map>
00005 #include "vex.h"
00006 #include <functional>
00007
00008 typedef std::function<bool(void)> state_ptr;
00009
00014 class GenericAuto
00015 {
00016
        public:
00017
00031
00032
        [[deprecated("Use CommandController instead.")]]
        bool run (bool blocking);
00033
00038
        [[deprecated("Use CommandController instead.")]]
00039
        void add(state_ptr new_state);
00040
        [[deprecated("Use CommandController instead.")]]
00045
00046
        void add_async(state_ptr async_state);
00047
00052
        [[deprecated("Use CommandController instead.")]]
00053
        void add_delay(int ms);
00054
00055
00056
        private:
00057
        std::queue<state_ptr> state_list;
00058
00059 };
```

8.55 include/utils/geometry.h File Reference

#include <cmath>
Include dependency graph for geometry.h:

Classes

- struct point_t
- struct pose t
- struct Rect
- struct Mat2

8.56 geometry.h

```
00001 #pragma once
00002 #include <cmath>
00007 struct point_t
} 80000
00009
          double x;
00010
          double y;
00011
          double dist(const point_t other) const
00018
00019
               return std::sqrt(std::pow(this->x - other.x, 2) + pow(this->y - other.y, 2));
00020
00021
00027
          point_t operator+(const point_t &other) const
00028
              point_t p{
               .x = this->x + other.x,
.y = this->y + other.y);
00030
00031
00032
00033
               return p;
00034
00040
          point_t operator-(const point_t &other) const
00041
00042
               point_t p{
               .x = this->x - other.x,
.y = this->y - other.y);
00043
00044
00045
               return p;
00046
          }
00047
00048
          point_t operator*(double s) const
00049
00050
               return {x * s, y * s};
00051
00052
          point_t operator/(double s) const
00053
```

```
return {x / s, y / s};
00055
00056
00057
           point_t operator-() const
00058
00059
               return {-x, -v};
00060
00061
           point_t operator+() const
00062
00063
               return {x, y};
          }
00064
00065
00066
          bool operator==(const point_t &rhs)
00067
00068
               return x == rhs.x && y == rhs.y;
00069
00070 };
00071
00075 struct pose_t
00076 {
00077
           double x;
00078
           double y;
00079
          double rot;
00080
00081
          point_t get_point()
00082
00083
               return point_t{.x = x, .y = y};
00084
00085
00086 } ;
00087
00088 struct Rect
00089 {
00090
           point_t min;
00091
           point_t max;
           static Rect from_min_and_size(point_t min, point_t size){
00092
00093
              return {min, min+size};
00095
          point_t dimensions() const
00096
00097
               return max - min;
00098
00099
          point_t center() const{
00100
              return (min + max)/2;
00101
00102
           double width() const{
00103
             return max.x - min.x;
00104
00105
          double height() const{
00106
              return max.y - min.y;
00107
00108
           bool contains(point_t p) const
00109
               bool xin = p.x > min.x && p.x < max.x;
bool yin = p.y > min.y && p.y < max.y;
return xin && yin;</pre>
00110
00111
00112
00113
00114
00115 };
00116
00117 struct Mat2
00118 {
00119
          double X11, X12;
00120
          double X21, X22;
00121
          point_t operator*(const point_t p) const
00122
              double outx = p.x * X11 + p.y * X12;
double outy = p.x * X21 + p.y * X22;
00123
00124
00125
               return {outx, outv};
00126
          }
00127
00128
          static Mat2 FromRotationDegrees (double degrees)
00129
               double rad = degrees * (M_PI / 180.0);
00130
               double c = cos(rad);
double s = sin(rad);
00131
00132
00133
               return {c, -s, s, c};
00134
00135 };
```

8.57 include/utils/graph_drawer.h File Reference

```
#include <string>
#include <stdio.h>
#include <vector>
#include <cmath>
#include "vex.h"
#include "../core/include/utils/geometry.h"
#include "../core/include/utils/vector2d.h"
Include dependency graph for graph_drawer.h:
```


Classes

· class GraphDrawer

8.58 graph_drawer.h

```
00001 #pragma once
00002
00003 #include <string>
00004 #include <stdio.h>
00005 #include <vector>
00006 #include <cmath>
00007 #include "vex.h"
00008 #include "../core/include/utils/geometry.h"
00009 #include "../core/include/utils/vector2d.h"
00010
00011 class GraphDrawer
00012 {
00013 public:
       GraphDrawer(int num_samples, double lower_bound, double upper_bound, std::vector<vex::color> colors,
     size_t num_series = 1);
00025
       void add_samples(std::vector<point_t> sample);
00026
00031
       void add_samples(std::vector<double> sample);
00032
00040
       void draw(vex::brain::lcd &screen, int x, int y, int width, int height);
00041
00042 private:
00043 std::vector<std::vector<point_t» series;
00044
       int sample_index = 0;
00045
       std::vector<vex::color> cols;
00046
        vex::color bgcol = vex::transparent;
00047
       bool border;
00048
       double upper;
00049
       double lower;
       bool auto_fit = false;
00050
00051 };
```

8.59 include/utils/logger.h File Reference

```
#include <cstdarg>
#include <cstdio>
#include <string>
#include "vex.h"
```

Include dependency graph for logger.h:

Classes

• class Logger

Class to simplify writing to files.

Enumerations

```
enum LogLevel {
    DEBUG , NOTICE , WARNING , ERROR ,
    CRITICAL , TIME }
```

possible values for log filtering

8.59.1 Enumeration Type Documentation

8.59.1.1 LogLevel

enum LogLevel

possible values for log filtering

Enumerator

DEBUG	
NOTICE	
WARNING	
ERROR	
CRITICAL	
TIME	

8.60 logger.h 285

8.60 logger.h

Go to the documentation of this file.

```
00001 #pragma once
00002
00003 #include <cstdarg>
00004 #include <cstdio>
00005 #include <string>
00006 #include "vex.h"
00007
00009 enum LogLevel
00010 {
           DEBUG.
00011
00012
           NOTICE.
00013
           WARNING,
00014
           ERROR,
00015
           CRITICAL,
00016
           TIME
00017 };
00018
00020 class Logger
00021 {
00022 private:
00023
           const std::string filename;
00024
           vex::brain::sdcard sd;
00025
           void write_level(LogLevel 1);
00026
00027 public:
00029
          static constexpr int MAX_FORMAT_LEN = 512;
00032
           explicit Logger (const std::string &filename);
00033
          Logger(const Logger &1) = delete;
Logger &operator=(const Logger &1) = delete;
00035
00037
00038
00039
00042
           void Log(const std::string &s);
00043
00047
           void Log(LogLevel level, const std::string &s);
00048
00051
           void Logln(const std::string &s);
00052
00056
           void Logln(LogLevel level, const std::string &s);
00057
00061
           void Logf(const char *fmt, ...);
00062
00067
           void Logf(LogLevel level, const char *fmt, ...);
00068 };
```

8.61 include/utils/math_util.h File Reference

```
#include <vector>
#include "math.h"
#include "vex.h"
#include "../core/include/utils/geometry.h"
Include dependency graph for math_util.h:
```


Functions

- double clamp (double value, double low, double high)
- double lerp (double a, double b, double t)

Linearly intERPolate between values.

- double sign (double x)
- double wrap_angle_deg (double input)
- double wrap_angle_rad (double input)
- double variance (std::vector< double > const &values, double mean)
- double mean (std::vector< double > const &values)
- double covariance (std::vector< std::pair< double, double >> const &points, double meanx, double meany)
- std::pair< double, double > calculate_linear_regression (std::vector< std::pair< double, double > > const &points)
- double estimate_path_length (const std::vector< point_t > &points)

8.61.1 Function Documentation

8.61.1.1 calculate_linear_regression()

8.61.1.2 clamp()

Constrain the input between a minimum and a maximum value

Parameters

val	the value to be restrained
low	the minimum value that will be returned
high	the maximum value that will be returned

8.61.1.3 covariance()

```
double covariance (
    std::vector< std::pair< double, double > > const & points,
    double meanx,
    double meany )
```

8.61.1.4 estimate_path_length()

8.61.1.5 lerp()

```
double lerp ( \label{eq:double a, double b, double t, double t}
```

Linearly intERPolate between values.

Parameters

а	at $t = 0$, output = a
b	at t = 1, output = b

Returns

a linear mixing of a and b according to t

8.61.1.6 mean()

```
double mean ( {\tt std::vector} < {\tt double} > {\tt const \& \it values} \ )
```

8.61.1.7 sign()

Returns the sign of a number

Parameters

returns the sign ± -1 of x. 0 if x is 0

Returns the sign of a number

Parameters

returns the sign +/-1 of x. special case at 0 it returns +1

8.61.1.8 variance()

```
double variance (
          std::vector< double > const & values,
          double mean )
```

8.61.1.9 wrap_angle_deg()

8.61.1.10 wrap_angle_rad()

8.62 math_util.h

```
00001 #pragma once
00002 #include <vector>
00003 #include "math.h"
00004 #include "vex.h"
00005 #include "../core/include/utils/geometry.h"
00007
00015 double clamp(double value, double low, double high);
00016
00023 double lerp(double a, double b, double t);
00030 double sign(double x);
00032 double wrap_angle_deg(double input);
00033 double wrap_angle_rad(double input);
00034
00035 /*
00036 Calculates the variance of a set of numbers (needed for linear regression)
00037 https://en.wikipedia.org/wiki/Variance
00038 \mbox{\tt @param} values \mbox{\tt ~the values} for which the variance is taken
00039 @param mean
                        the average of values
00040 */
00041 double variance(std::vector<double> const &values, double mean);
00042
00043
00045 Calculates the average of a vector of doubles
00046 <code>@param</code> values \, the list of values for which the average is taken
00047 */
00048 double mean(std::vector<double> const &values);
00049
00051 Calculates the covariance of a set of points (needed for linear regression)
00052 https://en.wikipedia.org/wiki/Covariance
00053
00054 @param points
                       the points for which the covariance is taken
                       the mean value of all x coordinates in points the mean value of all y coordinates in points
00055 @param meanx
00056 @param meany
00058 double covariance(std::vector<std::pair<double, double» const &points, double meanx, double meany);
00059
00060 /*
00061 Calculates the slope and y intercept of the line of best fit for the data 00062 @param points the points for the data ^{\circ}
00064 std::pair<double, double> calculate_linear_regression(std::vector<std::pair<double, double» const
      &points);
00065
00066 double estimate_path_length(const std::vector<point_t> &points);
```

8.63 include/utils/moving average.h File Reference

#include <vector>

Include dependency graph for moving_average.h:

Classes

- · class Filter
- class MovingAverage
- · class ExponentialMovingAverage

8.64 moving average.h

```
00001 #pragma once
00002 #include <vector>
00003
00008 class Filter
00009 {
00011 virtual void add_entry(double n) = 0;
00012 virtual double cot
00010 public:
      virtual double get_value() const = 0;
00013 };
00027 class MovingAverage : public Filter
00028 {
00029 public:
00030
00031
        * Create a moving average calculator with 0 as the default value
00032
                              The size of the buffer. The number of samples that constitute a valid
00033
        * @param buffer_size
     reading
00034
       MovingAverage(int buffer_size);
00035
00036
       00037
00038
00039
       * @param starting_value The value that the average will be before any data is added
00040
00041
       MovingAverage(int buffer_size, double starting_value);
00042
00043
00044
       * Add a reading to the buffer
00045
        * Before:
       * [ 1 1 2 2 3 3] => 2
00046
00047
00048
        * After:
00049
        * [ 2 1 2 2 3 3] => 2.16
00050
```

```
\star @param n the sample that will be added to the moving average.
00052
00053
       void add_entry(double n) override;
00054
00059
       double get_value() const override;
00060
       int get_size() const;
00066
00067 private:
                                  // index of the next value to be overridden
00068
       int buffer index;
       std::vector<double> buffer; // all current data readings we've taken
00069
                                  // the current value of the data
00070
       double current_avg;
00071 };
00072
00085 class ExponentialMovingAverage : public Filter
00086 {
00087 public:
00088
        * Create a moving average calculator with 0 as the default value
00090
00091
        * @param buffer_size
                             The size of the buffer. The number of samples that constitute a valid
     reading
00092
        */
00093
       ExponentialMovingAverage(int buffer size);
00094
       00096
                               The size of the buffer. The number of samples that constitute a valid
     reading
00097
       * @param starting_value The value that the average will be before any data is added
00098
00099
       ExponentialMovingAverage(int buffer_size, double starting_value);
00100
00101
00102
       \star Add a reading to the buffer
       * Before:
00103
        * [ 1 1 2 2 3 3] => 2
00104
00105
        * After:
00106
00107
        * [ 2 1 2 2 3 3] => 2.16
00108
00109
        \star @param n the sample that will be added to the moving average.
00110
       void add_entry(double n) override;
00111
00112
00117
       double get_value() const override;
00118
00123
       int get_size();
00124
00125 private:
00126 int buffer_index;
                                  // index of the next value to be overridden
       std::vector<double> buffer; // all current data readings we've taken
00128 double current_avg;
                                  // the current value of the data
00129 };
```

8.65 include/utils/pure_pursuit.h File Reference

```
#include <vector>
#include "../core/include/utils/geometry.h"
#include "../core/include/utils/vector2d.h"
#include "vex.h"
```

8.66 pure_pursuit.h

Include dependency graph for pure_pursuit.h:

Classes

- · class PurePursuit::Path
- struct PurePursuit::spline
- struct PurePursuit::hermite_point

Namespaces

• namespace PurePursuit

Functions

- std::vector< point_t > PurePursuit::line_circle_intersections (point_t center, double r, point_t point_t point_t point_t point_t)
- point_t PurePursuit::get_lookahead (const std::vector< point_t > &path, pose_t robot_loc, double radius)
- std::vector< point_t > PurePursuit::inject_path (const std::vector< point_t > &path, double spacing)
- std::vector< point_t > PurePursuit::smooth_path (const std::vector< point_t > &path, double weight_data, double weight_smooth, double tolerance)
- std::vector< point_t > PurePursuit::smooth_path_cubic (const std::vector< point_t > &path, double res)
- std::vector< point_t > PurePursuit::smooth_path_hermite (const std::vector< hermite_point > &path, double step)
- double PurePursuit::estimate_remaining_dist (const std::vector< point_t > &path, pose_t robot_pose, double radius)

8.66 pure_pursuit.h

```
00016
         public:
00022
           Path(std::vector<point_t> points, double radius);
00023
00027
            std::vector<point_t> get_points();
00028
00032
            double get radius();
00037
            bool is_valid();
00038
00039
          private:
            std::vector<point_t> points;
00040
00041
            double radius:
00042
            bool valid;
00043
00048
        struct spline
00049
00050
          double a, b, c, d, x_start, x_end;
00051
00052
          double getY(double x) {
00053
            return a * pow((x - x_start), 3) + b * pow((x - x_start), 2) + c * (x - x_start) + d;
00054
00055
00060
       struct hermite_point
00061
00062
          double x;
00063
          double y;
00064
          double dir;
00065
          double mag;
00066
00067
          point_t getPoint() const {
00068
           return {x, y};
00069
00070
00071
          Vector2D getTangent() const {
00072
           return Vector2D(dir, mag);
00073
          }
00074
       };
00075
08000
        extern std::vector<point_t> line_circle_intersections(point_t center, double r, point_t point1,
     point_t point2);
00084
       extern point_t get_lookahead(const std::vector<point_t> &path, pose_t robot_loc, double radius);
00085
00089
        extern std::vector<point_t> inject_path(const std::vector<point_t> &path, double spacing);
00090
        extern std::vector<point_t> smooth_path(const std::vector<point_t> &path, double weight_data, double
00102
      weight_smooth, double tolerance);
00103
00104
        extern std::vector<point_t> smooth_path_cubic(const std::vector<point_t> &path, double res);
00105
        extern std::vector<point t> smooth path hermite(const std::vector<hermite point> &path, double
00114
     step);
00115
00126
        extern double estimate_remaining_dist(const std::vector<point_t> &path, pose_t robot_pose, double
     radius);
00127
00128 }
```

8.67 include/utils/serializer.h File Reference

```
#include <algorithm>
#include <map>
#include <string>
#include <vector>
#include <stdio.h>
#include <vex.h>
```

Include dependency graph for serializer.h:

Classes

· class Serializer

Serializes Arbitrary data to a file on the SD Card.

Variables

- const char serialization_separator = '\$'
 character that will be used to seperate values
- const std::size_t MAX_FILE_SIZE = 4096

max file size that the system can deal with

8.67.1 Variable Documentation

8.67.1.1 MAX_FILE_SIZE

```
const std::size_t MAX_FILE_SIZE = 4096
```

max file size that the system can deal with

8.67.1.2 serialization_separator

```
const char serialization_separator = '$'
```

character that will be used to seperate values

8.68 serializer.h

Go to the documentation of this file.

```
00001 #pragma once
00002 #include <algorithm>
00003 #include <map>
00004 #include <string>
00005 #include <vector>
00006 #include <stdio.h>
00007 #include <vex.h>
80000
00010 const char serialization_separator = '$';
00012 const std::size_t MAX_FILE_SIZE = 4096;
00015 class Serializer
00016 {
00017 private:
00018
                      bool flush_always;
00019
                        std::string filename;
00020
                        std::map<std::string, int> ints;
00021
                        std::map<std::string, bool> bools;
00022
                        std::map<std::string, double> doubles;
00023
                        std::map<std::string, std::string> strings;
00024
00026
                        bool read_from_disk();
00027
00028 public:
00030
                        ~Serializer()
00031
00032
                                   save_to_disk();
00033
                                   printf("Saving %s\n", filename.c_str());
00034
                                   fflush(stdout);
00035
00036
00040
                         explicit Serializer(const std::string &filename, bool flush_always = true) :
              flush\_always(flush\_always), \ filename(filename), \ ints(\{\}), \ bools(\{\}), \ doubles(\{\}), \ strings(\{\}), \ doubles(\{\}), \ do
00041
00042
00043
                                   read_from_disk();
00044
00045
00047
                        void save_to_disk() const;
00048
00050
00054
                        void set_int(const std::string &name, int i);
00055
00059
                        void set_bool(const std::string &name, bool b);
00060
00064
                        void set double(const std::string &name, double d);
00065
00069
                         void set_string(const std::string &name, std::string str);
00070
00073
00078
                        int int_or(const std::string &name, int otherwise);
00079
00084
                        bool bool or (const std::string &name, bool otherwise);
00085
00090
                         double double_or(const std::string &name, double otherwise);
00091
00096
                         std::string string_or(const std::string &name, std::string otherwise);
00097 };
```

8.69 include/utils/vector2d.h File Reference

```
#include <cmath>
#include "../core/include/utils/geometry.h"
```

Include dependency graph for vector2d.h:

Classes

class Vector2D

Macros

• #define PI 3.141592654

Functions

- double deg2rad (double deg)
- double rad2deg (double r)

8.69.1 Macro Definition Documentation

8.69.1.1 PI

#define PI 3.141592654

8.69.2 Function Documentation

8.69.2.1 deg2rad()

```
double deg2rad ( double deg )
```

General function for converting degrees to radians

Parameters

deg	the angle in degrees

Returns

the angle in radians

General function for converting degrees to radians

8.69.2.2 rad2deg()

```
double rad2deg ( \label{eq:double rad } \mbox{double } \mbox{rad } \mbox{)}
```

General function for converting radians to degrees

Parameters

```
r the angle in radians
```

Returns

the angle in degrees

General function for converting radians to degrees

8.70 vector2d.h

```
00001 #pragma once
00002
00003
00004 #include <cmath>
00005 #include "../core/include/utils/geometry.h"
00006
00007 #ifndef PI
00008 #define PI 3.141592654
00009 #endif
00015 class Vector2D
00016 {
00017 public:
00024
           Vector2D(double dir, double mag);
00025
00031
           Vector2D(point_t p);
00032
00040
           double get_dir() const;
00041
00045
           double get_mag() const;
00046
00050
           double get_x() const;
00051
00055
           double get_y() const;
00056
           Vector2D normalize();
00061
00062
00067
           point_t point();
00068
00074
           Vector2D operator*(const double &x);
           Vector2D operator+(const Vector2D &other);
Vector2D operator-(const Vector2D &other);
00081
00088
00089
00090 private:
00091
00092
           double dir, mag;
00093
00094 };
00095
00101 double deg2rad(double deg);
00102
00109 double rad2deg(double r);
```

8.71 README.md File Reference

8.72 src/subsystems/custom_encoder.cpp File Reference

#include "../core/include/subsystems/custom_encoder.h"
Include dependency graph for custom_encoder.cpp:

8.73 src/subsystems/flywheel.cpp File Reference

```
#include "../core/include/subsystems/flywheel.h"
#include "../core/include/utils/controls/feedforward.h"
#include "../core/include/utils/controls/pid.h"
#include "../core/include/utils/math_util.h"
#include "../core/include/subsystems/screen.h"
#include "../core/include/utils/graph_drawer.h"
#include "vex.h"
```

Include dependency graph for flywheel.cpp:

Classes

class FlywheelPage

Functions

• int spinRPMTask (void *wheelPointer)

8.73.1 Function Documentation

8.73.1.1 spinRPMTask()

Runs a thread that keeps track of updating flywheel RPM and controlling it accordingly

8.74 src/subsystems/mecanum drive.cpp File Reference

```
#include "../core/include/subsystems/mecanum_drive.h"
#include "../core/include/utils/vector2d.h"
#include "../core/include/utils/math_util.h"
Include dependency graph for mecanum_drive.cpp:
```


8.75 src/subsystems/odometry/odometry_3wheel.cpp File Reference

```
#include "../core/include/subsystems/odometry/odometry_3wheel.h"
#include "../core/include/utils/vector2d.h"
#include "../core/include/utils/math_util.h"
Include dependency graph for odometry 3wheel.cpp:
```


8.76 src/subsystems/odometry/odometry_base.cpp File Reference

#include "../core/include/subsystems/odometry/odometry_base.h"
#include "../core/include/utils/vector2d.h"
Include dependency graph for odometry_base.cpp:

8.77 src/subsystems/odometry/odometry_tank.cpp File Reference

#include "../core/include/subsystems/odometry_tank.h"
Include dependency graph for odometry_tank.cpp:

8.78 src/subsystems/screen.cpp File Reference

```
#include "../core/include/subsystems/screen.h"
#include "../core/include/utils/math_util.h"
```

Include dependency graph for screen.cpp:

Classes

· struct screen::ScreenData

The ScreenData class holds the data that will be passed to the screen thread you probably shouldnt have to use it.

Namespaces

namespace screen

Functions

- void screen::draw label (vex::brain::lcd &scr, std::string lbl, ScreenRect rect)
- void screen::draw widget (vex::brain::lcd &scr, WidgetConfig &widget, ScreenRect rect)
- void screen::start_screen (vex::brain::lcd &screen, std::vector< Page * > pages, int first_page=0)
- Start the screen background task. Once you start this, no need to draw to the screen manually elsewhere.
- void screen::stop_screen ()
 - stops the screen. If you have a drive team that hates fun call this at the start of opcontrol
- void screen::prev_page ()
- void screen::next_page ()
- int screen::in_to_px (double in)

8.79 src/subsystems/tank_drive.cpp File Reference

```
#include "../core/include/utils/geometry.h"
#include "../core/include/subsystems/tank_drive.h"
#include "../core/include/utils/math_util.h"
#include "../core/include/utils/controls/pidff.h"
#include "../core/include/utils/command_structure/drive_commands.h"
Include dependency graph for tank_drive.cpp:
```


Variables

- bool captured_position = false
- bool was_breaking = false

8.79.1 Variable Documentation

8.79.1.1 captured_position

```
bool captured_position = false
```

Drive the robot using differential style controls. left_motors controls the left motors, right_motors controls the right motors.

left_motors and right_motors are in "percent": -1.0 -> 1.0

8.79.1.2 was_breaking

bool was_breaking = false

8.80 src/utils/auto_chooser.cpp File Reference

#include "../core/include/utils/auto_chooser.h"
Include dependency graph for auto_chooser.cpp:

8.81 src/utils/command_structure/auto_command.cpp File Reference

#include "../core/include/utils/command_structure/auto_command.h"
Include dependency graph for auto_command.cpp:

Classes

- class OrCondition
- class AndCondition
- struct parallel_runner_info

8.82 src/utils/command_structure/basic_command.cpp File Reference

#include "../core/include/utils/command_structure/basic_command.h"
Include dependency graph for basic_command.cpp:

8.83 src/utils/command_structure/command_controller.cpp File Reference

#include <stdio.h>
#include "../core/include/utils/command_structure/command_controller.h"
#include "../core/include/utils/command_structure/delay_command.h"
Include dependency graph for command_controller.cpp:

8.84 src/utils/command_structure/drive_commands.cpp File Reference

#include "../core/include/utils/command_structure/drive_commands.h"
Include dependency graph for drive commands.cpp:

8.85 src/utils/command_structure/flywheel_commands.cpp File Reference

#include "../core/include/utils/command_structure/flywheel_commands.h"

Include dependency graph for flywheel_commands.cpp:

8.86 src/utils/controls/bang_bang.cpp File Reference

#include "../core/include/utils/controls/bang_bang.h"
#include <cmath>

Include dependency graph for bang_bang.cpp:

8.87 src/utils/controls/feedforward.cpp File Reference

#include "../core/include/utils/controls/feedforward.h"

Include dependency graph for feedforward.cpp:

Functions

• FeedForward::ff_config_t tune_feedforward (vex::motor_group &motor, double pct, double duration)

8.87.1 Function Documentation

8.87.1.1 tune_feedforward()

tune_feedforward takes a group of motors and finds the feedforward conifg parameters automagically.

Parameters

motor	the motor group to use
pct	Maximum velocity in percent (0->1.0)
duration	Amount of time the motors spin for the test

Returns

A tuned feedforward object

8.88 src/utils/controls/motion_controller.cpp File Reference

```
#include "../core/include/utils/controls/motion_controller.h"
#include "../core/include/subsystems/screen.h"
#include "../core/include/utils/math_util.h"
```

#include <vector>

Include dependency graph for motion_controller.cpp:

Classes

· class MotionControllerPage

8.89 src/utils/controls/pid.cpp File Reference

#include "../core/include/utils/controls/pid.h"
#include "../core/include/subsystems/odometry_base.h"
Include dependency graph for pid.cpp:

8.90 src/utils/controls/pidff.cpp File Reference

```
#include "../core/include/utils/controls/pidff.h"
#include "../core/include/utils/math_util.h"
```

Include dependency graph for pidff.cpp:

8.91 src/utils/controls/take_back_half.cpp File Reference

#include "../core/include/utils/controls/take_back_half.h"
#include "../core/include/utils/math_util.h"
Include dependency graph for take_back_half.cpp:

8.92 src/utils/generic_auto.cpp File Reference

#include "../core/include/utils/generic_auto.h"

Include dependency graph for generic_auto.cpp:

8.93 src/utils/graph_drawer.cpp File Reference

#include "../core/include/utils/graph_drawer.h"
Include dependency graph for graph_drawer.cpp:

8.94 src/utils/logger.cpp File Reference

#include "../core/include/utils/logger.h"
#include <stdarg.h>

Include dependency graph for logger.cpp:

8.95 src/utils/math_util.cpp File Reference

#include "../core/include/utils/math_util.h"
#include <vector>
Include dependency graph for math_util.cpp:

Macros

• #define PI 3.141592654

Functions

- double clamp (double val, double low, double high)
- double lerp (double a, double b, double t)

 Linearly intERPolate between values.
- double sign (double x)
- double wrap_angle_deg (double input)
- double wrap_angle_rad (double input)
- double mean (std::vector< double > const &values)

- double variance (std::vector< double > const &values, double mean)
- double covariance (std::vector< std::pair< double, double >> const &points, double meanx, double meany)
- std::pair< double, double > calculate_linear_regression (std::vector< std::pair< double, double > > const &points)
- double estimate path length (const std::vector< point t > &points)

8.95.1 Macro Definition Documentation

8.95.1.1 PI

```
#define PI 3.141592654
```

8.95.2 Function Documentation

8.95.2.1 calculate_linear_regression()

8.95.2.2 clamp()

Constrain the input between a minimum and a maximum value

Parameters

val	the value to be restrained
low	the minimum value that will be returned
high	the maximum value that will be returned

8.95.2.3 covariance()

```
double covariance (
    std::vector< std::pair< double, double > > const & points,
    double meanx,
    double meany )
```

8.95.2.4 estimate_path_length()

```
double estimate_path_length ( {\tt const \ std::vector<\ point\_t > \&\ points}\ )
```

8.95.2.5 lerp()

```
double lerp ( \label{eq:double a, double b, double t, double t}
```

Linearly intERPolate between values.

Parameters

```
    a at t = 0, output = a
    b at t = 1, output = b
```

Returns

a linear mixing of a and b according to t

8.95.2.6 mean()

```
double mean ( {\tt std::vector} < {\tt double} > {\tt const \& \it values} \ )
```

8.95.2.7 sign()

```
double sign ( \mbox{double $x$}\ )
```

Returns the sign of a number

Parameters

returns the sign +/-1 of x. special case at 0 it returns +1

8.95.2.8 variance()

```
double variance (
          std::vector< double > const & values,
          double mean )
```

8.95.2.9 wrap_angle_deg()

8.95.2.10 wrap_angle_rad()

8.96 src/utils/moving_average.cpp File Reference

```
#include <vector>
#include "../core/include/utils/moving_average.h"
#include <cmath>
Include dependency graph for moving_average.cpp:
```


8.97 src/utils/pure_pursuit.cpp File Reference

#include "../core/include/utils/pure_pursuit.h"
Include dependency graph for pure_pursuit.cpp:

8.98 src/utils/serializer.cpp File Reference

```
#include "../core/include/utils/serializer.h"
#include "stdlib.h"
#include "vex.h"
```

Include dependency graph for serializer.cpp:

Functions

```
    template<typename T >
        std::vector< char > to_bytes (T value)
```

Convert type to bytes. Overload this for non integer types.

- template<> std::vector< char > to_bytes< std::string > (std::string str)
- template<typename T >

T from_bytes (std::vector< char >::const_iterator &position)

Convert bytes to a type.

- template<> std::string from_bytes (std::vector< char >::const_iterator &position)
- std::string sanitize name (std::string s)

Replaces funny characters in names so they don't mess with serialization specifiers.

8.98.1 Function Documentation

8.98.1.1 from_bytes() [1/2]

Convert bytes to a type.

Parameters

gets data from arbitrary bytes. Overload this for non integer types

8.98.1.2 from_bytes() [2/2]

8.98.1.3 sanitize name()

```
std::string sanitize\_name ( std::string s )
```

Replaces funny characters in names so they don't mess with serialization specifiers.

8.98.1.4 to_bytes()

Convert type to bytes. Overload this for non integer types.

Parameters

```
value value to convert
```

8.98.1.5 to_bytes< std::string >()

8.99 src/utils/trapezoid_profile.cpp File Reference

```
#include "../core/include/utils/controls/trapezoid_profile.h"
#include "../core/include/utils/math_util.h"
#include <cmath>
#include <iostream>
```

Include dependency graph for trapezoid_profile.cpp:

Functions

- double calc_pos (double t, double a, double v, double si)
- double calc_vel (double t, double a, double vi)

Variables

const double EPSILON = 0.000005

8.99.1 Function Documentation

8.99.1.1 calc_pos()

8.99.1.2 calc_vel()

```
double calc_vel ( \label{eq:calc_vel} \mbox{double } t, \\ \mbox{double } a, \\ \mbox{double } vi \; ) \quad \mbox{[inline]}
```

8.99.2 Variable Documentation

8.99.2.1 EPSILON

```
const double EPSILON = 0.000005
```

8.100 src/utils/vector2d.cpp File Reference

#include "../core/include/utils/vector2d.h"
Include dependency graph for vector2d.cpp:

Functions

- double deg2rad (double deg)
- double rad2deg (double rad)

8.100.1 Function Documentation

8.100.1.1 deg2rad()

```
double deg2rad ( \label{eq:double_deg} \mbox{double } deg \; \mbox{)}
```

General function for converting degrees to radians

8.100.1.2 rad2deg()

```
double rad2deg ( \mbox{double } rad \mbox{ )} \label{eq:condition}
```

General function for converting radians to degrees

Index

∼Branch Branch, 43	get_choice, 26 height, 28
~Serializer	list, 28
Serializer, 183	update, 26
	width, 28
a	AutoChooser::entry_t, 64
PurePursuit::spline, 193	name, 65
accel	rect, 65
motion_t, 117	AutoCommand, 29
MotionController::m_profile_cfg_t, 111	default_timeout, 31
OdometryBase, 137	
trapezoid_profile_segment_t, 216	on_timeout, 30
add	run, 30
CommandController, 48	timeout_seconds, 31
GenericAuto, 92	true_to_end, 31
	withCancelCondition, 31
add_async GenericAuto, 92	withTimeout, 31
	h
add_cancel_func	b BuraBurauituanlina 103
CommandController, 50	PurePursuit::spline, 193
add_delay	background_task
CommandController, 50	OdometryBase, 134
GenericAuto, 92	BangBang, 32
add_entry	BangBang, 33
ExponentialMovingAverage, 67	get, 33
Filter, 74	init, 33
MovingAverage, 126	is_on_target, 33
add_samples	set_limits, 33
GraphDrawer, 94	update, 34
And	BasicSolenoidSet, 34
Condition, 51	BasicSolenoidSet, 36
AndCondition, 21	run, 36
AndCondition, 22	BasicSpinCommand, 37
test, 22	BasicSpinCommand, 38
ang_accel_deg	percent, 38
OdometryBase, 137	run, 39
ang_speed_deg	type, 38
OdometryBase, 137	veocity, 38
ANGULAR	voltage, 38
PID, 157	BasicStopCommand, 39
Async, 22	BasicStopCommand, 41
Async, 24	run, 41
run, <mark>24</mark>	bool_or
auto_drive	Serializer, 183
MecanumDrive, 113	BrakeType
auto_turn	TankDrive, 201
MecanumDrive, 114	Branch, 42
AutoChooser, 24	\sim Branch, 43
AutoChooser, 26	Branch, 43
choice, 28	on_timeout, 43
draw, 26	run, 43

Button	Lift< T >, 102
screen::WidgetConfig, 234	Core, 1
button	correction_pid
screen::WidgetConfig, 234	robot_specs_t, 179
ButtonWidget	covariance
screen::ButtonWidget, 45	math_util.cpp, 310
	math_util.h, 286
C Dura Dura vituanlina 102	CRITICAL
PurePursuit::spline, 193	logger.h, 284
calc_pos	current_pos
trapezoid_profile.cpp, 315	OdometryBase, 137
calc_vel	CustomEncoder, 52
trapezoid_profile.cpp, 315	CustomEncoder, 53
calculate FeedForward, 72	position, 53
	rotation, 53
TrapezoidProfile, 218	setPosition, 54
calculate_linear_regression	setRotation, 54
math_util.cpp, 310	velocity, 54
math_util.h, 286	_
calculate_time_based	d
TrapezoidProfile, 218	PID::pid_config_t, 161
captured_position	PurePursuit::spline, 193
tank_drive.cpp, 301	deadband
center	PID::pid_config_t, 161
Rect, 175	DEBUG
Checkbox	logger.h, 284
screen::WidgetConfig, 234	default_timeout
checkbox	AutoCommand, 31
screen::WidgetConfig, 234	deg2rad
choice	vector2d.cpp, 316
AutoChooser, 28	vector2d.h, 295
clamp	DelayCommand, 55
math_util.cpp, 310	DelayCommand, 56
math_util.h, 286	run, 56
cmd	dimensions
parallel_runner_info, 153	Rect, 175
Col	dir
screen::WidgetConfig, 234	PurePursuit::hermite_point, 95
CommandController, 47	dist
add, 48	point_t, 168
add_cancel_func, 50	dist_between_wheels
add_delay, 50	robot_specs_t, 179
CommandController, 47	double_or
last_command_timed_out, 50	Serializer, 183
run, 50	down_speed
Condition, 51	Lift< T >::lift_cfg_t, 106
And, 51	draw
Or, 51	AutoChooser, 26
test, 52	FlywheelPage, 80
config	GraphDrawer, 94
PID, 160	MotionControllerPage, 124
screen::WidgetConfig, 234	screen::ButtonWidget, 46
contains	screen::FunctionPage, 91
Rect, 175	screen::OdometryPage, 140
control_continuous	screen::Page, 150
Lift< T >, 102	screen::PIDPage, 167
control_manual	screen::SliderWidget, 189
Lift $<$ T $>$, 102	screen::StatsPage, 196
control_setpoints	screen::WidgetPage, 236

draw func t	PID, 156
screen, 18	estimate_path_length
draw_label	math_util.cpp, 310
screen, 18	math_util.h, 286
draw widget	estimate remaining dist
screen, 18, 19	PurePursuit, 15
drive	ExponentialMovingAverage, 66
MecanumDrive, 114	add_entry, 67
drive_arcade	ExponentialMovingAverage, 67
TankDrive, 202	get_size, 67
drive_correction_cutoff	get_value, 68
robot_specs_t, 179	got_valuo, oo
drive_feedback	Feedback, 68
robot_specs_t, 179	get, 69
drive_forward	init, 69
TankDrive, 202, 203	is_on_target, 69
drive_gyro_pid_conf	set_limits, 70
MecanumDrive::mecanumdrive_config_t, 116	update, 70
drive_pid_conf	FeedForward, 70
MecanumDrive::mecanumdrive_config_t, 116	calculate, 72
drive_raw	FeedForward, 71
MecanumDrive, 115	feedforward.cpp
drive_tank	tune_feedforward, 305
TankDrive, 204	feedforward.h
drive_tank_raw	tune_feedforward, 272
TankDrive, 204	FeedForward::ff_config_t, 72
drive_to_point	kA, 73
TankDrive, 204, 205	kG, 73
drive_wheel_diam	kS, 73
MecanumDrive::mecanumdrive_config_t, 116	kV, 73
DriveForwardCmd	ff_cfg
TankDrive, 206	MotionController::m_profile_cfg_t, 111
DriveForwardCommand, 57	Filter, 73
DriveForwardCommand, 58	add_entry, 74
on_timeout, 59	get_value, 74
run, 59	first_cross_split TakeBackHalf, 199
DriveStopCommand, 60	Flywheel, 74
DriveStopCommand, 61	Flywheel, 75
on_timeout, 61	FlywheelPage, 78
run, 61	get_motors, 75
DriveToPointCmd	get_motors, 75 get_target, 75
TankDrive, 206	getRPM, 76
DriveToPointCommand, 62	is_on_target, 76
DriveToPointCommand, 63, 64	Page, 76
run, 64	spin_manual, 76
duration	spin_rpm, 77
trapezoid_profile_segment_t, 216	SpinRpmCmd, 77
end async	spinRPMTask, 78
OdometryBase, 134	stop, 77
end_task	WaitUntilUpToSpeedCmd, 78
OdometryBase, 138	flywheel.cpp
EPSILON	spinRPMTask, 298
trapezoid_profile.cpp, 315	FlywheelPage, 79
ERROR	draw, 80
logger.h, 284	Flywheel, 78
error_method	FlywheelPage, 79
_ PID::pid_config_t, 161	update, 80
ERROR_TYPE	window_size, 80

FlywheelStopCommand, 81	get_motors
FlywheelStopCommand, 82	Flywheel, 75
run, 82	get_movement_time
FlywheelStopMotorsCommand, 83	TrapezoidProfile, 219
FlywheelStopMotorsCommand, 84	get_point
run, 84	pose_t, 171
FlywheelStopNonTasksCommand, 85	get_points
from_bytes	PurePursuit::Path, 154
serializer.cpp, 313	get_position
from_min_and_size	OdometryBase, 135
Rect, 175 FromRotationDegrees	get_radius PurePursuit::Path, 154
Mat2, 112	
FunctionCommand, 86	get_sensor_val PID, 157
FunctionCommand, 87	PIDFF, 163
run, 87	get_setpoint
FunctionCondition, 88	Lift< T >, 103
FunctionCondition, 89	get_size
test, 89	ExponentialMovingAverage, 67
FunctionPage	MovingAverage, 126
screen::FunctionPage, 90	get_speed
0 .	OdometryBase, 135
generic_auto.h	get_target
state_ptr, 280	Flywheel, 75
GenericAuto, 91	PID, 158
add, 92	PIDFF, 163
add_async, 92	get_value
add_delay, 92	ExponentialMovingAverage, 68
run, 92	Filter, 74
get PangPang 33	MovingAverage, 127
BangBang, 33 Feedback, 69	get_x
MotionController, 120	Vector2D, 226
PID, 157	get_y
PIDFF, 163	Vector2D, 227
TakeBackHalf, 198	getPoint
get_accel	PurePursuit::hermite_point, 95
OdometryBase, 134	getRPM
TrapezoidProfile, 219	Flywheel, 76 getTangent
get_angular_accel_deg	PurePursuit::hermite_point, 95
Odomotru Popo 104	getY
get_angular_speed_deg	PurePursuit::spline, 192
OdometryBase, 134	Graph
get_async	screen::WidgetConfig, 234
Lift< T >, 103	graph
get_choice	screen::WidgetConfig, 234
AutoChooser, 26	GraphDrawer, 93
get_dir	add_samples, 94
Vector2D, 226	draw, 94
get_error	GraphDrawer, 93
PID, 157	
get_lookahead	handle
PurePursuit, 16	OdometryBase, 138
get_mag	height
Vector2D, 226	AutoChooser, 28
get_max_v	Rect, 175
TrapezoidProfile, 219	high
get_motion MetionController 120	screen::SliderConfig, 188
MotionController, 120	hold

Lift < T >, 103	MotionController, 120
home	PID, 158
Lift< T >, 103	PIDFF, 163
	TakeBackHalf, 198
i PID it is a second	inject_path
PID::pid_config_t, 161	PurePursuit, 16
IfTimePassed, 96	InOrder, 98
IfTimePassed, 97	InOrder, 99
test, 97	on_timeout, 100
in_to_px	run, 100
screen, 19	int_or
include/robot_specs.h, 239	Serializer, 184
include/subsystems/custom_encoder.h, 240	is_on_target
include/subsystems/flywheel.h, 241	BangBang, 33
include/subsystems/layout.h, 242	Feedback, 69
include/subsystems/lift.h, 243	Flywheel, 76
include/subsystems/mecanum_drive.h, 246, 247	MotionController, 120
include/subsystems/odometry/odometry_3wheel.h, 248	PID, 158
include/subsystems/odometry/odometry_base.h, 249,	PIDFF, 164
250	TakeBackHalf, 198
include/subsystems/odometry/odometry_tank.h, 250,	is_valid
251	PurePursuit::Path, 154
include/subsystems/screen.h, 251, 253	
include/subsystems/tank_drive.h, 256	kA
include/utils/auto_chooser.h, 258	FeedForward::ff_config_t, 73
include/utils/command_structure/auto_command.h,	kG
259, 260	FeedForward::ff_config_t, 73
include/utils/command_structure/basic_command.h,	kS
262	FeedForward::ff_config_t, 73
include/utils/command_structure/command_controller.h,	kV
263, 264	FeedForward::ff_config_t, 73
include/utils/command_structure/delay_command.h, 265	Label
include/utils/command structure/drive commands.h,	screen::WidgetConfig, 234
265, 266	label
include/utils/command_structure/flywheel_commands.h,	screen::LabelConfig, 100
268, 269	screen::WidgetConfig, 234
include/utils/controls/bang_bang.h, 270	last_command_timed_out
include/utils/controls/feedback_base.h, 270, 271	CommandController, 50
include/utils/controls/feedforward.h, 271, 273	lateral_wheel_diam
include/utils/controls/motion controller.h, 273, 274	MecanumDrive::mecanumdrive_config_t, 117
include/utils/controls/pid.h, 275	lerp
include/utils/controls/pidff.h, 276, 277	math_util.cpp, 310
include/utils/controls/take back half.h, 277, 278	math_util.h, 286
include/utils/controls/trapezoid_profile.h, 278, 279	Lift
include/utils/generic_auto.h, 279, 280	Lift< T >, 101
include/utils/geometry.h, 281	Lift< T >, 101
include/utils/graph_drawer.h, 283	control_continuous, 102
include/utils/logger.h, 284, 285	control_manual, 102
include/utils/math_util.h, 285, 288	control_setpoints, 102
include/utils/moving_average.h, 289	get_async, 103
include/utils/pure_pursuit.h, 290, 291	get_setpoint, 103
include/utils/serializer.h, 292, 294	hold, 103
include/utils/vector2d.h, 294, 296	home, 103
index	Lift, 101
parallel_runner_info, 153	set_async, 103
init	set_position, 104
BangBang, 33	set_sensor_function, 104
Feedback, 69	set_sensor_reset, 104

set_setpoint, 104	variance, 311
Lift< T >::lift_cfg_t, 105	wrap_angle_deg, 311
down_speed, 106	wrap_angle_rad, 311
lift_pid_cfg, 106	math_util.h
softstop_down, 106	calculate_linear_regression, 286
softstop_up, 106	clamp, 286
up_speed, 106	covariance, 286
lift_pid_cfg	estimate_path_length, 286
Lift< T >::lift_cfg_t, 106	lerp, 286
line_circle_intersections	mean, 287
PurePursuit, 16	sign, 287
LINEAR	variance, 287
PID, 157	wrap_angle_deg, 287
list	wrap_angle_rad, 288
AutoChooser, 28	max
Log	Rect, 175
Logger, 108	SliderCfg, 187
Logf	MAX_FILE_SIZE
Logger, 108	serializer.h, 293
Logger, 106	MAX_FORMAT_LEN
Log, 108	Logger, 109
Logf, 108	MAX_TRAPEZOID_PROFILE_SEGMENTS
Logger, 107	trapezoid_profile.h, 278
Logln, 109	max_v
MAX_FORMAT_LEN, 109	MotionController::m_profile_cfg_t, 111
operator=, 109	mean
logger.h	math_util.cpp, 311
CRITICAL, 284	math_util.h, 287
DEBUG, 284	mecanum_drive.h
ERROR, 284	PI, 247
LogLevel, 284	MecanumDrive, 112
NOTICE, 284	auto_drive, 113
TIME, 284	auto_turn, 114
WARNING, 284	drive, 114
LogLevel	drive_raw, 115
logger.h, 284	MecanumDrive, 113
LogIn	MecanumDrive::mecanumdrive_config_t, 116
Logger, 109	drive_gyro_pid_conf, 116
low	drive_pid_conf, 116
screen::SliderConfig, 188	drive_wheel_diam, 116
	lateral_wheel_diam, 117
mag	turn_pid_conf, 117
PurePursuit::hermite_point, 95	wheelbase_width, 117
Mat2, 111	min
FromRotationDegrees, 112	Rect, 175
operator*, 112	SliderCfg, 187
X11, 112	modify_inputs
X12, 112	TankDrive, 206
X21, 112	motion_t, 117
X22, 112	accel, 117
math_util.cpp	pos, 117
calculate_linear_regression, 310	vel, 118
clamp, 310	MotionController, 118
covariance, 310	get, 120
estimate_path_length, 310	get_motion, 120
lerp, 310	init, 120
mean, 311	is_on_target, 120
PI, 310	MotionController, 119
sign, 311	•

MotionControllerPage, 122	get_position, 135
Page, 121	get_speed, 135
set_limits, 121	handle, 138
tune_feedforward, 121	mut, 138
update, 122	OdometryBase, 133
MotionController::m_profile_cfg_t, 110	pos_diff, 135
accel, 111	rot_diff, 136
ff_cfg, 111	set_position, 136
max_v, 111	SetPositionCmd, 136
pid_cfg, 111	smallest_angle, 136
MotionControllerPage, 123	speed, 138
draw, 124	update, 137
MotionController, 122	zero_pos, 138
MotionControllerPage, 123	OdometryPage
update, 124	screen::OdometryPage, 140
MovingAverage, 124	OdometryTank, 141
add_entry, 126	OdometryTank, 142, 143
get_size, 126	set_position, 144
get value, 127	update, 144
MovingAverage, 126	OdomSetPosition, 144
mut	OdomSetPosition, 146
OdometryBase, 138	run, 147
Oddinetry base, 150	
name	off_axis_center_dist
	Odometry3Wheel::odometry3wheel_cfg_t, 131
AutoChooser::entry_t, 65	on_target_time
next_page	PID::pid_config_t, 161
screen, 19	on_timeout
None	AutoCommand, 30
TankDrive, 201	Branch, 43
normalize	DriveForwardCommand, 59
Vector2D, 227	DriveStopCommand, 61
NOTICE	InOrder, 100
logger.h, 284	Parallel, 152
	PurePursuitCommand, 173
odom_gear_ratio	RepeatUntil, 178
robot_specs_t, 180	TurnDegreesCommand, 222
odom_wheel_diam	TurnToHeadingCommand, 224
robot_specs_t, 180	onclick
Odometry3Wheel, 127	screen::ButtonConfig, 44
Odometry3Wheel, 129	onupdate
tune, 130	screen::CheckboxConfig, 47
update, 130	
Odometry3Wheel::odometry3wheel cfg t, 131	operator+
off_axis_center_dist, 131	point_t, 169
wheel_diam, 131	Vector2D, 227
wheelbase_dist, 131	operator-
odometry_base.h	point_t, 169
•	Vector2D, 228
PI, 249	operator/
OdometryBase, 132	point_t, 170
accel, 137	operator=
ang_accel_deg, 137	Logger, 109
ang_speed_deg, 137	operator==
background_task, 134	point_t, 170
current_pos, 137	operator*
end_async, 134	Mat2, 112
end_task, 138	point_t, 169
get_accel, 134	
get_angular_accel_deg, 134	Vector2D, 227
get_angular_speed_deg, 134	Or
30aga.acpood_dog, 101	

Condition, 51	PIDFF, 162
OrCondition, 147	get, 163
OrCondition, 148	get_sensor_val, 163
test, 148	get_target, 163
	init, 163
p	is_on_target, 164
PID::pid_config_t, 161	pid, 166
Page	PIDFF, 163
Flywheel, 76	
MotionController, 121	reset, 164
page	set_limits, 164
screen::ScreenData, 181	set_target, 164
	update, 165
pages	PIDPage
screen::ScreenData, 181	screen::PIDPage, 167
Parallel, 150	point
on_timeout, 152	Vector2D, 228
Parallel, 152	point_t, 168
run, 152	dist, 168
parallel_runner_info, 153	operator+, 169
cmd, 153	operator-, 169
index, 153	operator/, 170
runners, 153	operator==, 170
Path	operator*, 169
PurePursuit::Path, 154	x, 170
percent	
BasicSpinCommand, 38	y, 170
PI	pos
math_util.cpp, 310	motion_t, 117
	pos_after
mecanum_drive.h, 247	trapezoid_profile_segment_t, 216
odometry_base.h, 249	pos_diff
tank_drive.h, 256	OdometryBase, 135
vector2d.h, 295	pose_t, 170
PID, 155	get_point, 171
ANGULAR, 157	rot, 171
config, 160	x, 171
ERROR_TYPE, 156	y, 171
get, 157	position
get_error, 157	CustomEncoder, 53
get_sensor_val, 157	prev_page
get target, 158	
init, 158	screen, 19
is_on_target, 158	pure_pursuit
LINEAR, 157	TankDrive, 208, 209
PID, 157	PurePursuit, 15
reset, 159	estimate_remaining_dist, 15
	get_lookahead, 16
set_limits, 159	inject_path, 16
set_target, 159	line_circle_intersections, 16
update, 159	smooth_path, 16
pid	smooth_path_cubic, 16
PIDFF, 166	smooth_path_hermite, 17
PID::pid_config_t, 160	PurePursuit::hermite_point, 95
d, 161	dir, 95
deadband, 161	getPoint, 95
error_method, 161	getTangent, 95
i, 161	mag, 95
on_target_time, 161	x, 95
p, 161	
pid_cfg	y, 96
MotionController::m_profile_cfg_t, 111	PurePursuit::Path, 154
ouoo.uu.oo.uupromo_org_t, 111	

get_points, 154	CustomEncoder, 53
get_radius, 154	Row
is_valid, 154	screen::WidgetConfig, 234
Path, 154	run
PurePursuit::spline, 192	Async, 24
a, 193	AutoCommand, 30
b, 193	BasicSolenoidSet, 36
c, 193	BasicSpinCommand, 39
d, 193	BasicStopCommand, 41
getY, 192	Branch, 43
x_end, 193	CommandController, 50
x_start, 193 PurePursuitCmd	DelayCommand, 56 DriveForwardCommand, 59
TankDrive, 209, 210	DriveStopCommand, 61
PurePursuitCommand, 172	DriveToPointCommand, 64
on_timeout, 173	FlywheelStopCommand, 82
PurePursuitCommand, 173	FlywheelStopMotorsCommand, 84
run, 173	FunctionCommand, 87
1411, 170	GenericAuto, 92
rad2deg	InOrder, 100
vector2d.cpp, 316	OdomSetPosition, 147
vector2d.h, 296	Parallel, 152
README.md, 297	PurePursuitCommand, 173
Rect, 174	RepeatUntil, 178
center, 175	SpinRPMCommand, 192
contains, 175	TurnDegreesCommand, 222
dimensions, 175	TurnToHeadingCommand, 224
from_min_and_size, 175	WaitUntilCondition, 230
height, 175	WaitUntilUpToSpeedCommand, 232
max, 175	runners
min, 175	parallel_runner_info, 153
width, 175	
rect	sanitize_name
AutoChooser::entry_t, 65	serializer.cpp, 314
RepeatUntil, 176	save_to_disk
on_timeout, 178	Serializer, 184
RepeatUntil, 177	screen, 17
run, 178	draw_func_t, 18
reset	draw_label, 18
PID, 159	draw_widget, 18, 19
PIDFF, 164	in_to_px, 19
reset_auto	next_page, 19 prev page, 19
TankDrive, 210	screen::ScreenData, 181
robot_radius robot_specs_t, 180	start_screen, 19
robot_specs_t, 178	stop_screen, 20
correction_pid, 179	update_func_t, 18
dist_between_wheels, 179	screen::ButtonConfig, 44
drive_correction_cutoff, 179	onclick, 44
drive_feedback, 179	oriener, 44
arro roodbaok, 170	screen: ButtonWidget 44
	screen::ButtonWidget, 44 ButtonWidget, 45
odom_gear_ratio, 180	ButtonWidget, 45
odom_gear_ratio, 180 odom_wheel_diam, 180	ButtonWidget, 45 draw, 46
odom_gear_ratio, 180 odom_wheel_diam, 180 robot_radius, 180	ButtonWidget, 45 draw, 46 update, 46
odom_gear_ratio, 180 odom_wheel_diam, 180 robot_radius, 180 turn_feedback, 180	ButtonWidget, 45 draw, 46 update, 46 screen::CheckboxConfig, 46
odom_gear_ratio, 180 odom_wheel_diam, 180 robot_radius, 180 turn_feedback, 180 rot	ButtonWidget, 45 draw, 46 update, 46 screen::CheckboxConfig, 46 onupdate, 47
odom_gear_ratio, 180 odom_wheel_diam, 180 robot_radius, 180 turn_feedback, 180 rot pose_t, 171	ButtonWidget, 45 draw, 46 update, 46 screen::CheckboxConfig, 46 onupdate, 47 screen::FunctionPage, 89
odom_gear_ratio, 180 odom_wheel_diam, 180 robot_radius, 180 turn_feedback, 180 rot pose_t, 171 rot_diff	ButtonWidget, 45 draw, 46 update, 46 screen::CheckboxConfig, 46 onupdate, 47 screen::FunctionPage, 89 draw, 91
odom_gear_ratio, 180 odom_wheel_diam, 180 robot_radius, 180 turn_feedback, 180 rot pose_t, 171	ButtonWidget, 45 draw, 46 update, 46 screen::CheckboxConfig, 46 onupdate, 47 screen::FunctionPage, 89

screen::LabelConfig, 100	widgets, 235
label, 100	screen::WidgetPage, 235
screen::OdometryPage, 139	draw, 236
draw, 140	update, 236
OdometryPage, 140	WidgetPage, 236
update, 140	ScreenData
screen::Page, 149	screen::ScreenData, 181
draw, 150	serialization_separator
update, 150	serializer.h, 293
screen::PIDPage, 166	Serializer, 182
draw, 167	~Serializer, 183
PIDPage, 167	bool_or, 183
update, 167	double_or, 183
screen::ScreenData, 180	int_or, 184
page, 181	save_to_disk, 184
pages, 181	Serializer, 183
screen, 181	set_bool, 184
ScreenData, 181	set_double, 185
screen::ScreenRect, 181	set_int, 185
x1, 182	set_string, 185
x2, 182	string_or, 185
y1, 182	serializer.cpp
y2, 182	from_bytes, 313
screen::SizedWidget, 186	sanitize_name, 314
size, 187	to_bytes, 314
widget, 187	to_bytes< std::string >, 314
screen::SliderConfig, 188	serializer.h
high, 188	MAX_FILE_SIZE, 293
low, 188	serialization_separator, 293
val, 188	set_accel
aaraanuClidar\Midaat 100	TrapezoidProfile, 219
screen::SliderWidget, 188	mapezoidi Tome, 219
draw, 189	set_async
draw, 189 SliderWidget, 189	•
draw, 189 SliderWidget, 189 update, 189	set_async Lift< T >, 103 set_bool
draw, 189 SliderWidget, 189	set_async Lift< T >, 103
draw, 189 SliderWidget, 189 update, 189	set_async Lift< T >, 103 set_bool
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194	set_async Lift< T >, 103 set_bool Serializer, 184
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234 checkbox, 234 Col, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70 MotionController, 121 PID, 159
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234 checkbox, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70 MotionController, 121
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234 checkbox, 234 Col, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70 MotionController, 121 PID, 159
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234 checkbox, 234 config, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70 MotionController, 121 PID, 159 PIDFF, 164
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234 checkbox, 234 config, 234 Graph, 234 graph, 234 Label, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70 MotionController, 121 PID, 159 PIDFF, 164 TakeBackHalf, 199
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234 Checkbox, 234 config, 234 Graph, 234 graph, 234 Label, 234 label, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70 MotionController, 121 PID, 159 PIDFF, 164 TakeBackHalf, 199 set_max_v TrapezoidProfile, 220 set_position
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234 checkbox, 234 config, 234 Graph, 234 graph, 234 Label, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70 MotionController, 121 PID, 159 PIDFF, 164 TakeBackHalf, 199 set_max_v TrapezoidProfile, 220
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234 Checkbox, 234 Col, 234 config, 234 Graph, 234 graph, 234 Label, 234 label, 234 Row, 234 Slider, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70 MotionController, 121 PID, 159 PIDFF, 164 TakeBackHalf, 199 set_max_v TrapezoidProfile, 220 set_position Lift< T >, 104 OdometryBase, 136
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234 Checkbox, 234 config, 234 Graph, 234 Graph, 234 Jabel, 234 Label, 234 Row, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70 MotionController, 121 PID, 159 PIDFF, 164 TakeBackHalf, 199 set_max_v TrapezoidProfile, 220 set_position Lift< T >, 104
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234 Checkbox, 234 Col, 234 config, 234 Graph, 234 graph, 234 Label, 234 label, 234 Row, 234 Slider, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70 MotionController, 121 PID, 159 PIDFF, 164 TakeBackHalf, 199 set_max_v TrapezoidProfile, 220 set_position Lift< T >, 104 OdometryBase, 136
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234 Checkbox, 234 Col, 234 config, 234 Graph, 234 graph, 234 Label, 234 label, 234 Row, 234 Slider, 234 slider, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70 MotionController, 121 PID, 159 PIDFF, 164 TakeBackHalf, 199 set_max_v TrapezoidProfile, 220 set_position Lift< T >, 104 OdometryBase, 136 OdometryTank, 144
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234 Checkbox, 234 Col, 234 config, 234 Graph, 234 graph, 234 Label, 234 label, 234 Row, 234 Slider, 234 Slider, 234 Text, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70 MotionController, 121 PID, 159 PIDFF, 164 TakeBackHalf, 199 set_max_v TrapezoidProfile, 220 set_position Lift< T >, 104 OdometryBase, 136 OdometryTank, 144 set_sensor_function
draw, 189 SliderWidget, 189 update, 189 screen::StatsPage, 194 draw, 196 StatsPage, 195 update, 196 screen::TextConfig, 214 text, 214 screen::WidgetConfig, 233 Button, 234 button, 234 Checkbox, 234 Checkbox, 234 config, 234 Graph, 234 Graph, 234 Label, 234 label, 234 Row, 234 Slider, 234 Slider, 234 slider, 234 text, 234	set_async Lift< T >, 103 set_bool Serializer, 184 set_double Serializer, 185 set_endpts TrapezoidProfile, 219 set_int Serializer, 185 set_limits BangBang, 33 Feedback, 70 MotionController, 121 PID, 159 PIDFF, 164 TakeBackHalf, 199 set_max_v TrapezoidProfile, 220 set_position Lift< T >, 104 OdometryBase, 136 OdometryTank, 144 set_sensor_function Lift< T >, 104

set setpoint	src/subsystems/custom_encoder.cpp, 297
_ ' Lift< T >, 104	src/subsystems/flywheel.cpp, 297
set string	src/subsystems/mecanum_drive.cpp, 298
Serializer, 185	src/subsystems/odometry/odometry_3wheel.cpp, 298
set target	src/subsystems/odometry/odometry_base.cpp, 299
PID, 159	src/subsystems/odometry/odometry tank.cpp, 299
PIDFF, 164	src/subsystems/screen.cpp, 299
set_vel_endpts	src/subsystems/tank_drive.cpp, 300
TrapezoidProfile, 220	src/utils/auto_chooser.cpp, 301
setPosition	src/utils/command_structure/auto_command.cpp, 302
CustomEncoder, 54	src/utils/command_structure/basic_command.cpp, 302
SetPositionCmd	
	src/utils/command_structure/command_controller.cpp,
OdometryBase, 136	303
setRotation	src/utils/command_structure/drive_commands.cpp, 303
CustomEncoder, 54	src/utils/command_structure/flywheel_commands.cpp,
sign	303
math_util.cpp, 311	src/utils/controls/bang_bang.cpp, 304
math_util.h, 287	src/utils/controls/feedforward.cpp, 304
size	src/utils/controls/motion_controller.cpp, 305
screen::SizedWidget, 187	src/utils/controls/pid.cpp, 306
Slider	src/utils/controls/pidff.cpp, 306
screen::WidgetConfig, 234	src/utils/controls/take_back_half.cpp, 307
slider	src/utils/generic_auto.cpp, 307
screen::WidgetConfig, 234	src/utils/graph_drawer.cpp, 308
SliderCfg, 187	src/utils/logger.cpp, 308
max, 187	src/utils/math_util.cpp, 309
min, 187	src/utils/moving_average.cpp, 312
val, 187	src/utils/pure_pursuit.cpp, 312
SliderWidget	src/utils/serializer.cpp, 313
screen::SliderWidget, 189	src/utils/trapezoid_profile.cpp, 314
smallest_angle	src/utils/vector2d.cpp, 316
OdometryBase, 136	start_screen
Smart	screen, 19
	•
TankDrive, 201	state_ptr
smooth_path	generic_auto.h, 280
PurePursuit, 16	StatsPage
smooth_path_cubic	screen::StatsPage, 195
PurePursuit, 16	stop
smooth_path_hermite	Flywheel, 77
PurePursuit, 17	TankDrive, 210
softstop_down	stop_screen
Lift< T >::lift_cfg_t, 106	screen, 20
softstop_up	string_or
Lift< T >::lift_cfg_t, 106	Serializer, 185
speed	T. D. III K 107
OdometryBase, 138	TakeBackHalf, 197
spin_manual	first_cross_split, 199
Flywheel, 76	get, 198
spin_rpm	init, 198
Flywheel, 77	is_on_target, 198
SpinRpmCmd	set_limits, 199
Flywheel, 77	TakeBackHalf, 198
SpinRPMCommand, 190	TBH_gain, 199
run, 192	update, 199
SpinRPMCommand, 191	tank_drive.cpp
•	captured_position, 301
spinRPMTask	was_breaking, 301
Flywheel, 78	tank_drive.h
flywheel.cpp, 298	PI, 256

TankDrive, 200	TrapezoidProfile, 216
BrakeType, 201	calculate, 218
drive arcade, 202	calculate_time_based, 218
drive_forward, 202, 203	get_accel, 219
drive tank, 204	get max v, 219
drive_tank_raw, 204	get_movement_time, 219
drive_to_point, 204, 205	set_accel, 219
DriveForwardCmd, 206	set_endpts, 219
DriveToPointCmd, 206	set_max_v, 220
modify_inputs, 206	set_vel_endpts, 220
None, 201	TrapezoidProfile, 218
pure_pursuit, 208, 209	true_to_end
PurePursuitCmd, 209, 210	AutoCommand, 31
reset_auto, 210	tune
Smart, 201	Odometry3Wheel, 130
stop, 210	tune_feedforward
TankDrive, 201	feedforward.cpp, 305
turn_degrees, 210, 211	feedforward.h, 272
turn_to_heading, 211, 212	MotionController, 121
TurnDegreesCmd, 213	turn_degrees
TurnToHeadingCmd, 213	TankDrive, 210, 211
ZeroVelocity, 201	turn feedback
TBH_gain	robot_specs_t, 180
TakeBackHalf, 199	turn_pid_conf
test	MecanumDrive::mecanumdrive_config_t, 117
AndCondition, 22	turn_to_heading
Condition, 52	TankDrive, 211, 212
FunctionCondition, 89	TurnDegreesCmd
IfTimePassed, 97	TankDrive, 213
OrCondition, 148	TurnDegreesCommand, 220
TimesTestedCondition, 215	on_timeout, 222
Text	run, 222
screen::WidgetConfig, 234	TurnDegreesCommand, 222
text	TurnToHeadingCmd
screen::TextConfig, 214	TankDrive, 213
screen::WidgetConfig, 234	TurnToHeadingCommand, 223
TIME	on timeout, 224
logger.h, 284	run, 224
timeout_seconds	TurnToHeadingCommand, 224
AutoCommand, 31	Type
TimesTestedCondition, 214	screen::WidgetConfig, 233
test, 215	type
TimesTestedCondition, 215	BasicSpinCommand, 38
to bytes	screen::WidgetConfig, 234
serializer.cpp, 314	G G
to_bytes< std::string >	up_speed
serializer.cpp, 314	Lift< T >::lift_cfg_t, 106
trapezoid_profile.cpp	update
calc_pos, 315	AutoChooser, 26
calc_vel, 315	BangBang, 34
EPSILON, 315	Feedback, 70
trapezoid_profile.h	FlywheelPage, 80
MAX_TRAPEZOID_PROFILE_SEGMENTS, 278	MotionController, 122
trapezoid_profile_segment_t, 215	MotionControllerPage, 124
accel, 216	Odometry3Wheel, 130
duration, 216	OdometryBase, 137
pos_after, 216	OdometryTank, 144
vel_after, 216	PID, 159
_ ,	PIDFF, 165

screen::ButtonWidget, 46	wheel_diam
screen::FunctionPage, 91	Odometry3Wheel::odometry3wheel_cfg_t, 131
screen::OdometryPage, 140	wheelbase_dist
screen::Page, 150	Odometry3Wheel::odometry3wheel_cfg_t, 131
screen::PIDPage, 167	wheelbase_width
screen::SliderWidget, 189	MecanumDrive::mecanumdrive_config_t, 117
screen::StatsPage, 196 screen::WidgetPage, 236	widget screen::SizedWidget, 187
TakeBackHalf, 199	WidgetPage
update_func_t	screen::WidgetPage, 236
screen, 18	widgets
33.33.1, 13	screen::WidgetConfig, 235
val	width
screen::SliderConfig, 188	AutoChooser, 28
SliderCfg, 187	Rect, 175
variance	window_size
math_util.cpp, 311	FlywheelPage, 80
math_util.h, 287	withCancelCondition
Vector2D, 225	AutoCommand, 31
get_dir, 226	withTimeout
get_mag, 226	AutoCommand, 31
get_x, 226	wrap_angle_deg
get_y, 227	math_util.cpp, 311
normalize, 227	math_util.h, 287
operator+, 227	wrap_angle_rad
operator, 228	math_util.cpp, 311
operator*, 227 point, 228	math_util.h, 288
Vector2D, 225, 226	x
vector2d.cpp	point_t, 170
deg2rad, 316	pose_t, 171
rad2deg, 316	PurePursuit::hermite_point, 95
vector2d.h	x1
deg2rad, 295	screen::ScreenRect, 182
PI, 295	X11
rad2deg, 296	Mat2, 112
vel	X12
motion_t, 118	Mat2, 112
vel_after	x2
trapezoid_profile_segment_t, 216	screen::ScreenRect, 182
velocity	X21
CustomEncoder, 54	Mat2, 112
veocity	X22
BasicSpinCommand, 38	Mat2, 112
voltage	x_end
BasicSpinCommand, 38	PurePursuit::spline, 193
WaitUntilCondition, 229	x_start
run, 230	PurePursuit::spline, 193
WaitUntilCondition, 230	y
WaitUntilUpToSpeedCmd	point_t, 170
Flywheel, 78	pose_t, 171
WaitUntilUpToSpeedCommand, 231	PurePursuit::hermite_point, 96
run, 232	y1
WaitUntilUpToSpeedCommand, 232	screen::ScreenRect, 182
WARNING	y2
logger.h, 284	screen::ScreenRect, 182
was_breaking	
tank_drive.cpp, 301	zero_pos

OdometryBase, 138 ZeroVelocity TankDrive, 201