Cours de MOMI

LICENCE I MATH-INFO

CHAPITRE IV: RELATIONS D'ORDRE

1. Relation binaire

Définition. Soient E et F deux ensembles.

- (1) Une relation binaire de E vers F est un procédé associant à des éléments de E des éléments de F.
- (2) Si \mathcal{R} est une relation binaire de E vers F, et si un élément x de E est associé à un élément y de F, on écrit $x \mathcal{R} y$ et on dit que x est en relation avec y. Dans le cas contraire, on écrit $x \mathcal{R} y$.
- (3) Le graphe d'une relation binaire \mathcal{R} de E vers F est l'ensemble $\{(x,y) \in E \times F \mid x \mathcal{R} y\}$.

Exemple. Une application $f: E \longrightarrow F$ peut être considérée comme une relation binaire de E vers F en associant à chaque élément $x \in E$ son image $f(x) \in F$. Son graphe est l'ensemble $\{(x, f(x)) \mid x \in E\}$.

Pour la suite, on va considérer uniquement les relations binaires de E vers E, qu'on appelera tout simplement les relations sur E.

2. Représentation d'une relation

Soient $E = \{a_1, \ldots, a_n\}$ un ensemble fini, et \mathcal{R} une relation sur E. Dans une patate formée des éléments de E, on relie a_i à a_j par une flèche orientée vers a_j lorsque $a_i \mathcal{R} a_j$.

Exemples. Soient E un ensemble et $\mathcal{P}(E)$ l'ensemble des parties de E.

(1) La relation "égalité" est la relation binaire $\mathcal R$ définie sur E par:

$$\forall x, y \in E \quad x \mathcal{R} y \iff x = y.$$

(2) La relation "inclusion" est la relation binaire S définie sur $\mathcal{P}(E)$ par:

$$\forall A, B \in \mathcal{P}(E) \ ASB \iff A \subset B.$$

(3) La relation "divise" dans $\mathbb{Z}\setminus\{0\}$ est la relation binaire | définie par:

$$\forall m, n \in \mathbb{Z} \setminus \{0\}$$
 $m \mid n \iff \exists q \in \mathbb{Z}$ tel que $n = m \times q$.

On lit " $m \mid n$ ": m divise n.

Définition. Soit R une relation sur un ensemble E.

- (1) On dit que R est une relation d'ordre sur E si elle vérifie:
 - Réflexivité: $\forall x \in E, x \mathcal{R} x$.
 - Antisymétrie: $\forall x, y \in E$, $(x \mathcal{R} y \text{ et } y \mathcal{R} x) \Longrightarrow x = y$.
 - Transitivité: $\forall x, y, z \in E$, $(x \mathcal{R} y \text{ et } y \mathcal{R} z) \Longrightarrow x \mathcal{R} z$.

Dans ce cas, on dit que E est ordonné par la relation d'ordre \mathcal{R} .

(2) Si \mathcal{R} est une relation d'ordre sur E, on dit que deux éléments x,y de E sont comparables par \mathcal{R} si $x \mathcal{R} y$ ou $y \mathcal{R} x$.

Exemples. (1) Voici quelques exemples de relations d'ordre.

- La relation d'ordre usuel \leq sur \mathbb{R} .
- La relation "divise" sur $\mathbb{N} \setminus \{0\}$ (voir TD).
- La relation "inclusion" définie sur $\mathcal{P}(E)$ pour E un ensemble donné.
- (2) Soient $E = \{1, 2, 3\}$ et \mathcal{R} la relation sur E donnée par:

Exercice. \mathcal{R} est-elle une relation d'ordre sur E?

4. Ordre total, ordre partiel

Définition. Soient E un ensemble et R une relation d'ordre sur E. (1) On dit que R est une relation d'ordre total si:

$$\forall x, y \in E \quad x \mathcal{R} y \quad ou \quad y \mathcal{R} x.$$

(c'est-à-dire, deux éléments quelconques sont comparables.)
(2) On dit que R est une relation d'ordre partiel si elle n'est pas une relation d'ordre total, c'est-à-dire,

$$\exists x, y \in E \text{ tels que } x \mathcal{R} y \text{ et } y \mathcal{R} x$$

Exemples. (1) L'ordre usuel \leq sur \mathbb{R} est total.

- (2) La relation "divise" sur $\mathbb{N}\setminus\{0\}$ est une relation d'ordre partiel car \cdots
- (3) Soit E un ensemble contenant au moins deux éléments. Alors, la relation "inclusion" est une relation d'ordre partiel sur $\mathcal{P}(E)$ car si $x, y \in E$ avec $x \neq y$, alors $\{x\} \not\subset \{y\}$ et $\{y\} \not\subset \{x\}$.

5. Diagramme de Hasse d'un ensemble ordonné fini

Soit E un ensemble fini muni d'une relation d'ordre R.

Le diagramme de Hasse de *E* est un graphe non orienté vérifiant les conditions suivantes:

- Les sommets sont les éléments de E.
- Si $x \mathcal{R} y$ et $x \neq y$, alors on place x plus bas que y dans le diagramme.
- Si x R y avec x ≠ y, et s'il n'y a pas d'élément z ∈ E différent de x et y tel que x R z R y, alors on met une arrête entre x et y.

Exemples. Soit $E = \{1, 2, 3, 4, 6, 9, 36\}$ muni de la relation d'ordre "divise". Le diagramme de Hasse de E est comme suit:

Exercice. Soit $E = \{1, 2, 3\}$.

- Donner les éléments de $\mathcal{P}(E)$.
- On munit $\mathcal{P}(E)$ de la relation d'ordre "inclusion". Donner le diagramme de Hasse.

6. Eléments remarquables

Définition. Soit \mathcal{R} une relation d'ordre sur un ensemble E. Soient A une partie de E non vide et $m \in E$. On dit que l'élément m:

- est un majorant de A (ou A est majorée par m) si: $\forall x \in A \quad x \in R m$.
- est un minorant de A (ou A est minorée par m) si: $\forall x \in A \ m \mathcal{R} x$.
- est le plus grand élément de A si: $m \in A$ et m majorant de A.
- est le plus petit élément de A si: $m \in A$ et m minorant de A.

Remarques. (1) Un majorant (ou un minorant) d'une partie n'existe pas toujours. Par exemple, pour $E=\mathbb{Z}$ muni de l'ordre usuel \leq , l'ensemble A des entiers relatifs pairs n'admet ni majorant ni minorant.

(2) Le plus grand élément (*resp.* le plus petit élément) lorsqu'il existe il est unique (Exo).

Exemples. (1) On considère $E=\mathbb{N}\setminus\{0\}$ muni de la relation "divise". La partie $A=\{2,3\}$ admet 1 pour minorant et 6 pour majorant car \cdots . La partie $B=\mathbb{N}\setminus\{0,1\}$ n'admet ni plus grand élément ni plus petit élément.

(2) Soit E un ensemble. On munit $\mathcal{P}(E)$ de la relation d'ordre "inclusion". Alors, \emptyset et E sont repectivement le plus petit élément et le plus grand élément de $\mathcal{P}(E)$.

Définition. Soit \mathcal{R} une relation d'ordre sur un ensemble E. Soient A une partie de E et $m \in E$. On dit que m:

- est un élément minimal de A si: $m \in A$ et $(\forall x \in A \ x \mathcal{R} \ m \implies x = m)$.
- est un élément maximal de A si: $m \in A$ et $(\forall x \in A \ m \mathcal{R} x \implies x = m)$.

Remarques. (1) Si m est le plus grand élément de A, alors m est un élément maximal de A.

- (2) De même, si m est le plus petit élément de A, alors m est un élément minimal de A.
- (3) Quand un élément maximal (ou un élément minimal) existe il n'est pas toujours unique.

Exemples. (1) \mathbb{Z} muni de l'ordre usuel \leq n'admet ni élément maximal ni élément minimal.

(2) On munit $\mathcal{P}(\mathbb{N})$ de la relation d'ordre "inclusion". La partie $\{\{0\},\{1\},\{1,2\}\}$ admet $\{0\}$ et $\{1\}$ pour éléments minimaux.

Définition. Soit \mathcal{R} une relation d'ordre sur un ensemble E. Soient A une partie de E et $m \in E$. On dit que m:

- est une borne supérieure de A si m est un majorant de A, et c'est le plus petit majorant de A, autrement dit; (∀x ∈ A xRm) et (si m' ∈ E est un majorant de A, alors mRm').
- est une borne inférieure de A si m est un minorant de A, et c'est le plus grand minorant de A, autrement dit; (∀x ∈ A mRx) et (si m' ∈ E est un minorant de A, alors m'Rm).

Remarques. (1) Lorsque la borne supérieure (inférieure) existe, alors elle est unique.

(2) Lorsque la borne supérieure (inférieure) d'un ensemble A existe, alors elle n'est pas nécessairement dans A. Donner un exemple.

7. Ordre produit, ordre lexicographique

Proposition-Définition (Ordre produit). Soient \mathcal{R}_1 une relation d'ordre sur un ensemble E_1 , et \mathcal{R}_2 une relation d'ordre sur un ensemble E_2 . La relation binaire \mathcal{R} définie sur $E_1 \times E_2$ par:

$$\forall \, (x_1, x_2), (y_1, y_2) \in E_1 \times E_2 \ (x_1, x_2) \, \mathcal{R} \, (y_1, y_2) \iff x_1 \mathcal{R}_1 y_1 \, \, \text{et} \, \, x_2 \mathcal{R}_2 y_2$$

est une relation d'ordre. On l'appelle l'ordre produit induit par \mathcal{R}_1 et \mathcal{R}_2 .

Exemple. Soient $E_1 = \{1,2\}$ muni de la relation d'ordre usuel \leq , et $E_2 = \{2,4\}$ muni de la relation d'ordre "divise" \mid . On a $E_1 \times E_2 = \{(1,2),(1,4),(2,2),(2,4)\}$ qu'on munit de la relation d'ordre produit $\mathcal R$ induite par \leq et \mid . Concrètement, on a:

$$\forall (a,b),(c,d) \in E_1 \times E_2 \quad (a,b)\mathcal{R}(c,d) \iff a \leq c \text{ et } b \mid d.$$

On vérifie: $(1,2)\mathcal{R}(1,4)\mathcal{R}(2,4)$ et $(1,2)\mathcal{R}(2,2)\mathcal{R}(2,4)$ mais $(1,4)\mathcal{R}(2,2)$ et $(2,2)\mathcal{R}(1,4)$. Donc, \mathcal{R} est une relation d'ordre partiel. **Proposition-Définition (Ordre lexicographique).** Soient \mathcal{R}_1 une relation d'ordre sur un ensemble E_1 , et \mathcal{R}_2 une relation d'ordre sur un ensemble E_2 . La relation binaire \mathcal{L} définie sur $E_1 \times E_2$ par: $\forall (x_1, x_2), (y_1, y_2) \in E_1 \times E_2$

$$(x_1,x_2) \mathcal{L}(y_1,y_2) \iff (x_1 \neq y_1 \text{ et } x_1\mathcal{R}_1y_1) \text{ ou bien } (x_1 = y_1 \text{ et } x_2\mathcal{R}_2y_2)$$

est une relation d'ordre. On l'appelle l'ordre lexicographique induit par \mathcal{R}_1 et \mathcal{R}_2 .

Exemple (Ordre lexicographique usuel). On considère \mathbb{R} muni de l'ordre usuel \leq . L'ordre lexicographique \mathcal{L} induit sur $\mathbb{R} \times \mathbb{R}$ par \leq est donné par: $\forall (x_1, x_2), (y_1, y_2) \in \mathbb{R} \times \mathbb{R}$

$$(x_1, x_2) \mathcal{L}(y_1, y_2) \iff (x_1 < y_1) \text{ ou bien } (x_1 = y_1 \text{ et } x_2 \le y_2).$$

Ceci se déduit facilement de la définition générale précédente et du fait que $(x_1 \neq y_1 \text{ et } x_1 \leq y_1)$ n'est rien d'autre que la condition $x_1 < y_1$.

Exemple. Reprenons l'avant-dernier exemple: $E_1=\{1,2\}$ muni de l'ordre usuel \leq , et $E_2=\{2,4\}$ muni de l'ordre "divise" \mid . Soit $\mathcal L$ l'ordre lexicographique sur $E_1\times E_2$ induit par \leq et \mid . On a $E_1\times E_2=\{(1,2),(1,4),(2,2),(2,4)\}$, et on vérifie facilement

$$(1,2) \mathcal{L} (1,4) \mathcal{L} (2,2) \mathcal{L} (2,4).$$

Cela signifie que \mathcal{L} est un ordre total. Cet exemple est un cas particulier du résultat général suivant:

Proposition. Soient \mathcal{R}_1 une relation d'ordre total sur un ensemble E_1 , et \mathcal{R}_2 une relation d'ordre total sur un ensemble E_2 . Alors, l'ordre lexicographique sur $E_1 \times E_2$ induit par \mathcal{R}_1 et \mathcal{R}_2 est une relation d'ordre total.

8. Cas général de l'ordre lexicographique

Soient E_1, \dots, E_n des ensembles munis des relations d'ordre respectives $\mathcal{R}_1, \dots, \mathcal{R}_n$.

La relation \mathcal{L} définie sur le produit cartésien $E_1 \times \cdots \times E_n$ par:

$$\forall (x_1, \dots, x_n), (y_1, \dots, y_n) \in E_1 \times \dots \times E_n$$

$$(x_1, \cdots, x_n) \mathcal{L}(y_1, \cdots, y_n) \iff (x_1, \cdots, x_n) = (y_1, \cdots, y_n)$$
 ou bien
$$(\exists \ 1 \le k \le n \ \text{ tel que}$$
 $x_1 = y_1, \cdots, x_{k-1} = y_{k-1}, x_k \ne y_k$ et $x_k \mathcal{R}_k y_k)$

est une relation d'ordre. On l'appelle l'ordre lexicographique induit par les relations $\mathcal{R}_1, \dots, \mathcal{R}_n$.