LA5 Linear Operator Equations

KYB

Thrn, it's a Fact
mathrnfact@gmail.com

February 17, 2021

Overview

Ch3. Linear Operators

- 3.4 Linear Operator Equations
- 3.5 Existence and Uniqueness of Solutions

The First Isomorphism Theorem

- ▶ Every linear operator $L: F^n \to F^m$, there is $A \in F^{m \times n}$ such that L(x) = Ax.
- ▶ What is A? Let $\{e_i\}$ be the standard basis for F^n . Define

$$A_i = L(e_i),$$

and then

$$L(\sum x_i e_i) = \sum x_i L(e_i) = \sum x_i A_i = Ax.$$

Ex 3.2.4

Fix $r \in \mathbb{R}$, and let $L : \mathbb{R}^2 \to \mathbb{R}^2$ by L(x,y) = (x+ry,y). Then L is linear. Find the matrix representing of L.

Ex 3.2.6

Let $w = \alpha + i\beta$ be a fixed complex number and define $f : \mathbb{C} \to \mathbb{C}$ by f(z) = wz.

- (a) Regarding as a vector space over \mathbb{C} , prove that f is linear.
- (b) Regard the set $\mathbb C$ as identical with $\mathbb R^2$, writing (x,y) for x+iy. Represent the function f by multiplication by a 2×2 matrix.

Let X, Y be any sets, and let $f: X \to Y$ be a function.

- 1. f is injective if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.
- 2. f is surjective if for each $y \in Y$, there is $x \in X$ such that f(x) = y.
- 3. f is bijective if f is both injective and surjective.

Theorem

Let $f: X \to Y$ be a function. Then f is bijective if and only if there is $g: Y \to X$ such that $f \circ g(y) = y$ and $g \circ f(x) = x$. Furthermore, such g is unique.

Let X,Y,Z be sets, and $f:X\to Y$, $g:Y\to Z$ be bijective functions. Show that $g\circ f$ is bijective and find $(g\circ f)^{-1}$.

Let X, Y, and Z be sets, and suppose $f: X \to Y$, $g: Y \to Z$ are given functions.

(a) f and $g \circ f$ invertible $\implies g$ invertible?

Injective:

Surjective:

(b) g and $g \circ f$ invertible $\implies f$ invertible?

Injective:

Surjective:

(c) $g \circ f$ invertible $\implies f, g$ invertible?

A linear map $L: X \to Y$ is called an isomorphism if L is bijective.

Check

 L^{-1} is linear.

Definition

Let X, Y be vector spaces. X and Y are isomorphic if there is an isomorphism $L: X \to Y$.

Theorem

Let X,Y,Z be vector spaces over F. Suppose $X\cong Y$ and $Y\cong Z$. Then $X\cong Z$.

Theorem

Suppose X and Y are both n-dimensional. Then $X \cong Y$.

Remark

Let X be an n-dimensional vector space with basis $\mathcal{X} = \{x_1, \cdots, x_n\}$. Define $E_{\mathcal{X}}: X \to F^n$ by $E_{\mathcal{X}}(x_i) = e_i$ and $E_{\mathcal{X}}(\sum \alpha_i x_i) = \sum \alpha_i e_i$. Then $E_{\mathcal{X}}$ is an isomorphism. Note that $E_{\mathcal{X}}$ depends on a basis.

Notation

$$E_{\mathcal{X}}(x) = [x]_{\mathcal{X}}$$
, i.e., $[\cdot]_{\mathcal{X}} : X \to F^n$.

Suppose $L:(X,\mathcal{X})\to (U,\mathcal{U})$ be linear map where $\dim X=n$, $\dim U=m$.

- (1) What is A?
- (2) What if bases change?

$$F^{n} \xrightarrow{A} F^{m}$$

$$E_{\mathcal{X}} \uparrow \qquad \uparrow E_{\mathcal{U}}$$

$$X \xrightarrow{L} Y$$

Notation

$$A = [L]_{\mathcal{X},\mathcal{U}}.$$

(1) What is $[L]_{\mathcal{X},\mathcal{U}}$?

Let $\{e_1, \dots, e_n\}$ be the standard basis for F^n .

- 1. $e_i^n = [x_i]_{\mathcal{X}} = E_{\mathcal{X}}(x_i)$
- 2. $([L]_{\mathcal{X},\mathcal{U}})_i = [L]_{\mathcal{X},\mathcal{U}} e_i^n = [L]_{\mathcal{X},\mathcal{U}} [x_i]_{\mathcal{X}} = [L(x_i)]_{\mathcal{U}}$. Hence,

$$[L]_{\mathcal{X},\mathcal{U}} = [[L(x_1)]_{\mathcal{U}}| \cdots |[L(x_n)]_{\mathcal{U}}]$$

(2) What if bases change? Then $[L]_{\mathcal{X},\mathcal{U}}$ will be changed. Idea)

$$(X, \mathcal{X}_1) \xrightarrow{E_{\mathcal{X}_1}} F^n$$

$$\downarrow \qquad \qquad \downarrow_{M_{1,2}^X}$$

$$(X, \mathcal{X}_2) \xrightarrow{E_{\mathcal{X}_2}} F^n$$

Similarly, we can find $M_{1,2}^U$. Then

$$F^{n} \xrightarrow{[L]_{\mathcal{X}_{2},\mathcal{U}_{2}}} F^{m}$$

$$E_{\mathcal{X}_{2}} \uparrow \qquad \uparrow^{E_{\mathcal{U}_{2}}}$$

$$X \xrightarrow{L} \qquad U$$

$$E_{\mathcal{X}_{1}} \downarrow \qquad \downarrow^{E_{\mathcal{U}_{1}}}$$

$$F^{n} \xrightarrow{[L]_{\mathcal{X}_{1},\mathcal{U}_{2}}} F^{m}$$

Hence, $[L]_{\mathcal{X}_2,\mathcal{U}_2} = (M_{1,2}^Y)[L]_{\mathcal{X}_1,\mathcal{U}_1}(M_{1,2}^X)^{-1}$.

Let
$$L: \mathbb{R}^2 \to \mathbb{R}^2$$
 by $L(x) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} x$. Let $\mathcal{X} = \{(1,1), (1,2)\}$.

(1)
$$[L]_{\mathcal{S},\mathcal{S}} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
.

(2) Find $[L]_{\mathcal{X},\mathcal{X}}$.

$$\blacktriangleright$$
 $[L]_{\mathcal{S},\mathcal{S}}.$

$$\blacktriangleright [L]_{\mathcal{X},\mathcal{X}}$$

because

$$[L]_{\mathcal{S},\mathcal{S}} = [[L(e_1)]_{\mathcal{S}}|[L(e_2)]_{\mathcal{S}}] = A.$$

$$(\mathbb{R}^2, \mathcal{S}) \to (\mathbb{R}^2, \mathcal{S})$$

$$e_i \mapsto L(e_i) = \square e_1 + \triangle e_2 = \begin{bmatrix} \square \\ \triangle \end{bmatrix}$$

$$[L]_{\mathcal{X},\mathcal{X}} = \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix}$$

$$x_1 = (1,1) \mapsto (2,2) = \frac{2}{2}(1,1) + \frac{0}{2}(1,2)$$

 $x_2 = (1,2) \mapsto (3,3) = \frac{3}{2}(1,1) + \frac{0}{2}(1,2)$

 \blacktriangleright $[L]_{\mathcal{X},\mathcal{S}}$

$$[L]_{\mathcal{X},\mathcal{S}} = \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix}$$

because

$$x_1 = (1,1) \mapsto (2,2) = \frac{2}{2}(1,0) + \frac{2}{2}(0,1)$$

 $x_2 = (1,2) \mapsto (3,3) = 3(1,0) + 3(0,1)$

 \blacktriangleright $[L]_{S,\mathcal{X}}$

$$[L]_{\mathcal{S},\mathcal{X}} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

because

$$e_1 = (1,0) \mapsto (1,1) = \frac{1}{1}(1,1) + \frac{0}{1}(1,2)$$

 $e_2 = (0,1) \mapsto (1,1) = \frac{1}{1}(1,1) + \frac{0}{1}(1,2)$

Let
$$I: \mathbb{R}^2 \to \mathbb{R}^3$$
 by $I(x) = x$. Let

$$\mathcal{S} = \{(1,0,0), (0,1,0), (0,0,1)\}, \mathcal{X} = \{(1,1,1), (0,1,1), (0,0,1)\}.$$

Then

$$[I]_{\mathcal{X},\mathcal{S}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

$$[I]_{\mathcal{S},\mathcal{X}} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}.$$

$$(1,1,1) \mapsto 1 \cdot (1,0,0) + 1 \cdot (0,1,0) + 1 \cdot (0,0,1)$$
$$(0,1,1) \mapsto 0 \cdot (1,0,0) + 1 \cdot (0,1,0) + 1 \cdot (0,0,1)$$
$$(0,0,1) \mapsto 0 \cdot (1,0,0) + 0 \cdot (0,1,0) + 1 \cdot (0,0,1)$$

$$(1,0,0) \mapsto 1 \cdot (1,0,0) + (-1) \cdot (0,1,0) + 0 \cdot (0,0,1)$$

$$(0,1,0) \mapsto 0 \cdot (1,0,0) + 1 \cdot (0,1,0) + (-1) \cdot (0,0,1)$$

$$(0,0,1) \mapsto 0 \cdot (1,0,0) + 0 \cdot (0,1,0) + 1 \cdot (0,0,1)$$

 $F^{m \times n} \cong F^{mn}$ as follows: Map $A \in F^{m \times n}$ to $a \in F^{mn}$ by

$$\begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix} \mapsto (A_{11}, \cdots, A_{1n}, A_{21}, \cdots, A_{mn})$$

$$a_k = A_{ij}$$
 where $k = n(i-1) + j$.

Let X, U be finite dimensional vector spaces over F with bases

$$\mathcal{X} = \{x_1, \cdots, x_n\}, \mathcal{U} = \{u_1, \cdots, u_m\}.$$

Let $A \in F^{m \times n}$. Prove that there is a unique linear map $L: X \to U$ such that $[L]_{\mathcal{X},\mathcal{U}} = A$.

Proof

- (1) Existence: Let $\{e_1^n,\cdots,e_n^n\}$, $\{e_1^m,\cdots,e_m^m\}$ be the standard bases for F^n and F^m , respectively. Define $L:X\to U$ as follows:
 - $L(x_i) = Ae_i^m$
 - For $x = \sum_{1}^{n} \alpha_i x_i$, $L(x) = \sum_{1}^{n} \alpha_i L(x_i)$.

Since \mathcal{X} is a basis, L is well defined. Check that L is a linear map. Then $[L]_{\mathcal{X},\mathcal{U}}=A$.

Let X, U be finite dimensional vector spaces over F with bases

$$\mathcal{X} = \{x_1, \cdots, x_n\}, \mathcal{U} = \{u_1, \cdots, u_m\}.$$

Let $A \in F^{m \times n}$. Prove that there is a unique linear map $L: X \to U$ such that $[L]_{\mathcal{X},\mathcal{U}} = A$.

Proof

(2) Uniqueness: Let $T: X \to U$ be linear such that $[T]_{\mathcal{X},\mathcal{U}} = A$. Then

$$[T(x_i)]_{\mathcal{U}} = [T]_{\mathcal{X},\mathcal{U}}[x_i]_{\mathcal{X}} = Ae_i = [L]_{\mathcal{X},\mathcal{U}}[x_i]_{\mathcal{X}} = [L(x_i)]_{\mathcal{U}}$$

Thus $T(x_i) = L(x_i)$ for all i. Now let $x = \sum \alpha_i x_i$. Then

$$T(x) = T(\sum \alpha_i x_i) = \sum \alpha_i T(x_i) = \alpha_i L(x_i) = L(\sum \alpha_i x_i) = L(x).$$

Hence, T = L.

Let X, U be vector spaces over a field F, and let $L: X \to U$ be linear.

- $ightharpoonup \ker(L) = \{x \in X : L(x) = 0\}.$
- $\blacktriangleright \ \mathcal{R}(L) = \{L(x) : x \in X\} = \{u \in U : L(x) = u \text{ for some } x \in X\}.$

Theorem

 $\ker(L)$ is a subspace of X and $\mathcal{R}(L)$ is a subspace of U.

Goal

Find a solution of L(x) = b.

Example

ODE: Consider u(t)x'' + v(t)x' + w(t)x = f(t) where

- $ightharpoonup u,v,w,f:\mathbb{R}
 ightarrow \mathbb{R}$ are continuous
- $ightharpoonup x: \mathbb{R} \to \mathbb{R}$ by $t \mapsto x(t)$ belongs to $C^2(\mathbb{R})$.

Let $L=u\frac{d^2}{dt^2}+v\frac{d}{dt}+w$. Then $L:C^2(\mathbb{R})\to C(\mathbb{R}$ is a linear operator. We want to solve L(x)=f.

Lemma

Let $L: X \to U$ be linear. Suppose $u \in U$. If \hat{x} solves to L(x) = u, then for all $y \in \ker L$, $\hat{x} + y$ solve to L(x) = u. In this case, $\hat{x} + y$ is called a general solution to L(x) = u.

Lemma

If x_1, x_2 are solutions to L(x) = u, then $x_1 - x_2 \in \ker L$.

For two subsets S,T of a vector space U and $x\in U$,

$$ightharpoonup S + T = \{s + t : s \in S, t \in T\}$$

Let $L:C^2(\mathbb{R})\to C(\mathbb{R})$ be a linear differential operator, and let f in $C(\mathbb{R})$ be defined by $f(t)=2(1-t)e^t$. Suppose $x_1(t)=t^2e^t$ and $x_2(t)=(t^2+1)e^t$ are solutions of L(x)=f. Find two more solutions of L(x)=f.

(a) Let X and U be vector spaces over a field F, and let $L:X\to U$ be linear. Suppose that $b,c\in U$, $y\in X$ is a solution to L(x)=b, and $z\in X$ is a solution to L(x)=c. Find a solution to $L(x)=\beta b+\gamma c$, where $\beta,\gamma\in F$.

Let $A \in \mathbb{Z}_2^{3 \times 3}$, $b \in \mathbb{Z}_2^3$ be defined by

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

List all solutions to Ax = 0 and Ax = b. Check $\hat{x} + \ker L$.

(1) Find \hat{x} such that $L(\hat{x}) = b$.

Proof.

$$\hat{x} = (1, 0, 1).$$

(2) Find $\ker L$.

Proof.

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} x_1 + x_2 = 0 \\ x_1 + x_3 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

Then $x_1 = x_2 = x_3$. Thus $\ker L = \{(0,0,0), (1,1,1)\}$. Hence

$$\hat{x} + \ker L = \{(1, 0, 1), (0, 1, 0)\}.$$

Let A and B be any sets.

- ightharpoonup A relation R of A and B is a subset of $A \times B$.
- ▶ If $(a, b) \in R$, we write aRb.

Example

=, < (for A=B), a function $f:A\to B$, etc.

Consider '=' on a set X.

- (1) For all $x \in X$, x = x (Reflexive)
- (2) If x = y, then y = x (Symmetric)
- (3) If x = y and y = z, then x = z (Transitive)

We want to generalize "=", say "equivalence relation".

Let \sim be a relation on X such that

- (1) For all $x \in X$, $x \sim x$ (Reflexive)
- (2) If $x \sim y$, then $y \sim x$ (Symmetric)
- (3) If $x \sim y$ and $y \sim z$, then $x \sim z$ (Transitive)

Then \sim is called an equivalence relation.

Example

For \mathbb{Z} and $n \in \mathbb{Z}$, define a relation \sim as follows:

$$a \sim b \iff n|b-a \iff \exists k \in \mathbb{Z} \text{ such that } b-a=kn.$$

- (1) For all $a \in \mathbb{Z}$, $a a = 0 \cdot n$. So $a \sim a$.
- (2) If $a \sim b$ with b a = kn, then a b = (-k)n. So $b \sim a$.
- (3) If $a \sim b$ with b-a=kn and $b \sim c$ with c-b=ln, then c-b=(l+k)n. So $a \sim c$.

For an equivalence relation \sim on X and $x \in X$, define a set [x] by

$$[x] = \{ y \in X : y \sim x \}.$$

[x] is called a equivalence class of x.

Properties of Equivalence Class

- (1) $X = \bigcup_{x \in Y} [x].$
- (2) If $[x] \cap [y] \neq \emptyset$, then [x] = [y]. (need not x = y.)

Proof.

- (1) Clearly, $\bigcup_{x \in X} [x] \subset X$. Let $y \in X$. Since $y \sim y$, $y \in [y]$. So $\bigcup_{x \in X} [x] \supset X$.
- (2) Suppose $[x] \cap [y] \neq \emptyset$. Then there is $z \in [x] \cap [y]$. So $z \sim x$ and $z \sim y$. Then $x \sim z$ and $z \sim y$ implies $x \sim y$. Thus $x \in [y]$. If $w \in [x]$, $w \sim x$ and $x \sim y$ implies, $w \sim y$. So $[x] \subset [y]$. In the same reason, $[y] \subset [x]$. Hence [x] = [y].

Let X be a set. For some index set J and $\{X_{\alpha}: X_{\alpha} \subset X, \alpha \in J\}$. We call $\{X_{\alpha}\}_{\alpha \in J}$ a partition of X if

(1)
$$X = \bigcup_{\alpha \in J} X_{\alpha}$$

(2) If $X_{\alpha} \cap X_{\beta} \neq \emptyset$, then $\alpha = \beta$.

Equivalence Relation and Partition

Suppose \sim is an equivalence relation on X. We can choose $\{x_{\alpha}: x_{\alpha} \in X\}$ such that $\{[x_{\alpha}]: \alpha \in J\}$ is a partition of X. Note that for each equivalence relation, there is a corresponding partition, and vice versa.

Suppose \sim is an equivalence relation on X. A quotient set of X by \sim is a set X/\sim of all equivalence class of X,

$$X/\sim = \{[x] : x \in X\}.$$

Remark

Suppose $x \sim y$. It may not x = y, but [x] = [y]. In this sense, an equivalence relation is a generalization of equality.

Example

Consider $\mathbb{Z}, \sim, n = 3$.

- $ightharpoonup [0] = \{3k : k \in \mathbb{Z}\}. \text{ So } [0] = [3k].$
- $ightharpoonup [1] = \{3k+1 : k \in \mathbb{Z}\}. \text{ So } [1] = [3k+1].$
- ightharpoonup [2] = {3k + 2 : k \in \mathbb{Z}}. So [0] = [3k + 2].

Write $[0] = 3\mathbb{Z}$, or $0 + 3\mathbb{Z}$, $[1] = 1 + 3\mathbb{Z}$, $[2] = 2 + 3\mathbb{Z}$.

In general, we can write $\mathbb{Z}/\sim=\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n$.

$$\mathbb{Z}/n\mathbb{Z} = \{[0], [1], \cdots, [n-1]\} = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}$$

The First Isomorphism Theorem

Let $L: X \to U$ be linear. Define a relation \sim by

$$x_1 \sim x_2 \iff x_1 - x_2 \in \ker L.$$

Then \sim is an equivalence relation and define $X/\ker L = X/\sim$. Write $[\hat{x}] = \hat{x} + \ker L$. Suppose \hat{x} is a solution to L(x) = b. Then every vector in $\hat{x} + \ker L$ also solves L(x) = b. Thus we can define $\tilde{L}: X/\ker L \to \mathcal{R}(L)$ by $\tilde{L}([x]) = L(x)$. Then \tilde{L} is an isomorphism.

The End