EC708 Discussion 11 Bootstrap

Yan Liu1

Department of Economics

Boston University

April 23, 2021

¹Parts of the materials are from Horowitz (2001, 2019), lecture notes by Xiaoxia Shi, and textbook by Bruce Hansen (2021).

Outline

- Nonparametric Bootstrap
 - Asymptotic Refinement
 - Hypothesis Testing
 - Bootstrap Failure
- 2 Extensions
 - Wild Bootstrap
 - Block Bootstrap
 - Nonsmooth Statistics

Outline

- 🕕 Nonparametric Bootstrap
 - Asymptotic Refinement
 - Hypothesis Testing
 - Bootstrap Failure
- 2 Extensions
 - Wild Bootstrap
 - Block Bootstrap
 - Nonsmooth Statistics

What is Bootstrap?

- "The bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling one's data or a model estimated from the data." (Horowitz, 2019)
- Bootstrap is an alternative to asymptotic-based inference, but not a substitute of asymptotic theory.

Nonparametric Bootstrap

- A random sample $\{X_1, \ldots, X_T\}$ from distribution P_0 .
- Statistic $T_T(X_1, \dots, X_T)$ (estimator or test statistic)
- $J_T(\tau, P)$: exact finite-sample distirbution of T_T when data are sampled from P.
- Nonparametric bootstrap approximates $J_T(\tau, P_0)$ by replacing P_0 with empirical CDF \hat{P}_T .

Algorithm:

- Generate a bootstrap sample $\{X_t^*\}_{t=1}^T$ from original data randomly with replacement.
- ② Compute $T_T^* = T_T(X_1^*, ..., X_T^*)$.
- **③** Use results of many repetitions of steps 1 and 2 to compute $J_T(au,\hat{P}_T)$.

How Many Bootstrap Replications?

- Computation cost is essentially linear in B while accuracy (standard errors or p-values) is proportional to $B^{-1/2}$.
- For daily quick and investigatory calculations, B=100 may be sufficient for rough estimates.
- For final calculations, B=10,000 is desired, with B=1000 a minimal choice.
- Stata by default sets B = 50.

Bootstrap Standard Errors

Denote $\bar{T}_{T,B} = \frac{1}{B} \sum_{b=1}^{B} T_{T,b}^*$. Simulated bootstrap standard error is

$$\sqrt{\frac{1}{B-1}\sum_{b=1}^{B}(T_{T,b}^*-\bar{T}_{T,B})(T_{T,b}^*-\bar{T}_{T,B})'}.$$

Remarks:

- Bootstrap variance is consistent for smooth functions with a bounded p^{th} order derivative. Counterexample: $\theta = \mu_1/\mu_2$ where $\mu_i = E(y_i)$. Need to use a trimmed estimator by excluding tails.
- Bootstrap standard errors are desired if asymptotic variance involves nonparametric functions (e.g. sample quantile), whose estimators have slow convergence rate and are sensitive to bandwidth choices.
- Bootstrap standard errors are robust to misspecification or heteroskedasticity, and less susceptible to algebraic or coding errors.

Asymptotic Refinement

Bootstrap can provide more accurate approximations to the distributions of statistics than does the conventional asymptotic distribution theory.

- First-order bias reduction of nonlinear estimators
- Higher-order refinements to rejection probabilities of tests and coverage probabilities of confidence intervals

Bias Correction

- Nonlinear estimators are prone to finite-sample bias. Bootstrap offers a
 way to estimate the bias up to some asymptotic order.
- ullet For any estimator $\hat{ heta}_T$, bootstrap bias corrected estimator is

$$\hat{\theta}_T - (E^*(\hat{\theta}_T^*) - \hat{\theta}_T) = 2\hat{\theta}_T - E^*(\hat{\theta}_T^*).$$

• Let's look at a concrete example.

Bias Correction

- For a random vector X, consider $\mu = E[X]$ and $\theta = g(\mu)$ where g is a twice continuously differentiable nonlinear function.
- For a random sample $\{X_t\}_{t=1}^T$, define $\bar{X}_T = \frac{1}{T} \sum_{t=1}^T X_t$. A consistent estimator is $\hat{\theta}_T = g(\bar{X}_T)$.
- $\hat{\theta}_T$ is biased: $E[\hat{\theta}_T] = E[g(\bar{X}_T)] \neq g(E[\bar{X}_T]) = g(\mu) = \theta$.
- Characterize the bias by a Taylor expansion:

$$E[\hat{\theta}_T - \theta] = \underbrace{\frac{1}{2} E\left[(\bar{X}_T - \mu)' G_2(\mu) (\bar{X}_T - \mu) \right]}_{\text{first-order bias } B_T} + O(T^{-2})$$

where G_2 is the matrix of second derivative of g.

Bias Correction

- ullet In the bootstrap world, the true parameter is $\hat{ heta}_T.$
- Denote the bootstrap estimator as $\hat{\theta}_T^* = g(\bar{X}_T^*)$ where $\bar{X}_T^* = \frac{1}{T} \sum_{t=1}^T X_t^*$ is the bootstrap sample mean.
- Taylor expansion is now

$$E^*[\hat{\theta}_T^* - \hat{\theta}_T] = \underbrace{\frac{1}{2} E^* \left[(\bar{X}_T^* - \bar{X}_T)' G_2(\bar{X}_T) (\bar{X}_T^* - \bar{X}_T) \right]}_{\text{first-order bootstrap bias } B_T^*} + O(T^{-2})$$

 B_T^* can be computed with arbitrary accuracy by Monte Carlo simulation since we know the empirical distribution.

• Can show that $E(B_T^*) = B_T + O(T^{-2})$. Hence,

$$\hat{\theta}_{bc} = \hat{\theta}_T - B_T^* = 2\hat{\theta}_T - E^*(\hat{\theta}_T^*)$$

satisfies
$$E(\hat{\theta}_{bc} - \theta) = O(T^{-2})$$
.

Yan Liu Bootstrap April 23, 2021

Higher-order Refinement

Work with the statistic $T_T=\sqrt{T}[H(\bar{X})-H(\mu)]$ where H has sufficiently many derivatives and X satisfies the Cramér condition. Cramér condition Recall

- $J_T(\tau, P_0)$: exact finite-sample distribution of T_T ;
- \bullet $J_T(\tau, \hat{P}_T)$: bootstrap distribution of T_T .

Edgeworth expansion:

$$J_T(\tau, P_0) = J_{\infty}(\tau, P_0) + \frac{1}{\sqrt{T}}g_1(\tau, \kappa_1) + \frac{1}{T}g_2(\tau, \kappa_2) + \frac{1}{\sqrt{T^3}}g_3(\tau, \kappa_3) + O(T^{-2})$$

$$J_T(\tau, \hat{P}_T) = J_{\infty}(\tau, \hat{P}_T) + \frac{1}{\sqrt{T}}g_1(\tau, \kappa_{T1}) + \frac{1}{T}g_2(\tau, \kappa_{T2}) + \frac{1}{\sqrt{T^3}}g_3(\tau, \kappa_{T3}) + O(T^{-2})$$

- Leading term in the difference is $J_{\infty}(\tau,P_0)-J_{\infty}(\tau,\hat{P}_T)=O(T^{-1/2})$ \Rightarrow same accuracy as conventional approximations
- If T_T is pivotal, leading term is $\frac{1}{\sqrt{T}}g_1(\tau,\kappa_1) \frac{1}{\sqrt{T}}g_1(\tau,\kappa_{T1}) = O(T^{-1})$ \Rightarrow more accurate than conventional approximations

n Liu Bootstrap April 23, 2021

Bootstrap Critical Values for Hypothesis Testing

- Suppose T_T is an asymptotically pivotal test statistic
- Let $q_{1-\alpha}$ denote the $1-\alpha$ quantile of distribution of $|T_T|$, then $P(|T_T| \le q_{1-\alpha}) = 1-\alpha$.
- $q_{1-\alpha}$ is unknown in most settings. Let $q_{1-\alpha}^*$ be the $1-\alpha$ quantile of bootstrap distribution of $|T_T^*|$.
- Edgeworth expansion of distribution of $|T_T| q_{1-\alpha}^*$ shows that under the null,

$$P(|T_T| > q_{1-\alpha}^*) - \alpha = O(T^{-2}).$$

• In contrast, for asymptotic critical value $z_{1-\alpha/2}$,

$$P(|T_T| > z_{1-\alpha/2}) - \alpha = O(T^{-1}).$$

• **Takeaway:** Size distortion converges to zero more rapidly using bootstrap critical values.

Yan Liu Bootstrap April 23, 2021

General Hypothesis Testing with Bootstrap

Consider a general hypothesis testing problem:

$$H_0: P \in \mathcal{P}_0, \quad H_1: P \in \mathcal{P}_1, \quad \mathcal{P}_0 \cap \mathcal{P}_1 = \emptyset.$$

Having picked a suitable T_T , our goal is to construct a (data-dependent) critical value $c_T(1-\alpha)$ s.t.

- when $P \in \mathcal{P}_0$, $P\{T_T > c_T(1-\alpha)\} \to \alpha$ as $T \to \infty$;
- when $P \in \mathcal{P}_1$, $P\{T_T > c_T(1-\alpha)\} \to 1$ as $T \to \infty$.

Let $G_T(x,P) = \Pr_P(T_T < x)$. A bootstrap critical value can be defined by

$$g_T(1-\alpha, \hat{Q}_T) = \inf\{x : G_T(x, \hat{Q}_T) \ge 1-\alpha\}$$

where \hat{Q}_T is an estimate of $P \in \mathcal{P}_0$ so that \hat{Q}_T satisfies the null hypothesis constraints.

Yan Liu Bootstrap April 23, 2021

General Hypothesis Testing with Bootstrap

Choice of resampling distribution \hat{Q}_T should satisfy:

- if $P \in \mathcal{P}_0$, \hat{Q}_T is near P so that $g_T(1-\alpha,P) \approx g_T(1-\alpha,\hat{Q}_T)$;
- if $P \in \mathcal{P}_1$, \hat{Q}_T should not approach P but some $P_0 \in \mathcal{P}_0$.

Notice that we would not want to replace \hat{Q}_T by empirical distribution \hat{P}_T .

Yan Liu Bootstrap April 23, 2021

General Hypothesis Testing with Bootstrap

Example (Testing the mean)

- Let X_1, \ldots, X_T be real-valued with finite mean and variance.
- Test whether the mean is zero. $T_T = T\bar{X}_T^2$.
- Let \hat{Q}_T be the distribution in \mathcal{P}_0 closest to \hat{P}_T .
 - Closeness can be described by Kullback-Leibler divergence

$$\delta_{KL}(P,Q) = \int \ln\left(\frac{dP}{dQ}\right) dP.$$

• Let $\hat{Q}_T = \min_{Q \in \mathcal{P}_0} \delta_{KL}(\hat{P}_T, Q)$. Then \hat{Q}_T assigns w_t to X_t where

$$w_t \propto \frac{(1+lX_t)^{-1}}{\sum_{s=1}^{T} (1+lX_s)^{-1}}$$

where l is chosen s.t. $\sum_{t=1}^{T} w_t X_t = 0$.

• Alternatively, can directly use $T_T = T\delta_{KL}(\hat{P}_T, \hat{Q}_T)^2$.

²Any testing problem can be formulated by $T_T = \tau_T \delta(\hat{P}_T, \tau(\hat{P}_T))$ with $\tau(P)$ defined by $\rho(P, \tau(P)) = \inf_{Q \in \mathcal{P}_0} \rho(P, Q)$ for some metrics ρ and δ and scaling τ_T .

A Partial Guide for Practitioners

- To use bootstrap for standard error, the estimator must be asymptotically normal.³
- To achieve higher-order refinement, the test statistic needs to be asymptotically pivotal.
- Do not use bootstrap for weak IV regressions.
 - Discontinuity in limiting distribution (Andrews and Guggenberger, 2010)
 - Systematic errors in estimating the strength of instruments (Andrews, Stock, and Sun, 2019)

³In some cases the bootstrap standard error is not consistent even though the estimator is asymptotically normal. One notable example is nearest neighbor matching estimator (Abadie and Imbens, 2008).

Bootstrap Failure: Parameter on the Boundary

- Consider a random sample $\{X_t\}_{t=1}^T$ from $N(\mu, 1)$ where $\mu \geq 0$.
- MLE estimate of μ is $\hat{\mu}_{MLE} = \max\{\bar{X}_T, 0\}$ where $\bar{X}_T = \frac{1}{T} \sum_{t=1}^T X_t$.
- Assume Var(X) = 1 is known. t-statistic has asymptotic distribution:

$$\sqrt{T}(\hat{\mu}_{MLE} - \mu) \overset{d}{\to} \begin{cases} Z & \text{if } \mu > 0 \\ \max\{Z, 0\} & \text{if } \mu = 0 \end{cases} \quad \text{where } Z \sim N(0, 1).$$

• When $\mu=0$, bootstrap t-statistic $\sqrt{T}(\hat{\mu}_{MLE}^* - \hat{\mu}_{MLE}) \not\to \max\{Z,0\}$ conditional on almost all paths X_1, X_2, \ldots For any c>-x>0,

$$\begin{split} & \Pr(\sqrt{T}(\hat{\mu}_{MLE}^* - \hat{\mu}_{MLE}) \leq x | \sqrt{T}\bar{X}_T > c) \\ & \geq \Pr(\max\{\sqrt{T}(\bar{X}_T^* - \bar{X}_T), -c\} \leq x | \sqrt{T}\bar{X}_T > c) \\ & \rightarrow \Pr(\max\{Z, -c\} \leq x) > \Pr(\max\{Z, 0\} \leq x). \end{split}$$

Yan Liu Bootstrap April 23, 2021

Bootstrap Failure: Maximum of a Sample

- Consider a random sample $\{X_t\}_{t=1}^T$ from $U(0,\theta_0)$. $\theta_0=1$ is unknown.
- MLE estimate of θ_0 is $\hat{\theta}_{MLE} = \max\{X_1, \dots, X_T\}$.
- Define $T_T=T(\hat{\theta}_{MLE}-1)$. As $T\to\infty$, $P(T_T\le -z)=e^{-z}$ for any $z\ge 0$. Moreover, $P(T_T=0)=0$ for all T.
- The bootstrap analog $T_T^* = T(\hat{\theta}_{MLE}^* \hat{\theta}_{MLE})$ satisfies

$$P_T^*(T_T^* = 0) = 1 - (1 - T^{-1})^T \to 1 - e^{-1} \text{ as } T \to \infty.$$

Hence, nonparametric bootstrap does not estimate the distribution of \mathcal{T}_T consistently.

Yan Liu Bootstrap April 23, 2021

Outline

- Nonparametric Bootstrap
 - Asymptotic Refinement
 - Hypothesis Testing
 - Bootstrap Failure
- Extensions
 - Wild Bootstrap
 - Block Bootstrap
 - Nonsmooth Statistics

Wild Bootstrap

Take the linear regression model

$$y_t = X_t' \beta + \varepsilon_t, \quad E(\varepsilon_t | X_t) = 0.$$

- Nonparametric bootstrap samples (y_t^*, X_t^*) i.i.d. from original observations: inaccurate because it does not impose $E(\varepsilon_t|X_t)=0$.
- **Residual bootstrap** draws errors independent from X_t : stronger than conditional mean restriction
- Wild bootstrap (Liu, 1988; Mammen, 1993) generates bootstrap samples from

$$y_t^* = X_t' \hat{\beta} + \varepsilon_t^*.$$

where $\hat{\beta}$ is the OLS estimator.

Wild Bootstrap

 ε_t^* 's can be generated by two methods:

- Let $\varepsilon_t^* = \xi_t^* \hat{\varepsilon}_t$, where $\hat{\varepsilon}_t$ are OLS residuals and ξ_t^* are i.i.d. auxiliary random variables with distributions
 - Rademacher random variables: $P(\xi_t^*=1)=P(\xi_t^*=-1)=\frac{1}{2}$
 - Mammen (1993) two-point distribution: $P(\xi_t^* = \frac{1+\sqrt{5}}{2}) = \frac{\sqrt{5}-1}{2\sqrt{5}}, P(\xi_t^* = \frac{1-\sqrt{5}}{2}) = \frac{\sqrt{5}+1}{2\sqrt{5}}$
- **Q** Multiplier bootstrap (Davidson and Flachaire, 2008): $\varepsilon_t^* = U_t f(\hat{\varepsilon}_t)$, where U_t are random variables that are independent of each other and $\hat{\varepsilon}_t$ with $E(U_t) = 0$ and $E(U_t^2) = 1$, and $f(\cdot)$ is a transformation.

n Liu Bootstrap April 23, 2021

Time Series Data

Bootstrap sampling must capture dependence of DGP.

ullet $\{X_t\}$ is generated by a stationary, invertible, finite-order ARMA model

$$A(L,\alpha)X_t = B(L,\beta)U_t$$

• $\{X_t\}$ is generated by a stationary, linear process

$$X_t - \mu = \sum_{j=1}^{\infty} \alpha_j (X_{t-j} - \mu) U_t$$

Sieve bootstrap: generate bootstrap samples according to AR(p)

• $\{X_t\}$ is a stationary Markov process **Markov bootstrap:** generate bootstrap samples by a nonparametric estimate of Markov transition density

Block Bootstrap

Divide data into blocks and sample blocks randomly with replacement

- ullet Fixed block length l
 - Non-overlapping blocks: $\{X_1,\ldots,X_l\},\{X_{l+1},\ldots,X_{2l}\},\ldots$
 - Overlapping blocks: $\{X_1,\ldots,X_l\},\{X_2,\ldots,X_{l+1}\},\ldots$
- Random block length: Stationary bootstrap

Remarks:

- Block length must increase with sample size for consistency
- In terms of asymptotic RMSE, stationary bootstrap is unattractive relative to block bootstrap with fixed-length blocks.
- Block bootstrap does not exactly replicate dependence structure
 ⇒ Need to develop special versions of test statistics to obtain asymptotic refinements (e.g. Hall and Horowitz, 1996)

Nonsmooth Statistics: Maximum Score Estimator

Consider the binary response model $Y_t=1\{X_t'\beta+U\geq 0\}$ with $P(U\geq 0|X)=0.5$. Manski (1975, 1985)'s maximum score estimator is

$$\hat{b}_{MS} = \mathop{\arg\max}_{b \in B} \sum_{t=1}^{T} (2Y_t - 1) 1\{X_t'b \ge 0\}, \quad \text{where } B = \{b: |b_1| = 1\}.$$

 \hat{b}_{MS} converges slowly and has a complicated limiting distribution. Horowitz (1992) proposes the smoothed maximum score (SMS) estimator

$$\hat{b}_{SMS} = \underset{b \in B}{\arg\max} \sum_{t=1}^{T} (2Y_t - 1) H\left(\frac{X_t'b}{h_T}\right)$$

where $H(\cdot)$ is sufficiently smooth s.t. H(v)=1 if $v\geq 1$ and H(v)=0 if $v\leq -1$, $\{h_T\}$ are decreasing positive constants s.t. $h_T\to 0$ as $T\to \infty$.

- $(Th_T)^{1/2}(\hat{b}_{SMS}-\beta)$ is asymptotically normal.
- Asymptotic refinements: $P(|t_T|>z_{1-\alpha}^*)=\alpha+o[(Th_T)^{-1}].$

Yan Liu Bootstrap April 23, 2021

Cramér Condition

Let τ be a vector of constants with the same dimension as X. Let $i=\sqrt{-1}$. X satisfies the Cramér condition if

$$\lim \sup_{\|\tau\| \to \infty} |E \exp(i\tau' X)| < 1.$$

- Cramér condition is satisfied if X is continuously distributed but not if X is discrete.
- Let X=X(Z). Cramér condition is satisfied even if some components of Z are discrete but X(Z) is continuously distributed.

Bibliography

- Abadie, A. and Imbens, G. W. (2008), "On the failure of the bootstrap for matching estimators," Econometrica, 76, 1537-1557.
- Andrews, D. W. and Guggenberger, P. (2010), "Asymptotic size and a problem with subsampling and with the mout of n bootstrap," Econometric Theory. 426-468.
- Andrews, I., Stock, J. H., and Sun, L. (2019), "Weak instruments in instrumental variables regression: Theory and practice," Annual Review of Economics, 11, 727–753.
- Davidson, R. and Flachaire, E. (2008), "The wild bootstrap, tamed at last," Journal of Econometrics, 146, 162-169.
- Hall, P. and Horowitz, J. L. (1996), "Bootstrap critical values for tests based on generalized-method-of-moments estimators," Econometrica: Journal of the Econometric Society, 891–916.
- Horowitz, J. L. (1992), "A smoothed maximum score estimator for the binary response model," *Econometrica: journal of the Econometric Society*, 505–531.
- (2001), "The bootstrap," in Handbook of econometrics, Elsevier, vol. 5, pp. 3159-3228.
- (2019), "Bootstrap methods in econometrics," Annual Review of Economics, 11, 193-224.
- Liu, R. Y. (1988), "Bootstrap procedures under some non-iid models," Annals of Statistics, 16, 1696-1708.
- Mammen, E. (1993), "Bootstrap and wild bootstrap for high dimensional linear models," The annals of statistics, 255-285.
- Manski, C. F. (1975), "Maximum score estimation of the stochastic utility model of choice," Journal of econometrics, 3, 205-228.
- (1985), "Semiparametric analysis of discrete response: Asymptotic properties of the maximum score estimator," Journal of econometrics, 27, 313-333.