

Mean Linear Regression

- Dependent/explained variable y_i
- Independent/explanatory variable(s) x_i
- Regression error ε_i

Scalar Notation

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_k x_{ki} + \varepsilon_i$$

Matrix Notation

$$y_{i} = x_{i}'\beta + \varepsilon_{i} \qquad \beta = \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k} \end{pmatrix} \qquad x_{i} = \begin{pmatrix} 1 \\ x_{1i} \\ \vdots \\ x_{ki} \end{pmatrix}$$

Test of Independence

crime rate =
$$\beta_0 + \beta_1$$
 unemployment rate + ε

Null hypothesis H_0 : There is <u>no relationship</u> between unemployment rate and crime rate.

$$H_0$$
: $\beta_1 = 0$

We reject the null hypothesis, if our calculated β_1 is "far enough from zero".

Test of Independence

Null hypothesis H_0 : There is <u>no relationship</u> between unemployment rate and crime rate.

$$H_0$$
: $\beta_1 = 0$

Distribution of Beta Estimates

- $\widehat{\beta_1}$ estimate,
- β_1 true beta (not observed)
- Test = answering question how unlikely it is to obtain $\widehat{\beta}_1$ when $\beta_1 = 0$

$$\widehat{\beta_1} \sim N(\beta_0, Standard Error^2)$$

Hypotheses Testing with OLS: Is Beta "far enough from zero"?

Hypotheses Testing with OLS: Is Beta "far enough from zero"?

Interpretation of Results

	coef	std err	t	P> t	[0.025	0.975]
Intercept	3526.6672	374.290	9.422	0.000	2788.515	4264.820
facebook	0.1885	0.009	21.893	0.000	0.172	0.206
newspaper	-0.0010	0.006	-0.177	0.860	-0.013	0.011
youtube	0.0458	0.001	32.809	0.000	0.043	0.049

- Coef beta estimate
- Std err standard error
- t t-ratio

$$t = \frac{\hat{\beta}_j}{Standard\ Error\ (\hat{\beta}_j)} \sim N(0,1)$$

P>|t| – p-value

"Probability of obtaining $\hat{\beta}_i$ or worse value with respect to \mathbb{H}_0 "

4. No Omitted Variable

Causal Impact

"Impact of X on Y while everything else remains the same."

Wage Example

Consider two models

$$wage = \alpha_0 + \alpha_1 education + e$$

$$wage = \beta_0 + \beta_1 education + \beta_2 ability + u$$

- Problem: education and ability is correlated \Rightarrow α_1 captures impact of education and partially impact of ability
- "Solution": we have to add ability to the model to control it ("keep it the same")
- Omitted Variable Bias: α_1 β_1

Assumptions Summary

We need to check that **model assumptions** hold.

- 1. Linear relationship → biased betas
- 2. No multicollinearity \rightarrow high variance of beta estimates
- 3. Random sample \rightarrow biased betas
- **4.** No omitted variable \rightarrow biased betas
- 5. Homoskedasticity \rightarrow invalid inference (use robust errors)
- **6.** Normality \rightarrow invalid inference (large sample desired)

Values of betas

Validity of inference

