Laborator 7

Metoda Krylov pentru determinarea coeficienților polinomului caracteristic

Prezentarea Problemei: Fie $A \in \mathbb{R}^{n \times n}$. Ne propunem să determinăm coeficienții polinonului caracteristic

$$p_A(\lambda) = \lambda^n + c_1 \lambda^{n-1} + \dots + c_{n-1} \lambda + c_n.$$

Prezentarea Metodei:

- 1) Se alege arbitrar, $y^{(0)} \in \mathbb{R}^n$, nenul;
- 2) Calculăm

$$y^{(k)} = Ay^{(k-1)}, \quad 1 \le k \le n$$

3) Rezolvăm sistemul linear

(1)
$$\left(y^{(n-1)} y^{(n-2)} \dots y^{(1)} y^{(0)} \right) \cdot \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = -y^{(n)}.$$

Observații: i) Dacă sistemul (1) nu are solutie unică, se alege alt $y^{(0)}$ nenul și se reia algoritmul. ii) Dacă sistemul (1) are soluție unică, atunci componentele soluției sitemului, $c_1, c_2, ... c_n$, sunt coefițientii polinomului caracteristic.

Algoritmul Pseudocod

- 1. citeşte $n, a_{ij}, 1 \leq i, j \leq n$ 2. citeşte $b_{i,n}, 1 \leq i \leq n$ {reprezintă $y^{(0)}$, nenul} // calculăm $y^{(1)}, y^{(2)}, ..., y^{(n-1)}$, folosind $y^{(k)} = A \cdot y^{(k-1)}$, $1 \leq k \leq n$ 3. pentru j = n - 1, n - 2, ..., 1 execută 3.1. pentru i = 1, 2, ..., n execută 3.1.1. $b_{ij} \leftarrow 0$ 3.1.2. pentru k = 1, 2, ..., n execută 3.1.2.1. $b_{ij} \leftarrow b_{ij} + a_{ik} \cdot b_{k,j+1}$ // calculăm $y^{(n)}$, folosind $y^{(n)} = A \cdot y^{(n-1)}$, şi păstrăm $-y^{(n)}$ 4. pentru i = 1, 2, ..., n execută 4.1. $b_{i,n+1} \leftarrow 0$ 4.2. pentru k = 1, 2, ..., n execută 4.2.1. $b_{i,n+1} \leftarrow b_{i,n+1} + a_{ik} \cdot b_{k1}$ 4.3. $b_{i,n+1} \leftarrow -b_{i,n+1}$ // rezolvăm sistemul a cărui matrice extinsă este (b_{ij}) $\frac{1 \leq i \leq n}{1 \leq j \leq n+1}$, folosind una din medodele studiate:
 - Factorizarea LR
 - Metoda lui Gauss cu pivotare parțială la fiecare pas
 - Metoda lui Gauss cu pivotare totală la fiecare pas

Exemple: Determinați polinoamele caracteristice ale matricelor

$$A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 1 \\ -3 & 0 & 2 \\ 3 & 3 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 & 3 & -1 \\ 0 & 2 & 1 & 1 \\ 1 & 0 & 2 & -2 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Metoda Fadeev pentru determinarea coeficienților polinomului caracteristic

Prezentarea Problemei: Fie $A \in \mathbb{R}^{n \times n}$. Ne propunem să determinăm coeficienții polinonului caracteristic

$$p_A(\lambda) = \lambda^n + c_1 \lambda^{n-1} + \dots + c_{n-1} \lambda + c_n,$$

și dacă există, inversa matricei A.

Prezentarea Metodei: Coeficienții se calculează cu ajutorul formulelor

- 1) $A_1 = A$; $c_1 = -\text{Tr}(A_1)$; $B_1 = c_1 I_n + A_1$;
- 2) $A_2 = AB_1$; $c_2 = -\text{Tr}(A_2)/2$; $B_2 = c_2I_n + A_2$;
- n) $A_n = AB_{n-1}$; $c_n = -\text{Tr}(A_n)/n$; $B_n = c_n I_n + A_n$.

Observații:

- 1) $B_n = O_n$ (matricea nulă)- deci nu se va calcula.
- 2) Dacă $c_n \neq 0 \Rightarrow A^{-1} = -\frac{1}{c_n} B_{n-1}$.
- 3) În algoritmul pseudocod, rolul matricei A_k îl joacă matricea D.

Algoritmul Pseudocod

- 1. citeşte $n, a_{ij}, 1 \leq i, j \leq n$
- // inițializăm B cu matricea unitate I_n
- 2. pentru i = 1, 2, ..., n execută
 - 2.1. pentru j = 1, 2, ..., n execută
 - 2.1.1. dacă i = j atunci

$$2.1.1.1.\ b_{ij} \leftarrow 1$$

altfe

2.1.1.2.
$$b_{ij} \leftarrow 0$$

- 3. pentru k = 1, 2, ..., n 1 execută
- // calculăm A_k , folosind $A_k = A \cdot B_{k-1}$, și notăm $D = A_k$
 - 3.1. pentru i = 1, 2, ..., n execută
 - 3.1.1. pentru j = 1, 2, ..., n execută

3.1.1.1.
$$d_{ij} \leftarrow 0$$

3.1.1.2. pentru h = 1, 2, ..., n execută

3.1.1.2.1.
$$d_{ij} \leftarrow d_{ij} + a_{ih} \cdot b_{hj}$$

// calculăm c_k , folosind $c_k = -Tr(A_k)/k$

- 3.2. $c_k \leftarrow 0$
- 3.3. pentru i=1,2,...,n execută

$$3.3.1. c_k \leftarrow c_k + d_{ii}$$

```
3.4. c_k \leftarrow -c_k/k
// calculăm B_k, folosind B_k = c_k \cdot I_n + A_k
    3.5. pentru i = 1, 2, ..., n execută
         3.5.1. pentru j = 1, 2, ..., n execută
               3.5.1.1. dacă i = j atunci
                     3.5.1.1.1. b_{ij} \leftarrow d_{ij} + c_k
                     3.5.1.1.2. b_{ij} \leftarrow d_{ij}
// \ calculăm \ A_n = D
4. pentru i = 1, 2, ..., n execută
    4.1. pentru j = 1, 2, ..., n execută
         4.1.1. d_{ij} \leftarrow 0
         4.1.2. pentru h = 1, 2, ..., n execută
               4.1.2.1. \ d_{ij} \leftarrow d_{ij} + a_{ih} \cdot b_{hj}
// \ calcul{a} \ c_n = -Tr(A_n)/n
5. c_n \leftarrow 0
6. pentru i = 1, 2, ..., n execută
   6.1. c_n \leftarrow c_n + d_{ii}
7. c_n \leftarrow -c_n/n
8. dacă c_n = 0 atunci
    8.1. scrie 'Matricea nu este inversabilă'
               altfel
    8.2. scrie 'Matricea inversabilă este'
    8.3. pentru i = 1, 2, ..., n execută
         8.3.1. pentru j = 1, 2, ..., n execută
               8.3.1.1. scrie -b_{ij}/c_n
9. scrie 'Coeficienții polinomului caracteristic sunt', c_i, 1 \le i \le n
```

Exemple: Determinați polinoamele caracteristice ale matricelor

$$A = \begin{pmatrix} 0 & -4 & 2 \\ 0 & -1 & 2 \\ 1 & 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 & -1 \\ 1 & -2 & 1 \\ -1 & -12 & 5 \end{pmatrix}.$$