

MSBA Capstone Presentation Raunak Shama, McKay Harket, Hunter Harmer

Team Introduction

Raunak Sharma

McKay Flake

Hunter Harmer

- 1. Introduction
- 2. Problem Description
- 3.EDA
- 4. Modeling Process
- 5. Break-even Analysis Tool

Problem Description

Fill the cans and bottles!

The ultimate goal is to predict machine breakdowns, identify common part failures, optimize maintenance, reduce downtime, and boost production efficiency

Exploratory Data Analysis

Correlation Matrix: Identify relationships between numerical features, which can guide feature selection and engineering.

Modeling Roadblocks

- Given the nature of the data, our initial efforts to produce a true predictive maintenance model fell short
- The most promising method was an XGBoost model, which could be implemented with the introduction of financial components to the dataset
- RMSE: indicates the average difference between the predicted and actual downtime in minutes. It reflects the inherent
 variability and complexity of downtime data
- R²: shows that the model explains 49.2% of the variance in the downtime, demonstrating moderate predictive power

			Model Performa	ance Summary by Sa	ample Size		
	Model	MSE (1,000 Samples)	R ² (1,000 Samples)	MSE (10,000 Samples)	R ² (10,000 Samples)	MSE (Full Dataset)	R ² (Full Dataset)
0	Linear Regression	4654.31	0.02	4640.27	0.02	670.52	0.07
1	Random Forest	4266.11	0.10	3767.45	0.21	693.57	0.00
2	XGBoost	3471.42	0.27	3471.42	0.27	494.42	0.49
3	Gradient Boosting	3915.21	0.18	3541.29	0.25	-	-

Prioritizing maintenance to minimize operational losses

Analysis identified high-risk equipment like ID 300230438 with over 2000 predicted downtime minutes. Prioritizing preventive maintenance for these assets can significantly reduce downtime and associated costs.

Break-even Analysis Tool

Breakeven Analysis

- We created a calculator to determine the optimal amount of planned maintenance needed to minimize costs
- This calculator will work best when used in a granular way as it works off the ratio of planned to unplanned maintenance

Demo

- For this demo we will use the FUNCTIONAL_AREA_NODE_1_MODIFIED "COTA PRODUCTION" as it is likely to give us the most applicable results due to the large sample size
- Note that the ratio is 1.6

	Planned	Unplanned	Ratio
FUNCTIONAL_AREA_NODE_1_MODIFIED			
COTA PRODUCTION	26338.0	43849.0	1.664857
SUZUKA PRODUCTION	15512.0	21201.0	1.366748
SILVERSTONE PRODUCTION	27803.0	34822.0	1.252455
PRODUCTION	29074.0	31238.0	1.074431
MONZA PRODUCTION	47849.0	9609.0	0.200819
COOLER SERVICE	2698.0	1.0	0.000371
FLEET	NaN	123.0	NaN

Demo

- Since we do not have access to financial data on a per-hour basis, we will use the following assumptions:
 - \$45.5 per hour for planned maintenance
 - \$555 per hour for unplanned maintenance, which includes losses from stopping production
- We need to enter the ratio of planned to unplanned work, which in our case is 1.6

```
Enter the monetary cost per hour of planned maintenance: $45.5

Enter the monetary cost per hour of unplanned maintenance (including compensation for lost production): $555

Enter the ratio of planned to unplanned maintenance events (e.g. 170.33 for 3 planned and 511 unplanned events): 1.6

The break-even point is: 7.62 hours of planned maintenance per hour of unplanned maintenance.

The number of hours of planned maintenance needed is: 12.20 hours.

The cost of planned maintenance is: $555.00.

The value of unplanned maintenance avoided is: $888.00.
```


Demo

- We have 12.2 hours to spend on planned maintenance for the COTA PRODUCTION sector, but what are the best ways to spend those 12.2 hours?
- Counts show frequency
- September though the end of the year are the key times to do planned maintenance

```
EQUIPMENT_ID Count Avg_ACTUAL_WORK_IN_MINUTES
     300198402.0
                                             1655.20
     300026922.0
                                              517.32
     300027066.0
                                              360.00
     300060046.0
                                              315.10
     300026893.0
                                              291.60
     300120013.0
                                               15.00
     300027018.0
                                               15.00
     300026818.0
                                               12.00
     300192002.0
                                                6.00
     300025758.0
                                                3.00
[409 rows x 3 columns]
```

Thank You

Unplanned maintenance cost: 120 M minutes

Planned: 10 M minutes

Preventive maintenance can help us reduce overall downtime