Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

> Отчёт по лабораторной работе №4 по дисциплине «Математическая статистика»

> > Выполнил студент: Самутичев Евгений Романович группа: 3630102/70201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

Содержание

1	Пос	становка задачи	2
2	Teo 2.1 2.2	Эмпирическая функция распределения	3
3	Pea	лизация	4
4	Рез 4.1 4.2	ультаты Эмпирические функции распределения	5 5 8
5	Обо 5.1 5.2	уждение Эмпирическая функция распределения	13 13 13
6	При	иложения	14
C	пис	сок иллюстраций	
	1	Нормальное распределение	5
	2	Распределение Коши	5
	3	Распределение Лапласа	6
	4	Распределение Пуассона	6
	5	Равномерное распределение	7
	6	Нормальное распределение	8
	7	Распределение Коши	9
	8	Распределение Лапласа	10
	9	Распределение Пуассона	11
	10	Равномерное распределение	12

1 Постановка задачи

Для каждого из 5 распределений:

- 1. Нормального N(x, 0, 1)
- 2. Коши C(x, 0, 1)
- 3. Лапласа $L(x,0,\frac{1}{\sqrt{2}})$
- 4. Пуассона P(k, 10)
- 5. Равномерного $U(x, -\sqrt{3}, \sqrt{3})$

сгенерировать выборки размером 20, 60 и 100 элементов. Построить на них эмпирические функции распределения и ядерные оценки плотности/функции распределения на отрезке [-4,4] для непрерывных распределений и на отрезке [6,14] для распределения Пуассона.

2 Теория

2.1 Эмпирическая функция распределения

Эмпирической функцией распределения, построенной по выборке $(x_1, ..., x_n)$ объема n называется случайная функция $F_n^* : \mathbb{R} \times \Omega \to [0, 1]$, которая имеет вид

$$F_n^*(y) = \frac{1}{n} \sum_{i=1}^n I(x_i < y)$$
 (1)

где I - индикатор события $x_i < y$ [1]

2.2 Ядерная оценка плотности распределения

Пусть $(x_1,...,x_n)$ - выборка полученная по распределению с некоторой плотностью f, требуется оценить функцию f. Ядерным оценщиком плотности называется [2]

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right) \tag{2}$$

где K - т.н. $s\partial po$ (некоторая неотрицательная функция), h>0 - сглаживающий параметр, именуемый uupuhoй nonocы.

Как правило используется нормальное (или гауссово) ядро, в силу его удобных математических свойств:

$$K(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \tag{3}$$

В случае если используется гауссово ядро и оцениваемая плотность является гауссовой, оптимальный выбор для h определяется т.н. npaвилом Curbвермана [2]:

$$h_n = \left(\frac{4s_n^5}{3n}\right)^{\frac{1}{5}} \approx 1.06s_n n^{-\frac{1}{5}} \tag{4}$$

где s_n - выборочное среднеквадратичное отклонение (корень из выборочной дисперсии)

3 Реализация

Работа выполнена с использованием языка **Python** в интегрированной среде разработки **PyCharm**, были задействованы библиотеки:

- NumPy векторизация вычислений, работа с массивами данных
- SciPy модуль stats для генерации данных по распределениям, вычисления ядерной оценки плотности
- Matplotlib построение графиков

Исходный код работы приведен в приложении.

4 Результаты

4.1 Эмпирические функции распределения

Рис. 1: Нормальное распределение

Рис. 2: Распределение Коши

Рис. 3: Распределение Лапласа

Рис. 4: Распределение Пуассона

Рис. 5: Равномерное распределение

4.2 Ядерные оценки плотности распределения

Рис. 6: Нормальное распределение

Рис. 7: Распределение Коши

Рис. 8: Распределение Лапласа

Рис. 9: Распределение Пуассона

Рис. 10: Равномерное распределение

5 Обсуждение

5.1 Эмпирическая функция распределения

Существует **теорема** [1]: Пусть $(x_1, ..., x_n)$ - выборка из распределения с некоторой функцией распределения F и пусть F_n^* - эмпирическая функция распределения построенная по этой выборке. Тогда $F_n^*(y) \stackrel{p}{\to} F(y), \forall y \in \mathbb{R}$ Полученные графики подтверждают данный теоретический факт, с ростом n эмпирическая функцяи распределения все ближе к истинной.

5.2 Ядерная оценка плотности распределения

Для нормального распределения наилучшие результаты показал выбор h по правилу Сильвермана, что обосновано теоретически т.к. он оптимален в некотором смысле (см. Теория), как и для распределения Пуассона. Для распределения Лапласа хорошие результаты в приближении плотности распределения имеем как при h_n , так и при $0.5h_n$. Плотность равномерного распределения аппроксимируется неудачно т.к. оно далеко от гауссова, как и распределение Коши.

6 Приложения

1. Исходный код лабораторной https://github.com/zhenyatos/statlabs/tree/master/Lab4

Список литературы

- [1] Н. И. Чернова, Математическая статистика: Учеб. пособие. Новосиб. гос. ун-т. Новосибирск, 2007. 148 стр.
- [2] Ядерная оценка плотности // Википедия. [2020—2020]. Дата обновления: 05.01.2020. URL: https://ru.wikipedia.org/?oldid=104368872 (дата обращения: 05.01.2020).