8 класс

Задание 1. Оцените экспериментально, какую часть от объема данной вам сухой бумаги составляют полости между его волокнами.

Оборудование:

- два одинаковых листа бумаги;
- миллиметровая бумага;
- сосуд с водой;
- шприц 2 мл;
- ножницы (2-3- шт. на класс).

В отчете предоставьте план проведения эксперимента. Какие факторы влияют на точность результатов эксперимента?

Задание 2: Определить размер однго зернышка пшена.

Оборудование:

- Батарея (9 B)
- Светодиод (с проводниками)
- Лист миллиметровой бумаги
- Отрезок провода диаметром 0,75 мм
- Одно зернышко пшена
- Пластилин
- Книга (в качестве ширмы).

В отчете:

- 1. Описать идею эксперимента
- 2. Привести теоретическое обоснование выбора метода исследования.
- 3. Показать, как обеспечивается максимальная точность измерений.
- 4. Представить результаты измерений и расчетов и их анализ.
- 5. Сформулировать выводы.

9 класс

Задание №1: Определить заряд, протекающий через нагрузку в течение 30 мин. Сравнить значения заряда, полученные за первые 10 мин и за следующие интервалы времени по 10 мин каждый.

Оборудование:

- Гальванический элемент
- Амперметр
- Отрезок провода с большим удельным сопротивлением
- Часы с секундной стрелкой (одни на класс)
- Лист миллиметровой бумаги
- Резиновое кольцо
- Соединительный проводник.

Задание №2: Определить размер одного зернышка пшена.

Оборудование:

- Батарея (9 B)
- Светодиод (с проводниками)
- Лист миллиметровой бумаги
- Отрезок провода диаметром 0,75 мм
- Одно зернышко пшена
- Пластилин
- Книга (в качестве ширмы).

Примечание. В отчетах:

- 1. Описать идею эксперимента
- 2. Представить теоретическое обоснование выбора метода исследования с выведением рабочей формулы и формул расчета погрешностей.
- 3. Показать, как обеспечивается максимальная точность измерений.
- 4. Представить результаты измерений, расчетов и их анализ.
- 5. Сформулировать выводы.

10 класс.

Задание № 1

Оборудование:

индивидуальное

- штатив с лапкой,
- рейка деревянная,
- линейка,
- тонкая деревянная палочка.
- 10 канцелярских скрепок (массу одной скрепки принять 0,35 г.).
- миллиметровка
- бумага формата А4 − 2 листа,
- книга в качестве подставки

групповое

- нитки швейные №40,
- пластилин,
- медная проволока длиной 1,5 м (\sim 10 см на одного участника для изготовления стрелки весов),
- ножницы,
- одна спичка и одна жевательная резинка (для их взвешивания).

Залание.

Соберите установку по предложенному эскизу с одинаковыми по длине нитями подвесов.

- 1. Проведите оценочный эксперимент с целью нахождения оптимальных параметров весов, которые имели бы шкалу с максимально возможной чувствительностью. Опишите, как Вы проводили поиск и почему выбранные параметры являются оптимальными.
- 2. При выбранных параметрах системы весов проведите их градуировку для двух случаев
- а) когда грузы и разновесы подвешиваются к обоим «плечам» весов,
- б) когда грузы подвешиваются лишь с одной стороны.
- 3. Опишите качественно работу вашей установки.
- 4. Опишите методику проведения градуировки весов.
- 5. Определите, какую минимальную массу позволяет измерить ваша установка (порог чувствительности).
- 6. Определите массы спички и жевательной резинки.
- 7. Сравните полученные градуировочные шкалы. Отметьте их достоинства и недостатки. Какой способ имеет преимущество и в чем?
- 8. **Анализ.** Отметьте, чем ограничиваются максимальная чувствительность и максимальное значение массы груза, которую можно определить с помощью созданных весов.

В отчете должны быть представлены градуировочные шкалы весов.

10 класс.

Задание № 2

Оборудование:

Групповое

- Ножницы.
- Мензурка.
- Часы настенные с большой секундной стрелкой.
- Емкость для горячей воды.
- Нагреватель.

Индивидуальное

- Пластиковый стаканчик 100 мл.
- Фольга алюминиевая длиной 25 см (2 шт.),
- Термометр
- Линейка,
- Миллиметровка

Задание:

1. Соберите установку, состоящую из пластикового стаканчика, алюминиевых полосок, длиной 12 см, часть которых выступает за края стаканчика, алюминиевой крышки с отверстием и термометра.

Снимите зависимость температуры воды в стакане от времени в интервале температур от 70^{0} С до 50^{0} С при следующих условиях:

- а) при отсутствии алюминиевых полосок,
- б) при двух полосках, погруженных в стаканчик с горячей водой,
- в) при четырех полосках,
- г) при шести полосках.

Результаты представьте в виде таблиц и графиков.

Горячую воду в измерительную установку Вам поможет залить дежурный преподаватель.

Каждый раз заливайте одинаковый объем воды, равный 70мл.

- 2. Определите среднюю мощность, отдаваемую горячей водой окружающей среде в каждом из случаев а) г). Проанализируйте полученные результаты.
- 3. Найдите значение коэффициента теплопередачи α , определяемого по закону Ньютона для теплопередачи: $\frac{\Delta Q}{\Delta t} = \alpha \cdot S \cdot \left(T T_{_{KOMH}}\right)$, для случаев a) г). Какие выводы можно сделать из полученных результатов?

11 класс

Задача 1.

Определить момент инерции маятника Максвелла, изготовленного из игрушки Yo-Yo, относительно оси симметрии, перпендикулярной плоскости игрушки. Какая часть потенциальной энергии маятника Максвелла переходит в кинетическую энергию вращения вокруг этой оси после разматывания нити?

Оборудование

Групповое - метроном, настроенный на 120 ударов в минуту, весы, разновесы; *Индивидуальное* игрушка Yo-Yo, мерная лента, нитки.

Справочный материал

Таблица аналогий между величинами, характеризующими поступательное и вращательное движение твердого тела

Поступательное движение	Вращательное движение
Координата х	Угол $oldsymbol{arphi}$
Скорость $v = \Delta x/\Delta t$	Угловая скорость ω = $\Delta arphi/\Delta t$
Ускорение a = $\Delta v/\Delta t$	Угловое ускорение $arepsilon$ = $\Delta \omega/\Delta t$
Macca m	Момент инерции \emph{I}
Сила F	Момент силы \emph{M}
Импульс $p = mv$	Момент импульса L = $I\omega$
Второй закон Ньютона	Второй закон Ньютона
$a = F/m$, $\Delta p = F \cdot \Delta t$	ε = M/I, ΔL = M· Δt
Кинетическая энергия	Кинетическая энергия
$E_k = \frac{mv^2}{2}$	$E_k = \frac{I\omega^2}{2}$

Задание 2

Оборудование

Групповое:

– Эталонный источник тока (сила тока, создаваемого источником, известна только организаторам олимпиады).

Индивидуальное:

- компас;
- амперметр;
- пластиковый диск;
- гальванический элемент;
- резистор;
- медный проводник длиной около 1,5 м в лаковой изоляции;
- пластилин;
- наждачная бумага;
- миллиметровая бумага.

Задание:

- 1. Пользуясь предложенным оборудованием, изготовьте из компаса амперметр с диапазоном измерения от 100 мА до 1 А.
- 2. Выведите градуировочную формулу, связывающую угол отклонения стрелки компаса и силу тока, протекающего через амперметр.
- 3. На миллиметровой бумаге изобразите градуировочный график, позволяющий по углу отклонения стрелки определять силу тока через амперметр.
- 4. На миллиметровой бумаге нарисуйте в увеличенном виде шкалу, которую следовало бы наклеить на компас, чтобы измерять с его помощью силу тока, не прибегая к градуировочной формуле или графику.
- 5. Пользуясь изготовленным амперметром, измерьте силу тока, создаваемого эталонным источником тока.
- 6. В отчете проанализируйте факторы, влияющие на точность изготовленного Вами прибора.