MA~16200Study Guide - Exam # 2

- (1) Integration via Partial Fractions: Use for (proper) rational functions $\frac{R(x)}{Q(x)}$; If $degree\ R(x) \ge degree\ Q(x)$, i.e. rational function is improper, then do long division before using partial fractions.
- (2) Integration via Clever Substitutions/Using Integral Tables: Use a substitution to transform integral into a form to be able to use another integral techniques (Substitution Method, Integration by Parts, Trig Integrals, Trig Substitution Method, etc) or use integral tables.
- (3) Approximating definite integrals $\int_a^b f(x) dx$. Let $\Delta x = \frac{b-a}{n}$, $x_k = a + k \Delta x$ and $\overline{x}_k = \frac{1}{2}(x_{k-1} + x_k)$ (Note that $x_0 = a$ and $x_n = b$)
 - (a) <u>Midpoint Rule</u>: $\int_a^b f(x) dx \approx M_n = (\Delta x) [f(\overline{x}_1) + f(\overline{x}_2) + \dots + f(\overline{x}_n)]$
 - **(b)** <u>Trapezoidal Rule</u>: $\int_a^b f(x) dx \approx T_n = \left(\frac{\Delta x}{2}\right) \left[f(x_0) + 2f(x_2) + 2f(x_3) + \dots + 2f(x_{n-1}) + f(x_n) \right]$
 - (c) Simpson's Rule: Only works for n even

$$\int_{a}^{b} f(x) dx \approx S_{n} = \left(\frac{\Delta x}{3}\right) \left[f(x_{0}) + 4f(x_{2}) + 2f(x_{3}) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}) \right]$$

(4) Improper integrals: **Type I** (unbounded intervals) $\int_{a}^{\infty} f(x) dx$, $\int_{-\infty}^{b} f(x) dx$ or $\int_{-\infty}^{\infty} f(x) dx$; Improper integrals of **Type II** (discontinuous integrand at one or both endpoints) $\int_{a}^{b} f(x) dx$.

Comparison Theorem: Let f(x) and g(x) be continuous for $x \ge a$.

- (a) If $0 \le f(x) \le g(x)$ for $x \ge a$ and $\int_a^\infty g(x) dx$ converges $\Longrightarrow \int_a^\infty f(x) dx$ also converges.
- (b) If $0 \le g(x) \le f(x)$ for $x \ge a$ and $\int_a^{\infty} g(x) dx$ diverges $\Longrightarrow \int_a^{\infty} f(x) dx$ also diverges.
- (5) Arc length $L = \int_a^b \sqrt{1 + (f'(x))^2} \, dx$ or $L = \int_c^d \sqrt{1 + (g'(y))^2} \, dy$.
- (6) Surface area of revolution: $S = \int 2\pi \{\text{ribbon radius}\} ds$ or $S = \int 2\pi r ds$, where $ds = \sqrt{1 + (f'(x))^2} dx$ or $ds = \sqrt{1 + (g'(y))^2} dy$.

(7) Center of mass of a system of discrete masses m_1, m_2, \dots, m_n located at $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ is $(\overline{x}, \overline{y})$, where

$$\overline{x} = \frac{M_y}{M} = \frac{\sum_{k=1}^n m_k x_k}{\sum_{k=1}^n m_k}, \qquad \overline{y} = \frac{M_x}{M} = \frac{\sum_{k=1}^n m_k y_k}{\sum_{k=1}^n m_k}$$

 $M_x =$ moment of system about the x-axis; $M_y =$ moment of system about the y-axis; M = total mass of the system.

- (8) Moments, center of mass (center of mass = centroid if density ρ = constant).
 - (a) Lamina defined by y = f(x), $a \le x \le b$ and $\rho = \text{constant}$:

$$\overline{x} = \frac{M_y}{M} = \frac{\int_a^b x \rho f(x) \, dx}{\int_a^b \rho f(x) \, dx} = \frac{\int_a^b x f(x) \, dx}{\int_a^b f(x) \, dx}$$
$$\overline{y} = \frac{M_x}{M} = \frac{\int_a^b \frac{1}{2} \rho \left\{ f(x) \right\}^2 \, dx}{\int_a^b \rho f(x) \, dx} = \frac{\int_a^b \frac{1}{2} \left\{ f(x) \right\}^2 \, dx}{\int_a^b f(x) \, dx}$$

(b) Lamina between two curves by y = f(x), y = g(x), $a \le x \le b$ and $\rho = \text{constant}$:

$$\overline{x} = \frac{M_y}{M} = \frac{\int_a^b x \rho(f(x) - g(x)) \, dx}{\int_a^b \rho(f(x) - g(x)) \, dx} = \frac{\int_a^b x (f(x) - g(x)) \, dx}{\int_a^b (f(x) - g(x)) \, dx}$$

$$\overline{y} = \frac{M_x}{M} = \frac{\int_a^b \frac{1}{2} \rho\left(\{f(x)\}^2 - \{g(x)\}^2\right) dx}{\int_a^b \rho(f(x) - g(x)) dx} = \frac{\int_a^b \frac{1}{2} \left(\{f(x)\}^2 - \{g(x)\}^2\right) dx}{\int_a^b (f(x) - g(x)) dx}$$

- (9) Sequences; limits of sequences; Limit Laws for Sequences; monotone sequences (increasing and decreasing); bounded sequences; Monotone Sequence Theorem.
- (10) Additional useful limit theorems:
 - (a) <u>Theorem</u>: If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$, then $\lim_{n\to\infty} a_n = L$.
 - (b) <u>Squeeze Theorem for Sequences</u>: If $a_n \leq b_n \leq c_n$ for all $n \geq N_0$ with $a_n \longrightarrow L$ and $c_n \longrightarrow L$, then $b_n \longrightarrow L$.
 - (c) <u>Theorem</u>: If $a_n \longrightarrow L$ and f is continuous at L, then $f(a_n) \longrightarrow f(L)$.
- (11) Infinite series $\sum_{n=1}^{\infty} a_n$; n^{th} partial sum $s_n = \sum_{k=1}^n a_k$; the infinite series $\sum_{n=1}^{\infty} a_n$ converges to s if $s_n \to s$; the infinite series diverges if $\{s_n\}$ does not have a limit.
- (12) Divergence Test for Series: If $\lim_{n\to\infty} a_n \neq 0$ or limit fails to exist $\Longrightarrow \sum_{n=1}^{\infty} a_n$ DIVERGES.
- (13) Special Infinite Series:
 - (a) <u>Harmonic Series</u>: $\sum_{n=1}^{\infty} \frac{1}{n}$. This series DIVERGES.
 - (b) Geometric Series: $\sum_{n=1}^{\infty} ar^{n-1}$
 - (i) $\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \dots = a(1 + r + r^2 + r^3 + \dots) = \frac{a}{1-r}$, **if** |r| < 1.
 - (ii) $\sum_{n=1}^{\infty} ar^{n-1}$ will DIVERGE **if** $|r| \ge 1$.