GNS3_2

Install GNS3

How to use GNS3?

Topology Setup

Example 1

Tutorial source

https://docs.gns3.com/docs/getting-started/your-first-gns3-topology

Virtual Box or VMware?

Install GNS3

Install GNS3 (Win)

https://www.gns3.com/software/download

- Double click .exe file
- Select "I Agree" on License
- Keep the name "GNS3" in Menu Folder
- Select All Components

- Keep the original path "C:\ProgramFiles\GNS3" to avoid path errors.
- Select "Next" until SolarWinds screen is displayed.
- Choose "Yes" and click Next.

 Register your information to add Solar winds Standard Toolset

Start GNS3

How to use GNS3?

"New Project" Path

Select the name of your "New Project"

GNS3 Workspace

- Workspace is the area to create different "flows" or virtual environments.
- This is the place where components such as Switches, Routers, Servers and User Equipment (UE) will be placed.

GNS3 Toolbar and Devices Toolbar

- Toolbar contains the start, pause and stop simulation buttons.
- Devices toolbar helps you to add devices to your network topology by "drag and drop" them to the workspace.

Topology Summary and Server Summary

- Topology Summary will list the total number of nodes (devices), their state (ON/OFF) and the list of connections (telnet).
- Servers Summary shows the local server (PC) and the Virtual Machine RAM consumption.

Topology Setup

Step 1: Select Components

- In the "Device Toolbar" select the following devices:
 - End Devices: VPCS
 - Switches: EthernetSwitch
- Topology Summary will add the following devices: PC1, PC2, Switch1.

Step 2: Connect Components

- Click Link to connect PC1 to Switch1, select Ethernet0.
- To connect two devices, click on the target device and choose its port, in our case Ethernet0 in Switch1.

Ethernet2

Ethernet3
Ethernet4
Ethernet5
Ethernet6
Ethernet7

Step 2: Connect Components

- To connect the second computer, click Link on Switch1 to PC2, select Ethernet1.
- Switches have multiple Ethernet inputs, but end devices have limited inputs.
- Finally, click on PC2 and select Ethernet0 as our end device.

Notice how the link indicators on the PCs are red. Neither PC are currently running

Step 3: Label Components

 To label components click on "Show/Hide Interface Labels".

Step 4: Run Components

- To turn on components click on "Start all nodes", this will power on all devices.
- End points change from red to green.
- Topology summary also show the devices that are power on in green.

Example 1

Step 1: Open terminal console

- Select "Console connect to all nodes", to open terminal sessions to all the end devices.
- It is also possible to open an individual console to each device doing leftclick on top of it.

Step 2: IP Assignment

 Assign IP to each VPCS in each console (PC-1,PC-2).

- IP: 10.1.1.1

Mask: 255.255.255.0

• If the address is duplicated, the console will prompt an alert, if not, it will provide the address assigned.

PC-1> ip 10.1.1.1 255.255.255.0 Checking for duplicate address... PC1: 10.1.1.1 255.255.255.0 PC-1>

PC-2> ip 10.1.1.2 255.255.255.0 Checking for duplicate address... PC1: 10.1.1.2 255.255.255.0 PC-2>

Step 3: PING Devices

- From the current device, ping the opposite device.
- If there is connection, console will return three main values icmp_seq ttl time.
 - icmp_seq: sequence of number of package sent (5 default).
 - ttl: time-to-live of each package, after this time, data will be discarded.
 - time: refers to the round-trip time (to send and receive confirmation from the other device).

PC-1> ping 10.1.1.2

84 bytes from 10.1.1.2 icmp_seq=1 ttl=64 time=0.985 ms 84 bytes from 10.1.1.2 icmp_seq=2 ttl=64 time=0.982 ms 84 bytes from 10.1.1.2 icmp_seq=3 ttl=64 time=0.000 ms 84 bytes from 10.1.1.2 icmp_seq=4 ttl=64 time=0.981 ms 84 bytes from 10.1.1.2 icmp_seq=5 ttl=64 time=0.982 ms

PC-2> ping 10.1.1.1

84 bytes from 10.1.1.1 icmp_seq=1 ttl=64 time=0.980 ms 84 bytes from 10.1.1.1 icmp_seq=2 ttl=64 time=0.982 ms 84 bytes from 10.1.1.1 icmp_seq=3 ttl=64 time=0.997 ms 84 bytes from 10.1.1.1 icmp_seq=4 ttl=64 time=1.029 ms 84 bytes from 10.1.1.1 icmp_seq=5 ttl=64 time=0.996 ms

ping animation

Step 4: Add Extra Devices

- Select "End Devices" to add a new VPCS to the workflow.
- To start the individual device, press leftclick on top of it and select "Start".
- After the End Device is on, left-click and select "Console" to setup the device.

Step 5: Setup and Check PING connection

- Assign IP and mask to the new node (PC-3).
- Ping the other devices in order to test the connection.

PC-3> ip 10.1.1.3 255.255.255.0 Checking for duplicate address... PC1: 10.1.1.1 255.255.255.0 PC-3>

PC-3> ping 10.1.1.1

84 bytes from 10.1.1.1 icmp_seq=1 ttl=64 time=0.999 ms 84 bytes from 10.1.1.1 icmp_seq=2 ttl=64 time=0.000 ms 84 bytes from 10.1.1.1 icmp_seq=3 ttl=64 time=0.980 ms 84 bytes from 10.1.1.1 icmp_seq=4 ttl=64 time=0.997 ms 84 bytes from 10.1.1.2 icmp_seq=5 ttl=64 time=0.000 ms PC-3> ping 10.1.1.2 84 bytes from 10.1.1.2 icmp_seq=1 ttl=64 time=0.999 ms 84 bytes from 10.1.1.2 icmp_seq=2 ttl=64 time=0.988 ms 84 bytes from 10.1.1.2 icmp_seq=3 ttl=64 time=0.981 ms 84 bytes from 10.1.1.2 icmp_seq=5 ttl=64 time=0.980 ms

Step 6: Save Current Settings

- To save changes, input "save" on each device console. This will keep the IP configuration.
- The whole project will be saved in ".gns3" extension.

```
PC-1> save
Saving startup configuration to startup.vpc
. done
PC-1>
PC-2> save
Saving startup configuration to startup.vpc
. done
PC-2>
PC-3> save
Saving startup configuration to startup.vpc
. done
PC-3>
```

Thank you.