Scenario ID	Primary Variables	Algorithm Chosen	Justification
S1	Historical Consumption	WisRule	Ideal for baseline demand forecasting as it identifies recurring patterns in historical data.
S2	Consumption, Weather Conditions	Linear Regression	Simple, effective for factoring in seasonal and weather-based demand variations.
\$3	Production Source, Consumption	Decision Tree	Adapts to classifying energy production sources, ideal for renewable vs. non-renewable predictions.
S4	Consumption, Energy Cost	Regression Analysis	Accurately models cost-demand relationships, useful for cost-sensitive consumption analysis.
S 5	Consumption, Carbon Emissions	Neural Network	Handles complex, non-linear interactions between carbon footprint and energy usage.
S 6	Consumption, GDP	Time Series (ARIMA)	Suitable for time-dependent GDP data, accurately capturing economic trends in energy demand.
S7	Imports vs. Local Production	Random Forest	Effectively analyzes the impact of import levels and production balance on energy dependency.
S8	Energy Generation Capacity (Yearly)	Linear Regression	Simple model to track how capacity impacts consumption and peak demand patterns over time.
\$9	Yearly Consumption Growth	Exponential Smoothing	Smooths out consumption data, revealing long-term growth trends without seasonal fluctuations.
S10	Generation Output (Electricity vs. Gas)	Support Vector Machine	SVM handles complex classifications between sources, identifying distinct consumption trends per source.
S11	Annual Energy Imports	K-Means Clustering	Groups countries by import levels, identifying how different countries' energy dependency compares.