Introduction

Opérateur aux dérivées partielles

Cas scalaire : opératoire aux dérivés partielles $P(x, D)$, symboles de l'opérateur $p(x, \xi)$, symbole
principal $P_n(x,\xi)$, cône et vecteurs caractéristiques p1 \square ; Cas vectorielle : $P(x,D)$, elliptique,
hyperbolique p1; 1er ordre et hyperbolisme p2; symbole de Laplacien, de l'opérateur de
la chaleur, de l'opérateur des ondes p2 III; elliptique, parabolique et diffusion, vitesse infini p2
: vitesse finie et infinie p2 : hypersurface caractéristique p2 : opérateur de type mixte
Triconi p2;
Les principaux modèles étudiés
Dirichlet p3 T; Neumann p3 T; Biharmonie (élasticité) p3 T; Stockes p3 T; chaleur p3
Transport p4 II; équations des ondes p4 II
étapes pour faire une approximation d'EDP (5) p4 \(\subseteq\);

Méthodes des différences finies

Principe de la méthode
Différence finies en 1 D p1 \square ; exo $u^{(4)}()$ p1 \square ; dimension supérieure à 1 p1 \square ; Formule de Taylor p1 \square ;
Application à l'opérateur de Laplace complété
Equation de Laplace au milieu d'un maillage uniforme (perte de symétrie) p2 ; Laplace avec condition de Dirichlet en 1 dimension (méthode de Cholesky) p2 ; Laplace, condition de Neumann, 1 dimension p2-3 ; Laplace dimension 2 Dirichlet p3-4 ; Laplace dimension 2 Neumann p4 ; pas variable équations p5 ;
Rappels et compléments matrices
Matrice diagonale dominante, fortement dominante et strictement dominante p5 \(\subseteq\); Matrice réductible p5 \(\subseteq\); matrice irréductible p5 \(\subseteq\); condition solution unique pour un système p6
Convergence de la méthode des différences finies
demo p6 \square ; demo dimension 2 et 3 p7 \square ; précision de U_h p7 \square

Méthodes des volumes finis

Principe de la méthode

La méthode volumes finis sur maillage cartésien