南京邮电大学 2015/2016 学年第一学期

《线性代数与解析几何》期末试卷(A)

院(系)	班级	学号	姓名
		· · · · · · · · · · · · · · · · · · ·	

题号	_	11	111	四	五	六	七	八	九	总分
得分										

得 分

一.填空题(每小题 4 分, 共 20 分)

1. 设行列式
$$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix}$$
, 则第三行元素的代数余子式之和

$$A_{31} + A_{32} + A_{33} = \underline{\hspace{1cm}}.$$

- 2. 设A和B是3阶矩阵, $A = \begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{pmatrix}$,且秩r(AB) < r(B),则 λ 应满足_____
- 3. 已知 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 是 R^2 的一组基,则向量 $\beta = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ 在基 α_1 , α_2 下的坐标为_____.
- 4. 母线平行于 z 轴且通过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 1 \\ x^2 y^2 + z^2 = 0 \end{cases}$ 的柱面方程为_____.
- 5. 已知二阶实对称矩阵 A 的特征值是 0 和 1,若 $B = (kI + A)^2$ 是正定阵,其中 I 是单位矩阵,则 k 应满足_____.
- 二.选择题 (每小题 4分, 20分)
- 1. 设 A 是 3 阶方阵,将 A 的第 2 列加到第 1 列得 B,交换 B 的第 2,3 行得单位阵 I,记

$$P_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad P_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \emptyset A =$$

(A)	P_1P_2	(B) $P_1^{-1}P_2$	(C) P_2P_1	(D) $P_2P_1^{-1}$
()	-1-2	(-) -1 -2	(-) -2-1	(-) -2-1

- 2. 设 A 是 3 阶矩阵, 秩 r(A) = 2, 且 α_1, α_2 是齐次线性方程组 AX = 0 的两个不同的 解向量,则AX = 0的一个基础解系是 (D)
 - (A) α_1 (B) α_2 (C) $\alpha_1 + \alpha_2$ (D) $\alpha_1 \alpha_2$

- 3. 直线 $L_1: \frac{x}{1} = \frac{y}{-2} = \frac{z}{1}$ 和 $L_2: \begin{cases} x y = 6 \\ 2y + z = 3 \end{cases}$ 的夹角为 ()

- (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{6}$
- 4. 若向量组 α, β, γ 线性无关, α, β, δ 线性相关,则 ()

 - (A) α 必可由 β , γ , δ 线性表示 (B) α 必不可由 β , γ , δ 线性表示

 - (C) δ 必可由 α, β, γ 线性表示 (D) δ 必不可由 α, β, γ 线性表示
- 5. n 阶实对称矩阵 A 和 B 相似的充分必要条件是 ()
 - (A) A 与 B 都有 n 个线性无关的特征向量 (B) A 与 B 的秩相等
 - (C) A 与 B 的主对角线上的元素的和相等 (D) A 与 B 的 n 个特征值均相等

三、(本题 10 分) 设 n 阶矩阵 A 和 B 满足 A+2B=AB, (1)证明: A-2I 可

逆,其中
$$I$$
 为单位阵; (2)已知 $B = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,求矩阵 A .

四、(本题 10 分) 设向量组 $\alpha_1 = (1,3,1,-1)^T, \alpha_2 = (-1,-1,1,-3)^T$,

 $\alpha_3 = (5,8,-2,9)^T$, $\alpha_4 = (-1,1,3,1)^T$,(1) 求向量组的秩;(2) 求它的一个极大

线性无关组,并用该极大线性无关组表示其余向量.

得 分

五、(本题 10 分) 求过点 M(1,-1,2) 与平面 $\pi:3x+2y-2z-1=0$ 平行,且与直线 $L:\frac{x+1}{1}=\frac{y-1}{2}=\frac{z}{3}$ 相交的直线方程.

得 分

一 六、(本题 12 分) 设 $A = \begin{pmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{pmatrix}$, $B = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$, 已知方程组 AX = b 有无

穷多解,(1)求 λ ,a的值;(2)求方程组AX = b的通解.

得 分

七、(本题 12 分) 设二次型 $f(x_1,x_2,x_3) = x_1^2 + 2x_2^2 - 2x_3^2 - 4x_1x_3$, 求一个正

交变换
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = Q \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
将二次型 $f(x_1, x_2, x_3)$ 化成标准形,并指出

 $f(x_1,x_2,x_3)=1$ 代表的二次曲面的名称.

得 分

八、(本题 6 分)设 λ_1, λ_2 为矩阵 A 的不同特征值,对应 λ_1, λ_2 的特征向量分别为 α_1, α_2 ,试证明: $\alpha_1, A(\alpha_1 + \alpha_2)$ 线性无关的充分必要条件是 $\lambda_2 \neq 0$.