Introduction to Machine Learning

Introduction to Data Science

Author: Eng. Carlos Andrés Sierra, M.Sc.

carlos.andres.sierra.v@gmail.com

Lecturer Computer Engineer School of Engineering Universidad Distrital Francisco, José de Caldas

2024-II

Outline

- Fundamentals of Machine Learning
- Supervised Machine Learning
- Supersived Machine Learning Algorithms
- Machine Learning Models Evaluation

Outline

- Fundamentals of Machine Learning
- Supervised Machine Learning
- Supersived Machine Learning Algorithms
- 4 Machine Learning Models Evaluation

Key Concepts in Machine Learning

Machine Learning

- Machine learning is a method of data analysis that automates analytical model building.
- It is a **branch** of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention.
- Supervised Learning: The model is trained on labeled data
- Unsupervised Learning: The model is trained on unlabeled data
- Reinforcement Learning: The model learns by interacting with an
 - environment.

Key Concepts in Machine Learning

Machine Learning

- Machine learning is a method of data analysis that automates analytical model building.
- It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention.
- **Supervised Learning**: The model is trained on labeled data.
- Unsupervised Learning: The model is trained on unlabeled data.
- Reinforcement Learning: The model learns by interacting with an environment.

Key Concepts in Machine Learning

Machine Learning

- Machine learning is a method of data analysis that automates analytical model building.
- It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention.
- **Supervised Learning**: The model is trained on labeled data.
- Unsupervised Learning: The model is trained on unlabeled data.
- Reinforcement Learning: The model learns by interacting with an environment.

Python Tools for Machine Learning

Python Tools

- **NumPy**: A library for numerical computing.
- Pandas: A library for data manipulation and analysis.
- Matplotlib: A library for data visualization.
- Scikit-learn: A library for machine learning.

- Classification: Predicting a label.
- Regression: Predicting a continuous value.
- Clustering: Grouping similar data points.
- Dimensionality Reduction: Reducing the number of features
- Anomaly Detection: Identifying unusual data points.
- Association Rule Learning: Identifying relationships between variables.

- Classification: Predicting a label.
- Regression: Predicting a continuous value.
- Clustering: Grouping similar data points.
- Dimensionality Reduction: Reducing the number of features
- Anomaly Detection: Identifying unusual data points.
- Association Rule Learning: Identifying relationships between variables.

- Classification: Predicting a label.
- Regression: Predicting a continuous value.
- Clustering: Grouping similar data points.
- Dimensionality Reduction: Reducing the number of features
- Anomaly Detection: Identifying unusual data points.
- Association Rule Learning: Identifying relationships between variables.

- Classification: Predicting a label.
- Regression: Predicting a continuous value.
- Clustering: Grouping similar data points.
- Dimensionality Reduction: Reducing the number of features.
- Anomaly Detection: Identifying unusual data points.
- Association Rule Learning: Identifying relationships between variables.

- Classification: Predicting a label.
- Regression: Predicting a continuous value.
- Clustering: Grouping similar data points.
- Dimensionality Reduction: Reducing the number of features.
- Anomaly Detection: Identifying unusual data points.
- Association Rule Learning: Identifying relationships between variables.

- Classification: Predicting a label.
- **Regression**: Predicting a continuous value.
- **Clustering**: Grouping similar data points.
- **Dimensionality Reduction**: Reducing the number of features.
- **Anomaly Detection**: Identifying unusual data points.
- **Association Rule Learning**: Identifying relationships between variables.

MSc. C.A. Sierra (UD FJC)

- **Data Collection**: Gathering the data.
- Data Preprocessing: Cleaning and preparing the data
- Feature Engineering: Creating new features.
- Model Selection: Choosing the best model.
- Model Training: Training the model on the data.
- Model Evaluation: Assessing the model's performance.
- Model Deployment: Putting the model into production.

- Data Collection: Gathering the data.
- Data Preprocessing: Cleaning and preparing the data.
- Feature Engineering: Creating new features
- Model Selection: Choosing the best model.
- Model Training: Training the model on the data.
- Model Evaluation: Assessing the model's performance.
- Model Deployment: Putting the model into production.

- **Data Collection**: Gathering the data.
- Data Preprocessing: Cleaning and preparing the data.
- Feature Engineering: Creating new features.
- Model Selection: Choosing the best model
- Model Training: Training the model on the data.
- Model Evaluation: Assessing the model's performance
- Model Deployment: Putting the model into production.

- **Data Collection**: Gathering the data.
- Data Preprocessing: Cleaning and preparing the data.
- Feature Engineering: Creating new features.
- Model Selection: Choosing the best model.
- Model Training: Training the model on the data.
- Model Evaluation: Assessing the model's performance.
- Model Deployment: Putting the model into production

- **Data Collection**: Gathering the data.
- Data Preprocessing: Cleaning and preparing the data.
- Feature Engineering: Creating new features.
- Model Selection: Choosing the best model.
- Model Training: Training the model on the data.
- Model Evaluation: Assessing the model's performance.
- Model Deployment: Putting the model into production.

- **Data Collection**: Gathering the data.
- Data Preprocessing: Cleaning and preparing the data.
- Feature Engineering: Creating new features.
- Model Selection: Choosing the best model.
- Model Training: Training the model on the data.
- Model Evaluation: Assessing the model's performance.
- Model Deployment: Putting the model into production.

- **Data Collection**: Gathering the data.
- Data Preprocessing: Cleaning and preparing the data.
- Feature Engineering: Creating new features.
- Model Selection: Choosing the best model.
- Model Training: Training the model on the data.
- Model Evaluation: Assessing the model's performance.
- Model Deployment: Putting the model into production.

- Data Exploration: Understanding the data.
- Data Cleaning: Preparing the data.
- Feature Engineering: Creating new features
- Feature Selection: Selecting the most important features
- Data Preprocessing: Preparing the data for modeling.

- Data Exploration: Understanding the data.
- Data Cleaning: Preparing the data.
- Feature Engineering: Creating new features.
- Feature Selection: Selecting the most important features
- Data Preprocessing: Preparing the data for modeling.

- Data Exploration: Understanding the data.
- Data Cleaning: Preparing the data.
- Feature Engineering: Creating new features.
- Feature Selection: Selecting the most important features
- Data Preprocessing: Preparing the data for modeling.

- Data Exploration: Understanding the data.
- Data Cleaning: Preparing the data.
- Feature Engineering: Creating new features.
- Feature Selection: Selecting the most important features.
- Data Preprocessing: Preparing the data for modeling

- Data Exploration: Understanding the data.
- Data Cleaning: Preparing the data.
- Feature Engineering: Creating new features.
- Feature Selection: Selecting the most important features.
- Data Preprocessing: Preparing the data for modeling.

K-Nearest Neighbors Classification

- K-Nearest Neighbors is a simple algorithm that stores all available cases and classifies new cases based on a similarity measure.
- It is a type of instance-based learning, or lazy learning, where the function is only approximated locally and all computation is deferred until function evaluation.

Algorithmic Bias

- Algorithmic bias is a systematic error in a model that results in unfair outcomes.
- It can be caused by biased training data, biased algorithms, or biased decision-making.

Introduction to Data Science

Outline

- Fundamentals of Machine Learning
- Supervised Machine Learning
- Supersived Machine Learning Algorithms
- 4 Machine Learning Models Evaluation

Introduction to Supervised Machine Learning

Definition

- **Supervised learning** is a type of machine learning where the model is trained on labeled data.
- It involves training a model to map input data to output data based on example input-output pairs.

Overfitting and Underfitting

Overfitting

Overfitting occurs when a model learns the training data too well and performs poorly on new data.

Underfitting

Underfitting occurs when a model is too simple to capture the underlying structure of the data.

Overfitting and Underfitting

Overfitting

Overfitting occurs when a model learns the training data too well and performs poorly on new data.

Underfitting

Underfitting occurs when a model is too simple to capture the underlying structure of the data.

Supervised Learning Datasets

- **Training Dataset**: The data used to train the model.
- Validation Dataset: The data used to tune the model hyperparameters.
- Test Dataset: The data used to evaluate the model performance.

Supervised Learning Datasets

- **Training Dataset**: The data used to train the model.
- Validation Dataset: The data used to tune the model hyperparameters.
- Test Dataset: The data used to evaluate the model performance

Supervised Learning Datasets

- **Training Dataset**: The data used to train the model.
- Validation Dataset: The data used to tune the model hyperparameters.
- **Test Dataset**: The data used to evaluate the model performance.

K-Nearest Neighbors: Classification and Regression

- K-Nearest Neighbors (KNN) is a simple algorithm that stores all available cases and classifies new cases based on a similarity measure.
- It can be used for both classification and regression tasks.
- For classification, the output is the class label of the majority of the k-nearest neighbors.
- For regression, the output is the average of the k-nearest neighbors

K-Nearest Neighbors: Classification and Regression

- K-Nearest Neighbors (KNN) is a simple algorithm that stores all available cases and classifies new cases based on a similarity measure.
- It can be used for both classification and regression tasks.
- For classification, the output is the class label of the majority of the k-nearest neighbors.
- For regression, the output is the average of the k-nearest neighbors.

Linear Regression with Least Squares

Linear Regression

- **Linear regression** is a type of regression analysis used for predicting the value of a continuous dependent variable.
- It works by finding the line that best fits the data.

Least Squares

Least squares is a method for finding the best-fitting line by minimizing the sum of the squared differences between the predicted and actual values

Linear Regression with Least Squares

Linear Regression

- **Linear regression** is a type of regression analysis used for predicting the value of a continuous dependent variable.
- It works by finding the line that best fits the data.

Least Squares

Least squares is a method for finding the best-fitting line by minimizing the sum of the squared differences between the predicted and actual values.

Ridge & Lasso

Ridge Regression

Ridge regression is a type of linear regression that includes a penalty term to prevent overfitting. It works by adding a regularization term to the least squares objective function.

Lasso Regression

Lasso regression is a type of linear regression that includes a penalty term to prevent overfitting. It works by adding a regularization term to the least squares objective function.

Ridge & Lasso

Ridge Regression

Ridge regression is a type of linear regression that includes a penalty term to prevent overfitting. It works by adding a regularization term to the least squares objective function.

Lasso Regression

Lasso regression is a type of linear regression that includes a penalty term to prevent overfitting. It works by adding a regularization term to the least squares objective function.

Polynomial Regression

Polynomial Regression

MSc. C.A. Sierra (UD FJC)

- Polynomial regression is a type of regression analysis that models the relationship between the independent and dependent variables as an nth-degree polynomial.
- It can capture non-linear relationships between the variables.

Logistic Regression

Logistic Regression

- Logistic regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable.
- It is used for binary classification tasks, where the output is a probability between 0 and 1.

Cross-Validation

- Cross-validation is a technique for assessing the performance of a model.
- It involves splitting the data into multiple subsets, training the model on some subsets, and evaluating it on others.
- Common cross-validation techniques include k-fold cross-validation and leave-one-out cross-validation.
- Cross-validation helps to reduce overfitting and provides a more accurate estimate of the model's performance.

One-Hot Encoding

One-Hot Encoding

- **One-hot encoding** is a technique for **converting** categorical variables into numerical variables.
- It creates a binary vector for each category, with a 1 for the category and 0s for all other categories.

Data Leakage

- Data leakage occurs when information from the test set is inadvertently used to train the model.
- It can lead to overfitting and inflated performance metrics.
- Common sources of data leakage include target leakage, train-test contamination, and information leakage.
- To prevent **data leakage**, it is important to carefully separate the training and test data and avoid using information from the test set during training.

Outline

- Fundamentals of Machine Learning
- Supervised Machine Learning
- Supersived Machine Learning Algorithms
- 4 Machine Learning Models Evaluation

Support Vector Machines

- Support vector machines are a type of machine learning model that can be used for both classification and regression tasks.
- They work by finding the hyperplane that best separates the data into different classes.

Decision Trees

- Decision trees are a type of machine learning model that can be used for both classification and regression tasks.
- They work by recursively partitioning the data into subsets based on the values of the features.

Naive Bayes Classifier

- The naive Bayes classifier is a simple probabilistic classifier based on Bayes' theorem.
- It assumes that the features are conditionally independent given the class label.

Random Forest

- Random forest is an ensemble learning method that combines multiple decision trees to create a strong predictive model.
- It works by building multiple trees and averaging their predictions to reduce overfitting.

Gradient Boosted Decision Trees

- Gradient boosted decision trees are an ensemble learning method that combines multiple decision trees and gradient descedent optimization to create a strong predictive model.
- They work by building trees sequentially, with each tree correcting the errors of the previous trees.

Introduction to Data Science

Neural Networks

- Neural networks are a type of machine learning model inspired by the human brain.
- They consist of layers of interconnected nodes that process input data and produce output data.

MSc. C.A. Sierra (UD FJC)

Outline

- 1 Fundamentals of Machine Learning
- Supervised Machine Learning
- Supersived Machine Learning Algorithms
- Machine Learning Models Evaluation

Model Evaluation & Selection

- Model Evaluation: Assessing the performance of a model.
- Model Selection: Choosing the best model for the task.

Confusion Matrices

Definition

- A **confusion matrix** is a table that summarizes the performance of a classification model.
- It shows the number of true positives, true negatives, false positives, and false negatives.

- Accuracy: The proportion of correct predictions.
- Precision: The proportion of true positives among all positive predictions.
- Recall: The proportion of true positives among all actual positives
- F1 Score: The harmonic mean of precision and recall.

- Accuracy: The proportion of correct predictions.
- Precision: The proportion of true positives among all positive predictions.
- Recall: The proportion of true positives among all actual positives
- F1 Score: The harmonic mean of precision and recall.

- Accuracy: The proportion of correct predictions.
- Precision: The proportion of true positives among all positive predictions.
- Recall: The proportion of true positives among all actual positives.
- F1 Score: The harmonic mean of precision and recall.

- **Accuracy**: The proportion of correct predictions.
- Precision: The proportion of true positives among all positive predictions.
- Recall: The proportion of true positives among all actual positives.
- F1 Score: The harmonic mean of precision and recall.

- **ROC Curve**: A plot of the true positive rate against the false positive rate.
- Precision-Recall Curve: A plot of precision against recall.
- AUC-ROC: The area under the ROC curve.
- AUC-PR: The area under the precision-recall curve.

- **ROC Curve**: A plot of the true positive rate against the false positive rate.
- Precision-Recall Curve: A plot of precision against recall.
- AUC-ROC: The area under the ROC curve.
- AUC-PR: The area under the precision-recall curve.

- **ROC Curve**: A plot of the true positive rate against the false positive rate.
- Precision-Recall Curve: A plot of precision against recall.
- AUC-ROC: The area under the ROC curve.
- AUC-PR: The area under the precision-recall curve.

- ROC Curve: A plot of the true positive rate against the false positive rate.
- Precision-Recall Curve: A plot of precision against recall.
- AUC-ROC: The area under the ROC curve.
- AUC-PR: The area under the precision-recall curve.

- Macro-Averaging: The average of the evaluation metrics for each class.
- Micro-Averaging: The evaluation metrics calculated on the aggregate confusion matrix.
- Weighted-Averaging: The average of the evaluation metrics weighted by the number of samples in each class.
- One-vs-All: A strategy for multi-class classification that trains a separate binary classifier for each class.

- Macro-Averaging: The average of the evaluation metrics for each class.
- Micro-Averaging: The evaluation metrics calculated on the aggregate confusion matrix.
- Weighted-Averaging: The average of the evaluation metrics weighted by the number of samples in each class.
- One-vs-All: A strategy for multi-class classification that trains a separate binary classifier for each class.

- Macro-Averaging: The average of the evaluation metrics for each class.
- Micro-Averaging: The evaluation metrics calculated on the aggregate confusion matrix.
- Weighted-Averaging: The average of the evaluation metrics weighted by the number of samples in each class.
- One-vs-All: A strategy for multi-class classification that trains a separate binary classifier for each class.

- Macro-Averaging: The average of the evaluation metrics for each class.
- Micro-Averaging: The evaluation metrics calculated on the aggregate confusion matrix.
- Weighted-Averaging: The average of the evaluation metrics weighted by the number of samples in each class.
- One-vs-All: A strategy for multi-class classification that trains a separate binary classifier for each class.

- Mean Squared Error: The average of the squared differences between the predicted and actual values.
- Mean Absolute Error: The average of the absolute differences between the predicted and actual values.
- **R-Squared**: The proportion of the variance in the dependent variable that is predictable from the independent variables.
- Adjusted R-Squared: A modified version of R-squared that adjusts for the number of predictors in the model.
- Root Mean Squared Error: The square root of the mean squared error.

- Mean Squared Error: The average of the squared differences between the predicted and actual values.
- Mean Absolute Error: The average of the absolute differences between the predicted and actual values.
- R-Squared: The proportion of the variance in the dependent variable that is predictable from the independent variables.
- Adjusted R-Squared: A modified version of R-squared that adjusts for the number of predictors in the model.
- Root Mean Squared Error: The square root of the mean squared error.

- Mean Squared Error: The average of the squared differences between the predicted and actual values.
- Mean Absolute Error: The average of the absolute differences between the predicted and actual values.
- **R-Squared**: The proportion of the variance in the dependent variable that is predictable from the independent variables.
- Adjusted R-Squared: A modified version of R-squared that adjusts for the number of predictors in the model.
- Root Mean Squared Error: The square root of the mean squared error.

- Mean Squared Error: The average of the squared differences between the predicted and actual values.
- Mean Absolute Error: The average of the absolute differences between the predicted and actual values.
- **R-Squared**: The proportion of the variance in the dependent variable that is predictable from the independent variables.
- **Adjusted R-Squared**: A modified version of R-squared that adjusts for the number of predictors in the model.
- Root Mean Squared Error: The square root of the mean squared error.

- Mean Squared Error: The average of the squared differences between the predicted and actual values.
- Mean Absolute Error: The average of the absolute differences between the predicted and actual values.
- **R-Squared**: The proportion of the variance in the dependent variable that is predictable from the independent variables.
- **Adjusted R-Squared**: A modified version of R-squared that adjusts for the number of predictors in the model.
- Root Mean Squared Error: The square root of the mean squared error.

Model Calibration

- Model calibration is the process of adjusting the output of a model to match the true probability distribution.
- It is important for models that *output probabilities*, such as logistic regression and support vector machines.

Outline

- Fundamentals of Machine Learning
- Supervised Machine Learning
- Supersived Machine Learning Algorithms
- 4 Machine Learning Models Evaluation

Thanks!

Questions?

Repo: https://github.com/EngAndres/ud-public/tree/main/ courses/data-science-introduction

