Chapter 2

Sequential Circuits and Flip-flops

The R-S flip-flop

S	R	Q	Q'
1	0	1	0
0	0	1	0 (after SR= 10)
0	1	0	1
0	0	0	1(after SR=01)
1	1	0	0 (Disallowed)

The R-S flip-flop

S	R	Q	Q'
1	0	0	1
1	1	0	1 (after SR= 10)
0	1	1	0
1	1	1	0(after SR=01)
0	0	1	1 (Disallowed)

The clocked R-S flip-flop

C	S	R	Next state of Q
0	X	Χ	No change
1	0	0	No change
1	0	1	Q = 0; Reset state
1	1	0	Q = 1; set state
1	1	1	Indeterminate

D flip-flop

D	Q(t+1)
0	0
1	1

JK flip-flop

J	K	Q(t+1)
0	0	No change in state
0	1	1 0 1 1
1	0	1
1	1	Complement state

T flip-flop

QT	Q(t+1)
0 0	0
0 1	1
10	1
1 1	0

Flip Flops - with asynchronous inputs

Master-Slave Flip-Flop

Sequential circuit analysis

- State table
- State diagram
- Timing diagram

What is a "state"?

- The value of the outputs of the flip-flops simultaneously at a given period of time (usually measured after the CP edge arrival).
- Thus if we have two flip-flops, there output will be expressed in two bits (00, 01, 10 and 11)

What is present state and next state?

- <u>Present state</u> is the value of flip-flop output before the arrival of the CP edge.
- <u>Next state</u> is the value of flip-flop output after the arrival of the CP edge.

State table

Presen	Present State		Next State		
Q1(t)	Q2(t)	Q1(t+1)	Q2(t+1)	Y	
0	0	0	1	1	
0	1	1	0	1	
1	0	1	1	0	
1	1 -	0	0	1 -	

Read this state table

Quiz (oral)

Present State		Nex	Output	
Q1(t)	Q2(t)	Q1(t+1)	Q2(t+1)	Y(t)
0	0	0	1	1
0	. 1	1	1.	0
1	0	0	0	1 1
1	1	1	0	0

Read this state table

		CONTRACTOR OF THE PARTY OF THE		On Day	
Preser	nt State	Input	Nex	t State	Output
Q1(t)	Q2(t)	X	Q1(t+1)	Q2(t+1)	Y
0	0	0	0	0	1.
0	0	1	0	1	1
0	1	0	1	0	0
0	. 1	1	0	0	1
1	0	0	1	7.1	0
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	0	0	1

- 1- Assume we begin at state Q1=0 and Q2=0.
- 2- X=0, the next state (Q1=0 and Q2=0) producing Y=1.
- 3- X=1, the next state (Q1=0 and Q2=1) producing Y=1.

Now, can you deduce the next state of the following cases:

- •(Q1=1 and Q2=0) and the input X=0
- •(Q1=1 and Q2=0) and the input X=1
- •(Q1=1 and Q2=1) and the input X=0

Another version of the state table

Preser	Present State		Next State X=0		Next State <u>X=1</u>		t X=1
Q1(t)	Q2(t)	Q1(t+1)	Q2(t+1)	Q1(t+1)	Q2(t+1)	$\frac{\mathbf{X}=0}{\mathbf{Y}(0)}$	
0	0	0	0	0	1	- 1	1
0	1	1	0	0	0	0	1
1	0	1	1	0	1	0	1
1	1	1	0	0	0	0	1

State Diagram

Now, can you deduce the next state of the following cases:

- Present state 11 and the input =0
- Present state 11 and the input =1
- Present state 10 and the input =0

State Diagrams of Various Flip-flops

State Diagrams of Various Flip-flops

Converting from state diagram into state table

Present State		Next State X=0		Next X	Outpu X=0	t X=1	
Q1(t)	Q2(t)	Q1(t+1)	$\mathbf{Q2}(\mathbf{t+1})$	Q1(t+1)	Q2(t+1)	Y (<u>t)</u>
0	0	0	0	0	1	1	1
0	1	1	0	0	0	0	1
1	0	_1	1	0	1	0	1
1	1	11	0	0	0	0	1

Converting from state diagram into state table

Sequential Circuit Analysis

- We start with the logic diagram of the circuit which we can derive the input equations for each flip-flop.
- Then, to obtain next-state equations according to the input equations and the type of flip-flop.
- The output variable(s) equations can also be derived from the schematic, and once we have our output and next-state equations, we can generate the next-state and output tables as well as state diagrams.

Example 1:

Example 1:

• From the figure, the inputs of the flip flops are:

$$\mathbf{D1} = \mathbf{X'} + \mathbf{Q1}$$

$$D_2 = X.Q_2' + X'.Q_1'$$

• The output Z equation is:

•
$$Z = X*Q_1$$

Presen Q1(t)	t State Q2(t)	Input X	Next State Q1(t+1) Q2(t+1)		Output Z
0	0	0	1	1	0
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1.	1	0			
1	1	1			

Example 2:

•
$$A(t+1) = DA = A(t).X(t) + B(t).X(t)$$

•
$$B(t+1) = DB = A'(t).X(t)$$

• The output Y equation is:

$$\mathbf{Y}(\mathbf{t}) = \mathbf{X}'(\mathbf{t}).(\mathbf{B}(\mathbf{t}) + \mathbf{A}(\mathbf{t}))$$

Presen Q1(t)	t State Q2(t)	Input X	Next S Q1(t+1)	tate Q2(t+1)	Output Z
0	0	0	0	0	0
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1-1	1	1			

Present	Next	Output		
State	$\mathbf{x}(\mathbf{t})=0$	x(t)=1	x(t)=0	x(t)=1
A(t) B(t)	A(t+1)B(t+1)	A(t+1)B(t+1)	y(t)	y(t)
0 0	0 0	0 1	0	0
0 1	0 0	1 1	1	0
1 0	0 0	1 0	1	0
1 1	0 0	1 0	1	0

Example 3:

For the first flip flop:

$$J_1 = X'(t). Qo(t)$$

$$K_1 = X(t) + Qo(t)$$

For the second flip flop

$$Jo = X(t) + Q_1(t)$$

$$Ko = X'(t)$$

The output

$$Z = Q_1(t). X(t). Qo(t)$$

Present State		Inputs	Flip-flop Inputs				
Q_1	Q_0	X	J_1	K ₁	J_0	K ₀	
0	0	0	0	0	0	1	
0	0	1	0	1	1	0	
0	1	0	1	1	0	1	
0	1	1	0	1	1	0	
1	0	0	0	0	1	1	
1	0	1	0	1	1	0	
1	1	0	1	1	1	1	
1	1	1	0	1	1	0	

Build the state table for PS, inputs and flip-flop inputs

Complete the state table for NS, using inputs and flipflop inputs and excitation table

J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

Presen	Present State			FF I	Next State			
Q_1	Q_0	X	J_1	K_1	J_0	K_0	Q_1	Q_0
0	0	0	0	0	0	1	0	0
0	0	1	0	1	1	0	0	1
0	1	0	(1)	1	0	1	\bigcirc 1	0
0	1	1	0	1	1	0	0	1
1	0	0	0	0	1	1	1	1
1	0	1	0	1	1	0	0	1
1	1	0	1	1	1	1	0	0
1	1	1	0	1	1	0	0	1

Complete the state table for output Z, using PS inputs and X input

Presen	Present State		FF Inputs				Next State		Outputs
Q_1	Qo	X	J_1	K ₁	Jo	K ₀	Q_1	Qo	Z
0	0	0	0	0	0	1	0	0	0
0	0	1	0	1	1	0	0	1	0
0	1	0	1	1	0	1	1	0	0
0	1	1	0	1	1	0	0	1	0
1	0	0	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0	1	0
1	1	0	1	1	1	1	0	0	0
1	1	1	0	1	1	0	0	1	1

Draw the state diagram from state table

Report

Mealy and Moore state diagrams

• A **Mealy circuit** (sometimes called **machine**) generates an output based on its current state *and* input. This means that the <u>state diagram</u> will include both input and output signals for each transition edge.

Mealy circuit

Mealy circuit

Moore circuit

• The output of a Moore finite state machine depends only on the machine's current state; transitions are not directly dependent upon input. The outputs react at the edges of clock pulse.

Moore circuit

Moore circuit

State diagram reduction and assignment

Present	Next State		Output	
State	X=0	X=1	X=0	X=1
S0	S1	S2	0	0
S1	S3	S4	0	0
S2	S5	S6	0	0
S3	S 7	S 8	0	0
S4	S9	S10	0	0
S5	S11	S12	0	0
S6	S13	S14	0	0
S7	S0	S0	0	0
S8	S0	S 0	0	0
S9	S0	S0	0	0
S10	S 0	S 0	1	0
S11	S0	S0	0	0
S12	S0	S 0	1	0
S13	S0	S0	0	0
S14	S0	S0	0	0

Present	Next State		Output	
State	X=0	X=1	X=0	X=1
S0	S1	S2	0	0
S1	S 3	S4	0	0
S2	S5	S 6	0	0
S3	S 7	S8	0	0
S4	S9	SA	0	0
S5	S 11	SA	0	0
S6	S13	S14	0	0
S7	S0	S0	0	0
S8	S0	S0	0	0
S9	S0	S0	0	0
S11	S0	S0	0	0
SA	S0	S0	1	0
S13	S0	S0	0	0
S14	S0	S0	0	0

Present State	Next State		Output	
	X=0	X=1	X=0	X=1
S0	S1	S2	0	0
S1	S3	S4	0	0
S2	S5	S6	0	0
S3	SB	SB	0	0
S4	SB	SA	0	0
S5	SB	SA	0	0
S6	SB	SB	0	0
SB	S0	S0	0	0
SA	S0	S0	1	0

Quiz

Present State	Next State		Output	
	X=0	X=1	X=0	X=1
a	c	f	0	0
b	d	e	0	0
c	h	g	0	0
d	b	g	0	0
e	e	b	0	1
f	f	a	0	1
g	C	g	0	1
h	c	f	0	0

Next state and Output sequence for a given input stream

- If we are given a specific sequence of inputs, the state diagram and/or state table, we can predict the sequence of states response to this input sequence and the output sequence too.
- Sequence of $X = \{ 0, 0, 1, 1, 0, 1, 0 \}$. Start state = (01).
- When X = 0 at state (01), then the next state is (11), and the output is 0.
- The next value of X = o and now we are at state (11), then the next state is (10), and the output is o.
- The next value of X = 1 and now we are at state (10), then the next state is (11), and the output is 1.

If we have a sequence of $X = \{ 0, 1, 1, 0, 0, 1, 1 \}$. Start state = (b).

Present State	Next State		Output	
	X=0	X=1	X=0	X=1
a	c	f	0	0
b	d	e	0	0
c	a	g	0	0
d	b	g	0	0
e	e	b	0	1
f	f	a	0	1
g	С	g	0	1