Name: Sathwick Kiran M S UBID: 50602287

Part 1: Big Data Processing (50 points)

All libraries and dependencies needed

```
In [17]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import mean_squared_error, r2_score, accuracy_score, cc
```

Part 1: Big Data Processing (50 point)

Task 1: Data Cleaning And Exploration (20 points)

1) Here, we are loading the dataset into a Pandas DataFrame and print the meta deta of coloumn information

```
In [19]: df = pd.read_csv("NVDA.csv")
    print("Column Information:")
    print(df.info())
    print(df.head())
```

```
Column Information:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 523 entries, 0 to 522
Data columns (total 7 columns):
               Non-Null Count Dtype
    Column
#
               522 non-null
0
    Date
                              obiect
1
    0pen
               521 non-null
                              float64
2
    High
               522 non-null
                              float64
3
    Low
               523 non-null
                              float64
4
    Close
               522 non-null
                              float64
5
                              float64
    Adj Close 523 non-null
6
               521 non-null
                              float64
    Volume
dtypes: float64(6), object(1)
memory usage: 28.7+ KB
None
      Date
              0pen
                        High
                                 Low
                                       Close Adj Close
                                                             Volume
0 2022/7/1 14.899 15.063000 14.392
                                      14.523 14.506663 577610000.0
1 2022/7/5 14.175 14.971000
                              14.055
                                      14.964 14.947166 651397000.0
2 2022/7/6 15.010 15.319000
                              14.789
                                      15.130 15.112980 529066000.0
3 2022/7/7 15.456 15.945000 15.389
                                      15.858 15.840160 492903000.0
4 2022/7/8 15.430 16.037001 15.389 15.838 15.820185 467972000.0
```

2) Check for missing values and handle them appropriately.

```
In [23]: # Check for missing values in all columns
    missing_values =df.isnull().sum()

# First, we will check for the values which are missing before cleaning then
    print("Values missing before cleaning:")
    print(missing_values)
    df = df.dropna(subset=['Date'])
    df = df.ffill()

missing_values_after = df.isnull().sum()
    print("\nMissing values after cleaning:")
    print(missing_values_after)
    print("\nFirst few rows after handling missing values:")
    print(df.head())
```

```
Values missing before cleaning:
Date
            1
0pen
            2
High
            1
            0
Low
Close
            1
            0
Adj Close
Volume
            2
dtype: int64
Missing values after cleaning:
            0
0pen
            0
High
            0
            0
Low
Close
            0
Adj Close
            0
Volume
            0
dtype: int64
First few rows after handling missing values:
              0pen
                         High
                                  Low
                                        Close Adj Close
                                                              Volume
      Date
0 2022/7/1 14.899 15.063000
                               14.392
                                      14.523
                                              14.506663 577610000.0
1 2022/7/5 14.175 14.971000
                               14.055
                                      14.964
                                              14.947166 651397000.0
2 2022/7/6 15.010
                    15.319000
                               14.789
                                       15.130
                                              15.112980
                                                         529066000.0
                    15.945000
3 2022/7/7 15.456
                               15.389
                                       15.858
                                              15.840160 492903000.0
4 2022/7/8 15.430 16.037001 15.389
                                      15.838 15.820185 467972000.0
```

3) Convert the date coloumn toa different datetime format.,

```
In [25]: df = df.assign(Date=pd.to_datetime(df['Date']))
         first_rows = df.head()
         print(first rows)
                                                Close
                                                      Adj Close
               Date
                       0pen
                                 High
                                          Low
                                                                      Volume
       0 2022-07-01 14.899
                            15.063000
                                       14.392 14.523
                                                      14.506663
                                                                 577610000.0
       1 2022-07-05 14.175 14.971000 14.055 14.964
                                                      14.947166
                                                                 651397000.0
       2 2022-07-06 15.010 15.319000 14.789 15.130
                                                      15.112980
                                                                 529066000.0
       3 2022-07-07 15.456 15.945000 15.389 15.858
                                                      15.840160
                                                                 492903000.0
       4 2022-07-08 15.430 16.037001 15.389 15.838 15.820185 467972000.0
```

4) Compute basic statistics (min, max, mean, median, standard deviation) for each numerical feature.,

```
In [31]: stats = df.describe(include='all')
print(stats)
```

```
Date
                                             0pen
                                                         High
                                                                       Low
                                  522
                                       522.000000
                                                   522.000000
                                                                522.000000
count
       2023-07-15 15:29:39.310344704
                                        46.763362
                                                    47.616234
                                                                 45.853726
mean
                 2022-07-01 00:00:00
                                                    11.735000
                                                                 10.813000
min
                                        10.971000
25%
                 2023-01-06 18:00:00
                                        18.165500
                                                    18.736000
                                                                 17.895249
50%
                 2023-07-17 12:00:00
                                        42.287498
                                                    42.948999
                                                                 41.651998
75%
                 2024-01-22 18:00:00
                                        59.929250
                                                    60.225751
                                                                 58,948750
                 2024-07-31 00:00:00
                                       139.800003
                                                   140.759995
                                                                132.419998
max
                                        32.827653
                                                    33.407052
                                                                 32.044071
std
                                  NaN
            Close
                    Adj Close
                                      Volume
       522.000000
                   522.000000
                               5.220000e+02
count
                    46.773798 4.838382e+08
mean
        46.788335
        11.227000
                    11.217702 1.679340e+08
min
25%
        18.361499
                    18.340843
                               3.841098e+08
50%
        42.309500
                    42.296837 4.574970e+08
75%
        59.818251
                    59.810533 5.513095e+08
       135.580002
                   135.580002
                               1.543911e+09
max
                    32.724067 1.574563e+08
std
        32,726253
```

5) Plot the closing price over time using Matplotlib.,

```
In [35]: fig, ax = plt.subplots(figsize=(10, 6))
    ax.plot(df['Date'], df['Close'], label='Close Price', color='green')

ax.set_title('Closing Price Over Time', fontsize=14)
    ax.set_xlabel('Date', fontsize=12)
    ax.set_ylabel('Closing Price (USD)', fontsize=12)
    ax.tick_params(axis='x', rotation=45)
    ax.grid(True)
    ax.legend()
    plt.tight_layout()
    plt.show()
```


Task 2: Feature Engineering

1) Create a new column for daily returns based on the adjusted closing price (0 for the first day) and and print the top 10 dates with the highest daily return.

```
In [43]:
         df['Daily Return'] = pd.to_numeric(df['Adj Close'].pct_change(), errors='coe
         df.at[0, 'Daily Return'] = 0
         top_10_returns = df.loc[:, ['Date', 'Daily Return']].nlargest(10, 'Daily Ret
         print("Dates with Highest Daily Returns:")
         print(top 10 returns)
        Dates with Highest Daily Returns:
                  Date Daily Return
        226 2023-05-25
                            0.243696
        412 2024-02-22
                            0.164009
        92 2022-11-10
                            0.143293
        162 2023-02-23
                            0.140214
        522 2024-07-31
                            0.128121
        476 2024-05-23
                            0.093197
        285 2023-08-21
                            0.084713
        105 2022-11-30
                            0.082379
        17 2022-07-27
                            0.076030
        140 2023-01-23
                            0.075901
```

2) # Calculate the 7-day moving average of the closing price

```
In [49]: #We first calculate 7-day moving average and plit the graph
   plt.figure(figsize=(10, 6))
   ax = plt.gca()
   ax.plot(df['Date'], df['Close'], label='Closing Price', color='green', alpha
   ax.plot(df['Date'], df['Close'].rolling(window=7, min_periods=1).mean(), lat
   ax.set(title='Closing Price and 7-Day Moving Average', xlabel='Date', ylabel
   ax.legend()
   ax.grid(True)
   plt.xticks(rotation=45)
   plt.tight_layout()
   plt.show()
```


3) Normalize Trading volume coloumn using Min-Max Scaling and print the top 10 date with the highest volume.

```
In [51]: df['Normalized Volume'] = (df['Volume'] - df['Volume'].min()) / (df['Volume']
         top 10 volume = df[['Date', 'Normalized Volume']].sort values(by='Normalized
         print("Top 10 Dates with Highest Normalized Trading Volume:")
         print(top_10_volume)
        Top 10 Dates with Highest Normalized Trading Volume:
                  Date Normalized Volume
        226 2023-05-25
                                 1.000000
        43 2022-09-01
                                 0.734701
        288 2023-08-24
                                 0.718115
        423 2024-03-08
                                 0.708104
        162 2023-02-23
                                 0.690463
        229 2023-05-31
                                 0.606584
        25 2022-08-08
                                 0.591525
        264 2023-07-21
                                 0.578378
        289 2023-08-25
                                 0.550450
        228 2023-05-30
                                 0.549040
```

Task 3: Data Visualization (15 points)

1) Create a histogram of daily returns.

```
In [65]: fig, ax = plt.subplots(figsize=(10, 6))
ax.hist(df['Daily Return'], bins=50, color='green', edgecolor='black', alpha
ax.set_title('Histogram for the Daily Returns', fontsize=14)
ax.set_xlabel('Daily Return', fontsize=12)
ax.set_ylabel('Frequency', fontsize=12)
ax.grid(True)
```

```
plt.tight_layout()
plt.show()
```


2) Generate a boxplot of the trading volume.

```
fig, ax = plt.subplots(figsize=(10, 6))
sns.boxplot(x=df['Volume'], color='lightgreen', width=0.5, ax=ax)
ax.set_title('Boxplot of Trading Volume', fontsize=14)
ax.set_xlabel('Trading Volume', fontsize=12)
ax.grid(True)
plt.tight_layout()
plt.show()
```


3) Display a correlation heatmap of all numerical features.

Part 2: Machine Learning (50 points)

Task 1: Clustering with KMeans (20 points)

1) Select relevant features for clustering.

```
In [93]: scaler = MinMaxScaler()
         scaler.fit(df[['Daily Return', 'Normalized Volume', 'Adj Close']])
         normalized_features = scaler.transform(df[['Daily Return', 'Normalized Volum
         normalized_df = pd.DataFrame(normalized_features, columns=['Normalized Daily
         print(normalized df.head())
           Normalized Daily Return Normalized Volume Normalized Adj Close
                          0.291049
                                             0.297735
                                                                   0.026447
        1
                                             0.351360
                          0.379388
                                                                   0.029989
        2
                          0.323322
                                             0.262455
                                                                   0.031322
        3
                          0.431027
                                             0.236173
                                                                   0.037169
                          0.287381
                                             0.218055
                                                                   0.037009
```

2) Determine the optimal number of clusters using the elbow method.

```
In [103... | from sklearn.preprocessing import MinMaxScaler
         from sklearn.cluster import KMeans
         import matplotlib.pyplot as plt
         import os
         import warnings
         features_for_clustering = df[['Daily Return', 'Normalized Volume', 'Adj Clos
         scaler = MinMaxScaler()
         # Normalize the features
         normalized_features = scaler.fit_transform(features_for_clustering)
         warnings.filterwarnings("ignore", message="KMeans is known to have a memory
         X = normalized features
         wcss = []
         # Calculate WCSS for cluster sizes ranging from 1 to 10
         for k in range(1, 11):
             kmeans = KMeans(n_clusters=k, init='k-means++', max_iter=300, n_init=10,
             kmeans.fit(X)
             wcss.append(kmeans.inertia_)
         # Plot the Elbow Method
         plt.figure(figsize=(10, 6))
         plt.plot(range(1, 11), wcss, marker='o', color='red')
         plt.title('Elbow Method for Optimal Number of Clusters', fontsize=14)
         plt.xlabel('Number of Clusters', fontsize=12)
         plt.ylabel('WCSS (Within-Cluster Sum of Squares)', fontsize=12)
         plt.grid(True)
         plt.tight layout()
         plt.show()
```


3) Apply KMeans clustering and visualize the resulting clusters using a scatter plot.

```
In [109... kmeans = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=10, rar kmeans.fit(X)
    df['Cluster'] = kmeans.labels_
    plt.figure(figsize=(10, 6))
    plt.scatter(df['Daily Return'], df['Adj Close'], c=df['Cluster'], cmap='wint plt.title('KMeans Clustering: Daily Return vs. Normalized Adj Close', fontsi plt.xlabel('Normalized Daily Return', fontsize=12)
    plt.ylabel('Normalized Adj Close', fontsize=12)
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```

/var/folders/gp/x8l4rnjn35g8r75l3dbgstn80000gn/T/ipykernel_2249/1106831858.p
y:9: UserWarning: No artists with labels found to put in legend. Note that
artists whose label start with an underscore are ignored when legend() is ca
lled with no argument.
 plt.legend()

4) Interpret the clusters and descrivbe potential insights.

- a) Green cluster points may represent low-volatile stocks with moderate daily returns, they have low adjusted closing prices and they appear steady.
- b) The prices of stocks with a dark blue cluster are modest; they may be mid-cap stocks with slightly greater daily returns.
- c) The light blue cluster's equities have the highest adjusted closing prices and the most spared daily return, which indicates that they may be more volatile and have the fastest-growing stocks.
- d) Lightblue clusters have more risk but higher returns than green clusters, which appear to have lower risk.
- e) A scatter plot demonstrates how well-diversified and trend-capturing the portfolio is.

Task 2: Other Machine Learning methods (30 points)

1) Stock Price Prediction

```
In [23]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

features = ['Open', 'High', 'Low', 'Adj Close', 'Volume']
    target = 'Close'
    X = df[features]
    y = df[target]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rar
```

```
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

Training and Model Evaluation for Linear Regresion

```
In [25]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error, r2_score
    import numpy as np

linear_model = LinearRegression()
linear_model.fit(X_train_scaled, y_train)
pred_linear = linear_model.predict(X_test_scaled)
rmse_lr = np.sqrt(mean_squared_error(y_test, pred_linear))
r2_lr = r2_score(y_test, pred_linear)
print(f'Linear Regression RMSE: {rmse_lr:.4f}')
print(f'Linear Regression RMSE: {rcse_lr:.4f}')
Linear Regression RMSE: 0.0168
```

Bonus ML Method - Ridge Regression Model

Linear Regression R² Score: 1.0000

```
In [27]: from sklearn.linear_model import Ridge
    ridge_model = Ridge(alpha=1.0)
    ridge_model.fit(X_train_scaled, y_train)
    y_pred = ridge_model.predict(X_test_scaled)
    rmse = np.sqrt(mean_squared_error(y_test, y_pred))
    r2 = r2_score(y_test, y_pred)

print(f'Ridge Regression Model RMSE: {rmse:.4f}')
    print(f'R² Score: {r2:.4f}')
```

Ridge Regression Model RMSE: 0.6060 R² Score: 0.9997

2) Trends Classification

```
In [29]: df['Price Change'] = df['Close'].shift(-1) - df['Close']
    df['Trend'] = df['Price Change'].apply(lambda x: 1 if x > 0 else 0)
    df.dropna(inplace=True)
    features = df[['Open', 'High', 'Low', 'Adj Close', 'Volume']]
    target = df['Trend']
    X_train, X_test, y_train, y_test = train_test_split(features, target, test_split)
```

Training and model evaluation of Support Vector Machine

```
In [31]: from sklearn.svm import SVC
   from sklearn.metrics import accuracy_score, confusion_matrix, classification
   from sklearn.preprocessing import StandardScaler
   from sklearn.model_selection import train_test_split
   scaler = StandardScaler()
   X_train_scaled = scaler.fit_transform(X_train)
```

```
X_test_scaled = scaler.transform(X_test)
svm_model = SVC(kernel='rbf', random_state=0)
svm_model.fit(X_train_scaled, y_train)
y_pred = svm_model.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.4f}')
print('Confusion Matrix:')
print(confusion_matrix(y_test, y_pred))
print('Classification_Report:')
print(classification_report(y_test, y_pred))
```

Accuracy: 0.5333 Confusion Matrix:

[[5 44] [5 51]]

Classification Report:

	precision	recall	f1-score	support
0	0.50	0.10	0.17	49
1	0.54	0.91	0.68	56
accuracy			0.53	105
macro avg	0.52	0.51	0.42	105
weighted avg	0.52	0.53	0.44	105