

An Oddball

This is a strange course

For most courses, it's easy to figure out what to expect:

- "Fundamentals of Artificial Intelligence and Knowledge Representation"
- "Introduction to Algorithms and Programming"
- "Statistical and Mathematical Methods for Artificial Intelligence"
- "Machine Learning"
- "Deep Learning"
- "Combinatorial Decision Making and Optimization"

...But what for something called "AI in Industry"?

What do we mean by "industry"?

This is industry

This is also industry

This is also industry

This is also industry

We are talking about industry in a very broad sense! Because...

We will define "industry" as any activity that can generate value

We are talking about industry in a very broad sense! Because...

We will define "industry" as any activity that can generate value

- So, this course is about how to using AI to generate value
- ...And since value is typically generated by solving problems

This course is about using AI to address real world problems

We are talking about industry in a very broad sense! Because...

We will define "industry" as any activity that can generate value

- So, this course is about how to using AI to generate value
- ...And since value is typically generated by solving problems

This course is about using AI to address real world problems

Which problems are we talking about?

Business Analytics

A good starting point: business analytics models

Source: Gartner Analytic Ascendancy Model (March 2012)

Business Analytics

In terms of how far we push automation:

This is simple and useful characterization

...But the truth is more like this!

Industrial applications are complicated

- The problems are not well defined
- Similar techniques may be applied in multiple settings
- ...And with different names
- Classical tasks typically only part of the whole problem
- It is often necessary to combine problems/techniques

•

Industrial applications are complicated

- The problems are not well defined
- Similar techniques may be applied in multiple settings
- ...And with different names
- Classical tasks typically only part of the whole problem
- It is often necessary to combine problems/techniques

...

A common opinion:

try something, then add tweaks until the problem is solved

...But this is evil!

Specifically, it reaches a plateau real quick:

- If you get lucky, you solve your problem and you do it fast
- But more often than not:
 - You fail, and you don't understand why
 - You end up with a much messier solution than needed
 - You approach works on test data, but not in the field

Specifically, it reaches a plateau real quick:

- If you get lucky, you solve your problem and you do it fast
- But more often than not:
 - You fail, and you don't understand why
 - You end up with a much messier solution than needed
 - You approach works on test data, but not in the field

More critically, you do not really improve your knowledge and skill

Our goal will be to bring a measure of order to the chaos

Which is actually impossible, but still the right thing to do

How I am Going to Play It

I am going to follow a few guiding principles

How: Examples! I.e. Use Cases

- Every few lectures we will introduce a new use case
- They will be simplified industrial problems
 - Real industrial problems would take too much to tackle
 - ...Not to mention they are subject to NdAs 69
- They will nevertheless be representative
- Some uses cases will be covered in seminars by industrial partners

How I am Going to Play It

I am going to follow a few guiding principles

What: techniques, best practices, formalization

- Mostly: how to methodically tackle a new problem
- But we will also introduce new techniques
- ...Ways to apply known techniques
- ...Ways to combine known techniques
- ...Some (light) software engineering
- ...And how to formalize problems and ideas

How I am Going to Play It

I am going to follow a few guiding principles

Why: my goal is for you to tackle problems better than most of your peers

- Problems/solutions are often poorly understood
 - Formalizing is the first step towards understanding
- Different problems call for different tools
 - Using (say) ML for everything is just inefficient
- Many people can apply "boilerplate", mainstream AI methods
 - ...But much fewer are capable of changing or combining them

On the Art of Cooking

At some point, the course will start feeling like a cookbook

When you get there, there is one thing you should remember

On the Art of Cooking

Most people read cookbooks to follow recipes

On the Art of Cooking

...But true chefs read cookbooks to find ideas

So, learn, then get creative!

Two Parts

The course can be roughly divided in two parts

In the first part we will (mostly):

- cover simpler techniques
- make sure that we use known tools properly
- learn to look at a problem as a whole

In the second part we will:

- cover more advanced techniques
- bend known techniques so as to make them behave as we wish
- learn how to combine heterogeneous information
- learn how to combine heterogeneous techniques

Teachers

Teacher:

- Michele Lombardi (<u>michele.lombardi2@unibo.it</u>)
- Office phone: 051 2093270 (it's close to teaching room 5.7)

Student hours: you can book an appointment (online by default) via:

https://book.morgen.so/michelelombardi03/student-hours

Tutor:

- Luca Giuliani (<u>luca.giuliani13@unibo.it</u>)
- Assistance with projects and questions
- Student hours: on appointment (send an email)

Course Material

Reference: course web site on virtuale.unibo.it

- Jupyter notebooks + requirements.txt + poetry configuration files
- PDF notes (also included in the container)
- Recorded lectures (via Panopto, links on the web site)

This course changes (a bit) every year

- The good part: the course will grow with you
- The bad part: lecture material will typically arrive one/two days early at most

Exam

The exam will consist of a project:

- You can propose a topic
- ...Or pick one from the list on https://lia-unibo.github.io/
- The topic must be discussed with the tutor and the teacher before starting
- Groups of 2-3 students tend to work best
- ...But individual projects are also fine

An advice: wait until at least mid course before choosing

Once you are done with your work

...You'll need to schedule a call (online by default) via:

https://book.morgen.so/michelelombardi03/a3i-exams

Exam

The students will need to:

- Deliver the project code
- Give a presentation
- Be prepared to discuss their work

The evaluation

- Will not focus on how successful your results are
- ...But on how you reached them
- This means I will evaluate:
 - Why you made the choices you made
 - How you have interpreted the results
 - You familiarity with the techniques you chose to employ

The Exam and the 3CFU Project

About the optional 3-credits project

- You can combine them
- The 3CFU project will be a follow-up of the exam work
- Typically, both works a presented at once
- ...But you can have separate presentations if you wish

If you wish to combine the projects

...You should mention that when you pick the topic

We'll make sure that the topic is broad enough for both

The 2CFU project does not have actual grades

- Either you pass, or you don't
- By the time you are ready to present, you'll typically be fine