

Boost Converter (BoostConv)

5.0

Features

- Produces a selectable output voltage that is higher than the input voltage
- Input voltage range between 0.5 V and 3.6 V
- Boosted output voltage range between 1.8 V and 5.25 V
- Source up to 75 mA depending on the selected input and output voltage parameter values
- Two modes of operation: Active and Standby for PSoC 3 or Sleep for PSoC 5LP

General Description

The Boost Converter (BoostConv) component allows you to configure and control the PSoC boost converter hardware block. The boost converter enables input voltages that are lower than the desired system voltage to be boosted to the desired system voltage level. The converter uses an external inductor to convert the input voltage to the desired output voltage.

The BoostConv component is enabled by default at chip startup with an output voltage of 1.9 V. This allows the chip to start up in scenarios where the input voltage to the boost is below the minimum allowable voltage to power the chip. The configuration parameters defined in the component customizer (default $V_{IN} = 1.8 \text{ V}$, $V_{OUT} = 3.3 \text{ V}$, Switching Frequency = 400 kHz) will not take effect until the BoostConv_Start() API is called. The BoostConv component parameters can also be adjusted during run time using the provided APIs.

The boost converter has two main operating modes:

- Active Active mode is the normal mode of operation where the boost regulator actively generates a regulated output voltage.
- **Standby** Standby mode is a low-power mode of operation with PSoC 3.
- Sleep Sleep mode is a low-power mode of operation with PSoC 5LP.

For more details please refer to Boost Converter section of PSoC Family Datasheet.

When to Use the Boost Component

Use the BoostConv component when the available voltage source for a system is less than the required voltage level to operate the system. The BoostConv component accepts a battery or other input voltage and produces a higher output voltage.

As an example, the system may use a 0.5-V solar cell as the primary power source and rely on the boost block to power the 1.8-V PSoC 3 core. In another application, a 3.3-V system could use the BoostConv component to power a 5.0-V LCD glass.

Input/Output Connections

The BoostConv component requires no connections in the project schematic view. Fixed-function pins support the boost converter block circuit. The system circuit must provide connections for the input voltage (Vbat), output voltage (Vout), and inductor pin (Ind), and battery ground (Vssb). Refer to the schematic representation shown in the Functional Description section.

Component Parameters

Drag a BoostConv component onto your design and double-click it to open the **Configure** dialog.

Vbat input voltage (V)

This is the V_{BAT} or other voltage source that is used as the input voltage to the boost converter block. This system circuit connects this voltage to the Vbat PSoC pin. The input voltage can be

between 0.5 V and 3.6 V. This value is used to calculate the estimated maximum output current. The default value is 1.8 V.

Output voltage (V)

This is the target output voltage that the boost converter block will maintain. Use the drop-down list to select the desired output voltage. Output voltage levels are provided in 0.1-V increments from 1.8 V to 3.6 V and in 0.25-V increments from 4.00 V to 5.25 V. The default value is 3.3 V.

An external Schottky diode is required for output voltages above 3.6 V.

The output voltage value can be modified at run time by using the BoostConv_SelVoltage() function.

Switching frequency

This is the switching frequency at which the boost converter block will operate. The Switching frequency value is set to 400 kHz for Boost Active mode operation.

The 400-kHz switching frequency is generated using an oscillator internal to the boost converter block.

External clock source

The External 32 kHz to the Boost frequency is the source of the switching signal when the boost converter block is configured to use an external clock. This value is applicable only for PSoC 3 and can be set to any of the following frequencies:

- None
- ECO 32kHz
- ILO 32kHz

For PSoC 5LP this parameter should be set to None.

Max output current (mA)

This is an estimate of the maximum output current available from the boost converter block based on the specified **Vbat input voltage** and **Output voltage** values. This is a read-only value.

Disable auto battery connect to output when Vin = Vsel

When set, disables auto battery connection to output when Vin = Vsel. For more details, see Functional Description.

Document Number: 001-88522 Rev. *C

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component using software. The following table lists and describes the interface to each function. The subsequent sections cover each function in more detail.

By default, PSoC Creator assigns the instance name "BoostConv_1" to the first instance of a component in a given design. You can rename it to any unique value that follows the syntactic rules for identifiers. The instance name becomes the prefix of every global function name, variable, and constant symbol. For readability, the instance name used in the following table is "BoostConv."

Function	Description
BoostConv_Start()	Starts the BoostConv component and puts the boost block into Active mode.
BoostConv_Stop()	Disables the BoostConv component. Turns off power to the boost converter circuitry.
BoostConv_EnableInt()	Enables the boost block undervoltage interrupt generation.
BoostConv_DisableInt()	Disables the boost block undervoltage interrupt generation.
BoostConv_SetMode()	Sets the boost converter mode to Active or Standby (PSoC 3) / Sleep (PSoC 5LP).
BoostConv_SelVoltage()	Selects the target output voltage the boost converter will maintain.
BoostConv_ManualThump()	Forces a single pulse of the boost converter switch transistors.
BoostConv_ReadStatus()	Returns the boost block status register.
BoostConv_ReadIntStatus()	Returns the contents of the boost block interrupt status register.
BoostConv_Init()	Initializes BoostConv registers with initial values provided from customizer.
BoostConv_Enable()	This function enables the boost block (only valid when in Active mode). Component is enabled by default.
BoostConv_Disable()	Disables the boost block.

PSoC 3 APIs

BoostConv_EnableAutoThump()	Enables automatic thump mode (only available when the boost block is in Standby mode and the switching frequency is set to 32 kHz).
BoostConv_DisableAutoThump()	Disables automatic thump mode.
BoostConv_SelExtClk()	Sets the source of 32-kHz frequency: the 32-kHz ECO or 32-kHz ILO.
BoostConv_SelFreq()	Sets the switching frequency to one of two possible values: 400 kHz (generated internal to the boost converter block) or 32 kHz (sourced external to the boost converter block from the chip ECO-32kHz or ILO-32kHz oscillator). The 32kHz frequency is only applicable for PSoC 3.

Page 4 of 22 Document Number: 001-88522 Rev. *C

Global Variables

Function	Description
BoostConv_initVar	Indicates whether the Boost Converter has been initialized. The variable is initialized to 0 and set to 1 the first time BoostConv_Start() is called. This allows the component to restart without reinitialization after the first call to the BoostConv_Start() routine.
	If reinitialization of the component is required, then the BoostConv_Init() function can be called before the BoostConv_Start() or BoostConv_Enable() function.

void BoostConv_Start(void)

Description: Starts the BoostConv component and puts the boost block into Active mode. The component

is in this state when the chip powers up. This is the preferred method to begin component operation. BoostConv_Start() sets the initVar variable, calls the BoostConv_Init() function,

and then calls the BoostConv_Enable() function.

Parameters: None Return Value: None

Side Effects: If the initVar variable is already set, this function: (1) Sets the initial value of the target output

voltage (from the customizer) and mode (Active mode) or restores target output voltage and mode saved in the BoostConv_Stop() function; (2) Calls the BoostConv_Enable() function.

void BoostConv_Stop(void)

Description: Saves boost converter target output voltage and mode. Disables the BoostConv component.

Parameters: None Return Value: None

Side Effects: Turns off power to the boost converter circuitry. For PSoC 3, sets the boost converter to

Standby mode, For PSoC 5LP, sets the boost converter to Sleep mode.

void BoostConv_EnableInt(void)

Description: This function enables the boost block output undervoltage interrupt generation.

Parameters: None
Return Value: None
Side Effects: None

void BoostConv_DisableInt(void)

Description: This function disables the boost block output undervoltage interrupt generation.

Parameters: None
Return Value: None
Side Effects: None

void BoostConv_SetMode(uint8 mode)

Description: This function sets the boost converter mode: Active and Standby for PSoC 3 or Sleep for

PSoC 5LP.

Parameters: uint8 mode: Sets the operational mode for the boost block:

Mode	Notes
BoostConv_BOOSTMODE_ ACTIVE	In the active mode, the boost block maintains the selected output voltage.
BoostConv_BOOSTMODE_STANDBY	Low power state, only bandgap and comparator circuitry is active. Automatic thump mode is used with the external 32-kHz clock to regulate output voltage
BoostConv_BOOSTMODE_SLEEP	This mode used with chip sleep mode to reduce power consumption.

Return Value: None
Side Effects: PSoC 3:

- 1) For Standby mode, this function enables automatic thump mode and sets the switching frequency clock source to the 32-kHz external clock.
- 2) For Active mode this function disables automatic thump mode and sets the switching frequency clock source to the 400-kHz internal clock.

void BoostConv_SelVoltage(uint8 voltage)

Description: This function selects the target output voltage the boost converter will maintain.

Parameters: uint8 voltage: The target output voltage for the boost converter block. Output voltages above 3.6 V require an external Schottky diode.

Power Setting	Value	Notes
BoostConv_VOUT_OFF	0x00	Off – HI-Z
BoostConv_VOUT_1_8V	0x03	1.8 V
BoostConv_VOUT_1_9V	0x04	1.9 V
BoostConv_VOUT_2_0V	0x05	2.0 V
BoostConv_VOUT_2_1V	0x06	2.1 V
BoostConv_VOUT_2_2V	0x07	2.2 V
BoostConv_VOUT_2_3V	0x08	2.3 V
BoostConv_VOUT_2_4V	0x09	2.4 V
BoostConv_VOUT_2_5V	0x0A	2.5 V
BoostConv_VOUT_2_6V	0x0B	2.6 V
BoostConv_VOUT_2_7V	0x0C	2.7 V
BoostConv_VOUT_2_8V	0x0D	2.8 V
BoostConv_VOUT_2_9V	0x0E	2.9 V
BoostConv_VOUT_3_0V	0x0F	3.0 V
BoostConv_VOUT_3_1V	0x10	3.1 V
BoostConv_VOUT_3_2V	0x11	3.2 V
BoostConv_VOUT_3_3V	0x12	3.3 V
BoostConv_VOUT_3_4V	0x13	3.4 V
BoostConv_VOUT_3_5V	0x14	3.5 V
BoostConv_VOUT_3_6V	0x15	3.6 V
BoostConv_VOUT_4_0V	0x16	4.00 V (external Schottky diode required)
BoostConv_VOUT_4_25V	0x17	4.25 V (external Schottky diode required)
BoostConv_VOUT_4_5V	0x18	4.50 V (external Schottky diode required)
BoostConv_VOUT_4_75V	0x19	4.75 V (external Schottky diode required)
BoostConv_VOUT_5_0V	0x1A	5.00 V (external Schottky diode required)
BoostConv_VOUT_5_25V	0x1B	5.25 V (external Schottky diode required)

Return Value: None

Side Effects: Function will take affect only when the Boost is enabled.

void BoostConv_ManualThump(void)

Description: This function forces a single pulse of the boost converter switch transistors.

Parameters: None Return Value: None

Theory:

Side Effects: Thump produces one ~500-ns pulse when set. This routine writes a '0' followed by a '1' to

the bit 7 "thump" bit in the boost block BOOST_CR0 register.

uint8 BoostConv_ReadStatus(void)

Description: This function returns the contents of the boost block status register.

Parameters: None

Return uint8 boost block status register: BOOST_SR:

Value:

Bit	Name	Description
7	BoostConv_RDY	When set, internal circuits have been initialized
6	BoostConv_START	When set, converter is in startup mode
5	_	Reserved
4	BoostConv_OV	Output above overvoltage limit when 1, below limit when 0
3	BoostConv_VHI	Output is above vhigh limit when 1, below limit when 0
2	BoostConv_VNOM	Output is above nominal when 1, below nominal when 0
1	BoostConv_VLO	Output is above vlow limit when 1, below limit when 0
0	BoostConv_UV	Output is above undervoltage limit when 1, below limit when 0

Side Effects: None

void BoostConv_ReadIntStatus(void)

Description: This function returns the contents of the boost block interrupt status register.

Parameters: None

Return Value: uint8 Boost interrupt status register BOOST_SR2 bit 0: When set, a Boost Output

Undervoltage event has occurred.

Side Effects: None

void BoostConv_Init(void)

Description: Initializes or restores the component according to the customizer Configure dialog settings. It

is not necessary to call BoostConv_Init() because the BoostConv_Start() API calls this

function and is the preferred method to begin component operation.

Parameters: None Return Value: None

Side Effects: All registers will be set to values according to the customizer Configure dialog.

void BoostConv_Enable(void)

Description: This function enables the boost block when in Active mode. The component is enabled by

default. Activates the hardware and begins component operation. It is not necessary to call BoostConv_Enable() because the BoostConv_Start() API calls this function, which is the

preferred method to begin component operation.

Parameters: None
Return Value: None
Side Effects: None

void BoostConv_Disable(void)

Description: This function disables the boost block.

Parameters: None
Return Value: None
Side Effects: None

PSoC 3 API

void BoostConv_EnableAutoThump(void)

Description: This function enables automatic thump mode. The AutoThump mode is available only when

the boost block is in the Standby mode. The switching frequency clock source for the boost block must be set to the 32-kHz external clock. In this mode, standby boost operation is accomplished by generating a boost switch pulse on each edge of the switching clock when

the output voltage is below the selected value.

Parameters: None
Return Value: None
Side Effects: None

void BoostConv_DisableAutoThump(void)

Description: This function disables automatic thump mode.

Parameters: None
Return Value: None
Side Effects: None

void BoostConv_SelExtClk(uint8 source)

Description: This function sets the source of 32-kHz frequency: the chip's ECO-32kHz or ILO-32kHz.

Parameters: uint8 source: The source of 32-kHz frequency.

Name	Description
BoostConvEXTCLK_ECO	Set chip ECO-32kHz as the source of 32-kHz frequency
BoostConvEXTCLK_ILO	Set chip ILO-32kHz as the source of 32-kHz frequency

Return Value: None Side Effects: None

void BoostConv_SelFreq(uint8 frequency)

Description: This function sets the switching frequency to one of two possible values. 400kHz (which is

generated internal to the Boost Converter block with a dedicated oscillator) or 32kHz (which comes from the chips ECO-32kHz or ILO-32kHz). The 32kHz frequency is only applicable for

PSoC 3.

Parameters: uint8 switch_freq: The desired switching frequency.

Switch Frequency	Notes
BoostConvSWITCH_FREQ_400KHZ	Generated internal to the boost converter block with a dedicated oscillator
BoostConvSWITCH_FREQ_32KHZ	Comes from the ECO-32kHz or ILO-32kHz

Return Value: None
Side Effects: None

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the component. There are two types of deviations defined:

- project deviations deviations that are applicable for all PSoC Creator components
- specific deviations deviations that are applicable only for this component

This section provides information on component-specific deviations. Project deviations are described in the MISRA Compliance section of the *System Reference Guide* along with information on the MISRA compliance verification environment.

The Boost Converter component does not have any specific deviations.

Sample Firmware Source Code

PSoC Creator provides many example projects that include schematics and example code in the Find Example Project dialog. For component-specific examples, open the dialog from the Component Catalog or an instance of the component in a schematic. For general examples, open the dialog from the Start Page or **File** menu. As needed, use the **Filter Options** in the dialog to narrow the list of projects available to select.

Refer to the "Find Example Project" topic in the PSoC Creator Help for more information.

Functional Description

Figure 1. Application for Boost Converter

The boost block circuit is enabled by default to support scenarios in which processor startup is powered by the V_{BOOST} voltage. The boost block is configured for Active mode with an output voltage of 1.9 V by default. When a BoostConv component is placed in a project, it provides access to the configuration registers for the boost hardware block. The BoostConv_Start() function configures the BoostConv component with the settings made in the component configuration dialog.

Boost block registers are powered from the V_{BOOST} supply. The V_{BOOST} output cannot be allowed to fall below 1.4 V. You can expect to lose register contents if V_{BOOST} is allowed to fall below 1.4 V. The firmware must reload these registers if such these conditions occur.

The boost converter hardware uses the fixed-function pins on the chip shown in the schematic above. These signals are not shown on the BoostConv component.

Operation with Input Voltage Greater Than Programmed Output Voltage

When Control register 2 (BOOST_CR2): Bit 1 (eqoff) = 0, the output voltage will track the input voltage when the input is greater than the programmed output voltage. This is shown below:

- Output Voltage = Programmed voltage when Input < Programmed
- Output Voltage = Input voltage when Input > Programmed

When Control register 2 (BOOST_CR2): Bit 1 (eqoff) = 1, the output voltage does not track until either the optional external Schottky diode or inherent internal silicon diode between the inductor pin and output are forward biased. The effect of this is that the output voltage tracks input with a diode drop, as shown below:

- Output Voltage = Programmed voltage when Input < Programmed
- Output Voltage = Input voltage diode drop when Input > Programmed + diode drop

For Boost modes and Chip and Boost Power Modes Compatibility details please refer to Boost Converter section of PSoC Family Datasheet.

Design Guide

The Boost Converter component supports features that are not supported by the silicon. Refer to the Component Errata section. This design guide must be followed in order to meet the characterization specification.

Limitations

1. The valid output voltage range must be between 1.8 V to 5.0 V. Refer to the highlighted sections in the figure below for the compatible Vbat and Vout values.

Maximum output current is 50 mA. Lower limits apply to some Vbat/Vout voltage combinations.

2. There are temperature range restrictions based on the boost Vbat to Vout voltages. Refer to the figure below.

3. The allowed inductor values depend on the boost Vbat to Vout voltages. Refer to the figure below.

- 4. A Schottky diode is always required for all output voltages.
- 5. The switching frequency can only be 400 kHz. Do not use other switching frequencies.
- 6. The **Disable auto battery connect to output when Vin = Vsel** feature is not supported and should not be used.

Boost Design Process

Correct operation of the boost converter requires specific component values determined for each designs unique operating conditions. The C_{BAT} capacitor, Inductor, Schottky diode, and C_{BOOST} capacitor components are required with the values specified in the Device datasheet. The only variable component value is the inductor L_{BOOST} which is primarily sized for correct operation of the boost across operating conditions and secondarily for efficiency. Additional operating region constraints exist for V_{OUT}, V_{BAT}, I_{OUT}, and T_A.

The following steps must be followed to determine boost converter operating parameters and LBOOST value.

- 1. Choose desired VBAT, VOUT, TA, and lout operating condition ranges for the application.
- 2. Determine if V_{BAT} and V_{OUT} ranges, ambient temperature (T_A) range, and desired output current (I_{OUT}) range meet the limitation requirements as outlined in **Limitations** section.
- 3. Find the allowed inductor values based on inductor limitation as shown in the figure in **Limitations** section.
- 4. Based on the allowed inductor values, inductor dimensions, inductor cost, boost efficiency, and V_{RIPPLE} choose the optimum inductor value for the system. Boost efficiency and V_{RIPPLE} typical values are provided in the **Efficiency vs V_{BAT}** and **V_{RIPPLE} vs V_{BAT}** charts, available in the boost electrical specification section of the device datasheet. In general, if high efficiency and low V_{RIPPLE} are most important, then the highest allowed

inductor value should be used. If low inductor cost or small inductor size are most important, then one of the smaller allowed inductor values should be used. If the allowed inductor(s) efficiency, VRIPPLE, cost or dimensions are not acceptable for the application than an external boost regulator should be used.

Resources

The BoostConv component uses the dedicated boost converter hardware block in the silicon.

API Memory Usage

The component memory usage varies significantly, depending on the compiler, device, number of APIs used and component configuration. The following table provides the memory usage for all APIs available in the given component configuration.

The measurements have been done with the associated compiler configured in Release mode with optimization set for Size. For a specific design the map file generated by the compiler can be analyzed to determine the memory usage.

Configuration	PSoC 3 (K	(eil_PK51)	PSoC 5LP (GCC)		
	Flash Bytes	SRAM Bytes	Flash Bytes	SRAM Bytes	
	Dytes	Dytes	Dytes	Dytes	
Default	861	3	472	3	

PSoC 3 DC and AC Electrical Characteristics

Unless otherwise specified in the tables below, operating conditions are: $V_{BAT} = 2.4 \text{ V}$, $V_{OUT} = 2.7 \text{ V}$, $I_{OUT} = 40 \text{ mA}$, $F_{SW} = 400 \text{ kHz}$, $L_{BOOST} = 10 \text{ }\mu\text{H}$, $C_{BOOST} = 22 \text{ }\mu\text{F} \parallel 0.1 \text{ }\mu\text{F}$.

DC SpecificationsBoostConv_datasheet.docx

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{BAT}	Input voltage,	T = -35 °C to +65 °C	0.5	_	3.6	V
	includes startup voltage	Over entire temperature range	0.68	_	3.6	V
.Іоит	Load current , steady	Boost active mode, V _{BAT} = 1.6–3.6 V, V _{OUT} = 1.6–3.6 V, internal diode	_	-	75	mA
		Boost active mode, V _{BAT} = 1.6–3.6 V, V _{OUT} = 3.6–5.0 V, external diode	-	-	50	mA
		Boost active mode, V _{BAT} = 0.8–1.6 V, V _{OUT} = 1.6–3.6 V, internal diode	_	-	30	mA

Page 16 of 22 Document Number: 001-88522 Rev. *C

Parameter	Description	Conditions	Min	Тур	Max	Units
	state [1, 2]	Boost active mode, $V_{BAT} = 0.8-1.6 \text{ V}$, $V_{OUT} = 3.6-5.0 \text{ V}$, external diode	-	-	20	mA
		Boost active mode, $V_{BAT} = 0.5-0.8 \text{ V}$, $V_{OUT} = 1.6-3.6 \text{ V}$, internal diode	_	-	15	mA
I _{LPK}	Inductor peak current		_	_	700	mA
lα	Quiescent current	Boost active mode	_	250	_	μΑ
		Boost standby mode, I _{OUT} < 1 μA	_	25	_	μA
Vout	Boost output voltage rar	ge [3, 4]				
	1.8 V		1.71	1.80	1.89	V
	1.9 V		1.81	1.90	2.00	V
	2.0 V		1.90	2.00	2.10	V
	2.4 V		2.28	2.40	2.52	V
	2.7 V		2.57	2.70	2.84	V
	3.0 V		2.85	3.00	3.15	V
	3.3 V		3.14	3.30	3.47	V
	3.6 V		3.42	3.60	3.78	V
	5.0 V	External diode required	4.75	5.00	5.25	V
Reg _{LOAD}	Load regulation		_	-	3.8	%
RegLINE	Line regulation		_	_	4.1	%

AC SpecificationsBoostConv_datasheet.docx

Parameter	Description	Conditions	Min	Тур	Max	Units
VRIPPLE	Ripple voltage (peak-to-peak)	0.5 V < V _{BAT} < 1.7V, V _{OUT} = 1.8 V, F _{SW} = 400 kHz, I _{OUT} = 10 mA	1	I	100	mV

^{4.} At boost frequency at 400 kHz, V_{OUT} is limited to 4 x V_{BAT} .

Document Number: 001-88522 Rev. *C Page 17 of 22

^{1.} For output voltages above 3.6 V, an external diode is required.

^{2.} Maximum output current applies for output voltages ≤ 4x input voltage.

^{3.} Based on device characterization (Not production tested).

Recommended External Components for Boost Circuit

Parameter	Description	Conditions	Min	Тур	Max	Units
L _{BOOST}	Boost inductor		_	10	_	μH
CBOOST	Filter capacitor ^[5]		10	22	47	μF
lF	External Schottky diode average forward current	External Schottky diode is required for Vout > 3.6 V	1	_	-	А
VR			20	_	1	V

PSoC 5LP DC and AC Electrical Characteristics

Unless otherwise specified in the tables below, operating conditions are: L_{BOOST} = 10 μ H, C_{BOOST} = 22 μ F || 0.1 μ F, 2 < Vbat:Vout <= 4.

DC SpecificationsBoostConv_datasheet.docx

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{BAT}	Input voltage,	Iout < 7.5 mA, Vout = 1.8V nominal	0.5	-	0.6	V
	includes startup voltage ^[6]	External Diode Required if Vbat < 0.9 V	0.6	_	3.6	V
.Іоит	Load current , steady state [6, 7]	V _{BAT} = 1.6–3.6 V, V _{OUT} = 1.6–3.6 V	_	-	75	mA
	State 1973	V_{BAT} = 1.6–3.6 V, V_{OUT} = 3.6–5.0 V, external diode	-	-	50	mA
		V _{BAT} = 0.5–1.6 V, V _{OUT} = 1.6–3.6 V	_	-	15	mA
		V _{BAT} = 0. 5–1.6 V, V _{OUT} = 3.6–5.0 V, external diode	-	_	15	mA
I _{LPK}	Inductor peak current		_	_	700	mA
IQ	Quiescent current	Boost active mode	_	250	_	μΑ
		Boost sleep mode, I _{OUT} < 1 μA	_	25	_	μA
Vouт		1.8 V nominal	1.71	1.80	1.89	V
		1.9 V nominal	1.81	1.90	2.00	V

^{5.} Based on device characterization (Not production tested).

Page 18 of 22 Document Number: 001-88522 Rev. *C

^{6.} For V_{BAT} ≤ 0.9 V or V_{OUT} ≥ 3.6 V, an external diode is required.

^{7.} If powering the PSoC from boost with Vbat = 0.5 V, the IMO must be 3 MHz at startup.

Parameter	Description	Conditions	Min	Тур	Max	Units
	Boost output voltage	2.0 V nominal	1.90	2.00	2.10	V
	range [8]	2.4 V nominal	2.28	2.40	2.52	V
		2.7 V nominal	2.57	2.70	2.84	V
		3.0 V nominal	2.85	3.00	3.15	V
		3.3 V nominal	3.14	3.30	3.47	V
		3.6 V nominal, External diode required	3.42	3.60	3.78	V
		5.0 V nominal, External diode required	4.75	5.00	5.25	V
V _{OUT} : V _{BAT}	Ratio of V _{OUT} to V _{BAT}		_	_	4	ratio
Reg _{LOAD}	Load regulation		_	-	5	%
Regline	Line regulation		_	_	5	%

AC SpecificationsBoostConv_datasheet.docx

Parameter	Description	Conditions	Min	Тур	Max	Units
VRIPPLE	Ripple voltage (peak-to-peak)	L _{BOOST} = 10 μH, C _{BOOST} = 22 μF 0.1 μF, 2 < Vbat:Vout <= 4, lout = 10 mA	I	I	100	mV

Recommended External Components for Boost Circuit

Parameter	Description	Conditions	Min	Тур	Max	Units
L _{BOOST}	Boost inductor		4.7	10	22	μH
C _{BOOST}	Filter capacitor ^[9]	Lboost = 4.7 uH	_	10	-	uF
		Lboost = 10 uH	_	22	-	uF
		Lboost = 22 uH	_	22	-	uF
lF	External Schottky diode average forward current		1	_	_	А

^{8.} Based on device characterization (Not production tested).

^{9.} Based on device characterization (Not production tested).

Document Number: 001-88522 Rev. *C Page 19 of 22

V _R		20	_	_	V

Component Errata

This section lists known problems with the component.

Cypress ID	Component Version	Problem	Workaround
207556	All	The boost converter logic requires that the Vbat to Vout be specific values. Ratios outside of these values may not meet characterized performance. The external inductor must be chosen based on the Vbat and Vout ranges.	Refer to the Design guide in the Functional Description section or the boost section of the device datasheet.

Component Changes

This section lists the major changes in the component from the previous version.

Version	Description of Changes	Reason for Changes / Impact
5.0.c	Minor datasheet update.	
5.0.b	Minor datasheet update.	
5.0.a	Added Component Errata section.	Silicon characterization limitations were discovered. The component datasheet is updated to give guidelines on choosing the correct operating values.
5.0	Removed PSoC 5 support.	
	Added setting of internal 400KHz frequency for Active mode to BoostConv_SetMode() function.	Vboost doesn't reach configured value when boost mode changes from STANDBY to ACTIVE.
	Disabled selecting the value of "Switching frequency" parameter to 32KHz for PSoC 3 and PSoC 5LP devices.	Boost always starts operation in Active mode. Only 400KHz switching frequency should be used with Active mode.
4.0	Added MISRA Compliance section.	The component does not have any specific deviations.
	Added Sleep mode for PSoC 5LP. Updated API functions description.	Added Sleep mode for PSoC 5LP in silicon.
	Updated Characterization data for PSoC 5LP.	To keep Characterization data up-to-date.
3. 0	Updated portion of code for Disabling AUTO_BATTERY in BoostConv_Init() function.	To fix incorrect configuration of "eqoff" bit.

Page 20 of 22 Document Number: 001-88522 Rev. *C

Version	Description of Changes	Reason for Changes / Impact
	Updated BoostConv_SelFreq() API. Updated defines generation for switching frequencies. Updated debug window file.	Removed the unsupported switching frequencies 100 KHz and 2MHz.
	Removed external reference bit selection in BoostConv_Init() API.	This is handled by Creator generated code that sets this bit at device startup and resets before the device goes to sleep.
	Updated Characterization tables for PSoC 3. Added Characterization tables for PSoC 5LP.	To keep Characterization data up-to-date.
	Updated BoostConv_Init(), BoostConv_Start(), BoostConv_Stop(), BoostConv_Enable(), BoostConv_Disable(), BoostConv_SetMode(), BoostConv_SelVoltage(), BoostConv_SelFreq(), BoostConv_EnableAutoThump(), BoostConv_DisableAutoThump(), BoostConv_ManualThump(), BoostConv_ReadStatus() functions to have two consecutive reads for registers that reside in the Boost hardware.	Accessing the Boost hardware registers in read mode has speed limitations and requires two consecutive reads of any register that resides in the Boost hardware to guarantee the correct result is returned.
2.10	Added PSoC 5LP device support.	
	Added all BoostConv APIs with CYREENTRANT keyword when they are included in the .cyre file.	Not all APIs are truly reentrant. Comments in the component API source files indicate which functions are candidates.
		This change is required to eliminate compiler warnings for functions that are not reentrant and used in a safe way: protected from concurrent calls by flags or Critical Sections.
2.0.a	Datasheet corrections.	
2.0	Removed reference to PSoC 5 support.	Component is not supported by PSoC 5.
	Updated BoostConv_Start() and BoostConv_Stop() functions with set/restore mode and voltage.	An expected use case is using Boost to power off-chip devices, so firmware is expected to start/stop the boost.
	Added new parameter "Disable auto battery connect to output when Vin = Vsel." Updated BoostConv_Init() function with disabling auto battery connect to output when $V_{\text{IN}} = V_{\text{SEL}}$.	To allow the user to configure whether the output voltage should track the input voltage when VBAT > VBOOST, or only track after the diode is forward biased (so the output tracks the input - diode drop).
1.50.a	Added autothump support note to Features in datasheet.	Silicon bug in PSoC 3 ES2 and PSoC 5.
	Added information to the component that advertizes its compatibility with silicon revisions.	The tool reports an error/warning if the component is used on incompatible silicon. If this happens, update to a revision that supports your target device.
	Added characterization data to datasheet.	
	ı	

Document Number: 001-88522 Rev. *C

Version	Description of Changes	Reason for Changes / Impact
	Removed reference to sleep mode from datasheet.	Component doesn't support sleep mode.
	Minor datasheet edits and updates.	
1.50	Added support of PSoC 3 Production silicon. Three API functions have been added: void BoostConv_EnableInt(void); void BoostConv_DisableInt(void); uint8 BoostConv_ReadIntStatus(void);	Boost Converter supports generation of undervoltage signal.
	API function has been added: void BoostConv_SelExtClk(uint8);	To support selection of external switching clock sources of Boost Converter: ILO or ECO.
	Added BoostConv_Init() function.	To comply with corporate standard and provide an API to initialize/restore the component without starting it.

© Cypress Semiconductor Corporation, 2013-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Page 22 of 22 Document Number: 001-88522 Rev. *C