Треугольники, высоты, окружности

Рассмотрим треугольник ABC. AH_a , BH_b , CH_c — высоты этого треугольника. H — ортоцентр (точка пересечения высот). O — центр описанной окружности. M_a , M_b , M_c — середины сторон BC, AC, AB соответственно.

Дальше в задачах мы будем ссылаться на эти обозначения

- $\boxed{1}$ Докажите, что $\angle ABH = \angle CBO$.
- [2] Докажите, что $\angle ABH = \angle H_cH_aH$.
- [3] Докажите, что H_aA биссектриса $\angle H_cH_aH_b$.
- [4] Докажите, что H центр вписанной окружности треугольника $H_a H_b H_c$.
- $\boxed{5}$ Докажите, что O- ортоцентр треугольника $M_a M_b M_c$.
- [6] Точку O отразили относительно сторон треугольника ABC и получили точки A', B' и C'. Докажите, что треугольник A'B'C' равен исходному, причём точка O для него является ортоцентром.
- $\boxed{7}$ Докажите, что $AH=2OM_a$
- 8 Докажите, что отражение H относительно стороны BC лежит на описанной окружности треугольника ABC.
- [9] Докажите, что отражение H относительно точки M_a лежит на описанной окружности треугольника ABC.
- $\lfloor 10
 floor$ Докажите, что точка из предыдущей задачи диаметрально противоположна точке A
- 11 Докажите, что четырёхугольник $M_a M_b M_c H_a$ равнобедренная трапеция.
- 12 Докажите, что четырёхугольник $H_b M_b M_c H_c$ вписан.
- 13 Докажите что 6 точек $M_a, M_b, M_c, H_a, H_b, H_c$ лежат на одной окружности.
- Описанная окружность треугольника BHC пересекает отрезки AB и AC в точках Y и X соответственно. Докажите, что $XY = 2H_bH_c$
- 15 Пусть O_1 и O_2 центры описанных окружностей треугольников H_bHH_c и BHC соответственно. Докажите, что $O_1O_2\parallel AM_a$.
- Дана равнобокая трапеция ABCD с основаниями BC и AD. Окружность ω проходит через вершины B и C и вторично пересекает сторону AB и диагональ BD в точках X и Y соответственно. Касательная, проведенная к окружности ω в точке C, пересекает луч AD в точке Z. Докажите, что точки X,Y и Z лежат на одной прямой.