PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-102083

(43)Date of publication of application: 18.04.1995

(51)Int.CI.

C08J 5/18 C08J 5/18 B29C 71/02 B65D 65/02 C08J 7/00 C08L 29/04 C08L 33/00 ' B29K 29:00 B29K 33:00 R29I 7:00

(21)Application number : 05-262958

(71)Applicant: KUREHA CHEM IND CO LTD

(22)Date of filing:

27.09.1993

(72)Inventor: TANAKA HIDEAKI

OBA HIROYUKI HIROSE KAZUHIKO

(54) GAS BARRIER FILM AND ITS PRODUCTION

(57) Abstract:

PURPOSE: To obtain a film which hardly discolors and is water-resistant and excellent in oxygen barrier properties at a high humidity.

CONSTITUTION: A gas barrier film is obtd. from a resin mixture comprising 95–10wt.% polyvinyl alcohol and 5–90wt.% partially neutralized poly(meth)acrylic acid and has an oxygen permeation coefficient (at a relative humidity of 80%) of $1.25 \times 10-3$ ml(STP).cm/m2.h.atm{Pa} or lower. The resin mixture is formed into a film and thermally treated under conditions satisfying the relations: $\log t \ge -0.0582 \times T + 26.06$ and $373 \ge T \ge 573$ [wherein t is the time (min) of thermal treatment; and T is the temp. (K) of the treatment], giving the gas barrier film.

LEGAL STATUS

[Date of request for examination]

11.07.1996

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2736600

[Date of registration]

16.01.1998

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-102083

(43)公開日 平成7年(1995)4月18日

(51) Int. C I. 6		識別記号	庁内整理番号	}	FI.		技術表示箇所
C 0 8 J	5/18	CEX	9267-4 F				
		CEY	9267-4 F				
B 2 9 C	71/02		2126-4 F				
B 6 5 D	65/02	Е					
C 0 8 J	7/00	301	7310-4 F				•
	審査請求	未請求 請求	項の数 2	FD	<u>-</u>	(全11頁)	最終頁に続く
(21) 出願番号	特	類平5-262958			(71)出願人	000001100	
(21) шаясы 3	134	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(11) 1110,000	呉羽化学工業株式会社	
(22) 出願日	亚	戊5年 (1993) 9月	27 🛱			東京都中央区日本橋堀留町	中11年0年11年
(CC) HINNE		×0 (1000)0/]	2112	ŀ	(72)発明者	田中英明	11.1 HOWIT-3
				ł	(12) 250114	茨城県新治郡玉里村大字」	- 工田字新林21 —
				Ī		138	上上生于初州21
•					(72)発明者	大場 弘行	
					(12) 芜明石		F477 [275] 00 [2
,	,			l	(20) Pv (10 +v	茨城県新治郡千代田町稲吉	54]日/金23亏
				-	(72)発明者	広瀬 和彦	
						千葉県我孫子市泉38-5-	105
					(74)代理人	弁理士 西川 繁明	

(54) 【発明の名称】ガスバリヤー性フィルム及びその製造方法

(57)【要約】

【目的】 耐水性で、高湿度条件下での酸素ガスバリヤー性が顕著に優れ、しかも着色が抑制されたフィルムを 提供すること。

【構成】 ポリビニルアルコール及びポリ(メタ)アクリル酸の部分中和物を重量比95:5~10:90の範囲で含有する混合物から形成されたフィルムであって、30℃、相対湿度80%の条件下で測定した酸素透過係数が1.25×10 $^{-3}$ ml(STP)·cm/m 2 ·h·atm{Pa}以下であるガスバリヤー性フィルム。ポリビニルアルコール及びポリ(メタ)アクリル酸の部分中和物を重量比95:5~10:90の範囲で含有する混合物からフィルムを形成し、次いで、該フィルムを下記関係式(a)及び(b)で規定する熱処理温度と熱処理時間の関係を満足する条件下で熱処理するガスバリヤー性フィルムの製造方法。

- (a) $\log t \ge -0$. $0582 \times T + 26$. 06
- (b) $373 \le T \le 573$

〔式中、tは、熱処理時間(分)で、Tは、熱処理温度(K)である。〕

【特許請求の範囲】

【請求項1】 ポリビニルアルコール及びポリ(メタ)アクリル酸の部分中和物を重量比95:5~10:90 の範囲で含有する混合物から形成されたフィルムであって、30 $^{\circ}$ 、相対湿度80%の条件下で測定した酸素透過係数が1.25×10 $^{-3}$ ml(STP)・cm/m $^{\circ}$ ・h・atm {Pa}以下であることを特徴とするガスバリヤー性フィルム。

【請求項2】 ポリビニルアルコール及びポリ(メタ) アクリル酸の部分中和物を重量比95:5~10:90 10 の範囲で含有する混合物からフィルムを形成し、次いで、該フィルムを下記関係式(a)及び(b)で規定する熱処理温度と熱処理時間の関係を満足する条件下で熱処理することを特徴とするガスバリヤー性フィルムの製造方法。

(a) $\log t \ge -0$. $0582 \times T + 26$. 06(b) $373 \le T \le 573$

[式中、tは、熱処理時間(分)で、Tは、熱処理温度(K)である。]

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ガスバリヤー性フィルムに関し、さらに詳しくは、ポリビニルアルコール(PVA)とポリ(メタ)アクリル酸の部分中和物とを含む混合物から形成されたフィルムであって、水に不溶性で、酸素ガスバリヤー性に優れ、しかも着色の少ないフィルム及びその製造方法に関する。本発明のフィルムは、耐水性及び酸素ガスバリヤー性に優れ、塩素原子を含まないため、食品包装材料などの用途に好適である。

[00002]

【従来の技術】PVAフィルムは、一般に、溶媒として水を使用する流延法や押出法により製膜されている。PVAフィルムは、柔軟性及び非帯電性であるとともに、乾燥状態におけるガスバリヤー性が一般の合成樹脂中で最も優れているという特徴を有している。PVAフィルムは、その優れたガスバリヤー性を利用して、酸素ガスバリヤー性を必要とする包装材料分野での用途展開が図られてきた。しかし、PVAフィルムは、ガスバリヤー性の湿度依存性が大きく、高湿度条件下では吸湿によりガスバリヤー性が大きく低下する。しかも、PVAフィルムは、沸騰水中で容易に溶解してしまう。

【0003】従来、PVAフィルムを実用的な酸素ガスバリヤー性が求められる用途に使用する場合には、PVAフィルムと他のフィルムとの2層以上の多層構成のラミネートフィルムとして、湿度の影響をできるだけ少なくするようにしてきた。しかし、ラミネートフィルムとするだけでは、耐湿性及び耐水性の点でいまだ不十分であり、PVAフィルム自体の耐水性を向上させ、かつ、高湿度下でも十分な酸素ガスバリヤー性を持たせることが望まれている。

【0004】PVAフィルムの上記問題点を解決するために、これまで、例えば、下記のような各種の検討が行われている。

① PVAの水酸基の化学修飾による耐水化:アルデヒド類を用いて、PVAの水酸基をアセタール化する方法が知られている。しかしながら、この方法では、PVAの水に対する不溶化は実現しても、成形物の吸水による酸素ガスバリヤー性能の低下が著しい。米国特許第2、169、250号には、PVAとポリカルボン酸との混合水溶液からフィルムや繊維等を形成し、次いで加熱することにより、PVAの水酸基とポリカルボン酸とを反応させて架橋構造を形成させ、水に不溶化とする方法が提案されている。

【0005】② 熱処理による耐水化: PVAフィルムは、熱処理により結晶化し易く、耐水性が向上する。また、PVAフィルムは、二軸延伸することにより、配向結晶化が進むとともに機械的性質が改善される。そこで、PVAフィルムを二軸延伸及び熱処理することにより、耐水性と耐湿性を改善する方法が知られている。しかし、この方法により水不溶化は実現しても、PVAフィルムの吸湿による酸素ガスバリヤー性能の低下が著しく、特に高湿度条件下では、吸湿による変形や物性変化を起こす。

30 【0007】④ 共重合による耐水化:エチレン一酢酸ビニル共重合体を加水分解するとエチレンービニルアルコール共重合体(EVOH)が得られる。EVOHフィルムは、PVAフィルムの特徴であるガスバリヤー性を保ちながら、熱可塑性フィルムとしての性質を持つフィルムである。しかし、EVOHフィルムは、酸素ガスバリヤー性の湿度依存性が大きく、吸湿による酸素ガスバリヤー性能の低下防止についての改良は、いまだ不十分である。

【0008】以上、説明したように、従来の耐水化策は、乾燥条件下におけるPVAフィルムの優れたガスバリヤー性能を高湿度下、あるいは高温・高湿度下でも維持するという観点からは、いまだ不十分なものである。一方、PVAとポリアクリル酸との混合物を用いたフィルムやシートが提案されているが(例えば、特開昭63-47743号、特公平2-14376号、特公平2-27941号)、これらのフィルムやシートは、いずれも水溶性または水吸収性であり、耐水性かつ酸素ガスバリヤー性のフィルムではない。

【0009】ところで、前記米国特許第2,169,2 50 50号には、PVAと反応させるポリカルボン酸として . 3

ポリメタクリル酸やポリアクリル酸を用いる場合につい ても開示されている。該文献には、具体的に、PVA水 溶液中でメタクリル酸モノマーを重合させ、得られた混 合物を支持体上に流延し、水を蒸発させた後、140℃ で5分間加熱してPVAとポリメタクリル酸とを反応さ せて水不溶化フィルムを得たことが記載されている(実 施例 [)。しかしながら、本発明者らの検討結果によれ ば、この熱処理条件では、高湿度条件下での酸素ガスバ リヤー性に優れたフィルムを得ることはできない。ま た、該文献に記載されているその他の具体的な熱処理条 10 件(実施例 I I ~ V) を適用しても、P V A とポリ(メ タ) アクリル酸との混合物から高湿度条件下での酸素ガ スバリヤー性に優れたフィルムを得ることができない。 【0010】ところで、ポリアクリル酸またはその部分 中和塩は、水溶性の高分子であり、その親水性を活かし て、吸水材料、増粘剤、凝集剤、分散剤、紙や繊維の処 理剤等として広く利用されている。また、ポリアクリル 酸またはその部分中和塩は、その溶液から流延法により 製膜が可能であり、得られたフィルムは、乾燥条件下で の酸素ガスバリヤー性に優れている。しかしながら、こ 20 のフィルムは、親水性が強いため、多量の水分を含有す る食品の包装には適さない。

[0011]

【発明が解決しようとする課題】本発明の目的は、耐水性で、高湿度条件下での酸素ガスバリヤー性が顕著に優れ、しかも着色が抑制されたフィルムを提供することにある。本発明者らは、先に、PVAとポリ(メタ)アクリル酸との混合物から、例えば、該混合物の水溶液を支持体上に流延した後、乾燥することにより、フィルムを形成し、次いで、特定の条件下で熱処理することにより、PVA単体のフィルムと比較して、乾燥条件下ではもとより、高湿度条件下でも顕著に改善された酸素ガスバリヤー性を有し、かつ、耐水性に優れたフィルムの得られることを見出し、特許出願を行った(特願平5-31404号)。このフィルムは、塩素原子を含んでいないため、焼却時に塩素ガスを発生することがない。

【0012】ところが、前記フィルムは、熱処理によって着色する傾向を示し、食品包装材料等の用途には、その改善が求められる。そこで、本発明者らは、さらに研究を進めた結果、前記フィルムにおいて、ポリ(メタ)アクリル酸の代えてポリ(メタ)アクリル酸の部分中和物を用いると、熱処理による着色が顕著に改善されることを見出した。しかも、PVAとポリ(メタ)アクリル酸の部分中和物との混合物からなるフィルムを熱処理して得られるフィルムは、両ポリマー成分の混合割合及びポリ(メタ)アクリル酸の中和度を選択することにより、酸素ガスバリヤー性がさらに改善されることを見出した。本発明は、これらの知見に基づいて完成するに至ったものである。

[0013]

【課題を解決するための手段】かくして、本発明によれば、ポリビニルアルコール及びポリ(メタ)アクリル酸の部分中和物を重量比95:5~10:90の範囲で含有する混合物から形成されたフィルムであって、30 $\mathbb C$ 、相対湿度80%の条件下で測定した酸素透過係数が1.25×10⁻³m1(STP)・cm/m²・h・atm {Pa}以下であることを特徴とするガスバリヤー性フィルムが提供される。

【0014】また、本発明によれば、ポリビニルアルコール及びポリ(メタ)アクリル酸の部分中和物を重量比95:5~10:90の範囲で含有する混合物からフィルムを形成し、次いで、該フィルムを下記関係式(a)及び(b)で規定する熱処理温度と熱処理時間の関係を満足する条件下で熱処理することを特徴とするガスバリヤー性フィルムの製造方法が提供される。

(a) $l \circ g t \ge -0$. $0582 \times T + 26$. 06(b) $373 \le T \le 573$

[式中、tは、熱処理時間(分)で、Tは、熱処理温度(K)である。]

【0015】以下、本発明について詳述する。本発明で使用するPVAは、ケン化度が通常95%以上、好ましくは98%以上で、平均重合度が通常300~2500、好ましくは300~1500のものが望ましい。

【0016】本発明では、ボリ(メタ)アクリル酸の部分中和物を使用する。ボリ(メタ)アクリル酸は、ボリアクリル酸、ボリメタクリル酸、アクリル酸とメタクリル酸との共重合体、またはこれらの混合物であって、分子中に2個以上のカルボキシル基を有する化合物である。好適なものとして、アクリル酸またはメタクリル酸のホモボリマーやコボリマーを挙げることができる。ボリ(メタ)アクリル酸の平均分子量は、2000~25000の範囲が好ましい。

【0017】ボリ(メタ)アクリル酸の部分中和物は、ボリ(メタ)アクリル酸のカルボキシル基をアルカリで部分的に中和する(即ち、カルボン酸塩とする)ことにより得ることができる。アルカリとしては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、アンモニア(アンモニア水を含む)などが挙げられる。部分中和物は、通常、ボリ(メタ)アクリル酸の水溶液にイクアルカリを添加することにより得ることができる。ボリ(メタ)アクリル酸とアルカリの量比を調節することにより、所望の中和度とすることができる。

【0018】ポリ(メタ)アクリル酸の部分中和物の中和度は、得られるフィルムの酸素ガスバリヤー性と着色の程度を基準として選択することが好ましい。この中和度が高いほど、得られるフィルムの着色の程度は改善されるが、中和度がある程度以上高くなると酸素ガスバリヤー性が低下する傾向を示す。

【0019】本発明のフィルムの酸素ガスバリヤー性 50 は、熱処理条件や両ポリマー成分の混合割合によって影

...

響を受けるが、ポリ(メタ)アクリル酸の中和度によっ ても影響を受けることが判明した。具体的には、中和度 が20%以下の場合には、熱処理条件及び両ポリマー成 分の混合割合を選択することにより、熱処理したPVA 単体フィルム (厚み3 μm) の30℃、相対湿度 (R H) 80%での酸素透過度と同等か、それよりも酸素ガ スバリヤー性に優れたフィルムを得ることができるが、 中和度が20%を越える場合には、酸素ガスバリヤー性 が低下する。特に、ポリ(メタ)アクリル酸の部分中和 物の中和度が15%以下の場合には、両ポリマー成分の 10 混合割合の広い範囲内で、未中和物を用いた場合と比較 して、酸素ガスパリヤー性が顕著に優れたフィルムを得 ることができる。したがって、酸素ガスバリヤー性の観 点からは、ポリ(メタ)アクリル酸の部分中和物の中和 度は、通常、20%以下、好ましくは15%以下とする ことが望ましい。

【0020】一方、ポリ(メタ)アクリル酸を部分中和することにより、フィルムの着色が抑制され、中和度が20%以下の範囲内で酸素ガスバリヤー性も向上する。そこで、中和度は、好ましくは0.1~20%、より好ましくは1~20%、最も好ましくは3~15%の範囲内から選択することが望ましい。なお、中和度は、下記の式により求めることができる。

中和度=(A/B)×100

A:部分中和されたポリ(メタ)アクリル酸 lg中の中和されたカルボキシル基の全モル数

B:部分中和する前のポリ(メタ)アクリル酸 l g 中の カルボキシル基の全モル数

【0021】高ケン化度のPVAとポリ(メタ)アクリル酸の部分中和物との混合系は、相溶性に優れており、例えば、水溶液にした場合、均一な混合溶液が得られる。これらの混合物からフィルムを形成するには、混合物の水溶液をガラス板やプラスチックフィルム等の支持体上に流延し、乾燥して皮膜を形成させる方法(溶液流延法)、あるいは混合物の高濃度の水溶解液をエキストルーダーにより吐出圧力をかけながら細隙から膜状に流延し、含水フィルムを回転ドラムまたはベルト上で乾燥する方法(押出法)などがある。これらの製膜法の中でも、特に、溶液流延法は、透明性に優れた乾燥皮膜を容易に得ることができるため好ましい。

【0022】PVAとボリ(メタ)アクリル酸の部分中和物との混合物を得るには、各ボリマーを水に溶解させる方法、各ポリマーの水溶液を混合する方法、PVA水溶液中で(メタ)アクリル酸モノマーを重合させた後、アルカリで中和する方法、などが採用される。また、水以外の溶剤を用いて混合物としてもよい。溶液流延法を採用する場合には、ボリマー濃度は、通常、5~30重量%程度とする。水溶液または水溶解液を作成する場合、所望によりアルコールなど水以外の溶剤や柔軟剤等を適宜添加してもよい。フィルムの厚みは、使用目的に50

応じて適宜定めることができ、特に限定されないが、通常、 $0.1 \sim 500 \mu m$ 、好ましくは $0.5 \sim 100 \mu m$ 程度である。

【0023】後記の表1に、ポリアクリル酸(PAA)の部分中和物の中和度、及びPVAと該部分中和物との混合比を、それぞれ変化させて、溶液流延法により各種組成の乾燥皮膜を得、それらを200℃で15分間熱処理したフィルム(厚み3μm)について、酸素透過度(30℃、80%RH)を測定したデータを示し、そのデータをグラフ化して図1に示した。表1及び図1から明らかなように、PAA部分中和物の中和度が20%以下、好ましくは15%以下であって、その含有量が5~90重量%、好ましくは10~90重量%、より好ましくは20~80重量%の範囲内において、PVA単体フィルムと比較して、高湿度条件下で優れた酸素ガスバリヤー性を有するフィルムの得られることが分かる。

【0024】また、本発明のフィルムは、ボリ(メタ)アクリル酸の部分中和物の混合割合が大きくなるにつれて、80%RH(30℃)または100%RH(30℃)での酸素透過度が顕著に改善される。具体的には、後記の表2に示すように、PVAとボリアクリル酸の部分中和物(中和度10%)との混合割合が、重量比90:10~10:90、好ましくは80:20~20:80の範囲で、80%RH(30℃)または100%RH(30℃)という過酷な高湿度条件下であっても、優れた酸素ガスバリヤー性を有するフィルムを得ることができる

【0025】これらの実験データから、PVAとポリ (メタ) アクリル酸の部分中和物との混合割合は、重量 30 比で95:5~10:90であることがガスバリヤー性 改善の観点から必要であり、好ましくは90:10~10:90、より好ましくは80:20~20:80である。

【0026】 PVA及びポリ(メタ)アクリル酸の部分中和物との混合物から耐水性及び酸素ガスバリヤー性に優れたフィルムを得るには、製膜後、特定の条件で熱処理することが必要である。後記の表 4 に、PVAとポリアクリル酸の部分中和物(中和度 10 %)との重量比 3 0:70の混合物水溶液から溶液流延法により作成した乾燥皮膜(厚み 3 μ m)について、熱処理温度及び熱処理時間を変化させて各熱処理フィルムを作成し、酸素透過度(30 ∞ 、80 %RH)を測定したデータを示し、そのデータをグラフ化して図 2 に示した。

【0027】図2から明らかなように、酸素透過度が小さなフィルムを作成するには、熱処理温度が高い場合には、比較的短時間でよいが、熱処理温度が低くなるほど長時間を必要とする。熱処理したPVA単体フィルム(厚み 3μ m)の30°C、80%RHでの酸素透過度は、100 ml(STP)/m²·day·atm {Pa}程度である。この酸素透過度は、酸素透過係数1.

25×10⁻³ml(STP)・cm/m²・h・atm {Pa}に対応する。そこで、熱処理温度、熱処理時間及び酸素透過度に関する実験データを整理すると、PV A単体フィルムよりも高湿度下で改善された酸素透過度を有するフィルムを、PVAとボリ(メタ)アクリル酸の部分中和物との混合物フィルムにより達成するには、熱処理温度と熱処理時間が下記の関係式(a)及び

(b) を満足する条件で熱処理することが必要であることが判明した。

[0028]

(a) $l \circ g t \ge -0$. $0582 \times T + 26$. 06

(b) $373 \le T \le 573$

[式中、tは、熱処理時間(分)で、Tは、熱処理温度(K)である。]

この熱処理条件を採用することにより、PVAとポリ(メタ)アクリル酸の部分中和物との混合物から形成されたフィルムであって、30℃、80%RHの条件下で測定した酸素透過係数が1.25×10⁻³ml(STP)・cm/m²・h・atm{Pa}以下の優れた酸素ガスパリヤー性を有するフィルムを得ることができる。

【0029】本発明において、30°、80%RHの条件下(フィルム厚み 3μ m)で測定した酸素透過度が50ml(STP) $/m^2$ ・day・atm {Pa}以下となる好ましい酸素ガスバリヤー性を達成するためには、上記関係式(a)にかえて下記の関係式(c)を満足させる熱処理条件を採用すればよい。ただし、Tは、上記関係式(b)を満足するものとする。

(c) logt≥-0.0564×T+25.53 この熱処理条件(c)により、酸素透過係数(30℃、80%RH)が6.25×10⁻⁴ml(STP)・cm/m²・h・atm{Pa}以下のフィルムを得ることができる。

【0030】同様に、30℃、80%RHの条件下(フィルム厚み3 μ m)で測定した酸素透過度が25ml(STP) $/m^2$ ・day・atm {Pa}以下となるより好ましい酸素ガスバリヤー性を達成するためには、前記関係式(a)にかえて下記の関係式(d)を満足させる熱処理条件を採用すればよい。ただし、Tは、上記関係式(b)を満足するものとする。

(d) logt≧-0.0547×T+25.00 この熱処理条件(d)により、酸素透過係数(30℃、 80%RH)が3.13×10⁻⁴ml(STP)・cm /m²·h·atm{Pa}以下のフィルムを得ること ができる。

【0031】さらに、30℃、80%RHの条件下(フィルム厚み3µm)で測定した酸素透過度が10ml (STP)/m²・day・atm{Pa}以下となる特に好ましい酸素ガスバリヤー性を達成するためには、前記関係式(a)にかえて下記の関係式(e)を満足さ せる熱処理条件を採用すればよい。ただし、Tは、上記 関係式(b)を満足するものとする。

(e) logt≥-0.0523×T+24.30 この熱処理条件(e)により、酸素透過係数(30℃、80%RH)が1.25×10⁻⁴ml(STP)・cm/m²・h・atm{Pa}以下のフィルムを得ることができる。

【0032】熱処理温度(T)は、100℃(373 K)~300℃(573K)の範囲から選択される。しかしながら、この熱処理温度が低い範囲では、高度のガスバリヤー性フィルムを得るには、非常に長時間の熱処理時間を必要とし、生産性が低下する。熱処理温度が高くなるほど、短い熱処理時間で高度のガスバリヤー性を得ることができるが、高過ぎると変色や分解のおそれがある。そこで、熱処理温度(T)は、好ましくは120℃(393K)~240℃(513K)、より好ましくは160℃(433K)~230℃(503K)である

【0033】ところで、高ケン化度のPVAを用いた場合、PVAとボリ(メタ)アクリル酸の部分中和物との混合割合が60:40~10:90(重量比)の範囲内において、両者の混合物水溶液を流延し、乾燥皮膜としただけで、これを熱処理せずとも、乾燥条件下(30 $\mathbb C$ 、0%RH、厚み3 μ m)における酸素透過度は、同様にして作成したPVA単体フィルムと比較して、改善され、PVA:ボリ(メタ)アクリル酸部分中和物=50:50(重量比)のときに極小値をとることが分かった。ところが、この乾燥皮膜は、PVA単体フィルムと同様に、その優れたガスバリヤー性能は、低湿度条件下のに限られ、30 $\mathbb C$ 、80%RHまたはそれ以上の高湿度条件下においては、皮膜の吸湿によって、酸素ガスバリャー性が大きく低下し、しかも、沸騰水中で皮膜が容易に溶解してしまう。

【0034】これに対して、本発明の熱処理条件を採用すれば、高湿度条件下でも従来得られなかった高度の酸素ガスバリヤー性を有するフィルムを得ることができ、しかもこのフィルムは、耐水性を有している。前記したとおり、米国特許第2,169,250号には、PVAとポリメタクリル酸との混合物からなる熱処理フィルムが開示されているけれども、その熱処理条件は、単に架橋構造を形成して、水に不溶化するためであって、具体的に示されている熱処理温度及び熱処理時間を混合物フィルムに適用しても、高湿度条件下で高度のガスバリヤー性を有するフィルムを得ることができない。この点で、本件発明で採用する熱処理条件は、従来開示されていない新規なものであり、それによって得られるフィルムも新規なガスバリヤー性フィルムである。

【0035】本発明では、ボリ(メタ)アクリル酸の部分中和物を使用しているため、未中和物を用いた場合と 50 比較して、熱処理による着色が抑制されたフィルムを得

ることができる。本発明のガスバリヤー性フィルムは、 高湿度条件下で高度の酸素ガスバリヤー性を有している ため、単独または他のフィルムとのラミネートフィルム として、特に食品包装材料の分野に好適である。

[0036]

【実施例】以下に、実施例及び比較例を挙げて、本発明 についてさらに具体的に説明するが、本発明は、これら の実施例のみに限定されるものではない。

【0037】 [実施例1及び比較例1] PVAとしてク ラレ (株) 社製のポパール 1 0 5 (ケン化度 9 8. 5 %、平均重合度 5 0 0) を用い、ポリアクリル酸 (PA A)として和光純薬工業(株)社製のポリアクリル酸2 5重量%水溶液(平均分子量150000)を用いた。 PAA水溶液に水酸化ナトリウムを計算量添加すること によって、中和度(DN)が5%、10%及び20%の PAA部分中和物(PAANa)を調製した。

【0038】PVAとPAANaとを、表1に示すよう な種々の重量割合になるように混合して、混合物の水溶 液(濃度10重量%)を調製した。これらの水溶液を、 それぞれ延伸ポリエチレンテレフタレートフィルム (厚 20 ルムの酸素透過度 み16μmの延伸PETフィルム)上にメイヤーバーを 用いてコーティングし、次いで、ドライヤーを用いて水 を蒸発させて、厚み3μmの乾燥皮膜を得た。この乾燥 皮膜が形成された延伸PETフィルムをオーブン中で2*

*00℃で15分間熱処理した。各熱処理フィルム(厚み 3 μm) について、30℃、80%RHの条件下で測定 した酸素透過度を表1に示す。

【0039】また、比較例として、PVAと未中和(D N=0%)のPAAを用いて同様に処理して得られた熱 処理フィルムの酸素透過度、PVA単独を用いて同様に 処理して得られた熱処理フィルムの酸素透過度、及び中 和度の異なるPAANa単独を用いて同様に処理して得 られた熱処理フィルムの酸素透過度についても、併せて 10 表1に示す。また、表1の結果を図1にグラフ化して示 す。

【0040】<酸素透過度の測定>Modern Co ntrol社製の酸素透過試験器OX-TRAN 2/ 20及び100TWINを用いて、延伸PETフィルム 及び熱処理フィルムが形成された延伸PETフィルム (積層物)の酸素透過度を測定し、以下の計算式により 熱処理フィルムの酸素透過度Primを算出した。

 $1/P_{total} = 1/P_{film} + 1/P_{PET}$

Ptotal:熱処理フィルムが積層された延伸PETフィ

Prim: 熱処理フィルムの酸素透過度 Ppet:延伸PETフィルムの酸素透過度

[0041] 【表1】

組 成 (重量%)		酸素透過度 (30°C, 80%RH, 3 µm) ml (STP)/m²·day·a.tm{Pa}				
PVA	PAANa	DN = 0 %	DN = 5 %	DN = 10 %	DN = 20 %	
100	0	100	100	100 -	100	
90	10	39	49	64	180	
80	20	19	14	22	. 120	
70	30	19	6.6	5.5	120	
60	40	21	3.0	1.3	79	
50	50	16	2.2	0.7	40	
40	60	16	2.5	0.3	28	
30	70	17	0.7	0.1	35	
20	80	35	1.2	0.5	53	
10	90	1350	14	4.0	64	
0	100	> 5000	> 5000	> 5000	> 5000	

【0042】表1から明らかなように、PVA:PAA $Na = 95:5 \sim 10:90$ 、好ましくは $90:10 \sim$ 10:90、より好ましくは80:20~20:80の 重量比の範囲内において、高湿度条件下でも優れたガス バリヤー性を有するフィルムが得られる。PVA単独を 用いて得られたフィルム、及び中和度の異なるPAAN a単独を用いて得られたフィルムは、沸騰水に溶解した が、これらを除く熱処理フィルムは、すべて沸騰水に対 して不溶であった。

【0043】 [実施例2及び比較例2] 熱処理フィルム の酸素透過度に及ぼす湿度の影響をみるために、 [実施] 例1及び比較例1]で得られた熱処理フィルム (DN= 10%のPAANa使用品)について、**①**30℃、0% RH (Dry)、②30℃、100%RHの各条件で酸 素透過度を測定した。結果を表2に示す。なお、表2に は、[実施例1及び比較例1]で示した③30℃、80 %RHでの酸素透過度も併せて示した。

[0044]

組(重	成 量%)	酸菜透過度 (30°C, 3μm) ml (STP)/n°•day•atm{Pa}			
PVA	PAANa	Dry	80 % RH	100 % RH	
100	0	1.2	100	1820	
90	10	1.5	64	800	
80	20	0.3	22	280	
70	30	. 1.4	5.5	79	
60	40	0.1	1.3	13	
50	50	0.1	0.7	5.7	
30	70	0.1	0.1	· 1.5	
10	90	0.6	4.0	35	
0	100	1.2	> 5000	N.D.	

(脚注) N. D. は、熱処理フィルムの酸素透過度と支持体の延伸PETフィルムの酸素透過度が接近しているため、測定不可能であったことを示す。

11

【0045】表2のデータから、本発明のフィルムが、乾燥条件下ではもとより、高湿度条件下で優れた酸素ガスバリヤー性を示し、特に、PAA部分中和物が20~80重量%、より好ましくは30~70重量%の範囲内において、30℃、80%RHあるいは30℃、100%RHという極めて高湿度条件下でも、優れた酸素ガスバリヤー性を示すフィルムの得られることが分かる。

【0046】[実施例3及び比較例3]本発明フィルムの着色に対する抑制効果をみるために、実施例1で得られた熱処理フィルムについて、表3に示す組成比のものを、島津製作所(株)製の紫外可視分光光度計UV-2*30

*200により、400nmにおける吸光度を測定することにより、着色の程度を評価した。測定は、上記の分光光度計の試料側に熱処理フィルムが形成された延伸PETフィルム(積層物)を、また、対照側に延伸PET(厚み16μm)を200℃で15分間熱処理したものをセットして行った。

【0047】また、比較例1で得られたPVAと未中和(DN=0%)のPAAからなる熱処理フィルムで表3に示す組成比のもの、PVA単独の熱処理フィルム、及び中和度の異なるPAANa単独の熱処理フィルムについても、同様に測定した(比較例)。400nmにおけるフィルムの吸光度の測定結果を表3に示す。

[0048]

【表3】

組成比(重量%)		PAA 中和度				
PVA	PAANa	DN = 0 %	DN = 5 %	DN = 10 %	DN = 20 %	
100	0	0.040	0.040	0.040	0.040	
-80	20	0.030	0.028	0.018	0.008	
60	40	0.055	0.040	0.049	0.020	
40	60	0.090	0.072	0.038	0.001	
20	80	0.120	0.108	0.055	0.001	
0	100	0.001	0.001	0.001	0.001	

【0049】190nmから600nmまでの領域(近紫外線及び可視光線領域)において、400nmは、ポリエン構造に由来する吸収と考えられており、表3から明らかなように、PAAを中和することで400nmにおけるフィルムの吸光度が小さくなり、着色の程度が改善されることがわかる。

【0050】 [実施例4及び比較例4] 実施例1と同様にして、PVA:PAANa(DN=10%)=30:70(重量比)の混合物水溶液(濃度10重量%)を作成し、得られた混合物水溶液を延伸PETフィルム(厚 50

み 16μ m)上にメイヤーバーを用いてコーティングし、次いで、ドライヤーを用いて水を蒸発させて、厚み 3μ mの乾燥皮膜を得た。この乾燥皮膜が形成された延伸PETフィルムをオーブン中で、熱処理温度及び熱処理時間を表4に示すように変化させて熱処理を行った。各熱処理フィルムについて、酸素透過度(30 $\mathbb C$ 、80 $\mathbb C$ 、 $\mathbb C$ ※RH)を測定した。結果を表4に示す。また、表4 のデータを各熱処理温度ごとに、熱処理時間と酸素透過度との関係についてグラフ化して図2 に示す。

[0051]

【表 4】

熱処理条件		酸素透過度 ml (STP)/m²·day·atm{Pa}	
温度	時間	in (317)/in -day -atm(ray (30°C, 80%RH, 3 μm)	
	2 時間	N.D.	
	4時間	N.D.	
120℃	8時間	1000	
	16 時間	400	
	32 時間	54	
	1時間	430	
	2時間	190	
140℃	4時間	40	
	8時間	11	
	16時間	3.3	
	30分	7.4	
160°C	1時間	3.2	
100 0	2時間	0.83	
 	4 時間	0.44	
	15分	2.9	
180℃	30分	0.44	
180 C	1時間	0.38	
	2時間	0.17	
200 °C	10分	0.4	
200 0	15分	0.1	

13

(脚注) N. D. は、熱処理フィルムの酸素透過度と支持体の延伸PETフィルムの酸素透過度が接近している 30 ため、測定不能であったことを示す。

【0052】表4のデータから、先ず、酸素透過度

(P) と熱処理時間(t:分)との関係について、各熱処理温度毎に、常法により、logPelogteo人の帰直線を作成し、次に、各熱処理温度において、酸素透過度が0.1、1.0、5.0、10、50、10

0、500、及び1000ml(STP)/m²・day・atm{Pa}になる熱処理時間logtを計算し、さらに、この計算結果に基づいて、熱処理温度(T)とlogtとの関係について、一次回帰直線を作成した。一方、表1に示したとおり、PVAフィルム(厚み3μm)を200℃で15分間熱処理すると、30℃、80%RHでの酸素透過度が100ml(STP)/m²・day・atm{Pa}のフィルムが得られる。そこで、前記で得られた回帰分析の結果から、酸素透過度が100ml(STP)/m²・day・atm{Pa}以下となる熱処理条件を求めたところ、次式が得られた。

[0053]

logt≥-0.0582×T+26.06 [式中、tは、熱処理時間(分)で、Tは、熱処理温度 (K)である。〕

熱処理温度 (T) の範囲は、フィルムの着色やポリマー成分の分解・溶融などを考慮すると、373≦T≦573となる。この熱処理条件を採用すると、本発明のフィルムの酸素透過度は、PVA単体フィルムの酸素透過度以下になり、30℃、80%RHの条件下で測定した酸素透過係数が1.25×10⁻³m1(STP)・cm/m²・h・atm{Pa}以下のガスバリヤー性が改善されたフィルムとなる。

【0054】 [実施例5及び比較例5] 表5に示す中和 剤を用いてPAAを5%、10%及び20%に部分中和 した。実施例1と同様にして、PVAと表5に示すPA Aの部分中和物とを30:70の重量比で含有する水溶 液(濃度10重量%)を作成し、延伸PETフィルム上 で製膜した後、200℃で15分間熱処理してフィルム を作成した。得られた各熱処理フィルムについて、酸素 透過度(30℃、80%RH)を測定した。結果を表5 に示す。

[0 0 5 5]

【表 5】

中和剤	中和度 (%)	酸素透過度 (30°C, 80%RH, 3μm) ml (STP)/m³•day•atm{Pa}		
		実施例	比較例	
_	5	0.7	-	
NaOH	10	0.1		
	20	35	-	
	5	0.6	_	
LiOH	10	0.1	+	
	20	35	_	
	5	0.7	-	
кон	10	0.1	_	
	20	33	_	
	5	1.0	-	
инон	10	0.2		
	20	38	_	
無し	-	_	17	

施例1で使用したのと同じものを用い、また、ポリメタ クリル酸 (PMAA) として日本純薬工業 (株) 製のポ リメタクリル酸(AC-30H)20重量%水溶液(平 均分子量50000)を用いた。PMAA水溶液に水酸 化ナトリウムを計算量添加することによって、中和度が 10%のPMAA部分中和物(PMAANa)を調製し た。次いで、PVA:PMAANa=80:20の重量 割合で混合し、混合物の水溶液(濃度10重量%)を作 成した。この混合水溶液を用いて、実施例1と同様にし て厚み3μmの乾燥皮膜を作成し、200℃で15分間 熱処理を行い、フィルムを得た。

【0057】このフィルムの酸素透過度(30℃、80 %RH) は、20ml (STP) /m2·day·at m {Pa} であり、400nmでの吸光度は、0.00 1であった。そして、このフィルムは、沸騰水に不溶で あった。一方、比較例としてPVAと未中和のPMAA を用いて同様に処理して得られた熱処理フィルムの酸素 透過度 (30℃、80%RH) は、31ml (STP) /m²·day·atm {Pa} であり、400nmで ムは、沸騰水に不溶であった。

[0058]

【発明の効果】PVAフィルムは、酸素透過度の湿度依

【0056】[実施例6及び比較例6] PVAとして実 20 存性が大きく、高湿度下での利用には適さなかった。従 来、PVAフィルムの耐水化について多くの提案がなさ れているが、乾燥条件下における優れた酸素ガスバリヤ 一性を高湿度下でも充分に維持するという観点からは、 いまだ不十分なものであり、さらに高温、高湿度下での 利用は難しい。これに対して、本発明によれば、PVA とポリ (メタ) アクリル酸の部分中和物との混合物から 形成したフィルムであって、特定の熱処理条件を採用す ることにより、耐水性で、かつ、高湿度条件下でのガス バリヤー性が顕著に優れ、しかも着色が抑制されたフィ 30 ルムを提供することができる。本発明のフィルムは、特 に、食品包装材料として、畜肉、ハム、ソーセージ等の 畜肉加工品やジュース、サイダー等酸素によって変質し 易い食品、飲料等の包装に好適である。

【図面の簡単な説明】

【図1】図1は、PVAとPAA部分中和物との混合割 合及び該部分中和物の中和度をそれぞれ変化させて得た 熱処理フィルムについて、PAA部分中和物の含有量と 酸素透過度との関係を示すグラフである。

【図2】図2は、熱処理温度を変化させて得たPVAと の吸光度は、0.002であった。そして、このフィル 40 PAA部分中和物との混合物からなる熱処理フィルムに ついて、熱処理温度、熱処理時間及び酸素透過度の関係 を示すグラフである。

[図1]

[図2]

【手続補正書】

【提出日】平成6年12月21日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】 0 0 0 8

【補正方法】変更

【補正内容】

【0008】 以上、説明したように、従来の耐水化策は、乾燥条件下におけるPVAフィルムの優れたガスバリヤー性能を高湿度下、あるいは高温・高湿度下でも維持するという観点からは、いまだ不十分なものである。一方、PVAとポリアクリル酸との混合物を用いたフィルムやシートが提案されているが(例えば、特公昭63-47743号、特公平2-14376号、特公平2-27941号)、これらのフィルムやシートは、いずれも水溶性または水吸収性であり、耐水性かつ酸素ガスバリヤー性のフィルムではない。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0016

【補正方法】変更

【補正内容】

【0016】 本発明では、ボリ(メタ)アクリル酸の部分中和物を使用する。ボリ(メタ)アクリル酸は、ボリアクリル酸、ボリメタクリル酸、アクリル酸とメタクリル酸との共重合体、またはこれらの混合物であって、分子中に2個以上のカルボキシル基を有する化合物である。好適なものとして、アクリル酸またはメタクリル酸のホモボリマーやコボリマーを挙げることができる。ボリ(メタ)アクリル酸の数平均分子量は、2000~25000の範囲が好ましい。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 7

【補正方法】変更

【補正内容】

【0037】 [実施例1及び比較例1] PVAとしてクラレ(株)社製のボバール105(ケン化度98.5%、平均重合度500)を用い、ポリアクリル酸(PAA)として和光純薬工業(株)社製のポリアクリル酸2-5重量%水溶液(数平均分子量150000)を用いた。PAA水溶液に水酸化ナトリウムを計算量添加することによって、中和度(DN)が5%、10%及び20%のPAA部分中和物(PAANa)を調製した。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0038

【補正方法】変更

【補正内容】

【0038】 PVAとPAANaとを、表1に示すような種々の重量割合になるように混合して、混合物の水溶液(濃度10重量%)を調製した。これらの水溶液を、それぞれ延伸ポリエチレンテレフタレートフィルム(厚み16 μ mの延伸PETフィルム)上に<u>卓上コーター(K CONTROL COATER 303, RK Print-Coat Instruments Ltd. 社製)を用い、メイヤーバーでコーティングし、次いで、ドライヤーを用いて水を蒸発させて、厚み3 μ mの乾燥皮膜を得た。この乾燥皮膜が形成された延伸PETフィルムをオーブン中で200℃で15分間熱処理した。各熱処理フィルム(厚み3 μ m),について、30℃、80%RHの条件下で測定した酸素透過度を表1に示す。</u>

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 0

【補正方法】変更

【補正内容】

【0040】 <酸素透過度の測定>Modern Control社製の酸素透過試験器OX-TRAN 2/20及び100TWINを用いて、延伸PETフィルム及び熱処理フィルムが形成された延伸PETフィルム(積層物)の酸素透過度を測定し、以下の計算式により熱処理フィルムの酸素透過度Ptilmを算出した。

 $1/P_{total} = 1/P_{film} + 1/P_{PET}$

P_{total}:熱処理フィルムが積層された延伸PETフィ

ルムの酸素透過度

Prilm: 熱処理フィルムの酸素透過度 Pret: 延伸PETフィルムの酸素透過度

<耐水性>沸騰水にフィルムを10分間浸漬させて、溶

解するか否かを観察した。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 6 【補正方法】変更

【補正内容】

【0056】 [実施例6及び比較例6] PVAとして実施例1で使用したのと同じものを用い、また、ポリメタクリル酸 (PMAA)として日本純薬工業 (株)製のポリメタクリル酸 (AC-30H) 20重量%水溶液 (数平均分子量5000)を用いた。PMAA水溶液に水酸化ナトリウムを計算量添加することによって、中和度が10%のPMAA部分中和物 (PMAANa)を調製した。次いで、PVA:PMAANa=80:20の重量割合で混合し、混合物の水溶液 (濃度10重量%)を作成した。この混合水溶液を用いて、実施例1と同様にして厚み3μmの乾燥皮膜を作成し、200℃で15分間熱処理を行い、フィルムを得た。

フロントページの続き

(51) Int. Cl. ⁶ 識別記号 庁内整理番号 F I C 0 8 L 29/04 L G T 33/00 L H R

技術表示箇所

33/00 // B 2 9 K 29:00 33:00

B 2 9 L 7:00

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第3部門第3区分

【発行日】平成9年(1997)5月13日

【公開番号】特開平7-102083

【公開日】平成7年(1995)4月18日

【年通号数】公開特許公報7-1021

【出願番号】特願平5-262958

【国際特許分類第6版】

C08J	5/18	CEX	
		CEY	
B29C	71/02		
B65D	65/02		
C08J	7/00	301	
C08L	29/04	LGT	
	33/00	LHR	
// B29K	29:00		
	33:00		
B29L	7:00		
[FI]			
C08J	5/18	CEX	9267-4F
		CEY	9267-4F
B29C	71/02	÷	8413-4F
B65D	65/02	Е	0333-3E
CO8J	7/00	301	7310-4F
C08L	29/04	LGT	9166-4J
	33/00	LHR	7824-4J

【手続補正書】

【提出日】平成8年7月11日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 4

【補正方法】変更

【補正内容】

【0014】また、本発明によれば、ポリビニルアルコール及びポリ(メタ)アクリル酸の部分中和物を重量比95:5~10:90の範囲で含有する混合物からフィルムを形成し、次いで、該フィルムを下記関係式(a)及び(b)で規定する熱処理温度と熱処理時間の関係を

満足する条件下で熱処理することを特徴とするガスバリヤー性フィルムの製造方法が提供される。

(a) $l \circ g t \ge -0$. $0582 \times T + 26$. 06

(b) $373 \le T \le 573$

 (式中、tは、熱処理時間(分)で、Tは、熱処理温度

 (K)である。]なお、{Pa}は、従来単位の[m]

 (STP)・cm/m²・h・atm]または[m]

 (STP)/m²・h・atm]を、[mol·m/m²・s・Pa] または [mol/m²・s・Pa] に換算可能なことを示す符号であり、JIS-Z1707にその標記例がある。