GV LÊ VĂN HỢP

ĐẠI SỐ TUYẾN TÍNH

CHƯƠNG 5 : SỰ CHÉO HÓA CỦA MA TRẬN VUÔNG I. TỔNG TRỰC TIẾP CÁC KHÔNG GIAN CON:

1.1/ <u>**ĐỊNH NGHĨA:**</u> Giả sử \mathbb{R}^n có các không gian con $H_1, H_2, ..., H_k$ ($k \ge 2$).

Ta nói \mathbf{R}^n là tổng trực tiếp của các không gian con $H_1, H_2, ..., H_k$

(ký hiệu
$$\mathbf{R}^{\mathbf{n}} = \mathbf{H}_1 \oplus \mathbf{H}_2 \oplus \cdots \oplus \mathbf{H}_k$$
 hay $\mathbf{R}^{\mathbf{n}} = \bigoplus_{j=1}^k \mathbf{H}_j$) nếu:

a)
$$\mathbf{R}^{\mathbf{n}} = H_1 + H_2 + \dots + H_k = \{ \alpha = \sum_{j=1}^k \alpha_j \mid \alpha_j \in H_j \ (1 \le j \le k) \} \ (t \mathring{o}ng \ thường).$$

b)
$$\forall j \in \{1, 2, ..., k\}, [H_j \cap \sum_{i \neq t=1}^k H_i] = \{\mathbf{O}\}.$$

Ví dụ:

- a) H và K là các không gian con kiểu đường thẳng trong R² sao cho các
 đường thẳng tương ứng với H và K cắt nhau. Khi đó R² = H + K và
 H ∩ K = { O } nên R² = H ⊕ K.
- b) H và K lần lượt là các không gian con kiểu đường thẳng và mặt phẳng trong R³ sao cho đường thẳng tương ứng với H cắt mặt phẳng tương ứng với K. Khi đó R³ = H + K và H ∩ K = { O } nên R³ = H ⊕ K.

nên có tổng trực tiếp $\mathbf{R}^2 = \mathbf{H} \oplus \mathbf{K}$.

nên có tổng trực tiếp $\mathbf{R}^3 = \mathbf{H} \oplus \mathbf{K}$.

c) H, K và L là các không gian con kiểu đường thẳng trong R³ sao cho các đường thẳng tương ứng với H, K và L không đồng phẳng. Để ý H+K,

H + L và K + L là các không gian con kiểu mặt phẳng trong \mathbb{R}^3 . Ta có $\mathbf{R}^3 = H + K + L, H \cap (K + L) = K \cap (H + L) = L \cap (H + K) = \{ \mathbf{O} \} \text{ nên}$ $\mathbf{R}^3 = \mathbf{H} \oplus \mathbf{K} \oplus \mathbf{L}$.

d) H và K là các không gian con kiểu mặt phẳng trong \mathbf{R}^3 và các mặt phẳng tương ứng với H và K cắt nhau theo không gian con kiểu đường thẳng L. Khi đó $\mathbf{R}^3 = \mathbf{H} + \mathbf{K} \left[t \mathring{o} ng thường mà không phải là tổng trực tiếp \right] vì$ $H \cap K = L \neq \{ \mathbf{O} \}$ và dim $(H \cap K) = \text{dim}L = 1]$.

 $\mathbf{R}^3 = \mathbf{H} + \mathbf{K} + \mathbf{L}, \mathbf{H} \cap (\mathbf{K} + \mathbf{L}) = \{ \mathbf{O} \},\$

 $K \cap (H + L) = \{ O \}, L \cap (H + K) = \{ O \},$ không có tổng trực tiếp.

nên có tổng trực tiếp $\mathbf{R}^3 = \mathbf{H} \oplus \mathbf{K} \oplus \mathbf{L}$. \mathbf{R}^3 chỉ là tổng thường của \mathbf{H} và \mathbf{K} .

 $\mathbf{R}^3 = \mathbf{H} + \mathbf{K} \text{ và } \mathbf{H} \cap \mathbf{K} = \mathbf{L} \neq \{\mathbf{O}\} \text{ nên}$

1.2/ **MÊNH ĐỀ:** \mathbb{R}^n có các không gian con $H_1, H_2, ..., H_k$ ($k \ge 2$).

Các phát biểu sau là tương đương với nhau:

- a) $\mathbf{R}^{\mathbf{n}} = H_1 \oplus H_2 \oplus \cdots \oplus H_k$ (V_n là tổng trực tiếp của H_1, H_2, \ldots, H_k).
- b) $\forall \alpha \in \mathbf{R}^{\mathbf{n}}, \exists ! \ \alpha_j \in H_j \ (j \in \{1, 2, ..., k\}), \alpha = \sum_{i=1}^k \alpha_j \ (\text{vi\acute{e}t} \ \alpha = \bigoplus_{j=1}^k \alpha_j).$
- $c) \ \forall \textbf{co} \ \textbf{so} \ B_j \ \textbf{cua} \ H_j \ (j \in \{\ 1,2,...,k\ \}\) \ , \ B = \bigcup_{j=1}^{\kappa} B_j \ \textbf{là} \ \textit{một co} \ \textit{so} \ \textbf{cua} \ \textbf{R}^n \, .$
- $d) \; \exists \; \textbf{co} \; \textbf{so} \; B_j \; \; \textbf{của} \; \; H_j \; (\; j \in \{\; 1, \, 2, \, ..., \, k \; \} \;), \; \; B = \bigcup_{i=1}^{\kappa} \textit{B}_j \; \; l \grave{\textbf{a}} \; \textit{một co} \; \textbf{so} \; \textbf{của} \; \; \textbf{R}^n_{\;\; n} \, .$ $\underline{Lwu\ \acute{y}}$: Nếu $\mathbf{R}^{\mathbf{n}} = H_1 + H_2 + \dots + H_k$ không phải là tổng trực tiếp thì các kết

quả trên không đúng. $\forall \alpha \in \mathbf{R}^n$, $\exists \alpha_j \in H_j (j \in \{1, 2, ..., k\}), \alpha = \sum_{i=1}^k \alpha_i$: sự tồn

tại của các $\alpha_i \in H_i$ không nhất thiết là duy nhất. $\forall c \sigma s \mathring{\sigma} B_i$ của H_i

 $(j \in \{1, 2, ..., k\}), B = \bigcup_{j=1}^{k} B_j \text{ là một tập sinh (không chắc là một cơ sở) của } \mathbf{R}^n.$

 $\mathbf{R}^2 = \mathbf{K} \oplus \mathbf{H}$

 $\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{OB}$ và $\overrightarrow{ON} = \overrightarrow{OC} + \overrightarrow{OD}(duy nhất)$ $\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{OB}$ và $\overrightarrow{ON} = \overrightarrow{OC} + \overrightarrow{OD}(duy nhất)$ $\mathbf{R}^3 = \mathbf{H} \oplus \mathbf{K}$.

 $\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} \quad (duy \ nhất)$

 $\mathbf{R}^3 = \mathbf{H} \oplus \mathbf{K} \oplus \mathbf{L}$.

 $\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC} + \overrightarrow{OD}$ (không duy nhất)

 $R^3 = H + K$ (không là tổng trực tiếp).

Ví dụ:

a) $H = \langle A_1 = \{ \alpha_1 = (1, 2, 0, 3), \alpha_2 = (0, 1, -1, 1) \} \rangle \leq \mathbf{R}^4 \text{ và } A_1 \text{ là một cơ sở }$ của H vì H = < A₁> và A₁ độc lập tuyến tính (để ý α_1 không tỉ lệ với α_2) $K = \langle A_2 = \{ \alpha_3 = (3, -2, 1, 0), \alpha_4 = (0, 2, 0, 1) \} \rangle \leq \mathbb{R}^4 \text{ và } A_2 \text{ là } một \ co \ sở$ của K vì $K = \langle A_2 \rangle$ và A_2 độc lập tuyến tính (để ý α_3 không tỉ lệ với α_4).

Ta có $A=A_1\cup A_2=\{\;\alpha_1\;,\,\alpha_2\;,\,\alpha_3\;,\,\alpha_4\;\}$ là một cơ sở của ${\bf R^4}$ vì

$$\begin{vmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & -1 & 1 \\ 3 & -2 & 1^* & 0 \\ 0 & 2 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 0 & 3 \\ 3 & -1 & 0 & 1 \\ 3 & -2 & 1^* & 0 \\ 0 & 2 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 3 & -1 & 1 \\ 0 & 2 & 1^* \end{vmatrix} = \begin{vmatrix} 1 & -4 & 3 \\ 3 & -3 & 1 \\ 0 & 0 & 1^* \end{vmatrix} = \begin{vmatrix} 1 & -4 \\ 3 & -3 \end{vmatrix} = 9 \neq \mathbf{0}.$$

Suy ra $\mathbf{R}^4 = \mathbf{H} \oplus \mathbf{K}$.

Xét $\alpha = (-5,9,-4,1) \in \mathbb{R}^4 = \mathbb{H} \oplus \mathbb{K}$. Ta muốn phân tích $\alpha = \beta \oplus \gamma$ với $\beta \in \mathbb{H}$

và
$$\gamma \in K$$
. Ta tìm được $[\alpha]_A = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ -1 \\ 4 \end{pmatrix}$ (bằng cách *giải phương trình*

vector $c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 + c_4\alpha_4 = \alpha$ với các ẩn số thực c_1 , c_2 , c_3 và c_4).

Khi đó
$$\beta = c_1\alpha_1 + c_2\alpha_2 = -2(1, 2, 0, 3) + 3(0, 1, -1, 1) = (-2, -1, -3, -3) \in H$$

và $\gamma = c_3\alpha_3 + c_4\alpha_4 = -(3, -2, 1, 0) + 4(0, 2, 0, 1) = (-3, 10, -1, 4) \in K$.

b)
$$M = \langle B_1 = \{\beta_1 = (1, 4, 2, 3), \beta_2 = (0, 3, 1, 2)\} \rangle \leq \mathbb{R}^4$$
 và B_1 là một cơ sở của

M vì $M = \langle B_1 \rangle$ và B_1 độc lập tuyến tính (để ý β_1 không tỉ lệ với β_2).

$$N = \langle B_2 = \{ \beta_3 = (2, 0, 1, 0) \} \rangle \leq \mathbb{R}^4 \text{ và } B_2 \text{ là một cơ sở của } N \text{ vì}$$

 $N = \langle B_2 \rangle$ và B_2 độc lập tuyến tính (để ý $\beta_3 \neq \mathbf{O}$).

$$L = \langle B_3 = \{ \beta_4 = (0, -3, 0, 1) \} \rangle \leq \mathbf{R}^4 \text{ và } B_3 \text{ là } một cơ sở của } L \text{ vì }$$

 $L = \langle B_3 \rangle$ và B_3 độc lập tuyến tính (để ý $\beta_4 \neq \mathbf{O}$).

Ta có $B = B_1 \cup B_2 \cup B_3 = \{ \beta_1, \beta_2, \beta_3, \beta_4 \}$ là một cơ sở của \mathbb{R}^4 vì

$$\begin{vmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{vmatrix} = \begin{vmatrix} 1 & 4 & 2 & 3 \\ 0 & 3 & 1 & 2 \\ 2 & 0 & 1 & 0 \\ 0 & -3 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1^* & 4 & 2 & 3 \\ 0 & 3 & 1 & 2 \\ 0 & -8 & -3 & -6 \\ 0 & -3 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 3 & 1 & 2 \\ -8 & -3 & -6 \\ -3 & 0 & 1^* \end{vmatrix} = \begin{vmatrix} 9 & 1 & 2 \\ -26 & -3 & -6 \\ 0 & 0 & 1^* \end{vmatrix} = \begin{vmatrix} 9 & 1 \\ -26 & -3 \end{vmatrix} = -1 \neq \mathbf{0}$$

Suy ra $\mathbf{R}^4 = \mathbf{M} \oplus \mathbf{N} \oplus \mathbf{L}$.

Xét
$$\alpha = (-5, -14, -5, -3) \in \mathbb{R}^4 = M \oplus N \oplus L$$
.

Ta muốn phân tích $\alpha = \beta \oplus \gamma \oplus \delta$ với $\beta \in M$, $\gamma \in N$ và $\delta \in L$.

Ta tìm được
$$[\alpha]_B = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \\ -3 \\ 2 \end{pmatrix}$$
 (bằng cách *giải phương trình vector*

$$c_1\beta_1 + c_2\beta_2 + c_3\beta_3 + c_4\beta_4 = \alpha \text{ v\'oi c\'ac \'an s\'o thực } c_1, c_2, c_3 \text{ và } c_4).$$

Khi đó
$$\beta = c_1\beta_1 + c_2\beta_2 = (1, 4, 2, 3) - 4(0, 3, 1, 2) = (1, -8, -2, -5) \in M$$

$$\gamma = c_3\beta_3 = -3(2, 0, 1, 0) = (-6, 0, -3, 0) \in N \text{ và}$$

$$\delta = c_4 \beta_4 = 2(0, -3, 0, 1) = (0, -6, 0, 2) \in L.$$

c)
$$P = \langle D_1 = \{ \delta_1 = (-3, 0, 2) \} \rangle \leq \mathbf{R}^3 \text{ và } D_1 \text{ là một cơ sở của } P \text{ vì}$$

$$P = \langle D_1 \rangle$$
 và D_1 độc lập tuyến tính (để ý $\delta_1 \neq \mathbf{O}$).

$$Q = \langle D_2 = \{ \delta_2 = (4, 1, -3) \} \rangle \leq \mathbf{R}^3 \text{ và } D_2 \text{ là một cơ sở của } Q \text{ vì}$$

$$Q = \langle D_2 \rangle$$
 và D_2 độc lập tuyến tính (để ý $\delta_2 \neq \mathbf{O}$).

$$U = \langle D_3 = \{ \delta_3 = (6, 1, -4) \} \rangle \leq \mathbb{R}^3 \text{ và } D_3 \text{ là } một \ cơ sở của } U \text{ vì}$$

$$U = \langle D_3 \rangle$$
 và D_3 độc lập tuyến tính (để ý $\delta_3 \neq \mathbf{O}$).

$$D = D_1 \cup D_2 \cup D_3 = \{ \delta_1, \delta_2, \delta_3 \}$$
 là *một cơ sở* của \mathbb{R}^3 vì

$$\begin{vmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{vmatrix} = \begin{vmatrix} -3 & 0 & 2 \\ 4 & 1 & -3 \\ 6 & 1 & -4 \end{vmatrix} = \begin{vmatrix} -3 & 0 & 2 \\ -2 & 0 & 1 \\ 6 & 1^* & -4 \end{vmatrix} = - \begin{vmatrix} -3 & 2 \\ -2 & 1 \end{vmatrix} = -1 \neq \mathbf{0}. \text{ Do } \text{ d\'o } \mathbf{R}^3 = \mathbf{P} \oplus \mathbf{Q} \oplus \mathbf{U}.$$

Xét
$$\alpha = (25, 1, -16) \in \mathbb{R}^3 = P \oplus Q \oplus U$$
.

Ta muốn phân tích $\alpha = \beta \oplus \gamma \oplus \delta$ với $\beta \in P$, $\gamma \in Q$ và $\delta \in U$.

Ta tìm được
$$[\alpha]_D = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} -5 \\ -2 \\ 3 \end{pmatrix}$$
 (bằng cách *giải phương trình vector*

$$c_1\delta_1 + c_2\delta_2 + c_3\delta_3 = \alpha \text{ v\'oi c\'ac \'an s\'o thực } c_1, c_2 \text{ và } c_3).$$

Khi đó
$$\beta = c_1 \delta_1 = -5(-3, 0, 2) = (15, 0, -10) \in P$$
,

$$\gamma = c_2 \delta_2 = -2(4, 1, -3) = (-8, -2, 6) \in Q \text{ và}$$

$$\delta = c_3 \delta_3 = 3(6, 1, -4) = (18, 3, -12) \in U.$$

d)
$$V = \langle C_1 = \{ \gamma_1 = (1, 2, 2), \gamma_2 = (4, 7, 1) \} \rangle \leq \mathbf{R}^3 \text{ và } C_1 \text{ là một cơ sở của } V$$
 vì $V = \langle C_1 \rangle \text{ và } C_1 \text{ độc lập tuyến tính } (\text{ vì } \gamma_1 \text{ không tỉ lệ với } \gamma_2).$

$$\begin{split} W = & < C_2 = \{ \ \gamma_3 = (-2, -3, \, 4), \ \gamma_4 = (3, \, 7, \, 15) \ \} > \leq \mathbf{R^3} \ \ \text{và} \ \ C_2 \ \ \text{là một cơ sở của} \\ W \ \ \text{vì} \ \ W = & < C_2 > \ \text{và} \ \ C_2 \ \ \textit{độc lập tuyến tính} \ \ (\ \text{vì} \ \ \gamma_3 \ \ \textit{không tỉ lệ với} \ \ \gamma_4 \). \end{split}$$
 $\text{Ta có } \ V + W = & < C = C_1 \cup C_2 > = < \{ \ \gamma_1 \ , \ \gamma_2 \ , \ \gamma_3 \ , \ \gamma_4 \ \} >. \end{split}$

Lập ma trận và biến đổi về dạng bậc thang rút gọn:

$$\begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 4 & 7 & 1 \\ -2 & -3 & 4 \\ 3 & 7 & 15 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 2 & 2 \\ 0 & 1 & 9 \\ 0 & 1 & 8 \\ 0 & 1 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & -16 \\ 0 & 1^* & 9 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 0 \\ 0 & 1^* & 0 \\ 0 & 0 & 1^* \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ O \end{pmatrix}.$$

Ta thấy V+W có một cơ sở là $\mathbf{B}_0=\{\,\epsilon_1\,,\,\epsilon_2\,,\,\epsilon_3\,\}$, nghĩa là $V+W=\mathbf{R}^3$ và $\dim(V+W)=|\,\mathbf{B}_0\,|=3$. Như vậy $C=C_1\cup C_2=\{\,\gamma_1\,,\,\gamma_2\,,\,\gamma_3\,,\,\gamma_4\,\}$ không phải là một cơ sở của $\mathbf{R}^3=V+W$ (do $|\,C\,|=4\neq 3=\dim\mathbf{R}^3$). Như vậy $\mathbf{R}^3=V+W$ là tổng thường mà không phải là tổng trực tiếp. Xét $\alpha=(1,2,-3)\in\mathbf{R}^3$. Ta có sự phân tích không duy nhất $\alpha=\beta+\gamma=\delta+\epsilon$

$$\begin{aligned} & v \acute{o}i \quad \beta = 8\gamma_1 - 6\gamma_2 = (-16, -26, 10) \in V, \ \gamma = -7\gamma_3 + \gamma_4 = (17, 28, -13) \in W, \\ & \delta = 17\gamma_1 - 3\gamma_2 = (5, 13, 31) \in V \quad v\grave{a} \quad \epsilon = -\gamma_3 - 2\gamma_4 = (-4, -11, -34) \in W. \end{aligned}$$

1.3/ **MÊNH ĐỀ:** Giả sử
$$\mathbb{R}^n$$
 có các không gian con $H_1, H_2, ..., H_k$ ($k \ge 2$).

Các phát biểu sau là *tương đương với nhau*:

- a) $\mathbf{R}^{\mathbf{n}} = H_1 \oplus H_2 \oplus \cdots \oplus H_k$.
- b) $\mathbf{R^n} = H_1 + H_2 + \dots + H_k$ và dim $\mathbf{R^n} = \dim H_1 + \dim H_2 + \dots + \dim H_k$. (nếu $\mathbf{R^n} = H_1 + H_2 + \dots + H_k$ thì dim $\mathbf{R^n} \leq \dim H_1 + \dim H_2 + \dots + \dim H_k$). Ví dụ: Xét các Ví dụ trong (1.2).
- a) $\mathbf{R}^4 = \mathbf{H} \oplus \mathbf{K}$, $\dim \mathbf{H} = |\mathbf{A}_1| = 2$, $\dim \mathbf{K} = |\mathbf{A}_2| = 2$ và $4 = \dim \mathbf{R}^4 = \dim \mathbf{H} + \dim \mathbf{K}$ b) $\mathbf{R}^4 = \mathbf{M} \oplus \mathbf{N} \oplus \mathbf{L}$, $\dim \mathbf{M} = |\mathbf{B}_1| = 2$, $\dim \mathbf{N} = |\mathbf{B}_2| = 1$, $\dim \mathbf{L} = |\mathbf{B}_3| = 1$ và $4 = \dim \mathbf{R}^4 = \dim \mathbf{M} + \dim \mathbf{N} + \dim \mathbf{L}$.

- c) $\mathbf{R}^3 = P \oplus Q \oplus U$, $\dim P = |D_1| = 1$, $\dim Q = |D_2| = 1$, $\dim U = |D_3| = 1$ và $3 = \dim \mathbf{R}^3 = \dim P + \dim Q + \dim U$.
- d) $\mathbf{R}^3 = \mathbf{V} + \mathbf{W} \left(\frac{không \ trực \ tiếp}{\hat{e}p} \right)$ nên $3 = \dim \mathbf{R}^3 < \dim \mathbf{V} + \dim \mathbf{W} = 2 + 2 = 4$.

II. TRỊ RIÊNG, KHÔNG GIAN RIÊNG, VECTOR RIÊNG VÀ ĐA THỰC ĐẶC TRƯNG CỦA MA TRÂN VUÔNG:

2.1/ **DINH NGHĨA:** Cho $A \in M_n(\mathbf{R})$ và $\mathbf{c} \in \mathbf{R}$.

a) Đặt
$$E_c^A = \{ \alpha \in \mathbf{R}^n \mid A.\alpha = \mathbf{c}.\alpha \} = \{ \alpha \in \mathbf{R}^n \mid A.\alpha - \mathbf{c}.\mathbf{I}_n.\alpha = \mathbf{O} \}$$

= $\{ \alpha \in \mathbf{R}^n \mid (\mathbf{A} - \mathbf{c}.\mathbf{I}_n).\alpha = \mathbf{O} \}$ thì $E_c^A \leq \mathbf{R}^n$. Hơn nữa

[A. $E_c^A = E_c^A$ khi $\mathbf{c} \neq 0$] và [A. $E_c^A = \{\mathbf{O}\}$ khi $\mathbf{c} = 0$]. Suy ra A. $E_c^A \subset E_c^A$. Ký hiệu A. $E_c^A = \{ A.\alpha \mid \alpha \in E_c^A \}$ (A. α là dạng viết gọn của A. α ^t).

b) Nếu $E_c^A \neq \{ \mathbf{O} \}$ thì ta nói c là *một trị riêng thực* của A và E_c^A là *không* gian riêng của A ứng với trị riêng c. Lúc đó, $\forall \alpha \in E_c^A \setminus \{ \mathbf{O} \}$,

 $A.\alpha = c.\alpha$ và α được gọi là một vector riêng của A ứng với trị riêng c.

Ví dụ:

Cho
$$A = \begin{pmatrix} 7 & -6 & -10 \\ -12 & 17 & 24 \\ 12 & -15 & -22 \end{pmatrix} \in M_3(\textbf{R}). \ \text{X\'et} \ \ \textbf{c} = \textbf{0} \ \ \text{v\'a} \ \ \textbf{d} = -\textbf{1} \in \textbf{R}.$$

 $E_o^A = \{ \alpha = (u, v, w) \in \mathbf{R}^3 \mid A\alpha = \mathbf{O} \} = \{ \mathbf{O} = (0, 0, 0) \}$ do các phép biến

đổi đưa về dạng bậc thang rút gọn cho ta (u = v = w = 0).

$$\begin{pmatrix} u & v & w \\ 7 & -6 & -10 & 0 \\ -12 & 17 & 24 & 0 \\ 12 & -15 & -22 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -15 & -16 & 0 \\ 0 & 2 & 2 & 0 \\ -2 & -3 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -33 & -34 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 0 & 0 \\ 0 & 1^* & 0 & 0 \\ 0 & 0 & 1^* & 0 \end{pmatrix}.$$

Suy ra c = 0 không phải là một trị riêng thực của A.

Ta có
$$(A + I_3) = \begin{pmatrix} 7 & -6 & -10 \\ -12 & 17 & 24 \\ 12 & -15 & -22 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 8 & -6 & -10 \\ -12 & 18 & 24 \\ 12 & -15 & -21 \end{pmatrix}$$
 và
$$E_{-1}^A = \{\alpha = (\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \mathbf{R}^3 \mid (\mathbf{A} + \mathbf{I}_3)\alpha = \mathbf{O}\} = \{\alpha = (\mathbf{a}, -2\mathbf{a}, 2\mathbf{a}) \mid \mathbf{a} \in \mathbf{R}\} \neq \{\mathbf{O}\}$$

do các phép biến đổi về dạng bậc thang rút gọn cho ta

$$w = 2a (a \in R), u = a, v = -2a$$
:

$$\begin{pmatrix} u & v & w \\ 8 & -6 & -10 & 0 \\ -12 & 18 & 24 & 0 \\ 12 & -15 & -21 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & -3 & -5 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & -6 & -6 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & 0 & -2 & 0 \\ 0 & 1^* & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & -1/2 & 0 \\ 0 & 1^* & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Suy ra d = -1 là $m\hat{\rho}t$ trị riêng thực của A và E_{-1}^A là $kh\hat{o}ng$ gian riêng của A ứng với trị riêng (-1). $\forall \alpha \in E_{-1}^A \setminus \{\mathbf{O}\}$, $A(\alpha) = -\alpha$ và α được gọi là $m\hat{\rho}t$ vector riêng của A ứng với trị riêng (-1).

2.2/ **<u>DINH NGHĨA</u>**: Cho $A \in M_n(\mathbf{R})$.

Cho biến số x lấy giá trị thực . Đặt $p_A(x) = \det(x.I_n - A)$ thì $p_A(x)$ là một đa thức đơn khởi bậc n trên \mathbf{R} có dạng

$$p_A(x) = x^n + a_{n-1} \, x^{n-1} + \, \cdots \, + a_1 x + a_o \ v \acute{\sigma}i \ a_{n-1} \, , \, \ldots \, , \, a_1 \, , \, a_o \in {\bf R}.$$

Ta nói $p_A(x)$ là đa thức đặc trưng của ma trận vuông thực A.

<u>Ví dụ:</u>

$$A = \begin{pmatrix} -3 & 4 & -7 \\ 0 & 2 & 0 \\ 0 & 0 & 9 \end{pmatrix} \in M_3(\mathbf{R}) \text{ có } x\mathbf{I}_3 - A = \begin{pmatrix} x+3 & -4 & 7 \\ 0 & x-2 & 0 \\ 0 & 0 & x-9 \end{pmatrix} (x \text{ là biến thực})$$

Ta có
$$p_A(x) = |x|_3 - A| = (x+3)(x-2)(x-9) = x^3 - 8x^2 - 15x + 54$$
.

2.3/ **MÊNH ĐÈ:** Cho $A \in M_n(\mathbf{R})$ và $\mathbf{c} \in \mathbf{R}$. Khi đó

- a) c là một trị riêng thực của $A \Leftrightarrow p_A(c) = 0$.
- b) Suy ra: $t\hat{q}p$ hợp các trị riêng thực của A chính là $t\hat{q}p$ hợp các nghiệm thực của đa thức đặc trưng $p_A(x)$.

Ví dụ:

a)
$$A = \begin{pmatrix} 6 & 3 \\ -7 & -2 \end{pmatrix} \in M_2(\mathbf{R})$$
 có $p_A(x) = |x\mathbf{I}_2 - A| = \begin{vmatrix} x-6 & -3 \\ 7 & x+2 \end{vmatrix} = x^2 - 4x + 9.$

 $p_A(x)$ vô nghiệm trên \mathbf{R} (vì $\Delta' = -5 < 0$) nên A không có trị riêng thực.

b)
$$B = \begin{pmatrix} -6 & 3 & -1 \\ -12 & 7 & -3 \\ -16 & 12 & -6 \end{pmatrix} \in M_3(\mathbf{R}) \text{ có } p_B(x) = |x\mathbf{I}_3 - B| = \begin{vmatrix} x+6 & -3 & 1 \\ 12 & x-7 & 3 \\ 16 & -12 & x+6 \end{vmatrix}$$

$$\begin{vmatrix} x+6 & -3 & 1 \\ -3x-6 & x+2 & 0 \\ 16 & -12 & x+6 \end{vmatrix} = \begin{vmatrix} x-3 & -3 & 1 \\ 0 & x+2 & 0 \\ -20 & -12 & x+6 \end{vmatrix} = (x+2) \begin{vmatrix} x-3 & 1 \\ -20 & x+6 \end{vmatrix} = (x+1)(x+2)^{2}.$$

Ta nói B có hai trị riêng thực là $c_1 = -1$ và $c_2 = -2$.

III. SỰ CHÉO HÓA CỦA MA TRẬN VUÔNG:

3.1/ <u>MÊNH ĐỀ:</u>

- a) Cho c_1, c_2, \ldots, c_m là các trị riêng thực khác nhau của $A \in M_n(\mathbf{R})$ ($m \ge 2$) $\text{và } W = (E_{c_1}^A + E_{c_2}^A + \cdots + E_{c_m}^A) \le \mathbf{R^n}. \text{ Khi đó ta có } W = E_{c_1}^A \oplus E_{c_2}^A \oplus \cdots \oplus E_{c_m}^A.$
- c) Như vậy tổng của các không gian riêng ứng với các trị riêng thực khác nhau của ma trận vuông là tổng trực tiếp.

3.2/ **<u>DINH NGHĨA:</u>** Cho A, H, K \in M_n(**R**).

a) Ta nói H và K đồng dạng với nhau nếu có P khả nghịch $\in M_n(\mathbf{R})$ thỏa $P^{-1}HP = K \text{ (lúc đó ta cũng có } Q^{-1}KQ = H \text{ với } Q = P^{-1}\text{). } \textit{Quan hệ đồng}$ dạng trên $M_n(\mathbf{R})$ là một quan hệ tương đương.

b) A chéo hóa được trên **R** nếu A đồng dạng với một ma trận đường chéo,

nghĩa là có
$$\mathbf{P}$$
 khả nghịch $\in \mathbf{M}_n(\mathbf{R})$ thỏa $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$.

 $(\mathbf{P}^{-1}\mathbf{AP}\$ là một ma trận đường chéo).

Ví dụ:

$$A = \begin{pmatrix} 7 & -12 & 12 \\ -6 & 17 & -15 \\ -10 & 24 & -22 \end{pmatrix} \in M_3(\textbf{R}). \ \text{Ta c\'o} \ \ P = \begin{pmatrix} -3 & 0 & 2 \\ 4 & 1 & -3 \\ 6 & 1 & -4 \end{pmatrix} \textit{khả nghịch} \in M_3(\textbf{R})$$

với
$$P^{-1} = \begin{pmatrix} 1 & -2 & 2 \\ 2 & 0 & 1 \\ 2 & -3 & 3 \end{pmatrix}$$
 và $P^{-1}AP = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ nên A chéo hóa được trên \mathbf{R} .

- **3.3**/ **ĐỊNH LÝ:** Cho $A \in M_n(\mathbf{R})$. Khi đó
 - a) A chéo hóa được trên R \Leftrightarrow

$$\Leftrightarrow \begin{cases} (*)p_{A}(x) = (x-c_{1})^{r_{1}}(x-c_{2})^{r_{2}}...(x-c_{k})^{r_{k}}, c_{1}, c_{2},..., c_{k} \in \mathbb{R}, r_{1}, r_{2},..., r_{k} \in \mathbb{N} \setminus \{0\} \\ (**) \dim E_{c_{j}}^{A} = r_{j} (1 \le j \le k) \end{cases}.$$

- b) Khi xảy ra (*) thì ta nói đa thức $p_A(x)$ tách được trên **R**.
- **3.4**/ MỆNH ĐÈ: Cho $A \in M_n(\mathbf{R})$. Nếu $p_A(x)$ có n nghiệm thực khác nhau thì A chéo hóa được trên \mathbf{R} .
- **3.5**/ $\underline{H\hat{E} QU\hat{A}}$: Cho $A \in M_n(\mathbf{R})$. Khi đó:

a) Để ý
$$\overline{p \wedge q} \Leftrightarrow (\overline{p} \vee \overline{q})$$
 [nếu p và q có nội dung độc lập với nhau].
$$\overline{p \wedge q} \Leftrightarrow [\overline{p} \vee (p \wedge \overline{q})] \text{ (nếu có } p \text{ thì mới hiểu được } q \text{)}.$$

- b) A không chéo hóa được trên R ⇔
 - \Leftrightarrow ($p_A(x)$ không tách được trên $\, {\bf R}$) hoặc

$$\begin{cases} (*) p_{A}(x) = (x - c_{1})^{r_{1}} (x - c_{2})^{r_{2}} ... (x - c_{k})^{r_{k}}, c_{1}, c_{2}, ..., c_{k} \in \mathbb{R}, r_{1}, r_{2}, ..., r_{k} \in \mathbb{N} \setminus \{0\} \\ (**) \exists j \in \{1, 2, ..., k\}, \dim E_{c_{j}}^{A} < r_{j} \end{cases}.$$

Ví du:

a)
$$A = \begin{pmatrix} 3 & 1 & -3 \\ 3 & 1 & -1 \\ 2 & -2 & 0 \end{pmatrix} \in M_3(\mathbf{R}) \text{ có } p_A(x) = |x\mathbf{I}_3 - A| = \begin{vmatrix} x-3 & -1 & 3 \\ -3 & x-1 & 1 \\ -2 & 2 & x \end{vmatrix} =$$

$$= \begin{vmatrix} x-4 & -1 & 3 \\ x-4 & x-1 & 1 \\ 0 & 2 & x \end{vmatrix} = \begin{vmatrix} x-4 & -1 & 3 \\ 0 & x & -2 \\ 0 & 2 & x \end{vmatrix} = (x-4) \begin{vmatrix} x & -2 \\ 2 & x \end{vmatrix} = (x-4)(x^2+4).$$

Do $p_A(x)$ không tách được trên **R** nên A không chéo hóa được trên **R**.

b)
$$H = \begin{pmatrix} -10 & 13 & -4 \\ -13 & 16 & -4 \\ -12 & 12 & -1 \end{pmatrix} \in M_3(\mathbf{R}) \text{ có } p_H(x) = |x|_3 - H| = \begin{vmatrix} x+10 & -13 & 4 \\ 13 & x-16 & 4 \\ 12 & -12 & x+1 \end{vmatrix}$$

$$\begin{vmatrix} x-3 & -13 & 4 \\ x-3 & x-16 & 4 \\ 0 & -12 & x+1 \end{vmatrix} = \begin{vmatrix} x-3 & -13 & 4 \\ 0 & x-3 & 0 \\ 0 & -12 & x+1 \end{vmatrix} = (x-3) \begin{vmatrix} x-3 & 0 \\ -12 & x+1 \end{vmatrix} = (x-3)^2 (x+1).$$

$$E_3^H = \{ \alpha \in \mathbf{R}^3 \mid (H - 3\mathbf{I}_3)\alpha = \mathbf{O} \} = \{ \alpha = (\mathbf{v}, \mathbf{v}, 0) = \mathbf{v}(1, 1, 0) \mid \mathbf{v} \in \mathbf{R} \}$$

$$(H - 3I_3 \mid \mathbf{O}) = \begin{pmatrix} u & v & w \\ -13 & 13 & -4 & 0 \\ -13 & 13 & -4 & 0 \\ -12 & 12 & -4 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -40 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & -1 & 0 & 0 \\ 0 & 0 & 1^* & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Do dim $E_3^H = |C| = 1 < 2$ nên H không chéo hóa được trên **R**.

3.6/ CHÉO HÓA MA TRẬN: Cho $A \in M_n(\mathbf{R})$ và A chéo hóa được trên \mathbf{R} ,

nghĩa là
$$\begin{cases} (*)p_A(x) = (x-c_1)^{r_1}(x-c_2)^{r_2}...(x-c_k)^{r_k}, c_1, c_2,..., c_k \in \mathbb{R}, r_1, r_2,..., r_k \in \mathbb{N} \setminus \{0\} \\ (**) \dim E_{c_j}^A = r_j (1 \le j \le k) \end{cases}.$$

* $\forall j \in \{1, 2, ..., k\}$, tìm $m\hat{\rho}t \cos s\hat{\sigma} B_j$ cho $E_{c_j}^A = \{\alpha \in \mathbf{R^n} \mid (A - c_j \mathbf{I_n})\alpha = \mathbf{O}\}$.

(co sở B_i không duy nhất).

* Đặt $\mathbf{B} = \mathbf{B}_1 \cup \mathbf{B}_2 \cup \ldots \cup \mathbf{B}_k$ thì \mathbf{B} là *một cơ sở* của $\mathbf{R}^{\mathbf{n}} = E_{c_1}^A \oplus E_{c_2}^A \oplus \cdots \oplus E_{c_k}^A$

(cơ sở B không duy nhất).

* Đặt $\mathbf{P} = (\mathbf{C} \to \mathbf{B})$ với \mathbf{C} là *cơ sở chính tắc* của \mathbf{R}^n thì \mathbf{P} *khả nghịch* $\in \mathbf{M}_n(\mathbf{R})$ $\mathbf{P} \text{ không duy nhất và}$

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} c_1 & & & & \\ & \ddots & & & \\ & & c_1 & & \\ & & & \ddots & \\ & & & c_k & \\ & & & \ddots & \\ & & & & c_k \end{pmatrix} (\forall j \in \{1, 2, ..., k\}, c_j \text{ xuất hiện } \mathbf{r}_j \, lần).$$

$$\mathbf{R}^{\mathbf{n}} = E_{c_1}^{A} \oplus E_{c_2}^{A} \oplus \cdots \oplus E_{c_k}^{A} \quad \text{và } \mathbf{A}. E_{c_j}^{A} \subset E_{c_j}^{A} \ (1 \le j \le k).$$

Ví dụ:

a)
$$A = \begin{pmatrix} 7 & -12 & -2 \\ 3 & -4 & 0 \\ -2 & 0 & -2 \end{pmatrix} \in M_3(\mathbf{R}) \text{ có } p_A(x) = |x\mathbf{I}_3 - A| = \begin{vmatrix} x-7 & 12 & 2 \\ -3 & x+4 & 0 \\ 2 & 0 & x+2 \end{vmatrix} =$$

$$= (x-7)(x+4)(x+2) - 4(x+4) + 36(x+2) = x(x+1)(x-2).$$

 $p_A(x)$ có 3 nghiệm thực đơn là 0, -1 và 2 nên A chéo hóa được trên R.

$$A + \mathbf{I_3} = \begin{pmatrix} 8 & -12 & -2 \\ 3 & -3 & 0 \\ -2 & 0 & -1 \end{pmatrix} \quad \text{và} \quad A - 2\mathbf{I_3} = \begin{pmatrix} 5 & -12 & -2 \\ 3 & -6 & 0 \\ -2 & 0 & -4 \end{pmatrix}.$$

$$E_0^A = \{ \alpha \in \mathbf{R}^3 \mid A\alpha = \mathbf{O} \} = \{ \alpha = (-4a, -3a, 4a) = a(-4, -3, 4) \mid a \in \mathbf{R} \}$$

có $m\hat{\rho}t$ cơ sở là $\mathbf{B}_1=\{\ \alpha_1=(-4,-3,4)\ \}$ do các phép biến đổi đưa về dạng bậc thang rút gọn cho ta $[\ w=4a\ (\ a\in\mathbf{R}\),\ u=-4a,\ v=-3a\].$

$$(\mathbf{A} + \mathbf{I_3} \mid \mathbf{O}) = \begin{pmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \\ 8 & -12 & -2 \mid & 0 \\ 3 & -3 & 0 \mid & 0 \\ -2 & 0 & -1 \mid & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{1} & -3 & -1 \mid & 0 \\ 0 & 6 & 3 \mid & 0 \\ 0 & -6 & -3 \mid & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{1} & 0 & 1/2 \mid & 0 \\ 0 & 1 & 1/2 \mid & 0 \\ 0 & 0 & 0 \mid & 0 \end{pmatrix}.$$

$$\begin{split} E_2^A &= \{\alpha \in \mathbf{R^3} \mid (A-2\mathbf{I_3})\alpha = \mathbf{O}\} = \{\alpha = (-2\mathbf{w}, -\mathbf{w}, \mathbf{w}) = \mathbf{w}(-2, -1, 1) \mid \mathbf{w} \in \mathbf{R}\} \\ &\text{có } một \ co \, sở \, là \ B_3 = \{\ \alpha_3 = (-2, -1, 1)\ \} \ \text{do các phép biến đổi đưa về} \\ &\text{dạng bậc thang rút gọn cho ta } \ (\mathbf{w} \in \mathbf{R} \ , \, \mathbf{u} = -2\mathbf{w}, \, \mathbf{v} = -\mathbf{w} \). \end{split}$$

$$(\mathbf{A} - 2\mathbf{I_3} \mid \mathbf{O}) = \begin{pmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \\ 5 & -12 & -2 \mid & 0 \\ 3 & -6 & 0 \mid & 0 \\ -2 & 0 & -4 \mid & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{1} & -12 & -10 \mid & 0 \\ 0 & 30 & 30 \mid & 0 \\ 0 & -24 & -24 \mid & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{1} & 0 & 2 \mid & 0 \\ 0 & \mathbf{1} & 1 \mid & 0 \\ 0 & 0 & 0 \mid & 0 \end{pmatrix}.$$

 $\mathbf{R}^3 = E_0^A \oplus E_{-1}^A \oplus E_2^A \quad \text{có một cơ sở là } \mathbf{B} = \mathbf{B}_1 \cup \mathbf{B}_2 \cup \mathbf{B}_3 = \{ \alpha_1, \alpha_2, \alpha_3 \} \quad \text{với}$

$$A\alpha_1 = 0.\alpha_1 = 0$$
, $A\alpha_2 = -\alpha_2$ và $A\alpha_3 = 2\alpha_3$.

Đặt
$$P = (C \to B) = ([\alpha_1]_C [\alpha_2]_C [\alpha_3]_C) = \begin{pmatrix} -4 & -1 & -2 \\ -3 & -1 & -1 \\ 4 & 2 & 1 \end{pmatrix} \text{với } C \text{ là } co \text{ sở}$$

chính tắc của
$$\mathbf{R}^3$$
 thì \mathbf{P} khả nghịch, $\mathbf{P}^{-1} = \begin{pmatrix} 1 & -3 & -1 \\ -1 & 4 & 2 \\ -2 & 4 & 1 \end{pmatrix}$ và $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

b)
$$H = \begin{pmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{pmatrix} \in M_3(\mathbf{R}) \text{ có } p_H(x) = |x\mathbf{I}_3 - H| = \begin{vmatrix} x+1 & -3 & 1 \\ 3 & x-5 & 1 \\ 3 & -3 & x-1 \end{vmatrix} =$$

$$= \begin{vmatrix} x-2 & 2-x & 0 \\ 3 & x-5 & 1 \\ 3 & -3 & x-1 \end{vmatrix} = \begin{vmatrix} x-2 & 0 & 0 \\ 3 & x-2 & 1 \\ 3 & 0 & x-1 \end{vmatrix} = (x-2) \begin{vmatrix} x-2 & 1 \\ 0 & x-1 \end{vmatrix} = (x-1)(x-2)^2.$$

$$H - I_3 = \begin{pmatrix} -2 & 3 & -1 \\ -3 & 4 & -1 \\ -3 & 3 & 0 \end{pmatrix} \quad \text{và} \quad H - 2I_3 = \begin{pmatrix} -3 & 3 & -1 \\ -3 & 3 & -1 \\ -3 & 3 & -1 \end{pmatrix}.$$

 $E_1^H = \{\alpha \in \mathbf{R}^3 \mid (\mathbf{H} - \mathbf{I_3})\alpha = \mathbf{O}\} = \{\alpha = (\mathbf{w}, \mathbf{w}, \mathbf{w}) = \mathbf{w}(1, 1, 1) \mid \mathbf{w} \in \mathbf{R}\} \text{ có}$ $m\hat{\rho}t \cos s\hat{\sigma} \text{ là } \mathbf{B_1} = \{\alpha_1 = (1, 1, 1)\} \text{ và } \dim E_1^H = |\mathbf{B_1}| = 1 \text{ do các phép biến}$ $\mathring{\text{dôi đưa về }} dang \, bac \, thang \, rút \, gọn \, \text{cho ta } (\mathbf{w} \in \mathbf{R}, \mathbf{u} = \mathbf{w}, \mathbf{v} = \mathbf{w}).$

$$(H - \mathbf{I}_3 \mid \mathbf{O}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -2 & 3 & -1 & 0 \\ -3 & 4 & -1 & 0 \\ -3 & 3 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & -3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & -1 & 0 \\ 0 & 1^* & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$E_2^H = \{ \alpha \in \mathbf{R}^3 \mid (H - 2\mathbf{I}_3)\alpha = \mathbf{O} \} = \{ \alpha = (\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \mathbf{R}^3 \mid -3\mathbf{u} + 3\mathbf{v} - \mathbf{w} = 0 \}$$

$$= \{ \alpha = (\mathbf{u}, \mathbf{v}, 3\mathbf{v} - 3\mathbf{u}) = \mathbf{u}(1, 0, -3) + \mathbf{v}(0, 1, 3) \mid \mathbf{u}, \mathbf{v} \in \mathbf{R} \} \text{ có } một \text{ co}$$

$$sổ là \mathbf{B}_2 = \{ \alpha_2 = (1, 0, -3), \alpha_3 = (0, 1, 3) \} \text{ và } \dim E_2^H = |\mathbf{B}_2| = 2.$$

Ta có $p_H(x) = (x-1)(x-2)^2$ tách được trên \mathbf{R} , dim $E_1^H = 1$ và dim $E_2^H = 2$ nên \mathbf{H} chéo hóa được trên \mathbf{R} . $\mathbf{R}^3 = E_1^H \oplus E_2^H$ có một cơ sở là $\mathbf{B} = \mathbf{B}_1 \cup \mathbf{B}_2 = \{\alpha_1, \alpha_2, \alpha_3\}$ với $\mathbf{H}\alpha_1 = \alpha_1$, $\mathbf{H}\alpha_2 = 2\alpha_2$ và $\mathbf{H}\alpha_3 = 2\alpha_3$.

Đặt
$$\mathbf{P} = (\mathbf{C} \to \mathbf{B}) = ([\alpha_1]_{\mathbf{C}} [\alpha_2]_{\mathbf{C}} [\alpha_3]_{\mathbf{C}}) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix} \text{ với } \mathbf{C} \text{ là } \cos s \mathring{\sigma}$$

chính tắc của \mathbf{R}^3 thì \mathbf{P} khả nghịch, $\mathbf{P}^{-1} = \begin{pmatrix} 3 & -3 & 1 \\ -2 & 3 & -1 \\ -3 & 4 & -1 \end{pmatrix} \text{ và } \mathbf{P}^{-1}\mathbf{HP} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$

IV. ÁP DUNG:

4.1/ <u>LŨY THÙA VÀ CĂN THÚC CỦA MA TRÂN CHÉO HÓA ĐƯỢC:</u>

Cho $A \in M_n(\mathbf{R})$ và A chéo hóa được trên \mathbf{R} . Xét số nguyên $k \ge 2$.

$$\text{Tìm ma trận } \begin{array}{l} \textbf{P} \text{ khả nghịch} \in M_n(\textbf{R}) \text{ thỏa } \textbf{P}^{-1}\textbf{AP} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}.$$

Suy ra
$$A = P \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} P^{-1} v \grave{a} A^k = P \begin{pmatrix} \lambda_1^k & & & \\ & \lambda_2^k & & \\ & & \ddots & \\ & & & \lambda_n^k \end{pmatrix} P^{-1}.$$

Nếu có $v_1, v_2, \dots, v_n \in \mathbf{R}$ thỏa $v_j^k = \lambda_j (1 \le j \le n)$, ta chọn

$$\mathbf{H} = \mathbf{P} \begin{pmatrix} \mathbf{v}_1 & & & \\ & \mathbf{v}_2 & & \\ & & \ddots & \\ & & & \mathbf{v}_n \end{pmatrix} \mathbf{P}^{-1} \in \mathbf{M}_n(\mathbf{R}) \text{ thì } \mathbf{H}^k = \mathbf{P} \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \mathbf{P}^{-1} = \mathbf{A}.$$

Ta nói H là *một căn bậc* k của A trong $M_n(\mathbf{R})$.

Ví dụ: Cho $A \in M_3(\mathbf{R})$ trong **Ví dụ** (3.6) và k là số nguyên ≥ 2 . Ta có

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \ \text{v\'oi} \ \ \mathbf{P} = \begin{pmatrix} -4 & -1 & -2 \\ -3 & -1 & -1 \\ 4 & 2 & 1 \end{pmatrix} \ \text{v\`a} \ \ \mathbf{P}^{-1} = \begin{pmatrix} 1 & -3 & -1 \\ -1 & 4 & 2 \\ -2 & 4 & 1 \end{pmatrix} \in \mathbf{M}_3(\mathbf{R}).$$

Suy ra
$$A = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} P^{-1}$$
 và $A^k = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} P^{-1} = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & (-1)^k & 0 \\ 0 & 0 & 2^k \end{pmatrix} P^{-1}$

$$= (-1)^k S + 2^k T \quad \text{v\'oi} \quad S = \begin{pmatrix} 1 & -4 & -2 \\ 1 & -4 & -2 \\ -2 & 8 & 4 \end{pmatrix} \text{ v\'a } \quad T = \begin{pmatrix} 4 & -8 & -2 \\ 2 & -4 & -1 \\ -2 & 4 & 1 \end{pmatrix} \in M_3(\textbf{R}).$$

Cho số nguyên lẻ $r \ge 3$.

$$\begin{array}{ll} \text{Chọn} \ \ H = P \!\!\! \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & \sqrt[r]{2} \end{pmatrix} \!\!\! P^{-1} \in M_3(\boldsymbol{R}) \ \ \text{thì} \ \ H^r = P \!\!\! \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \!\!\! P^{-1} = A. \end{array}$$

$$\text{Ta c\'o} \ \ H = (-1)S + \sqrt[4]{2} \ \text{T v\'oi} \ \ S = \begin{pmatrix} 1 & -4 & -2 \\ 1 & -4 & -2 \\ -2 & 8 & 4 \end{pmatrix} \text{ v\'a } \ T = \begin{pmatrix} 4 & -8 & -2 \\ 2 & -4 & -1 \\ -2 & 4 & 1 \end{pmatrix} \in M_3(\textbf{R}).$$

5.2/ GIẢI MỘT SỐ HỆ THỰC ĐỆ QUI DỰA THEO SỰ CHÉO HÓA CỦA

MA TRẬN VUÔNG:

a) Tìm u_n theo n (n nguyên ≥ 0) nếu

$$u_0 = 1$$
, $u_1 = 2$ và $u_{n+2} = u_{n+1} + 6u_n$, $\forall n \ge 0$.

$$\forall k \ge 0$$
, đặt $t_k = \begin{pmatrix} u_{k+1} \\ u_k \end{pmatrix}$ thì $t_0 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ và $t_{k+1} = \begin{pmatrix} u_{k+2} \\ u_{k+1} \end{pmatrix} = \begin{pmatrix} u_{k+1} + 6u_k \\ u_{k+1} \end{pmatrix}$

$$=\begin{pmatrix}1&6\\1&0\end{pmatrix}\begin{pmatrix}u_{k+1}\\u_k\end{pmatrix}=\begin{pmatrix}1&6\\1&0\end{pmatrix}\mathbf{t}_k.\ \mathbf{V}\mathbf{\hat{a}y}\ \ \forall \mathbf{k}\geq\mathbf{0},\ \mathbf{t}_{k+1}=\mathbf{A}\mathbf{t}_k\ \ \mathbf{v}\mathbf{\acute{o}i}\ \ \mathbf{A}=\begin{pmatrix}1&6\\1&0\end{pmatrix}=$$

$$= \mathbf{P} \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix} \mathbf{P}^{-1} \quad \text{và} \quad \mathbf{P} = \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}, \ \mathbf{P}^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \text{ (A chéo hóa được trên } \mathbf{R}\text{)}.$$

Do đó,
$$\forall n \ge 0$$
, $t_n = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} = At_{n-1} = A^2t_{n-2} = \cdots = A^{n-1}t_1 = A^nt_0 =$

$$= \underset{0}{P} \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}^{n} \underset{0}{P^{-1}} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 4 \cdot 3^{n+1} + (-2)^{n+1} \\ 4 \cdot 3^{n} + (-2)^{n} \end{pmatrix}. \text{ Suy ra } \forall n \geq 0, u_{n} = \frac{1}{5} \left[4.3^{n} + (-2)^{n} \right].$$

Giải thích tính chéo hóa được trên R của A:

$$p_A(x) = |x|_2 - A| = \begin{vmatrix} x-1 & -6 \\ -1 & x \end{vmatrix} = x^2 - x + 6 = (x-3)(x+2)$$
 có 2 nghiệm

thực đơn ($c_1 = 3 \neq c_2 = -2$) nên A chéo hóa được trên ${\bf R}$.

$$A - 3I_2 = \begin{pmatrix} -2 & 6 \\ 1 & -3 \end{pmatrix}$$
 và $A + 2I_2 = \begin{pmatrix} 3 & 6 \\ 1 & 2 \end{pmatrix}$.

$$E_3^A = \{ \alpha \in \mathbf{R}^2 \mid (A - 3\mathbf{I}_2)\alpha = \mathbf{O} \} = \{ \alpha = (a, b) \in \mathbf{R}^2 \mid a - 3b = 0 \}$$

$$= \{ \alpha = (3b, b) = b(3,1) \mid b \in \mathbf{R} \} \text{ c\'o c\'o s\'o } \mathbf{C}_1 = \{ \alpha_1 = (3, 1) \}.$$

$$E_{-2}^{A} = \{ \alpha \in \mathbf{R}^{2} \mid (A + 2\mathbf{I}_{2})\alpha = \mathbf{O} \} = \{ \alpha = (a, b) \in \mathbf{R}^{2} \mid a + 2b = 0 \}$$

$$= \{ \ \alpha = (-2b, b) = b(-2, 1) \ | \ b \in \mathbf{R} \ \} \ \text{c\'o c\'o s\'o} \ {\color{red}C_2} = \{ \ \alpha_2 = (-2, 1) \ \}.$$

$$\mathbf{R}^2 = E_3^A \oplus E_{-2}^A$$
 có cơ sở $\mathbf{C} = \mathbf{C}_1 \cup \mathbf{C}_2 = \{ \alpha_1 = (3, 1), \alpha_2 = (-2, 1) \}.$

Đặt
$$\mathbf{P} = (\mathbf{B} \to \mathbf{C}) = ([\alpha_1]_{\mathbf{B}} [\alpha_2]_{\mathbf{B}}) = \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix} \text{với } \mathbf{B} \text{ là } \textit{cơ sở chính tắc}$$

của
$$\mathbf{R}^2$$
 thì \mathbf{P} khả nghịch, $\mathbf{P}^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ và $\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$.

b) Tìm $\,u_n\,$ và $\,v_n\,$ theo $\,n$ ($n\,$ nguyên ≥ 0) $\,$ nếu

$$u_o = 2, \; v_o = 5, \; u_{n+1} = u_n - 4v_n \; \text{ và } \; v_{n+1} = - \; u_n + v_n \; , \; \forall n \geq 0.$$

$$\forall k \ge 0, \, \text{d} \\ \text{if} \quad t_k = \begin{pmatrix} u_k \\ v_k \end{pmatrix} \quad \text{thi} \quad t_o = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \quad \text{và} \quad t_{k+1} = \begin{pmatrix} u_{k+1} \\ v_{k+1} \end{pmatrix} = \begin{pmatrix} u_k - 4v_k \\ -u_k + v_k \end{pmatrix}$$

$$=\begin{pmatrix}1&-4\\-1&1\end{pmatrix}\begin{pmatrix}u_k\\v_k\end{pmatrix}=\begin{pmatrix}1&-4\\-1&1\end{pmatrix}t_k.\ \text{Vậy}\ \forall k\geq 0,\ t_{k+1}=\text{At}_k\ \text{với}\ \text{A}=\begin{pmatrix}1&-4\\-1&1\end{pmatrix}=$$

$$= \mathbf{P} \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{P}^{-1} \text{ và } \mathbf{P} = \begin{pmatrix} -2 & 2 \\ 1 & 1 \end{pmatrix}, \mathbf{P}^{-1} = \frac{1}{4} \begin{pmatrix} -1 & 2 \\ 1 & 2 \end{pmatrix} \text{ (A chéo hóa được trên } \mathbf{R}\text{)}.$$

Do đó
$$\forall n \ge 0, t_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix} = At_{n-1} = A^2 t_{n-2} = \dots = A^{n-1}t_1 = A^n t_0$$

$$= \mathbf{P} \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}^{n} \mathbf{P}^{-1} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \mathbf{P} \begin{pmatrix} 3^{n} & 0 \\ 0 & (-1)^{n} \end{pmatrix} \mathbf{P}^{-1} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 6(-1)^{n} - 4.3^{n} \\ 3(-1)^{n} + 2.3^{n} \end{pmatrix}.$$

Suy ra
$$\forall n \ge 0$$
, $u_n = 6(-1)^n - 4.3^n$ và $v_n = 3(-1)^n + 2.3^n$.

Giải thích tính chéo hóa được trên R của A:

$$\begin{aligned} p_A(x) &= |x |_2 - A| = \begin{vmatrix} x-1 & 4 \\ 1 & x-1 \end{vmatrix} = x^2 - 2x - 3 = (x-3)(x+1) \text{ có } 2 \text{ nghiệm} \\ \text{thực đơn (} c_1 &= 3 \neq c_2 = -1\text{) nên } A \text{ chéo hóa được trên } \mathbf{R}. \end{aligned}$$

$$\mathbf{A} - 3\mathbf{I_2} = \begin{pmatrix} -2 & -4 \\ -1 & -2 \end{pmatrix} \quad \mathbf{va} \quad \mathbf{A} + \mathbf{I_2} = \begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}.$$

$$E_3^A = \{ \alpha \in \mathbf{R}^2 \mid (A - 3\mathbf{I}_2)\alpha = \mathbf{O} \} = \{ \alpha = (a, b) \in \mathbf{R}^2 \mid -a - 2b = 0 \}$$

$$E_{-1}^{A} = \{ \alpha \in \mathbf{R}^{2} \mid (A + \frac{\mathbf{I}_{2}}{2})\alpha = \mathbf{O} \} = \{ \alpha = (a, b) \in \mathbf{R}^{2} \mid -a + 2b = 0 \}$$

=
$$\{ \alpha = (2b, b) = b(2, 1) \mid b \in \mathbf{R} \}$$
 có cơ sở $\mathbf{C}_2 = \{ \alpha_2 = (2, 1) \}$.

$$\mathbf{R}^2 = E_3^A \oplus E_{-1}^A$$
 có cơ sở $\mathbf{C} = \mathbf{C}_1 \cup \mathbf{C}_2 = \{ \alpha_1 = (-2, 1), \alpha_2 = (2, 1) \}.$

Đặt
$$\mathbf{P} = (\mathbf{B} \to \mathbf{C}) = ([\alpha_1]_\mathbf{B} [\alpha_2]_\mathbf{B}) = \begin{pmatrix} -2 & 2 \\ 1 & 1 \end{pmatrix} \text{với } \mathbf{B} \text{ là } co sở chính tắc}$$

của
$$\mathbf{R}^2$$
 thì \mathbf{P} khả nghịch, $\mathbf{P}^{-1} = \frac{1}{4} \begin{pmatrix} -1 & 2 \\ 1 & 2 \end{pmatrix}$ và $\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$.

c) Tìm u_n , v_n và w_n theo n (n nguyên ≥ 0) $n\acute{e}u$ u_o = -2, v_o = 3, w_o = -1,

$$u_{n+1}\!=6u_n+12v_n+16w_n\;,\;\;v_{n+1}\!=\!-3u_n-7v_n-12w_n\;\;v\grave{a}$$

$$w_{n+1} = u_n + 3v_n + 6w_n, \ \forall n \ge 0.$$

$$\forall k \ge 0, \, \text{\tt d} \, \, \text{\tt d} \, \, \, \text{\tt t}_k = \begin{pmatrix} u_k \\ v_k \\ w_k \end{pmatrix} \, \, \text{\tt thi} \, \, \, \text{\tt t}_o = \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix} \, \, \text{\tt v} \, \, \text{\tt d} \, \, \, \text{\tt t}_{k+1} = \begin{pmatrix} u_{k+1} \\ v_{k+1} \\ w_{k+1} \end{pmatrix} = \begin{pmatrix} 6u_k + 12v_k + 16w_k \\ -3u_k - 7v_k - 12w_k \\ u_k + 3v_k + 6w_k \end{pmatrix}$$

$$= \begin{pmatrix} 6 & 12 & 16 \\ -3 & -7 & -12 \\ 1 & 3 & 6 \end{pmatrix} \begin{pmatrix} u_k \\ v_k \\ w_k \end{pmatrix} = \begin{pmatrix} 6 & 12 & 16 \\ -3 & -7 & -12 \\ 1 & 3 & 6 \end{pmatrix} t_k. \quad V_{ay} \quad \forall k \ge 0, \ t_{k+1} = At_k \quad v \acute{o} i$$

$$\mathbf{A} = \begin{pmatrix} 6 & 12 & 16 \\ -3 & -7 & -12 \\ 1 & 3 & 6 \end{pmatrix} = \mathbf{P} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{P}^{-1} \quad \text{và} \quad \mathbf{P} = \begin{pmatrix} 4 & -3 & -4 \\ -3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \quad \mathbf{P}^{-1} = \begin{pmatrix} -1 & -3 & -4 \\ -3 & -8 & -12 \\ 1 & 3 & 5 \end{pmatrix}$$

(A chéo hóa được trên R).

Do đó
$$\forall n \ge 0, t_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix} = At_{n-1} = A^2 t_{n-2} = \dots = A^{n-1}t_1 = A^n t_0$$

$$= \mathbf{P} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}^{n} \mathbf{P}^{-1} \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix} = \mathbf{P} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \mathbf{P}^{-1} \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 10.2^{n} - 12 \\ 9 - 6.2^{n} \\ 2.2^{n} - 3 \end{pmatrix} = \begin{pmatrix} 5.2^{n+1} - 12 \\ 9 - 3.2^{n+1} \\ 2^{n+1} - 3 \end{pmatrix}.$$

Suy ra
$$\forall n \ge 0$$
, $u_n = 5.2^{n+1} - 12$, $v_n = 9 - 2^{n+1}$ và $w_n = 2^{n+1} - 3$.

Giải thích tính chéo hóa được trên R của A:

$$A = \begin{pmatrix} 6 & 12 & 16 \\ -3 & -7 & -12 \\ 1 & 3 & 6 \end{pmatrix} \in M_3(\mathbf{R}) \text{ có } p_A(x) = |xI_3 - A| = \begin{vmatrix} x-6 & -12 & -16 \\ 3 & x+7 & 12 \\ -1 & -3 & x-6 \end{vmatrix} =$$

$$= \begin{vmatrix} x-6 & -12 & -16 \\ 0 & x-2 & 3x-6 \\ -1 & -3 & x-6 \end{vmatrix} = \begin{vmatrix} x-6 & -12 & 20 \\ 0 & x-2 & 0 \\ -1 & -3 & x+3 \end{vmatrix} = (x-2) \begin{vmatrix} x-6 & 20 \\ -1 & x+3 \end{vmatrix} = (x-1)(x-2)^2.$$

$$E_1 = \{ X \in \mathbf{R}^3 / (A - I_3)X = \mathbf{O} \}.$$

$$X = (u, \, v, \, w) \in E_1 \iff \begin{pmatrix} 5 & 12 & 16 & 0 \\ -3 & -8 & -12 & 0 \\ 1 & 3 & 5 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & -4 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 3 & 9 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & -4 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$E_1 = \{ X = (4w, -3w, w) = w(4, -3, 1) / w \in \mathbb{R} \} \text{ có co sở}$$

$$C_1 = \{ X_1 = (4, -3, 1) \} \text{ và } \dim E_1 = | C_1 | = 1.$$

$$E_2 = \{ X \in \mathbb{R}^3 / (A - 2I_3)X = \mathbf{O} \}.$$

$$X = (u, v, w) \in E_2 \iff \begin{pmatrix} 4 & 12 & 16 & 0 \\ -3 & -9 & -12 & 0 \\ 1 & 3 & 4 & 0 \end{pmatrix} \iff \begin{pmatrix} 1 & 3 & 4 & | 0 \end{pmatrix}.$$

$$E_2 = \{ X = (-3v - 4w, v, w) = v(-3, 1, 0) + w(-4, 0, 1) / v, w \in \mathbb{R} \} \text{ có co}$$

sở
$$C_2 = \{ X_2 = (-3, 1, 0), X_3 = (-4, 0, 1) \}$$
 và $dimE_2 = |C_2| = 2$. Suy ra

A chéo hóa được trên R.

Đặt $C = C_1 \cup C_2 = \{ X_1, X_2, X_3 \}$ thì C là một cơ sở của \mathbf{R}^3 vì $\mathbf{R}^3 = E_1 \oplus E_2$.

Gọi $B = \{ \epsilon_1, \epsilon_2, \epsilon_3 \}$ là cơ sở chính tắc của \mathbb{R}^3 .

$$\mbox{X\'et} \ \ P = (B \to C) = (\ [\ X_1\]_B \ \ [\ X_2\]_B \ \ [\ X_3\]_B \) = \begin{pmatrix} 4 & -3 & -4 \\ -3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \mbox{thì} \ \ P \ \ khà$$

$$nghịch , P^{-1} = \begin{pmatrix} -1 & -3 & -4 \\ -3 & -8 & -12 \\ 1 & 3 & 5 \end{pmatrix} và P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$
