

National University

of Computer & Emerging Sciences-Islamabad Chiniot-Faisalabad Campus

Dr. Hashim Yasin

Department of Artificial Intelligence & Data Science.

Al3002 – Machine Learning Assignment No. 2

Assignment Submission Guidelines:

- 1. Submit your assignment in **soft form (Code + Report)** within the due date and time. Soft form does not mean submitting photos of the hardcopy. Late submissions will result in a deduction of marks.
- 2. The **report** must include a discussion, comments, and a conclusion about your solution. Submitting without a report will result in a loss of full marks.
- 3. Name the zip or other folder/file that you submit using the following format: ML_A2_RollNo_FirstName.
- 4. Ensure that you solve each task of the assignment on your own.
- 5. You are allowed to do your assignment in groups of a maximum of two members.
- 6. There is no restriction on the programming language used for the tasks.
- 7. For programming tasks, you are NOT allowed to use any built-in functions or libraries for specific tasks.

Decision Tree, Random Forest and Naïve Bayes Classifiers

Download training dataset (Iris dataset) from the following link

https://www.kaggle.com/datasets/uciml/iris

The **Iris dataset** consists of three different species of iris flowers: *Iris setosa, Iris versicolor*, and *Iris virginica*, with 50 samples per species, totaling 150 samples. The dataset includes four key features for each flower, sepal length, sepal width, petal length, and petal width.

Your task is to,

1. Build (implement) Decision Tree classifiers (ID3 and CART)

- Visualize the decision tree structures for both algorithms.
- Evaluate and compare the performance of both ID3 and CART decision trees, using evaluation metrics.

2. Build (implement) Random Forest

- Train a Random Forest on the same dataset (Iris dataset) with an optimal number of trees.
- o Discuss and validate the optimal number of trees.
- Visualize your results.

3. Implement Naïve Bayes classifier

- o Train a Naïve Bayes classifier on the same dataset.
- Discuss and visualize the results.

4. Compare Classifiers

- Compare the performance of Decision Trees, Random Forest, and Naïve Bayes using evaluation metrics.
- Visualize the comparison results.