Quicksort

Wednesday, January 29, 2025 9:51 AM

Last Time:

Today:

Hw2/1/

- Merge Sort
- Master Theorem
- Recursion TreesQuicksort

 $T(n) = 3T(\gamma_4) + O(n) \longrightarrow O(n)$

Master Theorem

 $T(n) = a \cdot T(n/h) + f(n)$

a, b ≥1, t(n) is any function.

Then:

D It A(n) 1, O (n 10559 - E) An E >0,

then T(n) is $\Theta(n^{\log n})$

2 It f(n) is O(n/096a)

then T(n) is o(nlogalogn)

(3) I+ +(n) i, Q (nlogate), Eso

and of (b) < c.n for some c.

then T(n) i, O(f(n))

 $T(n) = 3T(\gamma_4) + \Theta(n)$

 $\begin{array}{c} a = 1 \\ b = 4 \end{array} \longrightarrow \begin{array}{c} log_4 3 \end{array}$

f(n) = n'

T(n) i) O(n) by case 3 ot moster theorem

2.
$$T(n) = 16 T(n/4) + O(n^2)$$

$$b=4$$

$$109_{+}^{10}$$

$$109_{+}^{10}$$

$$T(n) = 2T(n-1) + 1 \qquad do recurren$$

$$T(1) = T(n-1) + 1$$

$$T(n) = T(n/3) + T(2n/3) + n^2$$

Proof of the Moster theorem?

p. 97-106 in CLRS

recursion trees

Quick sort A[1...n]

Pat it in

Subrontine

Given a list A[1...n] and a torset p.

Split the array into 3 parts.

CqIA (CqIA)

T(n) =
$$\theta(n)$$
 + $T(r-1)$ + $T(n-r)$

printing

 $r \to rank$ of the privat

1) Very but at choosing proofs...

 $r = 1$
 $T(n) = \theta(n) + T(n-1)$
 $r = 1$
 $T(n) = \theta(n) + T(n-1)$
 $r = 1$
 $r = 1$

CS 211_2025W-01 Page 4

(i) Randonly choose on index po to be

i) Randonly choose on index p to be the pivot.
\int
Expeded running time.
$E[T(n)] \rightarrow \Theta(n \log n)$
To, 50 com;!
Expect number of heads?
(25)
Observations
1) partition does most the work.
partition is called at most
m +ime)
2) runtine of partition
some parts take O(1) time.
some parts take $O(i)$ time. (intribute $O(n)$ overall.
some parts take $O(i)$ time. (intribute $O(n)$ overall.
some parts take O(1) time.

Lemma Let X by the number of (-mparison) by partition over the course of quick sort.

Then, T(n) = O(n+X) time.

We will bound X - the number of compacison).

E[x] -) expeded?

For analysis Let $A = \begin{cases} 2_1, 2_2, 2_3 \dots 2_i \dots 2_i \dots 2_i \end{cases}$ $\frac{2}{3}$ is rank i.

Let Zij be the set 12, 2,5

Zi v.s. Zj