

Complex Network Systems

Graphs

Ilche Georgievski

2019/2020

ilche.georgievski@iaas.uni-stuttgart.de Room: U38 0.353

Network vs Graph

What is a network?

A network is a collection of objects where some pairs of objects are connected by links

Web, power grid, social network

Language: network, node, link

Exercise

Draw a network representing your family tree

Is that a complex network?

Simple networks

- Regular or almost regular structure
 - except for the root, any other tree node has exactly one antecedent

- Small network does not imply simple network
 - the humankind "family tree" has billions of persons

Complex networks

- Non-trivial structure
 - Patterns of connections are neither regular nor entirely random

Properties

What is a graph?

A graph is a mathematical representation of a network

Web graph, power grid graph, social graph

Language: graph, vertex, edge

Network vs Graph

We will make this distinction whenever necessary, but most often, we will use the two terms interchangeably

How to define a network?

How to build a graph?

What are the vertices?

What are the edges?

The choice of a proper network representation of a given domain determines our ability to use networks successfully

Unique and unambiguous representation

Links determine the question to be explored

Not so unique representation

 If we connect individuals that work with each other, we explore a

 If we connect scientific papers that cite each other, we explore the

• If we connect all papers with the same word in the title, what will we be exploring?

Healthy nutrition domain

Foods that provide naturally occurring nutrients*:

- Vitamin D: Fatty fish, mushrooms (vitamin D is naturally formed in the body when skin is exposed to sunlight; vitamin D is added to fortified milk)
- Vitamin E: Nuts, seeds, vegetable oils, green leafy vegetables
- Magnesium: Whole grains, wheat bran and wheat germ, green leafy vegetables, legumes, nuts, seeds
- Vitamin A: Preformed vitamin A: liver, fatty fish, milk, eggs; provitamin A carotenoids: carrots, pumpkins, tomatoes, leafy green vegetables
- Calcium: Milk, yogurt, cheese, kale, broccoli
- Vitamin C:All fruits and vegetables, particularly citrus fruits and tomatoes
- Vitamin B6: Highest levels in fish, beef, poultry, potatoes and other starchy vegetables, and fruit other than citrus
- Folate: Many foods; highest levels in spinach, liver, asparagus, Brussels sprouts (mandatory, standardized addition to enriched flour and flour products)
- Zinc: Red meat, poultry, beans, nuts, some seafood, whole grains
- Thiamin: Whole grain products (mandatory, standardized addition to enriched flour and flour products)
- Copper: Shellfish, whole grains, beans, nuts, potatoes, organ meats (kidneys, liver)
- Vitamin B12: Animal products: fish, meat, poultry, eggs, milk
- Riboflavin: Milk and dairy products, eggs, meat, green leafy vegetables, legumes (mandatory, standardized addition to enriched flour and flour products)
- Niacin: Meat, fish, seeds and nuts, whole grains (mandatory, standardized addition to enriched flour and flour products)
- Selenium: Found in different plant and animal foods; highest levels in seafood and organ meats (kidneys, liver)

Exercise

Draw a network representing the healthy nutrition domain

Basic steps

- I. Identify nodes
- 2. Identify relationships
- 3. Transform the list of items into a network
 - Snowballing

Snowballing

- Start with a "seed" node and follow the links to discover other nodes
- Network starts with a single snowflake and grows over time until either you are satisfied with its size or there is no more "snow" to add
- Depending on the network size, may overlook some network parts if improper seed is chosen
- It might be the best to choose several seeds and follow all links originating from them

Snowballing for healthy nutrition

- Choose the first ... from the list, e.g., vitamin D. Draw a circle and label it "D"
- Vitamin D is provided by fatty fish. Draw a circle that represents fatty fish, label it, and connect to the D node.
- Vitamin D is also provided by mushrooms. Draw a circle ...
- Repeat the previous steps for each combination of food and nutrients
- Do not duplicate nodes

My healthy nutrition network

What type of graph?

Undirected vs directed

Collaborations

Phone calls

Undirected vs directed

Following on Twitter

Friendship on Facebook

Complete graph

Regular graph

What about a directed case?

Bipartite graph

Persons that authored papers

Authors-to-papers network

NYTIMES Human Disease Network

Tripartite graph

Unweighted vs weighted

- Which of the following networks are weighted graphs?
 - Friendships on Facebook
 - Internet
 - Collaborations
 - Hyperlink
 - Roads

Unweighted vs weighted

- Which of the following networks are weighted graphs?
 - Friendships on Facebook
 - Internet
 - Collaborations
 - Hyperlink
 - Roads

What could their weights be?

Connected graph

Connected graph

Strongly vs weakly connected directed graph

Strongly vs weakly connected directed graph

Strongly connected components

What type of representation?

- Dots and lines
- Incidence matrix
- Adjacency matrix
- Edge list
- Adjacency list

G

Incidence matrix

(directed)

$$v_i \in V$$

$$e_j \in E$$

$$G = (V, E)$$

Adjacency matrix

(directed and undirected)

$$k_i^{out} = \sum_{j=1}^n A_{ij} \qquad k_j^{in} = \sum_{i=1}^n A_{ij}$$

$$k_j^{in} = \sum_{i=1}^n A_{ij}$$

$$a_{ij} = \begin{cases} 1, & \text{if there is some edge between } v_i \text{ and } v_j \\ 0, & \text{otherwise} \end{cases}$$

$$v_i, v_j \in V$$

$$(v_i, v_j), (v_j, v_i) \in E$$

$$G = (V, E)$$

$$k_i = \sum_{i=1}^n A_{ij}$$

$$k_j = \sum_{i=1}^n A_{ij}$$

Edge list vs adjacency list

- (L,M)
- (F,M)
- (F,A)
- (A,M)
- (A,B)
- (B,M)
- (B,I)
- •

- L: M
- F: M, A
- A: M, B
- B: M, I
- I: M, U
- U: M
- M:A, F

Easier to work with when the network is large and/or sparse

Most real-world networks are sparse

Network	Number of nodes	Average degree
Social networks (LinkedIn)	6 946 668	8.78
Citation networks (US patents)	3 764 105	8.77
WWW (Stanford and Berkley)	319 717	9.65
Coauthorships (DBLP)	317 080	6.62
IMDB (German movies)	21 258	3.97
Roads (California)	1 957 027	2.82
Proteins (Yeast)	4 626	6.40

Jure Leskovec, Kevin J. Lang, Anirban Dasgupta & Michael W. Mahoney (2009) Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters, Internet Mathematics, 6:1, 29-123.

Yeast protein-protein interaction network

Network representation

Email networks directed ?

Facebook friendships undirected unweighted

Citation networks directed unweighted

Collaboration networks undirected weighted

Mobile phone calls directed weighted

Protein interactions undirected unweighted

My healthy nutrition network

Bipartite
Directed
Weighted

Credit

- Leskovec, J. Analysis of Networks, CS224W, Stanford University (2018), http://web.stanford.edu/class/cs224w/
- Barabási, A. Network Science, http://networksciencebook.com/
- Zinoviev, D.. Complex Network Analysis in Python: Recognize, Construct, Visualize, Analyze, Interpret, The Pragmatic Bookshelf, 2018.