Session 4: **Solutions for Exercises and Practical**

Exercise 4.1.1

Suppose y is a single observation from random variable $Y \sim N(\mu, \tau^2)$, where τ^2 is **known**. Show that the log-likelihood for μ is $-\frac{1}{2}\left(\frac{y-\mu}{\tau}\right)^2$, calculate the maximum likelihood estimate $\hat{\mu}$, and hence write down $llr(\mu)$.

$$f(y \mid \mu) = \frac{1}{\sqrt{2\pi\tau^2}} \exp\left(-\frac{1}{2} \left(\frac{y-\mu}{\tau}\right)^2\right) \Rightarrow L(\mu \mid y) = \frac{1}{\sqrt{2\pi\tau^2}} \exp\left(-\frac{1}{2} \left(\frac{y-\mu}{\tau}\right)^2\right)$$

$$\Rightarrow \ell(\mu) = \log(L) = \log\left(\frac{1}{\sqrt{2\pi\tau^2}}\right) - \frac{1}{2} \left(\frac{y-\mu}{\tau}\right)^2 = -\frac{1}{2} \left(\frac{y-\mu}{\tau}\right)^2, \text{ omitting terms not in}$$

$$\mu$$
.
 $\Rightarrow \ell'(\mu) = 2. - \frac{1}{2} \left(\frac{y - \mu}{\tau} \right) \cdot \frac{-1}{\tau} = \frac{y - \mu}{\tau^2}$.

$$\ell'(\mu) = 0 \Rightarrow \frac{y - \hat{\mu}}{\tau^2} = 0 \Rightarrow \hat{\mu} = y$$
. To confirm this is maximum, note simply that $\ell(\mu)$

is a quadratic, which has only one turning point; a glance shows the function has a maximum value of 0 at $\ell(\hat{\mu} = y)$. As a result in this case the log-likelihood ratio, $llr(\mu)$, is equal to the log-likelihood:

$$\ell(\hat{\mu}) = 0 \Longrightarrow llr(\mu) = \ell(\mu) - \ell(\hat{\mu}) = \ell(\mu)$$

Computer based exercises

Question 1

Part (a)

. range pi 0.01 0.99 99

obs was 0, now 99 . gen L=pi^3*(1-pi)^7 . twoway line L pi

. list L pi

	0 2 P1	
	+	+
	l L	pi
1.	9.32e-07	.01
2.	6.95e-06	.02
3.	.0000218	.03
4.	.0000481	.04
5.	.0000873	.05
6.	.0001401	.06
7.	.0002064	.07
8.	.0002856	.08
9.	.0003767	.09
10.	.0004783	.1
11.	.0005887	.11
12.	.0007062	.12

Output suppressed

45.	.0013873	.45
46.	.0013033	.46

Foundations of Medical Statistics: Frequentist Statistical Inference 4. Practical Solutions

Output suppressed

. dis .0004783 / .0009766 .48976039

So 0.5 is better supported by the data.

Part (b)

```
. egen Lmax=max(L)
. gen LR=L/Lmax
. twoway line LR pi
. gen logLR=log(LR)
. twoway line logLR pi
. twoway line logLR pi if logLR>-4
. twoway line logLR pi if logLR>-4, yline(-1.92)
. twoway line logLR pi if logLR>-4, yline(-1.92) yaxis(1 2) ylabel(-1.92,angle(horizontal) axis(2))
```

Part (c)

Output suppressed

Output suppressed

95% limits: from between π =0.08 to 0.09, for lower limit, to between 0.6 and 0.61. (To identify more accurately we would need a finer grid.)

Question 2 Part (a)

```
. gen logL_30=30*log(pi)+70*log(1-pi)
. egen logL_30max=max(logL_30)
. gen logLR_30= logL_30- logL_30max

. twoway (line logLR pi if logLR>-4, yaxis(1 2)) /*
> */(line logLR_30 pi if logLR_30>-4, yaxis(1 2))/*
> */, yline(-1.92) ylabel(-1.92, angle(horizontal) axis(2))
```

Part (b)

The MLEs are the same for both (0.3, as you would expect); however, the log-likelihood ratio has a much tighter curvature when n=100 than when n=10, giving a narrow likelihood ratio confidence interval: this indicates that we have much more

Foundations of Medical Statistics: Frequentist Statistical Inference 4. Practical Solutions

precise information about the true value of π : the curvature of the log-likelihood reflects the amount of information the data provide regarding the parameter.

Notice also that the log-likelihood ratio is much more nearly quadratic in shape when n=100.

Question 3

```
. clear
. range lambda 0.010 0.100 91
obs was 0, now 91
. gen L=lambda^8*exp(-lambda*160)
. gen logL=log(L)
. egen logL max=max(logL)
. gen logLR= logL- logL max
. twoway (line logLR lambda if logLR>-4, yaxis(1 2)), yline(-1.92) ylabel(-1.92,
angle(horizontal) axis(2))
. * visually we estimate the 95% confidence interval between about lambda= 0.025 to
0.095
. list logLR lambda
          logLR lambda |
  6. | -4.031784 .015

7. | -3.675472 .016

8. | -3.350475 .017

9. | -3.053211 .018

10. | -2.780674 .019
 11. | -2.530327 .02 |
12. | -2.300003 .021 |
 12. | -2.300003 .021 |
13. | -2.087845 .022 |
14. | -1.892231 .023 |
Output suppressed
86. | -2.06517 .095 |
```

So more accurately we can give the 95% confidence limits as between lambda=0.022 and 0.023, and 0.093.