Ergodicity and Chaos

Yuqing Li

March 24, 2022

Abstract

2

1 Markov Operator

- **Definition 1.** A Markov operator over a Polish space \mathcal{X} is a bounded linear
- 5 operator on $\mathcal{B}_b(\mathcal{X})$, i.e., $\mathcal{P}: \mathcal{L}^1(\mathcal{X}) \to \mathcal{L}^1(\mathcal{X})$, s.t.
- 6 1. $f(\cdot) \ge 0, \mathcal{P}f \ge 0$;
- $2. \ f(\cdot) \ge 0, \ \|\mathcal{P}f\|_1 = \|f\|_1.$

We observe that \mathcal{P} is a monotonic operator, moreover it is a contraction, i.e.,

$$\|\mathcal{P}f\|_1 \le \|f\|_1\,,$$

s for any $f \in \mathcal{L}^1(\mathcal{X})$.

Then, if there is a fixed point for the Markov operator f^* , i.e., $\mathcal{P}f^* = f^*$, we may define a measure $\mu(\cdot)$, with

$$\mu(A) = \int_A f^* \mathrm{d}\boldsymbol{x},$$

then heuristically, \mathcal{P} is also a contraction on $\mathcal{L}^2(X,\mu)$, by using (M3) property in Proposition 3.1.1 [?]

$$\int |\mathcal{P}g|^2 d\mu \le \int (\mathcal{P}|g|)^2 d\mu = \int (\mathcal{P}|g|)^2 f^* dx$$

$$\leq \int |g| (\mathcal{P} |g|) d\mu \leq \left(\int |g|^2 d\mu \right)^{1/2} \left(\int (\mathcal{P} |g|)^2 d\mu \right)^{1/2},$$
$$\int (\mathcal{P} |g|)^2 d\mu \leq \int |g|^2 d\mu.$$

2 The Frobenius-Perron Operator

We start with a definition

Definition 2. A measurable transformation $S: \mathcal{X} \to \mathcal{X}$ on a Polish space \mathcal{X} is nonsingular if $\pi(S^{-1}(A)) = 0$ for all $A \in \mathcal{B}$ satisfying $\pi(A) = 0$.

Assume that a nonsingular transform $\mathcal{S}: \mathcal{X} \to \mathcal{X}$ is given, we define an operator $\mathcal{P}: \mathcal{L}^1(\mathcal{X}) \to \mathcal{L}^1(\mathcal{X})$ in two steps

1. Let $f \in \mathcal{L}^1(\mathcal{X})$ and $f \geq 0$, write

$$\int_{A} \mathcal{P} f d\pi := \int_{\mathcal{S}^{-1}(A)} f d\pi,$$

2. Let $f \in \mathcal{L}^1(\mathcal{X})$, write

$$\int_A \mathcal{P} f d\pi := \int_{\mathcal{S}^{-1}(A)} f^+ d\pi - \int_{\mathcal{S}^{-1}(A)} f^- d\pi = \int_{\mathcal{S}^{-1}(A)} f d\pi,$$

¹⁵ One might ask,

Question 1. What is the Frobenius-Perron operator for the ODE

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x\tag{2.1}$$

Proof. Take the Polish space as $\mathcal{X} := [-5, 5]$, then for an interval A := [a, x], the nonsingular transformation is defined as $\mathcal{S}_t : \mathcal{X} \to \mathcal{X}$, then we have $\mathcal{S}_t^{-1}(A) = [a \exp(t), x \exp(t)]$, thus we obtain that

$$\int_{a}^{x} \mathcal{P}f(z)dz = \int_{a \exp(t)}^{x \exp(t)} f(u)du.$$

6

References

18 [1] Andrzej Lasota and Michael C Mackey. Chaos, fractals, and noise: 19 stochastic aspects of dynamics, volume 97. Springer Science & Business Media, 1998.