Pay Attention to MLPs

1. Introduction

Motivation

- It remains an open question whether the inductive bias in self-attention is essential to the remarkable effectiveness of Transformers.
- Study the necessity of self-attention modules in key language and vision applications

MLP	Self-Attention
MLPs with static parameterization can represent arbitrary functions	The attention mechanism introduces the inductive bias that the model can be dynamically parameterized based on the input representations

- Propose gMLP, and show experiments [image classification, Masked Language Model]
 - → both pretraining and finetuning metrics for gMLPs improve as quickly as for Transformers
- Transformers can be more practically advantageous over gMLPs on tasks that require cross-sentence alignment (e.g., by 1.8% on MNLI), even with similar capacity and pretraining perplexity.
- · Overall, our results suggest that self-attention is not a necessary ingredient for scaling up machine learning models

2. Model

• Unlike Transformers, gMLPs do not require positional encodings, nor is it necessary to mask out the paddings during NLP finetuning.

2.1 Spatial Gating Unit

Equations	Plot
$f_{W,b}(Z) = WZ + b \ s(Z) = Z_1 \odot f_{W,b}(Z_2)$	$S(Z)$ $O \qquad Z_2$ $U, v = x. chunk(2, dim=-1)$ $Z = \sigma(XU)$ $U (d, d_{ff})$ $X \qquad (n, d)$

- For training stability, we find it critical to initialize W as near-zero values and b as ones, meaning that s(·) is approximately an identity mapping at the beginning of training.
- the magnitude for each element in Z can be rapidly tuned according to the gating function $f_{w_b}(\cdot)$

3. Image Classification

Figure 2: ImageNet accuracy vs model capacity.

- We compare our attention-free models with recent attentive models based on vanilla Transformers, including Vision Transformer (ViT) [7], DeiT [8] (ViT with improved regularization), and several other representative convolutional networks.
- The accuracy-parameter/FLOPs tradeoff of gMLPs surpasses all concurrently proposed MLP-like architectures, which we attribute to the effectiveness of our Spatial Gating Unit

3. Image Classification

Figure 3: Spatial projection weights in gMLP-B. Each row shows the filters (reshaped into 2D) for a selected set of tokens in the same layer.

• The spatial weights after learning exhibit both locality and spatial invariance. In other words, each spatial projection matrix effectively learns to perform convolution with a data-driven, irregular (non-square) kernel shape.

4. Masked Language Modeling with BERT

- We do not use positional encodings.
- We also find it unnecessary to mask out <pad> tokens in gMLP blocks during finetuning as the model can quickly learn to ignore them.

4.1 Ablation: The Importance of Gating in gMLP for BERT's Pretraining

Model	Perplexity	Params (M)
BERT base BERT with a Transformer architecture and learnable absolute position embeddings.	4.37	110
BERT _{base} + rel pos BERT with a Transformer architecture and T5-style learnable relative position	biases 4.26	110
BERT _{base} + rel pos - attn	5.64	96
Linear gMLP, $s(Z) = f(Z)$	5.14	92
Additive gMLP, $s(Z) = Z + f(Z)$	4.97	92
Multiplicative gMLP, $s(Z) = Z \odot f(Z)$	4.53	92
Multiplicative, Split gMLP, $s(Z) = Z_1 \odot f(Z_2)$, $Z = Z_1 Z_2$	4.35	102

- 1. SGU outperforms other variants in perplexity
- 2. gMLP with SGU also achieves perplexity comparable to Transformer.

4.2 Case Study: The Behavior of gMLP as Model Size Increases

Model	#L	Params (M)	Perplexity	SST-2	MNLI-m
Transformer	6+6	67	4.91	90.4	81.5
gMLP	18	59	5.25	91.2	77.7
Transformer	12+12	110	4.26	91.3	83.3
gMLP	36	102	4.35	92.3	80.9
Transformer	24+24	195	3.83	92.1	85.2
gMLP	72	187	3.79	93.5	82.8
Transformer	48+48	365	3.47	92.8	86.3
gMLP	144	357	3.43	95.1	84.6

• The results above show that a deep enough gMLP is able to match and even outperform the perplexity of Transformers with comparable capacity

• Our attention-free model is advantageous on SST-2 but worse on MNLI is particularly informative—the former is a single-sentence task whereas the latter involves sentence pairs (premise and hypothesis)

• Our attention-free model is advantageous on SST-2 but worse on MNLI is particularly informative—the former is a single-sentence task whereas the latter involves sentence pairs (premise and hypothesis)

4.3 Ablation: The Usefulness of Tiny Attention in BERT's Finetuning

Pseudo-code for the tiny attention module

```
def tiny_attn(x, d_ffn, d_attn=64):
    qkv = proj(x, 3 * d_attn, axis="channel")
    q, k, v = split(qkv, 3, axis="channel")
    w = einsum("bnd,bmd->bnm", q, k)
    a = softmax(w * rsqrt(d_attn))
    x = einsum("bnm,bmd->bnd", a, v)
    return proj(x, d_ffn, axis="channel")
```

• To isolate the effect of attention, we experiment with a hybrid model where a tiny self-attention block is attached to the gating function of gMLP (Figure 6)

4.4 Main Results for MLM in the BERT Setup

	Perplexity	SST-2	MNLI	SQuAD		Attn Size	Params
			(m/mm)	v1.1	v2.0		(M)
BERT _{base} [2]	-	92.7	84.4/-	88.5	76.3	768 (64 × 12)	110
BERT _{base} (ours) gMLP _{base} aMLP _{base}	4.17 4.28 3.95	93.8 94.2 93.4	85.6/85.7 83.7/84.1 85.9/85.8	90.2 86.7 90.7	78.6 70.1 80.9	768 (64 × 12) - 64	110 130 109
BERT _{large} [2]	-	93.7	86.6/-	90.9	81.8	1024 (64 × 16)	336
BERT _{large} (ours) gMLP _{large} aMLP _{large}	3.35 3.32 3.19	94.3 94.8 94.8	87.0/87.4 86.2/86.5 88.4/88.4	92.0 89.5 92.2	81.0 78.3 85.4	1024 (64 × 16) - 128	336 365 316

Table 6: Pretraining perplexities and dev-set results for finetuning. "ours" indicates models trained using our setup. We report accuracies for SST-2 and MNLI, and F1 scores for SQuAD v1.1/2.0.

- our gMLP_{large} achieves 89.5% F1 on SQuAD-v1.1 without any attention or dynamic parameterization mechanism
- our hybrid model aMLP_{large} achieves 4.4% higher F1 than Transformers on the more difficult SQuAD-v2.0 task.

5 Conclusion

• We show that gMLPs, a simple variant of MLPs with gating, can be competitive with Transformers in terms of BERT's pretraining perplexity and ViT's accuracy.