PIR 11: Reconnaissance de visages

Encadrant: Khalid IDRISSI, LIRIS

Mokhtar EL BOURAQUI, Zaineb HARRIZI, Noëline MIGEON, Elhadji NIANG, Pénélope ROULLOT

DÉTECTION VS. RECONNAISSANCE

https://en.wikipedia.org/wiki/Face_detection

face scan by Franck Boston/www.shutterstock.com

DIFFÉRENTES APPROCHES

03 EIGENFACES

O5 RÉSEAUX DE NEURONES
Théorie, AlexNet, transfer learning

O6 CONVNETS

Convolutional Neural Networks (CNN)

SIFT

Scale-Invariant Feature Transform

Noëline Migeon

SIFT

- David Lowe, 1999
- Reconnaissance d'objets
- Approche par descripteurs
- Approche locale : extraction de caractéristiques stables

1. Détection

2. Description

Descripteur SIFT

128 dimensions

3. Matching

SIFT - Principe

Image d'entrée

1 point d'intérêt 1 descripteur SIFT 1 vecteur de 128 dimensions

Détection

Détection des points d'intérêts

Attribution d'une orientation à chaque point d'intérêt

Description

Calcul du descripteur pour chaque point d'intérêt

Matching

Mise en correspondance avec d'autres images

Détection des points d'intérêt

Sélection des variations les plus significatives

Recherche d'extrema locaux à plusieurs échelles

Obtention des points d'intérêts

Visualisation

Description

1. Assignation d'orientation

2. Calcul du descripteur

16 sous-régions * 8 orientations = vecteur de 128 dimensions

Orientation de chaque pixel

direction du gradient

"Pic" de l'histogramme : Orientation principale du point d'intérêt

Mise en correspondance

Mise en correspondance des descripteurs "proches" (distance euclidienne)

Mise en correspondance de points d'intérêt après rotation de l'image

Résultats SURF

Détection d'objets

Utilisations

NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

14

LBP

Local Binary Pattern

Pénélope Roullot

Le descripteur LBP

Détection de visages

Modèle de visage

> Modèle de non-visage

Comparaison des histogrammes

Améliorations apportées

- D'après Ahonen et al. [2] : **pondération des régions** en fonction des points d'intérêts (a)
- **Opérateur LBP** : Inversement de l'ordre de concaténation des pixels
- Comparaison des histogrammes : ajout d'un **critère plus discriminant** (pourcentage de différence)
- Regroupement des multiples rectangles à différentes échelles encadrant un seul visage (moyennage des coordonnées, avec une pondération en fonction de leur importance et de l'échelle) (b)
- **Détection des yeux** dans chaque visage détecté et **recadrage** du visage en fonction de la position des yeux, pour améliorer la reconnaissance (c)
- Amélioration de la **vitesse d'exécution** du code

Résultats

Eigenfaces

Pénélope Roullot

ACP* - Eigenfaces

Calcul des eigenfaces

 $\Phi = \Gamma - \Psi$

Projection d'un visage sur l'espace de visages

$$\Omega = \left[\omega_1 \, \omega_2 \, \omega_3 \, \dots \, \omega_M \right]$$

Apprentissage: Construction des classes

Base d'apprentissage : 5 personnes

Vecteurs de classe : 5 classes

Reconnaissance de visage

Résultats

Original image

minus the average face projection onto face space

This image belongs to the face class n°7 (face class of Penelope).

Original image

minus the average face projection onto face space

This image belongs to the face class n°4 (face class of subject 4).

Base personnelle (20 images de 10 personnes)

Yale Database (11 images de 15 personnes) (<u>http://vision.ucsd.edu/content/yale-face-database</u>)

Résultats

Base d'apprentissage : 250 images

Base de test : 250 images

Pourcentage de reconnaissance : 80%

Reconnaissances erronées : 12,8%

Non-reconnaissances: 7,2%

Fisherfaces

Mokhtar El Bouraqui

ACP vs ADL*

- ACP maximise la variance totale des données
- ADL assure la séparation entre les classes

Calculer les Fisherfaces

Matrice de variance interclasse :

$$S_B = \sum_{i=1}^c N_i (\mu_i - \mu)(\mu_i - \mu)^T$$

Matrice de variance intra-classe :

$$S_i = \sum_{x_k \in \mathcal{X}_i} (x_k - \mu_i) (x_k - \mu_i)^T \qquad S_W = \sum_{i=1}^c S_i$$

Maximiser:
$$J(W) = \frac{|W^{T}S_{B}W|}{|W^{T}S_{w}W|}$$

Sw est **toujours** singulière

Solution des Fisherfaces

Projection des images dans un sous-espace de dimension (N-c) Avec la matrice de rotation Wacp.

Maximisation du Rapport du déterminant de Sb et Sw. Obtention de Wadl

W = Wacp * Wadl

euclidienne

Base de données (Personnelle)

• Input : 100 images de 5 personnes

• Train : 50 images

• Test: 50 images

Base de données (Yale)

Input : 150 images de 15 personnes

• Train : 149 images

• Test: 1 image

Avec lunettes Sans lunettes

3 conditions d'éclairage

5 expressions faciales

Résultats

Résultats

Base d'apprentissage : Yale Database

Pourcentage de reconnaissance: 93%

Base d'apprentissage : Base personnelle

Pourcentage de reconnaissance : 60%

Réseaux de neurones

Zaineb Harrizi

Modélisation mathématique d'un neurone

x_i : les données

w_i: les poids associés à chaque entrée

b: biais

f: fonction d'activation du neurone

y : la sortie

Perceptron multicouche

Phase d'apprentissage

$$C = \frac{1}{2} (\hat{y} - y)^2$$

Transfer Learning

Traditional Learning

Transfer Learning

AlexNet

Base de données

- 9 classes

- 123 images

- Training set: 86 images

Validation set : 37 images

Résultats

Pourcentage de reconnaissance : 87,65%

Convnets

Elhadji Niang

Architecture des Convnets

Input image

Convo + Relu

Pooling

Conv + Relu

Pooling

Flattening

Fully connected

Extraction de caractéristiques

Apprentissage et Prédiction de la classe de l'image

Activité d'apprentissage

Partie Convolution

0.32 = Elhadji

0.53 = Jean

0.08 = Paul

0.07 = Tom

Bases de données d'images utilisées

• Face96

2520 images , 125 classes. 20 images par classes. 1764 images pour l'apprentissage et 756 images pour le test

Images_PIR

81 images, 5 classes. 57 images pour l'apprentissage et 24 images pour le test

Résultats

Pooling

Max pooling

94 30 98 36

VS

94	20	30	22
8	12	2	0
34	54	24	8
70	98	12	36

Average pooling

33.5	13.5	
64	20	

Fonctions d'activations

4 fonctions d'activations testées

Pourcentage de réussites

Avec la base face96

86.73 % de précision pendant l'apprentissage

13.27 % d'erreur

Avec la base Image_PIR

83.2 % de précision pendant l'apprentissage

16.8% d'erreur

Conclusion

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

Bibliographie

- [1] D. G. Lowe, « Object recognition from local scale-invariant features », in *Proceedings of the Seventh IEEE International Conference on Computer Vision*, Kerkyra, Greece, 1999, p. 1150-1157 vol.2, doi: 10.1109/ICCV.1999.790410.
- [2] T. Ahonen, A. Hadid, et M. Pietikainen, « Face Description with Local Binary Patterns: Application to Face Recognition », *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 28, n° 12, p. 2037-2041, déc. 2006, doi: 10.1109/TPAMI.2006.244.
- [3] L. S. López, « Local Binary Patterns applied to Face Detection and Recognition », Universitat Politecnica de Catalunya, Barcelona, 2010.
- [4] M. Turk et A. Pentland, « Eigenfaces for Recognition », *Journal of Cognitive Neuroscience*, vol. 3, no 1, p. 71-86, janv. 1991, doi: 10.1162/jocn.1991.3.1.71.
- [5] P. N. Belhumeur, J. P. Hespanha, et D. J. Kriegman, « Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection », *IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE*, vol. 19, n° 7, p. 10, 1997.

- [7] Y. LeCun, « Convolutional networks for images, speech, and time series », *The handbook of brain theory and neural networks*, Consulté le: juin 17, 2020. [En ligne]. Disponible sur: https://www.academia.edu/2813453/Convolutional_networks_for_images_s peech_and_time_series.
- [8] F. Mamalet, S. Roux, et C. Garcia, « Embedded facial image processing with Convolutional Neural Networks », in *Proceedings of 2010 IEEE International Symposium on Circuits and Systems*, Paris, France, mai 2010, p. 261-264, doi: 10.1109/ISCAS.2010.5537897.
- [9] AMIDI Afshine, AMIDI Shervine. *Pense-bête de réseaux de neurones convolutionnels*. Stanford University [en ligne]. Disponible sur : stanford.edu/~shervine/l/fr/teaching/cs-230/pense-bete-reseaux-neuron es-convolutionnels
- [10] SPACEK, Libror. Face Recognition Data. University of Essex [en ligne]. Disponible sur : cswww.essex.ac.uk/mv/allfaces/
- [11] Moodle INSA Lyon : Cours : Télécommunications/TC-4/Traitement de signaux numériques : Parole et Image. Disponible sur : moodle.insa-lyon.fr/course/view.php?id=1222

Annexes

3ème octave 2ème octave

1ère octave

Construction de la pyramide "différence de gaussiennes"

