Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

учебный центр общей физики фтф

Группа: R3137	К работе допущен : измерения от 02.12.2020
Студент: Нестеров И.А,	Работа выполнена <u>:</u>
Преподаватель: Крылов В.А.	Отчет принят:

Рабочий протокол и отчет по лабораторной работе № 1.04v. «Изучение равноускоренного вращательного движения (маятник Обербека)».

1. Цель работы:

- 1. Проверка основного закона динамики вращения.
- 2. Проверка зависимости момента инерции от положения масс относительно оси вращения.
- 2. Задачи, решаемые при выполнении работы:
- 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона
- 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту
- 3. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки
- 4. Исследование зависмости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения
- 3. Объект исследования изучение статических закономерностей.
- 4. Методы экспериментального исследования.
- 1. Анализ
- 2. Лабораторный эксперимент

5. Рабочие формулы и исходные данные.

- 1) ma = mg T закон Ньютона для равноускоренного движения груза под воздействием векторной суммой силы тяжести mg и силой натяжения нити T.
- 2) а = $\frac{2h}{t^2}$ линейное ускорение груза
- 3) $\varepsilon = \frac{2a}{d}$ угловое ускорение крестовины
- 4) T = m(g a) -сила натяжения нити

5) $\mathbf{M} = \frac{md}{2} \cdot (\mathbf{g} - \mathbf{a})$ – момент силы натяжения нити

6) $I_{\varepsilon}=\,$ М - M_{Tp} – основной закон динамики вращения для крестовины

7) I = $I_0 + 4m_{\rm yr}R^2$ — момент инерации крестовины

8) М = $M_{\rm Tp}$ + $I_{\rm \epsilon}$ — связь между моментом силы натяжения нити и угловым ускорением крестовины

9) R = l_1 + (n - 1) l_0 + $\frac{1}{2}$ b – расстояние между осью вращения и центром утяжелителя

6. Измерительные приборы.

No,	Наименование	Предел измерений	Цена деления	Погрешность	$\Delta_{_{ m H}}$
Π/Π				прибора	
1	Металлическая линейка	250 мм	1 мм	0,2 мм	0,5 мм
2	Механический	1800 c	0,2 c	0,1 c	0,1 c
	секундомер				

7. Схема установки (перечень схем, которые составляют Приложение 1).

I — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Для проведения прямых измерений были выбраны следующие параметры:

0,5 кг – масса подвешенного груза, 0,1 кг – масса шайбы

 $R_1=0.07\,$ м, $R_2=0.09\,$ м, $R_3=0.11\,$ м, $R_4=0.13\,$ м, $R_5=0.15\,$ м, $R_6=0.17\,$ м — расстояния от оси вращения до центра утяжелителя

Таблица 1. Протокол измерений времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.

Масса груза,	Положение утяжелителей								
Γ	1.риска	2.риска	3.риска	4.риска	5.риска	6.риска			
600	2,89 с	3,29 с	3,73 с	4,21 c	4,69 c	5,19 с			
	2,89 с	3,28 с	3,73 с	4,20 c	4,69 c	5,20 с			
_	2,89 с	3,29 с	3,73 с	4,22 c	4,68 c	5,19 с			
	2,89 с	3,287 c	3,73 с	4,21 c	4,687 c	5,193 с			
700	2,66 c	3,04 c	3,44 с	3,87 с	4,33 c	4,78 c			
_	2,66 с	3,03 с	3,44 с	3,87 с	4,33 c	4,78 c			
_	2,66 c	3,04 c	3,43 с	3,87 с	4,32 c	4,78 c			
_	2,66 с	3,047 с	3,437 с	3,87 с	4,327 с	4,78 c			
800	2,48 c	2,83 с	3,21 c	3,61 c	4,02 c	4,45 c			
-	2,48 c	2,82 с	3,20 с	3,60 с	4,03 c	4,46 c			
_	2,49 с	2,84 с	3,21 c	3,61 c	4,04 c	4,47 c			
_	2,483 с	2,83 с	3,207 с	3,607 с	4,03 c	4,46 c			
900	2,33 с	2,66 с	3,01 c	3,39 с	3,79 с	4,19 c			
_	2,34 с	2,66 c	3,01 c	3,40 с	3,80 с	4,19 c			
_	2,33 с	2,66 c	3,02 c	3,39 с	3,80 с	4,19 c			
	2,333 с	2,66 с	3,03 с	3,393 с	3,797 с	4,19 c			

 $t_{\rm cp} = \frac{2,89+2,89+2,89}{3} = 2,89 \; {\rm c.} \;$ Аналогичным образом расчитывается среднее значение для каждой из серий измерения времени. Результаты внесены в таблицу в соответствующие ячейки.

$$S_{\overline{t_1}} = \sqrt{\frac{\sum_{i=1}^N (t_i - \overline{t_1})^2}{n(n-1)}} = \sqrt{\frac{0}{6}} = 0$$
 с — оценка СКО для результата измерения

$$\Delta_{\overline{t_1}} = t_{\alpha,n} \cdot S_{\overline{t_1}} = 0$$
 с – случайная погрешность

$$\Delta_{t_1} = \sqrt{\Delta_{\overline{t_1}}^2 + (\frac{2}{3} \Delta_{\text{их}})^2} = \sqrt{0.0666} = 0,2581 = 0,26 \text{ c} - \text{абсолютная погрешность}$$

$$\varepsilon_{t_1} = \frac{\Delta_{t_1}}{\overline{t_1}} \cdot \ 100\% = \frac{0,26}{2,89} \cdot 100\% = 9\%$$
 - относительная погрешность

$$t = (2,89 \pm 0,26)$$
 c; $\epsilon_t = 9\%$ $\alpha = 0,95$. — доверительный интервал

9. Результаты косвенных измерений и их обработки

С помощью формул 2,3,5 из пункта 5 отчета, а также параметров, указанных в описании виртуального стенда, заполняем следующую таблицу. (h = 0,7 м — указанная в методическом пособии высота, d = (46.0 ± 0.5) мм) 0,46 мм = 0,046 см = 0,00046

2)
$$\alpha = \frac{2h}{t^2}$$
 – линейное ускорение груза d = (46.0 ± 0.5) мм

3)
$$\varepsilon = \frac{2a}{d}$$
 – угловое ускорение крестовины

5)
$$M = \frac{md}{2} \cdot (g-a)$$
 – момент силы натяжения нити

Таблица 2. Расчет ускорения α груза, углового ускорения ε крестовины и момент М силы натяжения нити для каждой серии измерений

Искомые	Macca	Положение утяжелителей					
величины	груза, г	1.риска	2.риска	3.риска	4.риска	5.риска	6.риска
$\alpha \cdot 10^2, \frac{M}{c^2}$		17,2	12,9	10,1	7,9	6,4	5,2
$\varepsilon, \frac{\text{рад}}{c^2}$	600	7,39	5,65	4,35	3,48	2,61	2,17
М· 10 ³ , Н·м		133,2	133,7	134,1	134,4	134,7	134.8
$\alpha \cdot 10^2, \frac{M}{c^2}$		19,8	15,1	11,6	9,3	7,5	6,1
$\varepsilon, \frac{\text{рад}}{c^2}$	700	8,70	6,52	5,22	3,91	3,04	2,61
М· 10³, Н·м		154.9	155,7	156,2	156,7	157,0	157,1
$\alpha \cdot 10^2, \frac{M}{c^2}$		22,7	17,5	13,6	10,8	8,6	7,0
$\varepsilon, \frac{\text{рад}}{c^2}$	800	10,00	7,39	6,09	4,78	3,91	3,04
M· 10³,		176,5	177,6	178,1	178,7	179,0	179,4

Н∙м							
$\alpha \cdot 10^2, \frac{M}{c^2}$	000	25,7	19,8	0,15	13,2	10,8	8,6
$\varepsilon, \frac{\text{рад}}{c^2}$	900	11,30	8,70	6,52	5,22	4,35	3,48
М· 10 ³ , Н·м		197,9	199,1	200,2	200,8	201,2	201,6

Расчет погрешностей для первых значений α, ε, М:

Так как это косвенные измерения, воспользуемся следующими формулами:

$$\varepsilon_z = \sqrt{\left(\alpha \frac{1}{a} \Delta_a\right)^2 + \left(\beta \frac{1}{b} \Delta_b\right)^2 + \left(\gamma \frac{1}{c} \Delta_c\right)^2 + \dots \cdot 100\%} =$$

$$= \sqrt{\left(\alpha \varepsilon_a\right)^2 + \left(\beta \varepsilon_b\right)^2 + \left(\gamma \varepsilon_c\right)^2 + \dots \cdot 100\%}.$$

Затем по формуле (4.6) вычисляем абсолютную погрешность

$$\Delta_z = \frac{\overline{z} \ \varepsilon_z}{100}.$$

Абсолютная погрешность прямых однократных измерений = 2/3 инструментальной погрешности, значит, Δ_h = 0,13 м, Δ_m = 0,4 кг

Абсолютная погрешность $\Delta_{t_1} = \sqrt{\Delta_{\overline{t_1}}^2 + (\frac{2}{3} \Delta_{\text{их}})^2} = \sqrt{0.0666} = 0,2581 = 0,26 \text{ с}$ была найдена ранее.

$$\varepsilon_{\alpha} = \sqrt{\left(\frac{0,13}{0,7}\right)^2 + \left(\frac{-0,52}{2,89}\right)^2} \cdot 100\% = 0,2585 \cdot 100\% = 26\%$$

$$\Delta_{\alpha} = \frac{0.17 \cdot 26}{100} = 0.0442 \frac{M}{c^2}$$

$$\alpha = (0.17 \pm 0.04) \frac{M}{c^2}$$
; $\epsilon_{\alpha} = 25\%$ $\alpha = 0.95$. – доверительный интервал

Аналогичными вычислениями, получим

$$\varepsilon_{\epsilon} = 0.1087 \cdot 100\% = 11\%$$

$$\Delta_{\epsilon} = 0.8129 = 0.82 \frac{\text{рад}}{c^2}$$

$$\epsilon = (7,39\pm 0,11) \frac{\text{рад}}{\text{c}^2}; \; \epsilon_\epsilon = 11\% \; \alpha = 0,95.$$
 – доверительный интервал

$$\varepsilon_{\rm M} = 0.108931 = 11\%$$

$$\Delta_{\rm M} = 0.66 = 0.07 \; {\rm H} \cdot {\rm M}$$

$$M = (0,1332 \pm 0,1089) \; \text{H·м}; \; \epsilon_{M} = 11\% \; \alpha = 0,95. -$$
 доверительный интервал

$$\begin{aligned}
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-5} + 2125 \cdot 10^{-3} R^2 \cdot 4^2 \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-5} + 2125 \cdot 10^{-3} R^2 \cdot 4^2 \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-5} + 2125 \cdot 10^{-3} R^2 \cdot 4^2 \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-5} + 2125 \cdot 10^{-3} = 000(826 \cdot 10^{-8} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-5} + 2125 \cdot 10^{-5} = 000(826 \cdot 10^{-8} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-5} + 2125 \cdot 10^{-5} = 000(826 \cdot 10^{-8} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-3} = 000(826 \cdot 10^{-8} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-3} = 000(826 \cdot 10^{-8} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-3} = 000(826 \cdot 10^{-8} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-3} = 000(826 \cdot 10^{-8} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-3} = 000(826 \cdot 10^{-8} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-3} = 000(826 \cdot 10^{-8} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-3} = 000(826 \cdot 10^{-8} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-3} = 000(826 \cdot 10^{-8} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-3} = 000(826 \cdot 10^{-3} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-3} = 000(826 \cdot 10^{-3} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-3} = 000(826 \cdot 10^{-3} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{6} 1235 \cdot 10^{-3} = 000(826 \cdot 10^{-3} L) \\
\vec{R}^2 &= \frac{1}{R} R^2 = \frac{1}{16} 100^{-3} = 13 R^2 + 100^{-3} = 100^{-3} = 100^{-3} = 100^{-3} = 100^{-3} = 100^{-3} = 100^{-3} = 100^{-3} = 1$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Рассчитаны по ходу выполнения лабораторной работы.

11. Графики

12. Окончательные результаты:

$$Mym = (46 \pm 6) \cdot 10^{2} m_{e}$$
, $Emg_{m} = 13\%$, $h = 0.95$
 $I_{0} = (3.19 \pm 0.23) \cdot 10^{-3}$ $Me \cdot M^{2}$ $E_{J_{0}} = 4\%$, $\lambda = 9.95$

Дополнительное задание:

13. Выводы и анализ результата работы.

Зависимость $M(\varepsilon)$ и $I(R^2)$ в маятнике Обербека является линейной. Исходя из графиков, зависимость $M(\varepsilon)$ наблюдаем, что чем дальше утяжелитель от оси вращения маятника, тем быстрин возрастает момент силы натяжения нити M. Это следствие увеличения момента инерции маятника при удалении утяжелителей от осей (зависимость $I(R^2)$). Значит, момент силы натяжения нити также должен увеличиваться. Результат работы можно считать достаточно четным, таак как вес утяжелителй $m = (408.0 \pm 0.3)$ г попадает в найденный нами промежуток $m_{y_T} \pm \Delta m_{y_T}$.

14. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Приложение