ST308 Bayesian Inference

Kostas Kalogeropoulos (Office B610)

Week 1: Exercises

- 1. Let $x = (x_1, \ldots, x_n)$ be a random sample from an Exponential(λ) distribution. Set the prior for λ to be a Gamma(α, β) and derive its posterior distribution.
- 2. Let $x = (x_1, \ldots, x_n)$ be a random sample from a $N(\theta, \sigma^2)$ distribution with σ^2 known.
 - (a) Show that the likelihood is proportional to

$$f(x|\theta) \propto \exp\left(-\frac{n(\bar{x}-\theta)^2 + (n-1)S^2}{2\sigma^2}\right).$$

where \bar{x} is the sample mean and S^2 is the sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}.$$

Hence the likelihood simplifies to

$$f(x|\theta) \propto \exp\left(-\frac{(\theta - \bar{x})^2}{2\frac{\sigma^2}{n}}\right)$$

- (b) Set the prior for θ to be $N(\mu, \tau^2)$ and derive its posterior distribution. (You can use the above result)
- 3. Let $x = (x_1, \ldots, x_n)$ be a random sample from a $N(0, \sigma^2)$ distribution. Set the prior for σ^2 to be $IGamma(\alpha, \beta)$ and derive its posterior distribution.