

自適應增強 AdaBjost

國立東華大學電機工程學系楊哲旻

Outline

- 1 提升
- 2 集成學習
- 3 重新加權訓練集
- 4 演算法
- 5 均勻與非均勻權重
- 6 範例

機器學習-自適應增強 01.提升

₩ 提升(Boosting)

如果機器學習算法可在訓練集上獲得誤差小於50%的分類器。提升法後可獲得0%誤差的分類器

- 模型訓練後獲得第一個分類器 $f_1(x)$
- 找到第二個分類器 $f_2(x)$ 能幫助 $f_1(x)$ 更好的分類
 - 如果 $f_2(x)$ 與 $f_1(x)$ 相似,則沒有任何幫助
 - 希望 $f_2(x)$ 與 $f_1(x)$ 為互補關係
- 獲得第二個分類器 f_2x
- 4. 最後,合併所有分類器 ※ 註解:分類器是順序學習的

機器學習-自適應增強 01.集成學習

₩ 集成學習 (Ensemble learning)

Q1: 如何獲得不同的分類器?

A1: 訓練不同的訓練集

Q2: 如何得到不同的訓練集?

A2-1: 重新取樣你的訓練集以得到一新集合,例如:裝袋法(Bagging)

A2-2: 重新加權你的訓練集以得到一新集合,例如:提升法(Boosting)

只需要改變損失函數就可以實現

$$(x^{1}, \hat{y}^{1}, u^{1})$$
 $u^{1} = 1 \ 0.4$
 $(x^{2}, \hat{y}^{2}, u^{2})$ $u^{2} = 1 \ 2.1$
 \vdots \vdots
 $(x^{n}, \hat{y}^{n}, u^{n})$ $u^{n} = 1 \ 1.3$

$$L(f) = \sum_{n} l(f(x^n), \hat{y}^n)$$

$$L(f) = \sum_{n} u^{n} l(f(x^{n}), \hat{y}^{n})$$

機器學習-自適應增強 01.集成學習

↓ 集成學習 (Ensemble learning)

想法:對 $f_1(x)$ 產生能訓練失敗的新訓練集,再進行 $f_2(x)$ 的訓練

如何得到能讓 $f_1(x)$ 訓練失敗的新訓練集?

 ε_1 為訓練集在 $f_1(x)$ 上的誤差

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n \qquad \varepsilon_1 < 0.5$$

改變樣本的權重 $u_1^n \subseteq u_2^n$

$$\frac{\sum_{n} u_{1}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{1}} = 0.5$$

根據新的權重 u_2^n 之訓練集再次訓練得到 $f_2(x)$

機器學習一自適應增強 02.重新加權訓練集

重新加權訓練集 (Re-weighting Training Data)

如何得到能讓 $f_1(x)$ 訓練失敗的新訓練集?

$$(x^1, \hat{y}^1, u^1)$$

 (x^2, \hat{y}^2, u^2)

$$u^1 = 1$$

 (x^4, \hat{y}^4, u^4)

$$u^3 = 1$$

 $u^4 = 1$

$$f_1(x)$$

$$u^2 = \sqrt{3}$$

$$u^3 = 1/\sqrt{3}$$

$$u^4 = 1/\sqrt{3}$$

$$\varepsilon_1 = 0.5$$

$$f_1(x)$$

$$f_2(x)$$

機器學習-自適應增強 02.重新加權訓練集

重新加權訓練集 (Re-weighting Training Data)

如何得到能讓 $f_1(x)$ 訓練失敗的新訓練集?

■ 若 x^n 被分類錯誤 $f_1(f_1(x^n) \neq \hat{y}^n)$

$$u_2^n \leftarrow u_1^n$$
 乘以 d_1 increase

■ 若 x^n 被分類正確 $f_1(f_1(x^n) = \hat{y}^n)$

$$u_2^n \leftarrow u_1^n$$
 除以 d_1 decrease

以新的權重 u_2^n 的資料來訓練 f_2

 d_1 如何得到?

機器學習-自適應增強 02.重新加權訓練集

重新加權訓練集 (Re-weighting Training Data)

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n$$

$$Z_1 = \sum_n u_1^n$$

$$\frac{\sum_{n} u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5$$

$$\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5$$

$$= 0.5$$

$$f_{1}(x^{n}) \neq \hat{y}^{n} \qquad u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1}$$

$$f_{1}(x^{n}) = \hat{y}^{n} \qquad u_{2}^{n} \leftarrow u_{1}^{n} \text{ devided by } d_{1}$$

$$f_1(x^n) = \hat{y}^n$$

$$u_2^n \leftarrow u_1^n$$
 devided by d_1

$$=\sum_{f_1(x^n)\neq\,\hat{y}^n}u_1^nd_1$$

$$\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 = \sum_{n} u_2^n = \sum_{f_1(x^n) \neq \hat{y}^n} u_2^n + \sum_{f_1(x^n) = \hat{y}^n} u_2^n = \sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n d_1$$

$$\frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1}{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1} = 0.5$$

$$\frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1}{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1} = 0.5 \qquad \frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1} = 2$$

機器學習-自適應增強 02.重新加權訓練集

重新加權訓練集 (Re-weighting Training Data)

$$\frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1} = 2$$

$$\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 = \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1$$

$$d_1 \sum_{f_1(x^n) \neq \hat{y}^n} u_1^n = \frac{1}{d_1} \sum_{f_1(x^n) = \hat{y}^n} u_1^n$$

$$d_1 Z_1 \varepsilon_1 = \frac{1}{d_1} Z_1 (1 - \varepsilon_1)$$

$$d_1 = \sqrt{(1 - \varepsilon_1)/\varepsilon_1}$$

機器學習-自適應增強 03.演算法

自適應增強演算法 (Algorithm for AdaBoost)

- Giving training data $\{(x^1, \hat{y}^1, u^1), \dots, (x^n, \hat{y}^n, u^n), \dots, (x^N, \hat{y}^N, u^N)\}$ $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For t = 1, ..., T:
 - \checkmark Training weak classifier $f_t(x)$ with weights $\{u_t^1, ..., u_t^N\}$
 - \checkmark ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, ..., u_t^N\}$
 - ✓ For n = 1, ..., N:
 - If x^n is misclassified classified by $f_t(x)$: $f_t(x^n) \neq \hat{y}^n$ $u_{t+1}^n = u_t^n \times d_t = u_t^n \times \exp(\alpha_t)$
 - Else:

$$u_{t+1}^n = u_t^n/d_t = u_t^n \times \exp(-\alpha_t)$$

$$u_{t+1}^n = u_t^n \times d_t = u_t^n \times \exp(-\hat{y}^n f_t(x^n) \alpha_t)$$

$$d_t = \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$$

$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$

機器學習-自適應增強 04.均勻與非均勻權重

自適應增強演算法 (Algorithm for AdaBoost)

最終獲得所有分類器: $f_1(x), ..., f_t(x), ..., f_T(x)$

如何合併它們?

■ 均勻權重(Uniform weight):

$$\alpha_t = ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}$$

$$H(x) = sign(\sum_{t=1}^{T} f_t(x))$$

$$u_{t+1}^n = u_t^n \times d_t = u_t^n \times \exp(-\hat{y}^n f_t(x^n) \alpha_t)$$

■ 非均勻權重(Non-uniform weight):

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$$

錯誤率小 ε_t 給予投票的權重較大

幾器學習一自適應增強 04.範例

Toy Example T = 3, weak classifier = decision stump

t = 1

	1.0 +	1.0 -
1.0 +	1.0 -	
1.0 +	1.0 -	1.0 -

$$\varepsilon_1 = 0.30$$
 $d_1 = 1.53$
 $\alpha_1 = 0.42$

 $f_1(x)$

機器學習-自適應增強 04.範例

Toy Example T = 3, weak classifier = decision stump

$$t = 2$$

$$\varepsilon_2 = 0.21$$
 $d_2 = 1.94$
 $\alpha_2 = 0.66$

$$0.78 + 0.33 - 0.78 + 0.78 + 0.33 - 0.33 + 0.33 -$$

機器學習-自適應增強 04.範例

Toy Example T = 3, weak classifier = decision stump

$$t = 3$$

 $f_3(x)$

$$\varepsilon_3 = 0.13$$
 $d_3 = 2.59$
 $\alpha_3 = 0.95$

機器學習-自適應增強 04.範例

Toy Example
$$T = 3$$
, weak classifier = decision stump

Final Classifier:

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$$

	+	+ +	-
+	-	-	_
+	- 1		