

Figure 1

Incorporation

Plasma Pool Phenyl Load Phenyl Flow Phenyl Wash Phenyl Elution Blue-Sep. Flow Blue-Sep. Wash Blue-Sep. Elution mpl-UL flow F4 F5 F6 F7 F8 1/100 1/200 1/400 1/800 1/1600 1/3200 1/6400

3H-Thymidine

Figure 2

Figure 3

3H-thymidine incorporation

Figure 4

Ettect of mpl-ligand depleted APP on human megakaryocytopoiesis

Pigure 5

125I-HP1-1D Bound

Figure 6

1 GAATTCCTGG AATACCAGCT GACAATGATT TCCTCCTCAT CTTTCAACCT CACCTCTCCT CATCTAAGAA TTGCTCCTCG TGGTCATGCT TCTCCTAACT CTTAAGGACC TTATGGTCGA CTGTTACTAA AGGAGGAGTA GAAAGTTGGA GTGGAGAGGA GTAGATTCTT AACGAGGAGC ACCAGTACGA AGAGGATTGA L Σ > ר. >

CETTCCGATT GCGACAGGTC GGGCCGAGGA GGACGAACAC TGGAGGCTCA GGAGTCATTT GACGAAGCAC TGAGGGTACA GGAAGTGTCG TCTGACCACT A R L T L S S P A P P A C D L R V L S K L L R D S H V L H S GCAAGGCTAA CGCTGTCCAG CCCGGCTCT CCTGCTTGTG ACCTCCGAGT CCTCAGTAAA CTGCTTCGTG ACTCCCATGT CCTTCACAGC ΛН 101

201 GAACTCCCCAA CATTATCCCC TTTATCCGCG TAACTGGTAA GACACCCATA CTCCCAGGAA GACACCATCA CTTCCTCTAA CTCCTTGACC CAATGACTAT CTGAGGGTT GAGGAGGTT GAAGAAGAGAACTGG GTTACTGATA

301 TCTTCCCATA TTGTCCCCAC CTACTGATCA CACTCTCTGA CAGAATTAT TCTTCACAAT ACAGCCCGCA TTTAAAAGCT CTCGTCTAGA AGAAGGGTAT AACAGGGGTG GATGACTAGT GTGAGAGACT GTTCTTAATA AGAAGTGTTA TGTCGGGCGT AAATTTTCGA GAGCAGATCT

Figure 7