

GeneNeighborhood

an R package to explore the direct neighbors of your favorite gene set

Pascal GP Martin

Genes are not randomly distributed in genomes

Genes are not randomly distributed in genomes

A large fraction of the genome is transcribed

- ✓ enhancers
- promoters
- repetitive elements

Djebali S et al. (2012) Landscape of transcription in human cells. Nature

with some functional consequences...

Other mechanisms associated with co-expression or interference

Studying gene neighbors

Gene sets:

- Differentially expressed
- Bound by a specific protein
- Present in a specific chromatin context
- Involved in a specific function
- . . .

Specific neighborhood?

- Orientation (incl. overlap) ?
- Specific proximity / distance ?

Function / expression... of the neighbors?

Generate hypothesis on how neighborhing genes interact

Package overview

Defining Neighborhoods

Gene Neighborhood

Genes not overlapping with other genes:

Genes overlapping with a single gene:

UPPER CASE: overlapping gene is on the same strand lower case: overlapping gene is on the oppositre strand

Genes overlapping with a >1 gene:

TxDb objects ensembldb GenomicFeatures package

Filter annotations (expressed genes, gene types, ...)

getGeneNeighborhood()

Analyzing neighbors orientations

analyzeNeighborsOrientation()

Side	Orientation	n	Percentage	n Universe	Percentage in Universe	p.value
Upstream	SameStrand	449	75.84	17068	51.23	2,00E-35
Upstream	SameOverlap	6	1.01	96	0.29	7,00E-03
Upstream	OppositeStrand	125	21.11	15267	45.82	1,00E+00
Upstream	OppositeOverlap	4	0.68	344	1.03	9,00E-01
Downstream	SameStrand	308	52.03	17099	51.32	4,00E-01
Downstream	SameOverlap	1	0.17	111	0,83	9,00E-01
Downstream	OppositeStrand	184	31.08	12708	3 8.14	1,00E+00
Downstream	OppositeOverlap	91	15.37	2857	8.57	4,00E-08

plotNeighborsOrientation()

Analyzing neighbors distance

analyzeNeighborsDistance()

- Extract distances
- Descriptive statistics (mean, median, SD, 95 % CI, ...)
- Tests (KS, Mann-Whitney, permutation test of independence)

plotDistanceDistrib()

Metagene profiles

Metagene profiles

plotMetageneAnnotProfile()

plotCumulPercentProfile()

% of genes with a TES at less than X bp?

Conclusion / future development

build passing 🧑 build passing

github.com/pgpmartin/GeneNeighborhood

Neighbors orientation

• Facilitate the analysis of multiple gene sets

Neighbors distance

- · Split analysis into 3 tasks:
 - extract distances
 - descriptive statistics
 - inference

Metagene profiles

- Add a wrapper to simplify the pipeline
- + Case studies in vignette

Submit to CRAN or BioC

Future development

- > 1 overlap
- Deal with a quantitative variable defining gene sets

INDIANA UNIVERSITY

Scott D Michaels

Xuhong Yu

Mathilde Gorieu

Pathways for inventive researchers

Community help / forums:

Thank you for your attention!