STATISTICS

INFORMED DECISIONS USING DATA

Fifth Edition

Chapter 3

Numerically Summarizing Data

3.3 Measures of Central Tendency and Dispersion from Grouped Data Learning Objectives

- 1. Approximate the mean of a variable from grouped data
- 2. Compute the weighted mean -> GPA
- 3. Approximate the standard deviation of a variable from grouped data

3.3.1 Approximate the Mean of a Variable from Grouped Data (1 of 4)

We have discussed how to compute descriptive statistics from raw data, but often the only available data have already been summarized in frequency distributions (grouped data).

Although we cannot find exact values of the mean or standard deviation without raw data, we can approximate these measures using the techniques discussed in this section.

3.3.1 Approximate the Mean of a Variable from Grouped Data (2 of 4)

Approximate the Mean of a Variable from a Frequency

Distribution

Population Mean

sum MP*

$$= \frac{X_1 f_1 + X_2 f_2 + \dots + X_n f_n}{f_1 + f_2 + \dots + f_n}$$

Sample Mean

$$\overline{X} = \frac{\sum X_i f_i}{\sum f_i}$$

$$= \frac{X_1 f_1 + X_2 f_2 + \dots + X_n f_n}{f_1 + f_2 + \dots + f_n}$$

where x_i is the midpoint or value of the ith class f_i is the frequency of the ith class n is the number of classes

3.3.1 Approximate the Mean of a Variable from Grouped Data (3 of 4)

EXAMPLE Approximating the Mean from a Relative Frequency Distribution

The National Survey of Student Engagement is a survey that (among other things) asked first year students at liberal arts colleges how much time they spend preparing for class each week. The results from the 2007 survey are summarized below. Approximate the mean number of hours spent preparing for class each week.

Hours	0	1–5	6-10	11–15	16-20	21–25	26-30	31–35
Frequency	0	130	250	230	180	100	60	50

Source:

http://nsse.iub.edu/NSSE_2007_Annual_Report/docs/withhold/NSSE_2007_Annual_Report.pdf

= units X Beson (Count)

3.3 Measures of Central Tendency and Dispersion from Grouped Data

3.3.1 Approximate the Mean of a Variable from Grouped Data (4 of 4)

Calc Shortcut:	1.4	12	12-14*12
Lists (L1, L2, L3,)	LI		L3= L1*L2

(LI, LZ, LJ)	·, <i>)</i>	
Time	Frequency	(\mathbf{x}_i) $\mathbf{x}_i \mathbf{f}_i$
0	0	
1 - 5	130	1+5=3
6 - 10	250	$\frac{2}{6+10} = 8$ (a) (
11 - 15	230	13
16 - 20	180	18
21 - 25	100	23
26 - 30	60	28
31 - 35	50	33 \
$\frac{1}{\sum t}$	$\frac{1}{1} = 1000$	$\sum x_i f_i = 1/12$

Calc Shortcut:

- "List" (2nd+Stat)
- Math
- > Sum(
- Enter list (L3)

$$\overline{X} = \frac{\sum x_i f_i}{\sum f_i} \frac{sum(L3)}{sum(U1)}$$

3.3.1 Approximate the Mean of a Variable from Grouped Data (4 of 4)

Calc Shortcut:

Lists (L<u>1,</u> L2, L3,...)

L2 L3= L1*L2

Time	Frequency	\boldsymbol{x}_{i}	$x_i f_i$
0	0	0	0
1 - 5	130	3.5	455
6 - 10	250	8.5	2125
11 - 15	230	13.5	3105
16 - 20	180	18.5	3330
21 - 25	100	23.5	2350
26 - 30	60	28.5	1710
31 - 35	50	33.5	1675
$\sum t$	$f_i = 1000$	$\sum x_i f_i = 1$	4,750

Calc Shortcut:

- "List" (2nd+Stat)
- Math
- > Sum(
- > Enter list (L3)

$$\overline{X} = \frac{\sum x_i f_i}{\sum f_i}$$

$$= \frac{14,750}{1000}$$

$$= 14.75$$

3.3.2 Compute the Weighted Mean (1 of 2)

The **weighted mean**, \overline{X}_w , of a variable is found by multiplying each value of the variable by its corresponding weight, adding these products, and dividing this sum by the sum of the weights. It can be expressed using the formula

$$\overline{X}_{w} = \frac{\sum W_{i}X_{i}}{W_{i}} = \frac{W_{1}X_{1} + W_{2}X_{2} + \dots + W_{n}X_{n}}{W_{1} + W_{2} + \dots + W_{n}}$$

where w is the weight of the ith observation x_i is the value of the ith observation

GTQs: 1) GPA 2) average costs of different items

3.3.2 Compute the Weighted Mean (2 of 2)

EXAMPLE Computed a Weighted Mean

Bob goes to the "Buy the Weight" Nut store and creates his own bridge mix. He combines 1 pound of raisins, 2 pounds of chocolate covered peanuts, and 1.5 pounds of cashews. The raisins cost \$1.25 per pound, the chocolate covered peanuts cost \$3.25 per pound, and the cashews cost \$5.40 per pound. What is the cost per pound of this mix?

(read book)

3.3.2 Compute the Weighted Mean (2 of 2)

EXAMPLE Computed a Weighted Mean

Bob goes to the "Buy the Weigh" Nut store and creates his own bridge mix. He combines 1 pound of raisins, 2 pounds of chocolate covered peanuts, and 1.5 pounds of cashews. The raisins cost \$1.25 per pound, the chocolate covered peanuts cost \$3.25 per pound, and the cashews cost \$5.40 per pound. What is the cost per pound of this mix?

$$\overline{X}_{w} = \frac{1(\$1.25) + 2(\$3.25) + 1.5(\$5.40)}{1 + 2 + 1.5}$$
$$= \frac{\$15.85}{4.5} = \$3.52$$

3.3.2 Compute the Weighted Mean (2 of 2)

EXAMPLE GPA

Patty has just completed her second semester in college. She earned a grade of A in her 2-hour discrete math course, a grade of D in her 5-hour economics course, a grade of D in her 2-hour engineering course, and a grade of C in her 1-hour creative writing course. Assuming that A equals 4 points, B equals 3 points, C equals 2 points, D equals 1 point, and F is worth no points, determine Patty's grade-point average for the semester.

-	some, 2 square, point, a	Tar is well in points, and any or grade point are rage for the competent
	Grade Grade Po	oint Epale 16PX
	A 4.0	Dir. Math - 2hr A 4.0
	B 3.0	Econ - 5hr D 1-0
	C 2.0	t.ng 2hr 2-0
\	D 1.0	Creative Wife - 1 m
	F 0.0	$6PA = \sum w.x = \frac{2(4.0) + 5(1.0) + 2(4.0) + 1(2.0)}{10} = \frac{17.0}{10}$
		$\frac{6177-20}{2}=\frac{10}{2+5+2+1}$

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

3.3.2 Compute the Weighted Mean (2 of 2)

EXAMPLE GPA

Patty has just completed her second semester in college. She earned a grade of A in her 2-hour discrete math course, a grade of D in her 5-hour economics course, a grade of D in her 2-hour engineering course, and a grade of C in her 1-hour creative writing course. Assuming that A equals 4 points, B equals 3 points, C equals 2 points, D equals 1 point, and F is worth no points, determine Patty's grade-point average for the semester.

Grade Grade Poi	V =
A 4.0	W_{i}
B 3.0	$\bar{x}_{w} = \frac{W_{i}}{W_{i}}$ $\bar{x}_{w} = \frac{2(4.0) + 5(1.0) + 2(1.0) + 1(3.0)}{2 + 5 + 2 + 1} = \frac{18.0}{10} = 1.3 \text{ GPA}$
C 2.0	
	Patty's grade point average in her second
F 0.0	semester in college is a 1.3.

