Яндекс

Neural conversational models: как научить нейронную сеть светской беседе

План рассказа

- Зачем учить?
- На чём учить?
- Как учить?
- Как оценивать?

Зачем учить сети разговаривать?

Зачем учить сети разговаривать?

Чтобы пройти тест Тьюринга и сделать сильный ИИ

Зачем учить сети разговаривать?

Чтобы пройти тест Тыюринга и сделать сильный ИИ

Чтобы делать более интересные продукты!

«Редакторские» реплики

«Привет» Здравствуйте, Boris! «Как дела» У меня всё, как у Мас. А у него всё восхитительно. « Скажи ты способна любить » Если вы настаиваете. «Я настаиваю» Мне непонятен смысл выражения «Я настаиваю». Но я могу попробовать найти его в Интернете.

Neural Conversational Model

- Boris привет
- ConversationalModelDemoBot привет
- Boris как дела?
- ConversationalModelDemoBot отлично а у тебя ?
- Boris
 норм. скажи, а ты способна любить?

- ConversationalModelDemoBot ну тип того : d
- Boris а меня смогла бы полюбить?
- ConversationalModelDemoBot да, да
- Boris
 а я тебя уже люблю
- ConversationalModelDemoBot а я тебя

Идеальный датасет для обучения сети

Постановка задачи

 По предыдущим репликам и, возможно, другой контекстной информации, предсказать следующую реплику в диалоге

Для решения хорошо бы

- У Иметь большой корпус с диалогами на нужные нам темы
- > Знать автора каждой реплики (хотя бы идентификатор)
- > Знать метаданные спикеров (пол, возраст и т.д.)
- > Знать метаданные диалогов (время, место и т.д.)

Open Subtitles

- http://opus.lingfil.uu.se/OpenSubtitles.php
- Плюсы
 - > Много «жизненных» диалогов
- Минусы
 - > Много своеобразных диалогов, фантастики и т.п.
 - Не знаем авторов реплик и границы диалогов
 - Lison P., Meena R. Automatic Turn Segmentation for Movie & TV Subtitles (2016)

Twitter

Плюсы

- > Точная разбивка на диалоги
- У Известен автор и время каждой реплики
- > Можно получить дополнительную информацию о пользователях

Минусы

- Смещен в сторону размещения и обсуждения ссылок
- Диалоги на «светские» темы ведут в основном школьники

Всё, что нужно знать о русском твиттере

```
      ты где?
      а тебе сколько лет?

      > в ***.
      > 16, а тебе?

      > в ***
      > 13 :d а тебе?

      > в школе
      > мне 15 :c а тебе?

      > в ***!
      > 14, а тебе?
```

Другие источники данных

- Мессенджеры (если вам повезло иметь свой)
- Публичные чаты (Telegram, Slack, IRC и т.п.)
- Веб-форумы
- Комментарии в социальных сетях
- Сценарии фильмов
- Транскрипты телепередач

Обучение conversational models

Постановка задачи

 По предыдущим репликам и, возможно, другой контекстной информации, предсказать следующую реплику в диалоге

Подходы

- > Порождающий: моделируем *P(reply | context)*
- Ранжирующий: строим функцию Sim(reply, context)

Напоминание: рекуррентные сети

$$s_{t} = f(Ux_{t} + Ws_{t-1})$$
$$y_{t} = g(Vs_{t})$$

Порождающий подход

- Задача генерации строки по строке неплохо изучена в машинном переводе
- Стандартный подход sequence-to-sequence
 - Sutskever I., Vinyals O., Le Q. Sequence to Sequence Learning with Neural Networks (2014)
- Рекуррентная энкодер-декодер архитектура
 - > Сеть-энкодер прочитывает исходную строку
 - > Сеть-декодер генерирует результат, опираясь на выход энкодера
- Подход был адаптирован к conversational models
 - Vinyals O., Le Q. A Neural Conversational Model (2015)

Sequence-to-sequence for conversations

Sequence-to-sequence

- Maximum likelihood обучение
 - > Максимизируем *log P(reply* | *context, w)* по w
- Генерация реплик
 - > Максимизируем log P(reply | context, w) по reply (beam search)
- Стандартные модификации из машинного перевода
 - > Энкодер и декодер многослойные LSTM или GRU сети
 - > Энкодер обычно двунаправленный
 - > Помогает attention по скрытым состояниям энкодера в декодере

Проблема слишком «общих» реплик

- Известная проблема диалоговых seq2seq моделей ответ короткими общими фразами
 - 》 «Я не знаю», «Не могу сказать» и т.п.
 - Sountsov P., Sarawagi S. Length Bias in Encoder Decoder Models and a Case for Global Conditioning (2016)
- Большинство предложенных в литературе решений основаны на изменении максимизируемого во время генерации реплики функционала

MMI (maximum mutual information)

- Li J. et al. A Diversity-Promoting Objective Function for Neural Conversation Models (2016)
- Было

 $\log P(reply \mid context, w)$

Стало

 $\log P(reply \mid context, w) - a \log P(reply \mid w)$

Или

 $(1-a)\log P(reply \mid context, w) + a\log P(context \mid reply, w)$

Context sampling

- Shao L. et al. Generating Long and Diverse Responses with Neural Conversation Models (2017)
- Было

$$\log P(reply | context, w)$$

- Стало
 - Выбираем случайно context₁, ..., contextҡ

$$\log P(reply \mid context, w) - \frac{a}{k} \sum_{i} \log P(reply \mid context_{i}, w)$$

По сути Monte Carlo оценка для MMI

Проблема консистентности ответов

- BY Boris привет
- ConversationalModelDemoBot привет
- Boris как тебя зовут?
- ConversationalModelDemoBot катя, а тебя?
- Boris
 боря. а какое у тебя имя?
- ConversationalModelDemoBot меня зовут лера

- Boris сколько тебе лет, лера?
- ConversationalModelDemoBot 17, а тебе ?
- **Boris** мне 28. А тебе?
- ConversationalModelDemoBot мне 14, а тебе?
- Boris а мне все еще 28
- ConversationalModelDemoBot мне 14, я из киева

Persona-Based Conversational Model

- Li J. et al. A Persona-Based Neural Conversation Model (2016)
- Каждому спикеру сопоставляем вектор в латентном пространстве
- Декодер получает на вход вектор спикера, от имени которого генерируется реплика
- Вектор кодирует информацию о спикере: пол, возраст, особенности лексики и т.п.
- Появляется инструмент контроля поведения модели

Persona-Based Conversational Model

Пространство спикеров: возраст

Пространство спикеров: политические взгляды

Консистентность ответов

User1 message Where is your hometown? response I'm from England. message Where are you from? response I'm from England. message In which city do you live now? response I live in London. message In which country do you live now? response I live in England. message What is your major? response Business. You? message What did you study in college? response I did business studies. message How old are you? I'm 18. response What is your age? message I'm 18. response

(Не)Консистентность ответов

User2	
message	Where is your hometown?
response	I live in Indonesia.
message	Where are you from?
response	England, you?
message	In which city do you live now?
response	I live in Jakarta.
message	In which country do you live now?
response	I live in Indonesia.
message	What is your major?
response	Business, you?
message	What did you study in college?
response	Psychology, you?
message	How old are you?
response	I'm 18.
message	What is your age?
response	I'm 16.

Ранжирующие модели

- Вместо генерации ответов можно выбирать наиболее уместные из заранее заготовленных
- Плюсы
 - Меньше риски сгенерировать грамматически некорректный ответ или ответ с обсценной лексикой
 - > Обучение намного быстрее
 - > Меньше проявляется проблема «общих» ответов
- Минусы
 - Множество реплик сильно ограничено: «И я люблю тебя,
 Иннокентий» скорее всего не окажется в наборе

Архитектуры ранжирующих моделей

- Huang P. S. et al. Learning Deep Structured Semantic Models for Web Search Using Clickthrough Data (2013)
- Prakash A. et. al. Emulating Human Conversations using Convolutional Neural Network-based IR (2016)
- Inaba M., Takahashi K. Neural Utterance Ranking Model for Conversational Dialogue Systems (2016)

Архитектуры ранжирующих моделей

- Энкодеры реплик любые сети, которые по набору слов могут получить вектор
 - > Рекуррентные или сверточные по словам или символам
 - > Полносвязные поверх усредненных векторов слов
- Функция уместности ответа в контексте (sim)
 - > скалярное произведение
 - > косинусное расстояние

Обучение ранжирующих моделей

- Нужны отрицательные примеры
 - random sampling
 - hard negative mining (читайте <u>пост</u> на Хабре про Палех)
- Функция штрафа
 - > softmax на выходах sim по всем примерам + кроссэнтропия
 - triplet loss

Как померять, какая модель лучше?

- Если ответ не похож на ответ из тестовой выборки, это еще ни о чем не говорит
 - Даже на банальное «привет» существуют десятки уместных ответов
- Попытки использовать метрики из машинного перевода провалились
 - Liu C. W. et al. How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation (2016)

Как померять, какая модель лучше?

- State of the Art использовать краудсорсинг
 - Уместен ли ответ в данном контексте?
 - У Какой из данных ответов более уместен?

Порождающие vs ранжирующие модели

Модель	Bad	Neutral	Good	Score
seq2seq	52 %	21 %	27 %	0.75
ranking	46 %	16 %	38 %	0.92
human	10 %	18 %	73 %	1.63

В заключение

- Neural Conversational Models одна из горячих областей исследований в deep learning
- Пользоваться её результатами можно уже сейчас
- Но осталось много нерешенных проблем
- Приходите к нам их решать!

Контакты

Боря Янгель

Ведущий разработчик

+7 (926) 438 00 41

@hr0nix

hr0nix@yandex-team.ru

hr0nix