

•

Page 1 of 2
University Roll No.

G.L.A. UNIVERSITY, MATHURA

B.TECH. I YEAR I SEM. FIRST MID - TERM EXAMINATION, SEPT. 2011

M.M.: 40 MATHEMATICS - I (AHM - 101) Time: 1 Hr. 30 Min.

Instructions:

- 1. This question paper has three parts A, B and C.
- 2. Attempt ALL parts of this question paper.
- 3. Marks are indicated against each part.

PART A

Attempt ALL questions of this Part.

 $(8 \times 2 = 16 \text{ Marks})$

- Q1. If $y = (x + a)^n$ where 'a' is a constant then find the nth derivative of y.
- Q2. Write down the nth derivative of loge x.
- Q3. If $y = \exp(\tan^{-1}x)$ then find A in $(1 + x^2) y_2 = Ay_1$.
- Q4. If $u = x^2 + y^2$ then find $\partial^2 u / \partial x \partial y$.
- **Q5.** If $u = (x^{1/4} + y^{1/4}) / (x^{1/5} + y^{1/5})$ then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.
- Q6. If f = x + 4y where x = 2s + t, y = s + 2t then find $\partial f / \partial t$.
- Q.7. If $x = r \cos \theta$, $y = r \sin \theta$ then find $\partial(x, y) / \partial(r, \theta)$
- Q.8. If u (x,y) is a homogeneous function in x and y of degree n then find

$$x^{2} (\partial^{2} u / \partial x^{2}) + 2xy (\partial^{2} u / \partial x \partial y) + y^{2} (\partial^{2} u / \partial y^{2})$$

P.T.O.

PART B

Attempt any THREE of the following:

 $(3 \times 5 = 15 \text{ Mar})$

Q9. If
$$y = \sin(m \sin^{-1}x)$$
, prove that $(1 - x^2) y_2 - x y_1 + m^2 y = 0$

Q10. If
$$u = \log_e [(x^4 + y^4)/(x + y)]$$
, Use Euler's theorem to prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$.

Q11. If
$$x^x y^y z^z = \text{constant show that}$$
 $\frac{\partial^2 z}{\partial x} \frac{\partial y}{\partial y} = -(x \log_e ex)^{-1}$

Q12. If
$$x = u(1-v)$$
, $y = uv$ Prove that $JJ' = 1$
where $J = \partial(x, y) / \partial(u, v)$ and $J' = \partial(u, v) / \partial(x, y)$

Q13. Evaluate $\int_{0}^{1} [(x^{\alpha} - 1)/\log x] dx, \alpha \ge 0$ using differentiation under the integral sign.

PART C

Attempt any ONE of the following questions:

 $(1 \times 9 = 9 \text{ Mark})$

Q14. If
$$y = [x + \sqrt{(1 + x^2)}]^m$$
, prove that
$$(1 + x^2) y_{n+2} + (2n+1) x y_{n+1} + (n^2 - m^2) y_n = 0.$$
 Also find $(y_n)_0$.

Q15. If
$$V = f(e^{y-z}, e^{z-x}, e^{x-y})$$
 find the value of $V_x + V_y + V_z$.

Q16. Given
$$u = x^n f_1(y/x) + y^{-n} f_2(x/y)$$
 then prove that
$$x^2 (\partial^2 u/\partial x^2) + 2xy (\partial^2 u/\partial x \partial y) + y^2 (\partial^2 u/\partial y^2) + x \partial u/\partial x + y \partial u/\partial y = n^2 u$$