Introducción al Análisis Matemático (BORRADOR)

Índice general

1 Nociones Básicas de Topología	2
1.1 Espacios Métricos	2
1.1.1 Enfoque axiomático de las estructuras métricas	
1.1.2 Bolas, esferas y diámetro	4
1.1.3 Conjuntos abiertos	5
1.1.4 Interior de un conjunto y entornos	6
1 1 5 Conjuntos cerrados y clausura de conjuntos	8
1.1.6 Ejercicios	11
1.1.6 Ejercicios	13
1.2.1 Ejercicios	14
1.3 Espacios separables	15
1.3.1 Ejercicios	17
1.4 Funciones Continuas	18
1.4.1 Eiercicios	20
1.5 Homeomorfismos e isometrías	21
1.5.1 Ejercicios	23
1.6 Completitud	23
1.6.1 Sucesiones	23
1.6.2 Sucesiones de Cauchy, espacios métricos completos	24
1.6.3 Teorema de Cantor	26
1.6.4 Teorema de Baire	27
1.6.5 Ejercicios	28
1.7 Compacidad	30
1.7.1 Ejercicios	34
1.8 Conexión	35
1.8.1 Ejercicios	36
1.0.1 Ejerololo3	00
2 Integral de Riemann	39
2.1 Introducción	39
2.2 Área de figuras elementales planas	39
2.2 Area de ligardo ciementales planas	41
2.3 Integral de Riemann 2.4 2° Criterio de integrabilidad 2.5 Integrabilidad y continuidad	45
2.4.2. Official de integrabilidad	47
2.5 Integrabilidad y continuidad	48
2.6 Criterio integrabilidad de Riemann	52
2.8 Teorema Fundamental de Cálculo	52 52
2.0 Teoretina i unudificiliai de Galculo	53
2.9 Función de Volterra	53 54
2.10 integral de Riemaini y pasos al mille	J4
Bibliografía	55

1 Nociones Básicas de Topología

1.1 Espacios Métricos

1.1.1 Enfoque axiomático de las estructuras métricas

Uno de los conceptos fundamentales de la matemática es la noción de distancia. Esta noción está presente en multitud de actividades humanas, desde el comercio a la descripción del cosmos. En matemática medimos distancias en el plano y en el espacio y en las representaciones algebraicas de ellos \mathbb{R}^2 y \mathbb{R}^3 . Más generalmente en espacios euclideanos n-dimensionales \mathbb{R}^n . Desde comienzos del siglo XX los matemáticos fueron extendiendo la noción de distancia a conjuntos compuestos de los más diversos entes, matrices, funciones, funciones que actúan sobre funciones, etc. Esta ubicuidad y multiplicidad del concepto de distancia justifica un tratamiento axiomático de él.

Definición 1.1.1 Sea X un conjunto y $d: X \times X \to \mathbb{R}$ una función. Diremos que d es una *métrica* o *distancia* sobre X si satisface las siguientes propiedades:

i)
$$\forall x \forall y : d(x, y) = 0 \Leftrightarrow x = y$$
.

ii)
$$\forall x \forall y : d(x,y) = d(y,x)$$
.

iii)
$$\forall x \forall y \forall z : d(x,z) \leq d(x,y) + d(x,z)$$
.

Si d es una métrica sobre X diremos, entonces, que el par (X,d) es un espacio métrico.

La desigualdad iii) en la definición anterior se denomina desigualdad triágular, esto debido a que se la puede pensar como la relación entre un lado de un triágulo y la suma de los otros dos, ver figura en el margen.

Veamos ahora algunos ejemplos de espacios métricos.

Ejemplo 1.1.1 La función módulo $|.|:\mathbb{R}\to\mathbb{R}$ induce una métrica sobre \mathbb{R} , a saber: para $x,y\in\mathbb{R}$ definimos

$$d(x,y) = |x - y|. (1.1)$$

Ejemplo 1.1.2 Sobre \mathbb{R}^n consideremos la función distancia d definida por

$$d(\mathbf{x}, \mathbf{y}) := \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2},$$
(1.2)

donde $\mathbf{x}=(x_1,\ldots,x_n)$ e $\mathbf{y}=(y_1,\ldots,y_n)$. Dejamos al alumno la demostración de que d es una métrica, ver Ejercicio 1.1.1 en la página 11. Esta métrica es conocida como *métrica euclidea* y es la métrica con la que estamos más familiarizados.

Ejemplo 1.1.3 Dado cualquier conjunto no vacío X, la función definida por:

$$d(x,y) := \left\{ \begin{array}{ll} 1, & \operatorname{si} x \neq y; \\ 0, & \operatorname{si} x = y. \end{array} \right.$$

es una métrica. Esta métrica se denomina métrica discreta.

Ejemplo 1.1.4 Dado un conjunto X, definamos $\mathcal{A}(X)$ como el conjunto de todas las funciones acotadas $f:X\to\mathbb{R}$. Entonces $(\mathcal{A}(X),d)$ es una métrica, donde:

$$d(f,g) := \sup_{x \in X} |f(x) - g(x)|. \tag{1.3}$$

Maurice René Fréchet; (Maligny, 2 de septiembre de 1878 - París, 4 de junio de 1973) fue un matemático francés. Trabajó en topología, teoría de la probabilidad y la estadística. Sus trabajos en análisis funcional lo empujaron a buscar un marco más general que el espacio euclídeo introduciendo la noción de espacio métrico.

Desigualdad triangular

Ejemplo 1.1.5 Sea $\mathcal{C}([0,1])$ el conjunto de funciones continuas $f:[0,1]\to\mathbb{R}$. Entonces $(\mathcal{C}([0,1]),d)$ es un espació métrico, donde:

$$d(f,g) := \int_0^1 |f(x) - g(x)| dx. \tag{1.4}$$

Ejemplo 1.1.6 [Métrica caballo ajedrez] Sobre el conjunto \mathbb{Z}^2 definimos la métrica d por $d((x_0,y_0),(x_1,y_1))$ como la menor cantidad de movidas necesarias dar con un caballo de ajedrez para ir desde (x_0,y_0) a (x_1,y_1) .

Ejemplo 1.1.7 [Métrica de las geodesias] Sobre el conjunto

$$S^2 := \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1 \}.$$

definimos para $P,Q \in S^2$ por

$$d_g(P,Q) = \operatorname{arc} \operatorname{cos}(\langle P, Q \rangle), \quad P, Q \in S^2,$$

donde $\langle P,Q\rangle$ denota el producto interno entre P y Q y para la función arc cos tomamos la rama con valores en el intervalo $[0,\pi]$. Entonces d_q es una métrica, que se denomina *métrica geodésica*. La afirmación de que d_q es métrica amerita justificación.

Recordemos que la desigualdad de Cauchy Schwartz afirma que

$$\langle P, Q \rangle \le ||P|| ||Q||, \tag{1.5}$$

donde $||P|| = \sqrt{x^2 + y^2 + z^2}$. Además la igualdad en la desigualdad de Cauchy-Schwartz

sólo es posible cuando $P=\lambda Q$ con $\lambda\geq 0$. Si $d_g(P,Q)=0$ significa que $\langle P,Q\rangle=1$. Como $\|P\|=\|Q\|=1$ tendríamos la igualdad en la desigualdad de Cauchy-Schwartz, luego $P=\lambda Q$. Tomandos normas en la última igualdad $|\lambda|=1$, de lo que terminamos por deducir que $\lambda=1$, vale decir P = Q.

La afirmación $d_q(P,Q) = g(Q,P)$ es inmediata de la conmutatividad del producto interno.

Para la desigualdad triangular tomemos P, Q y R en S^2 . Definamos los vectores

$$U = P - \langle P, Q \rangle Q, \quad V = R - \langle R, Q \rangle Q.$$

Entonces un cálculo sencillo muestra queda

$$\langle U, Q \rangle = 0 = \langle V, Q \rangle. \tag{1.6}$$

Además

$$\begin{split} \|U\|^2 &= \langle P - \langle P,Q \rangle Q, P - \langle P,Q \rangle Q \rangle \\ &= 1 - \langle P,Q \rangle^2 = 1 - \cos^2(d_g(P,Q)) = \sin^2(d_g(P,Q)). \end{split} \tag{1.7}$$

De manera similar

$$||V||^2 = \operatorname{sen}^2(d_a(R, Q)). \tag{1.8}$$

Entonces

$$\begin{array}{ll} \langle P,R\rangle &= \langle U+\langle P,Q\rangle Q,V+\langle R,Q\rangle Q\rangle \\ &= \langle U,V\rangle + \langle P,Q\rangle \langle R,Q\rangle & \text{usando (1.6)} \\ &\geq -\|U\|\|V\| + \cos(d_g(P,Q))\cos(d_g(R,Q)) & \text{Cauchy-Schwartz} \\ &= -\sin(d_g(P,Q))\sin(d_g(R,Q)) & \text{por (1.7) y (1.8)} \\ &+ \cos(d_g(P,Q))\cos(d_g(R,Q)) & \text{fórmula adición} \end{array}$$

Se puede asumir que $d_g(P,Q)+d_g(R,Q)\leq \pi$ de lo contrario la desigualdad triángular es inmediata. Tomando arc cos en el primer y último término de la cadena de iguldades anteriores inferimos la desigualdad triangular.

1.1.2 Bolas, esferas y diámetro

Definido lo que es una métrica y un espacio métrico, pasamos a definir algunas entidades de carácter geométrico, esta son el concepto de *bola*, *esfera* y *diámetro*.

Definición 1.1.2 Sea (X, d) un espacio métrico, $x \in X$ y r > 0.

a) Definimos la bola abierta B(x, r), con centro en x y radio r, por:

$$B(x,r) := \{ y \in X : d(x,y) < r \}.$$

b) Definimos la esfera E(x, r), con centro en x y radio r, por:

$$E(x,r) := \{ y \in X : d(x,y) = r \}.$$

Todos tenemos una concepción de lo que entendemos por una bola, quizas se nos venga a la mente, y de hecho es un ejemplo, un círculo en \mathbb{R}^2 . No obstante, debemos proceder con cuidado. Estamos considerando métricas generales, ocurrirá que en algunos espacios métricos las bolas no se parecen a lo que comunmente entendemos por este concepto. Esto es debido a que en nuestra vida cotidiana estamos habituados a considerar la métrica euclidea, pero en este curso trabajaremos con métricas muy generales.

En \mathbb{R} , con la métrica dada por el módulo, la bola centrada en $x \in \mathbb{R}$ y radio r, no es mas que el intervalo (x-r,x+r). En la figura $\ref{eq:constraint}$ en la página $\ref{eq:constraint}$ mostramos varios ejemplos de bolas en diferentes métricas sobre \mathbb{R}^2 , las demostraciones las desarrollaremos en la clase.

Todavía mas curiosas son las bolas respecto a la métrica discreta. Sea (X,d) un espacio métrico discreto y $x \in X$, entonces:

$$B(x,r) = \left\{ \begin{array}{ll} \{x\}, & \text{si } r < 1; \\ X, & \text{si } r \geq 1. \end{array} \right.$$

La esfera la podemos pensar como el borde de la bola, que no está incluida en la bola abierta. También tenemos en este caso situaciones que, en un primer momento, nos pueden parecer extrañas. Como casi siempre, el mayor "grado de extrañamiento" se consigue con la métrica discreta. En este caso, si (X, \boldsymbol{d}) es un espacio métrico discreto, tenemos:

$$E(x,r) = \left\{ \begin{array}{ll} \{x\}, & \text{si } r=0; \\ X-\{x\}, & \text{si } r=1; \\ \varnothing, & \text{si } r\neq 0 \text{ y } r\neq 1. \end{array} \right.$$

Pasamos a definir, ahora, el concepto de diámetro de un conjunto.

Definición 1.1.3 Sea (X,d) un espacio métrico y $A\subset X$. Definimos el diámetro del conjunto A por:

$$\delta(A) := \sup_{x,y \in A} d(x,y)$$

Eventualmente, podría ocurrir que $\delta(A) = +\infty$.

La figura ?? en la página ?? explica, por si sola, el significado del concepto de diámetro.

Definición 1.1.4 Un conjunto no vacío A se dirá acotado si $\delta(A) < \infty$.

Es oportuno aclarar que el concepto de acotación depende del conjunto en si mismo y de la métrica. Así puede ocurrir que un mismo conjunto sea acotado con una métrica y con otra no.

Ejemplo 1.1.8 En el espacio \mathbb{R} , con la métrica del módulo, el conjunto $(0, +\infty)$ es no acotado. En cambio, con la métrica discreta todo conjunto, y en particular el dado, lo es. También definiremos la distancia de un punto a un conjunto dado.

Definición 1.1.5 En un espacio métrico (X,d) se define la distancia de $x\in X$ a $A\subset X$ como

$$d(x,A):=\inf_{y\in A}d(x,y).$$

Demostremos que

$$\delta(B(x,r)) \le 2r$$
.

Efectivamente, dados z e y en la bola B(x,r), tenemos, por la desigualdad triangular

$$d(y,z) \le d(y,x) + d(x,z) \le 2r.$$

Tomando supremo sobre z e y obtenemos la afirmación. Notar que ya no es cierto que $\delta(B(x,r))=2r$. En efecto, por ejemplo si (X,d) es un espacio métrico discreto, entonces $\delta(B(x,1/2))=0$.

Ahora probaremos que la unión de conjuntos acostados es, a la vez, un conjunto acotado.

Proposición 1.1.1 Sean (X,d) un espacio métrico, A y B subconjuntos acotados de X. Entonces $A \cup B$ es acotado.

Dem. Tenemos que probar que:

$$\delta(A \cup B) < \infty$$
.

Para esto, es suficiente demostrar que $\forall x,y \in A \cup B$ existe una constante M, independiente de x e y, tal que:

$$d(x,y) \leq M$$
.

Sean $z\in A$ y $w\in B$ dos cualesquiera puntos en los conjuntos indicados. A travez de esta demostración estos puntos estaran fijos, no importandonos que puntos sean, cualquiera conduce al mismo argumento. Tomemos, ahora, $x,y\in A\cup B$ cualesquiera, pero ya no estaran fijos. Si ocurriera que x e y estuvieran simultaneamente en uno mismo de los conjuntos, supongamos A, entonces tenemos que:

$$d(x,y) \leq \delta(A),$$

de modo que, en este caso, existe una constante M con la propiedad deseada. Debemos considerar el caso en que x e y esten en "conjuntos diferentes", digamos $x \in A$ e $y \in B$. Entonces tenemos:

$$d(x,y) \le d(x,z) + d(z,w) + d(w,y) \le \delta(A) + d(z,w) + \delta(B).$$

El miembro derecho, de la desigualdad anterior, es independiente de x e y, de modo que quedó demostrada la proposición.

1.1.3 Conjuntos abiertos

Uno de los conceptos más importantes, sino el más, de la Topología es el de conjunto abierto.

Definición 1.1.6 Sea (X,d) un e.m^a. Diremos que $A\subset X$ es un conjunto abierto si $\forall x\in A\exists r>0$ tal que:

$$B(x,r) \subset X$$
.

En la figura $\ref{eq:conjunto}$ en la página $\ref{eq:conjunto}$ podemos ver un ejemplo de conjunto abierto, en \mathbb{R}^2 con la métrica euclidea, y otro que no lo es. La diferencia es que en el conjunto b) el borde (en la parte recta del conjunto) forma parte del mismo conjunto, entonces si x está en este borde, toda bola centrada en x contiene puntos fuera del conjunto.

Un ejemplo, esperable, de conjunto abierto lo constituyen las bolas abiertas.

a) Abierto

b) No abierto

^aAbreviación para espacio métrico

Proposición 1.1.2 Toda bola abierta es un conjunto abierto.

Dem. Sea $x \in X$ y r > 0. Consideremos la bola abierta B(x,r). Para demostrar que la bola es abierta, hay que encontrar, para todo $y \in B(x,r)$, un r' > 0 tal que

$$B(y,r') \subset B(x,r). \tag{1.9}$$

Sea, pues, $y \in B(x, r)$. Tomemos:

$$r' := r - d(x, y).$$

Ver la figura $\ref{eq:condition}$ en la página $\ref{eq:condition}$ para un gráfico de la situación. Este r' es mayor que cero. En efecto, como y está en la bola, tenemos que d(x,y) < r.

Ahora, veamos la inclusión 1.9. Sea $z \in B(y,r')$, entonces tenemos, por la desigual-dad triangular, que:

$$d(x,z) \le d(x,y) + d(y,z) < d(x,y) + r' < r.$$

Así $z \in B(x, r)$, que es lo que queríamos demostrar.

Teorema 1.1.1 Sea I un conjunto de índices y $\{A_i\}_{i\in I}$ una familia de conjuntos abiertos. Entonces:

- a) La unión $\bigcup_{i \in I} A_i$ es un conjunto abierto.
- b) Si I es finito, la intersección $\bigcap_{i \in I} A_i$ es un conjunto abierto.

 $\mbox{\it Dem}.$ Empecemos por la propiedad a). Sea x un punto en la unión, es decir existe algún índice i_0 tal que $x\in A_{i_0}.$ Como este A_{i_0} es un conjunto abierto, deberá existir r>0 tal que $B(x,r)\subset A_{i_0}.$ Claramente la bola B(x,r), al ser un subconjunto de A_{i_0} es un subconjunto de la unión de todos los A_i , que es lo que teníamos que probar.

Ahora veamos b). Podemos suponer que, para algún $n \in \mathbb{N}$, tenemos que $I = \{1, \ldots, n\}$. Sea x un punto en la intersección. En este caso, $x \in A_i$, para todo i. Como cada A_i es abierto, existen radios r_i tales que $B(x, r_i) \subset A_i$. Definamos:

$$r := \min\{r_1, \ldots, r_n\}.$$

El mínimo existe, y es mayor que cero, pues hay una cantidad finita de radios. Ahora tenemos que, como $r \leq r_i$, $B(x,r) \subset B(x,r_i) \subset A_i$, para todo $i \in I$. Por consiguiente B(x,r) es un subconjunto de la intersección de todos los A_i .

Es interesante notar que, en un e.m. discreto (X,d), todo subconjunto $A\subset X$ es abierto. Efectivamente, en un e.m. discreto $B(x,1/2)=\{x\}$ para todo $x\in X$. En particular, si $x\in A$ entonces $B(x,1/2)\subset A$.

1.1.4 Interior de un conjunto y entornos

Como es costumbre, empezamos con una definición.

Definición 1.1.7 Sea (X,d) un e.m. y $A\subset X$. Definimos el interior de A, denotaremos este conjunto A^0 , como el conjunto de todos los puntos $x\in A$ tales que existe un r>0 que satisface $B(x,r)\subset A$.

Construcción de r'.

Hay una gran similitud de esta definición con la de conjunto abierto. De hecho se tiene que un conjunto A es abierto si y solo si $A=A^0$.

En \mathbb{R}^2 con la métrica euclidea podemos visualizar el interior de un conjunto como la parte del conjunto que no está sobre el borde de él, ver figura 1.1.

Figura 1.1: Interior de un conjunto

Tenemos una caracterización alternativa del interior de un conjunto.

Teorema 1.1.2 El interior de un conjunto A, es el mayor abierto contenido en A.

Dem. El hecho de que A^0 es abierto y está contenido en A, es consecuencia inmediata de la definición y lo dejamos como ejercicio. Vamos a demostrar que es el mayor de los abiertos contenido en A. Vale decir, hay que demostrar que si B es un abierto contenido en A, entonces $B \subset A^0$. Sea pues B abierto y $B \subset A$. Tomemos $x \in B$. Como B es abierto existe un r>0 tal que $B(x,r) \subset B \subset A$. Así, necesariamente $x \in A^0$. Lo que demuestra que $B \subset A^0$.

Daremos algunas propiedades de la operación de tomar el interior de un conjunto.

Teorema 1.1.3 Sea (X, d) un e.m., A y B subconjuntos de X.

- a) $(A^0)^0 = A^0$
- b) Si $A \subset B$ entonces $A^0 \subset B^0$.
- c) $(A \cap B)^0 = A^0 \cap B^0$.

Dem. a) Como dijimos, A^0 es abierto, por ende $(A^0)^0 = A^0$.

- b) A^0 es un abierto y además está contenido en B, por consiguiente $A^0 \subset B^0$.
- c) Como $A\cap B\subset A$ tenemos que, a acausa de b), $(A\cap B)^0\subset A^0$. De la misma manera $(A\cap B)^0\subset B^0$. Por consiguiente $(A\cap B)^0\subset A^0\cap B^0$. Para la otra inclusión, tener en cuenta que $A^0\cap B^0$ es un abierto contenido en $A\cap B$, por lo tanto $A^0\cap B^0\subset (A\cap B)^0$.

Definición 1.1.8 En un e.m. el exterior de un conjunto A es el interior de su complemento. En símbolos ponemos $\operatorname{Ext}(A) = (A^c)^0$.

Definición 1.1.9 Sea (X,d) un e.m. y $x\in X$. Diremos que V es un entorno de x si $x\in V^0$. También denotaremos por E(x) al conjunto de todos los entornos de x.

El anterior es otro de los conceptos claves de la topología. Observemos que un conjunto abierto es entorno de cada uno de sus puntos. La recíproca es también cierta, es decir si un conjunto es entorno de cada uno de sus puntos entonces es abierto.

Proposición 1.1.3 La intersección de una cantidad finita de entornos de un punto x en un e.m. (X,d) es, a su vez, un entorno de x.

Dem. Sean V_i , i=1,...,n, entornos de $x\in X$. Por definición $x\in V_i^0$ para todo i=1,...,n. Entonces $x\in V_1^0\cap\cdots\cap V_n^0=(V_1\cap\cdots\cap V_n)^0$. De modo que $V_1\cap\cdots\cap V_n$ es un entorno de x. Así queda establecida la propiedad que expresa la proposición. \square

1.1.5 Conjuntos cerrados y clausura de conjuntos

Ahora introduciremos el concepto de conjunto cerrado.

Definición 1.1.10 Un conjunto es cerrado si su complemento es abierto.

Esta sencilla definición hace las nociones de conjunto cerrado y abierto duales¹, así veremos que cada propiedad de conjuntos abiertos induce una correspondiente propiedad sobre conjuntos cerrados. Tener en cuenta esto en la siguiente teorema.

Teorema 1.1.4 Sea I un conjunto de índices y $\{F_i\}_{i\in I}$ una familia de conjuntos cerrados. Entonces:

- a) La intersección $\bigcap_{i \in I} F_i$ es un conjunto cerrado.
- b) Si I es finito, la unión $\bigcup_{i \in I} F_i$ es un conjunto cerrado.

Dem. La afirmaciones a) y b) de este teorema son duales de las a) y b) del Teorema 1.1.1 en la página 6. Por ejemplo, para demostrar a), observemos que, por definición, la siguiente es una familia de conjuntos abiertos: $\{F_i^c\}_{i\in I}$. De modo que por a) del Teorema 1.1.1 en la página 6 tenemos que:

$$\bigcup_{i \in I} F_i^c$$

es un conjunto abierto. De allí que el complemento de este conjunto es cerrado. Pero el complemento de este conjunto es, en virtud de las leyes de de Morgan, la intersección de todos los F_i . La propiedad b) se obtiene de la misma manera.

¹Dos tipos de conceptos son duales cuando cualquier afirmación sobre uno de ellos se convierte en una afirmación sobre el otro. En este proceso de "transformación de enunciados" hay que traducir cada concepto por su dual. Por ejemplo, en el caso que nos ocupa, un conjunto cerrado muta en abierto y las intersecciones mutan en uniones y viceverza. Uniones e intersecciones son duales como consecuencia de las leyes de de Morgan

Ejemplos de conjuntos cerrados son los intervalos cerrados de \mathbb{R} , con la métrica del módulo; las bolas cerradas en cualquier e.m., es decir los conjuntos de la forma:

$$B'(x,r) := \{ y \in X : d(x,y) \le r \}.$$

Las esferas también resultan ser conjuntos cerrados. Por otra parte, como en un e.m. discreto todo conjunto es abierto, todo conjunto, también, es cerrado. La demostración de que los anteriores son conjuntos cerrados las dejamos como ejercicios. A lo largo de esta materia veremos varios ejemplos mas de conjuntos cerrados, encomendamos al estudiante prestar atención a ellos, puesto que tan importante como aprender las definiciones y propiedades de determinado concepto, es conocer, y poder construir ejemplos de ese concepto.

El concepto de interior de un conjunto tiene su dual correspondiente.

Definición 1.1.11 Sea (X,d) un e.m.. La clausura de un conjunto $A\subset X$ se define y denota como se ve a continuación:

$$\overline{A} := (\operatorname{Ext}(A))^c = \left\lceil (A^c)^0 \right\rceil^c.$$

En \mathbb{R}^2 con la métrica euclidea podemos visualizar la clausura de un conjunto como el conjunto más su "borde", ver la figura 1.2.

Figura 1.2: Clausura de un conjunto

Tenemos la siguiente caracterización alternativa de clausura de un conjunto.

Proposición 1.1.4 Sea (X, d) un e.m. y $A \subset X$. Son equivalentes:

- a) $x \in \overline{A}$.
- b) $\forall r > 0 : B(x,r) \cap A \neq \emptyset$.

 $extit{Dem.}$ Veamos primero que a) \Rightarrow b). Sea $x \in \overline{A}$. Por definición $x \notin (A^c)^0$. Así, por definición de conjunto interior, tenemos que para todo r>0, $B(x,r) \nsubseteq A^c$. Es decir que para todo r>0 existe $y=y_r \in B(x,r)\cap A$. Esto prueba b).

Veamos ahora que b) \Rightarrow a). Sea, pues, x un punto satisfaciendo la propiedad b). Toda bola de radio x y centro r>0 corta al conjunto A. De modo que no existe una de tales bolas con la propiedad que este completamente contenida en el conjunto A^c . Esto nos dice, por definicion de conjunto interior, que x no está en el interior de A^c . Dicho de otro modo $x\in \left[(A^c)^0\right]^c$.

Las propiedades del interior tienen propiedades duales correspondientes para la clausura.

Teorema 1.1.5 Sean (X,d) un e.m., A y B subconjuntos de X. Entonces tenemos que:

- a) $A \subset \overline{A}$.
- b) El conjunto \overline{A} es el menor conjunto cerrado que contiene a A.
- c) $\overline{\overline{A}} = \overline{A}$.
- d) Si $A \subset B$ entonces $\overline{A} \subset \overline{B}$.
- e) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- f) $x \in \overline{A} \Leftrightarrow d(x, A) = 0$

Dem. Veamos a) cuya propiedad dual es que $C^0 \subset C$. En efecto, tenemos que:

$$(A^c)^0 \subset A^c$$
.

Ahora, tomando complementos a ambos miembros², obtenemos que:

$$\overline{A} = \left[(A^c)^0 \right]^c \supset (A^c)^c = A.$$

Esto prueba a).

Veamos b). El conjunto \overline{A} es cerrado pues es el complemento del abierto $(A^c)^0$. Sea F un conjunto cerrado que contiene a A, hay que demostrar que $F \supset \overline{A}$. Entonces, tomando complemento, tenemos que F^c es un abierto contenido en A^c . Como $(A^c)^0$ es el mayor abierto contenido en A^c , tenemos que $F^c \subset (A^c)^0$. Ahora tomemos complemento a esta última inclusión y obtenemos

$$F \supset \left[(A^c)^0 \right]^c = \overline{A},$$

que es lo que queríamos demostrar.

Como corolario de b), obtenemos que A es cerrado si, y solo si, $\overline{A} = A$. A su vez, como corolario de esto, obtemos c) y d).

Veamos e). Tenemos que:

$$\overline{A \cup B} = \left[(A \cup B)^c)^0 \right]^c$$
 Definición clausura
$$= \left[(A^c \cap B^c)^0 \right]^c$$
 Leyes de de Morgan
$$= \left[(A^c)^0 \cap (B^c)^0 \right]^c$$
 Propiedad dual del interior
$$= \left[(A^c)^0 \right]^c \cup \left[(B^c)^0 \right]^c$$
 Leyes de de Morgan
$$= \overline{A} \cup \overline{B}$$
 Definición de clausura

Que es lo que queríamos demostrar.

Por último demostremos f). Si $x\in \overline{A}$ entonces, como consecuancia de la proposición 1.1.4 en la página anterior, tenemos que para todo $n\in \mathbb{N}$ existe un $y_n\in A$ tal que $d(x,y_n)<1/n$, ver figura **??** en la página **??**.

Tenémos asi que

$$d(x,A) = \inf_{y \in A} d(x,y) \le d(x,y_n) \le \frac{1}{n}.$$

Y como la desigualdad es válida para todo $n \in \mathbb{N}$, obtenemos que d(x, A) = 0.

Recíprocamente, si d(x,A) = 0 entonces, por definición del ínfimo, para todo r > 0 existe un $y = y_r \in A$ tal que d(x,y) < r. Así tenemos que $B(x,r) \cap A \neq \emptyset$, para todo

²La operación de complemento invierte las inclusiones

r>0. Esto, como sabemos, es equivalente a afirmar que $x\in\overline{A}$.

Por último estamos interesados en definir aquellos puntos que estan en lo que hemos denominado, sin ninguna precisión, borde de un conjunto.

Definición 1.1.12 Diremos que x pertenece a la *frontera* de un conjunto A cuando x está en la clausura de A y en la clausura de A^c . Llamamos al conjunto de todos los puntos frontera de A la *frontera* de A y denotaremnos este conjunto por ∂A .

La costumbre de denotar la frontera de un conjunto con el signo de una derivada proviene, suponemos, del calculo sobre variedades donde se observa que cierta integral de una "derivada" sobre un conjunto es igual a la integral de la función sobre la frontera del conjunto. Este resultado se conoce como Teorema de Stokes. El Teorema fundamenteal del Cálculo es un caso particular de este teorema. Es en este contexto donde se consigue una conexión entre derivadas y fronteras.

1.1.6 Ejercicios

Ejercicio 1.1.1 Demostrar que los siguientes son espacios métricos.

- a) (\mathbb{R}, d) donde d está definida en 1.1 en la página 2.
- b) (\mathbb{R}^n,d) donde d está definida en 1.2 en la página 2. Ayuda: Usar la desigueladad de Cauchy-Schwartz $\forall \mathbf{x} \in \mathbb{R}^n \forall \mathbf{y} \in \mathbb{R}^n$:

$$\sum_{i=1}^{n} x_i y_i \le \sqrt{\sum_{i=1}^{n} |x_i|^2} \sqrt{\sum_{i=1}^{n} |y_i|^2}$$

- c) (\mathbb{R}^n, d) , donde d es la función definida en ?? en la página ??.
- d) (\mathbb{R}^n, d) , donde d es la función definida en **??** en la página **??**.
- e) Probar que la métrica discreta es, valga la redundancia, una métrica.
- f) Demostrar que las ecuaciones 1.3 en la página 2 y 1.4 en la página 3 definen métricas.

Ejercicio 1.1.2 Sea (X,d) un espacio métrico. Demostrar que para todos x , y y z en X tenemos que:

$$|d(x,y) - d(x,z)| \le d(y,z).$$

Ejercicio 1.1.3 Sea (X, d) un espacio métrico y $A \subset X$. Demostrar que:

$$|d(x,A) - d(y,A)| \le d(x,y).$$

Ejercicio 1.1.4 Sea (X,d) un e.m., probar que las siguientes funciones son métricas sobre X:

a)
$$d_1(x,y) := \min\{1, d(x,y)\}.$$

b)
$$d_2(x,y) := \frac{d(x,y)}{1+d(x,y)}$$
.

Ejercicio 1.1.5 Sea (X,d) un e.m.. Demostrar que $\forall x,y\in X$, existe entornos $U\in E(x)$ y $V\in E(y)$ tales que $U\cap V=\varnothing$.

Ejercicio 1.1.6 Sea (X, d) u e.m.. Demostrar las siguientes propiedades:

- a) Si $A \subset X$ es finito, entonces X A es abierto.
- b) Si $A\subset X$ es abierto, entonces para todo conjunto B se tiene que $A\cap \overline{B}\subset \overline{A\cap B}$.
- c) Si A es abierto entonces $A \subset (\overline{A})^0$.
- d) Si A es cerrado entonces $(\overline{A})^0 \subset A$.

e)
$$(\overline{A})^0 = \overline{\left(\overline{\left((\overline{A})^0\right)}\right)}$$
.

$$\mathsf{f)} \ \overline{(A^0)} = \overline{\left(\overline{\left(\overline{(A^0)}\right)^0}\right)}.$$

- g) $A^0 = (\overline{A^c})^c$.
- h) $\partial A = \overline{A} A^0$.
- i) $\operatorname{Ext}(A) = (\overline{A})^c$.
- j) $\partial A^0 \subset \partial A$ y $\partial \overline{A} \subset \partial A$.
- k) $\partial(A\cup B)\subset\partial A\cup\partial B$, Si $\overline{A}\cap\overline{B}=\varnothing$ entonces vale la igualdad en la anterior inclusión.
- I) $d(A,B)=d(\overline{A},\overline{B})$, donde por definición:

$$d(A,B):=\inf_{x\in A,y\in B}d(x,y).$$

Ejercicio 1.1.7 Dar ejemplos de:

- a) $A \vee B$ abiertos de $\mathbb R$ tales que los siguientes conjuntos sean todos diferentes: $\overline{A} \cap \overline{B}$, $\overline{A} \cap \overline{B}$, $\overline{A} \cap B$, $\overline{A} \cap B$, $\overline{A} \cap B$.
- b) A y B intervalos de $\mathbb R$ tales que $A\cap \overline{B} \nsubseteq \overline{A\cap B}$.
- c) $A \subset \mathbb{R}^2$ tal que $\partial A = A$.
- d) A y B subconjuntos de \mathbb{R}^2 tales que entre los siguientes conjuntos no valga ninguna inclusión: $\partial A \cup \partial B \partial (A \cap B)$ y $\partial (A \cup B)$.

Ejercicio 1.1.8 Demostrar que los siguientes conjuntos de \mathbb{R}^2 y \mathbb{R}^3 , son abiertos con la métrica euclidea:

a)
$$\{(x,y) \in \mathbb{R}^2 : m < dig((x,y),(0,0)ig) < n\}$$
, donde $n,m \in \mathbb{N}$ y $m < n$.

- **b)** $\{(x,y) \in \mathbb{R}^2 : 0 < x < 1, \ 0 < y < 1, \ x \neq \frac{1}{n} \ \forall n \in \mathbb{N}\}.$
- c) $\{(x, y, z) \in \mathbb{R}^3 : x, y, z \in \mathbb{Z}\}^c$.

Ejercicio 1.1.9 Hallar la frontera y el diámetro del conjunto $\{\frac{1}{n}:n\in\mathbb{N}\}$.

Ejercicio 1.1.10 Demostrar que el diámetro de la dola unitaria en \mathbb{R}^2 con la métrica euclidea es 2.

Ejercicio 1.1.11 Un e.m. (X,d) se dice ultramétrico si d verifica la desigualdad ultramétrica, es decir:

$$d(x,y) \le \max\{d(x,z), d(z,y)\}.$$

Sea X un e.m. ultramétrico. Demostrar que:

- a) Si $d(x,y) \neq d(y,z)$ entonces $d(x,z) = \max\{d(x,y), d(y,z)\}$.
- b) Si $y\in B(x,r)$ entonces B(x,r)=B(y,r). Como consecuencia las bolas abiertas son también conjuntos cerrados.
- c) Si $y\in \overline{B(x,r)}$ entonces $\overline{B(y,r)}=\overline{B(x,r)}$. Las bolas cerradas son, también, conjuntos abiertos.
- d) Si dos bolas tienen intersección no vacía entonces una está contenidad en la otra.
- e) La distancia de dos bolas abiertas distintas de radio r, contenidas en una bola cerrada de radio r, es igual a r.

Ejercicio 1.1.12 Si (X, d) es un e.m. demostrar que

$$d'(x,y) = \log(1 + d(x,y))$$

define una nueva métrica sobre $X.\ \mbox{¿Que tipo de conjunto son las bolas de esta métrica?}$

1.2 Subespacios de un espacio métrico

Sea (X,d) un e.m. e $Y\subset X$. La métrica d es una función definida sobre $X\times X$, luego podemos considerar su restricción a $Y\times Y$. Esta restricción también cumplirá, es inmediato verlo, los axiomas de una métrica. Por este motivo, el par (Y,d) es un e.m., por una abuso de notación denotaremos la restricción de d al conjunto $Y\times Y$ por el mismo símbolo d. Diremos que Y es un subespacio de X. Observar que la forma de las bolas en un subespacio puede ser diferente que en el espacio total, como puede verse en la figura \ref{gamma} en la página \ref{gamma} . En este gráfico X es el espacio "total", Y el subespacio y X es un punto sobre la frontera de Y, entonces la bola en Y de centro X y radio Y0 para la bola en Y1 de centro X2 y radio Y3, entonces tenemos la relación:

$$B_Y(x,r) := \{ y \in Y : d(x,y) < r \} = B(x,r) \cap Y, \tag{1.10}$$

donde B(x,r) es la bola en el espacio total.

El siguiente teorema nos dá una relación de los abiertos y cerrados en Y con los abiertos y cerrados en X.

Una bola en un subespacio

Teorema 1.2.6 Sea (X, d) un e.m. e $Y \subset X$. Entonces:

- a) El conjunto A es abierto en Y si y solo si existe un G abierto en X tal que $A=G\cap Y$.
- b) El conjunto C es cerrado en Y si y solo si existe un cerrado F en X tal que $C=Y\cap F$.

Dem. Veamos, primero, la propiedad a). Sea A un abierto en Y. Para cada $x \in A$ existe, de acuerdo a la Ecuación 1.10 en la página anterior, un radio $r_x > 0$ tal que:

$$B(x, r_x) \cap Y \subset A. \tag{1.11}$$

Definamos:

$$G := \bigcup_{x \in A} B(x, r_x).$$

El conjunto G es abierto, pues la unión de conjuntos abiertos resulta abierto. Además

$$G \cap Y = \bigcup_{x \in A} B(x, r_x) \cap Y = A.$$

La última igualdad es cierta por la ecuación 1.11 y por que cada $x \in A$ está en el conjunto $B(x, r_x) \cap Y$. De modo que, encontramos el conjunto que cumple la propiedad a).

Ahora la demostración de b) es sencilla de obtener. Sea C cerrado en Y, en particular $C \subset Y$, entonces Y - C es abierto en Y. Por a) existe un abierto G tal que:

$$Y - C = G \cap Y$$
.

Entonces

$$C = Y \cap G^c$$
.

Como el conjunto G^c es cerrado, obtenemos la tesis con $F = G^c$.

Proposición 1.2.5 Sea (X,d) un e.m. e $Y\subset X$ un subespacio. El conjunto $U\subset Y$ es un entorno de $x\in Y$ en el espacio (Y,d) si y solo si existe un entorno V de x en el e.m. (X,d) tal que $U=V\cap Y$.

Dem. Si U es un entorno de x en Y, entonces x está en el interior de U relativo a Y (pongamos U_Y^0 para este conjunto). Como U_Y^0 es un abierto en Y, por el teorema anterior, existe un abierto W tal que $U_Y^0 = Y \cap W$. Tomemos $V = W \cup U$. El conjunto V es un entorno de X en (X,d), pues contiene al conjunto W que lo es. Además $Y \cap Y = U$, lo que demuestra la aserción.

Demostración de la Proposición 1.2.5

Proposición 1.2.6 Sea (X,d) un e.m. e $Y\subset X$ un subespacio. Supongamos que $A\subset Y$. Entonces la clausura de A en el subespacio Y (denotemos esto por \overline{A}^Y) es igual a $\overline{A}^Y=\overline{A}\cap Y$.

Dem. El conjunto $\overline{A} \cap Y$ es un cerrado en Y que contiene al conjunto A, de modo que $\overline{A}^Y \subset \overline{A} \cap Y$. Veamos la otra inclusión. Sea $x \in \overline{A} \cap Y$. Como $x \in \overline{A}$ entonces para todo entorno U de x, tenemos que $U \cap A \neq \varnothing$. Como $A \subset Y$ tenemos que $(U \cap Y) \cap A = U \cap A \neq \varnothing$. Así, como $U \cap Y$ es un entorno arbitrario de X en el subespacio Y, tenemos que $X \in \overline{A}^Y$.

1.2.1 Ejercicios

Ejercicio 1.2.13 Sea (X,d) un e.m., $A\subset X$ y $B\subset A$. Demostrar que $B^0\subset B^0_A$. Dar un ejemplo donde $B^0\neq B^0_A$.

Ejercicio 1.2.14 Sea (X,d) un e.m., B y C subconjuntos de X y $A\subset C\cap B$. Demostrar que A es abierto (cerrado) en $B\cup C$ si, y solo si, es abierto (respectivamente cerrado) en B y C.

Ejercicio 1.2.15 Sea $\{G_i\}_{i\in I}$ un cubrimiento por abiertos de un e.m. X. Demostrar que $F\subset X$ es cerrado si, y solo si, $F\cap G_i$ es cerrado en G_i para todo $i\in I$.

Ejercicio 1.2.16 Dar un ejemplo de un subespacio A de \mathbb{R}^2 tal que exista una bola abierta que es un conjunto cerrado, pero no una bola cerrada, y una bola cerrada que es un conjunto abierto, pero no una bola abierta. Ayuda: Considerar A formado por los puntos (0,1), (0,-1) y por un subconjunto apropiado del eje x.

1.3 Espacios separables

rable.

Definición 1.3.13 Sea (X,d) un e.m.. Un conjunto $A\subset X$ se dirá denso en $B\subset X$ si $\overline{A}\supset B$. Si el conjunto A es denso en X se dirá, brevemente, que A es denso.

Ejemplo 1.3.9 $\mathbb{R}-\{0\}$, \mathbb{Q} son densos en \mathbb{R} . **Ejemplo 1.3.10** Sea (X,d) un e.m discreto. Entonces A es denso si y solo si A=X. En efecto, tenemos que $\overline{A}=X$, de modo que si $x\in X$ todo entorno de x interseca al conjunto A. De modo que $B(x,1/2)\cap A\neq\varnothing$. Pero, como se sabe, $B(x,1/2)=\{x\}$, de modo que $x\in A$. Esto demuestra que X=A.

Definición 1.3.14 Un e.m. (X,d) se dirá separable si tiene un subconjunto denso y a lo sumo numerable.

Ejemplo 1.3.11 Como se dijo \mathbb{Q} es un conjunto denso, además es numerable, por consiguiente \mathbb{R} es separable.

Ejemplo 1.3.12 \mathbb{R}^n con la métrica euclidea es separable. Afirmamos que \mathbb{Q}^n es un conjunto denso y numerable. Para verlo, tomemos $x=(x_1,...,x_n)\in\mathbb{R}^n$ y veamos que está en $\overline{\mathbb{Q}^n}$. Para ello es suficiente probar que $B(x,r)\cap\mathbb{Q}^n\neq\varnothing$, para todo r>0. Sea r>0 un radio, no es muy dificil demostrar, ver la figura $\ref{eq:condition}$ en la página $\ref{eq:condition}$, la siguiente inclusión de un "cubo" en la bola:

$$(x_1 - \frac{r}{\sqrt{n}}, x_1 + \frac{r}{\sqrt{n}}) \times \cdots \times (x_n - \frac{r}{\sqrt{n}}, x_n + \frac{r}{\sqrt{n}}) \subset B(x, r).$$

Como $\mathbb Q$ es denso en $\mathbb R$ existen racionales $q_i \in (x_i - \frac{r}{\sqrt{n}}, x_i + \frac{r}{\sqrt{n}})$, i=1,...,n. En virtud de esto $(q_1,...,q_n) \in \mathbb Q^n \cap B(x,r)$. Y así queda establecida la afirmación. **Ejemplo 1.3.13** Un e.m. discreto (X,d) es separable si y solo si X es a lo sumo numerable. Como vimos en un ejemplo anterior el único conjunto denso que hay en un e.m. discreto es el total, de modo que si el espacio es separable X debe ser a lo sumo numerable.

Construcción del Ejemplo 1.3.12

Definición 1.3.15 En un e.m. (X,d), una familia de conjuntos abiertos $\{G_i\}_{i\in I}$ se dirá base si todo abierto se puede obtener como unión de miembros de la familia. Más precisamente, si G es un abierto cualquiera existe un subconjunto de subíndices $J\subset I$ tal que:

$$G = \bigcup_{i \in J} G_i.$$

Ejemplo 1.3.14 En cualquier e.m. (X,d) la familia de todas las bolas es una base. También es una base la familia de todas las bolas con radio igual a $1/n \operatorname{con} n \in \mathbb{N}$. En efecto, si G es un abierto cualquiera, para todo $x \in G$ existe un $r_x > 0$ tal que $B(x, r_x) \subset G$. Así podemos ver que

$$G = \bigcup_{x \in G} B(x, r_x),$$

lo que demuestra que G lo podemos escribir como unión de bolas. Para el otro caso elegimos un natural n_x suficientemente grande para que $1/n_x < r_x$.

Proposición 1.3.7 Una familia de abiertos $\{G_i\}_{i\in I}$ es una base si y solo si para todo $x\in X$ y para todo entorno $U\in E(x)$, existe un $i\in I$ tal que:

$$x \in G_i \subset U$$
.

 $extit{Dem.} \Rightarrow$). Sea $x \in X$ y $U \in E(x)$. Como la familia es base, tenemos que U^0 es unión de miembros de la familia. Además, por definición, tenemos que $x \in U^0$, estos dos hechos implican la tesis.

 \Leftarrow) Sea G un abierto. Por hipótesis, para cada $x\in G$ encontramos un $i_x\in I$ tal que $x\in G_{i_x}\subset G$. Así tenemos que:

$$G = \bigcup_{x \in G} G_{i_x}.$$

Teorema 1.3.7 Un e.m. es separable si y solo si existe una base a lo sumo numerable.

 $Dem. \Leftarrow)$. Sea $\{G_n\}_{n\in \mathbb{N}}$ una base numerable de abiertos (si hubiera una base finita el razonamiento es idéntico). Elijamos $a_n\in G_n$. El conjunto $D:=\{a_n:n\in \mathbb{N}\}$ es, entonces, a lo sumo numerable (¿ Por qué?). Además, veamos que es denso. Efectivamente, sea $x\in X$ un punto arbitrario y $U\in E(x)$. Como consecuencia de la Proposición 1.3.7 existe un $n\in \mathbb{N}$ tal que $x\in G_n\subset U$. Ahora tenemos el punto $a_n\in G_n$, y por ello $U\cap D\neq \varnothing$. Probamos así que todo entorno de x interseca a $x\in D$, en consecuencia $x\in \overline{D}$. Como el x es arbitrario, aquello prueba que $x\in D$ 0 es un conjunto denso.

 \Rightarrow). Sea D un conjunto denso y a lo sumo numerable. Definamos la siguiente familia de bolas abiertas:

$$\mathcal{A} := \{ B(x, \frac{1}{n}) : x \in D \land n \in \mathbb{N} \}.$$

Esta es una familia a lo sumo numerable, pues la siguiente función

$$T: \mathbb{N} \times D \longrightarrow \mathcal{A}$$

$$(n,x) \longmapsto B(x,\frac{1}{n})$$
 (1.12)

es suryectiva.

Veamos que la familia propuesta es una base de abiertos usando la Proposición 1.3.7 en la página anterior. Sea $x \in X$ y $U \in E(x)$. Como $x \in U^0$, podemos elejir r>0 tal que $B(x,r) \subset U$. Sea, ahora, $n \in \mathbb{N}$ suficientemente grande, de modo que 2/n < r. Como D es denso debe existir un $a \in D$ tal que $a \in B(x,\frac{1}{n})$. Observesé que tenemos que $x \in B(a,1/n)$, ver Figura $\ref{eq:second}$?. Además, tenemos que $B(a,1/n) \subset B(x,r) \subset U$. Para demostrarlo, tomemos $y \in B(a,1/n)$. Entonces

$$d(x,y) \le d(x,a) + d(a,y) < \frac{1}{n} + \frac{1}{n} = \frac{2}{n} < r.$$

Tenemos así que $x \in B(a,1/n) \subset U$, como B(a,1/n) es un elemento de la familia propuesta, tenemos probada la propiedad de la Proposicion 1.3.7 en la página anterior y, de este modo, la familia propuesta resulta una base.

Corolario 1.3.1 Un subespacio de un espacio separable es separable.

Dem. Sea (X,d) un e.m. e $Y\subset X$. Sea $\{G_n\}_{n\in I}$ una base a lo sumo numerable de abiertos. Es fácil demostrar que la familia $\{G_n\cap Y\}_{n\in I}$ es una base de los abiertos de Y

1.3.1 Ejercicios

Ejercicio 1.3.17 Sea (X,d) un e.m. y $A\subset X$. Demostrar que $A\cup \operatorname{Ext}(A)$ es denso en A. ¿Será cierto que $A^0\cup\operatorname{Ext}(A)$ es, siempre, denso?

Ejercicio 1.3.18 Demostrar que $\mathbb{I}:=\mathbb{R}-\mathbb{Q}$ es separable. Exhibir un conjunto denso numerable.

Ejercicio 1.3.19 Sea $A \subset \mathbb{R}$. Definamos $B := \{x \in A | \exists y > x : (x,y) \cap A = \varnothing\}$. Demostrar que B es a lo sumo numerable.

Ejercicio 1.3.20 Sea (X,d) un e.m. y $A\subset X$. Diremos que $a\in A$ es un punto aislado de A si existe un entorno U de a tal que $U\cap A=\{a\}$. En la Figura \ref{a} ? en la página \ref{a} ? el conjunto A consiste de la parte sombreada y el punto a, este último es un punto aislado, pues el entorno U satisface la definición.

Por otra parte, un punto $a \in X$ es un *punto de acumulación* de A si, para todo entorno U de a se tiene que $(U - \{a\}) \cap A \neq \varnothing$.

Sea A un conjunto, B el conjunto de puntos de acumulación de A y C el conjunto de puntos aislados de A. Demostrar los siguientes items:

- a) B es cerrado, y $\overline{A} = B \cup C$.
- b) Si X es separable entonces C es numerable.

Ejercicio 1.3.21 Demostrar que (X,d) es separable si y solo si todo cubrimiento de X por abiertos^a tiene un subcubrimiento a lo sumo numerable^b. *Ayuda:* Sea $\{U_i\}_{i\in I}$ un cubrimiento de X y $\{G_n\}_{n\in\mathbb{N}}$ una base numerable. Para cada $n\in\mathbb{N}$

elegir un i_n tal que $G_n \subset U_{i_n}$. Luego la familia $\{U_{i_n}\}_{n \in \mathbb{N}}$ será un cubrimiento.

1.4 Funciones Continuas

Vamos a ver que, en el contexto de los espacios métricos, podemos definir el concepto de que una función sea continua.

Definición 1.4.16 Sean (X,d), (Y,d') dos e.m, $f:X\to Y$ una función y $x\in X$. Diremos que f es continua en x si para todo entorno $V\in E(f(x))$, existe un entorno de $U\in E(x)$ tal que $f(U)\subset V$ (ver Figura \ref{figura} en la página \ref{figura}). Diremos que $f:X\to Y$ es continua si es continua en cada punto de X.

Algunas veces es más práctico emplear las siguientes equivalencias de la definición de función continua en un punto.

Definición de función continua

Proposición 1.4.8 Sean (X,d), (Y,d') dos e.m, $f:X\to Y$ una función y $x\in X$. Entonces son equivalentes:

- i) f es continua en x.
- ii) Para todo entorno V de f(x), $f^{-1}(V)$ es un entorno de x.
- iii) Para todo $\varepsilon>0$ existe un $\delta>0$ tal que si $d(x,y)<\delta$ entonces $d'(f(x),f(y))<\varepsilon.$

Dem. i) \Rightarrow ii). Sea V un entorno de f(x). En virtud de la definición, existe un entorno U de x tal que $f(U) \subset V$. Así tenemos que $U \subset f^{-1}(V)$ y como U es un entorno de x, $f^{-1}(V)$ también lo és.

ii) \Rightarrow iii). Sea $\varepsilon>0$. La bola $B(f(x),\varepsilon)$ es un entorno de f(x), así, por ii), el conjunto $U:=f^{-1}(B(f(x),\varepsilon))$ es un entorno de x. Entonces $x\in U^0$, lo que implica que existe un $\delta>0$ tal que $B(x,\delta)\subset f^{-1}(B(f(x),\varepsilon))$. Esta inclusión es otra forma de afirmar iii).

iii) \Rightarrow i). Sea V un entorno de f(x). Entonces existe $\varepsilon>0$ tal que $B(f(x),\varepsilon)\subset V$. Por iii), existe un $\delta>0$ tal que si $d(x,y)<\delta$ entonces $d(f(x),f(y))<\varepsilon$. Esto afirma que $f(B(x,\delta))\subset B(f(x),\varepsilon)$. Como $B(f(x),\varepsilon)\subset V$, tenemos que $f(B(x,\delta))\subset V$. Pero $B(x,\delta)$ es un entorno de x, de modo que hemos establecido que f es continua en x.

Ejemplo 1.4.15 Sea $f: X \to Y$ una función entre e.m.. Si (X, d) es discreto entonces

f es continua. Vale decir si el dominio de una función es un e.m. discreto la función es continua, no importa que función sea ni, que sea el codominio. En efecto, sea $x \in X$ y V un entorno de f(x). Como todo conjunto en un e.m. es abierto, $f^{-1}(V)$ es un abierto, además contiene a x, de este modo es un entorno de x, lo que demuestra la condición ii) de la Proposición 1.4.8.

Ejemplo 1.4.16 Sea (X,d) un e.m. e Y un subespacio de X. La *inyección natural* $j:Y\to X$, definida por j(x)=x es una función continua, como se puede corroborar facilmente, quedando esta demostración como ejercicio.

Ejemplo 1.4.17 Las funciones constantes son continuas, es decir: sea (X,d) y (Z,d') dos e.m. y $f:X\to Z$ definida por f(x)=a, donde a es un punto de Z, entonces f es continua. La demostración queda como ejercicio.

Proposición 1.4.9 Sea $f: X \to Y$ continua en x. Supongamos que $x \in \overline{A}$ enton-

^aUn cubrimiento por abiertos de X es una familia de conjuntos abiertos $\{G_i\}_{i\in I}$ tal que $X=\bigcup_{i\in I}G_i$.

^bEs decir existe una subfamilia a lo sumo numerable de la familia $\{G_i\}$ que también es un cubrimiento.

$$\operatorname{ces} f(x) \in \overline{f(A)}.$$

Dem. Sea V un entorno de f(x), hay que demostrar que $V\cap f(A)\neq\varnothing$. Pero, como f es continua en x, $f^{-1}(V)$ es un entorno de x. Ahora, ya que $x\in\overline{A}$, tenemos que $f^{-1}(V)\cap A\neq\varnothing$. Sea, pues, $y\in f^{-1}(V)\cap A$. Así, tenemos que $f(y)\in V\cap f(A)$. Luego $V\cap f(A)\neq\varnothing$.

Ahora vamos a dar una serie de equivalencias a que una función sea globalmente continua.

Teorema 1.4.8 Sean (X,d) e (Y,d') e.m. y $f:X\to Y$ una función. Los siguientes enunciados son equivalentes:

- a) f es continua.
- b) Si $A \subset Y$ es un abierto de Y, entonces $f^{-1}(A)$ es abierto de X.
- c) Si $A \subset Y$ es un cerrado de Y, entonces $f^{-1}(A)$ es un cerrado de X.
- d) Para todo subconjunto $A \subset X$ se tiene que $f(\overline{A}) \subset \overline{f(A)}$.

Dem. La Proposición 1.4.9 en la página anterior establece a) \Rightarrow d). Veamos que d) \Rightarrow c). Sea A cerrado en Y y $A' = f^{-1}(A)$. Entonces

$$f(\overline{A'}) \subset \overline{f(A')}$$
 Hipótesis $\subset \overline{A}$ definición de A' (1.13) $= A$ A es cerrado

Interpretación del inciso d) del Teorema 1.4.8

Luego

$$\overline{A'}\subset f^{-1}(f(\overline{A'}))$$
 Propiedad de la función imagen $\subset f^{-1}(A)$ Inclusión 1.13 $=A'$ Definición de A'

Por otro lado, como es sabido, $A'\subset \overline{A'}$, luego $\overline{A'}=A'$, lo que implica que A' es cerrado. Ahora veamos que c) \Rightarrow b). Sea A abierto en Y. Entonces, A^c es cerrado en Y. Entonces, por c), $f^{-1}(A^c)$ es cerrado en X. Pero, $f^{-1}(A^c)=\left(f^{-1}(A)\right)^c$.

Por último veamos que b) \Rightarrow a). Sea $x \in X$ y V un entorno de f(x), entonces $f(x) \in V^0$. Por hipótesis $f^{-1}(V^0)$ es un abierto que contiene a x. De este modo $f^{-1}(V^0)$ es un entorno de x. Como $f^{-1}(V^0) \subset f^{-1}(V)$ tenemos que $f^{-1}(V)$ es un entorno de x también. Lo que prueba que f es continua en x.

La propiedad d) tiene una interpretación gráfica. Expresa el hecho que si un punto a está "pegado" a un conjunto A (en el sentido que $a \in \overline{A}$) entonces f(a) está "pegado" a f(A), ver Figura $\ref{f(A)}$. Esto es así pues las funciones continuas aplican "puntos próximos" en "puntos próximos", y, al decir que $a \in \overline{A}$ estamos diciendo que a "está próximo" al conjunto A.

Ahora veamos que la composición de funciones continuas es continua.

Proposición 1.4.10 Sean (X,d), (Y,d'), (Z,d'') tres e.m., $f:X\to Y$ y $g:Y\to Z$ funciones tales que f es continua en $a\in X$ y g es continua en $f(a)\in Y$. Entonces $g\circ f:X\to Z$ es continua en a.

Dem. Sea W un entorno de g(f(a)). Como g es continua en f(a) entonces $V:=g^{-1}(W)$ es un entorno de f(a). Luego, como f es continua en a, $f^{-1}(V)=f^{-1}(g^{-1}(W))$ es un entorno de a. Esto implica la tesis, pues $f^{-1}(g^{-1}(W))=(g\circ f)^{-1}(W)$. \square

Corolario 1.4.2 Sea $f:X\to Y$ una función continua en a. Supongamos que $Z\subset X$ es un subespacio con $a\in Z$. Entonces la restricción de f al subespacio Z, con la métrica de subespacio, es continua en a.

Dem. La susodicha restricción es la composición de f con la inyección natural $j:Z\to X$. Por lo tanto el resultado sigue del hecho que la composición de funciones continuas es continua.

Otro concepto importante es el de función uniformemente continua.

Definición 1.4.17 Sea f una función entre dos e.m. (X,d) e (Y,d'). Diremos que f es *uniformemente continua* si para todo $\varepsilon>0$ existe un $\delta>0$ tal que $d'(f(x),f(y))<\varepsilon$, si $d(x,y)<\delta$.

No es facil entender la diferencia de esta definición con la que expresa que f es continua en cada punto de X. La diferencia es que el δ de esta definición es el mismo para todos los puntos de X. Mientras que decir que f es continua en cada punto de X implicaría, en principio, la existencia de un delta que puede depender del punto. Los siguientes ejemplos aclararan más esta definición.

Ejemplo 1.4.18 Las funciones constantes son uniformemente continuas. Dado un $\varepsilon > 0$ podemos tomar cualquier valor de δ que seguramente cumplirá la definición.

Ejemplo 1.4.19 Una función puede ser continua en todo punto y, sin embargo, no ser uniformemente continua, como muestra el siguiente ejemplo: Sea $f:\mathbb{R}\to\mathbb{R}$ definida por $f(x)=x^2$. Esta f es continua en todo punto y no uniformemente continua. En efecto, la diferencia $(a+h)^2-a^2=2ah+h^2$ tiende a $+\infty$ si a tiende a $+\infty$. De modo que asegurar que $h<\delta$ no implica que las imagenes de a+h y a esten cerca, no importando, para ello, cuan chico sea δ . Ver Figura \ref{figura} ?

Si una función es uniformemente continua es continua en cada punto. La demostración de este hecho es bastante directa y simple.

Ejemplo 1.4.20 Sea (X, d) un e.m. y $A \subset X$. La función:

$$f: X \longrightarrow \mathbb{R}$$

 $x \longmapsto d(x, A).$

es uniformemente continua. Esto es consecuencia de la desigualdad probada en el Ejercicio 1.1.3 en la página 11, a saber:

$$|d(x, A) - d(y, A)| \le d(x, y).$$

1.4.1 Ejercicios

Ejercicio 1.4.22 Sean (X,d), (Y,d') e.m., A y B subconjuntos de X tales que $A \cup B = X$.

- i) Sea $f:X\to Y$ una función tal que $f_{|A}{}^a$ y $f_{|B}$ son ambas continuas en $x\in A\cap B$, probar que f es continua en x.
- ii) Dar un ejemplo de función tal que $f_{|A}$, $f_{|B}$ y $f_{|A\cap B}$ sean continuas pero f no lo sea.

Función no uniformemente continua

 ${}^af_{\mid A}$ denota la restricción de f al conjunto A

Ejercicio 1.4.23 Sean (X,d), (Y,d') e.m. y $f:X\to Y$ una función. Demostrar que son equivalentes:

- i) f es continua.
- ii) Para todo $B \subset Y$: $f^{-1}(B^0) \subset [f^{-1}(B)]^0$.
- iii) Para todo $B \subset Y$: $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$.

Dar un ejemplo de función continua donde $\overline{f^{-1}(B)} \neq f^{-1}(\overline{B})$.

Ejercicio 1.4.24 Sean (X,d), (Y,d') e.m. y $f,g:X\to Y$ funciones continuas. Demostrar que:

- i) El conjunto $\{x \in X | f(x) = g(x)\}$ es cerrado.
- ii) Si f y g coinciden en un conjunto denso entonces son iguales.

Ejercicio 1.4.25 Sean (X, d), (Y, d') e.m.. Demostrar que son equivalentes

- i) Toda función $f: X \to Y$ es continua.
- ii) Todo punto de X es aislado^a.

1.5 Homeomorfismos e isometrías

Definición 1.5.18 Sean (X,d), (Y,d') dos e.m. y $f:X\to Y$ una función *biyectiva*. Diremos que f es un *homeomorfismo* si f y f^{-1} son ambas continuas. Dos e.m. tales que exista un homeomorfismo entre ellos se denominaran homeomorfos.

Ejemplo 1.5.21 Dos intervalos abiertos cualesquiera de $\mathbb R$ son homeomorfos, uno puede construir una función lineal, que son homeomorfismos, que aplique uno en el otro. Mientras que un intervalos abierto cualquiera (a,b) es homeomorfo a $\mathbb R$. Un homeomorfismo entre ambos es la función:

$$f:(a,b) \longrightarrow \mathbb{R}$$
$$x \longmapsto \tan\left(\pi \frac{2x - (a+b)}{2(b-a)}\right)$$

Ejemplo 1.5.22 Un intervalo cerrado ya no es homeomorfo a \mathbb{R} , esto lo demostraremos más adelante. No obstante podemos definir la recta real extendida que será homeomorfa a los intervalos cerrados. Más precisamente, sea $f:\mathbb{R}\to (-1,1)$ la función f(x)=x/(1+|x|). No es difícil demostrar que f es biyectiva, de hecho analizando esta función con las herramientas aprendidas en Cálculo I vemos que tiene la forma de la Figura $\ref{eq:condition}$ en la página $\ref{eq:condition}$. Definamos el conjunto $\ref{eq:condition}$, al que llamaremos $\ref{eq:condition}$ como la unión

Grafico de la función f(x) = x/(1+|x|)

^aPor abuso de lenguaje los e.m. con esta propiedad se denominan discretos

de $\mathbb R$ con dos nuevos elementos, a los que llamaremos $-\infty$ y $+\infty$. Ahora extendemos f de $\overline{\mathbb R}$ al [-1,1] por $f(+\infty)=1$ y $f(-\infty)=-1$. Definimos la función $d:\overline{\mathbb R}\times\overline{\mathbb R}\to\mathbb R$ por:

$$d(x,y) = |f(x) - f(y)|. (1.14)$$

La función d es una métrica en $\overline{\mathbb{R}}$ (la sencilla demostración la desarrollaremos en clase). Con esta métrica el conjunto \mathbb{R} es acotado, de hecho $\delta(\mathbb{R})=2$. Además la función f resulta un homeomorfismo de $\overline{\mathbb{R}}$ en [-1,1] (este último con la métrica del módulo). En efecto, en virtud de la ecuación 1.14, dado $\varepsilon>0$ basta elegir $\delta=\varepsilon$ para verificar que f es uniformemente continua. Si llamamos g a la inversa de f y reemplazamos f0 en 1.14 por f1 y f2 y f3 respectivamente, comprobamos que

$$d(g(t), g(s)) = |t - s|. (1.15)$$

Lo cual implica que g es uniformemente continua, por razones similares a las que invocamos para f. En particular f y su inversa son continuas, de modo que f es un homeomorfismo.

En el ejemplo anterior las funciones f y g tienen una propiedad más fuerte que la de ser homeomorfismos, esta propiedad la definimos a continuación.

Definición 1.5.19 Sean (X, d), (Y, d') dos e.m. y $f: X \to Y$ una función biyectiva. Se dirá que f es una *isometría* si para todos x e y en X se tiene que:

$$d'(f(x), f(y)) = d(x, y).$$

Si, entre dos e.m. existe una isometría diremos que los espacios son *isométricos*.

Una isometría es un homeomorfismo, la idea central de la demostración de esta afirmación está en el ejemplo anterior. Igual que en aquel ejemplo, hay que demostrar que la inversa de una isometría es, a la vez, una isometría.

Proposición 1.5.11 Sean (X,d), (Y,d') dos e.m. y $f:X\to Y$ una función biyectiva con inversa g. Entonces son equivalentes:

- i) f es un homeomorfismo.
- ii) $A \subset X$ es abierto si, y solo si, f(A) es abierto.

 $egin{aligned} & extstyle Dem. \ i) \Rightarrow & extstyle ii). \ Sea} A \subset X. \ Supongamos, en primer lugar, que A es abierto. Como $g: Y
ightarrow X$ es continua, $g^{-1}(A) = f(A)$ es abierto. Supongamos, ahora, que $f(A)$ es abierto. Como f es continua, $f^{-1}(f(A)) = g(f(A)) = A$ es abierto. Esto concluye la demostración de la primera implicación.$

ii) \Rightarrow i). Tenemos que demostrar que f y g son continuas. Veamos, primero, que f es continua. Sea B un abierto de Y, hay que demostrar que $f^{-1}(B)=g(B)$ es un abierto de X. Pero B=f(g(B)) y B es abierto, entonces, por ii), g(B) es abierto. Veamos, ahora, que g es continua. Sea A abierto en X. Luego, por ii), $g^{-1}(A)=f(A)$ es abierto en Y, por lo cual, g es continua. \Box

Este teorema nos dice que si dos espacios son homeomorfos, entonces existe una correspondencia de los abiertos de uno con los del otro espacio.

El conjunto formado por todos los conjuntos abiertos, se denomina topología. Brevemente, digamos que un espacio topológico es un par (X,τ) , donde $\tau \subset \mathcal{P}(X)^3$, que satisface los siguientes axiomas:

- 1) $\varnothing, X \in \tau$
- 2) Si $G_i \in \tau$, para $i \in I$, entonces $\bigcup_{i \in I} G_i \in \tau$.

 $^{{}^3\}mathcal{P}(X)$ es el conjunto de partes de X, es decir au es un conjunto cuyos elementos son subconjuntos de X

3) Si $G_i \in \tau$, para $i \in I$, e I es finito, entonces $\bigcap_{i \in I} G_i \in \tau$.

En un espacio topológico uno puede construir la nociones, que hemos construido para e.m., por ejemplo conjunto cerrado, interior, clausura, entorno, función continua y espacio separable. Por tanto, estas propiedades se denominan topológicas. Las propiedades topológicas son invariantes por homeomorfismos, por ejemplo si un espacio es separable, cualquier homeomorfo a él también lo es. Algunas propiedades no son topológicas, por ejemplo que una función sea uniformemente continua, puesto que para definir este concepto necesitamos de una métrica.

Un mismo conjunto X, puede tener dos métricas distintas, por ejemplo en $\mathbb R$ tenemos la métrica euclidea y la discreta. Podemos plantearnos que estas métricas den origen a una misma topología, si esto sucede diremos que las dos *métricas son equivalentes*.

1.5.1 Ejercicios

Ejercicio 1.5.26 Sean (X,d), (Y,d') e.m. y $f:X\to Y$ una función biyectiva. Demostrar que f es un homeomorfismo si, y solo si, para todo $A\subset X$ tenemos que $f(\overline{A})=\overline{f(A)}$.

Ejercicio 1.5.27 Demostrar:

- i) que las métricas sobre \mathbb{R}^n definidas en los Ejemplos 1.1.2 en la página 2, ?? en la página ?? y ?? en la página ?? son todas equivalentes.
- ii) que las distancias d , d_1 y d_2 del Ejercicio 1.1.4 en la página 11 son equivalentes.
- iii) Dados dos topologías τ_1 y τ_2 sobre el mismo espacio X decimos que τ_1 es más fina que τ_2 si $\tau_2 \subset \tau_1$. Demostrar que, sobre C([0,1]), la topología que genera la métrica del Ejemplo 1.1.4 en la página 2 es más fina que la topología que genera la métrica del Ejemplo 1.1.4 en la página 2 es más fina que la del Ejemplo 1.1.5 en la página 3.

1.6 Completitud

Una propiedad importante de los espacios métricos es la completitud. En esta unidad introducimos esta propiedad e indagamos algunas de sus consecuencias.

1.6.1 Sucesiones

Definición 1.6.20 Una sucesión en un e.m. (X,d) es una función $f: \mathbb{N} \to X$.

Esta el la definición formal de sucesión, no obstante cuando se trabaja con sucesiones no se hace alusión explícita a la función f de la definición. Normalmente una sucesión se introduce con el símbolo $\{a_n\}_{n\in\mathbb{N}}$ o, brevemente, $\{a_n\}$, asumiendo que los índices n son naturales. Claro está que, ímplicitamente, estos símbolos conllevan la función f. Esta es la función tal que $f(n)=a_n$.

Definición 1.6.21 Sea $\{a_n\}$ una sucesión en el e.m. (X,d). Diremos que esta sucesión *converge* al punto $a\in X$ (denotaremos esto por $a_n\to a$) si, y solo si, para todo entorno U de a existe un $n_0=n_0(U)$ tal que cuando $n\geq n_0$ se tiene que $a_n\in U$. Sinteticamente, dado cualquier entorno, salvo posiblemente una cantidad

finita de términos de la sucesión todos los términos restantes están incluídos en el entorno, ver la Figura ?? en la página ??

La convergencia es una propiedad topológica. Confiamos en que el alumno tiene muchos ejemplos de sucesiones convergentes en \mathbb{R} , esto fué visto en Cálculo I. Vamos a ver que sucede en otros espacios métricos.

Ejemplo 1.6.23 En un e.m. discreto (X,d) si una sucesión $\{a_n\}$ converge al punto a, entonces a partir de un n_0 en adelante se tiene que $a_n=a_{n_0}$. En efecto, esto es consecuencia de considerar el siguiente entorno: $U=B(a,1/2)=\{a\}$. **Ejemplo 1.6.24** Consideremos el e.m. (C([0,1]),d), donde C([0,1]) representa al con-

Ejemplo 1.6.24 Consideremos el e.m. (C([0,1]),d), donde C([0,1]) representa al conjunto de funciones continuas $f:[0,1]\to\mathbb{R}$ y d es la métrica definida en el Ejemplo 1.1.5 en la página 3. Consideremos las funciones definidas por:

Definición 1.6.21 en la página anterior

$$f(x) = \left\{ \begin{array}{ll} nx, & \text{si } 0 \leq x \leq \frac{1}{n}; \\ 2 - nx, & \text{si } \frac{1}{n} \leq x \leq \frac{2}{n}. \\ 0, & \text{si } \frac{1}{n} \leq x \leq 1. \end{array} \right.$$

En la Figura \ref{figura} en la página \ref{figura} , se pueden observar los gráficos de estas funciones. Es un ejercicio de Cálculo I demostrar que $f_n \to 0$ con la métrica propuesta. Sin embargo, sobre C([0,1]) tenemos definida otra métrica, a saber: la del Ejemplo 1.1.4 en la página 2. Con esta métrica la sucesión f_n no converge a ninguna función.

Es posible caracterizar algunos de los conceptos, que ya hemos visto, en términos de sucesiones. Por ejemplo, el concepto de clausura y continuidad.

Funciones del Ejemplo 1.6.24

Proposición 1.6.12 Sea (X,d) un e.m. y $A\subset X$. Entonces $a\in \overline{A}$ si, y solo si, existe una sucesion $a_n\in A$ tal que $a_n\to a$.

Dem. Supongamos que $a\in \overline{A}$, entonces, para todo $n\in \mathbb{N}$ se tiene que $B(a,1/n)\cap A\neq \varnothing$. Sea, pues, $a_n\in B(a,1/n)\cap A$. Se puede ver, sin dificultad, que $a_n\to a$. Recíprocamente, supongamos que existe la sucesión $\{a_n\}$. Si U es un entorno arbitrario de a, entonces, puesto que $a\in \overline{A}$, tenemos que, para ciertos n, $a_n\in U$, luego, estos a_n , estan en la intersección de U con A, lo que implica que esta es no vacía. Eso prueba que $a\in \overline{A}$.

1.6.2 Sucesiones de Cauchy, espacios métricos completos

Definición 1.6.22

- i) Dada una sucesión $\{a_n\}$ en un e.m. (X,d), diremos que $\{a_n\}$ es una sucesión de Cauchy si: para todo $\varepsilon>0$ existe un $n_0=n_0(\varepsilon)^a$ tal que para $n,m\geq n_0$ tenemos que $d(a_n,a_m)<\varepsilon$. En otras palabras, para valores grandes de n los términos a_n están cerca entre si.
- ii) Un e.m. se dirá *completo* si, y solo si, todo sucesión de Cauchy en él es convergente.

 a Con $n_0=n_0(arepsilon)$ queremos decir que el número n_0 depende de arepsilon pero que normalmente no usaremos la notación $n_0(arepsilon)$ sino, simplemente, n_0

Como acabamos de decir, en un e.m. completo toda sucesión de Cauchy converge. La reciproca de esta afirmación es siempre cierta, es decir en cualquier e.m. toda sucesión convergente es de Cauchy. En efecto, sea $\{a_n\}$ una sucesión convergente en (X,d) al punto a y sea $\varepsilon>0$. Existe un $N=N(\varepsilon)$ tal que para n>N se tiene que

$$d(a_n, a) < \frac{\varepsilon}{2}.$$

Luego, para n, m > N y por la desigualdad triágular, tenemos que

$$d(a_n, a_m) \le d(a_n, a) + d(a, a_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Esto prueba que la sucesión es de Cauchy, como queríamos.

Un ejemplo importante de e.m. completo es \mathbb{R} . Esta propiedad de \mathbb{R} es enunciada, prácticamente, como un axióma. Hablaremos, mas no sea brevemente, de los "fundamentos" de los números reales en el apéndice al final de esta unidad, ver Sección $\ref{eq:constraint}$ en la página $\ref{eq:constraint}$. Sabiendo que \mathbb{R} con la métrica del módulo es completo podemos demostrar la completitud de otros e.m., como veremos más abajo. Antes de ver esto demostremos que toda sucesión convergente es de Cauchy

Ejemplo 1.6.25 \mathbb{R}^n con la métrica euclidea es un e.m. completo.⁴ Vamos a demostrar esta afirmación. Denotemos por letras en negritas \mathbf{x} , \mathbf{y} , \mathbf{z} , etc n-uplas en \mathbb{R}^n , es decir $\mathbf{x}=(x_1,\ldots,x_n)$ con $x_i\in\mathbb{R},\,i=1,\ldots,n$. Consideremos una sucesión de Cauchy $\{\mathbf{x}_j\}_{j\in\mathbb{N}}$ en \mathbb{R}^n . Esto nos determina n sucesiones en \mathbb{R} , puesto que $\mathbf{x}_j=(x_1^j,\ldots,x_n^j)$. Veamos que, para cada i, $\{x_i^j\}_{j\in\mathbb{N}}$ es una sucesión de Cauchy en \mathbb{R} . Se tiene que:

$$|x_i^j - x_i^k| \le \sqrt{\sum_{s=1}^n (x_s^j - x_s^k)^2} \le d(\mathbf{x}_j, \mathbf{x}_k).$$

Como el último miembro se puede hacer tan chico como queramos, puesto que $\{\mathbf{x}_j\}$ es de Cauchy, podemos conseguir lo mismo para el primer miembro, esto es $\{x_i^j\}$ es de Cauchy. Así, como $\mathbb R$ es completo, existe un x_i , para $i=1,\ldots,n$ tal que $x_i^j\to x_i$, para $j\to\infty$. Definamos, pues, $\mathbf{x}=(x_1,\ldots,x_n)$ y veamos que $\mathbf{x}_j\to\mathbf{x}$. Sea $\varepsilon>0$, para cada $i=1,\ldots,n$ podemos hallar un $j(\varepsilon,i)$, es decir j depende de ε y de i, tal que para $j\ge j(\varepsilon,i)$ tenemos que:

$$|x_i^j - x_i| < \frac{\varepsilon}{\sqrt{n}}.$$

Así, si:

$$j \geq \max_{1 \leq i \leq n} j(\varepsilon, i)$$

entonces

$$d(\mathbf{x}_j - \mathbf{x}) = \sqrt{\sum_{i=1}^n (x_i^j - x_i)^2} = \sqrt{\sum_{i=1}^n \frac{\varepsilon^2}{n}} = \varepsilon,$$

lo que demuestra que $\mathbf{x}_i \to \mathbf{x}$, como queríamos.

Ejemplo 1.6.26 El e.m. (C([0,1]),d), con d como en el Ejemplo 1.6.24 en la página anterior, no es completo. Consideremos las siguientes funciones, para n/geq2:

$$f_n(x) := \begin{cases} 1, & \text{si } 0 \le x \le \frac{1}{2}; \\ -nx + \frac{n+2}{2n}, & \text{si } \frac{1}{2} \le x \le \frac{1}{2} + \frac{1}{n}; \\ 0, & \text{si } \frac{1}{2} \le x \le 1. \end{cases}$$

en la Figura ?? en la página ?? graficamos estas funciones.

No es dificil convencerse que esta es una sucesi/ón de Cauchy, puesto que, para j,k/geqn tenemos que:

$$d(f_j,f_k)=rac{1}{2}|rac{1}{i}-rac{1}{k}|\leq rac{1}{n}
ightarrow 0$$
 cuando $n
ightarrow \infty.$

Sin embargo estas funciones no convergen a ninguna función en C([0,1]). Para ver esto, supongamos que, por el contrario, existe $f \in C([0,1])$ tal que $f_n \to f$. Vamos a demostrar que, necesariamente, f debe valer 1 en el intervalo [0,1/2) y debe valer 0 en el intervalo (1/2,1), por tal motivo no podría ser continua contradiciendo las hipótesis.

Funciones del Ejemplo 1.6.26

Construcción de la demostración en el Ejemplo 1.6.26

 $^{^4}$ Observar que, en virtud del Ejercicio 1.6.39 en la página $29\,\mathbb{R}^n$ con cualquier métrica equivalente a la euclidea también resultará completo

Vamos a demostrar solo que f es 0 en (1/2,1), la otra parte es similar y aun más facil. Supongamos que exista 1/2 < a < 1 tal que $f(a) \neq 0$, podemos suponer que f(a) > 0. Elijamos $\delta_1 > 0$ suficientemente pequeño de modo que $1/2 < a - \delta_1$ y elijamos $\delta_2 > 0$ suficientemente pequeño de modo tal que f(x) > f(a)/2 para $x \in (a - \delta_2, a + \delta + 2)$ (esto es posible pues f es continua en a). Ahora, el número $\delta := \min\{\delta_1, \delta_2\}$ satisface las dos propiedades anteriores simultaneamente. Podemos encontrar un n_0 suficientemente grande para que $1/2 + 1/n < a - \delta$, cuando $n > n_0$, esto implica que f_n es idénticamente cero en el intervalo $(a - \delta, a + \delta)$, ver la Figura \ref{figura} en la página \ref{figura} ?

Juntando todas las propiedades vistas en el párrafo anterior, deducimos que, para $n>n_0$,

$$d(f_n, f) = \int_0^1 |f_n - f| dx \ge \int_{a - \delta}^{a + \delta} |f_n - f| dx \ge \delta f(a) > 0.$$

De modo que f_n no converge a f, contradiciendo nuestras suposiciones. Ahora veremos que subespacios, de un e.m. completo, son, a su vez, completos.

Proposición 1.6.13 Sea (X, d) un e.m. completo e $Y \subset X$. Son equivalentes:

- i) (Y, d) es un subespacio completo.
- ii) Y es cerrado en X.

1.6.3 Teorema de Cantor

Teorema 1.6.9 [Teorema de la intersección de Cantor.] Sea (X,d) un espacio métrico completo. Sea $\{F_n\}_1^\infty$ una secuencia decreciente de conjuntos cerrados en X. Es decir

$$F_1 \supset F_2 \supset \cdots \supset F_n \supset \cdots$$

Supongamos que:

$$\delta(F_n) \longrightarrow 0 \text{ as } n \to \infty$$

Entonces:

$$\exists x \in X : \bigcap_{n=1}^{\infty} F_n = \{x\}.$$

Demostración. Primero demostramos que $\bigcap_{n=1}^{\infty} F_n$ tiene como máximo un elemento. De hecho, sea $x_0, \tilde{x}_0 \in \bigcap_{n=1}^{\infty} F_n$. Entonces $x_0, \tilde{x}_0 \in F_n$ para todo $n \in \mathbb{N}$ y por lo tanto

$$d(x_0, \tilde{x}_0) \leq \delta(F_n)$$

para cualquier $n \in \mathbb{N}$. Por lo tanto, tomando límite cuando $n \to \infty$ deducimos $d(x_0, \tilde{x}_0) = 0$, por lo cual $x_0 = \tilde{x}_0$. De allí que hay a lo sumo un elemento en la intersección.

Ahora probamos que $\bigcap_{n=1}^\infty F_n$ tiene al menos un elemento. Para cualquier $n\in\mathbb{N}$, elijamos algún elemento $x_n\in F_n$. Probamos que $\{x_n\}_1^\infty$ es una sucesión de Cauchy. De hecho, para cualquier $\varepsilon>0$, elijamos $N\in\mathbb{N}$ tal que diam $(F_N)<\varepsilon$. Entonces, para cualquier $n,m\geq N$, tenemos que $n,m\in F_n\subseteq F_n$ y $n,m\in F_m\subseteq F_n$, por lo que

$$d(x_n, x_m) \le \delta(F_N) < \varepsilon$$

Por lo tanto, $(x_n)_1^\infty$ es una sucesión de Cauchy. Como (X,d) es completo, se sigue que existe $x_0 \in X$ tal que $x_n \longrightarrow x_0$ como $n \to \infty$. Afirmamos que $x_0 \in F_k$ para todo $k \in \mathbb{N}$. De hecho, para cualquier $k \in \mathbb{N}$, tenemos que

$$x_k, x_{k+1}, x_{k+2}, \ldots \in F_k$$

y dado que F_k es cerrado y $x_n \longrightarrow x_0$ como $n \to \infty$, se sigue que $x_0 \in F_k$. Por lo tanto, $x_0 \in \bigcap_{k \in \mathbb{N}} F_k$. Esto completa la prueba.

1.6.4 Teorema de Baire

Definición 1.6.23 [Conjuntos nunca densos, categorías de Baire] Sea (X, d) un espacio métrico.

- 1. Se dice que un subconjunto $Y \subset X$ es nunca denso o magro cuando $(\bar{Y})^{\circ} =$
- 2. Se dice que un subconjunto $Y \subset X$ es de primera categoría si es unión numerable de subconjuntos nunca densos.
- 3. Los subconjuntos que no son de primera categoria se denominan de segunda categoria.

Observación: i) Puesto que $\overline{\left(\overline{Y}\right)^c}=Y^{c\circ ccc\circ c}=Y^{c\circ cc\circ c}=\left(\overline{Y}^\circ\right)^c$. Se concluye que Yes magro si y sólo si $(\overline{Y})^c$ es denso.

- ii) El concepto de nunca denso no es lo mismo que lo contrario a denso. De hecho son conceptos bastantes diferentes. Por ejemplo un intervalo (a,b) de $\mathbb R$ no es denso y tampoco nunca denso. La implicación contraria es verdadera, esto es si un conjunto es nunca denso entonces no es denso.
- iii) Un subconjunto de un conjunto nunca denso resulta nunca denso. La misma aseveración vale con conjuntos de primera categoría.

Ejercicio 1.6.28 Demostrar que el único conjunto magro en un espacio métrico discreto es Ø.

Ejercicio 1.6.29 Demostrar que \mathbb{Q} es de primera categoría.

Teorema 1.6.10 [Baire] Todo espacio métrico completo es de segunda categoría.

Demostración. Suponemos que (X, d) es un espacio métrico completo y

$$X = \bigcup_{n=1}^{\infty} E_n \tag{1.16}$$

donde cada uno de los E_n magro, o equivalentemente $V_n:=\left(\overline{E_n}\right)^c$ es un abierto denso. Tomando complementos en la identidad (1.16) deducimos que $\varnothing=\bigcap_{n=1}^\infty E_n^c$. Y como $V_n \subset E_n^c$ deducimos

$$\varnothing = \bigcap_{n=1}^{\infty} V_n^c.$$

Probaremos que el conjunto del segundo miembro de la igualdad anterior es no vacío y así arribaremos a una contradicción. De hecho, vamos todavía más fuerte, esto es que $\bigcap_{n=1}^{\infty} V_n^c$ es un conjunto denso. Esto es un resultado que merece destacarse. En un espació métrico completo la intersección de una cantidad numerable conjuntos abiertos y densos es un conjunto denso. Para demostrar que $\bigcap_{n=1}^{\infty}V_n^c$ es denso es suficiente demostrar que:

$$x_0 \in X \text{ y } r > 0 \Rightarrow B(x_0, r) \cap \left(\bigcap_{n=1}^{\infty} V_n^c\right) \neq \varnothing.$$
 (1.17)

Observación: Vamos a usar repetidamente la siguiente propiedad: $Si\ V$ es abierto y denso y G es abierto entonces $G\cap V$ es abierto y no vacio, por ende existe r>0 y $x\in G\cap V$ con $B'(x,r)\subset G\cap V$

Por la observación existe $x_1 \in X$ y $r_1 > 0$ tal que

$$B'(x_1,r_1) \subset V_1 \cap B(x_0,r)$$
.

Nuevamente por la observación existe $x_2 \in X$ y $r_2 > 0$ tal que

$$B'(x_2, r_2) \subset V_2 \cap B(x_1, r_1)$$

Continuando de esta manera, usando el hecho de que para cada $n\in\mathbb{N},V_n$ es abierto y denso y que $B\left(x_{n-1},r_{n-1}\right)$ es abierto, obtenemos $x_n\in X$ y $r_n>0$ tal que

$$B'(x_n, r_n) \subset V_n \cap B(x_{n-1}, r_{n-1})$$

Además, en cada paso de esta construcción, podemos elegir r_n , achicándolo si fuese necesario, de modo que $0 < r_n \le 1/n$.

Se tiene que

$$B'(x_1,r_1)\supset B'(x_2,r_2)\supset\cdots\supset B'(x_n,r_n)\supset\cdots$$

у

$$\operatorname{diam}\left(B'\left(x_{n},r_{n}\right)\right)\longrightarrow0\ \mathrm{cuando}\ n\rightarrow\infty$$

de modo que, por el Teorema 1.6.9, tenemos que existe $x \in X$ tal que

$$\bigcap_{n=1}^{\infty} B'(x_n, r_n) = \{x\}$$

Notar que por lo prviamente probado

$$x \in B(x_0, r) \cap \left(\bigcap_{n=1}^{\infty} V_n\right).$$

Por lo tanto se verifica (1.17).

1.6.5 Ejercicios

Ejercicio 1.6.30 Consideremos el conjunto C([0,1]) donde tenemos definidas las dos métricas d_1 y d_2 de los Ejemplos 1.3 en la página 2 y 1.4 en la página 3 respectivamente. Determinar si las siguientes sucesiones son convergentes con estas métricas y si son de Cauchy.

- i) $f_n(x) := \frac{1}{n} \operatorname{sen}(nx)$.
- ii) $f_n(x) := x^n$.
- iii) $f_n(x) := nx^n$.

Ejercicio 1.6.31 Con la misma notación del ejercicio anterior demostrar que si $f_n \to f$ con la métrica d_1 entonces lo mismo ocurre con la métrica d_2 .

Ejercicio 1.6.32 Sean (X,d) e (Y,d') dos e.m. y $f:X\to Y$ un homeomorfismo. Demostrar que la sucesión $\{a_n\}$ es convergente en X si, y solo si, $f(a_n)$ es convergente en Y.

Ejercicio 1.6.33 Sea (X,d) un e.m., $a \in A$ y $A \subset X$. Demostrar que existe un sucesión $\{a_n\}$, con $a_n \in A$, para todo n, y:

$$\lim_{n\to\infty}d(a,a_n)=d(a,A).$$

Ejercicio 1.6.34 Sea $A \subset \mathbb{R}$ un conjunto acotado superiormente. Demostrar que existe una sucesión $\{a_n\}$, con $a_n \in A$, para todo n, y además:

$$\sup A = \lim_{n \to \infty} a_n.$$

Ejercicio 1.6.35 Demostrar que $(C([0,1]), d_1)$, con d_1 como en el Ejercicio 1.6.30, es un e.m. completo.

Ejercicio 1.6.36 Demostrar que un e.m. con una cantidad finita de elementos es completo.

Ejercicio 1.6.37 Demostrar que una sucesión de Cauchy es acotada.

Ejercicio 1.6.38 Sea $\{a_n\}$ una sucesión en un e.m. (X,d), demostrar que cualquierqa de las dos condiciones implica que $\{a_n\}$ es de Cauchy.

- i) $d(a_n, a_{n+1}) \leq \alpha^n$, con $0 < \alpha < 1$.
- ii) La siguiente serie es convergente:

$$\sum_{n=1}^{\infty} d(a_n, a_{n+1}).$$

Ejercicio 1.6.39 Sean d y d' dos métricas uniformemente equivalentes sobre el mismo espacio X. Demostrar que (X,d) es completo si, y solo si, (X,d') es completo.

Ejercicio 1.6.40 Sea $f:X\to Y$ una función uniformemente continua entre dos e.m.. Demostrar que si $\{a_n\}$ es de Cauchy en X entonces $\{f(a_n)\}$ es de Cauchy en Y. Dar un contraejemplo a la afirmación anterior suponiendo, solo, que f es continua. *Ayuda*: Considerar la recta extendida.

Ejercicio 1.6.41 Demostrar que el axioma de completitud de \mathbb{R} dado, se puede sustituír por cualquiera de los siguientes:

- i) Toda sucesión de Cauchy en ℝ converge.
- ii) Principio de Encajes de Intervalos. Sea $\{I_n\}_{n\in\mathbb{N}}$ una sucesión de intervalos cerrados tales que $I_{n+1}\subset I_n$, para todo n, entonces $\bigcap_{n\in\mathbb{N}}I_n\neq\varnothing$.

1.7 Compacidad

Es quizas con la noción de conjunto compacto donde encontraremos las diferencias más grandes entre la topología de \mathbb{R}^n y la de un espacio métrico arbitrario. En particular, ya no será válida la carectización de compacto como cerrado y acotado. Para obtener una caracterización necesitaremos un concepto más fuerte que la acotación, este será el de conjunto **totalmente acotado** y, a la vez, un concepto más fuerte que el de conjunto cerrado y en este caso usaremos la de conjunto completo.

Es interesante hacer notar que, en topología, interesan aquellas propiedades que se preservan por homeomorfismos. En este sentido vemos que la noción de conjunto cerrado acotado no se preserva por este tipo de aplicaciones (claro está, los espacios métricos involucrados deberían ser distintos que \mathbb{R}^n con la métrica euclidea). Por ejemplo, como ya hemos visto, la identidad es un homeomorfismo de (\mathbb{R}^n,d) , con d la métrica euclidea, en (\mathbb{R}^n,d_1) , con

$$d_1(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

Ahora bien, como $0 \le d_1 < 1$ cualquier conjunto de \mathbb{R}^n tiene diámetro, respecto a d_1 menor o igual a 1 y, por ende, cualquier conjunto es acotado. Sin embargo, no todo conjunto es acotado respecto a la métrica euclidea. Por otra parte \mathbb{R}^n es cerrado en ambas métricas, pues es el conjunto total. Vemos así que el concepto de conjunto cerrado y acotado no necesariamente se preserva por homeomorfismos lo que relativiza su importancia.

Definición 1.7.24 Diremos que un conjunto A de un e.m. (X,d) es totalmente acotado si para cada $\varepsilon>0$ existe una cantidad finita de conjuntos de diámetro menor que ε cuya unión contiene a A. En otras palabras existen conjuntos A_i , i=1,...,n, con $\delta(A_i)<\varepsilon$ que satisfacen:

$$A \subset \bigcup_{i=1}^{n} A_i.$$

Ejercicio 1.7.42 Demostrar que un subconjunto de un conjunto totalmente acotado es totalmente acotado.

Veamos algunos ejemplos de conjuntos totalmente acotados y de conjuntos que no lo son.

Ejemplo 1.7.27 Cualquier intervalo acotado de $\mathbb R$ es totalmente acotado. Para justificar esta aseveración, tomemos $\varepsilon>0$ y un intervalo cualquiera de extremos a y b. Elijamos n suficientemente grande para que $1/n<\varepsilon$. Entonces los conjuntos

$$I_k := \left[\frac{k}{n}, \frac{k+1}{n}\right]$$
 , $k = 0, \dots, n-1$,

satisfacen la definición.

Ejemplo 1.7.28 Cualquier conjunto acotado en el espacio euclideo \mathbb{R}^n es totalmente acotado. Sea $A \subset \mathbb{R}^n$ un conjunto acotado, entonces A está contenido en un cubo de la

forma $C:=[-m,m]\times\cdots\times[-m,m]=[-m,m]^n$. En virtud del Ejercicio 1.7.49 en la página 34 es suficiente demostrar que C es totalmente acotado. Sea $\varepsilon>0$. Tomemos k suficientemente grande para que

$$\frac{2\sqrt{n}m}{\varepsilon} < k \tag{1.18}$$

Ahora, partimos cada intervalo [-m, m] en k subintervalos de la misma longitud 1/k.

Como puede observarse en la Figura $\ref{eq:como}$, nos quedan determinados k^n cubos que cubren el cubo C. Cada uno de estos cubos más chicos tiene diámetro $2\sqrt{n}m/k$, por consiguiente, por la desigualdad 1.18, el diámetro de ellos es menor que ε .

No es cierto, en general, que todo conjunto acotado en un e.m. sea totalmente acotado. Los siguientes ejemplos muestran esto.

Ejemplo 1.7.29 Sea (X,d) un e.m. discreto con X infinito. El conjunto X es acotado, de hecho $\delta(X)=1$; sin embargo no podemos cubrir X con conjuntos de diámetro menor que 1/2 (cualquier número menor que 1 serviría). Esto ocurre debido a que si un conjunto en un e.m. discreto tiene más de un elemento entonces su diámetro es 1. Así, si cubrimos X con una cantidad finita de conjuntos, alguno de los conjuntos del cubrimiento necesariamente tiene más de un elemento, de lo contrario X sería finito, por consiguiente el diámetro de este conjunto es 1 y no puede ser menor que 1/2.

Ejemplo 1.7.30 En C([0,1]), con la métrica del Ejemplo 1.1.4 en la página 2, la bola cerrada K(0,1) (0 denota la función que es constantemente igual a 0) no es un conjunto totalmente acotado. Para ver esto definimos la siguiente función:

$$f(x) := \begin{cases} 4(x - \frac{1}{2}), & \text{si } \frac{1}{2} \le x \le \frac{3}{4}; \\ -4(x - 1), & \text{si } \frac{3}{4} \le x \le 1; \\ 0, & \text{para los restantes } x; \end{cases}$$

y la siguiente sucesión de funciones $f_n(x) := f(2^n x)$. En la Figura **??** puede verse las gráficas de algunas de las funciones de la sucesión.

Puede demostrarse que la distancia de cualquiera de las funciones de la sucesión a otra es igual a 1 y que $f_n \in K(0,1)$. Sea $C:=\{f_n:n\in\mathbb{N}\}$, observemos que como subespacio C resulta ser un e.m. discreto, así, por el Ejemplo anterior y el Ejercicio 1.7.49 en la página 34, $\overline{B(0,1)}$ no puede ser totalmente acotado.

Ejemplo 1.7.31 Hay una interesante conexión de la total acotación con la dimensión. Para introducirla, veamos cuantas bolas abiertas de radio 1/2, en \mathbb{R}^n con la métrica euclidea, se necesitan, al menos, para cubrir la bola cerrada K(0,1). Denotemos por e_j los vectores canónicos

$$e_i := (0, \dots, 1, \dots, 0),$$

donde el 1 está en el lugar j. Notesé que $e_i \in K(0,1)$ y que:

$$d(e_j, e_i) = \sqrt{2} \quad i \neq j.$$

De modo que, si $i \neq j$ entonces e_i y e_j no pueden estar en una misma bola de radio 1/2. De lo contrario, si e_i , $e_j \in B(x, 1/2)$, entonces

$$d(e_i, e_j) \le d(e_i, x) + d(x, e_j) < 1 < \sqrt{2},$$

que es una contradicción. De esta manera si cubrimos la bola cerrada K(0,1) por bolas abiertas de radio 1/2 necesitaremos, al menos, n de estas bolas. Es decir, la cantidad de estas bolas crece cuando aumenta la dimensión n. Esta observación nos lleva a conjeturar que si buscamos un espacio vectorial de dimensión infinita 5 tenemos chances de construir conjuntos acotados, en particular la bola K(0,1), que no son totalmente acotados.

⁵Esto significa que no tiene una base finita

Funciones del Ejemplo 1.7.30

Recordemos que, en un e.m. (X,d), una familia de conjuntos abiertos $\{U_i\}_{i\in I}$ es un cubrimiento por abiertos de $A\subset X$ si

$$A \subset \bigcup_{i \in I} U_i$$
.

Definición 1.7.25 Un subconjunto A de un e.m. (X,d) se dirá **compacto** si, y solo si, todo cubrimiento por abiertos de A tiene un subcubrimiento finito. Es decir, si $\{U_i\}_{i\in I}$ es un cubrimiento de A, existe un conjunto finito $F\subset I$ tal que $\{U_i\}_{i\in F}$ es un cubrimiento de A.

Teorema 1.7.11 (Caracterización de compacidad en espacios métricos) Sea (X,d) un espacio métrico. Entonces son equivalentes:

- 1. X es compacto;
- 2. *X* es totalmente acotado y completo.
- 3. Toda sucesión en X tiene una subsucesión convergente.

Dem. Veamos que $1\Rightarrow 3$. Por el absurdo supongamos que existe una sucesión $\{a_n\}$ en X que no tiene ninguna subsucesión convergente. Definamos Γ como la colección de todos los conjuntos abiertos G de X tales que G tiene una cantidad finita de elementos de la sucesión, es decir:

$$G \in \Gamma \Leftrightarrow \#\{n : a_n \in G\} < \infty.$$

Vamos a probar que Γ es un cubrimiento de X. Supongamos que $x \in X$ y $x \notin G$ para todo $G \in \Gamma$. De modo que, por definición, cada abierto que contiene a x contiene infinitos términos de la sucesión $\{a_n\}$. En particular, podemos encontrar n_1 tal que $a_{n_1} \in B(x,1)$. Ahora podemos encontrar $n_2 > n_1$ tal que $a_{n_2} \in B(x,\frac{1}{2})$. Y así continuamos, construímos una subsucesión a_{n_k} tal que $a_{n_k} \in B(x,\frac{1}{k})$. Lo que implica que a_{n_k} converge a x, contradiciendo nuestra suposición. De esta manera, Γ es un cubrimiento de X. Sea G_i , $i=1,\ldots,n$, un subcubrimiento finito de X. Es decir

$$X = G_1 \cup \cdots \cup G_n$$
.

Como cada $G_i, i=1,\ldots,n$, tiene una cantidad finita de términos de la sucesión, concluímos que X contiene una cantidad finita de términos de la sucesión, lo que, claro está, no puede ocurrir. Esto finaliza la demostración de $1\Rightarrow 3$.

Demostremos ahora que $3\Rightarrow 2$ empezando por ver que X es totalmente acotado. Nuevamente procedemos por el absurdo, suponiendo que X no es totalmente acotado. Esto implica que existe un $\varepsilon>0$ tal que X no se puede cubrir con una cantidad finita de conjuntos de diámetro ε . Sea a_1 cualquier punto de X. Como $B(a_1,\varepsilon)$ no cubre X, existe $a_2\in X-B(a_1,\varepsilon)$. Como $B(a_i,\varepsilon)$, i=1,2, no cubren X, existe un $a_3\in X-\left(B(a_1,\varepsilon)\cup B(a_2,\varepsilon)\right)$. Continuando de esta forma, contruímos una sucesión a_n tal que

$$a_n \in X - (B(a_1, \varepsilon) \cup \cdots \cup B(a_{n-1}, \varepsilon)).$$

De esta forma tendremos que:

$$d(a_i, a_j) \ge \varepsilon$$
 para $i \ne j$.

Por hipótesis la sucesión a_n tiene una subsucesión convergente, en particular esta subsucesión será de Cauchy. No obstante la desigualdad anterior implica que ninguna subsucesión de $\{a_n\}$ puede ser de Cauchy, contradicción que prueba que X es totalmente acotado.

Veamos ahora que X es completo. Sea $\{a_n\}$ una sucesión de Cauchy en X. Podemos extraer una subsucesión $\{a_{n_k}\}$ convergente a un $a\in X$. Sea $\varepsilon>0$. Puesto que $\{a_n\}$ es de Cauchy, pondemos encontrar N>0 tal que si n,m>N entonces:

$$d(a_n, a_m) < \frac{\varepsilon}{2}. ag{1.19}$$

Como a_{n_k} converge a a, podemos encontrar un n_k lo suficientemente grande para que $n_k>N$ y:

 $d(a_{n_k}, a) < \frac{\varepsilon}{2}.$

Así, usando (1.19), tenemos que para n > N:

$$d(a_n, a) \le d(a_n, a_{n_k}) + d(a_{n_k}, a) < \varepsilon.$$

Por último veamos que $2\Rightarrow 1$. Para este fin elijamos un cubrimiento $\{G_\lambda\}_{\lambda\in L}$ arbitrario de X. Supongamos que este cubrimiento no tiene un subcubrimiento finito. Como X es totalmente acotado, acorde al Ejercicio 1.7.46, podemos cubrir a X por una cantidad finita de bolas de radio 1. Alguna de estas bolas no se podrá cubrir por una cantidad finita de G_λ , de lo contrario, si todas se cubren por una cantidad finita, como hay una cantidad finita de estas bolas, podríamos cubrir X por una cantidad finita de G_λ . Llamemos $B(x_1,1)$ a la bola que no se cubre por finitos G_λ . Como $B(x_1,1)$ es totalmente acotado, podemos aplicar la construcción anterior a $B(x_1,1)$ en lugar de X y con bolas de radio X0, en lugar de X1, obteniendo de esta forma una bola X2, X3, que no se cubre por una cantidad finita de X3. Además podemos suponer que X4, X5, que no se cubre por una cantidad finita de X5, además podemos suponer que X6, X7, X7, que no se cubre por una cantidad finita de X5, and X6, and X7, and X8, and X9, and X

$$z_n \in B\left(x_n, \frac{1}{2^n}\right) \cap B\left(x_{n+1}, \frac{1}{2^{n+1}}\right).$$

Entonces

$$d(x_n, x_{n+1}) \le d(x_n, z_n) + d(z_n, x_{n+1}) < \frac{1}{2^n} + \frac{1}{2^{n+1}} < \frac{1}{2^{n-1}}.$$

Lo que permite utilizar el criterio de comparación para la convergencia de series para demostrar que:

$$\sum_{n=1}^{\infty} d(x_n, x_{n+1}) < \infty.$$

Acorde a un ejercicio de la práctica, esto implica que $\{x_n\}$ es de Cauchy, por ende converge a algún $x_0\in X$. Como G_λ es un cubrimiento, existe λ_0 tal que $x_0\in G_{\lambda_0}$. Como G_{λ_0} es abierto, existe un r>0 tal que

$$B(x_0, r) \subset G_{\lambda_0}. \tag{1.20}$$

Puesto que x_n converge a x_0 y $1/2^{n-1}$ converge a 0, podemos hallar n lo suficientemente grande para que:

$$d(x_n, x_0) < \frac{r}{2}$$
 y $\frac{1}{2^{n-1}} < \frac{r}{2}$. (1.21)

Veamos que esto, (1.21) y (1.20) implica que:

$$B\left(x_n, \frac{1}{2^n}\right) \subset B(x_0, r) \subset G_{\lambda_0}.$$
 (1.22)

En efecto, si:

$$y \in B\left(x_n, \frac{1}{2^n}\right),$$

entonces

$$d(y, x_0) \le d(y, x_n) + d(x_n, x_0) < \frac{1}{2^n} + \frac{r}{2} < r,$$

lo que prueba (1.22), siendo, además, esta inclusión una contradicción puesto que estamos cubriendo la bola $B(x_n,1/2^n)$ por un sólo G_{λ} , recordemos que estas bolas no se cubrían por finitos G_{λ} . (ya terminamos, ¡por fin!)

1.7.1 Ejercicios

Ejercicio 1.7.44 Demostrar que un espacio métrico discreto es compacto si, y solo si, es finito.

Ejercicio 1.7.45 Demostrar que un conjunto totalmente acotado es acotado.

Ejercicio 1.7.46 Demostrar que X es totalmente acotado si, y solo si, para cada $\varepsilon > 0$ podemos cubrir X por una cantidad finita de bolas de radio ε .

Ejercicio 1.7.47 Demostrar que un conjunto compacto es cerrado y acotado.

Ejercicio 1.7.48 Demostrar que si $f:(X,d) \to (Y,d')$ es continua y X compacto entonces f(X) es compacto. Como corolario, demostrar que si $f:X \to \mathbb{R}$ y X es compacto entonces f alcanza un máximo y un mínimo.

Ejercicio 1.7.49 Demostrar que un subconjunto de un conjunto precompacto es precompacto.

Ejercicio 1.7.50 Sea (X,d) un e.m., A y B subconjuntos compactos de X. Demostrar que

- i) Existen puntos x e y en A tales que $d(x,y) = \delta(A)$.
- ii) Existe un $x \in A$ e $y \in B$ tales que d(x, y) = d(A, B).
- iii) Si $A \cap B = \emptyset$, entonces d(A, B) > 0.

Ejercicio 1.7.51 Sea $\{a_n\}$ una sucesión en un e.m. (X,d) tal que $a_n \to a$. Demostrar que el conjunto $\{a_n : n \in \mathbb{N}\} \cup \{a\}$ es compacto.

Ejercicio 1.7.52 Sean (X,d) e (Y,d') dos e.m. y $f:X\to Y$ una función. Demostrar que f es continua si, y solo si, $f_{|K}:K\to Y$ es continua para cada compacto K.

Ejercicio 1.7.53 Como se desprende de la teoría, el intervalo (0,1) no es cerrado en \mathbb{R} . Encontrar un cubrimiento de (0,1) que no tenga un subcubrimiento finito.

Ejercicio 1.7.54 Sea (X,d) un e.m. compacto y $f:X\to X$ una función continua. Supongamos que, para todo $x\in X$, se tiene que $f(x)\neq x$. Demostrar que existe $\varepsilon>0$ tal que $d(f(x),x)>\varepsilon$.

Ejercicio 1.7.55 Sea $A \subset \mathbb{R}$ no compacto, demostrar que existe una función continua $f:A \to \mathbb{R}$ que no es acotada. *Sugerencia* Como A es no compacto y $A \subset \mathbb{R}$ entonces o A es no acotado o A es no cerrado, considerar estos dos casos.

Ejercicio 1.7.56 Sea $\{K_n\}$ una sucesión de conjuntos compactos no vacios, tales que $K_n \supset K_{n+1}$. Demostrar que $\bigcap_{n \in \mathbb{N}} K_n \neq \emptyset$.

Ejercicio 1.7.57 Sea (X,d) un e.m. compacto y $\{U_i\}_{i\in I}$ un cubrimiento por abiertos de X. Demostrar que existe un $\varepsilon>0$ tal que toda bola de radio ε está contenida en, al menos, un U_i . Sugerencia Para cada $x\in X$ elegir r_x tal que $B(x,r_x)$ esta contenida en algún U_i . Tomar un subcubrimiento finito de estas bolas y luego considerar ε como el mínimo de las mitades de los radios de las bolas del subcubrimiento.

Ejercicio 1.7.58 Utilizar la siguiente "idea" para dar una demostración alternativa de que compacto implica completo. Tomar una suseción de Cauchy $\{a_n\}$ en X. De la desigualdad

$$|d(x, a_n) - d(x, a_m)| \le d(a_n, a_m)$$
 $n, m \in \mathbb{N}$ $x \in X$

concluír que $d(x,a_n)$ es una sucesión de Cauchy en $\mathbb R$ y de esto que la siguiente función esta bien definida:

$$f(x) := \lim_{n \to \infty} d(x, a_n).$$

Notar que $f:X\to\mathbb{R}$ y por ende f alcanza un mínimo en algún $a\in X$. Por último demostrar que a es el límite de a_n .

1.8 Conexión

La definición de conjunto **conexo**, **arco conexo** es idéntica a la que ya hemos estudiado. Los conjuntos conexos, así definidos, satisfacen las mismas propiedades que ya observamos para la métrica euclidea, con una excepción. El hecho que valga las mismas propiedades nos permite definir el concepto de **componente conexa** de la misma forma que lo hicimos para \mathbb{R}^n .

La propiedad que no continua valiendo, en espacios métricos en general, es aquella que afirmaba que las componentes conexas de conjuntos abiertos eran abiertas. Esto es así pues en la demostración de tal propiedad utilizamos que una bola era un conjunto conexo y por el siguiente ejercicio:

Ejercicio 1.8.59 Encontrar un ejemplo de espacio métrico que tenga bolas disconexas.

Para conservar tal propiedad podríamos "pedir" la hipótesis que las bolas sean conexas. No obstante observaremos que en tal demostración podríamos haber utilizado cualquier entorno conexo que fuera bola o no. Esto nos lleva a la siguiente definición:

Definición 1.8.26 Un espacio métrico (X,d) se llama **localmente conexo** si para todo $x \in X$ y r > 0 existe un entorno conexo V de x tal que $V \subset B(x,r) \subset X$.

 \mathbb{R}^n es localmente conexo, podemos utilizar como V la misma bola que aparece en la definición anterior. Lo curioso del caso es que hay espacios métricos (X,d) tales que X es conexo y, sin embargo, X no es localmente conexo.

Ejemplo 1.8.32 Sea $X = \mathbb{Q} \times \mathbb{R} \cup \{(x,0) : x \in \mathbb{R}\}$ y consideremos este X como subespacio de \mathbb{R}^2 . En la figura 1.3 hemos hecho un bosquejo, está claro que es imposible lograr exactitud, del gráfico X.

Figura 1.3: El subespacio X

Notesé que si tomamos un punto en X pero no sobre el eje horizontal y consideramos una bola de centro x y un radio suficientemete chico de modo que la bola no interseque el mencionado eje, entonces $B(x,r)\cap X$ está compuesto de un conjunto de segmentos verticales disconexos entre si. Si ahora buscamos un conjunto conexo V tal que $V\subset B(x,r)$ notaremos que V debería ser un subconjunto de alguno de los segmentos verticales, precisamente de aquel segmento que tenga el x dentro de si, pero tal V no será un entorno. Lo que prueba que el espacio (X.d) no es localmente conexo.

1.8.1 Ejercicios

Ejercicio 1.8.60 Demostrar que los siguientes conjuntos son disconexos:

- 1. $(0,3) \cup [4,6)$.
- 2. $\mathbb{R} \mathbb{Q}$.
- 3. $\{1/n : n \in \mathbb{N}\} \cup \{0\}$.

Ejercicio 1.8.61 ¿ Cuáles de los siguientes conjuntos son conexos? Justificar la respuesta.

- i) $\bigcup_{n\in\mathbb{N}}\{(x,\frac{1}{n}x):x\in\mathbb{R}\}.$
- ii) $\mathbb{R} \times \mathbb{R} \mathbb{I} \times \mathbb{I}$, donde \mathbb{I} son los números irracionales.
- iii) $\{(x,y) \in \mathbb{R}^2 : x \neq 1\}.$
- iv) $\{(x,y) \in \mathbb{R}^2 : x \neq 1\} \cup \{(1,0)\}.$

Ejercicio 1.8.62 Supongamos que A y B son conjuntos conexos de un e.m.. Demostrar, dando contraejemplos, que no necesariamente deben ser conexos los siguientes conjuntos $A \cap B$, $A \cup B$, ∂A y A^0 .

Ejercicio 1.8.63 Sea (X,d) un e.m. conexo e (Y,d) un e.m. discreto. Demostrar que una función $f:X\to Y$ continua es constante.

Ejercicio 1.8.64 Sean A y B subconjuntos conexos de un e.m. Demostra que si $\overline{A} \cap B \neq \emptyset$ entonces $A \cup B$ es conexo.

Ejercicio 1.8.65 Probar que todo espacio ultramétrico es totalmente disconexo.

Ejercicio 1.8.66 Sea $\{K_n\}$ una sucesión de conjuntos compactos y conexos de un e.m., supongamos que la sucesión es decreciente, es decir $K_n \supset K_{n+1}$. Demostrar que $\bigcap_{n \in \mathbb{N}} K_n$ es conexo. Dar un ejemplo de una sucesión como la anterior, cambiando compacto por cerrado, tal que $\bigcap_{n \in \mathbb{N}} K_n$ no sea conexo.

Ejercicio 1.8.67 Dado un conjunto A de un e.m. (X,d) definimos la función característica del conjunto A por:

$$1_A(x) := \left\{ \begin{array}{ll} 1, & \text{si } x \in A; \\ 0, & \text{si } x \notin A. \end{array} \right.$$

Demostrar que X es conexo si, y solo si, no existe una función característica 1_A , con $A \neq \varnothing$ y $A \neq X$, continua.

Ejercicio 1.8.68 Demostrar que el espacio métrico (X,d) es localmente conexo si, y sólo si, las componentes conexas de conjuntos abiertos son abiertas.

Ejercicio 1.8.69 Sea (X,d) un espacio métrico localmente conexo y compacto. Demostrar que X tiene, a lo sumo, una cantidad finita de componentes.

Ejercicio 1.8.70 Sea X,d un espacio métrico homeomorfo a $\mathbb Z$ demostrar que las componentes conexas de X son conjuntos unitarios. Este tipo de espacios se llaman totalmente disconexos.

Integral de Riemann

Introducción 2.1

« Bernard Riemann recibió su doctorado en 1851, su Habilitación en 1854. La habilitación confiere el reconocimiento de la capacidad de crear sustanciales contribuciones en la investigación más allá de la tesis doctoral, y es un prerequisito necesario para ocupar un cargo de profesor en una universidad Alemana. Riemann eligió como tema de habilitación el problema de las series de Fourier. Su tesis fue titulada Über die Darstellbarkeit einer Function durch eine trigonometrische Reine (Sobre la representación de una función por series trigonométricas) y respondía la pregunta: Cuándo una función definida en el intervalo $(-\pi,\pi)$ puede ser respresentada por la serie trigonométrica $a_0/2+\sum_{n=1}^\infty [a_n\cos(nx)+b_n\sin(nx)]$? En este trabajo es donde hallamos la Integral de Riemann, introducida en una sección corta antes del nucleo principal de la tesis, como parte del trabajo preparatorio que él necesitó desarrollar antes de abordar el problema de representabilidad por series trigonométricas. »

> David M. Bressoud A Radical Approach to Lebesgue's Theory of Integration.

En este capítulo vamos a desarrollar el concepto de la integral de Riemman. Vamos a exponer la definición de esta integral dada por J. G. Darboux. Discutiremos las propiedades de la intergal, sus alcances y límites. Preparamos así el camino para la introducción de la integral de Lebesgue.

Debemos advertir al alumno que en este curso dejaremos un poco de lado las cuestiones procedimentales de cómo calcular integrales, aspecto que seguramente abordó en cursos anteriores y del cual nos vamos a valer. Tampoco debe esperar que las actividades prácticas se centren en esa dirección. El objetivo del capítulo es recordar y profundizar nuestro conocimiento de la integral de Riemann. No es nuestra intención que el material sea auto contenido. Algunas propiedades sólo las enunciaremos sin demostración pues seguramente estas demostraciones faltantes son parte de curso previos. Nuestro principal objetivo aquí es discutir la materia conceptual ligada a la integral y cómo es previsible las actividades prácticas estarán orientadas con ese propósito. Por ejemplo, un problema que nos planteamos y que quiará la exposición es el de caracterizar las funciones integrables Riemann. Nos interesa este problema pues resolverlo entraña Jean G. Darboux 1842el desarrollo de la noción de medida de Lebesgue, que es el principal concepto abordado 1917. Matemático franen este libro.

La integral encuentra su motivación en diversos problemas. Aparece cuando se busca el centro de masas de un determinado cuerpo, cuando se quieren hallar longitudes de tegración, ecuaciones diarco, volúmenes, cuando se quiere reconstruir el movimiento de cuerpo conocida su velocidad. En general, cuando se quiere reconstruir determinada propiedad de un conjunto, cuando es conocida esta proiedad sobre regiones infinitesimales. La integral es utilizada en incontables teorías matemáticas, como ser el mencionado már arriba relativo a las series de Fourier.

Quizás el problema más simple donde aparece la integral es el que utilizaremos como motivación para introducirla y es el concepto de área. Vamos a tratar de reconstruir este concepto desde su base, esto es analizando la noción de área de figuras tan simples como rectángulos, triángulos, etc.

2.2 Área de figuras elementales planas

El cálculo de áreas es necesario en multitud de actividades humanas, por ejemplo con el comercio. La cantidad de muchos productos y servicios se estima en medidas de área,

Bernhard Riemann 1826-1866. Fue un matemático alemán que realizó contribuciones muy importantes al análisis y la geometría diferencial, algunas de las cuales allanaron el camino para el desarrollo más avanzado de la relatividad general. Su nombre está conectado con la función zeta. la hipótesis de Riemann, la integral de Riemann, el lema de Riemann, las variedades de Riemann, las superficies de Riemann y la geometría de Riemann.

Wikipedia

ces. Su trabajo se desarrolló en el análisis (inferenciales parciales) v geometría diferencial (estudio de curvas y superficies).

Wikipedia

por ejemplo: las telas, el trabajo de un colocador de pisos, el precio de la construcción, el valor de las extensiones de tierra, etc.

Por figuras elementales planas nos referimos a rectángulos, triángulos, trapecios, etc. Sin duda el alumno debe estar muy familiarizado con las áreas de estas figuras, el área de un rectángulo viene dada por la conocida fórmula $b \times h$, donde b es la base del rectángulo y b su altura. Ahora bien, ¿Cómo se llega a esta fórmula? Porque esta fórmula es apropiada para calcular el precio de un terreno por ejemplo. En esta sección vamos a justificar esta fórmula a partir de algunos hechos elementales.

Vamos a considerar un plano \mathcal{P} . En este plano \mathcal{P} supondremos fijada una unidad de longitud. Pretendemos asignar un área a las figuras, es decir a los subconjuntos, de \mathcal{P} . De ahora en más, cómo es usual en esta materia nos referiremos a *medida* en lugar de área. La medida es un concepto más general que el concepto de área. No obstante en el contexto en que estamos actualmente son sinónimos.

Queremos construir pues una función m tal que m(A) represente la medida de $A \subset \mathcal{P}$. Ahora bien ¿qué podemos usar de guía con ese objetivo? Si, como dijimos, desconocemos todas las fórmulas previamente aprendidas, sobre que partimos para construir la medida o área. La respuesta es que tomaremos como principio rector ciertas propiedades que son deseables que una medida satisfaga. Ellas son las siguientes.

Positividad. debería ser una magnitud no negativa.

Invariancia por movimientos rígidos. Si una región es transformada en otra por medio de un movimiento rígido, ambas regiones deberían tener la misma área. Otra manera de expresar esta propiedad es diciendo que dos figuras *congruentes* tienen la misma área.

Aditividad. Si una región A es la unión de cierta cantidad de regiones más chicas mutuamente disjuntas A_i , $i=1,\ldots,n$, la medida de A es la suma de las medidas de los A_i .

Figura 2.1: El área del rectángulo es la suma de sus partes

Utilizando la segunda y tercer propiedad se pueden relacionar el área del rectángulo de la figura 2.1 con las cuatro regiones en la que es dividido.

Como veremos a lo largo de la materia la propiedad de aditividad debe ser estudiada con cuidado, esto ocurre por las intrincadas maneras en que una región puede ser unión de otras regiones. A lo largo de esta materia elaboraremos una teoría que nos dará una descripción precisa de a que conjuntos podemos asignarle una medida de modo que las propiedades previas sean consistentes.

Por el momento veamos como las propiedades anteriores determinan practicamente de manera unívoca la medida de regiones elementales planas.

Hablando de propiedades de la medida, supongamos que A y B son dos regiones con $A \subset B$. Entonces como $B = A \cup (B - A)$ y por la propiedad de aditividad y positividad

$$m(B) = m(A) + m(B - A) \ge m(A).$$

Descubrimos así que nuestra medida deberá tener adicionalmente la siguiente propiedad:

Monotonía. Si $A \subset B$ entonces $m(A) \leq m(B)$.

Es claro que si logramos construir una medida que satisfaga las propiedades anteriores cualquier multiplo por un número real positivo de ella seguirá cumpliendo las propiedades. Esto es una manera de expresar el hecho que podemos usar diferentes unidades de medición. Esta cuestión se sortea proponiendo la unidad de medida. Esta unidad es completamente arbitraria, ud. podría elegir su figura plana preferida como unidad de área. Cómo es habitual, elijamos el cuadrado cuyos lados miden la unidad de longitud supuesto que esta unidad fue previamente establecida.

Supongamos ahora que tenemos un rectángulo R de un lado igual a la unidad y el círculo. ¡El área de cualotro de longitud racional n/m, $n,m\in\mathbb{N}.$ Veamos que las propiedades de las médiquier círculo sería igual a das determinan el área de este rectángulo. Sea Q un cuadrado de lados iguales a 1. Luego m(Q)=1, por suposición. Primero observar que si dividimos un lado de Q en m segmentos iguales de longitud 1/m, queda dividido el cuadrado en m rectángulos R_1,\ldots,R_m (ver figura en el margen), todos ellos congruentes entre si, de modo que todos tienen la misma medida, digamos $m(R_1)$. De modo que por la aditividad debe ocurrir que $m(R_1) = \cdots = m(R_m) = 1/m$. Recordemos nuestra pretención de inferir la medida de un rectángulo R de lado 1 y otro n/m. Este rectángulo esta compuesto de nrectángulos congruentes a los R_i , $i=1,\ldots,m$, nuevamente por la aditividad inferimos que m(R) = n/m. Notar que n/m es la base por la altura de R.

Sea ahora una rectángulo R con un lado unidad y el otro un real cualquiera l>0. Existen sendas sucesiones $0< q_k, p_k\in \mathbb{Q}$, $k\in \mathbb{N}$, tales que $q_1\leq q_2\leq \cdots \leq l\leq \cdots \leq p_2\leq p_1$ y lím $_{k\to\infty}q_k=$ lím $_{k\to\infty}p_k=l$. Consideremos una dos sucesiones de rectángulos R_k y S_k que comparten el lado de R igual a la unidad, mientras que los otros lados do R_k y S_k con igualos a S_k y S_k que comparten el lado de S_k igual a la unidad, mientras que los otros lados do S_k y S_k con igualos a S_k y S_k respectivements. lados de R_k y S_k son iguales a q_k y p_k respectivamente. Luego por la monotonía

$$q_k = m(R_k) \le m(R) \le m(S_k) \le p_k.$$

Tomando límite cuando $k \to \infty$ inferimos que m(R) = l.

A partir de las propiedades fundamentales que postulamos para la medida o área Descomposición del cuainferimos la famosa fórmula del área de un rectángulo en el caso que uno de los lados sea igual a la unidad. Si ahora tenemos un rectángulo arbitrario, hay que fijar un lado y repetir el análisis previo con el segundo lado. Se llega de este modo a justificar la fórmula del área para un rectángulo arbitrario.

Podríamos por ejemplo elegir el círculo de radio uno como unidad de área. Así ya no tendríamos el problema de ese número raro π que aparece en la fórmula del área del su radio al cuadrado! Claro que aparecería π en la fórmula del área del cuadrado de lado 1. Nos tapamos los pies y se destapa el cuerpo.

drado Q

Figura 2.2: Áreas de otras figuras elementales.

En la figura 2.4 se muestra como relacionar el área de un paralelepípedo con la de un rectángulo y la de un triángulo con la de un paralelepípedo para inferir las conocidas fórmulas para estas figuras.

2.3 Integral de Riemann

En esta sección abordaremos el problema del área de regiones planas. Vamos a contextualizarnos dentro del marco conceptual que nos brinda la geometría analítica. Mediante coordenadas cartesianas ortogonales los puntos del plano se identifican con pares ordenados $(x,y) \in \mathbb{R}^2$ y el plano con el conjunto \mathbb{R}^2 . Nuestro propósito es entonces definir la medida de subconjuntos de \mathbb{R}^2 . La geometría analítica abre así nuevas posibilidades para abordar el problema del área.

Nuestra primera aproximación será la que propuso Bernhard Riemann en 1854, pero seguiremos el enfoque de Jean Darboux. En esta parte de nuestra exposición consideraremos subconjuntos de \mathbb{R}^2 de un tipo especial, concretamente a conjuntos que quedan encerrados entre la gráfica de una función y del eje coordenadas x. Esto nos lleva alconcepto de integral.

Definición 2.3.1 (Partición) Sea [a,b] un intervalo. Una partición P es un conjunto ordenado y finito de puntos, donde el primer elemento es a y el último b. Es decir $P = \{x_0, x_1, \ldots, x_n\}$, donde $a = x_0 < x_1 < \cdots < x_n = b$.

Definición 2.3.2 (Sumas de Darboux) Sea $f:[a,b]\to\mathbb{R}$ una función acotada y $P=\{x_0,x_1,\ldots,x_n\}$ una partición de [a,b]. Consideremos las siguientes magnitudes

$$m_i := \inf\{f(x)|x \in [x_{i-1}, x_i]\}$$

$$M_i := \sup\{f(x)|x \in [x_{i-1}, x_i]\}$$
(2.1)

Definimos la Suma superior de Darboux como

$$\overline{S}(P, f) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}),$$

y la Suma inferior de Darboux como

$$\underline{S}(P,f) = \sum_{i=1}^{n} m_i(x_i - x_{i-1}),$$

Lema 2.3.1 (Monotonía sumas de Darboux) Sea $f:[a,b]\to\mathbb{R}$ una función acotada y $P=\{x_0,x_1,\ldots,x_n\}$ una partición de [a,b]. Supongamos que P' es otra partición que tiene un punto más que P. Entoces

$$\underline{S}(P', f) \ge \underline{S}(P, f)$$
 y $\overline{S}(P', f) \le \overline{S}(P, f)$

Demostración. Supongamos que

$$P = \{x_0, x_1, \dots, x_n\},$$

$$P' = \{x_0, x_1, \dots, x_{i-1}, x^*, x_i, x_n\}.$$

Sean m_i, M_i como en (2.1) y es escribamos

$$\begin{split} m_i' &:= \inf\{f(x)|x \in [x_{i-1},x^*]\}\\ M_i' &:= \sup\{f(x)|x \in [x_{i-1},x^*]\}\\ m_i'' &:= \inf\{f(x)|x \in [x^*,x_i]\}\\ M_i'' &:= \sup\{f(x)|x \in [x^*,x_i]\} \end{split}$$

Sumas de Darboux.

Valen las relaciones $m_i \leq m_i', m_i \leq m_i'', M_i' \leq M_i$ y $M_i'' \leq M_i$. Entonces

$$\underline{S}(P,f) = \sum_{i=1}^{n} m_i(x_i - x_{i-1})$$

$$= m_1(x_1 - x_0) + \dots + m_i(x^* - x_{i-1}) + m_i(x_i - x^*) + \dots + m_n(x_n - x_{n-1})$$

$$\leq m_1(x_1 - x_0) + \dots + m_i'(x^* - x_{i-1}) + m_i''(x_i - x^*) + \dots + m_n(x_n - x_{n-1})$$

$$\leq \underline{S}(P', f).$$

Obviamente la demostración para las sumas superiores es completamente análoga.

Usando inducción podemos generalizar el resultado anterior como muestra el siguiente ejercicio.

Ejercicio 2.3.1 Sea $f:[a,b]\to\mathbb{R}$ una función acotada y P,P' particiones de [a,b] con $P\subset P'$. Demostrar que

$$\underline{S}(P, f) \leq \underline{S}(P', f)$$
 y $\overline{S}(P', f) \leq \overline{S}(P, f)$.

Inferir que para cualesquiera P,P' (sin importar que una este o no contenida dentro de la otra)

$$\underline{S}(P, f) \leq \overline{S}(P, f).$$

Definición 2.3.3 (Funciones integrables) Sea $f:[a,b]\to\mathbb{R}$ una función acotada. Diremos que f es *integrable Riemann* si

$$\sup \{\underline{S}(P,f)|P \text{ partición de } [a,b]\} = \inf \{\overline{S}(P,f)|P \text{ partición de } [a,b]\}$$
 (2.2)

En caso que f sea integrable Riemann llamamos integral de Riemann entre a y b de f al valor de los dos miembros de (2.2) y este número se denota

$$(R)$$
 $\int_a^b f(x)dx$.

Cuando no haya lugar a confusión, por ejemplo a lo largo de este capítulo, omitiremos el símbolo (R) en la integral.

Teorema 2.3.1 (Propiedades elementales de la integral) Sean $f,g:[a,b]\to\mathbb{R}$ integrables, $\alpha,\beta\in\mathbb{R}$ y $c\in(a,b)$. Entonces

Linealidad $\alpha f + \beta g$ es integrable y

$$\int_{a}^{b} \alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Monotonía Si $f(x) \leq g(x)$ para $x \in [a,b]$ entonces

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

Aditividad del Intervalo

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Demostración. Fue dada en cursos previos y la omitiremos aquí.

Observación: Las propiedadades anteriores son compatibles con las propiedades que habíamos propuesto para el concepto de área en la sección .

Es útil tener un símbolo que nos represente el supremo y el ínfimo en la Definición 2.3.3.

Definición 2.3.4 (Integrables de Darboux) Sea $f:[a,b]\to\mathbb{R}$ una función acotada. Definimos la integral *superior e inferior de Darboux* como

$$(D) \overline{\int_a^b} f(x) dx = \inf \left\{ \overline{S}(P, f) | P \text{ partición de } [a, b] \right\}. \tag{2.3}$$

y

$$(D) \int_a^b f(x) dx = \sup \left\{ \underline{S}(P, f) | P \text{ partición de } [a, b] \right\}. \tag{2.4}$$

Apelando a estos conceptos se tiene que f es integrable Riemann si y sólo si

$$(D)\overline{\int_a^b} f(x)dx = (D)\int_a^b f(x)dx.$$
 (2.5)

Teorema 2.3.2 (Primer criterio de integrabilidad) Sea $f:[a,b] \to \mathbb{R}$ una función acotada. Entonces f es integrable si y solo si para todo $\varepsilon>0$ existe una partición P tal que

$$\overline{S}(P;f) - \underline{S}(P;f) < \varepsilon.$$
 (2.6)

Dem. Veamos la parte "solo si". Si f es integrable satisface (2.2). Si $\varepsilon > 0$, usando la caracterización (??) (debería haber una intro con estas propiedades) tenemos que existen particiones P' y P'' tales que:

$$\int_{a}^{b} f(x)dx \leq \overline{S}(P';f) < \int_{a}^{b} f(x)dx + \frac{\varepsilon}{2},$$
$$\int_{a}^{b} f(x)dx - \frac{\varepsilon}{2} < \underline{S}(P'';f) \leq \int_{a}^{b} f(x)dx.$$

Sea ahora la partición $P = P' \cup P''$. Por el ejercicio (2.3.1) tenemos que:

$$\overline{S}(P;f) - \frac{\varepsilon}{2} \leq \overline{S}(P';f) - \frac{\varepsilon}{2} < \int_{a}^{b} f(x)dx < \underline{S}(P'';f) + \frac{\varepsilon}{2} \leq \underline{S}(P;f) + \frac{\varepsilon}{2}$$

Así tenemos (2.7).

Asumamos ahora que se satisface (2.7). Entonces

$$(D)\overline{\int_a^b}f(x)dx \leq \overline{S}(P;f) < \underline{S}(P;f) + \varepsilon < (D)\int_a^b f(x)dx + \varepsilon.$$

Ejemplo 2.3.1 Sea $0 \le a < b$ veamos que

$$\int_{a}^{b} x dx = \frac{b^2}{2} - \frac{a^2}{2}.$$

Ejercicio 2.3.2 Sea $0 \le a < b$ veamos que

$$\int_{a}^{b} x^{2} dx = \frac{b^{3}}{3} - \frac{a^{3}}{3}.$$

Ayuda: Usar particiones uniformes y la fórmula $\sum_{i=1}^{n} n^2 = n(n+1)(2n+1)/6$.

Ejemplo 2.3.2 Sea 0 < a < b y $m \in \mathbb{Z}$, $m \neq -1$, veamos que

$$\int_{a}^{b} x^{m} dx = \frac{b^{m+1}}{m+1} - \frac{a^{m+1}}{m+1}.$$

COMPLETAR

Ejercicio 2.3.3 Sea 0 < a < b y f(x) = 1/x. Como en el ejemplo 2.3.2 para $n \in \mathbb{N}$ tomamos $q = (b/a)^{1/n}$ y

$$P_n = \{a, qa, q^2a, \dots, aq^{n-1}, b\}.$$

Demostrar que

$$\underline{S}(P_n; f) = n \frac{q-1}{q}$$

$$\overline{S}(P_n; f) = n(q-1)$$

Inferir que f es integrable en [a, b] y

$$\int_{a}^{b} \frac{1}{x} dx = \ln(b) - \ln(a)$$

Ejemplo 2.3.3 Sea $0 \le a < b \le \pi/2$, veamos que

$$\int_a^b \sin x dx = -(\cos(b) - \cos(a)).$$

Ejercicio 2.3.4 Sea $0 \le a < b \le \pi$. Demostrar que

$$\int_{a}^{b} \cos x dx = -(\sin(b) - \sin(a)).$$

Observación: Notar que en todos los ejemplos anteriores

$$\int_{a}^{b} f(x)dx = F(b) - F(a),$$

donde F es na función que satisface F' = f.

2.4 2° Criterio de integrabilidad

Teorema 2.4.3 (Segundo criterio de integrabilidad) Sea $f:[a,b]\to\mathbb{R}$ una función acotada. Entonces f sea integrable si y solo si para todo $\varepsilon>0$ existe un $\delta>0$ tal que para cualquier partición P que satisface

$$\max_{i} \{x_i - x_{i-1}\} < \delta,$$

se tiene que

$$\overline{S}(P;f) - \underline{S}(P;f) < \varepsilon.$$
 (2.7)

Dem. La suficiencia de la condición es trivial. Para la necesidad tomemos $\varepsilon>0$. Por el primer criterio de integrabilidad existe una partición $P^*=\{y_0,\ldots,y_m\}$ tal que se satisface

$$\overline{S}(f; P^*) - \underline{S}(f; P^*) < \frac{\varepsilon}{2}.$$

Como f es integrable es acotada, por consiguiente existe M>0 tal que

$$|f| \leq M$$
.

Elijamos

$$\delta < \min \left\{ \frac{\varepsilon}{6Mm}, \min_{j=1,\dots,m} (y_j - y_{j-1}) \right\}.$$

Sea ahora $P = \{x_0, \dots, n\}$ una partición que satisface

$$x_i - x_{i-1} < \delta, \quad i = 1, \dots, n.$$

Definimos los conjuntos de índices I_i para $j = 1, \dots, m$ por

$$I_j := \{i \in I \mid [x_{i-1}, x_i] \subset [y_{j-1}, y_j]\}.$$

Ahora ponemos

$$I = I_1 \cup \cdots \cup I_m$$

Pongamos

$$\begin{array}{lll} m_i &:= \inf\{f(x)|x \in [x_{i-1},x]\}, & M_i &:= \sup\{f(x)|x \in [x_{i-1},x_i]\}\\ m_i^* &:= \inf\{f(x)|x \in [y_{j-1},y_j]\} & M_i^* &:= \sup\{f(x)|x \in [y_{j-1},y_j]\} \end{array}$$

Observar que

$$i \in I_j \Rightarrow [x_{i-1}, x_i] \subset [y_{j-1}, y_j] \Rightarrow m_i \ge m_j^* \land M_i \le M_j^*.$$

Entonces, toomando en consideración la figura 2.3:

$$\sum_{i \in I_j} m_i(x_i - x_{i-1}) \ge \sum_{i \in I_j} m_j^*(x_i - x_{i-1}) \ge m_j^*(y_j - y_{j-1} - 2\delta)$$

$$\sum_{i \in I_j} M_i(x_i - x_{i-1}) \le \sum_{i \in I_j} M_j^*(x_i - x_{i-1}) \ge M_j^*(y_j - y_{j-1})$$
(2.8)

Figura 2.3: Demostración 2° criterio

Cuando $i \notin I$ existe j tal que $x_{i-1} < y_j < x_i$. Así finalmente

$$\overline{S}(P;f) - \underline{S}(P;f) = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1})$$

$$= \sum_{j=1}^{m} \sum_{i \in I_j} (M_i - m_i)(x_i - x_{i-1}) + \sum_{i \notin I} (M_i - m_i)(x_i - x_{i-1})$$

En la segunda sumatoria usamos las acontaciones $M_i-m_i \leq 2M$ y $(x_i-x_{i-1}) < \delta$ y tomamos en cuenta que la cantidad de términos es a lo sumo m. En la primer sumatoria usamos las estimaciones (2.8). Así obtenemos

$$\overline{S}(P;f) - \underline{S}(P;f) = \sum_{j=1}^{m} M_{j}^{*}(y_{j} - y_{j-1}) - \sum_{j=1}^{m} m_{j}^{*}(y_{j} - y_{j-1} - 2\delta) + 2M\delta m$$

$$\cdot = \sum_{j=1}^{m} M_{j}^{*}(y_{j} - y_{j-1}) - \sum_{j=1}^{m} m_{j}^{*}(y_{j} - y_{j-1}) + \sum_{j=1}^{m} m_{j}^{*}2\delta + 2M\delta m$$

$$= \overline{S}(P^{*};f) - \underline{S}(P^{*};f) + 3Mm\delta < \varepsilon$$

2.5 Integrabilidad y continuidad

Definición 2.5.5 [Uniforme continuidad] Sean (X,d) e (Y,d') espacios métricos con X compacto. Diremos que $f:X\to Y$ es uniformemente continua si

$$\forall \varepsilon > 0 \exists \delta > 0 : d(x,y)\delta \Rightarrow d'(f(x),f(y)) < varepsilon.$$

Teorema 2.5.4 [Uniforme continuidad] Sean (X, d) e (Y, d') espacios métricos con X compacto. Si $f: X \to Y$ es continua entonces es uniformemente continua.

Teorema 2.5.5 (Continuidad implica integrabilidad) Si $f:[a,b] \to \mathbb{R}$ es una función continua entonces es integrable.

Dem. Apliquemos la definición de continuidad uniforme con $\varepsilon/(b-a)$ en lugar de ε . Sea $P=\{x_1,\ldots,x_n\}$ una partición tal que

$$\max_{i=1,\dots,n}(x_i-x_{i-1})<\delta.$$

Como f es continua f alcanza su máximo y mpinimo en $[x_{i-1},x_i]$. Luego existen $x^*,x_*\in x_{i-1},x_i]$ con $M_i^*=f(x^*)$ y $m_i^*=f(x_*)$. Luego

$$M_i - m_i = f(x^*) - f(x_*) < \varepsilon/(b - a).$$

Entonces

$$\overline{S}(P;f) - \underline{S}(P;f) = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) \le \frac{\varepsilon}{(b-a)} \sum_{i=1}^{n} (x_i - x_{i-1}) = \varepsilon.$$

¿Qué ocurre con las funciones discontinuas? **Ejemplo 2.5.4** [Función de Heavside] Es la función

$$H(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x \ge 0 \end{cases}.$$

Es discontinua en [-1,1] pero integrable. JUSTIFICAR Ejemplo 2.5.5 [Función de Dirichlet] Es la función $f:[0,1]\to\mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 & \text{ si } x \in \mathbb{Q} \\ 0 & \text{ si } x \notin \mathbb{Q} \end{cases}$$

Veamos que f es discontinua en todo punto y no integrable. JUSTIFICAR

Función de Dirichlet

2.6 Criterio integrabilidad de Riemann

Definición 2.6.6 (Oscilación sobre un intervalo) Sea $f:[a,b]\to\mathbb{R}$ acotada y $I=[lpha,eta]\subset[a,b]$. Definimos la *oscilación* de f en I por

$$w(f, I) = \sup\{f(x) | x \in I\} - \inf\{f(x) | x \in I\}.$$

Figura 2.4: Áreas de otras figuras elementales.

Ejemplo 2.6.6

- 1. Para la función de Dirichlet w(f, I) = 1 para todo I con interior no vacío.
- 2. Para la función de Heavside e $I = [\alpha, \beta]$

$$w(f,I) = \begin{cases} 1 & \text{si } 0 \in (\alpha, \beta] \\ 0 & \text{si } 0 \notin (\alpha, \beta] \end{cases}$$

Ejemplo 2.6.7 [Función de Thomae] Es la función $f:[0,1]\to\mathbb{R}$ definida por

$$f(x) = \begin{cases} \frac{1}{q} & \text{ si } x = \frac{p}{q}, p, q \in \mathbb{Z}, \text{m.c.d}(p,q) = 1 \\ 0 & \text{ si } x \notin \mathbb{Q} \end{cases}$$

Figura 2.5: Función de Thomae

Si $I^o \neq \varnothing$, f la función de Thomae e $I \subset [0,1]$ entonces $w(f,I) = 1/q^*$, donde q^* es el mínimo valor de q para el que existe $p \leq q$ tal que $p/q \in I$. Justificar **Ejemplo 2.6.8** [Escalera discontinua] Sea $\mathbb{Q} \cap [0,1] = \{q_1,q_2,\ldots\}$ una numeración de los racionales del [0,1]. Definamos $f:[0,1] \to \mathbb{R}$ como

$$f(x) = \sum_{n=1}^{\infty} H(x - q_n),$$

donde H es la función de Heavside.

Veamos que f es monotona no decreciente y discontinua en todo punto de $[0,1]\cap \mathbb{Q}$. Para la función escalera discontinua e $I\subset [0,1]$

$$w(f,I) = \sum_{q_n \in I} \frac{1}{2^n}.$$

JUSTIFICAR

Definición 2.6.7 [Oscilación en un punto] Sea f una función definida en un entorno de x, definimos la oscilación de f en x como

$$\omega(f;x)=\inf_{x\in I^0}\omega(f;I).$$

Ejercicio 2.6.5 Demostrar que f es continua en x si y sólo si $\omega(f;x)=0$.

Definición 2.6.8 Sea $f:[a,b]\to\mathbb{R}$ acotada, $\sigma>0$ y $P=\{x_0,x_1,\ldots,x_n\}$ una partición. Definimos

$$I_{\sigma} := \{i \in \{1, \dots, n\} | w(f, [x_{i-1}, x_i]) \ge \sigma\}.$$

y

$$R(P, f, \sigma) = \sum_{i \in I_{\sigma}} (x_i - x_{i-1}).$$

Proposición 2.6.1 Si f es continua en [a,b] para todo $\sigma>0$ existe $\delta>0$ tal que

$$\max_{i}(x_i-x_{i-1})<\delta\Rightarrow I_\sigma=\varnothing\Rightarrow R(P,f,\sigma)=0.$$

Ejemplo 2.6.9 Para la función de Dirichlet y para todo $0<\sigma<1$ y para toda partición de [0,1] tenemos $I_\sigma=\{x_1,\ldots,x_n\}$ y $R(P,f,\sigma)=[0,1]$

Ejemplo 2.6.10 Para la función de Heavside, para todo $0 < \sigma < 1$ y para toda partición de [0,1] tenemos $I_{\sigma} = i$, donde i es el índice para el que $i \in (x_{i-1},x_i]$ y $R(P,F,\sigma) = x_i - x_{i-1}$.

Teorema 2.6.6 (Criterio de integrabilidad de Riemann) Sea f acotada en [a,b] entonces f es integrable si y sólo si para todo $\varepsilon>0$ y $\sigma>0$ existe $\delta>0$ tal que $R(P,f,\sigma)<\varepsilon.$

Demostración. Supongamos f integrable y $\varepsilon,\sigma>0$. Por el 2° criterio de integrabilidad aplicado a $\varepsilon\sigma$ en lugar de ε , existe $\delta>0$ tal que

$$\max_{i} \{x_i - x_{i-1}\} < \delta \Rightarrow \overline{S}(P; f) - \underline{S}(P; f) < \varepsilon \sigma.$$

Pero

$$\varepsilon \sigma > \overline{S}(P; f) - \underline{S}(P; f) = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1})$$

$$\geq \sum_{i \in I_{\sigma}} (M_i - m_i)(x_i - x_{i-1}) \geq \sigma \sum_{i \in I_{\sigma}} (x_i - x_{i-1}) = \sigma R(P, f, \sigma)$$

Deducimos

$$R(P, f, \sigma) = \sum_{i \in I_{\sigma}} (x_i - x_{i-1}) < \varepsilon.$$

Para el recíproco, tomemos $\varepsilon>0$. Como f es acotada, existe M>0 tal que $|f|\leq M$. Observar que M satisface $M_i-m_i\leq 2M$. Vamos a tomar $\sigma=\varepsilon/2(b-a)$ y tomamos $\delta>0$ que satisface la condición necesaria del teorema para ese σ y con $\varepsilon/4M$ en lugar de ε . Definimos

$$I = \{i \mid f \ w(f, [x_{i-1}, x_i]) \ge \sigma\}$$

Entonces

$$\overline{S}(P;f) - \underline{S}(P;f) = \sum_{i \in I} (M_i - m_i)(x_i - x_{i-1}) + \sum_{i \notin I} (M_i - m_i)(x_i - x_{i-1})$$

$$\leq 2M \sum_{i \in I} (x_i - x_{i-1}) + \sigma \sum_{i \in I} (x_i - x_{i-1}) < \varepsilon$$

Ejemplo 2.6.11 Discutir los ejemplos Dirichlet, Heavside, Continuas, escalera discontinua

Ejemplo 2.6.12 Definimos

$$((x)) = x - [x + 0.5]$$

Figura 2.6: Función serrucho

Definimos la función de Riemann:

$$f(x) = \sum_{n=1}^{\infty} \frac{((x))}{n^2}.$$

Figura 2.7: Función de Riemann

Demostramos que la función de Riemann es discontinua en los racionales p/q donde m.c.d(p,q)=1 y q par. Es integrable en [0,1].

Definición 2.6.9 (Contenido exterior) Sea $S \subset \mathbb{R}$. Un cubrimiento finito de S es una colección de intervalos $\{[x_{i-1},x_i]\}_{i=1,\dots,n}$ tal que $S \subset \bigcup_{i=1}^n [x_{i-1},x_i]$.

El contenido exterior de S se define por

$$c_e(S) = \inf \sum_{i=1}^n (x_i - x_{i-1}),$$

donde el ínfimo es tomado sobre todos los cubrimientos finitos de S.

Teorema 2.6.7 (Criterio de integrabilidad de Hankel) Sea f acotada en [a,b] entonces f es integrable si y sólo si para todo $\sigma>0$ el conjunto $S_\sigma:=\{x\in [a,b]|w(f,x)>\sigma\}$ tiene contenido exterior igual a 0 ($c_e(S_\sigma)=0$).

2.7 Integrales impropias

Se denomina *integrales impropias* a la integral de funciones no acotadas o a integrales sobre intervalos no acotados. Tales integrales requieren de una definición especial.

Definición 2.7.10 [Integral impropia función no-acotada] Supongamos a < c < b y que $f:[a,b] \to \mathbb{R}$ es una función integrable sobre $[a,c-\varepsilon]$ y sobre $[c+\varepsilon]$ para todo $\varepsilon>0$. Si los siguientes límites existen

$$\lim_{\varepsilon \to 0} \int_a^{c-\varepsilon} f(x) dx, \quad \lim_{\varepsilon \to 0} \int_{c+\varepsilon}^b f(x) dx,$$

definimos

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{c-\varepsilon} f(x)dx + \lim_{\varepsilon \to 0} \int_{c+\varepsilon}^{b} f(x)dx. \tag{2.9}$$

Definición 2.7.11 [Integral impropia sobre región no-acotada] Supongamos que $f:[a,+\infty)\to\mathbb{R}$ es una función integrable sobre [a,b] para todo b>a. Si el siguiente límite existe

$$\lim_{b \to +\infty} \int_{a}^{b} f(x) dx,$$

definimos

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx. \tag{2.10}$$

Análogamente se definen integrales sobre intervalos no-acotados de la forma $(-\infty,a]$ y $(-\infty,+\infty)$.

2.8 Teorema Fundamental de Cálculo

Teorema 2.8.8 [Teorema Fundamental del Cálculo] Sea $f:[a,b]\to\mathbb{R}$ integrable Riemann. Definimos

$$\phi(x) = \int_{a}^{x} f(x)dx.$$

Etonces ϕ es derivable en cada punto de continuidad de f y vale que

$$\phi'(x) = f(x). \tag{2.11}$$

Corolario 2.8.1 [Regla de Barrow] Sea $f:[a,b]\to\mathbb{R}$ continua y ϕ una función que satisface $\phi'(x)=f(x)$. Entonces

$$\int_{a}^{x} f(x)dx = \phi(b) - \phi(a). \tag{2.12}$$

Etonces ϕ es derivable en cada punto de continuidad de f y vale que

$$\phi'(x) = f(x).$$

2.9 Función de Volterra

```
import numpy as np import scipy.optimize from matplotlib import pyplot as plt Consideramos la función f(x) = x^2 \operatorname{sen}(1/x). def G(x): return x**2*np.\sin(1/x) x=np.arange(0,.15,0.0000001) y=G(x) plt.plot(x,y)
```


Figura 2.8: Función precursora de Volterra

```
def F(x):
    return 2*x*np.sin(1/x) - np.cos(1/x)
x = scipy.optimize.broyden2(F, .13, f_tol=1e-14)
x,1-x, G(x)
```

Se alcanza un máximo en x=0.13163878 y toma el valor G(x)=0.016757715. Hay que utilizar el punto simétrico a x, es decir 1-x=0.86836123. Definimos la función "madre".

```
def f0(x):
    x1=x[x<=0]
    x2=x[(x<=0.13163877)*(x>0)]
    x3=x[(x>0.13163877)*(x<0.868361226)]
    x4=x[(x>=0.868361226)*(x<1)]
    x5=x[x>=1]
    y1=np.zeros(np.shape(x1))
    y2=x2**2*np.sin(1/x2)
    y3=0.01675771541054875*np.ones(np.shape(x3))
    y4=(1-x4)**2*np.sin(1/(1-x4))
    y5=np.zeros(np.shape(x5))
    return np.concatenate((y1,y2,y3,y4,y5), axis=None)
  Definimos la función de Volterra
def volterra(x,n,a=0,b=1):
    if n == 0:
        return 0
    a1,b1 = 2.*a/3. + b/3., a/3. + 2.*b/3.
    pto\_med = .5*(a+b)
    return volterra(x,n-1,a,a1) + (b1-a1)*f0((x-a1)/(b1-a1))
    + volterra(x,n-1,b1,b)
  Graficamos
x=np.arange(0,1,0.0000001)
y=volterra(x,12)
```

plt.plot(x,y)

Figura 2.9: Función de Volterra

2.10 Integral de Riemann y pasos al límite

BIBLIOGRAFÍA 55

Bibliografía

Indice Conceptos

Bola, 4	Integrable Riemann, 43
congruencia, 40 conjunto magro, 27 nunca denso, 27 primera categoría, 27	integral Darboux, 44 impropia, 52 Riemann, 43
segunda categoria, 27 Contenido exterior, 51 continuidad uniforme, 47 cubrimiento finito, 51	medida, 40 Métrica, 2 discreta, 2 euclidea, 2 métrica
Desigualdad triágular, 2 Distancia, 2	caballo ajedrez, 3 geodésica, 3
Diámetro, 4 Esfera, 4	oscilación en un intervalo, 48
Espacio Euclideano, 2 Espacio métrico, 2	en un punto, 49
figure	Partición, 42
figura elemental, 40	Sucesión, 23 Suma inferiorr, 42
Heavside, 49	Suma superior, 42

Indice de Personas

Baire, 27

Frechet, 2