6.1. We'll prove this with contradiction. Assume the list of vectors Av₁,..., Av_n is not a basis in W. If they're linearly independent in W but not generating, then there exists a vector w in W that admits no representation as linear combination of Av₁,..., Av_n. An inverse map A⁻¹: W → V can be defined such that AA⁻¹ = I_W and A⁻¹A = I_V, given A is an isomorphism. Then, A⁻¹w = v for some v in V, but v admits a unique representation in α₁v₁ + ... + α_nv_n. It follows, AA⁻¹w = w = Av = α₁Av₁ + ... + α_nAv_n.

Assume Av_1, \ldots, Av_n are not linearly independent, then for some scalars $\alpha_1, \ldots, \alpha_n$ not all zero.

$$\alpha_1 A \mathbf{v}_1 + \ldots + \alpha_n A \mathbf{v}_n = 0_W$$

Multiplying by A^{-1} , we get $\alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n = \mathbf{0}_V$ which is only true when all scalars are zero.

- **6.2.** Suppose $\begin{bmatrix} a & b \end{bmatrix}^T$ is the right inverse, then product a+b must be 1. It's apparent no right inverse is left inverse for the product can not be defined.
- 6.6.

$$AB(AB)^{-1} = A(B(AB)^{-1}) = I$$

 $(AB)^{-1}AB = ((AB)^{-1}A)B = I$

- **6.7.** If A and AB are invertible, then B can be written as $A^{-1}(AB)$ which is a product two invertible matrices and must be invertible itself.
- **6.8.** Suppose not, let A be invertible. Then, $A^{-1}A = AA^{-1} = I$ implies $A^{-1}A^2A^{-1} = I$, but $A^2 = 0$, and we get a contradiction.
- **6.9.** Suppose $A: \mathbb{F}^n \to \mathbb{F}^m$, then $AB = (Ab_1, \ldots, Ab_k)$ where b_i is the *i*th column of B for some postive integer k. A column of AB can be written as linear combination of columns of A, $Ab_1 = a_1b_{1,1} + a_2b_{1,2} + \ldots + a_nb_{1,n}$. Given AB = 0 for some non-zero matrix B, A is non-invertible for its linear combination of columns admits non-trivial representation of zero, $Ab_1 = \cdots = Ab_k = 0$.
- **6.10.** In case of T_1 notice that $T_1^2 = I$. For inverse of T_2 , define $T_2^{-1}: \mathbb{F}^5 \to \mathbb{F}^5$ such that $T_2^{-1}((x_1, x_2, x_3, x_4, x_5)^T) = (x_1, x_2 ax_4, x_3, x_4, x_5)^T$.

$$T_{2}T_{2}^{-1}\mathbf{x} = T_{2} \begin{pmatrix} \begin{bmatrix} x_{1} \\ x_{2} - ax_{4} \\ x_{3} \\ x_{4} \\ x_{5} \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{bmatrix}$$

6.13. $(AA^{-1})^T = (A^{-1})^T A = A^{-1}A$, or $(A^{-1})^T = A^{-1}$.