Absolute en voorwaardelike konvergensie / Absolute and conditional convergence §11.6

Definisie

Die reeks $\sum_{n=1}^{\infty} a_n$ word *absoluut konvergent* genoem

 $n{=}1$ as die reeks $\sum_{n=-1}^{\infty} |a_n|$ konvergent is.

Definisie

Die reeks $\sum_{n=1}^{\infty} a_n$ word *voorwaardelik konvergent* / conditionally convergent genoem as hy konvergent is, maar nie absoluut konvergent nie.

Stelling

As 'n reeks absoluut konvergent is, dan is hy konvergent.

Verhoudingstoets / Ratio Test

- As $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, dan is $\sum_{n=1}^{\infty} a_n$ absoluut konvergent (en dus konvergent).
- As $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L>1$ of $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\infty$, dan is $\sum_{n=1}^\infty a_n$ divergent.

Huiswerk

Ex. 11.6 nr. 1, 9, 13, 15, 19, 21, 39, 43

Worteltoets / Root Test

- As $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, dan is $\sum_{n=1}^{\infty} a_n$ absoluut konvergent (en dus konvergent).
- As $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ of $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, dan is $\sum_{n=1}^\infty a_n$ divergent.

Huiswerk

Ex. 11.6 nr. 25, 27, 29, 31, 35, 37

Lees §11.7

Ex. 11.7