CASSANDRA

An advanced barometer of risk in equity markets

Scope

01

Problem statement

Assessing risks in equity markets
Defining our target variable
Definitions of success

02

Data collection / EDA

Selection of features
Panda-profiling

03

Model creation

Leveraging on *pycaret*Pre-processing, model tuning

04

Conclusions

Model interpretation Employing our barometer

Defining our problem statement

Timing is absolutely key in financial markets. The ability to predict market peaks can help protect investors from significant drawdowns and elevated volatility.

We may be able to leverage on the advances made in machine learning to create a more advanced barometer of risk for equity markets (Calling for pullbacks) to help investors navigate through the noise.

While this tool should be used in conjunction with other qualitative evidence, we believe it can be a useful input to the investment process

Defining our target + success metrics

TARGET (Pullback)

Defined as whether the S&P 500 index will be lower in a month's time (i.e. rolling 4 weeks).

The model we are looking to build should be able to do the following:

- Predict the likelihood that the S&P 500 index will fall over the coming month
- Explain which variables matter and how they interact

We want a model that is competent at predicting when there will not be pullbacks, and when there will be pullbacks.

We will focus on maximising **accuracy**. A confusion matrix is also a good way to see whether our model is biased towards either of our target classes

Utilising panda-profiling

Our focus is on removing multicollinearity here

Thoughts: US economic surprises are highly correlated with Euro area, UK, China and global indices

Action: Keep cesiusd and drop the rest

Pros: Warnings provided

Cons: Limited use with larger datasets; Quadratic increase in time as size n increases

Creating our own custom module

- eda clean: Provides a quick snapshot of our project
- derive yield curves: Calculating 30y10ys, 30y5ys, 30y2ys, 30y3ms, 10y5ys, 10y2ys, 10y3ms, 5y2ys, 5y3ms, 2y3ms for US and Euro-area regions
- fix credit: Standardising credit spreads as pp; Calculating spread between US high-yield and investment-grade bonds
- . fix cftc: Deriving CFTC net non-commercial positions as a % of total open interest
- · eri diff: Derive earnings revision indices and rolling changes across different horizons (4, 13-week)
- roll diff: Calculate rolling differences for different time horizons (1, 4, 13, 26-week)
- · lag roll pct chg: Lagging rolling percentage changes for various equity indices (4-week)
- roll pct chg: Calculate rolling percentage changes for different time horizons (1, 4, 13, 26-week)
- · adjust dates only: Standardise dates for merging dataframes later

Leveraging on pycaret

Set-up parameters + model comparison | tu

```
1 # Setting up our pycaret environment
2 pyc = setup(train, target='spx_class', test_data=test, feature_interaction=False,
    session_id=42, remove_multicollinearity=True, multicollinearity_threshold=0.7, \
3 | normalize=False, fix_imbalance=True, ignore_features=['date', 'spx', 'fdtr'],
    data_split_shuffle=False, fold_strategy='timeseries', fold=20, remove_outliers=False)
```

		Model	Accuracy	AUC	Recall	Prec.	F1	
	xgboost	Extreme Gradient Boosting	0.6815	0.6414	0.3409	0.4167	0.3750	
	lda	Linear Discriminant Analysis	0.6879	0.6311	0.5227	0.4510	0.4842	
	catboost	CatBoost Classifier	0.6943	0.6229	0.1818	0.4000	0.2500	
	Ir	Logistic Regression	0.6752	0.6142	0.3182	0.4000	0.3544	
	lightgbm	Light Gradient Boosting Machine	0.7006	0.6110	0.3182	0.4516	0.3733	
	dt	Decision Tree Classifier	0.5605	0.5975	0.6818	0.3529	0.4651	
	ridge	Ridge Classifier	0.6624	0.5920	0.4318	0.4043	0.4176	
	gbc	Gradient Boosting Classifier	0.6688	0.5887	0.3182	0.3889	0.3500	
	ada	Ada Boost Classifier	0.6242	0.5817	0.2955	0.3171	0.3059	
	qda	Quadratic Discriminant Analysis	0.7261	0.5718	0.2273	0.5263	0.3175	
	knn	K Neighbors Classifier	0.5732	0.5298	0.5227	0.3333	0.4071	
	svm	SVM - Linear Kernel	0.3121	0.5221	1.0000	0.2895	0.4490	
	nb	Naive Bayes	0.6752	0.5173	0.1591	0.3333	0.2154	
	et	Extra Trees Classifier	0.6752	0.5067	0.0909	0.2667	0.1356	
	rf	Random Forest Classifier	0.6815	0.5044	0.1591	0.3500	0.2188	
	dummy	Dummy Classifier	0.2803	0.5000	1.0000	0.2803	0.4378	

Notes:

- * Did not pursue feature interaction
- * Focus on tree-based models
- * Creation of model done without
 cross-validation (given dimensions of df)
 - * Tuning done (fold_strategy = time-series, folds = 20, n_iter = 100); Optimising recall

Other considerations:

- * Stacking / Ensemble models did not improve the score significantly so I scrapped that
- * Remember my preference is for simplicity!

Model evaluation

Metrics post-tuning

Accuracy: 63%

Precision: 39%

Recall: 55%

Specificity: 66%

F1: 46%

SHAP plots

Notes:

- * SHAP values highlight the value to which a feature has contributed to the model's prediction; It makes correlations transparent
- * Interpretability of a model is of utmost importance in finance; Keep it simple!
- * Our focus is on the top features: Industrial metals + gold 13-week % change, MOVE / SKEW indices, earnings revision indices, multiple re-ratings

bcom in 13w pctchg move skew eri gold 13w pctchg spx_pe_13w_pctchg cesiusd 26w chg cboe us us 10y2ys 26w chg us_2y_4w_chg us 2y 26w chg us 10y 4w chg brent 4w pctchg us hy 1w chg us_hy_26w_chg us 10y real 13w chg spx 52w us be5y5y 26w chg eri 1m chg us be5y5y 1w chg

Quant insights

Fundamentals still matter: Earnings revision (eri) and economic surprise indices (cesiusd); US economic data has been surprising to the upside... but that has raised fears of a more hawkish Fed... An earnings revision ratio below 0 - typically increases the likelihood of a decline in equities

Quant insights II

Watch the Fed: Given the flood of liquidity on the back of QE over the past decade, whatever the Fed decides to do over the coming months is key; Higher rates = Lower multiples = Tighter liquidity

Quant insights III

Pay attention to the SKEW: The SKEW index is often overlooked by most people (myself included). It is a measure of perceived tail risk in the S&P 500 based on deep OTM options. Unlike other sentiment indicators, the direction of travel does not appear to be contrarian.

Whenever the cost of tail-risk protection rises, CASSANDRA believes there is an increased likelihood of a drawdown in equity markets

Quant insights IV

Commodities: They're known to be important drivers of equity markets contemptuously. A fall in the price of industrial metals increases the likelihood of a drawdown in equity markets whereas the safe-haven properties of gold are illustrated here

Suggested improvements

- * Benoit Mandelbrot's fractal market hypothesis (Fractal Dimensions) could be incorporated here (maybe in smaller time frames); 'Roughness' of a particular asset time series
- * A generic risk-on-risk-off indicator could be developed in conjunction with CASSANDRA via PCA decomposition
- * If PC1 exceeds 50% and past x-day returns have been negative, we can safely assume the risk-off regime could continue for a while longer
- * More analysis around technical oscillators
- * A more timely geopolitical uncertainty proxy could be introduced here (maybe mining text sentiment from key financial agencies)

DJ Cheong

DATA SCIENCE ENTHUSIAST

THANK YOU

https://www.linkedin.com/in/djcheong/ https://github.com/deltajuliette