Numpy

เรียนรู้การใช้งาน Python ร่วมกับ Numpy

ติดตามผู้เขียน ผ่านช่องทางยูทูป

หรือสแกน QRCODE

เรียนเนื้อหา Numpy ได้ที่

https://bit.ly/35HUECe

List & Array (ndarray)

- Array สมาชิกใน Array ต้องมีชนิดข้อมูลเหมือนกัน
- List สมาชิกมีชนิดข้อมูลต่างกันได้

- Array ขนาดที่แน่นอนเปลี่ยนแปลงขนาดไม่ได้
- Array ขนาดที่ยืดหยุ่นกว่า

เดียวกัน โดยสมาชิกภายใน Array ต้องม<mark>ีชนิดข้อมูลเหมือนกัน</mark>

Array คือการนำข้อมูลมาอยู่ในกลุ่ม

3D array

shape: (4, 3, 2)

https://miro.medium.com/max/1000/1*Ikn1J6siiiCSk4ivYUhdgw.png

One-dimensional array with six elements

Length = 5

6			1		
	a	, p	C	'd'	e
index	→ [0]	[1]	[2]	[3]	[4]

	Col 0	Col 1
ROW 0	1	2
ROW 1	3	4
ROW 2	5	6

ROW 0	-3	2
ROW 1	-2 3	4
ROW 2	<u>-1</u> 5	6

ชนิดข้อมูลหลักๆ ที่ใช้ใน Numpy

- 1. Integer
- 2. Float
- 3. String
- 4. Boolean
- 5. Complex
- 6. Object

Array 2 มิติ= Matrix

การเข้าถึงข้อมูลสมาชิกใน Array 2 มิติ

A=np.array([-2,5,6],[5,2,7])

A[แถวที่ , คอลัมน์ที่]

การเข้าถึงข้อมูลสมาชิกใน Array 2 มิติ

Columns 0 1 2 0 10 5 3 1 2 1 9 2 11 6 7 3 0 4 3

	Column 1	Column 2	Column 3	Column 4
Row 1	x[0][0]	x[0][1]	x[0][2]	x[0][3]
Row 2	x[1][0]	x[1][1]	x[1][2]	x[1][3]
Row 3	x[2][0]	x[2][1]	x[2][2]	x[2][3]

เมตริกซ์จัตุรัส (Square Matrix)

คือ จำนวนแถวและคอลัมน์เท่ากัน

(Zero Matrix) คือ สมาชิกทุกตัวเป็น O

เมตริกซ์สูนย์

เมตริกซ์เอกลักษณ์ (Identity Matrix)

สมาชิกเส้นทแยงมุมมีค่าเป็น 1 ที่เหลือเป็น 0

Board Casting

- ขนาดและมิติของ Array 2 ตัวไม่สอดคล้องกัน

```
x= np.array([1,2,3,4,5,6])y= np.array([1,2])x+yx = np.array([[1,2],[3,4],[5,6]])y = np.array([1,2,3])x+yขนาดของ Array ต่างกัน / มิติก็ต่างกัน
```

Board Casting

- ขนาดเท่ากัน แต่มิติ Array 2 ตัวไม่เท่ากัน

```
x = np.array([[1,2],[3,4],[5,6]])
y = np.array([1,2])
x+y
```

ทำงานได้โดยการ Boardcast Array ที่มีขนาดเล็กกว่าถูกทำซ้ำ เช่น array y มีขนาด 1 มิติจะถูก boardcast ไปเป็น array 2 มิติ เพื่อให้สอดคล้องกับ array x เทียบมิติจากขวาไปซ้าย

การดำเนินการคณิตศาสตร์ในกรณี Array ขนาดไม่เท่ากัน

$$\begin{bmatrix} 2 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \\ 2 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 2+1 & 2+2 \\ 2+3 & 2+4 \\ 2+5 & 2+6 \end{bmatrix}$$

การดำเนินการคณิตศาสตร์ในกรณี Array ขนาดไม่เท่ากัน

การดำเนินการคณิตศาสตร์ในกรณี Array ขนาดไม่เท่ากัน

$$\begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 10 & 10 \\ 20 & 20 \\ 30 & 30 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 10+1 & 10+2 \\ 20+3 & 20+4 \\ 30+5 & 30+6 \end{bmatrix}$$

dot product

$$\vec{b_1} \quad \vec{b_2}$$

$$\downarrow \quad \downarrow$$

$$\vec{a_1} \rightarrow \begin{bmatrix} 1 & 7 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} \overrightarrow{a_1} \cdot \overrightarrow{b_1} & \overrightarrow{a_1} \cdot \overrightarrow{b_2} \\ \overrightarrow{a_2} \cdot \overrightarrow{b_1} & \overrightarrow{a_2} \cdot \overrightarrow{b_2} \end{bmatrix}$$

$$A \qquad B \qquad C$$