- 1. Consider an undirected graph G = (V, E) where $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and $E = \{\{1, 2\}, \{2, 3\}, \{4, 5\}, \{6, 7\}, \{6, 8\}, \{7, 8\}, \{8, 9\}\}.$
 - (i) Draw G.
 - (ii) Draw a subgraph (V', E') that is not a tree but satisfies |E'| = |V'| 1.
 - (iii) Draw a connected subgraph (V'', E'') that is not a tree, but has an edge $\{x, y\}$ such that $(V'', E'' \setminus \{\{x, y\}\})$ is not connected.
 - (iv) Let T be a rooted tree such that T's edges are in E and T's root is 7. Draw all possible Ts.
 - (v) Draw another graph $G'' = (\{1, 2, 3, 4, 5, 6, 7, 8, 9\}, E'')$ such that $E'' \neq E$ but G'' is isomorphic to G.
 - (vi) Determine the number of graphs $G'' = (\{1, 2, 3, 4, 5, 6, 7, 8, 9\}, E'')$ such that $E'' \neq E$ but G'' is isomorphic to G.
- 2.* (i) Draw all trees with n nodes for n = 1, 2, 3, 4. What is the general formula for the number of trees with n nodes?
 - (ii) Determine the number of nonisomorphic trees with n nodes, for n = 1, 2, 3, 4.

What is the relationship between (i) and (ii)?

- 3. For two rooted trees to be isomorphic under a permutation π , we require that the image $\pi(u)$ of a root u must also be a root. Determine the number of nonisomorphic rooted trees with n nodes, for n = 1, 2, 3, 4.
- 4.* Let G = (V, E) be an undirected graph. Prove that if G is connected, then $|E| \ge |V| 1$. Is the converse true?
- 5. Let G = (V, E) be an undirected graph. Prove that if G is acyclic, then $|E| \leq |V| 1$. Is the converse true?
- 6.* Prove that a loopless undirected graph is a tree if and only if there is exactly one path between every pair of nodes.
- 7. Recall from Tutorial 9 (Problem 8) that a complete graph has all loops and all edges. How many spanning trees are there for the complete graph with 4 nodes?
- 8.* Consider a rooted tree T in which every parent has at most b children ($b \in \mathbb{Z}^+$; a binary tree has b = 2).

State and prove a result relating the number of leaves and number of parents in T, if each parent has exactly b children.

- 9. For $n \geq 2$, a directed graph $(\{v_1, v_2, \dots, v_n\}, \{(v_1, v_2), \dots, (v_{n-1}, v_n), (v_n, v_1)\})$ is called a **cycle**. A directed graph G = (V, D) is **cyclic** if it contains a loop or a cycle as a subgraph; otherwise, it is **acyclic**
 - (i) Prove that if G is acyclic, then D is antisymmetric.
 - (ii) Prove or disprove the converse of (i).
 - (iii) Prove that if D is a partial order, then G does not contain any cycles. [We can hence arrange the edges in the graph for a partial order, so they all point in one direction.]
 - (iv)* Prove that, for any $n \ge 2$, there is a directed acyclic graph with n nodes and $\frac{1}{2}n(n-1)$ edges. [Contrast this with the |E| = |V| 1 characterization for undirected acyclic graphs.]
 - (v)* Prove that any directed graph with n nodes and more than $\frac{1}{2}n(n-1)$ edges must be cyclic.
- 10. Let \mathcal{D}_3 be the set of all directed graphs whose nodes are a, b, c. Suppose $G = (\{a, b, c\}, D) \in \mathcal{D}_3$. Determine the number of possible G's such that:
 - (i)* G has a loop;

- (ii) G is acyclic.;
- $(iii)^* D$ is reflexive;

- (iv) D is symmetric;
- $(v)^* D$ is antisymmetric;
- (vi) D is a total order.
- 11.* Consider a loopless undirected graph G = (V, E) and $V' \subseteq V$. We say V' covers an edge $\{x, y\} \in E$ iff $x \in V'$ or $y \in V'$, and V' is a **vertex cover** iff V' covers every edge. For example, $\{00, 02, 11, 12, 21, 22\}$ is a vertex cover for the graph in (a).
 - (i) For the graph in (a), find a vertex cover of smallest possible size.
 - A Boolean expression α is **3CNF** iff α is a conjunction of clauses with exactly 3 literals per clause. A 3CNF expression α with k clauses can be transformed into a loopless undirected graph G_{α} , so that α is satisfiable (Tutorial 9) iff G_{α} has a vertex cover of size at most 2k. The following illustrates this transformation: Suppose, for k = 4,

$$\alpha = (x_1 \vee x_2 \vee x_3) \wedge (\sim x_1 \vee x_4 \vee x_5) \wedge (x_2 \vee \sim x_3 \vee \sim x_4) \wedge (\sim x_2 \vee x_3 \vee \sim x_5).$$
 Then the graph in (b) and in (c) (without the circles) is G_{α} .

- (ii) Consider the truth assignment $f(x_1) = f(x_2) = f(x_4) = T$ and $f(x_3) = f(x_5) = F$. Verify that f satisfies α . Let C_f be the set of vertices in (b) that are circled. Verify that C_f is a vertex cover of size 8.
- (iii) Consider the set C of vertices in (c) that are circled. Verify that C is a vertex cover of size 8. Define a truth function f_C by $f_C(x_1) = f_C(x_3) = f_C(x_5) = T$ and $f_C(x_2) = f_C(x_4) = F$. Verify that f_C satisfies α .
- (iv) How is G_{α} derived from α ? How is C_f derived from f? How is f_C derived from C?

[This problem suggests that finding a vertex cover is "harder" than finding a satisfying truth assignment. Actually, they are "equally hard", since both are NP-Complete.]