<u>Proof.</u> D(A) is dense and one can show in an analoguous manner as in b) that A is dispersive. We know from d) that $C_C^\infty(\Omega) \subseteq (\text{Id} - A)D(A)$. Thus (Id - A)D(A) is dense in E and the claim follows from Cor.1.3.

We now turn to the problem to characterize generators of arbitrary (not necessarily contractive) positive semigroups. Of course, as in B-II, Sec.1 one sees that a semigroup $(T(t))_{t\geq 0}$ is positive if and only if $R(\lambda,A)\geq 0$ for all $\lambda>\omega(A)$ where A denotes the generator of $(T(t))_{t\geq 0}$. We are looking for an intrinsic condition on A.

The positive minimum principle which is characteristic for generators of strongly continuous semigroups on C(K) (see B-II,Thm.1.6) can be reformulated on an arbitrary Banach lattice E.

<u>Definition</u> 1.6. An operator A on E satisfies the <u>positive minimum</u> principle if for all $f \in D(A)_+$, $\phi \in E'_+$,

(P) $\langle f, \phi \rangle = 0$ implies $\langle Af, \phi \rangle \ge 0$.

Remark. It is easy to see that this definition coincides with that given in B-II,Sec.1 in the case when E=C(K) (K compact). [In fact, suppose that for all $f\in D(A)_+$ and $x\in K$, f(x)=0 implies $(Af)(x)\geq 0$. Let $g\in D(A)_+$, $\mu\in M(K)_+$ such that $\langle g,\mu\rangle=0$. Then g(x)=0 for all $x\in \text{supp }\mu$. Thus by hypothesis, $(Ag)(x)\geq 0$ for all $x\in \text{supp }\mu$. Consequently $\langle Ag,\mu\rangle\geq 0$. This proves one direction. The other is obvious by considering point measures.]

<u>Proposition</u> 1.7. The generator of a strongly continuous positive semigroup satisfies the positive minimum principle (P).

<u>Proof.</u> Let $(T(t))_{t\geq 0}$ be a strongly continuous positive semigroup with generator A and $0 \leq f \in D(A)$, $\phi \in E'_+$ such that $\langle f, \phi \rangle = 0$. Then $\langle Af, \phi \rangle = \lim_{t \to 0} 1/t \langle T(t)f - f, \phi \rangle = \lim_{t \to 0} 1/t \langle T(t)f, \phi \rangle \geq 0$.

١.

We will see that the positive minimum principle is not sufficient for the positivity of the semigroup, in general (Remark 3.16). However, the following special case is of interest.