MA 105 Supplementary reading

Mayukh Mukherjee

Department of Mathematics

October 4, 2023

Parametrized Curve

A parametrized curve or a path C in \mathbb{R}^2 is given by (x(t), y(t)), where $x, y : [\alpha, \beta] \to \mathbb{R}$ are continuous functions.

Here $[\alpha, \beta]$ is called the **parameter interval**.

We wish to define the 'length' of C.

Basic assumption: The (Euclidean) length of a line segment joining points (x_1, y_1) and (x_2, y_2) in \mathbb{R}^2 is equal to

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$
.

We shall assume that C is **smooth**, that is, the functions x, y are **continuously differentiable** on $[\alpha, \beta]$. This means that x, y are differentiable on $[\alpha, \beta]$, and their derivatives x', y' are continuous on $[\alpha, \beta]$.

Arc Length of a Smooth Curve

- Partition $[\alpha, \beta]$ into $\alpha = t_0 < t_1 < \cdots < t_n = \beta$.
- Let $P_i := (x(t_i), y(t_i))$ for i = 1, ..., n, and draw the line segments joining P_0 to P_1 , P_1 to P_2 , ..., P_{n-1} to P_n .
- The sum of the lengths of these line segments is

$$\sum_{i=1}^{n} \sqrt{(x(t_i) - x(t_{i-1}))^2 + (y(t_i) - y(t_{i-1}))^2}$$

$$= \sum_{i=1}^{n} \sqrt{(x'(s_i))^2 + (y'(u_i))^2} (t_i - t_{i-1}),$$

for some s_i , $u_i \in (t_{i-1}, t_i)$ for i = 1, ..., n by the MVT.

• We define the **arc length** of *C* by

$$\ell(C) := \int_{\alpha}^{\beta} \sqrt{x'(t)^2 + y'(t)^2} dt.$$

Special Cases

Special cases:

(i) Let a curve C be given by y = f(x), $x \in [a, b]$. Here $\alpha := a$, $\beta := b$, x(t) := t and y(t) := f(t) for $t \in [a, b]$. Suppose f is continuously differentiable on [a, b]. Then

$$\ell(C) := \int_a^b \sqrt{1 + f'(x)^2} \, dx.$$

(ii) Let a curve C be given by $x = g(y), y \in [c, d]$. Here $\alpha := c$, $\beta := d$, x(t) := g(t) and y(t) := t for $t \in [c, d]$. Suppose g is continuously differentiable on [c, d]. Then

$$\ell(C) := \int_C^d \sqrt{g'(y)^2 + 1} \, dy.$$

Arc Length in Polar coordinates

Let C be given by a polar equation $r = p(\theta)$, $\theta \in [\alpha, \beta]$. As a parametrized curve, C is given by $(x(\theta), y(\theta))$, where

$$x(\theta) := p(\theta) \cos \theta$$
 and $y(\theta) := p(\theta) \sin \theta$, $\theta \in [\alpha, \beta]$.

Suppose the function p is continuously differentiable on $[\alpha, \beta]$.

For $\theta \in [\alpha, \beta]$, we note that $\sqrt{x'(\theta)^2 + y'(\theta)^2}$ is equal to

$$\sqrt{(p'(\theta)\cos\theta - p(\theta)\sin\theta)^2 + (p'(\theta)\sin\theta + p(\theta)\cos\theta)^2}$$

$$= \sqrt{p(\theta)^2 + p'(\theta)^2}.$$

Hence

$$\ell(C) := \int_{\alpha}^{\beta} \sqrt{p(\theta)^2 + p'(\theta)^2} \ d\theta.$$

Examples

(i) Let C be given by $y = x^2$, $x \in [0,1]$. Then

$$\ell(C) = \int_0^1 \sqrt{1 + (2x)^2} \, dx = \frac{1}{2} \int_0^2 \sqrt{1 + u^2} \, du$$
$$= \frac{1}{2} \sqrt{5} + \frac{1}{4} \ln \left(2 + \sqrt{5} \right).$$

(Use Integration by Parts. Also, if $f(u):=\ln(u+\sqrt{1+u^2})$ for $u\in\mathbb{R}$, then note that $f'(u)=1/\sqrt{1+u^2}$ for $u\in\mathbb{R}$, and so

$$\int_0^x \sqrt{1+u^2} \, du = \frac{1}{2} \left(x \sqrt{1+x^2} + \ln \left(x + \sqrt{1+x^2} \right) \right) \text{ for } x \in \mathbb{R}.$$

(ii) Let *C* be given by $x = (2y^6 + 1)/8y^2$, $y \in [1, 2]$. Then

$$\int_{1}^{2} \left(1 + \left(y^{3} - \frac{1}{4y^{3}} \right)^{2} \right)^{1/2} dy = \int_{1}^{2} \left(y^{3} + \frac{1}{4y^{3}} \right) dy = \frac{123}{32}.$$

(iii) Let a>0 and $\varphi\in[0,\pi]$. Let C denote the arc of a circle of radius a given by $x(\theta):=a\cos\theta,\ y(\theta):=a\sin\theta$ for $\theta\in[0,\varphi]$. Then C is given by the polar equation $r=p(\theta)$, where $p(\theta)=a$ for $\theta\in[0,\phi]$, and so

$$\ell(C) = \int_0^{\varphi} \sqrt{a^2 + 0^2} d\theta = a \varphi.$$

Hence the length of a circle of radius a is $\int_{-\pi}^{\pi} a \, d\theta = 2\pi a$.

(iv) Let C be given by $r=1+\cos\theta$ for $\theta\in[0,\pi].$ Then

$$\ell(C) = \int_0^{\pi} \sqrt{(1+\cos\theta)^2 + (-\sin\theta)^2} d\theta$$
$$= \int_0^{\pi} \sqrt{2(1+\cos\theta)} d\theta = 2\int_0^{\pi} \cos\frac{\theta}{2} d\theta = 4.$$

(Note: $cos(\theta/2) \ge 0$ for $\theta \in [0, \pi]$.)

Curves in \mathbb{R}^3

Suppose C is a smooth parametrized curve in \mathbb{R}^3 given by (x(t),y(t),z(t)), where $x,\,y,\,z:[\alpha,\beta]\to\mathbb{R}$ are continuously differentiable functions on $[\alpha,\beta]$.

In analogy with the definition of the arc length of a curve in \mathbb{R}^2 , we define the **arc length** of C by

$$\ell(C) := \int_{\alpha}^{\beta} \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt.$$

Example

Let C denote a **helix** in \mathbb{R}^3 given by $x(t) := a \cos t$, $y(t) := a \sin t$, z(t) := b t, $t \in [\alpha, \beta]$, where $a, b \in \mathbb{R}$,

a > 0 and $b \neq 0$. Then

$$\ell(C) = \int_{\alpha}^{\beta} \sqrt{(-a\sin t)^2 + (a\cos t)^2 + b^2} \, dt = (\beta - \alpha)\sqrt{a^2 + b^2}.$$

Surface of Revolution

A surface of revolution is generated when a curve C in \mathbb{R}^2 is revolved about a line L in \mathbb{R}^2 .

First suppose the curve C is a slanted line segment P_1P_2 of length λ_2 , and C does not cross L. Let d_1 and d_2 denote the distances of P_1 and P_2 from L with $d_1 \leq d_2$. Then the surface of revolution is a frustum F of a right circular cone with base radii d_1 and d_2 , and slant height λ_2 . We find its surface area.

Figure: Frustum of a right circular cone

Consider a cone with base radius d and slant height ℓ . If we slit open this cone, we obtain a sector of a disk of radius ℓ .

Figure: Right circular cone and sector of a disk

Since $\ell \varphi = 2\pi d$, the surface area of the cone is equal to

$$\frac{1}{2}\ell^2\varphi = \frac{1}{2}\ell^2\frac{2\pi d}{\ell} = \pi\ell d.$$

Hence the surface area of the frustrum F of the cone is $\pi \ell_2 d_2 - \pi \ell_1 d_1 = \pi (d_1 + d_2)(\ell_2 - \ell_1) = \pi (d_1 + d_2)\lambda_2$.

Now suppose C is parametrized by $(x(t), y(t)), t \in [\alpha, \beta]$.

- Partition $[\alpha, \beta]$ into $\alpha = t_0 < t_1 < \cdots < t_n = \beta$.
- Let $P_i := (x(t_i), y(t_i))$ for i = 0, 1, ..., n, and draw the line segments $P_0P_1, P_1P_2, ..., P_{n-1}P_n$.

Let $d_0, d_1, d_2, \ldots, d_n$ be the distances of $P_0, P_1, P_2, \ldots, P_n$ from the line L. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the lengths of the line segments $P_0P_1, P_1P_2, \ldots, P_{n-1}P_n$. Suppose they don't cross L.

Fix $i \in \{1, ..., n\}$. When the line segment $P_{i-1}P_i$ is revolved about the line L, it generates a frustum F_i (of a right circular cone) whose surface area is $\pi(d_{i-1} + d_i)\lambda_i$.

Let $\rho(t)$ denote the distance of the point (x(t), y(t)) on the curve C from the line L. Then $d_i = \rho(t_i)$ for $i = 0, 1, \ldots, n$.

Thus the sum of the surface areas of the frustrums F_1, \ldots, F_n is

$$\pi \sum_{i=1}^{n} \left(\rho(t_{i-1}) + \rho(t_i) \right) \lambda_i,$$

If the functions x' and y' are continuously differentiable on $[\alpha, \beta]$, then the length λ_i of the line segment $P_{i-1}P_i$ is given by

$$\lambda_{i} = \sqrt{(x(t_{i}) - x(t_{i-1}))^{2} + (y(t_{i}) - y(t_{i-1}))^{2}}$$
$$= \sqrt{x'(s_{i})^{2} + y'(u_{i})^{2}} (t_{i} - t_{i-1})$$

for some s_i , $u_i \in (t_{i-1}, t_i)$ for i = 1, ..., n (by the MVT).

Area of Surface of Revolution

Let C be a smooth curve parametrized by $(x(t), y(t)), t \in [\alpha, \beta]$. Suppose the curve C does not cross the line L given by ax + by + c = 0. We define the **area of the surface** S generated by revolving C about the line L by

Area (S) :=
$$2\pi \int_{\alpha}^{\beta} \rho(t) \sqrt{x'(t)^2 + y'(t)^2} dt$$
,

where $\rho(t)$ is the distance of (x(t), y(t)) from the line L,

that is,
$$\rho(t) := |ax(t) + by(t) + c|/\sqrt{a^2 + b^2}$$
 for $t \in [a, b]$.

Note: Since the curve C does not cross the line L, the curve C lies entirely on one of the sides of the line L, that is,

either
$$ax(t) + by(t) + c \ge 0$$
 for all $t \in [\alpha, \beta]$,

or
$$ax(t) + by(t) + c \le 0$$
 for all $t \in [\alpha, \beta]$.

Special Cases:

(i) Let the line L be the x-axis, and let the curve C be given by y = f(x) for $x \in [a, b]$, where f is continuously differentiable. If $f \ge 0$ on [a, b] or $f \le 0$ on [a, b], then

$$Area(S) = 2\pi \int_a^b |f(x)| \sqrt{1 + f'(x)^2} dx.$$

(ii) Let the line L be the y-axis, and let the curve C be given by x = g(y) for $y \in [c, d]$, where g is continuously differentiable. If $g \ge 0$ on [c, d] or $g \le 0$ on [c, d], then

Area(S) =
$$2\pi \int_{C}^{d} |g(y)| \sqrt{1 + g'(y)^2} dy$$
.

MA 105 Supplementary reading

(iii) Let the line L be given by $\theta=\gamma$, where $\gamma\in(-\pi,\pi]$, and let the curve C be given by $r=p(\theta)$ for $\theta\in[\alpha,\beta]$, where p is continuously differentiable on $[\alpha,\beta]$. Suppose C does not cross L. Now the curve C is also given by $(p(\theta)\cos\theta,p(\theta)\sin\theta)$ for $\theta\in[\alpha,\beta]$.

Also, $\rho(\theta) = p(\theta) |\sin(\theta - \gamma)|$ for $\theta \in [\alpha, \beta]$.

Figure: Distance of a point on a polar curve from a ray.

Thus Area(S) =
$$2\pi \int_{0}^{\beta} p(\theta) |\sin(\theta - \gamma)| \sqrt{p(\theta)^2 + p'(\theta)^2} d\theta$$
.

Examples

(i) Let S denote the surface generated by revolving the curve $y=(x^3/3)+(1/4x), x \in [1,3]$, about the line y=-1. Then

Area(S) =
$$2\pi \int_{1}^{3} (y+1)\sqrt{1+(y')^2} dx$$

= $2\pi \int_{1}^{3} \left(\frac{x^3}{3} + \frac{1}{4x} + 1\right) \sqrt{1+\left(x^2 - \frac{1}{4x^2}\right)^2} dx$
= $2\pi \int_{1}^{3} \left(\frac{x^3}{3} + \frac{1}{4x} + 1\right) \left(x^2 + \frac{1}{4x^2}\right) dx$
= $1823\pi/18$.

(iii) Let 0 < b < a and let C denote the circle given by $(a+b\cos t,b\sin t),\ t\in [-\pi,\pi].$ Let S denote the surface generated by revolving the curve C about the y-axis. Then $a+b\cos t>0$ for all $t\in [-\pi,\pi]$, and so

Area
$$(S)$$
 = $2\pi \int_{-\pi}^{\pi} (a + b \cos t) \sqrt{(-b \sin t)^2 + (b \cos t)^2} dt$
= $2\pi b \int_{-\pi}^{\pi} (a + b \cos t) dt$
= $4\pi^2 ab$.

Note: S is in fact the surface of a torus in \mathbb{R}^3 .

(iii) Let a>0, and S denote the surface generated by revolving the semicircle $p(\theta)=a, \ \theta\in[0,\pi]$, about the x-axis. Then

Area(S) =
$$2\pi \int_0^{\pi} a \sin \theta \sqrt{a^2 + 0^2} d\theta = 4\pi a^2$$
.

Note: S is in fact the sphere of radius a in \mathbb{R}^3 .