FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 2014.

Veiledning: 16. - 19. september. Innleveringsfrist: Mandag 22. september kl 14.

Øving 3

Oppgave 1

En kloss B ligger på et flatt, horisontalt underlag. En mindre kloss A er plassert oppå kloss B. Nedre kloss B trekkes med en horisontal kraft F. Det er tilstrekkelig friksjon mellom kloss A og B til at de alltid beveger seg sammen. Massene til klossene A og B er hhv m og M. Tegn inn alle krefter som virker på kloss B når det er

- a) friksjonsfritt mellom kloss B og underlaget.
- b) friksjon mellom kloss B og underlaget, og trekkraften F er slik at den holder konstant hastighet på klossene.

Finn også akselerasjonen i tilfelle a).

Oppgave 2

- a) Statisk friksjonskoeffisient mellom skosålene dine og et halvkuleformet tak med radius R=40 m er 0.5. Hvor langt bort fra toppen kan du da bevege deg uten å begynne å gli? (Vi måler lengden langs takets overflate.)
- A) 8.2 m B) 18.5 m C) 33.6 m D) 58.7 m
- b) Anta så at du setter deg på et essensielt friksjonsfritt brett og seiler utfor fra toppen av taket med praktisk talt null starthastighet. Hvor langt nedover taket kommer du før du "tar av"?
- A) 8.2 m B) 18.5 m C) 33.6 m D) 58.7 m

Oppgave 3

En pendel består av ei kule med masse m i ei snor med lengde L, som vist i figuren. Pendelen trekkes ut til snora er vannrett i posisjon A, og slippes. Snora treffer en pinne (P) i avstand x rett under pendelens opphengningspunkt. Snora svinger så rundt denne pinnen, med kortere pendellengde r = L - x.

- a) Anta at x er tilstrekkelig stor til at kula kommer til posisjon B rett over pinnen, og vis at hastigheten der er $v = \sqrt{2g(2x-L)}$. (Tips: Energibevarelse.)
- b) Hvor stor må x minst være for at kula skal nå posisjon B med stram snor?

Oppgave 4

ϕ	$S_{\rm max}/g$ (g)
0	185
$\pi/2$	240
π	300
$3\pi/2$	440
2π	600
$5\pi/2$	800
3π	1000
$7\pi/2$	1100
4π	1400

Tabell: Maksimal snorkraft $S_{\rm max}$ med lodd i likevekt, med snor surret en vinkel ϕ rundt plastrøret.

Innledning: I forelesningene viste vi, både eksperimentelt og ved hjelp av regning, hvordan surring av ei snor rundt en sylinder resulterer i en friksjonskraft som kan hjelpe oss å holde tunge gjenstander oppe. I figuren til venstre er $S(\phi)$ enten minste påkrevde snordrag for å holde massen m i ro når snora har kontakt med sylinderen over en vinkel ϕ ,

$$S_{\min}(\phi) = S(0) \exp(-\mu \phi),$$

eller, som her, det maksimale snordraget som kan brukes uten at massen trekkes oppover,

$$S_{\text{max}}(\phi) = S(0) \exp(\mu \phi).$$

Målinger av $S_{\rm max}(\phi)$, utført på faglærers kontor fredag 14.09.2012 med enkle fjærvekter og lodd (metallring) med masse m=185 g, gav resultatene i tabellen til venstre. Du skal bruke disse måleresultatene til å bestemme den statiske friksjonskoeffisienten μ mellom snora og plastrøret. Vi antar at feilen i m, dvs $S_{\rm max}(0)$, er neglisjerbar, og at feil i $S_{\rm max}$ og ϕ , og dermed μ , er tilfeldige. Nedenfor følger selve oppgaven.

Oppgaven: Basert på de n = 8 målepunktene i tabellen, bestem middelverdien av friksjonskoeffisienten,

$$\overline{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mu_i,$$

et estimat for usikkerheten i en enkeltmåling av μ (det såkalte standardavviket),

$$\Delta \mu = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\mu_i - \overline{\mu})^2},$$

og et estimat for usikkerheten i middelverdien (den såkalte standardfeilen),

$$\Delta \overline{\mu} = \frac{\Delta \mu}{\sqrt{n}}.$$

Angi deretter μ med middelverdi og usikkerhet (standardfeil), dvs på formen

$$\mu = \overline{\mu} \pm \Delta \overline{\mu}$$
.

Til slutt plotter du de eksperimentelle målepunktene for størrelsen $\ln[S_{\max}(\phi)/S_{\max}(0)]$ sammen med de tre rette linjene $\mu\phi$, for $\mu=\overline{\mu}$ samt $\mu=\overline{\mu}\pm\Delta\mu$. Er andelen målepunkter som ligger innenfor $[\overline{\mu}-\Delta\mu,\overline{\mu}+\Delta\mu]$ omtrent som forventet (dvs ca 68%)? Bruk helst digitale hjelpemidler (f.eks Excel eller Matlab) til å løse denne oppgaven.

Oppgave 5.

På ei tilnærmet masseløs klessnor henger fire like tunge plagg i hver sin kleshenger, med lik avstand L/5 mellom to nabokleshengere, og mellom festepunkt og nærmeste kleshenger. Klessnora har med andre ord lengde L, og endene er festet i samme høyde, med innbyrdes avstand D:

Oppgaven går ut på å bestemme klessnoras form, dvs vinklene α og β i figuren. Vis at vinkelen α kan bestemmes ved å løse ligningen

$$\frac{L}{5} \left(1 + \frac{4x}{\sqrt{1 + 3x^2}} + 2x \right) = D,$$

der $x = \cos \alpha$. Tips: Problemet inneholder 5 ukjente størrelser: Vinklene α og β , samt 3 ulike snorkrefter S_1 (ytterst), S_2 (nest ytterst) og S_3 (på midten). Newtons 1. lov for to av massene (en ytterst og en nest ytterst), horisontalt og vertikalt, gir 4 ligninger. Den femte ligningen har kun å gjøre med geometrien, dvs en sammenheng mellom D, L, α og β , og denne finner du direkte ut fra figuren.

Dette er i realiteten en 4. gradsligning i x, som strengt tatt lar seg løse analytisk, men de analytiske uttrykkene ser ikke pene ut og gir ikke særlig mye innsikt.

I praksis er det mye mer fornuftig å bestemme x, og dermed α , med en numerisk metode. Den enkleste oppskriften er sannsynligvis denne:

- "Løs" ligningen ovenfor med hensyn på x, slik at du får den på formen x = f(x).
- Velg en passende startverdi $x = x_0$, sett inn i høyre side av ligningen, og regn ut $f(x_0)$.
- Sett $x_1 = f(x_0)$, sett x_1 inn på høyre side, og regn ut $f(x_1)$.
- Sett $x_2 = f(x_1)$ og regn ut $f(x_2)$, osv.
- Gjenta ("Iterer") dette skjemaet inntil $x_i \simeq x_{i-1}$ med tilstrekkelig god tilnærmelse.

I Matlab-programmet klessnor.m er denne algoritmen implementert. Det eneste som mangler er at du skriver inn en passende høyreside (dvs f(x)) i linje nr 33:

$$x1 =;$$

Dvs, de fem punktumene må erstattes av en passende f(x), med x satt lik x0. (Her finnes det flere muligheter, se eventuelt tips3.pdf.)

Ekstraoppgave: Kompletter programmet, dvs finn β og snorkreftene (i enheter av mg) uttrykt ved α , og legg til programlinjer som regner ut og skriver ut disse størrelsene.

Et fasitsvar:

Oppgave 4: 0.172 ± 0.005 .