Fuzzy Constraints

01

Fuzzy Set Theory

Bibliography

■ Klir, G. J. & Folger, T. A. (1992). Fuzzy Sets, Uncertainty, and Information

Table of Contents

- Introduction
- Fuzzy Sets
- Mathematical extensions of Fuzzy Sets
- Possibility Theory

Fuzzy Sets Theory

Introduction

An experiment

Crisp set boundary and fuzzy set boundary

X (Universe of discourse)

X (Universe of discourse)

Classical Sets

- For crisp sets A and B consisting of collections of some elements in X (universe of discourse)
 - \diamond $x \in X$ x belongs do X
 - \bullet $x \in A$ x belongs do A
 - \bullet $x \in A$ x does not belongs do X
 - ♦ $A \subset B$ A is fully contained in B (if $x \in A$ then $x \in B$)
 - \spadesuit A ⊆ B A is contained in or is equivalent to B
 - ♦ $A \leftrightarrow B$ $A \subseteq B$ and $B \subseteq A$ (A is equivalent to B)

Operation on Classical Sets

- Let A and B be two sets on the universe X
 - ♦ Union: $A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$

♦ Intersection: $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$

♦ Complement: $\neg A = \{x \in X \mid x \notin A\}$

♦ Difference: $A \mid B = \{x \in X \mid x \in A \text{ and } x \notin B \}$

Properties of Classical Sets

- Let A, B and C be sets on the universe X
 - Associativity:
 - $-A \cup (B \cup C) = (A \cup B) \cup C$
 - $-A \cap (B \cap C) = (A \cap B) \cap C$
 - Distributivity:
 - $\quad A \cup (B \cap C) = (A \cup B) \cup (A \cup C)$
 - $-A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
 - ♦ Idempotency:
 - $-A \cup A = A$
 - $-A\cap A=A$
 - ♦ Identity:
 - $-A\cup\varnothing=A$
 - $-A \cap X = A$
 - $-A\cap\varnothing=\varnothing$
 - $-A \cup X = X$

Properties of Classical Sets (cont)

- Let A, B and C be sets on the universe X
 - ♦ Transitivity:
 - if $A \subseteq B$ and $C \subseteq D$ then $A \subseteq D$
 - Involution:

$$\neg \neg A = A$$

Axiom of the exclude middle:

$$-A \cup \neg A = X$$

Axiom of the contradiction

$$-A \cap \neg A = \emptyset$$

♦ De Morgans's Principles

$$\neg (A \cap B) = \neg A \cup \neg B$$

$$\neg (A \cup B) = \neg A \cap \neg B$$

 $\neg(B)$

 $\neg(A)$

$$\neg (A \cup B)$$

$$\neg (A \cap B)$$

Mapping Classical Sets as Functions

■ The characteristic function X_A is defined by

$$X_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

and XA express the *membership* in the set A for the element x in the universe.

Each member x of X is mapped into one of the two elements of $\{0, 1\}$.

Mapping Classical Sets as Functions - Operations

Let A and B be two sets on the universe X

$$\wedge$$
 – min

V-max

♦ Union: $A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$

$$X_{A\cup B}(x) = X_A(x) \lor X_B(x) = \max(X_A(x), X_B(x))$$

♦ Intersection: $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$

$$X_{A\cap B}(x) = X_A(x) \wedge X_B(x) = \min(X_A(x), X_B(x))$$

♦ Complement: $\neg A = \{x \in X \mid x \notin A\}$

$$X_{\neg A}(x) = 1 - X_A(x)$$

♦ Difference: $A \mid B = \{x \in X \mid x \in A \text{ and } x \notin B \}$

$$X_{A|B}(x) = X_A(x) \wedge X_{\neg B}(x) = \min(X_A(x), 1 - X_B(x))$$

Mapping Classical Sets as Functions - Operations

- Let A and B be two sets on the universe X
 - Containment:

$$- A \subseteq B \to X_A(x) \le X_B(x)$$

Fuzzy Sets Theory

Fuzzy Sets

Fuzzy Sets

- For crisp sets the transition for an element in the universe between *membership* and *non-membership* in a given set is abrupt.
- For an element in a universe that contains fuzzy set this transition can be gradual.
 - This transition among various degrees of memberships can be thought as a conforming to the fact that the boundaries of the fuzzy set are vague and ambiguous.
 - A fuzzy set is a set containing elements that have varying degrees of membership in the
 set.

Fuzzy Sets - Notation

When the universe is discrete and finite

•
$$\tilde{A} = \{ \mu_A(x_1)/x_1, \mu_A(x_2)/x_2, ... \} = \sum_i \mu_A(x_i)/x_i$$

When the universe is continuous and infinite

$$\tilde{A} = \int \mu_A(x)/x$$

Continuous universe $\tilde{A} = \int \mu_A(x)/x$

Corresponding Discrete Fuzzy Sets

Around3= $\{2.1/0.1,...,3/1,...,3.9/0.1\}$

$$Cold = \{-10/1, ..., 0/1, ..., 5/0\}$$

Small

$$\mu_{A_1}(x) = \begin{pmatrix} 0 & x < 10 \\ \frac{1}{1 + (x - 10)^{-2}} & x \ge 10 \end{pmatrix}$$

$$\mu_{A_2}(x) = \frac{1}{1 + (x - 10)^2}$$

- Let \tilde{A} , B and C be fuzzy sets on the universe X. For a given element x, of the universe, the following function-theoretic operations for the set-theoretic operations of union, intersections, and complement are defined for \tilde{A} , B and C on X:
 - Union:

$$X_{\tilde{A}\cup\tilde{B}}(x)=X_{\tilde{A}}(x)\vee X_{\tilde{B}}(x)$$

Intersection:

$$X_{\tilde{A}\cap\tilde{B}}(x)=X_{\tilde{A}}(x)\wedge X_{\tilde{B}}(x)$$

Complement:

$$X_{\neg \tilde{A}}(x) = 1 - X_{\tilde{A}}(x)$$

$$\mu_{A_i}(x) = \begin{pmatrix} 0 & x < 10 \\ \frac{1}{1 + (x - 10)^{-2}} & x \ge 10 \end{pmatrix}$$

$$\mu_{A_2}(x) = \frac{1}{1 + (x - 10)^2}$$

Fuzzy Sets

Fuzzy Sets Theory - 24

Fuzzy Sets - Properties

Containment

$$\tilde{A} \subseteq \tilde{B} \to \mu_A(x) \le \mu_B(x_1)$$

- Associativity, Distributivity, Idempotency, Identity, De Morgans's Principles
- The Axiom of the exclude middle and the axiom of contradiction do not hold on fuzzy sets

Fuzzy Sets - exclude middle and contradiction

T-norms: T: $[0, 1] \times [0, 1] \rightarrow [0, 1]$

INTERSECTION

- ◆ T(0, 0)=0; T(a, 1)=T(1,a)=a;
- ♦ $T(a,b) \le T(c,d)$ if $a \le ceb \le d$;
- ◆ T(a,b)=T(b, a);
- ▼ T(T(a,b),c)=T(a, T(b, c)).
- Furthermore any T-norm satisfies

$$\mathbf{T}_{w}(a, b) \le \mathbf{T}(a, b) \le max(a, b)$$

where

$$\mathbf{T}_{w}(a, b) = \begin{pmatrix} a & \text{se } b = 1 \\ b & \text{se } a = 1 \\ 0 & \text{noutro case} \end{pmatrix}$$

co-norms: S: $[0, 1] \times [0, 1] \rightarrow [0, 1]$

UNION

- ♦ S(1, 1)=1; S(a, 0)=S(0, a)=a;
- ♦ $S(a,b) \le S(c,d)$ if $a \le c$ and $b \le d$;
- \diamond S(a,b) = S(b, a);
- ♦ S(S(a,b),c) = S(a, S(b, c)).
- Furthermore any S-norm satisfies

$$max(a, b) \le \mathbf{S}(a, b) \le \mathbf{S}_{w}(a, b)$$

where

$$\mathbf{S}_{w}(a, b) = \begin{pmatrix} a & \text{se } b = 1 \\ b & \text{se } a = 1 \\ 1 & \text{noutro case} \end{pmatrix}$$

- Any T-norm is bounded-up by the min, i.e., min is the largest T-norm
- Any S-norm is bounded-down by max, i.e., max is the smallest S-norm

INTERSECTION (AND)

- T-norms (e.g. min, product, drastic product...)
- Compensatory (e.g. Hammaker, Dubois&Prade, Yager...)

UNION (OR)

- T-conorms (e.g. Max, sum, drastic sum...)
- Compensatory (e.g. Dubois & Prade...)

Probabilistic operators

$$\mu_{A \cdot B}(x) = \mu_{A}(x)\mu_{B}(x)$$

$$\mu_{A + B}(x) = \mu_{A}(x) + \mu_{B}(x) - \mu_{A}(x)\mu_{B}(x)$$

Reinforced operators

$$\mu_{A \cap B}(x) = max(0, \mu_{A}(x) + \mu_{B}(x) - 1)$$

$$\mu_{A \cup B}(x) = min(1, \mu_A(x) + \mu_B(x))$$

Intersection

Union

Fuzzy Sets viewed as a collection of crisp sets

- alfa-cuts
 - α -cut of fuzzy set A at level α , denoted by $(A)\alpha$, is the crisp set formed by the elements of X satisfying A at least at level α ,

$$(\tilde{A})_{\alpha} = \{ x \in X \mid \mu_{A}(x) \ge \alpha \}$$

- The **support** of a fuzzy set is denoted by **Support**(A) and is the α -cut of level greater than 0.
- The core of a fuzzy set A is denoted by Core(A) and is its α -cut of level 1.

Fuzzy Sets - Cardinality

■ The (scalar) cardinality of fuzzy set \tilde{A} which support $S(\tilde{A}) \subseteq X$ is defined by

$$|\tilde{A}| = \sum_{x \in S(X)} \mu_A(x)$$

- The fuzzy cardinality of a fuzzy set \tilde{A} is the fuzzy number,
 - $\|\tilde{A}\| = \sum \alpha / |\tilde{A}| \alpha |$

Fuzzy Sets - extensions to the basic theory

Fuzzy Sets Theory

Mathematical extensions of Fuzzy Sets

Fuzzy Numbers and fuzzy arithmetic

Numbers L-R

Let L(x) and R(x) be two reference functions

$$L(x) = \frac{1}{1+x^2}$$

$$R(x) = \frac{1}{1+2|x|}$$

then, the fuzzy-number L-R with m = 5, $\alpha = 2$ and $\beta = 3$, has a membership function defined by

$$\mu_{M}(x) = \begin{cases} L(\frac{m-x}{\alpha}) = \frac{1}{1 + \left(\frac{5-x}{2}\right)^{2}} & \text{para } (x \le m) \\ R(\frac{x-m}{\beta}) = \frac{1}{1 + 2\left|\frac{(x-5)}{3}\right|} & \text{for } (x \ge m) \end{cases}$$

$$R(\frac{x-m}{\beta}) = \frac{1}{1+2\left|\frac{(x-5)}{3}\right|}$$

for
$$(x \ge m)$$

Numbers L-R

Let $\tilde{M} = (m, \alpha, \beta)_{LR}$ e $\tilde{N} = (n, \gamma, \delta)_{LR}$ two L-R fuzzy numbers, then

1.
$$(m, \alpha, \beta)_{LR} + (n, \gamma, \delta)_{LR} = (m + n, \alpha + \gamma, \beta + \delta)_{LR}$$

2.
$$-(m, \alpha, \beta)_{LR} = (-m, \beta, \alpha)_{RL}$$

3.
$$(m, \alpha, \beta)_{LR} - (n, \gamma, \delta)_{RL} = (m - n, \alpha + \delta, \beta + \gamma)_{LR}$$

$$\tilde{M} = (1, 0.5, 0.8)_{LR}$$

$$\tilde{M} = (1, 0.5, 0.8)_{LR}$$
 $\tilde{N} = (4, 0.6, 0.2)_{LR}$

Fuzzy Relations

	y_1	y_2	<i>y</i> ₃	<i>y</i> ₄
x_1	0.0	0.0	0.1	0.8
x_2	0.3	0.4	0.6	0.2
x_3	0.8	0.9	1.0	0.5

Fuzzy Relations - cylindrical projection

Let $\tilde{R}(X \times Y) = \{((x, y), \mu_{\tilde{R}}(x, y)) | ((x, y) \in X \times Y)\}$ be a binary fuzzy relation The first projection of the relation is denoted by $\tilde{R}^{(1)}$ and is defined by

$$\tilde{R}^{(1)} = \{(x, m_{\tilde{q}}x (\mu_{\tilde{R}}(x, y))) | ((x, y) \in X \times Y)\}$$

The second projection of the relation is denoted by $\tilde{R}^{(2)}$ and is defined by

$$\tilde{R}^{(2)} = \{ (y, m_{\tilde{X}} x (\mu_{\tilde{X}}(x, y))) | ((x, y) \in X \times Y) \}$$

Fuzzy Relations - cylindrical projection

Fuzzy Relations - cylindrical extension

Seja uma relação difusa $\tilde{R}(X_{i_1}, ..., X_{i_k})$; a sua extensão cilindrica em $X_1 \times ... \times X_n$ denota-se por c(R) e é uma relação definida em $X_1 \times ... \times X_n$ tal que:

$$\{((x_1, ..., x_n), \mu_R(x_{i_1}, ..., x_{i_n})) | ((x_1, ..., x_n) \in X_1 \times ... \times X_n)\}$$
(4.43)

Enquanto que na projecção a ideia consiste em "projectar a sombra da função de pertença sobre um parte dos eixos onde ela se encontra definida", na extensão cilíndrica "estendem-se os valores da função de pertença definida em alguns eixos a novos eixos". Para a relação binária que se apresentou na Figura 4.17, mostram-se na Figura 4.18 as extensões cilíndricas de cada uma das suas projecções $\tilde{R}^{(1)}$ e $\tilde{R}^{(2)}$.

Fuzzy Relations - cylindrical extension

Segundo [Klir, 1988] uma extensão cilíndrica produz a maior relação difusa (maior no sentido dos graus de pertença dos elementos do produto cartesiano estendido), que é compatível com a projecção dada. Tal relação é a menos específica de entre todas as relações compatíveis com a projecção. A extensão cilíndrica então maximiza a não especificidade, isto é, maximiza a imprecisão na derivação de uma relação de dimensão n a partir de uma das suas projecções de dimensão k, sendo k < n. Isto garante que informação que não esteja incluída na projecção não será usada na determinação da relação estendida. É por este motivo que por vezes se diz que a extensão cilíndrica é totalmente imparcial.

Fuzzy Relations - cylindrical extension

fecho cilíndrico a partir de $\tilde{R}^{(1)}$ e $\tilde{R}^{(2)}$

Cartesian product and co-product - Crisp case

Em termos de conjuntos não difusos, o produto cartesiano $A_1 \times A_2$ define-se como:

$$A_1 \times A_2 = \{ (a_1, a_2) \mid a_1 \in A_1, a_2 \in A_2 \}$$
 (4.44)

e o *co-produto cartesiano* $A_1 + A_2$ define-se como:

$$A_1 + A_2 = \{ (a_1, y) \mid a_1 \in A_1 \} \cup \{ (x, a_2) \mid a2 \in A_2 \}$$
 (4.45)

O produto cartesiano pode ser expresso como a intersecção das extensões cilíndricas de A_1 e A_2 , e o co-produto cartesiano pode ser expresso como a união das extensões cilíndricas, tal como se mostra na Figura 4.19. Denotando por $c(A_1)$ e $c(A_2)$ as respectivas extensões cilíndricas temos:

$$A_1 \times A_2 = c(A_1) \cap c(A_2)$$
 (4.46)

$$A_1 + A_2 = c(A_1) \cup c(A_2)$$
 (4.47)

Cartesian product and co-product - Crisp case

Cartesian product and co-product - fuzzy case

A generalização para conjuntos difusos \tilde{A}_1 , \tilde{A}_2 segue directamente das equações (4.46) e (4.47), isto é, se usarmos o operador *min* para a intersecção e o operador *max* para a união temos:

$$\mu_{A_1 \times A_2}(x, y) = \min(\mu_{A_1}(x), \mu_{A_2}(y))$$
 (4.48)

$$\mu_{A_1+A_2}(x,y) = max(\mu_{A_1}(x),\mu_{A_2}(y))$$
 (4.49)

Note-se que o fecho cilíndrico de uma relação difusa é o produto cartesiano das suas projecções. Recordemos que uma relação está sempre incluída no seu fecho cilíndrico, ou seja podemos escrever que (por exemplo, para uma relação binária):

$$\tilde{R}(X \times Y) \subseteq \tilde{R}^{(1)}(X) \times \tilde{R}^{(2)}(Y) \tag{4.50}$$

Fuzzy Sets Theory

Possibility Theory

Fuzzy Measure

Seja X o conjunto universal. Uma medida difusa é uma função $g: P(X) \to [0, 1]$, onde P(X) é o conjunto potência³ de X. A função g deve verificar as seguintes propriedades:

- 1. $g(\emptyset) = 0, g(X) = 1.$
- **2.** Se $A, B \in P(X)$ e $A \subseteq B$ então $g(A) \le g(B)$.
- 3. Se $A_n \in P(X)$ e $A_1 \subseteq A_2 \subseteq ... \subseteq A_n$ então $\lim_{n \to \infty} g(A_n) = g(\lim_{n \to \infty} A_n)$.

monotonia no sentido da inclusão

- g(X) = 1
 - não significa que se g(A) = 1 então A seja um acontecimento certo.
- $g(\emptyset) = 0$
 - não significa que se g(A) = 0 então A seja impossível.

Fuzzy Measure -

Consideremos um conjunto universal X e dois subconjuntos A e B. Como qualquer destes dois conjuntos é subconjunto da união $A \cup B$, então pelo segundo axioma da Definição 4.28 podemos escrever que uma medida difusa cumpre

$$g(A \cup B) \ge \max(g(A), g(B)) \tag{4.62}$$

Por outro lado, a intersecção $A \cap B$ é um subconjunto de qualquer um dos conjuntos A e B, então pelo segundo axioma da Definição 4.28 podemos escrever que uma medida difusa também cumpre

$$g(A \cap B) \le \min(g(A), g(B)) \tag{4.63}$$

Possibility and Necessity Measures

Quando uma função difusa cumpre a equação (4.62) no caso limite, isto é, quando se cumpre a igualdade então essa função designa-se por *medida de possibilidade* [Zadeh, 1978] e é denotada por Π, e podemos escrever:

$$\Pi(A \cup B) = \max(\Pi(A), \Pi(B)) \tag{4.64}$$

O outro caso limite das medidas difusas ocorre quando se cumpre a igualdade da equação (4.63) e obtemos uma classe de funções designadas por *medidas de necessidade* e representadas por N que para quaisquer subconjuntos A e B de X satisfazem

$$N(A \cap B) = \min(N(A), N(B)) \tag{4.67}$$

Possibility Measure

 Seja E ⊆ X um acontecimento considerado como certo. Então facilmente definimos uma função Π de valores sobre {0, 1} que satisfaça (4.64):

$$\Pi_{E}(A) = \begin{cases} 1 & A \cap E \neq \emptyset \\ 0 & A \cap E = \emptyset \end{cases}$$
(4.65)

Neste contexto $\Pi_E(A) = 1$ significa que A é um acontecimento possível.

Se A e ¬A são dois acontecimentos contrários, isto é, ¬A é o complementar de A em X, então X = A ∪ ¬A. Como Π(X) = 1 e usando a equação (4.64), concluímos que uma medida de possibilidade deve verificar a seguinte equação:

$$max(\Pi(A), \Pi(\neg A)) = 1 \tag{4.66}$$

Ou seja, de dois acontecimentos complementares pelo menos um deles é possível. Além disso quando um acontecimento é julgado possível não impede que o seu contrário também o seja – o que é coerente com o significado de que julgamentos de possibilidade comprometem pouco o seu autor.

 A equação (4.64) é coerente com o significado físico de possibilidade, isto é, para realizar A ou B basta realizar o mais fácil deles, isto é o "mais possível".

Necessity Measure

 Seja E ⊆ X um acontecimento considerado como certo. Então facilmente definimos uma função N de valores sobre {0, 1} que satisfaça (4.67):

$$N_{E}(A) = \begin{pmatrix} 1 & A \subseteq E \\ 0 & A \supset E \end{pmatrix} \qquad \supseteq \qquad \subset \qquad (4.68)$$

Neste contexto $N_E(A) = 1$ significa que A é um acontecimento certo, isto é, necessariamente verdadeiro.

 É fácil verificar que uma medida difusa N satisfaz a equação (4.67) se e só se a função Π definida por

$$\Pi(A) = 1 - N(\neg A)$$
 (4.69)

é uma medida de possibilidade. Isto revela a dualidade já referida entre estas duas medidas de possibilidade e necessidade – um acontecimento é necessário quando o acontecimento contrário é impossível.

O equivalente da equação (4.66) para o caso da medida de necessidade é

$$min(N(A), N(\neg A)) = 0$$
 (4.70)

Possibility and Necessity Measures

Main Fuzzy Measures

Possibility Distribution

Quando o conjunto universal é finito, qualquer medida de possibilidade Π pode ser definida a partir dos seus valores sobre os conjuntos singulares de X:

$$\forall (A \subseteq X) \qquad \Pi(A) = \sup \{\pi(x) | (x \in A)\}$$
 (4.76)

onde π é um aplicação de $X \to [0, 1]$ e é designada de distribuição de possibilidade e $\pi(x) = \Pi(\{x\})$. Esta distribuição está normalizada no sentido em que existe um x tal que $\pi(x) = 1$ (note-se que $\Pi(X) = 1$). Quando π é uma aplicação de $X \to \{0, 1\}$ é designada de distribuição de possibilidade exacta¹.

Main Fuzzy Measures

medida difusa atribui um valor a cada subconjunto Ei do conjunto universal X representando o grau de evidência ou confiança de que um certo elemento x0 de X pertence a cada um dos Ei. Esta definição de medida difusa permite modelar a *incerteza* acerca de qual o conjunto a que x0 pertence.

a cada elemento x do conjunto universal X é atribuído um número que representa o grau com que x pertence a um conjunto particular cujas fronteiras estão mal definidas, isto é um conjunto difuso Ã. Esta definição de conjunto difuso permite *modelar directamente conceitos ou categorias vagas*

"x₀ pertence a Ei"?

