

OPTICS & IMAGE CREATION

Professor: Rubén Alvarez

CONTENT

- 3D perception
- Lenses
- Image construction
- CCD vs CMOS sensors
- Camera calibration

3D PERCEPTION

COMPUTER VISION

SINGLE-VIEW GEOMETRY

Odilon Redon, Cyclops, 1914

Is recovering the structure of an image unambiguous?

What about perspective?

Optical illusions?

AMES ROOM

AMES ROOM

Will we need a multi-geometric view?

VIRTUAL REALITY LIGHTING

RAY TRACING

It is a "rendering" technique for generating an image by tracing the path of light on an image plane and simulating its effects on virtual objects.

RAY TRACING

MAIN PROBLEM IN LIGHTING?

...SURFACE MODELS

LENSES

COMPUTER VISION

TYPES OF LENSES

CONVERGED LENSES

DIVERGENT LENSES

ARE THE LENSES PERFECT?

LENS PROBLEMS

- Physical world
- Radial distortion
- Distortion by perspective

RADIAL DISTORTION

WHAT IF WE JUST WORK WITH THE CENTER OF THE LENS?

3D PERCEPTION IN 2D

COMPUTER VISION

YOU CAN GET THE 3D PERCEPTION FROM AN 2D IMAGE?

COMPUTER VISION

MOVE INFORMATION FROM 3D TO 2D

WHAT DO WE LOSE WITH THE DIMENSION REDUCTION?

WHAT DOWE LOSE WITH THE DIMENSION REDUCTION?

- Angles
- Distance

DISTORTION BY PERSPECTIVE

What does a sphere look like in an image?

Image source: F. Durand

DISTORTION BY PERSPECTIVE

It depends not only on the distance, but also on the projection angle!

PROJECTION MODELING

Modeling projection

PROJECTION MODELING

Modeling projection

$$(x, y, z) \rightarrow \left(f \frac{x}{z}, f \frac{y}{z} \right)$$

HOMOGENEOUS COORDINATES

$$(x, y, z) \to \left(f\frac{x}{z}, f\frac{y}{z}\right)$$

Is it a linear transformation?

HOMOGENEOUS COORDINATES

$$(x, y, z) \to \left(f\frac{x}{z}, f\frac{y}{z}\right)$$

Is it a linear transformation?

No, division between "z" is not linear.

VANISHING POINTS

What do straight lines look like in an image?

VANISHING POINTS

LENSES PROPERTIES

COMPUTER VISION

FOCAL DISTANCE

CBJECT DISTANCE IMAGE DISTANCE

DOES OPENNESS MATTER?

• In the case of the above drawing, is it important to enter the dimensions of that opening where the light enters the box?

LENS FOCAL LENGTH

DOES OPENNESS MATTER?

THE SMALLER THE APERTURE, THE LESS LIGHT ENTERS

OPENNESS AND DEPTH ARE CORRELATED

HOW DO WE MODEL A LENS?

- The two main ones are:
 - Thin lenses
 - Pin hole model

OVERALL

- The cameras have:
 - Intrinsic parameters
 - Extrinsic parameters

THIN LENSES

- Gauss Law $\frac{1}{Z} + \frac{1}{Z} = \frac{1}{f}$
- Where Z is the distance from the real world to the lens.
- z is the distance from the projected image to the lens.

THIN LENSES

• Gaussian Law $\frac{1}{Z} + \frac{1}{Z} = \frac{1}{f}$

PIN HOLE MODEL

- Capture all the rays of light through a simple point.
- The point is the "projection center" also known as the "focal point.
- The image is formed in the plane of the image.

PIN HOLE MODEL

PIN HOLE MODEL

- Does not contemplate the "focus"
- Tales Theorem

- Magnification
- $M = \frac{x}{X_W} = \frac{y}{Y_W} = \frac{f}{Z_W}$

EXERCISE

- You need to calibrate a video camera. The camera's optics have a focal length of 3mm and the pixel size is $5.6\mu m \times 5.6\mu m$. The effective number of pixels are $293(W) \times 357(H)$.
- What is the minimum distance you need to put the calibration pattern (checkerboard) with respect to the camera so that the board is inside the image? If each square measures 27mm on each side and you have 7x9 squares.

EXERCISE

You need to calibrate a video camera. The camera's optics have a focal length of 3mm and the pixel size is $5.6\mu m \times 5.6\mu m$. The effective number of pixels are $293(W) \times 357(H)$.

WHY CALIBRATE THE CAMERA?

- Solve 3D geometry
- Simplify 3D reconstruction
- Improving accuracy
- Eliminate ambiguities such as scale

SOLVE GEOMETRY IN 3D WITHOUT KNOWING THE CAMERAS

Structure from motion

CAMERA CALIBRATION

COMPUTER VISION

CAMERA CALIBRATION

SO... TO CALIBRATE THE CAMERA

We need a sequence of images

CAMERA CALIBRATION

$$\bullet \begin{pmatrix} p_{xi} \\ p_{yi} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{f}{dx} & 0 & c_{xi} \\ 0 & \frac{f}{dy} & c_{yi} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_w \\ Y_w \\ Z_w \end{pmatrix}$$

CAMERA CALIBRATION

$$\bullet \begin{pmatrix} p_{xi} \\ p_{yi} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{f}{dx} & -\rho \frac{f}{dy} & c_{xi} \\ 0 & \frac{f}{dy} & c_{yi} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_w \\ Y_w \\ Z_w \end{pmatrix}$$

CCD VS CMOS

COMPUTER VISION

CCD VS CMOS

- CCD
- Mature technology
- High production cost
- High power consumption
- Higher fill rate
- Lower noise
- Higher resolution
- Blooming
- Sequential readout

CMOS

- Recent technology
- Lower production cost (but...)
- Low power
- Lower fill rate (less sensitive)
- Higher noise
- Lower resolution
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

COLOR SENSING IN CAMERA: COLOR FILTER ARRAY

Estimate missing components from neighboring values (demosaicing)

THE CAUSE OF COLOR MOIRE

THE CAUSE OF COLOR MOIRE

PRACTICE I.I

On canvas

Questions?