提高组模拟试题

比赛时间: 2022 年 10 月 31 日

出题人:

杭州第四中学 沈奕天 (T1,T3,T4) 杭州高级中学 黄鹏程 (T2)

题目名称	桃花源的道路	扣篮大赛	花园	条件
题目类型	传统型	传统型	传统型	传统型
目录	road	basket	beauty	condition
可执行文件名	road	basket	beauty	condition
输入文件名	road.in	basket.in	beauty.in	condition.in
输出文件名	road.out	basket.out	beauty.out	condition.out
每个测试点时限	1.0 秒	1.0 秒	1.0 秒	1.0 秒
内存限制	512MiB	512MiB	512MiB	512MiB
子任务数目	20	10	20	20
测试点是否等分	是	是	是	是
提交源程序文件名				
对于 C++ 语言	road.cpp	basket.cpp	beauty.cpp	condition.cpp

编译选项

对于 C++ 语言	-O2 -std=c++14
-----------	----------------

桃花源的道路(road)

题目背景

"林尽水源,便得一山,山有小口,仿佛若有光。便舍船,从口人。初极狭,才通人。复行数十步,豁然开朗。土地平旷,屋舍俨然,有良田、美池、桑竹之属。阡陌交通,鸡犬相闻。其中往来种作,男女衣着,悉如外人。黄发垂髫,并怡然自乐。"——陶渊明《桃花源记》

桃花源有很多阡陌(也就是田间小路),在桃花源中的居民有一天突然发现:有的阡陌不怎么好走了。原来,原来 2m 宽的路,在海陆变迁中毁坏了,有的变成了 1m,有的变成了 3m。现在,他们想要重新修一下这个路,使桃花源的交通重新通畅。

题目描述

现在,桃花源的居民给了你小路中其中一段的剖面图,用 O 表示 1m 路,用 X 表示 1m 障碍。他们可以将一个 X 移到一个 O 的地方上。你要编写一个程序,输出最少需要移动 3m 的状态。

桃花源的居民希望能够尽快通路,所以你的程序要尽可能快的解决这个问题。

输入格式

一行一个字符串,用 O 和 X 描述了现在的道路情况。

输出格式

一行一个整数 n,表示最少需要移动的次数。

样例组

Input #1:	Output #1:
XOXOOOXOOX	1

提示与说明

样例解释:将第三位的 X 移到第四位即可。

串的长度一定是 3n+1,且 X 的个数是 n 个对于 100% 的数据,保证字符串长度不超过 3×10^6

扣篮大赛(basket)

题目背景

hpc 正在为今年的扣篮大赛作准备。

题目描述

hpc 腿伤刚康复,弹跳的能力有一定上限。扣篮大赛共有 n 个篮筐,编号为 $1,2\cdots n$,高度分别为 $h_1,h_2\cdots h_n$,hpc 需要达到某个篮筐的高度才能在这个篮筐上扣篮。由于篮筐之间存在差异,扣篮的消耗也不尽相同,分别为 $s_1,s_2\cdots s_n$ 。hpc 要一次起跳并同时扣多个篮筐。他从起跳到落地的消耗为在空中经过的距离与扣篮消耗的总和。为了知道在自己的能力限度内最多能扣多少个篮筐,你需要求出他一次起跳扣 $1,2\cdots n$ 个篮筐的最少消耗。

输入格式

第一行一个整数 n。

第二行 n 个整数, 第 i 个整数表示 h_i 。

第三行 n 个整数, 第 i 个整数表示 s_i 。

输出格式

输出共 n 行,每行一个整数。第 i 行的整数表示扣 i 个篮筐的最少消耗。

样例组

Input #1:	Output #1:
	3
5	7
1 2 3 4 5	12
1 2 3 4 5	18
	25
Input #2:	Output #2:
Input #2:	Output #2: 7
Input #2: 5	- "
	7
5	7 11

提示与说明

对于 20% 的数据, $n \leq 10$ 。

对于 60% 的数据, $n \leq 300$ 。

对于 80% 的数据, $n \le 4000$ 。

对于 100% 的数据, $2 \le n \le 5000$, $1 \le h_i, s_i \le 5 \times 10^8$ 。

花园(beauty)

题目背景

Farmer John 的农场里有一个花园, FJ 正在为花园里种什么花而发愁……

题目描述

市场上有 m 种花,每朵花有 n 个"美观点"。其中,如果某一朵花和某一朵花有偶数个共同美观点,那么 FJ 就会认为美观的重复度过高而降低 1 的美观度,如果有奇数个共同美观点,就会增加 1 的美观度。(初始的美观度是 0)

现在告诉你这些花的美观点,问最后总的美观度是多少。

输入格式

第一行三个整数 m,n

接下来 m 行,每行 n 个整数,代表了这个花具有的美观点数量。

输出格式

一行一个整数,输出最后的美观度

样例组

Input #1:	Output #1:
4 3	
1 2 4	
2 3 1	-2
4 3 2	
2 5 3	

提示

对于 75% 的数据, 保证 $2 \le n \le 1 \times 500$, $1 \le m \le 10$

对于 100% 的数据,保证 $2 \le n \le 1 \times 10^4$, $1 \le m \le 10$

条件(condition)

题目描述

在高中数学必修一中,有一课叫充分必要条件。其中,对于条件 p 和条件 q, 如果存在 $p \to q$, 就称 p 为 q 的充分条件,q 为 p 的必要条件。如果存在 $p \leftrightarrow q$,则称 p 为 q 的充分必要条件(如果 $p \leftrightarrow q$,则 $p \to q$, $q \to p$)。显然的,这些条件之间存在着传递性,如果 $a \to b, b \to c$,那么一定存在 $a \to c$ 。另外,每个条件都是自己的充分必要条件。现在,给出若干条件和若干询问,问任意两个条件之间的关系。

输入格式

第一行三个整数 n, m, q, 分别代表了条件数, 关系数, 询问数

接下来 m 行,每行一个表达式,其中,表达式是这么定义的:整数符号整数

例如:

1->2, 说明 1 是 2 的充分条件(注意,箭头两边有空格,下同)

2 <- 1, 说明 2 是 1 的必要条件

2 <-> 3, 说明 2 是 3 的充分必要条件

再接下来 q 行,每行两个整数,询问这两个整数之间的关系。

输出格式

输出这些关系,表达形式与输入形式相同。(如果不存在任何关系,输出一行 Fail)

样例组

Input #1:	Output #1:
4 4 2	
1 ->2	
2 ->3	1 < > 2
3 ->1	1 <->3
4 ->2	4 ->3
1 3	
4 3	

提示与说明

对于数据点 1-15, 保证 $50 \le n \le 500, 100 \le m \le 1000, 1 \le q \le 100$

对于数据点 16-20,保证 $5000 \le n \le 50000, 10000 \le m \le 100000, 1 \le q \le 500$,且对于每个点,都有至少 100 个点与它成充分必要关系。