1. Prove that for all positive integers N,

$$\sum_{k=1}^{n} \frac{1}{(k+2)(k+3)} = \frac{n}{3n+9}$$

Solution: We first need to show a base case. If we let n = 1, we have

$$\sum_{k=1}^{1} \frac{1}{(k+2)(k+3)} = \frac{1}{3(1)+9}$$
$$\frac{1}{(1+2)(1+3)} = \frac{1}{12}$$
$$\frac{1}{12} = \frac{1}{12}.$$

Now we can form our induction hypothesis, given by

$$\sum_{k=1}^{n} \frac{1}{(k+2)(k+3)} = \frac{n}{3n+9}.$$

Now we need to prove:

$$\sum_{k=1}^{n+1} \frac{1}{(k+2)(k+3)} = \frac{n+1}{3(n+1)+9}$$

$$\therefore \sum_{k=1}^{n+1} \frac{1}{(k+2)(k+3)} = \sum_{k=1}^{n} \frac{1}{(k+2)(k+3)} + \sum_{k=n+1}^{n+1} \frac{1}{(k+2)(k+3)}$$
By the induction hypothesis,
$$= \frac{n}{3n+9} + \frac{1}{(n+3)(n+4)}$$

$$= \frac{n(n+4)+3}{3(n+3)(n+4)}$$

$$= \frac{n^2+4n+3}{3(n+3)(n+4)}$$

$$= \frac{(n+3)(n+1)}{3(n+3)(n+4)}$$

$$= \frac{n+1}{3(n+1+3)}$$

$$= \frac{n+1}{3(n+1)+9}$$

2. Let R be a relation on $\{1, 2, 3, 4, 5, 6\}$ be defined by xRy if and only if $x + y \le 8$. Determine which of the following properties R has: reflexive, symmetric, transitive. Give a proof for each property it satisfies, and give a counterexample for each of those properties it does not have.

Reflexive: Let $x \in \{1, 2, 3, 4, 5, 6\}$. Then xRx means that $x+x \le 8$. However $6+6=12 \le 8$. Therefore, R is not reflexive.

Symmetric: Let $x, y \in \{1, 2, 3, 4, 5, 6\}$ such that xRy. Then $x + y \leq 8$. Since addition is commutative, x + y = y + x. Then $x + y = y + x \leq 8$. Therefore yRx, which means R is symmetric.

Transitive: Let $a, b, c \in \{1, 2, 3, 4, 5, 6\}$ such that aRb and bRc. Then $a + b \le 8$, and $b + c \le 8$. However, if we let a = 5, b = 2, and c = 6, then aRb, since $5 + 2 = 7 \le 8$, and bRc, since $2 + 6 = 8 \le 8$, but aRc, since $5 + 6 \le 8$.

 \triangle

3. Assume relation R on $A = \{1, 2, 3, 4\}$ is an equivalence relation where

$$R = \{(1,1), (2,2), (,), (4,4), (1,2), (2,4), (,), (,), (4,2), (4,1)\}.$$

Note that R has exactly 3 blank entries.

(a) Fill in the 3 missing entries of R.

$$R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,4), (2,1), (1,4), (4,2), (4,1)\}.$$

(b) Clearly write all of the equivalence classes of R.

$$[1] = [2] = [3] = \{1, 2, 4\}$$

 $[3] = \{3\}$

(c) Write the partition associated with R.

$$P = \{[1], [3]\} = \{[2], [3]\} = \{[4], [3]\}$$

4. Let R be a relation from $A = \{1, 2, 3, 4, 5\}$ to $B = \{a, b, c, d\}$ given by

$$R = \{(1, d), (2, c), (3, a), (4, d), (5, b)\}.$$

(a) Why is R a function from A to B?

R is a function since every element in A maps to an element in B, and no one element in A maps to two elements in B at the same time.

(b) Is R an injection from A to B? Why?

R is not an injection since both 1 and 4 map to d.

(c) Is R a surjection from A to B? Why?

R is a surjection since every value in the codomain B has a pre-image in A.

5. (a) Show that the function $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 2x + 1 is an injection.

Solution: Let $x, y \in \mathbb{Z}$ such that f(x) = f(y). Then 2x + 1 = 2y + 1, or 2x = 2y. Therefore, x = y, which means f is injective.

Δ

(b) Show that the function $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = 7x - 1 is an surjection.

Solution: Let $y \in \mathbb{R}$. Then y = 7x - 1, or $x = \frac{y+1}{7}$. We know this is in \mathbb{R} since it is either in \mathbb{Q}, \mathbb{Z} , or \mathbb{R} . Substituting x into f gives us

$$f\left(\frac{y+1}{7}\right) = 7\left(\frac{y+1}{7}\right) - 1$$
$$= y+1-1$$
$$= y$$

Therefore, f is surjective.

 \triangle

- 6. Let $f: \mathbb{R} \{1\} \to \mathbb{R} \{3\}$ be defined by $f(x) = \frac{3x}{x-1}$.
 - (a) Show f(x) is a bijection.

Injection: Let $x, y \in \mathbb{R} - \{1\}$ such that f(x) = f(y). Then

$$\frac{3x}{x-1} = \frac{3y}{y-1}$$
$$(3x)(y-1) = (3y)(x-1)$$
$$3xy - 3x = 3xy - 3y$$
$$-3x = -3y$$
$$x = y.$$

Therefore, f is an injection.

Surjection: Let $y \in \mathbb{R} - \{3\}$. Then $y = \frac{3x}{x-1}$, or $x = -\frac{y}{3-y}$, which is an element of $\mathbb{R} - \{3\}$. Substituting back into f gives us

$$f\left(-\frac{y}{3-y}\right) = \frac{3\left(-\frac{y}{3-y}\right)}{\left(-\frac{y}{3-y}\right) - 1}$$

$$= \frac{-3y}{-y - (3-y)}$$

$$= \frac{-3y}{-y - 3 + y}$$

$$= \frac{-3y}{-3}$$

$$= y.$$

Therefore f is a surjection.

Therefore f is a bijection.

Λ

(b) Find the inverse of f(x).

Let
$$g(x) = -\frac{x}{3-x}$$
. Then
$$f \circ g(x) = f(g(x)) \qquad g \circ f(x) = g(f(x))$$

$$= f\left(-\frac{x}{3-x}\right) \qquad = g(\frac{3x}{x-1})$$

$$= \frac{3\left(-\frac{x}{3-x}\right)}{\left(-\frac{x}{3-x}\right)-1} \qquad = \frac{-\frac{3x}{x-1}}{3-\frac{3x}{x-1}}$$

$$= \frac{-3x}{-x-(3-x)} \qquad = \frac{-3x}{3x-3-3x}$$

$$= \frac{-3x}{-3} \qquad = \frac{-3x}{-3}$$

$$= \frac{-3x}{-3} \qquad = x$$

Therefore, $g(x) = f^{-1}(x)$.

 \triangle