ECEN 325 – Electronics

Fall 2020

Lab 4: Prelab

Submitted by:

Student Name	UIN:	Section #
Michael Mengistu	12500724	508

Due: Sept 22st, 2020

$$V_{o} = -\left(\frac{R_{3}}{R_{i}}V_{i_{1}} + \frac{R_{3}}{R_{a}}V_{i_{2}}\right)$$

Set $R_{i}=15kL$, $R_{a}=7.5kL$

$$V_0 = -\left(V_{i_1} + \partial V_{i_2}\right)$$

$$V_{0} = \frac{R_{2}}{R_{3}} \left(V_{12} - V_{11} \right), \frac{R_{2}}{R_{1}} = \frac{R_{4}}{R_{3}}, R_{2} = R_{3} = R_{4} = 10 \text{ k}.$$

$$Se+ \left[R_1 = 10k \Lambda\right]$$

3)
$$V_0 = \left(1 + \frac{\partial R}{R_{gain}}\right) \left(V_{i2} - V_{i1}\right)$$
, $R_{gain} = 1 k\Omega$

$$V_{o} = \left(1 + \frac{R}{500}\right) \left(V_{i2} - V_{i2}\right), \text{ set } R = 1 \text{ k.s.}$$

$$V_0 = 3 \left(V_{12} - V_{11} \right)$$

$$V_{i1} = 0.2 \sin(2\pi 1000t)$$
 and $V_{i2} = 0.3V$

$$fig-3: V_0 = 3(V_{12}-V_{11})$$

(fig-1) Circuit Breadboard

(fig-2) Circuit Breadboard

(fig-3) Circuit Breadboard

