Zusammenfassung Heft 2 LINAG

Ida Hönigmann

7. Dezember 2020

1 Vektorraum

Definition 1.1. $m_1, m_2, ..., m_n \in V$, $x_1, ..., x_n \in K$ $Dann \ ist \ x_1 * m_1 + x_2 * m_2 + ... + x_n * m_n \ eine$ $Linearkombination \ des \ Vektors \ m_1, ..., m_n$

Bemerkung. Wenn $m_1 = m_2$, dann Linearkombination über $m_1, ..., m_n$ auch Linearkombination über $m_2, ..., m_n$.

Definition 1.2. $M \subseteq V$

 $[M] := \{ v \in V \exists n \ge 0 \exists x_1, ..., x_n \in K \exists m_1, ..., m_n \in M : v = \sum_{i=1}^n x_i * m_i \} \text{ heißt die H\"{u}lle von } M.$

Kurz auch: $[M] = \{v \in V : v \text{ ist Linearkombination von Elementen aus } M\}.$

Bemerkung. $\emptyset \neq M \subseteq V \implies [M]$ ist Unterraum von V

Lemma 1.1. $(U_i)_{i \in I}$... Familie von Unterräumen von V

Dann ist $\bigcap_{i \in I} U_i$ ein Unterraum von V.

Lemma 1.2. [M] kann auch als $\cap \{U : U \text{ ist } U \text{nter-} raum \text{ von } V, M \in U\}$ definiert werden.

Lemma 1.3. V... Vektorraum, M... Menge, U... Unterraum, $M \subset U \subset V$

- $M \subseteq [M] \subseteq U$
- $\bullet \ M_1 \subseteq M_2 \subseteq V \implies [M_1] \subseteq [M_2]$
- \bullet [U] = U
- [[M]] = [M]

1.1 Basis

Definition 1.3. V... Vektorraum

 $M \subseteq V$ heißt Erzzeugnissystem von $V \Leftrightarrow [M] = V$

Definition 1.4. V... Vektorraum

 $M \subseteq V$ heißt linear abhängig $\Leftrightarrow \exists a \in M : a \in [M \setminus \{a\}]$

 $M \subseteq V$ heißt linear unabhängig $\Leftrightarrow \forall a \in M : a \notin [M \setminus \{a\}]$

Definition 1.5. V... Vektorraum, $M \subseteq V$

M ist Basis von $V \Leftrightarrow M$ ist linear unabhängig $\land M$ ist Erzzeugnissystem.

Lemma 1.4. $V \dots Vektorraum, M \subseteq V$

M ist linear abhängig $\Leftrightarrow \exists \sum_{i=1}^{n} x_i * a_i = 0_V$ nicht trivial

Lemma 1.5. $M \subseteq V$ $m \in [M] \Leftrightarrow [M] = [M \cup \{m\}]$

Theorem 1.6. $V \dots Vektorraum, B \subseteq V \dots Basis$ $\implies \forall x \in V \setminus \{0_V\} \exists b_1, ..., b_n \in B \ verschieden, \exists x_1, ..., x_n \in K \neq 0 : x = \sum_{i=1}^n x_i * b_i \ mit \ x_i * b_i \ eindeutig.$

Theorem 1.7. $V \dots Vektorraum, B \subseteq V \dots Teilmen-ae$

Folgende Aussagen sind äquivalent:

- B ist Basis
- ullet B ist ein minimales Erzzeugnissystem
- B ist maximal linear unabhängig

Theorem 1.8. $A \subseteq M \subseteq V$ mit V... Vektorraum und A... linear unabhängig

 $\implies \exists Y (A \subseteq Y \subseteq M \ mit \ Y \ maximal \ linear \ unabhängig).$

1.2 Maximalitätsprinzip

Definition 1.6. K ist eine Kette, wenn gilt $\forall x, y \in K : x \leq y \lor y \leq x$

Definition 1.7. K ist eine maximale Kette, wenn gilt $\forall K' \supset K : K'$ ist keine Kette

Theorem 1.9. (H, \leq) ... Halbordung $\implies \exists K \subseteq H : K \text{ ist eine maximale Kette.}$

1.3 Basis

Theorem 1.10. *V.... Vektorraum* $\Rightarrow \exists B \subseteq V : B \text{ ist } Basis$

Lemma 1.11. Sei $A \subseteq V$ linear unabhängig $\Longrightarrow \exists B \supset A : B$ ist Basis.

Sei $M \subset V$ ein Erzeugungssystem $\implies \exists B \subset M : B$ ist Basis

Theorem 1.12. Jeder Vektorraum V hat eine Basis B.

Wenn $A \subseteq V$ linear unabhängig ist $\implies \exists B \supset A$ mit B ist Basis von V.

Wenn $M \subseteq V$ Erzeugungssystem von V, dann $\exists B \supseteq M$ mit B ist Basis.

Lemma 1.13. V... Vektorraum über $K, M \subseteq V,$ $m \in V, m = \sum_{i=1}^{n} x_i * m_i \text{ mit } x_1, ..., x_n \in K^{\times} \text{ und } m_1, ..., m_n \in M \text{ verschieden}$

- M Erzeugungssystem $\implies \forall i(M \setminus \{m_i\}) \cup \{m\}$ ist Erzeugungssystem
- M linear unabhängig $\implies \forall i(M \setminus \{m_i\}) \cup \{m\}$ ist linear unabhängig
- $M \ Basis \implies \forall i(M \setminus \{m_i\}) \cup \{m\} \ ist \ Basis$

Theorem 1.14 (Austauschsatz von Steinitz). Sei M ein Erzeugungssystem von V. Sei A eine linear unabhängige Teilmenge von V. Dann gilt:

 $\exists \phi: A \to M \text{ injektiv, sodass } (M \setminus \phi(A)) \cup A \text{ ein}$ Erzeugungssystem ist.

Lemma 1.15. V... Vektorraum über K, B, B'... Basen von V

 $\implies \exists \phi: B \to B' \ injektiv \land \exists \phi': B' \to B \ injektiv$ Alle Basen zu einem Vektorraum sind gleich groß: $|B| = |B'|, d.h. \exists \psi: B \to B' \ bijektiv$ **Theorem 1.16** (Satz von Cantor-Schröder-Bernstein). C, D... Mengen, $\exists \phi: C \to D \ injektiv, \ \exists \phi': D \to C \ injektiv$ $\Longrightarrow \exists \psi: C \to D \ bijektiv$

Definition 1.8. $dimV \coloneqq Gr\"{o}\beta e \ einer \ beliebigen \ Basis \ von \ V$

Bemerkung. $dimV = \infty \Leftrightarrow \neg(dimVendlich)$

Lemma 1.17. Sei V, V'... Vektorräume über K $dimV = dimV' \Leftrightarrow V \cong V', wobei \cong bedeutet, dass <math>V$ und V' isomorph sind

Theorem 1.18. V... Vektorraum über K $V \cong K^{\langle B \rangle}$, wobei $B \supseteq V$ eine beliebige Basis ist.

Definition 1.9. V... Vektorraum über K heißt endlich erzeugt

- $\bullet \Leftrightarrow \exists M \subseteq V : [M] = V$
- $\bullet \Leftrightarrow V \ \ hat \ \ endliches \ \ \ Erzeugungssystem$
- $\bullet \Leftrightarrow V \ hat \ endliche \ Basis$
- dimV ist endlich

Lemma 1.19. V endlich erzeugt

- $M \subseteq V$ Erzeugungssystem $\implies |M| \ge dimV$
- $M \subseteq V$ linear unabhängig $\Longrightarrow |M| \le dimV$

Wenn Gleichheit gilt ist M sogar eine Basis.

Lemma 1.20. V... Vektorraum, $U_1 \subseteq U_2 \subseteq V$, $U_2...$ endlich erzeugt

- $dim U_1 \leq dim U_2$
- $U_1 \neq U_2 \Leftrightarrow dimU_1 < dimU_2$

1.4 Elementare Spaltenumformungen

Definition 1.10. Es gibt folgende elementare Spaltenumformungen:

- Multiplikation einer Spalte mit $c \in K^{\times}$
- Vertauschen zweier beliebiger Spalten

• Addition eines vielfachen einer Spalte zu einer anderen.

Lemma 1.21. $(a_1, ..., a_m)$ lässt sich durch elementare Spaltenumformungen zu $(a'_1, ... a'_m)$ umformen $\Leftrightarrow [\{a_1, ..., a_m\}] = [\{a'_1, ..., a'_m\}]$

Definition 1.11.
$$n \ge 1$$

$$Er := \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \in K^{r \times r}$$

Lemma 1.22. $A \in K^{n \times m}$ beliebig.

$$\implies \exists r \leq \min(n, m), \ sodass \ A \ durch \ elementa-$$

$$re \ Spaltenum formungen \ zu \begin{pmatrix} Er & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ * & 0 & \cdots & 0 \end{pmatrix} umge-$$

formt werden kann (bis auf die Reihenfolge der Zeilen).

Die entstandene Matrix nennt man auch Normalform.

Bemerkung. K... Körper, $n \ge 1$, $a_1,...,a_n \in K^n$ verschieden

$$b = \sum_{i=1}^{n} x_i * a_i \text{ mit } x_1, ..., x_m \in K$$

Sei $j \text{ mit } 1 \le j \le n, \text{ sodass } x_j \ne 0.$

 \implies $(a_1,...,a_n)$ lässt sich durch elementare Spaltenumformungen nach $(a_1,...,a_{j-1},b,a_{j+1},...,a_n)$ umformen.

Lemma 1.23. K... $K\ddot{o}rper, n \geq 1,$ $a_1, ..., a_n, b_1, ..., b_n \in K^n$

Falls $[\{a_1,...,a_n\}] = [\{b_1,...,b_n\}]$, dann lässt sich $(a_1,...,a_n)$ durch elementare Spaltenumformungen zu $(b_1,...,b_n)$ umformen.

1.5 Dimensionssatz

Definition 1.12. V... Vektorraum, $(U_i|i \in I)...$ Familie von Unterräumen von V

 $\sum_{i \in I} U_i = \{ \sum_{i \in I} u_i | \forall i \in I : (u_i \in U_i) u_i = 0 \text{ für }$ fast alle $i \in I \}$

Bemerkung. $\bigcup_{i \in I} U_i \subseteq [\bigcup_{i \in I} U_i] = \sum_{i \in I} U_i$

Definition 1.13. $\sum_{i \in I} U_i \text{ hei}\beta t \text{ direkt} \Leftrightarrow \forall j \in I : U_j \cap \sum_{i \in I \setminus \{j\}} U_i = \{0\}$

Schreibweise. Für direkte Summen schreibt man auch \bigoplus .

Lemma 1.24. $(U_i)_{i \in I} \dots$ Unterraume von V $S := \sum_{i \in I} U_i \text{ direkt} \Leftrightarrow \forall s \in S \exists ! \text{ Darstellung } s = \sum_{i \in I} u_i \text{ wobei } \forall i \in I(u_i \in U_i)$

Definition 1.14. U ... Unterraum von V $T \subseteq V$ heißt komplementärer Unterraum zu $U \Leftrightarrow V = U \bigoplus T$ also $U \cap T = \{0\}$.

Bemerkung. $V \setminus U$ ist kein Unterraum von V., da $0_V \notin V \setminus U$.

Theorem 1.25. $\forall U$... Unterraum von V, $\exists T$ komplementär zu U (im Allgemeinen nicht eindeutig).

Theorem 1.26. (Dimensionssatz) U, T ... Unterraum von V mit $dim(U) < \infty \wedge dim(T) < \infty$ $\implies dim(U+T) = dim(U) + dim(T) - dim(U \cap T)$

Lemma 1.27. U... Unterraum von V, $dim(V) < \infty$, T ... Komplementärraum von U dim(T) = dim(V) - dim(U)

2 Lineare Abbildungen

Definition 2.1. $V, W... Vektorr"aume <math>f: V \to W \ heißt \ linear \Leftrightarrow$

- $\forall x, y \in V : f(x+y) = f(x) + f(y)$
- $\forall c \in K \forall x \in V : f(c * x) = c * f(x)$

Definition 2.2. V... Vektorraum, f... lineare Abbildung

$$kerf := \{v \in V : f(v) = 0\}$$

Lemma 2.1. kerf ist ein Unterraum von V. f injektiv $\Leftrightarrow kerf = \{0\}$

Schreibweise. L(V, W) ist die Menge aller linearer Abbildungen von V zu W.

Lemma 2.2. $f \in L(V, W)$

- f(V) ist Unterraum von W
- $T \leq W$ Unterraum von $W \implies f^{-1}(T)$ ist Unterraum von V

- $\forall M \subseteq V : f([M]) = [f(M)]$
- f bijektiv $\Longrightarrow f^{-1} \in L(W, V)$

Lemma 2.3. $f \in L(V, W)$

- f injektiv $\Leftrightarrow dim(V) = dim(f(V))$
- f surjektiv dim(W) = dim(f(V))

Lemma 2.4. $f \in L(V, W)$, B... Basis von V

- f injektiv \Leftrightarrow $f|_B$ injektiv $\wedge f(B)$ linear un $abh\ddot{a}ngig$
- f surjektiv $\Leftrightarrow f(B)$ Erzeugungssystem von W

Definition 2.3. $f \in L(V, W)$

$$def(f) := dim(kerf)$$
 heißt der Defekt.
 $rg(f) := dim(f(V))$ heißt der Rang.

Theorem 2.5.
$$f \in L(V, W), dim(V) < \infty$$

 $rg(f) + def(f) = dim(V)$

Lemma 2.6.
$$f \in L(V, W), dim(V) = dim(W) < \infty$$

 $f \ injektiv \implies f \ surjektiv$
 $f \ surjektiv \implies f \ injektiv$

3 Fortsetzungssatz

Bemerkung. $f,g \in L(V,W), M \subseteq V...$ Erzeugungs system

$$f = g \Leftrightarrow f|_M = g|_M$$

Theorem 3.1. V, W... Vektorräume, B... Basis von $V, f: B \rightarrow W...$ Funktion

$$\implies \exists ! \hat{f} \in L(V, W) \ mit \ \hat{f}|_B = f$$