	Aula 12
Combi	nação linear
	EY e uma combinação linear de $X_1, X_2,, X_K$ EY re $X_1, X_2,, X_K$ $EIR: X = X_1 X_1 + X_2 X_2 + + X_K X_K$
Espaço	gerado
Ch	oma-se espaço gerado por X1, X2,, Xk ao njunto denotado: < X1, X2Xk>
	* formado por todos os combinações lineares de X1, X2,, Xx
	Este conjunto é un subespaço vétorial de P
	$\langle X_1, X_2, \dots, X_K \rangle = \langle \alpha_1 X_1 + \alpha_2 X_2 + \dots + \alpha_K X_K, \alpha_1, \alpha_2, \dots, \alpha_K \in \mathbb{R}^k$
	· Digemos que { X1, X2,, Xkt gera < X1, X2,, Xk> ou que é um conjunto gerado de < X1, X2,, Xk>
Εωνιίοιο	
	Determine o subespaço gerado de IR gerado felos vetores (1,-1,0,2), (0,1,2,3)
	<(1,-1,0,2), (0,1,2,3)>
	(x, y, z, w) ∈ ((1,-1,0,2), (0,1,2,3)>
	(=) 3 x1, x2 (1, 1, 2, w) = x1 (1, -1, 0, 2) + x2 (0, 1, 2, 3)
	$\int_{2\alpha_1+3\alpha_2=\omega} 2 \left(\begin{array}{c} 0 & 1 & \overline{t} \\ 2 & 3 & \overline{w} \end{array} \right)$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

