```
import pandas as pd
In [53]:
            import matplotlib.pyplot as plt
            import numpy as np
            import scipy.stats
            from scipy.stats import norm
            import seaborn as sns
            import math
In [54]:
            path = "heart.csv"
            arquivo = pd.read csv(path)
            arquivo
                              trestbps chol
                                             fbs restecg
                                                           thalach exang
                                                                           oldpeak slope ca
                                                                                               thal
                                                                                                    target
Out[54]:
                age
                     sex
                          ср
             0
                                         233
                                                                                            0
                 63
                        1
                            3
                                   145
                                                1
                                                        0
                                                               150
                                                                        0
                                                                                2.3
                                                                                        0
                                                                                                 1
                                                                                                         1
             1
                 37
                            2
                                   130
                                         250
                                                0
                                                        1
                                                               187
                                                                        0
                                                                                3.5
                                                                                            0
                                                                                                 2
                                                                                                         1
                        1
                                                                                        0
             2
                 41
                        0
                            1
                                   130
                                         204
                                                0
                                                        0
                                                               172
                                                                        0
                                                                                1.4
                                                                                        2
                                                                                            0
                                                                                                 2
                                                                                                         1
             3
                                                                                                 2
                 56
                        1
                            1
                                   120
                                         236
                                                0
                                                        1
                                                               178
                                                                        0
                                                                                8.0
                                                                                        2
                                                                                            0
                                                                                                         1
                                                                                        2
                                                                                                 2
             4
                 57
                        0
                            0
                                   120
                                         354
                                                0
                                                        1
                                                               163
                                                                        1
                                                                                0.6
                                                                                            0
                                                                                                         1
           298
                 57
                        0
                            0
                                   140
                                         241
                                                0
                                                        1
                                                               123
                                                                        1
                                                                                0.2
                                                                                            0
                                                                                                 3
                                                                                                         0
                                                                                        1
           299
                 45
                            3
                                   110
                                         264
                                                        1
                                                               132
                                                                        0
                                                                                1.2
                                                                                            0
                                                                                                 3
                                                                                                         0
                        1
                                                0
                                                                                        1
           300
                            0
                                   144
                                                                        0
                                                                                3.4
                                                                                                         0
                 68
                                         193
                                                        1
                                                               141
                                                                                            2
                                                                                                 3
                        1
                                                1
                                                                                        1
                                                        1
                                                                                                 3
           301
                 57
                        1
                            0
                                   130
                                         131
                                                0
                                                               115
                                                                        1
                                                                                1.2
                                                                                        1
                                                                                            1
                                                                                                         0
                                   130
                                                        0
                                                               174
                                                                        0
                                                                                0.0
                                                                                                 2
                                                                                                         0
           302
                 57
                        0
                            1
                                         236
                                                0
                                                                                        1
                                                                                            1
          303 rows × 14 columns
            arquivo.isnull().sum()
In [55]:
                          0
Out[55]:
           age
                          0
           sex
                          0
           ср
           trestbps
                          0
           chol
                          0
           fbs
                          0
           restecq
                          0
           thalach
                          0
                          0
           exang
                          0
           oldpeak
           slope
                          0
                          0
           ca
           thal
                          0
           target
           dtype: int64
            arquivo.describe()
In [56]:
                                                                                     fbs
                         age
                                     sex
                                                        trestbps
                                                                        chol
                                                                                                         thala
Out[56]:
                                                  ср
                                                                                             restecg
                              303.000000 303.000000
                                                      303.000000
                                                                 303.000000 303.000000
           count 303.000000
                                                                                         303.000000
                                                                                                     303.0000
```

0.683168

mean

54.366337

0.966997

131.623762 246.264026

0.528053 149.6468

0.148515

age	sex	ср	trestbps	chol	fbs	restecg	thala
9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.9051
29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.0000
47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.5000
55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.0000
61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.0000
77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.0000
	9.082101 29.000000 47.500000 55.000000 61.000000	9.082101 0.466011 29.000000 0.000000 47.500000 0.000000 55.000000 1.000000 61.000000 1.000000	9.082101 0.466011 1.032052 29.000000 0.000000 0.000000 47.500000 0.000000 0.000000 55.000000 1.000000 1.000000 61.000000 1.000000 2.000000	9.082101 0.466011 1.032052 17.538143 29.000000 0.000000 0.000000 94.000000 47.500000 0.000000 0.000000 120.000000 55.000000 1.000000 1.000000 130.000000 61.000000 1.000000 2.000000 140.000000	9.082101 0.466011 1.032052 17.538143 51.830751 29.000000 0.000000 0.000000 94.000000 126.000000 47.500000 0.000000 0.000000 120.000000 211.000000 55.000000 1.000000 130.000000 274.500000 61.000000 1.000000 2.000000 140.000000 274.500000	9.082101 0.466011 1.032052 17.538143 51.830751 0.356198 29.000000 0.000000 0.000000 126.000000 0.000000 47.500000 0.000000 120.000000 211.000000 0.000000 55.000000 1.000000 130.000000 240.000000 0.000000 61.000000 1.000000 2.000000 140.000000 274.500000 0.000000	9.082101 0.466011 1.032052 17.538143 51.830751 0.356198 0.525860 29.000000 0.000000 0.000000 126.000000 0.000000 0.000000 47.500000 0.000000 120.000000 211.000000 0.000000 0.000000 55.000000 1.000000 130.000000 240.000000 0.000000 1.000000 61.000000 1.000000 2.000000 140.000000 274.500000 0.000000 1.000000

```
In [57]: #idades= arquivo['age'].unique()
    #qtd_idades = arquivo['age'].value_counts()
    #plt.bar(idades, qtd_idades)
    plt.hist(arquivo['age'])
    arquivo['age'].describe()
```

```
303.000000
Out[57]: count
                    54.366337
         mean
          std
                     9.082101
                    29.000000
         min
          25%
                    47.500000
          50%
                    55.000000
          75%
                    61.000000
                    77.000000
         max
         Name: age, dtype: float64
```



```
In [58]: sns.distplot(arquivo['age'], hist=True, norm_hist=True, rug=True)
```

/home/gregorio/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:25 51: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level f unction with similar flexibility) or `histplot` (an axes-level function for hist ograms).

warnings.warn(msg, FutureWarning)

/home/gregorio/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:20 55: FutureWarning: The `axis` variable is no longer used and will be removed. In stead, assign variables directly to `x` or `y`.

warnings.warn(msg, FutureWarning)

Out[58]: <AxesSubplot:xlabel='age', ylabel='Density'>


```
In [59]: mulher= arquivo.query('sex ==0')
    homem = arquivo.query('sex ==1')
    sns.histplot(data=mulher['age'], kde="True")
    plt.title("Feminino")
```

Out[59]: Text(0.5, 1.0, 'Feminino')


```
In [60]: plt.bar([1,2], arquivo['sex'].value_counts(), color=['b', 'r'])
    plt.xticks([1,2], ['Masculino', 'Feminino'])
    plt.xlabel('Sex')
    arquivo['sex'].value_counts()
```

Out[60]: 1 207 0 96 Name: sex, dtype: int64


```
In [61]: plt.bar([0,1,2,3], arquivo['cp'].value_counts(), color=['r', 'g', 'b', 'orange']
    plt.xticks([0,1,2,3], ['Típico', 'Atípico', 'Não-angina', 'Assintomático'])
    arquivo['cp'].value_counts()
```

```
Out[61]: 0 143
2 87
1 50
3 23
```

Name: cp, dtype: int64


```
In [62]: plt.bar([0,1], arquivo['target'].value_counts(), color=['green', 'yellow'])
   plt.xticks([0,1], ['Doente', 'Não-doente'])
   arquivo['target'].value_counts()
```

Out[62]: 1 165 0 138

Name: target, dtype: int64

In [63]: sns.relplot(data=arquivo, x='thalach', y='oldpeak', hue='target', size='age', si

Out[63]: <seaborn.axisgrid.FacetGrid at 0x7fe2029b0880>

Teste 1

H0 : A amostra da pressão arterial é proveniente de uma distribuição normal

Rejeitar H0 se o p <= 0.05

```
In [64]: sns.distplot(arquivo['trestbps'])
```

/home/gregorio/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:25 51: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level f unction with similar flexibility) or `histplot` (an axes-level function for hist ograms).

warnings.warn(msg, FutureWarning)

Out[64]: <AxesSubplot:xlabel='trestbps', ylabel='Density'>

In [65]: stat1, pvalue1 =scipy.stats.normaltest(arquivo['trestbps'])
 pvalue1<=0.05</pre>

Out[65]: True

In [76]: pvalue1

Out[76]: 6.260708761946876e-07

Portanto, hipótese nula é rejeitada

Teste 2

H0: A amostra dos soro colesterol é proveniente de uma distribuição normal

Rejeitar H0 se o p<=0.05

In [66]: chol_400= arquivo.query('chol <400')
 chol_400</pre>

	CHC	L_40	U													
Out[66]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target	
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1	
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1	
	3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1	
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1	
	298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0	
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0	
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0	
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0	
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0	

299 rows × 14 columns

```
In [67]: sns.distplot(chol_400['chol'])
```

/home/gregorio/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:25 51: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level f unction with similar flexibility) or `histplot` (an axes-level function for hist ograms).

warnings.warn(msg, FutureWarning)

Out[67]: <AxesSubplot:xlabel='chol', ylabel='Density'>


```
In [78]: stat2, pvalue2 =scipy.stats.normaltest(chol_400['chol'])
    pvalue2<=0.05</pre>
```

Out[78]: False

In [77]: | pvalue2

Out[77]: 0.1748931592218597

Portanto, a hipótese nula não é rejeitada

```
In [82]: from statsmodels.graphics.gofplots import qqplot
qqplot(chol_400['chol'].values, line='s')
```

Out[82]:

Teste 3

H0: a distribuição do soro colesterol é normal com u = 162.5 mg/dl

H1: a distribuição do soro colesterol é normal com u =! 162.5 mg/dl


```
In [71]: X = chol_400['chol'].mean()
S = chol_400['chol'].std()
T = (X - 162.5)*(math.sqrt(303))/S #estatistica t de Student
T
```

Out[71]: 30.764859245475755

In [72]: 162.5 -(qt*S/(math.sqrt(303)))

Out[72]: 157.3155869448958

In [73]: 162.5 +(qt*S/(math.sqrt(303)))

Out[73]: 167.6844130551042

In [74]: X

Out[74]: 243.54849498327758

In [75]: **T>qt**

Out[75]: True

Portanto, a hipotese nula é rejeitada.

In []:	
In []:	
In []:	