# Московский физико-технический институт

# Реферат

Семестровый обзор лабораторных работ по курсу "Вакуумная Элекроника"

выполнили студенты 852 группы ФФКЭ

Андреев Георгий Анисимов Михаил Бурков Александр

# 1 Термоэлектронный диод

#### 1.1 Цель работы

- Изготовление вакуумного диода;
- Измерение Вольт-Амперной характеристики диода
- Экспериментальная проверка справедливости формулы Ричардсона-Дэшвина и уравнения Чайлда-Ленгиюра

### 1.2 Лабораторная установка

Схема лабораторной установки для исследования характеристик термоэлектронного диода приведена на рис. 1.



Рис. 1: схема лабораторной установки

- 1. Форвакуумный насос
- 2. Турбомолекулярный насос
- 3. Вакуумная камера
- 4. Клапан с электрическим управлением
- 5. Измерительная насадка
- 6. Фильтр входящего воздуха
- Диод
- 8. Источник питания НУ 3010Е
- 9. Вольтметр GPR-30H100

## 1.3 Выполнение работы

- 1. Осуществляем прогревание катода, параллельно снимая зависимость напряжения накала от тока накала. График зависимости приведён на рисунке 2. График зависимости сопротивления от прикладываемой мощности представлен на рисунке 3
- 2. Найдём зависимость температуры катода от тока накала. Температуру катода найдём из линейного приближения. Для теоретического графика зависимости температуры катода, используя закон Стефана-Больцмана.

Сравнение двух графиков представлено на рисунке 4.

3. Построим графики зависимости анодного тока от анодного напряжения в координатах  $lg(I_A)$  от  $lg(U_A)$  при различных значениях тока накала (рисунок 5-14)

По разным сериям экспериментов определим первеанс (g), отношение заряда электрона к массе (e/m) и эффективность катода  $(\eta)$ . Полученные значения представлены в таблице 1.

Таблица 1: Данные по разным сериям экспериментов

| <i>I</i> , A | U, B | b     | g              | $e/m, 10^{-11}$ | $\eta$ , % |
|--------------|------|-------|----------------|-----------------|------------|
| 2.4          | 3.7  | -1.5  | $3.13*10^{-6}$ | 0.8             | 26.3       |
| 2.5          | 3.9  | -1.39 | $3.98*10^{-6}$ | 1.3             | 23.8       |
| 2.6          | 4.1  | -1.31 | $4.88*10^{-6}$ | 1.95            | 22.2       |
| 2.7          | 4.5  | -1.18 | $6.5*10^{-6}$  | 3.45            | 20.4       |
| 2.8          | 4.7  | -1.16 | $6.84*10^{-6}$ | 3.84            | 19.2       |
| 2.9          | 5.0  | -1.14 | $7.11*10^{-6}$ | 4.13            | 18.2       |
| 3.0          | 5.3  | -1.12 | $7.65*10^{-6}$ | 4.78            | 18.2       |

#### 1.4 Вывод

В ходе лабораторной работы

- 1. Выполнен монтаж термоэлектронного диода
- 2. Изученны основные характеристики диода: первеанс и эффективность;
- 3. Экспериментально подтверждены закономерности ВАХ диода: При насыщении справедлив закон Ричардсона-Дэшмана, при больших токах накала выполняется закон Чайлда-Ленгмюра
- 4. Снята зависимость нагрева катода от приложенного тока. Зафиксировано её совпадение с теоретической, посчитанной по формуле Стеффана-Больцмана.



Рис. 2: Зависимость напряжения накала от тока накала



Рис. 3: Зависимость сопротивления катода от приложенной мощности



Рис. 4: Зависимость температуры катода от тока накала: расчёт по измерению сопротивления и по уравнению Стефана-Больцмана



Рис. 5: Зависимость  $lg(I_A)$  от  $lg(V_A)$  при токе накала 2.3 A, напряжении накала 3.4 В



Рис. 6: Зависимость  $lg(I_A)$  от  $lg(V_A)$  при токе накала 2.4 A, напряжении накала 3.7 В



Рис. 7: Зависимость  $lg(I_A)$  от  $lg(V_A)$  при токе накала 2.5 A, напряжении накала 3.9 В



Рис. 8: Зависимость  $lg(I_A)$  от  $lg(V_A)$  при токе накала 2.6 A, напряжении накала 4.1 В



Рис. 9: Зависимость  $lg(I_A)$  от  $lg(V_A)$  при токе накала 2.7 A, напряжении накала 4.5 В



Рис. 10: Зависимость  $lg(I_A)$  от  $lg(V_A)$  при токе накала 2.8 A, напряжении накала 4.7 В



Рис. 11: Зависимость  $lg(I_A)$  от  $lg(V_A)$  при токе накала 2.9 A, напряжении накала 5.0 В



Рис. 12: Зависимость  $lg(I_A)$  от  $lg(V_A)$  при токе накала 3.0 A, напряжении накала 5.3 В



Рис. 13: Зависимость  $lg(I_A)$  от  $lg(V_A)$  при токе накала 3.1 A, напряжении накала 5.7 В



Рис. 14: Зависимость  $lg(I_A)$  от  $lg(V_A)$  при токе накала 3.2 A, напряжении накала 5.9 В