Kafli 8: Jaðargildisverkefni fyrir venjulegar afleiðujöfnur

Töluleg greining, STÆ405G

26. og 28. mars, 2014

Benedikt Steinar Magnússon, bsm@hi.is Verkfræði- og náttúruvísindasvið Háskóli Íslands

Yfirlit

Kafli 8: Jaðargildisverkefni fyrir venjulegar afleiðujöfnur

Kafli	Heiti á viðfangsefni	Bls.	Glærur
8.0	Almenn atriði um jaðargildisverkefni	656-660	3-4
8.1	Línulegar jöfnur – Dirichlet-jaðarskilyrði	660-670	5-11
8.2	Línulegar jöfnur – Blönduð jaðarskilyrði	673-683	12-18

8.0 Jaðargildisverkefni fyrir venjulegar afleiðujöfnur

Við ætlum að finna nálgunarlausnir á verkefnum af gerðinni

$$y'' = f(x, y, y'),$$
 $a \le x \le b,$
 $\alpha_1 y(a) + \alpha_2 y'(a) = \alpha_3,$
 $\beta_1 y(b) + \beta_2 y'(b) = \beta_3.$

8.0 Jaðargildisverkefni fyrir venjulegar afleiðujöfnur

Við ætlum að finna nálgunarlausnir á verkefnum af gerðinni

$$y'' = f(x, y, y'),$$
 $a \le x \le b,$
 $\alpha_1 y(a) + \alpha_2 y'(a) = \alpha_3,$
 $\beta_1 y(b) + \beta_2 y'(b) = \beta_3.$

Afleiðujafnan er sögð vera línuleg ef hún er á forminu

$$y'' = p(x)y' + q(x)y + r(x), \qquad x \in [a, b].$$

8.0 Jaðarskilyrðin nefnast

- (i) Dirichlet-jaðarskilyrði: $y(a) = \alpha$, $y(b) = \beta$ Fallsjaðarskilyrði:
- (ii) Neumann-jaðarskilyrði: $y'(a) = \alpha$, $y'(b) = \beta$ Afleiðujaðarskilyrði: Flæðisjaðarskilyrði:
- (iii) Robin-jaðarskilyrði: $\alpha_1 y(a) + \alpha_2 y'(a) = \alpha_3$ $\beta_1 y(b) + \beta_2 y'(b) = \beta_3$ $(\alpha_1, \alpha_2) \neq (0, 0)$

Blandað jaðarskilyrði:

Athugið að blandað jaðarskilyrði með $\alpha_2=0$ (eða $\beta_2=0$) er Dirichlet skilyrði með $\alpha=\alpha_3/\alpha_1$ (eða $\beta=\beta_3/\beta_1$). Athugið að blandað jaðarskilyrði með $\alpha_1=0$ (eða $\beta_1=0$) er Neumann skilyrði með $\alpha=\alpha_3/\alpha_2$ (eða $\beta=\beta_3/\beta_2$).

Gefum okkur jafna skiptingu á bilinu [a, b], $x_j = a + hj$, h = (b - a)/N,

$$a = x_0 < x_1 < x_2 < \cdots < x_{N-1} < x_N = b.$$

Gefum okkur jafna skiptingu á bilinu [a, b], $x_j = a + hj$, h = (b - a)/N,

$$a = x_0 < x_1 < x_2 < \cdots < x_{N-1} < x_N = b.$$

Við nefnum x_j skiptipunkta eða hnútpunkta skiptingarinnar.

Gefum okkur jafna skiptingu á bilinu [a, b], $x_j = a + hj$, h = (b - a)/N,

$$a = x_0 < x_1 < x_2 < \cdots < x_{N-1} < x_N = b.$$

Við nefnum x_j skiptipunkta eða hnútpunkta skiptingarinnar.

Punktarnir $a=x_0$ og $b=x_N$ nefnast *endapunktar* skiptingarinnar og x_j , með $j=1,\ldots,N-1$, nefnast *innri punktar* skiptingarinnar.

Gefum okkur jafna skiptingu á bilinu [a, b], $x_j = a + hj$, h = (b - a)/N,

$$a = x_0 < x_1 < x_2 < \cdots < x_{N-1} < x_N = b.$$

Við nefnum x_j skiptipunkta eða hnútpunkta skiptingarinnar.

Punktarnir $a = x_0$ og $b = x_N$ nefnast *endapunktar* skiptingarinnar og x_j , með j = 1, ..., N-1, nefnast *innri punktar* skiptingarinnar.

Í fyrstu atrennu ætlum vð aðeins að nálga lausnina fyrir línulegar jöfnur,

$$y'' = p(x)y' + q(x)y + r(x), \qquad x \in [a, b].$$

Við reiknum út nálgun á réttu lausninni y(x) í hnútpunktunum.

Gefum okkur jafna skiptingu á bilinu [a, b], $x_j = a + hj$, h = (b - a)/N,

$$a = x_0 < x_1 < x_2 < \cdots < x_{N-1} < x_N = b.$$

Við nefnum x_i skiptipunkta eða hnútpunkta skiptingarinnar.

Punktarnir $a=x_0$ og $b=x_N$ nefnast *endapunktar* skiptingarinnar og x_j , með $j=1,\ldots,N-1$, nefnast *innri punktar* skiptingarinnar. Í fyrstu atrennu ætlum vð aðeins að nálga lausnina fyrir línulegar jöfnur,

$$y'' = p(x)y' + q(x)y + r(x), \qquad x \in [a, b].$$

Við reiknum út nálgun á réttu lausninni y(x) í hnútpunktunum.

Rétta gildið í punktinum x_j táknum við með y_j og nálgunargildið með w_j ,

$$y_j = y(x_j) \approx w_j.$$

Eins skrifum við

$$p_j = p(x_j), \qquad q_j = q(x_j), \qquad r_j = r(x_j).$$

8.1 Línulegar afleiðujöfnur:

Nú leiðum við út nálgunarjöfnur, eina fyrir hvern innri skiptipunkt. Við byrjum á því að stinga punkti x_j inn í afleiðujöfnuna

$$\{y''(x) = p(x)y'(x) + q(x)y(x) + r(x)\}_{x=x_j}.$$

Næst skiptum á afleiðum og mismunakvótum i þessari jöfnu,

$$\frac{y_{j+1}-2y_j+y_{j-1}}{h^2}+O(h^2)=p_j\frac{y_{j+1}-y_{j-1}}{2h}+q_jy_j+r_j+O(h^2).$$

8.1 Línulegar afleiðujöfnur:

Nú leiðum við út nálgunarjöfnur, eina fyrir hvern innri skiptipunkt. Við byrjum á því að stinga punkti x_j inn í afleiðujöfnuna

$$\{y''(x) = p(x)y'(x) + q(x)y(x) + r(x)\}_{x=x_j}.$$

Næst skiptum á afleiðum og mismunakvótum i þessari jöfnu,

$$\frac{y_{j+1}-2y_j+y_{j-1}}{h^2}+O(h^2)=p_j\frac{y_{j+1}-y_{j-1}}{2h}+q_jy_j+r_j+O(h^2).$$

Síðan stillum við upp nálgunargildunum í stað réttu gildanna:

8.1 Skipt á afleiðum og mismunakvótum

Endurtökum réttu jöfnuna

$$\frac{y_{j+1}-2y_j+y_{j-1}}{h^2}+O(h^2)=p_j\frac{y_{j+1}-y_{j-1}}{2h}+q_jy_j+r_j+O(h^2).$$

8.1 Skipt á afleiðum og mismunakvótum

Endurtökum réttu jöfnuna

$$\frac{y_{j+1}-2y_j+y_{j-1}}{h^2}+O(h^2)=p_j\frac{y_{j+1}-y_{j-1}}{2h}+q_jy_j+r_j+O(h^2).$$

Nú fellum við niður leifarliðina og setjum nálgunargildin í stað réttu gildanna:

$$\frac{w_{j+1}-2w_j+w_{j-1}}{h^2}=p_j\frac{w_{j+1}-w_{j-1}}{2h}+q_jw_j+r_j$$

Hér fáum við eina jöfnu fyrir sérhvern innri skiptipunkt $j=1,\ldots,N-1$.

8.1 Dirichlet-jaðarskilyrði

Við erum komin með N-1 nálgunarjöfnu til þess að finna N+1 nálgunargildi w_0,\ldots,w_N fyrir y_0,\ldots,y_N .

Ef við erum að leysa línulegt jaðargildisverkefni með Dirichlet-jaðarskilyrðum,

$$y'' = p(x)y' + q(x)y + r(x), a \le x \le b,$$

$$y(a) = \alpha og y(b) = \beta,$$

8.1 Dirichlet-jaðarskilyrði

Við erum komin með N-1 nálgunarjöfnu til þess að finna N+1 nálgunargildi w_0,\ldots,w_N fyrir y_0,\ldots,y_N .

Ef við erum að leysa línulegt jaðargildisverkefni með Dirichlet-jaðarskilyrðum,

$$y'' = p(x)y' + q(x)y + r(x), a \le x \le b,$$

$$y(a) = \alpha og y(b) = \beta,$$

þá fæst nálgunin með því að leysa línulega jöfnuhneppið

$$w_0 = \alpha,$$

$$\frac{w_{j+1} - 2w_j + w_{j-1}}{h^2} = p_j \frac{w_{j+1} - w_{j-1}}{2h} + q_j w_j + r_j, \qquad j = 1, \dots, N-1,$$

$$w_N = \beta.$$

8.1 Jafngild framsetning á hneppinu

Við lítum aftur á línulegu nálgunarjöfnurnar

$$\frac{w_{j+1}-2w_j+w_{j-1}}{h^2}=p_j\frac{w_{j+1}-w_{j-1}}{2h}+q_jw_j+r_j.$$

8.1 Jafngild framsetning á hneppinu

Við lítum aftur á línulegu nálgunarjöfnurnar

$$\frac{w_{j+1}-2w_j+w_{j-1}}{h^2}=p_j\frac{w_{j+1}-w_{j-1}}{2h}+q_jw_j+r_j.$$

Margföldum alla liði með $-h^2$ og röðum síðan óþekktu stærðunum vinstra mengin jafnaðarmerkisins. Þá fæst línulega jöfnuhneppið

$$\left(-1-rac{1}{2}hp_{j}
ight)w_{j-1}+\left(2+h^{2}q_{j}
ight)w_{j}+\left(-1+rac{1}{2}hp_{j}
ight)w_{j+1}=-h^{2}r_{j}$$
 fyrir $j=1,2,3,\ldots,N-1$.

8.1 Línulega jöfnuhneppið á fylkjaformi

Par sem stuðlarnir l_j , d_j og u_j eru gefnir með

$$l_j = -1 - \frac{1}{2}hp_j$$

$$d_j = 2 + h^2q_j$$

$$u_j = -1 + \frac{1}{2}hp_j$$

8.1 Óþekktar stærðir og hægri hlið

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ \vdots \\ w_{N-2} \\ w_{N-1} \\ w_N \end{bmatrix} \quad \text{og} \quad \mathbf{b} = \begin{bmatrix} \alpha \\ -h^2 r_1 \\ -h^2 r_2 \\ \vdots \\ \vdots \\ -h^2 r_{N-2} \\ -h^2 r_{N-1} \\ \beta \end{bmatrix}$$

Petta jöfnuhneppi er leyst og þar með eru nálgunargildin fundin.

Við skulum gera ráð fyrir að rétta lausnin y(x) uppfylli blandað jaðarskilyrði í x=a,

$$\alpha_1 y(a) + \alpha_2 y'(a) = \alpha_3.$$

Við skulum gera ráð fyrir að rétta lausnin y(x) uppfylli blandað jaðarskilyrði í x=a,

$$\alpha_1 y(a) + \alpha_2 y'(a) = \alpha_3.$$

Til þess að líkja eftir afleiðujöfnunni í punktinum x=a þá hugsum við okkur að við bætum einum punkti $x_{-1}=a-h$ við og látum w_f tákna ímyndað gildi lausnarinnar í x_{-1} .

Við skulum gera ráð fyrir að rétta lausnin y(x) uppfylli blandað jaðarskilyrði í x=a,

$$\alpha_1 y(a) + \alpha_2 y'(a) = \alpha_3.$$

Til þess að líkja eftir afleiðujöfnunni í punktinum x=a þá hugsum við okkur að við bætum einum punkti $x_{-1}=a-h$ við og látum w_f tákna ímyndað gildi lausnarinnar í x_{-1} .

Svona punktur x_{-1} utan við skiptinguna er kallaður *felupunktur* við skiptinguna og ímyndað gildi w_f í felupunkti er kallað *felugildi*.

Takið eftir því að lausnin er ekki til í felupunktinum, en við reiknum eins og w_f sé gildi hennar þar.

Við skulum gera ráð fyrir að rétta lausnin y(x) uppfylli blandað jaðarskilyrði í x=a,

$$\alpha_1 y(a) + \alpha_2 y'(a) = \alpha_3.$$

Til þess að líkja eftir afleiðujöfnunni í punktinum x=a þá hugsum við okkur að við bætum einum punkti $x_{-1}=a-h$ við og látum w_f tákna ímyndað gildi lausnarinnar í x_{-1} .

Svona punktur x_{-1} utan við skiptinguna er kallaður *felupunktur* við skiptinguna og ímyndað gildi w_f í felupunkti er kallað *felugildi*.

Takið eftir því að lausnin er ekki til í felupunktinum, en við reiknum eins og w_f sé gildi hennar þar.

Mismunajafnan sem líkir eftir afleiðujöfnunni í punktinum x₀ er

$$\left(-1-\frac{1}{2}hp_{0}\right)w_{f}+\left(2+h^{2}q_{0}\right)w_{0}+\left(-1+\frac{1}{2}hp_{0}\right)w_{1}=-h^{2}r_{0}$$

Við skulum gera ráð fyrir að rétta lausnin y(x) uppfylli blandað jaðarskilyrði í x=a,

$$\alpha_1 y(a) + \alpha_2 y'(a) = \alpha_3.$$

Til þess að líkja eftir afleiðujöfnunni í punktinum x=a þá hugsum við okkur að við bætum einum punkti $x_{-1}=a-h$ við og látum w_f tákna ímyndað gildi lausnarinnar í x_{-1} .

Svona punktur x_{-1} utan við skiptinguna er kallaður *felupunktur* við skiptinguna og ímyndað gildi w_f í felupunkti er kallað *felugildi*.

Takið eftir því að lausnin er ekki til í felupunktinum, en við reiknum eins og w_f sé gildi hennar þar.

Mismunajafnan sem líkir eftir afleiðujöfnunni í punktinum x_0 er

$$\left(-1-\frac{1}{2}hp_{0}\right)w_{f}+\left(2+h^{2}q_{0}\right)w_{0}+\left(-1+\frac{1}{2}hp_{0}\right)w_{1}=-h^{2}r_{0}$$

Mismunajafnan sem líkir eftir jaðarskilyrðinu er

$$\alpha_1 w_0 + \alpha_2 \frac{w_1 - w_f}{2h} = \alpha_3.$$

8.2 Felugildið leyst út

Jafnan sem líkir eftir jaðarskilyrðinu er:

$$\alpha_1 w_0 + \alpha_2 \frac{w_1 - w_f}{2h} = \alpha_3.$$

Út úr henni leysum við

$$w_f = w_1 - \frac{2h}{\alpha_2} (\alpha_3 - \alpha_1 w_0)$$

8.2 Felugildið leyst út

Jafnan sem líkir eftir jaðarskilyrðinu er:

$$\alpha_1 w_0 + \alpha_2 \frac{w_1 - w_f}{2h} = \alpha_3.$$

Út úr henni leysum við

$$w_f = w_1 - \frac{2h}{\alpha_2} (\alpha_3 - \alpha_1 w_0)$$

Við stingum síðan þessu gildi inn í jöfnuna sem líkir eftir afleiðujöfnunni

$$\left(-1 - \frac{1}{2}hp_0\right)w_f + \left(2 + h^2q_0\right)w_0 + \left(-1 + \frac{1}{2}hp_0\right)w_1 = -h^2r_0$$

8.2 Felugildið leyst út

Jafnan sem líkir eftir jaðarskilyrðinu er:

$$\alpha_1 w_0 + \alpha_2 \frac{w_1 - w_f}{2h} = \alpha_3.$$

Út úr henni leysum við

$$w_f = w_1 - \frac{2h}{\alpha_2} (\alpha_3 - \alpha_1 w_0)$$

Við stingum síðan þessu gildi inn í jöfnuna sem líkir eftir afleiðujöfnunni

$$\left(-1 - \frac{1}{2}hp_0\right)w_f + \left(2 + h^2q_0\right)w_0 + \left(-1 + \frac{1}{2}hp_0\right)w_1 = -h^2r_0$$

Útkoman verður:

8.2 Jöfnur fyrir gildin í endapunktum

Fyrsta jafna hneppisins:

$$\left(2 + h^2 q_0 - \left(2 + h p_0\right) h \frac{\alpha_1}{\alpha_2}\right) w_0 - 2w_1 = -h^2 r_0 - \left(2 + h p_0\right) h \frac{\alpha_3}{\alpha_2}.$$

8.2 Jöfnur fyrir gildin í endapunktum

Fyrsta jafna hneppisins:

$$\left(2 + h^2 q_0 - \left(2 + h p_0\right) h \frac{\alpha_1}{\alpha_2}\right) w_0 - 2w_1 = -h^2 r_0 - \left(2 + h p_0\right) h \frac{\alpha_3}{\alpha_2}.$$

Með því að innleiða felupunkt $x_{N+1}=b+h$ hægra megin við skiptinguna, tilsvarandi felugildi w_f og leysa saman tvær jöfnur, þá fáum við síðustu jöfnu hneppisins :

$$-2w_{N-1} + \left(2 + h^2 q_N + \left(2 - h p_N\right) h \frac{\beta_1}{\beta_2}\right) w_N = -h^2 r_N - \left(2 - h p_N\right) h \frac{\beta_3}{\beta_2}$$

8.2 Jöfnur fyrir gildin í endapunktum

Fyrsta jafna hneppisins:

$$\left(2 + h^2 q_0 - \left(2 + h p_0\right) h \frac{\alpha_1}{\alpha_2}\right) w_0 - 2w_1 = -h^2 r_0 - \left(2 + h p_0\right) h \frac{\alpha_3}{\alpha_2}.$$

Með því að innleiða felupunkt $x_{N+1}=b+h$ hægra megin við skiptinguna, tilsvarandi felugildi w_f og leysa saman tvær jöfnur, þá fáum við síðustu jöfnu hneppisins :

$$-2w_{N-1} + \left(2 + h^2 q_N + \left(2 - h p_N\right) h \frac{\beta_1}{\beta_2}\right) w_N = -h^2 r_N - \left(2 - h p_N\right) h \frac{\beta_3}{\beta_2}$$

Við erum því aftur komin með $(\mathit{N}+1) imes(\mathit{N}+1)$ -jöfnuhneppi

8.2 Hneppið á fylkjaformi

Par sem stuðlarnir l_j , d_j og u_j fyrir $j=1,2,3\ldots,N-1$ eru þeir sömu og áður.

$$I_j = -1 - \frac{1}{2}hp_j$$

$$d_j = 2 + h^2q_j$$

$$u_j = -1 + \frac{1}{2}hp_j$$

8.2 Fyrsta og síðasta lína hneppisins

$$a_{11} = \begin{cases} 1, & \text{Dirichlet i } x = a : \alpha_1 \neq 0, \alpha_2 = 0, \\ d_0 & \text{Neumann i } x = a : \alpha_1 = 0, \alpha_2 \neq 0, \\ d_0 + 2hl_0\alpha_1/\alpha_2 & \text{Robin i } x = a : \alpha_2 \neq 0. \end{cases}$$

$$a_{12} = \begin{cases} 0, & \text{Dirichlet i } x = a : \alpha_1 \neq 0, \alpha_2 = 0, \\ -2, & \text{annars.} \end{cases}$$

$$a_{N+1,N+1} = \begin{cases} 1, & \text{Dirichlet i } x = b : \beta_1 \neq 0, \beta_2 = 0, \\ d_N & \text{Neumann i } x = b : \beta_1 = 0, \beta_2 \neq 0, \\ d_N - 2hu_N\beta_1/\beta_2 & \text{Robin i } x = a : \beta_2 \neq 0. \end{cases}$$

$$a_{N+1,N} = \begin{cases} 0, & \text{Dirichlet i } x = b : \beta_1 \neq 0, \beta_2 = 0, \\ -2 & \text{annars.} \end{cases}$$

8.2 Hægri hlið hneppisins

$$\mathbf{b} = \begin{bmatrix} b_1 \\ -h^2 r_1 \\ -h^2 r_2 \\ \vdots \\ \vdots \\ -h^2 r_{N-2} \\ -h^2 r_{N-1} \\ b_{N+1} \end{bmatrix}$$

$$b_1 = \begin{cases} \alpha = \alpha_3/\alpha_1, & \text{Dirichlet i } x = a : \alpha_1 \neq 0, \alpha_2 = 0, \\ -h^2 r_0 + 2h l_0 \alpha_3/\alpha_2 & \text{Neumann i } x = a : \alpha_1 = 0, \alpha_2 \neq 0, \\ -h^2 r_0 + 2h l_0 \alpha_3/\alpha_2 & \text{Robin i } x = a : \alpha_2 \neq 0. \end{cases}$$

$$b_{N+1} = \begin{cases} \beta = \beta_3/\beta_1, & \text{Dirichlet i } x = a : \beta_1 \neq 0, \beta_2 = 0, \\ -h^2 r_N - 2h u_N \beta_3/\beta_2 & \text{Neumann i } x = a : \beta_1 = 0, \beta_2 \neq 0, \\ -h^2 r_N - 2h u_N \beta_3/\beta_2 & \text{Robin i } x = a : \beta_2 \neq 0. \end{cases}$$
8.17

8.17 / 8.19

8.2 Samantekt

Gildi lausnarinnar y(x) á línulega jaðargildisverkefninu

$$y'' = p(x)y' + q(x)y + r(x),$$
 $a \le x \le b,$
 $\alpha_1 y(a) + \alpha_2 y'(a) = \alpha_3,$
 $\beta_1 y(b) + \beta_2 y'(b) = \beta_3$

í punktunum $x_j = a + jh$, þar sem h = (b - a)/N og j = 0, ..., N, eru nálguð með

$$w_j \approx y(x_j) = y_j$$

8.2 Samantekt

Gildi lausnarinnar y(x) á línulega jaðargildisverkefninu

$$y'' = p(x)y' + q(x)y + r(x),$$
 $a \le x \le b,$
 $\alpha_1 y(a) + \alpha_2 y'(a) = \alpha_3,$
 $\beta_1 y(b) + \beta_2 y'(b) = \beta_3$

í punktunum $x_j=a+jh$, þar sem h=(b-a)/N og $j=0,\ldots,N$, eru nálguð með

$$w_j \approx y(x_j) = y_j$$

Dálkvigurinn

$$\mathbf{w} = [w_0, w_1, \dots, w_N]^T$$

er lausn á línulegu jöfnuhneppi $A\mathbf{w} = \mathbf{b}$.

Stuðlum $(N+1) \times (N+1)$ fylkisins A og (N+1)-dálkvigursins $\mathbf b$ hefur verið lýst hér að framan.

Kafli 8: Fræðilegar spurningar

- 1. Hvað er átt við með því að lausn afleiðujöfnu á bili [a, b] uppfylli *Dirichlet-jaðarskilyrði*? (Samheiti er *fallsjaðarskilyrði*.)
- Hvað er átt við með því að lausn afleiðujöfnu á bili [a, b] uppfylli Neumann-jaðarskilyrði? (Samheiti eru afleiðujaðarskilyrði og flæðisjaðarskilyrði.)
- 3. Hvað er átt við með því að lausn afleiðujöfnu á bili [a, b] uppfylli Robin-jaðarskilyrði? (Samheiti er blandað jaðarskilyrði.)
- 4. Hvernig er nálgunarjafna fyrir línulegu afleiðujöfnuna y'' = p(x)y' + q(x)y + r(x) í innri skiptipunkti á bilinu [a, b] leidd út?
 - 5. Hvernig eru *felupunktur* og *felugildi* notuð til þess að meðhöndla blandað jaðarskilyrði $\alpha_1 y(a) + \alpha_2 y'(a) = \alpha_3$ í vinstri endapunkti bilsins [a, b]?
- 6. Hvernig er *felupunktur* og *felugildi* notuð til þess að meðhöndla blandað jaðarskilyrði $\alpha_1 y(a) + \alpha_2 y'(a) = \alpha_3$ í vinstri endapunkti bilsins [a,b] og hvernig verður nálgunarjafnan í punktinum x=0 þegar þetta er gert?

8.19 / 8.19