Analog CMOS Integrated Circuit Design Cheat Sheet By Xiao Ma (mxlol233@outlook.com)

Model of MOS Transistors

Process parameters (n, V_{TH}, KP, V_E) :

$$t_{OX} = \frac{L_{min}}{50} \tag{1}$$

$$t_{si} = \sqrt{\frac{2\epsilon_{si}(\Phi - V_{BD})}{qN_B}} \tag{2}$$

$$C_{OX} = \frac{\epsilon_{OX}}{t_{OX}} \tag{3}$$

$$C_D = \frac{\epsilon_{si}}{t_{si}} \tag{4}$$

$$KP = \mu C_{OX} \tag{5}$$

$$\beta = KP\frac{W}{L} \tag{6}$$

$$Q_{dep} = \sqrt{4q\epsilon_{si}|\Phi_F|N_{sub}} \tag{7}$$

$$V_{TH0} = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{OX}} \tag{8}$$

$$V_{TH} = V_{TH0} + \gamma (\sqrt{|2\Phi_F| + V_{BS}} - \sqrt{|2\Phi_F|})$$
 (9)

$$n = \frac{\gamma}{\sqrt{|2\Phi_F| + V_{BS}}} = 1 + \frac{C_D}{C_{OX}} \tag{10}$$

In linear region:

$$I_{DS} = \beta [(V_{GS} - V_{TH})V_{DS} - \frac{1}{2}V_{DS}^2]$$
 (11)

$$R_{on} = \frac{1}{\beta (V_{GS} - V_{TH})} \tag{12}$$

Channel-Length modulation in saturation region:

$$K' = \frac{KP}{2n} \tag{13}$$

$$\lambda = \frac{1}{V_E L} \tag{14}$$

$$I_{DS} = \frac{1}{2}K'\frac{W}{L}(V - V_{TH})^2(1 + \lambda V_{DS})$$
 (15)

$$r_o = \frac{\partial V_{DS}}{\partial I_{DS}} \approx \frac{1}{\lambda I_{DS}} = \frac{V_E L}{I_{DS}}$$
 (16)

Saturation region has three distinctive regions: weak-inversion (exponential region), strong-inversion, and velocity saturation.

Names	Symbols	Values
dielectric constant of sub-silicon	ϵ_{si}	1 pF/cm
dielectric constant of gate-oxide	ϵ_{OX}	$0.34~\mathrm{pF/cm}$
electron charge	\overline{q}	$1.6 \times 10^{-19} \text{ C}$
minium channel length	L_{min}	$0.35 \; \mu {\rm m}$
width of gate-oxide	t_{OX}	0.1 nm
width of depletion layer	t_{si}	7 nm
junction built-in voltage	Φ	0.6 V
drain-bulk voltage	V_{BD}	-3.3V
gate-oxide capacitance	C_{OX}	$0.5 \ \mu\mathrm{F/cm}^2$
depletion layer capacitance	C_D	$0.1 \ \mu {\rm F/cm^2}$
bulk doping level	N_B	$4 \times 10^{17} \text{ cm}^{-3}$
P type mobility rate	μ_p	$250 \text{ cm}^2/\text{Vs}$
N type mobility rate	μ_n	$600 \text{ cm}^2/\text{Vs}$
N type KP	KP_n	$300 \ \mu A/V^2$
	n	$1.2 \cdots 1.5$
	$ 2\Phi_F $	0.6 V
	γ	$0.5 \cdots 0.8 \text{ V}^{\frac{1}{2}}$
N type K'	K'_n	$100 \ \mu A/V^2$
P type K'	K'_{p}	$40 \ \mu A/V^2$

Weak-Inversion region (exponential region)

strong-inversion

velocity saturation