Гробов А.В. Кафедра физики элементарных частиц МИФИ

Машинное обучение

Лекция 2

- ⋄ Градиентный спуск.
- Генетический алгоритм
- ♦ Сбор и обработка данных.
- ♦ Корреляции и зависимости в данных.
- ♦ Обучение с учителем.
- 💸 Задачи классификации и регрессии.

Градиентный спуск

- Рассмотрим ситуацию, когда нам надо решить задачу оптимизации т.е. найти минимум некоторой функции f(x_1,x_2,...,x_n). Пример оптимизация весов нейронной сети при помощи минимизации функционала ошибки.
- \diamond Градиент функции grad(f(x)) = 0 условие минимума
- ♦ Зачастую функция сложная и имеет много переменных
- Поэтому искать минимум надо численно
- \Leftrightarrow Проблема в том, что длительность и аккуратность метода зависят от числа шагов и величины шага, а так же начального значения x_0 .
- ♦ Локальные минимумы это ловушка.
- \diamond Остановка: $x_{n+1}-x_n<arepsilon$ или ограничение на количество шагов

Стохастический градиентный спуск

- \Leftrightarrow Чтобы выбраться из локального минимума, мы можем двигаться в некотором случайном направлении случайный поиск $\frac{f(x)-f(x+\eta\cdot l)}{\eta}$, где η шаг, l единичный вектор случайного направления
- SGD (Stochastic Gradient Descent)
- \Leftrightarrow Рассмотрим функционал $SE = f(\omega_i, x_i, y_i)$
- \Leftrightarrow Оптимизация весов: $\omega_i^1 = \omega_i^0 \sum_x \eta \frac{\partial SE}{\partial \omega_i} \Big|_0$

Основная идея – избавиться от суммы, т.е. проводить оптимизацию по случайным объектам, аналогично случайному поиску для функционалов

Andrew Ng

Генетический алгоритм – дифференциальная эволюция

- ♦ Основные шаги:
- Выбор популяции: выбор некоторого числа объектов N векторов из пространства \mathbb{R}^n
- Мутация: изменение одного из объектов C' = C F * (A B)
- Скрещивание: создание нового объекта Т, который наследует от мутировавшего С' с некоторой вероятностью Р, от немутировавшего родителя с вероятностью 1-Р
- Отбор: согласно критериям для решения задачи –после формирования потомка Т, сравниваем например MSE(T) и MSE(X), кто лучше, тот попадает в следующую популяцию.

Перерыв

Домашнее задание

- http://www.deeplearningbook.org/contents/numerical.html
- ♦ Baldi, P., P. Sadowski, and D. Whiteson. "Searching for Exotic Particles in High-energy Physics with Deep Learning." Nature Communications 5 (July 2, 2014).
- Реализовать градиентный спуск и стохастический градиентный спуск для среднеквадратичной ошибки в Jupyter Notebook.

Вопросы?

