Numerical approaches to analysis

Using numerical solutions to problems
The Solver in Excel

Analytical vs. numerical solutions

- When a mathematical solution can be found by writing equations and solving for the parameter of interest, the solution is an "analytical" solution
- Numerical approach iterative, sophisticated form of trial and error
- Analytical solutions are exact, numerical solutions are approximate

Solutions to equations

Two equations, one linear and one quadratic

$$- y = 3x^2 + 2x - 10$$

- -y = 6x 3
- Roots of the equations: what value(s) of x yield the same values of y for both equations?
- There is an analytical solution to this – we'll see if a numerical approach agrees with the analytical approach
- First, graph them how many solutions should we expect?

The analytical solution

$$y=3x^2+2x-10$$

 $y=6x-3$

$$6x-3=3x^2+2x-10$$

$$0 = 3x^2 - 4x - 7$$

Quadratic equation in standard form

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = 2\frac{1}{3}, \quad y = 11$$

$$x = -1, \quad y = -9$$

Numerical approach

- We'll get solutions for both X and Y at the same time
- Re-write the equations as:

$$0 = 3x^2 + 2x - 10 - y$$

$$0 = 6x - 3 - y$$

- Use same values for X and Y in both equations, change them until both equal 0
- When the sum of both equations is 0, do you have your solutions? Problem?

Numerical method – in Excel

- Enter initial "guesses" for x and y
- Calculate F1 and F2 for these guesses
- Square the values of F1 and F2, and sum them
- Change initial guesses for X and Y – if the sum of the squared values gets closer to 0, we are getting closer to a solution
- Stop when the sum of squared differences is equal to 0 (or at least, close enough)

Try a new set of numbers for x and y

- Use x = 1, y = 1
- The sum of squared values for F1 and F2 is smaller, but not 0 yet
- Try again...

4	Α	В	С
1	F1	3x^2+2x -1	.0 -у
2	F2	6x - 3 - y	
3			
4	Х	1	
5	у	1	
6			
7	F1	-6	
8	F2	2	
9			
10	Sum sq	40	
11			

Not 0 yet...

- Better
- Blind search could take a really long time
- There are good search algorithms that converge on solutions quickly
- Excel's Solver uses these

	Α	В	С
1	F1	3x^2+2x -1	.0 -у
2	F2	6x - 3 - y	
3			
4	Х	2	
5	у	10	
6			
7	F1	-4	
8	F2	-1	
9			
10	Sum sq	17	
11			

Optimization algorithms used by Excel's Solver

- For linear problems, uses the Simplex method
- For non-linear problems it uses a generalized gradient method
- Which to use is judged by Excel based on the formulas in the spreadsheet
- Both require initial guesses of the solutions
- Both can accept constraints (i.e. only positive values considered)
- Both are iterative (i.e. new values chosen until no more improvement possible)

Solver

The sum of the squares of the two equations

The value we want the sum to be

В

6x - 3 - y

3x^2+2x -10 -y

0

-10

-3

109

1 F1

2 F2

4

5 6

8 F2

9

11

F1

10 Sum sq

The values of x and y to change

The first solution

	<u>A</u>	В	C
1	F1	3x^2+2x -1	.0 -у
2	F2	6x - 3 - y	
3			
4	х	2.333368	
5	у	11.00036	
6			
7	F1	0.000189	
8	F2	-0.00015	
9			
10	Sum sq	5.95E-08	

$$x=2\frac{1}{3}, y=11$$

What about the second solution?

- There are two points of intersection of the lines, so two solutions (i.e. two values of x at which the lines have the same y value)
- Our trial and error approach gave us one, now we need the other
- To get the second, try another starting point closer to the other solution and run Solver again

Start closer to the second solution...

4	Α	В	С
1	F1	3x^2+2x -1	.0 -у
2	F2	6x - 3 - y	
3			
4	Х	-1	
5	у	-10	
6			
7	F1	1	
8	F2	1	
9			
10	Sum sq	2	
11	A\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\	TO UNIVERSALES PROTESTALES CONTRACTORS	CUES IN COUNTY FINIS NO. SURVEY AND A

Second solution

4	Α	В	С
1	F1	3x^2+2x -1	.0 -у
2	F2	6x - 3 - y	
3			
4	Х	-1	
5	У	-8.99996)
6			
7	F1	-5.6E-05	
8	F2	-1.4E-05	
9			
10	Sum sq	3.32E-09	
11	OUTSAMONT OF DEVILERATION FAVOUR FOR	WYFTOGULTT GLOGIG GLOGIF LOVYFON UTL	+F1F5045-LD5F5-502-02-52

Note that this works best when you know how many solutions to expect – graphing is a very important first step

If you don't know, choose several different starting positions to increase the chance you'll find the solutions

$$x = -1, y = -9$$

Sum of squared functional values at different x,y values

A biological example

- Data on age-specific birth and death rates for populations = "life table"
- The basic data are:
 - The number of individuals alive each year, starting from birth until all are dead = n_x
 - The number of female offspring per females of age $x = b_x$
- From this we can calculate "intrinsic population growth rate" (birth rate-death rate) for the population as a whole

r and λ

- Both are measures of population increase
- λ is the finite rate of increase = N_{t+1}/N_t
- r is the instantaneous rate of change = birth rate – death rate
- They are related:

$$\lambda = e^r$$

Life table for a squirrel population

4	Α	В	С	D
1	Age	n(x)	b(x)	
2	0	1000	0	
3	1	458	1.28	
4	2	352	2.28	
5	3	229	2.28	
6	4	154	2.28	
7	5	99	2.28	
8	6	87	2.28	
9	11 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (CASSA BERKURUNG 100 SASI 100 90 100	CAN BE ST BOW BEFORE THE

Convert number alive to proportion alive (I_x)

4	Α	В	С	D	315×57 E63 80×1
1	Age	n(x)	$\mathbf{b}(\mathbf{x})$	lx	
2	0	1000	0	1	
3	1	458	1.28	0.458	
4	2	352	2.28	0.352	
5	3	229	2.28	0.229	
6	4	154	2.28	0.154	
7	5	99	2.28	0.099	
8	6	87	2.28	0.087	
9			DE LEVERTE DES SESSENTANTES DES SESSENTE LA DE	nema a em por el que sum obsendence de accadance que	l t i national and the

Multiply proportion alive by birth rate $(l_x b_x)$

4	Α	В	С	D	E
1	Age	n(x)	b(x)	lx	lxbx
2	0	1000	0	1	0
3	1	458	1.28	0.458	0.58624
4	2	352	2.28	0.352	0.80256
5	3	229	2.28	0.229	0.52212
6	4	154	2.28	0.154	0.35112
7	5	99	2.28	0.099	0.22572
8	6	87	2.28	0.087	0.19836
9		W STATE FOR SKEN HER KAN MAN BEFORE SOFTING	ESISSINGS (VAS RESTRANDOS SOCIOS SOCIO	MALICAN TAKAN MAKAMATAN MA	OF TOUR PERSON AND THE PROPERTY OF THE PROPERTY AND A ROOM

Euler's equation

- Growth rate is the balance between birth and death rate,
 r = birth rate death rate
- If r is positive, the population is growing
- The best estimate of r from a life table is the value that satisfies Euler's equation:

$$1 = \sum l_x b_x e^{-rx}$$

- x is age
- x, l_x, b_x are all known, e is a constant
- This is calculated for each age, summed
- Equation can't be solved analytically, but we can find r numerically with the Solver

In Excel

		F8	•	- (<i>f</i> _∞ =E8*	ΈΧΡ(-F\$10*/	48)	
1	Δ	В	С	D	Е	F	G	
1	Age	n(x)	b(x)	l(x)	I(x)b(x)	Euler		
2	0	1000	0	1	0	0		
3	1	458	1.28	0.458	0.58624	0.58624		
4	2	352	2.28	0.352	0.80256	0.80256		
5	3	229	2.28	0.229	0.52212	0.52212		
6	4	154	2.28	0.154	0.35112	0.35112		
7	5	99	2.28	0.099	0.22572	0.22572		
8	6	87	2.28	0.087	0.19836	0.19836		
9								
10					r	0		
11								
12					Sum Euler	2.68612		
13						1	1. Sc	slv
		2u	ıntil this	s is equ	al to 1		will chan this	ige

Solver setup

Solution

20232						593390000000000000000000000000000000000	4794345000.07820500	0.007713609630100992		45 FOUR DAY 19 19 19 19 19 19 19 19 19 19 19 19 19		SOFTER MICH. MEDICALIS	
	Α	В	С	D	E	F	G	Н		J	K	L	M
1	Age	n(x)	b(x)	l(x)	I(x)b(x)	Euler	Solver F	Results					×
2	0	1000	0	1	0	0	Solver	found a colut	ion. All constr	aints and on	timality		
3	1	458	1.28	0.458	0.58624	0.3873143		ons are satisf		anics and op	umancy	Reports	
4	2	352	2.28	0.352	0.80256	0.350311						Answer	_
5	3	229	2.28	0.229	0.52212	0.1505687	O €	eep Solver So	olution			Sensitivity Limits	
6	4	154	2.28	0.154	0.35112	0.0668972	O R	estore <u>O</u> rigin	al Values			Lillics	\forall
7	5	99	2.28	0.099	0.22572	0.0284126							
8	6	87	2.28	0.087	0.19836	0.0164962		OK	Cancel	<u>S</u> av	e Scenario	· <u> </u>	<u>l</u> elp
9													
10					r	0.4144927			1				
11													
12					Sum Euler	0.9999999							
12 7872	1000 to \$400 to 1 to \$1		LECEPTO NO SECURIO		MENTATOTS WIL		SEL MENNING CONTRACTOR RELIGION	CONTRACTOR OF THE ST	POR DO ARRIVE NAT CORRUNTE VORT	NASA DEN TRANSPORTA	COSTA DE INTERNESSA PAR ANTONIO	EFSCROST GGEOR-CLETEOX	

r = 0.414 results in next year's population being 1.51 times as big as last year's ($e^{0.414} = 1.51$)

What if... analysis

- We could ask, how low does adult birth rate have to go for the population to stop growing?
- As population size increases females can't get enough food to reproduce successfully
- Assuming survival doesn't change, we can estimate what the reproductive rate would be when the population growth is zero

Set up in Excel

1. Set these to all point to cell c10

į		C4	- (f _x	=C\$10		
4	Α	В	С	D	Е	F	
1	Age	n(x)	b(x)	lx	lxbx	Euler	
2	0	1000	0	1	0	0	
3		458	1.28	0.458	0.58624	0.58624	
4	2	352	2.28	0.352	0.80256	0.80256	
5	3	229	2.28	0.229	0.52212	0.52212	
6	4	154	2.28	0.154	0.35112	0.35112	
7	5	99	2.28	0.099	0.22572	0.22572	
8	6	87	2.28	0.087	0.19836	0.19836	
9							
10	Αc	lult birth rate	2.28		r	0	
11			1				
12			/•		Sum Euler	2.68612	
13							
14	THE FAME TO LEAVE A STATE OF		STATES APPEARING BY STATES SHOW	IASE LESSON DOS SECTIFIANTAS DA VOLA E S	700 000 00 10 00 00 00 00 00 00 00 00 00		

2. Varying this will now change all the adult birth rates

3. Set r to 0, don't vary it

Like before, set the sum of Euler's equation to 1

Solver setup

But, now change adult birth rate instead of growth rate

		C4	+ ()	f_x	=C\$10		
⊿	Α	В	С	D	Е	F	
1	Age	n(x)	b(x)	lx	lxbx	Euler	
2	0	1000	0	1	0	0	
3	1	458	1.28	0.458	0.58624	0.58624	
4	2	352	2.28	0.352	0.80256	0.80256	
5	3	229	2.28	0.229	0.52212	0.52212	
6	4	154	2.28	0.154	0.35112	0.35112	
7	5	99	2.28	0.099	0.22572	0.22572	
8	6	87	2.28	0.087	0.19836	0.19836	
9							
10	Ad	lult birth rate	2.28		r	0	
11							
12					Sum Euler	2.68612	
13							
14	-CF # 4/5-/K-7 E			ran esperantenant e en ro			

Solver's solution

F12			- (• f _x		=SUM(F2:F8)		
	Α	В	С	D	E	F	
1	Age	n(x)	b(x)	lx	lxbx	Euler	
2	0	1000	0	1	0	0	
3	1	458	1.28	0.458	0.58624	0.58624	
4	2	352	0.4492	0.352	0.1581359	0.1581359	
5	3	229	0.4492	0.229	0.10287819	0.10287819	
6	4	154	0.4492	0.154	0.06918446	0.06918446	
7	5	99	0.4492	0.099	0.04447572	0.04447572	
8	6	87	0.4492	0.087	0.03908473	0.03908473	
9							
10	Αc	lult birth rate	0.4492		ľ	0	
11			4				
12					Sum Euler	0.999999	
13							
1/	0.62531930303	2.6155.1745.045.317305.455.31	58588884R068387838	2013 S.	SENDERS SESE F FESTE MAKEUTERS	\$2564934.EV@Y\$2.W\$4896883777773	131073485

Birth rate would need to be 0.4492 for the population to stop growing

How do we know there is only one solution for r?

- For a numerical result, can't know for sure
- Some ways to check
 - Graph the result across all plausible values of r
 - Try different starting values to see if the solution is always the same

Wider range of possible r's

40% as many next year as this year

245 times as many next year as this year

Very different starting values always converge on the same solution

0 1000 0 1 0 0 2 0 1 458 1.28 0.458 0.58624 0.0291872 3 1 2 352 2.28 0.352 0.80256 0.0019893 4 2 3 229 2.28 0.229 0.52212 6.443E-05 5 3 4 154 2.28 0.154 0.35112 2.157E-06 6 4 5 99 2.28 0.099 0.22572 6.905E-08 7 5 6 87 2.28 0.087 0.19836 3.021E-09 8 6 Birth rate 2.28 r 3 10 Birth 11 11 11 11 11
1000 0 1 0 0 1 0 10<
1 458 1.28 0.458 0.58624 0.0291872 3 1 45 2 352 2.28 0.352 0.80256 0.0019893 4 2 35 3 229 2.28 0.229 0.52212 6.443E-05 5 3 22 4 154 2.28 0.154 0.35112 2.157E-06 6 4 15 5 99 2.28 0.099 0.22572 6.905E-08 7 5 9 6 87 2.28 0.087 0.19836 3.021E-09 8 6 8 9 8 6 8 8 8 8 8 8 8 6 2.28 7 3 10 Birth rate 11 8 8 11 11 11 12 12 12 13 12 13 12 13 12 13 14 15 12 13 14 15 15 15 15 15 15 15 15 15 1
2 352 2.28 0.352 0.80256 0.0019893 4 2 352 3 229 2.28 0.229 0.52212 6.443E-05 5 3 229 4 154 2.28 0.154 0.35112 2.157E-06 6 4 154 5 99 2.28 0.099 0.22572 6.905E-08 7 5 99 6 87 2.28 0.087 0.19836 3.021E-09 8 6 87 9 Birth rate 2.28 r 3 10 Birth rate 11 11 11 11 11
3
4 154 2.28 0.154 0.35112 2.157E-06 6 4 154 5 99 2.28 0.099 0.22572 6.905E-08 7 5 99 6 87 2.28 0.087 0.19836 3.021E-09 8 6 87 Birth rate 2.28 r 3 10 Birth rate 11 11 11 11
5 99 2.28 0.099 0.22572 6.905E-08 7 5 99 6 87 2.28 0.087 0.19836 3.021E-09 8 6 87 9 9 Birth rate 2.28 r 3 10 Birth rate 11 11
6 87 2.28 0.087 0.19836 3.021E-09 8 6 87 9 10 Birth rate 2.28 r 3 10 Birth rate 11
Birth rate 2.28 r 3 10 Birth rate 11
Birth rate 2.28 r 3 10 Birth rate 11
11
F.O. 47 J.O. V.O. V.O. V.O. V.O. V.O. V.O. V.O.
Comp. Follow 0.0213422
Sum Euler 0.0312432 12 12
13

Optimal foraging

- How do animals choose what to eat and what not to eat?
- A bird foraging in a patch of clams along the shore has a range of sizes to choose from
 - Little ones may be more abundant, easier to open, but give a smaller caloric reward
 - Large ones give a bigger caloric reward, but are less common and harder to break into
- If a bird is trying maximize the profitability of its foraging, what sizes should it eat?

Profitability of foraging

- Profit = revenue expenses
- Revenue in optimal foraging is usually expressed as energy acquired (in cal or kcal)
- Expenses come from time spent in foraging doing something other than eating
 - Searching for food items
 - "Handling time" = time devoted to opening/consuming the food
- We can measure profit as energy consumed per unit time of foraging – organisms should maximize this quantity

Oystercatchers foraging on oysters

- Oystercatchers eat mussels and other attached shellfish exposed during low tide
- They are easily able to open small mussels

- They are unable to open mussels above 70 mm in length
- The handling time depends on the size of the mussel, and if they are able to successfully open it
 - If they open it, the handling time is H
 - If they try and fail, the handling time is W
- Big mussels have more energy content
- Question is: what size of mussel is most profitable?

Handling time equations – the costs

Caloric content – the benefits

Caloric content (E) increases with length as kcal = 0.12 (length)^{2.86}

Equation to maximize

Graph of equation

Setup in Excel

4	Α	В	С	D	E
1		Solution			
2	Size	35	2	by cha	nging this
3					
	Terms in the	Values given	Cell formulas		
4	profit equation	size	used		
5	Е	3127.633476	=0.12*B2^2.86		
6	Р	0.5	=1-(1/70)*B2		
7	Н	37	=B2+2		
8	W	77.5	=2.5*B2-10		
9					
		Value given			
10		size			
11	Profit	27.31557621	=(B5*B6)/(B7*E	36+B8*(1-B	6))
12		CHE RANCE SIN STATE WITH A SECURITIVE AND STATE OF THE	COLUMN DE STEINE DE S	THE FALL CAP BUT THE PUBLISHED OF	STATISTACION PARTONI CHI SI SPINIVILI

1. Have solver maximize this...

Solver setup

Maximize the profit

Don't bother with sizes that are too big to eat or negative

Solver's solution

4	Α	В	С	D	Е	
1		Solution				
2	Size	40.70668067				
3						
	Terms in the	Values given	Cell formulas			
4	profit equation	size	used			
5	Е	4817.537684	=0.12*B2^2.86			
6	Р	0.41847599	=1-(1/70)*B2			
7	Н	42.70668067	=B2+2			
8	W	91.76670169	=2.5*B2-10			
9						
		Value given				
10		size				
11	Profit	28.30052884 =(B5*B6)/(B7*B6+B8*(1-B6))				
12	CARABANA WARIN DET GENETTE TON CHINA WILLE W					

So, neither the biggest or smallest are most profitable The optimal size is 40.7 mm At this size, will only successfully open 42% of mussels But, bigger mussels are so nutritious that it's worth the high failure rate

Beware of local optima

- What if profit looked like this...
- If oystercatchers do really well on really big mussels, but we stop searching at 70 mm, we will find the smaller peak only
- This can happen!

