

Topology Crash Course - Lecture 03

Bambordé Baldé | Co-Founder at Zaiku Group | Twitter: @zaikubalde • zaikugroup.com • July 30, 2021

Session Agenda

Post Crash Course Program?

Audience Background Poll

Have you been exposed to University level mathematics? For example, undergraduate level calculus and real analysis.

Audience Background Poll

Have you been exposed to topology before?

quantumformalism.com

Audience Background Poll

How comfortable are you with mathematical abstraction?

quantumformalism.com

$$\langle \Omega \rangle = \int_X \Omega \cdot \mu_P$$

Zaiku Group + Partner Companies

- 1. Independent Thinkers
- 2. Mission Driven
- 3. Team Players
- 4. Humble

quantumformalism.com

Metric Spaces

Definition (1.0)

Let M be a non-empty set. A metric on M is map $d: M \times M \longrightarrow \mathbb{R}$ satisfying the following conditions:

- 1. $d(x,y) \geq 0$ for all $x,y \in M$.
- 2. d(x,y) = 0 iff x = y for all $x, y \in M$.
- 3. d(x,y) = d(y,x) for all $x,y \in M$.
- 4. $d(x,z) \leq d(x,y) + d(y,z)$ for all $x,y,z \in M$.
- The pair (M, d) is called a metric space. Whenever the metric d is understood from the context, we'll just write M instead of (M, d).

Definition (1.1)

Let (M, d) be a metric space and $A \subseteq M$ be non-empty. We can construct $d_A : A \times A \longrightarrow \mathbb{R}$ as $d_A(a_1, a_2) = d(a_1, a_2)$ for all $a_1, a_2 \in A$.

As you might have guessed, (A, d_A) is a metric subspace of (M, d)!

Some Examples

For any non-empty set M, we can define the following

For any non-empty set
$$M$$
, we can define the following metric:
$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$
 (M,d) with the above metric (aka discrete) is a metric space!

Let us consider $M = \mathbb{R}^n$. Then for any $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $y = (y_1, \dots, y_n) \in \mathbb{R}^n$, we can define the famous Euclidean metric $d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$. Thus \mathbb{R}^n is a metric space under d aka Euclidean metric space!

- Let (M, d) be any metric space and let $\alpha \in \mathbb{R}^+$. Is $d_{\alpha}(x, y) = \alpha d(x, y)$ a metric on M?
- $(M_1, d_1), (M_2, d_2), \dots, (M_k, d_k)$ be metric spaces. Can you construct a metric space from $M_1 \times M_2 \times \dots \times M_K$?
- Now suppose that \mathcal{H} is a finite dimensional complex Hilbert space. Can you construct a metric on \mathcal{H} ?

Hint: Use the norm induced by the inner product!

Open Balls in Metric Spaces

Definition (1.2)

Let (M,d) be a metric space. For each point $p \in M$ and $r \in \mathbb{R}^+$ we can define $B_r(p) = \{x \in M \mid d(p,x) < r\}$

- \triangleright $B_r(p)$ is called the open ball centred around the point p with radius r.
- ▶ Obviously $B_r(p_1) = B_r(p_2)$ iff $p_1 = p_2$ right?
- ▶ If $M = \mathbb{R}$ and d is the Euclidean metric, then $B_r(p)$ is just the open interval (p r, p + r). For example, $B_1(1) = (0, 2)$.
- ▶ If $M = \mathbb{R}^2$ and d is the Euclidean metric, then $B_r(p)$ is just the open disc of radius r centred around p i.e. the set of all points inside the circle of radius of r centred at point p.

The concept of open ball is very important as it will enable us to realise the concept of open sets that we covered abstractly in Point-set Topology!

Proposition (1.0)

Let $B_r(p)$ be an open ball in a metric (M, d). Then for any $p' \in B_r(p)$ there exists a r' > 0 such that $B_{r'}(p') \subseteq B_r(p)$.

Proof: Homework challenge!

Hint: Use r to construct such r'!

Open Sets in Metric Spaces

Definition (1.3)

Let (M, d) be a metric space. A subset $U \subseteq M$ is open in respect to the metric d if for all $p \in U$ there exists an $r \in \mathbb{R}^+$ such that $B_r(p) \subseteq U$.

- ► Hence, for any point $p \in M$, $B_r(p)$ is open?
- Let $M = \mathbb{R}$ and d the Euclidean metric. Then the open intervals (in the **Real Analysis** sense) (a,b), $(-\infty,a)$, (b,∞) are also open in M. Is \mathbb{R} itself open?
- Is it true that the intervals [a,b] and [a,b) are not open if $M=\mathbb{R}$? However, the same intervals are open if M=[a,b] equiped with Euclidean metric d?!
- Let now $M = \mathbb{R}^2$ also equiped with the Euclidean metric. Is \mathbb{R} viewed as a subset \mathbb{R}^2 open?

Note: Whether or not a subset *U* is open really depends on the metric space that we are considering i.e. being 'open' depends on the metric space structure being considered!

Properties of Open Sets

Proposition (1.1)

For any given metric space (M, d), the following is true:

- 1. \emptyset and M are open in respect to d.
- 2. If U_1, U_2, \ldots, U_k are open in respect to d, then $U_1 \cap U_2 \cap \ldots \cap U_k$ is open in respect to d.
- 3. If $\{U_i\}_{i\in I}$ is a collection of open sets in respect to d, then their union $\bigcup_{i\in I}U_i$ is open in respect to d.

Proof: Homework challenge!

Did you get any Déjà vu feeling regarding the proposition above?

Definition (1.4)

Let (M, d) be a metric space. A subset $N \subseteq M$ is a neighbourhood of a point $p \in M$ if there exists a $\delta \in \mathbb{R}^+$ such that $B_{\delta}(p) \subseteq N$.

As home challenge, you can verify that the above definition of neighbourhood is equivalent to the one we defined abstractly in point-set topology i.e. the above definition satisfies all the properties that the abstract one satisfies.

Closed Sets in Metric Spaces

Definition (1.5)

Let (M, d) be a metric space. We say that a subset $A \subseteq M$ is closed in respect to d if $M \setminus A$ is open i.e. for any $p \in M \setminus A$ there exists some $r \in \mathbb{R}^+$ such that $B_r(p) \subseteq M \setminus A$.

Let $M = \mathbb{R}$ and d the Euclidean metric. Is it true that the intervals [a, b] and $(-\infty, 0)$ are closed?

Proposition (1.2)

For any given metric space (M, d), the following is true:

- 1. \emptyset and M are closed in respect to d.
- 2. If U_1, U_2, \ldots, U_k are closed in respect to d, then $U_1 \cup U_2 \cup \ldots \cup U_k$ is closed in respect to d.
- 3. If $\{U_i\}_{i\in I}$ is a collection of closed sets in respect to d, then their intersection $\bigcap_{i\in I}U_i$ is closed in respect to d.

Proof: Homework challenge!

PART B

The Metric Topology

Proposition (1.3)

For any given metric space (M, d), the collection of subsets $\mathcal{T}_d = \{U \subseteq M \mid U \text{ is open in respect to } d\}$ is a topology on M.

Proof: Trivial to prove because it is a consequence (corollary) of **Proposition 1.1**!

- ▶ \mathcal{T}_d is called a metric topology on M i.e. the topology induced by the metric d. Hence, we'll write (M, \mathcal{T}_d) to denote the topological space induced by d.
- ▶ When $M = \mathbb{R}^n$ and d is the Euclidean metric, then \mathcal{T}_d is called the 'standard topology' on \mathbb{R}^n !
- Most topological spaces of interest in applied subjects such as physics will be subspaces of $(\mathbb{R}^n, \mathcal{T}_d)$. So from now on, always assume \mathcal{T}_d to be the standard topology whenever $M \subseteq \mathbb{R}^n$.
- Can you see why the metric induced topological space (M, \mathcal{T}_d) is a Hausdorff space?

VIP Spaces

- Consider the circle $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. The subspace topology induced by the standard topology on \mathbb{R}^2 makes S^1 into a topological space.
- ▶ More generally, let $S^n = \{(x_1, \dots x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1^2 + \dots + x_{n+1}^2 = 1\}.$

Then the subspace topology induced by the standard topology on \mathbb{R}^{n+1} makes S^n into a topological space.

- ▶ In Topology lingo, *S*ⁿ is known as the 'n− sphere'. Hence, 2− sphere corresponds to the ordinary sphere whereas 1− sphere corresponds to the circle.
- The interval [0,1] equipped with the subspace topology from the standard topology on $\mathbb R$ is a topological space. This is the space that will help construct 'Path-Connected' topological spaces. Not to be mistaken with 'Connected' topological spaces!
- Can you think of a reason why the VIP spaces above are Hausdorff?

Homeomorphism Challenge

- Consider the topological spaces X = (-1, 1) and Y = (0, 5) constructed from the standard topology on \mathbb{R} . Is the map $f: X \longrightarrow Y$ defined as $f(x) = \frac{5}{2}(x+1)$ a homeomorphism?
- Let now X=(-1,1) and $Y=\mathbb{R}$. Is the map $f:X\longrightarrow Y$ defined as $f(x)=tan(\frac{\pi X}{2})$ a homeomorphism?
- Let X = [0, 1] and $Y = \mathbb{R}$. Can you construct a homeomorphism from X to a subset of \mathbb{R} that is not X itself i.e. is X = [0, 1] homeomorphic to any other subset of \mathbb{R} ?
- Is it true that the circle $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ is homeomorphic to X = [0,1] i.e. there is a homeomorphism $f: S^1 \longrightarrow X$?

Equivalent Metrics

Definition (1.6)

Let d_1 and d_2 be two metrics on M with corresponding topologies \mathcal{T}_{d1} and \mathcal{T}_{d2} . The metrics d_1 and d_2 are said to be equivalent if $\mathcal{T}_{d1} = \mathcal{T}_{d2}$ i.e. if the two metrics generate the same open sets.

- ▶ We write $d_1 \simeq d_2$ to indicate the equivalence.
- For any non-empty set M, lets define the following:

$$d_1(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases} \text{ and } d_2(x,y) = \begin{cases} 2021 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

We already know that d_1 defines a metric (discrete) on M. Is d_2 also a metric on M? If yes, is $d_1 \simeq d_2$?

Let $M = \mathbb{R}^n$ and d the Euclidean metric with corresponding standard topology \mathcal{T}_d . Can you find other metrics defined in \mathbb{R}^n that generate the same open sets as d i.e. can you find other topologies in \mathbb{R}^n that are equivalent to \mathcal{T}_d ?

Metric Topology's Hausdorrfness

Theorem (1.0)

For any metric space (M, d), the induced topological space (M, \mathcal{T}_d) is a Hausdorff space.

Proof: Let $p_1, p_2 \in M$ with $p_1 \neq p_2$. Recall that for (M, \mathcal{T}_d) to be Hausdorff, there must exist some neighbourhoods N_{p_1} and N_{P_2} of the respective points such that $N_{p_1} \cap N_{p_2} = \emptyset$. Let $r = d(p_1, p_2), N_{p_1} = B_{\frac{r}{2}}(p_1)$ and $N_{p_2} = B_{\frac{r}{2}}(p_2)$. Clearly N_{p_1} and N_{p_2} are open neighbourhoods. Now it must be true that $N_{p_1} \cap N_{p_2} = \emptyset$ or else there exists some point $p' \in N_{p_1} \cap N_{p_2}$. However, the existence of such p' leads to contradiction because this would mean $d(p_1, p') < \frac{r}{2}$ and $d(p_2, p') < \frac{r}{2}$. But then this implies $r = d(p_1, p_2) \le d(p_1, p') + d(p_2, p') < \frac{r}{2} + \frac{r}{2}$ i.e. r < r (contradiction!). Hence, we must have $N_{p_1} \cap N_{p_2} = \emptyset$ and so (M, \mathcal{T}_d) is a Hausdorff space.

A Comment on Metrizability

It's very cool that we can construct topological spaces from metric spaces! But can we construct metric spaces from

topological spaces?!

Metrizable Topological Spaces

Definition (1.7)

A topological space (X, \mathcal{T}) is metrizable if there exists a metric d on X such that $\mathcal{T} = \mathcal{T}_d$.

- Let X be any set and T = P(X). Is (X, T) metrizable?
- ▶ What if we now have $\mathcal{T} = \{\emptyset, X\}$?
- Now consider $X = \{0, 1\}$ and $\mathcal{T} = \{\emptyset, X, \{1\}\}$ (Sierpinski topology). Is (X, \mathcal{T}) metrizable?
- Suppose now that $X = \mathbb{R}$, can you find a non trivial example of non-metrizable topology on \mathbb{R} ?
- Is it true that any metrizable space is Hausdorff?

Side note: Let X be any non-empty set and $\mathcal{T} = \{\emptyset, Z \subseteq X \mid X \setminus Z \text{ is finite } \}$. \mathcal{T} is a topology on X known as the Zariski topology on X. Interestingly, the space (X, \mathcal{T}) is not metrizable if the set X is infinite!

Reference Materials

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Twitter: twitter.com/ZaikuGroup

Linkedin: linkedin.com/company/zaikugroup