Chapter 1
Databases
and
Database
Users

Addison-Wesley is an imprint of

Chapter 1 Outline

Introduction

An Example

Characteristics of the Database Approach

Actors on the Scene

Workers behind the Scene

Advantages of Using the DBMS Approach

A Brief History of Database Applications

When Not to Use a DBMS

Overview

Traditional database applications

Store textual or numeric information

Multimedia databases

Store images, audio clips, and video streams digitally

Geographic information systems (GIS)

Store and analyze maps, weather data, and satellite images

Overview (cont'd.)

Data warehouses and online analytical processing (OLAP) systems

Extract and analyze useful business information from very large databases Support decision making

Real-time and active database technology

Control industrial and manufacturing processes

Introduction

Database

Collection of related data

Known facts that can be recorded and that have implicit meaning

Miniworld or universe of discourse (UoD)

Represents some aspect of the real world

Logically coherent collection of data with inherent meaning

Built for a specific purpose

Example of a large commercial database Amazon.com

Database management system (DBMS)

Collection of programs

Enables users to create and maintain a database

Defining a database

Specify the data types, structures, and constraints of the data to be stored

Meta-data

Database definition or descriptive information Stored by the DBMS in the form of a database catalog or dictionary

Manipulating a database

Query and update the database miniworld Generate reports

Sharing a database

Allow multiple users and programs to access the database simultaneously

Application program

Accesses database by sending queries to DBMS

Query

Causes some data to be retrieved

Transaction

May cause some data to be read and some data to be written into the database

Protection includes:

System protection

Security protection

Maintain the database system

Allow the system to evolve as requirements change over time

Figure 1.1
A simplified database system environment.

An Example

UNIVERSITY database

Information concerning students, courses, and grades in a university environment

Data records

STUDENT

COURSE

SECTION

GRADE REPORT

PREREQUISITE

Specify structure of records of each file by specifying data type for each data element

String of alphabetic characters

Integer

Etc.

Construct UNIVERSITY database

Store data to represent each student, course, section, grade report, and prerequisite as a record in appropriate file

Relationships among the records

Manipulation involves querying and updating

Examples of queries:

Retrieve the transcript

List the names of students who took the section of the 'Database' course offered in spring 2021 and their grades in that section

List the prerequisites of the 'Database' course

Examples of updates:

Change the class of 'Smith' to sophomore

Create a new section for the 'Database' course for this semester

Enter a grade of 'A' for 'Smith' in the 'Database' section of last semester

Phases for designing a database:

Requirements specification and analysis

Conceptual design

Logical design

Physical design

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

Figure 1.2 A database that stores student and course information.

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

Course_number	Prerequisite_number	
CS3380	CS3320	
CS3380	MATH2410	
CS3320	CS1310	

Characteristics of the Database Approach

Traditional file processing

Each user defines and implements the files needed for a specific software application

Database approach

Single repository maintains data that is defined once and then accessed by various users

Characteristics of the Database Approach (cont'd.)

Main characteristics of database approach
Self-describing nature of a database system
Insulation between programs and data, and
data abstraction

Support of multiple views of the data Sharing of data and multiuser transaction processing

Self-Describing Nature of a Database System

Database system contains complete definition of structure and constraints

Meta-data

Describes structure of the database

Database catalog used by:

DBMS software

Database users who need information about database structure

Insulation Between Programs and Data

Program-data independence

Structure of data files is stored in DBMS catalog separately from access programs

Program-operation independence

Operations specified in two parts:

- Interface includes operation name and data types of its arguments
- Implementation can be changed without affecting the interface

Data Abstraction

Data abstraction

Allows program-data independence and program-operation independence

Conceptual representation of data

Does not include details of how data is stored or how operations are implemented

Data model

Type of data abstraction used to provide conceptual representation

RELATIONS

Relation_name	No_of_columns	
STUDENT	4	
COURSE	4	
SECTION	5	
GRADE_REPORT	3	
PREREQUISITE	2	

Figure 1.3

An example of a database catalog for the database in Figure 1.2.

COLUMNS

Column_name	Data_type	Belongs_to_relation
Name	Character (30)	STUDENT
Student_number	Character (4)	STUDENT
Class	Integer (1)	STUDENT
Major	Major_type	STUDENT
Course_name	Character (10)	COURSE
Course_number	XXXXNNNN	COURSE
Prerequisite_number	XXXXNNNN	PREREQUISITE

Note: Major_type is defined as an enumerated type with all known majors. XXXXNNNN is used to define a type with four alpha characters followed by four digits.

Support of Multiple Views of the Data

View

Subset of the database

Contains virtual data derived from the database files but is not explicitly stored

Multiuser DBMS

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Users have a variety of distinct applications

Must provide facilities for defining multiple
views

Sharing of Data and Multiuser Transaction Processing

Allow multiple users to access the database at the same time

Concurrency control software

Ensure that several users trying to update the same data do so in a controlled manner

Result of the updates is correct

Online transaction processing (OLTP) application

Sharing of Data and Multiuser Transaction Processing (cont'd.)

Transaction

Central to many database applications

Executing program or process that includes one or more database

Isolation property

 Each transaction appears to execute in isolation from other transactions

Atomicity property

 Either all the database operations in a transaction are executed or none are

Actors on the Scene

Database administrators (DBA) are responsible for:

Authorizing access to the database

Coordinating and monitoring its use

Acquiring software and hardware resources

Database designers are responsible for:

Identifying the data to be stored

Choosing appropriate structures to represent and store this data

Actors on the Scene (cont'd.)

End users

People whose jobs require access to the database

Types

- Casual end users
- Naive or parametric end users
- Sophisticated end users
- Standalone users

Actors on the Scene (cont'd.)

System analysts

Determine requirements of end users

Application programmers

Implement these specifications as programs

Workers behind the Scene

DBMS system designers and implementers

Design and implement the DBMS modules and interfaces as a software package

Tool developers

Design and implement tools

Operators and maintenance personnel

Responsible for running and maintenance of hardware and software environment for database system

2011 Pamoz Elmacri and Shamkant Navatho

Advantages of Using the DBMS Approach

Controlling redundancy

Data normalization

Denormalization

 Sometimes necessary to use controlled redundancy to improve the performance of queries

Restricting unauthorized access

Security and authorization subsystem

Privileged software

Providing persistent storage for program objects

Complex object in C++ can be stored permanently in an object-oriented DBMS

Impedance mismatch problem

 Object-oriented database systems typically offer data structure compatibility

Providing storage structures and search techniques for efficient query processing

Indexes

Buffering and caching

Query processing and optimization

Providing backup and recovery

Backup and recovery subsystem of the DBMS is responsible for recovery

Providing multiple user interfaces

Graphical user interfaces (GUIs)

Representing complex relationships among data

May include numerous varieties of data that are interrelated in many ways

Enforcing integrity constraints

Referential integrity constraint

Every section record must be related to a course record

Key or uniqueness constraint

 Every course record must have a unique value for Course number

Business rules

Inherent rules of the data model

Permitting inferencing and actions using rules

Deductive database systems

- Provide capabilities for defining deduction rules
- Inferencing new information from the stored database facts

Trigger

Rule activated by updates to the table

Stored procedures

More involved procedures to enforce rules

36

Additional implications of using the database approach

Reduced application development time

Flexibility

Availability of up-to-date information

Economies of scale

A Brief History of Database **Applications**

Early database applications using hierarchical and network systems

Large numbers of records of similar structure

Providing data abstraction and application flexibility with relational databases

Separates physical storage of data from its conceptual representation

Provides a mathematical foundation for data representation and querying

A Brief History of Database Applications (cont'd.)

Object-oriented applications and the need for more complex databases

Used in specialized applications: engineering design, multimedia publishing, and manufacturing systems

Interchanging data on the Web for ecommerce using XML

Extended markup language (XML) primary standard for interchanging data among various types of databases and Web pages

39

A Brief History of Database Applications (cont'd.)

Extending database capabilities for new applications

Extensions to better support specialized requirements for applications

Enterprise resource planning (ERP)

Customer relationship management (CRM)

Databases versus information retrieval

Information retrieval (IR)

 Deals with books, manuscripts, and various forms of library-based articles

40

When Not to Use a DBMS

More desirable to use regular files for:

Simple, well-defined database applications not expected to change at all

Stringent, real-time requirements that may not be met because of DBMS overhead

Embedded systems with limited storage capacity

No multiple-user access to data

Summary

Database

Collection of related data (recorded facts)

DBMS

Generalized software package for implementing and maintaining a computerized database

Several categories of database users

Database applications have evolved

Current trends: IR, Web

