

Master Eii - TD de Cryptographie

Fiche 1

Recherche de solutions dans l'ensemble des entiers relatifs

Équation ax + by = 1 où a et b sont premiers entre eux

Le théorème de Bachet-Bézout affirme que cette équation admet toujours au moins une solution. La première étape de la résolution consiste à trouver une solution particulière, c'est-à-dire un couple d'entiers relatifs (x_0, y_0) vérifiant : $ax_0 + by_0 = 1$. L'algorithme d'Euclide étendu permet d'en exhiber une.

Ensemble des solutions — Une solution particulière (x_0, y_0) étant connue, l'ensemble des solutions est formé des couples $(x_0 + bk, y_0 - ak)$ où k est un entier relatif quelconque.

Équation ax + by = c où a et b sont premiers entre eux

Une solution particulière peut être trouvée en multipliant par c une solution particulière de l'équation ax + by = 1. En effet, si (x_0, y_0) vérifie $ax_0 + by_0 = 1$ alors $ax_0c + by_0c = c$, le couple (x_0c, y_0c) est alors solution de l'équation ax + by = c. Un raisonnement analogue au précédent permet de trouver l'ensemble des solutions.

Ensemble des solutions — Une solution particulière (x_1, y_1) étant connue, l'ensemble des solutions est formé des couples $(x_1 + bk, y_1 - ak)$ où k est un entier relatif quelconque.

Cas général

On appelle d le pgcd de a et de b.

Si c n'est pas un multiple de d — L'équation n'a pas de solution.

Si c est un multiple de d — L'équation admet toujours des solutions. Une solution particulière (x_1, y_1) étant connue, l'ensemble des solutions est formé des couples où k est un entier relatif quelconque. $\left(x_1 + \frac{bk}{d}; y_1 - \frac{ak}{d}\right)$

1. Calculer le PGCD de 11200 et 15092 par la méthode d'Euclide.

- 2. En déduire une identité de Bezout entre 11200 et 15092.
- 3. En déduire l'ensemble des solutions de chacune des 2 équations diophantiennes linéaires suivantes :

$$11200 x + 15092 y = 252$$

Master Eii - TD de Cryptographie

Fiche 2

Définition et exemple de l'indicatrice d'Euler

• L'indicateur d'Euler φ est la fonction de l'ensemble \mathbb{N}^* des entiers strictement positifs dans lui-même qui à n associe le nombre d'entiers strictement positifs inférieurs ou égaux à n et premiers avec n.

Plus formellement:

$$\varphi : \mathbb{N}^* \longrightarrow \mathbb{N}^*$$
 $n \longmapsto \operatorname{card}(\{m \in \mathbb{N}^* \mid m \leq n \text{ et } m \text{ premier avec } n\}).$

Si u et v sont deux entiers strictement positifs et premiers entre eux, alors $\varphi(u.v) = \varphi(u).\varphi(v)$

La valeur de l'indicatrice d'Euler s'obtient par l'expression de n donnée par le théorème fondamental de l'arithmétique :

Si
$$n = \prod_{i=1}^{q} p_i^{k_i}$$
 alors $\varphi(n) = \prod_{i=1}^{q} (p_i - 1) p_i^{k_i - 1} = n \prod_{i=1}^{q} \left(1 - \frac{1}{p_i} \right)$

Dans la formule, p_i désigne un nombre premier et k_i un entier strictement positif.

Le petit théorème de Fermat est généralisé par le théorème d'Euler : pour tout entier naturel non nul n et tout entier a premier avec n, on a :

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

où $\varphi(n)$ désigne la fonction φ d'Euler comptant les entiers entre 1 et n qui sont premiers avec n.

Si *n* est un nombre premier, alors $\varphi(n) = n - 1$.

- 1. Calculer la décomposition de 97300 en facteur premiers.
- 2. En déduire que φ (97300) (=quantité de nombres premiers avec 97300 entre 1 et 97300).
- 3. Utiliser le petit théorème de Fermat pour trouver un exposant k tel que 3^k = 1 mod 97300.
- 4. En déduire la valeur de 3¹⁶⁵⁶⁰³ mod 97300.

Master Eii - TD de Cryptographie Fiche REVISIONS

Exercice 1

- 1. Calculer le PGCD de 16558 et 10506 par la méthode d'Euclide.
- 2. En déduire une identité de Bezout entre 16558 et 10506.
- 3. En déduire l'ensembles des solutions de chacune des 2 équations diophantiennes linéaires suivantes :

$$16558 x + 10506 y = 126$$

$$16558 x + 10506 y = 544$$

Exercice 2

- 1. Calculer la décomposition de 76200 en facteur premiers.
- 2. En déduire que φ (76200) (=quantité de nombres premiers avec 76200 entre 1 et 76200).
- 3. Utiliser le petit théorème de Fermat pour trouver un exposant k tel que 7^k = 1 mod 76200.
- 4. En déduire la valeur de 7¹⁰⁰⁸⁰² mod 76200.

Exercice 3

- 1. Trouver toutes les solutions $(x, y) \in Z^2$ de l'équation : 2x + 5y = 37
- 2. Pour payer une somme de 37 Euros on ne dispose que de pièces de 2 Euros et de billets de 5 Euros. Soit x le nombre de pièces et y le nombres de billets nécessaires pour payer, alors x + y est le nombre total de pièces et billets utilisés. Quelle est la valeur minimale de x + y ? Que valent x et y dans ce cas ?

Exercice 4

- 1. Donner la décomposition en facteurs premiers des nombres suivants : 420, 39732, 15543.
- 2. Calculer φ (420), φ (39732), φ (15543).
- 3. Vérifier que si n est le numéro de votre jour de naissance alors $P(n) = 2n^2-20n+79$ est un nombre premier.
- 4. Est-ce que P(n) est premier pour tout $n \in N$?