

FICHA DE TRABALHO - PREPARAÇÃO PARA O TESTE

Maio de 2015

MATEMÁTICA A - 12.º ANO

"Em relação à Matemática não houve, até hoje, quem lastimasse o tempo empregue no seu estudo." Benjamim Franklin

1. Considere uma certa linha n do triângulo de Pascal tal que ${}^nC_{308} + {}^nC_{309} = {}^{n+1}C_{1705}$. Qual é o valor	da soma	de todos
os elementos da linha seguinte, excluindo o primeiro e o último?		

A $2 \times (2^{2013} - 1)$

B 2^{2013}

 $2 \times (2^{2012} - 1)$

D 2^{2014}

2. Considere um conjunto de doze bolas, seis azuis, indistinguíveis, duas pretas, indistinguíveis e quatro encarnadas, numeradas de 1 a 4. De quantas maneiras distintas se podem colocar as doze bolas numa só fila, de modo que as azuis ocupem posições consecutivas?

A $\frac{7!}{2!}$

- **B** $\frac{7! \times 6!}{2!}$
- $\frac{12!}{2! \times 6!}$
- **D** 7! × 6!

- **3.** Considere os conjuntos $X \in Y$ tais que:
 - *X* é o conjunto de todos os números pares de quatro algarismos distintos que se podem formar com os algarismos 1, 3, 5, 6, 7, 8 e 9.
 - Y é o conjunto de todos os números de três algarismos se podem formar com os algarismos 0, 3, 5, 6, 7 e 9.

Pretende-se escolher três elementos de X e dois de Y. De quantas maneiras distintas se pode fazê-lo?

A $^{686}C_3 \times ^{216}C_3$

B $^{240}C_3 \times ^{180}C_3$

C $^{686}C_3 \times ^{180}C_2$

D $^{240}C_3 \times ^{216}C_2$

4. Considere uma caixa com vinte compartimentos numerados de 1 a 20. Pretende-se guardar nessa caixa doze bolas, uma por compartimento: cinco pretas, indistinguíveis; quatro brancas numeradas de 1 a 4; três azuis, numeradas de 1 a 3. De quantas maneiras distintas se pode fazê-lo?

A ${}^{20}C_5 \times {}^{15}A_4 \times 3!$

B ${}^{20}C_{12} \times {}^{12}C_5 \times 7!$

C ${}^{20}C_5 \times 7$

Facebook: https://www.facebook.com/recursos.para.matematica

5. A distribuição de probabilidades de uma variável aleatória X é dada pela tabela:

x_i	0	1	2
$P(X=x_i)$	$\frac{^{2012}C_{298} + ^{2012}C_{300}}{^{2014}C_{300}}$	$\frac{a}{^{2014}C_{300}}$	$\frac{^{2012}C_{1713}}{^{2014}C_{300}}$

(a designa um número real positivo)

Qual é o valor de a?

- **A** $^{2012}C_{298}$
- B $^{2012}C_{299}$
- C 2013 C_{298}

6. Seja S o espaço de resultados associados a uma certa experiência aleatória. Sejam A e B dois acontecimentos possíveis $(A \subset S \in B \subset S)$. Sabe-se que P(A) = 0.3 e que $P(B|\overline{A}) = 0.2$. Qual pode ser o valor de P(B)?

- **A** 0,1
- **B** 0,3

7. A quantidade de água, em mL, presente nas garrafas de água que uma empresa produz é uma variável aleatória com distribuição normal. Todas as garrafas de água passam pelo controle de qualidade e só são aprovadas se o seu volume estiver a menos de dois desvios padrões da média. Num lote de doze garrafas, qual é a probabilidade, arredondada às milésimas, de exactamente três serem rejeitadas?

- **B** 0,014
- **D** 0,227

8. Sejam $a, b \in \mathbb{R}$ e $x, y \in \mathbb{R}^+$ tal que $a = \log_2 x$ e $b = \log_4 y$. A que é igual a expressão $\log_{64} \left(\frac{x^5}{(xv)^2} \right)$?

- $C \frac{3a-4b}{6}$

9. Na figura está representado parte do gráfico de uma função f de domínio $\mathbb{R}\setminus\{1\}$.

Sabe-se que as retas de equação x = 1, y = 0 e y = 1 são assíntotas do gráfico de f.

Seja (x_n) uma progressão geométrica tal que:

- $x_2 = -\frac{16}{3}$ e $x_5 = -\frac{128}{81}$

Qual é o valor de $\lim f(x_n + 1)$?

10. Na figura está representado parte do gráfico de uma função f de domínio $\mathbb{R}\setminus\{2\}$.

Sabe-se que:

• as rectas de equação x = -1, x = 2 e y = 0 são assimptotas do gráfico de f.

Seja (x_n) uma sucessão tal que $x_n \to 2$ e $-1 < x_n < 2$, $\forall n \in \mathbb{N}$.

11. Seja f uma função contínua em \mathbb{R} , definida por:

$$f(x) = \begin{cases} a^2 \cos(\pi x) & \text{se } x \le 1\\ \frac{e^{b-bx}-1}{\ln(ax-a+1)} & \text{se } x > 1 \end{cases}, \text{ com } a, b \in \mathbb{R} \setminus \{0\}$$

Quais podem ser os valores de a e de b?

A
$$a = -2 e b = -6$$
 B $a = -1 e b = 1$ **C** $a = 1 e b = 3$ **D** $a = 2 e b = 8$

B
$$a = -1 e b = 1$$

C
$$a = 1 e b = 3$$

D
$$a = 2 e b = 8$$

12. Sejam f, g e h três funções de domínio $\mathbb R$, tal que o contradomínio de f é]0,1[, a função g é definida por $g(x) = e^{x^3 - 2x^2 + x}$ e a segunda derivada de h é definida por $h''(x) = \ln(f(x)) \times g'(x)$. Qual das afirmações é verdadeira?

- A O gráfico de h tem a concavidade voltada para baixo em $\left[\frac{1}{3}, 1\right]$.
- **B** O gráfico de h tem a concavidade voltada para cima em $\left[0, \frac{4}{2}\right]$.
- lacktriangle O gráfico de h tem a concavidade voltada para baixo em $\left]-\infty,\frac{1}{3}\right]$ e em $\left[1,+\infty\right[$.
- **D** O gráfico de h tem a concavidade voltada para cima em $]-\infty,0]$ e em $\left[\frac{4}{3},+\infty\right[$.

13. Sejam f e g duas funções de domínio \mathbb{R} tais que $f(x) = \ln(x^2 + x)$ e a recta tangente ao gráfico de g no ponto de abcissa 1 é perpendicular à recta de equação $y = -\frac{x}{2} + 1$ e contém o ponto de coordenadas (2,3).

Qual é o valor de $(f \circ g)'(1)$?

A 1

B 2

C 3

D 4

14. Nas figuras estão representadas, num referencial o.n. xOy, parte dos gráficos de duas funções polinomiais $f \in g$.

Seja h uma função de domínio \mathbb{R} , tal que $h''(x) = (f \times g)(x)$. Em qual das opções seguintes pode estar representado parte do gráfico da função -h(x+1)?

Α

В

C

D

15. Na figura estão representados, no plano complexo, as imagens geométricas dos números complexos z, z_1 , z_2 , z_3 e Z_4 .

Sabendo que |z|=2, qual deles pode ser igual a $\frac{8}{z^3}-\bar{z}$?

- $A z_1$

 $C z_3$

16. No plano complexo da figura está representado um decágono regular inscrito numa circunferência centrada na origem. Os vértices do decágono são as raízes de índice n de um número complexo z. O vértice D tem abcissa $-\frac{\sqrt{2}}{2}$ e o vértice *I* tem ordenada $-\frac{\sqrt{6}}{2}$.

Qual é o número complexo cuja imagem é o ponto G?

B
$$\sqrt{2} \cos \frac{19\pi}{15}$$

$$\frac{\sqrt{2}}{2}$$
 cis $\frac{19\pi}{15}$

B
$$\sqrt{2} \operatorname{cis} \frac{19\pi}{15}$$
 C $\frac{\sqrt{2}}{2} \operatorname{cis} \frac{19\pi}{15}$ **D** $\sqrt{2} \operatorname{cis} \frac{27\pi}{20}$

17. Em \mathbb{C} , conjunto dos números complexos, considere os números $z_1 = 2\operatorname{cis} \frac{5\pi}{12}$ e $z_2 = \frac{-4i^{37}}{1+i} - \frac{1}{i} - i$.

17.1. Mostre que $z_2=2\sqrt{2}\mathrm{cis}\,rac{5\pi}{4}$ e determine o menor natural n de modo que a imagem geométrica do número complexo $\left(\frac{z_2}{(z_4)^2 \times i}\right)^{3n}$ pertença à bissectriz do terceiro quadrante.

17.2. Resolva, em \mathbb{C} , a equação $z^3 \times (z_2)^2 - 32\bar{z} = 0$ \wedge $z \neq 0$ e determine a área do polígono cujos vértices são as imagens geométricas das soluções da condição. Apresente as soluções na forma trigonométrica.

18. Mostre que $|z - w|^2 = |z|^2 - 2\text{Re}(\bar{z} \times w) + |w|^2$, $\forall z, w \in \mathbb{C}$.

19. Em \mathbb{C} , conjunto dos números complexos, considere $z_1 = 2 + 2xi + x^2i^{8n+3}$ e $z_2 = -3 + x^2 + x^3i^{5-16n}$, com $n \in \mathbb{N}$ e $x \in \mathbb{R}$.

- **19.1.** Nesta alínea, considere x=-1. Determine, na forma trigonométrica $\frac{z_1}{\overline{z_2}-\mathrm{cis}\frac{3\pi}{2}}+\frac{1+4i}{4i}+\frac{\sqrt{3}}{4}\mathrm{cis}\frac{\pi}{2}$.
- **19.2.** Determine x de modo que z_2 seja igual ao simétrico do conjugado de z_1 .
- **20.** Na figura estão representados, no plano complexo, um pentágono regular [ABCDE], inscrito numa circunferência centrada na origem, e uma circunferência centrada no ponto F.

Sabe-se que:

- o segmento de recta [CD] é paralelo ao eixo imaginário.
- os pontos C e D pertencem à circunferência.
- o ponto A pertence ao eixo real e $\overline{OA} = 2$

Seja C a imagem geométrica do número complexo z_3 . Escreva na forma algébrica o número complexo

$$\frac{\left(z_3\right)^5 \times \cos\frac{\pi}{12}}{-\sqrt{6} + \sqrt{2}i} - \frac{2 - 6i}{1 - i}$$

- **21**. Seja S o espaço de resultados associado a uma experiência aleatória e sejam A e B dois acontecimentos possíveis $(A \subset S \in B \subset S)$.
 - **21.1.** Mostre que $P(A|\bar{B}) \times \left(\frac{1}{P(B)} 1\right) \frac{P(A)}{P(B)} = P(\bar{A}|B) 1.$
 - 21.2. Uma caixa contém bolas pretas e encarnadas numeradas com números naturais.

Sabe-se que:

- O número de bolas pretas é o dobro do número de bolas numeradas com um número par.
- Entre as bolas numeradas com um número ímpar, 70% são pretas.
- Entre as bolas numeradas com um número par, dois quintos são encarnadas.

Escolhendo ao acaso uma bola da caixa, qual é a probabilidade de ser preta? Apresente o resultado na forma de fracção irredutível.

Sugestão: Pode utilizar a igualdade enunciada em 2.1. Nesse caso, deverá começar por caracterizar claramente os acontecimentos *A* e *B*, no contexto da situação apresentada.

- 22. No Departamento Financeiro de uma empresa trabalham sete homens e três mulheres.
 - **22.1.** Escolhem-se ao acaso quatro funcionários do Departamento Financeiro da empresa. Qual é a probabilidade de serem todos do sexo masculino, sabendo que pelo menos dois são do sexo masculino?

Uma resposta a este problema é $\frac{^7C_4}{^7C_2 \times ^3C_2 + ^7C_3 \times ^3C_1 + ^7C_4}$. Numa pequena composição, explique porquê. A composição deve incluir:

- uma referência à regra de Laplace.
- uma explicação do número de casos possíveis.
- uma explicação do número de casos favoráveis.
- **22.2.** Um estudo feito pela empresa revelou que a altura das suas funcionárias segue uma distribuição normal de valor médio 162 cm e que a percentagem de funcionárias com altura superior a 168 cm é de 20%.

Considere a variável aleatória X: «número de funcionárias do Departamento Financeiro com altura entre 156 cm e 162 cm».

Defina por meio de uma tabela a distribuição de probabilidades da variável aleatória X. Apresente as probabilidades na forma de dízima.

22.3. A empresa contratou mais alguns funcionários para o Departamento Financeiro, todos do sexo feminino.

Com a nova composição do Departamento Financeiro a de escolher ao acaso dois funcionários e estes serem do sexo feminino é $\frac{4}{15}$. Quantas funcionárias foram contratadas?

23. Seja S o espaço de resultados associados a uma certa experiência aleatória. Sejam A e B dois acontecimentos possíveis ($A \subset S$ e $B \subset S$). Mostre que:

$$P(\bar{A} \cup B) - P(A|\bar{B}) \times P(B) = P(\bar{A})$$
 se e só se A e B forem independentes.

- **24.** Considere a função g de domínio \mathbb{R} definida por $g(x) = -xe^{4-x^2}$.
 - **24.1.** Estude a função *g* quanto ao sentido das concavidades e à existência de pontos de inflexão do seu gráfico.
 - **24.2.** Seja f a função de domínio $\mathbb{R}\setminus\{0,4\}$ definida por:

$$f(x) = \begin{cases} g(x) \ln(-x) & \text{se } x < 0 \\ \frac{4-x}{x-\sqrt{4x}} & \text{se } x > 0 \end{cases}$$

Estude a função *f* quanto à existência de assimptotas do seu gráfico, paralelas aos eixos coordenados.

25. Sejam f e g duas funções de domínio \mathbb{R} tal que g(x) = mx + b, com $m \in \mathbb{R} \setminus \{-1,0\}$ e $b \in \mathbb{R}$. Sabe-se que o gráfico de g é assimptota do gráfico de f, quando $x \to +\infty$.

Considere a função h, de domínio \mathbb{R} , definida por $h(x)=\frac{x^2}{f(-x)-g\left(\frac{x}{m}\right)}$. Mostre que o gráfico de h admite uma assimptota quando $x \to -\infty$ e escreva uma equação que a defina.

26. Num hipermercado o preço de venda, em euros, de um guilograma de cerejas é dado por:

$$V(t) = \frac{2}{3}t + 8 - 2\ln(t^2 + 7t + 1), \text{ com } t \in [0,10]$$

onde t representa o tempo, em semanas, decorrido após o inicio da sua comercialização.

- **26.1.** Ao fim de quanto tempo foi mínimo o preço de venda de cada quilograma de cerejas? Qual foi esse preço? Apresente o resultado em euros.
- **26.2.** Durante as dez semanas que as cerejas estiveram à venda, o hipermercado comprou cada quilograma por 3 euros. O número de quilogramas que vendeu, em milhares, é dado por:

$$Q(t) = 4t^2e^{-0.5t}$$
, com $t \in [0.10]$

Recorrendo à calculadora gráfica, determine durante quanto tempo o lucro do hipermercado foi superior a 2000 euros.

Na sua resposta deve:

- escrever a condição que permite resolver o problema.
- reproduzir o(s) gráfico(s) (devidamente identificado(s)) que achar necessário(s) para a resolução do problema.
- indicar os valores que t que são solução do problema.

Apresente os valores que retirar da calculadora arredondados às milésimas e a resposta à questão em semanas e dias, com os dias arredondados às unidades.

27. Sejam f e g duas funções de domínio $\mathbb R$ tais que, f', g', f'' e g'', todas de domínio $\mathbb R$, satisfazem as condições:

•
$$f''(x) > 0$$
 e $g''(x) < 0$, $\forall x \in \mathbb{R}$

•
$$f'(1) = 0$$
 e $g'(2) = 0$

Mostre que existe pelo menos um $c \in]0,3[$ tal que as rectas tangentes aos gráficos de f e g no ponto de abcissa c são paralelas.

28. Considere a função f, de domínio \mathbb{R} , definida por:

$$f(x) = \begin{cases} \frac{3x + \ln(2x)}{x} & \text{se } x > 0 \\ 0 & \text{se } x = 0 \\ 2x - \frac{x^2 + x + 1}{x\sqrt{x^2 + 1}} & \text{se } x < 0 \end{cases}$$

- **28.1**. Determine, por definição, f'(1) e mostre que uma equação da reta tangente ao gráfico de f no ponto de abcissa 1 é $y = \ln\left(\frac{e^{x+2}}{2^{x-2}}\right)$.
- **28.2.** Verifique se existe $\lim_{x\to 0} f(x)$ e estude a função f quanto à existência de assimptotas do seu gráfico. Caso existam, indique as suas equações.
- **28.3.** Estude, para $x \in \mathbb{R}^+$, a função f quanto à monotonia e existência de extremos relativos, determinando-os caso existam.
- **29.** Considere a função f, de domínio $\mathbb{R}\setminus\{-2\}$, definida por:

$$f(x) = \begin{cases} \frac{4-x^2}{1-e^{-2x-4}} - 1 & \text{se } x \le 0\\ \ln^2 x - \ln x & \text{se } x > 0 \end{cases}$$

- **29.1**. Estude a função f quanto à existência de assimptotas do seu gráfico, paralelas aos eixos coordenados. Caso existam, indique as suas equações.
- **29.2.** Estude, para $x \in \mathbb{R}^+$, a função f quanto ao sentido das concavidades e à existência de pontos de inflexão do seu gráfico.
- **29.3.** Na figura está representado, num referencial o.n. xOy, parte do gráfico da função f e um triângulo [ABP].

Sabe-se que:

- os pontos A e B pertencem ao gráfico da função f, têm ordenada 2 e têm abcissa positiva;
- o ponto P desloca-se sobre o gráfico da função f, no segundo quadrante. Para cada posição do ponto P a sua abcissa, x, pertence ao intervalo]-2,0].

Determine as abcissas dos pontos P de modo que a área do triângulo [ABP] seja igual a 2.

Na sua resposta deve:

- Determinar, analiticamente, o valor exacto das abcissas dos pontos A e B;
- escrever uma condição que permite resolver o problema;
- reproduzir o(s) gráfico(s) (devidamente identificado(s)) que achar necessário(s) para a resolução do problema;
- indicar as abcissas dos pontos P que são solução do problema, apresentando-as arredondadas às centésimas.
- **30.** Considere a função f, de domínio \mathbb{R} , definida por $f(x) = 3x \ln(x^2 + 2)$.
 - **30.1.** Resolva, em \mathbb{R} , a inequação $3x \ln(3-x) f(x) \ge \ln(2x+2)$.
 - **30.2.** Estude a função g, de domínio $\mathbb{R} \setminus \{0\}$, definida por $g(x) = \frac{f(x)}{x}$ quanto à existência de assimptotas do seu gráfico. Caso existam, indica as suas equações.
 - **30.3.** Estude a função f quanto ao sentido das concavidades e à existência de pontos de inflexão do seu gráfico.
- 31. Na figura estão representados em referencial o.n. xOy um círculo trigonométrico e um triângulo [OAB].

Sabe-se que:

• o ponto A desloca-se sobre a circunferência, no segundo quadrante (eixo Ox não incluído). O ponto C acompanha o movimento de A, de modo que [AC] é sempre paralelo a Oy;

- o ponto B pertence ao eixo Ox;
- o arco de circunferência AB está centrado em C;
- α é a amplitude, em radianos, do ângulo POA, com $\alpha \in \left[\frac{\pi}{2}, \pi\right]$.

Seja g a função que dá a área do triângulo [OAB] em função de α .

- 31.1. Mostre que $g(\alpha) = \frac{\sin^2 \alpha \sin \alpha \cos \alpha}{2}$. Determine $g\left(\frac{\pi}{2}\right)$ e interpreta geometricamente o resultado obtido.
- **31.2.** Mostre que $g'(\alpha) = \frac{\sin(2\alpha) \cos(2\alpha)}{2}$ e determine o valor de α para o qual a área do triângulo [OAB] é máxima.

- **32.** Considere a função h, de domínio \mathbb{R} definida por $h(x) = \sin(2x) 2\sin x$.
 - **32.1.** Determine, por definição, $h'\left(\frac{\pi}{2}\right)$.
 - **32.2**. Seja P um ponto de abcissa $x \in [0, \pi]$, que se desloca sobre o gráfico de h. Para cada posição do ponto P, considere o triângulo [OPQ] tais que O é a origem do referencial e Q pertence ao eixo Ox e tem a mesma abcissa que P.

Recorrendo à calculadora gráfica, determine a abcissa do ponto *P* de modo que a área do triângulo seja máxima.

Na sua resposta deve:

- escrever a área do triângulo [OPQ] em função da abcissa de P.
- escrever a condição que permite resolver o problema.
- reproduzir o(s) gráfico(s) (devidamente identificado(s)) que achar necessário(s) para a resolução do problema.
- indicar a abcissa do ponto P, arredondada às décimas, que é a solução do problema.
- **32.3.** Na figura estão representados, num referencial o.n. xOy, o polígono $\begin{bmatrix} ABOCD \end{bmatrix}$ e a circunferência de equação $x^2 + y^2 = 4$.

Sabe-se que:

- O ponto A pertence ao eixo Ox e à circunferência.
- O ponto C desloca-se no terceiro quadrante (eixos não incluídos) sobre a circunferência. O ponto B acompanha o seu movimento de modo que [BC] é sempre um diâmetro da circunferência.

O ponto D pertence ao eixo Ox e acompanha o movimento do ponto
 C de modo que [CD] é sempre paralelo a Oy.

Seja α a amplitude do ângulo AOC, com $\alpha \in \left]\pi, \frac{3\pi}{2}\right[$. Determine o valor de α de modo que a área do polígono $\left[ABOCD\right]$ seja máxima e indique o valor da área máxima.

Sugestão: Comece por mostrar que a área do polígono $\lceil ABOCD \rceil$ é dada por $h(\alpha)$.

33. Sejam (u_n) a sucessão definida por $u_n = \frac{1}{n \operatorname{sen}\left(\frac{1}{n}\right)}$ e f uma função de domínio \mathbb{R} tal que $\lim f\left(u_n - 2\right) = +\infty$

Em qual das seguintes opções pode estar representado parte do gráfico da função f?

Numa pequena composição indique a opção correcta e explique as razões que o levam a rejeitar as restantes opções. Apresente três razões, uma por cada opção rejeitada.

SOLUCIONÁRIO 1. A 2. A 3. B 4. B 5. B 6. B 7. B 8. C 9. D 10. A 11. D 12. C 13. C 14. C 15. B 16. B 17.1. n = 3 17. $\left\{2\operatorname{cis}\left(-\frac{\pi}{8}\right), 2\operatorname{cis}\frac{3\pi}{8}, 2\operatorname{cis}\frac{11\pi}{8}\right\}$; Área_{polígono} = 8 19.1. $\frac{1}{2}\operatorname{cis}\frac{2\pi}{3}$ 19.2. x = 1

24.2	2
Z1.Z.	_

	x_i	0	1	2	3
22.2.	$P(X=x_i)$	0,343	0,441	0,189	0,027

22.3. Cinco funcionárias.

- 24.1. $g''(x) = xe^{4-x^2}(6-4x^2)$; O gráfico de g tem a concavidade voltada para baixo em $\left[-\frac{\sqrt{6}}{2},0\right]$ e em $\left[\frac{\sqrt{6}}{2},+\infty\right[$, tem a concavidade voltada para cima em $\left]-\infty,-\frac{\sqrt{6}}{2}\right]$ e em $\left[0,\frac{\sqrt{6}}{2}\right]$ e tem pontos de inflexão em $x=-\frac{\sqrt{6}}{2}$, em x=0 e em $x=-\frac{\sqrt{6}}{2}$.
- **24.2.** A.V.: x=0; A.H.: y=0, quando $x \to -\infty$ e y=-1, quando $x \to +\infty$
- 25. $y = -\frac{x}{m+1}$.
- **26.1.** O preço de venda de cada quilograma de cerejas foi mínimo passadas quatro semanas. Esse preço foi de, aproximadamente, 3,05 euros $(V(4) \approx 3,05)$
- **26.2.** $(V(t)-2)\times Q(t)>2 \Leftrightarrow t\in]a,b[\cup]c,10]$, com $a\approx 0,572$, $b\approx 2,37$ e $c\approx 6,126$. O lucro do hipermercado foi superior a 2000 euros durante $(b-a)+(10-c)\approx 5,672$ semanas, isto é, durante, aproximadamente, 5 semanas e 5 dias $(0,672\times 7\approx 5)$.
- **28.1.** $f'(1) = \lim_{x \to 1} \frac{f(x) f(1)}{x 1} = 1 \ln 2 = \ln \left(\frac{e}{2}\right)$
- **28.2.** Não existe $\lim_{x\to 0} f(x)$, porque $\lim_{x\to 0^-} f(x) = +\infty$ e $\lim_{x\to 0^+} f(x) = -\infty$. A.V.: x=0; A.O.: y=2x+1, quando $x\to -\infty$; A.H.: y=3, quando $x\to +\infty$.
- **28.3.** Para $x \in \mathbb{R}^+$, a função f é crescente em $\left]0, \frac{e}{2}\right]$, é decrescente em $\left[\frac{e}{2}, +\infty\right[$ e tem máximo em $x = \frac{e}{2}$ que é $f\left(\frac{e}{2}\right) = 3 + \frac{2}{e}$.
- **29.1.** A.V.: x = 0; A.H.: y = -1, quando $x \to -\infty$.
- **29.2.** $f''(x) = \frac{3-2\ln x}{x^2}$; Para $x \in \mathbb{R}^+$, o gráfico de f tem a concavidade voltada para baixo em $\left[\sqrt{e^3}, +\infty\right[$, tem a concavidade voltada para cima em $\left[0, \sqrt{e^3}\right]$ e tem ponto de inflexão em $x = \sqrt{e^3}$.
- **29.3.** A altura do triângulo é dada por $\left|2 \left(\frac{4-x^2}{1-e^{-2x-4}} 1\right)\right| = \left|3 \frac{4-x^2}{1-e^{-2x-4}}\right|$ e a sua área por $\left|3 \frac{4-x^2}{1-e^{-2x-4}}\right| \times \frac{e^2-e^{-1}}{2}$. Assim:

$$\left| 3 - \frac{4 - x^2}{1 - e^{-2x - 4}} \right| \times \frac{e^2 - e^{-1}}{2} = 2 \Leftrightarrow x = a \quad \lor \quad x = b, \text{com } a \approx -1,72 \text{ e } b \approx -0,92$$

- **30.1.** $x \in \left[-1, -\frac{2}{3} \right] \cup \left[2, 3 \right[$ **30.2.** A.V: x = 0. A.H.: y = 3, quando $x \to \pm \infty$
- **30.3.** O gráfico de f tem a concavidade voltada para baixo em $\left[-\sqrt{2},\sqrt{2}\right]$, tem a concavidade voltada para cima em $\left]-\infty,-\sqrt{2}\right]$ e em $\left[\sqrt{2},+\infty\right[$ e tem pontos de inflexão em $x=-\sqrt{2}$ e em $x=\sqrt{2}$.
- 31.1. $g\left(\frac{\pi}{2}\right) = \frac{1}{2}$. Quando $\alpha = \frac{\pi}{2}$, o triângulo [OAB] é rectângulo e isósceles. A medida do comprimento dos seus catetos é 1 e a sua área $\frac{1}{2}$.
- 31.2. $\alpha = \frac{5\pi}{8}$
- 32.1. $h'\left(\frac{\pi}{2}\right) = \lim_{x \to \frac{\pi}{2}} \frac{h(x) h\left(\frac{\pi}{2}\right)}{x \frac{\pi}{2}} = -2$
- **32.2.** A área do triângulo $\lceil OPQ \rceil$ é máxima se x = a, com $a \approx 2,3$.
- **32.3.** A área do polígono $\left[ABOCD\right]$ é máxima se $x = \frac{4\pi}{3}$. O valor da área máxima é $\frac{3\sqrt{3}}{2}$
- **33**. C