Natural Language Processing and Text Mining:

HW#3

小組成員和負責工作:

109590041 范遠皓 撰寫程式和測試

109590043 柯瑞霖 撰寫程式和報告

環境

使用的語言: Python

所需套件:

gensim==4.3.1

joblib==1.2.0

numpy = = 1.24.3

pandas==2.0.1

python-dateutil==2.8.2

pytz = 2023.3

scikit-learn==1.2.2

scipy = = 1.10.1

six = = 1.16.0

sklearn==0.0.post5

smart-open==6.3.0

threadpoolctl==3.1.0

tzdata==2023.3

安裝辦法:

Zip 檔內有 requirements.txt

終端機輸入以下指令安裝

pip3 install -r requirements.txt

```
word_vectors = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)
```

讀取 WordSim-353 資料集

計算 WordSim-353 資料集各個單詞的相似度

```
# 計算單詞相似度
similarities = []
for pair in wordsim_pairs:
    word1, word2, _ = pair
    similarity = word_vectors.similarity(word1, word2)
    similarities.append(similarity)
```

輸出 correlation

```
# 輸出 correlation

correlation, p_value = pearsonr(Humans_mean, similarities)

print('Word similarity')

print("Correlation:", correlation)
```

讀取 BATS 3.0 資料並轉成 features 的形式

```
讀取 BATS_3.0 資料並轉成 features 的形式
lef read_BATS_dataset():
   folder1_path = 'BATS_3.0'
   folder2_paths = []
   datas = pd.DataFrame(columns=['features', 'label'])
   if os.path.exists(folder1 path) and os.path.isdir(folder1 path):
       for file_name in os.listdir(folder1_path):
           folder2_paths.append(os.path.join(folder1_path, file_name))
       print('No such folder')
   for folder_name in folder2_paths:
       if not(os.path.exists(folder_name) and os.path.isdir(folder_name)):
       for file_name in os.listdir(folder_name):
          label = file_name.split(']')[0].split('[', 1)[1]
           temp = []
           data = pd.read_csv(os.path.join(folder_name, file_name), sep='\t', header=None, names=['word1', 'word2'])
           for index, row in data.iterrows():
               if '/' in row['word2']:
                  for word2 in row['word2'].split('/'):
                           features = word_vectors[row['word1']] - word_vectors[word2]
                           temp.append(pd.Series({'features' : features, 'label' : label}))
                       features = word_vectors[row['word1']] - word_vectors[row['word2']]
                      temp.append(pd.Series({'features' : features, 'label' : label}))
           datas = pd.concat([datas, pd.DataFrame(temp)], ignore_index=True)
   return datas
```

前段部分是在進入 BATS_3.0 資料夾內層中的各個資料夾, 之後將資料夾內的兩個或多個單字做向量的相減, 並用此數值作為特徵值和資料夾名稱作為 Label。

分類和輸出

```
# Train, X_test, y_train, y_test = train_test_split(list(datas['features']), list(datas['label']), test_size=0.2, random_state=42) classifier = LogisticRegression() classifier.fit(X_train, y_train) predictions = classifier.predict(X_test) print() print('Analogy prediction') print(classification_report(y_test, predictions))
```

用 LogisticRegression 進行訓練, 前 80%訓練, 後 20%測試。

執行結果:

17 11 3 MAZIC .				
Word similarity				
Correlation: 0.652534	9618875615			
Analogy prediction				
	precision	recal1	f1-score	support
UK city - county	1.00	0.38	0.55	8
adj - comparative	0.92	1.00	0.96	11
adj - superlative	1.00	1.00	1.00	11
adj+ly_reg	1.00	1.00	1.00	10
adj+ness reg	1.00	0.82	0.90	11
animal - shelter	1.00	0.90	0.95	20
animal - sound	0.95	0.95	0.95	21
animal - young	0.93	0.81	0.87	16
antonyms - binary	0.40	0.32	0.36	37
antonyms - gradable	0.79	0.87	0.8 3	145
country - capital	1.00	0.50	0.67	10
country - language	1.00	0.57	0.7 3	14
hypernyms - animals	0.89	0.99	0. 73	94
hypernyms - misc	0.88	0.94	0.91	122
hyponyms - misc	0.80	0.88	0.84	226
male - female	1.00	0.87	0.84 0.93	15
meronyms - member	0.53	0.87 0.73	0.62	11
		0.79		
meronyms - part	0. 73		0.76	119
meronyms - substance	0.77	0.64	0.70	36
name - nationality	0.50	0.80	0.62	5
name - occupation	1.00	0.86	0.92	21
noun - plural_irreg	0.50	0.25	0.33	12
noun - plural_reg	0.50	0.55	0.52	11
noun+less_reg	1.00	0.38	0.55	8
over+adj_reg	1.00	0.62	0.77	8
re+verb_reg	0.83	0.45	0.59	11
synonyms - exact	0.60	0.47	0.53	32
synonyms - intensity	0.61	0.61	0.61	44
things - color	0.97	0.97	0.97	30
un+adj_reg	0.67	0.50	0.57	12
verb+able_reg	1.00	0.88	0.93	8
verb+er_irreg	1.00	0.80	0.89	5
verb+ment_irreg	0.40	0.67	0.50	6
verb+tion_irreg	0.50	0.33	0.40	6
verb_3pSg - Ved	1.00	1.00	1.00	12
verb_Ving - 3pSg	1.00	1.00	1.00	9
verb_Ving - Ved	1.00	0.80	0.89	15
verb_inf - 3pSg	1.00	1.00	1.00	13
verb_inf - Ved	1.00	1.00	1.00	13
verb_inf - Ving	0.92	0.86	0.89	14
accuracy			0.81	1232
macro avg	0.84	0.74	0.77	1232
weighted avg	0.81	0.81	0.81	1232