Group-Assignment: EDA or Pre-processing Techniques(s)

PARALLEL COORDINATES PLOT

Presented by

ชญานนท์ มานะกิจจานนท์ 6510503298 ศุภกิตต์ วงศ์โต 6510503816

อริบายเทคนิค

Parallel Coordinate Plot คือวิธีการ plot graph สำหรับ dataset ที่ข้อมูลมีหลายมิติ ที่จะ แสดวข้อมูลที่เราสนใจออกมาเป็นเส้นที่ลากผ่านหลายๆ แกน โดยที่หนึ่วเส้นจะแทนข้อมูลหนึ่วตัว และแต่ละ แกนจะแทนตัวแปรหนึ่วตัวที่เราสนใจ ทำให้สามารถมอวเห็นภาพความสัมพันธ์ขอวข้อมูลกับหลายๆตัวแปร ที่เราสนใจใน dataset ได้ว่ายยิ่วขึ้น

โดยวิธีการนี้จะมีความคล้ายคลึงกับการทำ line chart แต่จะเป็นการลากเส้นผ่านหลายๆแกนและ แสดงผลออกมาพร้อมกัน

ตัวอย่าง PARALLEL COORDINATES PLOT

Parallel coordinate plot, Fisher's Iris data

penguins.csv มีตัวแปรต่าวๆ ซึ่งเกี่ยวข้องกับข้อมูลนกเพนกวิน ดังนี้

- species ขอวเพนกวิน ซึ่วมีทั้วหมด 3 สปีชีส์ คือ Adelie, Gentoo และ Chinstrap
- island หรือเกาะที่อาศัย ซึ่วมีทั้วหมด 3 ตัวแปร คือ Biscoe, Dream และ Torgersen
- bill_length_mm คือความยาวของปากนก ในหน่วยมิลลิเมตร
- bill_depth_mm คือความกว้าวของปากนก ในหน่วยมิลลิเมตร
- flipper_length_mm คือความยาวของปีกนก ในหน่วยมิลลิเมตร
- body_mass_g คือน้ำหนักขอวนก ในหน่วยกรัม
- รex คือเพศขอวนกเพนกวิน

Parallel coordinates plot

DATASET(S) BEFORE PRE-PROCESSED

DATASET(S) AFTER PRE-PROCESSED

 สำหรับการทำ Parallel coordinates plot นั้นมี library อยู่ ภายใน pandas สามารถนำมาใช้ได้เลย

วิธีการใช้ฟัวก์ชัน plotting.parallel_coordinates import pandas as pd pd.plotting.parallel_coordinates(frame, class_column, cols=None, ax=None, color=None, use_columns=False, xticks=None, colormap=None, axvlines=True, axvlines_kwds=None, sort_labels=False)

Import Library and dataset

```
    Importing the libraries

[ ] 1 import numpy as np
    2 import matplotlib.pyplot as plt
    3 import pandas as pd
    4 import seaborn as sns
```


Checking for missing data and handling missing data


```
[] 1 numerical_column = ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'body_mass_g']
2
3 for col in numerical_column:
4    df[col].fillna(df[col].mean(), inplace=True)
5
6 categorical_column = ['sex']
7
8 for col in categorical_column:
9    df[col].fillna(df[col].mode()[0], inplace=True)
```

Rescale some columns to make graph visualization better

0	<pre>1 df['body_mass_kg'] = df['body_mass_g']/1000 2 df['flipper_length_cm'] = df['flipper_length_mm']/10 3 df.head(10)</pre>									
	:	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex	body_mass_kg	flipper_length_cm
	0	Adelie	Torgersen	39.10000	18.70000	181.000000	3750.000000	male	3.750000	18.10000
	1	Adelie	Torgersen	39.50000	17.40000	186.000000	3800.000000	female	3.800000	18.60000
	2	Adelie	Torgersen	40.30000	18.00000	195.000000	3250.000000	female	3.250000	19.50000
	3	Adelie	Torgersen	43.92193	17.15117	200.915205	4201.754386	male	4.201754	20.09152
	4	Adelie	Torgersen	36.70000	19.30000	193.000000	3450.000000	female	3.450000	19.30000
	5	Adelie	Torgersen	39.30000	20.60000	190.000000	3650.000000	male	3.650000	19.00000
	6	Adelie	Torgersen	38.90000	17.80000	181.000000	3625.000000	female	3.625000	18.10000
	7	Adelie	Torgersen	39.20000	19.60000	195.000000	4675.000000	male	4.675000	19.50000
	8	Adelie	Torgersen	34.10000	18.10000	193.000000	3475.000000	male	3.475000	19.30000
	9	Adelie	Torgersen	42.00000	20.20000	190.000000	4250.000000	male	4.250000	19.00000

Plotting Parallel coordinates graph

```
1 from pandas.plotting import parallel_coordinates
2
3 columns_of_interest = ['bill_length_mm', 'bill_depth_mm', 'flipper_length_cm', 'body_mass_kg', 'species']
4
5 df_plot = df[columns_of_interest]
6
7 # Create a parallel coordinates plot
8 plt.figure(figsize=(12, 8))
9 parallel_coordinates(df_plot, class_column= "species", colormap='viridis',)
10 plt.title('Parallel Coordinates Plot')
11 plt.xlabel('Attributes')
12 plt.ylabel('Values')
13 plt.show()
```

EVALUATION

จาก Histogram ตอนแรก เราจะยัวใม่เห็นความสัมพันธ์ขอวแต่ละตัวแปรอย่าวแน่ชัด แต่เมื่อนำตัวแปรทั้ว 4 มาพลอต แบบ Parallel coordinates จะทำให้เห็นรูปแบบที่ชัดเจน ว่าเพนกวินแต่ละสายพันธ์นั้นมีลักษณะเฉพาะตัวอย่าวใร เช่น พันธุ์ Gentoo จะมีปากที่ค่อนข้าวยาวและแคบ แต่มีปีกที่ยาวและน้ำหนักที่มาก เป็นต้น

ADVANTAGES

สามารถใช้กับ Data ที่มีหลาย Dimension หรือหลายตัวแปรใด้

เนื่อวจากเป็นการพลอตที่สามารถแสดวหลายตัวแปรพร้อมๆ กันใด้ ทำให้สามารถ สัวเกตความสัมพันธ์ระหว่าวตัวแปร และเปรียบเทียบแต่ละตัวแปรใด้ว่ายกว่าวิธีอื่นๆ

ช่วยแสดงถึงรูปแบบและการกระจุกตัวของกลุ่มข้อมูล

ช่วยให้เห็นข้อมูลในภาพรวม ทำให้สามารถสั่วเกตเห็นถึงแนวโน้ม รูปแบบต่างๆ ของข้อมูล เห็นว่าข้อมูลส่วนใดมีการกระจุกตัว และมีข้อมูลส่วนใดที่เป็น outlier

สามารถใช้ใด้ทั้งกับ numerical และ categorical data

มีความยืดหยุ่น สามารถใช้กับทั้วข้อมูลทั้วสอวประเภท แต่สำหรับ categorical data ต้อว encoding ก่อน ถึวจะสามารถนำมาพลอดใด้

DISADVANTAGES

ข้อมูลที่มีปริมาณมหาศาล

เนื่อวจากเป็นการพลอตที่สามารถแสดวหลายตัวแปรพร้อมกัน ทำให้ข้อมูลที่มีปริมาณ มากและมีค่าซ้ำซ้อนเยอะจะทำให้สัวเกตความสัมพันธ์ขอวกราฟใด้ยากกว่า

ต้องทำการ Normalization

ข้อมูลที่จะนำมาพลอดอาจจะอยู่ในหลาย scale หลายหน่วย ทำให้การนำมาพลอด โดยไม่ normalize จะทำให้กราฟสังเกตเห็นแนวโน้มใด้ยาก และค่าผิดเพี้ยนไป

ต้องเรียงลำดับตัวแปร หรือ Dimension ให้เป็นระบบ

ควรต้อวจัดระเบียบความสัมพันธ์ขอวแต่ละแกนให้ถูกต้อว หากใม่เช่นนั้นจะ ทำให้สัวเกตความสัมพันธ์ใด้ยาก

DISADVANTAGES

ตัวอย่าวขอวกราฟที่ใม่ใด้ scale และจัด เรียวให้เหมาะสม ทำให้ยากต่อการดูความ สัมพันธ์

TECHNIQUE COMPAISON

Parallel coordinates plot

- สามารถดูข้อมูลหลายตัวแปรพร้อมกันใด้
- สามารถมองเห็นความสัมพันธ์ระหว่างแต่ละ ตัวแปรใด้ชัดเจน
- เนื่อวจากเป็นกราฟที่แสดวตัวแปรหลายมิติ ทำให้ ต้อวทำการ Normalize หรือจัดการกับ scale ขอวตัวแปรแต่ละตัวก่อน ใม่เช่นนั้นจะทำให้ดูยาก
- ใม่เหมาะกับการจัดการข้อมูลที่มีค่าซ้ำซ้อนเยอะ หรือมีจำนวนมาก

Scatterplot (Pair plot)

- เน้นดูความสัมพันธ์ระหว่างตัวแปร 2 ตัว
- สามารถสังเกต correlation ของคู่ตัวแปรใด้ ว่าเป็นใปในทางลบ ทางบวก หรือใม่สัมพันธ์กัน
- ใม่ต้องทำการปรับค่า หรือ Normalize ข้อมูล เนื่องจากมีแค่ 2 ตัวแปร ซึ่งมีแกน X และแกน Y แทน scale ของข้อมูลแล้ว
- ใม่มีปัญหากับการจัดการกับข้อมูลจำนวนมาก ข้อมูลจำนวนมากยิ่วอาจทำให้เห็นความสัมพันธ์ ระหว่าวตัวแปรทั้วสอวใด้ดียิ่วขึ้น

REFERENCES

Dataset

https://www.kaggle.com/datasets/ashkhagan/palmer-penguins-datasetalternative-iris-dataset/data

Knowledge

https://pandas.pydata.org/docs/reference/api/pandas.plotting.parallel_coordinates.html https://python-graph-gallery.com/150-parallel-plot-with-pandas/

Photo

https://www.antarctica.gov.au/about-antarctica/animals/penguins/adelie-penguin/ https://en.wikipedia.org/wiki/Parallel_coordinates

THANK YOU