afterglow, 1, 15, 54, 228, 273, 501	uniform jet model, 306
achromatic afterglow, 70	mechanical model, 168
bumps and wiggles, 66	microphysics parameters, 180
canonical X-ray afterglow lightcurve, 9, 18, 56, 58,	non-relativistic model, 311
114, 343	polarization, 342
normal decay phase, 18, 61, 343	radiation front, 341
plateau, 59	radiative fireball, 275
post-jet-break phase, 18, 61, 343	reverse shock model, 314
shallow decay phase, 18, 59, 343	dynamics, 315, 317
steep decay phase, 18, 56, 343, 354, 355	thick shell, 326, 339
chromatic afterglow, 18, 61, 70, 344	thin shell, 321, 337
continuous energy injection, 59	self-similar regime, 274
GeV flare, 75	SSC contribution, 313
high-energy afterglow, 73	synchrotron spectrum, 285
internal plateau, 19, 60, 61, 113, 471	comoving magnetic field strength B' , 288
onset of afterglow, 65, 235	cooling Lorentz factor γ_c , 287
optical afterglow, 64	minimum injection Lorentz factor γ_m , 285
optical flare, 66	self-absorption frequency v_a , 287
plateau, 18	wind model, 275, 296, 298, 304
radio afterglow, 72	alternative ideas, 269
radio flare, 72	cannonball model, 269
re-brightening feature, 66	fireshell model, 270
spectral energy distribution, 56	precession, 271
spectral index β , 55	•
temporal decay index α , 55	central engine, 14, 228, 444
X-ray afterglow, 56	hyper-accreting black hole, 15, 119, 445
X-ray flare, 9, 18, 33, 61, 66, 75, 114, 343, 471	$v\bar{v}$ annihilation, 446
afterglow models, 273	Blandford-Znajek (BZ) mechanism, 446, 450
Blandford–McKee solution, 277	late central engine activity, 55, 470
blastwave, 165	long-lasting central engine, 61, 63
closure relations, 72, 291, 292, 301, 320, 322, 324,	millisecond magnetar, 15, 19, 61, 83, 119, 455
325, 327, 328	accretion, 460
deceleration, 235	differential rotation, 459
dynamics, 279–281	spindown, 456
energy injection, 276, 296	NS equation of state (EoS), 463, 464
forward shock model, 289	NS-NS merger
ISM model, 274, 289, 298, 303	hyper-massive NS, 463
jet model, 299	prompt BH, 463
edge effect, 300	stable NS, 463
orphan afterglow, 305	supra-massive NS, 463
sideways expansion, 302	quark star, 468
structured jet model, 307	strange quark star, 468

strange star, 468	distances
circumburst medium, 54	angular distance, 514
classification, 108	comoving distance, 513
amplitude f-parameter, 110	light-travel distance, 514
amplitude f_{eff} -parameter, 110	luminosity distance, 514
compact star GRBs, 114, 116, 419, 432, 454, 463	transverse comoving distance, 514
duration-hardness classification scheme, 108	extragalactic background light (EBL), 512
high-luminosity GRBs, 10, 92, 97, 112	Gunn-Peterson (GP) trough, 508, 509
intermediate-duration GRBs, 29, 110	Hubble diagram, 514, 515
long GRBs, 6, 16, 29, 108	Hubble parameter, 513
low-luminosity GRBs, 9, 12, 93, 98, 112, 431	look back time, 96
massive star GRBs, 114, 116, 419, 454, 461	luminosity distance, 91, 95
optically bright GRBs, 113	metal enrichment history, 506
optically dark GRBs, 70, 113	Population III stars, 502
phenomenological classification scheme, 108	reionization history, 508
physical classification schemes, 114	star formation history, 503
short GRBs, 6, 29, 94, 98, 108	
short GRBs with extended emission, 113	fast radio bursts (FRBs), 73, 517
SN-GRBs, 114	fireball, 13, 54, 241, 360
SN-less GRBs, 114	acceleration, 242
Type I GRBs, 80, 114, 116, 419	characteristic radii, 243
Type II GRBs, 114, 116, 419	base of fireball R_0 , 243
ultra-long GRBs, 10, 119	coasting radius R_c , 246
X-ray flashes (XRFs), 1, 8, 41, 112	deceleration radius $R_{\rm dec}$, 250
X-ray rich GRBs, 1, 8, 41, 112	internal shock radius $R_{\rm IS}$, 247
collapsar, 15, 16, 85	photosphere radius $R_{\rm ph}$, 247
cocoon, 16	Sedov radius R_{Sedov} , 253
jet, 16	spreading radius R_s , 246
compact star mergers, 21, 86, 98, 489	coasting, 243
BH–BH mergers, 11, 490, 492	deceleration, 243
BH–WD mergers, 442	shell width, 245
NS–BH mergers, 19, 115, 433, 440, 441, 490	thick shell, 252, 318, 339
NS–NS collisions, 442	thin shell, 252, 318, 337
NS–NS mergers, 13, 14, 19, 115, 433, 434, 440,	fireball shock model, 14, 384
441, 490	fundamental physics, 519
correlations, 101	CPT violation, 522
$E_{\gamma,\text{iso}} - \Gamma_0$ relation, 106	Einstein's Weak Equivalence Principle (WEP), 523
	Lorentz Invariance Violation (LIV), 519, 521
$L_{\gamma,\text{iso}} - E_{p,z} - \Gamma_0$ relation, 106	photon rest mass, 524
$L_{\gamma,iso}$ - Γ_0 relation, 106 Amati relation, 102, 103	quantum gravity, 519
Dainotti relation, 106	
Fenimore–Reichart relation, 105	gamma-ray burst (GRB), 1
	Gamma-Ray Coordinates Network (GCN), 8
Fermani relation, 104	global properties
Frail relation, 104	$V/V_{\rm max}$, 90, 91
Ghirlanda relation, 102, 103	log N-log P, 89-91, 96, 98
Liang–Zhang relation, 103, 104	beaming-corrected energy, 100
luminosity–lag relation, 63, 105	emission energy, 100
luminosity–variability relation, 105	kinetic energy, 100
Norris relation, 105	bolometric luminosity, 97
Xu–Huang relation, 106	k-correction, 97
Yonetoku relation, 102, 103	detected event rate, 92
cosmology	event rate density, 92
comoving distance, 95	inhomogeneous, 90
cosmography, 513	intrinsic event rate density, 92
cosmological parameters, 95	isotropic, 89
damped Lvα (DLA) system, 507, 509	isotropic energy, 99

bolometric emission energy, 99	GRB 090102, 69, 343		
kinetic energy, 99	GRB 090423, 9, 116, 500		
luminosity function, 92, 97–99, 310, 441	GRB 090426, 9, 116		
non-uniform, 90	GRB 090429B, 9, 116, 498, 500		
observed event rate density, 92	GRB 090510, 11, 45, 46, 51, 234, 520-523		
radiative efficiency, 100	GRB 090515, 60		
redshift distribution, 91, 92, 94, 440	GRB 090902B, 11, 38, 45, 46, 49, 51, 234, 378,		
volumetric event rate, 92	408		
GRBs	GRB 090926A, 11, 45, 46, 49, 51, 67, 234		
GRB 021206, 52	GRB 091208B, 69		
GRB 030323, 506, 507	GRB 100316D/SN 2010bh, 9		
GRB 030329/SN 2003dh, 7, 67, 77, 78, 114, 118,	GRB 100704A, 73		
231, 311, 313	GRB 100724B, 44, 47		
GRB 041017, 51	GRB 100728A, 75		
GRB 041219A, 51, 52	GRB 100826A, 522		
GRB 041219B, 51	GRB 100828A, 53		
GRB 050406, 63	GRB 101011A, 73		
GRB 050416A, 525	GRB 101225 (Christmas GRB), 10, 120		
GRB 050502B, 63	GRB 110205A, 51, 52		
GRB 050502B, 05 GRB 050509B, 9	GRB 110301A, 53, 522		
GRB 050607, 63	GRB 110721A, 46, 47, 53, 378, 522		
•	GRB 111209A/SN 2011kl, 431		
GRB 050709, 9, 83, 440	•		
GRB 050712, 63	GRB 120308A, 69, 343		
GRB 050713A, 63	GRB 120323A, 46		
GRB 050714B, 63	GRB 120412A, 28		
GRB 050724, 9, 80, 81, 83, 116, 440, 497	GRB 130427A, 11, 49, 51, 52, 56, 57, 72, 75, 78		
GRB 050730, 72	114, 118, 234, 288, 299, 314		
GRB 050820A, 51–53	GRB 130603B, 83, 440, 497		
GRB 050822, 63	GRB 130606B, 378		
GRB 050904, 9, 63, 509, 511	GRB 160625B, 34, 54, 409, 522		
GRB 050906, 63	GRB 670702, 3		
GRB 051103, 443	GRB 930131, 52		
GRB 060124, 51	GRB 940217, 73		
GRB 060218/SN 2006aj, 9, 10, 51, 117, 431	GRB 941017, 46		
GRB 060418, 65, 69, 342	GRB 960924, 52		
GRB 060505, 9, 80, 81, 114, 115	GRB 970228, 7, 55		
GRB 060526, 72	GRB 970508, 7, 55		
GRB 060607A, 72	GRB 980326, 79		
GRB 060614, 9, 65, 66, 79–81, 83, 114–116, 440	GRB 980425/SN 1998bw, 7, 78, 118, 498		
GRB 060729, 66	GRB 980703, 525		
GRB 061006, 83, 440, 497	GRB 990123, 8, 42, 51, 53, 65, 66, 72, 299, 334		
GRB 061121, 51	GRB 990510, 65		
GRB 070110, 60, 72	GRB 991208, 525		
GRB 070714B, 83, 440, 497	GW150914-GBM (putative), 442		
GRB 071025, 86	GW170817/GRB 170817A, 12, 22, 94, 99, 433,		
GRB 080319B (naked-eye GRB), 10, 51, 53, 311,	470, 488, 492, 495, 498, 517, 524		
377, 409, 500, 523	GRB detectors		
GRB 080503, 83, 497	Apollo, 4		
GRB 080913, 9, 116, 500	BeppoSAX, 6, 16, 56, 114		
GRB 080916C, 11, 37, 45, 46, 234	CGRO, 1, 5		
GRB 081029, 67	BATSE, 1, 5, 14, 29, 52, 73, 89, 90		
GRB 081125, 49	EGRET, 73		
GRB 081207, 49	Fermi, 1, 10, 19, 41, 89		
GRB 081221, 49	GBM, 1, 10, 43, 73		
GRB 081222, 49	LAT, 10, 73		
GRB 081222, 49 GRB 081224, 49	Ginga, 4		
OIL 001227, T/	Juigu, T		

HETE-2, 7, 16, 114	$p\gamma$ interaction, 21, 221, 226, 480		
IKAROS GAP, 53	cross section, 226		
INTEGRAL, 41	pp/pn interaction, 221, 227, 481, 487		
RHESSI, 4, 52	cross section, 227		
Swift, 1, 8, 18, 56, 89, 114	neutron decay, 341, 411		
BAT, 1, 8, 63	photon–meson interaction, 226		
UVOT, 8	proton inverse Compton scattering, 225		
XRT, 8, 56, 63	proton synchrotron radiation, 225		
UHURU, 4	host galaxy, 84		
Vela, 3, 4	early-type galaxy, 86		
Venera Konus, 4	elliptical, 86		
Wind Konus, 43	hostless, 87		
GRB duration	irregular galaxy, 84		
T_{50} , 27	long GRB host galaxy, 84		
<i>T</i> ₉₀ , 27, 29, 30, 108, 110	metallicity, 84		
t _{burst} , 64, 119	offset, 87		
rest-frame duration, 111, 116	short GRB host galaxy, 86		
GRB jet, 299	specific star formation rate, 85		
beaming correction factor f_b , 100	spiral galaxy, 84		
cocoon, 423	star-forming galaxy, 84		
Gaussian jet, 308	hydrodynamics, 149		
jet break, 17, 61, 64, 299	equation of state, 151		
jet breakout time, 425	adiabatic index, 152		
jet head, 423	gas pressure, 151		
jet opening angle, 17, 93, 302–304	Mach number, 155		
power-law jet, 308	non-relativistic, 149		
quasi-universal structured jet, 17, 310	ram pressure, 155		
spine–sheath structure, 425	relativistic, 150		
standard energy reservoir, 17, 308	enthalpy density, 150		
structured jet, 307	sound speed, 154		
uniform jet, 17, 306	sound wave, 154		
GRB physics	supersonic, 154		
basic theoretical framework, 229	hypernova, 16		
compactness problem, 229	nypernova, 10		
energy dissipation mechanism, 228, 349	kilonova, 82, 434, 435, 440		
jet composition, 228, 349	Li–Paczyński nova, 434		
cold (Poynting flux) component, 240	macronova, 82		
hot (fireball) component, 240	mergernova, 83, 435		
hybrid components, 266, 366	r-process nova, 83, 434		
open questions, 228, 349	r		
particle acceleration mechanism, 228, 349	magnetic field		
photosphere, 358, 362	acceleration, 260		
dissipative photosphere, 15, 17, 20, 360, 372,	configuration, 256		
375, 376	helical geometry, 256		
non-dissipative photosphere, 358	poloidal field, 260		
pair photosphere, 381	striped-wind geometry, 257		
radiation mechanism, 228, 349	toroidal field, 260		
GRB plasma physics, 392	magnetic blob, 258		
gyrofrequency, 393	magnetosphere		
gyroradius, 393	Goldreich–Julian density, 260		
magnetic Reynolds number, 395	light cylinder, 260		
plasma frequency, 394	magnetic reconnection, 395		
plasma skin depth, 394	internal-collision-induced magnetic reconnection		
Reynolds number, 394	and turbulence (ICMART), 20, 402		
-	Petschek reconnection, 398		
hadronic processes, 221	Sweet–Parker reconnection, 395		
Δ -resonance, 21, 226, 480	turbulent reconnection, 398		

magnetohydrodynamics (MHD), 152	first-order Fermi acceleration, 149, 170, 172		
Alfvén speed	non-relativistic shock, 172		
non-relativistic, 160	relativistic shock, 174		
relativistic, 161	second-order Fermi acceleration, 170		
ideal MHD, 153	stochastic processes, 170		
MHD shocks, 162	particle physics, 221		
MHD waves, 159	Δ baryon, 224		
fast magneto-sonic/fast MA waves, 160	baryon, 224		
magneto-sonic waves/magneto-acoustic (MA)	Bose–Einstein statistics, 224		
waves, 160	boson, 224		
phase velocity, 160	boson mediator, 224		
shear Alfvén waves, 160	W^{\pm} boson, 224		
slow magneto-sonic/slow MA waves, 160	Z^0 boson, 224		
sound waves, 160	gluon, 224		
relativistic, 152	graviton, 224		
methods	photon, 224		
cross-correlation function method, 38	Fermi–Dirac statistics, 222		
stepwise low-pass filter correlation method, 35	fermion, 222		
multi-messenger, 11, 21, 473	hadron, 224		
cosmic rays, 2, 21, 473, 474	Higgs field, 224		
GZK cutoff, 475	leptons, 222		
Hillas condition, 477	electron, 223		
UHECR, 2, 16, 21, 475, 477	muon, 223		
detectors	neutrino, 223		
Advanced LIGO, 11, 21, 491	tau, 223		
IceCube, 11, 483, 484	lepton number, 223		
gravitational waves, 2, 11, 21, 488	mesons, 224, 225		
electromagnetic counterpart, 494	π meson (pion), 225		
frequency, 490	kaon, 225		
GW150914, 488, 491	neutron, 223		
GW170817, 11, 488, 492, 498	proton, 223		
inspiral, 491	quark, 222		
merger, 491	color, 222		
ring down, 491	standard model, 222		
strain, 491	strange particle, 224		
neutrinos, 2, 480	polarization		
EeV neutrinos, 21, 486	γ -ray polarization, 52		
GeV neutrinos, 21, 487	inverse Compton scattering, 215		
high-energy neutrinos, 2, 11, 480	optical polarization, 69, 342		
MeV neutrinos, 487	synchrotron radiation, 200		
PeV neutrinos, 16, 21, 481	X-ray polarization, 64		
TeV neutrinos, 21, 487	Poynting-flux-dominated flow, 18, 20		
	characteristic radii		
pair production and annihilation, 217, 379	coasting radius, 265		
γB process, 219			
absorption coefficient, 219	deceleration radius, 265, 266		
Bethe–Heitler process, 219	photosphere radius, 265		
cross section, 219	radius of causal disconnection, 265 progenitor, 14, 228, 418		
one-photon pair production, 219	accretion-induced collapse, 119, 442		
pair annihilation, 220	*		
cross section, 220	blue supergiant, 119, 431		
two-photon pair production, 217	He core–BH merger, 430		
cross section, 218	shock breakout, 426		
kinematics, 217	non-relativistic, 426		
particle acceleration	relativistic, 429		
diffusive, 170	trans-relativistic, 427		
diffusive shocks, 172	Wolf–Rayet star, 77, 421		

prompt emission, 1, 27, 349, 498	double Compton scattering, 214		
prompt emission lightcurve, 29, 350	down-Comptonization, 213		
fast component, 34	emission power, 203		
power density spectrum, 34	Klein–Nishina regime, 202, 207		
precursor emission, 30	multiple IC scattering, 212		
pulses, 35	polarization, 215		
slow component, 34	single IC scattering, 204		
spectral lag, 38, 350	Thomson cross section, 184, 203		
prompt emission spectrum, 40	Thomson optical depth, 204		
Band function, 1, 6, 41, 350	Thomson regime, 202		
break energy E_0 , 41	up-Comptonization, 213		
Comptonized model, 43			
cutoff power law, 42	jitter radiation, 187		
elemental spectral components, 47, 48	characteristic angular frequency, 187		
GRB function, 41	emission power, 187		
hardness ratio, 29	synchrotron radiation, 14, 55, 75, 182, 285, 351		
high-energy photon index β , 41	characteristic angular frequency, 183		
high-energy spectral component, 46	cooling, 188		
	cooling frequency v_c , 190		
log-parabolic model, 49	cooling time scale, 188		
low-energy photon index α , 41, 351, 388	emission power, 183		
non-thermal spectrum, 40	fast cooling, 189–191, 388		
peak energy E_p , 1, 41, 373, 387, 408	maximum injection frequency ν_M , 190		
simple power law, 43	minimum injection frequency ν_m , 190		
thermal component, 44	peak specific emission power, 197		
thermal spectrum, 40	polarization, 200		
prompt GeV emission, 51, 357	self absorption, 193		
prompt optical emission, 51, 356	self-absorption, 192		
spectral evolution, 49, 350	self-absorption frequency v_a , 193		
hard-to-soft evolution, 49, 350	slow cooling, 189, 190		
intensity tracking, 49, 350	spectrum, 183		
prompt emission models	synchrotron self-Compton, 55, 75, 205, 313		
Compton drag model, 409	Thomson scattering, 201		
electromagnetic model, 399	relativity		
hadronic model, 410	curvature effect, 139		
ICMART model, 402, 403, 412	dimensionless speed, 123		
efficiency, 404	equal-arrival-time surface (EATS), 136		
internal shock model, 383, 390, 412	event, 122		
efficiency, 385			
magnetic dissipation models, 391	general relativity, 142		
photosphere model	contravariant, 144		
dissipative, 360, 372, 375, 376, 412	covariant, 144		
non-dissipative, 358	Einstein field equations, 142		
reconnection switch model, 400	energy–momentum tensor, 143		
synchrotron self-Compton model, 409	equivalence principle, 142		
	general principle of relativity, 142		
r-process, 14	gravitational redshift, 146		
radiation mechanisms	Kerr metric, 146		
bremsstrahlung, 182, 215	Kerr–Newman metric, 148		
relativistic bremsstrahlung, 215	metric tensor, 144		
Compton scattering, 201	proper time, 145		
free-free radiation, 215	Reissner-Nordström metric, 148		
inverse Compton scattering, 14, 182, 201	Schwarzschild metric, 145		
<i>Y</i> parameter, 205, 207	Schwarzschild radius, 146		
Compton y parameter, 212	inertial frame, 122		
Compton cross section, 203	cosmic proper frame, 127		
Comptonization, 213	laboratory frame, 127		
Comptonized spectrum, 213	observer frame, 127		

Lorentz factor, 123	reverse shock (RS), 165
space-time interval, 124	internal shocks, 14, 20, 149, 352, 374, 383
special relativity, 122	MHD shocks, 162
aberration of light, 126	microphysics parameters, 180, 342, 345, 347
apparent "superluminal" motion, 130, 231	plasma instability, 149
Doppler factor, 131	two-stream instability, 178
Doppler transformations, 132	Weibel instability, 178
intrinsic length, 124, 132	Rankine-Hugoniot conditions, 154, 155, 157
invariance of c , 122	relativistic shocks, 149, 156
inverse Lorentz transformation, 124	shock front, 154
length contraction, 124	shock jump conditions, 149, 154
Lorentz transformation, 123	non-relativistic, 154
observed length, 125, 132	relativistic, 157
relative Lorentz factor, 141	turbulence-excited fluid instability, 179
relativistic velocity transformation, 125	soft gamma-ray repeaters (SGRs), 120, 442
special principle of relativity, 122	SGR 1806-20, 443
time dilation, 125	supernova, 76, 429
time interval	broad-line Type Ic, 76
angular spreading time scale, 354	core collapse, 77
comoving-frame emission time interval, 131	GRB-associated SN, 76
ejecta emission time interval, 128	narrow-line Type Ic, 76
engine-time interval, 128	red bump, 78
observer-time interval, 128, 131	thermonuclear burning, 77
	Type I, 76
shocks, 149	Type Ia, 76
external shock, 14, 61	Type Ib, 76
forward shock, 15, 54, 59, 64, 69, 75, 149, 289,	Type Ic, 76, 114
352	Type II, 76
reverse shock, 14, 15, 54, 59, 69, 75, 149, 314,	Swift sources
315, 317	Sw J1644+57, 10, 120, 443
FS/RS system	Sw J2058+05, 120, 443
blastwave, 165	XRO 080109/SN 2008D, 10, 427
contact discontinuity (CD), 165	
forward shock (FS) 165	tidal disruption event 120