

AMERICAN SOCIETY OF ANIMAL SCIENCE

Python computational pipeline for predictive machine learning modelling of livestock data

Dan Tulpan, Associate Professor

dtulpan@uoguelph.ca

University of Guelph, Ontario, Canada

IMPROVE LIFE.

Summary

What you get from this workshop

- Some (hopefully functional) Python code ... for regression problems (due to time constraints)
 - The code relies on the Python scikit-learn library https://scikit-learn.org/
- Some information and explanations of what the code does and why

Assumptions

- You know a bit about machine learning
 - If not, read this: Greener et al. (2021): A guide to machine learning for biologists

(https://www.nature.com/articles/s41580-021-00407-0)

You can operate a computer

Warnings / Disclaimers

- Python code is not optimized or comprehensive
 - It is built to (hopefully) facilitate understanding
 - Sacrificed performance and best programming practices
- Input datasets are assumed to be ready and clean
 - Your job
- The code should only be used for good causes
- If you make money with this code my share is 10% (cash, check or plastic is fine)

Python Use

• Follow the instructions provided in the "Python_usage_instructions.pdf" file

Data formatting

- Expectations:
 - Tabular format
 - Last column contains the predictor variable
 - Data was cleaned prior to using the Python script
 - Data includes only numeric values

- Recommended reading:
 - Browman and Woo (2018) Data Organization in Spreadsheets (https://www.tandfonline.com/doi/full/10.1080/00031305.2017.1375989)

Data sets (for this workshop)

2 subsets of the data from:

Marshall et al. (2023): A farmer-friendly tool for estimation of weights of pigs kept by smallholder farmers in Uganda

- Article: ttps://link.springer.com/article/10.1007/s11250-023-03561-z
- Data:

https://data.mel.cgiar.org/dataset.xhtml?persistentId=hdl:20.50 0.11766.1/FK2/IWXZQH

MarshallEtAl2023_selected_measurements.csv

• 4 input variables (all numeric):

- heartgirth
- height
- length
- body_condition_score

1 output variable:

exact_weight

MarshallEtAl2023_selected_measurements

heartgirth	height	length	body_condition_score	exact_weight
81	50.1	95	3	42.7
59	53	64	3	16
59	53	64	3	16
26	17	26	3	1.7
27	17	28	3	1.8
28	21	27.5	3	1.9
99	65	111	3	64.1
62	42	67	3	18.7
34	23	39	2	3.5
37	25	39	3	4.1
97	58	101	3	51.4
93	56	96	4	54.5
92	57	96	3	50.3
89	54	94	4	46.4

MarshallEtAl2023_more_selected_measurements.csv

- 6 input variables (all numeric):
 - household id
 - age_months
 - heartgirth
 - height
 - length
 - body_condition_score
- 1 output variable:
 - exact_weight

MarshallEtAl2023_more_selected_measurements

1	household_id	age_months	heartgirth	height	length	body_condition_score	exact_weight
2	PBM-KML-113	34	140	901	141	4	205
3	PBM-MSK-138	24	0	0	0	4	200
4	PBM-MSK-107	15	130	80	138	4	193.2
5	PBM-MSK-106	41	140	76	141	4	177.2
6	PBM-WKS-401	27	128	85	140	4	170
7	PBM-KML-106	30	121	72	140	4	160
8	PBM-MSK-137	19	124	76	142	4	148
9	PBM-WKS-401	24	122	81	136	3	137.7
10	PBM-MSK-139	18	134	89	147	3	134
11	PBM-MSK-102	20	117	81	149	4	132.9
12	PBM-MSK-142	13	121	80	140	4	131.5
13	PBM-WKS-416	43	120	72	145	3	131.1
14	PBM-HMA-240	12	113	90	137	3	129.5
15	PBM-MSK-107	12	112	78	136	4	127.3
16	PBM-MSK-102	20	122	77	135	4	126.5

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

1. Data cleaning

- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Data cleaning

- Remove rows with missing values
- Remove duplicate rows
- Remove duplicate columns
- Remove single value columns
- Find and remove outliers (Z-score method)
- Change categorical columns to numeric
- Save cleaned dataset

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Overall look at the data

- Check the size of the dataset
 - Number of records (rows)
 - Number of variables/features (columns)
- Look at the first few records

- Look at descriptive statistics
 - Check for obvious outliers or extreme values

- 1. Data cleaning
- 2. Data summarization

3. Data visualization

- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Explore the data visually first

If feasible/applicable

- Check the distribution of the variables
 - Histograms
 - Scatter-plots
- Check correlations among variables/features

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization

4. Data splitting

- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Prepare data for modelling

- Separate data into training (80%) and testing (20%)
 - The percentages depend on data size, available time, goals
- Training set:
 - Model construction
 - Model validation
 - Hyper-parameter optimization
- Testing set:
 - Testing the final models

Golden Rule of Machine Learning

NEVER EVER use the testing set during the construction/validation/optimization stage of a model.

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting

5. Data scaling

- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Scaling your data

- How
 - Transform data to a standardized range
 - StandardScaler, MinMaxScaler, RobustScaler
- Why
 - Reduces the impact of extreme values
 - ... for algorithms sensitive to outliers or for those relying on normality assumptions
 - Reduces differences in value scales among variables
 - Speeds up convergence and provides equal opportunities for features to influence the outcome variable
 - Helps making more robust models

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling

6. Model initialization (default params)

- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

ML Models

- Select models from different categories
 - Tree-based: Decision Tree, AdaBoost, Random Forest
 - Artificial Neural Networks: Multi Layer Perceptron
 - Lazy estimators: K-Nearest Neighbour
 - Linear: Linear Model, LASSO, Ridge
 - Gradient-based: Gradient Boost
- Select more than 2 models
 - Different strengths and weaknesses
 - Different data representations

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)

7. Preliminary model evaluation

- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Model evaluation strategies

- K-fold cross-validation
 - Choose K as a function of data size and computing time
 - High K values: small-medium datasets
 - Low K values: large datasets
- Choose your measures/"metrics"
 - Regression
 - Errors: MAE, MSE, RMSE, MAPE, ...
 - Correlation coefficients: Pearson, Spearman, Kendal, Concordance (CCC)
 - R²
 - Classification
 - Confusion matrix-based: F1-score, precision, recall (TPR, sensitivity), accuracy, ... [NOT USED IN THE CURRENT CODE -- NA]

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation

8. Overfitting analysis of default models

- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Overfitting analysis

- Use learning curves
 - training vs. validation scores for increasing training set sizes

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models

9. Hyper-parameter optimization

- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Hyper-parameter optimization

Hyper-parameter = user-tunable parameter

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization

10. Update model hyper-parameters

- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Hyper-parameters' update

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters

11. Evaluate optimized models

- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Model evaluation (same as for 7)

- K-fold cross-validation
 - Choose K as a function of data size and computing time
 - High K values: small-medium datasets
 - Low K values: large datasets
- Choose your measures/"metrics"
 - Regression
 - Errors: MAE, MSE, RMSE, MAPE, ...
 - Correlation coefficients: Pearson, Spearman, Kendal, Concordance (CCC)
 - R²
 - Classification
 - Confusion matrix-based: F1-score, precision, recall (TPR, sensitivity), accuracy, ... [NOT USED IN THE CURRENT CODE -- NA]

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models

12. Overfitting analysis of optimized models

- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Overfitting analysis (same as for 8)

- Use learning curves
 - training vs. validation scores for increasing training set sizes

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models

13. Save optimized models

- 14. Investigate feature importance
- 15. Evaluate models on test sets

Saving models

- Backup all optimized models
- Can be used later for deployment
- Save time on re-training and re-optimizing hyper-parameters

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models

14. Investigate feature importance

15. Evaluate models on test sets

Feature importance

- Use a model-agnostic process
- Permutation Feature Importance (PFI)
 - Shuffle one variable at a time
 - Evaluate each algorithm
 - Idea: if an important variable is shuffled it would hurt the model significantly (poor predictions)
- Other options: <u>SHAPley values</u>

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance

15. Evaluate models on test sets

Model evaluation on test sets

- Use various evaluation measures
 - Error-based: MAE, MSE, RMSE, MAPE
 - Correlations: Pearson Product-Moment, Concordance, Spearman
 - (Adjusted) Coefficient of determination

Note: no single evaluation measure captures everything

- Use visual analysis, too
 - Scatter plots (predicted versus true values)
 - QQ plots for prediction errors

Thank you