

AUTONOMOUS SOFTWARE AGENTS

Project Presentation

presented by

Descanta Bauchi

Fabio Missagia
256141
fabio.missagia@studenti.unitn.it

Alessandro Sartore
256152
alessandro.sartore-1@studenti.unitn.it

© Objective

- The goal is the creation of autonomous software agents that can play the Deliveroo simulation game
- Our project is structured in two main parts:

Belief-Desire-Intention

Beliefs

- Agents perceive different entities from the environment, and build and update asynchronously their beliefs based on:
 - o Map: normal, delivery and spawning tiles
 - o Parcels: nearby valuable parcels
 - o Agents: nearby agents

? Options Generation

At each iteration, the agent evaluates the current world state and produces a set of candidate options:

? Options Generation: Delivery

- As soon as an agent is carrying a parcel, the delivery is prioritized.
- The delivery tile closest to the agent is the best option.

? Options Generation: Collection

lf nearby parcels are sensed while exploring, they get evaluated[1]:

$$Efficiency = \frac{reward \times timeFactor}{distance + 1}^{[2]}$$

[2]
$$timeFactor = \frac{currentReward}{originalReward}$$

? Options Generation: Exploration

Based on tiles distribution, adaptive exploration strategies are used:

ည် Intention Loop & Revision

- The **intention loop** is responsible for continuously **processing** the agent's intentions.
- ▶ Agent continues to pursue the **current top intention**, until a new **best option** is selected (**Intention Revision**)

Intention Revision: Detour

What if the agent discovers parcels while delivering?

A detour-score is used to evaluate detour-worthiness*:

$$Score = \frac{reward}{addedSteps + 1}$$

Intention Revision: Obstacle

What if the agent finds an obstacle?

Intention Revision: Stuck

What if the agent is stuck?

- We can't do much...
 - Drop the current intention
 - Try to get a new intention
 - The intention will fail
 - Repeat

Planning

- Different algorithms are used:
 - A*: for quick path finding, faster than BFS
 - O BFS: for clustering spawn tiles areas
 - PDDL: efficient path planning but slower
 - * Domain: fixed

* Problem: dynamic based on map updates

A* (Path finding)

BFS (Area clustering)

Communication

There are cases where communication can be useful or even essential.

Communication: Handshake

Communication: Area Intent

Area O

AREA INTENT agentId: 0 assignedArea: 0 O_AO OAO Agent 0 Agent 1 AREA INTENT agentId: 1

assignedArea: 1

Communication: Area Intent

Communication: Runner/Carrier

Future work

- Several improvements could be done:
 - o more efficient PDDL integration or hybrid planning methods
 - exploring only the biggest cluster is not optimal
 - o wait a bit on the spawn tile before delivering
 - o improve the communication protocol

Thanks for the attention!

by

Descanta Bauchi

Fabio Missagia
256141
fabio.missagia@studenti.unitn.it

Alessandro Sartore
256152
alessandro.sartore-1@studenti.unitn.it

FAQ

Results

Level	A*	PDDL	
25c1-1	1623	380	
25c1-2	2471	1329	
25c1-3	1569	1381	
25c1-4	3502	2605	
25c1-5	2963	2078	
25c1-6	1391	1167	
25c1-7	3513	2236	
25c1-8	1487	842	
25c1-9	9400	5282	

Table 1: Single-Agent Results

Level	Total	A 1	A2
25c2-1	3235-2736	1639-1540	1596-1196
25c2-2	1931-1094	1146 - 638	785-456
25c2-3	2519-2140	1645-1341	874-799
25c2-4	7235-1630	4190 - 724	3045-906
25c2-5	4786-2841	2593-1934	2193-907
25c2-6	4402-3103	2308-1845	2094-1258
25c2-7	11022-4340	8718-2959	2304-1381
$25c2_hall$	2070-1296	2070-1296	0-0

Table 2: Multi-Agent Results. A* - PDDL

FAQ

How exactly does your utility function work for package selection?

FAQ

How do you manage coordination?

```
class CommunicationHandler {
  announcePresence(agentId, position) {
     // code...
class AreaManager{
  divideArea(area, myIndex) {
     // code...
```

? FAQ

How do you implementate BDI in your code?

