

Multi-party computation

important setting in distributed systems and cloud computing

Private multi-party computation

each party shares a noisy version of its data

 $au={
m communication\ transcript}$

Non-interactive mechanisms

General representation

Multi-party differential privacy

$$e^{-\varepsilon_i} \le \frac{\mathbb{P}(\tau \mid x_i = 0, x_{-i})}{\mathbb{P}(\tau \mid x_i = 1, x_{-i})} \le e^{\varepsilon_i}$$

$$x_{-i} = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$$

bounded likelihood even when all parties but one collude

Multi-party differential privacy

$$e^{-\varepsilon_i} \leq \frac{\mathbb{P}(\tau \mid x_i = 0, x_{-i})}{\mathbb{P}(\tau \mid x_i = 1, x_{-i})} \leq e^{\varepsilon_i}$$

 \mathcal{E}_i controls the level of privacy

large \mathcal{E}_i , low privacy small \mathcal{E}_i , high privacy

Can't say much even if...

all parties but one collude to figure out a party's data

Approximate differential privacy

provides some slack

Function estimation

any estimation rule (potentially randomized)

Function estimation

Function estimation

any weight function

examples: $w(f, \tilde{f}) = 1_{(f = \tilde{f})}$ $w(f, \tilde{f}) = |f - \tilde{f}|$

Utility: average accuracy

Utility: average accuracy

$$ACC_{\text{ave}} = \frac{1}{2^k} \sum_{x \in \{0,1\}^k} \mathbb{E}_{\hat{f}_i, P_{x,\tau}} [w_i(f_i(x), \tilde{f}_i(\tau, x_i))]$$

average over all possible inputs

Privacy-utility tradeoff

maximize
$$ACC_{ave}(P, w_i, f_i, \tilde{f}_i),$$

subject to P and \tilde{f}_i are row-stochastic matrices
$$P_{(x_i, x_{-i}), \tau} \leq e^{\varepsilon_i} P_{(x'_i, x_{-i}), \tau} + \delta_i \quad \forall i, x_i, x'_i, x_{-i}, \tau$$

Privacy-utility tradeoff

maximize
$$ACC_{ave}(P, w_i, f_i, \tilde{f}_i),$$
 subject to P and \tilde{f}_i are row-stochastic matrices
$$P_{(x_i, x_{-i}), \tau} \leq e^{\varepsilon_i} P_{(x'_i, x_{-i}), \tau} + \delta_i \quad \forall i, x_i, x'_i, x_{-i}, \tau$$

- heterogeneous privacy levels across users
- each party possesses a single bit
- the functions can vary from one party to the other
- the weight functions can vary from one party to the other
- interactive & non-interactive mechanisms

Main result: differential privacy

Non-interactive mechanisms are optimal

Main result: differential privacy

The randomized response is optimal!

Approximate differential privacy?

Approximate differential privacy?

Non-interactive mechanisms are optimal

Approximate differential privacy

Optimal estimation rule

$$ACC_{\text{ave}} \equiv \frac{1}{2^k} \sum_{x \in \{0,1\}^k} \mathbb{E}_{\hat{f}_i, P_{x,\tau}} [w_i(f_i(x), \tilde{f}_i(\tau, x_i))]$$

average over all possible inputs

$$\tilde{f}_{i,\text{opt}}(\tau, x_i) = \arg\max_{y} \sum_{x_{-i} \in \{0,1\}^{k-1}} P_{x,\tau} w_i(f_i(x), y)$$

Worst case accuracy?

$$ACC_{wc} \equiv \min_{x \in \{0,1\}^k} \mathbb{E}_{\hat{f}_i, P_{x,\tau}} [w_i(f_i(x), \hat{f}_i(\tau, x_i))]$$

worst case over all possible inputs

Worst case accuracy

$$ACC_{wc} \equiv \min_{x \in \{0,1\}^k} \mathbb{E}_{\hat{f}_i, P_{x,\tau}} [w_i(f_i(x), \tilde{f}_i(\tau, x_i))]$$

worst case over all possible inputs

Non-binary data?

Non-binary data?

Acknowledgments

Pramod Viswanath

Sewoong Oh