

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Modelos Matemáticos I

Los Del DGIIM, losdeldgiim.github.io

José Juan Urrutia Milán Arturo Olivares Martos

Índice general

1.	Rela	iones de Problemas	5
	1.1.	Cema 1	5

1. Relaciones de Problemas

1.1. Tema 1

Ejercicio 1.1.1 (Depósito de capital). Un banco ofrece un interés compuesto del 7 % anual para depósitos de capital a medio plazo.

1. Si disponemos de un capital inicial de 10000 euros, ¿de qué capital dispondremos al cabo de 4 años?

En este caso, si C_n denota el capital en el n-ésimo año, y el interés es e I = 0.07, tenemos que:

$$C_n = (1+I)^n C_0$$

Por tanto, tenemos $C_4 = 1{,}07^4 \cdot 10^4 = 13107{,}96$ euros.

2. Si se pretende disponer de 25000 euros dentro de 4 años, ¿cuál debe ser el capital inicial?

En este caso, la incógnita es C_0 . Tenemos:

$$25 \cdot 10^3 = 1,07^4 \cdot C_0 \Longrightarrow C_0 = 19072,38 \text{ euros.}$$

3. Supongamos ahora que no conocemos el interés que proporciona el banco. Si inicialmente disponemos de 10000 euros y pasados 5 años tenemos 12000, ¿cuál es el interés anual aplicado?

En este caso, tenemos que la incógnita es I. Tenemos:

$$12 \cdot 10^3 = (1+I)^5 \cdot 10 \cdot 10^3 \Longrightarrow I = \sqrt[5]{\frac{12}{10}} - 1 \approx 0.0371$$

Por tanto, tenemos que $I \approx 3.71 \%$.

Ejercicio 1.1.2 (Explosión demográfica). Una población sigue un modelo de crecimiento malthusiano con tasa de crecimiento neta $\alpha = 0.16$, es decir: si x_n es el número de individuos en el periodo n, entonces

$$x_{n+1} = 1.16x_n$$
.

1. Calcula el número de periodos necesarios para que la población se duplique y cuadruplique.

Tenemos que:

$$x_n = 1.16^n x_0$$

Calculemos el menor $n \in \mathbb{N}$ de forma que $1,16^n \ge 2$, que nos indicará el número de periodos necesarios para que la población se duplique. Aplicando el logaritmo en base 1,16, tenemos que:

$$n \ge \log_{1.16} 2 \approx 4.67$$

Por tanto, tenemos que el número de periodos necesarios para que la población se duplique es n=5 periodos.

Para el caso de que la población se cuadruplique, necesitamos que $1,16^n \geqslant 4$. Por tanto,

$$n \ge \log_{1.16} 4 \approx 9.34$$

El número de periodos necesarios para que la población se cuadruplique es n=10 periodos.

2. Calcula el tiempo promedio de duplicación.

En este caso, no se pide un número de periodos, sino el tiempo promedio. En este caso, tenemos que el tiempo medio de duplicación es:

$$\log_{1.16} 2 \approx 4.67$$

3. Calcula el tiempo promedio de quintuplicación.

De forma análoga, tenemos que el tiempo medio de quintuplicación es:

$$\log_{1,16} 5 \approx 10.84$$

Ejercicio 1.1.3 (Eliminación de un fármaco en sangre). Un fármaco se elimina en sangre siguiendo un modelo malthusiano. Según dicho modelo, su vida media es de 2 semanas.

1. Calcula la concentración inicial de fármaco si a los 5 días encontramos una concentración en sangre de 3 $^{mg}/cm^3$.

Como la vida media es de 2 semanas, tenemos que:

$$VM = 14 \text{ días} = \frac{1}{1-r} \Longrightarrow r = -\left(\frac{1}{14} - 1\right) = \frac{13}{14} \approx 0.9286$$

Sabiendo que $x_5 = 3$, tenemos que:

$$x_5 = 3 = r^5 x_0 \Longrightarrow x_0 = \frac{3}{r^5} \approx 4{,}2455 \text{ mg/cm}^3$$

Por tanto, la concentración inicial es de $4{,}2455 \, \frac{mg}{cm^3}$.

2. ¿Cada cuánto tiempo se diezma en promedio la concentración de fármaco? En este caso, se pide el tiempo promedio para que la concentración sea la décima parte. Tenemos que:

$$x_n = \cancel{x_0} \cdot r^n \geqslant \frac{\cancel{x_0}}{10}$$

Por tanto, de promedio han de pasar $\log_r \frac{1}{10} \approx 31{,}07$ días para que la concentración se diezme.

3. Calcula el tiempo necesario para que la concentración de fármaco sea menor que $0.1 \, mg/cm^3$.

Tenemos que:

$$x_n = x_0 \cdot r^n < 0.1 \Longrightarrow r^n < \frac{0.1}{x_0}$$

Por tanto, se pide el primer $n \in \mathbb{N}$ tal que se cumple eso. Como se tiene que $\log_r \frac{0.1}{x_0} \approx 50.89$, han de pasar 51 días.

Ejercicio 1.1.4 (Desintegración del carbono—14). Para la datación de los restos arqueológicos se utiliza el isótopo carbono—14, porque está presente en los organismos vivos y va desapareciendo de ellos cuando mueren. Esta desintegración se modela mediante la ley malthusiana:

$$x_{n+1} = rx_n$$
 $0 < r < 1$

donde cada periodo representa un milenio, x_n es el número de átomos de carbono—14 en el periodo n y r es la constante de desintegración radiactiva. Sabemos que la vida media del carbono—14 se estima en 5730 años.

1. En un monte se han encontrado restos arqueológicos de una determinada especie. Sabiendo que la cantidad de carbono—14 de los restos, en el momento del hallazgo, corresponde al 15,27 % de la cantidad que tiene un cuerpo vivo, determina la antigüedad de los restos hallados.

Como la vida media del carbono—14 se estima en 5730 años (5,73 milenos), tenemos que:

$$VM = 5.73 \text{ milenios } = \frac{1}{1-r} \Longrightarrow r = -\left(\frac{1}{5.73} - 1\right) \approx 0.825$$

donde hemos usado milenios ya que es la unidad del periodo.

Sabemos que $x_n = r^n x_0$, y se pide el valor de n tal que $x_n = 0.1527x_0$. Por tanto,

$$0.1527x_0 = r^n x_0$$

Como $\log_r 0,1527\approx 9,7986$ milenios, tenemos que la antigüedad es de 9798 años.

2. ¿Qué tanto por ciento de la cantidad de carbono—14 que tiene un cuerpo vivo debe tener un resto arqueológico de aproximadamente 1000 años de antigüedad?

Como 1000 años equivale a un milenio, nos piden calcular $\frac{x_1}{x_0}$. Tenemos que:

$$x_1 = rx_0 \Longrightarrow \frac{x_1}{x_0} = r \approx 0.825 \approx 82.5 \%$$

Ejercicio 1.1.5. En un hospital está llevándose a cabo un estudio sobre una enfermedad rara. Para ello se supone que la enfermedad desaparece siguiendo un modelo malthusiano al aplicarle un determinado fármaco. Los datos de que se disponen son los siguientes:

- Fueron puestos en observación 20 pacientes afectados por dicha enfermedad.
- Transcurridos 7 días, la mitad de personas ingresadas con motivo de la enfermedad fueron dadas de alta.

¿Qué puede decirse del modelo propuesto si tras 25 días (desde que se inició la observación de las 20 personas) hay 3 personas que aún no han superado la enfermedad?

Ejercicio 1.1.6. Una apicultora de la Alpujarra está estudiando el comportamiento de sus abejas. Ha observado que se distribuyen entre el romero y el tomillo en primavera. Empíricamente ha observado que cada día cambian de unas flores a otras de la siguiente forma:

- El 75 % de las abejas que están en las flores de romero en un determinado día permanecen en ellas al día siguiente, mientras que el resto cambia a las flores de tomillo.
- El 50 % de las abejas que están en las flores de tomillo en un determinado día permanecen en ellas al día siguiente, mientras que el resto cambia a las flores de romero.

Al comienzo de su estudio había 3400 abejas en las flores de romero y 2600 en las de tomillo. La apicultora pretende estudiar cómo evoluciona la población de abejas en relación con las dos clases de flores, para lo cual llama x_n al número de abejas que hay en el romero en el n-ésimo día e y_n al número de abejas que hay en el tomillo en el n-ésimo día.

- 1. Escribe las leyes de recurrencia que modelan la cantidad de abejas en cada tipo de flor según las observaciones de la apicultora.
- 2. Demuestra que $x_n + y_n = 6000$.
- 3. Escribe una ecuación en diferencias para x_n y resuélvela.
- 4. Determina el comportamiento asintótico de la población de abejas en ambas flores

Ejercicio 1.1.7. Dos países, A y B, compiten por el abastecimiento del crudo mundial. Se sabe que el país A cuida más a su clientes y, por tanto, el 90 % de quienes un año contratan el abastecimiento con dicho país vuelven a hacerlo el año siguiente. Sin embargo, solo el 70 % de los clientes de B vuelven a concertar de nuevo su abastecimiento con este país. Se supone que todos los países tienen que contratar su abastecimiento con A o con B. Este año la situación política del país A impide que pueda abastecer a ningún otro país. ¿Cómo evolucionarán a patir de ahí las cuotas de mercado, es decir, el número de países que contratan el abastecimiento con A y con B medido en tanto por uno?

Ejercicio 1.1.8. Las compañías Paga+ y Paga- se han repartido el mercado de la telefonía. A pesar de la agresiva campaña desarrollada por Paga+, Paga- viene consiguiendo una mayor fidelización. Se ha observado que cada año el 25 % de los clientes de Paga- se pasan a Paga+, mientras que el 50 % de los de Paga+ cambian a Paga-. ¿Qué se puede decir sobre el mercado de la telefonía a largo plazo?

Ejercicio 1.1.9. Una jugadora de ajedrez es contratada por la compañía Galactic Chess. Su trabajo consiste en jugar 40 partidas simultáneas cada semana. La jugadora dispone de dos estrategias, A y B. Gana en el 80 % de los casos con la estrategia A y en el 60 % de los casos con la B. Para diversificar su juego decide que cada semana empleará la estrategia B tantas veces como derrotas o tablas haya cosechado la semana anterior. Después de algunas semanas de practicar este sistema observa que siempre acaba jugando el mismo número de partidas con la estrategia B. ¿Cómo se explica este hecho?

Ejercicio 1.1.10. Una compañía maderera tala el 10 % de un bosque anualmente. Para compensar el perjuicio causado, cada año se planta un número fijo de árboles K. Si no se tienen en cuenta otros condicionantes:

- 1. Escribe la ley de recurrencia que modela el tamaño del bosque.
- 2. Si el tamaño inicial del bosque es de 10000 árboles, calcula la solución de la ecuación del modelo.
- 3. Si plantar un árbol tiene un coste de 1 euro, calcula el precio mínimo al que deben venderse los árboles talados para que la explotación sea rentable a largo plazo.

Ejercicio 1.1.11. Los precios de cierto producto siguen una dinámica basada en los postulados del modelo de la telaraña con funciones de oferta y demanda dadas por

$$O(p) = 1 + p,$$
 $D(p) = 2 - 2p.$

Suponemos que el equilibrio de mercado se alcanza cuando la oferta iguala a la demanda y que la oferta en el periodo (n+1)—ésimo depende del precio de equilibrio n—ésimo.

- 1. Deduce la ecuación en diferencias que describe la dinámica planteada y calcula el precio de mercado p^* (punto de equilibrio económicamente factible).
- 2. ¿Cuál es la tendencia del precio del producto a largo plazo?
- 3. Analiza gráficamente la evolución de los precios.

Ejercicio 1.1.12. Resuelve el Ejercicio 1.1.11 para el caso en que las funciones de oferta y demanda vienen dadas por

$$O(p) = 1 + p,$$
 $D(p) = 2 - 0.5p.$

Ejercicio 1.1.13. Resuelve el Ejercicio 1.1.11 para el caso en que las funciones de oferta y demanda vienen dadas por

$$O(p) = 1 + p,$$
 $D(p) = 2 - p.$

Ejercicio 1.1.14 (Modelo de von Bertalanffy). El modelo de von Bertalanffy se emplea para describir la longitud de ciertos seres vivos o de partes de ellos. En su versión discreta se puede formular como una ecuación lineal de orden 1:

$$L_{n+1} = a + bL_n,$$

donde L_n representa la longitud esperada en el periodo n, a > 0 es una constante relativa a la capacidad de absorción celular y 0 < b < 1 es una constante relacionada con la degradación celular.

- 1. Supongamos que la altura en metros de un árbol se ajusta a la expresión $L_n = 3.8(1-(0.9)^n)$, donde n es el número de años. Haz una tabla con las alturas del árbol en los 5 primeros años. Calcula $\lim_{n\to\infty} L_n$ e interpreta el resultado.
- 2. La longitud en centímetros de las hojas de los árboles de una determinada especie se aproxima por el modelo $L_{n+1} = 3, 9 + 0, 7L_n$. Una hoja que tiene una longitud de 3 cm, ¿llegará a medir 10 cm? ¿Y 15 cm? Determina la longitud que se estima que pueden llegar a alcanzar las hojas de cualquier árbol de dicha especie.