Kuliah 12

Sequential Pattern Mining

Sumber:

http://www.is.informatik.uni-duisburg.de/courses/im_ss09/folien/MiningSequentialPatterns.ppt

Outline

- Apa itu basis data sekuens dan sequential pattern mining
- Metode-metode untuk sequential pattern mining
- Constraint-based sequential pattern mining
- Periodicity analysis untuk data sekuens

Basis data Sekuens

- Sebuah basis data sekuen terdiri dari elemen-elemen atau kejadian-kejadian terurut
- Basis data transaksi vs basis data sekuens

Basis data transaksi

TID	itemsets	
10	a, b, d	
20	a, c, d	
30	a, d, e	
40	b, e, f	

Basis data sekuens

SID	sequences		
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>		
20	<(ad)c(bc)(ae)>		
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>		
40	<eg(af)cbc></eg(af)cbc>		

Aplikasi

- Aplikasi dari sequential pattern mining
 - Urutan pembelajaan dari konsumen:
 - Pertama memberi komputer, kemudian CD-ROM, dan kemudian digital camera, dalam 3 bulan.
 - Perawatan medis, bencana alam (contoh gempa bumi), proses sains dan rekayasa, stock dan pemasaran, dll
 - Pola panggilan telepon, Weblog click streams
 - Sekuens DNA dan struktur gen

Sub sekuens vs. super sekuens

- Sebuah sekuens adalah daftar terurut dari kejadian dinotasikan $< e_1 e_2 \dots e_l >$
- Diberikan 2 sekuens $\alpha = \langle a_1 a_2 ... a_n \rangle$ dan $\beta = \langle b_1 b_2 ... b_m \rangle$
- α disebut sub sekuens dari β, dinotasikan sebagai α⊆ β, jika terdapat interger 1≤ j₁ < j₂ <...< j_n ≤m sedemikian sehingga a₁ ⊆ b_{j1}, a₂ ⊆ b_{j2},..., a_n ⊆ b_{jn}
- β adalah super sekuens dari α
 - E.g. α =< (ab), d> and β =< (abc), (de)>

Apa itu Sequential Pattern Mining?

 Diberikan himpunan sekuens dan support threshold, temukan himpunan lengkap dari frequent subsequences

Sekuens: < (ef) (ab) (df) c b >

Basis data sekuens

SID	sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

Sebuah elemen dapat mengandung sekumpulanA.

Items dalam sebuah elemen adalah tidak terurut dan dituliskan secara alfabetik.

support threshold yang diberikan (min_sup) = 2,
<(ab)c> adalah sequential pattern

Tantangan dalam Sequential Pattern Mining (SPM)

- Jumlah yang besar dari pola sekuens yang mungkin diperoleh, yang tersimpan dalam basis data
- Algorime SPM harus
 - Dapat menemukan himpunan lengkap dari pola, apabila memungkinkan, yang memenuhi minimum support (frekuesi) threshold
 - efisien, scalable, melibatkan sedikit scanning basis data
 - Mampu menangani berbagai jenis user-specific constraints

Penelitian terkait Sequential Pattern Mining

- Pengenalan konsep dan algoritme Apriori-like
 - Agrawal & Srikant. Mining sequential patterns, [ICDE'95]
- Metode berbasis Apriori: GSP (Generalized Sequential Patterns: Srikant & Agrawal [EDBT'96])
- Metode Pattern-growth: FreeSpan & PrefixSpan (Han et al.KDD'00; Pei, et al. [ICDE'01])
- Vertical format-based mining: SPADE (Zaki [Machine Leanining'00])
- Sequential pattern mining berbasis kendala (SPIRIT: Garofalakis, Rastogi, Shim [VLDB'99]; Pei, Han, Wang [CIKM'02])
- Mining closed sequential patterns: CloSpan (Yan, Han & Afshar [SDM'03])

Metode-metode untuk sequential pattern mining

- Pendekatan berbasis Apriori
 - GSP
 - SPADE
- Pendekatan berbasis Pattern-Growth
 - FreeSpan
 - PrefixSpan

Sifat Apriori dari Pola Sequential

- Sifat dasar: Apriori (Agrawal & Sirkant'94)
 - Jika sebuah sekuens S adalah tidak frequent, maka tidak ada dari super-sequences dari S yang frequent
 - E.g, <hb> adalah infrequent begitu juga dengan <hab> dan <(ah)b>

Seq. ID	Sequence	
10	<(bd)cb(ac)>	
20	<(bf)(ce)b(fg)>	
30	<(ah)(bf)abf>	
40	<(be)(ce)d>	
50 <a(bd)bcb(ade):< td=""></a(bd)bcb(ade):<>		

Diberikan <u>support</u> <u>threshold</u> min_sup = 2

GSP—Generalized Sequential Pattern Mining

- Algoritme GSP (Generalized Sequential Pattern) mining
- Outline metode GSP
 - Langkah awal, setiap item dalam DB adalah kandidat dari sekuen dengan panjang 1
 - Untuk setiap level (i.e., sekuens dengan panjang-k) lakukan
 - scan basis data untuk menentukan support count untuk setiap sekuen kandidat
 - Bangkitkan kandidat sekuen dengan panjang -(k+1) dari sekuen dengan panjang-k yang frequent menggunakan Apriori
 - Ulangi sampai tidak ada sekuen yang frequent atau tidak ada kandidat yang dapat ditemukan
- Kekuaran utama: pemangkasan kandidat oleh prinsip Apriori

Mendapatkan Pola Sequential dengan panjang 1

- Kandidat awal:
 - <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan basis data satu kali, hitung support untuk setiap kandidat

 $min_sup = 2$

Seq. ID	Sequence
10 <(bd)cb(ac):	
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Kandidat	Sup
<a>	3
< d>>	5
<c></c>	4
<d></d>	3
<e></e>	3
<f></f>	2
≥g>	1
E	1

Membangkitkan Kandidat dengan panjang 2

51 kandidat dengan panjang 2

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<	<pc></pc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

Tanpa sifat Apriori, 8*8+8*7/2=92 kandidat

Apriori memangkas 44.57% kandidat₁₃

Mendapatkan Pola Sequential dengan panjang 2

- Scan basis data sekali lagi, hitung support count untuk setiap kandidat dengan panjang 2
- Terdapat 19 kandidat dengan panjang 2 yang memenuhi minimum support threshold
 - Sekuens tersebut adalah pola sequential dengan panjang 2

Proses Mining menggunakan GSP

5th scan: 1 cand. 1 length-5 seq. pat.

4th scan: 8 cand. 6 length-4 seq. pat.

3rd scan: 46 cand. 19 length-3 seq.

pat. 20 cand. not in DB at all

2nd scan: 51 cand. 19 length-2 seq.

pat. 10 cand. not in DB at all

1st scan: 8 cand. 6 length-1 seq.

pat.

<i>min_sup</i> = 2

Seq. ID	Sequence	
10	<(bd)cb(ac)>	
20	<(bf)(ce)b(fg)>	
30	<(ah)(bf)abf>	
40	<(be)(ce)d>	
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>	

Algoritme GSP

- Ambil sekuen-sekuen dalam bentuk <x> sebagai kandidat dengan panjang 1
- Scan basis data sekali, temukan F₁, himpunan pola sekuens dengan panjang 1
- Misalkan k=1; selama F_k tidak kosong lakukan
 - Dari C_{k+1} , himpunan kandidat dengan panjanag (k+1) dari F_k ;
 - Jika C_{k+1} tidak kosong, scan basis data sekali, temukan F_{k+1} , himpunan pola sekuen dengan panjang (k+1)
 - Misalkan k=k+1;

Algoritme GSP

- Keuntungan dari Apriori pruning
 - Mengurangi ruang pencarian
- Bottlenecks
 - Scan basis data berkali-kali
 - Membangkitkan himpunan besar dari sekuens kandidat

Algoritme SPADE

- SPADE (<u>Sequential PAttern Discovery using Equivalent</u> Class) dibangun oleh Zaki 2001
- Merupakan metode sequential pattern mining dengan format vertikal
- Basis data sekuens dipetakan ke himpunan berukuran besar dari item: <SID, EID>
- Sequential pattern mining dilakukan dengan
 - Membangkitkan (pola) subsekuens 1 item setiap saat dengan pembangkitan kandidat berdasarkan prinsip Apriori

Algoritme SPADE

SID	EID	Items
1	1	a
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 3 \\ 3 \end{array} $	abc
1	3	ac
1	4	d
1	5	cf
2	1	ad
2	2	c
2	3	bc
2	4	ae
3	1	ef
3	2	ab
3	3	df
3	4	\mathbf{c}
3	15	b
4	1	e
4	2	g
3 3 4 4 4	3	af
4	4	c
4	5	b
4	6	c

\mathbf{a}		1	b		
SID	EID	SID	EID		
1	1	1	2		
1	2	2	3		
1	3	3	2		
2	1	3	5		
2	4	4	5		
3	2				
4	3				

	ab			ba		
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	
1	1	2	1	2	3	
$\overline{2}$	1	3	2	3	4	
3	2	5				
4	3	5				

	ä	
 EID(a)	D (a)	SID
3	1	1
4	1	2
	**	

Bottleneck dalam pembangkitan dan pengujian kandidat

- Himpunan yang besar dari kandidat dibangkitkan.
 - Khususnya sekuen kandidat dengan 2-item.
- Banyak proses scanning dari basis data dalam mining.
 - Panjang setiap kandidat meningkat 1 pada setiap proses scan basis data.
- Tidak efisien untuk mining pola sekuens yang panjang.
 - Pola yang panjang dibuat dari pola yang pendek
 - Kandidat yang pendek jumlahnya eksponensial

PrefixSpan (Prefix-Projected Sequential Pattern Growth)

- PrefixSpan
 - Berbasis proyeksi
 - Tetapi hanya proyeksi berbasis prefiks: proyeksi yang sedikit dan jumlah sekuens menyusut dengan cepat
- J.Pei, J.Han,... PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. ICDE'01.

Prefix dan Suffix (Proyeksi)

- <a>, <aa>, <a(ab)> and <a(abc)> adalah <u>prefixes</u> dari sekuens <a(abc)(ac)d(cf)>
- Diberikan sekuens <a(abc)(ac)d(cf)>

Prefix	Prefix Suffix (Proyeksi berbasis Prefix)	
<a> <abc)(ac)d(cf)></abc)(ac)d(cf)>		
<aa></aa>	<(_bc)(ac)d(cf)>	
<ab></ab>	<(_c)(ac)d(cf)>	

Mining Sequential Pattern dengan Proyeksi Prefix

 Langkah 1: Tentukan semua pola sequential dengan panjang 1

 Langkah 2: bagi ruang pencarian. Himpunan lengkap pola kandidat pola sekuens dapat dipartisi ke dalam 6

subset:

 Yang	memi	liki	prefix	<a>;
				,

- Yang memiliki prefix ;
- **—** ...
- Yang memiliki prefix <f>

SID	sekuens	
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	
20	<(ad)c(bc)(ae)>	
30	<(ef)(ab)(df)cb>	
40	<eg(af)cbc></eg(af)cbc>	

Tentukan pola sekuens dengan Prefix <a>

- Hanya perlu memperhatikan proyeksi terhadap <a>
 - <a>-projected database: <(abc)(ac)d(cf)>, <(_d)c(bc)(ae)>,
 <(_b)(df)cb>, <(_f)cbc>
- Tentukan semua pola sekuens dengan panjang 2 yang memiliki prefix <a>: <aa>, <ab>, <(ab)>, <ac>, <ad>, <af>
 - Selanjutnya dibagi ke dalam 6 subset
 - Yang memiliki prefix <aa>;
 - ...
 - Yang memiliki prefix <af>

SID	sekuens
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

Cara Kerja PrefixSpan

Algoritme PrefixSpan

- Input: Basis data sekuens S, minimum support threshold min_sup
- Output: himpunan lengkap dari pola sekuens
- Metode: Panggil fungsi PrefixSpan(<>,0,S)
- **Subrutin:** PrefixSpan(α , I, S| α)
- Parameter:
 - $-\alpha$: pola sekuens,
 - I: panjang dari α ;
 - S|α: α-projected database, jika α ≠<>; selainnya; basis data sekuen S

Algoritme PrefixSpan (2)

Metode

- 1. Scan S|α sekali, temukan himpunan frequent item b sedemikian sehingga:
 - a) b dapat dirangkai ke elemen terakhir dari α untuk membentuk pola sekuens; atau
 - b) dapat ditambahkan ke α untuk membentuk pola sekuens.
- 2. Untuk setiap frequent item b, tambahkan b ke α untuk membentuk pola sequential α' , dan output α' ;
- 3. Untuk setiap α' , buat α' -projected database $S|\alpha'$, dan panggil PrefixSpan(α' , I+1, $S|\alpha'$).

Efisiensi PrefixSpan

- Tidak ada kandidat sekuen yang perlu dibangkitkan
- Projected databases tetapi berukuran kecil
- Biaya dalam PrefixSpan: membuat projected databases
 - Dapat diperbaiki dengan bi-level projection

Optimasi dalam PrefixSpan

- Proyeksi Single level vs. bi-level
 - Proyeksi Bi-level projection dengan 3 cara pemeriksaan dapat mengurangi jumlah dan ukuran projected databases
- Proyeksi fisikal vs. pseudo-projection
 - Pseudo-projection dapat mengurangi kerja dari projection ketika projected database sesuai ukurannya dalam main memory
- Parallel projection vs. partition projection
 - Partition projection dapat menghindari 'blowup' ruang disk

Scaling Up dengan Proyeksi Bi-Level

- Membagi ruang pencarian berdasarkan pola sekuens dengan panjang 2
- Hanya membentuk projected databases dan melakukan recursive mining pada bi-level projected databases

Speed-up dengan Pseudo-projection

- Biaya dalam PrefixSpan: proyeksi
 - Postfix dari sekuens sering muncul secara berulang dalam recursive projected databases
- Ketika (projected) database dapat dilakukan dalam main memory, gunakan pointers untuk membentuk projections
 - Pointer ke sekuens
 - Mengimbangi postfix

Pseudo-Projection vs. Physical Projection

- Pseudo-projection menghidari penyalinan postfix secara fisik
 - ▶ Efisien dalam running time dan space ketika basis data dapat disimpan dalam main memory
- ▶ Walaupun demikian, pendekatan ini tidak efisien ketika basis data tidak muat dalam main memory
 - Pengaksesan secara acak berbasis disk memerlukan biaya yang tinggi
- Pendekatan yang disarankan:
 - Integrasi physical dan pseudo-projection
 - Swapping ke pseudo-projection ketika data set tidak muat dalam memori

Kinerja algoritme pada Data Set C10T8S8I8

Kinerja algoritme pada Data Set Gazelle

Pengaruh Pseudo-Projection

CloSpan: Mining Closed Sequential Patterns

- Sebuah closed sequential pattern s: tidak ada superpattern s' sedemikian sehingga s' > s, dan s' dan s yang memiliki support yang sama
- Motivasi: mengurangi banyaknya pola (yang redundan) tapi memerlukan sumberdaya yang sama
- Menggunakan pemangkasan
 Backward Subpattern dan
 Backward Superpattern untuk
 memangksa ruang pencarian yang
 redundan

CloSpan: Perbandingan Kinerja dengan PrefixSpan

37

Kendala pada Sequential Pattern Mining

- Kendala Item
 - Carilah pola web log yang hanya terkait online-bookstores
- Kendala panjang (length)
 - Cari pola yang memiliki sedikitnya 20 barang
- Kendala super pattern
 - Cari super patterns dari "PC → digital camera"
- Kendala agregat
 - Cari pola yang rata-rata harga barangnya melebihi \$100

Kendala pada Sequential Pattern Mining

Kendala ekspresi regular

- Carilah pola "starting from Yahoo homepage, search for hotels in Washington DC area"
- Yahootravel(WashingtonDC|DC)(hotel|motel|lodging)
- Kendala durasi
 - Carilah pola sekitar \pm 24 jam dari pengambilan
- Kendala gap
 - Carilah pola pembelian sedemikian sehingga "gap antara setiap pembelian yang berurutan kurang dari 1 bulan"

Dari Sequential Pattern ke Structured Patterns

- Sets, sequences, trees, graphs, dan struktur yang lain
 - Transaksi DB: Sets of items
 - {{i₁, i₂, ..., i_m}, ...}
 - Seq. DB: Urutan dari himpunan:
 - {<{i₁, i₂}, ..., {i_m, i_n, i_k}>, ...}
 - Himpunan dari sekuens:
 - {{<i₁, i₂>, ..., <i_m, i_n, i_k>}, ...}
 - Himpunan dari tree: $\{t_1, t_2, ..., t_n\}$
 - Himpunan dari graf (mining untuk frequent subgraphs):
 - $\{g_1, g_2, ..., g_n\}$
- Mining pola terstruktur dalam dokumen XML, struktur bio-chemical, etc.

Episode dan Episode Pattern Mining

- Metode lain untuk menentukan macam-macam pola
 - Serial episodes: $A \rightarrow B$
 - Parallel episodes: A & B
 - Regular expressions: (A | B)C*(D \rightarrow E)
- Metode untuk episode pattern mining
 - Variasi dari algoritme Apriori-like contoh, GSP
 - Pembangkitan pola berdasarkan proyeksi basis data
 - Mirip dengan pembangkitan frequent pattern tanpa pembangkitan kandidat

Periodicity Analysis

- Periodicity ada dimanapun: tides, musim, konsumsi listrik harian, etc.
- Full periodicity
 - Setiap titik pada waktunya berkontribusi (secara tepat atau pendekatan) untuk periodicity
- Partial periodicit: Notasi umum yang lebih general
 - Hanya beberapa segmen berkontribusi pada periodicity
 - Jim reads NY Times 7:00-7:30 am every week day
- Cyclic association rules
 - Asosiasi yang membentuk cycle
- Metode
 - Full periodicity: FFT, metode analisis statistika
 - Partial dan cyclic periodicity: variasi dari metode Apriori-like

Ringkasan

- Sequential Pattern Mining berguna dalam banyak aplikasi contohnya weblog analysis, financial market prediction, BioInformatics, dll.
- Pendekatan ini mirip dengan frequent itemsets mining, tetapi dengan memperhatikan urutan.
- Pendekatan yang telah dibahas diturunkan dari 2 algoritme yang populer dalam mining frequent itemsets
 - Pembangkitan kandidat : AprioriAll dan GSP
 - Pattern Growth: FreeSpan dan PrefixSpan