Segundo examen parcial

Dr. Jonás Velasco Álvarez

I. Instrucciones:

El examen es individual, y se sorteará el problema y el algoritmo a desarrollar. En la entrega del examen debe incluir la explicación de la respresentación de una solución, la evaluación de la función objetivo, y en su caso, el mecanismo de perturbación de las soluciones. Se debe realizar 50 ejecuciones independientes del algoritmo y explicar los resultados obtenidos. Incluir conclusiones finales de la actividad. Sea creativo. ¡Mucho éxito!.

I. Problema 1:

Descripción: El problema consiste en formar un número específico de clusters o grupos. Se tiene un conjunto de elementos, los cuales tienen un peso y un beneficio. Todos los elementos deben ser asignados a un cluster. Asimismo, se debe respetar que la suma de los pesos de cada grupo esté dentro de su límite, inferior y superior, de capacidad. El objetivo es maximizar la suma de los beneficios entre los pares de elementos de cada cluster.

Maximizar
$$\sum_{k=1}^{p} \sum_{i=1}^{n-1} \sum_{j>i}^{n} c_{ij} x_{ik} x_{jk}$$

donde n es el número de elementos y p es el número de cluster o grupos a formar. c_{ij} es el beneficio de poner un elemento i y uno j; $x_{ik} = 1$ si se decide poner un elemento i en el grupo k. De la misma forma, $x_{ik} = 1$ si se decide poner un elemento j en el grupo k.

Instancia: Descargar en https://bit.ly/3G2HIra

240 12	número de elementos, número de grupos
75 125	límite de peso inferior y superior de los grupos
99549384515	pesos de los elementos
 0 1 8.815 0 2 9.629 0 3 79.447 0 4 63.846 0 5 64.742	elemento i , elemento j , beneficio c_{ij}

	Ţ
0 2 56 21	elementos en el cluster 1
	elementos en el cluster 2
<u>:</u>	
	elementos en el cluster p
100 3000	suma de pesos y beneficios en cluster 1
:	
119 1984	suma de pesos y beneficios en cluster <i>p</i>
	 : : : : :

II. Problema 2:

Descripción: Se tiene un conjunto P de n puntos en el espacio y un entero $k \le n$. El problema consiste en encontrar un subconjunto de k centros, donde $k \subseteq P$, tal que se minimice la suma de las distancias de los puntos de P a los centros.

$$Minimizar \sum_{i=1}^{k} \sum_{i=1}^{n} d_{ij} x_{ij}$$

donde d_{ij} es la distancia euclidiana de entre el centro i y el punto j; $x_{ij} = 1$ si se decide asignar al centro i el punto j. La distancia euclidiana entre dos puntos se define de la siguiente forma:

$$d(p_1, p_2) = \sqrt{(x \cdot p_2 - x \cdot p_1)^2 + (y \cdot p_2 - y \cdot p_1)^2}$$

Instancia: Descargar en https://bit.ly/3n8PqHt

```
240 10 número de puntos, número de centros

1 659 460 id punto, coordenada x, coordenada y

2 437 800
3 373 90
4 331 545
5 738 829
:
```

	1 2 56 21	puntos asignado al centro 1
Salida —		puntos asignados al centro 2
	:	
		puntos asignados al centro k
	900	suma de distancias de los puntos asignados al centro 1
	÷	
	769	suma de distancias de los puntos asignados al centro k