

Causal Inference

Vanessa Didelez and Robin Evans

BIPS, University of Bremen (Germany), and University of Oxford (UK)

September 2024 APTS — Oxford

Part 5b: Causal Discovery

Turt obi Gudoui Biocovory

an Example from Epidemiology

Data in Epidemiology

- Typically observational (non-interv., non-experimental)
- Cohort studies or panel data: data collected in waves, months or years apart
 - → coarse (irregular) discrete time,
 some repeated measurements (≠ time series)
 Common: missing data
 Measurements: heterogenous (from questionnaires to wearables)
- Routinely collected data: electronic health records, registries, claims data
- ⇒ Many different types of measurements
- ⇒ Often: incomplete data / missing values
- ⇒ Typically, information on partial time-ordering available

Use of Causal DAGs in Epidemiology

Systematic/transparent way of representing the assumed causal structure

- Illustrate or examine possible sources of bias
 - e.g., due to bad design or analysis choices
 - Typically: expert-driven construction of (partial) DAG
- Identification of causal parameters via graphical characterization
 - e.g., explicit justification for choice of adjustment sets
 - Popular: backdoor criterion, but also 'frontdoor criterion'
 (Piccininni et al. 2023 Epidemiology)

Or: DAG itself is object of interest: Causal discovery

⇒ data-driven construction of DAG(s) (Petersen et al., 2023, & Didelez, 2024: AJE)

DAG not Known? ⇒ **Causal Discovery**

Causal discovery

Input: data

А	D	C		_
0.3	12	0	1	40
0.2	13	0	2	87
0.7	21	1	8	76
0.6	10	0	3	26

Output: causal DAG

Actually:

→ need special assumptions (faithfulness, causal sufficiency likelihood, additivity, ...)

Here: constraint-based (PC)

→ output not a unique DAG,
but: equivalence class

Application

scientific reports

www.nature.com/scientificreports

OPEN A longitudinal causal graph analysis investigating modifiable risk factors and obesity in a European cohort of children and adolescents

> Ronja Foraita¹, Janine Witte^{1,2}, Claudia Börnhorst¹, Wencke Gwozdz^{1,3}, Valeria Pala³, Laŭrerrussner⁴, Fabio Lauria⁷, Lucia A. Reisch^{1,8}, Dénes Molnár⁶, Stefaan De Henauw²⁰, Luis Moreno¹¹, Toomas Veidebaum²², Michael Tomaritis¹³, Iris Pigeot^{1,2} & Vanessa Didelez^{1,2}

IDEFICS/I.Family Cohort Study

- eight European countries, ≈ 16000 children aged 2-9 years at baseline;
- three waves, 2007 2017; n = 5112 in all waves
- information collected on: health behaviours (diet and physical activity), socioeconomic factors, genetics, medication, peer networks, media consumption, cardiovascular / metabolic health, subjective well-being
 - repeated measures e.g. of BMI, PA etc.
 - at single times: taste pref., puberty stage, smoking etc.

(Ahrens et al., on behalf of the I.Family Consortium, 2017)

Cohort Causal Graph — Analysis

- Methods: PC algorithm with MI (random forest imputation models), various sensitivity analyses
 PC assumes causal sufficiency
- Efficient use of temporal structure with tPC algorithm
- Bootstrap to investigate stability of specific graphical-causal structures
- Apply local and optimal generalised IDA to determine adjustment sets for interesting exposure and outcome pairs

Cohort Causal Graph — Results

https://bips-hb.github.io/ccg-childhood-obesity/

Cohort Causal Graph — Stability

Based on 100 bootstrap graphs: consider stability of individual (non)edges but also of specific interesting graphical structures like causal paths

- Of 104 edges (on 51 variables), 36 were stable (> 80%) while 50 were instable (< 50%)
- All graphs had multiple possibly causal paths from early modifiable behaviours to later BMI
 e.g., youth-healty eating index (YHEI), audio-visual media consumption, sleep-duration, physical activity
- No graph had a direct edge from early modifiable behaviours to later BMI
- Cultural, perinatal and familial variables appear more immediate 'causal influences' on obesity than individually modifiable risk factors

Estimated Effects

- Example here: estimate causal effect of early YHEI (point exposure) on later BMI (2nd wave)
- Non-parametric causal response curves for continuously measured YHEI
- Local adjustment set (least efficient)
- Optimal adjustment sets non-unique in equivalence class
- Nonparametric estimation ('double machine learning') of effects as rough guide (post-selection-inference issues here)

Exposure: healthy-eating-index (baseline);

outcome: BMI at 2nd wave

NP-estimates of average outcome under hypothetical

intervention in exposure

for different adjustment sets and 10 multiply imputed datasets

Thank You!

www.leibniz-bips.de/en

Contact
Vanessa Didelez
Leibniz Institute for Prevention Research
and Epidemiology – BIPS
Achterstraße 30
D-28359 Bremen
didelez@leibniz-bips.de

