Inverse Laplace Transform

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Process Dynamics and Control

Definition of inverse Laplace transform

If F(s) represents the Laplace transform of f(t), then f(t) is the **inverse Laplace transform** of F(s).

• If
$$\mathcal{L}[f(t)] = F(s)$$
, then $f(t) = \mathcal{L}^{-1}[F(s)]$

$$ullet$$
 $\mathcal{L}^{-1}[\mathcal{L}[f(t)]] = f(t)$

Inverse Laplace transform is also linear.

$$\mathcal{L}^{-1}[lpha F(s) + eta G(s)] = lpha \mathcal{L}^{-1}[F(s)] + eta \mathcal{L}^{-1}[G(s)]$$

Common inverse Laplace transforms are tabulated

Use Seaborg Table 3.1... in reverse

Inverse L.T. $f(t)$	Laplace Transform $F(s)$	Inverse L.T. $f(t)$	Laplace Transform $F(s)$
1	$\frac{1}{s}$	e^{at}	$\frac{1}{s-a}$
t^n	$oxed{n!}{s^{n+1}}$	\sqrt{t}	$rac{\sqrt{\pi}}{2s^{3/2}}$
$\sin(at)$	$rac{a}{s^2+a^2}$	$t\sin(at)$	$rac{2as}{(s^2+a^2)^2}$
$\cos(at)$	$rac{s}{s^2+a^2}$	$t\cos(at)$	$rac{s^2 - a^2}{(s^2 + a^2)^2}$

Applying inverse Laplace transform

Zill Ex. 4.2.1a Evaluate
$$\mathcal{L}^{-1}\left[\frac{1}{s^5}\right]$$

Recall
$$t^n = \mathcal{L}^{-1}\left[rac{n!}{s^{n+1}}
ight]$$

Zill Ex. 4.2.1b Evaluate
$$\mathcal{L}^{-1}\left[\frac{1}{s^2+7}\right]$$

Recall
$$\sin(at) = \mathcal{L}^{-1}\left[\frac{a}{s^2+a^2}\right]$$

Term-wise division and linearity

Zill Ex. 4.2.2 Evaluate
$$\mathcal{L}^{-1}\left[rac{-2s+6}{s^2+4}
ight]$$

Partial fractions and linearity

Ex. Evaluate
$$\mathcal{L}^{-1}\left[rac{1}{(s-1)(s+4)}
ight]$$

Partial fraction by Heaviside expansion (cover-up method)

Ex. Evaluate
$$\mathcal{L}^{-1}\left[\frac{1}{(s-1)(s+4)}\right]$$
 with Heaviside expansion.

- 1. Set up partial fraction expansion
- 2. Multiply both sides by one denominator term (s + a)
- 3. Evaluate at s=-a
- 4. Solve for coefficient

- 1. Cover up denominator term (s + a)
- 2. Evaluate at s = -a
- 3. The result is the coeff for the term

Limitation: Rational function of s with distinct linear factors in denominator

Partial fraction by Heaviside expansion (cover-up method)

Ex. Evaluate
$$\mathcal{L}^{-1}\left[\frac{1}{(s-1)(s+4)}\right]$$
 with Heaviside expansion.

- 1. Set up partial fraction expansion
- 2. Multiply both sides by one denominator term (s + a)
- 3. Evaluate at s=-a
- 4. Solve for coefficient

- 1. Cover up denominator term (s + a)
- 2. Evaluate at s = -a
- 3. The result is the coeff for the term

Limitation: Rational function of s with distinct linear factors in denominator

Partial fraction by Heaviside expansion (cover-up method)

Ex. Evaluate
$$\mathcal{L}^{-1}\left[rac{1}{(s-1)(s+4)}
ight]$$
 with Heaviside expansion.

Cover-up method is great for more complicated expressions

Zill Remarks 4.2.ii Evaluate
$$\mathcal{L}^{-1}\left[\frac{s^2+6s+9}{(s-1)(s-2)(s+4)}\right]$$
 with Heaviside expansion.