WATER RESOURCES SYSTEMS PLANNING

Course Learning Objectives:

The course is designed to

- introduce the concepts of system analysis in the planning, design, and operation of water resources.
- appreciate mathematical optimization methods and models.
- learn and apply basic economic analysis tools to water resources projects.
- understand linear, nonlinear and dynamic programming techniques and apply them to various water resources systems planning and design problems.
- appreciate simulation and management techniques in water resources systems.

Course Outcomes

At the end of the course the student will be able to

- apply optimization methods to solve problems related to water resource systems.
- perform basic economic analysis to evaluate the economic feasibility of water resources projects
- formulate optimization models for decision making in water resources systems.
- use simulation models for planning and design of Water Resources Systems.

SYLLABUS:

UNIT – I Introduction: Concepts of systems analysis, definition, systems approach to water resources planning and management, role of optimization models, objective function and constraints, types of optimization techniques.

UNIT – II Linear programming: Formulation of linear programming models, graphical method, simplex method, application of linear programming in water resources, revised simplex method, duality in linear programming, sensitivity analysis.

UNIT – III Dynamic programming: Principles of optimality, forward and backward recursive dynamic programming, curse of dimensionality, application for resource allocation.

UNIT – VI Non-linear optimization techniques: Classical optimization techniques, Lagrange methods, Kuhn-Tucker conditions, Search techniques, overview of Genetic Algorithm

UNIT – V Water Resources Economics: Basics of engineering economics, economic analysis, conditions of project optimality, benefit and cost analysis

UNIT – VI Simulation and management: Application of simulation techniques in water resources, planning of reservoir system, optimal operation of single reservoir system,

allocation of water resources, optimal cropping pattern, conjunctive use of surface and subsurface water resources.

Text Books:

- 1. Water Resources System Analysis, Vedula S and P. P. Mujumdar, McGraw Hill Company Ltd, 2005.
- 2. Water Resources Economics, James D and R. Lee, Oxford Publishers, 2005.

References:

- Water Resources Systems Planning and Management An Introduction to Methods, Models and Applications, Loucks D P and E V Bee, UNESCO Publications, 2005 (http://ecommons.cornell.edu/bitstream/1813/2804/21/00_intro.pdf)
- 2. Optimal design of water distribution networks, Bhave, P. R, Narosa Publishing house, 2003.