5.2

\mathbf{G}

```
Sei G gegeben als G = (V, \Sigma, P, S) mit V = S, A, B, C, D, \Sigma = a, b, c, d und P = \{ (S, (A \mid B \mid C \mid D \mid a \mid b \mid c \mid d \mid \varepsilon)), (A, (aSa)), (B, (bSb)), (C, (cSc)), (D, (dSd)) \}
```

Kontextfrei

Dies gilt, da für alle $(\alpha, \beta) \in P$ gilt, dass $\alpha \in V$ ist. Dementsprechend ist die Grammatik Kontextfrei.

$$L = L(G)$$

Dies zeigen wir, indem wir zeigen, dass alle $w' \in L(G)$ exakt die Bedingung von L erfüllen.

Sei $w \in L$ beliebig, so gilt für die Induktion:

$$| w | = 1$$

In diesem Fall kann für w lediglich gelten $w \in (\{\emptyset, \varepsilon\} \cup \Sigma)$. Von $w = \emptyset$ oder $w = \varepsilon$ gilt sowohl, dass sie in L sind, als auch das sie in L(G) sind, denn diese sind in jeder Grammatik. ($\vdots = ?????$ Don't know just guessed) Für $w \in \Sigma$ gilt dass diese in L sind, da ein Buchstabe umgedreht weiterhin der selbe ist. Zudem gilt, dass dieser in L(G) ist, da für $(S, X) \in P$ gilt, dass jedes Element aus Σ in X ist. Dementsprechend gilt dies für solche w.

Induktionsvoraussetzung: |w| = n

 $\forall w \in L(G) : w \in L$ (Ist das die richtige Behauptung?)

Induktionsschritt: |w| = n + 1

zu Zeigen

- **5.3**
- **5.4**