

I320D - Topics in Human Centered Data Science Text Mining and NLP Essentials

Week 3: Finite State Machines, Regular Expressions, preprocessing raw text data, Morphology Analysis,

Dr. Abhijit Mishra

Week 2: Recap

- Lecture topics:
 - Fundamentals layers of NLP,
 - Applications and Ambiguity
 - Multilingualism and its importance in the context of NLP
 - Overview of text corpora and datasets
- Python Tutorial:
 - Reading and manipulating PDF text
 - Regular Expressions basics

Before we start

- Assignment 1 (due this week) clarifications
 - Question (McKenna): what do we mean by frequency analysis of unique words and two-word phrases for each sentiment category?
- Example:
 - {"Text": "the movie was a good movie", "Label": 1}
 - {"Text": "the play was bad", "Label": 2}
 - {"Text": "the acting was OK", "Label": 0}
- Expected output (after cleaning and removing redundant words)
 - freq_dict_1 = {"movie": 2, "good": 1, "movie good": 1, "good movie": 1}
 - freq_dict_2 = {"play": 2, "bad": 1, "play bad": 1}
 - freq_dict_3 = {"acting": 1, "OK": 1, "acting OK": 1}

Also ...

- General observations / guidelines reg assignments
 - Acknowledge and give attributions when you copy code (you should not be copying code in the first place, rather reimplementing)
 - Else would result in plagiarism
 - Submit in time / seek extensions "explicitly" if you are struggling

Week 2: Roadmap

Lecture:

- Regular Expressions and Finite State Automata
- Text Pre-processing Techniques cleaning text, normalization, stop word removal
 - Morphological Analysis stemming, lemmatization
 - When to apply which operations

Tutorial:

Text pre-processing using NLTK and SpaCy libraries

W3 Reference on Canvas

References:

- [1] Chapter 3. Words and Transducers, Book: Jurafsky, D., & Manning, C. (2012). Natural language processing. Instructor, 212(998), 3482.
- [2] https://www.analyticsvidhya.com/blog/2021/06/text-preprocessing-in-nlp-with-python-codes/
- [3] Text Preprocessing: NLP fundamentals with spaCy https://medium.com/eni-digitalks/text-preprocessing-nlp-fundamentals-with-spacy-54f32e520bc8

Part 1: Regular Expressions and Finite State Automata

What is an Automaton?

- An automaton is a mathematical model that represents a system or a machine that can transition through a finite set of states based on inputs.
- Involves using these models to automate certain computations, recognizing patterns, or solving specific problems.

Three Types of Automata

Finite State Automata (FSA):

- Automation is achieved through finite state machines, where the system transitions between a finite set of states based on input symbols.
- FSAs are often used to recognize regular languages.

Pushdown Automata (PDA):

- Extend the concept of finite state machines by introducing a stack
- PDAs are associated with context-free languages.

Turing Machines:

- Represent a more powerful form of automation
- Consist of an infinite tape and a read/write head
- Associated with recursively enumerable languages

Regular Languages and Expressions

- A regular language is a type of language that can be recognized by a finite state machine or described by a regular expression.
 - No nesting, recursive operations allowed

Regular Expressions:

- Sequence of characters that defines a search pattern
- Simple and well-defined structures, no nesting / recursion
- Widely used in text processing, searching, and manipulating strings in various programming languages and tools

Basic Elements of Regular Expressions

- 1. Literals: Characters that match themselves.
 e.g., the regular expression abc matches the string "abc" exactly.
- 2. Alternation (): Represents a choice between alternatives.e.g., a|b matches either "a" or "b".
- **3. Concatenation:** Represents the concatenation of two expressions. e.g., **ab** matches the string formed by concatenating "a" and "b".
- 4. Kleene Star (*): Represents zero or more occurrences of the preceding expression.
 - e.g., a* matches zero or more occurrences of the character "a".
- 5. Plus (+): Like "*" but represents ONE or more occurrences
- 6. Start and end symbols: "^" is start and "\$" is end

Representation of RegEx in FSA

- States: {S0, S1, S2, S_N }
- Alphabet: {set of allowed characters}
 - E.g., {A, B, C, ..., a, b, c, ..., 0, 1, 2, ...}
- Initial State: S0
- Accepting State: S2 (marked by doubled circles)
- Transitions:
 - Arrows connecting states
- Matching criteria: Final state is reached upon processing of all inputs
- Non-Matching criteria: Final state is NOT reached upon processing of all inputs

- Represent "github" in regular expression
 - exp = r"github"
 - Won't match anything except "github"

- Represent a sequence of As any number of As (also allow None)
 - $\exp = r$ "A*"
 - State diagram (FSA)

 Represent a bit sequence of As any number of As (at least one A should be present)

- Represent a sequence of As any number of As (at least 1 A)
 - $\exp = r$ "A+"
 - State diagram (FSA)

- Represent ABABABAB...... (at least ONE "AB") :
 - $\exp = r$ "(AB)+"
 - State diagram (FSA)

Exercise: why won't it accept ABBB?

Exercise

 Design RegEx for any sequence of "ABs" with odd number of ABs

Exercise (Take home)

 Design RegEx for any sequence of "A"s and "B"s with odd number of "B"s

Some other details about RegEx and programing languages

- Regular Expressions are Programming language independent
- However, syntax for handling matches, grouping words etc.
 can vary
 - E.g, findall() is specific to Python, Java and JavaScript
- Some languages allow shortening/truncation of expressions
 - E.g., [A-Za-z0-9] = (A | B | C | ... | Z|a|b|...|z|0|1|2|...|9) = "\w"

Part 2: Text pre-processing

What is Text Pre-processing?

- Text pre-processing in NLP involves cleaning and transforming raw text data into a format that is suitable for analysis or modeling
- Main goal:
 - Enhance the quality of textual data by addressing various challenges that arise due to data sparsity (non-matching) in tasks such as search and text classification

NLP - Two "Main" Tasks

- Text Classification
- Search

Both are affected by "data sparsity problem"

^{*} Text generation is a special case of text classification

The Problem of Data Sparsity

 Data sparsity in NLP refers to the situation where the available data is insufficient or incomplete to effectively cover the entire linguistic space

Sparsity in Search

Consider hypothetical example in healthcare domain

Document 1: "Common_1 Cold Symptms and Treatments"

Document 2: "Understanding ¶ Diabetes: Causes and Management"

Document 3: "Healthy Living Tips for Everyone"

Document 4: "Cardiovascular Diseaseshttps://www.webmd.com : A Comprehensive

Guide"

Document 5: "An Overview of Respiratory Conditions"

Document 6: "Managing Chronic Illnesses in Adults"

Document 7: "Preventing Infectious Diseases: Best Practices"

Document 8: "Mental Health Awareness and Support"

Document 9: "Types of Allergies and How to Manage Them"

Document 10: "Rare Disordersÿ in Medicine: A Closer Look at XYZ Disorder"

User's query "Common-cold Symptoms"

NO-match

Sparsity in Search

Consider hypothetical example in healthcare domain

Document 1: "Common_1 Cold Symptms and Treatments"

Document 2: "Understanding ¶ Diabetes: Causes and Management"

Document 3: "Healthy Living Tips for Everyone"

Document 4: "Cardiovascular Diseaseshttps://www.webmd.com : A Comprehensive

Guide"

Document 5: "An Overview of Respiratory Conditions"

Document 6: "Managing Chronic Illnesses in Adults"

Document 7: "Preventing Infectious Diseases: Best Practices"

Document 8: "Mental Health Awareness and Support"

Document 9: "Types of Allergies and How to Manage Them"

Document 10: "Rare Disordersÿ in Medicine: A Closer Look at XYZ Disorder"

User's query "Cardio Disease"

NO-match

Data Sparsity in Classification

 Say we train a Machine Learning based text classifier to classify a text into topic categories

Text	Category
"Team A Wins the Championship¶ Title"	Sports
"Football World Cuphttp://sports.com : Exciting Matches Ahead"	Sports
"New Smartphone Released with Advanced Features"	Technology
"Artificial Intelligence Transforming Industries"	Technology
"Breakthrough in Cancer Research: Promising Results"	Health
"Healthy Eating Habits for a Better Lifestyle"	Health
"Movie Review: Blockbuster Hits the Theaters"	Entertainment
"Upcoming Music¶ Festival to Feature Top Artists"	Entertainment
"Election Results: New Government Takes Office"	Politics
"Debates on Economic Policies in Parliament"	Politics

Test input:

"TeamA becomes champion"

Predicted Label: None

Test input:

"Phone with advanced tech"

Predicted Label: None

Out of vocabulary words

Text Pre-processing for Data Sparsity Reduction

Clean Text (remove noisy characters) Normalize (correct spelling errors, inflate abbreviation)

Tokenize Text

Remove Stopwords Perform Morphological Analysis

Step 1: Cleaning Text

- Involves:
 - Removing unwanted characters (e.g., printable or non-printable UNICODE characters such as "¶")
 - Removing spurious entries, URLs, Hashtags (in tweets), Mentions

- Additional steps (optional and task dependent)
 - Lowercasing of Roman Characters to ensure better matching

Step 2: Text Normalization

- Involves spell checking and spell correction
 - E.g., Common_1 Cold Symptms (=>Symptoms) and Treatments
- Normalizing repeated characters
 - E.g., "I loooooved the movie" => "I loved the movie"
- Techniques used:
 - Dictionary based character sequence matching
 - Machine learning based text classification for text normalization

Example spell checker - HunSpell

from hunspell import Hunspell # Load the English dictionary hunspell = Hunspell('en_US') # Check if a word is spelled correctly if hunspell.spell('example'): print("The word is spelled correctly.") else: # Get suggestions for corrections suggestions = hunspell.suggest('example') print(f"The word is misspelled. Suggestions: {suggestions}")

Step 3: Tokenization

- Act of extracting tokens from text
- Basic tokenization: "white space" based splitting
- Advanced tokenization : Consider punctuations

```
Input Text: "I bought apples, oranges, and bananas."
Tokens: ["I", "bought", "apples", ",", "oranges", ",", "and", "bananas", "."]
Input Text: "She said, 'I'll be there at 3:00."
Tokens: ["She", "said", ",", """, "I'll", "be", "there", "at", "3:00", ".", """]
```

- Mostly rule/pattern based
- Sentence tokenization: Extracting sentences from documents

Importance of Tokenization: nonspace delimited languages

- 1. Input Text: "你好,你在做什么?"
 - Tokens: ["你好", ", ", "你", "在", "做", "什么", "? "]
 - Gloss: ["Hello", ",", "you", "at", "do", "what", "?"]
 - Translation: "Hello, what are you doing?"
- 2. Input Text: "我喜欢吃中餐和日餐。"
 - Tokens: ["我", "喜欢", "吃", "中餐", "和", "日餐", "。"]
 - Gloss: ["I", "like", "to eat", "Chinese food", "and", "Japanese food", "."]
 - Translation: "I like to eat Chinese and Japanese food."

Advanced tokenization

- Word pieces: involve breaking down words into smaller units called subword tokens (e.g., "unhappiness" => ["un", "##happiness"])
 - Unsupervised machine learning for splitting words using byte level information
- Sentence pieces: sentencepieces consider smaller segments that represent meaningful parts of the text
 - Unsupervised machine learning for splitting words using byte level information
- Will be discussed more in week 9

Step 4: Removing stopwords

- Certain words are redundant
- Typically function words (i.e., prepositions, articles, etc.)
- Sometimes removing such words after tokenization and lemmatization helps reduce vocabulary

```
import nltk
from nltk.corpus import stopwords

stops = set(stopwords.words('english'))
print(stops)
```

```
stops = set(stopwords.words('german'))
stops = set(stopwords.words('indonesia'))
stops = set(stopwords.words('portuguese'))
stops = set(stopwords.words('spanish'))
```

Step 5: Morphological Analysis

- Segment and identify
- Science goal: Study language and complexity of words in a language (e.g., how compounding happens in a language)
- Engineering: segment and identify all constituents of a word so as to reduce "data sparsity"

Morphological Analysis (1)

- German Word: "Staubsaugerbeutel"
- Meaning: "Vacuum cleaner bag"
- After morphological analysis
 - "Staub" (Dust)
 - "sauger" (Sucker)
 - "Beutel" (Bag)
- Reduces space requirements to store complex words

Morphological Analysis (2)

- Two types of analysis: stemming and lemmatzation
- Stemming: reducing words to their base or root form by removing suffixes or prefixes

```
1. Original: jumping
```

Stem: jump

2. Original: walked

Stem: walk

3. Original: apples

Stem: appl (Note: Stemming might not always result in valid words.)

4. Original: swimming

Stem: swim

Morphological Analysis (2)

- Two types of analysis: stemming and lemmatization
- Lemmatization: reducing words to their canonical or dictionary form (a.k.a lemmas)
 - 1. Original: jumping
 - Lemma: jump
 - 2. Original: walked
 - Lemma: walk
 - 3. Original: apples
 - Lemma: apple
 - 4. Original: swimming
 - Lemma: swim

Stemming

- Comparatively less resource intensive
- Built by looking at patterns in character sequences in corpora
- Rules are pre-determined to split words into stems

Stemming Example: Porter Stemmer

Porter Stemming Algorithm

```
SSES \rightarrow SS (m>0) ATIONAL \rightarrow ATE
IES \rightarrow I (m>0) TIONAL \rightarrow TION
SS \rightarrow SS (m>0) ENCI \rightarrow ENCE
S \rightarrow (m>0) ANCI \rightarrow ANCE
```

Lemmatization

- More resource intensive: requires some sort of a dictionary for valid word identification
- E.g., "went" => "go" (requires a dictionary)

Lemmatization Example: Wordnet Lemmatizer

from nltk.corpus import wordnet from nltk.stem import WordNetLemmatizer

Create a lemmatizer object lemmatizer = WordNetLemmatizer()

Example words to lemmatize words_to_lemmatize = ["running", "better", "cats", "ate", "happily"]

Lemmatize each word lemmatized_words = [lemmatizer.lemmatize(word, pos='v') for word in words to lemmatize]

Print the original and lemmatized words for original, lemmatized in zip(words_to_lemmatize, lemmatized_words): print(f"Original: {original}, Lemmatized: {lemmatized}")

Original: running, Lemmatized: run Original: better, Lemmatized: better

Original: cats, Lemmatized: cat

Original: ate, Lemmatized: eat

Original: happily, Lemmatized: happily

WordNet Search - 3.1 - WordNet home page - Glossary - Help Word to search for: went Search WordNet Display Options: (Select option to change) Change Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations Display options for sense: (gloss) "an example sentence" Verb • S: (v) travel, go, move, locomote (change location; move, travel, or proceed, also metaphorically) "How fast does your new car go?"; "We travelled from Rome to Naples by bus"; "The policemen went from door to door looking for the suspect"; "The soldiers moved towards the city in an attempt to take it before night fell": "news travelled fast" • S: (v) go, proceed, move (follow a procedure or take a course) "We should go farther in this matter": "She went through a lot of trouble": "go about the world in a certain manner"; "Messages must go through diplomatic channels" • <u>S:</u> (v) <u>go</u>, <u>go away</u>, <u>depart</u> (move away from a place into another direction) "Go away before I start to cry"; "The train departs at noon" • S: (v) become go get (enter or assume a certain state or condition) "He

When to use stemming and when to use lemmatization

- Stemming: Shallow tasks (do not require understanding meaning), e.g., Information retrieval
- Lemmatization: Tasks requiring meaning analysis
 - Example?

Summary

- We discussed
 - Regular Expression basics and basics of Finite State Automata
 - Text Preprocessing techniques
- Choosing appropriate text pre-processing steps is IMPORTANT
 - E.g., Stopword removal won't benefit a text -translation system
 - E.g., Stemming won't benefit a deep semantic-analysis based task such as summarization

Next Class

Text pre-processing using NLTK and SpaCy modules

Assignment 2 (to be posted on Thursday): Text pre-processing + Search