From Data to Braking Curve

Analysis of Big Data Streams to obtain Braking Reliability Information for Train Protection system

Raphael Pfaff, Ingo Elsen, Bernd Schmidt

European Centre for Sustainable Mobility @ FH Aachen

Problem setting

- Braking curves are fundamental to ATP systems
 - Exhibit random variation
- A priori braking curves
 - For limited configurations
 - So called γ -trains
 - By Monte Carlo simulation
- Freely configurable trains
 - So called λ -trains
 - Too many configurations for *a priori* determination
 - Handled by correction factors

Can we use a more current approach to determine braking curves?

Can we use a more current approach to determine

braking curves?

performance?

Can we update braking curves for the observed braking

Can we update braking curves for the observed braking performance?

Can we perform *ad hoc* calculation of braking curves for freely configurable trains?

OF APPLIEDS

ĚŠ

Introduction

Operation under ATP systems

- Requirements
 - safely locked
 - reserved
 - free from obstacles
- ATO system classification
 - spatially discrete
 - spatially continuous
 - mixed systems
- Headway
 - fixed spatial distance
 - absolute braking distance
 - relative braking distance

Interlocking and capacity improvements

Improvements in headway are likely to be consumed by bottlenecks in infrastructure or timetable.

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

- Adhesion condition, by e.g.
 - Visual clues
 - Audible clues
 - Feeling
 - Experience on same/similar line
- Vehicle condition, by e.g.
 - Exchange with colleagues
 - Experience with vehicle
- Drivers seek to optimise braking w.r.t.
 - Timetable, delays
 - Track and vehicle condition
 - Passengers

Train driver

- Drivers constantly monitor braking performance
 - Adhesion condition, by e.g.
 - Visual clues
 - Audible clues
 - Feeling
 - Experience on same/similar line
 - Vehicle condition, by e.g.
 - Exchange with colleagues
 - Experience with vehicle
- Drivers seek to optimise braking w.r.t.
 - Timetable, delays
 - Track and vehicle condition
 - Passengers

Braking curves

■ To supervise train velocity, ATP systems predict the future braking capability of the train

Braking curves

- To supervise train velocity, ATP systems predict the future braking capability of the train
- However, there is not the braking capability

Braking curves

- To supervise train velocity, ATP systems predict the future braking capability of the train
- However, there is not the braking capability
- Braking curves exhibit a random behaviour

Random braking curve behaviour

- Brake pipe: propagation velocity, flow resistances, train length
- Distributor valve: Filling time, brake cylinder pressure
- Braking force generation: efficiency, brake radius (for disc brakes), pad/block friction coefficient
- Wheel/rail contact: rail surface, contaminants, slip, ...
- Also discrete failure events need to be considered

Big Data and Data Streams

- Dominating railway applications:
 - Predictive maintenance
 - Improvement of operations
- Classification according to different sets of V, e.g.
 - Volume: quantity of stored and generated data
 - Variety: type and nature of the data
 - Velocity: speed at which the data is generated
 - Veracity: quality of the captured data

Expected data volume

- Using DB open data:
 - 2.6 million monthly freight trains
- Assumptions:
 - 10 braking processes per train
 - 20 wagons per train
- Data acquisition:
 - 90 s braking duration
 - 10 Hz sampling rate
 - 20 bytes per sample

Expected data volume (for DB only) 9.4 TB per month

Month	Freight trains operated
February	2,641,295
March	2,712,662
April	2,734,730
May	2,497,157
June	2,719,753
July	2,576,785
August	2,472,119
September	2,660,830
October	2,513,284
November	2,641,139

Expected data velocity, variety and veracity

- Velocity: 7.2 MB/s
 - Expected data volume (for DB cargo only) 9.4 TB per month
 - Mostly night operation: 360 h/month
- Variety: medium
 - Highly correlated with track, weather and maintenance data
 - Needs to be collected as much as possible
- Veracity: medium to low
 - Low sensor cost required
 - Workshops not capable of checking or calibrating

Processing slow and fast data

Data processing architecture

- Requirements similar to real-time arrival prediction
 - Sub-second latency
 - Full pipeline few seconds latency
- Architectural elements:
 - Streaming layer: Lambda architecture, e.g. Apache Storm
 - Processing Layer: Hadoop-Tools, e.g. Hive, or MapReduce

Vehicle implementation

Wagon 4.0 as enabler

- Wagon 4.0 concept pillars:
 - Power supply
 - Sensors
 - Actuators
 - Algorithms
 - WagonOS operating system

Proposed algorithm

Rolling stock

- $N = 5 \cdot 10^4$ wagons
- \blacksquare n = 20 wagons/train

Operation

- $M = 83.3 \cdot 10^4 \text{ trains/day}$
- Randomly assigned from wagon pool

■ Simulation

- Initialised conservatively at 50% performance
- Additive white noise on sensor signal
- Implemented in Python

 \blacksquare n = 20 wagons/train

Operation

■ $M = 83.3 \cdot 10^4 \text{ trains/day}$

 Randomly assigned from wagon pool

■ Simulation

- Initialised conservatively at 50% performance
- Additive white noise on sensor signal
- Implemented in Python

Conclusion and further work

Conclusion:

- Ad hoc estimation of braking curve appears feasible
- Observing true deceleration may yield improvements over current procedures
- Proposed algorithm employs the well known MapReduce framework for scalability

■ Further work:

- Apply to real world data
- Include rich data sources, such as weather, maintenance performed etc.
- Aiming to resemble train driver behaviour as closely as possible

Federal Ministry of Education and Research

SPONSORED BY THE

Let's put awesome back into railways!

