Import all the required libraries and the data from the excel sheet

```
import pandas as pd
import numpy as np
from scipy.stats.distributions import chi2
import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read_excel('titanic.xls')
data
```

Out[]:	[]: pclass survived		name	sex	age	sibsp	parch	ticket	fare	embarked	
	0	1	1	Allen, Miss. Elisabeth Walton	female	29.0000	0	0	24160	211.3375	S
	1	1	1	Allison, Master. Hudson Trevor	male	0.9167	1	2	113781	151.5500	S
	2	1	0	Allison, Miss. Helen Loraine	female	2.0000	1	2	113781	151.5500	S
	3	1	0	Allison, Mr. Hudson Joshua Creighton	male	30.0000	1	2	113781	151.5500	S
	4	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	female	25.0000	1	2	113781	151.5500	S
	1304	3	0	Zabour, Miss. Hileni	female	14.5000	1	0	2665	14.4542	С
	1305	3	0	Zabour, Miss. Thamine	female	NaN	1	0	2665	14.4542	С
	1306	3	0	Zakarian, Mr. Mapriededer	male	26.5000	0	0	2656	7.2250	С
	1307	3	0	Zakarian, Mr. Ortin	male	27.0000	0	0	2670	7.2250	С
	1308	3	0	Zimmerman, Mr. Leo	male	29.0000	0	0	315082	7.8750	S

1309 rows × 10 columns

Q1: a) Count missing values in each column

```
def countMissing(data):
    ret = []
    for col in data.columns:
        nulls = 0
        for val in data[col].tolist():
            if pd.isnull(val):
                nulls += 1
            ret.append(nulls)
        return pd.DataFrame(ret, index=data.columns, columns=['nulls'])
    countMissing(data)
```

Out[]:		nulls
		pclass	0
		survived	0
		name	0
		sex	0
		age	263
		sibsp	0
		parch	0
		ticket	0
		fare	1
		embarked	2

Q1: b) Remove rows/attributes having missing values and calculate the ratio with respect to original data

Part 1: When removing Columns with missing data:

```
def removeRows(data):
    nul = []
    for col in data.columns:
        for val in data[col].tolist():
            if pd.isnull(val):
                 nul.append(col)
                 break
    data_copy = data.copy()
    for r in nul:
        data_copy = data_copy.drop(r, axis=1)
    # print ratio of removed columns
    print("Ratio of wrt to original data, when attributes are dropped:", len(data_copy.col return data_copy
    removeRows(data)
```

Ratio of wrt to original data, when attributes are dropped: 0.7

Out[]:	pclass survived		survived	name	sex	sibsp	parch	ticket
	0	1	1	Allen, Miss. Elisabeth Walton	female	0	0	24160
	1	1	1	Allison, Master. Hudson Trevor	male	1	2	113781
	2	1	0	Allison, Miss. Helen Loraine	female	1	2	113781
	3	1	0	Allison, Mr. Hudson Joshua Creighton	male	1	2	113781
	4	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	female	1	2	113781
	•••	•••	•••					
	1304	3	0	Zabour, Miss. Hileni	female	1	0	2665
	1305	3	0	Zabour, Miss. Thamine	female	1	0	2665
	1306	3	0	Zakarian, Mr. Mapriededer	male	0	0	2656
	1307	3	0	Zakarian, Mr. Ortin	male	0	0	2670
	1308	3	0	Zimmerman, Mr. Leo	male	0	0	315082

1309 rows × 7 columns

Part 2: When removing Rows with missing data:

```
In []:
    def removeCols(data):
        nul = []
        for row in data.itertuples():
            for val in list(row)[1:]:
                if pd.isnull(val):
                      nul.append(row[0])
                      break
        data_copy = data.copy()
        for r in nul:
            data_copy = data_copy.drop(r, axis=0)
        # print ratio of removed rows
        print("Ratio of wrt to original data, when rows are dropped:", len(data_copy.index)/lereturn data_copy
        removeCols(data)
```

Ratio of wrt to original data, when rows are dropped: 0.7967914438502673

:		pclass	survived	name	sex	age	sibsp	parch	ticket	fare	embarked
	0	1	1	Allen, Miss. Elisabeth Walton	female	29.0000	0	0	24160	211.3375	S
	1	1	1	Allison, Master. Hudson Trevor	male	0.9167	1	2	113781	151.5500	S
	3	1	0	Allison, Miss. Helen Loraine	female	2.0000	1	2	113781	151.5500	S
		1	0	Allison, Mr. Hudson Joshua Creighton	male	30.0000	1	2	113781	151.5500	S
	4	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	female	25.0000	1	2	113781	151.5500	S
											
	1301	3	0	Youseff, Mr. Gerious	male	45.5000	0	0	2628	7.2250	С
	1304	3	0	Zabour, Miss. Hileni	female	14.5000	1	0	2665	14.4542	С
	1306	3	0	Zakarian, Mr. Mapriededer	male	26.5000	0	0	2656	7.2250	С
	1307	3	0	Zakarian, Mr. Ortin	male	27.0000	0	0	2670	7.2250	С
	1308	3	0	Zimmerman, Mr. Leo	male	29.0000	0	0	315082	7.8750	S

1043 rows × 10 columns

Q1: c) Replace missing values (in original file) of age attribute with:

Mean

Out[]:

• Median

lets make a generic function which can perform replacing data effectively.

```
def replace(df, col, property):
    df['filled-'+col] = df[col].fillna(getattr(data[col], property)())
    return df

data = replace(data, 'age', 'mean')
data
```

	pclass	survived	name	sex	age	sibsp	parch	ticket	fare	embarked	filled-age
0	1	1	Allen, Miss. Elisabeth Walton	female	29.0000	0	0	24160	211.3375	S	29.000000
1	1	1	Allison, Master. Hudson Trevor	male	0.9167	1	2	113781	151.5500	S	0.916700
2	1	0	Allison, Miss. Helen Loraine	female	2.0000	1	2	113781	151.5500	S	2.000000
3	1	0	Allison, Mr. Hudson Joshua Creighton	male	30.0000	1	2	113781	151.5500	S	30.000000
4	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	female	25.0000	1	2	113781	151.5500	S	25.000000
•••											
1304	3	0	Zabour, Miss. Hileni	female	14.5000	1	0	2665	14.4542	С	14.500000
1305	3	0	Zabour, Miss. Thamine	female	NaN	1	0	2665	14.4542	С	29.88113!
1306	3	0	Zakarian, Mr. Mapriededer	male	26.5000	0	0	2656	7.2250	С	26.500000
1307	3	0	Zakarian, Mr. Ortin	male	27.0000	0	0	2670	7.2250	С	27.000000
1308	3	0	Zimmerman, Mr. Leo	male	29.0000	0	0	315082	7.8750	S	29.000000

1309 rows × 11 columns

Out[]:

In []: replace(data, 'age', 'median')

	pclass	survived	name	sex	age	sibsp	parch	ticket	fare	embarked	filled- age
0	1	1	Allen, Miss. Elisabeth Walton	female	29.0000	0	0	24160	211.3375	S	29.0000
1	1	1	Allison, Master. Hudson Trevor	male	0.9167	1	2	113781	151.5500	S	0.9167
2	1	0	Allison, Miss. Helen Loraine	female	2.0000	1	2	113781	151.5500	S	2.0000
3	1	0	Allison, Mr. Hudson Joshua Creighton	male	30.0000	1	2	113781	151.5500	S	30.0000
4	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	female	25.0000	1	2	113781	151.5500	S	25.0000
•••											
1304	3	0	Zabour, Miss. Hileni	female	14.5000	1	0	2665	14.4542	С	14.5000
1305	3	0	Zabour, Miss. Thamine	female	NaN	1	0	2665	14.4542	C	28.0000
1306	3	0	Zakarian, Mr. Mapriededer	male	26.5000	0	0	2656	7.2250	С	26.5000
1307	3	0	Zakarian, Mr. Ortin	male	27.0000	0	0	2670	7.2250	С	27.0000
1308	3	0	Zimmerman,	male	29.0000	0	0	315082	7.8750	S	29.0000

1309 rows × 11 columns

Out[]:

Q2: WAP to perform transformation of data on age attribute of Titanic dataset using Binning

male 29.0000

Mr. Leo

S 29.0000

- a) With equal width bins using K=25, using mean (you may fill zero value to balance last bin)
- b) With equal frequency bins of size 100 using mean (you may fill zero value to balance last bin)

```
def binningEqualWidth(age, k):
    a = len(age)
    w = (max(age) - min(age))/k
    bins = [min(age) + i*w for i in range(k+1)]
    ret = []
    for i in range(0, k):
        curr = []
        for j in age:
            if j >= bins[i] and j <= bins[i+1]:</pre>
```

```
curr.append(j)
        # mean of curr
        ret+=[np.mean(curr)]*len(curr)
    return ret
def binningEqualFrequency(age, size):
    while len(age) % size != 0:
        age.append(0)
    age = sorted(age)
    ret = []
    for i in range(0, len(age), size):
        ret+=[np.mean(age[i:i+size])]*size
    return ret
def binning(li):
    equalWidth = binningEqualWidth(li, 25)
    equalFrequency = binningEqualFrequency(li, 100)
    fig, axs = plt.subplots(1,3, figsize=(15,5), sharey=True)
    axs[0].plot(li, label = 'Original age')
    axs[0].set_title('Original age')
    axs[1].plot(equalWidth, label = 'Equal Width Binning', color = 'red')
    axs[1].set_title('Equal Width Binning')
    axs[2].plot(equalFrequency, label = 'Equal Frequency Binning', color = 'green')
    axs[2].set_title('Equal Frequency Binning')
    plt.show()
binning(data['filled-age'].tolist())
```


Q3: Perform chi-square test (also show the contingency table)

- a) Pclass & Survived (fill missing values with highest frequency category, if any)
- b) Pclass & sex (fill missing values with highest frequency category, if any)
- c) Plass & embarked (fill missing values with highest frequency category, if any)

```
table[x[i]][y[i]] = 1
            df = pd.DataFrame(table)
            df['Sum(row)'] = df.sum(axis=1)
            df.loc['Sum(col)'] = df.sum()
            df.columns.name = x.name
            df.index.name = y.name
            df_exp = df.copy()
            for i in range(len(df.columns)-1):
                          df_{exp.iloc[i, :-1]} = df_{exp.iloc[-1,:-1]} * df_{exp.iloc[i, -1]} / df_{exp.iloc[-1,-1]}
            # Plot everything
            plt.figure(figsize=(10,4))
            plt.subplot(1,2,1)
             sns.heatmap(df.iloc[:-1, :-1], annot=True, fmt='d')
            plt.title('Contingency Table')
            plt.subplot(1,2,2)
             sns.heatmap(df_exp.iloc[:-1, :-1], annot=True, fmt='g')
             plt.title('Expected Value Table')
            plt.tight_layout()
            plt.show()
            chiSq = np.sum(np.sum(((df.iloc[:-1, :-1] - df_exp.iloc[:-1, :-1])**2/df_exp.iloc[:-1, :-1])**
            print("The chi-square value:", chiSq)
            rows = x.unique()
            cols = y.unique()
            dof = (len(rows)-1)*(len(cols)-1)
            print("The degree of freedom:", dof)
            p = chi2.sf(chiSq, dof)
            print("The p-value:", p)
chiSquareCalc(data['pclass'], data['survived'])
```


The chi-square value: 127.85915643930326

The degree of freedom: 2

The p-value: 1.7208259588256175e-28

```
In [ ]:
    chiSquareCalc(data['pclass'], data['sex'])
```


The chi-square value: 20.378781205085584

The degree of freedom: 2

The p-value: 3.7566772719164106e-05

The chi-square value: 204.48431967559742

The degree of freedom: 4

The p-value: 4.0799162291284984e-43

Q4: Perform correlation analysis

a) Age & Fare (first fill missing values using mean, if any) b) Age & sibsp (first fill missing values using mean, if any)

```
def correlation(x, y):
    x = x.fillna(x.mean())
    y = y.fillna(y.mean())

    r = ((x-x.mean())*(y-y.mean())).sum() / ((x.size-1)*x.std()*y.std())
    plt.scatter(x, y, c=np.random.rand(x.size))
    plt.title("Correlation: "+str(r), fontsize=15)
    plt.show()
```

```
In [ ]: correlation(data['age'], data['fare'])
```


In []: correlation(data['age'], data['sibsp'])

Thank You