2072U Computational Science I Winter 2022

Week	Topic
1	Introduction
1–2	Solving nonlinear equations in one variable
3–4	Solving systems of (non)linear equations
5–6	Computational complexity
6–8	Interpolation and least squares
8–10	Integration & differentiation
10-12	Additional Topics

1. Complexity of algorithms

2. Some standard sums

3. Standard algorithms

2072U, Winter 2022 1/12

Key questions:

- What is computational complexity?
- What is the computational complexity of standard algorithms?
 - factorials and summation of sequences?
 - recursive algorithms?
 - matrix-vector multiplication?
 - matrix-matrix multiplication?

The concept of computational complexity will help us answer question 3:

- 1. When does my computation work?
- 2. How accurate is the result?
- 3. How fast does my computation work?

Floating-point operations (Flops):

- Computational complexity of an algorithm: amount of work required to execute/carry out algorithm from start to finish.
- Traditional unit of complexity for numerical algorithms: the flop.

Floating-point operations (Flops):

- Computational complexity of an algorithm: amount of work required to execute/carry out algorithm from start to finish.
- Traditional unit of complexity for numerical algorithms: the flop.
- One flop = one floating-point operation.

Floating-point operations (Flops):

- Computational complexity of an algorithm: amount of work required to execute/carry out algorithm from start to finish.
- Traditional unit of complexity for numerical algorithms: the flop.
- One flop = one floating-point operation.

How to count flops

- 1. Write pseudocode of algorithm clearly.
- 2. In each line, count number of flops $(+, -, \times, \div)$.
- 3. Count number of times each line executes (e.g., in a **for** loop).
- 4. Multiply cost of each line by number of times it executes.

2072U. Winter 2022 3/12

Summation identities and tricks:

Use summation identities to count # times each line executes

$$\sum_{k=1}^{n} 1 = n, \qquad \sum_{k=1}^{n} k = \frac{n(n+1)}{2},$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{k=1}^{n} k^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$
 (\(\Sigma\))

Summation identities and tricks:

Use summation identities to count # times each line executes

$$\sum_{k=1}^{n} 1 = n, \qquad \sum_{k=1}^{n} k = \frac{n(n+1)}{2},$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{k=1}^{n} k^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$
(\Sigma)

Summation limits can be transformed if necessary:

$$\sum_{k=\alpha}^{\beta} a_k = \sum_{\ell=1}^{\beta-\alpha+1} a_{\ell+\alpha-1} \quad \text{(substitute } \ell = k-\alpha+1\text{)}$$

Goal: change lower index of sum to 1 and apply identities (Σ)

Summation identities and tricks:

Use summation identities to count # times each line executes

$$\sum_{k=1}^{n} 1 = n, \qquad \sum_{k=1}^{n} k = \frac{n(n+1)}{2},$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{k=1}^{n} k^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$
 (\(\Sigma\))

Summation limits can be transformed if necessary:

$$\sum_{k=\alpha}^{\beta} a_k = \sum_{\ell=1}^{\beta-\alpha+1} a_{\ell+\alpha-1} \quad \text{(substitute } \ell = k - \alpha + 1\text{)}$$
e.g.,
$$\sum_{k=3}^{27} 5 = 5 \times \sum_{\ell=1}^{25} 1 = 5 \times 25 = 125$$

Goal: change lower index of sum to 1 and apply identities (Σ)

4 ロ ト 4 同 ト 4 豆 ト 4 回 ト 4 回 ト 4 回 ト

Input: vector $\mathbf{x} \in \mathbb{R}^n$

1:
$$S \leftarrow x_1$$

2: **for**
$$k = 2: n$$

3:
$$S \leftarrow S + x_k$$

Output:
$$S = \sum_{k=1}^{n} x_k$$

$$S = \sum_{k=1}^{n} x_k$$
 given $\mathbf{x} \in \mathbb{R}^n$

Input: vector $\mathbf{x} \in \mathbb{R}^n$

1:
$$S \leftarrow x_1$$

2: **for**
$$k = 2: n$$

3:
$$S \leftarrow S + x_k$$

4: end for

Output:
$$S = \sum_{k=1}^{n} x_k$$

► One + in Line 3: 1 flop

$$S = \sum_{k=1}^{n} x_k$$
 given $\mathbf{x} \in \mathbb{R}^n$

Input: vector $\mathbf{x} \in \mathbb{R}^n$

1:
$$S \leftarrow x_1$$

2: **for**
$$k = 2: n$$

3:
$$S \leftarrow S + x_k$$

4: end for

Output:
$$S = \sum_{k=1}^{n} x_k$$

- ► One + in Line 3: 1 flop
- ▶ Line 3 executes once for each k = 2: n

Total cost of computing
$$\sum_{k=1}^{n} x_k$$
 is $\sum_{k=2}^{n} 1$

$$S = \sum_{k=1}^{n} x_k$$
 given $\mathbf{x} \in \mathbb{R}^n$

Input: vector $\mathbf{x} \in \mathbb{R}^n$

1:
$$S \leftarrow x_1$$

2: **for**
$$k = 2: n$$

3:
$$S \leftarrow S + x_k$$

4: end for

Output:
$$S = \sum_{k=1}^{n} x_k$$

- ▶ One + in Line 3: 1 flop
- ▶ Line 3 executes once for each k = 2: n

Total cost of computing
$$\sum_{k=1}^{n} x_k$$
 is $\sum_{k=2}^{n} 1 = \boxed{n-1 \text{ flops}}$

 $S = \sum_{k=1}^{n} x_k$ given $\mathbf{x} \in \mathbb{R}^n$

Input: $n \in \mathbb{N}$ (assume n > 2) 1: $P \leftarrow 2$

2: **for** k = 3: n

3: $P \leftarrow P \times k$

4: end for

Output: P = n!

$$0! = 1,$$

$$1! = 1,$$

$$2! = 2,$$

$$n! = n(n-1)(n-2)\cdots(2)(1)$$

$$= \prod_{i=1}^{n} k \quad \text{given } n \ge 2$$

Input:
$$n \in \mathbb{N}$$
 (assume $n > 2$)
1: $P \leftarrow 2$
2: for $k = 3$: n
3: $P \leftarrow P \times k$
4: end for
Output: $P = n!$

▶ One in Line 3: 1 flop

$$0! = 1,$$

$$1! = 1,$$

$$2! = 2,$$

$$n! = n(n-1)(n-2)\cdots(2)(1)$$

$$= \prod_{k=1}^{n} k \quad \text{given } n \ge 2$$

Input:
$$n \in \mathbb{N}$$
 (assume $n > 2$)

1: $P \leftarrow 2$

2: for $k = 3$: n

3: $P \leftarrow P \times k$

4: end for

Output: $P = n!$

0! = 1,

1! = 1,

2! = 2,

 $n! = n($

$$0! = 1,$$

$$1! = 1,$$

$$2! = 2,$$

$$n! = n(n-1)(n-2)\cdots(2)(1)$$

$$= \prod_{n=1}^{n} k \quad \text{given } n \ge 2$$

- ▶ One x in Line 3: 1 flop
- Line 3 executes once for each k = 3: n

Total cost of computing
$$n! = \prod_{k=1}^{n} k$$
 is $\sum_{k=3}^{n} (1)$

Input:
$$n \in \mathbb{N}$$
 (assume $n > 2$)

1: $P \leftarrow 2$

2: for $k = 3 : n$

3: $P \leftarrow P \times k$

4: end for

Output: $P = n!$
 $0! = 1,$
 $1! = 1,$
 $2! = 2,$
 $n! = n(n-1)(n-2) \cdots (2)(1)$
 $= \prod_{k=1}^{n} k \quad \text{given } n \ge 2$

- ▶ One x in Line 3: 1 flop
- Line 3 executes once for each k = 3: n

Total cost of computing
$$n! = \prod_{k=1}^{n} k$$
 is $\sum_{k=2}^{n} (1) = n-2$ flops

Computing an inner product:

Input: vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

1:
$$s \leftarrow x_1 \times y_1$$

2: **for**
$$k = 2: n$$

3:
$$s \leftarrow s + x_k \times y_k$$

Output:
$$s = \mathbf{x}^T \mathbf{y}$$

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y}$$

$$= \sum_{k=1}^n x_k y_k \qquad \text{given } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

Computing an inner product:

Input: vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

1:
$$s \leftarrow x_1 \times y_1$$

2: **for**
$$k = 2: n$$

3:
$$s \leftarrow s + x_k \times y_k$$

4: end for

Output:
$$s = \mathbf{x}^T \mathbf{y}$$

- ▶ One in Line 1: 1 flop
- ightharpoonup One $\overline{+}$, one $\overline{\times}$ in Line 3: 2 flops

Computing an inner product:

Input: vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

1:
$$s \leftarrow x_1 \times y_1$$

2: **for**
$$k = 2: n$$

3:
$$s \leftarrow s + x_k \times y_k$$

4: end for

Output:
$$s = \mathbf{x}^T \mathbf{y}$$

- ► One × in Line 1: 1 flop
- ightharpoonup One $\overline{+}$, one $\overline{\times}$ in Line 3: 2 flops
- Line 1 executes exactly once
- Line 3 executes once for each k = 2: n

Total cost of computing
$$\mathbf{x}^T \mathbf{y}$$
 is $1 + \sum_{k=2}^{n} 2^{k}$

 $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y}$

 $= \sum_{k=1}^{n} x_k y_k \qquad \text{given } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

 $=\sum_{k=1}^n x_k y_k \qquad \text{given } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

Computing an inner product:

Input: vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

1:
$$s \leftarrow x_1 \times y_1$$

2: **for**
$$k = 2: n$$

3:
$$s \leftarrow s + x_k \times y_k$$

4: end for

2072U. Winter 2022

Output:
$$s = \mathbf{x}^T \mathbf{y}$$

- ▶ One | x | in Line 1: 1 flop
- ightharpoonup One +, one \times in Line 3: 2 flops
- Line 1 executes exactly once
- \blacktriangleright Line 3 executes once for each k=2: n

Total cost of computing
$$\mathbf{x}^T \mathbf{y}$$
 is $1 + \sum_{k=2}^{n} 2 = 2n - 1$ flops

 $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y}$

Input: matrix $A \in \mathbb{R}^{n \times n}$, vector $\mathbf{x} \in \mathbb{R}^{n \times 1}$

1: **for**
$$j = 1: n$$

2:
$$c_j \leftarrow A_{j1} \times x_1$$

3: **for**
$$k = 2: n$$

4:
$$c_i \leftarrow c_i + A_{ik} \times x_k$$

Output:
$$c = Ax$$

$$\mathbf{c} = A\mathbf{x} \in \mathbb{R}^{n \times 1}$$

$$c_j = \sum_{k=1}^n A_{jk} b_k \quad (j=1:n)$$

Input: matrix
$$A \in \mathbb{R}^{n \times n}$$
, vector $\mathbf{x} \in \mathbb{R}^{n \times 1}$

1: **for**
$$j = 1: n$$

2:
$$c_j \leftarrow A_{j1} \times x_1$$
 $\mathbf{c} = A\mathbf{x} \in \mathbb{R}^{n \times 1}$

3: **for**
$$k = 2: n$$

4:
$$c_j \leftarrow c_j + A_{jk} \times x_k$$

Output:
$$c = Ax$$

Line 2: one
$$\times$$
; Line 4: one $+$, one \times

 $c_j = \sum_{k=0}^{n} A_{jk} b_k \quad (j = 1:n)$

Input: matrix
$$A \in \mathbb{R}^{n \times n}$$
, vector $\mathbf{x} \in \mathbb{R}^{n \times 1}$
1: for $j = 1 : n$
2: $c_j \leftarrow A_{j1} \times x_1$ $\mathbf{c} = A\mathbf{x} \in \mathbb{R}^{n \times 1}$
3: for $k = 2 : n$
4: $c_j \leftarrow c_j + A_{jk} \times x_k$ $c_j = \sum_{k=1}^n A_{jk} b_k$ $(j = 1 : n)$
5: end for

- 4: $c_i \leftarrow c_i + A_{ik} \times x_k$ 5: end for
- 6: end for

Output: c = Ax

- Line 2: one \times ; Line 4: one +, one \times
- Line 2 executes once for each i = 1 : n
- Line 4 executes once for each k = 2: n and j = 1: n

Total cost of computing
$$A\mathbf{x}$$
 is $\sum_{i=1}^{n} \left(1 + \sum_{k=2}^{n} 2\right)$

Input: matrix
$$A \in \mathbb{R}^{n \times n}$$
, vector $\mathbf{x} \in \mathbb{R}^{n \times 1}$

1: **for**
$$j = 1: n$$

2:
$$c_j \leftarrow A_{j1} \times x_1$$
 $\mathbf{c} = A\mathbf{x} \in \mathbb{R}^{n \times 1}$

3: **for**
$$k = 2: n$$

4:
$$c_j \leftarrow c_j + A_{jk} \times X_k$$
 $c_j = \sum_{k=1}^n A_{jk} b_k \quad (j = 1:n)$
5: **end for**

Output:
$$c = Ax$$

- Line 2: one \times ; Line 4: one +, one \times
- Line 2 executes once for each i = 1 : n
- Line 4 executes once for each k = 2: n and j = 1: n

Total cost of computing
$$A\mathbf{x}$$
 is $\sum_{i=1}^{n} \left(1 + \sum_{k=2}^{n} 2\right) = 2n^2 - n$ flops

Computing a matrix-matrix product:

```
Input: matrices A, B \in \mathbb{R}^{n \times n}

1: for j = 1: n

2: for \ell = 1: n

3: C_{j\ell} \leftarrow A_{j1} \times B_{1\ell}

4: for k = 2: n

5: C_{j,\ell} \leftarrow C_{j\ell} + A_{jk} \times B_{k\ell}

6: end for

7: end for

8: end for

Output: C = AB \in \mathbb{R}^{n \times n}
```


Computing a matrix-matrix product:

```
Input: matrices A, B \in \mathbb{R}^{n \times n}
1: for j = 1 : n
2: for \ell = 1 : n
3: C_{j\ell} \leftarrow A_{j1} \times B_{1\ell} \Leftarrow 1 flop (j, \ell = 1 : n)
4: for k = 2 : n
5: C_{j,\ell} \leftarrow C_{j\ell} + A_{jk} \times B_{k\ell} \Leftarrow 2 flops (j, \ell = 1 : n; k = 2 : n)
6: end for
7: end for
8: end for
Output: C = AB \in \mathbb{R}^{n \times n}
```


Computing a matrix-matrix product:

```
Input: matrices A, B \in \mathbb{R}^{n \times n}
1: for j = 1: n
    for \ell = 1 : n
             C_{i\ell} \leftarrow A_{i1} \times B_{1\ell}
                                           \Leftarrow 1 flop (j, \ell = 1: n)
             for k = 2: n
                    C_{i,\ell} \leftarrow C_{i\ell} + A_{ik} \times B_{k\ell} \leftarrow 2 \text{ flops} \quad (j,\ell=1:n; k=2:n)
5:
              end for
6:
7:
         end for
8: end for
Output: C = AB \in \mathbb{R}^{n \times n}
```

Total cost of computing AB is
$$\sum_{i=1}^{n} \sum_{\ell=1}^{n} \left(1 + \sum_{k=2}^{n} 2\right) = 2n^3 - n^2$$
 flops

Sum
$$S = \sum_{k=1}^{n} x_k$$
: cost is $n-1$ + or $n-1$ flops

Sum
$$S = \sum_{k=1}^{n} x_k$$
: cost is $n-1$ | + or $n-1$ flops

Inner product
$$\mathbf{x}^T \mathbf{y} = \sum_{k=1}^n x_k y_k$$
: $n \times k - 1 + \text{or } 2n - 1 \text{ flops}$

Sum
$$S = \sum_{k=1}^{n} x_k$$
: cost is $n-1$ | + or $n-1$ flops

- Inner product $\mathbf{x}^T \mathbf{y} = \sum_{k=1}^n x_k y_k$: $n \times \mathbf{k} \cdot n 1$ | or 2n 1 flops
- ▶ Matvec (matrix-vector product) $\mathbf{c} = A\mathbf{x} \in \mathbb{R}^{n \times 1}$: for j = 1 : n,

$$c_j = \sum_{k=1}^n A_{jk} b_k = A_j$$
: **b** \Rightarrow *n* inner products: $2n^2 - n$ flops

Sum
$$S = \sum_{k=1}^{n} x_k$$
: cost is $n-1$ | + or $n-1$ flops

- Inner product $\mathbf{x}^T \mathbf{y} = \sum_{k=1}^n x_k y_k$: $n \times \mathbf{k} = n 1$ | or 2n 1 flops
- ▶ Matvec (matrix-vector product) $\mathbf{c} = A\mathbf{x} \in \mathbb{R}^{n \times 1}$: for j = 1 : n,

$$c_j = \sum_{k=1}^n A_{jk} b_k = A_{j:} \mathbf{b} \Rightarrow n \text{ inner products: } 2n^2 - n \text{ flops}$$

▶ Matrix-matrix product C = AB: for j = 1: n and $\ell = 1$: n,

$$C_{j\ell} = \sum_{k=1}^{n} A_{jk} B_{k\ell} = A_{j} : B_{:\ell} \implies n^2 \text{ inner products: } 2n^3 - n^2 \text{ flops}$$

Remarks

- Assume all floating-point operations have equal cost
- Ignore memory access or overwriting in computing cost
- Precise definitions of flops vary in distinct texts/papers
- Count special function evaluations (e.g., sqrt, etc.) as needed
- Branching statements (if or case) can require extra care
- Complexity analysis possible for memory/storage, etc.
- Complexity analysis of recursively defined functions yields recurrence relations to solve

