Introduction to Web Science

Assignment 1

Prof. Dr. Steffen Staab

René Pickhardt

staab@uni-koblenz.de

rpickhardt@uni-koblenz.de

Korok Sengupta

koroksengupta@uni-koblenz.de

Institute of Web Science and Technologies
Department of Computer Science
University of Koblenz-Landau

Submission until: November 2, 2016, 10:00 a.m. Tutorial on: November 4th, 2016, 12:00 p.m.

The main objective of this assignment is for you to use different tools with which you can understand the network that you are connected to or you are connecting to in a better sense. These tasks are not always specific to "Introduction to Web Science". For all the assignment questions that require you to write a code, make sure to include the code in the answer sheet, along with a separate python file. Where screen shots are required, please add them in the answers directly and not as separate files.

This assignment was made by:

- 1. Daniel Kostic
- 2. Stefan Vujovic
- 3. Igor Fedotov

1 Ethernet Frame (5 Points)

Ethernet Frame is of the given structure:

Preamble	Destination MAC address	Source MAC address	Type/Length	User Data	Frame Check Sequence (FCS)
8	6	6	2	46 - 1500	4

Figure 1: Ethernet Frame Structure

Given below is an Ethernet frame without the Preamble and the Frame Check Sequence.

Find:

- 1. Source MAC Address
- 2. Destination MAC Address
- 3. What protocol is inside the data payload?
- 4. Please mention what the last 2 fields hold in the above frame.

Answer:

- 1. 00 13 10 e8 dd 52
- 2. 00 27 10 21 fa 48
- 3. Address Resolution Protocol (ARP)
- 4. Target Hardware Address (THA), Target Protocol Address (TPA)

2 Cable Issue (5 Points)

Let us consider we have two cables of 20 meters each. One of them is in a 100MBps network while the other is in a 10MBps network. If you had to transfer data through each of them, how much time it would take for the first bit to arrive in each setting? (For your calculation you can assume that the speed of light takes the same value as in the videos.) Please provide formulas and calculations along with your results.

Answer The time needed for the first bit (signal) to go trough the cable is not dependent on the network speed (if we don't take into the account the time needed to generate this bit by the network card). Propagation delay is equal to d / s where d is the distance and s is the wave propagation speed.

d = 20m

 $s = 30*10^8 m/s$

t = d/s

t = 20/300000000

 $t = 6,6666666667 * 10^{-8}$

(1)

3 Basic Network Tools (10 Points)

Listed below are some of the commands which you need to "google" to understand what they stand for:

- 1. ipconfig / ifconfig
- 2. ping
- 3. traceroute
- 4. arp
- 5. *dig*

Consider a situation in which you need to check if www.wikipedia.org is reachable or not. Using the knowledge you gained above to find the following information:

- 1. The % packet loss if at all it happened after sending 100 packets.
- 2. Size of the packet sent to Wikipedia server
- 3. IP address of your machine and the Wikipedia server
- 4. Query Time for DNS query of the above url.
- 5. Number of *Hops* in between your machine and the server
- 6. MAC address of the device that is acting as your network gateway.

Do this once in the university and once in your home/dormitory network. With your answers, you must paste the screen shots to validate your find.

Answer:

1. At the UNI: The percentage of packets lost is 4% percent.

```
Ping statistics for 91.198.174.192:
Packets: Sent = 100, Received = 96, Lost = 4 (4% loss),
Approximate round trip times in milli-seconds:
Minimum = 9ms, Maximum = 100ms, Average = 19ms
PS C:\Users\Daniel>
```

At home: 2% packet loss

```
--- wikipedia.org ping statistics ---
100 packets transmitted, 98 packets received, 2.0% packet loss
round-trip min/avg/max/stddev = 34.177/40.920/101.371/8.227 ms
Igors-MacBook-Pro:~ igorfedotov$ ■
```

2. Packet size is 32 bytes

```
Pinging wikipedia.org [91.198.174.192] with 32 bytes of data:
```

At home, packet size stays the same

Pinging wikipedia.org [2620:0:862:ed1a::1] with 32 bytes of data:

For OSX the packet size it 56 bytes

[Igors-MacBook-Pro:∼ igorfedotov\$ ping -c 100 wikipedia.org PING wikipedia.org (91.198.174.192): 56 data bytes

3. Wikipedia IP is 91.198.174.192(IPv4) and 2620:0:862:ed1a::1 (IPv6). My IP is 141.26.178.33

```
Wireless LAN adapter Wi-Fi:

Connection-specific DNS Suffix . : uni-koblenz.de
Link-local IPv6 Address . . . . : fe80::c9b5:2f11:69c7:fc79%4
IPv4 Address . . . . . . : 141.26.178.33
Subnet Mask . . . . . . . . : 255.255.240.0
Default Gateway . . . . . . : 141.26.176.1
```

At home my IP is 192.168.2.116 (local ip)

```
Wireless LAN adapter Wi-Fi:

Connection-specific DNS Suffix .: Speedport_W_724V_01011603_00_008
IPv6 Address. . . . 2003:74:e04:13c3:c9b5:2f11:69c7:fc79
Temporary IPv6 Address. . . : 2003:74:e04:13c3:25c8:573:4a68:b0e7
Link-local IPv6 Address . . . : fe80::c9b5:2f11:69c7:fc79%4
IPv4 Address. . . . : 192.168.2.116
Subnet Mask . . . . . 255.255.255.0
Default Gateway . . . . : fe80::1%4
192.168.2.1
```

4. Query time is 42 milliseconds

```
C:\Users\vuike
λ dig www.wikipedia.org
; <<>> DiG 9.11.0 <<>> www.wikipedia.org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 28778
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;www.wikipedia.org.
                               IN
                                       Α
;; ANSWER SECTION:
www.wikipedia.org.
                               IN
                                               91.198.174.192
;; Query time: 42 msec
;; SERVER: 192.168.2.1#53(192.168.2.1)
;; WHEN: Tue Nov 01 18:28:06 Central Europe Standard Time 2016
;; MSG SIZE rcvd: 62
```

At uni query time is 3 milliseconds


```
; <<>> DiG 9.11.0 <<>> www.wikipedia.org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 457
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 6, ADDITIONAL: 13</pre>
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;www.wikipedia.org.
                                      IN
;; ANSWER SECTION:
                                      IN
                                                         91.198.174.192
www.wikipedia.org.
;; AUTHORITY SECTION:
                            162359
162359
                                                         a0.org.afilias-nst.info.
org.
                                                         c0.org.afilias-nst.info.
org.
                                      IN
                                                NS
                                                         a2.org.afilias-nst.info.
                                      IN
org.
org.
                                                         d0.org.afilias-nst.org.
                                                         b2.org.afilias-nst.org.
org.
                                                         b0.org.afilias-nst.org.
;; ADDITIONAL SECTION:
a0.org.afilias-nst.info. 162359 IN
a0.org.afilias-nst.info. 162359 IN
                                                         2001:500:e::1
                                                AAAA
a2.org.afilias-nst.info. 162359 IN a2.org.afilias-nst.info. 162359 IN
                                                         199.249.112.1
                                                AAAA
                                                         2001:500:40::1
b0.org.afilias-nst.org. 162359 IN
                                                         199.19.54.1
b0.org.afilias-nst.org. 162359
                                                AAAA
                                                         2001:500:c::1
b2.org.afilias-nst.org. 162359 IN
b2.org.afilias-nst.org. 162359 IN
                                                         199.249.120.1
                                                AAAA
                                                         2001:500:48::1
c0.org.afilias-nst.info. 162359 IN
c0.org.afilias-nst.info. 162359 IN
                                                         199.19.53.1
                                                AAAA
                                                         2001:500:b::1
d0.org.afilias-nst.org. 162359 IN
                                                         199.19.57.1
d0.org.afilias-nst.org. 162359 IN
                                                AAAA
                                                         2001:500:f::1
;; Query time: 3 msec
;; SERVER: 141.26.64.60#53(141.26.64.60)
;; WHEN: Wed Nov 02 09:50:26 Central Europe Standard Time 2016
;; MSG SIZE rcvd: 464
```

5. At uni: number of hops is 11

```
Tracing route to wikipedia.org [91.198.174.192]
over a maximum of 30 hops:

1 * 87 ms * wlanrouter.uni-koblenz.de [141.26.176.1]
2 2 ms 1 ms 1 ms g-uni-ko-1.rlp-net.net [217.198.241.129]
3 4 ms 1 ms 1 ms g-hbf-ko-1.rlp-net.net [217.198.240.69]
4 2 ms 2 ms 2 ms g-hbf-mz-2.rlp-net.net [217.198.240.21]
5 3 ms 2 ms 2 ms g-interxion-1.rlp-net.net [217.198.240.13]
6 5 ms 2 ms 2 ms r1fra3.core.init7.net [80.81.192.67]
7 13 ms 11 ms 12 ms r1ams1.core.init7.net [77.109.128.154]
8 13 ms 11 ms 11 ms r1ams2.core.init7.net [77.109.128.146]
9 10 ms 9 ms 9 ms gw-wikimedia.init7.net [77.109.134.114]
10 11 ms 9 ms 9 ms ae1-403.cr2-esams.wikimedia.org [91.198.174.254]
11 9 ms 8 ms 9 ms text-1b.esams.wikimedia.org [91.198.174.192]
```

At home: 9


```
traceroute to wikipedia.org (91.198.174.192), 64 hops max, 72 byte packets

1 * * * *

2 * * * *

3 83-169-176-38-isp.superkabel.de (83.169.176.38) 15.774 ms 29.853 ms 12.09 on ms

4 ip5886c1ca.dynamic.kabel-deutschland.de (88.134.193.202) 20.538 ms 17.805 ms 19.723 ms

5 ip5886eb58.dynamic.kabel-deutschland.de (88.134.235.88) 24.040 ms 20.071 m s 17.649 ms

6 ip5886ca35.dynamic.kabel-deutschland.de (88.134.202.53) 27.781 ms 30.434 m s 26.075 ms

7 ip5886cac1.dynamic.kabel-deutschland.de (88.134.202.193) 51.998 ms 37.845 ms 30.279 ms ae2.cr2-esams.wikimedia.org (80.249.209.176) 40.850 ms 33.596 ms 34.838 m es s 9 text-lb.esams.wikimedia.org (91.198.174.192) 41.230 ms 33.559 ms 46.499 m in s Igors-MacBook-Pro:~ igorfedotov$
```

6. At Uni: MAC 14-18-77-45-b1-bd

```
Interface: 141.26.178.33 --- 0x4
   Internet Address
                                 Physical Address
                                                                Type
   141.26.176.1
                                 14-18-77-45-b1-bd
                                                                dynamic
  141.26.178.164
141.26.180.2
141.26.180.185
141.26.181.35
                                 40-f3-08-d0-95-c4
                                                                dynamic
                                 Oc-8b-fd-66-15-52
                                                               dynamic
                                 74-da-38-6e-3c-63
                                                               dynamic
                                 08-ed-b9-c1-7a-4f
                                                               dynamic
   141.26.182.16
                                 10-0b-a9-7f-5c-84
                                                               dynamic
   141.26.183.191
                                 40-e2-30-40-38-38
                                                               dynamic
  141.26.188.83
141.26.190.94
141.26.191.237
141.26.191.255
224.0.0.2
                                 76-c6-d7-38-cc-da
                                                                dynamic
                                 a0-a8-cd-16-95-De
                                                               dynamic
                                 c0-d9-62-4f-04-5b
                                                               dynamic
                                 ff-ff-ff-ff-ff-ff
01-00-5e-00-00-02
                                                               static
                                                               static
  224.0.0.22
                                 01-00-5e-00-00-16
                                                               static
  224.0.0.251
224.0.0.252
224.0.0.253
239.255.255
                                 01-00-5e-00-00-fb
                                                                static
                                 01-00-5e-00-00-fc
                                                                static
                                 01-00-5e-00-00-fd
01-00-5e-7f-ff-fa
ff-ff-ff-ff-ff
                                                               static
                   250
                                                                static
  255.255.255.255
                                                               static
```

At home: MAC 5c-dc-96-61-4f-b6

```
PS C:\Users\Daniel> arp -a
Interface: 192.168.2.116 --- 0x4
Internet Address Physical
                              Physical Address
                                                           Type
  192.168.2.1
                              5c-dc-96-61-4f-b6
                                                          dynamic
  192.168.2.114
                              74-de-2b-3a-62-bb
                                                          dynamic
  192.168.2.255
                              ff-ff-ff-ff-ff
                                                          static
  224.0.0.22
                              01-00-5e-00-00-16
                                                          static
  224.0.0.251
                              01-00-5e-00-00-fb
                                                          static
  224.0.0.252
233.179.26.141
235.180.26.141
239.255.255.250
                              01-00-5e-00-00-fc
                                                          static
                              01-00-5e-33-1a-8d
                                                          static
                              01-00-5e-34-1a-8d
01-00-5e-7f-ff-fa
                                                          static
                                                          static
       255.255.
                              ff-ff-ff-ff-ff
                                                          static
```


4 Simple Python Programming (10 Points)

Write a simple python program that does the following:

- 1. Generate a random number sequence of 10 values between 0 to 90.
- 2. Perform sine and cosine operation on numbers generated.
- 3. Store the values in two different arrays named SIN & COSIN respectively.
- 4. Plot the values of SIN & COSIN in two different colors.
- 5. The plot should have labeled axes and legend.

Answer:

```
import math
1
2
   import random
    import matplotlib.pyplot as plt
   # 1. Generate a random number sequence of 10 values between 0 to 90.
6
   randoms = random.sample(range(0,90), 10)
   randoms.sort()
7
   print(randoms)
   # 2. Perform sine and cosine operation on numbers generated.
10
   # 3. Store the values in two different arrays named SIN & COSIN respectively.
   SIN = list(map(math.sin, randoms))
12
   COSIN = list(map(math.cos, randoms))
13
   print(SIN)
14
   print(COSIN)
15
   # 4. Plot the values of SIN & COSIN in two different colors.
17
   # 5. The plot should have labeled axes and legend.
18
   plt.scatter(randoms, SIN, label="sin", color="red")
   plt.scatter(randoms, COSIN, label="cos", color="teal")
20
   plt.ylabel('Value of Sin/Cos')
   plt.xlabel('Number')
23
   plt.legend()
24 plt.show()
```


Figure 2: Scatter plot

Important Notes

Submission

- Solutions have to be checked into the github repository. Use the directory name groupname/assignment1/ in your group's repository.
- The name of the group and the names of all participating students must be listed on each submission.
- Solution format: all solutions as one PDF document. Programming code has to be submitted as Python code to the github repository. Upload all .py files of your program! Use UTF-8 as the file encoding. Other encodings will not be taken into account!
- Check that your code compiles without errors.
- Make sure your code is formatted to be easy to read.
 - Make sure you code has consistent indentation.
 - Make sure you comment and document your code adequately in English.
 - Choose consistent and intuitive names for your identifiers.
- Do not use any accents, spaces or special characters in your filenames.

Acknowledgment

This latex template was created by Lukas Schmelzeisen for the tutorials of "Web Information Retrieval".