AP Calculus BC

Worksheet: Polar Coordinates

1. The area inside the polar curve $r = 3 + 2\cos\theta$ is

- (A) 9.425
- (B) 18.850
- (C) 28.274
- (D) 34.558
- (E) 69.115
- 2. The area enclosed inside the polar curve $r^2 = 10 \cos(2\theta)$ is
- (A) 10
- (B) 5π
- (C) 20
- (D) 10π
- (E) 25π

- 3. The area enclosed by the polar curve r cos $\frac{1}{2}\theta = 1$ in the interval $0 \le \theta \le \frac{\pi}{2}$ is
- (A) $\frac{1}{2}$
- (B) $\frac{\sqrt{2}}{2}$
- (C) $\frac{\pi}{4}$
- (D) 1
- (E) 2
- 4. What is the area enclosed by the lemniscate $r^2 = -25 \cos 2\theta$?
- (A) $\frac{25}{8}$
- (B) $\frac{25}{4}$
- (C) $\frac{25}{2}$
- (D) 25
- (E) 50

5. The area of the region inside the polar curve $r = 4 \sin \theta$ and outside the polar curve r = 2 is given by

(A)
$$\frac{1}{2} \int_0^{\pi} (4 \sin \theta - 2)^2 d\theta$$

(B)
$$\frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} (4\sin\theta - 2)^2 d\theta$$

(C)
$$\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (4\sin\theta - 2)^2 d\theta$$

(D)
$$\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (16 \sin^2 \theta - 4) d\theta$$

(E)
$$\frac{1}{2} \int_0^{\pi} (16 \sin^2 \theta - 4) d\theta$$

6. Which of the following is equal to the area of the region inside the polar curve $r = 2 \cos \theta$ and outside the polar curve $r = \cos \theta$?

(A)
$$3\int_0^{\frac{\pi}{2}}\cos^2\theta \,d\theta$$

(B)
$$3\int_0^{\pi} \cos^2\theta \, d\theta$$

(C)
$$\frac{3}{2} \int_0^{\frac{\pi}{2}} \cos^2 \theta \, d\theta$$

(D)
$$3\int_0^{\frac{\pi}{2}}\cos\theta \,d\theta$$

(E)
$$3\int_0^{\pi}\cos\theta\,d\theta$$

7. The graphs of the polar curves r=2 and $r=3+2\cos\theta$ are shown in the figure below. The curves intersect when $\theta=\frac{2\pi}{3}$ and $\theta=\frac{4\pi}{3}$.

- (a) Let R be the region that is inside the graph of r = 2 and also inside the graph of $r = 3 + 2 \cos \theta$, as indicated above. Find the area of R.
- (b) A particle moving with nonzero velocity along the polar curve given by $r=3+2\cos\theta$ has position (x(t), y(t)) at time t, with $\theta=0$ when t=0. This particle moves along the curve so that $\frac{dr}{dt}=\frac{dr}{d\theta}$. Find the value of $\frac{dr}{dt}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
- (c) For the particle described in part (b), $\frac{dy}{dt} = \frac{dy}{d\theta}$. Find the value of $\frac{dy}{dt}$ at $\theta = \frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.

- 8. Consider the polar curve $r = 2 \sin(3\theta)$ for $0 \le \theta \pi$.
- (a) In the xy-plane provided below, sketch the curve.

(b) Find the area of the region inside the curve.

(c) Find the slope of the curve at the point where $\theta = \frac{\pi}{4}$.

Polar Curves Worksheet: Solutions (prepared by D. Shubleka)
problem! (Multiple Choice)
r= 3+2650
$\theta = 0 \longrightarrow r = 5$
$A = \Pi \longrightarrow r = -1$
$\sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}$
Using Symmetry Area = 2 \ \frac{1}{2} \rangle
= (T(3+2650) 2d0
- 0 (T1 9+120050+46050 do
$= \int_{0}^{\pi} 9 + 12 \cos \theta + 2 \cos (2\theta) + 2 d\theta$ $= \left(110 + 12 \sin \theta + \sin 2\theta\right) \Big _{0}^{\pi} = 11 \pi \approx 34.55\%$
= (9+12690+268(20)+2
$(10.10 \times 10.21 \times 21.00 \times 10.00)$ = (1.00×34.558)
= (110+12 3010 1 31.20)

Problem 3 (Multiple Choice)
The over enclosed by he polar annex
$r = \frac{1}{\cos\left(\frac{1}{2}\theta\right)}$ in the interval $\left[0, T\right]$
$r(a) = \sec\left(\frac{2}{2}\right)$ T/2
$A = \begin{cases} \frac{v'(\varphi)}{\lambda} d\varphi = \begin{cases} \frac{1}{\lambda} \sec^2(\frac{\varphi}{\lambda}) d\varphi = \end{cases}$
$= \tan\left(\frac{\Phi}{2}\right) \int_{0}^{T/2} = \tan\left(T/4\right) - \tan\left(0\right)$
= 1

Problem 5 Multiple Choice
$V = 4 \sin \theta = 7 \implies \theta = \frac{\pi}{6} + \frac{5\pi}{6}$ $V = 2$
$A = \frac{1}{2} \int (4 \sin \theta)^{2} d\theta$
11/6

Problem 6 Multiple Choice	
Inside r= 2650 2 => Outside r= 650	657 = D
$A = 2 \left(\frac{\pi}{2650} \right) - \frac{650}{2} = \frac{1}{2}$	
$= \int_{0}^{\pi/2} 4\omega s^{2} \theta - \cos^{2}\theta d\theta$ $= \int_{0}^{\pi/2} 4\omega s^{2}\theta - \cos^{2}\theta d\theta$ $= \int_{0}^{\pi/2} 4\omega s^{2}\theta - \cos^{2}\theta d\theta$	
= 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

Problem 7 Free Response.	
(A) 1 R	
$R = \pi r^{2} - 2 \cdot [\text{purple}]$	
$= 4\pi - 2[purple]$	
$2[p \text{ wrple}] = \left[\frac{1}{2} \int_{2^{2}}^{2^{2}} - [3 + 2\cos\theta]^{2} d\theta\right] $	T
= (-5-12650-4650 do = (-50-125100)-	T 26520+2 do
$\frac{2\pi}{3} = -50 - 12 \sin \theta - \sin 2\theta - 2\theta / 3$	
= -+T + 11/3	
$R = 4\pi - \left[-\frac{7\pi}{3} + \frac{11\sqrt{3}}{2} \right]$	
$= 9\pi - 11\sqrt{3} $ $= 3 - 2 $	
·	

Problem 7 Port b)
dr dr
$r = 3 + 2650$ $\frac{dr}{dt} = \frac{dr}{d\theta}$
dr = -2 sino = dr Q I we have
do dt 3
10 26 26 20
$\frac{dr}{dt} = \frac{dr}{d\theta} = -2\frac{\sqrt{3}}{2} = -\sqrt{3} < 0$
olt p=1 do p=1
The state is beading towards the
The parrice is nearly to
The particle is heading towards the pole when $\Theta = \frac{\pi}{3}$ (Noke $r(\frac{\pi}{3}) > 0$)
3 (11)

Problem + Part c $y = r \sin \theta = (3 + 2\cos \theta) \sin \theta$ $= 3 \sin \theta + 2 \sin \theta \cos \theta = 3 \sin \theta + 3 \sin 2\theta$ $dy = dy = 3 \cos \theta + (\cos 2\theta) \cdot 2 = 0$ $dt = \frac{1}{3}$ $= 3 \frac{1}{2} + 2 \cos \left(\frac{2\pi}{3}\right) = \frac{3}{2} - 1 = \frac{1}{2}$ The part des y-wordinate is in creasing.
It is going up when $\theta = \pi$

Problem 8

(a) In the xy-plane provided below, sketch the curve.

$$V = 0$$

b)
$$A = 3 \frac{1}{2} \left(\frac{T}{3} \sin 3\theta \right)^2 d\theta =$$

$$= \frac{\pi/3}{(517/39)} d6$$

$$= \sqrt[7]{3} \left[\frac{1 - (0.560)}{2} d\theta = \frac{1}{2} (60 - 5 \ln 60) \right]$$

$$0 = \frac{1}{2} \left(2\pi \right) = \mathbb{F} \quad \text{Each petal has}$$

$$\frac{dy}{d\theta} = \frac{d}{d\theta} \left(2 \sin 3\theta + \sin \theta \right) = \frac{6 \cos 3\theta \sin \theta + 2 \sin 3\theta \cos \theta}{1 \cos \theta} \Big|_{T/y}$$

$$= 6 \left(\frac{1}{2} \right) \frac{1}{2} + 2 \frac{1}{2} \frac{1}{2} = -0$$

$$\frac{dx}{d\theta} = \frac{d}{d\theta} \left(2 \sin 3\theta \cos \theta \right) = 6 \cos 3\theta \cos \theta + 2 \sin 3\theta (-\sin \theta) \Big|_{\Pi}$$

$$= 6 \left(-\frac{1}{2} \right) \left(\frac{1}{2} \right) + 2 \sqrt{2} \left(-\frac{1}{2} \right)$$

$$= -3 - 1 = -4$$

$$\frac{dy}{dt} = \frac{dy/d\theta}{dt} = \frac{-2}{1} = \frac{1}{2} = \frac{1}{2$$