

WHERE ARE WE?

LIFE AFTER DENNARD SCALING

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

GPU-ACCELERATED PERFORMANCE

TESLA PLATFORM ADVANTAGE

Delivered value grows over time

GPU-ACCELERATED EFFICIENCY

13/13 Greenest SupercomputersPowered by Tesla P100

TSUBAME 3.0
Kukai
AIST AI Cloud
RAIDEN GPU subsystem
Piz Daint
Wilkes-2
GOSAT-2 (RCF2)
DGX Saturn V
Reedbush-H
JADE
Facebook Cluster
Cedar
DAVIDE

HOW ARE WE DOING THIS?

And, is our differentiation sustainable?

- What are the most important dimensions of our differentiation?
- Why are GPUs so much more efficient than CPUs?
- How can we continue scaling performance/efficiency as Moore's Law fades?
- Why can't competitors replicate GPU efficiency, performance, scaling, etc., with lots of weak CPU cores? (e.g., Intel KNC/KNL/KNM)
- How is optimizing GPUs for AI affecting their suitability for HPC?

ENERGY EFFICIENCY

COMPUTATION VERSUS COMMUNICATIONS

CPU 126 pJ/flop (SP)

Optimized for Latency
Deep Cache Hierarchy

Broadwell E5 v4 14 nm

GPU 28 pJ/flop (SP)

Optimized for Throughput
Explicit Management
of On-chip Memory

Pascal 16 nm

HOW IS POWER SPENT IN A CPU?

In Order, Embedded

Out of Order, High Performance

SIMPLER CORES = ENERGY EFFICIENCY

THROUGHPUT PROCESSORS

RISE OF LEAKAGE

FREQUENCY VS. LEAKAGE

OPTIMIZED FOR DATACENTER EFFICIENCY

40% More Performance in a Rack

SP ENERGY EFFICIENCY @ 28 NM

HETEROGENEOUS COMPUTING

OPTIMIZING SERIAL/PARALLEL EXECUTION

Application Code

TWO TYPES OF ACCELERATORS

Many-Weak-Cores (MWC) Model
Single CPU Core for Both Serial & Parallel Work

Xeon Phi (And Others)
Many Weak Serial Cores

Heterogeneous Computing Model Complementary Processors Work Together

EXTENSIBILITY

NVLINK: A MEMORY FABRIC, NOT A NETWORK

DGX-1: 8 NVLink-Connected GPUs

LATENCY HIDING FOR LOAD/STORE/ATOMICS

Where are the NICs? There are no NICs.

STRONG SCALING

STRONG SCALING

STRONG SCALING

NEW TENSOR CORE

New CUDA TensorOp instructions and data formats

4×4 matrix processing array

 $D_{FP32} = A_{FP16} \times B_{FP16} + C_{FP32}$

Optimized for deep learning

TESLA PLATFORM

TESLA IS A PLATFORM

World's Leading Data Center Platform for Accelerating HPC and AI

MULTIPLE GROWTH MARKETS

GROWTH MARKETS

HPC

Al Training

Al Inference

Desktop Virtualization

Video Transcoding

TESLA PLATFORM

CONCLUSION

PASCAL TO VOLTA

Architecture with Technology

- Area: $\sim 600 \text{ mm}^2 \rightarrow \sim 800 \text{ mm}^2 (\sim 33\% \text{ more area})$
- Process: ~ small Pascal → Volta improvement (a few percent)
- Clocks: similar dynamic range, power limited
- Memory BW (sustained): 50% improvement
- Communications (NVLink): 160 GB/s → 300 GB/s (almost double!)
- AI (Tensor Cores): ~20 TFLOPS → 120 TFLOPS (~6x!)

REVOLUTIONARY PERFORMANCE FOR HPC AND AI

Single Platform For Data Science and Computation Science

GPU PERFORMANCE COMPARISON

	P100	V100	Ratio
Training acceleration	10 TOPS	120 TOPS	12x
Inference acceleration	21 TFLOPS	120 TOPS	6x
FP64/FP32	5/10 TFLOPS	7.5/15 TFLOPS	1.5x
HBM2 Bandwidth	720 GB/s	900 GB/s	1.2x
NVLink Bandwidth	160 GB/s	300 GB/s	1.9x
L2 Cache	4 MB	6 MB	1.5x
L1 Caches	1.3 MB	10 MB	7.7x

GPU TRAJECTORY

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

NVIDIA.