

CLAIMS

What is claimed is:

- sub A1*
1. A method including:
 3. maintaining a state machine to provide a multi-bit output, each bit of the multi-bit output indicating a respective status of an associated thread of multiple threads being executed with a multithreaded processor;
 8. detecting a change of status for a first thread within the multithreaded processor; and
 11. configuring a functional unit within the multithreaded processor in accordance with the multi-bit output of the state machine.
 1. 2. The method of claim 1 wherein each bit of the multi-bit output indicates the status of the associated thread as being active or inactive.
 1. 3. The method of claim 2 wherein the configuring of the functional unit comprises partitioning the functional unit to service both the first thread and a second thread within the multithreaded processor when the change of status for the first thread comprises a transition from an inactive state to an

pub A1

5 active state.

1 4. The method of claim 2 wherein the configuring of the functional unit
2 comprises un-partitioning the functional unit to service a second thread, but
3 not the first thread, within the multithreaded processor when the change of
4 the status of the first thread comprises a transition from an active state to an
5 inactive state.

1 5. The method of claim 1 wherein the detecting of the change in the
2 status of the first thread comprises detecting the occurrence of an event for
3 the first thread.

1 6. The method of claim 5 including asserting a first signal responsive to
2 the occurrence of the event for the first thread, and evaluating the state
3 machine during the assertion of the first signal.

1 7. The method of claim 6 wherein the functional unit within the
2 multithreaded processor is configured, in accordance with the multi-bit
3 output of the state machine, on the de-assertion of the first signal.

1 8. The method of claim 1 wherein the detecting of the change in the
2 status of the first thread comprises detecting the occurrence of a sleep event
3 for the first thread that transitions the first thread from an active state to a

sub A1

4 sleep state.

1 9. The method of claim 8 including, responsive to the detection of the
2 occurrence of the sleep event, setting an inhibit register to inhibit an event
3 that is not a break event for the sleep state of the first thread.

1 10. The method of claim 1 wherein the configuring of the functional unit
2 within the multithreaded processor comprises saving and deallocating state
3 within the multithreaded processor for the first thread.

1 11. The method of claim 10 wherein the saving and deallocating of the
2 state within the multithreaded processor for the first thread comprises
3 recording the state for the first thread within a memory resource.

1 12. The method of claim 1 wherein the configuring of the functional unit
2 within the multithreaded processor comprises making registers, within a
3 register file of the multithreaded processor, available to a second thread
4 within the multithreaded processor.

1 13. The method of claim 1 wherein the functional unit comprises any one
2 of the group of functional units including a memory order buffer, a store
3 buffer, a translation lookaside buffer, a reorder buffer, a register alias table,
4 and a free list manager.

Sub A1

1 14. The method of claim 1 wherein the configuring of the functional unit
2 includes inserting a fence instruction into an instruction stream for the first
3 thread at a location proximate a front-end of the multithreaded processor,
4 the fence instruction defining an event boundary within the instruction
5 stream that assumes all memory accesses have drained from the processor..

1 15. The method of claim 1 wherein the configuring of the functional unit
2 includes restoring state within the multithreaded processor.

1 16. The method of claim 1 wherein the detecting of the change in the
2 status of the first thread comprises detecting the occurrence of a break event
3 for the first thread that transitions the first thread from a sleep state to an
4 active state.

1 17. The method of claim 16 including detecting a third event for the first
2 thread that does not constitute a break event, and logging the third event
3 within a pending register associated with the first thread.

1 18. Apparatus comprising:

2
3 a state machine to provide a multi-bit output, each bit of the multi-
4 output indicating a respective status of an associated thread of

sub A1

5 multiple threads being executed within a multithreaded processor,
6 and to detect a change of status for a first thread within the
7 multithreaded processor; and

8

9 configuration logic to configure a functional unit within the
10 multithreaded processor in accordance with the multi-bit output of
11 the state machine.

1 19. The apparatus of claim 18 wherein each bit of the multi-bit output
2 indicates the status of the associated thread as being active or inactive.

1 20. The apparatus of claim 19 wherein the configuration logic partitions
2 the functional unit to service both the first thread and a second thread within
3 the multithreaded processor when the change of status for the first thread
4 comprises a transition from an inactive state to an active state and the second
5 thread is in an active state.

1 21. The apparatus of claim 19 wherein the configuration logic un-
2 partitions the functional unit to service a second thread, but not the first
3 thread, within the multithreaded processor when the change of the status of
4 the first thread comprises a transition from an active state to an inactive state
5 and the second thread is in an active state.

Draft A

- 1 22. The apparatus of claim 18 wherein the state machine detects the
2 change in the status of the first thread by detecting the occurrence of an
3 event for the first thread.
- 1 23. The apparatus of claim 22 including an event detector that asserts a
2 clearing signal responsive to the occurrence of the event for the first thread,
3 and wherein the state machine is evaluated during the assertion of the first
4 signal.
- 1 24. The apparatus of claim 23 wherein the configuration logic configures
2 the functional unit within the multithreaded processor in accordance with
3 the multi-bit output of the state machine on the de-assertion of the clearing
4 signal.
- 1 25. The apparatus of claim 18 wherein the state machine, to detect the
2 change in the status of the first thread, detects the occurrence of a sleep event
3 for the first thread that transitions the first thread from an active state to a
4 sleep state.
- 1 26. The apparatus of claim 25 including a microcode sequencer that,
2 responsive to the detection of the occurrence of the sleep event, issues a
3 microinstruction to set an inhibit register to inhibit an event that is not a
4 break event for the sleep state of the first thread.

pub A

- 1 27. The apparatus of claim 18 wherein the configuration logic saves,
2 deallocated and restores state within an associated functional unit for the
3 first thread.
- 1 28. The apparatus of claim 27 wherein the configuration logic associated
2 with the functional unit records state information for the first thread within
3 a memory resource to save and deallocate state, and restores state
4 information for the first thread to functional unit from the memory resource
5 to restore state.
- 1 29. The apparatus of claim 27 wherein the configuration logic associated
2 with the functional unit makes registers, within a register file of the
3 multithreaded processor, allocated to the first thread available to a second
4 thread within the multithreaded processor if the first thread exits and makes
5 registers, within the register file of the multithreaded processor, allocated to
6 the second thread available to the first thread within the multithreaded
7 processor if the second thread exits.
- 1 30. The apparatus of claim 18 wherein the functional unit comprises any
2 one of the group of functional units including a memory order buffer, a store
3 buffer, a translation lookaside buffer, a reorder buffer, a register alias table,
4 and a free list manager.

- dubt*
- 1 31. The apparatus of claim 18 including a microcode sequencer that
2 introduces a fence instruction into an instruction stream for the first thread
3 at a location proximate a front-end of the multithreaded processor, the fence
4 instruction defining an event boundary within the instruction stream to
5 ensure that all memory accesses drain from the processor..
- 1 32. The apparatus of claim 18 wherein the configuring of the functional
2 unit includes restoring state within the multithreaded processor.
- 1 33. The apparatus of claim 23 wherein the event detector detects the
2 change in the status of the first thread by detecting the occurrence of a break
3 event for the first thread that transitions the first thread from a sleep state to
4 an active state.
- 1 34. The apparatus of claim 23 wherein the event detector detects a third
2 event for the first thread that does not constitute a break event, and
3 logs the third event within a pending register associated with the first
4 thread.
- 1 35. Apparatus comprising:
2
3 first means for providing a multi-bit output, each bit of the multi-

Dub A1

4 output indicating a respective status of an associated thread of
5 multiple threads being executed within a multithreaded processor,
6 and to detect a change of status for a first thread within the
7 multithreaded processor; and

8

9 second means for configuring a functional unit within the
10 multithreaded processor in accordance with the multi-bit output of
11 the state machine.

1 36. A machine-readable medium including a sequence of instructions
2 that, when executed by a machine, cause the machine to:

3

4 maintain a state machine to provide a multi-bit output, each bit of the
5 multi-bit output indicating a respective status of an associated thread
6 of multiple threads being executed with a multithreaded processor;

7

8 detect a change of status for a first thread within the multithreaded
9 processor; and

10

11 configure a functional unit within the multithreaded processor in
12 accordance with the multi-bit output of the state machine.