UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y TRIGONOMETRIA 522115 Listado 7 (Matrices)

1. Pruebe las siguientes proposiciones:

- a) Si A es una matriz cuadrada, entonces $A+A^t$ es una matriz simétrica y $A-A^t$ es una matriz antisimétrica (M es antisimétrica si $M^t=-M$).
- b) Toda matriz cuadrada es suma de una matriz simétrica y otra antisimétrica.
- c) Las matrices AA^t y A^tA son simétricas.
- d) Si A y B son matrices simétricas, entonces no necesariamente AB es una matriz simétrica.

2. Considere las matrices:

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}; \qquad B = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}; \qquad C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \qquad D = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

- a) Calcule AB, BA, (BD C) y $(AC^2 I)$.
- b) Resuelva las ecuaciones matriciales:

i)
$$-2X + C = D$$
, ii) $(A - \frac{2}{3}X)^t = 2D$, iii) $2C + XA = B^2$.

3. Dado
$$\theta \in \mathbb{R}$$
, sea $A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$. Pruebe que

a)
$$A^t A = A A^t = I$$

b)
$$A^n = \begin{pmatrix} \cos(n\theta) & -\sin(n\theta) \\ \sin(n\theta) & \cos(n\theta) \end{pmatrix}, \forall n \in \mathbb{N}.$$

- 4. Sea $A \in M_{m \times n}(\mathbb{R})$ tal que $A^t A$ es invertible, y sea $B = I A(A^t A)^{-1} A^t$.
 - a) Pruebe que $B^2 = B$.
 - b) Muestre que $BA = \theta$.
 - c) Pruebe que B es una matriz simétrica.

5. En cada caso calcule det(A) y $det(A^{-1})$.

a)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & 0 \\ 3 & -1 & -2 \end{pmatrix}$$
, b) $A = \begin{pmatrix} 2 & -1 & 1 \\ 4 & 1 & -3 \\ 2 & -1 & 3 \end{pmatrix}$, c) $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ -2 & 0 & -1 & 0 \end{pmatrix}$.

1

6. Para las siguientes matrices A y B, pruebe que det(A) = det(B).

a)
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 b) $A = \begin{pmatrix} a+2b & b \\ c+2d & d \end{pmatrix}$ c) $A = \begin{pmatrix} 3 & 6 & 2 \\ 1 & 1 & 5 \\ 4 & 3 & 8 \end{pmatrix}$

$$B = \begin{pmatrix} -a & -g & -d \\ b & h & e \\ c & i & f \end{pmatrix}$$
 $B = \begin{pmatrix} a & b-7a \\ c & d-7c \end{pmatrix}$ $B = \begin{pmatrix} 3 & 6 & 20 \\ 1 & 1 & 8 \\ 4 & 3 & 17 \end{pmatrix}$

- 7. Sea $A \in M_n(\mathbb{R})$ tal que det(A) = 2. Calcule:
 - a) $det(A^5)$, b) det(-A), c) $det(2A^{-1})$, d) $det(AA^t)$.
- 8. Sean $A, B \in M_n(\mathbb{R})$.
 - a) Si $A^{-1} = \frac{1}{25}A^t$, calcule det(A).
 - b) Si det(A) = 2 y $det(B) = \sqrt{2}$, calcule $det(2A \cdot 3B)$.
 - c) Si $A^{-1} = 2A^t$, calcule det(A).
- 9. Calcule, si es que existen, valores de $k \in \mathbb{R}$ para que las matrices tengan determinante distinto de cero.

a)
$$A = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}$$
, b) $B = \begin{pmatrix} 2 & -2 & 6 \\ 0 & k & 1 \\ 0 & 0 & -k \end{pmatrix}$, c) $A = \begin{pmatrix} 3 & 4 & -k \\ 2 & 6 & -2k \\ 1 & 3 & 1+k \end{pmatrix}$.

JAL

Primer Semestre de 2005.