	_
	-
EE 5301 – VLSI Design Automation I	-
Part IV: Floorplanning	
Kia Bazargan	
_	
University of Minnesota	
Fall 2003 EE 5301 - VLSI Design Automation I 118	
References and Copyright	
 Textbooks referred (<u>none required</u>) [Mic94] G. De Micheli "Synthesis and Optimization of Digital Circuits" 	
McGraw-Hill, 1994. • [CLR90] T. H. Cormen, C. E. Leiserson, R. L. Rivest	
"Introduction to Algorithms" MIT Press, 1990.	
 [Sar96] M. Sarrafzadeh, C. K. Wong "An Introduction to VLSI Physical Design" McGraw-Hill, 1996. 	
 [She99] N. Sherwani "Algorithms For VLSI Physical Design Automation" Kluwer Academic Publishers, 3rd edition, 1999. 	
Fall 2003 EE 5301 - VLSI Design Automation I 119	
References and Copyright (cont.)	
Slides used: (Modified by Kia when necessary)	
 [©Sarrafzadeh] © Majid Sarrafzadeh, 2001; Department of Computer Science, UCLA 	
[©Sherwani] © Naveed A. Sherwani, 1992 (companion slides to [She99])	
[©Keutzer] © Kurt Keutzer, Dept. of EECS,	
http://www-cad.eecs.berkeley.edu/~niraj/ee244/index.htm [©Gupta] © Rajesh Gupta UC-Irvine	
http://www.ics.uci.edu/~rgupta/ics280.html • [©Kang] © Steve Kang	
UIUC http://www.ere.uiuc.edu/ece482/	

Floorplanning Problem Given circuit modules (or cells) and their connections, determine the approximate location of circuit elements Consistent with a hierarchical / building block design methodology Modules (result of partitioning): Fixed area, generally rectangular Fixed-shaped blocks) Fixed / floating terminals (pins) Rotation might be allowed / denied Flexible shape → soft macro (aka soft modules) Fall 2003 Fall 2003 Fall 2003 Fixed - Shaped - Soft macro (aka soft modules)

Floorplanning (cont.) • Objectives: • Minimize area • Determine best shape of soft modules • Minimize total wire length • to make subsequent routing phase easy (short wire length roughly translates into routability) • Additional cost components: • Wire congestion (exact routability measure) • Wire delays • Power consumption • Possible additional constraints: • Fixed location for some modules • Fixed die, or range of die aspect ratio • NP-hard (what did you expect? ☺)

EE 5301 - VLSI Design Automation I

Floorplanning: Why Important? • Early stage of physical design • Determines the location of large blocks → detailed placement easier (divide and conquer!) • Estimates of area, delay, power → important design decisions • Impact on subsequent design steps (e.g., routing, heat dissipation analysis and optimization) Figs: (©Sherwani)

Floorplanning Algorithms Components ■ "Placeholder" representation o Usually in the form of a tree o Slicing class: Polish expression [Otten] o Non-slicing class: O-tree, Sequence Pair, BSG, etc. ${\color{red} {\rm o}}$ Just defines the ${\it relative \ position}$ of modules Perturbation o Going from one floorplan to another o Usually done using Simulated Annealing Floorplan sizing Definition: Given a floorplan tree, choose the best shape for each module to minimize area o Slicing: polynomial, bottom-up algorithm o Non-slicing: NP! Use mathematical programming (exact solution) Cost function o Area, wire-length, ... EE 5301 - VLSI Design Automation I

Area Utilization, Hard and Soft Modules • The hierarchy tree and floorplan define "place holders" for modules • Area utilization • Depends on how nicely the rigid modules' shapes are matched • Soft modules can take different shapes to "fill in" empty slots → floorplan sizing 1 2 3 ms Area = 20x22 = 440 Area = 20x19 = 380

Slicing Floorplan Sizing

- Input: floorplan tree, modules shapes
- · Start with sorted shapes lists of modules
- In a bottom-up fashion, perform:
 - Vertical_Node_Sizing AND

Horizontal_Node_Sizing

- When get to the root node, we have a list of shapes. Select the one that is best in terms of area
- In a top-down fashion, traverse the floorplan tree and set module locations

Fall 2003

EE 5301 - VLSI Design Automation I

Normalized Polish Expression Problem with Polish expressions? Multiple representations for some slicing trees When more than one cut in one direction cut a floorplan Larger solution space A stochastic algorithm (e.g., Simulated Annealing) will be more biased towards floorplans with multiple representations (More likely to be visited) Table 2003 BE 5301-VLSI Design Automation I Pall 2003 Resident Polish Expression (Sarrafzadeh) (Sarrafzadeh) 136

Simulated Annealing Idea originated from observations of crystal formations (e.g., in lava) A crystal is in a low energy state Materials tend to form crystals (global minimum) If at the right temperature (i.e., right speed), a molecule will adhere to a crystal formation Very slowly decrease temperature When very hot, molecules move freely When a molecule gets to a chunk of crystal, it *might* move away due to its high speed When colder, molecules slow down The probability of moving away from a local optimum decreases When the material "freezes", all molecules are fixed and the material is in minimum energy state

EE 5301 - VLSI Design Autor

Components: Solution space (e.g., slicing floorplans) Cost function (e.g., the area of a floorplan) Determines how "good" a particular solution is Perturbation rules (e.g., transforming a floorplan to a new one) Simulated annealing engine A variable T, analogous to temperature An initial temperature T₀ (e.g., T₀ = 40,000) A freezing temperature T_{freez} (e.g., T_{freez}=0.1) A cooling schedule (e.g., T = 0.95 * T)

EE 5301 - VLSI Design Automation I

Simulated Annealing Algorithm Procedure SimulatedAnnealing curSolution = random initial solution $T = T_0 // initial temperature$ Cursons... T = T₀ // IIIICE while (T > T_{free2}) do for i=1 to NUM_MOVES_PER_TEMP_STEP do nextSol = perturb (curSolution) - cost(nextSol) - cost(curSolution Δ cost = cost(nextSol) - cost(curSolution) if acceptMove (Δ cost, T) then // accept the move curSolution = nextSol T = coolDown (T)Procedure acceptMove (∆cost, T) if $\Delta cost < 0$ then return TRUE // always accept a good move $boltz = e^{-\Delta cost \; / \; k \; T}$ // Boltzmann probability function r = random(0,1) if r < boltz then return TRUE // uniform rand # between 0&1 else return FALSE EE 5301 - VLSI Design Automation I

Simulated Annealing: Move Acceptance Good moves are always accepted Accepting bad moves: When T = T₀, bad move acceptance probability ≈ 1 When T = T_{freez}, Bad move acceptance probability = 0 Boltzmann probability function?!? boltz = e^{-Δcost} / k T. k is the Boltzmann constant, chosen so that all moves at the initial temperature are accepted

Wong-Liu Floorplanning Algorithm Uses simulated annealing Normalized Polish expressions represent floorplans Cost function: cost = area + λ totalWireLength Floorplan sizing is used to determine area After floorplan sizing, the exact location of each module is known, hence wire-length can be calculated Perturbation?....

Other Floorplanning Methods

- Rectangular dual graph
- Linear programming (floorplan sizing)
- Non-slicing methods
 - Sequence-pair
 - Bounded slice line grid
 - O-tree

Fall 2003

Corner block list

 Fall 2003
 EE 5301 - VLSI Design Automation I
 146

To Probe Further... • Andrew B. Kahng, "Classical Floorplanning Harmful?", Int'l Symposium on Physical Design (ISPD), pp. 207-213, 2000. (survey + future directions) • F. Y. Young and D. F. Wong, "Slicing Floorplans With Range Constraint", Int'l Symposium on Physical Design (ISPD), pp. 97-102, 1999. (extension of Wong-Liu, some modules restrained to some regions) • K. Bazargan, S. Kim and M. Sarrafzadeh, "Nostradamus: A Floorplanner of Uncertain Designs", Int'l Symposium on Physical Design (ISPD), pp. 18-23, 1998. (extension of Wong-Liu, notion of flexibility of a floorplan)

EE 5301 - VLSI Design Automation I

To Probe Further... H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani, "Rectangle-Packing-Based Module Placement", Conference on Computer Aided Design (ICCAD), pp. 472-479, 1995. ("Sequence Pair" non-slicing floorplan representation) X. Hong, G. Huang, Y. Cai, et. al., "Corner Block List: an Effective and Efficient Topological Representation of Non-slicing Floorplan", Int'l Conference on Computer Aided Design (ICCAD), pp. 8-12, 2000. (non-slicing floorplan representation) Yingxin Pang, Chung-Kuan Cheng, Koen Lampaert, Weize Xie, "Rectilinear block packing using O-tree representation", Int'l Symposium on Physical Design (ISPD), pp. 156-161, 2001. (extension of the non-slicing floorplan representation "O-tree" to handle L-shaped modules)