Constrained Optimization in RL

- · Constrained Optimization in RL
- Basic knowledge
 - Descent direction
 - Stepsize
 - Project Subgradient
 - Proximal Algorithms
 - Extra-gradient
 - Natural Gradient
 - Conjugate gradient
 - Bregman Divergence and Mirror Descent
- Constrained MDP
 - Trust-region-based
 - CPO: Constrained Policy Optimization (ICML 2017)
 - PCPO: Projection-Based Constrained Policy Optimization (ICLR 2020)
 - FOCOPS: First Order Constrained Optimization in Policy Space (NIPS 2020)
 - Lyapunov Optimization in Stochastic Networks
 - SDQN: A Lyapunov-based Approach to Safe Reinforcement Learning (NIPS 2018)
 - SPG: Lyapunov-based Safe Policy Optimization for Continuous Control (ICML 2019)
 - LBPO: Lyapunov Barrier Policy Optimization (2021)
 - Primal-Dual Optimization
 - CRPO: A New Approach for Safe Reinforcement Learning with Convergence Guarantee
 - PDO: Risk-Constrained Reinforcement Learning with Percentile Risk Criteria
 - RCPO: Reward Constrained Policy Optimization
 - OPDOP: Provably Efficient Safe Exploration via Primal-Dual Policy Optimization
 - CPPO: Responsive Safety in Reinforcement Learning by PID Lagrangian Methods
 - Convergent Policy Optimization for Safe Reinforcement Learning (NIPS 2019)
 - Safe layer
 - Safe Exploration in Continuous Action Spaces
 - Evolutionary approach
 - Constrained Cross-Entropy Method for Safe Reinforcement Learning (NIPS 2018)

Basic knowledge

Descent direction

- 1. Lemma 1: Given $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$, among all directions from x, the direction $d = -\nabla f(x)$ gives the maximum rate of decrease in terms of the value of f.
- 2. Lemma 2: Given $x\in\mathbb{R}^n$ and $f:\mathbb{R}^n\to\mathbb{R}$, any direction $d\in\mathbb{R}^n$ satisfying $\langle d,\nabla f(x)\rangle<0$ is a descent direction.
- 3. Lemma 3: Given $x\in\mathbb{R}^n, f:\mathbb{R}^n\to\mathbb{R}, S\in\mathbb{S}^n_{++}$, the direction $-S\nabla f(x)\in\mathbb{R}^n$ is a descent direction at x.

- 4. Different local approximation:
 - 1. $f(x)pprox f\left(x_{k}
 ight)+
 abla f\left(x_{k}
 ight)^{ op}\left(x-x_{k}
 ight)+rac{1}{2lpha_{k}}\left(x-x_{k}
 ight)^{ op}S^{-1}\left(x-x_{k}
 ight)$
 - 2. $x_{k+1} = x_k lpha_k \cdot S_k
 abla f\left(x_k
 ight)$, Where $S_k \in \mathbb{S}^n_{++}$
 - 1. Gradient descent: $S_k = I_n$
 - 2. Newton direction: $S_k = [
 abla^2 f(x_k)]^{-1}$
 - 3. Scaled Newton direction: $S_k = \operatorname{diag}([\nabla^2 f(x_k)]^{-1})$
 - 4. Quasi-Newton direction: approximation of $[
 abla^2 f(x_k)]^{-1}$
 - 5. Regularized Newton direction: $S_{k}=\left[
 abla^{2}f\left(x_{k}
 ight) +\mu_{k}I
 ight] ^{-1}$

Stepsize

- 1. Assumption 1: L-Lipschitz continuos gradient: $\|
 abla f(x)
 abla f(y) \|_2 \leq L \|x y\|_2$
- 2. Lemma 4: if f has L-Lipschitz continuos gradient and convex, then (s and n) $f(y) \leq f(x) + \nabla f(x)^{\top}(y-x) + \frac{L}{2}\|y-x\|_2^2$.
- 3. $lpha=rac{1}{L}$, then $f\left(x_{k}
 ight)-f^{\star}\leqrac{\|x_{0}-x^{\star}\|_{2}^{2}}{2lpha k}$

Project Subgradient

- 1. First-order condition for convex function: $f(y) \geq f(x) + \nabla f(x)^{ op} (y-x)$
- 2. Subgradient: $f(x) \geq f\left(x_{0}\right) + y^{\top}\left(x x_{0}\right)$
 - 1. $y \in \mathbb{R}^n$ is called a subgradient
 - 2. The set $\partial f\left(x_{0}\right)$ of all subgradients is the subdifferential of f at x_{0}
 - 3. Supporting hyperplane
 - 1. Definition 3 (Supporting hyperplane). Consider a nonempty set $C\subseteq\mathbb{R}^n$ and a boundary point $x_0\in bd(C)$. If $a\neq 0$ in \mathbb{R}^n satisfies $a^\top x\leq a^\top x_0, \forall x\in C$, then $\left\{x\mid a^\top x=a^\top x_0\right\}$ is called a supporting hyperplane to C at x_0 .
 - 2. Theorem 1 (Weak Separating Hyperplane Theorem). Consider any convex set $C\subseteq\mathbb{R}^n$ and a point $x_0\in\mathbb{R}^n/C$. Then, there exist $a\neq 0$ (in \mathbb{R}^n) and $b\in\mathbb{R}$ with $a^{\top}x\leq b$ and $a^{\top}x_0\geq b, \forall x\in C$
 - 3. For convex function, $\partial f\left(x_{0}\right)
 eq \emptyset$
- 3. Orthogonal Projection
 - 1. $P_C(x) \equiv rgmin_{y \in C} \lVert y x
 Vert$
 - 2. The projection $y^* \in C$ is unique
 - 3. non-expansive:

1.
$$P_C(x) - P_C(y) \le \|x - y\|$$

- 4. Projection gradient
 - 1. $x_{k+1} = P_C(x_k lpha_k
 abla f(x_k))$
 - 2. equal to optimize the local approximation:
 - 1. $x_{k+1} = rg \min_{x \in C} \{f(x_k) +
 abla_k f(x_k)^T (x x_k) + rac{L}{2} \|x x_k\|^2 \}$

Proximal Algorithms

- 1. Proximal operator: $\operatorname{prox}_f(x) = \operatorname{arg\,min}_{uoldsymbol{c} \in \mathbb{R}^n} \{f(u)) + \frac{1}{2}\|u-x\|^2\}$
 - 1. Consider optimizing the composite function f(x)+g(x)

1. Project gradient:

$$egin{aligned} x_{k+1} &= rg \min_{x \in \mathbb{R}^n} \left\{ f\left(x_k
ight) +
abla f\left(x_k
ight)^ op \left(x - x_k
ight) + g(x) + rac{1}{2lpha_k} \left\|x - x_k
ight\|^2
ight\} \ &= rg \min_{x \in \mathbb{R}^n} \left\{ lpha_k g(x) + rac{1}{2} \left\|x - \left(x_k - lpha_k
abla f\left(x_k
ight)
ight)
ight\|^2
ight\} \ &= \operatorname{prox}_{lpha_k g} \left(x_k - lpha_k
abla f\left(x_k
ight)
ight) \end{aligned}$$

- 2. gradient descent for $f(x_k)$, then project to $f(x_k) + g(x)$
- 2. Proximal gradient descent

1.
$$T_L^{f,g}(x) = ext{prox}_{rac{1}{L}g}\left(x - rac{1}{L}
abla f(x)
ight)$$

3. The Augment Lagrangian Methods

1.
$$H^\star = \min\left\{H(x,z) \equiv h_1(x) + h_2(z) \mid Ax + Bz = c
ight\}$$

2. Lagrangian function:

$$L(x,z,y) = h_1(x) + h_2(z) + y^{\top}(Ax + Bz - c) \ = h_1(x) + y^{\top}Ax + h_2(z) + y^{\top}Bz - y^{\top}c$$

- 3. dual function: $g(y) = \min_{x,z} \ \{h_1(x) + y^ op Ax + h_2(z) + y^ op Bz y^ op c\}$
 - 1. minimize the -g(y) using proximal methods:

1.
$$y_{k+1} = rg \min_y \{ -g(y) + rac{1}{2
ho} \|y - y_k\|^2 \}$$

2. stationary point: $y_{k+1} = y_k + \rho \nabla_y g(y_{k+1})$

1.
$$y_{k+1} = y_k +
ho(A^T x_{k+1} + B^T z_{k+1} - c)$$

2.
$$x_{k+1} = rg\min_x h_1(x) + y_{k+1}^T Ax$$

1. stationary point:
$$0=A^T(y_k+
ho(A^Tx_{k+1}+B^Tz_{k+1}-c))+\partial_x h_1(x_{k+1})$$

3.
$$z_{k+1} = \arg\min_{z} h_2(z) + y_{k+1}^T Bz$$

1. stationary point:
$$0=B^T(y_k+
ho(A^Tx_{k+1}+B^Tz_{k+1}-c))+\partial_z h_2(z_{k+1})$$

3. x_{k+1}, z_{k+1} equal to solve:

1.
$$H(x,z) = h_1(x) + h_2(z) + rac{
ho}{2} \|Ax + Bz - c + rac{1}{
ho} y_k\|^2$$

4. algorithms:

1.
$$x_{k+1}, z_{k+1} = rg \min_{x,z} H(x,z)$$

2.
$$y_{k+1} = y_k + \rho (A^T x_{k+1} + B^T z_{k+1} - c)$$

5. ADMM

1.
$$x_{k+1} = \operatorname{arg\,min}_x H(x, z_k)$$

2.
$$z_{k+1} = rg\min_z H(x_{k+1},z)$$

3.
$$y_{k+1} = y_k + \rho (A^T x_{k+1} + B^T z_{k+1} - c)$$

Extra-gradient

- 1. projection gradient descent:
 - 1. $x_{k+1} = P_C(x_k \alpha_k
 abla_x f(x_k))$
 - 2. optimality condition: $x^* = P_C(x^* lpha_k
 abla_x f(x^*))$
- 2. Extrapolation

1.
$$ar{x}_k = x_k + eta(x_k - x_{k-1})$$

2.
$$x_{k+1} = x_k - \alpha \nabla_x f(\bar{x}_k)$$

3. Project extra-gradient:

1.
$$ar{x}_{k+1} = P_C(x_k - lpha_k
abla_x f(x_k))$$

2.
$$x_{k+1} = P_C(x_k - \alpha_k
abla_x f(ar{x}_{k+1}))$$

Natural Gradient

- 1. When optimizing distribution: $p(x|\theta)$
 - 1. distance between different distribution: $\mathrm{KL}[p|q] = \int p(x) \log rac{p(x)}{q(x)}$
 - 2. local approximation of KL divergence:
 - 1. $KL[p(x|\theta)|p(x|\theta+\delta)]pprox \int p(x|\theta)[\log p(x|\theta)-(\log p(x|\theta)+\delta
 abla \log p(x|\theta)+\frac{1}{2}\delta^2
 abla^2 \log p(x|\theta))]$
 - 2. $KL pprox rac{1}{2} \delta E_p [
 abla^2 \log p(x| heta)] \delta$
 - 3. $H = E_p[
 abla^2 \log p(x| heta)] = E_p[
 abla \log p(x| heta)
 abla \log p(x| heta)^T]$
 - 3. Descent direction in the trust region:
 - 1. $\min_{D_{KL}[p_{ heta}|| heta+\delta heta]\leq\epsilon}L(heta+\delta heta)$
 - 2. Lagrangian: $\min L(\theta + \delta \theta) + \lambda \left(D_{KL} \left[p\left(\theta \| p_{\theta + \delta \theta} \right)
 ight] \epsilon
 ight)$
 - 3. Approximation: $L(\theta) + \nabla L(\theta)^T \delta \theta + \lambda \left(\frac{1}{2} \delta \theta^T H \delta \theta \epsilon \right)$
 - 4. Direction: $\delta heta^* = rac{1}{\lambda} H^{-1}
 abla_{ heta} L(heta)$

Conjugate gradient

- 1. Gradient descent
 - 1. exact step size search
 - 1. residue: $r_k = b Qx_k$
 - 2. stepsize: $lpha_k = rac{r_k^T r_k}{r_k^T Q r_k}$
 - 3. update: $x_{k+1} = x_k + lpha_k + r_k$
 - 2. When ${\cal Q}$ is ill-conditioned, converge slowly.
- 2. Conjugate
 - 1. $x_iQx_j=0$, then x_i,x_j are conjugate vectors of $Q\in S^+$
 - 1. $Q=I o x_ix_j=0$, orthogonal is a special case of conjugate
 - 2. only n independent conjugate vectors for Q
- 3. Gram-Schmidt Orthogonalization
 - 1. use n independent basis vector $\{a_i\}$ to construct orthogonal basis $\{q_i\}$
 - 1. $q_k = a_k + \sum_{j=1}^k b_{kj} q_j$,
 - 2. construct k using basis a_i with $i \leq k$
 - 3. create sequential dependence.
 - 2. weights $b_k = -\sum_{i=1}^{k-1} rac{\langle a_k, q_i
 angle}{\langle q_i, q_i
 angle}$
 - 1. proof by inner product: $\langle q_k,q_i
 angle=\langle a_k,q_i
 angle+\sum_{j=1}^kb_{kj}\langle q_j,q_i
 angle$
 - 2. $\langle q_k, q_i \rangle = \langle a_k, q_i \rangle + b_{ki} \langle q_i, q_i \rangle$
- 4. Solving KKT condition: abla f(x) = Qx b = 0
 - 1. find n conjugate vectors $p_i{}_{i=1}^m$ to combine $x^* = x_0 + \sum_{i=1}^m lpha_i p_i$
 - 2. Given initial point x_0 and direction $p_k =
 abla f(x_0) = b Qx_0$

3. line-search α_k . in linear case, $\alpha_k = \frac{r_k^T r_k}{r_k^T Q r_k}$

4. update descent direction through Gram-Schmidt Orthogonalization

1.
$$r_k =
abla f(x_k) = b - Qx_k$$

5. Next point $x_{k+1} + \alpha_k p_k$

6.
$$x_{k+1}=x_k+lpha p_k o Qx_{k+1}-b=Qx_k-b+lpha p_k$$

1. $abla f(x_{k+1})=
abla f(x_k)+lpha Qp_k$

Bregman Divergence and Mirror Descent

- 1. Bregman Divergence
 - 1. Generalize squared Euclidean distance
 - 2. Definition 1 (Bregman divergence) Let $\psi:\Omega\to\mathbb{R}$ be a function that is: a) strictly convex, b) continuously differentiable, c) defined on a closed convex set Ω . Then the Bregman divergence is defined as

$$\Delta_{\psi}(x,y) = \psi(x) - \psi(y) - \langle
abla \psi(y), x - y
angle, \quad orall x, y \in \Omega$$

That is, the difference between the value of ψ at x and the first order Taylor expansion of ψ around yevaluated at point x.

- 3. examples:
 - 1. Euclidean distance: $\psi(x) = \frac{1}{2}||x||^2$
 - 2. KL divergence: $\psi(x) = \sum_i x_i \log x_i$
 - 3. L_p norm: $\psi(x)=rac{1}{2}\|x\|_q^2$, $rac{1}{p}+rac{1}{q}=1$
 - 4. strong convex case: $\psi(x) \geq \psi(y) + \langle
 abla \psi(y), x-y
 angle + rac{\sigma}{2} \|x-y\|^2$

1.
$$\Delta_{\psi}(x,y) \geq rac{\sigma}{2} \|x-y\|^2$$

- 4. Property:
 - 1. Strict convexity
 - 2. Non-negativity
 - 3. Asymmetry
 - 4. Generalized triangle inequality

5. gradient:
$$\frac{\partial}{\partial x}\Delta_{\psi}(x,y)=\nabla\psi(x)-\nabla\psi(y)$$
5. Projection: $x^*=\mathrm{argmin}\Delta_{\psi}\left(x,x_0\right)$

5. Projection:
$$x^* = \operatorname*{argmin} \Delta_{\psi}\left(x, x_0
ight)$$

- 1. Pythagorean Theorem: $\Delta_{\psi}\left(y,x_{0}
 ight)\geq\Delta_{\psi}\left(y,x^{*}
 ight)+\Delta_{\psi}\left(x^{*},x_{0}
 ight)$
- 2. Proximal operator with Bregman Divergence $x^* = \operatorname{argmin}\left\{L(x) + \Delta_{\psi}\left(x^*, x_0\right)\right\}$
 - 1. If L(x) is convex:

1.
$$L(y) + \Delta_{\psi}\left(y,x_{0}
ight) \geq L\left(x^{*}
ight) + \Delta_{\psi}\left(x^{*},x_{0}
ight) + \Delta_{\psi}\left(y,x^{*}
ight)$$

- Mirror Descent:
 - 1. Local approximation under L-2 distance:

1.
$$f(x)pprox f\left(x_{k}
ight)+
abla f\left(x_{k}
ight)^{ op}\left(x-x_{k}
ight)+rac{1}{2lpha_{k}}\left(x-x_{k}
ight)^{ op}S^{-1}\left(x-x_{k}
ight)$$

- 2. Gradient descent: $-\alpha_k \nabla f(x_k)$
- 2. Approximation with Bregman divergence

1.
$$x_{k+1} = \operatorname*{argmin}_{x \in C} \left\{ f\left(x_k
ight) + \left\langle g_k, x - x_k
ight
angle + rac{1}{lpha_k} \Delta_\psi\left(x, x_k
ight)
ight\}$$

2. unconstrained case:

1.
$$x_{k+1} = (
abla \psi)^{-1} \left(
abla \psi \left(x_k
ight) - lpha_k g_k
ight)$$

Constrained MDP

- 1. Maximize reward: $J^{R}(\pi) \doteq \mathbb{E}_{ au \sim \pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}, a_{t}
 ight)
 ight]$
- 2. Constrained by total cost of constraints violation: $J^{C}(\pi) \doteq \mathbb{E}_{ au \sim \pi}\left[\sum_{t=0}^{\infty} \gamma^{t} C\left(s_{t}, a_{t}\right)\right] \leq h$
- 3. Policy improvement theorem: $J^{R}\left(\pi'\right)-J^{R}(\pi)=rac{1}{1-\gamma}\mathbb{E}_{s\sim d^{\pi'}\atop a\circ \sigma'}\left[A^{\pi}_{R}(s,a)
 ight]$
- 4. Solving framework
 - 1. Linear programming
 - 2. Lagrangian methods
 - 1. primal-dual methods
 - 3. Trust region optimization
 - 1. CPO
 - 4. Lyapunov functions

Trust-region-based

- 1. bound for policy update:
 - 1. for non-parametric moving average policy:

1.
$$\eta\left(\pi_{
m new}
ight) \leq L_{\pi_{
m old}}\left(\pi_{
m new}
ight) + rac{2\epsilon\gamma}{(1-\gamma)^2}lpha^2$$

2.
$$\epsilon = \epsilon = \max_{s} \left| \mathbb{E}_{a \sim \pi'(a|s)} \left[A_{\pi}(s,a) \right] \right|$$

3.
$$\pi_{\text{new}}(a \mid s) = (1 - \alpha)\pi_{\text{old}}(a \mid s) + \alpha\pi'(a \mid s)$$

- 4. consider the change of state visitation probability
- 2. for parametric policy with KL divergence bounded:

1.
$$\eta(\tilde{\pi}) \leq L_{\pi}(\tilde{\pi}) + CD_{\mathrm{KL}}^{\mathrm{max}}(\pi, \tilde{\pi}), \text{ where } C = \frac{2\epsilon\gamma}{(1-\gamma)^2}$$

2.
$$D_{ ext{TV}}^{ ext{max}}(\pi, ilde{\pi}) = \max_s D_{TV}(\pi(\cdot \mid s) \| ilde{\pi}(\cdot \mid s))$$

- 3. ignore the change of state visitation probability
- Approximation

$$egin{aligned} & \mathop{
m maximize}_{ heta} L_{ heta_{
m old}} \left(heta
ight) \ & {
m subject \ to \ } ar{D}_{
m KL}^{
ho_{
m old}} \left(heta_{
m old} \,, heta
ight) \leq \delta \end{aligned}$$

- 1. max KL divergence -> mean KL divergence for sampling
- 2. sample-based average
- 3. importance sampling to reuse samples

$$egin{aligned} & \min_{ heta} & \operatorname{inimize} \mathbb{E}_{s \sim
ho_{ heta_{
m old}}}, a \sim q \left[rac{\pi_{ heta}(a|s)}{q(a|s)} Q_{ heta_{
m old}}\left(s,a
ight)
ight] \ & ext{subject to} & \mathbb{E}_{s \sim
ho_{ heta_{
m old}}}\left[D_{
m KL}\left(\pi_{ heta_{
m old}}\left(\cdot \mid s
ight) \middle\| \pi_{ heta}(\cdot \mid s)
ight)
ight] \leq \delta \end{aligned}$$

4. first-order approximation of objective function

1.
$$\left[\left.
abla_{ heta}L_{ heta_{ ext{old}}}\left(heta
ight)
ight|_{ heta= heta_{ ext{old}}}\cdot\left(heta- heta_{ ext{old}}
ight)
ight]$$

- 5. second-order approximation of constraint
 - 1. KL-divergence
 - 1. Fish-information matrix: H

2.
$$\frac{1}{2}\delta\left\|\theta-\theta_{\mathrm{old}}\right\|^TH\left\|\theta-\theta_{\mathrm{old}}\right\|\leq\delta$$
 3. compute the H^{-1} using conjugate gradient

- 2. L-2 distance

1.
$$\frac{1}{2} \|\theta - \theta_{\text{old}}\|^2 \leq \delta$$

CPO: Constrained Policy Optimization (ICML 2017)

1. Joint optimization

$$egin{aligned} \pi_{k+1} &= rg \max_{\pi \in \Pi_{ heta}} \mathop{\mathrm{E}}_{s \sim d^{\pi}_{k}} \left[A^{\pi_{k}}(s, a)
ight] \ \mathrm{s.t.} \ J_{C_{i}}\left(\pi_{k}
ight) + rac{1}{1-\gamma} \mathop{\mathrm{E}}_{s \sim d\pi_{k}} \left[A^{\pi_{k}}_{C_{i}}(s, a)
ight] \leq d_{i} \quad orall i \ ar{D}_{KL}\left(\pi ig| \pi_{k}
ight) \leq \delta. \end{aligned}$$

- 1. approximation as TRPO
 - 1. first-order approximation of objective function
 - 2. first-order approximation of cost constraint
 - 3. second-order approximation of KL divergence
- 2. backtracking line search is used to ensure surrogate constraint satisfaction

PCPO: Projection-Based Constrained Policy Optimization (ICLR 2020)

- 1. Two-step algorithm
 - 1. performs a local reward improvement update
 - 2. projecting the policy back onto the constraint set
- 2. Step 1: trust region policy optimization

$$egin{aligned} \pi^{k+rac{1}{2}} &= rg\max_{\pi} \mathbb{E}_{s\sim d^{\pi}}\left[A_{R}^{\pi^{k}}(s,a)
ight] \ & ext{s.t. } \mathbb{E}_{s\sim d^{\pi^{k}}}\left[D_{ ext{KL}}\left(\pi \| \pi^{k}
ight)[s]
ight] \leq \delta \end{aligned}$$

- 1. approximation as before
- 3. Step 2: constraint-satisfying projection

$$egin{aligned} \pi^{k+1} &= rg\min_{\pi} D\left(\pi, \pi^{k+rac{1}{2}}
ight) \ & ext{s.t.} \quad J^{C}\left(\pi^{k}
ight) + \mathop{\mathbb{E}}_{s \sim d^{\pi}k}\left[A^{\pi^{k}}_{C}\left(s, a
ight)
ight] \leq h \end{aligned}$$

1. approximation as before

FOCOPS: First Order Constrained Optimization in Policy Space (NIPS 2020)

$$\begin{split} & \underset{\pi_{\theta} \in \Pi_{\theta}}{\operatorname{maximize}} & & \underset{s \sim d^{\pi_{\theta_k}}}{\mathbb{E}} \left[A^{\pi_{\theta_k}}(s, a) \right] \\ & \text{subject to} & & J_C(\pi_{\theta_k}) + \frac{1}{1 - \gamma} \mathop{\mathbb{E}}_{\substack{s \sim d^{\pi_{\theta_k}} \\ a \sim \pi_{\theta}}} \left[A_C^{\pi_{\theta_k}}(s, a) \right] \leq b \\ & & \bar{D}_{\mathrm{KL}}(\pi_{\theta} \parallel \pi_{\theta_k}) \leq \delta. \end{split}$$

- Errors in CPO
 - 1. Sampling error
 - 2. Approximation error
 - 3. conjugate gradient error
- 2. Two-step algorithm (use formulation in CPO)
 - 1. Solve in nonparameterized policy space

$$\pi^*(a|s) = rac{\pi_{ heta_k}(a|s)}{Z_{\lambda,
u}(s)} \exp\left(rac{1}{\lambda}\left(A^{\pi_{ heta_k}}(s,a) -
u A_C^{\pi_{ heta_k}}(s,a)
ight)
ight)$$

- 1. Z: normalization constant
- 2. dual variable λ , ν solved by dual function:

1.
$$\min_{\lambda,
u \geq 0} \lambda \delta +
u ilde{b} + \lambda \mathop{\mathbb{E}}_{s \sim d^\pi heta_k \atop a \sim \pi^*} \left[\log Z_{\lambda,
u}(s)
ight]$$

2. Project back into the parameterized policy space

$$\mathcal{L}(\theta) = \underset{s \sim d^{\pi_{\theta_k}}}{\mathbb{E}} \left[D_{\mathrm{KL}} \left(\pi_{\theta} \| \pi^* \right) [s] \right]$$

- Practical Implementation
 - 1. approximate dual variable: $\frac{\partial L(\pi^*,\lambda,\nu)}{\partial \nu}=0$

Lyapunov Optimization in Stochastic Networks

- 1. Stochastic optimization problem

 - 1. $\mathcal{P}_2: \min_{orall t, oldsymbol{lpha}(t) \in \mathcal{A}^m} \lim_{T o \infty} rac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[p(t)]$ 2. s.t. $\lim_{T o \infty} rac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\left[y_k(t)
 ight] \leq 0, k \in \{1, \dots, K\}$
- 2. Virtual Queues
 - 1. queue length: $Q_k(t) = \max\{Q_k(t) + y_K(t), 0\}$

1.
$$\sum_{t=0}^{T-1} y_k(t) \leq Q_k(T) - Q_k(0) = Q_k(T)$$

2.
$$Q_k(t)^2 \leq (Q_k(t) + y_K(t))^2$$

1.
$$\sum_{t=0}^{T-1} y_k(t) \leq Q_k(T) - Q_k(0) = Q_k(T)$$

2. $Q_k(t)^2 \leq (Q_k(t) + y_K(t))^2$
3. $\frac{1}{2} \sum_{k=1}^K Q_k(t+1)^2 \leq \frac{1}{2} \sum_{k=1}^K Q_k(t)^2 + \frac{1}{2} \sum_{k=1}^K y_k(t)^2 + \sum_{k=1}^K Q_k(t) y_k(t)$

- 2. Lyapunov function
 - 1. $L(K) = \frac{1}{2} \sum_{t=1}^{K} Q(t)^2$

2.
$$\Delta L(K) = L(K+1) - L(K) \leq \frac{1}{2} \sum_{k=1}^{K} y_k(t)^2 + \sum_{k=1}^{K} Q_k(t) y_k(t)$$

3. Denote B is the upper bound of $\frac{1}{2} \sum_{k=1}^{K} y_k(t)^2$

1.
$$\Delta L(K) \leq B + \sum_{k=1}^{K} Q_k(t) y_k(t)$$

3. Drift-plus-penalty Algorithm

1. $\mathcal{P}_2: \min_{orall t, oldsymbol{lpha}(t) \in \mathcal{A}^m} \mathbb{E}[\Delta L(K) + Vp(t)]$

1. approximation of original problem

2. upper bound: $B + \sum_{k=1}^K Q_k(t) y_k(t) + V p(t)$

4. Performance Analysis

1. Average goal: $O(\frac{1}{V})$

2. Average queue: O(V)

SDQN: A Lyapunov-based Approach to Safe Reinforcement Learning (NIPS 2018)

1. problem:

Problem \mathcal{OPT} : Given an initial state x_0 and a threshold d_0 , solve $\min_{\pi \in \Delta} \{ \mathcal{C}_{\pi}(x_0) : \mathcal{D}_{\pi}(x_0) \leq d_0 \}$. If there is a non-empty solution, the optimal policy is denoted by π^* .

- 1. minimize cost only
- 2. Lyapunov function
 - 1. analyze the stability of dynamic systems
 - 1. tracking the energy that a system continually dissipates
 - 2. represent abstract quantities in a system
 - 1. steady-state performance of a Markov process
- 3. Lyapunov for CMDPs
 - 1. $\mathcal{L}_{\pi_B}\left(x_0,d_0
 ight)$
 - 1. transient state: $T_{\pi_B,d}[L](x) \leq L(x), orall x \in \mathcal{X}'$
 - 1. contraction mapping
 - 2. terminal state: $L(x) = 0, \forall x \in \mathcal{X} \backslash \mathcal{X}'$
 - 1. terminal state with 0 cost
 - 3. initial state: $L\left(x_{0}\right)\leq d_{0}$
 - 1. satisfy the constrain threshold
 - 2. Relation between cost value function and Lyapunov function

1. exist
$$\epsilon$$
 that $L_{\epsilon}(x)=\mathbb{E}\left[\sum_{t=0}^{\mathrm{T}^{*}-1}d\left(x_{t}
ight)+\epsilon\left(x_{t}
ight)\mid\pi_{B},x
ight]$

- 2. upper bound of optimal cost value function
- 3. Solve ϵ
 - 1. safety condition: $d_0 \geq L_{\tilde{\epsilon}}(x) \geq T_{\pi_R,d} \left[L_{\tilde{\epsilon}} \right](x)$
 - 2. solve linear programming

$$\widetilde{\epsilon} \in rg\max_{\epsilon:\mathcal{X}' o \mathbb{R}_{\geq 0}} \left\{ \sum_{x \in \mathcal{X}'} \epsilon(x) : d_0 - \mathcal{D}_{\pi_B}\left(x_0
ight) \geq \mathbf{1}\left(x_0
ight)^ op \left(I - \left\{P\left(x' \mid x, \pi_B
ight)
ight\}_{x, x' \in \mathcal{X}'}
ight)^{-1} \epsilon
ight\}$$

- 4. Safe update:
 - 1. state-action Lyapunov function:

1.
$$Q_L(x,a) = d(x) + ilde{\epsilon}(x) + \sum_{x'} P\left(x' \mid x,a\right) L_{ ilde{\epsilon}'}\left(x'
ight)$$

2. $L_{\pi_{R}}$ induced policy set:

1.
$$\left(\pi(\cdot \mid x) - \pi_B(\cdot \mid x)
ight)^ op Q_L(x,\cdot) \leq ilde{\epsilon}(x)$$

3. update policy:

1.
$$\pi'(\cdot \mid x) \in \arg\min_{\pi \in \Delta} \left\{ \pi(\cdot \mid x)^{ op} Q(x, \cdot) \right\}$$

2. Linear programming

SPG: Lyapunov-based Safe Policy Optimization for Continuous Control (ICML 2019)

1. Safe policy optimization:

1.
$$\pi'(\cdot \mid x) \in rg \min_{\pi \in \Delta} ig\{ \pi(\cdot \mid x)^{ op} Q(x, \cdot) ig\}$$

2.
$$(\pi(\cdot \mid x) - \pi_B(\cdot \mid x))^{ op} Q_L(x,\cdot) \leq \tilde{\epsilon}(x)$$

- 3. two efficient algorithm
 - 1. θ -projection
 - 2. α -projection
- 2. θ -projection
 - 1. trust region optimization

$$egin{aligned} \mathcal{C}_{\pi_{ heta}}'\left(x_{0};\pi_{ heta_{B}}
ight)=&\mathcal{C}_{\pi_{ heta_{B}}}\left(x_{0}
ight)+etaar{D}_{\mathrm{KL}}\left(heta, heta_{B}
ight)+\ &\mathbb{E}_{x\sim\mu_{ heta_{B},x_{0}},a\sim\pi_{ heta}}\left[Q_{V_{ heta_{B}}}(x,a)-V_{ heta_{B}}(x)
ight] \end{aligned}$$

- 1. first-order approximation
- 2. average constraint surrogate
- 3. α -projection
 - 1. safety layer
 - 1. embed the set of Lyapunov constraints into the policy network
 - 1. project action under Lyapunov constraints
 - 2. first-order approximation
 - 3. KKT condition -> OPT-Net
 - 2. an unconstrained optimization problem

LBPO: Lyapunov Barrier Policy Optimization (2021)

1. problem

$$\max_{\pi \in \mathcal{P}} [J_{\pi}(s_0)] \text{ s.t } D_{\pi}(s_0) \leq d_0$$

- 2. Update policies inside the L_{π_B} induced policy set
 - 1. Q-value Evaluation
 - 2. Safe Policy Improvement

1.
$$\pi_{+}(.\mid s) = \max_{\pi \in \mathcal{P}} J_{\pi}\left(s_{0}
ight)$$

2.
$$\int_{a \in \mathcal{A}} \left(\pi(a \mid s) - \pi_B(a \mid s)\right) Q_{L_{\pi_B}, \hat{\epsilon}}(s, a) da \leq \hat{\epsilon}(s)$$

3. convert constrain as log-barrier function

Primal-Dual Optimization

Primal methods

CRPO: A New Approach for Safe Reinforcement Learning with Convergence Guarantee

1. Primal-approach (The alternating mirror descent SA algorithm)

- 1. convergence guaranteed
- 2. Two-step:
 - 1. policy evaluation:
 - 1. reward value function
 - 2. cost value function
 - 2. policy update and constrain update
 - 1. if constraint is satisfied: update policy using reward value function
 - 2. if not satisfied: update policy using cost value function

Primal-dual methods

PDO: Risk-Constrained Reinforcement Learning with Percentile Risk Criteria

- 1. Lagrangian Approach and Reformulation
 - 1. primal-dual descent-ascent algorithm
 - 2. sample average estimation

RCPO: Reward Constrained Policy Optimization

- 1. handle discounted sum and mean constraints
- 2. Lagrangian:

1.
$$\min_{\lambda \geq 0} \max_{\theta} L(\lambda, \theta) = \min_{\lambda \geq 0} \max_{\theta} \left[J_R^{\pi_{\theta}} - \lambda \cdot (J_C^{\pi_{\theta}} - lpha)
ight]$$

- 3. Penalized reward functions
 - 1. $\hat{r}(\lambda, s, a) riangleq r(s, a) \lambda c(s, a)$
 - 2. update actor and critic using penalized value function
 - 3. update λ

OPDOP: Provably Efficient Safe Exploration via Primal-Dual Policy Optimization

- 1. Lagrangian:
 - 1. $\min_{\lambda \geq 0} \max_{\theta} L(\lambda, \theta) = \min_{\lambda \geq 0} \max_{\theta} \left[J_R^{\pi_{\theta}} \lambda \cdot (J_C^{\pi_{\theta}} \alpha) \right]$
- 2. utility function over K episodes

$$\operatorname{Regret}(K) = \sum_{k=1}^{K} \left(V_{r,1}^{\pi^{\star}}\left(x_{1}
ight) - V_{r,1}^{\pi^{k}}\left(x_{1}
ight)
ight)$$
 $\operatorname{Violation}\left(K
ight) = \sum_{k=1}^{K} \left(b - V_{g,1}^{\pi^{k}}\left(x_{1}
ight)
ight)$

- 3. Learning process
 - 1. policy evaluation: Least-Squares Temporal Difference
 - 2. primal update: KL divergence penalized update
 - 3. dual update: upper bounded gradient

CPPO: Responsive Safety in Reinforcement Learning by PID Lagrangian Methods

1. Lagrangian approaches are in oscillations and over-shoot

1. apply PID to adjust dual variable

6:
$$\Delta \leftarrow J_C - d$$

7: $\partial \leftarrow (J_C - J_{C,prev})_+$
8: $I \leftarrow (I + \Delta)_+$
9: $\lambda \leftarrow (K_P \Delta + K_I I + K_D \partial)_+$
10: $J_{C,prev} \leftarrow J_C$

Convergent Policy Optimization for Safe Reinforcement Learning (NIPS 2019)

- 1. Lagrangian:
- 2. Successive convex relaxation:
 - 1. Both value and constraint

Safe layer

Safe Exploration in Continuous Action Spaces

- 1. only for immediate-constraint functions
- 2. linearization cost function:

1.
$$ar{c}_i\left(s'
ight) riangleq c_i(s,a) pprox ar{c}_i(s) + g\left(s;w_i
ight)^ op a$$

3. project action: convex optimization

$$egin{aligned} a^* = & rg \min_{a} rac{1}{2} \left\| a - \mu_{ heta}(s)
ight\|^2 \ & ext{s.t. } ar{c}_i(s) + g\left(s; w_i
ight)^ op a \leq C_i orall i \in [K] \end{aligned}$$

Evolutionary approach

Constrained Cross-Entropy Method for Safe Reinforcement Learning (NIPS 2018)

1. Sampling and sorting