Project: Predictive Analytics Capstone

Complete each section. When you are ready, save your file as a PDF document and submit it here: https://coco.udacity.com/nanodegrees/nd008/locale/en-us/versions/1.0.0/parts/7271/project

Task 1: Determine Store Formats for Existing Stores

1. What is the optimal number of store formats? How did you arrive at that number? Ans – The appropriate number of clusters is 3. This is based on the following information –

K-Means Cluster Assessment Report

Summary Statistics Adjusted Rand Indices:

	2	3	4	5	6
Minimum	-0.01155	0.3083	0.213	0.2837	0.2762
1st Quartile	0.3814	0.5258	0.4169	0.374	0.3965
Median	0.5619	0.6653	0.5107	0.4406	0.4256
Mean	0.5084	0.6594	0.5471	0.4704	0.4502
3rd Quartile	0.6942	0.7865	0.6427	0.5199	0.5067
Maximum	1	1	0.8902	0.8207	0.6626

Calinski-Harabasz Indices:

	2	3	4	5	6
Minimum	16.1	18.94	18.45	17.02	17.37
1st Quartile	28.42	28.68	25.16	22.91	21.28
Median	29.47	30.83	26.61	23.98	22.17
Mean	28.24	29.58	26.34	23.7	21.95
3rd Quartile	30.31	31.97	27.85	24.9	22.84
Maximum	31.44	33.26	30.37	26.53	24.87

As we can see here the median values of adjusted rand index and CH index are maximum for

number 3. Additionally the interquartile spread is fairly compact

2. How many stores fall into each store format?

ANS -					
4	Cluster Information	on:			
5	Cluster	Size	Ave Distance	Max Distance	Separation
	1	23	2.320539	3.55145	1.874243
	2	29	2.540086	4.475132	2.118708
	3	33	2.115045	4.9262	1.702843

The first cluster has 23 stores, the second cluster has 29 stores and the third cluster has 33 stores.

3. Based on the results of the clustering model, what is one way that the clusters differ from one another?

ANS – Stores in Cluster 1 on an average have more total sales than stores in cluster 2 or cluster 3.

Sheet 1

Stores of cluster 1 have a greater % share in selling general merchandise whereas cluster 2 stores have a greater percentage share in selling dairy products. Cluser 3 stores have a greater percentage share in selling deli products.

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.

Task 2: Formats for New Stores

© OpenStreetMap contributors

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.)

ANS - I plan to use the boosted model because it has the highest accuracy . Although Forest model and boosted model have the same accuracy boosted model is chosen for higher f1 value

Fit and error measures					
Model	Accuracy	F1	Accuracy_1	Accuracy_2	Accuracy_3
fm12	0.8235	0.8426	0.7500	1.0000	0.7778
Decision_Tree_8	0.7059	0.7685	0.7500	1.0000	0.5556
bm12	0.8235	0.8889	1.0000	1.0000	0.6667

Model: model names in the current comparison.

Accuracy: overall accuracy, number of correct predictions of all classes divided by total sample number.

Accuracy_[class name]: accuracy of Class [class name] is defined as the number of cases that are **correctly** predicted to be Class [class name] divided by the total number of cases that actually belong to Class [class name], this measure is also known as *recall*.

AUC: area under the ROC curve, only available for two-class classification.

F1: F1 score, 2 * precision * recall / (precision + recall). The precision measure is the percentage of actual members of a class that were predicted to be in that class divided by the total number of cases predicted to be in that class. In the situations where there are three or more classes, average precision and average recall values across classes are used to calculate the F1 score.

What format do each of the 10 new stores fall into? Please fill in the table below.

Store Number	Segment
S0086	3
S0087	2
S0088	1
S0089	2
S0090	2
S0091	1
S0092	2
S0093	1
S0094	2
S0095	2

Task 3: Predicting Produce Sales

1. What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?

Ans:

For the ETS model – Error is showing an irregular pattern so it should be applied multiplicatively. Trend is showing unclear pattern so no trend should be applied. Seasonality is showing an increasing pattern so it should be applied multiplicatively. So we take ETS (M,N,M) model with no dampening

For The ARIMA model we have taken ARIMA(0,1,2)(0,1,0) because seasonal difference and

seasonal first difference have been taken and there is a lag-2

Below are the error metrics of the two models. A holdout sample of 6 months was used. RMSE of ETS model is 1020596.9042405 whereas the RMSE of ARIMA model is 1429296.2983494. MASE of ETS is 0.45 compared to ARIMA's 0.53. Hence Accuracy of ETS is higher

AIC of arima is 859 whereas AIC of ETS is 1283

Hence we are choosing ETS (M,N,M) model

ETS -

In-sample error measures: ME RMSE MAE MPE MAPE MASE ACF1 -12901.2479844 1020596.9042405 807324.9676799 -0.2121517 3.5437307 0.4506721 0.1507788

Information criteria:

AIC	AICc	BIC
1283.1197	1303.1197	1308.4529

Arima –

Information Criteria:

AIC AICc BIC 858.7774 859.8209 862.665

In-sample error measures:

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
170664.054315	1429296.2983494	951432.2560696	0.6151859	4.2022854	0.531117	-0.0260961

The below graph shows actual values as well as the forecasted values with a 80% and 95% confidence interval. The table shows the same values numerically

Forecasts from etsfinal

3. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and

new stores forecasts.

ANS

Year	Month	New Store Sales	Existing Store Sales
2016	1	26,26,198	2,15,39,936
2016	2	25,29,186	2,04,13,771
2016	3	29,40,264	2,43,25,953
2016	4	27,74,135	2,29,93,466
2016	5	31,65,320	2,66,91,951
2016	6	32,03,286	2,69,89,964
2016	7	32,44,464	2,69,48,631
2016	8	28,71,488	2,40,91,579
2016	9	25,52,418	2,05,23,492
2016	10	24,82,837	2,00,11,749
2016	11	25,97,780	2,11,77,435
2016	12	25,91,815	2,08,55,799

The above table shows the forecasted sales for existing and new stores

The above chart shows historical sales for existing stores as well as forecasted sales for existing and new stores

ALTERYX WORKFLOWS

Please check your answers against the requirements of the project dictated by the rubric. Reviewers will use this rubric to grade your project.