APPM 4510 HW1

Zane Jakobs

Note: I'm using your notation for pdfs since we aren't talking about Lie algebras, and it's pretty nice.

1

$$[X,Y] = [X][Y|X] = \frac{1}{c}e^{-\frac{x^2}{2\sigma^2} - \frac{(y-x)^2}{2\gamma^2}}$$

 $\mathbf{2}$

Given that X = 2.5, it must be the case that Y = 2 exactly, so

$$[Y] = \delta(y - 2),$$

where δ is the Dirac delta.

3(a)

Proof. Taking the expectation of this process at time j gives

$$\mathbb{E}[v_j] = \lambda \mathbb{E}[v_{j-1}] + \bar{\epsilon}. \tag{1}$$

In order for the desired limit to exist (which it must, since $|\lambda| < 1$ so the process is covariance-stationary), it must be the case that as $j \to \infty$, the absolute value of the series of innovations, $|\Delta V|$, must converge to 0. Therefore, as $j \to \infty$, $\mathbb{E}[[v_{j+1}]] \to \mathbb{E}[v_j]$, and hence, in this limit, (1) becomes

$$\lim_{j \to \infty} (\mathbb{E}[v_j] = \lambda \mathbb{E}[v_j] + \bar{\epsilon}). \tag{2}$$

This can be solved to give the desired limit,

$$\lim_{j \to \infty} \mathbb{E}[v_j] = \frac{\bar{\epsilon}}{1 - \lambda}.$$

3(b)

Proof. Using the same justification as above to let successive terms have equal moments in the large-time limit, we set up the system

$$\lim_{j \to \infty} \operatorname{Var}[v_j] = \lambda^2 \operatorname{Var}[v_j] + \sigma_{\epsilon}^2. \tag{3}$$

Then, again like with the mean, we solve to get

$$\lim_{j \to \infty} \operatorname{Var}[v_j] = \frac{\sigma_{\epsilon}^2}{1 - \lambda^2}.$$

3(c)

Proof. The lag-1 autocovariance in the infinite-time limit is

$$\lim_{j \to \infty} \operatorname{Cov}[v_{j+1}, v_j] = \lim_{j \to \infty} \left(\mathbb{E}[v_{j+1}v_j] - \mathbb{E}[v_j]\mathbb{E}[v_{j+1}] \right). \tag{4}$$

Since $v_{j+1} = \lambda v_j + \epsilon_j$,

$$\mathbb{E}[v_{j+1}v_j] = \mathbb{E}[\lambda v_j^2 + \epsilon_j v_j] = \lambda \mathbb{E}[v_j^2] + \mathbb{E}[\epsilon_j] \mathbb{E}[v_j] = \lambda (\operatorname{Var}(v_j) + \mathbb{E}[v_j]^2) + \bar{\epsilon} \mathbb{E}[v_j],$$
(5)

where the second equality follows from the independence of the v_j and ϵ_j . We then have

$$\lim_{j \to \infty} \operatorname{Cov}[v_{j+1}, v_j] = \lambda \left(\frac{\sigma_{\epsilon}^2}{1 - \lambda^2} + \frac{\bar{\epsilon}^2}{(1 - \lambda)^2} \right) + \frac{\bar{\epsilon}^2}{1 - \lambda} - \frac{\bar{\epsilon}^2}{(1 - \lambda)^2}$$
$$= \frac{(\lambda - 1)\bar{\epsilon}^2}{(1 - \lambda)^2} + \frac{\bar{\epsilon}^2}{1 - \lambda} + \frac{\lambda \sigma_{\epsilon}^2}{1 - \lambda^2}$$
$$= \frac{\lambda \sigma_{\epsilon}^2}{1 - \lambda^2}.$$

3(d)

Proof. Since we justified in 3(a) and 3(b) that the variance of v_{j+1} approaches that of v_j as $j \to \infty$, the autocorrelation in that limit is

$$\lim_{j \to \infty} \operatorname{Corr}[v_{j+1}, v_j] = \lim_{j \to \infty} \frac{\operatorname{Cov}[v_{j+1}, v_j]}{\left(\frac{\sigma_{\epsilon}^2}{1 - \lambda^2}\right)^2}$$
$$= \frac{\lambda}{\frac{\sigma_{\epsilon}^2}{1 - \lambda^2}}$$
$$= \frac{\lambda(1 - \lambda^2)}{\sigma_{\epsilon}^2}.$$

4

 $Rk(\mathbf{A}) = k - 1.$

Proof. By the definition of a basis, the \mathbf{v}_i form a basis for \mathbb{R}^k , thus the rank of **V** is $Rk(\mathbf{V}) = k$. Subtracting $\frac{1}{k} \mathbf{1} \mathbf{1}^T$ from the $k \times k$ identity gives a matrix, each of whose rows has one element that is 1 greater than the element in the row above/below it, allowing k-1 of those rows to be put into a linear combination that is equal to the k-th row, thus the matrix $\mathbf{I} - \frac{1}{h}\mathbf{1}\mathbf{1}^T$ must have rank k-1. Since a matrix product is one representation for composition of linear transformations, we note that **A** can be viewed as the composition of a rank k-1 transformation and a rank k transformation, and thus cannot have a rank greater than k-1 (in simpler language, a transformation that is composed of other transformations is "no more invertible" than its "least invertible" individual part). It is also true that A can be constructed by "gluing" the $k \times k$ submatrix of **V** that spans \mathbb{R}^k multiplied against $\mathbf{I} - \frac{1}{k} \mathbf{1} \mathbf{1}^T$, with the result of the product of $\mathbf{I} - \frac{1}{k} \mathbf{1} \mathbf{1}^T$ and the remaining $(n - k) \times k$ submatrix of V, and applying an (invertible) permutation matrix. The first product is the product of a full-rank matrix (of rank k) and a rank-deficient (rank k-1) matrix, and thus has rank k-1. The second product, when "glued" with the first, cannot add to the rank of **A**, since these n-k rows were originally linear combinations of the other k and they were composed with the exact same transformation as those other k, so those original linear combinations are preserved (that is, if row k+3 of V were equal to the sum of rows k-5 and k-143 of V, the same will be true of A). Thus, $Rk(\mathbf{A}) = k - 1$ exactly.

Newton's method entails the repeated computation of J, the Jacobian of $J(\mathbf{x})$ (Note: since J is a scalar function, its Jacobian would probably be more appropriately called its gradient, and is a vector, not a matrix), the Hessian \mathcal{H} (NOT the same as $\mathbf{H}(\mathbf{x})$, solution of the equation

$$\mathcal{H} \cdot (\delta \mathbf{x}) = -\mathbf{J} \tag{6}$$

for $\delta \mathbf{x}$, and updating $\mathbf{x} \to \mathbf{x} + \gamma \delta \mathbf{x}$ for some step size $\gamma \in (0,1]$ (the choice of a γ could be replaced with a line search for the optimal step size). We can compute \mathbf{J} as

$$\mathbf{J} = \frac{\partial J}{\partial \mathbf{x}^{T}}$$

$$= 2\mathbf{x}^{T}\mathbf{C}^{-1} + \epsilon^{2}\frac{\partial}{\partial \mathbf{x}^{T}}\left(\mathbf{y}^{T}\mathbf{y} - \mathbf{y}^{T}\mathbf{H}(\mathbf{x}) - \mathbf{H}(\mathbf{x})^{T}\mathbf{y} + \mathbf{H}(\mathbf{x})^{T}\mathbf{H}(\mathbf{x})\right)$$

$$= 2\mathbf{x}^{T}\mathbf{C}^{-1} - \epsilon^{2}\left(\mathbf{y}^{T}\frac{\partial \mathbf{H}(\mathbf{x})}{\partial \mathbf{x}^{T}} + \frac{\partial \mathbf{H}(\mathbf{x})^{T}}{\partial \mathbf{x}^{T}}\mathbf{y} - \frac{\partial \mathbf{H}(\mathbf{x})^{T}}{\partial \mathbf{x}^{T}}\mathbf{H}(\mathbf{x}) - \mathbf{H}(\mathbf{x})^{T}\frac{\partial \mathbf{H}(\mathbf{x})}{\partial \mathbf{x}^{T}}\right).$$

6(a)

Proof. By definition, we have

$$E = \frac{1}{2} \sum_{j} x_j^2 \implies \frac{dE}{dt} = \sum_{j} x_j \dot{x}_j. \tag{7}$$

Expanding the above sum from the Lorenz-'96 model, we have

$$\frac{dE}{dt} = \sum_{j} x_{j}(x_{j+1}x_{j-1} - x_{j-2}x_{j-1} - x_{j} + F)$$

$$= F \sum_{j} x_{j} + \sum_{j} x_{j}(x_{j+1}x_{j-1} - x_{j-2}x_{j-1} - x_{j})$$

$$= F \sum_{j} x_{j} + \sum_{j} x_{j}x_{j+1}x_{j-1} - x_{j-2}x_{j-1}x_{j} - x_{j}^{2}$$

Now, since index addition and subtraction is performed over a space where we have identified J and 0, and add modulo J, we want to consider the terms $x_j x_{j+1} x_{j-1}$ and $-x_{j-2} x_{j-1} x_j$. Since each of these terms is a product of the three x_j for consecutive values of j, their sum over all $j \in \{1, 2, ..., J\}$

is equal, and hence they cancel out. This leaves us with

$$\frac{dE}{dt} = F \sum_{j} x_j - \sum_{j} x_j^2$$
$$= -2E + F \sum_{j} x_j,$$

which is the desired result.

6(b)

Code is attached to the back of this assignment (integration routine is boost::numeric::odeint::runge_kutta54_cash_karp). The final timestep has the following values for the x_j , in order from j=1 to J, to two digist of precision:

$$\mathbf{x} = (-1.5, 1.2, -0.54, 0.15, 1.1, 5.5, 1.1 \cdot 10^1, -2.3, -0.37, 4.2)$$