DOMAIN: Semiconductor manufacturing process

CONTEXT: A complex modern semiconductor manufacturing process is normally under constant surveillance via the monitoring of signals/variables collected from sensors and or process measurement points. However, not all these signals are equally valuable in a specific monitoring system. The measured signals contain a combination of useful information, irrelevant information as well as noise. Engineers typically have a much larger number of signals than are actually required. If we consider each type of signal as a feature, then feature selection may be applied to identify the most relevant signals. The Process Engineers may then use these signals to determine key factors contributing to yield excursions downstream in the process. This will enable an increase in process throughput, decreased time to learning and reduce the per unit production costs. These signals can be used as features to predict the yield type. And by analysing and trying out different combinations of features, essential signals that are impacting the yield type can be identified.

DATA DESCRIPTION: sensor-data.csv: (1567, 592) The data consists of 1567 datapoints each with 591 features. The dataset presented in this case represents a selection of such features where each example represents a single production entity with associated measured features and the labels represent a simple pass/fail yield for in house line testing. Target column "-1" corresponds to a pass and "1" corresponds to a fail and the data time stamp is for that specific test point.

PROJECT OBJECTIVE: We will build a classifier to predict the Pass/Fail yield of a particular process entity and analyse whether all the features are required to build the model or not.