2022-23 First Semester MATH1063 Linear Algebra II (1003)

Assignment 4

Due Date: 24/Mar/2023 (Friday), 09:00 in tutorial class.

- Write down your **CHN** name and **student number**. Write neatly on **A4-sized** paper (*staple if necessary*) and **show your steps**.
- Late submissions or answers without steps won't be graded.
- 1. Let $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$ be the inner product on \mathbb{R}^n . Prove that for any $n \times n$ matrix A,
 - (a) $\langle A\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, A^T\mathbf{y} \rangle;$
 - (b) $\langle A^T A \mathbf{x}, \mathbf{x} \rangle = ||A \mathbf{x}||^2$.
- 2. Show that $A\mathbf{x} = \mathbf{b}$ is consistent if and only if \mathbf{b} is orthogonal to $N(A^T)$.
- 3. Find the projection of the vector $\mathbf{v} = (2,7,10)^T$ onto the subspace $S = \text{Span}\{(1,0,1)^T, (0,1,1)^T\}$.
- 4. Find the least-square solution $\hat{\mathbf{x}}$ of each of the following $A\mathbf{x} = \mathbf{b}$ systems:

(a)
$$\begin{cases} x_1 + x_2 = 3 \\ 2x_1 - 3x_2 = 1 \\ 0x_1 + 0x_2 = 2 \end{cases}$$
 (b)
$$\begin{cases} x_1 + x_2 + x_3 = 4 \\ -x_1 + x_2 + x_3 = 0 \\ -x_2 + x_3 = 1 \\ x_1 + x_3 = 2 \end{cases}$$

5. Find all least squares solutions $\hat{\mathbf{x}}$ for the following $A\mathbf{x} = \mathbf{b}$: $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$.

(Remark: The least-square solution $\hat{\mathbf{x}}$ is not unique now. Comparing to Thm 5.3.5, what changes? Is $A\hat{\mathbf{x}}$ unique?)

6. Let \mathbf{x} and \mathbf{y} be linearly independent vectors in \mathbb{R}^n and let $S = \mathrm{Span}(\mathbf{x}, \mathbf{y})$. We can use \mathbf{x} and \mathbf{y} to define a matrix A by setting

$$A = \mathbf{x}\mathbf{y}^T + \mathbf{y}\mathbf{x}^T$$

1

- (a) Show that A is symmetric.
- (b) Show that $N(A) = S^{\perp}$.
- (c) Show that the rank of A must be 2.