Regular Operations (completed)

Sipser 1.2 (pages 47-63)

Regular languages are closed under:

- complement
- union
- intersection
- concatenation
- star

a sample proof

LaTex files on the web site

Your turn...

closure under union!

NFA

- A nondeterministic finite automaton (NFA) is a 5-tuple (Q, Σ , δ , q_{o} , F), where
 - Q is a finite set called the states
 - $-\Sigma$ is a finite set called the **alphabet**
 - $-\delta: Q \times \Sigma\varepsilon \rightarrow P(Q)$ is the **transition function**
 - $-q_0 = Q$ is the **start state**
 - $-F\subseteq Q$ is a set of **accept states**
- In-class exercise:

NFA computation

- Let $N=(Q, \Sigma, \delta, q_0, F)$ be a NFA and let w be a string over the alphabet Σ
- Then N accepts w if
 - w can be written as $w_1 w_2 w_3 ... w_m$ with each $w_i \in \Sigma \varepsilon$ and
 - There exists a sequence of states $s_0, s_1, s_2, ..., s_m$ exists in Q with the following conditions:
 - 1. $s_0 = q_0$
 - 2. $s_{i+1} = \delta(s_i, w_{i+1})$ for i = 0, ..., m-1
 - 3. $s_n \in F$