使用不同優化器、調整 epoch、batch size、隱藏層數、隱藏層節點數

資管數二 7107029022 邱靖詒

◆ MNIST 手寫辨識資料集

A. 分割測試集、訓練集

B. 前置作業

C. 定義繪製圖形之函式

```
In [7]:
            def show_train_history(train_history, train, validation, epoch):
                 plt.plot(train_history.history[train], linewidth=3)
          2
                 plt.plot(train_history.history[validation], linewidth=3)
          4
                plt.title('Train History')
          5
                 plt.ylabel(train)
                 plt.xlabel('Epoch')
                 plt.legend(['Train', 'Validation'], loc='best')
          7
         8
                 plt.grid(True)
         9
                if train == 'acc':
         10
                     plt.savefig("epochs_acc_" + str(epoch) + ".jpg")
                 if train == 'loss':
         11
         12
                     plt.savefig("epochs_loss_" + str(epoch) + ".jpg")
         13
                 plt.show()
```

• 優化器 Optimizer

```
使用以下參數配置:
network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
rmsprop hist = network.fit(train images, train labels, epochs=5, batch size=128)
```

1. RMSprop

2. SGD

3. Adam

4. AdaGrad

5. AdaDelta

6. Nadam

7. Accuracy of different optimizer

8. Loss of different optimizer

Conclusions

- 以手寫辨識資料集來說,使用 RMSprop 優化器準確度最高、損失最少。
- 其餘優化器在相似的情况下表現差不多。
- RMSprop 是一種自我調整學習速率的方法。
- 任何一種優化器,準確度隨著 Epoch 增加,損失隨著 Epoch 減少。
- 自適應學習率方法 Adagrad、AdaDelta、RMSprop、Adam 幾乎很快就可以達到收斂的效果。

◆ 數據訓練的總輪數 Epoch

使用以下參數配置:
network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
train_history = network.fit(train_images, train_labels, validation_split=0.2, epochs=5, batch_size=128)

1. epochs=5

2. epochs=20

3. epochs=50

4. epochs=100

5. Accuracy of different epochs

Conclusions

- 隨著 Epoch 的增加,準確率也逐漸提升。
- Epoch 5、Epoch 20、Epoch 50、Epoch 100 準確率都表現得不錯。
- 資料的多樣性會影響合適的 epoch 的數量。

◆ 批次處理數據量 Batch Size

使用以下參數配置:

network = models.Sequential()

network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

network.add(layers.Dense(10, activation='softmax'))

network.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])

train_history = network.fit(train_images, train_labels, validation_split=0.2, epochs=5, batch_size=64)

1. batch_size=64

2. batch_size=128

3. batch_size=256

4. batch_size=512

5. batch_size=1024

6. Accuracy/Loss of different batch size

7. Accuracy of different batch size

Conclusions

- 隨著 Batch Size 的增加,準確率逐漸下降,損失也逐漸下降。
- Batch Size 64、Batch Size 128、Batch Size 256、Batch Size 512、Batch Size 1024,以 Batch Size 64 表現最好,準確率高達 95.34%。
- 對於大的資料集,不能使用全批次(大 Batch Size),因為會得到更差的結果。

◆ 隱藏層 Hidden Layer

```
使用以下參數配置:
network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
network.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
train_history = network.fit(train_images,train_labels, validation_split=0.2, epochs=20, batch_size=128)
```

1. 1 hidden layer

[Info] Model summary:

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 512)	401920
dense_2 (Dense)	(None, 10)	5130

Total params: 407,050 Trainable params: 407,050 Non-trainable params: 0

2. 2 hidden layers

[Info] Model summary:

Layer (type)	Output Shape	Param #
dense_3 (Dense)	(None, 512)	401920
dropout_1 (Dropout)	(None, 512)	0
dense_4 (Dense)	(None, 128)	65664
dropout_2 (Dropout)	(None, 128)	0
dense_5 (Dense)	(None, 10)	1290

Total params: 468,874 Trainable params: 468,874 Non-trainable params: 0

Non-trainable params: 0

3. 3 hidden layers

[Info] Model summary:

Layer (type)	Output S	hape	Param #
dense_6 (Dense)	(None, 5	12)	401920
dropout_3 (Dropout)	(None, 5	12)	0
dense_7 (Dense)	(None, 2	56)	131328
dropout_4 (Dropout)	(None, 2	56)	0
dense_8 (Dense)	(None, 1	28)	32896
dropout_5 (Dropout)	(None, 1	28)	0
dense_9 (Dense)	(None, 1	0)	1290

Total params: 567,434 Trainable params: 567,434 Non-trainable params: 0

4. Accuracy/Loss of different hidden layers

5. Accuracy of different hidden layers

Conclusions

- 隨著 Hidden Layers 的增加,準確率逐漸上升,損失也逐漸下降。
- 1 Hidden Layer、2 Hidden Layers、3 Hidden Layers,以 3 Hidden Layers 表現最好,準確率高達 94.88%。
- 輸入(可見層)和第一個隱藏層之間加入一層 Dropout。丟棄率設為 50%,就是說每輪迭代時 每2個輸入值就會被隨機拋棄1個,準確率完美地提升。
- Dropout 被用於兩個隱藏層之間和隱藏層與輸出層之間。丟棄率同樣設為 50%,準確率效果更好。

 實驗過程中,以 Dropout 控制在 20%~50%,可從 20%開始嘗試。如果比例太低則起不到效果, 比例太高則會導致模型的欠學習。

◆ 隱藏層節點 Hidden Node

使用以下參數配置:
network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
network.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
train_history = network.fit(train_images,train_labels, validation_split=0.2, epochs=20, batch_size=128)

1. 32 hidden nodes

[Info] Model summary:

Layer (type)	Output Shape	Param #
dense_10 (Dense)	(None, 32)	25120
dropout_7 (Dropout)	(None, 32)	0
dense_11 (Dense)	(None, 32)	1056
dropout_8 (Dropout)	(None, 32)	0
dense_12 (Dense)	(None, 10)	330

Total params: 26,506 Trainable params: 26,506 Non-trainable params: 0

Train History

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Epoch

2. 64 hidden nodes

[Info] Model summary:

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 64)	50240
dropout_1 (Dropout)	(None, 64)	0
dense_2 (Dense)	(None, 64)	4160
dropout_2 (Dropout)	(None, 64)	0
dense_3 (Dense)	(None, 10)	650

Total params: 55,050 Trainable params: 55,050 Non-trainable params: 0

3. 128 hidden nodes

[Info] Model summary:

Layer (type)	Output Shape	Param #
dense_4 (Dense)	(None, 128)	100480
dropout_3 (Dropout)	(None, 128)	0
dense_5 (Dense)	(None, 128)	16512
dropout_4 (Dropout)	(None, 128)	0
dense_6 (Dense)	(None, 10)	1290

Total params: 118,282 Trainable params: 118,282 Non-trainable params: 0

11

4. 256 hidden nodes

[Info] Model summary:

Layer (type)	Output Shape	Param #
dense_7 (Dense)	(None, 256)	200960
dropout_5 (Dropout)	(None, 256)	0
dense_8 (Dense)	(None, 256)	65792
dropout_6 (Dropout)	(None, 256)	0
dense_9 (Dense)	(None, 10)	2570

Total params: 269,322
Trainable params: 269,322
Non-trainable params: 0

Non-trainable params: 0

5. 512 hidden nodes

[Info] Model summary:

Layer (type)	Output Shape	Param #
dense_13 (Dense)	(None, 512)	401920
dropout_9 (Dropout)	(None, 512)	0
dense_14 (Dense)	(None, 512)	262656
dropout_10 (Dropout)	(None, 512)	0
dense_15 (Dense)	(None, 10)	5130

Total params: 669,706 Trainable params: 669,706 Non-trainable params: 0

6. Accuracy/Loss of different hidden nodes

7. Accuracy of different hidden nodes

Conclusions

- 隨著 Hidden Nodes 的增加,準確率逐漸上升,損失也逐漸下降。
- 32 Hidden Nodes、64 Hidden Nodes、128 Hidden Nodes、256 Hidden Nodes、512 Hidden Nodes,以 512 Hidden Nodes 表現最好,準確率高達 94.74%。