1 Review

1.1 Sufficiency

T(X) is sufficient if $P_{\theta}(X|T)$ does not depend on θ i.e. $(p_{\theta}(X) = g_{\theta}(T(x))h(x))$ T(X) is minimal sufficient if:

- T is sufficient
- $T(X) \stackrel{\text{a.s.}}{=} f(S(X))$ for any S sufficient

Theorem: *T* is minimal sufficient if $p_{\theta}(x) \propto_{\theta} p_{\theta}(y) \implies T(x) = T(y)$ T(X) is *complete sufficient* if:

- T is sufficient
- $\mathbb{E}_{\theta}[g(T(X))] = 0 \quad \forall \theta \implies g(T) \stackrel{\text{a.s.}}{=} 0$

Proposition 1.1. *If T is complete, then it is independent of all ancillary statistics.*

1.2 Exponential familites

 $p_{\theta}(x) = e^{\eta(\theta)'T(x)-B(\theta)}h(x) \text{ for } \theta \in \Theta, \eta(\theta) \in \Xi \subset \mathbb{R}^s.$ If $\operatorname{span}(\{\eta(\theta_1)-\eta(\theta):\theta_1,\theta\in\Theta\}) = \mathbb{R}^s$, then T is minimal sufficient. If $\eta(\Theta)$ contains an open set, we say η is $\operatorname{\it full-rank}. \implies T(X)$ is complete sufficient. A $\operatorname{\it curved}$ exponential family is one which is not full rank.

Figure 1: Example of curved exponential family, not full rank because closed in $\mathbb{R}^s = \mathbb{R}^2$

1.3 Rao-Blackwell

Theorem 1.2. *If* T *is sufficient,* $\tilde{\delta}(X)$ *some estimator,* $L(\theta, \cdot)$ *convex loss, then the estimator*

$$\delta(X) = \mathbb{E}[\tilde{\delta}(X)|T] \tag{1.1}$$

is better i.e. $L(\theta, \delta) \leq L(\theta, \tilde{\delta})$

2 Unbiased estimators

Example 2.1 (Bias-Variance Tradeoff).

$$MSE(\theta; \delta) = \mathbb{E}_{\theta}[(\delta(X) - g(\theta))^{2}]$$

$$= \mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}\delta + \mathbb{E}_{\theta}\delta - g(\theta))^{2}]$$

$$= \mathbb{E}_{\theta}[(\delta - \mathbb{E}_{\theta}\delta)^{2}] + (\mathbb{E}_{\theta}(\delta) - g(\theta))^{2} + 2(\mathbb{E}_{\theta}(\delta) - g(\theta))\mathbb{E}_{\theta}[(\delta(X) - \mathbb{E}_{\theta}[\delta])]$$

$$= Var_{\theta}(\delta) + Bias_{\theta}(\delta)^{2}$$

$$(2.1)$$

Definition 2.2. $\delta(X)$ is an *unbiased* estimator of g if $\operatorname{Bias}_{\theta}(\delta) = \mathbb{E}_{\theta}[g(\theta) - \mathbb{E}_{\theta}\delta] = 0$.

Definition 2.3. A statistic *g* is *U*-estimable if there exists an unbiased estimator.

Definition 2.4. $\delta(X)$ is UMVU (uniform minimum variance unbiased estimator) if δ is unbiased and $Var_{\theta}(\delta) \leq Var_{\theta}(\tilde{\delta})$ for all $\theta \in \Theta$ and any other unbiased $\tilde{\theta}$.

Figure 2: No estimator in this figure is UMVU; the bold estimator is not minimum variance in the indicated region

Theorem 2.5. *If* $g(\theta)$ *is* U-estimable and T *is* complete sufficient, $\exists !$ UMVU estimator $\delta(T(X))$.

Proof. Let $\delta_0(X)$ be unbiased (\exists since g is U-estimable) and consider the Rao-Blackwellized estimator $\delta(T) = \mathbb{E}_{\theta}[\delta_0|T]$.

We first show δ is unbiased:

$$\mathbb{E}_{\theta}\delta(T) = \mathbb{E}_{\theta}\mathbb{E}_{\theta}[\delta_0|T] \tag{2.5}$$

$$=\mathbb{E}_{\theta}[\delta_0]$$
 Tower property (2.6)

$$= g(\theta)$$
 δ_0 unbiased (2.7)

We next show essential uniqueness of δ . Suppose $\tilde{\delta}(T)$ unbiased. As both are unbiased, $\mathbb{E}_{\theta}[\delta - \tilde{\delta}] = 0$ for all θ so by completeness $\delta \stackrel{\text{a.s.}}{=} \tilde{\delta}$.

By Rao-Blackwell, no other
$$\delta^*(X)$$
 could be better.

2 ways to find UMVUE:

- (1) Directly
- (2) Find any unbiased $\delta(T)$, Rao-Blackwellize

Example 2.6. $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \operatorname{Pois}(\theta)$. $p_{\theta}(x) = \frac{\theta^x e^{-\theta}}{x!}$ for $\theta \geq 0$, $x \in \mathbb{N}^*$. Complete sufficient statistic $T = \sum X_i \sim \operatorname{Pois}(n\theta)$. $p_{\theta}^T(t) = \frac{(n\theta)^t e^{-n\theta}}{t!}$. Estimate θ^2 .

One way:

$$\theta^2 = \mathbb{E}[X_1]^2 \tag{2.8}$$

$$= \mathbb{E}[X_1 X_2] = \delta_0 \tag{2.9}$$

and Rao-Blackwellize.

Another way: Any unbiased $\delta(T)$ must satisfy

$$\sum_{t=1}^{\infty} \delta(t) p_{\theta}^{T}(t) = \theta^{2} \quad \forall \theta$$
 (2.10)

$$\sum_{t=0}^{\infty} \delta(t) \frac{n^t \theta^t}{t!} = e^{n\theta} \theta^2 \quad \forall \theta$$
 (2.11)

$$=\sum_{k>0}\frac{n^k}{k!}\theta^{k+2}\tag{2.12}$$

Matching coefficients implies

$$\delta(T) = \left(\frac{T(T-1)}{n^2}\right)_{+} \approx (T/n)^2 \tag{2.13}$$

(Note: this shows that $\mathbb{E}[X_1X_2|X_1+X_2=T]=(T(T-1))/n^2$ TODO: really?)

Example 2.7. In Keener. $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} U[0, \theta]$. $T = X_{(n)}$ complete sufficient.

$$p_{\theta}^{T}(t) = \frac{\partial}{\partial t} P_{\theta}[T = t]$$
 (2.14)

$$= \frac{\partial}{\partial t} \left(\frac{t}{\theta} \right)^n = \frac{n}{\theta^n} t^{n-1} \tag{2.15}$$

$$\mathbb{E}_{\theta}T = \frac{n}{n+1}\theta \implies \frac{n+1}{n}T \text{ is UMVU}$$
 (2.16)

Example 2.8 (Nonparamtric Problem). $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} p(X)$ wrt Leb. s.t. $\mathbb{E}_p[|X|] < \infty$. Estimate $\mu(p) = \int_{-\infty}^{\infty} x p(x) dx = \mathbb{E}_p X$.

Know $T = (X_{(1)}, \dots, X_{(n)})$ is sufficient (because iid), can show it is also complete. X_1 is unbiased, so Rao-Blackwellizing

$$\mathbb{E}_{p}[X_{1}|X_{(1)},\cdots,X_{(n)}] = \frac{1}{n}\sum_{i=1}^{n}X_{(i)}$$
 Data exchangeable (2.17)

$$= \bar{X} \tag{2.18}$$

So \bar{X} is UMVU.

2.1 U-statistics (U for Unbiased)

Suppose we want to etimate

$$g(p) = \mathbb{E}_p[|X_1 - X|2|] \tag{2.19}$$

(Gini's mean difference)

Or more generally

$$g(p) = \mathbb{E}_p[h(X_1, \cdots, X_m)] \quad m \le n \tag{2.20}$$

First of all

$$\delta_0 = h(X_1, \cdots, X_m) \tag{2.21}$$

is an unnbiased estimator obtained by just taking the first m observations. But we can do better by Rao-Blackwellizing

$$\delta(X) = \frac{n!}{(n-m)!} \sum_{\substack{i_1, \dots, i_m \text{distinct}}} h(X_{i_1}, \dots, X_{i_m})$$
(2.22)

This is called a *U-statistic*.