

特性描述

TM1636 是一种带键盘扫描接口的 LED (发光二极管显示器) 驱动控制专用电路, 内部集成有 MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。本产品性能优良, 质量可靠。主要应用于电磁炉、微波炉及小家电产品的显示屏驱动。采用 DIP18 的封装形式。

功能特点

- ➤ 采用功率CMOS 工艺
- ▶ 显示模式(8字段×4位),支持共阳数码管输出
- ▶ 键扫描 (2×8bit)
- ▶ 辉度调节电路(占空比 8 级可调)
- ➤ 串行接口 (CLK, DIO)
- ▶ 振荡方式: 内置RC 振荡 (450KHz+5%)
- ▶ 内置上电复位电路
- ▶ 内置自动消隐电路
- ▶ 封装形式: DIP18

管脚信息

管脚功能

符号	管脚名称	管脚号	说明
DIO	数据输入/输出	15	串行数据输入/输出,输入数据在 SLCK 的低电平变化,在 SCLK 的高电平被传输,每传输一个字节芯片内部都将在第 九个时钟产生一个 ACK
CLK	时钟输入	16	在上升沿输入/输出数据
K1~K2	键扫数据输入	17-18	输入该脚的数据在显示周期结束后被锁存
SEG1/KS1~SEG8/KS8	输出(段)	2-9	段输出(也用作键扫描), N 管开漏输出
GRID4~GRID1	输出(位)	10-13	位输出,P管开漏输出
VDD	逻辑电源	14	5V ± 10%
GND	逻辑地	1	接系统地

在干燥季节或者干燥使用环境内,容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电路预防处理措施,如果不正当的操作和焊接,可能会造成 ESD 损坏或者性能下降, 芯片无法正常工作。

读键扫数据

键扫矩阵为8×2bit,如下所示:

在有按键按下时,读键数据如下:

	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8
K1	1110_11	0110_11	1010_11	0010_11	1100_11	0100_11	1000_11	0000_11
	11	11	11	11	11	11	11	11
K2	1111 <u>_</u> 01	0111_01	1011_01	0011_01	1101_01	0101_01	1001_01	0001_01
	11	11	11	11	11	11	11	11

注意: 在无按键按下时,读键数据为: 1111_1111

显示寄存器地址和显示模式

该寄存器存储通过串行接口从外部器件传送到TM1636的数据,地址00H-03H共4个字节单元,分别与芯片SGE和GRID管脚所接的LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
		高四位)	xxHU(i		xxHL(低四位)				
	В7	В6	B5	B4	В3	B2	В1	ВО	
GRID1		HU	00			HL	00		
GRID2		HU	01			HL	01		
GRID3		HU	02		02HL				
GRID4	03HU GRID 4						03		

接口说明

微处理器的数据通过两线总线接口和 TM1636 通信,在输入数据时当 CLK 是高电平时, DIO 上的信号必须保持不变;只有 CLK 上的时钟信号为低电平时, DIO 上的信号才能改变。数据输入的开始条件是 CLK 为高电平时, DIO 由高变低;结束条件是 CLK 为高时, DIO 由低电平变为高电平。

TM1636 的数据传输带有应答信号 ACK, 当传输数据正确时, 会在第八个时钟的下降沿, 芯片内部会产生一个应答信号 ACK 将 DIO 管脚拉低, 在第九个时钟结束之后释放 DIO 口线。

1、指令数据传输过程如下图(读按键数据时序)

Command: 读按键指令; S0、S1、S2、K1、K2 组成按键信息编码, S0、S1、S2 为 SEG 的编码, K1、K2 为 K1 和 K2 键的编码。

2、写 SRAM 数据地址自动加 1 模式

Command1: 设置数据 Command2: 设置地址 Data1~N: 传输显示数据 Command3: 控制显示

TM1636

3、写 SRAM 数据固定地址模式

Command1:设置数据 Command2:设置地址 Data1~N:传输显示数据 Command3:控制显示

数据指令

指令用来设置显示模式和LED 驱动器的状态。

在STB下降沿后由DIO输入的第一个字节作为一条指令。经过译码,取最高B7、B6两位比特位以区别不同的指令。

В7	B6	指令
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据无效(之前传送的指令或数据保持有效)。

1、数据命令设置

该指令用来设置数据写和读, B1和B0位不允许设置01或11。

MSB

В7	В6	B5 B4		В3	B2	В1	во	功能	说明
0	1	- - - 无关项,填				0	0	数据读写模式设置	写数据到显示寄存器
0	1					1	0	数166次与保入以且	读键扫数据
0	1				0				自动地址增加
0	-1	C)		1			地址增加模式设置	固定地址
0	1			0				测试模式设置(内	普通模式
0	1			1				部使用)	测试模式

2、地址命令设设置

MSB LSB

B7	В6	B5	B4	В3	B2	В1	во	显示地址
1	1		•	0	0	0	0	00H
1	1	无关项	页,填	0	0	0	1	01H
1	1	(0		0	1	0	02H
1	1	1		0	0	1	1	03H

TM1636

该指令用来设置显示寄存器的地址;如果地址设为C4H 或更高,数据被忽略,直到有效地址被设定;上电时,地址默认设为00H。

3、显示控制

MSB LSB

В7	В6	В5	В4	В3	B2	В1	во	功能	说明
1	0				0	0	0		设置脉冲宽度为 1/16
1	0				0	0	1		设置脉冲宽度为 2/16
1	0				0	1	0		设置脉冲宽度为 4/16
1	0				0	1	1		设置脉冲宽度为 10/16
1	0	无关项	页,填		1	0	0		设置脉冲宽度为 11/16
1	0	()		1	0	1		设置脉冲宽度为 12/16
1	0				1	1	0		设置脉冲宽度为 13/16
1	0				1	1	1		设置脉冲宽度为 14/16
1	0			0				日二五子次四	显示关
1	0			1				显示开关设置	显示开

显示和键扫周期

程序流程图

采用地址自动加一模式的程序流程图:

采用固定地址的程序设计流程图:


```
参考程序
```

```
*版权信息:
             深圳天微电子
            TM1636
*文件名:
*单片机型号: AT89S52
*开发环境:
            Keil uVision3
            11.0592M
*晶震频率:
*程序功能:
             把TM1636 所有显示寄存器地址全部写满数据 Oxff, 并开显示, 然后再读按键值。
*/
#include<reg52.h>
#include<intrins.h>
//定义端口
sbit clk = P1^2;
sbit dio = P1 \wedge 1;
///===========
void Delay_us(unsigned int i)
                           //nus 延时
{
       for(;i>0;i--)
        _nop_();
}
void I2CStart(void)
                           //1636 开始
{
        clk = 1;
        dio = 1;
        Delay_us(2);
        dio = 0;
}
void I2Cask(void)
                             //1636 应答
     clk = 0;
     Delay_us(5);
                            //在第八个时钟下降沿之后延时 5us, 开始判断 ACK 信号
     while(dio);
       clk = 1;
    Delay_us(2);
        clk=0;
void I2CStop(void)
                              // 1636 停止
```

```
clk = 0;
         Delay_us(2);
         dio = 0;
         Delay_us(2);
         clk = 1;
         Delay_us(2);
         dio = 1;
}
void I2CWrByte(unsigned char oneByte) //写一个字节
{
     unsigned char i;
        for(i=0;i<8;i++)
            clk = 0;
             if(oneByte&0x01)
                                    //低位在前
             {
                  dio = 1;
             }
              else
             {
                  dio = 0;
             Delay_us(3);
            oneByte=oneByte>>1;
            clk=1;
            Delay_us(3);
unsigned char ScanKey(void)
                                            //读按键
      unsigned char rekey,rkey,i;
         12CStart();
         I2CWrByte(0x42);
                                             //读按键命令
         I2Cask();
         dio=1;
                                             // 在读按键前拉高数据线
         for(i=0;i<8;i++)
                                          //从低位开始读
             clk=0;
               rekey=rekey>>1;
              Delay_us(30);
```

```
clk=1;
                if(dio)
                     rekey=rekey | 0x80;
                 }
                 else
                 {
                    rekey=rekey | 0x00;
                 Delay_us(30);
             I2Cask();
            I2CStop();
         return (rekey);
   }
   void SmgDisplay(void)
                                          //写显示寄存器
   {
       unsigned char i;
       I2CStart();
       I2CWrByte(0x40);
                                          // 40H 地址自动加 1 模式,44H 固定地址模式,本程序采
用自加1模式
       I2Cask();
       I2CStop();
       12CStart();
       I2CWrByte(0xc0);
                                          //设置首地址,
       I2Cask();
          for(i=0;i<4;i++)
                                          //地址自加,不必每次都写地址
                I2CWrByte(0xff);
                                            //送数据
                I2Cask();
        }
           12CStop();
           12CStart();
           I2CWrByte(0x8f);
                                        //开显示 , 最大亮度
           I2Cask();
           I2CStop();
   }
```


TM1636

```
void init()
                      //初始化子程序
  //初始化略
}
void main(void)
   unsigned char keydate;
   init();
                       //初始化
   SmgDisplay();
                        //写寄存器并开显示
   while(1)
      keydate=Scankey();
                                 ,读出的按键值不作处理。
                          //读按键值
//=====end=======
```


硬件连接图

电路图中所接数码管为共阳数码管

电气参数

1、极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ~+7.0	٧
逻辑输入电压	VII	-0.5 ~ VDD + 0.5	V
LED SEG 驱动输出电流	IO1	+50	mA
LED GRID驱动输出电流	IO2	-200	mA
功率损耗	PD	400	mW
工作温度	Topt	-40 ~ +85	°C
储存温度	Tstg	-65 ~+150	Ç

2、正常工作范围 (Ta = -40~+85℃, Vss = 0 V)

		Allender	The same of the sa	10000000		
参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD		5		٧	-
高电平输入电压	VIH	0.7 VDD	_	VDD	>	-
低电平输入电压	VIL	0	_	0.3 VDD	٧	-

3、电气特性 (Ta = -40~+85℃, VDD = 4.5 ~ 5.5 V, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	loh1	-20	-25	-40	mA	Seg1~Seg11, Vo=vdd-2V
1-3 6 1 1132 11 6770	loh2	-20	-30	-50	mA	Seg1~Seg11, Vo=vdd-3V
低电平输出电流	IOL1	80	140	-	mA	DIG1~DIG4 Vo=0.3V
低电平输出电流	Idout	4	-	-	mA	VO = 0.4V, dout
高电平输出电流容许量	Itolsg	-	-	5	%	VO=VDD-3V, Segl~Segll

TM1636

输出下拉电阻	RL		10		ΚΩ	K1~K2
输入电流	II	-	-	±1	μΑ	VI = VDD / VSS
高电平输入电压	VIH	0.7 VDD	-		٧	CLK, DIN
低电平输入电压	VIL	ı	ı	0.3 VDD	٧	CLK, DIN
滞后电压	VH	ı	0.35	ı	>	CLK, DIN
动态电流损耗	IDDdyn	-	-	5	mA	无负载,显示关

4、开关特性 (Ta = -40~+85℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测	试条件
振荡频率	fosc	-	450	-	KHz		
	tPLZ	-	-	300	ns	CLK	(→ DIO
传输延迟时间	†PZL	-	-	100	ns	CL = 15p	oF, RL = 10K Ω
	TTZH 1			2	μs	CL=	SEG1~ SEG11
上升时间	TTZH 2	-	4.7	0.5	μs	300p F	GRID1∼ GRID4
下降时间	TTHZ	ı	-	120	μs	CL = 300pF, SEGn, GRIDn	
最大时钟频率	Fmax	1	-	-	MHz	占空比50%	
输入电容	CI	-	-	15	рF		-

时序特性 (Ta = -40 ~+85℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	-	-	ns	-
选通脉冲宽度	PWSTB	1	-	-	μs	-
数据建立时间	tSETUP	100	-	-	ns	
数据保持时间	†HOLD	100	-	-	ns	-
等待时间	tWAIT	1	=	-	μs	CLK↑→CLK↓

IC封装示意图 DIP18

尺寸 标注	最 小(==)	最大(国)	尺寸 标注	最 小(m)	最 大(皿)
A	21.90	22.10	C3	3.4	3. 6
A1	1. 40	OTYP	C4	1.5	STYP
A2	0.43	0.57	D	8.10	8.60
A3	2. 54TYP		D1	0. 20	0.35
A4	0. 59TYP		D2	7.62	7.87
A5	0. 95TYP		ф1	3. 0TYP	
В	6.3	6.5	θ 1	8° IYP	
C1	3.4	3.6	θ 2	5° TYP	
C2	0.6	0.8			

TM1636

修改说明

版本	修改日期	修改说明
V1.0	2010-05-06	初版发行
		1、修改排版格式
V1.1	2012-08-16	2、添加参考例程
		3、修改关于 ACK 信号的描述
V1.2	2012-09-27	增加 TM1636 显示寄存器地址说明

