Elektronika

XVIII. Feszültség stabilizátorok Tápegységek

18.1. Elemi stabilizátorok

1. Stabilizátorok:

- állandó kimeneti feszültséget vagy áramot biztosítanak,
 függetlenül a bemeneti feszültségtől, a terheléstől, hőmérséklettől
- két fő típus: feszültség stabilizátor, áram stabilizátor
- a szabályozó elem elhelyezkedése alapján a stabilizátorok típusai: soros, párhuzamos

- terheléssel soros
- jobb stabilizálás!
- rövidzár védelem kell!
- bonyolultabb

párhuzamos feszültség stabilizátor

- terheléssel párhuzamos
- rövidzár nem gond
- egyszerűbb

18.1. Elemi stabilizátorok

R

Uki

2. Elemi feszültség stabilizátorok:

- kicsi terhelhetőség
- általában referencia feszültségként használatosak
- nagyobb feszültségeknél zener-dióda -
- kis feszültségeknél dióda (vagy több dióda)

3. Stabilizálási tényező:

- a stabilizálás jósága

QSUbe = $(\Delta Ube / Ube) / (\Delta Uki / Uki)$

- bemeneti feszültség változás elnyomási tényező

$$S = \Delta U_{be} / \Delta U_{ki}$$

18.1. Elemi stabilizátorok

4. Zener-diódás feszültség stabilizátor

a meredek letörési karakterisztika miatt feszültsége alig változik,
 ha Izmin és Izmax között tartjuk áramát

$$r_z = (U_{zmax} - U_{zmin}) / (I_{zmax} - I_{zmin})$$

 $U_{ki} = U_z = U_{zmin} + r_z *I_z$

R méretezése

```
Rmin \rightarrow Ubemax < R * (Ikimin + Izmax) + Uzmin + rz * Izmax (Uzmin + rz * Izmax \approx Uzk )

Rmax \rightarrow Ubemin > R * (Ikimax + Izmin) + Uzmin + rz * Izmin (Uzmin + rz * Izmin \approx Uzk )
```

1. Mintafeladat:

Egyszerű feszültség stabilizátor áramkör


```
UzK = 5,1 V
Izmax = 220 mA
Uzmax = 5,3 V
Izmin = 20 mA
Uzmin = 4,9 V
- Zener dióda differenciális ellenállása ( rz ) ?
- R = ? ha
```

 $U_{ki} = 5,1$ és $U_{be} = 8V$ és $I_z = 120$ mA

Felhasznált összefüggések: rz = (Uzmax - Uzmin) / (Izmax - Izmin) lbe = Iki + Iz Iki = Uz / Rt Ube = Uz + R * Ibe

Megoldás:

$$Rz = (5,3V-4,9V) / (220mA - 20mA) = 2 \Omega$$

$$Iki = Uki / Rt = 5,1 V / 500 \Omega = 10,2 mA$$

$$Ibe = Iki + Iz = 10,2 mA + 120 mA = 130,2 mA$$

$$R = (Ube - Uz) / Ibe = 2,9V / 130,2 mA = 22,27 \Omega$$

2. Mintafeladat

Egyszerű feszültség stabilizátor áramkör


```
UzK = 8,2 V
Izmax = 200 mA
Uzmax = 8,6 V
Izmin = 10 mA
Uzmin = 7,8 V
R = 30 \Omega
```

- Zener dióda differenciális ellenállása (rz)?
- Maximális és minimális bemeneti
 feszültség? Ubemax = ? és Ubemin = ?

Felhasznált összefüggések:

$$rz = (Uzmax - Uzmin) / (Izmax - Izmin)$$
 $lbe = lki + lz$
 $lki = Uz / Rt$

$$U_{be} = U_z + R * I_{be}$$

Megoldás:

$$r_z = (8,6V-7,8V) / (200mA - 10mA) = 4,21 \Omega$$

Ikimax = Ukimax / Rt = 8,6 V / 500
$$\Omega$$
 = 17,2 mA
Ikimin = Ukimin / Rt = 7,8 V / 500 Ω = 15,6 mA

$$I_{bemax} = I_{kimax} + I_{Zmax} = 17,2 + 200 \text{ mA} = 217,2 \text{ mA}$$

 $I_{bemin} = I_{kimin} + I_{Zmin} = 15,6 + 10 \text{ mA} = 25,6 \text{ mA}$

Ubemax =
$$8,6V + 30 \Omega * 217,2 \text{ mA} = 15,12 V$$

Ubemin =
$$Uzmin + R * Ibemin$$

Ubemin =
$$7.8V + 30 \Omega * 25.6 \text{ mA} = 8.57 V$$

3. Mintafeladat:

Egyszerű feszültség stabilizátor áramkör, Uz fix értékű (közelítés), Rt változhat

Ibemax − Ikimin < Izmax

Ibemax = (Ubemax – UzK) / R Rmin \approx (Ubemax – UzK) / (Ikimin + Izmax) Rmin = (10V – 5,6V) / (0 + 250mA) Rmin = 0.0176 k Ω = 17.6 Ω

```
Ube változhat 8 és 10V között! Uz = Uz\kappa = 5,6 V | Iz\kappa = 250 mA | Iz\kappa = 20 mA | Iki\kappa = 60 mA | Iki\kappa = 0 mA | (Rt > 100 \kappa) | Rmin = ? | Rmax = ?
```

Megoldás:

Ibemin − Ikimax > Izmin

Ibemin = (Ubemin - UzK) / R Rmax \approx (Ubemin - UzK) / (Ikimax + Izmin) Rmax = (8V - 5,6V) / (60mA + 20mA) Rmax = 0,03 k Ω = 30 Ω

4. Mintafeladat

Egyszerű feszültség stabilizátor áramkör


```
Ube változhat 7 és 10V között!

Uzk = 5,6 V

Izmax = 250 mA Uzmax = 6 V

Izmin = 20 mA Uzmin = 5,2 V

R = 20\Omega Ukimin = ? Ukimax = ?
```


4. Mintafeladat, folytatás:

Egyszerű feszültség stabilizátor áramkör

Felhasznált összefüggések: Uki = Uz = Uzmin + rz *Iz Ibe = Iki + Iz Iki = Uz / Rt Ibe = (Ube - Uz) / R

Megoldás:

$$Uz_{min} = 5.2 \text{ V} \qquad R = 20\Omega$$

$$r_z = 3.5\Omega$$

Ube + Uzmin *R / rz = Uz * (1 + R / Rt + R / rz)

$$10V + 5.2V*20/3.5 = Uz*(1 + 20/200 + 20/3.5)$$

$$39,7143 V = Uz*6,8143$$

$$Uz = 5,828 V = Ukimax$$

$$Ibe = (Ube - Uz) / R = 208,6 mA$$

$$Iz = (Uz - Uzmin) / rz = 179,43 mA$$

$$Iki = Uz / Rt = 29,14 mA$$

$$7V + 5,2V*20/3,5 = Uz*6,8143$$

 $36,7143 V = Uz*6,8143$
 $Uz = 5,388 V = Ukimin$
 $Ibe = 80,6 mA$
 $Iz = 53,714 mA$
 $Iki = Uz / Rt = 26,94 mA$

18.3 Feladatok

1. Feladat:

Egyszerű feszültség stabilizátor áramkör

$$\begin{array}{lll} \text{Uzk} = 10 \text{ V} & \text{Rt} = 1 \text{k} \, \text{k} \Omega \\ \text{Izmax} = 50 \text{ mA} & \text{Uzmax} = 10,5 \text{ V} \\ \text{Izmin} = 6 \text{ mA} & \text{Uzmin} = 9,5 \text{ V} \\ \text{- Zener dióda differenciális ellenállása (rz) ?} \end{array}$$

2. Feladat:

Egyszerű feszültség stabilizátor áramkör

18.4. Soros feszültség stabilizátorok

1. Egyszerű áteresztő tranzisztoros feszültség stabilizátor

2. Szabályozható áteresztő tranzisztoros feszültség stabilizátor

18.4. Soros feszültség stabilizátorok

3. Darlington-kapcsolású áteresztő tranzisztoros feszültség stabilizátor

Uki = Uref - UBE1 - UBE2

Iki
$$\approx \beta_1 * \beta_2 * IB$$

Jobb a feszültség stabilizálási tényező

18.5. Áram stabilizátorok

1. Soros áram stabilizátor

 $I_{ki} \approx I_E = (U_{ref} - U_{BE}) / R_E$

áramgenerátor kapcsolás, nagy teljesítményű tranzisztorral

2. FET-es áram generátor

$$It = ID = - UGS / RS$$
 $Rb = 1/y22s * (1 + y21s * Rs)$

Rb nem olyan nagy mint bipoláris tranzisztor esetén

18.5. Áram stabilizátorok

3. FET-es áram generátor 2.

Rb sokkal nagyobb mint egy FET esetén!

$$Rb \approx y_{21s} * (1/y_{22s})^2 * (1 + y_{21s} * Rs)$$

18.5. Áram stabilizátorok

4. Áramtükör kapcsolás

-

18.6. Feszültség stabilizátorok

1. FET-es feszültség generátor

- -FET-es áramgenerátor kapcsolásból
- Rb nem olyan kicsi!
- De!
- stabilizáló hatása kedvezőbb mint egy Zener-diódának
- zaja is kicsi

Uki = Is *
$$(R1 + Rs)$$

$$S = \Delta U_{be} / \Delta U_{ki}$$

 $S = 1 + 1/y_{22s} * (1 + y_{21s} * Rs) / (R_1 + R_s)$

18.7. Párhuzamos stabilizátorok

1. párhuzamos feszültség stabilizátor

18.8. Visszacsatolt feszültség stabilizátorok

1. Elve

- szabályozást valósítanak meg
- figyelik a kimenetet, és azt összehasonlítják a referencia feszültséggel
 - → az eredmény alapján vezérlik a szabályozó elemeket

18.8. Visszacsatolt feszültség stabilizátorok

2. Megvalósítása műveleti erősítővel

Ube
$$\rightarrow$$
 14 - 20 V
Uki \rightarrow 12 V \pm 20%

18.9. Integrált feszültség stabilizátorok

Többféle feszültségszabályozó IC létezik, felhasználásukkal (és néhány plusz alkatrésszel) egyszerűen kapunk jól használható stabilizátor áramköröket. Léteznek:

- fix feszültség stabilizátor IC-k pl. 7805 (5V), 7809 (9V), 7812 (12), ... 7905 (-5V), ...
- változtatható feszültségű stabilizátor IC-k → pl. L200, LM317, LM350, LM723, ...

Fix kimeneti feszültség

18.9. Integrált feszültség stabilizátorok

Kimeneti feszültség növelése

Kimeneti áram növelése

18.9. Integrált feszültség stabilizátorok

Szabályozható kimeneti feszültség

1. hagyományos tápegység

hátrányai:

- nagy veszteség (transzformátorban, stailizátorban) → hatásfoka csak: 30-50%
- nagy méretű transzformátor

Felépítése:

Hagyományos tápegység

2. Kapcsolóüzemű tápegység, szekunder oldali Felépítése a hagyományoshoz hasonló, a különbség

a stabilizátor működésmódjában van → nem folyamatosan hanem kapcsolóüzemben működik (10-50 kHz)

Jellemzői:

- a stabilizátor veszteségét csökkenti, de a transzformátorét nem
- ugyanúgy nagy méretű transzformátor kell
- hatásfoka : 60-80%
- nagyfrekvenciás zavarforrás!!

3. Kapcsolóüzemű tápegység, primer oldali Jellemzői:

- a stabilizálás a primer oldalon (nagyfeszültségen!)
- nagyfrekvenciás kapcsolóüzem (20-200 kHz) → kis méretű transzformátor
- hatásfoka: akár 90 % felett is
- nagyfrekvenciás zavarforrás!!

