Solutions to Exercises from 'Types and Programming Languages'

 $\ensuremath{\mathsf{ABSTRACT}}.$ Solutions to exercises from the book 'Types and Programming Languages'.

Contents

Preface		v
Chapter 1.	Introduction	1
Chapter 2.	Mathematical Preliminaries	3

Preface

Solutions to exercises from the book 'Types and Programming Languages'.

CHAPTER 1

Introduction

CHAPTER 2

Mathematical Preliminaries

EXERCISE: Suppose we are given a relation R on a set S. Define the relation R' as follows:

$$R' = R \cup \{(s, s) \mid s \in S\}.$$

That is, R' contains all the pairs in R plus all pairs of the form (s, s). Show that R' is the reflexive closure of R.

SOLUTION: Clearly, $R \subseteq R'$, and R' is a reflexive relation on S. Now, suppose $R'' \subseteq R'$ is the reflexive closure of R. Then, there exists $(s,t) \in R'$, for some $s,t \in S$, such that $(s,t) \notin R''$. If s=t, then $(s,s) \notin R''$, which is a contradiction. On the other hand, if $s \neq t$, then $(s,t) \in R \subseteq R''$, again a contradiction. We thus conclude R is indeed the reflexive closure of R, and we are done.