Московский физико-технический университет Факультет радиотехники и кибернетики

Лабораторная работа N 3.2.4

(Общая физика: электричество и магнетизм)

Свободные колебания в электрическом контуре

Работу выполнил: **Милославов Глеб, группа Б01-103**

г. Долгопрудный 2022 год

Цель работы: исследование свободных колебаний в электрическом контуре.

Оборудование: генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей, индуктивность, электронный осциллограф, мост.

1 Теоретическое введение

Основное уравнение колебательного контура

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0 \tag{1}$$

Где $\gamma = \frac{R}{2L}$ — коэффициент затухания, $\omega_0^2 = \frac{1}{LC}$ — собственная частота контура. Решением этого уравнения являются затухающие колебания:

$$I = Ae^{-\gamma t}\cos(\omega t - \theta) \tag{2}$$

Рис. 1: Колебательный контур

Здесь $\omega = \sqrt{\omega_0^2 - \gamma^2}$. Можно записать решение (1) и для напряжения:

$$U_C = U_0 \frac{\omega_0}{\omega} e^{-\gamma t} \cos(\omega t - \theta) \tag{3}$$

В контуре со слабым затуханием ($\omega \simeq \omega_0$) верна формула Томпсона для периода:

$$T = \frac{2\pi}{\omega_0} \simeq \frac{2\pi}{\omega} = 2\pi\sqrt{LC} \tag{4}$$

Режим работы контура, при котором $\gamma = \omega_0$, называется **критическим**. Его сопротивление равно

$$R_{\rm \kappa p} = 2\sqrt{\frac{L}{C}}\tag{5}$$

Потери затухающих колебаний принято характеризовать через **добротность** и **логарифмический декремент затухания**:

$$Q = 2\pi \frac{W}{\Delta W} = \frac{1}{R} \sqrt{\frac{L}{C}} -$$
Добротность, потери энергии (6)

$$\Theta = \frac{1}{n} \gamma T = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}$$
 — Лог. декремент, потери амплитуды (7)

2 Экспериментальная установка

Исследуемый колебательный контур состоит из индуктивности L, ёмкости C и резистора R (рис. 1). Конденсатор контура заряжается короткими одиночными импульсами, после каждого из которых в контуре возникают свободные затухающие колебания. Подав напряжение с конденсатора на осциллограф, можно по картине, возникающей на экране осциллографа, определить период колебаний в контуре, исследовать затухание колебаний и определить основные параметры колебательного контура.

Картину колебаний можно представить не только в координатах (U,t), но и в координатах (U,\dot{U}) , или, как говорят, на фазовой плоскости. В этих координатах кривая незатухающих

колебаний ($\gamma=0$) имеет вид эллипса (или окружности - при одинаковых амплитудах U и \dot{U}), а картина реальных колебаний изображается сворачивающейся спиралью.

Схема подключения осциллографа для изучения колебаний на фазовой плоскости представлена на рис. 2. На вертикальный вход осциллографа подаётся напряжение U_C с конденсатора, а на горизонтальный — напряжение с резистора U_R . На рис. 3 приведена схема для исследования свободных колебаний в контуре типа рис. 1. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Г5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содер-

Рис. 2: Фазовый режим

жит диодный тиристор 1 D и ограничительный резистор R_1 . Импульсы заряжают конденсатор С. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\simeq 1$ МОм), так что его влиянием иа контур можно пренебречь.

Рис. 3: Схема экспериментальной установки

Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода «синхроимпульсы» генератора.

3 Ход работы

3.1 Измерение периодов свободных колебаний

Установим на магазине сопротивлений R=0 Ом и C=0.02 мкФ. Подобрав частоту развертки получим изображение наших колебаний на осциллографе. Из этого убедимся, что частота повторений, которую мы установили на генераторе ($\nu_0=100~\Gamma$ ц) будет равна частоте повторения импульсов.

Теперь изменяя ёмкость в диапазоне 0.02-0.9 мк Φ проведем измерения периодов свободных колебаний и сравним их с теоретическими данными по формуле

$$T=2\pi\sqrt{LC}$$

С, мкФ	х, дел	x_0 , дел	N периодов	T_{prac} , MC	T_{theor} , MC	$\sigma_{T_{prac}}$, MC
0,02	3,1	10	9	0,34	0,40	0,01
0,1	2	2	12	0,83	0,89	0,03
0,2	2	2	9	1,11	1,26	0,04
0,3	2	2	7,5	1,33	1,54	0,05
0,4	2	2	6,5	1,54	1,78	0,05
0,5	2	2	5,5	1,82	1,99	0,06
0,6	5	5	5,4	1,85	2,18	0,03
0,7	5	5	4,9	2,04	2,35	0,03
0,8	5	5	4,5	2,22	2,51	0,03
0,9	5	5	4,3	2,33	2,67	0,03

Таблица 1: Таблица данных измерения периода свободных колебаний и сравнение с теорией

Построим график зависимости $T_{prac} = f(T_{theor})$

Рис. 4: график зависимости $T_{prac} = f(T_{theor})$

Видим, что теория сходится с экспериментом, так как наклон аппроксимирующей прямой $k=0.872\pm0.008,$ что на 13% отличается от желаемого результата k=1

4 Измерение критического сопротивления и декремента затухания

Для начала рассчитаем емкость, при которой частота собственных колебаний контура будет равна $\nu_0=5~\mathrm{k\Gamma}$ ц.

$$C = \frac{1}{4\pi^2 \nu_0^2 L} \approx 5 \mathrm{H}\Phi$$

И для значений L и C рассчитаем R_{crit}

$$R_{crit}=2\pi\sqrt{rac{L}{C}}pprox12,5$$
кОм

Для этих значений L и C рассчитаем декремент затухания для каждого сопротивления из интервала $(0,1-0,3)R_{crit}$. Запишем все в таблицу.

R, кОм	U_1 , дел	σ_{U_1} , дел	U_2 , дел	$\sigma_{U_2},$ дел	θ	σ_{θ}	R_{Σ} , Om
0,93	3,7	0,2	0,7	0,2	0,56	0,06	941
1,18	3,7	0,2	0,4	0,2	0,74	0,06	1191
1,43	2,4	0,2	0,4	0,2	0,90	0,06	1441
1,68	3,7	0,2	0,5	0,2	1,00	0,09	1691
1,93	3,7	0,2	0,4	0,2	1,11	0,09	1941
2,18	3,7	0,2	0,3	0,2	1,26	0,09	2191
2,43	3,7	0,2	0,2	0,2	1,46	0,09	2441
2,79	3,7	0,2	0,6	0,2	1,82	0,19	2801

Таблица 2: Таблица измерения θ

Построим график зависимости $\frac{1}{\theta^2} = f(\frac{1}{R_\Sigma^2})$

Рис. 5: график зависимости Y(X)

В результате линейной аппрокцимации получаем $R_{crit} = (10.4 \pm 0.3)$ кОм.

Так же мы можем получить R_{crit} просто подбором, отслеживая момент перехода колебаний в апериодический режим. В этом случае получили $R_{crit} = 9.3$ кОм.

4.1 Свободные колебания на фазовой плоскости

Для фазовой диаграммы для двух значений посчитаем так же декремент затухания

R, кОм	U_1 , дел	U_2 , дел	θ	σ_{θ}
0,93	3,2	1	0,58	0,08
2,79	3,6	0,5	1,79	0,09

Таблица 3: Декремент затухания для фазовой диаграммы

Видим, что мы получили такой же декремент затухания как и при его подсчете из графика колебаний.

Добротность свободных колебаний в контуре

Добротность можно найти по формуле

$$Q = \frac{\pi}{\theta}$$

Найдем ее для $R_{max}=2.79$ кОм и для $R_{min}=0.93$ кОм из графика и фазовой диаграммы. Итоговые результаты запишем в таблицу.

Так же добротность можно найти и из теоретических соображений по формуле

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Результаты так же занесем в таблицу, и в итоге мы получаем эту таблицу со всеми данными из данного эксперимента, по которой мы можем сравнить все полученные значения

		<i>I</i> мΓπ	R_{crit} , кОм			Q		
		L_{coil} , ${ m M}\Gamma{ m H}$	Teop.	Подбор	Граф.	Teop.	Граф.	Спираль
ĺ	R_{max}	200 ± 0.2	12,5	9,3	$10,4 \pm 0,3$	2,3	1.7 ± 0.2	1.8 ± 0.1
	R_{min}		12,0	9,3	$10,4 \pm 0,3$	6,8	5.7 ± 0.6	5.4 ± 0.8

Таблица 4: Итоговые результаты эксперимента

Вывод

Как видно из таблицы 4, графический и спиральный методы измерения добротности в данном опыте показывают одинаковую точность: $\varepsilon_{graph}=11\%$, $\varepsilon_{spiral}=10\%$ помощью графика, потому что получаются наиболее близкие значения с меньшими погрешностями, однако результаты обоих способов отличаются от теоретичесих значений ($\varepsilon_{graph}=21\%$, $\varepsilon_{spiral}=20\%$)