2018-02-05 Depth Perception

PSY 525.001 · Vision Science · 2018 Spring

Rick Gilmore

2018-02-05 08:53:13

But what is the Fourier Transform? A visual introduction.

Discuss project proposal

Discuss project proposal

Depth perception

Discuss project proposal

Depth perception

Discuss Leopold & Logothetis, N. K. (1996).

Term project

http://psu-psychology.github.io/psy-525-vision-spring-2018/project-proposal.html

Perceiving surfaces orientation (spatial layout)

Slant, tilt, distance

Marr's 2.5 D sketch

Depth perception

"For those of a creationist bent, one could note that God must have loved depth cues, for He made so many of them"

Yonas & Granrud, 1985, p. 45

Kinetic

Binocular

Static (pictoral)

Sensorimotor

Monocular (kinetic, static, some sensorimotor) vs. binocular cues

Kinetic cues to depth

Kinetic depth effect (KDE)

By Nobuyuki Kayahara - Procreo Flash Design Laboratory, CC BY-SA 3.0, Link

This one is also bistable

Kinetic depth effect

3D structure perceived from temporal sequence of 2D (outline-only) views.

Reported in Wallach, H., & O'Connell, D. N. (1953). The Kinetic Depth Effect. *Journal of Experimental Psychology*, 45(4), 205.

Structure from motion

Archival Gibson - 1958 - Motion parallax and perceived depth

Motion parallax

The geometry of motion parallax

Where is fixation? What is the direction of motion?

PJ Treffner - Occlusion demos: Accretion and deletion

Texture accretion & deletion

Texture accretion & deletion

Task 1: Example of 100% Radial Optic Flow (no random dots) wit...

Optic flow

Optic flow and autonomous flight

Binocular cues to depth

Stereopsis

Perception of depth and 3D structure from stimulation of both eyes

Horopter

a line or surface containing all those points in space whose images fall on corresponding points of the retinas of the two eyes.

"Crossed" and Uncrossed" Retinal Disparity

The corresponding locations for the "closer" green stimulus exhibits positive retinal disparity

$$D = d_{temporal} - d_{nasal} > 0$$
(or "crossed" disparity)

The corresponding locations for the "farther" red stimulus exhibits negative retinal disparity

$$D = d_{temporal} - d_{nasal} < 0$$
(or "uncrossed" disparity)

Random-dot stereograms

Invented by Béla Julesz


```
library(imager)
n_pts <- 100
left_img <- array(round(runif(n=n_pts^2),0), dim = c(n_pts, n_pts))
plot(as.cimg(left_img), axes=FALSE)</pre>
```



```
right_img <- left_img
square_pix <- 20
center_square <- right_img[floor(n_pts/2-square_pix/2):floor(n_pts/2-plot(as.cimg(center_square), axes=FALSE)</pre>
```



```
X-x!<^`[2=00e=6f-X-x!<^`[2=00e=6f-X-x!<^`[2=00e=6f-X-x!<^`]
 [2] +ek | SaL | 751 | Frag | Fek | SaL | 751
n$OZ$JF#6y-2VKpU$OZ$JHE#6y-2VKp$OZK$JHE#y-2KVKp$OZK$JE#y-2#KVKp$OZK$JE#
 INLEKANO -- ABURANNELEKANOS'-ABURUNLEKLIN O'-ABURUNLEKLIN'-ABAURRUNLEKLIN'-ABAURUNR
 #Ma&7*pncFU|^
    CHe^&7*pncFU^
    ToncFU^
    ToncFU^
    ToncFU^
    ToncFU^
    ToncFU^
    ToncFU^
    ToncFU
        |>Bag>#|tPU1 (^}^>Bag>#tPU1 /^}^>Bag>#tPU1 /
  114z$ /-<k 71)x□ 14zz$ /-< 71)x□ 14zz$ /-< 71)x□ 1×4zz$ /-< 71)x□ 1x4zz$ /-<71 )x□ 1x4zz$/-< 71 )x
  (n'a)/«Evelq#î»/n'(qa)/«Evlq#î»/n'(qa)/«Evlq#î»/vn' qa)/«Elq(#î»/vn'(qa)/«Evlq#î
 #Bt[=u_KuAToX_?mBtX[=u=Ku*oX_?mBtX[=u\Ku&oX_?KmBtX[=u\KAoBX_?KmBtX[=\K[&oBX_
BSP+, and E. J. 70J CP+E, grad. J. 0J CP+E, and E. J. 0J CP+E, grad. J. Co. J. 
CBNBC CBCOCANDY CMSCC CBCOCANY CMSCC CBCOCANAY CMSCC CBCCANNAY CMSCC CBCC
w&naR (Q4S) 8s ' N / &n /aR (Q4S) 8s ' N / &n /aR (Q4S) /a8s ' N / &n /aR (1
d#EFGSq8X"=|b=Dv#EFGXSq8X"=|b=Dv#FGXSq8X|"=|b=Dv#FGXSq8X"=v|b=Dv#FGXS9XE"=v|b=
 Zhau)EsgM6h`UO(ZhauMsea(M6h`UO)ZhuMsEls(M6h`UO)ZhuMyElsM6h`UO/ZhuMsEl
 .,$*k#\?}^|BR9L|\_$*k#\\|}^|BR9L|\_$k#\\|$]^|BR9L|\_$k#\\|$||BR9L|\_$k#\\|$||}|BR9L
                    ${u\t+Sb\ Df#){F${u\t+Sb\ Df#)}{\$(u\t+Sb\ Df#)}\\$(u\t+Sb\ Df#)}\\$(u\t+Sb\ Df#)
                  $#$#C$^Wk#$\?\{#$#$#C$^Wk#$\?\{#$#$#C$^W
                   #956AKFVFET@.Lc #958AKFVFET@.Lc #956AKFVFET@.Lc #956AKFV
                  #Amwe,z,FC[,gbg\#Amwe,z,FC[,gbg\#Amwe,z,FC[,gbg\#Amwe,z,F
                                                       fw-5+Lza%ig`inNbfw-5+Lza%ig: uNbfw-5+Lza%ig
```

Auto-stereogram

Can't really fuse these from *projected* image. Why?

The "correspondence" problem

How do retinal image points/edges correspond to object points/edges?

Why can it take time to "fuse" stereograms?

Marr-Poggio's network-based formulation of the problem:

Assumptions:

- 1. Surface opacity / match uniqueness
- 2. Surface continuity
- 3. Match compatibility

INVERSE PROJECTION

Marr-Poggio algorithm for solving

Use: surface opacity & surface continuity heuristics

Iterate until a best-fitting solution is found

Da Vinci stereopsis

Different eyes see different portions of surfaces

Geometry of self-motion, object-motion, and disparity

Static (pictoral) cues to depth

Linear Perspective

Linear perspective

Linear perspective + elevation over horizon = Ponzo illusion

Relative size

Size constancy

Size constancy

Ames room

https://en.wikipedia.org/wiki/Ames_room

Aerial perspective

Defocus blur

By Joaquim Alves Gaspar - Own work, CC BY-SA 2.5, Link

Interposition, occultation

Texture gradients

By Gustave Caillebotte - 5wEUCOlEf-EaVQ at Google Cultural Institute maximum zoom level, Public Domain, Link

FIGURE 2.8: Examples of texture gradient. (From Gibson, 1950.)

http://psychsciencenotes.blogspot.com/2011/08/mirrors-are-literally-windows-to.html

Lighting, shading, & shadow cues

Cast Shadows

Sensorimotor cues to depth

Palmer's "ocular" cues

Vergence

Eyes (typically) *converge* on a 3D point. Angle of vergence related to 3D geometry.

Accommodation

Vergence, pupil diameter change, + accommodation

Vestibular system detects head rotation, translation

Vestibular signals speed, direction of rotation, translation

More motion parallax with head translation than rotation

Comparing the cues

Integrating the cues

Welchman, A. E. (2016). The human brain in depth: how we see in 3D. *Annual Review of Vision Science*. annualreviews.org. Retrieved from http://www.annualreviews.org/doi/abs/10.1146/annurev-vision-111815-114605

Heuristics

About world, illumination conditions

Alternative view:

These aren't cues; they are information. Animals don't "reconstruct" 3D space; they perceive it directly.

Amazing T-Rex Illusion!

Break time

Leopold & Logothetis, N. K. (1996)

Core phenomena

- Binocular rivalry
- Neural basis of binocular rivalry
- Neural basis of "conscious" visual experience

Next time...

Perceptual organization

Size, shape, orientation, & position

Slides created via the R package **xaringan**. Rendered HTML and supporting files are pushed to GitHub where GitHub's 'pages' feature is used to host and serve the course website.