

Europäisches Patentamt

European Patent Office

Office européen des brevets

11 Veröffentlichungsnummer:

0 311 892

A1

(12

EUROPÄISCHE PATENTANMELDUNG

- (1) Anmeldenummer: 88116525.2
- 2 Anmeldetag: 06.10.88

(a) Int. Cl.4: C07D 417/06 , C07D 277/24 , C07D 277/42 , C07D 417/10 ,

- Priorität: 14.10.87 DE 3734694 06.09.88 DE 3830240
- Veröffentlichungstag der Anmeldung: 19.04.89 Patentblatt 89/16
- Benannte Vertragsstaaten:
 BE CH DE FR GB IT LI NL

7) Anmelder: BAYER AG
Konzernverwaltung RP Patentabteilung
D-5090 Leverkusen 1 Bayerwerk(DE)

A01N 43/78

© Erfinder: Krämer, Wolfgang, Dr. Rosenkranz 25
D-5093 Burscheid 2(DE)
Erfinder: Regel, Erik, Dr.
Bergerheide 26
D-5600 Wuppertal 1(DE)

D-5600 Wuppertal 1(DE)
Erfinder: Büchel, Karl Helnz, Prof. Dr.
Dabringhausener Strasse 42
D-5093 Burscheid(DE)
Erfinder: Dutzmann, Stefan, Dr.

Leinenweberweg 33
D-4000 Düsseldorf 13(DE)
Erfinder: Brandes, Wilhelm, Dr.
Elchendorffstrasse 3
D-5653 Leichlingen(DE)
Erfinder: Lürssen, Klaus, Dr.
August-Klerspel-Strasse 145

D-5060 Bergisch-Gladbach 2(DE)

- Subtitulerte Azolylmethylcarbinole.
- Neue substituierte Azolylmethylcarbinole der Formel

EP 0 311 892 A1

in welcher

Ar für gegebenenfalls substituiertes Aryl steht, Z für Stickstoff oder eine CH-Gruppe steht und

R für Alkyl, Dialkylaminoalkyl, Alkenyl, Alkonyl, Alkonyalkyl, gegebenenfalls substituiertes Aralkyl, gegebenenfalls substituiertes Aryloxyalkyl, gegebene

steht, worin

R1 für Wasserstoff, Alkyl, Alkenyl, Alkinyl oder Cycloalkyl steht und

R² für Wasserstoff, Alkyl, Alkoxyalkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkyl, für gegebenenfalls substituiertes Aryl oder für gegebenenfalls substituiertes Aralkyl steht oder

R¹ und R² gemeinsam mit dem Stickstoffatom, an welches sie gebunden sind, für einen gegebenenfalls substituierten Heterocyclus stehen, der gegebenenfalls weitere Heteroatome enthalten kann, sowie deren Säureadditions-Salze und Metallsalz-Komplexe,

ein Verfahren zur Herstellung der neuen Wirkstoffe und deren Verwendung als Fungizide und Pflanzenwachstumsregulatoren.

Neue Zwischenprodukte, ein Verfahren zu deren Herstellung und deren Verwendung zur Synthese von Wirstoffen der Formel (I).

Substituierte Azolyimethylcarbinole

Die Erfindung betrifft neue substitulerte Azolylmethylcarbinole, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung als Fungizide und Pflanzenwachstumsregulatoren.

Es ist bekannt, daß bestimmte substituierte Azolylmethylcarbinole gute fungizide Eigenschaften besitzen (vgl. DE-OS 3 413 173). So lassen sich zum Beispiel 1-(4-Chlorphenyl)-1-(4,5-dimethyl-thiazol-2-yl)-2-(1,2,4-triazol-1-yl)-ethanol und 1-(2,4-Dichlorphenyl)-1-(4,5-dimethyl-thiazol-2-yl)-2-(1,2,4-triazol-1-yl)-ethanol zur Bekämpfung von Pilzen verwenden. Die Wirksamkeit dieser Verbindungen ist jedoch insbesondere bei niedrigen Aufwandmengen und Konzentrationen nicht in allen Anwendungsgebleten völlig zufriedenstellend. Außerdem ist über eine pflanzenwuchsregulierende Wirksamkeit dieser vorbekannten Stoffe nichts bekannt.

Es wurden nun neue substituierte Azolylmethylcarbinole der Formel

10

15

20

in welcher

Ar für gegebenenfalls substituiertes Aryl steht,

Z für Stickstoff oder eine CH-Gruppe steht und

R für Alkyl, Dialkylaminoalkyl, Alkenyl, Alkonyl, Alkoxyalkyl, gegebenenfalls substituiertes Aralkyl, gegebenenfalls substituiertes Aryloxyalkyl, gegebene

30

steht, worin

R1 für Wasserstoff, Alkyl, Alkenyl, Alkinyl oder Cycloalkyl steht und

R² für Wasserstoff, Alkyl, Alkoxyalkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkyl, für gegebenenfalls substituiertes Aryl oder für gegebenenfalls substituiertes Aralkyl steht oder

R¹ und R² gemeinsam mit dem Stickstoffatom, an welches sie gebunden sind, für einen gegebenenfalls substituierten Heterocyclus stehen, der gegebenenfalls weitere Heteroatome enthalten kann, sowie deren Säureadditions-Salze und Metallsalz-Komplexe gefunden.

Die substituierten Azolylmethylcarbinole der Formel (I) enthalten ein asymmetrisch substituiertes Kohlenstoffatom und können deshalb in den beiden optischen Isomerenformen oder auch als isomerengemische unterschiedlicher Zusammensetzung anfallen. Die Erfindung betrifft sowohl die Racemate als auch die einzelnen Isomeren und deren Gemische.

Weiterhin wurde gefunden, daß man die neuen substituierten Azolylmethylcarbinole der Formel (I) sowie deren Säureadditions-Salze und Metallsalz-Komplexe erhält, wenn man substituierte 2-Bromethanole der Formel

in welcher
Ar und R die angegebene Bedeutung haben,
mit Azolen der Formel

10

5

in welcher

Z die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Reaktionshilfsmittels sowie gegebenenfalls in Gegenwart eines Phasentransferkatalysators umsetzt und gegebenenfalls anschließend eine Säure oder ein Metallsalz addiert.

Schließlich wurde gefunden, daß die neuen substituierten Azolylmethylcarbinole der Formel (I) sowie deren Säureadditions-Salze und Metallsalz-Komplexe sehr gute fungizide und pflanzenwachstumsregulierende Eigenschaften besitzen.

Überraschenderweise zeigen die erfindungsgemäßen Wirkstoffe eine erheblich bessere fungizide Wirksamkeit als 1-(4-Chlorphenyl)-1-(4,5-dimethyl-thiazol-2-yl)-2-(1,2,4-triazol-1-yl)-ethanol und 1-(2,4-Dichlorphenyl)-1-(4,5-dimethyl-thiazol-2-yl)-2-(1,2,4-triazol-1-yl)-ethanol, welches konstitutionell ähnliche, vorbekannte Wirkstoffe gleicher Wirkungsrichtung sind.

Die erfindungsgemäßen substituierten Azolylmethylcarbinole sind durch die Formel (I) allgemein definiert. Bevorzugt sind Verbindungen der Formel (I), in denen

Ar für Phenyl steht, welches einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, durch geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen,

35 Z für Stickstoff oder eine CH-Gruppe steht und

R für geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Dialkylaminoalkyl mit 1 bis 4 Kohlenstoffatomen in jeder Alkylgruppe, geradkettiges oder verzweigtes Alkenyl mit 3 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkinyl mit 3 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxy alkyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil und 1 bis 6 Kohlenstoffatomen im Alkyteil steht, oder

R für Aralkyl mit 1 bis 4 Kohlenstoffatomen in Alkylteil und 6 bis 10 Kohlenstoffatomen im Arylteil steht, wobei der Arylteil einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Nitro, Phenyl, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor-oder Bromatomen, durch geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, oder durch einen über N verknüpften fünf- oder sechsgliedrigen Stickstoffheterocyclus, der gegebenenfalls weitere Heteroatome, wie Stickstoff, Sauerstoff und/oder Schwefel, enthalten kann und einfach oder mehrfach, gleichartig oder verschieden substitulert sein kann durch geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxycarbonyl mit 1 bis 4 Kohlenstoffato men im Alkoxyteil und/oder durch Alkylcarbamoyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und/oder durch Alkylcarbamoyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und/oder durch Alkylcarbamoyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und/oder durch Alkylcarbamoyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und/oder durch Alkylcarbamoyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und/oder durch Alkylcarbamoyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und/oder durch Alkylcarbamoyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und/oder durch Alkylcarbamoyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und/oder durch Alkylcarbamoyl mit

R für Aryloxyalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil und 6 bis 10 Kohlenstoffatomen im Arylteil steht, wobei der Arylteil einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Nitro, Phenyl, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen,

geradkettiges oder verzweigtes Alkoxy mit 1 bls 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, durch geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, oder durch einen über N verknüpften fünf- oder sechsgliedrigen Stickstoffheterocyclus, der gegebenenfalls weitere Heteroatome, wie Stickstoff, Sauerstoff und/oder Schwefel, enthalten kann und einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, oder

R für Aryl mit 6 bis 10 Kohlenstoffatomen steht, wobei der Aryl-Rest einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Nitro, Phenyl, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxy mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor-oder Bromatomen, durch geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, und/oder durch geradkettiges oder verzweigtes Halogenalkylithio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, oder durch einen über N verknüpften fünf- oder sechsgliedrigen Stickstoffheterocyclus, der gegebenenfalls weitere Heteroatome, wie Stickstoff, Sauerstoff und/oder Schwefel, enthalten kann und einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und/oder durch Alkylcarbamoyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, oder R für einen Rest der Formel

30

steht, worin

R¹ für Wasserstoff, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkenyl mit 2 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkinyl mit 2 bis 6 Kohlenstoffatomen oder für Cycloalkyl mit 3 bis 7 Kohlenstoffatomen steht und

R² für Wasserstoff, geradkettiges oder verzweigtes Alkyl mit 1 bis 16 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxyalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil und 1 bis 4 Kohlenstoffatomen im Alkylteil, geradkettiges oder verzweigtes Alkenyl mit 2 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkinyl mit 2 bis Kohlenstoffatomen, Cycloalkyl mit 3 bis 7 Kohlenstoffatomen, Cycloalkylalkyl mit 3 bis 7 Kohlenstoffatomen im Cycloalkylteil und 1 bis 4 Kohlenstoffatomen im Alkylteil, oder für Phenyl steht, das einfach oder mehrfach, gleichartig oder verschieden substituiert seln kann durch Halogen, insbesondere Fluor, Chlor und Brom, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor-oder Bromatomen, oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, oder

R² für Aralkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil und 6 bis 10 Kohlenstoffatomen im Arylteil steht, wobei der Arylteil einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, insbesondere Fluor, Chlor und Brom, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlen stoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor-oder Bromatomen, durch geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen

oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, wie Fluor-, Chlor- oder Bromatomen, oder

R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden slnd, für einen gesättigten Heterocyclus mit 5 bis 7 Ringgliedem stehen, wobei der Heterocyclus ein weiteres Heteroatom, wie Stickstoff,
Sauerstoff oder Schwefel, enthalten kann und wobei der Heterocyclus einfach oder mehrfach, gleichartig
oder verschieden substituiert sein kann durch geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Hydroxyalkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder
verzweigtes Alkanoyl mit 1 bis 4 Kohlenstoffatomen im Alkanteil und/oder durch Alkanoyloxyalkyl mit 1 bis
4 Kohlenstoffatomen im Alkanteil und 1 bis 4 Kohlenstoffatomen im Oxyalkylteil.

Besonders bevorzugt sind Verbindungen der Formel (I), in denen

Ar für Phenyl steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Trifluormethyl, Trifluormethoxy oder Trifluormethylihio,

Z für Stickstoff oder eine CH-Gruppe steht und

R für Methyl, Ethyl, n- oder i-Propyl, n-, i-, s-oder t-Butyl, Dimethylaminopropyl, Allyl, n- oder i-Butenyl, Propargyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxymethyl, n- oder i-Propoxymethyl, n- oder i-Propoxyethyl oder für Benzyl, Phenylethyl, Phenoxymethyl oder Phenyl steht, wobei jeder dieser Benzyl-, Phenylethyl-, Phenoxymethyl- oder Phenyl-Reste einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Trifluormethyl, Trifluormethoxy, Trifluormethylthio, Phenyl, gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Methyl, Ethyl, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbamoyl oder Ethylcarbamoyl substituiertes Triazolyl, gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Methyl, Ethyl, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbamoyl oder Ethyl-25 carbamoyl substituiertes Imidazolyl, gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Methyl, Ethyl, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbamoyl oder Ethylcarbamoyl substituiertes Pyrazolyl, gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Methyl, Ethyl, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbamoyl oder Ethylcarbamoyl substituiertes Pyrrolidinyl, gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Methyl, Ethyl, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbamoyl oder Ethylcarbamoyl substituiertes Piperidinyl, gegebenenfalls einfach bis dreifach. gleichartig oder verschieden durch Methyl, Ethyl, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbamoyl oder Ethylcarbamoyl substituiertes Morpholinyl und/oder durch gegebenenfalls einfach bls dreifach, gleichartig oder verschieden durch Methyl, Ethyl, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbamoyl oder Ethylcarbamoyl substituiertes Piperazinyl, oder

35 R für einen Rest der Formel

40

steht, worin

R¹ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Allyl, n-oder i-Butenyl, Propargyl, n- oder i-Butinyl, Cyclopentyl oder Cyclohexyl steht und

R² für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Hexyl oder n-Dodecyl, Methoxymethyl, Methoxymethyl, Ethoxymethyl, Ethoxymethyl, Methoxypropyl, Ethoxypropyl, Allyl, n- oder i-Butenyl, Propargyl, n- oder i-Butinyl, Cyclopentyl, Cyclopentyl-methyl, Cyclohexylmethyl oder für Phenyl steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s-oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Trifluormethyl, Trifluormethoxy und/oder Trifluormethylthio, oder

R² für Benzyl oder Phenethyl steht, wobei jeder dieser Reste im Phenyltell einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl, n- oder i-Propol, n-, i-, s-oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Trifluormethyl, Trifluormethoxy und/oder Trifluormethylthio, oder

R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für Pyrrolidinyl, Piperidinyl, Hexahydroazepinyl, Morpholinyl, Thiamorpholinyl oder 1,4-Piperazinyl stehen, wobei jeder der zuvor genannten Reste einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Methyl, Ethyl, Hydroxymethyl, Acetyl, Propionyl und/oder Acetoxymethyl.

Ganz besonders bevorzugt sind Verbindungen der Formel (I), in denen

Ar für gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Fluor, Chlor, Brom, Methyl, Methoxy, Trifluormethyl, Trifluormethoxy und/oder Trifluormethylthio substituiertes Phenyl steht,

Z für Stickstoff oder eine CH-Gruppe steht und

R für Methyl, Ethyl, n-Propyl, iso-Propyl, n-, i-, s- oder t-Butyl, Dimethylaminopropyl, Allyl, Propargyl, Methoxymethyl, Benzyl, Phenoxymethyl oder Phenyl steht, wobei jeder dieser Benzyl-, Phenoxymethyl-und Phenyl-Reste einfach oder zweifach, gleichartig oder verschieden substitulert sein kann durch Fluor, Chlor, Brom, Methyl, Methoxy, Trifluormethyl, Trifluormethoxy, Trifluormethylthio und/oder Phenyl, oder durch gegebenenfalls einfach oder zweifach, gleichartig oder verschieden durch Methyl, Methoxycarbonyl, Ethoxycarbonyl oder Methylcarbamoyl substituiertes Triazolyl, gegebenenfalls einfach oder zweifach, gleichartig oder verschieden durch Methyl, Methoxycarbonyl, Ethoxycarbonyl oder Methylcarbamoyl substituiertes Pyrazolyl, gegebenenfalls einfach oder zweifach, gleichartig oder verschieden durch Methyl, Methoxycarbonyl, Ethoxycarbonyl oder Methylcarbamoyl substituiertes Piperidinyl, gegebenenfalls einfach oder zweifach, gleichartig oder verschieden durch Methyl, Methoxycarbonyl, Ethoxycarbonyl, Ethoxy

20

steht, worin

R1 für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl oder Cyclohexyl steht,

R² für Wasserstoff, Methyl, Ethyl, n- oder I-Propyl, i-Butyl, n-Butyl, n-Hexyl oder n-Dodecyl, Methoxymethyl, Methoxyethyl, Methoxypropyl, Ethoxymethyl, Ethoxyethyl, Allyl, Cyclohexyl, Cyclopentylmethyl, Cyclohexylmethyl oder für gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Fluor, Chlor, Brom, Methyl, Methoxy, Trifluormethyl, Trifluormethoxy und/oder Trifluormethylthio substituiertes Phenyl steht oder

R² für Benzyl oder Phenethyl steht, wobei jeder dieser Reste im Phenylteil einfach oder zweifach, gleich oder verschieden durch Fluor, Chlor, Brom, Methyl, Methoxy, Trifluormethyl, Trifluormethoxy und/oder Trifluormethylthio substituiert sein kann, oder

R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für gegebenenfalls einfach bis dreifach durch Methyl substituiertes Pyrrolidinyl, gegebenenfalls einfach bis dreifach durch Methyl substituiertes Piperidinyl, gegebenenfalls einfach bis dreifach durch Methyl substituiertes Morpholinyl oder für gegebenenfalls am Stickstoff durch Methyl, Ethyl, Acetyl oder Propionyl substituiertes 1,4-Piperazinyl stehen.

Bevorzugte erfindungsgemäße Verbindungen sind auch Additionsprodukte aus Säuren und denjenigen substituierten Azolylmethylcarbinolen der Formel (I), in denen die Substituenten Ar, R und Z die Bedeutungen haben, die bereits vorzugsweise für diese Substituenten genannt wurden.

Zu den Säuren die addiert werden können, gehören vorzugsweise Halogenwasserstoffsäuren, wie z.B. Chlor wasserstoffsäure und Bromwasserstoffsäure, insbesondere Chlorwasserstoffsäure, ferner Phosphorsäure, Salpetersäure, Schwefelsäure, mono-, bi- und trifunktionelle Carbonsäuren und Hydroxycarbonsäuren, wie z.B. Essigsäure, Maleinsäure, Bernsteinsäure, Fumarsäure, Weinsäure, Zitronensäure, Salicylsäure, Sorbinsäure und Milchsäure, Sulfonsäuren, wie z.B. p-Toluolsulfonsäure und 1,5-Naphthalindisulfonsäure sowie Saccharin oder Thiosaccharin.

Außerdem bevorzugte erfindungsgemäße Verbindungen sind Additionsprodukte aus Salzen von Metallen der II. bis IV. Haupt- und der I. und II. sowie IV. bis VIII. Nebengruppe des Periodensystems der Elemente und denjenigen substituierten Azolylmethylcarbinolen der Formel (I), in denen die Substituenten Ar, R und Z die Bedeutungen haben, die bereits vorzugsweise für diese Substituenten genannt wurden.

Hierbei sind Salze des Kupfers, Zinks, Mangans, Magnesiums, Zinns, Eisens und des Nickels besonders bevorzugt. Als Anionen dieser Salze kommen solche in Betracht, die sich von solchen Säuren ableiten, die zu pflanzenverträglichen Additionsprodukten führen. Besonders bevorzugte derartige Säuren sind in diesem Zusamménhang die Halogenwasserstoffsäuren, wie z.B. die Chlorwasserstoffsäure und die Bromwasserstoffsäure, Salpetersäure und Schwefelsäure.

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden substituierten Azolylmethylcarbinole der allgemeinen Formel (I) genannt:

Tabelle 1:

Ar-c N R (I)

Ar R Z

$$c1 - (CH_2)_3 - N(CH_3)_2$$
 N

$$C1$$
 \longrightarrow N N

$$F \leftarrow \qquad -(CH_2)_2 - CH_3$$
 N

Tabelle 1 (Fortsetzung)

λr R Z 10 15 20 N 25 снз N CH3 30 N 35 40 N N

Verwendet man beispielsweise 1-(4-Chlorphenyl)-1-(2-methylthiazol-4-yl)-2-bromethanol und 1,2,4-Triazol als Ausgangsstoffe, so läßt sich der Reaktionsablauf des erfindungsgemäßen Verfahrens durch das folgende Formelschema darstellen:

55

50

۲.

Die zur Durchführung des erfindungsgemäßen Verfahrens als Ausgangsstoffe benötigten substituierten 2-Bromethanole sind durch die Formel (II) allgemein definiert. In dieser Formel (II) stehen Ar und R vorzugsweise für diejenigen Reste, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) als bevorzugt für diese Substituenten genannt wurden.

Die substituierten 2-Bromethanole der Formel (II) sind noch nicht bekannt. Man erhält sie, wenn man Dibromacyloine der Formel

5

10

15

20

25

30

35

40

45

in welcher Ar die oben angegebene Bedeutung hat, mit Thiocarbonsäureamiden der Formel

in welcher

R die oben angegebene Bedeutung hat,

zunächst in Gegenwart einer Base, wie Natriumhydrogencarbonat, sowie in Gegenwart eines Verdünnungsmittels, wie Ethanol, umsetzt und anschließend in Gegenwart einer Säure, wie p-Toluolsulfonsäure, sowie in Gegenwart eines Verdünnungsmittels, wie Dichlormethan, bei Temperaturen zwischen 0 °C umsetzt (vgl. auch die Herstellungsbeispiele).

Dibromacyloine der Formel (IV) sind bekannt (vgl. Helvetica Chim. Acta 29, 95-101 [1946]). Sie lassen sich herstellen, wenn man Dibromdiacetyl (vgl. Liebigs Ann. Chem. 249, 207 [1888]) mit Aromaten der Formel

Ar-H (VI)

in welcher

Ar die oben angegebene Bedeutung hat,

10

in üblicher Art und Weise durch Friedel-Crafts-Reaktion in Gegenwart eines Katalysators, wie Aluminium-Illchlorid, bei Temperaturen zwischen 0 °C und 80 °C umsetzt (vgl. auch die Herstellungsbeispiele).

Thiocarbonsäureamide der Formel (V) und Aromaten der Formel (VI) sind allgemein bekannte Verbindungen der organischen Chemie.

Die zur Durchführung des erfindungsgemäßen Verfahrens weiterhin als Ausgangsstoffe benötigten Azole sind durch die Formel (III) allgemein definiert. In dieser Formel (III) steht Z vorzugsweise für diejenigen Reste, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) als bevorzugt für diesen Substituenten genannt wurden.

Die Azole der Formei (III) sind ebenfalls allgemein bekannte Verbindungen der organischen Chemie.

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens kommen inerte organische Lösungsmittel infrage. Hierzu gehören insbesondere aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Benzin, Benzol, Toluol, Xylol, Petrol ether, Hexan, Cyclohexan, Ether, wie Diethylether, Dioxan, Tetrahydrofuran oder Ethylenglykoldimethyl- oder -diethylether, Nitrile, wie Acetonitril oder Propionitril, Amide, wie Dimethylformamid, Dimethylacetamid, N-Methylformamilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid, oder Sulfoxide, wie Dimethylsulfoxid, oder Alkohole, wie Methanol, Ethanol, Propanol oder Butanol.

Das erfindungsgemäße Verfahren wird vorzugsweise in Gegenwart eines geeigneten Reaktionshilfsmittels durchgeführt. Als solche kommen alle üblicherweise verwendbaren anorganischen und organischen Basen in Frage. Vorzugsweise verwendet man Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -carbonate oder -hydrogencarbonate, wie beispielsweise Natriumhydrid, Natriumamid, Natriumhydroxid, Natriummethylat, Natriumethylat, Kalium-t-butylat, Natriumcarbonat oder Natriumhydrogencarbonat, oder auch tertiäre Amine, wie beispielsweise Triethylamin, N,N-Dimethylanilin, Pyridin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

Das erfindungsgemäße Verfahren kann gegebenenfalls auch in einem Zweiphasensystem, wie beispielsweise Wasser/Toluol gegebenenfalls in Gegenwart eines Phasentransferkatalysators, durchgeführt werden. Als Beispiele für solche Katalysatoren seien genannt: Tetrabutylammoniumiodld, Tetrabutylammoniumbromid, Tributylmethylphosphoniumbromid, Trimethyl-C₁₃/C₁₅-alkylammoniumchlorid, Dibenzyldimethyl-ammoniummethylsulfat, Dimethyl-C₁₂/C₁₄-alkyl-benzylammoniumchlorid, Tetrabutylammoniumhydroxid, 15-Krone-5, 18-Krone-6, Triethylbenzylammoniumchlorid, Trimethylbenzylammoniumchlorid.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 20 °C und 200 °C, vorzugsweise bei Temperaturen zwischen 40 °C und 140 °C.

Zur Durchführung des erfindungsgemäßen Verfahrens setzt man pro Mol an substituiertem 2-Bromethanol der Formel (II) im allgemeinen 1,0 bis 2,0 Mol, vorzugsweise 1,0 bis 1,5 Mol an Azol der Formel (III) und 1,0 bis 2,0 Mol, vorzugsweise 1,0 bis 1,5 Mol an Reaktionshilfsmittel ein.

Die Reaktionsdurchführung, Aufarbeitung und Isolierung der Reaktionsprodukte erfolgt nach allgemein üblichen Methoden.

Die nach dem erfindungsgemäßen Verfahren erhältlichen Verbindungen der Formel (I) können in Säureadditions-Salze bzw. Metallsalz-Komplexe überführt werden.

Zur Herstellung von Säureadditions-Salzen der Verbindungen der Formel (I) kommen vorzugsweise diejenigen Säuren in Frage, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Säureadditions-Salze als bevorzugte Säuren genannt wurden.

Die Säureadditions-Salze der Verbindungen der Formel (I) können in einfacher Weise nach üblichen Salzbildungsmethoden, z.B. durch Lösen einer Verbindung der Formel (I) in einem geeigneten inerten Lösungsmittel und Hinzufügen der Säure, z.B. Chlorwasserstoffsäure, erhalten werden und in bekannter Welse, z.B. durch Abfiltrieren, isoliert und gegebenenfalls durch Waschen mit einem inerten organischen Lösungsmittel gereinigt werden.

Zur Herstellung von Metallsalz-Komplexen der Verbindungen der allgemeinen Formel (I) kommen vorzugsweise diejenigen Salze von Metallen in Frage, die bereits weiter oben beschrieben wurden.

Die Metallsalz-Komplexe von Verbindungen der Formel (I) können in einfacher Weise nach üblichen Verfahren erhalten werden, so z.B. durch Lösen des Metallsalzes in Alkohol, z.B. Ethanol, und Hinzufügen zu Verbindungen der Formel (I). Man kann Metallsalz-Komplexe in bekannter Weise, z.B. durch Abfiltrieren, isolieren und gegebenenfalls durch Umkristallisation reinigen.

Die erfindungsgemäßen Wirkstoffe weisen eine starke mikrobizide Wirkung auf und können als Fungizide zur Bekämpfung von unerwünschten Mikroorganismen eingesetzt werden.

Fungizide Mittel Im Pflanzenschutz werden eingesetzt zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes.

Beispielhaft aber nicht begrenzend selen einige Erreger von pilzlichen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:

Pythium-Arten, wie beispielsweise Pythium ultimum;

Phytophthora-Arten, wie beispielsweise Phytophthora infestans:

5 Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cubensis:

¥

Plasmopara-Arten, wie beispielsweise Plasmopara viticola;

Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae;

Erysiphe-Arten, wie beispielsweise Erysiphe graminis;

10 Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea;

Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha:

Venturia-Arten, wie beispielsweise Venturia inaequalis;

Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. graminea

(Konidienform: Drechslera, Syn: Helminthosporium);

Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus

(Konidienform: Drechslera, Syn: Helminthosporium);

Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;

Puccinia-Arten, wie belspielsweise Puccinia recondita;

Tilletia-Arten, wie beispielsweise Tilletia caries;

20 Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;

Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;

Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;

Fusarium-Arten, wie beispielsweise Fusarium culmorum;

Botrytis-Arten, wie beispielsweise Botrytis cinerea;

Septoria-Arten, wie beispielsweise Septoria nodorum;

Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum:

Cercospora-Arten, wie beispielsweise Cercospora canescens;

Alternaria-Arten, wie beispielsweise Alternaria brassicae;

Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.

Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.

Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie beispielsweise gegen den Erreger der Halmbruchkrankheit bei Getreide (Pseudocercosporella herpotrichoides) oder gegen den Erreger der Blattfleckenkrankheit der Gerste (Pyrenophora teres) oder gegen den Erreger der Blattfleckenkrankheit des Weizens (Cochliobolus sativus) oder gegen den Erreger der Braunfleckigkeit des Weizens (Lepthosphaeria nodorum), gegen Mehltauarten sowie zur Bekämpfung von Krankheiten im Obst- und Gemüseanbau, wie belspielsweise gegen den Erreger des echten Gurkenmehltaus (Sphaerotheca fuliginea) oder gegen den Erreger des Apfelschorfes (Venturia inaequalis), gegen Cercospora- und Uromyces-Arten wie beispielsweise gegen den Erreger des Bohnenrostes (Uromyces appendiculatus) sowie zur Bekämpfung von Reiskrankheiten, wie beispielsweise gegen den Erreger der Relsfleckenkrankheit (Pyricularia oryzae) einsetzen.

Im Materialschutz lassen sich die erfindungsgemäßen Wirkstoffe zum Schutz von technischen Materialien einsetzen. Unter technischen Materialien sind in diesem Zusammenhang nicht lebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch die erfindungsgemäßen Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papler, Karton, Textilien, Leder, Holz, Anstrichmittel, Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Kühlkreisläufe genannt, besonders bevorzugt Holz.

Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, Insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten), sowie gegen Schleimorganismen und Algen.

Darüberhinaus greifen die erfindungsgemäßen Wirkstoffe in den Metabolismus der Pflanzen ein und

können deshaib als Wachstumsregulatoren eingesetzt werden.

Für die Wirkungsweise von Pflanzenwachstumsregulatoren gilt nach der bisherigen Erfahrung, daß ein Wirkstoff auch mehrere verschledenartige Wirkungen auf Pflanzen ausüben kann. Die Wirkungen der Stoffe hängen im wesentlichen ab von dem Zeitpunkt der Anwendung bezogen auf das Entwicklungsstadium der Pflanze sowie von den auf die Pflanzen oder ihre Umgebung ausgebrachten Wirkstoffmengen und von der Art der Applikation. In jedem Fall sollen Wachstumsregulatoren die Kulturpflanzen in bestimmter gewünschter Weise beeinflussen.

Pflanzenwuchsregulierende Stoffe können zum Beispiel zur Hemmung des vegetativen Wachstums der Pflanzen eingesetzt werden. Eine derartige Wuchshemmung Ist unter anderem bei Gräsern von wirtschaftlichem Interesse, denn dadurch kann die Häufigkeit der Grasschnitte in Ziergärten, Park- und Sportanlagen, an Straßenrändern, auf Flughäfen oder in Obstanlagen reduziert werden. Von Bedeutung ist auch die Hemmung des Wuchses von krautigen und holzigen Pflanzen an Straßenrändern und in der Nähe von Pipelines oder Überlandleitungen oder ganz allgemein in Bereichen, in denen ein starker Zuwachs der Pflanzen unerwünscht ist.

Wichtig ist auch die Anwendung von Wachstumsregulatoren zur Hemmung des Längenwachstums von Getreide. Hierdurch wird die Gefahr des Umknickens ("Lagerns") der Pflanzen vor der Ernte verringert oder vollkommen beseitigt. Außerdem können Wachstumsregulatoren bei Getreide eine Halmverstärkung hervorrufen, die ebenfalls dem Lagern entgegenwirkt. Die Anwendung von Wachstumsregulatoren zur Halmverkürzung und Halmverstärkung erlaubt es, höhere Düngermengen auszubringen, um den Ertrag zu steigern, ohne daß die Gefahr besteht, daß das Getreide lagert.

Eine Hemmung des vegetativen Wachstums ermöglicht bei vielen Kulturpflanzen eine dichtere Anpflanzung, so daß Mehrerträge bezogen auf die Bodenfläche erzielt werden können. Ein Vorteil der so erzielten kleineren Pflanzen ist auch, daß die Kultur leichter bearbeitet und beerntet werden kann.

Eine Hemmung des vegetativen Wachstums der Pflanzen kann auch dadurch zu Ertragssteigerungen führen, daß die Nährstoffe und Assimilate In stärkerem Maße der Blüten-und Fruchtbildung zugute kommen als den vegetativen Pflanzenteilen.

Mit Wachstumsregulatoren läßt sich häufig auch eine Förderung des vegetativen Wachstums erzielen. Dies ist von großem Nutzen, wenn die vegetativen Pflanzenteile geerntet werden. Eine Förderung des vegetativen Wachstums kann aber auch gleichzeitig zu einer Förderung des generativen Wachstums führen, dadurch daß mehr Assimilate gebildet werden, so daß mehr oder größere Früchte entstehen.

Ertragssteigerungen können in manchen Fällen durch einen Eingriff in den pflanzlichen Stoffwechsel erreicht werden, ohne daß sich Änderungen des vegetativen Wachstums bemerkbar machen. Ferner kann mit Wachstumsregulatoren eine Veränderung der Zusammensetzung der Pflanzen erreicht werden, was wiederum zu einer Qualitätsverbesserung der Ernteprodukte führen kann. So ist es beispielsweise möglich, den Gehalt an Zucker in Zuckerrüben, Zukkerrohr, Ananas sowie in Zitrusfrüchten zu erhöhen oder den Proteingehalt In Soja oder Getreide zu steigern. Auch ist es beispielsweise möglich, den Abbau erwünschter Inhaltsstoffe, wie z.B. Zucker in Zuckerrüben oder Zuckerrohr, mit Wachstumsregulatoren vor oder nach der Emte zu hemmen. Außerdem läßt sich die Produktion oder der Abfluß von sekundären Pflanzeninhaltsstoffen positiv beeinflussen. Als Beispiel sei die Stimulierung des Latexflusses bei Gummibäumen genannt.

Unter dem Einfluß von Wachstumsregulatoren kann es zur Ausbildung parthenokarper Früchte kommen. Ferner kann das Geschlecht der Blüten beeinflußt werden. Auch kann eine Sterilität des Pollens erzeugt werden, was bei der Züchtung und Herstellung von Hybridsaatgut eine große Bedeutung hat.

Durch den Einsatz von Wachstumsregulatoren läßt sich die Verzweigung der Pflanzen steuern. Einerseits kann durch Brechen der Apikaldominanz die Entwicklung von Seitentrieben gefördert werden, was besonders im Zierpflanzenbau auch in Verbindung mit einer Wuchshemmung sehr erwünscht sein kann. Andererseits ist es aber auch möglich, das Wachstum der Seitentriebe zu hemmen. Für diese Wirkung besteht z.B. großes Interesse im Tabakanbau oder bei der Anpflanzung von Tomaten.

Unter dem Einfluß von Wachstumsregulatoren kann der Blattbestand der Pflanzen so gesteuert werden, daß ein Entblättern der Pflanzen zu einem gewünschten Zeitpunkt erreicht wird. Eine derartige Entlaubung spielt bei der mechanischen Beerntung der Baumwolle eine große Rolle ist aber auch in anderen Kulturen wie z.B. Im Weinbau zur Erleichterung der Ernte von Interesse. Eine Entlaubung der Pflanzen kann auch vorgenommen werden, um die Transpiration der Pflanzen vor dem Verpflanzen herabzusetzen.

Ebenso läßt sich mit Wachstumsregulatoren der Fruchtfall steuern. Einerseits kann ein vorzeitiger Fruchtfall verhindert werden. Andererseits kann aber auch der Fruchtfall oder sogar das Abfallen der Blüten bis zu einem ge wünschten Maße gefördert werden ("Ausdünnung"), um die Alternanz zu brechen. Unter Alternanz versteht man die Eigenart einiger Obstarten, endogen bedingt von Jahr zu Jahr sehr unterschiedliche Erträge zu bringen. Schließlich ist es möglich, mit Wachstumsregulatoren zum Zeitpunkt der Ernte die zum Ablösen der Früchte erforderlichen Kräfte zu reduzieren, um eine mechanische Beerntung zu

ermöglichen oder eine manuelle Beerntung zu erleichtern.

Mit Wachstumsregulatoren läßt sich femer eine Beschleunigung oder auch Verzögerung der Reife des Emtegutes vor oder nach der Ernte erreichen. Dieses ist von besonderem Vorteil, weil sich dadurch eine optimale Anpassung an die Bedürfnisse des Marktes herbeiführen läßt. Weiterhin können Wachstumsregulatoren in manchen Fällen die Fruchtausfärbung verbessern. Darüber hinaus kann mit Wachstumsregulatoren auch eine zeitliche Konzentrierung der Reife erzielt werden. Darnit werden die Voraussetzungen dafür geschaffen, daß z.B. bei Tabak, Tomaten oder Kaffee eine vollständige mechanische oder manuelle Beerntung in einem Arbeitsgang vorgenommen werden kann.

Durch Anwendung von Wachstumsregulatoren kann ferner die Samen- oder Knospenruhe der Pflanzen beeinflußt werden, so daß die Pflanzen, wie z. B. Ananas oder Zierpflanzen in Gärtnereien, zu einem Zeitpunkt keimen, austreiben oder blühen, an dem sie normalerweise hierzu keine Bereitschaft zeigen. Eine Verzögerung des Austreibes von Knospen oder der Keimung von Samen mit Hilfe von Wachstumsregulatoren kann in frostgefährdeten Gebieten erwünscht sein, um Schädigungen durch Spätfröste zu vermeiden.

Schließlich kann mit Wachstumsregulatoren eine Resistenz der Pflanzen gegen Frost, Trockenheit oder hohen Salzgehalt des Bodens induziert werden. Hierdurch wird die Kultivierung von Pflanzen in Gebieten möglich, die hierzu normalerweise ungeeignet sind.

Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in übliche Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt-und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesent lichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser; mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid; als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, 35 Quarz, Attapulgit, Montmorllionit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate; als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengel; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpolyglykol- Ether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können in den Formullerungen in Mischung mit anderen bekannten Wirkstoffen vorliegen wie Fungiziden, Insektiziden, Akariziden und Herbiziden sowie in Mischungen mit Düngemitteln und Wachstumsregulatoren.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen,

Versprüten, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw.. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

Beim Einsatz der erfindungsgemäßen Stoffe als Fungizide kann die Aufwandmenge je nach Art der Applikation in einem größeren Bereich varilert werden. So liegen die Wirkstoffkonzentrationen bei der Behandlung von Pflanzenteilen in den Anwendungsformen im allgemeinen zwischen 1 und 0,0001 Gew.-%, vorzugsweise zwischen 0,5 und 0,001 %. Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 50 g je Kilogramm Saatgut, vorzugsweise 0,01 bis 10 g, benötigt. Bei Behandlung des Bodens sind Wirkstoffkonzentrationen von 0,00001 bis 0,1 Gew.-%, vorzugsweise von 0,0001 bis 0,02 %, am Wirkungsort erforderlich.

Beim Einsatz der erfindungsgemäßen Verbindungen als Pflanzenwachstumsregulatoren können die Aufwandmengen in einem größeren Bereich variiert werden. Im allgemeinen verwendet man pro Hektar Bodenfläche 0,01 bis 50 kg, bevorzugt 0,05 bis 10 kg an Wirkstoff.

Beim Einsatz der erfindungsgemäßen Stoffe als Pflanzenwachstumsregulatoren gilt, daß die Anwendung in einem bevorzugten Zeitraum vorgenommen wird, dessen genaue Abgrenzung sich nach den klimatischen und vegetativen Gegebenheiten richtet.

Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den nachfolgenden Beispielen hervor.

Herstellungsbeispiele

Beispiel 1

F—CH₂
CH₂
CH₃

35

20

25

30

Zu einer Suspension aus 1,8 g (0,06 Mol) Natriumhydrid in 20 ml Dimethylformamid gibt man bei 10 °C tropfenweise unter Rühren eine Lösung von 4,1 g (0,06 Mol) 1,2,4-Triazol in 30 ml Dimethylformamid und nach einer Stunde bei 0 °C ebenfalls tropfenweise unter Rühren eine Lösung von 12,6 g (0,04 Mol) 2-Brom-1-(4-fluorphenyl)-1-(2-methylthiazol-4-yl)-ethanol in 30 ml Dimethylformamid. Nach beendeter Zugabe rührt man eine Stunde bei 20 °C, zwei weitere Stunden bei 70 °C, zwei Stunden bei 90 °C und eine weitere Stunde bei 110 °C. Zur Aufarbeitung kühlt man die Reaktionsmischung ab, engt im Vakuum ein, nimmt den Rückstand in 300 ml Dichlormethan auf, wäscht zweimal mit jeweils 200 ml Wasser, trocknet über Natriumsulfat, engt im Vakuum ein, chromatographiert über Kieselgel (Laufmittel: Dichlormethan/Methanol 10:1) und kristallisiert das so erhältliche Produkt durch Verrühren mit 150 ml Dilsopropylether.

Man erhält 3,5 g (29 % der Theorie) an 1-(4-Fluorphenyl)-1-(2-methylthiazol-4-yl)-2-(1,2,4-triazol-1-yl)ethanol vom Schmelzpunkt 120 °C.

50

Herstellung der Ausgangsverbindung

Zu 11,3 g (0,15 Mol) Thioacetamid in 100 ml Ethanol tropft man unter Rühren eine Lösung von 51 g (0,15 Mol) 1,4-Dibrom-3-(4-fluorphenyl)-3-hydroxy-butan-2-on in 200 ml Ethanol, wobei die Temperatur der Reaktionsmischung auf 35 °C steigt. Anschließend gibt man 12,6 g (0,15 Mol) Natriumhydrogencarbonat hinzu, rührt 18 Stunden bei Raumtemperatur, engt dann im Vakuum ein, nimmt den Rückstand in 600 ml Dichlormethan auf, wäscht zweimal mit jeweils 200 ml Wasser, versetzt die Mischung mit 5,7 g (0,03 Mol) p-Toluolsulfonsäure und erhitzt für 24 Stunden über einem Wasserabscheider auf Rückflußtemperatur. Zur Aufarbeitung wäscht man das Reaktionsgemisch zweimal mlt jeweils 200 ml Wasser, trocknet die organische Phase über Natriumsulfat, engt im Vakuum ein und chromatographiert den Rückstand über Kieselgel (Laufmittel: Toluol).

Man erhält 28,5 g (60 % der Theorie) an 2-Brom-1-(4-fluorphenyl)-1-(2-methylthiazol-4-yl)-ethanol als Öl vom Brechungsindex n_0^{20} 1,5812.

30

25

5

Zu 133 g (1 Mol) Aluminium-Ill-chlorid in 1 l Fluorbenzol gibt man innerhalb von 2 Stunden portionsweise 122 g (0,5 Mol) 1,4-Dibrombutan-2,3-dion, wobel die Temperatur der Reaktionsmischung auf 30 °C ansteigt. Nach beendeter Zugabe erwärmt man langsam auf 70 °C, rührt 2 Stunden bei dieser Temperatur, kühlt ab und gibt den Reaktionsansatz bei 0 °C in 3 l 0,2N Salzsäure. Zur Aufarbeitung wird die wässrige Phase abgetrennt und mit 300 ml Toluol extrahiert. Die vereinigten organischen Phasen werden dreimal mit jeweils 500 ml Wasser gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt. Der Rückstand wird aus 75 ml Diisopropylether kristallisiert.

Man erhält 87,5 g (52 % der Theorie) an 1,4-Dibrom-3-(4-fluorphenyl)-3-hydroxybutan-2-on vom Schmelzpunkt 90 $^{\circ}$ C.

In entsprechender Weise und gemäß den allgemeinen Angaben zur Herstellung erhält man die in der folgenden Tabelle aufgeführten substituierten Azolylmethylcarbinole der Formel (I).

45

50

Tabelle 2:

6 Ar-C R
CH₂
10

Bsp. Nr. ÀΓ Z. Schmelzpunkt [°C] R N CH N CH N

Tabelle 2 (Fortsetzung)

5	Bsp.	Ar	R	z	Schmelzpunkt [°C]
10	7	сн3-{	C1—CH2-	СН	122
15	8	C1-	ON-	N	150 ·
20	9	c1-(ON-	СН	188
25	10	сн3-	C1-CH2-	N	139
30	11	сн ₃ —	C1-CH2-	СН	138
35	12	<u> </u>	0N-	сн	160
40	13	<u></u>	ON-	N	158
45	14	C1-(сн3-(СН	208
50	15	c1-(сн3—	N	150

Tabelle 2 (Fortsetzung)

5	Bsp.	Ar	R	Z.	Schmelzpunkt [°C]
10	16	F—	ON-	СН	142
15	17	F-\	oN-	И	130
20	18	cı	N-	′ СН	174
25	19	cı—	N	И	169
30	20	cı—	c1-\	СН	230
35	21	C1—	C1-(И	168
40	22	C1-C1-	N—N—C1	СН	200
45 ·	23	cı—	N N C1	И	154

50

Tabelle 2 (Fortsetzung)

5	Bsp. Nr.	Ar	R	Z	Schmelzpunkt [°C]
10	24	F-	снз	СН	196
15	25	c1-(C1	СН	136
20	26	C1-(C1O-CH2-	N	110
25	27	F—	<u></u>	СН	149
30	28	F—		N	126
35	29	cı—	сн30-(СН	205
40	30	c1-(сн ₃ о-	N	158
45	31	сн3—	C1 — — O-CH ₂ -	N	115

55

Tabelle 2 (Fortsetzung)

5	Bap.	Ar	R	z	Schmelzpunkt [°C]
10	32	F-	(СН ₃) ₂ N-	СН	148
15	33	F—	(СН ₃)2N-	N _.	130
20	34	сн3—	C1 — O-CH2-	сн	96
25	35	cı—	CH ³	СН	182
30	36	cı—	CH3	N	123
35	37	cı—	СН3-ИН-	N	148 .
40	38	c1-(сн ₃ -ин-	СН	176
45	39	F—	C1-	сн	225

Tabelle 2 (Fortsetzung)

Bsp.	Ar	R	z s	chmelzpunkt [°C]
40	F—	c1-{_}	И	145
41	C1-(F—	N	130
42	C1-(-)-	N N N N N N N N N N N N N N N N N N N	N	164
43	c1—(N- CH ³	N	115
44	F—	F-(И	110
45	c1—(NH-	N	185
46	c1—	сн ₂ =сн-сн ₂ -ин-	И	126
47	cı—	F—————	И	140

50

Tabelle 2 (Fortsetzung)

6	Bsp.	Ar	R	Z	Schmelzpunkt [°C]
10	48	c1—(С ₂ н ₅ Сн ₂ =сн-сн ₂ -и-	N	80
15	49	c1—((C ₂ H ₅) ₂ N-	N	116
20	50	c1-{\}	C1—NH-	N	140
25	51	c1-(С ₂ н ₅ -Nн-	N	124
30	52	C1-(CH3	И	110
35	53	c1—(N-	N	170
40	54	F-(N-N-	N	152
45	55	c1-(N-_	N	146

Tabelle 2 (Fortsetzung)

5	Bsp. Nr.	Ar	R	Z Sc	hmelzpunkt [°C]
10	56	cı—	Н Н-ин-	N	175
15	5 <i>7</i>	сн3—	снЗ	N	150 ·
20	58	сн3—		N	142
25	59	CI	<u></u>	N	150
30	60	сн3—	(CH ³) ² N-	N	142
35	61	cı—	(CH ₃) ₂ N-	N	130
40	62	cı—		СН	171
45	63	сн3—	(CH ₃) ₂ N-	сн	163
50	64	cı—	(CH ₃) ₂ N-	СН	177

Tabelle 2 (Fortsetzung)

5	Bsp. Nr.	ÀГ	R	Z	Schmelzpunkt [°C]
10	65	c1—	СН ³	И	106
15	66	c1—	сн ₃	СН	182
20	67	сн3—	сн3	СН	160
25	68	сн3—		СН	165
30	69	C1-(\leftarrow	N	112
35	70	F—	F	N	110
40	71	F—	F—C1	N	128
45 50	72	F-	сн3	N	111

Tabelle 2 (Fortsetzung)

5	Bsp. Nr.	Ar	R	Z	Schmelzpunkt [°C]
10	73	F—	N-N-	И	200
15	74	F—	N—N—	N	162
20	75	F—	CH ³	N	158
25	76	сн3—	C1—C1	N	175
30 .	77	C1-(осн3	N	186
40	78	C1-(С ₂ Н ₅	Ŋ	100
45	79	c1-(сн3-(сн ⁵)3-ин-	N	114

50

Tabelle 2 (Fortsetzung)

5	Bsp.	Ar	R	Z	Schmelzpunkt [°C]
10	80	cı———	сн ₃ -(сн ₂) ₂ -ин-	N	118
15	81	cı—	(сн _з) ₂ сн-сн ₂ -ин-	N	140
20	82	c1—(СH ₂ -NH-	N	162
25	83	c1-\	-NH-CH ₂ C1	N	138
30	84	cı	-ин-сн ₂ -сн ₂	· N	108
35 _.	85	cı———	-NH-(CH ₂) ₅ -CH ₃	N	84
40	86	c1—	-ин-сн ₂ — н	N	- 98
45	87	c1-	-ин-(сн ₂) ₁₁ -сн ₃	N	88

50

Tabelle 2 (Fortsetzung)

5	Bsp.	Àг	R	z	Schmelzpunkt
10	88	cı—	-ин-сн ₂ -сн ₂ -осн ₃	N	106
15	89	c1—(-ин-(сн ₂) ₃ -осн ₃	N	68
20	90	сн3—	-CH ₂ -C1	N	90
25	91	F—	F	N	130
30 35	92	F—	F	N	118
40	93	F—	-CF3	N	146
45	94	F—	Br	N	126

50

Tabelle 2 (Fortsetzung)

5	Bsp. Nr.	Ar .	R	z	Schmelzpunkt [°C] bzw. Brechungsindex
10	95	F—	F	N	144
15	96	C1-	-сн(сн ₃) ₂	N	140
20	97	C1-	-c(cH3)3)	. N	132
25	98	F———	Br N	N	134
30	99	C1-	-(сн ^S) ^З -сн ^З	N	ngº =1,5739
35 40	100	F—	F C1	N	ngo =1,5933
4 5	101	F—		N	102

Anwendungsbeispiele

50

55

In den folgenden Anwendungsbeispielen wurden die nachstehend aufgeführten Verbindungen als Vergleichsubstanzen eingesetzt:

10

5

1-(4-Chlorphenyl)-1-(4,5-dimethylthiazol-2-yl)-2-(1,2,4-triazol-1-yl)-ethanol

15

$$C1 \xrightarrow{CH_2} CH_3$$

$$CH_2 CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

20

1-(2,4-Dichlorphenyl)-1-(4,5-dimethylthiazol-2-yl)-2-(1,2,4-triazol-1-yl)-ethanol (beide bekannt aus DE-OS 3 413 173)

Beispiel A

30

Leptosphaeria nodorum-Test (Weizen)/protektiv

Lösungsmittel:100 Gewichtsteile Dimethylformamid Emulgator: 0,25 Gewichtsteile Alkylarylpolyglykolether

35

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit besprüht man junge Pflanzen mit der Wirkstoffzubereitung 40 taufeucht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer Konidiensuspension von Leptosphaeria nodorum besprüht. Die Pflanzen verbleiben 48 Stunden bei 20 °C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.

Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 15 °C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt.

10 Tage nach der Inokulation erfolgt die Auswertung.

In diesem Test zeigen die in den Beispielen 1, 6, 7, 9, 10, 15, 17, 23, 28, 31, 32, 36, 37, 59, 60, 61, 62 und 68 aufgeführten erfindungsgemäßen Stoffe eine wesentlich bessere Wirksamkeit als die Vergleichssubstanz (A).

50

55

45

Beispiel B

Uromyces-Test (Buschbohne) / protektiv

Lösungsmittel: 4,7 Gewichtsteile Aceton

Emulgator: 0,3 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Pflanzen mit der Wirkstoffzubereitung bis zur Tropfnässe. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wäßrigen Uredosporensuspension des Bohnenrosterregers (Uromyces appendiculatus) inokuliert und verbleiben 1 Tag in einer dunklen Feuchtkammer bei 20 bis 22° C und 100 % relativer Luftfeuchtigkeit.

Die Pflanzen werden dann unter intensiver Belichtung für 9 Tage bei 20 bis 22°C und einer relativen Luftfeuchtigkeit von 70 bis 80 % im Gewächshaus aufgestellt.

10 Tage nach der Inokulation erfolgt die Auswertung.

In diesem Test zeigen die in den Beispielen 23, 25, 27, 28 und 40 aufgeführten erfindungsgemäßen Wirkstoffe eine wesentlich bessere Wirksamkeit als die Vergleichssubstanz (B).

5 Beispiel C

Wachstum bei Baumwolle

20 Lösungsmittel: 30 Gewichtsteile Dimethylformamid Emulgator: 1 Gewichtsteil Polyoxyethylen-Sorbitan-Monolaurat

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und füllt mit Wasser auf die gewünschte Konzentration auf.

Baumwollpflanzen werden im Gewächshaus bis zur vollen Entfaltung des fünften Folgeblattes angezogen. In diesem Stadium werden die Pflanzen tropfnaß mit den Wirkstoffzubereitungen besprüht. Nach zwei Wochen wird bei allen Pflanzen der Zuwachs gemessen und das Wachstum in Prozent des Zuwachses der Kontrollpflanzen berechnet. Es bedeuten 100 % Wachstum ein Wachstum entsprechend dem der Kontrollpflanzen und 0 % den Stillstand des Wachstums. Werte über 100 % kennzeichnen eine Wuchsförderung.

In diesem Test zeigt die im Beispiel 28 aufgeführte erfindungsgemäße Verbindung eine sehr starke wuchshemmende Wirkung.

35 Beispiel D

Wachstum bei Sojabohnen

40 Lösungsmittel: 30 Gewichtsteile Dimethylformamid Emulgator: 1 Gewichtsteil Polyoxyethylen-Sorbitan-Monolaurat

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und füllt mit Wasser auf die gewünschte Konzentration auf.

Sojabohnenpflanzen werden im Gewächshaus bis zur vollen Entfaltung des ersten Folgeblattes angezogen. In diesem Stadium werden die Plfanzen tropfnaß mit den Wirkstoffzubereitungen besprüht. Nach zwei Wochen wird bei allen Pflanzen der Zuwachs gemessen und das Wachstum in Prozent des Zuwachses der Kontrollpflanzen berechnet. Es bedeuten 100 % Wachstum ein Wachstum entsprechend dem der Kontrollpflanzen und 0 % den Stillstand des Wachstums. Werte über 100 % kennzeichnen eine Wuchsförderung.

In diesem Test zeigt die im Beispiel 16 aufgeführte erfindungsgemäße Verbindung eine sehr starke wuchshemmende Wirkung.

Ansprüche

Substituierte Azolylmethylcarbinole der Formel

ج

10

5

in welcher

Ar für gegebenenfalls substituiertes Aryl steht,

Z für Stickstoff oder eine CH-Gruppe steht und

R für Alkyl, Dialkylaminoalkyl, Alkenyl, Alkinyl, Alkoxyalkyl, gegebenenfalls substituiertes Aralkyl, gegebenenfalls substituiertes Aryloxyalkyl, gegebene

25

steht, worin

R1 für Wasserstoff, Alkyl, Alkenyl, Alkinyl oder Cycloalkyl steht und

R² für Wasserstoff, Alkyl, Alkoxyalkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkyl, für gegebenenfalls substituiertes Aryl oder für gegebenenfalls substituiertes Aralkyl steht oder

R¹ und R² gemeinsam mit dem Stickstoffatom, an welches sie gebunden sind, für einen gegebenenfalls substituierten Heterocyclus stehen, der gegebenenfalls weitere Heteroatome enthalten kann, sowie deren Säureadditions-Salze und Metallsalz-Komplexe.

2. Substituierte Azolyimethylcarbinole der Formel (I) gemäß Anspruch 1, in denen

Ar für Phenyl steht, welches einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen.

Z für Stickstoff oder eine CH-Gruppe steht und

R für geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Dialkylaminoalkyl mit 1 bis 4 Kohlenstoffatomen in jeder Alkylgruppe, geradkettiges oder verzweigtes Alkenyl mit 3 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkinyl mit 3 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxyalkyl mit 1 bis 6 Kohlenstoffatomen im Alkylteil und 1 bis 6 Kohlenstoffatomen im Alkoxyteil steht, oder

R für Aralkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil und 6 bis 10 Kohlenstoffatomen im Arylteil steht, wobei der Arylteil einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Nitro, Phenyl, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogen atomen und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, oder durch einen über N verknüpften fünf- oder sechsgliedrigen Stickstoffheterocyclus, der gegebenenfalls weitere Heteroatome enthalten kann und einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen,

geradkettiges oder verzweigtes Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und/oder durch Alkylcarbamoyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, oder

R für Aryloxyalkyl mit 1 bis 4 Kohlenstoffatomen Im Alkylteil und 6 bis 10 Kohlenstoffatomen im Arylteil steht, wobei der Arylteil einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Nitro, Phenyl, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogen atomen, geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, oder durch einen über N verknüpften fünf- oder sechsgliedrigen Stickstoffheterocyclus, der gegebenenfalls weitere Heteroatome enthalten kann und einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und/oder durch Alkylcarbamoyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, oder

R für Aryl mit 6 bis 10 Kohlenstoffatomen steht, wobei der Aryl-Rest einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Nitro, Phenyl, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxy mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, durch einen über N verknüpften fünf- oder sechsgliedrigen Stickstoffheterocyclus, der gegebenenfalls weltere Heteroatome enthalten kann und einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und/oder durch Alkylcarbamoyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, oder

R für einen Rest der Formel

30

steht, worin

R¹ für Wasserstoff, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoff atomen, geradkettiges oder verzweigtes Alkenyl mit 2 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkinyl mit 2 bis 6 Kohlenstoffatomen oder für Cycloalkyl mit 3 bis 7 Kohlenstoffatomen steht und

R² für Wasserstoff, geradkettiges oder verzweigtes Alkyl mit 1 bis 16 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkoxyalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil und 1 bis 4 Kohlenstoffatomen im Alkoxyteil, geradkettiges oder verzweigtes Alkenyl mit 2 bis 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkinyl mit 2 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 7 Kohlenstoffatomen, Cycloalkylalkyl mit 3 bis 7 Kohlenstoffatomen im Cycloalkylteil und 1 bis 4 Kohlenstoffatomen im Alkylteil oder für Phenyl steht, das einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 9 gleichen oder verschiedenen Halogenatomen, geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, oder

R² für Aralkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil und 6 bis 10 Kohlenstoffatomen Im Arylteil steht, wobei der Arylteil einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch Halogen, geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylthio mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, durch geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, durch geradkettiges oder verzweigtes Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen mit 1 bis 9 gleichen oder verzweigtes Malogenalkoxy mit 1 bis 4 Kohlenstoffatomen mit 1 bis 4 Kohlens

stoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, und/oder durch geradkettiges oder verzweigtes Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, oder

R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gesättigten Heterocysclus mit 5 bis 7 Ringgliedem stehen, wobei der Heterocyclus ein weiteres Heteroatom enthalten kann und wobei der Heterocyclus einfach oder mehrfach, gleichartig oder verschieden substituiert sein kann durch geradkettiges oder verzweigtes Alkyi mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Hydroxyalkyl mit 1 bis 4 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkanoyl mit 1 bis 4 Kohlenstoffatomen im Alkanteil und/oder durch Alkanoyloxyalkyl mit 1 bis 4 Kohlenstoffatomen im Alkanteil und 1 bis 4 Kohlenstoffatomen im Oxyalkylteil.

ż

3. Verfahren zur Herstellung von substituierten Azolylmethylcarbinolen der Formel

in welcher

15

20

30

45

50

Ar für gegebenenfalls substituiertes Aryl steht,

Z für Stickstoff oder eine CH-Gruppe steht und

R für Alkyl, Dialkylaminoalkyl, Alkenyl, Alkinyl, Alkoxyalkyl, gegebenenfalls substituiertes Aralkyl, gegebenenfalls substituiertes Aryloxyalkyl, gegebene

steht, worin

35 R1 für Wasserstoff, Alkyl, Alkenyl, Alkinyl oder Cycloalkyl steht und

R² für Wasserstoff, Alkyl, Alkoxyalkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkyl, für gegebenenfalls substituiertes Aralkyl steht oder

R¹ und R² gemeinsam mit dem Stickstoffatom, an welches sie gebunden sind, für einen gegebenenfalls substituierten Heterocyclus stehen, der gegebenenfalls weitere Heteroatome enthalten kann,

sowie von deren Säureadditions-Salzen und Metallsalz-Komplexen, dadurch gekennzeichnet, daß man substituierte 2-Brom-ethanole der Formei

in welcher

Ar und R die angegebene Bedeutung haben,

mit Azolen der Formel

in welcher

5

Z die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Reaktionshilfsmittels sowie gegebenenfalls in Gegenwart eines Phasentransferkatalysators umsetzt und gegebenenfalls anschließend eine Säure oder ein Metallsalz addiert.

- 4. Fungizide und pflanzenwuchsregulierende Mittel, gekennzeichnet durch einen Gehalt an mindestens einem substituierten Azolylmethylcarbinol der Formel (I) gemäß Anspruch 1 bzw. an einem Säureadditions-Salz oder Metallsalz-Komplex eines substituierten Azolylmethylcarbinols der Formel (I).
- Verwendung von substituierten Azolylmethylcarbinolen der Formel (I) gemäß Anspruch 1 bzw. von deren Säureadditions-Salzen und Metallsalz-Komplexen zur Bekämpfung von Pilzen sowie zur Regulierung des Pflanzenwachstums.
- 6. Verfahren zur Bekämpfung von Pilzen sowie zur Regulierung des Pflanzenwachstums, dadurch gekennzeichnet, daß man substituierte Azolylmethylcarbinole der Formel (I) gemäß Anspruch 1 bzw. deren Säureadditions-Salze oder Metallsalz-Komplexe auf die Pflanzen und/oder deren Lebensraum ausbringt.
- 7. Verfahren zur Herstellung von fungiziden und pflanzenwuchsregulierenden Mitteln, dadurch gekennzelchnet, daß man substituierte Azolylmethylcarbinole der Formel (I) gemäß Anspruch 1 bzw. deren Säure additions-Salze oder Metallsalz-Komplexe mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
 - 8. Substituierte 2-Brom-ethanole der Formel

35

25

30

in welcher

Ar für gegebenenfalls substituiertes Aryl steht und

R für Alkyl, Dialkylaminoalkyl, Alkenyl, Alkinyl, Alkoxyalkyl, gegebenenfalls substituiertes Aralkyl, gegebenenfalls substituiertes Aryloxyalkyl, gegebenenfalls substituiertes Aryl oder einen Rest der Formel

-N_R1

steht, worin

R1 für Wasserstoff, Alkyl, Alkenyl, Alkinyl oder Cycloaikyl steht und

R² für Wasserstoff, Alkyi, Alkoxyalkyi, Alkenyi, Alkinyi, Cycloalkyi, Cycloalkyi, für gegebenenfalis substituiertes Aryl oder für gegebenenfalis substituiertes Aralkyi steht oder

R¹ und R² gemeinsam mit dem Stickstoffatom, an welches sie gebunden sind, für einen gegebenenfalls substituierten Heterocyclus stehen, der gegebenenfalls weitere Heteroatome enthalten kann.

9. Verfahren zur Herstellung von substituierten 2-Brom-ethanolen der Formel

55

10 in welcher

5

15

Ar für gegebenenfalls substituiertes Aryl steht,

R für Alkyl, Dialkylaminoalkyl, Alkenyl, Alkonyl, Alkoxyalkyl, gegebenenfalls substituiertes Aralkyl, gegebenenfalls substituiertes Aryloxyalkyl, gegebene

o steht, worin

R1 für Wasserstoff, Alkyl, Alkenyl, Alkinyl oder Cycloalkyl steht und

R² für Wasserstoff, Alkyl, Alkoxyalkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkyl, für gegebenenfalls substituiertes Aryl oder für gegebenenfalls substituiertes Aralkyl steht oder

R¹ und R² gemeinsam mit dem Stickstoffatom, an welches sie gebunden sind, für einen gegebenenfalls substituierten Heterocyclus stehen, der gegebenenfalls weitere Heteroatome enthalten kann, dadurch gekennzeichnet, daß man Dibromacyloine der Formel

35

40

30

in welcher

Ar die oben angegebene Bedeutung hat, mit Thiocarbonsäureamiden der Formel

S || R- C-NH₂ (V)

⁵ in welcher

R die oben angegebene Bedeutung hat, zunächst in Gegenwart einer Base sowie in Gegenwart eines Verdünnungsmittels umsetzt und anschließend in Gegenwart einer Säure sowie in Gegenwart eines Verdünnungsmittels umsetzt.

3

50

EP 88 11 6525

EINSCHLÄGIGE DOKUMENTE						
Kategorie	w	ents mit Angabe, soweit erf	orderlich, Be	rifft pruch	KLASSIFIKATION DER ANMELDUNG (Int. CL4)	
	EP-A-0 158 205 (BA * Ansprüche; Seiten	YER) 17-20 *	1-9		C 07 D 417/06 C 07 D 277/24 C 07 D 277/42 C 07 D 417/10 A 01 N 43/78	
			_		RECHERCHIERTE SACHGEBIETE (Int. Cl.4) C 07 D 277/00 C 07 D 417/00	
Der vo	rliegende Recherchenbericht wurd	le für alle Patentansprüche Abschlußdstum der			Prtifer	
		03-01-198				
KATEGORIE DER GENANNTEN DOKUMENTE X: von besonderer Bedeutung allein betrachtet Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur			T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument &: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument			

EPO FORM 1503 03.62 (PO403)