SI231 Matrix Analysis and Computations Eigenvalues, Eigenvectors, and Eigendecomposition

Ziping Zhao

Spring Term 2022–2023

School of Information Science and Technology ShanghaiTech University, Shanghai, China

http://si231.sist.shanghaitech.edu.cn

Eigenvalues, Eigenvectors, and Eigendecomposition

- eigenvalue problem, facts about eigenvalues and eigenvectors
- eigendecomposition, the case of Hermitian & real symmetric matrices
- Schur decomposition
- variational characterizations of eigenvalues of Hermitian & real symmetric matrices
- similarity transformation
- power iteration, inverse iteration, Rayleigh quotient iteration
- orthogonal iteration
- LR iteration and QR iteration
- PageRank: a case study
- generalized and nonlinear eigenvalue problem

Notations and Conventions

- a square matrix A is said to be symmetric if $a_{ij} = a_{ji}$ for all i, j with $i \neq j$, or equivalently, if $A^T = A$
 - example:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -2 & 0.9 \\ 3 & 0.9 & 0 \end{bmatrix}$$

- a square matrix A is said to be Hermitian if $a_{ij}=a_{ji}^*$ for all i,j with $i\neq j$, or equivalently, if $A^H=A$
 - example:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 3 + \mathbf{j}0.7 \\ 0 & -2 & 0.9 - \mathbf{j} \\ 3 - \mathbf{j}0.7 & 0.9 + \mathbf{j} & 0 \end{bmatrix}$$

- ullet we denote the set of all $n \times n$ real symmetric matrices by \mathbb{S}^n
- ullet we denote the set of all $n \times n$ (complex) Hermitian matrices by \mathbb{H}^n

Notations and Conventions

- note the following subtleties:
 - by definition, a real symmetric matrix is also Hermitian
 - when we say that a matrix is Hermitian, we often imply that the matrix may be complex (at least for this course); a real Hermitian matrix is simply real symmetric
 - we can have a complex symmetric matrix, though we will not study it

Main Results

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) is said to admit an eigendecomposition if there exists a nonsingular $\mathbf{V} \in \mathbb{C}^{n \times n}$ and a collection of scalars $\lambda_1, \dots, \lambda_n \in \mathbb{C}$ such that

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1},$$

where $\Lambda = \text{Diag}(\lambda_1, \dots, \lambda_n)$.

- the above $(\mathbf{V}, \mathbf{\Lambda})$ satisfies $\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for $i = 1, \dots, n$, which are eigen-equations
- $\mathbf{v}_1, \dots, \mathbf{v}_n$ are required to be linearly independent
- eigendecomposition *does not* always exist

Main Results

A real symmetric matrix $\mathbf{A} \in \mathbb{S}^n$ always admits an eigendecomposition

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$$

where $\mathbf{V} \in \mathbb{R}^{n \times n}$ is orthogonal; $\mathbf{\Lambda} = \mathrm{Diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_i \in \mathbb{R}$ for all i.

A Hermitian matrix $\mathbf{A} \in \mathbb{H}^n$ always admits an eigendecomposition

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^H$$

where $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary; $\mathbf{\Lambda} = \mathrm{Diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_i \in \mathbb{R}$ for all i.

- differences: a Hermitian (or real symmetric matrix) always has
 - an eigendecomposition
 - real λ_i 's
 - a V that is not only nonsingular but also unitary

We start with the basic definition of eigenvalues and eigenvectors.

Problem: given a $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), find a vector $\mathbf{v} \in \mathbb{C}^n$ with $\mathbf{v} \neq \mathbf{0}$ such that $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$, for some $\lambda \in \mathbb{C}$ (*)

or, equivalently,

find
$$\mathbf{v} \in \mathbb{C}^n \setminus \{\mathbf{0}\}$$
 and $\lambda \in \mathbb{C}$ s.t. $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$

- (*) is called an (ordinary) eigenvalue problem, eigen-problem, or eigen-equation
- let (\mathbf{v}, λ) be a solution to (*). We call
 - $-(\mathbf{v},\lambda)$ an eigen-pair of \mathbf{A}
 - λ an eigenvalue of A (always finite); v an eigenvector of A associated with λ
- if (\mathbf{v}, λ) is an eigen-pair of \mathbf{A} , $(\alpha \mathbf{v}, \lambda)$ is also an eigen-pair for any $\alpha \in \mathbb{C}, \alpha \neq 0$
- unless specified, we will assume $\|\mathbf{v}\|_2 = 1$ in the sequel (negl. phase ambiguity)

Problem: given a $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), find a vector $\mathbf{v} \in \mathbb{C}^n$ with $\mathbf{v} \neq \mathbf{0}$ such that

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}, \qquad \text{for some } \lambda \in \mathbb{C}$$
 (*)

• from (*), action of matrix $\mathbf A$ on a subspace $\mathcal V_\lambda\subseteq\mathbb C^n$ sometimes is equivalent to scalar multiplication

$$\mathcal{V}_{\lambda} = \{ \mathbf{v} \in \mathbb{C}^n \mid \mathbf{A}\mathbf{v} = \lambda\mathbf{v}, \text{ for some } \lambda \in \mathbb{C} \}$$

- the subspace V_{λ} satisfying (*) is called the eigenspace of A associated with λ , and any $\mathbf{v} \in V_{\lambda}$ with $\mathbf{v} \neq \mathbf{0}$ is an eigenvector
 - $V_{\lambda} = \mathcal{N}(\mathbf{A} \lambda \mathbf{I})$ since $\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \iff (\mathbf{A} \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$
 - \mathcal{V}_{λ} is an invariant subspace of **A**, i.e., $\mathbf{A}\mathcal{V}_{\lambda}\subseteq\mathcal{V}_{\lambda}$
- the set of all eigenvalues of A, denoted by $\sigma(A) \subseteq \mathbb{C}$, is called the spectrum of A

Fact: Every $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) has n eigenvalues.

• from the eigenvalue problem we see that

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
 for some $\mathbf{v} \neq \mathbf{0}$ \iff $(\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0}$ for some $\mathbf{v} \neq \mathbf{0}$ \iff $\det(\mathbf{A} - \lambda\mathbf{I}) = 0$

- let $p(\lambda) = \det(\mathbf{A} \lambda \mathbf{I})$, called the characteristic polynomial of \mathbf{A} ; eigenvalues (eigenvectors) are sometimes called characteristic values (characteristic vectors)
- from the determinant def., it can be shown that $p(\lambda)$ is a polynomial of degree n, viz., $p(\lambda) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \ldots + \alpha_n \lambda^n$ where α_i 's depend on \mathbf{A} specifically, $\alpha_0 = \det(\mathbf{A}), \ldots, \alpha_{n-1} = (-1)^{n-1} \operatorname{tr}(\mathbf{A}), \alpha_n = (-1)^n$
- as $p(\lambda)$ is a polynomial of degree n, it can be factored as $p(\lambda) = \prod_{i=1}^{n} (\lambda_i \lambda)$ where $\lambda_1, \ldots, \lambda_n$ are the roots of $p(\lambda)$
 - specifically, $\alpha_0 = \prod_{i=1}^n \lambda_i$, ..., $\alpha_{n-1} = (-1)^{n-1} \sum_{i=1}^n \lambda_i$, $\alpha_n = (-1)^n$
- we have the characteristic equation $det(\mathbf{A} \lambda \mathbf{I}) = 0 \iff \lambda \in \{\lambda_1, \dots, \lambda_n\}$
- the spectrum is hence defined by $\sigma(\mathbf{A}) = \{\lambda \in \mathbb{C} \mid \det(\mathbf{A} \lambda \mathbf{I}) = 0\}$

Let $\lambda_1, \ldots, \lambda_n$ denote the *n* eigenvalues of **A**. We write

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i, \qquad i = 1, \dots, n,$$

where \mathbf{v}_i denotes an eigenvector of \mathbf{A} associated with λ_i .

- we should be careful about the meaning of n eigenvalues: they are defined as the n roots of the characteristic polynomial $p(\lambda) = \det(\mathbf{A} \lambda \mathbf{I})$
- example: consider

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

- from the original definition $\mathbf{A}\mathbf{v}=\lambda\mathbf{v}$, one can verify that $\lambda=1$ is the only eigenvalue of \mathbf{A}
- from the characteristic polynomial, which is $p(\lambda) = (1 \lambda)^2$, we see two roots $\lambda_1 = \lambda_2 = 1$ as two eigenvalues (with repetitions)
- every matrix has at least one eigenvalue, and every eigenvalue appears at least once in $p(\lambda)$

Fact: an eigenvalue can be complex even if A is real.

- a polynomial $p(\lambda) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \ldots + \alpha_n \lambda^n$ with real coefficients α_i 's can have complex roots
- example: consider

$$\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

- we have $p(\lambda)=\lambda^2+1$, so $\lambda_1=\boldsymbol{j}$, $\lambda_2=-\boldsymbol{j}$
- similarily, an eigenvalue can be real even if A is complex

Fact: complex eigenvalues of real matrices appear in conjugate pairs (cf. Complex Conjugate Root Theorem) (e.g., eigenvalues of orthogonal matrices satisfy $|\lambda_i|=1$) Fact: if $\bf A$ is real and there exists a real eigenvalue λ of $\bf A$, the associated eigenvector $\bf v$ can be taken as real.

- ullet obviously, when $\mathbf{A} \lambda \mathbf{I}$ is real we can define $\mathcal{V}_{\lambda} = \mathcal{N}(\mathbf{A} \lambda \mathbf{I})$ on \mathbb{R}^n
- or, if $\mathbf{v} \in \mathbb{C}^n$ is a complex eigenvector of a real \mathbf{A} associated with a real λ , we can write $\mathbf{v} = \Re(\mathbf{v}) + \mathbf{j}\Im(\mathbf{v})$, where $\Re(\mathbf{v}), \Im(\mathbf{v}) \in \mathbb{R}^n$. It is easy to verify that $\Re(\mathbf{v})$ and $\Im(\mathbf{v})$ are eigenvectors associated with λ .

Further Discussion: Repeated Eigenvalues

- w.l.o.g., order $\lambda_1, \ldots, \lambda_n$ such that $\{\lambda_1, \ldots, \lambda_k\}$, $k \leq n$, is the set of all distinct eigenvalues of \mathbf{A} ; i.e., $\lambda_i \neq \lambda_j$ for all $i, j \in \{1, \ldots, k\}$, $i \neq j$; $\lambda_i \in \{\lambda_1, \ldots, \lambda_k\}$ for all $i \in \{1, \ldots, n\}$
- ullet denote μ_i as the number of repeated eigenvalues of λ_i , $i=1,\ldots,k$
 - i.e., μ_i is the multiplicity of λ_i as the root of $p(\lambda)$ (λ_i is simple if $\mu_i = 1$ and is repeated/degenerate if $\mu_i > 1$)
 - μ_i is called the algebraic multiplicity of the eigenvalue λ_i
- ullet every λ_i can have more than one eigenvector (scaling not counted)
 - denote $\gamma_i = \dim \mathcal{V}_{\lambda_i} = \dim \mathcal{N}(\mathbf{A} \lambda_i \mathbf{I}) = n \dim \mathcal{R}(\mathbf{A} \lambda_i \mathbf{I}), i = 1, \dots, k$
 - i.e., we can find γ_i linearly independent \mathbf{v}_i 's in \mathcal{V}_{λ_i}
 - γ_i is called the geometric multiplicity of the eigenvalue λ_i

Property 1. We have $\mu_i \geq \gamma_i$ for all i = 1, ..., k (not trivial, requires a proof)

- Implication: # of repeated eigenvalues $\geq \#$ of linearly indep. eigenvectors

Further Discussion: Repeated Eigenvalues

- eigenvalue λ_i is called defective if $\mu_i > \gamma_i$, and called nondefective if $\mu_i = \gamma_i$
- a matrix is called defective if it has one or more defective eigenvalues, and called nondefective if it has no defective eigenvalue
 - example: consider

$$\mathbf{A}_1 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \mathbf{A}_2 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}.$$

We have, or can easily prove, the following properties:

•
$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$$

•
$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$

- ullet the eigenvalues of ${f A}^k$ are $\lambda_1^k,\ldots,\lambda_n^k$
- $rank(\mathbf{A}) < n$ (i.e., \mathbf{A} is rank-deficient) if and only if 0 is one eigenvalue of \mathbf{A} (proof: $nullity(\mathbf{A}) = \dim \mathcal{N}(\mathbf{A}) > 0$ and $rank(\mathbf{A}) + nullity(\mathbf{A}) = n$)
- $\bullet \operatorname{rank}(\mathbf{A}) \geq \operatorname{number} \operatorname{of} \operatorname{nonzero} \operatorname{eigenvalues} (\operatorname{with} \operatorname{repetitions}) \operatorname{of} \mathbf{A}$

- The linearly independent eigenvectors \mathbf{v}_i with nonzero eigenvalues form a basis (not necessarily orthonormal) for all possible products $\mathbf{A}\mathbf{x}$, for $\mathbf{x} \in \mathbb{C}^n$, which is the column space of the \mathbf{A} .
- The number of linearly independent eigenvectors \mathbf{v}_i with nonzero eigenvalues is equal to the rank of the matrix \mathbf{A} , and also the dimension of the column space.
- The linearly independent eigenvectors \mathbf{v}_i with an eigenvalue of zero form a basis for the null space of \mathbf{A} .

Right and Left Eigenvectors

ullet right eigenvector or eigenvector associated with λ

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
 for $\mathbf{v} \neq \mathbf{0}$

• left eigenvector associated with λ

$$\mathbf{u}^T \mathbf{A} = \lambda \mathbf{u}^T$$
 for $\mathbf{u} \neq \mathbf{0}$

(unless specified, eigenvectors are commonly referred to right eigenvectors)

- left eigenvectors of ${\bf A}$ are nothing else but the right eigenvectors of ${\bf A}^T$
- while the eigenvalues of ${\bf A}$ and ${\bf A}^T$ are the same, the sets of left- and right-eigenvectors may be different in general

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) is said to be diagonalizable, or admit an eigendecomposition, if there exists a nonsingular $\mathbf{V} \in \mathbb{C}^{n \times n}$ such that

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1},$$

where $\Lambda = \text{Diag}(\lambda_1, \dots, \lambda_n)$. (diagonalization of matrix \mathbf{A} : $\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \Lambda$)

- a.k.a. eigenvalue decomposition, spectral decomposition
- in defining diagonalizability, we didn't say that $(\mathbf{v}_i, \lambda_i)$ has to be an eigen-pair of \mathbf{A} . But

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1} \iff \mathbf{A} \mathbf{V} = \mathbf{V} \mathbf{\Lambda}, \ \mathbf{V} \ \text{nonsingular}$$
 $\iff \mathbf{A} \mathbf{v}_i = \lambda_i \mathbf{v}_i, \ i = 1, \dots, n, \ \mathbf{V} \ \text{nonsingular} \ (\text{hence, } \mathbf{v}_i \neq \mathbf{0})$

Also, $\lambda_1, \ldots, \lambda_n$ must be the n eigenvalues of \mathbf{A} ; this can be seen from the characteristic polynomial $\det(\mathbf{A} - \lambda \mathbf{I}) = \det(\mathbf{\Lambda} - \lambda \mathbf{I}) = \prod_{i=1}^n (\lambda_i - \lambda)$

Theorem 1. (the sufficient and necessary condition for the existence of eigendec.) For $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), it admits an eigendcomposition if and only if there exist n linearly independent eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ of \mathbf{A}

If A admits an eigendecomposition, the following properties can be shown (easily):

$$\bullet \det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$$

•
$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$

- ullet the eigenvalues of ${f A}^k$ are $\lambda_1^k,\dots,\lambda_n^k$
- rank(A) = number of nonzero eigenvalues (with repetitions) of A (Quiz)
- ullet suppose that ${f A}$ is also nonsingular. Then, ${f A}^{-1}={f V}{f \Lambda}^{-1}{f V}^{-1}$

Note: the first three properties can be shown to be valid for any $\bf A$ (do not depend on the existence of eigendec.); the fourth property may not be valid when $\bf A$ does not admit an eigendecomposition (see the example next page); the third and fifth properties can be used for effcient computations of matrix powers and inversions

Question: Does every $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) admit an eigendecomposition?

- the answer is no.
- counter example: consider

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- the characteristic polynomial is $p(\lambda) = -\lambda^3$, so $\lambda_1 = \lambda_2 = \lambda_3 = 0$
- it is easy to see that

$$\mathcal{V}_{\lambda_1} = \mathcal{N}(\mathbf{A} - \lambda_1 \mathbf{I}) = \mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{A}^T)^{\perp} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$

- any selection of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathcal{N}(\mathbf{A})$ is linearly dependent
- A does not admit an eigendecomposition if $\mu_i > \gamma_i$ for some $i \in \{1, \dots, k\}$, (i.e., A is defective).

- there exist matrix subclasses in which eigendecomposition is guaranteed to exist
 - one example is the circulant matrix subclass, as seen in Least Squares Topic; Given $\mathbf{h} = [h_0, h_1, \dots, h_{n-1}]^T$ and a circulant matrix

$$\mathbf{A} = \text{Circ}(\mathbf{h}) = \begin{bmatrix} h_0 & h_{n-1} & \dots & h_1 \\ h_1 & h_0 & h_{n-1} & \dots & h_2 \\ h_2 & h_1 & h_0 & \dots & h_3 \\ \vdots & & & & \vdots \\ h_{n-1} & \dots & \dots & h_1 & h_0 \end{bmatrix} \in \mathbb{R}^{n \times n},$$

its eigendecomposition is $\mathbf{A} = \mathbf{\Psi}^H \mathbf{D} \mathbf{\Psi}$, where $\mathbf{\Psi}$ is the unitary DFT matrix; $\mathbf{D} = \operatorname{Diag}(\sqrt{n} \mathbf{\Psi} \mathbf{h}) = \operatorname{Diag}(d_1, \dots, d_n)$; $d_i = \sum_{k=0}^{n-1} h_k e^{-\mathbf{j} 2\pi k(i-1)/n}$.

- another example is the Hermitian matrix subclass, as we will see later

Question: under which conditions of μ_i and γ_i , can a matrix admit an eigendec.?

• there exist simple sufficient conditions under which eigendecomposition exists

Property 2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), and suppose that λ_i 's are ordered such that $\{\lambda_1, \ldots, \lambda_k\}$ is the set of all distinct eigenvalues of \mathbf{A} . Also, let \mathbf{v}_i be any eigenvector associated with λ_i . Then $\mathbf{v}_1, \ldots, \mathbf{v}_k$ must be linearly independent. (requires a proof)

• Implication: (a sufficient condition for existence of eigendec.) if all the eigenvalues of **A** are distinct (somtimes called unique), i.e.,

$$\lambda_i \neq \lambda_j$$
, for all $i, j \in \{1, \dots, n\}$ with $i \neq j$,

then A admits an eigendecomposition

- to have all the eigenvalues to be distinct is not that hard, as we will see later
- in this case, the eigendecomp. is unique up to an ordering for the eigenvalues

Theorem 2. (the sufficient and necessary condition for existence of eigendec.) A admits an eigendcomposition if and only if $\mu_i = \gamma_i$ for all i (i.e., A is nondefective)

- can be proved by considering Property 1
- A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ has an eigendecomposition if and only if the sum of the dimensions of the eigenspaces is n.
- except orderings for the eigenvalues, eigendecomp. is generally nonunique since any orthonormal basis for the eigenspace of a degenerate eigenvalue can be used

Eigendecomposition for Hermitian Matrices

Consider the Hermitian matrix subclass.

Property 3. Let $\mathbf{A} \in \mathbb{H}^n$.

- 1. the eigenvalues $\lambda_1, \ldots, \lambda_n$ of **A** are real
- 2. suppose that λ_i 's are ordered such that $\{\lambda_1, \ldots, \lambda_k\}$ is the set of all distinct eigenvalues of \mathbf{A} . Also, let \mathbf{v}_i be any eigenvector associated with λ_i . Then $\mathbf{v}_1, \ldots, \mathbf{v}_k$ must be orthonormal.

(requires a proof)

- the above results apply to real symmetric matrices; recall $\mathbf{A} \in \mathbb{S}^n \Longrightarrow \mathbf{A} \in \mathbb{H}^n$
- ullet Corollary: for a real symmetric matrix, all eigenvectors ${f v}_1,\ldots,{f v}_n$ can be chosen as real
- ullet implication: for a Hermitian $oldsymbol{A}$ with all its eigenvalues being distinct, then $oldsymbol{A}$ admit an eigendecomposition with unitary $oldsymbol{V}$.
- In fact, a Hermitian A always admits an eigendecomposition with unitary V, i.e., is always unitarily diagonalizable (or orthogonally diagonalizable for the real case)!

Eigendecomposition for Hermitian Matrices

Theorem 3. Every $\mathbf{A} \in \mathbb{H}^n$ admits an eigendecomposition

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^H,$$

where $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary; $\mathbf{\Lambda} = \mathrm{Diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_i \in \mathbb{R}$ for all i. Also, if $\mathbf{A} \in \mathbb{S}^n$, \mathbf{V} can be taken as real orthogonal.

- $\mathbf{A} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mathbf{v}_i^H$
- Corollary: if **A** is Hermitian (or real symmetric), $\mu_i = \gamma_i$ for all i
- Proof? a consequence of a more powerful decomposition, namely, the Schur decomposition