Package 'causalnet'

September 5, 2025

Title Directed Causal Network Enumeration and Simulation	
Version 0.1.0	
Description Enumerate orientation-consistent directed networks from an undirected or partially directed skeleton, detect feedback loops, summarize topology, and simulate node dynamics via stochastic differential equations.	
License GPL-3	
<pre>URL https://github.com/KyuriP/causalnet</pre>	
BugReports https://github.com/KyuriP/causalnet/issues	
Encoding UTF-8	
RoxygenNote 7.3.2	
VignetteBuilder knitr	
Imports stats, ggplot2, tidyr, scales, cowplot	
Suggests testthat (>= 3.0.0), dplyr, knitr, rmarkdown	
Config/testthat/edition 3	
NeedsCompilation no	
Author Kyuri Park [aut, cre]	
Maintainer Kyuri Park <kyurheep@gmail.com></kyurheep@gmail.com>	
Repository CRAN	
Date/Publication 2025-09-05 21:00:10 UTC	
Contents	
detect_feedback_loops	
generate_directed_networks	
plot_dynamics	
plot_network_metrics	
simulate_dynamics	
Index	10

Description

Detects all directed cycles (including 2-node loops) and returns each as a unique set of nodes (ignores order and entry point).

Usage

```
detect_feedback_loops(adj_matrix, include_self_loops = FALSE, use_names = TRUE)
```

Arguments

Value

List of unique loops, each as a sorted vector (names if available, else indices).

```
generate_directed_networks
```

Generate Directed Networks Consistent with Constraints

Description

Enumerate all directed adjacency matrices that are consistent with a given undirected skeleton and optional direction constraints. Enumeration can optionally include bidirected edges and display a simple progress bar.

Usage

```
generate_directed_networks(
   adj_matrix,
   allow_bidirectional = TRUE,
   fixed_edges = NULL,
   max_networks = Inf,
   show_progress = interactive()
)
```

Arguments

adj_matrix

Symmetric binary (0/1) adjacency matrix giving the undirected skeleton. Only pairs with adj_matrix[i, j] = 1 are considered for orientation; all other pairs remain 0.

allow_bidirectional

Logical. If TRUE, bidirected edges ($i \leftarrow j$) are allowed during enumeration. Default: TRUE.

fixed_edges

Numeric matrix the same size as adj_matrix that encodes per-edge constraints (interpreted on the directed $i \rightarrow j$ entry):

- 1: force i -> j
- 2: force $i \leftrightarrow j$ (both $i \rightarrow j$ and $j \rightarrow i$)
- 0 or NA: unconstrained

Constraints on pairs not present in the skeleton are ignored.

max_networks

Integer. Maximum number of networks to return. Use to cap output size when constraints are loose and the search space is large. Default: Inf.

show_progress

Logical. Show a text progress bar during enumeration. Default: interactive().

Details

If the skeleton has m undirected edges, the number of orientation-consistent digraphs is at most 2^m when allow_bidirectional = FALSE and 3^m when TRUE (before applying constraints). Consider setting max_networks for exploratory use.

Value

A list of unique directed 0/1 adjacency matrices, each with the same dimensions and dimnames as adj_matrix.

See Also

```
detect_feedback_loops, summarize_network_metrics
```

Examples

```
skel <- matrix(0, 3, 3); skel[upper.tri(skel)] <- 1; skel <- skel + t(skel)
colnames(skel) <- rownames(skel) <- paste0("X", 1:3)
out <- generate_directed_networks(skel, allow_bidirectional = TRUE)
length(out)

# Force X1 -> X2 and X2 <-> X3:
F <- matrix(NA_real_, 3, 3, dimnames = dimnames(skel))
F["X1", "X2"] <- 1
F["X2", "X3"] <- 2
out2 <- generate_directed_networks(skel, fixed_edges = F)
length(out2)</pre>
```

get_sample_parameters Generate Sample Parameters for Node Dynamics

Description

Returns a list of simulation parameters (domain-agnostic: nodes can be any variables). If a parameter vector is not supplied, values are sampled i.i.d. from a uniform range.

Usage

```
get_sample_parameters(
    n_nodes,
    beta_range = c(-1.5, -1),
    alpha_range = c(0.05, 0.3),
    delta_range = c(1, 5),
    sigma_range = c(0.01, 0.1),
    beta = NULL,
    alpha_self = NULL,
    delta = NULL,
    sigma = NULL,
    nodes = NULL
```

Arguments

n_nodes	Integer number of nodes.		
beta_range	$Length-2\ numeric\ range\ for\ baseline/exogenous\ drive\ (used\ if\ beta\ is\ NULL).$		
alpha_range	Length-2 numeric range for self-activation (used if alpha_self is NULL).		
delta_range	Length-2 numeric range for nonlinear amplification (used if delta is NULL).		
sigma_range	Length-2 numeric range for noise SD (used if sigma is NULL).		
beta, alpha_self, delta, sigma			
	Optional fixed numeric vectors. If length-1, recycled to n_nodes.		
nodes	Optional character vector of node names (length n_nodes) used to name outputs.		

Value

A named list with elements beta, alpha_self, delta, sigma (each length n_nodes).

plot_dynamics 5

Description

Visualizes node/variable dynamics over time using ggplot2, with optional stress intervals and customizable styling.

Usage

```
plot_dynamics(
  S,
  stress_windows = NULL,
  title = "Dynamics",
  colors = NULL,
  legend_labels = NULL,
  show_lines = FALSE,
  line_width = 0.8,
  line_alpha = 1,
  base_size = 14,
  label_stress = TRUE,
  stress_label = "Stress Period",
  stress_fill = "gray60",
  stress_alpha = 0.2,
  stress_line_color = "gray40",
 y_label = "Level",
 legend_position = "right",
 y_{limits} = NULL
)
```

Arguments

S	Matrix (time x variables) of simulated states. If attr(S,"time") exists, it is used for the x-axis (continuous time). Otherwise the x-axis is step index 1:nrow(S).
stress_windows	Optional list of numeric c(start, end) intervals, or a 2-column matrix/data.frame with start, end. Units must match the x-axis (i.e., the "Time" used for plotting).
title	Plot title.
colors	Optional vector of line colors (length = #variables).
legend_labels	Optional vector of legend labels (length = #variables).
show_lines	If TRUE, draw dashed vertical lines instead of shaded rectangles.
line_width	Line width for trajectories.
line_alpha	Line transparency (0–1).
base_size	Base font size for theme.

plot_network_metrics

```
label_stress
                  If TRUE and using shading, label each stress window.
stress_label
                  Text label (length 1 or length = #windows).
stress_fill
                  Fill color for shaded windows.
stress_alpha
                  Alpha for shaded windows.
stress_line_color
                  Color for dashed lines (if show_lines = TRUE).
                  Y-axis label.
y_label
{\tt legend\_position}
                  Legend position (e.g., "right", "bottom", "none").
                  Optional numeric length-2 vector for y-axis limits.
y_limits
```

Value

A ggplot object.

Description

Produces a list of ggplot2 objects visualizing summary metrics across a list of directed networks.

Usage

```
plot_network_metrics(
   summary_df,
   n_bins = 6,
   fill_colors = c("skyblue", "darkgreen", "orange", "lightcoral"),
   base_size = 14,
   return_grid = TRUE
)
```

Arguments

```
summary_df Data frame from summarize_network_metrics().

n_bins Number of histogram bins (default = 6).

fill_colors Optional vector of 4 fill colors.

base_size Base font size for plots (default = 14).

return_grid If TRUE, returns cowplot grid; otherwise, returns list of plots.
```

Value

A cowplot grid or a named list of ggplot2 objects.

simulate_dynamics 7

simulate_dynamics

Simulate network state dynamics via SDEs (nonlinear, linear, or custom)

Description

Simulates the evolution of node states in a directed network using an Euler–Maruyama discretization of stochastic differential equations (SDEs). Choose the built-in nonlinear model, a linear alternative, or provide a custom update function.

Usage

```
simulate_dynamics(
   adj_matrix,
   params,
   t_max = 100,
   dt = 0.1,
   S0 = NULL,
   model_type = "nonlinear",
   model_fn = NULL,
   stress_event = NULL,
   boundary = c("auto", "reflect", "clamp", "none"),
   clamp = NULL
)
```

Arguments

adj_matrix

Numeric matrix (square; directed adjacency). Interpreted as i -> j.

params

Named list of model parameters. For model_type = "nonlinear", requires vectors (length = n nodes):

- beta: baseline/exogenous drive per node.
- alpha_self: self-activation per node.
- delta: nonlinear amplification of incoming effects.
- sigma: noise SD per node.

For model_type = "linear", requires beta, alpha_self, sigma. For a custom model, include whatever your model_fn expects.

t_max

Total simulated time (must be > 0).

dt

Time step (must be > 0). The output has floor(t_max/dt) + 1 rows.

S0

Optional numeric vector of initial states (length = n). Defaults to 0.01.

model_type

One of "nonlinear" (default), "linear", or NULL when using a custom model_fn.

model_fn

Optional function with signature function(current, interaction, dt, ...) returning a numeric vector of increments dS. Additional args are taken from

params.

8 simulate_dynamics

stress_event

Optional function f(time, state) -> numeric(n) that returns an exogenous input vector added each step (e.g., shocks/perturbations).

boundary

One of "auto", "reflect", "clamp", "none".

- "reflect": mirror overshoot back into [clamp[1], clamp[2]].
- "clamp": hard-box to [clamp[1], clamp[2]].
- "none": no bounding.
- "auto": pick a sensible default based on the model and clamp: nonlinear -> boundary = "reflect" (and if clamp is NULL, use c(0, 1)); linear/custom -> boundary = "none" unless a clamp range is supplied, in which case use "clamp".

clamp

Either NULL (no numeric range) or a length-2 numeric vector c(min, max) used by "reflect" or "clamp" to keep states within bounds.

Details

Direction convention. By default adj[i, j] = 1 encodes a directed edge i -> j. Under this convention, the *incoming input* to node j is the dot product of column j with the current state; in vector form t(adj) %*% state. If your internal convention differs, transpose accordingly.

Integration uses Euler–Maruyama. The per-step diffusion term is added as $\sigma\sqrt{dt}\,Z$ with $Z\sim\mathcal{N}(0,I)$ (component-wise), i.e., sigma * sqrt(dt) * rnorm(n).

Value

Numeric matrix of states over time (rows = time steps, cols = nodes). The time vector is attached as attr(result, "time").

Boundary handling

- **Reflecting** avoids "sticky" edges by bouncing trajectories back inside the range, which is useful for bounded variables on [0,1].
- Clamping is numerically simple but can create artificial absorbing states at the limits.
- For smoothly bounded dynamics, consider modeling on an unbounded latent scale and applying a link (e.g., logistic) instead of hard post-step bounds.

Examples

summarize_network_metrics

Summarize Directed Network List

Description

Compute feedback loop and topology metrics for a list of directed networks.

Usage

```
summarize_network_metrics(net_list)
```

Arguments

net_list

A list of directed adjacency matrices (can be from any source).

Value

A data frame with one row per network and the following columns:

- net_id
- n_nodes
- n_edges
- num_loops (number of unique feedback loops)
- sigma_total (sum of SDs of in/out degrees)
- node_overlap_score
- avg_loop_size

Index

```
detect_feedback_loops, 2, 3
generate_directed_networks, 2
get_sample_parameters, 4
plot_dynamics, 5
plot_network_metrics, 6
simulate_dynamics, 7
summarize_network_metrics, 3, 9
```