$\forall x \in \mathbb{R}, x \leq x + 1.$

This sentence should start be on the next line.

the next line.
$$2^x, 2^{2^x}, 2^{2^{2^{-\cdot}}}, a_{b_{c_{d_e_{f_{g_{h_{i_{j_{k_{l_{m_{n_{o_{p_{q_{r_{s_{tuv_{w_{xy_{z}}}}}}}}}}}}}}}, a_{b_{c_{d_e_{f_{g_{h_{i_{j_{k_{l_{m_{n_{o_{p_{q_{r_{s_{tuv_{w_{xy_{z}}}}}}}}}}}}}}}$$

 $\arctan(\theta\varphi), \sin(x), \ln(x), \log_{10}(y)$ $(f \circ g)(x) = f(g(x)).$

$$\int f(x)dx, \int_0^{\ln(2)} e^x dx = e^x \Big|_0^{\ln(2)} = e^{\ln(2)} - e^0 = 2 - 1 = 1.$$

Definition 1 (Convergent Sequence). Let $a_n : \mathbb{N} \to \mathbb{R}$ be a sequence. We say that the sequence $\{a_n\}_{n=1}^{\infty}$ converges to a real number L if for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\forall n \geq N$, $|a_n - L| < \epsilon$.

Theorem 2 (Squeeze Lemma). Let a_n, b_n, c_n be sequences. If there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $a_n \leq b_n \leq c_n$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Since $-1 \le \sin(n) \le 1$ for all n, it follows that $\frac{-1}{n} \le \frac{\sin(n)}{n} \le \frac{1}{n}$ for all $n \ge 1$. Since $\lim_{n \to \infty} \frac{-1}{n} = \lim_{n \to \infty} \frac{1}{n} = 0$, it follows from the Squeeze Lemma that

$$\lim_{n \to \infty} \frac{\sin(n)}{n} = 0.$$

$$f(x) = |x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}.$$

Let $a_{ij} = i + j$, for any $i, j \in \mathbb{N}$. If A is a 2×3 matrix with $A = [a_{ij}]$, then

$$A = \left[\begin{array}{ccc} 2 & 3 & 4 \\ 3 & 4 & 5 \end{array} \right].$$

The following equation,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{3}$$

is labelled, so I can reference it later. For example, one might say: We can use equation (3) to solve for x in $x^2 - 2x + 3 = 0$.

If I want a numerical list, I can use an enumerated environment. In fact, we could have an enumerated environment within an enumerated environment, as follows:

Definition 4 (Group). The pair (G, \cdot) is a group if:

- 1. G is a non-empty section
- 2. \cdot a binary operation on G
 - (a) this means that for any two elements $a, b \in G$, $a \cdot b \in G$
 - (b) in other words, \cdot is a function from $G \times G$ to G
 - (c) in symbols: $\cdot: G \times G \to G$
- 3. (G,\cdot) is associative
 - (a) this means that for any elements $a, b, c \in G$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 4. There is an element in G, denoted e, such that for any $a \in G$, $a \cdot e = e \cdot a = a$
- 5. For each $a \in G$, there exists an element $b \in G$, such that $a \cdot b = b \cdot a = e$