(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-196379 (P2002-196379A)

(43)公開日 平成14年7月12日(2002.7.12)

							ин		12 12 (2002. 7. 12)
(51) Int.CL'		識別記号		FΙ					テーマコート*(参考)
G02F	1/35	501		G 0	2 F	1/35		501	2H050
G02B	6/10			G 0 :	2 B	6/10		С	2 K O O 2
H01S	3/094			н0	1 S	3/10		Z	5 F O 7 2
	3/10					3/30		Z	5 K O O 2
•	3/30					3/094		s	
			審查請求	未請求	簡求	項の数5	OL	(全 13 頁)	最終頁に続く
(21)出願番号		特顧2000-391497(P200	00-391497)	(71)	出願人	. 000005	5223		
				· .			i株式会	社	
(22)出顧日		平成12年12月22日(2000	1					田中4丁目1番	
						1号			
				(72)	発明者	内藤	崇男		
						神奈川	県川崎	市中原区上小	田中4丁目1番
		•	•	1				株式会社内	
				(72)	発明者	田中	俊毅		
						神奈川	県川崎	市中原区上小	田中4丁目1番
						1号	宮土通	株式会社内	
			•	(74)	人野升	. 100108	3187		
						弁理士	横山	淳一	
								•	最終頁に続く

(54)【発明の名称】 光増幅伝送システム

(57)【要約】

【課題】伝送路中の第1ファイバで生じる分散の補償をする第2のファイバ内で発生する相互位相変調を最小にして、波形歪みによる信号劣化を防止する。

【解決手段】分散補償を行なうためのファイバで生じる ラマン増幅利得を当該ファイバ内で生じる損失の量と同 じ量とする。

【特許請求の範囲】

【請求項1】 信号光を伝送させる伝送路は、該信号光 波長に対して正分散を持つ第1ファイバと、該信号光波 長に対して負分散を持ち、該第1のファイバに対してモ ードフィールド径が小さい第2ファイバと、該第2ファ イバよりもさらにモードフィールド径が小さい第3ファ イバとで構成し、

該信号光伝搬方向は該第1第2第3のファイバの順に伝

該第3ファイバの該信号光出力側より励起光を入力し て、該伝送路でラマン増幅を行なうことを特徴とする光 増幅伝送システム。

【請求項2】 請求項1において、

該第2ファイバは該第2ファイバでの伝送損失と該第2 ファイバ内で発生するラマン増幅利得を等しくすること を特徴とする光増幅伝送システム。

【請求項3】信号光を伝送させる伝送路は、該信号光波 長に対して正分散を持つ第1ファイバと、該信号光波長 に対して負分散を持ち該第1のファイバに対してモード フィールド径が小さい第2ファイバで構成し、

該信号光伝搬方向は該第1第2のファイバの順に伝搬さ

該第2ファイバの該信号光出力側より励起光を入力して 該伝送路でラマン増幅を行ない該第2ファイバでの伝送 損失と該第2ファイバ内で発生するラマン増幅利得を等 しくすることを特徴とする光増幅伝送システム。

【請求項4】ラマン増幅により信号光を光増幅にするラ マン増幅媒体と、

該ラマン増幅媒体を増幅するための励起光と、

その信号光とその励起光を合波する合波器を有し、

該ラマン増幅媒体は信号光波長に対してファイバ長さあ たりの波長分散は零以外で分散スローブが零であること を特徴とする光増幅伝送システム。

【請求項5】信号光波長に対してファイバ長さあたりの 波長分散が正で励起光により該信号光をラマン増幅する 第1光増幅器と、

該信号光波長に対してファイバ長さあたりの波長分散が 負で励起光により該信号光をラマン増幅する第2光増幅 器とを有する光増幅伝送システム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】従来、長距離の光伝送システムで は光信号を電気信号に変換し、リタイミング(retimin g)、リシェイプイング (reshaping) および リジェネ レーティング(regenerating)する光再生中継器を用 いて伝送を行っていた。

【0002】しかし、現在では光増幅器の実用化が進 み、光増幅器を線形中継器として用いる光増幅中継伝送 方式が検討されている。

【0003】光再生中継器を光増幅中継器に置き換える 50 れる。

ことにより、中継器内の部品点数を大幅に削減し、信頼 性を確保するとともに大幅なコストダウンが見込まれ る。

【0004】また、光伝送システムの大容量化を実現す る方法のひとつとして、1つの伝送路に2つ以上の異な る波長を持つ光信号を多重して伝送する波長多重(WDM) 光伝送方式が注目されている。

【0005】WDM 光伝送方式と光増幅中継伝送方式を組 み合わせたWDM 光増幅中継伝送方式においては光増幅器 を用いて2つ以上の異なる波長を持つ光信号を一括して 増幅することが可能であり、簡素な構成(経済的)で、 大容量かつ長距離伝送が実現可能である。

[0006]

【従来の技術】波長多重光増幅中継伝送システムの構成 例を図1に示す。

【0007】例えば、図1のWDM伝送光システムは光送信 局(OS)1と、光受信局(OR)2と、それら送受信局間を接続 する光伝送路3と、該光伝送路3の途中に所要の間隔で配 置される複数の光増幅器からなる中継器4、とから構成 20 される。

【0008】光送信局1は波長の異なる複数の光信号を それぞれ出力する複数の光送信器(E/O)1Aと、複数の光 信号を波長多重する合波器1Bと、該合波器1BからのWDM 信号光を所要のレベルに増幅して光伝送路3に出力する ポストアンプ1Cを有する。

【0009】光受信局2は光伝送路を介して伝送された 各波長帯のWDM信号光を所要のレベルに増幅するブリア ンプ2Cと、プリアンプ2Cからの出力光を波長に応じて複 数の光信号に分ける分波器2Bと、複数の光信号をそれぞ れ受信処理する複数の光受信器(O/E)2Aを有する。

【0010】光伝送路3は光送信局1および光受信局2の 間をそれぞれ接続する複数の中継区間を有する。

【0011】光送信局1から送信された波長多重信号光 は光伝送路3を伝搬し、途中に所要の間隔で配置される 光増幅器からなる光中継器4にて光増幅され、再び光伝 送路3を伝搬し、それを繰り返して光受信局まで伝送さ

【0012】この波長多重伝送システムにおいて用いられる 光増幅中継器にはエルビムドープファイバ増幅器(EDFA) 40 が一般的に用いられる。

【0013】しかし、最近、ラマン増幅を併用すること が盛んに検討されている。

【0014】また、光中継器を用いない無中継伝送シス テムがある。

【0015】無中継伝送システムでは、リモートポンピ ング(remote-pumping)遠隔増幅法によるEDFAおよび分 布型ラマン増幅が検討されている。

【0016】光ファイバを用いたラマン増幅においては 利得がファイバのモードフィールド径に反比例して得ら

【0017】従って、モードフィールド径が小さい光ファイバはラマン増幅に適している。

【0018】例えば、1.3 mm零分散ファイバ(Single mo de fiber: SMF)の波長分散および分散スローフ (波長分散の波長に対する1次微分)の逆符号の波長分散および分散スローア を有する負分散ファイバ(Negative dispersion fibe r: -D fiber)のモードフィールド径は約5 mmであり、NZ -DSFのモードフィールド径約8 mmより小さいためにより大きなラマン gainが得られる("Highly efficient dist ributed ラマン amplification system in a zero-disp 10 ersion-flattened transmission line",H.Kawakami et al., ThB5, QAA'99, 1999. 参照)。

[0019]

【発明が解決しようとする問題点】大容量長距離伝送システムの実現では1波あたりの光信号対雑音比(Optical signal to noise ratio: OSNR)不足および非線形効果による伝送波形歪みが問題である。

【0020】分布利得型ラマン増幅器を適用すると1波あたりのOSNRを改善できる。

【0021】一方、非線形効果による伝送波形歪みが問 20 題である。

【0022】したがって、ラマン増幅に用いる光ファイバが持つ非線形効果を十分に配慮することが重要である。

【0023】ラマン増幅器を適用すると広帯域に波長多 重信号光を光増幅できる。

【0024】一方、そのラマン増幅器に用いる光ファイバが持つ波長分散を十分に配慮することが重要である。 【0025】さらに、ラマン増幅器の小型化が重要である。

【0026】特に、光送信端局および光受信端局にラマン増幅器を適用する場合、それに用いる光ファイバの長さを短くし、その光ファイバモジュールを小型化する必要がある。

[0027]

【問題点を解決するための手段】第1の手段:光増幅伝送システムは信号光を伝送させる伝送路を信号光波長に対して正分散を持つ第1ファイバと、信号光波長に対して負分散を持ち、第1のファイバに対してモードフィールド径が小さい第2ファイバと、第2ファイバよりもさらにモードフィールド径が小さい第3ファイバとで構成する

【0028】そして、信号光伝搬方向は第1第2第3のファイバの順に伝搬させ、第3ファイバの信号光出力側より励起光を入力して、伝送路でラマン増幅を行なう。【0029】本構成によりこれにより、信号光が持つ信号光パワー対雑音光パワー比を改善するともに、そのファイバ非線形効果による伝送波形歪みを緩和できる第2の手段:第1の手段に於いて、光増幅伝送システムは第2ファイバは第2ファイバでの伝送損失と第2ファイ

バ内で発生するラマン増幅利得を等しくする。

【0030】第2ファイバに於いて信号光パワーが長手 方向にほとんど減衰せず、相互位相変調による伝送波形 歪みを低減できる。

第3の手段:光増幅伝送システムは信号光を伝送させる伝送路を信号光波長に対して正分散を持つ第1ファイバと、信号光波長に対して負分散を持ち第1のファイバに対してモードフィールド径が小さい第2ファイバで構成する。

【0031】そして、信号光伝搬方向は第1第2のファイバの順に伝搬させ、第2ファイバの信号光出力側より励起光を入力して伝送路でラマン増幅を行ない該第2ファイバでの伝送損失と該第2ファイバ内で発生するラマン増幅利得を等しくする。

【0032】第2ファイバに於いて信号光パワーが長手 方向にほとんど減衰せず、相互位相変調による伝送波形 歪みを低減できる。

第4の手段:光増幅伝送システムはラマン増幅により信号 光を光増幅にするラマン増幅媒体と、該ラマン増幅媒体 を増幅するための励起光と、その信号光とその励起光を 合波する合波器を有する。

【0033】そしてラマン増幅媒体は信号光波長に対してファイバ長さあたりの波長分散は零以外で分散スロープが零にする。ラマン増幅媒体の非線形効果および波長分散による伝送波形歪みを緩和できる

第5の手段:光増幅伝送システムは信号光波長に対してファイバ長さあたりの波長分散が正で励起光により信号光をラマン増幅する第1光増幅器と、信号光波長に対してファイバ長さあたりの波長分散が負で励起光により該信号光をラマン増幅する第2光増幅器とを設ける。

【0034】との構成により波長分散の累積量を低減できる。

[0035]

【実施例】非線形実効断面積を比較的小さくし、光パワー密度が高めた集中利得型のラマン増幅器により大きなラマン利得を得る。

【0036】通常の光ファイバの非線形実効断面積は50~80 mm²に対して集中利得型のラマン増幅器の非線形実効断面積の値は、例えば10 mm²である。

40 【0037】四光波混合などの非線形効果による波形歪 みを回避するために、単位長さあたりの波長分散の絶対 値は零でない値が望ましい。

【0038】その値は、例えば1~10 ps/nm/kmであり、 信号光波長間隔に依存する。

【0039】ととで、長さあたりの波長分散が大きいと 累積波長分散(ps/nm)が大きくなることが問題になる。

【0040】信号光波長帯域幅を広く確保するためには 分散スローブは零が望ましい。

【0041】なお、1次ラマン利得ピーク光周波数は励 50 起光周波数よりも13.2 THz小さく、1.55 mm帯ではおお

4

よそ100 nmの波長シフトが発生するため有効な波長帯域 は100m以下である。

【0042】光端局装置にもラマン増幅器を適用すると とが有効である。

【0043】そのラマン増幅を発生させる光ファイバの 累積波長分散(ps/mm)の絶対値は小さい方が望ましい。

【0044】また、伝送路の波長分散を補償することが 望ましい。

【0045】あるいは、ラマン増幅器に用いる光ファイバ として符号が異なる波長分散を持つ光ファイバを直列に併 用することにより、累積波長分散の絶対値を低減すると

【0046】例えば、第3-1ファイバは正分散を持ち、 第3-2ファイバは負分散を持つ。

【0047】2つの光増幅器を直接接続する構成もあ り、光部品を両者の間に挿入し、その光部品の損失を補 償する構成もある。

【0048】特に光端局装置にへの適用が有効である。

【0049】1波あたりのOSNRの改善および非線形効果 による伝送波形歪みの緩和を同時に実現し,大容量長距*20

* 離波長多重伝送システムの構築を可能にする。

【0050】第1の実施構成を図2,図13に示す。

【0051】第1の実施構成として、第1ファイバ3a、第 2ファイバ3bおよび第3ファイバ3cを用い、光増幅中継器 にはラマン増幅を用いる伝送システムの1中継区間を図 2.図13に示す。

【0052】との光増幅中継器は、図2に示すようにラ マン増幅のみで構成する場合と、図13に示すようにその 他の光増幅器、例えばラマン増幅とEDFA4 cを併用する 10 場合がある。

【0053】EDFA4cと併用する場合は波長合成器 4aの後段にEDFA4cを設ける。

【0054】第1ファイバ3a、第2ファイバ3bおよび第3 ファイバ3cの主なファイパ特性を表1に示す。

【0055】図2,図13における第3ファイバ3cは図のよ うに、中継器4内に設けても良いし、中継器の外に伝送 路のゲーブル内に設けても良い。

[0056]

【表1】

7510°名	分散	分散スローブ	非線形実効断面積	単位長さあたりの損失	長さ	損失
第177個	正	正	*	*	县	
第2774㎡	負	負	ф	中	#	-
第3万小	負	A	小	*	短	<u>.</u>

【0057】端局もしくは前段の光増幅中継器から出射 された、異なる2つ以上の波長を持つ波長多重信号光 は、その信号光波長に対して正の波長分散および分散スロ -プを有し、そのモードフィールド径が比較的に大きい 第1ファイバ3aを伝送し、次に、その信号光波長に対し て負の波長分散および分散スロープを有し、そのモードフ ィールド径が比較的に小さい第2ファイバ3bを伝送し, そして、これら3種類のファイパのうち、その長さが最も短 く、そのモードフィールド径が最も小さい第3ファイバ3 cを伝送した後、その信号光とその励起光を合波する波 長合成器4aを通り、次段の伝送路ファイバ、例えば、次段 の第1ファイパ 3aに入射される。

【0058】励起光源4bから出射されたラマン増幅に適 用される励起光は、その信号光とその励起光を合波する 40 波長合成器4aを経て、第3ファイバ3cに入射され、その 後、その第3ファイバ3cを伝搬し、次に、第2ファイバ3b を伝搬した後、第177イパ 3aに入射される。

【0059】 ここで、励起光源4bは1波でもよいし、多 波長を合波した光でもよい。

【0060】第2ファイバ3b単独又は第3ファイバとの 組合わせにより第1ファイバの分散値を補正すると供 に、第2ファイバ内で生じる損失を第2ファイバ内で生 じるラマン増幅による利得で補償する。

利得により伝送路全体としての損失を補償するよう増幅 する。

【0062】このように構成することで、第1ファイバ の分散値を補償する第2ファイバ内で生じる非線形効果 による相互位相変調による歪みを小さくする事ができ

【0063】非線型実効断面積が小さく長さの短い第3 のファイバにより伝送路全体の損失が補償されるように することで、信号光が持つOSNRを改善するとともに、そ のファイバ非線形効果による伝送波形歪みを緩和でき

【0064】 ことで、第3ファイバは非線型実効断面積 が小さく非線形効果が大きく生じるが、実質的に長さが 短いので波長多重した信号光間のすれ違いが生じ難いた め、問題にならない。

【0065】信号光は第1ファイバ3aにおいてが損失を 受け,第2ファイバ3bにおいて第1ファイバで受ける損失 とラマン増幅利得を一致させ、信号光パワーの変化が小さ くなり、第3ファイバ3cにおいては信号光がラマン増幅 利得を受ける。CCで、Cの第2ファイバ3bの伝送損失 と分布型ラマン増幅利得を一致させた場合の信号光パワー と長さの関係を図3に示す。

【0066】との第2ファイバ3bの伝送損失と分布型ラ 【0061】さらに第3ファイバで生じるラマン増幅の 50 マン増幅利得を一致させると、信号光パワーが長手方向 にほとんど減衰しない。

【0067】したがって、ファイパが持つ波長分散により ある信号光がその他の波長の信号光と近づいたり離れた りする場合に信号光パワーの変化量が小さくなるため, 近 づく場合に生じる相互位相変調による周波数シフト量と離 れる場合に生じる相互位相変調による周波数シフト量の差 が小さくなる。

【0068】そして、近づく際に生じる相互位相変調に よる周波数シフト量と離れる際に生じる相互位相変調によ る周波数シット量の符号は逆符号であり互いに打ち消しあ うため、累積する相互位相変調による周波数シット量は小 さくなり、伝送波形歪みを低減できる。

【0069】第3ファイバ3cはコア径が小さいので、短い長 さでも高い利得がとれる。

【0070】また、修理について配慮すると、第3光ファイ n はコア径が小さく修理が難しいので、光中継器内に配 置することが望ましい。

【0071】更に、その第3ファイバ3cにおいてその信 号光波長に対して負分散を持ち、その第1ファイバ3aが 持つ正分散量を補償する方が第277イバ 3bにおいて必要と 20 なる分散補償量を緩和できるため、第277イバ3bの設計上 望ましい。

【0072】それから、その第1ファイバ3aにおいてそ の信号光波長に対して正の分散スローブを持ち、その第 2ファイバ3bにおいてその信号光波長に対して負の分散 スロープを持ち、その第3ファイバ3cにおいてその信号 光波長に対して負の分散スロープを持つことにより、そ の伝送路が持つ分散スローブの絶対値を低減することが できる。

【0073】第2の実施例として、第1ファイバ3aおよび 30 第2ファイバ3bを用い、光増幅中継器にはラマン増幅を 用いる伝送システムの1中継区間を図4に示す。

【0074】との光増幅中継器は、ラマン増幅のみで構 成する場合と、その他の光増幅器、例えばラマン増幅と EDFA4 cを併用する場合がある。

【0075】端局もしくは前段の光増幅中継器から出射 された、異なる2つ以上の波長を持つ波長多重信号光 は、その信号光波長に対して正の波長分散および分散スロ -プを有し、そのモードフィールド径が比較的に大きい 第1ファイバ3aを伝送し、次に、その信号光波長に対し て負の波長分散および分散スローフ を有し、そのモードフ ィールド径が比較的に小さい第2ファイバ3bを伝送して 所要の信号光パワーまで増幅された後、その信号光とその 励起光を合波する波長合成器4aを通る。

【0076】第2光ファイバ3bは第1ファイバの分散 を補償するための分散値を有するファイバである。

【0077】その後、その波長合成器4aの後に接続され た第1ファイバ3aの伝送損失を補う利得を持つ光増幅器 に入射される。

ァイバ増幅器4 cである。

【0079】次段の伝送路ファイバ、例えば、次段の第1ファ イパ3aに入射される。

【0080】励起光源4bから出射されたラマン増幅に適 用される励起光は、その信号光とその励起光を合波する 波長合成器4aを経て、第2ファイバ3bに入射され、その 第2ファイバ3bを伝搬した後、第1ファイパ3aに入射され る。

【0081】 ことで、励起光源4bは1波でもよいし、多 波長を合波した光でもよい。

【0082】その光ファイバ中を信号光の伝搬方向と逆方 向に励起光が伝搬するととを特徴とするラマン増幅器を 用いることにより、信号光が持つOSNRを改善するととも に、そのファイバ非線形効果による伝送波形歪みを緩和 できる。

【0083】ととで、との第2ファイバ3bの伝送損失と 分布型ラマン増幅利得を一致させた場合の信号光パッと 長さの関係を図12に示す。

【0084】この第2ファイバ3bの伝送損失と分布型ラ マン増幅利得を一致させると、信号光パワーが長手方向 にほとんど減衰しない。

【0085】したがって、ファイパが持つ波長分散により ある信号光がその他の波長の信号光と近づいたり離れた りする場合に信号光パケの変化量が小さくなるため、近 づく場合に生じる相互位相変調による周波数シント量と離 れる場合に生じる相互位相変調による周波数シフト量の差 が小さくなる。

【0086】そして、近づく際に生じる相互位相変調に よる周波数シント量と離れる際に生じる相互位相変調によ る周波数シフト量の符号は逆符号であり互いに打ち消しあ うため、累積する相互位相変調による周波数シフト量は小 さくなり、伝送波形歪みを低減できる。

【0087】EDFA4cにより伝送路全体における損 失に対応する利得を与えることで、信号光の損失を防 ¢.

【0088】該2ファイバの作用は第1の実施例と同じ である。

【0089】第4の実施例として、集中型ラマン増幅器 を光端局装置に用いた構成例を図5に示す。ここでは, 40 特に光送信端局の例について示す。

【0090】波長の異なる複数の光信号をそれぞれ出力 する複数の光送信器(E/O)1Aから出射された信号光は、 そのモードフィールド径が比較的に小さい第3-1ファイ バ3dを伝搬して所要の信号光パワーまで増幅された後,次 に、その信号光とその励起光を合波する波長合成器4a1 を通った後、光アイソレータ5aを経て可変減衰器5bで信 号光パワーの調整をされた後複数の光信号を波長多重する 合波器1Bに入射される。

【0091】該合波器1BからのWDM信号光は、そのモー 【0078】その光増幅器は例えばエルビウムドープフ 50 ドフィールド径が比較的に小さい第3-2ファイバ3eを伝 送して所要の信号光パーテまで増幅された後、波長合成器 4a2を通り所要の信号光パーテまで増幅された後、光アイソレータ5aを経て可変減衰器5bで信号光パーの調整をされ、分散補償器5cを伝搬する。

9

【0092】さらに、その後、その分散補償器5cを出射した信号光は、次の段に配置してあるそのモードフィールド径が比較的に小さい第3-1ファイバ3dを伝搬して所要の信号光パワまで増幅された後、次に、その信号光とその励起光を合波する波長合成器4a1を通った後、光アイソレータ5aを経て可変減衰器5bで信号光パワーの調整を10され、分散補償器5cを伝搬する。

【0093】それから、その分散補償器5cを出射した信号光は、次の段に配置してあるそのモードフィールド径が比較的に小さい第3-2ファイバ3eを伝搬して所要の信号光パアまで増幅された後、次に、その信号光とその励起光を合波する波長合成器4a2を通った後、光アイソレータ5aを経て伝送路に入射される。

【0094】CCで、第3-1ファイバ3dの単位長さあたりの波長分散をそれらの信号光波長に対して正とし、第3-2ファイバ3eの単位長さあたりの波長分散をそれらの信号光波長に対して負とすることにより、その波長分散の累積量を低減でき、波長分散による伝送波形歪みを緩和できる。CCで、第3-1ファイバ3dと第3-2ファイバ3eの単位長さあたりの波長分散の符号はこの限りではなく、正負が逆になってもよい。

【0095】第4の実施例として、集中型ラマン増幅器の構成例を図6に示す。

【0097】励起光源4b1から出射されたラマン増幅に適用される励起光は、その信号光とその励起光を合波する波長合成器4a1を経て、第3-1ファイバ3dに入射され、また、その他の励起光源4b2から出射されたラマン増幅に適用される励起光は、その信号光とその励起光を合波する波長合成器4a2を経て、第3-2ファイバ3cに入射される。とこで、励起光源4b1および4b2は1波でもよいし、多波長を合波した光でもよい。

【0098】その光ファイパ中を信号光の伝搬方向と逆方向に励起光が伝搬することを特徴とするラマン増幅器を用いることにより、信号光が持つOSNRを改善するとともに、そのファイバ非線形効果による伝送波形歪みを緩和できる。

【0099】図6において、波長合成器4a1と励起光源4b 50 する波長合成器4a2を経て、第3-2ファイバ3cに入射され

1はこの構成から除去しても構わない。

【0100】その第3-1ファイバ3dbはよび第3-2ファイバ3bは伝送路を兼ねるものではなく、その光増幅器に内在し、それらの信号光波長に対して単位長さあたりの波長分散は零ではないことを特徴とし、そのファイバ非線形効果による伝送波形歪みを緩和できる。

【0101】また、それらの信号光波長に対してその第3-1ファイバ3dおよび第3-2ファイバ3eの分散スローブをほぼ零にするととにより、その波長分散による伝送波形歪みを緩和できる。

【0102】特に、この分散スロープが零のファイパは分散フラットファイパと呼ばれている。

【0103】そのファイバを構成する屈折率分布の一例は、"W型屈折率分布を持つ分散フラットファイバ"、赤坂他、1998年電子情報通信学会総合大会に示されている。

【0104】更に、それらの信号光波長に対してその第3-1ファイバ3dおよび第3-2ファイバ3eのモードフィールド径は、伝送路に用いる光ファイバのモードフィールド径よりも比較的に小さく、その第3-1ファイバ3dおよび第3-2ファイバ3eの長さは、伝送路の中継間隔よりも十分に小さいことを特徴とし、その波長分散量の絶対値を小さくすることにより、そのファイバ非線形効果および波長分散による伝送波形歪みを緩和できる。

【0105】それから、第3-1ファイバ3dの単位長さあたりの波長分散をそれらの信号光波長に対して正とし、第3-2ファイバ3eの単位長さあたりの波長分散をそれらの信号光波長に対して負とすることにより、その波長分散の累積量を低減できる。

【0106】 ここで、第3-177イパ3dと第3-277イパ3eの単位長さあたりの波長分散の符号はこの限りではなく、正負が逆になってもよい。

【0107】第5の実施例として、集中型ラマン増幅器の構成例を図7に示す。

【0108】前段の光増幅器もしくはファイバから出射された異なる2つ以上の波長を持つ波長多重信号光は、そのモードフィールド径が比較的に小さい第3-1ファイバ3 dを伝搬して所要の信号光パワーまで増幅された後、次に、その信号光とその励起光を合波する波長合成器4a1を通って出射される。

【0109】その出射された信号光は光部品5,例えば、光フィルタを通り、その後、そのモードフィールド径が比較的に小さい第3-2ファイバ3eを伝送して所要の信号光パワまで増幅された後、波長合成器4a2を通り、次段の光増幅器もしくは774%に入射される。

【0110】励起光源4b1から出射されたラマン増幅に適用される励起光は、その信号光とその励起光を合波する波長合成器4a1を経て、第3-1ファイバ3dに入射され、また、その他の励起光源4b2から出射されたラマン増幅に適用される励起光は、その信号光とその励起光を合波する波長合成器452を経て、第3-27-7 / バ3をに1 計さり

る。

【0111】 ここで、励起光源4b1および4b2は1波でも よいし、多波長を合波した光でもよい。

【0112】その光ファイパ中を信号光の伝搬方向と逆方 向に励起光が伝搬することを特徴とするラマン増幅器を 用いることにより、信号光が持つOSNRを改善するととも に、そのファイバ非線形効果による伝送波形歪みを緩和 できる。

【0113】その第3-1ファイバ3dおよび第3-2ファイバ 3eは伝送路を兼ねるものではなく、その光増幅器に内在 10 し. それらの信号光波長に対して単位長さあたりの波長 分散は零ではないことを特徴とし,そのファイバ非線形 効果による伝送波形歪みを緩和できる。

【0114】また、それらの信号光波長に対してその第 3-1ファイバ3dおよび第3-2ファイバ3eの分散スロープを ほぼ零にすることにより、その波長分散による伝送波形 歪みを緩和できる。

【0115】更に、それらの信号光波長に対してその第 3-1ファイバ3dおよび第3-2ファイバ3eのモードフィール ド径は、伝送路に用いる光ファイバのモードフィールド 20 れた後、次に、その信号光とその励起光を合波する波長 径よりも比較的に小さく、その第3-1ファイバ3dおよび 第3-2ファイバ3eの長さは、伝送路の中継間隔よりも十 分に小さいことを特徴とし、その波長分散量の絶対値を 小さくすることにより、そのファイバ非線形効果および 波長分散による伝送波形歪みを緩和できる。

【0116】それから、第3-1ファイバ3dの単位長さあ たりの波長分散をそれらの信号光波長に対して正とし、 第3-2ファイバ3eの単位長さあたりの波長分散をそれら の信号光波長に対して負とすることにより、その波長分 散の累積量を低減できる。 ここで、第3-177イパ 3dと第3- 30 2ファイバ 3eの単位長さあたりの波長分散の符号はこの限り ではなく、正負が逆になってもよい。

【0117】第6の実施例として監視制御信号の実施例 を図8に示す。従来のEDFAの場合、励起光に変調を掛け てEDFA利得を変化させることにより応答信号を光変調す ることができた。

【0118】ととでは、励起光に変調をかけて、伝送路 である光ファイバにおけるラマン効果を用いて応答信号 を光変調することができる。

【0119】前段の光増幅器もしくはファイパから出射さ れた異なる2つ以上の波長を持つ波長多重信号光は、伝 送路ファイバ3を伝搬して所要の信号光パワーまで増幅さ れた後、次に、その信号光とその励起光を合波する波長 合成器4aを通り、受光素子4cにモニタ信号を供給する光 カプラ4dを通り次段の伝送路ファイバ3に伝搬される。

【0120】また、励起光源4bから出射されたラマン増 幅に適用される励起光は、その信号光とその励起光を合 波する波長合成器4aを経て、伝送路ファイバ3に入射さ

【0121】 ことで、励起光源4bは1波でもよいし、多

波長を合波した光でもよい。

【0122】さらに、モニタ信号は光カブラ4dで分波さ れた後、受光素子4cで受光され、電気信号に変換され

12

【0123】その変換された電気信号は制御回路4eで処

【0124】その後、制御回路4eは制御信号を励起光源 4bに供給する。

【0125】ととで、信号光、モニタ信号および励起光 の流れは上り回線および下り回線で同様である。

【0126】以上のような構成にしたがうことにより、 制御回路により上り回線および下り回線に応答信号を送 るととができる。

【0127】第7の実施例として、光ルーブバックの実 施例を図9に示す。

【0128】まず、上り回線の場合について説明する。 【0129】前段の光増幅器もしくはファイバから出射さ れた異なる2つ以上の波長を持つ波長多重信号光は、伝 送路ファイバ3を伝搬して所要の信号光パワーまで増幅さ 合成器4aを通り,光ループバック経路6aにモニタ信号を 供給する光カブラ6cを通り次段の伝送路ファイバ3に伝 搬され、そして、次の光増幅中継器に入射される。

【0130】また、励起光源4bから出射されたラマン増 幅に適用される励起光は、その信号光とその励起光を合 波する波長合成器4aを経て、伝送路ファイバ3に入射さ

【0131】ここで、励起光源4bは1波でもよいし、多 波長を合波した光でもよい。

【0132】さらに、モニタ信号は光カプラ6cで分波さ れた後、光ルーブバック経路6aを通り、下り回線の光カ プラ6cを経て、伝送路ファイバ3に入射され、モニタ信 号を送信した端局に戻される。

【0133】そして、端局側ではそのモニタ信号を観測 して中継器の状態を把握することができる。

【0134】下り回線の場合は光ルーブバック経路6aは 用いずに、光ルーブバック経路6bを適用することになる が、それ以外は同様の構成となる。

【0135】第7の実施例に関係した、その他の光ルー 40 プバックの実施例を図10および図11に示す。

【0136】信号光、励起光およびモニタ光の流れやそ の特徴は図9で説明した内容と同様である。

(付記1) 信号光を伝送させる伝送路は、該信号光波長に 対して正分散を持つ第1ファイバと、該信号光波長に対 して負分散を持ち、該第1のファイバに対してモードフ ィールド径が小さい第2ファイバと、該第2ファイバよ りもさらにモードフィールド径が小さい第3ファイバと で構成し、該信号光伝搬方向は該第1第2第3のファイ バの順に伝搬させ、該第3ファイバの該信号光出力側よ 50 り励起光を入力して、該伝送路でラマン増幅を行なうと

とを特徴とする光増幅伝送システム。

(付記2) 付記1において、該第2ファイバは該第2ファイバでの伝送損失と該第2ファイバ内で発生するラマン増幅利得を等しくすることを特徴とする光増幅伝送システム。

(付記3)付記1において、該第3ファイバは該伝送路全体の損失を補償するための増幅を行なう事を特徴とする光増幅伝送システム。

(付記4)付記1において、該第2ファイバおよび該第3ファイバの合計において該第1のファイバの分散値をほぼゼ 10 口に補正する分散量を有することを特徴とする光増幅伝送システム。

(付記5)付記1において、該第3ファイバは光中機器内に設けるととを特徴とする光増幅伝送システム。

(付記の信号光を伝送させる伝送路は、該信号光波長に対して正分散を持つ第1ファイバと、該信号光波長に対して負分散を持ち該第1のファイバに対してモードフィールド径が小さい第2ファイバで構成し、該信号光伝搬方向は該第1第2のファイバの順に伝搬させ、該第2ファイバの該信号光出力側より励起光を入力して該伝送路 20でラマン増幅を行ない該第2ファイバでの伝送損失と該第2ファイバ内で発生するラマン増幅利得を等しくすることを特徴とする光増幅伝送システム。

(付記7)付記6において、該第2のファイバの出力を光増幅器で所定値まで光増幅することを特徴とする光増幅伝送システム。

(付記8)ラマン増幅により信号光を光増幅にするラマン増幅媒体と、該ラマン増幅媒体を増幅するための励起光と、その信号光とその励起光を合波する合波器を有し、該ラマン増幅媒体は信号光波長に対してファイバ長さあ 30 たりの波長分散は零以外で分散スローブが零であることを特徴とする光増幅伝送システム。

(付記9)信号光波長に対してファイバ長さあたりの波長分散が正で励起光により該信号光をラマン増幅する第1光増幅器と、該信号光波長に対してファイバ長さあたりの波長分散が負で励起光により該信号光をラマン増幅する第2光増幅器とを有する光増幅伝送システム。

[0137]

【発明の効果】本発明のように構成することで、信号光が持つ信号光パワー対雑音光パワー比を改善するとも に、そのファイバ非線形効果による伝送波形歪みを緩和 できる

【0138】さらに、複数の信号光から与えられる相互

位相変調による伝送波形歪みを低減できる。

【図面の簡単な説明】

(8)

【図1】 波長多重伝送システムの構成例

【図2】 伝送システムの構成例1

【図3】 第2ファイバ3bの伝送損失と分布型ラマン増幅

利得を一致させた場合の信号光パテと長さの関係

【図4】 伝送システムの構成例2

【図5】 光端局装置の構成例

【図6】 光増幅器の構成例

【図7】 光増幅器の構成例

【図8】 監視制御信号の実施例

【図9】 光ルーブバックの実施例

【図10】 光ルーブバックの実施例

【図11】 光ループバックの実施例

【図12】 第2ファイバ3bの伝送損失と分布型ラマン増幅

利得を一致させた場合の信号光パーと長さの関係

【図13】伝送システムの構成例2

【符号の説明】

1は光送信局

1Aは光送信器

1Bは合波器

1Cはポストアンプ

2は光受信局

2Aは光受信器

2Bは分波器

2Cはプリアンプ

3は光ファイバ

3aは正分散ファイバ

3bは負分散ファイバ

30 3c, 3dもよび3eは集中型ラマン増幅用ファイバ

4a, 4a1および4a2は信号光と励起光を合波する波長合成器

4b, 4b1および4b2はラマン増幅用励起光源

4cはモニタ信号用受光素子

4dはモニタ信号分波用光カプラ`

4eは励起光源の制御回路

5は光学部品、例えば、光フィルタ

5aは光アイソレータ

5bは可変減衰器

10 5cは分散補償器

6aおよび6bは光ルーブバック経路

6cは光ループバック経路にモニタ信号を分波する光カブ ラ

【図1】

波長多麗伝送システムの構成例

【図2】

伝送システムの構成例 1 (ラマン増幅のみの場合)

【図3】

第2ファイバ3b の伝送換失と分布型 Raman 増稿利得を一致させた場合の 個号光パ9-と長さの関係

【図4】

伝送システムの構成例2

【図5】

.

【図6】

光増幅器の構成例

【図7】

光道程器の構成を

【図8】

【図9】

光ループパックの実施例

【図10】

光ループバックの実施例

【図11】

光ループパックの実施例

【図12】

勇 2 ファイバ 3b の伝送損失と分布型 Raman 増幅利得を一致させた場合の ほ号光パ ケ-と長さの関係

【図13】

伝送システムの構成例 1 (ラマン増幅と EDFA を併用した場合)

フロントページの続き

(51)Int.Cl.7

識別記号

FΙ

H 0 4 B 9/00

マコード(参考)

H 0 4 B 10/17

10/16

10/02

10/18

Fターム(参考) 2H050 AC81 AD01

2K002 AA02 AB30 BA01 DA10 GA10

HA23

5F072 JJ01 JJ08 JJ09 JJ<u>11</u> JJ20

KK14 MM03 QQ07 RR01 YY17

5K002 AA06 BA02 BA13 CA01 CA02

CA13 DA02 FA01

M

THIS PAGE BLANK (USPTO)