, 小随机文里 UーA TI 的 阪平面及 g(u)

要求小g先求大G 写出定义

「方村」G(u)をP(Uをn)=P(X+Yをy)

数理统计基础

- 1 总体与样本
- 2 数理统计的常用分布
- 3 正态总体的抽样分布
- 4 非正态总体的抽样分布
- 5 分位数

数理统计的分类

描述统计学(Descriptive statistics): 对随机现象进行观测、试验,以取得有代表性的观测值.
 summarize, organize and simplify data.

· 推断统计学(Inferential statistics): 对已取得的观测值进行整理、分析,作出推断、决策,从而找出所研究的对象的规律性.

generalizations about population parameters based on sample statistics.

推断统计学包括参数估计、假设检验、回归分析、方差分析等内容.

总体、个体、样本

总体(population)——研究对象的全体构成的集合。

个体(individual)——组成总体的每一个成员.

通常我们研究的都是一些数量指标,其数值随着个体的不同而不同.

例: 某城市在职职工的年收入情况,

某中学高二学生的身高与体重情况.

研究的所有成员的数量指标全体称为总体。

把每一个成员的数量指标称为个体。

可以用随机变量X(或随机向量 $X = (X_1, ..., X_k)$)描述总体(k维总体).

随机变量X的分布函数称为总体的分布函数(理论分布).

抽样

抽样(sampling)是从总体中通过一定的方法选择一部分个体。

样本(sample): 从总体X中抽取的待考查个体组成的集合。 样本中个体的数量n称为样本容量. 容量为n的样本常记为(X_1, X_2, \dots, X_n). 这里的 X_i 可看作一个随机变量.

样本值: 样本一旦经过考查,得到的是n个具体的数 $(x_1, x_2, ..., x_n)$,称为**样本的一次观察值**,简称样本值.

样本空间: 样本所有可能取值的集合.

抽样的目的是基于样本在某种程度上能代表总体,根据给定的样本对总体进行统计推断。为了使抽取的样本能很好地反映总体的信息,必须考虑抽样方法.

最常用的一种抽样方法叫作"简单随机抽样",要求样本 X_1, X_2, \dots, X_n 满足下面两点:

- ① 代表性: 样本 $X_1, X_2, ..., X_n$ 中的每个 X_i 与所考察的总体具有相同的分布.
- ② 独立性: 样本 $X_1, X_2, ..., X_n$ 是相互独立的.

以后若无特别说明,样本都是指简单随机样本.

- 有限总体
 - 采用放回抽样就能得到简单随机样本.
 - 当总体容量很大的时候,放回抽样有时候不方便。当总体容量比较大时(总体中个体总数/样本容量≥10),通常将不放回抽样所得到的样本近似当作简单随机样本来处理.
- 无限总体,一般采取不放回抽样.

简单随机样本的性质

1. 若总体X的分布函数为F(x),则样本 $(X_1, X_2, ..., X_n)$ 的联合分布函数为

$$F(x_1, x_2, \dots, x_n) = \prod_{i=1}^n F(x_i)$$

2. 若总体X的密度函数为f(x),则样本的联合密度函数为

$$f(x_1, x_2, \dots, x_n) = \prod_{i=1}^{n} f(x_i)$$

3. 设总体X的均值 μ ,方差 σ^2 存在,则 $E(X_i) = \mu$, $D(X_i) = \sigma^2$

例 设 (X_1, X_2, \dots, X_n) 是取自正态总体 $N(\mu; \sigma^2)$ 的样本, 这个样本的联合概率密度函数为

$$f(x_1, x_2, \dots, x_n) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x_i - \mu)^2}{2\sigma^2}\right]$$
$$= (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right],$$
$$-\infty < x_1, x_2, \dots, x_n < +\infty.$$

样本空间是 R^n

例 某厂要检查一批产品的质量,每件产品可区分为合格品与不合格品,用数字"0"表示合格品,用数字"1"表示不合格品,这时,总体 X 服从 O-1 分布:

$$P\{X = x\} = \begin{cases} p, x = 1\\ 1 - p, x = 0 \end{cases}$$

其中 p 表示一件产品为不合格品的概率. 上式可改写为

$$P{X = x} = p^x (1 - p)^{1 - x}, x \in {0,1}.$$

若 (X_1, X_2, \dots, X_n) 是取自这个总体 X 的一个样本,则有

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$= p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}, \ x_i \in \{0,1\}, i = 1,2,\dots, n$$

样本的经验分布函数

总体分布函数
$$F(x) = P(X \le x)$$

设总体 X 的分布函数为 F(x) (末知), 其样本观测值为 x_1, x_2, \dots, x_n , 将它们从小到大排列成 $x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$. 设其中互不相同的 共 l 个, 分别 为 $x_{(1)}^* < x_{(2)}^* < \dots < x_{(l)}^*$, 其个数分别为 $n_1, n_2, \dots, n_l, \sum_{i=1}^l n_i = n$.

$$F_n(x) = \begin{cases} 0, & x < x_{(1)}^*, \\ \frac{n_1 + n_2 + \dots + n_k}{n}, & x_{(k)}^* \le x < x_{(k+1)}^*, k = 1, 2, \dots, l-1, \\ 1, & x \ge x_{(l)}^*, \end{cases}$$

称为该样本的经验分布函数(Empirical cdf).

经验分布函数 $F_n(x)$ 具有下列性质:

$$(1) \ 0 \le F_n(x) \le 1$$

 $(2) F_n(x)$ 是非减函数;

(3)
$$F_n(-\infty) = 0$$
, $F_n(+\infty) = 1$

(4) $F_n(x)$ 在每个观测值 $x_{(i)}$ 处是右连续的,点 $x_{(i)}$ 是 $F_n(x)$ 的跳跃间断点, $F_n(x)$ 在该点的跃度就等于 频率 f_i

经验分布函数 $F_n(x)$ 的图形

例 从某个总体 X 中抽取容量为10的一个样本,测得样本观测值为 -4,0,1,-2,5,3,3,5,6,5. 试求该样本的经验分布函数.

解 将样本观测值从小到大的顺序排列为

$$-4$$
 -2 0 1 3 3 5 5 6

其经验分布函数为

$$F_n(x) = \begin{cases} 0, & x < -4, \\ 0.1, & -4 \le x < -2, \\ 0.2, & -2 \le x < 0, \\ 0.3, & 0 \le x < 1, \\ 0.4, & 1 \le x < 3, \\ 0.6, & 3 \le x < 5, \\ 0.9, & 5 \le x < 6, \\ 1, & x \ge 6. \end{cases}$$

格利文科定理 (Glivenko 1933)

经验分布 $F_n(x)$ 是样本 (X_1, X_2, \dots, X_n) 中不大于 x 的个体数与 n 之比, 即在 n 次重复独立试验中事件 $\{X \leq x\}$ 发生的频率;

总体 X 的分布函数 F(x) 是事件 $\{X \leq x\}$ 发生的概率;

当 n 充分大时, $F_n(x)$ 是否趋向于 F(x) 呢?

Glivenko定理(格林文科定理)

经验分布 $F_n(x)$ 以概率为 1 地一致收敛于 F(x),即

$$P\left\{\lim_{n\to+\infty}\sup_{-\infty< x<+\infty}|F_n(x)-F(x)|=0\right\}=1.$$

定理表明, $F_n(x)$ 与 F(x) 之差的绝对值在 $(-\infty, +\infty)$ 上的上确界当 $n \to +\infty$ 时, 极限为 0 的概率是 1. 因此, 只要 n 充分大, $F_n(x)$ 是 F(x) 的很好的近似, 而 $F_n(x)$ 可由样本观测值得到的. 这是**用样本推断总体**的理论基础.

概率论中的三种收敛形式

• 分布收敛(convergence in distribution)

$$\lim_{n\to\infty} P\left(\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \le x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt = \Phi(x)$$

$$\sum_{k=1}^{n} X_k \xrightarrow{d} N(n\mu, n\sigma^2)$$

• 依概率收敛(convergence in probability)

$$\lim_{n \to \infty} P\left(\left|\frac{1}{n}\sum_{k=1}^{n} X_k - \mu\right| < \varepsilon\right) = 1 \qquad \qquad \frac{1}{n}\sum_{k=1}^{n} X_k \xrightarrow{p} \mu$$

• 几乎处处收敛(convergence almost surely, 以概率为1地收敛)

$$P\left\{\lim_{n\to\infty} X_n = X\right\} = 1$$

$$X_n \xrightarrow{a.s.} X$$

统计量

A *parameter* defines a characteristic of the population. A *statistic* defines a characteristic of the sample.

样本来自于总体,含有总体的信息,但较为分散.为了进行统计推断,需要把分散的信息集中起来,针对不同的研究目的,构造不同的样本函数,这类函数称为统计量.

设 X_1, X_2, \ldots, X_n 是来自总体X的一个样本, $T(X_1, X_2, \ldots, X_n)$ 是一个实值函数,且不含任何未知参数,则称函数 $T(X_1, X_2, \ldots, X_n)$ 为一个统计量(statistic).

若 $(x_1, ..., x_n)$ 是样本观测值,则称 $T(x_1, ..., x_n)$ 为统计量 $T(X_1, X_2, ..., X_n)$ 的一个观测值.

说明: 统计量 $T(X_1, X_2, ..., X_n)$ 是随机变量; 统计量用于统计推断,故不应含任何关于总体X的未知参数.

常用的统计量(1)--样本矩

设 (X_1, X_2, \cdots, X_n) 是来自总体X的容量为n的样本,

(1)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 样本均值(sample mean)

(2)
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 样本方差(sample variance)

(3)
$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$
 样本标准差 (Sample Standard deviation)

(4)
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$
 为样本的 k 阶原点矩 $A_1 = \overline{X}$

(5)
$$B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k$$
 为样本的 k 阶中心矩 $B_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 \triangleq S_n^2$

$$nS_n^2 = \sum_{i=1}^n (X_i - \overline{X})^2 = \sum_{i=1}^n (X_i^2 - 2X_i \overline{X} + \overline{X}^2)$$

= $\sum_{i=1}^n X_i^2 - 2\overline{X} \sum_{i=1}^n X_i + \sum_{i=1}^n \overline{X}^2 = \sum_{i=1}^n X_i^2 - 2n\overline{X}^2 + n\overline{X}^2$

$$=\sum_{i=1}^{n}X_{i}^{2}-n\overline{X}^{2}$$

Bessel's Correction

$$S^{2} = \frac{n}{n-1}S_{n}^{2} = \frac{1}{n-1}\sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}\right)$$

对于二维总体(X,Y),常用的统计量有

(1) 样本协方差

$$S_{XY}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})$$

(2) 样本相关系数

$$\rho_{XY} = \frac{S_{XY}^2}{S_X S_Y} = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2} \cdot \sqrt{\sum_{i=1}^n (Y_i - \bar{Y})^2}}$$

当样本取得观测值 x_1,x_2,\ldots,x_n 后,代入可得到这些统计量的观测值.

设总体X的均值 μ ,方差 σ^2 存在, (X_1, \dots, X_n) 例 是取自总体X的样本, $\bar{X}.S^2$ 为样本均值和样本方差: 求: $E(\bar{X}), D(\bar{X}), E(S^2)$

解:
$$E(ar{X}) = E(rac{1}{n}\sum_{i=1}^n X_i) = rac{1}{n}\sum_{i=1}^n E(X_i) = \mu$$
, 对于正态分布 $X \sim N(\mu,\sigma^2)$,期望 $E(X^2)$ 可以通过以下公式计算 首先,使用明整的性质:
$$E(X^2) = \mathrm{Var}(X) + (E(X))^2$$
 对于正态分布 $X \sim N(\mu,\sigma^2)$,我们知道:
$$E(X^2) = \mathrm{Var}(X) + (E(X))^2$$
 对于正态分布 $X \sim N(\mu,\sigma^2)$,我们知道:
$$E(X^2) = \sigma^2 + \mu^2$$
 因此:
$$E(X^2) = \sigma^2 + \mu^2$$
 所以,对于正态分布 $X \sim N(\mu,\sigma^2)$,有:
$$E(X^2) = \sigma^2 + \mu^2$$
 所以,对于正态分布 $X \sim N(\mu,\sigma^2)$,有:
$$E(X^2) = \mu^2 + \sigma^2$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} E(X_i^2) - nE(\bar{X}^2) \right)$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} (\sigma^2 + \mu^2) - n(\frac{\sigma^2}{n} + \mu^2) \right) = \sigma^2.$$

 $E(X^2) = \sigma^2 + \mu^2$

 $E(X^2) = \mu^2 + \sigma^2$

常用的统计量(2)--次序统计量

设 (X_1, X_2, \dots, X_n) 是取自总体 X 的样本,

$$X_{(1)} \leqslant X_{(2)} \leqslant \cdots \leqslant X_{(n-1)} \leqslant X_{(n)},$$

- (1) 最小顺序统计量 $X_{(1)} = \min\{X_1, X_2, ..., X_n\}$
- (2) 最大顺序统计量 $X_{(n)} = \max\{X_1, X_2, ..., X_n\}$.
- (3) 样本极差 $R = X_{(n)} X_{(1)}$
- (4) 样本中位数

$$\operatorname{med}(X_{1}, X_{2}, \cdots, X_{n}) = \begin{cases} X_{\left(\frac{n+1}{2}\right)}, & n \text{ 为奇数,} \\ \frac{1}{2} \left(X_{\left(\frac{n}{2}\right)} + X_{\left(1 + \frac{n}{2}\right)}\right), & n \text{ 为偶数} \end{cases}$$

样本权差与数据在位别 数上的 数据 计数据 的 数据 的 数据 的 节节 的 数据 的 证明 数 可 知 离 的 点 。

3M

- Mean(样本均值)
- Median(样本中位数): 从小到大排列的数列中位于中间位置的那个数,如果数列个数为奇数位,则中位数位于(n+1)/2;如果为偶数位,则为n/2与n/2+1的两个数的平均值。
- Mode(众数): 出现次数最多的值

正态分布: mean = median = mode

箱线图(boxplot)

四分位数:将从小到大排列的数列平均分为4段,最小的四分位数 称为下四分位数(q1),最大的称为上四分位数(q3),中间的称为中位数(q2, median)。

- 四分位距IQR=Q3-Q1, interquartile range
- 上限=Q3+1.5IQR, Q3向上延伸1.5倍IQR的数据点.
- 下限=Q1-1.5IQR, Q1向下延伸1.5倍IQR的数据点.
- 离群值(显示为绿色圆圈)

2 数理统计的常用分布

- 正态分布
- χ²分布
- **t**分布
- **F**分布

抽样分布

统计量依赖于样本,统计量是随机变量,统计量的分布叫做操作分布(sampling distribution).

与正态分布有关的常用抽样分布

(1) 标准正态分布

$$X \sim N(0,1)$$

密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, -\infty < x < +\infty$$

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{\pi}{2}}, \quad -\infty < x < +\infty$$

 $X \sim N(\mu, \sigma^2)$ \longrightarrow $\frac{X-\mu}{\sigma} \sim N(0,1)$

(2) χ^2 分布

设 X_1, X_2, \cdots, X_n 相互独立,都服从正态分布N(0,1),

则随机变量:

$$\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2$$

服从自由度为 n 的 χ^2 分布. 记为 $\chi^2 \sim \chi^2(n)$

degrees of freedom informally corresponds to the number of "independent pieces of information"

海尔墨特(Hermert)和现代统计学奠基人之一的卡尔·皮尔逊(Karl Pearson)分别于1875年和1900年推导出来。

$$n=1$$
 时,其密度函数为

$$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} x^{-\frac{1}{2}} e^{-\frac{x}{2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

n=2 时,其密度函数为

$$f(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

即参数为1/2的指数分布

自由度为 n 的 $\chi^2(n)$ 的密度函数为

其中,
$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

 $\mathbf{c}x > 0$ 时收敛, 称为/函数, 具有性质

$$\Gamma(x+1) = x\Gamma(x), \quad \Gamma(0) = \Gamma(1) = 1, \Gamma(n+1) = n! \quad (n \in N)$$

 $\Gamma(1/2) = \sqrt{\pi}$

证 因为 X_1, X_2, \dots, X_n 相互独立, 且都服从 N(0; 1), 所以 $X = [X_1, X_2, \dots, X_n]^T$ 的概率 密度为

$$f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{x_i^2}{2}} = (2\pi)^{-\frac{n}{2}} \exp\left(-\frac{1}{2} \sum_{i=1}^n x_i^2\right).$$

当 $x \ge 0$, $\Delta x > 0$ 时, 随机事件 $\{x < \chi^2 \le x + \Delta x\}$ 的概率为

$$P\{x < \chi^2 \le x + \Delta x\} = (2\pi)^{-\frac{n}{2}} \iint_G \dots \int \exp\left(-\frac{1}{2} \sum_{i=1}^n x_i^2\right) dx_1 dx_2 \dots dx_n,$$

其中 G 是外半径为 $\sqrt{x} + \Delta x$ 、内半径为 \sqrt{x} ($x = \sum_{i=1}^{n} x_i^2$ 是一个常数)的 n 维球 壳. 记 G 的体积为 ΔV , 则有

$$(2\pi)^{-\frac{n}{2}} e^{-\frac{1}{2}(x+\Delta x)} \Delta V \leqslant P\{x < \chi^2 \leqslant x + \Delta x\} \leqslant (2\pi)^{-\frac{n}{2}} e^{-\frac{1}{2}x} \Delta V.$$

由于半径为r的n维球体的体积是 Cr^n , 这里的C是常数, 故 $\Delta V = C\left[(x + \Delta x)^{\frac{n}{2}} - x^{\frac{n}{2}}\right]$, 从

$$\lim_{\Delta x \to 0} \frac{\Delta V}{\Delta x} = C \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[(x + \Delta x)^{\frac{n}{2}} - x^{\frac{n}{2}} \right] = C \frac{n}{2} x^{\frac{n}{2} - 1}.$$

因而, $\lim_{\Delta x \to 0} \frac{1}{\Delta x} P\{x < \chi^2 \leqslant x + \Delta x\} = k x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}$, 其中 $k = (2\pi)^{-\frac{n}{2}} \frac{n}{2} C$ 是常数.

当 x > 0 时, χ^2 的概率密度是 $kx^{\frac{n}{2}-1}e^{-\frac{x}{2}}$.

因 $\chi^2 \ge 0$, 故当 $x \le 0$ 时, χ^2 的概率密度显然为0.

由概率密度的性质知,

$$1 = \int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{+\infty} kx^{\frac{n}{2} - 1} e^{-\frac{x}{2}} dx = k2^{\frac{n}{2}} \int_{0}^{+\infty} u^{\frac{n}{2} - 1} e^{-u} du = k2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right),$$

即
$$k = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}$$
. 于是, $f(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}, & x > 0, \\ 0, & x \leq 0. \end{cases}$

χ2分布的性质:

性质1 变量值始终为正;

性质2
$$E(\chi^2(n)) = n$$
, $D(\chi^2(n)) = 2n$;

性质 $3\chi^2$ 分布的可加性

设
$$X \sim \chi^2(n_1)$$
, $Y \sim \chi^2(n_2)$, 并且相互独立,则 $X+Y \sim \chi^2(n_1+n_2)$

若
$$X_i \sim \chi^2(n_i)(i=1,2,\cdots,k)$$
, 且 X_1,X_2,\cdots,X_k 相互独立, 则 $\sum_{i=1}^k X_i \sim \chi^2(\sum_{i=1}^k n_i)$

性质4 χ^2 分布的极限分布是正态分布。

设 $X \sim \chi^2(n)$, 则对任意x, 有

$$\lim_{n\to\infty} P\left\{\frac{X-n}{\sqrt{2n}} \le x\right\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \Phi(x)$$

即
$$\chi^2(n) \sim N(n,2n)$$
.

 χ^2 分布的数学期望和方差

若
$$\chi^2 \sim \chi^2(n)$$
, 则 $E(\chi^2) = n$, $D(\chi^2) = 2n$.

证明 因为 $X_i \sim N(0, 1)$, 所以 $E(X_i^2) = D(X_i) = 1$

$$E(X_i^4) = \int_{-\infty}^{+\infty} x^4 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 3$$

$$D(X_i^2) = E(X_i^4) - [E(X_i^2)]^2 = 3 - 1 = 2, i = 1, 2, \dots, n.$$

故
$$E(\chi^2) = E(\sum_{i=1}^n X_i^2) = \sum_{i=1}^n E(X_i^2) = n$$

$$D(\chi^{2}) = D\left(\sum_{i=1}^{n} X_{i}^{2}\right) = \sum_{i=1}^{n} D(X_{i}^{2}) = 2n$$

(3) t 分布 (Student 分布)

设 $X\sim N(0,1)$, $Y\sim \chi^2(n)$, X,Y独立,则称随机变量 $\mathbf{T}=\frac{X}{\sqrt{Y/n}}$ 为服从自由度是n的t分布,记作 $T\sim t(n)$.

其密度函数为

$$f(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$$

$$-\infty < x < \infty$$

$$f(x) = \frac{\int_{t}^{t} \left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$$

$$n = 6$$

$$n = 2$$

t分布的密度函数: 低峰、厚尾

t分布的性质

密度函数f(x,n)是偶函数,且 $\lim_{n\to\infty} f(x,n) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} = \varphi(x)$

即t分布的极限分布是标准正态分布.

当n充分大(n>=30)时,t分布近似N(0,1)分布.

对于较小的n,t分布与N(0,1)分布相差很大.

性质2 设 $T \sim t(n)$, 则

> E(T)不存在, t(1)是标准柯西分布, 当n=1时、

当 $n \ge 2$ 时, E(T) = 0,

VOLUME VI

MARCH, 1908

No. 1

BIOMETRIKA.

THE PROBABLE ERROR OF A MEAN.

BY STUDENT.

Introduction.

Any experiment may be regarded as forming an individual of a "population" of experiments which might be performed under the same conditions. A series of experiments is a sample drawn from this population.

"student":

William Sealy Gosset(1876-1937)

(4) F 分布

若 $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$, X, Y 独立,则称随机变量 $\mathbf{F} = \frac{\frac{1}{m}}{n}$ 为服从自由度 是(m,n)的F分布,记作 $F \sim F(m,n)$. m称为第一自由度,n称为第二自由度。

概率密度函数f(x)为

$$f(x) = \begin{cases} \frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} m^{\frac{m}{2}} n^{\frac{n}{2}} \frac{x^{\frac{m}{2}-1}}{(mx+n)^{\frac{m+n}{2}}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

F分布是以英国统计学家费歇(R.A. Fisher,1890–1962)命名的.

F分布的性质:

简证:
$$F \sim F(n_1, n_2)$$
, $\exists U \sim \chi^2(n_1)$, $V \sim \chi^2(n_2)$, 使 $F = \frac{U/n_1}{V/n_2}$

$$\Rightarrow \frac{1}{F} = \frac{V/n_2}{U/n_1} \sim F(n_2, n_1)$$

(2) 若 $t \sim t(n)$, 则 $t^2 \sim F(1,n)$

简证:
$$t \sim t(n) \Rightarrow \exists X \sim N(0,1), Y \sim \chi^2(n), \text{使} t = \frac{X}{\sqrt{Y/n}}$$

$$t^2 = \frac{X^2}{Y/n}, \quad X^2 \sim \chi^2(1), \quad Y \sim \chi^2(n), \quad F \text{分布定义}$$

(3)
$$E(F) = \frac{n}{n-2} (n > 2), D(F) = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}, (n > 4).$$

3 正态总体的抽样分布

理论上,当总体的分布已知时,统计量的分布可以通过随机变量函数的分布求出。但由于涉及复杂的运算,往往得不到统计量分布的解析表达式。

正态总体是最常见的总体,在正态总体条件下,某些统计量的分布有比较简单的形式(四大分布)。

3.1 单个正态总体的抽样分布定理

设 X_1, X_2, \dots, X_n 是来自正态总体 $X \sim N(\mu, \sigma^2)$ 的一组样本, \bar{X}, S^2 分别是样本均值和样本方差, 则

(1)
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 或 $U = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1);$

与中心极限定理的结论对比

(2)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
 $\stackrel{\textstyle \times}{}_{i=1} \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \sim \chi^2(n-1);$

(3)
$$\bar{X}$$
 与 S^2 相互独立;

$$(4)\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t(n-1).$$

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(n)$$

证明

若
$$X_1, X_2, \cdots, X_n$$
 i.i.d, $X_i \sim N(\mu, \sigma^2)$, 则
$$\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

将 \bar{X} 标准化得 $U = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$.

(2) 思路:
$$X_i \xrightarrow{\text{标准化}} Y_i \xrightarrow{Y_i - \bar{Y}}$$
独立化 Z_i

令 $Y_i = \frac{X_i - \mu}{\sigma} (i = 1, 2, \dots, n)$, 则 Y_1, Y_2, \dots, Y_n 相互独立, 且具有相同的分布 N(0, 1),

$$\sum_{i=1}^{n} Y_i^2 = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(n)_{\circ} \quad \bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{\bar{X} - \mu}{\sigma}$$

取一个n 阶正交矩阵A:

$$\begin{bmatrix} Z_1 \\ \vdots \\ Z_n \end{bmatrix} = A \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{pmatrix} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} \\ \frac{1}{\sqrt{2 \cdot 1}} & -\frac{1}{\sqrt{2 \cdot 1}} & 0 & \cdots & 0 \\ \frac{1}{\sqrt{3 \cdot 2}} & \frac{1}{\sqrt{3 \cdot 2}} & -\frac{2}{\sqrt{3 \cdot 2}} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n(n-1)}} & \cdots & -\frac{n-1}{\sqrt{n(n-1)}} \end{pmatrix} \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}$$

$$Z_1 = \frac{1}{\sqrt{n}}Y_1 + \frac{1}{\sqrt{n}}Y_2 + \dots + \frac{1}{\sqrt{n}}Y_n = \sqrt{n}\bar{Y} = \sqrt{n}\frac{\bar{X} - \mu}{\sigma} \sim N(0,1)$$

$$Z_i = a_{i1}Y_1 + a_{i2}Y_2 + \dots + a_{in}Y_n \sim N(0,1), \quad i = 2,3,\dots,n$$

由 $Y \sim N_n(\mathbf{0}, \mathbf{E}_n)$ 知, $E(\mathbf{Z}) = E(\mathbf{AY}) = \mathbf{A}E(\mathbf{Y}) = \mathbf{0}$, $D(\mathbf{Z}) = \text{Cov}(\mathbf{Z}, \mathbf{Z}) = \text{Cov}(\mathbf{AY}, \mathbf{AY}) = \mathbf{A}\text{Cov}(\mathbf{Y}, \mathbf{Y})\mathbf{A}^{\mathrm{T}} = \mathbf{A}\mathbf{E}_n\mathbf{A}^{\mathrm{T}} = \mathbf{E}_n,$ 故 Z_1, Z_2, \dots, Z_n 两两不相关(相互独立), 而且 $Z_i \sim N(0,1)(i = 1, 2, \dots, n)$.

根据正交变换不改变向量的长度, 有 $\sum_{i=1}^{n} Y_i^2 = \sum_{i=1}^{n} Z_i^2$.

$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma} - \frac{\bar{X} - \mu}{\sigma} \right)^2$$

$$= \sum_{i=1}^n (Y_i - \bar{Y})^2 = \sum_{i=1}^n Y_i^2 - n\bar{Y}^2$$

$$= \sum_{i=1}^n Z_i^2 - Z_1^2 = \sum_{i=2}^n Z_i^2 \sim \chi^2(n-1).$$

$$\mathbb{E}^{\frac{(n-1)S^2}{\sigma^2}} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \sim \chi^2(n-1)$$

(3) 由于 Z_1, Z_2, \dots, Z_n 相互独立,故 Z_1 与 $\sum_{i=2}^n Z_i^2$ 相互独立,

$$\bar{X} = \frac{\sigma Z_1}{\sqrt{n}} + \mu$$
只依赖于 Z_1 , $S^2 = \frac{\sigma^2 \sum_{i=2}^n Z_i^2}{(n-1)}$ 只依赖于 Z_2 ,…, Z_n , 所以 \bar{X} 与 S^2 相互独立.

(4) 由于 $U = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$, $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, 而且两者相互独立, 根据 t 分布的定义得

$$\frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2} / (n-1)}} = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1).$$

例 设 (X_1, \dots, X_n) 是取自正态总体 $X \sim N(\mu, \sigma^2)$ 的样本, S^2 为样本方差,求: $E(S^2), D(S^2)$

解

若
$$\chi^2 \sim \chi^2(n)$$
, 则 $E(\chi^2) = n$, $D(\chi^2) = 2n$.

因为
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
,

$$E\left(S^2\right) = \sigma^2$$
, $D\left(S^2\right) = \frac{2\sigma^4}{n-1}$

3.2 两个正态总体的抽样分布定理

设 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2),$ 且X与Y独立,

 $X_1, X_2, ..., X_m$ 是取自X的样本, $Y_1, Y_2, ..., Y_n$ 是取自Y的样本,

 \overline{X} 和 \overline{Y} 分别是这两个样本的样本均值,

 S_X^2 和 S_Y^2 分别是这两个样本的样本方差,则有

(1)
$$\frac{S_X^2/\sigma_1^2}{S_Y^2/\sigma_2^2} \sim F(m-1, n-1)$$

$$\sharp \sigma_1^2 = \sigma_2^2 = \sigma^2 \text{ if }, \quad \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_W \sqrt{1/m + 1/n}} \sim t(m+n-2). \quad \text{pooled t-test}$$

(3) 当
$$m = n$$
时 $\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S/\sqrt{n}} \sim t(n-1)$ 其中 $S^2 = S_X^2 + S_Y^2 - 2S_{XY}^2$ paired t-test

(4)
$$\frac{\left[\left(\bar{X} - \bar{Y}\right) - (\mu_1 - \mu_2)\right]}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} \sim N(0,1)$$

证明

(1) 由定理1的结论(2) 知,

$$\frac{(m-1)S_X^2}{\sigma_1^2} \sim \chi^2(m-1), \frac{(n-1)S_Y^2}{\sigma_2^2} \sim \chi^2(n-1),$$

而 S_X^2 只依赖于 $X_1, X_2, \dots, X_m, S_Y^2$ 只依赖于 Y_1, Y_2, \dots, Y_n ,从而 S_X^2 与 S_Y^2 相互独立,由 F 分布的定义知,

$$\frac{\frac{(m-1)S_X^2}{\sigma_1^2}/(m-1)}{\frac{(n-1)S_Y^2}{\sigma_2^2}/(n-1)} = \frac{S_X^2/\sigma_1^2}{S_Y^2/\sigma_2^2} \sim F(m-1, n-1).$$

对比

$$\frac{\frac{1}{n} \sum_{i=1}^{m} (X_i - \mu_1)^2}{\frac{1}{n} \sum_{j=1}^{n} (Y_j - \mu_2)^2} = \frac{A}{\frac{\sigma_1^2}{\sigma_2^2}} \sim F(m, n), \quad A = \frac{\frac{1}{m} \sum_{i=1}^{m} (X_i - \mu_1)^2}{\frac{1}{n} \sum_{j=1}^{n} (Y_j - \mu_2)^2}$$

(2) 因为
$$\bar{X} - \bar{Y} \sim N\left(\mu_1 - \mu_2, \frac{\sigma^2}{m} + \frac{\sigma^2}{n}\right)$$

所以
$$U = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim N (0,1)$$

结论4

$$\pm \frac{(m-1)S_1^2}{\sigma^2} \sim \chi^2(m-1), \qquad \frac{(n-1)S_2^2}{\sigma^2} \sim \chi^2(n-1),$$

且它们相互独立,故由 χ^2 分布的可加性知

$$V = \frac{(m-1)S_1^2}{\sigma^2} + \frac{(n-1)S_2^2}{\sigma^2} \sim \chi^2(m+n-2)$$

由于U与V相互独立,按t分布的定义.

$$\frac{U}{\sqrt{V/(m+n-2)}} = \frac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{m}+\frac{1}{n}}} \sim t(m+n-2).$$

$$\sharp + S_w = \sqrt{\frac{(m-1)S_1^2+(n-1)S_2^2}{(m+n-2)}}$$
 45

(3) 当
$$m=n$$
时,令 $Z_i=X_i-Y_i$ $Z_i \sim N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2)$

且相互独立,看作是来自总体 $Z \sim N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2)$ 的样本

$$\frac{\bar{Z} - (\mu_1 - \mu_2)}{S_Z/\sqrt{n}} \sim t(n-1)$$

$$\overline{Z} = \overline{X} - \overline{Y}$$

$$S_Z^2 = \frac{1}{n-1} \sum_{i=1}^n \left(Z_i - \overline{Z} \right)^2 = \frac{1}{n-1} \sum_{i=1}^n \left[(X_i - Y_i) - (\overline{X} - \overline{Y}) \right]^2 = S^2 = S_X^2 + S_Y^2 - 2S_{XY}^2$$

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S/\sqrt{n}} \sim t(n-1)$$

有两个独立总体 $X \sim N(2\mu, \sigma^2), Y \sim N(\mu, \sigma^2),$

 $X_1, ..., X_4$ 与 $Y_1, ..., Y_9$ 分别是来自总体X与Y的简单随机样本,

 \bar{X}, \bar{Y} 分别是样本均值, S_1^2, S_2^2 分别是样本方差,

则
$$\frac{S_1^2}{S_2^2} \sim F([填空1], [填空2])$$

作答

4 非正态总体的抽样分布

对于非正态总体,要求出统计量的分布是比较困难的,即使有时理论上可以求出精确的分布,但其形式复杂而难以应用,这时一般利用中心极限定理推出 $n \to +\infty$ 下的极限分布. 当样本容量很大时,应用有关**统计量的极限分布**作为其近似分布.

定理 设总体X的一阶矩、二阶矩存在: $E(X) = \mu$, $0 < D(X) = \sigma^2 < +\infty$, (X_1, X_2, \dots, X_n) 是取自总体 X 的样本, 则当 n 充分大时,

- (1) 样本均值 \bar{X}_n 近似地服从 $N\left(\mu; \frac{\sigma^2}{n}\right)$,
- (2) 样本方差 S^2 依概率收敛于 σ^2 ,
- (3) $\sqrt{n} \frac{\bar{X}_n \mu}{S}$ 近似地服从 N(0; 1),

其中
$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$

5 分位数(quantile)

设随机变量 X 的分布函数为 F(x), p是一百分数(percentile),

 $0 , 若 <math>x_p$ 使

$$P\{X \leqslant x_p\} = F(x_p) = p,$$

则称 x_p 为此分布的 p 分位数.

设X的分布函数为F(x),若实数 x_{α} 满足

$$P(X>x_{\alpha})=1-F(x_{\alpha})=\alpha,$$

则称 x_{α} 为随机变量X的上 α 分位数. 其中 $0 < \alpha < 1$.

N(0,1), $\chi^2(n)$, t(n), F(m,n)的上 α 分位数分别记为:

 u_{α} , $\chi_{\alpha}^{2}(n)$, $t_{\alpha}(n)$, $F_{\alpha}(m,n)$

双侧α分位数

若存在数礼、ん, 使

$$P\{X \ge \lambda_1\} = P\{X \le \lambda_2\} = \frac{\alpha}{2}$$

则称 λ_1 、 λ_2 为X分布的双侧 α 分位数

当X的分布关于y轴对称时,若存在 x_{α} , 使

$$P\{|X| \ge x_{\underline{\alpha}}\} = \alpha,$$

则称 $x_{\frac{\alpha}{2}}$ 为X分布的双侧 α 分位数

标准正态分布的上 α 分位数(点) u_{α}

设 $X \sim N(0,1)$, $0 < \alpha < 1$, 称满足

$$P(X > u_{\alpha}) = \alpha$$

的点 u_{α} 为X 的上 α 分位数(点)

$$\Phi(u_{\alpha}) = \int_{-\infty}^{u_{\alpha}} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

$$=1-\alpha$$

常用数据

$$u_{0.05} = 1.645$$

 $u_{0.025} = 1.96$
 $u_{0.01} = 2.33$

对于给定的 $\alpha(0 < \alpha < 1)$, 称满足条件:

$$P\{\chi^2 > \chi_\alpha^2(n)\} = \alpha$$

的点 $\chi^2_{\alpha}(n)$ 为 $\chi^2(n)$ 分布的上 α 分位点。

例如

$$\chi_{0.05}^2(10) = 18.307$$
 $P(\chi^2(10) > 18.307) = 0.05$

Excel function: chisq.inv(1 - α , k)

对于给定的 $\alpha(0 < \alpha < 1)$, 称满足条件:

$$P\{t > t_{\alpha}(n)\} = \alpha$$

的点 $t_{\alpha}(n)$ 为t分布的 $\underline{L}\alpha$ 分位点。

由概率密度的对称性知: $t_{1-\alpha}(n) = -t_{\alpha}(n)$

对于给定的 $\alpha(0 < \alpha < 1)$, 称满足条件:

$$P\{F > F_{\alpha}(n_1, n_2)\} = \alpha$$

的点 $F_{\alpha}(n_1,n_2)$ 为F分布的 $\underline{L}\alpha$ 分位点。

分位数的性质:

- (2) 当n充分大 (n > 40即可),有 $\chi_{\alpha}^{2}(n) \approx \frac{1}{2} (u_{\alpha} + \sqrt{2n-1})^{2}.$
- (3) $F_{1-\alpha}(m,n) = 1/F_{\alpha}(n,m)$

$$F$$
 分布的上 α 分位点具有性质: $F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$

证明 因为 $F \sim F(n_1, n_2)$,所以 $1 - \alpha = P\{F > F_{1-\alpha}(n_1, n_2)\}$

$$= P\left\{\frac{1}{F} < \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\} = 1 - P\left\{\frac{1}{F} \ge \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\} = 1 - P\left\{\frac{1}{F} > \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\}$$

故
$$P\left\{\frac{1}{F} > \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\} = \alpha,$$

又因为
$$\frac{1}{F} \sim F(n_2, n_1)$$
, 所以 $P\left\{\frac{1}{F} > F_{\alpha}(n_2, n_1)\right\} = \alpha$,

比较后得,
$$\frac{1}{F_{1-\alpha}(n_1, n_2)} = F_{\alpha}(n_2, n_1)$$
,即 $F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$

用来求分布表中未列出的一些上 α 分位点.

例
$$F_{0.95}(12,9) = \frac{1}{F_{0.05}(9,12)} = \frac{1}{2.80} = 0.357$$

根据随机变量的上α分位数的定义, 当α增大时,

上 α 分位数 x_α 将如何变化?

- (A) 增大 (B) 不变 (C) 减小

[填空1] (填ABC之一)

对于给定的 $\alpha(0 < \alpha < 1)$, 称满足条件:

$$P\{F > F_{\alpha}(n_1, n_2)\} = \alpha$$

的点 $F_{\alpha}(n_1,n_2)$ 为F分布的上 α 分位点。

