



## **Cambridge International Examinations**

Cambridge International General Certificate of Secondary Education

| CHEMISTRY         |                     | 0620/33 |
|-------------------|---------------------|---------|
| CENTRE<br>NUMBER  | CANDIDATE<br>NUMBER |         |
| CANDIDATE<br>NAME |                     |         |

Paper 3 (Extended)

October/November 2015

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 12.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 12 printed pages.



| 1 | (a) | Describe a chemical test w          | which shows the    | presence of wa   | ter.                    |             |
|---|-----|-------------------------------------|--------------------|------------------|-------------------------|-------------|
|   |     | test                                |                    |                  |                         |             |
|   |     | colour change if water is p         | resent             |                  |                         |             |
|   |     |                                     |                    |                  |                         | [3]         |
|   | (b) | How could you show that a           | a sample of wate   | er is pure?      |                         | [~]         |
|   |     |                                     |                    |                  |                         | [1]         |
|   | (c) | Describe how water is trea          |                    |                  | es and industry.        |             |
|   |     |                                     |                    |                  |                         |             |
|   | (d) | State <b>two</b> industrial uses of | of water.          |                  |                         |             |
|   |     |                                     |                    |                  |                         |             |
|   |     |                                     |                    |                  |                         | [2]         |
|   |     |                                     |                    |                  |                         | [Total: 8]  |
| 2 | Cho | pose from the following list of     | of gases. A gas r  | nay be chosen    | once, more than once or | not at all. |
|   |     | sulfur dioxide                      | hydrogen           | methane          | carbon monoxide         |             |
|   |     | argon                               | ethene             | butane           |                         |             |
|   | (a) | It is used to bleach wood p         | oulp               |                  |                         | [1]         |
|   | (b) | When burned in oxygen, the          | ne only product i  | s water          |                         | [1]         |
|   | (c) | It can polymerise                   |                    |                  |                         | [1]         |
|   | (d) | It is used to provide an ine        | rt atmosphere fo   | or welding       |                         | [1]         |
|   | (e) | When reacted with oxyger            | n, the only produ  | ct is carbon dio | xide                    | [1]         |
|   | (f) | It is produced by the decay         | y of vegetation ir | the absence o    | f oxygen                | [1]         |
|   |     |                                     |                    |                  |                         | [Total: 6]  |

| 3 | Lithium bromide is an ionic compound. It can be electrolysed when it is molten or in aqueous |
|---|----------------------------------------------------------------------------------------------|
|   | solution. It cannot be electrolysed as a solid.                                              |

| (a) | Solid lithium bromide is a poor conductor of electricity. The ions cannot move to the electrodes |
|-----|--------------------------------------------------------------------------------------------------|
|     | they are held in an ionic lattice by strong forces.                                              |

| (i)   | Describe the motion of the ions in the solid state. |     |
|-------|-----------------------------------------------------|-----|
| (ii)  | Define the term ionic bonding.                      | [1] |
|       |                                                     | [2] |
| (iii) | What is meant by the term ionic lattice?            | [-] |
|       |                                                     |     |

(b) The diagram shows the electrolysis of molten lithium bromide.



| (i)   | Mark on the diagram the direction of the electron flow.                       | [1] |
|-------|-------------------------------------------------------------------------------|-----|
| (ii)  | Write an ionic equation for the reaction at the negative electrode (cathode). |     |
|       |                                                                               | [1] |
| (iii) | Write an ionic equation for the reaction at the positive electrode (anode).   |     |
|       |                                                                               | [2] |
| (iv)  | Which ion is oxidised? Explain your answer.                                   |     |
|       |                                                                               |     |
|       |                                                                               | [2] |

|   | (c) |       | en aqueous lithium bromide is electrolysed, a colourless gas is formed at the negative strode and the solution becomes alkaline. |
|---|-----|-------|----------------------------------------------------------------------------------------------------------------------------------|
|   |     | Exp   | plain these observations and include an equation in your explanation.                                                            |
|   |     |       |                                                                                                                                  |
|   |     |       |                                                                                                                                  |
|   |     |       |                                                                                                                                  |
|   |     |       | [3]                                                                                                                              |
|   |     |       | [Total: 14]                                                                                                                      |
| 4 | Two | ) hor | nologous series of hydrocarbons are the alkanes and the alkenes.                                                                 |
|   | (a) | (i)   | One general characteristic of a homologous series is that the physical properties vary in a predictable way.                     |
|   |     |       | State <b>three</b> other general characteristics of a homologous series.                                                         |
|   |     |       |                                                                                                                                  |
|   |     |       | [3]                                                                                                                              |
|   |     | (ii)  | How can the molecular formula of a hydrocarbon show whether it is an alkane or an alkene?                                        |
|   |     |       | [2]                                                                                                                              |
|   | (   | (iii) | How do alkanes and alkenes differ in their molecular structures?                                                                 |
|   |     |       | [2]                                                                                                                              |

| <b>(b)</b> Cracking is the thermal decomposition of alkanes into smaller hydrocarbons hydrogen. |       |                                                                                                                                                                                                                                                                                          | / |
|-------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                 | (i)   | State <b>two</b> conditions required for the cracking of an alkane.                                                                                                                                                                                                                      |   |
|                                                                                                 |       | [2                                                                                                                                                                                                                                                                                       | ] |
|                                                                                                 | (ii)  | One type of cracking produces an alkane and an alkene.                                                                                                                                                                                                                                   |   |
|                                                                                                 |       | Complete an equation for the cracking of heptane into an alkane and an alkene.                                                                                                                                                                                                           |   |
|                                                                                                 |       | $C_7H_{16} \rightarrow +$ [1                                                                                                                                                                                                                                                             | ] |
|                                                                                                 | (iii) | Complete an equation for the cracking of heptane into hydrogen and two other products.                                                                                                                                                                                                   |   |
|                                                                                                 |       | $C_7H_{16} \rightarrow \dots + \dots + H_2$ [1                                                                                                                                                                                                                                           | ] |
|                                                                                                 | (iv)  | Suggest one reason why cracking is important.                                                                                                                                                                                                                                            |   |
|                                                                                                 |       | [1                                                                                                                                                                                                                                                                                       | ] |
| , ,                                                                                             |       | drocarbons burn in excess oxygen to form carbon dioxide and water. 20 cm <sup>3</sup> of a gaseous lrocarbon burned in an excess of oxygen, 200 cm <sup>3</sup> . After cooling, the volume of the residuals at r.t.p. was 150 cm <sup>3</sup> , 50 cm <sup>3</sup> of which was oxygen. |   |
|                                                                                                 | (i)   | Determine the volume of the oxygen used.                                                                                                                                                                                                                                                 |   |
|                                                                                                 |       | [1                                                                                                                                                                                                                                                                                       | ] |
|                                                                                                 | (ii)  | Determine the volume of the carbon dioxide formed.                                                                                                                                                                                                                                       |   |
|                                                                                                 |       | [1                                                                                                                                                                                                                                                                                       | ] |
| (iii) The hydrocarbon was an alkane.                                                            |       | The hydrocarbon was an alkane.                                                                                                                                                                                                                                                           |   |
|                                                                                                 |       | Determine the formula of the hydrocarbon.                                                                                                                                                                                                                                                |   |
|                                                                                                 |       |                                                                                                                                                                                                                                                                                          |   |
|                                                                                                 |       | -,                                                                                                                                                                                                                                                                                       | , |
|                                                                                                 |       | [1                                                                                                                                                                                                                                                                                       | 1 |

[Total: 15]

5 Sulfuric acid is a strong acid. In aqueous solution, it ionises as shown below.

$$H_2SO_4 \rightarrow 2H^+ + SO_4^{2-}$$

| (a) | (i)                                                                                                                                                         | What is meant by the term acid?                                                                      |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
|     | (ii)                                                                                                                                                        | Sulfurous acid, H <sub>2</sub> SO <sub>3</sub> , is a weak acid.                                     |  |  |
|     |                                                                                                                                                             | State the difference between a weak acid and a strong acid.                                          |  |  |
|     |                                                                                                                                                             | [2]                                                                                                  |  |  |
| (b) | Sulf                                                                                                                                                        | furous acid forms salts called sulfites, which contain the ion $SO_3^{2-}$ .                         |  |  |
|     | Whe                                                                                                                                                         | en barium nitrate solution is added to aqueous sulfurous acid, a white precipitate, <b>A</b> , forms |  |  |
|     | Broi                                                                                                                                                        | mine water changes from brown to colourless when added to aqueous sulfurous acid.                    |  |  |
|     | Bromine oxidises sulfurous acid. When this solution is tested with acidified barium nitrates solution, a different white precipitate, <b>B</b> , is formed. |                                                                                                      |  |  |
|     | (i)                                                                                                                                                         | Identify the white precipitate, A.                                                                   |  |  |
|     |                                                                                                                                                             | [1]                                                                                                  |  |  |
|     | (ii)                                                                                                                                                        | Identify the white precipitate, <b>B</b> .                                                           |  |  |
|     |                                                                                                                                                             | [1]                                                                                                  |  |  |
|     | (iii)                                                                                                                                                       | Write an ionic equation for the reduction of the bromine molecule.                                   |  |  |
|     |                                                                                                                                                             | [1]                                                                                                  |  |  |
|     | (iv)                                                                                                                                                        | Name the product formed by the oxidation of sulfurous acid.                                          |  |  |
|     |                                                                                                                                                             | TA!                                                                                                  |  |  |

| (c) | Cor  | Complete the following word equations.                                            |     |  |
|-----|------|-----------------------------------------------------------------------------------|-----|--|
|     | (i)  | magnesium hydroxide + dilute sulfuric acid                                        |     |  |
|     |      |                                                                                   | [1] |  |
|     | (ii) | zinc + dilute sulfuric acid                                                       |     |  |
|     |      |                                                                                   | [1] |  |
| (   | iii) | copper carbonate + dilute sulfuric acid                                           |     |  |
|     |      |                                                                                   | [1] |  |
| (d) | Wri  | te equations for the reaction of dilute sulfuric acid with each of the following. |     |  |
|     | (i)  | ammonia                                                                           |     |  |
|     |      |                                                                                   | [2] |  |
|     | (ii) | sodium hydroxide                                                                  |     |  |
|     |      |                                                                                   | [2] |  |
| (   | iii) | iron                                                                              |     |  |
|     |      |                                                                                   | [2] |  |
|     |      | [Total:                                                                           | 16] |  |

6 A reactivity series of metals is given below.

|                   | metal name | symbol |
|-------------------|------------|--------|
| most              | sodium     | Na     |
| reactive          | lithium    | Li     |
|                   | magnesium  | Mg     |
|                   | zinc       | Zn     |
|                   | manganese  | Mn     |
| •                 | iron       | Fe     |
| least<br>reactive | copper     | Cu     |
| TOGOTIVO          | rhodium    | Rh     |

| (a) | Which <b>two</b> metals will react most vigorously with cold water?                         |
|-----|---------------------------------------------------------------------------------------------|
| (b) | Which <b>two</b> metals will not react with dilute hydrochloric acid?                       |
| (0) | Doduce the formula of iron(III) gulfate                                                     |
| (C) | Deduce the formula of iron(III) sulfate.  [1]                                               |
| (d) | What is the formula of a magnesium ion?                                                     |
| (e) | Describe a test-tube experiment which will show that manganese is more reactive than copper |
|     |                                                                                             |

| (f) | Manganese is a typical transition metal.                                        |
|-----|---------------------------------------------------------------------------------|
|     | Predict <b>three</b> physical and <b>two</b> chemical properties of this metal. |
|     | physical properties                                                             |
|     |                                                                                 |
|     |                                                                                 |
|     |                                                                                 |
|     | chemical properties                                                             |
|     |                                                                                 |
|     | [5]                                                                             |
|     |                                                                                 |

[Total: 12]

7 Two salts can be made from potassium hydroxide and sulfuric acid. They are potassium sulfate,  $K_2SO_4$ , and the acid salt potassium hydrogen sulfate,  $KHSO_4$ . They are both made by titration.



(a) 25.0 cm³ of potassium hydroxide, concentration 2.53 mol/dm³, was neutralised by 28.2 cm³ of dilute sulfuric acid.

$$2KOH(aq) + H2SO4(aq) \rightarrow K2SO4(aq) + 2H2O(l)$$

| 0-11-4-   | 41  |               | - 6 41 | I.C ! -  | 1 -1  |
|-----------|-----|---------------|--------|----------|-------|
| Calculate | tne | concentration | of the | Sulturic | acid. |

number of moles of KOH used = .....

number of moles of H<sub>2</sub>SO<sub>4</sub> needed to neutralise the KOH = .....

concentration of dilute sulfuric acid = ..... mol/dm<sup>3</sup>

[3]

(b) In the conical flask there is a neutral solution of potassium sulfate which still contains the indicator used in the titration.

| (1) | Describe how | you could | obtain a solu | tion of potassiun | n sulfate without th | ne indicator. |
|-----|--------------|-----------|---------------|-------------------|----------------------|---------------|
|     |              |           |               |                   |                      |               |
|     |              |           |               |                   |                      |               |

[2]

(ii) Potassium hydrogen sulfate can be made by the following reaction.

$$\mathsf{KOH}(\mathsf{aq}) \ + \ \mathsf{H_2SO_4}(\mathsf{aq}) \ \to \ \mathsf{KHSO_4}(\mathsf{aq}) \ + \ \mathsf{H_2O(I)}$$

Suggest how you could make a solution of potassium hydrogen sulfate without using an indicator.

......[2

| (c) | Describe a test which would distinguish between aqueous solutions of potassium sulfate and sulfuric acid. |
|-----|-----------------------------------------------------------------------------------------------------------|
|     | test                                                                                                      |
|     | result[2]                                                                                                 |
|     | [Total: 9]                                                                                                |

DATA SHEET
The Periodic Table of the Elements

|       | 0   | 4 <b>He</b> Helium | 20 <b>Ne</b> Neon 10  | 40 <b>Ar</b> Argon Argon            | 84 <b>Kr</b> Krypton 36            | 131<br><b>Xe</b><br>Xenon<br>54     | <b>Rn</b><br>Radon<br>86           |                                                                                                         | 175<br><b>Lu</b><br>Lutetium<br>71                  | <b>Lr</b><br>Lawrencium<br>103   |
|-------|-----|--------------------|-----------------------|-------------------------------------|------------------------------------|-------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------|
|       | II/ |                    | 19 <b>T</b> Fluorine  | 35.5 <b>C 1</b> Chlorine            | 80 <b>Br</b> Bromine 35            | 127 <b>T</b> lodine                 | At<br>Astatine<br>85               |                                                                                                         | 173<br><b>Yb</b><br>Ytterbium<br>70                 | Nobelium                         |
|       | N   |                    | 16<br>Oxygen<br>8     | 32 <b>S</b> Sulfur 16               | 79 <b>Se</b> Selenium 34           | 128 <b>Te</b> Tellurium             | <b>Po</b> Polonium 84              |                                                                                                         | 169 <b>Tm</b> Thulium                               | Md<br>Mendelevium<br>101         |
|       | >   |                    | 14 <b>N</b> itrogen 7 | 31<br>Phosphorus                    | 75<br><b>As</b><br>Arsenic         | 122 <b>Sb</b> Antimony 51           | 209 <b>Bi</b> Bismuth              |                                                                                                         | 167<br><b>Er</b><br>Erbium<br>68                    | Fm<br>Fermium                    |
|       | \   |                    | 12<br>Carbon<br>6     | 28<br><b>Si</b><br>Silicon          | 73<br><b>Ge</b><br>Germanium<br>32 | <b>Sn</b> Tin                       | 207 <b>Pb</b> Lead 82              |                                                                                                         | 165<br><b>Ho</b><br>Holmium<br>67                   | <b>ES</b><br>Einsteinium<br>99   |
|       |     |                    | 11<br>Boron<br>5      | 27<br><b>A 1</b><br>Aluminium<br>13 | 70<br><b>Ga</b><br>Gallium<br>31   | 115 <b>In</b> Indium 49             | 204 <b>T 1</b> Thallium            |                                                                                                         | 162<br><b>Dy</b><br>Dysprosium<br>66                | Cf<br>Californium<br>98          |
|       |     |                    |                       |                                     | 65<br><b>Zn</b><br>Zinc<br>30      | 112 <b>Cd</b> Cadmium 48            | 201<br><b>Hg</b><br>Mercury<br>80  |                                                                                                         | 159<br><b>Tb</b><br>Terbium<br>65                   | <b>BK</b><br>Berkelium<br>97     |
|       |     |                    |                       |                                     | 64<br><b>Cu</b><br>Copper<br>29    | 108 <b>Ag</b> Silver 47             | 197<br><b>Au</b><br>Gold<br>79     |                                                                                                         | 157 <b>Gd</b> Gadolinium 64                         | <b>Cm</b><br>Curium              |
| Group |     |                    |                       |                                     | 59 <b>X</b> Nickel                 | 106 <b>Pd</b> Palladium 46          | 195 <b>Pt</b> Platinum 78          |                                                                                                         | 152<br><b>Eu</b><br>Europium<br>63                  | Am<br>Americium<br>95            |
| Gre   |     |                    |                       |                                     | 59<br>Cobalt                       | 103<br><b>Rh</b><br>Rhodium<br>45   | 192 <b>I r</b> Indium 77           |                                                                                                         | 150 Sm Samarium 62                                  | <b>Pu</b> Plutonium              |
|       |     | T<br>Hydrogen      |                       |                                     | 56<br><b>Fe</b><br>Iron<br>26      | Ru<br>Ruthenium<br>44               | 190<br><b>Os</b><br>Osmium<br>76   |                                                                                                         | <b>Pm</b> Promethium 61                             | Neptunium                        |
|       |     |                    |                       |                                     | 55<br><b>Mn</b><br>Manganese<br>25 | Tc Technetium 43                    | 186<br><b>Re</b><br>Rhenium<br>75  |                                                                                                         | 144 <b>Nd</b> Neodymium 60                          | 238<br><b>U</b><br>Uranium<br>92 |
|       |     |                    |                       |                                     | 52<br><b>Cr</b><br>Chromium<br>24  | 96<br><b>Mo</b><br>Molybdenum<br>42 | 184 <b>W</b> Tungsten 74           |                                                                                                         | 141<br><b>Pr</b><br>Praseodymium<br>59              | Pa<br>Protactinium<br>91         |
|       |     |                    |                       |                                     | 51<br><b>V</b><br>Vanadium<br>23   | Niobium 41                          | 181<br><b>Ta</b><br>Tantalum<br>73 |                                                                                                         | 140 <b>Ce</b> Cerium                                | 232<br><b>Th</b><br>Thorium      |
|       |     |                    |                       |                                     | 48 <b>T</b> Ttanium                | 91<br><b>Zr</b><br>Zirconium<br>40  | 178<br><b>Hf</b><br>Hafnium<br>72  |                                                                                                         |                                                     | nic mass<br>bol<br>nic) number   |
|       |     |                    | Scandium 21           | 89 <b>×</b>                         | 139 <b>La</b> Lanthanum 57 *       | 227 <b>Ac</b> Actinium 89           | l series<br>eries                  | <ul><li>a = relative atomic mass</li><li>X = atomic symbol</li><li>b = proton (atomic) number</li></ul> |                                                     |                                  |
|       | =   |                    | 9 <b>Be</b> Beryllium | 24 Mg Magnesium 12                  | 40 <b>Cal</b> cium 20              | Strontium                           | 137 <b>Ba</b> Barium 56            | 226 <b>Ra</b> Radium 88                                                                                 | *58-71 Lanthanoid series<br>190-103 Actinoid series | « <b>×</b> ≈                     |
|       | _   |                    | 7 <b>Li</b> Lithium   | 23 <b>Na</b> Sodium                 | 39 <b>K</b> Potassium              | Rubidium 37                         | 133 <b>CS</b> Caesium 55           | <b>Fr</b><br>Francium<br>87                                                                             | *58-71 L                                            | Key                              |

The volume of one mole of any gas is  $24 \, \mathrm{dm}^3$  at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.