Variables aleatorias: nociones básicas (Borradores, Curso 23)

Sebastian Grynberg

20 de marzo 2013

... el único héroe válido es el héroe "en grupo", nunca el héroe individual, el héroe solo.

(Héctor G. Oesterheld)

Índice

1.	Variables aleatorias	3
	1.1. Propiedades de la función de distribución	6
	1.2. Clasificación de variables aleatorias	7
	1.3. Cuantiles	11
	1.4. Construcción de variables aleatorias	13
	1.5. Función de distribución empírica e histogramas	17
2.	Variables truncadas	21
	2.1. Perdida de memoria	22
	2.2. Caracterización cualitativa de la distribución exponencial	23
	2.3. Dividir y conquistar	23
3.	Bibliografía consultada	24

1. Variables aleatorias

Sea $(\Omega, \mathcal{A}, \mathbb{P})$ un espacio de probabilidad. Una variable aleatoria sobre Ω es una función $X: \Omega \to \mathbb{R}$ tal que para todo $x \in \mathbb{R}$

$${X \le x} := {\omega \in \Omega : X(\omega) \le x} \in \mathcal{A},$$

i.e., para todo $x \in \mathbb{R}$ el evento $\{X \leq x\}$ tiene asignada probabilidad. La función de distribución $F_X : \mathbb{R} \to [0,1]$ de la variable aleatoria X se define por

$$F_X(x) := \mathbb{P}(X \le x).$$

Cálculo de probabilidades. La función de distribución resume (y contiene) toda la información relevante sobre de la variable aleatoria. Para ser más precisos, para cada pareja de números reales a < b vale que ¹

$$\mathbb{P}(a < X \le b) = F_X(b) - F_X(a). \tag{1}$$

Ejemplos

Ejemplo 1.1 (Dado equilibrado). Sea X el resultado del lanzamiento de un dado equilibrado. Los posibles valores de X son 1, 2, 3, 4, 5, 6. Para cada $k \in \{1, 2, 3, 4, 5, 6\}$ la probabilidad de que X tome el valor k es 1/6.

Sea $x \in \mathbb{R}$. Si x < 1 es evidente que $\mathbb{P}(X \le x) = 0$. Si $k \le x < k+1$ para algún $k \in \{1, 2, 3, 4, 5\}$ la probabilidad del evento $\{X \le x\}$ es la probabilidad de observar un valor menor o igual que k y en consecuencia, $\mathbb{P}(X \le x) = k/6$. Finalmente, si $x \ge 6$ es evidente que $\mathbb{P}(X \le x) = 1$.

Figura 1: Gráfico de la función de distribución del resultado de lanzar un dado equilibrado.

Por lo tanto, la función de distribución de X se puede expresar del siguiente modo

$$F_X(x) = \sum_{k=1}^{6} \frac{1}{6} \mathbf{1} \{ k \le x \}.$$

Basta observar que $\{X \leq a\} \subset \{X \leq b\}$ y usar las propiedades de la probabilidad. De la igualdad $\{a < X \leq b\} = \{X \leq b\} \setminus \{X \leq a\}$ se deduce que $\mathbb{P}(a < X \leq b) = \mathbb{P}(X \leq b) - \mathbb{P}(X \leq a) = F_X(b) - F_X(a)$.

Ejemplo 1.2 (Fiabilidad). Un problema fundamental de la ingeniería es el problema de la fiabilidad. Informalmente, la fiabilidad de un sistema se define como su capacidad para cumplir ciertas funciones prefijadas. Esta propiedad se conserva durante un período de tiempo hasta que ocurre una falla que altera la capacidad de trabajo del sistema. Por ejemplo: rupturas y cortocircuitos; fracturas, deformaciones y atascamientos de piezas mecánicas; el fundido o la combustión de las componentes de un circuito.

Debido a que las fallas pueden ocurrir como hechos casuales, podemos considerar que el tiempo de funcionamiento, <math>T, hasta la aparición de la primer falla es una variable aleatoria a valores no negativos.

La fiabilidad de un sistema se caracteriza por su función intensidad de fallas $\lambda(t)$. Esta función temporal tiene la siguiente propiedad: cuando se la multiplica por dt se obtiene la probabilidad condicional de que el sistema sufra una falla durante el intervalo de tiempo (t, t + dt] sabiendo que hasta el momento t funcionaba normalmente. Si se conoce la función $\lambda(t)$ se puede hallar la ley de distribución de probabilidades de T.

Para calcular la función de distribución de T estudiaremos dos eventos: $A := \{T > t\}$ (el sistema funciona hasta el momento t) y $B := \{t < T \le t + dt\}$ (el sistema sufre una falla en el intervalo de tiempo (t, t + dt]). Como $B \subset A$, tenemos que $\mathbb{P}(B) = \mathbb{P}(B \cap A)$ y de la regla del producto se deduce que

$$\mathbb{P}(B) = \mathbb{P}(B|A)\mathbb{P}(A). \tag{2}$$

Si la función de distribución de T admite derivada continua, salvo términos de segundo orden que se pueden despreciar, la probabilidad del evento B se puede expresar en la forma

$$\mathbb{P}(B) = \mathbb{P}(t < T \le t + dt) = F_T(t + dt) - F_T(t) = F_T'(t)dt.$$
(3)

La probabilidad del evento A se puede expresar en la forma

$$\mathbb{P}(A) = \mathbb{P}(T > t) = 1 - \mathbb{P}(T \le t) = 1 - F_T(t). \tag{4}$$

Finalmente, la probabilidad condicional $\mathbb{P}(B|A)$ se expresa mediante la función intensidad de fallas $\lambda(t)$:

$$\mathbb{P}(B|A) = \lambda(t)dt \tag{5}$$

Sustituyendo las expresiones (3)-(5) en la fórmula (2) obtenemos, después de dividir ambos miembros por dt, una ecuación diferencial de primer orden para $F_T(t)$

$$F_T'(t) = \lambda(t)(1 - F_T(t)).$$
 (6)

Debido a que la duración del servicio del sistema no puede ser negativa, el evento $\{T \leq 0\}$ es imposible. En consecuencia, $F_T(0) = 0$. Integrando la ecuación diferencial (6) con la condición inicial F(0) = 0, obtenemos ²

$$F_T(t) = 1 - \exp\left(-\int_0^t \lambda(s)ds\right). \tag{7}$$

$$F'_{T}(t) = \lambda(t)(1 - F_{T}(t)) \iff \frac{F'_{T}(t)}{1 - F_{T}(t)} = \lambda(t) \iff \frac{d}{dt}\log(1 - F_{T}(t)) = -\lambda(t)$$

$$\iff \log(1 - F_{T}(t)) = -\int_{0}^{t} \lambda(s)ds + C \iff F_{T}(t) = 1 - \exp\left(-\int_{0}^{t} \lambda(s)ds + C\right).$$

Usando que $F_T(0) = 0$ se deduce que C = 0.

Nota Bene. El desarrollo anterior presupone que la función intensidad de fallas $\lambda(t)$ verifica las siguientes condiciones: (1) $\lambda(t) \geq 0$ para todo t > 0 y (2) $\int_0^\infty \lambda(t) dt = +\infty$.

Ejemplo 1.3 (Fiabilidad). Se estipula que la duración de servicio de un sistema automático debe ser t_0 . Si durante ese período el sistema falla, se lo repara y se lo utiliza hasta que sirva el plazo estipulado. Sea S el tiempo de funcionamiento del sistema después de la primera reparación. Queremos hallar la función de distribución de S.

En primer lugar observamos que la relación entre la variable aleatoria S y el instante T en que ocurre la primera falla del sistema es la siguiente

$$S = \max(t_0 - T, 0) = \begin{cases} t_0 - T & \text{si } T \le t_0, \\ 0 & \text{si } T > t_0. \end{cases}$$

Sea $F_S(s)$ la función de distribución de la variable S. Es claro que para s < 0, $F_S(s) = 0$ y que para $s \ge t_0$, $F_S(s) = 1$. Lo que falta hacer es analizar el comportamiento de F_S sobre el intervalo $0 \le s < t_0$. Sea $s \in [0, t_0)$

$$F_S(s) = \mathbb{P}(S \le s) = \mathbb{P}(\max(t_0 - T, 0) \le s) = \mathbb{P}(t_0 - T \le s, 0 \le s)$$

= $\mathbb{P}(t_0 - T \le s) = \mathbb{P}(t_0 - s \le T) = \exp\left(-\int_0^{t_0 - s} \lambda(t) dt\right),$

donde $\lambda(t)$ es la función intensidad de fallas del sistema.

Figura 2: Gráfico de la función de distribución de la variable aleatoria S.

Por lo tanto,

$$F_S(s) = \exp\left(-\int_0^{t_0 - s} \lambda(t)dt\right) \mathbf{1}\{0 \le s < t_0\} + \mathbf{1}\{s \ge t_0\}.$$

Ejercicios adicionales

1. Sea X una variable aleatoria con función de distribución $F_X(x)$. Mostrar que para cada pareja de números reales a < b vale que:

$$\mathbb{P}(a \le X \le b) = F_X(b) - F_X(a) + \mathbb{P}(X = a) \tag{8}$$

$$\mathbb{P}(a \le X < b) = F_X(b) - \mathbb{P}(X = b) - F_X(a) + \mathbb{P}(X = a) \tag{9}$$

$$\mathbb{P}(a < X < b) = F_X(b) - \mathbb{P}(X = b) - F_X(a) \tag{10}$$

Notar que las fórmulas (8)-(10), junto con (1), muestran como calcular la probabilidad de que la variable aleatoria X tome valores en un intervalo de extremos a y b y contienen una advertencia sobre la acumulación de masa positiva en alguno de los dos extremos.

1.1. Propiedades de la función de distribución

Lema 1.4. Sea $X : \Omega \to \mathbb{R}$ una variable aleatoria. La función de distribución de X, $F_X(x) = \mathbb{P}(X \le x)$, tiene las siguientes propiedades:

- (F1) es no decreciente: si $x_1 \le x_2$, entonces $F_X(x_1) \le F_X(x_2)$;
- (F2) es continua a derecha: para todo $x_0 \in \mathbb{R}$ vale que $\lim_{x \downarrow x_0} F_X(x) = F_X(x_0)$;

(F3)
$$\lim_{x \to -\infty} F_X(x) = 0$$
 y $\lim_{x \to \infty} F_X(x) = 1$.

Demostración.

La propiedad (F1) se deduce de la fórmula (1).

La propiedad (F2) es consecuencia del axioma de continuidad de la medida de probabilidad \mathbb{P} . Se considera una sucesión decreciente de números positivos que converge a 0, $\epsilon_1 > \epsilon_2 > \ldots > 0$, arbitraria, pero fija y se definen eventos $A_n = \{x_0 < X \le x_0 + \epsilon_n\}$. Se observa que $A_1 \supset A_2 \supset \cdots \ y \bigcap_{n \in \mathbb{N}} A_n = \emptyset$:

$$0 = \lim_{n \to \infty} \mathbb{P}(A_n) = \lim_{n \to \infty} \mathbb{P}(x_0 < X \le x_0 + \epsilon_n) = \lim_{n \to \infty} F(x_0 + \epsilon_n) - F(x_0).$$

Por lo tanto,

$$F(x_0) = \lim_{n \to \infty} F(x_0 + \epsilon_n).$$

Las propiedades (F3) se demuestran de manera similar.

Observación 1.5. Si se define

$$F_X(x_0^-) := \lim_{x \uparrow x_0} F_X(x),$$

entonces $F_X(x_0^-) = \mathbb{P}(X < x_0)$. Por lo tanto, $\mathbb{P}(X = x_0) = F_X(x_0) - F_X(x_0^-)$. En particular, si $F_X(x)$ es continua en x_0 , entonces $\mathbb{P}(X = x_0) = 0$. Si $\mathbb{P}(X = x_0) > 0$, entonces $F_X(x)$ es discontinua en x_0 y su discontinuidad es un salto de altura $\mathbb{P}(X = x_0) > 0$.

Ejercicios adicionales

- **2.** Sea $(\Omega, \mathcal{A}, \mathbb{P})$ un espacio de probabilidad y $X : \Omega \to \mathbb{R}$ una variable aleatoria con función de distribución $F_X(x)$.
- (a) Mostrar que

$$\lim_{x \to -\infty} F_X(x) = 0 \qquad \text{y} \qquad \lim_{x \to \infty} F_X(x) = 1.$$

(Sugerencia. Considerar sucesiones de eventos $B_n = \{X \leq -n\}$ y $C_n = \{X \leq n\}$, $n \in \mathbb{N}$, y utilizar el axioma de continuidad de la medida de probabilidad \mathbb{P} .)

(b) Mostrar que

$$\lim_{x \uparrow x_0} F_X(x) = \mathbb{P}(X < x_0).$$

(Sugerencia. Observar que si $x \uparrow x_0$, entonces $\{X \le x\} \uparrow \{X < x_0\}$ y utilizar el axioma de continuidad de la medida de probabilidad \mathbb{P} .)

1.2. Clasificación de variables aleatorias

En todo lo que sigue, X designa una variable aleatoria definida sobre un espacio de probabilidad $(\Omega, \mathcal{A}, \mathbb{P})$ y $F_X(x) := \mathbb{P}(X \leq x)$ su función de distribución.

Nota Bene. Al observar el gráfico de una función de distribución lo primero que llama la atención son sus saltos y sus escalones.

Átomos. Diremos que $a \in \mathbb{R}$ es un átomo de $F_X(x)$ si su peso es positivo: $\mathbb{P}(X = a) = F_X(a) - F_X(a-) > 0$.

El conjunto de todos los átomos de $F_X(x)$: $\mathbb{A} = \{a \in \mathbb{R} : F_X(a) - F_X(a-) > 0\}$, coincide con el conjunto de todos los puntos de discontinuidad de $F_X(x)$. El peso de cada átomo coincide con la longitud del salto dado por la función de distribución en dicho átomo. En consecuencia, existen a lo sumo un átomo de probabilidad $> \frac{1}{2}$, a lo sumo dos átomos de probabilidad $> \frac{1}{3}$, etcétera. Por lo tanto, es posible reordenar los átomos en una sucesión a_1, a_2, \ldots tal que $\mathbb{P}(X = a_1) \geq \mathbb{P}(X = a_2) \geq \cdots$. En otras palabras, existen a lo sumo numerables átomos.

La propiedad de σ -aditividad de la medida de probabilidad \mathbb{P} implica que el peso total del conjunto \mathbb{A} no puede exceder la unidad: $\sum_{a \in \mathbb{A}} \mathbb{P}(X = a) \leq 1$.

Definición 1.6 (Variables discretas). Diremos que X es una variable aleatoria discreta si

$$\sum_{a \in \mathbb{A}} \mathbb{P}(X = a) = 1.$$

En tal caso, la función $p_X : \mathbb{A} \to \mathbb{R}$ definida por $p_X(x) = \mathbb{P}(X = x)$ se denomina la función de probabilidad de X.

Escalones. Sea X una variable aleatoria discreta. Si $a_1 < a_2$ son dos átomos consecutivos, entonces $F_X(x) = F_X(a_1)$ para todo $x \in (a_1, a_2)$. En otras palabras, la función de distribución de una variable aleatoria discreta debe ser constante entre saltos consecutivos.

Si no lo fuera, deberían existir dos números $x_1 < x_2$ contenidos en el intervalo (a_1, a_2) tales que $F_X(x_1) < F_X(x_2)$. En tal caso,

$$\mathbb{P}(X \in \mathbb{A} \cup (x_1, x_2]) = \mathbb{P}(X \in \mathbb{A}) + \mathbb{P}(x_1 < X \le x_2) = \sum_{a \in \mathbb{A}} \mathbb{P}(X = a) + F_X(x_2) - F_X(x_1)$$

$$= 1 + F_X(x_2) - F_X(x_1) > 1.$$

lo que constituye un absurdo.

Definición 1.7 (Variables continuas). Diremos que X es una variable aleatoria *continua* si su función de distribución es continua.

Definición 1.8 (Variables mixtas). Diremos que X es una variable aleatoria mixta si no es continua ni discreta.

Definición 1.9 (Variables absolutamente continuas). Diremos que X es absolutamente continua si existe una función (medible) $f_X : \mathbb{R} \to \mathbb{R}^+$, llamada densidad de X, tal que cualesquiera sean $-\infty \le a < b < \infty$ vale que

$$\mathbb{P}(a < X \le b) = \int_a^b f_X(x) \, dx. \tag{11}$$

En particular, para cada $x \in \mathbb{R}$, vale que

$$F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^x f_X(t) dt.$$
 (12)

Nota Bene. Notar que de (12) se deduce que

$$\int_{-\infty}^{\infty} f_X(x) dx = 1.$$

Aplicando en (12) el teorema Fundamental del Cálculo Integral, se obtiene que si X es absolutamente continua, $F_X(x)$ es una función continua para todo x, y su derivada es $f_X(x)$ en todos los x donde f_X es continua.

Como la expresión "absolutamente continua" es demasiado larga, se suele hablar simplemente de "distribuciones continuas". Sin embargo, hay que tener en cuenta que el hecho de que F_X sea una función continua, no implica que la distribución de X sea absolutamente continua: hay funciones monótonas y continuas, que sin embargo no son la primitiva de ninguna función. (Para más detalles consultar el ejemplo sobre distribuciones tipo Cantor que está en Feller Vol II, p.35-36).

Interpretación intuitiva de la densidad de probabilidad. Sea X una variable aleatoria absolutamente continua con función densidad $f_X(x)$ continua. Para cada $\epsilon > 0$ pequeño y para $x \in \mathbb{R}$ vale que

$$\mathbb{P}(x - \epsilon/2 < X \le x + \epsilon/2) = \int_{x - \epsilon/2}^{x + \epsilon/2} f_X(t) dt \approx f_X(x)\epsilon.$$

Dicho en palabras, la probabilidad de que el valor de X se encuentre en un intervalo de longitud ϵ centrado en x es aproximadamente $f_X(x)\epsilon$.

Ejemplos

Ejemplo 1.10. El resultado, X, del lanzamiento de un dado equilibrado (ver Ejemplo 1.1) es una variable aleatoria discreta. Esto resulta evidente de observar que el gráfico de la función de distribución de X (ver Figura 1) que tiene la forma de una escalera con saltos de altura 1/6 en los puntos 1, 2, 3, 4, 5, 6. Dicho en otras palabras, toda la masa de la variable aleatoria X está concentrada en el conjunto de los átomos de F_X , $\mathbb{A} = \{1, 2, 3, 4, 5, 6\}$.

Ejemplo 1.11 (Números al azar). El resultado de "sortear" un número al azar sobre el intervalo (0,1) es una variable aleatoria absolutamente continua. La probabilidad del evento $U \le u$ es igual a la longitud del intervalo $(-\infty, u] \cap (0, 1)$.

Notar que cuando $u \leq 0$ el intervalo $(-\infty, u] \cap (0, 1)$ se reduce al conjunto vacío que por definición tiene longitud 0. Por otra parte, para cualquier $u \in (0, 1)$ se tiene que $(-\infty, u] \cap (0, 1) = (0, u)$ y en consecuencia $\mathbb{P}(U \leq u) = u$; mientras que si $u \geq 1$, $(-\infty, u] \cap (0, 1) = (0, 1)$ de donde sigue que $\mathbb{P}(U \leq u) = 1$. Por lo tanto, la función de distribución de U es

$$F_U(u) = u\mathbf{1}\{0 \le u < 1\} + \mathbf{1}\{u \ge 1\}.$$

Figura 3: Gráfico de la función de distribución del resultado de "sortear" un número al azar.

Derivando, respecto de u, la función de distribución $F_U(u)$ se obtiene una función densidad para U:

$$f_U(u) = \mathbf{1}\{0 < u < 1\}.$$

Nota Bene. Sortear un número al azar sobre el intervalo (0,1) es un caso particular de una familia de variables aleatorias denominadas uniformes. Una variable aleatoria X, definida sobre un espacio de probabilidad $(\Omega, \mathcal{A}, \mathbb{P})$, se denomina uniformemente distribuida sobre el intervalo (a,b), donde a < b, si X es absolutamente continua y admite una función densidad de la forma

$$f_X(x) = \frac{1}{b-a} \mathbf{1} \{ x \in (a,b) \}.$$

En tal caso escribiremos $X \sim \mathcal{U}(a, b)$.

Comentario. En la Sección 1.4 mostraremos que todas las variables aleatorias se pueden construir utilizando variables aleatorias uniformemente distribuidas sobre el intervalo (0,1).

Ejemplo 1.12. El tiempo, T, de funcionamiento hasta la aparición de la primera falla para un sistema con función intensidad de fallas continua $\lambda(t)$ (ver Ejemplo 1.2) es una variable aleatoria absolutamente continua que admite una densidad de la forma

$$f_T(t) = \lambda(t) \exp\left(-\int_0^t \lambda(s)ds\right) \mathbf{1}\{t > 0\}.$$
 (13)

.

Nota Bene: algunos casos particulares del Ejemplo 1.12. El comportamiento de la densidad (13) depende de la forma particular de la función intensidad de fallas $\lambda(t)$. En lo que sigue mostraremos algunos casos particulares.

• Exponencial de intensidad λ . Se obtiene poniendo $\lambda(t) = \lambda \mathbf{1}\{t \geq 0\}$, donde λ es una constante positiva, arbitraria pero fija.

$$f_T(t) = \lambda \exp(-\lambda t) \mathbf{1}\{t > 0\}. \tag{14}$$

.

• Weibull de parámetros c y α . Se obtiene poniendo $\lambda(t) = \frac{c}{\alpha} \left(\frac{t}{\alpha}\right)^{c-1} \mathbf{1}\{t \geq 0\}$, donde c > 0 y $\alpha > 0$. En este caso, la densidad (13) adopta la forma

$$f_T(t) = \frac{c}{\alpha} \left(\frac{t}{\alpha}\right)^{c-1} \exp\left(-\left(\frac{t}{\alpha}\right)^c\right).$$
 (15)

Figura 4: Gráficos de las densidades Weibull de parámetro de escala $\alpha=1$ y parámetro de forma: c=1,2,4: en línea sólida c=1; en línea quebrada c=2 y en línea punteada c=4.

Notar que la exponencial de intensidad λ es un caso especial de la Weibull puesto que (14) se obtiene de (15) poniendo c=1 y $\alpha=\lambda^{-1}$.

Ejemplo 1.13. La variable aleatoria, S, considerada en el Ejemplo 1.3 es una variable aleatoria mixta (ver Figura 2) porque no es discreta ni continua. Tiene un único átomo en s=0 y su peso es $\exp\left(-\int_0^{t_0} \lambda(x)dx\right)$.

1.3. Cuantiles

Definición 1.14. Sea $\alpha \in (0,1)$. Un cuantil- α de X es cualquier número $x_{\alpha} \in \mathbb{R}$ tal que

$$\mathbb{P}(X < x_{\alpha}) \le \alpha \qquad y \qquad \alpha \le \mathbb{P}(X \le x_{\alpha}). \tag{16}$$

Observación 1.15. Notar que las desigualdades que caracterizan a los cuantiles- α se pueden reescribir de la siguiente manera

$$F_X(x_\alpha) - \mathbb{P}(X = x_\alpha) \le \alpha \quad \text{y} \quad \alpha \le F_X(x_\alpha).$$
 (17)

Por lo tanto, si $F_X(x)$ es continua, x_α es un cuantil α si y sólo si

$$F_X(x_\alpha) = \alpha. (18)$$

Interpretación "geométrica" del cuantil- α . Si X es una variable aleatoria absolutamente continua con función de densidad $f_X(x)$ el cuantil- α de X es la única solución de la ecuación

$$\int_{-\infty}^{x_{\alpha}} f_X(x) dx = \alpha.$$

Esto significa que el cuantil- α de X es el único punto sobre el eje de las abscisas a cuya izquierda el área bajo la función de densidad $f_X(x)$ es igual a α .

Nota Bene. Sea $x \in \mathbb{R}$. Las designaldades (17) significan que x es un cuantil- α si y sólo si $\alpha \in [F(x) - \mathbb{P}(X = x), F(x)]$

Nota Bene. El cuantil- α siempre existe. Sea $\alpha \in (0,1)$, la existencia del cuantil α se deduce analizando el conjunto $R_X^{\alpha} = \{x \in \mathbb{R} : \alpha \leq F_X(x)\}.$

- 1. R_X^{α} es no vacío porque $\lim_{x\to\infty} F_X(x) = 1$.
- 2. R_X^{α} es acotado inferiormente porque $\lim_{x\to-\infty} F_X(x) = 0$.
- 3. Si $x_0 \in R_X^{\alpha}$, entonces $[x_0, +\infty) \subset R_X^{\alpha}$ porque $F_X(x)$ es no decreciente.
- 4. ínf $R_X^{\alpha} \in R_X^{\alpha}$ porque existe una sucesión $\{x_n : n \in \mathbb{N}\} \subset R_X^{\alpha}$ tal que $x_n \downarrow$ ínf \mathbb{R}_X^{α} y $F_X(x)$ es una función continua a derecha:

$$\alpha \leq \lim_{n \to \infty} F_X(x_n) = F_X\left(\lim_{n \to \infty} x_n\right) = F_X\left(\inf R_X^{\alpha}\right).$$

De las propiedades anteriores se deduce que

$$R_X^{\alpha} = [\inf R_X^{\alpha}, +\infty) = [\min R_X^{\alpha}, +\infty).$$

Hay dos casos posibles: (a) $F_X(\min R_X^{\alpha}) = \alpha$ o (b) $F_X(\min R_X^{\alpha}) > \alpha$.

(a) Si
$$F_X(\min R_X^{\alpha}) = \alpha$$
, entonces $\mathbb{P}(X < \min R_X^{\alpha}) = \alpha - \mathbb{P}(X = \min R_X^{\alpha}) \le \alpha$.

(b) Si $F_X(\min R_X^{\alpha}) > \alpha$, entonces

$$\mathbb{P}(X < x) < \alpha \qquad \forall x < \min R_X^{\alpha} \tag{19}$$

porque sino existe un $x < \min R_x^{\alpha}$ tal que $\alpha \leq \mathbb{P}(X < x) \leq F_X(x)$ y por lo tanto, $x \in R_X^{\alpha}$ lo que constituye un absurdo.

De (19) se deduce que $\mathbb{P}(X < \min R_X^{\alpha}) = \lim_{x \uparrow \min R_X^{\alpha}} F_X(x) \leq \alpha$.

En cualquiera de los dos casos

$$x_{\alpha} = \min \left\{ x \in \mathbb{R} : F_X(x) \ge \alpha \right\} \tag{20}$$

es un cuantil- α .

Nota Bene. Si F_X es discontinua, (18) no tiene siempre solución; y por eso es mejor tomar (16) como definición. Si F_X es estrictamente creciente, los cuantiles son únicos. Pero si no, los valores que satisfacen (18) forman un intervalo.

Cuartiles y mediana. Los cuantiles correspondientes a $\alpha = 0.25, 0.50$ y 0.75 son respectivamente el primer, el segundo y tercer *cuartil*. El segundo cuartil es la *mediana*.

Ejemplos

Ejemplo 1.16. En el Ejemplo 1.1 hemos visto que la función de distribución del resultado del lanzamiento de un dado equilibrado es una escalera con saltos de altura 1/6 en los puntos 1, 2, 3, 4, 5, 6:

$$F_X(x) = \sum_{i=1}^{5} \frac{i}{6} \mathbf{1} \{ i \le x < i+1 \} + \mathbf{1} \{ 6 \le x \}.$$

Como la imagen de F_X es el conjunto $\{0, 1/6, 2/6, 3/6, 4/6, 5/6, 1\}$ la ecuación (18) solo tiene solución para $\alpha \in \{1/6, 2/6, 3/6, 4/6, 5/6\}$. Más aún, para cada $i = 1, \dots, 5$

$$F_X(x) = \frac{i}{6} \iff x \in [i, i+1).$$

En otras palabras, para cada $i=1,\ldots,5$ los cuantiles-i/6 de X son el intervalo [i,i+1). En particular, "la" mediana de X es cualquier punto del intervalo [3,4).

Para cada
$$\alpha \in \left(\frac{i-1}{6}, \frac{i}{6}\right), i = 1, \dots, 6$$
, el cuantil α de X es $x_{\alpha} = i$.

Ejemplo 1.17. Sea T el tiempo de funcionamiento hasta la aparición de la primera falla para un sistema con función intensidad de fallas $\lambda(t) = 2t\mathbf{1}\{t \geq 0\}$ (ver Ejemplo 1.2). La función de distribución de T es

$$F_T(t) = \left(1 - \exp\left(-\int_0^t 2s ds\right)\right) \mathbf{1}\{t > 0\} = \left(1 - \exp\left(-t^2\right)\right) \mathbf{1}\{t > 0\}.$$
 (21)

Como $F_T(t)$ es continua los cuantiles- α , $\alpha \in (0,1)$, se obtienen resolviendo la ecuación (18):

$$F_T(t) = \alpha \iff 1 - \exp(-t^2) = \alpha \iff t = \sqrt{-\log(1 - \alpha)}.$$

Por lo tanto, para cada $\alpha \in (0,1)$ el cuantil- α de T es

$$t_{\alpha} = \sqrt{-\log(1-\alpha)}. (22)$$

En particular, la mediana de T es $t_{0.5} = \sqrt{-\log(1 - 0.5)} \approx 0.8325$.

Ejemplo 1.18. Se considera un sistema con función intensidad de fallas $\lambda(t) = 2t\mathbf{1}\{t \ge 0\}$. El sistema debe prestar servicios durante 1 hora. Si durante ese período el sistema falla, se lo repara y se lo vuelve a utiliza hasta que cumpla con el el plazo estipulado. Sea S el tiempo de funcionamiento (medido en horas) del sistema después de la primera reparación.

En el Ejemplo 1.3 vimos que la función de distribución de S es

$$F_S(s) = \exp\left(-\int_0^{1-s} 2t dt\right) \mathbf{1}\{0 \le s < 1\} + \mathbf{1}\{s \ge 1\}$$
$$= \exp\left(-(1-s)^2\right) \mathbf{1}\{0 \le s < 1\} + \mathbf{1}\{s \ge 1\},$$

y que S es una variable aleatoria mixta (ver Figura 2) con un único átomo en s=0 cuyo peso es e^{-1} . En consecuencia, s=0 es un cuantil- α de S para todo $\alpha \in (0,e^{-1}]$. Restringida al intervalo (0,1) la función $F_S(s)$ es continua y su imagen es el intervalo $(e^{-1},1)$. Por ende, para cada $\alpha \in (e^{-1},1)$ el cuantil- α de S se obtiene resolviendo la ecuación $F_S(s) = \alpha$:

$$F_S(s) = \alpha \iff \exp\left(-(1-s)^2\right) = \alpha \iff -(1-s)^2 = \log(\alpha)$$

$$\iff (1-s)^2 = -\log(\alpha) \iff |1-s| = \sqrt{-\log(\alpha)}$$

$$\iff 1-s = \sqrt{-\log(\alpha)} \iff 1-\sqrt{-\log(\alpha)} = s.$$

Por lo tanto, para cada $\alpha \in (e^{-1}, 1)$ el cuantil- α de S es

$$s_{\alpha} = 1 - \sqrt{-\log(\alpha)}$$
.

En particular, la mediana de S es $s_{0.5} = 1 - \sqrt{-\log(0.5)} \approx 0.1674$.

1.4. Construcción de variables aleatorias

Teorema 1.19 (Simulación). Sea $F: \mathbb{R} \to [0,1]$ una función con las siguientes propiedades

- (F1) es no decreciente: si $x_1 \leq x_2$, entonces $F(x_1) \leq F(x_2)$;
- (F2) es continua a derecha: para todo $x_0 \in \mathbb{R}$ vale que $\lim_{x \mid x_0} F(x) = F(x_0)$;

(F3)
$$\lim_{x \to -\infty} F(x) = 0$$
 y $\lim_{x \to \infty} F(x) = 1$.

Existe una variable aleatoria X tal que $F(x) = \mathbb{P}(X \leq x)$.

Esquema de la demostración.

1°) Definir la inversa generalizada de F mediante

$$F^{-1}(u) := \min\{x \in \mathbb{R} : u \le F(x)\}, \quad u \in (0, 1).$$

 2^{o}) Definir X mediante

$$X:=F^{-1}(U), \qquad \text{donde } U \sim \mathcal{U}(0,1).$$

3°) Observar que vale la equivalencia (inmediata) $F^{-1}(u) \leq x \Leftrightarrow u \leq F(x)$ y deducir que $\mathbb{P}(X \leq x) = \mathbb{P}(F^{-1}(U) \leq x) = \mathbb{P}(U \leq F(x)) = F(x)$.

Observación 1.20. Si la función F del enunciado del Teorema 1.19 es continua, la inversa generalizada es simplemente la inversa.

Nota Bene. El esquema de la demostración del Teorema 1.19 muestra cómo se construye una variable aleatoria X con función de distribución $F_X(x)$. La construcción es clave para simular variables aleatorias en una computadora: algoritmos estándar generan variables aleatorias U con distribución uniforme sobre el intervalo (0,1), aplicando la inversa generalizada de la función de distribución se obtiene la variable aleatoria $F_X^{-1}(U)$ cuya función de distribución es $F_X(x)$.

Método gráfico para calcular inversas generalizadas. Sea $u \in (0,1)$, por definición, $F^{-1}(u) := \min\{x \in \mathbb{R} : u \leq F(x)\}$, 0 < u < 1. Gráficamente esto significa que para calcular $F^{-1}(u)$ hay que determinar el conjunto de todos los puntos del gráfico de F(x) que están sobre o por encima de la recta horizontal de altura u y proyectarlo sobre el eje de las abscisas. El resultado de la proyección es una semi-recta sobre el eje de las abscisas y el valor de la abscisa que la cierra por izquierda es el valor de $F^{-1}(u)$.

Ejemplo 1.21 (Moneda cargada). Se quiere simular el lanzamiento de una moneda "cargada" con probabilidad $p \in (0,1)$ de salir cara. El problema se resuelve construyendo una variable aleatoria X a valores $\{0,1\}$ tal que $\mathbb{P}(X=1)=p$ y $\mathbb{P}(X=0)=1-p$, (X=1) representa el evento "la moneda sale cara" y X=0 "la moneda sale ceca"). La función de distribución de X debe ser $F(x)=(1-p)\mathbf{1}\{0\leq x<1\}+\mathbf{1}\{x\geq 1\}$ y su gráfico se muestra en la Figura 5.

Figura 5: Gráfico de la función $F(x) = (1 - p)\mathbf{1}\{0 \le x < 1\} + \mathbf{1}\{x \ge 1\}.$

La demostración del Teorema 1.19 indica que para construir la variable aleatoria X lo primero que hay que hacer es determinar la expresión de la inversa generalizada de F(x). Para ello usaremos el método gráfico.

En la Figura 5 se puede ver que para cada $0 < u \le 1-p$ el conjunto $\{x \in \mathbb{R} : u \le F(x)\}$ es la semi-recta $[0,\infty)$ y el punto que la cierra por izquierda es x=0. En consecuencia $F^{-1}(u)=0$ para todo $0 < u \le 1-p$. Del mismo modo se puede ver que $F^{-1}(u)=1$ para todo 1-p < u < 1. Por lo tanto, $F^{-1}(u)=1\{1-p < u < 1\}$.

Definiendo $X := \mathbf{1}\{1 - p < U < 1\}$, donde $U \sim \mathcal{U}(0,1)$ se obtiene la variable aleatoria deseada.

Ejemplo 1.22 (Moneda cargada). Simular diez lanzamientos de una moneda "cargada" con probabilidad 0.6 de salir cara en cada lanzamiento.

De acuerdo con el resultado obtenido en el Ejemplo 1.21, para simular el lanzamiento de una moneda cargada con probabilidad 0.6 de salir cara se construye la variable aleatoria $X := \mathbf{1}\{0.4 < U < 1\}$, donde $U \sim \mathcal{U}(0,1)$.

Para simular 10 valores de X se simulan 10 valores de U. Si en 10 simulaciones de U se obtuviesen los valores 0.578, 0.295, 0.885, 0.726, 0.548, 0.048, 0.474, 0.722, 0.786, 0.598, los valores de la variable X serían 1,0,1,1,1,0,1,1,1,1, respectivamente, y en tal caso, los resultados de los 10 lanzamientos de la moneda serían H, T, H, H, H, T, H, H, H, H.

Ejemplo 1.23 (Fiabilidad). Se considera un sistema electrónico con función intensidad de fallas de la forma $\lambda(t) = 2t\mathbf{1}\{t > 0\}$. Se quiere estimar la función de probabilidad de la cantidad de fallas ocurridas durante la primer unidad de tiempo de funcionamiento.

Para simplificar el problema vamos a suponer que cada vez que se produce una falla, el sistema se repara instantáneamente renovándose sus condiciones iniciales de funcionamiento. Según el Ejemplo 1.2, la función de distribución del tiempo de funcionamiento hasta la aparición de la primer falla es

$$F(t) = (1 - \exp(-t^2)) \mathbf{1}\{t > 0\}.$$
(23)

Debido a que la función de distribución F(t) es continua, su inversa generalizada es simplemente su inversa y se obtiene despejando t de la ecuación $1 - \exp(-t^2) = u$. En consecuencia, $F^{-1}(u) = \sqrt{-\log(1-u)}$, $u \in (0,1)$. Para construir la variable T usamos un número aleatorio U, uniformemente distribuido sobre el intervalo (0,1) y definimos

$$T := F^{-1}(U) = \sqrt{-\log(1 - U)}.$$
(24)

La ventaja de la construcción es que puede implementarse casi de inmediato en una computadora. Por ejemplo, una rutina en Octave para simular T es la siguiente

U=rand;

T=sqrt(-log(1-rand))

Sobre la base de esa rutina podemos simular valores de T. Por ejemplo, en diez simulaciones de T obtuvimos los valores siguientes: 0.3577, 1.7233, 1.1623, 0.3988, 1.4417, 0.3052, 1.1532, 0.3875, 0.8493, 0.9888.

Figura 6: Simulación de los tiempos de ocurrencia de las fallas de un sistema electrónico con función intensidad de fallas de la forma $\lambda(t) = 2t\mathbf{1}\{t \ge 0\}$. Las fallas ocurren los instantes 0.3577, 2.0811, 3.2434, 3.6422, 5.0839, 5.3892, 6.5423, 6.9298, 7.7791, 8.7679.

La rutina puede utilizarse para simular cien mil realizaciones del experimento que consiste en observar la cantidad de fallas durante la primer unidad de tiempo de funcionamiento del sistema electrónico bajo consideración: $N[0,1] := \min\{n \ge 1 : \sum_{i=1}^{n} T_i > 1\} - 1$, donde T_1, T_2, \ldots son realizaciones independientes de los tiempos de funcionamiento del sistema hasta la ocurrencia de una falla.

Por ejemplo, repitiendo la simulación 100000 veces obtuvimos la siguiente tabla que contiene la cantidad de veces que fué simulado cada valor de la variable N[0,1]:

obteniéndose las siguientes estimaciones

```
\mathbb{P}(N[0,1]=0) \approx 0.36995, \quad \mathbb{P}(N[0,1]=1) \approx 0.51792, \quad \mathbb{P}(N[0,1]=2) \approx 0.10438,
\mathbb{P}(N[0,1]=3) \approx 0.00743, \quad \mathbb{P}(N[0,1]=4) \approx 0.00032.
```

Para finalizar este ejemplo, presentamos una rutina en Octave que simula cien mil veces la cantidad de fallas en la primer unidad de tiempo y que al final produce los resultados para construir una tabla similar a la tabla (25).

Ejemplo 1.24 (Saltando, saltando, sa, sa, sa, saltando,... 🕏). La función

$$F(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} \mathbf{1} \{ x \ge r_n \},$$
 (26)

donde r_1, r_2, \ldots es un reordenamiento de los números racionales del intervalo (0, 1) con denominadores crecientes: $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \ldots$, tiene las siguientes propiedades es creciente, continua a derecha, $\lim_{x \to -\infty} F(x) = 0$ y $\lim_{x \to \infty} F(x) = 1$; tiene saltos en todos los números racionales del (0, 1) y es continua en los irracionales del (0, 1).

Pero no! Mejor no hablar de ciertas cosas ...

Ejercicios adicionales

3. Sea X una variable aleatoria con función de distribución $F_X(x)$. Mostrar que para cada $\alpha \in (0,1)$ vale que

$$\sup\{x \in \mathbb{R} : F_X(x) < \alpha\} = \min\{x \in \mathbb{R} : F_X(x) > \alpha\}.$$

1.5. Función de distribución empírica e histogramas

Distribución empírica

La función de distribución empírica $F_n(x)$ de n puntos sobre la recta x_1, \ldots, x_n es la función escalera con saltos de altura 1/n en los puntos x_1, \ldots, x_n . En otras palabras, $nF_n(x)$ es igual a la cantidad de puntos x_k en $(-\infty, x]$ y $F_n(x)$ es una función de distribución:

$$F_n(x) = \frac{1}{n} |\{i = 1, \dots, n : x_i \le x\}| = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \{x_i \le x\}.$$
 (27)

Nota Bene. En la práctica, disponemos de conjuntos de observaciones ("muestras") correspondientes a un experimento considerado aleatorio y queremos extraer de ellas conclusiones sobre los modelos que podrían cumplir. Dada una muestra x_1, \ldots, x_n , la función de distribución empírica $F_n(x)$ coincide con la función de distribución de una variable aleatoria discreta que concentra toda la masa en los valores x_1, \ldots, x_n , dando a cada uno probabilidad 1/n.

Observación 1.25. Sea $F_n(x)$ la función de distribución empírica correspondiente a una muestra de n valores x_1, \ldots, x_n . Sean a y b dos números reales tales que a < b. Notar que

$$F_n(b) - F_n(a) = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \{ x_i \in (a, b] \} = \frac{1}{n} | \{ i = 1, \dots, n : x_i \in (a, b] \} |.$$

En consecuencia, el cociente incremental de $F_n(x)$ sobre el intervalo [a, b] es la frecuencia relativa de los valores de la muestra x_1, \ldots, x_n contenidos en el intervalo (a, b] "normalizada" por la longitud de dicho intervalo:

$$\frac{F_n(b) - F_n(a)}{b - a} = \left(\frac{1}{b - a}\right) \left(\frac{1}{n} \sum_{i=1}^n \mathbf{1} \{x_i \in (a, b]\}\right). \tag{28}$$

Notar que si los n valores, x_1, \ldots, x_n , corresponden a n observaciones independientes de los valores de una variable aleatoria X, la interpretación intuitiva de la probabilidad indica que el cociente incremental (28) debería estar próximo del cociente incremental de la función de distribución, $F_X(x)$, de la variable aleatoria X sobre el intervalo [a, b]:

$$\frac{F_n(b) - F_n(a)}{b - a} \approx \frac{\mathbb{P}(a < X \le b)}{b - a} = \frac{F_X(b) - F_X(a)}{b - a}.$$
 (29)

Cuando X es una variable aleatoria absolutamente continua con función densidad continua $f_X(x)$ la aproximación (28) adopta la forma

$$\frac{F_n(b) - F_n(a)}{b - a} \approx \frac{1}{b - a} \int_a^b f_X(x) dx = f_X(x), \tag{30}$$

donde x es algún punto perteneciente al intervalo (a, b).

Histogramas

Un histograma de una muestra x_1, \ldots, x_n se obtiene eligiendo una partición en m intervalos de extremos $a_0 < \cdots < a_m$, con longitudes $L_j = a_j - a_{j-1}$; calculando las frecuencias relativas

$$p_j = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ a_{j-1} < x_i < a_j \}$$

y graficando la función igual a p_j/L_j en el intervalo $(a_{j-1}, a_j]$ y a 0 fuera de los intervalos:

$$f_{x_1,\dots,x_n;a_0,\dots,a_m}(x) := \sum_{j=1}^m \frac{p_j}{L_j} \mathbf{1} \{ x \in (a_{j-1}, a_j] \}.$$
(31)

O sea, un conjunto de rectángulos con área p_i .

Cuando la muestra x_1, \ldots, x_n corresponde a n observaciones independientes de una variable aleatoria X absolutamente continua la función definida en (31) es una versión discreta de la densidad de X en la que las áreas miden frecuencias relativas.

Ejercicios adicionales

4. Lucas filma vídeos de tamaños aleatorios. En una muestra aleatoria de 5 vídeos filmados por Lucas se obtuvieron los siguiente tamaños (en MB):

Hallar y graficar la función de distribución empírica asociada a esta muestra. Estimar, usando la función de distribución empírica asociada a esta muestra, la probabilidad de que un vídeo ocupe menos de 19.5 MB.

5. Los siguientes datos corresponden a los tiempos de funcionamiento (en años) hasta que ocurre la primer falla de una muestra de 12 máquinas industriales:

Usando los intervalos con extremos 1.7, 1.9, 2.1, 2.3, hallar la función histograma basada en la muestra observada e integrarla para estimar la probabilidad de que una máquina industrial del mismo tipo funcione sin fallas durante menos de dos años.

Ejemplo 1.26. Sea T una variable aleatoria con distribución exponencial de intensidad 1 (ver (14)). Esto es, T es una variable aleatoria absolutamente continua con función densidad de probabilidad

$$f_T(t) = e^{-t} \mathbf{1} \{ t > 0 \}$$

y función de distribución

$$F_T(t) = (1 - e^{-t}) \mathbf{1} \{ t \ge 0 \}.$$

De acuerdo con el esquema de la demostración del Teorema 1.19 podemos simular muestras de T utilizando un generador de números aleatorios uniformemente distribuidos sobre el intervalo (0,1). Concretamente, si $U \sim \mathcal{U}(0,1)$, entonces

$$\hat{T} = -\log(1 - U)$$

es una variable con distribución exponencial de intensidad 1.

Para obtener una muestra de 10 valores t_1, \ldots, t_{10} de una variable con distribución exponencial de intensidad 1 generamos 10 números aleatorios u_1, \ldots, u_{10} y los transformamos poniendo $t_i = -\log(1 - u_i)$. Por ejemplo, si los valores u_1, \ldots, u_{10} son, respectivamente,

 $0.1406,\ 0.3159,\ 0.8613,\ 0.4334,\ 0.0595,\ 0.8859,\ 0.2560,\ 0.2876,\ 0.2239,\ 0.5912,$

los valores de la muestra obtenida, t_1, \ldots, t_{10} , son, respectivamente,

$$0.1515, 0.3797, 1.9753, 0.5682, 0.0613, 2.1703, 0.2957, 0.3390, 0.2535, 0.8946.$$
 (32)

La función de distribución empírica de la muestra observada, $F_{10}(t)$, es una función escalera con saltos de altura 1/10 en los siguientes puntos del eje t:

0.0613, 0.1515, 0.2535, 0.2957, 0.3390, 0.3797, 0.5682, 0.8946, 1.9753, 2.1703.

Para construir un histograma usaremos la partición que se obtiene dividiendo en dos intervalos de igual longitud el intervalo comprendido entre los valores mínimos y máximos observados: 0.0613, 1.1158, 2.1703. La longitud L de cada intervalo es 1.0545. La frecuencia relativa de la muestra sobre el primer intervalo es $p_1 = 8/10$ y sobre el segundo $p_2 = 2/10$ y la correspondiente altura de cada rectángulo es $p_1/L = 0.75865$ y $p_2/L = 0.18966$.

Figura 7: (a) Gráficos de la función de distribución empírica $F_{10}(t)$ correspondiente a la muestra dada en (32) y de la función de distribución de T. (b) Histograma correspondiente a la misma muestra y gráfico de la densidad de T.

Para producir los gráficos de la Figura 7 usamos las siguientes rutinas en Octave.

Rutina para simular 10 valores de una exponencial de intensidad 1

```
U=rand(1,10);
T=-log(1-U);
```

Rutina para graficar la función de distribución empírica de la muestra T

```
t=sort(T);
s=empirical_cdf(t,t);
stairs([t(1),t],[0 s])
```

Rutina para graficar un histograma de la muestra T

```
[f,c]=hist(T,2);
p=f/10;
L=c(2)-c(1);
bar(c,p/L,1,'w')
```

Usando rutinas similares para muestras de tamaño 100 se obtienen los siguientes gráficos.

Figura 8: (a) Gráficos de la función de distribución empírica $F_{100}(t)$ correspondiente a una muestra de tamaño 100 de una variable T con distribución exponencial de intensidad 1 y de la función de distribución de T. (b) Histograma correspondiente a la misma muestra y gráfico de la densidad de T.

2. Variables truncadas

Sea X una variable aleatoria definida sobre un espacio de probabilidad $(\Omega, \mathcal{A}, \mathbb{P})$. Sea $B \subset \mathbb{R}$ un conjunto tal que $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}$ y tal que $\mathbb{P}(X \in B) > 0$.

Truncar la variable aleatoria X al conjunto B significa condicionarla a tomar valores en el conjunto B.

Mediante $X|X \in B$ designaremos la variable aleatoria obtenida por truncar X al conjunto B. Por definición, la función de distribución de $X|X \in B$ es

$$F_{X|X\in B}(x) = \mathbb{P}(X \le x | X \in B) = \frac{\mathbb{P}(X \le x, X \in B)}{\mathbb{P}(X \in B)}.$$
 (33)

Caso absolutamente continuo. Si la variable aleatoria X es absolutamente continua con densidad de probabilidades $f_X(x)$, la función de distribución de $X|X \in B$ adopta la forma

$$F_{X|X\in B}(x) = \frac{\int_{\{X\leq x\}\cap\{X\in B\}} f_X(x)dx}{\mathbb{P}(X\in B)} = \frac{\int_{-\infty}^x f_X(x)\mathbf{1}\{x\in B\}dx}{\mathbb{P}(X\in B)}.$$
 (34)

Por lo tanto, $X|X \in B$ es una variable aleatoria absolutamente continua con densidad de probabilidades

$$f_{X|X\in B}(x) = \frac{f_X(x)}{\mathbb{P}(X\in B)} \mathbf{1}\{x\in B\}.$$
(35)

Nota Bene. La densidad condicional $f_{X|X\in B}(x)$ es cero fuera del conjunto condicionante B. Dentro del conjunto condicionante la densidad condicional tiene exactamente la misma forma que la densidad incondicional, salvo que está escalada por el factor de normalización $1/\mathbb{P}(X\in B)$ que asegura que $f_{X|\in B}(x)$ integra 1.

Ejemplo 2.1 (Exponencial truncada a la derecha). Sea T una variable aleatoria con distribución exponencial de intensidad $\lambda > 0$ y sea $t_0 > 0$. Según la fórmula (35) la variable aleatoria T truncada a la semi-recta $(t, +\infty)$, $T \mid T > t_0$, tiene la siguiente densidad de probabilidades

$$f_{T|T>t_0}(t) = \frac{\lambda e^{-\lambda t}}{e^{-\lambda t_0}} \mathbf{1}\{t > t_0\} = e^{-\lambda(t-t_0)} \mathbf{1}\{t - t_0 > 0\} = f_T(t - t_0).$$

En otros términos, si $T \sim \text{Exp}(\lambda)$, entonces $T \mid T > t_0 \sim t_0 + \text{Exp}(\lambda)$.

Caso discreto. El caso discreto se trata en forma análoga a la anterior. La función de probabilidad de $X|X\in B$ adopta la forma

$$p_{X|X\in B}(x) = \frac{\mathbb{P}(X=x)}{\mathbb{P}(X\in B)} \mathbf{1}\{x\in B\}.$$
(36)

Ejemplo 2.2 (Dado equilibrado). Sea X el resultado del tiro de un dado equilibrado y sea $B = \{2, 4, 6\}$. El evento "el resultado del tiro es un número par" es $X \in B$. Aplicando la fórmula anterior obtenemos

$$p_{X|X\in B}(x) = \frac{1/6}{1/2}\mathbf{1}\{x\in\{2,4,6\}\} = \frac{1}{3}\mathbf{1}\{x\in\{2,4,6\}\}.$$
 (37)

2.1. Perdida de memoria

Ejemplo 2.3. Lucas camina hacia la parada del colectivo. El tiempo, T, entre llegadas de colectivos tiene distribución exponencial de intensidad λ . Supongamos que Lucas llega t minutos después de la llegada de un colectivo. Sea X el tiempo que Lucas tendrá que esperar hasta que llegue el próximo colectivo. Cuál es la distribución del tiempo de espera X?

Designamos mediante $A = \{T > t\}$ el evento "Lucas llegó t minutos después de la llegada de un colectivo". Tenemos que

$$\mathbb{P}(X > x | A) = \mathbb{P}(T > t + x | T > t) = \frac{\mathbb{P}(T > t + x, T > t)}{\mathbb{P}(T > t)}$$
$$= \frac{\mathbb{P}(T > t + x)}{\mathbb{P}(T > t)} = \frac{e^{-\lambda(t+x)}}{e^{-\lambda t}} = e^{-\lambda x}.$$

Definición 2.4. Se dice que una variable aleatoria T no tiene memoria, o pierde memoria, si

$$\mathbb{P}(T > s + t | T > t) = \mathbb{P}(T > s) \qquad \text{para todo} \qquad s, t \ge 0.$$
 (38)

La condición de pérdida de memoria es equivalente a la siguiente

$$\mathbb{P}(T > s + t) = \mathbb{P}(T > s)\mathbb{P}(T > t). \tag{39}$$

En efecto, basta observar que $\mathbb{P}(T>s+t,\,T>t)=\mathbb{P}(T>s+t)$ y usar la definición de probabilidad condicional.

Nota Bene. Si se piensa que T es el tiempo para completar cierta operación, la ecuación (38) establece que si a tiempo t la operación no ha sido completada, la probabilidad de que la operación no se complete a tiempo s+t es la misma que la probabilidad inicial de que la operación no haya sido completada a tiempo s.

Lema 2.5. La variable exponencial no tiene memoria.

Demostración Si $T \sim \text{Exp}(\lambda)$, entonces

$$\mathbb{P}(T > t) = e^{-\lambda t} \qquad \text{para todo } t \ge 0. \tag{40}$$

Usando (40) se prueba inmediatamente que la ecuación (39) se satisface cuando T tiene distribución exponencial (pues $e^{-\lambda(s+t)} = e^{-\lambda s}e^{-\lambda t}$).

Nota Bene. Si modelamos el tiempo para completar cierta operación por una variable aleatoria T con distribución exponencial, la propiedad de pérdida de memoria implica que mientras la operación no haya sido completada, el tiempo restante para completarla tiene la misma función de distribución, no importa cuando haya empezado la operación.

Ejemplo 2.6. Supongamos que el tiempo de espera para recibir un mensaje tenga distribución exponencial de intensidad 1/10 minutos. Cuál es la probabilidad de que tengamos que esperar más de 15 minutos para recibirlo? Cuál es la probabilidad de que tengamos que esperar más de 15 minutos para recibir el mensaje dado que hace más de 10 minutos que lo estamos esperando?

Si T representa el tiempo de espera, $T \sim \text{Exp}(1/10)$. La primer probabilidad es

$$\mathbb{P}(T > 15) = e^{-\frac{1}{10}15} = e^{-\frac{3}{2}} \approx 0.220$$

La segunda pregunta interroga por la probabilidad de que habiendo esperado 10 minutos tengamos que esperar al menos 5 minutos más. Usando la propiedad de falta de memoria de la exponencial, dicha probabilidad es

$$\mathbb{P}(T > 5) = e^{-\frac{1}{10}5} = e^{-\frac{1}{2}} \approx 0.604.$$

2.2. Caracterización cualitativa de la distribución exponencial

La propiedad de pérdida de memoria caracteriza a la distribución exponencial.

Teorema 2.7. Sea T una variable aleatoria continua a valores en \mathbb{R}^+ . Si T pierde memoria, entonces $T \sim \text{Exp}(\lambda)$, donde $\lambda = -\log \mathbb{P}(T > 1)$.

Demostración (a la Cauchy). Sea $G(t) := \mathbb{P}(T > t)$. De la ecuación (39) se deduce que

$$G(s+t) = G(s)G(t). (41)$$

La única función continua a derecha que satisface la ecuación funcional (41) es

$$G(t) = G(1)^t. (42)$$

Para ello basta ver que $G\left(\frac{m}{n}\right) = G(1)^{\frac{m}{n}}$. Si vale (41), entonces $G\left(\frac{2}{n}\right) = G\left(\frac{1}{n} + \frac{1}{n}\right) = G\left(\frac{1}{n}\right)G\left(\frac{1}{n}\right) = G\left(\frac{1}{n}\right)^2$ y repitiendo el argumento se puede ver que

$$G\left(\frac{m}{n}\right) = G\left(\frac{1}{n}\right)^m. \tag{43}$$

En particular, si m = n se obtiene $G(1) = G(\frac{1}{n})^n$. Equivalentemente,

$$G\left(\frac{1}{n}\right) = G(1)^{\frac{1}{n}} \tag{44}$$

De las identidades (43) y (44) se deduce que

$$G\left(\frac{m}{n}\right) = G(1)^{\frac{m}{n}}. (45)$$

Ahora bien, debido a que $G(1) = \mathbb{P}(T > 1) \in (0,1)$, existe $\lambda > 0$ tal que $G(1) = e^{-\lambda}$ ($\lambda = -\log G(1)$). Reemplazando en (42) se obtiene $G(t) = (e^{-\lambda})^t = e^{-\lambda t}$.

2.3. Dividir y conquistar

Teorema 2.8. Sea X una variable aleatoria absolutamente continua con densidad de probabilidades $f_X(x)$. Sea $(B_i)_{i\geq 1}$ una familia de subconjuntos disjuntos dos a dos de la recta real tales que $\{X \in B_i\} \in \mathcal{A}$ y $\mathbb{P}(X \in B_i) > 0$ para todo $i \geq 1$. Si $\Omega = \bigcup_{i\geq 1} \{X \in B_i\}$, entonces

$$f_X(x) = \sum_{i \ge 1} f_{X|X \in B_i}(x) \mathbb{P}(X \in B_i). \tag{46}$$

Demostración. Inmediata de la fórmula (35) y de observar que $\sum_{i\geq 1} \mathbf{1}\{X\in B_i\} = 1$.

Ejemplo 2.9 (Dividir y conquistar). Todas las mañanas Lucas llega a la estación del subte entre las 7:10 y las 7:30 (con distribución uniforme en el intervalo). El subte llega a la estación cada quince minutos comenzando a las 6:00. ¿Cuál es la densidad de probabilidades del tiempo que tiene que esperar Lucas hasta subirse al subte?

Sea X el tiempo de llegada de Lucas a la estación del subte, $X \sim \mathcal{U}[7:10, 7:30]$. Sea Y el tiempo de espera. Consideramos los eventos $A = \{7:10 \leq X \leq 7:15\} = \text{"Lucas sube en el subte de las } 7:15"; <math>B = \{7:15 < X \leq 7:30\} = \text{"Lucas sube en el subte de las } 7:30".$

Condicionado al evento A, el tiempo de llegada de Lucas a la estación del subte es uniforme entre las 7:10 y las 7:15. En en ese caso, el tiempo de espera Y es uniforme entre 0 y 5 minutos. Análogamente, condicionado al evento B, Y es uniforme entre 0 y 15 minutos. La densidad de probabilidades de Y se obtiene dividiendo y conquistando

$$f_Y(y) = \left(\frac{5}{20}\right) \frac{1}{5} \mathbf{1} \{0 \le y \le 5\} + \left(\frac{15}{20}\right) \frac{1}{15} \mathbf{1} \{0 \le y \le 15\}$$
$$= \frac{1}{10} \mathbf{1} \{0 \le y \le 5\} + \frac{1}{20} \mathbf{1} \{5 \le y \le 15\}.$$

3. Bibliografía consultada

Para redactar estas notas se consultaron los siguientes libros:

- 1. Bertsekas, D. P., Tsitsiklis, J. N.: Introduction to Probability. M.I.T. Lecture Notes. (2000)
- 2. Chung, K. L.: A Course in Probability Theory. Academic Press, San Diego. (2001)
- 3. Durrett R.:Probability.Theory and Examples. Duxbury Press, Belmont. (1996)
- 4. Feller, W.: An introduction to Probability Theory and Its Applications. Vol. 1. John Wiley & Sons, New York. (1968)
- 5. Feller, W.: An introduction to Probability Theory and Its Applications. Vol. 2. John Wiley & Sons, New York. (1971)
- 6. Grimmett, G. R., Stirzaker, D. R.: Probability and Random Processes. Oxford University Press, New York. (2001)
- Johnson, N. L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions. Vol. 1. John Wiley & Sons, New York. (1995)
- 8. Kolmogorov, A. N.: Foundations of the Theory of Probability. Chelsea Publishing Co., New York. (1956)
- 9. Maronna R.: Probabilidad y Estadística Elementales para Estudiantes de Ciencias. Editorial Exacta, La Plata. (1995).
- 10. Pugachev, V. S.: Introducción a la Teoría de las Probabilidades. Mir, Moscú. (1973)
- 11. Ross, S.: Introduction to Probability Models. Academic Press, San Diego. (2007)