

Déployez un modèle dans le cloud

OpenClassrooms – projet 8 Léo Guillaume

Introduction

Contexte, problèmes et enjeux

Le Big Data, quésaco?

Éclairage sur l'éco-système du Big Data

Modélisation distribuée

Données, architecture et modélisation

Conclusion

Résultats et perspectives

Contexte

- La start-up "Fruits!" propose des solutions innovantes pour la récolte des fruits
- Souhaite un moteur de classification d'images de fruits

Enjeux

- Volumétrie du dataset impose d'être traité sur plusieurs machine à la fois
- L'application doit **permettre le passage à**l'échelle car sera accessible au grand publique

Problématique

 Comment développer un modèle de la classification d'image de manière distribuée dans le cloud ?

Introduction

Le Big Data, quésaco?

Qu'est ce que le Big Data?

On parle de Big Data dès lors que la quantité de données excède la faculté d'une machine à les stocker et les analyser en un temps acceptable.

• Les 3 V du Big data :

Volume

Le volume des données générées nécessite de repenser la manière dont elles sont stockées

Vélocité

La vélocité à laquelle nous parviennent ces données implique de mettre en place des solutions de traitement en temps réel qui ne paralysent pas le reste de l'application

Variété

Les données se présentent sous une grande variété de formats

Cluster de machines

- 2 solutions : passage à l'échelle horizontale ou verticale
- Qu'est ce qu'un cluster ?
 Un cluster ensemble de machine (noeuds) réalisant chacun une partie d'un calcul distribué et communiquant entre eux.
- Le distribution des calculs dans un cluster implique de répondre à plusieurs enjeux :
 - Le répartition des ressources (scalability)
 - 2. Le stockage des données (data locality)
 - 3. La tolérance aux pannes (embracing failure)
- Pour répondre à ces enjeux de nombreuses solutions ont été dévéloppées qui composent l'éco-système Big Data :

Répartitions des ressources

Concepts clef:

- 1. Distribuer les opérations dans un cluster : architecteur maître esclave
- 2. Diviser les opérations pour les exécuter sur plusieurs machines : Map Reduce
- Le framework **Spark** répond à ces impératifs, il présente 2 avantages :
 - Ecrit les données en RAM et non en disque lors de leur traitement
 - Permet une abstraction des opérations de Map et Reduce

Stockage des données

Le stockage de fichiers dans un cluster nécessite un système de fichier distribué

> Par exemple, HDFS est un framework permettant l'écriture de manière distribuée

La tolérance aux pannes

Habituellement, le résultat de chaque étape de calcul est écrit en disque.

Problème : avec Spark il reste en RAM

Concepts clef:

- Resilient Distributed Datasets (RDD)
- Directed Acyclic Graph (DAG)

3

Jeux de données

Nombre d'images par jeu

6231 Jeu d'entrainement (50 %)
3114 Jeu de validation (25 %)
3110 Jeu de test (25 %)

Les données

Catégories de fruits

Les données

2 caractéristiques à retenir :

- **Déséquilibre des classes à prédire** : le catégorie pomme est surreprésenté dans les jeux de données
- Résolutions hétérogènes intra et inter catégories : les images ont des tailles différentes

Solution cloud

Solutions retenus:

- Utilisation de **Databricks** pour coder la pipeline de traitement des données et les différents services cloud
- Utilisation de Google Cloud Platorm (GCP) comme fournisseur de service cloud (machines virtuelles et stockage)

Motivations:

- Databricks permet une abstraction du déploiement
- Utilisation de GCP chez Dotaki
- 300 \$ de crédit GCP offert à l'ouverture d'un compte

Data pipeline

- Conversion des images en matrice
- Redimensionnement (244 x 244)

Data pipeline

• Modèle : random forest

 Ecriture des données transformées et des prédictions

... 99% Accuracy

Coûts du projet :

Résultats

Exemple de features extraites :

	label	features
5977	apple	[0.0, 0.12709525, 0.0, 2.9404461, 0.0, 0.0, 4
5083	cabbage	[0.0,0.0,0.0,0.1813078,0.0,0.0,0.4224908
4982	eggplant	[0.0,0.0,1.6811758,0.0,0.0,0.98431325,0
5675	apple	[0.0,0.0,0.0,0.0,0.0,0.0,1.1742842,0.0,
818	apple	[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,

Exemple de log d'activité du cluster :

Perspectives

Les données

Pre-processing des images prises par le public (pas de fond blanc)

La modélisation

Mettre en place un pipeline d'entrainement de modèles

Le déploiement

Tester d'autres d'autre fournisseur Cloud tel que AWS ou Microsoft Azure

Merci pour votre attention

