Phys210: Mathematical Methods in Physics II Homework 3

Soner Albayrak[†]

[†]Middle East Technical University, Ankara 06800, Turkey

Policies

- Please adhere to the *academic integrity* rules: see my explanations here for further details!
- For the overall grading scheme or any other course-related details, see the syllabus.
- Non-graded question(s) (if any) are for your own practice!
- Unless stated otherwise, you are expected to show your derivation of the results.
- The homework is due April 5th 2024, 23:59 TSI.

(1) Problem One

(2 points)

Define $(\forall i \in \{1, ..., 7\})$ $a_i \in \{0, ..., 9\})$ such that the string $a_1a_2a_3a_4a_5a_6a_7$ is your student ID number. Let e_i denote some vectors of a d-dimensional vector space $\mathcal V$ over real numbers, and let the infix use of \wedge symbol denote the wedge product if between vectors and the logical and operation if between Boolean types.

(1.1) (a)

Consider the multivector ω defined as

$$\omega = \left(\frac{1}{2} + a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5 \cdot a_6 \cdot a_7\right) e_1 \wedge e_2 \wedge \dots \wedge e_7 \tag{1.1}$$

where \cdot denotes the arithmetic multiplication. What is the necessary condition on d such that $\omega \neq 0$?

(1.2) (b)

Assuming e_i are linearly independent, rewrite $\left(\sum_{i=1}^4 a_i e_i\right) \wedge \left(\sum_{i=5}^7 a_i e_i\right)$ in terms of the independent vectors of the vector space $\Lambda^2(\mathcal{V})$

(1.3) (c)

Let f_i be the basis vectors of V for d = 4. Write down the most generic element of the algebra $\Lambda(V)$ in terms of undetermined coefficients c_i . Hint: the most general element of the algebra would be something like $c_0 + c_1 f_1 + c_2 f_2 + \ldots$

(2) Problem Two

(3 points)

Consider the tensor $T::V\otimes V\otimes V\otimes V^*$, which can be expanded in a basis as

$$T = T^{ijk}_{m} e_i \otimes e_j \otimes e_k \otimes e^m$$
 (2.1)

where we are using Einstein's summation conventions.

(2.1) (a)

Assume that V is a 2-dimensional vector space over real numbers. In fact, the nonzero components are known to be

$$T^{111}_{11} = 7$$
, $T^{121}_{11} = 3$, $T^{112}_{21} = -5$, $T^{211}_{21} = -1$, (2.2)

How many different tensors of the type $V \otimes V$ can we obtain by *contracting* indices of T? Compute the components of all such tensors!

(2.2) (b)

Assume that V is now a 3-dimensional vector space over real numbers, and the only nonzero components are those in (2.2). Compute the value of the scalar a defined as

$$a = T^{ijk}_{\ m} \eta_{ij} \delta^m_{\ k} \tag{2.3}$$

for the object η_{ij} for which $\eta_{11} = -1$, $\eta_{22} = \eta_{33} = 1$, and $\eta_{ij} = 0$ for $i \neq j$. Here, δ is the Kronecker symbol.

(2.3) (c)

Let us stick to a 3-dimensional vector space over real numbers, but increase the nonzero components of T as adding the following to the list in (2.2):

$$T_{133}^{133} = 17$$
, $T_{132}^{321} = -13$, $T_{22}^{132} = 1$, $T_{22}^{322} = -2$, (2.4)

Write the explicit expression for the covector $\omega = \epsilon_{ijk} T^{ijk}{}_m e^m$ where we will take basis vectors as $e^1 = dx$, $e^2 = dy$, and $e^3 = dz$. Here, ϵ is the Levi-Civita symbol.

(3) Problem Three (3 points)

Consider the vector field $E(\mathbf{x}) \in \mathbb{R}^3$ as follows:

$$E(\mathbf{x}) = x\frac{\partial}{\partial x} + xy^2 \frac{\partial}{\partial y} + xy^2 z^3 \frac{\partial}{\partial z}$$
 (3.1)

(3.1) (a)

Compute the divergence of the vector field.

(3.2) (b)

Compute the curl of the vector field.

(3.3) (c)

Can this vector field be written as *gradient* of a scalar field $\phi(\mathbf{x})$? If yes, find out $\phi(x)$. If no, argue why this is the case.