Data Structure and Algorithms

Problem Set 2: Functions and general problems		
Date of issue:	Due Date:	

Problem 1) Palindrome Numbers: In this problem, you have to read a **positive integer** from the user and pass it into a function name **chk_palindrome** check if it is a **palindrome** or not function will return 1 if a number is palindrome, 0 else, print yes on the return of 1 and no on the return of 0.

A number is a palindrome if the reverse of the number is equal to the number itself.

	Input	Output
Test Case 1	34	no
Test Case 2	131	yes
Test Case 3	1234321	yes

Problem 2) Function to return quotient: Write a function called **divide** that takes two **non-negative** integers: a and b and returns the quotient of a divided by b, if b is a factor of a, else it returns -1.

	Input	Output
Test Case 1	2	2
Test Case 2	2 4	-1
Test Case 3	2 3	-1

Problem 3) Choose K objects from N distinct object: Write a C program that calculates the number of ways to choose k objects from n distinct objects. 'k' and 'n' both are integers.

Input Format:

First line contains the value of n, where 0<=n<=10

Second line contains the value of k, where k>=0

Output Format:

One line containing the number of ways to chose the objects

	Input	Output
Test Case 1	4 2	6
Test Case 2	2 1	2
Test Case 3	5 2	10

Problem 4) Missing integer problem: You are given a sequence of n-1 distinct positive integers, all of which are less than or equal to a integer 'n'. You have to find the integer that is missing from the range [1,2,...,n]. Solve the question without using arrays.

Input Format:

One line containing the integer 'n' where 2<=n<=10,000 First line is followed by a sequence of 'n-1' distinct positive integers. Note that the sequence may not be in any particular order.

Output Format:

One line containing the missing number

	Input	Output
Test Case 1	3 1 2	3
Test Case 2	4 1 3 4	2
Test Case 3	4 2 1 4	

Problem 5) Counting factorial number: A number F is a factorial number if there exists some integer I >= 0 such that F = I! (That is, F is factorial of I). Examples of factorial numbers are:

Write a program that takes as input two **long** integers n and m where $0 \le n \le m$. The program prints an integer k, where k is the count of factorial numbers in the **closed** interval [n, m].

Examples:

Input: 0 1 Output: 1

//Reason (Do not print): Only factorial number is 1

Input: 12 122 Output: 2

// Reason: factorial numbers are 24, 120

Input: 2 720 Output: 5

// Factorial numbers are: 2, 6, 24, 120, 720