CSC 339 – Theory of Computation Fall 2022-2023

Tutorial 2 Converting NFA to DFA

Procedure

• **Step 1**

- Let Q' be a new set of states of the DFA. Q' is null at the start.
- Let T' be a new transition table of the DFA.

Step 2

- Add the start state of the NFA to Q'.
- Add transitions of the start state to the transition table
 T'.
- If the start state makes transitions to multiple states for some input alphabet, then treat those multiple states as a single state in the DFA.

Procedure

• **Step 3**

- If any new state is present in the transition table T',
 - Add the new state in Q'.
 - Add the transitions of that state in the transition table T'.

• Step 4

 Keep repeating Step 3 until no new state is present in the transition table T'.

• **Step 5**

- Determine the final states.
 - In the resulting DFA, all the states that contain the final state(s) of the NFA are treated as final states.

Problem 1

• Convert the following NFA to DFA

Transition table for the NFA

State / Alphabet	a	b
→q0	q0	q0, q1
q1	-	*q2
*q2	-	_

- Let Q' be a new set of states of the Deterministic Finite Automata (DFA).
- Let T' be a new transition table of the DFA.

• Add transitions of start state q0 to the transition table T'.

State / Alphabet	a	b
→ q0	q0	{q0, q1}

- A new state present in the set Q' is {q0, q1}.
- Add transitions for the set of states {q0, q1} to the transition table T'.

State / Alphabet	a	b
→q0	q0	{q0, q1}
{q0, q1}	q0	{q0, q1, q2}

- A new state present in the set Q' is {q0, q1, q2}.
- Add transitions for the set of states {q0, q1, q2} to the transition table T'.

State / Alphabet	a	b
→q0	q0	{q0, q1}
{q0, q1}	q0	{q0, q1, q2}
{q0, q1, q2}	q0	{q0, q1, q2}

- Since no new states are left to be added to the transition table T', we stop.
- States containing q2 as its component are treated as final states of the DFA.

Transition table for the DFA

• Finally, the transition table for the DFA is:

State / Alphabet	a	b
→q0	q0	{q0, q1}
{q0, q1}	q0	*{q0, q1, q2}
*{q0, q1, q2}	q0	*{q0, q1, q2}

Problem 2

• Convert the following NFA to a DFA:

Solution

• Transition table T' of the DFA:

State / Alphabet	0	1
→ q0	q0	*{q1, q2}
*{q1, q2}	*{q0, q1, q2}	*{q1, q2}
*{q0, q1, q2}	*{q0, q1, q2}	*{q1, q2}

Problem 3

• Convert the following NFA to a DFA:

Solution

• Transition table T' of the DFA:

State / Alphabet	a	b
→q0	*{q1, q2}	Ø
*{q1, q2}	*{q1, q2}	q2
q2	*{q1, q2}	q2
Ø	Ø	Ø

