Given
$$p_1, p_2, p_3 \neq \vec{n} = (p_2 - p_1) \times (p_3 - p_1)$$

P₁
$$\rightarrow$$
 1
P₂ P₃ Let $n = \begin{bmatrix} 4 \\ 6 \\ c \end{bmatrix}$

Then a point $\vec{x} = \begin{bmatrix} \vec{x} \\ \vec{z} \end{bmatrix}$ is on the plane perpendicular to \vec{n} that passes through \vec{p} , if $(\vec{x} - \vec{p}_i) \cdot \vec{n} = \vec{0}$ which is:

$$A(X-P_{1}) + B(Y-P_{1}Y) + C(Z-P_{1}Z) = AP_{1}X + B_{1}Y + CP_{1}Z$$

$$= D$$

$$= \frac{Ax_1 + By_1 + G_1 - D}{\sqrt{A^2 + O^2 + e^2}}$$