Practice 0

MSX88 SIMULATOR

Von Neumann Architecture

- Developed 1945 by John von Neumann
- Executes machine instructions from a program stored in the memory
- Blocks:
 - Memory
 - Arithmetic-Logic Unit and registers
 - Control Unit
 - Input/Output unit

Buses connect different parts: data bus, address bus, control bus

Instruction execution cycles

1. Fetch

CU generates signals to read a instruction from memory in the direction pointed by the program counter PC

2. Decode:

CU receives instruction at IR and decodes it

3. Fetch operands:

CU reads, if neccessary, operands from memory or registers

4. Executions and store results

CU generates signals to execute instruction, and stores result in memory or registers

- 5. **Program Counter update.** CU updates the program counter to point to the next instruction to be executed.
 - sequential working
 - sequence modification PC modification bifurcation or jump

Programming languages (I)

High level language:

- -Set of instructions and syntaxis (PASCAL, C)
- **-portable** (same code compiles in different machines)

Low level language

- Machine language: Instructions are written in binary
 - Difficult and a lot of mistakes

Solution: high level language and compile

- Assembly language:
 Instructions are represented with symbolic names or mnemonics
 - Each instruction correspond with a machine instruction

Programming languages (II)

High level language (example: PASCAL)

BEGIN

Resta:= Minuendo - Sustraendo

END.

Machine language and assembler (Example: i80x86)

A10000 MOV AX, Minuendo

2B060200 SUB AX, Sustrayendo

A30400 MOV Resta, AX

Traduction from high level program to machine language are carried on by compilers and interpreters:

Simulator MSX88 (I)

- This simulator is a simplified version of the i8088
- It has a 64Kb RAM
- Allows connection of peripherals
- It has a program to monitor the MSX88
- The instructions provided by this CPU are a real part of those offered by i8086 / 8088 microprocessors
- It has the tools:

ASM88 (assembler)

LINK88 (assembler program)

Simulator MSX88 (II)

Simulator MSX88 (III)

- To change an assembly file to be executable these steps must be followed:
 - Open an MS-DOS session
 - Write the command: cd C: \ MSX88
 - FileName ASM88;
 - FileName LINK88;

Simulator MSX88 (IV)

- To use MSX88 simulator you should write down:
 - MSX88 (on MS-DOS screen)
- When the MSX88 screen is open:
 - L FileName (on the order screen of simulator)
 - To execute instruction: F6 (instruction by instruction) or F7 (cycle machine)
 - R IP 2000h (on the order screen of simulator)
 - Q To leave the simulator

