Lógica Proposicional

(sintaxe, semântica e propriedades)

Jomi Fred Hübner jomi@inf.furb.br FURB / BCC

Lógica Proposicional

- Linguagem para falar de proposições
 - ★ Sintaxe
 - ⋆ Semântica
- Cálculo para fazer deduções sobre as proposições
 - ★ Sistemas de prova
 - Dedução Natural
 - * Resolução
 - *

Linguagens para pensar em Lógica

- Língua portuguesa
 - ⋆ Pequenos cachorros e gatos.
 - ⋆ Quem é pequeno?
 - * João está vendo a casa em cima do morro.
 - ⋆ Onde está a casa?
 - * Vacas não gostam de erva.
 - ★ Que tipo de erva?
 - * A língua portuguesa muito expressiva, mas ambígua.

- Linguagens de programação
 - ★ Permite descrever algoritmos e estruturas de dados que determinam o estado de um computador e como ele se altera durante a execução do algoritmo.
 - Mas não é adequado para escrever conhecimento, verdades, argumentos,

- Linguagens lógicas: procuram ser expressivas e não ambíguas.
 - \star $P\equiv$ pequenos cachorros $Q\equiv$ pequenos gatos $P\wedge Q \text{: indica que ambos são pequenos.}$
 - * emCima(joao, morro).
 emBaixo(casa).
 vendo(joao, casa).

Tipos de sentenças

- Imperativas: a := a + 1;
- Exclamativas: Que bolo gostoso!
- Interrogativas: Está frio?
- Declarativas
 - * Está chovendo.
 - \star a > 3

Às frases declarativas pode-se atribuir um valor **verdadeiro** ou **falso**.

A Lógica Proposicional estuda esse tipo de sentenças.

Sintaxe

Alfabeto

O alfabeto da lógica proposicional é constituído dos seguintes símbolos:

- símbolos de pontuação: (,)
- símbolos verdade: *true*, *false*
- símbolos proposicionais: P, Q, R, P_1 , ...
- conectivos: ¬, ∧, ∨, →, ↔

Sintaxe — Alfabeto 8

Fórmulas

- Os símbolos verdade são fórmulas.
- Os símbolos proposicionais são fórmulas.
- Se α (alpha) e β (beta) são fórmulas da Lógica Proposicional, então também são fórmulas
 - \star ($\neg \alpha$) (negação)
 - $\star (\alpha \wedge \beta)$ (conjunção)
 - $\star (\alpha \vee \beta)$ (disjunção)
 - * $(\alpha \rightarrow \beta)$ (implicação, α é o antecedente, β é o consequente)
 - $\star (\alpha \leftrightarrow \beta)$ (bi-implicação)

Sintaxe — Fórmulas 9

Exemplos fórmulas bem formadas:

- \bullet $(Q \wedge P)$
- true
- $\neg P$ (os parênteses mais externos pode ser omitidos)
- $\bullet (Q \land P) \to (R \lor (S \land Q))$

Exemplos fórmulas mal formadas:

- $(QP \wedge)$
- $true \rightarrow$
- *P*¬

Sintaxe — Fórmulas

Ordem de Precedência

Para simplificar a escrita das fórmulas, utiliza-se a seguinte ordem de precedência entre os conectivos

- (maior precedência) $\neg \land \lor \rightarrow \leftrightarrow$ (menor precedência).
- A fórmula

$$\star (((Q \land P) \lor (\neg S)) \to Q)$$

pode ser resumida como

$$\star Q \land P \lor \neg S \to Q$$

Subfórmulas

- Se α é uma fórmula, então α subfórmula de α .
- Se $\alpha = \neg \beta$ é uma fórmula, então β é subfórmula de α .
- Se $\alpha = \gamma \wedge \beta$, $\gamma \vee \beta$, $\gamma \to \beta$ ou $\gamma \leftrightarrow \beta$, então γ e β são subfórmulas de α .
- Se β é subfórmula de α , então todas as subfórmulas de β também são subfórmulas de α .

Sintaxe — Subfórmulas 12

Semântica

Semântica da Lógica Proposicional

- Para cada fórmula da Lógica Proposicional é associado ou o valor v ou o valor f (princípio do terceiro excluído)
 - \star (não confundir com o símbolo sintático true e false)
- Nenhuma fórmula é simultaneamente verdadeira e falsa (princípio da não contradição)

Função de Interpretação

A associação de um valor verdade (v ou f) a uma fórmula é feita pela função de interpretação

$$I: Formulas \rightarrow \{v, f\}$$

- I[true] = v: a interpretação da fórmula true é v.
- I[false] = f: a interpretação da fórmula false é f.
- I[P] = ?

depende ao que o símbolo P se refere. Se $P\equiv$ "está chovendo" , I[P]=v se for o caso de estar chovendo.

 Nos casos de fórmulas com conectivos, a interpretação da fórmula é dada pela interpretação de suas subfórmulas juntamente com a semântica dos conectivos

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \to Q$	$P \leftrightarrow Q$
\overline{v}	v	f	v	v	v	v
v	f	\int	f	v	f	f
f	v	ig v	f	v	v	f
f	f	igg v	f	f	v	v

Em outras palavras:

$$I[P \wedge Q] = v$$
 se $I[P] = v$ e $I[Q] = v$.

Tipos de implicação

lógica se Sócrates é homem e todos os homens são mortais, então Sócrates é moral.

definição se Carlos é solteiro, então ele não é casado.

causal se chover, então o telhado fica molhado.

decisão se o BEC perder, então eu como o meu chapéu.

discurso se Hitler era um gênio, então eu sou tio de um chimpanzé.

O que todas essas implicações têm em comum?

Não pode acontecer de o antencedente ser verdadeiro e o consequente ser falso. (implicação material)

Exemplo de implicação - D3

Considere um jogo com cartas, onde cada carta tem em um lado uma letra e no outro um número, que tem apenas uma regra:

Se um lado da carta tem a letra "D", o outro lado deve ter o número "3".

Supondo que as seguintes cartas estão "sobre a mesa"

D F 3 7

Quantas cartas precisam ser viradas para saber se as quatro estão respeirando a regra acima?

Equivalência lógica

- Se duas fórmulas α e β têm os mesmos valores para qualquer interpretação (têm a mesma tabela verdade)
- Estas fórmulas são equivalentes

$$\alpha \equiv \beta$$

• Exemplo: $\neg P \lor Q \equiv P \rightarrow Q$

Exemplo: Expressões booleanas

A expressão booleana (em pascal)

$$(a > 0)$$
 or $((a > 0 \text{ and } (b = 3))$

Pode ser simplificada

- ullet $P\equiv {\tt a}$ > 0, $Q\equiv {\tt b}$ = 3
- Traduzindo para a lógica proposicional $(P \lor (P \land Q))$
- Utilizando a equivalência $(P \lor (P \land Q)) \equiv P$
- podemos escrever a expressão booleana como
 (a > 0)

Propriedades

Tautologias

- Uma fórmula α é uma tautologia (ou é válida) se e somente se, para qualquer interpretação I, $I[\alpha] = v$. (denota-se $\models \alpha$)
- Exemplo: a fórmula $P \vee \neg P$ pode ter duas interpretação possíveis (I ou J):
 - \star Uma onde I[P]=v, neste caso $I[P\vee\neg P]=v$
 - \star outra onde J[P]=f, neste caso $J[P\vee \neg P]=v$
- Como cada linha de uma tabela verdade é uma interpretação possível, se uma fórmula tem o valor v em todas as linhas, esta fórmula é uma tautologia.

Fórmula contraditória

- Uma fórmula α é contraditória (ou **insatisfatível**) se e somente se, para qualquer interpretação I, $I[\alpha] = f$.
- Exemplo: a fórmula $P \wedge \neg P$ pode ter duas interpretação possíveis (I ou J):
 - \star Uma onde I[P]=v, neste caso $I[P \land \neg P]=f$
 - \star outra onde J[P]=f, neste caso $J[P \wedge \neg P]=f$
- Como cada linha de uma tabela verdade é uma interpretação possível, se uma fórmula tem o valor f em todas as linhas, esta fórmula é uma contradição.

Fórmula satisfatível

- Uma fórmula α é satisfatível (ou factível) se e somente se existir pelo menos uma interpretação I tal que $I[\alpha] = v$. (denota-se $\models_I \alpha$)
- Sendo que cada linha de uma tabela verdade é uma interpretação possível, se uma fórmula tem o valor v em pelo menos uma das linhas, esta fórmula é satisfatível.
- Para qualquer fórmula α é possível construir uma tabela verdade e portanto verificar suas propriedades. (apesar deste processo ser tedioso)

Exemplos

Fórmula	Tautologia	l para não ser tautologia
Fumar ightarrow Fumar	sim	
$Fumar \vee \neg Fumar$	sim	
Fumar o Fogo	satisfatível	$I[Fumar] = v \; e \; I[Fogo] = f$
$(S \to P) \to (\neg S \to \neg P)$	satisfatível	$I[S] = f \; e \; I[P] = v$
$P \vee Q \vee \neg P \vee \neg Q$	sim	

Relações entre as propriedades

- Se uma fórmula **é** uma tautologia então ela
 - ★ é satisfatível
- Se uma fórmula **não é** tautologia então ela
 - ⋆ pode ser satisfatível ou
 - ⋆ pode ser contraditória
- Se uma fórmula é satisfatível então ela
 - ⋆ não é uma contradição
 - ⋆ pode ser tautologia
- Se uma fórmula **não é** satisfatível então ela
 - ★ é uma contradição
 - ⋆ não é tautologia

- Se uma fórmula é contraditória ela
 - * não é satisfatível e
 - ⋆ não é tautologia
- Se uma fórmula **não é** contraditória ela
 - * é satisfatível e
 - ⋆ pode ser tautologia
- Se uma fórmula não é tautologia nem contraditória então ela
 - ★ é satisfatível

Refutação

Método da Refutação

- O método da refutação permite verificar se uma fórmula é tautologia.
- Baseado em provas por contra-exemplo não precisa fazer toda a tabela verdade, só achar um contra exemplo.

Algoritmo para o Método da Refutação

- Para verificar se a fórmula α é tautologia,
 - \star nega-se α
 - \star são utilizadas deduções sobre α para concluir um fato absurdo
 - \star se se chegar a um absurdo em **todas** as possibilidades de encaminhamento das deduções, a negação de α é um absurdo, logo α é uma tautologia.
 - ★ senão, não é tautologia.

Exemplo

Verificar se $((P \to Q) \land (Q \to R)) \to (P \to R)$ é válido

	((P	\longrightarrow	Q)	\wedge	(Q	\longrightarrow	R))	\longrightarrow	(P	\longrightarrow	R)
1.								f			
2.				v						f	
3.		v				v			v		f
4.	v						f				
5.			v								
6.					f						

Chegou-se a um absurdo, pois I[Q] não pode ser v e ao mesmo tempo f (princípio da não contradição).

Outros exemplos

- \bullet $P \vee \neg P$
- Ausência de absurdo:

$$\star$$
 $(P \to Q) \leftrightarrow ((\neg P) \to (\neg Q))$

$$\star (P \land Q) \leftrightarrow (\neg P \lor Q)$$

Método da refutação para provar a contradição de uma fórmula

- O método da refutação é usado para provar que α é uma tautologia mostrando que é impossível uma interpretação $I[\alpha]=f$.
- De forma análoga, o método da refutação pode ser usado para provar que α é uma contradição mostrando que é impossível uma interpretação $I[\alpha]=v$.
- Se o fato de α ter valor v implicar em um absurdo, então α não pode ter esse valor, portanto é uma contradição.

Exemplos

Verificar se $(P \land \neg P)$ é uma contradição

Chegou-se a um absurdo, pois I[P] não pode ser v e ao mesmo tempo f (princípio da não contradição).

	\neg	((P	V	(P	\wedge	Q))	\longleftrightarrow	P)	
1.	v								
2.							f		
3.1			\overline{v}					f	1.possibilidade
3.2		f		f					
3.3					v				
3.4				v		v			absurdo
4.1			f					v	2.possibilidade
4.2		v							absurdo

Refutação — Exemplos

Material de consulta

- NEWTON-SMITH, W.H. Lógica: um curso introdutório. Gradiva, 1998.
- SOUZA, João Nunes. Lógica para Ciência da Computação. Campus, 2002. Capítulos 1 - 4.
- ABE, Jair Minoro; et. at. Introdução à Lógica para a Ciência da Computação. 2. ed. São Paulo: Arte & Ciência, 2002. Capítulo 1.
- MENDELSON, Elliott. Introduction to
 Mathematical Logic. 4. ed. Chapman & Hall, 1997.
 Capítulo 1.