

2022.11

정 승 기

목 차 Contents

- 1. Introduction
- 2. U-Net architecture
- 3. Overlap-tile strategy
- 4. Training
- 5. Experiments
- 6. Conclusion

1 Introduction

1.1 Introduction

U-Net은 생물학적인 영상에서 Segmetation을 위해 제안된 네트워크

1.2 Segmentation

- 0: Background/Unknown
- 1: Person
- 2: Purse
- 3: Plants/Grass
- 4: Sidewalk
- 5: Building/Structures

Fig. 1. Fig. 2.

CNN의 일반적인 사용은 Classification이며 이미지에 대한 출력은 단일 클래스 하지만 생물학 이미지 처리에서 원하는 것은 Segmentation으로 각 픽셀에 라벨이 포함되어야 함

2.1 U-Net 구성

Fig. 4.

U자형으로 생긴 구조로 크게 Context 정보를 위한 Contracting path, 정확한 Localization을 위해 Expanding path로 구성

2.2 Contracting path

Fig. 4.

2.3 Expanding path

Convolution과 Relu 그리고 Up- Convolution 을 거치면서 원본 이미지와 비슷한 크기로 복원

2.4 U-Net 구조 특징

Fig. 4.

분류모델과 다르게 Fully Connected Layer가 아닌 Fully Convolutional Network로 구성 Contracting path에서 나온 Context와 Expanding path에서 나온 Localization이 결합하여 성능이 우수

3 Overlap-tile strategy

3.1 Overlap-tile strategy

Fig. 5.

Fig. 5.번처럼 노란색 영역의 Segementation을 위해 파란색 영역만큼의 입력 이미지의 비어있는 부분은 미러링을 하여 외삽하는데 이런 이유는 해상도가 큰 이미지에 대해 매끄럽게 분할이 가능하며 GPU 메모리에 의해 해상도가 제한되기 때문

4 Training

4.1 Objective function

Softmax

$$p_k(\mathbf{x}) = \exp(a_k(\mathbf{x})) / \left(\sum_{k'=1}^K \exp(a_{k'}(\mathbf{x}))\right)$$

X = 픽셀의 위치(pixel position)

K = 특징 채널(feature channel) = 클래스

따라서 $a_k(\mathbf{x})$ = k번째 채널의 x위치의 activation값

Cross entropy

$$E = \sum_{\mathbf{x} \in \Omega} w(\mathbf{x}) \log(p_{\ell(\mathbf{x})}(\mathbf{x}))$$

 $w(\mathbf{x})$ = 추가적인 가중치 함수

4 Training

4.2 Weight

$$w(\mathbf{x}) = w_c(\mathbf{x}) + w_0 \cdot \exp\left(-\frac{(d_1(\mathbf{x}) + d_2(\mathbf{x}))^2}{2\sigma^2}\right)$$

d₁ = 가장 가까운 셀의 경계까지의 거리

d₂ = 두번째로 가까운 셀의 경계까지의 거리

Fig. 6.

가중치함수의 식을 통해 d_1 , d_2 거리가 가까울수록 가중치가 증가 Fig. 7. d는 가중치를 매핑한 이미지인데 이를 통해 가까운 셀의 경계는 가중치가 더 큰 것을 확인 할 수 있음

4 Training

4.3 Data Augmentation

Fig. 7.

Fig. 8.

5 Experiments

5.1 Experiments

EM segmentation challenge (2015)

Rank	Group name	Warping Error	Rand Error	Pixel Error
	** human values **	0.000005	0.0021	0.0010
1.	u-net	0.000353	0.0382	0.0611
2.	DIVE-SCI	0.000355	0.0305	0.0584
3.	IDSIA [1]	0.000420	0.0504	0.0613
4.	DIVE	0.000430	0.0545	0.0582
:				
10.	IDSIA-SCI	0.000653	0.0189	0.1027

Fig. 9.

EM segmentation challenge에선 U-Net은 데이터 전처리나 사후처리없이 Warping Error 기준으로 좋은 성능 ISBI cell tracking challenge에서는 두번째 좋은 모델과의 성능이 차이가 많이 남

6 Conclusion

6.1 Conclusion

- 1. U-Net은 생물의학 segmentation에서 매우 좋은 성능을 보여줌
- 2. Elastic deformation 덕분에 라벨링 된 데이터가 많이 필요 없었으며 합리적인 tarin 시간
- 3. U-Net architecture가 더 많은 작업에 쉽게 적용 될 것이라고 확신

6.2 Review

- 1. 논문 제목처럼 Biomedical 분야에서는 많이 활용되고 있을 것
- 2. 다른 분야도 생각해보면 위성사진에서 밀집 되어있는 주택가에서 주택의 경계선, 얽혀 있는 도로를 구분 등 사용이 가능할 것으로 보여짐