9.2 טורים אי-שליליים והתכנסותם

הגדרות

 $(\forall n\in\mathbb{N}\,a_n>0)\,\forall n\in\mathbb{N}\,a_n\geq 0$ מתקיים מתקיים אם"ם אי שלילי (חיובי הטור $\sum a_n$

משפטים על טורים א"ש

1. סדרת הסכומים החלקיים של טור א"ש מונוטונית עולה

. תהי החלקיים החלקיים הסכומים החלקיים שלה. מתונה נתונה ותהי החלקיים שלה $(a_n)_{n=1}^\infty$

- עולה עולה $(S_k)_{k=1}^\infty$ אי שלילי, אזי אי אי ה $\sum_n a_n$ מונוטונית .1
- . אי שלילי. מונוטונית עולה, אזי אי היר ה-1זנב של $\sum_{-}a_{n+1}$ אי שלילי. מונוטונית ($S_k)_{k=1}^\infty$.2

 $orall k \in \mathbb{N}$ $S_{k+1} - S_k = a_{k+1}$ נובע ישירות מכך שמתקיים

2. טור א"ש מתכנס אם"ם סדרת הסכומים החלקיים שלו חסומה

מבחני התכנסות לטורים א"ש

1. מבחן ההשוואה

 $\forall N\in\mathbb{N}\,0\leq a_n\leq b_n$ יהיי המקיימות סדרות $(a_n)_{n=1}^\infty$, $(b_n)_{n=1}^\infty$ יהיי היי $\sum_n b_n\leq \sum_n a_n$ מתכנס, גם מתכנס ומתקיים מה $\sum_n b_n$

2.מבחו ההשוואה כמעט תמיד

7. מבחן ד׳למבר הגבולי $(a_n)_{n=1}^\infty$, $(b_n)_{n=1}^\infty$ יהיו $(a_n)_{n=1}^\infty$, $(b_n)_{n=1}^\infty$ סדרות המקיימות $a_n \leq a_n \leq a_n$ כמעט תמיד. $\sum_n b_n \leq \sum_n a_n$ מתכנס ומתקיים $\sum_n a_n \leq a_n \leq a_n$ טור אי שלילי כך ש $a_n \neq a_n \leq a_n \leq a_n$ כמעט תמיד. נניח שקיים הגבול $\sum_n a_n \leq a_n \leq a_n$

3. מבחן ההשוואה באמצעות מנה

. כמעט תמיד טורים אי שליליים כך ש $b_n
eq 0$ כמעט כאירים אי שליליים כך טורים $\sum\limits_n b_n, \sum\limits_n a_n$

אם $\sum\limits_n a_n$ אזי אזי במעט ממיד, אוי $u \leq \frac{a_n}{b_n} \leq v$ בקיים שמתקיים $0 < u, v \in \overset{n}{\mathbb{R}}$ אם קיימים מתכנס. $\sum_n b_n$

4. מבחן ההשוואה הגבולי

. כמעט תמיד טורים אי שליליים כך ש $b_n
eq 0$ כמעט כאירים אי שליליים כך טורים ב $\sum\limits_n b_n, \sum\limits_n a_n$ יהיו

. אזי הם"ם אם"ם אם"ם אם $\sum\limits_n a_n$ אזי אזי ו $\lim\limits_{n \to \infty} rac{a_n}{b_n} = L$ כך שמתקיים $0 < L \in \mathbb{R}$ מתכנס

5. מבחן ההשוואה באמצעות מנות של עוקבים

. כמעט תמיד טורים אי שליליים בך ש $b_n, \sum a_n$ כמעט ממיד טורים אי שליליים ביהיו

אם $\sum\limits_n a_n$ אזי מתכנס מתכנס במעט תמיד ו $\sum\limits_n b_n$ מתכנס כמעט מעט מעט אזי

6. מבחן ד'למבר

. כמעט תמיד ביה טור אי שלילי כך ש $a_n
eq 0$ כמעט ממיד יהי יהי ביה טור אי שלילי

- מתכנס $\sum\limits_{n}a_{n}$, כמעט תמיד, $\frac{a_{n+1}}{a_{n}}\leq q$ כך ע $q\in(0,1)$ מתכנס .1
 - מתבדר $\sum\limits_{n}a_{n}$ מתבדר כמעט תמיד, $q\leq rac{a_{n+1}}{a_{n}}$ כך ש

7. מבחו ד'למבר הגבולי

מתכנס
$$\sum\limits_{n}a_{n}\;L\in\left[0,1
ight)$$
 מתכנס .1

מתבדר
$$\sum\limits_n a_n \ L>1$$
 מתבדר .2

הטור הענסות אם להסיק להסיק לוכל L=1 אם L=1

8. מבחן השורש של קושי להתכנסות טורים אי שליליים

.טור א"ש
$$\sum_n a_n$$
 יהי

- הטור מתכנס , $\sqrt[n]{a_n} \leq q$ הטור ממעט ממיד כמעט כך פד מתכנס מכנס ת $q \in (0,1)$
 - . אם $1 \geq n$ באופן שכיח, הטור מתבדר. 2

9. מבחן השורש הגבולי של קושי להתכנסות טורים אי שליליים

 $\limsup_{n\to\infty} \sqrt[n]{a_n} = L \in \mathbb{R}$ יהי הגבול שקיים שקיים נניח א"ש. נניח היש ה $\sum_n a_n$ יהי

מתכנס
$$\sum\limits_{n}a_{n}$$
 $L\in\left[0,1\right)$ מתכנס .1

מתבדר
$$\sum\limits_{n}a_{n}$$
 $L>1$ מתבדר .2

הטור העכנסות להסיק כלום על התכנסות לובל L=1

10. מבחן האינטגרל לטורים חיוביים

 $[1,\infty)$ תהי היורדת הי $f:[1,\infty) o \mathbb{R}$ אי שלילית ומונוטונית אי הטור היור מתכנס אם האינטגרל מתכנס $\sum\limits_{1}^{\infty}f\left(x
ight)dx$ ובמקרה זה מתקיים

$$\sum_{n=1}^{\infty} f(n) \le \int_{1}^{\infty} f(x) dx \le \sum_{n=2}^{\infty} f(n)$$