Levels of The Memory Hierarchy

In this course, we concentrate on the design, operation and performance of a single level of cache L1 (either unified or separate) when using non-ideal main **memory**

4th Edition Chapter 5.1-5.3 - 3rd Edition Chapter 7.1-5.3

Memory Hierarchy Operation

• If an instruction or operand is required by the CPU, the levels of the memory hierarchy are searched for the item starting with the level closest to the CPU (Level 1 cache):

Hit rate for level one cache = H₁ If the item is found, it's delivered to the CPU resulting in <u>a cache</u> <u>hit</u> without searching lower levels. Hit rate for level one cache = H_1

- If the item is missing from an upper level, resulting in <u>a cache</u>

 miss, the level just below is searched. Miss rate for level one cache = 1 Hit rate = 1 H₁
- For systems with several levels of cache, the search continues with cache level 2, 3 etc.
- If all levels of cache report a miss then main memory is accessed for the item.
 - CPU \leftrightarrow cache \leftrightarrow memory: Managed by hardware.
- If the item is not found in main memory resulting in a page fault, then disk (virtual memory), is accessed for the item.
 - Memory \leftrightarrow disk: Managed by the operating system with hardware support

In this course, we concentrate on the design, operation and performance of a single level of cache L1 (either unified or separate) when using non-ideal main memory

Memory Hierarchy: Terminology

- **A Block:** The smallest unit of information transferred between two levels.
- **Hit:** Item is found in some block in the upper level (example: Block X)
- e. g. H1
- **<u>Hit Rate:</u>** The fraction of memory access found in the upper level.
- **<u>Hit Time:</u>** Time to access the upper level which consists of

Hit rate for level one cache $= H_1$

(S)RAM access time + Time to determine hit/miss

- Miss: Item needs to be retrieved from a block in the lower level (Block Y)
- Miss Rate = 1 (Hit Rate)e. g. 1- H1

Miss rate for level one cache = $1 - \text{Hit rate} = 1 - \text{H}_1$

Ideally = 1 Cycle

- Miss Penalty: Time to replace a block in the upper level + M Time to deliver the missed block to the processor
- **Hit Time << Miss Penalty M**

Basic Cache Concepts

- Cache is the first level of the memory hierarchy once the address leaves the CPU and is searched first for the requested data.
- If the data requested by the CPU is present in the cache, it is retrieved from cache and the data access is a cache hit otherwise a cache miss and data must be read from main memory.
- On a cache miss a block of data must be brought in from main memory to cache to possibly <u>replace</u> an existing cache block.
- The allowed block addresses where blocks can be mapped (placed) into cache from main memory is determined by <u>cache placement</u> <u>strategy</u>.
- Locating a block of data in cache is handled by cache <u>block</u> <u>identification mechanism (tag checking)</u>.
- On a cache miss choosing the cache block being removed (replaced) is handled by the <u>block replacement strategy</u> in place.

Cache Block Frame

Cache is comprised of a number of cache block frames

Other status/access bits: (e.g. modified, read/write access bits) Data Storage: Number of bytes is the size of a cache block or cache line size (Cached instructions or data go here)

Typical Cache Block (or line) Size: 64 bytes Tag Data (Size = Cache Block)

Valid Bit: Indicates whether the cache block frame contains valid data

Tag: Used to identify if the address supplied matches the address of the data stored

The tag and valid bit are used to determine whether we have a cache hit or miss

Nominal Cache Size

Stated <u>nominal cache capacity</u> or size only accounts for space used to store instructions/data and ignores the storage needed for tags and status bits;

Nominal Cache Capacity = Number of Cache Block Frames x Cache Block Size of a Single

e.g For a cache with block size = 16 bytes and $1024 = 2^{10} = 1k$ cache block frames to block Nominal cache capacity = $16 \times 1k = 16 \times 1k$

Cache utilizes faster memory (SRAM)

Locating A Data Block in Cache

- Each block frame in cache has an address tag.
- The tags of every cache block that might contain the required data are checked or searched in parallel. Tag Matching
- A valid bit is added to the tag to indicate whether this entry contains a valid address.
- The byte address from the CPU to cache is divided into:
 - A block address, further divided into:
 - An index field to choose/map a block set in cache.

(no index field when fully associative).

- 2 A tag field to search and match addresses in the selected set.
- A byte block offset to select the data from the block.

Physical Byte Address From CPU

Block Address

Index

Physical Byte Address From CPU

Block Address

Index

Offset

Index = Mapping

Cache Organization & Placement Strategies

Placement strategies or mapping of a main memory data block onto cache block frame addresses divide cache into three organizations:

1 <u>Direct mapped cache:</u> A block can be placed in only one location (cache block frame), given by the <u>mapping function</u>: Least complex to implement

Mapping Function

index= (Block address) MOD (Number of blocks in cache)

2 <u>Fully associative cache:</u> A block can be placed anywhere in cache. (no mapping function).

Most complex cache organization to implement

= Frame #

3 Set associative cache: A block can be placed in a restricted set of places, or cache block frames. A set is a group of block frames in the cache. A block is first mapped onto the set and then it can be placed anywhere within the set. The set in this case is chosen by:

Mapping Function

index = (Block address) MOD (Number of sets in cache)

= Set #

If there are n blocks in a set the cache placement is called n-way set-associative.

Most common cache organization

Direct Mapped Cache Operation Example

•	Given a series	of 16 memory	address references	given as word addresses:
---	----------------	--------------	--------------------	--------------------------

Here:

Block Address = Word Address

1, 4, 8, 5, 20, 17, 19, 56, 9, 11, 4, 43, 5, 6, 9, 17.

Assume a direct mapped cache with 16 one-word blocks that is initially empty, label each reference a hit or miss and show the final content of cache $n_{block} = 16$ Mapping Function = (Block Address) MOD $16 = \frac{\log_2 4}{2}$ bits

Here: Block Address = Word Address

Cache Block	1	4	8	5	20	17	19	56	9	11	4	43	5	6	9	17	
Frame#	Miss	Hit	Miss	Hit	Hit	Hit/Miss											
0																	
1	1	1	1	1	1	17	17	17	17	17	17	17	17	17	17	17	
2																	
3							19	19	19	19	19	19	19	19	19	19	
4		4	4	4	20	20	20	20	20	20	4	4	4	4	4	4	
5				5	5	5	5	5	5	5	5	5	5	5	5	5	
6														6	6	6	
7																	
8			8	8	8	8	8	56	56	56	56	56	56	56	56	56	
9									9	9	9	9	9	9	9	9	
10																	
11										11	11	43	43	43	43	43	
12																	
13																	
14																	
15																	

Initial

Cache Content After Each Reference

Final

Cache **Content** (empty)

Hit Rate = # of hits / # memory references = 3/16 = 18.75%

Cache Content

Mapping Function = Index = (Block Address) MOD 16 i.e 4 low bits of block address

Direct Mapped Cache Operation Example

With Larger Cache **Block Frames**

Given the same series of 16 memory address references given as word addresses:

1, 4, 8, 5, 20, 17, 19, 56, 9, 11, 4, 43, 5, 6, 9, 17. X=109,4=2 Nindex = 2 bits (0~3)

- Assume a direct mapped cache with four word blocks and a total of 16 words that is initially empty, label each reference as a hit or miss and show the final content of cache Notice = 109216-4 bits
- Cache has 16/4 = 4 cache block frames (each has four words)

Block Address = Integer (Word Address/4)

i.e We need to find block addresses for mapping

4 blocks

Initial Cache Content (empty)

Starting word address of Cache Frames Content After Each Reference

Final Cache Content

Hit Rate = # of hits / # memory references = 6/16 = 37.5%

Here: Block Address ≠ Word Address

		set asso									Why set associa	
		ct m appe									by <u>reducing co</u> ped to the sam	
	Block	Tag D	ata							ct mapped o	-	e cac
y set associative:	0									The second secon		
ct mapped) ck frame per set	1				-	setas						
on name per see	2			Set	Tag	Data	Tag	Data				
	3			0							associative:	
	4			1						2 blocks f	frames per set	
	5			2								
	6			3								
	7											
									Γ	4-way set ass	ociative:	
			Four-wa	y set ass	ociativ	е				4 blocks fran		
	Set	Tag D	ata Tag	Data T	ag D	ata Ta	ag D	a ta 🦯	_			
	0							$\overline{}$		8-way set as	ssociativo:	
	1					+				1 -	mes per set	
				<u> </u>						In this case	it becomes fully a	
		Eight-wa	v setass	ociative	(fully a	ssociat	tive)			since total r	number of block f	rames
Tag Data Tag	Doto T							Too	Data	Tag Data		
	Dala I	ay Dala	Tay D	ala Tay	Data	ray	Data	ıay	Data	Tay Data		

Cache Replacement Policy

Which block to replace on a cache miss?

• When a cache miss occurs the cache controller may have to select a block of cache data to be removed from a cache block frame and replaced with the requested data, such a block is selected by one of three methods:

(No cache replacement policy in direct mapped cache)

No choice on which block to replace

- 1 Random:
 - Any block is randomly selected for replacement providing uniform allocation.
 - Simple to build in hardware. Most widely used cache replacement strategy.
- Least-recently used (LRU):
 - Accesses to blocks are recorded and and the block replaced is the one that was not used for the longest period of time.
 - Full LRU is *expensive* to implement, as the number of blocks to be tracked increases, and is usually <u>approximated by block usage bits that are cleared at regular time intervals</u>.
- ³ First In, First Out (FIFO:
 - Because LRU can be complicated to implement, this approximates LRU by determining the oldest block rather than LRU

Miss Rates for Caches with Different Size, Associativity & Replacement Algorithm Sample Data

Nominal

Associativity:	2-	way	4-way	8-w	ay
\ Size	LRU	Random	LRU Random	LRU	Random
16 KB	5.18%	5.69%	4.67% 5.29%	4.39%	4.96%
64 KB	1.88%	2.01%	1.54% 1.66%	1.39%	1.53%
256 KB	1.15%	1.17%	1.13% 1.13%	1.12%	1.12%

Program steady state cache miss rates are given Initially cache is empty and miss rates $\sim 100\%$

FIFO replacement miss rates (not shown here) is better than random but worse than LRU

For SPEC92

Miss Rate = 1 - Hit Rate = 1 - H1

Address Field Sizes/Mapping

Physical Address Generated by CPU

(The size of this address depends on amount of cacheable physical main memory)

Block Address Block **Index Offset** Tag

Block offset size = $log_2(block size)$

Number of Sets

in cache

Index size = log_2 (Total number of blocks/associativity)

Tag size = address size - index size - offset size

Mapping function: (From memory block to cache)

Cache set or block frame number = Index = = (Block Address) MOD (Number of Sets)

Fully associative cache has no index field or mapping function e.g. no index field

Calculating Number of Cache Bits Needed

Block	Block offset	
Tag	Index	Dioen office

Cache Block Frame (or just cache block)

Address Fields

- = 16K words How many total bits are needed for a direct- mapped cache with 64 KBytes of data and one word blocks, assuming a 32-bit address? 16x=2¹⁴
 - 64 Kbytes = 16 K words = 2^{14} words = 2^{14} blocks Notice = 2^{14} Capacity = 64 KB
 - Block size = 4 bytes => offset size = $log_2(4) = 2$ bits,
 - #sets = #blocks = 2^{14} => index size = 14 bits
 - Tag size = address size index size offset size = 32 14 2 = 16 bits May = 6 bits
 - Bits/block = data bits + tag bits + valid bit = 32 + 16 + 1 = 49
 - Bits in cache = #blocks x bits/block = 2^{14} x 49 = 98 Kbytes

Actual number of bits in a cache block frame

- How many total bits would be needed for a 4-way set associative cache to store the same amount of data?
 - Block size and #blocks does not change. $\eta_{Set} = 2^{14}/4 = 2^{12} = \eta_{Set} = 12 \text{ bits}$
 - $\#sets = \#blocks/4 = (2^{14})/4 = 2^{12} \Rightarrow index size = 12 bits$
 - Tag size = address size index size offset = 32 12 2 = 18 bits $M_{ag} = 18$
 - Bits/block = data bits + tag bits + valid bit = 32 + 18 + 1 = 51
 - Bits in cache = #blocks x bits/block = 2^{14} x 51 = 102 Kbytes
- Increase associativity => increase bits in cache

More bits in tag Word = 4 bytes

 $1 k = 1024 = 2^{10}$

Calculating Cache Bits Needed

Block	Block offset	
Tag	Index	Diock offset

v Tag Data

Cache Block Frame (or just cache block)

bi-15 | block = n-lagt nualid+ ndo-la

Address Fields

- How many total bits are needed for a direct-mapped cache with 64 KBytes of data and 8 word (32 byte) blocks, assuming a 32-bit address (it can cache 2³² bytes in memory)?
 - 64 Kbytes = 2^{14} words = $(2^{14})/8 = 2^{11}$ blocks Number of cache block frames
 - block size = 32 bytes $h_{offSet} = log_2 32 = 5$ $h_{index} = log_2 2^{11} = 11$ bits $h_{tog} = lb$ bits => offset size = block offset + byte offset = $log_2(32) = 5$ bits,
 - #sets = #blocks = 2^{11} => index size = 11 bits
 - tag size = address size index size offset size = 32 11 5 = 16 bits
 - bits/block = data bits + tag bits + valid bit = $8 \times 32 + 16 + 1 = 273$ bits
 - bits in cache = #blocks x bits/block = 2^{11} x 273 = 68.25 Kbytes
- Increase block size => decrease bits in cache.

Actual number of bits in a cache block frame

Fewer cache block frames thus fewer tags/valid bits

Word = 4 bytes
$$1 k = 1024 = 2^{10}$$

Unified vs. Separate Level 1 Cache

• Unified Level 1 Cache (Princeton Memory Architecture).

AKA Shared Cache

A single level 1 (L_1) cache is used for both instructions and data.

Or Split

• Separate instruction/data Level 1 caches (Harvard Memory Architecture): The level 1 (L_1) cache is split into two caches, one for instructions (instruction cache, L_1 I-cache) and the other for data (data cache, L_1 D-cache).

Memory Hierarchy/Cache Performance: Average Memory Access Time (AMAT), Memory Stall cycles

- The Average Memory Access Time (AMAT): The number of cycles required to complete an average memory access request by the CPU.
- Memory stall cycles per memory access: The number of stall cycles added to CPU execution cycles for one memory access.
- Memory stall cycles per average memory access = (AMAT -1)
- For ideal memory: AMAT = 1 cycle, this results in zero memory stall cycles. Amat = hit lime + penalty line . migs rate

 Memory stall cycles per average instruction =

Number of memory accesses per instruction

```
Instruction
                             x Memory stall cycles per average memory access
Fetch
            = (1 + fraction of loads/stores) x (AMAT - 1)
      felch, load, Hore
```

Base CPI = CPI execution = CPI with ideal memory

CPI_{execution} + **Mem Stall cycles per instruction** CPI =

Cache Performance: Single Level L1 Princeton (Unified) Memory Architecture

CPUtime = Instruction count x CPI x Clock cycle time

 $CPI_{execution} = CPI$ with ideal memory AMAT = HI - I + (I-HI)(I+M) = I+ M(I-HI)

CPI = CPI_{execution} + **Mem Stall cycles per instruction**

Mem Stall cycles per instruction =

Memory accesses per instruction x Memory stall cycles per access

i.e No hit penalty

Assuming no stall cycles on a cache hit (cache access time = 1 cycle, stall = 0)

Cache Hit Rate = H1 Miss Rate = 1- H1 Miss Penalty = M

Memory stall cycles per memory access = Miss rate x Miss penalty = $(1-H1) \times M$

AMAT = 1 + Miss rate x Miss penalty

M(HH) = AMAT-1 => AMAT= HM(1-H1)

Memory accesses per instruction = (1 + fraction of loads/stores)

Miss Penalty = M = the number of stall cycles resulting from missing in cache

= Main memory access time - 1

Thus for a unified L1 cache with no stalls on a cache hit:

CPI = CPI_{execution} + (1 + fraction of loads/stores) x (1 - H1) x M AMAT = 1 + (1 - H1) x M

 $CPI = CPI_{execution} + (1 + fraction of loads and stores) x stall cycles per access = <math>CPI_{execution} + (1 + fraction of loads and stores) x (AMAT - 1)$

Memory Access Tree: For Unified Level 1 Cache

Cache Performance Example

- Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle) with a single level of cache. (PI = CPI ideal + CPI start CPI ideal + MP mory access / Cycle / access
- CPI execution = 1.1 (i.e base CPI with ideal memory) = CPI idea + Gelich + load 95-love) (miss reference)
 Instruction mix: 50% arith/logic, 30% load/store, 20% control

 miss pencies
- Assume a cache miss rate of 1.5% and a miss penalty of M=50 cycles.

 $\mathbf{CPI} = \mathbf{CPI}_{\mathbf{execution}} + \mathbf{mem stalls per instruction}$

Mem Stalls per instruction =

(1-H1) = 2.075

Mem accesses per instruction x Miss rate x Miss penalty

Mem accesses per instruction = 1 + .3 = 1.3

Instruction fetch Load/stor

Mem Stalls per memory access = $(1-H1) \times M = .015 \times 50 = .75$ cycles

AMAT = 1 + .75 = 1.75 cycles

Mem Stalls per instruction = $1.3 \times .015 \times 50 = 0.975$

CPI = 1.1 + .975 = 2.075

The ideal memory CPU with no misses is 2.075/1.1 = 1.88 times faster

Cache Performance Example

- Suppose for the <u>previous example</u> we <u>double the clock rate</u> to 400 MHz, how much faster is this machine, assuming similar miss rate, instruction mix?
- Since memory speed is not changed, the miss penalty takes more CPU cycles:

Miss penalty = M = 50 x 2 = 100 cycles.
CPI =
$$1.1 + 1.3 \times .015 \times 100 = 1.1 + 1.95 = 3.05$$

Speedup = $(CPI_{old} \times C_{old})/(CPI_{new} \times C_{new})$
= $2.075 \times 2 / 3.05 = 1.36$

The new machine is only 1.36 times faster rather than 2 times faster due to the increased effect of cache misses.

→ CPUs with higher clock rate, have more cycles per cache miss and more memory impact on CPI.

Memory Access Tree For Separate Level 1 Caches

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses

% Data = Percentage or fraction of data accesses out of all memory accesses

Split L1 Cache Performance Example

- Suppose a CPU uses separate level one (L1) caches for instructions and data (Harvard memory architecture) with different miss rates for instruction and data access:
 - A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles for both memory reads and writes.
 - CPI_{execution} = 1.1 (i.e base CPI with ideal memory)
 - Instruction mix: 50% arith/logic, 30% load/store, 20% control
 - Assume a cache miss rate of 0.5% for instruction fetch and a cache data miss rate of 6%.
 - A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles for both memory reads and writes.

M

• Find the resulting stalls per access, AMAT and CPI using this cache?

 $CPI = CPI_{execution} + mem stalls per instruction$

Memory Stall cycles per instruction = Instruction Fetch Miss rate x Miss Penalty +
Data Memory Accesses Per Instruction x Data Miss Rate x Miss Penalty

Memory Stall cycles per instruction = $0.5/100 \times 200 + 0.3 \times 6/100 \times 200 = 1 + 3.6 = 4.6$ cycles

Stall cycles per average memory access = 4.6/1.3 = 3.54 cycles

AMAT = 1 + Stall cycles per average memory access = 1 + 3.54 = 4.54 cycles

 $CPI = CPI_{execution} + mem stalls per instruction = 1.1 + 4.6 = 5.7 cycles$

• What is the miss rate of a single level unified cache that has the same performance?

4.6 = 1.3 x Miss rate x 200 which gives a miss rate of 1.8 % for an equivalent unified cache

• How much faster is the CPU with ideal memory?

The CPU with ideal cache (no misses) is 5.7/1.1 = 5.18 times faster

With no cache at all the CPI would have been = 1.1 + 1.3 X 200 = 261.1 cycles!!

Memory Access Tree For Separate Level 1 Caches Example For Last Example 30% of all instructions executed are loads/stores, thus: Fraction of instruction fetches out of all memory accesses = 1/(1+0.3) = 1/1.3 = 0.769 or 76.9 % Fraction of data accesses out of all memory accesses = 0.3/(1+0.3) = 0.3/1.3 = 0.231 or 23.1 % **CPU Memory Access** 100% **Split** % Instructions = % data = 0.231 or 23.1 % 0.769 or 76.9 % $\mathbf{L_1}$ Instruction Data 0.231 x 0.94 0.231×0.06 %instructions x %instructions % data x Data H1 Instruction H1) % data x (1 - Data H1) x (1 - Instruction H1) = .2169 or 21.69 % = .765 or 76.5 % = 0.01385 or 1.385 % = 0.003846 or 0.3846 % 0.769 x 0.995 0.769×0.005 **Instruction L1 Hit: Instruction L1 Miss:** Data L1 Hit: Data L1 Miss: Access Time = M + 1 = 201**Hit Access Time = 1** Hit Access Time: = 1 Access Time = M + 1 = 201Stalls Per access = M = 200Stalls = 0Stalls = 0Stalls per access: M = 200Stalls = %instructions x (1 - Instruction H1) x M Stalls = % data x (1 - Data H1) x M $= 0.003846 \times 200 = 0.7692 \text{ cycles}$ Ideal access on a hit, no stalls $= 0.01385 \times 200 = 2.769 \text{ cycles}$ Ideal access on a hit, no stalls Stall Cycles Per Access = % Instructions x (1 - Instruction H1) x M + % data x (1 - Data H1) x M = 0.7692 + 2.769 = 3.54 cycles AMAT = 1 + Stall Cycles per access = 1 + 3.5 = 4.54 cyclesStall cycles per instruction = $(1 + \text{fraction of loads/stores}) \times \text{Stall Cycles per access} = 1.3 \times 3.54 = 4.6 \text{ cycles}$ $CPI = CPI_{execution} + Stall cycles per instruction = 1.1 + 4.6 = 5.7$ Given as 1.1 M = Miss Penalty = stall cycles per access resulting from missing in cache = 200 cycles M + 1 = Miss Time = Main memory access time = 200+1 = 201 cycles L1 access Time = 1 cycle Data H1 = 0.94 or 94%1- Data H1 = 0.06 or 6%Instruction H1 = 0.995 or 99.5%1- Instruction H1 = 0.005 or 0.5 %% Instructions = Percentage or fraction of instruction fetches out of all memory accesses = 76.9 % % Data = Percentage or fraction of data accesses out of all memory accesses = 23.1 %