Algoritmos e Lógica de Programação

80 horas // 4 h/semana

Estrutura de Repetição (for)

Aula 07 - parte 1

Prof. Piva

Para começar...

- Os comandos de repetição dão mais movimento ao nosso programa. Permitem que uma ação seja executada mais de uma vez sem que tenhamos que executar novamente o programa. Podemos testar entradas de dados e pedir que o usuário repita a entrada até que um valor válido seja digitado.
- Imagine a seguinte situação... Você tem que desenvolver um algoritmo que recebe como entrada 10 números inteiros (idade das pessoas que trabalham com você). Sua tarefa é calcular a idade média desses seus colegas de trabalho. Como seria esse algoritmo?

Algoritmo para calcular a idade média – 10 pessoas

```
algoritmo "idade média"
var
 idade1, idade2, idade3, idade4, ... idade10: inteiro
 media: real
inicio
   escreva("Digite a idade 1: ")
   leia(idadeı)
   escreva("Digite a idade 2: ")
   leia(idade2)
   escreva("Digite a idade 10: ")
   leia(idade10)
   media <- (idade1+idade2+...+idade10)/10
   escreval ()
   escreva ("A media de idade e: ", media)
fimalgoritmo
```

Ufaaaa!!!

Teria uma forma mais EFICIENTE de fazer isso?

Simmmm!!!

 Usando comandos que controlam repetições (ou comandos de repetição).

- Vamos ver um deles hoje:
- Comando PARA (for)

Este comando é útil quando se deseja repetir um número fixo de vezes determinado conjunto de comandos.

Possui a **mesma** lógica de funcionamento nas principais linguagens de programação

Para isso deverá ter uma variável de controle, um valor inicial, um valor final e o valor do incremento – passo - que essa variável receberá para sair do valor inicial até atingir o valor final.

sintaxe:

```
para <variável> de <valor-inicial> ate <valor-limite> [passo <incremento>]
    faca
        <seqüência-de-comandos>
fimpara
```

análise do comando:

- para, de, ate, passo, faca e fimpara são palavras-chave do comando;
- variável : é a variável de controle do comando e deve ser do tipo inteiro;
- valor-inicial: é o valor de início da variável de controle. Pode ser uma constante ou uma expressão aritmética, desde que o valor seja do tipo inteiro. A atribuição desse valor à variável de controle é feita apenas uma vez antes de iniciar a primeira repetição do comando;

análise do comando (continuação):

- valor-limite: é o valor de parada do comando. Isto é, a sequência de comandos será executada até que a variável de controle atinja esse valor;
- incremento: é o valor do passo que a variável de controle deve "caminhar" para que atinja o valor limite. É opcional. E, quando presente, é necessário apresentar o valor do incremento que será acrescentado à variável de controle após cada repetição da sequência de comandos. Quando não está presente não deverá especificado o valor do incremento e compilador entenderá que o valor do incremento é o padrão, ou seja, igual a 1 (um).

Exemplo:

```
para x de 1 ate 3 passo 1 faca
escreval("X = ", x)
```

Como o passo usado, no exemplo, é igual a 1 ele pode ser omitido. Nesse caso a linha do comando ficaria:

```
para x de 1 ate 3 faca
```

Observação: de pode ser substituído por dois-pontos e igual (:=)

```
para x := 1 ate 3 faca
```

Voltando ao nosso problema inicial

Idade média de 10 pessoas...

Como poderíamos modificar o algoritmo para que fique mais OTIMIZADO?

Algoritmo idade média – 10 pessoas (comando **PARA**)

```
algoritmo "idade média"
var
idade, soma, i: inteiro
 media: real
inicio
   soma <- o // inicializo a variável soma com zero.
   para i := 1 ate 10 faca
       escreva("Digite a idade ", i, ": ")
       leia(idade)
       soma <- soma + idade
   fimpara
   media <- soma / 10
   escreval ()
   escreva ("A media de idade e: ", media)
fimalgoritmo
```

Outro exemplo

Elaborar um algoritmo que imprime na tela os dez primeiros múltiplos de um número inteiro qualquer fornecido pelo usuário (lido). No final, imprima também a soma destes dez números.

Exemplo da saída:

Valor lido: 3

Lista de Múltiplos: 3 6 9 12 15 18 21 24 27 30

Soma = 165

Outro Exemplo

```
algoritmo "Múltiplos de número lido"
var
 numero, soma, multiplo, i: inteiro
inicio
escreva("Digite um número: ")
leia(numero)
escreval ("Valor Lido: ", numero)
escreva ("Lista de Múltiplos: ")
soma<-o
para i de 1 ate 10 passo 1 faca
 multiplo <- i*numero
 escreva(multiplo, " ")
 soma<- soma+multiplo
fimpara
escreval()
escreval("Soma = ", soma)
fimalgoritmo
```

Estrutura Repetição Algoritmo

Determinada

```
Forma Geral 1:

PARA <<var.de tipo inteiro>> ← <<valor inicial>> ATE <<valor final>> FAÇA <<COMANDO1>>;

Forma Geral 2:

PARA <<var. de tipo inteiro>> ← <<valor inicial>> ATE <<valor final>> FAÇA ÍNICIO <<COMANDO1>>;

<COMANDO1>>;

FIM;
```

Estrutura Repetição em Python

Determinada

Forma Geral em linguagem Python: for i in <<interável>>:

<<COMANDO1>>

<<COMANDON>>

INTERÁVEL...

Qualquer elemento que contenha um conjunto de elementos que podem ser selecionados um a um, por meio de interações

Exemplos: range(1,10) range(1,10,2) str list ...

Estrutura Repetição

Determinada

Exemplo:

Mostrar uma sequência numérica de 1 a 10, com a frase "o número é= n"

```
for i in range(1,11):
    print("O numero eh = ", i)
```

Estrutura Repetição

Determinada

Exemplo:2: Pedir para o usuário digitar 10 números inteiros. Ao final, exibir a média desses números.

```
soma = 0
media = 0
for i in range(1, 11)
    n = int(input("Digite um número inteiro = "))
    soma = soma + n
media = soma/10
print("A media eh = ", media);
```

Estrutura Repetição

Determinada

Faça um programa em Python que escreve os 100 primeiros números pares.

```
par = 0
for i in range(1, 101):
          print(par)
          par = par + 2
```

Comandos: break e continue

```
for i in range(5):
  if i == 0:
    print('\ni = 0, Então: ', i)
  elif i == 1:
    print('\ni = 1, Então: continue')
    continue
  elif 1 < i < 3:
                                             Qual a Saída?
    print('\nA variável i, é: ', i)
  elif i == 3:
    print('\ni = 3, Então: break')
    break
  else:
    print('\ni > 3, Então: ', i)
```

Comando else (do for)

- Python fornece a cláusulas break e else para os laços.
- Else Será executada quando a condição do laço for falsa.
- Break sai do laço

```
for elemento in lista :
    if elemento == parada :
        break
    print elemento
else :
    print " Laço chegou ao fim "
```

 No exemplo acima, a mensagem "Laço chegou ao fim" só é impressa caso não exista um elemento que seja igual a "parada".

Algoritmos de repetição

Faça um algoritmo que leia um valor N inteiro e positivo, calcule e mostre o valor E, conforme a fórmula a seguir.

Faça um algoritmo que calcule a soma dos primeiros 50 números pares. Este algoritmo não recebe valores do teclado.

Os primeiros números pares são 2, 4, 6...

Faça um algoritmo que leia o valor do peso e da altura de 20 pessoas. Ao final, o algoritmo deve mostrar:

- O peso médio
- A altura média
- O maior e o menor IMC

Obs: IMC (Índice de Massa Corporal) – calculado a partir da fórmula:

$$IMC = \frac{massa}{(altura \cdot altura)}$$

Construa um algoritmo que calcule a média aritmética de um conjunto de números pares que forem fornecidos pelo usuário. O valor de finalização será a entrada do número O. Observe que nada impede que o usuário forneça quantos números ímpares quiser, com a ressalva de que eles não poderão ser acumulados.

Elabore um algoritmo que simule uma contagem regressiva de 10 minutos, ou seja, mostre 10:00 e então 9:59, 9:58, ..., 9:00; 8:59, 8:58, até 0:00.

Faça um programa que receba um número inteiro x. Calcule e mostre o fatorial desse número (x!).

Faça um programa que calcule os 10 primeiros números da sequencia de Fibonacci

Faça um programa que receba um número inteiro maior que 1. Ele deve verificar se o número fornecido é primo ou não, e mostrar a mensagem correspondente.

Lembre-se: um número primo só é divisível por 1 ou por ele mesmo.

Algoritmos e Lógica de Programação

80 horas // 4 h/semana

Estrutura de Repetição

Aula 07 – parte 2

Prof. Piva

Para começar...

- Existem situações onde não sabemos, ao certo, quantas vezes teremos que repetir a sequencia de entradas ou comandos.
- Quando isso ocorre, o comando PARA, passa a ser não mais uma boa opção.

Felizmente, temos outro comando de repetição!!

- Comando:
 - ENQUANTO

Para começar...

- Os duentes de Papai Noel estão com um problema...
 Periodicamente (não se sabe se é por semana, ou por mês, ou de quinze em quinze dias... O Sr. Noel pede a informação do número médio de cartas recebidas por dia. Portanto, você tem que ajudá-los com um algoritmo que possa receber uma certa quantidade de valores inteiros (que corresponde a quantidade de cartas recebidas por dia pelo Papai Noel). O algoritmo deve realizar o cálculo, quando o último valor digitado for igual a -1.
- A saída deve informar a quantidade de dias e o número médio de cartas recebidas por dia no período.

Comando while...

- As vezes, temos a necessidade de realizar o teste de REPETIÇÃO antes de executarmos os comandos...
- Nesse caso, podemos utilizar o comando ENQUANTO (while)

Comando ENQUANTO (while)

O comando cuja palavra-chave é **enquanto** (*while*), tem o mesmo comportamento nas várias linguagens, com apenas algumas diferenças na escrita do comando.

De modo geral, é um comando que repete um comando ou um conjunto de comandos **enquanto** uma **condição** (expressão lógica) **for verdadeira**.

Quando essa **condição** se tornar **falsa** o controle passa para o próximo comando que se segue imediatamente ao final do comando repetitivo enquanto.

Comando ENQUANTO (while)

sintaxe:

análise do comando:

- o bloco do comando se inicia com a palavra-chave enquanto e termina com o fimenquanto;
- o comando utiliza uma outra palavra-chave: faça, sem a cedilha, após a expressão-lógica;
- a expressão-lógica não precisa estar entre parênteses;

Comando ENQUANTO (while)

Exemplo:

```
i<- 1
enquanto (i<=3) faca
escreval("I = ", i)
i<- i+1
fimenquanto</pre>
```

Exemplo

Elaborar um algoritmo que imprime na tela os dez primeiros múltiplos de um número inteiro qualquer fornecido pelo usuário (lido). No final, imprima também a soma destes dez números.

Exemplo da saída:

Valor lido: 3

Lista de Múltiplos: 3 6 9 12 15 18 21 24 27 30

Soma = 165

LEMBRE-SE QUE NÓS JÁ FIZEMOS ESSE EXEMPLO COM O COMANDO <u>FOR</u>

Estrutura Repetição INICIAL INDETERMINADA COM VALIDAÇÃO INICIAL

É usada para repetir N vezes uma ou mais instruções.

Tendo como vantagem o fato de não ser necessário o conhecimento prévio do número de repetições.

Estrutura Repetição

INDETERMINADA COM VALIDAÇÃO INICIAL

```
ENQUANTO «CONDIÇÃO» FACA
    <<COMANDO1>>;
Forma Geral 2:
ENQUANTO «CONDIÇÃO» FACA
    ÍNICIO
         <<COMANDO1>>;
         <<COMANDON>>
    FIM:
```

Forma Geral 1:

```
while <condição>: <comandos>
```

```
Exemplo: Contagem
int i=0;
while (i < 10):
    print(i)
    i+=1</pre>
```

 O loop se repete, enquanto a condição for verdadeira

```
a = 0
b = 2
while a <= b:
print('\n', a, ' <= ', b, ' ')
a += 1
```

```
i = 0
while True:
    print(i)
    i += 1
```

Da mesma forma que o comando FOR com o comando WHILE existe a possibilidade de utilizar BREAK e CONTINUE. from random import randint while True: x = randint(0, 10)print(x) if x == 5: break

Comandos de Repetição (parte 2)

Faça um algoritmo que leia dois valores b e N inteiros e positivos, calcule e mostre o valor E, conforme a fórmula a seguir.

$$E = (b^{**}1) + (b^{**}2) + (b^{**}3) + ... + (b^{**}N)$$

Faça um algoritmo que calcule a área de um triângulo. Este algoritmo não pode permitir a entrada de dados inválidos, ou seja, medidas menores ou iguais a zero.

Faça um algoritmo que leia um número não determinado de pares de valores [m,n], todos inteiros e positivos, um par de cada vez e que calcule e mostre a soma de todos os números inteiros entre m e n (inclusive). Na digitação dos pares m,n deve-se validar que m é maior que n.

Faça um algoritmo que:

- -Leia um número indeterminado de números que representam, cada um, a idade de um indivíduo.
- -Para finalizar, o usuário deverá digitar 0, que não entrará nos cálculos.
 - Calcule e mostre a idade média e o número total de pessoas deste grupo de indivíduos.

Faça um algoritmo que leia o valor do peso e da altura de 20 pessoas. Ao final, o algoritmo deve mostrar:

- O peso médio
- A altura média
- O maior e o menor IMC

Obs: IMC (Índice de Massa Corporal) – calculado a partir da fórmula:

$$IMC = \frac{massa}{(altura \cdot altura)}$$

Faça um programa que receba um número inteiro x. Calcule e mostre o fatorial desse número (x!).

Faça um programa que calcule os 10 primeiros números da sequencia de Fibonacci

Faça um programa que receba um número inteiro maior que 1. Ele deve verificar se o número fornecido é primo ou não, e mostrar a mensagem correspondente.

Lembre-se: um número primo só é divisível por 1 ou por ele mesmo.