1 Definitionen

Stand: 5. Juni 2017

Die folgenden fünf Definitionen sind analog aus [BFLV16] übernommen worden.

Definition 1.1 (*Modal Interface Automat*). Ein Modal Interface Automat (MIA) ist ein Tupel $(P, I, O, \longrightarrow, -\rightarrow, p_0, e)$ mit:

- P: Menge der Zustände
- $p_0 \in P$: Startzustand
- $e \in P$: universeller Zustand
- I,O: disjunkte Input- und Outputaktionen
- $A = I \cup O$: Alphabet
- $\tau \notin A$: interne Aktion
- $\longrightarrow \subseteq P \times (A \cup \{\tau\}) \times (\mathcal{P}(P) \setminus \emptyset)^1$: disjunktive must-Transitions-Relation
- $-- \rightarrow \subseteq P \times (A \cup \{\tau\}) \times P$: may-Transitions-Relation

Es werden die folgenden Eigenschaften vorausgesetzt:

- 1. $\forall \alpha \in A \cup \{\tau\} : p \xrightarrow{\alpha} P \Rightarrow \forall p' \in P : p \xrightarrow{\alpha} p' \text{ (syntaktische Konsistenz)}$
- 2. e tritt nur als Zielzustand von Input may-Transitionen auf (Senken-Voraussetzung)

 TODO: Übersetzung überdenken

Must-Transitionen sind Transitionen, die von einer Verfeinerung implementiert werden müssen. Die may-Transitionen sind hingegen die zulässigen Transitionen für eine Verfeinerung.

Für beliebige Alphabete I, O ist dann $P = (\{e\}, I, O, \emptyset, \emptyset, e, e)$ der universelle MIA, da in e als universellen Zustand beliebiges Verhalten zulässig ist.

MIAs werden in dieser Arbeit durch ihre Zustandsmenge (z.B. P) identifiziert und falls notwendig werden damit auch die Komponenten indiziert (z.B. I_P anstatt I). Falls der MIA selbst bereits einen Index hat (z.B. P_1) kann an der Komponente die Zustandsmenge als Index wegfallen und nur noch der Index des gesamten Automaten verwendet werden

 $^{{}^{1}\}mathcal{P}(P)$ bezeichnet die Potenzmenge von P

(z.B. I_1 anstatt I_{P_1}). Zusätzlich stehen i, o, a, ω und α für Buchstaben aus den Alphabeten $I, O, A, O \cup \{\tau\}$ und $A \cup \{\tau\}$. Es kann A = I/O geschrieben werden um die Inputs und Outputs eines Alphabets hervorzuheben. Im Zusammenhang mit schwachen Transitionen wird die Notation $\hat{\alpha}$ verwendet, wobei gilt $\hat{\alpha} =_{\mathrm{df}} a$, falls $\alpha = a \neq \tau$ und $\hat{\alpha} =_{\mathrm{df}} \varepsilon$, falls $\alpha = \tau$. Desweiteren werden Outputs und die interne Aktion lokale Aktionen genannt, da sie lokal vom ausführenden MIA kontrolliert sind. Um eine Erleichterung der Notation zu erhalten, soll gelten, dass $p \xrightarrow{a} p', p \xrightarrow{a}$ und $p \xrightarrow{a} f$ für $p \xrightarrow{a} \{p'\}, \nexists P' : p \xrightarrow{a} P'$ und $\nexists p' : p \xrightarrow{a} p'$ stehen soll. In Graphiken wird eine Aktion a als a? notiert, falls $a \in I$ und a!, falls $a \in O$. Must-Transitionen (may-Transitionen) werden als durchgezogener, möglicherweise aufspaltender, Pfeil gezeichnet (gestrichelter Pfeil). Entsprechend der syntaktischen Konsistenz repräsentiert jede gezeichnete must-Transition auch gleichzeitig die zugrundeliegende may-Transitionen.

Definition 1.2 (Parallelprodukt). Zwei MIAs P_1, P_2 sind komponierbar, falls $O_1 \cap O_2 = \emptyset$. Für solche MIAs ist das Produkt $P_1 \otimes P_2 = ((P_1 \times P_2) \cup \{e_{12}\}, I, O, \longrightarrow, \neg \rightarrow, (p_{01}, p_{02}), e_{12})$ definiert mit: TODO: erzwungenen Zeilenumbruch kontrollieren

- e_{12} : frischer universeller Zustand
- $I = (I_1 \cup I_2) \setminus (O_1 \cup O_2)$
- $\bullet \ O = (O_1 \cup O_2)$
- $\bullet \longrightarrow, -- \rightarrow$: kleinste Relationen, die die folgenden Regeln erfüllen:

(PMust1)
$$(p_1, p_2) \xrightarrow{\alpha} P_1' \times \{p_2\}$$
, falls $p_1 \xrightarrow{\alpha} P_1'$ und $\alpha \notin A_2$

$$(PMust2)$$
 $(p_1, p_2) \xrightarrow{\alpha} \{p_1\} \times P'_2$, falls $p_2 \xrightarrow{\alpha} P'_2$ und $\alpha \notin A_1$

(PMust3)
$$(p_1, p_2) \stackrel{a}{\longrightarrow} P_1' \times P_2'$$
, falls $p_1 \stackrel{a}{\longrightarrow} P_1'$ und $p_2 \stackrel{a}{\longrightarrow} P_2'$

(PMay1)
$$(p_1, p_2) \xrightarrow{\alpha} P_1' \times \{p_2\}$$
, falls $p_1 \xrightarrow{\alpha} P_1'$ und $\alpha \notin A_2$

$$(PMay2)$$
 $(p_1, p_2) \xrightarrow{\alpha} \{p_1\} \times P_2'$, falls $p_2 \xrightarrow{\alpha} P_2'$ und $\alpha \notin A_1$

$$(PMay3)$$
 $(p_1, p_2) \xrightarrow{a} P'_1 \times P'_2$, falls $p_1 \xrightarrow{a} P'_1$ und $p_2 \xrightarrow{a} P'_2$

Definition 1.3 (Parallelkomposition). Gegeben ein Parallelprodukt $P_1 \otimes P_2$, ein Zustand (p_1, p_2) ist ein neuer Kommunikationsfehler, falls es ein $a \in A_1 \cap A_2$ gibt, sodass:

(a)
$$a \in O_1, p_1 \xrightarrow{a} und p_2 \xrightarrow{a} oder$$

(b)
$$a \in O_2, p_2 \xrightarrow{a} und p_1 \xrightarrow{a}$$
.

 (p_1, p_2) ist ein geerbter Kommunikationsfehler, falls eine der Komponenten ein universeller Zustand ist, d.h. $p_1 = e_1 \lor p_2 = e_2$.

 $E \subseteq P_1 \times P_2$ ist die Menge der unzulässigen Zustände. Es gilt $(p_1, p_2) \in E$, falls:

(i) (p_1, p_2) ist ein neuer oder geerbter Kommunikationsfehler,

(ii)
$$(p_1, p_2) \xrightarrow{w} (p'_1, p'_2)$$
 und $(p'_1, p'_2) \in E$.

1 Definitionen

Falls der Startzustand ein unzulässiger Zustand ist, dann wird e_{12} initial und somit der einzig erreichbare Zustand von $P_1||P_2$ (P_1 und P_2 werden dann inkompatibel genannt). Sonst erhält man $P_1||P_2$ durch das entfernen unzulässiger Zustände aus $P_1 \otimes P_2$. Falls es einen Zustand $(p_1, p_2) \notin E$ mit $(p_1, p_2) \xrightarrow{i} (p'_1, p'_2) \in E$ für ein $i \in I$ gibt, dann werden alle must- und may-Transitionen mit i startend bei (p_1, p_2) entfernt und eine einzige Transition $(p_1, p_2) \xrightarrow{i} e_{12}$ hinzugefügt. Zusätzlich werden alle Zustände aus E und alle unerreichbaren Zustände (außer e_{12}) und alle ihre eingehenden und ausgehenden Transitionen gelöscht. Falls $(p_1, p_2) \in P_1||P_2$, schreiben wir $p_1||p_2$ und nennen p_1 und p_2 kompatibel.

Definition 1.4 (Schwache Transitionens-Relation). Für einen beliebigen MIA P, sind schwache must- (\Longrightarrow) und may-Transitions-Relationen (\Longrightarrow) die kleinsten Relationen die die folgenden Eigenschaften erfüllen, dabei ist $P' \stackrel{\hat{\alpha}}{\Longrightarrow} P''$ eine Abkürzung für $\forall p \in P' \exists P_p : p \stackrel{\hat{\alpha}}{\Longrightarrow} P_p \text{ und } P'' = \bigcup_{p \in P'} P_p$:

- 1. $p \stackrel{\varepsilon}{\Longrightarrow} \{p\} \ \forall p \in P$,
- 2. $p \xrightarrow{\tau} P'$ und $P' \stackrel{\hat{\alpha}}{\Longrightarrow} implizient <math>p \stackrel{\hat{\alpha}}{\Longrightarrow} P''$,
- 3. $p \xrightarrow{a} P'$ und $P' \stackrel{\varepsilon}{\Longrightarrow} impliziert <math>p \stackrel{a}{\Longrightarrow} P''$,
- 4. $p \stackrel{\varepsilon}{\Longrightarrow} p \ \forall p \in P$,
- 5. $p \stackrel{\varepsilon}{\Longrightarrow} p'' \stackrel{\tau}{\dashrightarrow} p' \text{ implizient } p \stackrel{\varepsilon}{\Longrightarrow} p,$
- 6. $p \stackrel{\varepsilon}{\Longrightarrow} p'' \stackrel{\alpha}{\dashrightarrow} p''' \stackrel{\varepsilon}{\Longrightarrow} implizient \ p \stackrel{\alpha}{\Longrightarrow} p$

Transitionen, die wie in Fall 3 aufgebaut sind, werden auch als $\stackrel{a}{\longrightarrow} \stackrel{\varepsilon}{\Longrightarrow}$ notiert und schwach-endende must-Transition TODO: Übersetzung überlegen genannt. Analog steht $\stackrel{a}{-} \stackrel{\varepsilon}{\longrightarrow} \stackrel{\varepsilon}{\Longrightarrow}$ für eine schwach-endende may-Transition.

Definition 1.5 (MIA Verfeinerunge). Seien P und Q MIAs mit gemeinsamen Input- und Output-Alphabeten. Dann ist $\mathcal{R} \subseteq P \times Q$ eine MIA-Verfeinerungs-Relation, falls für alle $(p,q) \in \mathcal{R}$ mit $q \neq e_Q$ die folgenden Eigenschaften erfüllt sind:

- (i) $p \neq e_P$
- (ii) $q \xrightarrow{i} Q' \Rightarrow \exists P' : p \xrightarrow{i} \stackrel{\varepsilon}{\Longrightarrow} P' \text{ und } \forall p' \in P' \exists q' \in Q' : (p', q') \in \mathcal{R}$
- (iii) $q \xrightarrow{\omega} Q' \Rightarrow \exists P' : p \stackrel{\hat{\omega}}{\Longrightarrow} P' \text{ und } \forall p' \in P' \exists q' \in Q' : (p', q') \in \mathcal{R}$
- (iv) $p \xrightarrow{i} p' \Rightarrow \exists q' : a \xrightarrow{i} = \stackrel{\varepsilon}{\Rightarrow} q' \ und \ (p', q') \in \mathcal{R}$
- $(v) \ p \xrightarrow{\omega} p' \Rightarrow \exists q' : q \stackrel{\hat{\omega}}{\Longrightarrow} q' \ und \ (p', q') \in \mathcal{R}$

p MIA-verfeinert q ($p \sqsubseteq q$), falls eine MIA-Verfeinerungs-Relation \mathcal{R} existiert mit $(p,q) \in \mathcal{R}$. Falls es auch in die umgekehrte Richtung eine Verfeinerungsrelation gibt, sind die beiden Zustände äquivalent, was durch $\exists \sqsubseteq$ ausgedrückt wird. Für zwei MIAs gilt $P \sqsubseteq Q$, falls $p_0 \sqsubseteq q_0$.

Literaturverzeichnis

[BFLV16] Ferenc Bujtor, Sascha Fendrich, Gerald Lüttgen, und Walter Vogler, Nondeterministic Modal Interfaces, Theor. Comput. Sci. **642** (2016), 24–53.