CHM 1001 General Chemistry

Assignment 5

- 20 multiple-choice questions + 5 short answer questions.
- There is only one correct answer for each multiple-choice question.
- Please write your answers in the Assignment Answers Template, which is uploaded with the assignment.
- Upload your answer into Blackboard before the deadline, you can write directly in the template, or by hand and scan it into an electronic version.
- No late submission is allowed.

Deadline: 11:59 pm, Nov 29th (UTC+8)

Chapter 16

- 1. A Brønsted-Lowry acid is defined as a substance that _____.
- A) increases Ka when placed in H2O
- B) decreases [H⁺] when placed in H₂O
- C) increases [OH-] when placed in H₂O
- D) acts as a proton acceptor
- E) acts as a proton donor
- 2. The hydride ion, H⁻, is a stronger base than the hydroxide ion, OH⁻.

The product(s) of the reaction of hydride ion with water is/are _____.

- A) H3O+ (aq)
- B) OH^{-} (aq) + H_{2} (g)
- C) $OH^{-}(aq) + 2H^{+}(aq)$
- D) no reaction occurs
- E) H2O2 (aq)
- 3. Of the following acids, _____ is a strong acid.
- A) HNO₂
- B) H₂CO₃
- C) HNO₃
- D) HClO
- E) HF

4. HA is a weak acid. Which equilibrium corresponds to the equilibrium constant Kb for A-?

A) HA (aq) + H₂O (l)
$$\rightleftharpoons$$
 H₂A⁺ (aq) + OH⁻(aq)

B)
$$A^{-}(aq) + H_{3}O^{+}(aq) \implies HA(aq) + H_{2}O(1)$$

C)
$$HA$$
 (aq) + OH^{-} (aq) \rightleftharpoons $H_{2}O$ (l) + H^{+} (aq)

D)
$$A^{-}$$
 (aq) + $H_{2}O$ (l) \rightleftharpoons HA (aq) + OH^{-} (aq)

E) A- (aq) + OH- (aq)
$$\rightleftharpoons$$
 HOA²⁻ (aq)

5. Using the data in the table, which of the conjugate bases below is the strongest base?

Acid	Ka
HOAc	1.8 × 10 ⁻⁵
HC7H5O2	6.3×10^{-5}
HNO_2	4.5×10^{-4}
HF	6.8×10^{-4}

- A) OAc-
- B) C₇H₅O₂-
- C) NO₂-
- D) F-
- E) OAc- and C7H5O2-

6. Which one of the following pairs <u>cannot</u> be mixed together to form a
buffer solution?
A) NH3, NH4Cl
B) NaC ₂ H ₃ O ₂ , HCl (C ₂ H ₃ O ₂ -= acetate)
C) RbOH, HBr
D) KOH, HF
E) H ₃ PO ₄ , KH ₂ PO ₄
7. What change will be caused by addition of a small amount of HCl to a
solution containing fluoride ions and hydrogen fluoride?
A) The concentration of hydronium ions will increase significantly.
B) The concentration of fluoride ions will increase as will the
concentration of hydronium ions.
C) The concentration of hydrogen fluoride will decrease and the
concentration of fluoride ions will increase.
D) The concentration of fluoride ion will decrease and the concentration
of hydrogen fluoride will increase.
E) The fluoride ions will precipitate out of solution as its acid salt.
8. The primary buffer system that controls the pH of the blood is the
buffer system.

Chapter 5

Chapter 5
11) At what velocity (m/s) must a 20.0 g object be moving in order to
possess a kinetic energy of 1.00 J?
A) 1.00
B) 100×10^2
C) 10.0
D) 1.00×10^3
E) 50.0
Answer: C
12) With reference to enthalpy changes, the term standard conditions means
(a) $P = 1$ atm
(b) some common temperature, usually 298 K
(c) $V = 1 L$
A) a only
B) b only
C) c only
D) a and c
E) a and b

13) Which one of the choices below is <u>not</u> considered a fossil fuel?

surroundings.

E) None of the above is correct.

Chapter 19

- 16) The first law of thermodynamics can be given as _____.
- A) $\Delta E = q + w$

$$B) \; \Delta \text{H}^{\circ}{}_{rxn} \quad = \; \sum \!\! \text{n} \Delta \text{H}^{\circ}{}_{f} \left(\text{products} \right) \quad \text{-} \quad \sum \!\! \text{m} \Delta \text{H}^{\circ}{}_{f} \left(\text{reactants} \right)$$

- C) for any spontaneous process, the entropy of the universe increases
- D) the entropy of a pure crystalline substance at absolute zero is zero
- E) $\Delta S = qrev/T$ at constant temperature
- 17) Which of the following statements is false?
- A) The change in entropy in a system depends on the initial and final states of the system and the path taken from one state to the other.
 - B) Any irreversible process results in an overall increase in entropy.
- C) The total entropy of the universe increases in any spontaneous process.
 - D) Entropy increases with the number of microstates of the system.
 - 18) ΔS is positive for the reaction _____.

$$A)\; 2NO\; (g) \quad + \quad O_2 \left(g\right) \quad \rightarrow \quad 2NO_2 \left(g\right)$$

$$B)\; 2N_2\left(g\right) \;\; + \;\; 3H_2\left(g\right) \;\; \rightarrow \;\; 2NH_3\left(g\right)$$

$$C) \ C_3H_8 \left(g\right) \quad + \quad 5O_2 \left(g\right) \quad \rightarrow \quad 3CO_2 \left(g\right) \quad + \quad 4 \ H_2O \left(g\right)$$

$$D)\;Mg\;(s)\quad \ +\quad Cl_2\left(g\right)\quad \rightarrow \quad \ MgCl_2\left(s\right)$$

$$E) \; C_2 H_4 \; (g) \quad + \quad H_2 \; (g) \quad \rightarrow \quad C_2 H_6 \; (g)$$

19) The equilibrium position corresponds to which letter on the graph of G vs. f (course of reaction) below?

20) Consider the reaction:

$$Ag+(aq) + Cl-(aq) \rightarrow AgCl(s)$$

Given the following table of thermodynamic data,

Substance	ΔH_f° (kJ/mol)	S° (J/mol • K)
Ag+ (aq)	105.90	73.93
Cl- (aq)	-167.2	56.5
AgCl(s)	-127.0	96.11

determine the temperature (in °C) above which the reaction is nonspontaneous under standard conditions.

- A) 1230
- B) 150
- C) 432
- D) 133
- E) 1640

Short questions for Assignment 5

- 1. A glass contains 250.0 g of warm water at 78°C. A piece of gold at 2.30°C is placed in the water. The final temperature reached by this system is 76.9°C. What was the mass of the piece of gold? The specific heat of water is 4.184J/g °C, and that of gold is 0.129J/g °C
- 2. Consider the buffer system of hydrofluoric acid, HF, and its salt NaF.
 - (a) What is the purpose of the buffer system?
 - (b) Why is a salt of acid needed?
 - (c) How does the buffer react when some H⁺ is added?
 - (d) How does the buffer react when some OH is added
- 3. What is the difference between STP (standard temperature and pressure) and standard state (condition)?

- 4. What is the molar solubility of calcium phosphate, given that K_{sp} =2.0 x 10⁻³³? Assuming that the density of the saturated solution is 1.00 g/cm³, what is the solubility in grams of Ca₃(PO₄)₂ per 100 g of solvent?
- 5. Calculate the equilibrium constant for the following reaction at 25° C Given G_f° for $CH_4 = -50.75$ kJ mol^{-1} ; G_f° for $CH_3OH = -166.27$ kJ mol^{-1}

$$CH_4(g) + \frac{1}{2}O_2(g) \stackrel{?}{=} CH_3OH(1)$$