8. Normalização

- Boyce Codd Normal Form (BCNF) -

META PARA UM BOM ESQUEMA

- ➤ Se A1, ..., An → B1, ..., Bn em uma relação R, R = {A1, ..., An, B1, ..., Bn}, então A1, ..., An é uma superchave.
- Nesta forma normal, todo atributo não chave **precisa depender funcionalmente** diretamente da chave, seja ela primária ou candidata. Ou seja, não pode haver dependências entre os atributos não chave.
- Em outras palavras, as únicas dependências funcionais em R (de interesse) envolve suas chaves.

8. Normalização - Formas Normais -

- Forma Normal Boyce-Codd (BCFN)
 - → Dado um conjunto de dependências funcionais F, uma relação R está em BCFN, se todas dependências de F+ da forma $\alpha \rightarrow \beta$, com $\beta \subseteq R$ e $\alpha \subseteq R$, pelo menos umas das seguintes condições é garantida

 $\Rightarrow \alpha \rightarrow \beta$ é uma dependência funcional trivial. (i.e. $\beta \subseteq \alpha$)

OBS: Nesta forma normal, todo atributo não chave precisa depender funcionalmente diretamente da chave, seja ela primária ou candidata. Em outras palavras, não pode haver dependências entre os atributos não chave.

8. Normalização

Regra Geral para decompor esquemas Não BCNF

- Seja R um esquema que não está em BCNF.
- Portanto, existe pelo menos uma DF Não Trivial, $\alpha \rightarrow \beta$, tal que α não é uma superchave para R.
- Substituímos R, em nosso projeto, por dois esquemas:

•
$$(\alpha \cup \beta)$$

•
$$(R - (\beta - \alpha))$$

8. Normalização

Regra Geral para decompor esquemas Não BCNF

Exemplo:

- Seja tom_empr(<u>id_cliente</u>, <u>número_empréstimo</u>, quantia) um esquema que não está em BCNF, dado que a DF (<u>número_empréstimo</u> → quantia) se aplica em <u>tom_empr</u>, mas <u>número_empréstimo</u> não é uma superchave (pois um empréstimo pode ser feito a um consórcio de muitos clientes).
- Façamos $\alpha = número_empréstimo$ e $\beta = quantia$. Dessa forma, tom_empr deve ser substituído por:
 - $(\alpha \cup \beta) = (n'_{\alpha} mero_empréstimo, quantia)$
 - $\bullet (R (\beta \alpha)) = (id \ cliente, número \ empréstimo)$
- \triangleright Obs.: Nesse exemplo, $\beta \alpha = \beta$

Normalizando projeto para BCNF:

Essa decomposição perde a dependência funcional DF2 porque seus atributos não coexistem mais na mesma relação após a decomposição.

Sem perda na Junção

Esquema 1:

Linha_de_crédito (nome_agência, cidade_agência, fundos, nome_cliente, número_empréstimo, total)

Esquema 2:

Agência_cliente (nome_agência, cidade_agência, fundos, nome_cliente)

Cliente_empréstimo (nome_cliente, número_empréstimo, total)

Esquema 2 tem todos os atributos do esquema 1, mas foi perdido o relacionamento de em que agência um empréstimo foi feito.

Esquema 2 tem todos os atributos do esquema 1, mas foi perdido o relacionamento de em que agência um empréstimo foi feito.

- ightharpoonup Seja F^+ o conjunto de todas as FD's de R
- Seja R um esquema de relação e F um conjunto de dependências funcionais sobre R. Sejam R₁ e R₂ formas de decomposição de R. Essa decomposição é uma decomposição sem perda na junção de R se pelo menos uma das seguintes dependências funcionais está em F⁺:
 - $\bullet R_1 \cap R_2 \to R_1$
 - $\bullet R_1 \cap R_2 \rightarrow R_2$

- O conj. de dependências funcionais F que desejamos que se realizem para o esquema Linha_de_crédito são:
- nome_agência → fundos, cidade_agência
 número_empréstimo → total, nome_agência

- ► Uma vez que (nome_agência → fundos, cidade_agência), usando-se a regra incremental para a dependência funcional temos que:
 - nome_agência → nome_agência, fundos, cidade_agência
- ➤ Já que Agência
 ☐ Info_empréstimo =
 {nome_agência}, então esta decomposição inicial é
 uma decomposição sem perda na junção

➤ Agora suponha que tenhamos decomposto o esquema Info_empréstimo nas duas relações a seguir:

```
Empréstimo = (nome_agência,

número_empréstimo, total)

Devedor = (nome_cliente,

número_empréstimo)
```

Como sabemos, Empréstimo ∩ Devedor = {número_empréstimo}, e número_empréstimo → número_empréstimo, total, nome_agência, logo esta também é uma decomposição SPNJ.

Finalmente teremos o seguinte esquema decomposto para o esquema Linha de crédito: Agência = (nome agência, fundos, cidade agência) Empréstimo = (nome agência, número empréstimo, total) Devedor = (nome cliente, número empréstimo)

8. Exercício

(Decomposição sem Perda na Junção)

Suponha a decomposição do esquema R = (A,B,C,D,E) em:

$$R1 = (A, B, C) e R2 = (A, D, E);$$

Mostre que essa decomposição é uma decomposição sem perda na junção se o seguinte conjunto F de dependências funcionais for válido:

- \bullet A \rightarrow BC
- \bullet CD \rightarrow E
- \bullet B \rightarrow D
- $\bullet E \rightarrow A$

-Verificar se:

$$\cdot R_1 \cap R_2 \rightarrow R_1$$

$$\cdot R_1 \cap R_2 \rightarrow R_2$$

Quadro Resumo

QUADRO ESQUEMATIZADO DE NORMALIZAÇÃO	
1 ^a . Forma normal	Atributos atômicos, indivisíveis.
2ª. Forma normal	Ausência de dependências parciais.
3ª. Forma normal	Ausência de dependências transitivas.
Forma normal de Boyce-Codd	Ausência de dependências entre os atributos não chave.
4ª. Forma normal	Ausência de dependências multivaloradas.
5ª. Forma normal	Ausência de dependências de junção.

Referências

- Notas de Aula Prof. Angelo Brayner
- □ ELMASRI, R.; NAVATHE, S. B.. Sistemas de Banco de Dados. 6a ed., Pearson-Addison-Wesley, 2011.
- https://www.estrategiaconcursos.com.br/blog/banco-dados-forma-normal/
- https://acervolima.com/tipos-de-dependenciasfuncionais-em-dbms/