List 1

Introductory to analytic combinatorics course at Wroclaw University of Science and Technology 2020/2021

Deadline:

28.10.2020

Exercise 1 (1 points)

Sequence $(a_1, a_2, ...)$ corresponds to the generating function A(z). Calculate sequences corresponding to:

1.
$$A'(z) + A(z)$$
,

Let consider how A(z) looks:

$$A(z) = \sum_{n=0}^{\infty} a_n z^n$$

Knowing that let's see what is A'(z)

$$A'(z) = \left(\sum_{n=0}^{\infty} a_n z^n\right)'$$

$$(a_n z^n)' = n a_n z^{n-1}$$

$$A'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} z^n$$

So finaly

$$A'(z) + A(z) = \sum_{n=0}^{\infty} (n+1)a_{n+1}z^n + \sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} (a_n + (n+1)a_{n+1})z^n$$

2. 2A(z),

$$2A(z) = 2\left(\sum_{n=0}^{\infty} a_n z^n\right)$$
$$2A(z) = \sum_{n=0}^{\infty} 2a_n z^n$$

3. $A^{2}(z)$

$$A^{2}(z) = \left(\sum_{n=0}^{\infty} a_{n} z^{n}\right) \left(\sum_{n=0}^{\infty} a_{n} z^{n}\right) =$$

$$\sum_{n=0}^{\infty} \sum_{m=0}^{n} a_{n} a_{m} z^{n}$$

Exercise 2 (3 points)

Let $\mathcal{A}=(\{\epsilon,1,2,*\},|\cdot|)$ and $\mathcal{B}=(\{a\},\{a\rightarrow 1\})$ be combinatorial class. Where $|\epsilon|=0,|1|=1,|2|=2,|*|=5$.

Describe the following classes (if they exist) and their generating functions:

(a) A + B,

Sum of classes.

$$A + B = (\{\epsilon, 1, a, 2, *\}, |\cdot|)$$

$$A + B(z) = A(z) + B(z)$$

$$A + B(z) = 1 + z + z^2 + z^5 + z = 1 + 2z + z^2 + z^5$$

(b) $A \times B$,

Cartesian product of classes

$$A \times B = (\{(\epsilon, a), (1, a), (2, a), (*, a)\}, |\cdot|)$$
$$A \times B(z) = A(z) \cdot B(z) = z + z^2 + z^3 + z^6$$

(c) Seq(A),

Does not exist because $A_0 = 0$

(d) Seq(B),

 $Seq(\mathcal{B})$ is basicly \mathbb{N} - all natural numbers

$$Seq(B)(z) = \frac{1}{1 - B(z)} = \frac{1}{1 - z} = \sum_{n=0}^{\infty} z^n$$

(e) Seq(A + B),

Does not exist because $A_0 = 0$

(f) Seq(A) + Seq(B),

Does not exist because $A_0 = 0$

(g) MSet(B),

Multiset of \mathcal{B}

$$MSet(\mathcal{B})(z) = \prod_{n>=1} (1-z^n)^{B_n}$$

Remembering that $\mathcal{B}(z)=z,\,B_1=1$ and for all others $B_n=0$

$$MSet(B)(z) = (1-z)^{-1} = \frac{1}{1-z}$$

And that equals to $\mathbb{N}(z) = \sum_{n=0}^{\infty} z^n$

(h) PSet(A) + PSet(B),

Does not exist because $A_0 = 0$

(i) Cyc(A)

Exercise 3 (1 points)

When defining $Seq(\mathcal{A})$ we assumed that $[z^0]A(z)=0$. Why?

When defining a combinatorial class we specified 2 conditions: (i) the size of an element is a non-negative integer; (ii) the number of elements of any given size is finite.

And when $[z^0]A(z) = 0$, then we can generate an infinite number of elements of any size by appending elements of size 0.

Exercise 4 (1 points)

Calculate $[z^{30}] \frac{1}{(1-z)^7}$ (without computer, using formulas presented in lecture).

Based on formula nr 6

$$\frac{1}{(1-y)^{k+1}} = \sum_{a \ge 0} {k+a \choose k} y^a,$$

we get:

$$\frac{1}{(1-z)^7} = \sum_{n \ge 0} \binom{6+n}{6} z^n.$$

From that we know that

$$[z^{30}] \frac{1}{(1-z)^7} = {6+30 \choose 6} = \frac{36!}{30! \cdot 6!} = \frac{30 \cdot 31 \cdot 32 \cdot 33 \cdot 34 \cdot 35 \cdot 36}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} = 58433760$$

Exercise 5 (1 points)

Study and get understanding of following formulas:

1)
$$(x + y)^n = \sum_{k} {n \choose k} x^k y^{(n-k)}$$

2)
$$\sum_{i=0}^{\infty} q^i = \frac{1}{1-x} \text{ dla } (|q| < 1)$$

3)
$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) x^n$$

4)
$$\binom{n+m}{k} = \sum_{j} \binom{n}{j} \binom{m}{k-j}$$

5)
$$\frac{y^k}{(1-y)^{k+1}} = \sum_{n\geq 0} \binom{n}{k} y^k$$

6)
$$\frac{1}{(1-y)^{k+1}} = \sum_{a \ge 0} {k+a \choose k} y^a$$

Exercise 6 (3 points)

Let \mathcal{N} be a combinatoric class of natural numbers with size function |a|=a. Let $\mathcal{N}_{r,k}$ be a combinatoric class of natural numbers that which give a remainder of dividing r by k. Prove that

$$\mathcal{N} \simeq \mathcal{N}_{0,k} + \mathcal{N}_{1,k} + \ldots + \mathcal{N}_{r-1,k}$$
.

Let's start by taking a second look at $\mathcal{N}_{r,k}$

$$\mathcal{N}_{r,k} = (\{x : (\forall i \in \mathbb{N})(\exists x_i = ik + r)\}, |\cdot|)$$

$$\mathcal{N}_{r,k} = (\{r,k+r,2k+r,3k+r,\dots\},|\cdot|)$$

Also, analyze what we need to prove:

$$\mathcal{N} \simeq \mathcal{N}_{0,k} + \mathcal{N}_{1,k} + \ldots + \mathcal{N}_{r-1,k} = \sum_{i=0}^{k-1} \mathcal{N}_{i,k}$$

Now

$$\sum_{i=0}^{k-1} \mathcal{N}_{i,k}(z) = \sum_{i=0}^{k-1} z^{(i)} + z^{(i+k)} + z^{(i+2k)} + z^{(i+3k)} + \ldots = \sum_{i=0}^{k-1} \sum_{n \ge 0} z^{(i+nk)} =$$

$$\sum_{n\geq 0} \sum_{i=0}^{k-1} z^{(i+nk)} = \sum_{n\geq 0} z^{(nk)} + z^{(1+nk)} + z^{(2+nk)} + \dots + z^{(k-1+nk)} = \sum_{n\geq 0} z^n = \mathcal{N}(z).$$

For that to be a valid proof we need to denote that:

• Two combinatorial classes $\mathcal A$ and $\mathcal B$ are said to be isomorphic, which is written $\mathcal A\cong\mathcal B$, iff their counting sequences are identical.

5 of 5