

Moving Vertices to Make Drawings Plane

Xavier Goaoc
Jan Kratochvíl
Yoshio Okamoto
Chan-Su Shin
Alexander Wolff
INRIA Lorraine
FR
Charles U
Cz
Toyohashi U Tech
Hankuk U Foreign Studies
KR

September 24, 2007 @ 15th International Conference on Graph Drawing Swiss-Grand Resort & Spa Bondi Beach, Sydney, Australia

http://www.planarity.net/

Given:

a straight-line drawing of a planar graph G

http://www.planarity.net/

Given:

Task:

a straight-line drawing of a planar graph G to make it non-crossing (i.e., plane)

http://www.planarity.net/

Given:

Task:

Operation:

http://www.planarity.net/

Given:

Task:

Operation:

http://www.planarity.net/

Given:

Task:

Operation:

http://www.planarity.net/

Given:

Task:

Operation:

http://www.planarity.net/

Given:

Task:

Operation:

Questions

(computational question)

(combinatorial question)

Questions

- (computational question)
 How hard to find a min # of vertices to move?
- (combinatorial question)

Questions

- (computational question)
 How hard to find a min # of vertices to move?
- (combinatorial question)
 How many vertices must be moved in worst case?

♦ It is NP-hard to compute the min # of vertices to move in order to make a given drawing plane

- ♦ It is NP-hard to compute the min # of vertices to move in order to make a given drawing plane
- It is NP-hard to approximate $(1 + \min \#)$ within a factor of $\mathfrak{n}^{1-\epsilon}$ (for any fixed $\epsilon \in (0,1]$) $\mathfrak{n} = \#$ of vertices

We switch to the max # of vertices that we can keep fixed

For n-vertex cycles (Pach & Tardos (GD '01, DCG '02)) we can always keep $\lfloor \sqrt{n} \rfloor$ vertices we can't keep $O((n \log n)^{2/3})$ vertices in some cases

Theorem

For n-vertex trees

For n-vertex planar graphs

We switch to the max # of vertices that we can keep fixed

For n-vertex cycles (Pach & Tardos (GD '01, DCG '02)) we can always keep $\lfloor \sqrt{n} \rfloor$ vertices we can't keep $O((n \log n)^{2/3})$ vertices in some cases

Theorem

- For n-vertex **trees** we can always keep $\lfloor \sqrt{n}/3 \rfloor$ vertices we can't keep $\lceil n/3 \rceil + 4$ vertices in some cases
- ♦ For n-vertex planar graphs

We switch to the max # of vertices that we can keep fixed

For n-vertex cycles (Pach & Tardos (GD '01, DCG '02)) we can always keep $\lfloor \sqrt{n} \rfloor$ vertices we can't keep $O((n \log n)^{2/3})$ vertices in some cases

Theorem

- For n-vertex **trees** we can always keep $\lfloor \sqrt{n}/3 \rfloor$ vertices we can't keep $\lceil n/3 \rceil + 4$ vertices in some cases
- For n-vertex planar graphs we can always keep 3 vertices we can't keep $\lceil \sqrt{n-2} \rceil + 1$ vertices in some cases

We switch to the max # of vertices that we can keep fixed

Theorem

	Lower Bound	Upper Bound
Cycles	$\lfloor \sqrt{n} \rfloor$	$O((n\log n)^{2/3})$
Trees	$\lfloor \sqrt{n}/3 \rfloor$	$\lceil n/3 \rceil + 4$
General	3	$\lceil \sqrt{n-2} \rceil + 1$

Pach & Tardos (GD '01, DCG '02)

♦ Aug 06: this work started

♦ Jun 07: submitted to GD

♦ Jul 07: accepted for GD

- **♦** Aug 06: this work started
- ♦ May 07: Verbitsky @ arXiv
- **♦** Jun 07: submitted to GD

♦ Jul 07: accepted for GD

- **♦** Aug 06: this work started
- ♦ May 07: Verbitsky @ arXiv
- **♦** Jun 07: submitted to GD
- ♦ Jun 07: aware of Pach & Tardos (DCG '02)
- **♦** Jul 07: accepted for GD

- **♦** Aug 06: this work started
- ♦ May 07: Verbitsky @ arXiv
- **♦** Jun 07: submitted to GD
- ♦ Jun 07: aware of Pach & Tardos (DCG '02)
- **♦** Jul 07: accepted for GD
- ♦ Jul 07: Kang, Schacht & Verbitsky @ arXiv

- **♦** Aug 06: this work started
- ♦ May 07: Verbitsky @ arXiv
- **♦** Jun 07: submitted to GD
- ♦ Jun 07: aware of Pach & Tardos (DCG '02)
- **♦** Jul 07: accepted for GD
- ♦ Jul 07: Kang, Schacht & Verbitsky @ arXiv
- ♦ Sep 07: Spillner & Wolff @ arXiv
- **♦** Today: presented at GD

We concentrate on the complexity result

- Problem statement (more formally)
- ♦ NP-hardness proof
- Inapproximability (briefly)
- Connection to the one-bend embeddability problem

Def.: Straight-Line Drawing

Setup:

G = (V, E) an undirected graph (w/o loop or parallel edges)

Def.: Straight-Line Drawing

Setup:

G = (V, E) an undirected graph

(w/o loop or parallel edges)

Def:

A (straight-line) drawing of G is

an injective map $\delta \colon V \to {\rm I\!R}^2$, image of $\{\mathfrak u, \mathfrak v\} \in E$ is a line segment $\overline{\delta(\mathfrak u)\delta(\mathfrak v)}$

G = (V, E) an undirected graph

(w/o loop or parallel edges)

Def:

A drawing δ of G is **plane** if (the images under δ of) two edges are only allowed to share a common endpoint

G = (V, E) an undirected graph

(w/o loop or parallel edges)

Def:

A drawing δ of G is **plane** if (the images under δ of) two edges are only allowed to share a common endpoint

G = (V, E) an undirected graph

(w/o loop or parallel edges)

Def:

A graph G is planar if \exists a plane drawing of G (characterization due to Fáry '48)

G = (V, E) an undirected graph

(w/o loop or parallel edges)

Def:

A graph G is planar if \exists a plane drawing of G (characterization due to Fáry '48)

Def.: Distance of Drawings

Setup:

G = (V, E) an undirected graph

(w/o loop or parallel edges)

Def:

The **distance** of two drawings δ, δ' of G is $d(\delta, \delta') = |\{v \in V \mid \delta(v) \neq \delta'(v)\}|$

Def.: MMV (Min Moved Vertices)

Setup:

$$G = (V, E)$$
 an undirected graph

(w/o loop or parallel edges) δ a drawing of G

Def:

$$\operatorname{MMV}(\mathsf{G}, \delta) = \min_{\delta'\mathsf{plane}} d(\delta, \delta')$$

Def.: MKV (Max Kept Vertices)

Setup:

G = (V, E) an n-vertex undirected graph

(w/o loop or parallel edges)

 δ a drawing of G

Def:

 $MKV(G, \delta) = n - MMV(G, \delta)$

- Problem statement (more formally)
- **♦** NP-hardness proof
- Inapproximability (briefly)
- Connection to the one-bend embeddability problem

lackloss For a given planar graph G and a drawing δ of G, it is NP-hard to compute $\mathrm{MMV}(G,\delta)$

igoplus For a given planar graph G and a drawing δ of G, it is NP-hard to compute $\mathrm{MMV}(\mathsf{G},\delta)$

Proof

Reduction from Planar 3SAT
NP-complete (Lichtenstein (SICOMP '82))

igoplus For a given planar graph G and a drawing δ of G, it is NP-hard to compute $\mathrm{MMV}(G,\delta)$

Proof

Reduction from Planar 3SAT
NP-complete (Lichtenstein (SICOMP '82))

Note

More direct proof by Verbitsky (arXiv '07), but does not generalize to inapproximability

Input : 3CNF formula φ with

a planar variable-clause graph

Question:

: Is φ satisfiable?

Note: such a graph can be embedded as below (Knuth & Ragunathan (SIAMDM '92))

Given a planar 3CNF formula φ

- \spadesuit Construct a planar graph G_{φ} and a drawing δ_{φ} s.t.
- \spadesuit ϕ is satisfiable \Leftrightarrow δ_{ϕ} can be made plane by moving \leq K vertices
- Vertices: two types
 - Mobile vertices (those that may move)
 - Immobile vertices (those that are meant not to move)
- \spadesuit Edges: each contributes to ≤ 1 crossing
- Gadgets: two types
 - Variable gadgets
 - Clause gadgets

immobile vertex

- Each mobile vertex has exactly two incident edges
- These two edges have crossings
- Mobile vertices are not adjacent
- Movement of a mobile vertex can get rid of two crossings

Gadget: variable

- lacktriangledown ϕ satisfiable \Rightarrow Movement of blue vertices suffices
 - # moved vertices = # initial crossings/2

- \blacklozenge ϕ satisfiable \Rightarrow Movement of blue vertices suffices
 - # moved vertices = # initial crossings/2
- ♦ φ unsatisfiable ⇒
 Movement of blue vertices doesn't suffice
 ∴ at least one crossing requires both endpoints to move
 - # moved vertices $\geq \#$ initial crossings/2 + 1

- ϕ ϕ satisfiable \Rightarrow Movement of blue vertices suffices
 - # moved vertices = # initial crossings/2
- ♦ φ unsatisfiable ⇒
 Movement of blue vertices doesn't suffice
 ∴ at least one crossing requires both endpoints to move
 - # moved vertices $\geq \#$ initial crossings/2 + 1

Conclude the reduction

- Problem statement (more formally)
- ♦ NP-hardness proof
- Inapproximability (briefly)
- Connection to the one-bend embeddability problem

Theorem

 \blacklozenge For a given planar graph G and a drawing δ of G, it is NP-hard to approximate $1+MMV(G,\delta)$ within a factor of $n^{1-\epsilon}$ (\forall fixed $\epsilon \in (0,1]$)

Remark

 \bullet Since MMV(G, δ) could be zero, we modify the objective value by adding one for the approximation to make sense.

- Use the same reduction as the NP-hardness proof
- Replace every immobile vertex with an immobile star

- Immobile stars give us a large gap
 - .: Calculation shows our inapproximability

- Problem statement (more formally)
- ♦ NP-hardness proof
- Inapproximability (briefly)
- Connection to the one-bend embeddability problem

Setup:

G = (V, E) a planar graph

Def:

A k-bend embedding of G is

an embedding of G into a plane s.t. every edge is drawn as a non-crossing polygonal chain with k bends

Setup:

G = (V, E) a planar graph

Def:

A k-bend embedding of G is an embedding of G into a plane s.t. every edge is drawn as a non-crossing polygonal chain with k bends

Def.: k-bend point-set embeddability

Setup:

$$G = (V, E)$$
 a planar graph

Def:

G is k-bend (point-set) embeddable if

$$\forall S \subset \mathbb{R}^2 \text{ with } |S| = |V|$$

$$\exists$$
 a bijection $\delta \colon V \to S$ s.t.

G can be k-bend embedded while each $v \in V$ is placed at $\delta(v) \in S$

(Kaufmann & Wiese (GD '99, JGAA '02))

- igoplus G 4-connected planar \Rightarrow G 1-bend embeddable
- lack G planar \Rightarrow G 2-bend embeddable
- ♦ It is NP-complete to decide if for a given planar G = (V, E) and a point set S \exists a bijection $\delta \colon V \to S$ that makes it possible to 1-bend embed G on S

Theorem

♦ For a given planar graph G = (V, E), a point set S and a bijection $\delta \colon V \to S$ it is NP-hard to decide if δ makes it possible to 1-bend embed G on S

Reminder

Kaufmann–Wiese '02

♦ For a given planar graph G = (V, E) and a point set S it is NP-hard to decide if \exists a bijection $\delta\colon V \to S$ that makes it possible to 1-bend embed G on S

- 32/
- ♦ Use the same reduction as the NP-hardness of MMV
- But contract the mobile vertices

- ♦ Use the same reduction as the NP-hardness of MMV
- But contract the mobile vertices

Remark: a similar inapproximability holds

Theorem

♦ For a given planar graph G = (V, E), a point set S and a bijection $\delta \colon V \to S$ it is NP-hard to approximate min # total bends (+1) when G is embedded on S with the correspondence δ within a factor of $\mathfrak{n}^{1-\varepsilon}$ (\forall fixed $\varepsilon \in (0,1]$)

- Problem statement (more formally)
- ♦ NP-hardness proof
- Inapproximability (briefly)
- Connection to the one-bend embeddability problem
- Concluding remarks

Combinatorial results

max # of vertices that we can keep fixed

	Lower Bound	Upper Bound
Cycles Trees	$\lfloor \sqrt{n} \rfloor$	$O((n\log n)^{2/3})$
Trees	$\lfloor \sqrt{n}/3 \rfloor$	$\lceil n/3 \rceil + 4$
General	3	$\lceil \sqrt{n-2} \rceil + 1$

Pach & Tardos (GD '01, DCG '02)

Combinatorial results

max # of vertices that we can keep fixed

	Lower Bound	Upper Bound
Cycles	$\lfloor \sqrt{n} \rfloor$	$O((n\log n)^{2/3})$
Trees	$\lfloor \sqrt{n}/3 \rfloor$	$\lceil n/3 \rceil + 4$
Outerplanar	$\sqrt{n-1}/3$	$2\sqrt{n-1}+1$
General	3	$\lceil \sqrt{n-2} \rceil + 1$
	$\Omega(\sqrt{\log n/\log\log n})$	

Pach & Tardos (GD '01, DCG '02) Spillner & Wolff (arXiv Sept '07)

Summary and open problems: computational

Results

- Minimizing the number of moved vertices is
 - NP-hard to compute precisely
 - NP-hard to compute approximately with factor $n^{1-\epsilon}$

Summary and open problems: computational

Results

- Minimizing the number of moved vertices is
 - NP-hard to compute precisely
 - NP-hard to compute approximately with factor $n^{1-\epsilon}$

Open Problems

- Minimizing the number of moved vertices is
 - hard in the parameterized sense?
- Maximizing the number of kept vertices is
 - NP-hard to compute approximately??
 - hard in the parameterized sense?
- How about when we restrict a graph class?

Summary and open problems: computational

Results

- Minimizing the number of moved vertices is
 - NP-hard to compute precisely
 - NP-hard to compute approximately with factor $n^{1-\epsilon}$

Open Problems

- Minimizing the number of moved vertices is
 - hard in the parameterized sense?
- Maximizing the number of kept vertices is
 - NP-hard to compute approximately??
 - hard in the parameterized sense?
- How about when we restrict a graph class?

[End of Talk]

Supplementary slides

Min Vertex Cover of line segments

Vertex cover = set of vertices that doesn't miss any edge.

Min Vertex Cover of line segments

Vertex cover = set of vertices that doesn't miss any edge.

39

Recall:

 $\mathrm{MKV}(\mathsf{G},\delta) = \max \# \text{ vertices we can keep}$ fixed to make δ plane

Theorem

(Pach & Tardos GD '01, DCG '02) For any drawing δ of an n-cycle C_n $MKV(C_n, \delta) \ge |\sqrt{n}|$

Cycles: Lower Bound

Recall:

 $\mathrm{MKV}(\mathsf{G}, \delta) = \max \# \text{ vertices we can keep}$ fixed to make δ plane

Theorem

(Pach & Tardos GD '01, DCG '02)

For any drawing δ of an n-cycle C_n

 $MKV(C_n, \delta) \ge \lfloor \sqrt{n} \rfloor$

Proof

Use the Erdős-Szekeres theorem

Erdős-Szekeres for a monotone subsequence

Lemma

(Erdős and Szekeres '35)

A sequence of n different real numbers contains a monotone subsequence of length (at least) $\lfloor \sqrt{n} \rfloor$

3 9 12 16 7 6 13 1 10 11 4 8 2 15 5 14

$$n = 16$$

Erdős-Szekeres for a monotone subsequence

Lemma

(Erdős and Szekeres '35)

A sequence of n different real numbers contains a monotone subsequence of length (at least) $|\sqrt{n}|$

3 9 12 16 7 6 13 1 10 11 4 8 2 15 5 14

$$n = 16$$

Erdős-Szekeres for a monotone subsequence

Lemma

(Erdős and Szekeres '35)

A sequence of n different real numbers contains a monotone subsequence of length (at least) $\lfloor \sqrt{n} \rfloor$

3 9 12 16 7 6 13 1 10 11 4 8 2 15 5 14

$$n = 16$$

Given a drawing...

A point in general position

5 8

5 8 7

5 8 7 4

5 8 7 4 6

5 8 7 4 6 1

5 8 7 4 6 1 3

Choose a monotone subsequence of length $\lfloor \sqrt{n} \rfloor$

Choose a monotone subsequence of length $\lfloor \sqrt{n} \rfloor$

Keep pts in the subseq fixed, and move remaining pts

Keep pts in the subseq fixed, and move remaining pts

Keep pts in the subseq fixed, and move remaining pts

Cycles: Easy Upper Bound

Recall:

$$\mathrm{MKV}(\mathsf{G}, \delta) = \max \# \text{ vertices we can keep}$$
 fixed to make δ plane

Theorem

 \exists a drawing δ of C_n (n odd) s.t. $MKV(C_n, \delta) \leq |n/2|$

Cycles: Easy Upper Bound

Recall:

 $\mathrm{MKV}(\mathsf{G}, \delta) = \max \# \text{ vertices we can keep}$ fixed to make δ plane

Theorem

 \exists a drawing δ of C_n (n odd) s.t.

$$MKV(C_n, \delta) \leq \lfloor n/2 \rfloor$$

Proof

Use a thrackle:

Verbitsky ('07) independently obtained the following

- \blacklozenge It is NP-hard to compute $MMV(G, \delta)$
- \blacklozenge For n-vertex planar graphs, MKV ≥ 3
- \bigstar MMV(G, δ) \geq (matching no. of G) -1
 - For n-vertex planar graphs, $\delta \geq 3$ and $n \geq 10$ we cannot keep (2n+1)/3 vertices in some cases the matching no. $\geq (n+2)/3$ (Nishizeki & Baybars '79)
 - For n-vertex planar graphs, 4-connected we cannot keep (n+3)/2 vertices in some cases 4-conn. planar graphs are Hamiltonian (Tutte '56)
- Also investigate "obfuscation complexity of a graph" that might be called "max rectilinear crossing number"