Analysis 1: Chapter 3 Set Theory Exercises

Problem (Exercise 3.4.6). Let X be a set. Show that the collection of all subsets of X is a set.

Proof. Appealing to the Axiom of Infinity and the Pair Set Axiom we have that $\{0,1\}$ is a set. By the Power Set Axiom there exists a set containing all functions from X to $\{0,1\}$ which we shall denote as $\{0,1\}^X$. Define the property P(f,S) pertaining to each $f \in \{0,1\}^X$ and any object S to be the statement S is a set and $S = f^{-1}(\{1\})$. There is at most one set S such that P(f,S) is true for each $f \in \{0,1\}^X$. Thus by the Axiom of Replacement $Q := \{S : S = f^{-1}(\{1\}) \text{ for some } f \in \{0,1\}^X\}$ exists and is a set. All that remains to show is that every element of Q is a subset of X and every subset of X is contained in X. Let X be an arbitrary element of X, then there exists some function X such that $X = f^{-1}(\{1\})$ which is indeed a subset of X. Conversly let X be a subset of X. We shall show that there exists some function X such that $X = f^{-1}(\{1\})$.