$$Max Z = x_1 + 3x_2$$

$$\begin{cases} 2x_1 + 6x_2 \le 30 \\ x_1 \le 10 \\ x_2 \le 4 \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$

Le PL est sous sa forme canonique, on introduit 3 variables d'écarts pour passer à la forme standard.

$$Max Z = x_1 + 3x_2$$

$$\begin{cases} 2x_1 + 6x_2 + e_1 = 30 \\ x_1 + e_2 = 10 \\ x_2 + e_3 = 4 \\ x_1 \ge 0, \quad x_2 \ge 0 \\ e_1, \quad e_2, \quad e_3 \ge 0 \end{cases}$$

Tab1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Z	1	3	0	0	0	0	Ratio
e_1	2	6	1	0	0	30	5
e_2	1	0	0	1	0	10	Х
e_3	0	1	0	0	1	4	4

Z	1	0	0	0	-3	-12	Ratio
e_1	2	0	1	0	-6	6	3
e_2	1	0	0	1	0	10	10
x_2	0	1	0	0	1	4	Х

Z	0	0	-1 /2	0	0	-15	Ratio
x_1	1	0	1/2	0	-3	3	Х
e_2	0	0	-1 /2	1	3	7	7/3
x_2	0	1	0	0	1	4	4

Z	0	0	-1 /2	0	0	-15	Ratio
x_1					0	10	
e_3					1	7/3	
x_2					0	5/3	

$$X_1^* = \begin{bmatrix} 3 \\ 4 \end{bmatrix} X_2^* = \begin{bmatrix} 10 \\ 5/3 \end{bmatrix}$$

$$X^* \epsilon \left[X_1^*, X_2^* \right] = \left\{ \begin{pmatrix} 3\alpha \\ 4\alpha \end{pmatrix} + \begin{pmatrix} 10 - 10\alpha \\ \frac{5}{3} - \left(\frac{5}{3}\right)\alpha \end{pmatrix}, 0 \le \alpha \right\}$$
Problème avec infinité de solutions
$$X^* \epsilon \left\{ \begin{pmatrix} 10 - 7\alpha \\ \frac{5}{3} - \frac{7}{3} \end{pmatrix}, 0 \le \alpha \le 1 \right\}$$
 $\Rightarrow 7^* = 15$

$$X^* \epsilon \left\{ \begin{pmatrix} 10 - 7\alpha \\ \frac{5}{3} + (\frac{7}{3})\alpha \end{pmatrix}, 0 \le \alpha \le 1 \right\} \longrightarrow Z^*=15$$