GRADE 100%

Recurrent Neural Networks

LATEST SUBMISSION GRADE

100%

1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

 $\bigcirc \ x^{< i > (j)}$

 $\bigcirc x^{(j) < i >}$

 $\bigcirc \ x^{< j > (i)}$

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN:

This specific type of architecture is appropriate when:

 \bigcirc $T_x = T_y$

 $\bigcap T_x < T_y$

 $\bigcap T_x > T_y$

 $\bigcap T_x = 1$

✓ Correct

It is appropriate when every input should be matched to an output.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1/1 point

Speech recognition (input an audio clip and output a transcript)

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

✓ Correct Correct!

☐ Image classification (input an image and output a label)

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

✓ Correct Correct!

4. You are training this RNN language model.

1 / 1 point

At the t^{th} time step, what is the RNN doing? Choose the best answer.

Estimating $P(y^{<1>}, y^{<2>}, \dots, y^{< t-1})$	1>
--	----

- $\bigcirc \ \ \operatorname{Estimating} P(y^{< t>})$
- Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$
- $\bigcirc \ \, \mathsf{Estimating}\,P\big(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t>}\big)$

✓ Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

1 / 1 point

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{<>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- $\bigcirc \ \, \text{(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{<\text{t}>}$. (ii) Then pass the ground-truth word from the training set to the next time-step. }$
- \bigcirc (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{<L}$. (ii) Then pass this selected word to the next time-step.
- igodedown (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$, (ii) Then pass this selected word to the next time-step.

✓ Correct

6. You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). 1/1 point Which of these is the most likely cause of this problem?

- O Vanishing gradient problem.
- Exploding gradient problem.
- $\begin{picture}(60,0)\put(0,0){\mathbb{R}_{2}} \put(0,0){\mathbb{R}_{2}} \put($
- O Sigmoid activation function g(.) used to compute g(z), where z is too large.

✓ Correct

1 / 1 point

- O 1
- 100
- O 300
- 0 10000

Correct, $\Gamma_{\mathfrak u}$ is a vector of dimension equal to the number of hidden units in the LSTM.

8. Here're the update equations for the GRU.

1 / 1 point

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[\,c^{< t-1>},x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[\;c^{< t-1>},x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

Alice proposes to simplify the GRU by always removing the Γ_w . Le., setting Γ_w = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

 $\bigcirc \ \ \, \text{Alice's model (removing Γ_u), because if Γ_r ≈ 0 for a timestep, the gradient can propagate back through that timestep without much decay. }$

0	Alice's model (removing Γ_u), because if $\Gamma_r pprox 1$ for a timestep, the gradient can propagate back through that
_	timestep without much decay.

 $\textcircled{ Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay. }$

 $\bigcirc \ \, \text{Betty's model (removing Γ_n), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay. }$

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

9. Here are the equations for the GRU and the LSTM:

LSTM

1 / 1 point

GRU

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

- $\bigcap \ \Gamma_u \ {\rm and} \ \Gamma_r$
- $\bigcap \ 1 \Gamma_u$ and Γ_u
- $\bigcap \Gamma_r$ and Γ_u

10. You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{(-1)}, \dots, x^{(-305)}$. You've also collected data on your dogs mood, which you represent as $y^{(-1)}, y^{(-305)}$. You'd like to build a model to map from $x \to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

- O Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
- O Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
- $\textcircled{0} \quad \text{Unidirectional RNN, because the value of } \\ y^{< t>} \text{ depends only on } \\ x^{< 1>}, \ldots, x^{< t>}, \text{ but not on } \\ x^{< t+1>}, \ldots, x^{< 365>} \\ x^{< t} \text{ of } \\ x^{< t} \text{ of }$
- $\bigcirc \ \ \ \ \, \text{Unidirectional RNN, because the value of } \\ y^{< t>} \ \ \text{depends only on } \\ x^{< t>}, \text{ and not other days' weather.}$

✓ Correct

Yes!