

History of Operating Systems

Module – Operating Systems

Index no - CODSE241F- 048

Lecturer – Mr. Sampath Gamage

Contents

	0
History of Operating Systems	2
1. Early Computers (1940s - 1950s)	2
2. Mainframes and Multitasking (1960s - 1970s)	2
3. Personal computers (1970s to 1980s)	3
4. Graphical User Interfaces (1980s - 1990s)	3
5. Modern Operating Systems (2000s - Present)	4
6.The Future of Operating Systems	5

History of Operating Systems

An operating system is a program that controls the execution of application programs and acts as an interface between the user of a computer and the computer hardware. They have come a long way since the days when computers had to be controlled manually. Operating systems have evolved to allow multitasking, networking, and user-friendly interfaces.

1. Early Computers (1940s - 1950s)

The first computers were huge machines that worked without an OS. Users had to give instructions manually using punch cards or paper tapes. This process was slow and inefficient.

Key Developments:

- Batch Processing (1950s): To speed things up, multiple tasks were grouped together and run one after another without manual input.
- General Motors OS (1956): One of the first basic OS designed for IBM 701 computers to automate job execution.

2. Mainframes and Multitasking (1960s - 1970s)

As computers became faster and more powerful, businesses required systems that could handle multiple tasks simultaneously. This resulted in the creation of multitasking and time-sharing systems.

Key Developments:

• **Multiprogramming**: Allows multiple programs to execute at the same time, improving computer efficiency.

- **Time-Sharing Systems:** Allows multiple people to access a computer at the same time, resulting in more interactive systems.
- The IBM OS/360 (1964): one of the first standardised operating systems that could run on multiple IBM machines.

3. Personal computers (1970s to 1980s)

Microprocessors were developed, which led to the development of personal computers. These little machines required simple operating systems.

Key Developments:

- UNIX (1970s): A powerful OS developed at AT&T Bell Labs that introduced multitasking and a file system still used today.
- CP/M (1974): An early OS for personal computers that influenced later systems.
- MS-DOS (1981): A simple command-line OS from Microsoft that became popular with IBM PCs.

4. Graphical User Interfaces (1980s - 1990s)

As computers became more common, users needed easier ways to interact with them. This led to the development of graphical user interfaces (GUIs).

Key Developments:

 Apple Macintosh (1984): One of the first PCs with a GUI, using icons and a mouse to replace text commands.

- Windows 1.0 (1985): Microsoft introduced its first GUI-based OS, which later became the most widely used OS.
- Linux (1991): An open source OS based on UNIX, which is now widely used for servers and mobile devices.

5. Modern Operating Systems (2000s - Present)

Today's OS are designed for speed, security, and mobility. They power everything from PCs to smartphones and cloud servers.

Key Developments:

- Windows XP (2001): A stable and user-friendly OS from Microsoft that became widely popular.
- Mac OS X (2001): Apple's modern OS based on UNIX, known for its security and minimal design.

Mobile OS:

- o **iOS (2007):** Apple's mobile OS for iPhones and iPads
- Android (2008): Google's open source OS, now the most popular mobile
 OS.

Cloud Computing

 Cloud-Based OS: Chrome OS (2011) and server-based systems allow computing through the internet instead of local storage.

6.The Future of Operating Systems

Operating systems have changed to meet evolving requirements, from basic manual tasks to AI-powered systems .The future will likely focus on:

- Al and Automation: OS that predict and handle user needs automatically.
- **Edge Computing:** Rather than depending on remote cloud servers, data is processed closer to the user.
- **Quantum Computing:** New OS will be needed to manage the power of quantum computers.

Operating systems will keep evolving, making computers smarter and more efficient for users worldwide.