

MASTER'S DEGREE IN QUANTITATIVE AND COMPUTATIONAL BIOLOGY

Exploring the integration of genomic data into stochastic modeling of Cell Cycle

Supervisor: Prof. Alessandro Romanel (PhD) Graduant: Andrea Tonina

Cell cycle

Cell cycle regulations

- Cyclin-CDK complexes
- Transcriptional control
- Protein-protein interactions and subcellular localization
- Cell cycle checkpoints

Cell cycle transitions

- Biological switches
- $G2 \Rightarrow M$
- Stochastic or Deterministic approaches

Genetic variability

- Difference in DNA sequences within our genomes among individuals
- Mutations are the ultimate source of new genetic variants in DNA
- Spectrum mutation is quite broad and diverse
- Distinction between : germline or somatic

Local regulatory variation

Cis-regulatory (allele-specific)

Neighbouring gene (trans)

Autoregulation (trans)

Distant regulatory variation

SCNA

Aims

- Characterization of a generic stochastic model of cell cycle transition
- Human-specific cell cycle transition model G2/M
- Explore the impact of germline and somatic variants
 - o eQTLs
 - Somatic copy number alterations in breast cancer
- Explore how this variants can be utilized to stratify patient in a tumoral context

General and universal cell cycle transition model

Utilized for implementation of the model the stochastic programming language Blenx

Dematté, L., Priami, C., Romanel, A. (2008). The BlenX Language: A Tutorial. In: Bernardo, M., Degano, P., Zavattaro, G. (eds) Formal Methods for Computational Systems Biology. SFM 2008. Lecture Notes in Computer Science, vol 5016. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68894-5 9

$R_1 = \frac{kms}{\alpha}$	$R_{16} = kcs \times TF$
$R_2 = \frac{kma \times \alpha \times activator^* \times TR}{jma + (\alpha \times TR)}$	$R_{17} = kcd_1 \times activator$
$R_{3} = \frac{kmi \times \alpha \times inhibitor^{*} \times TR^{*}}{jmi + (\alpha \times TR^{*})}$	$R_{18} = \frac{kcp_7 \times \alpha \times ChPI \times inhibitor}{jcp_7 + (\alpha \times inhibitor)}$
$R_4 = kmd \times TR^*$	$R_{19} = \frac{kcp_6 \times \alpha \times Pho \times \#inhibitor}{jcp_6 + (\alpha \times \#inhibitor)}$
$R_5 = kmd_1 \times TR$	$R_{20} = \frac{kcp_1 \times \alpha \times ChPI \times inhibitor^*}{jcp_1 + (\alpha \times inhibitor^*)}$
$R_6 = \frac{kwa \times \alpha \times E_1 \times inhibitor}{jwa + (\alpha \times inhibitor)}$	$R_{21} = \frac{kcp_2 \times \alpha \times Pho \times \#inhibitor^*}{jcp_2 + (\alpha \times \#inhibitor^*)}$
$R_7 = \frac{kwi \times \alpha \times TR^* \times inhibitor^*}{jwi + (\alpha \times inhibitor^*)}$	$R_{22} = \frac{kcp_5 \times \alpha \times E_1 \times \#inhibitor}{jcp_5 + (\alpha \times \#inhibitor)}$
$R_{\rm B} = \frac{kwi \times \alpha \times perc \times TR \times inhibitor^*}{jwi + (\alpha \times inhibitor^*)}$	$R_{23} = kwd_1 \times \#inhibitor$
$R_9 = kwd_1 \times inhibitor$	$R_{24} = kwd \times \#inhibitor^*$
$R_{10} = kws \times TF$	$R_{25} = \frac{kcp_3 \times \alpha \times TR^* \times \#inhibitor^*}{jcp_3 + (\alpha \times \#inhibitor^*)}$
$R_{11} = kwd \times inhibitor^*$	$R_{26} = \frac{kcp_4 \times \alpha \times perc \times TR \times \#inhibitor^*}{jcp_4 + (\alpha \times \#inhibitor^*)}$
$R_{12} = \frac{kca \times \alpha \times TR^* \times activator}{jca + (\alpha \times activator)}$	$R_{27} = \frac{kmi_1 \times \alpha \times \#inhibitor^* \times TR^*}{jmi_1 + (\alpha \times TR^*)}$
$R_{13} = \frac{kca \times \alpha \times perc \times TR \times activator}{jca + (\alpha \times activator)}$	$R_{28} = \frac{kcp_8 \times \alpha \times ChPA \times activator^*}{jcp_8 + (\alpha \times activator^*)}$
$R_{14} = \frac{kci \times \alpha \times E_2 \times activator^*}{jci + (\alpha \times activator^*)}$	$R_{29} = \frac{kca \times \alpha \times S \times activator}{jca + (\alpha \times activator)}$
$R_{15} = kcd \times activator^*$	

Table 1. Kinetic laws associated to model reactions. Table adapted from *Romanel et al*¹⁸⁷. Parameters with letter k are catalytic constants with dimension $1/\min$, whereas the ones starting with letter j are Michaelis constants as dimensionless.

Simulations of GO and STOP transcriptional regulations

Sensitivity analysis of the general model

Species:

- E2 variations impact transition in each models
- TF_A variations more impactful on models than TF_I
- ChP, variations on PFB on inhibitors or both

Parameters:

- *kma* variations impact transition on all models
- jci variations impact model with transcriptional control on the activator only

Human specific cell-cycle model G2/M

Adult Genotype-Tissue Expression (GTEx) project

- median gene-levels expression in TPM for each tissue
- eQTLs information for each gene of interest involved in the cell cycle G2/M transition

First part

$$\begin{cases} e_{tot} = (1 - MAF)e_r + (MAF)e_a \\ aFC = log_2(\frac{e_a}{e_r}) \end{cases}$$

$$\begin{cases} e_{tot} = (1 - MAF)e_r + (MAF)e_a \\ 2^{aFC} * e_r = e_a \end{cases}$$

$$\begin{cases} e_{tot} = e_r * (1 - MAF + MAF * 2^{aFC}) \\ 2^{aFC} * e_r = e_a \end{cases}$$

$$\begin{cases} e_r = \frac{e_{tot}}{(1 - MAF + MAF * 2^{aFC})} \\ 2^{aFC} * e_r = e_a \end{cases}$$

Second part Calculate e_a and e_r

$$\begin{cases} e_r = \frac{e_{tot}}{(1 - MAF + MAF * 2^{aFC})} \\ e_a = \frac{2^{aFC} * e_{tot}}{(1 - MAF + MAF * 2^{aFC})} \end{cases}$$

SCNAs

Invasive Breast Carcinoma (TCGA, PanCancer Atlas)

- batch-corrected RNA-seq data
- somatic copy number alterations data

SCNAs

SCNA

Patient stratification

threshold = 3290

threshold = 55%

Survival Analysis (OS)

Survival Analysis (OS)

Survival Analysis

Conclusions

- Insight applying stochastic model to represent cell cycle transition
- Integrating mutation information when developing model
- Mathematical model used describe impact mutation at patient level

Future Perspectives

- Increase the number of patients considered
 - subtype-specific survival analysis
- G1/S and M/G1 checkpoints
- Integrating eQTL and SCNA together (also other variants)
- Extending this approach to other tumor types
- Refinement and expansion of general cell cycle transition models

Thank you