SS 2017 Sheet 1 02.05.2017

Scientific Computing II

Iterative Solvers

Exercise 1: Repetition "Finite Differences"

Consider the one-dimensional Poisson equation with homogeneous Dirichlet conditions

$$-\frac{d^2u}{dx^2} = f(x), \quad x \in (0,1),$$

$$u(0) = u(1) = 0.$$
(1)

- (a) Discretise the Poisson equation by finite differences using an equidistant mesh size h = 1/N and N + 1 grid points.
- (b) Write the finite difference approximation from (a) in matrix-vector form Au = b. Therefore, define the entries of the matrix $A \in \mathbb{R}^{N+1 \times N+1}$.
- (c) Write the finite difference approximation as Au = b, where $A \in \mathbb{R}^{N-1 \times N-1}$ and $b \in \mathbb{R}^{N-1}$, by substituting the values for u(0) and u(1).

Row-Wise Derivation of Smoothers

Besides the matrix-based derivation (see lecture slides), most smoother methods can also be easily derived row-wise. Each row of the linear system reads:

$$\sum_{j} A_{ij} u_j = b_i, \ i = 1, ..., N$$
 (2)

The *i*-row can be separated into $A_{ii}u_i + \sum_{i \neq j} A_{ij}u_j = b_i$. Rearranging yields

$$u_i = \frac{1}{A_{ii}} \left(b_i - \sum_{j \neq i} A_{ij} u_j \right). \tag{3}$$

• *Jacobi method*For the right hand side of Eq. (3) we use the iterative solution at iteration step (n) and obtain the new iterative solution (n + 1):

$$u_i^{(n+1)} = \frac{1}{A_{ii}} \left(b_i - \sum_{j \neq i} A_{ij} u_j^{(n)} \right).$$

• Weighted Jacobi method We introduce a weighting factor ω and split the left hand side $u_i = \frac{1}{\omega}u_i + \left(1 - \frac{1}{\omega}\right)u_i$. We can now evaluate parts of u_i at (n) or (n+1). We obtain:

$$\frac{1}{\omega}u_{i}^{(n+1)} + (1 - \frac{1}{\omega}) u_{i}^{(n)} = \frac{1}{A_{ii}} \left(b_{i} - \sum_{j \neq i} A_{ij} u_{j}^{(n)} \right)
\Leftrightarrow u_{i}^{(n+1)} = \frac{\omega}{A_{ii}} \left(b_{i} - \sum_{j \neq i} A_{ij} u_{j}^{(n)} \right) + (1 - \omega) u_{i}^{(n)}.$$

The right hand side of the last equation corresponds to a weighted average of the last solution $u_i^{(n)}$ and the solution predicted by the (non-weighted) Jacobi method.

• *Gauss-Seidel method* We solve the right hand side of Eq. (3) with both new and old values $u_j^{(n)}$, $u_j^{(n+1)}$. By this method, we can only use one array to store the solution u since we can immediately write the entries at (n+1) into the original positions of the solutions $u_i^{(n)}$. The method

$$u_i^{(n+1)} = \frac{1}{A_{ii}} \left(b_i - \sum_{j < i} A_{ij} u_j^{(n+1)} - \sum_{j > i} A_{ij} u_j^{(n)} \right).$$

• Successive-Over-Relaxation method Similar to weighted Jacobi, we split the left hand side $u_i = \frac{1}{\omega}u_i + \left(1 - \frac{1}{\omega}\right)u_i$ and evaluate parts of u_i at (n) or (n+1), but use both old and new values on the right hand side.

$$\frac{1}{\omega}u_{i}^{(n+1)} + \left(1 - \frac{1}{\omega}\right)u_{i}^{(n)} = \frac{1}{A_{ii}}\left(b_{i} - \sum_{j < i}A_{ij}u_{j}^{(n+1)} - \sum_{j > i}A_{ij}u_{j}^{(n)}\right)
\Leftrightarrow u_{i}^{(n+1)} = \frac{\omega}{A_{ii}}\left(b_{i} - \sum_{j < i}A_{ij}u_{j}^{(n+1)} - \sum_{j > i}A_{ij}u_{j}^{(n)}\right) + (1 - \omega)u_{i}^{(n)}.$$

So the right hand side is an average of the last solution $u_i^{(n)}$ and the solution predicted by the Gauß-Seidel method.

Exercise 2: Eigenvalues and eigenvectors

reads:

Show that the discretised sine, i.e. $u_i = sin(k\pi ih)$, is an eigenvector with eigenvalue $\lambda = (4/h^2) \sin^2(k\pi h/2)$ of the finite difference matrix A in Exercise 1(c). You may use the following trigonometric identities:

$$\sin(a+b) + \sin(a-b) = 2\sin(a)\cos(b) \tag{4}$$

$$\cos(2x) = 1 - 2\sin^2(x) \tag{5}$$

Exercise 3: Fourier Analysis for Jacobi Methods

In this exercise we are interested in the smoothing properties of the weighted Jacobi method applied on the Problem of Exercise 1 with zero right-hand side (f(x) = 0).

(a) Formulate the weighted Jacobi method and write the iteration scheme in the form

$$u_i^{(n+1)} = \sum_j M_{ij} u_i^{(n)}.$$

(b) Determine the eigenvalues and eigenvectors of *M*.

Hints: From the lecture you know that $M := I - \omega \operatorname{diag}(A)^{-1} A$ for weighted Jacobi. Combine this fact with the results from Exercise 2 in order to compute the eigendecomposition easily.

- (c) How can the eigendecomposition be used to calculate the reduction of error in each smoothing iteration?
- (d) For a multigrid algorithm we are interested in removing the "high frequencies", say $N/2 \le k \le N$. Show that $\omega = 2/3$ is the best choice in the sense that it solves

$$\omega = \min_{\omega'} \max_{N/2 \le k \le N} |\lambda_k(\omega')|,$$

where λ_k is the *k*-th eigenvalue. What is the reasoning of this criterion?