information technology & management

526 Data Warehousing

Week 4 Presentation February 5, 2019

ILLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

Attendance

- ➤ In-Class
- Roster call
- ➤ On-Line
- Proof of Online Attendance
- 3 screenshots with http://www.clocktab.com/
- Email the screenshots to daniel.lee@iit.edu by end of Saturday with the title "Proof of Attendance"
- Submission after the due (Sunday) will NOT be taken into account
- ➤ Up to 4 absences will not negatively impact

ILLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

Week 4 Topic

Introduction to

Data Warehousing

ILLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

Attendance for Online Participants

A sample screenshot:

ILLINOIS INSTITUTE OF TECHNOLOGY

Grading Assignments

- ➤ Late Submission
- Start early, ask questions early
- First day after due: 15%
- %5 per day afterward
- Maximum penalty: 40%
- > Maximum Deduction
- 50% (includes late submission)

ILLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

Visualization References

- ➤ Visual Vocabularly
- ft.com/vocabulary
- > The Visual Reference
- https://www.sqlbi.com/ref/power-bi
 - visuals-reference/
- Story Telling
- https://www.analyticsvidhya.com/blog/201 7/10/art-story-telling-data-science/

Tableau and PowerBl

- ➤ Power BI Self Guide Learning
- https://docs.microsoft.com/en-us/power-bi/guidedlearning/
- > Tableau for Students (Download and Installation)
- https://www.tableau.com/academic/students
- > Tableau Desktop Free Training Videos
- https://www.tableau.com/learn/training

ILLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

What is Data Warehouse?

- is maintained separately from the > A decision support database that organization's operational database
- time-variant, and nonvolatile collection of Provides subject-oriented, integrated, data for analysis
- ➤ Data warehousing:
- The process of constructing and using data warehouses

ILLINOIS INSTITUTE OF TECHNOLOGY

Data Warehouse: Subject-Oriented

- Organized around major subjects, such as customer, product, sales
- not on daily operations or transaction analysis of data for decision makers, > Focusing on the modeling and processing
- excluding data that are not useful in around particular subject issues by ➤ Provide a simple and concise view the decision support process

ILLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

Data Warehouse—Time Variant

- warehouse is significantly longer than > The time horizon for the data that of operational systems
- Operational database: current value data
- Data warehouse data: information from a historical perspective (e.g., past 10 years)
- Every key structure in the data warehouse
- contains an element of time, explicitly or implicitly
- but the key of operational data may or may not contain "time element"

Data Warehouse—Integrated

- ➤ Constructed by integrating multiple, heterogeneous data sources
- relational databases, flat files, on-line transaction records
- ➤ Data cleaning and data integration techniques are applied
- attribute measures, etc. among different conventions, encoding structures, Ensure consistency in naming data sources

LLINOIS INSTITUTE OF TECHNOLOGY

School of Applied Technology

Data Warehouse—Nonvolatile

- ➤ A physically separate store of data transformed from the operational environment
- > Operational update of data does not occur in the data warehouse environment
- Requires only two operations in data accessing
- loading (destructive or incremental)
- access of data

17

OLTP vs. OLAP

- > OLTP (on-line transaction processing)
- Major task of traditional relational DBMS
- Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc.
- > OLAP (on-line analytical processing)
- Major task of data warehouse system
- Data analysis and decision making

ILLINOIS INSTITUTE OF TECHNOLOGY School

School of Applied Technology

13

Why Separate Data Warehouse?

➤ High performance for both systems

• OLTP: Tuned for OLTP - indexing, concurrency control, recovery

■ DW: Tuned for OLAP - complex OLAP queries, multidimensional view, consolidation

➤ Different Needs

- Historical Data: DW requires historical data which operational systems do not typically maintain
- Integration: DW requires consolidation (aggregation, summarization) of data from heterogeneous sources
- Data Quality: Different sources typically use inconsistent data representations, codes and formats which have to be reconciled

12

OLTP vs. OLAP

ILLINOIS INSTITUTE OF TECHNOLOGY

summarized, multidimensional query throughput, response integrated, consolidated knowledge worker decision support subject-oriented complex query lots of scans 100GB-TB historical, hundreds millions short, simple transaction index/hash on prim. key detailed, flat relational transaction throughput day to day operations clerk, IT professional application-oriented current, up-to-date 100MB-GB read/write thousands repetitive isolated # records accessed unit of work DB design unction DB size metric #users access users usage data

LLINOIS INSTITUTE OF TECHNOLOGY School of Applied Technology

Data Warehouse:

Core Elements Kimball DW/BI Architecture.

Data Warehouse:

William Inman's Architecture

- Back Room

School of Applied Technology

ILLINOIS INSTITUTE OF TECHNOLOGY

Data Warehouse Backroom Tools School of Applied Technology

> Data Extraction

Front Room

 get data from multiple, heterogeneous, and external sources

> Data Transformation/cleaning

 convert data from legacy or host format to warehouse format

Load

views, check integrity, and build indicies sort, summarize, consolidate, computed and partitions

Refresh

School of Applied Technology

ILLINOIS INSTITUTE OF TECHNOLOGY

Week 4 Class Exercises

➤ Pentaho Data Integration

>Importing AdventureWorks

Reverse Engineering via MySQL

Workbench

>(Optional) Creating an ERD via

LucidChart

20

School of Applied Technology

• multidimensional analysis of data warehouse

data such as OLAP cubes for slice-dice,

drilling, pivoting

> Data mining

supports querying, basic statistical analysis,

> Information processing

reporting, and visualization

> Analytical processing

Data Warehouse Usage

ILLINOIS INSTITUTE OF TECHNOLOGY

supports associations, constructing analytical

models, performing classification and

prediction

knowledge discovery from hidden patterns