PD Dr. Falko Ziebert

Nonlinear dynamics

Summer term 2024

Assignment 10

Handout 24.06.2024 – Return 01.07.2024 – Discussion 04./05.07.2024

Exercise 1 [7 points]: Onset of convection in a Rayleigh-Bénard cell (part II)

On the last sheet we showed that the equations describing Rayleigh-Bénard convection can be written in non-dimensionalized form as

$$\partial_t \Delta \psi + [(\partial_z \psi) \partial_x - (\partial_x \psi) \partial_z)] \Delta \psi = P(-\partial_x \theta + \Delta^2 \psi)$$
 (1)

$$\partial_t \theta + [(\partial_z \psi) \partial_x - (\partial_x \psi) \partial_z] \theta = \Delta \theta - \operatorname{Ra} \partial_x \psi, \qquad (2)$$

with $P=\frac{\nu}{\chi}$ the so-called Prandtl number and $Ra=\frac{\alpha g d^3}{\chi \nu}(T_1-T_2)$ the Rayleigh number, which is the control parameter. Here $\psi(x,z)$ with $v_x=\partial_z\psi$ and $v_z=-\partial_x\psi$ is the stream function and $\theta(x,z)$ is the deviation from the linear temperature profile in the base state.

1. Linearize equations (1) and (2) and argue that the ansatz

$$\theta(x, z, t) = \bar{\theta}\sin(\pi z)\sin(qx)e^{\sigma t}, \quad \psi(x, z, t) = \bar{\psi}\sin(\pi z)\cos(qx)e^{\sigma t}$$

solves these linearized equations together with the boundary condition for the temperature (temperature T_1 at z=0 and T_2 at z=1) and $\partial_x\psi=0$ and $\partial_z^2\psi=0$ at z=0,1; note that the distance between the two plates, d, has been scaled away. Which boundary condition does the latter imply for the velocity field? (2 points)

- 2. Use the ansatz to calculate the linear growth rates $\sigma(q)$ via the eigenvalue problem. Determine the critical wave number, q_c , and the critical value Ra_c for the onset of convection. (4 points) HINT: Put $\sigma=0$ and solve for $\mathrm{Ra}(q)$. Determine the minimum with respect to q (yielding q_c) and calculate $\mathrm{Ra}_c=\mathrm{Ra}(q_c)$.
- 3. Sketch the neutral curve Ra(q). Discuss and compare to the Swift Hohenberg model. (1 point)

Exercise 1 [8 points]: Pattern competition in 2D: stripes vs. squares

Consider the coupled homogeneous amplitude equations for a stripe in x-direction, $Ae^{iq_cx} + c.c.$, and a stripe in y-direction, $Be^{iq_cy} + c.c.$ (where c.c. means complex conjugate):

$$\partial_t A = \epsilon A - |A|^2 A - c|B|^2 A,$$

$$\partial_t B = \epsilon B - |B|^2 B - c|A|^2 B.$$
(3)

Here A and B are complex, ϵ and c are real.

1. Show that square solutions (orthogonal stripes with equal amplitude |A|=|B|) exist for c>-1 and determine their amplitude. (1 point)

- turn page -

- 2. Show that a stripe solution with $A \neq 0$ and B = 0 becomes unstable against growth of B for c < 1.
- 3. Show that, in turn, the square solution calculated in part 1 is stable for c < 1. HINT: You will get a 4×4 system of equations in $\delta A, \delta A^*, \delta B, \delta B^*$. To solve it, decouple it into two 2×2 systems by considering $C_+ = \delta A + \delta B$ and $C_- = \delta A - \delta B$. (3 points)
- 4. Now study the spatially inhomogeneous case, i.e. Eqs. (3) become

$$\partial_t A = \epsilon A - |A|^2 A - c|B|^2 A + \left(\partial_x - \frac{i}{2q_c} \partial_y^2\right)^2 A,$$

$$\partial_t B = \epsilon B - |B|^2 B - c|A|^2 B + \left(\partial_y - \frac{i}{2q_c} \partial_x^2\right)^2 B.$$
(4)

For the case c>1, determine the new instability border due to the instability to a stripe in the direction orthogonal to the existing stripe. (This is the *cross-roll* instability boundary mentioned in the lecture). (2 points)

HINT: Consider $A = \sqrt{\epsilon - Q^2}$ and study the growth of $\delta B \propto e^{iq_1x + iq_2y}$ to get an instability border of the type $\epsilon = \alpha Q^2$.