МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУЛАРСТВЕННЫЙ УНИВЕРСИТЕТ»

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

А. Ендовицкий

Ректор

21 октября 2022

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ БАКАЛАВРИАТА И СПЕЦИАЛИТЕТА

ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА, ЛОГИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ Программа разработана на основе ФГОС среднего профессионального образования.

В первом разделе программы перечислены основные математические понятия, которыми должен владеть поступающий.

Во втором разделе указано, какие навыки и умения требуются от поступающего.

Для решения экзаменационных задач достаточно уверенного владения теми понятиями и свойствами, которые перечислены в настоящей программе.

1. Основные математические понятия и факты Основы математического анализа

- 1. Числа (Натуральные, целые, рациональные, иррациональные, вещественные, комплексные числа. Простые и составные числа. Понятия НОД, НОК, алгоритм нахождения).
- 2. Модуль (Понятие модуля. Уравнения и неравенства с модулем).
- 3. Тригонометрия (Единичная окружность. Радианная мера угла. Синус, косинус, тангенс, котангенс. Табличные значения функций на единичной окружности. Обратные тригонометрические функции: арксинус, арккосинус, арктангенс, арккотангенс. Основное тригонометрическое тождество. Формулы приведения. Кратный аргумент (формулы двойного и половинного аргумента). Формулы понижения степени. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Формулы тригонометрических функций от суммы или разности аргументов. Сведение суммы тригонометрических функций к синусу или косинусу со сдвигом аргумента).
- 4. Тригонометрические уравнения и неравенства (Простейшие тригонометрические уравнения. Простейшие уравнения с кратным аргументом. Методы решения уравнений: разложение на множители, метод замены (уравнения, сводящиеся к квадратным). Уравнения с применением изученных формул. Однородные уравнения 1 и 2 степеней. Отбор корней в тригонометрических уравнениях. Системы уравнений).
- 5. Степенные, показательные уравнения (Понятие основания и показателя. Основные свойства. Работа со степенями и показателями. Методы решения показательных уравнений: вынесение общего множителя и сведение к квадратным. Неравенства с показателями: простейшие и сводящиеся к квадратным).
- 6. Логарифмические уравнения (Понятие логарифма. Свойства логарифмов. ОДЗ. Уравнения и неравенства с логарифмами: методы решения. Формула перехода к другому основанию логарифма. Логарифмы с переменным основанием).
- Геометрия (Признаки равенства треугольников. Свойства равнобедренного 7. треугольника. Параллельность прямых. Признак параллельности прямых. Сумма углов треугольника и выпуклого многоугольника. Прямоугольный треугольник. Решение прямоугольных треугольников. Окружность и круг. Центр, хорда, диаметр, радиус. Касательная к окружности. Дуга окружности. Сектор, сегмент. Окружность, описанная вокруг треугольника и вписанная в треугольник. Признаки и свойства параллелограмма. Прямоугольник, ромб, квадрат, трапеция. Теорема Фалеса. Средняя линия треугольника. Теоремы косинусов, синусов; теорема Пифагора. Векторы. Сложение векторов, умножение вектора на число. Скалярное произведение. Подобие фигур, признаки подобия треугольников. Формулы площадей треугольника, параллелограмма, трапеции, круга. Параллельность прямых и плоскостей. Угол между прямой и плоскостью. Перпендикулярность прямых и плоскостей. Двугранный и трехгранный углы. Призма, пирамида. Цилиндр, конус, Объемы параллелепипед, шар. прямоугольного параллелепипеда, призмы, пирамиды, конуса, цилиндра, шара. Площади боковой поверхности прямоугольного параллелепипеда, пирамиды, конуса, цилиндра. Площадь сферы).
- 8. Функции (Определение функции, способы задания, свойства. Графики и особенности известных элементарных функций. Преобразование графиков:

параллельный перенос, симметрия, растяжение и сжатие. Графический метод решения задач. Построение кусочно-непрерывных функций, задаваемых системой).

- 9. Производная и первообразная. Производная сложной функции. Интегралы: определенный и неопределенный.
- 10. Практическое применение понятий математического анализа (Исследование и анализ функций. Связи: асимптотик, ограниченности и непрерывности с пределами; монотонности и экстремумов с производной функции).
- 11. Уравнение касательной.

Логика

- 1. Основные логические операции (отрицание, конъюнкция, дизъюнкция, импликация, эквивалентность), таблицы истинности.
- 2. Порядок выполнения логических операций в сложном логическом выражении.
- 3. Законы алгебры логики.

Теория вероятностей

- 1. Комбинаторика (Дерево событий. Сочетания. Перестановки).
- 2. Теория вероятностей (Событие. Исходы. Благоприятные исходы. Классическое определение вероятности события. Независимые испытания).
- 3. Алгебра логики (сложение, умножение вероятностей).

2. Основные умения и навыки

Экзаменуемый должен уметь и владеть навыками:

Производить арифметические действия над числами, заданными в виде обыкновенных и десятичных дробей; с требуемой точностью округлять данные числа и результаты вычислений.

Проводить тождественные преобразования многочленов, дробей, содержащих переменные, выражений, содержащих степенные, показательные, логарифмические и тригонометрические функции.

Строить графики линейной, квадратичной, степенной, показательной, логарифмической, тригонометрической функций, функций, содержащих абсолютные величины и комбинаций указанных функций.

Решать уравнения и неравенства первой и второй степени, уравнения и неравенства, приводящие к ним; решать системы уравнений и неравенств первой и второй степени и приводящие к ним. Сюда, в частности, относятся простейшие уравнения и неравенства, содержащие степенные, показательные, логарифмические и тригонометрические функции.

Решать задачи на составление уравнений и систем уравнений.

Изображать геометрические фигуры на чертеже и производить простейшие построения на плоскости.

Использовать геометрические представления при решении алгебраических задач, а методы алгебры и тригонометрии — при решении геометрических задач.

Производить операции над векторами (сложение и вычитание векторов, умножение вектора на число) и пользоваться свойствами этих операций.

Пользоваться понятием производной при исследовании интервалов монотонности функций, нахождении экстремумов и при построении графиков функций. Пользоваться понятием определенного интеграла для нахождения площадей плоских фигур.

Находить значение логических выражений. Производить тождественные преобразования логических выражений.

Решать задачи комбинаторики.

Находить вероятность сложного события.

Примерные варианты заданий по основам математического анализа, логики и теории вероятностей

Письменный экзамен по основам математического анализа, логики итеории вероятностей Контрольно-измерительный материал № 1.

Для заданий 1-8 достаточно привести ответы. Для заданий 9 - 11 необходимо привести развернутые решения!

- 1. Известно, что логическое выражение A принимает значение истина, а B ложь. Какое значение принимает логическое выражение $A \lor B \land \neg B$. В ответе укажите 0, если принимает значение ложь, 1 если истина, и -1, если при заданные значениях A и B однозначно сказать нельзя.
- 2. Система навигации, встроенная в спинку самолётного кресла, информирует пассажира о том, что полёт проходит на высоте 36000 футов. Выразите высоту полёта в метрах. Считайте, что 1 фут равен 30,5 см.
- 3. На клетчатой бумаге с размером клетки 1x1 изображён четырехугольник. Найдите радиус окружности, которую можно вписать в данный четырехугольник.

4. В лыжной гонке участвует 50 школьников. Перед началом соревнований проводится жеребьевка, где каждый участник получает стартовый номер от 1 до 50. Какова вероятность, что Петя Иванов, стартующий в этой гонке, получит номер, содержащий в своей записи цифру 4?

- 5. Диагональ экрана телевизора равна 39 дюймам. Выразите диагональ экрана в сантиметрах. Считайте, что 1 дюйм равен 2,54 см. Результат округлите до целого числа.
- 6. Решите уравнение $\sqrt{14x+15} = -x$. Если корней больше одного, в ответе укажите больший.
- 7. В прямоугольном треугольнике ABC угол C прямой, CH высота. AH=5, BH=4. Найдите катет CB.
- 8. Найдите наибольшее значение функции $y = x^3 + 6x^2 + 19$ на отрезке [-6; -2].
- 9. Окружность с центром в точке M касается сторон угла $\angle AOB$ в точках A и B. Вторая окружность с центром в точке N касается отрезка OA, луча BA и продолжения стороны угла OB за точку O. Известно, что ON:OM=5:13. Найдите отношение радиусов окружностей.
- 10. Найдите все значения a, при каждом из которых уравнение $27x^6 + (4a 2x)^3 + 6x^2 + 8a = 4x$ не имеет корней.
- 11. Известно, что a, b, c и d попарно различные двузначные числа.
- а) Может ли выполняться равенство b+d = 19?

b) Может ли дробь $\frac{3a+2c}{b+d}$ быть в 11 раз меньше, чем сумма $\frac{3a}{b}+\frac{2c}{d}$?

с) Какое наименьшее значение может принимать дробь b+d, если a>3b и c>2d?

Критерии оценивания ответов поступающих

Оценка работы проводится в баллах. Правильное решение каждой из задач 1-4 оценивается в 6 баллов. Правильное решение каждой из задач 5-8 оценивается в 7 баллов. Правильное решение задачи 9 оценивается в 10 баллов, задачи 10 — в 17 баллов, задачи 11 — в 21 балл.

Итоговая оценка — сумма баллов. Максимальный балл — 100.

Длительность экзамена — 3 часа (180 минут).

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Пособие по математике для поступающих в вузы: Учебное пособие/ Кутасов А.Д., Пиголкина Т.С., Чехлов В.И., Яковлев Т.Х.- Под ред. Г.Н. Яковлева.- М.: Наука. 1988.- 720 с.
- 2. Ткачук В.И. Математика абитуриенту. М.: МЦМНО, 1997, т. 1-2.- 432 с.
- 3. Шабунин М.И. Математика для поступающих в вузы. Неравенства и системы неравенств.- Учебное пособие.- М.: Аквариум, 1997.- 256 с.
- 4. Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами.- М.: Илекса, 1998.-336 с.
- Прасолов В.В. Задачи по планиметрии. Части 1,2. М.: Наука, 1991.- 240 с.
- 6. Черкасов О.Ю., Якушев А.Г. Математика: интенсивный курс подготовки к экзаменам. М.: Рольф, 1997.- 384 с.
- 7. Шарыгин И.Ф. Факультативный курс по математике. Решение задач. 10. М.: Просвещение, 1989.- 252 с.
- 8. Шарыгин И.Ф., Голубев В.И. Факультативный курс по математике. Решение задач. 11. М.: Просвещение. 1991.-384 с.
- 9. Письменный Д.Т. Готовимся к экзамену по математике.- М.Рольф, 1997.-288 с.
- 10. Будак А.Б., Щедрин Б.Я. Элементарная математика. Руководство для поступающих в вузы. М.: МГУ, 1997 400 с.
- 11. Белоненко Т.В., Васильев А.Е., Васильева Н.И., Крымская Н.Д. Сборник конкурсных задач по математике. Санкт-Петербург: «Специальная Литература», 1997.- 560 с.
- 12. Куланин Е.Д., Норин В.П., Федин С.Н., Шевченко Ю.А. 3000 конкурсных задач по математике.- Рольф, 1997.- 608 с.
- 13. Якушева Е.В., Попов А.8., Якушев А.Г. 2000 задач и упражнений по математике. Для школьников и абитуриентов. М.: «1 федеративная книготорговая компания», 1998.- 448 с.
- 14. Осипов В.Ф. Конкурсные задачи по математике: С решениями и указаниями. Санкт-Петербург: «Изд-во СпБГУ», 1996.- 372 с.
- 15. Кочагин В.В., Кочагина М.Н. Математика. Тематические тренировочные задания. Москва. Эскмо 2014.-157 с.
- 16. Семенов А.Л., Ященко И.В. Математика. Типовые тестовые задания. Москва. Экзамен. 2014.-215 с.