Job No.:
 399-96428C - 1
 Address:
 153 Ridge Road, Paengaroa, New Zealand
 Date:
 24/01/2024

 Latitude:
 -41.142231
 Longitude:
 174.988781
 Elevation:
 263.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	5 m
Wind Region	NZ3	Terrain Category	3.0	Design Wind Speed	59.53 m/s
Wind Pressure	2.13 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	extra High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp,i = -0.3

For roof CP,e from 0 m To 5 m Cpe = -0.9 pe = -1.72 KPa pnet = -1.72 KPa

For roof CP,e from 5 m To 10 m Cpe = -0.5 pe = -0.96 KPa pnet = -0.96 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 25.2 m Cpe = 0.7 pe = 1.34 KPa pnet = 1.98 KPa

For side wall CP,e from 0 m To 5 m Cpe = pe = -1.24 KPa pnet = -1.24 KPa

Maximum Upward pressure used in roof member Design = 1.72 KPa

Maximum Downward pressure used in roof member Design = 1.02 KPa

Maximum Wall pressure used in Design = 1.98 KPa

Maximum Racking pressure used in Design = 1.69 KPa

Design Summary

Girt Design Front and Back

Girt's Spacing = 900 mm Girt's Span = 4200 mm Try Girt 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.87 S1 Downward =12.68 S1 Upward =15.81

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	3.93 Kn-m	Capacity	5.06 Kn-m	Passing Percentage	128.75 %
$V_{0.9D\text{-}WnUp}$	3.74 Kn-m	Capacity	20.10 Kn-m	Passing Percentage	537.43 %

Deflections

First Page

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 16.55 mm

Limit by Woolcock et al, 1999 Span/100 = 42.00 mm

Sag during installation = 18.87 mm

Reactions

Maximum = 3.74 kn

Girt Design Sides

Girt's Spacing = 900 mm

Girt's Span = 4540 mm

Try Girt 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.84 S1 Downward =12.68 S1 Upward =16.44

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	4.59 Kn-m	Capacity	4.90 Kn-m	Passing Percentage	106.75 %
$V_{0.9D\text{-W}nUp}$	4.05 Kn-m	Capacity	20.10 Kn-m	Passing Percentage	496.30 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 22.60 mm

Limit by Woolcock et al. 1999 Span/100 = 45.40 mm

Sag during installation =25.76 mm

Reactions

Maximum = 4.05 kn

Middle Pole Design

Geometry

275 SED H5 (Minimum 300 dia. at Floor Level)	Dry Use	Height	3800 mm
Area	64885 mm2	As	48663.8671875 mm2
Ix	335197731 mm4	Zx	2331810 mm3
Iy	335197731 mm4	Zx	2331810 mm3
Lateral Restraint	3800 mm c/c		

Loads

Total Area over Pole = 25.2 m^2

Dead	6.30 Kn	Live	6.30 Kn
Wind Down	25.70 Kn	Snow	0.00 Kn
Moment wind	33.19 Kn-m		
Phi	0.8	K8	0.96
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Second page

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	895.43 Kn	PhiMnx Wind	64.90 Kn-m	PhiVnx Wind	115.24 Kn
PhiNcx Dead	537.26 Kn	PhiMnx Dead	38.94 Kn-m	PhiVnx Dead	69.14 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.55 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.30 < 1 \text{ OK}$

Deflection at top under service lateral loads = 28.55 mm < 38.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30))/(1+\sin(30))$				

 $Kp = \frac{(1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

L= 2200 mm Pile embedment length

f1 = 3750 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Pile Properties

Safety Factory 0.55

Hu = 15.95 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 36.25 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.92 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of

internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2200) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2200)

Skin Friction = 39.09 Kn

Weight of Pile + Pile Skin Friction = 42.94 Kn

Uplift on one Pile = 37.67 Kn

Uplift is ok