Pathways and networks

Jon Ambler Nicky Mulder

Pathways and networks

- What is a network?
- Types of network
- How to get / make them
- What you can use them for

What is a network?

- Network vs graphs
 - "Graphs are mathematical structures that are used to model the pairwise interactions between objects" Wikipedia
 - Maths: Part of discreet mathematics, are structures
 - Computer science: Abstract data type
- Nodes (vertices) and links (edges)
- Edges can have attributes such as weights (Nodes too)

What is a network?

- Useful for visualisation
- Way to structure data that is relational in nature
- Allow us to apply methods that require data to be in a relational structure
- Allow us to use methods from other disciplines to resolve challenges of working with complex datasets

Types of networks

- Protein-protein interaction networks
- Gene regulatory networks
- Gene co-expression networks
- Metabolic networks
- Signalling networks

Graph notation

- A graph (G) is represented as an ordered pair
 - G = (V, E)
- Where V is as set of vertices / nodes
- E is a set of edges / lines

Adjacency matrix

Undirected Graph & Adjacency Matrix

Undirected Graph

Adjacency Matrix

Properties of a graph

 A graph can be directed or undirected (Or mixed)

- Multigraph
 - Allow two or more edges to connect to the same vertex
 - Allows for loops

Undirected Graphs

Properties of a graph

- Quiver
 - Directed multigraph
- Weighted graph
 - Edges have weights assigned to them

- The degree of a vertex / node
 - The number of other nodes connected to it by and edge

- The number of neighbours
- In-degree and out-degree (the degree is the combination of these)

- Network paths:
 - Series of steps from node to node along an edge
- The distance between two nodes
 - The length of shortest path between them
- The diameter of a network
 - Average distance between pairs of nodes
 - Gives an idea of how easy it is for information to move in the network

Diameter of the Zachary Karate Club network

- Paths
 - Eulerian path:
 - A trail in a graph that visits each edge exactly once
 - Hamiltonian path:
 - A trail in a graph that visits each vertex exactly once
 - De Bruijn graph
 - Both Eulerian and Hamiltonian
 - Used in genome assembly

- Cycles
 - Closed walk
 - A sequence of verities that describes a path, moving from one vertex to the next along an edge, that returns to the original vertex

- (F, D, B, C, D, E, F)
- In directed graphs, the orientation of the edges must be respected
- Simple cycle
 - Closed walk with no repetition of edges or vertices
 - (H, D, G, H)

- Network types:
 - Random network model –random connections between nodes

 Scale-free hierarchical model – most nodes have few connections and some have many, e.g. regulatory networks

- Also known as network topology
- Can be used to identify features of networks
 - "Important" nodes / edges
 - Communities within the network
 - Robustness or vulnerability of a network

- Centrality
 - Used to identify "important" vertices
 - Characterised by centrality indices
 - Network walk structures
 - Network flows

Network centrality

Different points of centrality but each is connected

Different points of centrality, not necessarily connected

Degree distribution says nothing about connectivity

- A graph is made up of components
 - This graph has 3 connected components
 - Normally refers to a undirected graph

Protein-protein interaction networks

- Structures that represent the interaction between proteins
 - Refer to physical interactions
- Experiments to identify physical interactions between DNA and proteins or between two proteins:
 - Yeast two hybrid
 - Co-IP precipitation
 - Protein arrays
- Protein-protein interaction databases:
 - IntAct
 - DIP (Database of Interacting Proteins)
 - BIND (Biomolecular Interaction Network Database)

Protein-protein interaction networks

- STRING database
- 'Search Tool for the Retrieval of Interacting Genes/Proteins'
- Data is fully pre-computed
- Includes known and predicted interactions
- Integrated scoring scheme with evidence providing confidence
- Confidence score is associated with each data set, benchmarked using KEGG data

Protein-protein interaction networks

Specific symbolism involved

Nodes referred to as metabolites

- The network may:
 - Have compartments
 - Be used to simulate change in the system over time
- Nodes can have properties such as:
 - Concentration
- Links representing reactions may have:
 - Rates

- Can be represented mathematically
- Stoichiometric matrix
- Where S is the vector of concentration values:
 - S = (S1, S2, S3, etc...)
- v is the vector of reaction rates
 - v = (v1, v2, v3, etc...)

- Can be represented mathematically
- Stoichiometric matrix

Pathway databases

- PATHGUIDE >200 pathway databases: http://www.pathguide.org
- KEGG
 - specific coverage of metabolism, some other networks too (e.g. regulatory)
 - Well-curated and quite specific
- MetaCyc, EcoCyc, BioCyc etc.
- Reactome –higher eukaryotes, manually curated
- GenMAPP –pathways contributed by users

Pathway example in Reactome

Apoptosis and disease: a life or death decision. EMBO Rep. 2004 Jul;5(7):674-8. Epub 2004 Jun

A. aeolicus Pathway: photorespiration

Computational biology @ 001

Comparison of pathway across 2 organisms

Organism	Evidence Glyph	Enzymes and Genes for photorespiration	Operons
A. sp ADP1	•	EC# 4.1.1 None EC# 3.1.3.18 putative phosphoglycolate phosphatase protein: ACIAD0443 phosphoglycolate phosphatase, contains a phophatase-like domain: gph putative phosphoglycolate phosphatase 2: ACIAD0043 EC# 1.1.3.15 None EC# 2.6.1.4 None	glxK ACIAD029 gph hprA ubiG CIAD004*CIAD0042
	•	GCVMULTI- RXN glutathione peroxidase / homoserine O-succinyltransferase / dolichyl-phosphate mannose synthase / O- succinylbenzoic acid-CoA ligase / 2-oxoglutarate decarboxylase / glutathione peroxidase 4 / dihydroxyacetone kinase / sorbitol-6-phosphate dehydrogenase / 2-dehydro-3-deoxygluconokinase / adenine deaminase / gcv system / trimethylamine N-oxide reductase III / fumarate reductase : gpo EC# 2.1.2.1 serine hydroxymethyltransferase : glyA RXN-974 None EC# 1.1.1.29 putative glycerate dehydrogenase : ACIAD1301 glycerate dehydrogenase : hprA EC# 2.7.1.31 glycerate kinase : glxK	ACIAD1301 finar B gpo &CIAD2084 glyA
B. subtilis 168		This pathway is not marked as present in this organism. EC# 4.1.1 None EC# 3.1.3.18 None EC# 1.1.3.15 None EC# 2.6.1.4 None GCVMULTI-RXN None EC# 2.1.2.1 serine hydroxymethyltransferase : glyA RXN-974 None EC# 1.1.1.29 None EC# 2.7.1.31 None	glyA

Key to pathway evidence glyph edge colors:

- · green: reactions for which a candidate enzyme has been identified in this organism
- . black: reactions for which a candidate enzyme has not been identified in this organism
- orange: reactions which do not appear, or whose enzyme does not appear in any other pathway in this database
- magenta: reactions that are spontaneous, or edges that do not represent reactions at all (e.g. in polymerization pathways)

Incomplete pathways -finding the pieces

- To completely model metabolic pathways you need all the enzymes and what reactions they catalyze
- From a genome –get list of ORFs, assign enzyme functions by sequence similarity
- Check that enzymes balance out —input metabolites = output metabolites
- Look for the missing ones

Pathway tools

- Software available for finding pathways in a whole genome and creating pathway/genome databases (PGDB) –integrates genome data with functional annotations
- Predicts enzymes first based on GenBank annotation then sequence similarity
- http://bioinformatics.ai.sri.com/ptools/
- Allows you to compare pathways across organisms

Assembling nodes

Genome –set of genes

Enzyme sets

Reactions

Gene1 Gene2 Gene3 Gene4 Gene5 Gene6

EC 1.1.1.3 EC 1.2.3.1 EC 1.1.2.6 EC 2.1.2.1

D-glucose + ATP = ... Fructose + ADP =

Metabolic network

Applications of metabolic networks

- Biomarker discovery –identifying which metabolites are indicative of disease
 - Derive metabolic networks for the complete metabolome
 - Get healthy and diseased cells and do metabolic profiling –experimental procedure to identify and measure all metabolites
 - Generate a model to relate metabolite data with disease state
 - Look for statistical differences in metabolites for healthy vs diseased

Gene regulatory networks

- Set of DNA fragments that interact with each other as well as other components, e.g. proteins, to regulate gene expression
- Input of network is genes or proteins, output is gene expression
- Includes additional factors such as external signalling, feedback loops etc.

An example network

Protein 1 regulates itself and complexes with protein 2 to regulate expression of gene 3.

Protein 3 inhibits gene 4 expression and protein 4 activates translation from gene 2 to protein 2

Where is the data from?

• Gene expression experiments, e.g. microarrays

Genetic interactions

- Mutants –Knock out a gene and see response
- **Synthetic interaction** delete gene A, keep B, get wild-type and *vice versa*, delete both, if non-WT A & B have synthetic relationship

Example of *E. coli* gene regulatory network

1278 genes
2724 interactions
157 genes for TFs
382 metabolic
enzyme genes
(Blue)

Signalling networks

- Signal transduction is a response to an external signal
- Usually involves receptor on cell surface to identify signals then internal proteins that respond to the signals
- Signal transduction is usually by modification of proteins –phosphorylation
- Whereas metabolism provides mass transfer, signalling provides information transfer

Signal cascade

E. Kipp, Systems Biology in practice

Gene location

Two genes always found together on different genomes

Can infer functional linkage

Phylogenetic profiles

P7

0

Protein	E. coli	S. aureus	H. pylori	Y. pestis
P1	1	0	0	1
P2	1	1	1	0
P3	0	1	1	0
P4	1	0	0	1
P5	0	1	1	0
P6	1	0	0	1
P7	0	1	0	1

P1	1	0	0	1
P4	1	0	0	1
P6	1	0	0	1
	•			
P2	1	1	1	0
P3	0	1	1	0
P5	0	1	1	0

Can predict that P1, P4, P6 and P3, P5 are functionally linked

0

Genome graphs

Genome graphs

 Allows multiple genomes to be represented in one structure

Genome graphs

 Allows multiple genomes to be represented in one structure

Predicting interactions from literature

- Text mining of literature abstracts
- Mechanical Turking
- Look for co-occurrences of genes/proteins in same text
- Assume a functional relationship
- Issues with gene/protein naming

Data integration

 Overlay PPI networks, metabolic networks, genome networks, etc...

Issues with data integration

- Data is noisy
- Datasets are incomplete
- Data is heterogeneous
- Some data is more trustworthy than others
- Data comes in different formats
- Need some ways of evaluating accuracy of integration

Ranking data for integration

- Some data is more likely to give false positives
- Can assign more weight to evidence from some experimental data types and less to others
- This ensures most trustworthy data scores highest
- Evaluating network –GO annotation (gold standard)

Data integration

- Visualisation and manipulation tools:
 - Cytoscape
 - PINV
 - NetworkX

Conclusions

- Relational way to structure data
- Networks can identify important nodes (proteins / genes / bottlenecks)
- Can be used for analysis of functional genomics data
- Many additional factors to consider in data integration, e.g. scoring, noise, etc.

