PHYS 170 Study Notes <u>Mechanics</u>

Yecheng Liang

Contents

1. Gen	eral Principles	3
1.1.	The Four Horseman of Mechanics	3
1.2.	US Customary Units	3
1.3.	Gravity	3
	Vector Notation	
1.5.	Angle Unit	3
2. Ford	ce Vectors	4
2.1.	Addition	4
2.2.	Force Components	4
3. Equ	ilibrium of a Particle	5
4. For	ce System Resultants	6
5. Equ	ilibrium of a Rigid Body	7
	tion	
7. Kine	ematics of a Particle	9
8. Kine	etics of a Particle: Force and Acceleration1	0
9. Kine	etics of a Particle: Work and Energy1	1
	netics of a Particle: Impulse and Momentum 1	

1. General Principles

1.1. The Four Horseman of Mechanics

- Length
- Mass
- Time
- Force

So you basically take three of them and solve the 1 left.

1.2. US Customary Units

Length	Mass	Тіме	Force
meter	kilogram	second	$\rm force \\ kg~m~s^{-2}$
m	kg	s	
foot	$ m slug$ $ m lbs^2ft^{-1}$	second	pound
ft		s	lb

Table 1: SI and US Customary (FPS) Units for Mechanics

1.3. Gravity

$$F = G \frac{m_1 m_2}{r^2} \tag{1.1}$$

$$F = ma (1.2)$$

In this course, we will use

$$g = 9.81 \,\mathrm{m \, s^{-2}} \tag{2}$$

which happens to be true for Vancouver.

1.4. Vector Notation

In this course, vectors are upright bold, and vector magnitudes are italicized bold.

$$\mathbf{A}$$
 has a magnitude of \mathbf{A} . (3)

1.5. Angle Unit

In this course, angles are in degrees.

2. Force Vectors

Force, having both magnitude and direction, is a vector. Intuitively, we can apply all kinds of vector operations to forces, as you would learn in MATH 152.

2.1. Addition

Use "Tip to tail" for triangular method of addition: draw the vectors head to tail, and the resultant vector is the vector from the tail of the first vector to the head of the last vector.

2.2. Force Components

$$\mathbf{F} = x\mathbf{i} + y\mathbf{j} \tag{4}$$

where x, y are magnitudes of the force in the \mathbf{i}, \mathbf{j} directions.

Force ${f F}$ can be represented as a combination of ${f F}_x$ and ${f F}_y$

$$\mathbf{F} = \mathbf{F}_x + \mathbf{F}_y \tag{5}$$

or as a polar coordinate of angle $heta=\arctan\Bigl(rac{F_y}{F_x}\Bigr)$ and magnitude $m{F}$

$$\mathbf{F} = \mathbf{F}(\cos(\theta) + \sin(\theta)). \tag{6}$$

To generalize it, we can write it as

$$\mathbf{F} = \mathbf{F}_x \mathbf{i} + \mathbf{F}_u \mathbf{j} \tag{7.1}$$

$$= \mathbf{F}(\cos(\theta)\mathbf{i} + \sin(\theta)\mathbf{j}) \tag{7.2}$$

where \mathbf{i}, \mathbf{j} are unit vectors in the x, y, or any orthogonal directions. This is the Cartesian form of a vector.

For a force with 2 dimensions, we call it a coplanar force.

3. Equilibrium of a Particle

4. Force System Resultants

5. Equilibrium of a Rigid Body

6. Friction

7. Kinematics of a Particle

8. Kinetics of a Particle: Force and Acceleration

9. Kinetics of a Particle: Work and Energy

10. Kinetics of a Particle: Impulse and Momen	tum
---	-----