

Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

MARM Performance Testing

Введени

Планирования

Предмет тестирования

Факторы

Реализапи

1 сализаци

конфигурал

Анализато

Результаты

тестирова

MIRA

Сравнені

Сравнеі Итоги

Заключени

Тестирование производительности middleware фреймворков для разработки программного обеспечения мобильных роботов

Студент группы 2304 Руководитель Ефремов Михаил Александрович к.т.н. Кринкин Кирилл Владимирович

Цели и задачи

MARM Performance Testing

Ввеление

 Рассмотрение и отбор фреймворков для тестирования ■ Анализ методов коммуникации и формирование план

Цель данной работы: получение и анализ результатов тестирования производительности для наиболее доступного и используемого многоагентного робототехнического промежуточного ПО.

Решаемые задачи:

- тестирования
- Выбор инструментов для реализации тестирования и реализация тестовых сценариев
- Получение, обработка и анализ данных тестирования производительности, составление отчета

Актуальность

MARM Performance Testing

Введение

Планирования тестирования

тестирован

Факторы производительност

D

Конфигурация

Анализато Система

Результаты тестировани

ROS

VARP

Сравнени

Итоги

Заключение

- Рост исследований и разработок в области автономных систем
- Множество различных платформ для разработки робототехнического ПО
- Малое количество исследований производительности существующих решений

Сравнение существующих фреймворков

MARM Performance Testing

Предмет

тестирования

Название	Код	Wiki	Год	Тип	пп
ROS	Да	Да	2018	Гибридная	C++, Python
MIRA	Да	Да	2018	P2P	C++, Python, JS
YARP	Да	Да	2018	P2P	C++, Python, Java
MOOS	Да	Да	2018	Централизованная	C++, Java
OROCOS	Да	Да	2016	Гибридная	C++, Python, Simulink
ASEBA	Да	Нет	2018	Распределенная	Собственный язык
OpenRTM	Да	Нет	2016	Гибридная	C++, Java, Python
URBI	Да	Нет	2016	Централизованная	C++, Java, urbiscript

Сравнение реализаций отобранных для тестирования фреймворков

MARM Performance Testing

Предмет

тестирования

			1
	ROS	MIRA	YARP
Централизованные сервисы	Сервисы поиска, именования, сервис параметров	Нет	Сервис имен
Взаимодействие между узлами	Топики, параметры, сервисы	Каналы, RPC	Порты, топики
Протоколы коммуникации	TCP, UDP, собственный протокол rosserial	IPC, TCP	ACE, TCP, UDP, IPC
Формат сообщений	Бинарный	Бинарный, XML, JSON	Бинарный

Факторы производительности

MARM Performance Testing

Введени

Планирования тестирования

Факторы

производительности

Конфигурац

Бенчмарки Анализатор

Система

тестировані

ROS MIR A

MIRA

Сравнени Итоги

2011111011

Заключ

Общий фактор:

Размер сообщений	1Кб	4Кб	16Кб	64Кб	256Кб
т азмер сообщении	1Мб	4Мб	16Мб	64Мб	

ROS:

Размер буфера		10	100	1000	10000
Количество подписчиков		2	4	8	
Способ взаимодействия	Издатель-подписчик		Сервис-клиент		

MIRA:

Локализация модуля	Один процесс	Различные процессы
Способ взаимодействия	Каналы	RPC

YARP:

Тип порта С буфером		Без буфера	RPC		
Протокол	TCP	UDP*	FastTCP	ShMem	

Конфигурация среды тестирования производительности

MARM Performance Testing

Введение

Планирования тестирования

Факторы

производительност

1 сализаци

Конфигурация

Анализат Система

Результаты тестировани

ROS MIRA

Сравне

Итоги

Заключение

Тесты проводились на следующей аппаратной конфигурации:

- 8 процессоров Intel Xeon E5-2580 2.4 ГГц;
- 64 Гб оперативной памяти.

Операционная система: Ubuntu 16.04. Для тестирования был установлен Docker версии 18.04.0-се.

Требования к инструменту измерения производительности

MARM Performance Testing

Введени

Планирования тестирования

Предмет

Факторы производительнос

Реализаци

Конфигураци Бенчмарки

Анализат

Результаты тестировани

MIRA

ҮАКР Сравнени

Сравнение Итоги

Заключ

Измеряемые характеристики:

- Задержка передачи сообщений между зулами (нс)
- Полоса пропускания канала коммуникации (б/с)

Требования к инструменту:

- Точность вычисления:
 - Высокоточные часы std::chrono
 - Такты процессора asm rdtsc
- Сериализация результатов в файл
- Возможность приостанавливать учет времени
- Итеративность выполнения тестов

Решения:

- Google Benchmark framework
- Собственная библиотека Benchmark gripper (причина: MIRA)

Benchmark Gripper: сценарии использования и диаграмма состояний

MARM Performance Testing

Ввелени

Планировани

Предмет

Факторы

D

Конфигурац

Бенчмарки

Анализа:

тестировані тестировані

ROS

YARP

Итоги

Заключение

Benchmark Gripper: диаграмма классов

MARM Performance Testing

Введение

Планировани тестирования

Предмет

Факторы

производительно

1 силизиці

Конфигураци

Бенчмарки

.

Система

тестировани

ROS

YARP

Сравн

Итоги

Заключени

Benchmark Gripper: преимущества и недостатки

MARM Performance Testing

Ввелени

Планирования тестирования

Предмет

Факторы

D.

Конфигураци

Бенчмарки

Система

Результаты тестировани

MIRA

Сравнени

Сравнение Итоги

Заключение

Преимущества:

- не требуется предварительная компиляция
- интерфейс основан на макросах
- высокая точность
- сериализация результатов совместимая с Google Benchmark

Недостатки:

- скудный по-сравнению с Google benchmark функционал
- длительное исполнение тестов

Анализатор результатов - Merger.py

MARM Performance Testing

Введение

Планировани тестирования

Предмет

Факторы

...

Конфигураци

Бенчмарки **Анализатор**

Система

тестировани:

MIRA YARP

Сравнен

Заключени

■ Принимает на вход:

- множество результатов в формате json
- файлыконфигурации
- Статистически обрабатывает результаты
- Результат файл rmarkdown

Система тестирования производительности

MARM Performance Testing

Введени

Планирования тестирования

Предмет

Факторы

производительно

Реализания

Конфигурац

Бенчмарки

Система

Результаты

тестирован

MIRA

Сравн

Зактионен

ROS - влияние различных факторов

MARM Performance Testing

Введени

Планирования

Предмет

Факторы

производительно

Реализаци

1 0001113011111

Конфигураці

Бенчмарі

Анализат Система

Результаты тестировани

ROS

YARP

Итоги

Заключение

Размера буфера:

Размер буфера

Количество подписчиков:

ROS - паттерн «Издатель-подписчик»

MARM Performance Testing

Ввеление

Планировани тестирования

Предмет тестирования

Факторы производительност

Реализаци

Бенчмарк

Анализат

Результаты тестировани

ROS

MIRA

Сравнен Итоги

Заключение

Задержка при передачи сообщений:

Пропускная способность:

ROS - паттерн «Клиент-сервис»

MARM Performance Testing

Введение

Планировани тестирования

тестирования

производительност

Реализаци

1 сализаци

Конфигурац

a seri isitip

Система

Результаты тестирования

ROS

MIRA YARP

Сравнение Итоги

Заключение

Задержка передачи запроса и ответа:

Размер сообщения

Сравнение с подходом "издатель-подписчик":

MIRA - зависимость от расположения модулей

MARM Performance Testing

MIRA

MIRA - RPC

MARM Performance Testing

Ввелени

Планирования тестирования

Предмет тестирования

Факторы производительност

Реализаци

т сализаци.

Анализа

Система

тестировани

ROS

MIRA

YARP

Сравп

Зактиона

Заключение

Сравнение задержки передачи данных с каналами:

Пропускная способность:

YARP - сравнение различных типов портов

MARM Performance Testing

Ввеление

Планирования

Предмет

Факторы

Реализапи

гсализаци

конфигур

Анализа

Система

тестировани

ROS

YARP

Сравнен

Итоги

Заключен

Сравнение задержки передачи данных:

Сравнение пропускной способности:

YARP - сравнение различных протоколов

MARM Performance Testing

Введени

Планирования тестирования

тестирования

производительнос

Реализаци

Конфигураци

Бенчмаркі Анализато

Анализато Система

тестировани

ROS

YARP

Сравнен

Заключени

Для буферизованного порта:

Для RPC-порта:

Сравнение производительности фреймворков

MARM Performance Testing

Сравнение

Передача данных по ТСР для различных процессов:

Производительность реализаций RPC:

Итоги тестирования производительности

MARM Performance Testing

Введени

Планировани тестирования

Предмет тестирования

Факторы

Конфигураці

Анализато

Результаты тестировани

ROS MIRA

Сравне

Сравнени **Итоги**

Заключение

Таким образом, результаты тестирования выявили следующие факты:

- на производительность ROS не влияет ни количество подписчиков, ни размер буфера
- производительность ROS резко падает при передачи больших объемов данных
- YARP имеет наихудшие показатели производительности
- в YARP рекомендуется использовать разделяемую память на основе АСЕ
- MIRA имеет наилучшие показатели производительности

Заключение

MARM Performance Testing

Введени

Планирования тестирования

тестирования

Факторы производительнос

Конфигураци

Анализато

Результаты

тестировани

MIRA

YARP

Сравно

Заключение

Таким образом, в ходе работы:

- Было проведено исследование такой предметной области, как промежуточное ПО для разработки прикладных систем автономных роботов
- Был составлен список факторов, которые гипотетически могли влиять на производительность
- Был составлен и реализован план тестирования в ходе которого:
 - Была реализована собственная библиотека для разработки бенчмарк-тестов
 - Были определены и реализованы тестовые случаи
 - Был реализован анализатор результатов тестирования производительности
- Был проведен анализ результатов тестирования и оформлен отчет по исследованию

Публикации

MARM Performance Testing

Введени

Планировани тестирования

тестирования

производительнос

Реализация

Конфигураци

Анализато

Результаты тестировані

ROS

YARP

Сравн

Заключение

Исходный код и материалы: https:

//github.com/JAkutenshi/master_degree_repo

Статья: Ефремов М.А. Проблематика производительности многоагентных фреймворков для разработки ПО автономных роботов / сборник докладов студентов, аспирантов и молодых ученых 71-й научно-технической конф. профессорско-преподавательского состава университета., СПб, 29 янв.— 9 фев. 2018 г. / СПбГЭТУ «ЛЭТИ», СПб, 2018, С. 99-102.