FIG. 1

FIG. 5

Avg			Avg	1			Avg				Avg				Avg				Avg							
			100				·								Š											
	-	-	4 II	=	=	=		-	-	-		-	-	-	Sire	=	=	=	117	=	=	=			SAP Type	
	Ξ	Ξ		Ξ	≡	=		_	_	_		=	=	=		_		_	11.00	=	=	=			Fiber Type	
SX	SX	SX	Vq.	PV,	PV	PV.	XS	SX	SXI	SX	(SX)	SX	SX	SX	PV	PV	P\	PV	, PV	P	PV	PK				
XM9543		SXM9543 (PVA9543			SXM9543	SXM9543 I		N9543 I	SXM9543	M9543 I	SXM9543	SXM9543	VA9543	PVA9543		VA9543	VA9543≩	VA9543	VA9543	19543			SAP Type	
CHITO	CHITO	OTITO CHITO	CHITO	CHITO	OTIF2	OLIF3	PSSN	PSSN	PSSN	PSSN	EXCELL	EXCELL	EXCELL	EXCELL	PSSN	PSSN	IPSSN	IPSSN	EXCELL	EXCELL	EXCELL	EXCELL			Fiber Type	
			子を																							
23 	23	23	22.1	22.1	22.1	22.1	523 %	23	23	23	23	23	23	23	22.1	22.1	22.1	22.1	22.1	22.1	22.1	22.1		(8/8)		
0.87	0.87	0.87	0.87	0.87	0.87	0.87	1.13	1.13	1.13	1.13	078	0.78	0.78	0.78	1 13	1.13	1.13	1.13	0.78	0.78	0.78	0.78		(9/9)	Fiber CRC	
1) Cap (g/g)	0.5psi Sat	
7.1	7.3	16.9	59		6.8	15.1	65			6.5	15.9 3.4			15.9	7.2			17.2	7.0			17:0		9/9	Sat Peri	CP :
109.4	89.3	111.9	140.5	131.3	134.3	155.8	87.3	87.6	84.1	90.2	-61.5	62.0	64.6	57.8	117.7	125.7	114.5	113.0	111.6	112.8	113.6	108.5			m (µm2)	P = Composite Permeability
0.12	0.122	0.10	0.11	0.11	0.11	0.12	0 12	0.11	0.12	0.13	0.12	0.12	0.12	0.12	0:11	0.13	0.13	0.08	0 12	0.11	0.12	0.11		(g/cc)	CP Dry De	ite Perme
																									-	ability)
503.1 493.8	32.7	35.7	9.6	38.4	58.0	32.3	18.7	30.2	31.5	54.5	33.4	32.3	75.3	92.7	53.3 √	10.6 0.6	75.3	4.1	742	34.9	78.8	78.8		(gsm)	WB o	
9.3 9.4	8.9	10.0	11.0	10.7	10.3	11.9	7.5	7.8	7.1	7.7	7.8	7.7	8.0	7.6	9.5	9.4	9.8	9.2	97	9.2	10.2	9.8	(cc/g)	Volume	CP Vold	
1.71 1.66	1.5	1.7).1	1.1	<u>-</u>	. 0.9	10	1.0	1.8	1.0	1 26	2.6	2.5	2.9		1.5	<u>.</u>	1.	2	2.	2.3	<u></u>		Ē	FIE Insult1	
																								(s)	_	
4.01	5.33	4.50	13.63	12.95	14.49	13.46	9 30	5.39	8.58	13.93	5.21	6.12	5.26	4.26	15.56-	14.14	15.63	16.92	2.47	2.21	2.55	2.65		(ml/s)	E Insult2	
1.98 2.74	3.91	2.32	12.50	12.95	12.14	12.42	8.32	5.39	8.10	11.46	3.98	5.04	4.24	2.66	≲, 3.56	2.55	3.18	4.94	1 20	1.04	1.23	1.32		(ml/s	FIE insult3	
																								Thick (FIE Dry	
3.47 3.35	22	36	21	39	26	.99	16	11	6	20	41:56	.42	.36	45	09 🖟	.13	.06	.09	20	.26	<u>~</u>	04				
7.57	7 42	7.61	.7.38	7.40	7.46	7.30	7.56	7.23	7.70	7.75	6.85	6.98	6.85	6.71	7 20	7.11	7.11	7.39	6.41	6.35	6.30	6.58		(mm)	: Thick1	
8.68 8.75	8.8	8.7	8.9	9.0	9.0	8.9	9.2	8.8	9.3	9.5	8.3	8.4	8.3	8.1	8.6	8.4	8.6	8.7	7.6	7.5	7.4	7.8		â	FIE Thick2	
							1																			
9.22	9.36	9.27	9.66	9.61	9.76	9.61	9.84	9.42	0.03	0.08	8.93	9.08	8.94	8.77	9 15	8.98	9.25	9.22	8.19	8.18	8.02	8:36		(mm)	FIE Thick3	
2.667 2.653	2.665	2.628	2.645	2.570	2.664	2.700	2 863	2.840	2.879	2.871	2.812	2.810	2.822	2.805	2.882	2.880	2.909	2.856	2.847	2.838	2.831	2.871		Wt (g)	Initial FIE	

FIG. 6

