QUESTION 1.

Write a Java program to solve the subset problem.

(a) Tor F.

(b) One solution.

```
• • •
public class Subset {
      public static String[][] subsetOnSolution(int[] s, int n) {
              String[][] res = new String[rows][n + 1];
                    for (int j = 0; j <= n; j++) {
    res[i][j] = " "; // Default value
             // Fill the array with subset logic
for (int i = 0; i < rows; i++) {
    for (int j = 0; j <= n; j++) {
        if (j == 0) {</pre>
                                  if (j == s[i]) {
    res[i][j] = "{" + s[i] + "}";
                                  ise {
  if (j < s[i]) {
    if (res[i][j].equals(" ")) {
      res[i][j] = "" + res[i - 1][j] + "";
}</pre>
                                         if (res[i - 1][j - s[i]].equals(" ")) {
    res[i][j] = " ";
} else if (!res[i - 1][j - s[i]].equals(" ")) {
                                                if (res[i - 1][j - s[i]].length() == 2) {
   if (j == s[i] && res[i - 1][j].length() > 2) {
     res[i][j] = "" + res[i - 1][j];
                                                               res[i][j] = res[i - 1][j - s[i]].replace("}", "") + s[i] +
                                                 } else {
```

(c) All solutions.

```
public class Subset {
      public static String[][] subsetAllSolution(int[] s, int n) {
            for (int i = 0; i < rows; i++) {
   for (int j = 0; j <= n; j++) {
      res[i][j] = " "; // Default value</pre>
            for (int i = 0; i < rows; i++) {
   for (int j = 0; j <= n; j++) {
     if (j == 0) {</pre>
                             if (j == s[i]) {
    res[i][j] = "{" + s[i] + "}";
                              if (j < s[i]) {
                                         res[i][j] = "" + res[i - 1][j] + "";
                                    if (cur.equals(" ")) {
    res[i][j] = " ";
                                          if (cur.length() == 2) {
    if (j == s[i] && res[i - 1][j].length() > 2) {
                                          } else {
                                                      res[i][j] = cur.replace("}", ",") + s[i] + "}";
```

QUESTION 2.

Solve subset problem where $S = \{3, 4, 7, 8\}$ and k = 15.

(a) T or F.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	T			T												
4	T			T	T			T								
7	T			T	T			T			T	T			T	
8	T			T	T			T	T			T	T			T

(b) One solution.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	{}			{3}												
4	{}			{3}	{4}			{3,4}								
7	-{}			{3}	{4}			{3,4}			{3,7}	{4,7}			{3,4,7}	
8	{}			{3}	{4}			{3,4}	{8}			{4,7}	{4,8}			{3,4,8}

(c) All solutions.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	{}			{3}												
4	-{}			{3}	{4}			{3,4}								
7	-{}			{3}	{4}			{3,4},{7}			{3,7}	{4,7}			{3,4,7}	
8	{}			{3}	{4}			{3,4},{7}	{8}			{4,7}	{4,8}			{3,4,8}

QUESTION 3

Solve the integer Knapsack problem given below:

The maximum allowable total weight in the knapsack is Wmax = 20.

Item	а	b	С	d	е
value	25	12	24	16	28
Weight	5	6	8	2	7

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
а	0	0	0	0	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
b	0	0	0	0	25	25	25	25	25	25	37	37	37	37	37	37	37	37	37	37
С	0	0	0	0	25	25	25	25	25	25	37	37	49	49	49	49	49	49	61	61
d	0	0	16	16	25	25	41	41	41	41	41	41	53	53	65	65	65	65	65	65
е	0	0	16	16	25	25	41	41	41	44	44	53	53	69	69	69	69	69	69	81

QUESTION 4. Solve the fractional Knapsack problem given below:

The maximum allowable total weight in the knapsack is Wmax = 20.

Item	а	b	С	d	е
value	25	12	24	16	28
Weight	5	6	8	2	7

Total weight: 20

Max value approach: e + a + c = 28 + 25 + 24 = 77

Min weight approach: d + a + b + e = 2 + 5 + 6 + 7 = 20

Value per weight: a: 5, b: 2, c: 3, d: 8, e: 4

Select: d a e 0.75c = 16 + 25 + 28 + 18 = 87

QUESTION 5.

https://leetcode.com/problems/climbing-stairs/description/

QUESTION 6.

https://leetcode.com/problems/house-robber/description/

```
def rob(self, nums: List[int]) -> int:
    n = len(nums)
    if n == 0:
        return 0
    if n <= 1:
        return nums[0]

    dp = [0] * n
    dp[0] = nums[0]
    dp[1] = max(nums[0], nums[1])
    for i in range(2, n):
        dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])

    return dp[n - 1]</pre>
```