

Unsupervised Crop Classification Using Time Series Satellite Imagery

Work By:

Karan Singh

2022CSM1008

M.Tech (CSE)

Under Supervision of:

Dr. Neeraj Goel Assistant Professor IIT Ropar

INTRODUCTION

- Global population has reached 7.8 billion and is growing, presenting a challenge to food security
- Requirement of boosting agricultural production
- Smart agriculture enhances production and tackles environmental concerns
- Need of reliable and easily accessible data

INTRODUCTION (CONT.)

- Satellite provides data in form images which enables solution to diverse agricultural issues
 - Spatial resolution 1 m, 3 m, 10 m, 30 m, 60 m, 250 m, etc.
 - > Temporal resolution : 2 to 16 days
- Satellite provides multi-band data
- Vegetation Indices : NDVI, NDWI, NDMI, etc.
- Normalized Difference Vegetation Index (NDVI) = (NIR - RED) / (NIR + RED)

PROBLEM STATEMENT

- Can we use satellite images for crop type mapping?
- Potential applications
 - > Crop growth monitoring
 - > Production estimation
 - Supply chain planning
 - Land use planning
 - Water management

CHALLENGES & PROPOSED SOLUTION

Challenges

- Different sowing times of crops
- Similarity between different crops
- Variable crop varieties
- Unlabeled areas

Proposed Solution

- Use of Time Series Dataset
- Use of unsupervised ML algorithms
- Spectral Matching

METHODOLOGY

TIME SERIES DATASET

- Upper part 38 km^2
- Lower part 178 km^2
- 32 satellite images in time series (June 2023 - Nov 2023)
- June (5 images), July (3 images), August (5 images), September (7 images), October (7 images), November (5 images)

AUTOENCODER MODEL

TRAINING AUTOENCODER

- Divided dataset into 80:20 ratio as training and validation data respectively
- Trained autoencoder for 70 epochs
- Saved only Encoder part
- Extracted feature vector

CLUSTERING USING K-MEANS

ASSIGNING CROP NAMES TO CLUSTERS

- Used ideal spectra + majority method
- Maize, paddy and sugarcane from left to right
- Finally assigned crop names to these clusters

GROUND SAMPLES

- Visited 600+ crop fields in Rupnagar
- Collected around 3600 ground data points in the form of latitude & longitude
- Maize (800 points), Paddy (1940 points) and Sugarcane (830 points)

GROUND SAMPLES (CONT.)

Crop	Latitude	Longitude	Crop	Latitude	Longitude	Crop	Latitude	Longitude
Maize	31.093069	76.520368	Paddy	30.971968	76.468702	Sugarcane	30.971489	76.461421
Maize	31.09298	76.520357	Paddy	30.971958	76.468776	Sugarcane	30.971461	76.461129
Maize	31.092909	76.520322	Paddy	30.971934	76.468886	Sugarcane	30.971688	76.461446
Maize	31.09293	76.520411	Paddy	30.971943	76.468593	Sugarcane	30.971644	76.461121
Maize	31.092909	76.520352	Paddy	30.971334	76.468499	Sugarcane	30.971315	76.460979
Maize	31.093139	76.520336	Paddy	30.971336	76.468947	Sugarcane	30.971145	76.460979
Maize	31.093111	76.520408	Paddy	30.971591	76.469055	Sugarcane	30.970968	76.460864
Maize	31.092907	76.520419	Paddy	30.971757	76.469068	Sugarcane	30.97086	76.461156
Maize	31.092799	76.52032	Paddy	30.971766	76.468567	Sugarcane	30.970828	76.461379
Maize	31.092783	76.520387	Paddy	30.971499	76.468526	Sugarcane	30.970798	76.461553
Maize	31.092785	76.520347	Paddy	30.971897	76.46907	Sugarcane	30.970929	76.46162
Maize	31.093041	76.520584	Paddy	30.971327	76.468745	Sugarcane	30.971111	76.461615
Maize	31.093049	76.52068	Paddy	30.972413	76.466381	Sugarcane	30.971267	76.461645
Maize	31.092943	76.5206	Paddy	30.97251	76.46621	Sugarcane	30.971515	76.461675
Maize	31.092941	76.520533	Paddy	30.972542	76.465813	Sugarcane	30.971326	76.461399

EXPERIMENTS

- ArcMap and QGIS
- Python and Tensorflow
- Implemented four different methods
 - (Pixel based) + (K-Means) + (NDVI)
 - (Patch based) + (K-Means) + (NDVI)
 - ➤ (Autoencoder) + (Pixel based) + (K-Means) + (NDVI)
 - > (Autoencoder) + (Patch based) + (K-Means) + (NDVI)

RESULTS

Method	Maize(Accuracy%)	Paddy(Accuracy%)	Sugarcane(Accuracy%)
Pixel Based	74.76	67.73	91.42
Patch Based	79.56	63.35	87.53
Autoencoder + Pixel Based	74.49	70.78	94.50
Autoencoder + Patch Based	85.60	72.64	83.78

CONCLUSION

- Proposed new method to map different crop types
- Used Autoencoder for feature extraction
- Future work may include working on more number of crops

QUESTIONS

THANK YOU