第3章课后部分参考答案

1.

(11)
$$\left| -\left[(A \to B) \to C \right] \to \left[(A \to C) \to C \right] \right|$$

- 1) $\neg C \rightarrow (C \rightarrow B)$ 定理 3
- 2) $A \rightarrow [\neg C \rightarrow (C \rightarrow B)]$ 1) 定理 2
- 3) $\neg C \rightarrow [A \rightarrow (C \rightarrow B)]$ 2) 定理 6
- 4) $[A \rightarrow (C \rightarrow B)] \rightarrow [(A \rightarrow C) \rightarrow (A \rightarrow B)]$ A
- 5) $\neg C \rightarrow [(A \rightarrow C) \rightarrow (A \rightarrow B)]$ 3) 4) 定理 7
- 6) $[(A \rightarrow C) \rightarrow (A \rightarrow B)] \rightarrow [\neg (A \rightarrow B) \rightarrow \neg (A \rightarrow C)]$ 定理 12
- 7) $\neg C \rightarrow [\neg (A \rightarrow B) \rightarrow \neg (A \rightarrow C)]$ 5) 6) 定理 7
- 8) $[\neg C \rightarrow \neg (A \rightarrow B)] \rightarrow [\neg C \rightarrow \neg (A \rightarrow C)]$ 7) $A_2 + r_{mn}$
- 9) $[(A \rightarrow B) \rightarrow C] \rightarrow [\neg C \rightarrow \neg (A \rightarrow B)]$ 定理 12
- 10) $[(A \rightarrow B) \rightarrow C] \rightarrow [\neg C \rightarrow \neg (A \rightarrow C)]$ 9) 8) 定理 7
- 11) $[\neg C \rightarrow \neg (A \rightarrow C)] \rightarrow [(A \rightarrow C) \rightarrow C]$ A3
- 12) $[(A \to B) \to C] \to [(A \to C) \to C)$ 10) 11) 定理 7

$$(12) \left[- \left[\left[(A \to B) \to C \right] \to D \right] \to \left[(B \to D) \to (A \to D) \right]$$

- 1) $\neg (A \rightarrow B) \rightarrow [(A \rightarrow B) \rightarrow C)]$ 定理 3
- 2) $\{\neg(A \to B) \to [(A \to B) \to C)]\}$ $\to \{\neg[(A \to B) \to C] \to (A \to B)\}$ 定理 13
- 3) $\neg [(A \rightarrow B) \rightarrow C] \rightarrow (A \rightarrow B)$ 1) 2) r_{mn}
- 4) $\neg D \rightarrow \{\neg (A \rightarrow B) \rightarrow C\} \rightarrow (A \rightarrow B)\}$ 3) 定理 2
- 5) $\{\neg D \rightarrow \neg [(A \rightarrow B) \rightarrow C]\} \rightarrow [\neg D \rightarrow (A \rightarrow B)]$ 4) $A_2 + r_{mn}$
- 6) $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$ 定理 12

7)
$$\neg D \rightarrow [(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)]$$
 6) 定理 2

8)
$$[\neg D \rightarrow (A \rightarrow B)] \rightarrow [\neg D \rightarrow (\neg B \rightarrow \neg A)]$$
 7) $A_2 + r_{mp}$

9)
$$\{\neg D \rightarrow \neg [(A \rightarrow B) \rightarrow C]\} \rightarrow [\neg D \rightarrow (\neg B \rightarrow \neg A)]$$
 5) 8) 定理 7

10)
$$\{[(A \rightarrow B) \rightarrow C] \rightarrow D\} \rightarrow \{\neg D \rightarrow \neg [(A \rightarrow B) \rightarrow C]\}$$
 定理 12

11)
$$\{[(A \rightarrow B) \rightarrow C] \rightarrow D\} \rightarrow \{\neg D \rightarrow (\neg B \rightarrow \neg A)\}\ 10)$$
 9) 定理 7

12)
$$\{\neg D \rightarrow (\neg B \rightarrow \neg A)\} \rightarrow [(\neg D \rightarrow \neg B) \rightarrow (\neg D \rightarrow \neg A)] A_2$$

13)
$$[(B \to D) \to (\neg D \to \neg B)] \to$$

 $\{[(\neg D \to \neg B) \to (\neg D \to \neg A)] \to [(B \to D) \to (\neg D \to \neg A)]\}$ 定理 7

14)
$$[(B \rightarrow D) \rightarrow (\neg D \rightarrow \neg B)]$$
 定理 12

15)
$$[(\neg D \rightarrow \neg B) \rightarrow (\neg D \rightarrow \neg A)] \rightarrow [(B \rightarrow D) \rightarrow (\neg D \rightarrow \neg A)]$$
 13) 14) r_{mn}

16)
$$[(\neg D \rightarrow \neg A) \rightarrow (A \rightarrow D)] A_3$$

17)
$$(B \to D) \to [(\neg D \to \neg A) \to (A \to D)]$$
 16) 定理 2

18)
$$[(B \rightarrow D) \rightarrow (\neg D \rightarrow \neg A)] \rightarrow [(B \rightarrow D) \rightarrow (A \rightarrow D)]$$
 17) $A_2 + r_{mn}$

19)
$$[(\neg D \rightarrow \neg B) \rightarrow (\neg D \rightarrow \neg A)] \rightarrow [(B \rightarrow D) \rightarrow (A \rightarrow D)]$$
 15) 18) 定理 7

20)
$$\{\neg D \rightarrow (\neg B \rightarrow \neg A)\} \rightarrow [(B \rightarrow D) \rightarrow (A \rightarrow D)]$$
 12) 19) 定理 7

21)
$$[[(A \rightarrow B) \rightarrow C] \rightarrow D] \rightarrow [(B \rightarrow D) \rightarrow (A \rightarrow D)]$$
 11)20) 定理 7

$$(13) \left[-(A \to C) \to \left\{ (B \to C) \to \left[\left[(A \to B) \to B \right] \to C \right] \right\}$$

1)
$$[\neg A \rightarrow (A \rightarrow B)] \rightarrow \{[(A \rightarrow B) \rightarrow B] \rightarrow (\neg A \rightarrow B)\}$$
 定理 7

2)
$$\neg A \rightarrow (A \rightarrow B)$$
 定理 3

3)
$$[(A \rightarrow B) \rightarrow B] \rightarrow (\neg A \rightarrow B)$$
 1) 2) r_{mn}

4)
$$\neg A \rightarrow \{[(A \rightarrow B) \rightarrow B] \rightarrow B\}$$
 3) 定理 6

5)
$$\{[(A \rightarrow B) \rightarrow B] \rightarrow B\} \rightarrow \{\neg B \rightarrow \neg [(A \rightarrow B) \rightarrow B]\}$$
 定理 12

6)
$$\neg A \rightarrow \{\neg B \rightarrow \neg [(A \rightarrow B) \rightarrow B]\}$$
 4) 5) 定理 7

7)
$$\neg C \rightarrow \{\neg A \rightarrow [\neg B \rightarrow \neg [(A \rightarrow B) \rightarrow B]]\}$$
 6) 定理 2

8)
$$(\neg C \rightarrow \neg A) \rightarrow \{\neg C \rightarrow [\neg B \rightarrow \neg [(A \rightarrow B) \rightarrow B]]\}$$
 7) $A_2 + r_{mn}$

9)
$$\{\neg C \to [\neg B \to \neg [(A \to B) \to B]]\} \to$$

 $\{(\neg C \to \neg B) \to [\neg C \to \neg [(A \to B) \to B]\}\ A_2$

10)
$$(\neg C \rightarrow \neg A) \rightarrow \{(\neg C \rightarrow \neg B) \rightarrow [\neg C \rightarrow \neg [(A \rightarrow B) \rightarrow B]]\}$$
 8) 9) 定理 7

11)
$$[\neg C \rightarrow \neg [(A \rightarrow B) \rightarrow B]] \rightarrow [[(A \rightarrow B) \rightarrow B] \rightarrow C]$$
 A_3

12)
$$(\neg C \to \neg B) \to \{[\neg C \to \neg [(A \to B) \to B]] \to$$

 $[[(A \to B) \to B] \to C]\}$ 11) 定理 2

13)
$$\{(\neg C \to \neg B) \to [\neg C \to \neg [(A \to B) \to B]]\} \to$$

 $\{(\neg C \to \neg B) \to [[(A \to B) \to B] \to C]\}$ 12) $A_2 + r_{mn}$

14)
$$(\neg C \rightarrow \neg A) \rightarrow \{(\neg C \rightarrow \neg B) \rightarrow [[(A \rightarrow B) \rightarrow B] \rightarrow C]\}$$
 10) 13) 定理 7

15)
$$(A \rightarrow C) \rightarrow (\neg C \rightarrow \neg A)$$
 定理 12

16)
$$(A \rightarrow C) \rightarrow \{(\neg C \rightarrow \neg B) \rightarrow [[(A \rightarrow B) \rightarrow B] \rightarrow C]\}$$
 14) 15) 定理 7

17)
$$(\neg C \rightarrow \neg B) \rightarrow \{(A \rightarrow C) \rightarrow [[(A \rightarrow B) \rightarrow B] \rightarrow C]\}$$
 16) 定理 6

18)
$$(B \rightarrow C) \rightarrow (\neg C \rightarrow \neg B)$$
 定理 12

19)
$$(B \to C) \to \{(A \to C) \to [[(A \to B) \to B] \to C]\}$$
 17) 18) 定理 7

20)
$$(A \rightarrow C) \rightarrow \{(B \rightarrow C) \rightarrow [[(A \rightarrow B) \rightarrow B] \rightarrow C]\}$$
 19) 定理 6

$$(14) \mid -(A \to C) \to \{(B \to C) \to [[(B \to A) \to A] \to C]\}$$

1)
$$(B \to C) \to \{(A \to C) \to [[(B \to A) \to A] \to C]\}$$

由上题的已证结论

2)
$$(A \rightarrow C) \rightarrow \{(B \rightarrow C) \rightarrow [[(B \rightarrow A) \rightarrow A] \rightarrow C]\}$$
 1) 定理 6

6.

(2)

先证 $(A \rightarrow (B \rightarrow C)) \rightarrow (A \land B \rightarrow C)$

只需证: $(A \rightarrow (B \rightarrow C)), A \land B \mid -C$

 $\textcircled{1}(A \rightarrow (B \rightarrow C)), A \land B | -A$

 $(A \rightarrow (B \rightarrow C)), A \land B \mid -B \land$ 消除

②
$$(A \rightarrow (B \rightarrow C)), A \land B \mid -A \rightarrow (B \rightarrow C)$$
 公理

③
$$(A \rightarrow (B \rightarrow C)), A \land B \mid -C$$
 ①② \rightarrow 消除

再证: $(A \land B \to C) \to (A \to (B \to C))$

只需证: $(A \land B \rightarrow C), A, B \mid -C$

 $\bigcirc (A \land B \to C), A, B | -A$

 $(A \land B \rightarrow C), A, B \mid -B$ 公理

$$2(A \land B \rightarrow C), A, B \mid -A \land B \quad 1 \land \exists \mid \lambda$$

③
$$(A \land B \to C), A, B \mid -A \land B \to C$$
 公理

$$(4)(A \land B \rightarrow C), A, B \mid -C$$
 ②③ → 消除

(3)

先证
$$((A \lor B) \to C) \to (A \to C) \land (B \to C)$$

① $((A \lor B) \to C), A \mid -A$ 公理

$$((A \lor B) \to C), A | -A \lor B \lor \exists | \lambda$$

②
$$((A \lor B) \to C), A \mid A \lor B \to C$$
 公理

③
$$((A \lor B) \to C), A \mid -C$$
 ①② \to 消除

$$\textcircled{4}((A \lor B) \to C) | -A \to C \ \textcircled{3} \to \vec{7} | \lambda$$

⑤
$$((A \lor B) \to C) - B \to C$$
 同理④可得

$$(6)((A \lor B) \to C)$$
 | $-(A \to C) \land (B \to C)$ (4) $(5) \land ∃$ (4)

再证
$$A \rightarrow C$$
) \land $(B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)$

只需证:
$$A \rightarrow C$$
) \wedge $(B \rightarrow C)$, $A \vee B \mid -C$

①
$$A \to C$$
) $\land (B \to C), A \lor B; A \mid -A$ 公理
$$A \to C) \land (B \to C), A \lor B; A \mid -A \to C \land$$
 消除

$$(2A \rightarrow C) \land (B \rightarrow C), A \lor B; A \vdash C (1) \rightarrow$$
消除

③
$$A \rightarrow C$$
) \land ($B \rightarrow C$), $A \lor B$; $B \mid -C$ 同理②可得

$$(4)$$
 $A \rightarrow C) \land (B \rightarrow C), A \lor B \mid -A \lor B$ 公理

$$(5)$$
 $A \rightarrow C) \land (B \rightarrow C), A \lor B \mid -C$ ②③④∨消除

(4)

①
$${A \rightarrow B, \neg (B \rightarrow C) \rightarrow \neg A} - \neg (B \rightarrow C) \rightarrow \neg A$$
 公理

②
$$\{A \to B, \neg (B \to C) \to \neg A\}$$
 $|-(\neg (B \to C) \to \neg A) \to (A \to (B \to C))$ 已证定理

③
$${A \rightarrow B, \neg (B \rightarrow C) \rightarrow \neg A} - A \rightarrow (B \rightarrow C)$$
 ①② \rightarrow 消除

④
$$\{A \to B, \neg (B \to C) \to \neg A\}$$
 $|-(A \to (B \to C)) \to ((A \to B) \to (A \to C))$ 已证定理

⑥
$${A \rightarrow B, \neg(B \rightarrow C) \rightarrow \neg A} - (A \rightarrow B)$$
 公理

(5)

先证
$$|-\neg(A \to B) \to A \land \neg B$$

①
$$\neg (A \to B), \neg A \mid \neg A \to B$$
 由定理 $\neg A \to (A \to B)$ 及 \rightarrow 消除

②
$$\neg(A \rightarrow B)$$
, $\neg A \mid \neg(A \rightarrow B)$ 公理

$$(3 \neg (A \rightarrow B) \mid \neg \neg A \ (1) (2 \neg \neg \beta) \lambda$$

$$(4)$$
¬ $(A \rightarrow B)$ |-A (3) ¬¬消除

⑤
$$\neg (A \rightarrow B), B \mid \neg A \rightarrow B$$
 由定理 $B \rightarrow (A \rightarrow B)$ 及 \rightarrow 消除

$$(7 \neg (A \rightarrow B) | \neg B \quad (5) \oplus \neg \exists | \lambda$$

$$\otimes | \neg (A \rightarrow B) \rightarrow A \land \neg B$$
 $\textcircled{47} \land \exists | \lambda$

再证:
$$|-(A \land \neg B) \rightarrow \neg (A \rightarrow B)$$

①
$$A \land \neg B, A \rightarrow B - A \land$$
消除

②
$$A \land \neg B, A \rightarrow B \mid \neg A \rightarrow B$$
 公理

③
$$A \land \neg B, A \rightarrow B \mid \neg B$$
 ①② \rightarrow 消除

$$(4) A \land \neg B, A \rightarrow B | -\neg B \land 消除$$

(6)

①
$$(A \lor B) \land (\neg B \lor C), A - A$$
 公理

②
$$(A \lor B) \land (\neg B \lor C), A | \neg A \lor C$$
 ① $\lor \exists | \lambda$

③
$$(A \lor B) \land (\neg B \lor C), B; C \mid \neg C$$
 公理

$$(4)(A \lor B) \land (\neg B \lor C), B; C | \neg A \lor C \quad (3) \lor \exists | \lambda$$

⑤
$$(A \lor B) \land (\neg B \lor C), B; \neg B \mid \neg A \lor C$$
 由 B , $\neg B$ 及 ¬ 消除

⑥
$$(A \lor B) \land (\neg B \lor C), B \mid \neg \neg B \lor C \land$$
消除

⑦
$$(A \lor B) \land (\neg B \lor C), B \mid \neg A \lor C$$
 ④⑤⑥ \lor 消除

$$(A \lor B) \land (\neg B \lor C) \mid \neg A \lor B \land$$
消除

$$(9(A \lor B) \land (\neg B \lor C) - A \lor C$$
 ②⑦ $(8) \lor$ 消除

先证: $|-(A \land B) \rightarrow A \land (\neg A \lor B)$

- ① $A \wedge B A \wedge$ 消除
- ② $A \wedge B \mid -B \wedge$ 消除
- $3A \wedge B A \vee B$ $2 \vee \exists A$
- $4 \land A \land B A \land (-A \lor B) \quad 13 \land 7 \land$

再证: $|-A \wedge (\neg A \vee B) \rightarrow (A \wedge B)$

- ② $A \wedge (\neg A \vee B)$; $\neg A \mid -B$ ①¬消除
- ③ $A \wedge (\neg A \vee B); B \mid -B$ 公理
- (4) $A \wedge (\neg A \vee B)$ $| \neg A \vee B \wedge 消除$
- ⑤ $A \wedge (\neg A \vee B) \mid -B$ ②③④∨消除
- ⑥ $A \wedge (\neg A \vee B) | -A \wedge 消除$
- $(7) A \wedge (\neg A \vee B) A \wedge B \quad (5) \otimes \wedge 7$

先证 $|-B \rightarrow ((A \leftrightarrow B) \leftrightarrow A)$

只需证: $B,(A \leftrightarrow B) | -A \not \supset B, A | -A \leftrightarrow B$ (显然)

- ②B, $(A \leftrightarrow B) | -B$ 公理
- ③ $B, (A \leftrightarrow B) \mid -A$ ①②→消除

再证 $|-((A \leftrightarrow B) \leftrightarrow A) \rightarrow B$

① $(A \leftrightarrow B) \leftrightarrow A, A - A \rightarrow (A \leftrightarrow B)$ \leftrightarrow 消除

②
$$(A \leftrightarrow B) \leftrightarrow A, A - A$$
 公理

$$③(A \leftrightarrow B) \leftrightarrow A, A - A \leftrightarrow B$$
 ①②→消除

$$④(A \leftrightarrow B) \leftrightarrow A, A - A \rightarrow B$$
 ③ \leftrightarrow 消除

$$(5)(A \leftrightarrow B) \leftrightarrow A, A - B$$
 ②④ \rightarrow 消除

下面证 $(A \leftrightarrow B) \leftrightarrow A, \neg A - B$ 也成立。

⑥
$$(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid \neg \neg A \rightarrow (A \rightarrow B)$$
 已证定理

$$$$ $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B | - \neg A$ 公理$$

$$9(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -\neg B \rightarrow (B \rightarrow A)$$
 已证定理

$$(10)(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -\neg B$$
 公理

$$\mathbb{O}(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B | -B \to A \quad \textcircled{9} \textcircled{10} \to \mathring{\mathbb{N}} \mathring{\mathbb{N}}$$

$$\mathbb{Q}(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B | -A \leftrightarrow B \otimes \mathbb{Q} \leftrightarrow \exists | \lambda$$

$$\mathbb{G}(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B | \neg (A \leftrightarrow B) \rightarrow A \leftrightarrow \mathring{\parallel} \mathring{\mathbb{R}}$$

$$\mathbb{G}(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B | -A$$
 $\mathbb{G}\mathbb{G} \rightarrow$ 消除

$$\mathbb{O}(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -\neg A$$
 公理

$$\mathbb{G}(A \leftrightarrow B) \leftrightarrow A, \neg A | \neg \neg B \quad \mathbb{G}\mathbb{G} \neg \vec{\exists} | \lambda$$

$$\mathbb{O}(A \leftrightarrow B) \leftrightarrow A, \neg A - B \quad \mathbb{O} \neg \neg \mathring{n}$$

$$\mathbb{O}(A \leftrightarrow B) \leftrightarrow A - B$$
 ⑤ \mathbb{O} 假设消除