# Unsupervised Task Discovery for Multi-Task Acoustic Modeling

Josh Meyer

joshua.richard.meyer@gmail.com | @\_josh\_meyer\_ | jrmeyer.github.io



#### **Abstract**

- Multi-Task Learning works (good for low-resource languages)
- However, tasks are hard to make
- Better to discover tasks automatically
- Experiment with k-means on MFCCs
- ightharpoonup Data == 1.5 hours of Kyrgyz audio-book
- Initial Results Promising



Figure 1: Multi-Task Learning Architecture (Heigold et al. 2013)

#### 1. Background

- Multi-Task Learning in Acoustic Modeling
  - Multilingual
    - new language == new task
    - e.g. English vs. Kyrgyz
  - Monolingual

Phonetic Decision Tree

Label Equivalences

DNN Acoustic Model

- new linguistic encoding == new task
- e.g. vowels vs. consonants; monophones vs. triphones

R=Central-Consonant

# **4.** Mapping Triphone States → Clusters

All training examples aligned to triphone state are mapped to most common k-means cluster.



Figure 3: GMM-HMM aligned Triphone States



Figure 4: K-Means Discovered Clusters



Figure 5: Voting & Mapping of Triphone-States → Clusters

#### 5. Cluster Contents

- Started with 672 triphone states in Kaldi & 1024 clusters in TensorFlow
- 185 new labels after mapping
- > 75 w/ only one triphone state
  - ▶ e.g. { t+a-f }
  - $\triangleright$  9 w/ > 1 triphone of given phoneme
    - ▶ e.g. { t+a-f, g+a-p }
  - 39 w/ only vowels or only consonants
  - e.g. { t+a-f, p+o-k }

#### 7. Testing Setup

- k-folds cross-validation (k == 5)
  - ▶ 511 utterances for train
  - ▶ 100 utterances for test
- Decoded with 1-gram LM
  - Acoustic model more import

#### 8. Results: Traditional Weighting Scheme

- $\blacktriangleright \mathsf{Loss} = ((1 \alpha) * \mathit{MAIN} + \alpha * \mathit{AUX})$
- WER better than Baseline in 4/9 experiments

Table 2: WER% for Traditional Weighting Scheme

|                      | lpha= 0.1          | $\alpha = 0.2$     | $\alpha = 0.3$     |
|----------------------|--------------------|--------------------|--------------------|
| Single Task Baseline |                    | $57.55~\pm 1.82$   |                    |
| + 256 clusters       | $57.93 \ \pm 1.63$ | $57.04 \ \pm 1.58$ | $57.66 \ \pm 1.24$ |
| + 1024 clusters      | $57.69 \pm 3.78$   | $56.99 \pm 3.08$   | $57.60\ \pm0.79$   |
| + 4096 clusters      | $57.25 \pm 2.87$   | $58.07 \ \pm 1.35$ | $57.45 \pm 0.32$   |
|                      | _                  |                    |                    |

#### 9. Results: Simple Weighting Scheme

- $\blacktriangleright$  Loss =  $(MAIN + \alpha * AUX)$
- WER better than Traditional Loss
- WER better than Baseline in 6/9experiments

Table 3: WER% for Simple Weighting Scheme

|                      | $\alpha = 0.1$    | $\alpha = 0.2$     | $\alpha = 0.3$     |
|----------------------|-------------------|--------------------|--------------------|
| Single Task Baseline |                   | 57.55 ±1.82        |                    |
| + 256 clusters       | $57.33\ \pm 2.49$ | $58.02 \ \pm 2.09$ | $57.18\ \pm0.56$   |
| + 1024 clusters      | $57.74 \pm 3.06$  | <b>56.88</b> ±1.33 | $57.13\ \pm1.55$   |
| + 4096 clusters      | $57.56\ \pm 2.53$ | $57.49 \ \pm 3.17$ | $57.31 \ \pm 1.31$ |
|                      |                   |                    |                    |



Figure 2: Label Correspondance of Decision Tree / DNN (HTK Book & Heigold et al. 2013)

# 2. GMM-HMM Alignment

- All done in Kaldi
- Feature Extraction
  - ▶ 13 PLP features, 25ms Hamming windows, 10ms shift, 16 frame left-context & 12 frame right-context, CMVN
- GMM Alignment
  - ▶ Monophones: 1,000 Gaussians, 25 iterations EM // Triphones: 2,000 leaves & 5,000 Gaussians, 25 iterations EM

# 3. Clustering

- k-means Clustering
  - ▶ A set number of clusters is discovered via TensorFlow's standard k-means clustering.

# 6. Multi-Task DNN Training Set-up

- DNN Acoustic model training
  - Multi-Task Time-Delay Neural Network
  - ▶ 5-epochs, 11 *ReLU* layers,
  - $\sim \alpha_{initial} = 0.0015 \rightarrow \alpha_{final} = 0.00015$
  - ▶ Each task has penultimate + ultimate output layer



Figure 6: Model Accuracy During Training (Simple Loss)



Figure 7: Model Accuracy on Dev. Data During Training

#### 10. Discussion

- Good auxiliary tasks exist (we just need to find them)
- Initial results show small improvements, given good hyper-parameters
- Clustering in high-dimensional feature space isn't great
  - Find better projections: LDA, source DNN activations (from well-resourced lang.)
- Big net overfits to both tasks
- add more tasks
- use smaller net

### 11. Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1746060). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.