Overview and comparison of three techniques for inverted index compression

Golomb coding, Binary Interpolative Coding, and Simple-9

Silvia Imeneo

Information Retrieval A.Y. 2023-2024 Data Science and Scientific Computing

RECAP ON THE INVERTED INDEX

Collection of textual data

To retrieve information

Inverted index

Dictionary

Postings lists

PROBLEM!

Inverted index

Dictionary

Postings lists

In moder large-scale search engines, an inverted index indexes **millions** of documents

billions of integers to store

BENEFITS OF COMPRESSION

- Less disk space needed to store the inverted index
- More info fits into main memory = higher use of caching
- Faster query processing

TYPES OF COMPRESSION

Lossless: all information is preserved

Lossy: some information is discarded

Compression of **dictionary**

Compression of **postings lists**

We'll see 3 **lossless** techniques to compress **postings lists**

Encodes a postings list by encoding each integer individually

Example:

We have a postings list S = [4, 10, 11, 12, 15, 20, 21, 28, 29]

We compute the *d*-gaps D = [4, 6, 1, 1, 3, 5, 1, 7, 1]

encode 4 We encode each integer - encode 6 - encode 1 individually

- etc...

GOLOMB CODING How to

1. Start with the integer to compress

X

GOLOMB CODING How to

1. Start with the integer to compress

2. Represent it as two parts

quotient

$$q = \left\lfloor \frac{(x-1)}{k} \right\rfloor$$

remainder

$$r = x - (q * k) - 1$$

GOLOMB CODING How to

1. Start with the integer to compress

3. Compute two auxiliary quantities

quotient

$$q = \left\lfloor \frac{(x-1)}{k} \right\rfloor$$

remainder

$$r = x - (q * k) - 1$$

$$b = \lfloor \log_2(k) \rfloor$$

$$p = 2^{b+1} - k$$

k is the <u>base</u> of the Golomb code

It depends on the distribution of the integers in the postings list → they are assumed to follow a Bernoulli model

An estimated value is $k \approx 0.69 \times mean(array_of_integers)$

3. Compute two auxiliary quantities

$$\frac{(x-1)}{k}$$

remainder

$$r = x - (q * k) - 1$$

$$b = \lfloor \log_2(k) \rfloor$$

$$p = 2^{b+1} - k$$

How to (cont.)

$$q = \left[\frac{(x-1)}{k}\right]$$

remainder
$$r = x - (q * k) - 1$$

$$b = \lfloor \log_2(k) \rfloor$$

$$\mathbf{p} = 2^{b+1} - k$$

4. Based on those four quantities:

How to (cont.)

$$q = \left\lfloor \frac{(x-1)}{k} \right\rfloor$$

remainder
$$r = x - (q * k) - 1$$

$$b = \lfloor \log_2(k) \rfloor$$

$$\mathbf{p} = 2^{b+1} - k$$

4. Based on those four quantities:

4a. If $\mathbf{r} < \mathbf{p}$, the Golomb code is:

concat.

in **binary** code

How to (cont.)

$$q = \left\lfloor \frac{(x-1)}{k} \right\rfloor$$

remainder
$$r = x - (q * k) - 1$$

$$b = \lfloor \log_2(k) \rfloor$$

$$\mathbf{p} = 2^{b+1} - k$$

4. Based on those four quantities:

4a. If $\mathbf{r} < \mathbf{p}$, the Golomb code is:

q in **unary** code

concat.

in **binary** code

4b. If $\mathbf{r} \ge \mathbf{p}$, the Golomb code is:

q in **unary** code

concat.

r + p in **binary** code

The integer to compress is $\mathbf{x} = \mathbf{9}$

We choose as base k = 3

The integer to compress is $\mathbf{x} = \mathbf{9}$

We choose as base k = 3

1. We compute the quotient $q = \left\lfloor \frac{(9-1)}{3} \right\rfloor = 2$

The integer to compress is $\mathbf{x} = \mathbf{9}$

We choose as base k = 3

- 1. We compute the quotient $q = \left\lfloor \frac{(9-1)}{3} \right\rfloor = 2$
- 2. We compute the remainder r = 9 (2 * 3) 1 = 2

quotient q = 2

remainder r = x - (q * k) - 1

The integer to compress is $\mathbf{x} = \mathbf{9}$

We choose as base $\mathbf{k} = \mathbf{3}$

- 1. We compute the quotient $q = \left\lfloor \frac{(9-1)}{3} \right\rfloor = 2$
- 2. We compute the remainder r = 9 (2 * 3) 1 = 2
- 3. We compute $b = \lfloor \log_2(3) \rfloor = 1$

quotient q = 2

remainder r = 2

 $b = \lfloor \log_2(k) \rfloor$

The integer to compress is $\mathbf{x} = \mathbf{9}$

We choose as base k = 3

- 1. We compute the quotient $q = \left\lfloor \frac{(9-1)}{3} \right\rfloor = 2$
- 2. We compute the remainder r = 9 (2 * 3) 1 = 2
- 3. We compute $b = [\log_2(3)] = 1$
- 4. We compute $p = 2^{1+1} 3 = 1$

Since $\mathbf{r} > \mathbf{p}$

$$q = 2$$

$$r = 2$$

$$b = 1$$

$$p = 1$$

Since $\mathbf{r} > \mathbf{p}$

the Golomb code is:

q in **unary** code

concat.

r + p in **binary** code

$$q = 2$$

$$r = 2$$

$$b = 1$$

$$p = 1$$

Since $\mathbf{r} > \mathbf{p}$

the Golomb code is:

q in **unary** code

concat.

r + p in **binary** code

in unary code

concat.

2 + 1 = 3 in binary code

q = 2

r = 2

b = 1

p = 1

Since $\mathbf{r} > \mathbf{p}$

the Golomb code is:

q in **unary** code

concat.

r + p in **binary** code

in unary code

concat.

2 + 1 = 3 in binary code

110

concat.

11

$$q = 2$$

$$r = 2$$

$$b = 1$$

$$p = 1$$

Since $\mathbf{r} > \mathbf{p}$

the Golomb code is:

q in **unary** code

concat.

r + p in **binary** code

in unary code

concat.

concat.

2 + 1 = 3 in binary code

110

11

$$q = 2$$

$$r = 2$$

$$b = 1$$

$$p = 1$$

$$G_3(9) = 110 11$$

Encodes elements in a postings list by using the already-encoded ones

The encoding of an integer x is not fixed

The same integer may be encoded differently over different postings lists

Recursive algorithm

We have a sequence $S = [s_1, s_2, s_3, ..., s_m, ..., s_n]$

For it we always know the parameters:

- *n* **number** of elements in S
- low lower-bound to the lowest value in the sequence
- hi upper-bound to the highest value in the sequence
- *m* the index of the **middle** element of the sequence

$$S = [s_1, s_2, ..., s_m, ..., s_n]$$

At the **first iteration**:

•
$$n = |S|$$

•
$$low = 0$$

•
$$hi = s_n$$

•
$$m = \frac{(n+1)}{2}$$

$$S = [s_1, s_2, ..., s_m, ..., s_n]$$

At the first iteration:

•
$$n = |S|$$

•
$$low = 0$$

•
$$hi = s_n$$

•
$$m = \frac{(n+1)}{2}$$

These parameters are recomputed at each iteration

BINARY INTERPOLATIVE CODING How to

$$S = [s_1, s_2, ..., s_m, ..., s_n]$$

- 1. The first value that we encode is s_m , the one at position m
- 2. Instead of encoding s_m itself we encode $s_m low m + 1$
 - 3. We then **split the sequence** at s_m in left and right sub-sequences
 - 4. We **iterate** the algorithm on both subsequences:
 - Recompute the parameters
 - Find the value in the middle
 - Encode is has $s_m low m + 1$
 - Split the sequence in two halves

Example

[3, 4, 7, 11, 13, 15, 21, 25, 36, 38, 54]

Our postings list

Example

$$[3, 4, 7, 11, 13, 15, 21, 25, 36, 38, 54]$$
 (m = 6; n = 11; low = 0; hi = 54)

We compute the initial parameters

•
$$n = |S| = 11$$

•
$$low = 0$$

•
$$hi = s_n = 54$$

•
$$m = \frac{(n+1)}{2} = 6$$

Example

[3, 4, 7, 11, 13, **15**, 21, 25, 36, 38, 54] (m = 6; n = 11; low = 0; hi = 54)

We retrieve the value in the middle, s_m

Example

encode 10

We encode
$$\mathbf{s_m} - \mathbf{low} - \mathbf{m} + \mathbf{1} = 15 - 0 - 6 + 1 = 10$$

Example

We split the initial sequence into a left and a right subsequence

Example

[21, 25, 36, 38, 54] (m = 3; n = 5; low = 16; hi = 54)

We recompute the parameters

 n_{left} low_{left} hi_{left} m_{left}

(m = 3; n = 5; low = 0; hi = 14)

 n_{right} low_{right} hi_{right} m_{right}

Example

encode 10

We retrieve the value in the middle

Example

encode 5

We encode $s_m - low - m + 1$

[21, 25, **36**, 38, 54]

encode 18

Example

Split the sub-sequences

Example

Recompute the parameters

Example

find s_m and encode $s_m - low - m + 1$

Example

BINARY INTERPOLATIVE CODING Space needed for encoding

The encoding happens using $\lceil \log_2(hi - low - n + 1) \rceil$ bits, the

logarithm of the interval in which the middle value lies

Example

Example

[21, 25, **36**, 38, 54] (m = 3; n = 5; low = 16; hi = 54)encode 18 using 6 bits [**21**, 25] **[38**, 54] (m = 1; n = 2; low = 16; hi = 35)(m = 1; n = 2; low = 37; hi = 54)encode 5 using **5 bits** encode 1 using **5 bits** (m = 1; n = 1; low = 22; hi = 35)(m = 1; n = 1; low = 39; hi = 54)encode 3 using **5 bits** encode 15 using **5 bits**

Example

pre-order BINARY INTERPOLATIVE CODING visiting Example START [3, 4, 7, 11, 13, **15**, 21, 25, 36, 38, 54] encode 10 using 6 bits [3, 4, **7**, 11, 13] [21, 25, **36**, 38, 54] encode 5 using 4 bits encode 18 using 6 bits [**21**, 25] **[38**, 54] **[3**, 4] [**11**, 13] encode 3 using 3 bits encode 3 using 3 bits encode 5 using 5 bits encode 1 using 5 bits [13] [25] [54] [4] encode 0 using 2 bits encode 3 using **5 bits** encode 1 using 1 bits encode 15 using 5 bits

Example

START

[3, 4, 7, 11, 13, **15**, 21, 25, 36, 38, 54]

encode 10 using 6 bits

pre-order visiting

[21, 25, **36**, 38, 54]

encode 18 using 6 bits

encode 5 using **4 bits**

[3, 4, 7, 11, 13]

The sequence of values that we have encoded: [10, 5, 3, 0, 3, 1, 18, 5, 3, 1, 15]

The associated bits needed for the encoding: [6, 4, 3, 2, 3, 1, 6, 5, 5, 5, 5]

[38, 54]

encode 1 using **5 bits**

[13]

[25]

[54]

[4]

[3, 4]

encode 3 using 3

SIMPLE - 9

SIMPLE - 9

- Encodes multiple elements all at the same time
- Works with *d*-gaps lists
- Uses **fixed memory units** \rightarrow 32-bit units
- Packs as many integers as possible into each unit

SIMPLE - 9 How to

Out of the 32 bits:

- 4 bits used for the *selector*
- 28 bits used to store data

The *selector* indicates the number of integers stored in the 28 bits assuming that **each integer takes the same number of bits**.

SIMPLE - 9 How to

9 possible ways of packing integers in 28 bits

4-bit selector	Integers	Bits per integer	Wasted bits
0000	28	1	0
0001	14	2	O
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

SIMPLE - 9 How to

9 possible ways of packing intege

4-bit selector	Integers
0000	28
0001	14
0010	9
0011	7
0100	5
0101	4
0110	3
0111	2
1000	1

- The *d*-gap list can be encoded using multiple 32-bit units
 - Different memory units can follow a different *selector*
 - In a single unit each integer takes the same amount of bits

1. Initial postings list:

S=[4, 10, 11, 12, 15, 20, 21, 28, 29, 42, 62, 63, 75, 95]

1. Initial postings list:

$$S=[4, 10, 11, 12, 15, 20, 21, 28, 29, 42, 62, 63, 75, 95]$$

2. Corresponding *d*-gap list:

$$D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]$$

1. Initial postings list:

$$S=[4, 10, 11, 12, 15, 20, 21, 28, 29, 42, 62, 63, 75, 95]$$

2. Corresponding *d*-gap list:

$$D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]$$

|D| = 14 integers to encode using 32-bit memory units

D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]

4-bit selector	Integers	Bits per integer	Wasted bits
0000	28	1	0
0001	14	2	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]

Option 1: we can pack 14 integers if each takes 2 bits

4-bit selector	Integers	Bits per integer	Wasted bits
0000	28	1	0
0001	14	2	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]

Option 1: we can pack 14 integers if each takes 2 bits

4-bit selector	Integers	Bits per integer	Wasted bits
0000	28	1	0
0001	14	2	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

An integer takes 2 bits if its value is $< 2^2 = 4$

D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]

Option 1: we can pack 14 integers if each takes 2 bits

4-bit selector	Integers	Bits per integer	Wasted bits
0000	28	1	0
0001	14	2	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

An integer takes 2 bits if its value is $< 2^2 = 4$

We have many values that are not < 4

D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]

Option 1: we can pack 14 integers if each takes 2 bits

selector		integer	bits	
0000	28	1	0	
0001	14	2	0	
0010	9	3	1	
0011	7	4	0	
0100	5	5	3	
0101	4	7	0	
0110	3	9	1	
0111	2	14	0	
1000	1	28	0	

Integers

Bits per

Wasted

4-bit

Option 2: we can pack the first 9 integers if each takes 3 bits

D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]

Option 1: we can pack 14 integers if each takes 2 bits

4-bit selector	Integers	Bits per integer	Wasted bits
0000	28	1	0
0001	14	2	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

Option 2: we can pack the first 9 integers if each takes 3 bits

An integer takes 3 bits if its value is $< 2^3 = 8$

D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]

Option 1: we can pack 14 integers if each takes 2 bits

4-bit selector	Integers	Bits per integer	Wasted bits
0000	28	1	0
0001	14	2	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

Option 2: we can pack the first 9 integers if each takes 3 bits

An integer takes 3 bits if its value is $< 2^3 = 8$

All of our first 9 integers are < 8

$$D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]$$

Stored in one 32-bit unit as:

0010 011 101 000 000 010 100 000 110 0006

The 3rd selector

The 9 integers

4 bits 27 bits

1 unused bit

4-bit selector	Integers	Bits per integer	Wasted bits
0000	28	1	0
0001	14	2	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]

5 integers left

4-bit selector	Integers	Bits per integer	Wasted bits
0000	28	1	0
0001	14	2	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

$$D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]$$

5 integers left

Option 1: we can pack 5 integers if each takes 5 bits

4-bit selector	Integers	Bits per integer	Wasted bits
0000	28	1	0
0001	14	2	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

$$D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]$$

5 integers left

4-bit selector	Integers	Bits per integer	Wasted bits
0000	28	1	0
0001	14	2	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

Option 1: we can pack 5 integers if each takes 5 bits

An integer takes 5 bits if its value is $< 2^5 = 32$

$$D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]$$

5 integers left

asted bits
0
0
1
0
3
0
1
0
0

Option 1: we can pack 5 integers if each takes 5 bits

An integer takes 5 bits if its value is $< 2^5 = 32$

All of our 5 integers are < 32

D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]

0000	28	1	0
0001	14	2	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
0110	3	9	1
0111	2	14	0
1000	1	28	0

Bits per

integer

Wasted

bits

Integers

4-bit

selector

1

Stored in another 32-bit unit as:

0100 01100 10011 00000 01011 10011

The 5th selector

The 5 integers

4 bits

25 bits

3 unused bit

D = [4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20]

4-bit selector	Integers	Bits per integer	Wasted bits
0000	28	1	0
0001	14	2	0
0010	9	3	1
0011	7	4	0
0100	5	5	3
0101	4	7	0
		9	1
		1.4	0

28

Total used space is two 32-bit memory units:

- One using the 3rd selector
- One using the 5th selector

ed bit

COMPARISON

COMPARISON

Study from Moffat and Anh (2005)

Comparing the 3 methods over different size textual data collections:

0.5GB 2GB 10.5GB 18.5GB

Object of the comparison:

- Compression effectiveness → space

 Measured as average number of bits per pointer
- Query processing speed \rightarrow time

Measured as average elapsed time between when:

- 1) the query is received
- 2) the result is output

COMPARISON Compression effectiveness

The Binary Interpolative Coding is the best one least bits needed

The Simple – 9 is the one that requires most space for the encoding

COMPARISON Query processing speed

Average elapsed time in milliseconds

The Simple – 9 is by far the best one

least processing time needed

The Binary Interpolative Coding is the one that requires most time for query processing

CONCLUSION

There is **no best** technique

Always consider **trade-off** between:

- saved space
- processing time → affected by decoding speed!

Choose based on data that you have:

- Golomb: optimal if documents are randomly scattered
- Binary Interpolative: optimal if documents are clustered
- Simple-9: optimal for long postings lists with small d-gaps

THANK YOU