

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки	
КАФЕДРА	Прикладная математика	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Оптимизация профиля вращающегося диска

Студент	ФН2-72Б (Группа)	(П	Сагадулаев Р.М.
	(1 pyima)	(Подпись, дата)	(И.О. Фамилия)
Руководите.	ль курсовой работы		Азметов Х.Х.
		(Подпись, дата)	(И.О. Фамилия)

Оглавление

1.	Введение	3
2.	Постановка задачи	3
3.	Математическая модель вращающегося диска	4
4.	Минимизация массы диска	5
	4.1. Метод конечных элементов	5
	4.2. Метод оптимизации	8
5.	Тестирование МКЭ	9
6.	Оптимизация профиля диска	0
	6.1. Решение задачи	0
	6.2. Изменение профиля при варьировании параметров	$\lfloor 2$
7.	Заключение	4
8.	Список литературы	15

1. Введение 3

1. Введение

Задача оптимального проектирования дисков представляет важный практический интерес и рассматривалась во многих работах. Задача оптимизации диска заключается в минимизации массы диска при выполнении ограничений на напряженнодеформированное состояние. В простейшем случае геометрия диска задается функцией толщины от радиуса h(r), которая и является параметром управления. Функцией качества, подлежащей минимизации, является масса диска. Для обеспечения технологичности конструкции, на проект диска накладываются геометрические или технологичные ограничения $h(r) \in [h_{min}, h_{max}]$. Требование работоспособности конструкции выражается в прочностном ограничении $\sigma_i(r) \leq [\sigma]$. Все эти требования к проекту диска составляют оптимизационную задачу

$$F[h(r)] = \int_{r_1}^{r_2} 2\pi r h(r) \to min$$
$$h(r) \in [h_{min}, h_{max}]$$
$$\sigma_i(r) \le [\sigma], \quad \forall r \in [r_1, r_2]$$

Здесь ρ – плотность материала диска, r_1 – внутренний радиус диска, r_2 – внешний радиус диска, h_{min} и h_{max} – конструктивные и технологические ограничения на толщину диска, $\sigma_i(r)$ – интенсивность напряжений, $[\sigma]$ – допускаемые напряжения.

2. Постановка задачи

Оптимизировать массу вращающегося нагретого диска при заданных прочностных и геометрических ограничениях. Диск симметричен относительно серединной поверхности, толщина мала по сравнению с наружным радиусом. Силы, действующие на диск, направлены радиально и равномерно распределены в окружном направлении. Диск неравномерно нагрет по радиусу, температура считается постоянной по толщине.

3. Математическая модель вращающегося диска

Рассматривается диск, толщина h предполагается малой по сравнению с наружным радиусом R. Напряженное состояние в диске считается двумерным и осесимметричным, напряжения равномерно распределены по толщине.

Уравнение равновесия малогго элемента диска имеет вид:

$$\frac{1}{h(r)}\frac{d}{dr}(\sigma_r r h(r)) - \sigma_\theta + q(r)r = 0 \tag{1}$$

где rho – плотность материала диска, q(r) – зависимость приложенной нагрузки от радиуса. В случае инерционной нагрузки $q(r) = \rho \omega^2$, где ω – угловая скорость вращения. Деформации в радиальном и окружном направлениях соответственно равны

$$\varepsilon_r = \frac{du}{dr}, \quad \varepsilon_\theta = \frac{u}{r},$$
(2)

где u(r) – перемещение диска в радиальном направлении.

При упругом поведении материала связь между деформациями и напряжениями выражается с помощью закона Гука:

$$\varepsilon_r = \frac{1}{E} (\sigma_r - \mu \sigma_\theta), \quad \varepsilon_\theta = (\sigma_\theta - \mu \sigma_r)$$
(3)

где E – модуль Юнга материала диска, μ – коэффициент Пуасона.

Преобразовав уравнение (1) с использованием соотношений (2) и (3), напряженнодеформарованное состояние диска приходим к краевой задаче:

$$\begin{cases} \frac{du}{dr} = -\frac{\mu}{r}u + \frac{1}{h}\frac{1-\mu^2}{Er}Q\\ \frac{dQ}{dr} = \frac{E}{r}hu + \frac{\mu}{r}Q - \rho\omega^2r^2h\\ u(r_1) = u_1\\ u(r_2) = u_2 \end{cases} \tag{4}$$

где $Q = \sigma_r hr$.

Целью оптимального проектирования является минимизация массы диска

$$F[h] = \int_{0}^{R} 2\pi \rho r h dr \rightarrow min$$

На некоторых радиусах $r \in [0, R]$ могут быть наложены ограничения на толщины

$$h_{min}(r) \le h(r) \le h_{max}(r)$$
.

Ограничения на интенсивность напряжений представим в виде

$$\sigma_i(r) = \sqrt{\sigma_r^2 + \sigma_\theta^2 - \sigma_r \sigma_\theta} \le [\sigma],$$

где $[\sigma]$ – допускаемое напряжение на радиусе r, $\sigma_r = \frac{Q}{hr}$, $\sigma_\theta = v \frac{Q}{hr} + \frac{u}{r} E$. С учетом введенных обозначений, получим:

$$\sigma_i(r) = \sqrt{\left(\frac{Q}{hr}\right)^2 + \left(\nu \frac{Q}{hr} + \frac{u}{r}E\right)^2 - \frac{Q}{hr}\left(\nu \frac{Q}{hr} + \frac{u}{r}E\right)}$$
 (5)

4. Минимизация массы диска

4.1. Метод конечных элементов

Для решения задачи оптимизации диска необходимо решить систему дифференциальных уравнений (4). Введем обозначения:

$$a(r) = r^{2}h,$$

$$b(r) = r(h(r) + rh'(r)),$$

$$c(r) = -h(r) + h'(r)\mu r,$$

$$d(r) = \frac{\rho\omega^{2}h(r)}{E}(1 - \mu^{2})r^{3}$$

Перепишем систему в следующем виде:

$$\begin{cases} a(r)u'' + b(r)u' + c(r)u = d(r) \\ u(0) = 0 \\ u(1) = u_1 \\ Q = \frac{Eh}{1 - \mu^2} (ru_r + \mu u) \end{cases}$$

Решим эту систему численно и найдем u(r) методом конечных элементов.

Пусть R = a(r)u'' + b(r)u' + c(r)u - d(r) – невязка, в качестве базиных функций будем использовать линейные функции вида

$$N_i(x) = \begin{cases} 0, x \le x_{i-1} \\ \frac{x - x_{i-1}}{h}, x_{i-1} \le x \le x_i \\ \frac{x_{i+1} - x_i}{h}, x_i \le x \le x_{i+1} \\ 0, x_{i+1} \le x \end{cases}$$

Домножим уравнение на N_i и проинтегрируем по [a,b]:

$$\int_{a}^{b} N_i(r)R(r)dr = 0$$

Расписав R(r) и применив интегрирование по частям получим следующее уравнение:

$$\int_{r_{1}}^{r_{2}} a(r) \frac{dN_{i}}{dr} \frac{du}{dr} dr + \int_{r_{1}}^{r_{2}} N_{i} \frac{da(r)}{dr} \frac{du}{dr} dr - \int_{r_{1}}^{r_{2}} N_{i} b(r) \frac{du}{dr} dr - \int_{r_{1}}^{r_{2}} N_{i} c(r) u dr = \left(N_{i} a(r) \frac{du}{dr} \right) \Big|_{r_{1}}^{r_{2}} - \int_{r_{1}}^{r_{2}} N_{i} d(r) dr$$

Сделаем замену $u(r) = \sum_{j=1}^{\infty} \alpha_j N_j$ и вынесем за скобки сумму и коэффициент α_j , тогда получим:

$$\int_{r_1}^{r_2} a(r) \frac{dN_i}{dr} \frac{dN_j}{dr} dr + \int_{r_1}^{r_2} N_i \frac{da(r)}{dr} \frac{dN_j}{dr} dr - \int_{r_1}^{r_2} N_i b(r) \frac{dN_j}{dr} dr - \int_{r_1}^{r_2} N_i c(r) N_j dr = \left(N_i a(r) \frac{dN_j}{dr} \right) \Big|_{r_1}^{r_2} - \int_{r_1}^{r_2} N_i d(r) dr$$

Таким образом, мы получаем компоненту локальной матрицы жесткости на i-ом элементе (j=i,i+1):

$$K_{ij}^{(i)} = \int_{r_1}^{r_2} a(r) \frac{dN_i}{dr} \frac{dN_j}{dr} dr + \int_{r_1}^{r_2} \left(\frac{da(r)}{dr} - b(r) \right) N_i \frac{dN_j}{dr} dr - \int_{r_1}^{r_2} N_i N_j c(r) dr$$

и компоненту локальной правой части на i-ом элементе:

$$f_j^{(i)} = -\int_{r_1}^{r_2} N_i d(r) dr$$

В итоге получим локальную матрицу жесткости вида:

$$K^{(i)} = \begin{pmatrix} K_{11}^{(i)} & K_{12}^{(i)} \\ K_{21}^{(i)} & K_{22}^{(i)} \end{pmatrix}$$

В итоге получаем следующую трехдиагональную СЛАУ:

$$\begin{pmatrix} K_{11}^{(1)} & K_{12}^{(1)} & 0 & 0 & \dots & 0 & 0 \\ K_{21}^{(1)} & K_{22}^{(1)} + K_{11}^{(2)} & K_{12}^{(2)} & 0 & \dots & 0 & 0 \\ 0 & K_{21}^{(2)} & K_{22}^{(2)} + K_{11}^{(3)} & K_{12}^{(3)} & \dots & 0 & 0 \\ \dots & \dots \\ 0 & 0 & 0 & 0 & K_{21}^{(n-1)} & K_{22}^{(n-1)} + K_{11}^{(n)} & K_{12}^{(n)} \\ 0 & 0 & 0 & 0 & 0 & K_{21}^{(n-1)} & K_{21}^{(n-1)} + K_{11}^{(n)} & K_{12}^{(n)} \\ \end{pmatrix} = \begin{pmatrix} -\mathbf{u}'(r_1)d(r_1) - f_1^{(1)} \\ -f_2^{(1)} - f_1^{(2)} \\ -f_2^{(2)} - f_1^{(3)} \\ \dots & \dots & \dots \\ -f_2^{(n-1)} - f_1^{(n)} \\ \mathbf{u}'(r_2)d(r_2) - f_2^{(n)} \end{pmatrix}$$

Внесем граничные условия первого рода (граничные условия Дирихле). Пусть $u_1 = u(r_1), u_2 = u(r_2)$:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & K_{22}^{(1)} + K_{11}^{(2)} & K_{12}^{(2)} & 0 & \dots & 0 & 0 \\ 0 & K_{21}^{(1)} & K_{22}^{(2)} + K_{11}^{(3)} & K_{12}^{(3)} & \dots & 0 & 0 \\ \dots & \dots \\ 0 & 0 & 0 & 0 & K_{21}^{(n-1)} & K_{22}^{(n-1)} + K_{11}^{(n)} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \dots \\ u_{n-1} \\ u_n \end{pmatrix} = \begin{pmatrix} u(\mathbf{r}_1) \\ -\mathbf{f}_2^{(1)} - f_1^{(2)} - K_{21}^{(1)} u(r_1) \\ -\mathbf{f}_2^{(2)} - f_1^{(3)} \\ \dots \\ -\mathbf{f}_2^{(n-1)} - f_1^{(n)} - K_{12}^{(n)} u(r_2) \\ u(\mathbf{r}_2) \end{pmatrix}$$

4.2. Метод оптимизации

Для оптимизации профиля диска рассмотрим следующую функцию:

$$f_{j}(h) = \sigma_{i}(r_{j}) - \sqrt{\left(\frac{Q_{j}}{h_{j}r_{j}}\right)^{2} + \left(v\frac{Q_{j}}{h_{j}r_{j}} + \frac{u_{j}}{r_{j}}E\right)^{2} - \frac{Q_{j}}{h_{j}r_{j}}\left(v\frac{Q_{j}}{h_{j}r_{j}} + \frac{u_{j}}{r_{j}}E\right)},$$

где $h \in [h_{min}; h_{max}], j = \overline{1, n}, n$ – число узлов сетки.

Равенство (5) эквивалентно $f(h_{opt}) = 0$, для нахождения h_{opt} применим метод Ньютона:

$$h_{i+1} = h_i - \frac{f(h_i)}{f'(h_i)}.$$

Для нахождения оптимального профиля диска делаем одну итерацию Метода Ньютона для каждого узла сетки и пересчитываем значения функций Q_j и u_j и повторяем до нужного результата. Так как наша цель – минимизация массы, будем использовать следующий критерий останова:

$$|m_{i+1} - m_i| > \Delta m$$
,

где Δm – заданный параметр.

5. Тестирование МКЭ

Для тестирования МКЭ решим следующую краевую задачу:

$$\begin{cases} \exp(-10t)u'' + u' + tu = \cos(10t) \\ u(0) = 0 \\ u(1) = 1 \end{cases}$$

В качестве эталонного решения возьмем решение этой системы функцией **NDSolve** системой компьютерной алгебры **Wolfram Mathematica**. Красным отмечено решение с помощью **Wolfram Mathematica**, синим – решение, реализованное нами.

Рис. 5.1. Тестирование реализованного нами метода.

Тестирование показало, что реализованный нами метод корректно решает краевую задачу и при непостоянных коэффициентах при u, u' и u''.

6. Оптимизация профиля диска

6.1. Решение задачи

Пусть наш диск состоиит из Аллюминия, тогда имеем следующие характеристики:

$$E=70\ \Gamma\Pi a$$
 — модуль Юнга,
 $\mu=25.5\ \Gamma\Pi a$ — модуль сдвига,
 $\nu=0.34$ — модуль Пуассона
 $\rho=2700\ \kappa\Gamma/{\rm M}^3$ — плотность

Исходный неоптимизированный проект имеет массу 67.8584 кг, имеет внутренний радиус $r_1=0.1$ м и внешний радиус $r_2=0.3$ м, исходный профиль постоянен и его ширина равна 0.1м.

Наложим ограниичения: $u(r_1) = 0.001$, $u(r_2) = 0.03$, пусть $\omega = 1000$ рад/с, тогда получим следующее распределение напряжений в профиле:

Рис. 6.1. Исходный профиль h(r).

Рис. 6.2. Напряжения $\sigma(r)$ в исходном профиле.

Рис. 6.3. Перемещения в профиле u(r).

Будем оптимизировать профиль диска до тех пор, пока $|m_{i+1}-m_i|=\Delta m>10.$ Пусть $[\sigma]=25{\rm M}\Pi$ а, тогда получим следующий профиль:

Рис. 6.4. Оптимизированный профиль.

Рис. 6.5. График снижения массы на каждой итерации.

6.2. Изменение профиля при варьировании параметров

Желтому профилю соответствует минимальное значение варьируемого параметра, красному — максимальное.

Посмотрим, как изменяется профиль диска при $[\sigma] = 24, 25, 26$ ГПа:

Рис. 6.6. Графики профиля при варьировании [σ].

Проварьируем правые граничные условия $u(r_2) = 0.029; 0.03; 0.031$ м:

Рис. 6.7. Графики профиля при варьировании $u(r_2)$.

Также проварьируем угловую скорость $\omega = 1000; 5000; 8000 \text{ рад/с}$:

Рис. 6.8. Графики профиля при варьировании ω.

Сравним оптимальные профили из сплавов аллюминия Д16 и В95:

Рис. 6.9. Оранжевый профиль для В95, красный – для Д16.

Характеристики сплавов:

Сплав	Модуль Юнга E , ГПа	Коэффициент Пуассона у	Плотность ρ , $\kappa \Gamma/M^3$
B95	72	0.33	2850
Д16	71	0.3	2800

7. Заключение 14

7. Заключение

В данной курсовой работе был реализован и рассмотрен метод конечных элементов и задача об оптимизации профиля вращающегося диска. Реализованный нами МКЭ был протестирован и проверен аналогичным методом из системы компьютерной алгебры Wolfram Mathematica.

Поставленная задача была решена и масса изначального проекта была уменьшена на 86.2%. Замечена следующая зависимость между результатами при варьировании некоторых параметров системы:

- 1. При увеличении максимального значения напряжения [σ] профиль диска становится меньше;
- 2. При повышении допустимого перемещения на внешнем радиусе r_2 профиль диска становится толще;
- 3. При повышении угловой скорости профиль диска стал толще но до определенной точки, далее наблюдаем обратную тенденцию;
- 4. Сплавы В95 и Д16 имеют схожие значения модуля Юнга, коэффициента Пуассона и плотности, что обуславливает небольшую разницу между полученными профилями двух дисков.

8. Список литературы

- 1. Зарубин В.С., Кувыркин Г.Н., Московский государственный университет имени Николая Эрнестовича Баумана, 2008. "Математические модели механики сплошных сред"[электронный ресурс, учебное пособие].
- 2. Троицкий А. В., Московский государственный технический университет имени Николая Энернестовича Баумана, 2006. "Математические модели и методы анализа чувствительности в задачах оптимизации конструкций роторов"[электронный ресурс, диссертация].
- 3. Сагдеева Ю.А., Копысов С.П., Новиков А.К, Удмудрский государственный университет, 2011. "Введение в метод конечных элементов" [электронный ресурс, методические указания].