MAX-MIN Problem

A Divide and Conquer Approach

Finding the Maximum and Minimum

- The problem is to find the maximum and minimum items in a set of n elements
- In analyzing the time complexity we concentrate on the no of element comparisons
- The frequency count for other operations is of the same order as that for element comparisons

4/9/2024

Straight Forward Max-Min

```
Algorithm straightmaxmin(a,n,max,min)
max=min=a[1];
For i=2 to n do
If (a[i]>max) then max=a[i];
                                         If (a[i]>max) then max=a[i];
                                          else If (a[i]<min) then min=a[i];
If (a[i] < min) then min = a[i];
                                    OR
                                               Best Case :(n-1) Comparison
     2(n-1) Comparison
                                               Worst Case: 2(n-1) Comparison
```


Complexity Analysis

- The best case occurs when the elements are in increasing order no of comparisons –n-1
- ▶ The worst case occurs when the elements are in decreasing order no of comparisons 2(n-1)
- The average case and the average no of comparisons is 3n/2 1

Min=Max=10

If (a[i]>max) then max=a[i]; else If (a[i]<min) then min=a[i];

50 40 30 20 10

Min=Max=50

- If the list has more than 2 elements, P has to be divided into smaller instances
- We might divide P into two instances
 - P1=([n/2],a[1],....a[n/2])
 - P2=([n-[n/2],a[n/2+1],....a[n])
- We can solve the sub problems by recursively invoking the same divide and conquer algorithm
- If MAX(P) and MIN(P) are the maximum and minimum of the elements in P, then MAX(P) is the larger of MAX(P1) and MAX(P2) and MIN(P) is the smaller of MIN(P1) and MIN(P2)

Recursive Algorithm For Max-Min

Algorithm

```
MaxMin(i,j,max,min)
                                 else
If(i=j) then max=min=a[i]
  else if (i=j-1) then
                                    mid=(i+j)/2;
                                    maxmin(i,mid,max,min);
   if
       (a[i] < a[j]) then
                                    maxmin(mid+1,j,max1,min1)
          max=a[j];min=a[i];
                                    if (max< max1) then</pre>
                                    max=max1;
       else
                                    if(min > min1) then
                                    min=min1;
              max=a[i];
              min=a[j];
       }
```

Ahis procedure is initially invoked by the statement Maxmin(1,n,x,y)

Consider the array of numbers

22 13 -5 -8 15 60 17 31 47

For this algorithm each node has four items of information i, j, max and min

Complexity Analysis

```
T(n)=T(n/2)+T(n/2)+2, n>2
                     n=2
          0,
                     n=I
T(n) = 2T(n/2) + 2
      = 2[2T(n/4)+2] + 2
      = 4T(n/4)+4+2
      = 4[2T(n/8)+2]+4+2
      = 8T(n/8) + 8 + 4 + 2
      = 2^3T(n/2^3)+2^3+2^2+2
      = 2^{k}T(n/2^{k}) + 2^{k} + 2^{k-1} + ... + 2^{k}
 for T(2), n/2^k=2 \Rightarrow n=2.2^k=2^{k+1}
       = 2^{k}T(2) + 2^{k} + 2^{k-1} + ... + 2^{k}
       = 2^{k} + 2^{k} + 2^{k-1} + ... + 2 = 2^{k+1} + 2^{k-1} + ... + 2 2^{k} + 2^{k-1} + ... + 2 + 1 = 2^{k+1} - 1
      = n + 2^{k-1+1} - 1 - 1 = n + n/2 - 2 = 3n/2 - 2 = O(n)
```


Example Recurrence Solutions

Examples

►
$$T(n) = T(n-1) + k$$
 \Rightarrow $O(n)$

► $T(n) = T(n-1) + n$ \Rightarrow $O(n^2)$

► $T(n) = T(n/2) + k$ \Rightarrow $O(\log(n))$

► $T(n) = 2 \times T(n/2) + k$ \Rightarrow $O(n)$

► $T(n) = 2 \times T(n/2) + n$ \Rightarrow $O(n)$

► $T(n) = 2 \times T(n/2) + n$ \Rightarrow $O(n \log(n))$

► $T(n) = 2 \times T(n-1) + k$ \Rightarrow $O(n^2)$

Thank you

12 4/9/2024