4. Сравнение оценок. Эффективные оценки

- 1. (К теоретической задаче 1) Сгенерируйте M=100 выборок $X_1,...,X_{1000}$ из равномерного распределения на отрезке $[0,\theta]$ (возьмите три произвольных положительных значения θ). Для каждой выборки $X_1,...,X_n$ для всех $n\leqslant 1000$ посчитайте оценки параметра θ из теоретической задачи: $2\overline{X},(n+1)X_{(1)},X_{(1)}+X_{(n)},\frac{n+1}{n}X_{(n)}$. Посчитайте для всех полученых оценок $\hat{\theta}$ квадратичную функцию потерь $(\hat{\theta}-\theta)^2$ и для каждого фиксированного n усредните по выборкам. Для каждого из трех значений θ постройте графики усредненных функций потерь в зависимости от n.
- 2. (К теоретическим задачам 3, 4, 5) В задаче требуется экспериментально проверить утверждение, что для любой несмещенной оценки $\widehat{\theta}(X)$ параметра θ выполнено неравенство Рао-Крамера

$$\mathsf{D}_{\theta}\widehat{\theta}(X) \geqslant \frac{1}{I_X(\theta)}.$$

Сгенерируйте выборку $X_1,...,X_N,\ N=1000$, из распределений в теоретических задачах (распределение Бернулли, экспоненциальное распределение и нормальное распределение с неизвестным математическим ожиданием). В случае биномиального распределения m=50, в случае нормального распределения с неизвестным математическим ожиданием $\sigma^2=2.1$. Второй параметр (единственный в случае экспоненциального распределения) выберите случайно из распределения, предложенного в файле. Для всех $n\leqslant N$ посчитайте значение эффективной оценки и бутстрепную оценку дисперсии для эффективной оценки (параметрический бутстреп, количество бутстрепных выборок равно 500). Сделайте то же самое с другой несмещенной оценкой — в задаче 3 возьмите X_1/m , в задаче 4 возьмите $\frac{1}{2\overline{X}}+\frac{n}{2X_{(1)}}$, в задаче 5 возьмите выборочную медиану. Постройте графики зависимости бутстрепных оценок дисперсий от размера выборки n. Для каждой бутстрепной оценки постройте на том же графике изобразите кривую зависимости $\frac{1}{I_X(\theta)}$ от n.

3. Рассмотрим $X_1, ..., X_n \sim Bern(\theta)$. По сетке значений $\theta \in [0,1]$ с шагом 0.01 постройте график зависимости нижней оценки дисперсии произвольной несмещенной оценки из неравенства Рао-Крамера от θ . Какой можно сделать вывод (напишите в комментариях)? Для каждого значения θ (для той же сетки) сгенерируйте выборку размера n=1000 для параметра θ , посчитайте эффективную оценку θ и бутстрепную оценку дисперсии (параметрический бутстреп, количество бутстрепных выборок равно 500) этой эффективной оценки θ . Нарисуйте график зависимости полученных бутстрепных оценок от θ .