

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 874 045 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication:

28.10.1998 Bulletin 1998/44

(51) Int. Cl.⁶: C12N 15/00, C12P 21/00

(21) Application number: 97935810.8

(86) International application number:
PCT/JP97/02859

(22) Date of filing: 19.08.1997

(87) International publication number:
WO 98/07840 (26.02.1998 Gazette 1998/08)(84) Designated Contracting States:
AT BE CH DE DK ES FR GB IE IT LI LU NL SE(72) Inventors:
• NAKAGAWA, Nobuaki,
Nishiura Heights 2-4
Shimotsuga-gun, Tochigi 329-05 (JP)
• YASUDA, Hisataka
Kawachi-gun, Tochigi 329-04 (JP)
• MORINAGA, Tomonori
Shimotsuga-gun, Tochigi 321-02 (JP)

(30) Priority: 19.08.1996 JP 235928/96

(74) Representative:
Wakerley, Helen Rachael
Reddie & Grose,
16 Theobalds Road
London WC1X 8PL (GB)

(83) Declaration under Rule 28(4) EPC (expert solution)

(71) Applicant:
SNOW BRAND MILK PRODUCTS CO., LTD.
Sapporo-shi, Hokkaido 065 (JP)**(54) NOVEL DNAs AND PROCESS FOR PRODUCING PROTEINS BY USING THE SAME**

(57) DNAs having the nucleotide sequences of the Sequences No. 1 and No. 2 in the Sequence Table and a process for producing a protein which comprises inserting these DNAs into expression vectors to thereby produce a protein having molecular weights of about 60 kD (under reductive conditions) and about 60 kD and 120 kD (under non-reductive conditions) and being capable of inhibiting formation of osteoclast. These proteins are useful in the treatment of osteoporosis and rheumatism.

Description**FIELD OF TECHNOLOGY**

5 The present invention relates to a novel DNA and a process for preparing a protein which possesses an activity to inhibit osteoclast differentiation and/or maturation (hereinafter called osteoclastogenesis-inhibitory activity) by a genetic engineering technique using the DNA. More particularly, the present invention relates to a genomic DNA encoding a protein OCIF which possesses an osteoclastogenesis-inhibitory activity and a process for preparing said protein by a genetic engineering technique using the genomic DNA.

10

BACKGROUND OF THE INVENTION

Human bones are constantly repeating a process of resorption and formation. Osteoblasts controlling formation of bones and osteoclasts controlling resorption of bones take major roles in this process. Osteoporosis is a typical disease 15 caused by abnormal metabolism of bones. This disease is caused when bone resorption by osteoclasts exceeds bone formation by osteoblasts. Although the mechanism of this disease is still to be elucidated completely, the disease causes the bones to ache, makes the bones fragile, and may results in fracturing of the bones. As the population of the aged increases, this disease results in an increase in bedridden aged people which becomes a social problem. Urgent development of a therapeutic agent for this disease is strongly desired. Disease due to a decrease in bone mass is 20 expected to be treated by controlling bone resorption, accelerating bone formation, or improving balance between bone resorption and formation.

Osteogenesis is expected to increase by accelerating proliferation, differentiation, or activation of the cells controlling bone formation, or by controlling proliferation, differentiation, or activation of the cells involved in bone resorption. In recent years, strong interest has been directed to physiologically active proteins (cytokines) exhibiting such activities 25 as described above, and energetic research is ongoing on this subject. The cytokines which have been reported to accelerate proliferation or differentiation of osteoblasts include the proteins of fibroblast growth factor family (FGF: Rodan S. B. et al., Endocrinology vol. 121, p 1917, 1987), insulin-like growth factor I (IGF-I: Hock J. M. et al., Endocrinology vol. 122, p 254, 1988), insulin growth factor II (IGF-II: McCarthy T. et al., Endocrinology vol. 124, p 301, 1989), Activin A (Centrella M. et al., Mol. Cell. Biol., vol. 11, p 250, 1991), transforming growth factor- β (Noda M., The Bone, vol. 2, p 29, 1988), Vasculotropin (Varonique M. et al., Biochem. Biophys. Res. Commun., vol. 199, p 380, 1994), and the protein of heterotypic bone formation factor family (bone morphogenic protein; BMP: BMP-2; Yanaguchi A. et al., J. Cell. Biol. vol. 113, p 682, 1991, OP-1; Sampath T. K. et al., J. Biol. Chem. vol. 267, p 20532, 1992, and Knutson R. et al., Biochem. Biophys. Res. Commun. vol. 194, P 1352, 1993).

On the other hand, as the cytokines which suppress differentiation and/or maturation of osteoclasts, transforming 35 growth factor- β (Chen C. et al., Proc. Natl. Acad. Sci. USA, vol. 85, p 5683, 1988), interleukin-4 (Kasano K. et al., Bone-Miner., vol. 21, p 179, 1993), and the like have been reported. Further, as the cytokines which suppress bone resorption by osteoclast, calcitonin (Bone-Miner., vol. 17, p 347, 1992), macrophage colony stimulating factor (Hattersley G. et al., J. Cell. Physiol. vol. 137, p 199, 1988), interleukin-4 (Watanabe, K. et al., Biochem. Biophys. Res. Commun. vol. 172, P 1035, 1990), and interferon- γ (Gowen M. et al., J. Bone Miner. Res., vol. 1, p 46, 9, 1986) have been reported.

These cytokines are expected to be used as agents for treating diseases accompanying bone loss by accelerating 40 bone formation or suppressing of bone resorption. Clinical tests are being undertaken to verify the effect of improving bone metabolism of some cytokines such as insulin-like growth factor-I and the heterotypic bone formation factor family. In addition, calcitonin is already commercially available as a therapeutic agent for osteoporosis and a pain relief agent. At present, drugs for clinically treating bone diseases or shortening the period of treatment of bone diseases include 45 activated vitamin D₃, calcitonin and its derivatives, and hormone preparations such as estradiol agent, ipriflavon or calcium preparations. These agents are not necessarily satisfactory in terms of the efficacy and therapeutic results. Development of a novel therapeutic agent which can be used in place of these agents is strongly desired.

In view of this situation, the present inventors have undertaken extensive studies. As a result, the present inventors 50 had found protein OCIF exhibiting an osteoclastogenesis-inhibitory activity in a culture broth of human embryonic lung fibroblast IMR-90 (ATCC Deposition No. CCL186), and filed a patent application (PCT/JP96/00374). The present inventors have conducted further studies relating to the origin of this protein OCIF exhibiting the osteoclastogenesis-inhibitory activity. The studies have matured into determination of the sequence of a genomic DNA encoding the human origin OCIF. Accordingly, an object of the present invention is to provide a genomic DNA encoding protein OCIF exhibiting 55 osteoclastogenesis-inhibitory activity and a process for preparing this protein by a genetic engineering technique using the genomic DNA.

DISCLOSURE OF THE INVENTION

Specifically, the present invention relates to a genomic DNA encoding protein OCIF exhibiting osteoclastogenesis-inhibitory activity and a process for preparing this protein by a genetic engineering technique using the genomic DNA.

5 The DNA of the present invention includes the nucleotide sequences No. 1 and No. 2 in the Sequence Table attached hereto.

Moreover, the present invention relates to a process for preparing a protein, comprising inserting a DNA including the nucleotide sequences of the sequences No. 1 and No. 2 in the Sequence Table into an expression vector, producing a vector capable of expressing a protein having the following physicochemical characteristics and exhibiting the activity of inhibiting differentiation and/or maturation of osteoclasts, and producing this protein by a genetic engineering technique,

(a) molecular weight (SDS-PAGE):

15 (i) Under reducing conditions: about 60 kD,
(ii) Under non-reducing conditions: about 60 kD and about 120 kD;

(b) amino acid sequence:

includes an amino acid sequence of the Sequence ID No. 3 of the Sequence Table,

(c) affinity:

exhibits affinity to a cation exchanger and heparin, and

(d) thermal stability:

25 (i) the osteoclast differentiation and/or maturation inhibitory activity is reduced when treated with heat at 70°C for 10 minutes or at 56°C for 30 minutes,
(ii) the osteoclast differentiation and/or maturation inhibitory activity is lost when treated with heat at 90°C for 10 minutes.

The protein obtained by expressing the gene of the present invention exhibits an osteoclastogenesis-inhibitory activity. This protein is effective as an agent for the treatment and improvement of diseases involving decrease in the amount of bone such as osteoporosis, diseases relating to bone metabolism abnormality such as rheumatism, degenerative joint disease, or multiple myeloma, and is useful as an antigen to establish an immunological diagnosis of such diseases.

35 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a result of Western Blotting analysis of the protein obtained by causing genomic DNA of the present invention to express a protein in Example 4 (iii), wherein lane 1 indicates a marker, lane 2 indicates the culture broth of COS7 cells in which a vector pWESRz_aOCIF (Example 4 (iii)) has been transfected, and lane 3 is the culture broth of COS7 cell in which a vector pWESRz_a(control) has been transfected.

BEST MODE FOR CARRYING OUT THE INVENTION

The genomic DNA encoding the protein OCIF which exhibits osteoclastogenesis-inhibitory activity in the present invention can be obtained by preparing a cosmid library using a human placenta genomic DNA and a cosmid vector and by screening this library using DNA fragments which are prepared based on the OCIF cDNA as a probe. The thus-obtained genomic DNA is inserted into a suitable expression vector to prepare an OCIF expression cosmid. A recombinant type OCIF can be obtained by transfecting the genomic DNA into a host organism such as various types of cells or microorganism strains and causing the DNA to express a protein by a conventional method. The resultant protein exhibiting osteoclastogenesis-inhibitory activity (an osteoclastogenesis-inhibitory factor) is useful as an agent for the treatment and improvement of diseases involving a decrease in bone mass such as osteoporosis and other diseases relating to bone metabolism abnormality and also as an antigen to prepare antibodies for establishing immunological diagnosis of such diseases. The protein of the present invention can be prepared as a drug composition for oral or non-oral administration. Specifically, the drug composition of the present invention containing the protein which is an osteoclastogenesis-inhibitory factor as an active ingredient can be safely administered to humans and animals. As the form of drug composition, a composition for injection, composition for intravenous drip, suppository, nasal agent, sublingual agent, percutaneous absorption agent, and the like are given. In the case of the composition for injection, such a composition is a mixture of a pharmacologically effective amount of osteoclastogenesis-inhibitory factor of the present

invention and a pharmaceutically acceptable carrier. The composition may further comprise amino acids, saccharides, cellulose derivatives, and other excipients and/or activation agents, including other organic compounds and inorganic compounds which are commonly added to a composition for injection. When an injection preparation is prepared using the osteoclastogenesis-inhibitory factor of the present invention and these excipients and activation agents, a pH adjuster, buffering agent, stabilizer, solubilizing agent, and the like may be added if necessary to prepare various types of injection agents.

The present invention will now be described in more detail by way of examples which are given for the purpose of illustration and not intended to be limiting of the present invention.

10 Example 1

(Preparation of a cosmid library)

A cosmid library was prepared using human placenta genomic DNA (Clonetech; Cat. No. 6550-2) and pWE15 cosmid vector (Stratagene). The experiment was carried out following principally the protocol attached to the pWE15 cosmid vector kit of Stratagene Company, provided Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory (1989)) was referred to for common procedures for handling DNA, E. coli, and phage.

(i) Preparation of restrictive enzymolysate of human genomic DNA

Human placenta genomic DNA dissolved in 750 µl of a solution containing 10 mM Tris-HCl, 10 mM MgCl₂, and 100 mM NaCl was added to four 1.5 ml Eppendorf tubes (tube A, B, C, and D) in the amount of 100 µg each. Restriction enzyme MboI was added to these tubes in the amounts of 0.2 unit for tube A, 0.4 unit for tube B, 0.6 unit for tube C, and 0.8 unit for tube D, and DNA was digested for 1 hour. Then, EDTA in the amount to make a 20 mM concentration was added to each tube to terminate the reaction, followed by extraction with phenol/chloroform (1:1). A two-fold amount of ethanol was added to the aqueous layer to precipitate DNA. DNA was collected by centrifugation, washed with 70% ethanol, and DNA in each tube was dissolved in 100 µl of TE (10 mM HCl (pH 8.0) + 1 mM EDTA buffer solution, hereinafter called TE). DNA in four tubes was combined in one tube and incubated for 10 minutes at 68°C. After cooling to room temperature, the mixture was overlayed onto a 10%-40% linear sucrose gradient which was prepared in a buffer containing 20 mM Tris-HCl (pH 8.0), 5 mM EDTA, and 1 mM NaCl in a centrifugal tube (38 ml). The tube was centrifuged at 26,000 rpm for 24 hours at 20°C using a rotor SRP28SA manufactured by Hitachi, Ltd. and 0.4 ml fractions of the sucrose gradient was collected using a fraction collector. A portion of each fraction was subjected to 0.4% agarose electrophoresis to confirm the size of DNA. Fractions containing DNA with a length of 30 kb (kilo base pair) to 40 kb were thus combined. The DNA solution was diluted with TE to make a sucrose concentration to 10% or less and 2.5-fold volumes of ethanol was added to precipitate DNA. DNA was dissolved in TE and stored at 4°C.

(ii) Preparation of cosmid vector

The pWE15 cosmid vector obtained from Stratagene Company was completely digested with restriction enzyme Bam-HI according to the protocol attached to the cosmid vector kit. DNA collected by ethanol precipitation was dissolved in TE to a concentration of 1 mg/ml. Phosphoric acid at the 5'-end of this DNA was removed using calf small intestine alkaline phosphatase, and DNA was collected by phenol extraction and ethanol precipitation. The DNA was dissolved in TE to a concentration of 1 mg/ml.

(iii) Ligation of genomic DNA to vector and in vitro packaging

1.5 micrograms of genomic DNA fractionated according to size and 3 µg of pWE15 cosmid vector which was digested with restriction enzyme Bam-HI were ligated in 20 µl of a reaction solution using Ready-To-Go T4DNA ligase of Pharmacia Company. The ligated DNA was packaged in vitro using Gigapack™ II packaging extract (Stratagene) according to the protocol. After the packaging reaction, a portion of the reaction mixture was diluted stepwise with an SM buffer solution and mixed with E. coli XL1-Blue MR (Stratagene) which was suspended in 10 mM MgCl₂ to cause lysis to infect, and plated onto LB agar plates containing 50 µg/ml of ampicillin. The number of colonies produced was counted. The number of colonies per 1 µl of packaging reaction was calculated based on this result.

(iv) Preparation of a cosmid library

The packaging reaction solution thus prepared was mixed with E. coli XL1-Blue MR and the mixture was plated onto agarose plates containing ampicillin so as to produce 50,000 colonies per agarose plate having a 15 cm of diam-

eter. After incubating the plate overnight at 37°C, an LB culture medium was added in the amount of 3 ml per plate to suspend and collect colonies of *E. coli*. Each agarose plate was again washed with 3 ml of the LB culture medium and the washing was combined with the original suspension of *E. coli*. The *E. coli* collected from all agarose plates was placed in a centrifugal tube, glycerol was added to a concentration of 20%, and ampicillin was further added to make a final concentration of 50 µg/ml. A portion of the *E. coli* suspension was removed and the remainder was stored at -80°C. The removed *E. coli* was diluted stepwise and plated onto an agar plates to count the number of colonies per 1 ml of suspension.

Example 2

(Screening of cosmid library and purification of colony)

A nitrocellulose filter (Millipore) with a diameter of 14.2 cm was placed on each LB agarose plate with a diameter of 15 cm which contained 50 µg/ml of ampicillin. The cosmid library was plated onto the plates so as to produce 50,000 colonies of *E. coli* per plate, followed by incubation overnight at 37°C. *E. coli* on the nitrocellulose filter was transferred to another nitrocellulose filter according to a conventional method to obtain two replica filters. According to the protocol attached to the cosmid vector kit, cosmid DNA in the *E. coli* on the replica filters was denatured with an alkali, neutralized, and immobilized on the nitrocellulose filter using a Stratalinker (Stratagene). The filters were heated for two hours at 80°C in a vacuum oven. The nitrocellulose filters thus obtained were hybridized using two kinds of DNA produced, respectively, from 5'-end and 3'-end of human OCIF cDNA as probes. Namely, a plasmid was purified from *E. coli* pKBOCIF10 (deposited at The Ministry of International Trade and Industry, the Agency of Industrial Science and Technology, Biotechnology Laboratory, Deposition No. FERM BP-5267) containing OCIF cDNA. The plasmid containing OCIF cDNA was digested with restriction enzymes KpnI and EcoRI. Fragments thus obtained was separated using agarose gel electrophoresis. KpnI/EcoRI fragment with a length of 0.2 kb was purified using a QIAEX II gel extraction kit (Qiagen). This DNA was labeled with ³²P using the Megaprime DNA Labeling System (Amasham) (5'-DNA probe). Apart from this, a BamH1/EcoRV fragment with a length of 0.2 kb which was produced from the above plasmid by digestion with restriction enzymes BamH1 and EcoRV was purified and labeled with ³²P (3'-DNA probe). One of the replica filters described above was hybridized with the 5'-DNA probe and the other with the 3'-DNA probe. Hybridization and washing of the filters were carried out according to the protocol attached to the cosmid vector kit. Autoradiography detected several positive signals with each probe. One colony which gave positive signals with both probe was identified. The colony on the agar plate, which corresponding to the signal on the autoradiogram was isolated and purified. A cosmid was prepared from the purified colony by a conventional method. This cosmid was named pWEOCIF. The size of human genomic DNA contained in this cosmid was about 38 kb.

Example 3

(Determination of the nucleotide sequence of human OCIF genomic DNA)

(i) Subcloning of OCIF genomic DNA

Cosmid pWEOCIF was digested with restriction enzyme EcoRI. After the separation of the DNA fragments thus produced by electrophoresis using a 0.7% agarose gel, the DNA fragments were transferred to a nylon membrane (Hybond -N, Amasham) by the Southern blot technique and immobilized on the nylon membrane using Stratalinker (Stratagene). On the other hand, plasmid pBKOCIF was digested with restriction enzyme EcoRI and a 1.6 kb fragment containing human OCIF cDNA was isolated by agarose gel electrophoresis. The fragment was labeled with ³²P using the Megaprime DNA labeling system (Amasham).

Hybridization of the nylon membranes described above with the ³²P-labeled 1.6-kb OCIF cDNA was performed according to a conventional method detected that DNA fragments with a size of 6 kb, 4 kb, 3.6 kb, and 2.6 kb. These fragments hybridized with the human OCIF cDNA were isolated using agarose gel electrophoresis and individually subcloned into an EcoRI site of pBluescript II SK + vector (Stratagene) by a conventional method. The resulting plasmids were respectively named pBSE 6, pBSE 4, pBSE 3.6, and PBSE 2.6.

(ii) Determination of the nucleotide sequence

The nucleotide sequence of human OCIF genomic DNA which was subcloned into the plasmid was determined using the ABI Dideoxy Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer) and the 373 Sequencing System (Applied Biosystems). The primer used for the determination of the nucleotide sequence was synthesized based on the nucleotide sequence of human OCIF cDNA (Sequence ID No. 4 in the Sequence Table). The nucleotide

sequences thus determined are given as the Sequences No. 1 and No. 2 in the Sequence Table. The Sequence ID No. 1 includes the first exon of the OCIF gene and the Sequence ID No. 2 includes the second, third, fourth, and fifth exons. A stretch of about 17 kb is present between the first and second exons.

5 Example 4

(Production of recombinant OCIF using COS-7 cells)

(i) Preparation of OCIF genomic DNA expression cosmid

To express OCIF genomic DNA in animal cells, an expression unit of expression plasmid pcDL-SRα296 (Molecular and Cellar Biology, vol. 8, P466-472, 1988) was inserted into cosmid vector pWE15 (Stratagene). First of all, the expression plasmid pcDL-SRα296 was digested with a restriction enzyme Sal I to cut out expression unit with a length of about 1.7 kb which includes an SV40 promoter, SV40 later splice signal, poly (A) addition signal, and so on. The digestion products were separated by agarose electrophoresis and the 1.7-kb fragment was purified using the QIAEX II gel extraction kit (Qiagen). On the other hand, cosmid vector pWE15 was digested with a restriction enzyme EcoRI and fragments were separated using agarose gel electrophoresis. pWE15 DNA of 8.2 kb long was purified using the QIAEX II gel extraction kit (Qiagen). The ends of these two DNA fragments were blunted using a DNA blunting kit (Takara Shuzo), ligated using a DNA ligation kit (Takara Shuzo), and transferred into E. coli DH5 α (Gibco BRL). The resultant transformant was grown and the expression cosmid pWESR α containing an expression unit was purified using a Qiagen column (Qiagen).

The cosmid pWE OCIF containing the OCIF genomic DNA with a length of about 38 kb obtained in (i) above was digested with a restriction enzyme Not I to cut out the OCIF genomic DNA of about 38 kb. After separation by agarose gel electrophoresis, the DNA was purified using the QIAEX II gel extraction kit (Qiagen). On the other hand, the expression cosmid pWESR α was digested with a restriction enzyme EcoRI and the digestion product was extracted with phenol and chloroform, ethanol-precipitated, and dissolved in TE.

pWESR α digested with a restriction enzyme EcoRI and an EcoRI-XmnI-NotI adapter (#1105, #1156 New England Bi laboratory Co.) were ligated using T4 DNA ligase (Takara Shuzo Co., Ltd.). After removal of the free adapter by agarose gel electrophoresis, the product was purified using QIAEX gel extraction kit (Qiagen). The OCIF genomic DNA with a length of about 37 kb which was derived from the digestion with restriction enzyme NotI and the pWESR α to which the adapter was attached were ligated using T4 DNA ligase (Takara Shuzo). The DNA was packaged in vitro using the Gigapack packaging extract (Stratagene) and infected with E. coli XL1-Blue MR (Stratagene). The resultant transformant was grown and the expression cosmid pWESR α OCIF which contained OCIF genomic DNA was inserted was purified using a Qiagen column (Qiagen). The OCIF expression cosmid pWESR α OCIF was ethanol-precipitated and dissolved in sterile distilled water and used in the following analysis.

(ii) Transient expression of OCIF genomic DNA and measurement of OCIF activity

A recombinant OCIF was expressed as described below using the OCIF expression cosmid pWESR α OCIF obtained in (i) above and its activity was measured. COS-7 (8x10 5 cells/well) cells (Riken Cell Bank, RCB0539) were planted in a 6-well plate using DMEM culture medium (Gibco BRL) containing 10% fetal bovine serum (Gibco BRL). On the following day, the culture medium was removed and cells were washed with serum-free DMEM culture medium. The OCIF expression cosmid pWESR α OCIF which had been diluted with OPTI-MEM culture medium (Gibco BRL) was mixed with Lipophtamine and the mixture was added to the cells in each well according to the attached protocol. The expression cosmid pWESR α was added to the cells in the same manner as a control. The amount of the cosmid DNA and Lipophtamine was respectively 3 μ g and 12 μ l. After 24 hours, the culture medium was removed and 1.5 ml of fresh EX-CELL 301 culture medium (JRH Bioscience) was added to each well. The culture medium was recovered after 48 hours and used as a sample for the measurement of OCIF activity. The measurement of OCIF activity was carried out according to the method described by Kumegawa, M. et al. (Protein, Nucleic Acid, and Enzyme, Vol. 34, p 999 (1969)) and the method of TAKAHASHI, N. et al. (Endocrinology vol. 122, p 1373 (1988)). The osteoclast formation in the presence of activated vitamin D₃ from bone marrow cells isolated from mice aged about 17 days was evaluated by the induction of tartaric acid resistant acidic phosphatase activity. The inhibition of the acid phosphatase was measured and used as the activity of the protein which possesses osteoclastogenesis-inhibitory activity (OCIF). Namely, 100 μ l/well of a OCIF sample which was diluted with α -MEM culture medium (Gibco BRL) containing 2x10 8 M activated vitamin D₃ and 10% fetal bovine serum was added to each well of a 96 well micro plate. Then 3x10 5 bone marrow cells isolated from mice (about 17-days old) suspended in 100 μ l of α -MEM culture medium containing 10% fetal bovine serum were added to each well of the 96 well micro plate and cultured for a week at 37°C and 100% humidity under 5% CO₂ atmosphere. On days 3 and 5, 160 μ l of the conditioned medium was removed from each well, and 160 μ l of a sam-

ple which was diluted with α-MEM culture medium containing 1×10^{-8} M activated vitamin D₃ and 10% fetal bovine serum was added. After 7 days from the start of culturing, the cells were washed with a phosphate buffered saline and fixed with a ethanol/acetone (1:1) solution for one minute at room temperature. The osteoclast formation was detected by staining the cells using an acidic phosphatase activity measurement kit (Acid Phosphatase, Leucocyte, Cat.No. 387-A, Sigma Company). A decrease in the number of cells positive to acidic phosphatase activity in the presence of tartaric acid was taken as the OCIF activity. The results are shown in Table 1, which indicates that the conditioned medium exhibits the similar activity to natural type OCIF obtained from the IMR-90 culture medium and recombinant OCIF produced by CHO cells.

TABLE 1

Activity of OCIF expressed by COS-7 cells in the conditioned medium						
Dilution	1/10	1/20	1/40	1/80	1/160	1/320
OCIF genomic DNA introduced	++	++	++	++	+	-
Vector introduced	-	-	-	-	-	-
Untreated	-	-	-	-	-	-

++ indicates an activity inhibiting 80% or more of osteoclast formation, *+* indicates an activity inhibiting 30-80% of osteoclast formation, and *-* indicates that no inhibition of osteoclast formation is observed.

(ii) Identification of the product by Western Blotting

A buffer solution (10 μl) for SDS-PAGE (0.5 M Tris-HCl, 20% glycerol, 4% SDS, 20 μg/ml bromophenol blue, pH 6.8) was added to 10 μl of the sample for the measurement of OCIF activity prepared in (ii) above. After boiling for 3 minutes at 100°C, the mixture was subjected to 10% SDS polyacrylamide electrophoresis under non-reducing conditions. The proteins were transferred from the gel to a PVDF membrane (ProBlott, Perkin Elmer) using semi-dry blotting apparatus (Biorad). The membrane was blocked and incubated for 2 hours at 37°C together with a horseradish peroxidase-labeled anti-OCIF antibody obtained by labeling the previously obtained OCIF protein with horseradish peroxidase according to a conventional method. After washing, the protein which has bound the anti-OCIF antibody was detected using the ECL system (Amasham). As shown in Figure 1, two bands, one with a molecular weight of about 120 kilo dalton and the other 60 kilo dalton, were detected in the supernatant obtained from the culture broth of COS-7 cells in which pWESR_cOCIF was transfected. On the other hand, these two bands with a molecular weight of about 120 kilo dalton and 60 kilo dalton were not detected in the supernatant obtained from the culture broth of COS-7 cells in which pWESR_cvector was transfected, confirming that the protein obtained was OCIF.

INDUSTRIAL APPLICABILITY

The present invention provides a genomic DNA encoding a protein OCIF which possesses an osteoclastogenesis-inhibitory activity and a process for preparing this protein by a genetic engineering technique using the genomic DNA. The protein obtained by expressing the gene of the present invention exhibits an osteoclastogenesis-inhibitory activity and is useful as an agent for the treatment and improvement of diseases involving a decrease in the amount of bone such as osteoporosis, other diseases resulting from bone metabolism abnormality such as rheumatism or degenerative joint disease, and multiple myeloma. The protein is further useful as an antigen to establish antibodies useful for an immunological diagnosis of such diseases.

NOTE ON MICROORGANISM

50 Depositing Organization:

The Ministry of International Trade and Industry, National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology

Address: 1-3, Higashi-1-Chome, Tsukuba-shi, Ibaraki-ken, Japan

Date of Deposition: June 21, 1995 (originally deposited on June 21, 1995 and transferred to the international deposition according to the Budapest Treaty on October 25, 1995)

Accession No. FERM BP-5267

TABLE OF SEQUENCES

5 Sequence number: 1
 Length of sequence: 1316
 10 Sequence Type: nucleic acid
 Strandedness: double
 Topology: linear
 15 Molecular type: genomic DNA (human OCIF genomic DNA-1)

20 Sequence:
 CTGGAGACAT ATAATCTGAA CACTTGGCCC TGATGGGGAA CCAGCTCTGC AGGGACTTTT 60
 TCACCCCATCT GTAAACATT TCAGTGGCAA CCCGGAACT GTAAATCCATG AATGGGACCA 120
 25 CACTTACAA CTACATCAGT CTAACTTCATA GACCAGGGAA TTAAATCCCCG AGACACCGAA 180
 CCCTAGACCA AAGTGGCCAAA CTCTCTGTGCA TAGCTTGAGG CTAGTGGAAA GACCTCGAGG 240
 AGGCTACTCC AGAAGTTCAG CGCGTAGGAA GCTCCGATAC CAATAGCCCT TTGATGATGG 300
 30 TGGGGTTGGT GAAGGGAAACA GTGCTCCGCA AGGTATCCC TGCCCCAGGC AGTCCAAATT 360
 TCACCTCTCA GATTCCTCTCT GCCTCTAACT ACCCCAGATA ACAAGGAGTC AATCCAGAAT 420
 AGCACCGGCT TTAGGGGCAA TCAAGACATTA CTAGACAAAAA TTCTCTACTAC ATGGTTATG 480
 35 TAAACTCTGAA GATGAATCAT TCGGAATCTCC CGAAAAGGG CTCACACAAAT GCCATGCTA 540
 AAGAGGGGCC CTGTAATITG AGGTTTCAAGA ACCCCGAATG AAGGGGTCAAG GCAGGGGGT 600
 ACGGGGAAAA CTCACAGCTT TCGCCCCAGGC AGAGGACAAA CGCTCTGGAC ACACCTCCAAAC 660
 40 TGGCTCCGGA TCTTGGCTGG ATCGGACTCT CAGGGTGGAG GAGACACAAAG CACAGCAGCT 720
 CCCCAAGCTG TCCCCAGCCCC TCCCAACCGCT GGTCCCCGGCT CCCAGGAGGC TGGCCGCTGG 780
 CGGGAAAGGG CGGGGAAACCC TCAAGGCCCC CGGGAGACAG CAGCCGGCTT GTTCCCTCAGC 840
 45 CCGGTGGCTT TTTTTTCCCC TGTCTCTCCA CGGGACAGAC ACCCACCGCCC GACCCCTCAC 900
 GCCCCCACCTC CCTGGGGGAT CCTTTCCGCC CCAGCCCTGA AACGGTTAAAT CCTGGAGCTT 960
 TCTGCACACC CCCCCAACCC TCCCCCCCCA CCTTCTAAAA AAAGAAAAGGT GCAAAGTTG 1020
 50 CTCCAGGATA GAAAATTCAC TGATCAAAGG CAGGGCGATAC TTCTCTGTGC CGGGACCTA 1080
 TATATAACCT GATGAGCCCA CGGGCTGCGG AGACCCACCG GACCCGCTGC CCAGGGGGCC 1140

CCTCCAAGCC CCTGAGGTTT CGGGGGACCA CA ATG AAC AAG TTG CTG TGC TGC 1193

5 Met Asn Lys Leu Leu Cys Cys

-20

-15

10 GCG CTC GTG GTAAGTCCTT GGGCCAGCCC ACCGGTCCCC GGGCCCTGGG 1242

Ala Leu Val

15 GAGGCTGCTG CCACCTGGTC TCCCCAACCTC CCAGGGGACC GGCGGGGACA AGGCTCCACT 1302

CGCTCCCTCC CAGG 1316

20 Sequence number: 2

Length of sequence: 9898

25 Sequence Type: nucleic acid

Strandedness: double

Topology: linear

30 Molecular type: genomic DNA (human OCIF genomic DNA-2)

35 Sequence:

GCTTACTTTG TGCCAAATCT CATTAGGCTT AAGGTAATAAC AGGACTTTGA GTCAAATGAT 60

40 ACTGTTGCCAC ATAAGAACAA ACCTATTTTC ATGCTAAGAT GATGCCACTG TGTTCCTTTC 120

TCCTCTAG TTT CTG GAC ATC TCC ATT AAG TGG ACC ACC CAG GAA ACC TTT 171

Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe

45 -10

-5

1

50 CCT CCA AAG TAC CTT CAT TAT GAC GAA GAA ACC TCT CAT CAG CTG TTG 219

Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu

5

10

15

	TGT GAC AAA TCT CCT GGT ACC TAC CTA AAA CAA CAC TGT ACA GCA	267		
5	Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala			
	20	25	30	35
10	AAG TGG AAG ACC GTG TGC GCC CCT TGC CCT GAC CAC TAC TAC ACA GAC	315		
	Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp			
15	15	40	45	50
20	AGC TGG CAC ACC AGT GAC GAG TGT CTA TAC TGC AGC CCC GTG TGC AAG	363		
	Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys			
	55	60	65	
25	GAG CTG CAG TAC GTC AAG CAG GAG TGC AAT CGC ACC AAC CGC GTG	411		
	Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val			
30	30	70	75	80
35	TCC GAA TCC AAG GAA GGG CGC TAC CTT GAG ATA GAG TTC TCC TTG AAA	459		
	Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys			
	85	90	95	
40	CAT AGG AGC TGC CCT CCT GGA TTT GGA GTG GTG CAA CCT G GTACGTGTCA	509		
45	His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala			
	100	105	110	
50	ATGTGCCAGCA AAATTAATTA GGATCATGCA AAGTCAGATA GTTGTGACAG TTTAGGAGAA	569		

CACTTITGTT CTGATGACAT TATAGGATAG CAAATTGCAA AGCTTAATGAA ACCTGCCAGG 629
 5 TAGTGTACTAT CTGTCGGAG TGCTTCCAAA GGACCATTCGC TCAGAGGAAT ACTTTCCCAC 689
 TACAGGGCAA TTAAATGACA AATCTCAAT GCAGCAAATT ATTCCTCTCAT GAGATCCATG 749
 10 ATGCTTTTTT TTTCCTTTT TAAAGAAACA AACTCAAGTT GCACATTGAA TAGTTGATCT 809
 ATACCTCTAT ATTTCATTC AGCATGGACA CCTTCAAACT GCACCACTT TTGACAAACA 869
 15 TCAGAAATGT TAATTTATAC CAAGAGAGTA ATTATGCTCA TATTAATGAG ACTCTGGAGT 929
 GTCTAACATA ACCAGCTTATA ATTAAATTATG TAAAAAATGA GAATGGTGAC CGGAATTCCA 989
 20 TTTCATTATT AAAAACAAAGG CTAGTTCTTC CTTCAGCATG GGAGCTGAGT GTTGGGAGG 1049
 GTAAAGGACTA TAGCAGAAATC TCTTCATCA CCTTATTTCTT TATCTTAGAC AAAACAGATT 1109
 25 GTCAAGCCAA GAGCAAGCAC TTGGCTATCAA ACCAAGTGCT TTCTCTTTG CATTTCGAAC 1169
 AGCATGGTC AGGGCTCATG TGTATTGAAT CCTTAAACC AGTAACCCAC GTTTTTTTC 1229
 30 TGCCACATTT GCGAACGCTTC AGTGCAGCCT ATAACCTTTC ATAGCTTGAG AAAATTAAGA 1289
 GTATCCACTT ACTTGTAGATGG AAGAAGTAAT CAGTATAGAT TCTGATGACT CAGTTGAAG 1349
 35 CAGTGTCTCT CAACTGAAGC CCTGCTGATA TTAAAGAAA TATCTGGATT CCTAGGCTGG 1409
 ACTCCTTTT GTGGGCAAGCT GTCCCTGCACCA TTGAGAATT TTGGCAGCAC CCCTGGACTC 1469
 TAGGCACTAG ATACCAATAG CACTCCTTC CCCATGTGAC AGCCAAAAAT GTCTTCAGAC 1529
 40 ACTGCTAAAT GTGCCAGGT GGCAGAAATCA CTCTGGTTG AGAACAGGGT CATCAATGCT 1589
 AACTATCTGT AACTATTAA ACTCTAACTTAA CTGTGTGATAT ACAAACTCTA AATTATTAGA 1649
 45 CGACCAATAC TTAGGTTAA AAGGCAATACA AATGAAACAT TCAAAATCA AAATCTATTC 1709
 TGTTTCTCAA ATAGTGAATC TTATTAATTT AATCACAGAA GATGCAAATT GCATCAGACT 1769
 CCCTTAAAT TCCCTCTCTGT ATGAGTATTG GAGGGAGGAA TTGGTGATAG TTCTCTACTT 1829
 50 CTATTGGATG GTACTTGTAG ACTCAAAAGC TAAGCTTAAGT TGTGTGTGAG TGAGGGTGGC 1889
 GGGTGTGAA TCCCATCAGA TAAAGCAAA TCCATGTAAAT TCATTCAGTA ACTTGTATAT 1949
 GTACAAAAAT GAAAAGTGGG CTATGCACTG TCGAAACTAG AGAATTITGA AAAATAATGG 2009
 AAATCACAAG GATCTTCTT AAATAAGTAA GAAAATCTGT TTGAGAATG AAGCAAGCAG 2069
 55 GCACCCAGAA GACTCAGAAC AAAACTACAC ATTTCATCT GTGTACACTG GCACCAAGCT 2129

5 GGGATTATT TACCTCTCCC TCCCTAAAAA CCCACACAGC GTTCTCTTT GGGAAATAAG 2189
 AGGTTCAG CCCAAAGAG AGGAAAGACT ATCTGGTGT ACTCTAAAAA CTATTTATA 2249
 10 ACCGTTTGT TGTCTCTTG GCTGTTTGA AATCAGATT TCTCTCTCC ATATTTTATT 2309
 TACTTCATTC TGTTAATTC TGTGGAATTA CTTAGAGCAA GCATGGTCAA TTCTCAACTG 2369
 TAAAGCCAAA TTCTCCATC ATTATAATTT CACATTTGC CTGGCAGGT ATAATTTTA 2429
 TATTTCAC T GATAGTAATA AGGTAAAATC ATTACTAGA TGGTAGATC TTTTCTAA 2489
 15 AAAGTACCAT CAGTTATAGA GGGAACTCAT GTTCTGTTG AGGAAGGTCA TTAGATAAG 2549
 CTCTGAATA TATTATGAAA CATTACTCT GTCTTCTTA GATTCTTTT GTAAATAAC 2609
 TTAAAAGCT AACCTACCA AAAGAAATAT CTGACACATA TGAACCTCTC ATTAGGATGC 2669
 20 AGGAGAAC CCAAGGCCA GATATGTATC TGAAGAATGA ACAAGATTCT TAGGCCCGC 2729
 ACCGTGGCTC ACATCTGTA TCTCAAGAGT TTGAGAGTC AAGGGGGGCA CATCACCTGA 2789
 GTCAGGAGT TCAAGACCAC CCTGGCCAAC ATGATGAAAC CCTGCTCTA CTAAAAATAC 2849
 AAAAATTAGC AGGGCATGGT GGTGCTATGCC TGCACCCCTA GCTACTCAGG AGGCTGAGAC 2909
 25 ACGAGAATCT CTTGAACCT CGAGGGGGAG TTGTTGGTGA GCTGAGATCC CTCTACTGCA 2969
 CTCCAGCTG GGTGACAGAG ATGAGACTCC GTCCCTGGCG CGGCCCGC CTTCCCCCCC 3029
 AAAAAGATTG TTCTCTCATGC AGAACATACG CGACTCAACA AAGGGAGACC TGGGTCCAGG 3089
 TGTCCAAGTC ACTTATTTG AGTAAATTAG CAATGAAAGA ATGCCATGGA ATCCCTGCC 3149
 30 AAATACCTCT GCTTAIGATA TTCTGAGAATT TGATATAGAG TTGTATCCCA TTTAAGGAGT 3209
 AGGATGTAGT AGGAAAGTAC TAAAAACAAA CACACAAACG GAAAACCTCTC TTGCTTTGT 3269
 35 AAGGTGGTTC CTAAGATAAT GTCACTGCAA TGTGGAAT AATATTTAT ATGTCAGGT 3329
 TTAGGCTGT GTTTCCCTT CCTGTTCTTT TTTCTGCCA CCCTTTGTC ATTTTGCAG 3389
 GTCAATGAT CATGTAGAAA CACACAGGAG ATGAAACTAG AACCACTGCA TTTGCCCT 3449
 40 TTTTTATTT TCTGGTTTG GTAAAGATA CAATGAGGTA GGAGGTGAG ATTTATAAT 3509
 GAAGTTTAAT AAGTTTCTGT AGCTTGTGATT TTCTCTTTC ATATTGTTA TCTTGATCAA 3569
 45 GCCAGAATTG CCCTGTAAAAA TCTACATATG GATATTGAAG TCTAAATCTG TTCAACTAGC 3629
 TTACACTAGA TGGAGATATT TTCTATTC A GATACACTGG AATGTATGAT CTAGCCATGC 3689

5 GTAATATAGT CAACTGTGAG AAGGTATTAA TTTTAATAG CCTCTTTAGT TGTGGACTGG 3749
 TTCAAGTTT TCTGCCAATG ATTCTTCAA ATTATCAA TATTTTCCA TCATGAAGTA 3809
 AAATGCCCTT GCAGTCACCC TTCTCTGAAGT TTGAAACACT CTGCTGTTT AACACTTTA 3869
 10 ACCAAATGGT ATATCATCTT CGCTTACTA TGAGCTTAA CTGCAGGCTT ACGCTTTGA 3929
 GTCAGCCGCC AACTTTATG CCACCTCAA AAGTTTATTA TAATGTTGTA AATTTTACT 3989
 TCTCAAGGT ACCATACTTA GGAGTTGCCCT CACAATTAGG ATTCAAGAAA GAAAGAACCT 4049
 15 CACTAGAAC TGATTGGAAT TTAATGATGC ACCATTCAAT GGGTACTAAT TCAAAGAAAT 4109
 GATATTACAG CACACACACA GCAGTTATCT TGATTTCTA GGAATAATG TATGAAGAAT 4169
 ATGGCTGACA ACACGGCCCTT ACTGCCACTC AGCGGAGGCT GGACTAATGA ACACCTTAC 4229
 20 CTTCTTCTCTTCTCAC ATTTCATGAG CTTTTCTAG GAAACCGAGAA ATTGACTTC 4289
 CATTGCAATT ACAAGGAGGA GAAACTGCCA AAGGGGATGA TGGTGGAACT TTGTTCTGT 4349
 25 CTAATGAAGT GAAAAATGAA AATGCTAGAG TTTTGCGAA CATAATAGTA GCACTAAAAA 4409
 CCAACTGAAA AGTCTTCTCA AAACTGCTTT AAGAGGGCAT CTGCTGGAA ACGATTTGAC 4469
 GAGAAGGTAC TAAATGCTT GGTATTTCT GTAG GA ACC CCA GAG CGA AAT ACA 4523

Gly Thr Pro Glu Arg Asn Thr

115

35 GTT TCC AAA AGA TGT CCA GAT GGG TTC TTC TCA AAT GAG ACG TCA TCT 4571

Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser

40 120 125 130 135

45 AAA GCA CCC TGT AGA AAA CAC ACA AAT TGC AGT GTC TTT GGT CTC CTG 4619

Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu

50 140 145 150

55 CTA ACT CAG AAA GGA AAT GCA ACA CAC GAC AAC ATA TGT TCC GGA AAC 4667

Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn

5 155 160 165

AGT GAA TCA ACT CAA AAA TGT GGA ATA G GTAATTACAT TCCAAAATAC 4715

10 Ser Glu Ser Thr Gln Lys Cys Gly Ile

170 175

15 GTCTTTGAC GATTTTGAG TATCATCTCT CTCTCTGAGT TGAACACAAG GCCTCCAGCC 4775
 ACATTCCTGC TCAAACCTAC ATTTTCCCTT TCTTGAATCT TAACCCACTA AGCTCTACTCT 4835
 20 CGATGCAATT CTGCTAAAGC TACCACTCG AATCTCTCAA AAACCTCATCT TCTCACAGAT 4895
 AACACCTCAA AGCTTGTATT TCTCTCTTTT CACACTGAA TCAAATCTTG CCCATAGGCC 4955
 25 AAGGGCAGTG TCAAGTTTG CACTGAGATG AAATTAGGAG AGTCCAAACT GTAGAATTCA 5015
 CGTGTGTGT TATTACTTC ACCAATGTCT GTATTATAA CTAAGTATA TATGGCAAC 5075
 TAAGAACAA AGTGTATAAA ACATGATGAC AAATTAGGCC AGGCATGGTG GCTTACTCT 5135
 30 ATAATCCCA CATTITGGGG GCCTAAAGGTAA GGCAAGATCAC TTGAGGTCAAG 5195
 CCAGCCTGAC CAACATGGTG AAACCTTGTC TCTACTAAA ATACAAAAAT TAGCTGGCA 5255
 TGGTAGCAGG CACTCTAGT ACCAGCTACT CAGGGCTGAG GCAGGAGAAT CGTTGAACC 5315
 35 CAGGAGATGG AGGGTGCAGT GAGCTGAGAT TGTACCACTG CACTCCACTC TGGCAACAG 5375
 ACCAAGATT CATCACACAC ACACACACAC ACACACACAC ACACATTAGA AATGTGTACT 5435
 40 TGGCTTCTT ACCTATCGTA TTAGTGCATC TATTGATGG AACTTCCAAG CTACTCTGGT 5495
 TGCTTAAAGC TCTTCATGG GTACAGGTCA CTAGTATTAA GTTCAGGTTA TTGGATGCC 5555
 TTCCACGGTA CTGATGACAA TTCACTCAGGC TAGTGTGTGT GTTCACCTTG TCACTCCAC 5615
 45 CACTAGACTA ATCTCAGACC TTCACTCAA GACACATTAC ACTAAAGATG ATTIGCTTT 5675
 TTGTGTTAA TCAAGCAATG GTATAAACCA GCTTICACTCT CCCCCAAACAG TTTTGTAC 5735
 TACAAAGAAC TTATGAACG AGAGAAATGT GAATGGATAT ATATATGAGA TTCTAACCCA 5795
 50 GTTCCAGCAT TCTTCATTC TGTAAATTGAA ATCATAGACA AGCCATTGTTA GCCTTGCTT 5855

55

5 TCTTATCTAA AAAAAAAA AAAAAATGA ACCAAGGGGT ATAAAAGGA GTGATCAAAT 5915
 TTTAACATTCTCTTAAATTCACTTTT AATTTTACTT TTTCATTT ATTCTGCCACT 5975
 TACTATGTGG TACTGTGCTA TAGAGGCTTT AACATTATA AAAACACTGT GAAAGTTGCT 6035
 10 TCAGATGAAT ATAGGTAGTA GAACGGCAGA ACTAGTATT AAAGCCAGGT CTGATGAATC 6095
 CAAAAACAAA CACCCATTAC TCCCATTTC TGGGACATAC TTACTCTACC CAGATGCTCT 6155
 15 GGGCTTGTA ATGCCTATGT AAATAACATA GTTTATGTT TGGTTATTT CCTATGTAAT 6215
 GTCTACTTAT ATATCTCTAT CTATCTCTTG CTTCCTTCC AAAGGTAAAC TATGTGCTA 6275
 AATGTGGGCA AAAAAAACAA CACTATTCCA AATTACTGTT CAAATTCCTT TAAGTCAGTG 6335
 ATAATTATTGTTTGTGACAT TAATCATGAA GTTCCCCTGTC CGTACTAGGT AAACCTTTAA 6395
 20 TAGAACTTAA ATGTTTGAT TCATTATAAG AATTTTGCGC TGTTACTTAT TTACAACAAAT 6455
 ATTTCACTCT AATTAGACAT TTACTAAACT TTCTCTGAA ACAATGCCA AAAAAAGAAC 6515
 25 ATTAGAAGAC ACCTAAAGCTC AGTTGGCTC TGCCACTAAG ACCAGCCAAC AGAAGCTTGA 6575
 TTATTCACAA ACTTTGCAATT TTAGCATATT TTATCTTGA AAATTCAATT GTGTTGGTTT 6635
 TTGTTTGTGTTTGATAGACTCTC AGAAATCCAA TTGTTGACTA AATCTCTGG 6695
 30 GTTCTAAC CTTCCTTGTAG AT GTT ACC CTG TGT GAG GAG GCA TTC TTC AGG 6747

Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg

180 185

35 TTT GCT GTT CCT ACA AAG TTT ACC CCT AAC TGG CTT AGT GTC TTG GTA 6795
 Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val

190 195 200

45 GAC AAT TTG CCT GCC ACC AAA GTA AAC GCA GAG AGT GTA GAG AGG ATA 6843
 Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile

205 210 215

AAA CGG CAA CAC ACC TCA CAA GAA CAG ACT TTC CAG CTG CTG AAG TTA 6891

5 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu

220 225 230 235

10 TGG AAA CAT CAA AAC AAA GAC CAA GAT ATA GTC AAG AAG ATC ATC CAA G 6940

Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln

15 240 245 250

GTATGATAAT CTAAAATAAA AGAGATCAATC AGAAATCAAAG CACACCTATT TATCATAAAC 7000

20 CAGGAACAAG ACTGCGATGTA TGTGGATGTT GTTCCCTGTG TTGGAATCATT 7060

GTGGACTGA AAAAGTTTC ACCTGATAAT CTAGATGTGA TTCCACAAAC AGTTTACAA 7120

25 GTTTTGTTG TCACCCCTGC TCCCCAGTTT CCTTGTAAAG TATGTTGAAC ACTCTAACAG 7180

AAGGAAAATG CATTGAAAG CAGGGCTGTA TCTCAGGGAG TCGCTCCAG ATCCCCTAAC 7240

30 GCTTCTGTAA GCAGCCCCCTC TAGACCACCA AGGAGAAAGCT CTATAACCAC TTTGTATCTT 7300

ACATTGCAAC TCTACCAAGA ACCTCTGTG TATTACTTG GTAATTCTCT CCAGGTAGGC 7360

35 TTTCTGTAGC TTACAATAT GTTCTTATTA ATCCCTCATGA TATGCCCTGC ATTAAAATTA 7420

TTTAATGGC ATATGTTATG AGAATTAATG AGATAAAATC TGAAAAGTGT TTGACCCCTCT 7480

40 TGTAGGAAAA AGCTAGTTAC AGCAAAATGT TCTCACATCT TATAACTTTA TATAAAGATT 7540

CTCCCTTACA AATGGTGTCA GAGAGAAACA GAGAGAGATA GGAGAGAAAG TGTGAAAGAA 7600

45 TCTGAAGAAA AGGAGTTCA TCCACTGTGG ACTGTAAGCT TTACGACACA TGATGGAAG 7660

AGTTCTGACT TCACTAACCA TTGGGAGGAC ATGCTGAAAG AAAAAGGAAG AAGAGTTTCC 7720

50 ATAATGCAGA CAGGGTCAGT GAGAAATTCA TTCAAGGTCTT CACCACTAGT TAAATGACTG 7780

TATAGTCTTG CACTACCTCA AAAAACCTCA AGTATGTGAA ACCGGGGCAA CAGATTTAG 7840

GAGACCAACG TCTTGTAGAG CTGATGTGTT TTGCTTATGCC AAAGACTAA CTTTATGTT 7900

55 TTGAGCAAAC CAAAAGTATT CTTTGAACGT ATAATTAGCC CTGAACCCGA AAGAAAAGAG 7960

AAAATCAGAG ACCGTTAGAA TTGGAAGCAA CCAAATTCCC TATTTATCAA ATGAGGACAT 8020

5 TTAACCCAG AAAGATGAAC CGATTTGGCT TAGGGCTCAC AGATACTAAG TGACTCATGT 8080
 CATTAAATAGA AATGTTAGT CCTCCCTCTT AGGTTTGAC CCTAGCTTAT TACTGAAATA 8140
 10 TTCTCTAGGC TGTTGTCCTC CTTGTAGTTC TCGACCTCAT CTCTTGTACT TTTCAGATAT 8200
 CCTCCCTCATG GAGGTAGTCC TCTGGTGCTA TGTGTATTCT TTAAAGGCTA GTTACGGCAA 8260
 TTAACCTTATC AACTACGCC TACTAATGAA ACTTGTATT ACAAAAGTACCAACTTGAAT 8320
 ACTTCTCTT TTTCCTGAAA TGTTATGGTG GTAACTTCTC AAACCTTTTC TTAGAAAACCT 8380
 15 CAGACTCATG TGCTCTTATTCT CTACTGTAA ATTTCAAAAA TTAGGAGCTT CTCCCAAAGT 8440
 TTTCCTGGAT CCCAAAAATA TATACCATAT TATCTTATTA TAACAAAAAA TATTTATCTC 8500
 AGTCTTAA AATAAATGTC GTCACTTAAAC TCCCTCTCAA AAGAAAAGT TATCAATTGAA 8560
 20 ATATAATTAT GAAATTCTGC AAGAACCTT TGCCTCACCC TTGTTTTATG ATGCCATTGG 8620
 ATGAATATAA ATGATGTGAA CACTTATCTG GGCTTTGCT TTATGCAG AT ATT GAC 8676

25 Asp Ile Asp

30 CTC TGT GAA AAC ACC GTG CAG CGG CAC ATT GGA CAT GCT AAC CTC ACC 8724
 Leu Cys Glu Asn Ser Val Gin Arg His Ile Gly His Ala Asn Leu Thr
 255 260 265 270

35 TTC GAG CAG CTT CGT AGC TTG ATG GAA AGC TTA CCG GGA AAG AAA GTG 8772
 Phe Glu Gin Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val
 40 275 280 285

45 GCA GCA GAA GAC ATT GAA AAA ACA ATA AAG GCA TGC AAA CCC ACT GAC 8820
 Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp
 290 295 300

50 CAG ATC CTG AAG CTG CTC AGT TTG TGG CGA ATA AAA AAT GCC GAC CAA 8868

55

Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln

5 305 310 315

GAC ACC TTG AAG CGC CTA ATG CAC GCA CTA AAG CAC TCA AAG ACG TAC 8916

10 Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr

320 325 330

15 CAC TTT CCC AAA ACT GTC ACT CAG AGT CTA AAG AAG ACC ATC AGG TTC 8964

His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe

20 335 340 345 350

25 CTT CAC AGC TTC ACA ATG TAC AAA TTG TAT CAG AAG TTA TTT TTA GAA 9012

Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu

355 360 365

30 ATG ATA GGT AAC CAG GTC CAA TCA GTA AAA ATA AGC TGC TTA 9054

Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu

35 370 375 380

40 TAACTCGAAA TGGCCATTGA GCTGTTTCTT CACAATTGGC GAGATCCCAT GGATGACTAA 9114

ACTGTTTCTC AGGCCATTGA GGCTTTCACT GATATCTTTC TCATTACCAAG TGACTAAITT 9174

45 TGCCACAGGG TACTAAAAAGA AACTATGATG TGGAGAAAGG ACTAACATCT CCTCCAATAA 9234

ACCCCCAAATG GTTAATCCAA CTGTCAGATC TGGATCGTTA TCTACTGACT ATATTTCCC 9294

50 TTATTTACTGC TTGCACTTAAT TCAACTGGAA ATTAAAAAAA AAAAAGTAGA CTCCACTGGG 9354

CCTTACTAAA TATGGGAATG TCTAACTTAA ATAGCTTTGG GATTCCAGCT ATGCTAGAGG 9414

CTTTTATTAG AAAGCCATAT TTTTTCTGT AAAAGTTACT AATATATCTG TAACACTATT 9474

ACAGTATTGC TATTATATT CATTAGATA TAAGATTTGG ACATATTATC ATCCCTATAAA 9534
 5 GAAACGGTAT GACTTAATT TAGAACAAA ATTATATTCT GTTTATTATG ACAAAATCAA 9594
 GAGAAAAATAT ATATTTTTAA TGAAACTT GTGCAATTTC TCTAATAGGT ACTGCCATAT 9654
 10 TTTTCTGTGT GGAGTATTTC TATAATTTC TCTGATAAG CTGTAATATC ATTTTATAGA 9714
 AAATGCATTA TTAGTCAT TGTAAATGT TCGAAAACAT ATGAAATATA AATTATCTGA 9774
 ATATTAGATG CTCTGAGAAA TTGAATGTAC CTATTTAAA AGATTTAAG GTTTATAAC 9834
 15 TATATAAATC ACATTAAATC AGTTTCAAATTTTTAATGCTTC TGTGCTTT 9894
 ATT 9898

Sequence number: 3

Length of sequence: 401

Sequence Type: amino acid

Strandedness: single stranded

Topology: linear

Molecular type: protein

Sequence:

Met	Asn	Asn	Leu	Leu	Cys	Cys	Ala	Leu	Val	Phe	Leu	Asp	Ile	Ser
-20														
Ile	Lys	Trp	Thr	Thr	Gln	Glu	Thr	Phe	Pro	Pro	Lys	Tyr	Leu	His
-5														
Tyr	Asp	Glu	Glu	Thr	Ser	His	Gln	Leu	Leu	Cys	Asp	Lys	Cys	Pro
10														
Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	Lys	Trp	Lys	Thr
25														
Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	Ser	Trp	His
40														

Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile
 5 250 255 260
 Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu
 10 265 270 275
 Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr
 15 280 285 290
 Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser
 295 300 305
 20 Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
 310 315 320
 25 Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr
 325 330 335
 30 Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe
 340 345 350
 Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly
 35 355 360 365
 Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu
 40 370 375 380

Sequence number: 4

Length of sequence: 1206

Sequence Type: nucleic acid

Strandedness: single stranded

Topology: linear

Molecular type: cDNA

Sequence:

5	ATGAAACAAC TGCCTGTGCTG CGCCGCTCGTG TTTCGGACA TCTCCATTAA GTGGACCACC	60
	CAGGAAACGT TTCCCTCCAAA CTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG	120
10	TCTGACAAAT GTCTCTCTGG TACCTACCTA AAACAACACT GTACACCAA GTGGAAGACC	180
	CTGTGCCCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCCAG TGACCGACTGT	240
15	CTATACTGCA GCCCCGCTG CAAGGACCTG CAGTACGCTA ACCAGGAGTC CAATGCCACC	300
	CACAAACCGG TGTGCGGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTIGAAA	360
20	CATAGGAGCT GCCCTCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA CGGAAATACA	420
	GTTTCAAAA GATGTCAGA TGGGTTCTTC TCAAAATGAGA CGTCATCTAA ACCACCCCTGT	480
25	AGAAAACACA CAAATTGCG TGTCTTTGGT CTCCCTGCTAA CTCAGAAAGG AAATGCAACA	540
	CACGACAAACA TATGTTCCGG AAACAGTGAA TCAACTCAA ATATGGAAT AGATGTTAAC	600
30	CTGTCGAGG AGCCATCTT CAGGTTTGTCT GTTCTACAA AGTTTACCCC TAATCGCTT	660
	AGTGTCTTGG TAGACAATT GCCTGGCACCC AAAAGTAAACG CAGACAGTGT AGAGAGGATA	720
35	AAACCGCAAC ACAGCTACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA	780
	AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC	840
40	GTCCAGCGGC ACATTCGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATCGAA	900
	AGCTTACCCG GAAAGAAAAGT CGCACCAGAA GACATTGAAA AAACAATAAA CGCATGCAAA	960
45	CCCACTGACC AGATCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC	1020
	ACCTTGAGG GCCTAACTGCA CCCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAACCT	1080
	GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCCTCACA GCTTCACAAT GTACAAATTG	1140
	TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAAGGTCC AATCAGTAAA AATAAGCTGC	1200
50	TTATAA	1206

55

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:

(A) NAME: SNOW BRAND MILK PRODUCTS CO., LTD.
 (B) STREET: 1-1, NAEBOCHO 6-CHOME
 (C) CITY: HIGASHI-KU, SAPPORO-SHI
 (D) STATE: HOKKAIDO
 (E) COUNTRY: JP
 (F) POSTAL CODE (ZIP): NONE

(ii) TITLE OF INVENTION: NOVEL DNA AND PROCESS FOR PREPARING PROTEIN USING THE DNA

(iii) NUMBER OF SEQUENCES: 4

(iv) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
 (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)

(v) CURRENT APPLICATION DATA:

APPLICATION NUMBER: EP 97935810.8

(vi) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: JP 235928/96
 (B) FILING DATE: 19-APR-1996

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1316 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDBNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA (human OCIF genomic DNA-1)

(xi) DESCRIPTION: SEQ ID NO:1:

```

CTGGAGACAT ATAATCTGAA CACTTGGCCC TGATGGGGGA CGACGCTCNGC AGGGACATTTT 60
TCGCCCATCT GTAAACCAATC TCAGTGCGAA CCCGGAAACT CTAACTCATG ATATGGGACCA 120
CACCTTACAA GTCATCAAGT CTAAACTCTA GACCAGGGAA TTAACTGGGG AGAACAGGAA 180
CCCTAGAGCA AAATGCCCCAA CCTTCCTGCA TAGCTTGAGG CTAGTGGAAA GACCTCGGAG 240
AGGCTACTCC AGAACGTTCAG CGCGTAGGAA CTGCGATGATC CAATAGCCCT TTGAGAATGG 300
TGGGGTTGTT GAAGGGACCA GTGCTCGGCA AGGTGATTCGC TGCCCCAGGC AGTCCAATTTC 360
TCACATCTGCA GATTCCTCT ACCTCCAGATA CAACAGGAGTC ATATGCAAAAT 420
AGCACGGGGCT TTAGGGCCAA TCAGACATTA GTAGAAAAAA TTCTCTACTAC ATGGTTTATAG 480
TAACCTTGGAA GATGAATGAT TCGCAACTTC CGGAAAGGGG CTCAAGACAAT GGCATGCAATA 540
AAGAAGGGGGCT CTGTAATTTT AGGTGTCAGA ACCCGGAAGTG AAAGGGGGTCAG GCAGCCGGGGT 600
ACGGGGGAAAC CTCAACGCTT TCGCCACGGG AGAGGACAAA GTGCTGGGAC ACACCTCCAAAC 660
TGCGCTCGGA TCTTGTCTGG ATCGGAGACTTC CAGGGTGGAG GAGAAACAAA CACAGCAGCT 720
GCCCAAGCGGTT TGCCCCAGGCTT TCCCAACGGCT GTGGCCCGGGT GGCAAGGGGG TGCGCCGNGG 780
CGGNAAGGGG CGGGAAACCC TCAGAGCCCC CGCGGAGACAG CAGCGCGCCTT GTTCCCTCAGC 840
CGGCGTGGCTT TTTCCTCCC TGCTCYCCCA GGGGGACAGAC ACCACCGCGC CACCCCTCAG 900
GCCCGCACCTC CCTTGGGGGAT CCTTTCGCGC CCAGCGCTGA AACGCTTAAT CCTGGGAGCTT 960
TCGCGACACC CCCCGACCGC TCCCGCCCA GCTTCTCTAAA AAAAGAAGGT GCAAAGTTTG 1020
GTCAAGGATA GAAAATGAC TGATCAAAAGG CAGGGAGATAC TTCTGTGTTG CGGGAGGCTTA 1080
TATATAACGT GTAGAGCGCA CGGGCTGGGG AGACGGACACCA GAGCCCTCGC CCACGGCGCG 1140
CCTCCAAAGGCC CCTGAAGGTTT CGGGGGACCA CA ATG AAC AAG TTG CTG TGC TGC 1193

```

Met

Aen Lys Leu Leu Cys

Cys

-20

-15

GCG CTC GTG GTAAGTCCTT GGGCCAGCGC ACGGGTGCCC GGCCTGGG

1242

Ala Leu Val

GAGGCTGCTG CCACCTGGTC TCCCAACCTC CCAGCGGACC GGCGGGGAGA AGGCTCCACT 1302
 CGCTCCCTCC CAGG 1316

5

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9898 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA (human OCIF genomic DNA-2)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GCTTFACTTTTG TGCCAAATCT CATAGGTCTT AAGGTAATAC AGGACTTTGA GTCAAATGAT 60
 ATCTGTTGCACT ATAAGAACAA ACCATTATTC ATGCTTAAGAT GATGCCACTG TTGTCCTTC 120
 TCCTCTCTAG TTT CTG GAC ATC TCC ATT AAG TGG ACC ACC CAG GAA ACG TTT 171
 Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr
 -10 -5 1

10

15

CCT CCA AAG TAC CCT CAT TAT GRC GAA GAA ACC TCT CAT CAG CTG TTG 219
 Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu
 5 10 15

20

TGT GAC AAA TGT CCT CCT GGT ACC TAC CTA AAA CAA CAC TGT ACA GCA 267
 Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala
 20 25 30 35

25

AAG TGG AAG ACC GTG TGC GCC CCT TGC CCT GAC CAC TAC TAC ACA GAC 315
 Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp
 40 45 50

30

AGC TGG CAC ACC AGT GAC GAG TGT CTA TAC TGC AGC CCC GTG TGC AAG 363
 Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys
 55 60 65

35

GAG CTG CAG TAC GTC AAG CAG GAG TGC AAT CGC ACC CAC AAC CGC GTG 411
 Glu Leu Gln Tyr Val Lys Glu Glu Cys Asn Arg Thr His Asn Arg Val
 70 75 80

40

TGC GAA TGC AAG GAA GGG CSC TAC CCT TGT GAG ATA GAG TTC TGC TTG AAA 459
 Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys
 85 90 95

45

CAT AGG AGC TGC CCT CCT GGA TTT GGA GTG GTG CAA GCT G GTACGTGTC 509
 His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Glu Ala
 100 105 110

50

ATGGCGAGCA AAAATTAAATA GGATCATGCA AAGTCGAGATA GTTGTGACAG TTTAGGAGAG 569
 CACTTTGTTT CTGAGGACAT TATAGGATAG CAAATTGCAA AGGTAAATGAA ACCNCAGG 629
 TAGGTACATAT GTNTCTGGAG TGCTTCCAAA GGACCATGTC TCAGAGGAT ATTTGCCAC 689

55

TACAGGGCA TTATAGACA AATTCGCAAT GCAGCAATAAT TTCTCTCAT GAGATGCGATG 749
 ATACCTCTCAT ATTTCACATTC AGCATGGACA CCTTCAACAG GCAGCACATT TTGCAAAACA 809
 TCAGAAAGAT TAATTATATAC CAAGAGAGTA ATTATGCTCA TATTAATGAG ATCTGGAGT 869

60

GCTAAACATA AGGATGTATA ATTAAATTATG AAAAATGAA GAATGGTAGG GGGAAATTGCA 929
 TTTCATATTAA AAAAACAAAGG CTAGTCITC CTTTAGCATA GGAGCTGGAT GTTGGGGAGG 1049

65

GTAAAGGACTA TACCGAATGTC TCTCACTATC TATCTTGGAC AAAACAGATT 1109
 GTCAAGCCCA GAGCAAGCAC TTGCTTATAA ACCAAGTGCTT TTCCTTTCATTTGAAC 1169

70

AGCATTGGTC AGGGCTCATG TGATTTGAAT CTTTTAACG AGTAACCCAC GTTTTTTTC 1229

75

TGCCCCATTG CGGAGCTTC AGTGCAGGCT ATAACCTTTC ATAGCTTGAG AAAATTAAGA 1289

80

GTATGCCATT ACTTGTAGG AAGAAGTAAAT CAGTATGAT TCTGATGACT CAGTTGAG 1349

85

CAGTGTCTTCACTAAGAACG CCTGCTGATA TTTAAAGAAA TATCTGGATT CCTAGGGCTGG 1409
 ACTCCCTTTT GTGGCGACGT GTCTCCGCGA TTGTAGAATT TTGGCAGACAC CCCTGGGACTC 1469
 TAGGCACTAG ATACCAATTAG CAGTCCTTCGAC CCCATGAGAC AGCCAAAAAT GTCTTCAGAC 1529
 ACTGTCNAT GCGCCCAAGT GGCAAAATTCG CTTCCTGGTG AGAACAGGGT CATCAANGT 1589
 5 AAGATGCTTCTT AACAAATTTCG ACTCTTAAAGA CTTCCTGGATAT ACAATTAGCA AAATTATAGA 1649
 CGACCAATACG TTAGGTTTA AAGGCATACA ATGAAACAT TCAAATATCA AAATCTATTC 1709
 TGTTTCTCGA ATAGTGATTC TTATTAATTTCG ATTCACAGGA GTAGCAAAAT GTCTTCAGAGT 1769
 CCCCTAAATG TCCCTTGCT GTAGAGTTTG GAGGGAGGA TTGGTGTAG TGCCFACTTT 1829
 CTATTTGGTG GTCATTTGGAG ACTTCAAAGAC TAAGCTAAGG TGTTGTGTCG TCAGGGTGGG 1889
 GGGGAAATGG TCCATCTAGA AAAAGCGCAA TCATCATAAT TCATCTAGA AGTTGTATAT 1949
 10 GTGAAAGATG GAAAATGGGG CTATCAGCT TGAAACATAG GAAGAATTGG AAAAAATATGG 2009
 AAATGCCAACAGA GACTCTTCTT AAAATAGTA GAAAATCTGT TTGTAGAATG AAGCAAGCAG 2069
 GCGGCCGAGA GACTCAGAC AACAGGATCAC ATTTCACCTC GTGTCAGACTG CGACCAAGCT 2129
 OGGGATTCTG CCGCAAGGCG TCCCTAAAGA CCCACACAGG GTTCTCTCTT GGGAAATAG 2189
 AGGTGTTCAAG CCGCAAGGCG AGGGAAAGAC ATGGTGGTTG ACTCTAAAGA GTTATTTATAA 2249
 ACCGCTTCTG TGTGTTCTT GTGGTTTGGT ATACAGATGG TCTCCCTCCC ATATTTTTT 2309
 15 TAGCTCTTCG TGTGTTCTT GTGGTTTGGT CTGGAGGATTA ATTCAGATGG TGAGGATGCA GTCTCACTG 2369
 TAAGGAACTG TTTCCTTCATC ATTTATTAACG ACATCTTGGT CTGGAGGATTA ATTTATTTTTA 2429
 TATTTCGACT GAACTGAAATA AGGTTAAATTC ATACTTGGG TGATGAGATC TTTCATCAA 2489
 AAAGTGGCTCA CATTGATAGA GGAAAGGCTG GTTCATGTTG AGGAAGGGCA TTGATATAAG 2549
 CTGGTGAATG TTATTAAGAA CATTAGTCTC GTTCATCTTC GATCTCTTTT GTTAAATAC 2609
 TTAAAGAAGCT AACTTACCTA AAAAGAAATAT CTGACACATA TGAACTCTTC ATTAGGATGC 2669
 20 AGGAGAACAG CCTGACACAA GATAATGATC TGAAAGATG ACAGAATTC TAGGCCCGGC 2729
 ACGCTGCGAC ACATCTTCATC TTCTCAAGGT TTGGAGGTT AGGGCGGGCA GATCACYCTG 2789
 GTCTGGAGGT TCAGACCGAG CCTGGCCCAA ATGATGAAAC CTCCTCTCTA CTAAAATAC 2849
 AAAAATTAGG AGGGCAGTGT GTCGCAAGCCT GCACCCCTCT GCTACTCTAGA AGGCTGAGAC 2909
 AGGAGAACTCT CTGGAAACCTG CGAGGGGGAG GTGTYGGTGC TGCTGAGATCC CTCTACTCA 2969
 CTTCAGGCGCT GTGGACAGAG ATGGAGACTGC TTCCCTGCCG CGGGCCCCCGC CTTCCTCCCC 3029
 25 AAAAGAATTCG TTCTCATCTC AGAACATACG CGACTCAACA AAGGGAGAC TTGGTCAGGG 3089
 TGTCGAAGCT ACATTTCTG AGGAAATGGT CAATGAGGTT TGAACTCTTC ATTAGGATGC 3149
 AAATACCTCTC GCTTATGATA TTGTAGAATT TGATATGAG TTGTATCTCA TTGTAGGNT 3209
 AGGATGCTGT AGGAAAGATC AAAAAGAAAC CAACAAACAA GAAAACCTC TTGTGTTTGT 3269
 30 AAGGTGTTTC TTCAATGATG GTCAATGCTA TTCTGGAAAT ATATTTTATG ATGTTGAGGT 3329
 TTAGGCTGTTG GTTTTCCCTT TTTCATCTSCA GCCCTTGTGTTT ATTTTGGAGC 3389
 GTCAATGATG CTTGATGTTG CGTGGTGTGC TTCTGGATCA TTGTAGGATA 3449
 TTTCATGTTT CTGGGTGTTG DTTAAAGATA CAATGAGGTT GGAGGTGGG ATTATAAAT 3509
 GAAGTTTAAT AAGTTCTGT AGGTTCTGT TTCTCTTC TTATTTGTTA TTGTCTGATA 3569
 GCGCAGAATTTG GCGCTGTTAAA TTCTACATG GATATGGAG TCTAAATCTC TTCACTAGC 3629
 TTCACTAGTG TTGGATATTC TTATCTATCA GATACTCTG AATGTTGAGA CTAGGCTATC 3689
 GTTAAATATGTG CAAGTTGTTG AAGGTATTA TTATTTATG CGCTCTTGTG TTGTGGACTTG 3749
 TTCACTGTTG TTCTGGCAAA ATTTCCTCAA TTATTCAAA TTATTTCTCA TTGTAGGATA 3809
 35 AAARAGCTTCTT CGAGTCAACC TTCTGGATGT TTGAGACTGT CTGGCTGTTT AAACAGTTTA 3869
 AGCAATGGT ATATCATCTC CGGTGTTACTA TGAGCTTAA CTGAGGCTC ACCTCTTTCA 3929
 GTCAAGGCGAC AACTTATTCG CCACTCTCA AGGTATTAAT TANTGTGTA AATTTTTACT 3989
 TCTCAAGGTG AGCCTATCTC GGAGTGTCTC CAACTATGG ATTCTAGGAA GAAAGACTT 4049
 CAGTAGGACG TGATGTTGAT TTAAATGATG AGCATCTTAA GTGTTCTAT GGTTCTATAT TTCAAGAGT 4109
 GATATTCAGAC CAGCACACCA CGAGTTCTC TGATTTCTA GGAAATATTCG TTGTAGGAAAT 4169
 ATGGCTGACG ACACGGCCCT ATGGCCCTAC AGGGAGGGCT GGAGCTATAG ACACCCCTAC 4229
 40 CTTCCTCTCC TTCTCTTCAC ATTTCATGAG CTTTTGTTAG GTAACTGAGA AATTTGACTTG 4289
 CATTGCGAT CAACAGGAGG GAAACTGGCA AGGGGGATGA TTGTGGAGGT TTGTGGACTT 4349
 CTATGAGT GAAAATTCG AATGCTGAGG TTGTGCGAA CATAATAGTA GCAATTAAGAA 4409
 CCAAGTGAAGA AGCTTCTCCA AAACCTGTGTG AGAGGGGAT CTGCTGGGAA ACATTTGGAG 4469
 GAGAAGGTCG TAAATTGCTT GTGAG ACC CCA GAG CGA AAT ACA 4523
 Gly Thr Pro Glu Arg Asn Thr
 45 115

GTT TGC AAA AGA TGT CCA GAT GGG TTC TCA AAT GAG ACG TCA TCT	4571
Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser	
120 125 130 135	

50 AAA GCA CCC TGT AGA AAA CAC ACA AAT TGC AGT GTC TTT GGT CTC CTG	4619
Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu	
140 145 150	

55 CTA ACT CAG AAA GGA AAT GCA ACA CAC GAC AAC ATA TGT TCC GGA AAC	4667
--	------

5	GCTTCCTGAA GGGCCCTC TAGACCGCA AGGGAGCTC TTGAGGACTG CTTAACATCC TTGTATGCTT 7300 ACATGGACAC TOTACCAAAG AGCTTCCTGTG TTGTCTTCCT GTTAATCTCTC CTCAAGGTGC 7360 TTCTTGAGA TGTCAAAATG AGCTCTTCAAG ATATCTCTCTC TAGTGGCCCGC ATTAAALATAA 7420 TTTCTTGGGGG ATATGTTATG AGATAAATGG AGATATAATAA TGAAAGATGT TTGAGCTCTG 7480 TGCTGGAAA AGCTTGAATG AGCAAACTGG AGTCACTATG TCTCAAGCATC TATAAGGTTA TATAAGGAT 7540 CTCCCTTTAGA ATATGGTGTGAG GAGAGAAAAA GAGAGAGAGA GGGAGGAGAG TGTTGAAGAA 7600 TCCTGGAGAA TGTGGGAGGG CTCAGGTGGC ACTGTAGAAGT TTGAGCAGAC AAAAGGAGAG AAGAGTGTCC 7660 AGCTTGACG TCACTAAAGC TTGGAGGAGC AGTCTGAGCT AGTACGAGM AAAAGGAGAG AAGAGTGTCC 7720 ATAATGGAGC CAGGGCTAGT GAGAAAGAA TCAGGCTCTC CACAGGTAGT TAAATGAGT 7780 TATAGTCCTG CACTACCTCA AAAACTTCA AGTACAGTC AGCCGGGAGA CAGATTGTTG 7840 GAGGAAACCG TCTTGTGAGG CGATGTTGGC TTGCTGCTTC AGGAAAGAT TGTTTGTGTT 7900 TTGACAAACM CAAAGATGTT CTTGAGCTT AGTAAATGGCC CTTGAGGCCG AAAAGAAAGC 7960 AAAATCAGGAG ACCGTTGAGA TTGGAGGCA CAAAGATTCCG TTATTTATG ATGGAGGACB 8020 TTTAAACCCAG AACAGGAAAG CAGGTTGGCT AGTACGAGTC AGATAGCTAG TGACTCTAGT 8080 CTTAAATAGA ATAGTGTAGT CTCCTGGGGC AGGGTTGGT CTCAGCTGTT AGTCAAGATA 8140 CTTCTTACGGC TGTTGTTCTC TTCTAGTCC GAGGCTCTCA GTCTTGTGAGT GTCTTGTGAGT TTGAGGAA 8200 CTCTTCATCA GAGGTGAGC TCTGTTGGTC TGTTGTTCTC TTAAAGGGCA GTTACGGCAA 8260 TTCAACTTCA AACTAGGCC TAACTAAGTC AGCTTGTGTT AGCAAGTTCG AGTACTGTT 8320 ACTCTTCCTG TTTCCTGAG TGTGTTGTG TGAAATTCTC AAACCTTCTC TTGAGAAACT 8380 GAGAGTGTAG TTGTCTTATTG CTTCTGGTTA AGTAACTTAA TTGAGCTGC TTCTAACAG 8440 TTTGTGTTGGT GCCCAAAATAA TATAGCTACAT TAATCTTATAA TAAACAAANM TATTCTATCTC 8500 AGTCTCTYPA ATAAATAGTG CTCGACTTAC TACCTGGCTCAG TAAAGGAAAGG TATCATGGA 8560 ATATATATATG AGGAACTTCG AACGAGCTTC GGCTCAGCAGC TTGTTTGTAG ATTCGAGC 8620 ATGATATATATG ATGAGTGTGA CACTCTACG GGGTTTGTG AGTACGAG AT ATG GAC 8676 Asp 116 Asp
10	CTC TGT GAA AAC AGC GTG CAG CGG CAC ATT GGA CAT GCT AAC CTC ACC 8724 Leu Cys Glu Asn Ser Val Gin Arg His Ile Gly His Ala Asn Leu Thr 255 260 265 270
15	TTC GAG CAG CTT CGT AGC TTG ATG GAA AGC TTA CGG GGA AAG AAA GTG 8772 Pho Glu Gin Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Val 275 280 285
20	GGA GCA GAA GAC ATT GAA AAA ACA ATA AAG GCA TGC AAA CCC AGT GAC 8820 Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp 290 295 300
25	CAG ATC CTG AAG CTG CTC ACT TTG TGG CGA ATA AAA AAT GGC GAC CAA 8868 Gin Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Ala Asn Gly Asp Gin 305 310 315
30	GAC ACC TTG AAG GGC CTA ATG CAC GCA CTA AAG CAC TCA AAG ACG TAC 8916 Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr 320 325 330
35	CAC TTT CCC AAA ACT GTC ACT CAG AGT CTA AAG AAC AGG ACC ATC AGG TTC 8964 His Phe Pro Lys Thr Val Thr Glu Ser Leu Lys Lys Thr Ile Arg Phe 335 340 345 350
40	CCT CAC AGC TTC ACA ATG TAC AAA TTG TAT CAG AAG TTA TTT TTA GAA 9012 Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Glu Lys Leu Phe Leu Glu 355 360 365
45	ATG ATA GGT AAC CAG GTC CAA TCA GTA AAA ATA AGC TGC TTA 9054 Met Ile Gly Asn Glu Val Glu Ser Val Lys Ile Ser Cys Leu 370 375 380
50	TAACCTGGAA TGGCCATTGA GCTGTTCTC CACAATTGGC GAGATCCCCAT GGTAGATGAA 9114 ACTGTTGGAA GGGACTCTG GGCTTCAAGT GAGTATCTTC TTCTTCTGAGC TGACTTAACTT 9174 TGGCAACAGG TACTAAAGG AACTCTAGG TGAGGAAAGG ACTCTACCTC CCTCCATTA 9234 ACCCCAAAAGG GTTAACTCAAG CTGCTGAGTC TTGGATGGTT TTGTAGCTGC ATTTTTCTTC 9294 TTATTAATCTG TTGCTGAAATG CTCACGGAA ATTAAAAAAA AAAACCTAGC CCTCACCTGG 9354 CTCTTCTGAG TAACTGGGGT PCTTAAAGGCTT ACATCTGGG GATTCTGAGG ATCTGAGG 9414 CTTTTATAG AAAGCCATAG TTTTTCTGTT AAGAGTACT ATATACTGCTT TAACACTTAA 9474

5 ACAGGATTCC TATTATTAATT CATTCCAGATA TAAGATTTGG ACATATTATTC ATCTATATAA 9534
 GAAACCGGTAT GACTTAATTAT TAGAAAGAAA ATTATPATCTT GTTTATATGTC AGAAATDDAA 9594
 GAGAAAAATAT ATATTTTAAAG TGGAAGTTTG GPGACATTTC TGTAAATAGT ACTGCCATAT 9654
 TTTCCTGTGT GGAGATTTAT TATATTTGT TGTGTATAGC CGGGAAAGATC ATTTTATAGA 9714
 ATATCCTTA TTTCAGTAT TGTATTAATG TGGAAGACG ATGAAATATAA ATTTATCTGA 9774
 ATATTAAGATG CTCTGAGAAA TTGAATGTC CITATTTAA AGATTTATGC GTTTTATACA 9834
 TATATTAATG ACATTTATAA AGTTTTCAAA TATTTTTTA TGCTTTCTC TGTTGCTTT 9894
 ATT 9898

10 (2) INFORMATION FOR SEQ ID NO:3:

15 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 401 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

20 Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser
 -20 -15 -10
 Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His
 -5 1 5
 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro
 10 15 20
 Pro Gly Thr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr
 25 30 35
 Val Cys Ala Pro Cys Pro Asp His Tyr Thr Asp Ser Trp His
 40 45 50
 Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu
 55 60 65
 Glu Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys
 70 75 80
 Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys
 85 90 95
 His Arg Ser Cys Pro Pro Gly Val Val Glu Ala Gly Thr
 100 105 110
 Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe
 115 120 125
 Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn
 130 135 140
 Cys Ser Val Phe Gly Leu Leu Leu Thr Glutamyl Gly Asn Ala Thr
 145 150 155
 His Asp Asn Ile Cys Lys Gly Asn Ser Glu Ser Thr Glu Lys Cys
 160 165 170
 Glu Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala
 175 180 185
 Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp
 190 195 200
 Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile
 205 210 215
 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Glu Leu Leu Lys
 220 225 230
 Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile
 235 240 245
 Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Glu Arg His Ile
 250 255 260
 Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu
 265 270 275
 Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr
 280 285 290
 Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser
 295 300 305

Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
 310 315 320
 Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr
 325 330 335
 Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe
 340 345 350
 Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly
 355 360 365
 Asn Gln Val Gln Ser Val Ile Ser Cys Leu
 370 375 380

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1206 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATGAAACAAC TGCCTGTCTG CGCGCTCTG TTTCTGGACA TCTCCATTAA GTGGACCACC 60
 25 CAGGAACAGT TTCCCTCAAA GTACCTCAT TATGACGGA AAACCTCTCA TCAGCTGTGTG 120
 TGTCACAAAT GTCCCTCTGG TACCTACCTA AAACAAACAT GTACAGCAA GTGGAAGACC 180
 GTGTGCCCCC CTGGCCCTGA CCAACTACT ACAGACAGCT GGACACCCAG TGACGAGTGT 240
 CTATACATCA TATGGCTGG CAAGGAGCTG CAGTAGCTGA AGCAAGGAGTC CAATGCCACC 300
 CACAACCCGA TGTCGGAATG CAAGGAAGGG CGCTTACCTTG AGATAGAGTT CTGCTTGAAA 360
 30 CATAGGAGT GTCCTCTGG ATTGGAGATG GTGCAAGCTG GAACCCCGAG GCGAAATACA 420
 GTTTGCAAAA GATGTCAGA TGGGTTCTTC TCAATGAGA CGTCATCTAA AGCACCCCTGT 480
 AGAAAAACACA CAATATGCG TGTCCTTGGT CTCTGTCTAA CTCAAGAAAGG AAATGCAACA 540
 CACCGACCA TATGTTCCGG AAACAGTGA AAACACTCAA ATATGGAAAT AGATGTTTAC 600
 CTGTGAGA AGGCATCTT CAGGTTTGTG TTCTCTAACAA AGTTTACGCC TAATGGCTT 660
 35 AGTGTCTGG TAGACATATG GCTCTGCACCA AAAGTAAAGC CAGAGAGTGT AGNGAGGATA 720
 AACAGGCCAC ACAGCTCACA AAACAGACT TTCCAGCTGC TGAGGTATG GAAACATCAA 780
 AAAAANGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC 840
 GTGAGCGGC ATATTGGACA TGCTTAACCTC ACCTCTGGAG ACCTTGGAG CTTGTGGA 900
 40 AGCTTACCGG GAAGAGAAGT GGAGAGCAGA GACATGAAA AAACAATAAA GGATGCAAA 960
 CCCAGTGGAC AGATCTCTGA GCTGCTCGA TTGTGGCAA TAAAATGG CGACCAAGAC 1020
 ACCTTGAAGG GCCTTAATGCA CGCACTAAAG CACTCAAAA CGTCAACCTT TCCCCAAACT 1080
 GTCACTCAGA GTCTAAAGNA GACCATCAGG TTCTCTCACA GCTTACACAT GTACAAATTG 1140
 TATCAGAAGT TATTTTATGA AATGATAGGT AACCAAGGTCC AATCAGTAAA AATAAGCTGC 1200
 TTATAA 1206

45

Claims

50 1. A DNA comprising the nucleotide sequences of the Sequences No. 1 and No. 2 in the Sequence Table.
 2. The DNA according to claim 1, wherein the Sequence ID No. 1 includes the first exon of the OCIF gene and the Sequence ID No. 2 includes the second, third, fourth, and fifth exons.
 55 3. A protein exhibiting the activity of inhibiting differentiation and/or maturation of osteoclasts and having the following physicochemical characteristics.

(a) molecular weight (SDS-PAGE):

(i) Under reducing conditions: about 60 kD,
(ii) Under non-reducing conditions: about 60 kD and about 120 kD;

(b) amino acid sequence:
includes an amino acid sequence of the Sequence ID No. 3 in the Sequence Table,

(c) affinity:
exhibits affinity to a cation exchanger and heparin, and

(d) heat stability:

(i) the osteoclastogenesis-inhibitory activity is reduced when treated with heat at 70°C for 10 minutes or at 56°C for 30 minutes,
(ii) the osteoclastogenesis-inhibitory activity is lost when treated with heat at 90°C for 10 minutes.

4. A process for producing a protein exhibiting an activity of inhibiting differentiation and/or maturation of osteoclasts and having the following physicochemical characteristics,

(a) molecular weight (SDS-PAGE):

(i) Under reducing conditions: about 60 kD,
(ii) Under non-reducing conditions: about 60 kD and about 120 kD;

(b) amino acid sequence:
includes an amino acid sequence of the Sequence ID No. 3 of the Sequence Table,

(c) affinity:
exhibits affinity to a cation exchanger and heparin, and

(d) heat stability:

(i) the osteoclastogenesis-inhibitory activity is reduced when treated with heat at 70°C for 10 minutes or at 56°C for 30 minutes,
(ii) the osteoclastogenesis-inhibitory activity is lost when treated with heat at 90°C for 10 minutes,

the process comprising inserting a DNA including the nucleotide sequences of the sequences No. 1 and No. 2 in the Sequence Table into an expression vector, producing a vector capable of expressing a protein having the above-mentioned physicochemical characteristics and exhibiting the activity of inhibiting differentiation and/or maturation of osteoclasts, and producing this protein by a genetic engineering technique.

40

45

50

55

Figure 1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/02859

A. CLASSIFICATION OF SUBJECT MATTER

Int. C16 C12N15/00, C12P21/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. C16 C12N15/00, C12P21/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, GENETYX-CDROM, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Cancer Research, (1995), Vol. 55, Toshiyuki Yoneda, et al. "Sumarin suppresses hypercalcemia and osteoclastic bone resorption in nude mice bearing a human squamous cancer" P. 1989-1993	1 - 4
A	Proc. Natl. Acad. Sci. USA, (1990) Vol. 87 Kukita A. et al. "Osteoinductive factor inhibits formation of human osteoclast-like cells" P. 3023-3026	1 - 4

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reasons (as specified)
- "O" document referring to a oral disclosure, use, exhibition or other means of publication
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search September 29, 1997 (29. 09. 97)	Date of mailing of the international search report October 7, 1997 (07. 10. 97)
--	--

Name and mailing address of the ISA/ Japanese Patent Office Facsimile No.	Authorized officer Telephone No.
---	-------------------------------------