Roteiro 5 EE534

EE534 — Roteiro 5

Professor: Max Costa

Leonardo Rodrigues Marques 178610

1)

a)

Analisando na forma AC, temos:

$$\frac{V_{in} - V_{pot}}{R_C} = \frac{V_{pot} - V_y}{R_D} \rightarrow V_Y = \frac{R_D}{R_C} (V_{pot} - V_{in}) + V_{pot}$$

Em AC, $V_{pot} = 0$.

$$V_Y = -V_{in}$$

Em DC, $V_Y = V_{pot}$. Pela superposição de AC e DC, temos:

$$V_Y = V_{pot} - V_{in} \tag{1}$$

b)

$$\frac{V_Y}{R_A} = \frac{V_X}{R_A + R_F} \to \frac{V_X}{V_Y} = \frac{R_A + R_F}{R_A}$$

c)

- $\bullet\,$ 1º Estágio: Circuito amplificador inversor $\to V_{pot}$ garante a máxima excursão simétrica.
- \bullet 2° Estágio: Circuito realimentador do 3° estágio $\to A_v$ é ajustado por R_A e $R_F.$
- \bullet 3° Estágio: circuito Push-Pull \to fornece ganho de corrente ao sistema.

d)

Considerando um ganho de 11, temos que:

$$\frac{V_X}{V_Y} = \frac{R_A + R_F}{R_A} \to 11 = \frac{10k + R_F}{10k} \to R_F = 11 \times 10k - 10k = 100k\Omega$$

Roteiro 5 EE534

e)

$$\begin{split} V_Y &= V_{pot} - V_{in} \frac{R_D}{R_C} \rightarrow V_{pot} = V_Y \\ \frac{V_x}{V_Y} &= 11 \rightarrow V_Y = \frac{V_X}{11} \rightarrow V_{pot} = \frac{V_X}{11} = \frac{2.5}{11} = 227 mV \end{split}$$

2)

Figura 1: Circuito montado no PSpice.

Ao montar o circuito e simular, conseguimos obter um ganho $A_V=11.2.$

Figura 2: Circuito simulado no PSpice.