Pairs with given sum II

Problem Description

Given a sorted array of integers (not necessarily distinct) A and an integer B, find and return how many pair of integers (A[i], A[j]) such that i!= j have sum equal to B. Since the number of such pairs can be very large, return number of such pairs modulo $(10^9 + 7)$.

Problem Constraints

1 <= |A| <= 100000 1 <= A[i] <= 10^9 1 <= B <= 10^9

 $N = 10^5$ $O(N^2)$ $(10^5)^2 \rightarrow 10^{10} \text{ iterations}$

Input Format

1 sec -> 10 it, on an

The first argument given is the integer array A

The second argument given is integer B.

Output Format

Return the number of pairs for which sum is equal to B modulo (10^9+7)

 $\frac{idia!}{count} = 0, MoD = 10^{9} + 7$ for (i = 0 i < N i + +)for (j = i + 1 j < N j + +)TC B-orlil

 $\mathcal{L}_{i}\left(\alpha r[i]\right) = B - \alpha r[i]\right)$

count = (count +1) % MOD)

3

frequency hashmap			\
V V	Integer	Intiger	for (i=0 i <n i++){<="" th=""></n>
B-ar[i]	<u>eli</u>	freg	V
1 ~ 6 X	1	1	if (map. contains key
$2 \longrightarrow 55$? 2	2	2	if (map. contains key (B-arti) {
$\frac{1}{2}$	4	1	count + = map.get(b-arti)
$\begin{array}{c} 2 \longrightarrow \left\{ 5 \atop 5 \right\} 2 \end{array}$	5	2	3
(5)			3
4 3 X	7	1	return count/2

5
$$\left\{\frac{3}{2}\right\}$$
 2 2 5 5 2 2 5 5 2 5 2 5 5 2 7 5

```
Implementing this code:

for (i=0 i<N i+t) {

if (map. contains ky

(B-ar[i]) {

if (ar[i] |= B-ar[i]) {

count += map.gat(B-ar[i])

3 else {

c = map.get(B-ar[i])

map. frut (B-ar[i], c-1)

count += map.get(B-ar[i])

map. put (B-ar[i], c+1)

3

return count /2.
```

Search in Bitonic Array!

Problem Description

Given a bitonic sequence A of N distinct elements, write a program to find a given element B in the bitonic sequence in O(logN) time.

NOTE:

• A Bitonic Sequence is a sequence of numbers which is first strictly increasing then after a point strictly decreasing.

Problem Constraints

Given array always contain a bitonic point.

Array A always contain distinct elements.

Input Format

First argument is an integer array A denoting the bitonic sequence.

Second argument is an integer B.

Output Format

Return a single integer denoting the position (0 index based) of the element B in the array A if B doesn't exist in A return -1.

$$ar[7] = \begin{cases} 3, & 9, & 10, & 20, & 17, & 5, & 1 \end{cases}$$

$$B = 20$$

$$\Rightarrow 3$$

Overwiew:

$$y(B = an[bp])$$

return bp

else $\{-0 \quad bp-1\}$

else
$$\{$$
 $bp-1$
 $bp-1$
 $N-1$


```
// finding bitonic point
public int findBitonicPoint(int[] arr, int n, int l, int r) {
     int mid;
     mid = (r + l) / 2;
     if (arr[mid] > arr[mid - 1] \&\& arr[mid] > arr[mid + 1]) {
          return mid;
     } else if (arr[mid] > arr[mid - 1] && arr[mid] < arr[mid + 1]) {
          return findBitonicPoint(arr, n, mid, r);
     } else if (arr[mid] < arr[mid - 1] && arr[mid] > arr[mid + 1]) {
          return findBitonicPoint(arr, n, l, mid);
     return -1;
                                              10
```