MAT 5210 Homework 6

- 1. Let K/\mathbf{Q} be Galois, with $\operatorname{Gal}(K/\mathbf{Q}) = \{\sigma_1 = \operatorname{id}, \sigma_2, \dots, \sigma_n\}$. Fix a prime integer $p \in \mathbf{Z}$.
 - (a) Let P be a nonzero prime ideal of \mathcal{O}_K lying above p, i.e., $P \cap \mathbf{Z} = p\mathbf{Z}$. Show that $\sigma_i(P)$ is also a prime ideal of \mathcal{O}_K lying above p.

We now study an alternative proof that all prime ideals lying above p are of the form $\sigma_i(P)$ for some i-Suppose on the contrary that there exists a prime ideal J above p such that $J \neq \sigma_i(P)$ for all i. Consider

$$A := \prod_{i=1}^{n} \sigma_i(P), \quad B := \prod_{i=1}^{n} \sigma_i(J)$$

- (b) Show that there exists $x \in A$ such that $x 1 \in B$.
- (c) Let $m := \text{Norm}_{K/\mathbf{Q}}(x) \in \mathbf{Z}$. Show that $m \in A$.
- (d) Show that $m \in p\mathbf{Z} = J \cap \mathbf{Z}$.
- (e) Using (d), show that $x \in \sigma_j(J)$ for some j.
- (f) Prove that for the j obtained in (e), $1 \in \sigma_j(J)$, which contradicts the fact that $\sigma_j(J)$ is a (proper) prime ideal.
- 2. Let $K : \mathbf{Q}$ be a number field with $[K : \mathbf{Q}] = n$.
 - (a) Using the Minkowski bound, show that $\sqrt{|\Delta^2(K)|} \ge b_n$, where $b_n := \left(\frac{\pi}{4}\right)^n \frac{n^n}{n!}$.
 - (b) Prove that for all n > 1,

$$\frac{b_{n+1}}{b_n} \ge \frac{\pi}{2}$$

- (c) Consequently, show that for $K \neq \mathbf{Q}$, $|\Delta^2(K)| > 1$.
- 3. Suppose a prime integer $p \in \mathbf{Z}$ does not divide the class number of a number field K. Show that if I is a non-zero ideal of \mathcal{O}_K , and I^p is a principal ideal, then I is also a principal ideal.
- 4. Calculate the class number of $K = \mathbf{Q}(\sqrt{-23})$.
- 5. Prove that the class number of $K = \mathbf{Q}(\sqrt{-47})$ is 5. Show that if $x, y \in \mathbf{Z}$ with $y^3 = 4x^2 + 47$, then $x = \pm 250$.