Budu se dívat jen na podmnožinu polynomů, které jde z těchto čísel složit, a to na $x^2 + bx + c$. Kořeny tohoto polynomu jsou:

$$x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

Tedy dostaneme reálný kořen právě tehdy, když:

$$b^2 > 4c$$

Teď si zavedu proměnné x a y, kde $x = \max(a, b)$ a $y = \min(a, b)$. Nutně platí, že $y \ge 2$ a že $x \ge y + 1$. Teď chci dokázat následující nerovnost:

$$(y+1)^2 > 4y$$

 $y^2 + 2y + 1 > 4y$
 $y^2 - 2y + 1 > 0$
 $(y-1)^2 > 0$

Tato nerovnost díky podmínce $y \geq 2$ nutně platí. A protože pracujeme v přirozených číslech, kvadratická funkce je rostoucí a platí:

$$x^2 \ge (y+1)^2 > 4y$$

Tedy když přepermutujeme koeficienty tak, aby b=x a c=y, dostaneme polynom, který chceme.