顺义区 2018 届初三第二次统一练习

数学试卷

学校名称 姓名 准考证号

- 1. 本试卷共 8 页, 共三道大题, 28 道小题, 满分 100 分. 考试时间 120 分钟.
- 2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号.

生 须

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效.

- 知 4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答.
 - 5. 考试结束,将答题卡交回.
- 一、选择题(本题共16分,每小题2分)

第1-8题均有四个选项,符合题意的选项只有一个.

- 1. 2022 年冬奥会,北京、延庆、张家口三个赛区共 25 个场馆,北京共 12 个,其中 11 个 为 2008 年奥运会遗留场馆, 唯一一个新建的场馆是国家速滑馆, 可容纳 12 000 人观赛, 将 12 000 用科学记数法表示应为
 - A. 12×10^3
- B. 1.2×10^4
- C. 1.2×10^5
- D. 0.12×10^5
- 2. 用教材中的科学计算器依次按键如下,显示的结果在数轴上对应点的位置介 于()之间

- A. *B* 与 *C*

- B. C与D C. E与F D. A与B
- 3. 下列图形中, 既是轴对称图形又是中心对称图形的是
- A. 等边三角形 B. 菱形 C. 平行四边形 D. 正五边形
- 4. 小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为 a元/千克, 乙种糖果的单价为b元/千克, 且a > b.

根据需要小明列出以下三种混合方案:(单位:千克)

	甲种糖果	乙种糖果	混合糖果	
方案 1	2	3	5	
方案 2	3	2	5	
方案3	2.5	2.5	5	

则最省钱的方案为

- A. 方案 1 B. 方案 2 C. 方案 3 D. 三个方案费用相同

5. 如图,在正方形网格中建立平面直角坐标系,

若A (0, 2), B (1, 1), 则点C 的坐标为

- A. (1, -2)
- B. (1, -1)
- C. (2, -1)
- D. (2, 1)
- 6. 抛掷一枚均匀的硬币两次,至少有一次正面朝上的概率是

- B. $\frac{1}{3}$ C. $\frac{2}{3}$

7. 根据北京市统计局发布的统计数据显示,北京市近五年国民生产总值数据如图 1 所示, 2017年国民生产总值中第一产业、第二产业、第三产业所占比例如图 2 所示

北京市2017年国民生产总值产业结构统计图

图 2

根据以上信息,下列判断错误的是

- A. 20.13 年至 2017 年北京市国民生产总值逐年增加
- B. 2017年第二产业生产总值为5320亿元
- C. 2017年比 2016年的国民生产总值增加了 10%
- D. 若从 2018 年开始,每一年的国民生产总值比前一年均增长 10%,到 2019 年的国民 生产总值将达到 33 880 亿元
- 8. 已知正方形 ABCD 的边长为 4cm, 动点 P 从 A 出发, 沿 AD 边 以 1 cm/s 的速度运动,动点 Q 从 B 出发, BC, CD 边以 2 cm/s的速度运动, 点 P, Q 同时出发, 运动到点 D 均停止运动, 设 运动时间为x(秒), $\triangle BPQ$ 的面积为y (cm²), 则y与x之间 的函数图象大致是

二、填空题(本题共16分,每小题2分)

- 9. 若代数式 $\frac{x}{x+5}$ 有意义,则实数 x 的取值范围是_____
- 10. 如图, ∠1, ∠2 是四边形 *ABCD* 的两个外角, 且 $\angle 1+\angle 2=210^{\circ}$,则 $\angle A+\angle D=$ 度.

- 11. 已知关于 x 的方程 $x^2 + mx + 4 = 0$ 有两个相等的实数根,则 m 的值为
- 12. 如图, AB//CD, 点 $E \in CD$ 上一点, $\angle AEC=40^{\circ}$,

- 13. $f_{\frac{x-1}{r-1}} \frac{2x}{1-x} = 1$ 的解是_____.
- 14. 如图, A, B两点被池塘隔开,不能直接测量其距离. 于是,小明在岸边选一点C,连接CA,CB,分别 延长到点M, N, 使AM = AC, BN = BC, 测得 $MN = 200 \,\mathrm{m}$,则 A, B 间的距离为 m.

16. 同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的 枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.

	1组	1~2组	1~3 组	1~4组	1~5 组	1~6组	1~7组	1~8组
盖面朝 上次数	165	335	483	632	801	949	1122	1276
盖面朝 上频率	0.550	0.558	0.537	0.527	0.534	0.527	0.534	0.532

根据实验, 你认为这一型号的瓶盖盖面朝上的概率为____, 理由是: _____

三、解答题(本题共 68 分, 第 17-22 题, 每小题 5 分, 第 23-26 题, 每小题 6 分, 第 27、 28 题每小题 7 分)

解答应写出文字说明,演算步骤或证明过程.

17. 计算:
$$(\pi - 2018)^0 + |-4| - 3\tan 30^\circ - \left(\frac{1}{2}\right)^{-1}$$
.

18. 先化简,再求值:
$$\frac{m^2}{1-m^2} \cdot \left(1 - \frac{1}{m}\right)$$
, 其中 $m = 2$.

19. 如图,矩形 ABCD 中,点 E 为 BC 上一点, $DF \bot AE$ 于点 F,求证: $\angle AEB = \angle CDF$.

20. 如图,在平面直角坐标系 xOy 中,函数 $y = \frac{k}{x}$ (x>0) 的图象与直线 y = 2x + 1 交于

点A(1, m).

- (1) 求 k、m 的值;
- (2) 已知点P(n, 0) $(n \ge 1)$, 过点P作平行于y轴

的直线, 交直线
$$y = 2x + 1$$
 于点 B , 交函数 $y = \frac{k}{x}$

- (x>0) 的图象于点 C. 横、纵坐标都是整数的点叫做整点.
- ①当n=3时,求线段AB上的整点个数;

②若
$$y = \frac{k}{x}$$
 ($x>0$) 的图象在点 $A \times C$ 之间的部

分与线段 AB、BC 所围成的区域内(包括边界)恰有 5 个整点,直接写出 n 的取值范围.

21. 2018 年 4 月 12 日上午,新中国历史上最大规模的海上阅兵在南海海域隆重举行,中国人民解放军海军多艘战舰、多架战机和 1 万余名官兵参加了海上阅兵式,已知战舰和战机总数是124,战舰数的 3 倍比战机数的 2 倍少 8. 问有多少艘战舰和多少架战机参加了此次阅兵.

- 22. 如图,四边形 ABCD 中, $\angle C$ =90° , $AD \bot DB$,点 E 为 AB 的中点, $DE /\!\!/ BC$.
- (1) 求证: *BD* 平分 ∠*ABC*;
- (2) 连接 EC, 若 $\angle A = 30^{\circ}$, $DC = \sqrt{3}$, 求 EC 的长.

23. 如图,AB 是 $\odot O$ 的直径,C、D为 $\odot O$ 上两点,且AC = BD,过点 O 作 $OE \bot AC$ 于点 E, $\odot O$ 的切线 AF 交 OE 的延长线于点 F,弦 AC、BD 的延

长线交于点 G.

- (1) 求证: ∠*F*=∠*B*;
- (2) 若 AB=12, BG=10, 求 AF 的长.

24. 某商场甲、乙、丙三名业务员 2018 年前 5 个月的销售额(单位: 万元)如下表:

销售额人员	1月	2月	3月	4月	5月
甲	6	9	10	8	8
乙	5	7	8	9	9
丙	5	9	10	5	11

(1) 根据上表中的数据,将下表补充完整:

数位计量人员	平均数 (万元)	众数 (万元)	中位数 (万元)	方差
甲		8	8	1.76
乙	7.6		8	2.24
丙	8	5		

(2) 甲、乙、丙三名业务员都说自己的销售业绩好, 你赞同谁的说法? 请说明理由.

25. 根据函数学习中积累的知识与经验,李老师要求学生探究函数 $y = \frac{1}{x} + 1$ 的图象. 同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.

(1) 函数 $y = \frac{1}{x} + 1$ 的图象可以由我们熟悉的函数______的图象向上平移_____个单位得到:

(2) 函数 $y = \frac{1}{x} + 1$ 的图象与 x 轴、y 轴交点的情况是:______;

(3) 请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是______.

26. 在平面直角坐标系中,二次函数 $y = x^2 + ax + 2a + 1$ 的图象经过点 M(2, -3).

- (1) 求二次函数的表达式;
- (2) 若一次函数 y = kx + b ($k \neq 0$) 的图象与二次 函数 $y = x^2 + ax + 2a + 1$ 的图象经过 x 轴 上同一点,探究实数 k, b 满足的关系式;
- (3) 将二次函数 $y = x^2 + ax + 2a + 1$ 的图象向右 平移 2 个单位,若点 $P(x_0, m)$ 和 Q(2, n) 在平移后的图象上,且 m > n,结合图象求 x_0 的取值范围.

- 27. 在等边 $\triangle ABC$ 外侧作直线 AM ,点 C 关于 AM 的对称点为 D ,连接 BD 交 AM 于点 E ,连接 CE , CD , AD .
 - (1) 依题意补全图 1, 并求 ∠BEC 的度数;
 - (2) 如图 2 ,当 $\angle MAC = 30^{\circ}$ 时,判断线段 BE = DE 之间的数量关系,并加以证明;
 - (3) 若 0° < $\angle MAC$ < 120° , 当线段DE = 2BE 时,直接写出 $\angle MAC$ 的度数.

28. 已知边长为 2a 的正方形 ABCD,对角线 AC、BD 交于点 Q,对于平面内的点 P 与正方形 ABCD,给出如下定义:如果 $a \leq PQ \leq \sqrt{2}a$,则称点 P 为正方形 ABCD 的"关联点".

在平面直角坐标系 xOy 中,若 A(-1, 1), B(-1, -1), C(1, -1), D(1, 1) .

- (1) 在 $P_1(-\frac{1}{2},0)$, $P_2(\frac{1}{2},\frac{\sqrt{3}}{2})$, $P_3(0,\sqrt{2})$ 中,正方形 ABCD 的"关联点"有_____;
- (2) 已知点 E 的横坐标是 m,若点 E 在直线 $y = \sqrt{3}x$ 上,并且 E 是正方形 ABCD 的"关联点",求 m 的取值范围;
- (3) 若将正方形 ABCD 沿 x 轴平移,设该正方形对角线交点 Q 的横坐标是 n,直线 $y = \sqrt{3}x + 1$ 与 x 轴、y 轴分别相交于 M、N 两点. 如果线段 MN 上的每一个点都是正方形 ABCD 的 "关联点",求 n 的取值范围.

顺义区 2018 届初三第二次统一练习 数学答案及评分参考

一、选择题(本题共16分,每小题2分)

题	号	1	2	3	4	5	6	7	8
答	案	В	A	В	A	С	D	С	В

二、填空题(本题共16分,每小题2分)

- 9. $x \neq -5$; 10. 210°; 11. ± 4 ; 12. 70°; 13. x = -4; 14. 100;
- 15. 答案不唯一,如: 先以点 O 为中心,将 $\triangle DEF$ 逆时针旋转 90° ,再将得到的三角形沿x 轴对称;
- 16. 0.532 , 在用频率估计概率时,试验次数越多越接近,所以取 1-8 组的频率值.
- 三、解答题(本题共 68 分, 第 17-22 题, 每小题 5 分, 第 23-26 题, 每小题 6 分, 第 27、 28 题每小题 7 分)

17.
$$\Re: (\pi - 2018)^0 + |-4| - 3\tan 30^\circ - \left(\frac{1}{2}\right)^{-1}$$

$$= 1 + 4 - \sqrt{3} - 2$$

18.
$$mathred{M}
: \frac{m^2}{1-m^2} \cdot \left(1 - \frac{1}{m}\right)$$

$$=\frac{m^2}{(1+m)(1-m)}\cdot\left(\frac{m-1}{m}\right)\dots 2 \,$$

$$=-\frac{m}{1+m}.$$
 3 \Im

19. 证明: : 四边形 ABCD 是矩形,

 $:DF \perp AE$ 于点 F,

$$\therefore$$
 $\angle CDF = \angle DAF$.

 $\therefore AD//BC$

1

∴*A* (1, 3).

$$\therefore$$
点 A (1, 3) 在函数 $y = \frac{k}{x}$ 的图象上,

- (2) ① 当 n=3 时,B、C 两点的坐标为 B (3, 7)、C (3, 1).
 - 线段 AB 上有(1,3)、(2,5)、(3,7) 共3个整点.3分

$$\begin{cases} x + y = 124, \\ 3x = 2y - 8. \end{cases}$$
 3 \(\frac{\partial}{2}{3}\)

解这个方程组,得
$$\begin{cases} x = 48, \\ y = 76. \end{cases}$$
 4 分

答: 有 48 艘战舰和 76 架战机参加了此次阅兵. 5 分 22. (1) 证明: : AD \(\text{DB} \), 点 E 为 AB 的中点,

$$\therefore DE = BE = \frac{1}{2}AB. \qquad 1 \text{ }$$

- ∴∠1=∠2.
- $\therefore DE//BC$,
- ∴∠2=∠3. ······ 2 分
- ∴∠1=∠3.
- *∴BD* 平分∠*ABC*. 3 分

- (2) 解: $:AD \perp DB$, $\angle A = 30^{\circ}$,
 - ∴∠1=60°.
 - $\therefore \angle 3 = \angle 2 = 60^{\circ}$.
 - $\therefore \angle BCD = 90^{\circ}$,
 - ∴∠4=30°.
 - $\therefore \angle CDE = \angle 2 + \angle 4 = 90^{\circ}$.

- ∴DB=2. ····· 4分
- $\therefore DE=BE$, $\angle 1=60^{\circ}$,
- $\therefore DE = DB = 2$.

 $\therefore AD = BC$.

- ∴ ∠1 = ∠B. ······ 1 分
- ::AF 是⊙O 的切线,
- $\therefore AF \perp AO.$
- $\therefore \angle 1 + \angle 2 = 90^{\circ}$.
- $: OE \perp AC,$
- $\therefore \angle F + \angle 2 = 90^{\circ}$.
- ∴∠*F*=∠1. ······· 2分
- (2) 解:连接 OG.
 - $\therefore \angle 1 = \angle B$,
 - $\therefore AG=BG$.
 - : OA = OB = 6,
 - $\therefore OG \perp AB$.

:
$$OG = \sqrt{BG^2 - OB^2} = \sqrt{10^2 - 6^2} = 8$$
. 4 $\frac{1}{12}$

- $\therefore \angle FAO = \angle BOG = 90^{\circ}, \ \angle F = \angle B,$
- ∴△FAO∽△BOG. 5 分

$$\therefore \frac{AF}{AO} = \frac{OB}{OG} \cdot$$

$$\therefore AF = \frac{OB \square AO}{OG} = \frac{6 \times 6}{8} = \frac{9}{2} \cdot \dots 6 \text{ }$$

24. (1) 将下表补充完整:

数位计量人员	平均数 (万元)	众数 (万元)	中位数 (万元)	方差
甲	8.2	8	8	1.76
乙	7.6	9	8	2.24
丙	8	5	9	6.4

- (2) 赞同甲的说法. 理由是: 甲的平均数高,总营业额比乙、丙都高. …… 6分
- 25. 解: (1) 函数 $y = \frac{1}{x} + 1$ 的图象可以由我们熟悉的函数 $y = \frac{1}{x}$ 的图象向上平移 ______ 个

单位得到; 2分

(2) 函数 $y = \frac{1}{x} + 1$ 的图象与 x 轴、y 轴交点的情况是:

3

26. 解: (1) 把 M (2, -3) 代入 $y = x^2 - 2x - a^2 - 2a$,可以得到 $-a^2 - 2a = -3$,

(2) $y = x^2 - 2x - 3 = x$ 轴的交点是: (3, 0), (-1, 0).

当 $y = kx + b (k \neq 0)$ 经过 (3, 0) 时, 3k + b = 0;

当 $y = kx + b (k \neq 0)$ 经过 (-1, 0) 时, k = b.

------4分

因此 Q(2, n) 在图象上的对称点是 (4, n) ,若 点 $P(x_0, m)$ 使得 m > n ,结合图象可以得出 $x_0 < 2$ 或 $x_0 > 4$ 6 分

- :等边 $\triangle ABC$,
- $\therefore AB = AC$, $\angle BAC = 60^{\circ}$.
- AB=AD.
- $\therefore \angle ABD = \angle ADB = y.$

在 $\triangle ABD$ 中, $2x + 2y + 60^{\circ} = 180^{\circ}$,

$$\therefore x + y = 60^{\circ}$$
.

$$\therefore \angle DEM = \angle CEM = x + y = 60^{\circ}$$
.

(2) 判断: BE = 2DE.

证明: $\angle MAC = 30^{\circ}$,结合(1)中证明过程,显然可以得出 $\angle ABD = 30^{\circ}$,又: 等边 $\triangle ABC$,

- $\therefore \angle ABC = 60^{\circ}$.
- $\angle DBC = 30^{\circ}$.
- \mathbb{Z} : $\angle BEC = 60^{\circ}$,
- $\therefore \angle ECB = 90^{\circ}$.
- $\therefore BE = 2CE .$
- : CE = DE,
- $\therefore BE = 2DE$.

4

(2) 做出正方形 ABCD 的内切圆和外接圆,

- $\therefore OF = 1.OG = \sqrt{2}$.
- :: E 是正方形 ABCD 的"关联点",

- $\therefore E$ 在正方形 ABCD 的内切圆和外接圆之间,
- ∴点 E 在直线 $y = \sqrt{3}x$ 上,
- ::点 E 在线段 FG 上.
- 分别做 $FF' \perp x$ 轴, $GG' \perp x$ 轴,
- $\therefore OF = 1.OG = \sqrt{2}$,

$$\therefore OF' = \frac{1}{2}, OG' = \frac{\sqrt{2}}{2}.$$

$$\therefore \frac{1}{2} \le m \le \frac{\sqrt{2}}{2} .$$

根据对称性,可以得出 $-\frac{\sqrt{2}}{2} \le m \le -\frac{1}{2}$.

$$\therefore \frac{1}{2} \le m \le \frac{\sqrt{2}}{2} , \quad -\frac{\sqrt{2}}{2} \le m \le -\frac{1}{2} . \quad \dots \qquad 5 \ \%$$

- (3) : $M(-\frac{\sqrt{3}}{3},0)$, N(0,1),
 - $\therefore OM = \frac{\sqrt{3}}{3}, ON = 1.$
 - $\therefore \angle OMN = 60^{\circ}$.
 - :线段 MN 上的每一个点都是正方形 ABCD 的"关联点",
 - ①MN 与小OQ 相切于点 F,如右图
 - $\therefore QF = 1, \angle OMN = 60^{\circ},$

$$\therefore QM = \frac{2}{3}\sqrt{3} .$$

$$\therefore OM = \frac{\sqrt{3}}{3} ,$$

$$\therefore OQ = \frac{\sqrt{3}}{3}.$$

$$\therefore Q_1(\frac{\sqrt{3}}{3},0).$$

②M 落在大〇Q上,如右图

$$\therefore QM = \sqrt{2}, OM = \frac{\sqrt{3}}{3},$$

$$\therefore OQ = \sqrt{2} - \frac{\sqrt{3}}{3}$$

$$\therefore OQ = \sqrt{2} - \frac{\sqrt{3}}{3}.$$

$$\therefore Q_2(\sqrt{2} - \frac{\sqrt{3}}{3}, 0).$$

综上:
$$\frac{\sqrt{3}}{3} \le n \le \sqrt{2} - \frac{\sqrt{3}}{3}$$
. 7分

