Matematika 3E

Pripremni međuispit br. 1

1. (4) Izvedite formule za koeficijente a_n , $n \geq 0$, trigonometrijskog Fourierovog reda zadane funkcije $f: [a, b] \to \mathbb{R}$ po trigonometrijskome sustavu

$$\frac{1}{2}$$
, $\cos(\omega x)$, $\sin(\omega x)$, ..., $\cos(n\omega x)$, $\sin(n\omega x)$, ...

gdje je $\omega = \frac{2\pi}{b-a}$.

- **2.** (a) (3) Razvijte u Fourierov red funkciju f(x) = |x|, -6 < x < 6.
 - (b) (1) Skicirajte graf dobivenog Fourierovog reda.
 - (c) (2) Koristeći dobiveni razvoj i Parsevalovu jednakost izračunate sumu reda $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^4}$.
- 3. (a) (1) Iskažite teorem o pomaku originala.
 - (b) (2) Izvedite formulu za sliku originala $f(t) = \sin\left(\frac{n\pi t}{A}\right)g_{[0,A]}(t)$.
 - (c) (2) Razvijte u Fourierov red neparno proširenu funkciju $f(x) = 2e^{-x}$ definiranu na intervalu [0,2].
- 4. (3) Prikažite pomoću Fourierovog integrala funkciju $f\left(x\right)=3x^{2}e^{-2\left|x\right|}$
- 5. (2) Teorem o početnoj vrijednosti glasi:

$$f\left(0^{+}\right) = \lim_{t \to 0^{+}} f\left(t\right) = \lim_{s \to \infty} sF\left(s\right)$$

Neka je funkcija u donjem području zadana kao

$$F(s) = \frac{1-s}{(s+2)^2 (3s+9)} e^{-0.5s}$$

Odredite nagib funkcije f(t) u trenutku $t=0.5^+$ s. (Napomena: $f(0)=f(0^-)=0$.)

- 6. (a) (1) Iskažite teorem o integriranju originala kod Laplaceove transformacije.
 - (b) (2) Izvedite teorem o deriviranju originala kod Laplaceove transformacije.
 - (c) (2) Riješite diferencijalno-integralnu jednadžbu

$$y'(t) = \delta(t) + \int_0^t e^u du$$
$$y(0) = 1$$

(d) (4) Na slici 1 prikazana je shema električnog kruga. Parametri sustava su: $R=2, L=C=1, u_{ul}(t)=u(t), i_L(0)=0, u_C(0)=2$ i $\dot{u}_C(0)=0$. Odredite $u_{iz}(t)$.

Slika 1: Shema električnog kruga

7. (3) Odedite struju električnog kruga prikazanog na slici 2 ako su parametri sustava L=C=1 i $e\left(t\right)=\sin\left(t\right)u\left(t\right).$

Slika 2: Shema električnog kruga

- 8. (a) (2) Iskažite i dokažite teorem srednje vrijednosti integralnog računa za dvostruki integral.
 - (b) (3) Neka je $f(x,y) = \sqrt{4x^2 4x + 4y^2 + 1}$, a područje D neka je $x^2 + y^2 \le x$ u ravnini z = 0. Odredite visinu valjka baze D čiji je volumen V jednak volumenu tijela ispod plohe z = f(x,y) nad pordučjem D. Koliko iznosi volumen V?
- 9. (3) U dvostrukom integralu

$$\int_{0}^{1} dx \int_{0}^{x^{\frac{2}{3}}} f(x, y) dy + \int_{1}^{2} dx \int_{0}^{1+\sqrt{4x-x^{2}-3}} f(x, y) dy$$

promijenite poredak integracije i skicirajte područje integracije.