- (d) For the semigroup on C($\Gamma \times \Gamma$) given by $(T(t)\,f)\,(z,w) = f(z\cdot e^{i\,\alpha t},w\cdot e^{i\,\beta t})$ ($f\in C(\Gamma \times \Gamma)$, $(z,w)\in \Gamma \times \Gamma$) we have $P_\sigma(A) = M_4$. If α/β is irrational, then this is a dense subset of $i\mathbb{R}$ and $\sigma_b(A) = \sigma(A) = i\mathbb{R}$.
- (e) Consider D := $\{z \in \mathbb{C} : |z| \le 1\} = \{r \cdot e^{i\omega} : r \in [0,1] , \omega \in \mathbb{R} \}$, and a strictly positive function $\kappa \in C[0,1]$. The flow on D governed by the differential equation $\dot{r} = 0$, $\dot{\omega} = \kappa(r)$ induces a strongly continuous semigroup on C(D) (which is given by $(T(t)f)(z) = f(z \cdot e^{i\kappa(|z|)t})$). The boundary spectrum is M_6 with $\alpha := \inf \kappa(r)$, $\beta := \sup \kappa(r)$. In particular, for $\kappa(r) = 1 + r$ we obtain as boundary spectrum the set M_5 .
- (f) Suppose M is a closed cyclic subset of iR , M = $\cup_{\alpha \in S}$ ia \mathbb{Z} for a suitable $S \subset \mathbb{R}$ (e.g. S = M) . The space $E_1 := \{(f_\alpha)_{\alpha \in S} : f_\alpha \in C(\Gamma) , \sup \|f_\alpha\| < \infty \}$ is a Banach space under the norm $\|(f_\alpha)\| := \sup \|f_\alpha\|$. The closure of the linear subspace $E_0 := \{(f_\alpha) \in E_1 : f_\alpha \neq 0 \text{ only for finitely many } \alpha \in S\}$ is isomorphic to $C_0(X)$ where X is the topological sum of |S| copies of Γ .

Let $(T_{\alpha}(t))_{t\geq 0}$ denote the rotation semigroup on $C(\Gamma)$ with period $2\pi/\alpha$, then we define a semigroup $(T(t))_{t\geq 0}$ on $E:=C_{O}(X)$ as follows:

$$(T(t)(f_{\alpha})) := (T_{\alpha}(t)f_{\alpha}) ((f_{\alpha})_{\alpha \in S} \in E)$$
.

This is a positive semigroup on $E=C_{_{\scriptsize O}}(X)$ whose boundary spectrum is precisely the given closed cyclic set M . We leave the verification as an excercise.

Our first result concerns cyclicity of the eigenvalues contained in the boundary spectrum, i.e., of the set $P_{\sigma_b}(A) := P_{\sigma}(A) \cap_{\sigma_b}(A) = \{\lambda \in P_{\sigma}(A) : \text{Re } \lambda = s(A)\} .$ It is almost a straightforward consequence of Thm.2.4 .

<u>Proposition</u> 2.7. Assume that for some $t_o > 0$ there is a strictly positive measure ϕ such that $T(t_o)'\phi = \exp(s(A)t_o)\cdot\phi$. Then $P\sigma_b(A)$ is imaginary additively cyclic.

<u>Proof.</u> If $P\sigma_b(A)$ is empty there is nothing to prove. Otherwise we have $s(A) > -\infty$. In view of the rescaling procedure we may assume s(A) = 0. By Prop.1.5(b) there exists $\Psi >> 0$ such that $T(t)'\Psi = \Psi$ for all $t \geq 0$. Given $i\alpha \in P\sigma_b(A)$ then there is $h \in C_o(X)$, $h \neq 0$ such that $Ah = i\alpha h$ or $T(t)h = e^{i\alpha t}h$ for all $t \in A-III,Cor.6.4$.