ΕΡΓΑΣΙΑ #8

Επιστροφή 3-5-2006

Η τελευταία εργασία: πρέπει να επιστραφεί στις 3-Μαου. Καθυστερημένες αλλά και όμοιες εργασίες δεν θα βαθμολογηθούν.

1. Ένα λεπτό στεφάνι ακτίνας R και μάζας M είναι εξαρτημένο από ένα σημείο και ταλαντώνεται στο κατακόρυφο επίπεδο. Πάνω στο στεφάνι βρίσκεται μια μικρή μπάλα μάζας M επίσης η οποία περιορίζεται να κινείται χωρίς τριβές κατά μήκος της περιφέρειας του στεφανιού όπως στο σχήμα. Η ροπή αδράνειας του στεφανιού ως προς άξονα που περνά από το κέντρο μάζας του είναι I = MR². Θεωρείστε μικρές μόνο ταλαντώσεις και υπολογίστε τα ακόλουθα:

- (α) Τους δύο πίνακες Μ και V. [10β]
- (β) Τις ιδιοσυχνότητες του συστήματος. [4β]
- (γ) Τα ιδιοδιανύσματα. [4β]
- (δ) Βρείτε τα 2 σετ των αρχικών συνθηκών που οδηγούν σε ταλάντωση με τον ένα ή τον άλλο κανονικό τρόπο ταλάντωσης (normal mode). Περιγράψτε ποιοτικά σε τι αντιστοιχούν οι δύο φυσικοί τρόποι ταλάντωσης. [2β]

(περιστροφή ws πρός O) + κινητική Evippera hajas M ws nos o ejarcias Trepiscopodys.

Or contetaghènes XM kan ym einar cus noos cicemba contetaghènen nou neprà από το Ο. και έγει ορχή το Ο.

LE nolivier gurreraghèves ppaporrai:

$$\forall m = Rsin\Theta + Rsin(\Theta+\phi)$$
 $\forall m = -Rcos\Theta + Rcos(\pi-(\Theta+\phi))$

$$\Rightarrow \begin{cases} \times_{M} = R \left[sin\theta + sin(\theta + \phi) \right] \\ y_{M} = -R \left[cos\theta + cos(\theta + \phi) \right] \end{cases}$$

Enofièves or aveigeorges taxitytes Da eivar:
$$\begin{cases} \dot{x}_{M} = R \left[\dot{\phi} \cos \theta + (\dot{\phi} + \dot{\phi}) \cos (\theta + \dot{\phi}) \right] \\ \dot{y}_{M} = -R \left[-\dot{\phi} \sin \theta + (\dot{\phi} + \dot{\phi}) \sin (\theta + \dot{\phi}) \right] \end{cases}$$
And
$$\int \dot{x}_{M} = R \left[\dot{\phi} \cos \theta + (\dot{\phi} + \dot{\phi}) \cos (\theta + \dot{\phi}) \right]$$

$$Apa : \begin{cases} \dot{x}_{M} = R \left[\dot{\Theta}\cos\theta + (\dot{\Theta} + \dot{\phi})\cos(\theta + \phi) \right] \\ \dot{y}_{M} = R \left[\dot{\Theta}\sin\theta + (\dot{\Theta} + \dot{\phi})\sin(\theta + \phi) \right] \end{cases}$$

Il pony aspaveras του στεφανιού ως προς afora που περνά από το O είναι: I=2MR Enofierus $T = MR^2 \dot{\Theta}^2 + \frac{1}{2} MR^2 \left[\dot{\Theta}^2 + (\dot{\Theta} + \dot{\phi})^2 + 2(\cos(\Theta + \phi) + \sin(\Theta + \phi)) (\dot{\Theta} + \dot{\phi}) \dot{\Theta} \right]$ > T = MR 0 + 1 MR [0 + (0+4) + 2 cosp(0+4) = cosp

La reposeppions purpour junior Da Exoupe:

$$T = MR^{2}\dot{\Theta}^{2} + \frac{1}{2}MR^{2}[\dot{\Theta}^{2} + (\dot{\Theta} + \dot{\phi})^{2} + 2(\dot{\Theta} + \dot{\phi})\dot{\Theta}] = \frac{1}{2}MR^{2}[2\dot{\Theta}^{2} + (4\dot{\Theta}^{2} + \dot{\phi}^{2} + 4\dot{\Theta}\dot{\phi})] \Rightarrow$$

$$\Rightarrow T = \frac{1}{2}MR^{2}[6\dot{\Theta}^{2} + \dot{\phi}^{2} + 2\dot{\Theta}\dot{\phi} + 2\dot{\phi}\dot{\Theta}] \quad \text{ohoxen's Seurispoul Ballioù as}$$

$$\pi_{pos} \quad \text{raxèc, res}$$

Enopiews:
$$\{M\} = \begin{pmatrix} 6 & 2 \\ 2 & 1 \end{pmatrix} \frac{1}{2} MR^2$$

A Surafuni evéppera con enscripacos da eira:

Για μικρές χωνίες μαι αγνοώντας το εταθερό όρο δά εχουμε:

$$V = -MgR\left(1 - \frac{\Theta^{2}}{2}\right) - \left[MgR\left(1 - \frac{\Theta^{2}}{2}\right) + MgR\left(1 - \frac{(\Theta+\Phi)^{2}}{2}\right)\right] \Rightarrow$$

$$V = MgR\frac{\Theta^{2}}{2} + MgR\frac{\Theta^{2}}{2} + MgR\frac{(\Theta+\Phi)^{2}}{2} = \frac{1}{2}MgR\left[\Theta^{2} + \Theta^{2} + (\Theta+\Phi)^{2}\right] \Rightarrow$$

$$\Rightarrow V = \frac{1}{2}MgR\left[3\Theta^{2} + \Phi^{2} + \Theta\Phi + \Phi\Theta\right]$$
Enophisms $\{V\} = \frac{1}{2}MgR\left[3 + \Phi^{2} + \Theta\Phi + \Phi\Theta\right]$

(B) And the paper product of was example:
$$\sum V_{ij} - \omega^2 M_{ij} = 0 \Rightarrow$$

$$\Rightarrow \begin{vmatrix} \frac{3 \text{MgR}}{2} - 3\omega^2 MR^2 & \frac{MgR}{2} - \omega^2 MR^2 \\ \frac{MgR}{2} - \omega^2 MR^2 & \frac{MgR}{2} - \frac{\omega^2 MR^2}{2} \end{vmatrix} = 0 \Rightarrow$$

$$\Rightarrow \omega^{4}(2M^{2}R^{4}) - 5\omega^{2}M^{2}R^{3}g + 2M^{2}g^{2}R^{2} = 0 \Rightarrow \omega^{2} = \frac{5M^{2}g^{3} \pm 3M^{2}R^{3}g}{4M^{2}R^{4}}$$

'Apa or Sio whosexvorytes eivar:
$$\omega_1^2 = \frac{q_0}{R}$$
 $\Rightarrow \omega_1 = \sqrt{\frac{q_0}{R}}$ $\omega_2 = \sqrt{\frac{q_0}{R}}$

(x) Ta is ws wichara:

Avenualisaintes W1 = \frac{160}{2} GETV Xapanenporain flower Experts:

$$\Rightarrow \begin{pmatrix} -\frac{g}{2} gMR & -\frac{3gMR}{2} \\ -\frac{3gMR}{2} & -\frac{MgR}{2} \end{pmatrix} \begin{pmatrix} a_{31} \\ a_{21} \end{pmatrix} = 0 \Rightarrow 3a_{11} + a_{21} = 0 \Rightarrow \\ \Rightarrow a_{21} = -3a_{11}$$

Enopiews
$$\vec{a}_1 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

Quoia avenualiquivros uz = \(\frac{3}{9\hat{R}} \) Da \(\express{2}{\pi\chi\chi\eta} \):

$$\Rightarrow \begin{pmatrix} 0 & 0 \\ 0 & -\frac{\mu_0 R}{2} \end{pmatrix} \begin{pmatrix} \alpha_{12} \\ \alpha_{22} \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} \alpha_{12} = 0 \\ \alpha_{22} = 1 \end{pmatrix} \Rightarrow \vec{Q}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Or 2 du 6000 tojonos talavemens civas enopieros

ano to credar alla cer aveiles nerevilves

ii) la en repiremen 2: n finfa da cira aningen.

- **2.** Μια χάντρα μάζας Μ περιορίζεται στο να κινείται στην επιφάνεια μιας λείας σφαίρας μάζας ακτίνας R_0 . Η δυναμική ενέργεια της χάντρας ανάλογα με τη θέση της, δίνεται από την σχέση: $U(\vec{r}) = MA_0 \big[l_1 x + l_2 y + l_3 z \big]$
 - (α) Να βρεθεί η Lagrangian του συστήματος και να εκφραστεί συναρτήσει δύο γωνιών και των χρονικών παραγώγων τους. [2β]
 - (β) Να βρεθεί η εξίσωση κίνησης του συστήματος μέσω των εξισώσεων Euler-Lagrange. [2β]
 - (γ) Να βρεθεί η Hamiltonian του συστήματος. [2β]
 - (δ) Θεωρείστε τώρα δύο σώματα μάζας M_1 και M_2 αντίστοιχα με συντεταγμένες (x_1,y_1,z_1) και (x_2,y_2,z_2) τα οποία κινούνται στην επιφάνεια της σφαίρας. Το σύστημα αυτό έχει δυναμική ενέργεια που δίνεται από τη σχέση:

$$U_{tot} = U(\vec{r}_1) + U(\vec{r}_2) + \frac{1}{2}k_A R_0^2 (6\theta_1 - 5\theta_2)^2 + \frac{1}{2}k_B R_0^2 (\theta_1)^2 + \frac{1}{2}k_C R_0^2 (\theta_2)^2$$

Να βρεθεί η μορφή της εξίσωσης του 2^{ov} νόμου του Newton [3 β].

(ε) Για την περίπτωση των δύο σωμάτων, λύστε την εξίσωση του 2^{ov} νόμου του Newton και περιγράψτε πλήρως την κίνηση. Η απάντησή σας θα πρέπει να περιέχει συζήτηση σχετικά με τους φυσικούς τρόπους ταλάντωσης, ιδιοσυχνότητες και ιδιοδιανύσματα. [11β]

 Il Swapicki evéppera con emparos availago pe en Dien con minu con
Edupini Ediparea eiva :
0 = MA (X, x + l, y + l 3 Z)
(a) Tra va Bpoiler en Lagrangian con enceitares xprocherocoite ederpris
evercoffices:
X= RocososinO y=RosinocosO Z=RocosO
Enopiewas $T = \frac{1}{2} MR_0^2 \left[\left(\frac{d\theta}{dk} \right)^2 + sin^2 O \left(\frac{d\theta}{dk} \right)^2 \right]$
U= MAOR (ly cospsin0 + lasinpsin0 + lz coso)
L = T- J
(b) Or eliciter since laboratar and the lacrange:
(8) Or eficiens vincers laplavorar and ers eficiens Lagrange: OL - UR? O OL - MR? SINO (0) OL - MR? SINO 000000°
-MR A. [Contrad + Contrad -
- l3 5140]
(0) = MR. A. SIMO [-l, SIMO+ lgcost)
Enofières:
d (01)-01 = d [MR. o]-MR. swo coso (o) + MR. A. [h.cost ego +l, sinteres lite
1 (21) - 21 = 1 [MR2 suro b] + MAORO sino [-lising + licono] = 0

(x) Tra va bpointe 17 Homillouian Trapazupointe óze:
Po = 0 = MR 0 Po = 0 = MR 2 sin 20(1)
00
Foolismas
H = 0 0 + 0 1 - 1 = Po + Po + MAR & contsin0+
Enopieros: H = Po 0 + Po 1 - 1 = Po 2 + Po 2 + MAOR [Crost sin 0 + 2MR2 sin 0 + MAOR]
+ 12 5140 5140 + 13 6000
(5) Exoupe 2 simpara pre pringer My nou M2 nous crop i Sia spaipa. Mangoi pre vo
Absertionomicagne examplies enterastrines non right. It Smathinis enjoyers
con energhacos da eivar:
V= U(1)+ U(1) + 1 KAR2 (60, -502)2+ 1 KBRO 0, + 1 KRO 02
Il proposi rou Scirepou volton con Menton Da cirac:
d [MR20] - MR2 sind, coso, O, - MR. A. [l, coso, coso, +l, sind, coso, -l, sino,]-
-6 ky Ro (60, -50,) - kg Ro 0,
dr [MR2 SMO, of] = -MAOROSMO, [-l, SMO, +l2 cost,]
1 [MR. 0,] = MR. sin 0, cos0, 0, - MA, R. [l, coso, cos0, +l, sino, cos0, -l, sino,
of [[[]]] [[] [] [] [] [] []
+ 5 kg Ro (60, -502) - kc Ro 202
4 5 1 527 6 5 2
d [1102 30 i] = - MA-R Size [-la suzh +la cost]
dt [MRo swid of] = - MAORO sindy [-lasund +la costo]

	(E) Trem Trepuppa poule en vinney sivar anapairmes va Soite co Surafucció
	cro à hipos con pooblisharos. To Surapino auro Saline ha Sinatur
	zys hopdis:
	= = = = = = = = = = = = = = = = = = =
	F=-MA, [l, x+l2y+l32]=-MA, l 2[-MA, l 2 [-MA, l 2] =-MA, l 2
	oron l 2 = Ve, 2 + l2 + l2 . Aven evar pra consepi Sivator pe pierpo MAD l 2
	he κατεύθυνως στο διώνωμα γ. Allà αυτή η δύνομη είναι ουριδώς ανάθορη της δύνομης της βορύτητως. Η χωνία μ → που σχηματίβει η δύνομη με τον άβονα Σ δίνεται από:
	175 Sivalys cys Capicy cos. Il juvia to 500 cxufiazifer o Sivaly fie
	Tou alova & Siveral and:
	A
Aller Manager property and whether the	$cos \mu = 2 \cdot n = \frac{l_3}{\sqrt{l_1^2 + l_2^2 + l_3^2}}$
	$\sqrt{l_1^2 + l_2^2 + l_3^2}$
	Enotieves que va anforcacionte co repoblifia proposite va postinomonimente
	reviventières arreco phères:
	$\beta_2 = \Theta_2 - \beta_1$ $\beta_2 = \Theta_2 - \beta_2$
	van u Lagrangian του executações que ens viers curetaplières da given:
	1 = \frac{1}{2} MR_0^2 [\beta_1^2 + sin^2 \beta_1 + \beta_1 \beta_1^2] + \frac{1}{2} MR_0^2 [\beta_2^2 + sin^2 (\beta_2 + \beta_1) \beta_2^2] - MA_0 R_0 [\beta^2 (\beta_1 + \beta_1 + \beta_1) \beta_2^2] - MA_0 R_0 [\beta^2 (\beta_1 + \beta_1 + \beta_2 + \beta_1 + \beta_2 + \be
	$-\frac{1}{2}k_{A}R_{o}^{2}(6l_{1}-5l_{2}+l_{1})^{2}-\frac{1}{2}k_{B}R_{o}^{2}(l_{1}+l_{1})^{2}-\frac{1}{2}k_{C}R_{o}^{2}(l_{2}+l_{1})^{2}$
	2 4 6 5 3 7 7 7 8 6 6 7 7 7
	Il addays zur oure to ghèrer eige our anotélegle to Surafusio va enopagres!
	he hoppy ansapenes en of non of
	(1) (2)
	Renationaries reposition fundin junior propartie va parportie:
	1= 1 MR [1 + sin 1 + 1 + 1 MR [1 2 + sin 1 4] - MAORO 10 2 [2 - 1 6 2 - 1 62] -
	- 1/2 kaR2 (6B3-5B2+4)2-1/2 kBR2 (B,+4)2-1/2 kcR2 (B2+4)2

Ano tyv onois paiverse ou pière or yuvies & maiprour pièpes 6 mis varonnois eponones Talà varogs.
Or efrancers minsons maisvon en probby:
d [uR28,] =- uA0R0 2 2, - 6kAR0 (6B1-5B2+4) - kBR0 (8,+4) }
1 [μR ² l ₂] = - μΑ ₀ R ₀ l ² l ₂ + 5 k ₄ R ₀ (6 l ₃ - 5 l ₂ + μ) - k _c R ₀ ² (l ₂ + μ)
$\Rightarrow \ddot{g}_{1} = -\frac{A_{0} \mathcal{E} ^{2}}{R_{0}}g_{1} - G\frac{\kappa_{A}}{M}(Gg_{1} - 5g_{2} + \mu) - \frac{\kappa_{B}}{M}(g_{1} + \mu)$ $\ddot{g}_{2} = -\frac{A_{0} \mathcal{E} ^{2}}{R_{0}}g_{2} + 5\frac{\kappa_{A}}{M}(Gg_{2} - 5g_{2} + \mu) - \frac{\kappa_{C}}{M}(g_{2} + \mu)$ $\Rightarrow \frac{\ddot{g}_{1}}{R_{0}}g_{2} + \frac{1}{2}\frac{\kappa_{A}}{M}(Gg_{2} - 5g_{2} + \mu) - \frac{\kappa_{C}}{M}(g_{2} + \mu)$
B ₂ = - A ₀ l ² B ₂ + 5 k _A (6B ₂ - 5B ₂ + k) - k _C (B ₂ + k)
$\frac{30 k_{A} + k_{B}}{6 k_{A}} = -\left[\frac{A_{0} \ell ^{2}}{R_{0}} + \frac{36 k_{A} + k_{B}}{M} \right] b_{1} + \frac{30 k_{A}}{M} b_{2} - \left(\frac{6 k_{A} + k_{B}}{M} \right) \frac{k_{B}}{M} + \frac{30 k_{A}}{M} b_{1} - \left[\frac{A_{0} \ell ^{2}}{R_{0}} + \left(\frac{25 k_{A} + k_{C}}{M} \right) \right] b_{1} - \left(\frac{5 k_{A} + k_{C}}{M} \right) \frac{k_{B}}{M} + \frac{1}{M} b_{1}$
$\ddot{b}_{2} = \frac{30 k_{A}}{M} \dot{b}_{1} - \left[\frac{A_{0} e ^{2}}{R_{0}} + \left(\frac{25 k_{A} + k_{c}}{M} \right) \right] \dot{b}_{1} - \left(\frac{5 k_{A} + k_{c}}{M} \right) \frac{R_{3}}{M} \dot{b}_{1}$
Οι όροι που είναι ανιβάρες τοι από τα β, και β, μπορούν να απαλοιβλών το κάπαο επανοριεμό. Δεν παίβουν κανίνα ρόλο.
 And as no nava eficioses finopoique ve opiéante 3 suxvocates:
$\mathcal{L}_{A} = \sqrt{\frac{30 \text{ka}}{M}}$
SAB= V36KA+KB + A. L12 Ro
SLAC= V 25 KA+KC + Aoll2 N To
Auro oSnyei star ESieweg eSiowycocycur:
$\Rightarrow \omega^2 = \frac{1}{2} \left[\Omega_{AB}^2 + \Omega_{AC}^2 \right] \pm \frac{1}{2} \sqrt{\Omega_{AB}^2 - \Omega_{AC}^2} + 4\Omega_A^2 $ $= \frac{1}{2} \left[\Omega_{AB}^2 + \Omega_{AC}^2 \right] \pm \frac{1}{2} \sqrt{\Omega_{AB}^2 - \Omega_{AC}^2} + 4\Omega_A^2 $ $= \frac{1}{2} \left[\Omega_{AB}^2 + \Omega_{AC}^2 \right] \pm \frac{1}{2} \sqrt{\Omega_{AB}^2 - \Omega_{AC}^2} + 4\Omega_A^2 $ $= \frac{1}{2} \left[\Omega_{AB}^2 + \Omega_{AC}^2 \right] \pm \frac{1}{2} \sqrt{\Omega_{AB}^2 - \Omega_{AC}^2} + 4\Omega_A^2 $ $= \frac{1}{2} \left[\Omega_{AB}^2 + \Omega_{AC}^2 \right] \pm \frac{1}{2} \sqrt{\Omega_{AB}^2 - \Omega_{AC}^2} + 4\Omega_A^2 $ $= \frac{1}{2} \left[\Omega_{AB}^2 + \Omega_{AC}^2 \right] \pm \frac{1}{2} \sqrt{\Omega_{AB}^2 - \Omega_{AC}^2} + 4\Omega_A^2 $ $= \frac{1}{2} \left[\Omega_{AB}^2 + \Omega_{AC}^2 \right] \pm \frac{1}{2} \sqrt{\Omega_{AB}^2 - \Omega_{AC}^2} + 4\Omega_A^2 $ $= \frac{1}{2} \left[\Omega_{AB}^2 + \Omega_{AC}^2 \right] + \frac{1}{2} \sqrt{\Omega_{AB}^2 - \Omega_{AC}^2} + \frac{1}{2} \sqrt{\Omega_{AB}^2 - \Omega_{AC}^2} $
To sousingues eiver of = [1] has a2 = [1]

3. Η Lagrangian ενός συγκεκριμένου συστήματος μπορεί να γραφεί με τη μορφή:

$$L = \frac{m}{2} \left(a\dot{x}^2 + 2b\dot{x}\dot{y} + c\dot{y}^2 \right) - \frac{K}{2} \left(ax^2 + 2bxy + cy^2 \right)$$

Όπου α,b,c είναι αυθαίρετες σταθερές αλλά υπόκεινται στη συνθήκη b^2 -αc $\neq 0$. Ποιες είναι οι εξισώσεις κίνησης; Εξετάστε τις δύο περιπτώσεις $\alpha = 0 = c$ και b = 0, $c = -\alpha$. Ποιο είναι το φυσικό σύστημα που περιγράφεται από την παραπάνω Lagrangian; [10β]

φυσικό σί	ρστημα που περιγράφεται από την παραπάνω Lagrangian; [10β]
	Il lagrangian rov executaros sivar: le ma (ax+26xy+cy²)-k (ax+26xy+cy²)
	Ynapxoux 2 eficiens vivosers, tra gra to x var tra gra to y. Tra andoistency
	opifortie en cradipa up = k onôte or eficiosus kimens da civar:
×:	d (ol) ol = d (max+mby) - (-kax-kby)=0 > ax+by+wax+wby=0
<u> </u>	d () oj oy dt (mbx+mcy) - (-kbx-kcy) =0 = bx+cy+wbx+wcy=0
	(a) The the English mapping $\alpha = C = 0$, or maparian 2 esciences
	Bÿ + Bw²y = 0 } Dio a si feneral approvenci B x + bw² x = 0
	(b) $\sum_{x \in Y} \sum_{x \in Y} $
	(x) Apri Jépoulie àti çus Sio napanàva escués requirisées, co sieralia eiras Sio aciferaco aprovinci colla ventés, finopoilie na francé poulie àti co cicaçõe civa andà 2 aciferaco tada ventês. Auto finopoi va davei mó circola fie tor arà Jordo freta explatació: (x y) (a b) (x) = ax² + 26xy + cy²
	Apoi 6º-ac \$0, o nivavas peracyalianechoù eivae avergrejeviles Aurò nou propositie va navoule eivar va Suspivononico de co mivava aurò que va bosite viers averagieves (n,x). Il lagrangian nou nponúnter Da eiva 2 acifeveros approvinci co Javantes cus correta quives (n,x)

4. Να βρεθούν οι διαστάσεις ενός παραλληλεπιπέδου μέγιστου όγκου το οποίο περιέχεται μέσα σε σφαίρα ακτίνας R. [10β] Revaferou va Bosifie avojoraro qua ro o Don Tipufia: J= f(x,y)dx And the flower on Euler-Lagrange Example 2f = \$ to onoise Kar Soline oa Og = Joy dx = 0 co onoio nas fras Sira tua Epononoming hoppings of cowers too Enter-Lagrange. Osupivous cous nouleries lagrange pa reportations Sichier de 25 + 7 1; (x) = 0 0 000 g; (y; x) = 0 Tra cor ògue cor napadalalemnisor he mempes as, b, y c, eva: V=a,b,c, Θελούε να μεγωτοποιηθούμε τον όγμο συτό κότω από τη συνθίνη όμως ότι το παραλλη λειτίπεδο περιέχεται σε σφαίρα αντίνας \mathbb{R} οπότε: Enopieus Despoite on a, b, c, peraboris y V, ein y arapero y now de Tape va fregreto novijeoupe. Il raparizion eficucy enary eficucy του δεωμού σ(a,b,,c,)=φ Enoficions or e Juiners you or Jing even: Ox + 200 =0 OB1 1 081 =0 OG + J 2 = 0. $\begin{cases} b_{1}C_{1} + 2Ja_{1} = 0 \\ 0 \\ a_{1}C_{1} + 2Jb_{1} = 0 \end{cases} \Rightarrow a_{1} = b_{1} = C_{1} = \frac{2}{\sqrt{3}}R \quad \text{Apa co papelly-legisted}$ $a_{1}b_{1} + 2JC_{1} = 0 \\ a_{2}b_{1} + 2JC_{1} = 4R^{2} \qquad \text{Eivan wibox nJeopa's } \frac{2R}{\sqrt{3}}$

5. Ένα σώμα περιορίζεται να κινείται σε ένα στεφάνι αμελητέας μάζας και ακτίνας R_0 το οποίο βρίσκεται στο κατακόρυφο επίπεδο και μπορεί να περιστρέφεται γύρω από την κατακόρυφο με σταθερή γωνιακή ταχύτητα $ω_0$. Να βρεθούν οι εξισώσεις κίνησης του Lagrange υποθέτοντας ότι οι μόνες εξωτερικές δυνάμεις που δρούν προέρχονται από την βαρύτητα. Ποιες είναι σταθερές της κίνησης; Δείξτε ότι αν ω είναι μεγαλύτερη από μια τιμή $ω_0$, υπάρχει μια λύση για την οποία το σώμα παραμένει ακίνητο στο στεφάνι σε ένα σημείο το οποίο δεν βρίσκεται στο κατώτερο σημείο του στεφανιού, αλλά αν ω< $ω_0$, το μόνο σημείο στο οποίο το σώμα μπορεί να είναι ακίνητο είναι το κατώτερο σημείο του στεφανιού. Ποια είναι η τιμή της $ω_0$; [20β]

_	Χρησιμοποιούμε σφαιρικό συντεταγμένει όπου η αντίνα τ-Ro-call ενώ η χωνία φ κινείται με σταθερί χωνιακή ταχύτητα ω
	Enoticions da égoule: x = RosinO cos cut 7 x = RosinOsos cos cut - RosinOsincut y = RosinOsincut > y = RosinOsincut + RosinOsincut z = RocosO z = RosinOsinO
	Enofiewas & Kingrain's Everyteia row 6 in factors Θ_0 6 vai: $T = \frac{1}{2} m \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) = \frac{1}{2} m R_0^2 \left(\dot{\Theta}^2 + \omega^2 \sin^2 \Theta \right)$ $\Rightarrow V = me R_0 \cos \Theta$
	H Surafuncia evéprena da eivan: V= mg z => V= mg Rocoso => f = T-V = m/2 (R° 0° + R° ω sin o) - mg Rocoso
	Enopiesus y esieus, ron lagrange Da eivar: dt (00) 00
	> mRo O -mRo wishowo - mg RosinO = 0.
	Tra va igw ετωθιρίη πατα ετώς ειν θα πρέπει Θ=0 οπό τε παίρναμι: mRo ω² sinθ cosθ - mg Ro sinθ = 0 → mRo sinθ (Roω² cosθ +g) = 0

- **6.** Ένα σώμα μάζας m γλιστρά προς το κατώτερο μέρος μιας λείας σφαιρικής επιφάνειας μάζας M που βρίσκεται πάνω σε λείο οριζόντιο δάπεδο όπως στο σχήμα.
 - (α) Να βρεθούν οι εξισώσεις κίνησης για το m και M. [10β]
 - (β) Να βρεθεί η αντίδραση της σφαιρικής επιφάνειας. [10β]

Oa Exoupe (OEroveas a= m/N+m)
x = aR (0 sin0 + 02 cos0) = x = aR (x sin0 + g cos0 sin0 + 02 cos0)
$\ddot{x} = \alpha R \left(\ddot{\Theta} \times IM\Theta + \dot{\Theta}^2 \cos \Theta \right) $ $\ddot{\Theta} = \frac{\ddot{x} \times IM\Theta}{R} + g \cos \Theta $ R $\ddot{\theta} = \frac{\ddot{x} \times IM\Theta}{R} + g \cos \Theta $
4.2
> x (1-asin 0) = ga cox 0 sin 0 + a R 0 cos 0
Enopierus va (r) Da give:
Il Lagrangian Ser esperatar and to xporo was enotievas o evippera
Sucretica. Resolvanimas Sucreprez exépteus trapoite va époite lua
Exposer Xu to O
H = M+m x2 + m (R202- 1xR0 sm0) - mgRsin0 = T+V = -mgRsin0
in Q siva & anxies dies con airhacas m kar - ma Rsindo siva n
onou O civa v aprilis dies con cirpares m kar - mgRsmo civa n
onou O civa v aprilis dies con cirpares m kar - mgRsmo civa n
onou O civou » apriles dies con ocidaces m kar - marsino civou n odres enèpyera con occastratos (unoditoreas ou feminatre and top spectia Andadi n aprilis enèpyera recitar tre en enèpyera et onoudinore alla romini ocidis.
onou O cival rappus dies con ocipacos m kar - ma Rom O cival ra
όπου Θο είναι ν αρχικό δέες του σώματος τη και - mgRsinθο είναι ν οδική ευέργεια του συστήτατος (υποδίτουτας ότι βικινάμε από την ηγεμία Δηλαδή ν αρχική ευέργεια ι εσίται με την ευέργεια ει οποιαδήποτε άλλ χρανικό σαμμό. Ολοκληρώνοντας την εβίωσες (Α) έχοιμε: ×-θαRsinθ την οποία μποραίμε να αυτικαταστήσοιμε σαμ
όπου Θο είναι ν αρχική δέες του σώματος τη και - mgRsinθο είναι η οδική ευέργεια του σωτήματος (υποδίτωτας ότι βικινάμε από την κρχίμα Δηθαδή η αρχική ευέργεια ι σοίται με την ευέργεια σε οποιαδήποτε άλλ χρονική σωχρή. Ολοκληρίνοντας την εξίωσες (Α) έχοιμε: × -θα R sinθ την οποία μποραίμε να αντικαταστήσοιμε σωμε εξίωσες της ευέρχειος οπότε δα έχοιμε:
όπου Θο είναι ν αρχική δέες του σώματος τη και - mgRsinθο είναι η οδική ευέργεια του σωτήματος (υποδίτωτας ότι βικινάμε από την κρχίμα Δηθαδή η αρχική ευέργεια ι σοίται με την ευέργεια σε οποιαδήποτε άλλ χρονική σωχρή. Ολοκληρίνοντας την εξίωσες (Α) έχοιμε: × -θα R sinθ την οποία μποραίμε να αντικαταστήσοιμε σωμε εξίωσες της ευέρχειος οπότε δα έχοιμε:
οπου Θο είναι ν αρχικό δίες του σώματος τη και - mgRsinθο είναι ν οδική ενέργεια του συσκήτατος (υποδίτουται ότι βικινάμε από την ηγεμία Δηλαδή η αρχική ενέργεια ι εσίται με την ενέργεια ει οποιαδήποτε αλλ χρανικό σαχικό στην εξίσωση (Α) έχοιμε: × =θαθείνθο την οποία μποραίμε να αυτικαταστάσοιμε σαν εξίσωση την οποία μποραίμε να αυτικαταστάσοιμε σαν εξίσωση την οποία μποραίμε να αντικαταστάσοιμε σαν εξίσωση την οποία μποραίμε να αντικαταστάσοι εξίσωση την οποία μποραίμε να αντικαταστάσοι εντικαταστάσοι εξίσωση την οποία μποραίμε να αντικαταστάσοι εξίσωση την εξίσωση την οποία μποραίμε να αντικαταστάσοι εξίσωση την εξίσωση τ
όπου Θο είναι ν αρχική δέες του σώματος τη και - mgRsinθο είναι η οδική ευέργεια του σωτήματος (υποδίτωτας ότι βικινάμε από την κρχίμα Δηθαδή η αρχική ευέργεια ι σοίται με την ευέργεια σε οποιαδήποτε άλλ χρονική σωχρή. Ολοκληρίνοντας την εξίωσες (Α) έχοιμε: × -θα R sinθ την οποία μποραίμε να αντικαταστήσοιμε σωμε εξίωσες της ευέρχειος οπότε δα έχοιμε: