

Data Science: Tidyverse

Alex Di Genova

What is Tidyverse?

- A collection of R packages for data science
 - ggplot2 data visualization
 - dplyr data manipulation
 - tidyr data tidying
 - readr data import
 - purrr functional programming
 - tibble modern dataframes
 - stringr string manipulation
 - forcats factor handling
- Data science workflow (import, clean, transform, visualize, model)

Tidyverse Explore

Program

TidyverseDpylr – transform

- Data manipulation challenges:
 - Pick observations by their values (filter())
 - Reorder the rows (arrange())
 - Pick variables by their names (select())
 - Create new variables (mutate())
 - Collapse many values to a single summary (summarize())
 - Group rows (group_by())
- All dplyr verbs expect a data.frame and produce a new data.frame

Dpylr — transform

Select

Visualize

Model

Communicate

- Select columns with select()
 - mpg %>% select(model,manufacturer,cyl)
 - mpg %>% select(model:year)
 - mpg %>% select(-(model:year))
- Helper functions
 - starts_with("abc") matches names that begin with "abc".
 - ends_with("xyz") matches names that end with "xyz".
 - contains("ijk") matches names that contain "ijk".
 - num_range("x", 1:3) matches x1, x2, and x3
- rename(modelo = model)
- mpg %>% select(trans, drv, everything())

Dpylr - transform

n

Program

Import — Tidy — Transform — Communicate Model Explore

Mutate

- New Variables with mutate()
- mutate() always adds new columns at the end of data frame
 - mpg %>% mutate(delta=hwy-cty)
 - ?transmutate()
- Helper functions
 - Arithmetic operators +, -, *, /, ^
 - Logs log(), log2(), log10()
 - Cumulative R provides cumsum(), cumprod(), cummin(), cummax(); and dplyr provides cummean()
 - Logical comparisons <, <=, >, >=, !=

Dpylr — transform

Summarise

- Grouped Summaries with summarize()
- collapses a data frame to a single row
 - mpg %>% summarise(mean(hwy))
- summarize() and group_by() a perfect couple
 - mpg %>% group_by(manufacturer) %>% summarize(m=mean(hwy)) %>% arrange(desc(m))
- Helper functions
 - Measures of location: mean(x), median(x)
 - Measures of spread: sd(x), IQR(x), mad(x)
 - Measures of rank: min(x), quantile(x, 0.25), max(x)
 - Counts: n(), n_distinct(x)

Program

Dpylr — transform

Summarise

- Grouped Summaries with summarize()
- collapses a data frame to a single row
 - mpg %>% summarise(mean(hwy))
- summarize() and group_by() a perfect couple
 - mpg %>% group_by(manufacturer) %>% summarize(m=mean(hwy)) %>% arrange(desc(m))
- Helper functions
 - Measures of location: mean(x), median(x)
 - Measures of spread: sd(x), IQR(x), mad(x)
 - Measures of rank: min(x), quantile(x, 0.25), max(x)
 - Counts: n(), n_distinct(x)

Program

TidyverseWrangle

Getting your data in a helpful form for visualization and modeling readr

```{r readdata}

Dalimitana II II

```
• data.frames and Tibb deread_csv("../data/worldcitiespop.csv.gz")
```

- Data import with read
  - read plain-text rect

```
Rows: 3173958 Columns: 7— Column specification
```

• From a file.txt to a (Rows: 3,173,958 Columns: 7

Common functions

```
 read_csv(). read_s
 read_delim(), read_s
```

```
* Confinition of the state of t
```

\$ Country *<chr>* "ad", "ad", "ad", "ad", "ad", "ad", "ad", "

### **Tidyverse**

#### Readr

```
```{r n}
read_csv("The first line of metadata
                                                         parse_number("$100")
 The second line of metadata
 X, Y, Z
 1,2,3", skip = 2)
read_csv("# A comment I want to skip
 x,y,z
 1,2,3", comment = "#")
read_csv("1,2,3\n4,5,6", col_names = c("x", "y", "z"))
                              ```{r fechas}
```

- parse\_\*() functions:
- From a character vectparse\_date("01/02/15", "%//m/% guess\_parser(c("12,352,561")) specialized vector like parse\_date("12 Enero 2015", "%d = or date.
- parse\_logical(), parse\_ [1] "2015-02-01" parse\_date()

```
parse_number("20%")
 parse_number("It cost $123.45")
 Γ17 100
 Г17 20
 [1] 123.45
 {r guest}
 guess_parser("2010-10-01")
 guess_parser("15:01")
parse_date("01/02/15", "%m/%d/%) guess_parser(c("TRUE", "FALSE")
parse_date("01/02/15", "%d/\%m/\%) guess_parser(c("1", "5", "9"))
```

Import → Tidy → Transform

**Understand** 

Γ17 "date"

[1] "time"

[1] "logical"

"double"

"number"

Wrangle

How readr automatically guess

[1] "2015-01-02"

"2001-02-15"

"2015-01-12"

Visualize

Model

Communicate

## **Tidyverse**Readr



- write\_csv() and write\_tsv()
  - write\_csv(challenge, "challenge.csv")
- write\_rds() and read\_rds(), store data in R's custom binary format called RDS
  - write\_rds(challenge, "challenge.rds")
  - read\_rds("challenge.rds")

Journal of Statistical Software

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

Table 1: Typical presentation dataset.

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Table 2: The same data as in Table 1 but structured differently.

#### Tidy data

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each type of observational unit forms a table.



Tidy Data

person	treatment	result
John Smith	a	
Jane Doe	$\mathbf{a}$	16
Mary Johnson	a	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

- Column headers are values, not variable names.
- Multiple variables are stored in one column.
- Variables are stored in both rows and columns.
- Multiple types of observational units are stored in the same table.
- A single observational unit is stored in multiple tables.



Program

religion	<\$10k	\$10-20k	\$20–30k	\$30–40k	\$40–50k	\$50-75k	-	religion	income	freq
Agnostic	27	34	60	81	76	137	-	Agnostic	<\$10k	27
Atheist	12	27	37	52	35	70		Agnostic	\$10-20k	34
Buddhist	27	21	30	34	33	58		Agnostic	\$20–30k	60
Catholic	418	617	732	670	638	1116		Agnostic	\$30–40k	81
Don't know/refused	15	14	15	11	10	35		Agnostic	\$40–50k	76
Evangelical Prot	575	869	1064	982	881	1486		Agnostic	\$50-75k	137
Hindu	1	9	7	9	11	34		Agnostic	\$75–100k	122
Historically Black Prot	228	244	236	238	197	223		Agnostic	\$100–150k	109
Jehovah's Witness	20	27	24	24	21	30		Agnostic	>150k	84
Jewish	19	19	25	25	30	95			Don't know/refused	96
							-	Agnostic	Don t know/refused	<del>90</del>

id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax								
MX17004	2010	1	$\operatorname{tmin}$				—				
MX17004	2010	2	tmax		27.3	24.1	—				
MX17004	2010	2	$\operatorname{tmin}$		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	$\operatorname{tmin}$					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	$\operatorname{tmin}$								
MX17004	2010	5	tmax								
MX17004	2010	5	tmin								

$\operatorname{id}$	date	tmax	$\operatorname{tmin}$
MX17004	2010-01-30	27.8	14.5
MX17004	2010-02-02	27.3	14.4
MX17004	2010-02-03	24.1	14.4
MX17004	2010-02-11	29.7	13.4
MX17004	2010-02-23	29.9	10.7
MX17004	2010-03-05	32.1	14.2
MX17004	2010-03-10	34.5	16.8
MX17004	2010-03-16	31.1	17.6
MX17004	2010-04-27	36.3	16.7
MX17004	2010-05-27	33.2	18.2



**Program** 







- Tidy dataset:
  - Variables are in columns
  - Observations in rows
  - Values in cells



- Spreading and Gathering
- Dateset where columns are values of a variable





Program

#### Spreading

Opposite of gathering \(\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac

table2 %>%spread(key=type, value=count)
cc ```

country	year	key	value
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

Α	tib	ble	e:	6	×	4

country <chr></chr>	year <dbl></dbl>	cases <dbl></dbl>	population <dbl></dbl>
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

table2



Program

Separate() and unite()

country	year	rate
Afghanistan	1999	<b>745</b> / 19987071
Afghanistan	2000	<b>2666</b> / 20595360
Brazil	1999	<b>37737</b> / 172006362
Brazil	2000	80488 / 174504898
China	1999	212258 / 1272915272
China	2000	<b>213766</b> / 1280428583

table3

		X	*
country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

country	year	rate				
Afghanistan	19 <b>99</b>	745 / 19987071				
Afghanistan	2000	2666 / 20595360				
Brazil	19 <b>99</b>	37737 / 172006362				
Brazil	2000	80488 / 174504898				
China	19 <b>99</b>	212258 / 1272915272				
China	2000	213766 / 1280428583				

country century year rate Afghanistan 19 99 745 / 19987071 Afghanistan 20 2666 / 20595360 Brazil 19 37737 / 172006362 Brazil 20 80488 / 174504898 China 19 212258 / 1272915272 213766 / 1280428583 China 20

table6

## Questions? Practice!!!