Université Mohammed I Ecole Nationale des Sciences Appliquées Oujda

CORRECTIONS DES TRAVAUX DIRIGÉS D'ANALYSE1

Pr.Fatima Zahra NQI

Table des matières

1	Corrections-TD-Les nombres réels	4
2	Corrections-TD-Les Suites Numériques	8
3	Corrections-TD-Fonctions Numériques à variables réelles	16
4	Corrections-TD-Fonctions dérivables	23
5	Corrections-TD-Fonctions élémentaires	30
6	Corrections-TD-Développements limités	34
7	Corrections-TD-Intégrales de Riemann	39

Corrections-TD 1

Les Nombres Réels

Année 2016-2017 ENSA 1 - Analyse I Professeur : F.Z. Nqi

1 Corrections-TD-Les nombres réels

Exercice 1:

Soient A et B deux parties non vides majorées de \mathbb{R} . Montrer :

- 1. que si $A \subset B$, alors $\sup(A) \leq \sup(B)$,
- 2. que si $A \cup B$ est majorée, déterminer $\sup(A \cup B)$.

Exercice 2:

A et B deux parties non vides majorées de \mathbb{R} . On définit

$$C = A + B = \{x \in \mathbb{R} / \exists x \in A, \exists y \in B, z = x + y\}.$$

Prouver que $\sup(C) = \sup(A) + \sup(B)$.

Correction 1:

1. Soit $A \subset B$, alors

$$\forall x \in A, x \in B,$$

donc $x \leq \sup(B)$. Par conséquent $\sup(B)$ est un majorant de A, donc $\sup(A) \leq \sup(B)$.

2. Soit $A \cup B$ est majorée, on a

$$A \subset A \cup B \Rightarrow \sup(A) < \sup(A \cup B),$$

et

$$B \subset A \cup B \Rightarrow \sup(B) \leq \sup(A \cup B),$$

donc

$$\max(\sup(A), \sup(B)) \le \sup(A \cup B).$$

Réciproquement, soit $x \in A \cup B$, donc x est soit dans A soit dans B. Par conséquent $x \leq \sup(A)$ ou $x \leq \sup(B)$, donc $x \leq \max(\sup(A), \sup(B))$. On en déduit que $\max(\sup(A), \sup(B))$ est un majorant de $A \cup B$. On en tire que

$$\sup(A \cup B) \le \max(\sup(A), \sup(B)).$$

Finalement, on conclut que

$$\sup(A \cup B) = \max(\sup(A), \sup(B)).$$

Exercice 3:

A et B deux parties non vides majorées de \mathbb{R}^+ . On définit

$$D = A.B = \{x \in \mathbb{R}/\exists x \in A, \exists y \in B, z = x.y\}.$$

Déterminer $\sup(D)$.

Exercice 4:

Soient $n \in \mathbb{N}^*$, $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$. On note $S_k = \sum_{i=1}^n x_i^k$ et on suppose que $S_2 = S_3 = S_4$. Montrer que

$$\forall i \in \{1, 2, ..., n\}; \ x_i \in \{0, 1\}.$$

Correction 4:

On remarque

$$\sum_{i=1}^{n} (x_i^2 - x_i)^2 = \sum_{i=1}^{n} (x_i^4 - 2x_i^3 + x_i^2) = S_4 - 2S_3 + S_2 = 0$$

Comme : $\forall i \in \{1,...,n\}, (x_i^2-x_i)^2 \geq 0$, on en déduit : $\forall i \in \{1,...,n\}, (x_i^2-x_i)=0$ et donc

$$\forall i \in \{1, ..., n\}, x_i \in \{0, 1\}.$$

Exercice 5:

Montrer que $\forall n \in \mathbb{N}^*, \forall (x,y) \in \mathbb{R}^2_+$, on a $\sqrt[n]{x+y} \leq \sqrt[n]{x} + \sqrt[n]{y}$.

Correction 5:

En utilisant la formule du binôme de Newton (pour $n \ge 2$):

$$(\sqrt[n]{x} + \sqrt[n]{y})^n = \sum_{k=0}^n C_n^k (\sqrt[n]{x})^{n-k} (\sqrt[n]{y})^k = x + \left(\sum_{k=1}^{n-1} C_n^k x^{\frac{n-k}{n}} y^{\frac{k}{n}}\right) + y \ge x + y.$$

d'où $\sqrt[n]{x} + \sqrt[n]{y})^n \ge \sqrt[n]{x+y}$.

Exercice 6:

Montrer:

$$\forall n \in \mathbb{N}^n, \left(\frac{2n}{3} + \frac{1}{3}\right)\sqrt{n} \le \sum_{k=1}^n \sqrt{k} \le \left(\frac{2n}{3} + \frac{1}{2}\right)\sqrt{n}$$

Correction 6:

Raisonnement par récurrence sur n.

La propriété est triviale pour n = 1.

Supposons la vraie pour $n \in \mathbb{N}^*$. On a alors

$$\left(\frac{2n}{3} + \frac{1}{3}\right)\sqrt{n} + \sqrt{n+1} \le \sum_{k=1}^{n+1} \sqrt{k} \le \left(\frac{2n}{3} + \frac{1}{2}\right)\sqrt{n} + \sqrt{n+1}.$$

Pour conclure, il suffit de prouver

$$\left(\frac{2(n+1)}{3} + \frac{1}{3}\right)\sqrt{n+1} \le \left(\frac{2n}{3} + \frac{1}{3}\right)\sqrt{n} + \sqrt{n+1}, \quad (i)$$

et

$$\left(\frac{2n}{3} + \frac{1}{2}\right)\sqrt{n} + \sqrt{n+1} \le \left(\frac{2(n+1)}{3} + \frac{1}{2}\right)\sqrt{n+1}, \quad (ii)$$

On a

(i)
$$\Leftrightarrow$$
 $(2n+3)\sqrt{n+1} \leq (2n+1)\sqrt{n} + 3\sqrt{n+1}$
 \Leftrightarrow $2n\sqrt{n+1} \leq (2n+1)\sqrt{n}$
 \Leftrightarrow $4n^2(n+1) \leq (2n+1)^2n \Leftrightarrow 0 \leq n$

donc (i) est vraie

On montre de même que (ii) est vraie.

Exercice 7:

Montrer que $\forall (x,y) \in \mathbb{R}^2$, on a $E(x) + E(y) \leq E(x+y) \leq E(x) + E(y) + 1$.

Exercice 8:

- 1. Soit $n \in \mathbb{N}^*$ tel que n ne soit le carré d'aucun entier. Montrer que \sqrt{n} n'est pas un rationnel.
- 2. Etablir que $\sqrt{2} + \sqrt{3}$ n'est pas un rationnel.

Correction 8:

1. Par l'absurde, on suppose que \sqrt{n} est rationnel, donc

$$\exists p \in \mathbb{N}, \text{ et } \exists q \in \mathbb{N}^* / \sqrt{n} = \frac{p}{q},$$

avec $p \wedge q = 1$. Donc $p^2 \wedge q^2 = 1$.On a

$$n = \frac{p^2}{q^2}$$

ce qui implique que

$$p^2 = n.q^2$$

donc q^2 divise p^2 , donc la seule possibilité est que $q^2=1$, dans ce cas $n=p^2$, ceci est en contradiction avec le fait que n n'est le carré d'aucun entier. Par conséquent \sqrt{n} n'est pas un rationnel.

6

. Par absurde, supposons que $\sqrt{2} + \sqrt{3}$ est un rationnel r , donc		
$(\sqrt{2} + \sqrt{3})^2 = r^2$		
donc $\sqrt{6} = \frac{r^2 - 5}{2} \in \mathbb{Q},$		
d'après la question précédente, ceci est impossible car 6 n'est le carré d'aucun entier.		

_____ Corrections-TD 2

Les Suites Numériques

Année 2016-2017 ENSA 1 - Analyse I Professeur : F.Z. Nqi

Corrections-TD-Les Suites Numériques 2

Exercice 1:

Ecrire sous forme quantifiée les propriétés suivantes :

- a) La suite (u_n) n'est pas bornée.
- b) La suite (u_n) est divergente.
- c) La suite (u_n) n'est pas monotone.

Correction 1:

a) La suite (u_n) est bornée ssi :

$$\exists M > 0; \forall n \in \mathbb{N}; |u_n| \leq M.$$

La négation est donc : la suite (u_n) n'est pas bornée ssi :

$$\forall M > 0; \exists n \in \mathbb{N}; |u_n| > M.$$

b) La suite (u_n) est convergente ssi

$$\exists l \in \mathbb{R}; \forall \varepsilon > 0; \exists N \in \mathbb{N}; \forall n > N; |u_n - l| < \varepsilon$$

La suite (u_n) serait divergente ssi :

$$\forall \in \mathbb{R}; \exists \varepsilon > 0; \forall N \in \mathbb{N}; \exists n > N; |u_n - l| > \varepsilon$$

c) La suite (u_n) est monotone ssi elle est croissante ou décroissante, ie

$$(\forall n \in \mathbb{N}; u_n \leq u_{n+1})$$
 ou $(\forall n \in \mathbb{N}; u_n \geq u_{n+1})$

La suite n'est pas monotone ssi

$$(\exists n \in \mathbb{N}; u_n > u_{n+1}) \text{ et } (\exists n \in \mathbb{N}; u_n < u_{n+1})$$

Exercice 2:

Soit (u_n) la suite de terme général : $u_n = \frac{n^2 + 1}{n^2 + n + 2}$

1) Trouver un entier N tel que $\forall n \geq N$ on ait : $|u_n - 1| < 10^{-2}$.

2) Soit $\varepsilon > 0$, déterminer un entier N_{ε} tel que $\forall n \geq N_{\varepsilon}$, on ait : $|u_n - 1| < \varepsilon$. Qu'a t-on démontré pour la suite?

Correction 2:
1) on a
$$u_n = \frac{n^2 + 1}{n^2 + n + 2}$$

 $|u_n - 1| = |\frac{n^2 + 1}{n^2 + n + 2} - 1| = |\frac{-n - 1}{n^2 + n + 2}| = \frac{n = 1}{n^2 + n + 2}$
on a: $\forall n \ge 1$; $|u_n - 1| < \frac{n + 1}{n^2 + n} = \frac{1}{n}$.

Donc pour avoir $|u_n-1|<10^{-2}$, il suffit de choisir n tel que $\frac{1}{n}\leq 10^{-2}$, ie, $n\geq 100$ Donc si on prendN=100 (on peut prendre $N\geq 100),$ on a :

$$\forall n \ge N, |u_n - 1| < 10^{-2}.$$

2) on a : $|u_n-1|<\frac{1}{n}$. Donc pour avoir $|u_n-1|<\varepsilon$, il suffit de choisir n tel que : $\frac{1}{n} \le \varepsilon$, ie, $n \ge \frac{1}{\varepsilon}$.

Si l'on prend alors $N=E(\frac{1}{\varepsilon})+1$ (On peut prendre $N\geq E(\frac{1}{\varepsilon})+1$). On aura : $\forall n \geq N; |u_n - 1| < \varepsilon$.

On vient donc de démontrer que la suite (u_n) converge vers 1.

Exercice 3:

Dans chacun des exemples suivants, montrer que la suite, dont on donne le terme général u_n converge et calculer sa limite :

1)
$$u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$$
, 2) $u_n = \frac{1}{n^2} \sum_{k=1}^n E(kx)$, $k \in \mathbb{R}$ 3) $u_n = \sum_{k=0}^n (C_n^k)^{-1}$.

Correction 3:

1) On a $\forall n \in \mathbb{N}^*$:

$$\frac{n}{n^2+1} \le \frac{n}{n^2+k} \le \frac{n}{n^2+n},$$

donc

$$\frac{n^2}{n^2 + 1} \le u_n \le \frac{n^2}{n^2 + n}.$$

Posons $a_n = \frac{n^2}{n^2 + 1}$ et $b_n = \frac{n^2}{n^2 + n}$ Nous avons $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = 1$ et $\forall n \in \mathbb{N}^*$, on a $a_n \le u_n \le b_n$. Donc d'après le théorème d'encadrement, on peut déduire que :

$$\lim_{n \to +\infty} u_n = 1.$$

2) On a $\forall t \in \mathbb{R}, t-1 < E(t) \leq t$, donc $\forall k = 1, \dots, n; \forall k \in \mathbb{R}; kx-1 < E(kx) \leq kx$, par conséquent :

$$\frac{1}{n^2} \sum_{k=1}^n (kx - 1) < u_n \le \frac{1}{n^2} \sum_{k=1}^n kx,$$

ce qui implique:

$$\frac{1}{n^2} \left(x \sum_{k=1}^n k - n \right) < u_n \le \frac{1}{n^2} x \sum_{k=1}^n k,$$

soit

$$\frac{n+1}{2n}x - \frac{1}{n} < u_n \le \frac{n+1}{2n}x.$$

On pose $a_n(x) = \frac{n+1}{2n}x - \frac{1}{n}$ et $b_n(x) = \frac{n+1}{2n}x$ on a $\lim_{n \to +\infty} a_n(x) = \lim_{n \to +\infty} b_n(x) = \frac{x}{2}$. Donc d'après le théorème d'encadrement, on peut déduire que :

$$\lim_{n \to +\infty} u_n = \frac{x}{2}.$$

(NB : Il faut préciser aux étudiants que l'inégalité stricte passe au large lorsqu'on passe à la limite).

3) $\forall n \in \mathbb{N}$ tel que $n \geq 5$, on a

$$u_n = (C_n^0)^{-1} + (C_n^1)^{-1} + \sum_{k=2}^{n-2} (C_n^k)^{-1} + (C_n^{n-1})^{-1} + (C_n^n)^{-1},$$

soit

$$u_n = 1 + \frac{1}{n} + \sum_{k=2}^{n-2} (C_n^k)^{-1} + \frac{1}{n} + 1 = 2(1 + \frac{1}{n}) + \sum_{k=2}^{n-2} (C_n^k)^{-1}.$$

Comme $\forall k \in \{2, \dots, n-2\}; C_n^k \ge C_n^2 = \frac{n(n-1)}{2}$, on a

$$0 \le \sum_{k=2}^{n-2} (C_n^k)^{-1} \le (n-3) \frac{2}{n(n-1)}$$

et donc $\lim_{n\to+\infty} \sum_{k=2}^{n-2} (C_n^k)^{-1} = 0$. Par conséquent $\lim_{n\to+\infty} u_n = 2$.

Exercice 4:

Soient (u_n) et (v_n) deux suites à termes dans [0,1] telles que $\lim_{n\to\infty} u_n v_n = 1$. Montrer que (u_n) et (v_n) convergent vers 1.

Correction 4:

On a $\forall n \in \mathbb{N}, u_n v_n \leq u_n \leq 1$, d'apès le théorème d'encadrement : (u_n) converge vers 1. De même pour la suite (v_n) , elle converge elle aussi vers 1.

Exercice 5:

a) Moyenne de Césaro :

Soient (u_n) une suite réelle et (v_n) la suite définie par :

$$\forall n \in \mathbb{N}^*, \ v_n = \frac{u_1 + u_2 + \dots + u_n}{n}.$$

Montrer que si (u_n) converge vers l, alors (v_n) converge aussi vers l

b) Lemme de l'escalier :

Soit (u_n) une suite réelle telle que : $u_{n+1} - u_n \to l$. Montrer que $\frac{u_n}{n} \to l$

Correction 5:

a) Moyenne de Césaro :

Soit $\varepsilon > 0$, puisque (u_n) converge vers l, alors

$$\exists N_1 \in \mathbb{N}^*, (n \ge N_1 \Rightarrow \mid u_n - l \mid < \frac{\varepsilon}{2}).$$

Soit un entier $n \in \mathbb{N}$ tel que $n \geq N_1$, on a :

$$|v_n - l| = |\frac{1}{n} \sum_{k=1}^n (u_k - l)| \le \frac{1}{n} \sum_{k=1}^n |u_k - l| = \frac{1}{n} \sum_{k=1}^{N_1} |u_k - l| + \frac{1}{n} \sum_{N_1 + 1}^n |u_k - l|.$$

Comme $\frac{1}{n}\sum_{k=1}^{N_1} |u_k - l|$ tend vers 0 (car $\sum_{k=1}^{N_1} |u_k - l|$ est un réel indépendant de n), il existe $N_2 \in \mathbb{N}$ tel que :

$$\forall n \in \mathbb{N}^*, (n \ge N_2 \Rightarrow \frac{1}{n} \sum_{k=1}^{N_1} |u_k - l| < \frac{\varepsilon}{2}).$$

En notant $N = \max(N_1, N_2)$, on a alors :

$$\forall n \in \mathbb{N}^*, (n \ge N \Rightarrow \mid v_n - l \mid < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

et donc, (v_n) converge vers l.

b) Lemme de l'escalier :

Notons pour $n \in \mathbb{N}$, $\alpha_n = u_{n+1} - u_n$ donc (α_n) converge vers l. D'après la moyenne de Césaro, la suite dont le terme général $\frac{\alpha_1 + \cdots + \alpha_{n-1}}{n-1}$ converge vers l. Mais

$$\forall n \in \mathbb{N} - \{0, 1\}, \frac{\alpha_1 + \cdots + \alpha_{n-1}}{n-1} = \frac{u_n - u_1}{n-1} = \frac{u_n}{n-1} - \frac{u_1}{n-1}.$$

Comme $\lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{u_1}{n-1} = 0$, on déduit que $\lim_{\substack{n \to +\infty }} \frac{u_n}{n-1} = l$, et comme $\frac{u_n}{n} = \frac{u_n}{n-1} \frac{n-1}{n}$, alors $\lim_{\substack{n \to +\infty }} \frac{u_n}{n} = l$.

Exercice 6:

Montrer que la suite (u_n) définie par $u_n = \sum_{k=1}^n \frac{1}{k^2}$ converge.

Correction 6:

Puisque $\forall n \in \mathbb{N}^*, u_{n+1} - u_n = \frac{1}{(n+1)^2} \ge 0$, la suite $(u_n)_{n \ge 1}$ est croissante. En remarquant que

$$\forall k \in \mathbb{N} - \{0, 1\}, \frac{1}{k^2} \le \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}.$$

On a

$$\forall k \in \mathbb{N} - \{0, 1\}, u_n \le 1 + \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k}\right) = 2 - \frac{1}{n} \le 2.$$

Ainsi, (u_n) est croissante et majorée par 2, donc convergente et $\lim_{n\to+\infty} u_n \leq 2$.

Exercice 7:

On note pour $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$, $u_n = \frac{S_n}{\sqrt{n}}$, $v_n = S_n - 2\sqrt{n}$.

- a) Montrer: $\forall n \in \mathbb{N}^*, S_n \leq \sqrt{n} + \sqrt{n-1}$.
- b) Montrer: $\forall n \in \mathbb{N}^*, 2\sqrt{n+1} 2 \le S_n$.
- c) En déduire que (u_n) et (v_n) convergent.

Correction 7:

- a) Par raisonnement de récurrence sur n, on :
- l'inégalité est triviale pour n=1,
- Supposons $S_n \leq \sqrt{n} + \sqrt{n-1}$ et montrons que $S_{n+1} \leq \sqrt{n+1} + \sqrt{n}$, pour cela on a

$$S_{n+1} = S_n + \frac{1}{\sqrt{n+1}} \le \sqrt{n} + \sqrt{n-1} + \frac{1}{\sqrt{n+1}},$$

il suffit de montrer que $\sqrt{n-1} + \frac{1}{\sqrt{n+1}} \leq \sqrt{n+1}$. On a

$$\sqrt{n+1} - \sqrt{n-1} = \frac{n+1-n+1}{\sqrt{n+1} + \sqrt{n-1}} = \frac{2}{\sqrt{n+1} + \sqrt{n-1}} \ge \frac{1}{\sqrt{n+1}}.$$

D'òu le résultat.

- b) Analogue à a)
- c) 1) on

$$\forall n \in \mathbb{N}^*, 2\frac{\sqrt{n+1}}{\sqrt{n}} - \frac{2}{\sqrt{n}} \le u_n \le 1 + \frac{\sqrt{n-1}}{\sqrt{n}},$$

donc d'après le théorème d'encadrement, (u_n) converge vers 2.

2)on a

$$v_{n+1} - v_n = \frac{1}{\sqrt{n+1}} - 2(\sqrt{n+1} - \sqrt{n}) = \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n+1} + \sqrt{n}} \le 0,$$

donc (v_n) est décroissante et minorée, donc elle converge.

Exercice 8:

Montrer que les suites $(u_n)_{n\geq 2}$ et $(v_n)_{n\geq 2}$ définies par :

$$u_n = \sum_{k=1}^{n-1} \frac{1}{k^2(k+1)^2}$$
 et $v_n = u_n + \frac{1}{3n^2}$

sont adjacentes.

Correction 8:

1) on a

$$\forall n \ge 2, u_{n+1} - u_n = \frac{1}{n^2(n+1)^2} > 0,$$

donc (u_n) est décroissante.

2) on a $\forall n \geq 2$:

$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{3(n+1)^2} - \frac{1}{3n^2} = \frac{1}{n^2(n+1)^2} + \frac{1}{3(n+1)^2} - \frac{1}{3n^2} = \frac{2-2n}{3n^2(n+1)^2} < 0$$

donc la suite $(v_n)_{n\geq 2}$ est décroissante. 3) on a $v_n-u_n=\frac{1}{3n^2}$ qui tend vers 0 à l'infini

Donc (u_n) et (v_n) sont adjacentes.

Exercice 9:

Soit (u_n) une suite réelles telle que les suites extraites $(u_{2p}), (u_{2p+1})$ et (u_{3p}) convergent. Montrer que (u_n) converge.

Correction 9:

Notons

$$l_1 = \lim_{p \to +\infty} u_{2p}, \ l_2 = \lim_{p \to +\infty} u_{2p+1}, \ l_3 = \lim_{p \to +\infty} u_{3p}.$$

La suite (u_{6q}) qui est extraite de (u_{2p}) et (u_{3p}) , donc $l_1 = l_3$.

La suite (u_{6q+3}) qui est extraite de (u_{3p}) et (u_{2p+1}) donc $l_2 = l_3$.

On en déduit que $l_1 = l_2$ et donc (u_n) converge.

Exercice 10:

Etudier les suites réelles
$$(u_n)$$
 définies par :
a) $u_0 = 1$, $u_{n+1} = \frac{u_n}{u_n^2 + 1}$.
b) $u_0 = 2$, $u_{n+1} = \sqrt{1 + u_n}$.

b)
$$u_0 = 2$$
, $u_{n+1} = \sqrt{1 + u_n}$.

c)
$$u_0 \in]0, +\infty[, u_{n+1} = \sqrt{\frac{u_n^2 + 7u_n}{2}} - 1.$$

Correction 10:

a) soit la suite : $u_0 = 1$, $u_{n+1} = \frac{u_n}{u_n^2 + 1}$.

D'abord, il est clair, $\forall n \in \mathbb{N}, u_n$ existe et $u_n > 0$, d'autre part,

$$\forall n \in \mathbb{N}, u_{n+1} - u_n = \frac{u_n}{u_{n+1}} - u_n = u_n(\frac{1 - u_n^2 - 1}{u_n^2 + 1}) \le 0,$$

donc (u_n) décroit.

Puisque (u_n) est décroissante et minorée par 0, elle converge vers $l = \lim_{n \to +\infty}$, où l est le

point fixe de f:

$$f(l) = l \Leftrightarrow \frac{l}{l^2 + 1} = l \Leftrightarrow l = l(l^2 + 1) \Leftrightarrow l^3 = 0 \Leftrightarrow l = 0.$$

Finalement, (u_n) converge vers 0.

b) Soit la suite $u_0 = 2$, $u_{n+1} = \sqrt{1 + u_n}$.

D'abord, il est clair que $\forall n \in \mathbb{N}, u_n$ existe et $u_n > 1$, d'autre part, si (u_n) converge vers un réel l, alors $l = \sqrt{1+1}$, d'où $\frac{1+\sqrt{5}}{2}$. Notons $\alpha = \frac{1+\sqrt{5}}{2}$, on a $\forall n \in \mathbb{N}$:

$$|u_{n+1} - \alpha| = |\sqrt{1 + u_n} - \sqrt{1 + \alpha}| = \frac{|u_n - \alpha|}{\sqrt{1 + u_n} + \sqrt{1 + \alpha}} \le \frac{1}{\sqrt{1 + \alpha}} |u_n - \alpha|,$$

d'òu,

$$\forall n \in \mathbb{N}, |u_n - \alpha| \leq \left(\frac{1}{\sqrt{1+\alpha}}\right)^n |u_0 - \alpha|.$$

Comme $0 < \frac{1}{\sqrt{1+\alpha}} < 1$, il résulte que $u_n - \alpha \to 0$.

Finalement,

$$\lim_{n \to +\infty} u_n = \frac{1 + \sqrt{5}}{2}.$$

c) soit la suite $u_0 \in]0, +\infty[, u_{n+1} = \sqrt{\frac{u_n^2 + 7u_n}{2}} - 1.$

On considère la fonction $f:[0,+\infty[\to\mathbb{R}$ définie par :; il est clair que f est croissante.

Si (u_n) est définie et si elle converge vers un réel l, alors $l = \sqrt{\frac{l^2 + 7l}{2}} - 1$, d'òu $l \in \{1, 2\}$

Etudions le signe de f(x) - x :on a : f(x) - x est positif entre 1 et 2, et est négatif ailleurs. On distingue trois cas :

• 1er cas : $0 < u_0 < 1$

Supposons que (u_n) soit bien définie, on a alors : $\forall n \in \mathbb{N}, u_n \in [0, 1[$. En effet, en raisonnant par récurrence, si $u_n \in [0, 1[$, alors $u_{n+1} = f(u_n) \in]-1, 1[$, et si $u_{n+1} \in]-1, 0[$, alors u_{n+2} n'est pas défini, donc forcement, $u_{n+1} \in [0, 1[$

Puisque f est croissante sur]0,1], (u_n) est monotone. De plus, $u_1-u_0=f(u_0)-u_0<0$ donc (u_n) décroit. Puisque (u_n) est décroissante et minorée par 0, (u_n) converge vers un réel l tel que $0 \le l \le u_n < 1$, ce qui contredit $l \in \{1,2\}$. Ceci montre que (u_n) n'est pas définie à partir d'un certain rang.

- 2eme cas : $u_0 = 1$, il est clair que $u_n = 1, \forall n \in \mathbb{N}$
- 3eme cas : $1 < u_0 \le 2$

Puisque]1,2] est stable par par f, on a $\forall n \in \mathbb{N}, u_n \in]1,2]$. Comme f est croissante sur]1,2], (u_n) est monotone. De plus, $u_1 - u_0 = f(u_0) - u_0 \ge 0$, donc (u_n) est croissante. Puisque (u_n) est croissante et majorée par 2, elle converge vers un réel l tel que $1 < u_0 \le l < 2$, donc l = 2.

• 4eme cas : $2 \le u_0$

L'étude est analogue à la précédente, donc (u_n) converge vers 2 en décroissance.

ENSAO-CP1	Analyse1
	Corrections-TD 3

Fonctions Numériques à variables réelles

Année 2016-2017 ENSA 1 - Analyse I Professeur : F.Z. Nqi

3 Corrections-TD-Fonctions Numériques à variables réelles

Exercice 1:

Soit $f:[0,1]\to [0,1]$ une application croissante. Montrer qu'il existe $x_0\in [0,1]$ tel que $f(x_0)=x_0$.

Correction 1:

Soit $E = \{x \in [0, 1]/f(x) \le x\}.$

Montrons d'abord que E admet une borne inférieure α dans [0,1]; en effet, $E \subset [0,1]$ et comme [0,1] est borné, E est borné aussi, de plus $E \neq \emptyset$ puisque $1 \in E$ $(f(1) \in [0,1]$ donc $f(1) \leq 1$, donc E admet une borne inf α .

Montrons maintenant que $\alpha \in E$: On a $\forall x \in E, x \leq 1$ et $\alpha \leq x$ donc $\alpha \leq 1$, d'autre part, on sait que 0 minore E, donc $0 \leq \inf(E) = \alpha$ d'où $\alpha \in [0,1]$. Supposons que $\alpha \notin E$, donc $f(\alpha) > \alpha$, de plus on sait que $\forall x \in E, x > \alpha$, donc $f(x) \geq f(\alpha) > \alpha$ car f est supposée croissante. Comme x est dans E, on a :

$$x \ge f(x) \ge f(\alpha) > \alpha$$

donc $f(\alpha)$ minore E et est plus grand que α , ceci contredit le fait que α est la borne inf de E, donc $f(\alpha) \leq \alpha$, d'où $\alpha \in E$

Miantenant, supposons que $f(\alpha) < \alpha$, donc $\exists x \in [0,1]$ tel que $f(\alpha) < x < \alpha$. f étant croissante, donc

$$x < \alpha \Rightarrow f(x) \le f(\alpha) \le \alpha$$

donc $f(x) \leq f(\alpha) < x$, on conclut que $x \in E$ et $x < \alpha$, ceci contredit le fait que $\alpha = \inf(E)$, par conséquent $f(\alpha) = \alpha$.

Exercice 2:

Soient E une partie de \mathbb{R} et $f: E \to E$ une application strictement croissante. Montrer :

$$\forall x \in E, \ ((f \circ f)(x) = x \Leftrightarrow f(x) = x).$$

Correction 2:

Pour la 2ème implication, c'est très facile, car

$$\forall x \in E, \ f(x) = x \Rightarrow f(f(x)) = f(x) = x \Rightarrow (f \circ f)(x) = x.$$

Réciproquement, montrons que $\forall x \in E$, $(f \circ f)(x) = x \Rightarrow f(x) = x$. Pour cela on va procéder par l'absurde, et on va supposer que

$$\exists x_0 \in E/(f \circ f)(x_0) = x_0 \text{ et } f(x_0) \neq x_0.$$

- 1er cas : $f(x_0) > x_0$, comme f est strictement croissante, ceci implique que $(f \circ f)(x_0) > f(x_0)$ et par conséquent $(f \circ f)(x_0) > x_0$, donc $(f \circ f)(x_0) \neq x_0$, contradiction
- 2ème cas : $f(x_0) < x_0$, comme f est strictement croissante, ceci implique que $(f \circ f)(x_0) < f(x_0)$ et par conséquent $(f \circ f)(x_0) < x_0$, donc $(f \circ f)(x_0) \neq x_0$, contradiction Par conséquent :

$$\forall x \in E, \ (f \circ f)(x) = x \Rightarrow f(x) = x.$$

Exercice 3:

- 1) Démontrer que $\lim_{x\to 0} \frac{\sqrt{1+x} \sqrt{1-x}}{x} = 1$.
- 2) Soient m, n des entiers positifs. Etudier $\lim_{x\to 0} \frac{\sqrt{1+x^m}-\sqrt{1-x^m}}{x^n}$.

Correction 3:

1) En utilisant l'expression conjuguée, on obtient :

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \lim_{x \to 0} \frac{2}{\sqrt{1+x} + \sqrt{1-x}} = 1.$$

2) En utilisant l'expression conjuguée, on obtient :

$$\frac{\sqrt{1+x^m} - \sqrt{1-x^m}}{x^n} = \frac{2x^m}{x^n(\sqrt{1+x^m} + \sqrt{1-x^m})} = \frac{2x^{m-n}}{\sqrt{1+x^m} + \sqrt{1-x^m}}.$$

Et nous avons

$$\lim_{x \to 0} \frac{2}{\sqrt{1 + x^m} + \sqrt{1 - x^m}} = 1.$$

Donc l'étude de la limite de f en 0 est la même que celle de la fonction $x \mapsto x^{m-n}$. Distinguons plusieurs cas pour la limite de f en 0.

- Si m > n alors x^{m-n} et donc f(x) tend vers 0.
- Si m = n alors x^{m-n} et donc f(x) tend vers 1.
- Si m < n alors $x^{m-n} = \frac{1}{x^{n-m}} = \frac{1}{k}$ avec k = n-m un exposant positif. Si k est pair alors les limites à droite et à gauche de $\frac{1}{k}$ sont $+\infty$. Pour k impair la limite à droite vaut $+\infty$ et la limite à gauche vaut $-\infty$. Conclusion pour k = n m > 0 pair, la limite de f en 0 vaut $+\infty$ et pour k = n m > 0 impair f n'a pas de limite en 0 car les limites à droite et à gauche ne sont pas égales.

Exercice 4:

Soient $a \in \mathbb{R}, f : [a, +\infty[\to \mathbb{R} \text{ une application croissante telle que } \lim_{x \to +\infty} f(x) = b \in \mathbb{R}.$ Soit

$$g:]a, +\infty[\to \mathbb{R}, \text{ avec } g(x) = \frac{f(x) - f(a)}{x - a};$$

on suppose que g est croissante. Montrer que f est constante.

Correction 4:

D'une part, $f:[a,+\infty[\to\mathbb{R} \text{ est croissante, on a } \forall x\in[a,+\infty[,f(x)\geq f(a),\text{ donc}]$

$$\forall x \in]a, +\infty[, \ g(x) \ge 0.$$

D'autre part, puisque f est croissante, on a

$$b - f(a) = \lim_{x \to +\infty} f(x) - f(a) > 0,$$

car sinon, f serait constante (et dans ce cas, g serait automatiquement constante). Par conséquent

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{b - f(a)}{x - a} = 0.$$

Or g est croissante, donc elle croit vers 0, donc $g \leq 0$, et comme $g \geq 0$, on conclut que g=0.

Exercice 5:

Etudier en tout point, la continuité de l'application f définie par :

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = E(x) + \sqrt{x - E(x)}.$$

Correction 5:

D'après les théorèmes gén''eraux, f est continue en tout point de $\mathbb{R}\backslash\mathbb{Z}$.

Soit
$$n \in \mathbb{Z}$$
, on a $\begin{cases} \forall x \in]n-1, n[, f(x) = n-1+\sqrt{x-(n-1)}; \\ \forall x \in [n, n+1[, f(x) = n+\sqrt{x-n}.] \end{cases}$ done

$$\lim_{n \to n^{-}} = n - 1 + 1, \ f(n) = n, \ \lim_{n \to n^{+}} = n,$$

ainsi f est continue en n

Finalement, f est continue sur \mathbb{R} .

Exercice 6:

Donner un exemple d'application $f: \mathbb{R} \to \mathbb{R}$, discontinue en tout point de \mathbb{R} et telle que |f| soit continue sur \mathbb{R} .

$$f: x \mapsto \begin{cases} 1, & \text{si } x \in \mathbb{Q}; \\ -1, & \text{si } x \notin \mathbb{Q}. \end{cases}$$

Exercice 7:

Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que :

$$\forall x, y \in \mathbb{R}, \ f(x+y) = f(x) + f(y).$$

Correction 7:

• Soit f convenant. En raisonnant par récurrence, on montre que $\forall n \in \mathbb{N}, f(n) = nf(1),$

(en effet: f(0) = f(0+0) = 2f(0) donc f(0) = 0. Supposons que f(n) = nf(1), on a f(n+1) = f(n) + f(1) = nf(1) + f(1) = (n+1)f(1).

Soit $m \in \mathbb{Z}^-$, donc $-m \in \mathbb{N}$. On a 0 = f(0) = f(m + (-m)) = f(m) + f(-m) =f(m) - mf(1), donc $\forall m \in \mathbb{Z}, f(m) = mf(1)$,

Soit $q \in \mathbb{N}^*$, on a $f(1) = f(\frac{q}{q}) = qf(\frac{1}{q})$, donc $f(\frac{1}{q}) = \frac{f(1)}{q}$

Soit $q \in \mathbb{Z}_{-}^*$, on a $f(1) = f(\frac{-q}{-q}) = -qf(\frac{1}{-q})$, donc $f(\frac{1}{-q}) = -\frac{f(1)}{q}$ donc $\forall q \in \mathbb{Z}^*$, on a $f(\frac{1}{q}) = \frac{f(1)}{q}$ Maintenant, soit $r \in \mathbb{Q}$, il existe $p \in \mathbb{N}$ et $q \in \mathbb{Z}^*$ tel que $: r = \frac{p}{q}$, par conséquent :

$$\forall r \in \mathbb{Q}, \ f(r) = f(\frac{p}{q}) = pf(\frac{1}{q}) = \frac{p}{q}f(1) = rf(1).$$

Soit $x \in \mathbb{R}$. Puisque \mathbb{Q} est dense dans \mathbb{R} , il existe une suite (r_n) de rationnels convergeant vers x. Alors,

$$\lim_{n \to +\infty} f(r_n) = \lim_{n \to +\infty} r_n f(1) = x f(1).$$

D'autre part, puisque f est continue en x, on a

$$\lim_{n \to +\infty} f(r_n) = f(x).$$

On en déduit que :

$$\forall x \in \mathbb{R}, \ f(x) = xf(1).$$

• Réciproquement, $\forall \lambda \in \mathbb{R}$, l'application

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \lambda x,$$

convient.

Finalement, les applications chérchées sont les applications linéaires:

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \lambda x, \ \lambda \in \mathbb{R}.$$

Exercice 8:

Soit $f:[0,1] \to [0,1]$ continue. Montrer qu'il existe $x_0 \in [0,1]$ tel que $f(x_0) = x_0$.

Correction 8:

Considérons la fonction :

$$q:[0,1]\to [0,1], \ \ q(x)=f(x)-x.$$

g est continue, $g(0) = f(0) \ge 0$ (car $f(0) \in [0,1]$) et $g(1) = f(1) - 1 \le 0$ (car $f(1) \in [0,1]$). Donc, d'après le théorème des valeurs intérmdiaires, il existe $x_0 \in [0,1]$ tel que $g(x_0) = 0$, donc $f(x_0) = x_0$.

Exercice 9:

Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 et 1 telle que : $\forall x \in \mathbb{R}, f(x^2) = f(x)$. Montrer que f est constante.

Correction 9:

Remarquons d'abord que f est paire :

$$\forall x \in \mathbb{R}, \ f(-x) = f((-x)^2) = f(x^2) = f(x).$$

Soit $x \in]0, +\infty[$. Montrons par récurrence sur n que :

$$f(x^{\frac{1}{2^n}}) = f(x).$$

La propriété est vraie pour n = 0Si elle est vrai pour $n \in \mathbb{N}$, alors

$$f(x^{\frac{1}{2^{n+1}}}) = f((x^{\frac{1}{2^n}})^{\frac{1}{2}}) = f(x^{\frac{1}{2^n}}) = f(x).$$

Puisque pour x > 0 fixé, $x^{\frac{1}{2^n}}$ tend vers 1 à l'infini et que f est continue en 1, on déduit :

$$f(x) = \lim_{n \to +\infty} f(x^{\frac{1}{2^n}}) = f(1),$$

et donc f(x) = f(1). Ceci montre que f est constante sur $]0, +\infty[$. Comme f est continue en 0, il en rèsulte que f est constante sur $[0, +\infty[$. Puis, par parité, f est constante sur \mathbb{R} .

Exercice 10:

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ uniformément continue. Montrer que

$$\exists a, b > 0/|f(x)| < ax + b, \forall x > 0.$$

Correction 10:

f uniformément continue \Leftrightarrow

$$\forall \varepsilon > 0, \exists \alpha > 0 / \forall x, y \in \mathbb{R}^+, |x - y| < \alpha \Rightarrow |f(x) - f(y)| < \varepsilon.$$

pour
$$\varepsilon = 1, \exists \alpha_0 > 0/\forall x, y \in \mathbb{R}^+, |x - y| < \alpha_0 \Rightarrow |f(x) - f(y)| < 1$$

Posons: $E(\frac{x}{\alpha_0}) = n$, ona

 $|f(\alpha_0) - f(0)| \le 1,$

 $|f(2\alpha_0) - f(\alpha_0)| \le 1,$

 $|f(3\alpha_0) - f(2\alpha_0)| \le 1,$

Par itération, on obtient :

 $|f(n\alpha_0) - f((n-1)\alpha_0)| \le 1,$

 $|f(x) - f(n\alpha_0)| \le 1$, car $|x - n\alpha_0| < \alpha_0$, en effet :

premièrement, $|x - n\alpha_0| = x - n\alpha_0$ et ceci ,parce que : $E(\frac{x}{\alpha_0}) = n$, et $E(\frac{x}{\alpha_0}) \le \frac{x}{\alpha_0}$, on

a $n \leq \frac{x}{\alpha_0}$, par conséquent $n\alpha_0 \leq x$. et deuxi'èment,

$$\alpha_0 - |x - n\alpha_0| = \alpha_0 - x + n\alpha_0 = (n+1)\alpha_0 - x = (n+1 - \frac{x}{\alpha_0})\alpha_0 > 0,$$

puisque : $n+1 = E(\frac{x}{\alpha_0}) + 1 > \frac{x}{\alpha_0}$.

En utilisant l'inégalité triangulaire, on obtient :

$$|f(x) - f(0)| \le n + 1,$$

En utilisant:

$$\forall x, y : |x| - |y| \le ||x| - |y|| \le |x - y|$$

on obtient

$$|f(x)| - |f(0)| \le n + 1,$$

donc

$$|f(x)| \le n + 1 + |f(0)|.$$

Sachant que

$$|f(x)| \le E(\frac{x}{\alpha_0}) + 1 + |f(0)| \le \frac{x}{\alpha_0} + 1 + |f(0)|.$$

donc, on obtient notre résultat avec $a = \frac{1}{\alpha_0} \ge 0, b = 1 + |f(0)| \ge 0.$

Corrections-TD 4

Les Fonctions Dérivables

Année 2016-2017 ENSA 1 - Analyse I Professeur : F.Z. Ngi

4 Corrections-TD-Fonctions dérivables

Exercice 1:

Etudier la continuité, la dérivabilité et la continuité de la dérivée pour la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par :

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & \text{si } x \neq 0; \\ 0, & \text{si } x = 0. \end{cases}$$

Correction 1:

• f est évidemment continue sur $\mathbb{R}\setminus\{0\}$ (Opérations sur les fonctions continues). on a

$$|f(x)| = |x^2 \sin(\frac{1}{x})| \le x^2 \to_{x\to 0} 0,$$

donc $\lim_{x\to 0} f(x) = 0 = f(0)$, donc f est continue en 0. Par conséquent, f est continue sur \mathbb{R} .

• Il est clair que f est dérivable sur $\mathbb{R}\setminus\{0\}$ (opéations sur les fonctions dérivables)

$$\left| \frac{f(x) - f(0)}{x - 0} \right| = \left| x \sin\left(\frac{1}{x}\right) \right| \le |x| \to_{x \to 0} 0.$$

Donc $\lim_{x\to 0} f'(x) = 0 = f'(0)$, donc f est dérivable en 0. Par conséquent f est dérivable sur \mathbb{R}

• La fonction dérivée est donnée par :

$$f'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right), & \text{si } x \neq 0; \\ 0, & \text{si } x = 0. \end{cases}$$

On a $\lim_{x\to 0} \left(2x\sin\left(\frac{1}{x}\right)\right) = 0$, et $\lim_{x\to 0} \cos\left(\frac{1}{x}\right)$ n'existe pas, donc $\lim_{x\to 0} f'(x)$ n'existe pas. Par conséquent f' est continue uniquement sur $\mathbb{R}\setminus\{0\}$.

Exercice 2:

Soient $f, g : \mathbb{R} \to \mathbb{R}$ deux applications de classe \mathcal{C}^{∞} telles que :

$$\forall x \in \mathbb{R}, (f(x) = 0 \Rightarrow g(x) \neq 0).$$

Montrer qu'il existe deux applications $u, v : \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^{∞} telles que : uf + vg = 1.

Correction 2:

Notons $h = f^2 + g^2$. Il est clair que h est de classe \mathcal{C}^{∞} sur \mathbb{R} , et on a $\forall x \in \mathbb{R}, h(x) > 0$.

Considérons $u = \frac{f}{h}$, et $v = \frac{g}{h}$, qui sont de classe \mathcal{C}^{∞} sur \mathbb{R} . On a

$$uf + vg = \frac{f^2 + g^2}{h} = 1.$$

Exercice 3:

Soient $x_0 \in \mathbb{R}$, f une application définie au voisinage de x_0 , à valeurs réelles et dérivable en x_0 , $(a, b) \in \mathbb{R}_+^{*2}$. Montrer :

$$\lim_{h \to 0} \frac{f(x_0 + bh) - f(x_0 - ah)}{(b+a)h} = f'(x_0).$$

Correction 3:

$$\frac{f(x_0 + bh) - f(x_0 - ah)}{(b+a)h} = \frac{b}{b+a} \frac{f(x_0 + bh) - f(x_0)}{bh} + \frac{a}{b+a} \frac{f(x_0) - f(x_0 - ah)}{ah}$$

d'où le résultat.

Exercice 4:

Calculer pour $n \in \mathbb{N}$, la dérivée n-ième de $f : \mathbb{R} \setminus \{-1, 1\} \to \mathbb{R}$ définie par $: f(x) = \frac{1}{x^2 - 1}$.

Correction 4:

Notons $E=\mathbb{R}\setminus\{-1,1\}$ et remarquons (ce qui correspond à une décomposition en éléments simples) : $\forall x\in E, f(x)=\frac{1}{2}\left(\frac{1}{x-1}-\frac{1}{x+1}\right)$. Notons $g:E\to\mathbb{R}$, telle que $g(x)=\frac{1}{x-1}$. D'après les théorèmes généraux, g est de classe \mathcal{C}^∞ sur $]-\infty,-1[,]-1,1[$ et $]1,+\infty[$.

Montrons par récurrence sur n que $\forall n \in \mathbb{N}, \forall x \in E, g^{(n)}(x) = \frac{(-1)^n n!}{(x-1)^{n+1}}$.

La propriété est vraie pour n = 0. Supposons qu'elle est vraie pour un certain n, montrons qu'elle est vraie pour n + 1, en effet :

$$g^{(n+1)}(x) = g^{(n)'}(x) = (-1)^n n! \frac{-(n+1)}{(x-1)^{n+2}} = \frac{(-1)^{n+1}(n+1)!}{(x-1)^{n+2}}.$$

donc

$$\forall n \in \mathbb{N}, \forall x \in E, g^{(n)}(x) = \frac{(-1)^n n!}{(x-1)^{n+1}}.$$

De même, l'application $h: E \to \mathbb{R}, h(x) = \frac{1}{x+1}$, est de classe \mathcal{C}^{∞} et

$$\forall n \in \mathbb{N}, \forall x \in E, h^{(n)}(x) = \frac{(-1)^n n!}{(x+1)^{n+1}}.$$

24

Finalement:

$$\forall n \in \mathbb{N}, \forall x \in E, f^{(n)}(x) = \frac{(-1)^n n!}{2} \left(\frac{1}{(x-1)^{n+1}} - \frac{1}{(x+1)^{n+1}} \right).$$

Exercice 5:

Soient $n \in \mathbb{N}^*, f : \mathbb{R}_+^* \to \mathbb{R}$ n-fois dérivable sur \mathbb{R}_+^* , et $g_n : \mathbb{R}_+^* \to \mathbb{R}$ définie par :

$$\forall x \in \mathbb{R}_+^*, g_n(x) = x^{n-1} f\left(\frac{1}{x}\right).$$

Montrer:

$$\forall x \in \mathbb{R}_+^*, g_n^{(n)}(x) = \frac{(-1)^n}{x^{n+1}} f^{(n)}\left(\frac{1}{x}\right).$$

Correction 5:

Par récurrence sur n, la propriété est triviale pour n=1. Supposons qu'elle est vraie pour un certain entier n et montrons qu'elle est vraie pour n+1. Comme $\forall x \in \mathbb{R}_+^*, g_{n+1}(x) = xg_n(x), g_{n+1}$ est (n+1)-fois dérivable sur \mathbb{R}_+^* et d'après la formule de Leibniz :

$$\forall x \in \mathbb{R}_{+}^{*}, g_{n+1}^{n+1}(x) = \sum_{k=0}^{n+1} C_{n+1}^{k}(x)^{(k)} \cdot g_{n}^{(n+1-k)}(x) = x g_{n}^{(n+1)}(x) + (n+1) g_{n}^{(n)}(x).$$

D'après l'hypothèse de récurrence, $g_n^{(n)}(x) = \frac{(-1)^n}{x^{n+1}} f^{(n)}\left(\frac{1}{x}\right)$, d'où

$$g_n^{(n+1)}(x) = g_n^{(n)'}(x) = \frac{(-1)^{n+1}(n+1)}{x^{n+2}} f^{(n)}\left(\frac{1}{x}\right) + \frac{(-1)^n}{x^{n+1}}\left(\frac{-1}{x^2}\right) f^{(n+1)}\left(\frac{1}{x}\right),$$

et donc

$$g_{n+1}^{(n+1)}(x) = \frac{(-1)^{n+1}}{x^{n+2}} f^{(n+1)}\left(\frac{1}{x}\right).$$

Exercice 6:

Soit $f: \mathbb{R} \to \mathbb{R}$ une application dérivable sur \mathbb{R} et admettant en $-\infty$ et $+\infty$ une même limite finie. Montrer qu'il existe $c \in \mathbb{R}$, f'(c) = 0.

Correction 6:

Notons $l = \lim_{-\infty} f(x) = \lim_{+\infty} f(x)$ et considérons $g : [-1, 1] \to \mathbb{R}$ définie par

$$\forall x \in]-1, 1[, g(x) = f\left(\tan\frac{\pi x}{2}\right), \ g(-1) = g(1) = l.$$

Ainsi g est continue sur [-1,1], dérivable sur]-1,1[et g(-1)=g(1). D'après Rolle, il existe $\alpha \in]-1,1[/g'(\alpha)=0]$. Mais :

$$\forall x \in]-1, 1[, g'(x) = f'\left(\tan\frac{\pi x}{2}\right)\frac{\pi}{2}\left(1 + \tan^2\frac{\pi x}{2}\right).$$

En notant $c = \tan \frac{\pi \alpha}{2}$, on a donc f'(c) = 0.

Exercice 7:

a) Soient $(a,b) \in \mathbb{R}^2$ tel que $a < b, g : [a,b] \to \mathbb{R}$ de classe \mathcal{C}^1 sur [a,b] et deux fois dérivable sur [a,b]. Montrer qu'il existe $c \in [a,b]$ tel que

$$g(b) = g(a) + (b - a)g'(a) + \frac{(b - a)^2}{2}g''(c).$$

b) Soient $(a,b) \in \mathbb{R}^2$ tel que $a < b, f : [a,b] \to \mathbb{R}$ de classe \mathcal{C}^2 sur [a,b] et trois fois dérivable sur [a,b]. Montrer qu'il existe $c \in [a,b]$ tel que

$$f(b) = f(a) + (b-a)f'\left(\frac{a+b}{2}\right) + \frac{(b-a)^3}{24}f^{(3)}(c).$$

Correction 7:

a) Notons A le réel défini par

$$g(b) = g(a) + (b - a)g'(a) + \frac{(b - a)^2}{2}A,$$

et $\varphi: [a,b] \to \mathbb{R}, x \mapsto \varphi(x) = g(x) - g(a) - (b-a)g'(a) - \frac{(b-a)^2}{2}A$. L'application φ est continue sur [a,b], dérivable sur [a,b] (donc sur [a,b]) et $\varphi(a) = \varphi(b) = 0$, d'après le théorème de Rolle, il existe $u \in]a,b[$ tel que $\varphi'(u) = 0$. Comme

$$\forall x \in [a, b], \varphi'(x) = g'(x) - g'(a) - (x - a)A,$$

l'application φ' est continue sur [a,b], dérivable sur]a,b[, et $\varphi'(a)=\varphi'(u)=0$. D'après Rolle, $\exists c\in]a,u[\subset]a,b[$ tel que $\varphi''(c)=0$. Comme : $\forall x\in]a,b[,\varphi''(x)=g''(x)-A,$ on obtient A=g''(c), et donc $g(b)=g(a)+(b-a)g'(a)+\frac{(b-a)^2}{2}g''(c).$

b) Notons B le réel défini par :

$$f(b) = f(a) + (b-a)f'\left(\frac{a+b}{2}\right) + \frac{(b-a)^2}{24}B,$$

et $\psi: [a,b] \to \mathbb{R}, x \mapsto \psi(x) = f(x) - f(a) - (b-a)f'\left(\frac{a+b}{2}\right) - \frac{(b-a)^2}{24}B$. L'application ψ est continue sur [a,b], dérivable sur [a,b] (donc sur [a,b]) et $\psi(a) = \psi(b) = 0$, d'après Rolle, il existe $v \in]a,b[$ tel que $\psi'(v) = 0$. On a $\forall x \in [a,b]$:

$$\psi'(x) = f'(x) - f'\left(\frac{a+x}{2}\right) - \frac{1}{2}(x-a)f''\left(\frac{a+x}{2}\right) - \frac{(x-a)^2}{8}B,$$

donc $\frac{(v-a)^2}{8}B = f'(v) - f'\left(\frac{a+v}{2}\right) - \frac{1}{2}(v-a)f''\left(\frac{a+v}{2}\right)$. En appliquant le résultat de **a**) à f' sur $\left[\frac{a+v}{2},v\right]$, il existe $c \in \left]\frac{a+v}{2},v\right[\subset a,b\right[$ tel que :

$$f'(v) = f'\left(\frac{a+v}{2}\right) + \frac{v-a}{2}f''\left(\frac{a+v}{2}\right) + \frac{1}{2}\left(\frac{v-a}{2}\right)^2 f^{(3)}(c).$$

d'où $B = f^{(3)}(c)$ et finalement le résultat.

Exercice 8:

Soit $f:[a,b]\to\mathbb{R}$ de classe \mathcal{C}^1 telle que $\frac{f(b)-f(a)}{b-a}=\sup\{f'(x),x\in[a,b]\}$. Montrer que f est affine.

Correction 8:

f' est continue sur [a,b] et donc bornée sur cet intervalle. Soit $M=\sup\{f'(x),x\in[a,b]\}$ et soit g la fonction affine qui prend les mêmes valeurs que f en a et b (c'est à dire $\forall x\in[a,b],g(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)$), puis h=f-g. On va montrer que h=0 sous l'hypothèse $M=\frac{f(b)-f(a)}{b-a}$.

h est dérivable sur [a,b] et, pour $x \in [a,b], h'(x) = f'(x) - \frac{f(b)-f(a)}{b-a} = f'(x) - M \le 0.h$ est donc décroissante sur [a,b]. Par suite, $\forall x \in [a,b], 0 = h(b) \le h(x) \le h(a) = 0$. Ainsi $\forall x \in [a,b], h(x) = 0$, ou encore f = g, f est donc affine sur [a,b].

Exercice 9:

Ecrire la formule de Mc Laurin à l'ordre n pour $f(x) = \ln(1+x)$. En déduire la limite quand $n \to +\infty$ de la somme

$$S_n = 1 - \frac{1}{2} + \frac{1}{3} + \dots + (-1)^{n-1} \frac{1}{n}.$$

$$\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + (-1)^n \frac{x^{n+1}}{n+1} \frac{1}{(1+x\theta)^{n+1}}$$
Si $x = 1$:
$$\left| \ln 2 - \left(1 - \frac{1}{2} + \frac{1}{3} + \dots + (-1)^{n-1} \frac{1}{n} \right) \right| = \frac{1}{n+1} \frac{1}{(1+\theta)^{n+1}}.$$

Donc

$$\lim_{n \to +\infty} \left(1 - \frac{1}{2} + \frac{1}{3} + \dots + (-1)^{n-1} \frac{1}{n} \right) = \ln 2.$$

Exercice 10:

Utiliser la formule de Mc Laurin pour démontrer la double inégalité suivante :

$$1 - \frac{x^2}{2} \le \cos x \le 1 - \frac{x^2}{2} + \frac{x^4}{24}.$$

Correction 10:

Ecrivons Mc Laurin de $\cos x$ à l'ordre 3 :

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24}\cos(x\theta), \ \ 0 < \theta < 1.$$

Comme $0 \le \cos(x\theta) \le 1$, pour x proche de 0 et $0 < \theta < 1$, on obtient facilement le résultat.

Exercice 11:

Soit $P_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$. Montrer que $|e^x - P_n(x)| < \frac{|x|^{n+1}}{(n+1)!}e^{|x|}$. En déduire une valeur approchée de e^2 puis de $\frac{1}{e}$ à 10^{-3} près.

Correction 11:

On écrit McLaurin de e^x à l'ordre n :

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{x^{n+1}}{(n+1)!}e^{x\theta}.$$

Comme $0 < \theta < 1$, on a

$$|e^x - P_n(x)| = \left| \frac{x^{n+1}}{(n+1)!} e^{x\theta} \right| < \frac{|x|^{n+1}}{(n+1)!} e^{|x|}.$$

Pour x = 2:

$$e^2 - \left(1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!}\right) < \frac{2^{n+1}}{(n+1)!}e^2 < 10\frac{2^{n+1}}{(n+1)!}.$$

on a

$$10\frac{2^{n+1}}{(n+1)!} < 10^{-3} \Rightarrow \frac{2^{n+1}}{(n+1)!} < 10^{-4} \Rightarrow n > 8.$$

D'où $e \approx 7,388$.

Pour x = -1

$$\frac{1}{e} - \left(1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}\right) < \frac{e}{(n+1)!} < \frac{3}{(n+1)!}.$$

On a

$$\frac{3}{(n+1)!} < 10^{-3} \Rightarrow n > 6.$$

On obtient $e^{-1} \approx 0.368$.

Exercice 12:

En utilisant l'inégalité des accroissements finis, donner un encadrement de $\sqrt{10001}$.

Correction 12:

Posons pour $t \ge 0$, la fonction $f(t) = \sqrt{t}$. Donc $\forall t > 0, f'(t) = \frac{1}{2\sqrt{t}}$. Si x = 10000 et y = 10001, alors

$$\forall t \in [x, y], \ \frac{1}{\sqrt{10001}} \le f'(t) \le \frac{1}{200}$$

Il en résulte d'après l'inégalité des accroissements finis :

$$\frac{1}{\sqrt{10001}} \le \sqrt{10001} - 100 \le \frac{1}{200},$$

donc

$$100 + \frac{1}{\sqrt{10001}} \le \sqrt{10001} \le 100 + \frac{1}{200},$$

C_{α}	roctions	TD	۲,
 \cup 01	rections-	\cdot \perp \cup	\mathbf{C}

Les Fonctions Elémentaires

Année 2016-2017 ENSA 1 - Analyse I Professeur: F.Z. Nqi

5 Corrections-TD-Fonctions élémentaires

Exercice 1:

Démontrer l'inégalité suivante :

$$Arcsin a < \frac{a}{\sqrt{1 - a^2}} \text{ si } 0 < a < 1;$$

Correction 1:

Soit $f(a) = Arcsin a - \frac{a}{\sqrt{1-a^2}}$ sur]0, 1[, calculons la dérivée :

$$f'(a) = \frac{1}{\sqrt{1-a^2}} - \frac{1}{(1-a^2)\sqrt{1-a^2}} = \frac{-a^2}{(1-a^2)\sqrt{1-a^2}} < 0.$$

Donc f est strictement décroissante et f(0) = 0, donc f(a) < f(0) = 0 pour tout $a \in]0,1[$.

Exercice 2:

Ecrire sous forme d'expression algébrique :

 $\sin(\operatorname{Arccos} x), \cos(\operatorname{Arcsin} x), \sin(\operatorname{3Arctan} x).$

Correction 2:

- $1. \sin^2 y = 1 \cos^2 y$ donc $\sin y = \pm \sqrt{1 \cos^2 y}$. Donc $\sin \operatorname{Arccos} x = \pm \sqrt{1 \cos^2 \operatorname{Arccos} x} = 0$ $\pm\sqrt{1-x^2}$ et comme Arccos $x\in[0,\pi]$, on a $\sin(\operatorname{Arccos} x)=+\sqrt{1-x^2}$
- 2. De la même façon, $\cos(\operatorname{Arcsin} x) = +\sqrt{1-x^2}$
- 3. On utilise $1 + \tan^2 x = \frac{1}{\cos^2 x} = \frac{1}{1 \sin^2 x}$. Ce qui permet d'avoir $\sin^2 x = 1 \frac{1}{1 + \tan^2 x}$. Ensuite on calcule $\tan 3y$ en utilisant deux fois la formule de $\tan(a+b)$ on trouve $\tan 3y = \frac{3\tan y \tan^3 y}{1 3\tan^2 y}$. Cela permet d'avoir

$$\sin(3\operatorname{Arctan} x) = 4\frac{x}{(1+x^2)^{3/2}} - \frac{x}{\sqrt{1+x^2}}.$$

Exercice 3:

Résoudre les équations suivantes :

$$\operatorname{Arcsin} x = \operatorname{Arcsin} \frac{2}{5} + \operatorname{Arcsin} \frac{3}{5}, \ \operatorname{Arccos} x = 2\operatorname{Arccos} \frac{3}{4}, \ \operatorname{Arctan} x = 2\operatorname{Arctan} \frac{1}{2}.$$

Correction 3:

1. En prenant le sinus de l'équation Arcsin $x = Arcsin \frac{2}{5} + Arcsin \frac{3}{5}$, on obtient

$$x = \sin(\operatorname{Arcsin}\frac{2}{5} + \operatorname{Arcsin}\frac{3}{5})$$

donc

$$x = \frac{24}{55} + \frac{3}{5}\sqrt{\frac{21}{25}} = \frac{8}{25} + \frac{3\sqrt{21}}{25}.$$

2. En prenant le cosinus de l'équation $\operatorname{Arccos} x = 2\operatorname{Arccos} \frac{3}{4}$, on obtient $x = \cos\left(2\operatorname{Arccos} \frac{3}{4}\right)$, on utilise la formule $\cos 2u = 2\cos^2 u - 1$ et on arrive à

$$x = 2\left(\frac{3}{4}\right)^2 - 1 = \frac{1}{8}.$$

3. En prenant la tangente et à l'aide de $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$, on obtient

$$x = \tan 2 \operatorname{Arctan} \frac{1}{2} = \frac{4}{3}.$$

Exercice 4:

1. Montrer qu'il n'existe pas de fonction $f:[0,+\infty[\to\mathbb{R}$ vérifiant :

$$\forall x \in \mathbb{R}, f(\operatorname{ch} x) = e^x.$$

2. Déterminer toutes les fonctions $f: \mathbb{R}^{+*} \to \mathbb{R}$ telles que :

$$\forall x \in \mathbb{R}, f(e^x) = \operatorname{ch} x.$$

Préciser le nombre de solutions.

Correction 4:

- 1. Si f existe alors pour x = 1 on a $f(\operatorname{ch} 1) = e$ et pour x = -1 on a $f(\operatorname{ch} -1) = f(\operatorname{ch} 1) = e$
- $\frac{1}{e}$. Une fonction ne peut prendre deux valeurs différentes au même point (ici $t = f(\operatorname{ch} 1)$).
- 2. Notons $X = e^x$, l'équation devient

$$f(X) = \frac{e^x + e^{-x}}{2} = \frac{1}{2} \left(X + \frac{1}{X} \right).$$

Comme la fonction exponentielle est une bijection de \mathbb{R} sur $]0, +\infty[$, alors l'unique façon de définir f sur $]0, +\infty[$ est par la formule $f(t) = \frac{1}{2}(t + \frac{1}{t})$.

Exercice 5:

Les réels x et y étant liés par :

$$x = \ln\left(\tan\left(\frac{y}{2} + \frac{\pi}{4}\right)\right),\,$$

calculer ch x, sh x et th x en fonction de y.

Correction 5:

Soit
$$x = \ln\left(\tan\left(\frac{y}{2} + \frac{\pi}{4}\right)\right)$$
.

1

$$\operatorname{ch} x = \frac{e^x + \frac{1}{e^x}}{2} = \frac{\tan\left(\frac{y}{2} + \frac{\pi}{4}\right) + \frac{1}{\tan\left(\frac{y}{2} + \frac{\pi}{4}\right)}}{2} = \frac{1}{2\sin\left(\frac{y}{2} + \frac{\pi}{4}\right)\cos\left(\frac{y}{2} + \frac{\pi}{4}\right)} = \frac{1}{\sin\left(y + \frac{\pi}{2}\right)} = \frac{1}{\cos(y)}.$$

- 2. De même sh $x = \tan y$.
- 3. $th x = \sin y$.

32 F.Z.NQI

Cor	rections-	TD.	6
$\mathcal{O}_{\mathbf{L}}$		1	\circ

Développements Limités

Année 2016-2017 ENSA 1 - Analyse I Professeur : F.Z. Nqi

6 Corrections-TD-Développements limités

Exercice 1:

$$DL_3(0) \text{ de } f(x) = e^x \sin(x) \text{ et } g(x) = \sqrt{1 + x + x^2}$$

Correction 1:

• Au voisinage de 0, les DL_3 de e^x et $\sin(x)$ sont

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + o(x^{3})$$
$$\sin(x) = x - \frac{1}{6}x^{3} + o(x^{3})$$

en faisant le produit des parties principales et en gardant seulement les termes de degrè ≤ 3 , on obtient :

$$e^{3}\sin(x) = x - x^{2} + \frac{1}{3}x^{3} + o(x^{3})$$

Le point $M_0(0,0)$ est un point ordinaire. L'équation de la tangente M_0T est $y_T = x$. La courbe C_f est toujours au dessus de sa tangente en M_0 .

• On a $f(x) = \sqrt{1 + x + x^2} = (1 + x + x^2)^{\frac{1}{2}}$ On pose $u = x + x^2$, donc

$$(1+u)^{\frac{1}{2}} = 1 + \frac{u}{2} - \frac{u^2}{8} + \frac{u^3}{16} + o(u)$$
$$\sqrt{1+x+x^2} = 1 + \frac{1}{2}(x+x^2) - \frac{1}{8}(x+x^2)^2 + \frac{1}{16}(x+x^3)^3 + o(x^3)$$

on garde uniquement les termes de degrè ≤ 3 , on obtient

$$\sqrt{1+x+x^2} = 1 + \frac{1}{2}x + \frac{3}{8}x^2 - \frac{3}{16} + o(x^3).$$

Exercice 2:

 $DL_4(0)$ de

$$f(x) = \frac{\sin^2(x)}{\ln(\cos(x))}$$

Correction 2:

Au voisinage de $0 : \sin^2(x) \sim x^2$ et $\ln(\cos x) \sim -\frac{x^2}{2}$. Par suite de simplification par x^2 pour un $DL_4(0)$ il faut prendre les $DL_6(0)$ du numérateur et du dénominateur à l'ordre 6:

$$\sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^6)$$

$$\sin^{2}(x) = x^{2} - \frac{x^{4}}{3} + \frac{2x^{6}}{45} + o(x^{6})$$

$$\cos(x) = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} - \frac{x^{6}}{720} + o(x^{6})$$

$$\ln(\cos(x)) = -\frac{x^{2}}{2} - \frac{x^{4}}{12} - \frac{x^{6}}{45} + o(x^{6})$$

$$f(x) = \frac{x^{2}(1 - \frac{x^{2}}{3} + \frac{2x^{4}}{45} + o(x^{4}))}{x^{2}(-\frac{1}{2} - \frac{x^{2}}{12} - \frac{x^{4}}{45} + o(x^{4}))} = -2 + x^{2} - \frac{x^{4}}{6} + o(x^{4}).$$

Exercice 3:

1. Déterminer le développement limité à l'ordre 3 en 0 de la fonction f donnée par

$$f: x \to \frac{\cos x - 1}{x(e^x - 1)}$$

- 2. En déduire que f se prolonge en une fonction dérivable en 0. Donner la valeur du prolongement et de sa dériv'ee en 0.
- 3. Détreminer la limite de la suite

$$u_n = n \frac{\cos \frac{1}{n} - 1}{e^{\frac{1}{n}} - 1} - \frac{1}{2}.$$

correction 3:

1. $cos x = 1 + \frac{1}{2}x^2 - \frac{1}{4!}x^4 + x^5 \varepsilon(x)$, donc

$$\cos x - 1 = \frac{1}{2}x^2 - \frac{1}{4!}x^4 + x^5\varepsilon(x) = x^2(\frac{1}{2} - \frac{1}{4!}x^2),$$

et

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + x^4\varepsilon(x)$$

donc

$$x(e^{x} - 1) = x^{2}(1 + \frac{1}{2}x + \frac{1}{3!}x^{2} + \frac{1}{4!}x^{3} + x^{3}\varepsilon(x))$$

On fait une division par les puissances croissantes et on obtient

$$f(x) = \frac{1}{2} - \frac{1}{4}x + \frac{1}{32}x^3 + x^3\varepsilon(x).$$

- 2. Comme f a un éveloppement limité à l'ordre 0 en 0, elle est donc prolongeable par continuité si on prend $f(0) = \frac{1}{2}$ (le premier terme du développement limité). Comme f a un développement limité à l'ordre 1 en 0, et ce prolongement est dérivable et $f'(0) = -\frac{1}{4}$.
- 3. On a

$$u_n = n \frac{\cos \frac{1}{n} - 1}{e^{\frac{1}{n}} - 1} - \frac{1}{2} = f(\frac{1}{n}) - \frac{1}{2} = -\frac{1}{4n} + \frac{1}{32n^3} + \frac{1}{n^3} \varepsilon(\frac{1}{n}) \to 0.$$

Exercice 4:

Déterminer

$$L_1 = \lim_{x \to 0} \frac{\ln(1+x) - x}{e^x - \sqrt{1+2x}}$$
$$L_2 = \lim_{x \to \frac{1}{2}} (2x^2 - 3x + 1) \tan \pi x$$

Correction 4:

1. Présence d'une forme indétérminée.

$$\ln(1+x) - x = -\frac{x^2}{2} + o(x^2),$$

$$e^x = 1 + x + \frac{1}{2}x^2 + o(x^2),$$

$$(1+2x)^{\frac{1}{2}} = 1 + x - \frac{1}{2}x^2 + o(x^2),$$

$$e^x - \sqrt{1+2x} = x^2 + o(x^2),$$

$$\lim_{x \to 0} \frac{\ln(1+x) - x}{e^x - \sqrt{1+2x}} = -\frac{1}{2}.$$

2. Forme indétérminée $(0X\infty)$. Posons $f(x)=(2x^2-3x+1)\tan \pi x$. On effectue la translation $x-\frac{1}{2}=h$ ou $x=\frac{1}{2}+h$

$$f(x) = f(\frac{1}{2} + h) = \left[2(\frac{1}{2} + h)^2 - 3(\frac{1}{2} + h) + 1\right] \tan(\frac{\pi}{2} + \pi h).$$

puisque $\sin(\frac{\pi}{2} + \pi h) = \cos(\pi h)$ et $\cos(\frac{\pi}{2} + \pi h) = -\sin(\pi h)$ alors $\tan(\frac{\pi}{2} + \pi h) = -\frac{1}{\tan(\pi h)}$ donc

$$f(\frac{1}{2} + h) = \frac{-h + 2h^2}{-\tan \pi h},$$

puisque $\tan \pi h = \pi h + o(h)$, donc

$$\lim_{x \to \frac{1}{2}} (2x^2 - 3x + 1) \tan \pi x = \frac{1}{\pi}$$

Exercice 5:

Effectuer le développement limité généralisé au voisinage de $(+\infty)$ à l'ordre n=4, (l'infiniment petit est $\frac{1}{x}$), de la fonction

$$f(x) = \sqrt[3]{x^3 + x} - \sqrt[3]{x^3 - x}.$$

Correction 5:

$$f(x) = \sqrt[3]{x^3(1+\frac{1}{x^2})} - \sqrt[3]{x^3(1-\frac{1}{x^2})} = x\left[\sqrt[3]{1+\frac{1}{x^2}} - \sqrt[3]{1-\frac{1}{x^2}}\right]$$

Posons $u = \frac{1}{x}$ et $u \to 0$ quand $x \to +\infty$

$$f(\frac{1}{u}) = \frac{1}{u} \left[\sqrt[3]{1 + u^2} - \sqrt[3]{1 - u^2} \right]$$

$$\sqrt[3]{1+u^2} = (2+u^2)^{\frac{1}{3}} = 1 + \frac{1}{3}u^2 + \frac{1}{9}u^4 + o(u^5)$$

$$\sqrt[3]{1-u^2} = (2-u^2)^{\frac{1}{3}} = 1 - \frac{1}{3}u^2 - \frac{1}{9}u^4 + o(u^5)$$

 donc

$$\sqrt[3]{1+u^2} - \sqrt[3]{1-u^2} = \frac{2}{3}u^2 + o(u^5)$$
$$f(\frac{1}{u}) = \frac{2}{3}u + o(u^4)$$

 et

$$f(x) = \frac{2}{3x} + o(\frac{1}{x^4}).$$

37

Corrections-TD 7

Intégrale de Riemann

Année 2016-2017 ENSA 1 - Analyse I Professeur : F.Z. Nqi

7 Corrections-TD-Intégrales de Riemann

Exercice 1:

Soit f la fonction définie sur [0,3] par :

$$f(x) = \begin{cases} -1, & \text{si } x = 0; \\ 1, & \text{si } 0 < x < 1; \\ 3, & \text{si } x = 1; \\ -2, & \text{si } 1 < x \le 2; \\ 4, & \text{si } 2 < x \le 3. \end{cases}$$

- 1. Calculer $\int_0^3 f(t)dt$.
- 2. Soit $x \in [0,3]$, calculer $F(x) = \int_0^x f(t)dt$.
- 3. Montrer que F est une fonction continue sur [0,3]. La fonction F est-elle dérivable sur [0,3]?

Correction 1:

- 1. On trace la courbe de f (fonction en escalier). Pour calculer $\int_0^3 f(t)dt$, il suffit de faire la somme des aires algébriques des rectangles dans la courbe. On trouve alors : $\int_0^3 f(t)dt = 3$.
- 2. C'est la même chose, mais au lieu d'aller jusqu'à 3, on s'arrête à x, on trouve

$$F(x) = \begin{cases} x, & \text{si } 0 \le x \le 1; \\ 3 - 2x, & \text{si } 1 < x \le 2; \\ -9 + 4x, & \text{si } 2 < x \le 3. \end{cases}$$

3.Les seuls points à discuter pour la continuité sont les points x=1 et x=2, mais les limites à droite et à gauche de F sont égales en ces points donc F est continue. Par contre F n'est pas dérivable en x=1 ni en x=2.

Exercice 2:

Soit $f:[0,1]\to\mathbb{R}$ une application strictement croissante telle que f(0)=0, f(1)=1. Calculer:

$$\lim_{n \to +\infty} \int_0^1 f^n(t) dt.$$

Correction 2:

Soit $\alpha > 0$ fixé. Soit $0 < x_0 < 1$ tel que pour tout $x \in [0, x_0], f(x) \le 1 - \alpha$. Ce x_0 existe bien car f est strictement croissante et f(0) = 0, f(1) = 1. Séparons l'intégrale en deux :

$$\int_{0}^{1} f^{n}(t)dt = \int_{0}^{x_{0}} f^{n}(t)dt + \int_{x_{0}}^{1} f^{n}(t)dt$$

$$\leq \int_{0}^{x_{0}} (1 - \alpha)^{n} dt + \int_{x_{0}}^{1} 1^{n} dt$$

$$\leq x_{0}(1 - \alpha)^{n} + (1 - x_{0})$$

$$\leq (1 - \alpha)^{n} + (1 - x_{0}) \text{ car } x_{0} \leq 1.$$

Soit maintenant donné un $\varepsilon > 0$ tel que $1 - x_0 \le \frac{\varepsilon}{2}$ (en remarquant que si $\alpha \to 0$) alors $x_0(\alpha) \to 1$), puis il existe n assez grand tel que $(1-\alpha)^n \le \frac{\varepsilon}{2}$. Donc pour tout $\varepsilon > 0$ il existe n assez grand tel que $\int_0^1 f^n(t)dt \leq \varepsilon$. Donc $\int_0^1 f^n(t)dt \to 0$.

Exercice 3:

Calculer les primitives suivantes, en précisant si nécessaire les intervalles de validité des calculs:

a)
$$\int \operatorname{Arctan} x dx$$
 b) $\int \tan^2 x dx$ c) $\int \frac{1}{x \ln x} dx$ d) $\int \frac{x}{\sqrt{x+1}} dx$
e) $\int \operatorname{Arcsin} x dx$ f) $\int \frac{1}{3+e^{-x}} x dx$ g) $\int \frac{-1}{\sqrt{4x-x^2}} dx$ h) $\int \frac{1}{x\sqrt{1-\ln^2 x}} dx$

Correction 3:

a) $\int \operatorname{Arctan} x dx = x \operatorname{Arctan} x - \frac{1}{2} \ln(1+x^2) + c \operatorname{sur} \mathbb{R}$ (en faisant une intégration par parties en posant $u(x) = \operatorname{Arctan} x$ et v'(x) = 1, donc $u'(x) = \frac{1}{1+x^2}$ et v(x) = x, et par conséquent

$$\int \operatorname{Arctan} x dx = [x \operatorname{Arctan} x] - \int \frac{x}{1 + x^2} dx.$$

- **b)** $\int \tan^2 x dx = \int 1 + \tan^2 x dx \int 1 dx = \tan x x + c \text{ sur }] \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi [$ **c)** $\int \frac{1}{x \ln x} dx = \ln |\ln x| + c \text{ sur }]0, 1[\cup]1, +\infty[$ (changement de variable : $u = \ln x$)

$$\int \frac{1}{x \ln x} dx = \int \frac{1}{u} du = \ln|u| + c = \ln|\ln x| + c$$

d) $\int \frac{x}{\sqrt{x+1}} dx = \frac{2}{3}(x-2)\sqrt{x+1} + c$ sur $]-1,+\infty[$ (changement de variable : $u=\sqrt{x+1}$ ou intégration par parties) en effet $du=\frac{1}{2\sqrt{x+1}}dx$ et $x=u^2-1$, donc

$$\int \frac{x}{\sqrt{x+1}} dx = \int 2(u^2 - 1) du = \frac{2}{3}u^3 - 2u + c = \frac{2}{3}(x-2)\sqrt{x+1} + c.$$

- e) $\int Arcsin x dx = x Arcsin x + \sqrt{1 x^2} + c sur] 1, 1 [$ (intégration par parties en posant $u(x) = \operatorname{Arcsin} x \text{ et } v'(x) = 1)$

- f) $\int \frac{1}{3+e^{-x}}xdx = \frac{1}{3}\ln(3e^x+1) + c \text{ sur } \mathbb{R}$ (en faisant un changement de variable $: u = e^x$). g) $\int \frac{1}{\sqrt{4x-x^2}}dx = \operatorname{Arccos}(\frac{1}{2}x-1) + c \text{ sur }]0,4[$ (changement de variable $: u = \frac{1}{2}x-1$). h) $\int \frac{1}{x\sqrt{1-\ln^2 x}}dx = \operatorname{Arcsin}(\ln x) + c \text{ sur }]\frac{1}{e},e[$ (changement de variable $: u = \ln x$).

Exercice 4:

Calculer les intégrales suivantes :

$$\int_0^{\frac{\pi}{2}} \frac{1}{1 + \sin x} dx \quad \text{et} \quad \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x} dx.$$

Correction 4: 1. On trouve que $\int_0^{\frac{\pi}{2}} \frac{1}{1+\sin x} dx = 1$ par un changement de variable en posant $u = \tan \frac{x}{2}$. Donc $du = \frac{1}{2}(1+\tan^2(x))dx = \frac{1}{2}(1+u^2)dx$, d'autre part :

$$1 + \sin x = \cos^2 \frac{x}{2} + \sin^{\frac{x}{2}} + 2\cos \frac{x}{2}\sin \frac{x}{2} = (\cos \frac{x}{2} + \sin \frac{x}{2})^2 = \cos^2 \frac{x}{2}(1 + \tan \frac{x}{2})^2 = \frac{(1+u)^2}{1+u^2},$$

et lorsque $x=0,\,u=0$ et lorsque $x=\frac{\pi}{2},\,u=1,\,\mathrm{donc}$

$$\int_0^{\frac{\pi}{2}} \frac{1}{1+\sin x} dx = \int_0^1 \frac{2}{(1+u)^2} du = \left[\frac{-2}{1+u}\right]_0^1 = 1.$$

2. On a

$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x} dx = \int_0^{\frac{\pi}{2}} 1 - \frac{1}{1 + \sin x} dx = \int_0^{\frac{\pi}{2}} 1 dx - \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sin x} dx = \frac{\pi}{2} - 1.$$

Exercice 5:

Intégrale de Wallis Soit $I_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$ si $n \in \mathbb{N}$.

- 1. Montrer que la suite $(I_n)_n$ est positive décroissante.
- 2. Montrer que $I_{n+2} = \frac{n+1}{n+2}I_n$ et expliciter I_n , en déduire $\int_{-1}^1 (x^2-1)^n dx$.

Correction 5:

1. Sur $[0,\frac{\pi}{2}]$, la fonction sinus est positive donc I_n est positif. De plus, $\sin x \leq 1$, donc la suite $(\sin^n x)_n$ est décroissante.

2.

$$I_{n+2} = \int_0^{\frac{\pi}{2}} \sin x \sin^{n+1} x dx.$$

En posant $u'(x) = \sin x$ et $v(x) = \sin^{n+1} x$ et ben intégrant par parties, nous obtenons

$$I_{n+2} = (n+1) \int_0^{\frac{\pi}{2}} (1 - \sin^2 x) \sin^n x dx = (n+1)I_n - (n+1)I_{n+2},$$

donc $(n+2)I_{n+2} = (n+1)I_n$.

Un petit calcul donne $I_0 = \frac{\pi}{2}$ et $I_1 = 1$. Donc par récurrence sur n pair, nous obtenons que

$$I_n = \frac{1.3...(n-1)}{2.4...n} \frac{\pi}{2},$$

et pour n impair

$$I_n = \frac{2.4...(n-1)}{1.3...n}.$$

Avec le changement de variable $u = \cos x$, on montre assez facilement que

$$\int_{-1}^{1} (x^2 - 1)^n dx = 2 \int_{0}^{1} (x^2 - 1)^n dx = 2I_{2n+1}.$$