Южно-Уральский государственный университет (НИУ) Высшая школа электроники и компьютерных наук Кафедра «Информационно-измерительная техника»

УТВЕРЖДАЮ
Заведующий кафедрой
(А.П.Лапин)
2018 г.

ЗАДАНИЕ НА РАБОТУ

на курсовую работу студентам: группа: КЭ-463

- 1. Дисциплина: Программное обеспечение измерительных процессов.
- 2. Тема работы: Разработка измерения влажности
- 3. Требования к разработке:
 - Для разработки должна использоваться отладочная плата XNUCLEO-F411RE (https://www.waveshare.com/product/arduino-2/boards-kits/nucleo/xnucleo-f411re.htm)
 - Питание платы должно быть автономным и подаваться с солнечный батарей
 - Устройство должно измерять влажность почвы
 - Для измерения должен использоваться встроенный АЦП микроконтроллера STM32F411
 - Период измерения должен быть 100 ms
 - Для получения кодов АЦП должен использоваться механизм DMA
 - Для изменения влажности должен использоваться датчик влажности почвы Moisture Sensor (https://www.waveshare.com/product/Moisture-Sensor.htm)
 - Погрешность измерения влажности почвы не должна превышать 5% в диапазоне от 0 до 60%
 - К измеренному значению должен быть применен цифровой фильтр вида:

$$au = \int egin{pmatrix} 1 - e^{-rac{dt}{R\cdot C}} & RC > 0\sec \ 1 & RC \leq 0\sec \end{pmatrix}$$

 $FilteredValue = OldFiltered + (Value - OldValue) \cdot \tau$,

где dt - 100 мс;

Value - текущее нефильтрованное измеренное значение влажности; oldValue - предыдущее фильтрованное значение.

- Передача значений по беспроводному интерфейсу должна осуществляться через модуль <u>BlueTooth</u>
 <u>Bee HC-06</u> (https://elecfreaks.com/estore/download/EF03073-Bluetooth_Bee_(HC-05_and_HC-06)User_Guide.pdf) или <u>I/O Expansion Shield</u> (https://www.waveshare.com/product/arduino-2/shields/others/io-expansion-shield.htm)
 - Общение с платой расширения должно осуществляться через USART2
 - формат вывод:
 - "Влажность почвы: " XXX.XX [Units]
- Архитектура должна быть представлена в виде UML диаграмм в пакете Star UML

- Приложение должно быть написано на языке C++ с использование компилятора ARM 8.40.2
- \circ При разработке должна использоваться Операционная Система Реального Времени FreeRTOS и $\underline{C++}$ обертка над ней (https://github.com/lamer0k/RtosWrapper)

4. Перечень вопросов, подлежащих разработке:

- В ходе работы необходимо разработать архитектуру программного обеспечения в виде диаграммы UML.
- В ходе работы необходимо разработать код программного обеспечения.
 - Код должен соответствовать стандарту кодирования <u>Стэнфордского университета</u> (https://tproger.ru/translations/stanford-cpp-style-guide/), см также <u>оригинал</u> (https://stanford.edu/class/archive/cs/cs106b/cs106b.1158/styleguide.shtml)
- Работа программы должна быть продемонстрирована совместно с платой XNUCLEO-F411RE.
- Содержание работы должно соответствовать ГОСТ 19.402-78 «Единая система программной документации. Описание программы».
 - работа должна быть оформлена в формате Asciidoc и выложена на Github
- Описание архитектуры в виде UML диаграмм должно быть оформлено в разделе «Описание логической структуры» \rightarrow "Алгоритм программы".
- Дополнительно к архитектуре, в разделе «Описание логической структуры» → "Структура программы с описанием функций составных частей и связи между ними" должен быть описан принцип работы программы и взаимодействия разных блоков программы друг с другом.
- Оформление пояснительной записки к курсовой работе в соответствии с СТО ЮУрГУ 04-2008 «Курсовое и дипломное проектирование. Общие требования к содержанию и оформлению».

5. Календарный план:

• Сдача этапов выполнения курсовой работы осуществляется строго в соответствии с календарным планом

Наименование разделов курсовой работы	Срок выполнения разделов работы	Отметка руководителя о выполнении
Разработка общей архитектуры программы	28 марта 2020 г.	
Разработка кода каркаса программы	4 апреля 2020 г.	
Разработка детальной архитектуры модуля работы с датчиком	11 апреля 2020 г.	
Разработка кода для модуля работы с датчиком	11 апреля 2020 г.	

Наименование разделов курсовой работы	Срок выполнения разделов работы	Отметка руководителя о выполнении
Разработка детальной архитектуры модуля работы с индикатором	18 апреля 2020 г.	
Разработка кода для модуля работы с индикатором	18 апреля 2020 г.	
Разработка детальной архитектуры модуля работы с USART и блутуз	25 апреля 2020 г.	
Разработка кода для модуля работы с USART и блутуз	25 апреля 2020 г.	
Разработка детальной архитектуры и кода для оставшихся модулей	2 мая 2020 г.	
Сдача и демонстрация работы устройства	9 мая 2020 г.	
Оформление пояснительной записки к курсовой работе	20 мая 2020 г.	

Руководитель работы:	/C. B		3. Колодий/	
	(подпись)			
Студент		/	/	
	(подпись)			
Студент _		/	/	
	(подпись)			