Total No. of Questions	:	8]	
-------------------------------	---	----	--

SEAT No.:		
[Total	No. of Pages	:2

P6484

[6181] -19

B.E. (Automobile Engineering) **HYBRID & ELECTRIC VEHICLE** (2019 Pattern) (Semester-VIII) (416489)

		Hours] [Max. Marks . is to the candidates:	: 70
insir (1) 2)	Assume suitable data if necessary. Answer FOUR questions from the following (Q1 or Q2, Q3 or Q4, Q5 or Q6 Q7 or Q8.	ó ,
Q1)	a)	State any two applications of following EV motors:	[8]
		i) BLDC Motor, ii) Induction Motor,	
		iii) PMAC/I-PMAC Motor, iv) Switch Reluctance Motor	r.
	b)	How does 'Regeneration' in 'Electric Vehicle (EV)' take place?	[9]
		OR	
<i>Q2</i>)	a)	Explain different losses in electric vehicle motors.	[8]
	b)	Why internal permanent magnet (IPM) motors are preferably used electric vehicle?	in [9]
Q3)	a)	Draw and explain 'Discharge Characteristics' of Li-Ion battery.	10]
	b)	Why slow charging is preferred (or fast charging is avoided) in Libattery.	[8]
		OR	
Q4)	a)	Calculate SOC for 10 second for a pulse of 5 Amp current for follows given data:	ing 10]
		i) Total cell capacity = 10 Watt-hr,	
		ii) Cell internal resistance = 30 mili-Ohms,	
		iii) Initial state of charge = 85%	
		iv) Open circuit voltage = 3.9 Volt.	
	b)	List energy storage devices of electric vehicle & explain any one briefly.	[8]

Q5) a) What are the primary functions of Battery Management System (BMS)?

[8]

b) What are the components of Battery Management System? [9]

OR

Q6) a) What is the need of Battery Thermal Management System (BTMS)? [8]

b) State different methods used in Battery Thermal Management System. Explain any one method with neat sketch. [9]

Q7) It is decided to provide equivalent 'Battery Electric Motor' combination for existing 'Hero Honda Splendor' with following specification: (1) Gross Vehicle Weight (GVW) = 205kg, (2) Maximum Speed = 85kmph, (3) Acceleration = 0.7m/s² for plane road and 0.49m/s² for grade road, (4) Gradability = 7°, (5) Radius of wheel = 0.292m, (6) Expected Range = 54km for EV, (7) Engine Specifications: Power = 5.9kw, Volume = 97.2cc, Max. Torque = 8.05Nm @ 6000 RPM, (8) Gear Box: Four gears with gear ratios G₁ = 2.92, G₂ = 1.72, G₃ = 1.16, G₄ = 0.9, and Final Drive Reduction = 3.5. Also assume Air Density = 1.2kg/m³, Coe. Of Drag = 0.65, Frontal Area = 0.23m², Coe. of rolling resistance = 0.013. Calculate: (i) Motor Power in kW, (ii) Battery Pack Capacity in kwhr, (iii) Energy Efficiency in Watt-hour/km, (iv) Max. Vehicle Speed in kmph, and (v) EV range in km.

OR

Q8) It is decided to design an electric 4-Wheeler with following specification: (1) Gross Vehicle Weight (GVW) = 1200kg, (2) Maximum Speed = 120kmph, (3) Acceleration = 0 to 120 kmph in 20 seconds, (4) Grade = 5°, (5) Radius of wheel = 0.31m, (6) Coe. of Drag = 0.35, (7) Gear Ratio = 9:1, (8) Air Density = 1.225kg/m³, (9) Front Area = 2.5 m² (10) Coe. of rolling resistance = 0.013, (11) Speed on grade road = 60 kmph, (12) Coe. of sliding friction = 0.3.

Calculate: (i) Motor Power in kW, (ii) Battery Pack Capacity in kwhr, (iii) Energy Efficiency in Watt-hour/km, (iv) Actual Max. Vehicle Speed in kmph, and (v) EV range (in km) for plane road at constant speed of 90kmph. [18]

