a) Creating and loading different datasets in Python.

```
In [79]: import pandas as pd
          import numpy as np
In [80]: df = pd.DataFrame({'Names':['Nayan', 'aditya', 'Om', 'Shrawani', 'Ninad', 'Prajw
                             'Marks':['82', '98', '11', '52', '88', '98', '56', '92', '52'
In [81]: df
Out[81]:
              Names Marks
          0
               Nayan
                         82
          1
               aditya
                         98
          2
                 Om
                         11
          3 Shrawani
                         52
               Ninad
                         88
          5
              Prajwal
                         98
          6
               Ayush
                         56
             Sumedh
                         92
          8
                Yash
                         52
               Pranav
                         22
In [83]: df.to_csv("name_and_marks.csv",index=False)
In [84]: a1 = pd.read_csv('name_and_marks.csv')
In [85]: a1
```

Out[85]:		Names	Marks
	0	Nayan	82
	1	aditya	98
	2	Om	11
	3	Shrawani	52
	4	Ninad	88
	5	Prajwal	98
	6	Ayush	56
	7	Sumedh	92
	8	Yash	52
	9	Pranav	22

swiggy_file dataset operations

```
In [3]: import numpy as np
import pandas as pd
df = pd.DataFrame()
df = pd.read_csv("swiggy_file.csv")
In [4]: df
```

Out[4]:

	Restaurant Name	Cuisine	Rating	Number of Ratings	Average Price	Number of Offers	Offer Name	
0	La Pino'Z Pizza	Pizzas, Pastas	4.0	10+ ratings	₹250 for two	2	FLAT DEAL\r\nFLAT ₹125 OFF\r\nUSE FLAT125ABOVE	ı
1	The Second Wife	Indian, North Indian	3.6	50+ ratings	₹250 for two	2	30% OFF UPTO ₹75\r\nUSE TRYNEWABOVE ₹149, FLAT	
2	Tasty Bites	Italian, Beverages	3.8	10+ ratings	₹200 for two	1	FLAT ₹120 OFF\r\nUSE AXIS120ABOVE ₹500	
3	Food Studio	Pizzas, Burgers	3.5	8 ratings	₹49 for two	5	50% OFF UPTO ₹100\r\nUSE TRYNEWABOVE ₹129, FLA	
4	Roll Express	Fast Food, Snacks	4.3	100+ ratings	₹200 for two	2	DEAL OF DAY\r\n10% OFF UPTO ₹40\r\nUSE STEALDE	
140652	Yummy Momo'S Cafe	Chinese, Fast Food	4.6	3 ratings	₹100 for two	3	20% OFF UPTO ₹50\r\nUSE TRYNEWABOVE ₹149, FLAT	Υ
140653	CAFE FIRST FLOOR	Beverages, Snacks	3.2	3 ratings	₹200 for two	2	FLAT ₹120 OFF\r\nUSE AXIS120ABOVE ₹500, FLAT ₹	Υ
140654	Cafe Coffee Aani Barach Kahi	Snacks	3.2	50+ ratings	₹150 for two	2	FLAT ₹120 OFF\r\nUSE AXIS120ABOVE ₹500, FLAT ₹	Υ
140655	Patil Family Restaurant	North Indian, Biryani	4.3	9 ratings	₹200 for two	2	FLAT ₹120 OFF\r\nUSE AXIS120ABOVE ₹500, FLAT ₹	Υ
140656	Prabhakar Mama Cha Dhaba	North Indian		Too Few Ratings	₹350 for two	2	FLAT ₹120 OFF\r\nUSE AXIS120ABOVE ₹500, FLAT ₹	Υ

140657 rows × 10 columns

◆

df.head()

Out[5]:		Restaurant Name	Cuisine	Rating	Number of Ratings	Average Price	Number of Offers	Offer Name	Area
	0	La Pino'Z Pizza	Pizzas, Pastas	4.0	10+ ratings	₹250 for two	2	FLAT DEAL\r\nFLAT ₹125 OFF\r\nUSE FLAT125ABOVE	LALA LAJPAT RA MARKET
	1	The Second Wife	Indian, North Indian	3.6	50+ ratings	₹250 for two	2	30% OFF UPTO ₹75\r\nUSE TRYNEWABOVE ₹149, FLAT	Centra Abohai
	2	Tasty Bites	Italian, Beverages	3.8	10+ ratings	₹200 for two	1	FLAT ₹120 OFF\r\nUSE AXIS120ABOVE ₹500	Centra Abohai
	3	Food Studio	Pizzas, Burgers	3.5	8 ratings	₹49 for two	5	50% OFF UPTO ₹100\r\nUSE TRYNEWABOVE ₹129, FLA	Centra Abohai
	4	Roll Express	Fast Food, Snacks	4.3	100+ ratings	₹200 for two	2	DEAL OF DAY\r\n10% OFF UPTO ₹40\r\nUSE STEALDE	Circulaı Road
	4								•
In [6]:	df.	tail()							

Out[6]: Number Number Restaurant **Average Cuisine Rating Offer Name** of of Name **Price** Offers **Ratings** 20% OFF UPTO Yummy Chinese, ₹100 for ₹50\r\nUSE Ya Momo'S 140652 4.6 3 ratings 3 Fast Food two TRYNEWABOVE Cafe ₹149, FLAT... FLAT ₹120 ₹200 for CAFE FIRST Beverages, OFF\r\nUSE Ya 140653 3.2 3 ratings 2 **FLOOR Snacks** two AXIS120ABOVE ₹500, FLAT ₹... Cafe FLAT ₹120 Coffee ₹150 for 50 +OFF\r\nUSE Ya 140654 Aani **Snacks** 3.2 AXIS120ABOVE ratings two Barach ₹500, FLAT ₹... Kahi FLAT ₹120 North ₹200 for Patil Family OFF\r\nUSE Ya 140655 Indian, 4.3 9 ratings 2 Restaurant two AXIS120ABOVE L Biryani ₹500, FLAT ₹... FLAT ₹120 Prabhakar North Too Few ₹350 for OFF\r\nUSE Ya 140656 Mama Cha 2 Indian Ratings two AXIS120ABOVE Dhaba ₹500, FLAT ₹... In [7]: df.shape Out[7]: (140657, 10)In [8]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 140657 entries, 0 to 140656 Data columns (total 10 columns): # Column Non-Null Count Dtype _____ _____ 0 Restaurant Name 140657 non-null object 1 Cuisine 140630 non-null object 2 Rating 140657 non-null object 3 object Number of Ratings 126115 non-null 4 Average Price 140657 non-null object Number of Offers int64 5 140657 non-null 6 Offer Name 138849 non-null object 7 Area 140655 non-null object 8 Pure Veg 140657 non-null object 9 140657 non-null object Location dtypes: int64(1), object(9) memory usage: 10.7+ MB In [9]: df.describe()

Out[9]:		Number of Offers
	count	140657.000000
	mean	3.187890
	std	1.583943
	min	0.000000
	25%	1.000000
	50%	4.000000
	75%	5.000000
	max	5.000000

In [10]: df.isnull()

Out[10]:

		Restaurant Name	Cuisine	Rating	Number of Ratings	Average Price	Number of Offers	Offer Name	Area	Pure Veg
	0	False	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False	False
	•••		•••							
1406	52	False	False	False	False	False	False	False	False	False
1406	53	False	False	False	False	False	False	False	False	False
1406	54	False	False	False	False	False	False	False	False	False
1406	555	False	False	False	False	False	False	False	False	False
1406	556	False	False	False	False	False	False	False	False	False

140657 rows × 10 columns

→

In [11]: df.isnull().sum()

Automobile dataset operations

In [13]:	df	<pre>df1 = pd.read_csv('Automobile.csv')</pre>									
In [14]:	df	df1.head()									
Out[14]:		name	mpg	cylinders	displacement	horsepower	weight	acceleration	model_y		
	0	chevrolet chevelle malibu	18.0	8	307.0	130.0	3504	12.0			
	1	buick skylark 320	15.0	8	350.0	165.0	3693	11.5			
	2	plymouth satellite	18.0	8	318.0	150.0	3436	11.0			
	3	amc rebel sst	16.0	8	304.0	150.0	3433	12.0			
	4	ford torino	17.0	8	302.0	140.0	3449	10.5			
	4								+		
In [15]:	df	1.tail()									

Out[15]:		name	mpg	cylinders	displacement	horsepower	weight	acceleration	model _.
	393	ford mustang gl	27.0	4	140.0	86.0	2790	15.6	
	394	vw pickup	44.0	4	97.0	52.0	2130	24.6	
	395	dodge rampage	32.0	4	135.0	84.0	2295	11.6	
	396	ford ranger	28.0	4	120.0	79.0	2625	18.6	
	397	chevy s- 10	31.0	4	119.0	82.0	2720	19.4	
	4								•
In [17]:	df1['origin']=='usa'								
Out[17]:	0 1 2 3 4 393 394 395 396 397 Name	True True True True True True False True True True True True True True	Lengt	:h: 398, d	type: bool				
In [18]:	min(df1['weig	ht'])						
Out[18]:	1613								
In [19]:	max(df1['weig	ht'])						
Out[19]:	5140								
In [20]:	df1.	isna()							

Out[20]:		name	mpg	cylinders	displa	acement	horsepower	weight	acceleration	model_ye
	0	False	False	False		False	False	False	False	Fal
	1	False	False	False		False	False	False	False	Fal
	2	False	False	False		False	False	False	False	Fal
	3	False	False	False		False	False	False	False	Fal
	4	False	False	False		False	False	False	False	Fal
	•••									
	393	False	False	False		False	False	False	False	Fal
	394	False	False	False		False	False	False	False	Fal
	395		False	False		False	False		False	Fal
	396		False	False		False	False		False	Fal
	397	False		False		False	False		False	Fal
									. 0.50	
	398 rd	ows × 9	colum	ns						
	4									>
In [21]:	df1.	value_c	ounts	()						
Out[21]:	name				mpg	cylinde	ers displace	ement h	orsepower we	eight ac
		ration ambassa		l_year o rougham	rigin 13.0	8	360.0	1	75.0 38	321 1
	1.0 opel	manta	73		usa 24.0	1 4	116.0	7.	5.0 21	.58 1
	5.5		73		europe	1				
	6.9	1900	76		25.0 europe	1	116.0			220 1
	olds 2.5	mobile	vista 73	cruiser	12.0 usa	8	350.0	18	80.0 44	199 1
	olds 7.6	mobile	starf: 78		23.8 usa	4	151.0	8	5.0 28	855 1
	7.0		70		usu	_				
	 dats	un b210	gx g		39.4	4	85.0	7	0.0 26	70 1
	8.6 dats	un b210	78 Э		japan 31.0	1 4	79.0	6	7.0 19	950 1
	9.0	un b-21	74		japan 32.0	1	85.0			
	7.0		76		japan	1				990 1
	dats 3.8	un 810	maxima 81		24.2 japan	6 1	146.0	1.	20.0 29	30 1
		abbit d			31.9		89.0	7	1.0 19	25 1
	4.0	-	79		europe					
	Name	: count	t, Len	gth: 392,	атуре	: 1nt64				

b) Reshaping, Filtering, Scaling, Merging the data and Handling the missing values in datasets.

Merging

Out[23]:		origin	model_year
	0	usa	70
	1	usa	70
	2	usa	70
	3	usa	70
	4	usa	70
	•••		
	393	usa	82
	394	europe	82
	395	usa	82
	396	usa	82
	397	usa	82

398 rows × 2 columns

```
In [25]: car_weight=pd.read_csv('Automobile.csv')
    car_weight=car_weight[['weight','model_year']]
    car_weight
```

Out[25]:		weight	model_year
	0	3504	70
	1	3693	70
	2	3436	70
	3	3433	70
	4	3449	70
	•••		
	393	2790	82
	394	2130	82
	395	2295	82
	396	2625	82
	397	2720	82

398 rows × 2 columns

```
In [26]: # Merging the dataframe
    car_data=car_origin.merge(car_origin, how='inner',on='model_year')
    car_data
```

\cap		<u></u>	г	7		٦	
\cup	u	L		_	O		

	origin_x	model_year	origin_y
0	usa	70	usa
1	usa	70	usa
2	usa	70	usa
3	usa	70	usa
4	usa	70	usa
•••			
12353	usa	82	usa
12354	usa	82	europe
12355	usa	82	usa
12356	usa	82	usa
12357	usa	82	usa

12358 rows × 3 columns

Handling Missing Values

```
In [27]: df.isnull().sum()
```

```
Out[27]: Restaurant Name
                                   0
                                  27
          Cuisine
          Rating
          Number of Ratings
                               14542
          Average Price
                                   0
          Number of Offers
                                   0
          Offer Name
                                1808
          Area
                                   2
          Pure Veg
                                   0
          Location
          dtype: int64
In [38]:
         from sklearn.impute import SimpleImputer
         import numpy as np
         imputer = SimpleImputer(missing_values=np.nan, strategy='mode')
In [39]:
 In [ ]: df_trans1 = imputer.fit_transform(df)
         # Not able to Handle missing values as dataframe contans categorical data
```

Label Encoding

```
In [41]: from sklearn.preprocessing import LabelEncoder
          df1.head()
In [42]:
Out[42]:
                 name
                        mpg cylinders displacement horsepower weight acceleration model_y
              chevrolet
               chevelle
                         18.0
                                      8
                                                 307.0
                                                              130.0
                                                                                     12.0
                                                                      3504
                malibu
                 buick
          1
                         15.0
                                     8
                                                350.0
                                                              165.0
                                                                                    11.5
                skylark
                                                                      3693
                   320
             plymouth
                         18.0
                                                 318.0
                                                              150.0
                                                                      3436
                                                                                    11.0
               satellite
                  amc
          3
                         16.0
                                      8
                                                 304.0
                                                              150.0
                                                                      3433
                                                                                    12.0
               rebel sst
                  ford
                         17.0
                                      8
                                                                                    10.5
          4
                                                302.0
                                                              140.0
                                                                      3449
                 torino
In [43]:
          encoder = LabelEncoder()
In [45]:
          new_car_data=pd.DataFrame()
          new_car_data
Out[45]: -
          new_car_data['weight'] = encoder.fit_transform(df1['weight'])
In [47]:
```

In [48]:	new_c	ar_data
Out[48]:		weight
	0	247
	1	265
	2	241
	3	240
	4	244
	•••	
	393	160
	394	54
	395	89
	396	136
	397	152

398 rows × 1 columns

```
In [49]:    new_car_data['displacement'] = df1['displacement']
    new_car_data['horsepower'] = df1['horsepower']
    new_car_data['acceleration'] = encoder.fit_transform(df1['acceleration'])
    new_car_data['cylinders'] = df1['cylinders']
In [50]:    new_car_data
```

Out[50]:

	weight	displacement	horsepower	acceleration	cylinders
0	247	307.0	130.0	13	8
1	265	350.0	165.0	11	8
2	241	318.0	150.0	6	8
3	240	304.0	150.0	13	8
4	244	302.0	140.0	5	8
•••					
393	160	140.0	86.0	43	4
394	54	97.0	52.0	93	4
395	89	135.0	84.0	12	4
396	136	120.0	79.0	71	4
397	152	119.0	82.0	76	4

398 rows × 5 columns

```
In [68]:
         # Now all column data is in numner now we can handle missing data.
In [51]: from sklearn.impute import SimpleImputer
         import numpy as np
In [52]: imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
In [55]: car_NaN_handle = imputer.fit_transform(new_car_data)
In [56]: car_NaN_handle
Out[56]: array([[247., 307., 130., 13.,
                                            8.],
                 [265., 350., 165., 11.,
                                            8.],
                 [241., 318., 150.,
                                    6.,
                                           8.],
                 [ 89., 135., 84., 12.,
                                           4.],
                 [136., 120.,
                              79., 71.,
                                           4.],
                                   76.,
                 [152., 119., 82.,
                                           4.]])
In [57]: car_NaN_handle=pd.DataFrame(car_NaN_handle)
         car NaN handle
In [58]:
Out[58]:
                  0
                        1
                              2
                                   3
                                       4
           0 247.0 307.0 130.0 13.0 8.0
            1 265.0 350.0 165.0 11.0 8.0
           2 241.0 318.0 150.0
                                  6.0 8.0
            3 240.0 304.0 150.0 13.0
                                     8.0
              244.0 302.0 140.0
                                  5.0 8.0
                    •••
                          ... ... ...
         393 160.0 140.0
                           86.0 43.0 4.0
                    97.0
         394
               54.0
                            52.0 93.0 4.0
         395
               89.0 135.0
                            84.0 12.0 4.0
         396 136.0 120.0
                            79.0 71.0 4.0
         397 152.0 119.0
                            82.0 76.0 4.0
         398 rows × 5 columns
In [59]: car_NaN_handle.isnull().sum()
Out[59]: 0
              0
         2
              0
         3
              0
              0
         dtype: int64
```

Creating Dependent and Indepent columns: X and Y

```
cardata=pd.DataFrame(car_NaN_handle)
In [61]: cardata.shape
Out[61]: (398, 5)
In [62]: X = pd.DataFrame(cardata.iloc[:, 0:4].values)
         #cardata.iloc[:, 0:4].values extracts the values from the selected rows and colu
In [63]: X
Out[63]:
                  0
                        1
                              2
                                    3
            0 247.0 307.0 130.0 13.0
            1 265.0 350.0 165.0 11.0
            2 241.0 318.0 150.0
                                  6.0
            3 240.0 304.0 150.0 13.0
              244.0 302.0 140.0
                                   5.0
          393 160.0 140.0
                            86.0 43.0
          394
                54.0
                      97.0
                            52.0 93.0
          395
                89.0 135.0
                            84.0
                                12.0
          396
               136.0 120.0
                            79.0 71.0
          397 152.0 119.0
                            82.0 76.0
         398 rows × 4 columns
In [79]: Y = pd.DataFrame(cardata.iloc[:, -1].values)
In [64]: Y = pd.DataFrame(cardata.iloc[:, 4:].values)
In [65]: Y
```

	0
0	8.0
1	8.0
2	8.0
3	8.0
4	8.0
•••	
393	4.0
394	4.0
395	4.0
396	4.0
397	4.0
	1 2 3 4 393 394 395 396

398 rows × 1 columns

Feature Scaling of DataSet- MinMaxScalar

```
In [66]: from sklearn.preprocessing import MinMaxScaler
In [67]: scalar = MinMaxScaler()
In [68]: X_scaled = pd.DataFrame(scalar.fit_transform(X))
In [69]: X_scaled
```

Out[69]:		0	1	2	3
	0	0.705714	0.617571	0.456522	0.138298
	1	0.757143	0.728682	0.646739	0.117021
	2	0.688571	0.645995	0.565217	0.063830
	3	0.685714	0.609819	0.565217	0.138298
	4	0.697143	0.604651	0.510870	0.053191
	•••		•••	•••	
	393	0.457143	0.186047	0.217391	0.457447
	394	0.154286	0.074935	0.032609	0.989362
	395	0.254286	0.173127	0.206522	0.127660
	396	0.388571	0.134367	0.179348	0.755319
	397	0.434286	0.131783	0.195652	0.808511

398 rows × 4 columns

Train Test Split

[70]:		sklear ain, X_		_	
[n [71]:	X_train				
Out[71]:		0	1	2	3
	112	91.0	122.0	85.0	70.0
	283	220.0	232.0	90.0	68.0
	379	52.0	98.0	70.0	59.0
	306	131.0	173.0	115.0	9.0
	343	2.0	79.0	58.0	55.0
	•••	•••			
	299	209.0	141.0	71.0	94.0
	22	98.0	104.0	95.0	61.0
	72	281.0	304.0	150.0	16.0
	15	166.0	198.0	95.0	42.0
	168	139.0	140.0	83.0	56.0

278 rows × 4 columns

```
In [72]: X_train.shape
Out[72]: (278, 4)
In [73]: X_test
Out[73]:
                 0
                       1
                                       3
                                  2
          94 343.0 440.0 215.000000 6.0
          32
              38.0
                    98.0 104.469388 74.0
         279
               55.0
                    98.0
                         68.000000 52.0
         178 184.0 120.0 88.000000 56.0
         354
               92.0 100.0 104.469388 45.0
         253 205.0 200.0 95.000000 68.0
          99 182.0 232.0 100.000000 47.0
         217
               59.0 111.0 80.000000 35.0
         391
               96.0 135.0 84.000000 20.0
          10 252.0 383.0 170.000000 4.0
        120 rows × 4 columns
In [74]: X_test.shape
Out[74]: (120, 4)
```

In [75]: **Y_train**

```
Out[75]: 0
         112 4.0
         283 6.0
         379 4.0
         306 6.0
         343 4.0
         299 4.0
          22 4.0
          72 8.0
          15 6.0
         168 4.0
        278 rows × 1 columns
In [76]: Y_train.shape
Out[76]: (278, 1)
In [77]: Y_test
Out[77]: 0
          94 8.0
          32 4.0
         279 4.0
         178 4.0
         354 4.0
         ••• ...
         253 6.0
          99 6.0
         217 4.0
         391 4.0
         10 8.0
        120 rows × 1 columns
In [78]: Y_test.shape
Out[78]: (120, 1)
```