Tutorial 1

Problem 1:

Voltage and current for a device are shown in figures below.

- a. Determine the instantaneous power absorbed by the device
- b. Determine the energy absorbed by the device in one period
- c. Determine the average power absorbed by the device

Problem 2:

The current in a 5 mH inductor in Figure (a) is the periodic triangular wave shown in Fig (b). Determine the voltage, instantaneous power and average power for the inductor.

Problem 3:

The current through a diode is shown in the Figure below. Determine (a) the average current and (b) the rms diode current if $t_1 = 100 \, \mu s$, $t_2 = 350 \, \mu s$, $t_3 = 500 \, \mu s$, $f = 250 \, Hz$, $f_s = 5 \, kHz$, $I_m = 450 \, A$, and $I_a = 150 \, A$.

Power Electronics - Walid Issa

Problem 4:

A 1kW heater load in a food processing system is supplied by an 86% efficiency converter which costs a £100. A higher efficiency (96.8%) converter is offered by you to the system technical team with a cost of £200. The team claims that 10% more efficiency needs 10 years to be paid back If the energy cost is £0.1/kWh, discuss the correctness of their claim with cost feasibility of your offer.

Problem 5:

The figure below shows the voltage across a power semiconductor device and current through the device during a switching transition (turn on transition or turn off transition). What is the energy lost during the transition?

- (a) Turn on, $\frac{VI}{2}(t_1 + t_2)$
- (b) Turn off, $VI(t_1 + t_2)$
- (c) Turn on, $VI(t_1 + t_2)$
- (d) Turn off, $\frac{VI}{2}(t_1 + t_2)$