Implementation of 4x1 mux in Arduino using Assembly

M Patrick Manohar patrickmanohar152001@gmail.com FWC22119

IIT Hyderabad-Future Wireless Communication Assignment

March 2023

Contents

1	Problem	2
2	Introduction	2
3	Components	3
4	Hardware	4
5	Software	5

1 Problem

(GATE EC-2022)

Q.19. Consider the 2-bit multiplexer(MUX) shown in the figure. For output to be the XOR of R and S, the values for W, X, Y and Z are ?

Figure 1: mux

1.
$$W = 0, X = 0, Y = 1, Z = 1$$

2.
$$W = 1, X = 0, Y = 1, Z = 0$$

3.
$$W = 0, X = 1, Y = 1, Z = 0$$

4.
$$W = 1, X = 1, Y = 0, Z = 0$$

2 Introduction

The above diagram is a 4:1 multiplexer where W, X, Y, Z are the inputs of the multiplexer and A is the output of the multiplexer. R, S are the select

lines of the multiplexer, which means:

- 1. For R = 0, S = 0, the first input line W is selected.
- 2. For R = 0, S = 1, the second input line X is selected.
- 3. For R = 1, S = 0, the third input line Y is selected.
- 4. For R = 1, S = 1, the fourth input line Z is selected.

Therefore, the resultant output expression of the multiplexer is $R^{\prime}S^{\prime}W+R^{\prime}SX+RS^{\prime}Y+RSZ.$

3 Components

COMPONENTS			
Component	Value	Quantity	
Resistor	220 ohm	1	
Arduino	UNO	1	
Seven Segment Display		1	
Jumper Wires	M-M	20	
Breadboard		1	

Table 1: contents

4 Hardware

- 1. Connect the COM of the seven-segment display to 5V and dot of the seven-segment to the ground.
- 2. Now connect any one of the pin of the seven-segment to pin no.2(digital).
- 3. Pin no.s 5,6,7,8 of the arduino should be initially connected to ground.
- 4. Now move pin no.s 5,6,7,8 accordingly and for the right combination the second pin of the arduino becomes high and the seven segement display glows.

Truth table				
R	S	A		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Table 2: truth table

The K-map for this truth table will be a two variable K-map and it will be as follows:

Figure 2: k-map

So, the resultant expression of A is A = R'S + RS'.

5 Software

The embedded code for the given circuit is

```
#include <avr/io.h>
#include <util/delay.h>
int A,B,W,X,Y,Z,R,S;
int main (void)
{
         DDRD &= (1 << PD2);
         DDRD &= (1 << PD3);
         DDRD &= (1 << PD4);
         DDRD &= (1 << PD5);
         DDRB &= (1 << PB0);
         DDRB &= (1 << PB1);
         DDRB \mid = (1 << PB5);
         while (1) {
                   W = (PIND&(1 < PD2)) = (1 < PIND2);
                   X = (PIND&(1 < PD3)) = (1 < PIND3);
                   Y = (PIND&(1 < PD4)) = (1 < PIND4);
                   Z = (PIND\&(1 < PD5)) = (1 < PIND5);
                   R = (PINB&(1 << PB0)) == (1 << PINB0);
                   S = (PINB\&(1 < < PB1)) = (1 < < PINB1);
                   A = (!R\&\&!S\&\&W) | | (!R\&\&S\&\&X) | |
                             (R\&\&!S\&\&Y) \mid (R\&\&S\&\&Z);
                   B = ((!R\&\&S) | | (R\&\&!S));
                   if (A<u></u>B)
                   {
                            PORTB = (1 < < 5);
                   else {
                            PORTB = (0 < < 5);
         return 0;
```