Bayesian Lasso logistic regression

Wei Lu

Basic information

Team member: Wei Lu

Github Link:

Theme: Comparison between Bayesian classification models

Compare the simple Logistic regression and Lasso logistic regression with spike-and-slab priors.

Motivation: The classic Lasso regression performs feature selections inherently by shrinking coefficients to zero, but it is difficult to evaluate the significance of these coefficients. Instead, Bayesian Lasso provides an alternative to measure the uncertainty of parameters by credible intervals [1]. There are many types of priors on parameters such as the Laplace priors, the adaptive priors, the spike-and-slab priors, etc [2]. This project will focus on spike-and-slab priors and use the logistic link function to perform classification on the Pumpkin Seeds Dataset. Previous study shows that the frequentist's logistic regression achieves 87.92% accuracy on the same dataset[3]. This project aims to develop a calibrated hierarchical Lasso model to accurately classify the pumpkin seeds with less features. In addition, the posterior distributions of selected/unselected parameters under different situations (e.g. mis-specification, small sample size) will be investigated compared to the baseline model.

Potential approaches:

First, we split the dataset into training data and testing data. Exploratory data analysis will be be performed on the training data, followed by data preprocessing. A simple Bayesian Logistic model will work as an baseline for comparison. The Lasso logistic model will be built following the recipe and references. After the initial evaluation, potential studies might be: (1) to further decrease the prior sensitivity. (2) to investigate the performance of models and the selected features when the data size becomes smaller.

Candidate datasets:

 $\label{lem:main_dataset} Main\ dataset:\ https://www.kaggle.com/datasets/muratkokludataset/pumpkin-seeds-dataset/data$

```
suppressPackageStartupMessages(require(readx1))
pumpkin_df <- read_xlsx("Data/Pumpkin_Seeds_Dataset.xlsx")
head(pumpkin_df)</pre>
```

```
# A tibble: 6 x 13
```

```
Area Perimeter Major_Axis_Length Minor_Axis_Length Convex_Area Equiv_Diameter
  <dbl>
            <dbl>
                                <dbl>
                                                   <dbl>
                                                                <dbl>
                                                                                <dbl>
1 56276
             888.
                                 326.
                                                    220.
                                                                56831
                                                                                 268.
2 76631
            1068.
                                 417.
                                                    234.
                                                                77280
                                                                                 312.
3 71623
            1083.
                                 436.
                                                    211.
                                                                72663
                                                                                 302.
4 66458
            992.
                                 382.
                                                    223.
                                                                                 291.
                                                                67118
5 66107
             998.
                                 384.
                                                    220.
                                                                67117
                                                                                 290.
6 73191
            1041.
                                 406.
                                                    231.
                                                                73969
                                                                                 305.
```

- # i 7 more variables: Eccentricity <dbl>, Solidity <dbl>, Extent <dbl>,
- # Roundness <dbl>, Aspect_Ration <dbl>, Compactness <dbl>, Class <chr>

Backup dataset: https://www.kaggle.com/datasets/erdemtaha/cancer-data/data

```
cancer_df <- read.csv("Data/Cancer_Data.csv")
head(cancer_df)</pre>
```

	id	${\tt diagnosis}$	radius_mean	texture_mean	perimeter_mean	area_mean
1	842302	M	17.99	10.38	122.80	1001.0
2	842517	M	20.57	17.77	132.90	1326.0
3	84300903	M	19.69	21.25	130.00	1203.0
4	84348301	M	11.42	20.38	77.58	386.1
5	84358402	М	20.29	14.34	135.10	1297.0
6	843786	M	12.45	15.70	82.57	477.1
	smoothnes	ss_mean cor	mpactness_mea	n concavity_m	ean concave.po:	ints_mean
1	(0.11840	0.2776	0 0.3	001	0.14710
2	(0.08474	0.0786	4 0.0	869	0.07017
3	(0.10960	0.1599	0 0.1	974	0.12790
4	(0.14250	0.2839	0 0.2	414	0.10520
5	(0.10030	0.1328	0 0.1	980	0.10430
6	(0.12780	0.1700	0 0.1	578	0.08089
	symmetry	mean fract	tal dimension	mean radius	se texture se i	perimeter s

symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se

1	0.2419		0.07871	1.0950	0.9053	8.589
2	0.1812		0.05667	0.5435	0.7339	3.398
3	0.2069		0.05999	0.7456	0.7869	4.585
4	0.2597		0.09744	0.4956	1.1560	3.445
5	0.1809		0.05883	0.7572	0.7813	5.438
6	0.208	37	0.07613	0.3345	0.8902	2.217
	area_se smoo	thness_se	compactness_se	concavity_s	e concave.po	oints_se
1	153.40	0.006399	0.04904	0.0537	3	0.01587
2	74.08	0.005225	0.01308	0.0186	0	0.01340
3	94.03	0.006150	0.04006	0.0383	2	0.02058
4	27.23	0.009110	0.07458	0.0566	1	0.01867
5	94.44	0.011490	0.02461	0.0568	8	0.01885
6	27.19	0.007510	0.03345	0.0367	2	0.01137
	<pre>symmetry_se</pre>	fractal_d	imension_se rad	ius_worst te	xture_worst	<pre>perimeter_worst</pre>
1	0.03003		0.006193	25.38	17.33	184.60
2	0.01389		0.003532	24.99	23.41	158.80
3	0.02250		0.004571	23.57	25.53	152.50
4	0.05963		0.009208	14.91	26.50	98.87
5	0.01756		0.005115	22.54	16.67	152.20
6	0.02165		0.005082	15.47	23.75	103.40
	_	_	_worst compactne	_	• –	
1	2019.0		0.1622	0.6656	0.711	19
2	1956.0	(0.1238	0.1866	0.241	16
3	1709.0	(0.1444	0.4245	0.450)4
4	567.7	(0.2098	0.8663	0.686	39
5	1575.0	(0.1374	0.2050	0.400	00
6	741.6		0.1791	0.5249	0.535	55
	concave.poir	nts_worst a	symmetry_worst :	${ t fractal_dime}$	_	Х
1		0.2654	0.4601		0.11890	
2		0.1860	0.2750		0.08902	
3		0.2430	0.3613		0.08758	
4		0.2575	0.6638		0.17300	
5		0.1625	0.2364		0.07678	
6		0.1741	0.3985		0.12440	NA

References:

[1]: Park, T., & Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103(482), 681-686. https://doi.org/10.1198/016214508000000337

[2]: Chen, S. M., Bauer, D. J., Belzak, W. M., & Brandt, H. (2021). Advantages of Spike and Slab Priors for Detecting Differential Item Functioning Relative to Other Bayesian Regularizing

Priors and Frequentist Lasso. Structural Equation Modeling: A Multidisciplinary Journal, 29(1), 122-139. https://doi.org/10.1080/10705511.2021.1948335

[3]: KOKLU, M., SARIGIL, S., & OZBEK, O. (2021). The use of machine learning methods in classification of pumpkin seeds (Cucurbita pepo L.). Genetic Resources and Crop Evolution, 68(7), 2713-2726. Doi: https://doi.org/10.1007/s10722-021-01226-0