

Ансамбль алгоритмов (Ensemble)

алгоритм, который состоит из нескольких алгоритмов машинного обучения (базовых алгоритмов – base learners)

Простой ансамбль в регрессии:

$$a(x) = \frac{1}{n} \left(b_1(x) + \ldots + b_n(x) \right)$$

Простой ансамбль в классификации:

$$a(x) = \text{mode}(b_1(x), \dots, b_n(x))$$

В чём может быть усложнение?

Ансамбль алгоритмов

$$a(x) = b(b_1(x), \dots, b_n(x))$$

b – мета-алгоритм (meta-estimator),

 b_i – базовые алгоритмы (base learners)

в бустинге - слабые (weak)

Теоретическое обоснование Почему несколько алгоритмов лучше одного...

Ошибка суммы регрессоров

Если ответы регрессоров на объекте – независимые случайные величины с одинаковым матожиданием и дисперсией

$$\xi = \frac{1}{n} (\xi_1 + \dots + \xi_n)$$

$$E\xi = \frac{1}{n} (E\xi_1 + \dots + E\xi_n) = E\xi_i$$

$$\mathbf{D}\xi = \frac{1}{n^2} (\mathbf{D}\xi_1 + \dots + \mathbf{D}\xi_n) = \frac{\mathbf{D}\xi_i}{n}$$

ДЗ А если есть корреляция между базовыми алгоритмами? решите в постановке, что корреляция между любыми двумя алгоритмами равна ρ

Ошибка комитета большинства

Пусть три (независимых) классификатора на два класса с вероятностью ошибки $\it p$

Пусть верный ответ - 0

(1,0,1) p(1-p)p

верный ответ

ошибка

вероятность ошибки

$$p^3 + 3(1-p)p^2 = p^2(3-2p)$$

Ошибка комитета большинства

При малых p ошибка комитета очень мала! При p=0.2 – почти в два раза меньше

Ошибка комитета большинства

Общий случай:

$$\sum_{t=0}^{\lfloor n/2 \rfloor} C_n^t (1-p)^t p^{n-t} \le e^{-\frac{1}{2}n(2p-1)^2}$$

неравенство Хэфдинга

Ошибка экспоненциально снижается с увеличением числа базовых алгоритмов... но это в теории

На практике

Классификаторы / регрессоры точно не являются независимыми

Почему?

На практике

Классификаторы / регрессоры точно не являются независимыми

Почему?

- Решают одну задачу
- Настраиваются на один целевой вектор
- Могут быть из одной модели (ну, 2-3 разных)!

Выход

Пытаться делать алгоритмы разнообразными

Пусть алгоритмы ошибаются, но по-разному: ошибки одних компенсируются правильными ответами других

Пример: подвыборки и подмножества признаков в RF

Ещё почему алгоритмы в ансамбле должны быть разными

одинаковые	похожие	разные	
1111110000 q=0.6	1111110000 q=0.6	1010010111	
1111110000 q=0.6	1111101000 q=0.6	1100110011	
1111110000 q=0.6	1111100100 q=0.6	1111110000	
		1110110011	
$q_{ens} = 0.6$	$q_{ens} = 0.5$	$q_{ens} = 0.7$	
Нет ли здесь обмана?			

Выход

Пытаться делать алгоритмы разнообразными

Пусть алгоритмы ошибаются, но по-разному: ошибки одних компенсируются правильными ответами других

Пример: подвыборки и подмножества признаков в RF

Ещё почему алгоритмы в ансамбле должны быть разными

одинаковые	похожие	разные	
1111110000 q=0.6	1110111000 q=0.6	1010010111	
1111110000 q=0.6	1101110100 q=0.6	1100110011	
1111110000 q=0.6	1011101100 q=0.6	1111110000	
		1110110011	
$q_{ens} = 0.6$	q_ens = 0.8	$q_{ens} = 0.7$	
Нет ли здесь обмана?			

Повышения разнообразия

- «варьирование» обучающей выборки (бэгинг)
 - «варьирование» признаков (Random Subspaces)
 - «варьирование» целевого вектора (ECOC, f(y))
 - «варьирование» моделей (стекинг)
 - «варьирование» в модели

(разные алгоритмы в рамках одной – специальные НС, рандомизация в алгоритме – случайный лес, инициализация в НС)

Обоснования применения ансамблей

Статистическое (Statistical) Вычислительное (Computational)

Функциональное (Representational)

- ошибка может быть меньше
- обучение = оптимизация функции, а ансамбль «распараллеливает» процесс -можно представить функции, которые нельзя было с помощью базовых алгоритмов

Ансамбли

- комитеты (голосование) / усреднение
 - в том числе, усреднение по Коши, калибровка + усреднение
- ECOC (error-correcting output coding)

кодирование целевого вектора

• стекинг (stacking)

построение метапризнаков — ответы алгоритмов на объектах обучающей (под)выборки, обучение на них нового алгоритма

• бэгинг (bagging)

усреднение моделей обученных на бутстреп-подвыборках

- + обобщения (RF)
- бустинг (boosting)

веса объектов обучения, обучение на взвешенной выборке, увеличение весов неверно классифицированных объектов

• «ручные методы»

Комитеты (голосование, Voting Ensembles)

голосование по большинству (Majority vote)

$$a(x) = \text{mode}(b_1(x), \dots, b_n(x))$$

комитеты единогласия в бинарной задаче классификации –

$$a(x) = \min(b_1(x), \dots, b_n(x))$$

обнаружение аномалий: мата-алгоритм – максимум

«тревога при малейшем подозрении»

$$a(x) = \max(b_1(x), \dots, b_n(x))$$

Усреднение

«среднее арифметическое»

$$a(x) = \frac{1}{n} (b_1(x) + \dots + b_n(x))$$

+ любые другие средние (ех: по Колмогорову)

$$a(x) = \frac{1}{n} f^{-1} \left(f(b_1(x)) + \dots + f(b_n(x)) \right)$$

Ранговое усреднение (Rank Averaging)

$$a(x) = \frac{1}{n} \left(\operatorname{rank}(b_1(x)) + \dots + \operatorname{rank}(b_n(x)) \right)$$

ориентировано на конкретный AUC ROC

Усреднение / голосование с весами (weighted averaging)

$$a(x) = \frac{1}{w_1 + \ldots + w_n} (w_1 \cdot b_1(x) + \ldots + w_n \cdot b_n(x))$$

Усреднение

Feature-Weighted Linear Stacking

Области компетентности алгоритмов – линейные регресии

$$a(x) = w_1(x) \cdot b_1(x) + \dots + w_n(x) \cdot b_n(x) =$$

$$= \sum_{t} (\sum_{i} w_{ti} x_i) b_t(x) = \sum_{t,i} w_{ti} x_i b_t(x)$$

Бэгинг (Bagging)

bootstrap aggregating

Каждый базовый алгоритм настраивается на случайной подвыборке обучения

Бэгинг	Подвыборка обучающей выборки берётся с помощью бутстрепа
Пэстинг (Pasting)	Случайная обучающая подвыборка.
Случайные подпространства (Random Subspaces)	Случайное подмножество признаков
Случайные патчи (Random Patches)	Одновременно берём случайное подмножество объектов и признаков
cross-validated committees	k обучений на (k-1)-м фолде

Особенности ансамблирования

Не всегда получается «как было задумано»...

model.fit(X, y)

Бэгинг (Bagging)

- 1. Цикл по t (номер базового алгоритма)
 - 1.1. Взять подвыборку $[X^\prime,y^\prime]$ обучающей выборки [X,y]
 - 1.2. Обучить t-й базовый алгоритм на этой подвыборке:

$$b_t = \operatorname{fit}(X', y')$$

2. Ансамбль

$$a(x) = \frac{1}{n} (b_1(x) + \dots + b_n(x))$$

(для задач регрессии).

Вероятность отбора при бутстрепе (при $m \to \infty$): $1 - \frac{1}{e} \approx 0.632$

Каждый базовый алгоритм обучается ~ на 63% данных Остальные называются – out-of-bag-наблюдениями (ООВ)

~процедура снижения variance в статистическом обучении

OOB-prediction

На ООВ-части выборки можно получить ответы алгоритма Пусть на і-й итерации это часть: OOB_i и мы построили алгоритм b_i

ООВ-ответы бэгинга (ООВ-prediction)

$$a_{\text{OOB}}(x_j) = \frac{1}{|\{i : x_j \in \text{OOB}_i\}|} \sum_{i: x_j \in \text{OOB}_i} b_i(x_j)$$

Можно вычислить ООВ-ошибку бэгинга

хорошая оценка ошибки на тесте похожа на CV-ошибку...

Устойчивость (stable learners) модели –

незначительное изменение оптимальных параметров при взятии подвыборки (SVM, kNN k>3)

В бэгинге используются неустойчивые модели (high variance)!

Но несмещённые (small bias)!

Но тут нет хороших теоретических результатов...

Пример – если выбрать правильную базовую модель для бэгинга

3десь - kNN(1)

Идеи для бэгинга...

Часто признаки делятся / можно разделить на группы:

- по источнику данных (БКИ1, БКИ2, ...)
- по типу признака (вещественный, категориальный, ...)
 - по кодированию (OHE, hash, label, ...)
- по способу агрегирования (PCA, t-SNE, кластеризация,...)

Иногда объекты:

- по источнику данных
 - по времени
- по значениям каких-то признаков (в том числе по кластерам)
- эти деления можно использовать при формировании подвыборок... вопрос как?

Случайный лес (Random Forest)

дальнейшие улучшения независимости базовых классификаторов

бэгинг + случайности при построении деревьев

отдельная лекция

Стекинг (stacking)

Идея: хорошо усреднять алгоритмы, но почему именно усреднять?

$$a(x) = b(b_1(x), \dots, b_n(x))$$

b – мета-алгоритм, который нужно отдельно настроить!

Используем ответы алгоритмов как признаки для нового мета-алгоритма машинного обучения

Блендинг (простейшая форма стекинга)

Блендинг

- термин введён победителями конкурса Netflix

Сейчас блендингом называются простейшие формы стекинга

Недостатки

Используется не вся обучающяя выборка

- можно усреднить несколько стекингов
- можно «состыковать»

Блендинг

Состыковка таблиц

- Долго и не всегда лучше по качеству
- Ответы всё равно надо будет усреднить

Хотим использовать всю обучающую выборку

также можно брать разные разбиения и усреднять

Недостаток

Метапризнаки на обучении и тесте разные!

- регуляризация
- нормальный шум к метапризнакам

Не сильно повышает качество...

На данных реальной задачи mlbootcamp

Использование признаков с мета-признаками

можно добавлять результаты обучения без учителя...

Геометрия стекинга

Геометрия стекинга

Стекинг vs Блендинг

Результаты очень похожи...

Стекинг

- Нужны достаточно большие выборки
- Заточен на работу алгоритмов разной природы Но для каждого м.б. своё признаковое пространство
 - Хорош на практике (бизнес-задачи)

Пример: регрессоры + RF = устойчивость к аномальным значениям признаков

• Метаалгоритм должен минимизировать целевую функцию Не всё так просто... log_regs + log_reg может не справится с Log_loss

• Многоуровневый стекинг

Оправдан только в спортивном анализе данных

Стекинг

• Пространство метапризнаков удобнее признакового, но признаки сильно коррелированны

Но нет хорошей теории на эту тему

- базовые алгоритмы не сильно оптимизируют,
- настраиваются не на целевой признак (на его квадрат, на разницу между каким-то признаком и целевым),
- используют модели ориентированные на разные функционалы качества,
- пополняют множество базовых алгоритмов алгоритмами, которые решают другую задачу (например кластеризаторами).

Дьяконов А.Г. (Москва, МГУ)

ECOC

= Error-Correcting Output Code

Пусть есть задача с L классами, а у нас классификаторы на 2 класса

1. One-vs-All – каждый класс отделяем от остальных

- 0 1000
- 1 0100
- 2 0010
- 3 0001

2. One-vs-One – попарно классы друг от друга

- 0 111---
- 1 0--11-
- 2 -0-0-1
- 3 --0-00

ECOC

3. Допустима произвольная кодировка классов:

- 0 00
- 1 10
- 2 01
- 3 11

4. В том числе, с помощью ЕСОС

- 0 000111
- 1 011100
- 2 101010
- 3 110001

Бустинг: Forward stagewise additive modeling (FSAM)

Центральная идея бустинга

Задача регрессии

$$(x_i, y_i)_{i=1}^m$$

функция ошибки

уже есть алгоритм a(x) строим b(x):

$$a(x_i) + b(x_i) = y_i, i \in \{1, 2, ..., m\}$$

Надо:

$$\sum_{i=1}^{m} L(y_i, a(x_i) + b(x_i)) \rightarrow \min,$$

Бустинг: Forward stagewise additive modeling (FSAM)

- **0.** Начать с $a_0(x) \equiv 0$
- 1. Цикл

$$(b,\eta) = \underset{b,\eta}{\arg\min} \sum_{i=1}^{m} L(y_i, a_{k-1}(x_i) + \eta b(x_i))$$

$$a_k = a_{k-1} + \eta b$$

Пример: L₂-бустинг

$$\eta = 1$$
, $L(y,a) = (y-a)^2$

$$\sum_{i=1}^{m} (y_i - a_{k-1}(x_i) - b(x_i))^2 \to \min$$

тут м.б. обычная регрессия

градиентный бустинг – отдельная лекция...

AdaBoost: постановка задачи

– FSAM для бинарной задачи классификации $Y = \{+1, -1\}$ базовые классификаторы генерируют классы

$$b(x) \in \{+1, -1\}$$

Ансамбль

$$a(x) = \operatorname{sgn}\left(\sum_{j=1}^{s} \alpha_j b_j(x)\right)$$

exponential loss

$$L(y,a) = \exp\left(-y\sum_{j=1}^{s} \alpha_j b_j(x)\right)$$

AdaBoost: весовая схема

У каждого объекта – вес (распределение!)

$$\sum_{t=1}^{m} w^{t} = 1$$

«ошибка, порождённая распределением» (не имеет общего с экспоненциальной ошибкой – просто обозначение) –

$$e(a) = \sum_{\substack{t=1,\\a(x^t) \neq y(x^t)}}^{m} w^t$$

AdaBoost: алгоритм

0. Зададим	начальное	вероятностное			
распределение (веса)					

$$W = \left(\frac{1}{m}, \dots, \frac{1}{m}\right)$$

1. Цикл по j от 1 до s

1.1. Построить классификатор $\boldsymbol{b}_{\boldsymbol{j}}$, который

допускает ошибку $e(b_{_{j}})$

(вычисляется по распределению W) предполагаем, что $0 < e(b_i) < 0.5$

1.2. Пусть
$$\alpha_j = \frac{1}{2} \ln \left(\frac{1 - e(b_j)}{e(b_j)} \right)$$

«Перестроить» распределение

$$W = (w^1, \dots, w^m)$$
:

$$w^{t} = \frac{w^{t} \exp(-\alpha_{j} y(x^{t}) b_{j}(x^{t}))}{\sum_{t=1}^{m} w^{t} \exp(-\alpha_{j} y(x^{t}) b_{j}(x^{t}))}$$

AdaBoost: коэффициент

Зависимость коэффициента от ошибки

вариант: перенастраивать веса только объектов, на которых ошибки...

AdaBoost: вывод формул

экспоненциальная ошибка:

$$L(y, a(x)) = \exp\left(-y\sum_{j=1}^{s} \alpha_j b_j(x)\right)$$

распишем (выделим последний «только что построенный» базовый)

$$\sum_{t=1}^{m} w_t \exp\left(-y_t \sum_{j=1}^{s-1} \alpha_j b_j(x_t) - y_t \alpha_s b_s(x_t)\right) = \exp(H) \sum_{t=1}^{m} w_t \exp\left(-y_t \alpha_s b_s(x_t)\right)$$

можно множитель не учитывать

$$\sum_{t=1}^{m} w_t \exp\left(-y_t \alpha_s b_s(x_t)\right) = \sum_{t: y_t = a_s(x_t)} w_t \exp\left(-\alpha_s\right) + \sum_{t: y_t \neq a_s(x_t)} w_t \exp\left(\alpha_s\right) =$$

$$= (1 - e) \exp\left(-\alpha_s\right) + e \exp\left(\alpha_s\right)$$

AdaBoost: вывод формул

в итоге ошибка
$$\propto (1-e)\exp(-\alpha_s) + e\exp(\alpha_s)$$

если хотим найти оптимальный множитель, продифференцируем и приравняем к нулю

$$\alpha_s = \frac{1}{2} \log \frac{1 - e}{e}$$

теперь смотрим на формулу ошибки

$$\exp(H) \sum_{t=1}^{m} w_t \exp(-y_t \alpha_s b_s(x_t))$$

и пересчёта весов... это просто учёт в весах новых ответов

всегда происходит умножение...

AdaBoost: пример

объектов пропорционален весу...

- полученная комбинация классификаторов

AdaBoost: минутка кода

AdaBoost: недостатки

Бустинг плох, когда есть выбросы.

В приведённом примере бустинг плох над логистической регрессией (над стабильными алгоритмами)!

Ручные методы ансамблирования

Метод Ефимова

- y_{FE} Functional Ensembling response
- y_{GBM} Generalized Boosting response

	$y_{FE} \leq 0.1$	$0.1 < y_{FE} < 0.9$	$y_{FE} \geq 0.9$
$y_{GBM} \leq 0.1$	min	min	0.55
$y_{GBM} \leq 0.1$	0.1	mean	0.9
$y_{GBM} \geq 0.9$	0.75	max	max

Amazon Employee Access Challenge

Итог: ключевые идеи ансамблирования

- 1. Объединение ответов разных алгоритмов усреднение / голосование / стекинг ...
- 2. Повышения разнообразия / независимости базовых алгоритмов «варьирование» признаков, объектов, моделей, в модели и т.п. Использование подвыборок / весов
 - 3. Ансамблирование: параллельное и последовательное

Parallel ensembles – все алгоритмы строятся независимо Идея: усреднить (high complexity, low bias)-модели, для снижения variance

Sequential ensembles – алгоритмы строятся последовательно

Общая классификация главных мета-алгоритмов

	разброс (model's variance)	смещение (model's bias)	функциональна я выразимость	основа техники
Bagging	VMAULIII2AT			bootstrap
«среднее»	уменьшает			bootstrap
Boosting				градиентный
«взвешенное		уменьшает	(увеличивает)	спуск
среднее»				(сейчас)
Stacking	(уменьшает)	(уменьшает)	увеличивает	суперпозиция
Мета-алгоритм				алгоритмов