

HuMalN: <u>Human- and Machine-Intelligent Network software elements</u>

Image Classification

Information parsing

Quality Annotation

Text Detection

Transcription

Workflows

Feedback-loops

Service Enablement

Cost-Efficiency Analysis

HuMaIN Software Elements

Human-

Intelligent

Services

Cyber-Human

Coordination

Machine-

Intelligent

Services

Execution

Environments

Icaro Alzuru, Andréa Matsunaga, José A.B. Fortes

Introduction and Motivation

Data scientists in all communities spend the majority of their time and effort collecting, integrating, curating, transforming, and assessing quality before actually performing discovery analysis.

Data is often in non-structured form, not compatible with analytics tools.

Two main approaches to deal with these challenges:

☐ Crowdsourcing (Human-Intelligent processes)

☐ Machine Learning (Machine-Intelligent processes)

Each method has its strengths and weaknesses. However, very little has been done to **simultaneously** take advantage of both types of solutions.

Usually, implementing crowdsourcing or machine learning solutions demand a lot of **time** and **resources**.

The vision of the Human- and Machine-Intelligent Network (**HuMalN**) project is to accelerate scientific digitization through fundamental advances in the **integration and mutual cooperation between human and machine processing** in order to handle practical hurdles and bottlenecks present in data digitization.

The data collected in the Integrated Digitized Biocollections (iDigBio) project will be used as a use case or motivating example for information extraction. https://www.idigbio.org

012345678910

Goals

- Research and development of HuMaIN software elements in four main areas:
 - ☐ Human-Intelligent services
 - Machine-Intelligent services
 - ☐ Cyber-Human Coordination
- ☐ Execution Environments
- Providing a platform for reusing the HuMaIN software elements as RESTful services in other projects.

Experimental Progress and Results

• Extract, Transform, Load

■ Optical Character

Natural Language

Recognition

Processing

Clustering

Consensus

Workflow

Execution Tracker

Data Repository

Deployment on Clouds

Virtual Machine Images

- The hardware platform, software, and web site for the HuMaIN Software Elements project was setup: http://humain.acis.ufl.edu
- OCRopy (https://github.com/tmbdev/ocropy) is being tested as the OCR software for the HuMaIN project
 - ☐ Several **scripts** have been created to automatize the process, detecting the language of the text, and extracting some fields: date, country.
 - ☐ Cropping the text area of the image has importantly improved the quality of the OCR result.
- ❖ These first tries of the OCR process made us decide beginning by the 5th step of the Development Plan:
 - ☐ Human-only and machine-only workflows were setup for digitizing the label of scientific data from the iDigBio project.
 - ☐ 2 Hybrid workflows were also prepared and we expect to demonstrate these perform better than the human-only or machine-only approaches.
 - ☐ Anybody can **help us** to complete the crowdsourcing tasks at: http://humain.acis.ufl.edu/app.html

Development Plan and Deliverables

1. Machine-Intelligent Components

- Adding an interface to OCRopy tool to manage training sets for different fonts
- ☐ Expose OCRopy to a set of alternative methods to deal with noise
- ☐ Selecting and integrating Carrot² clustering algorithms and parameters

2. Human-Intelligent Components

- ☐ Create a set of Javascript sensors to detect the number, time, and sequence of user interactions
- ☐ Extending PyBossa to support configurable and reusable microtasks

3. Machine-Intelligent Services Enablement

- ☐ Implementing the automatic generation of RESTful services using CLAWS (Command-Line Application Wrapper service)
- ☐ Extending PyBossa to support configurable and reusable microtasks

4. Human-Intelligent Services Enablement

- ☐ PyBossa with management of batches of tasks and user qualification
- ☐ Set of complex tasks making use of multiple developed micro-tasks
- □ Evaluation of alternative human-intelligent workflows using sensors from step 2

5. Workflows with Human- and Machine-Intelligent Services

- ☐ Build a workflow with only machine-intelligent services (image binarization, OCR, and NLP)
- ☐ Build a workflow with only human-intelligent services (image selection, text interpretation, and transcription)
- Build a workflow where human- and machine-intelligent services improve machine-only and human-only processes.

6. Feedback-loops between Human- and Machine-Intelligent Services

- Online feedback loop workflow with CrowdConsensus controlling a multi-step text interpretation workflow.
- Online feedback loop workflow with OCR errors triggering need for additional training sets.
- Online feedback loop workflow with chain of user expertise controlling the need for assessment of a worker

7. Execution Environments

- ☐ Dedicated private compute and storage cloud for HuMaIN research and development.
- ☐ Middleware to support workflows and feedback loops.
- ☐ Tutorials and how-to documents

8. Cyber-Human System Cost-Efficiency

- ☐ Cost-effect comparative analysis of 1. and 7.
- ☐ Surveys with selected customers of HuMaIN.

Challenges

- OCR (Optical Character Recognition): Text mixed with other elements (cropping), different fonts and sizes, handwritten text, different languages, underlined text, overlapped text, OCR performance.
- ❖ Information extraction: Data cleaning, multiple formats, incomplete data / completion, natural language processing, field value standardization, consensus, process efficiency, deduplication, ambiguity, spelling errors, dictionaries, abbreviations / data truncation.

Future Work

- The 5th step of the Development Plan will be completed
- ❖ Based on the gained experience, we are going to continue with steps 2 and 1 of the Development Plan, making these software components reusable and the improving the workflows, environment, and efficiency.

Summary and Conclusions

- Human- or machine-only approaches for information extraction have weaknesses that the integration of human- and machine-intelligent processes can improve.
- Information extraction is a complex problem with imperfect solutions that can rescue the knowledge buried in not digitized formats.
- HuMaIN project will provide a platform of reusable services for the human- and machineintelligent processing.

Acknowledgements

iDigBio (Integrated Digitized Biocollections): National Science Foundation's Advancing Digitization of Biodiversity Collections Program (Cooperative Agreement EF-1115210).

