Assignment 2

Optimal Estimation and Kalman Filter Fall 2020

Due date: October 9, 2020 at 1:00 PM $\,$

Problem 1. A random process with the PSD of

$$S_v = \frac{\omega^2 + 1}{\omega^2 + 4}$$

is to be filtered with an LTI system to produce a white noise random process with variance $\sigma_u^2 = 4$ at the output. What should be the differential equation of the LTI system.

Problem 2. Consider the system in Fig. 1 where the signal and noise power spectral density are given as

$$S_x = \frac{2}{\omega^2 + 2},$$

$$S_v = 1.$$

Assuming zero mean estimation error, calculate and compare the mean square errors of the causal and non-causal Wiener filter.

Figure 1:

Problem 3. An estimator of a parameter is called unbiased if its expected value is equal to the true value of the parameter. Let \bar{X} and S_x^2 be the sample mean and variance for a set of random variables $\{x_1, x_2, \ldots, x_n\}$ of size n with mean μ_x and variance σ_x^2 . Similarly, let \bar{Y} and S_y^2 be the sample mean and variance for a set of random variables $\{y_1, y_2, \ldots, y_m\}$ of size m with mean μ_y and variance σ_y^2 . Further suppose that $\mathbf{E}[(x_i - \mu_x)(x_j - \mu_x)] = 0$ and $\mathbf{E}[(y_i - \mu_y)(y_j - \mu_y)] = 0$ for $i \neq j$.

a. Is $\bar{X}^2 - \bar{Y}^2$ an unbiased estimator for the parameter $\mu_x^2 - \mu_y^2$? What happens to the bias as the sample sizes of n and m increase to ∞ ?

b. Assuming $\sigma_x^2 = \sigma_y^2 = \sigma^2$, show that

$$S_p = \frac{(n-1)S_x^2 + (m-1)S_y^2}{n+m-2}$$

is an unbiased estimator of σ^2 .

(Hint:
$$S_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{X})^2$$
 and $S_y^2 = \frac{1}{m-1} \sum_{i=1}^m (y_i - \bar{Y})^2$)

Problem 4. A system has the transfer function

$$G(s) = \frac{1}{s-3}$$

If the input is an impulse, there are two solutions for the output x(t) that satisfy the transfer function. One solution is causal and unstable, the other solution is anti-causal and stable. Find the two solutions.

Problem 5. Suppose \bar{X}_1 and \bar{X}_2 are the sample means of random normal samples of size n such that $\bar{X}_1 \sim \mathcal{N}(\mu, \frac{\sigma_1^2}{n})$ and $\bar{X}_2 \sim \mathcal{N}(\mu, \frac{\sigma_2^2}{n})$. Furthermore suppose that \bar{X}_1 and \bar{X}_2 are independent.

- a. Show that $T = \omega \bar{X}_1 + (1 \omega)\bar{X}_2$ is an unbiased estimator for μ . i.e. $\mathbf{E}[T] = \mu$.
- b. Find ω such that T has the minimum variance among all the estimators.

Problem 6. Suppose a signal x(t) with power spectral density

$$S_x(s) = \frac{1 - s^2}{s^4 - 5s^2 + 4}$$

is corrupted with additive white noise v(t) with a power spectral density $S_v(s) = 1$. Find the optimal causal Wiener filter to extract the signal from the noise corrupted signal.