Unit1

- 1. What is finite automaton? Briefly explain with suitable example the acceptability of a string by a finite automaton.
- 2. Compare between Mealy and Moore models.
- 3. Construct DFA accepting all strings w over {a, b} such that the number of a's in w is 3 mod 4.
- 4. Define Grammar. Also explain what is a language generated by a grammar. Give examples.
- 5. Compare between deterministic and non-deterministic finite automaton. Give suitable examples.
- 6. Write a note on operations on Languages.
- 7. Explain the process of construction of minimum automaton. Give suitable example to explain the concept.
- 8. Construct a DFA accepting all strings over $\{a, b\}$ ending in ab.
- 9. Construct a grammar G generating $\{xx \mid x \in \{a, b\}^*\}$
- 10. If G = ({S}, {0,1}, {S \rightarrow 0S1, S \rightarrow Λ }, S), find L(G).
- 11. Define Ambiguous Grammar. Find if the grammar G with the following productions is ambiguous?

$$S \rightarrow SbS$$
 $S \rightarrow a$

- 12. Write a note on classification of Grammar.
- 13. Define an automaton. Explain its various components.
- 14. Construct a Mealy Machine which is equivalent to the Moore machine given by the following table.

Present state	Nex	Output	
	a=0	a=1	
->q0	q3	q1	0
q1	q1	q2	1
q2	q2	q3	0
q3	q3	q0	0

- 15. Construct a DFA accepting all the string w over {0, 1} such that the number of 1's in w is 3 mod 4.
- 16. Construct a grammar G accepting the set L of all strings over {a, b} having
- 17. Construct a finite automaton equivalent to (0+1)*(00+11)(0+1)*
- 18. State and prove Pumping Lemma for regular sets.

Unit2

- 1. Prove that $(a+b)^* = a^*(ba^*)^*$.
- 2. Explain with suitable example the leftmost derivation and rightmost derivations. Give example.
- 3. What is meant by ambiguity in context free grammar? Give example to explain the concept.
- 4. Write a note on Chomsky Normal Form.
- 5. State and prove pumping lemma for regular sets.
- 6. Draw the transition diagram for the expressions
- i. a^*+ba^*
- ii. *a*b+ba**
- 7. State and prove pumping lemma for regular sets.
- 8. Give a regular expression for representing the set L of strings in which every 0 is immediately followed by at least two 1's.
 - Also prove that the regular expression $R=\lambda+1*(011)*(1*(011)*)*$ also describes the same set of strings.
- 9. Explain the steps for reduction of grammar to Chomsky normal form.
- 10. Convert the nondeterministic systems to deterministic systems.
- 11. State and prove Arden's theorem.
- 12. What is a derivation tree? Generate the derivation tree for the string aabaa using the grammar G with following set of productions

$$S \rightarrow aAS \mid a \mid SS$$

$$A \rightarrow SbA \mid ba$$

13. Define pushdown automata. Explain its design.

- 14. What is context free grammar? Construct a context free grammar G
- 15. Define ambiguous grammar. Find if the following set of production of a grammar make it ambiguous?

 $P:S \rightarrow if b then U$

 $S \rightarrow if b then U else S$

 $S \rightarrow a$

 $U \rightarrow for c do S$

 $U \rightarrow a$

- 16. Show that L= { a_p / p is a prime} is not regular.
- 17. Define Regular grammar. Also Generate the transition diagram for the following regular expressions.

a*b(a+b)*

a*+b

18. What is derivation tree? Give example to explain the concept.

Unit3

- 1. Briefly explain the structure and operation of Push down automata.
- 2. Write a note on representation of Turing machine. VEL OF EDUCATION
- 3. Design a Turing machine to recognize all strings consisting of even number of a's
- 4. Writ a note on model of Linear Bounded Automaton.
- 5. Write a note on nondeterministic Turing machine.
- 6. Write a note on properties of recursive languages.
- 7. Explain the Linear Bound Automata Model.
- 8. Construct a PDA accepting L= $\{wcw^T | w \in \{a, b\}^*\}$
- 9. Write a note on Halting problem of Turing Machine.
- 10. Design a Turing Machine that accepts $\{0^n1^n | n \ge 1\}$
- 11. What is Turing Machine? Design a Turing Machine to recognize all strings consisting of an even number of 1's.
- 12. Explain the structure and operation of pushdown automata.
- 13. What is Turing machine? Explain its composition and its operation.
- 14. Describe the characteristics of a linear bound automata model.
- 15. What are the ways in which we can represent Turing machines? Explain.
- 16. Consider the Turing machine with five states with initial state q_1 and final state q_5 and the transition table given below.

Present state	Tape symbol		
	b	0	1
->q1	1Lq2	0Rq1	
q2	bRq3	0Lqq2	1lq2
q3		bRq4	bRq5
q4	0Rq4	0Rq4	1Lq4
q5	0Lq2		

Write the computation sequence of the input string 00.

- 17. Write a note on unsolvable problems.
- 18. Design a Turing machine that accepts $\{0^n1^n | n \ge 1\}$

MIx

- 1. Briefly explain with example the steps of construction of minimum automaton.
- 2. Consider the grammar G given by

 $S \rightarrow OSA12$ $S \rightarrow O12$

Test whether (a) 00112 € L(G) (b) 001122 € L(G)

- 3. Construct a DFA with reduced states equivalent to the regular expression 10+ (0+11))0*1
- 4. Design a Turing Machine that accepts $\{a'' 1'' \mid n \ge 1\}$

- 5. Write a note on Universal Turing machines
- 6. Briefly outline the halting problem of Turing machine.
- 7. Construct a DFA with reduced states equivalent to the regular expression 10+(0+11)0*1
- 8. Let G be the grammar with productions
 - 1. $S \rightarrow OB \mid 1A$,
 - 2. $A \rightarrow 0 / 0S / 1AA$
 - 3. $B \rightarrow 1 \mid 1S \mid OBB$

For the string 00110101, find

- 4. the leftmost derivation
- 5. rightmost derivation
- 9. Consider a Mealy machine represented by the figure given below.

Construct a Moore machine equivalent to this Mealy machine.

- 10. What is regular set? Is $L=\{a^{2n} \mid n \ge 1\}$ regular?
- 11. Construct the finite automaton equivalent to the regular expression (0+1)*(00+11)(0+1)*
- 12. Write a note on operations on language.
- 13. Construct a deterministic automaton equivalent to

 $M=(\{q0, q1\}, \{0,1\}, \delta, q0, \{q0\})$ where δ is defined by its state table give below.

State/∑	0	1
->q0	q0	q1
q1	q1	q1,q1

- 14. Find if the set $L=\{ww\mid w\in\{a,b\}^* \text{ is not regular.} \}$
- 15. Write a note on multitape Turing machines.
- 16. Briefly describe Halting problem.
- 17. Describe the sets represented by the following regular expressions.
 - a. (a+b)*(aa+bb+ab+ba)*
 - b. (aa)*+(aaa)*
 - c. $(1+01+001)*(\Lambda+0+00)$
 - d. a+b(a+b)*
 - e. ab*a

Filename: toc imp ques.docx

Directory: C:\Users\jayesh\OneDrive\Documents

Template:

C:\Users\jayesh\AppData\Roaming\Microsoft\Templates\Normal.do

tm

Title: Subject:

Author: ramesh verma

Keywords: Comments:

Creation Date: 26-07-2023 11:11:00 PM

Change Number: 25

Last Saved On: 27-07-2023 10:08:00 PM

Last Saved By: ramesh verma
Total Editing Time: 82 Minutes

Last Printed On: 27-07-2023 10:08:00 PM

As of Last Complete Printing
Number of Pages: 3

Number of Words: 858 (approx.)

Number of Characters: 4,894 (approx.)