Complex #'s Day 2

HW debrief

Demoivres ----> Trig formulas!

HW sneak preview

2020-21

#12 solve
$$z^{3} = 1$$
 algebraically

 $z^{2}-1=0$ old school way:

 $|1| | 0 | 0 | -|$
 $|1| | 1 | 0 | 0$
 $|2-1|(z^{2}+2+1)=0$
 $|2-1|(z^{2}+2+1)=0|$
 $|2-1|+\sqrt{1-4(1)(1)}|$
 $|2-1|+\sqrt{1-4(1)(1)}|$
 $|2-1|+\sqrt{1-4(1)(1)}|$
 $|2-1|+\sqrt{1-4(1)(1)}|$
 $|2-1|+\sqrt{1-4(1)(1)}|$

new school way:

$$z^{3} = r^{3} \operatorname{cis} 3\theta = 1$$

$$\implies r = 1$$

$$\operatorname{cis} 3\theta = 1$$

$$\operatorname{cos} 3\theta = 1$$

$$3\theta = 2\pi k$$

$$\theta = \frac{2\pi k}{3}$$

$$\theta \in \left\{0, \frac{2\pi}{3}, \frac{4\pi}{3}\right\}$$

$$cis 0$$
, $cis \frac{2\pi}{3}$, $cis \frac{4\pi}{3}$

This group is isomorphic to the <u>rotation</u> group of the equilateral triangle **C3**

So what group of numbers would be isomorphic to the rotation group of the regular nonagon (nine sides)

$$z^9 = 1$$

$$360 \div 9 = 40$$

1*cis*80

Generating the double angle formulas using Demoivres! $cos2\theta$, $sin2\theta$

$$(cis\theta)^2 = (cos\theta + isin\theta)^2$$

$$cis2\theta = cos^2\theta + 2icos\theta sin\theta - sin^2\theta$$

$$cos2\theta + isin2\theta = (cos^2\theta - sin^2\theta) + 2icos\theta sin\theta$$

$$cos2\theta = cos^2\theta - sin^2\theta$$

$$sin2\theta = 2cos\theta sin\theta$$

Tangent is a little trickier

$$z = 1 + itan\theta$$

$$z^2 = (1 + i tan\theta)^2$$

$$=1-tan^2\theta+2itan\theta$$

$$\tan 2\theta = \frac{Im(z^2)}{Re(z^2)}$$

$$tan2\theta = \frac{2tan\theta}{1 - tan^2\theta}$$

Try sine (3 Θ), tan(3 Θ) from your homework, #'s 17, and 20
Friendly reminder: We didn't assign ALL of the Hproblems tonight. Check the assignment sheet!