Business Report

SMDM Project Business Report DSBA

Sanjay Srinivasan

PGP-DSBA Online

JULY' 21 Batch

Date: 20-02-2022

<u>INDEX</u>

S. No	Contents	Page No
1.	Problem - 1	6
	Summary	6
	Introduction	6
	Sample Dataset	6
	Exploratory Data Analysis	6
	Checking for missing values in the dataset	6
	1) Analysis. Read the data as an appropriate Time Series data and plot the data.	7
	2) Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.	7
	3) Split the data into training and test. The test data should start in 1991.	12
	4. Build all the exponential smoothing models on the training data and evaluate the model	13
	using RMSE on the test data. Other models such as regression, naïve forecast models and simple	
	average models. should also be built on the training data and check the performance on the	
	test data using RMSE.	
	5. Check for the stationarity of the data on which the model is being built on using appropriate	25
	statistical tests and also mention the hypothesis for the statistical test. If the data is found to be	
	non-stationary, take appropriate steps to make it stationary. Check the new data for	
	stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.	
	6. Build an automated version of the ARIMA/SARIMA model in which the parameters are	29
	selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate	
	this model on the test data using RMSE.	
	7. Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training	33
	data and evaluate this model on the test data using RMSE.	
	8. Build a table (create a data frame) with all the models built along with their corresponding	37
	parameters and the respective RMSE values on the test data.	
	9. Based on the model-building exercise, build the most optimum model(s) on the complete	38
	data and predict 12 months into the future with appropriate confidence intervals/bands.	
	10. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.	40

List Of Figures

S.No	Content	Page No
1.1	Dataset Sample	6
1.2	Datatypes of the variable	6
1.3.1	Check null values	6
1.3.2	Checking NaN values	6
1.4	Initialising Date as index Column	7
1.5	Plotting Rose wine data	7
1.6	Rose wine sales data spread.	7
1.7	Rose wine sales across years	8
1.8	Rose wine sales across months	8
1.9	Monthwise wine sales across years	9
1.10	Monthwise wine sales across years	9
1.11	Decompose data form the original dataset for Rose wines (Additive model)	10
1.12	Trend, Seasonality and residual values after decomposing the original data for Rose wines (Additive model)	10
1.13	Decompose data form the original dataset for Rose wines (Multiplicative model)	11
1.14	Trend, Seasonality and residual values after decomposing the original data for Rose wines (Multiplicative model)	11
1.15	Last 5 values for Training data	12
1.16	First 5 values for testing data	12
1.17	Plotting Training and test dataset for Rose wines	12
1.18.1	Generating numerical time instance for both training and test dataset for Rose wines	13
1.18.2	Loading numerical time into the dataframe	13
1.19	Initializing Linear Regression method	13
1.20	Predicting for training dataset	13
1.21	Predicting for test dataset	13
1.22	Ploting original and predicted train and test datas using linear regression	14
1.23	RMSE and MAPE value Training data	14
1.24	RMSE and MAPE value Test data	14
1.25	Loading RMSE and MAPE value Test data into dataframe	14
1.26	Predicting values for training data using naïve approach	14
1.27	Predicting values for test data using naïve approach	14
1.28	Plotting the predicted values for train and test data using naïve approach	15
1.29	RMSE and MAPE value Training data	15
1.30	RMSE and MAPE value Test data	15
1.31	Loading RMSE and MAPE value Test data into dataframe	15
1.32	Taking mean of Rose wine sales training data	15
1.33	Taking mean of Rose wine sales test data	16
1.34	Plotting the Simple Average data, train and test data	16
1.35	RMSE and MAPE value Training data	16
1.36	RMSE and MAPE value Test data	16
1.37	Loading RMSE and MAPE value Test data into dataframe	16
1.38	training data	17
1.39	Making data from training data for moving average	17
1.40	Plotting Moving average data for rolling 2 point	17
1.41	Plotting Moving average data for rolling 2,4,6,9 point	17
1.42	Plotting Moving average data for rolling 2 point for training and test data	18
1.42	Plotting Moving average data for rolling 4 point for training and test data	18
1.43	Plotting Moving average data for rolling 6,9 point for training and test data	18
1.45	load Moving average data for rolling 2,4,6,9 into the dataframe	19
1.45	RMSE and MAPE Moving average data for rolling 2,4,6,9	19
1.47	Loading MA data for rolling 2,4,6,9 of RMSE and MAPE value Test data into dataframe	19
1.47	Intializing the Simple Exponential Smoothing	19
	predicting values for the Simple Exponential Smoothing	20
1.49		20

1.5.2 RMSE and MARE value for the test data using Simple Exponential Smoothing 20 1.5.3 RMSE and MARE value for the test data using Simple Exponential Smoothing 21 1.5.4 Intabilizing the Double Exponential Smoothing 21 1.5.5 Predicting the values using Double Exponential Smoothing 21 1.5.5 RMSE and MARE for It rest data 21 1.5.6 RMSE and MARE for It rest data 21 1.5.7 RMSE and MARE for It rest data 21 1.5.9 Setting BX and MARE for It rest data into the data into	1.50	Plotting predicted values for the Simple Exponential Smoothing	20
1.53 MMS and MARE value for the text data using Simple Exponential Smoothing 20 1.54 Initiations the Double Exponential Smoothing 21 1.55 Predicting the values using Bouble Exponential Smoothing 21 1.56 RMSS and MARE for the values using Bouble Exponential Smoothing 21 1.57 RMSS and MARE for the values using Bouble Exponential Smoothing 21 1.58 RMSS and MARE for text data into the data/rome 21 1.59 publishing DTS predicted output 22 1.60 Finding MARS and MARE for cell dirent Alpha and beta values 22 1.61 Proteing MARS and MARE for cell dirent Alpha and beta values 22 1.62 Trining for least RMSE and MARE value from the different ALPHA and BETA values 23 1.63 Initial ling for least RMSE and MARE value from the different ALPHA and BETA values 23 1.64 Princing the least RMSE and MARE value from the different ALPHA and BETA values 23 1.65 Predicting the values from the state data 23 1.66 Princing the least RMSE and MARE values from the data from the Alpha and RMSE and MARE values from the data from the Alpha and RMSE and MARE values from the data from the Alpha and RMSE and MARE values from the data from the Alpha and RMSE and MARE values from the data from the Alpha and RMSE and MARE values from the data from the Alpha and RMSE and RMSE and MARE for different alpha, beta, and gamma values into the	1.51	RMSE and MAPE value for the training data using Simple Exponential Smoothing	20
Incidation the Double Exponential Smoothing	1.52	RMSE and MAPE value for the test data using Simple Exponential Smoothing	20
1.55 Predicting the values using Double Exponential Smoothing 21 1.56 RMST and MARP For training data 21 1.57 RMSE and MARP For test data 21 1.58 RMSE and MARP For test data into the dataframe 21 1.59 Infoliting RMSE and MARP For test data into the dataframe 22 1.60 Prioring RMSE and MARP For different Alpha and beta values 22 1.61 Prioring RMSE and MARP For different Alpha and beta values 22 1.62 Infinity for less th RMSE value of off frent and phen beta values 23 1.63 Initializing the rest MARP value from the different ALPHA and BETA values 23 1.64 Predicting the values fron training data 23 1.65 Predicting the values fron train data 23 1.66 Proliting predicted from and best values 24 1.67 PRIORITY predicted from and best values 24 1.68 RMSE and MARP values fron train data 24 1.69 RMSE and MARP values fron train data 24 1.70 RMSE and MARP values fron train data 24 1.71 RM	1.53	RMSE and MAPE value for the test data using Simple Exponential Smoothing	20
MMSE and MAPE for training data	1.54	Initializing the Double Exponential Smoothing	21
1.57 RMSE and MAPE for test data 21 1.58 RMSE and MAPE for test data into the dataframe 21 1.59 plotting PSS predicted by the product output 22 1.60 Finding RMSE and MAPE for different Alpha and beta values 22 1.61 plotting for less FMSE value of different alpha beta values 22 1.62 Finding the least RMSE and MAPE value for the different ALPHA and BETA values 23 1.63 Initializing the TES 23 1.64 Predicting the values from test data 23 1.65 Predicting the values from test data 23 1.66 Protting predicted train and test values 24 1.67 RMSE and MAPE values from test data 24 1.68 RMSE and MAPE values from test data 24 1.69 RMSE and MAPE values from test data 24 1.69 RMSE and MAPE values from test data 24 1.69 RMSE and MAPE values from test data 24 1.61 RMSE and MAPE values from test data 24 1.61 RMSE and MAPE value from test data 24	1.55	Predicting the values using Double Exponential Smoothing	21
MSS and MAPF for test data into the dataframe 21	1.56	RMSE and MAPE for training data	21
	1.57	RMSE and MAPE for test data	21
Finding RMSE and MAPE for different Alpha and beta values 22	1.58	RMSE and MAPE for test data into the dataframe	21
	1.59	plotting DES predicted output	22
Finding the least RMSE and MAPE value from the different ALPHA and BETA values	1.60	Finding RMSE and MAPE for different Alpha and beta values	22
Initializing the TES	1.61	plotting for least RMSE value of different alpha n beta values	22
Predicting the values from training data 23	1.62	Finding the least RMSE and MAPE value from the different ALPHA and BETA values	23
1.644 Predicting the values from training data 23 1.656 Predicting the values from test data 24 1.677 RMSE and MAPE values from train data 24 1.688 RMSE and MAPE values from train data 24 1.689 RMSE and MAPE values from train data 24 1.680 RMSE and MAPE for crest data into the dataframe 24 1.700 RMSE and MAPE for creft drient alpha, beta, and gamma values into the dataframe 24 1.701 RMSE and MAPE for different alpha, beta, and gamma values and loading into the dataframe 25 1.711 Finding least RMSE and MAPE for different alpha, beta, and gamma values and loading into the dataframe 25 1.721 Finding least RMSE and MAPE for different alpha, beta, and gamma values and loading into the dataframe 25 1.722 Finding the p-value and plotting Rolling mean and standard deviation with original data 26 1.733 Finding the p-value and plotting Rolling mean and standard deviation with original data 26 1.734 ACF plot for original data 26 1.745 ACF plot for original data 27 1.75 ACF plot for original data 27		Initializing the TES	
1.65 Predicting the values from test data 23 1.66 Plotting predicted train and test values 24 1.67 RMSE and MAPE values from test data 24 1.68 RMSE and MAPE values from test data 24 1.69 RMSE and MAPE values from test data 24 1.70 RMSE and MAPE for test data into the dataframe 24 1.71 Finding least RMSE and MAPE for different alpha, beta, and gamma values and loading into the dataframe 25 1.71 Finding the p-value and plotting Rolling mean and standard deviation with original data. 25 1.72 Finding the p-value and plotting Rolling mean and standard deviation with original data. 26 1.73 Finding the p-value and plotting Rolling mean and standard deviation with original data. 26 1.74 AFC plot for original data 26 1.75 AFC plot for original data 26 1.75 AFC plot for original data 27 1.76 PACF plot for original data 27 1.77 PACR plot for original data 27 1.78 Finding stationarity and p-value for train data 28		Predicting the values from training data	
1.66 Plotting predicted train and test values 24 1.67 RMSE and MAPE values from train data 24 1.68 RMSE and MAPE values from train data 24 1.69 RMSE and MAPE for different alpha, beta, and gamma values into the dataframe 24 1.70 RMSE and MAPE for different alpha, beta, and gamma values and loading into the dataframe 25 1.71 Finding least RMSE and MAPE for different alpha, beta, and gamma values and loading into the dataframe 25 1.72 Finding the p-value and plotting Rolling mean and standard deviation with original data. 25 1.73 Finding the p-value and plotting Rolling mean and standard deviation with original data. 26 1.74 ACF plot for original data 26 1.75 ACF plot for original data 27 1.76 PACF plot for original data 27 1.77 ACF plot for original data 27 1.78 PACF plot for original data 27 1.79 PACF plot for original data 27 1.79 PACF plot for original data 28 1.79 PACF plot for original data 28		Predicting the values from test data	
1.67 RMSE and MAPE values from train data 24 1.68 RMSE and MAPE values from test data 24 1.69 RMSE and MAPE for test data into the dataframe 24 1.70 RMSE and MAPE for different alpha, beta, and gamma values into the dataframe 24 1.71 finding least RMSE and MAPE for different alpha, beta, and gamma values and loading into the dataframe 25 1.71 finding the p-value and plotting Rolling mean and standard deviation with original data 25 1.72 finding the p-value and plotting Rolling mean and standard deviation with original data after taking Ladifference data 26 1.73 finding the p-value and plotting Rolling mean and standard deviation with original data after taking Ladifference data 26 1.75 ACF plot for I difference data 27 1.76 PACF plot for original data 27 1.77 PACF plot for I difference data 28 1.78 Finding stationarity and p-value for train data 28 1.79 Finding stationarity and p-value for train data after taking Ladifference 29 1.80 Finding combination for the model 29 1.81 Sample ALC value for ARIMA Model 30 1.82 Sorting least ALC value for ARIMA Model 30 1.83 Sample ALC value for ARIMA Model 31		Plotting predicted train and test values	
1.68 RMSE and MAPE values from test data 24 1.69 RMSE and MAPE for test data into the dataframe 24 1.70 RMSE and MAPE for test data into the dataframe 24 1.71 Iniding lesst RMSE and MAPE for different alpha, beta, and gamma values and loading into the dataframe 25 1.72 Finding the p-value and plotting Rolling mean and standard deviation with original data 25 1.73 Finding the p-value and plotting Rolling mean and standard deviation with original data 26 1.74 ACF plot for original data 26 1.75 ACF plot for I adifference data 27 1.76 PACF plot for I adifference data 27 1.77 PACF plot for I adifference data 27 1.78 Iniding stationarity and p-value for train data 28 1.79 Finding stationarity and p-value for train data after taking 1 adifference 29 1.80 Finding combination for the model 29 1.81 Sample AlC value for ARIMA Model 30 1.82 Sorting least AIC value for ARIMA Model 30 1.83 Summary report for ARIMA Model 31		RMSE and MAPE values from train data	
1.69 RMSE and MAPE for test data into the dataframe 24 1.70 RMSE and MAPE for different alpha, beta, and gamma values into the dataframe 24 1.71 Finding least RMSE and MAPE for different alpha, beta, and gamma values and loading into the dataframe 25 1.72 Finding the p-value and plotting Rolling mean and standard deviation with original data. 25 1.73 Finding the p-value and plotting Rolling mean and standard deviation with original data after taking 1st difference data. 26 1.75 ACF plot for original data 27 1.76 PACF plot for original data 27 1.77 PACF plot for original data 27 1.78 Finding stationarity and p-value for train data 28 1.79 PACF plot for original data 28 1.79 Pinding stationarity and p-value for train data 28 1.79 Pinding stationarity and p-value for train data after taking 1st difference 29 1.80 Finding combination for the model 29 1.81 Sample AIC value for ARIMA Model 30 1.82 Sorting least AIC value for ARIMA Model 30 1.83 Summary report for ARIMA Model 30 1.84 RMSE and MAPE for ARIMA Model 31 1.85 RMSE and MAPE for ARIMA Model 32		RMSE and MAPE values from test data	
1.70 RMSE and MAPE for different alpha, beta, and gamma values into the dataframe 2.5 1.71 Finding least RMSE and MAPE for different alpha, beta, and gamma values and loading into the dataframe 2.5 1.72 Finding the p-value and plotting Rolling mean and standard deviation with original data. 2.5 1.73 Finding the p-value and plotting Rolling mean and standard deviation with original data. 2.6 1.74 ACF plot for I addifference data 2.6 1.75 ACF plot for I addifference data 2.7 1.76 PACF plot for I addifference data 2.7 1.77 PACF plot for I addifference data 2.8 1.78 Finding stationarity and p-value for train data 3.8 1.79 Finding stationarity and p-value for train data 3.8 1.79 Finding stationarity and p-value for train data after taking 1.4 difference 3.9 1.80 Finding combination for the model 3.9 1.81 Sample AIC value for ARIMA Model 3.0 1.82 Sorting least AIC value for ARIMA Model 3.0 1.83 Summary report for ARIMA Model 3.0 1.84 RMSE and MAPE for ARIMA Model 3.0 1.85 RMSE and MAPE for ARIMA Model 3.1 1.86 Combination parameters for SARIMA Model 3.1 1.87 Sample AIC for SARIMA Model 3.1 1.88 Sample AIC for SARIMA Model 3.1 1.89 Summary report for SARIMA Model 3.1 1.89 Summary report for SARIMA Model 3.3 1.90 Predicting values for ARIMA Model 3.3 1.91 Predicting values for ARIMA Model 3.3 1.92 RMSE and MAPE for ARIMA Model 3.3 1.93 Loading RMSE and MAPE for ARIMA Model 3.3 1.94 Predicting values for testing data 3.3 1.95 RMSE and MAPE SARIMA Model 3.3 1.96 Cut-off point for SARIMA Model 3.3 1.97 Predicting values for testing cut-off points in ACF plot 3.5 1.98 RMSE and MAPE SARIMA Model 1.00 Adaptarame 3.3 1.99 Louding RMSE and MAPE SARIMA Model 1.00 Adaptarame 3.00 Ada		RMSE and MAPE for test data into the dataframe	
Finding least RMSE and MAPE for different alpha, beta, and gamma values and loading into the dataframe 25 1.72 Finding the p-value and plotting Rolling mean and standard deviation with original data. 26 1.73 Finding the p-value and plotting Rolling mean and standard deviation with original data after taking 1x difference data. 26 1.74 ACF plot for original data 27 1.76 PACF plot for 1x difference data 27 1.77 PACF plot for 1x difference data 28 1.78 Finding stationarity and p-value for train data 28 1.79 Finding stationarity and p-value for train data 29 1.80 Finding stationarity and p-value for train data after taking 1x difference 29 1.80 Finding combination for the model 29 1.81 Sample AIC value for ARIMA Model 30 1.82 Sorting least AIC value for ARIMA Model 30 1.83 Summary report for ARIMA Model 30 1.84 RMSE and MAPE for ARIMA Model into the dataframe 31 1.86 combination parameters for SARIMA Model 31 1.87 Sample AIC for SARIMA Model 32 1.89 Summary report for ARIMA Model 33 1.89 Summary report for SARIMA Model 31 1.89 Sample AIC for SARIMA Model 32 1.90 plotting diagnostic for SARIMA Model 33 1.91 Predicting values for taking Madel 33 1.92 RMSE and MAPE SARIMA Model 33 1.93 Loading RMSE and MAPE SARIMA Model 34 1.99 Predicting values for taking cut-off points in ACF plot 35 1.95 Cut-off point for MRIMA model are traking cut-off points in ACF plot 36 1.99 Cut-off point for RAIMA model are taking cut-off points in PACF plot 36 1.99 Cut-off point for ARIMA model are taking cut-off points in ACF plot 37 1.00 Cut-off point for RAIMA model are taking cut-off points in ACF plot 37 1.00 Cut-off point for SARIMA model are taking cut-off points ARIMA model 38 19.99 Cut-off point for SARIMA model are taking cut-off points and APE value 37 1.00 Cut-off point for SARIMA model armany report 38 1.00 Cut-off point for SARIMA model armany report 39 1.00 Cut-off point for SARIMA model armany report		RMSE and MAPE for different alpha, beta, and gamma values into the dataframe	
Finding the p-value and plotting Rolling mean and standard deviation with original data. 25 1.73 Finding the p-value and plotting Rolling mean and standard deviation with original data. 26 1.74 ACF plot for original data 26 1.75 ACF plot for 1x difference data 27 1.76 PACF plot for 1x difference data 28 1.78 Finding stationarity and p-value for train data 28 1.79 PACF plot for 1x difference data 28 1.79 Finding stationarity and p-value for train data 29 1.80 Finding combination for the model 29 1.81 Sample AIC value for ARIMA Model 30 1.82 Sorting least AIC value for ARIMA Model 30 1.83 Summary report for ARIMA Model 30 1.84 RMSE and MAPE for ARIMA Model 31 1.85 RMSE and MAPE for ARIMA Model 31 1.86 combination parameters for SARIMA Model 31 1.87 Sample AIC for SARIMA Model 31 1.88 Sample AIC for SARIMA Model 31 1.89 Summary report for ARIMA Model 32 1.89 Summary report for SARIMA Model 33 1.90 plotting diagnostic for SARIMA Model 33 1.91 Predicting values for testing data 39 1.93 Loading RMSE and MAPE SARIMA Model 30 1.94 Plotting diagnostic for SARIMA Model 31 1.95 RMSE and MAPE SARIMA Model 33 1.90 RMSE and MAPE SARIMA Model 34 1.91 Predicting values for testing data 39 1.93 Loading RMSE and MAPE SARIMA Model 30 21 22 23 24 25 25 27 27 27 27 27 27 27 27 27 27 27 27 27			
Finding the p-value and plotting Rolling mean and standard deviation with original data after taking 1x difference data. 26 1.74 ACF plot for original data 26 1.75 ACF plot for 1x difference data 27 1.76 PACF plot for rolginal data 27 1.77 PACF plot for 1x difference data 28 1.78 Finding stationarity and p-value for train data 38 1.79 Finding stationarity and p-value for train data after taking 1x difference 39 1.80 Finding stationarity and p-value for train data after taking 1x difference 39 1.81 Sample AIC value for ARIMA Model 30 1.82 Sorting least AIC value for ARIMA Model 30 1.83 Summary report for ARIMA Model 30 1.84 RMSE and MAPE for ARIMA Model 30 1.85 RMSE and MAPE for ARIMA Model 31 1.86 combination parameters for SARIMA Model 31 1.87 Sample AIC for SARIMA Model 31 1.88 Sample AIC for SARIMA Model 31 1.89 Summary report for SARIMA Model 32 1.90 plotting diagnostic for SARIMA Model 32 1.90 plotting diagnostic for SARIMA Model 33 1.91 Predicting values for testing data 1.92 RMSE and MAPE SARIMA Model 33 1.93 RMSE and MAPE SARIMA Model 33 1.94 Plotting 2xa Difference after taking cut-off points in ACF plot 1.95 Plotting 2xa Difference after taking cut-off points in ACF plot 1.99 Cut-off point for ARIMA model after taking cut-off points in PACF plot 1.99 RMSE and MAPE values for ARIMA model 36 1.99 Cut-off point for ARIMA model after taking cut-off points in DaCF plot 37 1.00 Cut-off point for ARIMA model arman and MAPE into Dataframe 36 37 38 38 39 30 30 30 30 30 30 30 30 30 30 30 30 30			
1.74 ACF plot for original data 26 1.75 ACF plot for 1₂ difference data 27 1.76 PACF plot for 1₂ difference data 27 1.77 PACF plot for 1₂ difference data 27 1.78 Finding stationarity and p-value for train data 28 1.78 Finding stationarity and p-value for train data 38 1.79 Finding stationarity and p-value for train data 39 1.80 Finding combination for the model 39 1.81 Sample AlC value for ARIMA Model 30 1.82 Sorting least AlC value for ARIMA Model 30 1.83 Summary report for ARIMA Model 30 1.84 RMSE and MAPE for ARIMA Model 30 1.85 RMSE and MAPE for ARIMA Model 31 1.86 combination parameters for SARIMA Model 31 1.87 Sample AlC for SARIMA Model 31 1.88 Sample AlC for SARIMA Model 31 1.89 Summary report for SARIMA Model 32 1.90 plotting diagnostic for SARIMA Model 33 1.91 Predicting values for testing data 33 1.92 RMSE and MAPE SARIMA Model 33 1.93 Loading RMSE and MAPE SARIMA Model into dataframe 33 1.94 Plotting 2₄ Difference after taking cut-off points in ACF plot 35 1.95 Plotting 2₄ Difference after taking cut-off points in ACF plot 35 1.96 Cut-off point summary report for ARIMA model 36 1.97 predicting values for ARIMA model after taking cut-off points in ACF plot 35 1.98 RMSE and MAPE SARIMA Model 36 1.99 Cut-off point summary report for ARIMA model after taking cut-off points in ACF plot 36 1.98 RMSE and MAPE SARIMA Model after taking cut-off points in ACF plot 36 1.99 Cut-off point summary report for ARIMA model after taking cut-off points and APE value for cutoff point arim APE plotting 36 1.99 Cut-off point for ARIMA model after taking cut-off points and APE value for cutoff point arim APE and MAPE value and APE value and A			
1.75 ACF plot for 1x difference data 27 1.76 PACF plot for original data 27 1.77 PACF plot for original data 28 1.78 Finding stationarity and p-value for train data 28 1.79 Finding stationarity and p-value for train data after taking 1x difference 29 1.80 Finding combination for the model 29 1.81 Sample AIC value for ARIMA Model 30 1.82 Sorting least AIC value for ARIMA Model 30 1.83 Summary report for ARIMA Model 30 1.84 RMSE and MAPE for ARIMA Model 30 1.85 RMSE and MAPE for ARIMA Model into the dataframe 31 1.86 combination parameters for SARIMA Model 31 1.87 Sample AIC for SARIMA Model 32 1.88 Sample AIC for SARIMA Model 32 1.89 Summary report for SARIMA Model 32 1.90 plotting diagnostic for SARIMA Model 33 1.91 Predicting values for testing data 33 1.92 RMSE and MAPE SARIMA Model 33			
1.76 PACF plot for original data 27 1.77 PACF plot for 1st difference data 28 1.78 Finding stationarity and p-value for train data 28 1.79 Finding stationarity and p-value for train data after taking 1st difference 29 1.80 Finding stationarity and p-value for train data after taking 1st difference 29 1.80 Finding combination for the model 29 1.81 Sample AIC value for ARIMA Model 30 1.82 Sorting least AIC value for ARIMA Model 30 1.83 Summary report for ARIMA Model 30 1.84 RMSE and MAPE for ARIMA Model 30 1.85 RMSE and MAPE for ARIMA Model into the dataframe 31 1.86 combination parameters for SARIMA Model 31 1.87 Sample AIC for SARIMA Model 32 1.88 Sample AIC for SARIMA Model 32 1.89 Summary report for SARIMA Model 32 1.89 Summary report for SARIMA Model 32 1.90 plotting diagnostic for SARIMA Model 33 1.91 Predicting values for testing data 33 1.92 <td></td> <td></td> <td></td>			
1.77 PACF plot for 1x difference data 1.78 Finding stationarity and p-value for train data 1.79 Finding stationarity and p-value for train data after taking 1x difference 1.80 Finding combination for the model 1.81 Sample AlC value for ARIMA Model 1.82 Sorting least AlC value for ARIMA Model 1.83 Summary report for ARIMA Model 1.84 RMSE and MAPE for ARIMA Model 1.85 RMSE and MAPE for ARIMA Model 1.86 combination parameters for SARIMA Model 1.87 Sample AlC for SARIMA Model 1.88 Sample AlC for SARIMA Model 1.89 Summary report for ARIMA Model 1.80 Sample AlC for SARIMA Model 1.81 Sample AlC for SARIMA Model 1.82 Sample AlC for SARIMA Model 1.83 Sample AlC for SARIMA Model 1.84 RMSE and MAPE for ARIMA Model 1.85 RMSE and MAPE for ARIMA Model 1.86 Combination parameters for SARIMA Model 1.87 Sample AlC for SARIMA Model 1.88 Sample AlC for SARIMA Model 1.90 plotting diagnostic for SARIMA Model 1.90 plotting diagnostic for SARIMA Model 1.91 Predicting values for testing data 1.92 RMSE and MAPE SARIMA Model 1.93 Loading RMSE and MAPE SARIMA Model into dataframe 1.94 Plotting 2x₀ Difference after taking cut-off points in ACF plot 1.95 Plotting 2x₀ Difference after taking cut-off points in ACF plot 1.96 Cut-off point summary report for ARIMA model 1.97 predicting values for ARIMA model after taking cut-off points in PACF plot 1.98 RMSE and MAPE value for cutoff point ARIMA model 1.99 Cut-off point for ARIMA model after taking cut-off points in PACF plot 1.99 Cut-off point for ARIMA model after taking cut-off points in PACF plot 1.99 Cut-off point for ARIMA model after taking cut-off points in PACF plot 1.99 Cut-off point for ARIMA model after taking cut-off points in PACF plot 1.99 Cut-off point for ARIMA model summary report 1.100 Cut-off point for ARIMA model summary report		•	
1.78 Finding stationarity and p-value for train data 1.79 Finding stationarity and p-value for train data after taking 1st difference 2.9 1.80 Finding combination for the model 2.9 1.81 Sample AIC value for ARIMA Model 3.0 1.82 Sorting least AIC value for ARIMA Model 3.0 1.83 Summary report for ARIMA Model 3.0 1.84 RMSE and MAPE for ARIMA Model 3.0 1.85 RMSE and MAPE for ARIMA Model 3.0 1.86 combination parameters for SARIMA Model 3.1 1.87 Sample AIC for SARIMA Model 3.1 1.88 Sample AIC for SARIMA Model 3.1 1.89 Summary report for SARIMA Model 3.2 1.89 Summary report for SARIMA Model 3.2 1.90 plotting diagnostic for SARIMA Model 3.3 1.91 Predicting values for testing data 3.9 1.92 RMSE and MAPE SARIMA Model 3.93 Loading RMSE and MAPE SARIMA Model 3.94 Plotting 2st Difference after taking cut-off points in ACF plot 3.95 Plotting 2st Difference after taking cut-off points in PACF plot 3.96 Cut-off point summary report for ARIMA model 3.97 predicting values for ARIMA model 3.98 RMSE and MAPE Value for cutoff points in PACF plot 3.99 Cut-off point summary report for ARIMA model 3.99 Cut-off point for ARIMA model RMSE and MAPE value 3.90 Cut-off point for SARIMA model RMSE and MAPE value 3.90 Cut-off point for SARIMA model SARIMA model 3.90 Predicting values for ARIMA model 3.90 Predicting values for ARIMA model 3.90 Cut-off point for SARIMA model RMSE and MAPE value 3.90 Predicting values for ARIMA model RMSE and MAPE value 3.90 Predicting values for ARIMA model SARIMA model 3.90 Cut-off point for SARIMA model SARIMA			
1.79 Finding stationarity and p-value for train data after taking 1x difference 29 1.80 Finding combination for the model 29 1.81 Sample AIC value for ARIMA Model 30 1.82 Sorting least AIC value for ARIMA Model 30 1.83 Summary report for ARIMA Model 30 1.84 RMSE and MAPE for ARIMA Model 30 1.85 RMSE and MAPE for ARIMA Model into the dataframe 31 1.86 combination parameters for SARIMA Model 31 1.87 Sample AIC for SARIMA Model 31 1.88 Sample AIC for SARIMA Model 32 1.89 Summary report for SARIMA Model 32 1.90 plotting diagnostic for SARIMA Model 33 1.91 Predicting values for testing data 31 1.92 RMSE and MAPE SARIMA Model into dataframe 31 1.93 Loading RMSE and MAPE SARIMA Model into dataframe 34 1.94 Plotting 2x Difference after taking cut-off points in ACF plot 35 1.95 Plotting 2x Difference after taking cut-off points in PACF plot 36 1.97 predicting values for ARIMA model 37 1.98 RMSE and MAPE SARIMA model 38 1.99 Cut-off point summary report for ARIMA model 39 1.99 Cut-off point summary report for ARIMA model 30 31 31 32 33 34 34 35 36 37 37 37 37 37 37 37 37 37 37 37		·	
1.80 Finding combination for the model 29 1.81 Sample AIC value for ARIMA Model 30 1.82 Sorting least AIC value for ARIMA Model 30 1.83 Summary report for ARIMA Model 30 1.84 RMSE and MAPE for ARIMA Model 30 1.85 RMSE and MAPE for ARIMA Model 30 1.86 combination parameters for SARIMA Model 31 1.87 Sample AIC for SARIMA Model 31 1.88 Sample AIC for SARIMA Model 32 1.89 Summary report for SARIMA Model 32 1.90 plotting diagnostic for SARIMA Model 33 1.91 Predicting values for testing data 33 1.92 RMSE and MAPE SARIMA Model 33 1.93 Loading RMSE and MAPE SARIMA Model into dataframe 34 1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 34 1.95 Plotting 2nd Difference after taking cut-off points in PACF plot 35 1.96 Cut-off point summary report for ARIMA model 36 1.97 predicting values for ARIMA model after taking cutoff points 36 1.98			
1.81 Sample AIC value for ARIMA Model 30 1.82 Sorting least AIC value for ARIMA Model 30 1.83 Summary report for ARIMA Model 30 1.84 RMSE and MAPE for ARIMA Model 30 1.85 RMSE and MAPE for ARIMA Model into the dataframe 31 1.86 combination parameters for SARIMA Model 31 1.87 Sample AIC for SARIMA Model 31 1.88 Sample AIC for SARIMA Model 32 1.89 Summary report for SARIMA Model 32 1.90 plotting diagnostic for SARIMA Model 33 1.91 Predicting values for testing data 33 1.92 RMSE and MAPE SARIMA Model 33 1.93 Loading RMSE and MAPE SARIMA Model into dataframe 34 1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 34 1.95 Plotting 2nd Difference after taking cut-off points in ACF plot 35 1.96 Cut-off point summary report for ARIMA model 35 1.97 predicting values for ARIMA model after taking cut-off points 36 1.98 RMSE and MAPE value for cutoff point ARIMA model 36			
Sorting least AIC value for ARIMA Model 1.83 Summary report for ARIMA Model 1.84 RMSE and MAPE for ARIMA Model 1.85 RMSE and MAPE for ARIMA Model into the dataframe 1.86 combination parameters for SARIMA Model 1.87 Sample AIC for SARIMA Model 1.88 Sample AIC for SARIMA Model 1.89 Summary report for SARIMA Model 1.90 plotting diagnostic for SARIMA Model 1.91 Predicting values for testing data 1.92 RMSE and MAPE SARIMA Model 1.93 Loading RMSE and MAPE SARIMA Model into dataframe 1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 1.95 Plotting 2nd Difference after taking cut-off points in PACF plot 1.96 Cut-off point summary report for ARIMA model 1.97 predicting values for ARIMA model after taking cut-off points in PACF plot 1.98 RMSE and MAPE SARIMA model after taking cut-off points in PACF plot 1.99 Cut-off point summary report for ARIMA model 1.99 Cut-off point for ARIMA model summary report 1.00 Cut-off point for SARIMA model summary report 1.00 Cut-off point for SARIMA model summary report 1.00 Cut-off point for SARIMA model summary report 1.100 Cut-off point for SARIMA model summary report 1.101 Cut-off point for SARIMA model summary report 1.101 Cut-off point for SARIMA model summary report			
Summary report for ARIMA Model 1.84 RMSE and MAPE for ARIMA Model into the dataframe 1.85 RMSE and MAPE for ARIMA Model into the dataframe 1.86 combination parameters for SARIMA Model 1.87 Sample AIC for SARIMA Model 1.88 Sample AIC for SARIMA Model 1.89 Summary report for SARIMA Model 1.89 Summary report for SARIMA Model 1.90 plotting diagnostic for SARIMA Model 1.91 Predicting values for testing data 1.92 RMSE and MAPE SARIMA Model 1.93 Loading RMSE and MAPE SARIMA Model into dataframe 1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 1.95 Plotting 2nd Difference after taking cut-off points in PACF plot 1.96 Cut-off point summary report for ARIMA model 1.97 predicting values for ARIMA model after taking cut-off points in PACF plot 1.98 RMSE and MAPE Value for cutoff point sin PACF plot 1.99 Cut-off point summary report for ARIMA model 1.99 Cut-off point for ARIMA model after taking cutoff points 1.99 Cut-off point for ARIMA model RMSE and MAPE into Dataframe 1.00 Cut-off point for ARIMA model summary report 1.100 Cut-off point for SARIMA model RMSE and MAPE value 3.7		•	
1.84 RMSE and MAPE for ARIMA Model 1.85 RMSE and MAPE for ARIMA Model into the dataframe 3.1 1.86 combination parameters for SARIMA Model 3.1 1.87 Sample AIC for SARIMA Model 3.1 1.88 Sample AIC for SARIMA Model 3.1 1.89 Summary report for SARIMA Model 3.2 1.90 plotting diagnostic for SARIMA Model 3.3 1.91 Predicting values for testing data 3.9 1.92 RMSE and MAPE SARIMA Model 3.93 1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 3.94 Plotting 2nd Difference after taking cut-off points in ACF plot 3.95 Plotting 2nd Difference after taking cut-off points in PACF plot 3.96 Cut-off point summary report for ARIMA model 3.97 predicting values for ARIMA model after taking cut-off points in PACF plot 3.98 RMSE and MAPE value for cutoff point ARIMA model 3.99 Cut-off point summary report for ARIMA model 3.90 Cut-off point for ARIMA model after taking cut-off points 3.90 Cut-off point for ARIMA model after taking cut-off points 3.90 Cut-off point for ARIMA model RMSE and MAPE into Dataframe 3.90 Cut-off point for SARIMA model summary report 3.91 Cut-off point for SARIMA model summary report 3.92 Cut-off point for SARIMA model summary report 3.93 Cut-off point for SARIMA model summary report 3.94 Cut-off point for SARIMA model summary report 3.95 Cut-off point for SARIMA model summary report 3.96 Cut-off point for SARIMA model summary report 3.97 Cut-off point for SARIMA model summary report 3.98 Cut-off point for SARIMA model summary report 3.99 Cut-off point for SARIMA model summary report 3.90 Cut-off point for SARIMA model summary report			
1.85 RMSE and MAPE for ARIMA Model into the dataframe 1.86 combination parameters for SARIMA Model 1.87 Sample AIC for SARIMA Model 1.88 Sample AIC for SARIMA Model 1.89 Summary report for SARIMA Model 1.90 plotting diagnostic for SARIMA Model 1.91 Predicting values for testing data 1.92 RMSE and MAPE SARIMA Model 1.93 Loading RMSE and MAPE SARIMA Model into dataframe 1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 1.95 Plotting 2nd Difference after taking cut-off points in PACF plot 1.96 Cut-off point summary report for ARIMA model 1.97 predicting values for ARIMA model after taking cut-off points in PACF plot 1.98 RMSE and MAPE Value for cutoff point ARIMA model 1.99 Cut-off point for ARIMA model RMSE and MAPE into Dataframe 1.00 Cut-off point for SARIMA model summary report		· ·	
1.86 combination parameters for SARIMA Model 1.87 Sample AIC for SARIMA Model 1.88 Sample AIC for SARIMA Model 1.89 Summary report for SARIMA Model 1.90 plotting diagnostic for SARIMA Model 1.91 Predicting values for testing data 1.92 RMSE and MAPE SARIMA Model 1.93 Loading RMSE and MAPE SARIMA Model into dataframe 1.94 Plotting 2-nd Difference after taking cut-off points in ACF plot 1.95 Plotting 2-nd Difference after taking cut-off points in PACF plot 1.96 Cut-off point summary report for ARIMA model 1.97 predicting values for ARIMA model after taking cut-off points 1.98 RMSE and MAPE value for cutoff point ARIMA model 1.99 Cut-off point for ARIMA model after taking cutoff points 1.90 Cut-off point for ARIMA model summary report 1.00 Cut-off point for SARIMA model RMSE and MAPE value 1.00 Cut-off point for SARIMA model RMSE and MAPE value 1.00 Cut-off point for SARIMA model RMSE and MAPE value			
1.87 Sample AIC for SARIMA Model 31 1.88 Sample AIC for SARIMA Model 32 1.89 Summary report for SARIMA Model 32 1.90 plotting diagnostic for SARIMA Model 33 1.91 Predicting values for testing data 33 1.92 RMSE and MAPE SARIMA Model 33 1.93 Loading RMSE and MAPE SARIMA Model 33 1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 34 1.95 Plotting 2nd Difference after taking cut-off points in PACF plot 35 1.96 Cut-off point summary report for ARIMA model 35 1.97 predicting values for ARIMA model after taking cut-off points in PACF plot 35 1.98 RMSE and MAPE value for cutoff point ARIMA model 36 1.99 Cut-off point for ARIMA model RMSE and MAPE into Dataframe 36 1.100 Cut-off point for SARIMA model summary report 37 1.101 Cut-off point for SARIMA model RMSE and MAPE value 37			
1.88 Sample AIC for SARIMA Model 32 1.89 Summary report for SARIMA Model 32 1.90 plotting diagnostic for SARIMA Model 33 1.91 Predicting values for testing data 33 1.92 RMSE and MAPE SARIMA Model 33 1.93 Loading RMSE and MAPE SARIMA Model 33 1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 34 1.95 Plotting 2nd Difference after taking cut-off points in PACF plot 35 1.96 Cut-off point summary report for ARIMA model 35 1.97 predicting values for ARIMA model after taking cut-off points in PACF plot 36 1.98 RMSE and MAPE value for cutoff point ARIMA model 36 1.99 Cut-off point for ARIMA model RMSE and MAPE into Dataframe 36 1.100 Cut-off point for SARIMA model summary report 37 1.101 Cut-off point for SARIMA model RMSE and MAPE value 37		·	
1.89 Summary report for SARIMA Model 1.90 plotting diagnostic for SARIMA Model 3.3 1.91 Predicting values for testing data 3.3 1.92 RMSE and MAPE SARIMA Model 3.3 1.93 Loading RMSE and MAPE SARIMA Model into dataframe 3.4 1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 3.9 Plotting 2nd Difference after taking cut-off points in PACF plot 3.9 Plotting 2nd Difference after taking cut-off points in PACF plot 3.5 1.96 Cut-off point summary report for ARIMA model 3.7 predicting values for ARIMA model after taking cutoff points 3.8 RMSE and MAPE value for cutoff point ARIMA model 3.9 Cut-off point for ARIMA model RMSE and MAPE into Dataframe 3.0 3.1 3.1 3.1 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3		·	
1.90 plotting diagnostic for SARIMA Model 33 1.91 Predicting values for testing data 33 1.92 RMSE and MAPE SARIMA Model 33 1.93 Loading RMSE and MAPE SARIMA Model 33 1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 34 1.95 Plotting 2nd Difference after taking cut-off points in PACF plot 35 1.96 Cut-off point summary report for ARIMA model 35 1.97 predicting values for ARIMA model after taking cutoff points 36 1.98 RMSE and MAPE value for cutoff point ARIMA model 36 1.99 Cut-off point for ARIMA model RMSE and MAPE into Dataframe 36 1.100 Cut-off point for SARIMA model RMSE and MAPE value 37 1.101 Cut-off point for SARIMA model RMSE and MAPE value 37		•	
1.91 Predicting values for testing data 1.92 RMSE and MAPE SARIMA Model 3.3 1.93 Loading RMSE and MAPE SARIMA Model into dataframe 3.4 1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 3.5 1.95 Plotting 2nd Difference after taking cut-off points in PACF plot 3.5 1.96 Cut-off point summary report for ARIMA model 3.7 1.97 predicting values for ARIMA model after taking cutoff points 3.6 1.98 RMSE and MAPE value for cutoff point ARIMA model 3.99 Cut-off point for ARIMA model RMSE and MAPE into Dataframe 3.6 1.100 Cut-off point for SARIMA model RMSE and MAPE value 3.7 1.101 Cut-off point for SARIMA model RMSE and MAPE value 3.7		, :	
1.92 RMSE and MAPE SARIMA Model 33 1.93 Loading RMSE and MAPE SARIMA Model into dataframe 34 1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 35 1.95 Plotting 2nd Difference after taking cut-off points in PACF plot 35 1.96 Cut-off point summary report for ARIMA model 35 1.97 predicting values for ARIMA model after taking cutoff points 36 1.98 RMSE and MAPE value for cutoff point ARIMA model 36 1.99 Cut-off point for ARIMA model RMSE and MAPE into Dataframe 36 1.100 Cut-off point for SARIMA model summary report 37 1.101 Cut-off point for SARIMA model RMSE and MAPE value 37			_
1.93 Loading RMSE and MAPE SARIMA Model into dataframe 34 1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 35 1.95 Plotting 2nd Difference after taking cut-off points in PACF plot 35 1.96 Cut-off point summary report for ARIMA model 37 1.97 predicting values for ARIMA model after taking cutoff points 38 1.98 RMSE and MAPE value for cutoff point ARIMA model 39 Cut-off point for ARIMA model RMSE and MAPE into Dataframe 30 1.100 Cut-off point for SARIMA model RMSE and MAPE value 37 1.101 Cut-off point for SARIMA model RMSE and MAPE value 37			
1.94 Plotting 2nd Difference after taking cut-off points in ACF plot 1.95 Plotting 2nd Difference after taking cut-off points in PACF plot 1.96 Cut-off point summary report for ARIMA model 1.97 predicting values for ARIMA model after taking cutoff points 1.98 RMSE and MAPE value for cutoff point ARIMA model 1.99 Cut-off point for ARIMA model RMSE and MAPE into Dataframe 1.100 Cut-off point for SARIMA model summary report 1.101 Cut-off point for SARIMA model RMSE and MAPE value 37			
1.95Plotting 2nd Difference after taking cut-off points in PACF plot351.96Cut-off point summary report for ARIMA model351.97predicting values for ARIMA model after taking cutoff points361.98RMSE and MAPE value for cutoff point ARIMA model361.99Cut-off point for ARIMA model RMSE and MAPE into Dataframe361.100Cut-off point for SARIMA model summary report371.101Cut-off point for SARIMA model RMSE and MAPE value37		<u> </u>	
1.96 Cut-off point summary report for ARIMA model 35 1.97 predicting values for ARIMA model after taking cutoff points 36 1.98 RMSE and MAPE value for cutoff point ARIMA model 36 1.99 Cut-off point for ARIMA model RMSE and MAPE into Dataframe 36 1.100 Cut-off point for SARIMA model summary report 37 1.101 Cut-off point for SARIMA model RMSE and MAPE value 37			
1.97predicting values for ARIMA model after taking cutoff points361.98RMSE and MAPE value for cutoff point ARIMA model361.99Cut-off point for ARIMA model RMSE and MAPE into Dataframe361.100Cut-off point for SARIMA model summary report371.101Cut-off point for SARIMA model RMSE and MAPE value37			
1.98 RMSE and MAPE value for cutoff point ARIMA model 36 1.99 Cut-off point for ARIMA model RMSE and MAPE into Dataframe 36 1.100 Cut-off point for SARIMA model summary report 37 1.101 Cut-off point for SARIMA model RMSE and MAPE value 37			
1.99Cut-off point for ARIMA model RMSE and MAPE into Dataframe361.100Cut-off point for SARIMA model summary report371.101Cut-off point for SARIMA model RMSE and MAPE value37			
1.100 Cut-off point for SARIMA model summary report 37 1.101 Cut-off point for SARIMA model RMSE and MAPE value 37		·	
1.101 Cut-off point for SARIMA model RMSE and MAPE value 37		· · · · · · · · · · · · · · · · · · ·	-
3/			-
1.102 Cut-off point for SARIMA model RMSE and MAPE into Dataframe 38		•	_
	1.102	Cut-off point for SARIMA model RMSE and MAPE into Dataframe	38

1.103	Sorting the RMSE value and finding best model	38
1.104	Summary report for SARIMA model	39
1.105	plotting diagnostic report for SARIMA model	39
1.106	plotting diagnostic report for SARIMA model	39
1.107	Predicting the values	40
1.108	RMSE value for future data.	40
1.109	Plotting the future data in graph.	40

Problem - 1

Summary

The data is gathered from ABC Estate wines, for Rose wine sales data from this ABC Estate wine company. An analyst for the company needs to analyze the wine sales in the 19th century and forecast the wine sales for the 20th century.

Introduction

The purpose of this exercise is to explore the dataset and make the analyze the wine sales in the 19th Century, based on the sales data we need to forecast for the wine sales data for next 12 months.

Sample of the dataset:

	YearMonth	Rose
0	1980-01	112.0
1	1980-02	118.0
2	1980-03	129.0
3	1980-04	99.0
4	1980-05	116.0

Fig 1.1 Dataset Sample

Exploratory Data Analysis

Let us check the types of variables in the data frame.

YearMonth object Rose float64

dtype: object

Fig- 1.2. Datatypes of the variable

There are total 187 rows and 2 columns in the dataset. 1 columns are object and 1 columns are int64

Check for missing values in the dataset:

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 187 entries, 1980-01-31 to 1995-07-31
Data columns (total 1 columns):
Rose     187 non-null float64
dtypes: float64(1)
memory usage: 7.9 KB
```

Fig- 1.3.1. Check null values

	Rose
YearMonth	
1994-07-31	NaN
1994-08-31	NaN

Fig- 1.3.2. Checking NaN values

1. Analysis. Read the data as an appropriate Time Series data and plot the data.

	Rose
YearMonth	
1980-01-31	112.0
1980-02-29	118.0
1980-03-31	129.0
1980-04-30	99.0
1980-05-31	116.0

Fig- 1.4. Initialising Date as index Column

Fig - 1.5 Plotting Rose wine data

The Rose wine sales data has been plotted against the year of sales.

2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

	Rose
count	187.000000
mean	89.914439
std	39.238325
min	28.000000
25%	62.500000
50%	85.000000
75%	111.000000
max	267.000000

Fig – 1.6 Rose wine sales data spread.

Text(0.5, 0, 'Year')

From the above chart (boxplot), there are outliers present in the data and we can observe that there was good sales record for Rose wine from 1980-1994 and wine sales has been decreased in the year 1995.

From the above chart (boxplot), the December month has highest number of Rose wine sales when compared with other months.

YearMonth	April	August	December	February	January	July	June	March	May	November	October	September
YearMonth												
1980	99.0	129.000000	267.0	118.0	112.0	118.000000	168.0	129.0	116.0	150.0	147.0	205.0
1981	97.0	214.000000	226.0	129.0	126.0	222.000000	127.0	124.0	102.0	154.0	141.0	118.0
1982	97.0	117.000000	169.0	77.0	89.0	117.000000	121.0	82.0	127.0	134.0	112.0	106.0
1983	85.0	124.000000	164.0	108.0	75.0	109.000000	108.0	115.0	101.0	135.0	95.0	105.0
1984	87.0	142.000000	159.0	85.0	88.0	87.000000	87.0	112.0	91.0	139.0	108.0	95.0
1985	93.0	103.000000	129.0	82.0	61.0	87.000000	75.0	124.0	108.0	123.0	108.0	90.0
1986	71.0	118.000000	141.0	65.0	57.0	110.000000	67.0	67.0	76.0	107.0	85.0	99.0
1987	86.0	73.000000	157.0	65.0	58.0	87.000000	74.0	70.0	93.0	96.0	100.0	101.0
1988	66.0	77.000000	135.0	115.0	63.0	79.000000	83.0	70.0	67.0	100.0	116.0	102.0
1989	74.0	74.000000	137.0	60.0	71.0	86.000000	91.0	89.0	73.0	109.0	87.0	87.0
1990	77.0	70.000000	132.0	69.0	43.0	78.000000	76.0	73.0	69.0	110.0	65.0	83.0
1991	65.0	55.000000	106.0	55.0	54.0	96.000000	65.0	66.0	60.0	74.0	63.0	71.0
1992	53.0	52.000000	91.0	47.0	34.0	67.000000	55.0	56.0	53.0	58.0	51.0	46.0
1993	45.0	54.000000	77.0	40.0	33.0	57.000000	55.0	46.0	41.0	48.0	52.0	46.0
1994	48.0	45.666667	84.0	35.0	30.0	45.333333	45.0	42.0	44.0	63.0	51.0	46.0
1995	52.0	NaN	NaN	39.0	30.0	62.000000	40.0	45.0	28.0	NaN	NaN	NaN

Fig – 1.9 Monthwise wine sales across years

Fig – 1.10 Monthwise wine sales across years

Additive Model:

 $\label{eq:fig-loss} \mbox{Fig--1.11 Decompose data form the original dataset for Rose wines (Additive model)}$

Trend	
	Rose
YearMonth	
1980-01-31	143.619658
1980-02-29	144.148504
1980-03-31	144.677350
1980-04-30	145.206197
1980-05-31	145.735043
Seasonality	/
	Rose
YearMonth	
1980-01-31	-28.058855
1980-02-29	-17.428254
1980-03-31	-9.278095
1980-04-30	-15.844951
1980-05-31	-12.036806
Residual	
	Rose
YearMonth	
1980-01-31	-3.560804
1980-02-29	-8.720251
1980-03-31	-6.399255
1980-04-30	-30.361246
1980-05-31	-17.698237

Fig – 1.12 Trend, Seasonality and residual values after decomposing the original data for Rose wines (Additive model)

Multiplicative Model:

Fig – 1.13 Decompose data form the original dataset for Rose wines (Multiplicative model)

Trend	
	Rose
YearMonth	
1980-01-31	143.619658
1980-02-29	144.148504
1980-03-31	144.677350
1980-04-30	145.206197
1980-05-31	145.735043
Seasonality	
	Rose
YearMonth	
1980-01-31	0.676904
1980-02-29	0.806254
1980-03-31	0.901399
1980-04-30	0.855717
1980-05-31	0.863276
Residual	
	Rose
YearMonth	
1980-01-31	1.152065
1980-02-29	1.015313
1980-03-31	0.989173
1980-04-30	0.796746
1980-05-31	0.922028

Fig – 1.14 Trend, Seasonality and residual values after decomposing the original data for Rose wines (Multiplicative model)

3. Split the data into training and test. The test data should start in 1991

	Rose
YearMonth	
1990-08-31	70.0
1990-09-30	83.0
1990-10-31	65.0
1990-11-30	110.0
1990-12-31	132.0

Fig – 1.15 Last 5 values for Training data

	Rose
YearMonth	
1991-01-31	54.0
1991-02-28	55.0
1991-03-31	66.0
1991-04-30	65.0
1991-05-31	60.0

Fig – 1.16 First 5 values for testing data

4. Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RMSE.

Model 1: Linear Regression:

```
The train time are [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 12 0, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132]

The test time are [133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187]
```

Fig – 1.18.1 Generating numerical time instance for both training and test dataset for Rose wines

We see that we have successfully the generated the numerical time instance order for both the training and test set. Now we will add these values in the training and test set.

	Rose	train_time
YearMonth		
1980-01-31	112.0	1
1980-02-29	118.0	2
1980-03-31	129.0	3
1980-04-30	99.0	4
1980-05-31	116.0	5
	_	
	Rose	test_time
YearMonth	Rose	test_time
YearMonth 1991-01-31	Rose 54.0	test_time
		_
1991-01-31	54.0	133
1991-01-31 1991-02-28	54.0 55.0	133 134
1991-01-31 1991-02-28 1991-03-31	54.0 55.0 66.0	133 134 135

Fig - 1.18.2 Loading numerical time into the dataframe

LinearRegression()

Fig - 1.19 Initializing Linear Regression method

	Rose	train_time	RegOnTime
YearMonth			
1980-01-31	112.0	1	137.321144
1980-02-29	118.0	2	136.826766
1980-03-31	129.0	3	136.332388
1980-04-30	99.0	4	135.838010
1980-05-31	116.0	5	135.343632

Fig – 1.20 Predicting for training dataset

	Rose	test_time	RegOnTime
YearMonth			
1991-01-31	54.0	133	72.063266
1991-02-28	55.0	134	71.568888
1991-03-31	66.0	135	71.074511
1991-04-30	65.0	136	70.580133
1991-05-31	60.0	137	70.085755

Fig – 1.21 Predicting for test dataset

Fig – 1.22 Ploting original and predicted train and test datas using linear regression

For RegressionOnTime forecast on the Training Data, RMSE is 30.718 and MAPE is 21.22 Fig -1.23 RMSE and MAPE value Training data

For RegressionOnTime forecast on the Test Data, RMSE is 15.269 and MAPE is 22.82

Fig - 1.24 RMSE and MAPE value Test data

	Test RMSE	Test MAPE
RegressionOnTime	15.268955	22.82

Fig – 1.25 Loading RMSE and MAPE value Test data into dataframe

Model - 2: Naive Approach: $(\hat{\mathbf{y}}_{t+1} = \mathbf{y_t})$

For this particular naive model, we say that the prediction for tomorrow is the same as today and the prediction for day after tomorrow is tomorrow and since the prediction of tomorrow is same as today, therefore the prediction for day after tomorrow is also today.

YearMonth		
1980-01-31	132.0	
1980-02-29	132.0	
1980-03-31	132.0	
1980-04-30	132.0	
1980-05-31	132.0	
Name: naive,	dtype:	float64

Fig – 1.26 Predicting values for training data using naïve approach

```
YearMonth
1991-01-31 132.0
1991-02-28 132.0
1991-03-31 132.0
1991-04-30 132.0
1991-05-31 132.0
Name: naive, dtype: float64
```

Fig – 1.27 Predicting values for test data using naïve approach

Fig - 1.28 Plotting the predicted values for train and test data using naïve approach

For Naive Model forecast on the Training Data, RMSE is 45.064 MAPE is 36.38

Fig – 1.29 RMSE and MAPE value Training data

For RegressionOnTime forecast on the Test Data, RMSE is 79.719 and MAPE is 145.10

Fig - 1.30 RMSE and MAPE value Test data

	Test RMSE	Test MAPE
RegressionOnTime	15.268955	22.82
NaiveModel	79.718773	145.10

Fig – 1.31 Loading RMSE and MAPE value Test data into dataframe

Model – 3 Simple Average:

For this particular simple average method, we will forecast by using the average of the training values

	Rose	mean_forecast
YearMonth		
1980-01-31	112.0	104.939394
1980-02-29	118.0	104.939394
1980-03-31	129.0	104.939394
1980-04-30	99.0	104.939394
1980-05-31	116.0	104.939394

Fig – 1.32 Taking mean of Rose wine sales training data

Rose mean_forecast

YearMonth		
1991-01-31	54.0	53.854545
1991-02-28	55.0	53.854545
1991-03-31	66.0	53.854545
1991-04-30	65.0	53.854545
1991-05-31	60.0	53.854545

Fig - 1.33 Taking mean of Rose wine sales test data

Fig - 1.34 Plotting the Simple Average data, train and test data

For Simple Average Model forecast on the Training Data, RMSE is 36.034 MAPE is 25.39

Fig – 1.35 RMSE and MAPE value Training data

For Simple Average forecast on the Test Data, RMSE is 15.760 MAPE is 21.37

Fig - 1.36 RMSE and MAPE value Test data

	Test RMSE	Test MAPE
RegressionOnTime	15.268955	22.82
NaiveModel	79.718773	145.10
SimpleAverageModel	15.759783	21.37

Fig – 1.37 Loading RMSE and MAPE value Test data into dataframe

Model – 4 Moving Average(MA):

For the moving average model, we are going to calculate rolling means (or moving averages) for different intervals. The best interval can be determined by the maximum accuracy (or the minimum error) over here.

For Moving Average, we are going to average over the entire data.

	Rose
YearMonth	

1980-01-31	112.0
1980-02-29	118.0
1980-03-31	129.0
1980-04-30	99.0
1980-05-31	116.0

Fig - 1.38 training data

Rose Trailing_2 Trailing_4 Trailing_6 Trailing_9

YearMonth					
1980-01-31	112.0	NaN	NaN	NaN	NaN
1980-02-29	118.0	115.0	NaN	NaN	NaN
1980-03-31	129.0	123.5	NaN	NaN	NaN
1980-04-30	99.0	114.0	114.5	NaN	NaN
1980-05-31	116.0	107.5	115.5	NaN	NaN

Fig – 1.39 Making data from training data for moving average

Fig – 1.40 Plotting Moving average data for rolling 2 point

Fig – 1.41 Plotting Moving average data for rolling 2,4,6,9 point

Fig – 1.42 Plotting Moving average data for rolling 2 point for training and test data

Fig – 1.43 Plotting Moving average data for rolling 4 point for training and test data

Fig – 1.44 Plotting Moving average data for rolling 6,9 point for training and test data

Rose Trailing_2 Trailing_4 Trailing_6 Trailing_9

76.75 80.333333 79.222222

YearMonth					
1990-11-30	110.0	87.5	82.00	80.333333	77.888889
1990-12-31	132.0	121.0	97.50	89.666667	84.44444
1991-01-31	54.0	93.0	90.25	85.666667	81.888889
1991-02-28	55.0	54.5	87.75	83.166667	80.333333

Fig – 1.45 load Moving average data for rolling 2,4,6,9 into the dataframe

60.5

```
For 2 point Moving Average Model forecast on the Testing Data, RMSE is 11.529 and MAPE is 13.54
For 4 point Moving Average Model forecast on the Testing Data, RMSE is 14.451 and MAPE is 19.49
For 6 point Moving Average Model forecast on the Testing Data, RMSE is 14.566 and MAPE is 20.82
For 9 point Moving Average Model forecast on the Testing Data, RMSE is 14.728 and MAPE is 21.01
```

Fig - 1.46 RMSE and MAPE Moving average data for rolling 2,4,6,9

	Test RMSE	Test MAPE
RegressionOnTime	15.268955	22.82
NaiveModel	79.718773	145.10
SimpleAverageModel	15.759783	21.37
${\bf 2point Trailing Moving Average}$	11.529278	13.54
${\bf 4point Trailing Moving Average}$	14.451403	19.49
6 point Trailing Moving Average	14.566327	20.82
9pointTrailingMovingAverage	14.727630	21.01

Fig – 1.47 Loading MA data for rolling 2,4,6,9 of RMSE and MAPE value Test data into dataframe

Model – 5 Simple Exponential Smoothing:

1991-03-31

66.0

```
{'smoothing_level': 0.09874989028077343,
  'smoothing_slope': nan,
  'smoothing_seasonal': nan,
  'damping_slope': nan,
  'initial_level': 134.3870166871304,
  'initial_slope': nan,
  'initial_seasons': array([], dtype=float64),
  'use_boxcox': False,
  'lamda': None,
  'remove_bias': False}
```

Fig – 1.48 Intializing the Simple Exponential Smoothing

```
== Brown Simple Exponential Smoothing ETS (A, N, N) Parameters == Smoothing Level 0.0987 Initial Level 134.387
```

1991-01-31 87.104999 1991-02-28 87.104999 1991-03-31 87.104999

Fig – 1.49 predicting values for the Simple Exponential Smoothing

Brown Simple Exponential ETS (A, N, N) - Method 1

Fig – 1.50 Plotting predicted values for the Simple Exponential Smoothing

For Alpha =0.0987 Simple Exponential Smoothing Model forecast on the Training Data, RMSE is 31.501 MAPE is 22.73

Fig - 1.51 RMSE and MAPE value for the training data using Simple Exponential Smoothing

For Alpha =0.0987 Simple Exponential Smoothing Model forecast on the Testing Data, RMSE is 36.796 MAPE is 63.88

Fig – 1.52 RMSE and MAPE value for the test data using Simple Exponential Smoothing

	Test RMSE	Test MAPE
RegressionOnTime	15.268955	22.82
NaiveModel	79.718773	145.10
SimpleAverageModel	15.759783	21.37
2pointTrailingMovingAverage	11.529278	13.54
4pointTrailingMovingAverage	14.451403	19.49
6pointTrailingMovingAverage	14.566327	20.82
9pointTrailingMovingAverage	14.727630	21.01
Alpha = 0.0987, Simple Exponential Smoothing	36.796242	63.88

Fig – 1.53 RMSE and MAPE value for the test data using Simple Exponential Smoothing

Model 6: Double Exponential Smoothing (Holt's Model):

```
{'smoothing_level': 0.01,
  'smoothing_slope': 0.01,
  'smoothing_seasonal': nan,
  'damping_slope': nan,
  'initial_level': 2015.010536631007,
  'initial_slope': 5.807032214943793,
  'initial_seasons': array([], dtype=float64),
  'use_boxcox': False,
  'lamda': None,
  'remove_bias': False}
```

Fig - 1.54 Initializing the Double Exponential Smoothing

== Brown Double Exponential Smoothing ETS (A, A, N) Parameters == Smoothing Level 0.01 Initial Level 116.4741

	Rose	predict
YearMonth		
1991-01-31	54.0	100.012001
1991-02-28	55.0	99.873957
1991-03-31	66.0	99.735913
1991-04-30	65.0	99.597869
1991-05-31	60.0	99.459825

Fig – 1.55 Predicting the values using Double Exponential Smoothing

```
Train RMSE is -> 35.797908987769944
Train MAPE is -> 26.73
```

Fig - 1.56 RMSE and MAPE for training data

Test RMSE is -> 45.00503693213322
Test MAPE is -> 79.29
Fig - 1.57 RMSE and MAPE for test data

	Test RMSE	Test MAPE
RegressionOnTime	15.268955	22.82
NaiveModel	79.718773	145.10
SimpleAverageModel	15.759783	21.37
2pointTrailingMovingAverage	11.529278	13.54
4pointTrailingMovingAverage	14.451403	19.49
6pointTrailingMovingAverage	14.566327	20.82
9pointTrailingMovingAverage	14.727630	21.01
Alpha=0.0987,SimpleExponentialSmoothing	36.796242	63.88
Alpha = 0.01, beta = 0.01, Double Exponential Smoothing	45.005037	79.29

Fig – 1.58 RMSE and MAPE for test data into the dataframe

Fig - 1.59 plotting DES predicted output

	Alpha Values	Beta Values	Train RMSE	Test RMSE	Test MAPE	Train MAPE
0	0.10	0.1	34.439111	36.923416	63.78	24.83
10	0.11	0.1	34.000195	39.062023	67.48	24.57
20	0.12	0.1	33.684824	41.420568	71.51	24.36
30	0.13	0.1	33.459597	44.010923	76.01	24.18
40	0.14	0.1	33.301637	46.802589	80.87	24.03

Fig – 1.60 Finding RMSE and MAPE for different Alpha and beta values

Fig – 1.61 plotting for least RMSE value of different alpha n beta values

	Test RMSE	Test MAPE
RegressionOnTime	15.268955	22.82
NaiveModel	79.718773	145.10
SimpleAverageModel	15.759783	21.37
2pointTrailingMovingAverage	11.529278	13.54
4pointTrailingMovingAverage	14.451403	19.49
6pointTrailingMovingAverage	14.566327	20.82
9pointTrailingMovingAverage	14.727630	21.01
Alpha=0.0987, Simple Exponential Smoothing	36.796242	63.88
Alpha = 0.01, beta = 0.01, Double Exponential Smoothing	45.005037	79.29
Alpha = 0.10, Beta = 0.1, Double Exponential Smoothing	36.923416	63.78

Fig 1.62 Finding the least RMSE and MAPE value from the different ALPHA and BETA values

Model 7: Triple Exponential Smoothing (Holt - Winter's Model)

Three parameters α , β and γ are estimated in this model. Level, Trend and Seasonality are accounted for in this model.

```
{'smoothing_level': 0.99,
    'smoothing_slope': 0.01,
    'smoothing_seasonal': 0.01,
    'damping_slope': nan,
    'initial_level': 93.7006343484885,
    'initial_slope': 0.0,
    'initial_seasons': array([1.19877733, 1.39685338, 1.58600046]),
    'use_boxcox': False,
    'lamda': None,
    'remove_bias': False}
```

Fig 1.63 Initializing the TES

Rose auto_predict

YearMonth 1980-01-31 112.0 112.326196 1980-02-29 118.0 130.505991 1980-03-31 129.0 133.975457 1980-04-30 99.0 97.392625 1980-05-31 116.0 115.079766

Fig 1.64 Predicting the values from training data

	Rose	auto_predict
YearMonth		
1991-01-31	54.0	105.568220
1991-02-28	55.0	116.810432
1991-03-31	66.0	132.260129
1991-04-30	65.0	105.834395
1991-05-31	60.0	117.104706

Fig 1.65 Predicting the values from test data

Fig 1.66 Plotting predicted train and test values

For Alpha: 0.99,Beta: 0.01 and Gamma:0.01, Triple Exponential Smoothing Model forecast on the Training Data, RMSE is 33.018 MA PE is 22.41

Fig 1.67 RMSE and MAPE values from train data

For Alpha: 0.99,Beta: 0.01 and Gamma:0.01,Triple Exponential Smoothing Model forecast on the Test Data, RMSE is 69.035 MAPE is 123.85

Fig 1.68 RMSE and MAPE values from test data

Test RMSE	Test MAPE
15.268955	22.82
79.718773	145.10
15.759783	21.37
11.529278	13.54
14.451403	19.49
14.566327	20.82
14.727630	21.01
36.796242	63.88
45.005037	79.29
36.923416	63.78
69.035167	123.85
	15.268955 79.718773 15.759783 11.529278 14.451403 14.566327 14.727630 36.796242 45.005037 36.923416

Fig 1.69 RMSE and MAPE for test data into the dataframe

	Alpha Values	Beta Values	Gamma Values	Train RMSE	Train MAPE	Test RMSE	Test MAPE
301	0.01	0.76	0.06	36.786490	26.95	14.949445	23.54
281	0.01	0.71	0.06	37.027698	27.09	15.115942	21.57
61	0.01	0.16	0.06	47.975604	36.42	15.505402	19.69
320	0.01	0.81	0.01	41.297574	31.49	16.045656	23.41
62	0.01	0.16	0.11	41.530087	30.42	16.131210	26.18

Fig 1.70 RMSE and MAPE for different alpha, beta, and gamma values into the dataframe

	Test RMSE	Test MAPE
RegressionOnTime	15.268955	22.82
NaiveModel	79.718773	145.10
SimpleAverageModel	15.759783	21.37
2pointTrailingMovingAverage	11.529278	13.54
4pointTrailingMovingAverage	14.451403	19.49
6pointTrailingMovingAverage	14.566327	20.82
9pointTrailingMovingAverage	14.727630	21.01
Alpha=0.0987, SimpleExponential Smoothing	36.796242	63.88
Alpha=0.01,beta=0.01,DoubleExponentialSmoothing	45.005037	79.29
Alpha=0.10,Beta=0.1,DoubleExponentialSmoothing	36.923416	63.78
Alpha: 0.99,Beta: 0.01 and Gamma: 0.01,TripleExponentialSmoothing	69.035167	123.85
Alpha=0.01, Beta=0.76, Gamma=0.06, Triple Exponential Smoothing With Grid	14.949445	19.69

Fig 1.71 Finding least RMSE and MAPE for different alpha, beta, and gamma values and loading into the dataframe

5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.

Note: Stationarity should be checked at alpha(α) = 0.05.

Null Hypothesis: p-value > α (alpha value) - then the data is not stationary

Alternate Hypothesis: p-value $< \alpha$ (alpha value) - then the data is having stationarity

Fig 1.72 Finding the p-value and plotting Rolling mean and standard deviation with original data.

The p-value is greater than the alpha value so the data is not stationarity and alternate hypothesis is rejected. To find the stationarity we need to take the 1st difference and plotting the graph and finding the p-value.

Fig 1.73 Finding the p-value and plotting Rolling mean and standard deviation with original data after taking 1st difference data.

Now p-value is less than alpha value. Therefore null hypothesis is rejected.

Fig 1.74 ACF plot for original data

Fig 1.75 ACF plot for 1st difference data

Fig 1.76 PACF plot for original data

Fig 1.78 Finding stationarity and p-value for train data

-2.580009

Critical Value (10%)

dtype: float64

The p-value is greater than the alpha value so the data is not stationarity and alternate hypothesis is rejected. To find the stationarity we need to take the 1st difference and plotting the graph and finding the p-value.

1993-01

1993-07

1994-01

1994-07

1995-01

1995-07

```
Results of Dickey-Fuller Test:
Test Statistic
                                -4.432301
                                0.000260
p-value
#Lags Used
                               11.000000
Number of Observations Used
                               43.000000
Critical Value (1%)
                               -3.592504
Critical Value (5%)
                               -2.931550
Critical Value (10%)
                               -2.604066
dtype: float64
```

1991-07

1991-01

1992-01

1992-07

Fig 1.79 Finding stationarity and p-value for train data after taking 1st difference

6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

```
Some parameter combinations for the Model...
Model: (0, 1, 1)
Model: (0, 1, 2)
Model: (0, 1, 3)
Model: (0, 1, 4)
Model: (1, 1, 0)
Model: (1, 1, 1)
Model: (1, 1, 2)
Model: (1, 1, 3)
Model: (1, 1, 4)
Model: (2, 1, 0)
Model: (2, 1, 1)
Model: (2, 1, 2)
Model: (2, 1, 3)
Model: (2, 1, 4)
Model: (3, 1, 0)
Model: (3, 1, 1)
Model: (3, 1, 2)
Model: (3, 1, 3)
Model: (3, 1, 4)
Model: (4, 1, 0)
Model: (4, 1, 1)
Model: (4, 1, 2)
Model: (4, 1, 3)
Model: (4, 1, 4)
```

Fig 1.80 Finding combination for the model

```
ARIMA(0, 1, 0) - AIC:1335.1526583086775

ARIMA(0, 1, 1) - AIC:1280.7261830464574

ARIMA(0, 1, 2) - AIC:1276.8353792448133

ARIMA(1, 1, 0) - AIC:1319.3483105803643

ARIMA(1, 1, 1) - AIC:1277.7757551519576

ARIMA(1, 1, 2) - AIC:1277.3592239364807

ARIMA(1, 1, 3) - AIC:1279.3126365443986
```

Fig 1.81 Sample AIC value for ARIMA Model

	param	AIC
16	(3, 1, 3)	1273.194207
17	(3, 1, 4)	1274.335727
2	(0, 1, 2)	1276.835379
5	(1, 1, 2)	1277.359224
4	(1, 1, 1)	1277.775755

Fig 1.82 Sorting least AIC value for ARIMA Model

ARIMA Model Results

Dep. Variable:		D.Rose	No. Obse	ervations:		131
Model:	AR	IMA(3, 1, 3)	Log Like	elihood		-628.597
Method:		css-mle	S.D. of	innovations		28.356
Date:	Sun,	20 Feb 2022	AIC			1273.194
Time:		23:02:05	BIC			1296.196
Sample:		02-29-1980	HQIC			1282.541
		- 12-31-1990				
=========	.=======					
	coet	std err	Z	P> z	[0.025	0.975]
const	-0.4906	0.088	-5.546	0.000	-0.664	-0.317
ar.L1.D.Rose	-0.7241	0.086	-8.385	0.000	-0.893	-0.555
ar.L2.D.Rose	-0.7215	0.087	-8.314	0.000	-0.892	-0.551
ar.L3.D.Rose	0.2765	0.086	3.228	0.002	0.109	0.444
ma.L1.D.Rose	-0.0154	0.045	-0.344	0.731	-0.103	0.072
ma.L2.D.Rose	0.0154	0.044	0.346	0.730	-0.072	0.103
ma.L3.D.Rose	-1.0000	0.046	-21.820	0.000	-1.090	-0.910
		Ro	oots			
=========						
	Real	Imagi	nary 	Modulus	FI	requency
AR.1	-0.5011	-0.8	661j	1.0006		-0.3335
AR.2	-0.5011	+0.86	661j	1.0006		0.3335
AR.3	3.6113	-0.00	000j	3.6113		-0.0000
MA.1	1.0000	-0.00	000j	1.0000		-0.0000
MA.2	-0.4923	-0.8	_	1.0000		-0.3319
MA.3	-0.4923	+0.8	_	1.0000		0.3319

Fig 1.83 Summary report for ARIMA Model

Test rmse for arima is 15.98895461779234 Test mape for arima is 26.09

Fig 1.84 RMSE and MAPE for ARIMA Model

	Test RMSE	Test MAPE
RegressionOnTim	e 15.268955	22.82
NaiveMod	el 79.718773	145.10
SimpleAverageMode	el 15.759783	21.37
2pointTrailingMovingAverag	e 11.529278	13.54
4pointTrailingMovingAverag	e 14.451403	19.49
6pointTrailingMovingAverag	e 14.566327	20.82
9pointTrailingMovingAverag	e 14.727630	21.01
Alpha=0.0987, SimpleExponential Smoothin	g 36.796242	63.88
Alpha=0.01,beta=0.01,DoubleExponentialSmoothin	g 45.005037	79.29
Alpha=0.10,Beta=0.1,DoubleExponentialSmoothin	g 36.923416	63.78
Alpha: 0.99,Beta: 0.01 and Gamma: 0.01,TripleExponentialSmoothin	g 69.035167	123.85
Alpha=0.01,Beta=0.76,Gamma=0.06,TripleExponentialSmoothingWithGrid	d 14.949445	19.69
Arima 3,1	3 15.988955	26.09

Fig 1.85 RMSE and MAPE for ARIMA Model into the dataframe

```
Examples of some parameter combinations for Model...
Model: (0, 1, 1)(0, 0, 1, 12)
Model: (0, 1, 2)(0, 0, 2, 12)
Model: (0, 1, 3)(0, 0, 3, 12)
Model: (1, 1, 0)(1, 0, 0, 12)
Model: (1, 1, 1)(1, 0, 1, 12)
Model: (1, 1, 2)(1, 0, 2, 12)
Model: (1, 1, 3)(1, 0, 3, 12)
Model: (2, 1, 0)(2, 0, 0, 12)
Model: (2, 1, 1)(2, 0, 1, 12)
Model: (2, 1, 2)(2, 0, 2, 12)
Model: (2, 1, 3)(2, 0, 3, 12)
Model: (3, 1, 0)(3, 0, 0, 12)
Model: (3, 1, 1)(3, 0, 1, 12)
Model: (3, 1, 2)(3, 0, 2, 12)
Model: (3, 1, 3)(3, 0, 3, 12)
```

Fig 1.86 combination parameters for SARIMA Model

```
SARIMA(0, 1, 0)x(0, 0, 0, 12)7 - AIC:1323.9657875279158

SARIMA(0, 1, 0)x(0, 0, 1, 12)7 - AIC:1145.4230827207164

SARIMA(0, 1, 0)x(0, 0, 2, 12)7 - AIC:976.4375296380889

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\baailed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)

SARIMA(0, 1, 0)x(0, 0, 3, 12)7 - AIC:3942.6338417126094
```

```
SARIMA(0, 1, 0)x(0, 0, 3, 12)7 - AIC:3942.6338417126094

SARIMA(0, 1, 0)x(1, 0, 0, 12)7 - AIC:1139.921738995602

SARIMA(0, 1, 0)x(1, 0, 1, 12)7 - AIC:1116.0207869386063

SARIMA(0, 1, 0)x(1, 0, 2, 12)7 - AIC:969.6913635753214

SARIMA(0, 1, 0)x(1, 0, 3, 12)7 - AIC:3910.656358528058

SARIMA(0, 1, 0)x(2, 0, 0, 12)7 - AIC:960.8812220353041

SARIMA(0, 1, 0)x(2, 0, 1, 12)7 - AIC:962.8794540697533

SARIMA(0, 1, 0)x(2, 0, 2, 12)7 - AIC:955.5735408945662
```

Fig 1.87 Sample AIC for SARIMA Model

	param	seasonal	AIC
222	(3, 1, 1)	(3, 0, 2, 12)	774.400286
238	(3, 1, 2)	(3, 0, 2, 12)	774.880940
220	(3, 1, 1)	(3, 0, 0, 12)	775.426699
221	(3, 1, 1)	(3, 0, 1, 12)	775.495330
252	(3, 1, 3)	(3, 0, 0, 12)	775.561019

Fig 1.88 Sample AIC for SARIMA Model

Statespace Model Results

Dep. Variab	le:			y No.	Observations:		132
Model:	SARI	MAX(3, 1, 1	1)x(3, 0, 2	, 12) Log	Likelihood		-377.200
Date:		9	Sun, 20 Feb	2022 AIC			774.400
Time:			23:	13:42 BIC			799.618
Sample:				0 HQI	С		784.578
				- 132			
Covariance	Type:			opg			
========							
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	0.0464	0 126	0.267	0.714	-0.202	0.204	
ar.L1 ar.L2					-0.202 -0.241	0.294	
					-0.374		
					-1.069		
	0.7639		4.640		0.441		
	0.0840				-0.229		
	0.0727		0.764			0.259	
ma.S.L12	-0.4969		-1.988		-0.987		
ma.S.L24	-0.2191	0.210	-1.044	0.296	-0.630	0.192	
sigma2	192.1502	39.626	4.849	0.000	114.484	269.817	
Liung-Box (·		2/ 22	Jarque-Ber	2 (1R):		==== 1.64
Prob(Q):	(4).			Prob(JB):	a (35).		0.44
	sticity (H):		1.11				0.44
Prob(H) (tw			0.77	Kurtosis:			3.03
` ' '	,						

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Fig 1.89 Summary report for SARIMA Model

Fig 1.90 plotting diagnostic for SARIMA Model

```
67.90878015,
array([ 55.23575577,
                      68.12261097,
                                                   66.78622912,
                                                  76.49217979,
        69.76047168,
                                    75.35954438,
                      70.3289832 ,
        78.97132197,
                      76.53862693,
                                    93.24904879, 116.28317142,
        55.20248119,
                      64.44406372,
                                    68.54777414, 63.87232536,
        67.70018699,
                                                  74.32550441,
                      68.44357115,
                                    72.97210368,
        75.31784431,
                      76.04683595,
                                    87.42127189, 109.80717304,
        51.29829317,
                      62.61706238,
                                    65.91208553, 62.26431815,
        64.61216749,
                      65.74752277,
                                    69.82629533,
                                                   70.42010232,
                      71.3657079 ,
                                    84.72221947, 105.35778471,
        72.33171215,
        49.94997509,
                      60.31173938,
                                    63.15821132, 59.89686303,
        62.22798764,
                      63.19905767,
                                    67.06122628, 67.71097974,
                                    80.95530204, 100.27484656,
        69.43493489,
                      68.58134086,
        48.59076447,
                      58.12924132,
                                    60.87894865, 57.74110091,
        59.99748694,
                      60.88874594,
                                    64.51109411])
```

Fig 1.91 Predicting values for testing data

```
Test rmse for sarima is 18.882003816724545
Test mape for sarima is 32.02
```

Fig 1.92 RMSE and MAPE SARIMA Model

	Test RMSE	Test MAPE
RegressionOnTime	15.268955	22.82
NaiveModel	79.718773	145.10
SimpleAverageModel	15.759783	21.37
2pointTrailingMovingAverage	11.529278	13.54
4pointTrailingMovingAverage	14.451403	19.49
6pointTrailingMovingAverage	14.566327	20.82
9pointTrailingMovingAverage	14.727630	21.01
Alpha=0.0987, SimpleExponential Smoothing	36.796242	63.88
Alpha=0.01,beta=0.01,DoubleExponentialSmoothing	45.005037	79.29
Alpha=0.10,Beta=0.1,DoubleExponentialSmoothing	36.923416	63.78
Alpha: 0.99,Beta: 0.01 and Gamma: 0.01,TripleExponentialSmoothing	69.035167	123.85
Alpha = 0.01, Beta = 0.76, Gamma = 0.06, Triple Exponential Smoothing With Grid	14.949445	19.69
Arima 3,1,3	15.988955	26.09
SARIMA(3, 1, 1)(3, 0, 2, 12)	18.882004	32.02

Fig 1.93 Loading RMSE and MAPE SARIMA Model into dataframe

7. Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

Fig 1.94 Plotting $2^{\rm nd}$ Difference after taking cut-off points in ACF plot

Differenced Data Partial Autocorrelation

Fig 1.95 Plotting 2nd Difference after taking cut-off points in PACF plot

ARIMA Model Results

Dep. Variable:		D.Rose	No. Obs	ervations:		131
Model:	AR	IMA(2, 1, 3)	Log Like	elihood		-633.598
Method:		css-mle	S.D. of	innovations		29.971
Date:	Sun,	20 Feb 2022	AIC			1281.196
Time:		23:13:44	BIC			1301.323
Sample:		02-29-1980	HQIC			1289.374
		- 12-31-1990				
	coef	std err	Z	P> z	[0.025	0.975]
						0.975]
const	-0.4893	0.084	-5.849	0.000	-0.653	-0.325
ar.L1.D.Rose	-0.0605	0.833	-0.073	0.942	-1.694	1.573
ar.L2.D.Rose	0.2075	0.360	0.577	0.565	-0.497	0.912
ma.L1.D.Rose	-0.7052	0.833	-0.847	0.399	-2.337	0.927
ma.L2.D.Rose	-0.5471	0.381	-1.436	0.153	-1.294	0.200
ma.L3.D.Rose	0.2522	0.523	0.482	0.631	-0.774	1.278
		Ro	oots			
	B1	·				======
	Real	Imagin	-	Modulus	۲r	equency
AR.1	-2.0544	+0.00		2.0544		0.5000
AR.2	2.3458	+0.00	_	2.3458		
MA.1	-1.4907			1.4907		
MA.2	1.0000	+0.00	_	1.0000		0.0000
MA.3	2.6596	+0.00	_	2.6596		0.0000
			-			

Fig 1.96 Cut-off point summary report for ARIMA model

```
array([80.29349704, 70.94695747, 72.73026545, 70.26558252, 70.36730806, 69.43233762, 69.09260729, 68.50175729, 68.04960992, 67.53696527, 67.05676089, 66.56204106, 66.07493062, 65.58434794, 65.09555424, 64.60593184, 64.11673078, 63.62733227, 63.13803314, 62.64868703, 62.15936438, 61.67003056, 61.18070229, 60.69137136, 60.20204175, 59.7127115, 59.22338157, 58.73405148, 58.24472147, 57.75539143, 57.2660614, 56.77673136, 56.28740133, 55.79807129, 55.30874126, 54.81941122, 54.33008119, 53.84075115, 53.35142112, 52.86209108, 52.37276105, 51.88343101, 51.39410098, 50.90477094, 50.41544091, 49.92611087, 49.43678084, 48.9474508, 48.45812077, 47.96879073, 47.4794607, 46.99013066, 46.50080063, 46.01147059, 45.52214056])
```

Fig 1.97 predicting values for ARIMA model after taking cutoff points

```
Test rmse for arima is 15.48824414782164
Test mape for arima is 23.15
```

Fig 1.98 RMSE and MAPE value for cutoff point ARIMA model

	Test RMSE	Test MAPE
RegressionOnTime	15.268955	22.82
NaiveModel	79.718773	145.10
SimpleAverageModel	15.759783	21.37
2pointTrailingMovingAverage	11.529278	13.54
4pointTrailingMovingAverage	14.451403	19.49
6pointTrailingMovingAverage	14.566327	20.82
9pointTrailingMovingAverage	14.727630	21.01
Alpha=0.0987, Simple Exponential Smoothing	36.796242	63.88
Alpha=0.01,beta=0.01,DoubleExponentialSmoothing	45.005037	79.29
Alpha=0.10,Beta=0.1,DoubleExponentialSmoothing	36.923416	63.78
Alpha: 0.99,Beta: 0.01 and Gamma: 0.01,TripleExponentialSmoothing	69.035167	123.85
Alpha = 0.01, Beta = 0.76, Gamma = 0.06, Triple Exponential Smoothing With Grid	14.949445	19.69
Arima 3,1,3	15.988955	26.09
SARIMA(3, 1, 1)(3, 0, 2, 12)	18.882004	32.02
Arima 2,1,3	15.488244	23.15

Fig 1.99 Cut-off point for ARIMA model RMSE and MAPE into Dataframe

Statespace Model Results

Dep. Variab					Observations:		132
Model:		TMAV/A 1 A	\v(4 a 2	, 12) Log			-321.321
Date:	SAK.				LIKEIINOOU		672.641
		٥	-	2022 AIC			
Time:			23:	14:10 BIC			708.183
Sample:				0 HQIC			686.880
	_			- 132			
Covariance				opg			
	coet	std err	Z	P> z	[0.025	0.975]	
ar.L1	0 1232	a 223	0 552	A 521	-0.314	0 561	
ar.L2				0.734		0.571	
					-1.110		
					-0.443		
					-94.924		
ma.L2	0.2007				-163.134		
ma.L3	0.9311				-72.973		
					-132.810		
ar.S.L12	0.2239	0.176	1.270	0.204	-0.122	0.569	
ar.S.L24	0.6525	0.131	4.986	0.000	0.396	0.909	
ar.S.L36	0.1138	0.093	1.219	0.223	-0.069	0.297	
ar.S.L48	-0.0318	0.093	-0.343	0.732	-0.214	0.150	
ma.S.L12	0.1108	38.624	0.003	0.998	-75.590	75.812	
ma.S.L24	-0.8922	34.201	-0.026	0.979	-67.925	66.140	
sigma2	131.3087	1.22e+04	0.011	0.991	-2.37e+04	2.4e+04	
Ljung-Box (Jarque-Bera	(JB):		 9.73
Prob(Q):			0.19		(/-		9.69
				Character (SD).			

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Prob(Q):
Heteroskedasticity (H):
0.73 Skew:
0.42 Kurtosis:

Fig 1.100 Cut-off point for SARIMA model summary report

0.69 0.12 3.40

Test rmse for sarima is 17.28613245134336 Test mape for sarima is 27.69

Fig 1.101 Cut-off point for SARIMA model RMSE and MAPE value

	Test RMSE	Test MAPE
RegressionOnTime	15.268955	22.82
NaiveModel	79.718773	145.10
SimpleAverageModel	15.759783	21.37
2pointTrailingMovingAverage	11.529278	13.54
4pointTrailingMovingAverage	14.451403	19.49
6pointTrailingMovingAverage	14.566327	20.82
9pointTrailingMovingAverage	14.727630	21.01
Alpha=0.0987, SimpleExponential Smoothing	36.796242	63.88
Alpha=0.01,beta=0.01,DoubleExponentialSmoothing	45.005037	79.29
Alpha=0.10,Beta=0.1,DoubleExponentialSmoothing	36.923416	63.78
Alpha: 0.99,Beta: 0.01 and Gamma: 0.01,TripleExponentialSmoothing	69.035167	123.85
Alpha = 0.01, Beta = 0.76, Gamma = 0.06, Triple Exponential Smoothing With Grid	14.949445	19.69
Arima 3,1,3	15.988955	26.09
SARIMA(3, 1, 1)(3, 0, 2, 12)	18.882004	32.02
Arima 2,1,3	15.488244	23.15
SARIMA(4, 1, 4)(4, 0, 2, 12)	17.286132	27.69

Fig 1.102 Cut-off point for ARIMA model RMSE and MAPE into Dataframe

8. Build a table (create a data frame) with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

	Test RMSE	Test MAPE
2pointTrailingMovingAverage	11.529278	13.54
4pointTrailingMovingAverage	14.451403	19.49
6pointTrailingMovingAverage	14.566327	20.82
9pointTrailingMovingAverage	14.727630	21.01
Alpha = 0.01, Beta = 0.76, Gamma = 0.06, Triple Exponential Smoothing With Grid	14.949445	19.69
RegressionOnTime	15.268955	22.82
Arima 2,1,3	15.488244	23.15
SimpleAverageModel	15.759783	21.37
Arima 3,1,3	15.988955	26.09
SARIMA(4, 1, 4)(4, 0, 2, 12)	17.286132	27.69
SARIMA(3, 1, 1)(3, 0, 2, 12)	18.882004	32.02
Alpha=0.0987, SimpleExponential Smoothing	36.796242	63.88
Alpha=0.10,Beta=0.1,DoubleExponentialSmoothing	36.923416	63.78
Alpha=0.01,beta=0.01,DoubleExponentialSmoothing	45.005037	79.29
Alpha: 0.99,Beta: 0.01 and Gamma: 0.01,TripleExponentialSmoothing	69.035167	123.85
NaiveModel	79.718773	145.10

Fig 1.103 Sorting the RMSE value and finding best model

9. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

Although we are seeing that the best model as per RMSE is the 2pointTrailingMovingAverage, 4pointTrailingMovingAverage, 6pointTrailingMovingAverage, 9pointTrailingMovingAverage as it is giving us the least RMSE value. But the moving average models are actually quite a naive model and assumes that the trend and seasonality components of the time series have already been removed or adjusted for. Hence we will going to choose the second best model which comes out to be Triple Exponential Model. Its RMSE value is very close to the 2point Trailing Moving Average, 4point Trailing Moving Average, 6point Trailing Moving Average, 9point Trailing Moving Average value hence we can choose this model as well.

RMSE: 29.39707075749173

Fig 1.104 Summary report for SARIMA model

1995-08-31	34.206001
1995-09-30	64.244438
1995-10-31	42.369170
1995-11-30	52.886688
1995-12-31	121.321299
1996-01-31	14.026713
1996-02-29	23.987492
1996-03-31	33.740397
1996-04-30	20.696789
1996-05-31	28.215274
1996-06-30	51.634478
1996-07-31	38.941272
Freq: M dtyr	ne: float64

Fig 1.105 plotting diagnostic report for SARIMA model

Fig 1.106 plotting diagnostic report for SARIMA model

Predicting the values for the next 12 months in future

	lower_CI	prediction	upper_ci
1995-08-31	18.345018	34.206001	139.831163
1995-09-30	48.383455	64.244438	169.869601
1995-10-31	26.508186	42.369170	147.994332
1995-11-30	37.025705	52.886688	158.511851
1995-12-31	105.460316	121.321299	226.946462

Fig 1.107 Predicting the values

RMSE of the Full Model 568.78862913566

Fig 1.108 RMSE value for future data.

Fig 1.109 Plotting the future data in graph.

10. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

Triple Exponential Model is performing best in this case giving us the least error

Looking at the bar plot, we can see that on December months the sales are highest. We can use this insights to increase our sales further. We can introduce certain offers in other months to attract more customers.

Year 1981 has the highest sales recorded till data. We can go back to find out the reasons to which pushed the sales so much.

Looking at the prediction, we can say that the sales figure are declining each and every year. The reason behind this may be either deterioration in quality or arrival of any rival product in the market. Hence some important measures have to be taken to identify the reason and tale appropriate measures to increase the trend.