Teorema (Limite segundo Heine)

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ e $a\in\overline{D}$. Temos $\lim_{x\to a}f(x)=b$ se e só se para qualquer sucessão (x_m) de elementos de D a convergir para a, a sucessão $(f(x_m))$ converge para b.

Exemplo

Teorema (Propriedades de cálculo de limites)

Sejam $f,g:D\subseteq\mathbb{R}^n\to\mathbb{R}$ duas funções com limites finitos quando x tende para $a\in\overline{D}$. Então:

- $\bullet \lim_{x \to a} (f+g)(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
- $\bullet \lim_{x \to a} (f g)(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\bullet \lim_{x \to a} (f.g)(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- Se $\lim_{x \to a} g(x) \neq 0$ então $\lim_{x \to a} \left(\frac{f}{g} \right)(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$

Teorema (Teorema das funções enquadradas)

Sejam $f,g,h:D\subseteq\mathbb{R}^n\to\mathbb{R}$ três funções e $a\in\overline{D}$. Se $f(x)\leq h(x)\leq g(x)$ numa vizinhança de a e $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=b$ então $\lim_{x\to a}h(x)=b$.

Teorema

Sejam $f,g:D\subseteq\mathbb{R}^n\to\mathbb{R}$ duas funções e $a\in\overline{D}$. Se f é limitada numa vizinhança de a e $\lim_{x\to a}g(x)=0$ então $\lim_{x\to a}(f.g)(x)=0$.

Definição (Limites relativos a conjuntos (Cauchy))

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ e $A\subset D$ com $a\in\overline{A}$. Diz-se que f tem limite b quando x tende para a segundo A ou que b é o limite de f relativo a A e escreve-se

$$\lim_{x \to a} f(x) = b$$
$$x \in A$$

se

$$\forall \delta > 0, \exists \epsilon > 0, x \in A \land ||x - a|| < \epsilon \Rightarrow |f(x) - b| < \delta$$

Nota: Segundo Heine, $\lim\limits_{x\, \to\, a} f(x) = b$ se e só se para qualquer sucessão $x \to a$ $x \in A$

 (x_m) de elementos de A a convergir para a, a sucessão $(f(x_m))$ converge para b.

Exemplo

Teorema

Seja
$$f:D\subseteq\mathbb{R}^n o\mathbb{R}$$
 tal que $D=D_1\cup D_2\cup\ldots\cup D_p$. Se $a\in\overline{D_i}$ e
$$\lim_{\substack{x\to a\\x\in D_i}}f(x)=b, \forall i\in\{1,2,\ldots,p\}$$

então

$$\lim_{x \to a} f(x) = b.$$