Priors for Second-Order Unbiased Bayes Estimators

arXiv:2412.19187

酒井 真菜 東大経済・理研AIP

松田 孟留 東大情報理工・理研CBS

久保川 達也 東大経済

アウトライン

- 1. イントロダクション
- 2. 主結果1: ベイズ推定量のバイアスの評価
- 3. 主結果2: 事前分布の構成
- 4. 例
- 5. シミュレーション
- 6. まとめ

アウトライン

- 1. イントロダクション
- 2. 主結果1: ベイズ推定量のバイアスの評価
- 3. 主結果2: 事前分布の構成
- 4. 例
- 5. シミュレーション
- 6. まとめ

背景

- ベイズ推論における様々な無情報事前分布が提案されてきた。
 - Jeffreys' prior, reference prior, etc.
- Hartigan (1965) は,ある事前分布に対応するベイズ推定量の<u>バイアスがサンプルサイズ n に対して $o(n^{-1})$ になるとき,その事前分布は漸近不偏 (asymptotically unbiased) であると呼んだ。</u>
 - ullet 一般に、ベイズ推定量は $O(n^{-1})$ のバイアスを持つ.
 - 特に、サンプルサイズが小さいときに有用。
- Hartigan (1965) の結果は<u>モデルのi.i.d.性を仮定</u>しているため,限定的.
 - \bullet E.g. ベイズ回帰分析では、説明変数 x_i を固定する.
 - → データはi.i.d.ではないため, Hartigan (1965) の結果は使えない.

本研究の貢献

- 1. Asymptotically unbiased priors が満たすべき条件を, i.i.d.ではない状況へ 拡張した.
 - 事前分布は、偏微分方程式系の解として特徴づけられる.
- 2. 上の偏微分方程式系の解が存在する必要十分条件を検討し、asymptotically unbiased priors の構成手順をまとめた.
 - これらの結果は、moment matching priors (Ghosh and Liu, 2011)
 など他の事前分布にもそのまま適用可能。
- 3. Nested error regression (NER) モデル (変量効果モデル) に応用し、新しい事前分布の提案を行った。

アウトライン

- 1. イントロダクション
- 2. 主結果1: ベイズ推定量のバイアスの評価
- 3. 主結果2: 事前分布の構成
- 4. 例
- 5. シミュレーション
- 6. まとめ

設定

- \blacksquare $(X_1,...,X_n)$ は確率密度関数 $f_n(x_1,...,x_n|\theta)$ を持つ.
 - i.i.d.性や独立性は仮定しない!
- **■** $\theta = (\theta_1, ..., \theta_p) \in \Theta : p 次元のパラメータ.$
- $\Theta \subset \mathbb{R}^p$: パラメータ空間 (rectangular).
- $\ell_n(\theta) = \log f_n(x_1, ..., x_n | \theta)$: 対数尤度.
- π(θ): θ の事前分布の密度.
- これらの設定のもとで、パラメータ *θ* の**事後平均**は

$$\hat{\boldsymbol{\theta}}^{B} = \frac{\int_{\Theta} \theta \pi(\theta) \exp(\ell_{n}(\theta)) d\theta}{\int_{\Theta} \pi(\theta) \exp(\ell_{n}(\theta)) d\theta}.$$

Asymptotically unbiased priors

定義 (asymptotically unbiased prior)

ある事前分布に対応するベイズ推定量 (= 事後平均) のバイアスが $o(n^{-1})$ であるとき、その事前分布は漸近不偏 (asymptotically unbiased) であるという。また、このとき、ベイズ推定量は second-order unbiased (2次不偏) であるという。

- Hartigan (1965) では,一般の損失関数を考えているので,上の定義とは表現が異なる.
- 2乗損失を考える場合には, Hartigan (1965) の定義と上の定義は一致.

ベイズ推定量のバイアスの評価

Corollary 2

正則条件のみから導出される結果

対数尤度の微分の極限に関する仮定を追加

Corollary 3

追加的な仮定のもとでの結果

i.i.d.性の仮定を追加

Theorem 4

i.i.d.の場合に一般に成り立つ結果

Assumption 1(正則条件)

- (i) $\hat{\theta}^{ML} \theta = O_p(n^{-1/2})$. ただし $\hat{\theta}^{ML}$ はモデルの最尤推定量.
- (ii) $\ell_n(\theta) = O_p(n)$.
- (iii) $\ell_n(\theta)$ は3回連続微分可能.
- (iv) $\pi(\theta)$ は微分可能.
- (v) $H_n(\theta) = -\frac{\partial^2}{\partial \theta \partial \theta^{\mathsf{T}}} \ell_n(\theta)$ は可逆. $H_n(\hat{\theta}^{ML})$ は正定値.

ノーテーション

- $\blacksquare H_n(\theta) = -\frac{1}{n} \frac{\partial^2}{\partial \theta \partial \theta^{\mathsf{T}}} \ell_n(\theta).$
- $I_{n,rs}(\theta) = \frac{1}{n} \left(\frac{\partial \ell_n(\theta)}{\partial \theta_r} \right) \left(\frac{\partial \ell_n(\theta)}{\partial \theta_s} \right).$
- $K_{n,rst}(\theta) = \frac{1}{n} \frac{\partial^3}{\partial \theta_r \partial \theta_s \partial \theta_t} \ell_n(\theta).$

正則条件の下でのベイズ推定量のバイアスの評価

Corollary 2 (正則条件の下でのバイアスの評価)

Assumption 1 の下で,事後平均 $\hat{\theta}^B$ のバイアスは

$$\mathbb{E}(\hat{\theta}^B - \theta)$$

$$= \frac{1}{n} \mathbb{E} \left[H_n^{-1}(\theta) \left(\frac{\partial}{\partial \theta} \left(\log \pi(\theta) + 2\ell_n(\theta) \right) + \frac{1}{2} \sum_{r=1}^p \sum_{s=1}^p H_n^{rs}(\theta) A_{n,rs}(\theta) \right) \right] + o\left(\frac{1}{n}\right).$$

ただし,

$$A_{n,rs}(\theta) = \begin{bmatrix} K_{n,1rs}(\theta) + 2J_{n,1r,s}(\theta) \\ \vdots \\ K_{n,prs}(\theta) + 2J_{n,pr,s}(\theta) \end{bmatrix} + \sum_{t=1}^{p} \sum_{u=1}^{p} H_n^{tu}(\theta) I_{n,su}(\theta) \begin{bmatrix} K_{n,rt1}(\theta) \\ \vdots \\ K_{n,rtp}(\theta) \end{bmatrix}.$$

$$I_{n,rst}(\theta) = -\frac{1}{n} \frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \ell_{n}(\theta) \qquad I_{n,rs,t}(\theta) = \frac{1}{n} \left(\frac{\partial^{2}}{\partial \theta_{r} \partial \theta_{s}} \ell_{n}(\theta) \right) \left(\frac{\partial}{\partial \theta_{t}} \ell_{n}(\theta) \right)$$

$$I_{n,rst}(\theta) = \frac{1}{n} \frac{\partial^{3}}{\partial \theta_{r} \partial \theta_{s} \partial \theta_{t}} \ell_{n}(\theta) \qquad I_{n,rs}(\theta) = \frac{1}{n} \left(\frac{\partial \ell_{n}(\theta)}{\partial \theta_{r}} \right) \left(\frac{\partial \ell_{n}(\theta)}{\partial \theta_{s}} \right)$$

Corollary 2 の結果について

- Corollary 2 の結果は,期待値の計算が大変なので,一般にはあまり使い勝 手が良くない.
- \blacksquare $H_n(\theta) = -\frac{\partial^2}{\partial \theta \partial \theta^{\mathsf{T}}} \ell_n(\theta)$ が確率的でないならば,

$$\mathbb{E}(\hat{\theta}^{B} - \theta) = H_{n}^{-1}(\theta) \left(\frac{\partial}{\partial \theta} \log \pi (\theta) + \frac{1}{2} \sum_{r=1}^{p} \sum_{s=1}^{p} H_{n}^{rs}(\theta) \mathbb{E}[A_{n,rs}(\theta)] \right) + o(n^{-1}).$$

$$\sharp \supset \mathsf{T}.$$

$$\frac{\partial}{\partial \theta} \log \pi (\theta) = -\frac{1}{2} \sum_{r=1}^{p} \sum_{s=1}^{p} H_n^{rs}(\theta) \mathbb{E} [A_{n,rs}(\theta)]$$

$$\Rightarrow \hat{\theta}^B \text{ は2次不偏.}$$

事前分布は n に依存

Assumption 2(対数尤度の微分の極限の仮定)

- (i) 可逆な $p \times p$ 次元定数行列 $H(\theta)$ が存在し, $H_n(\theta) = H(\theta) + O_p(n^{-1/2})$.
- (ii) 各 $r,s,t \in \{1,...,p\}$ に対して定数 $K_{rst}(\theta)$ が存在し、 $K_{n,rst}(\theta) = K_{rst}(\theta) + o_p(1).$
- (iii) $p \times p$ 次元定数行列 $I(\theta)$ が存在し、 $\mathbb{E}\big[I_{n,rs}(\theta)\big] = I(\theta) + o(1).$
- (iv) 各 $r, s, t \in \{1, ..., p\}$ に対して定数 $J_{rs,t}(\theta)$ が存在し、 $\mathbb{E}[J_{n,rs,t}(\theta)] = J_{rs,t}(\theta) + o(1).$

追加的な仮定の下でのベイズ推定量のバイアスの評価

Corollary 3 (追加的な仮定の下でのバイアスの評価)

Assumptions 1, 2の下で、事後平均 $\hat{\theta}^B$ のバイアスは

$$\mathbb{E}(\hat{\theta}^B - \theta) = \frac{1}{n}H^{-1}(\theta)\left(\frac{\partial}{\partial \theta}\log\pi(\theta) + \frac{1}{2}\sum_{r=1}^{p}\sum_{s=1}^{p}H^{rs}(\theta)A_{rs}(\theta)\right) + o\left(\frac{1}{n}\right).$$

ただし,

$$A_{rs}(\theta) = \begin{bmatrix} K_{1rs}(\theta) + 2J_{1r,s}(\theta) \\ \vdots \\ K_{prs}(\theta) + 2J_{pr,s}(\theta) \end{bmatrix} + \sum_{t=1}^{p} \sum_{u=1}^{p} H^{tu}(\theta)I_{su}(\theta) \begin{bmatrix} K_{rt1}(\theta) \\ \vdots \\ K_{rtp}(\theta) \end{bmatrix}.$$

よって,

$$\frac{\partial}{\partial \theta} \log \pi(\theta) = -\frac{1}{2} \sum_{r=1}^{p} \sum_{s=1}^{p} H^{rs}(\theta) A_{rs}(\theta)$$

 \Rightarrow $\hat{\theta}^B$ は2次不偏

i.i.d.の場合の仮定2の成立

- $X_1,...,X_n$ は i.i.d.で、それぞれ確率密度関数 $f(x|\theta)$ を持つとする.
- 直接計算より、

$$I(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta}\log f(X|\theta)\right)\left(\frac{\partial}{\partial \theta}\log f(X|\theta)\right)^{\mathsf{T}}\right]$$

(i.e. Fisher情報行列) かつ

$$J_{rs,t}(\theta) = \mathbb{E}\left[\left(\frac{\partial^2}{\partial \theta_r \partial \theta_s} \log f(X|\theta)\right) \left(\frac{\partial}{\partial \theta_t} \log f(X|\theta)\right)\right].$$

■ 中心極限定理より.

$$H(\theta) = I(\theta).$$

■ 大数の法則より,

$$K_{rst}(\theta) = \mathbb{E}\left[\frac{\partial^3}{\partial \theta_r \partial \theta_s \partial \theta_t} \log f(X|\theta)\right].$$

i.i.d.の場合のベイズ推定量のバイアスの評価

Corollary 4 (i.i.d.の場合のバイアスの評価)

i.i.d.のとき,事後平均 $\hat{\theta}^{B}$ のバイアスは

$$\mathbb{E}(\hat{\theta}^{B} - \theta) = \frac{1}{n} I^{-1}(\theta) \left(\frac{\partial}{\partial \theta} \log \pi(\theta) - \sum_{r=1}^{p} \sum_{s=1}^{p} I^{rs}(\theta) \frac{\partial}{\partial \theta_{s}} \begin{bmatrix} I_{1r}(\theta) \\ \vdots \\ I_{pr}(\theta) \end{bmatrix} \right) + o\left(\frac{1}{n}\right).$$

よって,

$$\frac{\partial}{\partial \theta} \log \pi(\theta) = \sum_{r=1}^{p} \sum_{s=1}^{p} I^{rs}(\theta) \frac{\partial}{\partial \theta_s} \begin{bmatrix} I_{1r}(\theta) \\ \vdots \\ I_{pr}(\theta) \end{bmatrix}$$

Fisher 情報のみから計算可能!

 \Rightarrow $\hat{\theta}^B$ は2次不偏

$$I(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta}\log f(X|\theta)\right)\left(\frac{\partial}{\partial \theta}\log f(X|\theta)\right)^{\mathsf{T}}\right]$$
: Fisher 情報行列

Corollary 4と関連研究の比較

	特徴付け	性質
本研究 Corollary 4	$\frac{\partial}{\partial \theta} \log \pi(\theta)$ $= \sum_{r=1}^{p} \sum_{s=1}^{p} I^{rs}(\theta) (-1) \begin{bmatrix} \frac{\partial}{\partial \theta_{s}} I_{1r}(\theta) \\ \vdots \\ \frac{\partial}{\partial \theta_{s}} I_{pr}(\theta) \end{bmatrix} = \sum_{r=1}^{p} \sum_{s=1}^{p} I^{rs}(\theta) \begin{bmatrix} J_{1r,s}(\theta) + K_{1rs}(\theta) \\ \vdots \\ J_{pr,s}(\theta) + K_{prs}(\theta) \end{bmatrix}$	<u>事後平均</u> が 2次不偏
Firth's method	$\frac{\partial}{\partial \theta} \ell_n(\theta) = \sum_{r=1}^p \sum_{s=1}^p I^{rs}(\theta) \begin{pmatrix} \begin{bmatrix} J_{1r,s}(\theta) \\ \vdots \\ J_{pr,s}(\theta) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} K_{1rs}(\theta) \\ \vdots \\ K_{prs}(\theta) \end{bmatrix} \end{pmatrix}$	<u>MLE</u> の 2次バイアス補正
Moment matching prior	$\frac{\partial}{\partial \theta} \log \pi(\theta) = \sum_{r=1}^{p} \sum_{s=1}^{p} I^{rs}(\theta) \frac{1}{2} \begin{bmatrix} K_{1rs}(\theta) \\ \vdots \\ K_{prs}(\theta) \end{bmatrix}$ 3	MLEと事後平均 $\sigma_p(1/n)$ で一致

1 = 2 + 3 という関係が成立している.

→Asymptotically unbiased prior は, moment matching prior の Firth's method によるバイアス補正であると解釈できる.

これまでのまとめ

 $\frac{\partial}{\partial \theta} \log \pi(\theta) = \phi(\theta)$ の解 $\pi(\theta)$ に対応するベイズ推定量は2次不偏.

Corollary	$\phi(heta)$	特徴
2	$-\frac{1}{2}\sum_{r=1}^{p}\sum_{s=1}^{p}H_{n}^{rs}(\theta)\mathbb{E}[A_{n,rs}(\theta)]$	n に依存する事前分布. $H_n(heta)$ が確率的でないときしか使えない.
3	$-\frac{1}{2}\sum_{r=1}^{p}\sum_{s=1}^{p}H^{rs}(\theta)A_{rs}(\theta)$	対数尤度の微分の極限に関する仮定が必要.
4	$\sum_{r=1}^{p} \sum_{s=1}^{p} I^{rs}(\theta) \frac{\partial}{\partial \theta_{s}} \begin{bmatrix} I_{1r}(\theta) \\ \vdots \\ I_{pr}(\theta) \end{bmatrix}$	i.i.d.の場合に標準的に使える.

仮定弱い 使いにくい

仮定強い 使いやすい

$$\bullet A_{n,rs}(\theta) = \begin{bmatrix} K_{n,1rs}(\theta) + 2J_{n,1r,s}(\theta) \\ \vdots \\ K_{n,prs}(\theta) + 2J_{n,pr,s}(\theta) \end{bmatrix} + \sum_{t=1}^{p} \sum_{u=1}^{p} H_n^{tu}(\theta) \left(\frac{\partial \ell_n(\theta)}{\partial \theta_s} \right) \left(\frac{\partial \ell_n(\theta)}{\partial \theta_u} \right) \begin{bmatrix} K_{n,rt1}(\theta) \\ \vdots \\ K_{n,rtp}(\theta) \end{bmatrix}$$

$$\bullet A_{rs}(\theta) = \begin{bmatrix} K_{1rs}(\theta) + 2J_{1r,s}(\theta) \\ \vdots \\ K_{prs}(\theta) + 2J_{pr,s}(\theta) \end{bmatrix} + \sum_{t=1}^{p} \sum_{u=1}^{p} H^{tu}(\theta) I_{su}(\theta) \begin{bmatrix} K_{rt1}(\theta) \\ \vdots \\ K_{rtp}(\theta) \end{bmatrix}$$

アウトライン

- 1. イントロダクション
- 2. 主結果1: ベイズ推定量のバイアスの評価
- 3. 主結果2: 事前分布の構成
- 4. 例
- 5. シミュレーション
- 6. まとめ

Asymptotically unbiased priors の存在条件

一般に $\frac{\partial}{\partial \theta} \log \pi(\theta) = \phi(\theta)$ となる条件を考える.

Theorem 5 (偏微分方程式系の解の存在条件)

 $\phi(\theta)$ は微分可能であり、 $\phi(\theta)$ の θ に関する微分と積分の順序を交換できるとする。このとき、 $\frac{\partial}{\partial \theta} \log \pi(\theta) = \phi(\theta)$ を満たす2回連続微分可能な $\pi(\theta)$ が存在するための必要十分条件は、任意の $t,u \in \{1,...,p\}$ について

$$\frac{\partial}{\partial \theta_u} \phi_t(\theta) = \frac{\partial}{\partial \theta_t} \phi_u(\theta)$$
 可積分条件

が成り立つことである.

Theorem 5 の証明の概略

(解が存在 ⇒ 可積分条件)

$$\frac{\partial^2}{\partial\theta\partial\theta^{\mathsf{T}}}\log\pi(\theta) = \frac{\partial}{\partial\theta}\phi(\theta).$$

■ 左辺は対称行列なので、右辺も対称行列。よって、

$$\frac{\partial}{\partial \theta_u} \phi_t(\theta) = \frac{\partial}{\partial \theta_t} \phi_u(\theta) \quad (t, u \in \{1, ..., p\}).$$

(可積分条件 ⇒ 解が存在)

■ 可積分条件が成り立つとき,次の Corollary 7 の手順で解を構成できる.

事前分布の構成手順

Corollary 7 (Asymptotically unbiased prior の構成手順)

以下の手順によって構成された $\pi(\theta)$ は、可積分条件の下で

$$\frac{\partial}{\partial \theta} \log \pi(\theta) = \phi(\theta)$$

を満たす.

- (i) 定数ベクトル $(c_1,...,c_p) \in \Theta$ を任意に固定する.
- (ii) $\psi_t(\theta_t,...,\theta_p) \coloneqq \phi_t(c_1,...,c_{t-1},\theta_t,...,\theta_p)$ を用いて,

$$\tilde{\pi}(\theta) \coloneqq \exp\left(\sum_{t=1}^{p} \int_{c_t}^{\theta_t} \psi_t(z, \theta_{t+1}, \dots, \theta_p) dz\right)$$

を計算する.

(iii) $\pi(\theta) \propto \tilde{\pi}(\theta)$ とする.

 $\theta_1, ..., \theta_p$ と順番に積分して和を取る

Corollary 7の証明

s > r について、可積分条件より

$$\frac{\partial}{\partial \theta_{\scriptscriptstyle S}} \psi_r \Big(\theta_r, \dots, \theta_p \Big) = \frac{\partial}{\partial \theta_{\scriptscriptstyle S}} \phi_r(\theta) \, \Big|_{(\theta_1, \dots, \theta_{r-1}) = (c_1, \dots, c_{r-1})} = \frac{\partial}{\partial \theta_r} \phi_{\scriptscriptstyle S}(\theta) \, \Big|_{(\theta_1, \dots, \theta_{r-1}) = (c_1, \dots, c_{r-1})}$$

が成り立つことに注意すると, s=1,...,p について

$$\frac{\partial}{\partial \theta_s} \log \tilde{\pi}(\theta) = \sum_{r=1}^{s-1} \int_{c_r}^{\theta_r} \left(\frac{\partial}{\partial \theta_s} \psi_r(z, \theta_{r+1}, \dots, \theta_p) \right) dz + \psi_s(\theta_s, \dots, \theta_p)$$

$$=\sum_{r=1}^{s-1}\int_{c_r}^{\theta_r} \left(\frac{\partial}{\partial z} \phi_s(\theta_1, \dots, \theta_{r-1}, z, \theta_{r+1}, \dots, \theta_p) \Big|_{(\theta_1, \dots, \theta_{r-1}) = (c_1, \dots, c_{r-1})}\right) dz + \psi_s(\theta_s, \dots, \theta_p)$$

$$= \sum_{r=1}^{s-1} \left(\phi_s(c_1, \dots, c_{r-1}, \theta_r, \dots, \theta_p) - \phi_s(c_1, \dots, c_r, \theta_{r+1}, \dots, \theta_p) \right) + \phi_s(c_1, \dots, c_{s-1}, \theta_s, \dots, \theta_p)$$

$$= \phi_s(\theta_1, \dots, \theta_n).$$

Asymptotically unbiased prior の導出

 $\frac{\partial}{\partial \theta} \log \pi(\theta) = \phi(\theta)$ を満たす $\pi(\theta)$ を導出するために…

可積分条件を確認

Corollary 7 の構成手順を用いて事前分布を構成

事前分布の構成方法の汎用性について

■ 前ページの導出手順は、asymptotically unbiased prior 以外にも、

$$\frac{\partial}{\partial \theta} \log \pi(\theta) = \phi(\theta)$$

という形で定義される $\pi(\theta)$ の導出に対して一般に応用可能である.

● Moment matching prior などでも同様の手順で解の存在の確認と事前 分布の導出が行える.

アウトライン

- 1. イントロダクション
- 2. 主結果1: ベイズ推定量のバイアスの評価
- 3. 主結果2: 事前分布の構成
- 4. 例
- 5. シミュレーション
- 6. まとめ

1次元パラメータ i.i.d.モデル

- モデルがi.i.d.かつパラメータが1次元 (p=1) の場合, 可積分条件は常に成り立つ.
- Corollary 7 の手順によって求める事前分布を導出する:

 - 任意の c ∈ Θについて,

$$\tilde{\pi}(\theta) = \exp\left(\int_{c}^{\theta} \frac{I'(z)}{I(z)} dz\right) = \exp(\log I(\theta) - \log I(c)) = \frac{I(\theta)}{I(c)}.$$

• L T , $\pi(\theta) \propto I(\theta)$.

$$\begin{aligned} \bullet & \phi(\theta) = \sum_{r=1}^{p} \sum_{s=1}^{p} I^{rs}(\theta) \frac{\partial}{\partial \theta_{s}} \begin{bmatrix} I_{1r}(\theta) \\ \vdots \\ I_{pr}(\theta) \end{bmatrix} \\ \bullet & \psi_{t}(\theta_{t}, \dots, \theta_{p}) = \phi_{t}(c_{1}, \dots, c_{t-1}, \theta_{t}, \dots, \theta_{p}) \\ \bullet & \tilde{\pi}(\theta) = \exp\left(\sum_{t=1}^{p} \int_{c_{t}}^{\theta_{t}} \psi_{t}(z, \theta_{t+1}, \dots, \theta_{p}) dz\right) \end{aligned}$$

Example 1: 二項分布

- $X_1, ..., X_n \stackrel{i.i.d.}{\sim} Ber(\theta)$ とする.
- Fisher 情報量は, $I(\theta) = \theta^{-1}(1-\theta)^{-1}$.
- 事前分布を $\pi(\theta) \propto I(\theta) = \theta^{-1}(1-\theta)^{-1}$ とするとき,事後分布は $\pi(\theta|x_1,...,x_n) \propto \theta^{n\bar{X}-1}(1-\theta)^{n(1-\bar{X})-1}$.
 - すなわち、 $\theta|X_1,...,X_n \sim \text{Beta}(n\bar{X}, n(1-\bar{X})).$
- これより, $\hat{\theta}^B = \bar{X}$ であるが,これは θ の不偏推定量.

Example 2: 正規分布(期待値、分散パラメータ)

- $X_1, \dots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$, $\theta = (\theta_1, \theta_2) = (\mu, \sigma^2)$ とする.
- $I(\theta) = \begin{bmatrix} \sigma^{-2} & 0 \\ 0 & \sigma^{-4}/2 \end{bmatrix}$ より $\phi_1(\theta) = 0$, $\phi_2(\theta) = -\frac{2}{\sigma^2}$ と計算できる. したがって $\frac{\partial}{\partial \theta_2} \phi_1(\theta) = \frac{\partial}{\partial \theta_1} \phi_2(\theta) = 0$ なので,可積分条件が成立.
- $\Psi_1(\mu,\sigma) = 0, \ \psi_2(\sigma) = -\frac{2}{\sigma^2} \ \ \sharp \ \ 0, \ \ \pi(\theta) \propto \tilde{\pi}(\theta) = \exp\left(0 \int_c^{\sigma^2} \frac{2}{z} dz\right) \propto \frac{1}{\sigma^4}.$
- \bar{X} : $=\frac{1}{n}\sum_{i=1}^{n}X_{i}$, S^{2} : $=\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}$ と書くとき事後平均

$$(\hat{\mu}^B, \hat{\sigma}^{2,B}) = \left(\overline{X}, \frac{1}{n-1}S^2\right)$$

は (μ, σ^2) の不偏推定量.

$$\phi(\theta) = \sum_{r=1}^{p} \sum_{s=1}^{p} I^{rs}(\theta) \frac{\partial}{\partial \theta_{s}} \begin{bmatrix} I_{1r}(\theta) \\ \vdots \\ I_{pr}(\theta) \end{bmatrix}$$

$$\psi_{t}(\theta_{t}, \dots, \theta_{p}) = \phi_{t}(c_{1}, \dots, c_{t-1}, \theta_{t}, \dots, \theta_{p})$$

$$\tilde{\pi}(\theta) = \exp\left(\sum_{t=1}^{p} \int_{c_{t}}^{\theta_{t}} \psi_{t}(z, \theta_{t+1}, \dots, \theta_{p}) dz\right)$$

Example 5: 線形回帰モデル

■ モデルは,

$$y_i = x_i^{\mathsf{T}} \boldsymbol{\beta} + \epsilon_i \quad (i = 1, ..., n)$$

- $y_i \in \mathbb{R}, x_i \in \mathbb{R}^p$ を観測.
- $\epsilon_1, \dots, \epsilon_n \stackrel{i.i.d.}{\sim} N(0, \sigma^2).$
- x_i は非確率的であるとする (conditional inference).
 - \rightarrow モデルは i.i.d.ではない!
- モデルのパラメータは、 $\theta = (\theta_1, ..., \theta_p, \theta_{p+1}) = (\beta, \sigma^2) \in \mathbb{R}^{p+1}$.
- 求める事前分布は

$$\pi(\theta) \propto \sigma^{-4}$$
.

線形回帰モデルの事後分布

■ 事後分布は,

$$\beta \mid \sigma^2, y_1, \dots, y_n \sim N\left(\hat{\beta}^{OLS}, \sigma^2(X^\top X)^{-1}\right),$$

$$\sigma^2 \mid y_1, \dots, y_n \sim \operatorname{IG}\left(\frac{n-p}{2} + 1, \frac{1}{2}y^\top (I_n - X(X^\top X)^{-1}X^\top)y\right).$$

■ したがって、ベイズ推定量は

$$\hat{\beta}^B = \hat{\beta}^{OLS},$$

$$\hat{\sigma}^{2,B} = \frac{1}{n-p} (y^{\top} (I_n - X(X^{\top}X)^{-1}X^{\top})y) \quad \text{if } n > p.$$

■ これらは、 $\theta = (\beta, \sigma^2)$ の exact な不偏推定量である!

Examples 6&7: Nested error regression (NER)

■ m:地域数, n:地域内のユニット数(固定)とするとき,

$$y_{ij} = x_{ij}^{\mathsf{T}} \beta + v_i + \epsilon_{ij} \quad (i = 1, ..., m, j = 1, ..., n)$$

- $y_{ij} \in \mathbb{R}, x_{ij} \in \mathbb{R}^p$ を観測.
- **■** $v_i \sim N(0, \tau^2), \ \epsilon_{i1}, \dots, \epsilon_{in} \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$ で、 $v_i \geq \epsilon_{ij}$ は独立.
- モデルのパラメータは、 $\theta = (\theta_1, \dots, \theta_p, \theta_{p+1}, \theta_{p+2}) = (\beta, \tau^2, \sigma^2) \in \mathbb{R}^{p+2}$.
- $m \to \infty$ という状況を考える nは固定
- データは i に関して独立であるとする。
- このとき, asymptotically unbiased prior は $\pi(\theta) \propto [\sigma^2(\sigma^2 + n\tau^2)]^{-2}$.

NERモデルの Gibbs sampler

■ $\theta = (\beta, \tau^2, \sigma^2)$ を直接サンプリングする代わりに, $\bar{\theta} = (\beta, \rho, \sigma^2)$ をサンプリングする.ただし,

$$\rho = \frac{\sigma^2}{\sigma^2 + n\tau^2} \in (0,1).$$

 \bullet のパラメータの full conditional は,

$$\beta_r \mid \beta_{-r}, \rho, \sigma^2, \mathcal{D} \sim N \left(\frac{\sum_{i=1}^m (y_i - \sum_{s \neq r} x_{i \cdot, s} \beta_s)^\top \bar{V}^{-1} x_i}{\sum_{i=1}^m x_{i \cdot, r}^\top \bar{V}^{-1} x_{i \cdot, r}}, \left(\sum_{i=1}^m x_{i \cdot, r}^\top \bar{V}^{-1} x_{i \cdot, r} \right)^{-1} \right),$$

$$\rho \mid \beta, \sigma^2, \mathcal{D} \sim \text{Truncated Gamma}\left(\frac{m}{2} + 1, \ \frac{1}{2n\sigma^2}\sum_{i=1}^{m}(y_i - x_i\beta)^\top \ \iota_n \iota_n^\top (y_i - x_i\beta)\right)$$
truncated on (0,1),

$$\sigma^2 \mid \beta, \rho, \mathcal{D} \sim \mathbf{IG} \left(\frac{nm}{2} + 2, \ \frac{1}{2} \sum_{i=1}^m (y_i - x_i \beta)^{\mathsf{T}} \left(I_n - \frac{1 - \rho}{n} \iota_n \iota_n^{\mathsf{T}} \right) (y_i - x_i \beta) \right).$$

アウトライン

- 1. イントロダクション
- 2. 主結果1: ベイズ推定量のバイアスの評価
- 3. 主結果2: 事前分布の構成
- 4. 例
- 5. シミュレーション
- 6. まとめ

NERモデルのシミュレーション

設定

- 地域内のユニット数: *n* = 5.
- 地域数 $m \in \{10, 32, 100, 316, 1000\}$ の5通りで推定.

目的

■ 各mに対し、事後平均 $\hat{\theta}^B$ のバイアス $\mathbb{E}(\hat{\theta}^B - \theta)$ を評価する.

シミュレーションの手順

各 $m \in \{10, 32, 100, 316, 1000\}$ について,

- 1. 真の分布から $\mathcal{D}^m = \{(y_i, x_i): i \leq m\}$ を10000回発生させる。それぞれ $\mathcal{D}^{m,1}, ..., \mathcal{D}^{m,10000}$ と呼ぶ。
- 2. 各 $\mathcal{D}^{m,k}$ に対して、対応する事後平均 $\hat{\theta}^{m,k}$ を計算する.
 - MCMC (Gibbs sampler) を用いて事後分布からのサンプリングを行う.
- 3. 平均 $\widehat{\mathbb{E}}(\widehat{\theta}) := \frac{1}{10000} \sum_{k=1}^{10000} \widehat{\theta}^{m,k}$ によって $\widehat{\mathbb{E}}(\widehat{\theta})$ を近似する.

比較する事前分布

[AU] Asymptotically unbiased prior: $\pi(\theta) \propto [\sigma^2(\sigma^2 + n\tau^2)]^{-2}$.

[JF] (部分的) Jeffreys' prior: $\pi(\theta) \propto [\sigma^2(\sigma^2 + n\tau^2)]^{-1}$.

• 回帰係数に関して $\pi(\beta) \propto 1$, 分散成分 (σ^2, τ^2) に対してJeffreys' prior を考えたもの.Cf. Tiao and Tan (1965).

[DG] Datta and Ghosh (1991): $\pi(\beta) \propto 1$, $\tau^2 \sim \mathrm{IG}(a_\tau, b_\tau)$, $\sigma^2 \sim \mathrm{IG}(a_\sigma, b_\sigma)$.

• 実験では $a_{\tau} = b_{\tau} = a_{\sigma} = b_{\sigma} = 5$ と設定.

バイアスの比較: 真値 $(\beta_1, \beta_2, \tau^2, \sigma^2) = (1, 1, 1, 1)$

- lacksquare サンプルサイズが小さいとき, au^2 と σ^2 のバイアスは事前分布の選択に依存.
- どの事前分布がバイアスの意味で最適かはパラメータの真値による (次スライド) が、提案した事前分布である [AU] は良い選択肢である.

バイアスの比較: 真値 $(\beta_1, \beta_2, \tau^2, \sigma^2) = (1, 1, 0.5, 4)$

[Figure 2]

MSEの比較: 真値 $(\beta_1, \beta_2, \tau^2, \sigma^2) = (1, 1, 1, 1)$

[Figure 3]

MSEの比較: 真値 $(\beta_1, \beta_2, \tau^2, \sigma^2) = (1, 1, 0.5, 4)$

95%被覆確率の比較: 真値 $(\beta_1, \beta_2, \tau^2, \sigma^2) = (1, 1, 1, 1)$

95%被覆確率の比較: 真値 $(\beta_1, \beta_2, \tau^2, \sigma^2) = (1, 1, 0.5, 4)$

シミュレーションのまとめ

- どの事前分布がバイアスの意味で最適かはパラメータの真値によるが、提案 した asymptotically unbiased prior は良い選択肢である.
- MSEや coverage probability の結果と併せても, asymptotically unbiased prior は全体的に悪くないパフォーマンスを示す.

アウトライン

- 1. イントロダクション
- 2. 主結果1: ベイズ推定量のバイアスの評価
- 3. 主結果2: 事前分布の構成
- 4. 例
- 5. シミュレーション
- 6. まとめ

まとめ

- i.i.d.とは限らないモデルにおける asymptotically unbiased priors の特徴づけを行った.
- Asymptotically unbiased priors の存在条件と構成手順をまとめた.
- いくつかのモデルへの応用を紹介し、NERモデルのシミュレーション結果を 提示した.

参考文献

- Datta, G. S. and Ghosh, M. (1991). Bayesian prediction in linear models: Applications to small area estimation. *The Annals of Statistics 19*(4), 1748–1770.
- Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80(1), 27-38.
- Ghosh, M. and R. Liu (2011). Moment matching priors. Sankhya: The Indian Journal of Statistics, Series A (2008-) 73 (2), 185–201.
- Hartigan, J. A. (1965). The asymptotically unbiased prior distribution. The Annals of Mathematical Statistics 36 (4), 1137–1152.
- Jeffreys, H. (1961). The Theory of Probability (Third ed.). Oxford University Press.
- Tiao, G. C. and Tan, W. Y. (1965). Bayesian analysis of random-effect models in the analysis of variance. I. Posterior distribution of variance-components. *Biometrika* 52(1/2), 37–53.