

AO4411

P-Channel Enhancement Mode Field Effect Transistor

General Description

The AO4411 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, and ultra-low low gate charge. This device is suitable for use as a load switch or in PWM applications.

Features

 $V_{DS}(V) = -30V$ $I_{D} = -7.5 A$

 $R_{DS(ON)}$ < 35m Ω (V_{GS} = -10V)

 $R_{DS(ON)}$ < 60m Ω (V_{GS} = -4.5V)

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage		V_{DS}	-30	V			
Gate-Source Voltage		V_{GS}	±20	V			
Continuous Drain	T _A =25°C		-7.5				
Current ^A	T _A =70°C	I _D	-6.3	А			
Pulsed Drain Current ^B		I _{DM}	-40				
	T _A =25°C	В	3	10/			
Power Dissipation ^A	T _A =70°C	$-P_D$	2.1	W			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C			

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	24	40	°C/W			
Maximum Junction-to-Ambient A	Steady-State	N _θ JA	54	75	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	21		°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units		
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V		-30			V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V				-1	μА		
.D22		T _J =55°0	_=55°C			-5	μΛ		
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$		-1.2	-1.8	-2.2	V		
$I_{D(ON)}$	On state drain current	V _{GS} =-10V, V _{DS} =-5V		40			Α		
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-5A			26	35	mΩ		
			=125°C		37		11122		
		V _{GS} = 4.5V, I _D =-5A			36	60	mΩ		
g _{FS}	Forward Transconductance	V _{DS} =-5V, I _D =-10A					S		
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V			-0.75	-1	V		
I_S	Maximum Body-Diode Continuous Current					-4.2	Α		
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance				920		pF		
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =-15V, f=1MHz			190		pF		
C _{rss}	Reverse Transfer Capacitance				122		pF		
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			3.6		Ω		
SWITCHII	NG PARAMETERS								
Q_g	Total Gate Charge	V _{GS} =-10V, V _{DS} =-15V, I _D =-7.5A			2.4		nC		
Q_{gs}	Gate Source Charge				4.5		nC		
Q_{gd}	Gate Drain Charge				9.3		nC		
$t_{D(on)}$	Turn-On DelayTime				7.6		ns		
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =2 Ω , R_{GEN} =3 Ω			5.2		ns		
$t_{D(off)}$	Turn-Off DelayTime				21.6		ns		
t _f	Turn-Off Fall Time				8		ns		
t _{rr}	Body Diode Reverse Recovery Time	I _F =-7.5A, dI/dt=100A/μs					ns		
Q_{rr}	Body Diode Reverse Recovery Charge	I_F =-7.5A, dI/dt=100A/ μ s					nC		

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.