Lecture 2: Convex Geometry

Niao He

16th April 2019

Niao He

Quick Review Questions

Radon's Theorem

Outline

Warm-up
Quick Review
Questions

Convex Geometry

Radon's Theorem Helley's Theorem Separation Theorem

Niao He

Quick Review Questions

Radon's Theorem Helley's Theorem Separation Theorem

Quick Review

- Convex set
 - ▶ X is convex iff $\lambda x + (1 \lambda)y \in X, \forall x, y \in X, \lambda \in [0, 1]$
- Convex hull

► Conv(X) =
$$\left\{ \sum_{i=1}^{k} \lambda_i x_i : k \in \mathbf{N}, \lambda_i \ge 0, \sum_{i=1}^{k} \lambda_i = 1, x_i \in X, \forall i \right\}$$

- Convexity-preserving operators
 - ► Taking intersection, Cartesian product, summation
 - Taking affine mapping, inverse affine mapping
- ► Topological properties
 - ► For convex sets, rint(X) is dense in cl(X)
- ▶ Representation theorem
 - Any point in the convex hull of set X with dimension d can be written as the convex combination of at most d + 1 points in X.

Niao He

Warm-up

Quick Revie Questions

Radon's Theorem Helley's Theorem Separation Theore

Question 1

Can you find a partition of the sets whose convex hulls intersect?

Figure: Four sets

Niao He

Warm-up
Quick Reviev
Questions

Radon's Theorem Helley's Theorem Separation Theorem

Question 2

If I_1 , I_2 and I_3 are intervals on the real line such that any two have a point in common, do all three have a point in common?

Niao He

Warm-up Quick Revie Questions

Convex Geometry Radon's Theorem Helley's Theorem Separation Theorem

Question 3

Which group is different from others?

Figure: Four groups of disjoint sets

Niao He

Warm-up
Quick Review
Questions

Radon's Theorem Helley's Theorem Separation Theorem

The Mathematicians

Figure: Johann Radon (1887–1956)

Figure: Eduard Helley (1884–1943)

Figure: Hermann Minkowski (1864–1909)

Niao He

Warm-up
Quick Revie
Questions

Convex Geometi Radon's Theorem

Helley's Theorem Separation Theore

Radon's Theorem (J. Radon, 1921)

Theorem. Let S be a collection of N points in \mathbb{R}^d with $N \ge d+2$. Then we can write $S = S_1 \cup S_2$ s.t.

$$S_1 \cap S_2 = \emptyset$$
, and $Conv(S_1) \cap Conv(S_2) \neq \emptyset$.

Remark.

- Any set of d + 2 points in \mathbb{R}^d can be partitioned into two disjoint sets whose convex hulls intersect.
- ▶ Can be used to show the VC-dimension of the class of halfspaces (linear separators) in d-dimensions is d + 1.

Figure: 3 points separable vs 4 points nonseparable

Niao He

Quick Revie

Convex Geomet Radon's Theorem

Helley's Theorem Separation Theorem

Proof of Radon's Theorem

- ▶ Let $S = \{x_1, ..., x_N\}$ with $N \ge d + 2$.
- Consider the linear system

$$\begin{cases} \sum_{i=1}^{N} \gamma_i x_i = 0 \\ \sum_{i=1}^{N} \gamma_i = 0 \end{cases} \Rightarrow \begin{cases} (d+1) \text{ equations} \\ N \geq (d+2) \text{ unknowns} \end{cases}$$

So there exists a non-zero solution $\gamma_1, ..., \gamma_N$.

Let $I = \{i : \gamma_i \ge 0\}$, $J = \{j : \gamma_j < 0\}$ and $a = \sum_{i \in I} \gamma_i = -\sum_{j \in J} \gamma_j$, then

$$\sum_{i \in I} \gamma_i x_i = \sum_{j \in J} (-\gamma_j) x_j \Rightarrow \sum_{i \in I} \frac{\gamma_i}{a} x_i = \sum_{j \in J} \frac{-\gamma_j}{a} x_j$$

▶ The partition $S_1 = \{x_i, i \in I\}$ and $S_2 = \{x_j : j \in J\}$ gives the desired result.

Niao He

Quick Revie

Convex Geometr Radon's Theorem

Helley's Theorem Separation Theore

Back to the Question

If I_1 , I_2 and I_3 are intervals on the real line such that any two have a point in common, do all three have a point in common?

Niao He

Warm-up
Quick Review

Convex Geometry
Radon's Theorem
Helley's Theorem

Helley's Theorem (E. Helly, 1923)

Theorem. Let $S_1, ..., S_N$ be a collection of convex sets in \mathbb{R}^d with N > d. Assume every (d+1) sets of them have a point in common, then all the sets have a point in common.

Figure: Four convex sets in \mathbb{R}^2

- Q. Does the theorem still hold if we relax $N = \infty$?
- Q. Does the theorem still hold if we relax (d + 1) sets to d sets?

Niao He

Warm-up
Quick Review
Questions

Radon's Theorem
Helley's Theorem
Separation Theorem

Helley's Theorem (E. Helly, 1923)

Theorem. Let $S_1, ..., S_N$ be a collection of convex sets in \mathbb{R}^d with N > d. Assume every (d+1) sets of them have a point in common, then all the sets have a point in common.

Remark.

- ▶ Not true for infinite collection:
 - ► E.g. $S_i = [i, \infty), \cap_{i=1}^{+\infty} S_i = \emptyset$
- ▶ Not true if reduce (d+1) sets to d sets.

Corollary. Let $\{S_{\alpha}\}$ be any collection of compact convex sets in \mathbb{R}^d . If every (d+1) sets have a point in common, then all sets have a points in common.

Niao He

Warm-up Quick Review

Convex Geometry

Helley's Theorem

Proof of Helley's Theorem

Figure: Illustration of N = 4, d = 2

Niao He

Warm-up
Quick Review
Questions

Radon's Theorem
Helley's Theorem

Proof of Helley's Theorem

By induction on N.

- ▶ Base case: N = d + 1, obviously true.
- Induction step: Assume the collection of $N(\geq d+1)$ sets have common point if every (d+1) of them have common point. Show this holds for N+1 sets.
- ► From the assumption, $\exists \{x_1, x_2, ..., x_{N+1}\}$ such that $x_i \in S_1 \cap ... \cap S_{i-1} \cap S_{i+1} \cap ... \cap S_{N+1} \neq \emptyset$.
- ▶ By Radon's theorem, we can split it into two disjoint sets, $\{x_1, ..., x_k\}$ and $\{x_{k+1}, ..., x_N\}$, and

$$Conv(\{x_1,...,x_k\}) \cap Conv(\{x_{k+1},...,x_{N+1}\}) \neq \emptyset.$$

▶ Let $z \in \text{Conv}(\{x_1, ..., x_k\}) \cap \text{Conv}(\{x_{k+1}, ..., x_{N+1}\})$. It can be shown that $z \in S_1 \cap ... \cap S_{N+1}$ (why?).

Niao He

Quick Revie Questions

Radon's Theorem Helley's Theorem Separation Theorem

Application of Helley's Theorem

Baby Theorem Let X contain a finite set of points in the plane, such that every three of them are contained in a disk of radius 1. Then X is contained in a disk of radius 1.

Jung's Theorem. Let X contain a finite set of points in the plane, such that any two of them have distance no greater than 1. Then X is contained in a disk of radius $1/\sqrt{3}$.

Jung's Theorem. Let $X \subset \mathbb{R}^n$ be a compact set such that any two of them has Euclidean distance no greater than 1. Then X is contained in a ball with radius $\sqrt{\frac{n}{2(n+1)}}$.

Niao He

Warm-up
Quick Review
Questions

Convex Geometric Radon's Theorem

Helley's Theorem Separation Theore

Application of Helley's Theorem

Question. Consider the optimization problem

$$p_* = \min_{x \in \mathbb{R}^{10}} g_0(x), \quad \text{s.t. } g_i(x) \le 0, i = 1, ..., 521.$$

- Suppose $\forall t \in \mathbb{R}$, $X_0 = \{x \in \mathbb{R}^{10} : g_0(x) \le t\}$ is convex, $X_i = \{x \in \mathbb{R}^{10} : g_i(x) \le 0\}$ is convex.
- ► How many constraints can you drop without affecting the optimal value?

Niao He

Quick Review

Radon's Theorem Helley's Theorem Other Applications of Helley's Theorem

Helleys theorem is a very fundamental result in convex geometry and can be applied to show many results.

- ► The centerpoint theorem
- Farkas Lemma
- Sion-Kakutani Theorem
- Chebyshev approximation

Niao He

Quick Review

Convex Geometry Radon's Theorem Helley's Theorem Separation Theorem

Back to the Question

When can we separate two sets?

Figure: Four groups of disjoint sets

Niao He

Quick Review Questions

Convex Geometry Radon's Theorem Helley's Theorem Separation Theorem

Separation of Sets

Definition. Let S and T be two nonempty convex sets in \mathbb{R}^n . A hyperplane $H = \{x \in \mathbb{R}^n : a^T x = b\}$ with $a \neq 0$ is said to separate S and T if $S \cup T \not\subset H$ and

$$S \subset H^{-} = \left\{ x \in \mathbb{R}^{n} : a^{T}x \leq b \right\}$$

 $T \subset H^{+} = \left\{ x \in \mathbb{R}^{n} : a^{T}x \geq b \right\}$

Figure: Separation of two sets

Niao He

Quick Review Questions

Convex Geometry Radon's Theorem Helley's Theorem Separation Theorem

Strict Separation of Sets

Definition. Let S and T be two nonempty convex sets in \mathbb{R}^n . A hyperplane $H = \{x \in \mathbb{R}^n : a^T x = b\}$ with $a \neq 0$ is said to strictly separate S and T if

$$S \subset H^{--} = \left\{ x \in \mathbb{R}^n : a^T x < b \right\}$$
$$T \subset H^{++} = \left\{ x \in \mathbb{R}^n : a^T x > b \right\}$$

Figure: Strict Separation of two sets

Niao He

Warm-up
Quick Revie
Questions

Convex Geometry Radon's Theorem Helley's Theorem Separation Theorem

Strong Separation of Sets

Definition. Let S and T be two nonempty convex sets in \mathbb{R}^n . A hyperplane $H = \{x \in \mathbb{R}^n : a^Tx = b\}$ with $a \neq 0$ is said to strongly separate S and T if there exits b' < b < b'' such that

$$S \subset \left\{ x \in \mathbb{R}^n : a^T x \le b' \right\}$$
$$T \subset \left\{ x \in \mathbb{R}^n : a^T x \le b'' \right\}$$

Remark.

- ► Strict separation does not necessarily imply strong separation.
- Strong separation is equivalent to say

$$\sup_{x \in S} a^T x < \inf_{x \in T} a^T x.$$

Niao He

Warm-up Quick Review

Radon's Theorem Helley's Theorem Separation Theorem

Separation Hyperplane Theorem

Theorem. Let S and T be two nonempty convex sets. Then S and T can be separated if and only if

$$rint(S) \cap rint(T) = \emptyset$$
.

Niao He

Quick Revie Questions

Convex Geometry Radon's Theorem Helley's Theorem Separation Theorem

Supporting Hyperplane Theorem

Theorem. Let S be a nonempty convex set and $x_0 \in \partial S$. Then there exists a hyperplane $H = \{x : a^T x = a^T x_0\}$ with $a \neq 0$ such that

$$S \subset \left\{ x : a^T x \leq a^T x_0 \right\}, \text{ and } x_0 \in H.$$

Figure: Supporting hyperplane

- ▶ This follows directly from the previous theorem.
- ▶ Such a hyperplane is called a supporting hyperplane.

Niao He

Quick Revie

Convex Geometry Radon's Theorem Helley's Theorem Separation Theorem

Strict Separation Hyperplane Theorem I

Theorem. Let S be closed and convex and $x_0 \notin S$, Then there exists a hyperplane that strictly separates x_0 and S.

Figure: Strict separation

- ► Closedness of the set is crucial here.
- ► Separating hyperplane can be constructed based on the projection.

Niao He

Quick Revie

Radon's Theorem Helley's Theorem Separation Theorem

Strict Separation Hyperplane Theorem II

Theorem. Let S and T be two nonempty convex sets and $S \cap T = \emptyset$. If S - T is closed, then S and T can be strictly separated.

Remark.

- Even if both S and T are closed convex, S T might not be closed, and they might not be strictly separated.
- ▶ When both S and T are closed convex, $S \cap T = \emptyset$ and at least one of them is bounded, then S T is closed, and S and T can be strictly separated

Niao He

Warm-up
Quick Review

Convex Geometry Radon's Theorem Helley's Theorem Separation Theorem

References

- ▶ Boyd & Vandenberghe, Chapter 2.5
- ▶ Ben-Tal & Nemirovski, Chapter 1.2.2-1.2.6