Note on transmission and reflection coefficients.

## 1 Problem setup

As shown in Figure 1, consider the piecewise linear potential function V(x):

$$V(x) = s_j(x - x_j) + V_j,$$
  

$$s_j = (V_{j+1/2} - V_{j-1/2})/\Delta x,$$
  

$$V_j = (V_{j+1/2} + V_{j-1/2})/2,$$
(1)

where  $j = 0, 1, 2, \dots, N$  for  $x_{j-1/2} < x < x_{j+1/2}$ . test

Take a quantum barrier in the interval  $Q = [x_j, x_{j+1}]$  and take the potential to be constant outside this barrier  $V(x) = V_j$  in  $C_j = (-\infty, x_j)$  and  $V(x) = V_{j+1}$  in  $C_{j+1} = (x_{j+1}, \infty)$ . For a state  $E = p^2/2m$  the time-independent Schrödinger equation

$$-\varepsilon^2 \psi''(x) + 2mV(x)\psi(x) = p^2 \psi(x)$$
 (2)

has the solution

$$\psi(x) = \begin{cases}
 a_1 e^{i\kappa_j (x - x_j)/\varepsilon} + b_1 e^{-i\kappa_j (x - x_j)/\varepsilon}, & x \in \mathcal{C}_j \\
 \psi_{\mathcal{Q}}, & x \in \mathcal{Q} \\
 a_2 e^{i\kappa_{j+1} (x - x_{j+1})/\varepsilon} + b_2 e^{-i\kappa_{j+1} (x - x_{j+1})/\varepsilon}, & x \in \mathcal{C}_{j+1}
\end{cases} \tag{3}$$

where  $\kappa_{j,j+1} = \sqrt{p^2 - 2mV_{j,j+1}}$  and the coefficients  $a_1, b_1, a_2$  and  $b_2$  are uniquely determined by the boundary conditions at  $x_1$  and  $x_2$ .  $\psi_{\mathcal{Q}}$  can be determined using the boundary conditions at  $x_j, x_{j+1/2}$  and  $x_{j+1}$  according to the paper you mention. Hence, for each momentum p we may relate the solution in  $\mathcal{C}_{j+1}$  with the solution  $\mathcal{C}_j$  in terms of the transfer matrix M

$$\begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = M \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}. \tag{4}$$



Figure 1: The showcase of the problem.

One may also express the solutions in  $C_j$  and  $C_{j+1}$  in terms of a scattering matrix S which relates the incident and scattered waves

where  $\Delta = \det M = m_{11}m_{22} - m_{12}m_{21}$ . By considering the time evolution of the position density  $\rho(x,t) = |\psi(x,t)|^2$  in the Schrödinger equation, one derives the continuity equation

$$\frac{\partial}{\partial t}\rho + \nabla \cdot J = 0,\tag{6}$$

where the current density  $J(x) = \varepsilon m^{-1} \text{Im}(\bar{\psi} \nabla \psi)$ . From (3) one has that

$$J(x) = \begin{cases} \kappa_j(|a_1|^2 - |b_1|^2)/m, & x \in \mathcal{C}_j \\ \kappa_{j+1}(|a_2|^2 - |b_2|^2)/m, & x \in \mathcal{C}_{j+1} \end{cases}$$
 (7)

so for a wave incident on the barrier from the left  $(b_2 \equiv 0)$ , we have  $a_2 = t_1 a_1$  and  $b_1 = r_1 a_1$ . It follows that the reflection coefficient  $R_1$ , the ratio of the reflected to incident current densities, and the transmission coefficient  $T_1$ , the ratio of the transmitted to incident current densities, are

$$R_1 = |r_1|^2$$
 and  $T_1 = (\kappa_{i+1}/\kappa_i)|t_1|^2$ . (8)

Similarly, for a wave incident from the right

$$R_2 = |r_2|^2$$
 and  $T_2 = (\kappa_j/\kappa_{j+1})|t_2|^2$ . (9)

For conclusion, if we have the transfer matrix M as in (4), then by using (5) we can get S. Finally, using (8) or (9) we can get the transmission and reflection coefficients.

## 2 Calculation of M

Let us find the form of M. So first we will solve the equation (2) in the interval  $Q = [x_j, x_{j+1}]$ . Notice on the half interval  $[x_j, x_{j+1/2}]$ , equation (2) reads:

$$-\varepsilon^2 \psi''(x) + \left[2m(s_i(x-x_i) + V_i) - p^2\right]\psi(x) = 0, \quad x \in [x_i, x_{i+1/2}]. \tag{10}$$

If we apply a change of variable to x:

$$z_j(x) = \sqrt[3]{\frac{2ms_j}{\varepsilon^2}}(x - b_j), \quad x \in [x_j, x_{j+1/2}]$$
 (11)