

planetmath.org

Math for the people, by the people.

proof of von Neumann double commutant theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfVonNeumannDoubleCommutantTheorem}$

Date of creation 2013-03-22 18:40:29 Last modified on 2013-03-22 18:40:29 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 7

Author asteroid (17536)

Entry type Proof
Classification msc 46L10
Classification msc 46H35
Classification msc 46K05

Lemma - Let H be a Hilbert space and B(H) its algebra of bounded operators. Let \mathcal{N} be a *-subalgebra of B(H) that contains the identity operator and is closed in the strong operator topology. If $T \in \mathcal{N}''$, the double commutant of \mathcal{N} , then for each $x \in H$ there is an operator $A \in \mathcal{N}$ such that $\|(A-T)x\| < 1$.

: Let $\overline{\mathcal{N}x} \subseteq H$ be the closure of the subspace $\mathcal{N}x := \{Sx : S \in \mathcal{N}\}$. It is clear that $\mathcal{N}x$ is an invariant subspace for \mathcal{N} , hence so is its closure $\overline{\mathcal{N}x}$ (see http://planetmath.org/InvariantSubspacesForSelfAdjointAlgebrasOfOperatorsthis entry, Proposition 5).

Let P be the orthogonal projection onto $\overline{\mathcal{N}x}$. Since $\overline{\mathcal{N}x}$ is invariant for \mathcal{N} , we have that $P \in \mathcal{N}'$ (see http://planetmath.org/InvariantSubspacesForSelfAdjointAlgebra entry, last theorem). Since \mathcal{N} contains the identity operator, we know that x belongs to $\overline{\mathcal{N}x}$. Hence,

$$Tx = TPx = PTx$$

where the last equality comes from the fact that $T \in \mathcal{N}''$ and $P \in \mathcal{N}'$. Thus, we see that $Tx \in \overline{\mathcal{N}}x$, which implies that there exists an $A \in \mathcal{N}$ such that ||Tx - Ax|| < 1. \square

- $(1) \Longrightarrow (2)$ Since \mathcal{M}'' is the commutant of some set, namely it is the commutant of \mathcal{M}' , it follows that \mathcal{M}'' is closed in the weak operator topology (see http://planetmath.org/CommutantIsAWeakOperatorClosedSubalgebrathis entry). But we are assuming that $\mathcal{M} = \mathcal{M}''$, hence \mathcal{M} is closed in the weak operator topology.
- $(2) \Longrightarrow (3)$ This part is obvious since the weak operator topology is weaker than the strong operator topology.
 - $(3) \Longrightarrow (1)$ Suppose \mathcal{M} is closed in the strong operator topology.

A subset of B(H) is always contained in its double commutant, thus $\mathcal{M} \subseteq \mathcal{M}''$. So it remains to prove the opposite inclusion.

Let $T \in \mathcal{M}''$. We are going to prove that T belongs to the strong operator closure of \mathcal{M} , and since \mathcal{M} is closed under this topology, it will follow that $T \in \mathcal{M}$.

Recall that the strong operator topology is the topology in B(H) generated by the family of seminorms $\|\cdot\|_x, x \in H$ defined by $\|S\|_x := \|Sx\|$. A local base around T, in this topology, consists of sets of the form

$$V(x_1, ..., x_n; \epsilon) := \{ S \in B(H) : ||(S - T)x_i|| \le \epsilon, i = 1, ..., n \}, \qquad x_1, ..., x_n \in H, \epsilon > 0 \}$$

We can however consider ϵ to be 1, since $V(x_1, \ldots, x_n; \epsilon) = V(\epsilon^{-1}x_1, \ldots, \epsilon^{-1}x_n; 1)$.

For every $x_1, \ldots, x_n \in H$ we want to find $A \in \mathcal{M}$ such that $A \in V(x_1, \ldots, x_n; 1)$, i.e. such that $||(A - T)x_i|| < 1$, for each i.

Let \widetilde{H} be the direct sum of Hilbert spaces $\widetilde{H}:=\oplus_{i=1}^n H$. For every $A\in B(H)$ let $\widetilde{A}\in B(\widetilde{H})$ be the http://planetmath.org/DirectSumOfBoundedOperatorsOnHilbertSysum of bounded operators $\widetilde{A}:=\oplus_{i=1}^n A$, i.e.

$$\widetilde{A}(y_1,\ldots,y_n)=(Ay_1,\ldots,Ay_n), \qquad y_1,\ldots,y_n\in H$$

We have that $\mathcal{N} := \{\widetilde{A} : A \in \mathcal{M}\}$ is a *-algebra of bounded operators in \widetilde{H} .

Claim 1 - $\widetilde{T} \in \mathcal{N}''$.

The algebra B(H) can be canonically identified with the algebra of $n \times n$ matrices with entries in B(H), and \mathcal{N} corresponds to the diagonal matrices with an element $A \in \mathcal{M}$ in the diagonal. Thus, it is easy to check that \mathcal{N}' is precisely the set of matrices whose entries belong to \mathcal{M}' .

Since the http://planetmath.org/UnitMatrixunit matrices belong to \mathcal{N}' , it follows that \mathcal{N}'' consists solely of diagonal matrices with one element on the diagonal (see http://planetmath.org/CentralizerOfMatrixUnitsthis entry). It is easy to check that \mathcal{N}'' is precisely the set of diagonal matrices with one element of \mathcal{M}'' in the diagonal. Hence, we conclude that $\widetilde{T} \in \mathcal{N}''$, and Claim 1 is proved.

Now, we observe that \mathcal{N} is a *-subalgebra of $B(\widetilde{H})$ that contains the identity operator. Since \mathcal{M} is closed in the strong operator topology, it follows easily that \mathcal{N} is also closed in the strong operator topology. Since $\widetilde{T} \in \mathcal{N}''$, Lemma 1 that for each $\widetilde{x} := (x_1, \ldots, x_n) \in \widetilde{H}$ there exists an operator $\widetilde{A} \in \mathcal{N}$ such that $\|(\widetilde{A} - \widetilde{T})\widetilde{x}\| < 1$. But this is implies that $\|(A - T)x_i\| < 1$ for each 1 < i < n.

Thus, $T \in V(x_1, ..., x_n; 1)$. Hence we conclude that T belongs to the operator closure of \mathcal{M} , but since \mathcal{M} is closed under this topology, $T \in \mathcal{M}$.

We conclude that $\mathcal{M}'' = \mathcal{M}$. \square