The Reachability Problem for Petri Nets is Not Elementary

Wojciech Czerwiński¹, Sławomir Lasota¹, Ranko Lazić², Jérôme Leroux³ and Filip Mazowiecki³

¹University of Warsaw

²University of Warwick

³LaBRI

DIMAP seminar February 2019

The Reachability Problem for Petri Nets is Not Elementary

Wojciech Czerwiński¹, Sławomir Lasota¹, Ranko Lazić², Jérôme Leroux³ and Filip Mazowiecki³

¹University of Warsaw

²University of Warwick

³LaBRI

DIMAP seminar February 2019

The Reachability Problem for Petri Nets is Not Elementary

Wojciech Czerwiński¹, Sławomir Lasota¹, Ranko Lazić², Jérôme Leroux³ and Filip Mazowiecki³

 1 University of Warsaw

²University of Warwick

³LaBRI

DIMAP seminar February 2019

Introduction

Petri Nets, VASS, programs with no zero tests

(d, Q, T), where $T \subseteq Q \times \mathbb{Z}^d \times Q$

$$(d, Q, T)$$
, where $T \subseteq Q \times \mathbb{Z}^d \times Q$

Example: d = 3, $Q = \{p, q\}$

$$(d, Q, T)$$
, where $T \subseteq Q \times \mathbb{Z}^d \times Q$

Example: d = 3, $Q = \{p, q\}$

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \mathbb{N}^d$

$$(d, Q, T)$$
, where $T \subseteq Q \times \mathbb{Z}^d \times Q$

Example: d = 3, $Q = \{p, q\}$

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \mathbb{N}^d$

Example run:

$$ho(0,0,1)
ightarrow
ho(0,1,0)
ightarrow q(0,1,0)
ightarrow q(0,0,2)
ightarrow
ho(1,0,2)$$

$$(d, Q, T)$$
, where $T \subseteq Q \times \mathbb{Z}^d \times Q$

Example: d = 3, $Q = \{p, q\}$

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \mathbb{N}^d$

Example run:

$$ho(0,0,1)
ightarrow
ho(0,1,0)
ightarrow q(0,1,0)
ightarrow q(0,0,2)
ightarrow
ho(1,0,2)$$

Notation: $p(0,0,1) \to^* p(1,0,2)$

Reachability problem:

GIVEN: VASS (d, Q, T) and configurations $p(\mathbf{u}), q(\mathbf{v})$

DECIDE: whether $p(\mathbf{u}) \rightarrow^* q(\mathbf{v})$?

Reachability problem:

GIVEN: VASS (d, Q, T) and configurations $p(\mathbf{u}), q(\mathbf{v})$

DECIDE: whether $p(\mathbf{u}) \rightarrow^* q(\mathbf{v})$?

Coverability problem:

GIVEN: VASS (d, Q, T) and configurations $p(\mathbf{u}), q(\mathbf{v})$

DECIDE: whether exists \mathbf{v}' s.t. $p(\mathbf{u}) \to^* q(\mathbf{v}')$ and $\mathbf{v}' \geq \mathbf{v}$?

Reachability problem:

GIVEN: VASS (d, Q, T) and configurations $p(\mathbf{u}), q(\mathbf{v})$

DECIDE: whether $p(\mathbf{u}) \rightarrow^* q(\mathbf{v})$?

Coverability problem:

GIVEN: VASS (d, Q, T) and configurations $p(\mathbf{u}), q(\mathbf{v})$

DECIDE: whether exists \mathbf{v}' s.t. $p(\mathbf{u}) \to^* q(\mathbf{v}')$ and $\mathbf{v}' \geq \mathbf{v}$?

Coverability can be reduced to reachability

x += m (add m to variable x) x -= m (subtract m from variable x) y = y = y = 0 (jump to either line y = y = 0) y = y = 1 (continue if variable y = 1) y = y = 1 (terminate if listed variables are zero).

```
x += m (add m to variable x)

x -= m (subtract m from variable x)

y = y = y = 0 (jump to either line y = y = 0)

y = y = 1 (continue if variable y = 1)

y = y = 1 (terminate if listed variables are zero).
```

All variables are initialized to 0, and are never negative

$$x += m$$
 (add m to variable x)
 $x -= m$ (subtract m from variable x)
 $y = y = y = 0$ (jump to either line $y = y = 0$)
 $y = y = 1$ (continue if variable $y = 1$)
 $y = y = 1$ (terminate if listed variables are zero).

All variables are initialized to 0, and are never negative

Example

- 1: x' += B
- 2: **goto** 6 **or** 3
- 3: x += 1 x' -= 1
- 4: y += 2
- 5: **goto** 2
- 6: **halt if** x' = 0.

$$x += m$$
 (add m to variable x)
 $x -= m$ (subtract m from variable x)
 $y = y = y = 0$ (jump to either line $y = y = 0$)
 $y = y = 1$ (continue if variable $y = 1$)
 $y = y = 1$ (terminate if listed variables are zero).

All variables are initialized to 0, and are never negative

Example

- 1: x' += B
- 2: **goto** 6 **or** 3
- 3: x += 1 x' -= 1
- 4: y += 2
- 5: **goto** 2
- 6: **halt if** x' = 0.

$$x' += B$$

loop

$$x += 1 \quad x' -= 1$$

 $y += 2$

halt if x' = 0.

$$x += m$$
 (add m to variable x)
 $x -= m$ (subtract m from variable x)
 $y = y = y = 0$ (jump to either line $y = y = 0$)
 $y = y = 1$ (continue if variable $y = 1$)
 $y = y = 1$ (terminate if listed variables are zero).

All variables are initialized to 0, and are never negative

Example

1:
$$x' += B$$

2: **goto** 6 **or** 3

3: $x += 1$ $x' -= 1$

4: $y += 2$

5: **goto** 2

6: **halt if** $x' = 0$
 $x' += B$

loop

 $x += 1$ $x' -= 1$
 $y += 2$

halt if $x' = 0$.

A complete run ends with x = B, y = 2B

Reachability problem (for programs):

GIVEN: A counter program with no zero tests.

Reachability problem (for programs):

GIVEN: A counter program with no zero tests.

Reachability problem (for programs):

GIVEN: A counter program with no zero tests.

$$p(0,0,1) \rightarrow^* p(1,0,2)$$
?

Reachability problem (for programs):

GIVEN: A counter program with no zero tests.

$$z += 1$$

loop
 $y += 1$
 $z -= 1$

loop
 $y -= 1$
 $z += 2$
 $x += 1$
 $x -= 1$
 $z -= 2$
halt if x, y, z = 0.

Reachability problem (for programs):

GIVEN: A counter program with no zero tests.

Reachability problem (for programs):

 $\operatorname{GIVEN}:$ A counter program with no zero tests.

$$z += 1$$

loop
 $y += 1 \quad z -= 1$

loop
 $y -= 1 \quad z += 2$
 $x += 1$
 $x -= 1 \quad z -= 2$
halt if $x, y, z = 0$.

Reachability problem (for programs):

GIVEN: A counter program with no zero tests.

$$z += 1$$

loop
 $y += 1 \quad z -= 1$

loop
 $y -= 1 \quad z += 2$
 $x += 1$
 $x -= 1 \quad z -= 2$
halt if $x, y, z = 0$.

Reachability problem (for programs):

GIVEN: A counter program with no zero tests.

DECIDE: Does it have a complete run (executing halt)?

$$p(0,0,1) \rightarrow^* p(1,0,2)$$
?

Coverability if halt is empty

Outline

• High level idea of the proof

• Key construction

Additional command: **test** x = 0

Additional command: **test** x = 0

Reachability becomes undecidable

Additional command: **test** x = 0

Reachability becomes undecidable

Let k – size of input

Additional command: **test** x = 0

Reachability becomes undecidable

Let k – size of input

Suppose counters are bounded by B = f(k)

Additional command: **test** x = 0

Reachability becomes undecidable

Let k – size of input

Suppose counters are bounded by B = f(k)

If
$$f$$
 is n -EXP, i.e., $f(k) = 2^{-\sum_{k=0}^{\infty} 2^k} n$ times.

Then reachability is (n-1)-EXPSPACE-complete

Additional command: **test** x = 0

Reachability becomes undecidable

Let k – size of input

Suppose counters are bounded by B = f(k)

If
$$f$$
 is n -EXP, i.e., $f(k) = 2^{-\sum_{k=0}^{\infty} 2^k} n$ times.

Then reachability is (n-1)-EXPSPACE-complete

Lipton encoded programs for f = 2-EXP

Additional command: **test** x = 0

Reachability becomes undecidable

Let k – size of input

Suppose counters are bounded by B = f(k)

If
$$f$$
 is n -EXP, i.e., $f(k) = 2^{-\frac{2^k}{n}}$ times.

Then reachability is (n-1)-EXPSPACE-complete

Lipton encoded programs for f = 2-EXP

We can do it for any f = n-EXP

Input: programs with zero tests, s.t. counters bounded by B

Input: programs with zero tests, s.t. counters bounded by B

We encode this into programs with no zero tests

Input: programs with zero tests, s.t. counters bounded by B

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c > 0, $d = c \cdot b$

Input: programs with zero tests, s.t. counters bounded by B

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c > 0, $d = c \cdot b$

Encoding: for every x_i add x_i'

Input: programs with zero tests, s.t. counters bounded by B

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to $b = B, c \ge 0, d = c \cdot b$

Encoding: for every x_i add x'_i

Intuitively $x_i + x'_i = B$, so start with:

Input: programs with zero tests, s.t. counters bounded by B

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to $b = B, c \ge 0, d = c \cdot b$

Encoding: for every x_i add x'_i Intuitively $x_i + x'_i = B$, so start with:

loop

$$x'_1 += 1 \quad \cdots \quad x'_l += 1$$

 $b -= 1$

Input: programs with zero tests, s.t. counters bounded by B

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to $b = B, c \ge 0, d = c \cdot b$

Encoding: for every x_i add x'_i

Intuitively $x_i + x'_i = B$, so start with:

loop

$$x'_1 += 1 \quad \cdots \quad x'_l += 1$$

 $b -= 1$

Replace $x_i += m$ with $x_i += m$ $x'_i -= m$

Input: programs with zero tests, s.t. counters bounded by B

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to $b = B, c \ge 0, d = c \cdot b$

Encoding: for every x_i add x'_i

Intuitively $x_i + x'_i = B$, so start with:

loop

$$x'_1 += 1 \quad \cdots \quad x'_l += 1$$

b $-= 1$

Replace $x_i += m$ with $x_i += m$ $x'_i -= m$

Replace $x_i = m$ with $x_i = m$ $x'_i + m$

B – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$

$$x_i' = B - x_i$$

B – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$ \leftarrow c is "number of zero tests" \cdot 2

$$x_i' = B - x_i$$

B – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$ \leftarrow c is "number of zero tests" \cdot 2

$$x_i' = B - x_i$$

Replace **test** $x_i = 0$ with

loop

$$x_i += 1$$
 $x'_i -= 1$

$$d = 1$$

$$c -= 1$$

loop

$$x_i = 1$$
 $x'_i + 1$

$$d = 1$$

$$c = 1$$

B – bound on the counters

$$b=B,\ c\geq 0,\ d=c\cdot b$$
 c is "number of zero tests" \cdot 2

$$x_i' = B - x_i$$

Replace **test** $x_i = 0$ with

loop

$$x_i += 1$$
 $x'_i -= 1$

$$d = 1$$

c -= 1

c -= 1

loop

$$x_i -= 1 \quad x_i' += 1$$

$$\mathsf{d} \mathrel{-}= 1$$

B – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$ \leftarrow c is "number of zero tests" \cdot 2

$$x_i' = B - x_i \leftarrow bolds because b = 0$$

Replace **test** $x_i = 0$ with

loop

$$x_i += 1 \quad x'_i -= 1$$

 $d -= 1$

loop

c -= 1

$$x_i = 1$$
 $x'_i + 1$

$$\mathsf{d} \mathrel{-}= 1$$

B – bound on the counters

$$b = B, c \ge 0, d = c \cdot b$$
 c is "number of zero tests" $\cdot 2$
 $x'_i = B - x_i$ holds because $b = 0$

Replace **test** $x_i = 0$ with

c decreased by 2 and d by at most 2B

B – bound on the counters

$$b = B, c \ge 0, d = c \cdot b$$
 c is "number of zero tests" $\cdot 2$
 $x'_i = B - x_i$ holds because $b = 0$

$$x_i' = B - x_i \leftarrow bolds because b = 0$$

Replace **test** $x_i = 0$ with

loop

$$x_i += 1 \quad x'_i -= 1$$

 $d -= 1$

$$c = 1$$

loop

$$\mathsf{x}_i \mathrel{-}= 1 \quad \mathsf{x}_i' \mathrel{+}= 1 \\ \mathsf{d} \mathrel{-}= 1$$

$$c -= 1$$

c decreased by 2 and d by at most 2B

so a false zero test implies $d \neq 0$

B – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$ c is "number of zero tests" $\cdot 2$

$$x_i' = B - x_i \leftarrow bolds because b = 0$$

Replace **test** $x_i = 0$ with

loop

$$x_i += 1 \quad x'_i -= 1$$

d -= 1

$$c = 1$$

loop

$$\mathsf{x}_i \mathrel{-}= 1 \quad \mathsf{x}_i' \mathrel{+}= 1$$

c decreased by 2 and d by at most 2B

so a false zero test implies $d \neq 0$

Extend **halt** with b, d = 0

This is the challenge

The main construction

to obtain b, c and d

B – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$

B – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$

If *B* is fixed, just start the program with:

$$b += B$$

loop

$$c += 1$$
 $d += B$

B – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$

If B is fixed, just start the program with:

$$b += B \leftarrow$$
 "gadget for ratio B "

loop

 $c += 1 \quad d += B$

B – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$

If *B* is fixed, just start the program with:

$$b += B \leftarrow$$
 "gadget for ratio B " $c += 1 \quad d += B$

But in general we want
$$B = 2^{n \cdot 2^k}$$
 h times.

B – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$

If B is fixed, just start the program with:

$$b += B \leftarrow$$
 "gadget for ratio B " $c += 1 \quad d += B$

But in general we want
$$B = 2$$
 $n \text{ times}$

For this we need an iterative construction

B – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$

If B is fixed, just start the program with:

$$b += B \leftarrow$$
 "gadget for ratio B " $loop$ $c += 1 d += B$

But in general we want
$$B = 2$$
 $n \text{ times}$

For this we need an iterative construction

Some variables will be bounded and allowed to be 0-tested

Gadget for ratio B = n-**EXP**

 $\mathsf{b} = B, \ \mathsf{c} \geq \mathsf{0}, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$ allows for 0-tests on variables bounded by B

 $\mathsf{b} = B, \ \mathsf{c} \geq \mathsf{0}, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$ allows for 0-tests on variables bounded by B

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $pprox 2^B$

b = B, $c \ge 0$, $d = c \cdot b$ allows for 0-tests on variables bounded by B

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $\approx 2^B$

A program with B-bounded 0-tests that ends with

$$b \approx 2^B$$
, $c \ge 0$, $d = c \cdot b$

 $\mathsf{b} = B, \ \mathsf{c} \geq \mathsf{0}, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$ allows for 0-tests on variables bounded by B

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $\approx 2^B$

A program with B-bounded 0-tests that ends with

$$b \approx 2^B$$
, $c \ge 0$, $d = c \cdot b$

How to use the lemma:

 $\mathsf{b} = B, \ \mathsf{c} \geq \mathsf{0}, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$ allows for 0-tests on variables bounded by B

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $pprox 2^B$

A program with *B*-bounded 0-tests that ends with

$$b \approx 2^B$$
, $c \ge 0$, $d = c \cdot b$

How to use the lemma:

• By the previous slide we can start with B linear in the input

 $\mathsf{b} = B, \ \mathsf{c} \geq \mathsf{0}, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$ allows for 0-tests on variables bounded by B

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $pprox 2^B$

A program with B-bounded 0-tests that ends with

$$b \approx 2^B$$
, $c \ge 0$, $d = c \cdot b$

How to use the lemma:

- By the previous slide we can start with B linear in the input
- Afterwards lift the gadget *n* times

 $\mathsf{b} = B, \ \mathsf{c} \geq \mathsf{0}, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$ allows for 0-tests on variables bounded by B

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $pprox 2^B$

A program with *B*-bounded 0-tests that ends with

$$b \approx 2^B$$
, $c \ge 0$, $d = c \cdot b$

How to use the lemma:

- By the previous slide we can start with B linear in the input
- Afterwards lift the gadget *n* times

A program proving the lemma is what's left

Let $i \leq B$ stored in i, and i' auxiliary (guaranteed to be 0)

Let $i \leq B$ stored in i, and i' auxiliary (guaranteed to be 0)

• We want e.g.: x += i

Let $i \leq B$ stored in i, and i' auxiliary (guaranteed to be 0)

• We want e.g.: x += i

```
1: loop
```

2:
$$x += 1$$
 $i -= 1$ $i' += 1$

3: **test**
$$i = 0$$

5:
$$i += 1$$
 $i' -= 1$

6: **test**
$$i' = 0$$

Let $i \leq B$ stored in i, and i' auxiliary (guaranteed to be 0)

• We want e.g.: x += i

```
1: loop
```

2:
$$x += 1$$
 $i -= 1$ $i' += 1$

3: **test**
$$i = 0$$

5:
$$i += 1$$
 $i' -= 1$

6: **test**
$$i' = 0$$

Let $i \leq B$ stored in i, and i' auxiliary (guaranteed to be 0)

- We want e.g.: x += [i] or x -= [i]
 - 1: **loop**
 - 2: x += 1 i -= 1 i' += 1
 - 3: **test** i = 0
 - 4: **loop**
 - 5: i += 1 i' -= 1
 - 6: **test** i' = 0

Let $i \leq B$ stored in i, and i' auxiliary (guaranteed to be 0)

- We want e.g.: x += i or x -= i
 - 1: **loop**
 - 2: x += 1 i -= 1 i' += 1
 - 3: **test** i = 0
 - 4: **loop**
 - 5: i += 1 i' -= 1
 - 6: **test** i' = 0
- Or loop at most b times < body>

(b has no bound)

Let $i \leq B$ stored in i, and i' auxiliary (guaranteed to be 0)

- We want e.g.: x += i or x -= i
 - 1: **loop**
 - 2: x += 1 i -= 1 i' += 1
 - 3: **test** i = 0
 - 4: **loop**
 - 5: i += 1 i' -= 1
 - 6: **test** i' = 0
- Or loop at most b times <body>

(b has no bound)

loop

$$b = 1 \quad b' += 1$$

loop

$$b' -= 1 \quad b += 1$$

B - previous bound

Output: b = B!, $c \ge 0$, $d = c \cdot b$

B – previous bound

Output: b = B!, $c \ge 0$, $d = c \cdot b$

B – previous bound

Output: b = B!, $c \ge 0$, $d = c \cdot b$

b += 1,
$$k += B$$

loop
 $c += 1$ $d += 1$ $x += 1$ $y += 1$
 $i += 1$ $k -= 1$
 $< main\ loop >$
loop
 $x -= i$ $y -= 1$
halt if $y, k = 0$

B – previous bound

Output: b = B!, c > 0, $d = c \cdot b$

loop

$$c += 1 \quad d += 1 \quad x += 1 \quad y += 1 \quad \longleftarrow c, d, x, y := c \cdot (B-1)!$$

$$i += 1 \quad k -= 1$$

$$< main \ loop >$$

$$loop$$

$$x -= i \quad y -= 1$$
halt if $y, k = 0$

B – previous bound

Output: b = B!, c > 0, $d = c \cdot b$

loop

$$c += 1 \quad d += 1 \quad x += 1 \quad y += 1 \quad \longleftarrow c, d, x, y := c \cdot (B-1)!$$

$$i += 1 \quad k -= 1$$

$$< main \ loop > \longleftarrow c := c/(B-1)!, \quad d, x := d \cdot B, \quad b := b \cdot B!, \quad k = 0, \quad i = B$$
loop

$$x -= i \quad y -= 1$$
halt if $y, k = 0$

B – previous bound

Output: b = B!, c > 0, $d = c \cdot b$

loop

$$c += 1 \quad d += 1 \quad x += 1 \quad y += 1 \quad \longleftarrow c, d, x, y := c \cdot (B-1)!$$

$$i += 1 \quad k -= 1$$

$$< main \ loop > \longleftarrow c := c/(B-1)!, \quad d, x := d \cdot B, \quad b := b \cdot B!, \quad k = 0, \quad i = B$$
loop

$$x -= i \quad y -= 1$$
halt if $y, k = 0$

$$i + k = B$$
, $b \cdot c = d$

B – previous bound

Output: b = B!, $c \ge 0$, $d = c \cdot b$

loop

$$c += 1 \quad d += 1 \quad x += 1 \quad y += 1 \quad \longleftarrow c, d, x, y := c \cdot (B-1)!$$

$$i += 1 \quad k -= 1$$

$$< main \ loop > \longleftarrow c := c/(B-1)!, \quad d, x := d \cdot B, \quad b := b \cdot B!, \quad k = 0, \quad i = B$$
loop

$$x -= i \quad y -= 1$$
halt if $y, k = 0$

Invariants
$$i + k = B$$
, $b \cdot c = d$

$$\prod_{i=1}^{k-1} \frac{i+1}{i} = k$$

Invariants
$$i + k = B$$
, $b \cdot c = d$

$$\prod_{i=1}^{k-1} \frac{i+1}{i} = k$$

Invariants

$$i + k = B$$
, $b \cdot c = d$

$$\prod_{i=1}^{k-1} \frac{i+1}{i} = k$$

- 1: **loop**
- 2: **loop**
- 3: $c = [i] \quad c' += 1$
- 4: **loop at most** b times
- 5: $d = [i] \quad d' + = [i+1] \quad x = [i] \quad x' + = [i+1]$
- 6: **loop**
- 7: $b = 1 \quad b' += |i+1|$
- 8: loop
- 9: b' -= 1 b += 1
- 10: **loop**
- 11: $c' -= 1 \quad c += 1$
- 12: **loop at most** b **times**
- 13: d' -= 1 d += 1 x' -= 1 x += 1
- 14: k = 1 i += 1

Invariants

$$i + k = B$$
, $b \cdot c = d$

$$\prod_{i=1}^{k-1} \frac{i+1}{i} = k$$

 $c' := c \cdot \frac{1}{i}, d' := d \cdot \frac{i+1}{i}$

- 1: **loop**
- loop

3:
$$c = [i] \quad c' += 1$$

4: **loop at most** b **times**
5:
$$d = [i]$$
 $d' + [i+1]$ $x = [i]$ $x' + [i+1]$

7:
$$b = 1 \quad b' + = [i+1]$$

- loop 8.
- b' -= 1 b += 1
- loop 10:
- c' -= 1 c += 111:
- loop at most b times 12:

13:
$$d' -= 1$$
 $d += 1$ $x' -= 1$ $x += 1$

14:
$$k = 1 \quad i += 1$$

$$i + k = B$$
, $b \cdot c = d$

$$\prod_{i=1}^{k-1} \frac{i+1}{i} = k$$

1: **loop**

4.

- 2: loop
- 3: $c = [i] \quad c' += 1$
 - loop at most b times

5:
$$d = [i] \quad d' + [i+1] \quad x = [i] \quad x' + [i+1]$$

6: **loop**

7:
$$b = 1 \quad b' + = |i + 1|$$

$$\mathsf{b}' := \mathsf{b} \cdot (\mathsf{i} + 1)$$

 $c' := c \cdot \frac{1}{i}, d' := d \cdot \frac{i+1}{i}$

- 8: **loop**
- 9: $\mathsf{b}' = 1 \quad \mathsf{b} += 1$
- 10: **loop**
- 11: $c' -= 1 \quad c += 1$
- 12: loop at most b times
- 13: d' -= 1 d += 1 x' -= 1 x += 1
- 14: k = 1 i += 1

$$i + k = B$$
, $b \cdot c = d$

$$\prod_{i=1}^{k-1} \frac{i+1}{i} = k$$

1: **loop**

4.

g.

- 2: **loop**
- 3: $c = [i] \quad c' += 1$
 - loop at most b times

5:
$$d = [i] \quad d' += [i+1] \quad x = [i] \quad x' += [i+1]$$

6: **loop**

7:
$$b = 1 \quad b' += \boxed{i+1}$$

$$\mathsf{b}' := \mathsf{b} \cdot (\mathsf{i} + 1)$$

if any **loop** not maximal

then $x < y \cdot B$

 $c' := c \cdot \frac{1}{i}, d' := d \cdot \frac{i+1}{i}$

8: loop

$$b' -= 1$$
 $b += 1$

10: **loop**

11:
$$c' -= 1 \quad c += 1$$

12: **loop at most** b **times**

13:
$$d' -= 1$$
 $d += 1$ $x' -= 1$ $x += 1$

14:
$$k = 1$$
 $i += 1$

- Several applications and corollaries
 - coverability is different from reachability

- Several applications and corollaries
 - coverability is different from reachability
 - satisfiability of FO2 on data words

- Several applications and corollaries
 - coverability is different from reachability
 - satisfiability of FO2 on data words
- We can do h-EXPSPACE-hardness in dimension h + 13 (so fixed)

- Several applications and corollaries
 - coverability is different from reachability
 - satisfiability of FO2 on data words
- We can do h-EXPSPACE-hardness in dimension h + 13 (so fixed) Can we do Tower in fixed dimension?

- Several applications and corollaries
 - coverability is different from reachability
 - satisfiability of FO2 on data words
- We can do h-EXPSPACE-hardness in dimension h + 13 (so fixed) Can we do Tower in fixed dimension?
- The complexity is quite tight Unless you believe in things between Tower (\mathbf{F}_3) and Ackermann (\mathbf{F}_{ω})

- Several applications and corollaries
 - coverability is different from reachability
 - satisfiability of FO2 on data words
- We can do h-EXPSPACE-hardness in dimension h + 13 (so fixed) Can we do Tower in fixed dimension?
- The complexity is quite tight Unless you believe in things between Tower (\mathbf{F}_3) and Ackermann (\mathbf{F}_{ω}) (Don't tell Jérôme I wrote this)

- Several applications and corollaries
 - coverability is different from reachability
 - satisfiability of FO2 on data words
- We can do h-EXPSPACE-hardness in dimension h + 13 (so fixed) Can we do Tower in fixed dimension?
- The complexity is quite tight Unless you believe in things between Tower (\mathbf{F}_3) and Ackermann (\mathbf{F}_{ω}) (Don't tell Jérôme I wrote this)
- This originated from studying 1-Pushdown-VASS

- Several applications and corollaries
 - coverability is different from reachability
 - satisfiability of FO2 on data words
- We can do h-EXPSPACE-hardness in dimension h + 13 (so fixed) Can we do Tower in fixed dimension?
- The complexity is quite tight Unless you believe in things between Tower (\mathbf{F}_3) and Ackermann (\mathbf{F}_{ω}) (Don't tell Jérôme I wrote this)
- This originated from studying 1-Pushdown-VASS So maybe it's good to study restrictions of generalizations of etc. . .