UNIVERSIDADE DE SÃO PAULO Escola Superior de Agricultura "Luiz de Queiroz" DEPARTAMENTO DE ENGENHARIA RURAL Área de Topografia e Geoprocessamento

EXERCÍCIOS DE TOPOGRAFIA

Professores:

Rubens Angulo Filho Carlos Alberto Vettorazzi Valdemar Antonio Demétrio

Piracicaba, SP fevereiro de 2005

1) Foram medidas com uma trena as seguintes distâncias na poligonal representada pela figura abaixo:

Alinhamento	Distância (m)
1-2	52,12
2-3	55,28
3-4	36,55
4-5	48,03
5-6	45,85
6-1	34,71
2-5	56,67
2-6	50,54
3-5	47,02

Sabendo-se que foi utilizada uma trena de comprimento nominal de 50,00m e que devido à dilatação a mesma tinha um comprimento real de 50,062m, calcular a área do polígono.

2) As distâncias abaixo foram medidas com uma trena de comprimento nominal igual a 20,0m. Posteriormente verificou-se ter a trena um comprimento real igual a 19,95m. Determine as distâncias corrigidas:

Alinhamento	Distância medida	Distância corrigida
1 - 2	38,64m	
2 - 3	81,37m	
3 - 4	126,58m	

- **3)** A distância AB mede realmente 82,58 m; ao ser medida com uma trena de comprimento nominal igual a 20,00 m encontramos como resultado 82,42 m. Determinar o comprimento real e o erro da trena.
- **4)** Um terreno, em forma de paralelogramo, foi levantado conforme croqui abaixo, obtendo-se os seguintes dados:

a) A-B = 60,00m; b)
$$\alpha$$
 = 60°30'15" e β = 129°25'20"

Determinar:

4.1) O perímetro do polígono;

- 4.2) As coordenadas retangulares dos vértices B, C e D, considerando-se o alinhamento A-B sobre o eixo X e o ponto A na origem, isto é, A(0,00; 0,00);
- 4.3) A área do polígono ACBD, pelo método das coordenadas (Gauss).
- 5) Em um levantamento topográfico, conforme o croqui apresentado abaixo, foram obtidos os seguintes valores:
 - a) PQ = 200,00 m (linha de base)
 - b) a partir do ponto P: BPA = 40° 58'; APQ = 38° 40'
 - c) a partir do ponto Q: BQP = 29° 30'; AQP = 108° 20'

Determinar:

- 1) O comprimento do alinhamento AB;
- 2) As coordenadas cartesianas (ou retangulares) dos vértices Q, A e B, considerando-se o alinhamento PQ sobre o eixo X e o ponto P na origem, isto é, P (0,00; 0,00);
- 3) A área do polígono ABPQ, pelo método das coordenadas (Gauss).
- 6) Dados as informações e esquema abaixo, calcular a área do polígono formado pelos vértices 1, 2, 3 e 4, pelo método do semi-perímetro (Heron).

<u>Informações:</u>

$$\alpha$$
 = 82°30'; β = 21°20'; γ = 42°10'
 X_1 = 30,0 m; Y_1 = 20,0 m; X_3 = -20,0 m; Y_3 = -14,0 m
 1-2 = 39,50 m

7) Com os dados abaixo calcular a área do triângulo 123 pela Fórmula de Heron:

Dados:

AB = 50,0 m
$$\alpha_1 = 119^{\circ} 40'; \ \alpha_2 = 29^{\circ} 18'; \ \alpha_3 = 48^{\circ} 07'$$

$$\beta_1 = 25^{\circ} 30'; \ \beta_2 = 111^{\circ} 48'; \ \beta_3 = 53^{\circ} 40'$$

- 8) Sabendo-se que os valores abaixo relacionados são fornecidos em centímetros e que a escala de representação do desenho será 1:200 calcule:
- a) as coordenadas cartesianas dos pontos 3 e 4;
- b) a área real do polígono em \mathbf{m}^{2} pelo método de Gauss.

Alinham.	Ângulo	Dist.(cm)	X(cm)	Y(cm)
MP-1			1,800	2,800
MP-2			2,000	-1,000
MP-3	205°20'46"	2,102		
MP-4	270°00'00"	2,600		
MP-5			-1,500	1,700

9) Dada a sequência de coordenadas (MP, 1, 2, 3, 4), desenhar a planta do polígono representado pelos pontos acima na escala 1:2000, e calcular a área (m²) pelo método de Gauss.

	Coodenada X (m)	Coordenada Y (m)
MP	732,208	1088,765
1	791,834	959,995
2	1006,849	951,685
3	972,946	1187,996
4	764,193	1173,577

- 10) Com o teodolito estacionado na estaca 0 visaram-se sucessivamente os pontos 1 e 2 obtendo-se:
 - a) azimute 0-1 = 103°29'10" leitura na mira: r.s. = 3,192m; r.m. = 2,596m; r.i. = 2,000m ângulo vertical = 0°19'20" (ascendente) altura do instrumento = 1,730m
 - b) azimute 0-2 = 230°29'40" leitura na mira: r.s. = 2,304m; r.m. = 1,652m; r.i. = 1,000m ângulo vertical = 15°20'00" (ascendente)

Calcular a <u>distância horizontal e a diferença de nível</u> entre as estacas 1 e 2.

- 11) Ao se levantar, caminhando no <u>sentido horário</u>, um terreno em forma de <u>triângulo equilátero</u>, de vértices 0-1-2, verificou-se que o lado 0-1 tem azimute magnético de 290°30'45". Determinar os <u>rumos magnéticos de ré de todos os alinhamentos</u>.
- **12)** Em um levantamento, de uma área em forma de triângulo retângulo isósceles (vide esquema abaixo), obteve-se o azimute magnético do alinhamento 0-1 como sendo 44°50'25". Determinar:
- a) azimutes e rumos, magnéticos e verdadeiros, de vante e de ré de todos os alinhamentos, sendo a declinação magnética do local igual a 17°38'10" W;
- b) sabendo-se que as coordenadas cartesianas do ponto 1 são (0,0 m; 0,0 m) e que o comprimento dos alinhamentos 0-1 e 1-2 é 120,0 m., calcular as coordenadas cartesianas de 0 e 2, com relação ao eixo magnético;
- c) comprimento do alinhamento 0-2.

13) Em um levantamento, de uma área em forma de triângulo retângulo isósceles (<u>vide esquema abaixo</u>), obteve-se o <u>Rumo Verdadeiro de Vante</u> do alinhamento 0-1 como sendo 66°15'25" NW. Determinar os azimutes e rumos verdadeiros e magnéticos, de vante e de ré de todos os alinhamentos, sendo a declinação magnética do local igual a 18°41'12" E.

14) O rumo magnético do lado A-B de um triângulo equilátero (A,B,C) vale 23°30' NE. Calcular os rumos verdadeiros dos outros dois lados, sabendo-se que a declinação magnética no local vale 12°20' W e que o caminhamento foi realizado no sentido horário. Sendo as coordenadas cartesianas do vértice B (0,0 m; 0,0 m) e o comprimento do lado A-B igual a 80,0 m, determine as coordenadas cartesianas dos outros dois vértices, com relação ao eixo N-S verdadeiro.

15) Uma determinada localidade situa-se, de acordo com a <u>carta magnética de 01/01/1979</u>, exatamente sobre a intersecção da <u>linha isogônica 15°00' W</u> com a <u>linha isopórica 00°07' W</u>. De um levantamento realizado em 01/01/1974 obtiveram-se os seguintes dados"

Alinhamento	Azimute Magnético
0 - 1	63°20'
1 - 2	140°32'
2 - 3	36°18'
3 - 4	358°39'
4 - 0	222°30'

Pede-se:

- a) aviventar para <u>01/04/1994</u> os azimutes do levantamento acima;
- b) determinar as deflexões e seus sentidos em cada vértice

16) Dada a poligonal aberta 1-2-3-4-5-6, calcular os ângulos faltantes, completando a tabela abaixo:

Alinhamento	Rumo de vante	Rumo de ré	Azimute de vante	Azimute de ré
1-2	11°35'20"SE			

2-3		90°00'00"W		
3-4			344°13'00"	
4-5				40°12'40''
5-6	00°00'00"S			

- 17) O rumo magnético do alinhamento 1-2 medido em 01/10/1967 foi 15°30' SW. Calcular o rumo magnético do alinhamento em 01/04/1987 e também o rumo verdadeiro, com os seguintes dados obtidos em 01/01/1970:
 - a) declinação magnética local = 13° 28' E;
 - b) variação anual da declinação = 00°08'.W
- **18)** O rumo magnético do lado AB de um triângulo equilátero vale 23°30' NE. Calcular os rumos verdadeiros dos outros dois lados, caminhando-se no sentido horário, sabendo-se que a declinação magnética no local vale 12°20'W.
- 19) Ao se levantar um terreno em forma de triângulo equilátero, verificou-se que o lado 0 1 tem azimute magnético de 290°30'45". Quais os azimutes magnéticos dos demais alinhamentos? Sendo 18°20'15" W a declinação magnética local, calcular os rumos verdadeiros de ré desses alinhamentos.
- **20)** O rumo magnético do alinhamento 0 1 é 10°11' SE. Se a declinação magnética do local vale 13°20' W determinar:
 - a) azimute verdadeiro de 0 1;
 - b) azimute magnético de ré 1 0;
 - c) rumo magnético de ré 1 0.
- 21) Resolva o exercício anterior para uma declinação magnética de 13°20' E.
- 22) Com os dados da Caderneta de Campo abaixo, calcular:
 - 1) As coordenadas totais de todos os pontos (totalizar em MP), compensando o erro angular de fechamento pelo <u>método inversamente proporcional às distâncias</u> e o erro linear de fechamento pelo <u>método proporcional às coordenadas</u>;
 - 2) A área do polígono MP, 1, A, B e MP pelo método de Gauss;
 - 3) O rumo e a distância do alinhamento 1-3.

Alinhamento	Leitura de mira (m)	Ângulo zenital	Distância(m)	Deflexão	Rumo
MP-1	ri = 1,000 rm = 1,400 rs = 1,801	90°10'10''			60°30'15''NE
1-2	ri = 2,000 rm = 1,400 rs = 2,952	91°15'25''		80°25'30''D	

2-3	ri = 1,000 rm = 1,352 rs = 1,704	88°30'20''		92°10′25′′D	
2-A			45,000	60°30'00''E	
3-MP	ri = 2,000 rm = 2,530 rs = 3,060	89°15'00''		83°08'07''D	
3-B			26,000	35°40'20''E	
MP-1				104°12′58′′D	

23) Com os dados abaixo calcular as distâncias horizontais (DH) e verticais (DV) dos alinhamentos, sabendo-se que a altura do aparelho (I) é 1,520 m.

Alinhamento	Retículos (m)			Ângulo Zenital
MP-1	r.i. = 1,895	r.m. =	r.s. = 2,579	93°20
MP-2	r.i.=	r.m. = 0,463	r.s. = 0.876	81°18'
MP-3	r.i. = 0,291	r.m. = 0,555	r.s. =	270°00'

24) Dada a caderneta de campo abaixo, de um levantamento por intersecção, calcular o perímetro do polígono de vértices 1 - 2 - 3.

Alinhamentos	Distância	Deflexão E	Deflexão D	Azimutes
A - 1				332°28'
A - 2				62°50'
A - 3				140°15'
A - B	50,00 m			92°08'
B - 1		154°30'		
B - 2		68°12'		
B - 3			126°20'	

- **25)** Com os dados apresentados na caderneta de campo abaixo, referentes ao levantamento de uma poligonal (no sentido horário), calcular:
 - a) os azimutes de todos os alinhamentos;
 - b) o erro angular de fechamento.

Alinhamentos	Deflexão E	Deflexão D	Ângulos Internos	Azimutes
MP - 1				139°20'
1 - 2	84°30'			
2 - 3			43°30'	
3 - 4			240°20'	
4 - 5		142°10'		
5 - MP			61°50'	
MP - 1		107°50'		

26) De um levantamento topográfico realizado em 1º de julho de 1970 obtiveram-se os seguintes dados de acordo com a figura abaixo:

Sabe-se, ainda, que em 1º de janeiro de 1974 o local do levantamento encontrava-se na intersecção da linha isogônica 16°00' W com a linha isopórica 0°09' W. Calcular:

- a) azimutes verdadeiros de todos os alinhamentos;
- b) rumos magnéticos de vante para 1º de outubro de 1988 de todos os alinhamentos.
- 27) Com o teodolito estacionado em um ponto de cota 100,00m, estando o eixo da luneta a 1,650m do solo, fez-se uma visada na mira colocada num ponto de cota 99,65m. Sendo a leitura do retículo médio 3,420m e o ângulo de inclinação da luneta 92°35'10" (nadiral), determinar a disância horizontal entre os dois pontos.
- **28)** Com o teodolito estacionado em um ponto de 320,452 m de altitude, estando o eixo da luneta a 1,500 m do solo, fez-se uma visada horizontal na mira colocada num ponto situado a 86,40 m de distância horizontal. Sendo a leitura do retículo inferior 1,320 m, calcular a altitude do segundo ponto.
- **29)** Sendo A e B os pontos de estacionamento do aparelho num levantamento por intersecção, calcular os azimutes restantes dos alinhamentos abaixo:

Alinhamento	Deflexão E	Deflexão D	Azimute
A - 0			302°11'
A - 1			358°17'
A - 2			33°29'
A - 3			110°05'
A - 4			177°10'
A - 5			214°38'
A - B			100°00'
B - 0	170°10'		

B - 1	90°45'		
B - 2	25°20'		
B-3		38°12'	
B-4		101°40'	
B-5		160°00'	

- **30)** Com os dados abaixo, calcular:
 - a) erro linear de fechamento;
 - b) coordenadas parciais compensadas, através do método de compensação proporcional às coordenadas;
 - c) coordenadas totais, totalizar no ponto 4;

			Coordenadas	Parciais (m)	
Alinhamento	Distância(m)	E(+)	W(-)	N(+)	S(-)
MP-1	56,000	30,908		46,698	
1-2	47,200	43,916		17,299	
2-3	51,500	47,406			20,123
3-4	44,400		20,844		39,203
4-5	52,000	33,886			39,443
5-MP	140,000		135,334	35,841	

- **31)** Em uma propriedade, cujos vértices demarcatórios de divisa possuem as coordenadas abaixo especificadas, será instalada uma cerca do vértice 4 ao 2.
 - a) Qual o rumo e o comprimento (DH) de tal cerca?
 - b) Quais os valores das duas áreas resultantes da divisão (método de Gauss)?

Alinhamento	Longitude Total (m)	Latitude Total (m)
1 - 2	37,00	-32,00
2 - 3	0,00	-78,00
3 - 4	-26,00	-36,00
4 - 1	0,00	0,00

- **32)** Com os dados da Caderneta de Campo abaixo, calcular:
 - 1) A área do polígono pelo método de Gauss;
 - 2) O comprimento (DH) e o rumo de uma cerca que partirá do ponto 1 e atingirá o ponto4.

Alinhamento	Distância (m)	Deflexão Esquerda	Deflexão Direita	Azimute
MP - 1	200,50			154°45'
1 - 2	125,50	64°30'		
2 - 3	299,50		166°14'	
3 - 4	175,50		71°13'	
4 - 5	150,50		59°15'	
5 - MP	110,50		78°45'	

MP - 1		48°58'	

*OBS.: a) Fazer a correção do erro angular de fechamento, pelo método de compensação inversamente proporcional às distâncias; b) fazer a correção do erro linear de fechamento, pelo método de compensação proporcional às distâncias; c) totalizar no ponto 3.

33) Um levantamento topográfico foi realizado em 1º/01/85, onde obtiveram-se as seguintes anotações em caderneta de campo:

Alinhamento	Ângulo Hz (ângulo externo)	DH ou Retículos (m) super. médio infer.	Ângulo Zenital
MP-1	0°00'00'' Az. mag.	87,709	
1-2	285°22'16''	71,752	
1-a	335°30'53''	1,106 1,000 0,894	90°20'22''
1-b	319°09'04''	1,070 1,000 0,930	92°14'42''
1-c	297°27'53''	1,122 1,000 0,878	92°49'19''
2-3	286°17'39''	66,485	
2-d	343°27'22''	2,239 2,000 1,761	
2-е	249°25'00''	1,120 1,000 0,880	87°32'01''
2-f	268°49'12''	2,189 2,000 1,811	88°07'30''
3-MP	218°56'18''	36,391	86°26'23''
MP-1	289°24'39''		

- a) Calcule os azimutes magnéticos da poligonal de base para 1°/07/92;
- b) Desenvolva a planilha de cálculos, fazendo a compensação do erro angular inversamente proporcional às distâncias e a compensação do erro linear proporcional às coordenadas. Determine também as coordenadas totais das amarrações.

34) Um levantamento topográfico foi realizado em 1°/04/86, onde obtiveram-se as seguintes anotações em caderneta de campo:

Alinhamento	Ângulo Hz	Retículos (m)			Ângulo Vertical
Ammamento	Aliguio 112	super. médio inf.		inf.	Aliguio vertical
MP A	21°48'00'' Az. mag.	2,687	2,143	1,600	+3°30'30''
A-B	79°49'55''D	2,695	2,347	2,000	-2°32'00''
В-С	82°41'00''D	3,568	3,034	2,500	-3°03'30''
C-MP	- MP 96°59'50''D		1,511	1,000	+2°39'00''
MP-A	100°31'00''D				

Sabendo-se que na região a declinação magnética era de 15°30' W e que a variação anual da declinação é de 11' W:

- a) calcule os azimutes magnéticos da poligonal de base para 1º/10/1992 e desenvolva a planilha de cálculos, fazendo a compensação do erro angular inversamente proporcional às distâncias e a compensação do erro linear proporcional às coordenadas;
- b) calcule a área pelo método de Gauss;
- c) determine o rumo e a distância do alinhamento C-A.
- 35) Com os dados da caderneta de campo abaixo desenvolver a planilha de cáculos fazendo a <u>correção</u> do erro angular de fechamento no alinhamento de menor distância e a <u>correção do erro linear proporcional às coordenadas</u>. Calcule também as <u>coordenadas totais das amarrações</u> e a área do polígono <u>MP-A-2-B-3-C-D-E-MP</u> pelo método de Gauss.

Alinhamento	Distância (m)	Ângulo Zenital	Deflexões	Azimute
MP-1	72,980			279°37'20''
1-2	42,640		91°21'20'' D	
1-A	1,380		65°33'50'' E	
2-3	30,070		101°14'40'' D	
	ri=0,500			
2-B	rm=0,563	92°05'50''	94°34'00'' D	
	rs=0,626			
3-MP	55,880		27°33'25'' D	
	ri=1,000			
3-C	rm=1,100	92°01'20''	12°47'50'' D	
	rs=1,200			
	ri=1,000			
3-D	rm=1,170	91°04'50''	14°44'55'' D	
	rs=1,340			
	ri=1,000			
3-E	rm=1,240	90°42'55''	18°59'30'' D	
	rs=1,480			
MP-1			139°50'55'' D	

36) Dadas as coordendas totais abaixo calcular a distância e o rumo de vante de todos os alinhamentos.

Alinhamento	Longitude Total (m)	Latitude Total (m)
1 - 2	37,00	-32,00
2 - 3	0,00	-78,00
3 - 4	-26,00	-36,00
4 - 1	0,00	0,00

37) Como poderia ser determinada, através de um <u>nivelamento trigonométrico</u>, a diferença de nível entre "A" e "B" (DNAB) e a altura da caixa d'água (HBC), sendo que você dispõe sòmente de um teodolito (Zeiss Th-4) e de uma trena de 20,00m de comprimento. Aproveite a figura abaixo para seus esquemas.

- **38)** Com os dados das cadernetas de nivelamento abaixo:
 - a) Calcular as cotas do terreno para todas as estacas, no nivelamento e contra-nivelamento;
 - b) Determinar o erro de fechamento altimétrico;
 - c) Com os dados do nivelamento, calcular a declividade (em %) de um plano inclinado que passa pelos pontos "0" e "7" no terreno, considerando-se que o espaçamento entre as estacas seja igual a 20,0m (DH).

Nivelamento: (valores em m)

Estacas	Ré	A.I.	P.I.	P.M.	Cotas
0	2,208				100,00
1			1,912		
2			1,583		
3			1,164		
4	2,380			0,598	
5	2,794			1,107	
6	3,202			0,800	
7				0,386	

Contra-nivelamento: (valores em m)

Estacas	Ré	A.I.	P.I.	P.M.	Cotas
7	0,710				
6	1,222			3,526	
5	2,665			3,217	
4	1,002			3,939	
3			1,568		
2			1,987		
1			2,316		
0				2,612	

- **39)** Em um perfil longitudinal a estaca 25 + 12,00m tem cota 102,32m e a estaca 30 + 14,20m tem cota 105,27m, sendo uniforme a superficie natural do terreno entre essas estacas. Com estas informações calcular:
 - a) a declividade de uma rampa (greide) que passaria pelas referidas estacas, se na estaca 30+14,20m fosse feito um corte de 2,10m de altura e um aterro da mesma altura na estaca 25+12,00m;
 - b) a cota do ponto de passagem e sua distância com relação à estaca 30+14,20m;
 - c) a cota no terreno e na rampa para estaca 27.
- **40)** Um nivelamento foi realizado da estação A para B de altitude 409,56m, obtendo-se os seguintes dados:
 - a) \hat{a} ngulo vertical = + 03°51'13"
 - b) distância inclinada = 3524,68m
 - c) altura do instrumento no ponto A = 1,440m
 - d) altura do centro do refletor (prisma) no ponto B = 2,510m
 - e) raio terrestre = 6366,20km
 - Calcular a altitude do ponto A considerando o erro de curvatura e refração.
- **41)** Com os dados abaixo (valores em metros), compor a caderneta de nivelamento preenchendo-a com os dados faltantes e fazer a "prova de cálculo".
 - a) Cotas: 0 = 308,325; 2 = 304,948; 4 = 303,656; 6 = 300,518; 9 = 297,067; 10 = 295,930
 - b) Visada a Ré: 7 = 0.618 c) altura do instrumento: 0 = 308.748; 2 = 305.489
 - d) Visada a vante intermediária (PI): 1 = 2,412; 3 = 0,998; 8 = 1,122; 9 = 2,317
 - e) Visada a vante de mudança (PM): 5 = 3,642; 7 = 3,393

Caderneta de Nivelamento

Estacas	Ré	A.I.	P.I.	P.M.	Cotas

42) A caderneta do perfil longitudinal de um trecho de estrada tem as seguintes notas (valores em m):

Estacas	Ré	AI	PI	PM	Cotas
5 + 17,50	1,750				200,00
6			1,430		
7			0,670		
8			0,500		
9	0,790			0,110	

10		1,590		
10 + 15,10			0,320	

Calcular:

- a) as cotas vermelhas nas estacas 5 + 17,50m e 10 + 15,10m para uma rampa em aclive de 1% de declividade, que passa pelo topo da estaca 9;
- b) qual seria a declividade de uma rampa que passasse pelo topo da estaca 9, se a cota vermelha para essa rampa na estaca 10 fosse 1,00 m positiva.
- 43) Um terreno foi estaqueado, conforme, esquema abaixo, para fins de trabalho de terraplenagem.

Dados:

- a) Espaçamento entre estacas = 20,0 m;
- b) Declividade do terreno na direção das linhas = 3% (declive);
- c) Declividade do terreno na direção das colunas = 2% (declive);
- d) Cota do terreno para estaca A1 = 100,00m

Pedem-se:

- 1°) Calcular as cotas para todas as estacas;
- 2°) Traçar as curvas de nível da área, com equidistância vertical de 1,00 m;
- 3°) Calcular a cota (hm) de um plano horizontal que, na terraplenagem, resulte em volumes de corte e aterro iguais;
- 4°) Traçar a linha de passagem, indicando as áreas de corte e aterro;
- 5°) Calcular a cota vermelha para todas as estacas

<u>Obs</u> .: Esquema de anotação para cada estaca

44) Com os dados e informações abaixo:

	A	В
1	102,80 m	103,26 m
2	103,18 m	104,50 m
3	104,08 m	105,42 m

- a) Traçar as curvas de nível do terreno, pelo processo de interpolação por cálculo, <u>E.V.= 1,0 m</u>, utilizando a planta acima;
- b) Calcular os volumes de corte e aterro, em relação a um plano horizontal que resulte volumes iguais de corte e aterro, considerar talude de corte (1/1) e saia de aterro (2/3) e fazer esquemas.
- **45)** Um terreno de 40,0 m x 40,0 m, foi estaqueado em quadrículas de 20,0 m x 20,0 m. As cotas obtidas para cada vértice estão na tabela abaixo:

ESTACAS	COTAS (m)
A1	111,7
A2	112,6
A3	113,7
B1	111,0
B2	111,8
В3	112,7
C1	110,2
C2	111,1
C3	112,0

Com os dados acima pede-se:

- a) desenhar o terreno na escala 1:500 e locar as curvas de nível inteiras, pelo método de interpolação por cálculo com **E.V. = 1,0m**;
- b) projetar um plano inclinado de $\pm 2\%$ na direção e sentido de A para C que resultará em Vc = Va. Fazer desenho na escala 1:500;
- c) calcular os volumes de corte e aterro para o plano inclinado (não considere talude de corte e saia de aterro), utilize a <u>fórmula do tronco de pirâmide</u>.

46) Um terreno de 60,0 m x 40,0 m, foi estaqueado em quadrículas de 20,0 m x 20,0 m. As cotas obtidas para cada vértice estão na tabela abaixo:

A1 = 104,2 m	B1 = 105,1 m	C1 = 106,1 m
A2 = 103,0 m	B2 = 104,2 m	C2 = 105,0 m
A3 = 102,8 m	B3 = 103,5 m	C3 = 104,7 m
A4 = 104,4 m	B4 = 105,1 m	C4 = 106,3 m

Com os dados acima pede-se:

- a) Desenhar o terreno na escala 1:500 e traçar as curvas de nível de cotas 103 m, 104 m e 105 m.
- b) Sabendo-se que a cota de $\underline{\text{hm}} = 104.3 \text{ m}$, calcular o volume de corte e de aterro (represente as seções A, B e C). Determine, também, a cota do plano horizontal que resultará uma sobra de 240 m³ de terra.
- **47)** Elaborar a caderneta de locação de uma curva circular à direita, admitindo-se o estacionamento do teodolito em **PC.**

Dados: a) estaqueamento = 20.0 m; b) número da estaca do PI = 79 + 14.06 m; c) raio (R) = 280.0 m; d) Rumos: $PC - PI = 70^{\circ}30' \text{ NE e } PT - PI = 78^{\circ}36 \text{ NW}$

Esquema:

- **48)** Preparar uma caderneta de locação, para que seja locada uma curva horizontal à direita, com cordas de 20,0m. Dados:
 - a) $I = 42^{\circ}30'$ (ângulo central)
 - b) R = 164,50 m (raio da curva)
 - c) Estaca do PC = 40 + 12,25 m (estaqueamento = 20,0m)
- **49)** Preparar uma caderneta de locação, para que seja locada uma curva horizontal à direita, com cordas de 10,0m. Dados: a) I = 54°30′ (ângulo central)
 - b) R = 180.0 m (raio da curva)
 - c) Estaca do PC = 28 + 10,50 m (estaqueamento = 20,0m)

50) Num trabalho de terraplenagem determinaram-se as altitudes das estacas (quadrícula = 20,0 x 20,0m) pelo método de nivelamento geométrico. Dados (valores em m):

Estacas	Ré	A.I.	P.I.	P.M.	Cotas
RN	0,120				200,00
A1			1,860		
B1			2,500		
C 1			3,300		
A2			2,200		
B2			2,400		
C2				3,100	

Com os dados acima pede-se:

- a) projetar um plano inclinado de $\pm 3\%$ na direção e sentido de A para C que resultará em $\mathbf{Vc} = \mathbf{Va}$;
- b) calcular os volumes de corte e aterro para o plano inclinado (não considere talude de corte e saia de aterro), utilize a <u>fórmula do tronco de pirâmide</u>.
- 51) Com as coordenadas totais fornecidas abaixo (valores em m), e sabendo-se que a área total é de 2537,127 m2, dividir o poligono em três (3) partes iguais, determinando as coordenadas totais finais das duas cercas divisórias. Considere o ponto MP (0,0; 0,0) como sendo a origem das duas cercas.

- **52)** Sabendo-se que foi realizado um levantamento aerofotogramétrico com as seguintes especificações:
 - a) altura de vôo = 5.250 m (acima da região fotografada);
 - b) recobrimento longitudinal = 60% e transversal = 30%;
 - c) formato do negativo: 23 x 23 cm;
 - d) distância focal da câmara: f = 210 mm;
 - e) área de 50 km de comprimento por 15 km de largura.

Pergunta-se:

- 1) Qual a escala da fotografia aérea?
- 2) Qual a escala da planta a ser restituída?
- 3) Qual a área total e área útil por fotografia?
- 4) Qual o número de fotografias, necessárias, para recobrir toda a área?
- 53) Foram obtidas fotografías aéreas verticais de um avião, com uma câmara aerofotogramétrica de distância focal igual a 15,2 cm, voando a 5000,0 m de altitude. Sabendo-se que a altitude média da região fotografada é de 500,0 m, calcular a área coberta por um par de fotogramas, cujo formato é 0,23 m x 0,23 m e que possui um recobrimento longitudinal de 60%. Determine, também, a escala da carta planialtimétrica que poderá ser obtida pelo processo de restituição aerofotogramétrica.
- 54) Completar a caderneta de nivelamento apresentada a seguir e, posteriormente:
- a) locar no perfil o greide de uma rampa em aclive com 2% de declividade e que parte 3,00m acima do topo da estaca 0;
 - b) calcular cotas vermelhas das estacas 1, 2, 3 e 4;
 - c) determinar a cota e a numeração do ponto de passagem existente.

Estacas	Ré	A.I.	P.I.	P.M.	Cota
0	3,817				
1					101,405
2			1,509		102,405
3		107,224		0,344	
4			2,914		
5	3,804				106,129
6				0,902	

OBS: valores em metros.

55) Num trabalho de terraplenagem, transferiu-se a altitude de um marco para um ponto próximo a área trabalhada, pelo método de nivelamento trigonométrico. Posteriormente, conhecendo-se essa nova altitude, determinaram-se as altitudes das estacas que serviram à terraplenagem.

Dados:

- a) Transferência de altitude: na estação A, cuja altitude é de 111,832 m, instalou-se um distanciômetro ficando o eixo da luneta a 1,730 m de altura, em seguida visou-se o "sinal", cuja altura era de 1,420 m, em B, anotando-se o ângulo zenital 90°49'33,4" e a distância inclinada 826,730 m.
- b) Altitudes das estacas que serviram à terraplenagem: com o nível de precisão fez-se uma irradiação altimétrica obtendo-se os seguintes dados:
- b1) visada de ré na mira colocada sobre o ponto B igual a 0,120 m;
- b2) leituras da mira, em metros, nos vértices das quadrículas (quadrículas 10,0 m X 10,0m);

	A	В	C
1	1,860	2,200	1,300
2	2,500	2,400	2,300
3	3,300	3,100	3,400

4	3,800	3,900	4,000

Calcular:

a) A cota do plano médio (hm) e traçar na planta, <u>desenhada na escala 1/250</u>, a curva de passagem; b) O volume total de corte e de aterro.

RESPOSTAS

- 1) A área do polígono é: 3943,312 m²
- 2) As distâncias corrigidas são: 1-2 = 38,543 m; 2-3 = 81,166 m; 3-4 = 126,263 m
- 3) O comprimento real da trena é: 20,039 m
- 4) 4.1. Perímetro: 144,991 m; 4.3. Área; 1206,33 m²
 - 4.2. Coordenadas: B (60,00 m; 0,00 m); C (35,542 m; 20,105 m); D (24,457 m; -20,105 m)
- 5) 1. Comprimento de AB = 278,383 m; 3. Área do polígono ABPQ = 33690,243 m²
 - 2. Coordenadas: Q (20,00 m; 0,00 m); A (272,167 m; 217,787 m); B (18,758 m; 102,542 m)
- 6) Área do polígono 1-2-3-4 = $1480,628 \text{ m}^2$
- 7) Área do triângulo $1-2-3 = 2710,575 \text{ m}^2$
- 8) a. Coordenadas: 3 (-0,90 m; -1,9 m); 4 (-2,60 m; 0,00 m) b.Área do polígono = 57,44 m²
- 9) Área do polígono = $52344,411 \text{ m}^2$
- 10) Distância Horizontal (DH) 1-2 = 215,222 m; Diferença de Nível (DN) 1-2 = 33,528 m
- 11) Os rumos magnéticos de ré são:

Alinhamento	Rumo
0-1	69°29′15" SE
1-2	50°30′45" SW
2-0	09°29′15" NW

12) a. Azimutes e rumos, magnéticos e verdadeiros, de vante e de ré:

Alinhamento	Az. mag. vante	Az. mag. ré	Az. verd. vante	Az. verd. ré
0-1	44°50′25"	224°50′25"	27°12′15"	207°12′15"
1-2	134°50′25"	314°50′25"	117°12′15"	297°12′15"
2-0	269°50′25"	89°50′25"	252°12′15"	72°12′15"

Alinhamento	Rumo mag. vante	Rumo mag. ré	Rumo verd. vante	Rumo verd. ré
0-1	44°50′25" NE	44°50′25" SW	27°12′15" NE	27°12′15" NE
1-2	45°09′35" SE	45°09′35" NW	62°47′45" SE	62°47′45" SE

2-0	89°50′25" SW	89°50′25" NE	72°12′15" SW	72°12′15" SW
20	07 30 23 BW	07 30 43 TVL	12 12 13 BW	12 12 13 3 11

b. Coordenadas: 0 (-84,616 m; -85,089 m); 2 (85,089 m; -84,616 m)

c. Comprimento 0-2 = 169,705 m

13) Azimutes e rumos, magnéticos e verdadeiros, de vante e de ré:

Alinhamento	Az. mag. vante	Az. mag. ré	Az. verd. vante	Az. verd. ré
0-1	275°03′23"	95°03′23"	293°44′35"	113°44′35"
1-2	05°03′23"	185°03′23"	23°44′35"	203°44′35"
2-0	140°03′23"	310°03′23"	158°44′35"	338°44′35"

Alinhamento	Rumo mag. vante	Rumo mag. ré	Rumo verd. vante	Rumo verd. ré
0-1	84°56′37" NW	84°56′37" SE	66°15′25" NW	66°15′25" SE
1-2	05°03′23" NE	05°03′23" SW	23°44′35" NE	23°44′35" SW
2-0	39°56′37" SE	39°56′37" NW	21°15′25" SE	21°15′25" NW

14) As coordenadas são: C (60,224 m; -52,660 m); A (-15,493 m; -78,485 m)

15) a. Azimutes magnéticos para 01/04/1994:

Alinhamento	Azimute
0-1	65°41′45"
1-2	142°53′45"
2-3	38°39′45"
3-4	01°00′45"
4-0	224°51′45"

b. Deflexões e seus sentidos:

Alinhamento	Deflexões
0-1	159°10′ E
1-2	77°12′ D
2-3	104°14′ E
3-4	37°39′ E
4-0	136°10′ E

16) Os ângulos faltantes são:

Alinhamento	Rumo de Vante	Rumo de Ré	Azimute de Vante	Azimute de Ré
1-2		11°35′20″ NW	168°24′40″ SW	348°24′40″
2-3	90°00″ E		90°00″	270°00"
3-4	15°47′00″ NW	15°47′00″ SE		164°13′00″
4-5	40°12′40″ SW	40°12′40″ NE	210°12′40″	
5-6		00°00′ N	180°00″	90°00″ E

17) Rumo magnético em 01/04/1987: 18°06" SW; Rumo verdadeiro: 29°16" SW

18) Os rumos verdadeiros são:

Alinhamento	Rumo
A-B	11°10″ NE
В-С	48°50″ SE
C-A	71°10″ SW

19) a. Os azimutes magnéticos são:

Alinhamento	Azimute
0-1	290°30′45″
1-2	50°30′45″
2-0	170°30′45″

b. Os rumos verdadeiros de ré são:

Alinhamento	Rumo
0-1	87°49′30″ SE
1-2	32°10′30″ SW
2-0	27°49′30″ NW

- 20) a. Azimute verdadeiro = 156°29′; b. Azimute magnético de ré = 344°49′; c. rumo magnético de ré = 10°11′ NW.
- 21) a. Azimute verdadeiro = 183°09′; b. Azimute magnético de ré = 344°49′; c. rumo magnético de ré = 10°11′ NW.
- 22) a. As coordenadas totais são:

MP (0,00 m; 0,00 m); 1 (69,679 m; 39,450 m); 2 (129,606 m; -34,413 m); 3 (73,295 m; -76,612 m); A (173,981 m; -26,940 m); B (65,495 m; -101,415 m)

- b. Área do polígono = $12310,286 \text{ m}^2$
- c. Distância 1-3 = 116,118 m

23) A tabela abaixo mostra os resultados:

Alinhamento	DH	DN
MP-1	68,169 m	-4,687 m
MP-2	80,710 m	+13,407 m
MP-3	52,800 m	+0,965 m

- 24) O perímetro do polígono é: 237,844 m
- 25) a. Os azimutes estão na tabela abaixo; b. O erro angular de fechamento é: 00°10′

Alinhamento	Azimute
1-2	54°50′

2-3	191°20′
3-4	131°00′
4-5	273°10′
5-MP	31°20′
MP-1	139°10′

26) A tabela abaixo mostra os resultados:

Alinhamento	Azimute verd.	Rumo mag.
MP-1	33°10′30″	51°23′15″ NE
1-2	107°53′30″	53°53′45″ SE
2-3	185°15′30″	23°28′15″ SW
3-4	300°00′30″	41°46′45″ NW
4-5	249°30′30″	87°43′45″ SW
5-MP	302°55′30″	38°51′45″ NW

- 27) Distância Horizontal (DH) = 31,436 m
- 28) A altitude de B é: 320,20 m
- 29) A tabela abaixo mostra os resultados:

Alinhamento	Azimute
B-0	289°50′
B-1	09°15′
B-2	74°40′
B-3	138°12′
B-4	201°40′
B-5	260°00′

- 30) a. O erro linear de fechamento é: 2,738 °/₀₀
- b. As coordenadas totais são:

1 (-70,500 m; 42,439 m); 2 (-26,576 m; 59,645 m); 3 (20,840 m; 39,414 m); 4 (0,00 m; 0,00 m); 5 (33,893 m; -39,655 m); MP (-101,414 m; -4,007 m)

- 31) a. Rumo $4-2 = 86^{\circ}22'01''$ NE e DH 4-2 = 63,127 m; b. Área 01 = 1082 m² e Área 02 = 1375 m²
- 32) a. Área do polígono = $48531,899 \text{ m}^2$; b. DH 1-4=271,190 m e Rumo $1-4=73^{\circ}22'44''$ NW
- 33) a. A tabela abaixo mostra os azimutes magnéticos da poligonal de base para 01/07/1992:

Alinhamento	Azimute
MP-1	358°45" (lido)
1-2	104°07′16″
2-3	210°24′55″
3-MP	249°21′13″
MP-1	358°45′52" (calculado)

b. As coordenadas totais para todos os pontos são:

Ponto	Longitude (m)	Latitude (m)
MP	0,00	0,00
1	-1,913	87,685
2	67,692	70,179
a	7,292	68,588
b	7,858	77,313
c	19,837	76,932
3	34,043	12,841
d	20,023	68,162
e	70,390	46,357
f	59,260	33,481

34) a. As coordenadas totais são:

Ponto	Longitude (m)	Latitude (m)
A	42,265	99,551
В	109,848	84,146
С	99,650	-22,010
MP	0,00	0,00

b. A área do polígono é: $9090,978 \text{ m}^2$;

c. DH C-A = 134,425 m e Rumo C-A = 25°16′13,56″ NW

35) a. As coordenadas totais para todos os pontos são:

Ponto	Longitude (m)	Latitude (m)
1	-71,999	12,196
2	-63,885	54,046
A	-72,772	11,053
3	-36,065	42,674
В	-51,762	50,674
MP	0,00	0,00
С	-19,563	31,418
D	-8,908	22,236
Е	0,040	11,057

b. Área do polígono = $2296,135 \text{ m}^2$

36) Os resultados encontram-se na tabela abaixo:

Alinhamento	Distância (m)	Rumo
1-2	48,918	49°08′40″ SE
2-3	59,034	38°48′40″ SW
3-4	49,396	31°45′34″ NW
4-1	44,407	35°50′15″ NE

37) O problema pode ser resolvido por triangulação.

20)		4	< \	1	1 1	. ~		. 1 1	1 .
-3X	la As	cotas	(m)	calcu	iladas	estão	na	tahela	abaixo:
20	, a. 1 10	Collab	(111 /	Carca	Luaus	Coma	IIu	moora	acaino.

Estacas	Nivelamento	Contra-nivelamento
0	100,00	99,998
1	100,296	100,294
2	100,625	100,623
3	101,044	101,042
4	101,610	101,608
5	102,883	102,882
6	104,877	104,877
7	107,613	107,613

- b.) O erro de fechamento altimétrico é: 2,00 mm; c. a declividade do plano inclinado é: 5,495%.
- 39) a. A declividade do greide é: 1,223%; b. A cota do ponto de passagem é: 103,795 m; c. As cotas no terreno e na rampa para a estaca 27 são respectivamente: 103,128 m e 104,678 m.
- 40) A altitude do ponto A é: 172,929 m.
- 41) Preencher tabela no próprio exercício, não precisa resposta.
- 42) a. As cotas vermelhas nas estacas 5+17,50 m e 10+15,10 m são respectivamente: -0,119 m e +1,015 m; b. a declividade da rampa é: 1,00%.

43) a. As cotas das estacas são:

Cotas (m)	1	2	3	4
A	100,00	99,40	98,80	98,20
В	99,60	99,00	98,40	97,80
С	99,20	98,60	98,00	97,40
D	98,80	98,20	97,60	97,00

b. As cotas vermelhas são:

Cotas vermelhas (m)	1	2	3	4
A	-1,5	-0,9	-0,3	+0,3
В	-1,1	-0,5	+0,1	+0,7
С	-0,7	-0,1	+0,5	+1,1
D	-0,3	+0,3	+0,3	+1,5

- c. Cota do hm = 98,50 m.
- 44) a. Resultado obtido utilizando-se a fórmula dos prismas:
 - 1. Volume de corte = $596,535 \text{ m}^3 \text{ e } 2$. Volume de aterro = $594,855 \text{ m}^3$
- b. Resultado obtido utilizando-se a fórmula do tronco de pirâmide:
 - 1. Volume de corte = $453,319 \text{ m}^3 \text{ e } 2$. Volume de aterro = $524,984 \text{ m}^3$
- 45) Resultado obtido utilizando-se a fórmula do tronco de pirâmide:
 - 1. Volume de corte = $553,520 \text{ m}^3$ e 2. Volume de aterro = $556,453 \text{ m}^3$

- 46) a. Resultado obtido utilizando-se a fórmula dos prismas:
 - 1. Volume de corte = $822,849 \text{ m}^3$ e 2. Volume de aterro = $820,845 \text{ m}^3$
- b. Cota do novo hm = 104,20 m.
- 47) a. Estaca do PC = 75+16,682 m; b. Estaca do PT = 83+7,688 m; c. dm = $0^{\circ}06'08,41''$
- 48) a. Estaca do PT = 46+14,27 m; b. dm = $0^{\circ}10'27,33''$
- 49) a. Estaca do PT = 37+1.72 m; b. dm = $0^{\circ}09'33''$
- 50) Resultado obtido utilizando-se a fórmula do tronco de pirâmide:
 - 1. Volume de corte = 236.995 m^3 e 2. Volume de aterro = 238.772 m^3
- 51) As coordenadas são: A (-25,251 m; 32,071 m) e B (5,876 m; 47,393 m).
- 52) 1. Escala da fotografía = 1/25000; 2. Escala da planta = 1/15625; 3. Área útil = 925,75 ha; 4. Total de fotografías = 96.
- 53) a. Escala da fotografía = 1/29605; b. Escala da planta = 1/21911; c. Área coberta por um par de fotografías = 6490,95 ha
- 54) a. As cotas vermelha (CV) são: CV1 = +1,995 m; CV2 = +1,492 m; CV3 = +0,727 m; CV4 = +0,290 m; b. A cota e a numeração do ponto de passagem são respectivamente: 104,682 m e 4+4,4087 m.
- 55) a. A cota de hm é: 97,505 m; b. Volume de corte = 163,069m³ e 2. Volume de aterro = 163,070m³