Tiempo: 2 h. 30 m. Total: 35 puntos

Fecha: 21 de diciembre de 2010

(5 puntos)

Primer examen parcial (VERANO)

Instrucciones: Trabaje en forma ordenada y clara. Escriba todos los procedimientos que utilice para resolver los ejercicios propuestos.

1. Considere las matrices
$$C = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} -3 & 0 \\ 1 & -1 \end{pmatrix}$.

Calcule $B + B^t(C + 2I_2)^{-1}$ (5 puntos)

2. Determine el conjunto solución del sistema:

$$\begin{cases} x + 2y + z - w = 2 \\ x - y + z + 3w = 2 \\ 2x + y + 2z + 2w = 4 \end{cases}$$

3. Si A y B son matrices de 4×4 , tales que $\det(A) = -4$ y $\det(B^{-1}) = \frac{3}{5}$, calcule $\det(3B \cdot Adj(A))$ (4 puntos)

4. Calcule
$$\det \begin{pmatrix} -2 & 2 & 0 & 3 \\ -3 & 1 & -2 & 0 \\ 0 & -1 & -1 & 2 \\ 1 & 1 & 2 & 0 \end{pmatrix}$$
. (3 puntos)

5. Considere el sistema de ecuaciones en la variables x, y: (6 puntos)

$$\begin{cases} ax - 3y = 1 \\ 2ax + ay = b \end{cases}$$

Determine los valores de a y b para que el sistema:

- (a) No tenga solución.
- (b) Tenga solución única.
- (c) Tenga infinita cantidad de soluciones.
- (d) Determine el conjunto solución en el caso (b).
- 6. Sean B una matriz de tamaño $m \times n$, A de $n \times m$ y C matrices de $m \times p$. Pruebe, entrada por entrada, que $(2B - A^t)^t C = 2B^t C - AC$. (5 puntos)

- 7. Se dice que una matriz A de $n \times n$ es ortogonal si cumple que $A^{-1} = A^t$.
 - (a) Pruebe que si B y C son ortogonales, entonces BC es ortogonal. (2 puntos)
 - (b) Pruebe que si B es ortogonal, entonces det(B) = -1 ó det(B) = 1. (2 puntos)
- 8. Suponga que A es una matriz de $n \times n$ que satisface la condición $A^2 = A$. Pruebe que $\forall k \in \mathbb{N}$, con $k \geq 1$, se cumple que: (5 puntos)

$$(A + I_n)^k = I_n + (2^k - 1)A$$