ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика»

Направление подготовки: 01.03.02 «Прикладная математика и информатика» Профиль: «Анализ данных и принятие решений в экономике и финансах» Форма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 106

- 1. Дайте определение случайной величины, которая имеет χ^2 -распределение с n степенями свободы. Запишите плотность χ^2 - распределения. Выведите формулы для математического ожидания $\mathbb{E}(X)$ и дисперсии $\mathbb{V}ar(X)$ χ^2 -распределение с n степенями свободы. Найдите a) $\mathbb{P}(\chi^2_{20}>10.9),$ где χ^2_{20} —случайная величина, которая имеет χ^2 — распределение с 20 степенями свободы; б) найдите 93% (верхнюю) точку $\chi^2_{0.93}(5)$ хи-квадрат распределения с 5 степенями свободы
- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;6] и [0;1] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0.087\leqslant Z\leqslant 0.235)$.
- 3. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x)=x^{\beta}, 0\leqslant x\leqslant 1$. Наблюдения показали, что в среднем она составляет 87,5%. Методом моментов оцените параметр eta и вероятность того, что она опуститься ниже 53%
- 4. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y-100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i = X(\omega_i)$ и $y_i = Y(\omega_i)$, i = 1...25. Все оценки известны $x_0 = 32, y_0 = 89, x_1 = 61, y_1 = 91, x_2 = 64, y_2 = 88, x_3 = 97, y_3 = 55, x_4 = 66, y_4 = 84,$ $x_5 = 78, y_5 = 56, x_6 = 62, y_6 = 60, x_7 = 73, y_7 = 42, x_8 = 40, y_8 = 59, x_9 = 86, y_9 = 80, x_{10} = 76, y_{10} = 33, x_{10} = 76, x_{10}$ $x_{11} = 56, y_{11} = 64, \ x_{12} = 87, y_{12} = 86, \ x_{13} = 70, y_{13} = 38, \ x_{14} = 87, y_{14} = 76, \ x_{15} = 72, y_{15} = 63, \ x_{16} = 79, y_{16} = 41, x_{16} = 70, x_{16}$ $x_{17} = 33, y_{17} = 74, x_{18} = 67, y_{18} = 71, x_{19} = 65, y_{19} = 34, x_{20} = 57, y_{20} = 56, x_{21} = 63, y_{21} = 87, x_{22} = 68, y_{22} = 95, x_{23} = 60, x_{24} = 60, x_{25} = 60, x_{$ $x_{23} = 46, y_{23} = 94, x_{24} = 50, y_{24} = 73$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X\geqslant 50$ и $Y\geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
- 5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y=4	Y=5
X = 200	1	18	12
X = 300	31	26	12

Из Ω случайным образом без возвращения извлекаются 12 элементов. Пусть $ar{X}$ и $ar{Y}$ – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(Y)$; 2) стандартное отклонение $\sigma(X)$; 3) ковариацию $Cov(\bar{X}, \bar{Y})$

6. Юный аналитик Дарья использовала метод Монте-Карло для исследования Дискретного случайного вектора, описанного ниже.

	X=-4	X=-3	X=-2
Y = 3	0.07	0.084	0.205
Y = 4	0.011	0.201	0.429

Дарья получила, что $\mathrm{E}(\mathrm{Y}|\mathrm{X}+\mathrm{Y}=1)=3.49618.$ Проверьте, можно ли доверять результату Дарьи аналитически. Сформулируйте определение метода Монте-Карло.

Подготовил

П.Е. Рябов

Утверждаю: Первый заместитель руководителя департамента

Феклин В.Г.

Дата 01.06.2021