

Development of Luminescence Lifetime-Based Surface Temperature Mapping for Environmental Barrier Coatings

Jeffrey I. Eldridge and Kang N. Lee
NASA Glenn Research Center, Cleveland, OH

John A. Setlock
University of Toledo, Toledo, OH

48th International Conference on Advanced Ceramics and Composites
Daytona Beach, FL
January 28 - February 2, 2024

Objectives

- Develop luminescence lifetime imaging-based temperature mapping for EBCs featuring the same advantages observed for TBCs at lower temperatures.
 - + Well suited for evaluating steady state cooling strategies.
 - + Emissivity independent and no interference from reflected radiation.
 - Limited to near steady-state conditions.

- Use EBC temperature mapping capability for evaluation of EBC performance and cooling strategies.

Approach

- Evaluate $\text{Y}_2\text{SiO}_5:\text{Er}$ for luminescence lifetime-based temperature mapping to >1500 °C.
- Evaluate temperature mapping performance and the compatibility of $\text{Y}_2\text{SiO}_5:\text{Er}$ temperature-sensing layer at the EBC surface.

Er^{3+} Electron Energy Level Transitions in Y_2SiO_5 Associated with Luminescence Lifetime Measurements

$\text{Y}_2\text{SiO}_5:\text{Er}(0.8\%)$ Emission Decay Curves

Temperature Dependence

$\text{Y}_2\text{SiO}_5:\text{Er}(0.8\%)$ Decay Time Temperature Dependence

Luminescence Lifetime Imaging

2D Temperature Maps from Luminescence Lifetime Imaging*

- Step 1: Acquire image stack of background-corrected exposures.
- Step 2: Fit single exponential decay to luminescence decay curve at **each pixel** to produce decay time map.

*Image processing developed by Adam Wroblewski at NASA GRC.

- Step 3: Use furnace calibration data to convert decay time map to temperature map.

$$\tau = [W_{10}(1 - e^{-\frac{\Delta E}{p_{high}kT}})^{-p_{high}} + W_{20}(1 - e^{-\frac{\Delta E}{p_{low}kT}})^{-p_{low}}]^{-1}$$

Dual effective
phonon energy model

High Temperature Furnace Calibrations

$\text{Y}_2\text{SiO}_5:\text{Er}(0.8\%)$ Luminescence Lifetime Temperature Maps

Temperature Maps

$T - T_{\text{mean}}$ (shows deviations from mean)

0.5% relative temperature precision

Sensor Layer/EBC Architecture

- Sensor coating + layered EBC deposited using slurry process* via spin coating.
 - Y₂SiO₅:Er selected for sensor layer instead of Y₂Si₂O₇:Er for stability because surface Y₂Si₂O₇ can convert to Y₂SiO₅.
 - Y₂SiO₅:Er sensor layer temperature limit reduced to < 1400 °C due to expected low melting temperature eutectic formed via sintering aid interaction.
 - Future transition to Sc₂SiO₅:Er sensor layer will increase temperature limit due to higher melting temperature eutectic.
- Verify temperature mapping performance with 11x reduced emission intensity from 15 µm thick Y₂SiO₅:Er sensor layer compared to 2 mm thick standalone disk.

*K.N. Lee et al., J. Eur. Ceram. Soc., 41 (2021) 1639-1653.

$\text{Y}_2\text{SiO}_5:\text{Er}(0.8\%)$ Luminescence Lifetime Measurements

Standalone Disk vs. Coating

High Temperature Furnace Calibrations

$\text{Y}_2\text{SiO}_5:\text{Er}(0.8\%)/\text{EBC}$ Luminescence Lifetime Temperature Maps

Image stack:
50 ns frame
exposures

1 cm

0.7% relative temperature precision

1383 °C 50 ns exposure
first frame in stack

Prior to background subtraction!

High Temperature Furnace Calibrations

$\text{Y}_2\text{SiO}_5:\text{Er}(0.8\%)/\text{EBC}$ Luminescence Lifetime Temperature Maps

High Temperature Furnace Calibrations

$\text{Y}_2\text{SiO}_5:\text{Er}(0.8\%)/\text{EBC}$ Luminescence Lifetime Temperature Maps

High Temperature Furnace Calibrations

$\text{Y}_2\text{SiO}_5:\text{Er}(0.8\%)/\text{EBC}$ Luminescence Lifetime Temperature Maps

Image stack:
50 ns frame
exposures

σ_T 17.5°C
10.5 °C

16.7°C
12.5 °C

14.6°C
11.3 °C

14.0°C
11.3 °C

12.7°C
11.1 °C

12.2°C
10.9 °C

11.5°C
10.6 °C $\rightarrow 0.7$
0.6% relative temperature precision

1 cm

σ_T : large
decrease

σ_T : small
decrease

High Temperature Furnace Calibrations

$\text{Y}_2\text{SiO}_5:\text{Er}(0.8\%)/\text{EBC}$ Luminescence Lifetime Temperature Maps

Image stack:
50 ns frame
exposures

σ_T 17.5°C
10.5 °C 16.7°C
12.5 °C 14.6°C
11.3 °C 14.0°C
11.3 °C 12.7°C
11.1 °C 12.2°C
10.9 °C 11.5°C
10.6 °C 10.7°C → 0.6% relative temperature precision

1 cm

Disk

Image stack:
15 ns frame
exposures

σ_T 11.6°C
0.19 °C 11.1°C
0.18 °C 10.0°C
0.16 °C 8.3°C
0.13 °C 8.6°C
0.14°C 8.2°C
0.13 °C 8.0°C → 0.5% relative temperature precision

High Temperature Furnace Calibrations

$\text{Y}_2\text{SiO}_5:\text{Er}(0.8\%)/\text{EBC}$ Luminescence Lifetime Temperature Maps

Conclusions

- $\text{Y}_2\text{SiO}_5:\text{Er}$ shows temperature mapping potential for EBC-relevant temperatures (1300-1500 °C).
 - Stand-alone $\text{Y}_2\text{SiO}_5:\text{Er}$ shows temperature mapping capability to at least 1566 °C.
 - Significant advance in extending phosphor thermometry temperature mapping to higher temperatures.
 - Excellent suppression of intense thermal radiation background.
 - 15 μm thick $\text{Y}_2\text{SiO}_5:\text{Er}$ layer on $\text{Sc}_2\text{Si}_2\text{O}_7$ based EBC topcoat shows temperature mapping capability to at least 1383 °C.
 - Remains adherent.
 - No spectral evidence of chemical degradation observed but expected at higher temperatures.
- Next Steps
 - $\text{Y}_2\text{SiO}_5:\text{Er} \rightarrow \text{Sc}_2\text{SiO}_5:\text{Er}$ temperature sensing layer
 - Better compatibility with $\text{Sc}_2\text{Si}_2\text{O}_7$ EBC topcoat, extending mapping capability to higher temperature limit.
 - May reduce/eliminate false “hot” spots
 - Implement temperature mapping to evaluate cooling at EBC surface.