ARMA-X Analysis

Contents

Data	2
Load Base Data	 2
Volatility	 2
Number of Posts	 3
Dummy for Social Media Post	 4
Number of Tweets Mentioning Tariffs	 4
Number of Tweets Mentioning Trade	 4
Merge	 4
ARMA-X Models	5
Find Number of Lags	 5
Tweet Count on Volatility by hour	 9
Tweet Dummy on Volatility by hour	 10
Tariff Mention on Volatility by hour	 11
Trade Mention on Volatility by hour	 12

Data

Load Base Data

```
# 1. Load Political Social Media
#contains posts from Twitter & TruthSocial
social <- read.csv(here("data/mothership", "social.csv"))</pre>
social_hourly <- read.csv(here("data/mothership", "socialhourly.csv"))</pre>
# 2. Load Financial
#S&P500
SPY <- read.csv(here("data/mothership", "SPY.csv"))</pre>
#STOXX50
VGK <- read.csv(here("data/mothership", "VGK.csv"))</pre>
#CSI 300 (China)
ASHR <- read.csv(here("data/mothership", "ASHR.CSV"))
#make posixct
SPY$timestamp = as.POSIXct(SPY$timestamp,format = "%Y-%m-%d %H:%M:%S")
VGK$timestamp = as.POSIXct(VGK$timestamp,format = "%Y-%m-%d %H:%M:%S")
ASHR$timestamp = as.POSIXct(ASHR$timestamp,format = "%Y-%m-%d %H:%M:%S")
social$timestamp = as.POSIXct(social$timestamp,format = "%Y-%m-%d %H:%M:%S")
social hourly$timestamp = as.POSIXct(social hourly$timestamp,format = "%Y-%m-%d %H:%M:%S")
```

Volatility

Number of Posts

```
#find count
tweetcount_alltime = dplyr::select(social_hourly,timestamp,N)
#select time period
tweetcount = filter(tweetcount_alltime,
                  between (timestamp,
                          as.Date('2013-01-01'),
                          as.Date('2025-04-10')))
#plot
ggplot(tweetcount_alltime, aes(x = timestamp, y = N)) +
    geom_point(color = "#253494", size = 1) +
   scale_x_datetime(date_labels = "%b %Y", date_breaks = "9 month") +
   labs(title = "Trump Social Media Count",
         x = NULL,
         y = "number of tweets/truths") +
   theme_minimal(base_size = 14) +
   theme(axis.text.x = element_text(angle = 45, hjust = 1),
          plot.title = element_text(face = "bold", hjust = 0.5))
```

Warning: Removed 1172 rows containing missing values or values outside the scale range
(`geom_point()`).

Trump Social Media Count

Dummy for Social Media Post

Number of Tweets Mentioning Tariffs

Number of Tweets Mentioning Trade

Merge

```
#merge our dependant and independant vars
armax_data = left_join(SPY_volatility, tweetcount, by="timestamp")
armax_data = left_join(armax_data, tweetdummy, by="timestamp")
armax_data = left_join(armax_data, tariff, by="timestamp")
armax_data = left_join(armax_data, trade, by="timestamp")

#convert NA to zeroes
armax_data$N[is.na(armax_data$N)] = 0
armax_data$dummy[is.na(armax_data$dummy)] = 0
armax_data$total_tariff[is.na(armax_data$total_tariff)] = 0
armax_data$total_trade[is.na(armax_data$total_trade)] = 0
```

ARMA-X Models

Find Number of Lags

```
#build number of lags we will test
nb.lags \leftarrow 12 \#r
count lags <- embed(armax data$N, nb.lags + 1)</pre>
dummy_lags <- embed(armax_data$dummy, nb.lags + 1)</pre>
tariff_lags <- embed(armax_data$total_tariff, nb.lags + 1)</pre>
trade_lags <- embed(armax_data$total_trade, nb.lags + 1)</pre>
colnames(count_lags) <- paste0("_", 0:nb.lags)</pre>
colnames(dummy_lags) <- paste0("_", 0:nb.lags)</pre>
colnames(tariff_lags) <- paste0("_", 0:nb.lags)</pre>
colnames(trade_lags) <- paste0("_", 0:nb.lags)</pre>
#align volatility to match count rows (for lag)
vol_aligned <- tail(armax_data$r_vol_h, nrow(count_lags))</pre>
#choosing how many lags
# fit an ARMA(0,0,0) model with lm (with r set above)
eq <- lm(vol_aligned ~ count_lags)
eq2 <- lm(vol_aligned ~ dummy_lags)
eq3 <- lm(vol_aligned ~ tariff_lags)
eq4 <- lm(vol_aligned ~ trade_lags)
#compute Newey-West HAC standard errors for count
var.cov.mat1 <- NeweyWest(eq, lag = 16, prewhite = FALSE)</pre>
robust_se1 <- sqrt(diag(var.cov.mat1))</pre>
#for dummy
var.cov.mat2 <- NeweyWest(eq2, lag = 16, prewhite = FALSE)</pre>
robust_se2 <- sqrt(diag(var.cov.mat2))</pre>
#for tariff
var.cov.mat3 <- NeweyWest(eq3, lag = 16, prewhite = FALSE)</pre>
robust_se3 <- sqrt(diag(var.cov.mat3))</pre>
#for trade
var.cov.mat4 <- NeweyWest(eq4, lag = 16, prewhite = FALSE)</pre>
robust_se4 <- sqrt(diag(var.cov.mat4))</pre>
#output table; significant lags are how many we choose
stargazer(eq, eq, type = "latex",
          column.labels = c("(no HAC)", "(HAC)"), keep.stat = "n",
          se = list(NULL, robust_se1), no.space = TRUE)
```

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Fri, May 02, 2025 - 11:07:17

Table 1:

	Dependent variable:	
	vol aligned	
	(no HAC)	(HAC)
	(1)	(2)
$count_lags_0$	-0.0005	-0.0005^{***}
	(0.0003)	(0.0001)
$count_lags_1$	-0.0002	-0.0002
	(0.0003)	(0.0002)
$count_lags_2$	0.0003	0.0003
	(0.0003)	(0.0002)
$count_lags_3$	0.00005	0.00005
	(0.0003)	(0.0001)
$count_lags_4$	0.0003	0.0003
	(0.0003)	(0.0003)
$count_lags_5$	-0.0002	-0.0002^*
	(0.0003)	(0.0001)
$count_lags_6$	-0.0002	-0.0002
	(0.0003)	(0.0002)
$count_lags_7$	-0.0001	-0.0001
	(0.0003)	(0.0004)
$count_lags_8$	-0.00003	-0.00003
	(0.0003)	(0.0001)
$count_lags_9$	0.001^*	0.001^{**}
	(0.0003)	(0.0003)
$count_lags_10$	0.0001	0.0001
	(0.0003)	(0.0001)
$count_lags_11$	-0.0001	-0.0001
	(0.0003)	(0.0001)
$count_lags_12$	-0.0002	-0.0002
	(0.0003)	(0.0002)
Constant	0.020***	0.020^{***}
	(0.001)	(0.001)
Observations	21,597	21,597

Note:

*p<0.1; **p<0.05; ***p<0.01

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Fri, May 02, 2025 - 11:07:17

Table 2:

	10010 2.	
	Dependent variable:	
	vol_aligned	
	(no HAC)	(HAC)
	(1)	(2)
dummy_lags_0	-0.001	-0.001
	(0.001)	(0.002)
$dummy_lags_1$	-0.001	-0.001
	(0.001)	(0.001)
$dummy_lags_2$	0.003^{**}	0.003^{**}
	(0.001)	(0.001)
$dummy_lags_3$	0.002	0.002^*
	(0.001)	(0.001)
$dummy_lags_4$	0.002*	0.002
	(0.001)	(0.002)
$dummy_lags_5$	-0.001	-0.001
	(0.001)	(0.001)
$dummy_lags_6$	-0.001	-0.001
	(0.001)	(0.001)
dummy_lags_7	-0.002	-0.002
	(0.001)	(0.001)
$dummy_lags_8$	0.0004	0.0004
	(0.001)	(0.001)
$dummy_lags_9$	0.004***	0.004**
	(0.001)	(0.002)
$dummy_lags_10$	0.0004	0.0004
	(0.001)	(0.001)
$dummy_lags_11$	-0.001	-0.001
	(0.001)	(0.001)
$dummy_lags_12$	-0.001	-0.001
	(0.001)	(0.001)
Constant	0.019***	0.019***
	(0.001)	(0.002)
Observations	21,597	21,597
AT /	* .0.1 **	.0.05 *** .0.01

Note: *p<0.1; **p<0

*p<0.1; **p<0.05; ***p<0.01

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Fri, May 02, 2025 - 11:07:18

```
#output table; significant lags are how many we choose
stargazer(eq4, eq4, type = "latex",
```

Table 3:

	Dependent variable:	
	vol_aligned	
	(no HAC)	(HAC)
	(1)	(2)
$tariff_lags_0$	0.034**	0.034
	(0.016)	(0.022)
$tariff_lags_1$	0.041^{***}	0.041
	(0.016)	(0.038)
$tariff_lags_2$	0.042^{***}	0.042
	(0.016)	(0.028)
$tariff_lags_3$	0.053^{***}	0.053^{**}
	(0.016)	(0.023)
$tariff_lags_4$	0.063^{***}	0.063^{**}
	(0.016)	(0.029)
$tariff_lags_5$	0.083***	0.083^{**}
	(0.016)	(0.041)
$tariff_lags_6$	0.047***	0.047**
	(0.016)	(0.022)
$tariff_lags_7$	0.041***	0.041*
	(0.016)	(0.022)
tariff_lags_8	0.036**	0.036^{**}
	(0.016)	(0.015)
tariff_lags_9	0.306***	$0.306^{'}$
	(0.016)	(0.254)
$tariff_lags_10$	0.096***	0.096^{*}
	(0.016)	(0.051)
$tariff_lags_11$	0.110***	0.110*
	(0.016)	(0.056)
$tariff_lags_12$	0.039^{**}	0.039^{**}
	(0.016)	(0.017)
Constant	0.019***	0.019***
	(0.001)	(0.001)
Observations	21,597	21,597

Note:

*p<0.1; **p<0.05; ***p<0.01

```
column.labels = c("(no HAC)", "(HAC)"), keep.stat = "n",
se = list(NULL, robust_se4), no.space = TRUE)
```

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Fri, May 02, 2025 - 11:07:18

Table 4:

	Dependent variable:	
	vol_a	aligned
	(no HAC)	(HAC)
	(1)	(2)
$trade_lags_0$	-0.002	-0.002
	(0.008)	(0.004)
$trade_lags_1$	0.003	0.003
	(0.008)	(0.007)
$trade_lags_2$	-0.0003	-0.0003
	(0.008)	(0.004)
$trade_lags_3$	0.002	0.002
	(0.008)	(0.006)
$trade_lags_4$	-0.0003	-0.0003
	(0.008)	(0.005)
$trade_lags_5$	-0.001	-0.001
	(0.008)	(0.005)
$trade_lags_6$	-0.003	-0.003
	(0.008)	(0.004)
$trade_lags_7$	-0.003	-0.003
	(0.008)	(0.003)
$trade_lags_8$	0.001	0.001
	(0.008)	(0.006)
$trade_lags_9$	0.002	0.002
_	(0.008)	(0.005)
$trade_lags_10$	0.002	0.002
	(0.008)	(0.006)
$trade_lags_11$	0.007	0.007
_	(0.008)	(0.010)
$trade_lags_12$	-0.00001	-0.00001
_	(0.008)	(0.004)
Constant	0.020***	0.020***
	(0.001)	(0.001)
Observations	21,597	21,597
Note:	*p<0.1; **p<	0.05; ***p<0.01

Tweet Count on Volatility by hour

```
#use selected number of lags
nb.lags <- 0
count_lags <- embed(armax_data$N, nb.lags + 1)</pre>
```

	Model 1	
ar1	0.3482***	
	(0.0068)	
ar2	0.0349^{***}	
	(0.0072)	
ar3	0.0832***	
	(0.0096)	
ar4	0.1546***	
	(0.0102)	
ar5	0.1057***	
	(0.0091)	
intercept	0.0206^{***}	
	(0.0019)	
$count_lag_0$	-0.0005^*	
	(0.0003)	
AIC	-50660.1539	
AICc	-50660.1472	
BIC	-50596.3070	
Log Likelihood	25338.0770	
Num. obs.	21609	
***n < 0.001 · **n < 0.01 · *n < 0.05		

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 5: ARMAX Model Results

Tweet Dummy on Volatility by hour

```
#use selected number of lags
nb.lags <- 3
dummy_lags <- embed(armax_data$dummy, nb.lags + 1)
colnames(dummy_lags) <- pasteO("dummy_lag_", 0:nb.lags)

#variables
y = tail(armax_data$r_vol_h, nrow(dummy_lags))
x = dummy_lags</pre>
```

	Model 1
ar1	0.3481***
	(0.0068)
ar2	0.0347***
	(0.0072)
ar3	0.0841***
	(0.0096)
ar4	0.1546***
	(0.0102)
ar5	0.1053***
	(0.0091)
intercept	0.0193***
	(0.0020)
$dummy_lag_0$	-0.0015
	(0.0011)
$dummy_lag_1$	-0.0008
	(0.0011)
$dummy_lag_2$	0.0036**
	(0.0011)
$dummy_lag_3$	0.0019
	(0.0011)
AIC	-50656.2791
AICc	-50656.2669
BIC	-50568.4911
Log Likelihood	25339.1395
Num. obs.	21606
*** $p < 0.001$; ** $p < 0.001$	01; * $p < 0.05$

Table 6: ARMAX Model Results

Tariff Mention on Volatility by hour

```
#use selected number of lags
nb.lags <- 3
tariff_lags <- embed(armax_data$total_tariff, nb.lags + 1)
colnames(tariff_lags) <- paste0("tariff_lag_", 0:nb.lags)

#variables
y = tail(armax_data$r_vol_h, nrow(tariff_lags))
x = tariff_lags</pre>
```

	Model 1	
ar1	0.3477***	
	(0.0068)	
ar2	0.0362***	
	(0.0073)	
ar3	0.0838***	
	(0.0097)	
ar4	0.1573^{***}	
	(0.0103)	
ar5	0.1047^{***}	
	(0.0092)	
intercept	0.0204***	
	(0.0019)	
$tariff_lag_0$	-0.0374^{**}	
	(0.0132)	
$tariff_lag_1$	-0.0258	
	(0.0138)	
$tariff_lag_2$	-0.0459^{***}	
	(0.0138)	
$tariff_lag_3$	-0.0229	
	(0.0132)	
AIC	-50658.8660	
AICc	-50658.8537	
BIC	-50571.0780	
Log Likelihood	25340.4330	
Num. obs.	21606	
$^{***}p < 0.001; \ ^{**}p < 0.01; \ ^{*}p < 0.05$		

Table 7: ARMAX Model Results

Trade Mention on Volatility by hour

```
#use selected number of lags
nb.lags <- 3
trade_lags <- embed(armax_data$total_trade, nb.lags + 1)
colnames(trade_lags) <- pasteO("trade_lag_", 0:nb.lags)

#variables
y = tail(armax_data$r_vol_h, nrow(trade_lags))
x = trade_lags</pre>
```

	Model 1
ar1	0.3483***
	(0.0068)
ar2	0.0349***
	(0.0072)
ar3	0.0829***
	(0.0097)
ar4	0.1549***
	(0.0102)
ar5	0.1059***
	(0.0091)
intercept	0.0204***
	(0.0019)
$trade_lag_0$	-0.0060
	(0.0066)
$trade_lag_1$	-0.0011
	(0.0068)
$trade_lag_2$	-0.0086
	(0.0068)
$trade_lag_3$	-0.0062
	(0.0066)
AIC	-50644.2169
AICc	-50644.2047
BIC	-50556.4289
Log Likelihood	25333.1085
Num. obs.	21606
*** n < 0.001: ** n < 0.0	$0.1 \cdot *n < 0.05$

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 8: ARMAX Model Results