Reinforcement Learning

Lecture 1 Introduction

Stergios Christodoulidis

MICS Laboratory CentraleSupélec Université Paris-Saclay

https://stergioc.github.io/

Short Introduction

- PhD degree in University of Bern
 - Medical Image Analysis
 - Diagnosis Support Systems
- Postdoctoral Researcher at GR
 - AI for Cancer
 - Treatment Decision Support
 - Understanding of biological
- Assistant Prof at CS MICS Lab
 - Machine Learning
 - Healthcare Applications

(d) Difference

The Team

Stergios Christodoulidis

βiomathematics Research Group, MICS Laboratory

Office: Bâtiment Bouygues sb.132

Email: stergios.christodoulidis@centralesupelec.fr

Othmane Laousy

βiomathematics Research Group, MICS Laboratory

Office: Bâtiment Bouygues, MICS Laboratory

Email: othmane.laousy@centralesupelec.fr

Admin

- Every Tuesday 8:30 to 11:30
- Amphi F3.05, Breguet
- Information, slides and announcements will be posted at Edunao:
 - https://centralesupelec.edunao.com/course/view.php?id=3753
- ➤ Office hours: we will be available right after the lecture or, send us an email and we will find a good time to meet

Learning Objectives of the Course

By the end of the course, you will be able to:

- Understand the major aspects of the Reinforcement Learning (RL) problem.
- Get an understanding of the trade-off between exploration and exploitation when dealing with RL problems.
- Learn the most important algorithms in order to be able to solve a particular RL problem.
- Get familiar with the available libraries.
- Evaluate several methods and select appropriate ones for solving the task at hand.

Reading Material

- · An Introduction to Reinforcement Learning,
 - Sutton and Barto, MIT Press, 1998
 - Available free online!
 - http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

- Algorithms for Reinforcement Learning,
 - Csaba Szepesvari, Morgan and Claypool, 2010
 - Available free online!
 - http://www.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf

Organization of the Course

- The course will be split in Lectures and Lab Sessions
- The assessment will be based on:
 - Submitted Lab Sessions Notebooks
 - An Individual Assignement
 - A Group Project of 2 people (max 3)

Assessment in Detail

- Assessment will be based on Lab Sessions deliverables (40%), group project (60%) and for submited lecture notes (extra 10%).
- Labs:
 - All labs sessions notebooks needs to be submitted (jupyter notebooks, 20%)
 - Individual Assignment (jupyter notebook, 20%)
- Group Project:
 - Project proposal document (single page document, 10%)
 - Final Submission (report, code, 50%)
- Lecture Notes:
 - Submited in any digital format (.md, .tex, .doc, +10%)

Schedule of the Lectures

- Part I: Elementary Reinforcement Learning
 - 01 Introduction to Reinforcement Learning & k-armed Bandits (3h)
 - 02 Markov Decision Processes (1h30)
 - 03 Dynamic Programming (1h30)
 - 04 Monte Carlo Methods (1h30)
 - 05 Temporal-Difference Learning (1h30)
- > (2 weeks break)
- Part II: Reinforcement Learning in Practice
 - 06 Value Function Approximation (1h30)
 - 07 Policy gradient methods (1h30)
 - 08 Deep Learning Applications and Recent Advances of RL (Guest Lecturer, 1h30)

Schedule of the Lab Sessions

- Part I: Elementary Reinforcement Learning:
 - Lab 01 Multi-armed bandits (greedy, ε-greedy, 1h30)
 - Lab 02 Gridwold problem (dynamic programming, 1h30)
 - Lab 03 Cart Pole (q-learning, 1h30)
 - Individual Assignment Flappy Bird Environment (your solution, 1h30)
- > (2 weeks break)
- Part II: Reinforcement Learning in Practice
 - Group Project time (2x1h30)
 - Lab 05 Deep Q-Learning (Guest Lecturer, 1h30)

Due Dates

- Part I Deliverables + Group Project Description: 22/02/2022 (Lecture 06 Start of Part II)
- Group Project: 08/03/2022 (Lecture 08 End of the Course)

Acknowledments

- The lecture slides are using parts of the structure and material by:
 - David Silver (Deep Mind, UCL)
 - Hado van Hasselt (Deep Mind)
 - https://deepmind.com/learning-resources

Today's Lecture

- Introduction to Reinforcement Learning
- The Reinforcement Learning problem
- Inside an RL agent
- Examples
- Exploration vs Exploitation
- Multi-armed bandits
- Greedy and ε-Greedy Agents
- Policy Gradients
- UCB Algorithms

- Science and framework of learning to make decisions from interaction
- This requires us to think about
 - ...time
 - ...(long-term) consequences of actions
 - ...actively gathering experience
 - ...predicting the future
 - ...dealing with uncertainty
- Huge potential scope
- A formalization of the AI problem

- People and animals learn by interacting with their environment.
- This type of learning can be defined as active learning and it based on sequencial interactions
 - Future interactions depend on earlier ones
- The learning is typically goal-oriented
- Instead of learning with examples, a reward is optimized.

RL characteristics

- There is no supervision, only a reward signal.
- Feedback might be delayed.
- Time matters (sequential, non i.i.d. data)
- Agent's actions affect the subsequent data it receives

Why Reinforecement Learning?

There are distinct reasons to learn:

- 1. Find solutions
 - A program that plays chess really well
 - A manufacturing robot with a specific purpose
- 2. Adapt online, deal with unforeseen circumstances
 - A chess program that can learn to adapt to you
 - A robot that can learn to navigate unknown terrains
- Reinforcement learning can provide algorithms for both cases
- Note that the second point is not (just) about generalization it is about continuing to learn
 efficiently online, during operation

Formalizing the Reinforcement Learning Problem

The RL Problem

The Agent and the Environment

- At each step *t* the agent:
 - Receives observation O_t (and reward R_t)
 - Executes action A_t
- The environment:
 - Receives action A_t
 - Emits observation O_{t+1} (and reward R_{t+1})

[Hado van Hasselt, 2021]

Reward

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t defines the goal
- The agent's goal is to maximize cumulative reward

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

- We call this the return.
- The Reinforcement Learning paradigm is based on the reward hypothesis

Hypothesis

Any goal can be formalized as the outcome of maximizing a cumulative reward

Examples of Rewards

- Fly a helicopter
 - ➤ Reward: air time (+), crashing (-) ...
- Manage an investment portfolio
 - ➤ Reward: gain (+), ...
- Control a heating system
 - ➤ Reward: efficiency(+), cost(-), ...
- Make a robot walk
 - ➤ Reward: distance covered(+), speed (+/-), out of battery(-) ...
- Play video games
 - ➤ Reward: score (+), win (+), ...

Values

• We call the expected cumulative reward, from a state s, the value

$$v(s) = \mathbb{E} [G_t | S_t = s]$$

= $\mathbb{E} [R_{t+1} + R_{t+2} + R_{t+3} + \dots | S_t = s]$

- The value depends on the actions the agent takes
- Goal is to maximize value, by picking suitable actions
- Rewards and values define utility of states and action (no supervised feedback)
- Returns and values can be defined recursively

$$G_t = R_{t+1} + G_{t+1}$$

 $v(s) = \mathbb{E} [R_{t+1} + v(S_{t+1}) | S_t = s]$

Action Values

• It is also possible to condition the value on actions:

$$q(s,a) = \mathbb{E}\left[G_t|S_t = s, A_t = a\right]$$

Maximizing Value by Taking Actions

- Goal: select actions to maximize total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - A financial investment (may take months to mature)
 - Refueling a helicopter (might prevent a crash in several hours)
 - Blocking opponent moves (might help winning chances many moves from now)
- A mapping from states to actions is called a policy

Core Consepts

The reinforcement learning formalism includes:

- Reward signal (specifies the goal)
- Environment (dynamics of the problem)
- Agent, containing:
 - Agent state
 - Policy
 - Value function estimate?
 - Environment Model?

Environment State

- The environment state S_t^e is the environment's internal state
- It is usually invisible to the agent
- Even if S_t^e is visible, it may contain lots of irrelevant information

[Hado van Hasselt, 2021]

Agent State

 The history is the sequence of observations, actions, rewards

$$H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t$$

- For instance, the sensorimotor stream of a robot
- This history is used to construct the agent state S_t^a
- State is the information used to determine what happens next
- Formally, state is a function of the history:

$$S_t^a = f(H_t)$$

[Hado van Hasselt, 2021]

Information or Markov State

• An information state (a.k.a. Markov state) contains all useful information from the history.

Definition

A state S_t is Markov if and only if:

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1 ... S_t]$$

- "The future is independent of the past given the present"
- Doesn't mean it contains everything, just that adding more history doesn't help
- Once the state is known, the history may be thrown away
- The environment state S_t is Markov
- The history H_t is Markov

Fully Observable Environments

Full observability

- Suppose the agent sees the full environment state
 - Agent state = environment state = information state
 - Formally, this is a Markov decision process (MDP)

$$S_t^a = S_t^e = O_t$$

[Hado van Hasselt, 2021]

Partially Observable Environments

- Partial observability means that agent indirectly observes environment:
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards
- Now agent state ≠ environment state
- Formally this is a partially observable Markov decision process (POMDP)
- Agent must construct its own state representation S_t^a , e.g.
 - Complete history: $S_t^a = H_t$
 - Beliefs of environment state: $S_t^a = (\mathbb{P}[S_t^e = s^1], ..., \mathbb{P}[S_t^e = s^n])$
 - Recurrent neural network: $S_t^a = \sigma(S_{t-1}^a W_s + O_t W_o)$

Major Components of an RL Agent

Major Components of an RL Agent

- An RL agent may include one or more of these components:
 - Policy: agent's behavior function
 - Value function: how good is each state and/or action
 - Model: agent's representation of the environment

Policy

- A policy is the agent's behavior
- It is a map from state to action, e.g.
 - Deterministic policy: $a = \pi(s)$
 - Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a \mid S_t = s]$

Value Function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore, to select between actions, e.g.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s]$$

Model

- A model predicts what the environment will do next
- \mathcal{P} predicts the next state
- \mathcal{R} predicts the next (immediate) reward, e.g.

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

$$\mathcal{R}_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$$

Maze Example

Maze Example (1/4)

• Rewards: -1 per time-step

• Actions: N, E, S, W

• States: Agent's location

Maze Example (2/4)

• Arrows represent policy $\pi(s)$ for each state s

Maze Example (3/4)

• Numbers represent value $v_{\pi}(s)$ of each state s

Maze Example (4/4)

- Agent may have an internal model of the environment
- Dynamics: how actions change the state
- Rewards: how much reward from each state
- The model may be imperfect
- Grid layout represents transition model $\mathcal{P}^a_{ss'}$
- Numbers represent immediate reward R_s^a from each state s (same for all a)

Agent Categories (1/2)

- Value Based
 - No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - No Value Function
- Actor Critic
 - Policy
 - Value Function

Agent Categories (2/2)

- Model Free
 - Policy and/or Value Function
 - No Model
- Model Based
 - Optionally Policy and/or Value Function
 - Model

Subproblems of the RL problem

Prediction and Control

- Prediction: evaluate the future (for a given policy)
- Control: optimize the future (find the best policy)
- These can be strongly related.
- If we could predict everything, do we need anything else?

Learning Agent Components

- All components are functions
 - Policies, $\pi: \mathcal{S} \to \mathcal{A}$ (or to probabilities over \mathcal{A})
 - Value functions, v: $S \rightarrow R$
 - Models, m: $S \to S$ and/or r: $S \to R$
 - State update, u: $S \times O \rightarrow S$
- E.g., we can use neural networks, and machine learning techniques to learn them.
- Deep reinforcement learning is a rich and active research field

Summary

- Reinforcement learning is the science of learning to make decisions
- Agents can learn a policy, value function and/or a model
- The general problem involves taking into account time and consequences
- Decisions affect the reward, the agent state, and environment state
- Learning is active: decisions impact data

Exploration vs Exploitation

Exploration vs. Exploitation Dilemma

- Online decision-making involves a fundamental choice:
 - Exploitation Make the best decision given current information
 - Exploration Gather more information
- The best long-term strategy may involve short-term sacrifices
- Gather enough information to make the best overall decisions

Examples

- Restaurant Selection
 - Exploitation Go to your favorite restaurant
 - Exploration Try a new restaurant
- Online Banner Advertisements
 - Exploitation Show the most successful advertisement
 - Exploration Show a different advertisement
- Oil Drilling
 - Exploitation Drill at the best-known location
 - Exploration Drill at a new location
- Game Playing
 - Exploitation Play the move you believe is best
 - Exploration Play an experimental move

Principles

- Naive Exploration
 - Add noise to greedy policy (e.g., ε-greedy)
- Optimistic Initialization
 - Assume the best until proven otherwise
- Optimism in the Face of Uncertainty
 - Prefer actions with uncertain values
- Probability Matching
 - Select actions according to probability they are best Information
- State Search
 - Lookahead search incorporating value of information

Principles

- Naive Exploration
 - Add noise to greedy policy (e.g., ε-greedy)
- Optimistic Initialization
 - Assume the best until proven otherwise
- Optimism in the Face of Uncertainty
 - Prefer actions with uncertain values
- Probability Matching
 - Select actions according to probability they are best Information
- State Search
 - Lookahead search incorporating value of information

Multi-Armed Bandits

- A multi-armed bandit is a set of distributions < A, R >
- A is a (known) set of actions (or "arms")
- $\mathcal{R}^a(r) = \mathbb{P}[r|a]$ is an unknown probability distribution over rewards
- At each step t the agent selects an action $a_t \in \mathcal{A}$
- The environment generates a reward $r_t \sim \mathcal{R}^{a_t}$
- The goal is to maximize cumulative reward $\sum_{\tau=1}^{t} r_{\tau}$

10-armed Testbed

Values and Regret

The action-value is the expected reward for action a,

$$Q(a) = \mathbb{E}[\mathcal{R} \mid A = a]$$

• The optimal value V* is

$$V^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a)$$

The regret is the opportunity loss for one step

$$I_t = \mathbb{E}[V^* - Q(a_t)]$$

The regret for the optimal action is zero

Regret

• We want to minimize total regret:

$$L_t = \mathbb{E}\left[\sum_{\tau=1}^t V^* - Q(a_\tau)\right]$$

- Maximize cumulative reward \equiv minimize total regret
- The summation spans over the full 'lifetime of learning'

Algorithms

- We will discuss several algorithms:
 - Greedy, ε-Greedy
 - UCB
 - Policy Gradient

Greedy Algorithms

Greedy Algorithm

- One of the simplest algorithm
- Select action with highest value:

$$A_t = \underset{a \in \mathcal{A}}{argmax} Q_t(a)$$

• Greedy can lock onto a suboptimal action forever

ε-Greedy Algorithm

- The ε -greedy algorithm:
 - With probability 1ε select greedy action: $A_t = \underset{a \in \mathcal{A}}{argmax} Q_t(a)$
 - With probability ϵ select a random action
- ε-greedy continues to explore

Greedy vs ε-Greedy

Optimistic Initialization

- Simple and practical idea: initialize Q(a) to high value
- Update action value at every time step
- Value decreases over time
- Encourages systematic exploration early on
- But can still lock onto suboptimal action

Optimistic vs Realistic Initialization

Upper Confidence Bound

Upper Confidence Bound (UCB)

- The ε -Greedy algorithm performs exploration without any preference (random).
- Why not explore in a more explicit way?
- UCB selects the actions with the most uncertain value function estimates!

$$A_t \doteq \operatorname*{argmax}_{a} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

- $N_t(a)$ denotes the times action a was selected prior to time t
- Eventually, the square-root term is a measure of uncertainty

UCB vs ε-Greedy

Policy Gradient

Policy Gradient Methods

- So far, we have considered methods that estimate action values to select actions.
- Then we select the actions with the highest action-value.
- Instead, can learn policies $\pi(a)$ directly?
- We can consider learning a numerical preference for each action:

$$H_t(a) \in \mathbb{R}$$

Gradient Bandits

• Considering a set of action preferences $H_t(a)$ we can define a policy using the softmax distribution

$$\pi_t(a) = \frac{e^{H_t(a)}}{\sum_{b=1}^k e^{H_t(b)}}$$

• In this configuration, the larger the preference the more often this action is selected.

Stohastic Gradient Ascent

- There is a natural learning algorithm for soft-max actions preferences.
- This is the stochastic gradient ascent.
- On each step after selecting an action A_t and receiving a reward R_t the action preferences can be updated using:

$$H_{t+1}(A_t) = H_t(A_t) + \gamma (R_t - \bar{R}_t) (1 - \pi_t(A_t))$$

$$H_{t+1}(a) = H_t(a) - \gamma (R_t - \bar{R}_t) \pi_t(a), \qquad for all \ a \neq A_t$$

• with \bar{R}_t being the average of the rewards up to but not including time t (baseline)

Gradient Bandits with and without Baseline

Conclusion

- Have covered several principles for exploration/exploitation
- Each principle was developed in bandit setting
- Same principles can be extended to the MDP setting