HW6

Due Thursday 6/2 at 3:00PM on Gradescope

Part 2 (Graded):

Q1. Problem 11.29

The transistor in the figure below has $KP = 50\mu A/V^2$, $W = 600\mu m$, $L = 20\mu m$, and $V_{t0} = 1V$. Determine the values of R_1 and R_s .

Q2. Problem 11.53

Find V_{DSQ} and I_{DQ} for the FET shown in the figure below, given $V_{t0} = 3V$ and $K = 0.5mA/V^2$. Find the value of g_m at the operating point. Draw the small-signal equivalent circuit, assuming that $r_d = \infty$ (r_d is the resistance in the small signal model due to channel length modulation, not the same as the R_D marked in the circuit). Derive an expression for the resistance R_0 in terms of R_D and g_m . Evaluate the expression for the values given.

Assume the operation point is saturation and we know $V_{GS} = V_{DS}$

$$I_D = \frac{20 - V_{GS}}{R_D} = K(V_{GS} - V_t)^2$$

$$\frac{20 - V_{GS}}{2.2K} = 0.5m(V_{GS} - 3)^2$$

$$20 - V_{GS} = 1.1(V_{GS}^2 - 6V_{GS} + 9)$$

$$1.1V_{GS}^2 - 5.6V_{GS} - 10.1 = 0$$

$$V_{GS} = 6.5V$$

$$g_m = 2K(V_{GS} - V_t) = 1m(6.5 - 3) = 3.5m$$

Draw the small signal circuit,

$$R_{0} = \frac{V_{x}}{I_{x}} = \frac{V_{x}}{g_{m}V_{GS} + \frac{V_{x}}{R_{D}}}$$
Since $V_{x} = V_{GS}$, $R_{0} = \frac{1}{g_{m} + \frac{1}{R_{D}}} = 252.87\Omega$

Q3. Problem 11.35

Both transistors shown in the figure below have $KP = 100\mu A/V^2$ and $V_{t0} = 0.5V$. Determine the value of R needed so that $i_{D1} = 0.2mA$. For what range of V_x is the second transistor operating in the saturation region? What is the resulting value of i_{D2} ? Provided that V_x is large enough so that the second transistor operates in saturation, to what ideal circuit element is the transistor equivalent?

$$I_D = K(V_{GS} - V_t)^2 = \frac{100u}{2} * 1 * (V_{GS} - 0.5)^2 = 0.2m$$
 $V_{GS} = 2.5V$
Hence, $R = \frac{5 - V_{GS}}{I_D} = 12.5K\Omega$

To let the second transistor operate in the saturation region,

$$V_{DS} = V_X > V_{GS} - V_t = 2V$$

$$i_{D2} = K(V_{GS} - V_t)^2 = 50u * (2.5 - 0.5)^2 = 0.2mA$$

The second transistor is an ideal current source of 0.2mA.

Q4. Analyze the CMOS circuit below (triode region equivalent) and fill out the "truth table" for it.

A	В	C	\mathbf{F}
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0