

# with DQN

*A project made by:* Andrés Bermeo Marinelli - Davide Basso

### ► TABLE OF CONTENTS •

#### The Problem

Make a Reinforcement Learning
Agent learn to play Space Invaders

#### The Methodology

Convert Problem to MDP
Preprocessing and Deep Q-Learning

#### The Alternatives

Prioritized ER, Dueling DQN
Policy Gradient

#### The Game

Shoot the Aliens with the spaceship's laser while avoiding their shots

#### The Improvements

Double Deep Q-Learning Parameters Fine-Tuning



#### The Problem

- Try to solve one of the most popular Atari game, Space Invaders, by using Reinforcement Learning algorithm Deep Q-Learning (DQN).
- Develop a neural network to approximate the Action-Value function Q\*(s,a).
- Overcome issues as:
  - High correlation between data samples.
  - Non-fixed data distribution.
- Make the Agent efficiently and effectively learn.

# ▶ The Game - Space invaders •

- Player piloting a laser cannon to battle columns of descending aliens while using shields to block alien fire.
- The speed of the alien approach increases as the game progresses.
- A bonus alien spaceship appears from time to time, which offers the player an opportunity to score additional points by blowing it up.





# The Python Setting

- First, download **Space Invader's Rom**.
  - This is perhaps the most complicated step as some ROMS don't work while others do.
  - We found that the version from 1983 (specifically) with a .a26 extension solved all issues.
- Set the environment using OpenAl's Gym library.
- Pick one among the possible environment settings:
  - We opted for 'SpaceInvadersNoFrameskip-v4', i.e. we get a fixed frameskip of 1 and the probability of choosing the previous action as next action is set to 0.

## The MDP

- - State: an RGB image of the screen of shape (210, 160, 3).
  - 6 possible actions to take:
    - o O Do nothing
    - 1 Fire
    - o 2 Right
    - 3 Left
    - 4 Right Fire
    - o 5 Left Fire

# The MDP

- Rewards:
  - Integer value that depends on whether the agent survived or shot down aliens.
  - End of the episode:
    - Occurs when the player gets hit by one of the Aliens' lasers 3 times.

# Preprocessing Steps

- Original State space is too complex:
  - Convert the image to grayscale (colors don't bring any useful informations).
  - Scoreboard at the top and green portion at the bottom of the frame are useless. We can crop them.
- Resize the image to (84x84).
- Rewards can be clipped to both save space and generalize to different games:
  - **1, 0, -1** values.

# Preprocessing Steps

- We skip every 3 frames and repeat the action on the skipped frames.
- A maximum is taken over two consecutive frames:
  - Avoid possible blurs or ghosting issues.
- Single frames don't bring informations on motion of the game:
  - A state is then composed of 4 stacked frames.
  - NB: These frames are not consecutive and are taken every 3 steps, so in a single stack
    we collect informations of 12 frames.

# ► Deep Q-Learning •

- The DQN learns an approximation of the Q-table through neural nets:
  - Mapping between the states and actions that an agent will take.
- We would like to select an action that would maximize our future returns.
  - Using **Epsilon Greedy** and **Greedy** strategies.

## ▶ Deep Q-Learning - Problems **-**

- Data distribution changes as the algorithm learns new behaviours:
  - Neural networks assume fixed underlying distribution.
  - Hard Convergence
- Data is highly correlated:
  - Most Deep Learning algorithms assume independent data samples.
  - Sub-optimal solutions.

## ▶ Deep Q-Learning - Solutions **→**

- To solve the first issue we can use two separate Q-value estimators:
  - Policy network: estimate the Q-values for the actions.
  - O Target network: used to obtain the target Q-value estimation.
- Hard update for the Target Network:
  - Copy Policy Network weights every N steps
     (N = 10k) in order to have stable rewards.





## ▶ Deep Q-Learning - Solutions **-**

- To solve the second issue instead we use the technique called Experience
   Replay:
  - Store a transition (state, action, reward, next state) in a queue of fixed size.
  - When updating the Q-function, sample a random batch from queue and apply GD.
  - PRO: Extract as much informations as possible out of an environment.
  - CONS: Requires large RAM.

# ▶ Deep Q-Learning - Tweaks ◀

- Soft update for the Target Network:
  - Instead of copying Policy Network weights every N steps, we do it more frequently (every time the agent learns) and in a "smoother" way (tau=0.001).



$$\theta^- = \theta \times \tau + \theta^- \times (1 - \tau)$$



# 🕨 Double Deep 🛛-Learning 🖼

- Vanilla DQN suffers from overestimating Q-values.
  - $\circ$  This is due to the term  $\max_{a}(Q(s,a))$  in the Q-function.
- Solution: remove the max operator from the target estimate
  - Select the optimal action from the policy DQN network.
  - Get the target estimate for this optimal action from the target DQN.

$$Q(s, a; \theta) = r + \gamma Q(s', argmax_{a'}Q(s', a'; \theta); \theta')$$

## Further tweaks

- We **tried different hyperaparameters** configurations.
- We took inspiration from:
  - OpenA1
  - DeepMind
  - Posts
  - Papers

# Possible Improvements

- Prioritized Experience Replay.
- Dueling Deep Q-Learning.
- Shift to **Policy Gradient**:
  - Try with state of the art Actor-Critic agents like PPO.