└ Introduction

In an analysis, we first explore the data. Hereby we are also interested in estimating the survival function S from right censored data.

We consider again the previous example.

Figure 13.1 Diagram showing patients entering a study at different times and the observation of known (\bullet) and censored (\circ) survival times.

We extract the following data from the graph.

Patient	Random. time (months)	Last obs. (months)	Died?	lifetime (months)	status (1 = yes)
1	0.0	11.8	yes	11.8	1
2	0.0	12.5	no	12.5	0
3	0.4	18.0	no	17.6	0
4	1.2	4.4	no	3.2	0
5	1.2	6.6	yes	5.4	1
6	3.0	18.0	no	15.0	0
7	3.4	4.9	yes	1.5	1
8	4.7	18.0	no	13.3	0
9	5.0	18.0	no	13.0	0
10	5.8	10.1	yes	4.3	1

Example: We want to know the probability that a patient has died at 6 months?

Estimation of the survival function

Introduction

└ Introduction

If we ignore censoring, we use the empirical distribution function and estimate

$$\hat{p}(6) = \frac{1}{10} \sum_{i=1}^{10} I(\text{lifetime}_i \le 6) = \frac{4}{10}.$$

However, one patient (no. 4) has survived 3.2 months (censored observation).

How to deal with this patient?

- Assume no. 4 died before 6 months \rightarrow overestimation $(\frac{4}{10})$
- Assume no. 4 survived 6 months \rightarrow underestimation $(\frac{3}{10})$
- Ignore no. $4 \to loss$ of information $(\frac{3}{9})$

Hence, censoring is causing problems!

To derive an estimator for the survival distribution of the lifetime, we introduce the following notation:

- The j-th time interval is $[a_{j-1}, a_j[, j = 1, \dots, K+1. \ a_0 = 0]$ and $a_{K+1} = +\infty$.
- d_j is # failures in the j-th interval.
- c_j is # censored observations in the j-th interval.
- n_j is # individuals entering the j-th interval.

We decompose the survival function $S(a_j)$ as

$$S(a_j) = P(T > a_j | T > a_{j-1}) S(a_{j-1})$$

= $P(T > a_j | T > a_{j-1}) \dots P(T > a_1 | T > a_0) S(a_0)$

For each interval $[a_{j-1}, a_j]$, we estimate the conditional survival probability by

$$P(T > a_j | T > a_{j-1}) = P(\text{Survive interval } [a_{j-1}, a_j [| T > a_{j-1})]$$

= $1 - \frac{\text{Number failures}_j}{\text{Number at risk}_j}$.

Some questions:

- How do we define the number at risk n'_j in the j-th interval?
- ② What should we do with censored people?

Answer:

We assume that the censoring times are uniformly distributed over the interval, and hence occur on average half-way through the interval. For each interval, we define the number at risk n_j' as

$$n_j' = n_j - \frac{c_j}{2}.$$

We call the obtained estimator, the Actuarial estimator.

Life tables

Until now, we assumed that the individual lifetimes were observed. Sometimes they are grouped in fixed time intervals.

Some examples:

- Cohort life table: presents the actual mortality experience from birth to death for a group of people born at about the same time.
- Current life table: From a cross-sectional study, mostly census information, the number of individuals alive at each age is recorded, together with statistics on number of deaths in each age group.
- Clinical life table: applies to grouped survival data from studies in patients with a specific disease.

An example: Time to weaning of breast-fed newborns

- In the National Labor Survey of Youth (NLSY) data set, youths between age 14 and 21 were yearly interviewed.
- Females were asked about pregnancies and breast-feeding.
- Data on 927 breast-fed first-born children.
- Duration of breast-feeding was recorded in weeks. An indicator whether breast-feeding was completed.

Weeks	n_{j}	c_{j}	d_{j}
[0, 2[927	2	77
[2, 3[848	3	71
[3, 5[774	6	119
[5, 7[649	9	75
[7, 11[565	7	109
[11, 17[449	5	148
[17, 25[296	3	107
[25, 37[186	0	74
[37, 53[112	0	85
$[53,\infty[$	27	0	27
•			

Life tables

Using SAS software

```
data wean:
input Weeks Status Freq;
cards;
1 1 77
2.5 1 71
4 1 119
6 1 75
8 1 109
15 1 148
20 1 107
30 1 74
40 1 85
60 1 27
1 0 2
2.5 0 3
4 0 6
6 0 9
8 0 7
15 0 5
20 0 3
30 0 0
40 0 0
```

60 0 0 ;

Statistical Analysis of Reliability and Survival data

Life tables

proc lifetest data=wean method=lt intervals=(0 2 3 5 7 11 17 25 37 53);
time Weeks*Status(0);
freq Freq;
run;

The LIFETEST Procedure

Life Table Survival Estimates

Interva [Lower,	ul Upper)	Number Failed	Number Censored	Effective Sample Size	Conditional Probability of Failure	Conditional Probability Standard Error	Survival	Failure
0	2	77	2	926.0	0.0832	0.00907	1.0000	0
2	3	71	3	846.5	0.0839	0.00953	0.9168	0.0832
3	5	119	6	771.0	0.1543	0.0130	0.8399	0.1601
5	7	75	9	644.5	0.1164	0.0126	0.7103	0.2897
7	11	109	7	561.5	0.1941	0.0167	0.6276	0.3724
11	17	148	5	446.5	0.3315	0.0223	0.5058	0.4942
17	25	107	3	294.5	0.3633	0.0280	0.3381	0.6619
25	37	74	0	186.0	0.3978	0.0359	0.2153	0.7847
37	53	85	0	112.0	0.7589	0.0404	0.1296	0.8704
53		27	0	27.0	1.0000	0	0.0313	0.9687

Estimation of the survival function

Life tables

Evaluated at the Midpoint of the Interval

Interval	Upper)	Survival Standard Error	Median Residual Lifetime	Median Standard Error	PDF	PDF Standard Error	Hazard	Hazard Standard Error
0	2	0	11.2078	0.5880	0.0416	0.00454	0.04338	0.004939
2	3	0.00907	10.6957	0.5639	0.0769	0.00877	0.087546	0.01038
3	5	0.0121	11.0717	0.5413	0.0648	0.00554	0.083626	0.007639
5	7	0.0149	11.3915	0.5006	0.0413	0.00457	0.061779	0.00712
7	11	0.0160	11.5839	0.8624	0.0305	0.00273	0.053748	0.005118
11	17	0.0166	11.5508	0.7793	0.0279	0.00209	0.066219	0.005335
17	25	0.0158	14.4748	1.3803	0.0154	0.00139	0.055498	0.005231
25	37	0.0138	15.5765	1.2836	0.00714	0.000790	0.041387	0.00466
37	53	0.0114	10.5412	0.9960	0.00615	0.000630	0.076439	0.00656
53		0.00591						

Summary of the Number of Censored and Uncensored Values

Percent

1 01 001			
Total	Failed	Censored	Censored
927	892	35	3.78

NOTE: There were 3 observations with missing values, negative time values or frequency values less than 1.

└Kaplan-Meier estimator

The main quantity of interest is the probability that an event will not occur by time t:

$$S(t) = P(T > t).$$

Kaplan and Meier (1958) develop an estimator for the survival function

$$\hat{S}(t) = \prod_{t_i \le t} \left(1 - \frac{d_i}{n_i} \right)^{\delta_i} = \prod_{t_i \le t} \left(\frac{n_i - d_i}{n_i} \right)^{\delta_i}.$$

where

- d_i = number of patients died at t_i
- n_i = number of patients at risk before t_i

Kaplan-Meier estimator

This estimator is called Kaplan-Meier or Product-limit estimator.

Let $t_1 < t_2 < \ldots < t_k$ be the ordered lifetimes.

The main idea: conditional probability

To survive until time t_{j+1} , you need to first survive until time t_j units, and then until t_{j+1} .

Symbolically:

$$S(t_{j+1}) = P(T > t_{j+1}|T > t_j)S(t_j)$$

= $P(\text{Survive interval }]t_j, t_{j+1}]|T > t_j)S(t_j).$

There are three possibilities for each interval:

- There is a censoring \rightarrow We assume that they survive until the end of the interval. The conditional probability is 1.
- There is a death, but no censoring \rightarrow conditional probability of surviving the interval is $1 \frac{d}{r}$ where d is the number of deaths within the interval and r the number at risk at the beginning of the interval.
- There are tied deaths and censoring \rightarrow We assume that censoring occurs at the end of the interval such that the conditional probability is $1 \frac{d}{r}$.

		Number	Number	
Lifetime	Status	Events	at risk	$\hat{S}(t)$
(Months)		(d_i)	(n_i)	
0				1
1.5	1	1	10	S(0)[1-1/10] = 0.9000
3.2	0	0	9	$S(1.5) \times 1 = 0.9000$
4.3	1	1	8	S(3.2)[1-1/8] = 0.7875
5.4	1	1	7	S(4.3) [1 - 1/7] = 0.6750
11.8	1	1	6	S(5.4)[1-1/6] = 0.5625
12.5	0	0	5	$S(11.8) \times 1 = 0.5625$
13.0	0	0	4	$S(12.5) \times 1 = 0.5625$
13.3	0	0	3	$S(13.0) \times 1 = 0.5625$
15.0	0	0	2	$S(13.3) \times 1 = 0.5625$
17.6	0	0	1	$S(15.0) \times 1 = 0.5625$

Estimation of the survival function

[└]Kaplan-Meier estimator

Returning to the introduction, we note that the probability of surviving more than 6 months is

$$\hat{S}(6) = 67.5\%.$$

Comparing with some "naive" estimators.

- Assume patient with t = 3.2 died before 6 months $\rightarrow 60\%$.
- Assume patient with t = 3.2 survived 6 months $\rightarrow 70\%$.
- Ignore patient with $t = 3.2 \rightarrow 66.6\%$

Some properties for the KM-estimator

• The KM-estimator is a step-function which only jumps at uncensored observations. The different jumps are random, dependent on censored observations.

$$W_j = \hat{S}(t_{j-1}) - \hat{S}(t_j) = \frac{d_j}{n_j} \prod_{t_i \le t_{j-1}} \left(1 - \frac{d_i}{n_i} \right)^{\delta_i}.$$

- When the largest observation t_k is censored, the KM-estimator does not converge to zero at infinity and is often taken as undefined.
- The KM-estimator is the nonparametric MLE of

$$L = \prod_{j=0}^{k} \left\{ \left[S(t_{j}^{-}) - S(t_{j}) \right]^{d_{j}} \prod_{l=1}^{m_{j}} S(t_{jl}) \right\}.$$

└Kaplan-Meier estimator

If there is no censoring, the KM-estimator reduces to the empirical survival function.

If
$$t_1 < t_2 < \ldots < t_k$$
 then $n_i = n - \sum_{j=1}^{i-1} d_j$.

Hence

$$\hat{S}(t) = \prod_{t_i \le t} \left(1 - \frac{d_i}{n_i} \right)$$

$$= \left(\frac{n - d_1}{n} \right) \left(\frac{n - d_1 - d_2}{n - d_1} \right) \dots \left(\frac{n - d_1 - \dots - d_i}{n - d_1 - \dots - d_{i-1}} \right)$$

$$= \frac{n - \sum_{j=1}^{i} d_j}{n} = \frac{\text{\# observations } > t}{n}.$$

Using R software

```
> library(survival)
> Time<-c(1.5,3.2,4.3,5.4,11.8,12.5,13.0,13.3,15.0,17.6)
> Status<-c(1.0.1.1.1.0.0.0.0.0)
> Surv(Time,Status)
[1] 1.5 3.2+ 4.3 5.4 11.8 12.5+ 13.0+ 13.3+ 15.0+ 17.6+
> survfit(Surv(Time,Status)~1)
Call: survfit(formula = Surv(Time, Status) ~ 1)
records
         n.max n.start events median 0.95LCL 0.95UCL
  10.0
        10.0 10.0
                          4.0
                                   NA
                                          5.4
                                                  NA
> summary(survfit(Surv(Time,Status)~1))
Call: survfit(formula = Surv(Time, Status) ~ 1)
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 1.5
         10
                  1 0.900 0.0949
                                          0.732
                  1 0.787 0.1340
 4.3
                                          0.564
 5.4
                  1 0.675 0.1551
                                          0.430
11.8
                  1 0.562 0.1651
                                          0.316
> plot(survfit(Surv(Time,Status)~1,conf.tvpe="none"),xlab="Time",vlab="Survival")
```

Estimation of the survival function

Kaplan-Meier estimator

Using SAS software

```
data clin;
input Time Status;
cards;
1.5 1
3.2 0
17.6 0
run;
proc lifetest data=clin;
time Time*Status(0);
run;
```

Statistical Analysis of Reliability and Survival data

The LIFETEST Procedure

Product-Limit Survival Estimates

Time	Survival	Failure	Survival Standard Error	Number Failed	Number Left
0.0000	1.0000	0	0	0	10
1.5000	0.9000	0.1000	0.0949	1	9
3.2000*				1	8
4.3000	0.7875	0.2125	0.1340	2	7
5.4000	0.6750	0.3250	0.1551	3	6
11.8000	0.5625	0.4375	0.1651	4	5
12.5000*				4	4
13.0000*				4	3
13.3000*				4	2
15.0000*				4	1
17.6000*				4	0

NOTE: The marked survival times are censored observations.

Estimation of the survival function

Kaplan-Meier estimator

Statistical Analysis of Reliability and Survival data

Summary Statistics for Time Variable Time

Quartile Estimates

	Point	95% Confide	nce Interval
Percent	Estimate	[Lower	Upper)
75		11.8000	
50		5.4000	
25	5.4000	1.5000	

Mean Standard Error

9.2063 1.4535

NOTE: The mean survival time and its standard error were underestimated because the largest observation was censored and the estimation was restricted to the largest event time.

Summary of the Number of Censored and Uncensored Values

Total	Failed	Censored	Percent Censored
10	4	6	60.00

Estimation of the survival function

[└]Kaplan-Meier estimator

An alternative estimator for the Kaplan-Meier estimator is the Nelson-Aalen estimator.

Hereby we used the link between the survival function and the cumulative hazard function,

$$S(t) = \exp(-\Lambda(t)).$$

Estimating first the cumulative hazard function, we then get another estimator for the survival function,

$$\hat{\Lambda}(t) = \sum_{t_i \le t} \frac{d_i}{n_i} \Rightarrow \hat{S}(t) = \exp\left(-\sum_{t_i \le t} \frac{d_i}{n_i}\right).$$

Statistical Analysis of Reliability and Survival data

Estimation of the survival function

└Kaplan-Meier estimator

proc lifetest data=clin nelson method=breslow; time Time*Status(0); run:

The LIFETEST Procedure

Survival Function and Cumulative Hazard Rate

		Breslow	Nelson-Aalen						
			Survival		Cum Haz				
			Standard	Cumulative	Standard	Number	Number		
Time	Survival	Failure	Error	Hazard	Error	Failed	Left		
0.0000	1.0000	0	0	0		0	10		
1.5000	0.9048	0.0952	0.0954	0.1000	0.1000	1	9		
3.2000*						1	8		
4.3000	0.7985	0.2015	0.1359	0.2250	0.1601	2	7		
5.4000	0.6922	0.3078	0.1590	0.3679	0.2146	3	6		
11.8000	0.5859	0.4141	0.1719	0.5345	0.2717	4	5		
12.5000*						4	4		
13.0000*						4	3		
13.3000*						4	2		
15.0000*						4	1		
17.6000*	0.5859	0.4141				4	0		

We note that

$$\hat{S}(5.4) = \exp(-0.3679) = 0.6922.$$

Using R software

```
> library(survival)
> Time<-c(1.5,3.2,4.3,5.4,11.8,12.5,13.0,13.3,15.0,17.6)
> Status<-c(1.0.1.1.1.0.0.0.0.0)
> Surv(Time,Status)
[1] 1.5 3.2+ 4.3 5.4 11.8 12.5+ 13.0+ 13.3+ 15.0+ 17.6+
> survfit(Surv(Time,Status)~1)
Call: survfit(formula = Surv(Time, Status) ~ 1)
records
         n.max n.start events median 0.95LCL 0.95UCL
10.0
       10.0
               10.0
                        4.0
                                 NΑ
                                        5.4
                                                NΑ
> summary(survfit(Surv(Time,Status)~1,type="fleming-harrington"))
Call: survfit(formula = Surv(Time, Status) ~ 1, type = "fleming-harrington")
time n.risk n.event survival std.err lower 95% CI upper 95% CI
                                          0.736
1.5
        10
                      0.905 0.0954
4.3
         8
                 1 0.799 0.1359
                                          0.572
5.4
                 1 0.692 0.1590
                                          0.441
11.8
                 1 0.586 0.1719
                                          0.330
```

Estimation of the survival function

[└]Kaplan-Meier estimator

Next to an estimate $\hat{S}(t)$ for the survival function S(t) at t, we want to have an idea about the variability of this estimate.

This is given by Greenwood's formula

$$\widehat{\operatorname{Var}}(\hat{S}(t)) = \hat{S}(t)^2 \sum_{t_j \le t} \frac{d_j}{n_j(n_j - d_j)}$$

where t_1, \ldots, t_k are the uncensored observed lifetimes.

[└]Greenwood's formula

└Greenwood's formula

Looking at the survival function, we rewrite as

$$\hat{S}(t) = \prod_{t_j \le t} \left(1 - \hat{\lambda}_j \right)$$

where $\hat{\lambda}_j = \frac{d_j}{n_j}$.

The number of events d_j has a binomial distribution, which is approximated by a normal distribution. Hence,

$$\widehat{\operatorname{Var}}(\hat{\lambda}_j) = \frac{\hat{\lambda}_j \left(1 - \hat{\lambda}_j\right)}{n_j}.$$

In large samples, the $\hat{\lambda}_j$ are independent.

Greenwood's formula

Instead of $\hat{S}(t)$, we look at

$$\log \left[\hat{S}(t) \right] = \sum_{t_i < t} \log \left(1 - \hat{\lambda}_j \right).$$

Using the delta-method, we get that

$$\widehat{\operatorname{Var}}\left[\log\left(\widehat{S}(t)\right)\right] = \sum_{t_j \leq t} \widehat{\operatorname{Var}}\left[\log\left(1 - \widehat{\lambda}_j\right)\right] \\
= \sum_{t_j \leq t} \left(\frac{1}{1 - \widehat{\lambda}_j}\right)^2 \frac{\widehat{\lambda}_j(1 - \widehat{\lambda}_j)}{n_j} \\
= \sum_{t_j \leq t} \frac{d_j}{n_j(n_j - d_j)}.$$

└Greenwood's formula

Since $\hat{S}(t) = \exp\left[\log(\hat{S}(t))\right]$, we get the result from the delta-method,

$$\widehat{\operatorname{Var}}(\widehat{S}(t)) = \widehat{S}(t)^2 \sum_{t_j \le t} \frac{d_j}{n_j(n_j - d_j)}.$$

Delta-method:

If Y is normally distributed with mean μ and variance σ^2 , then g(Y) is approximately normal with mean $g(\mu)$ and variance $g'(\mu)^2\sigma^2$.

With no censoring, $\hat{S}(t)$ is the empirical survival function and

$$\hat{S}(t) \approx N\left(S(t), \frac{S(t)(1 - S(t))}{n}\right).$$

A pointwise $(1 - \alpha)\%$ confidence interval for S(t) is given by

$$\hat{S}(t) \pm z_{1-\frac{\alpha}{2}}$$
 s.e. $(\hat{S}(t))$.

With censoring,

- $\hat{S}(t)$ still approximately normal.
- the mean of $\hat{S}(t)$ is still the true S(t).
- \bullet variance \to Greenwood's formula.

However, the bounds of the C.I can be < 0 or > 1!

Hence, better C.I's by using transformations of S(t).

• Log-function: $\log[\hat{S}(t)] \pm z_{1-\frac{\alpha}{2}}$ s.e. $\log[\hat{S}(t)]$

$$\Rightarrow \left[\hat{S}(t) \exp \left(z_{1-\frac{\alpha}{2}} \hat{\tau}(t) \right), \hat{S}(t) \exp \left(-z_{1-\frac{\alpha}{2}} \hat{\tau}(t) \right) \right]$$

with
$$\hat{\tau}^2(t) = \frac{\widehat{\operatorname{Var}}(\hat{S}(t))}{\hat{S}(t)^2}$$
 (default: R).

• Log-log-function: $\log(-\log[\hat{S}(t)]) \pm z_{1-\frac{\alpha}{2}}$ s.e. $\log(-\log[\hat{S}(t)])$

$$\Rightarrow \left[\hat{S}(t)^{\exp\left(z_{1-\frac{\alpha}{2}}\hat{\tau}(t)\right)}, \hat{S}(t)^{\exp\left(-z_{1-\frac{\alpha}{2}}\hat{\tau}(t)\right)} \right]$$

with
$$\hat{\tau}^2(t) = \frac{\widehat{\operatorname{Var}}(\hat{S}(t))}{(\hat{S}(t)\log(\hat{S}(t)))^2}$$
 (default: SAS).

└Pointwise confidence interval

A second example: Sea sickness

Prediction of sea sickness, Burns, Aviat Space Environ Med (1984)

- 21 persons are subjected to 2-hr "rocking" with 0.167 Hz frequency and 0.111 G acceleration.
- Time until event: time when vomited for the first time.
- Two persons requested the stop of the experiment.

Time	Vomit
(minutes)	(1=yes)
30	1
50	1
50	0
51	1
66	0
82	1
92	1
120	0
120	0

```
proc lifetest data=vomit;
time time*vomit(0);
survival out=out1 conftype=log;
run;
proc print data=out1;
run;
```

The LIFETEST Procedure

Product-Limit Survival Estimates

time	Survival	Failure	Survival Standard Error	Number Failed	Number Left
0.000	1.0000	0	0	0	21
30.000	0.9524	0.0476	0.0465	1	20
50.000	0.9048	0.0952	0.0641	2	19
50.000*				2	18
51.000	0.8545	0.1455	0.0778	3	17
66.000*				3	16
82.000	0.8011	0.1989	0.0894	4	15
98.000	0.7477	0.2523	0.0981	5	14
120.000*				5	13
120.000*				5	12
120.000*				5	11
120.000*				5	10

120.000*		5	9
120.000*		5	8
120.000*		5	7
120.000*		5	6
120.000*		5	5
120.000*		5	4
120.000*		5	3
120.000*		5	2
120.000*		5	1
120.000*		5	0

NOTE: The marked survival times are censored observations.

Summary Statistics for Time Variable time

Quartile Estimates

	Point	95% Confidence Interv		
Percent	Estimate	[Lower	Upper)	
75				
50				
25	98.000	51.000		

Mean Standard Error 89.259 4.789

NOTE: The mean survival time and its standard error were underestimated because the largest observation was censored and the estimation was restricted to the largest event time.

Summary of the Number of Censored and Uncensored Values

To	Total Failed Censore		nsored	Percent d Censored			
	21	5	16	76.	19		
Obs	time	_CENSOR	SURV	IVAL	CONFTYPE	SDF_LCL	SDF_UCL
1	0		1.00	0000		1.00000	1.00000
2	30	0	0.9	5238	LOG	0.86552	1.00000
3	50	0	0.90	0476	LOG	0.78754	1.00000
4	50	1	0.90	0476			-
5	51	0	0.8	5450	LOG	0.71491	1.00000
6	66	1	0.8	5450			
7	82	0	0.80	0109	LOG	0.64375	0.99689
8	98	0	0.74	1769	LOG	0.57817	0.96690
9	120	1					
10	120	1					
11	120	1					
12	120	1					
13	120	1					
14	120	1					
15	120	1					
16	120	1					
17	120	1					
18	120	1					
19	120	1					
20	120	1					
21	120	1					
22	120	1					

```
> survfit(Surv(time.vomit)~1)
Call: survfit(formula = Surv(time, vomit) ~ 1)
records
         n.max n.start events median 0.95LCL 0.95UCL
    21
            21
                    21
                            5
                                   NΑ
                                           NΑ
                                                  NΑ
> summary(survfit(Surv(time,vomit)~1))
Call: survfit(formula = Surv(time, vomit) ~ 1)
time n.risk n.event survival std.err lower 95% CI upper 95% CI
  30
         21
                  1 0.952 0.0465
                                          0.866
                                                       1.000
  50
         20
                  1 0.905 0.0641
                                          0.788
                                                       1.000
  51
         18
                  1 0.854 0.0778
                                          0.715
                                                       1.000
  82
         16
                  1 0.801 0.0894
                                          0.644
                                                       0.997
         15
  98
                  1 0.748 0.0981
                                          0.578
                                                       0.967
> summary(survfit(Surv(time,vomit)~1,conf.type="log-log"))
Call: survfit(formula = Surv(time, vomit) ~ 1, conf.type = "log-log")
time n.risk n.event survival std.err lower 95% CI upper 95% CI
                                          0.707
  30
         21
                  1
                    0.952 0.0465
                                                       0.993
  50
         20
                  1 0.905 0.0641
                                          0.670
                                                       0.975
         18
                  1 0.854 0.0778
                                          0.613
                                                       0.951
  51
  82
         16
                  1 0.801 0.0894
                                          0.552
                                                       0.921
  98
         15
                  1 0.748 0.0981
                                          0.495
                                                       0.887
> plot(survfit(Surv(time,vomit)~1),xlab="Time (minutes)",ylab="Survival",main="log-transformation")
> plot(survfit(Surv(time,vomit)~1,conf.type="log-log"),xlab="Time (minutes)",ylab="Survival".
main="log-log-transformation")
```


"Redistribute to the right"- algorithm

Efron developed an alternative method to compute the KM-estimator.

He set up an algorithm which starts by assuming no censoring and, as in the empirical distribution, each observation has the same mass $\frac{1}{n}$.

Afterwards in different steps, we distribute the mass of the censored observations over the observations which are still at risk.

Example: 3, 4, 5+, 6, 6+, 8+, 11, 14, 15, 16+.

 \sqsubseteq Estimation of the survival function

└"Redistribute to the right"- algorithm

Data	Step 0	Step 1	Step 2	Step 3	$\hat{S}(t)$
3	$\frac{1}{10}$	0.100	0.100	0.100	0.900
4	$\frac{1}{10}$	0.100	0.100	0.100	0.800
5+	$\frac{1}{10}$	0.000	0.000	0.000	0.800
6	$ \begin{array}{c c} \frac{1}{10} \\ \frac{1}{10} \\ \frac{1}{10} \\ \frac{1}{10} \end{array} $	$\frac{1}{10} + \frac{1}{7} \frac{1}{10}$	0.114	0.114	0.686
		= 0.114			
6+	$\frac{1}{10}$	0.114	0.000	0.000	0.686
8+	$\begin{array}{c c} \frac{1}{10} \\ \frac{1}{10} \end{array}$	0.114	$0.114 + \frac{1}{5}0.114$	0.000	0.686
	10		=0.137		
11	$\frac{1}{10}$	0.114	0.137	$0.137 + \frac{1}{4}0.137$	0.515
	10			= 0.171	
14	$\frac{1}{10}$	0.114	0.137	0.171	0.343
15	$\frac{1}{10}$	0.114	0.137	0.171	0.171
16+	$ \begin{array}{c c} \frac{1}{10} \\ \frac{1}{10} \\ \frac{1}{10} \end{array} $	0.114	0.137	0.171	0.000*