Non-Gaussian Structural Vector Autoregressions

Sascha Alexander Keweloh October 26, 2020

TU Dortmund University

The Cocktail-Party-Problem

Mixtures: u (reduced form shocks)

Structural Vector Autoregression

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

In matrix notation:

$$\underbrace{u}_{\text{observed mixtures}} = \underbrace{B_0}_{\text{mixing matrix signals}} \underbrace{\epsilon}_{\text{mixing matrix}}$$

The Cocktail-Party-Problem

Mixtures: u (reduced form shocks)

Simulated SVAR

$$\underbrace{\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}}_{u} = \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.5 & 1 & 0 & 0 \\ 0.5 & 0.5 & 1 & 0 \\ 0.5 & 0.5 & 0.5 & 1 \end{bmatrix}}_{B_0} \underbrace{\begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \end{bmatrix}}_{\epsilon}$$

$$arepsilon_i = z\phi_1 + (1-z)\phi_2$$

 $\phi_1 \sim \mathcal{N}(-0.2, 0.7), \ \phi_2 \sim \mathcal{N}(0.75, 1.5)$
 $z \sim \mathcal{B}(0.79)$

 $\mathcal{B}(p)$ is Bernoulli and $\mathcal{N}(\mu, \sigma^2)$ is normal. The shocks have skewness 0.91 and excess kurtosis 2.51.

Structural Vector Autoregression

$$u = B_0 \epsilon$$

Unmixed innovations

$$e(B) := B^{-1}u$$

Recursive SVAR

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ b_{21} & 1 & 0 \\ b_{31} & b_{32} & 1 \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

Assumptions:

Mixing B_0 is recursive Shocks ϵ are uncorrelated

Moment conditions

$$E[e_1(B)e_2(B)] = 0$$

 $E[e_1(B)e_3(B)] = 0$
 $E[e_2(B)e_3(B)] = 0$

Identified

✓

 $\rightarrow \mbox{ Cholesky decomposition}$

Keweloh, Sascha. "A Generalized Method of Moments Estimator for Structural Vector Autoregressions Based on Higher Moments." *Journal of Business & Economic Statistics* (2019)

Non-Recursive SVAR

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 1 & b_{12} & b_{13} \\ b_{21} & 1 & b_{23} \\ b_{31} & b_{32} & 1 \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

Assumptions:

Shocks ϵ are independent

Shocks ϵ are non-Gaussian

Moment conditions

$$E[e_1^2(B)e_2(B)] = 0$$

$$E[e_1(B)e_2^2(B)] = 0$$

$$E[e_1(B)e_3(B)] = 0$$

$$E[e_1(B)e_3(B)] = 0$$

$$E[e_1(B)e_3(B)] = 0$$

$$E[e_2(B)e_3(B)] = 0$$

$$E[e_2(B)e_3(B)] = 0$$

$$E[e_2(B)e_3(B)] = 0$$

$$E[e_2(B)e_3(B)] = 0$$

$$E[e_1(B)e_2(B)e_3(B)] = 0$$

	Non-Recursive SVAR w. higher moments	Recursive SVAR w. second moments (Cholesky)
Limit (Avar)	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ (1.033) & (2.450) & (2.450) & (2.450) \\ 0.5 & 1 & 0 & 0 \\ (2.585) & (1.522) & (3.192) & (3.192) \\ 0.5 & 0.5 & 1 & 0 \\ (3.265) & (3.265) & (2.076) & (3.999) \\ 0.5 & 0.5 & 0.5 & 1 \\ (4.010) & (4.010) & (4.010) & (2.695) \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ (1.128) & (0) & (0) & (0) \\ 0.5 & 1 & 0 & 0 \\ (1.282) & (1.128) & (0) & (0) \\ 0.5 & 0.5 & 1 & 0 \\ (1.532) & (1.282) & (1.128) & (0) \\ 0.5 & 0.5 & 0.5 & 1 \\ (1.782) & (1.532) & (1.282) & (1.128) \end{bmatrix}$

Block-Recursive SVAR

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ b_{21} & 1 & b_{23} \\ b_{31} & b_{32} & 1 \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

Assumptions:

Shocks ϵ are independent

Shocks ϵ are non-Gaussian

Moment conditions

$$E[e_{1}(B)e_{2}(B)] = 0$$

$$E[e_{1}(B)e_{2}(B)] = 0$$

$$E[e_{1}(B)e_{2}(B)] = 0$$

$$E[e_{1}(B)e_{3}(B)] = 0$$

$$E[e_{1}(B)e_{3}(B)] = 0$$

$$E[e_{1}(B)e_{3}(B)] = 0$$

$$E[e_{2}(B)e_{3}(B)] = 0$$

$$E[e_{2}(B)e_{3}(B)] = 0$$

$$E[e_{1}(B)e_{2}(B)e_{3}(B)] = 0$$

$$E[e_{1}(B)e_{2}(B)e_{3}(B)] = 0$$

Keweloh, Seepe "Monetary policy and the stock market"

Keweloh, Seepe "Monetary policy and the stock market"

Are higher moments non-redundant?

Recursive SVAR

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ b_{21} & 1 & 0 \\ b_{31} & b_{32} & 1 \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

Identifying conditions

$$E[e_1(B)e_2(B)] = 0$$

 $E[e_1(B)e_3(B)] = 0$
 $E[e_2(B)e_3(B)] = 0$

Overidentifying conditions

$$E[e_1^2(B)e_2(B)] = 0$$

$$E[e_1(B)e_2^2(B)] = 0$$

$$E[e_1^2(B)e_3(B)] = 0$$

$$E[e_1(B)e_3^2(B)] = 0$$

$$E[e_2^2(B)e_3(B)] = 0$$

$$E[e_2(B)e_3^2(B)] = 0$$

$$E[e_1(B)e_2(B)e_3(B)] = 0$$

Are higher moments non-redundant?

Proposition

In a block-recursive SVAR with non-Gaussian and independent shocks, higher moments are non-redundant.

Corollary

In a non-Gaussian recursive SVAR with independent shocks, the frequently used estimator obtained by applying the Cholesky decomposition to the variance covariance matrix of the reduced form shocks is inefficient.

Asymptotic performance

	Recursive SVAR w. second moments (Cholesky)					ve SVAR momen		
Limit (Avar)	$\begin{bmatrix} 1\\ (1.128)\\ 0.5\\ (1.282)\\ 0.5\\ (1.532)\\ 0.5\\ (1.782) \end{bmatrix}$	0 (0) 1 (1.128) 0.5 (1.282) 0.5 (1.532)	0 (0) 0 (0) 1 (1.128) 0.5 (1.282)	$ \begin{array}{c} 0\\(0)\\0\\(0)\\0\\(0)\\1\\(1.128)\end{array} $	$\begin{bmatrix} 1\\ (1.021)\\ 0.5\\ (1.033)\\ 0.5\\ (1.232)\\ 0.5\\ (1.438) \end{bmatrix}$	0 (0) 1 (1.019) 0.5 (1.033) 0.5 (1.232)	0 (0) 0 (0) 1 (1.017) 0.5 (1.033)	0 (0) 0 (0) 0 (0) 1 (1.016)

Small sample performance - Many moments problem

T=150	Recursive w. second m (Choles	noments	Recursive w. higher r 2-step (noments
mean (std)	0.5 0.5	$ \begin{array}{ccc} 0 & 0 \\ (0) & (0) \\ 0 & 0 \\ (0) & (0) \\ 1 & 0 \\ 1.126) & (0) \\ 0.5 & 0.99 \\ 1.275) & (1.096) \end{array} $	$\begin{bmatrix} 0.95 & 0 \\ (7.50) & (0) \\ 0.47 & 1.00 \\ (49.2) & (828) \\ -19.9 & -26.2 \\ (-) & (-) \\ -287 & 31 \\ (-) & (-) \\ \end{bmatrix}$	$ \begin{bmatrix} 0 & 0 \\ (0) & (0) \\ 0 & 0 \\ (0) & (0) \\ 158 & 0 \\ (-) & (0) \\ -145 & 506 \\ (-) & (-) \end{bmatrix} $

Optimal weighting

The GMM estimator with $W = S^{-1}$ has the smallest asymptotic variance.

$$S = E \begin{bmatrix} e_{1}(B_{0})e_{2}(B_{0}) \\ e_{1}(B_{0})e_{3}(B_{0}) \\ e_{2}(B_{0})e_{3}(B_{0}) \\ \vdots \end{bmatrix} \begin{bmatrix} e_{1}(B_{0})e_{2}(B_{0}) \\ e_{1}(B_{0})e_{3}(B_{0}) \\ e_{2}(B_{0})e_{3}(B_{0}) \\ \vdots \end{bmatrix}$$
(2)

$$\rightarrow \hat{S}_{T} = \frac{1}{T} \sum_{t=1}^{T} \begin{bmatrix} e_{1,t}(\hat{B})e_{2,t}(\hat{B}) \\ e_{1,t}(\hat{B})e_{3,t}(\hat{B}) \\ e_{2,t}(\hat{B})e_{3,t}(\hat{B}) \\ \vdots \end{bmatrix} \begin{bmatrix} e_{1,t}(\hat{B})e_{2,t}(\hat{B}) \\ e_{1,t}(\hat{B})e_{3,t}(\hat{B}) \\ e_{2,t}(\hat{B})e_{3,t}(\hat{B}) \\ \vdots \end{bmatrix}$$
(3)

The true mixing matrix B_0 is unknown, but a B_0 it holds: $e(B_0) = \epsilon$

$$S = E \begin{bmatrix} \epsilon_{1}\epsilon_{2} \\ \epsilon_{1}\epsilon_{3} \\ \epsilon_{2}\epsilon_{3} \\ \epsilon_{1}^{2} - 1 \\ \vdots \end{bmatrix} \begin{bmatrix} \epsilon_{1}\epsilon_{2} \\ \epsilon_{1}\epsilon_{3} \\ \epsilon_{2}\epsilon_{3} \\ \epsilon_{1}^{2} - 1 \\ \vdots \end{bmatrix}^{\prime} \xrightarrow{\epsilon \text{ independent}} \begin{bmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ 0 & 0 & 0 & E[\epsilon_{1}^{4}] - 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \end{bmatrix}$$
(4)

Parametric estimator of S

Use (4) and replace values like $E[\epsilon_1^4]$ with estimates $1/T \sum_{t=1}^T e_1^4(\hat{B})$.

If ϵ has mutually independent components with zero mean and unit variance, it holds that

$$\hat{S}_T^{para} \stackrel{T \to \infty}{\to} S. \tag{5}$$

Small sample performance - Many moments problem (Solution part 1)

T=150	Recursive SV w. second mom (Cholesky)		sive SVAF er momer IM param	its	
mean (std)	$\begin{bmatrix} 1 & 0 & 0 \\ (1.138) & (0) & (0) \\ 0.5 & 1 & 0 \\ (1.300) & (1.048) & (0) \\ 0.5 & 0.5 & 1 \\ (1.499) & (1.263) & (1.120) \\ 0.5 & 0.5 & 0.5 \\ (1.784) & (1.539) & (1.271) \end{bmatrix}$	0.99	$\begin{bmatrix} 1.14 & 0 \\ (2.609) & (0) \\ 0.57 & 1.13 \\ (1.914) & (2.687) \\ 0.57 & 0.56 \\ (2.157) & (1.785) \\ 0.56 & 0.56 \\ (2.686) & (2.204) \end{bmatrix}$) (0) 1.12) (2.289) 0.56	0 (0) 0 (0) 0 (0) 1.12 (2.307)

Small sample performance - Many moments problem (Solution part 2)

T 150	Recursive SVAR w. second moments			Recursive SVAR w. higher moments			
T = 150	(Cholesky)			2-step parametric (scaled)			
mean (std)	$\begin{bmatrix} 1 & 0 \\ (1.138) & (0) \\ 0.5 & 1 \\ (1.300) & (1.048) \\ 0.5 & 0.5 \\ (1.499) & (1.263) \\ 0.5 & 0.5 \\ (1.784) & (1.539) \end{bmatrix}$	1	0 (0) 0 (0) 0 (0) 0,99 (1.096)	1.00 (1.136) 0.50 (1.209) 0.50 (1.414) 0.50 (1.726)	0 (0) 1.00 (1.051) 0.50 (1.185) 0.50 (1.478)	0 (0) 0 (0) 1.00 (1.131) 0.50 (1.208)	0 (0) 0 (0) 0 (0) 0,09 (1.104)

Summary

- Block-recursive framework generalizes between unrestricted and recursive SVAR.
- Restrictions (derived from economic theory) decrease dependence of identification on higher moments and increase the performance of the estimator.
- Higher moments are non-redundant.

Critique

Restrictions decrease dependence on higher moments and increase the performance of the estimator...

Critique

Restrictions decrease dependence on higher moments and increase the performance of the estimator...

... if the restrictions are correct or otherwise, all bets are off.

A restriction is prejudice, which we can never overcome.

Keweloh, Hetzenecker "Soft restrictions in SVARs via Lasso"

Restrictions via adaptive Lasso:

$$rg \min_{B \in \mathbb{R}^{n \times n}} \ g(B)'Wg(B) \ + \lambda \sum_{ij} w_{ij} |b_{ij}|$$

 $\rightarrow \, \mathsf{Oracle} \,\, \mathsf{property} \,\,$

Keweloh, Hetzenecker "Soft restrictions in SVARs via Lasso"

T=5000	Recursive SVAR w. second moments (Cholesky)	non-Recursive SVAR w. higher moments	Soft-Restrictions SVAR w. higher moments (Post Lasso)		
mean (std)	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ (1.1) & (0) & (0) & (0) \\ 0.5 & 1 & 0 & 0 \\ (1.3) & (1.1) & (0) & (0) \\ 0.5 & 0.5 & 1 & 0 \\ (1.5) & (1.3) & (1.1) & (0) \\ 0.5 & 0.5 & 0.5 & 1 \\ (1.8) & (1.5) & (1.3) & (1.1) \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ (1.0) & (2.7) & (2.6) & (2.6) \\ 0.5 & 1 & 0 & 0 \\ (2.7) & (1.6) & (3.4) & (3.6) \\ 0.5 & 0.5 & 1 & 0 \\ (3.4) & (3.4) & (2.2) & (4.4) \\ 0.5 & 0.5 & 0.5 & 1 \\ (4.2) & (4.3) & (4.4) & (2.9) \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ (1.0) & (0.1) & (0.1) & (0.1) \\ 0.5 & 1 & 0 & 0 \\ (1.1) & (1.1) & (0.1) & (0.0) \\ 0.5 & 0.5 & 1 & 0 \\ (1.4) & (1.3) & (1.0) & (0.1) \\ 0.5 & 0.5 & 0.5 & 1 \\ (1.6) & (1.3) & (1.2) & (1.1) \end{bmatrix}$		