

Introducing the Adafruit Bluefruit LE Friend

Created by Kevin Townsend

Last updated on 2017-05-26 06:47:49 PM UTC

Guide Contents

Guide Contents	2
Introduction	8
Why Not Just Use a BLE USB Dongle?	8
So it's a Fancy Pants Wireless UART Adapter?	8
Why Use Adafruit's Module?	9
Getting Started	9
QuickStart Guide	10
HW Setup	11
v3.0 Software Requirements	11
v1.0 and v2.0 Software Requirements	11
HW Layout	11
Mode Selection Switch	11
TXD/RXD Status LEDs	12
DFU Mode Switch	12
Mode Indicator LED Connection Status LED	12 12
Operating Modes	13
Data Mode	13
Command Mode	13
DFU Mode	13
Terminal Settings	14
TerraTerm (Windows)	14
CoolTerm (OS X)	14
Testing the Terminal Config	15
UART Test	16
BLEFriend Configuration	16
nRF UART Configuration	16
Sample Video	21
Factory Reset	23
Command Mode	24
Hayes/AT Commands	24

Page 2 of 91

Test Command Mode '=?'	24
Write Command Mode '=xxx'	24
Execute Mode	24
Read Command Mode '?'	25
Standard AT	26
AT	26
ATI	26
ATZ	26
ATE	26
+++	27
General Purpose	28
AT+FACTORYRESET	28
AT+DFU	28
AT+HELP	28
AT+NVMWRITE	28
AT+NVMREAD	29
AT+MODESWITCHEN	29
Hardware	30
AT+BAUDRATE	30
AT+HWADC	30
AT+HWGETDIETEMP	30
AT+HWGPIO	31
AT+HWGPIOMODE	31
AT+HWI2CSCAN	32
AT+HWVBAT	32
AT+HWRANDOM	32
AT+HWMODELED	32
AT+UARTFLOW	33
Beacon	34
AT+BLEBEACON	34
AT+BLEURIBEACON	35
Deprecated: AT+EDDYSTONEENABLE	36

AT+EDDYSTONEURL	36
AT+EDDYSTONECONFIGEN	36
AT+EDDYSTONESERVICEEN	37
AT+EDDYSTONEBROADCAST	37
BLE Generic	38
AT+BLEPOWERLEVEL	38
AT+BLEGETADDRTYPE	38
AT+BLEGETADDR	38
AT+BLEGETPEERADDR	39
AT+BLEGETRSSI	39
BLE Services	40
AT+BLEUARTTX	40
TX FIFO Buffer Handling	40
AT+BLEUARTTXF	41
AT+BLEUARTRX	41
AT+BLEUARTFIFO	42
AT+BLEKEYBOARDEN	42
AT+BLEKEYBOARD	42
AT+BLEKEYBOARDCODE	43
Modifier Values	43
AT+BLEHIDEN	43
AT+BLEHIDMOUSEMOVE	44
AT+BLEHIDMOUSEBUTTON	44
AT+BLEHIDCONTROLKEY	45
AT+BLEHIDGAMEPADEN	
AT+BLEHIDGAMEPAD	46
AT+BLEMIDIEN	46
AT+BLEMIDIRX	46
AT+BLEMIDITX	47
AT+BLEBATTEN	47
AT+BLEBATTVAL	47
BLE GAP	48
AT+GAPCONNECTABLE	48

AT+GAPGETCONN	48
AT+GAPDISCONNECT	48
AT+GAPDEVNAME	48
AT+GAPDELBONDS	49
AT+GAPINTERVALS	49
AT+GAPSTARTADV	50
AT+GAPSTOPADV	50
AT+GAPSETADVDATA	50
BLE GATT	52
GATT Limitations	52
AT+GATTCLEAR	52
AT+GATTADDSERVICE	52
AT+GATTADDCHAR	53
AT+GATTCHAR	54
AT+GATTLIST	55
AT+GATTCHARRAW	56
Debug	57
AT+DBGMEMRD	57
AT+DBGNVMRD	57
AT+DBGSTACKSIZE	57
AT+DBGSTACKDUMP	57
History	60
Version 0.7.7	60
Version 0.7.0	60
Version 0.6.7	61
Version 0.6.6	61
Version 0.6.5	62
Version 0.6.2	62
Version 0.5.0	62
Version 0.4.7	63
Version 0.3.0	63
Command Examples	64

Heart Rate Monitor Service	64
Python Script	64
Field Updates	67
Requirements	67
Forcing DFU Mode	67
DFU Mode Confirmation	67
DFU Timeout	67
Firmware Images	67
DFU on iOS	68
Install Bluefruit LE Connect	68
Update Process	68
DFU on Android (4.3+)	69
Install Bluefruit LE Connect	69
Verified Devices	69
Update Process	69
BLE Sniffer	70
Select the Sniffer Target	70
Working with Wireshark	71
Capturing Exchanges Between Two Devices	72
Scan Response Packets	72
Connection Request	72
Write Request	73
Regular Data Requests Notify Event Data	73 74
Closing Wireshark and nRF-Sniffer	74
Moving Forward	76
GATT Service Details	77
UART Service	
UART Service	78
Characteristics	78
TX (0x0002)	78
RX (0x0003)	78
Software Resources	79
Bluefruit LE Client Apps and Libraries	79

Bluefruit LE Connect (http://adafru.it/f4G) (Android/Java)	79
Bluefruit LE Connect (http://adafru.it/f4H) (iOS/Swift)	79
Bluefruit LE Connect for OS X (http://adafru.it/o9F) (Swift)	79
Bluefruit LE Command Line Updater for OS X (http://adafru.it/pLF)	
(Swift)	80
Deprecated: Bluefruit Buddy (http://adafru.it/mCn) (OS X)	80
ABLE (http://adafru.it/ijB) (Cross Platform/Node+Electron)	81
Bluefruit LE Python Wrapper (http://adafru.it/fQF)	81
Debug Tools	82
AdaLink (http://adafru.it/fPq) (Python)	82
Adafruit nRF51822 Flasher (http://adafru.it/fVL) (Python)	82
Device Recovery	83
How to Recover a Bluefruit Board	83
1. Force DFU Mode at Startup	83
2. Update the Bluefruit Firmware	83
BLEFRIEND32 Firmware (UART, 32KB SRAM)	83
BLESPIFRIEND Firmware (SPI)	83
3. Flash a Test Sketch	83
4. Perform a Factory Reset	83
Still Having Problems?	84
BLE FAQ	85
Bluefruit LE Connect (Android)	86
Nordic nRF Toolbox	86
Adafruit_nRF51822_Flasher	86
Downloads	91
Files	91
Schematics	91
v3.0 Schematic (CP2104 Based)	91
v2 0 Schematic (FTDI Based)	91

Introduction

The BLEFriend makes it easy to get any USB enabled device talking to your BLE enabled phone or tablet using a standard USB CDC connection.

Please note that there are three versions of this board. An older v1.0 blue PCB which uses 16KB SRAM parts and can run firmware 0.5.0 and lower. A newer v2.0 black PCB that uses the latest 32KB parts and can run old firmware plus version 0.6.2 and higher, based on the FTDI bridge and with an SWD connector. A cost-optimized v3.0 board that uses a CP2104 USB chip and drops the SWD connector. v3.0 can run all of the same firmware as v2.0, and is the latest board available.

In it's simplest form, it works on the same principle as a common USB/Serial adapter (the https://adafru.it/dQa), for example!). Any data that you enter via your favorite terminal emulator on your development machine will be transferred over the air to the connected phone or tablet, and vice versa.

Why Not Just Use a BLE USB Dongle?

Good question! You can get a <u>Bluetooth 4.0 USB dongle</u> (http://adafru.it/ecb) from the store already, and it's a useful tool to have (particularly on the Raspberry Pi or BBB), but that won't solve some problems out of the box.

To start with, Bluez (Linux) has a decent learning curve (and doesn't run on OS X if you're a Mac user). Windows 7 doesn't even support Bluetooth Low Energy, and on OS X you'll have to sort through the native Bluetooth APIs and development tools that require an annual paid license and specific license terms to access. There isn't a standard, open source, cross-platform way to talk BLE today.

With the BLEFriend, you can be up and running in under and hour on just about anything with a USB port, with easy migration across platforms and operating systems. It's not perfect (it's currently a peripheral mode only solution), but it's the easiest way you'll find to get any USB device talking to your iOS or Android device.

So it's a Fancy Pants Wireless UART Adapter?

The board is capable of much more than simulating a basic UART bridge (and this is still early days for the Bluefruit LE board family)! Thanks to an easy to learn <u>AT command set</u> (http://adafru.it/iCO), you can also <u>create you own basic GATT Services</u> (http://adafru.it/iCP) and Characteristics, <u>simulate Beacons</u> (http://adafru.it/iCu), and change the way that the device advertises itself for other Bluetooth Low Energy devices to see.

To make sure that your device stays up to date and can benefit from the latest Bluefruit LE firmware from Adafruit, you can als<u>update the firmware on your BLEFriend over the air</u> (http://adafru.it/iCQ) using any supported iOS or Android device.

You can even pick up a sniffer edition of the board that comes pre-flashed with special firmware that turns your BLEFriend into a low cost Bluetooth Low Energy sniffer (http://adafru.it/iCR), capturing data and pushing it out to Wireshark. We currently offer this as a seperate product, though, since the firmware isn't compatible with the over the air bootloader used on the standard products, but we'll address this in the future with a tutorial for J-Link owners, allowing you to switch between modes using your SWD debugger.

Why Use Adafruit's Module?

There are plenty of BLE modules out there, with varying quality on the HW design as well as the firmware. We always try to keep the bar as high as possible at Adafruit, and one of the biggest advantages of the BLEFriend and the entire Bluefruit LE family is that **we wrote all of the firmware running on the devices ourelves from scratch.**

We control every line of code that runs on our modules ... and so we aren't at the mercy of any third party vendors who may or may not be interested in keeping their code up to date or catering to our customer's needs.

Because we control everything about the product, we add features that are important toour customers, benefit from being able to use the latest Bluetooth specifications, can solve any issues that do come up without having to persuade a half-hearted firmware engineer on the other side of the planet, and we can even change Bluetooth SoCs entirely if the need ever arises!

Getting Started

If you just want to get up and running quickly, this is the right guide for you, and the QuickStart section should have you up and running in no time.

If you're new to Bluetooth Low Energy, and want to get a high level overview of how data is organized and how devices communicate with each other, you might want to have a look at our Introduction to Bluetooth Low Energy (http://adafru.it/iCS) learning guide, or buy Getting Started with Bluetooth Low Energy (http://adafru.it/1978) from the store.*

* Full disclosure: co-written by me:)

QuickStart Guide

The BLEFriend board is designed to be easy to use and get started with.

In most circumstance, the only thing you'll need is an FTDI driver, and a terminal emulator to start working with BLE from your development machine.

This guide will explain some of the different<u>operating modes</u> (http://adafru.it/iCT) that the BLEFriend board can be configure to operate in, how to setup your <u>terminal emulator</u> (http://adafru.it/iCU) to start talking to the BLEFriend, and a basic example of <u>sending bi-directional data</u> (http://adafru.it/iCV) between the BLEFriend and a BLE-enabled phone or tablet.

The BLEFriend is (of course) capable of much more than basic UART data exchanges! You can use it to create custom GATT services and characteristics. You can emulate a Beacon (http://adafru.it/iCu) for indoor navigation purposes. You can update the firmware on your device (http://adafru.it/iCQ) over the air, or even develop your own firmware thanks to the SWD pins on the bottom of the PCB if you possess a HW debugger like the Segger J-Link.

Depending on the version of the board you have or whether or not you have access to a J-Link, you can even use the BLEFriend as a powerful Bluetooth Low Energy sniffer (http://adafru.it/iCW) to debug or reverse engineer existing BLE devices, and write your own custom applications or drivers for existing HW!

Have a look through this quick start guide to familiarise yourself with the basics, though, and you should be able to quickly move on to more advanced topics in no time!

HW Setup

v3.0 Software Requirements

The cost-optimized v3.0 board uses the less expensive CP2104 USB to Serial bridge, which requires that you install the Silicon Labs VCP drivers (http://adafru.it/vrf) on your system before using the board.

v1.0 and v2.0 Software Requirements

Setting up the BLEFriend is super easy. All you need to start talking to the device is a standard FTDI driver for the FT231x located on the device.

Find the appropriate FTDI VCP installer on the FTDI Driver Download Page (http://adafru.it/aJv), install it on you system, and then insert the BLEFriend in any USB port on your system.

HW Layout

There are a few items on the BLEFriend you should be familiar with before you start working with it. To help you get started quickly, we've highlighted them in the image below:

This image applies to v2.0. The latest cost-optimized v3.0 release drops the SWD connector, and leaving the SWD pins on available on the bottom of the PCB.

Mode Selection Switch

This switch can be moved between 'CMD' (Command Mode) and 'UART' (Data Mode), which will change the way that the device behaves in your terminal emulator.

For more information on these two operating modes, see the Operating Modes (http://adafru.it/iCT) page in this learning guide.

TXD/RXD Status LEDs

These two LEDs are provided primarily for debug purposes to help you visualise the incoming and outgoing characters over the USB CDC interface.

DFU Mode Switch

Holding this switch down when you insert the device into the USB port will cause the device to enter a special 'DFU' mode, which allows you to update the firmware over the air.

For more information on DFU mode see the Field Updates (http://adafru.it/iCQ) page.

Mode Indicator LED

This LED is used to indicate the mode that the device is currently operating in (Data, Command or DFU).

Connection Status LED

This LED will be enabled when the BLEFriend has successfully established a connection with another BLE device, and it useful for debugging purposes.

Operating Modes

BLEFriend modules can be operated in one of three modes:

Data Mode

Data mode makes use of the BLE UART Service, and turns the BLEFriend into a HW UART bridge between a BLE Central device (your phone or tablet) and your PC or USB-enabled device.

To use data mode, simply connect your BLEFriend module to the USB port on your PC, mode the mode selection switch to the USB port on your PC, mode the mode selection switch to the USB port on your PC, mode the mode selection switch to the USB port on your PC, mode the mode selection switch to the USB port on your PC, mode the mode selection switch to the USB port on your PC, mode the mode selection switch to the USB port on your PC, mode the mode selection switch to the USB port on your PC, mode the mode selection switch to the USB port on your PC, mode the mode selection switch to the USB port on your PC, mode the mode selection switch to the USB port on your PC, mode the mode selection switch to the USB port on your PC.

If the MODE LED blinks twice followed by a three second delay you are inData Mode:

Command Mode

Command mode is used to send configuration commands to the module or retrieve information about the module itself or the device connected on the other side of the BLE connection.

To use command mode, make sure that the mode selection switch is set to CMD, and enter a valid Hayes AT style command using your favorite terminal emulator at 9600 bps (for example 'ATI' to display some basic info about the module).

If the MODE LED blinks three times followed by a three second delay you are in **Command Mode**:

For more information on this operating mode see the dedicated Command Mode (http://adafru.it/iCO) page in this learning guide.

DFU Mode

DFU Mode (which stands for 'device firmware upgrade' or sometimes 'device field update') is a special mode that allows you to update the firmware on the BLEFriend over the air using dedicated DFU applications available on iOS and Android.

This allows you to update your device with the latest BLEFriend firmware from Adafruit without having to purchase an external HW debugger like the Segger J-Link (http://adafru.it/e9G).

To enter DFU mode hold down the **DFU** button while inserting the BLEFriend into the USB port.

If the LED blinks at a constant rate, you know that you are in DFU mode:

For more information on DFU mode see the dedicate Device Field Update (DFU) page (http://adafru.it/iCQ).

Terminal Settings

Since the BLEFriend board uses UART for the data transport, you will need to configure your favorite terminal emulator software with the appropriate settings to send or receive data over UART.

The BLEFriend is configured to run with the following settings:

- 9600 bps
- HW flow control (CTS+RTS)
- 8n1 (8-bit data, no parity, 1 stop bit)

TerraTerm (Windows)

If you are using Windows we recommend using TeraTerm (http://adafru.it/e9I), which should be configured as follows (via the 'Setup > Serial Port' menu):

CoolTerm (OS X)

If you are using OS X, we recommend using CoolTerm (http://adafru.it/e9J), a free and reasonably fully featured terminal emulator package.

You'll need to set the following configuration options in Coolterm to communicate with the Bluefruit LE Pro module:

Make sure you click the 'Connect' button to open the connection in CoolTerm, and 'Disconnect' to close the connection when you are done.

Testing the Terminal Config

To make sure the connection is properly configured, you can set the device in **Command Mode** (the LED should blink three times followed by a short delay in this mode), and enter the **ATI** command, as shown below (which will provide some basic information about the BLE module):

Make sure you are in CMD mode or you won't get any echo or AT command replies!

UART Test

To test out the BLE UART service that is used to transfer data between the BLEFriend and your Bluetooth Low Energy enabled mobile device, you can used the **nRF UART** application from Nordic Semiconductors for <u>iOS</u> (http://adafru.it/dd7) or <u>Android</u> (http://adafru.it/dd6).

This tutorial uses the Android version of nRF UART but the iOS UI is reasonably similar.

BLEFriend Configuration

Set the BLEFriend to **DATA MODE** by placing the mode selector switch (near the USB connector) to the **UART** position.

The 'MODE' indicator LED will blink two times and then pause for three seconds when you are in DATA mode:

Using your favorite terminal emulator (http://adafru.it/iCU), connect to the BLEFriend at9600 baud with HW flow control enabled.

nRF UART Configuration

Open the nRF UART application on Android or iOS, and click the 'Connect' button

After clicking on 'Connect' you should see a list of BLE peripherals in range:

Select the 'UART' device by clicking on it from the popup selection dialogue, and a connection will be established between the BLEFriend and your phone or tablet.

 $\textbf{NOTE:} \ \ \text{You know that you are connected to another device when the} \textbf{CONN} \ \ \text{LED is lit up on the BLEFriend:}$

Once you see the 'Connected To: UART' message in nRF UART, you can start sending and receiving data between the two devices using the mobile app or the terminal emulator.

Sending data from one device should cause the text to appear on the other end:

On the BLEFriend side we can see the 'testing' string that was sent from nRF UART in the terminal emulator below:

Typing data into the terminal emulator will cause it to appear in the nRF UART application, as shown below:

The incoming data is broken up into small packets because it is transferred in chunks of up to 20 bytes per payload.

All data transfers in BLE occur at a rate controlled by the BLE central device (the phone or tablet). Every n milliseconds, the phone will ping the BLE peripheral (the BLEFriend) and check if there is any data available.

If anything is found in the UART FIFO, for example, it will be sent and data will start to accumulate again in the FIFO until the next connection event

Sample Video

Download the screen capture below to see nRF UART in action, first receiving 'this is a test' from the BLEFriend (typed in on the terminal emulator), and then sending 'adafruit' out to the BLEFriend, where is will appear in the terminal emulator.

nRFUART_640.mp4 http://adafru.it/ea5 Depending on which terminal emulator SW you use, you would see something like this on your development machine running a similar demo yourself:

Factory Reset

As of version 0.5.0+ of the firmware, you can perform a factory reset by holding the DFU button down for 10s until the blue CONNECTED LED lights up, and then releasing the button.

If you have any problems with your BLEFriend module, you can perform a factory reset by entering command mode (set the mode selection switch to 'CMD'), and entering the following command in your terminal emulator:

AT+FACTORYRESET

This will erase the non volatile memory section where the config data is stored and reset everything to factory default values, and perform a system reset

When you see the 'OK' response the device should be ready to use.

Command Mode

By placing the BLEFriend module in 'Command' mode (set the mode selection switch to **CMD**) you can enter a variety of Hayes AT style commands to configure the device or retrieve basic information about the module of BLE connection.

You can determine if you are in Command Mode by looking at the mode LED. It should blink three times followed by a three second pause, as shown below:

Hayes/AT Commands

When operating in command mode, the Bluefruit LE Pro modules use a Hayes AT-style command set (http://adafru.it/ebJ)to configure the device.

The advantage of an AT style command set is that it's easy to use in machine to machine communication, while still being somewhat user friendly for humans.

Test Command Mode '=?'

'Test' mode is used to check whether or not the specified command exists on the system or not.

Certain firmware versions or configurations may or may not include a specific command, and you can determine if the command is present by taking the command name and appending '=?' to it, as shown below

AT+BLESTARTADV=?

If the command is present, the device will reply with 'OK'. If the command is not present, the device will reply with 'ERROR'.

AT+BLESTARTADV=? OK\r\n AT+MISSINGCMD=? ERROR\r\n

Write Command Mode '=xxx'

'Write' mode is used to assign specific value(s) to the command, such as changing the radio's transmit power level using the command we used above.

To write a value to the command, simple append an'=' sign to the command followed by any paramater(s) you wish to write (other than a lone'?' character which will be interpretted as tet mode):

AT+BLEPOWERLEVEL=-8

If the write was successful, you will generally get an 'OK' response on a new line, as shown below:

AT+BLEPOWERLEVEL=-8

If there was a problem with the command (such as an invalid parameter) you will get an ERROR' response on a new line, as shown below:

AT+BLEPOWERLEVEL=3 ERROR\r\n

Note: This particular error was generated because '3' is not a valid value for the AT+BLEPOWERLEVEL command. Entering '-4', '0' or '4would succeed since these are all valid values for this command.

Execute Mode

'Execute' mode will cause the specific command to 'run', if possible, and will be used when the command name is entered with no additional

parameters.

AT+FACTORYRESET

You might use execute mode to perform a factory reset, for example, by executing the AT+FACTORYRESET command as follows:

AT+FACTORYRESET

OK\r\n

NOTE: Many commands that are means to be read will perform the same action whether they are sent to the command parser in 'execute' or 'read' mode. For example, the following commands will produce identical results:

AT+BLEGETPOWERLEVEL -4\r\n OK\r\n AT+BLEGETPOWERLEVEL? -4\r\n OK\r\n

If the command doesn't support execute mode, the response will normally be'ERROR' on a new line.

Read Command Mode '?'

'Read' mode is used to read the current value of a command.

Not every command supports read mode, but you generally use this to retrieve information like the current transmit power level for the radio by appending a '?' to the command, as shown below:

AT+BLEPOWERLEVEL?

If the command doesn't support read mode or if there was a problem with the request, you will normally get at ERROR' response.

If the command read was successful, you will normally get the read results followed by OK' on a new line, as shown below:

AT+BLEPOWERLEVEL?

-4\r\n

OK\r\n

Note: For simple commands, 'Read' mode and 'Execute' mode behave identically.

Standard AT

The following standard Hayes/AT commands are available on Bluefruit LE modules:

AT

Acts as a ping to check if we are in command mode. If we are in command mode, we should receive the 'OK' response.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT OK

ΑΤΙ

Displays basic information about the Bluefruit module.

Codebase Revision: 0.3.0

Parameters: None

Output: Displays the following values:

- Board Name
- Microcontroller/Radio SoC Name
- Unique Serial Number
- Core Bluefruit Codebase Revision
- Project Firmware Revision
- Firmware Build Date
- Softdevice, Softdevice Version, Bootloader Version (0.5.0+)

ATI BLEFRIEND nRF51822 QFAAG00 FB462DF92A2C8656 0.5.0 0.5.0 Feb 24 2015 S110 7.1.0, 0.0

Updates:

- Version 0.4.7+ of the firmware adds the chip revision after the chip name if it can be detected (ex. 'nRF51822 QFAAG00').
- Version 0.5.0+ of the firmware adds a new 7th record containing the softdevice, softdevice version and bootloader version (ex. 'S110 7.1.0, 0.0').

ATZ

Performs a system reset.

Codebase Revision: 0.3.0

Parameters: None

Output: None

ATZ OK

ATE

Enables or disables echo of input characters with the AT parser

Codebase Revision: 0.3.0

Parameters: '1' = enable echo, '0' = disable echo

Output: None

Disable echo support ATE=0 OK #Enable echo support ATE=1

Dynamically switches between DATA and COMMAND mode without changing the physical CMD/UART select switch.

When you are in COMMAND mode, entering '+++\n' or '+++\r\n' will cause the module to switch to DATA mode, and anything typed into the console will go direct to the BLUE UART service.

To switch from DATA mode back to COMMAND mode, simply enter '+++\n' or '+++\r'\n' again (be sure to include the new line character!), and a new 'OK' response will be displayed letting you know that you are back in COMMAND mode (see the two 'OK' entries in the sample code below).

Codebase Revision: 0.4.7

Parameters: None

Output: None

Note that +++ can also be used on the mobile device to send and receive AT command on iOS or Android, though this should always be used with

See the AT+MODESWITCHEN command to control the availability of the +++ command

ATI BLEFRIEND nRF51822 QFAAG00 B122AAC33F3D2296 0.4.6 0.4.6 Dec 22 2014 OK +++

General Purpose

The following general purpose commands are available on all Bluefruit LE modules:

AT+FACTORYRESET

Clears any user config data from non-volatile memory and performs a factory reset before resetting the Bluefruit module.

Codebase Revision: 0.3.0

Parameters: None
Output: None

AT+FACTORYRESET

Ok

As of version 0.5.0+ of the firmware, you can perform a factory reset by holding the DFU button down for 10s until the blue CONNECTED LED lights up, and then releasing the button.

AT+DFU

Forces the module into DFU mode, allowing over the air firmware updates using a dedicated DFU app on iOS or Android.

Codebase Revision: 0.3.0

Parameters: None

Output: None

The AT parser will no longer responsd after the AT+DFU command is entered, since normal program execution effectively halts and a full system reset is performed to start the bootloader code

AT+DFU

AT+HELP

Displays a comma-separated list of all AT parser commands available on the system.

Codebase Version: 0.3.0

Parameters: None

Output: A comma-separated list of all AT parser commands available on the system.

The sample code below may not match future firmware releases and is provided for illustration purposes only

AT+HELP

AT+FACTORYRESET, AT+DFU, ATZ, ATI, ATE, AT+DBGMEMRD, AT+DBGNVMRD, AT+HWLEDPOLARITY, AT+HWLED, AT+HWGETDIETEMP, AT+HWMODEPINPOLARITY, AT+HVOK

AT+NVMWRITE

Writes data to the 256 byte user non-volatile memory (NVM) region.

Codebase Version: 0.7.0

Parameters:

- offset: The numeric offset for the first byte from the starting position in the user NVM
- datatype: Which can be one of STRING (1), BYTEARRAY (2) or INTEGER (3)
- data: The data to write to NVM memory (the exact payload format will change based on the specified datatype).

Output: Nothing

Write 32768 as an integer starting at byte 16 in user NVM

AT+NVMREAD

Reads data from the 256 byte user non-volatile memory (NVM) region.

Codebase Version: 0.7.0

Parameters:

- . offset: The numeric offset for the first byte from the starting position in the user NVM
- size: The number of bytes to read
- datatype: The type used for the data being read, which is required to properly parse the data and display it as a response. The value can be one of STRING (1), BYTEARRAY (2) or INTEGER (3)

Output: The data read back, formatted based on the datatype argument.

Read an integer back from position 16 in user NVM AT+NVMREAD=16, 4, INTEGER 32768 OK

AT+MODESWITCHEN

Enables or disables mode switches via the '+++' command on the BLE peripheral of BLE UART side of the connection.

Codebase Version: 0.7.1

Parameters:

- **location**: This can be a string, either **local**' or 'ble' indicating which side should have the '+++' command enabled or disabled, 'local' being the Bluefruit peripheral and 'ble' being the phone or tablet.
- state: '0' to disable '+++' mode switches, 1' to enable them.

Output: None

By default, '+++' is enabled locally, and disabled in BLE

Disable reomte '+++' mode switches AT+MODESWITCHEN=ble,0 OK

Hardware

The following commands allow you to interact with the low level HW on the Bluefruit LE module, such as reading or toggling the GPIO pins, performing an ADC conversion ,etc.:

AT+BAUDRATE

Changes the baud rate used by the HW UART peripheral on the nRF51822.

Codebase Revision: 0.7.0

Parameters: Baud rate, which must be one of the following values:

- 1200
- 2400
- 4800
- 9600
- 14400
- 19200
- 28800
- 38400
- 57600
- 76800
- 115200
- 230400
- 250000
- 460800
- 921600
- 1000000

Set the baud rate to 115200 AT+BAUDRATE=115200 OK

Output: The current baud rate

Check the current baud rate AT+BAUDRATE 115200

AT+HWADC

Performs an ADC conversion on the specified ADC pin

Codebase Revision: 0.3.0

Parameters: The ADC channel (0..7)

Output: The results of the ADC conversion

AT+HWADC=0 178 OK

AT+HWGETDIETEMP

Gets the temperature in degree celcius of the BLE module's die. This can be used for debug purposes (higher die temperature generally means higher current consumption), but does not corresponds to ambient temperature and can nto be used as a replacement for a normal temperature sensor.

Codebase Revision: 0.3.0

Parameters: None

Output: The die temperature in degrees celcius

AT+HWGPIO

Gets or sets the value of the specified GPIO pin (depending on the pin's mode).

Codebase Revision: 0.3.0

Parameters: The parameters for this command change depending on the pin mode.

OUTPUT MODE: The following comma-separated parameters can be used when updating a pin that is set as an output:

- Pin numbers
- · Pin state, where:
 - 0 = clear the pin (logic low/GND)
 - 1 = set the pin (logic high/VCC)

INPUT MODE: To read the current state of an input pin or a pin that has been configured as an output, enter the pin number as a single parameter.

Output: The pin state if you are reading an input or checking the state of an input pin (meaning only 1 parameter is supplied, the pin number), where:

- . 0 means the pin is logic low/GND
- 1 means the pin is logic high/VCC

Trying to set the value of a pin that has not been configured as an output will produce an 'ERROR' response.

Some pins are reserved for specific functions on Bluefruit modules and can not be used as GPIO. If you try to make use of a reserved pin number an 'ERROR' response will be generated.

```
# Set pin 14 HIGH
AT+HWGPIO=14,1
OK

# Set pin 14 LOW
AT+HWGPIO=14,0
OK

# Read the current state of pin 14
AT+HWGPIO=14
0
OK

# Try to update a pin that is not set as an output
AT+HWGPIOMODE=14,0
OK
AT+HWGPIO=14,1
```

AT+HWGPIOMODE

This will set the mode for the specified GPIO pin (input, output, etc.).

Codebase Revision: 0.3.0

Parameters: This command one or two values (comma-separated in the case of two parameters being used):

- The pin number
- The new GPIO mode, where:
 - \circ 0 = Input
 - ∘ 1 = Output
 - o 2 = Input with pullup enabled
 - 3 = Input with pulldown enabled

Output: If a single parameters is passed (the GPIO pin number) the current pin mode will be returned.

Some pins are reserved for specific functions on Bluefruit modules and can not be used as GPIO. If you try to make use of a reserved pin number an 'ERROR' response will be generated.

Configure pin 14 as an output AT+HWGPIOMODE=14,0

ΟK

Get the current mode for pin 14 AT+HWPGIOMODE=14 0

AT+HWI2CSCAN

Scans the I2C bus to try to detect any connected I2C devices, and returns the address of devices that were found during the scan process.

Codebase Revision: 0.3.0

Parameters: None

Output: A comma-separated list of any I2C address that were found while scanning the valid address range on the I2C bus, or nothing is no devices were found.

I2C scan with two devices detected AT+HWI2CSCAN 0x23,0x35 OK

I2C scan with no devices detected AT+HWI2CSCAN

AT+HWVBAT

Returns the main power supply voltage level in millivolts

Codebase Revision: 0.3.0

Parameters: None

Output: The VBAT level in millivolts

AT+HWVBAT 3248

AT+HWRANDOM

Generates a random 32-bit number using the HW random number generator on the nRF51822 (based on white noise).

Codebase Revision: 0.4.7

Parameters: None

Output: A random 32-bit hexadecimal value (ex. '0x12345678')

AT+HWRANDOM 0x769ED823

AT+HWMODELED

Allows you to override the default behaviour of the MODE led (which indicates the operating mode by default).

Codebase Revision: 0.6.6

Parameters: LED operating mode, which can be one of the following values:

- disable or DISABLE or 0 Disable the MODE LED entirely to save power
- mode or MODE or 1 Default behaviour, indicates the current operating mode
- hwuart or HWUART or 2 Toggles the LED on any activity on the HW UART bus (TX or RX)
- bleuart or BLEUART or 3 Toggles the LED on any activity on the BLE UART Service (TX or RX characteristic)
- spi or SPI or 4 Toggles the LED on any SPI activity
- manual or MANUAL or 5 Manually sets the state of the MODE LED via a second comma-separated parameter, which can be on, off, or toggle.

Output: If run with no parameters, returns an upper-case string representing the current MODE LED operating mode from the fields above

Get the curent MODE LED setting
AT+HWMODELED
MODE
OK
Change the MODE LED to indicate BLE UART activity
AT+HWMODELED=BLEUART
OK
Manually toggle the MODE LED
AT+HWMODELED=MANUAL,TOGGLE

AT+UARTFLOW

Enables or disable hardware flow control (CTS + RTS) on the UART peripheral block of the nRF51822.

Codebase Revision: 0.7.0

Parameters: HW flow control state, which can be one of:

- on
- off
- 0
- 1

Output: If run with no parameters, returns a number representing whether flow control is enabled (1) or disabled (0).

Check the current flow control state AT+UARTFLOW 1 OK

Disable HW flow control AT+UARTFLOW=off OK

Beacon

Adafruit's Bluefruit LE modules currently support the following 'Beacon' technologies:

- Beacon (Apple) via AT+BLEBEACON
- UriBeacon (Google) via AT+BLEURIBEACON (deprecated)
- Eddystone (Google) via AT+EDDYSTONE*

Modules can be configured to act as 'Beacons' using the following commands:

AT+BLEBEACON

Codebase Revision: 0.3.0

Parameters: The following comma-separated parameters are required to enable beacon mode:

- Bluetooth Manufacturer ID (uint16_t)
- 128-bit UUID
- Major Value (uint16_t)
- Minor Value (uint16_t)
- RSSI @ 1m (int8_t)

Output: None

Enable Apple iBeacon emulation

Manufacturer ID = 0x004C

AT+BLEBEACON=0x004C,01-12-23-34-45-56-67-78-89-9A-AB-BC-CD-DE-EF-F0,0x0000,0x0000,-59

OK

Reset to change the advertising data

ATZ OK

Enable Nordic Beacon emulation

Manufacturer ID = 0x0059

OK

Reset to change the advertising data

ATZ OK

AT+BLEBEACON will cause the beacon data to be stored in non-volatile config memory on the Bluefruit LE module, and these values will be persisted across system resets and power cycles. To remove or clear the beacon data you need to enter the 'AT+FACTORYRESET' command in command mode.

Entering Nordic Beacon emulation using the sample code above, you can see the simulated beacon in Nordio's 'Beacon Config' tool below:

AT+BLEURIBEACON

Converts the specified URI into a <u>UriBeacon</u> (http://adafru.it/edk) advertising packet, and configures the module to advertise as a UriBeacon (part of Google's <u>Physical Web</u> (http://adafru.it/ehZ) project).

To view the UriBeacon URIs you can use one of the following mobile applications:

- Android 4.3+: Physical Web (http://adafru.it/edi) on the Google Play Store
- iOS: Physical Web (http://adafru.it/edj) in Apple's App Store

Codebase Revision: 0.4.7

Parameters: The URI to encode (ex. http://www.adafruit.com/blog (http://adafru.it/ei0))

Output: None of a valid URI was entered (length is acceptable, etc.).

AT+BLEURIBEACON=http://www.adafruit.com/blog

Reset to change the advertising data

ATZ

If the supplied URI is too long you will get the following output:

AT+BLEURIBEACON=http://www.adafruit.com/this/uri/is/too/long URL is too long ERROR

If the URI that you are trying to encode is too long, try using a shortening service like bit.ly, and encode the shortened URI.

UriBeacon should be considered deprecated as a standard, and EddyStone should be used for any future development. No further development will happen in the Bluefruit LE firmware around UriBeacon.

Deprecated: AT+EDDYSTONEENABLE

This command will enable <u>Eddystone</u> (http://adafru.it/fSA) support on the Bluefruit LE module. Eddystone support must be enabled before the other related commands can be used.

Codebase Revision: 0.6.6

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: The current state of Eddystone support if no parameters are provided (1 = enabled, 0 = disabled)

This command was removed in firmware 0.7.0 to avoid confusion. Use AT+EDDYSTONESERVICEEN in 0.7.0 and higher.

Enable Eddystone support
AT+EDDYSTONEENABLE=1
OK

Check the current Eddystone status on the module
AT+EDDYSTONEENABLE
1

AT+EDDYSTONEURL

This command will set the URL for the Eddystone-URL (http://adafru.it/fSB) protocol.

Codebase Revision: 0.6.6

Parameters:

- The URL to encode (mandatory)
- An optional second parameter indicates whether to continue advertising the Eddystone URL even when the peripheral is connected to a central device
- Firmware **0.6.7** added an optional third parameter for the RSSI at 0 meters value. This should be measured by the end user by checking the RSSI value on the receiving device at 1m and then adding 41 to that value (to compensate for the signal strength loss over 1m), so an RSSI of -62 at 1m would mean that you should enter -21 as the RSSI at 0m. Default value is -18dBm.

Output: Firmware <= 0.6.6: none. With firmware >= 0.6.7 running this command with no parameters will return the current URL.

Set the Eddystone URL to adafruit AT+EDDYSTONEURL=http://www.adafruit.com OK

Set the Eddystone URL to adafruit and advertise it even when connected AT+EDDYSTONEURL=http://www.adafruit.com,1

AT+EDDYSTONECONFIGEN

This command causes the Bluefruit LE module to enable the Eddystone URL config service for the specified number of seconds.

This command should be used in combination with the Physical Web application from Google, available for Android (http://adafru.it/edi) or iOS (http://adafru.it/edj). Run this command then select the 'Edit URL' option from the app to change the destination URL over the air.

Codebase Revision: 0.6.6

Parameters: The number of seconds to advertised the config service UUID

Output: None

Start advertising the Eddystone config service for 5 minutes (300s) AT+EDDYSTONECONFIGEN=300

OK

AT+EDDYSTONESERVICEEN

Adds or removes the Eddystone service from the GATT table (requires a reset to take effect).

Codebase Revision: 0.7.0

Parameters: Whether or not the Eddystone service should be enabled or not, using on of the following values:

- on
- off
- 1
- 0

Output: If the command is executed with no parameters it will disable a numeric value indicating whether the service is enabled (1) or disabled (0).

You must perform a system reset for this command to take effect.

Enable Eddystone service AT+EddyStonServiceEn=on

AT+EddyStonServiceEn=1

OK

Disable Eddystone service AT+EddyStonServiceEn=off OK

AT+EddyStonServiceEn=0

AT+EDDYSTONEBROADCAST

This command can be used to start of stop advertising the Eddystone payload using the URL stored in non-volatile memory (NVM).

Codebase Revision: 0.7.0

Parameters: Whether or not the payload should be broadcast, using one of the following values:

- on
- off
- 1
- 0

Output: If executed with no parameters, the current broadcast state will be displayed as a numeric value.

Enable broadcasting current setting of EddyStone (stored previously on nvm)

AT+EddyStoneBroadcast=on

OK

AT+EddyStoneBroadcast=1

OK

Disable broadcasting current setting of EddyStone (still stored on nvm)

AT+EddyStoneBroadcast=off

OK

AT+EddyStoneBroadcast=0

OK

BLE Generic

The following general purpose BLE commands are available on Bluefruit LE modules:

AT+BLEPOWERLEVEL

Gets or sets the current transmit power level for the module's radio (higher transmit power equals better range, lower transmit power equals better battery life).

Codebase Revision: 0.3.0

Parameters: The TX power level (in dBm), which can be one of the following values (from lowest to higher transmit power):

- -40
- -20
- -16
- -12-8
- 0
- -40
- 4

Output: The current transmit power level (in dBm)

The updated power level will take affect as soon as the command is entered. If the device isn't connected to another device, advertising will stop momentarily and then restart once the new power level has taken affect.

```
# Get the current TX power level (in dBm)
AT+BLEPOWERLEVEL
0
OK

# Set the TX power level to 4dBm (maximum value)
AT+BLEPOWERLEVEL=4
OK

# Set the TX power level to -12dBm (better battery life)
AT+BLEPOWERLEVEL=-12
OK

# Set the TX power level to an invalid value
AT+BLEPOWERLEVEL=-3
```

AT+BLEGETADDRTYPE

Gets the address type (for the 48-bit BLE device address).

Normally this will be '1' (random), which means that the module uses a 48-bit address that was randomly generated during the manufacturing process and written to the die by the manufacturer.

Random does not mean that the device address is randomly generated every time, only that a one-time random number is used.

Codebase Revision: 0.3.0

Parameters: None

Output: The address type, which can be one of the following values:

- 0 = public
- 1 = random

AT+BLEGETADDRTYPE
1

OK

AT+BLEGETADDR

Gets the 48-bit BLE device address.

Codebase Revision: 0.3.0

Parameters: None

Output: The 48-bit BLE device address in the following format: 'AA:BB:CC:DD:EE:FF'

AT+BLEGETADDR E4:C6:C7:31:95:11

AT+BLEGETPEERADDR

Gets the 48-bit address of the peer (central) device we are connected to.

Codebase Revision: 0.6.5

Parameters: None

Output: The 48-bit address of the connected central device in hex format. The command will return**ERROR** if we are not connected to a central device.

Please note that the address returned by the central device is almost always a random value that will change over time, and this value should generally not be trusted. This command is provided for certain edge cases, but is not useful in most day to day scenarios.

AT+BLEGETPEERADDR 48:B2:26:E6:C1:1D

AT+BLEGETRSSI

Gets the RSSI value (Received Signal Strength Indicator), which can be used to estimate the reliability of data transmission between two devices (the lower the number the better).

Codebase Revision: 0.3.0

Parameters: None

Output: The RSSI level (in dBm) if we are connected to a device, otherwise '0'

Connected to an external device AT+BLEGETRSSI

-46 OK

Not connected to an external device

AT+BLEGETRSSI

0 OK

BLE Services

The following commands allow you to interact with various GATT services present on Bluefruit LE modules when running in Command Mode.

AT+BLEUARTTX

This command will transmit the specified text message out via the <u>UART Service</u> (http://adafru.it/iCn) while you are running in Command Mode.

Codebase Revision: 0.3.0

Parameters: The message payload to transmit. The payload can be up to 240 characters (since AT command strings are limited to a maximum of 256 bytes total).

Output: This command will produce an ERROR message if you are not connected to a central device, or if the internal TX FIFO on the Bluefruit LE module is full.

As of firmware release 0.6.2 and higher, AT+BLEUARTTX can accept a limited set of escape code sequences:

- \r = carriage return
- \n = new line
- \t = tab
- \b = backspace
- \\ = backward slash

As of firmware release **0.6.7** and higher, AT+BLEUARTTX can accept the following escape code sequence since AT+BLEUARTTX=? has a specific meaning to the AT parser:

• \? = transmits a single question mark

As of firmware release 0.7.6 and higher, AT+BLEUARTTX can accept the following escape code sequence:

• \+ = transmit a single '+' character without having to worry about `+++` mode switch combinations

ESCAPE SEQUENCE NOTE: If you are trying to send escape sequences in code via something like 'ble.print("...");' please note that you will need to send a double back-slash for the escape code to arrive as-intended in the AT command. For example: ble.println("AT+BLEUARTTX=Some Test\\r\\n"):

You must be connected to another device for this command to execute

Send a string when connected to another device AT+BLEUARTTX=THIS IS A TEST OK

Send a string when not connected AT+BLEUARTTX=THIS IS A TEST FRROR

TX FIFO Buffer Handling

Starting with firmware version **0.6.7**, when the TX FIFO buffer is full a 200ms blocking delay will be used to see if any free space becomes available in the FIFO before returning ERROR. The exact process is detailed in the flow chart below:

Note: The TX FIFO full check will happen for each GATT transaction (of up to 20 bytes of data each), so large data transfers may have multiple 200ms wait states.

You can use the <u>AT+BLEUARTFIFO=TX</u> (http://adafru.it/id3) command to check the size of the TX FIFO before sending data to ensure that you have enough free space available in the buffer.

The TX FIFO has the following size, depending on the firmware version used:

- Firmware <=0.6.6: 160 characters wide
- Firmware >=0.6.7: 1024 characters wide

It IS possible with large data transfers that part of the payload can be transmitted, and the command can still produce an ERROR if the FIFO doesn't empty in time in the middle of the payload transfer (since data is transmitted in maximum 20 byte chunks). If you need to ensure reliable data transfer, you should always check the TX FIFO size before sending data, which you can do using the AT+BLEUARTFIFO command. If not enough space is available for the entire payload, add a SW delay until enough space is available. Any single AT+BLEUARTTX command can fit into the FIFO, but multiple large instances of this command may cause the FIFO to fill up mid transfer.

AT+BLEUARTTXF

This is a convenience function the serves the same purpose as AT+BLEUARTTX, but data is immediately sent in a single BLE packet ('F' forforce packet). This command will accept a maximum of 20 characters, which is the limit of what can be send in a single packet.

Codebase Revision: 0.7.6

Parameters: See AT+BLEUARTTX
Output: See AT+BLEUARTTX

AT+BLEUARTRX

This command will dump the <u>UART service</u> (http://adafru.it/iCn)'s RX buffer to the display if any data has been received from the UART service while running in Command Mode. The data will be removed from the buffer once it is displayed using this command.

Any characters left in the buffer when switching back to Data Mode will cause the buffered characters to be displayed as soon as the mode switch is complete (within the limits of available buffer space, which is 1024 bytes on current black 32KB SRAM devices, or 160 bytes for the blue first generation BLEFriend board based on 16KB SRAM parts).

Codebase Revision: 0.3.0

Parameters: None

Output: The RX buffer's content if any data is available, otherwise nothing.

You can also use the AT+BLEUARTFIFO=RX command to check if any incoming data is available or not.

Command results when data is available AT+BLEUARTRX Sent from Android OK

Command results when no data is available AT+BLEUARTRX OK

AT+BLEUARTFIFO

This command will return the free space available in the BLE UART TX and RX FIFOs. If you are transmitting large chunks of data, you may want to check if you have enough free space in the TX FIFO before sending, keeping in mind that individual GATT packets can contain up to 20 user bytes each.

Codebase Revision: 0.6.7

Parameters: Running this command with no parameters will return two comma-separated values indicating the free space in the TX buffer, following by the RX buffer. To request a specific buffer, you can execute the command with either a "TX" or "RX" value (For example: "AT+BLEUARTFIFO=TX").

Output: The free space remaining in the TX and RX FIFO buffer if no parameter is present, otherwise the free space remaining in the specified FIFO buffer.

AT+BLEUARTFIFO 1024,1024 OK

AT+BLEUARTFIFO=TX 1024 OK

AT+BLEUARTFIFO=RX 1024 OK

AT+BLEKEYBOARDEN

This command will enable GATT over HID (GoH) keyboard support, which allows you to emulate a keyboard on supported iOS and Android devices. By default HID keyboard support is disabled, so you need to set BLEKEYBOARDEN to 1 and then perform a system reset before the keyboard will be enumerated and appear in the Bluetooth preferences on your phone, where if can be bonded as a BLE keyboard.

Codebase Revision: 0.5.0

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: None

As of firmware version 0.6.6 this command is now an alias for AT+BLEHIDEN

You must perform a system reset (ATZ) before the changes take effect!

Before you can use your HID over GATT keyboard, you will need to bond your mobile device with the Bluefruit LE module in the Bluetooth preferences panel.

Enable BLE keyboard support then reset AT+BLEKEYBOARDEN=1

OK ATZ OK

Disable BLE keyboard support then reset

AT+BLEKEYBOARDEN=0

OK ATZ

AT+BLEKEYBOARD

Sends text data over the BLE keyboard interface (if it has previously been enabled via AT+BLEKEYBOARDEN).

Any valid alpha-numeric character can be sent, and the following escape sequences are also supported:

• \r - Carriage Return

- \n Line Feed
- \b Backspace
- \t Tab
- \\ Backslash

As of version 0.6.7 you can also use the following escape code when sending a single character ('AT+BLEKEYBOARD=?' has another meaning for the AT parser):

• \? - Question mark

Codebase Revision: 0.5.0

Parameters: The text string (optionally including escape characters) to transmit

Output: None

Send a URI with a new line ending to execute in Chrome, etc. AT+BLEKEYBOARD=http://www.adafruit.com/r\n OK

Send a single question mark (special use case, 0.6.7+) AT+BLEKEYBOARD=\? \bigcirc K

AT+BLEKEYBOARDCODE

Sends a raw hex sequence of USB HID keycodes to the BLE keyboard interface including key modifiers and up to six alpha-numeric characters.

This command accepts the following ascii-encoded HEX payload, matching the way HID over GATT sends keyboard data:

- Byte 0: Modifier
- Byte 1: Reserved (should always be 00)
- Bytes 2..7: Hexadecimal values for ASCII-encoded characters (if no character is used you can enter '00' or leave trailing characters empty)

After a keycode sequence is sent with the AT+BLEKEYBOARDCODE command, you must send a second AT+BLEKEYBOARDCODE command with at least two 00 characters to indicate the keys were released!

Modifier Values

The modifier byte can have one or more of the following bits set:

- Bit 0 (0x01): Left Control
- Bit 1 (0x02): Left Shift
- Bit 2 (0x04): Left Alt
- Bit 3 (0x08): Left Window
- Bit 4 (0x10): Right Control
- Bit 5 (0x20): Right Shift
- Bit 6 (0x40): Right Alt
- Bit 7 (0x80): Right Window

Codebase Revision: 0.5.0

Parameters: A set of hexadecimal values separated by a hyphen ('-'). Note that these are HID scan code values, not standard ASCII values!

Output: None

HID key code values don't correspond to ASCII key codes! For example, 'a' has an HID keycode value of '04', and there is no keycode for an upper case 'A' since you use the modifier to set upper case values. For details, google 'usb hid keyboard scan codes', and see the example below.

A list of HID keyboard codes can be found http://adafru.it/cQV) (see section 7).

send 'abc' with shift key --> 'ABC'
AT+BLEKEYBOARDCODE=02-00-04-05-06-00-00
OK
Indicate that the keys were released (mandatory!)
AT+BLEKEYBOARDCODE=00-00

AT+BLEHIDEN

This command will enable GATT over HID (GoH) support, which allows you to emulate a keyboard, mouse or media controll on supported iOS,

Android, OSX and Windows 10 devices. By default HID support is disabled, so you need to set BLEHIDEN to 1 and then perform a system reset before the HID devices will be enumerated and appear in on your central device.

Codebase Revision: 0.6.6

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: None

You normally need to 'bond' the Bluefruit LE peripheral to use the HID commands, and the exact bonding process will change from one operating system to another.

If you have previously bonded to a device and need to clear the bond, you can run the AT+FACTORYRESET command which will erase all stored bond data on the Bluefruit LE module.

Enable GATT over HID support on the Bluefruit LE module AT+BLEHIDEN=1
OK

OK

Reset so that the changes take effect

ATZ OK

AT+BLEHIDMOUSEMOVE

Moves the HID mouse or scroll wheen position the specified number of ticks.

All parameters are signed 8-bit values (-128 to +127). Positive values move to the right or down, and origin is the top left corner.

Codebase Revision: 0.6.6

Parameters: X Ticks (+/-), Y Ticks (+/-), Scroll Wheel (+/-), Pan Wheel (+/-)

Output: None

Move the mouse 100 ticks right and 100 ticks down AT+BLEHIDMOUSEMOVE=100,100

Scroll down 20 pixels or lines (depending on context)
AT+BLEHIDMOUSEMOVE=,,20,
OK

Pan (horizontal scroll) to the right (exact behaviour depends on OS) AT+BLEHIDMOUSEMOVE=0,0.0,100

AT+BLEHIDMOUSEBUTTON

Manipulates the HID mouse buttons via the specific string(s).

Codebase Revision: 0.6.6

Parameters: Button Mask String [L][R][M][B][F], Action [PRESS][CLICK][DOUBLECLICK][HOLD]

- L = Left Button
- R = Right Button
- M = Middle Button
- B = Back Button
- F = Forward Button
- If the second parameter (Action) is "HOLD", an optional third parameter can be passed specifying how long the button should be held in milliseconds.

Output: None

Double click the left mouse button
AT+BLEHIDMOUSEBUTTON=L,doubleclick

Press the left mouse button down, move the mouse, then release L
This is required to perform 'drag' then stop type operations
AT+BLEHIDMOUSEBUTTON=L
OK
AT+BLEHIDMOUSEMOVE=-100,50

OK

AT+BLEHIDMOUSEBUTTON=0

Hold the backward mouse button for 200 milliseconds (OS dependent) AT+BLEHIDMOUSEBUTTON=B,hold,200

AT+BLEHIDCONTROLKEY

Sends HID media control commands for the bonded device (adjust volume, screen brightness, song selection, etc.).

Codebase Revision: 0.6.6

Parameters: The HID control key to send, followed by an optional delay in ms to hold the button

The control key string can be one of the following values:

- System Controls (works on most systems)
 - BRIGHTNESS+
 - BRIGHTNESS-
- Media Controls (works on most systems)
 - PLAYPAUSE
 - MEDIANEXT
 - MEDIAPREVIOUS
 - MEDIASTOP
- Sound Controls (works on most systems)
 - VOLUME
 - MUTE
 - BASS
 - TRFBLF
 - BASS_BOOST

 - VOLUME+
 - VOLUME-
 - BASS+
 - BASS-
 - TREBLE+
 - TREBLE-
- Application Launchers (Windows 10 only so far)
 - EMAILREADER
 - CALCULATOR
 - FILEBROWSER
- · Browser/File Explorer Controls (Firefox on Windows/Android only)
 - SEARCH
 - HOME
 - BACK
 - FORWARD
 - STOP
 - REFRESH
 - BOOKMARKS

You can also send a raw 16-bit hexadecimal value in the '0xABCD' format. A full list of 16-bit 'HID Consumer Control Key Codes' can be found here (http://adafru.it/cQV)(see section 12).

Output: Normally none.

If you are not bonded and connected to a central device, this command will return ERROR. Make sure you are connected and HID support is enabled before running these commands.

Toggle the sound on the bonded central device AT+BLEHIDCONTROLKEY=MUTE OK

Hold the VOLUME+ key for 500ms AT+BLEHIDCONTROLKEY=VOLUME+,500

Send a raw 16-bit Consumer Key Code (0x006F = Brightness+) AT+BLEHIDCONTROLKEY=0x006F

AT+BLEHIDGAMEPADEN

Enables HID gamepad support in the HID service. By default the gamepad is disabled as of version 0.7.6 of the firmware since it causes problems on iOS and OS X and should only be used on Android and Windows based devices.

Codebase Revision: 0.7.6

Parameters: Whether the gamepad service should be enabled via one of the following values:

- on
- off1
- 0

Output: If executed with no parameters, a numeric value will be returned indicating whether the battery service is enabled (1) or disabled (0).

This command requires a system reset to take effect.

AT+BLEHIDGAMEPAD

Sends a specific HID gamepad payload out over BLE

Codebase Revision: 0.7.0

Parameters: The following comma-separated parameters are available:

- x: LEFT, RIGHT: If X=-1 then 'LEFT' is pressed, if X=1 then 'RIGHT' is pressed, if X=0 then neither left nor right are pressed
- y: UP, DOWN: If Y=-1 then 'UP' is pressed, if Y=1 then 'DOWN' is pressed, if Y=0 then neither up nor down are pressed
- buttons: 0x00-0xFF, which is a bit mask for 8 button 0-7

Output: Nothing

HID gamepad is disabled by default as of version 0.7.6, and must first be enabled via AT+BLEHIDGAMEPADEN=1 before it can be used. Note: You need to send both 'press' and 'release' events for each button, otherwise the system will think that the button is still pressed until a release state is received.

Press 'RIGHT' and 'Button0' at the same time AT+BLEHIDGAMEPAD=1,0,0x01

Press 'UP' and 'Button1' + 'Button0' at the same time AT+BLEHIDGAMEPAD=0.-1.0x03

AT+BLEMIDIEN

Enables or disables the BLE MIDI service.

Codebase Revision: 0.7.0

Parameters: State, which can be one of:

- on
- off
- 0

• 1

Output: If executed with no parameters, it will return the current state of the MIDI service as an integer indicating if it is enabled (1) or disabled (0).

Note: This command will require a reset to take effect.

Check the current state of the MIDI service AT+BLEMIDIEN 1 OK

Enable the MIDI Service AT+BLEMIDIEN=1 OK

AT+BLEMIDIRX

Reads an incoming MIDI character array from the buffer.

Codebase Revision: 0.7.0

Parameters: None

Output: The midi event in byte array format

AT+BLEMIDIRX 90-3C-7F

AT+BLEMIDITX

Sends a MIDI event to host.

Codebase Revision: 0.7.0

Parameters: The MIDI event in hex array format, which can be either:

· A series of full MIDI events (up to 4 events)

• Exactly 1 full MIDI event + several running events without status (up to 7)

Output: None

Send 1 event (middle C with max velocity)
AT+BLEMIDITX=90-3C-7F
OK

Send 2 events
AT+BLEMIDITX=90-3C-7F-A0-3C-7F
OK

Send 1 full event + running event
AT+BLEMIDITX=90-3C-7F-3C-7F

AT+BLEBATTEN

Enables the Battery Service following the definition from the Bluetooth SIG.

Codebase Revision: 0.7.0

Parameters: Whether the battery service should be enabled, via on of the following values:

- on
- off
- 1
- 0

Output: If executed with no parameters, a numeric value will be returned indicating whether the battery service is enabled (1) or disabled (0).

This command requires a system reset to take effect.

Enable the Battery Service AT+BLEBATTEN=1

AT+BLEBATTVAL

Sets the current battery level in percentage (0..100) for the Battery Service (if enabled).

Codebase Revision: 0.7.0

Parameters: The percentage for the battery in the range of 0..100.

Output: If executed with no parameters, the current battery level stored in the characteristic.

Set the battery level to 72% AT+BLEBATTVAL=72 OK

BLE GAP

GAP (http://adafru.it/iCo), which stands for the Generic Access Profile, governs advertising and connections with Bluetooth Low Energy devices.

The following commands can be used to configure the GAP settings on the BLE module.

You can use these commands to modify the advertising data (for ex. the device name that appears during the advertising process), to retrieve information about the connection that has been established between two devices, or the disconnect if you no longer wish to maintain a connection.

AT+GAPCONNECTABLE

This command can be used to prevent the device from being 'connectable'.

Codebase Revision: 0.7.0

Parameters: Whether or not the device should advertise itself as connectable, using one of the following values:

- yes
- no
- 1
- 0

Output: The 'connectable' state of the device if no parameter is provided

```
# Make the device non-connectable (advertising only)
AT+GAPCONNECTABLE=0
OK

# Check the current connectability status
AT+GAPCONNECTABLE
1
OK
```

AT+GAPGETCONN

Diplays the current connection status (if we are connected to another BLE device or not).

Codebase Revision: 0.3.0

Parameters: None

Output: 1 if we are connected, otherwise 0

Connected AT+GAPGETCONN 1 OK # Not connected AT+GAPGETCONN 0 OK

AT+GAPDISCONNECT

Disconnects to the external device if we are currently connected.

Codebase Revision: 0.3.0

Parameters: None
Output: None
AT+GAPDISCONNECT

AT+GAPDEVNAME

Gets or sets the device name, which is included in the advertising payload for the Bluefruit LE module

Codebase Revision: 0.3.0

Parameters:

- · None to read the current device name
- The new device name if you want to change the value

Output: The device name if the command is executed in read mode

Updating the device name will persist the new value to non-volatile memory, and the updated name will be used when the device is reset. To reset the device to factory settings and clean the config data from memory run the AT+FACTORYRESET command.

Read the current device name AT+GAPDEVNAME UART OK

Update the device name to 'BLEFriend'
AT+GAPDEVNAME=BLEFriend
OK
Reset to take effect
ATZ

AT+GAPDELBONDS

Deletes and bonding information stored on the Bluefruit LE module.

Codebase Revision: 0.3.0

Parameters: None
Output: None

AT+GAPDELBONDS

OK

AT+GAPINTERVALS

Gets or sets the various advertising and connection intervals for the Bluefruit LE module.

Be extremely careful with this command since it can be easy to cause problems changing the intervals, and depending on the values selected some mobile devices may no longer recognize the module or refuse to connect to it.

Codebase Revision: 0.3.0

Parameters: If updating the GAP intervals, the following comma-separated values can be entered:

- Minimum connection interval (in milliseconds)
- Maximum connection interval (in milliseconds)
- Fast Advertising interval (in milliseconds)
- Fast Advertising timeout (in seconds)
- \bullet >= 0.7.0: Low power advertising interval (in milliseconds), default = 417.5 ms

To save power, the Bluefruit modules automatically drop to a lower advertising rate after 'fast advertising timeout' seconds. The default value is 30 seconds ('Fast Advertising Timeout'). The low power advertising interval is hard-coded to approximately 0.6s in firmware < 0.7.0. Support to control the low power interval was added in the 0.7.0 firmware release via an optional fifth parameter.

Please note the following \min and \max limitations for the GAP parameters:

- Absolute minimum connection interval: 10ms
- Absolute maximum connection interval: 4000ms
- Absolute minimum fast advertising interval: 20ms
- Absolute maximum fast advertisting interval: 10240ms
- Absolute minimum low power advertising interval: 20ms
- Absolute maximum low power advertising interval: 10240ms

If you only wish to update one interval value, leave the other comma-separated values empty (ex. ',,110,' will only update the third value, advertising interval).

Output: If reading the current GAP interval settings, the following comma-separated information will be displayed:

- Minimum connection interval (in milliseconds)
- · Maximum connection interval (in milliseconds)
- · Advertising interval (in milliseconds)
- · Advertising timeout (in milliseconds)

Updating the GAP intervals will persist the new values to non-volatile memory, and the updated values will be used when the device is reset. To reset the device to factory settings and clean the config data from memory run the AT+FACTORYRESET command.

Read the current GAP intervals AT+GAPINTERVALS 20,100,100,30

Update all values AT+GAPINTERVALS=20,200,200,30 OK

Update only the advertising interval AT+GAPINTERVALS=,,150, OK

AT+GAPSTARTADV

Causes the Bluefruit LE module to start transmitting advertising packets if this isn't already the case (assuming we aren't already connected to an external device).

Codebase Revision: 0.3.0

Parameters: None

Output: None

Command results when advertising data is not being sent AT+GAPSTARTADV OK

Command results when we are already advertising AT+GAPSTARTADV FRROR

Command results when we are connected to another device AT+GAPSTARTADV

AT+GAPSTOPADV

Stops advertising packets from being transmitted by the Bluefruit LE module.

Codebase Revision: 0.3.0

Parameters: None
Output: None
AT+GAPSTOPADV

OK

AT+GAPSETADVDATA

Sets the raw advertising data payload to the specified byte array (overriding the normal advertising data), following the guidelines in the luetooth 4.0 or 4.1 Core Specification (http://adafru.it/ddd).

In particular, **Core Specification Supplement (CSS) v4** contains the details on common advertising data fields like 'Flags' (Part A, Section 1.3) and the various Service UUID lists (Part A, Section 1.1). A list of all possible GAP Data Types is available on the Bluetooth SIG's <u>Generic Access Profile</u> (http://adafru.it/cYs) page.

The Advertising Data payload consists of Generic Access Profile (http://adafru.it/cYs) data that is inserted into the advertising packet in the following format: [U8:LEN] [U8:Data Type Value] [n:Value]

WARNING: This command requires a degree of knowledge about the low level details of the Bluetooth 4.0 or 4.1 Core Specification, and should only be used by expert users. Misuse of this command can easily cause your device to be undetectable by central devices in radio range.

WARNING: This command will override the normal advertising payload and may prevent some services from acting as expected. To restore the advertising data to the normal default values use the AT+FACTORYRESET command.

For example, to insert the 'Flags' Data Type (Data Type Value 0x01), and set the value to 0x06/0b00000110 (BR/EDR Not Supported and LE General Discoverable Mode) we would use the following byte array:

02-01-06

- 0x02 indicates the number of bytes in the entry
- 0x01 is the 'Data Type Value (http://adafru.it/cYs)' and indicates that this is a Flag'
- 0x06 (0b00000110) is the Flag value, and asserts the following fields (see Core Specification 4.0, Volume 3, Part C, 18.1):
 - LE General Discoverable Mode (i.e. anyone can discover this device)
 - o BR/EDR Not Supported (i.e. this is a Bluetooth Low Energy only device)

If we also want to include two 16-bit service UUIDs in the advertising data (so that listening devices know that we support these services) we could append the following data to the byte array:

05-02-0D-18-0A-18

- 0x05 indicates that the number of bytes in the entry (5)
- 0x02 is the '<u>Data Type Value</u> (http://adafru.it/cYs)' and indicates that this is an **Incomplete List of 16-bit Service Class UUIDs**'
- 0x0D 0x18 is the first 16-bit UUID (which translates to0x180D, corresponding to the Heart Rate Service (http://adafru.it/ddB)).
- 0x0A 0x18 is another 16-bit UUID (which translates to 0x180A, corresponding to the Device Information Service (http://adafru.it/ecj)).

Including the service UUIDs is important since some mobile applications will only work with devices that advertise a specific service UUID in the advertising packet. This is true for most apps from Nordic Semiconductors, for example.

Codebase Revision: 0.3.0

Parameters: The raw byte array that should be inserted into the advertising data section of the advertising packet, being careful to stay within the space limits defined by the Bluetooth Core Specification.

Response: None

Advertise as Discoverable and BLE only with 16-bit UUIDs 0x180D and 0x180A AT+GAPSETADVDATA=02-01-06-05-02-0d-18-0a-18 OK

The results of this command can be seen in the screenshot below, taken from a sniffer analyzing the advertising packets in Wireshark. The advertising data payload is higlighted in blue in the raw byte array at the bottom of the image, and the packet analysis is in the upper section:

```
▼ Bluetooth Low Energy Link Laver

     Access Address: 0x8e89bed
   Decket Header: 0x0f40 (PDU Type: ADV_IND, TxAdd=false, RxAdd=false)
     Advertising Address: e4:c6:c7:31:95:11 (e4:c6:c7:31:95:11)
     ⊽ Flags
           Type: Flags (0x01)
          000. ... = Reserved: 0x00
...0 ... = Simultaneous LE and BR/EDR to Same Device Capable (Host): false (0x00)
           .... 0... = Simultaneous LE and BR/EDR to Same Device Capable (Controller): false (0x00)
          .... .1.. = BR/EDR Not Supported: true (0x01)
           .... ..1. = LE General Discoverable Mode: true (0x01)
                  ..0 = LE Limited Discoverable Mode: false (0x00)
     ▽ 16-bit Service Class UUIDs (incomplete)
          Length: 5
           Type: 16-bit Service Class UUIDs (incomplete) (0x02)
          UUID 16: Heart Rate (0x180d)
UUID 16: Device Information (0x180a)
  CRC: 0x93b900
0000 00 06 22 01 8b 17 06 0a 01 26 2b 00 00 97 02 00 0010 00 d6 be 89 8e 40 0f 11 95 31 c7 c6 e4 02 01 06 0020 05 02 0d 18 0a 18 c9 9d 00
```


BLE GATT

GATT (http://adafru.it/iCp), which standards for the *Generic ATTribute Profile*, governs data organization and data exchanges between connected devices. One device (the peripheral) acts as a GATT Server, which stores data in *Attribute* records, and the second device in the connection (the central) acts as a GATT Client, requesting data from the server whenever necessary.

The following commands can be used to create custom GATT services and characteristics on the BLEFriend, which are used to store and exchange data.

Please note that any characteristics that you define here will automatically be saved to non-volatile FLASH config memory on the device and reinitialised the next time the device starts.

You need to perform a system reset via 'ATZ' before most of the commands below will take effect!

GATT Limitations

The commands below have the following limitations due to SRAM and resource availability, which should be kept in mind when creating or working with customer GATT services and characteristics.

These values apply to firmware 0.7.0 and higher:

• Maximum number of services: 10

· Maximum number of characteristics: 30

· Maximum buffer size for each characteristic: 32 bytes

Maximum number of CCCDs: 16

If you want to clear any previous config value, enter the AT+FACTORYRESET' command before working on a new peripheral configuration.

AT+GATTCLEAR

Clears any custom GATT services and characteristics that have been defined on the device.

Codebase Revision: 0.3.0

Parameters: None
Response: None
AT+GATTCLEAR

AT+GATTADDSERVICE

Adds a new custom service definition to the device.

Codebase Revision: 0.3.0

Parameters: This command accepts a set of comma-separated key-value pairs that are used to define the service properties. The following key-value pairs can be used:

- UUID: The 16-bit UUID to use for this service. 16-bit values should be in hexadecimal format (0x1234).
- UUID128: The 128-bit UUID to use for this service. 128-bit values should be in the following format: 00-11-22-33-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF

Response: The index value of the service in the custom GATT service lookup table. (It's important to keep track of these index values to work with the service later.)

Note: Key values are not case-sensitive Only one UUID type can be entered for the service (either UUID or UUID128)

Clear any previous custom services/characteristics AT+GATTCLEAR

Add a battery service (UUID = 0x180F) to the peripheral AT+GATTADDSERVICE=UUID=0x180F

```
# Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK
# Clear any previous custom services/characteristics
AT+GATTCLEAR
OK
# Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
1
OK
# Add a custom characteristic to the above service (making sure that there
# is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK
```

AT+GATTADDCHAR

Adds a custom characteristic to the last service that was added to the peripheral (via AT+GATTADDSERVICE).

AT+GATTADDCHAR must be run AFTER AT+GATTADDSERVICE, and will add the new characteristic to the last service definition that was added.

As of version 0.6.6 of the Bluefruit LE firmware you can now use custom 128-bit UUIDs with this command. See the example at the bottom of this command description.

Codebase Revision: 0.3.0

Parameters: This command accepts a set of comma-separated key-value pairs that are used to define the characteristic properties. The following key-value pais can be used:

- **UUID**: The 16-bit UUID to use for the characteristic (which will be insert in the 3rd and 4th bytes of the parent services 128-bit UUID). This value should be entered in hexadecimal format (ex. 'UUID=0x1234'). This value must be unique, and should not conflict with bytes 3+4 of the parent service's 128-bit UUID.
- PROPERTIES: The 8-bit characteristic properties field, as defined by the Bluetooth SIG. The following values can be used:
 - o 0x02 Read
 - o 0x04 Write Without Response
 - o 0x08 Write
 - o 0x10 Notify
 - o 0x20 Indicate
- MIN_LEN: The minimum size of the values for this characteristic (in bytes, min = 1, max = 20, default = 1)
- MAX_LEN: The maximum size of the values for the characteristic (in bytes, min = 1, max = 20, default = 1)
- VALUE: The initial value to assign to this characteristic (within the limits of 'MIN_LEN' and 'MAX_LEN'). Value can be an integer ("-100", "27"), a hexadecimal value ("0xABCD"), a byte array ("aa-bb-cc-dd") or a string ("GATT!").
- >=0.7.0 DATATYPE: This argument indicates the data type stored in the characteristic, and is used to help parse data properly. It can be one of the following values:
 - o AUTO (0, default)
 - o STRING (1)
 - o BYTEARRAY (2)
 - o INTEGER (3)
- >=0.7.0 DESCRIPTION: Adds the specified string as the characteristic description entry
- >=0.7.0 PRESENTATION: Adds the specified value as the characteristic presentation format entry

Response: The index value of the characteristic in the custom GATT characteristic lookup table. (It's important to keep track of these characteristic index values to work with the characteristic later.)

Note: Key values are not case-sensitive

Make sure that the 16-bit UUID is unique and does not conflict with bytes 3+4 of the 128-bit service UUID

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

```
# Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK
# Clear any previous custom services/characteristics
AT+GATTCLEAR
OK
# Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
1
OK
# Add a custom characteristic to the above service (making sure that there
# is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK
```

Version **0.6.6** of the Bluefruit LE firmware added the ability to use a new**UUID128**' flag to add custom 128-bit UUIDs that aren't related to the parent service UUID (which is used when passing the 16-bit 'UUID' flag).

To specify a 128-bit UUID for your customer characteristic, enter a value resembling the following syntax:

```
# Add a custom characteristic to the above service using a
# custom 128-bit UUID
AT+GATTADDCHAR=UUID128=00-11-22-33-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK
```

Version **0.7.0** of the Bluefruit LE firmware added the new**DESCRIPTION** and **PRESENTATION** keywoards, corresponding the the GATT Characteristic User Description (http://adafru.it/oIA) and the GATT Characteristic User Description (http://adafru.it/oIB) Descriptors.

The **DESCRIPTION** field is a string that contains a short text description of the characteristic. Some apps may not display this data, but it should be visible using something like the Master Control Panel application from Nordic on iOS and Android.

The **PRESENTATION** field contains a 7-byte payload that encapsulates the characteristic presentation format data. It requires a specific set of bytes and values to work properly. See the following link for details on how to format the payload: https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?
https://descriptor.gatt.characteristic_presentation_format.xml (http://adafru.it/oIB)

The following example shows how you might use both of these new fields:

AT+GATTADDCHAR=UUID=0x2A37, PROPERTIES=0x10, MIN_LEN=2, MAX_LEN=3, VALUE=00-40, DESCRIPTION=HRM Measurement, PRESENTATION=17-00-AC-27-01-00-00

For the Characteristic Presentation Format we have:

- Format = IEEE-11073 32-bit FLOAT (Decimal 23, Hex 0x17)
- Exponent = 0/None
- Unit = Thermodynamic temperature: Degrees Fahrenheit (0x27AC) -Bluetooth LE Unit List (http://adafru.it/oID)
- Namespace = Bluetooth SIG Assigned Number (0x01)
- Description = None (0x0000)

The results from Nordic's Master Control Panel app can be seen below:

AT+GATTCHAR

Gets or sets the value of the specified custom GATT characteristic (based on the index ID returned when the characteristic was added to the system via AT+GATTADDCHAR).

Codebase Revision: 0.3.0

Parameters: This function takes one or two comma-separated functions (one parameter = read, two parameters = write).

- The first parameter is the characteristic index value, as returned from the AT+GATTADDCHAR function. This parameter is always required, and if no second parameter is entered the current value of this characteristic will be returned.
- The second (optional) parameter is the new value to assign to this characteristic (within the MIN_SIZE and MAX_SIZE limits defined when creating it).

Response: If the command is used in read mode (only the characteristic index is provided as a value), the response will display the current value of the characteristics. If the command is used in write mode (two comma-separated values are provided), the characteristics will be updated to use the provided value.

```
# Clear any previous custom services/characteristics
AT+GATTCLEAR
OK
# Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
OK
# Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN LEN=1,VALUE=100
# Read the battery measurement characteristic (index ID = 1)
AT+GATTCHAR=1
0x64
ΟK
# Update the battery measurement characteristic to 32 (hex 0x20)
AT+GATTCHAR=1,32
# Verify the previous write attempt
AT+GÁTTCHAR=1
0x20
OK
```

AT+GATTLIST

Lists all custom GATT services and characteristics that have been defined on the device.

```
Codebase Revision: 0.3.0
```

Parameters: None

Response: A list of all custom services and characteristics defined on the device.

```
# Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

# Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

# Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

# Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
2
OK

# Add a custom characteristic to the above service (making sure that there
# is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
2
OK
```

Get a list of all custom GATT services and characteristics on the device AT+GATTLIST ID=01,UUID=0x180F ID=01,UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,MAX_LEN=1,VALUE=0x64 ID=02,UUID=0x11, UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF ID=02,UUID=0x02,PROPERTIES=0x02,MIN_LEN=1,MAX_LEN=1,VALUE=0x64 OK

AT+GATTCHARRAW

This read only command reads binary (instead of ASCII) data from a characteristic. It is non-printable but has less overhead and is easier when writing libraries in Arduino.

Codebase Revision: 0.7.0

Parameters: The numeric ID of the characteristic to display the data for

Output: Binary data corresponding to the specified characteristic.

Note: This is a specialized command and no NEWLINE is present at the end of the command!

Debug

The following debug commands are available on Bluefruit LE modules:

Use these commands with care since they can easily lead to a HardFault error on the ARM core, which will cause the device to stop responding.

AT+DBGMEMRD

Displays the raw memory contents at the specified address.

Codebase Revision: 0.3.0

Parameters: The following comma-separated parameters can be used with this command:

- The starting address to read memory from (in hexadecimal form, with or without the leading '0x')
- The word size (can be 1, 2, 4 or 8)
- · The number of words to read

Output: The raw memory contents in hexadecimal format using the specified length and word size (see examples below for details)

Read 12 1-byte values starting at 0x10000009 AT+DBGMEMRD=0x10000009,1,12 FF FF FF FF FF FF 00 04 00 00 00 OK

Try to read 2 4-byte values starting at 0x10000000 AT+DBGMEMRD=0x10000000,4,2 55AA55AA 55AA55AA OK

Try to read 2 4-byte values starting at 0x10000009
This will fail because the Cortex M0 can't perform misaligned
reads, and any non 8-bit values must start on an even address
AT+DBGMEMRD=0x10000009,4,2
MISALIGNED ACCESS
ERROR

AT+DBGNVMRD

Displays the raw contents of the config data section of non-volatile memory

Codebase Revision: 0.3.0

Properties: None

Output: The raw config data from non-volatile memory

AT+DBGNVMRD

AT+DBGSTACKSIZE

Returns the current stack size, to help detect stack overflow or detect stack memory usage when optimising memory usage on the system.

Codebase Revision: 0.4.7

Parameters: None

Output: The current size of stack memory in bytes

AT+DBGSTACKSIZE 1032

OK

AT+DBGSTACKDUMP

Dumps the current stack contents. Unused sections of stack memory are filled with '0xCAFEFOOD' to help determine where stack usage stops.

This command is purely for debug and development purposes.

Codebase Revision: 0.4.7

Parameters: None

Output: The memory contents of the entire stack region

AT+DBGSTACKDUMP 0x20003800: CAFEF00D CAFEF00D CAFEF00D 0x20003810: CAFEF00D CAFEF00D CAFEF00D 0x20003820: CAFEFOOD CAFEFOOD CAFEFOOD 0x20003830; CAFEF00D CAFEF00D CAFEF00D 0x20003840: CAFEF00D CAFEF00D CAFEF00D 0x20003850: CAFEF00D CAFEF00D CAFEF00D 0x20003860: CAFEF00D CAFEF00D CAFEF00D 0x20003870: CAFEF00D CAFEF00D CAFEF00D 0x20003880: CAFEF00D CAFEF00D CAFEF00D 0x20003890: CAFEF00D CAFEF00D CAFEF00D 0x200038A0: CAFEF00D CAFEF00D CAFEF00D 0x200038B0: CAFEF00D CAFEF00D CAFEF00D 0x200038C0: CAFEFOOD CAFEFOOD CAFEFOOD 0x200038D0: CAFEF00D CAFEF00D CAFEF00D 0x200038E0: CAFEF00D CAFEF00D CAFEF00D 0x200038F0: CAFEF00D CAFEF00D CAFEF00D 0x20003900: CAFEF00D CAFEF00D CAFEF00D 0x20003910: CAFEF00D CAFEF00D CAFEF00D 0x20003920: CAFEF00D CAFEF00D CAFEF00D 0x20003930: CAFEF00D CAFEF00D CAFEF00D 0x20003940: CAFEF00D CAFEF00D CAFEF00D 0x20003950: CAFEF00D CAFEF00D CAFEF00D 0x20003960: CAFEF00D CAFEF00D CAFEF00D 0x20003970; CAFEF00D CAFEF00D CAFEF00D 0x20003980; CAFEF00D CAFEF00D CAFEF00D 0x20003990: CAFEF00D CAFEF00D CAFEF00D 0x200039A0: CAFEF00D CAFEF00D CAFEF00D 0x200039B0: CAFEF00D CAFEF00D CAFEF00D 0x200039C0: CAFEF00D CAFEF00D CAFEF00D 0x200039D0: CAFEF00D CAFEF00D CAFEF00D 0x200039E0: CAFEF00D CAFEF00D CAFEF00D 0x200039F0: CAFEF00D CAFEF00D CAFEF00D 0x20003A00: CAFEF00D CAFEF00D CAFEF00D 0x20003A10: CAFEF00D CAFEF00D CAFEF00D 0x20003A20: CAFEF00D CAFEF00D CAFEF00D 0x20003A30: CAFEFOOD CAFEFOOD CAFEFOOD 0x20003A40: CAFEF00D CAFEF00D CAFEF00D 0x20003A50: CAFEF00D CAFEF00D CAFEF00D 0x20003A60: CAFEF00D CAFEF00D CAFEF00D 0x20003A70: CAFEF00D CAFEF00D CAFEF00D 0x20003A80: CAFEF00D CAFEF00D CAFEF00D 0x20003A90: CAFEF00D CAFEF00D CAFEF00D 0x20003AA0: CAFEF00D CAFEF00D CAFEF00D 0x20003AB0: CAFEF00D CAFEF00D CAFEF00D 0x20003AC0: CAFEF00D CAFEF00D CAFEF00D 0x20003AD0: CAFEFOOD CAFEFOOD CAFEFOOD 0x20003AE0: CAFEF00D CAFEF00D CAFEF00D 0x20003AF0: CAFEF00D CAFEF00D CAFEF00D 0x20003B00: CAFEF00D CAFEF00D CAFEF00D 0x20003B10: CAFEF00D CAFEF00D CAFEF00D 0x20003B20: CAFEF00D CAFEF00D CAFEF00D 0x20003B30: CAFEF00D CAFEF00D CAFEF00D 0x20003B40: CAFEF00D CAFEF00D CAFEF00D 0x20003B50: CAFEF00D CAFEF00D CAFEF00D 0x20003B60: CAFEF00D CAFEF00D CAFEF00D 0x20003B70: CAFEF00D CAFEF00D CAFEF00D 0x20003B80: CAFEF00D CAFEF00D CAFEF00D 0x20003B90: CAFEF00D CAFEF00D CAFEF00D 0x20003BA0: CAFEF00D CAFEF00D CAFEF00D 0x20003BB0: CAFEF00D CAFEF00D CAFEF00D 0x20003BC0: CAFEF00D CAFEF00D CAFEF00D 0x20003BD0: CAFEF00D CAFEF00D CAFEF00D 0x20003BE0: CAFEF00D CAFEF00D CAFEF00D 0x20003BF0: CAFEF00D CAFEF00D 00000000 CAFEF00D 0x20003C00: 00000004 20001D04 CAFEF00D FFFFEF68 0x20003C10: CAFEF00D 00001098 CAFEF00D CAFEF00D 0x20003C20; CAFEF00D CAFEF00D 00001006 200018D8 0x20003C30: 00000001 200018D8 20001C50 00000004 0x20003C40: 20001BB0 000134A5 0000100D 20001D28 0x20003C50: 00000006 00000006 20001C38 20001D44 0x20003C60: 20001C6C 20001D44 00000006 00000005

0x20003C70: 20001D38 00000005 20001D38 00000000 0x20003C80: 00000001 00012083 200018C8 000013D3 0x20003C90: 00550000 00000001 80E80000 4FC40000 0x20003CA0: 000080E8 00000009 60900000 000080E8 0x20003CB0: 60140000 20002764 0009608F 000080E8 0x20003CC0: 80000000 000080E8 00000000 00129F5F 0x20003CD0: 00000000 0001E4D9 80E80000 200018C8 0x20003CE0: 200018D4 00000000 80E80000 000000FF 0x20003CF0: 0000011C 0001BCE1 0000203A 0001BC1D 0x20003D00: 00000000 0001BC1D 80E80000 0001BCE1 0x20003D10: 0000011C 0001BDA9 80E80000 0001BDA9 0x20003D20: 0000011C FFFFFF9 008B8000 0001BC1D 0x20003D30: 00000048 00000010 0000A000 00000009 0x20003D40: 0001E326 00000001 80E80000 51538000 0x20003D50: 000080E8 0001E9CF 00000000 00000009 0x20003D60: 61C78000 000080E8 00000048 00000504 0x20003D70: 0000A1FC 0002125C 00000000 000080E8 0x20003D80: 00000000 0012A236 00000000 0001E4D9 0x20003D90: 000080E8 00000009 00004998 000080E8 0x20003DA0: 622C8000 0012A29B 00000042 0001E479 0x20003DB0: 40011000 000185EF 00006E10 00000000 0x20003DC0: 00000000 00000004 0000000C 00000000 0x20003DD0: 62780000 00018579 2000311B 0001ACDF 0x20003DE0: 00000000 20003054 20002050 00000001 0x20003DF0: 20003DF8 0002085D 00000001 200030D4 0x20003E00: 00000200 0001F663 00000001 200030D4 0x20003E10: 00000001 2000311B 0001F631 00020A6D 0x20003E20: 00000001 00000000 0000000C 200030D4 0x20003E30: 2000311B 00000042 200030D4 00020AD7 0x20003E40: 20002050 200030D4 20002050 00020833 0x20003E50: 20002050 20003F1B 20002050 0001FF89 0x20003E60: 20002050 0001FFA3 00000005 20003ED8 0x20003E70: 20002050 0001FF8B 00000010 00020491 0x20003E80: 00000001 0012A54E 00000020 00022409 0x20003E90: 00000000 20002050 200030D4 0001FF8B 0x20003EA0: 00021263 00000005 0000000C 20003F74 0x20003EB0: 20003ED8 20002050 200030D4 00020187 0x20003EC0: 20003ED4 20003054 00000000 20003F75 0x20003ED0: 00000008 20003F64 00000084 FFFFFFF 0x20003EE0: FFFFFFF 00000008 00000001 00000008 0x20003EF0: 20302058 2000311B 0001F631 00020A6D 0x20003F00: 20002050 00000000 0000000C 200030D4 0x20003E10: 32002050 32303032 00323330 000258D7 0x20003F20: 20002050 200030D4 20002050 00020833 0x20003F30: 00000000 20002050 00000020 000001CE 0x20003F40: 20003F40 200030D4 00000004 0001ED83 0x20003F50: 200030D4 20003F60 000001D6 000001D7 0x20003F60: 000001D8 00016559 0000000C 00000000 0x20003F70: 6C383025 00000058 200030D4 FFFFFFF 0x20003F80: 1FFF4000 00000028 00000028 000217F8 0x20003F90: 200020C7 000166C5 000166AD 00017ED9 0x20003FA0: FFFFFFF 200020B8 2000306C 200030D4 0x20003FB0: 200020B4 000180AD 1FFF4000 200020B0 0x20003FC0: 200020B0 200020B0 1FFF4000 0001A63D 0x20003FD0: CAFEF00D CAFEF00D 200020B4 00000002 0x20003FE0: FFFFFFF FFFFFFF 1FFF4000 00000000 0x20003FF0: 00000000 00000000 00000000 00016113

History

This page tracks additions or changes to the AT command set based on the firmware version number (which you can obtain via the 'ATI' command):

Version 0.7.7

The following AT commands and features were added in the 0.7.7 release:

- Added AT+BLEUARTTXF (F for force) to immediately send the specified data out in an BLE UART packet (max 20 bytes), bypassing any FIFO delays and avoiding packets potentially being transmitted in two transactions.
- Adjusted BLE UART service to use min connection interval as the tx interval
- Added AT+DFUIRQ to enable using the DFU Pin for IRQ purposes when there is a supported event on the nRF51822
- Enabled the internal pullup resistor on the CS pin for Bluefruit SPI boards
- Added AT+MODESWITCHEN to enable/disable +++ mode switching from the local (serial or SPI) or BLE UART side. By default local = enabled, ble = disabled, meaning commands can only be executed via the local interface by default.
- Implemented a "\+" escape code to immediately send '+' chars without trigger the +++ delay waiting for further similar input
- Added AT+BLEHIDGAMEPADEN to separately enable HID Gamepad, since iOS/OSX has a conflict with gamepad devices causing HID
 keyboard to not work properly.

The following bugs were fixed in release 0.7.7:

- Fixed a factory reset issue when a long delay occurs in app_error_handler()
- Fixed an issue where strings were being truncated at 64 chars in UART
- Fixed HID keyboard support not working with iOS 9 & 10

Version 0.7.0

The following AT commands were added in the 0.7.0 release:

- AT+BAUDRATE
 - Change the HW UART baudrate
- AT+UARTFLOW
 - Enable or disable HW UART flow control
- AT+BLEMIDIEN=on/off/0/1
 - Enable/disable MIDI service, requires a reset to take affect
- AT+BLEMIDITX
 - Send a MIDI event
- AT+BLEMIDIRX
 - Receive an available MIDI event
- AT+GATTCHARRAW

Added this read only command to read binary (instead of ASCII) data from a characteristic. It is non-printable but less overhead and easier for writing library in Arduino

- AT+NVMWRITE=offset,datatype,data
 - Writes data to 256 byte user NVM. Datatype must be STRING (1), BYTEARRAY (2), or INTEGER (3)
- AT+NVMREAD=offset,size,datatype
 - Reads data back from 256 bytes user NVM
- AT+NVMREADRAW=offset,size binary data

Binary data (instead of ASCII) is returned, ending with "OK\r\n". It is non-printable but less overhead and easier to use in some situations.

- AT+BLEHIDGAMEPAD=x,y,buttons
 - ∘ X is LEFT, RIGHT: X=-1 LEFT is pressed, X=1 RIGHT is pressed, X=0 no pressed
 - o Y is UP, DOWN: Y=-1 i UP, Y=1 is DOWN, Y=0 no pressed
 - Button [0x00-0xFF] is a bit mask for 8 button 0-7
- AT+GAPCONNECTABLE=on/off/1/0
 - Allow/disallow connection to the device
- AT+EDDYSTONESERVICEEN
 - Add/remove EddyStone service to GATT table (requires reset)
- AT+EDDYSTONEBROADCAST=on/off/0/1
 - Start/stop broadcasting url using settings from NVM
- AT+BLEBATTEN=on/off/1/0
 - Enable battery service. Reset required due to the service change.
- AT+BLEBATTVAL=percent
 - Updates the Battery level, percent is 0 to 100

The following commands were changed in the 0.7.0 release:

- AT+GATTADDCHAR
 - Added a DATATYPE option to indicate the data type for the GATT characteristic's payload. Valid option are: AUTO (0, default), STRING (1), BYTEARRAY (2), INTEGER (3)
 - Added characteristic user description option via the DESCRIPTION flag
 - Added characteristic presentation format support via the PRESENTATION flag
- AT+GAPINTERVALS

Added a new 'adv_lowpower_interval' parameter, default value is 417.5 ms. Current arguments are now: min_conn, max_conn, adv_interval, adv_timeout, adv_lowpower_interval

Key bug fixes and changes in this release:

- · Significant BTLE UART speed and reliability improvements
- Added callback support (work in progress) for:
 - BLE UART RX
 - o GATT Characteristic(s) RX
 - MIDI RX
 - Connect/Disconnect
- Increased MAX_LEN for each characteristic from 20 to 32 bytes
- Changed the default GAP parameters:
 - o Advertising interval = 20ms
 - Min connection interval = 20 ms
 - Max connection interval = 40 ms
- Increased the maximum number of CCCDs saved to flash from 8 to 16
- Eddystone config service disabled by default
- Removed AT+EDDYSTONEENABLE to avoid confusion
- · Changed advertising timeout for Eddystone to 'unlimited'
- · Fixed Write-No-Response characteristic property, which wasn't being handled properly
- Fixed timing constraints to meet Apple design guidelines
- · Fixed systick to ms calculation
- Fixed all tests with google eddystone validator except for writing tx_power = 1 dB (not valid on nrf51)
- Fixed a bug where writing from the central does not update the value on the characteristic correctly
- Fixed an issue with HID examples, where when paired with Central, a disconnect then reconnect could not send HID reports anymore

Version 0.6.7

The following AT commands were added in the 0.6.7 release:

AT+BI FUARTFIFO

Returns the number of free bytes available in the TX and RX FIFOs for the Bluetooth UART Service.

The following commands were changed in the 0.6.7 release:

AT+BLEUARTTX

If the TX FIFO is full, the command will wait up to 200ms to see if the FIFO size decreases before exiting and returning an ERROR response due to the FIFO being full.

AT+BLEURIBEACON

This command will go back to using the old (deprecated) UriBeacon UUID (0xFED8), and only the AT+EDDYSTONEURL command will use the newer Eddystone UUID (0xFEAA).

AT+BLEKEYBOARD and AT+BLEUARTTX

These commands now accept '\?' as an escape code since 'AT+BLEKEYBOARD=?' has another meaning for the AT parser. To send a single question mark the following command should be used: 'AT+BLEKEYBOARD=\?' or 'AT+BLEUARTTX=\?'

AT+EDDYSTONEURL

This command now accepts an optional third parameter for RSSI at 0m value (default is -18dBm).

Running this command with no parameters ('AT+EDDYSTONEURL\r\n') will now return the current URL.

Key bug fixes in this release:

- The FIFO handling for the Bluetooth UART Service was improved for speed and stability, and the TX and RF FIFOs were increased to 1024 bytes each.
- · An issue where a timer overflow was causing factory resets every 4 hours or so has been resolved.
- Fixed a problem with the GATT server where 'value len' was being incorrectly parsed for integer values in characteristics where 'max len' >4

Version 0.6.6

The following AT commands were added in the 0.6.6 release:

AT+EDDYSTONEURL

Update the URL for the beacon and switch to beacon mode

AT+EDDYSTONEENABLE

Enable/disable beacon mode using the configured url

• AT+EDDYSTONECONFIGEN

Enable advertising for the the Eddystone configuration service for the specified number of seconds

AT+HWMODELED

Allows the user to override the default MODE LED behaviour with one of the following options: DISABLE, MODE, HWUART, BLEUART, SPI, MANUAL

AT+BLECONTROLKEY

Allows HID media control values to be sent to a bonded central device (volume, screen brightness, etc.)

AT+BLEHIDEN

Enables or disables BLE HID support in the Bluefruit LE firmware (mouse, keyboard and media control)

AT+BLEMOUSEMOVE

To move the HID mouse

AT+BLEMOUSEBUTTON

To set the state of the HID mouse buttons

The following commands were changed in the 0.6.6 release:

- AT+BLEKEYBOARDEN Now an alias for AT+BLEHIDEN
- AT+GATTADDCHAR Added a new UUID128 field to allow custom UUIDs

Key bug fixes in this release:

- · Fixed issues with long beacon URLs
- Fixed big endian issue in at+blebeacon for major & minor number

Known issues with this release:

• Windows 10 seems to support a limited number of characteristics for the DIS service. We had to disable the Serial Number characteristic to enable HID support with windows 10.

Version 0.6.5

The following AT commands were added in the 0.6.5 release:

• AT+BLEGETPEERADDR (http://adafru.it/iCq)

The following commands were changed in the 0.6.5 release:

- Increased the UART buffer size (on the nRF51) from 128 to 256 bytes
- +++ now responds with the current operating mode
- Fixed a bug with AT+GATTCHAR values sometimes not being saved to NVM
- Fixed a bug with AT+GATTCHAR max_len value not being taken into account after a reset (min_len was always used when repopulating the
 value)

Version 0.6.2

This is the first release targetting **32KB SRAM parts (QFAC)**. 16KB SRAM parts can't be used with this firmware due to memory management issues, and should use the earlier 0.5.0 firmware.

The following AT commands were changed in the 0.6.2 release:

• AT+BLEUARTTX (http://adafru.it/iCr)

Basic escape codes were added for new lines, tabs and backspace

• AT+BLEKEYBOARD (http://adafru.it/iCr)

Also works with OS X now, and may function with other operating systems that support BLE HID keyboards

Version 0.5.0

The following AT commands were added in the 0.5.0 release:

- AT+BLEKEYBOARDEN (http://adafru.it/iCr)
- AT+BLEKEYBOARD (http://adafru.it/iCr)
- <u>AT+BLEKEYBOARDCODE</u> (http://adafru.it/iCr)

The following AT commands were changed in the 0.5.0 release:

• ATI (http://adafru.it/iCs)

The SoftDevice, SoftDevice version and bootloader version were added as a new (7th) record. For Ex: "S110 7.1.0, 0.0" indicates version 7.1.0 of the S110 softdevice is used with the 0.0 bootloader (future boards will use a newer 0.1 bootloader).

Other notes concerning 0.5.0:

Starting with version 0.5.0, you can execute the AT+FACTORYRESET command at any point (and without a terminal emulator) by holding the DFU button down for 10 seconds until the blue CONNECTED LED starts flashing, then releasing it.

Version 0.4.7

The following AT commands were added in the 0.4.7 release:

- <u>+++</u> (http://adafru.it/iCs)
- AT+HWRANDOM (http://adafru.it/iCt)
- AT+BLEURIBEACON (http://adafru.it/iCu)
- AT+DBGSTACKSIZE (http://adafru.it/iCv)
- AT+DBGSTACKDUMP (http://adafru.it/iCv)

The following commands were changed in the 0.4.7 release:

ATI
 (http://adafru.it/iCs)The chip revision was added after the chip name. Whereas ATI would previously report 'nRF51822', it will now add the specific HW revision if it can be detected (ex 'nRF51822 QFAAG00')

Version 0.3.0

· First public release

Command Examples

The following code snippets can be used when operating in Command Mode to perform specific tasks.

Heart Rate Monitor Service

The command list below will add a Heart Rate (http://adafru.it/ddB) service to the BLEFriend's attribute table, with two characteristics:

- Heart Rate Measurement (http://adafru.it/ddD)
- Body Sensor Location (http://adafru.it/eck)

```
# Perform a factory reset to make sure we get a clean start
AT+FACTORYRESET
OK

# Add the Heart Rate service entry
AT+GATTADDSERVICE=UUID=0x180D
1
OK

# Add the Heart Rate Measurement characteristic
AT+GATTADDCHAR=UUID=0x2A37, PROPERTIES=0x10, MIN_LEN=2, MAX_LEN=3, VALUE=00-40
1
OK

# Add the Body Sensor Location characteristic
AT+GATTADDCHAR=UUID=0x2A38, PROPERTIES=0x02, MIN_LEN=1, VALUE=3
2
OK

# Create a custom advertising packet that includes the Heart Rate service UUID
AT+GAPSETADVDATA=02-01-06-05-02-0d-18-0a-18
OK

# Reset the device to start advertising with the custom payload
ATZ
OK

# Update the value of the heart rate measurement (set it to 0x004A)
AT+GATTCHAR=1,00-4A
```

Python Script

The following code performs the same function, but has been placed inside a Python wrapper using PySerial (http://adafru.it/cLU) to show how you can script actions for the AT parser.

```
import io
import sys
import serial
import random
from time import sleep
filename = "hrm.pv"
ser = None
serio = None
verbose = True # Set this to True to see all of the incoming serial data
def usage():
  """Displays information on the command-line parameters for this script"""
  print "Usage: " + filename + " <serialPort>\n"
  print "For example:\n"
  print " Windows: " + filename + " COM14"
  print " OS X : " + filename + " /dev/tty.usbserial-DN009WNO"
  print " Linux : " + filename + " /dev/ttyACM0"
  return
def checkargs():
    ""Validates the command-line arguments for this script"""
  if len(sys.argv) < 2:
     print "ERROR: Missing serialPort"
     usage()
```

```
sys.exit(-1)
  if len(sys.argv) > 2:
    print "ERROR: Too many arguments (expected 1)."
    sys.exit(-2)
def errorhandler(err, exitonerror=True):
   ""Display an error message and exit gracefully on "ERROR\r\n" responses"""
  print "ERROR: " + err.message
  if exitonerror:
    ser.close()
    sys.exit(-3)
def atcommand(command, delayms=0):
  """Executes the supplied AT command and waits for a valid response"""
  serio.write(unicode(command + "\n"))
  if delayms:
    sleep(delayms/1000)
  rx = None
  while rx != "OK\r\n" and rx != "ERROR\r\n":
    rx = serio.readline(2000)
    if verbose:
      print unicode(rx.rstrip("\r\n"))
  # Check the return value
  if rx == "ERROR\r\n":
    raise ValueError("AT Parser reported an error on "" + command.rstrip() + """)
if __name__ == '__main__':
  # Make sure we received a single argument (comPort)
  checkargs()
  # This will automatically open the serial port (no need for ser.open)
  ser = serial.Serial(port=sys.argv[1], baudrate=9600, rtscts=True)
  serio = io.TextIOWrapper(io.BufferedRWPair(ser, ser, 1),
                line_buffering=True)
  # Add the HRM service and characteristic definitions
    atcommand("AT+FACTORYRESET", 1000) # Wait 1s for this to complete
    atcommand("AT+GATTCLEAR")
    atcommand("AT+GATTADDSERVICE=UUID=0x180D")
    atcommand("AT+GATTADDCHAR=UUID=0x2A37, PROPERTIES=0x10, MIN_LEN=2, MAX_LEN=3, VALUE=00-40")
    atcommand("AT+GATTADDCHAR=UUID=0x2A38, PROPERTIES=0x02, MIN_LEN=1, VALUE=3")
    atcommand("AT+GAPSETADVDATA=02-01-06-05-02-0d-18-0a-18")
    # Perform a system reset and wait 1s to come back online
    atcommand("ATZ", 1000)
    # Update the value every second
    while True:
      atcommand("AT+GATTCHAR=1,00-%02X" % random.randint(50, 100), 1000)
  except ValueError as erra
    # One of the commands above returned "ERROR\n"
    errorhandler(err)
  except KeyboardInterrupt:
    # Close gracefully on CTRL+C
    ser.close()
    sys.exit()
```

The results of this script can be seen below in the 'HRM' app of Nordic's nRF Toolbox application:

Please note that nRF Toolbox will only display HRM data if the value changes, so you will need to update the Heart Rate Measurement characteristic at least once after opening the HRM app and connecting to the BLEFriend

Field Updates

The BLEFriend module includes a special 'DFU' bootloader that allows you to update the firmware over the air using a compatible device (such as a recent iPhone or iPod or a BLE-enabled Android device running Android 4.3 or later).

The benefit of this bootloader is that you can reprogram the flash contents of the MCU without having to purchase a HW debugger, using nothing but your tablet or phone to update the flash memory contents of the BLEFriend.

You can update the Firmware over the air but not over the USB/UART connection!

Requirements

In order to perform over the air field updates of the firmware on the nRF51822 based Bluefruit LE modules, you will need access to the following resources:

- A Bluetooth Low Energy enabled iOS device (iPad 3rd generation or later, iPhone 5 or later, or a recent iPod Touch) or a BLE enabled Android device (running Android 4.3 or higher, for example the Nexus 4, Nexus 5, and the Nexus 7 2013)
- The Bluefruit LE Connect app for Android (http://adafru.it/f4G) (for Android devices)
- The Bluefruit LE Connect app for iOS (http://adafru.it/f4H) (for iOS devices)

To update using your Android or iOS device, continue on to the appropriate page in this guide.

While the DFU (Device Firmware Update) code running on the modules has several safety feature (CRC packet checks, caching and testing the entire firmware image before writing it, etc.) this procedure isn't without risk, however small. There is a small possibility you can brick your device in DFU mode, requiring access to a HW debugger like the J-Link to recover it.

Forcing DFU Mode

Performing firmware updates from within the Bluefruit LE Connect app will automatically cause the board to reset into DFU mode, but there may be situations where you need to force the device into DFU mode as well.

To force the device into DFU mode (to enable firmare updates on devices that are locked up from a bad Arduino sketch, for example) press and hold the **DFU** button when inserting the device if a button is available, or by setting hte**DFU** pin to **GND** when powering the device up (depending on the exact board you are using).

DFU Mode Confirmation

You will know that you are in DFU mode because the MODE LED will blink at a constant rate:

DFU Timeout

By default, the DFU code has a **5-minute timeout**. After 5 minutes in DFU mode, the device will revert back to the normal user code if any user code is present on the device. To return back to DFU mode, you will need to hold down the DFU button and reset the device via a power cycle.

Once you're in DFU mode, continue on to the iOS or Android pages ahead.

Firmware Images

Bluefruit LE Connect will automatically download the appropriate firmware image for you, but if you need direct access to them the latest Bluefruit LE firmware images are always available in our Github repo at https://github.com/adafruit/Adafruit_BluefruitLE_Firmware (http://adafru.it/edX)

DFU on iOS

Install Bluefruit LE Connect

The first step to enable DFU support on your iOS device is to install our freeBluefruit LE Connect (http://adafru.it/f4H) application, available in the App Store.

This should work on an iPhone or iPad less than a few years old since Apple was very early in adding Bluetooth Low Energy support to their devices.

The Bluefruit LE Connect application will manage the firmware updates for you, including downloading the appropriate firmware image from our Github firmware repo, resetting the board into DFU mode, and displaying the version number once the update is complete (as detailed in the video below).

Update Process

Follow the video below to update your nRF51822 based Bluefruit LE module in a few simple clicks:

DFU on Android (4.3+)

Install Bluefruit LE Connect

The first step to enable DFU support on your Android device is to install our free <u>Bluefruit LE Connect</u> (http://adafru.it/f4G) application, available in the Play Store.

This application will manage the firmware updates for you, including downloading the appropriate firmware image from our Github firmware repo.

Verified Devices

You can perform a field update of your nRF51822 based Bluefruit LE module on most recent Android devices, though Bluetooth Low Energy support was only added to version 4.3, with some important stability updates in 4.4.

Make sure you are running at least Android 4.4 or higher and have a BLE radio inside your phone.

We've tested DFU updates with the following devices:

- Nexus 6 (Android 6.0.1)
- Nexus 4 (Android 4.4.4)
- Nexus 7 2013 (Android 4.4.4)
- LG G4 (Android 5.1)

Note: The 2012 edition of the Nexus 7 won't work since it doesn't support BLE.

Update Process

Follow the video below to see how to update the firmware on your device via a few easy clicks!

BLE Sniffer

Using a special firmware image provided by Nordic Semiconductors and the open source network analysis tool Wireshark, the BLEFriend can be converted into a low cost Bluetooth Low Energy sniffer.

Since nRF-Sniffer is a passive solution that is simply scanning packets over the air, there is the possibility of missing packets using this tool (or any other passive sniffing solution). In order to capture as many packets as possible, be sure to run the sniffer on a USB bus that isn't busy and avoid running it in a virtual machine since this can introduce significant latency over USB.

Select the Sniffer Target

The nRF-Sniffer can only sniff one device at a time, so the first step is getting the sniffer running and then selecting the device that you want to debug.

Start nRF-Sniffer by running the ble-sniffer_win executable (for example: ble-sniffer_win_1.0.1_1111_Sniffer.exe).

This will try to detect the device running the nRF-Sniffer firmware over a UART COM port.

If the board isn't detected right away type'f' to erase any previous com port settings, or try removing and then re-inserting the sniffer while the console application is running.

Once the sniffer is found, you should see a list of all BLE devices that were detected in listening range:

In this particular case, we'll select device number 2, which is a BLEFriend running the standard UART firmware.

Type the device number you want to sniffer (in this case '2'), and you should see the device highlighted in the list, similar to the image below:

At this point you can type 'w', which will try to open wireshark and start pushing data out via a dedicate pipe created by the nRF-Sniffer utility.

Working with Wireshark

Once Wireshark has loaded, you should see the advertising packets streaming out from the selected BLE device at a regular intercal, as shown in the image below:

One of the key benefits of WireShark as an analysis tool is that it understands the raw packet formats and provides human-readable displays of the raw packet data.

The main way to interact with BLE data packets is to select one of the packets in the main window, and then expand the Bluetooth Low Energy Link Layer treeview item in the middle of the UI, as shown below:

Clicking on the **Advertising Data** entry in the treeview will highlight the relevant section of the raw payload at the bottom of the screen, but also provides human readable information about the payload that can save you a lot of time trying to debug or reverse engineer a device.

We can see, for example, that the device is advertising itself as a Bluetooth Low Energy only device ('BR/EDR Not Supported'), with a TX Power

Level of 0dBm, and a single service is being advertised using a 128-bit UUID (the UART service in this case).

Capturing Exchanges Between Two Devices

If you wish to sniff data being exchanged between two BLE devices, you will need to establish a connection between the original device we selected above and a second BLE device (such as an iPhone or an Android tablet with BLE capabilities).

The nRF-Sniffer firmware is capable is listening the all of the exchanges that happen between these devices, but can not connect with a BLE peripheral or central device itself (it's a purely passive device).

Scan Response Packets

If you open up **nRF UART** on an Android or iOS device, and click the **Connect** button, the phone or tablet will start scanning for devices in range. One of the side effects of this scanning process is that you may spot a new packet in Wireshark on an irregular basis, the 'SCAN_REQ' and 'SCAN_RSP' packets:

The **Scan Response** is an optional second advertising packet that some Bluetooth Low Energy periperhals use to provide additional information during the advertising phase. The normal mandatory advertising packet is limited to 31 bytes, so the Bluetooth SIG includes the possibility to request a second advertising payload via the **Scan Request**.

You can see both of these transactions in the image above, and the **Device Name** that is included in the Scan Response payload (since the 128-bit UART Service UUID takes up most of the free space in the main advertising packet).

For more information on Scan Responses and the advertising process in Bluetooth Low Energy see out Introduction to Bluetooth Low Energy Guide (http://adafru.it/iCo).

Connection Request

Once we click on the **UART** device in **nRF UART**, the two device will attempt to connect to each other by means of **Connection Request**, which is initiated by the central device (the phone or tablet).

We can see this CONNECT_REQ in the timeline in the image below:

Write Request

Once the connection has been established, we can see that thenRF UART application tries to write data to the BLEFriend via aWrite Request to handle '0x001E' (which is the location of an entry in the attribute table since everything in BLE is made up of attributes).

What this write request is trying to do is enable the 'notify' bit on the <u>UART service's TX characteristic</u> (http://adafru.it/iCn) (0x001E is the handle for the CCCD or '<u>Client Characteristic Configuration Descriptor</u> (http://adafru.it/ecl)'). This bit enables an 'interrupt' of sorts to tell the BLEFriend that we want to be alerted every time there is new data available on the characteristic that transmits data from the BLEFriend to the phone or tablet.

Regular Data Requests

At this point you will start to see a lot of regular Empty PDU requests. This is part of the way that Bluetooth Low Energy works.

Similar to USB, all BLE transaction are initiated by the bus 'Master', which is the central device (the tablet or phone).

In order to receive data from the bus slave (the peripheral device, or the BLEFriend in this particular case) the central device sends a 'ping' of sorts

to the peripheral at a delay known as the 'connection interval' (not to be confused with the one-time connection highlighted earlier in this tutorial).

We can see pairs of transaction that happen at a reasonably consistent interval, but no data is exchanged since the BLEFriend (the peripheral) is saying 'sorry, I don't have any data for you':

Notify Event Data

To see an actual data transaction, we simply need to enter some text in our terminal emulator SW which will cause the BLEFriend to send the data to **nRF UART** using the UART service.

Entering the string 'This is a test' in the terminal emulator, we can see the first packet being sent below (only the 'T' character is transmitted because the packets are sent out faster than we enter the characters into the terminal emulator):

What this 4-byte 'Bluetooth Attribute Protocol' packet is actually saying is that attribute 0x001C (the location of the TX characteristic in the attribute

table) has been updated, and the new value is '0x54', which corresponds to the letter 'T'.

Scrolling a bit further down we can see an example where more than one character was sent in a single transction ('te' in this case):

The results of this transaction in the nRF UART application can be seen below:

Closing Wireshark and nRF-Sniffer

When you're done debugging, you can save the session to a file for later analysis, or just close Wireshark right away and then close the nRF-Sniffer console window to end the debug session.

Moving Forward

A sniffer is an incredibly powerful and valuable tool debugging your own hardware, reverse engineering existing BLE peripherals, or just to learn the ins and outs of how Bluetooth Low Energy actually works on the a packet by packet level.

You won't learn everything there is to know about BLE in a day, but a good book on BLE, a copy of the Bluetooth 4.1 Core Specification and a sniffer will go a long way to teaching you most of the important things there is to know about BLE in the real world.

GATT Service Details

Data in Bluetooth Low Energy is organized around units called GATT Services (http://adafru.it/iCp)' and 'GATT Characteristics'. To expose data to another device, you must instantiate at least one service on your device.

Adafruit's Bluefruit LE Pro modules support some 'standard' services, described below (more may be added in the future).

UART Service

The UART Service is the standard means of sending and receiving data between connected devices, and simulates a familiar two-line UART interface (one line to transmit data, another to receive it).

The service is described in detail on the dedicated UART Service (http://adafru.it/iCn) page.

UART Service

Base UUID: 6E400001-B5A3-F393-E0A9-E50E24DCCA9E

This service simulates a basic UART connection over two lines, TXD and RXD.

It is based on a proprietary UART service specification by Nordic Semiconductors. Data sent to and from this service can be viewed using the nRFUART apps from Nordic Semiconductors for Android and iOS.

This service is available on every Bluefruit LE module and is automatically started during the power-up sequence.

Characteristics

Nordic's UART Service includes the following characteristics:

Name Mandatory UUID Type R W N I

TX Yes 0x0002 U8[20] X **RX** Yes 0x0003 U8[20] X X

R = Read; W = Write; N = Notify; I = Indicate

Characteristic names are assigned from the point of view of the Central device

TX (0x0002)

This characteristic is used to send data back to the sensor node, and can be written to by the connected Central device (the mobile phone, tablet, etc.).

RX (0x0003)

This characteristic is used to send data out to the connected Central device. Notify can be enabled by the connected device so that an alert is raised every time the TX channel is updated.

Software Resources

To help you get your Bluefruit LE module talking to other Central devices, we've put together a number of open source tools for most of the major platforms supporting Bluetooth Low Energy.

Bluefruit LE Client Apps and Libraries

Adafruit has put together the following mobile or desktop apps and libraries to make it as easy as possible to get your Bluefruit LE module talking to your mobile device or laptop, with full source available where possible:

Bluefruit LE Connect (http://adafru.it/f4G) (Android/Java)

Bluetooth Low Energy support was added to Android starting with Android 4.3 (though it was only really stable starting with 4.4), and we've already released Bluefruit LE Connect to the Play Store (http://adafru.it/f4G).

The full source code (http://adafru.it/fY9) for Bluefruit LE Connect for Android is also available on Github to help you get started with your own Android apps. You'll need a recent version of Android Studio (http://adafru.it/fYa) to use this project.

Bluefruit LE Connect (http://adafru.it/f4H) (iOS/Swift)

Apple was very early to adopt Bluetooth Low Energy, and we also have an iOS version of the Bluefruit LE Connect (http://adafru.it/f4H) app available in Apple's app store.

The full swift source code for Bluefruit LE Connect for iOS is also available on Github. You'll need XCode and access to Apple's developper program to use this project:

- Version 1.x source code: https://qithub.com/adafruit/Bluefruit LE Connect (http://adafru.it/ddv)
- Version 2.x source code: https://github.com/adafruit/Bluefruit_LE_Connect_v2 (http://adafru.it/o9E)

Version 2.x of the app is a complete rewrite that includes iOS, OS X GUI and OS X command-line tools in a single codebase.

Bluefruit LE Connect for OS X (http://adafru.it/o9F) (Swift)

This OS X desktop application is based on the same V2.x codebase as the iOS app, and gives you access to BLE UART, basic Pin I/O and OTA DFU firmware updates from the convenience of your laptop or mac.

This is a great choice for logging sensor data locally and exporting it as a CSV, JSON or XML file for parsing in another application, and uses the native hardware on your computer so no BLE dongle is required on any recent mac.

The full source is also available on Github (http://adafru.it/o9E).

Bluefruit LE Command Line Updater for OS X (http://adafru.it/pLF) (Swift)

This experimental command line tool is unsupported and provided purely as a proof of concept, but can be used to allow firmware updates for Bluefruit devices from the command line.

This utility performs automatic firmware updates similar to the way that the GUI application does, by checking the firmware version on your Bluefruit device (via the Device Information Service), and comparing this against the firmware versions available online, downloading files in the background if appropriate.

Simply install the pre-compiled tool via the DMG file (http://adafru.it/pLF) and place it somewhere in the system path, or run the file locally via './bluefruit' to see the help menu:

\$./bluefruit bluefruit v0.3 Usage:

bluefruit <command> [options...]

Commands:

Scan peripherals: scan

Automatic update: update [--enable-beta] [--uuid <uuid>]

Custom firmware: dfu --hex <filename> [--init <filename>] [--uuid <uuid>]

Show this screen: --help Show version: --version

Options:

--uuid <uuid> If present the peripheral with that uuid is used. If not present a list of peripherals is displayed

Short syntax:

 $\hbox{-u = ---uuid, -b = --enable-beta, -h = --hex, -i = --init, -v = --version, -? = --help}$

Deprecated: <u>Bluefruit Buddy</u> (http://adafru.it/mCn) (OS X)

This native OS X application is a basic proof of concept app that allows you to connect to your Bluefruit LE module using most recent macbooks or iMacs. You can get basic information about the modules and use the UART service to send and receive data.

The full source for the application is available in the github repo at Adafruit Bluefruit LE OSX (http://adafru.it/mCo).

ABLE (http://adafru.it/ijB) (Cross Platform/Node+Electron)

ABLE (http://adafru.it/ijB) (Adafruit Bluefruit LE Desktop) is a cross-platform desktop application based on Sandeep Misty's noble library (http://adafru.it/ijC) and the Electron (http://adafru.it/ijD) project from Github (used by Atom).

It runs on OS X, Windows 7+ and select flavours of Linux (Ubuntu tested locally). Windows 7 support is particularly interesting since Windows 7 has no native support for Bluetooth Low Energy but the noble library talks directly to supported Bluetooth 4.0 USB dongles (http://adafru.it/1327) to emulate BLE on the system (though at this stage it's still in early BETA and drops the connection and takes more care to work with).

This app allows you to collect sensor data or perform many of the same functionality offered by the mobile Bluefruit LE Connect apps, but on the desktop.

The app is still in BETA, but full source (http://adafru.it/ijE) is available in addition to the easy to usepre-compiled binaries (http://adafru.it/ijB).

Bluefruit LE Python Wrapper (http://adafru.it/fQF)

As a proof of concept, we've played around a bit with getting Python working with the native Bluetooth APIs on OS X and the latest version of Bluez on certain Linux targets.

There are currently example sketches showing how to retreive BLE UART data as well as some basic details from the Device Information Service (DIS).

This isn't an actively support project and was more of an experiment, but if you have a recent Macbook or a Raspberry Pi and know Python, you might want to look at Adafruit Python BluefruitLE (http://adafru.it/fQF) in our github account.

Debug Tools

If your sense of adventure gets the better of you, and your Bluefruit LE module goes off into the weeds, the following tools might be useful to get it back from unknown lands.

These debug tools are provided purely as a convenience for advanced users for device recovery purposes, and are not recommended unless you're OK with potentially bricking your board. Use them at your own risk.

AdaLink (http://adafru.it/fPq) (Python)

This command line tool is a python-based wrapper for programming ARM MCUs using either a Segger J-Link (http://adafru.it/fYU) or an STLink/V2 (http://adafru.it/ijF). You can use it to reflash your Bluefruit LE module using the latest firmware from the Bluefruit LE firmware repo (http://adafru.it/edX).

Details on how to use the tool are available in the readme.md file on the mainAdafruit Adalink (http://adafru.it/fPq) repo on Github.

Completely reprogramming a Bluefruit LE module with AdaLink would require four files, and would look something like this (using a JLink):

adalink nrf51822 --programmer jlink --wipe
--program-hex "Adafruit_BluefruitLE_Firmware/softdevice/s110_nrf51_8.0.0_softdevice.hex"
--program-hex "Adafruit_BluefruitLE_Firmware/bootloader/bootloader_0002.hex"

--program-hex "Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex" --program-hex "Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32_blefriend32_s110_xxac_0_6_7_150917_blefriend32_signature.hex"

You can also use the AdaLink tool to get some basic information about your module, such as which SoftDevice is currently programmed or the IC revision (16KB SRAM or 32KB SRAM) via the --info command:

Adafruit nRF51822 Flasher (http://adafru.it/fVL) (Python)

Adafruit's nRF51822 Flasher is an internal Python tool we use in production to flash boards as they go through the test procedures and off the assembly line, or just testing against different firmware releases when debugging.

It relies on AdaLink or OpenOCD beneath the surface (see above), but you can use this command line tool to flash your nRF51822 with a specific SoftDevice, Bootloader and Bluefruit firmware combination.

It currently supports using either a Segger J-Link or STLink/V2 via AdaLink, or GPIO on a Raspberry Pi (http://adafru.it/fVL) if you don't have access to a traditional ARM SWD debugger. (A pre-built version of OpenOCD for the RPi is included in the repo since building it from scratch takes a long time on the original RPi.)

We don't provide active support for this tool since it's purely an internal project, but made it public just in case it might help an adventurous customer debrick a board on their own.

\$ python flash.py --jtag=jlink --board=blefriend32 --softdevice=8.0.0 --bootloader=2 --firmware=0.6.7 itag : jlink

jtag : jlink softdevice : 8.0.0 bootloader : 2 board : blefriend32 firmware : 0.6.7

Writing Softdevice + DFU bootloader + Application to flash memory

adalink -v nrf51822 --programmer jlink --wipe --program-hex "Adafruit_BluefruitLE_Firmware/softdevice/s110_nrf51_8.0.0_softdevice.hex" --program-hex "Adafruit_BluefruitLE_Firmware/softdevice/s110_nrf51_8.0.0_softdevice/s110_nrf

•••

Device Recovery

Sometimes, bad things unfortunately happen. Thankfully, 99% of the time it's purely a SW issue and the Bluefruit devices have a robust bootloader with some fail safes that can almost always recover your device.

How to Recover a Bluefruit Board

1. Force DFU Mode at Startup

The first step is to force your board into a special bootloader mode, which will prevent any faulty user sketches or corrupted config data from causing problems.

- Connect the DFU pin to GND with a jumper cable, or if your board has a DFU button hold the button down when adding power to your board (connecting the USB cable, etc.)
- Once the device is powered, you should see a faster DFU MODE blinky pattern that lets you know you are in bootloader mode.
- . Now remove the jumper cable between DFU and GND (to prevent going into DFU mode when you reset)

Remove the jumper cable between DFU and GND once you are in DFU mode so that you exit it during the next reset!

2. Update the Bluefruit Firmware

Next, update your device to the latest Bluefruit firmware using the Bluefruit LE Connect app. We regularly fix bugs, and it's always a good idea to be on the latest release.

You can perform a firmware update in DFU mode, although the Bluefruit board may appear as **DfuTarg** in the Bluefruit LE Connect app, and you will will need to select the right firmware 'family' for you board.

Because bootloader mode is a fail safe mode and has a small subset of Bluefruit's features, we can't tell the Bluefruit LE Connect app very many details about our HW. As such, you will need to indicate which firmware type to flash ... specifically, whether to flash the UART of SPI based firmware. Be sure to select the right one, based on your product and the table below:

BLEFRIEND32 Firmware (UART, 32KB SRAM)

- Bluefruit UART Friend V2 (http://adafru.it/edl)
- Bluefruit LE UART Friend (http://adafru.it/tYD)

BLESPIFRIEND Firmware (SPI)

- Bluefruit LE SPI Friend (http://adafru.it/fLp)
- Bluefruit LE Shield (http://adafru.it/2746)
- Bluefruit LE Micro (http://adafru.it/tYE)
- Feather 32u4 Bluefruit LE (http://adafru.it/tYF)
- Feather M0 Bluefruit LE (http://adafru.it/2995)

3. Flash a Test Sketch

Once the core Bluefruit firmware has been updated, flash a test sketch to the device from the Arduino IDE, such as the following blinky code:

4. Perform a Factory Reset

Once the core Bluefruit firmware has been updated, the final step is to perform a factory reset.

• With the board still powered up, connect the DFU pin to GND

- Leave the pin set to GND (or hold the DFU button down) for >5 seconds until the BLUE status LED starts to blink
- Remove the DFU jumper cable or release the DFU button

This will cause a factory reset which will wipe all config data, and should restore your board, getting you back to a normal state in most situations!

Still Having Problems?

Hop on over to our <u>support forums</u> (http://adafru.it/dYq) clearly explaining your problem along with the following information, and, we'll be happy to help:

- You product name and ideally the product ID
- The Bluefruit firmware version you are using (available at the top of the Serial Monitor output on most example sketches)
- The Operating System your are using
- The Arduino IDE version you are using

Providing the above information in your first post will skip a round of two of back and forth and you'll get an answer from us quicker, saving everyone time and effort!

Be sure to see the FAQ section of this learning guide as well, which has answer to many common problems!

BLE FAQ

Can I talk to Classic Bluetooth devices with a Bluefruit LE modules?

No. Bluetooth Low Energy and 'Classic' Bluetooth are both part of the same Bluetooth Core Specification -- defined and maintained by the Bluetooth SIG -- but they are completely different protocols operating with different physical constraints and requirements. The two protocols can't talk to each other directly.

Can my Bluefruit LE module connect to other Bluefruit LE peripherals

No, the Bluefruit LE firmware from Adafruit is currently peripheral only, and doesn't run in Central mode, which would cause the module to behave similar to your mobile phone or BLE enabled laptop.

If you required Central support, you should look at the newer nRF52832 based products like the Adafruit Feather nRF52 Bluefruit LE (http://adafru.it/vAx), which contains a SoftDevice which is capable of running in either Central or Peripheral mode. The nRF518322 based products (such as the one used in this learning guide) are **not** capable of running in Central mode because it isn't supported by the SoftDevice they use, and it isn't possible to update the SoftDevice safely without special hardware.

Why are none of my changes persisting when I reset with the sample sketches?

In order to ensure that the Bluefruit LE modules are in a known state for the Adafruit demo sketches, most of them perform a factory reset at the start of the sketch.

This is useful to ensure that the sketch functions properly, but has the side effect of erasing any custom user data in NVM and setting everything back to factory defaults every time your board comes out of reset and the sketch runs.

To disable factory reset, open the demo sketch and find the **FACTORYRESET_ENABLE** flag and set this to '0', which will prevent the factory reset from happening at startup.

If you don't see the 'FACTORYRESET_ENABLE' flag in your .ino sketch file, you probably have an older version of the sketches and may need to update to the latest version via the Arduino library manager.

Do I need CTS and RTS on my UART based Bluefruit LE Module?

Using CTS and RTS isn't strictly necessary when using HW serial, but they should both be used with SW serial, or any time that a lot of data is being transmitted.

The reason behind the need for CTS and RTS is that the UART block on the nRF51822 isn't very robust, and early versions of the chip had an extremely small FIFO meaning that the UART peripheral was quickly overwhelmed.

Using CTS and RTS significantly improves the reliability of the UART connection since these two pins tell the device on the other end when they need to wait while the existing buffered data is processed.

To enable CTS and RTS support, go into the BluefruitConfig.h file in your sketch folder and simply assign an appropriate pin to the macros dedicated to those functions (they may be set to -1 if they aren't currently being used).

Enabling both of these pins should solve any data reliability issues you are having with large commands, or when transmitting a number of commands in a row.

How can I update to the latest Bluefruit LE Firmware?

The easiest way to keep your Bluefruit LE modules up to date is with our Bluefruit LE Connect app for Android (http://adafru.it/f4G) or Bluefruit LE Connect for iOS (http://adafru.it/f4H). Both of these apps include a firmware update feature that allows you to automatically download the latest firmware and flash your Bluefruit LE device in as safe and painless a manner as possible. You can also roll back to older versions of the Bluefruit LE firmware using these apps if you need to do some testing on a previous version.

Which firmware version supports 'xxx'?

We regularly release <u>Bluefruit LE firmware images</u> (http://adafru.it/edX) with bug fixes and new features. Each AT command in this learning guide lists the minimum firmware version required to use that command, but for a higher level overview of the changes from one firmware version to the next, consult the <u>firmware history page</u> (http://adafru.it/iCw).

Does my Bluefruit LE device support ANCS?

ANCS is on the roadmap for us (most likely in the 0.7.x release family), but we don't currently support it since there are some unusual edge cases when implementing it as a service.

My Bluefruit LE device is stuck in DFU mode ... what can I do?

If your device is stuck in DFU mode for some reason and the firmware was corrupted, you have several options.

First, try a factory reset by holding down the DFU button for about 10 seconds until the CONN LED starts flashing, then release the DFU button to perform a factory reset.

If this doesn't work, you may need to reflash your firmware starting from DFU mode, which can be done in one of the following ways:

Bluefruit LE Connect (Android)

- Place the module in DFU mode (constant LED blinky)
- Open Bluefruit LE Connect
- · Connect to the 'DfuTarg' device
- Once connected, you will see a screen with some basic device information. Click the '...' in the top-right corner and selec Firmware Updates
- Click the Use Custom Firmware button
- Select the appropriate .hex and .init files (copied from the <u>Bluefruit LE Firmware repo</u> (http://adafru.it/edX)) ... for the BLEFRIEND32 firmware version 0.6.7, this would be:
 - Hex File: blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex
 - $\circ \ \ \text{Init File: blefriend} \\ 32_s110_xxac_0_6_7_150917_blefriend\\ 32_init.dat$
- Click Start Update

Unfortunately, the iOS app doesn't yet support custom firmware updates from DFU mode yet, but we will get this into the next release.

Nordic nRF Toolbox

You can also use Nordic's nRF Toolbox application to update the firmware using the OTA bootloader.

On Android:

- Open nRF Toolbox (using the latest version)
- Click the **DFU** icon
- Click the Select File button
- Select Application from the radio button list, then click OK
- Find the appropriate .hex file (ex. 'blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex')
- When asked about the **Init packet**', indicate **Yes**, and select the appropriate *_init.dat file (for example: 'blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat').
- · Click the Select Device button at the bottom of the main screen and find the DfuTarg device, clicking on it
- Click the **Upload** button, which should now be enabled on the home screen
- This will begin the DFU update process which should cause the firmware to be updated or restored on your Bluefruit LE module

On **iOS**:

- Create a .zip file containing the .hex file and init.dat file that you will use for the firmware update. For example:
 - Rename 'blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex' to application.hex
 - Rename 'blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat' to application.dat
- Upload the .zip file containing the application.hex and application.dat files to your iPhone using uTunes, as described here (http://adafru.it/iCx)
- Open the nRF Toolbox app (using the latest version)
- Click the DFU icon
- Click the Select File text label
- Switch to **User Files** to see the .zip file you uploaded above
- Select the .zip file (ex. blefriend32_065.zip)
- On the main screen select Select File Type
- Select application
- On the main screen select SELECT DEVICE
- Select DfuTarg
- Click the Upload button which should now be enabled
- . This will begin the DFU process and your Bluefruit LE module will reset when the update is complete
- If you get the normal 2 or 3 pulse blinky pattern, the update worked!

Adafruit_nRF51822_Flasher

As a last resort, if you have access to a Raspberry Pi, a Segger J-Link or a STLink/V2, you can also try manually reflashing the entire device, as described in the <u>FAQ above</u> (http://adafru.it/iCy), with further details on the <u>Software Resources</u> (http://adafru.it/iCz) page.

How do I reflash my Bluefruit LE module over SWD?

Reflashing Bluefruit LE modules over SWD (ex. switching to the sniffer firmware and back) isat your own risk and can lead to a bricked device, and we can't offer any support for this operation! You're on your own here, and there are unfortunately 1,000,000 things that can go wrong, which is why we offer two separate Bluefruit LE Friend boards -- the sniffer and the normal Bluefruit LE Friend board with the non-sniffer firmware,

which provides a bootloader with fail safe features that prevents you from ever bricking boards via OTA updates.

AdaLink (SWD/JTAG Debugger Wrapper)

Transitioning between the two board types (sniffer and Bluefruit LE module) is unfortunately not a risk-free operation, and requires external hardware, software and know-how to get right, which is why it isn't covered by our support team.

That said ... if you're determined to go down that lonely road, and you have a Segger J-Link (http://adafru.it/fYU) (which is what we use internally for production and development), or have already erased your Bluefruit LE device, you should have a look at AdaLink (http://adafru.it/fPq), which is the tool we use internally to flash the four files required to restore a Bluefruit LE module. (Note: recent version of AdaLink also support the cheaper STLink/V2 (http://adafru.it/2548), though the J-Link is generally more robust if you are going to purchase a debugger for long term use.)

The mandatory Intel Hex files are available in the Bluefruit LE Firmware repo (http://adafru.it/edX). You will need to flash:

- · An appropriate bootloader image
- · An appropriate SoftDevice image
- The Bluefruit LE firmware image
- The matching signature file containing a CRC check so that the bootloader accepts the firmware image above (located in the same folder as the firmware image)

The appropriate files are generally listed in the version control .xml file (http://adafru.it/fPr) in the firmware repository.

If you are trying to flash the sniffer firmware (at your own risk!), you only need to flash a single .hex file, which you can find here (http://adafru.it/fYV). The sniffer doesn't require a SoftDevice image, and doesn't use the fail-safe bootloader -- which is why changing is a one way and risky operation if you don't have a supported SWD debugger.

Adafruit nF51822 Flasher

We also have an internal python tool available that sits one level higher than AdaLink (referenced above), and makes it easier to flash specific versions of the official firmware to a Bluefruit LE module. For details, see the Adafru.it/fvl) repo.

Can I access BETA firmware releases?

The latest versions of the Bluefruit LE Connect applications for iOS and Android allow you to optionally update your Bluefruit LE modules with prerelease or BETA firmware.

This functionality is primarilly provided as a debug and testing mechanism for support issues in the forum, and should only be used when trying to identify and resolve specific issues with your modules!

Enabling BETA Releases on iOS

- Make sure you have at least version 1.7.1 of Bluefruit LE Connect
- Go to the Settings page
- Scroll to the bottom of the Settings page until you find **Bluefruit LE**
- Click on the Bluefruit LE icon and enable the Show beta releases switch
- You should be able to see any BETA releases available in the firmware repo now when you use Bluefruit LE Connect

Enabling BETA Releases on Android

- Make sure you have the latest version of Bluefruit LE Connect
- Open the Bluefruit LE Connect application
- Click the "..." icon in the top-right corner of the app's home screen
- Select Settings
- Scroll down to the Software Updates section and enable Show beta releases
- You should be able to see any BETA releases available in the firmware repo now when you use Bluefruit LE Connect

Why can't I see my Bluefruit LE device after upgrading to Android 6.0?

In Android 6.0 there were some important security changes (http://adafru.it/jcU) that affect Bluetooth Low Energy devices. If location services are unavailable (meaning the GPS is turned off) you won't be able to see Bluetooth Low Energy devices advertising either. See this:issue (http://adafru.it/jcV) for details.

Be sure to enable location services on your Android 6.0 device when using Bluefruit LE Connect or other Bluetooth Low Energy applications with your Bluefruit LE modules.

What is the theoretical speed limit for BLE?

This depends on a variety of factors, and is determined by the capabilities of the central device (the mobile phone, etc.) as much as the peripheral.

Taking the HW limits on the nR51822 into account (max 6 packets per connection interval, and a minimum connection interval of 7.5ms) you end up with the following theoretical limits on various mobile operating systems:

- iPhone 5/6 + IOS 8.0/8.1
 - 6 packets * 20 bytes * 1/0.030 s = 4 kB/s = 32 kbps
- iPhone 5/6 + IOS 8.2/8.3
 - 3 packets * 20 bytes * 1/0.030 s = 2 kB/s = 16 kbps
- iPhone 5/6 + IOS 8.x with nRF8001
 - 1 packet * 20 bytes * 1/0.030 s = 0.67 kB/s = 5.3 kbps
- Nexus 4
 - 4 packets * 20 bytes * 1/0.0075 s = 10.6 kB/s = 84 kbps
- Nordic Master Emulator Firmware (MEFW) with nRF51822 0.9.0
 1 packet * 20 bytes * 1/0.0075 = 2.67 kB/s = 21.33 kbps
- Nordic Master Emulator Firmware (MEFW) with nRF51822 0.11.0
 6 packets * 20 bytes * 1/0.0075 = 16 kB/s = 128 kbps

There are also some limits imposed by the Bluefruit LE firmware, but we are actively working to significantly improve the throughput in the upcoming 0.7.0 release, which will be available Q2 2016. The above figures are useful as a theoretical maximum to decide if BLE is appropriate for you project or not.

UPDATE: For more specific details on the limitations of various **Android** versions and phones, see this helpful post from Nordic Semiconductors (http://adafru.it/sKc).

Can my Bluefruit board detect other Bluefruit boards or Central devices?

No. All of our Bluefruit LE modules currently operate in peripheral mode, which means they can only advertise their own existence via the advertising payload. The central device (usually your phone or laptop) is responsible for listening for these advertising packets, starting the connection process, and inititating any transactions between the devices. There is no way for a Bluefruit module to detect other Bluefruit modules or central devices in range, they can only send their own advertising data out and wait for a connection request to come in.

How can I determine the distance between my Bluefruit module and my phone in m/ft?

The short answer is: you can't.

RF devices normally measure signal strength using RSSI, which stands for Received Signal Strength Indicator, which is measured in dBm. The closer the devices are the strong the RSSI value generally is (-90dBm is much weaker than -60dBm, for example), but there is no reliable relationship between RSSI values in dBm and distance in the real world. If there is a wall between devices, RSSI will fall. If there is a lot of interference on the same 2.4GHz band, RSSI will fall. Depending on the device, if you simply change the antenna orientation, RSSI will fall. You can read the RSSI value between two connected devices with the AT+BLEGETRSSI command, but there are no meaningful and repeatable conclusions that can be drawn from this value about distance other than perhaps 'farther' or 'closer' in a very loose sense of the terms.

How far away from my phone can I have my Bluefruit LE module?

This depends on a number of factors beyond the module itself such as antenna orientation, the antenna design on the phone, transmit power on the sending node, competing traffic in the same 2.4GHz bandwidth, obstacles between end points, etc.

It could be as low as a couple meters up to about 10 meters line of sight, but generally Bluetooth Low Energy is designed for very short range and will work best in the 5-6 meter or less range for reliable communication, assuming normal Bluefruit firmware settings.

How many GATT services and characteristics can I create?

For firmware 0.7.0 and higher, the following limitations are present:

- Maximum number of services: 10
- Maximum number of characteristics: 30
- Maximum buffer size for each characteristic: 32 bytes
- Maximum number of CCCDs: 16

Is it possible to modify or disable the built in GATT services and characteristics (DIS, DFU, etc.)?

No, unfortunately you can't. We rely on the <u>Device Information Service</u> (http://adafru.it/q9E) (DIS) contents to know which firmware and bootloader version you are running, and wouldn't be able to provide firmware updates without being able to trust this information, which i why it's both mandatory and read only.

Similarly, the DFU service is mandatory to maintain over the air updates and disabling it would create more problems that it's presence would cause.

How can I use BlueZ and gatttool with Bluefruit modules?

BlueZ has a bit of a learning curve associated with it, but you can find some notes below on one option to send and receive data using the BLE UART Service built into all of our Bluefruit LE modules and boards.

These commands may change with different versions of BlueZ. Version 5.21 was used below.

Initialise the USB dongle

```
$ sudo hciconfig hci0 up
# Scan for the UART BLE device
$ sudo hcitool lescan
 D6:4E:06:4F:72:86 UART
# Start gatttool, pointing to the UART device found above
$ sudo gatttool -b D6:4E:06:4F:72:86 -I -t random --sec-level=high
 [D6:4E:06:4F:72:86][LE]> connect
 Attempting to connect to D6:4E:06:4F:72:86
 Connection successful
# Scan for primary GATT Services
 [D6:4E:06:4F:72:86][LE]> primary
 attr handle: 0x0001, end grp handle: 0x0007 uuid: 00001800-0000-1000-8000-00805f9b34fb
 attr handle: 0x0008, end grp handle: 0x0008 uuid: 00001801-0000-1000-8000-00805f9b34fb
 attr handle: 0x0009, end grp handle: 0x000e uuid: 6e400001-b5a3-f393-e0a9-e50e24dcca9e
 attr handle: 0x000f, end grp handle: 0xffff uuid: 0000180a-0000-1000-8000-00805f9b34fb
# Get the handles for the entries in the UART service (handle 0x0009)
 [D6:4E:06:4F:72:86][LE]> char-desc
 handle: 0x0001, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0002, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0003, uuid: 00002a00-0000-1000-8000-00805f9b34fb
 handle: 0x0004, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0005, uuid: 00002a01-0000-1000-8000-00805f9b34fb
 handle: 0x0006, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0007, uuid: 00002a04-0000-1000-8000-00805f9b34fb
 handle: 0x0008, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0009, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x000a, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x000b. uuid: 6e400002-b5a3-f393-e0a9-e50e24dcca9e
 handle: 0x000c, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x000d, uuid: 6e400003-b5a3-f393-e0a9-e50e24dcca9e
 handle: 0x000e, uuid: 00002902-0000-1000-8000-00805f9b34fb
 handle: 0x000f, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0010, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0011, uuid: 00002a27-0000-1000-8000-00805f9b34fb
# 6e400002 (handle 0x000b) = TX characteristic
# 6e400003 (handle 0x000d) = RX characteristic
# Optional (but maybe helpful) ... scan for CCCD entries
 [D6:4E:06:4F:72:86][LE]> char-read-uuid 2902
 handle: 0x000e value: 00 00
# Enable notifications on the RX characteristic (CCCD handle = 0x000e)
# 0100 = get notifications
# 0200 = get indications
# 0300 = get notifications + indications
# 0000 = disable notifications + indications
 [D6:4E:06:4F:72:86][LE]> char-write-reg 0x000e 0100
 Characteristic value was written successfully
# Just to make sure it was updated
 [D6:4E:06:4F:72:86][LE]> char-read-hnd 0x000e
 Characteristic value/descriptor: 01 00
# Writing "test" in the Serial Monitor of the Arduino sketch should
# cause this output not that notifications are enabled:
 Notification handle = 0x000d value: 74 65 73 74
# Write something to the TX characteristic (handle = 0x000b)
# This should cause E F G H to appear in the Serial Monitor
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 45
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 46
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 47
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 48
# To send multiple bytes
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000B 707172737475
# If you are running the callbackEcho sketch and notifications
# are enabled you should get this response after the above cmd:
 Notification handle = 0x000d value: 70 71 72 73 74 75
```

If you just want to enable constant listening, enter the following command from the CLI: \$ sudo gatttool -b D6:4E:06:4F:72:86 -t random --char-write-req -a 0x000e -n 0100 --listen

This should give us the following output as data is written on the Uno,

though we can't send anything back:
Characteristic value was written successfully
Notification handle = 0x000d value: 74 65 73 74
Notification handle = 0x000d value: 6d 6f 72 65 20 74 65 73 74

Can I use the IRQ pin to wake my MCU up from sleep when BLE UART data is available?

No, on SPI-based boards the IRQ pin is used to indicate that an SDEP response is available to an SDEP command. For example, when you sent the `AT+BLEUARTRX` command as an SDEP message, the Bluefruit firmware running on the nRF51822 will parse the message, prepare an SDEP response, and trigger the IRQ pin to tell the MCU that the response is ready. This is completely independant from the BLE UART service, which doesn't have interrupt capability at present.

Downloads

Files

- EagleCAD PCB files on GitHub (http://adafru.it/oYD)
- Bluetooth LE module Datasheet (http://adafru.it/oYE)
- v3.0: <u>Uses a CP2104 USB-to-Serial converter chip, drivers available here</u> (http://adafru.it/vrf)
- v2.0: Uses an FT231x (FTDI) USB-to-Serial converter chip, drivers are available for all operating systems here(http://adafru.it/aJv)

Schematics

Click to embiggen

v3.0 Schematic (CP2104 Based)

v2.0 Schematic (FTDI Based)

