今回はロジスティック写像を考える. f(x) = rx(1-x) としたとき, $x_{n+1} = f(x_n)$ である.

 $\mathbf{1}$ r = 3.8285 として, x_n が $250 \le n \le 500$ の場合の時系列とリターンマップを描け.初期値は適当でよい.周期 $\mathbf{3}$ を確認せよ ($\mathbf{3}$ 周期の窓)

イメージ例)

r = 3.8284 として, x_n が $250 \le n \le 500$ の場合の時系列とリターンマップを描け.初期値は適当でよい.規則的な部分 (ラミナー) と不規則な部分 (バースト) を確認せよ.

イメージ例)

 $oldsymbol{3}$ 次に説明する写像 $f^{(3)}$ について,リターンマップを描け (横軸 x_n , 縦軸 x_{n+3}).

これまで $x_{n+1} = f(x_n)$ の写像について考えてきた (ここで関数 f は、上で定義したロジスティック写像). 時系列は $x_0, x_1, x_2, x_3, x_4, x_5, \dots$ を順に書いてきたが、上のパラメータでは、だいたいの部分において周期 3 の運動をしている。そこでここでは、3 つ飛ばしで時系列とリターンマップを考える。

いま $x_{n+1}=f(x_n)$ だから、同様に $x_{n+2}=f(x_{n+1})$ 、 $x_{n+3}=f(x_{n+2})$ が成り立つ。これらをまとめると、 $x_{n+3}=f(x_{n+2})=f(f(x_{n+1}))=f(f(f(x_n)))$ と書ける.

この, x_n から x_{n+3} を求める式 $x_{n+3} = f(f(f(x_n)))$ を簡単のために $x_{n+3} = f^{(3)}(x_n)$ と書くことにする. これまでは x_n と x_{n+1} の間のリターンマップを書いてきたが, x_n と x_{n+3} の間のリターンマップを r=3.8284 のときに書いてみよ. また,下右図のようなリターンマップの階段状にはさまれた部分は何を意味するか考えよ.

イメージ例) 左図は横軸 [0:1],右図は横軸 [0.9561:0.9565] とした.

複雜系科学演習第7回

4

 $x_{n+1}=f(x_n)$ である時, $x_{n+2}=f(x_{n+1})$, $x_{n+3}=f(x_{n+2})$ である.従って, $x_{n+3}=f(f(x_{n+1}))=f(f(f(x_n)))$ と書ける.y=f(f(f(x))) のグラフを描き,この曲線が y=x と 区間 [0,1] において互いに異なる 3 つの点で接する時の r の値は, $r=1+\sqrt{8}$ であることをグラフを描いて確認せよ.

5

4の結果からrの値が $1+\sqrt{8}$ より大きい場合と小さい場合において, $x_{n+1}=f(x_n)$ の安定固定点が幾つあるか理由を述べて答えよ。

6

4, **5** から $r < 1 + \sqrt{8}$ の場合に生じたラミナーとバーストは $x_{n+3} = f(f(f(x_n)))$ の値と x_n の値がどのように変化する時に現れる現象であるか説明せよ。