Universitat d'Alacant Universidad de Alicante	Facultad de Ciencias	Departamento de Matemáticas
	Grado de Física	-
	Análisis Funcional	
Segundo curso	Prueba práctica	19 de abril de 2024

Ejercicio 1. Sea $(X, \|\cdot\|)$ un espacio normado.

- (i) (2 punto). Probar que la aplicación norma $\|\cdot\|:x\in X\longrightarrow [0,+\infty)$ es continua.
- (ii) (2 punto). Sea $(a_n)_{n\geq 1}$ y $(b_n)_{n\geq 1}$ dos sucesiones de Cauchy en X. Probar que la sucesión $\alpha_n=\|a_n-b_n\|$ converge.

Ejercicio 2. Sea λ la medida de Lebesgue en [0,1] y

$$L_2([0,1]) := \big\{ f: [0,1] \longrightarrow \mathbb{R} \ \text{ medibles, tales que } \ \|f\|_2 < \infty \big\}.$$

(i) (2 puntos). Probar que la aplicación $T:(\ell_{\infty},\|\cdot\|_{\infty})\longrightarrow (L_2([0,1],\|\cdot\|_2)$ definida por

$$T(x_1, x_2, \cdots) = \sum_{n=1}^{\infty} x_n \chi_{[\frac{1}{2^n}, \frac{1}{2^{n-1}})}$$

es lineal y continua.

(ii) (2 puntos). Calcular ||T||.

Ejercicio 3. (2 puntos). Si $(f_n)_{n\geq 1}$ es una sucesión de funciones continuas de [0,1] en [0,1], tal que $\lim_{n\to +\infty} f_n(x) = 0$, para todo $x\in [0,1]$, probar que

$$\lim_{n\to+\infty}\int_0^1 f_n(x)dx=0.$$