Exos Bac: Continuité et théorème des valeurs intermédiaires.

Exercice 1

On considère la fonction $f(x) = x^3 + x^2 - x + 1$ définie sur l'intervalle [-2; 2].

- 1. Montrer que l'équation f(x) = 0 admet une unique solution α sur l'intervalle [-2; -1].
- 2. Déterminer un encadrement par la méthode de balayage avec la calculatrice de α à 10^{-2} .
- 3. On considère l'algorithme suivant écrit en langage naturel.

$$a \leftarrow -2$$

$$b \leftarrow -1$$
Tant que $(b-a) > 0, 1$

$$m \leftarrow \frac{a+b}{2}$$

$$p \leftarrow f(a) \times f(m)$$
Si $p \le 0$ alors
$$b \leftarrow m$$
Sinon
$$a \leftarrow m$$

Compléter les trois dernières lignes du tableau ci-dessous :

Compression to the definition is industrial of depotition in								
	m	f(m)	f(a)	Signe de p	a	b	b-a	b - a > 0.1
Initialisation					-2	-1	1	Vrai
1er passage	-1,5	1,375	-1	négatif	-2	-1.5	0,5	Vrai
2e passage								
3e passage								
4e passage								

4. On donne ci-dessous le code suivant en langage Python codant l'algorithme de la question 2. Compléter le programme pour qu'il renvoie les valeurs finales de a et b.

```
def f(x):
2
3
        return y
    def dichotomie(a,b,p):
4
5
        while .....:
6
           m=......
7
           p=.....
8
           if ....::
9
10
11
12
```

- 5. Que renvoie l'appel dans la console de : dichotomie(-2,-1,0.1)?
- 6. Interpréter le résultat.

Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par :

$$f(x) = 6 - \frac{5}{x+1}.$$

Le but de cet exercice est d'étudier des suites (u_n) définies par un premier terme positif ou nul u_0 et vérifiant pour tout entier naturel n:

$$u_{n+1} = f\left(u_n\right).$$

- 1. Étude de propriétés de la fonction f
 - (a) Étudier le sens de variation de la fonction f sur l'intervalle $[0; +\infty[$.
 - (b) Résoudre dans l'intervalle $[0; +\infty[$ l'équation f(x) = x.

On note α la solution.

- (c) Montrer que si x appartient à l'intervalle $[0; \alpha]$, alors f(x) appartient à l'intervalle $[0; \alpha]$. De même, montrer que si x appartient à l'intervalle $[\alpha; +\infty[$ alors f(x) appartient à l'intervalle $[\alpha; +\infty[$.
- 2. Étude de la suite (u_n) pour $u_0 = 0$

Dans cette question, on considère la suite (u_n) définie par $u_0 = 0$ et pour tout entier naturel n:

$$u_{n+1} = f(u_n) = 6 - \frac{5}{u_n + 1}.$$

(a) Sur le graphique représenté dans l'annexe page 3, sont représentées les courbes d'équations y = x et y = f(x).

Placer le point A_0 de coordonnées $(u_0; 0)$, et, en utilisant ces courbes, construire à partir de A_0 les points A_1, A_2, A_3 et A_4 d'ordonnée nulle et d'abscisses respectives u_1, u_2, u_3 et u_4 .

Quelles conjectures peut-on émettre quant au sens de variation et à la convergence de la suite (u_n) ?

- (b) Démontrer, par récurrence, que, pour tout entier naturel $n, 0 \le u_n \le u_{n+1} \le \alpha$.
- (c) En déduire que la suite (u_n) est convergente et déterminer sa limite.
- 3. Étude des suites (u_n) selon les valeurs du réel positif ou nul u_0

Dans cette question, toute trace d'argumentation, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

Que peut-on dire du sens de variation et de la convergence de la suite (u_n) suivant les valeurs du réel positif ou nul u_0 ?

Corrigé

Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par :

$$f(x) = 6 - \frac{5}{x+1}.$$

Le but de cet exercice est d'étudier des suites (u_n) définies par un premier terme positif ou nul u_0 et vérifiant pour tout entier naturel n:

$$u_{n+1} = f\left(u_n\right).$$

- 1. Étude de propriétés de la fonction f
 - (a) Sens de variation de la fonction f sur l'intervalle $[0; +\infty[$:

$$f'(x) = \frac{5}{(x+1)^2} > 0$$
; la fonction f est donc strictement croissante sur $[0; +\infty[$

(b) Résolution dans l'intervalle [0 ; $+\infty$ [de l'équation f(x) = x :

$$f(x) = x \iff 6 - \frac{5}{x+1} = x \iff \frac{6x+6-5}{x+1} = x \iff 6x+1 = x^2 + x \iff x^2 - 5x - 1 = 0$$

$$\Delta = (-5)^2 - 4 \times 1 \times (-1) = 29; \quad \text{donc} \begin{cases} \alpha = \frac{5 + \sqrt{29}}{2} \simeq 5, 193 \in [0 ; +\infty[\\ \beta = \frac{5 - \sqrt{29}}{2} \simeq -0, 193 \notin [0 ; +\infty[\\ \end{cases}$$

(c) La fonction f étant croissante sur $[0; +\infty[$

$$0 \leqslant x \leqslant \alpha \iff 0 < 1 = f(0) \leqslant f(x) \leqslant \alpha = f(\alpha)$$

De même :

$$x \geqslant \alpha \iff f(x) \geqslant \alpha = f(\alpha)$$

2. Étude de la suite (u_n) pour $u_0 = 0$.

Dans cette question, on considère la suite (u_n) définie par $u_0 = 0$ et pour tout entier naturel n:

$$u_{n+1} = f(u_n) = 6 - \frac{5}{u_n + 1}.$$

(a) Voir annexe 2.

Conjectures peut-on émettre quant au sens de variations et à la convergence de la suite (u_n) : la suite (u_n) est croissante et converge vers α .

(b) Pour tout entier naturel $n, 0 \le u_n \le u_{n+1} \le \alpha$

récurrence: $\forall n, n \in \mathbb{N}, n, 0 \leqslant u_n \leqslant u_{n+1} \leqslant \alpha$

- $-u_0=0 \text{ et } u_1=1 \Longrightarrow 0 \leqslant u_0=0 \leqslant u_1=1 \leqslant \alpha \simeq 5,193$
- Supposons que pour un n donné, on ait : $0 \le u_n \le u_{n+1} \le \alpha$. La fonction f étant croissante sur $[0; \alpha]$:

$$0 \leqslant u_n \leqslant u_{n+1} \leqslant \alpha \Longleftrightarrow 0 < 1 = f(0) \leqslant u_{n+1} = f(u_n) \leqslant u_{n+2} = f(u_{n+1}) \leqslant \alpha = f(\alpha)$$

- Ainsi, $\forall n, n \in \mathbb{N}, 0 \leqslant u_n \leqslant u_{n+1} \leqslant \alpha$.
- (c) La suite (u_n) étant croissante et majorée par α , elle est convergente vers ℓ .

La fonction f étant continue sur $[0; \alpha]$, ℓ vérifie :

$$\lim_{n \to +\infty} u_n = \ell \Longrightarrow \lim_{n \to +\infty} f(u_n) = u_{n+1} = f(\ell) \Longrightarrow f(\ell) = \ell$$

Nous savons que seul α vérifie f(x) = x sur $[0; +\infty[$. Ainsi :

$$\lim_{n \to +\infty} u_n = \alpha$$

3. Étude des suites (u_n) selon les valeurs du réel positif ou nul u_0

— Si $u_0 \in [o; \alpha[$, la suite $(u_n)_{n \in \mathbb{N}}$ est croissante et converge vers α .

- $\begin{array}{l} -- \ \, \text{Si} \,\, u_0 = \alpha, \, \text{la suite est constante et égale à } \alpha. \\ -- \ \, \text{Si} \,\, u_0 \in]\alpha\,; \, +\infty[, \, \text{la suite est décroissante et converge vers } \alpha. \end{array}$

Les démonstrations se font de la même manière que pour $u_0 = 0$.

Annexe 2 (Exercice 2, question 2. a.)

