Code No: 133BQ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2018 SIGNALS AND STOCHASTIC PROCESS (Common to ECE, ETM)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

- 1.a) Is the system described by the equation y(t) = x(2t) time invariant or not? Why? [2]
 - b) Give the relation between bandwidth and Rise time of a signal. [3]
 - c) What are the effects of aliasing and how can you minimize the aliasing error? [2]
 - d) Distinguish between series and transform in the Fourier Representation of a signal.[3]
 - e) Let $x(s) = L\{x(t)\}$, determine the initial value, x(0) and the final value $x(\infty)$, for the following signal using initial value and final value theorems. [2]

$$x(s) = \frac{7s+6}{s(3s+5)}$$

- f) How the stability of a system can be found in Z-Transform and what is the condition for causality in terms of Z-Transform. [3]
- g) Prove that $R_{xy}(\tau) = R_{yx}(-\tau)$. [2]
- h) If the customers arrive at a bank according to a Poisson process with mean rate 2 per minute, find the probability that during a 1-minute interval no customer arrives. [3]
- i) Prove that the power spectral density of a real random process is an even function. [2]
- j) Find the auto correlation function, whose spectral density is: [3]

$$s(\omega) = \begin{cases} \pi, & |\omega| \le 1 \\ 0, & otherwise \end{cases}$$

PART-B

(50 Marks)

- 2.a) Prove that the set $\sin mw_0 t$ and $\sin nw_0 t$ are orthogonal for $m \neq n$, where $m = 0, 1, 2, \ldots, \infty$ and $n = 0, 1, 2, \ldots, \infty$, over to, $t_0 + \frac{2\pi}{\omega_0}$.
- b) Explain the concepts of unit step function and Signum function. [5+5]
- 3.a) Explain causality and physical reliability of a system and explain Paley-wiener criterion.
 - b) Consider a stable LTI system characterized by the differential equation: $\frac{dy(t)}{dt} + 2y(t) = x(t).$ Find its impulse response. [5+5]

WWW.MANARESULTS.CO.IN

- 4.a) Find the Fourier Transform of the signal $x(t) = e^{at}u(-2t)$.
 - b) Define sampling theorem for time limited signal and find the Nyquist rate for the following signals.

i) rect 300t ii) $10 cos 300 \pi t$

[4+6]

OR

- 5.a) Derive the expression for trigonometric Fourier series coefficients.
 - b) Determine the exponential form of the Fourier series representation of the signal shown in figure 1. [4+6]

Figure 1

6.a) By using the power series expression technique, find the inverse Z-Transform of the following X(z).

$$X(z) = \frac{z}{2z^2 - 3z + 1}$$
; $|z| < \frac{1}{2}$.

b) Distinguish between the Laplace, Fourier and Z-Transforms.

[7+3]

)R

7.a) Find the Laplace Transform of the periodic, rectangular wave shown in figure 2.

Figure 2

- b) Find the Laplace Transform of following functions:
 - i) Exponential function
 - ii) Unit step function.

[6+4]

- 8.a) Explain the characteristics of a first order and strict sense stationary process using relevant expressions.
 - b) State and prove the properties of auto correlation of a random process. [5+5]

OR

- 9.a) Find the mean, variance and Root Mean Square value of the process, whose auto correlation function is $R_{xx}(\tau) = \frac{25\tau^2 + 36}{6.25\tau^2 + 4}$.
 - b) Consider two random processes $x(t) = 3\cos(\omega t + \theta)$ and $y(t) = 2\cos(\omega t + \phi)$, where $\phi = \theta \frac{\pi}{2}$ and θ is uniformly distributed over $(0,2\pi)$, verify $\left|R_{xy}(\tau)\right| \le \sqrt{R_{xx}(0)R_{yy}(0)}$. [5+5]
- 10.a) Derive the relation between input and output power spectral densities of a linear system.
 - b) The cross power spectrum of real random process x(t) and y(t) is given by:

$$S_{xy}(\omega) = \begin{cases} a + ib\omega, & \text{if } |\omega| \le 1\\ 0, & \text{elsewhere} \end{cases}$$

Find the cross correlation function.

[5+5]

OR

- 11.a) Consider a random process $X(t) = A_0 cos(\omega_0 t + \theta)$, where A_0 and ω_0 are constants and θ is a uniform random variable in the interval $(0, \pi)$, find whether X(t) is WSS process.
 - b) Show that $S_{yy}(\omega) = |H(\omega)|^2 S_{xx}(\omega)$. Where $S_{xx}(\omega)$ and $S_{yy}(\omega)$ are the power spectral density functions of the input x(t) and the output y(t) respectively and $H(\omega)$ is the system transfer function. [5+5]

--ooOoo--