A Book of Abstract Algebra (2nd Edition)

N . 07 B II . 455		
Chapter 27, Problem 1EF	Bookmark	Show all steps: ON
Pr	oblem	
If the minimum polynomial of a over F has deg	ree 2, we call <i>F</i> (<i>a</i>) a qua	dratic extension of <i>F</i> .
Prove that, if F is a field whose characteristic is	s ≠2, any quadratic exter	sion of F is of the form
$F(\sqrt{a})$, for some $a \in F$ (HINT: Complete	the square, and use Exe	rcise E4.)
Step-by-step solution		
Step	1 of 3 ^	
Consider the field F whose characteristic is \neq quadratic extension of F is of form $F(\sqrt{a})$, for		ejective is to prove that any
Suppose that <i>K</i> is the quadratic extension of <i>F</i>		en
[K:F] = [K:F(d)][F(d):F]		
By some choice of d , $[F(d):F] \ge 2$. Also K is must have	quadratic extension, so	[K:F]=2. Thus, one
[K:F(d)]=1		
Comment		
Chan	0 010	
Step	2 of 3 ^	
It implies that $K = F(d)$. So, the minimal polyr	nomial of <i>d</i> over <i>F</i> must l	pe quadratic, say
$x^2 + cx + b$. Now, complete the square in d^2		,
$(c)^{2}$		
$d^{2} + cd + b + \left(\frac{c}{2}\right)^{2} - \left(\frac{c}{2}\right)^{2} = 0$		
$(c^2)(c^2)$		
$ d^2 + cd + \frac{c}{ c } - \frac{c}{ c } - b = 0$		
$\left(d^2 + cd + \frac{c^2}{4}\right) - \left(\frac{c^2}{4} - b\right) = 0$		
$\left(d + \frac{c}{2}\right)^2 - \left(\frac{c^2}{4} - b\right) = 0$		
$\left(d + \frac{c}{2}\right)^2 - \left(\frac{c^2}{4} - b\right) = 0$		
$\left(d + \frac{c}{2}\right)^2 - \left(\frac{c^2}{4} - b\right) = 0$ $\left(d + \frac{c}{2}\right) = \sqrt{\frac{c^2}{4} - b}.$		
$\left(d+\frac{c}{2}\right)^2-\left(\frac{c^2}{4}-b\right)=0$ $\left(d+\frac{c}{2}\right)=\sqrt{\frac{c^2}{4}-b}.$ Then $K=F(d)$		
$\left(d + \frac{c}{2}\right)^2 - \left(\frac{c^2}{4} - b\right) = 0$ $\left(d + \frac{c}{2}\right) = \sqrt{\frac{c^2}{4} - b}.$ Then $K = F(d)$ $= F\left(d + \frac{c}{2}\right)$		
$\left(d+\frac{c}{2}\right)^2-\left(\frac{c^2}{4}-b\right)=0$ $\left(d+\frac{c}{2}\right)=\sqrt{\frac{c^2}{4}-b}.$ Then $K=F(d)$		
$\left(d + \frac{c}{2}\right)^2 - \left(\frac{c^2}{4} - b\right) = 0$ $\left(d + \frac{c}{2}\right) = \sqrt{\frac{c^2}{4} - b}.$ Then $K = F(d)$ $= F\left(d + \frac{c}{2}\right)$		
$\left(d + \frac{c}{2}\right)^2 - \left(\frac{c^2}{4} - b\right) = 0$ $\left(d + \frac{c}{2}\right) = \sqrt{\frac{c^2}{4} - b}.$ Then $K = F(d)$ $= F\left(d + \frac{c}{2}\right)$ $= F\left(\sqrt{\frac{c^2}{4} - b}\right).$		
$\left(d + \frac{c}{2}\right)^2 - \left(\frac{c^2}{4} - b\right) = 0$ $\left(d + \frac{c}{2}\right) = \sqrt{\frac{c^2}{4} - b}.$ Then $K = F(d)$ $= F\left(d + \frac{c}{2}\right)$ $= F\left(\sqrt{\frac{c^2}{4} - b}\right).$ Comment	3 of 3	
$\left(d + \frac{c}{2}\right)^2 - \left(\frac{c^2}{4} - b\right) = 0$ $\left(d + \frac{c}{2}\right) = \sqrt{\frac{c^2}{4} - b}.$ Then $K = F(d)$ $= F\left(d + \frac{c}{2}\right)$ $= F\left(\sqrt{\frac{c^2}{4} - b}\right).$ Comment	3 of 3	
$\left(d + \frac{c}{2}\right)^2 - \left(\frac{c^2}{4} - b\right) = 0$ $\left(d + \frac{c}{2}\right) = \sqrt{\frac{c^2}{4} - b}.$ Then $K = F(d)$ $= F\left(d + \frac{c}{2}\right)$ $= F\left(\sqrt{\frac{c^2}{4} - b}\right).$ Comment	3 of 3	
$\left(d+\frac{c}{2}\right)^2 - \left(\frac{c^2}{4} - b\right) = 0$ $\left(d+\frac{c}{2}\right) = \sqrt{\frac{c^2}{4} - b}.$ Then $K = F(d)$ $= F\left(d+\frac{c}{2}\right)$ $= F\left(\sqrt{\frac{c^2}{4} - b}\right).$ Comment Step Hence, $K = F\left(\sqrt{a}\right)$, where $a = \frac{c^2}{4} - b \in F$.	3 of 3	