Fachhochschule Aachen Campus Jülich

Fachbereich: Medizintechnik und Technomathematik Studiengang: Scientific Programming

Algorithmische Bestimmung von Teilchenflugbahnen durch inhomogene Magnetfelder

Eine Seminararbeit von Christian Peters

Jülich, den 17. November 2017

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich diese Seminararbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, alle Ausführungen, die anderen Schriften wörtlich oder sinngemäß entnommen wurden, kenntlich gemacht sind und die Arbeit in gleicher oder ähnlicher Fassung noch nicht Bestandteil einer Studienoder Prüfungsleistung war. Ich verpflichte mich, ein Exemplar der Seminararbeit fünf Jahre aufzubewahren und auf Verlangen dem Prüfungsamt des Fachbereiches Medizintechnik und Technomathematik auszuhändigen.

Christian Peters

Jülich, 17. November 2017

Diese Arbeit wurde betreut von:

1. Prüfer: Prof. Dr. Andreas Terstegge

2. Prüfer: Günter Sterzenbach

Inhaltsverzeichnis

1	1 Einleitung				4	
2	Physikalische Grundlagen			5		
	2.1				5	
	2.2				6	
		2.2.1	Eigensch	aften der gleichförmigen Kreisbewegung	6	
		2.2.2	Beschreib	bung der Flugbahn	7	
3	Aufbau des Verfahrens				9	
	3.1 Simulation der Flugbahn im homogenen Magnetfeld		Flugbahn im homogenen Magnetfeld	9		
	3.1.1 Die Flugbahn im lokalen Bezugssystem des Ladungs		bahn im lokalen Bezugssystem des Ladungsträgers	9		
		3.1.2 Übertragung auf das globale Koordinatensystem			11	
			3.1.2.1	Eulersche Winkel	11	
			3.1.2.2	Bestimmung der Drehwinkel	12	
			3.1.2.3	Zusammenfassung der Transformationsschritte	12	
	3.2	Ausweitung auf inhomogene Magnetfelder			12	
		3.2.1	Diskretis	sierung inhomogener Magnetfelder	12	
			3.2.1.1	TODO Fehler	12	
	3.3	B Abbruchkriterien			12	
	3.4	3.4 Der resultierende Algorithmus			12	
4	Implementierung				13	
5	Aushlick				1/	

1 Einleitung

Dies ist die Einleitung zu meiner Seminararbeit.

2 Physikalische Grundlagen

Um ein Fundament zu schaffen, auf welchem diese Arbeit im weiteren Velauf aufbauen kann, werden an dieser Stelle zunächst die physikalischen Grundlagen dargelegt, auf denen das später beschriebene Verfahren basiert. Es werden vornehmlich die Wechselwirkungen von bewegten Teilchen in homogenen Magnetfeldern beschrieben, ein Überblick dieser Zusammenhänge ist für das weitere Verständnis dieser Arbeit unbedingt notwendig. Die hier dargelegten Ausführungen berufen sich im Wesentlichen auf [Vog99] ¹.

2.1 Die Lorentz-Kraft und ihre Eigenschaften

Bewegt sich ein geladenes Teilchen mit der Geschwindigkeit v durch ein homogenes magnetisches Feld der Feldstärke B, so erfährt es die Lorentz-Kraft F_L . Diese Kraft wirkt nur, wenn sich das geladene Teilchen bewegt, weiterhin ist der Betrag dieser Kraft sowohl proportional zur Ladung Q des Teilchens, als auch zu seiner Geschwindigkeit. Die Lorentz-Kraft wirkt stets sowohl senkrecht zur Bewegungsrichtung des Teilchens, als auch senkrecht zur Richtung des Magnetfeldes. Das Teilchen wird in seiner Flugbahn also seitlich abgelenkt. Der Betrag der Kraft hängt außerdem von der Richtung der Teilchenbewegung ab: Verläuft diese parallel zur Richtung des magnetischen Feldes, so gilt $F_L = 0$. Für beliebige Winkel α verändert sich der Betrag der Lorentz-Kraft wie $v \cdot \sin \alpha$. Fasst man alle diese Eigenschaften zusammen, so erhält man den folgenden Ausdruck:

$$F_L = Q \cdot v \cdot B \cdot \sin \alpha \tag{2.1}$$

Die konkrete Wirkungsrichtung der Lorentz-Kraft lässt sich leicht anhand der Linke-Hand-Regel ermitteln: Zeigt der Daumen der linken Hand in Richtung der Ursache für die Lorentz-Kraft, also der Bewegung eines geladenen Teilchens, und zeigt ferner der Zeigefinger der linken Hand in Richtung des magnetischen Feldes, so ergibt sich die Richtung der Lorentz-Kraft aus der Richtung des Mittelfingers der linken Hand. Fasst man die bisherigen Größen als die Vektoren \vec{v} , \vec{B} und $\vec{F_L}$ auf, so bilden diese ein Linkssystem.

 $^{^{1}}$ Vgl. S.354-355 zur Lorentz-Kraft und S.451-453 zu Elektronen in homogenen Magnetfeldern.

Hierbei einigt man sich auf die sogenannte physikalische Stromrichtung: Negative Ladungen (beispielsweise freie Elektronen) bewegen sich per Definition vom negativen hin zum positiven Pol einer Spannungsquelle. Im Falle der Linke-Hand-Regel zeigt der Daumen also immer hin zur physikalischen Stromrichtung. Würde man unter sonst gleichen Bedingungen die Richtung des Stromes andersherum definieren (technische Stromrichtung), so käme anstelle der linken Hand nun die rechte Hand zur Anwendung. Alle Größen blieben aber unverändert, somit bleibt es jedem selbst überlassen, welche der Definitionen er bevorzugt.

2.2 Bewegte Ladungsträger im homogenen Magnetfeld

Bewegt sich nun ein Ladungsträger durch ein homogenes Magnetfeld, so stellt sich die Frage, durch welche Eigenschaften sich die Flugbahn beschreiben lässt, auf welcher sich dieser aufgrund der Lorentz-Kraft bewegt. Beachtet man die Tatsache, dass die Lorentz-Kraft stets senkrecht zur Bewegungsrichtung wirkt, so wird man unweigerlich zu der Schlussfolgerung gelangen, dass es sich hierbei um eine gleichförmige Kreisbewegung handeln muss. Um dies nachvollziehen zu können, werden die allgemeinen Eigenschaften einer gleichförmigen Kreisbewegung und die Eigenschaften der Flugbahn des Ladungsträgers im Speziellen im Folgenden näher beschrieben.

2.2.1 Eigenschaften der gleichförmigen Kreisbewegung

Bewegt sich ein Körper der Masse m mit konstanter Geschwindigkeit v auf einer kreisförmigen Bahn mit dem Radius r um den Kreismittelpunkt M, so spricht man von einer gleichförmigen Kreisbewegung. Der Begriff "gleichförmig" rührt daher, dass sich der Betrag der Bahngeschwindigkeit v des Körpers nicht ändert, wohl aber die Richtung, welche stets tangential zur Kreisbahn verläuft. Während die Bahngeschwindigkeit v angibt, welche Bogenlänge des Kreises in einer bestimmten Zeit t durchlaufen wird, so beschreibt die $Winkelgeschwindigkeit \omega$, welcher Winkel (man verwendet hier das $Bogenma\beta$) in t zurückgelegt wird.

Damit sich ein Körper überhaupt auf einer Kreisbahn bewegen kann, muss auf ihn eine Kraft F wirken, die ihn auf dieser Bahn hält. Diese Kraft, die stets radial zum Mittelpunkte des Kreises hin gerichtet ist, nennt man Zentripetalkraft. Es gilt der folgende Zusammenhang für die Größe der Zentripetalkraft:

$$F = \frac{mv^2}{r} = m\omega^2 r \tag{2.2}$$

2.2.2 Beschreibung der Flugbahn

Betrachtet man vor diesem Hintergrund erneut die Lorentz-Kraft F_L , so wird deutlich, dass diese alle Eigenschaften der in Abschnitt 2.2.1 auf der vorherigen Seite beschriebenen Zentripetalkraft erfüllt. Dies liegt daran, dass die Lorentz-Kraft zum einen den Betrag der Teilchengeschwindigkeit nicht ändert und zum anderen immer senkrecht auf der Bewegungsrichtung des Teilchens steht.

Da sich der Ladungsträger jedoch im Allgemeinen nicht vollständig senkrecht zum Magnetfeld bewegt, gibt es auch eine Komponente der Geschwindigkeit des Teilchens (im Folgenden v_{\parallel}), welche von der Lorentz-Kraft unbeeinflusst bleibt, da sie parallel zum Magnetfeld verläuft. Um diesem Sachverhalt gerecht zu werden, betrachtet man diese unterschiedlichen Komponenten getrennt voneinander. Dies hat zur Folge, dass der Anteil der Bewegungsrichtung, welcher senkrecht zum magnetischen Feld verläuft (v_{\perp}) , eine Kreisbewegung beschreibt, der Anteil v_{\parallel} wird jedoch nicht von der Lorentz-Kraft beeinflusst. Die Summe dieser beiden Bewegungen ergibt eine Schraubenlinie, welche durch einen Zylinder mit dem Radius r der Kreisbahn begrenzt ist. Die orthogonale Projektion dieser Schraubenbewegung vollzieht genau die Kreisbewegung, welche von der Lorentz-Kraft verursacht wird. Um die konkreten Eigenschaften der Flugbahn zu quantifizieren, reicht es also aus, beide Teile der Bewegung für sich genommen zu beschreiben.

Betrachtet man die zum Magnetfeld senkrechte Komponente v_{\perp} der Teilchenbewegung, so lässt sich die resultierende Kreisbewegung eindeutig durch die Angabe des Radius r, sowie durch die Winkelgeschwindigkeit ω beschreiben. Den Radius r erhält man aus dem Zusammenhang, dass die Lorentz-Kraft die Rolle der Zentripetalkraft einnimmt. Setzt man Gleichung (2.1) auf Seite 5 unter der Bedingung $\alpha = \frac{\pi}{2}$, die sich aus der Konstruktion ergibt (v_{\perp} steht senkrecht zum Magnetfeld), mit Gleichung (2.2) auf der vorherigen Seite, der Gleichung der Zentripetalkraft, gleich, so erhält man:

$$\frac{m \cdot v_{\perp}^{2}}{r} = Q \cdot v_{\perp} \cdot B$$

$$r = \frac{m \cdot v_{\perp}}{Q \cdot B}$$
(2.3)

Ein ähnlicher Ansatz wird verwendet, um die Winkelgeschwindigkeit ω der Kreisbewegung zu berechnen. Der einzige Unterschied ist, dass die Gleichung der Zentripetalkraft verwendet wird, welche die Winkelgeschwindigkeit enthält. Gleichsetzen ergibt den folgenden Ausdruck:

$$m \cdot \omega^2 \cdot r = Q \cdot v_\perp \cdot B$$

$$\omega^2 = \frac{Q \cdot v_\perp \cdot B}{m \cdot r}$$

Setzen wir nun für r das Ergebnis aus Gleichung (2.3) auf der vorherigen Seite ein, so ergibt sich folgender Zusammenhang für die Winkelgeschwindigkeit der Bewegung:

$$\omega^2 = \frac{Q^2 \cdot v_{\perp} \cdot B^2}{m^2 \cdot v_{\perp}} = \frac{Q^2 \cdot B^2}{m^2}$$

$$\omega = \frac{Q \cdot B}{m} \tag{2.4}$$

Um den Bewegungsanteil v_{\parallel} zu beschreiben, welcher entlang des Magnetfeldes verläuft, genügen die Gesetze einer gleichförmigen Bewegung konstanter Geschwindigkeit. Ist man daran interessiert, welche Strecke S das Teilchen innerhalb einer Zeit t zurücklegt, so gilt der folgende allgemein bekannte Zusammenhang:

$$S = v_{\parallel} \cdot t \tag{2.5}$$

Addiert man diese beiden unabhängigen Teile der Bewegung, so erhält man insgesamt die oben beschriebenen Schraubenlinien, welche das Teilchen auf seinem Weg durch das homogene Magnetfeld verfolgt.

3 Aufbau des Verfahrens

Um nun aufbauend auf diesen Erkenntnissen die allgemeinen Flugbahnen beliebiger Ladungsträger durch beliebige, unter Umständen auch inhomogene, Magnetfelder simulieren zu können, sind mehrere Zwischenschritte notwendig. Unter Verwendung der Ergebnisse aus Abschnitt 2.2.2 auf Seite 7 wird zunächst ein Verfahren hergeleitet, welches es ermöglicht, die Teilchenflugbahnen in homogenen Magnetfeldern zu simulieren. Dieses Verfahren kann anschließend auf beliebige Magnetfelder ausgeweitet werden, indem man diese abschnittsweise durch homogene Teilfelder approximiert, auf welchen dann das hergeleitete Verfahren zur Anwendung kommt.

3.1 Simulation der Flugbahn im homogenen Magnetfeld

Bewegen sich Teilchen im Raum, so kann dies in allen möglichen Orientierungen erfolgen. Um diesem Sachverhalt Rechnung zu tragen, werden zunächst sämtliche Schritte im lokalen Bezugssystem des Ladungsträgers durchgeführt. Unabhängig von der speziellen Orientierung des Teilchens gewährleistet dies einheitliche Rechenvorschriften, welche im Anschluss durch einfache Basistransformationen in das globale Koordinatensystem überführt werden können. Die größen v und B, welche in Abschnitt 2.2.2 auf Seite 7 noch als Skalare betrachtet wurden, müssen nun vektoriell als \vec{v} und \vec{B} aufgefasst werden. Es wird sich aber zeigen, dass dies durch geeignete Wahl der lokalen Basisvektoren nur eine untergeordnete Rolle spielt.

3.1.1 Die Flugbahn im lokalen Bezugssystem des Ladungsträgers

Das lokale Koordinatensystem wird nun so gewählt, dass sich die Position des Teilchens genau im Ursprung befindet. Weiterhin zeigen die magnetischen Feldlinien genau in Richtung der z-Achse, die orthogonale Projektion der Teilchenbewegung auf die xy-Ebene zeigt genau entlang der y-Achse. Auf diese Weise lassen sich die beiden Anteile der Bewegung, welche in Abschnitt 2.2.2 auf Seite 7 beschrieben wurden, optimal trennen: Der gleichförmige Anteil der Bewegung, welcher auf v_{\parallel} zurückzuführen ist, verläuft genau entlang der z-Achse, während v_{\perp} eine Kreisbewegung in der xy-Ebene verursacht. v_{\parallel} be-

einflusst also nur die z-Koordinate des Ladungsträgers, während v_{\perp} ausschließlich die x-, sowie die y-Koordinate beeinflusst.

Um nun den Mittelpunkt M des Kreises zu ermitteln, welchem die Bewegung in der xy-Ebene folgt, kann zunächst der Radius r dieses Kreises bestimmt werden. Gemäß der Konstruktion und unter Berücksichtigung der Linke-Hand-Regel liegt M dann genau auf der x-Achse und hat die xy-Koordinaten (-r|0). Der Radius lässt sich nun, wie in Abschnitt 2.2.2 auf Seite 7 mit Gleichung (2.3) auf Seite 7 beschrieben, ohne weiteres berechnen. Man beachte, dass aufgrund der Konstruktion nur die z-Koordinate des Magnetfeldes \vec{B} , sowie die y-Koordinate der Teilchengeschwindigkeit \vec{v} relevant ist. Weiterhin ist ebenfalls konstruktionsbedingt $\alpha = \frac{\pi}{2}$, weshalb der Term $\sin \alpha$ entfällt. Benutzen wir also $v_{\perp} = \vec{v}_y$ und $B = \vec{B}_z$, so erhalten wir folgenden Zusammenhang für den Radius r im lokalen Bezugssystem:

$$r = \frac{m \cdot \vec{v}_y}{Q \cdot \vec{B}_z} \tag{3.1}$$

Damit der exakte Punkt berechnet werden kann, an dem sich der Ladungsträger nach einer gewissen Zeitspanne t befindet, wird weiterhin die Winkelgeschwindigkeit ω der Kreisbewegung benötigt. Wenden wir die Überlegung $B = \vec{B}_z$ auf Gleichung (2.4) auf Seite 8 an, so ergibt sich für die Winkelgeschwindigkeit:

$$\omega = \frac{Q \cdot \vec{B}_z}{m} \tag{3.2}$$

Aus der Winkelgeschwindigkeit ω , dem Radius r und der gegebenen Simulationszeit t lässt sich mithilfe der Bewegungsgleichungen der gleichförmigen Kreisbewegung die exakte Position des Teilchens in der xy-Ebene ermitteln. Hierzu wird der folgende allgemeine Zusammenhang angewandt, der für gleichförmige Kreisbewegungen in der Ebene gültig ist:

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} r \cdot \sin(\omega \cdot t) + M_x \\ r \cdot \cos(\omega \cdot t) + M_y \end{pmatrix}$$

Die Koordinaten von M_x und M_y erhält man direkt aus den obigen Überlegungen.

Die Veränderung der z-Koordinate, also der Anteil der Bewegung, welcher durch $\vec{v_{\parallel}}$ verursacht wird, lässt sich direkt mithilfe Gleichung (2.5) auf Seite 8 bestimmen. Auch hier lässt sich aufgrund der Konstruktion die Vereinfachung $v_{\parallel} = \vec{v}_z$ durchführen, da v_{\parallel} lediglich durch die Projektion von \vec{v} auf die z-Achse gegeben ist. Insgesamt erhalten wir folgenden Zusammenhang über die neue Position des Ladungsträgers nach der Zeit t,

bezogen auf sein lokales Koordinatensystem:

$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} r \cdot \sin(\omega \cdot t) - r \\ r \cdot \cos(\omega \cdot t) \\ \vec{v}_z \cdot t \end{pmatrix}$$
 (3.3)

3.1.2 Übertragung auf das globale Koordinatensystem

Um die neue Position des Ladungsträgers bezogen auf das globale Koordinatensystem zu erhalten, ist ein Wechsel der Basis erforderlich. Zunächst müssen die Größen \vec{v} und \vec{B} in das lokale Bezugssystem des Ladungsträgers überführt werden, damit in dieser neuen Basis die Zusammenhänge aus Abschnitt 3.1.1 auf Seite 9 angewandt werden können. Anschließend werden die Ergebnisse, also die berechnete neue Position des Ladungsträgers, wieder zurück in die ursprüngliche Basis transformiert.

3.1.2.1 Eulersche Winkel

Betrachtet man das vorliegende Modell genauer, so fällt auf, dass sich alle notwendigen Transformationen auf die Hintereinanderausführung von Drehungen zurückführen lassen. Da es sich bei Drehungen um sogenannte orthogonale Transformationen handelt, bleiben Abstände und Normen nach der Transformation erhalten. Diese Eigenschaft ist besonders wichtig, da sich sonst die Erkenntnisse aus Abschnitt 3.1.1 auf Seite 9 nicht ohne weiteres auf die transformierten Größen anwenden ließen.

Die Hintereinanderausführung von Drehungen wird durch sogenannte Eulersche Winkel beschrieben. Hierbei handelt es sich um die Angabe von Winkeln, die jeweils die Rotation um eine Achse beschreiben. Die Besonderheit hierbei ist, dass nur die erste Rotation um eine raumfeste Achse erfolgt. Die weiteren Drehungen beziehen sich stets auf die mitgedrehten lokalen Achsen des zu drehenden Körpers.

Seien $R_x(\alpha)$, $R_y(\beta)$, $R_z(\gamma)$ die Drehmatrizen zur Drehung um die globalen Achsen x, y und z. Nach [Fis12]¹ ergibt sich die Gesamtdrehmatrix einer eulerschen Drehung durch das Produkt der einzelnen Drehmatrizen in der gewünschten Reihenfolge. Möchte man beispielweise zunächst um die globale x-Achse, dann um die mitgedrehte lokale y-Achse und anschließend um die resultierende lokale z-Achse drehen, ergibt sich die Gesamtdrehmatrix R zu $R = R_x(\alpha) \cdot R_y(\beta) \cdot R_z(\gamma)$, wenn jeweils um die zugehörigen Winkel α , β und γ gedreht wird, die man in diesem Kontext als Eulersche Winkel bezeichnet.

Möchte man die Drehung rückgängig machen, so stellt sich die Frage nach der inversen

¹Vgl. hierzu Abschnitt 5.3.6 für einen ausführlichen Beweis.

zu R, also R^{-1} . Da für die Matrizen der Einzeldrehungen jeweils der Zusammenhang $R_g(\alpha)^{-1} = R_g(-\alpha)$ gilt, wobei g eine beliebige Achse beschreibt, gilt für die Inverse der Gesamtdrehmatrix R:

$$R^{-1} = (R_x(\alpha) \cdot R_y(\beta) \cdot R_z(\gamma))^{-1} = R_z(\gamma)^{-1} \cdot R_y(\beta)^{-1} \cdot R_x(\alpha)^{-1}$$
$$= R_z(-\gamma) \cdot R_y(-\beta) \cdot R_x(-\alpha)$$
(3.4)

3.1.2.2 Bestimmung der Drehwinkel

Wie in Abschnitt 3.1.1 auf Seite 9 beschrieben, zeigt die z-Achse im lokalen Bezugssystem des Ladungsträgers genau in die Richtung des magnetischen Feldes \vec{B} . Um \vec{B} nun durch Drehungen so zu transformieren, dass die Richtung der z-Achse entspricht, können Eulersche Winkel eingesetzt werden. Da die Drehung von \vec{B} auf die z-Achse genau der entgegengesetzten, also der inversen Drehung der z-Achse auf \vec{B} entspricht, die Winkel zu dieser inversen Drehung allerdings leichter zu bestimmen sind, wird zunächst die z-Achse auf \vec{B} gedreht. Diese Transformation kann dann unter Verwendung von Gleichung (3.4) im Umkehrschluss auf \vec{B} angewandt werden, um die eigentlich relevante Drehmatrix zu erhalten

Um die z-Achse, im Folgenden mit der Bezeichnung des Einheitsvektors \vec{z} beschrieben, auf \vec{B} zu drehen, sind zwei Drehungen erforderlich: Zunächst muss eine Drehung um die y-Achse um den Winkel α , anschließend eine Drehung um die lokal mitgedrehte x-Achse um den Winkel β erfolgen.

3.1.2.3 Zusammenfassung der Transformationsschritte

3.2 Ausweitung auf inhomogene Magnetfelder

3.2.1 Diskretisierung inhomogener Magnetfelder

3.2.1.1 TODO Fehler

3.3 Abbruchkriterien

3.4 Der resultierende Algorithmus

4 Implementierung

Die konkrete Implementierung des Verfahrens wird hier diskutiert.

5 Ausblick

Was noch alles gemacht werden kann.

Literatur

- [Fis12] Gerd Fischer. Lernbuch Lineare Algebra und Analytische Geometrie. 2. Aufl. Springer Vieweg, 2012. ISBN: 978-3-8348-2379-3.
- $[{\rm Vog}99]$ Helmut Vogel. Gerthsen Physik. 20. Aufl. Springer-Verlag, 1999. ISBN: 3-540-65479-8.

Abbildungsverzeichnis