Assignment6

Aravind A Anil

March 10, 2021

Problem statement:Find the probability distribution of number of success in two tosses of die, where success is defined as

i number greater than 4

ii six appear on at-least one die

Solution:Let $X \in (1, 2, 3, 4, 5, 6)$ be the outcome of first throw $Y \in (1, 2, 3, 4, 5, 6)$ be the outcome of second throw

1 number greater than 4

Let Z be the number of times the number greater than 4 occurs When we throw 2 dies,there can be three cases

- 1. no number greater than 4
- 2. one number greater than 4
- 3. both number greater than 4

so values of \mathbf{Z} can be $\mathbf{0,1,2}$

$$Pr(Z = 0) = Pr(X \le 4) \& Pr(Y \le 4)$$
$$= \frac{4}{6} \times \frac{4}{6}$$
$$= \frac{4}{9}$$

$$Pr(Z = 1) = Pr(X > 4) \& Pr(Y \le 4) + Pr(X \le 4)$$

$$\& Pr(Y > 4)$$

$$= \frac{2}{6} \times \frac{4}{6} + \frac{4}{6} \times \frac{2}{6}$$

$$= \frac{4}{9}$$

$$Pr(Z = 2) = Pr(X > 4) \& Pr(Y > 4)$$

= $\frac{2}{6} \times \frac{2}{6}$
= $\frac{1}{9}$

X	0	1	2
Pr(X)	$\frac{4}{9}$	$\frac{4}{9}$	$\frac{1}{9}$

Table 1: probability distribution

2 six appear on at-least one die

since a pair of dies are thrown, There can be two cases

- 1. six does not appear at all
- 2. six appear on atleast one die

Hence,

Z=0 six does not appears at all

Figure 1: simulated CDF

Figure 2: Theoretical CDF

Figure 3: simulated PMF

Figure 4: theoretical PMF

Z=1 appears on atleast die

Finding P(Z=1)

ie, probability that at-least one six appears

$$Pr(Z = 1) = Pr(X = 6)\⪻(Y < 6) + Pr(X < 6)$$

$$\⪻(Z = 6) + P(X = 6)\&P(Y = 6)$$

$$= \frac{1}{6} \times \frac{5}{6} + \frac{5}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{6}$$

$$= \frac{11}{36}$$

Finding P(Z=0)

i.e, probability that six does-not appear

$$Pr(Z = 0) = Pr(X < 6) \& Pr(Y < 6)$$

= $\frac{5}{6} \times \frac{5}{6}$
= $\frac{25}{36}$

Therefore, $Pr(X=0)=\frac{25}{36}$ so,our probability distribution is

X	0	1
P(X)	$\frac{25}{36}$	$\frac{11}{36}$

Table 2: probability distribution

Figure 5: simulated CDF

Figure 7: simulated PMF

Figure 6: Theoretical CDF

Figure 8: theoretical PMF