Interior Girder (G4) Load Rating

Bridge Information:

Steel Properties:

Built Approx.: 1965 A36 Steel Span Length, L: Fy: 147 ft 36 ksi Girder Spacing, S: 8 ft f'c: 3 ksi Slab Thickness, ts: 9.5 in 29000 ksi Ε: Skew Angle, Θ : 49 degrees 1 in rebar cover :

Asphalt Thickness: 2 in 0.625 in rebar dia:

	Location of Ea	ach Section (ft
	from W	'est End)
1	0	37
2	37	37.5
3	37.5	52
4	52	56.5
5	56.5	90.5
4	90.5	95
3	95	109.5
2	109.5	110
1	110	147

Different Section Properties (NOT TO SCALE)

							_	
1	2	3	4	5	4	3	2	1

Calculate Non-Composite Section Properties

Section	Width (b)	Height (h)	I	Area (A)	y of plate	A*y	d	I+A*d^2
Property 1	in	in	in^4	in^2	in	in^3	in	in^4
Top Plate	20	0.875	1.116536458	17.5	61.375	1074.0625	-32.01707	17940.245
Web	0.375	60	6750	22.5	30.9375	696.09375	-1.579575	6806.1388
Bottom Plate	22	0.9375	1.510620117	20.625	0.46875	9.6679688	28.889175	17214.815
			ΣA =	60.625	Σ A*y =	1779.8242	=	41961.199
				Nou	tral Avic v -	20 257025		

Neutral Axis, y = |29.357925|

Section	Width (b)	Height (h)	I	Area (A)	y of plate	A*y	d	I+A*d^2
Property 2	in	in	in^4	in^2	in	in^3	in	in^4
Top Plate	20	0.875	1.116536458	17.5	62.3125	1090.4688	-39.58846	27427.927
Web	0.375	60	6750	22.5	31.875	717.1875	-9.150962	8634.1522
Bottom Plate	22	1.875	12.08496094	41.25	0.9375	38.671875	21.786538	19591.532
			ΣA =	81.25	Σ A*y =	1846.3281	=	55653.611
				Neu	tral Axis, y =	22.724038		

Section	Width (b)	Height (h)	I	Area (A)	y of plate	A*y	d	I+A*d^2
Property 3	in	in	in^4	in^2	in	in^3	in	in^4
Top Plate	20	1.75	8.932291667	35	62.75	2196.25	-32.85522	37790.228
Web	0.375	60	6750	22.5	31.875	717.1875	-1.980222	6838.2287
Bottom Plate	22	1.875	12.08496094	41.25	0.9375	38.671875	28.957278	34601.199
			ΣA =	98.75	Σ A*y =	2952.1094	=	79229.655
				Neu	tral Axis, y =	29.894778		·

Section	Width (b)	Height (h)	I	Area (A)	y of plate	A*y	d	I+A*d^2
Property 4	in	in	in^4	in^2	in	in^3	in	in^4
Top Plate	20	1.75	8.932291667	35	63.75	2231.25	-38.39299	51599.682
Web	0.375	60	6750	22.5	32.875	739.6875	-7.517987	8021.7027
Bottom Plate	22	2.875	43.56673177	63.25	1.4375	90.921875	23.919513	36231.619
			ΣA =	120.75	Σ A*y =	3061.8594	=	95853.004
						05.057040	I .	

Neutral Axis, y = 25.357013

Section	Width (b)	Height (h)	I	Area (A)	y of plate	A*y	d	I+A*d^2
Property 5	in	in	in^4	in^2	in	in^3	in	in^4
Top Plate	20	2.125	15.99283854	42.5	63.9375	2717.3438	-36.27315	55934.997
Web	0.375	60	6750	22.5	32.875	739.6875	-5.210648	7360.8942
Bottom Plate	22	2.875	43.56673177	63.25	1.4375	90.921875	26.226852	43549.937
_			ΣA =	128.25	Σ A*y =	3547.9531	l =	106845.83
				Neu	tral Axis, y =	27.664352		

Summary of Non-Composite Section Properties

Section	Length, x	А	I	У	Depth	Stop	Sbot
Property	ft	in^2	in^4	in	in	in^3	in^3
1	37.000	60.625	41961.199	29.358	61.813	1292.921	1429.297
2	0.500	81.250	55653.611	22.724	62.750	1390.438	2449.107
3	14.500	98.750	79229.655	29.895	63.625	2348.922	2650.284
4	4.500	120.750	95853.004	25.357	64.625	2440.996	3780.138
5	34.000	128.250	106845.829	27.664	65.000	2861.764	3862.221

Calculate Composite Section Properties

Effective Flange Width, beff:

Minimum of:

(i) 1/4*L			441	in	
(ii) 12ts + gre	ater of:		124	in	
	tw	0.375			
	1/2*bftop	10			
(iii) S			96	in	
		beff =	96	in	

Modular Ratio, n:

For
$$2.9 < f'_c < 3.6$$
:

f'c:

3

ksi

Short-Term Composite, (n):

 $b_e = b_{eff}/n$: **10.6666667** in

9

Iconcrete = $(bets^3)/12$

762.1111111 in^4

Aconcrete = be*ts

101.3333333 in^2

			Beam		Concrete				
Section	y for	У	d	I+Ad^2	d	I+Ad^2	IST-Comp	Stop	Sbot
Property	concrete	in	in	in^4	in	in^4	in^4	in^3	in^3
1	66.5625	52.63590976	23.27798451	74811.7381	-13.92659	20415.703	95227.441	10377.214	1809.1725
2	67.5	47.57459493	24.85055647	105829.561	-19.92541	40993.65	146823.21	9675.0769	3086.1684
3	68.375	49.38330383	19.48852535	116735.164	-18.9917	37311.476	154046.64	10816.594	3119.4073
4	69.375	45.44176829	20.08475484	144563.237	-23.93323	58805.802	203369.04	10601.396	4475.3769
5	69.75	46.24008621	18.57573436	151099.505	-23.50991	56770.67	207870.18	11080.551	4495.4539

Summary of Short Term Composite Section Properties

Section	У	IST-Comp	Stop	Sbot
Property	in	in^4	in^3	in^3
1	52.6359098	95227.44063	10377.21399	1809.1725
2	47.5745949	146823.211	9675.076902	3086.16839
3	49.3833038	154046.6403	10816.59365	3119.40734
4	45.4417683	203369.039	10601.39616	4475.37688
5	46.2400862	207870.1758	11080.55069	4495.4539

Long-Term Composite, (3n):

be = beff/n : **3.5555556** in

Iconcrete = $(bets^3)/12$

254.037037 in^4

Aconcrete = be*ts

33.77777778 in^2

			Beam		Concrete				
Section	y for	У	d	I+Ad^2	d	I+Ad^2	IST-Comp	Stop	Sbot
Property	concrete	in	in	in^4	in	in^4	in^4	in^3	in^3
1	66.5625	42.66990492	13.31197966	52704.4826	-23.8926	19536.288	72240.77	3773.8232	1693.0146
2	67.5	35.87244929	13.14841083	69700.1681	-31.62755	34042.014	103742.18	3859.8079	2891.9738
3	68.375	39.70235538	9.807576895	88728.2761	-28.67264	28023.442	116751.72	4880.3851	2940.6749
4	69.375	34.97877719	9.621763731	107031.838	-34.39622	40216.531	147248.37	4966.8509	4209.6488
5	69.75	36.43790717	8.773555314	116717.907	-33.31209	37737.086	154454.99	5407.6917	4238.8547

Summary of Long Term Composite Section Properties

Section	У	IST-Comp	Stop	Sbot	
Property	in	in^4	in^3	in^3	
1	42.6699049	72240.77013	3773.823237	1693.01456	
2	35.8724493	103742.1826	3859.807899	2891.97377	
3	39.7023554	116751.7184	4880.385101	2940.67486	
4	34.9787772	147248.3689	4966.850916	4209.64884	
5	36.4379072	154454.9935	5407.69174	4238.85468	

Dead Load Analysis:

Unit Weight Concrete: 0.15 k/ft^3

Unit Weight Steel: 0.49 k/ft^3 **Note**: Increase Steel and Diaphragms by : 0.06

Weight for Diaphragms: 0.308 k to account for connections

Number of Diaphragms: 6

DC1 - Non-Composite Dead Loads

Section	Deck	Stringer	Diaphragm	Total Per Stringer		Sum of Section Loads
Property	k/ft	k/ft	k/ft	Per Section	Sull of Section Loads	
1	0.95	0.218671007	0.013325714	1.181996721	k/ft	87.467757
2	0.95	0.293064236	0.013325714	1.25638995	k/ft	3.0127799
3	0.95	0.356185764	0.013325714	1.319511478	k/ft	38.265833
4	0.95	0.435538542	0.013325714	1.398864256	k/ft	12.589778
5	0.95	0.462590625	0.013325714	1.425916339	k/ft	48.481156

Note: Overall DL Per Stringer: 1.2912742 k/ft

Use as input for QuickBridge to apply load to bridge and calculate Moment and Shear Demand Envelopes. See 'Raw Demand Loads' tab for results.

DC2 - Composite Dead Loads

Using tributary areas: Dead loads due to curb, parapets, sidewalks and guardrails all are applied to exterior girders.

DW - Wearing Surface Loads

DW is the same for each section property.

Unit Weight Asphalt: 0.14 k/ft^3 **DW Per Stringer:** 0.186666667 k/ft

Note:

Use as input for QuickBridge to apply load to bridge and calculate

Moment and Shear Demand Envelopes. See 'Raw Demand Loads' tab for results.

Live Load Analysis:

Compute Live Load Distribution Factors

 $K_g = n(I + Aeg^2)$ $n = E_B/E_D$ 9.189067195 $E_D = 33000(w_c)^1.5*sqrt(f'_c)$ 3155.9243

Note: Use I and A of steel section property only.

One Lane Loaded: Two or More Lanes Loaded:

 $g_{m1} = 0.06 + (S/14)^0.4 + (S/L)^0.3 + (K_g/(12*I*ts))^0.1$ $g_{m2} = 0.075 + (S/9.5)^0.6 + (S/L)^0.2 + (K_g/(12*I*ts))^0.1$ $g_{v2} = 0.2 + (S/12) - (S/35)^2$

qv1 = 0.68 qv2 = 0.8144218

Note: gv is constant for entire member since it is based on girder spacing which is constant.

Skew Correction Factor

Reduction of Load Distribution Factors for moment in longitudinal beams on skewed supports.

Mscf = $1-c_1(tan\Theta)^1.5$ $c_1 = 0.25*(K_g/(12*L*t_{s^3}))^0.25*(S/L)^0.5$

Section	Kg in^4	g _{m1}	gm2	C1	Mscf	gm		
Property	111114							
1	1156693.45	0.384991097	0.565601924	0.0545398	0.9327052	0.5275398	Use maximum g m to be	0.5629931
2	2008276.68	0.403425066	0.593429581	0.06260584	0.9227528	0.5475888	conservative, g m =	0.3029931
3	2071688.9	0.40449434	0.595043741	0.0630943	0.9221501	0.5487196		
4	3030702.93	0.417852432	0.615208927	0.06938967	0.9143824	0.5625362	Use maximum g v to be	0.8144218
5	3069171.02	0.418304073	0.615890718	0.06960882	0.914112			0.0144210

Compute Live Load Effects:

Maximum moment effects are estimated to occur with the design live load centered on the span.

Note:

Use as input for QuickBridge to apply load to bridge and calculate Moment and Shear Demand Envelopes. See 'Raw Demand Loads' tab for results.

Note:

From hand calculations and Quick Bridge the Tandem Axles Moment did not control.

Apply Distribution Factors and Impact Factor

Distribution factors and impact factors are applied to moment and shear demand envelopes on 'Strength I Limit State' and 'Service II Limit State' tabs.

Compute Nominal Resistance of Sections:

$$Ps = 0.85f'cbeffts = 2325.6 k$$

crb = distance from top of slab to center of bottom layer of longitudinal reinforcing steel.

Nominal Flexural Resistance, Mn:

PNA lies in Web: PNA lies in Top Flange: **PNA lies in Concrete Deck:**

 $\bar{Y} = (D/2)[(P_t-P_c-P_s)/P_{w+1}]$

 $\bar{Y} = (tc/2)[(Pw+Pt-Ps)/Pc+1]$

 $\bar{Y} = (t_s)[(P_c+P_w+P_t)/P_s]$

 $M_{p} = (P_{w}/2D)^{*}(\bar{Y}^{2}+(D-\bar{Y})^{2}) + [P_{s}d_{s}+P_{c}d_{c}+P_{t}d_{t}] \quad M_{p} = (P_{c}/2t_{c})^{*}(\bar{Y}^{2}+(t_{c}-\bar{Y})^{2}) + [P_{s}d_{s}+P_{w}d_{w}+P_{t}d_{t}]$

 $M_p = (\bar{Y}^2 + Ps/2t_s) + [P_c d_c + P_w d_w + P_t d_t]$

If Dp < 0.1 Dt, then Mn = Mp

Otherwise, Mn = Mp(1.07-0.7*(Dp/Dt))

If Pt+Pw>Pc+Ps PNA in Web

If Pt+Pw+Pc>Ps PNA in Top Flange If Pc+Pw+Pt>(crb/ts)*Ps PNA in Deck

							1 0		
Section	Pc = FyAc	Pw = FyAw	Pt = FyAt	Pt+Pw	Pc+Ps	Pc+Pw+Pt	Ps	Pc+Pw+Pt	(Crb/ts)*Ps
Property	k	k	k	k	k	k	k	k	k
1	630	810	742.5	1552.5	2955.6	2182.5	2325.6	2182.5	2157.3
2	630	810	1485	2295	2955.6	-	2325.6	-	1
3	1260	810	1485	2295	3585.6	-	2325.6	-	1
4	1260	810	2277	3087	3585.6	-	2325.6	-	ı
5	1530	810	2277	3087	3855.6	-	2325.6	-	-

Section	Ϋ́	dc	dw	dt	ds	Мр	Dp = Ÿ	0.1Dt =	Mn
Property	in	in	in	in	in	k-ft	in	0.1Dcomp	k-ft
1	8.91544118	1.022058824	31.45955882	61.9283088	-	6819.7403	8.9154412	7.13125	6700.3026
2	0.41625	0.02125	30.45875	61.39625	5.16625	10666.482	0.41625	7.225	10666.482
3	0.85375	0.02125	30.89625	61.83375	5.60375	10869.395	0.85375	7.3125	10869.395
4	1.40375	-0.52875	30.34625	61.78375	6.15375	15027.147	1.40375	7.4125	15027.147
5	1.59125	-0.52875	30.53375	61.97125	6.34125	15133.516	1.59125	7.45	15133.516

Nominal Flexural Resistance with Repair Plate, Mn:

Plate	b	h	Α
Geometry	21	0.75	15.75

New Section	At	У	Pc = FyAc	Pw = FyAw	Pt = FyAt	Pt+Pw	Pc+Ps	Pc+Pw+Pt	Ps
Property	in	in	k	k	k	k	k	k	k
1 w/ pl	36.375	0.84375	630	810	1309.5	2119.5	2955.6	2749.5	2325.6
2 w/ pl	57	1.3125	630	810	2052	2862	2955.6	3492	2325.6
3 w/ pl	57	1.3125	1260	810	2052	2862	3585.6	4122	2325.6

New Section	Ϋ́	dc	dw	dt	ds	Mp	Dp = \bar{Y}	0.1Dt =	Mn
Property	in	in	in	in	in	k-ft	in	0.1Dcomp	k-ft
1 w/ pl	0.294375	0.143125	30.580625	61.049375	5.044375	8932.7187	0.294375	7.13125	9532.1973
2 w/ pl	0.81	-0.3725	30.065	61.0025	5.56	12674.425	0.81	7.225	13462.169
3 w/ pl	1.2475	-0.3725	30.5025	61.44	5.9975	12813.222	1.2475	7.3125	13557.133

Nominal Shear Resistance, Vn:

Interior Panels:

 $Vn = Vp[C+(0.87(1-C)/sqrt(1+(do/D)^2)]$

Section			<i>Vp = 0.58FyDtw =</i>		469.8 k			
Property	Is (2Dtw)/(bfctfc+b	ofttft) < 2.5:	do = transverse stiffene	er spacing =	60 in			
1	1.18032787		C = ratio of Shear Buckl	ing to Shear Yield	Yield Strength			
2	0.76595745		C = 1.0		if D/tw < 1.12sqr	t(E*k/Fyw) :	100.523076	
3	0.59016393	< 2.5	C = (1.12/(D/tw))*sqrt(E*k/Fyw)		if D/tw < 1.40sqr	125.653845		
4	0.45801527		C = (1.57/(D/tw)^2)*(E	*k/Fyw)	if D/tw > 1.40sqrt(E*k/Fyw):		125.653845	
5	0.42553191							
			K = 5+5/(do/D)^2 =	10				
			D/tw =	160	Therefore:	C = 0.49403	21	

Vn = 378.32755 k

Exterior Panels:

Vn = Vcr = CVp C = ratio of Shear Buckling to Shear Yield Strength

Therefore, C = 0.9933809

 $Vn = 466.69033 \ k$

Moment

Section	Location	MDC1	MDW	MLL+IM	Capacity
Property	ft	k-ft	k-ft	k-ft	k-ft
1	37	2625.15	380.545	3728.7543	6700.3026
2	37.5	2648.53125	383.934375	3760.9286	10666.482
3	52	3186.3	461.89	4482.6971	10869.395
4	56.5	3298.04625	478.088875	4623.6371	15027.147
5	90.5	3484.5	505.110375	4879.0286	15133.516

Shear

	VDC1	VDW	VLL+IM	Capacity
Location of Stiffener Change	k	k	k	k
End Panel (0 - 5'-0")	94.815	13.7445	47.04	466.69033
Interior Panel	87.72	12.716	129.61714	378.32755

General Load Rating Equation

RF = $(\phi \phi c \phi s Rn - \gamma DCDC - \gamma DWDW)/(\gamma L(LL+IM))$

Strength I Limit State

Inven	tory	Oper	ating	Distribu	tion Factors	Impac	t Factor
γDC	1.25	γDC	1.25	gm	0.5629931	IM	1.33
$\gamma_{\rm DW}$	1.5	$\gamma_{\rm DW}$	1.5	gv	0.8144218		
γLL	1.75	γιι	1.35				

Note: See 'Strength I Limit State' tab for plots

Rating Factors

Section	Moment		
Property	Inventory	Operating	
1	0.78	1.00	
2	1.65	2.37	
3	1.04	1.82	
4	3.14	2.90	
5	2.99	2.70	
Section	Shear		
Property	Inventory	Operating	
End Panel	4.89	6.33	
Interior Panel	1.35	1.75	

Service II Limit State

Inventory		Opera	rating Distribution Factors		tion Factors	Impact Factor	
γDC	1	γDC	1	gm	0.5629931	IM	1.33
γ LL	1.3	γιι	1	gv	0.8144218		

 $f_R = 0.95R h F y_f = 34.2 ksi$

Rh: 1 for homogenuous sections

Factored Live Load and Dead Load Stresses

Section	Inve	entory	Operating	
Property	γocfo	γ ιιfιι+ιΜ	γocfo	γ ιιfιι+ιΜ
1	24.5641678	19.34330812	24.56416775	14.8794678
2	14.4699843	11.42163852	14.46998434	8.78587579
3	16.2038193	13.38813447	16.20381927	10.298565
4	11.7515246	9.646406308	11.75152463	7.42031254
5	12.1740226	10.10443554	12.17402257	7.77264272

Rating Factors

Section	Moment		
Property	Inventory Operatin		
1	0.4981481	0.647592534	
2	1.72742428	2.245651559	
3	1.34418882	1.747445472	
4	2.32713351	3.025273564	
5	2.17983254	2.833782308	

Summary of Rating Factor for Interior Girders

Moment

Section	Strength	Strength I Limit State		imit State
Property	Inventory	Operating	Inventory	Operating
1	0.78	1.00	0.50	0.65
2	1.65	2.37	1.73	2.25
3	1.04	1.82	1.34	1.75
4	3.14	2.90	2.33	3.03
5	2.99	2.70	2.18	2.83

Shear

Location	Inventory	Operating
End Panels	4.89	6.33
Interior Panels	1.35	1.75

Interior	Strength I Limit State		Service II Limit State	
Girders	Inventory	Operating	Inventory	Operating
Moment RF	0.78	1.00	0.50	0.65
Shear RF	1.35	1.75	-	-