Практическое задание к видео 3

Закрепите знания по алгоритму поиска коэффициентов регрессии в матричном виде с помощью метода наименьших квадратов. Обратите внимание: это задание для самопроверки, его не нужно сдавать куратору.

После выполнения задания рекомендуем свериться с ответами ниже.

Задача

Пусть у нас имеется выборка из пяти объектов, описанных всего одним признаком. То есть $n=5,\ k=1.$ И есть значения целевой функции:

X1	Y
1	45
2	40
3	35
4	30
5	25

Найдите коэффициенты искомой функции:

$$y^- = w_0 + w_1 * x_1$$

Для этого:

- определите матрицу X,
- транспонируйте матрицу X,
- перемножьте матрицы X^T и X,
- найдите обратную матрицу $(X^TX)^{-1}$,
- определите значение $X^T y$,
- определите вектор весов w,
- запишите уравнение полученной регрессии.

Ответы для проверки

Уравнение регрессии имеет вид:

$$y = 50 - 5 * x$$
, то есть $w_0 = 50$ и $w_1 = -5$

Промежуточные расчёты

Дополним фиктивную переменную $x_{_{0}}.$ Это и есть матрица X :

X_0	X ₁
1	1
1	2
1	3
1	4
1	5

Тогда транспонированная матрица X^T :

1	1	1	1	1
1	2	3	4	5

Тогда матрица $X^T X$:

5	15
15	55

Матрица, обратная к X^TX :

1,1	-0,3
-0,3	0,1

Значение $X^T y$:

	_		
17	75		
47	75		

И тогда $w = (X^T X)^{-1} X^T y$:

50 -5

Таким образом, уравнение регрессии действительно имеет вид: y = 50 * 1 - 5 * x = 50 - 5 * x