Théorème d'Abel: continuité radiale

Transformation d'Abel

C'est une transformation que l'on effectue sur des sommes de la forme $\sum_{p=0}^{q} a_k b_k$, de manière à les exprimer en fonctions des sommes partielles $A_n = \sum_{k=0}^{n} a_k$ de la série $\sum a_k$. On l'interprète souvent comme l'analogue de l'intégration par parties pour les sommes, le passage aux sommes $(a_n) \longmapsto (A_n)$ jouant le rôle de la primitivation, et l'opération $(A_n) \longmapsto (A_n - A_{n-1})$ jouant le rôle de la dérivation (puisque "réciproque" de la sommation).

Théorème 1. Soient (a_n) et (b_n) des suites complexes ; pour $n \in \mathbb{N}$, on pose $A_n = \sum_{k=0}^n a_k$. Soit $(p,q) \in \mathbb{N}^2$ tel que $1 \leq p \leq q$. Alors

$$\sum_{k=p}^{q} a_k b_k = A_q b_q - A_{p-1} b_p + \sum_{k=p}^{q-1} A_k (b_k - b_{k+1})$$

En effet:

$$\sum_{k=p}^{q} a_k b_k = \sum_{k=p}^{q} (A_k - A_{k-1}) b_k = \sum_{k=p}^{q} A_k b_k - \sum_{k=p}^{q} A_{k-1} b_k$$
$$= \sum_{k=p}^{q} A_k b_k - \sum_{j=p-1}^{q-1} A_j b_{j+1}$$
$$= A_q b_q - A_{p-1} b_p + \sum_{k=p}^{q-1} A_k (b_k - b_{k+1})$$

Pour p = 0, on vérifie aisément que la formule devient $\sum_{k=0}^{q} a_k b_k = A_q b_q + \sum_{k=0}^{q-1} A_k (b_k - b_{k+1});$ autrement dit, la convention $A_{-1} = \text{somme vide} = 0$ fonctionne ici.

La transformation a une variante dans le cas où la série $\sum a_n$ converge :

Théorème 2. Soient (a_n) et (b_n) des suites complexes. On suppose que la série $\sum a_n$ converge, et, pour $n \in \mathbb{N}$, on pose $R_n = \sum_{k=n+1}^{+\infty} a_k$. Soit $(p,q) \in \mathbb{N}^2$ tel que $1 \leqslant p \leqslant q$. Alors

$$\sum_{k=p}^{q} a_k b_k = R_{p-1} b_p - R_q b_q + \sum_{k=p}^{q-1} R_k (b_{k+1} - b_k)$$

En effet:

$$\sum_{k=p}^{q} a_k b_k = \sum_{k=p}^{q} (R_{k-1} - R_k) b_k = \sum_{k=p-1}^{q-1} R_k b_{k+1} - \sum_{k=p}^{q} R_k b_k$$
$$= R_{p-1} b_p - R_q b_q + \sum_{k=p}^{q-1} R_k (b_{k+1} - b_k)$$

Théorème d'Abel

Théorème 3. Soit (a_n) une suite complexe. On suppose que

- la série entière $\sum a_n x^n$ a un rayon de convergence $R \in \mathbb{R}_+^*$;
- la série $\sum a_n R^n$ converge.

Alors, la série entière converge uniformément sur [0, R].

Le changement de variable t = x/R permet de se ramener au cas R = 1, ce qui simplifie les écritures. On suppose donc désormais que la série $\sum a_n x^n$ converge pour tout $x \in [0, 1]$. On va montrer que la suite des restes $R_n : x \longmapsto \sum_{k=n+1}^{+\infty} a_n x^n$ converge (vers 0) uniformément sur [0, 1].

La série converge en particulier en 1, ce qui permet de poser $r_n = R_n(1) = \sum_{k=n+1}^{+\infty} a_k$ pour tout $n \in \mathbb{N}$.

Soient $n \in \mathbb{N}$ et $x \in [0,1]$. Pour tout $q \ge n+1$, on a par transformation d'Abel

$$\sum_{k=n+1}^{q} a_k x^k = r_n x^{n+1} - r_q x^q + \sum_{k=n+1}^{q-1} r_k (x^{k+1} - x^k)$$

Puisque x^q est borné, $r_q x^q$ a pour limite 0 quand q tend vers $+\infty$, et donc la somme de droite converge, ce qui donne en faisant tendre q vers $+\infty$:

$$R_n(x) = r_n x^{n+1} + \sum_{k=n+1}^{+\infty} r_k (x^{k+1} - x^k)$$

La suite (r_n) est bornée et la série $\sum (x^{k+1} - x^k)$ converge absolument, donc la somme de droite est absolument convergente; on peut donc écrire

$$|R_n(x)| \le |r_n|x^{n+1} + \sum_{k=n+1}^{+\infty} |r_k|(x^k - x^{k+1})$$

Soit alors $\varepsilon \in \mathbb{R}_+^*$. On peut choisir n_0 tel que $|r_k| \leqslant \varepsilon/2$ pour tout $k \geqslant n_0$. Des calculs précédents, on déduit alors

$$\forall n \geqslant n_0 \quad \forall x \in [0,1] \quad |R_n(x)| \leqslant \frac{\varepsilon}{2} x^{n+1} + \frac{\varepsilon}{2} \sum_{k=n+1}^{+\infty} (x^k - x^{k+1}) \leqslant \frac{\varepsilon}{2} x^{n+1} + \frac{\varepsilon}{2} x^{n+1} \leqslant \varepsilon$$

(la somme étant nulle pour x = 1), ce qui donne bien la convergence uniforme sur [0, 1].

Corollaire 4. Sous les hypothèses du théorème précédent, la somme de la série entière est continue sur [0, R].