CIS 2107

Computer Systems and Low-Level Programming Spring 2011 Final Exam

May 10, 2011

Name:

Page	Points	Score
1	16	
2	9	
3	10	
4	13	
5	5	
6	14	
7	9	
8	6	
9	10	
10	8	
Total:	100	

Instructions

The exam is closed book, closed notes. You may *not* use a calculator, cell phone, etc.

For the short-answer questions, please use the amount of space given as a guide for how long your answer should be.

For each of the questions of this quiz, you can assume the following sizes for C data types:

type	bytes
char	1
short	2
int	4
long	8
float	4
double	8
void*	4

Computer Systems and Low-Level Programming

1. When I run a particular binary file through a disassembler, I see the following output:

 $000000d5 < is_empty>:$

		_	000000	as <is_emp< th=""><th>ty>:</th><th></th></is_emp<>	ty>:	
			d5:	55	push %ebp	
			d6:	89 e5	mov %esp,%ebp	
			d8:	$8b\ 45\ 08$	mov 0x8(%ebp),%eax	
			db:	8b 00	mov (%eax),%eax	
			dd :	85 c0	test %eax,%eax	
			df:	0f 94 c0	sete %al	
			e2:	0f b6 c0	movzbl %al,%eax	
			e5:	5d	pop %ebp	
		_	e6:	c3	ret	
(2 points)		(a) What, specifically, is represented that and 2 of every			•	nns 1 and 2 correspond to
(0 :)		For the next two questions, ple gcc.			-	
(2 points)		(b) What type of program wil	ll transl	late C code	into the sort of code you se	e in column 3?
						(b)
(2 points)		(c) What type of program traccolumn 2?	anslates	s the sort of	code found in column 3 to	the sort of code found in
						(c)
(2 points)	2.	What is done by the C preprod	cessor?			
(2 points)	3.	Other than the problem of different operating systems".	a mach	ine running	Linux on Intel. Please do n	not write, "because they're
(2 points)	4.	Where do we store an integer i	eturn v	value from a	function in x86 assembly?	
(2 points)	5.	Memory allocated with malloc	e() is:	stored in w	nat memory segment?	
(2 points)	6.	When creating an executable fically linking?	ile, wha	at is the big	gest difference between stat	ically linking and dynami-

Computer Systems and Low-Level Programming

(2 points)	7.	In the steganography lab, describe how it is that there appeared to be no difference in the image after the secret message was inserted.						
(1 point)	8.	What are the key characteristics of each of the following memory allocation schemes: (a) Implicit free lists						
(1 point)		(b) Explicit free lists						
(1 point)		(c) Segregated storage						
(2 points)	9.	The first and last lines of a function in assembly are something like: pushl %ebp movl %esp, %ebp /* body of the function here */						
		movl %ebp, %esp popl %ebp Very briefly describe what's going on. Be sure to mention what is stored in %ebp and %esp.						
(2 points)	10.	A program calling the following function will crash. What causes the crash? Please say more than, "You forgot the base case". Missing the base case makes the program incorrect. What makes it crash? int bad_fact(int n) { return n*bad_fact(n-1); }						

Computer Systems and Low-Level Programming

			peratio Your ansv										s the re	esult of the	following
(1 point)	(a)	(!!i)^(j &	v 0xFF)												
														(a)	
(1 point)	(b)	i j												(1.)	
														(b)	
(1 point)	(c)	i>(j 0x	:F0)												
														(c)	
(1 point)	(d)	i<<2													
														(d)	
(1 point)	12. In he	ex, what	is -1 as	an 8-bit	two's	comple	ement	int?							
														12	
(1 point)	13. In he	ex, what	is the lar	rgest int	eger th	at can	be re	orese	nted	by a	8-bit	two's	s comple	ement int?	
														13	
(1 point)	14. In he	ex, what	is the lar	rgest int	eger th	at can	be re	orese	nted	by a	8-bit	unsig	gned int	?	
														14	
(1 point)	15. In he	ex, what	is the sm	nallest ir	nteger t	hat ca	n be r	epres	ente	d by a	a 8-b	oit two	s comp	element int?	
														15	
(2 points)	16. Wha	t is 1110)11011 ₂ +	- 100110	10_2 in 1	base 2	?								
					_+	1 1	1 1 1 0	0	1 1 1 1	0 L 0	1 1	$1_2 \\ 0_2$			

points: _____ out of a possible 10

¹Forget about the possibility of the values being promoted to 32-bits. Just behave as though we're living in the land of 8-bit arithmetic.

(2 points) 17. What is $A7935B_{16} + 5C8D3_{16}$ in base 16?

(4 points) 18. How would the number 197.6875₁₀ be stored in a 32-bit C float variable?

- 19. Some tricky declarations. Write a very brief description in English of what is declared. For example, if the question is int func(int A[]), you'd write, "func is a function which is passed an array of int and returns an int".
- (1 point) (a) char (*p)[10];
- (1 point) (b) int (*p[])();
- (1 point) (c) int (*p())[];

(4 points) 20. For each of the following, suppose that %eax contains the value x, %ecx contains y. What's stored in %edx after the each operation?

expression	result
leal 0xC(%eax), %edx	
leal (%eax,%ecx, 4), %edx	
leal 5(%eax,%eax,8), %edx	
leaf 5(//eax,//eax,5), //edx	
leal 0xA(,%ecx,8), %edx	

21. What is printed?

In the following code, after the function f() is called, what is the value of each of the following?

```
#include <stdlib.h>
                                                              j2.p=&b;
                                                              j2.A[0]=7;
                                                       24
    typedef struct {
3
                                                       25
      int x;
                                                             f(&j1, j2, A);
                                                       26
4
      int *p;
                                                       27
      int A[100];
                                                             return 0;
                                                       28
    } Junk;
                                                           }
                                                       29
                                                       30
    void f(Junk*, Junk, int[]);
                                                           void f(Junk *j1, Junk j2, int A[])
9
                                                       31
10
                                                       32
                                                              j1->x=222;
    int main(void)
11
                                                       33
                                                              (j1->p)=(int*)malloc(sizeof(int));
12
                                                       34
      int a = 1;
                                                              *(j1->p)=111;
13
                                                       35
      int b = 5;
                                                              j1->A[0]=333;
                                                       36
      Junk j1, j2;
15
                                                       37
      int A[5] = \{4,0,0,0,0,0\};
                                                              j2.x=666;
16
                                                       38
                                                              *(j2.p)=555;
17
                                                       39
                                                              j2.A[0]=777;
      j1.x=2;
18
                                                       40
      j1.p=&a;
19
                                                       41
      j1.A[0]=3;
                                                              A[0] = 444;
20
                                                       42
                                                           }
21
                                                       43
      j2.x=6;
```

(1 point) (a) j1.x

(1 point) (b) *(j1.p)

(1 point) (c) j1.A[0]

(1 point) (d) j2.x

(1 point) (e) *(j2.p)

(a) _____

(b) _____

(c) _____

(d) _____

(e) _____

(1 point)	(f) $j2.A[0]$	
		(f)
(1 point)	When we make the function call, how many bytes is passed to $f(\)$ when we pass: (g) &j1	
(1 point)	(h) j2	(g)
(1 point)	(i) A	(h)

(10 points) 22. Write a function which is passed an array of int A[] and its length. The function reverses the byte order of each of the elements of A. Do not use the [] operator. Do not assume that ints are 4 bytes. (Please be careful about what's being asked. You are not asked to reverse the array. You're asked to reverse the byte order of each element of A.)

(9 points) 23. Recall the Fibonacci sequence: $(1,1,2,3,5,8,13,21,\ldots)$. Write a function f() which is passed an int n, and returns a pointer to an array of int containing the first n Fibonacci numbers. It is up to the caller to free the memory allocated by f().

```
(6 points) 24. On some big-endian system, dates are stored in a single 32-bit unsigned int.

year is stored in the low-order 12 bits
```

month is stored in the next 4 bits. (e.g., 0000 for January, 0001 for February, ..., 1011 for December.) day is stored in the next 5 bits

Implement the following three functions used to read date information in this manner from an unsigned 32-bit int d:

```
/* extracts the day from d and returns
  it as an unsigned int */
unsigned int day(unsigned int d)
{
```

```
}
/* extracts the month from d and returns
  it as an unsigned int. e.g., returns 0
  for January, 1 for February, ... ,
    11 for December */
unsigned int month(unsigned int d)
{
```

```
}
/* extracts the year from d and returns
  it as an unsigned int */
unsigned int year(unsigned int d)
{
```

}

points: _____ out of a possible 6

(10 points) 25. Write a C function equivalent to the following assembly (no credit for an answer containing inline assembly).

1	.text	
2	.globl mystery	
3	.type	mystery, @function
4	mystery:	
5	pushl	%ebp
6	movl	%esp, %ebp
7	movl	12(%ebp), %edx
8	movl	8(%ebp), %eax
9	subl	%edx, %eax
10	addl	16(%ebp), %eax
11	addl	\$91, %eax
12	popl	%ebp
13	ret	

(8 points) 26. The following are declarations that we've used in a linked implementation of a stack. Please write the pop() function.

```
typedef struct stack_node {
   void *data;
   struct stack_node* next;
} stack_node;

typedef struct {
   stack_node *top;
} Stack;
```

(extra space)

11 of 11 end of exam