Level 3: Analog – Digital Conversion

1. Input

- > RL78/G14 RDK board
- CubeSuite+ E2.02.00I
- > StartUML
- ➤ Workspace: Common Workspace → Final Exercise → L3 (empty)
- Requirements for this level (see Requirements below)

2. Output

- Sequence diagram (using Start UML)
- Source code

3. Task Description

Write a program to display VR1 voltage (0 \sim 3.3V) on LCD module (see the illustration below). VR1 is connected to ANI8 pin. The voltage 0V to 3.3V is output to ANI8 when turning VR1. The reference voltage is VREF=3.3V. The A-D converter will provide the results according to the resolution within 0V \sim 3.3V. The result will be presented by LCD and LED ring.

4. Requirements

Detailed requirements of this task are described as below.

4.1 A-D converter

Resolution: 10 bits
A/D conversion channel selection mode: Select mode.

> A/D conversion trigger mode: Software trigger mode

➤ A/D conversion mode: Sequential conversion mode

 \triangleright Conversion Clock (f_{AD}): f_{CLK}/64

4.2 LCD display

➤ The first line of the LCD display will show a message about measurement object.

Result will be showed with the unit and decimal places are 2 digits (the third digit is for rounding-off).

4.3 LED ring display

Voltage range	Number of lighted LED
0.00 -> 0.14	0
0.15 -> 0.27	1
0.28 -> 0.54	2
0.55 -> 0.82	3
0.83 -> 1.10	4
1.11 -> 1.36	5
1.37 ->1.64	6
1.65 -> 1.92	7
1.93 ->2.20	8
2.21 -> 2.47	9
2.48 -> 2.74	10
2.75 -> 3.02	11
3.03 -> 3.30	12

4.4 Time management

- The A-D converter completes sampling and gives the result every 100ms.
- ➤ Time management is based on 12-bit interval timer 10ms cycle.

4.5 Conversion error

With current target board (VREF (+) = VDD, AVREF (-) = VSS), the typical value of overall error of A-D conversion is 1.2 LSB (r01ds0053ej0100_rl78g14.pdf, page 90).

- Investigate the affection of overall error.
- Apply error to calculate input voltage.

---END---