Inverse of a Matrix

- 1. What is the inverse of a matrix
 - a) If B is an inverse of A, then A is an inverse of B, A and B are inverses to each other
 - b) A is called invertible if there is a matrix B, such that AB = I and BA = I
 - c) Non-square matrix cannot be invertible
 - d) The inverse of a matrix is unique
 - e) A and B are invertible n*n matrices, AB is invertible: $(AB)^{-1} = B^{-1}A^{-1}$
 - f) A is invertible, A^T is invertible: $(A^T)^{-1} = (A^{-1})^T$

2. Invertible

- a) Let A be an n x n matrix. A is invertible if and only if:
 - The columns of A span \mathbb{R}^n
 - For every b in \mathbb{R}^n , the system Ax=b is consistent
 - The rank of A is n
 - The columns of A are linear independent
 - The only solution to Ax=0 is the zero vector
 - The nullity of A is zero
 - The reduced row echelon form of A is I_n
 - A is a product of elementary matrices
 - There exists an n x n matrix B such that BA = I_n
 - There exists an n x n matrix C such that $AC = I_n$
- b) One-to-one
 - i) If co-domain is smaller than domain, f cannot be one-to-one
 - ii) If a matrix is dwarf-fat, it cannot be one-to-one
 - iii) f(x) = b has at most one solution
 - iv) if a matrix is one-to-one, its columns are independent
- c) Onto
 - i) If co-domain is larger than domain, f cannot be onto
 - ii) If a matrix is high-thin, it cannot be onto
 - iii) f(x) = b always have solution
 - iv) if a matrix is onto, rank A = num of rows
- d) one-to-one and onto
 - i) the domain and co-domain must have the same size
 - ii) the corresponding matrix is square
 - iii) one-to-one ←→ onto
- 3. Inverse of elementary matrices
 - a) Every elementary row operation can be performed by matrix multiplication
 - b) Find elementary matrix: apply the desired ERO on Identity matrix
 - c) Inverse of elementary matrix: reverse ERO on identity matrix
- 4. Inverse of general invertible matrices
 - a) Let A be n*n matrix, A is invertible if and only if RREF of A is I_n
 - b) $E_k E_{k-1} \dots E_2 E_1 A = R = I_n \rightarrow A^{-1} = E_k E_{k-1} \dots E_2 E_1$
 - c) Let A be n*n matrix, transform [A I_n] into its RREF [R B], R is the RREF of A, B is an n*n matrix (not RREF), if R = I_n , then A is invertible and B = A^{-1}