LECTURE 8 SEP 16

Cosets

Author

Tom Jeong

September 16, 2024

Contents

1	Order of Element	3
	1.1 exercise	4

1 Order of Element

ex. What are the possible orders of an element $[n] \in \mathbb{Z}/5\mathbb{Z}$ $5 = |\mathbb{Z}/5\mathbb{Z}|$ is prime so by Proposition 2.6.3, every element is either order 1 or order 5. note: Any order 5 element generates $\mathbb{Z}/5\mathbb{Z}$

example: what are the possible homomorphism from $\mathbb{Z}/3\mathbb{Z}$ to $\mathbb{Z}/6\mathbb{Z}$? Recall if $f: G \to K$ is a homomorphism then $kerf \leq G$ and $imf \leq K$ note: if ord(g) = n then $e_k = f(e_G) = f(g^n) = f(g)^n$ so f(g) is of order divides n. by proposition 2.6.3 (3) – check notes from previous lecture

$$\mathbb{Z}/3\mathbb{Z}$$
 $ord([0]) = 1$
 $ord([1]) = ord([2]) = 3$
 $\mathbb{Z}/6\mathbb{Z}$
 $ord([0]) = 1$
 $ord([1]) = ord([5]) = 6$
 $ord([2]) = ord([4]) = 3$
 $ord([3]) = 2$

What homomorphisms are possible??

$$f([0]) = [0]$$

 $f([1]) = [0]$ or $[2]$ or $[4]$
 $f([2]) = f([1] + [1]) = f([1]) + f([1])$

so there is 3. homo morphisms

Definition 1.1 (2.7.1).

A cyclic group is a group G containing an element g such that $G = \langle g \rangle$ The element g is called the generator of G and we say that G is the generated by g

example: $\mathbb{Z}/n\mathbb{Z}$ is generated by [1] or [n-1]

Can there be an infinite cycle group? yes; the \mathbb{Z} (under addition) is cyclic that is generated by 1 or -1.

Proposition 1.1. Any cyclic group is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ for some $n \in \mathbb{N}$ Note: $0\mathbb{Z} = \{0\}, \mathbb{Z}/0\mathbb{Z} = \mathbb{Z}, \mathbb{Z}/1\mathbb{Z} = \{0\}$

Proof.

Consider $G = \langle g \rangle$ thus

$$f_g: \mathbb{Z} \to G$$

 $f_g(n) = g^n$

is a surjective homomorphism then $Ker(f_g)$ is a subgroup of \mathbb{Z} and in Proiposition 2.2.3, we proved every subgroup of \mathbb{Z} is of the form of $n\mathbb{Z}$ for some $n \in \mathbb{N}$ so $Ker(f_g) = n_g\mathbb{Z}$ for some $n_g \in \mathbb{N}$ and by the first isomorphism theorem, $\mathbb{Z}/n_g\mathbb{Z} \cong G \cong \mathbb{Z}/Ker(f_g)$

recall from HW the n^{th} roots of unity are:

$$z_k = e^{2\pi i k/n}$$
 for $k = 0, 1, 2, \dots, n-1$

1.1 exercise

the nth roots of unity are a cyclic group generated by $z_1 = e^{2\pi i/n}$ and is isomorphic to Z/nZ concrete example and its proof; taking a look at 4-th roots of unity. draw it:

$$\{1, i, -1, -i\} \cong (Z/4Z, +)$$

 $1 \to [0] : identity$
 $i \to [1]$
 $-1 \to i^2 = [1] + [1] = [2]$
 $-i \to [3]$

Proposition 1.2 (2.7.2).

A gfroup G of prime order |G| = p is cyclic and isomorphic to $\mathbb{Z}/p\mathbb{Z}$

Proof.

Let $g \in G$ such that $g \neq e$ and let $H = \langle g \rangle$. Since $H \leq G$ and by LaGrange Theorem, |H| divides |G| = p so |H| = 1 or p but $g \neq e$ so |H| = p and H = G so $G = \langle g \rangle$ and G is cyclic.

Cyclic groups of composite order

Q: What about cyclic groups with orders not prime? Lets look at $\mathbb{Z}/12\mathbb{Z}$

$$ord[0] = 1$$

 $ord[1] = ord[5] = 12$
 $ord[2] = ord[10] = 6$
 $ord[3] = ord[9] = 4$
 $ord[4] = ord[8] = 3$
 $ord[6] = ord[6] = 2$
 $ord[7] = ord[11] = 12$

we can see a pattern here. [1], [5], [7], [11] are the generators of Z/12Z and Z/12Z is isomorphic to $\mathbb{Z}/12\mathbb{Z}$

Definition 1.2. Let $n \in \mathbb{Z}$ the Euler ϕ function is defined as $\phi(n) = |\{k \in \mathbb{Z} | 1 \le k \le n \text{ and } gcd(k,n) = 1\}|$

Lemma 1.3 (Cor 1.5.10). Let $a, b, c \in \mathbb{Z}$ If gcd (a,b) = 1 and a|bc then a|c

see textbook for proof

Proposition 1.4 (2.7.4).

let G be a cyclic group

- 1. every subgroup of G is cyclic
- 2. Suppose G is finite and is a divisor of |G| Then G contains a unique subgroup H of order d
- 3. There are $\phi(d)$ elementz of order d in G They are exactly the generators of the subgroup in part 2.

Proof.

1. if $|G| = \infty$ then $G \cong \mathbb{Z}$ and by Proposition 2.6.3, every subgroup of \mathbb{Z} is of the form $n\mathbb{Z}$ so every subgroup of G is cyclic.