(a)
$$\omega_c = 2\pi \times 10^6$$
, $k_f = 2000\pi$, $k_p = \pi/2$.

FM: The instantaneous frequency is $f_i = 10^6 + 1000m(t)$, $(f_i)_{\min} = 10^6 - 1000 = 999$ kHz, $(f_i)_{\max} = 10^6 + 1000 = 1001$ kHz. As shown in Fig. S5.1-2 the instantaneous frequency of the FM wave increases linearly from 999 to 1001 kHz over 10^{-3} s, then switches back to 999 kHz and repeats.

PM: Since m(t) has jump discontinuities, the direct approach will be used. When one cycle of the sawtooth is centered on the origin, m(t) = 2000t over that cycle. Hence,

$$\varphi_{PM}(t) = \cos \left[2\pi \times 10^{6} t + \frac{\pi}{2} m(t) \right]$$

$$= \cos \left[2\pi \times 10^{6} t + \frac{\pi}{2} 2000 t \right]$$

$$= \cos \left[2\pi \left(10^{6} + 500 \right) t \right].$$

As shown in Fig. S5.1-2, at the discontinuity there is a jump of $2k_p=\pi$, otherwise the carrier frequency is $c_{0\eta_0}$ at 10^6+500 Hz.

(b) This is equivalent to another PM signal with $f_c=1000.5$ kHz and periodic rectangular message that switch from 1 to -1, as shown in the example at the beginning of the chapter. It is necessary to keep k_p less than π_8 those periodic signal jumps at those points of discontinuity $\Delta=2$; otherwise a larger k_p will give rise to be ambiguity when $k_p\Delta>2\pi$.

5.1-4 We are given
$$\omega_c = 10000\pi$$
, and that over $|t| \leq 1$,

$$\varphi_{\rm EM}(t) = 10\cos 13,000\pi t$$

(a) If this were a PM signal with $k_p = 1000$, we would have

$$\varphi_{PM}(t) = 10\cos 13000\pi t = 10\cos [\omega_c t + k_p m(t)]$$

= 10\cos [10000\pi t + 1000m(t)]

Clearly, $m(t) = 3\pi t$ over this interval.

(b) For an FM signal with $k_f = 1000$,

$$\varphi_{\text{F}M}(t) = A \cos \left[\omega_c t + k_f \int_0^t m(\alpha) \, d\alpha \right] = 10 \cos \left[10,000\pi t + 1000 \int_0^t m(\alpha) d\alpha \right].$$

Therefore,

$$\int_0^t m(\alpha)d\alpha = 3\pi t$$

and $m(t) = 3\pi$ over the interval.

5.2-1 The signal bandwidth of m(t) is to be approximated by its own fifth harmonic frequency, B = 5/(0.25) Hz.

(a)
$$k_f = 20\pi$$
, $m_p = 3$, $\Delta f = k_f m_p/(2\pi) = 30$ Hz. Therefore, $B_{FM} = 2(\Delta f + B) = 2(30 + 20) = 100$ Hz.

(b)
$$k_p = \pi/2$$
, $\dot{m}_p = 3/0.05 = 60$, $\Delta f = k_p \dot{m}_p/(2\pi) = 15$ Hz. Therefore, $B_{\rm PM} = 2(\Delta f + B) = 2(15 + 20) = 10$

(a) Since $J_n(\beta)$ are the exponential Fourier coefficients of $g(t) = e^{j\beta \sin \omega_m t}$. Thus, applying Parseval's Theorem,

$$\sum_{n=-\infty}^{\infty}J_{n}^{2}(\beta)=\text{power of }g(t)=P_{g}$$

On the other hand, since g(t) is periodic with period $T_m = 2\pi/\omega_m$ and $|g(t)|^2 = |e^{j\beta\sin\omega_m t}|^2 = 1$,

$$P_g = \frac{1}{T_m} \int_0^{T_m} |g(t)|^2 dt = 1$$

and we therefore have

$$\sum_{n=-\infty}^{\infty} J_n^2(\beta) = 1$$

(b)
$$J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - nx)} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(\beta \sin x - nx) + j \sin(\beta \sin x - nx) dx.$$

Since $\sin(x)$ and $[\beta \sin(x) - nx]$ are both odd functions of x,

$$\int_{-\pi}^{\pi} \sin(\beta \sin x - nx) dx = 0.$$

Now, since $\cos(x)$ is even whereas $\beta \sin(x) - nx$ is odd function of x,

$$J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(\beta \sin x - nx) dx = \frac{1}{\pi} \int_{0}^{\pi} \cos(\beta \sin x - nx) dx$$

Changing the variable of integration to $v = \pi - x$ gives

$$J_n(\beta) = \frac{1}{\pi} \int_{\pi}^{0} \cos(\beta \sin(\pi - v) - n\pi + nv)(-1) dx.$$

Now recall that $\sin(\pi - x) = \sin(x)$, $\cos(x - \pi) = -\cos(x)$, $\cos(x - n\pi) = (-1)^n \cos(x)$. Thus, we have

$$J_n(\beta) = \frac{(-1)^n}{\pi} \int_{\pi}^0 \cos(\beta \sin v + nv)(-1) \, dv$$
$$= \frac{(-1)^n}{\pi} \int_0^{\pi} \cos(\beta \sin v + nv) \, dv$$
$$= (-1)^n J_{-n}(\beta).$$

5.3-2

(a) The design is shown in Fig. S5.3-2. In this case, the NBFM generator generates $f_{c_1}=100$ kHz, and $\Delta f_{1}=100$ kHz. The final WBFM should have $f_{c_4}=98.1$ MHz, and $\Delta f_{4}=75$ kHz. The total factor of frequency multiplicate needed is $M_1\cdot M_2=\frac{\Delta f_4}{\Delta f_1}=7500$. With this, we can use $M_1=125$, $M_2=60$.

To find f_{LO} , there are three possible relationships: $f_{c_3} = f_{c_2} \pm f_{\text{LO}}$, $f_{\text{LO}} - f_{c_2}$. Each should be tested to determ the one that will require $10 \times 10^6 \le f_{\text{LO}} \le 11 \times 10^6$. First, we test $f_{c_3} = f_{c_2} - f_{\text{LO}}$. This case leads to MHz = $f_{c_4} = 60f_{c_3} = 60(f_{c_2} - f_{\text{LO}}) = 60(125f_{c_1} - f_{\text{LO}}) = 7.5 \times 10^8 - 60f_{\text{LO}}$. Thus, we have $f_{\text{LO}} = 1086$ MHz, which is in the desired range. We won't test the other cases since this one works. Thus, the final design $f_{c_3} = f_{c_2} - f_{\text{LO}} = 12.5 - 10.865 = 1.635$ MHz. This gives $f_{c_2} = 125f_{c_1} = 12.5$ MHz, $\Delta f_2 = M1 \cdot \Delta f_1 = 1250$ MHz.

(b) Given the multiplication factors already used, the tunable range given by

$$60(f_{c_2}-f_{LO})=60(f_{c_2}-(10 \text{ MHz to } 11 \text{ MHz})=90 \text{ MHz to } 150 \text{ MHz}$$

5.4-4 We can use small error analysis to find the Laplace transform of the phase error $\theta_e(t)$ as follows

$$\Theta_e(s) = \frac{s}{s + AKH(s)}\Theta_i(s)$$

For
$$\theta_i = kt^2$$
, $\Theta_i(s) = 2k/s^3$ and

$$\Theta_e(s) = \frac{2k}{s^2[s + AKH(s)]}$$

If H(s) = 1, the steady-state phase error is

$$\lim_{t \to \infty} \theta_e(t) = \lim_{s \to 0} s\Theta_e(s) = \lim_{s \to 0} \frac{2k}{s(s + AK)} = \infty$$

Hence, the incoming signal cannot be tracked. If $H(s) = \frac{s+a}{s}$, then

$$\Theta_e(s) = \frac{2k}{s^2[s + \frac{AK(s+a)}{s}]} = \frac{2k}{s[s^2 + AK(s+a)]}$$

and

$$\lim_{t \to \infty} \theta_e(t) = \lim_{s \to 0} s\Theta_e(s) = \lim_{s \to 0} \frac{2k}{s^2 + AK(s+a)} = \frac{2k}{AKa}$$

Hence, the incoming signal can be tracked within a constant phase 2k/AKa radians. Now if

$$H(s) = \frac{s^2 + as + b}{s^2}$$

then

$$\Theta_e(s) = \frac{2k}{s^2[s + \frac{AK(s^2 + as + b)}{s^2}]} = \frac{2k}{s^3 + AK(s^2 + as + b)}$$

and

$$\lim_{t \to \infty} \theta_e(t) = \lim_{s \to 0} s\Theta_e(s) = \lim_{s \to 0} \frac{2ks}{s^3 + AK(s^2 + as + b)} = 0$$

In this case, the incoming signal can be tracked with zero phase error

5.6-1 Given that the IF frequency is $f_{\rm IF}=455$ kHz and $f_c=1530$ kHz, it is clear that an image station exists at a distance of $2f_{\rm IF}=910$ kHz. This means that at another carrier frequency of $f'_c=1530-910=620$ kHz, $f'_{\rm LO}=f'_c+f_{\rm IF}=1075$ kHz, and $f_c-f'_{\rm LO}=f_{\rm IF}$. Thus, at f'_c the station at f_c will be heard owing to a poor RF-stage bandpass filter.

5.6-3

- (a) With $f_{IF} = 455$ kHz and a desired range of 9.4 to 9.9 MHz, $[f_{LO}]_{min} = 9.4 + 0.455 = 9.855$ MHz and $[f_{LO}]_{max} = 9.9 + 0.455 = 10.355$ MHz.
- (b) Since the range of the 31-meter band is only 500 kHz, it is not possible to receive an image station and a desired station from that band. The image stations exist at a distance of $2f_{\rm IF}=910$ kHz, which means that for any given station within the desired range, the image station is outside the same band.