Determining NEXRAD Coverage for Airport Approaches

David Mayer, December 2017

Introduction

The WSR-88D network is comprised of >150 sensors which operate in various altitude scan patterns on a continuous basis. Figure 1 presents the station locations in the continental United States. It has recently been upgraded to dual polarization which adds several additional variables to the dataset allowing classification of scatterers in the atmosphere. One of these classifications is biological targets, which includes birds and insects. CEAT research has shown that this classification can be improved upon, separating out hazardous bird targets from the remainder. Thus, the NEXRAD is a suitable tool for determining hazard when it has coverage near an airport. Using existing resources from the National Weather Service, NOAA, and the FAA it is possible to calculate the NEXRAD coverage for critical phases of flight at every airport in the country.

Figure 1: NEXRAD locations (red) in continental United States.

Methods

A key component to determining NEXRAD coverage at an airport is identifying the closest radar sensor to the airport. The maximum theoretical range of a sensor is 230 km so having an airport within that range is the first step of this process. Using the FAA's Airport Data and Contact information ⁴ along with NOAA's Historical Observing Metadata Repository ⁹ it was possible to calculate the ground distance from every airport to every NEXRAD station in the country as each location has recorded longitude and latitude values. A matrix was constructed with airports as rows, NEXRADs as columns and the calculated distance between them as the data within the matrix, figure 2.

X1 ÷	KABR ÷	KABX :	KAKQ : K	KAMA ÷ K	AMX ÷ KA	PX : KA	RX F KAT	к 🗼 кввх	* KBGN	и ≎ КВНХ	* KBIS
DAL	1410.030	954.89886	1865.29	520.806906	1785.677	1701.264	1317.205446	2739.483	2337.77	2107.953922	2581.316
DAY	1313.265	2058.429	707.4920	1625.203726	1629.913	558.68523	723.847914	3162.048	3181.02	736.732005	3378.207
DBQ	704.58182	1610.895	1317.44	1241.996089	2093.038	557.03678	162.936894	2551.263	2605.49	1211.089659	2791.883
DCA	1903.768	2667.972	207.9208	2221.853798	1507.511	926.47302	1303.764491	3754.118	3809.07	383.235848	4004.145 2
DEC	1000.207	1666.296	1081.05	1242.570356	1768.151	659.45409	484.022628	2822.192	2792.27	1112.317945	2994.214
DEN	805.99815	557.82823	2424.27	577.761189	2755.913	1728.870	1200.164032	1695.279	1451.37	2411.749724	1666.717
DFW	1403.040	936.64241	1879.77	503.124291	1803.873	1706.549	1318.114431	2723.422	2319.67	2118.878501	2563.300
. DHN	1932.535	2031.136	1000.39	1572.585771	804.11557	1513.799	1480.096801	3634.486	3381.83	1474.075113	3616.094 2
DIK	370.01831	1339.512	2385.40	1290.580685	3077.041	1414.520	966.319965	1485.302	1725.78	2178.484659	1860.202

Figure 2: Example distance matrix of airport and NEXRAD stations.

With this matrix constructed, the closest NEXRAD to each airport can be determined by arranging each individual row of the matrix in ascending order. It is also possible to identify the 2nd, 3rd, etc closest in this manner.

Within the same FAA dataset is runway information for every Public-Use facility in the country. This contains information such as:

- Runway Base and Reciprocal End Ion/lat
- Runway Base and Reciprocal End elevation
- Runway bearing
- Glide Path angle from runway end

Using this information, a stepwise function was created in R that looped through the distance matrix of airports and calculated the NEXRAD beam dimensions for aircraft on approach for each runway at that facility.

First, runways at each facility were extracted from the FAA database, and a runway map was constructed that highlighted the runways at the facility, figure 3.

Figure 3: Example runway map for Dallas Ft. Worth International Airport.

Next, using the approach bearing, elevation angle, and runway end coordinates and elevation, aircraft position was determined for varying altitudes within the critical phase of flight (ground to 10,000ft). Ground range from runway end was determined using trigonometry, where the aircraft height above runway end and glide path angle are known. Ground range is thus:

Ground Range = Aircraft Altitude above runway end / TAN(Glide Path Angle)

With the distance from runway end at approach altitude known as well as the approach bearing, a longitude and latitude position of the aircraft can be derived. This was derrived using the 'destPointRhumb' function in R, part of the Geosphere package ¹¹. This calculates the coordinates of the destination point when traveling along the surface of an ellipsoid (Earth) given a start point, direction, and distance.

Now that the aircraft's 3D position in space is known, it can be related to the nearest NEXRAD station. The distance from the aircraft's position on approach is then determined by the 'distGeo' function. This takes two longitude latitude pairs and calculates the shortest distance between them across the surface of an ellipsoid. Now that this dimension is known, it is possible to calculate the nearest NEXRAD's beam center altitude at the aircraft's position on approach according to the following formula provided by the National Weather Service 8:

h = (R*sin(PHI)) + (R2/2*IR*Re)

where:

h = height of the beam centerline above radar-level (ARL) in km,

R = slant range observed on radar in kilometers (km),

PHI = radar elevation angle (in degrees),

IR = refractive index (1.21), and

Re = radius of the earth (6371000 m)

Once the beam center altitude is determined, the beamwidth at this location can be determined according to the following formula:

 $\Theta = s/r$

where:

 Θ = the angular beamwidth

s = the beamwidth (or arc length)

r = the distance of the range gate from the antenna.

Once all of this information is known, it is possible to solve for the vertical components (perpendicular to the ground) of the beamwidth:

 $s_{\perp} = s * cos(PHI)$

For this report, the beam characteristics of the NEXRAD were calculated for the lowest elevation scanned, PHI = 0.5 degrees. The beamwidth, s, was also assumed to be 0.925. Atmospheric conditions can also affect these calculations dependent on the Refractive Index. This value is constantly changing, but for the purposes of this report was assumed to be 1.21 8. Using these calculations as well as the NEXRAD tower height and elevation above SEA level, it can be determined if an aircraft at a specified elevation on approach falls within the beam of the NEXRAD sensor. A table of NEXRAD beam

characteristics is generated, detailing the beam bottom, center, and top at the aircraft's location for a given airport runway.

Finally, a map is generated, showing the aircraft position at approach altitude and whether or not it is expected to be within the NEXRAD beam. To be considered in the beam, the aircraft must be above the bottom of the beam, below the top, and within 230 km of the NEXRAD sensor.

Figure 4: Aircraft on approach to Dallas Ft. Worth International Airport at various altitudes from runway end. Green symbols represent aircraft that would be within the nearest NEXRAD's beam, while red symbols would not for the lowest elevation slice.

These calculations are repeated for every airport in the distance matrix. A full archive of NEXRAD approach calculation maps and tables can be found at the following URL:

https://uofi.box.com/s/z74zicmwvcwdwc8eqwiqp9thvb04y96j

References

- 1. D. Kahle and H. Wickham. ggmap: Spatial Visualization with ggplot2. The R Journal, 5(1), 144-161. URL http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
- Douglas Nychka, Reinhard Furrer, John Paige and Stephan Sain (2015). "fields: Tools for spatial data." doi: 10.5065/D6W957CT (URL: http://doi.org/10.5065/D6W957CT), R package version 9.0, <URL:www.image.ucar.edu/fields>
- 3. Erich Neuwirth (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-project.org/package=RColorBrewer
- 4. FAA Airport Data & Contact Information. https://www.faa.gov/airports/airport safety/airportdata 5010/
- 5. H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.
- 6. Jeffrey B. Arnold (2017). ggthemes: Extra Themes, Scales and Geoms for 'ggplot2'. R package version 3.4.0. https://CRAN.R-project.org/package=ggthemes
- M Dowle, A Srinivasan, T Short, S Lianoglou with contributions from R Saporta and E Antonyan (2015). data.table: Extension of Data.frame. R package version 1.9.6. https://CRAN.R-project.org/package=data.table
- 8. National Weather Service Beam Calculator. http://training.weather.gov/wdtd/tools/misc/beamwidth/index.htm
- 9. NOAA Historical Observing Metadata Repository. https://www.ncdc.noaa.gov/homr/file/nexrad-stations.txt;jsessionid=57ECC2A1D87BC19EEE998F254F94B8E4
- 10. R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
- 11. Robert J. Hijmans (2015). geosphere: Spherical Trigonometry. R package version 1.5-1. https://CRAN.R-project.org/package=geosphere