Soumya Sara John

M.Tech DSP
Department of Avionics
Indian Institute of Space Science and Technology

13 August 2018

Outline

Bayesian Deep Learning Introduction Bayesian Regression

Sampling the posterior Markov Chain Monte Carlo

Approximating the posterior Laplace Approximation Variational Inference

Talking About BDL Advantages Challenges

Outline

Bayesian Deep Learning Introduction

Bayesian Regression

Sampling the posterior Markov Chain Monte Carlo

Approximating the posterior Laplace Approximation Variational Inference

Talking About BDL

Advantages Challenges

Introduction

Figure: Two layer DNN : weights are point estimates

Introduction

Figure: Two layer DNN: weights are defined using Gaussian distributions

Introduction

Bayes Probability

Þ

$$P(B/A) = \frac{P(A/B)P(B)}{P(A)} \tag{1}$$

Outline

Bayesian Deep Learning

Introduction

Bayesian Regression

Sampling the posterior
Markov Chain Monte Carlo

Approximating the posterior Laplace Approximation Variational Inference

Talking About BDL

Advantages Challenges

Linear Regression

▶ Dataset :
$$\{\mathbf{x}_i, y_i\}_{i=1}^N$$

 $y(\mathbf{x}) = \mathbf{x}^T \mathbf{w} + \epsilon(\mathbf{x})$
 $\mathbf{w} \in R^d \rightarrow \text{parameters}$
 $\epsilon(\mathbf{x}) \rightarrow \text{residuals}$

• Ordinary Least squares: $\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{N} (\mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} - y_{i})^{2}$

$$\Rightarrow \hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y$$

Overfitting might occur

Adding a regularization term

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{N} (\mathbf{x}_{i}^{T} \mathbf{w} - y_{i})^{2} + \lambda ||\mathbf{w}||_{2}^{2}$$
$$\Rightarrow \hat{\mathbf{w}} = (\mathbf{X}^{T} \mathbf{X} + \lambda I)^{-1} \mathbf{X}^{T} y$$

$$y(\mathbf{x}) = \mathbf{x}^T \mathbf{w} + \epsilon(\mathbf{x})$$

$$p(\epsilon|\sigma^2) = N(\epsilon; 0, \sigma^2 I)$$

$$p(\mathbf{w}|\mu, \Sigma) = N(\mathbf{w}; \mu, \Sigma)$$

$$\begin{aligned} \mathbf{p}(\mathbf{x}) &= \mathbf{x}^T \mathbf{w} + \epsilon(\mathbf{x}) \\ p(\epsilon | \sigma^2) &= N(\epsilon; 0, \sigma^2 I) \\ p(\mathbf{w} | \mu, \Sigma) &= N(\mathbf{w}; \mu, \Sigma) \\ p(y_i | \mathbf{x}_i, \mathbf{w}) &= \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(y_i - \mathbf{x}_i^T \mathbf{w})^2}{2\sigma^2}} \end{aligned}$$

$$\begin{aligned} \mathbf{p}(\mathbf{x}) &= \mathbf{x}^T \mathbf{w} + \epsilon(\mathbf{x}) \\ p(\epsilon|\sigma^2) &= \mathit{N}(\epsilon; 0, \sigma^2 \mathit{I}) \\ p(\mathbf{w}|\mu, \Sigma) &= \mathit{N}(\mathbf{w}; \mu, \Sigma) \\ p(y_i|\mathbf{x}_i, \mathbf{w}) &= \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(y_i - \mathbf{x}_i^T \mathbf{w})^2}{2\sigma^2}} \\ \mathbf{E} & \text{Likelihood} : p(\mathbf{Y}|\mathbf{X}, \mathbf{w}) &= \prod_{i=1}^{N} p(y_i|\mathbf{x}_i, \mathbf{w}) \end{aligned}$$

- ▶ Likelihood : $p(\mathbf{Y}|\mathbf{X}, \mathbf{w}) = \prod_{i=1}^{N} p(y_i|\mathbf{x}_i, \mathbf{w})$
- ► Prior : p(w)

- ▶ Likelihood : $p(\mathbf{Y}|\mathbf{X}, \mathbf{w}) = \prod_{i=1}^{N} p(y_i|\mathbf{x}_i, \mathbf{w})$
- ► Prior : p(**w**)
- ▶ Posterior : $p(\mathbf{w}|\mathbf{X}, \mathbf{Y}) = \frac{p(\mathbf{Y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})}{\int p(\mathbf{Y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})d\mathbf{w}}$

- ► Likelihood : $p(\mathbf{Y}|\mathbf{X}, \mathbf{w}) = \prod_{i=1}^{N} p(y_i|\mathbf{x}_i, \mathbf{w})$ ► Prior : $p(\mathbf{w})$ ► Posterior : $p(\mathbf{w}|\mathbf{X}, \mathbf{Y}) = \frac{p(\mathbf{Y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})}{\int p(\mathbf{Y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})d\mathbf{w}}$
- $\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} p(\mathbf{w}|\mathbf{X}, \mathbf{Y})$

Figure: Observation Points from $f(x) = x\cos(x)$

Figure: $f(x) = x\cos(x)$

Figure: $f(x) = x\cos(x)$ and predicted function using MLE

Figure: With uncertainty range

Bayesian Regression - Function Space View

▶ A function f(x) defined such that $p(f) \sim GP(f; \mu, K)$

$$\mu(\mathbf{X}) = [f(\mathbf{X})]$$
 and $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-0.5||\mathbf{x}_i - \mathbf{x}_j||_2^2}$

Bayesian Regression - Function Space View

▶ A function f(x) defined such that $p(f) \sim GP(f; \mu, K)$

$$\mu(\mathbf{X}) = [f(\mathbf{X})]$$
 and $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-0.5||\mathbf{x}_i - \mathbf{x}_j||_2^2}$

▶ Eg: 3 points X_1, X_2, X_3 and

correspondingly,
$$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} = \textit{N} \left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix} \right)$$

Bayesian Regression - Function Space View

- ▶ Posterior : $p(f|D) = \frac{p(D|f)p(f)}{\int p(D|f)p(f)df}$

Bayesian Regression - Function Space View

- ▶ Posterior : $p(f|D) = \frac{p(D|f)p(f)}{\int p(D|f)p(f)df}$
- $\hat{f} = \underset{f}{\operatorname{argmax}} p(f|D)$
- ▶ Likelihood : $p(D|f) \Rightarrow p(\mathbf{Y}|f) = \prod_{i=1}^{N} p(y_i|f_i)$
- $p(y_i = 1|f_i) = \sigma(f_i)$

Bayesian Regression - Function Space View

- And for a new point x^* , get $f(x^*) = f^*$ using the conditional distribution
- Joint distribution :

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}^* \end{bmatrix} = N \left(\begin{bmatrix} \mathbf{0} \\ 0 \end{bmatrix}, \begin{bmatrix} K_{11} & K_{12} & K_{13} & K_{1*} \\ K_{21} & K_{22} & K_{23} & K_{2*} \\ K_{31} & K_{32} & K_{33} & K_{3*} \\ K_{*1} & K_{*2} & K_{*3} & K_{**} \end{bmatrix} \right)$$

Bayesian Regression - Function Space View

▶ In actual scenario, mean \neq 0 :

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}^* \end{bmatrix} = N \begin{pmatrix} \begin{bmatrix} \mu(\mathbf{X}) \\ \mu^* \end{bmatrix}, \begin{bmatrix} \mathbf{K} & \mathbf{K}^{*T} \\ \mathbf{K}^* & \mathbf{K}^{**} \end{bmatrix} \end{pmatrix}$$

Bayesian Regression - Function Space View

▶ In actual scenario, mean \neq 0 :

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}^* \end{bmatrix} = N \begin{pmatrix} \begin{bmatrix} \mu(\mathbf{X}) \\ \mu^* \end{bmatrix}, \begin{bmatrix} \mathbf{K} & \mathbf{K}^{*T} \\ \mathbf{K}^* & \mathbf{K}^{**} \end{bmatrix} \end{pmatrix}$$

Conditional Distribution:

$$p(f^*|\mathbf{X^*},\mathbf{X},\mathbf{f}) = N(f^*|\mu^*,\Sigma^*)$$

Bayesian Regression - Function Space View

In actual scenario, mean $\neq 0$: $\begin{bmatrix} \mathbf{f} \\ \mathbf{f}^* \end{bmatrix} = N \begin{pmatrix} \begin{bmatrix} \mu(\mathbf{X}) \\ \mu* \end{bmatrix}, \begin{bmatrix} \mathbf{K} & \mathbf{K}^{*T} \\ \mathbf{K}^* & \mathbf{K}^{**} \end{bmatrix}$

Conditional Distribution:

$$\begin{split} \rho(f^*|\mathbf{X^*},\mathbf{X},\mathbf{f}) &= \textit{N}(f^*|\mu^*,\Sigma^*) \\ \text{such that}: \\ \\ \mu^* &= \mu(\mathbf{X}^*) + \mathbf{K}^*\mathbf{K}^{-1}(f-\mu(\mathbf{X})) \\ \\ \Sigma^* &= \mathbf{K}^{**} - \mathbf{K}^*\mathbf{K}^{-1}\mathbf{K}^* \end{split}$$

► Two steps:

$$p(f^*|\mathbf{X}^*,D) = \int p(f^*|\mathbf{X}^*,\mathbf{X},\mathbf{f})d\mathbf{f}$$

► Two steps:

$$p(f^*|\mathbf{X}^*,D) = \int p(f^*|\mathbf{X}^*,\mathbf{X},\mathbf{f})d\mathbf{f}$$

$$p(y_i^* = 1|f^*) = \int p(y_i^* = 1|f^*)p(f^*|\mathbf{X}^*, D)df^*$$

$$= \int \sigma(f^*)p(f^*|\mathbf{x}^*, D)df^*$$

Difficulties and Solutions

- Difficulties:
 - ► Finding the right prior
 - ► Intractable posterior

Difficulties and Solutions

- Difficulties:
 - Finding the right prior
 - Intractable posterior
- Solutions:
 - Sampling the posterior appropriately
 - Approximating the posterior

Outline

Bayesian Deep Learning Introduction Bayesian Regression

Sampling the posterior Markov Chain Monte Carlo

Approximating the posterior Laplace Approximation Variational Inference

Talking About BDL Advantages

- General Steps:
 - Current parameter w_{current}
 - Propose new parameter w_{new}
 - Accept or reject the proposed value based on probability
- Metrapolis Algorithm uses a Normal distribution to calculate the probability
 - $\mathbf{w}_t \sim \mathcal{N}(\mu, \Sigma)$
 - $ightharpoonup \mathbf{w}_{t+1} \sim N(\mathbf{w}_t, \Sigma)$

- General Steps:
 - Current parameter w_{current}
 - Propose new parameter w_{new}
 - Accept or reject the proposed value based on probability
- Metrapolis Algorithm uses a Normal distribution to calculate the probability
 - $\mathbf{w}_t \sim \mathcal{N}(\mu, \Sigma)$
 - $\blacktriangleright \ \mathbf{w}_{t+1} \sim \textit{N}(\mathbf{w}_t, \Sigma)$
 - $r(\mathbf{w}_{t+1}, \mathbf{w}_t) = \frac{post.prob.of \mathbf{w}_{t+1}}{post.prob.of \mathbf{w}_t}$

- General Steps:
 - ► Current parameter **w**_{current}
 - ► Propose new parameter **w**_{new}
 - Accept or reject the proposed value based on probability
- Metrapolis Algorithm uses a Normal distribution to calculate the probability
 - $\mathbf{w}_t \sim \mathcal{N}(\mu, \Sigma)$
 - $ightharpoonup \mathbf{w}_{t+1} \sim \mathcal{N}(\mathbf{w}_t, \Sigma)$
 - $r(\mathbf{w}_{t+1}, \mathbf{w}_t) = \frac{post.prob.of \mathbf{w}_{t+1}}{post.prob.of \mathbf{w}_t}$
 - lacktriangleright if $r(\mathbf{w}_{t+1},\mathbf{w}_t)>1$, accept \mathbf{w}_{t+1}

- ► Two issues:
 - Dependent on the starting values
 - Correlation present because of Markov Chain
- Solution:
 - ▶ Burn-in period
 - ► Thinning : increasing the sample size
- Advantage : Accuracy high
- Disadvantage: Slow

Outline

Bayesian Deep Learning Introduction Bayesian Regression

Sampling the posterior Markov Chain Monte Carlo

Approximating the posterior
Laplace Approximation
Variational Inference

Talking About BDL Advantages Challenges

Laplace Approximation

- Parameter space w and data D
- ▶ Posterior : $p(w|D) = \frac{1}{Z}p(D|w)p(w)$

$$Z=\int p(D|w)p(w)$$

Laplace Approximation

- Parameter space w and data D
- ▶ Posterior : $p(w|D) = \frac{1}{Z}p(D|w)p(w)$

$$Z = \int p(D|w)p(w)$$

Laplace Approximation

- Parameter space w and data D
- ▶ Posterior : $p(w|D) = \frac{1}{Z}p(D|w)p(w)$

$$Z = \int p(D|w)p(w)$$

$$\hat{w} = \underset{w}{\operatorname{argmax}} \ \psi(w)$$

Laplace Approximation

- Parameter space w and data D
- ▶ Posterior : $p(w|D) = \frac{1}{Z}p(D|w)p(w)$

$$Z = \int p(D|w)p(w)$$

$$\hat{w} = \underset{w}{\operatorname{argmax}} \ \psi(w) \to \mathsf{MAP}$$

Laplace Approximation

► Taylors series :

$$\psi(w) = \psi(\hat{w}) + \frac{-1}{2}(w - \hat{w})^T H(w - \hat{w})$$

Laplace Approximation

► Taylors series :

$$\psi(w) = \psi(\hat{w}) + \frac{-1}{2}(w - \hat{w})^T H(w - \hat{w})$$

 $p(w|D) = e^{\psi(w)}$

Laplace Approximation

Taylors series :

$$\psi(w) = \psi(\hat{w}) + \frac{-1}{2}(w - \hat{w})^T H(w - \hat{w})$$

$$p(w|D) = e^{\psi(\hat{w})}$$

$$= e^{\psi(\hat{w})} e^{\frac{-1}{2}(w - \hat{w})^T H(w - \hat{w})}$$

Laplace Approximation

► Taylors series :

$$\psi(w) = \psi(\hat{w}) + \frac{-1}{2}(w - \hat{w})^T H(w - \hat{w})$$

$$p(w|D) = e^{\psi(\hat{w})}$$

$$= e^{\psi(\hat{w})} e^{\frac{-1}{2}(w - \hat{w})^T H(w - \hat{w})}$$

$$\approx N(w; \hat{w}, H^{-1})$$

Laplace Approximation

Taylors series :

$$\psi(w) = \psi(\hat{w}) + \frac{-1}{2}(w - \hat{w})^T H(w - \hat{w})$$

$$p(w|D) = e^{\psi(w)}$$

$$= e^{\psi(\hat{w})} e^{\frac{-1}{2}(w - \hat{w})^T H(w - \hat{w})}$$

$$\approx N(w; \hat{w}, H^{-1})$$

$$Z = \int e^{\psi(w)} dw$$

► Taylors series :

$$\psi(w) = \psi(\hat{w}) + \frac{-1}{2}(w - \hat{w})^{T}H(w - \hat{w})$$

$$p(w|D) = e^{\psi(w)}$$

$$= e^{\psi(\hat{w})}e^{\frac{-1}{2}(w - \hat{w})^{T}H(w - \hat{w})}$$

$$\approx N(w; \hat{w}, H^{-1})$$

$$Z = \int e^{\psi(w)}dw$$

$$= e^{\psi(\hat{w})}\frac{(2\pi)^{d/2}}{|H|^{1/2}}$$

Laplace Approximation

► Advantage: Fast

▶ Disadvantage: Less accurate

Outline

Bayesian Deep Learning Introduction Bayesian Regression

Sampling the posterior
Markov Chain Monte Carlo

Approximating the posterior
Laplace Approximation
Variational Inference

Talking About BDL Advantages Challenges

▶ Posterior :
$$p(Z|X) = \frac{p(X|Z)p(Z)}{\int p(X|Z)p(Z)dZ}$$

- ▶ Posterior : $p(Z|X) = \frac{p(X|Z)p(Z)}{\int p(X|Z)p(Z)dZ}$
- ▶ Approximate it to $q(Z; \theta)$
- ▶ Distance measurement : KL divergence defined as :

$$KL(q(Z;\theta)||p(Z|X)) = \sum_{z \in Z} q(z;\theta) log(\frac{q(z;\theta)}{p(z|x)})$$

$$KL(q(Z;\theta)||p(Z|X)) = \sum_{z \in Z} q(z;\theta) log(\frac{q(z;\theta)}{p(z|x)})$$

$$= \sum_{z \in Z} q(z;\theta) log(\frac{q(z;\theta)p(x)}{p(z,x)})$$

$$= \sum_{z \in Z} q(z;\theta) (log(\frac{q(z;\theta)}{p(z,x)}) + log(p(x)))$$

$$= log(p(x)) + E_q[log(\frac{q(z;\theta)}{p(z,x)}]$$

$$KL(q(Z;\theta)||p(Z|X)) = \sum_{z \in Z} q(z;\theta) log(\frac{q(z;\theta)}{p(z|x)})$$

$$= \sum_{z \in Z} q(z;\theta) log(\frac{q(z;\theta)p(x)}{p(z,x)})$$

$$= \sum_{z \in Z} q(z;\theta) (log(\frac{q(z;\theta)}{p(z,x)}) + log(p(x)))$$

$$= log(p(x)) + E_q[log(\frac{q(z;\theta)}{p(z,x)}]$$

$$Minimize$$

Variational Inference

$$KL(q(Z;\theta)||p(Z|X)) = \sum_{z \in Z} q(z;\theta) log(\frac{q(z;\theta)}{p(z|x)})$$

$$= \sum_{z \in Z} q(z;\theta) log(\frac{q(z;\theta)p(x)}{p(z,x)})$$

$$= \sum_{z \in Z} q(z;\theta) (log(\frac{q(z;\theta)}{p(z,x)}) + log(p(x)))$$

$$= log(p(x)) + E_q[log(\frac{q(z;\theta)}{p(z,x)}]$$

$$Minimize$$

Variational Bound or ELBO(Evidence Lower Bound)

Variational Inference

► Minimizing $E_q[log(\frac{q(z;\theta)}{p(z,x)}]$

- Minimizing $E_q[log(\frac{q(z;\theta)}{p(z,x)}]$
- ► Maximize $-E_q[log(\frac{q(z;\theta)}{p(z,x)}]$

- ▶ Minimizing $E_q[log(\frac{q(z;\theta)}{p(z,x)}]$
- ► Maximize $-E_q[log(\frac{q(z;\theta)}{p(z,x)}]$
 - \Rightarrow Maximize $-E_q[log(\frac{q(z;\theta)}{p(x|z)p(z)}]$

- ▶ Minimizing $E_q[log(\frac{q(z;\theta)}{p(z,x)}]$
- ► Maximize $-E_q[log(\frac{q(z;\theta)}{p(z,x)}]$

$$\Rightarrow$$
 Maximize $-E_q[log(\frac{q(z;\theta)}{p(x|z)p(z)}]$

$$\Rightarrow$$
 Maximize $E_q[log(\frac{p(z)}{q(z;\theta)}] + E_q[log(p(x|z))]$

- Advantages:
 - ► Scalable to large datasets
 - Faster than MCMC
- Disadvantages:
- Does not guarantee a globally optimal $q(Z:\theta)$

Outline

Bayesian Deep Learning Introduction Bayesian Regression

Sampling the posterior

Markov Chain Monte Carlo

Approximating the posterior Laplace Approximation Variational Inference

Talking About BDL Advantages Challenges

Advantages of Bayesian Deep Learning

- Can avoid overfitting
- It explains the hyperparameters in Deep Learning
- Pruning based on probability
- Robust against adversarial examples

Outline

Bayesian Deep Learning Introduction Bayesian Regression

Sampling the posterior Markov Chain Monte Carlo

Approximating the posterior Laplace Approximation Variational Inference

Talking About BDL Advantages Challenges

Challenges with Bayesian Deep Learning

- Modelling multi modal distributions which will help in better inference
- Prior distribution selection
- Posterior approximation

References I

Gaussian Processes for Machine Learning Carl Edward Rasmussen Christopher K. I. Williams. MIT 2006

Uncertainty in Deep Learning Yarin Gal

Variational Inference: A Review for Statisticians
David M. Blei, Alp Kucukelbir, Jon D. McAuliffe