UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2015-2016

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Después de leer atentamente todas las preguntas, el alumno deberá escoger **una** de las dos opciones propuestas y responder a las cuestiones de la opción elegida. Para la realización de esta prueba se puede utilizar calculadora científica, siempre que no disponga de capacidad de representación gráfica o de cálculo simbólico.

CALIFICACIÓN: Cada pregunta se valorará sobre 2 puntos.

TIEMPO: 90 minutos.

OPCIÓN A

Ejercicio 1. (Calificación máxima: 2 puntos)

Considérense las matrices

$$A = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 7 & 4 \\ 4 & 5 & 2 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 1 \\ 5 & 3 \\ 0 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 4 & 8 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

a) Calcúlese el determinante de la matriz

$$A \cdot C \cdot C^T \cdot A^{-1}$$
.

b) Calcúlese la matriz $M = A \cdot B$. ¿Existe M^{-1} ?

Nota: C^T denota la matriz traspuesta de la matriz C.

Ejercicio 2. (Calificación máxima: 2 puntos)

Sea S la región del plano definida por:

$$y + x \le 5$$
; $y - x \le 3$; $\frac{1}{2}x - y \le -2$.

- a) Represéntese la región S y calcúlense las coordenadas de sus vértices.
- b) Obténganse los valores máximo y mínimo de la función f(x, y) = 2x + y en la región S indicando los puntos de S en los cuales se alcanzan dichos valores máximo y mínimo.

Ejercicio 3. (Calificación máxima: 2 puntos)

Se considera la función real de variable real:

$$f(x) = x^3 + 8.$$

- a) Determínese el área de la región acotada delimitada por la gráfica de f(x), el eje de abscisas y por las rectas x = -3 y x = -1.
- b) Calcúlese la ecuación de la recta tangente a la gráfica de la función f(x) en el punto de abscisa x = 1.

Ejercicio 4. (Calificación máxima: 2 puntos)

Una conocida orquesta sinfónica está compuesta por un 55 % de varones y un 45 % de mujeres. En la orquesta un 30 % de los instrumentos son de cuerda. Un 25 % de las mujeres de la orquesta interpreta un instrumento de cuerda. Calcúlese la probabilidad de que un intérprete de dicha orquesta elegido al azar:

- a) Sea una mujer si se sabe que es intérprete de un instrumento de cuerda.
- b) Sea intérprete de un instrumento de cuerda y sea varón.

Ejercicio 5. (Calificación máxima: 2 puntos)

La producción diaria de leche, medida en litros, de una granja familiar de ganado vacuno se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviacion típica σ = 50 litros.

- a) Determínese el tamaño mínimo de una muestra aleatoria simple para que el correspondiente intervalo de confianza para μ al 95 % tenga una amplitud a lo sumo de 10 litros.
- b) Se toman los datos de producción de 25 días escogidos al azar. Calcúlese la probabilidad de que la media de las producciones obtenidas, \overline{X} , sea menor o igual a 940 litros si sabemos que μ = 950 litros.

OPCIÓN B

Ejercicio 1. (Calificación máxima: 2 puntos)

Se considera el sistema de ecuaciones lineales:

$$\begin{cases} x +2y +z = 1 \\ x +2y +3z = 0 \\ x +ay +2z = 0 \end{cases}$$

- a) Discútase para los diferentes valores del parámetro $a \in \mathbb{R}$
- b) Resuélvase para a = 0.

Ejercicio 2. (Calificación máxima: 2 puntos)

Se considera la función real de variable real

$$f(x) = \begin{cases} \frac{-x+b}{x-2} & \text{si } x \le -1, \\ \frac{x^2+6x+5}{x^2+4x+3} & \text{si } x > -1. \end{cases}$$

- a) Determínese para qué valores del parámetro b la función f(x) es continua en x = -1.
- b) Calcúlense las asíntotas de f(x).

Ejercicio 3. (Calificación máxima: 2 puntos)

Sabiendo que la derivada de una función real de variable real es:

$$f'(x) = 6x^2 + 4x - 2.$$

- a) Determínese la expresión de f(x) sabiendo que f(0) = 5.
- b) Determínense los intervalos de crecimiento y decrecimiento de la función *f* así como sus máximos y mínimos locales, si los tuviese.

Ejercicio 4. (Calificación máxima: 2 puntos)

Tenemos dos urnas A y B. La urna A contiene 5 bolas: 3 rojas y 2 blancas. La urna B contiene 6 bolas: 2 rojas y 4 blancas. Se extrae una bola al azar de la urna A y se deposita en la urna B. Seguidamente se extrae una bola al azar de la urna B. Calcúlese la probabilidad de que:

- a) La segunda bola extraída sea roja.
- b) Las dos bolas extraídas sean blancas.

Ejercicio 5. (Calificación máxima: 2 puntos)

El peso por unidad, en gramos, de la gamba roja de Palamós, se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica σ = 5 gramos.

- a) Se ha tomado una muestra aleatoria simple de 25 gambas y la media de sus pesos ha sido \overline{x} = 70 gramos. Calcúlese un intervalo de confianza al 95 % para μ .
- b) Si sabemos que μ = 70 gramos, y se consideran los pesos de las 12 gambas de una caja como una muestra aleatoria simple, calcúlese la probabilidad de que el peso total de esas 12 gambas sea mayor o igual que 855 gramos.

Matemáticas Aplicadas a las Ciencias Sociales

ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de z.

z	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
-	,,,,,	,,,,	,,,,	,,,,,	, , , ,	,,,,,	,,,,	,,,,	,,,,,	,00
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9954	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990