On-Line Learning of Non-Stationary Data

Manfred K. Warmuth

UC, Santa Cruz

Joint work with:

Olivier Bousquet

Mark Herbster

Outline

- Motivate on-line learning
- Motivate relative loss bounds
- Halving Algorithm as example
- Loss Update
- Flavor of proof techniques
- Comparator on-line as well
- How to adapt the algs
- Future work

Loop

Get next instance

Predict

Get label

Incur loss

- Choose comparison class of predictors e.g. linear
- Goal:

Do well compared to best off-line comparator

 \bullet No statistical assumptions on the data

experts

	E_1	E_2	E_3	E_n	predic tion	$egin{aligned} true \ label \end{aligned}$	loss
day 1	1	1	0	0	0	1	1
day 2	1	0	1	0	1	0	1
day 3	0	1	1	1	1	1	0
day t	$x_{t,1}$	$x_{t,2}$	$x_{t,3}$	$x_{t,n}$	\hat{y}_t	y_t	$ y_t - \hat{y}_t $

Protocol of the Master Algorithm

For t = 1 To T Do

Get instance $\boldsymbol{x}_t \in \{0, 1\}^n$

Predict $\hat{y}_t \in \{0, 1\}$

Get label $y_t \in \{0, 1\}$

Incur loss $|y_t - \hat{y}_t|$

Minimax Algorithm for T Trials

• Learner against adversary

- C is comparison class
- Minimax algorithm usually intractable

What kind of performance can we expect?

- $L_{1..T,A}$ be the total loss of algorithm A
- $L_{1..T,i}$ be the total loss of *i*-th expert E_i

• Form of bounds

$$\forall S: \quad L_{1..T,\mathbf{A}} \leq \min_{i} \left(L_{1..T,\mathbf{i}} + c \log n \right)$$

where c is constant

• Bounds the loss of the algorithm relative to the loss of best expert

• Master algorithm predicts with weighted average

$$\hat{y}_t = \boldsymbol{v}_t \cdot \boldsymbol{x}_t$$

• The weights are updated according to the Loss Update

$$v_{t+1,i} := \frac{v_{t,i} \ e^{-\eta L_{t,i}}}{\text{normaliz.}}$$

where $L_{t,i}$ is loss of expert i in trial t

→ Weighted Majority Algorithm

[LW89]

 \rightarrow Generalized by Vovk

[Vovk90]

- Off-line alg. partitions sequence into sections and chooses best expert in each section
- Goal:

 Do well compared to best off-line partition
- Problem:
 Loss Update learns too well
 and does not recover fast enough

- Predict $\hat{y}_t = \boldsymbol{v}_t \cdot \boldsymbol{x}_t$
- Loss Update

$$v_{t,i}^m := \frac{v_{t,i}e^{-\eta L_{t,i}}}{\text{normaliz.}}$$

- Share Update
 - Static Expert

$$oldsymbol{v}_{t+1} = oldsymbol{v}_t^m$$

- Fixed Share to Start Vector ($\alpha \in [0, 1)$)

$$\boldsymbol{v}_{t+1} = (1 - \alpha)\boldsymbol{v}_t^m + \alpha \boldsymbol{v}_0$$

where
$$v_0 = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})$$

- \bullet Square loss, target outcome always 0, experts have predictions between 0 and 1/2 uniform for typical experts and restricted to [0, 0.12] for current best expert
- T = 1400 trials, n = 20000 experts, k = 6 shifts

• Tracks the best expert

- Variable Share to Start Vector
 - Replace

$$\boldsymbol{v}_{t+1,i} = (1-\alpha) \boldsymbol{v}_{t,i}^m + \alpha \frac{1}{n}$$

- by

$$\mathbf{v}_{t+1,i} = (1-\alpha)^{L_{t,i}} \mathbf{v}_{t,i}^m + \left(1 - \sum_{i=1}^n (1-\alpha)^{L_{t,i}} \mathbf{v}_{t,i}^m\right) \frac{1}{n} \text{where } L_{t,i} \in [0,1]$$

Weights of Variable Share Alg.

• Recall Static Expert bound

$$L_{\text{Alg}}(S) \le \min_{i} \left(L_{i}(S) + O(\log n) \right)$$

- Comparison class: set of experts
- Bounds for Share Algs.

$$L_{\text{Alg}}(S) \le \min_{P} \left(L_{P}(S) + O(\# \text{ of bits for } P) \right)$$

- Comparison class: set of partitions
- -# of bits for partitions with k shifts:

$$k \log n + \log \binom{T}{k}$$

• Number of possible experts n is large

 $n \approx 10^6$

• Experts in partition from small subset of size m

 $m \approx 10$

• # of bits for partitions with k shifts:

$$\log \binom{n}{m} + k \log m + \log \binom{T}{k}$$

- Predict $\hat{y}_t = \boldsymbol{v}_t \cdot \boldsymbol{x}_t$
- Loss Update $v_{t,i}^m := \frac{v_{t,i}e^{-\eta L_{t,i}}}{\text{normaliz.}}$
- Mixing Update: $\mathbf{v}_{t+1} = \sum_{q=0}^{t} \beta_{t+1,q} \mathbf{v}_q^m$
- Mixing scheme

- \bullet Square loss, target outcome always 0, experts have predictions between 0 and 1/2 uniform for typical experts and restricted to [0, 0.12] for current best expert
- T = 1400 trials, n = 20000 experts, k = 6 shifts, m = 3 experts in the small subset

Fixed Share to Decaying Past - Log Weights

Fixed Share to Decaying Past - Log Weights

• Weights past good expert remain at higher level

Fixed Share to Start Vector - Log Weights

Long-term Versus Short-term Memory

• Bounds still have the form

$$L_{1..T,A} \le \min_{P} (L_{1..T,P} + O(\# \text{ of bits for } P))$$

• Excess loss for naive alg.

$$O(\log \binom{n}{m} + k \log m + \log \binom{T}{k})$$

• Excess loss for Fixed Share to Decaying Past

$$O\left(m\log n + k\log m + 2\log {T\choose k}\right)$$

- → Boundaries are encoded twice
- \rightarrow Off-line problem NP-complete

Loss Bounds Versus Storage Complexity

- Naive alg. has optimal bound exponential storage
- Fixed Share to Uniform Past O(n) weights
- \bullet Fixed Share to Decaying Past O(nT) weights and better bound
- \longrightarrow With tricks $O(n \ln T)$ weights and essentially same bound

Alternates to Mixing

• What we need for bounds

$$\mathbf{v}_{t+1} = \beta_{t+1,q} \mathbf{v}_q^m, \text{ for } 0 \le q \le t$$
 (*)

Mixing Update	$oldsymbol{v}_{t+1} = \sum_{q=0}^t eta_{t+1,q} oldsymbol{v}_q^m$
Max Update	$oldsymbol{v}_{t+1} = rac{1}{ ext{normaliz.} rac{ ext{max}}{q=0,,t}}eta_{t+1,q}oldsymbol{v}_q^m$
Projection Update	$oldsymbol{v}_{t+1} = rg\min_{oldsymbol{v} \in (*)} \Delta(oldsymbol{v}, oldsymbol{v}_t^m)$

Long-term Versus Short-term Memory

- T = 1400 trials, n = 20000 experts
- k = 1 shift (at trial 400), m = 2 experts in the small subset

Fixed Share to Decaying Past - Log Weights

• Larger alpha gives better long-term memory

Fixed Share to Start Vector - Log Weights

- T = 3200 trials, n = 20000 experts
- k = 30 shifts (every 200 and 50 trials), m = 2 experts in the small subset

Fixed Share to Decaying Past - Log Weights

• The memory from many short sections accumulates

- Bayesian interpretation
- Variable share
- Lower bounds
- Automatic tuning
- Mixing Update works for EG family
- Connections to Universal Coding
- Applications
 - Load balancing
 - Switching between a few users
 - Segmentation