Bayes' Theorem

Thomas Bayes, ca. 1701-1761

If a person **tests positive** for tuberculosis, what is the probability of him/her actually having TB?

If I pick a random person in the universe, what's the probability of him/her having tuberculous?

$$P(A) = \frac{|A|}{|U|}$$

If I pick a random person in the universe, what's the probability of him/her testing positive for TB?

$$P(B) = \frac{|B|}{|U|}$$

If I pick a random person in the universe, what's the probability of him/her having tuberculous <u>AND</u> testing positive for it?

$$P(A,B) = \frac{|AB|}{|U|}$$

Joint Probability

If I pick a random person in the universe, what's the probability of him/her having tuberculous <u>AND</u> testing positive for it?

$$P(A,B) = \frac{|AB|}{|U|}$$

Joint Probability

If I pick a random person that tested positive, what's the probability of him/her having tuberculous?

$$P(A|B) = \frac{|AB|}{|B|}$$

Conditional Probability

If I pick a random person that tested positive, what's the probability of him/her having tuberculous?

$$P(A|B) = \frac{|AB|}{|B|}$$

Conditional Probability

If I pick a random person that tested positive, what's the probability of him/her having tuberculous?

$$P(A|B) = \frac{|AB|}{|B|}$$

$$= \frac{|AB|/|U|}{|B|/|U|}$$

$$= \frac{P(A,B)}{P(B)}$$

If I pick a random person that has tuberculous, what's the probability of him/her testing positive?

$$P(B|A) = \frac{|AB|}{|A|}$$

Conditional Probability

If I pick a random person that has tuberculous, what's the probability of him/her testing positive?

$$P(B|A) = \frac{|AB|}{|A|}$$

$$= \frac{|AB|/|U|}{|A|/|U|}$$

$$= \frac{P(A,B)}{P(A)}$$

$$P(B|A) = \frac{P(A,B)}{P(A)}$$

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

$$P(B|A)P(A) = P(A,B)$$

$$P(A,B) = P(A|B)P(B)$$

$$P(B|A)P(A) = P(A,B)$$

$$P(A,B) = P(A|B)P(B)$$

$$P(B|A)P(A) = P(A|B)P(B)$$

If a person **tests positive** for tuberculosis, what is the probability of him/her actually having TB?

THEOREM
$$P(A|B) = rac{P(B|A) \cdot P(A)}{P(B)}$$

EXAMPLE

Recall Bayes' Theorem:

P(has TB) = 3 cases / 100,000 people = 0.00003

P(test positive | has TB) = 0.80


```
P(test positive) = P(test positive, has TB)
+ P(test positive, does not have TB)
```


P(test positive) = P(test positive | has TB) P(has TB)
+ P(test positive | no TB) P(no TB)

0.00003

1 - 0.00003

```
P(test positive) = P(test positive | has TB) P(has TB)
+ P(test positive | no TB) P(no TB)
= 0.80 \cdot 0.00003 + 0.01 \cdot (1 - 0.00003)
\approx 0.01002
```


P(has TB | test positive) =
$$\frac{P(\text{ test positive } | \text{ has TB }) \times P(\text{ has TB })}{P(\text{ test positive })}$$

$$\approx \frac{0.80 \cdot 0.00003}{0.01002} \approx 0.0024$$

RECAP

$$\begin{array}{ll} \textbf{BAYES} \\ \textbf{THEOREM} & P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} \end{array}$$

Another perspective:

Updating Knowledge

$$P(A|B) = rac{P(B|A)}{P(B)} \cdot rac{ extstyle prior}{P(A)}$$
evidence

