

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

Art Unit: 2600

CLMPTO 08/11/04 JW

Amend Claims 3-17 and 20-26

1. (Original) A system for providing data communication between connected modules, wherein said modules are adapted to transmit to and receive from one another a data package comprising in a layered structure a physical layer comprising a first and a second segment for encapsulating other layers in said data package, a data link layer comprising a data link layer control section for carrying data link layer control data and a data section for carrying data for said other layers, and a transport layer defining a message in said data section, which message is configured according to a transport layer protocol and comprises a payload and a first header field for format of said payload, a second header field for source of said payload in said message, a third header field for length of said message, a fourth header field for version of said transport layer protocol, and a fifth header field for message group identity establishing receiving recursive format of said payload.

2. (Original) A system according to claim 1, wherein said modules comprise a mobile communication device such as a cell, mobile or satellite telephone, a personal digital assistant, or a peripheral thereto.

Art Unit: 2600

3. (Currently Amended) A system according to ~~any of claims 1 to 1~~ ~~claim 1~~, wherein said modules comprise one or more objects communicating said message with one another, and a data link layer generator and physical layer generator adapted to encapsulate said message according to a data link layer protocol and to a physical layer protocol, respectively.

4. (Currently Amended) A system according to any of ~~claims 1 to 3~~ ~~claim 1~~, wherein said transport layer further comprises a sixth header field for a message identity for uniquely identifying said payload.

5. (Currently Amended) A system according to any of ~~claims 1 to 4~~ ~~claim 1~~, wherein said transport layer comprises a seventh header field for a connection number for identifying a communicating object in said module.

6. (Currently Amended) A system according to any of ~~claims 1 to 5~~ ~~claim 1~~, wherein said transport layer comprises an eighth header field for a transaction identity for sequencing said message relative to other messages.

Art Unit: 2600

7. (Currently Amended) A system according to any of claims 1 to claim 1, wherein said data link control data comprises a checksum field following said message.

8. (Currently Amended) A system according to ~~any one of claims 1 to claim 1~~, wherein said first segment of said physical layer comprises a media field for defining media across which the data package is transferred.

9. (Currently Amended) A system according to ~~any one of claims 1 to claim 1~~, wherein said first segment further comprises a synchronization field for synchronizing the receiving module with the transmitting module.

10. (Currently Amended) A system according to ~~any one of claims 1 to claim 1~~, wherein said second segment of the physical layer comprises an index byte for providing the receiving module with information regarding segmentation or partitioning of data contained in a message.

11. (Currently Amended) A system according to ~~any one of claims 1 to claim 1~~, wherein said second segment further comprises a sequence and acknowledge field for providing a receiving module with information whether

Art Unit: 2600

said data package is an acknowledgement message or an ordinary message.

12. (Currently Amended) A system according to any of claims 1 to 10 claim 1, wherein said second segment further comprises a sequence and an acknowledgement field adapted to inform whether an error was identified in the received data package, when said data package is an acknowledgement message.

13. (Currently Amended) A system according to any of ~~claims 11 or 12 claim 11~~, wherein said sequence and acknowledgement field is further adapted to inform a receiving module that a sequence number in said receiving module should be reset.

14. (Currently Amended) A system according to any of ~~claims 11 to 12 claim 11~~, wherein said sequence and acknowledgement field is adapted to recognize acknowledgement messages and detect missing data packages.

15. (Currently Amended) A system according to any of claims 1 to 14 claim 1, wherein said second segment further comprises a byte field for ensuring that all data packages sent over said port connector contain an even amount of bytes.

Art Unit: 2600

16. (Currently Amended) A system according to any of claims 1 to ~~15~~ claim 1, wherein said second segment number comprises a parity field for storing parity calculated on the basis of the data package excluding the parity field.

17. (Currently Amended) A system according to any of claims 1 to ~~15~~ claim 1, wherein said transport layer comprises a ninth header field for a future extension comprising information required by a future transport layer protocol.

18. (Original) A data package for communicating between modules, wherein said data package comprising in a layered structure physical layer data comprising a first and a second segment for multiplexing other layers in said data package, a data link layer comprising a data link layer control section for carrying data link layer control data and a data section for carrying data for said other layers, and a transport layer defining a message in said data section, which message is configured according to a transport layer protocol and comprising a payload and a fifth header field for format of said payload, a second header field for start of said payload in said message, a third header field for length of said message, a fourth header field for version of said transport layer protocol, and a sixth header field for message group identity establishing receiving resource format of said payload.

Art Unit: 2600

19. (Original) A data package according to claim 10, wherein said transport layer further comprises a sixth header field for a message identity for uniquely identifying said payload.

20. (Currently Amended) A data package according to claims 10 or ~~claim 18~~, wherein said transport layer comprises a seventh header field for a connection number for identifying a communicating object in said vehicle.

21. (Currently Amended) A data package according to claims 10 or ~~claim 18~~, wherein said transport layer comprises an eighth header field for a transmission identity for sequencing said message relative to other messages.

22. (Currently Amended) A data package according to claims 10 or ~~claim 18~~, wherein said transport layer comprises a ninth header field for a future extension comprising information required by a future transport layer protocol.

23. (Currently Amended) A receiver unit adapted to receive a data package according to any of claims 10 to ~~claim 18~~.

Art Unit: 2600

24. (Currently Amended) A transmitter unit adapted to transmit a data package according to any one of claims 13 or 22 claim 13.

(Currently Amended) 2525. A method for establishing data communication between modules, wherein said modules each communicate a data package comprising in a layered structure a physical layer comprising a first and a second segment for encapsulating other layers, in said data package and a data link layer comprising a data link layer control section for carrying data link layer control data and a data section for carrying data for said other layers, and wherein said method comprising: according to said data package in a transport layer a message in said data section, which message is configured according to a transport layer protocol and comprises a payload and a first header field for format of said payload, a second header field for start of said payload in said message, a third header field for length of said message, a fourth header field for version of said transport layer protocol, and a fifth header field for message queue identity establishing receiving resource format of said payload.

(Currently Amended) 3726. A computer program comprising code adapted to perform the following steps when said program is run in a data processor adapted to establish data communication between modules, wherein said

plurality of modules each communicate a data package comprising in a layered structure having a physical layer comprising a first and a second segment for encapsulating other layers in said data package and a data link layer comprising a data link layer control section for carrying data link layer control data and a data section for carrying data for said other layers, and wherein said program providing in a transport layer a message in said data section, which message is configured according to a transport layer protocol and comprises a payload and a first header field for format of said payload, a second header field for start of said payload in said message, a third header field for length of said message, a fourth header field for version of said transport layer protocol, and a fifth header field for message queue identity establishing receiving resource format of said payload.