Question	Scheme	Marks
number		
3 (a)	c = 2, d = 3	B1B1
, ,		[2]
(b)	$a-bx = 0 \Rightarrow x = \frac{a}{b} = \frac{5}{4} \Rightarrow a = 5, \ b = 4$	M1A1 [2]
(c)	When the curve crosses the y-axis $x = 0$	
	$5-4\times0$ 5 5	M1A1
	$y = \frac{5 - 4 \times 0}{2 \times 0 - 3} = -\frac{5}{3} \Rightarrow p = -\frac{5}{3}$	[2]
(d)	y = -2	B1ft
		[1]
Total 7 marks		al 7 marks

Part	Mark	Notes		
(a)	B1	For either $c = 2$ OR $d = 3$		
	B1	For both $c = 2$ AND $d = 3$		
(b)	M1	For setting the numerator = 0 , making x the subject and equating the result		
	A1	For both $a = 5$ and $b = 4$		
	ALT			
	M1	Substitutes $x = \frac{5}{4}$ into the equation, sets the numerator = 0 and finds the value of $\frac{a}{b}$		
	A1	For both $a = 5$ and $b = 4$		
(c)	M1	For setting the value of $x = 0$ and finding a value for y ft their values of a and d		
	A1	For the value of $p = -\frac{5}{3}$		
(d)	B1ft	For $y = -2$ Ft their values of b and c such that $y = \frac{-b}{c}$		