Ю.А. Чаповский

Лекции по функциональному анализу

Группы: KA - 53, 54

III курс, семестр 5

Киев-2017

[©] Ю.А. Чаповский

Оглавление

1	Mej	ра и интеграл	3
	1.1	Семейства подмножеств	4
	1.2	Мера множества	15
		1.2.1 Определение, свойства	15
		1.2.2 Продолжение меры	27
	1.3	Измеримые пространства и функции	38
		1.3.1 Измеримые функции со значениями в \mathbb{R}	40
		$1.3.2$ Измеримые функции со значениями в $\overline{\mathbb{R}}_+$	53
	1.4	Интеграл Лебега	59
		1.4.1 Интеграл от простой неотрицательной функции	59
		1.4.2 Интеграл от неотрицательной функции	63
		1.4.3 Интеграл от измеримой функции	74
		1.4.4 Интеграл по подмножеству	83
2	Лин	нейные нормированные пространства	87
	2.1	Начальные топологические сведения	88
		2.1.1 Определение. Примеры	88
		2.1.2 Открытые и замкнутые множества	96
		2.1.3 Плотные множества. Сепарабельность	100
		2.1.4 Последовательности в ЛНП	100
		2.1.5 Полнота. Банаховые пространства	102
		2.1.6 Ряды в банаховых пространствах	103
	2.2	Компактные множества	105
		2.2.1 Общие положения	105

ОГЛАВЛЕНИЕ

		$2.2.2$ Компактные подмножества $\mathcal{C}([a,b])$	107	
	2.3	Непрерывные функционалы	109	
		2.3.1 Общие положения	109	
		2.3.2 Непрерывные функционалы на компактах	110	
		2.3.3 Сжатия. Теорема Банаха о неподвижной точке .	111	
A	Дог	юлнительные задачи	112	
	A.1	Мера и интеграл	112	
В	Экз	заменационные вопросы и задачи	116	
	B.1	Экзаменационные вопросы	117	
	B.2	Экзаменационные задачи	122	
Пј	Предметный указатель			
Лі	Литература			

Глава 1

Мера и интеграл

1.1 Семейства подмножеств

В этом разделе Ω — фиксированное множество (подмножество \mathbb{R}^n), $\mathcal{P}(\Omega)$ — семейство всех подмножеств Ω . Все множества A, B, \ldots являются подмножествами множества Ω , т.е. $A, B, \ldots \in \mathcal{P}(\Omega)$.

Определение 1.1.1. Пусть $\mathcal{R} \subset \mathcal{P}(\Omega)$ — некоторое непустое семейство подмножеств множества Ω .

(a) Семейство \mathcal{R} называется кольцом на Ω , если

$$A, B \in \mathcal{R} \implies A \cup B \in \mathcal{R} \quad \text{if} \quad A \setminus B \in \mathcal{R}.$$

(b) Семейство \mathcal{R} называется σ -кольцом на Ω , если \mathcal{R} является кольцом и

$$A_n \in \mathcal{R}, \ n \in \mathbb{N}, \qquad \Longrightarrow \qquad \bigcup_{n=1}^{\infty} A_n \in \mathcal{R}.$$

- (c) Семейство \mathcal{R} называется алгеброй на Ω , если оно является кольцом и $\Omega \in \mathcal{R}$.
- (d) Семейство \mathcal{R} называется σ -алгеброй на Ω , если оно является σ -кольцом и $\Omega \in \mathcal{R}$.
- Π ример 1.1.2. 1. Наименьшей σ -алгеброй над Ω является $\mathcal{R}=\{\emptyset,\Omega\},$ а наибольшей $\mathcal{R}=\mathcal{P}(\Omega).$
 - 2. Пусть Ω произвольное бесконечное множество, и

$$\mathcal{R} = \{ A \in \mathcal{P}(\Omega) : A$$
 — конечно $\}$.

Тогда \mathcal{R} является кольцом, но не является ни σ -кольцом, ни алгеброй.

Действительно, если $A,B\in\mathcal{R},$ то $|A|<\infty$ и $|B|<\infty.$ А, поскольку

$$|A \cup B| \le |A| + |B|,$$

то $|A \cup B| < \infty$ и $A \cup B \in \mathcal{R}$.

Поскольку

$$|A \setminus B| \le |A| < \infty$$

то $A \setminus B \in \mathcal{R}$.

Поскольку $|\Omega|=\infty$ по условию, то $\Omega\notin\mathcal{R}$, и \mathcal{R} не является алгеброй.

С другой стороны, каждое одноточечное множество $\{\omega\} \in \mathcal{R}$, но для бесконечного набора различных точек $\{\omega_n\}_{n=1}^{\infty}$ имеем

$$\left| \bigcup_{n=1}^{\infty} \{\omega_n\} \right| = \infty,$$

и $\bigcup_{n=1}^{\infty} \{\omega_n\} \notin \mathcal{R}$, т.е. \mathcal{R} не является σ -кольцом.

3. Пусть Ω — произвольное бесконечное множество, и

$$\mathcal{R} = \{ A \in \mathcal{P}(\Omega) : A$$
— конечно или счетно $\}$.

Тогда \mathcal{R} является σ -кольцом, и \mathcal{R} является σ -алгеброй тогда и только тогда, когда Ω счетно.

4. Пусть $\Omega = \mathbb{R}$, и

$$\mathcal{J} = \left\{ \cup_{k=1}^{m} [a_k, b_k) \right\}$$

является кольцом, где $m\in\mathbb{N}$ и $a_k,b_k\in\mathbb{R}$ произвольны.

Действительно, для I=[a,b) и $\tilde{I}=[\tilde{a},\tilde{b})$ множество $I\setminus \tilde{I}\in\mathcal{J}$ (см. рис. 1.1). Поэтому для $I_k=[a_k,b_k)$ имеем

$$\left(\bigcup_{k=1}^{m} I_{k}\right) \setminus \tilde{I} = \bigcup_{k=1}^{m} \left(I_{k} \setminus \tilde{I}\right) \in \mathcal{J},$$

И, наконец, для $\tilde{I}_l = [\tilde{a}_l, \tilde{b}_l)$

$$I \setminus \left(\bigcup_{l=1}^{n} \tilde{I}_{l}\right) = \left(\left(I \setminus \tilde{I}_{1}\right) \setminus \tilde{I}_{2}\right) \dots \setminus \tilde{I}_{n} \in \mathcal{J}.$$

Поэтому для $A=\cup_{k=1}^n I_k$ и $B=\cup_{l=1}^n \tilde{I}_l$ имеем, что $A\setminus B\in \mathcal{J}.$ Очевидно, что $A\cup B\in \mathcal{J}$ для таких A и B.

- 5. Пусть $\Omega = [0,1)$. Тогда $\mathcal J$ в предыдущем примере является алгеброй.
- 6. Пусть $\Omega = \mathbb{R}^n$. Для $a,b \in \mathbb{R}$ положим $I_{a;b} = [a,b)$, а для $a_1,\dots,a_n;b_1,\dots b_n \in \mathbb{R}$ положим $\Pi_{a_1,\dots,a_n;b_1,\dots,b_n} = I_{a_1;b_1} \times \dots \times I_{a_n;b_n}$. Тогда

$$\mathcal{J}_n = \{ \cup_{\text{fin}} \Pi_{a_1,\dots,a_n;b_1,\dots,b_n} : a_1,\dots,a_n; b_1,\dots,b_n \in \mathbb{R} \}$$

является кольцом.

Рис. 1.1: Множество $I \setminus \tilde{I}$ для различных \tilde{I} .

Утверждение 1.1.3. (a) Пусть \mathcal{R} является кольцом. Тогда $\emptyset \in \mathcal{R}$, u для всех $A, B \in \mathcal{R}$:

$$A \cup B \in \mathcal{R}, \quad A \cap B \in \mathcal{R}, \quad A \setminus B \in \mathcal{R}, \quad A \triangle B \in \mathcal{R}.$$

(b) Кольцо ${\cal R}$ является алгеброй тогда и только тогда, когда

$$A \in \mathcal{R} \implies A^c \in \mathcal{R}.$$

(c) Пусть \mathcal{R} является σ -кольцом. Тогда для всех $A_n \in \mathcal{R}$, $n \in \mathbb{N}$:

$$\bigcup_{n=1}^{\infty} A_n \in \mathcal{R}, \qquad \bigcap_{n=1}^{\infty} A_n \in \mathcal{R}.$$

(d) Пусть \mathcal{R} является σ -алгеброй. Тогда, если $A \in \mathcal{R}$ и $A_n \in \mathcal{R}$, $n \in \mathbb{N}$, то

$$A^c \in \mathcal{R}, \qquad \bigcup_{n=1}^{\infty} A_n \in \mathcal{R}, \qquad \bigcap_{n=1}^{\infty} A_n \in \mathcal{R}.$$

Доказательство. (а) Пусть \mathcal{R} является кольцом. Для любых $A, B \in \mathcal{R}$ по определению имеем, что $A \cap B \in \mathcal{R}$ и $A \setminus B \in \mathcal{R}$. Поскольку

$$A\triangle B=(A\setminus B)\cup (B\setminus A),$$

то $A\triangle B\in\mathcal{R}$, поскольку $A\setminus B\in\mathcal{R}$ и $B\setminus A\in\mathcal{R}$. Наконец, поскольку

$$A \cap B = A \setminus (A \setminus B),$$

то и $A \cap B \in \mathcal{R}$.

(b) Если \mathcal{R} является алгеброй, то $\Omega \in \mathcal{R}$. Поэтому $A^c = \Omega \setminus A \in \mathcal{R}$ для произвольного $A \in \mathcal{R}$.

Наоборот, если $A^c \in \mathcal{R}$ для $A \in \mathcal{R}$, то

$$\Omega = A \cup A^c \in \mathcal{R}.$$

(c) Тот факт, что $\bigcup_{n=1}^{\infty} A_n \in \mathcal{R}$, если $A_n \in \mathcal{R}$ для всех n, следует непосредственно из определения.

Для доказательства второго свойства рассмотрим множества

$$A'_n = A_1 \setminus A_n \in \mathcal{R}, \qquad n > 1.$$

Тогда, поскольку (см. рис. 1.2)

$$\bigcap_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} (A_1 \cap A_n) = \bigcap_{n=1}^{\infty} (A_1 \setminus A'_n) = A_1 \setminus \left(\bigcup_{n=2}^{\infty} A'_n\right),$$

получаем, что $\bigcap_{n=1}^{\infty} A_n \in \mathcal{R}$.

(d) Первое включение имеет место, поскольку $\mathcal R$ является алгеброй, второе и третье — поскольку $\mathcal R$ является σ -кольцом.

Рис. 1.2: Доказательство утверждения 1.1.3 (с)

Утверждение 1.1.4. Пусть Γ — произвольное множество индексов, $u \{ \mathcal{A}_{\gamma} : \gamma \in \Gamma \}$ — семейство σ -алгебр (соответственно, колец, σ -колец, алгебр) на множестве Ω . Тогда

$$\mathcal{A} = \bigcap_{\gamma \in \Gamma} \mathcal{A}_{\gamma}$$

является σ -алгеброй (соответственно, кольцом, σ -кольцом, алгеброй) на множестве Ω .

Доказательство будем проводить для случая, когда все A_{γ} являются σ -алгебрами.

Пусть $A, B \in \mathcal{A}$. Это означает, что $A \in \mathcal{A}_{\gamma}$ и $B \in \mathcal{A}_{\gamma}$ для всех $\gamma \in \Gamma$. Поскольку каждое семейство \mathcal{A}_{γ} является σ -алгеброй, то $A \setminus B \in A_{\gamma}$ для каждого $\gamma \in \Gamma$. Поэтому

$$A \setminus B \in \bigcap_{\gamma \in \Gamma} \mathcal{A}_{\gamma} = \mathcal{A}.$$

Точно также, если $A_k \in \mathcal{A}$ для всех $k \in \mathbb{N}$, то $A_k \in \mathcal{A}_{\gamma}$ для всех $k \in \mathbb{N}$ и каждого $\gamma \in \Gamma$. Поскольку \mathcal{A}_{γ} является σ -алгеброй для каждого $\gamma \in \Gamma$, то $\bigcup_{k=1}^{\infty} A_k \in \mathcal{A}_{\gamma}$. Следовательно,

$$\left(\bigcup_{k=1}^{\infty} A_k\right) \in \bigcap_{\gamma \in \Gamma} \mathcal{A}_{\gamma} = \mathcal{A}.$$

Утверждение 1.1.5. Пусть $C \subset \mathcal{P}(\Omega)$ — произвольное семейство подмножеств множества Ω . Существует наименьшая σ -алгебра Σ_C (соответственно, кольцо, σ -кольцо, алгебра) такая, что $C \subset \Sigma_C$. Эта σ -алгебра (соответственно, кольцо, σ -кольцо, алгебра) единственна.

Доказательство. Рассмотрим случай σ -алгебры.

Пусть $\{A_{\gamma}\}_{{\gamma}\in\Gamma}$ — семейство всех σ -алгебр, для которых $\mathcal{C}\subset\mathcal{A}_{\gamma}$. Это семейство не пусто, поскольку содержит $\mathcal{P}(\Omega)$. Полагая

$$\Sigma_{\mathcal{C}} = \bigcap_{\gamma \in \Gamma} A_{\gamma},$$

получаем, что $\Sigma_{\mathcal{C}}$ является σ -алгеброй по утверждению 1.1.4, и $\mathcal{C} \subset \Sigma_{\mathcal{C}}$, так как $\mathcal{C} \subset A_{\gamma}$ для каждого $\gamma \in \Gamma$ по определению.

Поскольку $\Sigma_{\mathcal{C}}$ является пересечением всех σ -алгебр, содержащих \mathcal{C} , то она является наименьшей σ -алгеброй, содержащей \mathcal{C} . \square

Определение 1.1.6. Пусть $\mathcal{C} \subset \mathcal{P}(\Omega)$ — произвольное семейство подмножеств Ω . Наименьшая σ -алгебра $\Sigma_{\mathcal{C}}$ (соответственно, кольцо, σ -кольцо, алгебра) такая, что $\mathcal{C} \subset \Sigma_{\mathcal{C}}$ называется σ -алгеброй (соответственно, кольцом, σ -кольцом, алгеброй), nopocceenhoù семейством \mathcal{C} .

Пример 1.1.7. 1. Пусть $\mathcal{C} = \{\{\omega\} : \omega \in \Omega\}$ — семейство одноточечных множеств. Тогда кольцом $\mathcal{R}_{\mathcal{C}}$, порожденным \mathcal{C} , является семейство всех конечных подмножеств множества Ω .

Порожденным σ -кольцом является семейство всех конечных или счетных подмножеств множества Ω .

Порожденной алгеброй $\mathcal{A}_{\mathcal{C}}$ является семейство всех подмножеств $A\subset\Omega$ таких, что $|A|<\infty$ либо $|A^c|<\infty$.

Порожденная σ -алгебра $\Sigma_{\mathcal{C}}$ состоит из таких $A\subset\Omega,$ что A — конечно или счетно, либо A^c — конечно или счетно.

Замечание 1.1.8. В связи с неконструктивным доказательством утверждения 1.1.5, описать все подмножества Ω , которые входят в $\Sigma_{\mathcal{C}}$ часто бывает затруднительно или невозможно.

Определение 1.1.9. Борелевской σ -алгеброй на \mathbb{R}^n называется σ -алгебра \mathcal{B}_n , порожденная всеми открытыми подмножествами \mathbb{R}^n . Множества $B \in \mathcal{B}_n$ называются борелевскими множествами в \mathbb{R} .

Если n=1, то для \mathcal{B}_1 используется обозначение \mathcal{B} .

Пример 1.1.10. Множества \emptyset , $\{a\}$, (a,b), [a,b), (a,b], [a,b], \mathbb{Q} , \mathbb{R} являются борелевскими в \mathbb{R} .

Действительно, $\emptyset \in \mathcal{B}$, поскольку \mathcal{B} является кольцом. Включение $\mathbb{R} = \Omega \in \mathcal{B}$ имеет место, так как \mathcal{B} является алгеброй.

Для одноточечного множества $\{a\}$ имеем, что

$$\{a\} = \bigcap_{k=1}^{\infty} \left(a - \frac{1}{k}, a + \frac{1}{k}\right) \in \mathcal{B},$$

согласно утверждению 1.1.3.

Интервал $(a, b) \in \mathcal{B}$, поскольку это открытое множество.

Поскольку $\{a\}, (a,b) \in \mathcal{B},$ и $\mathcal{B},$ в частности, является кольцом, то

$$[a,b) = \{a\} \cup (a,b) \in \mathcal{B}.$$

Аналогично имеем, что $(a, b], [a, b] \in \mathcal{B}$.

Поскольку множество $\mathbb Q$ является счетным, то

$$\mathbb{Q} = \bigcup_{k=1}^{\infty} \{q_k\}.$$

Для каждого одноточечного множества имеем $\{q_k\} \in \mathcal{B}$, и, кроме того, \mathcal{B} является σ -алгеброй, а значит, содержит счетные объединения своих подмножеств. Таким образом,

$$\mathbb{Q} = \bigcup_{k=1}^{\infty} \{q_k\} \in \mathcal{B}.$$

Утверждение 1.1.11. Пусть C и C' — некоторые семейства подмножеств Ω . Обозначим σ -алгебру (соответственно, кольцо, σ -кольцо, алгебру), порожденную семейством C (соответственно, C') через Σ_C (соответственно, $\Sigma_{C'}$).

- (a) $Ecnu\ C \subset C'$, $mo\ \Sigma_C \subset \Sigma_{C'}$.
- (b) Ecsu $\mathcal{C} \subset \Sigma_{\mathcal{C}'}$, mo $\Sigma_{\mathcal{C}} \subset \Sigma_{\mathcal{C}'}$.
- (c) $Ecnu\ C \subset \Sigma_{C'}\ u\ C' \subset \Sigma_{C},\ mo\ \Sigma_{C} = \Sigma_{C'}.$

Доказательство. Рассмотрим случай σ -алгебр.

- (a) Поскольку $\mathcal{C} \subset \mathcal{C}'$ по условию, и $\mathcal{C}' \subset \Sigma_{\mathcal{C}'}$ по определению $\Sigma_{\mathcal{C}'}$, имеем, что $\mathcal{C} \subset \Sigma_{\mathcal{C}'}$. Но $\Sigma_{\mathcal{C}'}$ является σ -алгеброй, содержащей семейство \mathcal{C} , а $\Sigma_{\mathcal{C}}$ является наименьшей такой σ -алгеброй. Поэтому, $\Sigma_{\mathcal{C}} \subset \Sigma_{\mathcal{C}'}$.
- (b) По условию, $\mathcal{C} \subset \Sigma_{\mathcal{C}'}$. Так как $\Sigma_{\mathcal{C}'}$ является σ -алгеброй, содержащей \mathcal{C} , а $\Sigma_{\mathcal{C}}$ наименьшая σ -алгебра, содержащая \mathcal{C} , то $\Sigma_{\mathcal{C}} \subset \Sigma_{\mathcal{C}'}$.
- (c) Поскольку $\mathcal{C} \subset \Sigma_{\mathcal{C}'}$, то $\Sigma_{\mathcal{C}} \subset \Sigma_{\mathcal{C}'}$. И, так как $\mathcal{C}' \subset \Sigma_{\mathcal{C}}$, то $\Sigma_{\mathcal{C}'} \subset \Sigma_{\mathcal{C}}$. Таким образом, $\Sigma_{\mathcal{C}} = \Sigma_{\mathcal{C}'}$.

Лемма 1.1.12. Пусть $U \subset \mathbb{R}$ — открытое множество. Тогда существует счетное семейство интервалов (a_k, b_k) , $k \in \mathbb{N}$, таких, что

$$U = \bigcup_{k=1}^{\infty} (a_k, b_k).$$

Доказательство. Случай $U=\emptyset$ тривиален, поскольку достаточно взять $a_k=b_k, k\in\mathbb{N}$, произвольными.

Пусть $U \neq \emptyset$, и рассмотрим счетное множество $\mathbb{Q}_U = \mathbb{Q} \cap U$. Это множество не пусто, так как если $x \in U$, то существует такое $\varepsilon > 0$, что

$$(x-\varepsilon,x+\varepsilon)\subset U$$

поскольку U является открытым множеством. Запишем x в виде бесконечной десятичной дроби:

$$x = x_0, x_1 x_2 x_3 \dots,$$

11

где $x_0 \in \mathbb{Z}$, а $x_1, x_2, \dots \in \{0, 1, \dots, 9\}$. Для достаточно хорошей десятичной аппроксимации $(\frac{1}{10^n} < \varepsilon)$ имеем, что

$$\tilde{x} = x_0, x_1 \dots x_n \in (x - \varepsilon, x + \varepsilon) \cap \mathbb{Q} \subset U \cap \mathbb{Q} = \mathbb{Q}_U.$$

Таким образом, $\mathbb{Q}_U \neq \emptyset$.

Пусть $\mathbb{Q}_U = \{q_1, q_2, \ldots\}$. Для каждого $q_k \in U$ положим

$$a_k = \inf\{a : (a, q_k] \subset U\}, \qquad b_k = \sup\{b : [q_k, b) \subset U\}.$$

Тогда будем иметь, что $(a_k,b_k)=(a_k,q_k]\cup [q_k,b_k)\subset U.$ Докажем, что

$$\bigcup_{k=1}^{\infty} (a_k, b_k) = U.$$

По построению $(a_k, b_k) \subset U$ для каждого $k \in \mathbb{N}$. Поэтому

$$\bigcup_{k=1}^{\infty} (a_k, b_k) \subset U.$$

Предположим, что

$$\tilde{U} = \bigcup_{k=1}^{\infty} (a_k, b_k) \neq U,$$

и придем к противоречию.

Пусть $y \in U \setminus \tilde{U}$. Так как U — открытое множество, то существует такое $\delta > 0$, что $(y - \delta, y + \delta) \subset U$. Возьмем рациональное приближение

$$\tilde{y} = y_0, y_1 y_2 \dots y_m$$

точки y такое, чтобы $\tilde{y}\in (y-\delta,y+\delta)\subset U$. Тогда $\tilde{y}\in \mathbb{Q}_U$, т.е. $\tilde{y}=q_{k_0}$ для некоторого $k_0\in \mathbb{N}$. Но тогда по построению имеем, что

$$a_{k_0} \le y - \delta, \qquad b_{k_0} \ge y + \delta.$$

Таким образом, $y \in (a_{k_0}, b_{k_0})$, а значит, $y \in \bigcup_{k=1}^{\infty} (a_k, b_k) = \tilde{U}$, что противоречит выбору y.

Утверждение 1.1.13. *Борелевская* σ -алгебра \mathcal{B} на \mathbb{R} порождена:

- а) семейством открытых интервалов (a, b);
- b) кольцом $\mathcal J$ конечных объединений полуоткрытых интервалов [a,b);
- с) семейством открытых полупрямых $(-\infty, b)$;
- d) семейством замкнутых полупрямых $(-\infty, b]$;

Доказательство. (а) Пусть $\Sigma_{\mathcal{J}_o} - \sigma$ -алгебра, порожденная открытыми интервалами $(a,b),\ a,b\in\mathbb{R}$. Поскольку все множества (a,b) являются открытыми, то $(a,b)\in\mathcal{B}$, и, следовательно, $\Sigma_{\mathcal{J}_o}\subset\mathcal{B}$, согласно утверждению 1.1.11.

Пусть U — произвольное открытое множество. Согласно лемме 1.1.12, имеем, что

$$U = \bigcup_{k=1}^{\infty} (a_k, b_k),$$

то есть $U \in \Sigma_{\mathcal{J}_o}$, поскольку $(a_k, b_k) \in \Sigma_{\mathcal{J}_o}$ по определению, и $\Sigma_{\mathcal{J}_o}$ замкнуто относительно счетных объединений, будучи σ -алгеброй. Поэтому $\mathcal{B} \subset \Sigma_{\mathcal{J}_o}$ по утверждению 1.1.11.

Таким образом, $\mathcal{B} = \Sigma_{\mathcal{J}_0}$.

(b) Пусть $\Sigma_{\mathcal{J}} - \sigma$ -алгебра, порожденная кольцом \mathcal{J} . Поскольку

$$\{a\} = \bigcap_{k=1}^{\infty} \left[a, a + \frac{1}{k} \right),$$

то $\{a\} \in \Sigma_{\mathcal{J}}$. Отсюда следует, что

$$(a,b) = [a,b) \setminus \{a\} \in \Sigma_{\mathcal{J}}.$$

Поэтому $\Sigma_{\mathcal{J}} \supset \Sigma_{\mathcal{J}_0} = \mathcal{B}$.

С другой стороны, $[a,b) \in \mathcal{B}$. Поэтому $\Sigma_{\mathcal{J}} \subset \mathcal{B}$. Следовательно, $\Sigma_{\mathcal{J}} = \mathcal{B}$.

(c) Обозначим через \mathcal{J}_{∞} множество бесконечных открытых интервалов $(-\infty, b)$. Поскольку $(-\infty, b)$ является открытым множеством, то $(-\infty, b) \in \mathcal{B}$, и $\Sigma_{\mathcal{J}_{\infty}} \subset \mathcal{B}$.

Поскольку $\Sigma_{\mathcal{J}_{\infty}}$ является алгеброй, и $(-\infty,b)\in\Sigma_{\mathcal{J}_{\infty}}$, имеем

$$(-\infty, b)^c = [b, +\infty) \in \Sigma_{\mathcal{J}_{\infty}}.$$

Поэтому

$$[a,b) = (-\infty,b) \cap [a,+\infty) \in \Sigma_{\mathcal{J}_{\infty}}.$$

Таким образом, $\Sigma_{\mathcal{J}} = \mathcal{B} \subset \Sigma_{\mathcal{J}_{\infty}}$. Следовательно, $\mathcal{B} = \Sigma_{\mathcal{J}_{\infty}}$.

(d) Обозначим через $\mathcal{J}_{\infty,c}$ множество бесконечных интервалов $(-\infty,b]$. Поскольку

$$(-\infty,b) = \bigcup_{k=1}^{\infty} \left(-\infty,b - \frac{1}{k}\right], \qquad (-\infty,b] = \bigcap_{k=1}^{\infty} \left(-\infty,b + \frac{1}{k}\right),$$

то
$$\Sigma_{\mathcal{J}_{\infty}} \subset \Sigma_{\mathcal{J}_{\infty,c}}$$
 и $\Sigma_{\mathcal{J}_{\infty,c}} \subset \Sigma_{\mathcal{J}_{\infty}}$, т.е. $\Sigma_{\mathcal{J}_{\infty,c}} = \Sigma_{\mathcal{J}_{\infty}} = \mathcal{B}$.

Задачи

[10] KP: 281.1 (1, 2,3, 6), 279, 290.1, 289, 289.2,

290.3, 290.4, 290.5

 $\mathcal{I}P$: 281.1 —, 282, 286, 287.1, 290.2, 289.1,

290.6, 290.7

1.2 Мера множества

1.2.1 Определение, свойства

В множестве $\overline{\mathbb{R}}_+ = \mathbb{R}_+ \cup \{+\infty\}$ для $c \in \mathbb{R}_+$ определим

$$c + (+\infty) = (+\infty) + c = +\infty,$$

$$c \cdot (+\infty) = \begin{cases} +\infty, & c > 0, \\ 0, & c = 0 \end{cases}$$

Определение 1.2.1. Пусть Ω — множество, и $\mathcal{R} \subset \mathcal{P}(\Omega)$ — кольцо подмножеств Ω . Функция $\mu \colon \mathcal{R} \to \overline{\mathbb{R}}_+$ называется *мерой* на \mathcal{R} , если

- (a) $\mu(\emptyset) = 0;$
- (b) для всех $A_k \in \mathcal{R}$, $k \in \mathbb{N}$, таких, что $\bigsqcup_{k=1}^{\infty} A_k \in \mathcal{R}$:

$$\mu\Big(\bigsqcup_{k=1}^{\infty} A_k\Big) = \sum_{k=1}^{\infty} \mu(A_k) \tag{1.1}$$

Замечание 1.2.2. Полагая $A_{m+1}=A_{m+2}=\ldots=\emptyset$ в (1.1), получаем, что

$$\mu\left(\bigsqcup_{k=1}^{m} A_k\right) = \sum_{k=1}^{m} \mu(A_k), \quad m \in \mathbb{N}.$$

Пример 1.2.3 (считающая мера). На $\mathcal{R} = \mathcal{P}(\Omega)$ определим

$$\mu(A) = |A|,$$

где |A| — количество точек в множестве A. Тогда μ является мерой на $\mathcal{P}(\Omega)$.

Действительно, $|\emptyset|=0$, и, если непустых множеств среди $\{A_k\}_{k=1}^\infty$ конечное количество, A_{k_1},\dots,A_{k_m} , и все они конечны, то

$$\bigsqcup_{k=1}^{\infty}A_k=\bigsqcup_{l=1}^{m}A_{k_l},$$

И

$$\mu\Big(\bigsqcup_{k=1}^{\infty} A_k\Big) = \Big|\bigsqcup_{k=1}^{\infty} A_k\Big| = \Big|\bigsqcup_{l=1}^{m} A_{k_l}\Big| = \sum_{l=1}^{m} |A_{k_l}| = \sum_{k=1}^{\infty} \mu(A_k).$$

Если непустых множеств бесконечное количество, или среди непустых множеств имеется бесконечное множество, то $\bigsqcup_{k=1}^{\infty} A_k$ также будет бесконечным, и $|\bigsqcup_{k=1}^{\infty} A_k| = \infty$. Также имеем, что

$$\sum_{k=1}^{\infty} |A_k| = \infty.$$

Определение 1.2.4. Пусть $A \subset \Omega$. Функция $1_A \colon \Omega \to \{0,1\} \subset \mathbb{R}$, определенная как

$$1_A(\omega) = \begin{cases} 1, & \omega \in A, \\ 0, & \omega \notin A \end{cases}$$

называется undukamopom множества A (см. рис. 1.3).

Рис. 1.3: Графики функций: (a) $y = 1_{\{0\}}(x)$, (b) $y = 1_{(a,b)}(x)$.

Пример 1.2.5 (мера Дирака). Пусть $\omega_0 \in \Omega$. На $\mathcal{P}(\Omega)$ определим $\varepsilon_{\omega_0} \colon \mathcal{P}(\Omega) \to \overline{\mathbb{R}}_+$ как

$$\epsilon_{\omega_0}(A) = 1_A(\omega_0) = \begin{cases} 1, & \omega_0 \in A, \\ 0, & \omega_0 \notin A. \end{cases}$$

Тогда ε_{ω_0} является мерой на $\mathcal{P}(\Omega)$.

Действительно, поскольку $\omega_0 \notin \emptyset$, то $\varepsilon_{w_0}(\emptyset) = 0$.

Пусть

$$A = \bigsqcup_{k=1}^{\infty} A_k.$$

Если $\omega_0 \in A$, то $\varepsilon_{\omega_0}(A) = 1$. Также, существует и единственен индекс k_0 такой, что $\omega_0 \in A_{k_0}$ и $\omega_0 \notin A_k$ при $k \neq k_0$. Поэтому,

$$\sum_{k=1}^{\infty} \varepsilon_{\omega_0}(A_k) = 0 + \ldots + 0 + \varepsilon_{\omega_0}(A_{k_0}) + 0 + \ldots = 1.$$

Таким образом,

$$\varepsilon_{\omega_0} \Big(\bigsqcup_{k=1}^{\infty} A_k \Big) = \sum_{k=1}^{\infty} \varepsilon_{\omega_0} (A_k).$$

Если $\omega_0 \notin A$, то $\omega_0 \notin A_k$ для всех k. Поэтому,

$$\varepsilon_{\omega_0} \Big(\bigsqcup_{k=1}^{\infty} A_k \Big) = 0, \qquad \sum_{k=1}^{\infty} \varepsilon_{\omega_0} (A_k) = \sum_{k=1}^{\infty} 0 = 0,$$

т.е. опять имеем требуемое равенство.

Лемма 1.2.6. Для произвольных $A_k \in \mathcal{P}(\Omega)$, $k \in \mathbb{N}$, таких, что $A_k \cap A_l = \emptyset$ при $k \neq l$, имеем

$$1_{\bigsqcup_{k=1}^{\infty} A_k}(\omega) = \sum_{k=1}^{\infty} 1_{A_k}(\omega), \qquad \omega \in \Omega.$$
 (1.2)

Доказательство. Действительно, пусть $\omega \in \Omega$. Если $\omega \in \bigsqcup_{k=1}^{\infty} A_k$, то $\omega \in A_{k_0}$ для единственного индекса k_0 , и обе части (1.2) равны 1. Если $\omega \notin \bigsqcup_{k=1}^{\infty} A_k$, то $\omega \notin A_k$ для всех $k \in \mathbb{N}$, и обе части в (1.2) равны 0.

Пример 1.2.7 (дискретная мера). Пусть $(c_k)_{k=1}^{\infty}$ — произвольная последовательность неотрицательных действительных чисел, и

 $(\omega_k)_{k=1}^\infty$ — произвольная последовательность точек в Ω . Для произвольного $A\in\mathcal{P}(\Omega)$ положим

$$\mu(A) = \sum_{k=1}^{\infty} c_k 1_A(\omega_k) = \sum_{\omega_k \in A} c_k.$$

Тогда μ является мерой на $\mathcal{R} = \mathcal{P}(\Omega)$.

Доказательство. Поскольку $\omega_k \notin \emptyset$, то $1_{\emptyset}(\omega_k) = 0$ для всех $k \in \mathbb{N}$. Следовательно,

$$\mu(\emptyset) = \sum_{k=1}^{\infty} c_k 1_{\emptyset}(\omega_k) = \sum_{k=1}^{\infty} c_k \cdot 0 = 0.$$

Для $A = \bigsqcup_{l=1}^{\infty} A_l$, используя (1.2), имеем

$$\mu(A) = \sum_{k=1}^{\infty} c_k 1_A(\omega_k) = \sum_{k=1}^{\infty} c_k 1_{\bigsqcup_{l=1}^{\infty} A_l}(\omega_k) = \sum_{k=1}^{\infty} c_k \left(\sum_{l=1}^{\infty} 1_{A_l}(\omega_k)\right) =$$

$$= \sum_{k=1}^{\infty} \left(\sum_{l=1}^{\infty} c_k 1_{A_l}(\omega_k)\right) = \sum_{l=1}^{\infty} \left(\sum_{k=1}^{\infty} c_k 1_{A_l}(\omega_k)\right) = \sum_{l=1}^{\infty} \mu(A_l).$$

Изменение порядка суммирования легитимна, поскольку ряды имеют неотрицательные члены. \Box

Теорема 1.2.8 (мера длины на \mathbb{R}). Пусть $\Omega = \mathbb{R}$, и кольцо \mathcal{R} порождена полуинтервалами

$$I_{a,b} = [a, b), \quad -\infty < a \le b < +\infty.$$

Для

$$A = \bigsqcup_{k=1}^{m} I_{a_k, b_k},$$

где $I_{a_k,b_k}=[a_k,b_k),\ a_k\leq b_k,\ oпределим$

$$\lambda(A) = \sum_{k=1}^{m} (b_k - a_k).$$

Тогда λ является мерой на \mathbb{R} .

Лемма 1.2.9. Пусть $I_k = [a_k, b_k), k = 1, ..., m, u I = [a, b).$ Если

$$I \subset \bigcup_{k=1}^{m} I_k, \tag{1.3}$$

mo

$$\lambda(I) \le \sum_{k=1}^{m} \lambda(I_k). \tag{1.4}$$

Доказательство. Поскольку имеет место (1.3), то существует такое $k_1 \in \{1,\ldots,m\}$, что $a \in I_{k_1} = [a_{k_1},b_{k_1})$, т.е. $a_{k_1} \leq a < b_{k_1}$.

Если $b \leq b_{k_1}$, то

$$\lambda(I) = b - a \le b_{k_1} - a_{k_1} = \lambda(I_{k_1}) \le \sum_{k=1}^{m} \lambda(I_k),$$

что и заканчивает доказательство. Поэтому предположим, что $b_{k_1} < b$. Тогда, в силу (1.3), существует такое $k_2 \in \{1, \dots, m\}$, что $b_{k_1} \in I_{k_2} = [a_{k_2}, b_{k_2})$, т.е. $a_{k_2} \le b_{k_1} < b_{k_2}$.

Если $b \leq b_{k_2}$, то

$$\lambda(I) = b - a \le b_{k_2} - a_{k_1} = (b_{k_2} - a_{k_2}) + (a_{k_2} - a_{k_1}) \le$$

$$\le (b_{k_2} - a_{k_2}) + (b_{k_1} - a_{k_1}) = \lambda(I_{k_1}) + \lambda(I_{k_2}) \le \sum_{k=1}^{m} \lambda(I_k),$$

что и заканчивает доказательство. Поэтому, предположим, что $b_{k_2} < b$.

Продолжая таким образом по индукции, получаем (1.4).

Лемма 1.2.10 (теорема Бореля–Лебега). Пусть $\{I_{\gamma}\}_{{\gamma}\in\Gamma}$ — семейство открытых интервалов, $I_{\gamma}=(a_{\gamma},b_{\gamma}),\ u$

$$\bigcup_{\gamma \in \Gamma} I_{\gamma} \supset [a,b].$$

Тогда существует такое конечное подмножество $\Gamma_0 \subset \Gamma$, что

$$\bigcup_{\gamma \in \Gamma_0} I_{\gamma} \supset [a, b].$$

Доказательство. См. [11, стр. 69].

Доказательство теоремы 1.2.8. Поскольку $\emptyset = [a, a), \ a \in \mathbb{R}, \ \text{то}$ $\lambda(\emptyset) = a - a = 0.$

Пусть теперь

$$\bigsqcup_{k=1}^{\infty} I_k = I,$$

где $I_k = [a_k, b_k), \, I = [a, b),$ и докажем, что $\sum_{k=1}^{\infty} \lambda(I_k) = \lambda(I),$ т.е.

$$\sum_{k=1}^{\infty} (b_k - a_k) = b - a.$$

Вначале докажем, что

$$\sum_{k=1}^{\infty} (b_k - a_k) \le b - a.$$

Для произвольного $m \in \mathbb{N}$ имеем, что

$$\bigsqcup_{k=1}^{m} I_k \subset I.$$

Поскольку $I_i \cap I_j = \emptyset$ при $i \neq j$, то можно предположить, что

$$a \le a_1 \le b_1 \le a_2 \le b_2 \le \dots \le a_m \le b_m \le b.$$
 (1.5)

Следовательно, имеем

$$b - a - \sum_{k=1}^{m} (b_k - a_k) = -a - (b_1 - a_1) - (b_2 - a_2) - (b_3 - a_3) -$$

$$- \dots - (b_{m-1} - a_{m-1}) - (b_m - a_m) + b =$$

$$= (a_1 - a) + (a_2 - b_1) + (a_3 - b_2) +$$

$$+ \dots + (a_m - b_{m-1}) + (b - b_m) > 0.$$

Поэтому,

$$\sum_{k=1}^{m} (b_k - a_k) \le b - a,$$

Так как это неравенство верно для любых $m \in \mathbb{N}$, то, переходя к пределу при $m \to +\infty$, имеем

$$\sum_{k=1}^{\infty} (b_k - a_k) = \lim_{m \to \infty} \sum_{k=1}^{m} (b_k - a_k) \le b - a.$$
 (1.6)

Теперь докажем, что

$$\sum_{k=1}^{\infty} (b_k - a_k) \ge b - a.$$

Выберем произвольное $\varepsilon > 0$, и рассмотрим замкнутый отрезок $\overline{I}_arepsilon=[a,b-arepsilon]$ и открытые интервалы $\widetilde{I}_k^arepsilon=(a_k^arepsilon,b_k)$, где $a_k^arepsilon=a_k-rac{arepsilon}{2^k},$ $k\in\mathbb{N}.$ Имеем $\overline{I}_{\varepsilon}\subset I$ и $\widetilde{I}_{k}^{\varepsilon}\supset I_{k}$ для всех k. Поскольку по условию $\bigsqcup_{k=1}^{\infty}I_{k}\supset I,$ то

$$\bigcup_{k=1}^{\infty} \tilde{I}_{k}^{\varepsilon} \supset \bigsqcup_{k=1}^{\infty} I_{k} \supset I \supset \overline{I}_{\varepsilon}.$$

Поскольку $\overline{I}_{\varepsilon}$ является отрезком, а каждый $\widetilde{I}_{k}^{\varepsilon}$ открытым интервалом, то по теореме Бореля–Лебега (лемма 1.2.10) существует конечное семейство открытых интервалов $\tilde{I}_k^{arepsilon},$ покрывающих отрезок $\overline{I}_{arepsilon}.$ Пусть

$$\bigcup_{k=1}^m \tilde{I}_k^{\varepsilon} \supset \overline{I}_{\varepsilon}.$$

Положив

$$I_k^{\varepsilon} = [a_k^{\varepsilon}, b_k) \supset (a_k^{\varepsilon}, b_k) = \tilde{I}_k^{\varepsilon}$$

И

$$I_{\varepsilon} = [a, b - \varepsilon) \subset [a, b - \varepsilon] = \overline{I}_{\varepsilon},$$

получим, что

$$I_{\varepsilon} \subset \bigcup_{k=1}^{m} I_{k}^{\varepsilon}.$$

Поэтому (лемма 1.2.9) имеем:

$$b - \varepsilon - a = \lambda(I_{\varepsilon}) \le \sum_{k=1}^{m} \lambda(I_{k}^{\varepsilon}) = \sum_{k=1}^{m} \left(b_{k} - a_{k} + \frac{\varepsilon}{2^{k}}\right) =$$

$$= \sum_{k=1}^{m} (b_{k} - a_{k}) + \varepsilon \sum_{k=1}^{m} \frac{1}{2^{k}} < \sum_{k=1}^{\infty} (b_{k} - a_{k}) + \varepsilon \sum_{k=1}^{\infty} \frac{1}{2^{k}} =$$

$$= \sum_{k=1}^{\infty} (b_{k} - a_{k}) + \varepsilon.$$

Откуда следует, что

$$b - a < \sum_{k=1}^{\infty} (b_k - a_k) + 2\varepsilon.$$

Поскольку $\varepsilon > 0$ является произвольным, то

$$b - a \le \sum_{k=1}^{\infty} (b_k - a_k),$$

что, вместе с (1.6), и заканчивает доказательство.

Утверждение 1.2.11. Пусть $\mathcal{R}-$ кольцо на $\Omega,$ и $\mu-$ мера на $\mathcal{R}.$ Тогда:

(а) (аддитивность меры)

$$\mu(A \bigsqcup B) = \mu(A) + \mu(B); \tag{1.7}$$

(b) (монотонность меры) если $A, B \in \mathcal{R}$ и $A \subset B$, то

$$\mu(A) \le \mu(B); \tag{1.8}$$

1.2. MEPA MHOЖЕСТВА

(c) (субтрактивность меры) если $A,B\in\mathcal{R},\ A\subset B\ u\ \mu(A)<+\infty,\ mo$

$$\mu(B \setminus A) = \mu(B) - \mu(A); \tag{1.9}$$

(d) (счетная полуаддитивность) если $A, A_k \in \mathcal{R}, k \in \mathbb{N}, u A \subset \bigcup_{k=1}^{\infty} A_k$, то

$$\mu(A) \le \sum_{k=1}^{\infty} \mu(A_k). \tag{1.10}$$

Доказательство. (a) Полагая в (1.1) $A_1 = A$, $A_2 = B$, $A_3 = \ldots = \emptyset$, получим (1.7).

(b), (c) Поскольку \mathcal{R} — кольцо, то $B \setminus A \in \mathcal{R}$. Кроме того,

$$B = A \mid (B \setminus A).$$

Поэтому,

$$\mu(B) = \mu(A) + \mu(B \setminus A).$$

Отсюда получаем, что

$$\mu(B) - \mu(A) = \mu(B \setminus A) \ge 0,$$

т.е. выполнено (1.8). Также, из предыдущего равенства имеем (1.9).

(d) Рассмотрим множества $A_k', k \in \mathbb{N}$, определенные как

$$A'_1 = A_1; \quad A'_2 = A_2 \setminus A_1, \quad \dots, \quad A'_k = A_k \setminus \left(\bigcup_{l=1}^{k-1} A_l\right), \quad \dots$$

Семейство множеств $\{A_k'\}_{k=1}^{\infty}$ обладает следующими свойствами (см. рис. 1.4):

$$A'_k \in \mathcal{R}, \quad A'_k \subset A_k, \quad \bigcup_{k=1}^{\infty} A'_k = \bigcup_{k=1}^{\infty} A_k \supset A, \quad A'_k \cap A'_l = \emptyset \ (k \neq l).$$

1.2. MEPA MHOЖЕСТВА

Рис. 1.4: Множества $A_k', k \in \mathbb{N}$.

Теперь построим множества $A_k'' = A \cap A_k'$. Они обладают свойствами:

$$A_k'' \in \mathcal{R}, \quad A_k'' \subset A_k, \quad A = \bigcup_{k=1}^{\infty} A_k'', \quad A_k'' \cap A_l'' = \emptyset \ (k \neq l)$$

Тогда, используя эти свойства а также свойство (b), имеем, что

$$\mu(A) = \mu\Big(\bigcup_{k=1}^{\infty} A_k''\Big) = \mu\Big(\bigsqcup_{k=1}^{\infty} A_k''\Big) = \sum_{k=1}^{\infty} \mu(A_k'') \le \sum_{k=1}^{\infty} \mu(A_k).$$

Обозначения 1.2.12. Пусть $A, A_k \subset \Omega, k \in \mathbb{N}$. Используются следующие обозначения:

$$A_k \uparrow A \qquad \Longleftrightarrow \qquad \left\{ \begin{array}{l} A_k \subset A_{k+1}, \qquad k \in \mathbb{N}, \\ \bigcup_{k=1}^{\infty} A_k = A, \end{array} \right.$$

$$A_k \downarrow A \qquad \Longleftrightarrow \qquad \left\{ \begin{array}{l} A_k \supset A_{k+1}, \qquad k \in \mathbb{N}, \\ \bigcap_{k=1}^{\infty} A_k = A. \end{array} \right.$$

Утверждение 1.2.13 (непрерывность меры по возрастанию). Пусть $A, A_k \in \mathcal{R}, k \in \mathbb{N}, u A_k \uparrow A$. Тогда $\mu(A_k) \uparrow \mu(A)$ (последовательность действительных чисел $(\mu(A_k))_{k=1}^{\infty}$ является монотонно неубывающей и имеет пределом элемент $\mu(A) \in \overline{\mathbb{R}}_+$).

Доказательство. Поскольку $A_k \uparrow A$, то

$$A_1 \subset A_2 \subset A_3 \subset \ldots \subset A_k \subset \ldots, \qquad A = \bigcup_{k=1}^{\infty} A_k.$$

П

Рассмотрим множества $A_k', k \in \mathbb{N}$, определенные как

$$A'_1 = A_1, \qquad A'_k = A_k \setminus A_{k-1}, \quad k \ge 2.$$

Имеем, что $A'_k \cap A'_l = \emptyset$ при $k \neq l$, и

$$A = \bigcup_{k=1}^{\infty} A_k = \bigsqcup_{k=1}^{\infty} A'_k,$$

см. рис. <mark>1.5</mark>. При этом,

$$\mu(A'_k) = \mu(A_k) - \mu(A_{k-1}),$$

поскольку $A_{k-1} \subset A_k$. Таким образом,

$$\mu(A) = \sum_{l=1}^{\infty} \mu(A'_l) = \lim_{k \to \infty} \sum_{l=1}^{k} \mu(A'_l) =$$

$$= \lim_{k \to \infty} \left(\mu(A_1) + \left(\mu(A_2) - \mu(A_1) \right) + \left(\mu(A_3) - \mu(A_2) \right) + \dots + \right.$$

$$+ \left(\mu(A_k) - \mu(A_{k-1}) \right) =$$

$$= \lim_{k \to \infty} \mu(A_k).$$

А поскольку $\mu(A_k) \leq \mu(A_{k+1})$ так как $A_k \subset A_{k+1}$, то имеем $\mu(A_k) \uparrow \mu(A)$.

Рис. 1.5: Множества A'_k , $k \in \mathbb{N}$.

Утверждение 1.2.14 (непрерывность меры по убыванию). Пусть $A, A_k \in \mathcal{R}, k \in \mathbb{N}, \mu(A_{k_0}) < +\infty$ для некоторого $k_0, u A_k \downarrow A$. Тогда $\mu(A_k) \downarrow \mu(A)$ (последовательность действительных чисел $(\mu(A_k))_{k=1}^{\infty}$ является монотонно невозрастающей и имеет пределом элемент $\mu(A) \in \overline{\mathbb{R}}_+$).

Доказательство. Поскольку $A_k \downarrow A$, то это означает, что

$$A_1 \supset A_2 \supset A_3 \supset \ldots \supset A_{k_0} \supset \ldots, \qquad A = \bigcap_{k=1}^{\infty} A_k.$$

Тогда

$$A_{k_0} \setminus A_{k_0} \subset A_{k_0} \setminus A_{k_0+1} \subset A_{k_0} \setminus A_{k_0+2} \subset \dots,$$

$$A_{k_0} \setminus A = A_{k_0} \setminus \left(\bigcap_{k=k_0}^{\infty} A_k\right) = \bigcup_{k=k_0}^{\infty} (A_{k_0} \setminus A_k).$$

На основании утверждения 1.2.13 имеем, что

$$\mu(A_{k_0} \setminus A) = \mu\Big(\bigcup_{k=k_0}^{\infty} (A_{k_0} \setminus A_k)\Big) = \lim_{k \to \infty} \mu(A_{k_0} \setminus A_k).$$

Поскольку $A\subset A_{k_0}$ и $A_k\subset A_{k_0}$ для $k\geq k_0$, то из предыдущего равенства имеем:

$$\mu(A_{k_0}) - \mu(A) = \lim_{k \to \infty} (\mu(A_{k_0}) - \mu(A_k)) = \mu(A_{k_0}) - \lim_{k \to \infty} \mu(A_k).$$

Таким образом,

$$\mu(A) = \lim_{k \to \infty} \mu(A_k), \qquad \mu(A_1) \ge \mu(A_2) \ge \dots,$$

T.e.
$$\mu(A_k) \downarrow \mu(A)$$
.

Следствие 1.2.15. *Если* $A_k \in \mathcal{R}, k \in \mathbb{N}, u \mu(A_{k_0}) < +\infty$ *для* некоторого $k_0, u A_k \downarrow \emptyset$, то $\mu(A_k) \downarrow 0$.

Замечание 1.2.16. Если $\mu(A_k) = +\infty$ для всех k, то утверждение 1.2.14 может не выполняться.

Пример 1.2.17. Пусть $\Omega = \mathbb{N}$, $\mathcal{R} = \mathcal{P}(\mathbb{N})$, $\mu(A) = |A|$, и $A_k = \{k, k+1, \ldots\}$. Тогда $\bigcap_{k=1}^{\infty} A_k = \emptyset$, но $\lim_{k \to \infty} |A_k| = \infty$.

1.2.2 Продолжение меры

Определение 1.2.18. Пусть \mathcal{R} — кольцо подмножеств Ω , и μ — мера на \mathcal{R} . Внешней мерой μ^* , связанной с μ , называется функция $\mu^* \colon \mathcal{P}(\Omega) \to \overline{\mathbb{R}}_+$, определенная для произвольного $E \in \mathcal{P}(\Omega)$ следующим образом:

$$\mu^*(E) = \inf \Big\{ \sum_{k=1}^{\infty} \mu(A_k) : A_k \in \mathcal{R}, k \in \mathbb{N}, \ \text{if } \bigcup_{k=1}^{\infty} A_k \supset E \Big\},$$

если существует хотя бы одно счетное семейство $\{A_k \in \mathcal{R} : k \in \mathbb{N}\}$, покрывающее E, т.е. такое, что $E \subset \bigcup_{k=1}^{\infty} A_k$, и

$$\mu^*(E) = +\infty,$$

если такого семейства нет.

Пример 1.2.19. $\Omega = \mathbb{R}$, \mathcal{R} и λ из теоремы 1.2.8. Тогда $\lambda^*(\{c\}) = 0$ для произвольного $c \in \mathbb{R}$.

Действительно, имеем, что $\{c\} \subset I_n = \left[c, c + \frac{1}{n}\right)$ для всех $n \in \mathbb{N}$, и $\lambda(I_n) = \frac{1}{n}$. Поэтому,

$$\lambda^*(\{c\}) \le \inf\left\{\frac{1}{n} : n \in \mathbb{N}\right\} = 0,$$

T.e. $\lambda^*(\{c\}) = 0$.

Пример 1.2.20. $\Omega = \mathbb{R}$, \mathcal{R} и λ из теоремы 1.2.8. Тогда $\lambda^*(\mathbb{Q}) = 0$.

Действительно, поскольку $\mathbb Q$ является счетным, то $\mathbb Q = \{q_k\}_{k=1}^\infty$. Выберем произвольное $\varepsilon > 0$, и положим $I_k = \left[q_k, q_k + \frac{\varepsilon}{2^k}\right)$. Очевидно, что

$$\mathbb{Q} \subset \bigcup_{k=1}^{\infty} I_k$$
.

Поэтому,

$$\lambda^*(\mathbb{Q}) \leq \sum_{k=1}^{\infty} \lambda(I_k) = \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon \sum_{k=1}^{\infty} \frac{1}{2^k} = \varepsilon.$$

Поскольку $\varepsilon > 0$ было произвольным, получаем $\lambda^*(\mathbb{Q}) = 0$.

Пример 1.2.21. $\Omega=\{0,1\},~\mathcal{R}=\{\emptyset,\Omega\},~\mu(\Omega)=1.$ Тогда $\mu^*(\{0\})=\mu^*(\{1\})=1.$

Действительно, единственное множество, которое покрывает $\{0\}$ является Ω . То же самое верно для множества $\{1\}$. Поэтому,

$$\mu^*(\{0\}) = \mu^*(\{1\}) = \mu(\Omega) = 1.$$

Замечание 1.2.22. Внешняя мера не всегда является аддитивной на $\mathcal{P}(\Omega)$, и тем более σ -аддитивной, а значит не всегда является мерой на $\mathcal{P}(\Omega)$.

Действительно, как показывает пример 1.2.21, $\{0\} \cap \{1\} = \emptyset$, и, следовательно, если μ^* аддитивна, то

$$\mu^*(\{0\} \cup \{1\}) = \mu^*(\{0\}) + \mu^*(\{1\}) = 2,$$

в то время как

$$\mu^*(\{0\} \cup \{1\}) = \mu^*(\Omega) = \mu(\Omega) = 1.$$

Утверждение 1.2.23. Пусть \mathcal{R} — кольцо подмножеств Ω , μ — мера на \mathcal{R} и μ^* — внешняя мера, связанная с μ . Тогда

- (a) $\mu^*(\emptyset) = 0;$
- (b) $\mu^*(A) = \mu(A)$ dia $\sec x \ A \in \mathcal{R}$;
- (c) μ^* является неубывающей, т.е.

$$E \subset F \Longrightarrow \mu^*(E) \le \mu^*(F)$$

для всех $E, F \in \mathcal{P}(\Omega)$;

d) μ^* является счетно полуддитивной, т.е.

$$\mu^* \Big(\bigcup_{k=1}^{\infty} E_k \Big) \le \sum_{k=1}^{\infty} \mu^* (E_k), \qquad E_k \in \mathcal{P}(\Omega), \quad k \in \mathbb{N}.$$

 \mathcal{A} оказательство. (a) Поскольку $\emptyset \in \mathcal{R}$ для любого кольца \mathcal{R} , и $\emptyset \supset \emptyset$, то

$$\mu^*(\emptyset) \le \mu(\emptyset) = 0.$$

(b) Пусть $A \in \mathcal{R}$, и $A_k \in \mathcal{R}$, $k \in \mathbb{N}$, произвольны, но такие, что $A \subset \bigcup_{k=1}^{\infty} A_k$. Используя утверждение 1.2.11 (d), получим, что

$$\mu(A) \le \sum_{k=1}^{\infty} \mu(A_k),$$

поэтому,

$$\mu(A) \le \inf \left\{ \sum_{k=1}^{\infty} \mu(A_k) : A \subset \bigcup_{k=1}^{\infty} A_k \right\} = \mu^*(A).$$

С другой стороны, в качестве покрытия A можно взять само A, поскольку $A \in \mathcal{R}$, и, поэтому,

$$\mu^*(A) = \inf \left\{ \sum_{k=1}^{\infty} \mu(A_k) : A \subset \bigcup_{k=1}^{\infty} A_k \right\} \le \mu(A).$$

Таким образом,

$$\mu(A) \le \mu^*(A) \le \mu(A),$$

T.e.
$$\mu^*(A) = \mu(A)$$
.

(c) Пусть $\{B_k\}_{k=1}^{\infty}$, $B_k \in \mathcal{R}$ для всех $k \in \mathbb{N}$, — произвольное покрытие множества F. Тогда оно также является покрытием множества E, поскольку $E \subset F$. Таким образом,

$$\mu^*(E) = \inf \left\{ \sum_{k=1}^{\infty} \mu(A_k) : E \subset \bigcup_{k=1}^{\infty} A_k \right\} \le \sum_{k=1}^{\infty} \mu(B_k).$$

Таким образом,

$$\mu^*(E) \le \inf \left\{ \sum_{k=1}^{\infty} \mu(B_k) : F \subset \bigcup_{k=1}^{\infty} B_k \right\} = \mu^*(F).$$

(d) Пусть $\{A_{k,l}\}_{l=1}^{\infty}$, $A_{k,l} \in \mathcal{R}$, — произвольное покрытие множества E_k . Тогда счетное семейство $\{A_{k,l}\}_{k,l=1}^{\infty}$ является покрытием множества $E = \bigcup_{k=1}^{\infty} E_k$. Поэтому,

$$\mu^*(E) = \inf \left\{ \sum_{k=1}^{\infty} \mu(\tilde{A}_k) : \tilde{A}_k \in \mathcal{R}, \ E \subset \bigcup_{k=1}^{\infty} \tilde{A}_k \right\} \le$$

$$\le \inf \left\{ \sum_{k,l=1}^{\infty} \mu(A_{k,l}) : E_k \subset \bigcup_{l=1}^{\infty} A_{k,l}, \ k \in \mathbb{N} \right\} =$$

$$= \inf \left\{ \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \mu(A_{k,l}) : E_k \subset \bigcup_{l=1}^{\infty} A_{k,l}, \ k \in \mathbb{N} \right\} =$$

$$= \sum_{k=1}^{\infty} \inf \left\{ \sum_{l=1}^{\infty} \mu(A_{k,l}) : E_k \subset \bigcup_{l=1}^{\infty} A_{k,l}, \ k \in \mathbb{N} \right\} =$$

$$= \sum_{k=1}^{\infty} \mu^*(E_k).$$

Определение 1.2.24. Пусть \mathcal{R} — кольцо подмножеств Ω , и μ — мера на \mathcal{R} . Множество $N \subset \Omega$ называется *множеством меры* 0 относительно меры μ , если $\mu^*(N) = 0$. Семейство всех множеств меры 0 будет обозначаться \mathcal{N} .

Пример 1.2.25. Пусть $\Omega = \mathbb{R}$ и \mathcal{R} , λ как в теореме 1.2.8. Тогда всякое счетное множество N является множеством меры 0.

Действительно, было показано, что $\lambda^*(\{x\}) = 0$ для любой точки $x \in \mathbb{R}$. Поэтому, для $X = \{x_k\}_{k=1}^{\infty}$ в силу 1.2.23 (d) имеем:

$$\mu^*(X) = \mu^* \Big(\bigcup_{k=1}^{\infty} \{x_k\}\Big) \le \sum_{k=1}^{\infty} \mu^* \big(\{x_k\}\big) = \sum_{k=1}^{\infty} 0 = 0.$$

Пример 1.2.26. Пусть Ω — произвольное множество, и последовательности $(\omega_k)_{k=1}^{\infty}$, $(c_k)_{k=1}^{\infty}$ задают дискретную меру на $\mathcal{R} = \mathcal{P}(\Omega)$

(см. пример 1.2.7). Тогда $\mu^* = \mu$, и любое подмножество N,

$$N \subset \left(\bigcup_{k=1}^{\infty} \{\omega_k\}\right)^c$$

является множеством меры 0.

Действительно, поскольку $\mathcal{R} = \mathcal{P}(\Omega)$, то в силу 1.2.23 (b) имеем, что $\mu^*(A) = \mu(A)$ для любого $A \in \mathcal{P}(\Omega)$. Таким образом, внешняя мера μ^* совпадает с мерой μ .

А если $\omega_k \notin A$, то по определению $1_A(\omega_k) = 0$, и

$$\mu^*(A) = \mu(A) = \sum_{k=1}^{\infty} c_k 1_A(\omega_k) = \sum_{k=1}^{\infty} c_k 0 = 0.$$

Утверждение 1.2.27. (a) Пусть $N \in \mathcal{N}$. Если $M \subset N$, то $M \in \mathcal{N}$.

- (b) Пусть $N_k \in \mathcal{N}$ для всех $k \in \mathbb{N}$. Тогда $\bigcup_{k=1}^{\infty} N_k \in \mathcal{N}$.
- (c) Если \mathcal{R} является σ -алгеброй, то $N \in \mathcal{N}$ тогда и только тогда, когда существует такое множество $A \in \mathcal{R}$, что $N \subset A$ и $\mu(A) = 0$.

Доказательство. (а) Используя утверждение 1.2.23 (с), имеем

$$\mu^*(M) \le \mu^*(N) = 0.$$

Таким образом, $\mu^*(M) = 0$, и $M \in \mathcal{N}$.

(b) Используя 1.2.23 (d), имеем

$$\mu^* \Big(\bigcup_{k=1}^{\infty} N_k \Big) \le \sum_{k=1}^{\infty} \mu^* (N_k) = \sum_{k=1}^{\infty} 0 = 0,$$

T.e. $\bigcup_{k=1}^{\infty} N_k \in \mathcal{N}$.

(c) Пусть $\mu^*(N) = 0$, т.е.

$$\inf \left\{ \sum_{k=1}^{\infty} \mu(A_k) : A_k \in \mathcal{R}, \ N \subset \bigcup_{k=1}^{\infty} A_k \right\} = 0.$$

По определению инфимума, из этого следует, что для каждого $n \in \mathbb{N}$ существует такое покрытие $\{A_{n,k}\}_{k=1}^{\infty}$ множества N, что

$$\sum_{k=1}^{\infty} \mu(A_{n,k}) < \frac{1}{n}.$$

Положим $A_n = \bigcup_{k=1}^{\infty} A_{n,k}$. Тогда $A_n \in \mathcal{R}$, поскольку \mathcal{R} является σ -алгеброй по условию, и

$$\mu(A_n) = \mu(\bigcup_{k=1}^{\infty} A_{n,k}) \le \sum_{k=1}^{\infty} \mu(A_{n,k}) < \frac{1}{n}.$$

Кроме этого, $N \subset A_n$ для каждого $n \in \mathbb{N}$, поскольку семейство $\{A_{n,k}\}_{k=1}^{\infty}$ является покрытием N для каждого n. Таким образом, $N \subset A = \bigcap_{n=1}^{\infty} A_n$, и $A \in \mathcal{R}$, поскольку \mathcal{R} является σ -алгеброй. А так как $A \subset A_n$, то

$$\mu(A) \le \mu(A_n) < \frac{1}{n}$$

для всех $n \in \mathbb{N}$. Следовательно, $\mu(A) = 0$.

Определение 1.2.28. Пусть \mathcal{R} — кольцо подмножеств множества Ω , и μ — мера на \mathcal{R} . Множество $C \subset \Omega$ называется измеримым по Каратеодори или μ -измеримым, если

$$\mu^*\Big(E\bigcup F\Big)=\mu^*(E)+\mu^*(F)$$
 для всех $E\subset C$ и $F\subset C^c$.

Семейство всех μ -измеримых подмножеств Ω будет обозначаться Σ_{μ} .

Утверждение 1.2.29. Пусть \mathcal{R} — кольцо подмножеств Ω , μ — мера на \mathcal{R} . Если $A \in \mathcal{R}$, то A является μ -измеримым, т.е. $\mathcal{R} \subset \Sigma_{\mu}$.

 \mathcal{A} оказательство. Пусть $A \in \mathcal{R}$, и $E \subset A$, $F \subset A^c$. Требуется доказать, что

$$\mu^*(E \cup F) = \mu^*(E) + \mu^*(F). \tag{1.11}$$

Поскольку

$$\mu^*(E \cup F) \le \mu^*(E) + \mu^*(F)$$

для произвольных множеств E и F в силу утверждения 1.2.23 (d), то для доказательства (1.11) требуется показать, что

$$\mu^*(E \cup F) \ge \mu^*(E) + \mu^*(F).$$

Пусть $\{A_k\}_{k=1}^\infty$ — произвольное покрытие $E\cup F$ множествами из $\mathcal R$. Положим $E_k=A_k\cap A$ и $F_k=A_k\setminus A$. Поскольку $E\subset A$, то

$$E = E \cap A \subset (E \cup F) \cap A \subset \left(\bigcup_{k=1}^{\infty} A_k\right) \bigcap A = \bigcup_{k=1}^{\infty} (A_k \cap A) = \bigcup_{k=1}^{\infty} E_k,$$

и, следовательно, $\{E_k\}_{k=1}^{\infty}$ является покрытием множества E. А поскольку $A_k, A \in \mathcal{R}$, то $E_k = A_k \cap A \in \mathcal{R}$.

Точно также, $F \subset A^c$. Поэтому,

$$F = F \cap A^c \subset (E \cup F) \cap A^c \subset \left(\bigcup_{k=1}^{\infty} A_k\right) \cap A^c = \bigcup_{k=1}^{\infty} (A_k \cap A^c) =$$
$$= \bigcup_{k=1}^{\infty} (A_k \setminus A) = \bigcup_{k=1}^{\infty} F_k.$$

Следовательно, $F_k \in \mathcal{R}$, и семейство $\{F_k\}_{k=1}^{\infty}$ покрывает F.

Также заметим, что, поскольку $E_k = A_k \cap A \subset A$ а $F_k = A_k \setminus A \subset A^c$, то $E_k \cap F_k = \emptyset$ и $E_k \cup F_k = A_k$. Поэтому, $\mu(E_k) + \mu(F_k) = \mu(A_k)$ и, следовательно,

$$\sum_{k=1}^{\infty} \mu(E_k) + \sum_{k=1}^{\infty} \mu(F_k) = \sum_{k=1}^{\infty} (\mu(E_k) + \mu(F_k)) =$$

$$= \sum_{k=1}^{\infty} \mu(E_k \cup F_k) = \sum_{k=1}^{\infty} \mu(A_k).$$

Следовательно, для каждого покрытия $\{A_k\}_{k=1}^{\infty}$ множества $E \cup F$, полагая $E_k = A_k \cap A$, $F_k = A_k \setminus A$, имеем

$$\mu^*(E) + \mu^*(F) = \inf \left\{ \sum_{k=1}^{\infty} \mu(\tilde{E}_k) : \tilde{E}_k \in \mathcal{R}, \ E \subset \bigcup_{k=1}^{\infty} \tilde{E}_k \right\} +$$

$$+ \inf \left\{ \sum_{k=1}^{\infty} \mu(\tilde{F}_k) : \tilde{F}_k \in \mathcal{R}, \ F \subset \bigcup_{k=1}^{\infty} \tilde{F}_k \right\} \le$$

$$\leq \sum_{k=1}^{\infty} \mu(E_k) + \sum_{k=1}^{\infty} \mu(F_k) = \sum_{k=1}^{\infty} \mu(A_k).$$

Поэтому,

$$\mu^*(E) + \mu^*(F) \le \inf \left\{ \sum_{k=1}^{\infty} \mu(A_k) : A_k \in \mathcal{R}, \ E \cup F \subset \bigcup_{k=1}^{\infty} A_k \right\} = \mu^*(E \cup F),$$

что и заканчивает доказательство (1.11).

Утверждение 1.2.30. Пусть $N \in \mathcal{N}$. Тогда множество N является μ -измеримым.

Доказательство. Пусть $E, F \in \mathcal{P}(\Omega), E \subset N, F \subset N^c$, и покажем, что

$$\mu^*(E \cup F) = \mu^*(E) + \mu^*(F).$$

Поскольку $E\subset N$, то

$$\mu^*(E) \le \mu^*(N) = 0,$$

т.е. $\mu^*(E) = 0$. Таким образом, остается показать, что

$$\mu^*(E \cup F) = \mu^*(F).$$

В силу утверждения 1.2.23 (d), имеем

$$\mu^*(E \cup F) \le \mu^*(E) + \mu^*(F) = \mu^*(F).$$

Ho $F \subset E \cup F$. Поэтому,

$$\mu^*(F) \le \mu^*(E \cup F),$$

т.е. $\mu^*(E \cup F) = \mu^*(F)$, что и означает μ -измеримость N.

Определение 1.2.31. Пусть $\mathcal{R}, \tilde{\mathcal{R}}$ — кольца подмножеств Ω , причем $\mathcal{R} \subset \tilde{\mathcal{R}}$. Пусть μ и $\tilde{\mu}$ — меры на \mathcal{R} и $\tilde{\mathcal{R}}$, соответственно. Если $\tilde{\mu} \upharpoonright_{\mathcal{R}} = \mu$, то мера $\tilde{\mu}$ называется *продолжением* меры μ на $\tilde{\mathcal{R}}$, а мера μ ограничением меры $\tilde{\mu}$ на \mathcal{R} .

Теорема 1.2.32 (Каратеодори). Пусть μ — мера на некотором кольце $\mathcal R$ подмножеств Ω . Семейство Σ_{μ} всех μ -измеримых подмножеств Ω является σ -алгеброй, содержащей кольцо $\mathcal R$ и семейство множеств меры 0. Ограничение внешней меры μ^* на Σ_{μ} является мерой.

Доказательство. Без доказательства.

Следствие 1.2.33. Пусть μ — мера на кольце \mathcal{R} подмножеств Ω , u $\Sigma_{\mathcal{R}}$ — σ -алгебра, порожденная кольцом \mathcal{R} . Тогда ограничение $\tilde{\mu} = \mu^* \mid_{\Sigma_{\mathcal{R}}}$ внешней меры μ^* на $\Sigma_{\mathcal{R}}$ является мерой на $\Sigma_{\mathcal{R}}$.

Доказательство. По теореме Каратеодори, ограничение внешней меры μ^* на σ -алгебру Σ_{μ} μ -измеримых множеств является мерой. Поскольку $\Sigma_{\mathcal{R}}$ и Σ_{μ} являются σ -алгебрами, содержащими \mathcal{R} , причем $\Sigma_{\mathcal{R}}$ является наименьшей, то $\Sigma_{\mathcal{R}} \subset \Sigma_{\mu}$. Поэтому ограничение μ^* на $\Sigma_{\mathcal{R}}$ также является мерой.

Задачи

KP: 291 (1), 291.1, 292 (1), 292.3 (1) *ДP*: 291 (3), 291.3, 291.2, 292.3 (2, 3, 4) Определение 1.2.34. Пусть \mathcal{R} — кольцо подмножеств Ω , и μ — мера на \mathcal{R} . Мера μ называется конечной или ограниченной, если $\Omega \in \mathcal{R}$ и $\mu(\Omega) < \infty$. Конечная мера μ называется вероятностной, если $\mu(\Omega) = 1$.

Мера μ называется σ -конечной, если существует такая неубывающая последовательность подмножеств $\Omega_k, k \in \mathbb{N}$, что $\mu(\Omega_k) < \infty$ для всех k, и $\bigcup_{k=1}^{\infty} \Omega_k = \Omega$.

Эта мера конечна, если множество Ω конечно, вероятностная, если Ω состоит из одного элемента. Мера является σ -конечной, если множество Ω счетно.

- Мера Дирака (см. пример 1.2.5).
 Эта мера является вероятностной.
- 3. Дискретная мера (см. пример 1.2.7).

Эта мера является конечной, если

$$c = \sum_{k=1}^{\infty} c_k < \infty.$$

Мера вероятностная, если c=1. Эта мера является σ -конечной, поскольку положив

$$\Omega_k = \Omega \setminus \Big(\bigcup_{i=k+1}^{\infty} \omega_i\Big),\,$$

имеем

$$\mu(\Omega_k) = \sum_{i=1}^k c_i < \infty, \qquad \Omega = \bigcup_{k=1}^\infty \Omega_k.$$

4. Длина на \mathbb{R} (см. пример 1.2.8).

1.2. MEPA MHOWECTBA

Мера не является конечной, однако является σ -конечной, поскольку для $\Omega_k = [-k, k)$ имеем

$$\lambda([-k,k)) = 2k, \qquad \bigcup_{k=1}^{\infty} \Omega_k = \mathbb{R}.$$

Теорема 1.2.36. Пусть $\mu - \sigma$ -конечная мера на кольце \mathcal{R} подмножеств Ω , $\Sigma_{\mathcal{R}} - \sigma$ -алгебра, порожденная кольцом \mathcal{R} , $\Sigma_{\mu} - \sigma$ -алгебра μ -измеримых подмножеств Ω , а \mathcal{N} — семейство множеств меры 0. Тогда Σ_{μ} является σ -алгеброй, порожденной $\Sigma_{\mathcal{R}}$ и \mathcal{N} .

Доказательство. Без доказательства.

Определение 1.2.37. Пусть \mathcal{R} — кольцо порожденное полуинтервалами [a,b) в \mathbb{R} . Продолжение функции длины на Σ_{λ} , попрежнему обозначаемое λ , называется мерой Лебега на \mathbb{R} , а элементы Σ_{λ} — множествами измеримыми по Лебегу.

Замечание 1.2.38. Из теоремы 1.2.36 следует, что Σ_{λ} является σ -алгеброй, порожденной \mathcal{B} и \mathcal{N} .

1.3 Измеримые пространства и функции

Определение 1.3.1. Пусть Ω — множество, и Σ — σ -алгебра на Ω . Пара (Ω, Σ) называется *измеримым пространством*. Произвольное множество $A \in \Sigma$ называется *измеримым*.

Определение 1.3.2. Пусть (Ω_1, Σ_1) и (Ω_2, Σ_2) — измеримые пространства. Отображение $f: (\Omega_1, \Sigma_1) \to (\Omega_2, \Sigma_2)$ называется измеримым, если $f^{-1}(B) \in \Sigma_1$ для произвольного $B \in \Sigma_2$.

Замечание 1.3.3. Определение 1.3.2 означает, что отображение $f: (\Omega_1, \Sigma_1) \to (\Omega_2, \Sigma_2)$ измеримо тогда и только тогда, когда $f^{-1}(\Sigma_2) \subset \Sigma_1$.

Пример 1.3.4. 1. Пусть Σ_2 — произвольная σ -алгебра на Ω_2 . Любое отображение $f: (\Omega_1, \mathcal{P}(\Omega_1)) \to (\Omega_2, \Sigma_2)$ является измеримым.

Действительно, $f^{-1}(B) \in \mathcal{P}(\Omega)$ для произвольного $B \in \Sigma_2$.

2. Пусть $\Sigma = \{\emptyset, \Omega\}$, а $\tilde{\Sigma} = \mathcal{P}(\tilde{\Omega})$. Если $f : (\Omega, \Sigma) \to (\tilde{\Omega}, \tilde{\Sigma})$ измеримо, то f является постоянным отображением, т.е. $f(\omega) = \tilde{\omega}_0$ для всех $\omega \in \Omega$.

Дейчтвительно, если $f(\omega) = \tilde{\omega}_0$ для всех $\omega \in \Omega$, то для произвольного $B \in \mathcal{P}(\tilde{\Omega})$ имеем $f^{-1}(B) = \emptyset$, если $\tilde{\omega}_0 \notin B$, и $f^{-1}(B) = \Omega$, если $\tilde{\omega}_0 \in B$. Таким образом $f^{-1}(B) \in \Sigma_1$ для произвольного $B \in \mathcal{P}(\tilde{\Omega})$, и f является измеримым отображением.

Если f не является постоянным отображением, то существуют $\tilde{w}_1, \tilde{w}_2 \in \text{Im } f$, и $\tilde{w}_1 \neq \tilde{\omega}_2$. Но тогда $f^{-1}(\{\omega_1\}) \neq \emptyset$ и $f^{-1}(\{\omega_1\}) \neq \Omega$. И, поскольку $\{\tilde{\omega}_1\} \in \mathcal{P}(\tilde{\Omega})$, а $f^{-1}(\{\tilde{w}_1\}) \notin \Sigma$, отображение f не является измеримым.

Утверждение 1.3.5. Пусть (Ω_1, Σ_1) , (Ω_2, Σ_2) , (Ω_3, Σ_3) — измеримые пространства, и отображения

$$f: (\Omega_1, \Sigma_1) \to (\Omega_2, \Sigma_2), \qquad g: (\Omega_2, \Sigma_2) \to (\Omega_3, \Sigma_3)$$

измеримы. Тогда композиция $g \circ f : (\Omega_1, \Sigma_1) \to (\Omega_3, \Sigma_3)$ является измеримым отображением.

Доказательство. Пусть $C \in \Sigma_3$. Тогда $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$. Поскольку g является измеримым, то $B = g^{-1}(C) \in \Sigma_2$, а поскольку f является измеримым, то $f^{-1}(B) = f^{-1}(g^{-1}(C)) \in \Sigma_1$. Следовательно, $g \circ f$ измеримо.

Утверждение 1.3.6. Пусть $f: (\Omega_1, \Sigma_1) \to (\Omega_2, \Sigma_2)$, и σ -алгебра Σ_2 порождена семейством C_2 , т.е. $\Sigma_2 = \Sigma_{C_2}$. Отображение f измеримо тогда и только тогда, когда $f^{-1}(C) \in \Sigma_1$ для всех $C \in C_2$.

Доказательство. Если f измеримо, то для $C \in C_2$ имеем, что $f^{-1}(C) \in \Sigma_1$, поскольку $C_2 \subset \Sigma_2$.

Обратно, предположим, что $f^{-1}(C) \in \Sigma_1$ для каждого $C \in \mathcal{C}$. Рассмотрим семейство $\tilde{\Sigma}_2 = \{\tilde{C}\}$ таких подмножеств $\tilde{C} \subset \Omega_2$, что $f^{-1}(\tilde{C}) \in \Sigma_1$, и докажем, что $\tilde{\Sigma}_2$ является σ -алгеброй.

Действительно, если $\tilde{A}, \tilde{B} \in \tilde{\Sigma}_2$ и $\tilde{A}_k \in \tilde{\Sigma}_2$ для всех $k \in \mathbb{N}$, т.е. $f^{-1}(\tilde{A}), f^{-1}(\tilde{B}) \in \Sigma_1$ и $f^{-1}(\tilde{A}_k) \in \Sigma_1$, то, поскольку

$$f^{-1}(\tilde{A}\setminus\tilde{B})=f^{-1}(\tilde{A})\setminus f^{-1}(\tilde{B}), \qquad f^{-1}\Bigl(\bigcup_{k=1}^{\infty}\tilde{A}_k\Bigr)=\bigcup_{k=1}^{\infty}f^{-1}(A_k)$$

и Σ_1 является σ -алгеброй, имеем, что

$$f^{-1}(\tilde{A}\setminus\tilde{B})\in\Sigma_1,\qquad f^{-1}\Bigl(\bigcup_{k=1}^\infty\tilde{A}_k\Bigr)\in\Sigma_1,$$

т.е. $\tilde{A}\setminus \tilde{B}\in \tilde{\Sigma}_2$ и $\bigcup_{k=1}^\infty \tilde{A}_k\in \tilde{\Sigma}_2$. Следовательно, $\tilde{\Sigma}_2$ является σ -кольцом. Кроме этого,

$$f^{-1}(\Omega_2) = \Omega_1 \in \Sigma_1,$$

поэтому, $\Omega_2 \in \tilde{\Sigma}_2$, что и доказывает, что $\tilde{\Sigma}_2$ является σ -алгеброй.

По условию, $C_2 \subset \tilde{\Sigma}_2$. В связи с тем, что $\Sigma_{C_2} = \Sigma_2$ является наименьшей σ -алгеброй, содержащей C_2 , имеем, что $\Sigma_2 \subset \tilde{\Sigma}_2$, т.е. $f^{-1}(\tilde{C}) \in \Sigma_1$ для любого $\tilde{C} \in \Sigma_2$. Следовательно, отображение f измеримо.

1.3.1 Измеримые функции со значениями в $\mathbb R$

Определение 1.3.7. Пусть (Ω, Σ) — измеримое пространство, \mathcal{B} — борелевская σ -алгебра на \mathbb{R} . Функция $f \colon \Omega \to \mathbb{R}$ называется измеримой, если измеримо отображение

$$f: (\Omega, \Sigma) \to (\mathbb{R}, \mathcal{B}).$$

Если $\Omega = \mathbb{R}^n$, то функция $f \colon \mathbb{R}^n \to \mathbb{R}$ называется измеримой, если измеримо отображение

$$f: (\mathbb{R}^n, \mathcal{B}_n) \to (\mathbb{R}, \mathcal{B}),$$

где \mathcal{B}_n и \mathcal{B} — борелевские σ -алгебры на \mathbb{R}^n и \mathbb{R} , соответственно.

Множество всех измеримых функций $f \colon \Omega \to \mathbb{R}$ на измеримом пространстве (Ω, Σ) обозначается $\mathcal{M}(\Sigma)$.

Пример 1.3.8. Пусть $\Omega = \bigsqcup_{k=1}^m \Omega_k$, $\Sigma = \Sigma_{\{\Omega_k\}}$ и $f : \Omega \to \mathbb{R}$. Функция f измерима тогда и только тогда, когда f постоянная на каждом Ω_k .

Действительно, если f постоянная на каждом Ω_k , то $f(\Omega_k) = \{c_k\}$, и для произвольного $B \in \mathcal{B}$ имеем, что либо $f(\Omega_k) \subset B$ либо $f(\Omega_k) \cap B = \emptyset$. Поэтому

$$f^{-1}(B) = \bigsqcup_{f(\Omega_k) \subset B} \Omega_k \in \Sigma_{\{\Omega_k\}}.$$

Если f не является постоянной на Ω_{k_0} , то существуют такие $\omega'_{k_0}, \omega''_{k_0} \in \Omega_{k_0}$, что $f(\omega'_{k_0}) = c'_{k_0} \neq c''_{k_0} = f(\omega''_{k_0})$. Но тогда $\{c'_{k_0}\} \in \mathcal{B}$, а $f^{-1}(c'_{k_0}) \cap \Omega_{k_0} \neq \emptyset$ и $f^{-1}(c'_{k_0}) \cap \Omega_{k_0} \neq \Omega_{k_0}$, т.е. $f^{-1}(c'_{k_0}) \cap \Omega_{k_0} \notin \Sigma_{\{\Omega_k\}}$. Отсюда следует, что $f^{-1}(\{c'_{k_0}\}) \notin \Sigma_{\{\Omega_k\}}$, а значит функция f не является измеримой.

Лемма 1.3.9. Функция $f: \mathbb{R}^n \to \mathbb{R}$ является непрерывной на \mathbb{R}^n тогда и только тогда, когда для произвольного открытого $V \subset \mathbb{R}$ множество $f^{-1}(V) \subset \mathbb{R}^n$ является открытым.

Доказательство. Пусть $f^{-1}(V)$ открыто в \mathbb{R}^n для произвольного открытого $V \subset \mathbb{R}$, и докажем, что f непрерывна в произвольной точке $\boldsymbol{x}_0 \in \mathbb{R}^n$, т.е докажем, что для произвольного $\varepsilon > 0$ существует такое $\delta > 0$, что $f(B(\boldsymbol{x}_0; \delta)) \subset B(f(\boldsymbol{x}_0); \varepsilon)$ или, что то же самое,

$$B(\boldsymbol{x}_0; \delta) \subset f^{-1}(B(f(\boldsymbol{x}_0); \varepsilon)),$$
 (1.12)

где

$$B(\boldsymbol{x}_0; \delta) = \{ \boldsymbol{x} \in \mathbb{R}^n : ||\boldsymbol{x} - \boldsymbol{x}_0|| < \delta \},$$

$$B(f(\boldsymbol{x}_0); \varepsilon) = \{ \boldsymbol{y} \in \mathbb{R} : |\boldsymbol{y} - f(\boldsymbol{x}_0)| < \varepsilon \}.$$

Однако, $B(f(\boldsymbol{x}_0),\varepsilon)$ является открытым множеством, поэтому множество $f^{-1}\big(B(f(\boldsymbol{x}_0;\varepsilon))\big)$ также открыто по условию, и $\boldsymbol{x}_0\in f^{-1}\big(B(f(\boldsymbol{x}_0);\varepsilon)\big)$. Следовательно, существует такое $\delta>0$, что имеет место (1.12). Это доказывает непрерывность f в точке \boldsymbol{x}_0 , и, так как f непрерывна в каждой точке $\boldsymbol{x}_0\in\mathbb{R}^n$, то f непрерывна на \mathbb{R}^n .

Пусть $V\subset\mathbb{R}$ открыто, f непрерывна на \mathbb{R}^n , и докажем, что $f^{-1}(V)$ открыто. Для этого возьмем произвольное $\boldsymbol{x}_0\in f^{-1}(V)$ и покажем, что открытый шар $B(\boldsymbol{x}_0;\delta)$ содержится в $f^{-1}(V)$ для некоторого $\delta>0$. Действительно, поскольку $\boldsymbol{x}_0\in f^{-1}(V)$, то $y_0=f(\boldsymbol{x}_0)\in V$. Так как V открыто, то существует такое $\varepsilon>0$, что $B(y_0;\varepsilon)\subset V$. А, поскольку f является непрерывной в точке \boldsymbol{x}_0 , то существует такое $\delta>0$, что

$$f(B(\boldsymbol{x}_0;\delta)) \subset B(y_0;\varepsilon) \subset V$$

Это означает, что $B(\boldsymbol{x}_0;\delta)\subset f^{-1}(V)$ для этого δ .

Теорема 1.3.10. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ непрерывна на \mathbb{R}^n . Тогда она измерима.

Доказательство. Для произвольного открытого множества $U \subset \mathbb{R}$, множество $f^{-1}(U) \subset \mathbb{R}^n$ является также открытым в силу непрерывности функции f (лемма 1.3.9). Поэтому, $f^{-1}(U) \in \mathcal{B}_n$. А поскольку \mathcal{B} порождается открытыми множествами, то f является измеримой согласно утверждению 1.3.6.

В дальнейшем используются следующие обозначения:

$$\{f < a\} = \{\omega \in \Omega : f(\omega) < a\},\$$
$$\{f \le a\} = \{\omega \in \Omega : f(\omega) \le a\},\$$

и аналогичные им.

Теорема 1.3.11. Пусть (Ω, Σ) — измеримое пространство, $u f : \Omega \to \mathbb{R}$. Следующие условия эквивалентны:

- 1. f измерима;
- 2. все множества $\{f < a\}, a \in \mathbb{R}$, измеримы;
- 3. все множества $\{f \leq a\}, a \in \mathbb{R}, uзмеримы.$

Доказательство. Поскольку

$$\{f < a\} = \{\omega \in \Omega : f(\omega) < a\} = f^{-1}((-\infty, a)),$$
$$\{f \le a\} = \{\omega \in \Omega : f(\omega) \le a\} = f^{-1}((-\infty, a)),$$

и каждое из семейств

$$\{(-\infty, a)\}_{a \in \mathbb{R}}, \qquad \{(-\infty, a]\}_{a \in \mathbb{R}}$$

порождает борелевскую σ -алгебру на \mathbb{R} , и то доказательство непосредственно следует из утверждения 1.3.6.

Утверждение 1.3.12. Пусть (Ω, Σ) — измеримое пространство, $u \ A \subset \Omega$. Функция $1_A \colon \Omega \to \mathbb{R}$ измерима тогда и только тогда, когда A измеримо.

Доказательство. Рассмотрим множества

$$\{1_A < a\} = \{\omega \in \Omega : 1_A(\omega) < a\}, \qquad a \in \mathbb{R}.$$

Если $a \leq 0$, то

$$\{1_A < a\} = \emptyset,$$

поскольку $1_A(\omega) \in \{0,1\}$ для всех $\omega \in \Omega$.

Если $0 < a \le 1$, то

$$\{1_A < a\} = A^c.$$

Если 1 < a, то

$$\{1_A < a\} = \Omega.$$

Таким образом, для измеримости 1_A необходимо и достаточно, чтобы $A^c \in \Sigma$, т.е. $A \in \Sigma$, поскольку Σ является алгеброй.

Теорема 1.3.13. Пусть (Ω, Σ) — измеримое пространство. Пусть $f,g\colon \Omega \to \mathbb{R}$ измеримы, и $c \in \mathbb{R}$. Тогда функции $cf, f+g, |f|, f^2, fg$ также измеримы. Функция $\frac{f}{g}$ измерима, если $g(\omega) \neq 0$ для всех $\omega \in \Omega$.

Доказательство. (cf) Пусть $a \in \mathbb{R}$, и рассмотрим множество $\{cf < a\}$. Имеем

$$\{cf < a\} = \left\{ \begin{array}{ll} \{f > \frac{a}{c}\}, & \text{если } c < 0, \\ \emptyset, & \text{если } c = 0 \text{ и } a \leq 0, \\ \Omega, & \text{если } c = 0 \text{ и } a > 0, \\ \{f < \frac{a}{c}\}, & \text{если } c > 0. \end{array} \right.$$

Каждое из вышеуказанных множеств измеримо. Следовательно, cf измерима.

(f+g) Поскольку $\mathbb Q$ является счетным множеством, положим $\mathbb Q=\{q_k\}_{k=1}^\infty$. Докажем, что

$$\{f + g < a\} = \bigcup_{k=1}^{\infty} (\{f < q_k\} \cap \{g < a - q_k\}).$$
 (1.13)

Пусть $\omega \in \bigcup_{k=1}^{\infty} (\{f < q_k\} \cap \{g < a - q_k\})$. Тогда $\omega \in \{f < q_k\} \cap \{g < a - q_k\}$ для некоторого k. Это означает, что $f(\omega) < q_k$ и $g(\omega) < a - q_k$. Таким образом,

$$f(\omega) + g(\omega) < g_k + a - g_k = a$$

T.e. $\omega \in \{f + g < a\}$.

Обратно, пусть $\omega \in \{f+g < a\}$. Тогда $f(\omega) + g(\omega) < a$, или $f(\omega) < a - g(\omega)$. Поэтому, $\big(f(\omega), a - g(\omega)\big) \neq \emptyset$, и существует $q_{k_0} \in \mathbb{Q}$ такой, что $q_{k_0} \in \big(f(\omega), a - g(\omega)\big)$, т.е.

$$f(\omega) < q_{k_0} < a - g(\omega)$$
.

Неравенство $f(\omega) < q_{k_0}$ означает, что $\omega \in \{f < q_{k_0}\}$, а из неравенства $q_{k_0} < a - g(\omega)$ следует, что $g(\omega) < a - q_{k_0}$, т.е. $\omega \in \{g < a - q_{k_0}\}$. таким образом,

$$\omega \in \{f < q_{k_0}\} \cap \{g < a - q_{k_0}\} \subset \bigcup_{k=1}^{\infty} \{f < q_k\} \cap \{g < a - q_k\},\$$

что оканчивает доказательство (1.13).

Поскольку f и g измеримы по условию, каждое множество

$$\{f < q_k\} \cap \{g < a - q_k\}$$

является измеримым, а, поскольку Σ является σ -алгеброй, то и счетное объединение также измеримо. Это означает измеримость множества $\{f+g< a\}$, а, следовательно, и измеримость функции f+g.

(|f|) Для множества $\{|f| < a\}$ имеем

$$\{|f| < a\} = \begin{cases} \emptyset, & a \leq 0, \\ \{f < a\} \cap \{f > -a\}, & a > 0. \end{cases}$$

Каждое из множеств в правой части равенства является измеримым.

 (f^2) Имеем

$$\{f^2 < a\} = \begin{cases} \emptyset, & a \le 0, \\ \{|f| < \sqrt{a}, & a > 0, \end{cases}$$

откуда и следует измеримость f^2 .

(fg) Используя формулу

$$fg = \frac{1}{4} ((f+g)^2 - (f-g)^2),$$

и уже доказанное, получаем измеримость произведения.

 $(\frac{f}{g})$ В силу измеримости произведения измеримых функций, достаточно доказать, что функция $\frac{1}{g}$ измерима. Имеем

$$\left\{\frac{1}{g} < a\right\} = \begin{cases} \{g > \frac{1}{a}\} \cap \{g < 0\}, & a < 0, \\ \{g < 0\}, & a = 0, \\ \{g < 0\} \cup \{g > \frac{1}{a}\}, & a > 0. \end{cases}$$

Следствие 1.3.14. Пусть (Ω, Σ) — измеримое пространство. Для произвольного $c \in \mathbb{R}$ постоянная функция $c1 = c1_{\Omega} \colon \Omega \to \mathbb{R}$ является измеримой.

Доказательство. Поскольку $\Omega \in \Sigma$ так как Ω является алгеброй, то 1_{Ω} является измеримой по утверждению 1.3.12. Следовательно, $c \, 1_{\Omega}$ является измеримой по теореме 1.3.13.

Теорема 1.3.15. Пусть (Ω, Σ) — измеримое пространство. Пусть $(f_k)_{k=1}^{\infty}$ — последовательность измеримых функций $\Omega \to \mathbb{R}$. Тогда:

(a) *если*

$$\sup_{k \in \mathbb{N}} f_k, \qquad \inf_{k \in \mathbb{N}} f_k$$

являются функциями $\Omega \to \mathbb{R}$, то они измеримы;

- (b) если $\lim_{k\to\infty} f_k(\omega)$ существует в \mathbb{R} для всех $\omega\in\Omega$, то $f=\lim_{k\to\infty} f_k$ измерима;
- (c) функция $s = \sum_{k=1}^{\infty} f_k$ измерима, если ряд $\sum_{k=1}^{\infty} f_k(\omega)$ сходится при всех $\omega \in \Omega$.

Доказательство. (a) (sup f_k) Пусть $\sup_{k\in\mathbb{N}} f_k(\omega) < \infty$ для всех $\omega \in \Omega$, т.е. функция $f(\omega) = \sup_{k\in\mathbb{N}} f_n(\omega)$ является функцией $\Omega \to \mathbb{R}$. Пусть $a \in \mathbb{R}$, и рассмотрим $\{f \leq a\}$. Докажем, что

$$\{f \le a\} = \{\sup_{k \in \mathbb{N}} f_k \le a\} = \bigcap_{k=1}^{\infty} \{f_k \le a\}.$$
 (1.14)

Если $\omega \in \{\sup_{k \in \mathbb{N}} f_k \leq a\}$, то это означает, что $\sup_{k \in \mathbb{N}} f_k(\omega) \leq a$. Отсюда следует, что $f_k(\omega) \leq a$ для всех $k \in \mathbb{N}$, т.е. $\omega \in \{f_k \leq a\}$ для всех k, и, следовательно, $\omega \in \bigcap_{k=1}^{\infty} \{f_k \leq a\}$.

Пусть теперь $\omega \in \bigcap_{k=1}^{\infty} \{f_k \leq a\}$. Это означает, что $\omega \in \{f_k \leq a\}$, т.е. $f_k(\omega) \leq a$ для всех $k \in \mathbb{N}$. Но тогда и $\sup_{k \in \mathbb{N}} f_k(\omega) \leq a$. Следовательно, $\omega \in \{f \leq a\}$.

Поскольку f_k измерима, множество $\{f_k \leq a\}$ измеримо для каждого $k \in \mathbb{N}$. Таким образом измеримо и множество в правой части (1.14), а с ним и функция f.

(inf f_k) Пусть $f = \inf_{k \in \mathbb{N}} f_k$, и рассмотрим множество $\{f < a\}$. Докажем, что

$$\{f < a\} = \{\inf_{k \in \mathbb{N}} f_k < a\} = \bigcup_{k=1}^{\infty} \{f_k < a\}.$$
 (1.15)

Пусть $\omega \in \{\inf_{k \in \mathbb{N}} f_k < a\}$, т.е. $\inf_{k \in \mathbb{N}} f_k(\omega) < a$. Это означает, что существует такое $k_0 \in \mathbb{N}$, что $f_{k_0}(\omega) < a$, поскольку, если $f_k(\omega) \geq a$ для всех k, то и $\inf_{k \in \mathbb{N}} f_k(\omega) \geq a$, что является противоречием. Итак, $\omega \in \{f_{k_0} < a\}$, и, следовательно, $\omega \in \bigcup_{k=1}^{\infty} \{f_k < a\}$.

Обратно, если $\omega \in \bigcup_{k=1}^{\infty} \{f_k < a\}$, то $\omega \in \{f_{k_0} < a\}$ для некоторого k_0 , а, значит, $f_{k_0}(\omega) < a$. Поэтому,

$$\inf_{k \in \mathbb{N}} f_k(\omega) \le f_{k_0}(\omega) < a.$$

Таким образом, $\omega \in \{f < a\}$.

Теперь измеримость $f = \inf_{k \in \mathbb{N}}$ следует из измеримости всех множеств в правой части (1.15).

(b) Пусть $f = \lim_{k \to \infty} f_k$, и рассмотрим множество $\{f < a\}$. Покажем, что

$$\{f < a\} = \{\lim_{k \to \infty} f_k < a\} = \bigcup_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \{f_k < a - \frac{1}{m}\}$$
 (1.16)

Пусть $\omega \in \{f < a\}$, т.е. $c = \lim_{k \to \infty} f_k(\omega) < a$. Поскольку c < a, то существует такое $m \in \mathbb{N}$, что $c + \frac{2}{m} < a$. По определению предела, существует такое $n \in \mathbb{N}$, что $|f_k(\omega) - c| < \frac{1}{m}$ для всех $k \ge n$. В частности, для таких k имеем, что $f_k(\omega) < a - \frac{1}{m}$ (см. рис. 1.6). Это означает, что $\omega \in \{f_k < a - \frac{1}{m}\}$.

Рис. 1.6: Доказательство теоремы 1.3.15 (b).

Итак, было доказано, что существует $m \in \mathbb{N}$ и существует $n \in \mathbb{N}$ такие, что для всех $k \geq n$ имеем, что $\omega \in \{f_k < a - \frac{1}{m}\}$. Это означает, что ω принадлежит множеству в правой части (1.16).

Наоборот, если ω принадлежит множеству в правой части (1.16), то существует такое $m \in \mathbb{N}$, что можно найти $n \in \mathbb{N}$, для которого $w \in \left\{ f_k < a - \frac{1}{m} \right\}$, т.е. $f_k(\omega) < a - \frac{1}{m}$ для всех k > n. Но тогда $f(\omega) = \lim_{k \to \infty} f_k(\omega) \le a - \frac{1}{m} < a$, и, следовательно, $\omega \in \{f < a\}$.

Теперь измеримость множества $\{f < a\}$ непосредственно следует из (1.16).

(c) Поскольку $s = \lim_{n \to \infty} s_n$, где

$$s_n = \sum_{k=1}^n f_k,$$

то измеримость s_n для каждого $n \in \mathbb{N}$ следует из теоремы 1.3.13, а измеримость s следует из пункта (b).

Простые функции

Определение 1.3.16. Функция $f \to \mathbb{R}$ называется *простой*, если она принимает конечное количество значений.

Множество простых функций $f \colon \Omega \to \mathbb{R}$ будем обозначать через \mathcal{S} . Множество простых функций $f \colon \Omega \to \mathbb{R}_+$ будем обозначать через \mathcal{S}_+ .

Действительно, функция 1_A принимает только два значения, 0 и 1.

2. Пусть $\Omega = \bigsqcup_{k=1}^n A_k$, и $c_1, \ldots, c_n \in \mathbb{R}$. Тогда функция

$$f = \sum_{k=1}^{n} c_k \, 1_{A_k}$$

является простой.

Действительно, для $\omega \in \Omega$ имеем, что $\omega \in A_{k_0}$ для некоторого k_0 . Тогда

$$f(\omega) = \sum_{k=1}^{n} c_k \, 1_{A_k}(\omega) = c_{k_0} \, 1_{A_{k_0}}(\omega) = c_{k_0}.$$

Таким образом, функция f принимает только конечное количество значений c_1, \ldots, c_n (см. рис. 1.7).

3. Функция $f: \mathbb{R} \to \mathbb{R}, f(x) = x$, не является простой. Действительно, образом функции f является множество \mathbb{R} , которое не есть конечное.

Рис. 1.7: График простой функции $f = 21_{(-\infty,-1)} - 1_{\{-1\}} + 1_{(-1,1]}$.

Утверждение 1.3.18. Пусть $f: \Omega \to \mathbb{R}$ является простой. Тогда существует такое разбиение множества Ω ,

$$\Omega = \bigsqcup_{k=1}^{m} A_k, \tag{1.17}$$

и такие элементы $c_k \in \mathbb{R}$, $c_i \neq c_j$ при $i \neq j$, что

$$f = \sum_{k=1}^{m} c_k 1_{A_k}.$$
 (1.18)

Доказательство. Пусть f принимает конечное количество значений $\{c_1,\ldots,c_m\}$, причем $c_i\neq c_j$ при $i\neq j$. Положим

$$A_i = \{ \omega \in \Omega : f(\omega) = c_i \}, \qquad j = 1, \dots, m..$$

Очевидно имеем (1.17), поскольку $\operatorname{Im} f = \{c_1, \dots, c_m\}$. Если $\omega \in A_j$, то $f(\omega) = c_j$ по определению A_j . С другой стороны,

$$\sum_{k=1}^{m} c_k \, 1_{1_{A_k}}(\omega) = c_j 1_{A_j}(\omega) = c_j.$$

Таким образом имеем равенство (1.18).

Утверждение 1.3.19. Пусть f, g — простые функции, и $c \in \mathbb{R}_+$. Тогда f + g, cf, fg также являются простыми функциями. Если $g(\omega) \neq 0$ для всех $\omega \in \Omega$, то функция $\frac{f}{g}$ является простой.

Доказательство. Если

$$\operatorname{Im} f = \{c_k : k = 1, \dots, m\}, \quad \operatorname{Im} g = \{d_l : l = 1, \dots, n\},\$$

то

$$\operatorname{Im}(f+g) \subset \{c_k + d_l : k = 1, \dots, m; \ l = 1, \dots, n\},$$

$$\operatorname{Im}(cf) \subset \{cc_k : k = 1, \dots, m\},$$

$$\operatorname{Im}(fg) \subset \{c_k d_l : k = 1, \dots, m; \ l = 1, \dots, n\},$$

$$\operatorname{Im}\left(\frac{f}{g}\right) \subset \{\frac{c_k}{d_l} : k = 1, \dots, m; \ l = 1, \dots, n\}.$$

Поэтому, каждое из множеств $\operatorname{Im}(f+g), \operatorname{Im}(cf), \operatorname{Im}(fg), \operatorname{Im}\frac{f}{g}$ конечно.

Утверждение 1.3.20. Пусть (Ω, Σ) — измеримое пространство, $u \ f$ — простая функция. Функция f является измеримой тогда u только тогда, когда $A_k \in \Sigma$ в (1.17) для всех $k = 1, \ldots, m$.

Доказательство. Если все множества A_k , $k=1,\ldots,m$, измеримы, то соответствующие функции 1_{A_k} также измеримы (утверждение 1.3.12). Тогда и их линейная комбинация в правой части (1.18) измерима, т.е. измерима функция f.

Обратно, если f измерима, то, поскольку $A_k = f^{-1}(\{c_k\})$ и множества $\{c_k\}$ борелевские, измеримость A_k следует из определения измеримой функции (определение 1.3.7).

Определение 1.3.21. Для $f, f_n \colon \Omega \to \mathbb{R}, n \in \mathbb{N}$, положим

$$d_n = \sup_{\omega \in \Omega} |f(\omega) - f_n(\omega)|.$$

Если

$$\lim_{n\to\infty} d_n = 0,$$

то последовательность функций $(f_n)_{n=1}^{\infty}$ называется *сходящейся* к функции f равномерно на Ω , что обозначается $f_n \stackrel{\rightarrow}{\Longrightarrow} f$.

Рис. 1.8: Последовательности функций на [0,1]: (a) $f_n(x) = \frac{1}{n}x$; (b) $f_n(x) = x^n$.

Пример 1.3.22. 1. Пусть $\Omega = [0,1]$, и $f_n(x) = \frac{1}{n}x$ (рис. 1.8 (a)). Положим f = 0. Тогда

$$d_n = \sup_{x \in [0,1]} \left| 0 - \frac{1}{n} x \right| = \frac{1}{n} \xrightarrow[n \to \infty]{} 0,$$

и $f_n \underset{\Omega}{\Longrightarrow} 0$.

2. Пусть $\Omega = [0,1], f_n(x) = x^n$ (рис. 1.8 (b)). Положим $f = 1_{\{1\}}$. Тогда

$$d_n = \sup_{x \in [0,1]} |1_{\{1\}}(x) - x^n| = 1,$$

и последовательность (f_n) не сходится равномерно к f на [0,1] (хотя $f_n(x) \to f(x)$ для каждого $x \in [0,1]$).

Теорема 1.3.23 (об аппроксимации простыми функциями). Пусть (Ω, Σ) — измеримое пространство, и $f: \Omega \to \mathbb{R}$ измерима. Если f ограничена на Ω , то существует последовательность $(f_n)_{n=1}^{\infty}$ измеримых простых функций $f_n: \Omega \to \mathbb{R}$ таких, что $f_n \stackrel{\rightarrow}{\Longrightarrow} f$.

Доказательство. Поскольку f является ограниченной, то существуют такие $c, d \in \mathbb{R}$, что $\operatorname{Im} f \subset [c, d)$. Возьмем $n \in \mathbb{N}$, и построим простую функцию f_n .

Для этого разделим множество [c,d) точками $y_k=c+\frac{d-c}{n}k,$ $k=0,\ldots,n,$ т.е

$$c = y_0 < y_1 < \ldots < y_n = d,$$

где $y_k-y_{k-1}=\frac{d-c}{n}$ для всех $k=1,\ldots,n.$ Рассмотрим множества

$$A_k = \{ \omega \in \Omega : y_{k-1} \le f(\omega) < y_k \}, \qquad k = 1, \dots, n.$$

Очевидно, что $A_k \cap A_l = \emptyset$, если $k \neq l$. А, поскольку $\operatorname{Im} f \subset [c,d)$, то $\bigcup_{k=1}^n A_k = \Omega$, т.е. имеем разбиение

$$\Omega = \bigsqcup_{k=1}^{n} A_k.$$

Положим

$$f_n = \sum_{k=1}^n y_{k-1} 1_{A_k}.$$

Возьмем произвольную точку $w \in \Omega$. Тогда $\omega \in A_{k_0}$ для некоторого k_0 , и, следовательно,

$$f(\omega) - f_n(\omega) = f(\omega) - \sum_{k=1}^n y_k 1_{A_k}(\omega) = f(\omega) - y_{k_0 - 1} \in \left[0, \frac{d - c}{n}\right),$$

поскольку $f(\omega) \in [y_{k_0-1}, y_{k_0})$ по определению A_{k_0} . Это означает, что

$$\sup_{\omega \in \Omega} |f(\omega) - f_n(\omega)| \le \frac{d - c}{n},$$

и $f_n \rightrightarrows f$ на Ω при $n \to \infty$.

Пример 1.3.24. $\Omega = [0, 1), f(x) = x$. См. рис. 1.9.

Рис. 1.9: Аппроксимация функции f(x) = x функцией f_5 на $\Omega = [0,1)$.

1.3.2 Измеримые функции со значениями в $\overline{\mathbb{R}}_+$

Определение 1.3.25. *Борелевской о*-алгеброй $\overline{\mathcal{B}}$ на $\overline{\mathbb{R}}_+ = [0, +\infty]$ называется σ -алгебра на $\overline{\mathbb{R}}_+$, порожденная множествами $[0, a), a \in \mathbb{R}$.

Пример 1.3.26. Множества $[a,b),\ \{a\},\ (a,b),\ \mathbb{R}_+,\ \{+\infty\}$ являются борелевскими.

Действительно,

$$[a,b) = [0,b) \setminus [0,a),$$

$$\{a\} = \bigcap_{k=1}^{\infty} \left[a, a + \frac{1}{k} \right), (a,b) = [a,b) \setminus \{a\},$$

$$\mathbb{R}_{+} = \bigcup_{k=1}^{\infty} [0,k),$$

$$\{+\infty\} = \overline{\mathbb{R}}_{+} \setminus \mathbb{R}_{+}.$$

Утверждение 1.3.27. Борелевская σ -алгебра на \overline{R}_+ порождена семейством множеств $[0,a], a \in \mathbb{R}_+$.

Доказательство. Поскольку $[0,a]=\bigcap_{k=1}^{\infty}\left[0,a+\frac{1}{k}\right)$, то $[0,a]\in\overline{\mathcal{B}}$.

Пусть $\overline{\widetilde{B}} - \sigma$ -алгебра, порожденная множествами [0,a]. Поскольку $[0,a] \in \overline{B}$, то $\overline{\widetilde{\mathcal{B}}} \subset \overline{\mathcal{B}}$. С другой стороны, $[0,a) = \bigcup_{k=1}^{\infty} \left[0,a-\frac{1}{k}\right] \in \overline{\widetilde{\mathcal{B}}}$. Поэтому, $\overline{\mathcal{B}} \subset \overline{\widetilde{\mathcal{B}}}$, и, следовательно, $\overline{\widetilde{\mathcal{B}}} = \overline{\mathcal{B}}$.

Определение 1.3.28. Пусть (Ω, Σ) — измеримое пространство, $\overline{\mathcal{B}}$ — борелевская σ -алгебра на $\overline{\mathbb{R}}_+$. Функция $f \colon \Omega \to \overline{\mathbb{R}}_+$ называется измеримой, если измеримо отображение

$$f: (\Omega, \Sigma) \to (\overline{R}_+, \overline{\mathcal{B}}).$$

Множество всех измеримых функций $f \colon \Omega \to \overline{\mathbb{R}}_+$ на измеримом пространстве (Ω, Σ) обозначается $\overline{\mathcal{M}}(\Sigma)$.

Теорема 1.3.29. Пусть (Ω, Σ) — измеримое пространство, и $f: \Omega \to \overline{\mathbb{R}}_+$. Следующие условия эквивалентны:

- 1. f измерима;
- 2. все множества $\{f < a\}, a \in \mathbb{R}_+, uзмеримы;$
- 3. все множества $\{f \leq a\}, a \in \mathbb{R}_+, uзмеримы.$

Доказательство. Поскольку σ -алгебра на \mathbb{R}_+ порождается множествами [0,a) по определению или множествами [0,a] согласно утверждению 1.3.27, то эквивалентность всех утверждений следует из утверждения 1.3.6.

Теорема 1.3.30. Пусть (Ω, Σ) — измеримое пространство. Пусть $f, g: \Omega \to \overline{\mathbb{R}}_+$ измеримы, и $c \in \mathbb{R}_+$. Тогда функции f + g, cf, fg, $\frac{f}{g}$ также измеримы.

Доказательство. Доказательство повторяет доказательство теоремы 1.3.13 с использованием теоремы 1.3.29.

Задачи

KP: 293 (2, 4), 293.3, 302 (3), 306, 307.

ДР: 293 (3, 5), 296, 295, 298.1, 298.2, 298.3, 298.4 301, 300, 304, 305.

Теорема 1.3.31. Пусть (Ω, Σ) — измеримое пространство. Пусть $(f_k)_{k=1}^{\infty}$ — последовательность измеримых функций $\Omega \to \overline{\mathbb{R}}_+$. Тогда:

1. измеримыми являются функции $\Omega \to \overline{\mathbb{R}}_+$,

$$\sup_{k\in\mathbb{N}} f_k, \qquad \inf_{k\in\mathbb{N}} f_k;$$

- 2. если $\lim_{k\to\infty} f_k(\omega)$ существует в $\overline{\mathbb{R}}_+$ для всех $\omega\in\Omega,$ то $f=\lim_{k\to\infty} f_k$ измерима;
- 3. функция $f = \sum_{k=1}^{\infty} f_k$ измерима.

Доказательство. Доказательство повторяет доказательство теоремы 1.3.15.

Теорема 1.3.32 (об аппроксимации простыми функциями). Пусть (Ω, Σ) — измеримое пространство, $u f: \Omega \to \overline{\mathbb{R}}_+$ измерима. Тогда существует последовательность $(f_n)_{n=1}^{\infty}$, $f_n: \Omega \to \mathbb{R}$, измеримых простых функций таких, что $f_n \uparrow f$.

 \mathcal{A} оказательство. Зададимся $n \in \mathbb{N}$, и построим простую функцию $f_n \in \mathcal{S}_+$. Положим

$$A_{\infty}^{n} = \{ \omega \in \Omega : f(\omega) \ge n \},$$

$$f_{n}(\omega) = n, \qquad \omega \in A_{\infty}^{n}.$$

Имеем, что $f(\omega) < n$ для всех $\omega \in \Omega \setminus A_{\infty}^n$. Разделим отрезок [0,n] на отрезки длиной $\frac{1}{2^{n-1}}$ точками $y_k^n = \frac{k}{2^{n-1}}, \, k = 0, \dots, n2^{n-1}$. Теперь положим

$$A_k^n = \{ \omega \in \Omega : y_{k-1}^n \le f(\omega) < y_k^n \}, \qquad k = 1, \dots, n2^{n-1},$$

 $f_n(\omega) = y_{k-1}^n, \qquad \omega \in A_k^n.$

Очевидно, что

$$\Omega = A_{\infty}^n \sqcup \Big(\bigsqcup_{k=1}^{n2^{n-1}} A_k^n\Big),$$

$$f_n = n1_{A_{\infty}^n} + \sum_{k=1}^{n2^{n-1}} y_{k-1}^n 1_{A_k^n},$$

см. рис. 1.10.

Докажем, что $f_n(\omega) \leq f_{n+1}(\omega)$ для всех $\omega \in \Omega$. Для этого заметим, что $y_k^n = \frac{k}{2^{n-1}} = \frac{2k}{2^n} = y_{2k}^{n+1}$. Таким образом,

$${y_k^n: k = 0, \dots, n2^{n-1}} \subset {y_k^{n+1}: k = 0, \dots, (n+1)2^n}.$$

Предположим, что $f(\omega) < n$, т.е. $y_k^n \le f(\omega) < y_{k+1}^n$ для некоторого k. Имеем

$$y_k^n = y_{2k}^{n+1} \le f(\omega) < y_{2k+2}^{n+1} = y_{k+1}^n.$$

Тогда

$$y_{2k}^{n+1} \leq f(\omega) < y_{2k+1}^{n+1}$$
 либо $y_{2k+1}^{n+1} \leq f(\omega) < y_{2k+1}^{n+1}$

В первом случае,

$$f_{n+1}(\omega) = y_{2k}^{n+1} = y_k^n = f_n(\omega)$$

а во втором случае,

$$f_{n+1}(\omega) = y_{2k+1}^{n+1} > y_{2k}^{n+1} = y_k^n = f_n(\omega).$$

Таким образом имеем, что $f_{n+1}(\omega) \ge f_n(\omega)$.

Предположим, что $f(\omega) \ge n$. Тогда

$$f_n(\omega) = n = y_{n2^{n-1}}^n = y_{n2^n}^{n+1},$$

a

$$f_{n+1}(\omega) = \begin{cases} y_{n2^n}^{n+1}, & f(\omega) < y_{n2^n+1}^{n+1}, \\ y_k^{n+1}(k > n2^n + 1), & f(\omega) \ge y_{n2^n+1}^{n+1}. \end{cases}$$

В любом случае, $f_n(\omega) \le f_{n+1}(\omega)$.

Теперь докажем, что

$$\lim_{n \to \infty} f_n(\omega) = f(\omega)$$

для любого $\omega \in \Omega$.

Если
$$f(\omega) = +\infty$$
, то $f_n(\omega) = n$, и

$$\lim_{n \to \infty} f_n(\omega) = \lim_{n \to \infty} n = +\infty = f(\omega).$$

Если $f(\omega) \neq +\infty$, то для $n > f(\omega)$ имеем, что

$$f_n(\omega) = y_k^n \le f(\omega) < y_{k+1}^n$$

для некоторого k, причем

$$0 \le f(\omega) - f_n(\omega) = f(\omega) - y_k^n < y_{k+1}^n - y_k^n = \frac{1}{2^{n-1}}.$$

Таким образом,

$$\lim_{n \to \infty} (f(\omega) - f_n(\omega) = 0,$$

что и заканчивает доказательство.

Рис. 1.10: Аппроксимация функции $f(x)=\frac{1}{x}$ на $\Omega=[0,+\infty)$ простыми функциями: (a) f_2 ; (b) f_3 ; (c) f_2 и f_3 .

1.4 Интеграл Лебега

1.4.1 Интеграл от простой неотрицательной функции

Определение 1.4.1. Пусть (Ω, Σ) — измеримое пространство, и $\mu \colon \Sigma \to \overline{\mathbb{R}}_+$ — мера на σ -алгебре Σ . Тогда тройка (Ω, Σ, μ) называется измеримым пространством с мерой. При этом, всякое множество $A \in \Sigma$ называется μ -измеримым, а измеримая функция

$$f:(\Omega,\Sigma)\to(\mathbb{R},\mathcal{B})$$
 или $f:(\Omega,\Sigma)\to(\overline{\mathbb{R}}_+,\overline{\mathcal{B}})$

называется μ -измеримой.

Определение 1.4.2. Пусть (Ω, Σ, μ) — измеримое пространство с мерой. Пусть $f: \Omega \to \mathbb{R}_+$ — простая μ -измеримая функция,

$$f = \sum_{k=1}^{m} c_k 1_{A_k}, \qquad c_k \ge 0, \qquad \Omega = \bigsqcup_{k=1}^{m} A_k.$$
 (1.19)

 $\mathit{Интегралом}$ от функции f no $\mathit{мере}$ μ называется величина

$$\int_{\Omega} f \, d\mu = \int_{\Omega} f(\omega) \, d\mu(\omega) = \sum_{k=1}^{m} c_k \, \mu(A_k), \tag{1.20}$$

где

$$c_k \mu(A_k) = \begin{cases} c_k \mu(A_k), & \mu(A_k) < +\infty, \\ 0, & c_k = 0, \ \mu(A_k) = +\infty, \\ +\infty, & c_k > 0, \ \mu(A_k) = +\infty. \end{cases}$$

Если $\int_{\Omega} f \, d\mu < +\infty$, то интеграл называется $\mathit{cxodsumumcs}$, а функция f называется $\mathit{uhmespupyemoй}$.

 $\Pi pumep$ 1.4.3.
 1. Пусть $\Omega = \mathbb{R}, \lambda$ — мера Лебега на \mathbb{R} . Если

$$f = 1_{[0,1)} = 1 \cdot 1_{[0,1)} + 0 \cdot 1_{[0,1)^c},$$

ТО

$$\int_{\Omega} 1_{[0,1)} d\lambda = 1 \cdot \lambda ([0,1)] + 0 \cdot \lambda ([0,1)^c) = 1 \cdot 1 + 0 \cdot (+\infty) = 1,$$

см. рис. 1.11 (a). Функция f является интегрируемой.

1.4. ИНТЕГРАЛ ЛЕБЕГА

2. Пусть $\Omega = \mathbb{R}$, λ — мера Лебега на \mathbb{R} . Если

$$f = 1_{[0,+\infty)} = 0 \cdot 1_{(-\infty,0)} + 1 \cdot 1_{[0,+\infty)},$$

то

$$\int_{\Omega} 1_{[0,+\infty)} d\lambda = 0 \cdot \lambda \big((-\infty,0) \big) + 1 \cdot \lambda \big([0,+\infty) \big) = 0 + \infty = +\infty,$$

см. рис. 1.11 (b). Функция $1_{[0,+\infty)}$ не является интегрируемой.

Рис. 1.11: Интеграл от простой функции: (a) $I_1 = \int_{\mathbb{R}} 1_{[0,1)} d\lambda$; (b) $I_2 = \int_{\mathbb{R}} 1_{[0,+\infty)} d\lambda$.

Теорема 1.4.4. Пусть (Ω, Σ, μ) — измеримое пространство с мерой, $f, g \in \mathcal{S}_+$ — простые μ -измеримые функции, и $c \in \mathbb{R}_+$. Тогда:

- (a) $\int_{\Omega} 0 \, d\mu = 0$;
- (b) $\int_{\Omega} f d\mu \ge 0$;
- (c) $\int_{\Omega} 1_A d\mu = \mu(A)$ для $A \in \Sigma$;
- (d) $\int_{\Omega} (f+g) d\mu = \int_{\Omega} f d\mu + \int_{\Omega} g d\mu$;
- (e) $\int_{\Omega} cf d\mu = c \int_{\Omega} f d\mu$.

Доказательство. (а) Нулевая функция является простой: $0 = 1_{\emptyset}$. По определению интеграла

$$\int_{\Omega} 0 d\mu = \int_{\Omega} 1_{\emptyset} d\mu = \mu(\emptyset) = 0.$$

(b) Поскольку простая функция (1.19) является неотрицательной, то $c_k \ge 0$. А, поскольку $\mu(A_k) \ge 0$, то

$$\int_{\Omega} f \, d\mu = \sum_{k=1}^{m} c_k \mu(A_k) \ge 0.$$

- (с) Следует из определения интеграла.
- (d) Рассмотрим представление (1.19) для функций f и g:

$$f = \sum_{k=1}^{m} c_k 1_{A_k}, \qquad \Omega = \bigsqcup_{k=1}^{m} A_k,$$
$$g = \sum_{l=1}^{n} d_l 1_{B_l}, \qquad \Omega = \bigsqcup_{l=1}^{n} B_l.$$

Тогда имеем

$$A_k = A_k \cap \Omega = A_k \cap \left(\bigsqcup_{l=1}^n B_l\right) = \bigsqcup_{l=1}^n (A_k \cap B_l),$$

и, следовательно,

$$1_{A_k} = \sum_{l=1}^n 1_{A_k \cap B_l},$$

откуда следует, что

$$f = \sum_{k=1}^{m} c_k \sum_{l=1}^{n} 1_{A_k \cap B_l} = \sum_{k=1}^{m} \sum_{l=1}^{n} c_k 1_{A_k \cap B_l}.$$

Аналогично имеем представление

$$g = \sum_{k=1}^{m} \sum_{l=1}^{n} d_l 1_{A_k \cap B_l}.$$

Следовательно,

$$f + g = \sum_{k=1}^{m} \sum_{l=1}^{n} (c_k + d_l) 1_{A_k \cap B_l}.$$

Заметим, что

$$(A_{k_1} \cap B_{l_1}) \cap (A_{k_2} \cap B_{l_2}) = \emptyset, \qquad (k_1, l_1) \neq (k_2, l_2),$$

И

$$\bigcup_{k=1}^{m}\bigcup_{l=1}^{n}(A_{k}\cap B_{l})=\Omega.$$

Таким образом,

$$\int_{\Omega} (f+g) \, d\mu = \sum_{k=1}^{m} \sum_{l=1}^{n} (c_k + d_l) \, \mu(A_k \cap B_l) =$$

$$= \sum_{k=1}^{m} \sum_{l=1}^{n} c_k \, \mu(A_k \cap B_l) + \sum_{k=1}^{m} \sum_{l=1}^{n} d_l \, \mu(A_k \cap B_l) =$$

$$= \sum_{k=1}^{m} c_k \sum_{l=1}^{n} \mu(A_k \cap B_l) + \sum_{l=1}^{n} d_l \sum_{k=1}^{m} \mu(A_k \cap B_l) =$$

$$= \sum_{k=1}^{m} c_k \, \mu\Big(\bigcup_{l=1}^{n} (A_k \cap B_l)\Big) + \sum_{l=1}^{n} d_l \, \mu\Big(\bigcup_{k=1}^{m} (A_k \cap B_l)\Big) =$$

$$= \sum_{k=1}^{m} c_k \, \mu\Big(A_k \cap (\bigcup_{l=1}^{n} B_l)\Big) + \sum_{l=1}^{n} d_l \, \mu\Big((\bigcup_{k=1}^{m} A_k) \cap B_l\Big) =$$

$$= \sum_{k=1}^{m} c_k \, \mu(A_k \cap \Omega) + \sum_{l=1}^{n} d_l \, \mu(\Omega \cap B_l) =$$

$$= \sum_{k=1}^{m} c_k \, \mu(A_k) + \sum_{l=1}^{n} d_l \mu(B_l) =$$

$$= \int_{\Omega} f \, d\mu + \int_{\Omega} g \, d\mu.$$

(e) Если

$$f = \sum_{k=1}^{m} c_k 1_{A_k},$$

то

$$cf = \sum_{k=1}^{m} cc_k 1_{A_k},$$

И

$$\int_{\Omega} cf \, d\mu = \sum_{k=1}^{m} cc_k \, \mu(A_k) = c \sum_{k=1}^{m} c_k \mu(A_k) = c \int_{\Omega} f \, d\mu.$$

Следствие 1.4.5. Если $f,g \in \mathcal{S}$ и $f \leq g$, то $\int_{\Omega} f \, d\mu \leq \int_{\Omega} g \, d\mu$.

$$0 \le \int_{\Omega} (g - f) d\mu = \int_{\Omega} g d\mu - \int_{\Omega} f d\mu,$$

T.e. $\int_{\Omega} f d\mu \leq \int_{\Omega} g d\mu$.

1.4.2 Интеграл от неотрицательной функции

Определение 1.4.6. Пусть (Ω, Σ, μ) — измеримое пространство с мерой, и $f: \Omega \to \overline{\mathbb{R}}_+$ — μ -измеримая функция. Интегралом от f по мере μ называется элемент $I \in \overline{\mathbb{R}}_+$, определяемый как

$$I = \int_{\Omega} f \, d\mu = \int_{\Omega} f(\omega) \, d\mu(\omega) = \sup_{h \in \mathcal{S}_+, \, h \le f} \int_{\Omega} h \, d\mu.$$

Если $I \in \mathbb{R}$, то функция f называется интегрируемой.

Замечание 1.4.7. В следствии 1.4.13 будет показано, что

$$\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} g_k \, dm,$$

где (g_k) — последовательность таких простых неотрицательных измеримых функций, что $g_k \uparrow f$.

Пример 1.4.8. Пусть $\Omega = \mathbb{N}$, $\Sigma = \mathcal{P}(\mathbb{N})$, $\mu(A) = |A|$, $f \colon \mathbb{N} \to \mathbb{R}$, $f(k) = \frac{1}{k^2}$, т.е.

$$f = \sum_{k=1}^{\infty} \frac{1}{k^2} \, 1_{\{k\}}.$$

Для $m \in \mathbb{N}$ положим

$$g_m = \sum_{k=1}^m \frac{1}{k^2} \, 1_{\{k\}}.$$

Тогда $g_m \in \mathcal{S}_+, g_m \uparrow f$, и

$$\int_{\mathbb{N}} g_m \, d\mu = \sum_{k=1}^m \frac{1}{k^2}.$$

Поэтому,

$$\int_{\mathbb{N}} f \, d\mu = \lim_{m \to \infty} \int_{\mathbb{N}} g_m \, d\mu = \lim_{m \to \infty} \sum_{k=1}^m \frac{1}{k^2} = \sum_{k=1}^\infty \frac{1}{k^2}.$$

Пример 1.4.9. Пусть $\Omega = [0,1), \Sigma = \mathcal{B}, \mu = \lambda, f(x) = x.$

Построим последовательность простых измеримых функций g_k , $g_k \uparrow f$.

Пример 1.4.10. $\Omega = [0,1), \ \mu = \lambda, \ f(x) = \frac{1}{x}.$

Утверждение 1.4.11. Пусть (Ω, Σ, μ) — измеримое пространство с мерой, $f, g: \Omega \to \overline{\mathbb{R}}_+$ — μ -измеримые функции, причем $f \leq g$. Тогда

$$\int_{\Omega} f \, d\mu \le \int_{\Omega} g \, d\mu.$$

Доказательство. Пусть

$$S_{+}(f) = \{ h \in S_{+} : h \le f \}, \qquad S_{+}(g) = \{ h \in S_{+} : h \le g \}.$$

Поскольку $f \leq g$, то $\mathcal{S}_+(f) \subset \mathcal{S}_+(g)$. Таким образом,

$$\int_{\Omega} f \, d\mu = \sup_{h \in \mathcal{S}_{+}(f)} \int_{\Omega} h \, d\mu \le \sup_{h \in \mathcal{S}_{+}(g)} \int_{\Omega} h \, d\mu = \int_{\Omega} g \, d\mu.$$

Теорема 1.4.12 (Беппо Леви). Пусть (Ω, Σ, μ) — измеримое пространство с мерой. Пусть $f, f_k \colon \Omega \to \overline{\mathbb{R}}_+, k \in \mathbb{N}, -\mu$ -измеримые функции, причем $f_k \uparrow f$. Тогда

$$\int_{\Omega} f_k \, d\mu \quad \uparrow \quad \int_{\Omega} f \, d\mu.$$

Доказательство. Пусть $I_k = \int_{\Omega} f_k d\mu$. Поскольку $f_1 \leq f_2 < \dots$ в силу условия теоремы, имеем, что $I_1 \leq I_2 \leq \dots$ согласно утверждению 1.4.11. Поэтому, существует

$$I_{\infty} = \lim_{k \to \infty} I_k \le I,\tag{1.21}$$

причем $I_k \uparrow I_{\infty}$. Докажем, что $I_{\infty} = I$, доказав, что $I_{\infty} \geq I$. Для этого возьмем произвольную функцию $h \in \mathcal{S}_+$, $h \leq f$, и число $c \in (0,1)$. Тогда $ch \in \mathcal{S}_+$ и

$$ch \le h \le f$$
.

Рассмотрим множество

$$B_k = \{ \omega \in \Omega : f_k(\omega) \ge ch(\omega) \},$$

и докажем, что

$$B_k \subset B_{k+1}, \quad k \in \mathbb{N}, \qquad \text{if} \qquad \bigcup_{k=1}^{\infty} B_k = \Omega.$$
 (1.22)

Поскольку $f_{k+1} \ge f_k$, то для $\omega \in B_k$ имеем, что $f_{k+1}(\omega) \ge f_k(\omega) \ge ch(\omega)$ и $\omega \in B_{k+1}$, т.е. $B_k \subset B_{k+1}$, что доказывает первую часть (1.22).

Для доказательства второй части (1.22) возьмем произвольное $\omega \in \Omega$. Если $f(\omega) = 0$, то в силу неотрицательности всех функций, имеем

$$0 \le f_k(\omega) \le f(\omega) = 0, \qquad 0 \le ch(\omega) \le h(\omega) \le f(\omega) = 0,$$

т.е. $f_k(\omega) = ch(\omega) = 0$, и $\omega \in B_k$ для всех k, а значит $\omega \in \bigcup_{k=1}^{\infty} B_k$. Если $f(\omega) > 0$, то, поскольку $h(\omega) \le f(\omega)$, имеем, что $ch(\omega) < f(\omega)$. А, поскольку $f_k(\omega) \to f(\omega)$ по условию, то $f_k(\omega) \in (ch(\omega), f(\omega))$ для достаточно больших k. Таким образом, для этих k будем иметь, что $\omega \in B_k$, и, следовательно, $\omega \in \bigcup_{k=1}^{\infty} B_k$, что и заканчивает доказательство (1.22).

Рассмотрим теперь функции f_k , $f_k \cdot 1_{B_k}$ и $ch \cdot 1_{B_k}$. Поскольку

$$(f_k \cdot 1_{B_k})(\omega) = \begin{cases} f_k(\omega), & \omega \in B_k, \\ 0, & \omega \notin B_k, \end{cases} \quad (ch \cdot 1_{B_k})(\omega) = \begin{cases} ch(\omega), & \omega \in B_k, \\ 0, & \omega \notin B_k, \end{cases}$$

и $f_k(\omega) \geq ch(\omega)$, если $\omega \in B_k$, по определению множества B_k , то

$$f_k \ge f_k \cdot 1_{B_k} \ge ch \cdot 1_{B_k}$$

и, следовательно,

$$I_k = \int_{\Omega} f_k \, d\mu \ge \int_{\Omega} ch \cdot 1_{B_k} \, d\mu. \tag{1.23}$$

 Φ ункция h — простая. Пусть

$$h = \sum_{l=1}^{n} c_l 1_{A_l}.$$

Тогда

$$ch \cdot 1_{B_k} = \sum_{l=1}^{n} cc_l 1_{A_k} \cdot 1_{B_k} = \sum_{l=1}^{n} cc_l 1_{A_l \cap B_k},$$

И

$$\int_{\Omega} ch \cdot 1_{B_k} d\mu = c \sum_{l=1}^{n} c_l \, \mu(A_l \cap B_k). \tag{1.24}$$

Поскольку $B_k \subset B_{k+1}$, а значит и $A_l \cap B_k \subset A_l \cap B_{k+1}$ для всех l, и $\bigcup_{k=1}^{\infty} B_k = \Omega$ (см. (1.22)), используя монотонность меры по возрастанию (утверждение 1.2.13), имеем

$$\lim_{k \to \infty} \mu(A_l \cap B_k) = \mu(A_l \cap \bigcup_{l=1}^{\infty} B_k) = \mu(A_l \cap \Omega) = \mu(A_l).$$

Таким образом, из (1.24) имеем:

$$\lim_{k \to \infty} \int_{\Omega} ch \cdot 1_{B_k} d\mu = \lim_{k \to \infty} c \sum_{l=1}^{n} c_l \mu(A_l \cap B_k) =$$

$$= c \sum_{l=1}^{n} c_l \lim_{k \to \infty} \mu(A_l \cap B_k) = c \sum_{l=1}^{n} c_l \mu(A_l) =$$

$$= c \int_{\Omega} h d\mu.$$

Теперь, используя (1.23), имеем:

$$I_{\infty} = \lim_{k \to \infty} \ge \lim_{k \to \infty} \int_{\Omega} ch \cdot 1_{B_k} d\mu = c \int_{\Omega} h d\mu.$$

Это неравенство верно для всех $c \in (0,1)$. Поэтому,

$$I_{\infty} \ge \lim_{c \to 1} c \int_{\Omega} h \, d\mu = \int_{\Omega} h \, d\mu.$$

А это неравенство верно для всех $h \in S_+, h \le f$. Поэтому,

$$I_{\infty} \ge \sup_{h \in \mathcal{S}_+, h \le f} \int_{\Omega} h \, d\mu = \int_{\Omega} f \, d\mu = I.$$

Это неравенство вместе с (1.21) дает $I_{\infty}=I$, что и заканчивает доказательство.

Следствие 1.4.13. Пусть (Ω, Σ, μ) — измеримое пространство с мерой, $f \colon \Omega \to \overline{\mathbb{R}}_+$ — μ -измеримая функция, $u \ (g_k)_{k=1}^{\infty}$ — такая последовательность функций $g_k \in \mathcal{S}_+$, что $g_k \uparrow f$. Тогда

$$\int_{\Omega} f \, d\mu = \lim_{k \to \infty} \int_{\Omega} g_k \, d\mu.$$

Доказательство. Это является прямым следствием теоремы 1.4.12.

Теорема 1.4.14 (Фату). Пусть (Ω, Σ, μ) — измеримое пространство с мерой, и $(f_k)_{k=1}^{\infty}$ — произвольная поточечно сходящаяся последовательность измеримых неотрицательных функций, $f_n \in \overline{\mathcal{M}}_+(\Sigma)$. Тогда, если $\int_{\Omega} f_n \, d\mu \leq M$ для некоторого $M \in \mathbb{R}_+$ и всех $n \in \mathbb{N}$, то для измеримой функции $f(\omega) = \lim_{n \to \infty} f_n(\omega)$ имеем, что

$$\int_{\Omega} f \, d\mu \le M.$$

Доказательство. Рассмотрим последовательность $(u_n)_{n=1}^{\infty}$ функций на Ω , определенную как

$$u_n(\omega) = \inf_{k > n} f_k(\omega).$$

Поскольку функции f_k , $k \in \mathbb{N}$, являются измеримыми, то по теореме 1.3.15 функции u_n также измеримы.

Поскольку для каждого $\omega \in \Omega$

$$\{f_n(\omega), f_{n+1}(\omega), f_{n+2}(\omega), \ldots\} \supset \{f_{n+1}(\omega), f_{n+2}(\omega), \ldots\},\$$

то

$$u_n(\omega) = \inf\{f_n(\omega), f_{n+1}(\omega), f_{n+2}(\omega), \ldots\} \le$$

$$\leq \inf\{f_{n+1}(\omega), f_{n+2}(\omega), \ldots\} = u_{n+1}(\omega).$$

Докажем теперь, что $\lim_{n\to\infty}u_n(\omega)=f(\omega)$. Зададимся $\varepsilon>0$. Поскольку $f_n(\omega)\to f(\omega)$, то существует n_0 для которого $f_k(\omega)\in \left(f(\omega)-\frac{\varepsilon}{2},f(\omega)+\frac{\varepsilon}{2}\right)$ для всех $k\geq n_0$. Но тогда для всех $n\geq n_0$ имеем

$$u_n(\omega) = \inf_{k > n} f_k(\omega) \in \left[f(\omega) - \frac{\varepsilon}{2}, f(\omega) + \frac{\varepsilon}{2} \right] \subset (f(\omega) - \varepsilon, f(\omega) + \varepsilon),$$

что и означает, что $\lim_{n\to\infty} u_n(\omega) = f(\omega)$.

Таким образом, имеем, что $u_n \uparrow f$. Поэтому, по теореме Б. Леви 1.4.12 имеем

$$\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} u_n \, d\mu.$$

Но из определения функции u_n следует, что $u_n \leq f_n$. Поэтому,

$$\int_{\Omega} u_n \, d\mu \le \int_{\Omega} f_n \, d\mu \le M.$$

Следовательно,

$$\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} u_n \, d\mu \le M.$$

 \Box

Пример 1.4.15. Пусть $\Omega = \mathbb{R}_+, \ \mu = \lambda$ и $f_n = 1_{[n-1,n)}, \ n \in \mathbb{N}$. Тогда $\int_{\mathbb{R}_+} f_n \ d\lambda = 1$ для всех $n \in \mathbb{N}$. Кроме этого,

$$f(\omega) = \lim_{n \to \infty} f_n(\omega) = 0, \quad \omega \in \mathbb{R}_+,$$

и $\int_{\Omega} f \, d\lambda = 0 \le 1$.

Теорема 1.4.16. Пусть (Ω, Σ, μ) — измеримое пространство с мерой, $f, g: \Omega \to \overline{\mathbb{R}}_+$ — μ -измеримые функции, и $c \in \mathbb{R}_+$. Тогда:

$$\begin{split} \int_{\Omega} (f+g) \, d\mu &= \int_{\Omega} f \, d\mu + \int_{\Omega} g \, d\mu; \\ \int_{\Omega} cf \, d\mu &= c \int_{\Omega} f \, d\mu. \end{split}$$

Доказательство. Пусть $f_k, g_k \in \mathcal{S}_+$ — последовательности простых функций таких, что $f_k \uparrow f$ и $g_k \uparrow g$. Тогда $(f_k+g_k) \uparrow (f+g)$. Поэтому, используя следствие 1.4.13 и теорему 1.4.4, имеем, что

$$\int_{\Omega} (f+g) \, d\mu = \lim_{k \to \infty} \int_{\Omega} (f_k + g_k) \, d\mu = \lim_{k \to \infty} \left(\int_{\Omega} f_k \, d\mu + \int_{\Omega} g_k \, d\mu \right) =$$

$$= \lim_{k \to \infty} \int_{\omega} f_k \, d\mu + \lim_{k \to \infty} \int_{\Omega} g_k \, d\mu =$$

$$= \int_{\Omega} f \, d\mu + \int_{\Omega} g \, d\mu.$$

Доказательство второй части утверждения аналогично.

Свойство «почти всюду»

Определение 1.4.17. Пусть (Ω, Σ, μ) — измеримое пространство с мерой. Будем говорить, что некоторое свойство $P(\omega)$, зависящее от $\omega \in \Omega$, выполняется μ -noчти всюду (п.в.), если для множества

$$\tilde{A} = \{\omega \in \Omega : P(\omega) \text{ не выполняется}\}$$

имеем

$$\mu(\tilde{A}) = 0.$$

Пример 1.4.18. Пусть $\Omega = \mathbb{R}$, $\mu = \lambda$.

- 1. Пусть $x \in \mathbb{R}$. Тогда $1_{\{x\}} = 0$ п.в.
- 2. $1_{\mathbb{Q}} = 0$ п.в.
- $3. \sin^k x \longrightarrow 0$ при $k \to \infty$.

Утверждение 1.4.19. Пусть $f \in \overline{\mathcal{M}}_+$. Тогда

$$\int_{\Omega} f \, d\mu = 0 \qquad \Longleftrightarrow \qquad f = 0 \, \mu\text{--i.b.}.$$

Доказательство. Пусть f=0 п.в. Это означает, что для множества

$$A = \{ \omega \in \Omega : f(\omega) > 0 \}$$

имеем, что $\mu(A) = 0$. Пусть $h \in \mathcal{S}_+$ такая, что $h \leq f$. Поскольку $f(\omega) = 0$ при $\omega \in A^c$ и $0 \leq h(\omega) \leq f(\omega)$ для всех $\omega \in \Omega$, имеем, что $h(\omega) = 0$ при $w \in A^c$. Таким образом, $h = h \cdot 1_A$. Поэтому, для

$$h = \sum_{k=1}^{m} c_k 1_{A_k}$$

имеем

$$h = h \cdot 1_A = \sum_{k=1}^{m} c_k 1_{A_k} \cdot 1_A = \sum_{k=1}^{m} c_k 1_{A_k \cap A},$$

И

$$\int_{\Omega} h \, d\mu = \sum_{k=1}^{m} c_k \mu(A_k \cap A).$$

Поскольку $A_k \cap A \subset A$ и $\mu(A) = 0$, то $\mu(A_k \cap A) = 0$ для всех k. Таким образом,

$$\int_{\Omega} h \, d\mu = 0$$

для произвольной неотрицательной простой функции $h, h \leq f$. По определению

$$\int_{\Omega} f \, d\mu = \sup_{h \in \mathcal{S}_+, \ h \le f} \int_{\Omega} h \, d\mu = 0.$$

Пусть теперь $\int_{\Omega}f\,d\mu=0$ и докажем, что f=0 п.в., т.е. $\mu(A)=0$. Положим

$$A_n = \left\{ \omega \in \Omega : f(\omega) > \frac{1}{n} \right\},\,$$

Тогда $A = \bigcup_{n=1}^{\infty} A_n$. Действительно, очевидно, что $A_n \subset A$ для всех n. Поэтому, $\bigcup_{n=1}^{\infty} \subset A$. С другой стороны, если $\omega \in A$, т.е. $f(\omega) > 0$, то существует $n \in \mathbb{N}$ такое, что $f(\omega) > \frac{1}{n}$, что означает, что $\omega \in A_n$. Следовательно, $\omega \in \bigcup_{n=1}^{\infty} A_n$. Итак, $A = \bigcup_{n=1}^{\infty} A_n$.

Кроме того, $A_n \subset A_{n+1}$, поскольку для $\omega \in A_n$ имеем, что $f(\omega) > \frac{1}{n}$, а значит будем иметь, что $f(\omega) > \frac{1}{n+1}$, т.е. $\omega \in A_{n+1}$.

Таким образом, из утверждения 1.2.13 следует, что

$$\mu(A) = \lim_{n \to \infty} \mu(A_n).$$

Однако, $\mu(A_n)=0$ для всех $n\in\mathbb{N}$, поскольку если $\mu(A_{n_0})>0$ для некоторого n_0 , то так как

$$f \ge f \cdot 1_{A_{n_0}} \ge \frac{1}{n} \, 1_{A_{n_0}},$$

имеем

$$\int_{\Omega} f \, d\mu \ge \int_{\Omega} \frac{1}{n} 1_{A_{n_0}} \, d\mu = \frac{1}{n} \mu(A_{n_0}) > 0,$$

что противоречит условию. Таким образом, $\mu(A_n)=0$ для всех $n\in\mathbb{N},$ и $\mu(A)=\lim_{n\to\infty}\mu(A_n)=0.$

Утверждение 1.4.20. Пусть $f, g \in \overline{\mathcal{M}}_+$.

- (a) Echu $f = g \mu$ -II.B., mo $\int_{\Omega} f d\mu = \int_{\Omega} g d\mu$.
- (b) Ecau $f \leq g \mu$ -p.b., mo $\int_{\Omega} f d\mu \leq \int_{\Omega} g d\mu$.

Доказательство. (а) Пусть

$$A = \{ \omega \in \Omega : f(x) \neq g(x) \}.$$

Поскольку f=g μ -п.в. по условию, то $\mu(A)=0$. Отсюда следует, что $f\cdot 1_A=0$ μ -п.в. и $g\cdot 1_A=0$ μ -п.в.. Поэтому,

$$\int_{\Omega} f \cdot 1_A d\mu = \int_{\Omega} g \cdot 1_A d\mu = 0,$$

и, следовательно,

$$\int_{\Omega} f \, d\mu = \int_{\Omega} f \cdot (1_A + 1_{A^c}) \, d\mu = \int_{\Omega} f \cdot 1_A \, d\mu + \int_{\Omega} f \cdot 1_{A^c} \, d\mu =$$
$$= \int_{\Omega} f \cdot 1_{A^c} \, d\mu.$$

Аналогично имеем, что

$$\int_{\Omega} g \, d\mu = \int_{\Omega} g \cdot 1_{A^c} \, d\mu.$$

Но по определению множества A имеем, что $(f \cdot 1_{A^c})(\omega) = (g \cdot 1_{A^c})(\omega)$ для всех $\omega \in \Omega$. Поэтому,

$$\int_{\Omega} f \, d\mu = \int_{\Omega} f \cdot 1_{A^c} \, d\mu = \int_{\Omega} g \cdot 1_{A^c} \, d\mu = \int_{\Omega} g \, d\mu.$$

(b) Положим

$$B = \{ \omega \in \Omega : f(\omega) > g(\omega) \}.$$

Поскольку $f \leq g$ μ -п.в. по условию, то $\mu(B)=0$. Отсюда следует, что $f \cdot 1_B=0$ μ -п.в. и $g \cdot 1_B=0$ μ -п.в.. Поэтому,

$$\int_{\Omega} f \cdot 1_B \, d\mu = \int_{\Omega} g \cdot 1_B \, d\mu = 0.$$

Как и в п. (а) имеем:

$$\int_{\Omega} f \, d\mu = \int_{\Omega} f \cdot 1_{B^c} \, d\mu, \qquad \int_{\Omega} g \, d\mu = \int_{\Omega} g \cdot 1_{B^c} \, d\mu.$$

Но по определению множества B имеем, что $(f \cdot 1_{B^c})(\omega) \le (g \cdot 1_{B^c})(\omega)$ для всех $\omega \in \Omega$. Поэтому,

$$\int_{\Omega} f \, d\mu = \int_{\Omega} f \cdot 1_{B^c} \, d\mu \leq \int_{\Omega} g \cdot 1_{B^c} \, d\mu = \int_{\Omega} g \, d\mu.$$

Утверждение 1.4.21 (неравенство Чебышева). Пусть $f \in \overline{\mathcal{M}}_+$ u > 0. Тогда

$$\mu(\{\omega \in \Omega : f(\omega) \ge c\}) \le \frac{1}{c} \int_{\Omega} f \, d\mu.$$

Доказательство. Положим

$$A = \{ \omega \in \Omega : f(\omega) \ge c \}.$$

Тогда

$$f = f \cdot (1_A + 1_{A^c}) = f \cdot 1_A + f \cdot 1_{A^c} \ge f \cdot 1_A.$$

По определению множества A имеем $f(\omega) \ge c$ для $\omega \in A$, и, следовательно, $f \cdot 1_A \ge c1_A$. Поэтому,

$$\int_{\Omega} f \, d\mu \ge \int_{\Omega} f \cdot 1_A \, d\mu \ge \int_{\Omega} c 1_A \, d\mu = c\mu(A).$$

Таким образом,

$$\mu(A) \leq \frac{1}{c} \int_{\Omega} f \, d\mu.$$

Утверждение 1.4.22. Пусть $f \in \overline{\mathcal{M}}_+$ и $\int_{\Omega} f \, d\mu < \infty$. Тогда $f < +\infty$ μ -п.в.

Доказательство. Пусть

$$A = \{ \omega \in \Omega : f(\omega) = +\infty \}.$$

Тогда $n1_A \leq f$ для всех $n \in \mathbb{N}$. Поэтому,

$$\int_{\Omega} n 1_A d\mu = n\mu(A) \le \int_{\Omega} f d\mu < +\infty.$$

Поскольку это неравенство выполняется для всех $n \in \mathbb{N}$, с необходимостью имеем, что $\nu(A) = 0$.

1.4.3 Интеграл от измеримой функции

Лемма 1.4.23. Пусть (Ω, Σ, μ) — измеримое пространство с мерой, и $f \in \mathcal{M}(\Sigma)$. Определим $f^+, f^- \colon \Omega \to \mathbb{R}_+$ как

$$f^{+}(\omega) = \max\{f(\omega), 0\}, \qquad f^{-}(\omega) = \max\{-f(\omega), 0\},$$

см. рис. 1.12. Тогда $f^+, f^- \in \mathcal{M}_+, u$

$$\begin{cases} f = f^+ - f^-, \\ |f| = f^+ + f^-, \end{cases} \begin{cases} f^+ = \frac{1}{2}(|f| + f), \\ f^- = \frac{1}{2}(|f| - f). \end{cases}$$

Также

$$f^+ \le |f|, \qquad f^- \le |f|.$$

Доказательство. То, что f^+ и f^- измеримы следует непосредственно из теоремы 1.3.15 и измеримости постоянной функции 0. Их неотрицательность следует из определения.

Для доказательств первой пары формул рассмотрим множества

$$A_{+} = \{ \omega \in \Omega : f(\omega) \ge 0 \}, \qquad A_{-} = \{ \omega \in \Omega : f(\omega) < 0 \}.$$

Очевидно имеем $A_+ \cup A_- = \Omega$. Поэтому проверим выполнение формул на каждом из множеств.

Рис. 1.12: Графики функций: (a) f; (b) f^+ ; (c) f^- .

Если
$$\omega \in A_+$$
, то $f^+(\omega) = f(\omega)$ а $f_-(\omega) = 0$. Поэтому,
$$f^+(\omega) - f^-(\omega) = f(\omega) - 0 = f(\omega),$$

$$f^+(\omega) + f^-(\omega) = f(\omega) + 0 = |f(\omega)|.$$

Если
$$\omega \in A_-$$
, то $f^+(\omega) = 0$, $f^-(\omega) = -f(\omega)$, и
$$f^+(\omega) - f^-(\omega) = 0 - (-f(\omega) = f(\omega),$$

$$f^+(\omega) + f^-(\omega) = 0 - f(\omega) = |f(\omega)|.$$

Вторая пара формул получается решением первой системы относительно f^+ и f^- .

Наконец,

$$f^+ = |f^+| = \left| \frac{|f| + f}{2} \right| = \frac{|f| + f}{2} \le \frac{|f| + |f|}{2} = |f|.$$

Для f^- доказательство проводится аналогично.

Определение 1.4.24. Пусть (Ω, Σ, μ) — измеримое пространство с мерой. Функция $f \in \mathcal{M}(\Sigma)$ называется интегрируемой относительно меры μ , если $\int_{\Omega} |f| \, d\mu < \infty$. В этом случае интегралом от функции f по мере μ называется число

$$\int_{\Omega} f(\omega) \, d\mu(\omega) = \int_{\Omega} f \, d\mu = \int_{\Omega} f^{+} \, d\mu - \int_{\Omega} f^{-} \, d\mu.$$

1.4. ИНТЕГРАЛ ЛЕБЕГА

Множество всех функций, интегрируемых по мере μ , обозначается $\mathcal{L}_1(\Omega,\mu)$ или $\mathcal{L}_1(\mu)$.

Задачи

KP: 309, 311, 316, 317, 319 (1, 2), 321.

Утверждение 1.4.25. Пусть (Ω, Σ, μ) — измеримое пространство с мерой.

- (a) Если f является интегрируемой, то интегралы $\int_{\Omega} f^+ d\mu$ и $\int_{\Omega} f^- d\mu$ являются сходящимися, и $\int_{\Omega} f d\mu \in \mathbb{R}$.
- (b) Если $f \in \mathcal{M}(\Sigma)$ и f = 0 μ -п.в., то f интегрируема и $\int_{\Omega} f \, d\mu = 0$.
- (c) Если $f \in \mathcal{M}(\Sigma)$ и $|f| \leq g$ для некоторой интегрируемой функции g, то f является интегрируемой.
- (d) Пусть f интегрируема, а g измерима и ограничена на Ω . Тогда fg также интегрируема.
- Доказательство. (а) Как следует из леммы 1.4.23, $f^+ \leq |f|$ и $f^- \leq |f|$. Поэтому, согласно утверждению 1.4.11, $\int_{\Omega} f^+ d\mu < \infty$ и $\int_{\Omega} f^- d\mu < \infty$.
- (b) Поскольку f=0 μ –п.в., то |f|=0 μ –п.в., Поэтому, $f^+=0$ и $f^-=0$ μ –п.в.. Таким образом,

$$\int_{\Omega} f \, d\mu = \int_{\Omega} f^{+} \, d\mu - \int_{\Omega} f^{-} \, d\mu = 0 - 0 = 0.$$

(c) Поскольку $|f| \leq g$, а g = |g| является интегрируемой, то, согласно утверждению 1.4.11, имеем

$$\int_{\Omega} |f| \, d\mu \le \int_{\Omega} g \, d\mu < \infty.$$

(d) Так как g ограничена, то существует такое $C \in \mathbb{R}_+$, что $fg \leq C|f|$. Поскольку $\int_{\Omega} |f| \, d\mu < \infty$, то $\int_{\Omega} C|f| \, d\mu < \infty$, а значит fg является интегрируемой согласно (c).

Утверждение 1.4.26. Пусть $f, g \in \mathcal{L}_1(\mu), \ u \ c \in \mathbb{R}$. Тогда

(a) $f + g \in \mathcal{L}_1(\mu)$, u

$$\int_{\Omega} (f+g) d\mu = \int_{\Omega} f d\mu + \int_{\Omega} g d\mu;$$

(b) $cf \in \mathcal{L}_1(\mu), u$ $\int cf du$

$$\int_{\Omega} cf \, d\mu = c \int_{\Omega} f \, d\mu.$$

Доказательство. (а) Поскольку $|f+g| \le |f| + |g|$, то, используя утверждение 1.4.11 а затем теорему 1.4.16, имеем

$$\int_{\Omega} |f+g| \, d\mu \le \int_{\Omega} \left(|f|+|g| \right) d\mu = \int_{\Omega} |f| \, d\mu + \int_{\Omega} |g| \, d\mu < \infty.$$

Для доказательства первого равенства запишем

$$f + g = (f + g)^{+} - (f + g)^{-},$$

$$f + g = f^{+} - f^{-} + g^{+} - g^{-}.$$

Откуда имеем

$$(f+g)^+ - (f+g)^- = f^+ - f^- + g^+ - g^-$$

или

$$(f+g)^+ + f^- + g^- = (f+g)^- + f^+ + g^+.$$

Следовательно, используя теорему 1.4.16, получим

$$\int_{\Omega} (f+g)^+ d\mu + \int_{\Omega} f^- d\mu + \int_{\Omega} g^- d\mu =$$

$$= \int_{\Omega} (f+g)^{-} d\mu + \int_{\Omega} f^{+} d\mu + \int_{\Omega} g^{+} d\mu.$$

Отсюда следует, что

$$\begin{split} \int_{\Omega} (f+g) \, d\mu &= \int_{\Omega} (f+g)^{+} \, d\mu - \int_{\Omega} (f+g)^{-} \, d\mu = \\ &= \int_{\Omega} f^{+} \, d\mu - \int_{\Omega} f^{-} \, d\mu + \int_{\Omega} g^{+} \, d\mu - \int_{\Omega} g^{-} \, d\mu = \\ &= \int_{\Omega} f \, d\mu + \int_{\Omega} g \, d\mu. \end{split}$$

(b) Поскольку |cf| = |c| |f|, $\int_{\Omega} |cf| d\mu < \infty$, т.е. $cf \in \mathcal{L}_1(\mu)$. Если $c \geq 0$, то $(cf)^+ = cf^+$, $(cf)^- = cf^-$. Поэтому,

$$\int_{\Omega} cf \, d\mu = \int_{\Omega} (cf)^+ \, d\mu - \int_{\Omega} (cf)^- \, d\mu =$$

$$= \int_{\Omega} cf^+ \, d\mu - \int_{\Omega} cf^- \, d\mu = c \int_{\Omega} f^+ \, d\mu - c \int_{\Omega} f^- \, d\mu =$$

$$= c \left(\int_{\Omega} f^+ \, d\mu - \int_{\Omega} f^- \, d\mu \right) = c \int_{\Omega} f \, d\mu.$$

Если c = -1, то $(-f)^+ = f^-$, а $(-f)^- = f^+$. Поэтому,

$$\int_{\Omega} (-f) d\mu = \int_{\Omega} f^{-} d\mu - \int_{\Omega} f^{+} d\mu = -\left(\int_{\Omega} f^{+} d\mu - \int_{\Omega} f^{-} d\mu\right) =$$
$$= -\int_{\Omega} f d\mu.$$

Если c < 0, то c = -(-c), где -c > 0, и

$$\begin{split} \int_{\Omega} cf \, d\mu &= \int_{\Omega} \left(-(-c) \right) f \, d\mu = - \int_{\Omega} (-c) f \, d\mu = \\ &= -(-c) \int_{\Omega} f \, d\mu = c \int_{\Omega} f \, d\mu. \end{split}$$

Ш

Утверждение 1.4.27. Пусть $f \in \mathcal{L}_1(\mu)$. Тогда

$$\left| \int_{\Omega} f \, d\mu \right| \le \int_{\Omega} |f| \, d\mu.$$

Доказательство. Действительно,

$$\begin{split} \left| \int_{\Omega} f \, d\mu \right| &= \left| \int_{\Omega} f^+ \, d\mu - \int_{\Omega} f^- \, d\mu \right| \leq \left| \int_{\Omega} f^+ \, d\mu \right| + \left| \int_{\Omega} f^- \, d\mu \right| = \\ &= \int_{\Omega} f^+ \, d\mu + \int_{\Omega} f^- \, d\mu = \int_{\Omega} (f^+ + f^-) \, d\mu = \int_{\Omega} |f| \, d\mu. \end{split}$$

Лемма 1.4.28. Пусть (f_n) — последовательность измеримых функций, и $f_n(\omega) \to f(\omega)$ для всех $\omega \in \Omega$. Положим

$$u_n(\omega) = \inf_{k \ge n} f_k(\omega), \qquad v_n(\omega) = \sup_{k > n} f_k(\omega), \qquad w_n = v_n - u_n.$$
 (1.25)

Тогда $u_n \uparrow f$, $v_n \downarrow f$, $w_n \downarrow 0$.

Доказательство. Поскольку функции f_k , $k \in \mathbb{N}$, являются измеримыми, то по теореме 1.3.15 функции u_n , v_n , а значит и функция w_n , также измеримы.

Поскольку для каждого $\omega \in \Omega$

$$\{f_n(\omega), f_{n+1}(\omega), f_{n+2}(\omega), \ldots\} \supset \{f_{n+1}(\omega), f_{n+2}(\omega), \ldots\},\$$

TO

$$u_n(\omega) = \inf\{f_n(\omega), f_{n+1}(\omega), f_{n+2}(\omega), \ldots\} \le$$

$$\leq \inf\{f_{n+1}(\omega), f_{n+2}(\omega), \ldots\} = u_{n+1}(\omega)$$

И

$$v_n(\omega) = \sup \{ f_n(\omega), f_{n+1}(\omega), f_{n+2}(\omega), \dots \} \ge$$
$$\ge \sup \{ f_{n+1}(\omega), f_{n+2}(\omega), \dots \} = v_{n+1}(\omega).$$

Кроме того, очевидно, что $u_n(\omega) \le v_n(\omega)$, т.е. $w_n(\omega) \ge 0$ для всех $n \in \mathbb{N}$, и что $w_n(\omega) \ge w_{n+1}(\omega)$. Таким образом имеем:

$$u_n(\omega) \le u_{n+1}(\omega), \quad v_n(\omega) \ge v_{n+1}(\omega), \quad w_n(\omega) \ge w_{n+1}(\omega) \ge 0.$$

Докажем теперь, что $\lim_{n\to\infty}u_n(\omega)=f(\omega)$. Зададимся $\varepsilon>0$. Поскольку $f_n(\omega)\to f(\omega)$, то существует n_0 для которого $f_k(\omega)\in \left(f(\omega)-\frac{\varepsilon}{2},f(\omega)+\frac{\varepsilon}{2}\right)$ для всех $k\geq n_0$. Но тогда для всех $n\geq n_0$ имеем

$$u_n(\omega) = \inf_{k > n} f_k(\omega) \in \left[f(\omega) - \frac{\varepsilon}{2}, f(\omega) + \frac{\varepsilon}{2} \right] \subset (f(\omega) - \varepsilon, f(\omega) + \varepsilon),$$

что и означает, что $\lim_{n\to\infty} u_n(\omega) = f(\omega)$.

Доказательство того, что $\lim_{n\to\infty} v_n(\omega) = f(\omega)$ проводится аналогично.

Теорема 1.4.29 (Лебега об ограниченной сходимости). Пусть $(f_n)_{n=1}^{\infty}$ — последовательность интегрируемых функций таких, что

- 1) $f_n \to f$ μ -n.в. для некоторой измеримой функции f;
- 2) существует интегрируемая функция g такая, что $|f_n| \leq g$ μ -n.e. для всех $n \in \mathbb{N}$.

Тогда f является интегрируемой, и

$$\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu.$$

Доказательство. Покажем сначала, что можно предполагать без потери общности, что $f_n(\omega) \to f(\omega)$ и $|f_n(\omega)| \le g(\omega)$ для всех $\omega \in \Omega$. Действительно, пусть

$$A = \{ \omega \in \Omega : f_n(\omega) \not\to f(\omega) \}, \qquad B_n = \{ \omega \in \Omega : |f_n(\omega)| > g(\omega) \}.$$

Тогда $\mu(A) = 0$, и $\mu(B_n) = 0$ для каждого n по условию теоремы. Поэтому, используя субаддитивность меры (утверждение 1.2.11),

имеем, что $C=A\cup\bigcup_{n=1}^{\infty}B_n$ является множеством меры 0, поскольку

$$\mu(C) = \mu(A \cup \bigcup_{n=1}^{\infty} B_n) \le \mu(A) + \sum_{n=1}^{\infty} \mu(B_n) = 0.$$

А, поскольку,

$$(1_{C^c}f_n)(\omega) \to (1_{C^c}f)(\omega), \qquad \text{if} \qquad |1_{C^c}f_n|(\omega) \le 1_{C^c}g(\omega)$$

для всех $\omega \in \Omega$, и

$$\int_{\Omega} f_n \, d\mu = \int_{\Omega} 1_{C^c} f_n \, d\mu, \qquad \int_{\Omega} f \, d\mu = \int_{\Omega} 1_{C^c} f \, d\mu,$$

можно заменить функции f_n , f и g на $1_{C^c}f_n$, $1_{C^c}f$ и $1_{C^c}g$, соответственно.

Итак, будем доказывать теорему в предположении, что для всех $\omega \in \Omega$ имеем: $f_n(\omega) \to f(\omega)$ и $|f_n(\omega)| \le g(\omega)$ для всех n.

Поскольку $|f_n(\omega)| \leq g(\omega)$ для всех n, то

$$|f(\omega)| = |\lim_{n \to \infty} f_n(\omega)| = \lim_{n \to \infty} |f_n(\omega)| \le g(\omega),$$

и, согласно утверждению 1.4.25, функция f является интегрируемой.

Докажем теперь, что

$$\left| \int_{\Omega} f \, d\mu - \int_{\Omega} f_n \, d\mu \right| = \left| \int_{\Omega} (f - f_n) \, d\mu \right| \le \int_{\Omega} |f - f_n| \, d\mu \longrightarrow 0.$$
 (1.26)

Для этого рассмотрим на Ω три последовательности функций: $(u_n)_{n=1}^{\infty}, (v_n)_{n=1}^{\infty}$ и $(w_n)_{n=1}^{\infty}$, определяемые следующим образом:

$$u_n(\omega) = \inf_{k \ge n} f_k(\omega), \qquad v_n(\omega) = \sup_{k > n} f_k(\omega), \qquad w_n = v_n - u_n.$$

По определению,

$$u_n(\omega) \le f_k(\omega) \le v_n(\omega)$$

для всех $k \geq n$, и, переходя к пределу при $k \to \infty$, получаем

$$u_n(\omega) \le f(\omega) \le v_n(\omega)$$
.

Из этого неравенства и предыдущего, записанного для k = n и умноженного на (-1),

$$-v_n(\omega) \le -f_n(\omega) \le -u_n(\omega),$$

имеем

$$-(v_n(\omega) - u_n(\omega)) \le f(\omega) - f_n(\omega) \le v_n(\omega) - u_n(\omega),$$

то есть,

$$|f(\omega) - f_n(\omega)| \le v_n(\omega) - u_n(\omega) = w_n(\omega).$$

Поскольку $|f_n(\omega)| \leq g(\omega)$, то $|u_n(\omega)| \leq g(\omega)$ и $|v_n(\omega)| \leq g(\omega)$ для всех $\omega \in \Omega$, и, следовательно, согласно утверждению 1.4.25 функции u_n и v_n , $n \in \mathbb{N}$, также интегрируемы. Следовательно, функции w_n , $n \in \mathbb{N}$, также интегрируемы.

Таким образом, для доказательства (1.26) достаточно доказать, что

$$\lim_{n \to \infty} \int_{\Omega} w_n \, d\mu = 0.$$

Поскольку $w_n \ge 0$, $w_n \downarrow 0$ по лемме 1.4.28, то $(w_1 - w_n) \ge 0$ и $(w_1 - w_n) \uparrow w_1$. Следовательно, используя теорему Беппо Леви (теорема 1.4.12), имеем

$$\lim_{n \to \infty} \int_{\Omega} w_n \, d\mu = \lim_{n \to \infty} \int_{\Omega} (w_n - w_1 + w_1) \, d\mu =$$

$$= \lim_{n \to \infty} \left(-\int_{\Omega} (w_1 - w_n) \, d\mu + \int_{\Omega} w_1 \, d\mu \right) =$$

$$= -\lim_{n \to \infty} \int_{\Omega} (w_1 - w_n) \, d\mu + \int_{\Omega} w_1 \, d\mu =$$

$$= -\int_{\Omega} \lim_{n \to \infty} (w_1 - w_n) \, d\mu + \int_{\Omega} w_1 \, d\mu =$$

$$= -\int_{\Omega} w_1 \, d\mu + \int_{\Omega} w_1 \, d\mu = 0.$$

1.4.4 Интеграл по подмножеству

Определение 1.4.30. Пусть (Ω, Σ, μ) — измеримое пространство с мерой, $A \in \Sigma$, и $f \in \mathcal{L}_1(\mu)$. Тогда интегралом от функции f по подмножеству A называется число

$$\int_A f \, d\mu = \int_{\Omega} 1_A f \, d\mu.$$

Утверждение 1.4.31. Пусть $f \in \mathcal{L}_1(\mu)$. Для того, чтобы f = 0 μ -п.в. необходимо и достаточно, чтобы

$$\int_{A} f \, d\mu = 0$$

для всех $A \in \Sigma$.

Доказательство. Если f=0 μ -п.в.на Ω , то |f|=0 μ -п.в.на Ω

$$\left| \int_A f \, d\mu \right| = \left| \int_\Omega 1_A f \, d\mu \right| \le \int_\Omega |1_A f| \, d\mu \le \int_\Omega |f| \, d\mu = 0.$$

Предположим теперь, что $\int_A f \, d\mu = 0$ для произвольного $A \in \Sigma$. Рассмотрим множества

$$A^{+} = \{ \omega \in \Omega : f(x) > 0 \}, \qquad A^{-} = \{ \omega \in \Omega : f(\omega) < 0 \}.$$

Если $\mu(A^+)=\mu(A^-)=0$, то это означает, что f=0 μ -п.в. Поэтому, предположим, что $\mu(A^+)>0$. Но

$$A^+ = \bigcup_{n=1}^{\infty} A_n^+, \qquad$$
где $A_n^+ = \left\{ \omega \in \Omega : f(\omega) > \frac{1}{n} \right\}.$

Поскольку $A_n^+ \uparrow A^+$, то $\mu(A_n^+) \uparrow \mu(A) > 0$. Это означает, что $\mu(A_n^+) > 0$ для некоторого n_0 (начиная с некоторого n_0). Тогда положив $A = A_{n_0}^+$, имеем

$$\int_A f \, d\mu = \int_{A_{n_0}^+} f \, d\mu = \int_\Omega 1_{A_{n_0}^+} f \, d\mu \ge \int_\Omega 1_{A_{n_0}^+} \frac{1}{n_0} \, d\mu = \frac{1}{n_0} \mu(A_{n_0}) > 0,$$

что противоречит предположению.

Теорема 1.4.32. Пусть $(\Omega, \Sigma, \mu) - u$ змеримое пространство с мерой, и $A \in \Sigma$. Тогда

- a) $\int_A d\mu = \mu(A);$
- b) $ecnu\ f,g \in \mathcal{L}_1(\mu),\ u\ c \in \mathbb{R},\ mo$

$$\int_A (f+g) \, d\mu = \int_A f \, d\mu + \int_A g \, d\mu, \qquad \int_A cf \, d\mu = c \int_A f \, d\mu.$$

Доказательство. (а) Используя определения 1.4.30 и 1.4.2, имеем

$$\int_A d\mu = \int_{\Omega} 1_A d\mu = \mu(A).$$

(b) Доказательство непосредственно следует из утверждения 1.4.26, поскольку

$$\int_{A} (f+g) \, d\mu = \int_{\Omega} 1_{A} (f+g) \, d\mu = \int_{\Omega} (1_{A} f + 1_{A} g) \, d\mu =$$

$$= \int_{\Omega} 1_{A} f \, d\mu + \int_{\Omega} 1_{A} g \, d\mu = \int_{A} f \, d\mu + \int_{A} g \, d\mu.$$

Доказательство второй части аналогично.

Следствие 1.4.33. Если $f = g \mu$ -п.в., то

$$\int_{A} f \, d\mu = \int_{A} g \, d\mu$$

для всех $A \in \Sigma$.

Доказательство. Действительно, поскольку f=g п.в., то f-g=0 п.в., и |f-g|=0 п.в. Но

$$|1_A(f-g)| = 1_A|f-g| \le |f-g|.$$

Поэтому $|1_A(f-g)| = |1_Af - 1_Ag| = 0$ п.в. Следовательно,

$$\int_{A} f \, d\mu - \int_{A} g \, d\mu = \int_{A} (f - g) \, d\mu = \int_{\Omega} 1_{A} (f - g) \, dm = 0.$$

Теорема 1.4.34. Пусть (Ω, Σ, μ) — измеримое пространство с мерой, $f \in \mathcal{L}_1(\mu)$, $A \in \Sigma$, $u \in A = \bigsqcup_{k=1}^{\infty} A_k$, где $A_k \in \Sigma$ для всех $k \in \mathbb{N}$. Тогда

$$\int_A f \, d\mu = \sum_{k=1}^\infty \int_{A_k} f \, d\mu.$$

Доказательство. Положим

$$f_n = f \sum_{k=1}^n 1_{A_k}.$$

Для каждого $\omega \in A$ из условия следует, что $\omega \in A_{n_0}$ для некоторого единственного $n_0 \in \mathbb{N}$. Поэтому при $n \geq n_0$ имеем

$$f_n(\omega) = f(\omega) (1_{A_1}(\omega) + \ldots + 1_{A_{n_0-1}}(\omega) + 1_{A_{n_0}}(\omega) + 1_{A_{n_0+1}}(\omega) + \ldots + 1_{A_n}(\omega)) =$$

$$= f(\omega) (0 + \ldots + 0 + 1 + 0 + \ldots + 0) = f(\omega).$$

Если $\omega \notin A$, то

$$f_n(\omega) = f(\omega) \sum_{k=1}^n 1_{A_k}(\omega) = 0.$$

Таким образом, $f_n \to f1_A$ везде.

Также имеем, что

$$|f_n| = \left| f \sum_{k=1}^n 1_{A_k} \right| = |f| \sum_{k=1}^n 1_{A_k} \le |f| 1_A \le |f|$$

для всех n. Поэтому, используя теорему Лебега об ограниченной сходимости (теорема 1.4.29 с g=|f|) а также утверждение 1.4.26, имеем, что

$$\int_{A} f \, d\mu = \int_{\Omega} 1_{A} f \, d\mu = \int_{\Omega} \lim_{n \to \infty} f_{n} \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_{n} \, d\mu =$$

$$= \lim_{n \to \infty} \int_{\Omega} \left(f \sum_{k=1}^{n} 1_{A_{k}} \right) d\mu = \lim_{n \to \infty} \int_{\Omega} \left(\sum_{k=1}^{n} f 1_{A_{k}} \right) d\mu =$$

1.4. ИНТЕГРАЛ ЛЕБЕГА

$$\begin{split} &=\lim_{n\to\infty}\sum_{k=1}^n\int_{\Omega}f1_{A_k}\,d\mu=\lim_{n\to\infty}\sum_{k=1}^n\int_{A_k}f\,d\mu=\\ &=\sum_{k=1}^\infty\int_{A_k}f\,d\mu. \end{split}$$

Задачи

KP: 334.1, 335 (3), 335.1, 335.3, 335.5. 335.7, 336.1,

 $\mathcal{I}P$: 334, 335 (2), 335.6, 335.8, 335.9, 335.10, 336 (2,3), 347, 350.

Глава 2

Линейные нормированные пространства

2.1 Начальные топологические сведения

2.1.1 Определение. Примеры

E — линейное пространство над полем $\mathbb R$ или $\mathbb C$, которое обозначается через $\mathbb K$.

Определение 2.1.1. Преднормой или полунормой на линейном пространстве E называется функция $\|\cdot\|: E \to \mathbb{R}$, которая удовлетворяет следующим свойствам:

- (i) $\|x\| \ge 0$ для всех $x \in E$;
- (ii) $\|\lambda \boldsymbol{x}\| = |\lambda| \|\boldsymbol{x}\|$ для всех $\boldsymbol{x} \in E$ и $\lambda \in \mathbb{K}$;
- (iii) (неравенство треугольника) $\|x+y\| \le \|x\| + \|y\|$ для любой пары элементов $x,y \in E$.

Если выполненно также условие, что

(iv) $\|\boldsymbol{x}\| = 0$ только для $\boldsymbol{x} = 0$,

то преднорма $\|\cdot\|$ назвается *нормой*. Линейное пространство E с заданной на нем нормой $\|\cdot\|$ называется *линейным нормированным пространством* и обозначается $(E,\|\cdot\|)$.

Утверждение 2.1.2. Пусть $\|\cdot\| - npeднорма$ на линейном пространстве E.

- (a) Имеем, $что ||\mathbf{0}|| = 0$.
- (b) Для всех $\boldsymbol{x}^1,\dots,\boldsymbol{x}^m \in E$:

$$\|x^1 + \ldots + x^m\| \le \|x^1\| + \ldots + \|x^m\|.$$

(c) для любой пары $\boldsymbol{x}, \boldsymbol{y} \in E$:

$$|||x|| - ||y||| \le ||x - y||.$$

Доказательство. (а) Действительно,

$$\|\mathbf{0}\| = \|0 \cdot \mathbf{0}\| = 0 \cdot \|\mathbf{0}\| = 0.$$

(b) Используя последовательно неравенство треугольника, имеем

$$\begin{split} \| \boldsymbol{x}^1 + \boldsymbol{x}^2 + \ldots + \boldsymbol{x}^m \| &= \| \boldsymbol{x}^1 + (\boldsymbol{x}^2 + \ldots + \boldsymbol{x}^m) \| \le \\ &\le \| \boldsymbol{x}^1 \| + \| \boldsymbol{x}^2 + \boldsymbol{x}^3 + \ldots + \boldsymbol{x}^m \| = \\ &= \| \boldsymbol{x}^1 \| + \| \boldsymbol{x}^2 + (\boldsymbol{x}^3 + \ldots + \boldsymbol{x}^m) \| \le \\ &\le \| \boldsymbol{x}^1 \| + \| \boldsymbol{x}^2 \| + \| \boldsymbol{x}^3 + \ldots + \boldsymbol{x}^m \| \le \ldots \\ &\le \| \boldsymbol{x}^1 \| + \| \boldsymbol{x}^2 \| + \ldots + \| \boldsymbol{x}^m \|. \end{split}$$

(с) Требуется доказать, что

$$-\|x-y\| \le \|x\| - \|y\| \le \|x-y\|.$$

Используя неравенство треугольника, получим

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||.$$

Таким образом,

$$||x|| - ||y|| \le ||x - y||,$$

что есть правая часть доказываемого неравенства. Меняя местами \boldsymbol{x} и \boldsymbol{y} , получаем

$$||y|| - ||x|| < ||y - x|| = ||x - y||,$$

или, умножая обе части на -1, имеем

$$-\|x-y\| \le \|x\| - \|y\|.$$

 $\Pi pumep~2.1.3.~~1.~$ Для линейного пространства $E=\mathbb{K}~(\mathbb{K}=\mathbb{R}$ или $\mathbb{K}=\mathbb{C})$ над полем \mathbb{K}

$$||x|| = |x|$$

является нормой.

П

2. \mathbb{K}_2^n : Для $E = \mathbb{K}^n$ над полем \mathbb{K} ,

$$\|\boldsymbol{x}\|_2 = \sqrt{|x_1|^2 + \ldots + |x_n|^2}$$

является нормой.

Если $N_0 \subset \{1,\ldots,n\}, \, N_0 \neq \emptyset$, то

$$\|x\|_{2,N_0} = \sqrt{\sum_{k \in \mathbb{N}_0} |x_k|^2}$$

является полунормой.

3. \mathbb{K}_1^n : Для линейного пространства $E=\mathbb{K}^n$ над полем \mathbb{K} функция

$$\|x\|_1 = |x_1| + \ldots + |x_n|$$

задает норму.

Если $N_0 \subset \{1, ..., n\}, N_0 \neq \emptyset$, то

$$\|\boldsymbol{x}\|_{1,N_0} = \sum_{k \in N_0} |x_k|$$

является полунормой.

4. \mathbb{K}^n_{∞} : Пусть $E = \mathbb{K}^n$ над полем \mathbb{K} . Тогда

$$\|\boldsymbol{x}\|_{\infty} = \max_{1 \le k \le n} |x_k|$$

является нормой на E.

Если $N_0 \subset \{1,\ldots,n\}, N_0 \neq \emptyset$, то

$$\|\boldsymbol{x}\|_{\infty,N_0} = \max_{k \in N_0} |x_k|$$

является полунормой.

Утверждение 2.1.4. Пусть функция $\|\cdot\|_1 \colon \mathbb{K}^{\infty} \to \overline{\mathbb{R}}_+$ определена на $\boldsymbol{x} = (x_1, x_2, \ldots) \in \mathbb{K}^{\infty}$ как

$$\|\boldsymbol{x}\|_1 = \sum_{k=1}^{\infty} |x_k|.$$

Тогда подмножество

$$\ell_1 = \{ \boldsymbol{x} \in \mathbb{K}^{\infty} : \|\boldsymbol{x}\|_1 < \infty \}$$

является линейным пространством над \mathbb{K} , и ограничение $\|\cdot\|_1$ на ℓ_1 является нормой.

Доказательство. Пусть $\boldsymbol{x}=(x_1,x_2,\ldots),\,\boldsymbol{y}=(y_1,y_2,\ldots)$ и $\boldsymbol{x},\boldsymbol{y}\in\ell_1,$ т.е.

$$\sum_{k=1}^{\infty} |x_k| < \infty, \qquad \sum_{k=1}^{\infty} |y_k| < \infty.$$

Поскольку для каждого $k \in \mathbb{N}$

$$|x_k + y_k| \le |x_k| + |y_k|,$$

то для произвольного $N \in \mathbb{N}$

$$\sum_{k=1}^{N} |x_k + y_k| \le \sum_{k=1}^{N} (|x_k| + |y_k|) = \sum_{k=1}^{N} |x_k| + \sum_{k=1}^{N} |y_k| \le$$

$$\le \sum_{k=1}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = ||\boldsymbol{x}||_1 + ||\boldsymbol{y}||_1.$$

Поскольку это верно для всех N, то, переходя к пределу при $N \to \infty,$ получаем, что

$$\|\boldsymbol{x} + \boldsymbol{y}\|_1 = \sum_{k=1}^{\infty} |x_k + y_k| = \lim_{N \to \infty} \sum_{k=1}^{N} \le \|\boldsymbol{x}\|_1 + \|\boldsymbol{y}\|_1.$$

Это доказывает свойство (iii) определения 2.1.1, а также то, что

$$\|\boldsymbol{x} + \boldsymbol{y}\|_1 < \infty,$$

если $\|\boldsymbol{x}\|_1 < \infty$ и $\|\boldsymbol{y}\|_1 < \infty$, т.е. $\boldsymbol{x} + \boldsymbol{y} \in \ell_1$ для $\boldsymbol{x}, \boldsymbol{y} \in \ell_1$.

Для $\lambda \in \mathbb{K}$ и $\boldsymbol{x} \in \ell_1$ имеем $\lambda \boldsymbol{x} = (\lambda x_1, \lambda x_2, \ldots)$ и

$$\|\lambda x\|_1 = \sum_{k=1}^{\infty} |\lambda x_k| = \sum_{k=1}^{\infty} |\lambda| |x_k| = |\lambda| \sum_{k=1}^{\infty} |x_k| = |\lambda| \|x\|_1,$$

что доказывает свойство (ii) определения 2.1.1. Отсюда следует, что $\|\lambda x\|_1 < \infty$, если $\|x\|_1 < \infty$, т.е. $\lambda x \in \ell_1$ для $x \in \ell_1$.

Таким образом, ℓ_1 является линейным пространством над \mathbb{K} , и $\|\cdot\|_1$ является преднормой на ℓ_1 .

Наконец, если

$$\|\boldsymbol{x}\|_1 = \sum_{k=1}^{\infty} |x_k| = 0,$$

то $x_k=0$ для всех $k\in\mathbb{N}$, и $\boldsymbol{x}=\boldsymbol{0}$, т.е $\|\cdot\|_1$ является нормой.

Утверждение 2.1.5. Пусть функции $\|\cdot\|_2, \|\cdot\|_\infty \colon \mathbb{K}^\infty \to \overline{\mathbb{R}}_+$ заданы как

$$\|\boldsymbol{x}\|_{2} = \left(\sum_{k=1}^{\infty} |x_{k}|^{2}\right)^{\frac{1}{2}}, \qquad \|\boldsymbol{x}\|_{\infty} = \sup_{k \in \mathbb{N}} |x_{k}|.$$

Тогда подмножества

$$\ell_2 = \{ \boldsymbol{x} \in \mathbb{K}^{\infty} : \|\boldsymbol{x}\|_2 < \infty \}, \qquad \ell_{\infty} = \{ \boldsymbol{x} \in \mathbb{K}^{\infty} : \|\boldsymbol{x}\|_{\infty} < \infty \}$$

являются линейными пространствами над \mathbb{K} , а $(\ell_2, \|\cdot\|_2)$ и $(\ell_\infty, \|\cdot\|_\infty)$ линейными нормированными пространствами.

Доказательство. Самостоятельно.

Утверждение 2.1.6. Пусть для $p \in [1, +\infty)$ функция $\|\cdot\|_p \colon \mathbb{K}^\infty \to \mathbb{R}_+$ задана как

$$\|\boldsymbol{x}\|_p = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}}.$$

Тогда подмножество

$$\ell_p = \{ \boldsymbol{x} \in \mathbb{K}^{\infty} : ||\boldsymbol{x}||_p < \infty \},$$

является линейным пространством над \mathbb{K} , а $(\ell_p, \|\cdot\|_p)$ линейным нормированным пространством.

Доказательство. Без доказательства.

Лемма 2.1.7. Пусть Ω — произвольное множество, и $\mathcal{F}(\Omega; \mathbb{R})$ — множество всех действительных функций на Ω . Тогда $\mathcal{F}(\Omega; \mathbb{R})$ является линейным пространством над \mathbb{R} , если

$$(f+g)(\omega) = f(\omega) + g(\omega), \qquad (\lambda f)(\omega) = \lambda f(\omega)$$

для $f, g \in \mathcal{F}(\Omega; \mathbb{R})$ и $\lambda \in \mathbb{R}$.

Доказательство. Самостоятельно.

Утверждение 2.1.8. На линейном пространстве $\mathcal{F}(\Omega;\mathbb{R})$ определим функцию $\|\cdot\|_{\infty}:\mathcal{F}(\Omega,\mathbb{R})\to\overline{\mathbb{R}}_+$ как

$$||f||_{\infty} = \sup_{\omega \in \Omega} |f(\omega)|, \qquad f \in \mathcal{F}(\Omega, \mathbb{R}),$$

u nycmb

$$\mathcal{F}_b(\Omega; \mathbb{R}) = \{ f \in \mathcal{F}(\Omega, \mathbb{R}) : ||f||_{\infty} < \infty \}.$$

Тогда $\mathcal{F}_b(\Omega;\mathbb{R})$ является линейным нормированным пространством над \mathbb{R} , а $\|\cdot\|_{\infty}$ является нормой на $\mathcal{F}_b(\Omega,\mathbb{R})$.

Доказательство. Докажем, что $\mathcal{F}_b(\Omega,\mathbb{R})$ является линейным пространством (подпространством $\mathcal{F}(\Omega,\mathbb{R})$.

Пусть $f,g \in \mathcal{F}_b(\Omega \in \mathbb{R})$, т.е. существуют $C_1,C_2 \in \mathbb{R}$ такие, что $|f(\omega)| \leq C_1$ и $|g(\omega)| \leq C_2$ для всех $\omega \in \Omega$. Тогда

$$|(f+g)(\omega)| = |f(\omega) + g(\omega)| \le |f(\omega)| + |g(\omega)| \le C_1 + C_2$$

для всех $\omega \in \Omega$. Поэтому $f + g \in \mathcal{F}_b(\Omega, \mathbb{R})$.

Аналогично доказывается, что $\lambda f \in \mathcal{F}_b(\Omega, \mathbb{R})$, если $f \in \mathcal{F}_b(\Omega, \mathbb{R})$, и $\lambda \in \mathbb{R}$.

Докажем, что $\|\cdot\|_{\infty}$ является нормой на $\mathcal{F}_b(\Omega,\mathbb{R})$.

Свойство (i) в определении 2.1.1 имеет место, поскольку $0(\omega)=0$ для всех $\omega\in\Omega$ по определению нулевой функции.

Проверим выполнение свойства (іі). Имеем

$$\|\lambda f\|_{\infty} = \sup_{\omega \in \Omega} |\lambda f|(\omega) = \sup_{\omega \in \Omega} |\lambda f(\omega)| = |\lambda| \sup_{\omega \in \Omega} |f(\omega)| = |\lambda| \|f\|_{\infty}.$$

Наконец, для (ііі) имеем, что

$$|f(\omega)| \le \sup_{\omega \in \Omega} |f(\omega)|, \qquad |g(\omega)| \le \sup_{\omega \in \Omega} |g(\omega)|$$

для всех $\omega \in \Omega$. Поэтому

$$|f(\omega)| + |g(\omega)| \le \sup_{\omega \in \Omega} |f(\omega)| + \sup_{\omega \in \Omega} |g(\omega)|$$

для всех $\omega \in \Omega$, и, следовательно,

$$\sup_{\omega \in \Omega} \bigl(|f(\omega)| + |g(\omega)| \bigr) \leq \sup_{\omega \in \Omega} |f(\omega)| + \sup_{\omega \in \Omega} |g(\omega)|.$$

Таким образом,

$$\begin{split} \|f+g\|_{\infty} &= \sup_{\omega \in \Omega} |(f+g)(\omega)| = \sup_{\omega \in \Omega} |f(\omega)+g(\omega)| \leq \\ &\leq \sup_{\omega \in \Omega} \big(|f(\omega)|+|g(\omega)|\big) \leq \sup_{\omega \in \Omega} |f(\omega)| + \sup_{\omega \in \Omega} |g(\omega)| = \\ &= \|f\|_{\infty} + \|g\|_{\infty}. \end{split}$$

Наконец, если

$$||f||_{\infty} = \sup_{\omega \in \Omega} |f(\omega)| = 0,$$

то $f(\omega) = 0$ для всех $\omega \in \Omega$, и, следовательно, f является нулевой функцией, откуда следует выполнение (iv).

Замечание 2.1.9. Пусть $\Omega_0 \subset \Omega$. Для линейного пространства $\mathcal{F}(\Omega, \mathbb{R})$ определим $\|\cdot\|_{\infty,\Omega_0} \colon \mathcal{F}_b(\Omega,\mathbb{R}) \to \overline{\mathbb{R}}$ как

$$||f||_{\infty,\Omega_0} = \sup_{\omega \in \Omega_0} |f(\omega)|.$$

Тогда

$$\mathcal{F}_{b,\Omega_0} = \{ f \in \mathcal{F}(\Omega, \mathbb{R}) : ||f||_{\infty,\Omega_0} < \infty \}$$

является линейным подпространством $\mathcal{F}(\Omega,\mathbb{R})$, а $\|\cdot\|_{\infty,\Omega_0}$ является преднормой на $\mathcal{F}_{b,\Omega_0}(\Omega,\mathbb{R})$.

Утверждение 2.1.10. Пусть $K \subset \mathbb{R}^n$ является компактным подмножеством \mathbb{R}^n , и для $E = \mathcal{C}(K)$, линейного пространства всех непрерывных функций на K, положим

$$||f||_{\infty} = \sup_{t \in K} |f(t)|.$$

Тогда $\|\cdot\|_{\infty}$ является нормой на $\mathcal{C}(K)$.

Доказательство. Самостоятельно.

 $\Pi pumep\ 2.1.11.\$ Для линейного пространства $\mathcal{C}([a,b])$ всех непрерывных функций на $[a,b]\subset\mathbb{R}$ положим

$$||f||_1 = \int_a^b |f(t)| dt.$$

Тогда $\|\cdot\|_1$ является нормой на $\mathcal{C}([a,b])$.

Определение 2.1.12. Пусть E — линейное пространство. Две нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ на E называются эквивалентными, если существуют такие $C_1, C_2 \in \mathbb{R}_+$, что

$$\|\boldsymbol{x}\|_1 \le C_1 \|\boldsymbol{x}\|_2, \qquad \|\boldsymbol{x}\|_2 \le C_2 \|\boldsymbol{x}\|_1$$

для всех $\boldsymbol{x} \in E$.

 Π ример 2.1.13. Нормы в \mathbb{R}^2_1 и \mathbb{R}^2_∞ эквивалентны.

Теорема 2.1.14. Любые две нормы на \mathbb{R}^n эквивалентны.

Доказательство. См. конспект, [7, Теорема, стр. 81].

Утверждение 2.1.15. *Нормы* в ℓ_1 *и* ℓ_{∞} *не являются эквивалентными.*

Задачи

KP: 12 (1), 13, 16.1

 $\mathcal{A}P$: 12 (4), 15, 16 (1, 2 (p=1,2)), 17 (1,2,4)

2.1.2 Открытые и замкнутые множества

Определение 2.1.16. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство, $\mathbf{x}^0 \in E, r \in \mathbb{R}_+$.

(а) Множество

$$B(x^0; r) = \{x \in E : ||x - x^0|| < r\}$$

называется $\mathit{открытым}$ шаром в E вокруг точки \boldsymbol{x}^0 радиуса r.

(b) Множество

$$\overset{\circ}{B}(\boldsymbol{x}^0;r) = B(\boldsymbol{x}^0;r) \setminus \{\boldsymbol{x}^0\}$$

называется omкрытым выколотым шаром в E вокруг точки x^0 радиуса r.

(с) Множество

$$B[x^0; r] = \{x \in E : ||x - x^0|| \le r\}$$

называется *замкнутым шаром* в E вокруг точки \boldsymbol{x}^0 радиуса r.

(d) Множество

$$S[x^0; r] = \{x \in E : ||x - x^0|| = r\}$$

называется $c\phi epo \ddot{u}$ в E вокруг точки \boldsymbol{x}^0 радиуса r.

Пример 2.1.17. B(0;1), B[0;1], S[0;1]:

- ℝ:
- 2. \mathbb{R}^2 , \mathbb{R}^2 ; \mathbb{R}^2 .
- 3. l_{∞} ;
- 4. C([a, b]).

Определение 2.1.18. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство.

- (a) Подмножество $U \subset E$ называется *открытым* в E, если для любой точки $\mathbf{x}^0 \in U$ существует такое r > 0, что $B(\mathbf{x}^0; r) \subset U$. Пустое множество \emptyset и все пространство являются открытыми.
- (b) Подмножество F называется *замкнутым* в E, если F^c является открытым в E. Пустое множество \emptyset и все пространство являются замкнутыми.

Пример 2.1.19. 1. $(a,b), B(\mathbf{0};1) \subset \mathbb{R}^2_2$.

2. $[a, b], B[0; 1] \subset \mathbb{R}^2_2$.

Утверждение 2.1.20. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство. Тогда:

- (a) открытый шар B(a;r) является открытым;
- (b) точка $\{a\}$, замкнутый шар B[a;r], сфера S[a;r] являются замкнутыми множествами.

Утверждение 2.1.21. Пусть E — линейное пространство, $U \subset E$, u две нормы $\|\cdot\|_1$, $\|\cdot\|_2$ эквивалентны. Следующие условия эквивалентны:

- (a) множество U открыто (cooms., замкнуто) в линейном нормированном пространстве $(E, \|\cdot\|_1)$;
- (a) множество U открыто (cooms., замкнуто) в линейном нормированном пространстве $(E, \|\cdot\|_2)$;
- **Теорема 2.1.22.** (a) Пусть $\{U_k\}_{k=1}^m$ конечное непустое семейство открытых множеств. Тогда множество $U = \bigcap_{k=1}^m U_k$ является открытым.
 - (b) Пусть $\{U_{\gamma}\}_{\gamma\in\Gamma}$ произвольное непустое семейство открытых множеств. Тогда множество $U=\bigcup_{\gamma\in\Gamma}U_{\gamma}$ является открытым.
 - (c) Пусть $\{F_k\}_{k=1}^m$ конечное непустое семейство замкнутых множеств. Тогда множество $F = \bigcup_{k=1}^m F_k$ является замкнутым.
 - (в) Пусть $\{F_{\gamma}\}_{{\gamma}\in{\Gamma}}$ произвольное непустое семейство замкнутых множеств. Тогда множество $F=\bigcap_{{\gamma}\in{\Gamma}} U_{\gamma}$ является замкнутым.

Доказательство. См. конспект.

Определение 2.1.23. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство и $X \subset E$. Точка $x^* \in X$ называется внутренней точкой множества X, если существует такое r > 0, что $B(x^*; r) \subset X$.

Пример 2.1.24. 1. $E = \mathbb{R}, X = [a, b], x^* \in [a, b].$

- 2. $E = \mathbb{R}, X = \mathbb{Q}.$
- 3. $E = \mathbb{R}_2^2$, X = B[0; 1], $\mathbf{x}^* \in B[\mathbf{0}; 1]$.
- 4. $E = \mathbb{R}^2$, X = S[0, 1].

Теорема 2.1.25. Пусть $U \subset E$. Следующие условия эквивалентны:

- (i) U открыток множество;
- (ii) всякая точка $\boldsymbol{x}^* \in U$ является внутренней.

Определение 2.1.26. Множество $V \subset E$ называется *окрестностью* точки x^* , если $x^* \in V$, и x^* является внутренней точкой V.

Пример 2.1.27. 1. Открытое множество является окрестностью любой своей точки.

2. Множество $[0,1] \subset \mathbb{R}$ является окрестностью любой точки из (0,1).

Определение 2.1.28. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство, и $X \subset E$. Точка $x^* \in E$ называется npedenhoù mou-кой множества <math>X, если $\overset{\circ}{B}(x^*;r) \cap X \neq \emptyset$ для любого r > 0.

Пример 2.1.29. 1. $E = \mathbb{R}, X = (a, b).$

- 2. $E = \mathbb{R}, X = \mathbb{Q}$.
- 3. $E = \mathbb{R}^2_2, X = B(\mathbf{0}; 1)$.

Теорема 2.1.30. Пусть $F \subset E$. Следующие условия эквивалентны:

- (i) множество F замкнуто;
- (ii) множество F содержит все свои предельные точки.

Доказательство. См. конспект.

Определение 2.1.31. Пусть $(E,\|\cdot\|)$ — линейное нормированное пространство, и $X\subset E$. Минимальное замкнутое множество \overline{X} такое, что $X\subset \overline{X}$ называется *замыканием* множества X.

Пример 2.1.32. 1. $E = \mathbb{R}, X = (0, 1];$

2. $E = \mathbb{R}, X = \mathbb{Q}.$

Утверждение 2.1.33. Пусть $X \subset E$. Тогда

- (a) $\overline{X} = \bigcap_{\gamma \in \Gamma} F_{\gamma}$, где $\{F_{\gamma}\}_{\gamma \in \Gamma}$ семейство всех замкнутых мноэнеств F_{γ} таких, что $F_{\gamma} \supset X$ для всех $\gamma \in \Gamma$.
- (b) Пусть X' множество всех предельных точек множества X . Тогда $\overline{X} = X \cup X'$.

Доказательство. См. конспект.

2.1.3 Плотные множества. Сепарабельность

Определение 2.1.34. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство. Подмножество $X \subset E$ называется *плотным* в E, если $\overline{X} = E$.

Пример 2.1.35. 1. $E = \mathbb{R}, X = \mathbb{Q}$.

2.
$$E = C([a, b]), X = Pol([a, b]).$$

Определение 2.1.36. Линейное нормированное пространство $(E, \|\cdot\|)$ называется *сепарабельным*, если существует счетное, плотное в E подмножество $Q \subset E$.

Пример 2.1.37. \mathbb{R}^n .

Утверждение 2.1.38. (a) Пространства ℓ_1 , ℓ_2 , C([a,b]) являются сепарабельными.

(b) Пространство ℓ_{∞} не является сепарабельным.

Доказательство. См. конспект.

2.1.4 Последовательности в ЛНП

Определение 2.1.39. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство, и $X \subset E$.

- (a) Функция $\varphi \colon \mathbb{N} \to X$ называется последовательностью в X. Последовательность также обозначается $(x_k)_{k=1}^{\infty}$, где $x_k = \varphi(k)$.
- (b) Если $\varphi \colon \mathbb{N} \to X$ является последовательностью в X, и $\psi \colon \mathbb{N} \to \mathbb{N}$ неубывающая функция, то последовательность $\varphi \circ \psi \colon \mathbb{N} \to X$ называется *подпоследовательностию* последовательности φ . Если $\mathbf{x}_k = \varphi(k)$ и $k_l = \psi(l)$, то для подпоследовательности $\varphi \circ \psi$ используется обозначение $(\mathbf{x}_{k_l})_{l=1}^{\infty}$.

Пример 2.1.40. 1. $X = [-1, 1] \subset \mathbb{R}, x_n = (-1)^n$.

2.
$$X = \mathbb{R}^2$$
, $x_n = \frac{1}{n} (\cos \frac{\pi}{n}, \sin \frac{\pi}{n})$.

- 3. $X = \ell_2, \, \boldsymbol{x}_n = \frac{1}{n} \boldsymbol{e}_n.$
- 4. $X = \mathcal{F}_b([0,1]), f_n(t) = t^n$.

Определение 2.1.41. Пусть $(E, \| \cdot \|)$ — линейное нормированное пространство, $X \subset E$. Элемент $x_* \in E$ называется npedenom nocnedosamenohocmu $(x_k)_{k=1}^{\infty}$ в X, если любая окрестность V точки x_* содержит все члены последовательности $(x_k)_{k=1}^{\infty}$, кроме конечного их числа, т.е. существует такое $N \in \mathbb{N}$, что $x_k \in V$ для всех k > N. При этом используются обозначения: $x_k \to x_*$ или $x_* = \lim_{k \to \infty} x_k$.

Утверждение 2.1.42. Пусть $(x_k)_{k=1}^{\infty}$ — последовательность в $X \subset E$, и $x_* \in E$. Следующие условия эквивалентны:

- (a) $x_* = \lim_{k \to \infty} \boldsymbol{x}_k$:
- (b) $\lim_{k\to\infty} \|x_k x_*\| = 0$.

Утверждение 2.1.43. Точка $x_* \in E$ является предельной точкой множества X тогда и только тогда, когда существует такая последовательность $(x_k)_{k=1}^{\infty}$ в X, что $x_k \neq x_*$ для всех $k \in \mathbb{N}$, и $x_k \to x_*$.

Утверждение 2.1.44. Пусть последовательность $(x_k)_{k=1}^{\infty}$ имеет предел. Тогда этот предел единственен.

Утверждение 2.1.45. (a) Пусть E является одним из пространств $\ell_1, \ \ell_2, \ \ell_\infty.$ Если $x_k \to x_*$ в E, где $x_k = (x_k^1, \ldots, x_k^j, \ldots)$ и $x_* = (x_*^1, \ldots, x_*^j, \ldots)$, то для каждого $j_0 \in \mathbb{N}$ имеем $x_*^{j_0} = \lim_{k \to \infty} x_k^{j_0}$.

(b) Если $E = \mathcal{F}_b([a,b]), \ u \ f_n \to f_* \ в \ E, \ mo \ для \ каждого \ t \in [a.b]$ имеем $f_*(t) = \lim_{k \to \infty} f_k(t).$

Доказательство. См. конспект.

Пример 2.1.46. Пример 2.1.40 (2, 3 4).

Определение 2.1.47. Последовательность $(x_k)_{k=1}^{\infty}$ в $X \subset E$ называется *сходящейся*, если она имеет предел $x^* \in E$, и *сходящейся в* X, если она является сходящейся, и ее предел $x_* \in X$.

Теорема 2.1.48. Пусть $(x_k)_{k=1}^{\infty}$ сходящаяся последовательность в E, u $x_* = \lim_{k \to \infty} x_k$. Если $(x_{k_l})_{l=1}^{\infty}$ — произвольная подпоследовательность последовательности $(x_k)_{k=1}^{\infty}$, то она также является сходящейся, $u \lim_{l \to \infty} x_{k_l} = x_*$.

2.1.5 Полнота. Банаховые пространства.

Определение 2.1.49. Последовательность $(x_k)_{k=1}^{\infty}$ в $X \subset E$ называется фундаментальной или последовательностью Коши, если для любого $\varepsilon > 0$ существует такое $N \in \mathbb{N}$, что

$$\|\boldsymbol{x}_{k+p} - \boldsymbol{x}_k\| < \varepsilon$$

для всех k > N и $p \in \mathbb{Z}_+$.

Утверждение 2.1.50. Сходящаяся последовательность в E является фундаментальной.

Доказательство. См. конспект.

Определение 2.1.51. Линейное нормированное пространство $(E,\|\cdot\|)$ называется *полным* или *банаховым*, если всякая фундаментальная последовательность в E является сходящейся.

Пример 2.1.52. 1. $X = \mathbb{R}^n$.

- 2. $X = \operatorname{Pol}_{\mathbb{R}}([0,1]), ||f|| = ||f||_{\infty}.$
- 3. $X = C([a, b]), ||f|| = \int_a^b |f(t)| dt.$

Теорема 2.1.53. Пространства $\ell_1, \, \ell_2, \, \ell_\infty$ являются банаховыми.

Доказательство. См. конспект.

Теорема 2.1.54. Линейное нормированное пространство $\mathcal{F}_b(\Omega)$ является банаховым.

Утверждение 2.1.55. Пусть $(E, \|\cdot\|)$ — банахово пространство, а \tilde{E} — замкнутое линейное подпространство пространства E. Тогда $(\tilde{E}, \|\cdot\|)$ — банахово пространство.

Теорема 2.1.56. Пространство C([a,b]) является замкнутым подпространством пространства $\mathcal{F}_b([a,b])$.

Следствие 2.1.57. Пространство C([a,b]) является банаховым.

Теорема 2.1.58. Пространства ℓ_1 , ℓ_2 , ℓ_∞ , $\mathcal{F}_b(\Omega)$, $\mathcal{C}([a,b])$ являются банаховыми.

Теорема 2.1.59. Пусть (Ω, Σ, μ) — измеримое пространство с мерой. Пространства $L_1(\Omega, \mu)$, $L_2(\Omega, \mu)$ являются банаховыми.

2.1.6 Ряды в банаховых пространствах

Определение 2.1.60. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство, $(x_k)_{k=1}^{\infty}$ — последовательность элементов E. Выражение

$$\sum_{k=1}^{\infty} x_k$$

называется pядом в E. Этот ряд называется cxodящимся, если сходится в E последовательность $(S_m)_{m=1}^{\infty}$ частичных сумм ряда, где

$$oldsymbol{S}_m = \sum_{k=1}^m oldsymbol{x}_k.$$

Если ряд является сходящимся, то

$$oldsymbol{S} = \lim_{m o \infty} oldsymbol{S}_m$$

называется суммой ряда.

Пример 2.1.61. $E = \mathcal{C}([0, \frac{1}{2}]), S(t) = \sum_{k=0}^{\infty} t^k.$

Утверждение 2.1.62. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство. Если ряд $\sum_{k=1}^{\infty} x_k$ сходится, то $\lim_{k\to\infty} x_k = 0$.

Определение 2.1.63. Пусть E — банахово пространство. Ряд

$$\sum_{k=1}^{\infty} oldsymbol{x}_k$$

называется абсолютно сходящимся, если сходится числовой ряд

$$\sum_{k=1}^{\infty}\|oldsymbol{x}_k\|.$$

Пример 2.1.64. $\sum_{k=0}^{\infty} t^k$ в $\mathcal{C}([0, \frac{1}{2}])$.

Утверждение 2.1.65. Пусть E — банахово пространство. Абсолютно сходящийся ряд является сходящимся.

Утверждение 2.1.66. Пусть E — банахово пространство, и $\sum_{k=1}^{\infty} x_k$ — абсолютно сходящийся ряд. Если $\sigma \colon \mathbb{N} \to \mathbb{N}$, биекция, то ряд $\sum_{k=1}^{\infty} x_{\sigma(k)}$ также является сходящимся, и суммы обоих рядов равны.

Задачи

KP: 32, 34, 34.1, 38 (2, 1, 6, 7), 43

 $\mathcal{I}P$: 31, 35, 36, 38 (4, 8, 9)

2.2 Компактные множества

2.2.1 Общие положения

Определение 2.2.1. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство. Подмножество $X \subset E$ называется $nped\kappaomna\kappa mhum$, если любая последовательность $(x_k)_{k=1}^\infty$ в X имеет сходящуюся в E подпоследовательность. Подмножество $X \subset E$ называется компактным, если любая последовательность $(x_k)_{k=1}^\infty$ в X имеет сходящуюся в X подпоследовательность.

Утверждение 2.2.2. Подмножество $X \subset E$ является компактным тогда и только тогда, когда оно предкомпактно и замкнуто.

Пример 2.2.3. 1.
$$X = \{a\}$$
.

2.
$$X = \{a_1, \ldots, a_m\}.$$

Теорема 2.2.4. Множество $[a,b] \subset X$ является компактным.

Определение 2.2.5. Пусть $(E, \| \cdot \|)$ — линейное нормированное пространство. Подмножество $X \subset E$ называется *ограниченным*, если существует такое R > 0, что $X \subset B[\mathbf{0}; R]$.

Пример 2.2.6. 1.
$$X = [a, b] \subset \mathbb{R}$$
.

- 2. X = B(a; r).
- 3. $X = \mathbb{N} \subset \mathbb{R}$.
- 4. X = E.

Теорема 2.2.7. Пусть $E = \mathbb{R}^n$, $u X \subset E$.

- (a) Подмножество X является предкомпактным тогда и только тогда, когда оно ограниченно.
- (a) Подмножество X является компактным тогда и только тогда, когда оно ограниченно и замкнуто.

Утверждение 2.2.8. Замкнутый шар B[0;1] не является компактным ни в одном из следующих пространств: ℓ_1 , ℓ_2 , ℓ_{∞} , $\mathcal{F}_b(\Omega)$, $\mathcal{C}([a,b])$.

Утверждение 2.2.9. Пусть $X \subset E$ — компактное множество, $u \ Y \subset X$ — замкнутое подмножество X. Тогда множество Y является компактным.

Утверждение 2.2.10. Пусть $X \subset E$ — компактное множество, u

$$X\supset X_1\supset X_2\supset\ldots$$

где каждое подмножество $X_k, k \in \mathbb{N}$, является замкнутым. Тогда

$$\bigcap_{n=1}^{\infty} X_k \neq \emptyset.$$

Определение 2.2.11. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство. Подмножество $X \subset E$ называется вполне ограниченным, если для каждого r > 0 существует такое конечное семейство точек $a_1, \ldots, a_m \in E$, что $X \subset \bigcup_{k=1}^m B(a_k; r)$.

Утверждение 2.2.12. Вполне ограниченное множество является ограниченным.

Утверждение 2.2.13. Единичный шар в ℓ_{∞} не является вполне ограниченным.

Теорема 2.2.14 (Фреше–Хаусдорфа). Пусть E- банахово пространство, $u \ X \subset E$.

- (a) Множество X является предкомпактным тогда и только тогда, когда оно вполне ограниченно.
- (b) Множество X является компактным тогда и только тогда, когда оно вполне ограниченно и замкнуто.

Определение 2.2.15. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство, и $X \subset E$. Семейство открытых в E множеств $\{U_{\gamma}\}_{{\gamma}\in\Gamma}$ называется *открытым покрытием* подмножества X, если $X\subset \bigcup_{{\gamma}\in\Gamma} U_{\gamma}$.

- Пример 2.2.16. 1. Семейство $\{U_k\}_{k\in\mathbb{N}}$, где $U_k = (0, 1 \frac{1}{k})$ является открытым покрытием множества X = (0, 1).
 - 2. Семейство $\{U_k\}_{k\in\mathbb{Z}_+}$, где $U_0=\left(\frac{1}{2},\frac{3}{2}\right)$ и $U_k=\left(-\frac{1}{k},1-\frac{1}{k}\right),\,k\in\mathbb{N},$ является открытым покрытием множества X=[0,1]

Теорема 2.2.17. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство, $u \ X \subset E$. Следующие утверждения эквивалентны:

- (a) X является компактным;
- (b) всякое открытое в E покрытие $\{U_{\gamma}\}_{{\gamma}\in \Gamma}$ подмножества X имеет конечное подпокрытие.

2.2.2 Компактные подмножества C([a,b])

Определение 2.2.18. Семейство функций $\Phi = \{f_{\gamma}\}_{\gamma \in \Gamma} \subset \mathcal{C}([a,b])$ называется равномерно ограниченным, если существует такое $C \in \mathbb{R}_+$, что $\|f_{\gamma}\|_{\infty} \leq C$ для всех $\gamma \in \Gamma$.

Семейство Φ называется равноственно непрерывным, если для каждого $\varepsilon>0$ существует такое $\delta>0$, что

$$|t' - t''| < \delta \implies |f_{\gamma}(t') - f_{\gamma}(t'')| < \varepsilon$$

для всех $\gamma \in \Gamma$.

Замечание 2.2.19. Равномерная ограниченность множества функций $\Phi = \{f_\gamma\}_{\gamma \in \Gamma}$ эквивалентна тому, что множество Φ ограниченно в банаховом пространстве $\mathcal{C}([a,b])$.

 $\Pi p u м e p \ 2.2.20. \ [a,b] = [0,1].$

- 1. $f_{\gamma}(t) = \sin(t + \gamma), \ \gamma \in \mathbb{R}$.
- 2. $f_n(t) = n + t, n \in \mathbb{N}$.
- 3. $f_n(t) = \operatorname{arctg} nt, n \in \mathbb{N}$.

Теорема 2.2.21 (Арцела). Семейство $\Phi = \{f_\gamma\}_{\gamma \in \Gamma} \subset \mathcal{C}([a,b])$ является предкомпактным подмножеством $\mathcal{C}([a,b])$ тогда и только тогда, когда оно равномерно ограниченно и равностепенно непрерывно.

2.2. КОМПАКТНЫЕ МНОЖЕСТВА

Доказательство. См. конспект, [6, Теорема 1, стр. 199].

2.3 Непрерывные функционалы

2.3.1 Общие положения

Определение 2.3.1. Пусть $(E, \|\cdot\|), (E', \|\cdot\|')$ — линейные нормированные пространства. Отображение $\varphi \colon E \to E'$ называется непрерывным в точке $x_* \in E$, если для каждой окрестности $U' \subset E'$ точки $\varphi(x_*)$ существует такая окрестность $U \subset E$ точки x_* , что $\varphi(U) \subset U'$.

Определение 2.3.2. Если $E' = \mathbb{R}$ и $\|\cdot\|' = |\cdot|$, то отображение φ называется функционалом на E.

Утверждение 2.3.3. Пусть $(E, \|\cdot\|)$, $(E', \|\cdot\|')$ — линейные нормированные пространства, $\varphi \colon E \to E'$, и $\mathbf{x}_0 \in E$. Следующие условия эквивалентны.

- (a) Отображение φ непрерывно в точке x_* .
- (b) Если V' окрестность точки $\varphi(x_*)$, то $\varphi^{-1}(V')$ является окрестностью точки x_* .
- (c) Для любого $\varepsilon > 0$ существует такое $\delta > 0$, что

$$\|x - x_*\| < \delta \implies \|\varphi(x) - \varphi(x_*)\|' < \varepsilon.$$

(d) Для любой последовательности $(x_k)_{k=1}^{\infty}$ в E имеем:

$$oldsymbol{x}_k o oldsymbol{x}_* \qquad \Longrightarrow \qquad oldsymbol{arphi}(oldsymbol{x}_k) o oldsymbol{arphi}(oldsymbol{x}_*).$$

Пример 2.3.4. 1. $E = E' = \mathbb{R}, \varphi(x) = f(x), f \in \mathcal{C}(\mathbb{R}).$

2. $E = E' = \mathcal{C}([a, b]),$

$$\varphi(f)(t) = \int_a^b K(t,\tau) f(\tau) d\tau, \qquad K \in \mathcal{C}([a,b]^2).$$

3.
$$E = \mathcal{C}([a,b]), E' = \{f \in \mathcal{C}([a,b]) : f(a) = 0\},$$

$$\varphi(f)(t) = \int_{-\tau}^{t} F(\tau, f(\tau)) d\tau, \qquad F \in \mathcal{C}(\mathbb{R}^{2}).$$

Определение 2.3.5. Пусть $(E, \|\cdot\|), (E', \|\cdot\|')$ — линейные нормированные пространства. Отображение $\varphi \colon E \to E'$ называется непрерыеным на E, если оно непрерывно в каждой точке E.

Утверждение 2.3.6. Функционал $\varphi \colon E \to \mathbb{R}$, заданный как

$$\varphi(\boldsymbol{x}) = \|\boldsymbol{x}\|$$

является непрерывным на E.

Утверждение 2.3.7. Пусть $(E, \|\cdot\|)$, $(E', \|\cdot\|')$ — линейные нормированные пространства и $\varphi \colon E \to E'$. Следующие условия эквивалентны.

- (a) Отображение φ непрерывно на E.
- (b) Для каждого открытого множества $U' \subset E'$ множество $\varphi^{-1}(U') \subset E$ открыто.
- (c) Для каждого замкнутого множества $F' \subset E'$ множество $\varphi^{-1}(F') \subset E$ замкнуто.

2.3.2 Непрерывные функционалы на компактах

Теорема 2.3.8. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство, и $X \subset E$ — компактное подмножество E. Пусть $\varphi \colon E \to \mathbb{R}$ — функционал непрерывный на E. Тогда φ ограничен на X, т.е. существует такое $C \in \mathbb{R}_+$, что

$$|\varphi(\boldsymbol{x})| < C$$

для всех $\mathbf{x} \in X$.

Теорема 2.3.9. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство, и $X \subset E$ — компактное подмножество E. Пусть $\varphi \colon E \to \mathbb{R}$ — функционал непрерывный на E. Тогда φ достигает на X своих минимального и максимального значений, т.е. существуют такие $\mathbf{x}_*, \mathbf{x}^* \in X$, что

$$\varphi(\boldsymbol{x}_*) = \inf_{\boldsymbol{x} \in X} \varphi(\boldsymbol{x}), \qquad \varphi(\boldsymbol{x}^*) = \sup_{\boldsymbol{x} \in X} \varphi(\boldsymbol{x}).$$

2.3.3 Сжатия. Теорема Банаха о неподвижной точке

Определение 2.3.10. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство и $X \subset E$. Отображение $\varphi \colon E \to E$ называется *сэкатием на* X, если выполнены следующие условия:

- (i) $\varphi(X) \subset X$;
- (ii) существует такое $q \in (0, 1)$, что

$$\|\varphi(x') - \varphi(x'')\| \le q \|x' - x''\|$$

для всех $x', x'' \in X$.

Утверждение 2.3.11. Пусть $(E, \|\cdot\|)$ — линейное нормированное пространство и $X \subset E$. Если $\varphi \colon E \to E$ является сжатием на X, то φ непрерывно на X.

Теорема 2.3.12 (Банах). Пусть E — банахово пространство, $F \subset E$ — замкнутое подмножество E. $u \varphi \colon E \to E$ является сжатием на F. Тогда φ имеет в F неподвижную точку, т.е. существует такое $\mathbf{x}_* \in F$, что

$$oldsymbol{arphi}(oldsymbol{x}_*) = oldsymbol{x}_*,$$

и эта неподвижная точка единственна в F.

Приложение А

Дополнительные задачи

А.1 Мера и интеграл

1.1. (1 б.) Приближение борелевских множеств компактными и открытыми множествами.

Пусть μ — конечная мера на борелевской σ -алгебре \mathcal{B}_n пространства \mathbb{R}^n . Доказать, что для любого $B \in \mathcal{B}_n$ и любого $\varepsilon > 0$ найдутся такие компактное множество K_{ε} и открытое множество U_{ε} в \mathbb{R}^n , что $K_{\varepsilon} \subset B \subset U_{\varepsilon}$ и $\mu(U_{\varepsilon} \setminus K_{\varepsilon}) < \varepsilon$. Литератира: [9, теорема 2.3.11].

1.2. (2 б.) Приближение измеримых множеств.

Пусть $\mu - \sigma$ -конечная мера на кольце \mathcal{R} , и $\tilde{\mu}$ — ее продолжение на σ -алгебру Σ_{μ} . Доказать, что для любого множества $A \in \Sigma_{\mu}$ конечной меры, т.е. для которого $\mu(A) < \infty$, и любого $\varepsilon > 0$ существует такое множество $A_{\varepsilon} \in \mathcal{R}$, что $\tilde{\mu}(A \triangle A_{\varepsilon}) < \varepsilon$. \mathcal{I} Литература: [8, стр. 35, теорема 6], [5, теорема I.6.5].

1.3. (3 б.) Теорема Каратеодори.

Доказать теорему Каратеодори (см. теорему 1.2.32). Литература: [8, стр. 30, теорема 3].

1.4. (1 б.) Пример неизмеримого множества.

Привести пример множества неизмеримого по Лебегу. Будет ли это множество борелевским?

Литература: [9, пример 2.5.7].

1.5. (1 б.) Мера Лебега-Стильтьеса на прямой.

Пусть \mathcal{R} — кольцо, порожденное полуинтервалами $[a,b),\ a,b\in\mathbb{R},\ a\leq b$. Для монотонно неубывающей непрерывной слева функции $F\colon\mathbb{R}\to\mathbb{R}$ определим

$$\mu_F\left(\bigsqcup_{k=1}^{m} [a_k, b_k)\right) = \sum_{k=1}^{m} (F(b_k) - F(a_k)).$$

Доказать, что μ_F является мерой на \mathcal{R} . (Продолжение меры μ_F на Σ_{μ_F} называется мерой Лебега-Стильтьеса на прямой с функцией распределения F).

Литература: [1, теорема 4.1].

1.6. (1 б.) Описание σ -конечных мер на \mathcal{B} .

Пусть μ является σ -конечной мерой на борелевской σ -алгебре \mathcal{B} подмножеств \mathbb{R} . Зафиксируем $a \in \mathbb{R}$, и определим функцию

$$F_a(x) = \begin{cases} \mu([a,x)), & x \ge a, \\ -\mu([x,a)), & x < a. \end{cases}$$

Доказать, что функция F_a является неубывающей, непрерывной слева, $F_a(a) = 0$ и $\mu = \mu_{F_a}$ (см. задачу **1.5**).

Литература: [5, теорема I.15.1].

1.7. $(2 \, 6.)$ Описание измеримых функций (теорема Н. Н. Лузина).

Пусть λ_n — мера Лебега на \mathbb{R}^n , $R \subset \mathbb{R}^n$ — измеримое по Лебегу множество конечной меры, и пусть $f \colon R \to \mathbb{R}$ измеримая по Лебегу функция. Тогда для любого $\varepsilon > 0$ существует такое замкнутое множество $F_{\varepsilon} \subset R$, что $\lambda_n(R \setminus F_{\varepsilon}) < \varepsilon$, и сужение $f \upharpoonright F_{\varepsilon}$ функции f на F_{ε} является непрерывной функцией на F_{ε} . Литература: [1, теорема 19.1], [5, теорема II.5.3].

1.8. (2 б.) Описание сходимости почти всюду (теорема Д. Ф. Егорова).

Пусть (Ω, Σ) — измеримое пространство, и μ — конечная мера на σ -алгебре Σ . Пусть $f, f_k \colon \Omega \to \mathbb{R}, \ k \in \mathbb{N},$ — измеримые функции, и $f_k \to f$ почти всюду относительно меры μ . Тогда для любого $\delta > 0$ существует такое множество $A_\delta \in \Sigma$, что $\mu(A_\delta) < \delta$ и $f_k \to f$ равномерно на $\Omega \setminus A_\delta$.

Литература: [3, стр. 305, теорема 6], [8, стр. 58, теорема 8].

1.9. (2 б.) Абсолютно непрерывные меры.

Пусть (Ω, Σ, μ) измеримое пространство с мерой. Мера ν на (Ω, Σ) называется абсолютно непрерывной относительно меры μ , если выполняется следующее условие для произвольного $A \in \Sigma$: если $\mu(A) = 0$, то $\nu(A) = 0$.

1) Пусть $f \colon \Omega \to \mathbb{R}_+$ — измеримая функция относительно σ -алгебры Σ . Определим функцию $\mu_f \colon \Sigma \to \overline{\mathbb{R}}_+$ как

$$\mu_f(A) = \int_A f \, d\mu, \qquad A \in \Sigma.$$

Доказать, что μ_f является мерой, абсолютно непрерывной относительно меры μ .

Литература: [5, теоремы III.4.2, III.4.3].

2) Пусть ν — конечная мера на (Ω, Σ) . Доказать, что мера ν является абсолютно непрерывной относительно меры μ тогда и только тогда, когда для любого $\varepsilon > 0$ существует такое $\delta > 0$, что, для произвольного $A \in \Sigma$ имеем $\nu(A) < \varepsilon$, если $\mu(A) < \delta$.

Литература: [5, теорема V.1.1].

1.10. (3 б.) Описание абсолютно непрерывных мер (теорема Радона–Никодима).

Пусть (Ω, Σ, μ) — измеримое пространство с σ -конечной мерой μ . Пусть σ -конечная мера ν на Σ удовлетворяет следующему условию: $\nu(A)=0$ для всех таких $A\in \Sigma$, что $\mu(A)=0$. Доказать, что существует такая измеримая функция $f\colon \Omega\to \mathbb{R}$, что

$$\nu(A) = \int_A f \, d\mu$$

для всех $A \in \Sigma$.

Литература: [1, теорема 20.2], [5, теорема V.2.1].

Приложение В

Экзаменационные вопросы и задачи

Каждый билет состоит из 2 теоретических вопросов и 2 задач, и покрывает следующие темы.¹²

- 1. Мера и интеграл.
- 2. Линейные нормированные пространства.

В.1 Экзаменационные вопросы

1. Мера и интеграл.

- 1. Системи підмножин (кільце, σ -кільце, алгебра, σ -алгебра): означення (1.1.1), властивості (1.1.3). Система, що породжена сім'єю підмножин: означення (1.1.6), існування (1.1.4, 1.1.5).
- 2. Система, породжена сім'єю підмножин: означення (1.1.6), властивості (1.1.11). Борелівська σ -алгебра: означення (1.1.9). Сімейства множин, що породжують борелівську σ -алгебру(1.1.13).
- 3. Міра на кільці: означення (1.2.1). Міра довжини на \mathbb{R} (1.2.9, 1.2.8).
- 4. Міра на кільці: означення (1.2.1), властивості (1.2.11).
- 5. Міра на кільці: означення (1.2.1), властивість неперервності за зростанням (1.2.13) та спаданням (1.2.14), наслідок (1.2.15).
- 6. Зовнішня міра: означення (1.2.18), властивості (1.2.23).
- 7. Множина міри нуль: означення (1.2.24), властивості (1.2.27).
- 8. Вимірна множина за Каратеодорі: означення (1.2.28). Вимірність множини кільця (1.2.29) та множини міри нуль (1.2.30). Теорема Каратеодорі (без доведення) (1.2.32).

 $^{^{1} \}rm Oпределения \ u \ формулировки результатов в вопросах оцениваются в <math display="inline">50\%$ от максимального балла.

 $^{^2}$ Определения и формулировки в вопросах, отмеченных значком $^\circ,$ оцениваются в 30% от максимального балла.

- 9. Вимірні множини та відображення: означення (1.3.1), 1.3.2). Вимірність композиції функцій (1.3.5) та множин, що породжені сім'єю підмножин (1.3.6).
- 10. Вимірні функції: означення (1.3.7), критерії вимірності (1.3.11), алгебраїчні властивості (1.3.13).
- 11°. Вимірні функції: означення (1.3.7), критерії вимірності (без доведення) (1.3.11). Вимірність функцій $\sup_{k\in\mathbb{N}} f_k$, $\inf_{k\in\mathbb{N}} f_k$ (1.3.15).
- 12°. Вимірні функції: означення (1.3.7), критерії вимірності (без доведення) (1.3.11). Вимірність функції $\lim_{k\to\infty} f_k$ (1.3.15).
 - 13. Проста функція: означення (1.3.16), критерій вимірності (1.3.20). Теорема про рівномірну апроксимацію вимірної функції простою (1.3.23).
 - 14. Проста функція: означення (1.3.16). Теорема про апроксимацію вимірної функції зростаючою послідовністю простих функцій (1.3.32).
 - 15. Вимірний простір: означення (1.4.1). Інтеграл від простої функції: означення (1.4.2), властивості (1.4.4, 1.4.5).
 - 16. Інтеграл від невід'ємної функції: означення (1.4.6), властивість монотонності (1.4.11), лінійність (1.4.16).
 - 17. Інтеграл від невід'ємної функції: означення (1.4.6). Теорема Беппо Леві (1.4.12). Наслідок (1.4.13).
 - 18. Теорема Фату (1.4.14).
 - 19. Властивість «майже всюди»: означення (1.4.17). Критерій рівності нулю інтеграла від невід'ємної функції (1.4.19).
- 20. Властивість «майже всюди»: означення (1.4.17). Монотонність інтегралу для функцій, що задовольняють властивість «майже всюди» (1.4.20).

- 21. Властивість «майже всюди»: означення (1.4.17). Нерівність Чебишева (1.4.21), наслідок (1.4.22).
- 22. Інтеграл від вимірної функції: означення (1.4.24), властивості (1.4.25). Лінійність інтегралу (1.4.26). Важлива нерівність (1.4.27).
- 23. Теорема Лебега про обмежену збіжність (1.4.29).
- 24. Інтеграл по підмножині: означення (1.4.30). Критерій рівності нулю функції майже всюди (1.4.31). Лінійність інтегралу по підмножині (1.4.32), наслідок (1.4.33).
- 25. Інтеграл по підмножині: означення (1.4.30). Абсолютна неперервність інтегралу (1.4.34).

2. Линейные нормированные пространства.

- 1. Норма, преднорма: означення (2.1.1), властивості преднорми (2.1.2). Простір ℓ_1 (2.1.4).
- 2. Норма, преднорма: означення (2.1.1), властивості преднорми (2.1.2). Простір $\mathcal{F}_b(\Omega,\mathbb{R})$ (2.1.8).
- 3°. Еквівалентні норми: означення (2.1.12). Еквівалентність норм в \mathbb{R}^n (2.1.14).
 - 4. Відкриті та замкнені множини в нормованих просторах: означення (2.1.18). Об'єднання та перетин відкритих та замкнених множин (2.1.22).
 - 5. Граничні точки множини: означення (2.1.28). Критерій замкнутості множини (2.1.30).
 - 6. Замикання множини: означення (2.1.31), побудова (2.1.33).
- 7°. Щільна множина в нормованому просторі: означення. Сепарабельні нормовані простори: означення (2.1.36). Сепарабельність простору ℓ_1 .

- 8°. Щільна множина в нормованому просторі: означення. Сепарабельні нормовані простори: означення (2.1.36). Сепарабельність простору C([a,b]).
 - 9. Границя послідовності в нормованому просторі: означення (2.1.41). Необхідна умова збіжності послідовності в ℓ_1 .
- 10. Границя послідовності в нормованому просторі: означення (2.1.41). Необхідна умова збіжності послідовності в $\mathcal{F}_b([a,b])$.
- 11° . Фундаментальні послідовності в нормованому просторі: означення (2.1.49). Фундаментальність збіжної послідовності (2.1.50).
- 12°. Банахові простори: означення (2.1.51). Банаховість простору ℓ_1 (2.1.53).
- 13°. Банахові простори: означення (2.1.51). Банаховість простору \mathcal{F}_b .
- 14°. Банаховість замкненого підпростору (2.1.55). Банаховість простору $\mathcal{C}([a.b])$ (2.1.56, 2.1.57).
 - 15. Компактні та предкомпактні множини: означення (2.2.1), Зв'язок між компактними та предкомпактними множинами (2.2.2).
 - 16. Цілком обмежені множини: означення (2.2.11). Теорема Фреше—Хаусдорфа (2.2.14).
 - 17. Теорема Арцела (2.2.18, 2.2.21).
 - 18. Неперервність відображення в точці: означення (2.3.1), еквівалентні означення (2.3.3).
- 19°. Обмеженість неперервного функціоналу на компакті (2.3.8).
- 20°. Максимальні і мінімальні значення неперервного функціоналу на компакті (2.3.9).

21. Стиск: означення (2.3.10). Теорема Банаха про стиск (2.3.12).

В.2 Экзаменационные задачи

1. Мера и интеграл

Группа КА-53

[10] $\mathbb{N} \mathbb{N}$: 279, 281.1, 281.1 (1; 2; 3; 6), 282, 287.1, 289, 289.1, 289.2, 290.1, 290.2, 290.3, 290.4, 290.5, 290.6, 290.7, 291 (1; 3), 291.1, 291.2, 291.3, 292 (1), 293 (2-5), 293.3, 295, 296, 300, 301, 302 (3), 304, 305, 306, 307, 309, 311, 316, 317, 319 (1-3) 320, 321, 322, 334, 334.1, 335 (2; 3), 335.1, 335.3, 335.5. 335.6, 335.7, 335.8, 335.9, 335.10, 336 (2;3), 336.1, 347, 350, .

Группа КА-54

[10] $\mathbb{N}^{\underline{\bullet}}\mathbb{N}^{\underline{\bullet}}$: 281.1 (1-4, 6), 282, 287.1, 289, 289.1, 289.2, 290.2, 290.6, 290.7, 291 (1-3), 291.1, 291.2, 291.3, 292 (1), 293 (2-5), 293.3, 295, 296, 300, 301, 304, 305, 306, 307, 309, 317, 319 (3), 320, 322, 334, 334.1, 335 (2), 335.1, 335.3, 335.6, 335.8, 335.9, 335.10, 336 (2;3), 347, 350.

2. Линейные нормированные пространства

Группа КА-53

[10] No. 12 (1; 4, 13, 15, 16 (1; 2 (p=1;2)), 16.1, 17 (1;2;4), 31, 32, 34, 34.1, 35, 36, 38 (1; 2; 4; 6-9), 43, 52, 52.1 (p=1), 53.2, 53.3, 57, 61, 62, 69, 70, 80, 82, 84 (2), 113 (1; 2; 3; 4; 5), 113.1, .

Группа КА-54

[10] No. 12, 13, 14, 15, 16 (1 - \mathbb{C}^1 u \mathbb{C}^n ; 2 - \tilde{L}_1 u \tilde{L}_2), 16 (1; 2 (p = 1,2)), 17 (1;2;4), 31, 32, 34, 35, 36, 38 (1-4, 8, 9), 51, 52, 53, 55 (\mathbb{R} u \mathbb{R}^n cenapaberbhh), 57, 62, \mathbb{Q} плотно в \mathbb{R} , \mathbb{Z} неплотно в \mathbb{R} .

Index

Алгебра, <mark>4</mark>	μ -измеримое, $32, 59$
σ -алгебра, $\frac{4}{}$	борелевское, <mark>10</mark>
борелевская на $\overline{\mathbb{R}},53$	вполне ограниченное, 106
борелевская на $\mathbb{R}^n, 10$	замыкание, <mark>99</mark>
порожденная, 9	измеримое, <mark>38</mark>
Интеграл	измеримое по Каратеодо-
по мере, <mark>63</mark> , 75	ри, <mark>32</mark>
от простой функции, 59	измеримое по Лебегу, <mark>37</mark>
по подмножеству, <mark>83</mark>	компактное, 105
$cxoдящийся, \frac{59}{}$	меры $0, \frac{30}{}$
Кольцо, 4	ограниченное, 105
σ -кольцо, 4	предкомпактное, 105
Mepa, 15	Норма на линейном простран-
σ -конечная, $\frac{36}{}$	стве, 88
Дирака, <mark>16</mark>	Нормы
Лебега, <mark>37</mark>	эквивалентные, 95
вероятностная, <mark>36</mark>	Окрестность, <mark>99</mark>
внешняя, <mark>27</mark>	Отображение
дискретная, <mark>17</mark>	измеримое, <mark>38</mark>
конечная, <mark>36</mark>	непрерывное в точке, 109
ограничение меры, 35	непрерывное на $E, \frac{110}{}$
ограниченная, <mark>36</mark>	Подмножество
продолжение меры, 35	замкнутое, 97
считающая, <mark>15</mark>	открытое, <mark>97</mark>
Множество	плотное, 100

Покрытие	сходящийся, <mark>103</mark>
открытое, <mark>106</mark>	Семейство функций
Последовательность	равномерно ограниченное,
Коши, <mark>102</mark>	107
в $X, \frac{100}{}$	равностепенно непрерывных
подпоследовательность, <mark>100</mark>	107
сходящаяся, <mark>101</mark>	Сжатие на X , 111
сходящаяся в $X, \frac{101}{}$	Сфера, <mark>97</mark>
фундаментальная, 102	Теорема
Почти всюду	Беппо Леви, <mark>65</mark>
свойство, <mark>70</mark>	Каратеодори, <mark>35</mark>
Предел последовательности, 101	Лебега об ограниченной схо-
Преднорма на линейном про-	димости, <mark>80</mark>
странстве, <mark>88</mark>	Фату, <mark>68</mark>
Пространство	Фреше–Хаусдорфа, <mark>106</mark>
$\mathbb{K}_2^n, \frac{90}{}$	Точка
$\mathbb{R}^{n}_{1}, \frac{90}{90}$	внутренняя, <mark>98</mark>
\mathbb{R}^n_{∞} , 90	предельная, <mark>99</mark>
$\mathcal{C}(K), \frac{95}{}$	Функционал
$\ell_1, 92$	на $E, \frac{109}{}$
$\ell_{\infty},92$	Функция
$\ell_p, \frac{93}{}$	μ -измеримая, 59
$\mathcal{F}_b(\Omega;\mathbb{R}), extstyle{93}$	измеримая, 40 , 54
банахово, <u>102</u>	интегрируемая, <mark>75</mark>
измеримое, <mark>38</mark>	неотрицательная
измеримое с мерой, 59	интегрируемая, <mark>63</mark>
линейное нормированное, <mark>88</mark>	простая, <mark>48</mark>
полное, <mark>102</mark>	интегрируемая, <mark>59</mark>
сепарабельное, 100	Шар
Ряд	замкнутый, <mark>96</mark>
абсолютно сходящийся, <mark>104</mark>	открытый, <mark>96</mark>
в линейном нормированном пространстве, 103	открытый выколотый, 96
сумма ряда, 103	

Литература

- [1] Дъяченко, М. И. Мера и интеграл / М. И. Дьяченко, П. Л. Ульянов. М.: Изд-во «Факториал», 1998.
- [2] Xалмош, Π . Теория меры / Π . Халмош. Изд-во иностранной литературы, 1953.
- [3] *Колмогоров*, А. Н. Элементы функционального анализа / А. Н. Колмогоров, С. В. Фомин. М.: ФИЗМАТЛИТ, 2004.
- [4] *Люстерник*, Л. А. Краткий курс функционального анализа / Л. А. Люстерник, В. И. Соболев. М.: Высш. школа, 1982.
- [5] Березанский, Ю. М. Функциональный анализ. Курс лекций / Ю. М. Березанский, Г. Ф. Ус, З. Г. Шефтель. — К.: Выща шк., 1990.
- [6] Треногин, В. А. Функциональный анализ / В. А. Треногин. М.: ФИЗМАТЛИТ, 2002.
- [7] *Федоров*, В. М. Курс функционального анализа / В. М. Федоров. Учебники для вузов. Специальная литература. СПб: «Лань», 2005.
- [8] Дороговцев, А. Я. Элементы общей теории меры и интеграла /
 А. Я. Дороговцев. К.: Выща шк., 1989.

- [9] *Богачев, В. И.* Действительный и функциональный анализ: университетский курс / В. И. Богачев, О. Г. Смолянов. Москва, Ижевск: R&C Dynamics, 2009.
- [10] *Богданский, Ю. В.* Задачи по дисциплине «Функциональный анализ» / Ю. В. Богданский, Г. Б. Подколзин, Ю. А. Чаповский. Электронная версия, Киев, 2017.
- [11] 3орич, B. A. Математический анализ. Часть І. / В. А. Зорич. М.: ФАЗИС, 1997.