Segmentação

1. Na figura representa-se uma parte de uma imagem digitalizada com 6 bits. Nesta imagem observam-se duas regiões, assinaladas com maior intensidade, que se pretende detetar. Por deficiência de iluminação, a região da esquerda está inserida numa zona mais clara do que a região da direita. Apresente um procedimento que detecte as duas regiões, e que seja insensível à variação de iluminação presentes na imagem.

33	35	34	33	32	30	25	24	24	25	27	26
32	31	32	34	31	29	24	23	23	24	25	24
30	31	19	32	31	28	26	21	20	19	20	21
33	36	16	34	30	27	25	22	10	19	20	22
33	32	19	20	31	28	25	23	20	11	22	23
30	34	19	34	32	30	26	24	22	11	23	23
31	33	18	34	31	31	28	23	21	18	12	20
33	36	20	19	30	29	29	23	26	13	21	23
33	35	20	34	32	28	26	24	21	13	20	22
32	35	34	34	31	30	29	28	26	24	22	22
33	36	34	34	30	30	28	26	25	26	24	23

2. No quadro da esquerda representa-se uma imagem codificada em 16 níveis de cinzento que se pretende binarizar usando o método das K-médias. Considere K=2 e os valores 0 e 15 como valores iniciais para os centros. Represente no quadro da direita o resultado da segmentação.

8	8	7	6	7	8	9	7
8	15	14	13	13	7	8	7
9	14	14	12	13	8	9	8
9	15	14	14	12	8	9	9
8	8	9	11	11	7	7	6
6	8	7	5	6	8	7	8
8	7	4	9	7	9	5	9
7	8	7	7	8	9	9	7

- **3.** Considere a imagem representada na figura, que se pretende binarizar recorrendo a um algoritmo de crescimento de regiões (*region growing*). Para esse efeito usa-se como critério de deteção "valor do brilho >= 8" e como critério de agregação "brilho >= (média-1,5)".
 - **a.** Represente a região segmentada no quadro seguinte, assinalando para cada ponto a etapa do algoritmo em que ele foi obtido.
 - **b.** Discuta a possibilidade de obter <u>o mesmo</u> segmento através de binarização baseada em histograma precedida de uma operação de pré-processamento adequada.

4	4	7	3	6	2	3	2	5	6
3	4	6	5	5	4	6	6	7	5
5	5	4	5	7	9	7	6	5	4
6	4	5	5	6	8	6	7	6	5
5	5	5	6	7	9	8	7	5	4
4	7	5	7	6	8	8	5	5	4
5	7	5	5	6	9	8	6	6	4
5	6	6	6	6	7	6	5	5	5
6	5	5	4	7	6	6	4	5	4
4	4	3	4	2	3	4	6	5	3

4	4	7	3	6	2	3	2	5	6
3	4	6	5	5	4	6	6	7	5
5	5	4	5	7	9	7	6	5	4
6	4	5	5	6	8	6	7	6	5
5	5	5	6	7	9	8	7	5	4
4	7	5	7	6	8	8	5	5	4
5	7	5	5	6	9	8	6	6	4
5	6	6	6	6	7	6	5	5	5
6	5	5	4	7	6	6	4	5	4
4	4	3	4	2	3	4	6	5	3

Matlab

- **4.** Pretende-se segmentar a imagem "cito-suavizada.tif".
 - **a.** A função *graythresh* da IPT implementa o método de OTSU para determinar o limiar de binarização. Obtenha o resulta da binarização da imagem usando este limiar (pode usar as funções *im2bw* ou *imbinarize* para gerar a imagem binária).
 - **b.** Admita agora que se pretende segmentar a imagem diferenciando as suas partes central e externa, dando origem a uma imagem segmentada semelhante à que se mostra abaixo. Para esse efeito foram testadas operações de binarização usando os valores de limiar 64 e 128 (valores na gama original da imagem de 0 a 255), cujos resultados são ilustrados nas figuras a seguir. Escreva um conjunto de instruções para obter o resultado de segmentação pretendido.
 - **c.** Repita a alínea anterior usando a rotina *multithresh* que implementa a versão multinivel do método de Otsu. Compare os valores dos limiares calculados por este método com os que selecionou na alínea anterior.

5. A imagem "smarties.tif", a seguir apresentada, foi adquirida em condições de iluminação deficientes que não permitem a segmentação direta dos pequenos objetos circulares recorrendo a uma única operação de binarização baseada em histograma. A realização de algumas tentativas deu origem aos resultados a seguir apresentados (limiares 135, 150 e 170).

- a. Escreva um conjunto de instruções em MatLab para segmentar a imagem através da partição da imagem num conjunto de sub-regiões e da utilização de um conjunto adequado de limiar locais (selecionados usando a informação obtida a partir da aplicação dos limiares globais antes referidos).
- b. Uma alternativa à partição da imagem e subsequente definição de limiares locais consiste na utilização de limiares dinâmicos, consistindo na definição de um valor limiar distinto para cada ponto da imagem. Para tal obteve-se uma estimação do fundo da imagem original, sendo o resultado desta operação apresentado a seguir na figura da esquerda. A imagem original pode ser segmentada considerando como pontos dos objetos aqueles pontos cuja diferença (em valor absoluto) para o respetivo fundo é superior a um valor de limiar a estabelecer. A imagem do fundo foi obtida por aplicação à imagem original de um filtro morfológico usando um elemento estruturante cuja dimensão foi ajustada ao tamanho dos objetos presentes na imagem, que se sabe não apresentarem diâmetro superior a 30 pixels. Escreva um conjunto de instruções em Matlab para realizar a operação de segmentação sugerida.

- **c.** Repita a alínea anterior (b.) usando diretamente as funções do Matlab para realização de binarização adaptativa (funções *adaptthresh* e *imbinarize*).
- **6.** Segmente a imagens do problema 4 mas usando agora o algoritmo das k-médias (função kmeans).
- 7. Altere o problema anterior, mas usando o algoritmo SLIC (Simple Linear Iterative Clustering), implementado na função superpixels, antes de realizar a segmentação. Repita o problema considerando vários valores para o número de superpixels (por exemplo 5000, 2000, 1000, 500, 100).
- 8. Na imagem "Hubble.tif" (na figura à esquerda) pretende-se segmentar apenas os objectos com núcleo mais brilhante para obter uma imagem final idêntica à que se mostra na parte central. Depois de ter sido verificado que um valor de limiar de binarização de 90 (na escala de 0-255) permitia a deteção correta dos contornos dos objetos antes referidos, foi aplicado um método de segmentação baseada em histograma com esse valor de limiar dando origem à imagem que se mostra à direita. Como pode ser observado, este resultado não é satisfatório dado que segmenta todos os objetos da imagem. Para resolver este problema, optou-se pela utilização de um método de segmentação baseado em crescimento de regiões ("region growing)".
 - **a.** Analise a função para realizar segmentação baseada em crescimento de regiões cujo código se disponibiliza no ficheiro "regiongrow.m".
 - **b.** Escreva um programa para implementar um processo de segmentação da imagem "Hubble.tif" que permita obter uma imagem semelhante à que se mostra ao centro. (para criar a imagem de sementes para o crescimento de regiões pode considerar que todas as estrelas que se pretende segmentar têm núcleos de intensidade superior a 240).

9. Considere a imagem "smarties.tif" que se mostra na figura à esquerda e as imagens que resultaram de dois procedimentos de segmentação baseada em *watersheds*. Escreva um conjunto de instruções em Matlab que permita obter resultados de segmentação semelhantes aos que se mostram nas figuras a seguir).

Sugestões:

A função watershed implementa o algoritmo de segmentação morfológica baseado em watersheds (ver detalhes de utilização no Help do Matlab).

- 1- Comece por aplicar a rotina watershed diretamente à imagem;
- 2- Procure suavizar e uniformizar a imagem (usando rotinas morfológicas adequadas) antes de aplicar a rotina de segmentação
- 3- Use um método de realce de orlas, seguido de eliminação de ruído, antes de aplicar a rotina de segmentação.