CONTROLE DIGITAL - SEL0620

Tarefa 2 - Sistema Dinâmico e Discretização da Resposta Trânsitória

Hugo Hiroyuki Nakamura

PARTE 1

A função de transferência do sistema estudado é

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta s + \omega_n^2} \tag{1}$$

NUSP: 12732037

E os parâmetros utilizados foram:

- R = 1.25;
- $\zeta = 1.011;$
- $w_n = 1{,}045 \text{ rad/s}.$

Gráfico de Bode

O gráfico de Bode do sistema é dado pela figura 1.

Figura 1: gráfico de Bode para a função de transferência da equação 1.

Através do gráfico de bode, o valor encontra-se a frequência, em -3dB, $\omega_{\mathbf{b}} = \mathbf{0,66}$ rad/s. Utilizando a função bandwidth, um valor mais preciso é encontrado, com $\omega_{\mathbf{b}}$

= 0,6609 rad/s. Dessa forma, as larguras de banda encontradas estão reunidas na tabela 1.

Frequência	Valor	Unidade
ω_b	0,6609	rad/s
f_b	0.1052	$_{ m Hz}$

Tabela 1: Largura de banda obtida em rad/s e Hz.

Respostas do sistema para entrada degrau

Figura 2: Resposta do sistema para um degrau com $\omega_0 = \omega_b$.

Figura 3: Resposta do sistema para um degrau com $\omega_0 = 2\omega_b$.

Figura 4: Resposta do sistema para um degrau com $\omega_0 = 5\omega_b$.

Figura 5: Resposta do sistema para um degrau com $\omega_0 = 10\omega_b$.

Figura 6: Resposta do sistema para um degrau com $\omega_0 = 35\omega_b$.

Questão

Baseado na largura de banda de um sistema, ω_b , qual critério, de acordo com alguma referência bibliográfica, pode ser utilizado para escolher uma frequência de amostragem adequada para o sistema dinâmico?

Segundo a apostila Controle Digital - Notas de Aula e Teoria de Laboratório [1], no capítulo 3, um critério para escolher a frequência de amostragem adequada é tal que ela seja maior que o dobro da largura de banda do sinal.

$$\omega_0 > 2\omega_b \tag{2}$$

Esse critério é necessário para que os espectros do sinal amostrado não se sobreponham e dificultem a recuperação do sinal original. É conhecido como teorema da amostragem.

Questão

Fazendo uma análise qualitativa dos resultados obtidos da simulação da discretização da resposta degrau do sistema para as frequências de amostragem do item 3, você concorda com o critério mencionado no item anterior? Comente.

Através das figuras 2 a 6, observa-se que quanto maior a proporção entre ω_0 e ω_b , maior é a similaridade entre os sinais. Além disso, o sinal recuperado para $\omega_0 = \omega_b$ é extremamente simples e não reflete o sinal de entrada original, enquanto os outros casos são mais similares.

Ambos os fatos evidenciam a funcionalidade do teorema da amostragem, que se aplica perfeitamente nos sinais apresentados.

PARTE 2

Gráficos FFT

Figura 7: gráfico FFT do sinal com $\omega_0 = \omega_b$.

Figura 8: gráfico FFT do sinal com $\omega_0 = 2\omega_b$.

Figura 9: gráfico FFT do sinal com $\omega_0 = 5\omega_b$.

Figura 10: gráfico FFT do sinal com $\omega_0 = 10\omega_b$.

Figura 11: gráfico FFT do sinal com $\omega_0 = 35\omega_b$.

Questão

Para quais casos não é possível recuperar o sinal original contínuo a partir do sinal discreto? Ou seja, para quais casos o espectro de frequência original do sinal contínuo discreto não pode ser recuperado após a aplicação do filtro passa-baixa ideal no espectro de frequência do sinal discreto? Como isso está relacionado ao Teorema de Amostragem?

Os casos onde não é possível recuperar o sinal de original seria o da figura 7. Nela observariamos que os espectros de frequência estão sobrepostos, pois a frequência ω_0 escolhida não separa suficientemente a banda dos espectros, que tem valor $\omega_b = 0,6609 \text{ rad/s}$. No caso onde $\omega_0 = 2 \cdot \omega_b$, há sobreposição dos espectros exatamente no ponto $\omega = k \cdot \omega_b$, k = 1, 2, 3, ..., mas ainda há como recuperar o sinal. Os outros casos não apresentam sobreposição de espectros.

Essa conclusão é esperada pelo teorema da amostragem, que previne a sobreposição dos espectros. A figura 7 tem $\omega_0 < 2 \cdot \omega_b$ e por isso não é capaz de recuperar o sinal original, enquanto as outras figuras, que concordam com o teorema, são recuperáveis.

Entretanto, os espectros apresentados apresentam um afastamento de $2\omega_0$, para $\omega_0 = k \cdot \omega_b$, o que sempre vai garantir o teorema da amostragem. Por isso, os espectros de todas as imagens não tem sobreposição de banda.

Referências

[1] Manoel L. Aguiar. Controle Digital - Notas de Aula de Teoria e de Laboratório, chapter 3. July 2016. Notas de Aula, disponível em: https://edisciplinas.usp.br/pluginfile.php/8521087/mod_resource/content/1/TEO_Parte_1.pdf.