Using Julia and JuMP for personalized product recommendations: Ellipsoidal methods for adaptive choice-based conjoint analysis

Juan Pablo Vielma

Massachusetts Institute of Technology

Joint work with Denis Saure

Universidad Adolfo Ibañez, Santiago, Chile. August, 2017.

Hope I am Preaching to the Choir!

Julia and JuMP Tutorial at Universidad Adolfo Ibáñez, Santiago, Chile. January, 2014.

```
sandwich = [:italiano,:chacarero]
@defVar(m, 0 <= P[sandwich] <= 1)</pre>
```

21st Century Programming/Modelling Languages

- Open-source and free!
- Developed at MIT
- "Floats like python/matlab, stings like C/Fortran"
- Easy to use and wide library ecosystem (specialized and frontend)
- Only language besides C/C++/Fortran to scale to 1 Petaflop!

- Open-source and free!
- Developed at

- Optimization modelling language and interphase
- Easy to use and advanced
- Integrated into Julia

Created by students

Iain Dunning, Miles Lubin and Joey Huchette

Community Developers

Software Engineer

Jarrett Revels

@ddfath@ss/\$\$... JuMP-Suit?

Juan Pablo Vielma

Product Recommendation, Choice-Based Conjoint Analysis, and Experimental Design

Motivation: (Custom) Product Recommendations

Feature	SX530	RX100
Zoom	50x	3.6x
Prize	\$249.99	\$399.99
Weight	15.68 ounces	7.5 ounces
Prefer		

Feature	TG-4	G9
Waterproof	Yes	No
Prize	\$249.99	\$399.99
Weight	7.36 lb	7.5 lb
Prefer		

We recommend:

Towards CBCA-Based Recommendations

- Individual preference estimates with few questions
- Adaptive Questions:
 - Fast question selection
 - Pick **next** question to reduce uncertainty
 - Quantify estimate variance
- Favorable properties for future:
 - Intuitive geometric
 model (e.g. Robust Opt.)
 - Parametric model

Choice-based Conjoint Analysis

Feature	Chewbacca	BB-8
Wookiee	Yes	No
Droid	No	Yes
Blaster	Yes	No
I would buy toy		
Product Profile	x^1	x^2

$$\begin{pmatrix} \mathbf{0} \\ 1 \\ \mathbf{0} \end{pmatrix} = x^2$$

Parametric Model = Logistic Regression

MNL Random Linear Utilities (d product features)

- Utility maximizing customer: $x^1 \succeq x^2 \Leftrightarrow U_1 "\geq "U_2$
- Noise = response error: $\mathbb{P}\left(x^1 \succeq x^2 \mid \beta\right) = \frac{1}{1 + e^{-\beta \cdot (x^1 x^2)}}$
- Regression: $z:=x^1-x^2, \quad y:=\mathrm{sign}(\beta\cdot z)\in\{0,1\}$

$$x^1 \succeq x^2 \Leftrightarrow \beta \cdot z \leq 0 \Leftrightarrow \operatorname{sign}(\beta \cdot z) = 1$$

Bayesian Update After a Question is Answered

Pick Next Question To Reduce Posterior "Variance"

Multivariate version with uncertainty in answer: D-Error:

$$f(z, \mu, \Sigma) := \mathbb{E}_{y, \beta} \left\{ (\det \operatorname{cov}(\beta \mid y, z))^{1/d} \right\}$$

Bayesian D-Optimal Question Selection

State-of-the-art MCMC tools easy to access from Julia (Stan.jl):

- Minutes to evaluate one question for 12 features = Months to find best!
- "Fisher Information approximations":
 - Minutes to find "best" by enumeration
 - High dimensional non-convex optimization.
 - Low/High variance numerical issues.

Alternative: Fast Geometric/Optimization Models

Method	Response Error
Polyhedral Method (Toubia et al. '03,'04)	No
Probabilistic Polyhedral Method (T. et al. '07)	Yes , ≈ Bayesian
Robust Method (Bertsimas and O'Hair '13)	Yes, Robust

Bayesian v/s Geometric

	Bayesian	Geometric
Response Error	MNL	None / Non-MNL
Update	Integration or MCMC	Simple Linear Algebra
Question Selection	Integration + Enumeration	MIP

• Ellipsoidal Method:

Mixed Integer Programming and Optimal Question Selection

Next Question: Reduce "Variance" / D-Error

$$\min_{x^1 \neq x^2 \in \{0,1\}^d} f(x^1 - x^2, \mu, \Sigma)$$

$$f(z, \mu, \Sigma) := \mathbb{E}_{y, \beta} \left\{ (\det \operatorname{cov}(\beta \mid y, z))^{1/d} \right\}$$

Low Dimensional Reformulation of D-Error

• D-efficiency f(z) = Non-convex function f(d, v) of

mean: $d := \mu \cdot z$

variance:

$$v := z' \cdot \sum \cdot z$$

Can evaluate f(d, v) with 1-dim integral \odot

Piecewise Linear (PWL)
Interpolation

Linear MIP formulation (standard linearization)

Aligns with selection criteria from Toubia et al. '04: minimize mean and maximize variance

Linear MIP: Linearize Quad + PWL Formulation

min

$$f(\mathbf{d}, v)$$

s.t.

$$\mu \cdot (x^1 - x^2) = d$$
 $(x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2) = v$
 $A^1 x^1 + A^2 x^2 \le b$
linearize $x_i^k \cdot x_j^l$ $x^1 \ne x^2$
 $x^1, x^2 \in \{0, 1\}^n$

Easy to Build through julia & JuMP

PiecewiseLinearOpt.jl (Huchette and V. 2017)

```
\exp(x+y)
min
                            Automatically select Δ
s.t.
                           Automatically construct
        x, y \in [0, 1]
                          formulation (easily chosen)
                                                            10
```

```
using JuMP, PiecewiseLinearOpt
m = Model()
@variable(m, x)
@variable(m, y)
z = piecewiselinear(m, x, y, 0:0.1:1, 0:0.1:1, (u,v) -> exp(u+v))
@objective(m, Min, z)
```

Ellipsoidal Method: Putting Everything Together

MIP-based Adaptive Questionnaires

 Optimal one-step look-ahead moment-matching approximate Bayesian approach = Ellipsoidal Method

Optimal One-Step Look-Ahead = MIP

Solve with MIP formulation

$$\min_{x^1, x^2, \mathbf{d}, v \in Q} f(\mathbf{d}, v)$$

1-dim numerical integration: QuadGK.jl

Moment-Matching Approximate Bayesian Update

Answer likelihood

$$\beta \sim N\left(\mu^i, \Sigma^i\right)$$

Feature	TG-4	Galaxy 2
Waterproof	Yes	No
Prize	\$249.99	\$399.99
Viewfinder	Electron .	Optical
Prefer		

$$\beta \stackrel{approx.}{\sim} N\left(\mu^{i+1}, \Sigma^{i+1}\right)$$

$$\bullet \quad \mu^{i+1} = \mathbb{E}\left(\beta \mid y, x^1, x^2\right)$$

•
$$\Sigma^{i+1} = \operatorname{cov}\left(\beta \mid y, x^1, x^2\right)$$
 • 1-d integral : $I(d, v)$

Simulation Experiments

- 16 questions, 2 options, 12 features
- Simulate MNL responses with known β^*
- 100 individual β^* sampled from $N(\mu, \Sigma)$ prior
- Methods:
 - Polyhedral, Prob. Polyhedral, Robust and Ellipsoidal
 - All get same ellipsoidal prior
 - All < 30" inter-question (except robust < 90")</p>

Metrics:

- RMSE of β estimator, error in market share and D-eff.
- Normalized values = smaller better
- Versions: Method and Bayesian Estimator
- Sensitivity: Wrong prior μ , all errors in first/second half

D-Efficiency for Individual Bayesian

RMSE for Methods Estimator

RMSE for Individual Bayesian Estimator

Market share for Baseline

Summary

- Mixed Integer Programming for ACBCA
 - n-variate function to 2-variate function + MIP
 - Advanced MIP formulation + solver
 - Easy to access with Jump!

- Also for other estimator variance / linear models
- Significantly faster reduction of estimator variance
- Future:
 - Julia Package
 - MIP flexibility → Managerial Objective