From pipelines to refineries: scaling big data applications

Tim Hunter @timjhunter Spark Summit Dublin 2017

About Me

- Tim Hunter
- Software engineer @ Databricks
- Ph.D. from UC Berkeley in Machine Learning
- Very early Spark user
- Contributor to MLlib
- Author of TensorFrames, GraphFrames, Deep Learning Pipelines

Introduction

- Spark 2.3 in the release process
- Spark 2.4 being thought about
- This is the time to discuss Spark 3
- This presentation is a personal perspective on a future Spark

Introduction

There is nothing more practical than a good theory.

James Maxwell

As Spark applications grow in complexity, what challenges lie ahead?

What are some good foundations for building big data frameworks?

Outline

- State of the union
 - What is good about Spark?
 - What are the trends?
- Classics to the rescue
 - Fighting the four horsemen of the datapocalypse
 - Laziness to the rescue
- From theory to practice
 - Making data processing great again

State of the union

What we strive for

State of the union

- What we deal with:
 - Coordinating a few tasks

State of the union

- The (rapidly approaching) future
 - Hundreds of input sources
 - Thousands of concurrent requests
 - Mixing interactive, batch, streaming

How do we enable this?

The state of the union

- The image of a pipeline gives you the illusion of simplicity
 - One input and one output
- Current big data systems: the tree paradigm
 - Combine multiple inputs into a single output
 - The SQL paradigm
 - Followed by Spark
- A forest is more than a group of trees
 - Multiple inputs, multiple outputs
 - The DAG paradigm

The ideal big data processing system:Scalability

- - in quantity (big data) and diversity (lots of sources)
- Chaining
 - express the dependencies between the datasets
- Composition
 - assemble more complex programs out of simpler ones
- Determinism
 - given a set of input data, the output should be unique*

How is Spark faring so far?

You can do it, but it is not easy

What can go wrong with this program?

The 4 horsemen of the

datapocalypse Typing (schema) mismatch

- Missing source or sink
- Resource leak
- Eager evaluation

Classics to the rescue

- A dataset is a collection of elements, all of the same type
 - Scala: Dataset[T]

- Principle: the content of a dataset cannot be accessed directly
 - A dataset can be queried
- An observable is a single element, with a type
 - intuition: dataset with a single row
 - Scala: Observable[T]

largest hand =

- Principle: the observation only depends on the content of the dataset
 - You cannot observe partitions, ordering of elements, location on disk, etc.

- Mathematical consequence: all reduction operations on datasets are monoids:
 - f(AUB) = f(A) + f(B) = f(B) + f(A)
 - f(empty) = 0

- Principle: closed world assumption
 - All the effects are modeled within the framework
 - The inputs and the transforms are sufficient to generate the outputs

Practical consequence: strong checks and sci-fi optimizations

Examples of operations

- They are what you expect:
 - Dataset[Int]: a dataset of integers
 - Observable[Int]: an observation on a dataset
- max: Dataset[Int] => Observable[Int]
- collect: Dataset[Int] => Observable[List[Int]]

Karps

- An implementation of these principles on top of Spark
- It outputs a graph of logical plans for Spark (or other systems)
- Makes a number of correctness checks for your program

 Automatically converts (a subset of) Pandas programs to Spark.

Demo 1

Enabling complex data programs

- Lazy construction of very complex programs
- Most operations in Spark can be translated to a small set of primitive actions with well-defined composition rules.
- The optimizer can then rewrite the program without changing the outcome

Optimizations can leverage further SQL optimizations

Demo 2

Future directions

- More complete python (pandas) interface
- I/O in Python
- Finish GroupBy (cool stuff ahead)
- Tracing & Profiling
- SQL (simple and cool stuff to do in this area)

Conclusion: trends in data ProcessingHow to manage the complexity of data flows?

- Taking inspiration from the functional world
- Spark provides solid foundation
- Laziness, declarative APIs alleviate complexity

Trying this demo

https://github.com/tjhunter/karps

- Notebooks:
 - https://github.com/tjhunter/karps/tree/master/notebooks

Thank You

Dealing with In and Out

- The only type of I/O: read and write datasets
- This is an observable
- Operations are deterministic + results are cached
 - -> only recompute when the data changes
- Demo

Example: Caching data.json timestamp=2 hash=3ab5 data.json data.json count hash=6e02 count count (+) data.json hash=1aac timestamp=2 hash=3ab5 (+) count hash=6e08 (+) hash=1aad databricks