STUDENT RESULT ANALYSIS

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

df = pd.read_csv(r'C:\Users\ADMIN\Desktop\Python Projects - Data Sci Lovers\student_scores.csv')

In [3]:

df.head()

Out[3]:

	Unnamed: 0	Gender	EthnicGroup	ParentEduc	LunchType	TestPrep	ParentMaritalStatus	PracticeSport	IsFirstChild	NrSiblings	Tra
0	0	female	NaN	bachelor's degree	standard	none	married	regularly	yes	3.0	
1	1	female	group C	some college	standard	NaN	married	sometimes	yes	0.0	
2	2	female	group B	master's degree	standard	none	single	sometimes	yes	4.0	
3	3	male	group A	associate's degree	free/reduced	none	married	never	no	1.0	
4	4	male	group C	some colleae	standard	none	married	sometimes	yes	0.0	,

In [4]:

df.describe()

Out[4]:

	Unnamed: 0	NrSiblings	MathScore	ReadingScore	WritingScore
count	30641.000000	29069.000000	30641.000000	30641.000000	30641.000000
mean	499.556607	2.145894	66.558402	69.377533	68.418622
std	288.747894	1.458242	15.361616	14.758952	15.443525
min	0.000000	0.000000	0.000000	10.000000	4.000000
25%	249.000000	1.000000	56.000000	59.000000	58.000000
50%	500.000000	2.000000	67.000000	70.000000	69.000000
75%	750.000000	3.000000	78.000000	80.000000	79.000000
max	999.000000	7.000000	100.000000	100.000000	100.000000

In [5]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 30641 entries, 0 to 30640 Data columns (total 15 columns): Unnamed: 0 30641 non-null int64 Gender 30641 non-null object EthnicGroup 28801 non-null object ${\tt ParentEduc}$ 28796 non-null object 30641 non-null object LunchType TestPrep 28811 non-null object ParentMaritalStatus 29451 non-null object PracticeSport 30010 non-null object IsFirstChild 29737 non-null object **NrSiblings** 29069 non-null float64 TransportMeans 27507 non-null object WklyStudyHours 29686 non-null object 30641 non-null int64 MathScore ReadingScore 30641 non-null int64 30641 non-null int64 WritingScore dtypes: float64(1), int64(4), object(10) memory usage: 3.5+ MB In [6]: df.isnull().sum() Out[6]: Unnamed: 0 0 Gender 0 EthnicGroup 1840 1845 ParentEduc LunchType 1830 TestPrep ParentMaritalStatus 1190 ${\tt PracticeSport}$ 631 IsFirstChild 904 NrSiblings 1572 TransportMeans 3134 955 WklyStudyHours MathScore 0 0 ReadingScore WritingScore 0 dtype: int64 **Drop Unnamed Column** In [7]: df = df.drop('Unnamed: 0',axis=1) In [8]:

LunchType TestPrep ParentMaritalStatus PracticeSport IsFirstChild NrSiblings TransportMeans

regularly

sometimes

yes

yes

3.0

0.0

school bus

school_bus

school_bu:

Nal

Nal

married

married

some yes female group C standard NaN married sometimes 0.0 college master's female group B standard none single sometimes 4.0 degree associate's male group A free/reduced none married never no 1.0 degree

none

none

standard

standard

Gender Wise Distribution

group C

Gender EthnicGroup ParentEduc

NaN

degree

some

college

df.head()
Out[8]:

female

male

In [9]:

```
df.groupby('Gender').sum()
```

Out[9]:

NrSiblings MathScore ReadingScore WritingScore

Gender				
female	31383.0	988380	1123688	1123738
male	30996.0	1051036	1002109	972677

In [10]:

```
df['Gender'].value_counts()
```

Out[10]:

female 15424 male 15217

Name: Gender, dtype: int64

In [11]:

```
plt.figure(figsize=(5,5))
sns.countplot(data=df,x='Gender')
plt.title('Gender Distribution')
plt.show()
```


From the above, we can say that number of females in the data are more than the number of males

In [12]:

```
gb=df.groupby('ParentEduc').agg({'MathScore':'mean','ReadingScore':'mean','WritingScore':'mean'})
```

In [13]:

gb.head(2)

Out[13]:

MathScore ReadingScore WritingScore

Farenteduc			
associate's degree	68.365586	71.124324	70.299099
bachelor's degree	70.466627	73.062020	73.331069

In [14]:

```
plt.figure(figsize=(6,6))
sns.heatmap(gb,annot=True)
plt.title('Relationship between Parents Education and Students Score')
plt.show()
```


From the above chart, we can conclude that education of the parents make good impact on their marks

In [15]:

df.head()

Out[15]:

	Gender	EthnicGroup	ParentEduc	LunchType	TestPrep	ParentMaritalStatus	PracticeSport	IsFirstChild	NrSiblings	TransportMeans
0	female	NaN	bachelor's degree	standard	none	married	regularly	yes	3.0	school_bus
1	female	group C	some college	standard	NaN	married	sometimes	yes	0.0	Nat
2	female	group B	master's degree	standard	none	single	sometimes	yes	4.0	school_bu:
3	male	group A	associate's degree	free/reduced	none	married	never	no	1.0	Nat
4	male	group C	some college	standard	none	married	sometimes	yes	0.0	school_bu

In [16]:

gbl=df.groupby('ParentMaritalStatus').agg({'MathScore':'mean','ReadingScore':'mean','WritingScore':'mean'})

In [17]:

gb1

Out[17]:

	MathScore	ReadingScore	WritingScore
ParentMaritalStatus			
divorced	66.691197	69.655011	68.799146
married	66.657326	69.389575	68.420981
single	66.165704	69.157250	68.174440
widowed	67 368866	69 651438	68 563452

In [18]:

```
sns.heatmap(gb1,annot=True)
plt.title('Relationship between Parents Marital Status and Students Score')
plt.show()
```

Relationship between Parents Marital Status and Students Score

From the above chart we have concluded that there is no / negligible impact on the students score due to their parents marital status

In [19]:

```
sns.boxplot(data=df,x='MathScore')
plt.show()
```


In [20]:

```
sns.boxplot(data=df,x='ReadingScore')
plt.show()
```



```
In [21]:
```

```
sns.boxplot(data=df,x='WritingScore')
plt.show()
```


In [22]:

```
print(df['EthnicGroup'].unique())
```

[nan 'group C' 'group B' 'group A' 'group D' 'group E']

Distribution of Ethnic Group

In [23]:

```
groupA= df.loc[df['EthnicGroup']=='group A'].count()
groupB= df.loc[df['EthnicGroup']=='group B'].count()
groupC= df.loc[df['EthnicGroup']=='group C'].count()
groupD= df.loc[df['EthnicGroup']=='group D'].count()
groupE= df.loc[df['EthnicGroup']=='group E'].count()
```

In [24]:

```
print(groupA['EthnicGroup'])
```

2219

In [25]:

```
labels = ['GroupA','GroupB','GroupC','GroupD','GroupE']
mlist = [groupA['EthnicGroup'],groupB['EthnicGroup'],groupC['EthnicGroup'],groupD['EthnicGroup'],groupE['EthnicGroup']]
plt.pie(mlist,labels=labels,autopct="%1.2f%%")
plt.title('Distribution Of Ethnic Groups')
plt.show()
```

Distribution Of Ethnic Groups

In []: