PhD Diary

Nathan Hughes

March 15, 2019

CONTENTS March 15, 2019

Contents

1	TODO Tasks [5/8]					
	1.1 DONE Test D_{eff} and show that length is a significant variable	3				
	1.1.1 Results	3				
	1.2 DONE Statistically test analytical and numerical solutions to diffusion eq	4				
	1.3 TODO Questions for Friday meeting	4				
	1.4 DONE Implement Eq. A.70 with full actual parameters	4				
	1.5 DONE Read up on ROS bursts	5				
	1.6 TODO Read up on Calcium signalling	1				
	1.7 IDEA Entropy and information theory?	Ę				
	1.8 DONE Finish draft of Chapter 1 of probation report	F				

1 TODO Tasks [5/8]

1.1 DONE Test D_{eff} and show that length is a significant variable

$$D'_{S,eff} = \frac{Dql}{D+ql} \tag{1}$$

```
from SALib.sample import saltelli
    from SALib.analyze import sobol
    import numpy as np
    sa = stokes\_einstein(3.5e-10) * 1e12
    auxin = 300 \# from Dienum
 6
    problem = \{
       'num vars': 3,
       'names': ['D', 'q', 'l'],
10
       'bounds': [[auxin, sa],
11
                [1, 100],
12
                [50, 100]]
13
    }
14
15
    def D_eff(d, q, l):
16
       return (D*q*l)/(d+q*l)
17
18
19
    param\_values = saltelli.sample(problem, 1000)
20
21
    Y = np.array([D_eff(*pv) for pv in param_values])
22
23
    Si = sobol.analyze(problem, Y)
```

1.1.1 Results

Table 1: Sensitivity Analysis for D_{eff}

Parameter	S1	$S1_conf$	ST	ST_conf
D	0.035749	0.016874	0.043222	0.006289
q	0.920810	0.125206	0.942366	0.065333
1	0.025096	0.016028	0.030981	0.004830

1.2 DONE Statistically test analytical and numerical solutions to diffusion eq

1.3 **TODO** Questions for Friday meeting

- What is the short term plans (3 months)
- What is the longer term plan (3-6 months)
- What side projects could be of use?

1.4 **DONE** Implement Eq. A.70 with full actual parameters

Figure 1: Time resolved solution for purely diffusive symplastic transport (approximation)

- 1.5 **DONE** Read up on ROS bursts
- 1.6 **TODO** Read up on Calcium signalling
- 1.7 **IDEA** Entropy and information theory?
- 1.8 **DONE** Finish draft of Chapter 1 of probation report

References