# Different ideal and ramification of primes Marcus, Number Fields, chapter 4, exercise 17

Marco Morosin

# The different ideal of a number ring

Let  $K \subset L$  be number fields,  $O_K \subset O_L$  be their rings of integers. We define the fractional ideal

$$O_L^* := \{ \alpha \in L \mid T_{L/K}(\alpha O_L) \subset O_K \}.$$

Then  $(O_L^*)^{-1}$  is an ideal of  $O_L$ , since

$$O_L^{-1} \subset O_L^* \implies (O_L^*)^{-1} \subset (O_L^{-1})^{-1} = O_L.$$

#### Definition

We call  $\mathcal{D}_{L/K} := (O_L^*)^{-1}$  the different ideal of  $O_L$ .

## The different ideal and ramification of primes

Let as usual



The following result holds:

#### Theorem

 $Q \mid \mathcal{D}_{L/K} \iff e(Q|P) > 1.$ 

That is, a prime Q over P ramifies if and only if it divides  $\mathcal{D}_{L/K}$ .

 $\iff$  was proven in a previous presentation.

 $\implies$  will be proven now.

 $K \subset L$ ,  $O_K \subset O_L$ ,  $Q \mid PO_L$ .

## Step (a)

Prove that  $T_{L/K}(Q^{-1}O_L) \subset O_K$ .

- ▶ By hypothesis  $Q \mid \mathcal{D}_{L/K} \implies \mathcal{D}_{L/K} \subset Q \implies Q^{-1} \subset \mathcal{D}_{L/K}^{-1} = O_L^*$ .
  - ▶ By definition of  $O_L^*$  then  $T_{L/K}(\alpha O_L) \subset O_K$  for all  $\alpha \in Q^{-1}$ .
  - Therefore  $T_{L/K}(Q^{-1}O_L) \subset O_K$  for all  $\alpha \in Q$

 $K \subset L$ ,  $O_K \subset O_L$ ,  $Q \mid PO_L$ .

### Step (b)

Writing  $PO_L = QI$ , prove that  $T_{L/K}(I) \subset P$ .

- Let  $\alpha \in I = Q^{-1}PO_L$ . Then  $\alpha = \sum_{i=1}^k p_i\beta_i l_i$  with  $p_i \in P$ ,  $\beta_i \in Q^{-1}$ ,  $l_i \in O_L$ .
- $T_{L/K}(\alpha) = \sum_{i=1}^{k} T_{L/K}(p_i \beta_i l_i) = \sum_{i=1}^{k} p_i T_{L/K}(\beta_i l_i).$
- For all  $i, T_{L/K}(\beta_i l_i) \in T_{L/K}(Q^{-1}O_L) \subset O_K$  by step (a). Hence  $T_{L/K}(\alpha) \in PO_K = P$  as we wanted.

Now, let M be a normal extension of K containing L, fix U prime of M lying over Q.

$$\begin{array}{ccccc} K & \subset & L & \subset & M \\ P & \subset & Q & \subset & U \end{array}$$

Let E := E(U|P); then we know (Theorem 28) that  $e(U_E|P) = 1$ .

We want to show that supposing e(Q|P) = 1 leads to a contradiction.

#### Step (c)

Suppose that Q is unramified over P, i.e. e(Q|P) = 1. Then L is contained in the inertia field  $M_E$ .

▶ We know (Theorem 29) that  $M_E$  is the largest subfield K' of M such that e(P'|P) = 1, where  $P' = U \cap O_{K'}$ . Since we are assuming e(Q|P) = 1, it follows that  $L \subset M_E$ .

So we have the following situation:

#### Step (d)

### $U_E$ divides $\mathcal{D}_{M_E/K}$ .

- ▶ We use multiplicativity of the different ideal:  $K \subset L \subset M_E$  implies  $\mathcal{D}_{M_E/K} = \mathcal{D}_{M_E/L}(\mathcal{D}_{L/K}O_{M_E})$ .
- ▶ Remember we are assuming Q divides  $\mathcal{D}_{L/K}$ ; hence  $QO_{M_E}$  divides  $\mathcal{D}_{L/K}O_{M_E}$ . Then

$$U_E \mid QO_{M_E} \mid \mathcal{D}_{L/K}O_{M_E} \mid \mathcal{D}_{M_E/K}.$$

Steps (c) and (d) show that our hypotheses  $Q \mid \mathcal{D}_{L/K}$  and e(Q|P) = 1 imply  $U_E \mid \mathcal{D}_{M_E/K}$  and  $e(U_E|P) = 1$ : we are going to show that this fact is impossible, giving the contradiction that we want. Therefore, we may suppose  $L = M_E$ ,  $Q = U_E$ .

#### Step (e)

 $O_M = I + U$ , where I is such that  $PO_{M_E} = U_E I$ .

 $ightharpoonup O_M = O_{M_E} + U$ : we have  $O_M/U \cong O_{M_E}/U_E$ 

so for  $x \in O_M$  there exists a unique  $y \in O_{M_E}$  such that  $x + U = y + U_E$ . Hence  $x \in y + U_E$  can be written as x = y + u for some  $u \in U_E$ , proving  $O_M \subset O_{M_E} + U$  (the converse is trivial).

- ▶  $O_{M_E} = I + U_E$ : since  $U_E$  is unramified over P, then  $U_E \nmid I$ , so  $U_E$  and I are coprime.
- We conclude that  $O_M = O_{M_E} + U = I + U_E + U = I + U$ .

### Step (f)

U is the only prime of  $O_M$  over  $U_E$ . Moreover, I is contained in every prime of  $O_M$  over P except for U (where  $PO_{M_E} = U_E I$ ).

Degree 
$$r$$
  $f$   $e$   $K$   $\subset$   $M_D$   $\subset$   $M_E$   $\subset$   $M$   $P$   $\subset$   $U_D$   $\subset$   $U_E$   $\subset$   $U$  Ram. Ind.  $1$   $1$   $e$ 

- ▶  $U_EO_M = (PO_{M_E})O_M = U_EIO_M = UIO_M$ . Since  $M/M_E$  is a normal extension and  $[M:M_E] = e(U|P) = e(U|U_E)$ , then  $r(U|U_E)e(U|U_E)f(U|U_E) = e(U|U_E)$ , hence  $r(U|U_E) = 1$ , so  $U_EO_M = U^e$ .
- ▶  $I \not\subset U$  since  $O_M = I + U$  by step (e). We show that  $I \subset U'$  for  $U' \neq U$ .  $PO_M = (PO_{M_E})O_M = (U_E I)O_M = U^e I O_M$ . Then U' divides  $IO_M$  and therefore it contains I.

Remember I is such that  $PO_{M_E} = U_E I$ .

# Step (g)

Let  $G = \operatorname{Gal}(M/K), D = D(U|P)$ . Then  $\sigma(I) \subset U$  for every  $\sigma \in G \setminus D$ .

- Let  $\beta \in I$ . I is contained in every prime  $\neq U$  of  $O_M$  over P by step (f); therefore,  $\beta$  belongs to every such prime.
- ▶  $D(U|P) = \{ \sigma \in G \mid \sigma(U) = U \}$ , hence  $\sigma^{-1}(U)$  is a prime  $\neq U$  over P for all  $\sigma \in G \setminus D$ .
- We conclude  $\beta \in \sigma^{-1}(U)$ , i.e.  $\sigma(\beta) \in U$ .

Let  $\sigma_1, \ldots, \sigma_m \in \operatorname{Gal}(M/K)$  such that  $\sigma_i|_{M_E}$  give all the distinct embeddings  $M_E \hookrightarrow \mathbb{C}$ . Some of them are in D, for example  $\sigma_1 = \operatorname{id}_M$ . Let  $\sigma_1, \ldots, \sigma_k$  be the ones which are in D.

## Step (h)

$$\sigma_1(\alpha) + \cdots + \sigma_k(\alpha) \in U \text{ for all } \alpha \in O_M.$$

First show  $\sigma_1(\alpha) + \cdots + \sigma_k(\alpha) \in U$  for all  $\alpha \in I$ . Let  $\alpha \in I$ :

- $\sum_{i=1}^{k} \sigma_i(\alpha) = \sum_{i=1}^{m} \sigma_i(\alpha) \sum_{i=k+1}^{m} \sigma_i(\alpha) \text{ where } \sigma_i \in G \setminus D$  for  $i = k+1, \dots, m$ .
- $\sum_{i=1}^{m} \sigma_i(\alpha) = T_{M_E/K}(\alpha) \in P \subset U \text{ since by step (b)}$  $T_{M_E/K}(I) \subset P.$
- ► For i = k + 1, ..., m step (g) gives  $\sigma_i(I) \subset U$ , hence  $\sum_{i=k+1}^m \sigma_i(\alpha) \in U$ .

Since  $O_M = I + U$ , it is enough to check what happens for  $\alpha \in U$ :

 $\sigma_i \in D$  for  $i = 1 \dots k$ , hence  $\sigma_i(U) = U$ , so  $\sigma_1(\alpha) + \dots + \sigma_k(\alpha) \in U$  and we conclude.

Every  $\sigma \in D$  induces an automorphism  $\overline{\sigma} \in \overline{G} := \operatorname{Gal}(\frac{O_M}{U} / \frac{O_K}{P})$ . We have just shown that  $\overline{\sigma_1} + \cdots + \overline{\sigma_k} = 0$ .

## Step (i)

 $\overline{\sigma_1}, \ldots, \overline{\sigma_k}$  are distinct elements of  $\overline{G}$ .

Remember the chain of fields  $K \subset M_D \subset M_E \subset M$ ;  $E = \ker(D \to \overline{G})$  is normal in D, hence  $M_E/M_D$  is Galois.

▶  $D/E = Gal(M_E/M_D)$  by Galois theory, since

$$D = \operatorname{Gal}(M/M_D) \to \operatorname{Gal}(M_E/M_D), \quad \sigma \mapsto \sigma|_{M_E}$$

has kernel  $Gal(M/M_E) = E$ .

Consider a coset  $E\sigma \in D/E$ : by the above, it corresponds to a  $\sigma|_{M_E} \colon M_E \to M_E$  fixing  $M_D$ . Since this gives an embedding  $M_E \hookrightarrow \mathbb{C}$ , there must be  $i \in \{1, \ldots, k\}$  such that  $\sigma|_{M_E} = \sigma_i|_{M_E}$ . Hence  $\sigma_1, \ldots, \sigma_k$  represent all the cosets, i.e.  $D/E = \{E\sigma_1, \ldots, E\sigma_k\}$ .

- We have just proven  $D/E = \{E\sigma_1, \dots, E\sigma_k\}$ . These cosets are all distinct, since by the above correspondence we have  $E\sigma_i = E\sigma_j$  iff  $\sigma_i|_{M_E} = \sigma_j|_{M_E}$ , but we chose the  $\sigma_1, \dots, \sigma_k$  to be all distinct on  $M_E$ .
- Therefore, D/E contains exactly k distinct elements.
- ▶ On the other hand,  $D/E = \overline{G}$ , so the cosets  $E\sigma$  can also be written as classes  $\overline{\sigma}$ , i.e.

$$D/E = \{E\sigma_1, \dots, E\sigma_k\} = \{\overline{\sigma_1}, \dots, \overline{\sigma_k}\}.$$

We just proved D/E has k elements; hence,  $\overline{\sigma_1}, \ldots, \overline{\sigma_k}$  are all distinct as we required.

Conclusion: we obtain a contradiction using the following

#### Theorem

Let F be a field, then the set of functions  $F \to F$  with the obvious pointwise operations is an F-vector space. Distinct automorphisms  $\sigma_1, \ldots, \sigma_k$  of F are linearly independent over F.

We proved that  $\overline{\sigma_1}, \dots, \overline{\sigma_k}$  are distinct automorphisms of  $O_M/U$  with  $\overline{\sigma_1} + \dots + \overline{\sigma_k} = 0$ : contradiction.