import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

path='/content/drive/MyDrive/prodigy ds/ Titanic-Dataset.csv'
data=pd.read_csv(path)

data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parc
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	
4				Futrelle,				+
Next steps: View recommended plots								

data.describe()

	PassengerId	Survived	Pclass	Age	SibSp	
count	891.000000	891.000000	891.000000	714.000000	891.000000	88
mean	446.000000	0.383838	2.308642	29.699118	0.523008	
std	257.353842	0.486592	0.836071	14.526497	1.102743	
min	1.000000	0.000000	1.000000	0.420000	0.000000	
25%	223.500000	0.000000	2.000000	20.125000	0.000000	
50%	446.000000	0.000000	3.000000	28.000000	0.000000	
75%	668.500000	1.000000	3.000000	38.000000	1.000000	
max	891.000000	1.000000	3.000000	80.000000	8.000000	→
,						

data.info()

			, ,
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64

```
891 non-null
891 non-null
     7
       Parch
                                  int64
     8 Ticket
                                 object
                  891 non-null float64
     are
10 Cabin
     10 Cabin 204 non-null object
11 Embarked 889 non-null object
    dtypes: float64(2), int64(5), object(5)
    memory usage: 83.7+ KB
data.isnull().sum()
    PassengerId
    Survived
    Pclass
                   0
                  0
    Name
    Sex
                 177
    SibSp
                 0
                  0
    Parch
    Ticket
                  0
    Fare
                  0
    Cabin
                 687
    Embarked
                  2
    dtype: int64
data.dropna(subset=["Embarked"], inplace=True)
data["Cabin"].fillna("Unknown", inplace=True)
data["Age"].fillna(data["Age"].mean(), inplace=True)
data.isnull().sum()
    PassengerId
    Survived
                 0
    Pclass
                 0
    Name
                 0
    Sex
    Age
                 0
    SibSp
    Parch
                 0
    Ticket
                 0
    Fare
                 0
                 0
    Cabin
    Embarked
    dtype: int64
data.duplicated().sum()
    0
print(data.dtypes)
    PassengerId
                  int64
    Survived
                   int64
                  int64
    Pclass
                 object
    Name
    Sex
                 object
    Age
                float64
    SibSp
                 int64
    Parch
                  int64
    Ticket
                  object
    Fare
                 float64
    Cabin
                 object
    Embarked
                  object
    dtype: object
```

missing data = data.isnull().sum()

missing_data PassengerId 0 Survived 0

Survived 0
Pclass 0
Name 0
Sex 0
Age 0
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 0
Embarked 0
dtype: int64

data = data.drop_duplicates()
data.head(8)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp
0	1	0	3	Braund, Mr. Owen Harris	male	22.000000	1
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.000000	1
2	3	1	3	Heikkinen, Miss. Laina	female	26.000000	0
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.000000	1
4	5	0	3	Allen, Mr. William Henry	male	35.000000	0
5	6	0	3	Moran, Mr. James	male	29.642093	0

```
Next steps: View recommended plots
```

```
# Visualizing Survival by Age:
plt.figure(figsize=(9, 6))
sns.boxplot(x='Survived', y='Age', data=data)
plt.title('Survival by Age')
plt.xticks([0, 1], ['Not Survived', 'Survived'])
plt.show()
```



```
plt.figure(figsize=(6, 3))
sns.countplot(data=data, x="Sex", hue="Survived")
plt.title("Survival by Gender")
plt.xlabel("Gender")
plt.ylabel("Count")
plt.legend(title="Survived", loc="upper right")
plt.show()
```



```
plt.figure(figsize=(6, 3))
sns.scatterplot(data=data, x="Age", y="Fare", hue="Survived")
plt.title("Scatter Plot of Age vs Fare")
plt.xlabel("Age")
plt.ylabel("Fare")
plt.legend(title="Survived")
plt.show()
```



```
plt.figure(figsize=(6, 3))
sns.histplot(data["Age"], kde=True)
plt.title("Age Distribution")
plt.xlabel("Age")
plt.ylabel("Count")
plt.show()
```


data['FamilySize'] = data['SibSp'] + data['Parch']
sns.pairplot(data, vars=['Age', 'Fare', 'FamilySize'], hue='Survived')
plt.suptitle('Pair Plot of Age, Fare, and FamilySize')
plt.show()

