Machine Learning Worksheet 12

Latent Variable Models

1 K-Means and MoG

Problem 1: Consider a mixture of K isotropic Gaussians, each with the same covariance $\Sigma = \sigma^2 I$. In the limit $\sigma^2 \to 0$ show that the EM algorithm for MoG converges to the K-Means algorithm.

Problem 2: Consider a mixture of K Gaussians

$$p(\boldsymbol{x}) = \sum_k \pi_k \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Derive $E(\mathbf{x})$ and $Cov(\mathbf{x})$. It is helpful to remember the identity $Cov(\mathbf{x}) = E(\mathbf{x}\mathbf{x}^T) - E(\mathbf{x})E(\mathbf{x})^T$.

2 FA/pPCA and PCA

Problem 3: Consider the latent space distribution

$$p(z) = \mathcal{N}(z|\mathbf{0}, I)$$

and a conditional distribution for the observed variable $x \in \mathbb{R}^d$,

$$p(x|z) = \mathcal{N}(x|Wz + \mu, \Phi)$$

where Φ is an arbitrary symmetric, positive-definite noise covariance variable. Furthermore, A is a non-singular $d \times d$ matrix and y = Ax. Show that for the maximum likelihood solution for the parameters of the model for y specific constraints on Φ are preserved in the following two cases: (i) A is a diagonal matrix and Φ is a diagonal matrix (this corresponds to the case of Factor Analysis). (ii) A is orthogonal and $\Phi = \sigma^2 I$ (this corresponds to pPCA).

Problem 4: Show that in the limit $\sigma^2 \to 0$ the posterior mean for the probabilistic PCA model becomes an orthogonal projection onto the same principal subspace as in PCA.