

Explanation

We are counting **how many square submatrices with all 1s** exist in a given binary matrix.

Let's say you're at cell (i, j) and matrix[i][j] == 1. You want to know:

• What is the maximum size of square (ending at (i, j)) where all cells are 1s?

Core Idea (Dynamic Programming Table)

We define:

```
dp[i][j] = size of the largest square that ends at (i, j)
```

That means:

- If dp[i][j] = 2, it means there is a 2×2 square ending at that cell.
- If dp[i][j] = 1, it means only a 1×1 square ends at that cell.

We'll build this table based on previous results.

Transition Logic

If matrix[i][j] == 0, clearly, no square can end here. So dp[i][j] = 0.

But if matrix[i][j] == 1, we look in 3 directions:

- **Left** → dp[i][j-1]
- **Up** → dp[i-1][j]

• Top-left (diagonal) → dp[i-1][j-1]

Why? Because:

To form a square of size k ending at (i, j), you need a square of size k-1 ending at all 3 of those neighbors.

So we take:

```
dp[i][j] = 1 + min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1])
```

This ensures we only count the largest square that can be extended from all 3 directions.

III Example Visualization

For this input:

```
[
[0,1,1,1],
[1,1,1,1],
[0,1,1,1]
```

We compute the dp table:

```
[
[0,1,1,1],
[1,1,2,2],
[0,1,2,3]
```

]

How to interpret this?

Each value at (i, j) tells you:

Number of largest square that ends at that cell.

If dp[i][j] = 3, it means there's:

- One 3×3 square
- Embedded inside it: one 2×2 square
- And one 1×1 square

But we only count the 3×3 once **per cell**. To get the total number of squares, we **sum** all dp[i][j].

Base Case

We initialize the first row and column separately:

```
dp[i][0] = matrix[i][0] # only possible square is 1×1
dp[0][j] = matrix[0][j] # only possible square is 1×1
```

Final Answer

Add all the values in $\frac{dp}{dp} \rightarrow \text{gives total number of square submatrices with all 1s.}$

Time and Space Complexity

• Time: O(m * n)

 Space: O(m*n) → can be optimized to O(n) since we only need the previous row.

How is DP understanding that, like, it can take the whole square? What if it turns out to be a rectangle?

Let's take your example:

```
[1, 1] \leftarrow let's figure out what goes in the `_`
```

We're trying to compute <code>dp[1][1]</code>. So let's walk through it **like how the code does**, and also **intuitively explain** why the <code>min()</code> ensures **we always build a **square**, not a rectangle.

Step-by-Step with DP

We are at cell (1, 1) in the matrix.

Let's write down the values around it:

```
dp[0][0] = ? \leftarrow diagonal (top-left)
dp[0][1] = ? \leftarrow up
dp[1][0] = ? \leftarrow left
```

Now, assume we already computed the partial values for those cells based on the matrix. Suppose all those cells are 1 in the matrix, so their partial values will be:

```
dp[0][0] = 1
dp[0][1] = 1
```

```
dp[1][0] = 1
```

Then:

```
dp[1][1] = 1 + min(1, 1, 1) = 2
```

So now:

```
matrix:
[1, 1]
[1, 1]
dp:
[1, 1]
[1, 2]
```

This means: a square of size 2×2 ends at (1,1)

Why min() Guarantees a Square (Not a Rectangle)

We use:

```
dp[i][j] = 1 + min(
  dp[i-1][j], # top
  dp[i][j-1], # left
  dp[i-1][j-1] # top-left
)
```

Why all 3?

Let's say one of them is smaller (say 0). That means the square in that direction is not big enough, so we cannot extend into a bigger square.

Let's take a **counterexample** where it could be a rectangle:

```
matrix:
[1, 1]
[0, 1]
```

So the cell (1, 1) is 1, but:

```
• matrix[1][0] = 0 \rightarrow SO dp[1][0] = 0
```

Then:

```
dp[1][1] = 1 + min(dp[1][0], dp[0][1], dp[0][0])
= 1 + min(0, 1, 1) = 1
```

Which means: we can only form a 1×1 square at (1,1), even though visually there's a "row of 1s" or a "column of 1s". The min() ensures all sides must be part of a valid square.

√ So min() acts as a gatekeeper:

It says: "You can only grow the square if all 3 neighbors support it."

If one of them is small (say just a row), then we can't grow a square, only rectangles — and we don't count those.

Intuition Summary

- dp[i][j] = 1 + min(top, left, top-left) makes sure we only count squares, not rectangles.
- All three directions must have at least k-1 sized squares to grow a kxk square.
- The value at <code>dp[i][j]</code> tells you the **largest square** that ends at that cell.

• The final result is the **sum of all such square sizes**.