

TMA4230 Functional

Analysis

Spring 2017

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 1

- 1 Let $c = (c_n)_n$ a sequence of scalars. We denote by $(\delta_n)_n$ the standard basis. Show the following assertions.
 - a) If $1 \leq p < \infty$, then $\sum_{n} c_n \delta_n$ converges in ℓ^p if and only if $c \in \ell^p$.
 - **b)** The series $\sum_{n} c_n \delta_n$ converges in ℓ^{∞} if and only if $c \in c_0$.
- Suppose that $\|.\|_a$ and $\|.\|_b$ are tow norms on a vector space X. We denote by $B_r^a(x)$ and $B_r^b(x)$ the open balls of radius r at $x \in X$ w.r.t. the norms $\|.\|_a$ and $\|.\|_b$, respectively.
 - a) Show that $\|.\|_a$ and $\|.\|_b$ are equivalent norms if and only if there exists some r > 0 such that

$$B_{1/r}^{a}(0) \subseteq B_{1}^{b}(0) \subseteq B_{r}^{a}(0).$$

3 Let s be the vector space of real-valued sequences $(a_n)_{n\in\mathbb{N}}$. Show that the $\|.\|_1$ -norm and $\|.\|_{\infty}$ -norm are not equivalent on s.