1

a) Positivity of $\|\cdot\|_0$ follows from positivity of $\|\cdot\|_X$, $\|\cdot\|_Y$. We have $\|x\|_0 = 0 \implies \|x\|_X = 0 \implies x = 0$ since $\|\cdot\|_X$ is a norm. Since T is linear $Tx = 0 \implies \|Tx\|_Y = 0$ which implies $\|x\|_0 = 0$. So $\|x\|_0 = 0 \implies x = 0 \implies \|x\|_0 = 0$. This means $\|x\|_0 = 0 \iff x = 0$ and we can move on to the triangle inequality. By linearity of T, $\|x+x'\|_0 = \|x+x'\|_X + \|T(x+x')\|_Y \le \|x\|_X + \|Tx\|_Y + \|x'\|_X + \|Tx'\|_Y = \|x\|_0 + \|x'\|_0$, where we also use that $\|\cdot\|_X$, $\|\cdot\|_Y$ are norms. Linearity of T also means that $\|T(\alpha x)\|_Y = \|\alpha Tx\|_Y = |\alpha|\|Tx\|_Y$, so the last property follows as well since $\|\alpha x\|_0 = |\alpha| \cdot (\|x\|_X + \|Tx\|_Y) = |\alpha|\|x\|_0$.

Assume T is bounded. That means $||Tx||_Y \le C||x||_X, \forall x \in X$. So $||x||_0 \le (C+1)||x||_X$. $||x||_X \le ||x||_0$ is trivial, so they are equivalent. On the other hand if they are equivalent we have $||x||_0 \le C||x||_X$ and subtracting $||x||_X$ yields $||Tx||_Y \le (C-1)||x||_X$ so T is bounded.

b) We proved this in AdVec, and this is here my strategy comes from. Theorem 1.6 in the lecture notes states that any two norms on a finite dimensional vector space are equivalent, so we will prove that any T is bounded with a particular norm. It follows then it is bounded with any norm on X. Let $e_1, ..., e_n$ be a basis on X and define a norm on X by $\|\sum_{i=1}^n a_i e_i\|_X = \max\{|a_i|: i=1,...,n\}$. This is well defined since the coordinates of $x \in X$ wrt a basis exists and are unique. Positivity is immediate and $\|x\|_X = 0 \iff a_1,...,a_n = 0 \iff x = 0$. The triangle inequality holds since $\max\{|a_i+b_i|, i=1,...,n\} \le \max\{|a_i|+|b_i|, i=1,...,n\} \le \max\{|a_i|+|b_i|, i=1,...,n\} \le \max\{|a_i|, i=1,...,n\} + \max\{|b_i|, i=1,...,n\}$ and $|\alpha a_i| = |\alpha| \cdot |a_i|$ proves the last property required to be a norm.

For any $x = \sum_{i=1}^n a_i e_i$ with $||x||_X \le 1$ we have $||Tx||_Y \le \sum_{i=1}^n |a_i|||Te_i||_Y \le \sum_{i=1}^n ||Te_i||_Y < \infty$, where we use $|a_i| \le ||x||_X \le 1$ to get the second inequality. So T is bounded with this and therefore any norm on X.

- c) Let $(e_i)_{i\in I}$ be a basis for X. We can define another basis $\hat{e_i} = e_i/\|e_i\|_X$ and may therefore assume that every e_i has norm one. Choose an injection $\varphi: \mathbb{N} \to I$ and let $(y_i)_{i\in I}$ be any family in Y so $\|y_{\varphi(n)}\|_Y = n$. For example we could let $y_{\varphi(n)} = n \cdot y_{\varphi(1)}$ and $y_{\varphi(1)}$ be some unit vector. Then there exits a linear map T so $Te_i = y_i$ (by the comments below the exercise). This map is unbounded since $\|e_{\varphi(n)}\|_X = 1$ but $\|Te_{\varphi(n)}\|_Y = \|y_{\varphi(n)}\|_Y = n$ can be arbitrarily large. Since it is not bounded it is not continuous.
- d) Choose $T: X \to Y$ linear but not continuous, this is possible by c). Then $||x||_0 = ||x||_X + ||Tx||_Y$ is not equivalent to $||x||_X$ by a) and clearly satisfies $||\cdot||_0 \ge ||\cdot||_X$. By problem 1 in Homework 3, if X is complete wrt both norms they are equivalent. So if $(X, ||\cdot||_X)$ is a Banach space, X is complete wrt $||\cdot||_X$ and since they are not equivalent, X cannot be complete wrt $||\cdot||_0$.

in what singe?

e) $X = \ell_1(\mathbb{N})$ is complete with the $\|\cdot\|_1$ norm which is stronger than the $\|\cdot\|_{\infty}$ norm. Clearly if x = 0 we have $\|x\|_1 \ge \|x\|_{\infty} = 0$. Since $x \in \ell_1$ it must have limit zero, so after a finite number of elements all the subsequent elements in x have smaller norm than the first non-zero element. Therefore $\|x\|_{\infty}$ is really a max over a finite set of real numbers, which is bounded by their sum which is bounded by $\|x\|_1$ as there are more terms in this sum.

corner, but

It is

In this

It this

company

and text

X(N>N

To see X is not complete with this norm consider the sequence of sequences $x_i(n) = 1_{\{1,...,i\}}(n)/n$ that converges to 1/n in $\ell_{\infty}(\mathbb{N})$. But since the limit is not in X, here it is a Cauchy sequence without a limit proving X is not complete with the ∞ -norm.

 $\mathbf{2}$

a) Notice $||x||_p = \sqrt[p]{|x_1|^p + |x_2|^p} \le 1 \iff |x_1|^p + |x_2|^p \le 1$ so we must have $|x_1|, |x_2| \le 1$ so clearly $|f(x)| \le |x_1| + |x_2| \le 2$. So f is bounded. Notice there is no reason to consider other values of x_1, x_2 than those that are real and positive. If $x = (x_1, x_2, 0, ...)$ has norm less than 1 then so too $x' = (|x_1|, |x_2|, 0, ...)$. And $|f(x)| \le |x_1| + |x_2| = f(x')$.

This reduces the problem to finding $x_1, x_2 \ge 0$ that maximizes $x_1 + x_2$ subject to the restriction $x_1^p + x_2^p \le 1$. Notice that f(x) increases as x_1, x_2 increases so if x has norm strictly less than 1 we can find x' with f(x) < f(x') by increasing x_1 a little, but not so much than $||x||_p \le 1$ is no longer true. Therefore the problem reduces further to finding x_1, x_2 maximizing $x_1 + x_2$ subject to the restriction $|x_1|^p + |x_2|^p = 1$. Now notice if $x_1 > x_2$ then $px_1^{p-1} \ge px_2^{p-1}$, since y^{p-1} is an increasing function since $p-1 \ge 0$. So the derivative of $||x||_p^p$ with respect to x_1 is bigger than that with respect to x_2 . So if we decrease x_1 a little we can increase x_2 slightly more, getting a bigger value of $f(x) = x_1 + x_2 = x_2 = x_1 + x_2 = x_2 = x_1 = x_2 = x_1 = x_1 = x_2 = x_1 = x_2 = x_1 = x_1 = x_2 = x_1 = x_2 = x_1 = x_1 = x_1 = x_2 = x_1 = x_1 = x_1 = x_2 = x_1 = x_1 = x_2 = x_1 = x_1 = x_2 = x_1 = x_1 = x_1 = x_2 = x_1 = x_1 = x_1 = x_1 = x_2 = x_1 = x_1 = x_1 = x_2 = x_1 = x_1 = x_1 = x_1 = x_1 = x_2 = x_1 = x_1 = x_1 = x_1 = x_1 = x_1 = x_2 = x_1 = x_1$

b) First note that $F(x) = x_1 + x_2$ is an extension of f with the same operator norm. There is no point in considering $x \notin M$ since the terms past x_2 contribute to $\|x\|_p$ without contributing to |F(x)|. When considering $x \in M$ all the above apply and we conclude $\|f\| = \|F\|$. Would like the calculators

I will prove uniqueness by showing any other extension F' of f will have strictly greater norm. Since $F \neq F'$ they must disagree on some x' and since they agree on M, $x \notin M$. Since they agree on M, they must also disagree on $x = x' - (x'_1, x'_2, 0, ...) \in \ker F$ so $F'(x) \neq 0$ and scaling and then multiplication with a unit we may assume that $||x||_p = 1$ and F'(x) = y > 0. The idea now is to find a vector in $\operatorname{Span}\{1_{\{1\}}, 1_{\{2\}}, x\}$ proving that ||F'|| > ||f||. We already know that $x_1 = x_2 = \sqrt[p]{1/2}$ satisfies the boundary condition and $F(x_1, x_2, 0...) = F(y) = 2^{(p-1)/p}$. For very small ε , if we decrease them both by ε then $||y||_p^p$ decreases approximately $2\varepsilon p2^{(1-p)/p} = \varepsilon 2^{1/p}$ (since $\Delta f(x) \approx f'(x)\Delta x$) while F'(y) of course decreases by 2ε . So adding $(\sqrt[p]{\varepsilon}2^{1/p}) \cdot x$ gives us a vector that still satisfies the boundary condition. Clearly $F'((\sqrt[p]{\varepsilon}2^{1/p}) \cdot x) = y\sqrt[p]{\varepsilon}2^{1/p}$ which goes to zero slower than 2ε as $\varepsilon \to 0$, since the same is true for $\sqrt[p]{\varepsilon}$ and ε . So for any given y the contribution from adding a small multiple of x is eventually bigger than the 2ε we loose for making room for it. Therefore we have produced a vector so |F'(y)| > ||f|| proving F is unique. In the preceding argument it is absolutely critical that p > 1 since otherwise $\sqrt[p]{\varepsilon}$ only goes to zero as fast as ε .

c) Consider $F'(x) = \sum_{i=1}^{3} x_i$, which is clearly an extension of f. We have $||f|| = 2^{(1-1)/1} = 1$, and for any x with norm $1 |F(x)| \le |x_1| + |x_2| + |x_3| \le ||x||_1 \le 1$ which means ||f|| = ||F'|| since $||f|| \le ||F'||$ is trivial since it is an extension. Notice this argument also works for $F'(x) = \sum_{i=1}^{N} x_i$ and since there are

lincel part ave a bit too vague, informal,

Imprecis

 $2 \mid 5$

infinitely many natural numbers there are infinitely many generalizations. We could also multiply x_3 by $\alpha \leq 1$ instead of or in addition to adding more terms. Again, goile indeval.

3

- ?
- a) Let Y be an n+1 dimensional subspace of X with basis y_i . In AdVec (lemma 2.7) we learned that a linear map $A: Y \to \mathbb{K}^n$ being injective is equivalent with $A(y_i) \neq A(y_j), i \neq j$ and linear independence of $A(\{y_1, ..., y_{n+1}\})$ which in particular means the existence of n+1 linearly independent vectors in \mathbb{K}^n . This is impossible and therefore there cannot exist a linear, injective map $F: Y \to \mathbb{K}^n$. A linear, injective map from X to \mathbb{K}^n would restrict to a linear, injective map from Y to \mathbb{K}^n so such a map can also not exist.

c) Note that if some x_i is zero, then it is trivially true for any $y \in X$ that $||y - x_i|| \ge ||x_i|| = 0$ since norms are positive. Therefore we can safely ignore those x's that are zero, and we will now assume none of them are zero. By theorem 2.7 b there is $f_i \in X^*$ with norm 1 and $f_i(x_i) = ||x||$. By b) we know that $\bigcap_{i=1}^n \ker f_i$ is not zero, and from AdVec we know the kernel of a linear function (F as defined above) is a subspace. Therefore we can take $0 \ne y \in \bigcap_{i=1}^n \ker f_i$ and scale it to have norm 1. For every x_j we have

$$||x_i|| = f_i(x_i) = f_i(x_i - y) \le ||f|| ||x_i - y|| = ||y - x_i||$$

where the second equality is $y \in \ker f_i$ and the last one is using the operator norm of f is 1.

d) Suppose we have a closed balls that cover S and let $x_1, ..., x_n$ denote their centres. By c) we can find y with norm 1 so $\|y - x_j\| \ge \|x_j\|$ for all j. Since it has norm 1, $y \in S$ so one of balls must contain y. But $y \in \overline{B(x_j, r_j)} \implies \|y - x_j\| \le r_j$ and since $\|x_j\| \le \|y - x_j\|$ we must have $0 \in \overline{B(x_j, r_j)}$. So whenever we have a finite family of closed balls covering S, one of them will contain S. Therefore

so whenever we have a finite family of closed ball scovering S, one of them will contain 0. Therefore covering the unit sphere with a finite family of closed ball without one of them containing 0 cannot be done.

e) Consider the open covering consisting of the sets $U_x = B(x, 1/2), x \in S$. Since $0 \notin \overline{B(x, 1/2)}, x \in S$, for any finite subset of the open covering $U_1, ..., U_n$ we have $S \nsubseteq \cup_{i=1}^n \overline{B(x_i, 1/2)}$ by d) since it would constitute a finite covering of S by closed balls, none of which contain 0. And since $B(x, 1/2) \subseteq \overline{B(x, 1/2)}$ it follows $S \nsubseteq \cup_{i=1}^n B(x_i, 1/2)$. So since this particular open covering cannot be "thinned" to a finite open covering, S is not compact. If we add the open unit ball to this open covering, we get an open covering of the closed unit ball. Since $B(0,1) \cap S = \emptyset$ this added set does not help us cover S. So since we could not thin the previous open covering to a finite open covering of S, we cannot thin this open covering to a finite covering of the closed unit ball. Therefore it is not compact.

4

Let $I = [0, 1], X = L_1(I, \lambda), Y = L_3(I, \lambda)$ where λ is the Lebesgue measure.

- a) Absorbing implies that for every $f \in X$ and some t > 0 we have $tf \in E_n$. This is impossible since for any $t>0, f\in X\setminus Y$ we have $\int_I |tf|^3d\lambda=t^3\int_I |f|^3d\lambda=\infty$. Note that $E_n\subseteq Y\subsetneq X$, so such an f definitely exists.
- b) Let $f(x) = \frac{2}{3}x^{-1/3}$. It is integrable over I with integral 1 (its anti-derivative is $x^{2/3}$). Let $g \in E_n$ and notice that $g + \varepsilon f \in B(g, 2\varepsilon)$: $||g - g - \varepsilon f||_X = \varepsilon ||f||_X = \varepsilon$. So if $g + \varepsilon f \notin E_n$ for any ε we see that arbitrarily close to any $g \in E_n$ there is a function not in E_n and then we are done, since any gcannot be an interior point. Using the reverse triangle inequality we see $|\|\varepsilon f\|_Y - \|g\|_Y| \le \|\varepsilon f + g\|_Y$. But $\int_I |\varepsilon f|^3 d\lambda = \varepsilon^3 (2/3)^3 \int_I x^{-1} d\lambda(x) = \infty$, so $|\|\varepsilon f\|_Y - \|g\|_Y| = \infty$ and the same holds for $\|\varepsilon f + g\|_Y$. So since $\|\varepsilon f + g\|_Y^3 = \int_I |\varepsilon f + g|^3 d\lambda = \infty > n, \varepsilon f + g \notin E_n$.
- c) After trying to prove E_n is closed for more than a day and in my desperation typing up an argument involving a proof of a weaker version of Egorov's theorem, I find it is much easier proving that $X \setminus E_n$ is open. Such is life.

Take $f \notin E_n, g \in E_n$. I will bound $||f - g||_1$ in a way that does not depend on g. Assume there exists $\tilde{g} \in E_n : |f - \tilde{g}| \le \min\{1, |f - g|\}$ almost everywhere. This is justified since it makes the problem harder.

Since
$$|f-\tilde{g}| \leq 1, |f-\tilde{g}|^3 \leq |f-\tilde{g}|$$
 and we have
$$\int_I |f-g| d\lambda \geq \int_I |f-\tilde{g}| d\lambda \geq \int_I |f-\tilde{g}|^3 d\lambda = \|f-\tilde{g}\|_3^3 \geq |\|f\|_3 - \|\tilde{g}\|_3|^3, \quad \text{for all } f \in \mathcal{S} \text{ for all } f \in \mathcal{S} \text{ fo$$

$$\int_{I} |f - g| d\lambda \ge \int_{I} |f - \tilde{g}| d\lambda \ge \int_{I} |f - \tilde{g}|^{3} d\lambda = \|f - \tilde{g}\|_{3}^{3} \ge |\|f\|_{3} - \|\tilde{g}\|_{3}|^{3},$$

So $|\|f\|_3 - \|\tilde{g}\|_3| \ge \|f\|_3 - \sqrt[3]{n}$ and we can use $(\|f\|_3 - \sqrt[3]{n})^3 > 0$ as a lower bound on $\|f - g\|_1$ for any $g \in E_n$. So $||f||_3 - ||g||_3| \ge ||f||_3 - \sqrt{n}$ and we can use $\sqrt{||f||_3} - \sqrt{n}$.

So in a ball around any $f \in X \setminus E_n$ there are no elements from E_n and so E_n^c is open which means E_n . is closed in X.

d) By c) and then b) $\operatorname{Int}(\overline{E_n}) = \operatorname{Int}(E_n) = \emptyset$. So $Y = \bigcup_{n=1}^{\infty} E_n$ is a countable union of nowhere dense sets. So Y is of the first category in X.

5

- By the reverse triangle inequality $|||x_n||_X ||x||_X| \le ||x_n x||_X \to 0$ by convergence in norm. Fut this means $||x_n||_X \to ||x||_X$.
- b) I will find a counterexample. Let X be $\ell_2(\mathbb{N})$ and $x_n = 1_{\{n\}}$. By HW4 weak convergence is equivalent [L]with $f(x_n) \to f(x), \forall f \in X^*$, and I will use this to show weak convergence to 0. Let $f \in X^*$ by RF $f(x_n) \to f(x)$ representation theorem $f(x) = \langle x, y \rangle$ for some $y \in X$. But note $\langle x_n, y \rangle = \overline{y(n)}$ (the conjugate of the n'th term in the sequence y). Since $y \in \ell_2(\mathbb{N})$ we must have $y(n) \to 0$. So for every $f \in X^*$ we have

mtg382

 $f(x_n) \to f(0)$, proving weak convergence to 0. But clearly we do not have convergence in norm, every x_n

has norm one, and 0 has norm 0. No need, H is assumed to be superable.

Be a bit wave specific or $x \in \mathbb{R}$ and $x \in \mathbb{R}$ where $x = \alpha e_1$. Then we have $x = \alpha e_1$. Then we have consider the functional $f(y) = \langle y, e_1 \rangle$ which is bounded since it is given by an inner product. By thm 5.27 in Folland we have $1 \ge ||x_n||_X = \sqrt{\sum_{i \in I} |\langle x_n, e_i \rangle|^2} \ge |\langle x_n, e_1 \rangle|$. And since $f(x - x_n) \to 0$ we have $|\alpha - \langle x_n, e_1 \rangle| \to 0$ so by the reverse triangle inequality $||\alpha| - |\langle x_n, e_1 \rangle|| \to 0$. So if $||x||_X = |\alpha| > 1$ we could not have convergence since $|\alpha|-|\langle x_n,e_1\rangle|\geq |\alpha|-\|x_n\|_X=|\alpha|-1>0$ would not go to zero. I follows x must have norm less than 1.