MESA2GADGET

Bridging the Gap between 1D and 3D Stellar Models

Meridith Joyce
Ph.D. Candidate
Dartmouth
SAAO & UCT

Oct 30th, 2017

Why?

Meet the Codes

MESA: Modules for Experiments in Stellar Astrophysics

- 1 dimensional stellar structure solver
- highly customizable physical conditions

GADGET: GAlaxies with Dark matter and Gas intEracT

- N-body/SPH
- typically used for galactic and cosmological simulations
- SPH also useful for stellar atmospheres

TP-AGB Models

- generate MESA density profile
- o subdivide into k regions of varying size $(r_u r_l)_k$ such that the number of particles N is preserved per region and the mass per particle m_p is preserved $\forall k$
 - requires either numerical integration or model fitting to find the mass contained per region, which determines N (or m_p)
- o distribute the N particles contained in each region k across the surface of a sphere of radius $r_{\text{mid},k} = \frac{(r_U + r_I)_k}{2}$
 - care is required in selecting a particle distribution method that will minimize computational artifacts → HEALPix
- o stack these shells: $\forall k, x = x + x_k$ (same for y, z) at $r_{\text{mid},k}$
 - IMPORTANT! must arbitrarily rotate each shell or the particles will be ordered
- send final x, y, z arrays to a Gadget initial conditions (IC) generator
- VALIDATION!
 - Load the ICs! Check: does ρ vs $r_k = \sqrt{x_k^2 + y_k^2 + z_k^2} \forall$ regions k recover the initial radial sampling applied to MESA?

Ohlmann et al., 2017

Fig. 4. Comparison of density (upper left), pressure (upper right), internal energy (lower left) and derivative of pressure (lower right) for a $2M_0$, RG with a $-0.4 M_0$. He core. Shown is the original profile from the MESA stellar evolution code as well as approximate profiles for cut radii of 1%, 5%, and 10% of the total radius. The approximate profiles were computed using a polytropic index of n = 3 for the interior part.

Workflow

HEALPix: Hierarchical Equal Area iso-Latitude Pixelization

HEALPix distribution for arbitrary shell *k*

Convergence Criteria: $n_1(r_u)$ and $n_2(r_u)$

Method: Impose two independent constraints and force their equality HEALPix tessellates a sphere into $12n^2$ quadrilaterals for $n \in \{2^x\}$; $n, x \in \mathcal{Z}$

Let n_1 s.t. $n_p = 12n_1^2$, where $n_p = \frac{M_{\text{shell}}}{m_p}$, with n_p the number of particles per shell

Then
$$n_1 = \sqrt{\frac{M_{
m shell}}{12 m_{
m p}}}$$
, where $M_{
m shell} = M_{
m shell}(r_u, r_l)$

Now, let each quadrilateral have width $r_u - r_l$. The surface area of that quadrilateral is $(r_u - r_l)^2$

Simultaneously, the total surface area of the shell k is

$$4\pi r_{\text{mid}}^2 = 4\pi \frac{(r_u + r_l)^2}{2}$$

HEALPix requires $12n_2^2$ particles and $12n_2^2$ quadrilaterals via 1 particle per region constraint. Hence, $(r_u - r_l)^2 12n_2^2 = 4\pi \frac{(r_u + r_l)^2}{2}$ which gives $\rightarrow n_2 = \sqrt{\frac{\pi}{12}} \frac{r_u + r_l}{r_u - r_l}$.

Because n_1 is a monotonically increasing function of r_u and n_2 is monotonically decreasing, $\exists r_u$ s.t. $n_1 = n_2^*$

*IGNORING all other constraints on M_{shell}

For fixed r_l and increasing r_u

Convergence

Coming Soon...

