ПАРАЗИТОФАУНА АМУРСКОГО ХАРИУСА THYMALLUS ARCTICUS GRUBEI ИЗ РЕК ПРИМОРСКОГО КРАЯ

© А. В. Ермоленко, Т. Г. Степанцова, С. В. Шедько

Рассматривается фауна паразитов амурского хариуса *Thymallus arcticus grubei* Dybowski в юго-восточной части его ареала.

Широко распространенный в пределах Голарктики сибирский хариус *Thymallus arcticus* (Pallas) в различных частях своего ареала образует ряд подвидов. Одним из них является амурский хариус *T. arcticus grubei* Dybowski, обитающий в водотоках бассейна Амура и в ряде рек восточного склона Сихотэ-Алиня, западного и северного побережья Охотского моря (Берг, 1948—1949).

Фауна паразитов амурского хариуса до недавнего времени оставалась практически неизученной. В литературе имелись лишь сведения, касающиеся рыб нижнего течения Амура, где были обследованы только 3 рыбы (Стрелков, Шульман, 1971). В настоящей работе приводятся результаты изучения фауны паразитов амурского хариуса из водотоков Приморского края, т. е. южных популяций данной рыбы.

Материалом для работы послужили проведенные в 1985—1993 гг. сборы паразитов от 60 экз. хариусов, отловленных в реках Единка (восточный склон Сихотэ-Алиня), Арму (приток Уссури второго порядка), Комиссаровка (бассейн оз. Ханка) и Уссури (верхняя часть бассейна).

Сбор и обработка материала проводились по стандартным методикам (Быховская-Павловская, 1985). Всего были обнаружены 23 вида паразитов (см. таблицу).

По требованиям к среде обитания хариус сходен с систематически близкими ему лососевыми. В реках он занимает участки, лежащие между зонами обитания мальмы (ниже) и ленков (выше по течению). Обычно границы между этими видами размыты (особенно нижняя), и зачастую указанные рыбы живут совместно. При этом хариус

Фауна паразитов амурского хариуса из рек Приморского края

Parasite fauna of Thymallus arcticus grubei fro m rivers of the Primor'ye region

Вид паразита		Единка			Арму			Уссури			Комиссаровка		
	ЭИ	ии	ио	ЭИ	ии	ио	эи	ии	ио	эи	ии	ио	
Cryptobia branchialis Nie (in: Chen, 1956)							6.7			6.7			
Hexamita truttae (Schmidt, 1920)	6.7			26.7									
Myxidium salmonis Kulakowskaja, 1954	6.7												
M. ventricosum Schulman, 1962				6.7			20			26.7			
Leptotheca krogiusi Konovalov et Schulman, 1965	6.7									_			
Chloromyxum thymalli Lebzelter, 1912	13.3						6.7			20			
Myxobolus arcticus Pugatschov et Chochlov, 1979	6.7			40			20			13.3			
M. neurobius Schuberg et Schroder, 1905				13.3			6.7			20			
Ichthyophthirus multifiliis Fouquet, 1876							6.7						
Tetraonchus borealis (Olsson, 1893) f. minor Pugachev, 1983	6.7	1	0.07	26.7	2—28	2.6	20	1—5	0.6	60	1—27	6.2	
Gyrodactylus magnus Konovalov, 1967	13.3	4—6	0.67							13.3	1	0.13	
Crepidostomum farionis (Mueller, 1780)	60	1—45	11.2	33.3	1—4	0.6	40	1—8	1.67	20	1	0.2	
Azygia robusta Odhner, 1911				6.7	1	0.07	13.3	1—2	0.2				
Metagonimus yokogawai Katsurada, 1912, 1.				13.3	40	5.53	20	4—15	2	80	До 300		
Pygidiopsis sp., 1.				40	1—40	46.7	26.7	1—9	1.67	6.7	1	0.07	
Nanophyetus salmincola Chapin, 1926, 1.				80	До 1500		100	До 1400		20	До 2500		
Cyathocephalus truncatus (Pallas, 1781)	6.7	1	0.07				13.3	1	0.13				
Metechinorhynchus cryophilus Sokolowskaja, 1962	20	1-6	0.53	6.7	1	0.07	6.7	1	0.07				
Raphidascaris acus (Bloch, 1779), 1.										6.7	1 1	0.07	
Ascarophis skrjabini (Layman, 1938)							13.3	1	0.13				
Cystidicoloides ephemeridarum (Linstow, 1872)				86.7	1—250	62.7	40	1—39	8.1	46.7	1—55	4.6	
Salvelinema salmonicola (Ishii, 1916)	40	1—35	4.2	6.7	1	0.07				86.7	2—55	16	
Capillaria salvelini Poljansky, 1952	33.3	1—12	1.3	6.7	6	0.4	6.7	1	0.07				

Примечание. ЭИ — экстенсивность инвазии; ИИ — интенсивность инвазии; ИО — индекс обилия.

держится на быстром течении или на мелких плесах под перекатами, но обычно в толще воды. На последнее указывает его зараженность миксоспоридиями с различной скоростью опускания спор.

В питании амурского хариуса повсеместно присутствуют донные беспозвоночные. С этим связана инвазированность его гельминтами, развивающимися с участием амфипод (Cyathocephalus truncatus, Metechinorhynchus cryophilus, Salvelinema salmonicola и, очевидно, Ascarophis skjabini), амфипод и личинок поденок (Crepidostomum farionis), личинок поденок (Cystidicoloides ephemeridarum), олигохет (Capillaria salvelini) и личинок различных амфибиотических насекомых (Raphidascaris acus). Существенна доля и имаго амфибиотических насекомых, что определяет более высокую, чем другими биогельминтами, инвазированность рыб Crepidostomum farionis (во всех районах исследования) и Cystidicoloides epemeridarum (повсюду, кроме р. Единки).

Определенную роль в питании хариуса в реках амурского бассейна играет и планктон. Прямых паразитологических свидетельств этому не обнаружено. Косвенно включение в диету рыб планктонных организмов можно предполагать по наличию у них *Pygidiopsis* sp., l., довольно крупные церкарии которых плавают в толще воды и инвазируют вторых промежуточных хозяев (рыб) при дыхании и (или) питании последних (Беспрозванных, 1989). Подтверждения питания амурского хариуса планктоном в реках восточного склона Сихотэ-Алиня нет, но это, скорее всего, и не имеет места, во всяком случае, у взрослых рыб. Высокие скорости течения в верхних и средних участках данных водотоков, безусловно, предполагают для рыб, держащихся в основном русле реки, питание только бентосом, дрифтом или опадом, поскольку планктонные беспозвоночные там очень редки.

Имеющаяся региональная качественная и количественная разнородность фауны паразитов амурского хариуса в районе исследований проистекает не только от разницы в его образе жизни и конкретных водоемах, но прежде всего связана с различной гидрологией и гидробиологией этих рек. Так, отсутствие у хариуса из р. Единки Cystidicoloides ephemeridarum определяется, по-видимому, невысокой численностью данного гельминта. Инвазированность им других лососеобразных здесь также обычно крайне небольшая (Ермоленко, 1992). Равным образом, несмотря на значительное число вскрытий, ни у одной рыбы (и у хариуса в том числе) в р. Комиссаровке не отмечался скребень Metechinorhynchus cryophilus. Зараженность хариуса метацеркариями трематод родов Metagonimus, Pygidiopsis и Nanophyetus только в амурском бассейне предопределена распространением первых промежуточных хозяев этих сосальщиков — гастропод рода Juga.

Вне пределов ареала тайменя Hucho taimen у прочих рыб отсутствует приуроченный к нему паразит Azygia robusta. Миксоспоридии Myxobolus salmonis, цестоды Cyathocephalus truncatus и нематоды Ascarophis skrjabini присутствуют у хариуса только в тех реках, где распространена мальма Salvelinus malma, а миксоспоридии Leptotheca krogiusi, по-видимому, только в ареале симы Oncorhynchus masu. Следует отметить, что 4 последних паразита не являются узкоспецифичными, встречаясь у различных лососеобразных. Причины отсутствия их вне границ распространения указанных сальмонид будут рассмотрены нами в отдельной работе.

Наибольшее число видов паразитов — 17 — отмечено у амурского хариуса в бассейне р. Уссури, что объясняется наибольшим числом экологических ниш в данном водоеме. Высокая зараженность рыб имеющимися в р. Комиссаровке паразитами определяется, напротив, небольшими размерами данного водоема, в связи с чем здесь отсутствуют четкие границы между рыбами со сходными экологическими потребностями, а плотность популяций многих беспозвоночных — промежуточных хозяев гельминтов очень высока.

В обследованных реках амурского бассейна (и в низовьях Амура, в том числе — Стрелков, Шульман, 1971) у хариуса наряду с приуроченными к нему видами бореального предгорного и арктического пресноводного фаунистических комплексов встречаются и паразиты, происхождение которых явно связано с рыбами равнинных

(причем не только голарктических) водоемов. Относительно широкое распространение их у хариуса можно считать характерным только для бассейна Амура. К примеру, все 12 обнаруженных у хариуса в р. Единке видов паразитов конформны с лососеобразными (Ройтман, 1993), и если вообще отмечаются у рыб иной систематической принадлежности, то в основном только в ареалах Salmonoidea.

Среди специфичных и приуроченных в своем происхождении к хариусовым видов паразитов практически все относятся к представителям холодноводных фаунистических комплексов — бореальному предгорному и арктическому пресноводному. Наибольшее представительство их у рыб рода Thymallus в азиатской части Палеарктики предполагает восточно-сибирское происхождение Thymallidae (Пугачев, 1984). Конкретный район обособления T. arcticus grubei, исходя из имеющихся сведений, определить сложно. Ясно, что амурский хариус формировался в водоемах азиатской части бассейна Тихого океана. Однако следует отметить, что ни на основании результатов наших исследований, ни по сведениям других авторов полного представления о фауне паразитов этой рыбы составить невозможно. Нашей работой охвачен по сути юго-восточный край ареала амурского хариуса, где вероятно обеднение фауны паразитов. Без сомнения, список видов паразитов, представленных у амурского хариуса, будет существенно увеличен при обследовании рыб из среднего и верхнего течения Амура и рек побережья Охотского моря.

Список литературы

- Берг Л. С. Рыбы пресных вод СССР и сопредельных стран. Т. 1—3. М.; Л.: Изд-во АН СССР, 1948—1949.
- Беспрозванных В. В. Фауна личинок трематод моллюсков рода Juga (Gastropoda: Pachychilidae) из рек Дальнего Востока СССР// Паразитологические исследования. Владивосток: ДВО АН СССР, 1989. С. 82—96.
- Быховская-Павловская И. Е. Паразиты рыб. Руковод. по изучению. Л.: Наука, 1985. 121 с.
- Ермоленко А. В. Паразиты рыб пресноводных водоемов континентальной части бассейна Японского моря. Владивосток: ДВО РАН, 1992. 238 с.
- Пугачев О. Н. Паразиты пресноводных рыб северо-востока Азии. Л.: Изд-во ЗИН АН СССР, 1984. 156 с.
- Ройтман В. А. Гельминты лососевидных рыб и их коэволюция с хозяевами: Автореф. дис. ... докт. биол. наук в форме науч. докл. М., 1993. 64 с.
- Стрелков Ю. А., Шульман С. С. Эколого-фаунистический анализ паразитофауны рыб бассейна Амура // Паразитол. сб. ЗИН АН СССР. 1971. Т. 25. С. 196—292.

БПИ ДВО РАН, Владивосток, 690022

Поступила 28.10.1997

PARASITE FAUNA OF THYMALLUS ARCTICUS GRUBEI FROM RIVERS OF THE PRIMOR'YE REGION

A. V. Ermolenko, T. G. Stepantsova, S. V. Shed'ko

Key words: Thymallus arcticus grubei, parasite fauna, Primor'ye region.

SUMMARY

Data on a parasite fauna of *Thymallus arcticus grubei* form different rivers of the Primor'ye region are given.