

Discrete Response Models Count Models

H.C. Kongsted Copenhagen Business School, SÍ hck.si@cbs.dk

Agenda

- Final extension to basic LRM: non-linear transformations of variables
- How to deal with dependent variables that have categorical or count outcomes?
- We will look at three (common) cases:
 - 1. Binary response: 0/1 outcome
 - Logit (and probit) models
 - Marginal effects
 - Example: Coefficients and marginal effects
 - Comparing probit and logit models
 - 2. Multinomial responses: More than two (unordered) outcomes
 - 3. Count data: The possible outcomes are the natural counts 0,1,2,3,...

Logit (and probit) models

Binary response: The UK CIS example revisited

How to deal with the binary variable PRODINOV (0/1) as an outcome?

Dichotomous dependent variables

- Running a linear regression by OLS is still a feasible option.
- In fact, the linear regression model provides a valid model for the expected value of Y given X, when the first 4 OLS assumptions are satisfied:

$$E(Y|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

- The error term is heteroskedastic: We can fix that using robust s.e.
- Not always fully appropriate: the "expected" value for a particular unit could become negative, or larger than one.
- Readings:
 - Wooldridge, Introductory Econometrics, chapter 7.5, 17.1.
 - Hoetker SMJ 2006.

The logit model

A general binary response model:

$$P(y = 1 \mid \mathbf{x}) = G(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k) = G(\mathbf{x}\boldsymbol{\beta}) = G(z)$$

• For the logit model, *G* is the logistic function:

$$G(z) = \exp(z)/[1 + \exp(z)]$$

G is the cumulative distribution for a standard logistic random variable. G takes values strictly between 0 and 1: 0 < G(z) < 1.

 We use G as a model of the probability that y assumes the value 1 rather than 0. But this is also the expected value of Y:

$$E(y \mid \mathbf{x}) = 1 \cdot P(y = 1 \mid \mathbf{x}) + 0 \cdot P(y = 0 \mid \mathbf{x})$$

= $P(y = 1 \mid \mathbf{x}) = G(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k)$

The model is estimated using the maximum likelihood method: maximizes **the log-likelihood function** $lnL(\beta)$ -> finds the estimates of $\beta_0, \beta_1, ..., \beta_k$ that make the actual outcome of y_i in the sample i=1,2,...,n **most likely**, given the values of the x_i 's.

Logistic Function for $z = \alpha + \beta x$

Copenhagen Business School

- Probit model: an alternative choice of probability distribution for a binary response model.
- Like logit, the focus is the probability that Y equals 1.
- In the probit model, *G* is the standard normal cumulative distribution function, which is expressed as an integral:

$$G(z) = \Phi(z) \equiv \int_{0}^{z} \phi(v) dv$$

where $\varphi(z)$ is the standard normal density:

$$\phi(z) = (2\pi)^{-1/2} \exp(-z^2/2)$$

- Maximum likelihood is again used to estimate the parameters.
- In many cases, the logit and probit results are "comparable." Let us focus on the logit case.

xb

Both are symmetric; logistic has larger variance; tail probabilities differ.

Interpretation of coefficients

- Most often we are interested in the marginal effect of changing a given variable, x_j , on E(Y|X), or equivalently, on P(y=1|x).
- Because the logistic function is non-linear, the coefficients of the model (the β_j 's) do not directly give the marginal effects.
- We can use the coefficients to tell us:
 - Sign: Whether there is a positive or negative effect of x_j , given that the relevant coefficient is statistically significant.
 - Significance: Whether there is an effect at all (is there a statistically significant effect? i.e., $\beta_i \neq 0$).

Example: logitexercise.do

 We estimate a logistic model, whereby product innovation (no=0/yes=1) is determined by whether or not a firm collaborates with a university and the size of the firm:

$$P(y = 1 | \mathbf{x}) = G(\beta_0 + \beta_1 x_1 + \beta_2 x_2)$$

- For comparison, we also run the simple linear regression.
- *y* is the indicator for innovating (prodinov)
- x₁ measures the size of the firm expressed as the log of number of employees (lempl00).
- x_2 is a binary variable expressing whether or not the firm is collaborating for innovation with a university (unic).

```
/* Note: define unic as: */
gen unic=0
replace unic=1 if punivl==1 | punivn==1 | punive==1 | punivu==1 | punivo==1
```


Copenhagen Business School

HANDELSHØJSKOLEN

Logit vs linear regression

. * OLS for comparison
. reg prodinov lempl00 i.unic, r

Linear regression

Number of obs	=	906
F(2, 903)	=	54.87
Prob > F	=	0.0000
R-squared	=	0.1154
Root MSE	=	.42903

-		 I	Robust				
	prodinov	Coefficient		t	P> t	[95% conf.	interval]
_	lemp100 1.unic _cons	.0789866 .3990625 0434095	.0107481 .0669843 .0415253	7.35 5.96 -1.05	0.000 0.000 0.296	.0578924 .2675995 1249069	.1000808 .5305255 .0380879

. logit prodinov lempl00 i.unic

```
Iteration 0: log likelihood = -548.43996

Iteration 1: log likelihood = -498.17582

Iteration 2: log likelihood = -497.59473

Iteration 3: log likelihood = -497.59414

Iteration 4: log likelihood = -497.59414
```

Logistic regression	Number of obs	=	906
	LR chi2(2)	=	101.69
	Prob > chi2	=	0.0000
Log likelihood = -497.59414	Pseudo R2	=	0.0927

± .	Coefficient		z	P> z	[95% conf.	interval]
lempl00	•	.0568172	7.17	0.000	.2961482	.5188675
1.unic		.3391331	5.30	0.000	1.133708	2.463086
_cons		.2538696	-10.56	0.000	-3.177446	-2.182295

- Logit coefficients do not directly measure marginal effects.
- The marginal effect corresponds to the effect of a one-unit increase (typically from the mean) of x_j on P(y=1|x), holding other variables constant (typically at their means).
- Indeed, the marginal effect of x_j on the probability of obtaining y=1 (rather than y=0) depends on the value of the other variables in x.

Consider the case where z = β₀ + β₁x₁ + β₂x₂

That is:

$$G(z) = \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2) / [1 + \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2)],$$

Assume that x_1 is continuous: If we differentiate (check out your high school math!) partially with respect to x_1 , we get:

$$\frac{\partial G(z)}{\partial x_1} = \beta_1 \frac{\exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2)}{\left[1 + \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2)\right]^2}$$

- This is the formal expression for the marginal effect of x_1 in a logit model with two explanatory variables.
- From this expression we see that the marginal effect depends on the values of the x's, not only x_1 , but also the value of $x_2!!$

- In other words, the marginal effect of x_1 will be different for different values of x_1 and x_2 .
- We can examine the marginal effect at "representative" or "interesting values" of the independent variables.
- The "representative value" is normally taken to be the mean, so that the
 marginal effect of a given variable is examined for a one-unit increase
 from the mean with all other covariates set to the their mean values:
- "Conditional marginal effects" in Stata: margins, dydx(*) atmeans
- Or: we could calculate the marginal effect that applies to each firm with its specific values of the x's, and then average over firms:
- "Average marginal effect" in Stata: margins, dydx(*)

. logit prodinov lempl00 i.unic

prodinov	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
lempl00	.4075079	.0568172	7.17	0.000	.2961482	.5188675
1.unic	1.798397	.3391331	5.30	0.000	1.133708	2.463086
_cons	-2.67987	.2538696	-10.56	0.000	-3.177446	-2.182295

- . margins, dydx(*)
- . margins, dydx(*) atmeans

Use the Stata file logitexercise.do to calculate the marginal effects, and compare.

- So far: looked at the effect of a continuous variable on the (expectation of the) binary DV.
- However, if an independent variable, say x_2 , is *binary*, the meaningfull effect is the effect of a discrete change from 0 to 1.
- The effect of changing x_2 from 0 to 1, holding other covariates constant, is given as:

$$G(\beta_0 + \beta_1 x_1 + \beta_2) - G(\beta_0 + \beta_1 x_1)$$

- Note: still varies with x₁.
- Stata will recognize this if you mark x_2 as a "factor" variable: logit prodinov lempl00 i.unic
- Output will say: Note: dy/dx for factor levels is the discrete change from the base level.

- The "LR chi2(k)" test in the Stata output is similar to F-test of overall significance in linear regression: tells us whether all the estimates in the model combined are (in)significant.
- Under the null that there is in fact no effect of any of the explanatory variables, the test follows a chi-square distribution with k degrees of freedom.
- Alternatively, we can look at a (pseudo) R2. However, there are several ones available.
- All measures of fit in models for discrete data have problems (see the Hoetker 2006 SMJ article)
- So do not over-interpret these numbers!
- No simple measure of model fit equivalent to the \mathbb{R}^2 exists for models for discrete data.

Logit vs. probit

- There are usually no compelling theoretical grounds for preferring one over the other.
- If the outcomes in the sample are divided between a large majority and a small minority, results can differ. This is because the observations are then concentrated in a tail of the distribution where the logit and probit functions are somewhat different.
- The coefficient estimates for the logit model are approximately 1.6 times the size of those in the probit model.
- But the marginal effects are typically strikingly similar (and close to those obtained in a linear regression).
- Use the Stata file logitexercise.do to calculate the marginal effects for logit and probit, and compare.

Multinomial logit

When to use a multinomial model?

- The dependent variable is categorical with more than two (mutually exclusive) outcomes
- The variable is nominal, rather than on an ordinal scale ⇔ the <u>order of its categories</u> plays no role in the multinomial model (except for interpretation)
 - ... if outcomes are ordered (bad, OK, good), there are specialized alternatives for that (ordered probit, ordered logit)
- Examples:
 - Occupational choice (paid employment, self-employment, inactive, etc.)
 - Transport mode (bike, car, metro, etc.)

Readings:

- Cameron & Trivedi, Microeconometrics: Methods and Applications, section 15.4.
- Reichstein, T. and A. Salter (2006), Investigating the sources of process innovation among UK manufacturing firms, *Industrial and Corporate Change*, 15, 653–682. **(applied example)**
- Wooldridge, Econometric analysis of cross-section and panel data, section 15.9.1.

The multinomial logit model

• Binary response model: Two outcomes: $y = \{0, 1\}$

$$P(y = 1 \mid \mathbf{x}) = G(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k) = G(x\beta)$$

- More than two outcome categories → we need more than one logit function (more than one set of betas)
 - In fact, we generally need J different logit functions when there are J+1 possible outcomes in the dependent variable
- *J*+1 outcomes: Label as *y*=0, *y*=1, ..., *y*=*J*

$$P(y = j \mid \mathbf{x}) = \frac{\exp(x\beta_j)}{1 + \sum_{h=1}^{J} \exp(x\beta_h)}, j = 1, 2, ..., J.$$

 We model the *probability* that y takes the value j, rather than any of the J other outcomes, conditional on x, with a reference outcome (e.g., y = 0)

Example when J=2 (log odds ratios)

- If J=2, there are three categories → Two logit functions are to be estimated.
- The logit function is conveniently summarized by:

$$g_1(m{x}) = lnrac{P(Y=1|m{x})}{P(Y=0|m{x})} = m{x'}m{eta_1}$$
 Note: The coefficients reflect the change in the log of the relative risk between y=j and the baseline option when x changes by 1 unit.

Note the **special interpretation of beta** in the logit specification: The *log-odds ratios* are linear in x.

Response probabilities

Conditional probabilities in the case of three outcomes (0,1,2) are:

$$P(Y=0|m{x})=rac{1}{1+e^{g_1(m{x})}+e^{g_2(m{x})}}$$
 Note: Response $P(Y=1|m{x})=rac{e^{g_1(m{x})}}{1+e^{g_1(m{x})}+e^{g_2(m{x})}}$ Probabilities must sum to 1. $P(Y=2|m{x})=rac{e^{g_2(m{x})}}{1+e^{g_1(m{x})}+e^{g_2(m{x})}}$

 Parameter estimates are found through a maximum likelihood estimation technique: Obtained by selecting the values of betaparameters to make the actual sample most likely.

Multinomial logit in research: Types and sources of process innovation Copenhagen Business School

- Reichstein, T. & A. Salter (2006), Industrial and Corporate Change
- Three values of outcome variable: No/Incremental/Radical (they do not to impose any ordering!)
- "No innovation" as the reference category.
- Data from the UK CIS for 2,800+ firms.
- Characteristics of firms and their innovation strategies as explanatory variables.

Copenhagen Business School

HANDELSHØISKOLEN

Reichstein/Salter example

- Two parameters for each explanatory variable
- E.g., the first describes how the share of sales from products new to the market influences the probability of being an incremental innovator compared to not being innovative.
- Corresponding coefficient for the outcome of the firm being a radical innovator.
- Wald test to see whether β_{i1} and β_{i2} are significantly different from each other.
- Post estimation (after mlogit) in Stata: test [1]var=[2]var

672 T. Reichstein and A. Salter

Table 3 Determinants of process innovation, results of multinomial logistic regression

Variables	Model 1					
	Incremental versus not innovative	Radical versus not innovative	Wald test			
Share of sales from products						
New to the market	0.0176**	0.0407***	+			
	(0.01)	(0.01)				
New to the firm	0.0140***	0.0115*				
	(0.00)	(0.01)				
Significantly improved	0.0111***	0.0196***				
	(0.00)	(0.01)				
Cost factor	0.9718***	1.2478***	+			
	(80.0)	(0.11)				
Product factor	0.1467*	0.2774**				
	(0.09)	(0.12)				
Suppliers	0.5936***	0.4641***				
	(0.07)	(0.09)				
Customers	-0.1708**	-0.3203***				
	(0.07)	(0.10)				
Consultants	-0.2262***	-0.0744				
	(80.0)	(0.10)				
Universities	-0.0195	-0.0168				
	(0.09)	(0.11)				
Standards and regulations	-0.0277	-0.0329				
	(0.03)	(0.04)				
R & D	0.2633*	0.3905**				
	(0.15)	(0.19)				
Log (size)	0.1587***	0.2386***				
9 ()	(0.05)	(0.06)				
Investment expenditure/sales	0.0375	0.0111				
	(0.10)	(0.14)				
Training expenditure/sales	-0.0646	-0.2899				
Training Experience Control	(0.38)	(0.83)				
Collaboration	0.6727***	1.2134***	+			
Constitution	(0.16)	(0.19)				
Intercept	-2.8369***	-4.3807***				
писсере	(0.32)	(0.45)				
Industry dummies		Yes				
Observations		2885				
Likelihood ratio		-1517.1				
Pseudo R ²		0.29				
Maximum variance inflation factor		2.51				
Province in the factor		2.31				

Limitations (1/2): IIA Assumption

Independence from Irrelevant Alternatives (IIA) assumption

- Adding another alternative or removing one of the outcomes will not change the relative probabilities of the others
- Often considered very restrictive (e.g., probability of choosing between car & red bus will not change if a blue bus is also introduced)
- You may use the mlogtest post-estimation command in Stata to test the validity of this assumption
- Type <u>findit mlogtest</u> (part of the spost9_ado); For a Hausman test type <u>mlogtest</u>, <u>hausman base</u>; for additional tests: <u>mlogtest</u>, <u>iia</u>

If IIA assumption is violated, we may consider other potential models: nested logit or mixed logit (out of our scope)

Limitations (2/2): Marginal effects...

...are complicated:

$$\frac{\partial P(y=j\mid\mathbf{x})}{\partial x_k} = P(y=j\mid\mathbf{x}) \left(\beta_{jk} - \sum_{h=1}^{J} \beta_{hk} \exp(x\beta_h) / (1 + \sum_{h=1}^{J} \exp(x\beta_h))\right), j=1,2,...,J.$$

- There is not necessarily a 1-to-1 correspondence between the beta's and the effect of changing any particular x variable, not even in terms of sign.
- Stata example: High school program choice hs_example.do
- High school students' choice between general, vocational, and academic programs, modelled by their writing score and socioeconomic status.

General vs Academic Vocational vs Academic

 https://stats.idre.ucla.edu/stata/dae/multinomiallogisticregression/

Count models

Count models

1. Core model: Poisson regression

- a. Purpose & assumptions
- b. Outcome of the regression and interpretation issues
- c. Applied examples (papers & exercises)
- 2. Alternative count models (Negative Binomial, Zero-Inflated Models)

Readings:

- Winkelmann, Econometric analysis of count data (2008), chapter 3.
- Cameron & Trivedi, Microeconometrics: Methods and Applications, chapter 20.
- Kaiser, U., Kongsted, H. C., Rønde, T. (2015), "Does the mobility of R&D labor increase innovation?", Journal of Economic Behavior & Organization, 110, 91-105. (applied example)
- Wooldridge, Econometric analysis of cross-section and panel data, chapter 19.

When to use a count model?

- When the dependent variable assumes only counts (non-negative integer values): the number of occurrences of an event within a fixed period of time.
 - Number of patents applied for by a firm in a year
 - Number of emergency room episodes per day
 - Number of trades in a minute
 - Number of traffic incidents in a month.
- There is no natural a priori upper bound.
- The **outcome is = 0 for at least some members** of the population.

Why not OLS?

Drawbacks of OLS similar to those for binary responses:

- The distribution of the dependent variable is highly skewed.
- In count data, $y \ge 0$, so E(y|x) should be non-negative for all x, but:
- with OLS we can have $\widehat{x\beta} < 0$ (negative values).
- OLS will predict non-integer values.

A solution could be to use the log transformation: log(y) and run an OLS. But in count data, y=0 is an important part of the data (as we will see). \rightarrow How to recover E(y|x) from log(y), or even log(y+1)?

Look for other functional forms that suit such data better.

Distributions of Count Data I: Poisson

Poisson probability distribution:

$$P(Y = y | \lambda) = \frac{e^{-\lambda} \lambda^{y}}{y!}$$
 for y=0, 1, 2...

- λ is the mean or expected value of a Poisson distribution: $E(Y) = \lambda$.
- λ is also the variance of a Poisson distribution: $Var(Y) = \lambda$.
- Poisson is a one parameter distribution (λ).

Examples of Poisson Distribution

The Poisson distribution implies that the mean of the variable is equal to its variance

Distributions of Count Data II: Negative Binomial

The Negative Binomial takes into account "**over-dispersion**": The variance often exceeds the mean.

The Stata default specification is

$$Var(y) = E(y)[1 + \alpha E(y)]$$

- α is the over-dispersion parameter
- When α = 0 the negative binomial distribution is the same as a Poisson distribution. Stata provides a test that α = 0. If the data are overdispersed, then a Poisson model will be mis-specified.
- But consistency of a negative binomial regression relies on correctly specifying the variance equation.
- Poisson consistently estimates the expected value parameter λ irrespective of overdispersion. But important to use robust standard errors in that case.

Examples of Negative Binomial Distribution

Count Data Regressions

Model the **mean function**:

$$\lambda_i = E[Y_i | X_i] = \exp(X_i'\beta) = \exp(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k)$$

- Parameterizes the mean function as function of a set of covariates
 X. Count models are estimated using maximum likelihood.
- Interpretation: Log-linear function $\rightarrow \log E[Y \mid X] = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k$
- Partial effects $\frac{\partial E[Y|X]}{\partial x_i} = \exp(x\beta)\beta_i$

Note that marginal changes differ across individuals. Report marginal changes at \bar{x} or particular values of x.

Continuous variable: $\%\Delta E(y \mid X) \approx 100 \beta_j \Delta x_j$

Dummy variable: $\%\Delta E(y | X) = 100(\exp(\beta_j) - 1)$

If the explanatory variables are in logs, the coefficients can be interpreted as **elasticities**.

Look up an example to see what that really means

Stata Example 1: Poisson

DV: # Awards earned by students in a certain high school **Predictors:** type of program (vocational, general, academic) score in the final math exam

- Description of the data (Which distribution fits better?)
- Poisson regression (How to read the results?)
- Test the fit of the model (Does Poisson fit the data?)
- Marginal effects & Predicted counts
- Data generated to follow a Poisson distribution

Stata file count..do

Stata Example 1: Poisson

- The expected increase in log(# awards) for a 1-unit increase in math score is 0.07: Approx. 7 percent increase in expected number of awards.
- Compared to general program, the expected number of awards is exp(1.08) = 2.96 times the number expected for students in academic programs, or approx. 200% higher.

poisson num_awards i.prog math

Summary for variables: num_awards by categories of: prog (type of program)

prog	mean	sd	N
general academic vocation	1	.4045199 1.278521 .5174506	45 105 50
Total	. 63	1.052921	200

Poisson regression Number of obs = 200 LR chi2(3) = 98.22 Prob > chi2 = 0.0000 Log likelihood = -182.75225 Pseudo R2 = 0.2118

num_awards	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
prog academic vocation	1.083859 .3698092	.358253 .4410703	3.03 0.84	0.002 0.402	.3816962 4946727	1.786022 1.234291
math _cons	.0701524 -5.247124	.0105992 .6584531	6.62 -7.97	0.000	.0493783 -6.537669	.0909265 -3.95658

Goodness of Fit and Incidence Rate Ratios

Log likelihood = -182.75225

num_awards	IRR	Std. Err.	z
prog academic vocation	2.956065 1.447458	1.059019	3.03 0.84
math _cons	1.072672 .0052626	.0113695 .0034652	6.62 -7.97

Incidence rate in academic programs is 3 times higher than in general programs, and increases 7% for every unit-increase in math scores.

Does the Poisson model fit our data?

estat gof

```
Deviance goodness-of-fit = 189.4496
Prob > chi2(196) = 0.6182

Pearson goodness-of-fit = 212.1437
Prob > chi2(196) = 0.2040
```

In this case it does (no wonder, since the data are generated to fit the distribution).

If the test would be **significant**, it would indicate that the data did **not fit** the model well (e.g., overdispersion?)

Marginal effects and predicted counts: example

marginsplot

Predicted # awards for general (academic) programs is 0.21 (0.62), holding math scores at its mean level.

Note that $0.6249/0.2114 = 2.96 \rightarrow IRR$ we obtained before.

Stata Example 2: Negative Binomial

DV: Number of days absent during the school year (daysabs)

Predictors: Type of program and math scores, as before.

- Description of the data (Which distribution fits better?)
- Poisson & NegBin regression (How to read the results?)
- Test the fit of the model (Does Poisson fit the data?)
- Marginal effects & Predicted counts
- Data generated to follow a Negative Binomial distribution

Copenhagen Business School

HANDELSHØJSKOLEN

Stata Example 2: Negative Binomial

tabstat daysabs, by (prog) stats (mean v n)

Summary for variables: daysabs by categories of: prog

prog	mean	variance	N
1		67.25897	40
2	6.934132	55.44744	167
3	2.672897	13.93916	107
Total	5.955414	49.51877	314

Negative binomial regression

Dispersion: mean

Log likelihood = -865.6289

LIC CITE	-(3)	- 01.05
Prob >	chi2	= 0.0000
Pseudo	R2	= 0.0344

Number of obs = $\frac{18}{100}$ chi2(2)

daysabs	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
math	005993	.0025072	-2.39	0.017	010907	001079
prog						
2	44076	.182576	-2.41	0.016	7986025	0829175
3	-1.278651	.2019811	-6.33	0.000	-1.674526	882775
_cons	2.615265	.1963519	13.32	0.000	2.230423	3.000108
/lnalpha	0321895	.1027882			2336506	.1692717
alpha	.9683231	.0995322			.7916384	1.184442

Stata nbreg will estimate (as the default) the variance relationship:

$$Var(y) = E(y)[1 + \alpha E(y)]$$

Estimates are consistent if this is the correct model for the variance.

Stata Example 2: Alternative: Apply Poisson w/ robust standard errors

daysabs	Coefficient	Robust std. err.	Z	P> z	[95% conf.	. interval]
math	0068084	.0023541	-2.89	0.004	0114223	0021944
prog 2 3	4398975 -1.281364	.1420843	-3.10 -7.03	0.002 0.000	7183776 -1.638546	1614173 9241819
_cons	2.651974	.1473325	18.00	0.000	2.363207	2.94074

Technically: Poisson pseudo maximum likelihood w/
Huber-White sandwich standard errors

Produces consistent estimates and "correct" standard errors

In this case: Similar results.

Read more: Winkelmann (2008) chapter 3, pp. 63-126.

Too many zeros?

When the data contain "too many" zeros (compared to Poisson/NegBin).

Two kinds of zeros generated by different processes? True zeros vs. Excess zeros

In a patenting example, some firms active in R&D may get 0 because of bad luck, or they get 0
patents because they were not active active in R&D ("always zero").

Zero-Inflated Models estimate the model in **two parts**:

Binary part: 0 vs. 1
 (if 1, then "always zero"; if 0, then Poisson or NegBin)

Count data part: Poisson or NegBin distribution. (zip vs zinb)

Alternatively: restricting to subsample of "active" firms based on independent variables (size, sector, pre-sample information).

Count models in applications: Kaiser et al. (2015)

Relationship
between
worker
mobility and
firms'
inventive
output
(firm's
patent
applications
per year)

	Poisson PSM		NegBin PSM		
	Coeff.	SE	Coeff.	SE	
R&D worker shares					
Joiners from patenting firms	1.543***	0.400	1.608***	0.278	
Joiners from non-patenting firms	0.506	0.385	0.362	0.336	
Other joiners	1.238***	0.337	1.121***	0.274	
Support	0.389	0.333	-0.109	0.203	
Leavers to pat. firms	0.916**	0.464	0.668**	0.321	
Leavers to non-pat. firms	-0.813	0.773	-0.486	0.424	
Capital and R&D labor					
In(total R&D workers)	0.384***	0.104	0.289***	0.059	
ln(capital stock)	0.238***	0.068	0.138***	0.036	
Lagged patent status and pre-sample vari	ables				
Dummy patent $t-1$	2.026***	0.366	1.308***	0.138	
Dummy patent $t-2$	1.080***	0.122	0.842***	0.107	
ln(# pre-sample patents)	0.091	0.120	0.264***	0.087	
Dummy pre-sample patent	-0.081	0.278	0.386	0.247	
Number of observations and number of fit	rms				
# of obs.		42,507		42,507	
# of firms	•	14,516		14,516	

Source: Kaiser et al. 2015, JEBO

What's next?

Friday at 9.00 on

Zoom:

Workshop 3

Next lecture:

November 9 at

9.00:

Vera Rocha on Attrition and

Selection Models