I. Réacteurs à fusion nucléaire

1. Produire de l'énergie

Densité de probabilité de l'occupation de l'état d'énergie $E \propto e^{-\frac{E}{k_B T}}$ Energie moyenne d'une particule du système $\langle E \rangle = k_B T$

2. Energie nucléaire

Masse du noyau et énergie de liaison : $M(A, Z)c^2 + E_l = Zm_pc^2 + Nm_nc^2$

Unité de masse atomique $1(u) = 1,66.10^{-27} kg = 931,5 MeV.c^{-2}$

Remarque : $m_n \gtrsim m_p \simeq 2000 m_e$

Excès de masse : $\Delta = M(A, Z) - A \times 931,5$ en $MeV. c^{-2}$

Taille du noyau : $r=r_0A^{\frac{1}{3}}$ avec $r_0=1,2fm=1,2.10^{-15}m$ Bilan énergétique : $Q=\sum M_{init}c^2-\sum M_{final}c^2$

3. Réaction de fusion

Réaction $d-t:d+t\rightarrow {}^4He(3,5MeV)+n(14,1MeV)$ (conservation de la quantité de mouvement)

Nombre de réactions : $n_d n_t \langle \sigma v \rangle = n_d n_t \times 1, 1.10^{-24} T^2 \ (T \ {\rm en} \ KeV)$

Interaction électromagnétique : $E_{colomb} = \frac{1}{4\pi\epsilon_0} \frac{Z_1 Z_2 e^2}{d}$

BE 1:

Puissance générée par unité de volume : $p_{fus} = E_{fus} \times \frac{dN}{dt}$ avec $E_{fus} = 17,6 \text{MeV}$ et $\frac{dN}{dt} = n_t n_d \langle \sigma v \rangle$

Condition d'équilibre : $P_{coupl} + P_{inj} = P_{perte} \Rightarrow fP_{fus} + P_{inj} = \frac{W_{th}}{\tau_E}$

On introduit $Q = \frac{P_{fus}}{P_{ini}}$ donc $\left(f + \frac{1}{Q}\right)P_{fus} = \frac{W_{th}}{\tau_E}$

 $W_{th} = \frac{3}{2}k[n_eT_e + (n_d + n_t)T_i]V = 3nk_BTV$ ce qui donne $n\tau_e = \frac{12}{E_{fus}} \times \frac{k_BT}{\langle \sigma v \rangle} \times \frac{1}{f + \frac{1}{2}}$

On introduit les rapports : $M = \frac{P_n + P_{fiss}}{P_n}$ et $\psi = \frac{P_{fiss}}{P_{fiss}}$

II. Les plasmas électromagnétiques

1. Equation d'état et thermodynamique

À l'équilibre chaque niveau sera peuplé avec une probabilité $p_n = \frac{e^{-\frac{\Sigma n}{k_B T}}}{F}$ avec $F = \sum_n p_n$.

Degré d'ionisation $\alpha = \frac{n_e}{n_H}$ croît avec T ($\alpha \approx 1 \Rightarrow$ matière complètement ionisée (mais neutre)).

Pour un plasma $E_{kin} = \frac{3}{2}k_BT = 30 \ keV \gg E_{pot} = \frac{qQ}{4\pi\epsilon_0 d} = 0.01 \ eV \ (d = n^{-\frac{1}{3}})$: un gaz parfait dont l'énergie est totalement cinétique.

2. Ecrantage de Debye

$$\vec{E}(M) = \frac{Q}{4\pi\epsilon_0\epsilon_r} \frac{\overrightarrow{OM}}{OM^3}$$

$$\phi(M) = \frac{Q}{4\pi\epsilon_0 r} e^{-\frac{r}{\lambda_D}} \text{ avec } r = OM \text{ et } \lambda_D = \sqrt{\frac{\epsilon_0 k_B T}{\sum_n n_i^0 q_i^2}} (\approx 7.10^{-5} m)$$

3. Collisions coulombiennes

La relaxation de la particule est dû à plusieurs collisions

Temps de relaxation de l'énergie :
$$\tau_E^{1\to 2} = \frac{\sqrt{3(m_1+m_2)k_BT}^3}{8\pi n_2 \alpha^2 \sqrt{m_1 m_2} ln\langle \Lambda \rangle}$$
 avec $\langle \Lambda \rangle = \frac{3\lambda_D k_B T}{\alpha}$ Thermalisation : des électrons $10^{-3} s$, des ions $6 \times 10^{-2} s$, électron-ion 1,5 s

4. Conductivité électrique

Conductivité électrique : $\gamma_e = \frac{2\epsilon_0 (6k_BT)^{\frac{3}{2}}}{\sqrt{m_e}e^2\ln(\Lambda)} \approx 1.6 \times 10^9 S. m^{-1}$ (10-100 fois la conductivité métallique)

5. Magnétohydrodynamique

$$grad(p) = \vec{l} \wedge \vec{B}, div(\vec{B}) = 0, rot(\vec{B}) = \mu_0 \vec{l}$$

6. Confinement magnétique

Principe de la dérive :
$$\vec{v}(t) = \overrightarrow{v_{\Omega}}(t) + \overrightarrow{v_D}(t)$$
 avec $\overrightarrow{v_D} = \frac{\vec{F} \wedge \vec{B}}{qB^2}$

Ajouter un champ poloïdal (à travers un courant circulant dans le plasma) pour assurer le confinement

7. Onde électromagnétique et plasma

$$\vec{j} = n_0 q \vec{v}(t)$$
 et $\vec{j} = \gamma \vec{E}$

Relation de dispersion :
$$k^2c^2 = \omega^2 - (\omega_p^{(e)})^2 \rightarrow \text{pas de propagation pour } \omega < \omega_p^{(e)}$$

BE:

Miroir magnétique

Moment dipolaire magnétique : $\mu = \frac{mv_{\perp}^2}{2R}$

Conservation de l'énergie :
$$E_{kin} = \frac{1}{2}mv_{\parallel}^2 + \mu B = cst = E_{kin}(t=0)$$

Condition de rebond :
$$\frac{1}{2}mv_{\parallel}^2(t=0) + \mu B_{min} \le \mu B_{max} \Leftrightarrow \frac{1}{2}mv_{\parallel}^2(t=0) \le \mu (B_{max} - B_{min})$$

Ce qui donne finalement :
$$v_{\perp}(t=0) \ge \left(\frac{B_{max}}{B_{min}} - 1\right)^{-\frac{1}{2}} \left|v_{\parallel}(t=0)\right|$$

Confinement au sein d'un Tokamak

Vitesse quadratique moyenne :
$$\langle E_{kin} \rangle = \frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} k_B T \Rightarrow \sqrt{\langle v^2 \rangle} = \sqrt{\frac{3k_B T}{mc^2}} c = \cdots$$