Counterpropagation Network (CPN)

- Dado un conjunto de pares de vectores (x₁,y₁),..., (x_L,y_L), la CPN puede aprender a asociar un vector x en la capa de entrada con un vector y en la capa de salida.
- Se comporta como una función de correspondencia y = φ(x)
- Si existe la inversa de φ, de tal manera que x sea una función de y, entonces la CPN aprenderá la correspondencia inversa,

$$x = \phi^{-1}(y)$$
.

Arquitectura de la CPN

CPN

Características

- Está formada por: la capa de entrada, una capa competitiva y la capa de salida.
- No utiliza un único algoritmo de aprendizaje a lo largo de toda la red, sino que es distinto en cada capa.

Ventajas

- Se entrena rápidamente.
- Resulta útil para realizar prototipado rápido.

Desventaja:

No siempre converge con la precisión esperada.

- El algoritmo tradicional sugiere trabajar con vectores normalizados para identificar "similitudes".
- Veremos como funciona este enfoque y las desventajas de la normalización.
- Luego reemplazaremos la normalización por alguna medida de distancia.

Bloques básicos de la CPN

- Capa de Entrada
 - El algoritmo original indica que los datos de entrada deben ser escalados o normalizados para adaptarse a los cálculos

$$I = \frac{x}{||x||} = \frac{x}{\sqrt{\sum_{j} x_{j}^{2}}}$$

Bloques básicos de la CPN

Capa Oculta Para cada elemento la entrada se calcula como:

$$Neta = I * W$$
 $Neta = ||I|| ||W|| \cos(\theta)$
 $Neta = \cos(\theta)$

(tanto I como w están normalizados)

Bloques básicos de la CPN

- Capa oculta (competitiva)
 - Cada neurona responde con su valor de entrada neta.
 - Esta capa se encarga de reconocer a la neurona con mayor entrada neta como la que representa el espacio al que pertenece el vector de entrada.

La regla de aprendizaje aplicada a los pesos que relacionan la capa de entrada (con sus valores normalizados) con la capa oculta (a), pretende ir aproximando el vector w al vector I (b).

Los pesos se actualizan de la siguiente forma:

$$w(t+1) = w(t) + \alpha (I - w(t))$$

- 1) Seleccionar un vector de entrada aleatorio.
- 2) Normalizarlo e ingresarlo a la red.
- 3) Calcular la unidad ganadora.
- 4) Actualizar el vector de pesos utilizando
 w(t+1) = w(t) + α (x w)
 sólo para la ganadora.
- 5) Repetir los pasos 1 a 4 hasta que todos los vectores hayan sido seleccionados por lo menos 1 vez.
- 6) Repetir 5) hasta que todos hayan sido clasificados correctamente.

Aprendizaje (oculta-salida)

Vector de entrada x | Vector de entrada y

Los pesos se actualizan de la siguiente forma:

$$W_i(t+1) = W_i(t) + \beta(y_i - y') = W_i(t) + \beta(y_i - w_i(t))$$

Aprendizaje (oculta-salida)

- Aplicar el vector de entrada, x normalizado y su correspondiente vector de salida y.
- 2) Determinar la unidad ganadora de la capa competitiva.
- 3) Se actualizan los pesos de las conexiones que van de la unidad competitiva ganadora a las unidades de salida según:

$$w(t+1) = w(t) + \beta(y - w(t))$$

4) Se repite de 1 a 3 hasta que todos los vectores de todas las clases se correspondan con salidas satisfactorias.

Ejercicio

Vector X		Vector Y	
1	1	1	1
-1	2	-0.5	0.5
1	-2	1.5	-1
3	3	2	2
8.0	1.5	1	1
-1.5	1.8	-0.5	0.5
-0.7	1.6	-0.5	0.4
-2	3	-0.8	1.5
1.3	-0.8	1.5	-1
1.7	-2	1.5	-1

Entrenamiento de los pesos que van desde la capa de entrada a la capa oculta.


```
P = [1 -1 \ 1 \ 3 \ 0.8 -1.5 -0.7 -2 \ 1.3 \ 1.7;
1 2 -2 3 1.5 1.8 1.6 3 -0.8 -2 ];
```

$$Y = [1 - 0.5 1.5 2 1 - 0.5 - 0.5 - 0.8 1.5 1.5 1 0.5 - 1 2 1 0.5 0.4 1.5 - 1 -1];$$

[entradas, CantPatrones] = size(P); salidas = size(Y,1);

% normalizando los vectores de entrada P_norm = normalizar(P);

figure(1)

plot(P(1,:), P(2,:),'+', P_norm(1,:), P_norm(2,:),'o') axis([-4 4 -4 4])


```
W = [0 \ 0 \ 0;
0.5 0.5 0.5];
```

```
ocultas = length(W);
W_norm = normalizar(W);
```

hold on plotsom(W_norm) pause(0.2)


```
ITE_MAX = 10;
ite = 0;
alfa = 0.25;
while (ite <= ITE_MAX) & ("los pesos no cambien mucho"),
for i=1:CantPatrones,
    %buscar el W mas proximo
    [distancia,mayor] = max(P_norm(:,i)' * W_norm);
    %Actualizar la neurona mas proxima
    W_norm(:, mayor) = W_norm(:,mayor) +
                        alfa * (P_norm(:, i) - W_norm(:,mayor));
    W_norm = normalizar(W_norm);
  end
 % redibujar
 ite = ite + 1
end
```

hold on plotsom(W_norm) hold on axis([-4 4 -4 4]) pause(0.2)

Entrenamiento de los pesos que van desde la capa oculta a la de salida.

Y = [1 - 0.5 1.5 2 1 - 0.5 - 0.5 - 0.8 1.5 1.5 1 0.5 - 1 2 1 0.5 0.4 1.5 - 1 -1];

```
beta = 0.25;
W2 = zeros( salidas, ocultas);
ITE_MAX = 50;
while (ite <= ITE_MAX) & ("los pesos no cambien"),
  for i=1:CantPatrones,
    %buscar el W mas proximo
    [distancia,mayor] = max(P_norm(:,i)' * W_norm);
    %Actualizar los pesos que salen de la neurona
    % ganadora
    W2(:, mayor) = W2(:, mayor) +
                    beta * (Y(:, i) - W2(:, mayor));
  end
  %redibujar
   ite = ite + 1
end
```

```
%Ganadoras por patron
[distancia,ganadora]=max((P_norm' * W_norm)')
          %Salida para cada neurona oculta
W2
W3 = [];
for i=1:ocultas,
  suma = [0;0];
                           cant = 0;
                                           Promedia los
  for j=1:CantPatrones,
                                            valores de
                                           salida de los
    if ganadora(j)==i
                                           patrones que
       suma = suma + Y(:,j);
                                          pertenecen a la
       cant = cant + 1;
                                          misma neurona
    end
                                             ganadora
  end
  W3(:,i) = suma / cant;
end
W3
```

Después de entrenar los pesos e/ la capa oculta y la de salida

%Salida para cada neurona oculta

$$W2 =$$

1.4800 -0.6078 1.3066

-0.9866 0.8356 1.3066

%W3 no pertenece a la RN es sólo para comparar

$$W3 =$$

1.5000 -0.5750 1.3333

-1.0000 0.7250 1.3333

Note que la salida obtenida por el entrenamiento iterativo se corresponde con el promedio de los valores de salida 25 de los patrones de cada grupo.

Normalización de la entrada

Normalización de la entrada

Capa Competitiva

- El objetivo de esta capa es agrupar los datos de entrada. Las neuronas compiten entre si por representar a los patrones.
- La normalización de los datos de entrada será reemplazada por una medida de similitud.

Capa Competitiva

Cuando una entrada I es presentada a la red, las neuronas de la capa competitiva calculan su entrada neta como:

$$neta_j = -distancia(I, W_j)$$

Igual que antes, será considerada ganadora la que posea el valor más alto.

Ejemplo

Ejemplo

```
P = [14\ 10\ 9\ 9\ 10\ 1\ 1\ 1\ 1\ 0\ 4\ 5\ 5\ 5\ 5\ 6\ 8\ 8\ 2\ 2\ 2\ 14\ 15\ 15\ 15\ 16;
       13455 1 2 3 4 2 5 4 5 6 7634 2 3 42134 2];
figure(1)
plot(P(1,:), P(2,:), '+')
axis([-10 12 -5 8])
ocultas = 4;
W = [0 0 0 0;
        2 2 2 2];
hold on
plotsom(W)
```

Aprendizaje

- Mientras los pesos no se modifiquen demasiado
 - Para cada patrón de entrada
 - Calcular la neurona competitiva ganadora
 - Actualizar los pesos que llegan a ella.
 - Graficar los pesos de todas las neuronas competitivas.

CPN2.m

Ejemplo

Aprendizaje

Problema

- Puede ocurrir que algunos W no se actualicen correctamente. Si comienzan muy lejos de los vectores de entrada, nunca ganarán.
- Rehacer el ejemplo anterior comenzando con algún W en (-10,10).

Ejemplo

CPN3.m

- Dado que se considera ganadora a la neurona con mayor entrada neta, el valor del bias de cada neurona competitiva debería disminuir cada vez que la neurona gana e incrementarse en caso contrario.
- De esta forma, todas las neuronas tienen las mismas posibilidades de ganar.
- ¿Cómo se modifica el valor del bias?

Bias

Debe utilizarse una función que dependa de la cantidad de veces que haya ganado una neurona competitiva

Bias

Valor inicial del bias

```
% s = cant. de neuronas ocultas
c = ones(s,1)/s;
b = exp(1 - log(c));
```

Todas las neuronas competitivas recibirán el mismo bias inicial.

$$b = \exp(1 - \log(c))$$

donde c = 1 / (cantidad de neuronas competitivas)

Valor inicial del bias

1 - log(b)

exp(1-log(b))

ej: con 3 neuronas ocultas, el valor inicial será exp(1-log(1/3)) = 8.1548

Bias

$$y = \exp(1-\log(x))$$

 $\log(y) = 1 - \log(x)$
 $\log(y) - 1 = -\log(x)$
 $1 - \log(y) = \log(x)$
 $\exp(1-\log(y)) = x$

Modificación del bias

Ejemplo: Sea a = [1;0;0] el vector de salida obtenido luego de presentar el patrón a la capa competitiva (ganó la 1er. neurona)

Modificación del bias

Ejemplo: Sea a = [1;0;0] el vector de salida obtenido luego de presentar el patrón a la capa competitiva (ganó la 1er. neurona)

Modificación del bias

Ejemplo: Sea a = [1;0;0] el vector de salida obtenido luego de presentar el patrón a la capa competitiva (ganó la 1er. neurona)

CPN4_conBias.m

Ejemplo

 Agregar el bias al ejemplo anterior donde uno de los pesos está lejos de los patrones

