ENGR 4421:Robotics II

Robotic Vision

Robot Perception

Robotic Vision Introduction

- Robotic Vision
- Image Processing
- Digital Image Creation
- Digital Image Representations
- Image Transformations
- ArUco Marker Detection

Robotic Vision

Image Processing

Image Processing

Digital Image Creation

Digital Image Color Channels

CCD
Photon to Electron
Conversion (Analog)

CIS
Photon to Voltage
Conversion (Digital)

Digital Image Representations

Digital Image Color Channels

Digital Image Representations

Pixel-level Image Processing

High-level Image Processing

ArUco Marker Detection

OpenCV ArUco Resources

- Official Tutorial (C++): https://docs.opencv.org/4.x/d5/dae/tutorial-aruco-detection.html
- Pyimagesearch Tutorial: https://pyimagesearch.com/2020/12/21/detecting-aruco-markers-with-opency-and-python/
- Video Tutorial: https://youtu.be/cIVZRuVdv1o

opency-python Installation

- https://pypi.org/project/opencv-python/
- https://pypi.org/project/opencv-contrib-python/

Generate ArUco Markers

```
import numpy as np
import cv2
```


OpenCV Video Capture

```
import numpy as np
import cv2 as cv
cap = cv.VideoCapture(0)
if not cap.isOpened():
    print("Cannot open camera")
   exit()
while True:
    # Capture frame-by-frame
    ret, frame = cap.read()
   # if frame is read correctly ret is True
    if not ret:
        print("Can't receive frame (stream end?). Exiting ...")
        hreak
   # Our operations on the frame come here
    gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    # Display the resulting frame
    cv.imshow('frame', gray)
    if cv.waitKey(1) == ord('q'):
       break
# When everything done, release the capture
cap.release()
cv.destroyAllWindows()
```

Detect ArUco Markers

```
# Load ArUco dictionary
aruco_dict = cv.aruco.Dictionary_get(cv.aruco.DICT_4X4_50)
# Initialize detector parameters
aruco_params = cv.aruco.DetectorParameters_create()
# To detect ArUco markers
corners, ids, reject_candidates = cv.aruco.detectMarkers(
    frame,
    aruco_dict,
    parameters=aruco_params,
)
```