Тема: Электролиз расплавов и растворов

Учебный материал, задания с решением и для самостоятельной работы

Составитель: профессор Литвинова Т.Н.

Теоретическая часть.

Электролиз — совокупность окислительно-восстановительных реакций, протекающих под действием постоянного электрического тока на электродах, погруженных в раствор или расплав электролита.

При электролизе химическая реакция осуществляется за счет энергии электрического тока, подводимой извне. Электролиз проводят в особых приборах — электролизерах. Это сосуд с раствором или расплавом электролита и опущенными в него электродами из металла или графита. К электродам прикладывают разность потенциалов от внешнего источника постоянного тока. Катод отдает электроны частицам вещества в электролите и восстанавливает их. Анод отбирает электроны от частиц в электролите, окисляя их.

При электролизе процессы окисления и восстановления протекают на различных электродах – аноде и катоде.

Анод — это электрод, на котором происходит процесс **окисления**. При электролизе анод заряжен **положительно**.

Катод — это электрод, на котором происходит процесс **восстановления**. При электролизе катод заряжен **отрицательно**.

На окислительно-восстановительные процессы, протекающие при электролизе, влияют различные факторы:

- Природа электролита и растворителя;
- Материал электродов;
- Режим электролиза (напряжение, сила тока, температура). Различают 2 типа электролиза: электролиз расплава и электролиз растворов электролитов.

Электролиз расплавов оксидов

На катоде идет восстановление катионов металла: Me^{n+} + $n\bar{e} = Me^{0}$, т.е. на катоде выделяется металл.

На аноде окисляется кислород: $O^{-2} - 2\bar{e} = O_2$

Например, электролиз расплава оксида калия: $2K_2O = 4K + O_2$

При изучении алюминия, способов получения металлов, надо знать электролиз оксида алюминия.

Металлический алюминий получают электролизом раствора глинозема Al_2O_3 в расплавленном криолите Na_2AlF_6 при 960-970°C.

Электролиз Al₂O₃ можно представить следующей схемой:

в расплаве оксид алюминия диссоциирует: $Al_2O_3 = Al^{3+} + AlO_3^{3-}$, на катоде восстанавливаются ионы Al^{3+} : $Al^{3+} + 3\bar{e} \rightarrow Al^0$,

на аноде окисляются ионы AlO_3^{3-} : $4AlO_3^{3-} - 12\bar{e} \rightarrow 2Al_2O_3 + 3O_2$.

Суммарное уравнение процесса: $2Al_2O_3 \rightarrow 4Al + 3O_2$.

Жидкий алюминий собирается на дне электролизера.

Электролиз расплавов оснований

На катоде традиционно восстанавливается металл: $Me^{n+} + n\bar{e} = Me^0$ **На аноде** будет окисляться кислород в составе гидроксид-группы: $4OH^- - 4\bar{e} = 2H_2O + O_2$

Электролиз расплавов солей

1. Электролиз расплава бескислородной соли:

На катоде всегда восстанавливается металл: $Me^n + n\bar{e} = Me^0$

На аноде окисляется бескислородный анион: A^{n-} - $n\bar{e} = A^{0}$

Например: Электролиз расплава NaCl: $2NaCl = 2Na + Cl_2$

2.Электролиз расплава кислородсодержащей соли (элемент аниона находится *не* в высшей степени окисления):

На катоде всегда восстанавливается металл: Me^{n+} + $n\bar{e} = Me^0$

На аноде будет окисляться элемент аниона: $SO_3^{2-} - 2\bar{e} = SO_3^{0}$

Например, электролиз расплава сульфита натрия: $Na_2SO_3 = 2Na + SO_3$

Сера S в сульфите имеет степень окисления +4, при электролизе она окисляется до +6 (SO_3).

3. Электролиз расплава кислородсодержащей соли (элемент аниона <u>в</u> высшей степени окисления):

На катоде всегда восстанавливается металл: Me^{n+} + $n\bar{e} = Me^0$

На аноде: т.к. элемент уже в высшей степени окисления, то окисляться будет кислород, например: $2CO_3^{-2} - 4\bar{e} = 2CO_2 + O_2$

Например, электролиз расплава карбоната натрия:

 $2Na_2CO_3 = 4Na + 2CO_2 + O_2$

Важно понимать, что эти реакции не идут сами по себе. Их протекание возможно только при действии электрического тока.

Электролиз растворов

На катоде могут протекать следующие реакции восстановления.

Катодные процессы:

LiKCaNaMgAl MnZnFeNiSnPbH2CuHgAgPtAuLi*K*Ca²*Na*Mg²*Al³*Mn²* Zn²* Fe²* Ni²* Sn²* Pb²*2H*Cu²*Hg₂²*Ag*Pt²*Au³*Восстанавливается вода:Восстанавливаются катионы Восстанавливаются $2H_2O+2\bar{e}=H_2\uparrow+2OH^-;$ металла и вода: $M^{n+}+n\bar{e}=M^0$ катионы металла: M^{n+} не восстанавливается $2H_2O+2\bar{e}=H_2\uparrow+2OH^ M^{n+}+n\bar{e}=M^0$

а) при электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений **после водорода**, происходит выделение металлов на катоде: (-) $Cu^{2+} + 2\bar{e} \rightarrow Cu$.

- б) при электролизе растворов солей, содержащих катионы, расположенные между алюминием и водородом, на катоде могут протекать конкурирующие процессы как восстановления катионов, так и выделения водорода:
- (-) $Zn^{2+} + 2\bar{e} \rightarrow Zn$;
- (-) $2H_2O + 2\bar{e} \rightarrow H_2\uparrow + 2OH^-$.
- в) если растворы солей содержат катионы, находящиеся в ряду напряжения до алюминия, то в водном растворе такие ионы восстановленными быть не могут, на катоде выделяется водород:

(-)
$$2H_2O + 2\bar{e} \rightarrow H_2\uparrow + 2OH^-$$
.

Процесс на аноде зависит от материала анода и от природы аниона. **На аноде** протекают реакции **окисления.**

Анодные процессы:

Кислотный	Анод растворимый	Анод нерастворимый
остаток, Аст-	(медь, железо, цинк)	(графит, золото, платина)
бескислородный	Окисляется металл	Окисление аниона, кроме
	анода	фторида
		Анионы серы, иода, брома, хлора
		(в этой последовательности)
		окисляются до простых веществ:
		$2Cl^{-}-2e \rightarrow Cl_{2}^{0}$ $S^{2-}-2e \rightarrow S^{0}$
кислородный	Окисляется металл	Анионы не окисляются
	анода	В кислотной и нейтральной средах:
	сам анод за счёт	$2H_2O-4\bar{e}=O_2\uparrow+4H^+$
	окисления атомов	В щелочной среде:
	металла посылает	4OH¯−4ē=O ₂ ↑+4H ⁺
	электроны во	
	внешнюю цепь	

- а) при электролизе растворов, содержащих в своем составе анионы F^- , $SO_4^{\ 2^-}$, NO_3^- , $PO_4^{\ 3^-}$, а также растворов щелочей окисляется вода и выделяется кислород: (+) $2H_2O-4\bar{e} \to O_2\uparrow + 4H^+$.
- б) при окислении анионов S^{2-} , Γ , Br^- , Cl^- выделяется соответственно, сера, иод, бром, хлор.
- в) при окислении анионов органических кислот происходит процесс: $2R-COO^- \rightarrow R-R+2CO_2 \uparrow$.

Правила электролиза надо выучить и закрепить при выполнении заданий.

Примеры заданий с решением

1) Анод нерастворимый (например, графитовый).

В растворе идет процесс электролитической диссоциации:

Суммарное уравнение:

 $2H_2O+2Cl^-=H_2\uparrow+Cl_2\uparrow+2OH-.$

Учитывая присутствие ионов Na⁺ в растворе, составляем молекулярное уравнение: 2NaCl + 2H₂O электролиз $H_2\uparrow+Cl_2\uparrow+2NaOH$ (щелочь образуется в катодном пространстве).

2) Анод растворимый (например, медный):

Если анод растворимый, то металл анода будет окисляться: $Cu^0 - 2\bar{e} = Cu^{2+}$

Катионы Cu^{2+} в ряду напряжений стоят после (H^+), поэтому они и будут восстанавливаться на катоде:

анод (+) катод (-)
$$Cu^0 - 2\overline{e} = Cu^{2+}$$
 $Cu^{2+} + 2\overline{e} = Cu^0$ выделение на катоде чистой меди с анода на катод

Концентрация NaCl в растворе не меняется, NaCl = $Na^+ + Cl^-$.

3) Электролиз раствора сульфата меди (II) на нерастворимом аноде:

(K)
$$Cu^{2+}+2\bar{e}=Cu^{0}$$
 |2
(A) $2H_{2}O-4\bar{e}=O_{2}\uparrow+4H^{+}$ |1

Суммарное ионное уравнение:
$$2Cu^{2+} + 2H_2O = 2Cu^0 + O_2 \uparrow + 4H^+$$

Суммарное молекулярное уравнение с учетом присутствия анионов $SO_4^{\ 2-}$ в растворе:

$$\begin{array}{c} 2\mathrm{CuSO_4} + 2\mathrm{H_2O} \xrightarrow{_{\mathrm{ЭЛЕКТРОЛИЗ}}} \\ & \xrightarrow{_{\mathrm{ЭЛЕКТРОЛИЗ}}} 2\mathrm{Cu^0} + \mathrm{O_2} \uparrow + 2\mathrm{H_2SO_4}. \end{array}$$

серная кислота образуется в анодном пространстве

4) Электролиз раствора гидроксида калия на нерастворимом аноде:

$$2H_2O+2\bar{e}=H_2\uparrow+2OH^-$$
 |2
 $4OH^--4\bar{e}=O_2\uparrow+2H_2O$ |1

Суммарное ионное уравнение:

 $4H_2O+4OH^-=2H_2\uparrow+4OH^-+O_2\uparrow+2H_2O$

Суммарное молекулярное уравнение:

$$2H_2O^{3$$
Лектролиз $2H_2\uparrow + O_2\uparrow$

В данном случае идет только электролиз воды.

Аналогичный результат получим и в случае электролиза растворов $H_2SO_4,NaNO_3,K_2SO_4$ и др.

5) Электролиз ацетата натрия на нерастворимом аноде:

 $CH_3COONa \rightarrow CH_3COO^- + Na^+$

$$K(-)2H_2O + 2\bar{e} \rightarrow H_2 + 2OH^-$$

$$A(+)2CH_3COO^- - 2\bar{e} \rightarrow C_2H_6 + 2CO_2$$

Общее уравнение электролиза:

$$CH_3COONa + 2H_2O$$
 электролиз

электролиз
$$H_2 + 2NaHCO_3 + C_2H_6$$

6) Водный раствор NaF

$$NaF \rightarrow Na^+ + F^-$$

 $Kamo\partial$: ионы Na^+ – **не** окисляются

$$2H_2O + 2\overline{e} \rightarrow H_2 + 2OH^-$$
, среда щелочная

Анод: ионы F[−] – **не** окисляются

Задания для самостоятельного решения

1.Установите соответствие между формулой соли и уравнением процесса, протекающего на аноде при электролизе её водного раствора.

ФОРМУЛА СОЛИ УРАВНЕНИЕ АНОДНОГО ПРОЦЕССА

- A) KCl 1) $2H_2O - 4e \rightarrow O_2 + 4H^+$ 2) $2H_2O + 2e \rightarrow H_2 + 2OH^-$ Б) AlBr₃
- 3) $2\text{Cl}^- 2\text{e} \rightarrow \text{Cl}_2^0$ B) CuSO₄ 4) $2Br^{-} - 2e \rightarrow Br_{2}^{0}$ Γ) AgNO₃ 5) $2SO_4^{2-} - 2e \rightarrow S_2O_8^{2-}$

6) $2NO_3^- - 2e \rightarrow 2NO_2 + O_2$

2. Установите соответствие между формулой соли и продуктом, образующимся на инертном аноде при электролизе её водного раствора.

ФОРМУЛА СОЛИ ПРОДУКТ, ОБРАЗУЮЩИЙСЯ НА АНОДЕ

A) RbSO₄ 1) метан

 Γ) CuSO₄

Б) CH₃COOK 2) сернистый газ 3) кислород B) BaBr₂

4) водород

5) бром

6) этан и углекислый газ

3. Установите соответствие между формулой соли и уравнением процесса, протекающего на катоде при электролизе её водного раствора.

ФОРМУЛА СОЛИ УРАВНЕНИЕ КАТОДНОГО ПРОЦЕССА

- 1) $2H_2O 4e \rightarrow O_2 + 4H +$ A) $Al(NO_3)_3$ 2) $2H_2O + 2e \rightarrow H_2 + 2OH^-$ Б) CuCl₂
- 3) $Cu^{2+} + 2e \rightarrow Cu^{0}$ B) SbCl₃ 4) $Cu^{2+} + 1e \rightarrow Cu^{+}$ Γ) Cu(NO₃)₂ 5) $Sb^{3+} + 3e \rightarrow Sb^{0}$
- 4. Установите соответствие между названием вещества и способом его получения.

НАЗВАНИЕ ВЕЩЕСТВА ПОЛУЧЕНИЕ ЭЛЕКТРОЛИЗОМ

- 1) раствора LiF А) литий Б) фтор расплава LiF В) серебро 3) раствора MgCl₂ 4) pacтвора AgNO₃ Г) магний 5) расплава Ag₂O 6) расплава MgCl₂
- 5. Установите соответствие между формулой вещества и продуктами электролиза водного раствора этого вещества, которые образовались на инертных электродах: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА ВЕЩЕСТВА

ПРОДУКТЫ ЭЛЕКТРОЛИЗА

- \mathbf{A}) Na₂S
- **Б)** K₂SO₄
- B) CuSO₄
- Γ) Cu(NO₃)₂

- 1) H_2, O_2
- $\mathbf{2}$) Cu, O_2
- 3) H₂, S
- 4) Cu, S
- 5) H₂, NO₂
- 6. Установите между формулой соли соответствие И продуктом, образующимся на инертном аноде при электролизе её водного раствора.

ФОРМУЛА СОЛИ

- A) AlBr₃
- **Б)** Rb₂SO₄
- **B)** $Hg(NO_3)_2$
- Γ) AuCl₃

ПРОДУКТ НА АНОДЕ

- 1) Cl₂
- **2**) O₂
- 3) H₂
- 4) Br₂
- **5**) SO₂
- **6)** NO₂
- 7.Установите соответствие между названием вещества и продуктами электролиза его водного раствора.

НАЗВАНИЕ ВЕЩЕСТВА

ПРОДУКТЫ ЭЛЕКТРОЛИЗА

- А) бромид калия
- Б) сульфат меди (II)
- В) бромид меди (II)
- 1) водород, бром, гидроксид калия
- 2) натрий, углекислый газ
- 3) медь, оксид серы (IV)
- 4) медь, кислород, серная кислота
- 5) медь, бром
- 8. Установите соответствие между формулой соли и продуктом, образующимся на катоде при электролизе водного раствора этой соли.

ФОРМУЛА СОЛИ

ПРОДУКТ НА КАТОДЕ

- A) $Mg(NO_3)_2$
- **Б)** Na₂SO₄
- \mathbf{B}) AgNO₃
- Γ) Hg(NO₃)₂

- **1**) кислород
- 2) серебро 3) водород
- **4**) ртуть
- 5) натрий
- 6) магний
- 9. Установите соответствие между формулой вещества и продуктами электролиза водного раствора этого вещества, которые образуются на

инертных электродах: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой. ФОРМУЛА

ВЕЩЕСТВА ПРОДУКТЫ ЭЛЕКТРОЛИЗА

A) Na₂CO₃ 1) этан, углекислый газ, водород

Б) NaCl 2) натрий, кислород

В) СН₃СООNа 3) метан, углекислый газ, водород

Г) NaOH 4) хлор, водород

5) водород, кислород

10. Установите соответствие между формулой соли и продуктами электролиза водного раствора этой соли, которые выделились на инертных электродах: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА СОЛИ ПРОДУКТЫ ЭЛЕКТРОЛИЗА

A) Na₃PO₄
 B) KCl
 Cu, O₂
 Cu, Br₂
 Cu(NO₃)₂
 Cu, NO₂
 H₂, Cl₂
 Cu, NO₂

Желаю успехов