

Fig. 1a
(prior ΔE)

Spectra of Copper (Cu) target irradiated under similar
Scale: note $10 \text{ \AA} = 1 \text{ nm}$

Taken from T. P. Donalson, et al J. Phys. B 9, 1645, (1976)

Fig. 1b
(prior Art)

Spectra of Zinc (Zn) target irradiated under similar

Scale: note $10 \text{ A} = 1 \text{ nm}$

Taken from T. P. Donalson, et al J. Phys. B 9, 1645, (1976)

Fig. 2 Principal components of embodiment**Fig. 2**

T0411T20 = 029T8860

Fig. 3 Possible embodiments of the EUV emission collecting geometry

3a. Coaxial collecting mirror

Fig. 3a

3b. Multiple EUV mirrors

Fig. 3b

Molecular liquids or mixtures of molecules

Molecular liquid or mixture of elemental and molecular liquids

Examples:

$MCl \cdot H_2O$ ($M = Al - Bi$) (eg: $SnCl \cdot H_2O$, $CuCl \cdot H_2O$ etc)

organometallic liquids.

Fig. 5

Comparative EUV spectra in the region of 13 nm for water droplet targets and $\text{SrCl}\cdot\text{H}_2\text{O}$ liquid droplet targets

(dotted line illustrates appropriate spectral bandpass of a typical high reflection EUV mirror)

Fig. 5a

EUV spectra of water droplet target

Fig. 5a

Fig. 5b