Computer Vision

Dr Ankur Jain

Phd (CPS), MTech (CSE), MBA (IT)

Assistant Professor, (SCSE)

VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh - 466114

Email: ankurjainjob@gmail.com, ankur.jain

@vitbhopal.ac.in

Mobile: 7415259169

23-Mar-22

My Teaching Style

- Application based study goal
- Objective based lecture presentation
- Example based topic explanation
- Step by step either implementation or simulation or emulation
- Top down approach for broad topic introduction and review
- Bottom up approach for design, simulation and implementation

Subjects of interest

- Cyber physical system
- Internet of things
- Industrial data communication
- Data acquisition, logging and analysis
- Embedded systems
- Industrial automation and Industry 4.0
- PLC, DCS and SCADA systems
- Machine learning
- Deep learning
- Reinforcement learning
- Intelligent systems

- Computer networks
- Programming and OOPS
- Control system design
- Computer vision
- Image Processing
- Analog electronics
- Digital electronics
- Power electronics
- Microcontroller and microprocessor
- Robotics
- Optimization
- Raspberry pi, Arduino, etc.

Note: I am not well versed in all the topics. I am a student learning day by day according to the need of the project.

Marks Distribution

1. End Term: 40%

2. Mid Term: 30%

3. Project : 10%

4. Project Report: 5%

5. Paper Presentation: 5%

6. Quiz (Class Test): 5%

7. Attendance: 5%

Tutorial objectives

- Learn by Doing
- Introduction
- Marks Distribution
- Group Formation
- Project Selection
- Installation of tools

What is Computer Vision?

Scene

Introduction: What is computer vision

- Computer Vision "is a discipline that studies how to reconstruct, interpret and understand a 3D scene from it's 2D images in terms of the properties of the structures present in the scene".
- Computer vision systems analyze images and video automatically and determine what the computer "sees" or "recognizes."

Machine vision vs Human Vision

Difference between computer vision

Computer Vision	Human Vision
Computer vision allows computer to sense their surroundings and identify things, similar to how human vision perceive things.	Humans perceive the things as they are and retain what they recognize, storing it deep in the brain until they come across those things again.
Computer vision uses machine learning techniques and algorithms to identify, distinguish and classify objects.	Human vision is about how eyes detect light patterns and coordinate with the brain to translate light into images.
Object recognition is one of the most challenging problems in computer vision.	Humans recognize objects effortlessly, and have no problems describing objects in a scene. D3 Difference Between.net

Continued...

Human Vision	Computer Vision
Multitasking	Task-oriented
Visible patterns	Invisible patterns
Supervision tasks	Periodic tasks
Computer interaction	Human interaction

Computer Vision and Nearby Fields

- Computer Graphics: Models to Images
- Comp. Photography: Images to Images
- Computer Vision: Images to Models

Computer Vision

Make computers understand images and video.

- > What kind of scene?
- > Where are the cars?
- ➤ How far is the building?
- **>** ...

Vision is really hard

- Vision is an amazing feat of natural intelligence
 - Visual cortex occupies about 50% of Macaque brain
 - More human brain devoted to vision than anything else

Why computer vision matters

Safety

Health

Security

Comfort

Fun

Access

Ridiculously brief history of computer vision

- 1966: Minsky assigns computer vision as an undergrad summer project
- 1960's: interpretation of synthetic worlds
- 1970's: some progress on interpreting selected images
- 1980's: ANNs come and go; shift toward geometry and increased mathematical rigor
- 1990's: face recognition; statistical analysis in vogue
- 2000's: broader recognition; large annotated datasets available; video processing starts

Ohta Kanade '78

Turk and Pentland '91

Optical character recognition (OCR)

Technology to convert scanned docs to text

• If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs http://www.research.att.com/~yann/

License plate readers

http://en.wikipedia.org/wiki/Automatic number plate recognition

Face detection

- Many new digital cameras now detect faces
 - Canon, Sony, Fuji, ...

Smile detection

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Sony Cyber-shot® T70 Digital Still Camera

3D from thousands of images

Object recognition (in supermarkets)

LaneHawk by EvolutionRobotics

"A smart camera is flush-mounted in the checkout lane, continuously watching for items. When an item is detected and recognized, the cashier verifies the quantity of items that were found under the basket, and continues to close the transaction. The item can remain under the basket, and with LaneHawk, you are assured to get paid for it... "

Vision-based biometrics

"How the Afghan Girl was Identified by Her Iris Patterns" Read the story wikipedia

Login without a password...

Fingerprint scanners on many new laptops, other devices

Face recognition systems now beginning to appear more widely

http://www.sensiblevision.com/

Object recognition (in mobile phones)

Point & Find, Nokia, Google Goggles,

Gesture recognition: Counting of finger

Pedestrian counting

23/03/2022 25

Real Time Vehicle Detection

Special effects: shape capture

The Matrix movies, ESC Entertainment, XYZRGB, NRC

Face Filter

Special effects: motion capture

Pirates of the Carribean, Industrial Light and Magic

Sports

Sportvision first down line
Nice explanation on www.howstuffworks.com

http://www.sportvision.com/video.html

Smart cars

Slide content courtesy of Amnon Shashua

Mobileye

- Vision systems currently in highend BMW, GM, Volvo models
- By 2010: 70% of car manufacturers.

Google cars

http://www.nytimes.com/2010/10/10/science/10google.html?ref=artificialintelligence

Mouse Control using fingers

Facial Expression Detection

Interactive Games: Kinect

- Object Recognition: <u>http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o</u>
- Mario: http://www.youtube.com/watch?v=8CTJL5IUjHg
- 3D: http://www.youtube.com/watch?v=7QrnwoO1-8A
- Robot: http://www.youtube.com/watch?v=w8BmgtMKFbY

Vision in space

NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- · Obstacle detection, position tracking
- For more, read "Computer Vision on Mars" by Matthies et al.

Industrial robots

Vision-guided robots position nut runners on wheels

Mobile robots

NASA's Mars Spirit Rover http://en.wikipedia.org/wiki/Spirit_rover

http://www.robocup.org/

Saxena et al. 2008 STAIR at Stanford

Medical imaging

3D imaging MRI, CT

Image guided surgery Grimson et al., MIT

Face Recognition

Current Research

Machine learning: A Computer vision application

Online lane detection and departure warning system

Object detection, classification and warning alter

Distance estimation from ego vehicle

Feature detection and matching

Visual Odometry

Autonomous Driving: Convolution Neural Network

Model efficiency

Introduction

- > Image processing
- ➤ Computer vision
- ➤ OpenCV

What is Digital Image Processing

A pixel in a digital image has a specific value based on the bit depth

Bit depth	Range
1	0 & 1
2	0 to 3
8	0 to 255

Digital image processing involves manipulation of pixel values using an algorithm

3 - CHANNEL

What is Video

- ➤ Video is the collection of images.
- ➤ Image processing is the collection of methods to enhance the quality of image, modify the image or extract some information from the image.
- Computer vision is an interdisciplinary branch that deals with how computer can gain high level understanding of from digital images/video.

Fundamentals of Image Formation

Image: Projection of 3D Scene to 2D plane. We need to understand the geometric and photometric relation between the scene and its image.

Topics:

- Pinhole and Perspective projection
- Image formation using lenses
- Lens related issues
- Wide angle cameras
- Biological eyes

Perspective Projection with pinhole

Perspective Projection

Ideal size of a pinhole camera

1 mm

0.15 mm

0.07 mm

The pinhole must be tiny, but if it's too tiny it will cause diffraction.

Ideal pinhole diameter: $d \approx 2\sqrt{f\lambda}$

$$d \approx 2\sqrt{f\lambda}$$

f : effective focal length

λ: wavelength

Vanishing Point

Image Formation using Lenses

Same projection as pinhole, but gather more light!

Focal length (f) determines the lens' bending power

Gaussian lens law

f: focal length

i: image distance

o: object distance

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$

How do you find the focal length

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$

If $o = \infty$, then f = i

Focal length: Distance at which incoming rays that are parallel to the optical axis converge.

Image Magnification

Magnification:

$$m = \frac{h_i}{h_o} = \frac{i}{o}$$

Two lenses System

Magnification: $m = \frac{i_2}{o_2} \cdot \frac{i_1}{o_1}$

Zooming: Move lenses to change magnification

Aperture

Light receiving area of lens, indicated by lens diameter.

Aperture can be reduced/increased to control image brightness

23/03/2022

69

Lens Defocus

From similar triangles:

$$\frac{b}{D} = \frac{|i' - i|}{i'}$$

Blur circle diameter:

$$b = \frac{D}{i'}|i' - i|$$

$$b \propto D \propto \frac{1}{N}$$

Focused Point

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$

$$i = \frac{of}{o - f}$$

Defocused Point

$$\frac{1}{i'} + \frac{1}{o'} = \frac{1}{f}$$

$$i' = \frac{o'f}{o' - f}$$

$$i'-i=\frac{f}{(o'-f)}\cdot\frac{f}{(o-f)}\cdot(o-o')$$

$$b = Df \left| \frac{(o - o')}{o'(o - f)} \right|$$

$$b = Df \left| \frac{(o - o')}{o'(o - f)} \right| \qquad b = \frac{f^2}{N} \left| \frac{(o - o')}{o'(o - f)} \right|$$

23/03/2022

(Gaussian Lens Law)

Depth of Field

If o_1 and o_2 are the nearest and farthest distances respectively for which blur circle is maximum c, then:

$$c = \frac{f^{2}(o - o_{1})}{No_{1}(o - f)} \qquad c = \frac{f^{2}(o_{2} - o)}{No_{2}(o - f)}$$

Depth of Field:
$$o_2 - o_1 = \frac{2of^2cN(o-f)}{f^4 - c^2N^2(o-f)^2}$$

Hyper Focal distance

The closest distance o = h the lens must be focused to keep objects at infinity $(o_2 = \infty)$ acceptably sharp (blur circle $\leq c$).

Hyperfocal Distance:
$$h = \frac{f^2}{Nc} + f$$