

Deep Learning

Analytical Index

- Introduction to Deep Learning
- 2. Convolutional Neural Networks (CNN)
- 3. Recurrent Neural Networks (RNN)
 - a. Introduction to Sequence Modelling
 - b. Simple RNN
 - c. Gated RNN
 - d. Seg to Seg & Attention
- 4. Natural Language Processing with Deep Learning
- 5. Deep Generative Modelling

Recurrent Neural Networks (RNN)

3.1

Introduction to Sequence Modelling:

Sequences

- Most machine learning algorithms are designed for independent, unordered data.
- Many real problems uses sequential data:

$$\mathbf{x}^{(t)}: \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(T)}\}$$

- Time series, biomedical signals, audio signals, stock prices, text...
- Does not have to be time, can be spatial measure (images), or any order measure (Recommender systems)
- The sequences are a natural way of representing reality: vision, hearing, action-reaction, words, sentences, etc.
- Don't forget order matters!!

Sequential Processing

Speech recognition:

Deep learning course D e e p l e a....

Sentiment analysis:

"Really good book..."

Time series forecasting:

1000 VI 1000 V

Machine translation

"Really good book..."

"Muy buen libro..."

Music generation:

Problems With Dense Networks

- Inputs and outputs can be of different lengths:
 - o Can try windowing.

"I went to Greece on an end-of-term trip, ..., in 2020"

- No parameter sharing:
 - o Try convNets.

"I went to Greece on an end-of-term trip, ..., in 2020" "In 2020, I went to Greece on an end-of-term trip, ..., "

• Long Term dependencies (memory):

"I went to **Greece** on an end-of-term trip, ..., in 2020" "In 2020, I went to **Greece** on an end-of-term trip, ..., "

Sequence Notation

"The film is not good it's bad"

Order is important: "The film is good it's not bad" (same words different order)

Recurrent relations

$$\bullet \quad \text{Recurrent function:} \quad x^{(t)} = f\left(x^{(t-1)}\right) = f\left(f\left(x^{(t-2)}\right)\right) = \ldots = g\left(x^{(t-1)},\ldots,x^{(0)}\right)$$

 $=f(\boldsymbol{h}^{(t-1)},\boldsymbol{x}^{(t)};\boldsymbol{\theta})$

- If we want to predict future from past: $m{h}^{(t)} = g^{(t)}\left(m{x}^{(t)}, m{x}^{(t-1)}, m{x}^{(t-2)}, \dots, m{x}^{(2)}, m{x}^{(1)}\right)$
 - Repetitive structure
 - Don't need to learn g.
 - Same transition function f with the same parameters at every time step

Sequence Notation

"The film is not good it's bad"

The state (memory) of every step is updated with the previous state and the actual input.

$$h^{(t)} = g(h^{(t-1)}, x^{(t)})$$

The sentiment is a function of the state.

$$Sentiment^{(t)} = f(h^{(t)})$$

3.2

Simple RNN

RNN Intuition

 $[x_3]$

vector

Example: Language Model

Sentence 1: "La <u>noche</u> larga" => P("La noche larga") = 0.001

Sentence 2: "La coche larga" => P("La coche larga") = 0.0000000001

Model: P("La noche larga") = P("La")P("noche" | "La")P("larga" | "La", "noche")

$$p(w_0, w_1, \dots, w_n) = p(w_0)p(w_1|w_0)p(w_2|w_0, w_1) \cdots p(w_n|w_0, w_1 \cdots, w_{n-1})$$

Example: Predicting Next Word

Example: Time Series Forecasting

Vanilla RNN

one to one

• Simple dense net

one to many

- Music generation
- Text generation
- Image captioning

many to one

• Sentiment analysis.

many to many

Machine translation

many to many

• Video classification

Bidirectional RNN

I wanted _____ to call me. Mario never called. => Him or Her ??

Deep RNN

Stack multiple recurrent layers for learning more complex functions

Backpropagation Through Time BTT

- Backpropagating the error in time involves as many recurrent derivation terms as timesteps on the net.
- Problems with gradients:
 - Vanishing
 - Exploding

3.3

Gated RNN

Simple RNN Problems: Long-Term Dependencies

RNN Advances

Long-Term Dependencies: Use more complex recurrent cells for control information flow.

1. GRU: Gated recurrent unit

LSTM: Long short-term memory

```
model1.add(layers.SimpleRNN(64))
model2.add(layers.GRU(64))
model3.add(layers.LSTM(64))
```


LSTM: Long Short-Term Memory

LSTMs are explicitly designed to avoid the long-term dependency problem. Remembering information for long periods of time is practically their default behavior

LSTM: Long Short-Term Memory

The LSTM can remove or add information to the cell state

LSTM: Information Flow

- Output of a sigmoid [0,1]
- Information is added or removed with pointwise multiplication => Gates
- Steps:
 - o 1. Forget
 - o 2. Store
 - o 3. Update
 - 4. Output

LSTM: 1. Forget Gate Layer

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

LSTM: 2. Store

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Store relevant informationn

LSTM: 3. Update

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Update cell state

LSTM: 4. Output

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Control the relevant information

GRU: Gated Recurrent Unit

Bi-LSTM

Video classification

Convolutions + LSTM

- Videos can be treated as a sequence of images as essentially, this is what they are. So, they are candidates to be treated sequentially.
- One possible approach is using ConvLSTM layers. It is a Recurrent layer, just like the LSTM, but internal matrix multiplications are exchanged with convolution operations. As a result, the data that flows through the ConvLSTM cells keeps the input dimension (3D in our case) instead of being just a 1D vector with features.
- It is very common to misunderstand ConvLSTM layers/networks with Convolutional-LSTM models, in which the image passes through the convolutional layers and its result is a set flattened to a 1D array with the obtained features. When repeating this process to all images in the time set, the result is a set of features over time, and this is the LSTM layer input.

3.4

Use Cases

3.5

Sequence to Sequence Model & Attention Mechanism

Sequence to Sequence

Two sub-models:.

- Encoder: Encoding the entire sequence into a fixed length vector called a context vector.
- Decoder: Reading from the context vector.
- Introduced by Google in **2014**.
- Maps variable-lengths sequences to a fixed length encoded vector.

Sequence to Sequence: Image Captioning

Choose Output Sequence

Input: $h_0 = encoded("Qué tal estás")$

First output: Sample from softmax $\hat{y}_1 = P(y_1|h_0) \rightarrow P(\text{"How"}|h_0)$

Second output: Sample from softmax

$$\hat{y}_2 = P(y_2|h_0, y_1) \to P(\text{"are"}|\text{"}How", h_0)$$

Third output: Sample from softmax

$$\hat{y}_3 = P(y_3|h_0, y_1, y_2) \rightarrow P(\text{"you"}|\text{"}How", \text{"}are", h_0)$$

Fourth output: Sample from softmax

$$\hat{y}_4 = P(y_4|h_0, y_1, y_2, y_3) \to P(\text{"EOS"}|\text{"How"}, \text{"are"}, \text{"you"}, h_0)$$

Choose Output Sequence

$$y* = \operatorname{argmin} P(y_1, y_2, \dots, y_n | h_0) = P(y_1 | h_0) P(y_2 | y_1, h_0) \dots P(y_n | h_0, y_1, y_2, \dots, y_{n-1})$$

"El año pasado volví a ir a Roma con mis amigos"

"Last year I went back to Rome with my friends"

"Last year I went to Rome again with my friends"

Search Strategies

- Sampling from output softmax not always return the best output sentence.
- Greedy (choose the max probability from the softmax) doesn't work well.
- Need other search algorithms: Beam search

Attention Mechanism

- The encoder processes the entire input sentence and encode it into a context vector. The
 decoder produces the words in a sentence one after another. Long-term dependency
 problems.
- Performance of the encoder-decoder network degrades rapidly as the length of the input sentence increases.
- Attention Mechanism: Selectively concentrating on a few relevant things, while ignoring others. (Also provides some interpretability)
- "Neural Machine Translation by Jointly Learning to Align and Translate" (2015)

Attention Mechanism: Intuition

¿Cuál es tu nombre?

Attention Mechanism: Intuition

¿Cuál es tu nombre?

Attention Mechanism

You don't encode all the input in the last state, you use all the hidden states for every output.

$$h_t = (\overrightarrow{h}_t \overleftarrow{h}_t)$$

Focus in the relevant inputs with the context vector (input of y nn). a_{tt}, weights every state h_t

$$c_t = \sum_{t'} a_{tt'} h_{t'}$$

 a_{tr} is the amount of attention y_t should pay to h_{tr} .

$$a_{tt'} = rac{\exp\left(e_{tt'}
ight)}{\sum_{k=1}\exp\left(e_{tk}
ight)}$$
 $e_{tt'} = f\left(s_{t-1}, h_{t'}
ight)$ Simple NN

Attention Mechanism

