NASA Technical Paper ■3043

October 1990

KENNEDY IN-52 1720

Responses of Women to Orthostatic and Exercise Stresses

G. W. Hoffler,
M. M. Jackson,
R. L. Johnson,
J. T. Baker,
and D. Tatro

(NASA-TP-3043) RESPONSES UF WOMEN TO URTHUSTATIC AND EXERCISE STRESSES Technical Report, 1976 - 1977 (NASA) 77 p CSCL 06P

N91-19711

Unclas 1/52 0001720

NASA Technical Paper 3043

1990

Responses of Women to Orthostatic and Exercise Stresses

G. W. Hoffler

John F. Kennedy Space Center

Kennedy Space Center, Florida

M. M. Jackson and R. L. Johnson Lyndon B. Johnson Space Center Houston, Texas

J. T. Baker Krug International San Antonio, Texas

D. Tatro
The Bionetics Corporation
Kennedy Space Center, Florida

NASA

National Aeronautics and Space Administration

Office of Management Scientific and Technical Information Division

÷			
			-
; ;			:
:			
			: :
			-

TABLE OF CONTENTS

Section	Page
TABLE OF CONTENTS	iii
ABSTRACT	iv
ACKNOWLEDGEMENTS, DISCLAIMER, AND DEDICATION	v
INTRODUCTION	1
METHODS Subjects Descriptive Data LBNP Stress Test Treadmill Stress Test Duplicate Tests for Reproducibility Statistical Analyses	2 2 2 2 3 4 4
RESULTS AND DISCUSSION Archival Data Statistical Data Analytical Data and Findings Repeatability of Test Measurements Specific Determinations	4 4 5 6 6 7
CONCLUSIONS	12
APPENDIX List of Data Tables and Figures Key to Abbreviations Tables I through XIX Tables A1 through G and NWA Figures L, V and 1 through 6	13 13 16 18 48 59
REFERENCES	67

ABSTRACT

This technical report presents the results from a special physiological study of women performed at the Johnson Space Center in 1976-77. The purpose was to establish a substantially large (98 subjects) normative data base taken from a general considered of working women who might be population representative of future women astronauts. The data sets consist of medical historical, clinical, anthropometric, and stress response determinations and measurements which would be relevant to human space flight and hence helpful in establishing appropriate medical screening criteria (types of tests and their normal values) for selecting women astronauts. The stressors chosen were lower body negative pressure and static standing (both orthostatic) and treadmill exercise (ergometric). methods were identical to or similar adaptations of those protocols used in testing Apollo and Skylab program crewmen.

Data are provided in two formats: (1) original individual values which are amenable to cross correlations and subsequent analyses in any subsets which might be of interest and (2) statistical summaries and correlations suggested by the variables themselves and by certain questions which concern investigators of the human responses to microgravity. Of notable comment is the very great similarity of many characteristics of the women subjects of this study generated before selection of any American women astronauts and the corresponding characteristics of those women astronauts now regularly flying among Shuttle space crews.

<u>Acknowledgements</u>

The authors wish to express their appreciation to the following personnel for their dedicated support in the conduct and prepartion of this study: William Crozier, Kathy Tamer, John Donaldson, and Mary Taylor of Krug International (formerly Technology Inc.); John F. Zieglschmid, M. D. and Charles K. LaPinta, M. D. of the Johnson Space Center; and Mary Anne Frey, Ph. D., William Alford, Susan Loffek, Mark Antiel, and William Moore of The Bionetics Corporation.

The authors also thank the many subjects whose enthusiastic and wholehearted voluntary participation in all aspects of the study protocols made acquisition of this knowledge base possible.

Product Disclaimer

This report, in whole or in part, may not be used to state or imply the endorsement by NASA or by NASA employees of a commercial product, process or service, or used in any other manner that might mislead.

<u>Dedication</u>

This publication is dedicated to the memory of R. L. Johnson, MD, FACC, NASA cardiologist and clinical researcher, for his wisdom and mentorship over many years and for his insight and practical contributions to our understanding of human responses to microgravity.

	•					
						-
						-
						İ
						:
						1
z						
•						
						-
						-
ŗ						Ē
						-
				•		

INTRODUCTION

Concerns for the physiological responses of women did not appear in NASA operations until after the historic Skylab missions. symposium held in August, 1974, the National Aeronautics Space Administration reported medical results (25) of its three successful Skylab missions, which had concluded with the 84-day mission on February 8, 1974. In July, 1975, the last of the Apollo-class missions was flown jointly with the Soviet Soyuz (35). At this point in time no American women had ever been selected as astronauts. The next U.S. program involving in space, however, was to employ the reusable Space in which many more individuals with widely varying humans Shuttle disciplines and physiological states were envisioned to be among Women were to be included in the next astronaut selection which took place in 1978. This was the eighth serial group selected by NASA beginning with the first cohort of seven Mercury astronauts.

Thus, early in 1976 a study was initiated at the Johnson Space Center to determine, from a selected group of women, baseline physiological responses which would be pertinent to human space flight. It was intended that results from that work might contribute to medical design of the subsequent selection process, both in the choice of screening tests and in determining reasonable envelopes of normal values for women. It could also serve as reference for future studies.

Somewhat prior to the study reported here, due to a host of factors, a newly found, generalized interest in the physiological and medical study of women had appeared. Among emphases of these studies were exercise and physical fitness, menstrual variations, and body composition. Quite specific questions were addressed possible or relative to the similarities of, elsewhere differences between, men and women in their responses to the The first of a series of studies of environment of space. specially selected women under simulated microgravity (bed rest) was conducted by investigators at the NASA Ames Research Center, Moffett Field, California, beginning in 1973 (39). Additional specific work was subsequently performed at the Ames Research Center, at the NASA Kennedy Space Center, and elsewhere, to stressors responses of women to orthostatic the refine (13,14,15,17,18,23,26,31,34,39,45). Some of these and other studies have measured responses of women to exercise with weightlessness focus on probable responses to particular (6,7,8,9,12,16,20,27,30,39,41,46,47). Meanwhile several American women astronauts have flown on Space Shuttle missions to give us both subjective and objective documentation of their resiliency to this new environment (40).

Nevertheless, this data set, not heretofore accessible in the public domain, is here reported because it represents one of the earliest space oriented (with emphasis on microgravity) data bases and is perhaps the largest such grouping using a common protocol. In addition, it yielded many biological

measurements of human responses to two major stressor protocols relevant to weightlessness--orthostasis (by erect standing in earth gravity and by lower body negative pressure) and ergometry (by motorized treadmill). Finally, it consisted of a diverse group of healthy women employees at the Johnson Space Center who were considered to be broadly representative not only of American women but also of future women astronauts (2) (age, life style, body habitus, physical condition, reproductive status, work and medical history, etc.).

METHODS

<u>Subjects</u>

Ninety-eight volunteer women subjects between the ages of 21-61 years were solicited from the work force of the Johnson Space Center. Review of their medical record, laboratory data, and an interim medical status questionnaire were used to assure absence of any clinical condition which would contraindicate their participation in either a lower body negative pressure (LBNP) or a treadmill exercise (TMX) stress test. Their use of replacement estrogen hormones, thyroid, oral contraceptives, or cigarettes was permitted. No prescreening of fitness level by stress testing was determined, but a three-scaled historical assessment of their usual activity level was obtained. None had previously participated in research studies in these laboratories.

<u>Descriptive Historical and Clinical Data</u>

Age, height and weight clothed but without shoes (recorded with calibrated clinical scales in English units, and later converted to metric), oral and room temperatures (using clinical laboratory mercury in glass thermometers calibrated Centigrade, with Fahrenheit values converted from a nomogram), and pulmonary functions were taken on the morning of, but prior each test. Body surface area was computed from the formula Dubois (11). Hemoglobin, hematocrit, cholesterol, triglyceride, and clinical blood pressure values (within the past 12 months) were abstracted from their clinical records. Hours of sleep the previous night, hours since last eating, smoking and exercise history, current medications, and day of their current menstrual cycle with usual cycle length (or hysterectomy or postmenopausal state, if applicable) were recorded.

LBNP Stress Test

A graded LBNP stress test identical to that used on Apollo and Skylab crewmen was employed (22,24,25). Its protocol allowed five minutes of supine rest, fifteen minutes of incrementally reduced pressure applied below the level of the iliac crest (unless presyncope caused premature termination of the full protocol), and five minutes of recovery back at ambient pressure (see Figure L). Prior to initiation of each test, baseline

supine blood pressure, maximal calf circumferences (both), and volume of the left leg by the method of serial circumferences (22,24) were measured (See Figure V).

Appropriate non-invasive sensors provided heart rate from a Frank-lead orthogonal electrocardiogram; systolic and diastolic blood pressure from an automatically cycled arm cuff with microphone positioned over the left brachial artery to pick up Korotkov sounds; change in left and right calf volume (percentage change from control values) using a calibrated, double-stranded, mercury-in-silastic strain gauge; and systolic time intervals from the electrocardiogram, a phonocardiogram (20 gram Elema EMT-25C piezo-electric crystal accelerometer), and carotid pulse trace (Sanborn/Hewlett Packard APT-16 displacement transducer). A pneumogram (thoracic mercury in silastic strain gauge) provided respiratory status to assure that all analyzed STI's were taken in the expiratory phase. At least 3 cardiac cycles, not necessarily consecutive, were used to determine the measurement for each state of condition. Reduction of STI data was performed with a Tektronix 4014 terminal using an interactive program of in-house design. All systems were functionally identical to those used on the Skylab LBNP studies (24).

For statistical analyses and reporting, dynamic data were used only from the resting and the highest attained level of LBNP (average of values, respectively, in the fifth minute of rest and in the fifth minute of -50 mm Hg phase of LBNP, except when presyncope intervened).

Treadmill Stress Test

Approximately 30 minutes after completion of the LBNP test, each subject underwent a graded treadmill exercise stress test similar to the Balke protocol using a speed of 3.3 mph and grade increments of 5 % with 3 minutes at each grade. Prior to each treadmill test, supine (after 5 minutes) followed by standing (after 8 minutes) heart rate and systolic and diastolic blood pressures were taken for comparison with the LBNP data. Dynamic heart rate, systolic and diastolic blood pressures, and oxygen consumption (with a CPI 5000 metabolic analyzer) were measured at the subject-limited, voluntary exertional effort (Quinton treadmill, model 1860) targeted for the maximal predicted heart rate. Time on the treadmill to that also recorded. Statistical analyses of these dynamic data were performed for the last minute of standing at rest, at the time of maximal effort, and for the second and the fifth minutes of recovery (supine). Signals for determining systolic (according to the time intervals same techniques during LBNP) were taken in the supine position before initiation of the exercise protocol and as soon possible (1-2 minutes) after maximal performance had been achieved.

Duplicate Tests for Reproducibility

After the primary data base had been established, identical protocols were conducted again on seventeen of these subjects who returned to the laboratory from two weeks to six months after their first testing. This provided a measure of reproducibility both from laboratory-team technique and from possible inherent changes over time. The inclusive dates for generation of data for this study were 13 October, 1976, through 26 April, 1977.

Statistical Analyses

Descriptive statistics were obtained for all numerical variables. These included mean, standard error of the mean, and minimal and maximal values. Pearson correlation coefficients were obtained for every pair of variables within the three grouped sets, and for selected pairs of variables between the sets. Variables which showed correlation significantly different from zero were further analyzed using simple linear regression models to assess the predictive capabilities for one set of variables toward the other. For test-retest comparisons the Student's t-test was used. All computations were performed with the SAS statistical package of SAS Institute, Inc., Cary, North Carolina, using a significance level of alpha = 0.05 for each test of hypothesis.

RESULTS AND DISCUSSION

Archival Data

Values of test variables for each individual subject are tabulated (Appendix) by grouping according to type: subject descriptors, ambient conditions, medical and historical information, clinical measurements, LBNP and TMX stress protocol responses, and certain anomalous events (Tables I through VIII). Subject numbers provide positive identification to allow any interrelationship of individual subjects and variables.

Parallel tabulations of data from those 17 subjects who underwent two sequences of tests are given in Tables IX through XV. Note that each subset is ordered identically so that each two corresponding lines of data derive from the same subject (i.e., subject number 22 = subject number 142, etc.). Direct comparisons may be seen by the computed means and standard errors of the mean from each test set.

Systolic time intervals were measured at supine rest and during maximal stress with the LBNP protocol and in the supine position before and after exercise with the TMX protocol. The pre-ejection period/left ventricular ejection time (PEP/LVET or just STI) ratios with their corresponding instantaneous heart rates are listed for the two protocols in Tables XVI and XVII, respectively.

Table XVIII provides calculated percentage changes for four major measures of stress (both LBNP and TMX) at their maximal response values using the respective resting value as reference: heart rate, systolic and diastolic blood pressures, and the systolic time interval ratios.

Table XIX gives double products (heart rate multiplied by systolic blood pressure) calculated whenever data permitted in the supine, resting position both before LBNP and before TMX, at maximal LBNP and during quiet standing (before TMX), as soon as possible after the TMX maximal effort, and at 2 and at 5 minutes after TMX (both supine).

Missing data occur in several tables. Omissions in any given table are due to either of three factors: data not generated, not available, or unreadable.

Statistical Data

Tables A1, B1, and C1 present for descriptive, LBNP test, and TMX test variables, the number of subjects contributing valid data for that variable, overall mean values, the standard errors of the means, and minimal and maximal values for each variable. For the most part, variables are presented in these tables in the same order of descriptive, LBNP, and TMX data sets given in the archival tables for individual subjects.

Tables A2, B2, and C2 present correlations (linear regressions), together with slopes and intercepts, between all pairs within the respective groups of variables in Tables A1, B1, and C1 which met statistical significance.

Tables D and E likewise present additional similar correlations, together with slopes and intercepts, between LBNP and TMX test variables, respectively, paired with other descriptive variables, and meeting the same statistical significance.

Table F shows statistically significant correlations between selected TMX and LBNP test variables paired as indicated.

Table G displays number of subjects contributing data, means, standard errors of the means, and minimum-maximum ranges for double products taken at several states of the two stress protocols.

Table NWA (courtesy of Edward C. Moseley, Ph. D., Johnson Space Center, Houston, Texas) is a recent (ca. 1987) compilation of several pertinent descriptive variables from current women astronauts resident at the Johnson Space Center. These data are provided primarily to allow comparisons between present women astronauts and similar variables of this data base, originally generated in anticipation of their selection.

The marked similarities between current women astronauts and subjects of this study group tested over a decade earlier is This is evident from the considerable striking. correspondence between mean values of variables given for these astronauts and those same variables (see Tables A1 and C1) of the rather heterogeneous group of women employees at the Johnson Space Center who were the subjects of this study. It is remarkable since members of the study group were not so much selected as they were a volunteer sample of the women work force. That they so well represent, both physiologically and clinically, our present astronauts warrants use of this data base for comparisons with or projections to women exposed to the space environment.

Figures 1 through 6 show several statistically significant linear correlations among this subject group for pairs of variables reasonably expected to have shown such relationships (see also respective discussions below):

- 1. Heart rate at maximal treadmill exercise versus age
- 2. Peak oxygen uptake versus heart rate at maximal exercise
- 3. Peak oxygen uptake versus duration of exercise
- 4. Heart rates at maximal LBNP (-50 mm Hg) versus standing
- 5. Systolic blood pressures at maximal LBNP (-50 mm Hg) versus standing
- 6. Mean blood pressures at maximal LBNP (-50 mm Hg) versus standing.

The relatively large number of subjects contributing to these curves enhances the validity of their mathematical parameters.

Analytical Data and Findings

Repeatability of Test Measurements

Before attempting to understand the overall study results, an appreciation of the repeatability of test results under the circumstances of protocols used here is helpful (Tables IX through XV). This merges the inevitable variability of human subjects (a large component of this may be in the fact that no training or familiarization sessions preceded actual data taking tests), the inherent limits of hardware systems, certain variations or inconsistencies between different scientists and technicians who prepare and monitor subjects, and possible seasonal, training, and/or other factors which can introduce trend differences.

In general, descriptive and non-stressed data showed no change between the two mean values separated in time, even though individuals may have inexplicably large variations in measurements which can best be attributed to technique (e.g., height of subject 22 decreasing over 4 centimeters between her clinical measurement on 10 Dec 76 and that taken on her as subject 142 on 12 Apr 77; was it an error of converting to metric units; did she wear shoes, etc.?). Mean room

temperatures also did not differ significantly, but values for the winter months when internal heating prevailed tended to exceed those with more moderate outside weather.

Unfortunately, duplicate clinical blood/chemistry data were not often available and pulmonary function data were not repeated.

All mean heart rate and blood pressure values for the first LBNP test were higher than those of the second test. These, however, were statistically significant only for diastolic pressure readings and for the supine resting systolic values from the LBNP protocol. This may well be attributed to the general anxiety attendant a new, unknown experience encountered for the first time. None of the leg dimensional mean values differed between the two tests.

Like that for the LBNP protocol, supine resting systolic blood pressure taken at the first TMX test was significantly greater than that of the second test. Other blood pressure values between the two TMX tests showed no differences, probably due to the overriding effect of the metabolic stimulus of exercise which obscures a lesser effect of anxiety. On the other hand, several mean values from the TMX tests were greater for the second test; heart rate at the second minute of recovery from treadmill exercise, maximally achieved oxygen consumption and duration on the treadmill were significantly elevated. These may be attributed to gains from familiarization effects of the first test, both for the subjects as well as for the laboratory test team, resulting in a greater maximal volitional effort for the second test.

Specific Determinations

The descriptive information shown in Tables I, II, IX, X, and Al fully supports the assertion that the subjects of this study were normal, healthy, and reasonably representative of middle-aged active women (7,8,12,14,15,17,27,39,43,46,47). Of the 71 who were regularly menstruating, 31 (44%) were using oral contraceptives. One on oral contraceptives had highly irregular menstrual periods. Of the remaining 26, nine (35%) had begun or completed menopause and 17 (65%) had had hysterectomies.

At the outset of this study a concern had been voiced that women may evidence dissimilar orthostatic responses at different times in their menstrual cycle. This concern was supported by clinical alterations, both subjective and physiological, which might predispose to alter orthostatic intolerance. Mechanistically, with greatest fluid retention occurring premenstrually (38,42,44), maximal orthostatic tolerance would be predicted at this phase.

Thus, even though the design of this study was cross-sectional, it was reasoned that a large number of women tested at random in their menstrual cycles would reveal such a relationship if it

existed. A potential confounding of this thesis was the large number of regularly menstruating women using oral contraceptives (42).

In any case, no specific correlations of LBNP or TMX responses to phase of menstrual cycle (determined as the ratio of cycle day to cycle length for the time axis) were determined. Several studies since that time have demonstrated no differential responses of the cardiovascular system which would suggest functional or performance deficits due to phase of menstrual cycle (9,12,13,16,17,20,30,39,41,43). On the other hand, it is more likely that high levels of regular physical activity may affect and even disrupt the normal menstrual pattern (3,4,36).

Many of the statistical correlations in Table A2 are expected because of the interaction of the paired variables, but some more likely have physiological meaning: the known relationships of age, and the direct correspondence of height and weight with pulmonary function (especially vital capacity); the inverse associations of body surface area with triglycerides and of menstrual cycle length with diastolic blood pressure; and the direct relations between age and cholesterol (well described in medical literature), cholesterol and triglycerides, systolic blood pressure and triglycerides, and body surface area and clinical blood pressures. Some of these no doubt are related mechanistically, but others must await further knowledge for a rational explanation or may prove to be only coincidental random statistical artifacts.

Certain mean values from Tables B1, C1, and G warrant attention. The correspondence among orthostatic stressors usually depends upon the variable in question (32,33,49). As used with American space crews, LBNP at -50 mm Hg has most closely evoked heart rate elevations comparable to those observed in quiet standing when referenced to those in the supine position (22). These two independently applied stressors in this study have corroborated this contention for heart rates, 74 to 88 beats per minute for LBNP and 73 to 88 beats per minute for quiet standing. This degree of equivalence from 98 women subjects is truly remarkable.

Graphical presentation of these data (Figure 4) further clarifies this relationship. The slope is less than unity, although identical heart rates occurred at the mean values for both orthostatic stressors (during -50 mm Hg LBNP and during quiet standing). Therefore, subjects who exhibited intrinsically lower rates showed greater LBNP responses than standing; the converse was obtained for those with higher heart rates. Hence, different responses to these two stressors seem to be related to inherent or basal heart rate. Thus, individuals with lower heart rates, likely manifesting a relative dominance of parasympathetic control, seem more sensitive to LBNP, those with higher heart rates, presumably indicative of relative sympathetic dominance, appear more sensitive to gravitational

stress. An alternate way of stating this relationship is that the gain in heart rate for the gravitational gradient is greater than for LBNP.

Mean systolic blood pressure decreased from supine rest to (104 to 95 mm Hg) while it increased from supine maximal LBNP rest upon upright standing in one gravity (104 to 111 The corresponding diastolic values for LBNP were unchanged (67 mm Hg) but for gravity were elevated (67 to 74 mm Hg). This also resulted in differential orthostatic stressor responses the mean blood pressure: LBNP (slightly reduced from 79 to 76 mm Hg) and gravity (increased from 79 to 86 mm Hg). (See Figure 6). The disparity between blood pressure responses for these two stressors has previously been noted (22). Its explanation still elusive, but likely originates in differential stimulations of baroreceptors as well as varied regional distributions vascular volume (19). These qualitatively different pressure responses to two orthostatic stressors likely contribute to the similarity in the above described heart rate differentials and probably in part account for alleged excessive and sometimes adversely interpreted responses among more physically or aerobically fit individuals (See Tables Bi and C1 and Figure 5).

It may well be reasoned that the body would not respond with all its control systems identically to the stress of LBNP (a discretely applied differential pressure at the iliac crest) and to the stress of the gravitational vector (a smooth gradient from foot to head). Indeed, that the heart rate or any other variable (e. g., change in leg volume) should be so similar for the two orthostatic conditions is perhaps fortuitous. The similarity of such responses must result from integrative control mechanisms which have thereby provided a predictive tool in LBNP for testing human orthostatic tolerance in the absence of gravity.

The two other major components of cardiovascular dynamics, viz., blood flow and total peripheral resistance, were both unmeasured here. Cardiac output is known to fall in both situations, however, while peripheral resistance can be quite variable depending upon the vascular region studied (13,14,15,19).

Supine resting heart rate was inversely correlated with change in right leg volume, but directly and very highly with maximal heart rate attained during LBNP. Both systolic and diastolic supine and maximal during LBNP) blood pressures were directly correlated with maximal calf circumferences and left leg volume. These findings (Table B2) likely have multiple explanations, with from both acute control mechanisms contributions cardiovascular system and from more long term controls of fluid With relative sympathetic dominance (which would be volumes. expected to manifest in higher supine resting heart rate and higher blood pressures), a lesser increase in leg volume during LBNP might suggest increased (neural or endocrine) peripheral represent increased well It could as vascular tone. intravascular, or extracellular in general, volume. In reality, no single factor is likely the sole explanation for these

findings. The association of greater blood pressure values with larger leg size is consistent with a diminished peripheral compliance reflected within the vascular system. This also could have contributions both from elements which determine vascular wall tone and from factors controlling vascular volume.

Yet other measurements whose response is conditioned by several interdependent factors are the systolic time intervals. The most meaningful single measurement from these determinations probably the pre-ejection period/left ventricular ejection time ratio (PEP/LVET or STI ratio); it also removes heart rate dependency. The PEP is increased while the LVET is decreased by diminished preload; both are decreased by positive inotropic Again the supine resting ratios are quite comparable from both the LBNP and the TMX protocols (another form of repeated measures), 0.292 and 0.283, respectively. in response to the stressors, however, differ considerably; that during maximal LBNP increased to 0.419 while that immediately following maximal TMX effort increased, 0.306. Of course, the hyperdynamic state induced by exercise contributes to cardiac contraction an inotropic factor as well as cardioacceleration. No doubt there also considerably greater cardiac return during exercise compared to that during LBNP, when cardiac return is as compared greatly reduced. This results in decreased preload which is reflected in elevated PEP/LVET ratio (well correlated with the left ventricular ejection fraction) during LBNP (28).

A similarly conditioned variable is the double product. This measurement closely estimates the myocardial oxygen requirement (21). Table G shows again the good repeatability of supine resting mean values from both stressor protocols. However, the corresponding values for the respective stressed states differ notably; that for LBNP increased only 9 percent while that for TMX increased 28 percent. The active mechanism here is probably similar to that proposed above with respect to systolic time intervals. It is evident that this value for exercise is about three times greater than that evoked by orthostasis (LBNP or gravity).

Fully expected and here substantiated were the high direct correlation of maximally achieved TMX heart rate with oxygen consumption (Table C2) and the inverse correlation of that heart rate with age (Table E). An additional interrelated correlate was the duration of exercise, which agreed well with both maximal heart rate and peak oxygen consumption (Table C2).

Figures 1, 2, and 3 present these relationships graphically. In this well known age relationship (1), the women of this study wrote the nomogram for volitional maximal exercise heart rate equal to 207 - .78 x age. The relationship of oxygen uptake and heart rate is also described as the oxygen pulse. Here the gain is approximately one-fourth milliliter oxygen per kilogram body

weight per heart beat per minute. Augmentation of oxygen uptake with longer times of exercise reflects the greater metabolic load sustained by these more fit subjects.

Tables D and E list other variables from the total data set which correlated significantly with specific measurements generated during the two stressor protocols. Also expected and observed were the direct correlations of diastolic blood pressure with age and of the peak oxygen consumption with habitual level of exercise reported, and the inverse correlation of peak oxygen consumption with age.

CONCLUSIONS

This study has produced a large physiological data base generated from women representative in many attributes of current women astronauts. It has provided historical and clinical descriptive values for the population subset and their characteristic responses to two forms of orthostatic stress (lower body negative pressure and standing in one gravity) and to treadmill exercise stress, all of particular interest in the study of human responses to exposure to microgravity.

Results from this study warrant comparison with similar data from women astronauts who fly into space. These results may also serve as a useful reference for other ground based studies of women subjects which may use more advanced techniques and produce measurements not made in this study. The presentation of data in archival form allows subsequent evaluations not here entertained.

Findings determined from the present analyses, however, suggest that women will exhibit responses to microgravity little if any different from those of men, who were the focus of most earlier studies performed. Further, a hypothesized differential response of women to orthostatic stressors dependent upon the phase of their menstrual cycle was not substantiated.

APPENDIX

DATA TABLES AND FIGURES

The following tables contain data sets from all 98 subjects:

I	Subject and Test Descriptive Data
II	Subject and Test Historical Data
III	Blood and Pulmonary Test Data
IV	LBNP Test Heart Rate and Blood Pressure Data
V	LBNP Test Performance Data
VI	Treadmill Test Heart Rate and Oxygen Use Data
VII	Treadmill Test Blood Pressure Data
VIII	Anomalous Events during LBNP Tests

The following tables contain data sets from 17 subjects who underwent repeat tests (note that the same subject holds the same position in each subset; i.e., subject 22=142, subject 1=143,etc.):

IX	Subject and Test Descriptive Data
X	Subject and Test Historical Data
XI	Blood and Pulmonary Test Data
XII	LBNP Test Heart Rate and Blood Pressure Data
XIII	LBNP Test Performance Data
XIV	Treadmill Test Heart Rate and Oxygen Use Data
XV	Treadmill Test Blood Pressure Data

The following tables contain data sets from all 98 subjects:

XVI	LBNP Test Systolic Time Intervals
IIVX	Treadmill Test Systolic Time Intervals
XVIII	Selected LBNP and Treadmill Stress Test
	ResponsesPercentage Changes
XIX	Double Products

The following tables contain statistical data derived from selected individual sets above:

A1 A2	Summary Statistics of Descriptive Variables Significant Correlations between Descriptive Variables (p<0.05)
B1 B2	Summary Statistics of LBNP Test Variables Significant Correlations between LBNP Test Variables (p<0.05)
C1 C2	Summary Statistics of Treadmill Test Variables Significant Correlations between Treadmill Test Variables
D	Significant Correlations between LBNP Test Variables and Selected Descriptive Variables
E	Significant Correlations between Treadmill Test Variables and Selected Descriptive Variables
F	Selected Significant Correlations between Treadmill and LBNP Test Variables
G	Summary Statistics of Double Products

These data were furnished from the Johnson Space Center, Houston, Texas, and presented in tabular form:

NWA Selected Descriptive Statistics of NASA Women Astronauts

The following figures depict aspects of protocols used in this study:

- The LBNP protocol used in this study was the L same as that used in the Skylab experiment The method of multiple leg circumferences used V to measure leg volumes in this study The following figures provide graphical display of selected known relationships as they pertain to this particular subject group: Linear Correlation of Maximal Heart Rate 1 Attained during Treadmill Exercise versus Age Linear Correlation of Peak Oxygen Uptake 2 versus Maximal Heart Rate Attained during Treadmill Exercise Linear Correlation of Peak Oxygen Uptake 3 versus Duration of Treadmill Exercise Linear Correlation of Maximal Heart Rate 4 Attained during LBNP versus during Standing Linear Correlation of Systolic Blood Pressure
- Linear Correlation of Mean Blood Pressure at 6 Maximal LBNP versus Standing Mean Blood Pressure

Blood Pressure

at Maximal LBNP versus Standing Systolic

5

KEY TO ABBREVIATIONS FOR VARIABLES NAMED IN THE TABLES

DISCRETE VARIABLES

SUBJ = subject number T-oral = oral temperature (deg F) T-room = room temperature (deg F) BSA = body surface area (sq m) MENSTRUAL HISTORY = cycle day/cycle length (days); if none, PM = post-menopausal or HY = hysterectomy, followed by the number of years prior to testing for this event LIFESTYLE: smoke, 1=yes, 2=no; exercise, 1=inactive, 2=moderately active, 3=very active SLEEP TIME = hours of sleep during previous night EAT TIME = hours since subject last ate HGB = hemoglobin (qm %) HCRT = hematocrit (%) T-CHOL = total serum cholesterol (mg %) TRIG = serum triglycerides (mq %) FEV-1 = forced expiratory volume (L) in 1 second FVC = forced vital capacity (L) $FOF = FEV-1/FVC \times 100 (%)$ VC = vital capacity (L)

LBNP VARIABLES

HR-SUP = heart rate (bpm) following 5 min. supine, pre-LBNP HR-MAX = heart rate (bpm) at maximal LBNP S-CLIN = systolic blood pressure (mm Hg), sitting, from clinical records D-CLIN = diastolic blood pressure (mm Hg), sitting, from clinical records S-SUP = systolic blood pressure (mm Hg) after 5 min. supine rest D-SUP = diastolic blood pressure (mm Hg) after 5 min. supine rest S-MAX = systolic blood pressure (mm Hg) at -50 mm Hg (or maximal attained) LBNP D-MAX = diastolic blood pressure (mm Hg) at -50 mm Hg (or maximal attained) LBNP LCC = left calf circumference (cm) after 5 min supine RCC = right calf circumference (cm) after 5 min supine CHANGE LLV = % change in left leg volume from 0 to -50 mm Hg (or maximal attained) LBNP CHANGE RLV = % change in right leg volume from 0 to -50 mm Hg (or maximal attained) LBNP LLV = left leg volume (ml) at supine rest

TREADMILL VARIABLES

HR-SUP = heart rate (bpm) after 5 min. supine rest, pre-test HR-STN = heart rate (bpm) after 8 min. quiet standing, pre-test HR-HYV = heart rate (bpm) after 20 sec. hyperventilation HR-MAX = maximal heart rate (bpm) during treadmill test HR-R2 = heart rate (bpm) at 2 min. recovery HR-R5 = heart rate (bpm) at 5 min. recovery V-02 = peak oxygen uptake (ml/kg/min) during treadmill test DUR EXER = duration of exercise (min) on treadmill S-SUP = systolic blood pressure (mm Hg) after 5 min. supine rest, pre-test D-SUP = diastolic blood pressure (mm Hg) after 5 min. supine rest, pre-test S-STN = systolic blood pressure (mm Hg) after 8 min. quiet

standing, pre-test D-STN = diastolic blood pressure (mm Hg) after 8 min. quiet

standing, pre-test

S-MAX = systolic blood pressure (mm Hg) nearest maximal level of treadmill test

D-MAX = diastolic blood pressure (mm Hg) nearest maximal level of treadmill test

S-R2 = systolic blood pressure (mm Hg) at 2 min. recovery D-R2 = diastolic blood pressure (mm Hg) at 2 min. recovery

S-R5 = systolic blood pressure (mm Hg) at 5 min. recovery

D-R5 = diastolic blood pressure (mm Hg) at 5 min. recovery

ARRHYTHMIAS

PAC = premature atrial contraction PVC = premature ventricular contraction

SYSTOLIC TIME INTERVALS (STI) DATA

PEP/LVET (also STI) RATIO = pre-ejection period/left ventricular ejection time

HR-INST = heart rate (bpm), instantaneous, from the complex used for measuring STI

DOUBLE PRODUCT DATA

DPSUNP = supine, at rest prior to LBNP test DPSUTM = supine, at rest prior to TMX test DPLBNP = at maximal level of LBNP attained DPSTN = standing, at rest prior to TMX test DPTMX = at maximal level of TMX exercise DP2 = at 2 minutes after maximal level of TMX exercise DP5 = at 5 minutes after maximal level of TMX exercise

TABLE I SUBJECT AND TEST DESCRIPTIVE DATA

1 130ct76 25 163.0 46.7 98.2 74.0 1. 4 8Nov76 25 163.0 55.8 98.6 71.0 1. 5 12Nov76 48 172.0 62.6 98.0 70.0 1. 6 19Nov76 24 163.0 48.5 98.0 73.0 1. 7 22Nov76 36 166.0 61.7 98.2 71.0 1. 8 23Nov76 22 156.0 46.3 98.2 71.0 1. 9 24Nov76 35 163.0 59.0 98.4 72.0 1. 15 2Dec76 24 165.0 56.2 98.4 1. 16 3Dec76 36 163.0 57.2 98.2 74.0 1. 18 6Dec76 24 158.0 47.6 98.2 75.0 1. 19 7Dec76 35 163.0 49.9 98.0 74.0 1. 20 8Dec76 45 173.0 59.0 98.2 74.0 1. 21 9Dec76 22 158.0 74.8 98.4 75.0 1. 23 13Dec76 37 165.0 54.4 98.2 67.0 1. 24 14Dec76 23 165.0 54.0 97.8 73.0 1. 25 15Dec76 27 158.0 46.3 97.8 73.0 1.	SSA I m
4 8Nov76 25 163.0 55.8 98.6 71.0 1. 5 12Nov76 48 172.0 62.6 98.0 70.0 1. 6 19Nov76 24 163.0 48.5 98.0 73.0 1. 7 22Nov76 36 166.0 61.7 98.2 71.0 1. 8 23Nov76 22 156.0 46.3 98.2 71.0 1. 9 24Nov76 35 163.0 59.0 98.4 72.0 1. 15 2Dec76 24 165.0 56.2 98.4 1. 16 3Dec76 36 163.0 57.2 98.2 74.0 1. 18 6Dec76 24 158.0 47.6 98.2 75.0 1. 19 7Dec76 35 163.0 49.9 98.0 74.0 1. 20 8Dec76 45 173.0 59.0 98.2 74.0 1. 21 9Dec76 22 158.0 74.8 98.4 75.0 1. 23 13Dec76 37 165.0 54.4 98.2 67.0 1. 24 14Dec76 23 165.0 54.0 97.8 73.0 1.	4.0
5 12Nov76 48 172.0 62.6 98.0 70.0 1. 6 19Nov76 24 163.0 48.5 98.0 73.0 1. 7 22Nov76 36 166.0 61.7 98.2 71.0 1. 8 23Nov76 22 156.0 46.3 98.2 71.0 1. 9 24Nov76 35 163.0 59.0 98.4 72.0 1. 15 2Dec76 24 165.0 56.2 98.4 1. 16 3Dec76 36 163.0 57.2 98.2 74.0 1. 18 6Dec76 24 158.0 47.6 98.2 75.0 1. 19 7Dec76 35 163.0 49.9 98.0 74.0 1. 20 8Dec76 45 173.0 59.0 98.2 74.0 1. 21 9Dec76 22 158.0 74.8 98.4 75.0 1. 23 13Dec76 37 165.0 54.4 <td< td=""><td></td></td<>	
6 19Nov76 24 163.0 48.5 98.0 73.0 1.7 22Nov76 36 166.0 61.7 98.2 71.0 1.8 23Nov76 22 156.0 46.3 98.2 71.0 1.9 24Nov76 35 163.0 59.0 98.4 72.0 1.15 2Dec76 24 165.0 56.2 98.4 1.16 3Dec76 36 163.0 57.2 98.2 74.0 1.18 6Dec76 24 158.0 47.6 98.2 75.0 1.19 7Dec76 35 163.0 49.9 98.0 74.0 1.19 7Dec76 35 163.0 49.9 98.0 74.0 1.20 8Dec76 45 173.0 59.0 98.2 74.0 1.21 9Dec76 22 158.0 74.8 98.4 75.0 1.23 13Dec76 37 165.0 54.4 98.2 67.0 1.24 14Dec76 23 165.0 54.0 97.8 73.0 1.	
7	
8 23Nov76 22 156.0 46.3 98.2 71.0 1. 9 24Nov76 35 163.0 59.0 98.4 72.0 1. 15 2Dec76 24 165.0 56.2 98.4 1. 16 3Dec76 36 163.0 57.2 98.2 74.0 1. 18 6Dec76 24 158.0 47.6 98.2 75.0 1. 19 7Dec76 35 163.0 49.9 98.0 74.0 1. 20 8Dec76 45 173.0 59.0 98.2 74.0 1. 21 9Dec76 22 158.0 74.8 98.4 75.0 1. 23 13Dec76 37 165.0 54.4 98.2 67.0 1. 24 14Dec76 23 165.0 54.0 97.8 73.0 1.	
9 24Nov76 35 163.0 59.0 98.4 72.0 1. 15 2Dec76 24 165.0 56.2 98.4 1. 16 3Dec76 36 163.0 57.2 98.2 74.0 1. 18 6Dec76 24 158.0 47.6 98.2 75.0 1. 19 7Dec76 35 163.0 49.9 98.0 74.0 1. 20 8Dec76 45 173.0 59.0 98.2 74.0 1. 21 9Dec76 22 158.0 74.8 98.4 75.0 1. 23 13Dec76 37 165.0 54.4 98.2 67.0 1. 24 14Dec76 23 165.0 54.0 97.8 73.0 1.	
15 2Dec76 24 165.0 56.2 98.4 1. 16 3Dec76 36 163.0 57.2 98.2 74.0 1. 18 6Dec76 24 158.0 47.6 98.2 75.0 1. 19 7Dec76 35 163.0 49.9 98.0 74.0 1. 20 8Dec76 45 173.0 59.0 98.2 74.0 1. 21 9Dec76 22 158.0 74.8 98.4 75.0 1. 23 13Dec76 37 165.0 54.4 98.2 67.0 1. 24 14Dec76 23 165.0 54.0 97.8 73.0 1.	
16 3Dec76 36 163.0 57.2 98.2 74.0 1. 18 6Dec76 24 158.0 47.6 98.2 75.0 1. 19 7Dec76 35 163.0 49.9 98.0 74.0 1. 20 8Dec76 45 173.0 59.0 98.2 74.0 1. 21 9Dec76 22 158.0 74.8 98.4 75.0 1. 23 13Dec76 37 165.0 54.4 98.2 67.0 1. 24 14Dec76 23 165.0 54.0 97.8 73.0 1.	
18 6Dec76 24 158.0 47.6 98.2 75.0 1. 19 7Dec76 35 163.0 49.9 98.0 74.0 1. 20 8Dec76 45 173.0 59.0 98.2 74.0 1. 21 9Dec76 22 158.0 74.8 98.4 75.0 1. 23 13Dec76 37 165.0 54.4 98.2 67.0 1. 24 14Dec76 23 165.0 54.0 97.8 73.0 1.	
19 7Dec76 35 163.0 49.9 98.0 74.0 1. 20 8Dec76 45 173.0 59.0 98.2 74.0 1. 21 9Dec76 22 158.0 74.8 98.4 75.0 1. 23 13Dec76 37 165.0 54.4 98.2 67.0 1. 24 14Dec76 23 165.0 54.0 97.8 73.0 1.	
20 8Dec76 45 173.0 59.0 98.2 74.0 1. 21 9Dec76 22 158.0 74.8 98.4 75.0 1. 23 13Dec76 37 165.0 54.4 98.2 67.0 1. 24 14Dec76 23 165.0 54.0 97.8 73.0 1.	
21 9Dec76 22 158.0 74.8 98.4 75.0 1. 23 13Dec76 37 165.0 54.4 98.2 67.0 1. 24 14Dec76 23 165.0 54.0 97.8 73.0 1.	
23 13Dec76 37 165.0 54.4 98.2 67.0 1. 24 14Dec76 23 165.0 54.0 97.8 73.0 1.	
24 14Dec76 23 165.0 54.0 97.8 73.0 1.	
	41
	60
	50
	77
29 21Dec76 24 160.0 45.4 97.6 71.0 1.	
	69
43 13Jan77 24 158.0 47.2 99.6 73.0 1.4 48 14Jan77 23 167.0 57.3 98.4 74.0 1.6	
49 17Jan77 46 170.0 67.3 98.0 74.0 1.7 50 18Jan77 30 168.0 55.5 98.0 72.0 1.0	
51 19Jan77 29 165.0 54.4 97.8 73.0 1.5	
52 20Jan77 32 169.0 76.5 97.8 74.0 1.8	
53 21Jan77 24 169.0 60.0 98.4 75.0 1.8	
54 24Jan77 31 168.0 61.2 98.2 72.0 1.6	
56 25Jan77 52 175.0 71.7 98.6 75.0 1.8	
57 26Jan77 42 170.7 53.8 98.0 74.0 1.6	
58 27Jan77 25 170.2 65.3 98.2 76.0 1.3	
59 28Jan77 44 167.0 57.9 97.8 74.0 1.6	
60 31Jan77 46 157.4 76.4 97.8 67.0 1.7	
61 1Feb77 58 158.7 59.1 97.8 69.0 1.6	
62 2Feb77 31 169.0 56.0 98.4 1.6	
63 3Feb77 23 170.7 62.3 98.0 72.0 1.7	
64 3Feb77 24 172.7 59.4 98.6 73.0 1.7	
65 4Feb77 55 170.2 66.2 98.0 71.0 1.7	
66 4Feb77 29 166.0 68.0 98.6 73.0 1.7	
67 7Feb77 55 166.2 68.4 98.0 71.0 1.7	
68 7Feb77 34 164.4 65.1 98.0 74.0 1.7	

TABLE I SUBJECT AND TEST DESCRIPTIVE DATA

					*		
SUBJ	TEST DATE	AGE	HEIGHT	WEIGHT	T-oral	T-room	BSA
		years	cm	kg	deg F	deg F	sq m
	^ ·		400.0	44 0	27.0	7 2.0	1 70
69	8Feb77	52	180.0	61.9	97.8	73.0	1.79
70	9Feb77	36	165.0	57.6	98.2	72.0	1.63
72	10Feb77	26	159.0	70.4	97.8	72.0	1.73
73	11Feb77	32	162.3	63.2	97.8	73.0	1.68
74	14Feb77	23	174.8	66.3	98.0	72.0	1.80
75	15Feb77	38	173.2	67.4	98.6	70.0	1.81
76	15Feb77	43	161.3	61.9	98.0	73.0	1.65
77	16Feb77	31	162.3	52.4	98.0	69.0	1.55
78	16Feb77	29	162.2	53.3	98.0	73.0	1.56
80	18Feb77	29	161.2	60.6	98.0	71.0	1.64
81	18Feb77	30	163.6	63.3	98.2	73.0	1.69
83	22Feb77	46	166.8	71.8	98.0	72.0	1.80
84	22Feb77	41	166.3	60.6	98.2	73.0	1.68
85	23Feb77	47	165.3	59.2	98.4	72.0	1.65
86	24Feb77	25	167.1	56.7	97.8	71.0	1.63
87	24Feb77	26	165.5	63.7	98.6	73.0	1.71
88	25Feb77	31	172.5	67.1	98.0	72.0	1.80
90	28Feb77	42	165.0	49.1	97.8	71.0	1.52
91	28Feb77	30	159.0	53.6	97.6	73.0	1.54
92	1Mar77	41	163.4	53.4	97.8	72.0	1.57
93	1Mar77	21	167.7	53.6	97.8	75.0	1.60
94	2Mar77	52	155.0	54.2	97.6	73.0	1.52
96	3Mar77	20	162.1	47.6	98.0	74.0	1.48
97	3Mar77	37	168.8	61.2	98.4	75.0	1.70
98	4Mar77	32	170.6	54.8	97.8	70.0	1.64
100	8Mar77	50	164.9	50.3	97.8	72.0	1.54
101	9Mar77	34	160.3	62.7	97.8	71.0	1.65
102	9Mar77	31	169.6	71.4	98.0	73.0	1.82
107	15Mar77	33	163.6	52.6	97.8	71.0	1.56
108	15Mar77	26	154.2	48.7	97.8	74.0	1.45
109	16Mar77	47	164.7	54.9	98.2	72.0	1.60
110	16Mar77	29	167.2	53.5	98.0	73.0	1.60
111	17Mar77	42	176.8	68.5	98.4	71.0	1.84
112	18Mar77	38	167.3	73.1	98.2	72.0	1.82
113	18Mar77	44	172.5	63.8	97.8	78.0	1.76
115	22Mar77	39	157.5	59.5	97.9	72.0	1.60
116	23Mar77	23	160.0	71.0	98.6	71.0	1.74
117	24Mar77	34	165.1	84.3	98.2	72.0	1.92
118	29Mar77	25	170.0	80.3	98.2	72.5	1.92
123	30Mar77	30	170.0	75.5	97.8	72.5	1.87
124	30Mar77	25	155.8	66.2	98.4	74.0	1.66
127	30Mar77	25	155.0	55.3	98.8	75.5	1.53
144	14Apr77	57	165.0	58.1	97.8	71.5	1.64
146	15Apr77	47	166.5	57.1	97.8	70.0	1.63
147	15Apr77	39	170.2	75.5	97.8	72.0	1.87
153	21Apr77	37	166.0	60.6	97.4	72.5	1.67
155	22Apr77	40	166.0	67.3	98.6	70.0	1.75
156	25Apr77	26	163.0	51.6	97.8	72.0	1.54
158	26Apr77	29	165.0	61.0	97.4	73.0	1.67

TABLE II SUBJECT AND TEST HISTORICAL DATA

SUBJ MENSTRUAL HISTORY MEDICATIONS LIFE STYLE Cycle day/length/none smoke exer	•
1 25 28	8.5 12.0
4 6 28 oral contrac 2 1	
5 PM-2 1 3	
6 11 28 2 2	
7 HY-2 estrogen 1 1	
8 14 28 2 2	
9 21 30 1 3	
9 21 30 1 3 15 16 30 2 1	
16 5 30 1 1	
18 7 28 oral contrac 2 2	
19 12 30 2 1	
20 PM-1.5 2 1	
21 30 31 1	6.5 10.5
23 14 30 1 2	
24 11 30 2 2	
25 18 30 2 1	
26 14 30 2	9.0 14.0
27 PM-5 1 1	7.0 1.5
28 14 30 1 2	
29 14 30 oral contrac 2 1 31 10 21 2 1	8.0 13.0 6.0 15.0
31 10 21 2 1 32 11 30 oral contrac 2	6.0 15.0 7.0 14.0
33 14 30 Graf Contrac 2	7.0 14.0
34 33 35 1 2	7.0 3.0
35 PM-10 1 2	7.5 13.0
36 28 30 1 2	6.5 16.0
38 HY-6 1 2	8.0 12.0
41 4 30 oral contrac 1 2	9.0 13.5
43 5 28 oral contrac 2 3	5.5 1.5
48 27 28 oral contrac 1 1	7.0 12.0
49 HY-5.5 2 1	6.5 12.0
50 21 28 oral contrac 2 1	7.0 15.0
51 7 30 2 2	6.0 2.0
52 HY-0.3 2 2	8.0 14.0
53 90 ? oral contrac 1 2	5.0 9.5
54 20 28 oral contrac 1 2	7.5 12.5
56 PM-7 1 1	8.0 12.0
57 19 31 1 2 58 4 28 oral contrac 1 2 59 18 31 2 1	6.0 13.0
58 4 28 oral contrac 1 2	7.5 15.0
59 18 31 2 1 60 12 28 1 2	7.0 2.5
	5.0 12.5
61 HY-17 estrogen 1 2 62 14 31 oral contrac 1 3	6.5 2.0 7.5 2.3
62 14 31 oral contrac 1 3 63 21 28 oral contrac 2 2	
63 21 28 oral contrac 2 2 64 14 28 oral contrac 2 1	8.0 13.0 6.0 11.0
65 4 28 estrogen 2 3	8.0 12.5
63 21 28 oral contrac 2 2 64 14 28 oral contrac 2 1 65 4 28 estrogen 2 3 66 1 28 oral contrac 2 2 67 PM-3 2 3	7.7
67 PM-3 2 3	8.0 15.0 8.0 2.5

TABLE II SUBJECT AND TEST HISTORICAL DATA

SUBJ	MENSTRUAL Cycle day/l		STORY h/none	MEDICAT1	ONS	LIFE smoke	STYLE exer	SLEEP/ Hours	EAT TIME Hours
69			HY-9	estrogen		ļ	2	6.0	7.0
70	13	28		J -		i	2	6.0	2.0
72	14	28		oral cont	rac	2	2	8.0	18.0
73	7	25				2	1	8.0	14.0
74	10	28		oral cont	rac	1	2	12.0	12.0
75	23	26				2	2	7.0	1.0
76	9	28				1	2 3	7.0	2.0
77	14	28		thyroid		1	2	6.0	13.0
78	3	28				2	1	7.0	21.0
80	25	28		oral cont		2	2	8.0	13.5
81	16	28		oral cont	rac	2	1	8.0	11.0
83			HY-7	estrogen		2		7.0	11.0
84	19	28				2	3	7.5	2.5
85			HY-16	estrogen		2	2	6.5	3.0
86	3	28		oral cont	rac	2	3	8.5	12.5
87	7	28				1	2	7.5	15.0
88	21	28	10			2	2	8.0	13.5
90			HY-12	estrogen		1	0	6.0	2.0
91	14	28	****	oral cont	rac	1	2	11.0	19.0
92	1.4	0.0	HY-3	1		2	2	8.0 8.0	14.5 14.0
93	14	28	PM-5	oral cont	rac	2 1	3	7.0	2.5
94 96	11	21	PM-5	estrogen oral cont	~~~	2	1 1	7.0	14.0
96 97	11	21	HY-7	thyroid	rac	2	1	7.0	3.5
98	12	28	ni-/	oral cont	rac	2	3	7.5	12.5
100	12	20	HY-2	estrogen	Lac	2	2	6.0	2.5
101			HY-2	estrogen		1	2	6.5	13.0
102				Sestrogen		1	3	6.5	14.0
107	14	32	111 0.	occuração.		ī	2	6.0	11.0
108	15	32				2	1	5.5	15.5
109		~-	PM-0.2	2		1	1	6.0	14.0
110	16	28		oral cont	rac	1	2	8.0	14.5
111	-	_	HY-?	thyroid		2	1	6.5	12.0
112	11	28		-		2	1	6.0	2.5
113			HY-5	estrogen		2	1	7.5	14.5
115	8	28		oral cont	rac	1	1	8.0	14.0
116	14	28		oral cont	rac	2	2	8.5	14.0
117	7	28				2	1	9.0	12.0
118	5	28				2	3	8.0	1.0
123	24	28		OC, thyro		1	2	8.0	1.0
124	24	28		oral cont		2	2	8.0	1.0
127	15	28		oral cont	rac	2	2	8.0	19.0
144			PM-?			2	2	6.5	11.0
146			HY-3	estrogen		1	2	7.0	11.0
147	14	29				1	_	6.0	11.0
153	12	28		oral cont	rac	2 2	2	7.5	12.0
155 156	23	28				1	2	7.5 7.0	2.0 13.5
156 158	10 22	40 29				1	3 2	7.0	3.0
100	44	43				_	4	7.5	J. 0

TABLE III BLOG	DIA DC	PULMONARY	TEST	DATA
----------------	--------	-----------	------	------

SUBJ	HGB	HCRT	T-CHOL	TRIG	FEV-1	FVC	FOF	VC
	gm %	8	mg %	mg %	L	L	8	L
1	13.1	39	175	116	3.10	3.61	85	3.39
4	15.4	46	182	113	3.18	3.25	97	2.92
5	13.7	41	256	117	0.12	0.1_0		
6	14.0	41	247	59	3.08	3.52	87	3.55
7	14.0	44	181	63	2.59	2.98	86	2.65
8	13.3	40	185	56	3.37	3.84	87	2.96
9	13.4	40	149	63	3.25	3.88	83	3.67
15	12.5	40	215	78	3.25		89	3.67
16	12.9	39	267	86	3.23	3.03	0,5	3.07
18	11.9	38	180	87	2.04	2.35	86	3.39
19	12.1	38	227	43	2.04	2.33	00	3.39
		32	175	52	3.57	3.88	92	3.78
20 21	10.1 12.9	32	147	108	2.16	2.63	82	2.53
				65	2.16	3.25	88	2.89
23	13.1	40	149				92	3.78
24	13.2	40	163 226	51 61	3.76		92 94	2.69
25 26	12.3 12.4	38 38	160	44	2.55 2.74		88	3.00
26 27	13.4	41	150	100	2.14	3.10	00	3.00
28	13.4	41	165	95	2.86	3.37	84	3.20
29	14.3	44	267	107	3.33	3.68	90	3.55
31	14.3	43	117	48	3.72	4.59	81	4.33
32	11.6	36	260	107	3.45	4.16	82	4.02
33	13.7	41	239	93	2.63	3.33	78	3.43
34	15.0	44	167	5 4	3.57	4.19	85	3.90
35	13.0	40	187	80	2.63	3.41	77	3.28
36	12.2	39	268	107	3.06	3.88	7.8	3.90
38	13.3	42	185	45	2.55	2.98	85	2.81
41	12.4	37	153	86	2.63	3.53	74	3.59
43	12.2	37	229	71	3.61	3.72	97	3.59
48	13.0	40	231	104	3.25	3.88	83	3.28
49	14.1	43	288	117	2.35	3.14	74	4.25
50	13.9	42	218	105	3.49	3.61	96	3.43
51	13.5	39	164	70	2.74	3.10	88	3.08
52	13.8	42	203	128	3.80	5.25	72	5.15
53	12.8	39	240	115	3.06	3.41	89	3.67
54	13.8	43	193	96	3.06	3.68	83	4.06
56	12.9	40	228	53	2.59	5.10	50	5.31
57	13.2	40	232	70	3.33	4.47	74	4.45
58	12.8	40	206	136	3.18	3.72	85	3.47
59	12.7	38	191	52	3.02	4.04	74	3.78
60	12.2	38	199	105	2.27	2.98	76	2.81
61	12.3	39	185	173	1.80	2.63	68	2.38
62	13.5	40	177	82	3.21	3.61	88	3.32
63	10.7	34	174	81	3.10	4.16	74	4.06
64	12.2	38	188	69	2.51	2.78	90	3.59
65	11.9	35	232	89	3.21	3.45	93	3.39
66	13.5	42	217	81	2.98	3.88	76	3.47
67	13.1	40	297	79	2.90	3.76	77	3.59
68	12.8	39	223	43	2.04	2.39	85	3.35
00		.						

TABLE III BLOOD AND PULMONARY TEST DATA

IAD	TE TIT		DECOD MID	1 01110111	11(1 1201			
SUBJ	HGB	HCRT	T-CHOL	TRIG	FEV-1	FVC	FOF	VC
2000	dw &	8	mg %	mg %	L	L	ક	L
	9 0	•	·9 ·	5				
69	13.9	42	258	119	2.98	4.23	70	3.86
70	12.6	40	199	62	3.41	4.00	85	3.98
72	10.8	35	204	122	2.67	3.02	88	2.38
73	13.6	43	226	160	3.49	3.72	93	3.59
74	11.5	36	195	70	3.37	3.80	88	3.55
75	13.6	41	154	65	3.76	4.55	82	4.53
76	12.0	38	210	37	2.82	3.76	75	3.59
77	15.3	45	197	63	3.57	3.88	92	3.78
78	13.5	42	238	50	2.70	3.21	84	3.12
80	12.5	39	289	140	3.33	3.68	90	3.75
81	12.3	28	170	103	3.25	3.68	88	3.63
83	13.1	40	220	139	2.94	3.49	84	3.51
84	11.6	34	159	68	3.33	3.72	89	3.59
85	11.4	36	290	68	2.70	3.37	80	3.20
86	13.4	40	188	126	2.90	3.80	76	3.63
87	13.8	42	147	45	3.41	4.35	78	4.33
88	15.2	44	181	89	0.00	0.04	7.4	0 72
90	13.2	41	289	39	2.20	2.94	74	2.73
91	13.2	40	277	91	2.74	3.45	79	3.28 2.77
92	12.7	40	203	80	2.27	2.82	80	3.82
93	14.2	44	192	54	3.53	4.04	87 76	2.46
94	13.8	42	254	198	1.96	2.55 3.92	81	3.43
96	13.4	40	184	67 65	3.21 2.98	4.00	7 4	3.43
97	14.5	45	242	65 83	4.16	4.39	94	4.41
98	14.3	44	248 244	97	2.74	3.57	7 6	3.39
100	14.1	42 40	244	58	3.41	4.59	74	4.06
101	13.2	33	145	75	3.21	4.19	76	4.06
102 107	10.5 13.0	39	223	64	2.63	3.45	76	3.32
107	11.9	36	199	42	2.74	2.94	93	2.73
109	12.7	40	288	77	2.90	3.88	74	3.67
110	11.7	37	166	85	3.72	3.92	94	3.71
111	14.2	44	178	57	3.80	4.66	81	4.45
112	11.9	36	179	160	3.41	3.70	90	3.20
113	12.3	38	207	86	3.76	4.70	80	4.57
115	12.6	38	288	184	2.94	3.61	81	3.47
116	13.1	40	158	97	3.25	4.12	78	4.02
117	14.1	43	234	106	3.57	4.16	85	4.02
118	13.3	40	245	141	4.08	4.47	91	4.33
123	13.3	42	261	167	3.25	3.88	83	3.67
124	13.5	42	207	92	2.98	3.53	84	3.28
127	13.5	42	169	126	2.86	3.49	81	3.35
144	13.2	41	214	144	2.16	3.37	64	3.43
146	11.9	37	179	108	2.78	3.37	82	3.28
147	12.9	39	252	73	3.41	4.23	80	3.98
153	13.4	40	180	77	3.18	3.88	81	3.67
155	12.8	39	223	72	3.02	4.12	73	3.86
156	12.0	37	160	39	3.53	4.00	88	3.78
158	12.8	40	212	89	3.37	4.12	81	3.82

TABLE IV LBNP TEST HEART RATE AND BLOOD PRESSURE DATA

SUBJ	HR-SUP	HR-MAX	S-CLIN	D-CLIN	S-SUP	D-SUP	S-MAX	D-MAX
	bpm	ppm	mm Hg	mm Hg	mm Hg	mm Hg	mm Hg	mm Hg
1	77	86	103	66	99	62	97	63
4	86	106			116	86	106	84
5 6	71	79	103	58	89	58	93	63,
6	90	103	108	60	104	58	111	71
7	76	85	135	68	126	88	111	84
8	80	105	111	67	107	77	95	66
9	73	88	106	60	100	68	100	71
15	69	93	94	65	86	61	77	61
16	70	86	90	70	87	60	103	73
18	78	112	102	52	91	52	80	51
19	93	112	110	70	104	72	98	74
20	54	61	99	72	97	72	96	73
21	70	88	104	74	108	73	101	73
23	63 70	70	98	60	95	66	95	70
24	78 05	82	102	62	96	56	72	54
25 26	95 74	105	110	70	109	55	103	57
26 27	74 05	89	101	81	98	77	95	71
28	85 73	96	95 105	60	99	65	97	68
29	80	95 108	105	70	105	65	94	68
31	88	99	110	70	108	66	98	61
32	87	107	110 120	80	114	72	95	69
33	75	97	80	70	109	68	103	72
34	74	94	95	55 65	84	55	76	56
35	63	73	125	65 80	90	54	81	55
36	55	60	95	80 60	115	75 50	103	75 60
38	73	80	115	80	96	59	97 04	63
41	62	76	95	60	99 96	77 52	94	71
43	86	101	118	80	117	73	85 100	48
48	54	70	80	55	83	51	76	67 52
49	72	74	120	80	118	79	113	52 79
50	96	103	120	85	118	77	107	73 73
51	74	88	100	75	94	57	89	73 71
52	83	98	118	90	119	79	109	82
53	84	101	120	80	116	81	100	76
54	76	87	110	76	100	59	91	60
56	77	95	100	75	87	62	76	65
57	81	97	95	70	93	68	92	68
58	70	88	104	70	105	69	98	71
59	72	79	105	70	106	72	97	73
60	67	67	120	80	113	80	113	86
61	79	79	120	80	113	89	111	77
62	74	74	98	70	94	56	91	59
63	76	82	110	80	104	67	99	67
64	91	117	105	75	105	64	97	66
65	60	60	140	90	137	91	131	93
66	71	83	120	80	113	82	108	84
67	59	72	110	80	97	73	93	70
68	72	91	90	60	93	63	83	67

TABLE IV LBNP TEST HEART RATE AND BLOOD PRESSURE DATA

			a at the	D CLIM	S-SUP	D-SUP	S-MAX	D-MAX
SUBJ	HR-SUP	HR-MAX	S-CLIN mm Hg	D-CLIN mm Hg	mm Hg	mm Hg	mm Hg	mm Hg
	ppm	ppm	nan 119	111111111111111111111111111111111111111	9			3
69	. 57	64	150	85	89	70	96	74
70	72	76	108	70	99	72	96	71
72	69	89	108	60	96	67	85	71
73	78	87	95	70	88	61	82	60
74	65	80	120	80	122	83	107	79
75	84	101	105	80	102	66	92	65
76	69	81	115	78	102	70	102	79
77	88	94	110	80	110	72	100	67
78	73	99	98	75	84	61	82	62
80	81	87	108	78	112	73	106	73
81	77	90	104	70	102	64	95	63
83	79	86	140	85	128	79	117	81
84	102	120	130	75	118	73	115	79
85	76	77	120	80	104	71	119	67
86	84	125	100	68	97	59	88	56
87	69	85	107	70	103	70	94	71
88	71	74	110	64	113	70	102	60
90	65	69	105	70	94	60	88	62
91	71	88	98	65	94	58	79	60
92	62	68	120	70	96	74	96	73
93	62	82	102	84	102	63	100	71
94	70	76	116	72	117	75	110	69
96	88	118	100	70	103	65	82	59
97	67	82	98	70	91	63	91	69
98	64	77	100	66	101	54	93	55
100	53	77	80	60	78	59	66	52
101	64	74	100	70	93	65	92	72
102	67	78	115	80	95	72	94	74
107	73	78	82	58	85	54	83	62
108	74	94	95	60	90	60	88	65
109	79	98	105	70	101	66	90	63
110	85	106	90	55	100	56	105	64
111	95	105	95	60	98	55	91	58
112	65	70	110	70	118	73	104	70
113	64	74	98	70	100	58	102	67
115	72	86	130	80	119	79	113	82
116	64	72	88	60	86	55	80	58
117	75	103	110	70	104	71	93	75
118	88	107	110	70	102	70	93	73
123	65	70	100	60	103	57	96	57
124	95	110	105	65	105	62	82	53
127	82	85	88	50	91	47	78	43
144	79	106	118	70	114	67	109	71
146	63	72	100	60	92	71	81	60
147	69	91	98	65	101	67	87	62
153	62	71	95	60	87	59	80	59
155	80	98	105	75	105	69	102	73 63
156	61	90	_	- -	92	58	87	63 64
158	66	79	95	68	89	61	82	64

	TABLE V	LBNP TES	T PERFORMAN	CE DATA	
SUBJ	LCC cm	RCC C	HANGE LLV %	CHANGE RLV %	LLV ml
14567895681312222222222333333344490123467890	LCC cm 31.6 32.4 36.1 31.5 32.3 31.1 33.5 32.3 31.3 32.3 32	RCC cm 31.2 33.0 37.0 32.1 31.6 34.4 34.1 32.8 34.0 32.7 38.8 31.7 29.2 31.3 36.3 31.5 36.3 37.7 38.8 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6	HANGE LLV	CHANGE RLV	
61 62 63 64 65 66	32.2 32.3 33.4 33.1 36.2 37.0 36.2	33.0 31.2 32.7 34.5 36.8 36.2 36.3	2.6 5.5 1.2 .9 1.5 2.9 1.1	1.7 1.9 1.3 1.0 2.0 1.6 2.4	6132 7140 7795 7090 7301 8960 7695
68	34.6	35.4	.6	.5	7969

TABLE 4 DENT THE THE CIVIANCE DA	TABLE V	LBNP	TEST	PERFORMANCE	DATA
----------------------------------	---------	------	------	-------------	------

SUBJ	LCC	RCC cm	CHANGE LLV	CHANGE RLV %	LLV ml
SUBJ 69 772 776 777 78 81 83 84 85 86 87 89 91 92 94 96 97 101 102 107 108 109 111 112 113 115	33.4 33.1 33.1 33.1 33.1 33.1 33.1 33.1	33.0 32.5 37.3 33.3 35.7 36.4 33.4 34.0 35.0 36.8 36.4 35.1 30.7 32.8 33.7 32.8 33.7 32.8 33.7 32.8 33.7 32.8 33.7 32.8 33.7 32.8 33.7 32.8 33.7 32.8 33.7 32.8 33.7 32.8 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33	% 1.5 .8 .4 .4 .6 1.4 2.6 91.0 2.8 1.4 21.2 1.5 21.7 1.4 1.7 1.8 8 93 1.0 1.7 2.0 1.3 1.1	<pre>% 1.2 1.4 1.0 1.5 1.7 1.1 1.9 1.0 1.1 1.9 1.8 1.0 1.1 2.5 1.0 2.1 1.0 2.1 1.0 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7</pre>	ml 7319 7194 7665 7049 8457 8900 8306 6232 7474 8910 77521 8392 8520 6391 6413 6571 6361 8011 65582 7094 10083 5357 6908 8778 9128 7556
	33.4 33.4 33.4 38.3	34.0 34.5 37.9	2.1 1.6 1.7	1.3 1.7 2.3	7556 8218 7320 9012
118 123 124 127 144 146 147 153 155	41.2 35.5 36.0 31.6 31.3 32.6 37.8 33.0 37.0	41.9 35.0 35.5 31.4 31.6 33.1 38.3 32.6 36.5	.9 1.4 .3 2.3 .9 1.0 1.2 1.5	.6 1.9 .6 1.1 1.2 1.3 1.0 2.0	11021 8261 7158 5347 6358 6364 9590 7376 9844
156 158	33.3 34.9	34.0 34.0	2.6 .4	3.3	6986 8097

TABLE VI TREADMILL TEST HEART RATE AND OXYGEN USE DATA

SUBJ	HR-SUP bpm	HR-STN bpm	HR-HYV bpm	HR-MAX bpm	HR-R2 bpm	HR-R5 bpm	V-02 DUR ml/kg/min	EXER min
1	67	96	138	180	94	92		7.0
4	73	95		181	125	108		8.0
5	72	89	100	161	119	94	22.3	7.0
6	81	99	120	177	123	106		12.0
7	84	80		183	97	89	19.1	7.0
8	88	93	98	184	118	102	26.8	9.0
9	70	75		187	116	96	28.7	6.0
15	64	70	108	182	110	95	19.5	8.0
16	68	93	135	167	116	95	28.4	10.0
18	77	109	137	182	121	104	31.2	12.0
19	104	122	134	176	134	121	20.8	9.0
20	55	60	105	171	124	94	25.2	9.0
21	68	71	90	179	119	99	22.7	8.0
23	60	79	110	180	136	111		10.0
24	80	95	156	194	157	122	31.0	10.0
25	85	139	148	198	150	138	30.4	12.0
26	76	91	146	185	137	114	26.2	10.0
27	80	96	106	157	120	103	22.4	7.0
28	68	76	126	182	120	100	28.7	8.0
29	80	93	141	212	117	98	36.8	14.0
31	74	96	147	193	124	106	31.3	11.0
32	87	112	148	199	140	108	31.1	11.0
33	71	86	117	182	132	106	32.3	11.0
34	72	92	122	170	104	86	21.8	7.0
35	62	73	92	173	112	89	20.8	9.0
36	50	63	97	180	113	87	33.2	12.0
38		83	150	187	126	104	27.1	9.0
41	66	88	120	193	128	102	32.6	11.0
43	82	121	169	189	145	124	33.1	11.0
48	51	70	118	189	124	97		11.0
49	67	89	113	191	134	111	27.9	10.0
50	83	110	140	184	140	112	36.5	10.0
51	66	94	155	174	129	109	37.7	11.0
52	82	87	141	186	146	124	35.6	8.0
53	94	114	143	204	141	126	41.5	11.0
54	69	86	144	194	121	109	30.9	10.0
56	7 7	102	120	174	142	97		8.0
57	84	92	145	181	101	99	29.5	9.0
58	64	91	148	191	149	105	27.9	12.0
59	68	83	135	174	149	112	23.6	9.0
60	68	71	108	166	111	96	20.5	7.0
61	71	73	86	163	124	95	22.0	8.0
62	72	75	128	155	101	89		8.0
63	82	93	165	185	114	105		9.0
64	89	117	170	187	98	125	35.2	10.0
65	62	63	108	171	120	111	37.6	11.0
66	83	109	175	198	178	132	32.6	10.0
67	57	63	109	165	132	83	32.0	10.0
68	71	78	105	153	108	94	26.1	7.0

TABLE VI TREADMILL TEST HEART RATE AND OXYGEN USE DATA

SUBJ	HR-SUP bpm	HR-STN bpm	HR-HYV bpm	HR-MAX bpm	HR-R2 bpm	HR-R5 bpm	V-02 DUR ml/kg/min	EXER min
69	59	79	100	163	144	91	33.3	8.0
70	75	92	133	182	164	122	32.1	8.0
72	67	92	118	186	164	109	33.3	9.0
73	82	88	111	178	159	109	27.8	7.0
74	64	70	118	177	145	95	42.0	12.0
75	80	98	135	183	158	117	34.5	8.0
76	67	81	143	188	145	108	34.2	10.0
77	74	96	130	200	166	125	38.8	9.0
78	68	95	140	192	170	114	38.3	9.0
80	78	89	140	191	171	124	43.7	11.0
81	80	90	156	178	145	106	32.0	8.0
83	69	76	130	173	130	94	25.9	6.0
84	118	121	160	191	180	131	33.9	9.0
85	74	83	112	170	147	106	28.0	8.0
86	83	107	148	194	166	110	37.5	9.0
87	68	89	131	192	165	116	44.6	14.0
88	67	82	150	173	142	98	45.1	10.0
90	59	71	98	171	109	80	28.9	8.0
91	65	84	138	192	115	98	28.5	9.0
92	64	70	132	153	101	83	22.7	6.0
93 94	60 68	70	110	202	110	98	50.4	15.0
9 4	84	74 112	118 147	163 193	140 167	94	21.4 34.4	7.0
97	66	76	137	164	110	109 102	23.0	10.0
98	64	76 76	150	187	151	97	36.1	12.0
100	49	64	100	163	125	73	30.1	7.0
101	64	82	138	172	139	89	28.2	9.0
102	62	79	132	182	141	99	26.5	10.0
107	72	81	130	184	149	103	33.4	11.0
108	76	87	119	175	147	104	28.3	7.0
109	69	100	156	179	164	108	24.1	7.0
110	80	106	190	195	165	110	34.4	12.0
111	101	113	180	186	158	120	30.0	8.0
112	69	76	138	177	157	113	27.0	8.0
113	62	74	146	161	126	94	28.0	7.0
115	82	85	139	160	140	104	27.0	7.0
116	64	76	160	184	150	91	29.3	10.0
117	81	90	155	188		112	23.2	6.0
118	88	104	154	184		115	32.9	9.6
123 124	80 91	73	136	180		94	26.3	9.8
127	95	145	162 170	176 106		104	18.5	7.0
144	80	83	130	196 180	157 159	122 102		10.0
146	5 4	61	108	169	144	75		8.0 8.0
147	68	82	96	166	137	100		6.6
153	62	79	135	182	123	106		10.5
155	89	94	135	186	109	102	27.9	9.0
156	60	80	130	181	120	101		15.1
158	70	76	132	181	137	103		11.3

TABLE VII TREADMILL TEST BLOOD PRESSURE DATA

SUBJ		D-SUP mm Hg		D-STN mm Hg		D-MAX mm Hg	S-R2 mm Hg	D-R2 mm Hg	S-R5 mm Hg	D-R5 mm Hg
1	98	63	105	75			112	29	103	
4	96	75	117	77	158	77	173	91	142	76
5	80	71	103	72	160	70	169	60	116	61
6	110	58	130	69			139	46	112	47
7	117	67	114	90	232	75	143	93	114	89
8	109	76	106	80	210	75	119	76	103	75
9	112	59	103	64	200		152	62	125	59
15	87	61	84	73	116		123	55	95	60
16	98	78	106	81	130		119	68	96	64
18	101	55	103	68	138	60	153	57	118	56
19	134	83	139	92	155	75	155	66	130	70
20	106	71	105	82	182	60	186	77	130	67
21	115	74	118	79			173	49	123	60
23	112	76	107	80	146	86	140	54	115	57
24	102	61	111	65	146		176		127	50
25	114	66	136	62	204	50	164		134	52
26	95	72	108	66	172	67 70	140	49	133	54
27	95	56	95	66	167	72	142	58 71	122 112	62 71
28	102	76	103 112	84 76	150 164	99 80	142 157	71 50	141	71 4 9
29 31	103 99	60 70	120	80	148	90	147	75	121	6 9
32	108	58	136	60	150	70	161	46	115	0,5
33	94	61	95	63	120	66	138	59	117	60
34	90	50	97	65	128	70	115	50	89	53
35	114	78	108	84	160	. 0	178	85	141	78
36	92	54	98	62	150	76	166	53	126	46
38	91	46	95	81	146	80	129	69	98	75
41	94	49	105	60	144	70	172	46	118	45
43	140	64	141	95	174	68	171	64	137	59
48	93	53	94	71	146	66		57	110	59
49	108	73	140	92	190	96	184	68	135	68
50	119	82	115	88	130	84	177	89	131	72
51	101	70	111	81	156		145	68	120	65
52	111	60	123	91	144	94	157	62	138	61
53	110	74	116	80	166	92	159	5 7	125	66 61
54	108	68	116	70 72	158	84 80	170 120	60 60	161 108	61 60
56	90	56	100 97	72 59	140 150	74	120	58	89	59
57 58	90 95	63 64	91	80	156	80	156	80	135	65
59	110	74	105	79	176	90	148	78	132	75
60	112	7 3	122	88	171	60	146	82	129	79
61	118	81	119	88	164	88	178	88	145	84
62	105	54	104	69	148	80	140	64	105	53
63	104	60	121	76	148	80	154		121	47
64	114	62	112	68	140	68	237		154	
65	128	89	143	94	210	99	209	93	167	87
66	129	90	152	97	186	94	125	41	155	74
67	92	70	108	81	155	80	151		113	57
68	94	62	108	62	152		125	71	110	68

TABLE VII TREADMILL TEST BLOOD PRESSURE DATA

SUBJ		D-SUP mm Hg		D-STN mm Hg		D-MAX mm Hg	s-R2 mm Hg	D-R2 mm Hg	S-R5 mm Hg	D-R5 mm Hg
69	106	80	135	92	170	80	166	72	122	64
70	99	75	134	68	154	83			110	64
72	100	70	104	66	162		154	68	126	68
73	97	62	97	67	130		126	70	123	63
74	122	79	123	84	144		165	59	134	63
75	102	64	107	80	150	86	138	84	124	58
76	108	86	118	89			178	86	148	86
77	113	52	102	80	130	70	145	80	122	78
78	81	62	88	68	160	70	140	80	111	64
80	107	62	111	84			158	80	147	66
81	110	78	118	76	158				131	62
83	113	79	125	86	140		150	45	150	70
84	125	77	161	87	173				160	50
85	111	73	135	73			152	55	147	66
86	98	59	96	61	160	70	145	65	121	61
87	110	60	116	60	160	90	148	82	120	50 66
88	126	83	150	70	168	= 0	* 2.0	Ε0	182	
90	112	48	124	66	170	70	130	58 50	104 130	50 50
91	110	50	98	50		7.4	182	52 58	106	56
92	95	50	102	62	144	74	148 158	65	116	62
93	96	65	115	78	169	62	144	60	123	02
94	95	71	96	75 70	168	75	153	00	109	86
96	89	61	97	72 65	155 144	70	133	80	125	49
97	99	72	93	65 65	170	74	140	60	137	52
98	101 82	54 59	113 91	69	132	61	132	61	111	63
100 101	94	69	104	69	148	01	133	59	103	69
101	91	67	105	89	160		130			
102	81	58	81	59	160	70	134	64	122	42
107	85	71	98	83	100	. 0	130	58	104	57
109	98	87	97	84	190	88	136	73	112	70
110	95	61	102	64	163	70	149	58	141	49
111	104	76	105	72	141		138		119	54
112	124	63	118	62					127	59
113	111	66	107	75	153	59	157	58	121	60
115	139	92	151	89	202	99	176	98	133	83
116	112	62	104	73	172	82			98	57
117	90	83	104	90	220				120	70
118	107	75	122	78	176		162	52	121	74
123	104	58	105	59	160	74	140	66	119	60
124	108	80	117	76	152	70			111	73
127	99	52	92	64	150	70	142	64	107	54
144	128	79	125	88	162	75	150		130	75 66
146	89	62	100	67	160	85	140	75	103	66 71
147	104	63	109	67			140	70	116	71 65
153	99	65	104	79	148		154	60	110	65 6 4
155	106	72	109	69	4 17 4	70	135	71 75	97 124	60
156		59	96	68	174	70	162	75 62	107	59
158	112	75	101	58	154	70	144	62	10/	23

TABLE VIII ANOMALOUS EVENTS DURING LBNP TESTS

PRESYNCOPE

SUBJ	TIME min	LEVEL mm Hg
24	3:00	-30
31	2:50	-30
86	4:00	-50
88	4:00	-40
91	3:50	- 50
124	3:15	- 50
145	4:30	- 50
157	1:25	- 50

ARRHYTHMIAS

TYPE	CHARACTERIZATION
PAC	4, recovery
PAC	2, recovery
PAC	multiple, unifocal
PAC	3
PAC	2
PVC	multiple
PAC	multiple
PVC	1, -50 mm Hg
PAC	2, recovery
PAC	1, recovery
PVC	multiple, 1 couplet
PAC	multiple
	PAC PAC PAC PAC PAC PAC PVC PAC PAC PVC PAC PAC PAC

TABLE IX SUBJECT AND TEST DESCRIPTIVE DATA (Repeat tests)

SUBJ	TEST DATE	AGE years	HEIGHT CM	WEIGHT kg	T-oral deg F	T-room deg F
22	10Dec76	50	165.0	55.3	98.0	77.0
1	130ct76	25	163.0	46.7	98.2	74.0
19	7Dec76	35	163.0	49.9	98.0	74.0
21	9Dec76	22	158.0	74.8	98.4	75.0
9	24Nov76	35	163.0	59.0	98.4	72.0
25	15Dec76	27	158.0	46.3	97.8	73.0
23	13Dec76	37	165.0	54.4	98.2	67.0
20	8Dec76	45	173.0	59.0	98.2	74.0
27	17Dec76	61	158.0	49.9	98.4	74.0
28	20Dec76	28	164.0	68.0	98.0	75.0
33	5Jan77	37	159.0	53.6	98.0	74.0
24	14Dec76	23	165.0	54.0	97.8	73.0
6	19Nov76	24	163.0	48.5	98.0	73.0
34	6Jan77	32	168.0	53.5	98.0	73.0
15	2Dec76	24	165.0	56.2	98.4	
107	15Mar77	33	163.6	52.6	97.8	71.0
68	7Feb77	34	164.4	65.1	98.0	74.0
	, 2 0 2	-				
	N	17	17.0	17.0	17.0	16.0
	Mean	33.6	163.4	55.7	98.1	73.3
	SD	10.5	3.8	7.7	.2	2.2
	~~					
			1.60 =	.	07 9	71.5
142	12Apr77	51	160.7	58.2	97.8	72.0
143	13Apr77	25	165.1	48.0	98.0	72.0
145	14Apr77	35	160.2	52.3	98.0	71.5
148	19Apr77	23	158.0	81.3	97.8	73.0
149	19Apr77	36	164.0	60.0	97.8	72.0
150	20Apr77	27	158.0	44.3	97.8	73.0
151	20Apr77	37	164.0	54.8	98.0 97.6	70.5
152	21Apr77	45	173.5	62.1	97.6 97.6	70.3
157	26Apr77	61	157.8	50.0	97.8 97.8	70.0
159	27Apr77	28	166.8	70.1		70.5
161	28Apr77	38	160.0	53.0	98.0	70.3
164	4May77	24	165.5	56.1	98.8	72.0
165	5May77	25	162.3	48.1	98.6	
119	29Mar77	31	165.5	52.0	98.0	74.5 74.5
120	29Mar77	24	165.0	57.5	97.8	75.0
122	29Mar77	33	160.5	54.4	99.2	75.0 75.0
125	30Mar77	34	159.4	63.3	98.4	75.0
	N	17	17.0	17.0	17.0	17.0
	Mean	33.9	162.7	56.8	98.1	72.3
	SD	10.4	4.1	9.0	. 4	1.6
	OD .		- · -			

TABLE X SUBJECT AND TEST HISTORICAL DATA (Repeat Tests)

SUBJ	MENSTRUAL Cycle day/			MEDICA	TIONS	LIFE smoke	STYLE exer	SLEEP/E. Hours	AT TIME Hours
22 1 19 21 9 25 23 20 27 28 33 24 6 34 15 107 68	25 12 30 21 18 14 14 11 11 33 16 14 7		PM-1.5	estrog,	diur	1 2 1 2 1 2 1 1 2 2 1 2 1 2 1 2 1	1 2 1 2 1 1 2 2 2 2 2 2 1 2 2	5.5 8.5 11.0 6.5 8.5 7.5 6.0 7.0 6.0 7.0 7.0 7.0	2.0 12.0 1.5 10.5 14.0 14.0 2.0 16.0 1.5 12.5 5.0 12.0 11.5 10.0 11.0
N Mean SD	14 17 8	14 30 2				16 1 1	15 2 1	17.0 7.0 1.4	17.0 9.4 5.0
142 143 145 148 149 150 151 152 157 159 161 164 165 119 120 122 125	12 26 10 6 26 9 15 21 14 27 20 29 1	28 28 28 30 26 30 28 30 28		estrog, oral con		1 2 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 2 1 2 1 2 2 2 2 2 2 2 2	6.0 7.0 8.5 7.0 5.0 5.0 7.5 6.0 8.5 7.5 8.0	2.5 12.0 13.0 14.0 14.0 12.0 3.0 11.0 2.0 13.0 20.0 2.5 15.0 2.0 5.0
N Mean SD	13 17 10	13 29 2				17 1 1	15 2 1	17.0 6.7 1.2	17.0 9.9 6.2

TABLE XI BLOOD AND PULMONARY TEST DATA (Repeat tests)

			,1.OF	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,			
SUBJ	HGB	HCR	T-CHOL mg %		FEV-1 L		FOF %	VC L
22	13.1 13.1	40 39	217 175		3.10	3.61	85	3.39
19 21 9 25	12.1 12.9 13.4 12.3	38 39 40 38	227 147 149 226	43 108 63 61	2.16 3.25 2.55	3.88	83 94	2.53 3.67 2.69
23 20 27	13.1 10.1 13.4	40 32 41	149 175 150		2.86 3.57	3.25		
28 33 24	13.8 13.7 13.2	41 41 40	165 239 163	95 93 51	2.86 2.63 3.76	3.33 4.08	84 78 92	3.20 3.43 3.78
6 34 15	14.0 15.0 12.5	41 44 40	247 167 215	54 78	3.08 3.57 3.25	4.19 3.65	87 85 89	
107 68	13.0 12.8	39 39	223 223	43	2.63	2.39	85	3.35
N Mean SD	17.0 13.0 1.0	17 40 2	17 191.6 36.2	73	14.00 2.95 .52	14.00 3.42 .54	86	3.37
142 143 145 148 149 150	12.2	39	214	87				
152 157 159	12.8	40	212	89				
161 164 165	12.7	39	233	77				
119 120 122 125	13.7 12.7 12.7 12.6	43 40 41 39	178 156 214 203	50 57 107 51				
N Mean SD	7.0 12.8 .6	7 40 2	7 201.4 31.8	7 74 27				

TABLE XII LBNP TEST HEART RATE AND BLOOD PRESSURE DATA (Repeat tests)

SUB	HR-SUP bpm	HR-MAX bpm	S-CLIN mm Hg	D-CLIN mm Hg	S-SUP mm Hg	D-SUP mm Hg	S-MAX mm Hg	D-MAX mm Hg
22	66	73	110	70	103	75	95	75
1	77	86	103	66	99	62	97	63
19	93	112	110	70	104	72	98	74
21	70	88	104	74	108	73	101	73
9	73	88	106	60	100	68	100	71
25	95	105	110	70	109	55	103	57
23	63	70	98	60	95	66	95	70
20	54	61	99	72	97	72	96	73
27	85	96	95	60	99	65	97	68
28 33	73 75	95	105	70	105	65	94	68
24	75 78	97	80	55	84	55	76	56
6	76 90	82 103	102	62	96	56	72	54
34	90 74	94	108	60	104	58	111	71
15	69	93	95 94	65 65	90	54	81	55
107	73	78	94 82	58	86	61	77	61
68	72	91	90	60	85 93	54 63	83	62 67
	, -	71	90	00	93	63	83	67
N	17	17	17	17	17	17	17	17
Mean	75.3	88.9	99.5	64.5	97.5	63.2	91.7	65.8
SD	10.6	13.1	9.2	5.6	7.8	7.1	10.9	7.1
								. • -
142	61	70	100	60	90	58	84	61
143	72	80	95	60	89	54	94	56
145	75	107	98	56	98	64	85	59
148	70	91	108	70	107	66	91	58
149	69	91	108	70	101	69	96	70
150	77	85	95	65	100	62	92	59
151	64	75	90	55	83	56	86	59
152	57	66	110	70	88	58	89	61
157	73	92	90	60	88	57	59	41
159	73	93	100	65	92	62	90	68
161	72	91	84	44	83	51	76	53
164	77	96			94	51	86	44
165	79	87	90	60	96	51	103	63
119	66	82	88	50	81	51	73	52
120	61	90	90	50	78	51 ′	70	50
122	74	77	80	56	88	52	89	51
125	65	77	98	60	93	61	84	61
N	17	17	16	16	17	17	17	17
Mean	69.7	85.3	95.3	59.4	91.1	57.3	85.1	56.8
SD	6.8	11.0	9.3	8.1	8.3	6.3	11.3	8.2

TABLE XIII LBNP TEST PERFORMANCE DATA (Repeat Tests)

SUBJ	LCC	RCC cm	CHANGE	FTA	CHANGE	RLV %	ml LLV
22 1 19 21 9 25 23 20 27 28 33 24 6 34 15 107	34.4 31.6 33.0 38.9 34.1 28.5 32.3 31.3 30.8 35.7 33.1 31.3 31.5 29.1 33.5	34.5 31.2 32.1 38.8 34.4 29.2 31.0 32.7 31.3 36.3 33.6 31.7 32.0 29.3 34.1 31.4		2.1 1.3 1.8 1.0 .4 2.2 1.3 2.0 1.1 1.2 1.1		1.7 1.0 1.7 1.5 1.8 1.0 .9 1.0 2.6 .9 1.1 1.0 2.6	7299 6677 5054 8310 5899 7035 6945 6934 7848 6688 6210 5740 7385 6533 7969
68 N Mean SD	34.6 17.0 32.7 2.5	17 32.9 2.5		17 1.2 .6		17 1.5 1.0	15 6835 880
142 143 145 148 149 150 151 152 157 159 161 164 165 119 120 122 125	34.2 32.0 34.0 39.0 35.1 29.1 32.4 31.3 31.6 35.5 33.3 32.1 32.1 29.0 34.3 32.5 34.7	34.5 31.9 32.8 38.7 34.9 29.2 31.0 32.2 31.5 36.0 33.5 32.6 32.3 29.1 34.7 32.0 35.4		1.6 1.3 2.1 1.4 1.9 .3 .9 1.4 1.9 2.5 5.0 3.4 .7 1.5		.4 1.5 2.2 1.6 1.0 .9 .4 .8 3.0 2.7 1.6 .9	7096 6469 6548 5739 7891 5472 7088 6851 6307 6785 5369 6979 6311 5973 7448 7631
N Mean SD	17.0 33.1 2.6	17 33.1 2.6		16 1.7 1.3		16 1.4 .8	17 6626 769

TABLE XIV TREADMILL TEST HEART RATE AND OXYGEN USE DATA (Repeat Tests)

SUBJ	HR-SUP bpm	HR-STN bpm	HR-HYV bpm	HR-MAX bpm	HR-R2 bpm	HR-R5 bpm	V-02 ml/kg/mi	DUR EXER
22	62	65	91	151	101	86		9.0
1	67	96	138	180	94	92		7.0
19	104	122	134	176	134	121	20.8	9.0
21	68	71	90	179	119	99	22.7	8.0
9	70	75		187	116	96	28.7	6.0
25	85	139	148	198	150	138	30.4	12.0
23	60	79	110	180	136	111		10.0
20	55	60	105	171	124	94	25.2	9.0
27	80	96	106	157	120	103	22.4	7.0
28 33	68 71	76	126	182	120	100	28.7	8.0
24	71 80	86	117	182	132	106	32.3	11.0
6	81	95 99	156 120	194	157	122	31.0	10.0
34	72	92	120	177 170	123	106	01.0	12.0
15	64	70	108	182	104 110	86 95	21.8	7.0
107	72	81	130	184	149	103	19.5 33.4	8.0
68	71	78	105	153	108	94	26.1	11.0
		. •	_00	100	100	J4	20.1	7.0
N	17	17	16	17	17	17	13	17
Mean	72	87	119	177	123	103	26.4	8.9
SD	11	20	19	13	18	14	4.7	1.9
								2.0
142	54	63		1.60	100	20		_
143	65	80		160	120	92	29.0	9.4
145	88	102	132	188 168	112 151	109 112	35.0	10.0
148	62	73	140	189	131	108	34.9	7.7
149	73	90	140	204	125	120	26.3 41.7	11.0
150	80	98	145	202	162	138	37.4	13.5 13.6
151	57	70	120	214	102	115	42.4	10.8
152	62	72	108	176	132	99	30.0	11.0
157	81	105	108	171	148	124	30.1	8.0
159	70	88	150	176	118	99	30.0	7.6
161	75	79	114	182	129	105	34.9	11.0
164	78	90		204	168	128	39.3	12.6
165	74	88	126	191	130	103	32.5	15.7
119	69	96	120	161	107	86	25.1	7.5
120	61	81	146	190	173	111	29.4	9.3
122	82	92	140	182	142	114	31.0	10.0
125	77	81	130	185	158	108	36.2	9.8
N	17	17	14	17	16	17	17	17
Mean	71	85	130	185	138	110	33.2	10.5
SD	10	13	15	16	22	14	5.4	2.5

TABLE XV TREADMILL TEST BLOOD PRESSURE DATA (Repeat Tests)

				\-	.opo					
		D (111)	C - CEN	D-STN	YAM-P	D-MAX	s-R2	D-R2	S-R5	D-R5
SUBJ	S-SUP	D-SUP	5-51N	D-SIN	mm Ho	mm Ha		mm Hg	mm Hg	mm Hg
	mm Hg	mm Hg	тт нд	IIIII ng	11111	11411 119		•		
	0.0	77	89	81	158	70	151	84	119	78
22	99	73			150	, ,	112	29	103	
1	98	63	105		155	75	155	66	130	70
19	134	83	139		155	75	173	49	123	60
21	115	74	118		000		152		125	59
9	112	59	103		200	50	164		134	52
25	114	66	136		204		140	54	115	57
23	112	76	107		146		186		130	
20	106	71	105		182				122	
27	95	56	95		167		142		112	
28	102	76	103		150		142		117	
33	94	61	95		120		138			
24	102	61	111	65	146		176		127	
6	110		130	69			139		112	
34	90	50	97		128	70	115		89	
15	87	61	84		116		123		95	
107	81	58	81		160	70	134		122	
68	94		108		152		125	71	110	68
00	J •									
N	17	17	17	17	14	10	17		17	
	103		106		156		145	60	117	
Mean	13		17		26		21	14	12	17
SD	13	9	Δ,							
1.40	72	60	88	58	150	70			112	
142	73		107		125		132	50	119	59
143	100		129		155				129	64
145	106				160				114	
148	104		100		172		141	. 75	128	60
149	105		110		140				145	
150	107		101						122	
151	90		103					72	119	
152	98		105							
157	87		100			02	131		101	
159	97		94		100					
161	87		96		138				148	
164	97		98		166					
165	105		100		150					
119	89	70	91					_		5 55
120	84	54	89							
122	90	57	96							
125	100		132	2 68	158	62	144	1 60	122	. 50
								. 10	7.4	5 14
N	17	17	17							
Mean	95		102							
SD	10		13	3 7	18	3 10	17	7 11	13	0

TABLE XVI LBNP TEST SYSTOLIC TIME INTERVALS

SUBJ	PEP	/LVET	н	R-INST
	Rest	MaxLBNP	Rest	MaxLBNP
•				
1 4	202	545		
5	.393	.512	86	101
6	.337	.317	72	71
7	.236	.287	90	108
8	.224 .330	.404	73	94
9	.278	.423	72	117
15	.263	.387 .565	73	99
16	.343	.620	67	109
18	.275	.537	71	90
19	.320	.442	78	120
20	.339	.353	92	112
21	.224	.404	55 73	63
23	.332	.405	73 61	94
24	.298	.272	61 77	70 70
25	.381	.622	84	79
26	.345	.520	75	106
27	.282	.442	75 79	87
28	.384	.524	79	97 105
29	.272	.472	78 78	105
31	.301	.448	82	115 101
32	.263	.431	86	101
33	.242	.490	75	107
34	.267	.399	73	90
35	.362	.510	60	78
36	.243	.325	54	56
38	.323	.348	71	78
41	.276	.485	58	75
43	.247	.447	79	106
48	.375	.480	53	69
49	.262	.404	73	76
50	.340	. 444	96	102
51	.377	.514	68	82
52	.220	.342	79	102
53	.289	.428	81	103
54	.267	.377	71	90
56	.381	.393	79	101
57	.313	.487	79	100
58	.268	.440	68	88
59	.304	.260	70	78
60				
61	.343	.442	78	89
62	.250	.339	70	74
63	.271	.400	76	77
64	.348	.508	91	118
65	.242	.403	63	60
66	.316	.485	72	86
67	.316	.357	59	60
68				

TABLE XVI LBNP TEST SYSTOLIC TIME INTERVALS

	DED /	र ररक्त <u>ा</u>	HR-I	NST
SUBJ PE Rest		LVET MaxLBNP		axLBNP
	Resc	MUXIDITI		
69	.280	.348	55	63
70	.281	.424	73	81
72	.227	.329	69	89
73	.335	.452	79	91
74	.313	.349	63	80
75	.310	.447	83	110
76	.343	.461	68	85
77	.258	.399	71	100
78	.288	.442	74	108
80	.280	.379	74	84
81	.283	.412	75	88
83	.281	.448	78	86
84	.230	.282	104	120
85	.238	.298	79	81
86				
87	.301	.412	63	84
88	.323	.402	72	74
90	.246	.363	63	70
91	.232	.309	64	84
92	.277	.417	60	67
93	.324	.508	62	86
94	.269	.341	70	78
96	.247	.471	84	119
97	.299	.386	68	83
98	.283	.396	66	85
100	.274	.438	54	82
101	.378	.491	62	75 70
102	.360	.410	65	79
107	.357	.454	75 7.6	81
108	.295	.393	76	101
109	.289	.480	81	109
110	.274	. 424	85	110
111	.228	.390	94	101
112	.263	.390	64	80
113	.223	.311	63	75
115	.305	.413	70	88 72
116	.185	.396	65	12
117			0.0	111
118	.235	.382	90	67
123	.251	.349	68	115
124	.401	.524	95	87
127	.224	.298	80	129
144	.326	.426	79 63	77
146	.280	.456	63 71	94
147	.327	.446	71 59	73
153	.313	.407		101
155	.247	.374	82 50	99
156	.266	.542	59 64	70
158	.283	.427	04	, 0

TABLE XVII TREADMILL TEST SYSTOLIC TIME INTERVALS

SUBJ	PEP/I	LVET	HR-I	
	Pre-TMX	Post	Pre-TMX	Post
1				
4				
5				
6				
7				
8 9				
15				
16	.210	.415	60	
18	.306	.209	69 78	105
19	.248	.793	78 108	134
20	.285	.546	55	135 122
21	.205	.475	65	130
23	.270	.134	59	128
24	.309	. 527	77	154
25	.278	.370	84	157
26				
27	.263	.186	82	116
28	.335	.458	69	121
29 31	.248	.312	82	152
32	.206	.316	0.4	
33	.223	.554	84 74	121
34	.271	.317	74 71	132 112
35	.311	.197	57	120
36			<i>3</i> ,	120
38	.327	.189	71	135
41	.206	.330	64	115
43		_		
48 49	.332	.281	52	137
50	.274 .329	.223	68	147
51	.301	.422 .764	86	137
52	.349	.307	67	116
53	.318	.354	80 91	139
54	.259	.220	71	142 110
56			7 1	110
57	.371	.213	81	101
58	.286	.553	65	101
59				
60				
61	.299	.458	78	115
62 63	.240	.166	74	100
63 64	.252	.220	77	120
65	.312 .256	.215	95 50	121
66	.301	.232	59	114
67	.329	.207	81 51	100
68		.20,	21	109

TABLE XVII TREADMILL TEST SYSTOLIC TIME INTERVALS

SUBJ	PEP/L	VET	HR-II	NST
	Pre-TMX	Post	Pre-TMX	Post
69	.213	.689	58	103
70	.231		80	
72	.327	.308	70	116
73	.305	.210	83	117
74	.322	.236	61	115
75	.299	.235	82	125
76	.296	.176	72	114
77	.259	.338	87	136
78	.307	.195	68	121
80	.277	.347	75	128
81	.314	.281	77	112
83	.313	.338	75	95
84	.216	.218	111	141
85				
86				
87				
88	.298	.532	67	104
90	.284	.323	55	92
91	.269	.243	67	115
92	.328	.327	66	91
93	.298	.177	66	131
94	.235	.376	72	98
96	.264	.231	78	112
97	.274	.253	68	109
98	.257	.254	60	111
100	.199	.184	48	76
101	.398	.216	66	97
102	.360	.250	63	101
107	.337	.222	71	104
108	.298	.231	76	112
109	.417	.443	71	107
110	.296	.200	80	114
111	.234	.443	101	120
112	.262	.238	71	113
113	.258	.164	63	94
115	.266	.146	76	109
116				
117				
118	.239	.256	89	124
123	.224	.258	64	102
124	.418	.246	91	109
127	.185	.543	90	132
144	.317	.228	81	123
146	.243	.305	55	101
147	.293	.245	69	109
153	.311	.175	61	112
155	.224	.204	84	116
156	.244	.191	66	112
158	.259	.134	67	135

TABLE XVIII LBNP AND TREADMILL STRESS TEST RESPONSES

PER SUBJ	CENTAGE HEART	CHANGES:		(MAX-RE:	ST REFER			ENCE RATIO
	LBNP	TMX	LBNP	TMX	LBNP	TMX	LBNP	TMX
1	12	88	-2		2			
4	23	91	-2 -9	35	-2		30	
5	11	81	4	55	9	-3	-6	
5 6	14	79	7	55	22	J	22	
7	12	129	-12	104	- 5	-17	80	
8	31	98	-11	98	-14	-6	28	
9	21	149		94	4		39	
15	35	160	-10	38			115	
16	23	80	18	23	22		81	98
18	44	67	-12	34	-2	-12	95	-32
19	20	44	-6	12	3	-18	38	220
20 21	13 26	185	-1	73	1	-27	4	92
23	11	152 128	-6	36	6	٥	80	132
24	5	104	-25	32	6 -4	8	22 -9	-50 71
25	11	42	- 6	50	4	-19	63	33
26	20	103	-3	59	-8	2	51	33
27	13	64	-2	76	5	9	57	-29
28	30	139	-10	46	5	18	36	37
29	35	128	-9	46	-8	5	74	26
31	13	101	-17	23	-4	13	49	
32	23	78	- 6	10	6	17	64	53
33 34	29 27	112	-10 ⁻	26	2	5	102	148
3 4 35	16	85 137	-10 -10	32 48	2	8	49 41	17 -37
36	9	186	1	53	7	23	34	-37
38	10	125	- 5	54	-8	-1	8	-42
41	23	119	-11	37	-8	17	76	60
43	17	56	-15	23	-8	-28	81	
48	30	170	-8	55	2	-7	28	-15
49	3	115	-4	36		4	54	-19
50	7	67 2.5	-9	13	- 5	- 5	31	28
51 52	19 18	85	- 5	41	25	_	36	154
53	20	11 4 79	-8 -14	17 43	4 -6	3	55 40	-12
54	14	126	-14 -9	36	2	15 20	48 41	11 -1 5
56	23	71	-13	40	5	11	3	-13
57	20	97	-1	55	J	25	56	-43
58	26	110	-7	71	3	_*	64	93
59	10	110	-8	68	1	14	-14	
60		134		40	8	-32		
61		123	-2	38	-13		29	53
62	0	107	-3	42	5	16	36	-31
63 64	8 29	99 60	-5 -8	22	3	5	48	-13
65	43	171	-8 -4	25 47	3 2	5	46 67	-31 -9
66	17	82	-4 -4	22	2	-3	53	- 9
67	22	162	-4	44	-4	-1	13	-37
68	26	96	-11	41	6		— -	- •

TABLE XVIII LBNP AND TREADMILL STRESS TEST RESPONSES

PER	CENTAGE	CHANGES:					ST REFERE	
SUBJ	HEART	RATE	SYSTO	LIC BP	DIASTO	LIC BP	STI F	
	LBNP	TMX	LBNP	TMX	LBNP	TMX	LBNP	TMX
69	12	106	8	26	6	-13	24	223
70	6	98	-3	15	-1	22	51	
72	29	102	-11	56	6		45	-6
73	12	102	-7	34	-2		35	-31
74	23	153	-12	17	- 5		12	-27
75	20	87	-10	40	-2	8	44	-21
76	17	132		-0	13	•	34	-41
77	7	108	-9	27	-7	-13	55	31
78	36	102	-2	82	2	3	53	-36
80	7	115	- 5	02	_	J	35	25
81	17	98	- 7	34	-2		46	-11
83	9	128	-9	12	3		59	8
84	18	58	- 3	7	8		23	1
85	1	105	14		-6		25	_
86	49	81	- 9	67	- 5	15	20	
87	23	116	-9 -9	38	1	50	37	
88	23 4	111	-10	12	-14	50	24	79
	6	141	-10 -6	37	3	6	48	14
90				31	3	O	33	-10
91	24	129	-16	41	-1	19	51	10
92	10	119	0	41	13	-21	57	-41
93	32	189	-2	47		-21	27	60
94	9	120	-6	75 60	-8	4	91	-13
96	34	72	-20	60	-9	4 8	29	-8
97	22	116	•	55	10	14	40	-3 -1
98	20	146	-8	50	2	-12	60	-8
100	45	155	-15	45	-12	-12	30	-46
101	16	110	-1	42	11		14	-31
102	16	130	-1	52	3	1.0	27	-31 -34
107	7	127	-2	98	15	19		-34 -22
108	27	101	-2		8	-	33	
109	24	79	-11	96	- 5	5 9	66 55	6 - 32
110	25	84	5	60	14	9	55 71	-32 89
111	11	65	-7	34	5			-9
112	8	133	-12	40	-4	01	48 39	-36
113	16	118	2	43	16	-21	35 35	-45
115	19	88	-5	34	4	11 12		-45
116	13	142	-7	65	5	12	114	
117	37	109	-11	112	6		63	7
118	22	77	-9	44	4	. 05		15
123	8	147	-7	52	4.5	25	39	
124	16		-22	30	-15	-8	31	-41
127	4	35	-14	63	-9	9	33	194
144	34	117	-4	30	6	-15	31	-28
146	14	177	-12	60	-15	27	63 3.6	26 -16
147	32	102	-14		- 7		36 30	-16 -44
153	15	130	-8	42	_		30	
155	23	98	-3	0.1	6	2	51 104	-9 -22
156	48	126	-5	81	9	3	104	- 22
158	20	138	-8	52	5	21	51	-48

TABLE	XIX	DOUBLE	PRODUCTS

SUBJ	DPSUNP	DPSUTM	DPLBNP	DPSTN	DPTMX	DP2	DP5
1	7623	6566	8342	10080		10528	9476
4	9976	7008	11236	11115	28598	21625	15336
5	6319	5760	7347	9167	25760	20111	10904
6	9360	8910	11433	12870	25700	17097	11872
7	9576	9828	9435	9120	42456	13871	10146
8	8560	9592	9975	9858	38640	14042	10506
9	7300	7840	8800	7725	37400	17632	12000
15	5934	5568	7161	5880	21112	13530	9025
16	6090	6664	8858	9858	21712	13804	9120
18	7098	7777	8960	11227	25116	18513	12272
19	9672	13936	10976	16958	27280	20770	
20	5238	5830	5856	6300	31122	23064	15730 12220
21	7560	7820	8888	8378	31122	20587	12177
23	5985	6720	6650	8453	26280	19040	
24	7488	8160	5904	10545	28324		12765
25	10355	9690	10815	18904	40392	27632	15494
26	7252	7220	8455	9828	31820	24600	18492
27	8415	7600	9312	9120	26219	19180 17040	15162
28	7665	6936	8930	7828	27300	17040	12566 11200
29	8640	8240	10584	10416	34768	18369	
31	10032	7326	9405	11520	28564	18228	13818
32	9483	9396	11021	15232	29850	22540	12826
33	6300	6674	7372	8170	21840	18216	12420
34	6660	6480	7614	8924	21760	11960	12402
35	7245	7068	7519	7884	27680		7654
36	5280	4600	5820	6174	27000	19936	12549
38	7227	3000	7520	7885	27302	18758	10962
41	5952	6204	6460	9240	27302 27792	16254	10192
43	10062	11480	10100	17061	32886	22016 24795	12036
48	4482	4743	5320	6580	27594	24/95	16988
49	8496	7236	8362	12460	36290	24656	10670
50	11328	9877	11021	12650	23920	24030	14985
51	6956	6666	7832	10434	27144	18705	14672
52	9877	9102	10682	10701	26784	22922	13080 17112
53	9744	10340	10100	13224	33864	22419	
54	7600	7452	7917	9976	30652	20570	15750 175 4 9
56	6699	6930	7220	10200	24360	17040	10476
57	7533	7560	8924	8924	27150	12120	8811
58	7350	6080	8624	8281	29796	23244	14175
59	7632	7480	7663	8715	30624	22052	147784
60	7571	7616	7571	8662	28386	16206	12384
61	8927	8378	8769	8687	26732	22072	13775
62	6956	7560	6734	7800	22940	14140	9345
63	7904	8528	8118	11253	27380	17556	12705
64	9555	10146	11349	13104	26180	23226	19250
65	8220	7936	7860	9009	35910	25080	18537
66	8023	10707	8964	16568	36828	22250	20460
67	5723	5244	6696	6804	25575	19932	9379
68	6696	6674	7553	8424	23256	13500	10340
		5013	. 555	~ ~ ~ ~	20200	10000	T0040

	TABLE XIX			DOUBLE PRODUCTS			
SUBJ	DPSUNP	DPSUTM	DPLBNP	DPSTN	DPTMX	DP2	DP5
69	5073	6254	6144	10665	27710	23904	11102
70	7128	7425	7296	12328	28028		13420
72	6624	6700	7565	9568	30132	25256	13734
73	6864	7954	7134	8536	23140	20034	13407
74	7930	7808	8560	8610	25488	23925	12730
75	8568	8160	9292	10486	27450	21804	14508
76	7038	7236	8262	9558		25810	15984
77	9680	8362	9400	9792	26000	24070	15250
78	6132	5508	8118	8360	30720	23800	12654
80	9072	8346	9222	9879		27018	18228
81	7854	8800	8550	10620	28124		13886
83	10112	7797	10062	9500	24220	19500	14100
84	12036	14750	13800	19481	33043		20960
85	7904	8214	9163	11205		22344	15582
86	8148	8134	11000	10272	31040	24070	13310
87	7107	7480	7990	10324	30720	24420	13920
88	8023	8442	7548	12300	29064		17836
90	6110	6608	6072	8804	29070	14170	8320
91	6674	7150	6952	8232		20930	12740
92	5952	6080	6528	7140	22032	14948	8798
93	6324	5760	8200	8050	34138	17380	11368
94	8190	6460	8360	7104	27384	20160	11562 11881
96	9064	7476	9676	10864	29915	25551	12750
97	6097	6534	7462	7068	23616	15290	13289
98	6464	6464	7161	8588	31790	21140	8103
100	4134	4018	5082	5824	21516	16500	9167
101	5952	6016	6808	8528	25456	18487	9107
102	6365	5642	7332	8295	29120	18330 19966	12566
107	6205	5832	6474	6561	29440	19110	10816
108	6660	6460	8272	8526	24010	22304	12096
109	7979	6762	8820	9700	34010 31785	24585	15510
110	8500	7600	11130	10812	26226	21804	14280
111	9310	10504	9555	11865 8968	20220	21001	14351
112	7670	8556	7280	7918	24633	19782	11374
113	6400	6882	7548 9718	12835	32320	24640	13832
115	8568	11398	5760	7904	31648		8918
116	5504	7168 7290	9579	9360	41360		13440
117	7800	9416	9951	12688	32384	19926	13915
118	8976	8320	6720	7665	28800	19320	11186
123	6695	9828	9020	, 000	26752		11544
124	9975	9405	6630	13340	29400	22294	13054
127	7462 9006	10240	11554	10375	29160	23850	13260
144	5796	4806	5832	6100	27040	20160	7725
146 147	6969	7072	7917	8938		19180	11600
153	5394	6138	5680	8216	26936	18942	11660
155	8400	9434	9996	10246		14715	9894
156	5612	3.04	7830	7680	31494	19440	12524
158	5874	7840	6478	7676	27874	19728	11021
100	J						

TABLE A1: SUMMARY STATISTICS

DESCRIPTIVE VARIABLES

Variable	N	Mean	SE	Min	Max
age (yrs)	98	34.3	1.02	20	61
height (cm)	98	164.8	0.55	150.0	180.0
weight (kg)	98	60.0	0.84	45.4	84.3
body surface area (sq m)	98	1.66	0.012		1.92
oral temp. (deg F)	98	98.1	0.04	97.4	99.6
room temp. (deg F)	96	72.6	0.18	67.0	78.0
menst. cycle length (days)	71	28.7	0.28	21	40
day of menst. cycle	71	0.49	0.024	0	0.97
amt. of sleep (hrs)	98	7.2	0.12	5.0	12.0
time since eating (hrs)	98	10.3	0.53	1.0	21.0
hgb (gm %)	98	13.0	0.10	10.1	15.4
hct (%)	98	40	0.30	28	46
cholesterol (mg %)	98	208.2	4.17	117	297
triglyceride (mg %)	98	88.0	3.49	37	198
FEV1 (1)	93	3.05	0.05	1.80	4.16
FVC (1)	93	3.69	0.06	2.35	5.25
FEV1/FVC (%)	93	82.5	0.81	50	97
VC (1)	93	3.57	0.06	2.38	5.31
SBP, clinical (mm Hg)	96	106.3	1.32	80	150
DBP, clinical (mm Hg)	96	70.3	0.89	50	90
exercise category	96	1.75	0.07	1	3

TABLE A2: SIGNIFICANT CORRELATIONS BETWEEN DESCRIPTIVE VARIABLES (p < 0.05)

Independent Variable	Dependent Variable	Slope	Intercept	r
age	SBP, clinical oral temp. room temp. time since eating cholesterol FEV1 FEV1/FVC	0.42 -0.009 -0.04 -0.19 1.19 -0.02 -0.40	92.27 98.42 73.95 16.67 167.58 3.58 95.97	.27 22 23 36 .29 32 50
height	weight body surface area FEV1 FVC VC	0.54 0.01 0.04 0.06 0.06	-29.49 -0.66 -3.11 -5.75 -6.76	.37 .63 .41 .54
weight	body surface area SBP, clinical DBP, clinical triglyceride FVC FEV1/FVC VC	0.01 0.35 0.28 1.20 0.02 -0.21 0.02	0.86 85.68 53.85 16.09 2.43 95.26 2.31	.93 .23 .26 .30 .30 50
body surface area	FEV1 FVC	64.01 0.90 1.82 -14.42 1.99 27.04 20.83	-18.24 1.56 0.67 106.46 0.26 61.35 35.67	.22 .22 .38 22 .43 .25
cycle length	DBP, clinical	-1.04	98.98	24
hgb	hct	2.66	5.07	.90
cholesterol	triglyceride	0.23	40.99	.27
FEV1	FVC VC	0.92 0.71	0.87 1.40	.79 .63
FVC	VC	0.84	0.48	.86
FEV1/FVC	VC .	-0.02	5.13	27
SBP, clinical	DBP, clinical triglyceride	0.48 0.54	19.52 30.63	.70 .20

TABLE B1: SUMMARY STATISTICS

LBNP TEST VARIABLES

	N	Mean	SE	Min	Max
HR, supine (bpm)	98	74.2	1.05	53	102
HR, maximal (bpm)	98	87.9	1.46	60	125
SBP, supine (mm Hg)	98	101.7	1.14	78	137
DBP, supine (mm Hg)	98	66.8	0.93	47	91
SBP, maximal (mm Hg)	98	95.2	1.16	66	131
DBP, maximal (mm Hg)	98	67.4	0.91	43	93
PEP/LVET, rest	93	0.292	0.0049	0.185	0.401
PEP/LVET, maximal	93	0.419	0.0075	0.260	0.622
left calf circ. (cm)	98	34.0	0.25	28.5	41.2
right calf circ. (cm)	98	34.1	0.25	29.2	41.9
change LLV (%)	98	1.4	0.07	0.2	5.5
change RLV (%)	97	1.4	0.07	0.4	4.9
LLV (ml)	94	7443.1	118.0	5054	11021

TABLE B2: SIGNIFICANT CORRELATIONS BETWEEN LBNP TEST VARIABLES (p < 0.05)

Independent Variable	Dependent Variable	Slope	Intercept	r
HR, supine	SBP, supine change RLV HR, maximal	0.36 -0.02 1.17	75.34 2.90 1.42	.33 29 .84
HR, maximal	PEP/LVET, maximal	0.002	0.29	.29
SBP, supine	DBP, supine SBP, maximal DBP, maximal left calf circ. right calf circ. LLV	0.62 0.85 0.52 0.05 0.05	4.15 8.67 14.72 28.75 28.69 5143.00	.75 .83 .65 .24 .24
DBP, supine	SBP, maximal DBP, maximal left calf circ. right calf circ. LLV	0.82 0.08	37.85 12.37 28.71 28.46 5014.69	.69 .85 .30 .32
SBP, maximal	DBP, maximal left calf circ. LLV	0.60 0.04 22.00	10.55 29.94 5355.77	.77 .20 .22
DBP, maximal	left calf circ. right calf circ. LLV	0.11 0.11 50.73	26.81 26.75 4029.23	.39 .40 .40
PEP/LVET, rest	PEP/LVET, maximal change LLV	0.77 -4.27	0.20 2.64	.50 24
left calf circ.	right calf circ. LLV	0.98 362.46	0.79 -4894.17	.97 .78
right calf circ.	LLV	355.09	-4664.42	.76
change RLV	HR, maximal	-4.07	93.75	20
change LLV	change RLV	0.41	0.86	.46
LLV	change RLV	-0.0001	2.52	23

TABLE C1: SUMMARY STATISTICS

TREADMILL TEST VARIABLES

	N	MEAN	SE	MIN	MAX
HR, supine (bpm)	97	73.1	1.20	49	118
HR, standing (bpm)	97	88.1	1.66	60	145
HR, hypervent. (bpm)	95	132.3	2.24	86	190
HR, maximal (bpm)	98	180.5	1.20	153	212
HR, 2-min rec. (bpm)	98	134.5	2.08	94	180
HR, 5-min rec. (bpm)	98	104.1	1.25	73	138
SBP, supine (mm Hg)	97	104.4	1.27	80	140
DBP, supine (mm Hg)	98	67.3	1.06	46	92
SBP, standing (mm Hg)	98	111.2	1.60	81	161
DBP, standing (mm Hg)	98	74.6	1.06	50	97
SBP, maximal (mm Hg)	87	159.7	2.28	116	232
DBP, maximal (mm Hg)	66	76.4	1.32	50	99
SBP, 2-min rec. (mm Hg)	89	150.5	2.18	112	237
DBP, 2-min rec. (mm Hg)	82	65.8	1.47	29	98
SBP, 5-min rec. (mm Hg)	97	122.9	1.74	89	182
DBP, 5-min rec. (mm Hg)	93	63.3	1.06	42	89
PEP/LVET, rest	77	0.283	0.0056	0.185	0.418
PEP/LVET, maximal	75	0.306	0.0165	0.134	0.764
VO2 peak (ml/kg/min)	92	30.4	0.65	18.5	50.4
duration of exercise	98	9.3	0.2	6.0	15.1

TABLE C2: SIGNIFICANT CORRELATIONS BETWEEN TREADMILL TEST VARIABLES (p < 0.05)

Independent Variable	Dependent Variable	Slope	Intercept	r
HR, supine	SBP, supine SBP, standing	0.33 0.44	80.53 79.11	.31 .33
HR, standing	SBP, standing PEP/LVET, maximal	0.21 0.002		.21 .23
HR, hypervent.	VO2 peak	0.06	22.05	.22
HR, maximal	VO2 peak	0.26	-17.14	.51
HR, 2-min rec.	VO2 peak	0.12	14.61	.38
HR, 5-min rec.	SBP, 5-min rec. VO2 peak	0.53 0.17	67. 4 2 12.66	.39 .33
SBP, supine	HR, 5-min rec.	0.34	68.72	.34
DBP, supine	HR, 5-min rec.	0.24	88.04	.20
SBP, standing	HR, 5-min rec.	0.28	73.32	.35
SBP, 2-min rec.	HR, 5-min rec.	0.15	81.30	.25
SBP, 5-min rec.	VO2 peak	0.10	17.70	.28
dur. of exercise	HR, maximal HR, 5-ein rec. SBP, 2-min rec. DBP, 5-min rec. VO2 peak	3.42 1.56 2.52 -1.42 2.09	76.45	.57 .25 .25 28 .66

TABLE D: SIGNIFICANT CORRELATIONS BETWEEN LBNP TEST VARIABLES AND SELECTED DESCRIPTIVE VARIABLES (p < 0.05)

Independent Variable	Dependent Variable	Clara	Intorgent	
variable	variable	Slope	Intercept	r
age	HR, supine	25	82.66	24
	HR, maximal	.52	105.69	37
	DBP, supine	.25	58.14	.27
	SBP, maximal	.31	84.43	.27
	DBP, maximal	.26	58.35	.30
height	left calf circ.	.09	18.56	.23
	right calf circ.	.09	18.90	.22
	LLV	89.50	-7309.03	.43
weight	left calf circ.	.24	19.53	.82
•	right calf circ.	.24	19.76	.81
	LLV	100.43	1389.84	.73
	SBP, supine	.35	80.42	.24
	DBP, supine	.34	46.61	.30
	DBP, maximal	.42	41.72	.37
oral temp.	HR, supine	8.29	-738.72	.28
	HR, maximal	9.74	-867.62	.24
room temp.	DBP, supine	-1.12	148.02	21
menstrual day	DBP, maximal	-9.43	71.06	25

TABLE E: SIGNIFICANT CORRELATIONS BETWEEN TREADMILL TEST VARIABLES AND SELECTED DESCRIPTIVE VARIABLES (p < 0.05)

Independent Variable	Dependent Variable	Slope	Intercept	r
age	HR, supine HR, standing HR, hypervent. HR, maximal HR, 5-min rec. DBP, supine DBP, standing DBP, 2-min rec. DBP, 5-min rec. VO2	-0.28 -0.54 -0.89 -0.78 -0.40 0.26 0.23 0.34 0.31 -0.24	81.71 105.75 158.97 206.89 117.78 58.29 26.75 54.66 52.54 38.92	21 35 42 60 32 .26 .22 .27 .26 34
body surface area	HR, stand	-43.50	160.41	23
	DBP, supine	26.37	22.55	.34
	DBP, maximal	37.04	15.70	.39
menstrual day	HR, 2-min rec.	-20.48	145.76	24
	HR, 5-min rec.	-10.51	112.06	24
VC	VO2	3.35	18.49	.31
exercise cat.	VO2	2.68	25.42	.32
	dur. of exercise	0.31	8.51	.32

TABLE F: SELECTED SIGNIFICANT CORRELATIONS BETWEEN TREADMILL AND LBNP TEST VARIABLES (P < 0.05)

Independent Variable (LBNP)	Dependent Variable (Treadmill)	Slope	Intercept	r
HR, supine	HR, supine HR, standing HR, hypervent. HR, maximal HR, 2-min rec. HR, 5-min rec. SBP, supine SBP, standing	1.05 .45 .51	22 -9.27 54.11 147.17 98.31 45.59 82.76 83.71	.86 .81 .50 .36 .21 .62 .23
HR, maximal	HR, supine HR, standing HR, hypervent. HR, maximal HR, 5-min rec.	.60 .84 .65 .37		.73 .73 .44 .42
SBP, maximal	SBP, standing	.90	25.94	. 65
DBP, maximal	DBP, standing	.74	24.54	. 64
left calf circ.	SBP, 5-min rec. DBP, supine DBP, standing DBP, maximal	2.24 1.60 1.50 2.08	46.71 12.94 24.80 7.11	.25 .34 .28 .39
right calf circ.	SBP, 5-min rec. DBP, supine DBP, standing DBP, maximal	2.19 1.62 1.60 1.99	48.13 12.07 21.14 9.89	.25 .33 .29 .38

TABLE G: SUMMARY STATISTICS ON DOUBLE PRODUCTS

Variable	N	Mean	Std Error	Minimum	Maximum
DP, supine before LBNP DP, supine before TMX DP, at maximal LBNP DP, at quiet standing DP, at maximal exercise DP, 2 minutes after TMX DP, 5 minutes after TMX	98 96 98 97 88 89	7581.6 7705.0 8352.1 9850.8 28856.5 20020.6 12883.6	398.13	4134 4018 5082 5824 21112 10528 7654	12036 14750 13800 19481 42456 27632 20960

TABLE NWA SELECTED DESCRIPTIVE STATISTICS OF NASA WOMEN ASTRONAUTS

DESCRIPTIVE VARIABLES

Variable	N	Mean	SD	s	M	Max
Age (years)	13	36.1	4.10	1.18	28	44
Height (cm)	13	166.5	5.33	1.54	157	175
Weight (kg)	13	59.5	8.07	2.33	47	74
Hemoglobin (g %)	14	13.0	1.07	.30	11.0	15.8
Hematocrit (%)	14	38.0	2.70	.75	34	45
Cholesterol (mg %)	14	182.8	34.75	9.64	123	250
Cholesterol/HDL Ratio	14	3.2	.52	.14	1.9	4.2
Triglycerides (mg %)	14	75.0	32.33	8.97	41	172
SBP, sitting (mm Hg)	12	105.2	5.97	1.80	98	118
DBP, sitting (mm Hg)	12	67.5	5.90	1.78	60	80
HR, maximal (bpm)	10	171.6	7.30	2.43	162	185
VO2 peak (ml/kg/min)	10	36.8	7.21	2.40	26	48

LEG VOLUME MEASUREMENT BY CIRCULAR CONE SEGMENTS

220 Peak Oxygen Uptake vs. Maximal Heart Rate 210 200 180 y = -17.1 + 0.26xr = 0.51p<0.0001 160 150 60.09 Peak Oxygen Uptake (ml/kg/min) 62

Treadmill Maximal Heart Rate (bpm)

FIGURE

REFERENCES

- Astrand, Per-Olof and Kaare Rodahl. Textbook of Work Physiology: Physiological Bases of Exercise 1977; McGraw-Hill, Inc., New York.
- Berry, M. A., W. G. Squires, and A. S. Jackson. Fitness variables and the lipid profile in United States astronauts. Aviation Space and Environmental Medicine 1980; 51(11):1222-1226.
- 3. Bonen, A., F. J. Haynes, W. Watson-Wright, M. M. Sopper, G. N. Pierce, M. P. Low, and T. E. Graham. Effects of menstrual cycle on metabolic responses to exercise. Journal of Applied Physiology: Respiration Environmental and Exercise Physiology 1983; 55(5):1506-1513.
- 4. Bullen, Beverly A., Gary S. Skrinar, Inese Z. Beitins, Gretchen von Mering, Barry A. Turnbull, and Janet W. McArthur. Induction of menstrual disorders by strenuous exercise in untrained women. The New England Journal of Medicine 1985; 312:1349-1353.
- 5. Bungo, Michael W., Tandi M. Bagian, Mark A. Bowman, and Barry M. Levitan (Editors). Results of the Life Sciences DSO's Conducted aboard the Space Shuttle, 1981-1986 1987. Space Biomedical Research Institute, National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Texas, 182 pages.
- Convertino, V. A., R. W. Stremel, E. M. Bernauer, and J. E. Greenleaf. Cardiovascular responses to exercise after bed rest in men and women. Acta Astronautica 1977; 4:895-905.
- Convertino, V. A. Exercise responses after inactivity. In Inactivity: Physiological Effects 1986; Chapter 7, pp 149-191. Academic Press (HBJ), Orlando, Florida.
- 8. Convertino, V. A., D. J. Goldwater, and Harold Sandler. Bedrest-induced peak VO₂ reduction associated with age, gender, and aerobic capacity. Aviation Space and Environmental Medicine 1986; 57:17-22.
- 9. Dombovy, M. L., H. W. Bonekat, T. J. Williams, and B. A. Staats. Exercise performance and ventilatory response in the menstrual cycle. Medicine and Science in Sports and Exercise 1987; 19(2):111-117.
- 10. Drinkwater, B. Physiological responses of women to exercise. Exercise Sport Science Review 1973; 1:126-133.
- 11. Dubois, E. F. Basal Metabolism in Health and Disease 1936. Lea and Febiger, Philadelphia.

- 12. Eston, R. G. The regular menstrual cycle and athletic performance. Sports Medicine 1984; 1:431-445.
- 13. Frey, Mary Anne Bassett, Karen L. Mathes, and G. Wyckliffe Hoffler. Cardiovascular responses of women to lower body negative pressure. Aviation Space and Environmental Medicine 1986; 57:531-8.
- 14. Frey, Mary Anne Bassett, Karen L. Mathes, and G. Wyckliffe Hoffler. Aerobic fitness in women and responses to lower body negative pressure. Aviation Space and Environmental Medicine 1987; 58:1149-52.
- 15. Frey, Mary Anne Bassett and G. Wyckliffe Hoffler. Association of sex and age with responses to lower body negative pressure. *Journal of Applied Physiology* 1988; 65(4):1752-1756.
- 16. Gamberale, F., L. Strindberg, and I. Wahlberg. Female work capacity during the menstrual cycle: Physiological and psychological reactions. Scandinavian Journal of Work Environment and Health 1975; 1:120-127.
- 17. Gillingham, K. K., C. M. Schade, W. G. Jackson, and L. C. Gilstrap. Women's G tolerance. Aviation Space and Environmental Medicine 1986; 57:745-753.
- 18. Greenleaf, J. E., H. O. Stinnett, G. L. Davis, J. Kollias, and E. M. Bernauer. Fluid and electrolyte shifts in women during +Gz acceleration after 15 days' bed rest. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 1977; 42(1):67-73.
- 19. Guyton, Arthur C. Regulation of Mean Arterial Pressure: I and II. In Basic Human Physiology: Normal Function and Mechanisms of Disease 1977; pp 222-246. W. B. Saunders Company, Philadelphia.
- 20. Hall-Jurkowski, J. E., N. L. Jones, C. J. Toews, and J. R. Sutton. Effects of menstrual cycle on blood lactate, O₂ delivery, and performance during exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 1981; 51(1):1493-1499.
- 21. Hellerstein, Herman K., Eugene Z. Hirsch, Richard Ader, Ned Greenblott, and Martin Siegel. Principles of exercise prescription. In John P. Naughton, Herman K. Hellerstein, and Irving C. Mohler (Editors), Exercise Testing and Exercise Training in Coronary Heart Disease 1973; pp. 129-167. Academic Press, New York.
- 22. Hoffler, G. W., R. A. Wolthuis, and R. L. Johnson. Apollo space crew cardiovascular evaluations. *Aerospace Medicine* 1974; 45(8):807-820.

- 23. Hordinsky, J. R., U. Gebhardt, H. M. Wegmann, and G. Schaefer. Cardiovascular and biochemical response to simulated space flight entry. Aviation Space and Environmental Medicine 1981; 52(1):16-18.
- 24. Johnson, R. L., G. W. Hoffler, A. E. Nicogossion, S. A. Bergman, Jr., and M. M. Jackson. Lower body negative pressure: Third manned Skylab mission. In R. S. Johnston and L. F. Dietlein, (editors), Biomedical Results of Skylab, 1977; pp. 284-312. NASA SP-377, National Aeronautics and Space Administration, Washington, D. C.
- 25. Johnston, R. S., and L. F. Dietlein (Coordinators), The Proceedings of the Skylab Life Sciences Symposium, August 27-29, 1974, Volumes I and II, 862 pages, Lyndon B. Johnson Space Center, Houston, Texas. NASA-TMX-58154, National Aeronautics and Space Administration, Washington, D. C.
- 26. Keil, L. C. and S. Ellis. Plasma vasopressin and renin activity in women exposed to bed rest and +Gz acceleration.

 Journal of Applied Physiology 1976; 40(6):911-914.
- 27. Kilbom, A. Physical training in women. Scandinavian Journal of Clinical and Laboratory Investigation 1971; 28 (Suppl. 119):1-34.
- 28. Lewis, Richard P., Stanley E. Rittgers, and Harisios Boudoulas. A critical review of systolic time intervals. In Arnold M. Weissler (Editor), Reviews of Contemporary Laboratory Methods 1980; pp73-110. The American Heart Association, Inc., Dallas, Texas.
- 29. Lindquist, O. Intraindividual changes of blood pressure, serum lipids, and body weight in relation to menstrual status: Results from a prospective population study of women in Goteborg, Sweden. Preventive Medicine 1982; 11:162-172.
- 30. Littler, W. A., R. Bojorges-Bueno, and J. Banks.
 Cardiovascular dynamics in women during the menstrual cycle
 and oral contraceptive therapy. *Thorax* 1974; 29:567-570.
- 31. Montgomery, L. D., P. J. Kirk, P. A. Payne, R. L. Gerber, S. D. Newton, and B. A. Williams. Cardiovascular responses of men and women to lower body negative pressure. Aviation Space and Environmental Medicine 1977; 48(2):138-145.
- 32. Musgrave, F. S., F. W. Zechman, and R. C. Mains. Changes in total leg volume during lower body negative pressure.

 **Aerospace Medicine 1969; 40(6):602-606.
- 33. Musgrave, F. S., F. W. Zechman, and R. C. Mains. Comparison of the effects of 70 degrees tilt and several levels of lower body negative pressure on heart rate and blood pressure in man. Aerospace Medicine 1971; 42:1065-1069.

- 34. Newsom, B. D., W Goldenrath, W. Winter, and H Sandler. Tolerance of females to $+G_Z$ centrifugation before and after bed rest. Aviation Space and Environmental Medicine 1977; 48:327-331.
- 35. Nicogossian, Arnauld E. (Compiler). The Apollo-Soyuz Test Project: Medical Report 1977; 129 pages. NASA SP-411, National Aeronautics and Space Administration, Washington, D. C.
- 36. Nillius, S. J. Weight and the menstrual cycle. In G. J. Bargman (Chairman), Report of the Fourth Ross Conference on Biomedical Research, 14-17 November, 1982; pp. 77-81. Columbus, Ohio.
- 37. Pool, S. L. and A. Nicogossion. Biomedical results of the Space Shuttle orbital flight test program. Aviaton Space and Environmental Medicine 1983; 54(12): S41-S49.
- 38. Robinson, Marion F. and Patricia E. Watson. Day-to-day variations in body-weight of young women. British Journal of Nutrition 1965; 19:225-235.
- 39. Sandler, Harold and David L. Winter. Physiological Responses of Women to Simulated Weightlessness: A Review of the Significant Findings of the First Female Bed-rest Study 1978; 87 pages. NASA SP-430, National Aeronautics and Space Administration, Washington, D. C.
- 40. Santy, Patricia A. Women in space: a medical perspective.

 Journal of the American Medical Women's Association 1984;
 39:13-17.
- 41. Schoene, Robert B., H. Thomas Robertson, David J. Pierson, and Alan P. Peterson. Respiratory drives and exercise in menstrual cycles of athletic and nonathletic women. Journal of Applied Physiology: Respiratory Environmental and Exercise Physiology 1981; 50:1300-1305.
- 42. Seaton, A. Pulmonary capillary blood volume in women:
 Normal values and the effect of oral contraceptives. Thorax
 1972; 27:75-79.
- 43. Shepard, R. J. Effects of age and sex upon energy exhange. In *Physiology and Biochemistry of Exercise* 1982; pp. 335-340. Praeger Publishers, New York.
- 44. Vellar, O. D. Changes in hemoglobin concentration and hematocrit during the menstrual cycle. Acta Obstetrica and Gynecologica Scandinavica 1974; 53:243-246.
- 45. Vernikos-Danellis, J., M. F. Dallman, P. Forsham, A. L. Goodwin, and C. S. Leach. Hormonal indices of tolerance to +Gz acceleration in female subjects. Aviation Space and Environmental Medicine 1978; 49(7):886-889.

- 46. Vogel, James A., John F. Patton, Robert P. Mello, and William L. Daniels. An analysis of aerobic capacity in a large United States population. *Journal of Applied Physiology* 1986; 60(2):494-500.
- 47. Voigt, Allan E., Robert A. Bruce, Fusako Kusumi, Gladys Pettet, Karen Nilson, Shirley Whitkanack, and Janet Tapia. Longitudinal Variations in maximal-exercise performance of healthy, sedentary middle-aged women. Journal of Sports Medicine 1975; 15:323-327.
- 48. Wolthuis, R. A., G. W. Hoffler, and R. L. Johnson. Lower body negative pressure as an assay technique for orthostatic tolerance: I. The individual response to a constant level (-40 mm Hg) LBNP. Aerospace Medicine 1970; 41:29-35.
- 49. Wolthuis, R. A., G. W. Hoffler, and R. L. Johnson. Lower body negative pressure as an assay technique for orthostatic tolerance: II. A comparison of the individual responses to incremental vs. constant levels of LBNP. Aerospace Medicine 1970; 41:419-424.
- 50. Wolthuis, R. A., G. W. Hoffler, and R. L. Johnson. Lower body negative pressure as an assay technique for orthostatic tolerance: III. A comparison of the individual response to incremental leg negative pressure versus incremental lower body negative pressure. Aerospace Medicine 1970; 41:1354-1357.

Ę
•
•

National Aeronautics and Space Administration	Report Docum	entation Page	Э	
1. Report No.	2. Government Access	ion No.	3. Recipient's Catal	loa No.
NASA TP-3043				• • • • • • • • • • • • • • • • • • • •
4. Title and Subtitle			5. Report Date	
Responses of Women to Or	thostatic and Exe	rcise Stresses		
			6. Performing Organ	nization Code
7. Author(s) G.W. Hoffler , M.M. Jacks J.T. Baker , and D. Tatro	on ² , R.L. Johnson	2*,	8. Performing Organ	nization Report No.
*Posthumous			10. Work Unit No. UPN 199	
9. Performing Organization Name and Add	iress			
Biomedical Operations an John F. Kennedy Space Ce		, NASA 899	11. Contract or Gran NAS9-14880 NAS10-11624	
12. Sponsoring Agency Name and Address			13. Type of Report a Technical Pa	
National Aeronautics an	d Snace Administr	ation	1976-77; 198	39-90
Washington, D.C. 20546		acion	14. Sponsoring Agen	cy Code
3. Krug International, Tech 4. The Bionetics Corporat 16. Abstract This technical report pre- women performed at the Joh establish a large (98 sub are medical historical, couseful for establishing me were lower body negative period treadmill exercise (ergome analyses and subsets, and human responses to microgra women in this study and the	sents the results the sents the results the results the sents of the sente t	from a special r in 1976-1977 rom normal work metric, and strong wo ic standing (bown are original aries and correcties appear betronauts current	Florida l physiologica l Its purpose king women. Thess response omen astronaut oth orthostati l individual velations relations relations	al study of was to he data sets statistics s. Stressors c) and alues with ing to
17. Key Words (Suggested by Author(s))		140 00 00		
	mana Damana	18. Distribution Statem		
Orthostatic, Exercise, Stress Response, LBNP, Treadmill, Women		Unclassified - Unlimited Subject Category 52		
19. Security Classif. (of this report)	100.0			T
Unclassified	20. Security Classif. (of the		21. No. of pages	22. Price
oucrassified	Unclassified		80	A05

•		