Algoritmi e Strutture Dati

Alberi

Alberto Montresor and Davide Rossi

Università di Bologna

19 settembre 2024

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Sommario

- Introduzione
 - Definizioni
- 2 Alberi binari
 - Introduzione
 - Implementazione
 - Visite
- 3 Alberi generici
 - Visite
 - ullet Implementazione

Albero radicato – Definizione 1

Albero radicato (Rooted tree)

Un albero consiste di un insieme di nodi e un insieme di archi orientati che connettono coppie di nodi, con le seguenti proprietà:

- Un nodo dell'albero è designato come nodo radice;
- Ogni nodo n, a parte la radice, ha esattamente un arco entrante;
- Esiste un cammino unico dalla radice ad ogni nodo;
- L'albero è connesso.

Albero radicato – Definizione 2 (Ricorsiva)

Albero radicato (Rooted tree)

Un albero è dato da:

- un insieme vuoto, oppure
- un nodo radice e zero o più sottoalberi, ognuno dei quali è un albero; la radice è connessa alla radice di ogni sottoalbero con un arco orientato.

Terminologia

- A è la radice
- B, C sono radici dei sottoalberi
- \bullet D, E sono fratelli

- D, E sono figli di B
- B è il padre di D, E

- I nodi viola sono foglie
- Gli altri nodi sono nodi interni

Terminology (English)

- A is the tree root
- B, C are roots of their subtrees
- D, E are siblings

- D, E are children of B
- B is the parent of D, E
- Purple nodes are leaves
- The other nodes are internal nodes

Terminologia

Profondità nodi (Depth)

La lunghezza del cammino semplice dalla radice al nodo (misurato in numero di archi)

Livello (Level)

L'insieme di nodi alla stessa profondità

Altezza albero (Height)

La profondità massima della sue foglie

Livello

Altezza di questo albero = 3

Sommario

- Introduzione
 - Definizioni
- 2 Alberi binari
 - Introduzione
 - Implementazione
 - Visite
- 3 Alberi generic:
 - Visite
 - Implementazione

Albero binario

Albero binario

Un albero binario è un albero radicato in cui ogni nodo ha al massimo due figli, identificati come figlio sinistro e figlio destro.

Nota: Due alberi T e U che hanno gli stessi nodi, gli stessi figli per ogni nodo e la stessa radice, sono distinti qualora un nodo u sia designato come figlio sinistro di v in T e come figlio destro di v in U.

Specifica (Albero binario)

Tree

- % Costruisce un nuovo nodo, contenente v, senza figli o genitori $\mathsf{Tree}(\mathsf{ITEM}\ v)$
- % Legge il valore memorizzato nel nodo ITEM read()
- % Modifica il valore memorizzato nel nodo write(ITEM v)
- % Restituisce il padre, oppure **nil** se questo nodo è radice TREE parent()

Specifica (Albero binario)

```
Tree
% Restituisce il figlio sinistro (destro) di questo nodo; restituisce nil
 se assente
Tree left()
TREE right()
\% Inserisce il sottoalbero radicato in t come figlio sinistro (destro)
 di questo nodo
insertLeft(TREE \ t)
insertRight(TREE \ t)
% Distrugge (ricorsivamente) il figlio sinistro (destro) di questo
 nodo
deleteLeft()
deleteRight()
```

Memorizzare un albero binario

Campi memorizzati nei nodi

- parent: reference al nodo padre
- *left*: reference al figlio sinistro
- right: reference al figlio destro

Implementazione

Tree

$\mathsf{Tree}(\mathsf{ITEM}\ v)$

```
TREE t = new TREE t.parent = nil t.left = t.right = nil t.value = v return t
```

insertLeft(TREE T)

```
if left == nil then

T.parent = this

left = T
```

insertRight(TREE T)

```
if right == nil then
T.parent = this
right = T
```


Implementazione

Tree

```
 \begin{array}{c|c} \textbf{deleteLeft()} \\ \textbf{if} & left \neq \textbf{nil then} \\ & left. \texttt{deleteLeft()} \\ & left. \texttt{deleteRight()} \\ & \textbf{delete} & left \\ & left = \textbf{nil} \end{array}
```

deleteRight()

Visite di alberi

Visita di un albero / ricerca

Una strategia per analizzare (visitare) tutti i nodi di un albero.

Visità in profondità Depth-First Search (DFS)

- Per visitare un albero, si visita ricorsivamente ognuno dei suoi sottoalberi
- Tre varianti: pre/in/post visita (pre/in/post order)
- Richiede uno stack

Visita in ampiezza Breadth First Search (BFS)

- Ogni livello dell'albero viene visitato, uno dopo l'altro
- Si parte dalla radice
- Richiede una queue

Depth-First Search

dfs(TREE t)

```
if t \neq \text{nil then}
```

% pre-order visit of t $\mathbf{print} t$ dfs(t.left())% in-order visit of t

 $\mathbf{print} t$

dfs(t.right())

% post-order visit of t

 $\mathbf{print} t$


```
dfs(TREE t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: A Stack: A

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: A B Stack: A B

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    print t
```


Sequence: A B C

Stack: A B C

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    print t
```


Sequence: A B C

Stack: A B

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    print t
```


Sequence: A B C D

Stack: A B D

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    print t
```


Sequence: ${\tt A} {\tt B} {\tt C} {\tt D}$

Stack: A B

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    print t
```


Sequence: A B C D

Stack: A

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    print t
```


Sequence: A B C D E

Stack: A E

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    print t
```


Sequence: A B C D E F

Stack: A E F

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    print t
```


Sequence: A B C D E F

Stack: A E

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    print t
```


Sequence: A B C D E F G

Stack: A E G

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    print t
```


Sequence: A B C D E F G

Stack: A E

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    print t
```


Sequence: A B C D E F G

Stack: A

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    print t
```


Sequence: A B C D E F G Stack:

```
dfs(Tree t)
```

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: Stack: A

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: Stack: A B

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: C Stack: A B C

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: C B

Stack: A B

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: C B D

Stack: A B D

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: C B D

Stack: A B

dfs(Tree t)

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: C B D A

Stack: A

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: C B D A

Stack: A E

```
dfs(Tree t)
```

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: C B D A F

Stack: A E F

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: C B D A F E

Stack: A E

```
dfs(Tree t)
```

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: C B D A F E G

Stack: A E G

```
dfs(Tree t)
```

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: C B D A F E G

Stack: A E

```
dfs(Tree t)
```

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: C B D A F E G

Stack: A

```
dfs(Tree t)
```

```
if t \neq \text{nil then}
   \% pre-order visit of t
    print t
   dfs(t.left())
    \% in-order visit of t
    print t
   dfs(t.right())
   \% post-order visit of t
    print t
```


Sequence: C B D A F E G Stack:

dfs(TREE t)

```
if t \neq \text{nil then}

\% pre-order visit of t

print t

dfs(t.\text{left}())

\% in-order visit of t

print t

dfs(t.\text{right}())

\% post-order visit of t
```


Sequence: Stack: A

 $\mathbf{print} t$

```
dfs(Tree t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    print t
    dfs(t.right())
    \% post-order visit of t
    \mathbf{print} t
```


Sequence: Stack: A B

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    print t
    dfs(t.right())
    \% post-order visit of t
    \mathbf{print} t
```


Sequence: C Stack: A B C

dfs(Tree t)

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    print t
    dfs(t.right())
    \% post-order visit of t
    \mathbf{print} t
```


Sequence: C Stack: A B

dfs(Tree t)

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    print t
    dfs(t.right())
    \% post-order visit of t
    \mathbf{print} t
```


Sequence: C D Stack: A B D

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    print t
    dfs(t.right())
    \% post-order visit of t
    \mathbf{print} t
```


Sequence: C D B

Stack: A B

dfs(TREE t)

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    print t
    dfs(t.right())
    \% post-order visit of t
    \mathbf{print} t
```


Sequence: C D B

Stack: A

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    print t
    dfs(t.right())
    \% post-order visit of t
    \mathbf{print} t
```


Sequence: C D B

Stack: A E

$\mathsf{dfs}(\mathsf{TREE}\ t)$

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    print t
    dfs(t.right())
    \% post-order visit of t
    \mathbf{print} t
```


Sequence: $C\ D\ B\ F$

Stack: A E F

dfs(TREE t)

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    print t
    dfs(t.right())
    \% post-order visit of t
    \mathbf{print} t
```


Sequence: C D B F

Stack: A E

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    \mathbf{print} t
```


Sequence: C D B F G

Stack: A E G

```
\mathsf{dfs}(\mathsf{TREE}\ t)
```

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    \mathbf{print} t
```


Sequence: C D B F G E

Stack: A E

dfs(TREE t)

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    \mathbf{print}\ t
    dfs(t.right())
    \% post-order visit of t
    \mathbf{print} t
```


Sequence: C D B F G E A

Stack: A

dfs(TREE t)

```
if t \neq \text{nil then}
    \% pre-order visit of t
    print t
    dfs(t.left())
    % in-order visit of t
    print t
    dfs(t.right())
    \% post-order visit of t
    \mathbf{print} t
```


Sequence: C D B F G E A Stack:

Esempi di applicazione

Contare nodi – Post-visita

```
\frac{\text{int count}(\text{TREE }T)}{\text{if }T == \text{nil then}}
```

return 0

else

$$C_{\ell} = \operatorname{count}(T.\operatorname{left}())$$

 $C_{r} = \operatorname{count}(T.\operatorname{right}())$

return
$$C_{\ell} + C_r + 1$$

Esempi di applicazione

Stampare espressioni – In-visita

```
int printExp(TREE T)
if T.left() == nil and
 T.right == nil then
    \mathbf{print}\ T.\mathsf{read}()
else
    print "("
    printExp(T.left())
    \mathbf{print}\ T.\mathsf{read}()
    printExp(T.right())
    print ")"
```


Costo computazionale

Il costo di una visita di un albero contenente n nodi è $\Theta(n)$, in quanto ogni nodo viene visitato al massimo una volta.

Sommario

- Introduzione
 - Definizioni
- 2 Alberi binari
 - Introduzione
 - Implementazione
 - Visite
- 3 Alberi generici
 - Visite
 - Implementazione

Specifica (Albero generico)

Tree

- % Costruisce un nuovo nodo, contenente v, senza figli o genitori $\mathsf{Tree}(\mathsf{ITEM}\ v)$
- % Legge il valore memorizzato nel nodo ITEM read()
- % Modifica il valore memorizzato nel nodo write(ITEM v)
- % Restituisce il padre, oppure **nil** se questo nodo è radice TREE parent()

Specifica (Albero generico)

Tree

- % Restituisce il primo figlio, oppure **nil** se questo nodo è una foglia TREE leftmostChild()
- % Restituisce il prossimo fratello, oppure **nil** se assente TREE rightSibling()
- %Inserisce il sotto albero t come primo figlio di questo nodo
 <code>insertChild(Tree t)</code></code>
- % Inserisce il sotto albero t come prossimo fratello di questo nodo insert Sibling(TREE t)
- % Distruggi l'albero radicato identificato dal primo figlio ${\sf deleteChild}()$
- % Distruggi l'albero radicato identificato dal prossimo fratello deleteSibling()

Esempio: Class Node (Java 8)

```
package org.w3c.dom;
public interface Node {
  /** The parent of this node. */
  public Node getParentNode();
  /** The first child of this node. */
  public Node getFirstChild()
  /** The node immediately following this node. */
  public Node getNextSibling()
  /** Inserts the node newChild before the existing child node refChild. */
               insertBefore(Node newChild, Node refChild)
  public Node
  /** Adds the node newChild to the end of the list of children of this node. */
  public Node
               appendChild(Node newChild)
  /** Removes the child node indicated by oldChild from the list of children. */
 public Node
               removeChild(Node oldChild)
  [...]
```

Depth-First Search

dfs(TREE t)

if $t \neq \text{nil then}$

% pre-order visit of node t **print** t

TREE u = t.leftmostChild() while $u \neq nil$ do | dfs(u)

$$dts(u) \\ u = u.rightSibling()$$

% post-order visit of node t

 $\mathbf{print} \ t$


```
bfs(Tree t)
QUEUE Q = Queue()
Q.enqueue(t)
while not Q.isEmpty() do
   TREE u = Q.dequeue()
   \% visita per livelli nodo u
   print u
   u = u.leftmostChild()
   while u \neq \text{nil do}
       Q.enqueue(u)
       u = u.rightSibling()
```


Sequence: Queue: A

```
bfs(Tree t)
QUEUE Q = Queue()
Q.enqueue(t)
while not Q.isEmpty() do
   TREE u = Q.dequeue()
   \% visita per livelli nodo u
   print u
   u = u.leftmostChild()
   while u \neq \text{nil do}
       Q.\mathsf{enqueue}(u)
       u = u.rightSibling()
```


Sequence: A Queue: B E

```
bfs(Tree t)
QUEUE Q = Queue()
Q.enqueue(t)
while not Q.isEmpty() do
   TREE u = Q.dequeue()
   \% visita per livelli nodo u
   print u
   u = u.leftmostChild()
   while u \neq \text{nil do}
       Q.\mathsf{enqueue}(u)
       u = u.rightSibling()
```


Sequence: A B Queue: E C D

```
bfs(Tree t)
QUEUE Q = Queue()
Q.enqueue(t)
while not Q.isEmpty() do
   TREE u = Q.dequeue()
   \% visita per livelli nodo u
   print u
   u = u.leftmostChild()
   while u \neq \text{nil do}
       Q.\mathsf{enqueue}(u)
       u = u.rightSibling()
```


Sequence: A B E Queue: C D F G

```
bfs(Tree t)
QUEUE Q = Queue()
Q.enqueue(t)
while not Q.isEmpty() do
   TREE u = Q.dequeue()
   \% visita per livelli nodo u
   print u
   u = u.leftmostChild()
   while u \neq \text{nil do}
       Q.\mathsf{enqueue}(u)
       u = u.rightSibling()
```


Sequence: A B E C

Queue: D F G

```
bfs(Tree t)
QUEUE Q = Queue()
Q.enqueue(t)
while not Q.isEmpty() do
   TREE u = Q.dequeue()
   \% visita per livelli nodo u
   print u
   u = u.leftmostChild()
   while u \neq \text{nil do}
       Q.\mathsf{enqueue}(u)
       u = u.rightSibling()
```


Sequence: A B E C D

Queue: F G

```
bfs(Tree t)
QUEUE Q = Queue()
Q.enqueue(t)
while not Q.isEmpty() do
   TREE u = Q.dequeue()
   \% visita per livelli nodo u
   print u
   u = u.leftmostChild()
   while u \neq \text{nil do}
       Q.\mathsf{enqueue}(u)
       u = u.rightSibling()
```


Sequence: A B E C D F

Queue: G

```
bfs(Tree t)
QUEUE Q = Queue()
Q.enqueue(t)
while not Q.isEmpty() do
   TREE u = Q.dequeue()
   \% visita per livelli nodo u
   print u
   u = u.leftmostChild()
   while u \neq \text{nil do}
       Q.\mathsf{enqueue}(u)
       u = u.rightSibling()
```


Sequence: A B E C D F G Queue:

Memorizzazione

Esistono diversi modi per memorizzare un albero, più o meno indicati a seconda del numero massimo e medio di figli presenti.

- Realizzazione con vettore dei figli
- Realizzazione primo figlio, prossimo fratello
- Realizzazione con vettore dei padri

Realizzazione con vettore dei figli

Campi memorizzati nei nodi

- parent: reference al nodo padre
- Vettore dei figli: a seconda del numero di figli, può comportare una discreta quantità di spazio sprecato

Realizzazione basata su Primo figlio, prossimo fratello

Implementato come una lista di fratelli

Implementazione

```
Tree
Tree parent
                                                                       % Reference al padre
Tree child
                                                                 % Reference al primo figlio
Tree sibling
                                                            % Reference al prossimo fratello
ITEM value
                                                               Valore memorizzato nel nodo
Tree(ITEM v)
                                                                     % Crea un nuovo nodo
   Tree t = new Tree
   t.value = v
   t.parent = t.child = t.sibling = nil
   return t
insertChild(TREE t)
   t.parent = \mathbf{self}
   t.sibling = child
                                                % Inserisce t prima dell'attuale primo figlio
   child = t
insertSibling(TREE t)
   t.parent = parent
   t.sibling = sibling
                                           \% Inserisce t prima dell'attuale prossimo fratello
```

sibling = t

Implementazione

```
TREE
deleteChild()
   Tree newChild = child.rightSibling()
   delete(child)
   child = newChild
deleteSibling()
   Tree newSibling = sibling.rightSibling()
   delete(sibling)
   sibling = newSibling
delete(TREE t)
   Tree u = t.leftmostChild()
   while u \neq \text{nil do}
       Tree next = u.rightSibling()
       delete(u)
       u = next
   delete t
```

Realizzazione con vettore dei padri

L'albero è rappresentato da un vettore i cui elementi contengono il valore associato al nodo e l'indice della posizione del padre nel vettore.

1	A	0
2	В	1
3	E	1
4	С	2
5	D	2
6	F	3
7	G	3

