MATRIX THEORY: RANK OF MATRIX

ORTHOGONAL & UNITARY MATRICES

FY BTECH SEM-I
MODULE-2
SUB-MODULE 2.1

ORTHOGONAL MATRIX

• **Definition:** A real square matrix A is called orthogonal

if
$$AA^T = A^TA = I$$

- Properties:
- If A is orthogonal matrix then $|A| = \pm 1$

Proof: Since A is orthogonal, $AA^T = I$. taking determinants,

$$|AA^{T}| = |I|$$

 $|A||A^{T}| = |I|$ (Since $|AB| = |A||B|$)
 $|A^{T}| = |A| & |I| = 1$

$$\therefore |A|^2 = 1 \qquad \therefore |A| = \pm 1$$

- If A is orthogonal then $A^{-1} = A^T$
- If A is orthogonal then A^{-1} , A^{T} are also orthogonal.

UNITARY MATRIX

- **Definition:** A square matrix A is called unitary if $AA^{\theta} = A^{\theta}A = I$
- Properties:
- If A is Unitary then $A^{-1} = A^{\theta}$
- If A is unitary matrix of order n then A^T unitary.

Proof: Since A is unitary, $A^{\theta}A = I$

taking transpose on both sides, $(A^{\theta}A)^T = I^T \quad A^T(A^{\theta})^T = I$

- $\therefore (A^T)(A^T)^{\theta} = I \text{ Hence, } A^T \text{ is unitary}$
- If A and B are unitary matrices of order n then A^{-1} , A^{θ} , AB and BA are also unitary.

UNITARY MATRIX

- If A is unitary matrix then Its determinant is of unit modulus
- **Proof:** Since A is unitary, $AA^{\theta} = I$ taking determinant $\left|AA^{\theta}\right| = |I|$
 - $\therefore |A||A^{\theta}| = |I| \quad \text{(Since } |AB| = |A||B|)$
 - $\therefore |A||(\bar{A})^T| = |I|$
- $|A||\bar{A}| = 1$ (Since $|A^T| = |A|$, |I| = 1)
- $|A|\overline{|A|} = 1$ $(|\overline{A}| = \overline{|A|} : \text{check})$

Now, we know that for complex number z, $z\bar{z} = (mod z)^2$

Hence, $(mod |A|)^2 = 1$: $mod |A| = \pm 1$,

But modulus is never negative. $\therefore mod |A| = 1$

i.e. determinant of unitary matrix is of unit modulus.

• Prove that following matrix is orthogonal and hence find A^{-1} ,

$$A = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

Soln:
$$A^T = \begin{bmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

$$\therefore AA^{T} = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

$$= \begin{bmatrix} \cos^2 \alpha + \sin^2 \alpha & 0 & -\cos \alpha \sin \alpha + \cos \alpha \sin \alpha \\ 0 & 1 & 0 \\ -\cos \alpha \sin \alpha + \cos \alpha \sin \alpha & 0 & \sin^2 \alpha + \cos^2 \alpha \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Also, $A^T A$

$$= \begin{bmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since $A^T A = A A^T$, A is orthogonal.

For orthogonal matrix

$$A^{-1} = A^{T} = \begin{bmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

• Is the following matrix orthogonal? If not, can it be converted into orthogonal matrix?

$$A = \begin{bmatrix} \sqrt{2} & 1 & \sqrt{3} \\ \sqrt{2} & -2 & 0 \\ \sqrt{2} & 1 & -\sqrt{3} \end{bmatrix}$$

Soln:
$$A^T = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 1 & -2 & 1 \\ \sqrt{3} & 0 & -\sqrt{3} \end{bmatrix}$$

$$AA^{T} = \begin{bmatrix} \sqrt{2} & 1 & \sqrt{3} \\ \sqrt{2} & -2 & 0 \\ \sqrt{2} & 1 & -\sqrt{3} \end{bmatrix} \begin{bmatrix} \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 1 & -2 & 1 \\ \sqrt{3} & 0 & -\sqrt{3} \end{bmatrix}$$

$$= \begin{bmatrix} 2+1+3 & 2-2 & 2+1-3 \\ 2-2 & 2+4 & 2-2 \\ 2+1-3 & 2-2 & 2+1+3 \end{bmatrix}$$

Example 2

$$AA^{T} = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6I \neq I$$

Thus Given matrix A is not orthogonal.

But it can be converted into an orthogonal matrix as follow

Hence
$$\frac{1}{\sqrt{6}}A = \frac{1}{\sqrt{6}}\begin{bmatrix} \sqrt{2} & 1 & \sqrt{3} \\ \sqrt{2} & -2 & 0 \\ \sqrt{2} & 1 & -\sqrt{3} \end{bmatrix}$$
 is the

orthogonal matrix.

• If
$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & a \\ 2 & 1 & b \\ 2 & -2 & c \end{bmatrix}$$
 is orthogonal, then find a, b, c

Soln: Consider
$$A^T = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & b & c \end{bmatrix}$$

Since A is orthogonal we have, $AA^T = I$

$$AA^{T} = \frac{1}{9} \begin{bmatrix} 1 & 2 & a \\ 2 & 1 & b \\ 2 & -2 & c \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & b & c \end{bmatrix}$$

$$= \frac{1}{9} \begin{bmatrix} 5 + a^{2} & 4 + ab & -2 + ac \\ 4 + ab & 5 + b^{2} & 2 + bc \\ -2 + ac & 2 + bc & 8 + c^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Comparing we get total 6 distinct equations,

Example 3(Contd..)

•
$$\frac{5+a^2}{9} = 1$$
 $\therefore a^2 = 9 - 5 = 4$ $\therefore a = \pm 2$,

•
$$4 + ab = 0$$
 : $ab = -4$ \rightarrow when $a = +2$, $b = -2$ & when $a = -2$, $b = +2$

• Also,
$$-2 + ac = 0$$
 : $ac = 2 \rightarrow when \ a = +2$, $c = +1$ and when $a = -2$, $c = -1$

- Hence (2, -2, 1) and (-2, 2, -1) are the required pairs.
- (Note Observation) For orthogonal matrix, column vectors are orthonormal to each other

Show matrix A is unitary and hence find A^{-1} where $A = \begin{bmatrix} \frac{2+i}{3} & \frac{2i}{3} \\ \frac{2i}{3} & \frac{2-i}{3} \end{bmatrix}$

- **Soln:** T. S. T. A is unitary, we have to show $AA^{\theta} = I$
- Consider $A = \frac{1}{3} \begin{bmatrix} 2+i & 2i \\ 2i & 2-i \end{bmatrix}$: $A^{\theta} = \frac{1}{3} \begin{bmatrix} 2-i & -2i \\ -2i & 2+i \end{bmatrix}$

•
$$AA^{\theta} = \frac{1}{9} \begin{bmatrix} 2+i & 2i \\ 2i & 2-i \end{bmatrix} \begin{bmatrix} 2-i & -2i \\ -2i & 2+i \end{bmatrix}$$

• =
$$\frac{1}{9}$$
 $\begin{bmatrix} (2+i)(2-i) - (2i)(2i) & -2i(2+i) + 2i(2+i) \\ 2i(2+i) - 2i(2+i) & -(2i)(2i) + (2-i)(2+i) \end{bmatrix}$ = $\frac{1}{9}$ $\begin{bmatrix} 5+4 & 0 \\ 0 & 5+4 \end{bmatrix}$

- Hence the given matrix is unitary. For unitary matrix $A^{-1} = A^{\theta} = \frac{1}{3} \begin{bmatrix} 2-i & -2i \\ -2i & 2+i \end{bmatrix}$

$$A^{-1} = A^{\theta} = \frac{1}{3} \begin{bmatrix} 2 - i & -2i \\ -2i & 2 + i \end{bmatrix}$$

Show matrix A is unitary and hence find A^{-1} where, $A=\frac{1}{2}\begin{bmatrix}\sqrt{2} & -i\sqrt{2} & 0\\ i\sqrt{2} & -\sqrt{2} & 0\\ 0 & 0 & 2\end{bmatrix}$

Soln:
$$A^{\theta} = \frac{1}{2} \begin{bmatrix} \sqrt{2} & -i\sqrt{2} & 0 \\ i\sqrt{2} & -\sqrt{2} & 0 \\ 0 & 0 & 2 \end{bmatrix} = A$$
 and

$$AA^{\theta} = \frac{1}{4} \begin{bmatrix} \sqrt{2} & -i\sqrt{2} & 0 \\ i\sqrt{2} & -\sqrt{2} & 0 \\ 0 & 0 & 2 \end{bmatrix}^{2} = \frac{1}{4} \begin{bmatrix} 4 & -2i+2i & 0 \\ 2i-2i & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = I$$

Hence the given matrix is unitary.

• For unitary matrix
$$A^{-1} = A^{\theta} = \frac{1}{2} \begin{bmatrix} \sqrt{2} & -i\sqrt{2} & 0 \\ i\sqrt{2} & -\sqrt{2} & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Show that
$$A = \begin{bmatrix} \alpha + i\gamma & -\beta + i\delta \\ \beta + i\delta & \alpha - i\gamma \end{bmatrix}$$
 is unitary if $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 1$

• Soln: Since,
$$A^{\theta} = \begin{bmatrix} \alpha - i\gamma & \beta - i\delta \\ -\beta - i\delta & \alpha + i\gamma \end{bmatrix}$$
 Let us check,

•
$$AA^{\theta} = \begin{bmatrix} \alpha + i\gamma & -\beta + i\delta \\ \beta + i\delta & \alpha - i\gamma \end{bmatrix} \begin{bmatrix} \alpha - i\gamma & \beta - i\delta \\ -\beta - i\delta & \alpha + i\gamma \end{bmatrix}$$

$$= \begin{bmatrix} \alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2} & (\alpha + i\gamma)(\beta - i\delta) - (\beta - i\delta)(\alpha + i\gamma) \\ (\beta + i\delta)(\alpha - i\gamma) - (\beta + i\delta)(\alpha - i\gamma) & \alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• By comparing, we get the required condition, that A is unitary if $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 1$