Question #1: Compute the output of the following neural network, when:

Inputs: $x_1 = 1$, $x_2 = 2$

Weights (Input to Hidden): $w_1 = 0.2$, $w_2 = 0.1$, $w_3 = 0.3$, $w_4 = 0.2$

Weights (Hidden to Output): $w_5=0.1$, $w_6=0.2$, $w_7=0.4$, $w_8=0.3$

 $Biases: b_1 = 0.1$, $b_2 = 0.2$

The activation functions of the neurons are both ReLU functions. Provide all steps. You may use python to do the step-by-step computation.

For the first two neurons, we'll define them as h_1 and h_2 with inputs $x_1=1$ and $x_2=2$.

Neuron #1 (h_1):

$$h_1 \text{ has inputs } b_1 = 0.1 \text{ , } w_1 = 0.2 \text{ , } w_2 = 0.1 \text{ .}$$

$$h_1 = ReLU \left(\left(w_1 x_1 + w_2 x_2 + b_1 \right) \right)$$

$$h_1 = ReLU \left(\left(0.2 * 1 \right) + \left(0.1 * 2 \right) + 0.1 \right)$$

$$h_1 = ReLU \left(0.2 + 0.2 + 0.1 \right) = ReLU \left(0.5 \right)$$

$$h_1 = 0.5$$

Neuron #2 (h_2):

$$\begin{split} h_2 \text{ has inputs } b_1 &= 0.1 \text{ ,} w_3 = 0.3 \text{ ,} w_4 = 0.2 \text{ .} \\ h_2 &= ReLU \left(\left. w_3 x_1 + w_4 x_2 + b_2 \right. \right) \\ h_2 &= ReLU \left(\left. \left(0.3 * 1 \right) \right) + \left(0.2 * 2 \right. \right) + 0.1 \right) \\ h_2 &= ReLU \left(0.3 + 0.4 + 0.2 \right. \right) = ReLU \left(0.8 \right) \\ h_2 &= 0.8 \end{split}$$

Moving onto the output neurons, we now have the inputs $h_1=0.5$ and $h_2=0.8$.

Output Neuron #1 (o_1):

$$\begin{split} o_1 \text{ has inputs } b_2 &= 0.2 \text{ ,} w_5 = 0.1 \text{ ,} w_6 = 0.2 \text{ .} \\ o_1 &= ReLU \left(w_5 h_1 + w_6 h_2 + b_2 \right) \\ o_1 &= ReLU \left(\left(0.1 * 0.5 \right) + \left(0.2 * 0.8 \right) + 0.2 \right) \\ o_1 &= ReLU \left(0.05 + 0.16 + 0.2 \right) = ReLU \left(0.41 \right) \\ o_1 &= 0.41 \end{split}$$

Output Neuron #2 (o_2):

$$\begin{split} o_2 \text{ has inputs } b_2 &= 0.2 \text{ , } w_7 = 0.4 \text{ , } w_8 = 0.3 \text{ .} \\ o_2 &= ReLU \text{ (} w_7 h_1 + w_8 h_2 + b_2 \text{)} \\ o_2 &= ReLU \text{ (} (0.4*0.5\text{)} + (0.3*0.8\text{)} + 0.2\text{)} \\ o_2 &= ReLU \text{ (} 0.2 + 0.24 + 0.2\text{)} = ReLU \text{ (} 0.64\text{)} \\ o_2 &= 0.64 \end{split}$$

Final Outputs (o_1 and o_2):

$$o_1 = 0.41$$

$$o_2 = 0.64$$

Question # 2 : Assume the ground truth in the training for input $(x_1, x_2) = (1, 2)$ is $(o_1, o_2) = (0, 1)$, the current w's are the values in Question 1, and the loss function is defined as :

$$L = (o_1 - \widehat{o_1})^2 + (o_2 - \widehat{o_2})^2$$

Compute $\frac{\partial L}{\partial w_3}$ and $\frac{\partial L}{\partial w_7}$. Provide all steps. You may use Python to do step-by-step computation.

We have the values $h_1=0.5$, $h_2=0.8$ and $o_1=0.41$, $o_2=0.64$ from the previous question.

With the Ground Truth Values $o_1=0$ and $o_2=1$. We can now plug into the Loss function :

$$L = (0.41 - 0)^{2} + (0.64 - 1)^{2}$$

$$L = (0.41)^{2} + (-0.36)^{2}$$

$$L = 0.1681 + 0.1296$$

$$L = 0.2977$$

We need to solve these gradients:

$$\frac{\partial L}{\partial w_7} = \frac{\partial L}{\partial o_2} * \frac{\partial o_2}{\partial w_7}$$
$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial h_2} * \frac{\partial h_2}{\partial w_3}$$

Now to compute the necessary values for the gradients.

$$\frac{\partial L}{\partial o_1} = 2 (o_1 - \widehat{o_1}) = 2 (0.41 - 0) = 0.82$$

$$\frac{\partial L}{\partial o_2} = 2 (o_2 - \widehat{o_2}) = 2 (0.64 - 1) = -0.72$$

Gradient of Output with respect to Weight for w_7 :

$$\frac{\partial o_2}{\partial w_7} = w_7 h_1 + w_8 h_2 + b_2 \to h_1 = 0.5$$

From these values we can solve for $\frac{\partial L}{\partial w_7}$:

$$\frac{\partial L}{\partial w_7} = \frac{\partial L}{\partial h_2} * \frac{\partial h_2}{\partial w_2} = -0.72 * 0.5 = -0.36$$

Now to solve for the remaining values.

Solving for $\frac{\partial L}{\partial h_2}$:

$$\frac{\partial L}{\partial h_2} = \left(w_6 * \frac{\partial L}{\partial o_1} \right) + \left(w_8 * \frac{\partial L}{\partial o_2} \right) = (0.2 * 0.82) + (0.3 * -0.72)$$

$$\frac{\partial L}{\partial h_2} = 0.164 - 0.216 = -0.052$$

And finally solving for $\frac{\partial h_2}{\partial w_3}$:

$$\frac{\partial h_2}{\partial w_3} = w_3 x_1 + w_4 x_2 + b_2 \to x_1 = 1$$

Now we can solve for $\frac{\partial L}{\partial w_3}$:

$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial h_2} * \frac{\partial h_2}{\partial w_3} = -0.052 * 1 = -0.052$$

Final Answers ($\frac{\partial L}{\partial w_3}$ and $\frac{\partial L}{\partial w_7}$):

$$\frac{\partial L}{\partial w_7} = -0.36$$

$$\frac{\partial L}{\partial w_3} = -0.052$$

Question #3: Now we add a softmax output lay for multi-class classification. Assume there are two classes – class 1 and class 2. The ground truth for input $(x_1, x_2) = (1, 2)$ is class 2, the current w's are the values in Question #1 and the loss function is cross-entropy. Compute $\frac{\partial L}{\partial w_3}$ and $\frac{\partial L}{\partial w_7}$. Provide all steps. You may use Python to do the step-by-step computation.

Considering our calculated and given values here:

$$h_1 = 0.5$$
, $h_2 = 0.8$

$$o_1 = 0.41$$
 , $o_2 = 0.64$

Lets now apply the softmax function of the exp over the sum of exps.

$$e^{z_1} = e^{0.41} \cong 1.506$$

$$e^{z_2} = e^{0.64} \cong 1.896$$

$$\sum e^z = 1.506 + 1.896 = 3.402$$

The softmax outputs are then:

$$\widehat{y_1} = \frac{1.506}{3.402} \cong 0.443$$

$$\widehat{y_2} = \frac{1.896}{3.402} \cong 0.557$$

In the question it is stated that the ground truth is class 2 so we can tell $y_{true} = [0, 1]$.

Utilizing this for our gradient of loss with respect to our previously calculated softmax outputs is:

$$\frac{\partial L}{\partial z_i} = \widehat{y}_i - y_{true,i}$$
 For z_1 , $\frac{\partial L}{\partial z_1} = 0.443 - 0 = 0.443$

For
$$z_2$$
, $\frac{\partial L}{\partial z_2} = 0.557 - 1 = -0.443$

We now can solve for the $\frac{\partial L}{\partial w_7}$.

$$\frac{\partial L}{\partial w_7} = \frac{\partial L}{\partial z_2} * \frac{\partial z_2}{\partial w_7} = (-0.443) * (0.5) = -0.222$$

Now we need to compute $\frac{\partial L}{\partial h_2}$ to properly solve for $\frac{\partial L}{\partial w_3}$.

$$\frac{\partial L}{\partial h_2} = w_6 \frac{\partial L}{\partial z_1} + w_8 \frac{\partial L}{\partial z_2} = (0.2 * 0.443) + (0.3 * -0.443)$$
$$\frac{\partial L}{\partial h_2} = 0.00886 - 0.1329 = -0.0443$$

Now we can solve for $\frac{\partial L}{\partial w_3}$ using our previous value in $\frac{\partial h_2}{\partial w_3}$ from Question #2.

$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial h_2} * \frac{\partial h_2}{\partial w_3} = -0.0443 * x_1 = -0.0443 * 1 = -0.0443$$

Final Answers ($\frac{\partial L}{\partial w_3}$ and $\frac{\partial L}{\partial w_7}$):

$$\frac{\partial L}{\partial w_7} = -0.222$$

$$\frac{\partial L}{\partial w_3} = -0.0443$$