Homework 5

1. The Candle Experiment

An experiment was run to determine whether different colored candles (red, white, blue, yellow) burn at different speeds. Each experimenter collected four observations on each color in a random order, and "experimenter" was used as a blocking factor. The design was a general complete block design with v=4, k=16, b=4, and s=4. The resulting burning times (in seconds) are shown in Table 17.21 in the book and can be downloaded at http://deanvossdraguljic.ietsandbox.net/DeanVossDraguljic/SASdata/candle.sas.

- (a) [2 pts] Analyze the experiment as though the experimenters represent a random sample from a large population of people who might use these candles in practice. Use a two-way mixed model with interaction where the experimenters are blocks with random effects and the interactions of block and color are random as well. The color has fixed effects. Provide the 95% simultaneous confidence intervals for all pairwise comparisons of color using Tukey's method.
- (b) [1 pt] Provide the SAS code for 1(a).
- (c) [2 pts] In 1(a), suppose we do not treat these experimenters as a random sample from a large population and consequently the model does not have random effects. Provide the 95% simultaneous confidence intervals for all pairwise comparisons of color using Tukey's method.
- (d) [1 pt] Provide the SAS code for 1(c).
- (e) [2 pts] Which model provides shorter confidence intervals? Give a justification if you could.
- (f) [2 pts] If a two-way main-effects model was used in 1(a) and 1(c), do you think the two models (one with random effects and one without) would produce the simultaneous confidence intervals of different lengths?

2. Completely Randomized Design with Three Factors

Suppose in a completely randomized designs experiment there are 3 crossed factors A, B and C. Their levels are a=4, b=3 and c=3. Each treatment is replicated r=2 times. The following model is applied to the experiment:

$$Y_{ijkt} = \mu + \alpha_i + \beta_j + \gamma_k + (\beta \gamma)_{jk} + \epsilon_{ijkt}, \quad i = 1, 2, 3, 4; \quad j, k = 1, 2, 3,$$

where ϵ_{ijkt} 's are i.i.d. $N(0, \sigma^2)$, α_i 's represent the fixed effects of A, β_j 's and γ_k 's are the random effects of Factors B and C, respectively, and $(\beta\gamma)_{jk}$'s are the random interaction effects. Furthermore, assume all random terms are independent and

$$\beta_j \sim N(0, \sigma_B^2), \quad \gamma_k \sim N(0, \sigma_C^2), \quad (\beta \gamma)_{jk} \sim N(0, \sigma_{BC}^2).$$

Partial SAS output is provided below:

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	11	4.20183285	0.38198480	0.35	0.9712
Error	60	66.31427369	1.10523789		
Corrected Total	71	70.51610654			

Source	DF	Type I SS	Mean Square	F Value	Pr > F
Α	3	0.95832853	0.31944284	0.29	0.8331
В	2	0.34514265	0.17257132	0.16	0.8558
С	2	0.10863270	0.05431635	0.05	0.9521
B*C	4	2.78972897	0.69743224	0.63	0.6423

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Α	3	0.95832853	0.31944284	0.29	0.8331
В	2	0.34514265	0.17257132	0.16	0.8558
С	2	0.10863270	0.05431635	0.05	0.9521
B*C	4	2.78972897	0.69743224	0.63	0.6423

- (a) [1 pt] The F-ratio for testing the hypothesis that A has equal main effects is ______.
- (b) [1 pt] The degree of freedom of the denominator for the hypothesis testing in the previous question is .
- (c) [1 pt] The F-ratio for testing the hypothesis that B has no effects is _____.
- (d) [1 pt] The degree of freedom of the denominator for the hypothesis testing in the previous question is $\underline{\hspace{1cm}}$

1. The Candle Experiment

An experiment was run to determine whether different colored candles (red, white, blue, yellow) burn at different speeds. Each experimenter collected four observations on each color in a random order, and "experimenter" was used as a blocking factor. The design was a general complete block design with v=4, k=16, b=4, and s=4. The resulting burning times (in seconds) are shown in Table 17.21 in the book and can be downloaded at http://deanvossdraguljic.ietsandbox.net/DeanVossDraguljic/SASdata/candle.sas.

Table	Data for the	candle exper	iment (secon	ds)					
Person				(Color				_
	R	ed	W	nite	Bl	ue	Y	ellow	Т
1	989	1032	1044	979	1011	951	974	998	Т
	1077	1019	987	1031	928	1022	1033	1041	
2	899	912	847	880	899	800	886	859	
	911	943	879	830	820	812	901	907	
3	898	840	840	952	909	790	950	992	
	955	1005	961	915	871	905	920	890	
4	993	957	987	960	864	925	949	973	
	1005	982	920	1001	824	790	978	938	

(a) [2 pts] Analyze the experiment as though the experimenters represent a random sample from a large population of people who might use these candles in practice. Use a two-way mixed model with interaction where the experimenters are blocks with random effects and the interactions of block and color are random as well. The color has fixed effects. Provide the 95% simultaneous confidence intervals for all pairwise comparisons of color using Tukey's method.


```
data candle;
-(b) [1 pt] Provide the SAS code for 1(a).
                                                                do person = 1 to 4;
                                                                   do row = 1,2;
                                                                     do color = 1 to 4;
 25 proc mixed data=candle;
                                                                       do col = 1,2;
      class person color;
 26
                                                                         input time 00;
 27
                                                                         output;
      model time = color;
                                                             8
                                                                         drop row col;
 28
       random person person*color;
                                                                       end;
 29
       lsmeans color / cl pdiff adjust=tukey;
                                                                    end;
 30 run;
                                                                  end:
                                                                 end;
                                                            13
                                                                lines;
                                                                                 979 1011
                                                                                           951
                                                                                                 974
                                                                                                      998
                                                            14
                                                                 989 1032 1044
                                                                 1077 1019
                                                                            987
                                                                                1031
                                                                                      928
                                                                                           1022
                                                                                                1033
                                                                                                     1041
                                                            16
                                                                 899
                                                                       912
                                                                            847
                                                                                 880
                                                                                      899
                                                                                            800
                                                                                                 886
                                                                                                      859
                                                                 911
                                                                       943
                                                                            879
                                                                                 830
                                                                                      820
                                                                                            812
                                                                                                 901
                                                                                                      907
                                                                 898
                                                                       840
                                                                            840
                                                                                 952
                                                                                      909
                                                                                            790
                                                                                                 950
                                                                                                      992
                                                            19
                                                                 955 1005
                                                                            961
                                                                                 915
                                                                                      871
                                                                                            905
                                                                                                 920
                                                                                                      890
                                                                 993
                                                                       957
                                                                            987
                                                                                 960
                                                                                      864
                                                                                            925
                                                                                                 949
                                                                                                      973
                                                            21
                                                                1005
                                                                       982
                                                                            920
                                                                                1001
                                                                                      824
                                                                                            790
                                                                                                 978
                                                                                                      938
                                                           22 ;
                                                           23 run;
```

(c) [2 pts] In 1(a), suppose we do not treat these experimenters as a random sample from a large population and consequently the model does not have random effects. Provide the 95% simultaneous confidence intervals for all pairwise comparisons of color using Tukey's method.

1 2

1 3

2 3

2 4

4

4

25.250000

81.000000

14.250000

55.750000

-11.000000

-66.750000

-13.646740

42.103260

-24.646740

-49.896740

-105.646740

64.146740

119.896740

53.146740

				The GL	M P	rocedure							
Source			Тур	e III Exp	ected	d Mean Squ	are						
person			Var	Var(Error) + 4 Var(person*color) + 16 Var(person)									
color			Var	(Error) +	4 Var	(person*col	or) +	Q(cold	or)				
person	'cc	olor	Var	(Error) +	4 Var	(person*col	or)						
The GLM Procedure Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: time													
Tests	of	f Нур		ses for N	lixed	Model Ana		of Va	riand	ce			
Source		f Hyp	_	ses for N	lixed	Model Ana		of Va		ce > F			
			_	ses for N Depende	lixed	Model Ana	FV		Pr				
Source		DF	_	ses for N Depender De III SS	lixed	Model Ana riable: time an Square	F V	alue	Pr <.0	> F			
Source		DF 3	_	ses for M Depender De III SS 151659	lixed nt Va	Model Ana riable: time an Square 50553	F V	alue 8.76	Pr <.0	> F 001			
Source person color		DF 3 3	Тур	Depender De III SS 151659 60345 15821	lixed nt Va	Model Ana riable: time an Square 50553 20115	F V	alue 8.76	Pr <.0	> F 001			
Source person color Error		DF 3 3	Тур	Depender De III SS 151659 60345 15821	lixed nt Va	Model Ana riable: time an Square 50553 20115	F V	alue 8.76	Pr <.0	> F 001			
Source person color Error		DF 3 3	Тур	Depender De III SS 151659 60345 15821	Me	Model Ana riable: time an Square 50553 20115	F V 2	alue 8.76	Pr <.00	> F 001	> F		

1708.854167

fixed effects model
(d) [1 pt] Provide the SAS code for 1(c).
<pre>proc glm data=candle; class person color; model time = person color person*color; random person person*color/test; lsmeans color / cl pdiff adjust=tukey E=person*color; run;</pre>
Assume no random effects
(e) [2 pts] Which model provides shorter confidence intervals? Give a justification if you could. The model in 1(c) provides shorter intervals. That is the model where the experimenter effects were treated as fixed.
(f) [2 pts] If a two-way main-effects model was used in 1(a) and 1(c), do you think the two models (one with random effects and one without) would produce the simultaneous confidence intervals of different lengths?
No! In this case, they will produce the intervals of the same length. This is because in both models the degrees of freedom for error is used.
(next page for Q2)
\bigvee

_ :	2. Co	mplet	ely	Rando	mize	ed De	sign	\mathbf{with}	Thre	e Factors	_	Mixed - Eff	ects Model	
_ 8	are a = 4	b = 3 and b =								factors A, B and C. Their following model is applied				
-	experime		Y_{ijkt}	$\mu = \mu + \alpha_i + \alpha_i$	$\beta_i + \gamma$	$\gamma_k + (\beta \gamma)$	$_{ik}+\epsilon_{ijk}$	i_t , $i =$	1, 2, 3, 4;	j, k = 1, 2, 3,	-	The Lea		
										and γ_k 's are the random ϵ		Fixed:A	(Thanks Dr is	o. dou
				spectively, a pendent and		$\gamma)_{jk}$'s are	e the rar	ndom in	teraction	effects. Furthermore, assur	me all _	Kandom- D	, C, Therefore, BC is 1	aroon
_				$\beta_j \sim N(0)$	$(0, \sigma_B^2),$	$\gamma_k \sim I$	$N(0, \sigma_C^2)$	$, (\beta \gamma)$	$)_{jk} \sim N(0$	$,\sigma_{BC}^{2}).$				
-]	Partial S	AS outpu	ıt is	provided bel	ow:						_			
				Depend	ent Va	riable: y								
	Source	е	DF	Sum of So	quares	Mean S	quare	F Value	Pr > F					
	Mode	ı	1	1 4.20	183285	0.381	198480	0.35	0.9712					
	Error		60	66.314	127369	1.105	23789							
_	Corre	cted Tota	1 7	70.516	510654									
			R-Sq	uare Coeff	Var Ro	oot MSE	y Mea	n						
_			_	9587 10.43		1.051303	10.0704	3						
						_								
		Source		Type I SS										
		В		0.95832853		7257132		0.833	-	500	•			
_		С		0.34514265		5431635		0.952	_	Effect	2 (2	EMS	F-ratio	
		B*C		2.78972897		9743224		3 0.642	-	<u>A</u>	Q (A	1) + 02	ms A /ms E	
								0.012		В	0g2	+ Lot + Or	ms B/ms BC msC/ms BC	
_		Source	DF	Type III SS	Mean	Square	F Value	e Pr>	F	BC BC	O'C	+ co ² _{BC} + o ² + bo ² _{BC} + o ² + o ²	msBC/msE	
		Α	3	0.95832853	0.3	31944284	0.2	9 0.833	1	Error	(92	——————————————————————————————————————	
		В		0.34514265		17257132		6 0.855	_					
		C	2	0.10863270)5431635		5 0.952	_					
		B*C	4	2.78972897	0.6	9743224	0.6	3 0.642	3					
_											/			
_										<u>_</u>	/			
	(a) [1	pt] The	e F-1	ratio for te	sting t	the hyp	othesis	that A	has eq	ual main effects ismsA	/ms E	0.29 -		
	(b) [1	pt] The	e deg	gree of free	dom c	of the de	enomin	ator fo	r the hy	pothesis testing in the p	orevious	s question is		
	_	60								V				
	(c) [1	pt] The	e F-1	ratio for te	sting t	the hyp	othesis	that B	has no	effects is ms B/ms BC.	0.25	_		
	(d) [1	pt] The	e deg	gree of free	dom o	of the de	enomin	ator fo	r the hy	pothesis testing in the p	previous	s question is $_{-}$		
_	_	4	—·									_		
_														
_														
_														
_														

Homework 5

1. The Candle Experiment

An experiment was run to determine whether different colored candles (red, white, blue, yellow) burn at different speeds. Each experimenter collected four observations on each color in a random order, and "experimenter" was used as a blocking factor. The design was a general complete block design with $v=4,\,k=16,\,b=4,\,$ and s=4. The resulting burning times (in seconds) are shown in Table 17.21 in the book and can be downloaded at http://deanvossdraguljic.ietsandbox.net/DeanVossDraguljic/SASdata/candle.sas.

(a) [2 pts] Analyze the experiment as though the experimenters represent a random sample from a large population of people who might use these candles in practice. Use a two-way mixed model with interaction where the experimenters are blocks with random effects and the interactions of block and color are random as well. The color has fixed effects. Provide the 95% simultaneous confidence intervals for all pairwise comparisons of color using Tukey's method.

The last two columns are for the simultaneous confidence intervals.

						Differ	ences of	f Least Square	s Means					
Effect	color	_color	Estimate	Standard Error	DF	t Value	Pr > t	Adjustment	Adj P	Alpha	Lower	Upper	Adj Lower	Adj Upper
color	1	2	25.2500	14.8233	9	1.70	0.1227	Tukey-Kramer	0.3757	0.05	-8.2827	58.7827	-21.0253	71.5253
color	1	3	81.0000	14.8233	9	5.46	0.0004	Tukey-Kramer	0.0018	0.05	47.4673	114.53	34.7247	127.28
color	1	4	14.2500	14.8233	9	0.96	0.3615	Tukey-Kramer	0.7739	0.05	-19.2827	47.7827	-32.0253	60.5253
color	2	3	55.7500	14.8233	9	3.76	0.0045	Tukey-Kramer	0.0192	0.05	22.2173	89.2827	9.4747	102.03
color	2	4	-11.0000	14.8233	9	-0.74	0.4770	Tukey-Kramer	0.8778	0.05	-44.5327	22.5327	-57.2753	35.2753
color	3	4	-66.7500	14.8233	9	-4.50	0.0015	Tukey-Kramer	0.0066	0.05	-100.28	-33.2173	-113.03	-20.4747

(b) [1 pt] Provide the SAS code for 1(a).

```
data candle;
    do person=1 to 4;
        do row=1,2;
            do color=1 to 4;
                do col=1,2;
                input time @@;
                output;
                drop row col;
    end; end; end; end;
    lines;
    989 1032 1044 979 1011 951 974 998
    1077 1019 987 1031 928 1022 1033 1041
    899 912 847 880 899 800 886 859
    911 943 879 830 820 812 901 907
    898 840 840 952 909 790 950 992
    955 1005 961 915 871 905 920 890
    993 957 987 960 864 925 949 973
```

```
1005 982 920 1001 824 790 978 938
run:
/* 1(a)-1(b)*/
proc mixed data=candle;
    class person color;
    model time=color;
    random person person*color;
    lsmeans color /cl pdiff adjust=Tukey;
run;
/* Use proc glm to get the same answers */
proc glm data=candle;
    class person color;
    model time=person color person*color;
    random person person*color/test;
    lsmeans color /cl pdiff adjust=Tukey E=person*color;
run;
```

(c) [2 pts] In 1(a), suppose we do not treat these experimenters as a random sample from a large population and consequently the model does not have random effects. Provide the 95% simultaneous confidence intervals for all pairwise comparisons of color using Tukey's method.

The last two columns are for the simultaneous confidence intervals.

		Least Square	es Means for Effect o	color						
i	j	Difference Between Means	Simultaneous 95% Confidence Limit for LSMean(i)-LSMean(j)							
1	2	25.250000	-13.646740	64.146740						
1	3	81.000000	42.103260	119.896740						
1	4	14.250000	-24.646740	53.146740						
2	3	55.750000	16.853260	94.646740						
2	4	-11.000000	-49.896740	27.896740						
3	4	-66.750000	-105.646740	-27.853260						

(d) [1 pt] Provide the SAS code for 1(c).

```
/* 1(c)-(d) fixed effects model */
proc glm data=candle;
    class person color;
    model time=person color person*color;
    lsmeans color /cl pdiff adjust=Tukey;
run;
```

- (e) [2 pts] Which model provides shorter confidence intervals? Give a justification if you could. The model in 1(c) provides shorter intervals. That is the model where the experimenter effects were treated as fixed.
- (f) [2 pts] If a two-way main-effects model was used in 1(a) and 1(c), do you think the two models (one with random effects and one without) would produce the simultaneous confidence intervals of different lengths?

No! In this case, they will produce the intervals of the same length. This is because in both models the degrees of freedom for error is used.

2. Completely Randomized Design with Three Factors

Suppose in a completely randomized designs experiment there are 3 crossed factors A, B and C. Their levels are a=4, b=3 and c=3. Each treatment is replicated r=2 times. The following model is applied to the experiment:

$$Y_{ijkt} = \mu + \alpha_i + \beta_j + \gamma_k + (\beta \gamma)_{jk} + \epsilon_{ijkt}, \quad i = 1, 2, 3, 4; \quad j, k = 1, 2, 3,$$

where ϵ_{ijkt} 's are i.i.d. $N(0, \sigma^2)$, α_i 's represent the fixed effects of A, β_j 's and γ_k 's are the random effects of Factors B and C, respectively, and $(\beta\gamma)_{jk}$'s are the random interaction effects. Furthermore, assume all random terms are independent and

$$\beta_j \sim N(0, \sigma_B^2), \quad \gamma_k \sim N(0, \sigma_C^2), \quad (\beta \gamma)_{jk} \sim N(0, \sigma_{BC}^2).$$

Partial SAS output is provided below:

			I	Depend	ent	Va	riable: y				
Sourc	e	DF	Su	m of Sc	luar	es	Mean S	quare	F	Value	Pr > F
Mode	ı	11	1	4.201	1832	83285 0.381		198480		0.35	0.9712
Error	60)	66.314	1273	69	1.105	23789				
Corre	al 71	1	70.516	6106	54						
		R-Sqi	uaro	Coeff	lar	D	oot MSE	y Me	an]	
			9587	10.43			.051303	10.070			
	Source	DF	Тур	Type I SS		Mean Square		F Valu	ıe	Pr > F	
	Α	3	0.95	0.95832853		0.31944284		0.2	29	0.8331	
	В	2	0.34	514265	0.17257132		0.1	16	0.8558	1	
	С	2	0.10	863270		0.0	5431635	0.0	05 0.952		1
	B*C	4	2.78	972897		0.6	9743224	0.6	63	0.6423	3
	Source	DF	Туре	e III SS	Me	an	Square	F Valu	ıe	Pr > F	:
	Α	3	0.95	832853		0.3	1944284	0.2	29	0.8331	I
	В	2	0.34	514265		0.1	7257132	0.	16	0.8558	3
	С	2	0.10	863270		0.0	5431635	0.0	05	0.9521	I
	B*C	4	2.78	972897		0.6	9743224	0.0	63	0.6423	3

- (a) [1 pt] The F-ratio for testing the hypothesis that A has equal main effects is 0.29.
- (b) [1 pt] The degree of freedom of the denominator for the hypothesis testing in the previous question is 60.
- (c) [1 pt] The F-ratio for testing the hypothesis that B has no effects is 0.25.
- (d) [1 pt] The degree of freedom of the denominator for the hypothesis testing in the previous question is 4.