

INF 302 : Langages & Automates

Chapitre 7 : Automates à États Finis Non Déterministes

Yliès Falcone

ylies.falcone@univ-grenoble-alpes.fr — www.ylies.fr

Univ. Grenoble-Alpes, Inria

Laboratoire d'Informatique de Grenoble - www.liglab.fr Équipe de recherche LIG-Inria, CORSE - team.inria.fr/corse/

Année Académique 2020 - 2021

- Automates à états finis non déterministes
- Déterminisation des automates non-déterministes
- 3 Applications en informatique
- 4 Résumé

- Automates à états finis non déterministes
 - Idée et motivation
 - Définition et langage reconnu
- Déterminisation des automates non-déterministes
- 3 Applications en informatique
- 4 Résumé

Idée, motivation

Idée:

- **Déterminisme** : Pour chaque état et pour chaque symbole de l'alphabet, il existe au plus un état successeur (c'est-à-dire 0 ou 1).
- Non-déterminisme : Pour un état et un symbole, on peut avoir 0, 1 ou plusieurs états successeurs.

Motivations

- ullet Il est souvent plus facile de trouver un automate non-déterministe qui reconnaît un langage L qu'un automate déterministe.
- Pour certains langages, on peut trouver un automate non-déterministe reconnaisseur qui est plus petit que tout automate déterministe reconnaisseur.

Mais

Nous verrons qu'on ne pourra pas se passer des automates déterministes.

Automates non-déterministes : exemple

Soit $\Sigma = \{0, 1\}$.

Soit L_3 le langage constitué des mots de longueur ≥ 3 et dont le $3^{\rm ieme}$ symbole en partant de la droite est 1.

Le plus petit automate déterministe qui reconnaît L_3 a 8 états.

Plus généralement

Soit L_k le langage constitué des mots de longueur $\geq k$ et dont le kème symbole de droite est 1.

Aucun automate déterministe avec moins de 2^k états ne reconnaît L_k .

- 1 Automates à états finis non déterministes
 - Idée et motivation
 - Définition et langage reconnu
- Déterminisation des automates non-déterministes
- Applications en informatique
- 4 Résumé

Automates non-déterministes

Définition

Définition (Automate à états finis non-déterministes (AEFND))

Un AEFND est donné par un quintuplet $(Q, \Sigma, q_{\text{init}}, \Delta, F)$ où :

- Q est un ensemble fini d'états,
- ullet Est l'alphabet de l'automate,
- $q_{ ext{init}} \in Q$ est l'état initial,
- $\Delta \subseteq Q \times \Sigma \times Q$ est la *relation de transition*,
- $F \subseteq Q$ est l'ensemble des états accepteurs.

Exemple (AEFND)

Automate à états Finis Non-déterministes

Configuration, dérivation, exécution

Soit $A = (Q, \Sigma, q_{init}, \Delta, F)$ un AEFND.

Définition (Configuration)

Une configuration de l'automate A est un couple (q, u) où $q \in Q$ et $u \in \Sigma^*$.

Définition (Relation de dérivation)

On définit la relation \rightarrow_{Δ} de dérivation entre configurations :

$$\forall q \in Q, \forall a \in \Sigma, \forall u \in \Sigma^* : (q, a \cdot u) \rightarrow_{\Delta} (q', u) \text{ ssi } (q, a, q') \in \Delta.$$

Définition (Exécution)

Une exécution de l'automate A sur le mot u est une séquence de configurations $(q_0, u_0) \cdots (q_n, u_n)$ telle que

$$\forall i \in \{0, \ldots, n-1\} : (q_i, u_i) \to_{\Delta} (q_{i+1}, u_{i+1}).$$

•
$$u_0 = u$$
.

•
$$u_n = \epsilon$$
.

•
$$q_0 = q_{init}$$
.

On dénote par $\stackrel{*}{\longrightarrow}_{\Delta}$ la fermeture réflexive et transitive de \longrightarrow_{Δ} .

Y. Falcone (UGA - Inria)

INF 302: Langages & Automates

Année Académique 2020 - 2021

Acceptation d'un mot par un AEFND

Soit
$$A = (Q, \Sigma, q_{\text{init}}, \Delta, F)$$
 un AEFND

Définition (Acceptation d'un mot)

Un mot $u \in \Sigma^*$ est accepté par A, s'il <u>existe</u> une exécution de A sur u telle que l'état de sa dernière configuration soit accepteur.

Exemple (Acceptation d'un mot par un AEFND)

Mots acceptés :

- ullet 01 car exécution $(0,01)\cdot(1,1)\cdot(2,\epsilon)$
- 001 car exécution $(0,001) \cdot (0,01) \cdot (1,1) \cdot (2,\epsilon)$

Langage reconnu par un AEFND

Définition (Langage reconnu)

Le langage reconnu par A, noté L(A), est l'ensemble

 $\{u \in \Sigma^* \mid u \text{ est accept\'e par } A\}.$

Exemple (Langage reconnu)

 \bullet Mots sur $\Sigma = \{0,1\}$ qui contiennent un 0 suivi d'un 1

ullet Mots sur $\Sigma=\{0,1\}$ qui terminent par un 0 suivi d'un 1

AEFNDs vs AEFDs

Utiliser les AEFNDs facilite la conception d'un automate reconnaissant/définissant un langage.

Nous avons évidemment :

Tout AEFD est un AEFND

Par définition.

Nous allons montrer:

Tout AEFND a un AEFD équivalent

Par déterminisation (calcul des sous-ensembles).

- Automates à états finis non déterministes
- Déterminisation des automates non-déterministes
 - Procédure de déterminisation
 - Correction de la procédure de déterminisation
 - À propos de la complexité de la déterminisation
- Applications en informatique
- Résume

Procédure de déterminisation (subset construction)

L'idée

Objectif de la procédure :

- entrée : un AEFND.
- sortie : un AEFD qui reconnaît le même langage que l'automate d'entrée.

Rabin & Scott (1959)

On va coder dans un état accessible par un mot u dans l'automate déterministe tous les états qu'on peut atteindre avec u dans l'automate non-déterministe.

Soit $\Sigma = \{0, 1\}$.

Procédure de déterminisation

Soit $A = (Q, \Sigma, q_{\text{init}}, \Delta, F)$ un AEFND.

Définition (Déterminisé d'un automate)

Le déterminisé de A, noté Det(A), est l'automate à états fini déterministe :

$$(\mathcal{P}(Q), \Sigma, \{q_{\text{init}}\}, \delta, \mathcal{F})$$

où :

- $\delta(X, a) = \{q' \mid \exists q \in X : (q, a, q') \in \Delta\},\$
- $\mathcal{F} = \{X \in \mathcal{P}(Q) \mid X \cap F \neq \emptyset\}$ (cad. $X \in \mathcal{F}$ ssi $X \cap F \neq \emptyset$).

Intuition

- L'ensemble à états du déterminisé $(\mathcal{P}(Q))$ est l'ensemble des sous-ensembles d'états.
- À partir d'un ensemble d'états $X\subseteq Q$, l'ensemble des états sur un symbole est l'ensemble des états que l'on peut atteindre à partir des états de X avec ce symbole.
- Les états accepteurs du déterminisé sont ceux qui contiennent au moins un état accepteur.

Procédure de déterminisation : exemple

- Automates à états finis non déterministes
- Déterminisation des automates non-déterministes
 - Procédure de déterminisation
 - Correction de la procédure de déterminisation
 - À propos de la complexité de la déterminisation
- 3 Applications en informatique
- Résume

Procédure de Déterminisation

Correction de la procédure

Rappel : pour $\delta \subseteq Q \times \Sigma \times Q$ une relation de transition (qui peut être une fonction), δ^* dénote la fermeture réflexive et transitive de δ .

Extension des fonctions de transition

Représenter l'ensemble d'états atteint depuis un ensemble d'états :

- à partir d'un symbole, i.e., $\delta: \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$,
- à partir d'un mot, i.e., $\delta^* : \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$.

à partir	automate déterministe	automate non-déterministe
	(fonction de transition δ)	(relation de transition Δ)
d'un symbole	$\delta(Q,a) = \bigcup_{q \in Q} \{\delta(q,a)\}$	$\delta(q,a) = igcup_{q \in \mathcal{Q}} \left\{ q' \mid (q,a,q') \in \Delta ight\}$
d'un mot	$\delta^*(Q,\epsilon) = Q$	
	$\delta^*(Q, x \cdot a) = \delta(\delta^*(Q, x), a)$	

Procédure de Déterminisation

Correction de la procédure

Théorème : correction de la procédure de déterminisation

$$L(\mathrm{Det}(A)) = L(A)$$

Preuve

Soit $D = (Q^D, \Sigma, \{q_{\text{init}}\}, \delta_D, F^D)$ un AEFD construit par déterminisation de $N = (Q^N, \Sigma, q_{\text{init}}, \delta_N, F^N)$

- Preuve de $\delta_D^*(\{q_{\text{init}}\}, w) = \delta_N^*(q_{\text{init}}, w)$ par induction sur |w|.
- D et N acceptent tous deux $w \in \Sigma^*$ ssi $\delta_D^*(\{q_{\text{init}}\}, w) \cap F_N \neq \emptyset$ et $\delta_N^*(q_{\text{init}}, w) \cap F_N \neq \emptyset$, respectivement.

Procédure de déterminisation

Preuve de la correction de la procédure

Preuve de
$$\delta_D^*(\{q_{\text{init}}\}, w) = \delta_N^*(q_{\text{init}}, w)$$
 par induction sur w

Base |w|=0, i.e., $w=\epsilon$. D'après les définitions des fonctions de transitions pour les AEFDs et les AEFNDs, on a : $\delta_{\mathcal{D}}^*(\{q_{\mathrm{init}}\},\epsilon)=\delta_{\mathcal{N}}^*(q_{\mathrm{init}},\epsilon)=\{q_{\mathrm{init}}\}$

Induct. Soit $w = x \cdot a$ un mot $(x \in \Sigma^* \text{ et } a \in \Sigma)$ et supposons l'hypothèse vérifiée pour x.

- D'après l'hypothèse d'induction, on a $\delta_D^*(\{q_{\text{init}}\},x) = \delta_N^*(q_{\text{init}},x) \subseteq Q^N$
- Soit $\{p_1, p_2, \dots, p_k\}$ cet état
- D'après la définition inductive de δ_N^* , on a :

$$\delta_N^*(q_{\text{init}}, w) = \bigcup_{i=1}^k \delta_N(p_i, a)$$
 (Eq.1)

• D'après la procédure de déterminisation, on a :

$$\delta_{\mathcal{D}}(\{p_1, p_2, \dots, p_k\}, a) = \bigcup_{i=1}^k \delta_{\mathcal{N}}(p_i, a). \quad (\mathsf{Eq.2})$$

• En utilisant (Eq.2) et $\delta_D^*(q_{\text{init}}, x) = \{p_1, p_2, \dots, p_k\}$ et la définition inductive de δ_D^* pour les AEFDs :

$$\begin{split} \delta_{D}^{*}(\{q_{\text{init}}\}, w) &= \delta_{D}\left(\delta_{D}^{*}(\{q_{\text{init}}\}, x), a\right) = \delta_{D}(\{p_{1}, p_{2}, \dots, p_{k}\}, a) \\ &= \bigcup_{i=1}^{k} \delta_{N}(p_{i}, a). \end{split}$$

• En utilisant (Eq.1) et (Eq.3), on a $\delta_D^*(\{q_{\text{init}}\},w)=\delta_N^*(q_{\text{init}},w)$.

- Automates à états finis non déterministes
- 2 Déterminisation des automates non-déterministes
 - Procédure de déterminisation
 - Correction de la procédure de déterminisation
 - À propos de la complexité de la déterminisation
- 3 Applications en informatique
- Résume

À propos de la complexité de la déterminisation

En pratique, la taille de l'AEFD généré est sensiblement la même que celle de l'AEFND initial.

Exemple (Un exemple où les choses se passent mal)

Soit $\Sigma=\{0,1\}$ et soit L_k le langage constitué des mots de longueur $\geq k$ et dont le k-ième symbole de droite est 1 :

$$L_k = \{a_1 \cdots a_n \mid n \ge k \land a_{n-k+1} = 1\}$$

À propos de la complexité de la déterminisation

Sur cet exemple

Lemme

Aucun automate déterministe avec moins de 2^k états ne reconnaît L_k .

Preuve par contraposition

- Soit $A = (Q, \Sigma, q_{\text{init}}, \delta, F)$ un automate déterministe tel que $|Q| < 2^k$ et $L(A) = L_k$.
- Soient $u = a_1 \cdots a_k$ et $v = b_1 \cdots b_k$ deux mots différents de longueur k tels que $\delta^*(q_{\text{init}}, u) = \delta^*(q_{\text{init}}, v)$.

De tels mots doivent exister car il existe 2^k différents mots de longueur k et seulement $|Q| < 2^k$ états.

Soit
$$q = \delta^*(q_{\text{init}}, u)$$
.

• Comme u et v sont différents, il existe i tel que $a_i \neq b_i$. Sans perte de généralité (symétrie de \neq), supposons $a_i = 1$ et $b_i = 0$.

- Soient $u' = u0^{i-1}$ et $v' = v0^{i-1}$. Alors,
 - $u'(|u'|-k+1) = u'(k+i-1-k+1) = u'(i) = a_i = 1$, et
 - $v'(|v'|-k+1)=b_i=0.$

Donc $u' \in L_k$ et $v' \notin L_k$. Ceci implique $\delta^*(q, 0^{i-1}) \in F$ et $\delta^*(q, 0^{i-1}) \notin F$. Contradiction.

• Ainsi, $\delta^*(q_{\text{init}}, u') = \delta^*(q_{\text{init}}, v')$ n'est pas possible.

- Automates à états finis non déterministe
- Déterminisation des automates non-déterministes
- Applications en informatique
- Résume

Applications en informatique

Plusieurs applications en informatique :

- Reconnaissance de texte (web-browser).
- Compilation : analyse lexicale (reconnaissance ces mots clés d'un langage de programmation).
- Spécification de systèmes : non-déterminisme utilisé pour modéliser l'inconnu (environnement).

Exemple (Reconnaissance d'un ensemble de mots clés)

- Automates à états finis non déterministe
- Déterminisation des automates non-déterministes
- 3 Applications en informatique
- 4 Résumé

Automates d'États-Finis Non-Déterministes

- Définition
- Critère d'acceptation, langage reconnu
- Concision des AEFND vs AEFD
- Procédure de déterminisation
 - algorithme
 - correction
 - idée sur la complexité
- Applications des AEFNDs en informatique