Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	27October 2022
Team ID	PNT2022TMID49457
Project Name	Fertilizers Recommendation System For Disease Prediction
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks) Use

the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As an biogeography, I can register for the application by entering my email, password, and confirming my password.		High	AnishFathima M Emili S Ishwarya R Lakshmipriya S Priyadharshini A
Sprint-1	User Confirmation	USN-2	As an biogeography, I will receive confirmation email once I have registered for the application	1	Medium	AnishFathima M Emili S Ishwarya R Lakshmipriya S Priyadharshini A
Sprint-1	Login	USN-3	As an biogeography, I can log into the application by entering email & password		High	AnishFathima M Emili S Ishwarya R Lakshmipriya S Priyadharshini A

Sprint-2	Data Collection	USN-1	Download the dataset used in Digital Naturalist – AI Enabled tools for Biodiversity Researchers	High	AnishFathima M Emili S Ishwarya R Lakshmipriya S Priyadharshini A

Sprint-2	Image Preprocessing	USN-1	Improving the image data that	1	High	AnishFathima M
			suppresses unwilling distortions			Emili S
			or enhances some image features			Ishwarya R
			important for further processing,			Lakshmipriya S
			although performing some			Priyadharshini A
			geometric transformations of			J
			images like rotation, scaling, etc.			
Sprint-3	Mode building for	USN-1	The augmented and pre-processed	2	High	AnishFathima M
Sprint 3	fruit Disease	OBIV I	image data, In begin our model		Tingii	Emili S
	Prediction		building, this activity:			Ishwarya R
	Trediction		Import the model building			Lakshmipriya S
			Libraries			Priyadharshini A
						Fifyauliaisiiiii A
			Initializing the model			
			Adding CNN Layers			
			Adding Hidden Layer			
			Adding Output Layer			
			Configure the Learning Process			
			Training and testing the model			
			Saving the model			
Sprint-3	Model building for	USN-1	The augmented and pre-processed			
	vegetable Disease		image data, In begin our model			
	Prediction		building, this activity:			
			Import the model building			
			Libraries			
			Initializing the model			
			Adding CNN Layers			
			Adding Hidden Layer			
			Adding Output Layer			
			Configure the Learning Process			
			Training and testing the model			
			Saving the model			
Sprint-3	Test Both the Models	USN-1	The model is to be tested with	1	Medium	AnishFathima M
			different images to know if it is			Emili S
			working correctly.			Ishwarya R
			Import the packages and load			Lakshmipriya S
			the saved model			Priyadharshini A
			Import the required			
			librariesnitially, we will be			
			loading the fruit model. You can			
			test it with the vegetable model			
			in a similar way.Load the test			
			image, pre-process it and predict			
			Pre-processing the image			
			includes models.			
					1	

Sprint-4	Application Building	USN-2	After the model is built, we will	1	High	AnishFathima M
			be integrating it to a web			Emili S
			application so that normal users			Ishwarya R
			can also use it. The users need to			Lakshmipriya S
			give the images of species			Priyadharshini A
Sprint-4	Train the Model on	USN-3	Build Deep learning model and	2	High	AnishFathima M
	IBM		computer vision Using the IBM			Emili S
			cloud.			Ishwarya R
						Lakshmipriya S
						Priyadharshini A

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	4 Days	24 Oct 2022	27 Oct 2022	20	29 Oct 2022
Sprint-2	20	5 Days	28 Oct 2022	01 Nov 2022	20	04 Nov 2022
Sprint-3	20	8 Days	02 Nov 2022	09 Nov 2022	20	11 Nov 2022
Sprint-4	20	9 Days	10 Nov 2022	18 Nov 2022	20	19 Nov 2022