1 Basics

Gaussian

$$f(x) = \frac{1}{\sqrt{(2\pi)^d \det \Sigma}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}, \quad \mathcal{N}(x|\mu, \Sigma)$$

 $X \sim \mathcal{N}(\mu, \Sigma), Y = A + BX \implies Y \sim \mathcal{N}(A + B\mu, B\Sigma B^T)$ Conditionate Gaussians

$$N(\overline{\beta} + \Sigma_{12}\Sigma_{22}^{-1}(y - \overline{x}_{*}), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$

Primal Dual problem

Let
$$\mathcal{P} = \begin{cases} \min_{w} f(w) \\ g_i(w) = 0 \ \forall i \\ h_i(w) \le 0 \ \forall j \end{cases}$$

Then the Slater's conditions are: $\exists w \mid g_i(w) = 0, h_i(w) < 0 \ \forall i, j$

The lagrangian is:

 $\alpha_i(w) \geq 0 \ \forall i$

$$\mathcal{L}(w,\lambda,\alpha) = f(w) + \sum_{i} \lambda_{i} g_{i}(w) + \sum_{j} \alpha_{j} h_{j}(w)$$

$$\mathcal{D} = \begin{cases} \max_{\lambda,\alpha} \theta(\alpha,\lambda) \\ \theta(\alpha,\lambda) = \min_{w} \mathcal{L}(w,\lambda,\alpha) \end{cases}$$

In general the solution of the \mathcal{D} is smaller then \mathcal{P} . But if the Slater conditions holds then they are equal. And we get the complementary slackness: $\alpha_i^* h_i(w^*) = 0 \ \forall$

The optimal $w^* = min_w \mathcal{L}(w, \lambda^*, \alpha^*)$

Calculus

- $\frac{\partial}{\partial \mathbf{x}}(\mathbf{b}^{\top}\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{\top}\mathbf{b}) = \mathbf{b} \bullet \frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{\top}\mathbf{x}) = 2\mathbf{x}$
- $\frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}\mathbf{x}) = (\mathbf{A}^{\top} + \mathbf{A})\mathbf{x} \stackrel{\text{A sym.}}{=} 2\mathbf{A}\mathbf{x}$
- $\frac{\partial}{\partial \mathbf{x}}(\mathbf{b}^{\top}\mathbf{A}\mathbf{x}) = \mathbf{A}^{\top}\mathbf{b} \cdot \frac{\partial}{\partial \mathbf{x}}(\mathbf{c}^{\top}\mathbf{X}\mathbf{b}) = \mathbf{c}\mathbf{b}^{\top}$
- $\frac{\partial}{\partial \mathbf{X}}(\mathbf{c}^{\top}\mathbf{X}^{\top}\mathbf{b}) = \mathbf{b}\mathbf{c}^{\top}$ $\frac{\partial}{\partial \mathbf{x}}(\|\mathbf{x} \mathbf{b}\|_2) = \frac{\mathbf{x} \mathbf{b}}{\|\mathbf{x} \mathbf{b}\|_2}$
- $\frac{\partial}{\partial \mathbf{x}}(\|\mathbf{x}\|_2^2) = \frac{\partial}{\partial \mathbf{x}}(\|\mathbf{x}^\top \mathbf{x}\|_2) = 2\mathbf{x} \bullet \frac{\partial}{\partial \mathbf{x}}(\|\mathbf{X}\|_F^2) = 2\mathbf{X}$
- $x^T A x = Tr(x^T A x) = Tr(x x^T A) = Tr(A x x^T)$
- $\frac{\partial}{\partial A} Tr(AB) = B^T \frac{\partial}{\partial A} log|A| = A^{-T}$
- $\sigma(x) = \frac{1}{1 + e^{-x}}$
- $\nabla \sigma(x) = \sigma(x)(1 \sigma(x)) = \sigma(x)\sigma(-x)$
- $\nabla \tanh(x) = 1 \tanh^2(x)$ $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x e^{-x}}{e^x + e^x}$

Probability / Statistics

Bayes' Rule
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} \sum_{\substack{i=1 \ i=1}}^{P(X|Y)P(Y)} \frac{P(X|Y)P(Y)}{k}$$

MGF
$$\mathbf{M}_X(t) = \mathbb{E}[e^{\mathbf{t}^T \mathbf{X}}], \mathbf{X} = (X_1, ..., X_n)$$

Markov ineq: $P\{X \ge \epsilon\} \le \frac{\mathbb{E}[X]}{\epsilon}$ (for nonneg. X) Boole's inequality: $P(\bigcup_i A_i) \leq \sum_i P(A_i)$ Hoeffding's lemma: $\mathbb{E}[e^{sX}] \leq exp(\frac{1}{8}s^2(b-a)^2)$ where $\mathbb{E}[X] = 0$, $P(X \in [a, b]) = 1$

Hoeffding's: $P\{S_n - \mathbb{E}[S_n] \ge t\} \le exp(-\frac{2t^2}{\sum (h_{t-\alpha})^2})$

Normalized: $P\{\widetilde{S}_n - \mathbb{E}[\widetilde{S}_n] \ge \epsilon\} \le exp(-\frac{2n^2\epsilon^2}{\sum (h_i - a_i)^2})$ Error bound: $P\{\sup |\hat{\mathcal{R}}_n(c) - \mathcal{R}(c)| > \epsilon\} \le 2|\mathcal{C}|\exp(-2n\epsilon^2)$

Jensen's inequality

X:random variable & φ :convex function \rightarrow $\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]$

2 Gaussian Processes

 $f \sim GP(\mu, k) \Rightarrow \forall \{x_1, \dots, x_n\} \ \forall n < \infty$ $[f(x_1)...f(x_n)] \sim N([\mu(x_1)...\mu(x_n)],K)$ where $K_{ij} = k(x_i, x_j)$

Gaussian Process Regression

 $f \sim GP(\mu, k)$ then: $f|y_{1:n}, x_{1:n} \sim GP(\tilde{\mu}, \tilde{k})$ $\tilde{\mu}(z) = \mu(z) + K_{D,z}^T (K_{DD} + \epsilon I_n)^{-1} (y_{1:n} - \mu(x_{1:n}))$ $\tilde{k}(z_1, z_2) = k(z_1, z_2) - K_{D, z_1}^T (K_{DD} + \epsilon I_n)^{-1} K_{D, z_2}$

Where: $K_{D,z} = [k(x_1, z)...k(x_n, z)]^T$

$[K_{DD}]_{ij} = k(x_i, x_j)$

2.1 Kernels k(x,y) is a kernel if it's symmetric semidefinite positive:

 $\forall \{x_1, \dots, x_n\}$ then for the Gram Matrix $[K]_{ij} = k(x_i, x_i) \text{ holds } c^T K c \ge 0 \forall c$

Closure Properties: psd prop. closed under pointwise limits (since each K_n is a kernel)

 $k(x,y) = k_1(x,y) + k_2(x,y), k(x,y) =$ $k_1(x,y)k_2(x,y)$

 $k(x, y) = f(x)f(y), k(x, y) = k_3(\phi(x), \phi(y))$ $k(x,y) = \exp(\alpha k_1(x,y)), \alpha > 0, |X \cap Y| = kernel$

 $k(x,y) = p(\bar{k}_1(x,y)), p(\cdot)$ polynomial with pos. coeff. $k(x,y) = k_1(x,y) / \sqrt{(k_1(x,x)k_1(y,y))}$

Gaussian (rbf): $k(x,y) = \exp(-\frac{||x-y||^2}{2\sigma^2})$ inf.dim.

Sigmoid: $k(x, y) = \tanh(k \cdot x^T y - b)$ not valid for $\forall k, b$ Polynomial: $k(x,y)=(x^Ty+c)^d$, $d \in N$, $c \ge 0$

Periodic: $k(x, y) = \sigma^2 exp(\frac{2\sin^2(\pi|x-y|/p)}{e^2})$

3 Statistics Recap **Estimation**

Consistency: $\hat{\theta_n} \stackrel{\mathbb{P}}{\to} \theta$, i.e. $\forall \epsilon P\{|\hat{\theta_n} - \theta| \ge \epsilon\} \stackrel{n \to \infty}{\longrightarrow}$

Asymptotic normality: $\sqrt{N}(\theta - \hat{\theta_n}) \rightarrow$ $\mathcal{N}(0, I^{-1}II^{-1})$

Asymptotic efficiency: $\hat{\theta_n}$ reaches the Rar Cramer bound in the limit, i.e. $\lim_{n\to\infty} (V[\hat{\theta_n}]\mathcal{I}_n(\theta))^{-1} = 1$

Rao-Cramer

 $\Lambda = \frac{\partial \log \mathbb{P}(x|\theta)}{\partial \theta}$ (score function), $E[\Lambda] = 0$ Fisher information: $\mathcal{I}(\theta) = \mathbb{V}[\Lambda]$ $\mathcal{J} = E[\Lambda^2] = -E\left[\frac{\partial^2 \log \mathbb{P}(x|\theta)}{\partial \theta \partial \theta^T}\right] = -E\left[\frac{\partial \Lambda}{\partial \theta}\right]$

If the model is realizable then $\mathcal{I} = \mathcal{J}$

Oss: For the whole model:

$$\mathcal{I}_{n} = \mathbb{V}\left[\frac{\partial \log \mathbb{P}(x_{i}, i=1:n|\theta)}{\partial \theta}\right] = n\mathcal{I}$$
let $b(\hat{\theta}) = \mathbb{E}\left[\hat{\theta}\right] - \theta$

MSE bound: $E[(\hat{\theta} - \theta)^2] \ge \frac{[1+b'(\hat{\theta})]^2}{nE[\Lambda^2]} + b(\hat{\theta})^2$

Biased estimators: $var(\hat{\theta}) \ge \frac{[1+b'(\hat{\theta})]^2}{n\mathcal{T}(\theta)}$

Efficiency: $e(\hat{\theta}) = \frac{I(\theta)^{-1}}{var(\hat{\theta})} \le 1$

Cauchy-Schwarz: $|E(XY)|^2 \le E(X^2)E(Y^2)$

4 Linear Regression

 $y = X\beta + \epsilon$ where $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times d}$, $\beta \in \mathbb{R}^d$

Risk Decomposition Theorem

$$\mathbb{E}_{Y,D}\left[\left(Y - \hat{f}(x_0)\right)^2\right] = Bias + Vairance + Noise$$

$$Bias = \left(\mathbb{E}\left[Y|X=x_0\right] - \mathbb{E}_D\left[\hat{f}(x_0)\right]\right)^2$$

$$Variance = \mathbb{E}_{D} \left[\left(\mathbb{E}_{D} \left[\hat{f}(x_{0}) \right] - \hat{f}(x_{0}) \right)^{2} \right]$$

$$Noise = \mathbb{E}_{Y} \left[\left(Y - \mathbb{E} \left[Y | X = x_{0} \right] \right)^{2} \right]$$

Combination of Regression Models:

bias
$$[\hat{f}(x)] = \frac{1}{B} \sum_{i=1}^{B} \text{bias}[\hat{f}_i(x)]$$

 $\mathbb{V}[\hat{f}(x)] = \frac{1}{R^2} \sum_{i} \mathbb{V}[\hat{f}_i(x)] + \frac{1}{R^2} \sum_{i \neq j} cov[\hat{f}_i(x), \hat{f}_j(x)] \approx \frac{\sigma^2}{R}$

Minimum square linear regression

$$\hat{\beta} = \arg\min_{\beta} ||X\beta - y|| \Rightarrow \hat{\beta} = (X^T X)^{-1} X^T y.$$

Here $\hat{\beta}$ is the BLUE (Best Linear Unbiased Estimator)

Lasso regression

 $\hat{\beta} = \arg\min_{\beta} ||X\beta - y|| + \lambda ||\beta||_{1} \Rightarrow \hat{\beta} = \text{No clo-}$ sed form (LARS algorithm) but it is a convex problem

Bayesian prior: $p(\beta_i) = \frac{1}{4\sigma^2} exp\left(-|\beta_i| \frac{\lambda}{2\sigma^2}\right)$ Const. opt. $\hat{\beta} = \arg\min_{\beta} ||X\beta - y|| \text{ s.t. } ||\beta||_1 < s_{\lambda}$

Ridge regression

$$\hat{\beta} = \arg\min_{\beta} ||X\beta - y|| + \lambda ||\beta||_{2} \Rightarrow \hat{\beta} = (X^{T}X + \lambda I)^{-1} X^{T} y$$

Bayesian prior $p(\beta) = N(0, \frac{\sigma^2}{1}I)$

Oss: if instead $p(\beta) = N(0, \Lambda^{-1})$ then $\hat{\beta} = (X^T X + \sigma^2 \Lambda)^{-1} X^T y$ Const. opt. $\hat{\beta} = \operatorname{arg\,min}_{\beta} ||X\beta - y|| \text{ s.t. } ||\beta||_{2} < s_{\lambda}$

Let u_i be the singular values of X then $|(X^TX)^{-1}X^T| = \prod^i \frac{1}{u_i}$. And

 $|(X^TX + \lambda I)^{-1}X^T| = \prod_{i=1}^{n} \frac{\mu_i^2}{u^2 + \lambda}$. Therefore if $\mu_i \simeq 0$ with Ridge we have no problems $\arg\min_{c} \frac{1}{n} \sum_{i=1}^{n} L(y_i, c(x_i))$

(stable results against inter column linear dependence)

5 Numerical Estimating Methods

Actual Risk: $\mathcal{R}(f) := \mathbb{E}_{x,v}[(y - f(x))^2]$ Empiricial Risk: $\hat{\mathcal{R}}(f) = \frac{1}{n} \sum_{i} (y_i - f(x_i))^2$

Generalization Error: $G(f) = |\hat{\mathcal{R}}(f) - \mathcal{R}(f)|$

K-fold cross validation

 $\hat{f}^{-\nu} \in \arg\min_{f} \frac{1}{|Z^{-\nu}|} \sum_{i \in Z^{-\nu}} (y_i - f(x_i))^2$ $\hat{\mathcal{R}}^{cv} = \frac{1}{n} \sum_{i} (y_i - \hat{f}^{-\kappa(i)}(x_i))^2$, k(i) is fold i^{th} fold Problem: systematic tendency to underfit.

Leave-one-out (LOOCV) = K-fold (K = n) **Jackknife (Estiamte the bias of estiamtor)**

bias^{JK} = $(n-1)(\hat{\theta}-\tilde{\theta})$ with $\tilde{\theta}=\frac{1}{n}\sum_{i=1}^{n}\hat{\theta}^{(-i)}$ and $\hat{\theta}^{(-i)}$ is the leave out *i* estiamtor.

The corrected estimator is: $\hat{\theta}^{JK} = \hat{\theta} - \text{bias}^{JK}$

Information Criteria

 $BIC = ln(n)k - 2ln(\hat{L}), AIC = 2k - 2ln(\hat{L})$ $TIC = 2trace[I_1(\theta_k)J_1^{-1}(\theta_k)] - 2ln(\hat{L})$, where k: num. params, n: num. data points, likelihood: $\hat{L} = p(X|\theta_k, M)$

6 Classification

Loss-Functions

True class: $y \in \{-1, 1\}$, pred. $z \in [-1, 1]$

Cross-entropy (log loss): $(y' = \frac{(1+y)}{2})$ and $z' = \frac{(1+y)}{2}$ $\frac{(1+z)}{2}$) L(y',z') = -[y'log(z') + (1-y')log(1-z')]

Hinge Loss: L(y, z) = max(0, 1 - yz)Perceptron Loss: L(y,z) = max(0,-yz)

Logistic loss: L(y,z) = log(1 + exp(-yz))Square loss: $L(y, z) = \frac{1}{2}(1 - yz)^2$

Exponential loss: L(y,z) = exp(-yz)Binomial deviance: L(y, z) = 1 + exp(-2yz)

 $0/1 \text{ Loss: } L(y,z) = \mathbb{I}\{sign(z) \neq y\}$

Probabilistic generative approach

= arg min_c $\mathcal{R}(c)$ $c^*(x)$ $\operatorname{arg\,min}_a \sum_{v} p(y|x) L(y,a)$

where p(y|x) is found from p(y,x) which is itself estimated somehow

Probabilistic discriminative approach

Like Probabilistic generative approach but we estimate p(y|x) directly. $\operatorname{arg\,max}_{w} \mathcal{L}(\mathcal{Z}_{train}, w)$ p(y|x) = $\operatorname{arg\,max}_{w} \sum_{i} \log p(y_{i}|x_{i}, w)$ where p(y|x; w) = $\sigma(w^Tx + w_0)$. We can gradient descent on $-\mathcal{L}$

Discriminative approach

Directly look for:

 $\operatorname{arg\,min}_{c} \hat{\mathcal{R}}(c, \mathcal{Z}_{train})$

Percepton Algo

Find w, w_0 s.t. $y_i w^t x_i > 0 \ \forall i$. Gradient descent on $L(y,c(x)) = -yw^Tx\mathbb{I}_{(-\inf,0)}(yw^Tx)$ or $L(y, c(x)) = \min_{\alpha_{1:n}} \sum_{i=1}^{n} \max[0, -\sum_{j=1}^{n} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}]$

Fischer Discriminant

$$w^* = \arg\max_{w} \frac{w^T S_B w}{w^T S_w w} = S_w^{-1}(\overline{x}_0 - \overline{x}_1) \text{ where:}$$

$$S_B = (\overline{x}_0 - \overline{x}_1)^T (\overline{x}_0 - \overline{x}_1)$$

$$S_w = \hat{Cov}(C_0) + \hat{Cov}(C_1) \text{ Sample variance ma-}$$

trixes for each cluster.

Fit a mixture of gaussians on $w^{*T}x$ insted of x

7 SVM

Like Percepton but maximizing the margin. Equivalent to

$$\mathcal{P} = \begin{cases} \min_{w,w_0} \frac{\|w\|^2}{2} \\ y_i(w^T x_i + w_0) \ge 1 \ \forall i \end{cases}$$
 where the margin size is $\frac{2}{\|w\|^2}$.

 X^+, X^- are separable \Rightarrow Slater conditions \Rightarrow

$$\mathcal{D} = \begin{cases} \max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\ \alpha_{i} \geq 0 \ \forall i \end{cases}$$

Complementary slackness $\alpha_i^* h_i(w^*) = 0$ so either $\alpha_i^* = 0$ or x_i is a Support Vector

Soft margin SVM

We add a C parameter (C small \Rightarrow soft):

$$\mathcal{P} = \begin{cases} \min_{w,w_0,\xi} \frac{\|w\|^2}{2} + C\sum_i \xi_i \\ y_i(w^T x_i + w_0) \ge 1 - \xi_i \forall i \\ \xi_i \ge 0 \ \forall i \end{cases}$$

$$\mathcal{D} = \begin{cases} \max_{\alpha_i} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j \\ 0 \le \alpha_i \le C \ \forall i \end{cases}$$

$$\xi_i^* = \max(0, 1 - y_i(w^{*T} x_i + w_0^*))$$

$$y = sgn(w^{*T} x) = sgn(\left(\sum_i \alpha_i^* y_i x_i\right)^T x_j)$$

Non linear SVM: $x_i^T x_i \rightarrow \phi(x_i)^T \phi(x_i) \rightarrow$ $k(x_i, x_i)$

Multiclass SVM (ovr)

Train a binary classifier for each class (one vs. the rest). Then I assign a score $f_c(x) = w_c^T x$. Predicitons: $c^* = \arg\max_{c} f_c(x)$

Structured SVM

Too many class for ovr. $\Psi : X \times Y \rightarrow$ \mathbb{R}^{m+d} is called Joint feature map $\mathcal{P} =$ $\begin{cases} \min_{w,w_0} \frac{\|w\|^2}{2} + \frac{C}{n} \sum_{i=1}^n \xi_i \\ w^T \Psi(x_i, y_i) \ge \Delta(y_i, y') + w^T \Psi(x_i, y') - \xi_i \ \forall i \ \forall y' \ne y_i \\ \xi \ge 0 \ \forall i \end{cases}$

Theorem Δ as Loss (Structured SVM in Statistical Learning):

$$\hat{\mathcal{R}}(\mathcal{Z}_{train}) \doteq \frac{1}{n} \sum_{i=1}^{n} \Delta(y_i, c_{w^*}(x_i)) \leq \frac{1}{n} \sum_{i=1}^{n} \xi_i^*$$

8 Ensemble method

Bagging

We train $b^{(1)}, \dots, b^{(M)}$ different classifiers.

Then
$$\overline{b}(x) = \begin{cases} \frac{1}{M} \sum_{i=1}^{n} b^{(i)}(x) & \text{regression} \\ \text{majority}(b^{(i)}) & \text{classification} \end{cases}$$

Works if: the $b^{(i)}$ are diverse and almost indipendent. (bootstrap is used to reduce Covariance among $b^{(i)}$)

Bias \downarrow & \mathbb{V} \uparrow : By using complex decision trees $\mathbb{V}\downarrow$: By averaging them

Random Forest

Is a sort of bagging with decision trees. At each splitting node we draw m features and we pick the splitting one only among them (↓ correlation among trees). We also use Boot-

Adaboost

Boosting: Train weak learners sequentially on all data, but reweight misclassifed samples higher, Bias

Initialize weights $w_i = 1/n$, for b=1:B do:

- 1. Fit classifier $c_h(x)$ with weights w_i
- 2. Compute error $\epsilon_b = \sum_i w_i^{(b)} \mathbbm{1}_{[c_b(x_i) \neq y_i]} / \sum_i w_i^{(b)}$
- 3. Compute coeff. $\alpha_b = log(\frac{1-\epsilon_b}{\epsilon_b})$
- 4. Update weights $w_i = w_i \exp(\alpha_h \mathbb{1}_{[v_i \neq c_h(x_i)]})$

Return
$$\hat{c}_B(x) = \text{sign}\left(\sum_{b=1}^B \alpha_b c_b(x)\right)$$

Loss: Exponential loss L(y, y') = exp(-yy')

Model: Forward Sationary Adaptive. Oss: Self averaging algos that train Spiky interpolating classifiers.

AdaBoost trains max-margin classifier.

9 Mixtures Models (Unsupervised Learning)

K-means

We find μ_1, \ldots, μ_k such that our predictions are $c(x): \mathbb{R}^d \to \{1,\ldots,k\}.$

Find $c(\cdot)$ and $\mu_i \forall i$ that minimize:

$$\mathcal{R}^{km}(c, \mu_i \forall i) = \sum_{x} \|x - \mu_{c(x)}\|^2$$

Initialize $\mu_i \forall i$;

while μ_i are changing do

$$c(x) \leftarrow \arg\min_{c} \|x - \mu_{c}\|^{2} \ \forall x;$$
$$\mu_{\alpha} = \frac{1}{n_{\alpha}} \sum_{x: c(x) = \alpha} x \ \forall \alpha;$$

Gaussian Mixtures

- 1) Draw $z \sim \pi$ Categorical.
- 2) Draw $x \sim N(\mu_7, \Sigma_7)$

Expectation Maximization

$$\begin{split} & \text{Initialize } \theta^0 = \pi^0, \mu^0, \sigma^{20}; \\ & \text{while } \left\| \theta^{j+1} - \theta^j \right\| > \epsilon \text{ do} \\ & \quad \text{E-step:} \\ & \quad \gamma_{xc} \doteq \mathbb{E} \left[M_{xc} | X, \theta^j \right] = \\ & \quad \frac{p(X|c,\theta^j), p(c|\theta^j)}{p(x|\theta^j)} = \frac{N(\mu_c^j, \sigma_c^{2^j}) \pi_c^j}{\sum_v \pi_v N(\mu_v, \sigma_v^{2^j})} \\ & \quad Q(\theta,\theta_j) = \mathbb{E} \left[L(X, X_L|\theta) | \theta_j \right] = \\ & \quad \sum_{x \in X} \sum_c (\gamma_{xc} \log(\pi_c P(x|\theta_c))) \\ & \quad \text{M-step: } \theta_{j+1} = \arg\max_\theta Q(\theta,\theta_j) \\ & \quad \pi_c^{j+1} = \frac{1}{|X|} \sum_{x \in X} \gamma_{xc} \\ & \quad \mu_c^{j+1} = \frac{\sum_{x \in X} \gamma_{xc} x}{\sum_{x \in X} \gamma_{xc}} \\ & \quad \sigma_c^{2^{j+1}} = \frac{\sum_{x \in X} \gamma_{xc} (x - \mu_c)^2}{\sum_{x \in X} \gamma_{xc}} \end{split}$$

Where $M_{xc} = \mathbb{I}_{\{x \text{ generated by } c\}}(x)$

10 Neural Network

Backpropagation

Let
$$\Phi(x) = f_{\theta_n}^{(n)} \circ f_{\theta_{n-1}}^{(n-1)} \circ \cdots \circ f_{\theta_1}^{(1)}(x)$$

 $\partial_{\Phi} f^{(i)} \doteq \partial_z f^{(i)}(z, \theta_i)|_{z=\Phi^{(i-1)}(x)}$
 $\partial_{\theta} f^{(i)} \doteq \partial_z f^{(i)}(\Phi^{(i-1)}(x), \theta)|_{\theta=\theta_i}$

Result: $\partial_{\theta_i} \Phi(x) \forall i$ Initialize $\vec{B} = 1$: for $i \leftarrow n, n-1, \ldots, 1$ do $\partial_{\theta_i} \Phi(x) \leftarrow B \partial_{\theta_i} f^{(i)};$ $B \leftarrow B \partial_{\Phi} f^{(i)}$;

Once we have this we can $\nabla \downarrow$

Stocastic Gradient Descent

Result: optimal θ^* Initialize θ ; while Test error is decreasing do $\nabla_{\theta} Loss = \sum_{(x,y) \in S_k} \nabla_{\theta} \mathcal{L}(NN(x), y);$ $\theta \leftarrow \theta - \eta(k) \nabla_{\theta} Loss;$

Oss: $S_k \in D$ and changes at each iteration (Mini Batch)

Oss: As long as $\sum_{k} \eta(k) = \infty$ and $\sum_{k} \eta^{2}(k) < \infty$ the SGD converges

Advantages over Normal Gradient Descent:

1) Can handle large Dataset 2) Faster improvment (with regards to time, not iterations) 3) Escapes local minima 4) Lower generalization error

11 Autoencoders

Infomax principle

Let $I(X,Y) \doteq H(X) - H(X|Y)$ be the mutual information.

$$\theta^* = \arg\max_{\theta} I(X, enc_{\theta}X)$$

$$\theta^* \simeq \arg \max_{\theta} \sum_{i} \mathbb{E}_Z [\log p(x_i|Z)]$$

It is informative but not Disentangled and

Variation Autoencoders

Let $p_{\theta'}(\cdot)$ be our prior, $p_{\theta}(\cdot|z)$ be our likelihood, $q_{\lambda}(z|x)$ the postirior.

$$\theta^*, \theta'^*, \lambda^* = \arg\max \sum_{i=1}^n \log p_{\theta, \theta'}(x_i)$$

 $\theta^*, \theta'^*, \lambda^* = \arg\max \sum_{i=1}^n \log p_{\theta, \theta'}(x_i)$ In practice we maximize the Evidence Lower Bounds:

 $ELBO = \mathbb{E}_{Z \sim q_{\lambda}(\cdot, x_i)}[\log p_{\theta}(x_i|z)]$ (infomax) $-KL(q_{\lambda}(\cdot,x_i)||p_{\theta'})$ (- distance from the prior)

12 Nonparametric Bayesian methods

$$Dir(x|\alpha) = \frac{1}{B(\alpha)} \prod_{k=1}^{n} x_k^{a_k - 1}, B(\alpha) = \frac{\prod_{k=1}^{n} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{n} \alpha_k)}$$

Chinese Restourant Process

 $p(\operatorname{cust}_{n+1} \text{ joins table } \tau | \mathcal{P}) = \begin{cases} \frac{|\tau|}{\alpha + n} & \tau \in \mathcal{P} \\ \frac{\alpha}{\alpha + n} & \tau \notin \mathcal{P} \end{cases}$

de Finetti: $p(X_1,...,X_n) = \int (\prod_{i=1}^n p(x_i|G)) dP(G)$

Gibbs Sampling

DP generative model:

- Centers of the clusters: $\mu_k \sim \mathcal{N}(\mu_0, \sigma_0)$
- Prob.s of clusters: $\rho = \{\rho_k\}_{k=1}^{\infty} \sim GEM(\alpha)$
- Assignments to clusters: $z_i \sim Categorical(\rho)$
- Coordinates of data points: $\mathcal{N}(\mu_{z_i}, \sigma)$

$$p(z_i = k | \mathbf{z}_{-i}, \mathbf{x}, \alpha, \boldsymbol{\mu}) = \begin{cases} \frac{N_{k,-i}}{\alpha + N - 1} p(x_i | \mathbf{x}_{-i,k}, \boldsymbol{\mu}) \, \exists k \\ \frac{\alpha}{\alpha + N - 1} p(x_i | \boldsymbol{\mu}) \text{ otherwise} \end{cases}$$

13 PAC Learning

Empirical error: $\hat{\mathcal{R}}_n(c) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{c(x_i) \neq y\}}$ Expected error: $\mathcal{R}(c) = P\{c(x) \neq y\}$

ERM: $\hat{c}_n^* = \arg\min_{c \in \mathcal{C}} \hat{\mathcal{R}}_n(c)$

opt: $c^* \in \min_{c \in \mathcal{C}} \mathcal{R}(c)$, $|\mathcal{C}|$ finite

Generalization error: $\mathcal{R}(\hat{c}_n^*) = P\{\hat{c}_n^*(x) \neq y\}$

A can learn c if $\exists \pi \in \text{Polynomials s.t.}$:

- \forall distribution \mathcal{D} over X
- $\forall \epsilon \in (1, \frac{1}{2}), \forall \delta \in (1, \frac{1}{2})$

• $\forall n \geq \pi(\frac{1}{c}, \frac{1}{\delta}, \text{size}(c))$

then $\mathbb{P}_{\mathcal{Z} \sim \mathcal{D}}(\mathcal{R}(\mathcal{A}(\mathcal{Z})) \leq \epsilon) \geq 1 - \delta$

VC ineq.:
$$\mathcal{R}(\hat{c}_n^*) - \inf_{c \in \mathcal{C}} \mathcal{R}(c) \le 2 \sup_{c \in \mathcal{C}} |\hat{\mathcal{R}}_n(c) - \mathcal{R}(c)|$$

$$P\{\mathcal{R}(\hat{c}_n^*) - \mathcal{R}(c^*) > \epsilon\} \le P\{\sup_{c \in \mathcal{C}} |\hat{\mathcal{R}}_n(c) - \mathcal{R}(c)| > \frac{\epsilon}{2}\}$$

 $\leq 2|\mathcal{C}|exp(-2n\epsilon^2/4)$ if \mathcal{C} is finite

 $\leq 9n^{\mathcal{VC}_{\mathcal{C}}}exp(-n\epsilon^2/32)$

where the \mathcal{VC} dimension of a function class \mathcal{C} is the maximum number of points that can be arranged so that \mathcal{C} shatters them.