Chapter 4

林陈冉

2016年12月27日

4.5

- (1) 当 $f \in L^1 \cap L^\infty$, $||f||_p \le ||f||_p^{\frac{1}{p}} ||f||_\infty^{1-\frac{1}{p}} \le \infty$, 则 $f \in L^p$, 即 $L^1 \cap L^\infty \subset L^p$. Ω 是 σ -有限的, 则 $\Omega = \bigcup_{1=1}^N \Omega_i$, $|\Omega_i| < \infty$. 令 $\chi_n = \chi_{\Omega_n}$, 则易知 $f_n = \chi_n T_n f \in L^1 \cap L^\infty$, $||f_n f||_p \to 0$, 即在 L^p 意义下 $f_n \to f$, 故 $L^1 \cap L^\infty$ 在 L^p 中稠密.
- (2) 记 $V = \{f \in L^p \cap L^q \, \big| \, \|f\|_q \le 1\}$, $f_n \in V$, 则 $f_n \in L^p$, $\|f_n\|_q \le 1$, 若 $f_n \to f$, 显然 $f \in L^p$, 又由法图引理,易知有 $\|f_n\|_q \le 1$, 故 $f \in V$, 即 V 是闭集.
- (3) 由第(2)小题可知, $f \in L^p$, $\|f\|_q \leq C$. 对于任意大小介于 p , q 之间的 r , 令 $\alpha \in \mathbb{R}$ 满足 $\frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}$, 则 $\|f\|_r \leq \|f\|_p^\alpha \|f\|_q^{1-\alpha} < \infty$, 即 $f \in L^r$, $\forall \varepsilon > 0$, 由在 L^p 意义下 $f_n \to f$, 对上面由 r 给定的 α , $\exists N > 0$, $\forall n > N$, $\|f_n f\|_p \leq (\frac{(2C)^{1-\alpha}}{\varepsilon})^\alpha$, 则

$$||f_n - f||_r \le ||f_n - f||_p^{\alpha} ||f_n - f||_q^{1-\alpha} \le \left(\frac{(2C)^{1-\alpha}}{\varepsilon}\right)^{\alpha} (2C)^{1-\alpha} \le \varepsilon$$

故在 L^r 意义下, $f_n \to f$.

4.6

- (1) $\forall f \in L^{\infty}$, $\|f\|_{p} = \left(\int_{\mathbb{R}^{N}} |f|_{p}\right)^{\frac{1}{p}} \leq \left(\int_{\mathbb{R}^{N}} \|f\|_{\infty}^{p}\right)^{\frac{1}{p}} = \|f\|_{\infty} |\Omega|^{\frac{1}{p}}$, $\mathbb{M} \lim_{p \to \infty} \|f\|_{p} \leq \|f\|_{\infty}$. 另一方面,令 $A_{k} = \{x \in \Omega \mid f(x) > k\}$,由 $\|f\|_{\infty} < \infty$,对 $\forall 0 < k < \|f\|_{\infty}$, $|A_{k}| \neq 0$,那么 $\|f\|_{p} \geq \left(\int_{A_{k}} |f|^{p}\right)^{\frac{1}{p}} \geq k |A_{k}|^{\frac{1}{p}}$, $\mathbb{M} \lim_{p \to \infty} \|f\|_{p} \geq k$, $\stackrel{.}{=} k \to \|f\|_{\infty}$,可得 $\lim_{p \to \infty} \|f\|_{p} \geq \|f\|_{\infty}$. 综上,有 $\lim_{p \to \infty} \|f\|_{p} = \|f\|_{\infty}$.
- (2) $\forall k > C$, 如第(1)小题定义 A_k , 则有 $C^p > \|f\|_p^p > \int_{A_k} |f|^p > k^p |A_k|$, 即 $|A_k| < \left(\frac{C}{k}\right)^{\frac{1}{p}}$, 那么 $\lim_{p \to \infty} |A_k| = 0$, 故 $\|f\|_{\infty} \le C$.
- $(3) \quad f(x) = log(x)$

4.16

(1) 已知 f_n 有界, 记 $M=\sup|f_n|$,由 $1< p<\infty$,则 MB_{L^p} 是弱紧且可度量的,故 $\exists \bar{f}\in L^p$, $f_n \rightharpoonup \bar{f}$,设 $E=conv\{f_n\}$,由习题3.4,可知 $\exists g_n\in E$,s.t. $|g_n-\bar{f}|\to 0$,则存在子列 $\{g_{n_k}\}$,几乎处处 $g_{n_k}\to \bar{f}$. $g_{n_k}(x)=\sum a_k f_k(x)$,而同时,几乎处处 $f_n\to f$,则

$$\bar{f}(x) = \lim_{n \to \infty} g_{n_k}(x) = \sum_k a_k \lim_{k \to \infty} f_k(x) = \sum_k a_k f(x) = f(x)$$

即几乎处处 $f = \bar{f}$. 故 $f_n \rightharpoonup f$.

- (2) 当 $||f_n f||_1 \to 0$,则存在子列 f_{n_k} ,几乎处处 $f_{n_k} \to f$,又化为第(1)小题的情况.
- (3) 由Egorov定理, $\forall \delta > 0$, $A \subset \Omega$, $|\Omega \setminus A| < \delta$, 使得 f_n 在 A 上一致收敛到 f. 即 $\forall \delta > 0$, $\exists N > 0$, $\forall n > N$, $|f_n(x) f(x)| < \delta$ 对 $\forall x \in A$ 成立. 对 $\forall \varepsilon > 0$, 令 $\delta < \frac{\varepsilon}{|\Omega| + (2M)^p} < 1$, 取满足上述条件的集合 A 和整数 N,

$$||f_n - f||_p^p = \int_A |f_n(x) - f(x)|^p + \int_{\Omega \setminus A} |f_n(x) - f(x)|^p \le \delta(|\Omega| + (2M)^p) \le \varepsilon$$

故 $||f_n - f||_p \to 0$.

4.28

设 $\chi_n = \chi_{B(0,n)}$, 由 $\rho \in L^1$, $\chi_n \rho \to \rho$, 即 $\forall \varepsilon > 0$, $\exists N_1 > 0$, $\forall n > N_1$,

$$\int_{\mathbb{R}^N} |\chi_n \rho - \rho| = \int_{\mathbb{R}^N \setminus B(0,n)} |\rho| < \varepsilon$$

那么 $\int_{\mathbb{R}^N\setminus B(0,\frac{1}{n})} |\rho_{n^2}| < \varepsilon$.

先考虑 $f \in C_c(\mathbb{R}^N)$, 则 $|f| = M < \infty$. 对于上述给定 ε , $\exists \delta > 0$, s.t. $|f(x+y) - f(x)| < \varepsilon$, $\forall x \in supp f$, $\forall y \in B(0, \delta)$. 取 $N_2 < \frac{1}{\delta}$, 令 $N = \max\{N_1, N_2\}$, 则 $\forall n > N$, $\forall x \in \mathbb{R}^N$

$$|f(x) - \rho_{n^{2}} * f(x)|$$

$$= \Big| \int_{\mathbb{R}^{N}} (f(x) - f(x-y)) \rho_{n^{2}}(y) dy \Big|$$

$$= \Big| \int_{B(0,\frac{1}{n})} (f(x) - f(x-y)) \rho_{n^{2}}(y) dy \Big| + \Big| \int_{\mathbb{R}^{N} \setminus B(0,\frac{1}{n})} (f(x) - f(x-y)) \rho_{n^{2}}(y) dy \Big|$$

$$\geq \varepsilon + 2M\varepsilon$$

$$(0.1)$$

故几乎处处 $\rho_n * f \to f$, 易得当 $1 , <math>\|\rho_n * f - f\|_p \to 0$.

再考虑 $f\in L^p$, $\forall \varepsilon>0$, $\exists f_0\in C_c(\mathbb{R}^n)$, s.t. $\|f-f_0\|_p<\varepsilon$. 由上面的证明, $\exists N>0$, $\forall n>N$, $\|\rho_n*f_0-f_0\|_p<\varepsilon$. 那么

$$||f - \rho_n * f||_p \le ||f - f_0||_p + ||f_0 - \rho_n * f_0||_p + ||\rho_n * f - \rho_n * f_0||_p < 3\varepsilon$$

故在 L^p 意义下 $\rho_n * f \to f$.

4.29

设 $\chi_n = \chi_{K+B(0,\frac{1}{2n})}, u_n = \rho_{2n} * \chi_n$.

(a) $\forall x \in \mathbb{R}^N$, $\rho_{2n}(x) \ge 0$, $\chi_n x \ge 0$, 则 $u_n(x) \ge 0$. 另一方面, $u_n(x) = \int_{\mathbb{R}^N} \rho_{2n}(x-y)\chi_n(y)dy \le \int_{\mathbb{R}^N} \rho_{2n}(x-y)dy \le 1$.

(b)
$$\stackrel{\text{def}}{=} x \in K$$
, $B(0, \frac{1}{2n}) \subset x - (K + B(0, \frac{1}{2n}))$, \mathbb{M}

$$\int_{\mathbb{R}^N} \rho_{2n}(x-y)\chi_n(y)dy = \int_{x-(K+B(0,\frac{1}{2n}))\cap B(0,\frac{1}{2n})} \rho_{2n}(x-y)\chi_n(y)dy = \int_{B(0,\frac{1}{2n})} \rho_{2n}(y)dy = 1$$

(c)
$$supp u_n \subset \overline{supp \rho_{2n} + supp \chi_n} = \overline{B(0, \frac{1}{2n}) + K + B(0, \frac{1}{2n})} = \overline{K + B(0, \frac{1}{n})}$$

(d) $D^{\alpha}\rho_n(x) = \frac{1}{\int \rho} n^N D^{\alpha}\rho(nx) = \frac{n^{\alpha}}{\int \rho} n^N \rho^{[\alpha]}(nx) = n^{\alpha} \frac{\int \rho^{[\alpha]}}{\int \rho} \frac{1}{\int \rho^{[\alpha]}} n^N \rho^{[\alpha]}(nx) = C_{\alpha} n^{\alpha} \rho_n^{[\alpha]}(x)$,其中 $\rho_n^{[\alpha]}(x) = \frac{1}{\int \rho^{[\alpha]}} n^N \rho^{[\alpha]}(nx)$,是由 $\rho^{[\alpha]}$ 构造的磨光子,易验证它确实满足磨光子的3个条件.

 $D^{\alpha}u_{n}=(D^{\alpha}\rho_{2n})*\chi_{n}=2^{\alpha}C_{\alpha}n^{\alpha}(\rho_{2n}^{[\alpha]}(x)*\chi_{n})$,完全类似上面的证明,有 $|\rho_{2n}^{[\alpha]}(x)*\chi_{n}(x)|\leq 1$ 则 $|D^{\alpha}u_{n}(x)|\leq 2^{\alpha}C_{\alpha}n^{\alpha}$.

4.32

(1) $f,g \in L^1$,则

$$f * g(x) = \int_{\mathbb{R}^N} f(x - y)g(y)dy = \int_{\mathbb{R}^N} f(z)g(x - z)d(-z) = \int_{\mathbb{R}^N} g(x - z)f(z)dz = g * f(x)$$

 $h \in L^p$, 则设 F(x,y,z) = f(x-y-z)g(z)h(y)