Generalized BART For Non-Numeric Outcomes

Antonio R. Linero

LEARNING OBJECTIVES

1. What models can be used beyond regression?

2. How does the workflow change when we try to use other models?

3. What are the main benefits of using BART, generally?

The BART Model

Original Model:

$$Y_i = g(X_i; \mathcal{T}_1, \mathcal{M}_1) + \dots + g(X_i; \mathcal{T}_m, \mathcal{M}_m) + \epsilon_i, \qquad \epsilon_i \sim N(0, \sigma^2)$$

What if outcome is:

- Binary?
- Ordinal?
- Survival?
- Etc?

Why I Like BART

- Fast
- Fully-Bayes inference
- Gets interactions
- Gets non-linearities
- No garden of forking paths
- Easy to use (default priors)!
- Model selection uncertainty!!!
- But difficult to interpret!!!

Why BART?

Dataset	n	p	BART	SBART	Boosting	Lasso	RF
ais	202	12	1.00(1)	1.00(1)	1.03(4)	1.05(5)	1.02 (3)
abalone	4177	8	1.03(3)	1.00(1)	1.03(3)	1.12(5)	1.02(2)
bbb	208	132	1.05(3)	1.00(1)	1.07(4)	1.13(5)	1.01(2)
cpu	209	6	1.00(2)	1.00(2)	1.05(4)	1.29(5)	0.96(1)
diamonds	308	4	1.06(2)	1.00(1)	1.45(3)	3.65(4)	4.63(5)
hatco	100	13	1.11(2)	1.00(1)	1.16(3)	1.49(5)	1.36(4)
servo	167	4	1.02(2)	1.00(1)	1.03(3)	1.79(5)	1.39(4)
tecator	204	122	1.68(3)	1.00(1)	1.67(2)	1.92(4)	2.14(5)
triazines	185	60	1.02(4)	1.00(3)	0.98(2)	1.16(5)	0.95(1)
wipp	300	31	1.13(2)	1.00(1)	1.30(3)	1.41(4)	1.49(5)
Average RMPE			1.11 (2)	1.00 (1)	1.17 (3)	1.61 (5)	1.60 (4)
Average Rank			2.44(2)	1.30(1)	3.10(3)	4.70(5)	3.20(4)

BART-based methods led the pack, including **flexBART** from U Wisconsin

Other Models

$$Y_i \sim \mathrm{NegBin}(k, e^{r(X_i)})$$

$$\lambda(t\mid X_i) = \lambda_0(t)\,\exp\{r(X_i)\}$$

Cox Proportional Hazards

$$Y_i \sim \mathrm{Gamma}(lpha, lpha e^{-r(X_i)})$$

Non-Negative Outcomes

$$\Pr(Y_i = k \mid X_i) = rac{e^{r_k(X_i)}}{\sum_j e^{r_j(X_i)}}$$

Multi-Category Outcomes

Survival Data: Leukemia

Marginal Distribution

Control for Covariates?

?LeukSurv in spBayesSurv

Two Seconds on Survival

Survival Function

$$\Pr(T > t \mid X = x) = S(t \mid x)$$

Hazard Function

$$-rac{d}{dt} \log S(t\mid x) = \lambda_0(t) \, e^{r(x)}$$

Usually lots of right censoring!!!

$$Y = \min(T, C)$$
 and $\delta = 1(T \le C)$ model r with a BART!

$$L = \prod_i \lambda_0(Y_i)^{\delta_i} \exp\left\{\delta_i r(X_i) - e^{r(X_i)} \int_0^{Y_i} \lambda_0(t) \; dt
ight\}$$

Questions:

- 1. Is SES of living area associated with survival outcomes, and if so how?
 - Measured in sample via the Townsend Index
- 2. More generally, what leads to better prognosis for individuals in the sample?
 - a. We have age, sex, and baseline white blood cell count as additional prognostic factors
- 3. Do the relevance of any of the prognostic factors change as we look at longer time horizons?
 - a. While generally quite lethal, the survival function estimates is suggestive of a *cured* population

*	time	cens	xcoord	ycoord	age *	sex	wbc	tpi °	district
1	1	1	0.205071665	0.497243660	61	0	13.3	-1.96	9
2	1	1	0.285556781	0.848952591	76	0	450.0	-3.39	7
3	1	1	0.176405733	0.736493936	74	0	154.0	-4.95	7
4	1	1	0.244762955	0.210584344	79	1	500.0	-1.40	24
5	1	1	0.327453142	0.907386990	83	1	160.0	-2.59	7
6	1	1	0.638368247	0.362734289	81	1	30.4	0.03	11
7	1	1	0.589856670	0.078280044	76	0	41.3	3.95	17
8	1	1	0.639470783	0.101433297	87	0	280.0	1.91	21
9	1	1	0.662624035	0.180815877	66	0	201.0	-3.50	18
10	1	1	0.152149945	0.873208379	78	1	3.9	0.38	7
11	1	1	0.589856670	0.127894157	57	0	0.0	6.70	17
12	1	1	0.235942668	0.549062845	87	1	1.4	-3.47	9
13	1	1	0.585446527	0.200661521	79	1	27.1	0.07	17
14	1	1	0.277839030	0.318632856	84	0	10.7	-2.06	4
15	1	1	0.117971334	0.831312018	77	0	291.0	3.17	7
16	1	1	0.656008820	0.309812569	69	1	181.0	4.87	19
17	1	1	0.625137817	0.026460860	64	0	36.6	1.12	21
18	1	1	0.552370452	0.109151047	67	1	149.0	3.19	23
19	1	1	0.267916207	0.482910695	60	0	0.0	4.44	9
20	1	1	0.320837927	0.218302095	53	0	1.3	4.90	24
21	1	1	0.302094818	0.244762955	55	0	159.0	-4.05	24
22	1	1	0.463065050	0.208379272	88	1	350.0	1.78	20

Go Over Code

Leukemia: Cox Proportional Hazards Model

?LeukSurv in spBayesSurv

Models

Data Type	Model	Reference		
Continuous	$Normal(\theta_x, \sigma^2)$	Chipman et al. (2010)		
Continuous	$Normal(\theta_x, \tau_x^2 \sigma^2)$	Pratola et al. (2020)		
Quantile	$\mathrm{ASL}_{ au}(heta_x,\sigma)$	Kindo et al. (2016)		
Count	$Poisson(e^{\theta_x})$	Murray (2021)		
Count	$\operatorname{NegBin}(k, e^{\eta_x})$	Murray (2021)		
Binomial	$Binomial\{n_i, expit(\theta_x)\}\$	Murray (2021)		
Dinomiai	Binomial $\{n_i, \Phi(\theta_x)\}$	Chipman et al. (2010)		
Non-Negative	$Gam(\alpha, \alpha e^{-\theta_x})$	L. et al. (2020)		
rion-riegative	Log Normal (θ_x, σ^2)	Chipman et al. (2010)		
	Cox PH	L. et al. (2022)		
Survival	Fully Nonparametric	Sparapani et al. (2016)		
	AFT	Sparapani et al. (2023)		

Even More Models

 Linero (2024, arXiv): Quasi-Likelihood models (quasi-Poisson, quasi-multinomial, quasi-gamma, Tweedie)

 Alam and Linero (2024, arXiv): Cumulative link and continuation ratio models for ordinal data, weight-dependent mixture models

 O'Hagan and Rockova (2025, arXiv): Quantile regression using generalized Bayes

Packages

- BART (or BART3 on GitHub)
- Batman (experimental, on GitHub) has a lot of models available
- Most BART packages can also do probit regression, but not much else...
 - dbarts
 - bartMachine
 - stochtree (on GitHub)
 - These packages are very fast!!!

What If My Model Is Not On The List?

BAYESIAN ADDITIVE REGRESSION TREES FOR PROBABILISTIC PROGRAMMING

Miriana Quiroga IMASL-CONICET Pablo G Garay IMASL-CONICET Juan Martin Loyola IMASL-CONICET

Juan M. Alonso IMASL-CONICET Osvaldo A Martin IMASL-CONICET-UNSL* omarti@unsl.edu.ar

August 16, 2023

ABSTRACT

Bayesian additive regression trees (BART) is a non-parametric method to approximate functions. It is a black-box method based on the sum of many trees where priors are used to regularize inference, mainly by restricting trees' learning capacity so that no individual tree is able to explain the data, but rather the sum of trees. We discuss BART in the context of probabilistic programming languages (PPL), i.e., we present BART as a primitive that can be used as a component of a probabilistic model rather than as a standalone model. Specifically, we introduce the Python library PyMC-BART, which works by extending PyMC, a library for probabilistic programming. We showcase a few examples of models that can be built using PyMC-BART, discuss recommendations for the selection of hyperparameters, and finally, we close with limitations of our implementation and future directions for improvement.

Keywords Bayesian inference · non-parametrics · PyMC · Python · binary trees · ensemble method

Generalized Bayesian Additive Regression Trees Models: Beyond Conditional Conjugacy

Antonio R. Linero*

Abstract

Bayesian additive regression trees have seen increased interest in recent years due to their ability to combine machine learning techniques with principled uncertainty quantification. The Bayesian backfitting algorithm used to fit BART models, however, limits their application to a small class of models for which conditional conjugacy exists. In this article, we greatly expand the domain of applicability of BART to arbitrary generalized BART models by introducing a very simple, tuning-parameter-free, reversible jump Markov chain Monte Carlo algorithm. Our algorithm requires only that the user be able to compute the likelihood and (optionally) its gradient and Fisher information. The potential applications are very broad; we consider examples in survival analysis, structured heteroskedastic regression, and gamma shape regression.

What Changes?

Prior Specification

Algorithms

Model Interpretation

What Changes?

Hyperparameter selection:

$$\sigma_{\mu}^2 = ???$$

Conjugate prior usually also changes:

$$\mu \sim \log \mathrm{Gam}(a,b)$$

$$\psi(a) = \log b$$

$$\psi'(a)=\sigma_\mu^2$$

Why this prior?

What I Usually Do

First: add an offset term

$$r(x) = o + \sum_{t=1}^m g(x; \mathcal{T}_t, \mathcal{M}_t)$$

Second: Use a hyperprior

$$\sigma_{\mu} \sim ext{Exp}(ext{mean} = 1/\sqrt{m})$$

$$o \sim {
m Flat} \qquad {
m or} \qquad {
m fixed}$$

What Changes?

Algorithm 1 One iteration of a generalized Bayesian backfitting algorithm for updating $(\mathcal{T}_t, \mathcal{M}_t)$

Input: $\{\mathcal{T}_t, \mathcal{M}_t : t = 1, \dots, T\}, \mathbf{Y}, \mathbf{X}, \eta, q(\cdot \mid \cdot)$

- 1: **for** t = 1, ..., T **do**
- 2: Compute $\lambda_i \leftarrow \sum_{k \neq t} g(X_i; \mathcal{T}_k, \mathcal{M}_k)$ for $i = 1, \dots, N$.
- 3: Propose a new tree structure $\mathcal{T}' \sim q(\mathcal{T}' \mid \mathcal{T}_t)$.
- 4: Compute the integrated likelihoods $\Lambda(\mathcal{T}_t)$ and $\Lambda(\mathcal{T}')$ where

$$\Lambda(\mathcal{T}) = \prod_{\ell \in \mathcal{L}(\mathcal{T})} \int \pi_{\mu}(\mu) \prod_{i: X_i \stackrel{\mathcal{T}}{\leadsto} \ell} f_{\eta}(Y_i \mid \lambda_i + \mu) \ d\mu.$$

5: Compute the acceptance probability

$$A = \min \left\{ \frac{\Lambda(\mathcal{T}') \, \pi_{\mathcal{T}}(\mathcal{T}') \, q(\mathcal{T}_t \mid \mathcal{T}')}{\Lambda(\mathcal{T}_t) \, \pi_{\mathcal{T}}(\mathcal{T}_t) \, q(\mathcal{T}' \mid \mathcal{T}_t)}, 1 \right\}.$$

- 6: With probability A, set $\mathcal{T}_t \leftarrow \mathcal{T}'$; otherwise, leave \mathcal{T}_t unchanged.
- 7: Sample \mathcal{M}_t from its full conditional distribution.
- 8: end for

Count Data: Crabs

- What makes a female crab attractive to males?
- Via Categorical Data Analysis (Agresti, 2012)

dium k t k k k dium t t dium	bad good bad bad bad good bad bad middle	28.3 22.5 26.0 24.8 26.0 23.8 26.5	8 0 9 0 4 0	2100 2600 2100
t k k dium t	good bad bad bad good	26.0 24.8 26.0 23.8 26.5	9 0 4 0	2300 2100 2600 2100
k k dium t	bad bad bad good	24.8 26.0 23.8 26.5	0 4 0	
k dium t	bad bad good	26.0 23.8 26.5	4 0 0	2600 2100
dium t k	bad good	23.8 26.5	0	2100
t k	good	26.5	0	2100 2350
k	200000			2350
	middle	24.7		
dium			0	1900
alum	good	23.7	0	1950
k	bad	25.6	0	2150
k	bad	24.3	0	2150
dium	bad	25.8	0	2650
dium	bad	28.2	11	3050
ker	middle	21.0	0	1850
15 of 1	73 entries,	6 total colu	mns	
	k dium dium ker 15 of 1	k bad dium bad dium bad kker middle 15 of 173 entries,	k bad 24.3 dium bad 25.8 dium bad 28.2 ker middle 21.0 15 of 173 entries, 6 total colu	k bad 24.3 0 dium bad 25.8 0 dium bad 28.2 11 ker middle 21.0 0 15 of 173 entries, 6 total columns

Negative Binomial Regression

$$Y_i \sim ext{Poisson}(\xi_i) \ \xi_i \sim ext{Gamma}(k, k/\mu_i) \ \mu_i = \exp\{f(X_i)\} \ f(X_i) = \sum_t g(X_i; \mathcal{T}_t, \mathcal{M}_t)$$

$$\mathrm{Var}(Y_i) = \mu_i + \mu_i^2/k$$

$$rac{1}{\sqrt{k}} \sim ext{Exp}(1)$$

Questions:

1. Is the outcome well-described via a Poisson process, conditional on measured covariates?

2. Which features are most important in determining a crab's popularity?

3. What color is preferred, all else being equal?

Go Over Code

Overdispersion Posterior

Outcome is evidently overdispersed, consistent with a *geometric* rather than *Poisson* random variable

Assessing Size

Include Both

Drop 1

Drop Both

Color Contrasts

$$c_k = \frac{1}{N} \sum_i r(\operatorname{color}_k, \operatorname{spine}_i, \operatorname{width}_i, \operatorname{weight}_i)$$

 $d_k = c_k - \bar{c}$

