Deriving Maxwell Relations Continued

Now that we have the total derivative with respect to its natural variables, we can refer back to the original equation of state and define in this example. I and D.

Mnemonic Device for Obtaining Maxwell Relations

The partial derivative of two neighboring properties (e.g. V and T) correspond to the partial derivative of the two properties on the opposite side of the square (e.g. S and P). The arrows denote the negative sign; if both are pointed the same way, then the sign is negative.

Deriving Maxwell Relations Continued

We must now take into account a rule in partial derivatives

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x},$$

When taking the partial derivative again, we can set both sides equal and thus, we have derived a Maxwell Relation

$$\left\langle \widetilde{s}\widetilde{r}\right\rangle _{S}=-\left\langle \widetilde{s}\widetilde{s}
ight
angle _{S}$$

Using Maxwell Relations

Maxwell Relations can be derived from basic equations of state, and by using Maxwell Relations, working equations can be derived and used when dealing with experimental data.

basic equations	Maxwell relations	working equations
dU = TdS - PdV	(祭)。= - (祭) ₁	$dU = C_V dT + \left[T\left(\frac{\partial F}{\partial r}\right)_V - P\right] dV$
dH = TdS + VdP	(祭) ₅ = (祭),	$dH = C_P dT - \left[T\left(\frac{\partial C}{\partial T}\right)_P - V\right] dP$
dA = -PdV - SdT	$\left(\frac{\partial \mathcal{G}}{\partial \mathcal{T}}\right)_{T} = + \left(\frac{\partial \mathcal{F}}{\partial \mathcal{T}}\right)_{V}$	$dS = \frac{2}{3}dT + (\frac{2}{3})_{V}dV$
dC = VdP - SdT	$(\frac{38}{37})_{+} = -(\frac{37}{37})_{+}$	$dS = \frac{2}{3}dT - (\frac{34}{3}) - dP$

Using Maxwell Relations

Maxwell Relations can be derived from basic equations equations can be derived and used when dealing with of state, and by using Maxwell Relations, working experimental data.

	dA = -FdV - SdT		basic equations
	$\left(\frac{\partial \mathcal{E}}{\partial \mathcal{V}}\right)_T = + \left(\frac{\partial \mathcal{F}}{\partial \mathcal{T}}\right)_V$	$(\frac{36}{46})^{6} = -(\frac{36}{46})^{6}$	Maxwell relations
$dS = \frac{C_F}{T} dT - \left(\frac{SV}{ST}\right)_F dF$			working equations