Lista - Movimento Uniformemente Variado

Autor: Leonardo Vieira dos Santos Ramos

Questão 1 - (Unibe-MG)

Considere um carro de Fórmula Indy correndo em uma pista oval, representada na figura a seguir. No ritmo da corrida, o carro acelera na primeira metade de cada reta, freia na segunda metade de cada reta e faz curvas com velocidade escalar constante. No gráfico está representada a velocidade escalar do carro em função do tempo, considerando-se que o percurso tem início no ponto marcado com a bandeira quadriculada.

Qual o comprimento da pista?

- **A)** 750 m
- **B)** 2.000 m
- **C)** 4.000 m
- **D)** 8.000 m

Resposta

Questão 2 - (Mack - SP)

O gráfico mostra a variação de velocidade de um automóvel com o tempo, durante uma viagem de 45 minutos. A velocidade escalar média desse automóvel, nessa viagem, foi de:

- **A)** 36 km/h
- **B)** 45 km/h
- **C)** 54 km/h
- **D)** 72 km/h
- \mathbf{E}) 80 km/h

Resposta

Questão 3 - (UFSC/2012)

O gráfico a seguir apresente as posições de um móvel em função do tempo. Suponha uma trajetória retilínea e que qualquer variação de velocidade ocorra de maneira constante.

Com base no enunciado e nos três gráficos abaixo, assinale a(s) proposição(ões) CORRETA(S)

- $\mathbf{01}$. Entre os instantes 2,0 s e 3,0 s o móvel possui um movimento retardado, e entre os instantes 5,0 s e 6,0 s possui um movimento acelerado.
- 02. Entre os instantes 3,0 s e 5,0 s o móvel está com velocidade constante e não nula.
- ${f 04.}$ O gráfico 1 corresponde corretamente ao comportamento das acelerações em função do tempo para o móvel em questão.
- **08.** O gráfico 2 corresponde corretamente ao comportamento das acelerações em função do tempo para o móvel em questão.
- **16.** A distância percorrida pelo móvel entre os instantes 3.0 s e 5.0 s é de 5.0 m, e entre os instantes 6.0 s e 7.0 s é de 3.0 m.
- **32.** A velocidade média entre os instantes 0,0 s e 7,0 s é de 1,5 m/s.
- $\bf 64.~O~gr\'{a}$ fico 3 corresponde corretamente ao comportam
neto das velocidades em função do tempo para o móvel em questão.

Resposta	

QUESTÃO 4 - (UFSC/2010)

Os diagramas de posição versus tempo, $x \times t$, mostrado a seguir, representam os movimento retilíneos de quatro corpos. Em relação ao intervalo de tempo entre os instantes 0 e t', é **CORRETO**

afirmar que:

- 01. A velocidade média entre os instantes 0 e t', das curvas representadas nos gráficos, é numericamente igual ao coeficiente angular da reta que passa pelos pontos que indicam as posições nestes dois instantes.
- 02. O movimento do corpo representado no diagrama D, no intervalo entre 0 e t', é retilíneo uniformemente retardado.
- ${f 04.}$ No instante $t_0=0,$ o corpo, cujo o movimento é representado no diagrama C, está na origem do referencial.
- 08. No movimento representado no diagrama B, no intervalo de tempo entre 0 e t', o corpo vai se aproximando da origem do referencial.
- 16. No movimento representado no diagrama A, a velocidade inicial do corpo é nula.
- **32.** O movimento do corpo representado no diagrama B, no intervalo de tempo entre 0 e t', é retilíneo uniformemente acelerado.
- 64. O movimento representado no diagrama B poderia ser o de um corpo lançado verticalmente para cima.

Resposta									

QUESTÃO 5 - (ACAFE SC/2012)

Para garantir a segurança no trânsito, deve-se reduzir a velocidade de um veículo em dias de chuva, senão vejamos: um veículo em uma pista reta, asfaltada e seca, movendo-se com velocidade de módulo $36~\rm km/h$ ($10~\rm m/s$) é freado e desloca-se $5.0~\rm m$ até parar. Nas mesmas circustâncias, só que com a pista molhada sob chuva, necessita de $1.0~\rm m$ a mais para parar.

Considerando a mesma situação (pista seca e molhada) e agora a velocidade do veículo de mídulo $108~\rm km/h$ ($30~\rm m/s$), a alternativa **correta** que indica a distância a mais para parar, em metros, com a pista molhada em relação a pista seca é:

A) 6	
B) 2	
C) 1,5	
D) 9	
Resposta	

QUESTÃO 6 - (UEM/2009)

No último campeonato mundial de atletismo disputado em Berlim, Usain Bolt, atleta jamaicano, quebrou seu próprio recorde mundial dos 100 metros rasos. Ele concluiu a prova no incrível tempo de 9,58 segundos. Uma análise minuciosa dessa façanha mostra que os primeiros 5 metros da prova ele cumpriu em 0,58 segundos e os outros 95 metros foram cumpridos com velocidade constante. Com base nessas informações, analise as alternativas abaixo e assinale o que for **correto**.

- 01. A velocidade média com que ele executa a prova é maior que 36 km/h.
- $\mathbf{02.}$ A aceleração média nos primeiros 5 metros de prova é maior que a aceleração de um corpo em queda livre.
- **04.** A velocidade com que ele concluiu a prova é de 38 km/h.
- 08. Qualquer atleta que realizar essa prova com aceleração constante de 2,5 m/s 2 conseguirá quebrar o recorde de Bolt.
- $\textbf{16.} \ \ \text{Qualque atleta que realizar essa prova com uma velocidade constante de 10 m/s conseguir\'a quebrar o recorde de Bolt.}$

Resposta	

QUESTÃO 7 - (UFSC-2002)

Dois ciclistas, A e B, disputam uma corrida cuja a distância total é de 1200 metros, do ponto de partida até a faixa de chegada. O gráfico abaixo mostra a velocidade dos ciclistas A e B em função do tempo.

Observando o gráfico apresentado, assinale a(s) proposição(ões) CORRETA(S).

- 01. No sexagésimo segundo, o ciclista A está 150 metros à frente do ciclista B.
- **02.** A aceleração do ciclista A, nos primeiros quarente e cinco segundos, é de 1 m/s².
- 04. No centésimo trigésimo quinto segundo, o ciclista B está 150 metros à frente do ciclista A.
- 08. O ciclista B nunca alcança o ciclista A.
- 16. O ciclista A venceu a disputa porque percorreu os 1200 metros em 150 segundos, e o ciclista B gastou 165 segundos.
- 32. No centésimo sexagésimo quinto segundo, o ciclista B está a apenas 7,5 metros da faixa de chegada, e o ciclista A encontra-se a 52,5 metros da faixa de chegada. Portanto, o ciclista B vence a corrida.

64.	. А с	corrida	ı termina	empatada,	pois ambos	os ciclistas	percorrem	os 1200	0 metros en	ı 165	segundos.
Re	spos	sta									

QUESTÃO 8 - (UNEMAT MT/2012)

Num acidente, o velocímetro de uma motocicleta registrava a velocidade de $72~\rm km/h$ no instante anterior à colisão. Supondo que o piloto estava a mesma velocidade que a moto no instante do acidente, isso seria equivalente à queda livre em um prédio.

Se a distância entre um piso e outro é $2,5\,\mathrm{m},$ de qual andar o piloto teria de cair para alcançar tal velocidade?

tal velocidade?	
(Adote a aceleração da gravidade como 10 m/s^2)	

- **A)** 20° andar
- **B)** 18° andar
- C) 16° andar
- **D)** 10° andar
- **E)** 08° andar

Resposta	
----------	--

QUESTÃO 9 - (FMABC/2010)

O movimento de um corpo é descrito pela função: $S=5t^2-30t+50$ (unidades do Sistema Internacional). Esse corpo inverte o sentido de seu movimento no instante

- A) em que ele passa pela origem da trajetória
- **B)** 4 s
- **C)** 1 s
- **D)** 2 s
- **E)** 3 s

Resposta	
----------	--