Steps to Solve the Coffee Shop Problem

- 1. Identify the variables in the domain: A, M, C, K
- 2. Transpose the requirements into algebraic form:

Amy, Kathy, and Marmaduke vote NO and Cedric votes YES,				
or	Amy and Marmaduke vote NO and the rest vote YES,	ĀKĀC		
or	Cedric and Marmaduke vote YES and the rest vote NO,	ĀKMC		
or	Amy votes NO and the others vote YES,	ĀKMC		
or	Cedric votes NO and the others vote YES,	AKMĒ		
or	Cedric and Amy vote YES and the others vote NO,	$A\overline{K}\overline{M}C$		
or	Kathy votes NO and the others vote YES,	$A\overline{K}MC$		
or	Marmaduke votes NO and the others vote YES,	AK™C		
or	Amy and Kathy vote YES and the others vote NO,	$AK\overline{M}\overline{C}$		
or	they all vote YES.	AKMC		

3. Establish the logic required to achieve the desired output:

		BUY
	Ā₹ĀC	1
OR	ĀКМС	1
OR	Ā₹MC	1
OR	ĀKMC	1
OR	AKMĒ	1
OR	$A\overline{K}\overline{M}C$	1
OR	$A\overline{K}MC$	1
OR	AK M C	1
OR	AKM̄C̄	1
OR	AKMC	1

4. Convert into a standard Boolean expression.

$$\bar{A}\bar{K}\bar{M}C + \bar{A}K\bar{M}C + \bar{A}\bar{K}MC + \bar{A}KMC + \bar{A}KMC + \bar{A}K\bar{M}C + \bar{A}\bar{K}\bar{M}C + \bar{A}\bar{K}\bar{M}C + \bar{A}\bar{K}\bar{M}C + \bar{A}\bar{K}\bar{M}\bar{C} + \bar{$$

5. In order to simplify using a Karnaugh Map, convert the Boolean expression to its binary equivalent:

$\bar{A}\bar{K}\bar{M}C$	ĀKĀC	Ā₹MC	ĀKMC	$AKM\bar{C}$	$A\overline{K}\overline{M}C$	$A\overline{K}MC$	$AK\overline{M}C$	$AK\overline{M}\overline{C}$	AKMC
0001	0101	0011	0111	1110	1001	1011	1101	1100	1111

6. Draw the Karnaugh Map for the required domain (4 variables in this case):

MC	00	01	11	10
AK				
00				
01				
11				
10				

7. Populate the Map as per the expression:

MC AK	00	01	11	10
00		1	1	
01		1	1	
11	1	1	1	1
10		1	1	

8. Group the 1's into the largest groups possible:

MC	00	01	11	10	
AK					
00		1	1		
01		1	1		
11	1	1	1	1	/
10		1	1		

9. Read the map for each group:

Vertical Group = C

Horizontal Group = AK

10. Read the minimised logic:

$$C + AK = BUY$$

11. Implement the logic:

