ODE Cheat Sheet

First Order Equations

Separable

$$y'(x) = f(x)g(y)$$
$$\int \frac{dy}{g(y)} = \int f(x) dx + C$$

Linear First Order

$$y'(x) + p(x)y(x) = f(x)$$

 $\mu(x) = \exp \int_{-x}^{x} p(\xi) d\xi$ Integrating factor.
 $(\mu y)' = f\mu$ Exact Derivative.
Solution: $y(x) = \frac{1}{\mu(x)} \left(\int f(\xi)\mu(\xi) d\xi + C \right)$

Exact

$$0 = M(x, y) dx + N(x, y) dy$$
Solution: $u(x, y) = \text{const where}$

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$$
Condition: $M_y = N_x$

$$\frac{\partial u}{\partial x} = M(x, y), \quad \frac{\partial u}{\partial y} = N(x, y)$$

Non-Exact Form

$$\begin{split} &\mu(x,y)\left(M(x,y)\,dx + N(x,y)\,dy\right) = du(x,y)\\ &M_y = N_x\\ &N\frac{\partial \mu}{\partial x} - M\frac{\partial \mu}{\partial y} = \mu\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right). \end{split}$$

Special cases

If
$$\frac{M_y - N_x}{N} = h(y)$$
, then $\mu(y) = \exp \int h(y) dy$
If $\frac{M_y - N_x}{N} = -h(x)$, then $\mu(y) = \exp \int h(x) dx$

Second Order Equations

Linear

$$a(x)y''(x) + b(x)y'(x) + c(x)y(x) = f(x)$$

$$y(x) = y_h(x) + y_p(x)$$

$$y_h(x) = c_1y_1(x) + c_2y_2(x)$$

Constant Coefficients

$$ay''(x) + by'(x) + cy(x) = f(x)$$

$$y(x) = e^{rx} \Rightarrow ar^2 + br + c = 0$$

Cases

Distinct, real roots: $r = r_{1,2}$, $y_h(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$ One real root: $y_h(x) = (c_1 + c_2 x) e^{rx}$ Complex roots: $r = \alpha \pm i\beta$, $y_h(x) = (c_1 \cos \beta x + c_2 \sin \beta x) e^{\alpha x}$

Cauchy-Euler Equations

$$ax^2y''(x) + bxy'(x) + cy(x) = f(x)$$

$$y(x) = x^r \Rightarrow ar(r-1) + br + c = 0$$

Cases

Distinct, real roots: $r = r_{1,2}$, $y_h(x) = c_1 x^{r_1} + c_2 x^{r_2}$ One real root: $y_h(x) = (c_1 + c_2 \ln |x|) x^r$ Complex roots: $r = \alpha \pm i\beta$, $y_h(x) = (c_1 \cos(\beta \ln |x|) + c_2 \sin(\beta \ln |x|)) x^{\alpha}$

Nonhomogeneous Problems

Method of Undetermined Coefficients

$$f(x) \qquad y_p(x) a_n x^n + \dots + a_1 x + a_0 \qquad A_n x^n + \dots + A_1 x + A_0 a e^{bx} \qquad A e^{bx} a \cos \omega x + b \sin \omega x \qquad A \cos \omega x + B \sin \omega x$$

Modified Method of Undetermined Coefficients: if any term in the guess $y_p(x)$ is a solution of the homogeneous equation, then multiply the guess by x^k , where k is the smallest positive integer such that no term in $x^ky_p(x)$ is a solution of the homogeneous problem.

Reduction of Order

Homogeneous Case

Given $y_1(x)$ satisfies L[y] = 0, find second linearly independent solution as $v(x) = v(x)y_1(x)$. z = v' satisfies a separable ODE.

Nonhomogeneous Case

Given $y_1(x)$ satisfies L[y] = 0, find solution of L[y] = f as $v(x) = v(x)y_1(x)$. z = v' satisfies a first order linear ODE.

Method of Variation of Parameters

$$y_p(x) = c_1(x)y_1(x) + c_2(x)y_2(x)$$

$$c'_1(x)y_1(x) + c'_2(x)y_2(x) = 0$$

$$c'_1(x)y'_1(x) + c'_2(x)y'_2(x) = \frac{f(x)}{g(x)}$$

Applications

Free Fall

$$x''(t) = -g$$

$$v'(t) = -g + f(v)$$

Population Dynamics

$$P'(t) = kP(t)$$

$$P'(t) = kP(t) - bP^{2}(t)$$

Newton's Law of Cooling

$$T'(t) = -k(T(t) - T_a)$$

Oscillations

$$mx''(t) + kx(t) = 0$$

$$mx''(t) + bx'(t) + kx(t) = 0$$

$$mx''(t) + bx'(t) + kx(t) = F(t)$$

Types of Damped Oscillation

Overdamped, $b^2 > 4mk$ Critically Damped, $b^2 = 4mk$ Underdamped, $b^2 < 4mk$

Numerical Methods

Euler's Method

$$y_0 = y(x_0),$$

 $y_n = y_{n-1} + \Delta x f(x_{n-1}, y_{n-1}), \quad n = 1, \dots, N.$

Series Solutions

Taylor Method

$$f(x) \sim \sum_{n=0}^{\infty} c_n x^n, c_n = \frac{f^{(n)}(0)}{n!}$$

- 1. Differentiate DE repeatedly.
- 2. Apply initial conditions.
- 3. Find Taylor coefficients.
- 4. Insert coefficients into series form for y(x).

Power Series Solution

- 1. Let $y(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$.
- 2. Find y'(x), y''(x).
- 3. Insert expansions in DE.
- 4. Collect like terms using reindexing.
- 5. Find recurrence relation.
- 6. Solve for coefficients and insert in y(x) series.

Ordinary and Singular Points

y'' + a(x)y' + b(x)y = 0. x_0 is a

Ordinary point: a(x), b(x) real analytic in $|x - x_0| < R$ Regular singular point: $(x - x_0)a(x), (x - x_0)^2b(x)$ have convergent Taylor series about $x = x_0$.

Irregular singular point: Not ordinary or regular singular point.

Frobenius Method

- 1. Let $y(x) = \sum_{n=0}^{\infty} c_n (x x_0)^{n+r}$.
- 2. Obtain indicial equation $r(r-1) + a_0r + b_0$.
- 3. Find recurrence relation based on types of roots of indicial equation.
- 4. Solve for coefficients and insert in y(x) series.

Laplace Transforms

Transform Pairs

$$\begin{array}{lll} c & \frac{s}{s} \\ e^{at} & \frac{s}{s-a}, & s>a \\ t^n & \frac{n!}{s^{n+1}}, & s>0 \\ \sin \omega t & \frac{s^2+\omega^2}{s^2+\omega^2} \\ \cos \omega t & \frac{s^2+\omega^2}{s^2-a^2} \\ \sinh at & \frac{s^2-a^2}{s^2-a^2} \\ H(t-a) & \frac{e^{-as}}{s}, & s>0 \\ \delta(t-a) & e^{-as}, & a\geq 0, s>0 \end{array}$$

Laplace Transform Properties

$$\begin{split} \mathcal{L}[af(t) + bg(t)] &= aF(s) + bG(s) \\ \mathcal{L}[tf(t)] &= -\frac{d}{ds}F(s) \\ \mathcal{L}\left[\frac{df}{dt}\right] &= sF(s) - f(0) \\ \mathcal{L}\left[\frac{d^2f}{dt^2}\right] &= s^2F(s) - sf(0) - f'(0) \\ \mathcal{L}[e^{at}f(t)] &= F(s-a) \\ \mathcal{L}[H(t-a)f(t-a)] &= e^{-as}F(s) \\ \mathcal{L}[(f*g)(t)] &= \mathcal{L}[\int_0^t f(t-u)g(u)\,du] &= F(s)G(s) \end{split}$$

Solve Initial Value Problem

- 1. Transform DE using initial conditions.
- 2. Solve for Y(s).
- 3. Use transform pairs, partial fraction decomposition, to obtain y(t).

Special Functions

Legendre Polynomials

$$P_n(x) = \frac{1}{2^{nn}!} \frac{d^n}{dx^n} (x^2 - 1)^n (1 - x^2)y'' - 2xy' + n(n+1)y = 0. (n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x), \quad n = 1, 2, \dots g(x,t) = \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n, \quad |x| \le 1, |t| < 1.$$

Bessel Functions, $J_p(x)$, $N_p(x)$

$$x^2y'' + xy' + (x^2 - p^2)y = 0.$$

Gamma Functions

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \quad x > 0.$$

$$\Gamma(x+1) = x\Gamma(x).$$

Systems of Differential Equations

Planar Systems

$$x' = ax + by$$

 $y' = cx + dy$.
 $x'' - (a + d)x' + (ad - bc)x = 0$.

Matrix Form

$$\mathbf{x}' = \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \equiv A\mathbf{x}.$$
Guess $\mathbf{x} = \mathbf{v}e^{\lambda t} \Rightarrow A\mathbf{v} = \lambda \mathbf{v}.$

Eigenvalue Problem

 $A\mathbf{v} = \lambda \mathbf{v}$.

Find Eigenvalues: $det(A - \lambda I) = 0$

Find Eigenvectors $(A - \lambda I)\mathbf{v} = 0$ for each λ .

Cases

Real, Distinct Eigenvalues: $\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2$ Repeated Eigenvalue: $\mathbf{x}(t) = c_1 e^{\lambda t} \mathbf{v}_1 + c_2 e^{\lambda t} (\mathbf{v}_2 + t \mathbf{v}_1)$, where $A\mathbf{v}_2 - \lambda \mathbf{v}_2 = \mathbf{v}_1$ for \mathbf{v}_2 .

Complex Conjugate Eigenvalues: $\mathbf{x}(t) =$

 $c_1 Re(e^{\alpha t}(\cos \beta t + i \sin \beta t)\mathbf{v}) + c_2 Im(e^{\alpha t}(\cos \beta t + i \sin \beta t)\mathbf{v}).$

Solution Behavior

Stable Node: $\lambda_1, \lambda_2 < 0$.

Unstable Node: $\lambda_1, \lambda_2 > 0$.

Saddle: $\lambda_1 \lambda_2 < 0$.

Center: $\lambda = i\beta$.

Stable Focus: $\lambda = \alpha + i\beta$, $\alpha < 0$.

Unstable Focus: $\lambda = \alpha + i\beta$, $\alpha > 0$.

Matrix Solutions

Let $\mathbf{x}' = A\mathbf{x}$.

Find eigenvalues λ_i

Find eigenvectors $\mathbf{v}_i = \begin{pmatrix} v_{i1} \\ v_{i2} \end{pmatrix}$

Form the Fundamental Matrix Solution:

$$\Phi = \left(\begin{array}{cc} v_{11}e^{\lambda_1t} & v_{21}e^{\lambda_2t} \\ v_{12}e^{\lambda_1t} & v_{22}e^{\lambda_2t} \end{array} \right)$$

General Solution: $\mathbf{x}(t) = \Phi(t)\mathbf{C}$ for \mathbf{C}

Find $C: \mathbf{x}_0 = \Phi(t_0)\mathbf{C} \Rightarrow \mathbf{C} = \Phi^{-1}(t_0)\mathbf{x}_0$

Particular Solution: $\mathbf{x}(t) = \Phi(t)\Phi^{-1}(t_0)\mathbf{x}_0$.

Principal Matrix solution: $\Psi(t) = \Phi(t) \Phi^{-1}(t_0)$.

Particular Solution: $\mathbf{x}(t) = \Psi(t)\mathbf{x}_0$.

Note: $\Psi' = A\Psi$, $\Psi(t_0) = I$.

Nonhomogeneous Matrix Solutions

$$\mathbf{x}(t) = \Phi(t)\mathbf{C} + \Phi(t) \int_{t_0}^t \Phi^{-1}(s)\mathbf{f}(s) ds$$
$$\mathbf{x}(t) = \Psi(t)\mathbf{x}_0 + \Psi(t) \int_{t_0}^t \Psi^{-1}(s)\mathbf{f}(s) ds$$

2×2 Matrix Inverse

$$\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)^{-1} = \frac{1}{\det A} \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$$