```
%%% Q.8: How frequently does a graph-node appear in a path's second-to-last
position and what are the number of paths ending in each FP?
FPs = [20, 45, 54]; % All fixed points row vector
numFPs = length(FPs); % Extract number of FPs
numFPendPaths = zeros(length(FPs), 1); % Initialize vector to store number of
times each FP appears in path ends
nodeFound = zeros(size(acyclicPaths, 1), 2); % Initialize matrix to store graph-
node IDs and counts across paths
for inNodeFound = 1:size(acyclicPaths, 1) % Iterate through all graph-nodes
    nodeFound(inNodeFound, 1) = inNodeFound; % Fill up matrix column with graph-
node IDs
end
for inAcyclicPaths = 1:size(acyclicPaths, 1) % Iterate through all paths on STG
    rowAcyclicPaths = acyclicPaths{inAcyclicPaths, 1}; % Extract all paths
starting from current graph-node
    pathsInRow = length(rowAcyclicPaths); % Extract number of paths starting
from current graph-node
    for inNodePaths = 1:pathsInRow % Iterate through all paths starting from
current graph-node
        pathHere = rowAcyclicPaths{inNodePaths}; % Extract current path
        if length(pathHere) >= 2 % Path does not start with FP; FP path length
is 1
            secondToLastNode = pathHere(end - 1); % Extract graph-node in second-
to-last position in current path
            nodeFound(secondToLastNode, 2) = nodeFound(secondToLastNode, 2) + 1;
% Update current graph-node's count
        else % Path length = 1 (current graph-node is FP)
            continue % Go to next path
        end
        currentLastNode = pathHere(end); % Extract current path last node (FP)
        indexCurrentFP = find(FPs == currentLastNode); % Extract index of
current path FP
```

```
numFPendPaths(indexCurrentFP) = numFPendPaths(indexCurrentFP) + 1; %
Update count of current FP
    end
end
graphNode = nodeFound(:, 1); % Extract column 1 from second-to-last graph-nodes
and counts matrix
appearsPathSecondToLast = nodeFound(:, 2); % Extract column 2 from second-to-
last graph-nodes and counts matrix
pathSecondToLastTable = table(graphNode, appearsPathSecondToLast); % Create
table for second-to-last graph-nodes and their counts
secondToLastTableSorted = sortrows(pathSecondToLastTable, 2, 'descend'); % Sort
table entries in descending order of second-to-last graph-node counts
disp('Table for graph-nodes and number of times they appear second-to-last in a
path:'); % Table contents description
disp(secondToLastTableSorted); % Display sorted table
FPsColumn = FPs'; % Transpose FPs row vector to column vector for table
numFPendPathsTable = table(FPsColumn, numFPendPaths); % Create table for FPs and
number of times each one appears in path end
disp('Table for number of paths ending in each FP:'); % Describe table's contents
disp(numFPendPathsTable); % Display table
```

Output:

Table for graph-nodes and number of times they appear second-to-last in a path:

graphNode	appearsPathSecondToLas	st
-----------	------------------------	----

61	107	
52	94	
38	86	
22	72	
37	64	
53	64	

48	51
46	42
28	32
60	27
36	23
29	22
47	21
21	18
24	18
40	18
56	18
62	18
13	16
23	15
39	15
55	15
27	13
3	10
5	10
35	10
19	7
59	7
4	5
6	5
1	3
7	3
9	3
10	3
11	3
12	3
15	3

17	3
25	3
26	3
31	3
32	3
33	3
41	3
42	3
43	3
44	3
49	3
51	3
57	3
58	3
64	3
2	2
8	2
14	2
18	2
30	2
34	2
50	2
63	2
20	0
45	0
54	0

Table for number of paths ending in each FP:

FPsColumn numFPendPaths

20 308

45 322

54 378