Example: Consider the following 2R manipulator, with DH frame assignment as shown.

The DH parameters can then be found to be:

i	d_i	θ_i	α_i	a_i
1	0	$ heta_1$	$-\pi/2$	l_1
2	l_2	θ_2	0	a_2

Hence,

$$J_{\omega} = \begin{bmatrix} z_0 & z_1 \end{bmatrix} = \begin{bmatrix} 0 & -s_1 \\ 0 & c_1 \\ 1 & 0 \end{bmatrix}$$

$$J_{v} = \begin{bmatrix} z_0 \times (o_2 - o_0) & z_1 \times (o_2 - o_1) \end{bmatrix}$$

$$= \begin{bmatrix} -(l_1s_1 + l_2c_1 + a_2c_2s_1) & -a_2s_2c_1 \\ l_1c_1 - l_2s_1 + a_2c_2c_1 & -a_2s_2s_1 \\ 0 & -s_1(l_2c_1 + a_2c_2s_1) - c_1(-l_2s_1 + a_2c_2c_1) \end{bmatrix}$$

$$= \begin{bmatrix} -(l_1s_1 + l_2c_1 + a_2c_2s_1) & -a_2s_2c_1 \\ l_1c_1 - l_2s_1 + a_2c_2c_1 & -a_2s_2s_1 \\ 0 & -a_2c_2 \end{bmatrix}$$

Jacobian,
$$J = \begin{bmatrix} J_v \\ J_\omega \end{bmatrix}$$