

A.P. SHAH INSTITUTE OF TECHNOLOGY

	Department of Compute Data S
WALLEY WAS TO SEE	

		Department of Computer Science and Engineering Data Science		S S
martar:	Silv	Cubinet	AICD	Academic Year: 202

The bela distribution plays a significant role in finance, particularly in risk modelling portfolio management, and probability estimation. Since it is defined on the interval (0,1), it is useful for modelling probabilities, proportion and uncertain financial variables

Defination of the Bela Distribution. The Bela distribution is parameterized by two shape parameters, d and B:

$$f(x; \alpha, \beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}$$
, 0 < x < 1

d, B >0 are shape parameters

$$B(\alpha,\beta) = \int_{-\infty}^{\infty} t^{\alpha-1}(1-t)^{\beta-1} dt \quad (or) \quad B(\alpha,\beta) = \int_{-\infty}^{\infty} t^{\alpha-1} dt$$

> The mean of the Bela distribution:

-> The variance

$$Var(X) = \frac{d\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering **Data Science**

Semester: VILL Subject: AIFB

Academic Year: 2024-25

Theyse of the Bela Distribution:

* The Bela Distribution is very flexible and takes

different shapes on dand B:

* Uniform Distribution: \ = 1, B=1 -> Flat.

* left skewed: axB -> More probability mass near o

* Rightshewed: a>B -> More probability mass near 1.

* Bell shaped : d=B>1

Applications of the Beta distribution in Finance.

Example:

Suppose a stock analyst estimates the probability of a bull market using a Bela distribution with parameters d = 3, and B = 2.

(a) Find the mean of the distribution.

(b) Compute the variance.

(c) Find the probability density for x=0.5.

Solution:

(a) Mean of the Bela Distribution :-

The mean of a bela distribution is

$$E(x) = \frac{d}{d+B} = \frac{3}{3+a} = \frac{3}{5} = 0.6$$

(b) Variance of the Bela Distribution:

$$Var(X) = \frac{\Delta B}{(\Delta + B + 1)} = \frac{(3)(2)}{(3+2)^{2}(8+2+1)}$$

Subject Incharge: B. Sarala Mary

Department of CSE-Data Science | APSIT

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering **Data Science**

Semester: VIII Subject: AIFB

Academic Year: 2024-25

 $\frac{=6}{(5)^2(6)} = \frac{6}{150} = 0.04$

(1) Probability Density at x = 0.5

The probability density function is:

f(x) = x -1 (1-x)B-1

Fixt compute bela function:

B(2,3) = [(3) [(2) T(3+2)

[(3) = 2! =2, [(a) = 1! =1, [(6) = 4! =24

 $B(2,3) = \frac{(a)(1)}{34} = \frac{a}{34} = \frac{1}{12}$

Now compute fro. 5):

 $f(0.5) = (0.5)^{3-1} (1-0.5)^{2-1} = (0.5)^{2} (0.5)$ $= \frac{(0.25)(0.5)}{1/12} = \frac{0.125}{1/12}$

=1.5

Mean = 0.6, Variance = 0.04, fco.15) = 1.5

This means that the probability density at x=0.5 is 1.5. which indicates the likelihood of observing a probability of 0.5 for bull market is relatively high.

PARSHWANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering
Data Science

Semester: VII	Subject :_	ALEB		Year: 2024-25
Applications of	Bela Distrib	ution in tin	and:	bability
. It helps	in estimation	g expected of	uture relative	
historical data (B) Bayesian f *The Bela and Binomial *In Bayes beleifs about	Distribution	l's a conjugate	statistics. uloss can upo	he Bernoulli late their hat
Example:-	or initially k	pelaires that	astock has a	30°6
can update the (c) Risk Mana. *The Bela	probability gement & Valu Distribution	dynamicall ue - out-Risk is useful fo	y estimating	probabilitic
of extreme la	applica	toes testing	and sunario	analysis