MAT201A Homework 10 Fall 2019

Professor Qinglan Xia Due Date: Friday, December 6th at 9:00am

1. Let $S = \{e_{\alpha} : \alpha \in A\}$ be an orthonormal set in an inner product space X. Show that for any $x, y \in X$,

$$\sum_{\alpha \in \mathcal{A}} |\langle e_{\alpha}, x \rangle \langle e_{\alpha}, y \rangle| \le ||x|| \cdot ||y||.$$

- 2. Let \mathcal{H} be a separable Hilbert space. Show that every orthonormal set is \mathcal{H} is countable.
- 3. Let P be an orthogonal projection on a Hilbert space \mathcal{H} . Show that
 - a.) I P is also an orthogonal projection.
 - b.) ker(P) and range(P) are two closed linear subspaces of \mathcal{H} with $ker(P) = range(P)^{\perp}$.
- 4. Let $(X, (\cdot, \cdot))$ be an inner product space. Show that there exists a Hilbert space \mathcal{H} with inner product $\langle \cdot, \cdot \rangle$ such that X is a dense subset of \mathcal{H} with $\langle x, y \rangle = (x, y)$ for all $x, y \in X$. The Hilbert space \mathcal{H} is called the completion of X.
- 5. Exercise 6.13 in the textbook, page 146.