Transformação Inversa

Esdras R. Carmo - 170656

4 de Outubro de 2016

1 Inversas a esquerda e a direita

Definição 1.1. $T: V \longrightarrow W$ linear.

• $Uma\ aplicação\ L: Im(T) \longrightarrow V\ \'e\ uma\ inversa\ a\ esquerda\ se$

$$(L \circ T)v = v \ \forall \ v \in V$$

ullet Uma aplicação $R: Im(T) \longrightarrow V$ é inversa a direita se

$$(T \circ R)w = w \ \forall \ w \in Im(T)$$

Teorema 1.1. V, W dimensão finita (talvez diferentes). Se $T: V \longrightarrow W$ tem uma inversa a esquerda L, então T também tem uma inversa a direita. Além disso, L é única

Teorema 1.2. $T:V\longrightarrow W$ linear. Então T tem uma inversa a esquerda \Leftrightarrow T é injetora.

Definição 1.2. Se $T:V\longrightarrow W$ linear com inversa a esquerda, denotamos a única inversa a esquerda com $T^{-1}:Im(T)\longrightarrow V$ e dizemos que T é invertível.

Teorema 1.3. Se $T: V \longrightarrow W$ isomorfismo $\Rightarrow T^{-1}: W \longrightarrow V$ é isomorfismo.

2 Exemplos

Exemplo 2.1. Definition $T: P_1(\mathbb{R}) \longrightarrow \mathbb{R}^3$ como $a + bx \mapsto (a, 2b, a + b)$

$$\ker (T) = \{a + bx \mid (a, 2b, a + b) = (0, 0, 0)\} = \{(0, 0, 0)\}$$

 $Dessa\ forma,\ concluimos\ que\ T\ \'e\ injetora\ e\ possui\ inversa\ a\ esquerda.\ Agora\ a\ constru\'imos:$

$$Im(T) = span\{(1,0,1), (0,2,1)\}$$

$$T^{-1}: Im(T) \longrightarrow P_1(\mathbb{R})$$

$$(1,0,1) \mapsto 1$$

$$(0,2,1) \mapsto x$$

$$(\alpha,\beta,\gamma) \mapsto \alpha + \frac{\beta}{2}x$$

Verificar!

Exemplo 2.2. Definition $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ como $(x, y, z) \mapsto (x - z, 2z + y)$.

$$Im(T) = span\{(1,0), (0,1), (-1,2)\} = \mathbb{R}^2$$

$$\ker(T) = span\{(1,-2,1)\} \neq \{(0,0,0)\}$$

Tnão é injetora, logo Tnão tem inversa a esquerda. No entando, existem mais de uma inversa direita.

$$R_1: \mathbb{R}^2 \to \mathbb{R}^3 \ (a,b) \mapsto (a,b,0)$$

 $R_2: \mathbb{R}^2 \to \mathbb{R}^3 \ (a,b) \mapsto \left(a + \frac{b}{2}, 0, \frac{b}{2}\right)$

Verificar!