Geometrijska interpolacija štirih točk s parabolično krivuljo

Tjaša Bajc

mentorica izr. prof. dr. Marjetka Knez

13. november 2017

Opis problema

Vprašanje je, ali obstaja parabolična krivulja, ki poteka skozi dane štiri točke v ravnini. Če obstaja, nas zanima, koliko je takih krivulj. Problema se bomo lotili na dva načina.

- Geometrijski pristop
 Obravnavamo lik, katerega oglišča so dane točke.
- Interpolacija
 Pomagali si bomo z razvojem po Lagrangeevih baznih polinomih.

Opazujemo štirikotnik, ki ga tvorijo dane štiri točke. Od lastnosti tega štirikotnika je odvisno, ali točke lahko interpoliramo s parabolično krivuljo.

Izrek

Opazujemo štirikotnik, ki ga tvorijo dane štiri točke. Od lastnosti tega štirikotnika je odvisno, ali točke lahko interpoliramo s parabolično krivuljo.

Izrek

Naj bo $Q = \{Q_0, Q_1, Q_2, Q_3\}$ nabor štirih točk, od katerih nobene tri niso kolinearne.

i) Če so točke iz Q oglišča konkavnega štirikotnika, danih točk ne moremo interpolirati s parabolično krivuljo.

Opazujemo štirikotnik, ki ga tvorijo dane štiri točke. Od lastnosti tega štirikotnika je odvisno, ali točke lahko interpoliramo s parabolično krivuljo.

Izrek

- i) Če so točke iz Q oglišča konkavnega štirikotnika, danih točk ne moremo interpolirati s parabolično krivuljo.
- ii) Če so točke iz Q oglišča paralelograma, danih točk ne moremo interpolirati s parabolično krivuljo.

Opazujemo štirikotnik, ki ga tvorijo dane štiri točke. Od lastnosti tega štirikotnika je odvisno, ali točke lahko interpoliramo s parabolično krivuljo.

Izrek

- i) Če so točke iz Q oglišča konkavnega štirikotnika, danih točk ne moremo interpolirati s parabolično krivuljo.
- ii) Če so točke iz Q oglišča paralelograma, danih točk ne moremo interpolirati s parabolično krivuljo.
- iii) Če so točke iz Q oglišča trapeza, ki ni paralelogram, lahko dane točke interpoliramo z natanko eno parabolično krivuljo.

Opazujemo štirikotnik, ki ga tvorijo dane štiri točke. Od lastnosti tega štirikotnika je odvisno, ali točke lahko interpoliramo s parabolično krivuljo.

Izrek

- i) Če so točke iz Q oglišča konkavnega štirikotnika, danih točk ne moremo interpolirati s parabolično krivuljo.
- ii) Če so točke iz Q oglišča paralelograma, danih točk ne moremo interpolirati s parabolično krivuljo.
- iii) Če so točke iz Q oglišča trapeza, ki ni paralelogram, lahko dane točke interpoliramo z natanko eno parabolično krivuljo.
- iv) Če so točke iz Q oglišča konveksnega štirikotnika, ki ni trapez, lahko dane točke interpoliramo z natanko dvema paraboličnima krivuljama.

Lagrangeevi bazni polinomi

Lagrangeevi bazni polinomi tvorijo bazo za prostor polinomov določene stopnje.

Lagrangeevi bazni polinomi

Lagrangeevi bazni polinomi tvorijo bazo za prostor polinomov določene stopnje.

Oglejmo si polinome $\ell_{0,2}(t), \ell_{1,2}(t)$ in $\ell_{2,2}(t)$, ki so baza za prostor polinomov druge stopnje.

Definicija

$$\ell_{0,2}(t) = rac{(t-t_1)(t-t_2)}{(t_0-t_1)(t_0-t_2)} \ \ell_{1,2}(t) = rac{(t-t_0)(t-t_2)}{(t_1-t_0)(t_1-t_2)} \ \ell_{2,2}(t) = rac{(t-t_0)(t-t_1)}{(t_2-t_0)(t_2-t_1)}$$