Transformation et réaction acide - base

Sauf indicateur contraire, la température des solutions est de 25°C . À cette température $Ke=10^{-14}$ et le pKe=14,0 .

Exercice 1:

Une solution aqueuse d'acide méthanoïque HCO_2H de concentration apportée $C=3,0\times 10^{-2}mol/l$ a un pH égal à 2,65 à 25°C .

- 1. Écrire l'équation de la réaction qui se produit lors de la mise en solution de l'acide méthanoïque dans l'eau.
- 2. Déterminer les concentrations des ions oxonium, des ions méthanoate et de l'acide méthanoïque dans cette solution .
- 3. En déduire les valeurs de la constante d'acidité K_A et du pK_A du couple considéré à $25^{\circ}C$

Exercice 2:

- 1. Écrire les équations de réaction entre :
 - (a) L'acide lactique $CH_3CHOHCO_2H$ et l'ion nitrite NO_2^- ;
 - (b) l'acide formique HCO_2H et l'ion hydroxyde HO^- .
- 2. Calculer la constante d'équilibre associée à chacune de ces réactions à $25^{\circ}C$
- 3. En déduire les valeurs de la constante d'acidité K_A et du pK_A du couple considéré à $25^{\circ}C$

Données à $25^{\circ}C$:

$$pKa\left(CH_{3}CHOHCO_{2}H/CH_{3}CHOHCO_{2}^{-}\right) = 3,9$$
 $pKa\left(HNO_{2}/NO_{2}^{-}\right) = 3,3$ $pKa\left(HCO_{2}H/HCO_{2}^{-}\right) = 3,8$ $pKa\left(H_{2}O/HO^{-}\right) = 14,0$

Exercice 3:

Acide acétylsalicylique, ou aspirine $C_9H_8O_4$, noté HA est l'acide conjugué de l'ion acétylsalicylate, $C_9H_7O_4^-$ noté A^- . Le pKa de ce couple vaut 3,5 à 37°C. À cette température, le pH est égal à environ 1,5 dans l'estomac, 6,0 au niveau de duodénum et 7,4 dans le sang.

- 1. Quelle est l'espèce prédominante du couple HA/A^- dans l'estomac, le duodénum et le sang?
- 2. Exprimer puis Calculer le rapport $\frac{[A^-]}{[HA]}$ dans l'estomac .

Exercice 4:

Le document ci-dessous représente le diagramme de distribution d'un mélange d'acide benzoïque, $C_6H_5COOH(aq)$, noté HA et d'ion benzoate, $C_6H_5COO^-(aq)$ noté A^- à $25^{\circ}C$, il indique les pourcentages d'acide benzoïque et d'ion benzoate en solution , en fonction du pH. La concentration molaire totale apportée en acide et base conjugués C=10mmol/l . À partir du diagramme :

- 1. Déterminer la valeur du pKa du couple .
- 2. Les concentrations molaire en acide et base conjugués dans une solution de pH = 5,0

Exercice 5:

On détermine la constante d'acidité d'un couple acide/base K_A en se basant sur la mesure de la conductivité des solutions de différentes concentrations sans connaître les valeurs de la conductivité molaire ionique . On applique cette méthode au couple de l'acide benzoïque C_6H_5COOH .

On prépare des solutions d'acide benzoïque de différentes concentrations et on mesure leurs conductivités; on obtient les résultats suivants :

C(mol/l)	$1,0.10^{-2}$	$3,0.10^{-3}$	$2,5.10^{-3}$	$2,0.10^{-3}$	$1,0.10^{-3}$	$6,7.10^{-4}$	$5,0.10^{-4}$
$\sigma(\mu S.cm^{-1})$	273, 4	189,0	132,0	115,0	81,3	61,7	52, 1

- 1. Écrire l'équation de la réaction correspond à la transformation de l'acide benzoïque avec l'eau sachant que cette transformation est limitée .
- 2. Soit V le volume de la solution d'acide benzoïque établir le tableau d'avancement de de cette réaction sans calcul .
- 3. Déterminer l'expression de la constante d'acidité K_A en fonction de x_{eq} , V et C.
- 4. En déduire K_A en fonction de C et τ le taux d'avancement final .

- 5. Trouver une relation entre σ la conductivité de la solution , C , τ et les conductivité molaires ioniques $\lambda_{H_3O^+}$ et $\lambda_{C_6H_5CO_2H}$
- 6. Montrer la relation suivante :

$$\frac{\sigma^2}{c} = -K_A \cdot \alpha \cdot \frac{\sigma}{c} + K_A \cdot \alpha^2$$

 $\alpha = [\lambda_{H_3O^+} + \lambda_{C_6H_5COOH}]$ 7. la courbe ci contre représente $\frac{\sigma^2}{c}$ en fonction de $\frac{\sigma}{c}$; déterminer l'équation de cette courbe, en déduire la valeur de K_A

Exercice 6:

Une solution d'acide hypochloreux HClO(aq) de concentration apportée $C=1,0\times 10^{-3}mol/l$ a un pH égal à 5, 3.

- 1. Écrire l'équation de la réaction de l'acide hypochloreux avec l'eau, puis donner la valeur de sa constante d'équilibre .
- 2. Calculer le taux d'avancement final de cette réaction . Quelle est la fraction d'acide hypochloreux dissocié , c'est à dire la fraction d'acide ayant réagi avec l'eau?
- 3. Calculer le rapport $\frac{[ClO^-]}{[HClO]}$. Cette valeur est-elle en accord avec la réponse précédente?
- 4. Quelle serait la teint prise , dans cette solution, par chacun des indicateurs colorés suivantes : le bleu de bromothymol , le rouge de méthyle , le bleu de bromophénole .

Données à $25^{\circ}C$:

$$pKa\left(HClO/ClO^{-}\right) = 7,5$$

indicateur coloré	Rouge de méthyle	bleu de bromothymol	bleu de bromophénol
zone de virage	4.2-6.2	6.0-7.6	3.0-4.6

Exercice 7: acide lactique et pH du sang

Le pH du sang doit toujours être proche d'une valeur de 7,4. L'un des couples acide/base présent dans le sang est le dihydrogénophosphate/hydrogénophosphate : $H_2PO_4^-/HPO_4^{2-}$ dont le pKa est $pK_{a1} = 6,8$ (à 37°C).

Une activité musculaire soutenue produit de l'acide lactique qui passe dans le sang. Le pKa du couple acide lactique/ion lactate est $pK_{a2}=3,9$. L'acide lactique est $CH_3CH_2OHCO_2H$.

La mesure de la concentration en ion hydrogénophosphate avant l'effort donne : $[HPO_4^{2-}]_i = 0,80 mol/l$

- 1. Avant toute activité musculaire, on mesure le pH du sang : pH = 7,4. Calculer le rapport $\frac{[H_2PO_4^-]_i}{[HPO_4^{2-}]_i}$. Préciser l'espèce prédominante.
- 2. Après un intense effort, on mesure le nouveau pH du sang : pH = 7,2.
 - (a) Écrire l'équation de la réaction entre l'acide lactique formé et l'ion hydrogénophosphate.
 - (b) Écrire l'expression de la constante d'équilibre de cette réaction notée K. Calculer sa valeur. Montrer que l'on peut considérer cette réaction comme quasi totale.
 - (c) Calculer les rapports $\frac{[H_2PO_4^-]_i}{[HPO_4^{2-}]_i}$ et [acide lactique]/[lactate] dans le sang.
 - (d) En utilisant les questions précédentes et en dressant un tableau davancement, calculer la quantité totale d'acide lactique passée dans le sang après l'effort, sachant que le volume sanguin total est V=5 L. On supposera que l'acide lactique est un réactif limitant.

Exercice 8: dosage

On désire vérifier l'indication d'une étiquette provenant d'une solution A de soude commerciale dont l'étiquette indique :

pourcentage massique en hydroxyde de sodium : 20%;

densité de la solution : d = 1,04.

On propose de doser cette solution par de l'acide nitrique HNO_3 , l'équivalence étant mise en évidence par un indicateur coloré : le BBT.

Mode opératoire

- 1. On demande au préalable de diluer 50 fois la solution A, pour obtenir un volume $V'_A = 250mL$ d'une solution que l'on note A.
 - (a) Décrire le protocole expérimental en précisant le matériel utilisé, choisi dans la liste du matériel disponible (voir ci-après).
 - (b) Indiquer les précautions à prendre.
- 2. On dose $V_B = 10,0 mL$ de la solution A par la solution d'acide nitrique $(NO_3^- + H^3O^+)$ de concentration $C_0 = 0,0500 mol/l$. On dispose pour cela d'une burette graduée de 50 mL, d'un bécher, d'un agitateur magnétique et d'un flacon de BBT.
 - (a) Faire un schéma légendé du dispositif.
 - (b) Écrire léquation de la réaction de dosage.
 - (c) En utilisant les données, préciser ce qui permet daffirmer quon a atteint l'équivalence.

Étude de la concentration de la solution de soude

- 1. A l'équivalence le volume d'acide ajouté est $V_{0,eq} = 20, 6mL$. Calculer la concentration de la solution A en ions hydroxyde HO^- .
- 2. Calculer la concentration en ions HO^- de la solution A.
- 3. Vérifier que le pourcentage massique en hydroxyde de sodium porté sur l'étiquette est correct.

Données:

Couples acide/base : H_3O^+/H_2O ; H_2O/HO^- Masse volumique de l'eau : $\rho = 1,00q/cm^3$

Zone de virage du BBT : 6.0 7,6 (couleur jaune si pH < 6, couleur bleue si pH > 7.6).

Masses molaires: M(H) = 1g/mol, M(Na) = 23g/mol, M(O) = 16g/mol.

Le pKe de l'autoprotolyse de l'eau est $14 \text{ à } 25^{\circ}C$.

Matériel disponible:

Propipette; pipettes jaugées de 5 mL, 10 mL, 20 mL; fioles jaugées de 100 mL, 20 mL, 250 mL; béchers de 250 mL, 100 mL, 150 mL; bidon d'eau distillée.

Exercice 9:

On prépare une solution S de volume 500ml d'une solution aqueuse d'acide benzoïque $C_6H_5COOH(aq)$, en dissolvant , dans la quantité convenable d'eau , une masse m d'acide benzoïque pure .

- 1. Écrire l'équation de dissociation de l'acide benzoïque dans l'eau;
- 2. Donner l'expression de la constante d'acidité K_a du couple $C_6H_5COOH/C_6H_5COO^-$;
- 3. On suit les variations du pH de la solution lors de l'ajout, dans un volume $V_A = 20,0ml$ de la solution S, d'une solution de soude de concentration $C_B = 5,0mmol/l$. La courbe ci-dessous représente la variation du pH en fonction de volume V_B de la soude versé.
 - (a) Écrire l'équation de la réaction du dosage;
 - (b) Indiquer les coordonnées des deux points E et E' de la courbe $pH = f(V_B)$; quelles sont leurs significations chimique?
 - (c) Déterminer la concentration C_A de la solution S d'acide benzoïque;
 - (d) Calculer la masse m de l'acide benzoïque pur utilisé pour la préparation de la solution S;
 - (e) Déterminer la valeur de K_A du couple $C_6H_5COOH/C_6H_5COO^-$;
 - (f) Quelle set l'espèce chimique qui prédomine dans le mélange réactionnel où le pH=6,0

Données:

Masses molaires: M(H) = 1.0g/mol, M(C) = 12.0g/mol, M(O) = 16.0g/mol.

Exercice 10:

À un volume $V_B = 10,0ml$ d'une solution aqueuse S_B d'ammoniac $NH_3(aq)$ de concentration C_B , on ajoute progressivement une solution aqueuse S_A d'acide chlorhydrique $(H_3O^+(aq)+Cl^-(aq))$ de concentration $C_A=0,1mol/l$.

On donne la courbe représentant la variation du pH du mélange réactionnel en fonction du volume V_A d'acide versé . Soit E le point d'équivalence .

- 1. En utilisant la courbe de la figure 2 :
 - (a) déterminer les coordonnées du volume V_{AE} et pH_E du point d'équivalence E .
 - (b) Que peut-on dire quant à la nature (acide ou basique) de la solution au point d'équivalence? justifier votre réponse .
 - (c) déterminer en justifiant la valeur du pK_A du couple NH_4^+/NH_3
- 2. Définir l'équivalence acido-basique et déterminer la concentration C_B de la solution aqueuse de l'ammoniac;
- 3. Écrire l'équation bilan de la réaction du dosage et montrer qu'il s'agit d'une réaction pratiquement totale.

Exercice 11 : Bac 2014

L'ammoniac NH_3 est un gaz se dissout dans l'eau et donne une solution basique.

De telles solutions commerciales concentrées , après dilution , sont utilisées comme produit nettoyant et détachant .

On se propose d'étudier quelques propriétés de l'ammoniac et lhydroxylamine NH_2OH en solution aqueuse et déterminer la concentration de l'ammoniac dans un produit commercial à l'aide d'une solution d'acide chlorhydrique de concentration connue .

Données:

Toutes les mesures sont faites à température $25^{\circ}C$;

la masse volumique de l'eau : $\rho = 1,0g/cm^3$;

la masse molaire du chlorure d'hydrogène : M(HCl) = 36, 5g/mol, le produit ionique de l'eau $Ke = 10^{-14}$,

la constante d'acidité du couple $NH_4^+/NH_3:K_{A1}$;

la constante d'acidité du couple $NH_3OH^+/NH_2OH:K_{A_2}$;

- 1. réparation de l'acide chlorhydrique
 - On prépare une solution S_A d'acide chlorhydrique de concentration $C_A = 0,015 mol/l$ en diluant une solution commerciale de cet acide de concentration C_0 et de densité par rapport à l'eau d = 1,15. Le pourcentage massique de l'acide dans cette solution commerciale est : P = 37%
 - (a) déterminer l'expression de la quantité de matière de l'acide n(HCl) dans un volume V de la solution commerciale en fonction de P , d, ρ , V, et M(HCl); Vérifier que $C_0=11,6mol/l$

- (b) Calculer le volume de la solution commerciale qu'on peut prendre pour préparer un litre (1l) de la solution S_A .
- 2. Étude de quelques propriétés de la base dissoute dans l'eau
 - (a) On considère une solution aqueuse de la base B de concentration C; on note la constante d'acidité du couple BH^+/B par K_A et le taux d'avancement final de sa réaction avec l'eau par τ . Montrer que :

$$K_A = \frac{Ke}{C} \cdot \frac{(1-\tau)^2}{\tau}$$

- (b) On mesure pH_1 de la solution S_1 de l'ammoniac NH_3 et pH_2 de la solution S_2 d'hydroxylamine NH_2OH de même concentration $C=1,0.10^{-2}mol/l$, on trouve $pH_1=10,6$ et $pH_2=9,0$.

 Calculer les taux d'avancement final τ_1 et τ_2 , successivement des réactions NH_3 et NH_2OH avec de l'eau .
- (c) Calculer la valeur de chacune des constantes pK_{A1} et pK_{A2} .
- 3. Titrage acido-basique d'une solution diluée d'ammoniac .

- (b). En utilisant la valeur pH pour un volume versé $V_A=5ml$ de la solution d'acide chlorhydrique, calculer le taux d'avancement final de la réaction du dosage. Conclure.
- (c). Déterminer le volume V_{AE} nécessaire pour l'équivalence , en déduire C' et C_B .
- (d). Quel indicateur coloré doit-on choisir parmi les trois proposés ci-après pour ce titrage?

indicateur coloré	Rouge de méthyle	bleu de bromothymol	Rouge de crésol
zone de virage	4.2-6.2	6.0-7.6	7.2-8

Mahdade Allal 7/??