Introduction to Heliconius butterflies

Biodiversity genomics course

Tena-Ecuador 2024

Introduction

Introduction

Introduction

Brown, 1992

The data (raw reads) we will be working with today and tomorrow are from this clade.

How do raw sequences files look like?

How can we do a quality control of them?

Fastq Format

This format is designed to handle base quality metrics output from sequencing machines.

Line 1 begins with the '@' character and is followed by a sequence identifier and an optional description.

Line 2 is the sequence letters.

Line 3 begins with a '+' character; it marks the end of the sequence and is optionally followed by the same sequence identifier again in line 1.

Line 4 encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as letters in the sequence.

Read header

Colon

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

EAS139	the unique instrument name
136	the run id
FC706VJ	the flowcell id
2	flowcell lane
2104	tile number within the flowcell lane
15343	'x'-coordinate of the cluster within the tile
197393	'y'-coordinate of the cluster within the tile
1	the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y	Y if the read is filtered, N otherwise
18	0 when none of the control bits are on, otherwise it is an even number
ATCACG	index sequence

Quality scores

```
@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG
CCGTCAATTCATTAGTTTTTAACCTTTGCGGCCGTACTCCCCAGGCGGT
+
AAAAAAAAAAAAAAA:9@::::??@@::FFAAAAAACCAA::::BB@@?A?
```

Quality score: ASCII encoding

40:0	90:Z	141:a
41:A	91:[142:b
42:B	92:\	143:c
43:C	93:]	144:d
44:D	94:^	145 : e
45:E	95 : _	146:f
•	:	:

Quality Score	Probability of incorrect base call	Base call accuracy
10	I in 10	90%
20	I in 100	99%
30	I in 1000	99.9%
40	I in 10000	99.99%

Assess quality with FastQC → .html *

Per base sequence quality

- The higher the score, the better the base call.
- ➤ The quality of reads on most platforms will drop at the end of the read. This is often due to signal decay or phasing during the sequencing run.

Per base sequence content

- ➤ Percentage of each of the four nucleotides (T, C, A, G) at each position across all reads in the input sequence file
- ➤ In a random library, little or no difference is expected between the different bases of a sequence, so the lines in this graph should be parallel to each other.

Per tile sequence quality

- Quality scores from each tile across all of your bases to see if there was a loss in quality associated with only one part of the flowcell.
- The hotter colours indicate that reads in the given tile have worse qualities for that position than reads in other tiles.

Per sequence GC content

- This plot displays the number of reads vs. percentage of bases G and C per read.
- ➤ An unusually-shaped distribution could indicate a contaminated library or some other kind of biased subset.

Per sequence quality scores

- It plots the average quality score over the full length of all reads on the x-axis and gives the total number of reads with this score on the y-axis
- ➤ It can also report if a subset of the sequences have low quality values

Sequence length distribution

- ➤ This plot shows the distribution of fragment sizes in the file which was analysed.
- ➤ In many cases, this will produce a simple plot with a peak at one size. But, some sequencers could produce reads of widely varying lengths.

Let's have a look at the first few sequences and check the sequencing quality with fastqc