group) homomorphism $_{\tau}$: t \rightarrow T(t) are topological semigroups for the natural topology on \mathbb{R}_{+} and any one of the standard operator topologies on L(E). We single out the strong operator topology on L(E) and require $_{\tau}$ to be continuous.

<u>Definition</u> 1.1. A one-parameter semigroup $(T(t))_{t\geq 0}$ is called <u>strongly continuous</u> if the map $t \to T(t)$ is continuous for the strong operator topology on L(E), i.e. $\lim_{t\to t_0} \|T(t)f - T(t_0)f\| = 0$ for every $f \in E$ and t, $t \geq 0$.

Clearly one defines in a similar way <u>weakly continuous</u>, resp. <u>uniformly continuous</u> (compare A-II, Def..1.19) semigroups, but since we concentrate on the strongly continuous case we agree on the following terminology:

If not stated otherwise, a <u>semigroup</u> is a strongly continuous one-parameter semigroup of bounded linear operators.

Next we collect a few elementary facts on the continuity and boundedness of one-parameter semigroups.

- <u>Remarks</u> 1.2. (1) A one-parameter semigroup $(T(t))_{t\geq 0}$ on a Banach space E is strongly continuous if and only if for any $f\in E$ it is true that $T(t)f \rightarrow f$ as $t \rightarrow 0$.
- (2) For every strongly continuous semigroup $(T(t))_{t \ge 0}$ there exist constants $M \ge 1$, $w \in \mathbb{R}$ such that $||T(t)|| \le M \cdot e^{Wt}$ for every $t \ge 0$.
- (3) If $(T(t))_{t\geq 0}$ is a one-parameter semigroup such that $\|T(t)\|$ is bounded for $0 < t \leq \delta$ then it is strongly continuous if and only if $\lim_{t \to 0} T(t) f = f$ for every f in a <u>total subset</u> of E.

The exponential estimate from Remark 1.2,(2) for the growth of $\|T(t)\|$ can be used to define an important characteristic of the semigroup.

<u>Definition</u> 1.3. By the <u>growth</u> <u>bound</u> (or <u>type</u>) of the semigroup $(T(t))_{t\geq 0}$ we understand the number

$$\omega := \inf\{w \in \mathbb{R} : \text{ There exists } M \in \mathbb{R}_+ \text{ such that } \|T(t)\| \le Me^{Wt}$$

$$(1.1) \qquad \qquad \text{for } t \ge 0\}$$

$$= \lim_{t \to \infty} 1/t \cdot \log \|T(t)\| = \inf_{t > 0} 1/t \cdot \log \|T(t)\| .$$