

DATA MINING PRE-**PROCESSING**

Outline

- 1. Why data preprocessing?
- 2. Data cleaning
- 3. Data integration and transformation
- 4. Data reduction
- 5. Discretization and concept hierarchy generation
- 6. Summary

- Data in the real world is dirty
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., occupation=""
 - noisy: containing errors or outliers
 - e.g., Salary="-10"
 - inconsistent: containing discrepancies in codes or names
 - e.g., Age="42" Birthday="03/07/1997"
 - e.g., Was rating "1,2,3", now rating "A, B, C"
 - e.g., discrepancy between duplicate records

- Incomplete data comes from
 - n/a data value when collected
 - different consideration between the time when the data was collected and when it is analyzed
 - human/hardware/software problems
- Noisy data comes from the process of data
 - collection
 - entry
 - transmission
- Inconsistent data comes from
 - Different data sources

- No quality data, no quality mining results!
 - Quality decisions must be based on quality data e.g., duplicate or missing data may cause incorrect or even misleading statistics.
 - Data warehouse needs consistent integration of quality data
- Data extraction, cleaning, and transformation comprises the majority of the work of building a data warehouse. —Bill Inmon

- A well-accepted multidimensional view:
 - Accuracy
 - Completeness
 - Consistency
 - Timeliness
 - Believability
 - Value added
 - Interpretability
 - Accessibility
- Broad categories:
 - intrinsic, contextual, representational, and accessibility.

Major Tasks in Data Preprocessing

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

• Integration of multiple databases, data cubes, files, or notes

Data transformation

- Normalization (scaling to a specific range)
- Aggregation

Data reduction

- Obtains reduced representation in volume but produces the same or similar analytical results
- Data discretization: with particular importance, especially for numerical data
- Data aggregation, dimensionality reduction, data compression, generalization

What is Data?

Collection of data objects and their attributes

An attribute is a property or characteristic of an object

- Examples: eye color of a person, temperature, etc.
- Attribute is also known as variable, field, characteristic, or feature

A collection of attributes describe an object

 Object is also known as record, point, case, sample, entity, or instance

Attributes

_	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
,	10	No	Single	90K	Yes

Objects

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values.
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different
 - ID has no limit but age has a maximum and minimum value

Types of Attributes

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, time, counts

Properties of Attribute Values

• The type of an attribute depends on which of the following properties it possesses:

• Distinctness: = ≠

• Order: < >

• Addition: + -

Multiplication: * /

Nominal attribute: distinctness

Ordinal attribute: distinctness & order

• Interval attribute: distinctness, order & addition

Ratio attribute: all 4 properties

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Types of data sets

Record

- Data Matrix
- Document Data
- Transaction Data

• Graph

- World Wide Web
- Molecular Structures

Ordered

- Spatial Data
- Temporal Data
- Sequential Data
- Genetic Sequence Data

