After this you can

- discuss the origin of of the magnetic field
- apply this to everyday magnetic phenomena

foru field	property that produces the field	exerts a foru or	foru	field units
gravitational full, q	Macs	another mass	FG= m·ag	N kg
electric field	charge (active)	another Charan (passive)	Î=q:Ê	$\frac{N}{C}$ SI.
Magnetic field B	Eurreut, moving Chewaji	another current or moving charge	Fe=IIXB Fe=qVXB	N A·m [Teda] => [T] N C·ms Gangs]

After this you can:

- discuss the shape of the magnetic field around a line of current
- calculate the magnetic field magnitude as a funtion of distance from the current

After this you can

- discuss the magnetic field resulting from a coil
- discuss the magnetic field resulting from a solenoid

