Assignment 3 Problem 3

Michael Cai

February 13, 2016

(a)
$$\int \frac{tan^{-1}x}{4x^2}$$

= $\frac{1}{4} \int x^{-2}tan^{-1}x$

$$\int u^n tan^{-1}u du = \frac{1}{n+1} \left[u^{n+1} tan^{-1} u - \int \frac{u^{n+1} du}{1+u^2} \right]$$

Using rule 95 from the Table of Integrals, which states:
$$\int u^n t a n^{-1} u du = \frac{1}{n+1} \left[u^{n+1} t a n^{-1} u - \int \frac{u^{n+1} du}{1+u^2} \right]$$
 Therefore $\frac{1}{4} \int x^{-2} t a n^{-1} x = \frac{1}{4} - 1 \left[x^{-1} t a n^{-1} x - \int \frac{1}{x(1+x^2)} \right]$

Because $\int \frac{1}{x(1+x^2)}$ contains a rational function, I choose to use Partial Fraction Decomposition to evaluate the integral.

$$\int \frac{1}{x(1+x^2)} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$$

If we cross-multiply and consider the equality of the numerator of the integrand to the cross multiplied partial fractions we get:

$$1 = A(x^2 + 1) + (Bx + C)(x)$$

Let us consider x = 0.

If x = 0 then A = 1.

Now if we further expand the RHS to solve for the coefficients we get:

$$1 = Ax^2 + A + Bx^2 + Cx$$

Collecting terms we get:

$$1 = (A+B)x^2 + Cx + A$$

Therefore, C = 0 because the linear term, x, on the LHS has the coefficient of 0.

Thus the completed PFD is
$$\int \frac{1}{x(1+x^2)} = \int \frac{1}{x} - \frac{x}{1+x^2}$$

And, B=-1 since A+B must equal 0 for the same reason. Thus the completed PFD is $\int \frac{1}{x(1+x^2)} = \int \frac{1}{x} - \frac{x}{1+x^2}$ If we separate the integrals and use a simple u-substitution on the second fraction, setting $u = 1 + x^2$ and thus $du = 2xdx \rightarrow \frac{1}{2}du = xdx$ then:

$$\int \frac{1}{x(1+x^2)} = \ln|x| + \frac{1}{2}\ln|1 + x^2| + C$$

And therefore plugging that back into the original equation to evaluate the entire integral

$$\frac{1}{4}(\ln|x| - \frac{1}{2}\ln|1 + x^2| - \frac{tan^{-1}x}{x}) + C$$

(b)
$$\int \frac{x}{x^4 + 2x^2 + 5}$$

(b) $\int \frac{x}{x^4+2x^2+5}$ First we have to complete the square in the denominator.

$$x^4 + 2x^2 + 5 = (x^2 + 1) + 4$$

Thus the integral equals $\int \frac{x}{(x^2+1)^2+2^2}$

This fits the form of rule 25 in the Table of Integrals if we first use u-substitution to set $u = x^2 + 1$ thus making $du = 2xdx \rightarrow \frac{1}{2}du = xdx$.

Therefore the integral equals
$$\frac{1}{2} \int \frac{du}{u^2 + 2^2} = \frac{1}{2} ln(u + \sqrt{a^2 + u^2}) + C$$

= $\frac{1}{2} ln(x^2 + 1 + \sqrt{4 + (x^2 + 1)^2}) + C$

(c)
$$\int \frac{(x^2-1)^{3/2}}{x} dx$$

First to make the substitution more apparent, we rewrite the integral as $\int \frac{\sqrt{x^2-1}^3}{x} dx$. Because there is a square root, we know that we must make a trigonometric substitution. The best substitution for the form $\sqrt{u^2-a^2}$ is $x=\sec\theta$, which makes $dx=\sec\theta\tan\theta d\theta$.

Therefore the integral simplifies to $\int \frac{tan^3\theta}{sec\theta} sec\theta tan\theta d\theta$, which further simplifies to $\int tan^4\theta d\theta$. Using rule number 75 on the Table of Integrals, we get:

$$=\frac{1}{3}tan^3\theta-\int tan^2\theta d\theta$$

And then again using rule 65 on the Table of Integrals, we get:

$$=\frac{1}{3}tan^3\theta - [tan\theta - \theta + C]$$

Substitution x back into the equation we get:

$$= \frac{1}{3}tan^{3}sec^{-1}x - [tansec^{-1}x - sec^{-1}x + C]$$

We use the formula $tan(sec^{-1}x) = \sqrt{1 - \frac{1}{x^2}}x$ and thus the final form is:

$$= \frac{1}{3}(x^2 - 1)^{3/2} - \sqrt{x^2 - 1} + \sec^{-1}x + C$$