Applications of CountMin and Count Sketches

Lecture 11 February 19, 2019

```
\begin{aligned} & \textbf{CountMin-Sketch}(w,d): \\ & \textbf{$h_1,h_2,\dots,h_d$} \text{ are pair-wise independent hash functions} \\ & \text{from } [\textbf{$n$}] \rightarrow [\textbf{$w$}]. \\ & \text{While (stream is not empty) do} \\ & \textbf{$e_t = (i_t,\Delta_t)$ is current item} \\ & \text{for } \ell = 1 \text{ to } d \text{ do} \\ & \textbf{$C[\ell,h_\ell(i_j)]} \leftarrow \textbf{$C[\ell,h_\ell(i_j)]} + \Delta_t$ \\ & \text{endWhile} \\ & \text{For } \textbf{$i \in [n]$ set $\tilde{x}_i = \min_{\ell=1}^d \textbf{$C[\ell,h_\ell(i)]$}.} \end{aligned}
```

Counter $C[\ell, j]$ simply counts the sum of all x_i such that $h_{\ell}(i) = j$. That is,

$$C[\ell,j] = \sum_{i:h_{\ell}(i)=j} x_i.$$

Summarizing

Lemma

Let $d = \Omega(\log \frac{1}{\delta})$ and $w > \frac{2}{\epsilon}$. Then for any fixed $i \in [n]$, $x_i \leq \tilde{x}_i$ and

$$\Pr[\tilde{x}_i \geq x_i + \epsilon ||x||_1] \leq \delta.$$

Choose $d = 2 \ln n$ and $w = 2/\epsilon$: we have $\Pr[\tilde{x}_i > x_i + \epsilon ||x||_1] < 1/n^2$.

By union bound, with probability (1 - 1/n), for all $i \in [n]$,

$$\tilde{x}_i \leq x_i + \epsilon ||x||_1$$

Total space $O(\frac{1}{\epsilon} \log n)$ counters and hence $O(\frac{1}{\epsilon} \log n \log m)$ bits.

```
Count-Sketch(w, d):
     h_1, h_2, \ldots, h_d are pair-wise independent hash functions
           from [n] \rightarrow [w].
     g_1, g_2, \dots, g_d are pair-wise independent hash functions
           from [n] \to \{-1, 1\}.
     While (stream is not empty) do
           e_t = (i_t, \Delta_t) is current item
           for \ell = 1 to d do
                 C[\ell, h_{\ell}(i_{\ell})] \leftarrow C[\ell, h_{\ell}(i_{\ell})] + g(i_{\ell})\Delta_{\ell}
     endWhile
     For i \in [n]
           set \tilde{x}_i = \text{median}\{g_1(i)C[1,h_1(i)],\ldots,g_\ell(i)C[\ell,h_\ell(i)]\}.
```

Like CountMin, Count sketch has wd counters. Now counter values can become negative even if x is positive.

Summarizing

Lemma

Let $d \ge 4 \log \frac{1}{\delta}$ and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$, $\mathbf{E}[\tilde{x}_i] = x_i$ and $\Pr[|\tilde{x}_i - x_i| \ge \epsilon ||x||_2] \le \delta$.

Choose $d = \theta(\ln n)$ and $w = 3/\epsilon^2$: we have

$$\Pr[|\tilde{x}_i - x_i| \ge \epsilon ||x||_2] \le 1/n^2.$$

By union bound, with probability (1 - 1/n), for all $i \in [n]$,

$$|\tilde{x}_i - x_i| \le \epsilon ||x||_2$$

Total space $O(\frac{1}{c^2} \log n)$ counters and hence $O(\frac{1}{c^2} \log n \log m)$ bits.

Part I

Applications

Heavy Hitters Problem: Find all items i such that $x_i > \alpha ||x||_1$ for some fixed $\alpha \in (0,1]$.

Approximate version: output any i such that $x_i \geq (\alpha - \epsilon) ||x||_1$

The sketches give us a data structure such that for any $i \in [n]$ we get an estimate \tilde{x}_i of x_i with additive error.

Heavy Hitters Problem: Find all items i such that $x_i > \alpha ||x||_1$ for some fixed $\alpha \in (0,1]$.

Approximate version: output any i such that $x_i \geq (\alpha - \epsilon) ||x||_1$

The sketches give us a data structure such that for any $i \in [n]$ we get an estimate \tilde{x}_i of x_i with additive error.

Go over each i and check if $\tilde{x}_i > (\alpha - \epsilon) ||x||_1$.

Heavy Hitters Problem: Find all items i such that $x_i > \alpha ||x||_1$ for some fixed $\alpha \in (0,1]$.

Approximate version: output any i such that $x_i \geq (\alpha - \epsilon) ||x||_1$

The sketches give us a data structure such that for any $i \in [n]$ we get an estimate \tilde{x}_i of x_i with additive error.

Go over each i and check if $\tilde{x}_i > (\alpha - \epsilon) ||x||_1$. Expensive

Heavy Hitters Problem: Find all items i such that $x_i > \alpha ||x||_1$ for some fixed $\alpha \in (0,1]$.

Approximate version: output any i such that $x_i \geq (\alpha - \epsilon) ||x||_1$

The sketches give us a data structure such that for any $i \in [n]$ we get an estimate \tilde{x}_i of x_i with additive error.

Go over each i and check if $\tilde{x}_i > (\alpha - \epsilon) ||x||_1$. Expensive

Additional data structures to speed up above computation and reduce time/space to be proportional to $O(\frac{1}{\alpha}\text{polylog}(n))$. More tricky for Count Sketch. See notes and references

Range query: given $i, j \in [n]$ want to know $\sum_{i \le \ell \le j} x[i, j]$

Examples:

- [n] corresponds to IP address space in network routing and [i,j] corresponds to addresses in a range
- [n] corresponds to some numerical attribute in a database and we want to know number of records within a range
- [n] corresponds to the discretization of a signal value

Chandra (UIUC) CS498ABD 8 Spring 2019 8 / 34

Range query: given $i, j \in [n]$ want to know $\sum_{i < \ell < j} x[i, j]$

Examples:

- [n] corresponds to IP address space in network routing and [i,j] corresponds to addresses in a range
- [n] corresponds to some numerical attribute in a database and we want to know number of records within a range
- [n] corresponds to the discretization of a signal value

Want to create a sketch data structure that can answer range queries for any given range that is chosen *after* the sketch is done. $\Omega(n^2)$ potential queries

Simple idea: imagine a binary tree over [n] and any interval [i,j] can be broken up into $O(\log n)$ disjoint "dyadic" intervals

Simple idea: imagine a binary tree over [n] and any interval [i,j] can be broken up into $O(\log n)$ disjoint "dyadic" intervals

Create one sketch data structure per level of binary tree

Simple idea: imagine a binary tree over [n] and any interval [i,j] can be broken up into $O(\log n)$ disjoint "dyadic" intervals

Create one sketch data structure per level of binary tree

Output estimate $\tilde{x}[i,j]$ by adding estimates for $O(\log n)$ dyadic intervals that [i,j] decomposes into

Simple idea: imagine a binary tree over [n] and any interval [i,j] can be broken up into $O(\log n)$ disjoint "dyadic" intervals

Create one sketch data structure per level of binary tree

Output estimate $\tilde{x}[i,j]$ by adding estimates for $O(\log n)$ dyadic intervals that [i,j] decomposes into

To manage error choose $\epsilon' = \epsilon/\log n$: total space is $O(\alpha \log n/\epsilon)$ where α is the space for single level sketch

Part II

Sparse Recovery

Sparse Recovery

Sparsity is an important theme in optimization/algorithms/modeling

- Data is often explicitly sparse. Examples: graphs, matrices, vectors, documents (as word vectors)
- Data is often *implicitly* sparse in a different representation the data is explicitly sparse. Examples: signals/images, topics, etc

Sparse Recovery

Sparsity is an important theme in optimization/algorithms/modeling

- Data is often *explicitly* sparse. Examples: graphs, matrices, vectors, documents (as word vectors)
- Data is often *implicitly* sparse in a different representation the data is explicitly sparse. Examples: signals/images, topics, etc

Algorithmic goals

- Take advantage of sparsity to improve performance (speed, quality, memory etc)
- Find implicit sparse representation to reveal information about data. Excample: topics in documents, frequencies in Fourier analysis

Sparse Recovery

Problem: Given vector/signal $x \in \mathbb{R}^n$ find a sparse vector z such that z approximates x

More concretely: given x and integer $k \ge 1$, find z such that z has at most k non-zeroes ($||z||_0 \le k$) such that $||x - z||_p$ is minimized for some $p \ge 1$.

Optimum offline solution: z picks the largest k coordinates of x (in absolute value)

Want to do it in streaming setting: turnstile streams and p=2 and want to use $\tilde{O}(k)$ space proportional to output

Sparse Recovery under ℓ_2 norm

Formal objective function:

$$\operatorname{err}_{2}^{k}(x) = \min_{z: ||z||_{0} \le k} ||x - z||_{2}$$

Sparse Recovery under ℓ_2 norm

Formal objective function:

$$\operatorname{err}_{2}^{k}(x) = \min_{z:||z||_{0} \le k} ||x - z||_{2}$$

 $\operatorname{err}_2^k(x)$ is interesting only when it is small compared to $\|x\|_2$

For instance when x is uniform, say $x_i = 1$ for all i then $||x||_2 = \sqrt{n}$ but $\operatorname{err}_2^k(x) = \sqrt{n-k}$

 $\operatorname{err}_2^k(x) = 0$ iff $||x||_0 \le k$ and hence related to distinct element detection

Sparse Recovery under ℓ_2 norm

Theorem

There is a linear sketch with size $O(\frac{k}{\epsilon} \operatorname{polylog}(n))$ that returns z such that $||z||_0 \le k$ and with high probability $||x-z||_2 \le (1+\epsilon)\operatorname{err}_2^k(x)$.

Hence space is proportional to desired output. Assumption k is typically quite small compared to n, the dimension of x.

Based on CountSketch

Algorithm

- Use Count Sketch with $w = 3k/\epsilon^2$ and $d = \Omega(\log n)$.
- Count Sketch gives estimages \tilde{x}_i for each $i \in n$
- Output the **k** coordinates with the largest estimates

Algorithm

- Use Count Sketch with $w = 3k/\epsilon^2$ and $d = \Omega(\log n)$.
- ullet Count Sketch gives estimages $ilde{x}_i$ for each $i \in n$
- Output the **k** coordinates with the largest estimates

Intuition for analysis

- With $w = ck/\epsilon^2$ the k biggest coordinates will be spread out in their own buckets
- rest of small coordinates will be spread out evenly
- refine the analysis of Count-Sketch to carefully analyze the two scenarios

Analysis Outline

Lemma

Count-Sketch with $w = 3k/\epsilon^2$ and $d = O(\log n)$ ensures that

$$\forall i \in [n], \quad |\tilde{x}_i - x_i| \leq \frac{\epsilon}{\sqrt{k}} err_2^k(x)$$

with high probability (at least (1 - 1/n)).

Lemma

Let $x, y \in \mathbb{R}^n$ such that $||x - y||_{\infty} \le \frac{\epsilon}{\sqrt{k}} err_2^k(x)$. Then, $||x - z||_2 \le (1 + 5\epsilon)err_2^k(x)$, where z is the vector obtained as follows: $z_i = y_i$ for $i \in T$ where T is the set of k largest (in

absolute value) indices of y and $z_i = 0$ for $i \notin T$.

Lemmas combined prove the correctness of algorithm.

Chandra (UIUC) CS498ABD 16 Spring 2019

16 / 34

```
Count-Sketch(w, d):
     h_1, h_2, \ldots, h_d are pair-wise independent hash functions
          from [n] \rightarrow [w].
     g_1, g_2, \dots, g_d are pair-wise independent hash functions
           from [n] \to \{-1, 1\}.
     While (stream is not empty) do
           e_t = (i_t, \Delta_t) is current item
           for \ell = 1 to d do
                C[\ell, h_{\ell}(i_i)] \leftarrow C[\ell, h_{\ell}(i_i)] + g(i_t)\Delta_t
     endWhile
     For i \in [n]
           set \tilde{x}_i = \text{median}\{g_1(i)C[1, h_1(i)], \dots, g_d(i)C[d, h_d(i)]\}.
```

Recap of Analysis

Fix an $i \in [n]$. Let $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$.

For $i' \in [n]$ let $Y_{i'}$ be the indicator random variable that is 1 if $h_{\ell}(i) = h_{\ell}(i')$; that is i and i' collide in h_{ℓ} . $E[Y_{i'}] = E[Y_{i'}^2] = 1/w$ from pairwise independence of h_{ℓ} .

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)] = g_{\ell}(i)\sum_{i'}g_{\ell}(i')x_{i'}Y_{i'}$$

Therefore,

$$E[Z_{\ell}] = x_i + \sum_{i' \neq i} E[g_{\ell}(i)g_{\ell}(i')Y_{i'}]x_{i'} = x_i,$$

because $E[g_{\ell}(i)g_{\ell}(i')] = 0$ for $i \neq i'$ from pairwise independence of g_{ℓ} and $Y_{i'}$ is independent of $g_{\ell}(i)$ and $g_{\ell}(i')$.

Chandra (UIUC) CS498ABD 18 Spring 2019 18 / 34

Recap of Analysis

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$$
. And $E[Z_{\ell}] = x_i$.

$$Var(Z_{\ell}) = \mathbb{E}[(Z_{\ell} - x_{i})^{2}]$$

$$= \mathbb{E}\left[\left(\sum_{i' \neq i} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{i' \neq i} x_{i'}^{2}Y_{i'}^{2} + \sum_{i' \neq i''} x_{i'}x_{i''}g_{\ell}(i')g_{\ell}(i'')Y_{i'}Y_{i''}x_{i'}x_{i''}\right]$$

$$= \sum_{i' \neq i} x_{i'}^{2} \mathbb{E}[Y_{i'}^{2}]$$

$$\leq \|x\|_{2}^{2}/w.$$

Refining Analysis

$$T_{\text{big}} = \{i' \mid i' \text{ is one of the } k \text{ biggest coordinates in } x\}$$

$$T_{\text{small}} = [n] \setminus T$$

$$\sum_{i' \in \mathcal{T}_{\text{small}}} x_{i'}^2 = (\text{err}_2^k(x))^2$$

Refining Analysis

$$T_{\text{big}} = \{i' \mid i' \text{ is one of the } k \text{ biggest coordinates in } x\}$$

$$T_{\text{small}} = [n] \setminus T$$

$$\sum_{i' \in T_{\text{small}}} x_{i'}^2 = (\operatorname{err}_2^k(x))^2$$

What is
$$\Pr[|Z_{\ell} - x_i| \ge \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)]$$
?

Refining Analysis

 $T_{\text{big}} = \{i' \mid i' \text{ is one of the } k \text{ biggest coordinates in } x\}$

$$T_{\text{small}} = [n] \setminus T$$

$$\sum_{i' \in T_{\text{small}}} x_{i'}^2 = (\text{err}_2^k(x))^2$$

What is
$$\Pr[|Z_{\ell} - x_i| \ge \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)]$$
?

Lemma

$$\Pr\left[|Z_{\ell}-x_i|\geq \frac{\epsilon}{\sqrt{k}}err_2^k(x)
ight]\leq 2/5.$$

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)].$$

Let A be event that $h_\ell(i') = h_\ell(i)$ for some $i' \in T_{\text{big}}, i' \neq i$

Lemma

 $\Pr[A] \le \epsilon^2/3$. In other words with $1 - \epsilon^2/3$ probability no big coordinates collide with i under h_{ℓ} .

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)].$$

Let A be event that $h_\ell(i') = h_\ell(i)$ for some $i' \in \mathcal{T}_{\text{big}}, i' \neq i$

Lemma

 $\Pr[A] \le \epsilon^2/3$. In other words with $1 - \epsilon^2/3$ probability no big coordinates collide with i under h_ℓ .

- $Y_{i'}$ indicator for $i' \neq i$ colliding with i. $\Pr[Y_{i'}] \leq 1/w \leq \epsilon^2/(3k)$.
- Let $Y = \sum_{i' \in T_{\text{big}}} Y_{i'}$. $\mathsf{E}[Y] \le \epsilon^2/3$ by linearity of expectation.
- Hence $\Pr[A] = \Pr[Y \ge 1] \le \epsilon^2/3$ by Markov

$$\begin{array}{l} Z_{\ell} = g_{\ell}(i) C[\ell, h_{\ell}(i)] \\ = x_{i} + \sum_{i' \in T_{\text{big}}} g_{\ell}(i) g_{\ell}(i') Y_{i'} x_{i'} + \sum_{i' \in T_{\text{small}}} g_{\ell}(i) g_{\ell}(i') Y_{i'} x_{i'} \end{array}$$

Let
$$Z'_\ell = \sum_{i' \in \mathcal{T}_{\text{small}}} g_\ell(i) g_\ell(i') Y_{i'}$$

Lemma

$$\Pr\Big[|Z'_\ell| \geq \frac{\epsilon}{\sqrt{k}} err_2^k(x)\Big] \leq 1/3.$$

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$$

$$= x_{i} + \sum_{i' \in T_{big}} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'} + \sum_{i' \in T_{small}} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'}$$

Let
$$Z'_\ell = \sum_{i' \in \mathcal{T}_{\text{small}}} g_\ell(i) g_\ell(i') Y_{i'}$$

Lemma

$$\Pr\Big[|Z'_\ell| \geq \frac{\epsilon}{\sqrt{k}} err_2^k(x)\Big] \leq 1/3.$$

- $\bullet \ \mathsf{E}\big[Z'_\ell\big] = 0$
- $Var(Z'_\ell) \leq \mathsf{E}\big[(Z'_\ell)^2\big] = \sum_{i' \in \mathcal{T}_{\text{small}}} x_{i'}^2/w \leq \frac{\epsilon^2}{3k} (\mathsf{err}_2^k(x))^2$
- By Cheybyshev $\Pr\left[|Z'_\ell| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)
 ight] \leq 1/3$.

Analysis: Proof of lemma

Lemma

$$\Pr\Big[|Z_{\ell}-x_i|\geq rac{\epsilon}{\sqrt{k}}err_2^k(x)\Big]\leq 2/5.$$

We have
$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$$

= $x_i + \sum_{i' \in T_{big}} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'} + \sum_{i' \in T_{small}} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'}$

Lemma

$$\Pr\left[|Z'_\ell| \geq \frac{\epsilon}{\sqrt{k}} err_2^k(x)\right] \leq 1/3.$$

Lemma

 $\Pr[A] \le \epsilon^2/3$. In other words with $1 - \epsilon^2/3$ probability no big coordinates collide with i under h_{ℓ} .

Analysis: Proof of lemma

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$$

= $x_i + \sum_{i' \in T_{\text{big}}} g_{\ell}(i)g_{\ell}(i')Y_{i'}X_{i'} + \sum_{i' \in T_{\text{small}}} g_{\ell}(i)g_{\ell}(i')Y_{i'}X_{i'}$

$$|Z_\ell - x_i| \geq rac{\epsilon}{\sqrt{k}} \mathrm{err}_2^k(x)$$
 implies

- ullet A happens (that is some big coordinate collides with i in h_ℓ or
- $|Z'_\ell| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$

Analysis: Proof of lemma

$$\begin{array}{l} Z_{\ell} = g_{\ell}(i)C[\ell,h_{\ell}(i)] \\ = x_{i} + \sum_{i' \in T_{\text{big}}} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'} + \sum_{i' \in T_{\text{small}}} g_{\ell}(i)g_{\ell}(i')Y_{i'}x_{i'} \end{array}$$

$$|Z_\ell - x_i| \geq rac{\epsilon}{\sqrt{k}} \mathrm{err}_2^k(x)$$
 implies

- ullet A happens (that is some big coordinate collides with i in h_ℓ or
- $\bullet \ |Z'_\ell| \geq rac{\epsilon}{\sqrt{k}} \mathrm{err}_2^k(x)$

Therefore, by union bound,

$$\Prig[|Z_\ell-x_i|\geq rac{\epsilon}{\sqrt{k}} \mathrm{err}_2^k(x)ig] \leq \epsilon^2/3+1/3 \leq 2/5$$
 if ϵ is sufficiently small.

High probability estimate

Lemma

$$\Pr\Big[|Z_\ell-x_i|\geq rac{\epsilon}{\sqrt{k}}\operatorname{err}_2^k(x)\Big]\leq 2/5.$$

Recall $\tilde{x}_i = \text{median}\{g_1(i)C[1, h_1(i)], \dots, g_d(i)C[d, h_d(i)]\}.$

- Hence by Chernoff bounds with $d = \Omega(\log n)$,
 - $\Pr \Big[| ilde{x}_i x_i| \geq rac{\epsilon}{\sqrt{k}} \mathrm{err}_2^k(x) \Big] \leq 1/n^2$
- By union bound, with probability at least (1-1/n), $|\tilde{x}_i x_i| \leq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$ for all $i \in [n]$.

High probability estimate

Lemma

$$\Pr\Big[|Z_{\ell}-x_i|\geq rac{\epsilon}{\sqrt{k}}err_2^k(x)\Big]\leq 2/5.$$

Recall $\tilde{x}_i = \text{median}\{g_1(i)C[1, h_1(i)], \dots, g_d(i)C[d, h_d(i)]\}.$

• Hence by Chernoff bounds with $d = \Omega(\log n)$,

$$\Pr \Big[| ilde{x}_i - x_i| \geq rac{\epsilon}{\sqrt{k}} \mathrm{err}_2^k(x) \Big] \leq 1/n^2$$

• By union bound, with probability at least (1-1/n), $|\tilde{x}_i - x_i| \leq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$ for all $i \in [n]$.

Lemma

Count-Sketch with $w = 3k/\epsilon^2$ and $d = O(\log n)$ ensures that $\forall i \in [n], \quad |\tilde{x}_i - x_i| \leq \frac{\epsilon}{\sqrt{k}} err_2^k(x)$ with high probability (at least (1-1/n)).

Second lemma of outline

Lemma

Let $x, y \in \mathbb{R}^n$ such that $||x - y||_{\infty} \leq \frac{\epsilon}{\sqrt{k}} err_2^k(x)$. Then, $||x - z||_2 \leq (1 + 5\epsilon)err_2^k(x)$, where z is the vector obtained as follows: $z_i = y_i$ for $i \in T$ where T is the set of k largest (in absolute value) indices of y and $z_i = 0$ for $i \notin T$.

What the lemma is saying:

- \tilde{x} the estimated vector of Count-Sketch approximates x very closely in each coordinate
- ullet Algorithm picks the top k coordinates of ilde x to create z
- Then z approximates x well

Proof of lemma

S (previously T_{big}) is set of k biggest coordinates in x T is the set of k biggest coordinates in $y = \tilde{x}$ Let $E = \frac{1}{\sqrt{k}} \text{err}_2^k(x)$ for ease of notation.

$$(\operatorname{err}_2^k(x))^2 = kE^2 = \sum_{i \in [n] \setminus S} x_i^2 = \sum_{i \in T \setminus S} x_i^2 + \sum_{i \in [n] \setminus (S \cup T)} x_i^2.$$

Want to bound

$$||x - z||_{2}^{2} = \sum_{i \in T} |x_{i} - z_{i}|^{2} + \sum_{i \in S \setminus T} |x_{i} - z_{i}|^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}$$
$$= \sum_{i \in T} |x_{i} - y_{i}|^{2} + \sum_{i \in S \setminus T} x_{i}^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}.$$

Analysis continued

Want to bound

$$||x - z||_{2}^{2} = \sum_{i \in T} |x_{i} - z_{i}|^{2} + \sum_{i \in S \setminus T} |x_{i} - z_{i}|^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}$$
$$= \sum_{i \in T} |x_{i} - y_{i}|^{2} + \sum_{i \in S \setminus T} x_{i}^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}.$$

First term: $\sum_{i \in T} |x_i - \tilde{x}_i|^2 \le k\epsilon^2 E^2 \le \epsilon^2 (\text{err}_2^k(x))^2$

Analysis continued

Want to bound

$$||x - z||_{2}^{2} = \sum_{i \in T} |x_{i} - z_{i}|^{2} + \sum_{i \in S \setminus T} |x_{i} - z_{i}|^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}$$
$$= \sum_{i \in T} |x_{i} - y_{i}|^{2} + \sum_{i \in S \setminus T} x_{i}^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}.$$

First term:
$$\sum_{i \in T} |x_i - \tilde{x}_i|^2 \le k \epsilon^2 E^2 \le \epsilon^2 (\text{err}_2^k(x))^2$$

Third term: common to expression for $(err_2^k(x))^2$

Analysis continued

Want to bound

$$||x - z||_{2}^{2} = \sum_{i \in T} |x_{i} - z_{i}|^{2} + \sum_{i \in S \setminus T} |x_{i} - z_{i}|^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}$$
$$= \sum_{i \in T} |x_{i} - y_{i}|^{2} + \sum_{i \in S \setminus T} x_{i}^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}.$$

First term:
$$\sum_{i \in T} |x_i - \tilde{x}_i|^2 \le k\epsilon^2 E^2 \le \epsilon^2 (\operatorname{err}_2^k(x))^2$$

Third term: common to expression for $(err_2^k(x))^2$

Second term: needs more care

Analysis contd

Want to bound $\sum_{i \in S \setminus T} x_i^2$

Let
$$\ell = |S \setminus T| \le k$$
. Since $|S| = |T| = k$, $|T \setminus S| = \ell$

Coordinates in $S \setminus T$ and $T \setminus S$ must be close: within $\frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$

Analysis contd

Want to bound $\sum_{i \in S \setminus T} x_i^2$

Let
$$\ell = |S \setminus T| \le k$$
. Since $|S| = |T| = k$, $|T \setminus S| = \ell$

Coordinates in $S \setminus T$ and $T \setminus S$ must be close: within $\frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$

Claim: Let $a = \max_{i \in S \setminus T} |x_i|$ and $b = \min_{i \in T \setminus S} |x_i|$. Then $a \le b + 2\frac{\epsilon}{\sqrt{k}} \operatorname{err}_2^k(x)$.

Therefore

$$\sum_{i \in S \setminus T} x_i^2 \leq \sum_{i \in T \setminus S} x_i^2 + 4\ell \frac{\epsilon^2}{k} (\operatorname{err}_2^k(x))^2 + 4\ell b \operatorname{err}_2^k(x)$$

$$\leq \sum_{i \in T \setminus S} x_i^2 + 8\epsilon (\operatorname{err}_2^k(x))^2$$

Analysis contd

$$||x - z||_{2}^{2} = \sum_{i \in T} |x_{i} - z_{i}|^{2} + \sum_{i \in S \setminus T} |x_{i} - z_{i}|^{2} + \sum_{i \in [n] \setminus (S \cup T)} x$$
$$= \sum_{i \in T} |x_{i} - y_{i}|^{2} + \sum_{i \in S \setminus T} x_{i}^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}.$$

First term: $\sum_{i \in T} |x_i - \tilde{x}_i|^2 \le k\epsilon^2 E^2 \le \epsilon^2 (\operatorname{err}_{2}^{k}(x))^2$

Third term: common to expression for $(err_2^k(x))^2$

Second term: at most $\sum_{i \in T \setminus S} x_i^2 + 8\epsilon (\operatorname{err}_2^k(x))^2$

Hence

$$||x-z||_2^2 \le (1+9\epsilon)(\operatorname{err}_2^k(x))^2$$

Implies

$$\|x-z\|_2 \leq (\sqrt{1+9\epsilon})\mathrm{err}_2^k(x) \leq (1+5\epsilon)\mathrm{err}_2^k(x)$$

Application to signal processing

Given signal x approximate it via small number of basis signals

- Fourier analysis and Wavelets
- Useful in compression of various kinds

Application to signal processing

Given signal x approximate it via small number of basis signals

- Fourier analysis and Wavelets
- Useful in compression of various kinds

Transform x into y = Bx where B is a transform and then approximate y by k-sparse vector z

To (approximately) reconstruct x, output $x' = B^{-1}z$

If Bx can be computed in streaming fashion from stream for x, we can apply preceding algorithm to obtain z

Compressed Sensing

We saw that given x in streaming fashion we can construct sketch that allows us to find k-sparse z that approximates x with high probability

Compressed sensing: we want to create projection matrix Π such that for any x we can create from Πx a good k-sparse approximation to x

Doable! With Π that has $O(k \log(n/k))$ rows. Creating Π requires randomization but once found it can be used. Called RIP matrices. First due to Candes, Romberg, Tao and Donoho. Lot of work in signal processing and algorithms.

Part III

Sampling from Streams

Sampling from Streams

Sampling problem: given stream x, at the end output random (I,R) where $I \in [n]$ and $R \in \mathbb{R}$ such that $\Pr[I=i] \simeq \frac{|x_i|^p}{\sum_j |x_j|^p}$ and $R=x_i$ if I=i.

Sampling from Streams

Sampling problem: given stream x, at the end output random (I,R) where $I \in [n]$ and $R \in \mathbb{R}$ such that $\Pr[I=i] \simeq \frac{|x_i|^p}{\sum_j |x_j|^p}$ and $R=x_i$ if I=i.

Approximation: $\Pr[I = i] = (1 \pm \epsilon) \frac{|x_i|^p}{\sum_j |x_j|^p} + \delta$ for some small ϵ and δ .

Sampling from Streams

Sampling problem: given stream x, at the end output random (I,R) where $I \in [n]$ and $R \in \mathbb{R}$ such that $\Pr[I=i] \simeq \frac{|x_i|^p}{\sum_j |x_j|^p}$ and $R=x_i$ if I=i.

Approximation: $\Pr[I = i] = (1 \pm \epsilon) \frac{|x_i|^p}{\sum_j |x_j|^p} + \delta$ for some small ϵ and δ .

Can do ℓ_0 , ℓ_2 and ℓ_p for 0 in polylog space using ideas from sketching. Works in (strict) turnstile models.

Summary for Frequency Moments

What we showed

- basic model, more advanced turnstile models
- F_0 estimation: distinct elements
- F₂ estimation: important and magical norm
- F_{∞} : heavy hitters
- AMS Sampling for F_k estimation and others
- CountMin and Count Sketches
- Some applications of sketching

What we skipped

- $oldsymbol{ ilde{F}_p}$ estimation for $oldsymbol{0} via stable distributions. Can be done in polylogarithmic space$
- Optimum F_p estimation for p > 2. AMS Sampling requires space $O(n^{1-1/p} \log n)$. Optimum is $O(n^{1-2/p} \log n)$ using various techniques
- ℓ_p sampling