Распределенные системы и технологии.

Синхронизация времени

Дмитрий Юрьевич Чалый декан факультета ИВТ, зав. кафедрой информационных и сетевых технологий

22 мая 2016 г.

Синхронизация часов

- Распределенные системы состоят из узлов;
- каждый узел имеет свои часы, которые независимы от других;
- часы могут убегать или отставать;
- поэтому их надо координировать.

Примеры и последствия

- Распределенные базы данных (например, по продаже билетов);
- установка тайм-аутов в сетях передачи данных;
- распределенные аукционы;

Последствия:

- неэффективность;
- некорректность.

Асинхронная модель

- Состоит из процессов;
- каждый процесс находится в одном из своего множества состояний;
- изменение состояния процесса может происходить путем выполнения инструкции, передачи или получения данных;
- каждый процесс имеет свои локальные часы, которые линейно упорядочивают события в рамках процесса;
- в распределенной системе необходимо уметь упорядочивать события в контексте всей системы это позволяет увидеть причинно-следственную связы.

OCHOBAH B 1803 FORY

Clock skew и clock drift

 clock skew — относительная разница между значениями часов двух процессов;

• clock drift — разница между скоростью изменения универесь

яРОСЛА*ВСКий*

О_{СНОВАН В} 1803 ГО

времени двух часов;

Виды синхронизации

Внешняя синхронизация:

- ullet есть внешний эталонный источник времени S;
- часы c_i каждого процесса отличаются не более чем на D единиц от эталона:

$$\forall i \colon |c_i - S| \leqslant D.$$

Внутренняя синхронизация:

• Часы любой пары процессов c_i и c_j отличаются не более чем на D единиц:

$$\forall i,j \colon |c_i - c_j| \leqslant \stackrel{\mathcal{F}}{D}_{obs}$$

Внешняя синхронизация с погрешностью D внутренняя синхронизация с погрешностью 2D.

EHHЫЙ УНИВА

Наивная синхронизация

Алгоритм Кристиана

- min1, min2 минимальные задержки от узлаж серверу и обратно;
- в момент установки настоящее время будет в промежутке

$$[t + min2, t + RTT - min1];$$

ullet точность установки ограничена $rac{RTT-min2}{2}$ $minb_{BaH \; B \; 1803 \; \Gamma^{0}P^{0}}$

TEMNHOB4

Алгоритм Кристиана: свойства

• необходимо только увеличивать время;

ullet если ошибка велика, делать несколько измерений:

• можно ускорять или замедлять время.

Протокол NTP

- Создан в 1985 г., версия 4: 2010 г.;
- система серверов организована в виде дерева;
 каждый узел синхронизируется с предком узел с предком уз

OCHOBAH B 1803 FOR

Протокол NTP: обмен сообщениями

Протокол NTP: рассчет смещения

- Обозначим реальное смещение через o_{real} : узел впереди предка на o_{real} единиц времени;
- пусть Сообщение 1 и Сообщение 2 передаются за соответственно l_1 и l_2 единиц времени;
- тогда

