Sistemi - Modulo di Sistemi a Eventi Discreti

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

27 Febbraio 2017

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	20	
problema 2	10	
totale	30	

- 1. (a) Si costruisca l'automa G con i seguenti passi:
 - i. Si costruiscano gli automi G_1 su $E_1 = \{a_1, b_1\}$ e G_2 su $E_2 = \{a_2, b_2\}$ che generano rispettivamente i linguaggi $\overline{(a_1b_1)^\star}$ e $\overline{(a_2b_2)^\star}$.
 - ii. Si costruisca l'automa $G=G_1 \parallel G_2$ che e' la composizione in parallelo dei due automi G_1 e G_2 .

Traccia di soluzione.

Si veda l'allegato.

(b) Si consideri l'impianto il cui automa G e' stato ricavato al punto precedente con $\Sigma = \{a_1, b_1, a_2, b_2\}$, $\Sigma_{uc} = \{a_1, b_1\}$, $M = L(G) = \overline{(a_1b_1)^*} \parallel \overline{(a_2b_2)^*}$ (dove \parallel e' l'operatore di composizione in parallelo). Si supponga che la specifica (il linguaggio generato desiderato) sia espressa con la seguente definizione in linguaggio naturale: "Dopo un evento b_1, b_1 non puo' presentarsi di nuovo prima che b_2 si presenti almeno una volta". Si costruiscano l'espressione regolare e l'automa H_{spec} che accettano il linguaggio generato desiderato.

Traccia di soluzione.

Si veda l'allegato.

(c) Si costruisca l'automa composto $H=H_{spec}\parallel G.$ Traccia di soluzione. Si veda l'allegato.

(d) Si enunci formalmente la definizione di controllabilita' di un linguaggio e la si descriva intuitivamente a parole.

Usando la definizione, si verifichi se il linguaggio $K={\cal L}({\cal H})$ del nostro esempio e' controllabile.

Traccia di soluzione.

K = L(H) non e' controllabile.

Come controesempio, si consideri $s=a_1b_1a_1\in \overline{K}$ e $\sigma=b_1\in E_{uc}$. Si ha che $s\sigma=a_1b_1a_1b_1\in M,\not\in \overline{K}$.

(e) Si consideri la formula per calcolare il sovralinguaggio controllabile infimo

$$K^{\downarrow C} = \overline{K} E_{uc}^{\star} \cap M.$$

Si calcoli il sovralinguaggio controllabile infimo $K^{\downarrow C}$, costruendo l'automa corrispondente mediante i seguenti passi:

- i. Si costruisca l'automa che genera il linguaggio \overline{K} .
- ii. Si costruisca l'automa che genera il linguaggio E_{uc}^{\star} .
- iii. Si costruisca l'automa H_{aug} che genera il linguaggio $\overline{K}E_{uc}^{\star}$.
- iv. Si costruisca l'automa $H_{aug} \times G$ che genera il linguaggio $K^{\downarrow C} = \overline{K} E_{uc}^{\star} \cap M$.

Traccia di soluzione.

Si veda l'allegato.

2. Una rete di Petri marcata e' specificata da una quintupla: $\{P, T, A, w, x\}$, dove P sono i posti, T le transizioni, A gli archi, w la funzione di peso sugli archi, e x il vettore di marcamento (numero di gettoni per posto). $I(t_i)$ indica l'insieme dei posti in ingresso alla transizione t_i , $O(t_j)$ indica l'insieme dei posti in uscita dalla transizione t_j .

Si consideri la rete di Petri P_{41} definita da:

- $P = \{p_1, p_2, p_3\}$
- $T = \{t_1, t_2, t_3\}$
- $A = \{(p_1, t_1), (p_1, t_3), (p_2, t_1), (p_2, t_2), (p_3, t_3), (t_1, p_2), (t_1, p_3), (t_2, p_3), (t_3, p_1), (t_3, p_2)\}$
- $\forall i, j \ w(p_i, t_j) = 1$, tranne che $w(p_1, t_1) = 2$
- $\forall i, j \ w(t_i, p_j) = 1$
- (a) Si disegni il grafo della rete di Petri P_{41} .

(b) Sia $x_0 = [1, 0, 1]$ la marcatura iniziale.

Si dimostri che la transizione t_1 non puo' mai essere abilitata.

Traccia di soluzione.

Si veda il foglio allegato.

(c) Sia $x_0 = [2, 1, 1]$ la marcatura iniziale.

Si disegnino l'albero e il grafo di raggiungibilita' della rete di Petri P_{41} . Traccia di soluzione.

Si veda il foglio allegato.

(d) Qual e' la relazione tra i linguaggi accettati dalle reti di Petri e i linguaggi regolari ?

Traccia di soluzione.

I linguaggi regolari sono un sottoinsieme di quelli di Petri.