Iniciado em quarta-feira, 28 jun. 2023, 20:25

Estado Finalizada

Concluída em quarta-feira, 28 jun. 2023, 20:25

Tempo 17 segundos

empregado

Notas 0,00/6,00

Avaliar 0,00 de um máximo de 10,00(0%)

Questão **1**

Não respondido

Vale 1,00 ponto(s)

O campo $ec{\mathbf{F}} = y\mathbf{i} + (x+z)\mathbf{j} - y\mathbf{k}$ é conservativo.

Escolha uma opção:

Verdadeiro

Falso

Solução:

 $ec{\mathbf{F}}$ é conservativo se, e somente se,

$$\frac{\partial P}{\partial y} = \frac{\partial N}{\partial z} \; , \; \frac{\partial M}{\partial z} = \frac{\partial P}{\partial x} \; \mathrm{e} \; \frac{\partial N}{\partial z} = \frac{\partial M}{\partial y}.$$

Encontrando M , N e P:

$$M=rac{\partial f}{\partial x}=y$$
 , $N=rac{\partial f}{\partial y}=x+z$ e $P=rac{\partial f}{\partial z}=-y$;

Calculando as derivadas parciais de P em relação a y, M em relação a z e N em relação a z:

$$\frac{\partial P}{\partial y} = -1, \frac{\partial M}{\partial z} = 1 \ \mathrm{e} \ \frac{\partial N}{\partial z} = 0;$$

Como
$$\frac{\partial P}{\partial y}
eq \frac{\partial N}{\partial z}$$
, $\frac{\partial M}{\partial z}
eq \frac{\partial P}{\partial x}$ e $\frac{\partial N}{\partial z}
eq \frac{\partial M}{\partial y}$, então o campo é não conservativo.

A resposta correta é 'Falso'.

Questão 2

Não respondido

Vale 1,00 ponto(s).

Utilize o teorema de Green para encontrar o fluxo em sentido anti-horário para o campo $\mathbf{F} = (y^2 - x^2)\mathbf{i} + (x^2 + y^2)\mathbf{j}$ e a curva C (o triângulo limitado por y = 0, x = 3, y = x).

Resposta:

Resposta:

Primeiramente devemos definir nosso M e N:

$$M=y^2-x^2$$
 e $N=x^2+y^2$

Fluxo:

Aplicaremos os valores na equação $\iint\limits_{R}\left(rac{\partial}{\partial x}(M)+rac{\partial}{\partial y}(N)
ight)dA.$

$$rac{\partial}{\partial x}(M) = -2x$$
 $rac{\partial}{\partial y}(N) = 2y$

$$\int_0^3 \int_0^x -2x + 2y \, dy dx$$

$$= \int_0^3 \left[-2xy + \frac{2y^2}{2} \right]_0^x dx$$

$$= \int_0^3 -2x^2 + x^2 \, dx$$

$$= \left[-\frac{2}{3}x^3 + \frac{1}{3}x^3 \right]_0^3$$

$$= \left[-\frac{1}{3}x^3 \right]_0^3$$

$$= -\frac{27}{3} = -9$$

A resposta correta é: -9

Questão 3

Não respondido

Vale 1,00 ponto(s).

Qual a parametrização do plano x+y+z=1 inclinado dentro de um cilindro $\ x^2+y^2=9.$

Escolha uma opção:

$$\mathbf{r}$$
 a. $\mathbf{r}(r,\theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} + (1+r\cos\theta - r\sin\theta)\mathbf{k}$, $\cos\theta \leq 2\pi$ e $0 \leq r \leq 3$.

$$\bullet$$
 b. $\vec{\mathbf{r}}(r,\theta) = (r\cos\theta)\mathbf{i} - (r\sin\theta)\mathbf{j} + (1-r\cos\theta - r\sin\theta)\mathbf{k}$, $\cos\theta \le 2\pi$ e $0 \le r \le 3$.

$$\mathbf{c}$$
. $\mathbf{r}(r,\theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} - (1-r\cos\theta-r\sin\theta)\mathbf{k}$, $\cos\theta \leq 2\pi$ e $0 \leq r \leq 3$.

$$\mathbf{c}$$
 e. $\vec{\mathbf{r}}(r,\theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} + (1-r\cos\theta-r\sin\theta)\mathbf{k}$, $\cos\theta \leq 2\pi$ e $0 \leq r \leq 3$.

Sua resposta está incorreta.

Solução:

$$x+y+z=1 \Rightarrow z=1-x-y.$$

Usando coordenadas cilíndricas $x=r\cos\theta$ e $y=r\sin\theta$, substituindo em z, temos $z=1-r\cos\theta-r\sin\theta$.

Substituindo x, y e z na função de superfície, temos:

$$\vec{\mathbf{r}}(r,\theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} + (1-r\cos\theta - r\sin\theta)\mathbf{k}$$
, com $0 \le \theta \le 2\pi$ e $0 \le r \le 3$.

A resposta correta é: $\vec{\mathbf{r}}(r,\theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} + (1-r\cos\theta-r\sin\theta)\mathbf{k}$, com $0 \le \theta \le 2\pi$ e $0 \le r \le 3$.

Questão 4

Não respondido

Vale 1,00 ponto(s)

Considere o campo $\vec{\mathbf{F}}=z^2\mathbf{i}+x\mathbf{j}-3z\mathbf{k}$, para fora (normal para longe do eixo x) através da superfície cortada do cilindro parabólico $z=4-y^2$ pelos planos x=0, x=1 e z=0.

Utilize uma parametrização para encontrar o fluxo $\iint_S \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \ d\sigma$ através da superfície na direção determinada.

Resposta:

SOLUÇÃO:

- Sendo a parametrização:

$$ec{\mathbf{r}}\left(x\:,\:y
ight)=x\mathbf{i}+y\mathbf{j}+\left(4-y^{2}
ight)\mathbf{k}\:,\:0\leq x\leq1\:,\:-2\leq y\leq2$$

- Sendo:

$$z=0 \Rightarrow 0=4-y^2 \Rightarrow y=\pm 2$$

- Logo

$$\vec{\mathbf{r}}_x = \mathbf{i} \, \mathbf{e} \, \vec{\mathbf{r}}_y = \mathbf{j} - 2y\mathbf{k}$$

$$\Rightarrow \; ec{\mathbf{r}}_x imes \; ec{\mathbf{r}}_y = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 1 & 0 & 0 \ 0 & 1 & -2y \end{bmatrix} = 2y\mathbf{j} + \mathbf{k}$$

- Tendo

$$\iint_{S} \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \ d\sigma = \int_{a}^{b} \int_{c}^{d} \vec{\mathbf{F}} \cdot \frac{\vec{\mathbf{r}}_{x} \times \vec{\mathbf{r}}_{y}}{\parallel \vec{\mathbf{r}}_{x} \times \vec{\mathbf{r}}_{y} \parallel} \parallel \vec{\mathbf{r}}_{x} \times \parallel \vec{\mathbf{r}}_{y} \parallel dy dx$$

- Substituindo z no produto escalar: 2xy - 3z:

$$= [2xy - 3(4 - y^2)]$$

- Tendo finalmente: $\int_0^1 \int_{-2}^2 (2xy+3y^2-12) \ dy dx$

$$=\int_{0}^{1} \ \left[xy^{2} + y^{3} - 12y
ight]_{-2}^{2} \ dx$$

$$=\int_0^1 -32 \ dx$$

= -32

A resposta correta é: -32

Ouestão **5**

Não respondido

Vale 1,00 ponto(s).

Utilize a integral de superfície no teorema de Stokes para calcular a circulação do campo $\vec{\mathbf{F}}$ ao redor da curva C na direção indicada.

 $ec{f F}=2y{f i}+3x{f j}\!-z^2{f k}$, onde C é a circunferência $x^2+y^2=9$ no plano xy, no sentido anti-horário quando vista de cima.

- \bigcirc a. 9π
- \odot b. 11π
- \odot c. 4π
- \odot d. 7π
- \odot e. 5π

Sua resposta está incorreta.

Solução: Primeiro, calculamos o rotacional: $\operatorname{rot}\vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2y & 3x & -z^2 \end{vmatrix} = 0\mathbf{i} + 0\mathbf{j} + (3-2)\mathbf{k} = \mathbf{k}$. Como $\vec{\mathbf{n}} = \mathbf{k}$, então $\operatorname{rot}\vec{\mathbf{F}} \cdot \vec{\mathbf{n}} = 1$. Dessa forma, $d\sigma = dx \, dy$. Portanto, $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_R dx \, dy$. Area do círculo $= 9\pi$.

A resposta correta é:

 9π

Questão 6

Não respondido

Vale 1,00 ponto(s)

Utilize o teorema da divergência para encontrar o fluxo exterior de $\vec{\mathbf{F}}$ através da fronteira da região D.

Parte da esfera $\vec{\mathbf{F}}=x^2\mathbf{i}-2xy\mathbf{j}+3xz\mathbf{k}$, D: A região cortada do primeiro octante pela esfera $x^2+y^2+z^2=4$.

- \odot a. π
- \odot b. 3π
- \odot c. 2π
- \odot d. 4π
- \odot e. 5π

Sua resposta está incorreta.

Solução: Primeiro fazemos a derivada parcial

$$rac{\partial}{\partial x}(x^2)=2x$$
, $rac{\partial}{\partial y}(-2xy)=-2x$, $rac{\partial}{\partial z}(3xz)=3x$. Obtemos $abla\cdot\vec{\mathbf{F}}=3x$. Então calculamos o fluxo:

 $flux = \int \int_D \int 3x \, dx \, dy \, dz = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \int_0^2 (3\rho \, \sin \, \phi \, \cos \, \theta) (\rho^2 \, \sin \, \phi) \, d\rho \, d\phi \, d\theta = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} 12 \, \sin^2 \, \phi \, \cos \, \theta \, d\phi \, d\theta = \int_0^{\frac{\pi}{2}} 3\pi \, \cos \, \theta \, d\theta = 3\pi$ A resposta correta é:

 3π