Side 1 av 4

Faglig kontakt under eksamen: Jan Tro, 95267777 Institutt for elektronikk og telekommunikasjon, Gløshaugen.

EKSAMEN I TT3010: AUDIOTEKNOLOGI OG ROMAKUSTIKK, 7,5 studiepoeng, tirsdag 4. desember, 2012. Eksamenstid: 09:00-13:00 (Sensur: Tirsdag 3. januar, 2013)

Tillatte hjelpemidler: C - Typegodkjent kalkulator, med tomt minne, i samsvar med liste utarbeidet av NTNU.

Husk å redegjøre for antakelser som du gjør for å løse oppgavene!

Oppgavenes betydning for vurderingen er oppgitt som prosentandel.

Lykke til!

Side 2 av 4

OPPGAVE 1 (40%, romakustikk):

- A. (15%) Anta at vi lytter til en høyttaler i et rom.
 - a. Hvordan avhenger styrken på direktelyden og etterklangslyden av avstanden mellom lytter og høyttaler?
 - b. Hvordan påvirkes forholdet mellom direktelyd og etterklangslyd av direktivitetsfaktoren til høyttaleren?
 - c. Hva er romradien? Hvordan kan den måles?
- B. (25%) Anta en skoeskeformet konsertsal med målene B = 10.0 m, H = 5.1 m, L = 16.0 m. Rommet er av malt betong med tregulv og uten vindu. 90 % av takflaten har himling, en halvpart med gipsplater og en halvpart med akustikkplater.
 - a. Regn ut rommets etterklang RT ved 250 Hz og 1000 Hz uten stoler.
 - b. Vi monterer polstrede stoler i salen. Stolene dekker 70 % av gulvarealet. Finn forskjell i etterklangstid ved halv- og fullsatt sal.
 - c. Hvorfor er skoeskeformede konsertsaler bedre egnet enn vifteformede saler for fremføring av akustisk (ikkeforsterket) musikk?

Oppgitte formler:

- RT = $0.161 \cdot V/A$

V = romvolum, A = absorpsjon.

Absorpsjon $A = \sum_{i} S_i \cdot \alpha_i$, hvor S_i er arealet for en del av veggoverflaten, og α_i er absorpsjonsfaktoren for den samme del av veggoverflaten.

- Lydtrykknivået L_p i et rom er gitt av

$$L_p = L_W + 10\log\left(\frac{DF}{4\pi r^2} + \frac{4}{A}\right)$$

hvor L_W er lydkildens lydeffektnivå, DF = lydkildens direktivitetsfaktor, r = avstanden fra lydkilden, A = absorpsjonen

Oppgitte absorpsjonsfaktorer:

PPB-144 weserpsjensiwiteri						
	125 Hz	250 Hz	500 Hz	1kHz	2kHz	4kHz
Malt betong	0.1	0.05	0.06	0.07	0.09	0.08
Tregulv	0.15	0.11	0.1	0.07	0.06	0.07
Gipsplater	0.14	0.1	0.06	0.05	0.04	0.03
Akustikkplater i himling	0.76	0.93	0.83	0.99	0.99	0.94
Tomme stoler, polstret	0.10	0.10	0.22	0.25	0.65	0.85
Stoler med person i	0.23	0.40	0.66	0.77	0.80	0.87

Side 3 av 4

OPPGAVE 2 (30%, audioteknologi)

- **A.** Hva er fordelen med å benytte en senterhøyttaler i et PA-anlegg, og hvordan kan vi bruke tidsforsinkelse for å forsterke effekten av senterhøyttaleren?
- **B.** Hvilket frekvensområde vil være viktigst for retningsoppfattelsen dersom hørselen mottar motstridende retningsinformasjon for høye (over 1000 Hz) og lave (under 1000 Hz) frekvenser?
- **C.** Tegn en skisse som viser frekvensresponsen for et høyttalerelement montert i en altfor liten kasse.
 - Marker på skissen omtrent hvor resonansfrekvensen f0 er.
 - Hva påvirker hvor resonansfrekvensen f0 havner? Er det høyttalerelementets egenskaper (i så fall, hvilke?) eller er det høyttalerkassens egenskaper (i så fall, hvilke?).
 - Hvorfor er responsen ikke flat ved høyere frekvenser?

Oppgitte formler:

Frekvensresponsen for en høyttaler ved resonansfrekvensen f0 , med Q-verdi Q, er:

$$L_p = 10 \log \left(\frac{(f/f_0)^2}{\left[1 - (f/f_0)^2\right]^2 + \frac{(f/f_0)^2}{Q^2}} \right)$$

Resonansfrekvensen f0 gis av

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{1}{M \cdot C}}$$

Side 4 av 4

OPPGAVE 3. (30%, instrumentakustikk)

- A. Skriv navn på alle 7 instrumentene i vedlagte tegning. Beskriv i detalj oppbyggingen av ett av instrumentene.
- B. Diskutér eksitasjonsmåter for instrumentene og forklar mulig påvirkning på toneenvelopen og klangfargen.
- C. Mikrofonplassering ved lydopptak av akustiske musikkinstrumenter er avhengig av instrumentets karakteristiske lydavstråling. Skissér og forklar viktige trekk ved avstråling fra det største og det minste instrumentet.

Eksamen TT3010 HØST 2012

D. Når vi snakker om inharmonisitet i en streng, bruker vi formelen

$$f_n = nf_1[1 + (n^2 - 1)A],$$

hvor A er definert som

$$A = \frac{\pi^3 r^4 E}{8TL^2}$$

Forklar hva bokstavene f, n, og E står for.