20/3 (/A) (-100 fb)

数学問題

【必答問題】 次の 1, 2, 3 は全問解答せよ。

- 1 次の を正しくうめよ。ただし、解答欄には答えのみを記入せよ。
 - (1) $(\sqrt{2} + \sqrt{3} + \sqrt{5})(\sqrt{2} + \sqrt{3} \sqrt{5})$ を展開し、整理すると (7) となる。
 - (2) 不等式 $5(x-2) \le 2(x+1)$ の解は (4) である。
 - (3) 2次方程式 $2x^2-2x+a+1=0$ (aは定数) が重解をもつとき、a= (b) であり、 そのときの重解は x= \Box である。
 - (4) 次の (オ) にあてはまるものを,下の①~③のうちから一つずつ選べ。ただし,同じものを繰り返し選んでもよい。
 - (i) x, y は実数とする。x>4 かつ y>4 であることは, x+y>8 であるための (x+y)=0
 - (ii) △ABC において、∠A < 90° であることは、△ABC が鋭角三角形であるための
 - ①必要十分条件である

- ①必要条件であるが、十分条件ではない
- ②十分条件であるが,必要条件ではない
- ③必要条件でも十分条件でもない

(配点 20)

2 2つの不等式

$$x^{2}-(a+1)x+a>0$$
(1)
 $|x-2|<3$ (2)

がある。ただし, a は定数とする。

- (1) a=3 のとき、不等式①を解け。 \Im (2) 、 \Im (3) (1) のとき、不等式①を解け。
- (2) 不等式②を解け。また、a < 1 のとき、不等式①を解け。
- (3) 不等式①, ②を同時に満たす整数 x がちょうど 4 個存在するような a の値の範囲を求め よ。 (配点 20)

$$(2)$$
 $-|< X < I$, $X < a, |< X$

$$(3) \quad 0 < \alpha < 2 \qquad -2$$

は定数とする。	
(1) $g(x)$ の最小値をkを用いて表せ。 $2\xi^2 - 2\xi - 7$ [< ξ /8 $\xi^2 - 2\xi - 7$]	. 3
(2) $k \ge \frac{1}{2}$ とする。 $k \le x \le 3k$ における $f(x)$ の最大値を k を用いて表せ。 $1 \le k \le 2k \le 2k^2 - 3k$	-30
(3) $k \ge \frac{1}{2}$ とする。 $k \le x \le 3k$ における $f(x)$ の最大値を M , $k \le x \le 3k$ における $g(x)$ の	0
最小値を m とする。 $M < m$ を満たす k の値の範囲を求めよ。 (配点 20)	0
3< R< 11+157	
	10
【選択問題】 次の 4 , 5 , 6 , 7 のうちから2題を選んで解答せよ。	
4 $AB=4$, $AC=5$, $\cos A=\frac{3}{5}$ の $\triangle ABC$ がある。辺 BC (両端を除く)上の点 P から、	
辺 AB, AC に垂線を引き、その交点をそれぞれ Q, R とする。	
(1) 辺BCの長さを求めよ。 $BC = \sqrt{7}$	
(2) \triangle ABC の面積を求めよ。また, $PQ=2$ のとき,線分 PR の長さを求めよ。 (3) $PQ=2$ のとき,線分 QR の長さを求めよ。また,線分 AP の長さを求めよ。	
(3) PQ-20022, MONGRODE TO THE STATE (配点 20)	
$(3) QR = \frac{2\sqrt{65}}{5}, \sqrt{65}$	
5 袋の中に赤玉1個,青玉2個,白玉3個の合計6個の玉が入っている。この袋の中から 玉を1個取り出し色を確かめてから玉を袋に戻す。この試行を繰り返し,青玉を2回取り出	
玉を1個取り出し色を確かめてから玉を殺に戻す。この試行を繰り起し、 日玉を2回収り出したときに試行を終了する。	
(1) 2回目の試行で青玉を取り出して、ちょうど2回で試行が終了する確率を求めよ。	<i>(</i>)
(2) 3回目の試行で青玉を取り出して、ちょうど3回で試行が終了する確率を求めよ。また、	0
ちょうど3回で試行が終了する確率を求めよ。	9
(3) ちょうど 4 回で試行が終了する確率を求めよ。 (7 つ)	
(1) $\frac{1}{9}$, (2) $\frac{4}{21}$, $\frac{43}{108}$, (3) $\frac{1/3}{432}$	
47 12 12 12 12 12 12 12 12	AD.

2 つの 2 次関数 $f(x) = 2x^2 - 8x - 3$, $g(x) = x^2 - 2(k+1)x + 3k^2 - 6$ がある。ただし,k

(選択問題は次ページに続く。)

- **6** 2つの自然数x, yがある。x, yの最大公約数をG, 最小公倍数をLで表す。
 - (1) x = 84, y = 98 とする。このとき、Gの値を求めよ。また、Lの値を求めよ。
 - (2) x, yが, xy = 432, L = 72 を満たしている。このとき, G の値を求めよ。また, x, y の組をすべて求めよ。ただし, x > y とする。
 - (3) x, yが, x+y=9G を満たしている。このとき、すべての x, y の組に対して、 $\frac{y}{x}$ の値を求めよ。ただし、x>y とする。 (配点 20)

$$(1) G = 14, L = 188$$

$$(2) (x,y) = (12.6), (24,(8))$$

$$(3) \frac{4}{x} = \frac{1}{8}, \frac{2}{7}, \frac{4}{5}$$

7 図のように AB = 4, BC = 5, ∠BAC = 90° の直角三角形 ABC と, 点 B を通り, 直線 AC と点 C で接する円 O がある。また, 円 O と辺 AB の交点のうち, B でない方の点を D とする。

- (1) 辺ACの長さを求めよ。また、線分ADの長さを求めよ。
- (2) ∠ABC の二等分線と辺 AC の交点を E とするとき,線分 BE の 長さを求めよ。
- (3) (2)のとき、線分 BE と線分 CD の交点を F とする。このとき、 BF FE の値を求めよ。また、
 四角形 ADFE の面積を求めよ。

$$(1) AC = 3, AD = 4$$

(3)
$$\frac{BE}{FE} = \frac{7}{5}$$
, $APFE = \frac{(43)}{72}$