

Date: 03-02-2020

Nom & fonction: Robin Molinier, Decision Scientist (Renewable Energies Scope)

Direction: R&D, Computational and Data Science

This document is PUBLIC

Cours-Projet: Modélisation des systèmes énergétiques

ENSTA Ingénieurs énergie 3ème Année.

Session 3 - Modélisation et optimisation d'un électrolyseur

Soit le système suivant:

Business case à modéliser:

- Le client doit être satisfait à chaque heure!
- Horizon = 1 journée (24 heures).
- Critère à prendre en compte: Le moindre coût!
- Décisions à prendre:
 - <u>Design</u>: Capacité de l'électrolyseur, de la Batterie, du stockage gazeux.
 - <u>Pilotage des flux</u>: H2 à produire, à stocker et délivrer, énergie à acheter à stocker et utiliser.

AIR LIQUIDE MEMO INTERNE

Puzzle:

Introduire une variable binaire d'état "On/Off" pour l'électrolyseur : Que se passe t'il ?

- Tentez de résoudre ce problème ! (indice: introduisez une variable intermédiaire)

• Rendu (par binôme):

mini-rapport (8p max) avec:

- Votre modèle (in/équations) et les sorties (valeur de l'Objectif et des variables)
- Votre réponse à la question Puzzle.
- 2 suggestions d'analyse de sensibilité en précisant votre démarche d'exploration.

Paramètres:

Demande en H2 du client:

Demande = 1000 (kg/h)

Energie:

Profil de generation du PPA de 100 MW:

h0: 50	50	50	50	50	50	50	50	50	50	50	50
h12: 50	50	50	50	50	50	40	30	20	10	0	50

Prix de marché: Prix du MWh en France le 04-02-2020 (source: Epex-Spot)

h 0: 20.79	17.41	16.24	11.9	9.77	15.88	24.88	29.7	35.01	33.95	29.9	29.03
h 12: 27.07	26.43	27.53	29.05	31.42	39.92	41.3	41.51	39.75	30.13	30.36	32.4

★ Prix négocié du PPA = 20 (euros /MWh)

Electrolyseur:

Lissage dépense = 0.0004 (durée de vie: 60.000 hours)

Capex = 1.200.000 * 0.0004 (euros/MW)

efficacité Electrolyseur= 0.050 (Mwh /kg H2)

Capacité maximale = 1000 (MW)

Batterie:

Lissage dépense = 0.0002 (durée de vie: 13 ans)

Capex = 0 (cas.1) puis 250.000 * 0.0002 (euros / MWh) (cas.2)

efficacité = 0.9

dissipation = 0

Capacité maximale-stockage = 400 (MWh)

Capacité maximale-flux = 100 (MW)

AIR LIQUIDE MEMO INTERNE

Gas storage:

Lissage dépense = 0.000137 (durée de vie: 20 ans)

Capex = 407 (euros/kg)

Capacité maximale tank = 500 (kg H2)

Annexe: à titre indicatif, pour vos analyses de sensibilité

Electrolyser Parameters							
Electrolyser Parameters Electrolyser Capex [€/kW]	1200						
Degradation Coefficient [€/(kg/h)]	0.4						
Minimal Power [MW]	0						
Maximal Power [MW]	100.00						
Specific Energy Consumption [kWh/kg]	50						
Liquefier Parameters							
Liquefier Capex [€/kW]	4000						
Minimal Power [MW]	50						
Maximal Power [MW]	0						
Boil Off losses (%)	12						
Specific Energy Consumption [kWh/kg](60% >load & <60%)	10 & 12						
Battery Storage Parameters							
Battery Capex [€/kWh]	250 - 50						
Round trip Efficiency (%)	90						
Auto Drain coefficient	0.001						
Minimal Charge/Discharge Power [MW]	0						
Maximal Charge/Discharge Power [MW]	20						
Number of Storage Hours (At nominal Power)	3						
Liquid Storage Parameters							
Liquid storage Capex [€/kg]	200						
Minimal Vessel Capacity [kg]	0						
Maximal Vessel Capacity [kg]	10000						
General Parameters							
PPA price [€/MWh]	30						
Price of Guarantee of Origin [€/Certificate]	1						
Maximal GoO possible to purchase	800						
CertifHy Threshold [kg _{CO2eq} /kg _{H2}]	10.97						