Migrating Birds Optimization na řešení problému batohu

Daniel Konečný

Fakulta informačních technologií Vysokého učení technického v Brně xkonec75@stud fit vutbr.cz

Problém batohu a optimalizační algoritmus

Problém batohu

Binární – každý předmět maximálně jednou. Jednodimenzionální – pouze hmotnost předmětů.

Migrating Birds Optimization

Inspirace – Tvar hejna ptáků do písmene V pro efektivnější migrování.

Základní principy

- princip sousedství,
- princip sdílení řešení.

Zjednodušený postup

- inicializace hejna,
- určení alternativních řešení čelního ptáka,
- sdílení alternativních řešení čelního ptáka,
- zpracování dalších ptáků,
- opakování tour,
- výměna pozic,
- ukončovací podmínka.

Ukázka výpočtu

Jedná se o výpočet levé větve v jedné tour pro z=5, k=3 a x=1. Problém batohu je definovaný takto, že $w=\{2,5,7,3,1\}$ představuje množinu hmotností předmětů, $p=\{10,30,70,50,1\}$ představuje možinu hodnot předmětů a c=10 je kapacita batohu.

Pták	Konfig.	Hodn.	Alternativy	Konfig.	Hodn.
		81	N ₀₁ - nevyužitý kandidát	00110	80
S_0	01011		N ₀₂ - sdíleno vlevo	00101	71
			N ₀₃ - sdíleno vpravo	11001	41
S_1	10100	80	N ₁₁ - využitý kandidát	10101	81
			N ₁₂ - sdíleno dále	00110	80
			$N_{13} = N_{02}$ - zahozeno	00101	71
S ₃	11000	40	$N_{21} = N_{12}$ - využitý kandidát	00110	80
			N ₂₂ - sdíleno dále	00010	50
			N ₂₃ - zahozeno	11001	41

Vyhodnocení výsledků

Pro většinu testovaných problémů algoritmus nalezne optimální řešení, u jednodušších dokonce nalezne optimální řešení vždy. Jakmile je však počet předmětů nastavený na vyšší desítky a předměty jsou vysoce korelované, algoritmus nemusí vůbec nalézt optimální řešení.

Hodnoty jsou pro problémy obsažené v datasetu práce a pro 10 opakování.

Problém	Předměty	Optimální	Nejlepší	Průměrné	Nejhorší
P ₀₆	7	1735	1735	1735	1735
P ₀₇	15	1458	1458	1457.1	1454
P ₀₈	24	13549094	13549094	13520103.9	13494864
P ₁₈	23	9767	9767	9767	9767
P ₂₁	50	68946	68946	68946	68946
P ₂₂	100	81021	81021	81021	81021
P ₂₄	100	23982	23982	23968.3	23945
P ₂₆	50	2586	2586	2586	2586
P ₂₇	100	1011	1005	1002.6	1002