Learning and Testing Submodular Functions

Sofya Raskhodnikova, Grigory Yaroslavtsev Pennsylavania State Univeristy

Submodularity

- Discrete analog of concavity, captures law of diminishing returns
- Applications: matroids, valuations in AGT, etc.

Definitions (for functions $f: 2^X \to R$)

Discrete derivative:

$$\partial_{x} f(S) = f(S \cup \{x\}) - f(S)$$

for
$$S \subseteq X, x \notin S$$

Submodular function:

$$\partial_{x} f(S) \geq \partial_{x} f(T)$$

for all
$$S \subseteq T \subseteq X$$

Examples:

Coverage function:

Given $A_1, \ldots, A_n \subset U$,

$$f(S) = \big|\bigcup_{j \in S} A_j\big|.$$

Cut function:

$$\delta(T) = |e(T, \overline{T})|$$

Pseudo-Boolean k-DNF $(V \rightarrow max, A_i \in \{0, ..., k\})$:

• $max_i (A_i \cdot (x_{i_1} \wedge \overline{x_{i_2}} ... \wedge x_{i_k}))$

Main results

Structural result: Every monotone submodular function $f: 2^X \to \{0, ..., k\}$ can be represented as a monotone pseudo-Boolean k-DNF.

Learning and testing: polynomial query complexity for k = o(log n / log log n) for monotone functions, where n = |X|.

Previous work

Property testing

[Seshadhri, Vondrak, ICS'11]:

- Upper bound $(1/\epsilon)^{O(\sqrt{n})}$. Gap in query complexity

Special case: coverage functions [Chakrabarty, Huang, ICALP'12].

Learning everywhere (with membership queries) [Goemans, Harvey, Iwata, Mirrokni, SODA'09]: $\widetilde{\Theta}(\sqrt{n})$ -approximation.

PAC-like learning Lipschitz submodular functions (under uniform/product distributions)

- Multiplicative error [Balcan, Harvey, STOC'11]
- Additive error [Gupta, Hardt, Roth, Ullman, STOC'11]

SQ-learning submodular functions with additive error [Cheraghchi, Klivans, Kothari, Lee, SODA'11]

How about bounded integral range? (Open problem from the workshop on sublinear algorithms in Bertinoro'11)

Let $f: 2^X \to \{0, ..., k\}$, where k is a constant.

Case study: k = 1 (Boolean functions)

- Monotone submodular = $x_{i_1} \vee x_{i_2} \vee \cdots \vee x_{i_a}$ (monomial)
- Submodular = $(x_{i_1} \lor \cdots \lor x_{i_n}) \land (\overline{x_{j_1}} \lor \cdots \lor \overline{x_{j_h}})$ (2-term CNF)

Theorem: Every monotone submodular function $f: 2^X \to \{0, ..., k\}$ can be represented as a monotone pseudo-Boolean k-DNF.

Proof: Run Build-DNF (f,\emptyset) .

input: Function $f: 2^X \to \{0, \dots, k\}$, argument $Y \in 2^X$. **output**: Collection C of monotone clauses of width at most k.

$$C \leftarrow \{f(Y) \cdot \bigwedge_{i \in Y} x_i\}$$

$$\mathbf{for} \ j \notin Y \ \mathbf{do}$$

$$\mathbf{if} \ f(Y \cup \{j\}) > f(Y) \ \mathbf{then}$$

$$C \leftarrow C \cup \mathbf{BUILD-DNF}(f, Y \cup \{j\}).$$

end end

return C

Algorithm 1: Build-DNF(f, Y).

Corollaries for monotone submodular functions:

- $O(n^k)$ query complexity exact learning (trivial, matches previous work).
- $O(n k^{k \log_{\epsilon}^{1}})$ query complexity PAC-learning under uniform distribution (we can generalize Kushilevitz-Mansour learning algorithm to pseudo-Boolean k-DNF, requires nontrivial modification of Hastad's switching lemma).
- $O(n k^{k \log_{\epsilon}^{1}})$ query complexity property tester via transformation from a learning algorithm [Goldrecich, Goldwasser, Ron '98]. Running time not preserved, because learning is not proper.

What's next?

- Improve algorithms for general range?
- Give testing algorithms for bounded range without proper learning?
- Prove better lower bounds via communication complexity/information-theoretic arguments?