Se resuelve, mediante el método de Euler explícito, el *problema de valor inicial* (también llamado *problema de Cauchy*)

$$y'(x) = f(x, y(x))$$
 para todo $x \in [a, b]$,

$$y(a) = \eta$$
.

La letra griega η se llama **eta**. Las siglas PVI quieren decir, en lo sucesivo, problema de valor inicial.

Los datos del problema son: el intervalo [a,b], la función $f\colon [a,b]\times\mathbb{R}^m\to\mathbb{R}^m$ y el vector $\eta\in\mathbb{R}^m$. La palabra vector se usa en sentido genérico, entendiendo que un escalar (es decir, un número real) es un "vector" de \mathbb{R}^1 . Cuando m=1 (equivalentemente, cuando η es un escalar), estamos ante un *PVI escalar*; en otro caso, es decir, cuando η es un vector, estamos ante un *PVI vectorial*.

La incógnita es la función $y: [a, b] \to \mathbb{R}^m$.

Los métodos numéricos que estudiaremos consideran una malla del intervalo [a, b],

$$x_1 = a < x_2 < \dots < x_{N-1} < x_N = b$$

y calculan aproximaciones y_n de la función y(x) en los puntos x_n (estos puntos x_n se llaman nodos): $y_n \approx y(x_n)$ para todo $n \in \{1, ..., N\}$.

En este curso nos restringiremos casi exclusivamente a mallas con nodos equiespaciados, y llamaremos h al paso de discretización. Claramente, $h=\frac{b-a}{N-1}$ y $x_n=a+(n-1)h$ para todo $n\in\{1,\dots,N\}$.

El método de Euler explícito es el más sencillo de cuantos existen para resolver numéricamente el PVI. Consiste en calcular las aproximaciones y_n siguiendo las fórmulas siguientes:

$$y_1 = \eta$$
,

$$y_{n+1} = y_n + hf(x_n, y_n)$$
 para $n = 1, ..., N - 1$.

El programa que hay que ejecutar es prinEE (= "programa principal de Euler explícito"). Basta teclear **prinEE** en la ventana de comandos de MATLAB.