Exercise 4.7. Let m a non-negative integer and $z_0, \dots, z_m \in F$ are different to each others, $w_0, \dots, w_m \in F$, show that there is a unique $p \in \mathcal{P}_m(F)$ such that $p(z_k) = w_k$ holds for all $0 \le k \le m$.

Proof. Define $\Gamma(p) = (p(z_0), \dots, p(z_m)) : \mathcal{P}_m(F) \to F^{m+1}$, we will show that Γ is injective, therefore an isomorphism.

Suppose $\Gamma(p) = \Gamma(q)$, then $p(z_k) = q(z_k)$ for all k, therefore $(p-q)(z_k) = 0$ for all k. This means p-q has m+1 zeros but $\deg(p-q) \leq m$, therefore p-q=0 and p=q.

Then there is a unique $p \in \mathcal{P}_m(F)$ such that $\Gamma(p) = (w_0, \dots, w_m)$.