	COURSE: Computer Graphics			
UMP	TOPIC: All topics	CODE: BCM2133	100	
UMP	ASSESSMENT: Mini Project	DURATION : 2 weeks	/90	

FACULTY OF COMPUTING (FK) Group Mini Project (30%)

Learning Outcome:

Demonstrate understanding of **all topics** in BCM2133 course by **constructing** interactive 3D object using suitable tools and API.

- 1. **CLO2**: Analyze the techniques for creating 2D and 3D graphics using computer graphics concepts and programming principle (15% 45 marks) Cognitive skills
- CLO3: Develop simple graphics application using standard graphics libraries (10% 30 marks) Practical skills
- 3. **CLO4**: Demonstrate personal skills effectively through the punctuality and completeness of assessment submissions (5% 15 marks) Personal skills

Instructions:

- 1. Using the provided code template, construct interactive 3D objects and a scene using JavaScript and the GLSL programming language in a WebGL environment.
- 2. The objects, scene, and interactive functionalities must meet the following requirements:
 - a. **Each team member** must create **at least ONE (1) 3D object** that includes <u>at least ONE (1)</u> parent and ONE (1) child component (hierarchical modelling).
 - b. **Each team member** must use **at least SEVEN (7) cubes** to construct their portion of the scene.
 - c. A minimum of TEN (10) distinct colors must be used throughout the entire scene.
 - d. **Lighting and shading** must be properly implemented in the scene.
 - e. The scene rendering process must utilize **gl.drawElements**, **indices** and **hierarchical modelling** techniques.
 - f. Code syntax must be properly commented.
 - g. Several buttons and sliders must be implemented to provide interactive effects within the scene.
 - h. The **RGBA** color components must be correctly implemented in the scene.
 - i. All 3D objects must be manually constructed using code (no external modelling tools are allowed, only a programming text editor).
- 3. Based on the given report template, answer the questions regarding member's contribution to completing this assessment
 - * Refer to the provided marking scheme for details on the required outcome for each item.
 - ** Refer to the provided demo for an example of the overall result.

Submission:

- 1. Submit the project files (compress the folder into a single .zip file) via Kalam
- 2. Submit the report file (in .pdf format) via Kalam
- 3. Submit ALL files before 5.00pm FRIDAY, 20 June 2025

	COURSE: Computer Graphics		
UMP	TOPIC: All topics	CODE : BCM2133	400
UMP	ASSESSMENT: Mini Project	DURATION : 2 weeks	/90

Section A: CLO2 – Concept implementation through graphics construction

[45 marks]

<u>INDIVIDUAL ASSESSMENT</u> – **Object transformation & color:**

- 1. Parent object's x-axis rotation (on mouse drag) is correctly implemented 2 marks
- 2. Parent object's y-axis rotation (on mouse drag) is correctly implemented 2 marks
- 3. Parent object's x and y-axis rotation are correctly reset (on button click) 2 marks
- 4. Parent object is animated on page load/start 2 marks
- 5. Child object is animated on page load/start 2 marks
- 6. Parent object's transformation animation is correctly stopped (on button click) 2 marks
- 7. Parent object's transformation animation is correctly re-started (on button click) 2 marks
- 8. Child object's transformation animation is correctly stopped (on button click) 2 marks
- 9. Child object's transformation animation is correctly re-started (on button click) 2 marks
- 10. Parent object's transformation speed is correctly implemented (on slider move) 3 marks
- 11. Child object's transformation speed is correctly implemented (on slider move) 3 marks

<u>INDIVIDUAL ASSESSMENT</u> – **Hierarchical modelling implementation**:

- 1. Child object correctly follows the parent's transformation 2 marks
- 2. Child object's transformation does not affect the parent 2 marks
- 3. Parent object's transformation does not affect other objects in the scene 2 marks
- 4. Child object's transformation does not affect other objects in the scene 2 marks

<u>INDIVIDUAL ASSESSMENT</u> - **RGBA**:

- 1. Parent object's color change is correctly implemented (on button click) 2 marks
- 2. Parent object's color change is correctly reverted (on button click) 2 marks
- 3. Child object's color change is correctly implemented (on button click) 2 marks
- 4. Child object's color change is correctly reverted (on button click) 2 marks
- 5. Parent's object alpha value is correctly implemented (on slider move) 3 marks
- 6. Parent's object alpha value is correctly implemented (on color change) 2 marks

	COURSE: Computer Graphics		
	TOPIC: All topics	CODE: BCM2133	,,,,
UMP	ASSESSMENT: Mini Project	DURATION : 2 weeks	/90

Section B: CLO3 – Concept demonstration through logical results

[30 marks]

<u>INDIVIDUAL ASSESSMENT</u> – Construction results:

- 1. At least ONE (1) parent and ONE (1) child object are constructed 2 marks
- 2. At least SEVEN (7) cubes are used in total for all constructed objects in the scene (individual contribution) 2 marks
- 3. gl.drawElements and indices are used to draw the objects 2 marks
- 4. Parent object's transformation pivot is correctly implemented 2 marks
- 5. Child object's transformation pivot is correctly implemented 2 marks

GROUP ASSESSMENT – Camera & projection manipulation for the entire scene:

- 1. Field of view is correctly implemented 2 marks
- 2. Camera rotation along the x-axis is correctly implemented 2 marks
- 3. Camera translation along the z-axis is correctly implemented 2 marks
- 4. 'Reset camera' button is correctly implemented 2 marks

<u>GROUP ASSESSMENT</u> – **Overall scene construction process:**

- 1. No external 3D modelling tools are used to construct the scene 1 mark
- 2. At least TEN (10) distinct colors are used throughout the scene 2 marks
- 3. Color contrast is properly applied throughout the scene 2 marks
- 4. Lighting and shading are correctly and appropriately implemented in the scene 2 marks
- 5. Syntaxes are properly and clearly commented (code comments) 3 marks
- Overall scene design logically reflects real-world objects in terms of shape, size and structure)
 2 marks

	COURSE: Computer Graphics		
UMP	TOPIC: All topics	CODE: BCM2133	/22
UMP	ASSESSMENT: Mini Project	DURATION : 2 weeks	/90

Section C: CLO4 – Personal skills demonstration through assessment submission

[15 marks]

Punctuality:

5 marks	4 marks	3 marks	2 marks	1 mark
Early/on time	Late submission: submission time x (x < 6 hours)	Late submission	Late submission	Late submission
submission		(6 hrs < x < 12 hrs)	(12 hrs < x < 24 hrs)	(x > 24 hours)

Completeness of assessment submission (answer to the given questions in written form):

1. "What is your contribution to this Mini Project assessment?"

5 marks	4 marks	3 marks	2 marks	1 mark
Excellent personal contribution	Good personal contribution	Satisfactory personal contribution	Poor personal contribution	Very poor personal contribution

2. "Explain how you construct/develop your part of the project?"

5 marks	4 marks	3 marks	2 marks	1 mark
Excellent personal contribution	Good personal contribution	Satisfactory personal contribution	Poor personal contribution	Very poor personal contribution

	COURSE: Computer Graphics	MARK:	
UMP	TOPIC: All topics	CODE: BCM2133	10.0
UMP	ASSESSMENT: Mini Project	DURATION : 2 weeks	/90

REPORT

MEMBERS:

- CD12345 ABBAS
- CD67891 SALIIMI
- CD23456 LOKMAN
- CD78910 MUHAIMIN

QUESTION 1: What is your contribution to this Mini Project assessment?

- ABBAS: I construct the fan's blades ... I also helped combined ...
- **SALIIMI**: I construct ...
- **LOKMAN**: I construct ...
- **MUHAIMIN**: I construct ...

QUESTION 2: Explain how you construct/develop your part of the project?

- **ABBAS**: First, I sketch the overall coordinates ...
- **SALIIMI**: I started constructing the base using ...
- **LOKMAN**: Before making the buttons, I first ...
- **MUHAIMIN**: From Abbas's objects, I ...

*******	END OF MINI	PROJECT HAND	OUT ********	*******