5.3 EXERCISE 1 – OXIDATION AND REDUCTION

1. Deduce the oxidation numbers of the following atoms:

a)	Mn in MnO ₄ -
b)	O in H ₂ O ₂
c)	Cr in Cr ₂ O ₇ ²
d)	Cr in CrO ₄ ² -
e)	V in VO ₂ ⁺
f)	V in VO ²⁺

- 2. Derive balanced half-equations for the following reduction processes:
- a) MnO_4 to Mn^{2+}
- b) $Cr_2O_7^{2-}$ to Cr^{3+}
- c) Zn^{2+} to Zn
- d) Fe^{3+} to Fe^{2+}
- e) H_2O_2 to H_2O
- 3. Derive balanced half equations for the following oxidation processes:
- a) $Zn \text{ to } Zn^{2+}$
- b) Fe^{2+} to Fe^{3+}
- c) H_2O_2 to O_2
- d) SO_3^{2-} to SO_4^{2-}
- 4. Write balanced equations for the following redox reactions:
- a) MnO_4 with Fe^{2+}
- b) $Cr_2O_7^{2-}$ with H_2O_2
- c) VO_2^+ to V^{2+} with Zn
- d) VO_2^+ to VO^{2+} with SO_3^{2-}
- 5. Write half-equations to show the following processes in excess alkali. State in each case whether oxidation or reduction is taking place.
- a) O₂ to OH⁻
- b) Cr^{3+} to CrO_4^{2-}
- c) H₂O₂ to OH⁻
- d) MnO₄ to MnO₂