

(Part-I)

2. Write short answers to any Six (6) questions: (12)

(i) If $B = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$, then verify that $(B^t)^t = B$.

Ans $B = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$

$$B^t = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$

$$(B^t)^t = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} = B$$

$$\therefore (B^t)^t = B$$

(ii) If $\begin{bmatrix} a+3 & 4 \\ 6 & b-1 \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ 6 & 2 \end{bmatrix}$, then find a, b.

Ans $\begin{bmatrix} a+3 & 4 \\ 6 & b-1 \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ 6 & 2 \end{bmatrix}$

$$a+3 = -3$$

$$a = -3 - 3$$

$$a = -6$$

$$b-1 = 2$$

$$b = 2 + 1$$

$$b = 3$$

(iii) Simplify: $5^{2^3} \div (5^2)^3$

Ans $= 5^{2^3} \div (5^2)^3$

$$= 5^8 \div 5^6$$

$$= 5^{8-6}$$

$$= 5^2$$

$$= 25$$

(iv) Evaluate: i^{50}

Ans $(i)^{50}$

$$= i^{48} \cdot i^2$$

$$= (i^4)^{12} \cdot i^2$$

$$= [(i^2)^2]^{12} \cdot i^2$$

$$= [(-1)^2]^{12} \times -1 = (1)^{12} \times -1$$

$$\text{we know } i^2 = -1 \quad i^4 = 1$$

$$= 1 \times -1$$

$$= -1$$

(v) Find the value of x $\log_{625} 5 = \frac{1}{4} x$.

Ans $\log_{625} 5 = \frac{1}{4} x$

$$(625)^{1/4x} = 5$$

$$(5^4)^{1/4x} = 5^1$$

$$5^x = 5^1$$

$$x = 1$$

$$\therefore (a^m)^n = a^{mn}$$

(vi) Express the given number in scientific notation:
416.9

Ans $416.9 = 4.169 \times 100$
 $= 4.169 \times 10^2$

(vii) Simplify the given expression:

$$\frac{(x+y)^2 - 4xy}{(x-y)^2}$$

Ans $\frac{(x+y)^2 - 4xy}{(x-y)^2} = \frac{x^2 + y^2 + 2xy - 4xy}{x^2 + y^2 - 2xy}$
 $= \frac{x^2 + y^2 - 2xy}{x^2 + y^2 - 2xy} = 1$

(viii) Simplify: $\sqrt{21} \times \sqrt{7} \times \sqrt{3}$

Ans $\sqrt{21} \times \sqrt{7} \times \sqrt{3} = \sqrt{21 \times 7 \times 3}$
 $= \sqrt{3 \times 7 \times 7 \times 3}$
 $= \sqrt{3^2 \times 7^2}$
 $= 3 \times 7$
 $= 21$

(ix) Factorize: $4x^2 - 16y^2$

Ans $4x^2 - 16y^2$
 $= 4(x^2 - 4y^2)$
 $= 4((x)^2 - (2y)^2)$
 $\therefore a^2 - b^2 = (a + b)(a - b)$
 $= 4(x + 2y)(x - 2y)$

3. Write short answers to any Six (6) questions: (12)

(i) Find H.C.F: $102xy^2z$, $85x^2yz$, $187xyz^2$

Ans

Factorization of $102xy^2z = 2 \times 3 \times 17 \times x \times y \times z$
// // // $85x^2yz = 5 \times 17 \times x \times x \times y \times z$
// // // $187xyz^2 = 11 \times 17 \times x \times y \times z \times z$

Common factors = 17, x, y, z

$$\begin{aligned} \text{H.C.F} &= 17 \times x \times y \times z \\ &= 17xyz \end{aligned}$$

(ii) Solve the equation: $\sqrt{\frac{x+1}{2x+5}} = 2$, $x \neq -\frac{5}{2}$.

Ans

$$\sqrt{\frac{x+1}{2x+5}} = 2$$

or $\left(\frac{x+1}{2x+5}\right)^{1/2} = 2$

Squaring both sides,

$$\begin{aligned} \left(\frac{x+1}{2x+5}\right)^{1/2} &= (2)^2 \\ \frac{x+1}{2x+5} &= 4 \end{aligned}$$

Multiply by $2x+5$ on both sides,

$$x+1 = 4 \times (2x+5)$$

$$8x+20 = x+1$$

$$8x-x = 1-20$$

$$7x = -19$$

$$x = -\frac{19}{7}$$

(iii) Solve for x $|2x+5| = 11$

Ans

$$+(2x+5) = 11 \quad \text{or} \quad -(2x+5) = 11$$

$$2x+5 = 11 \quad \text{or} \quad 2x+5 = -1$$

$$2x = 11-5 \quad \text{or} \quad 2x = -11-5$$

$$2x = 6 \quad \text{or} \quad 2x = -16$$

$$x = 3 \quad \text{or} \quad x = -8$$

Therefore, 3, -8 are the solutions of the given equation,
or S.S = {3, -8}.

(iv) Writing in the form of $y = mx + c$ find the value of m and c : $x - 2y = -2$.

Ans

$$x - 2y = -2$$

$$-2y = -x - 2$$

$$\frac{-2y}{-2} = -\frac{x}{-2} - \frac{2}{-2}$$

$$y = \frac{1}{2}x + 1$$

$$y = mx + c$$

By comparison,

$$\Rightarrow m = \frac{1}{2}, c = 1.$$

(v) Verify whether the point $(0, 0)$ lies on the line $2x - y + 1 = 0$ or not.

Ans

$$2x - y + 1 = 0$$

$$\text{or } y = 2x + 1$$

Putting $x = 0$ and $y = 0$ in this equation

$$0 = 2(0) + 1$$

$$0 = +1$$

which is impossible.

Therefore $(0, 0)$ does not lie on the given line.

(vi) Find the mid-point of the line segment joining the pair of points $A(0, 0)$, $B(0, -5)$.

Ans

$$A = (0, 0) = (x_1, y_1)$$

$$B = (0, -5) = (x_2, y_2)$$

Let $M(x, y)$ is the mid-point

$$M(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)$$

$$\therefore M(x, y) = \left(\frac{0+0}{2}, \frac{0+(-5)}{2} \right)$$

$$= \left(0, \frac{-5}{2} \right) \text{ is the required mid-point.}$$

(vii) Find the distance between the points:

$$A(9, 2), B(7, 2).$$

Ans

The distance formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

From the above points,

$$x_1 = 9, x_2 = 7, y_1 = 2, y_2 = 2$$

By putting the values in the distance formula,

$$\begin{aligned}d &= \sqrt{(7 - 9)^2 + (2 - 2)^2} \\&= \sqrt{(-2)^2 + (0)^2} \\&= \sqrt{4} \\d &= 2\end{aligned}$$

(viii) If $\triangle ABC \cong \triangle LMN$, find the value of x :

Ans As $\triangle ABC \cong \triangle LMN$

$$m\angle A = m\angle L = 40^\circ \text{ and}$$

$$m\angle B = m\angle M = 80^\circ \text{ and}$$

$$m\angle N = m\angle C$$

$$\text{So, } x^\circ = 60^\circ$$

(ix) If $LMNP$ is a parallelogram, find the values of m , n :

Ans From opposite sides of || gram

$$4m + n = 10 \quad (1)$$

$$8m - 4n = 8 \quad (2)$$

Multiplying eq. (1) by '4' and adding in eq. (2),

$$16m + 4n = 40$$

$$8m - 4n = 8$$

$$\begin{array}{r} 24m \\ \hline 48 \end{array}$$

$$m = \frac{48}{24}$$

$$m = 2$$

By putting $m = 2$ in eq. (1), we get

$$4(2) + n = 10$$

$$8 + n = 10$$

$$n = 10 - 8$$

$$\boxed{n = 2}$$

4. Write short answers to any Six (6) questions: (12)

(i) Define ratio.

Ans Comparison of two similar type of quantities having same units of quantities and same units is called ratio. It is expressed as; $a : b$ or $\frac{a}{b}$. For example, $2 : 3$.

(ii) In equilateral triangle ABC, \overline{AD} is bisector of angle A, then find the value of x° , y° and z° :

Ans As ABC is an equilateral triangle, so

$$\angle A = \angle B = \angle C = 60^\circ$$

$$x^\circ = y^\circ = \frac{60^\circ}{2} = 30^\circ$$

From figure $z^\circ = C^\circ$

But $C = 60^\circ$

So, $z^\circ = 60^\circ$ and $x^\circ = 30^\circ$, $y^\circ = 30^\circ$

(iii) What will be the angle for shortest distance from an outside point to the line?

Ans

As the shortest distance from a point outside to a line is the perpendicular distance. So the angle is 90° .

(iv) Verify that the Δ having the measure of sides is right angled:

$$a = 5 \text{ cm}, b = 12 \text{ cm}, c = 13 \text{ cm}$$

Ans By Pythagoras theorem,

$$(\text{Hypotenuse})^2 = (\text{Perpendicular})^2 + (\text{Base})^2$$

$$\bullet \quad (13)^2 = 5^2 + 12^2$$

$$169 = 25 + 144$$

$$169 = 169$$

Hence verified.

(v) Find the value of x in the figure:

Ans As $(\text{Hyp})^2 = (\text{Base})^2 + (\text{Perp})^2$

$$(10)^2 = (x)^2 + (6)^2$$

$$100 = x^2 + 36$$

$$\bullet \quad 100 - 36 = x^2$$

$$\Rightarrow x^2 = 64$$

$$x = 8 \text{ cm}$$

(vi) Find the area of figure:

Ans Length of rectangle = 6 cm = l

Width of // // = 3 cm = w

$$\text{Area} = l \times w$$

$$w = \text{Area of } // // = 6 \times 3$$

$$= 18 \text{ cm}^2$$

(vii) Define area of the figure.

Ans The region enclosed by the boundary of the closed figure is called area of a figure.

(viii) Construct $\triangle ABC$ in which: $m\overline{AB} = 2.5 \text{ cm}$,
 $m\angle A = 30^\circ$, $m\angle B = 105^\circ$.

Ans

$\triangle ABC$ is the required triangle.

(ix) Define circumcentre.

Ans The point of concurrency of the perpendicular bisectors of the sides of a triangle is called its circumcenter.

(Part-II)

NOTE: Attempt THREE (3) questions in all. But question No. 9 is Compulsory.

Q.5.(a) Solve the system of linear equations by using Cramer's rule: (4)

$$2x - 2y = 4$$

$$3x + 2y = 6$$

Ans For Answer see Paper 2017 (Group-I), Q.5.(a).

(b) Simplify: $\left(\frac{a^p}{a^q}\right)^{p+q} \cdot \left(\frac{a^q}{a^r}\right)^{q+r} \div 5(a^p \cdot a^r)^{p-r}$, $a \neq 0$. (4)

Ans

$$\begin{aligned} & \left(\frac{a^p}{a^q}\right)^{p+q} \cdot \left(\frac{a^q}{a^r}\right)^{q+r} \div 5(a^p \cdot a^r)^{p-r} \\ &= \frac{(a^{p-q})^{p+q} \cdot (a^{q-r})^{q+r}}{5(a^{p+r})^{p-r}} \\ &= \frac{a^{(p-q)(p+q)} \cdot a^{(q-r)(q+r)}}{5 \cdot a^{(p+r)(p-r)}} \end{aligned}$$

Using $(a - b)(a + b) = a^2 - b^2$

$$= \frac{a^{p^2-q^2} \cdot a^{q^2-r^2}}{5a^{p^2-r^2}}$$

$$\begin{aligned}
 &= \frac{1}{5} a^{p^2-q^2+q^2-r^2-p^2+r^2} \\
 &= \frac{1}{5} a^0 \\
 &= \frac{1}{5} \times 1 \\
 &= \frac{1}{5}
 \end{aligned}
 \quad \therefore a^0 = 1$$

Q.6.(a) Use log table to find the value of : $\sqrt[3]{25.47}$. (4)

Ans $\sqrt[3]{25.47}$

$$\begin{aligned}
 \text{Let } x &= \sqrt[3]{25.47} \\
 &= (25.47)^{1/3}
 \end{aligned}$$

Applying log on both sides,

$$\begin{aligned}
 \log x &= \log (25.47)^{1/3} \\
 &= \frac{1}{3} \log (25.47) \\
 &= \frac{1}{3} (1.4060)
 \end{aligned}$$

$$\log x = 0.4687$$

Taking Antilog,

$$\begin{aligned}
 x &= \text{Antilog } 0.4687 \\
 &= 2.942
 \end{aligned}$$

$$\text{So, } \sqrt[3]{25.47} = 2.942$$

(b) If $x + y + z = 12$ and $x^2 + y^2 + z^2 = 64$, then find the value of $xy + yz + zx$. (4)

Ans For Answer see Paper 2018 (Group-I), Q.6.(b).

Q.7.(a) Factorize: $x^2 - y^2 - 4xz + 4z^2$ (4)

Ans $x^2 - y^2 - 4xz + 4z^2$

Re-arranging

$$\begin{aligned}
 &x^2 - 4xz + 4z^2 - y^2 \\
 &= [x^2 - 2(x)(2z) + (2z)^2] - y^2 \\
 &\quad \therefore a^2 - 2ab + b^2 = (a - b)^2 \\
 &= (x - 2z)^2 - (y)^2
 \end{aligned}$$

$$a^2 - b^2 = (a + b)(a - b)$$

$$= (x - 2z + y)(x - 2z - y)$$

$$= (x + y - 2z)(x - y - 2z)$$

b) Find the H.C.F. by the division method: (4)

$x^3 + 3x^2 - 16x + 12, x^3 + x^2 - 10x + 8$

Ans $x^3 + x^2 - 10x + 8$

$x^3 + 3x^2 - 16x + 12$	1
$\pm x^3 \pm x^2 \mp 10x \pm 8$	
$2x^2 - 6x + 4$	
$x^2 - 3x + 2$	

$x^3 - 3x + 2$

$x^3 + x^2 - 10x + 8$	x + 4
$\pm x^3 \mp 3x^2 \pm 2x$	
$4x^2 - 12x + 8$	
$\pm 4x^2 \pm 12x \pm 8$	
x	

$$\text{H.C.F} = x^2 - 3x + 2$$

Q.8.(a) Solve the equation: $\frac{5(x-3)}{6} - x = 1 - \frac{x}{9}$. (4)

Ans For Answer see Paper 2017 (Group-II), Q.8.(a).

b) Construct the $\triangle ABC$ and draw the perpendicular bisectors of its sides: (4)

$$m\overline{BC} = 2.9 \text{ cm}, m\angle A = 30^\circ, m\angle B = 60^\circ$$

Ans

Steps of Construction:

1. Take a line segment $m\overline{BC} \approx 2.9$ cm.
2. Draw an angle $\angle CBW = 60^\circ$ at B.
3. We find $m\angle C$ first and draw
$$\begin{aligned}m\angle C &= 180^\circ - m\angle B - m\angle A \\&= 180^\circ - 60^\circ - 30^\circ \\&= 90^\circ\end{aligned}$$
4. Draw an angle $\angle C = 90^\circ$ at point C.
5. Which intersects $m\angle B$ at A.
6. ABC is a required \triangle .
7. \overleftrightarrow{RS} , \overleftrightarrow{UV} and \overleftrightarrow{PQ} are the right bisectors of \overline{AC} , \overline{AB} and \overline{BC} , respectively.
8. \overleftrightarrow{PQ} , \overleftrightarrow{RS} and \overleftrightarrow{UV} are concurrent at point O.

Q.9. Prove that any point on the right bisector of a line segment is equidistant from its end points. (8)

Ans.

Given:

A line LM intersects the line segment AB at the point C such that $LM \perp AB$ and $AC \cong BC$. P is a point on LM.

To Prove:

$$\overline{PA} \cong \overline{PB}$$

Construction:

Join P to the points A and B.

Proof:

Statements	Reasons
In $\triangle ACP \leftrightarrow \triangle BCP$	
$\overline{AC} \cong \overline{BC}$	given
$\angle ACP \cong \angle BCP$	given $\overline{PC} \perp \overline{AB}$, so that each \angle at C = 90°
$\overline{PC} \cong \overline{PC}$	common
$\therefore \triangle ACP \cong \triangle BCP$	S.A.S. postulate
Hence $\overline{PA} \cong \overline{PB}$	(corresponding sides of congruent triangles)

OR

Prove that any point on the bisector of an angle is equidistant from its arms.

Ans For Answer see Paper 2016 (Group-I) Q.9.

