Лабораторная работа № 2

	1.	Найти производную полинома (MatLab + Python)	2
	2.	Методом хорд найти наибольший из корней уравнения (MatLab + Python)	2
	3.	Методом Ньютона найти наибольший из корней уравнения (MatLab + Python)	2
	4.	Найти значение полинома от двух переменных в точке по схеме Горнера (MatLab)	2
	5.	Найти частные производные полинома от двух переменных (MatLab)	3
неизв	6. естны	Найти комплексный корень уравнения методом Ньютона для систем уравнений с двуг ми (MatLab)	
	Ссыл	тки	3

1. Найти производную полинома (MatLab + Python)

$$(x^n)' = n \cdot x^{n-1}$$

Входные данные (полином):	Выходные данные (полином):
[1,1,1,1,1,1]	[5,4,3,2,1]
[3,7,-5,-2,4]	[12,21,-10,-2]
[-2,5]	[-2]
[3]	[] или [0]

2. Методом хорд найти наибольший из корней уравнения (MatLab + Python)

(Демидович и Марон 1966) Глава 4, §4, стр. 119.

Для данного метода необходимо отделить корни уравнения. Для этого необходимо найти знак функции за верхней границей корней уравнения. Затем с шагом -0.5 происходит проверка значения функции, пока она не изменит знак. Далее в этом интервале методом хорд ищется корень уравнения с точностью 0.001.

Входные данные (полином, верхняя граница):		Корень полинома:
[1, -4, -42, 104, 361, -420]	9	7
[10,42,-137,-604,-615,-100]	5	4
[1, -2, -39, 148, -140]	8	5
[1, -13,47, -23 - 48,36]	13	6
[1,-1,-3,-9]	3	3

3. Методом Ньютона найти наибольший из корней уравнения (MatLab + Python)

(Демидович и Марон 1966) Глава 4, §5, стр. 123.

Интервал поиска корня определяется тем же образом, что и в предыдущей задаче. С той же самой точностью и для тех же входных данных.

4. Найти значение полинома от двух переменных в точке по схеме Горнера (MatLab)

Полином от двух переменных представляется в виде матрицы размерности $[m \times n]$. Например: $-x^3y^2 + 4x^2y^2 + 2x^2y + x^3 - 3y^2 + 5xy - 2y + 3$ представим в виде матрицы.

$$\begin{bmatrix} -1 & 4 & 0 & -3 \\ 0 & 2 & 5 & -2 \\ 1 & 0 & 0 & 3 \end{bmatrix}$$

Для нахождения значения непосредственное возведение в степень использовать нельзя, только схему Горнера.

Входные данные (полином, точка (x_0, y_0) :	Выходные данные (число):	
[8,0,3,8;1,7,1,4], [-1,2]	3	
[-3,2,3;2,-1,-4;2,2,4;1,-4,4], [1,-3]	-104	
[3.2,4.5;2.3,-4.5], [2,1]	11	

5. Найти частные производные полинома от двух переменных (MatLab)

Входные данные:	Выходные данные $\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$:		
[-1,4,3;1,3,-4;-4,1,-3]	[-2,4;2,3;-8,1]	[-2,8,6;1,3,-4]	
[4,3,0,-3;1,1,3,-4]	[12,6,0; 3,2,3]	[4,3,0,-3]	
[3, -4; 0, -1; -2, -4]	[3;0;-2]	[6, -8; 0, -1]	

6. Найти комплексный корень уравнения методом Ньютона для систем уравнений с двумя неизвестными (MatLab)

(Демидович и Марон 1966) Глава 4, §10-11, стр. 152.

Входные данные (действительная матрица, комплексная	Корень (действительная часть,
матрица):	комплексная часть:
[0,0,-2;0,0,0;2,2,3],[0,0,0;0,4,2;0,0,0]	-0.5000, 1.1180
[0,0,-5;0,0,0;5,7,10],[0,0,0;0,10,7;0,0,0]	-0.7000, 1.2288
[0,0,-2;0,0,0;2,3,7],[0,0,0;0,4,3;0,0,0]	-0.7500, 1.7139

Ссылки

Демидович, Борис Павлович, и Исаак Абрамович Марон. *Основы вычислительной математики*. Москва: Наука, 1966.