Exercise 3.12

Exercise 3.13

where $i=1,\ldots,D$. Because Σ is a real, symmetric matrix, its eigenvalues will be real, and its eigenvectors can be chosen to form an orthonormal set, so that

$$\mathbf{u}_i^{\mathrm{T}} \mathbf{u}_j = I_{ij} \tag{3.29}$$

where I_{ij} is the i, j element of the identity matrix and satisfies

$$I_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise.} \end{cases}$$
 (3.30)

The covariance matrix Σ can be expressed as an expansion in terms of its eigenvectors in the form

$$\Sigma = \sum_{i=1}^{D} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}}$$
 (3.31)

and similarly the inverse covariance matrix $\mathbf{\Sigma}^{-1}$ can be expressed as

$$\Sigma^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}}.$$
 (3.32)

Substituting (3.32) into (3.27), the quadratic form becomes

$$\Delta^2 = \sum_{i=1}^D \frac{y_i^2}{\lambda_i} \tag{3.33}$$

where we have defined

$$y_i = \mathbf{u}_i^{\mathrm{T}}(\mathbf{x} - \boldsymbol{\mu}). \tag{3.34}$$

We can interpret $\{y_i\}$ as a new coordinate system defined by the orthonormal vectors \mathbf{u}_i that are shifted and rotated with respect to the original x_i coordinates. Forming the vector $\mathbf{y} = (y_1, \dots, y_D)^T$, we have

$$\mathbf{y} = \mathbf{U}(\mathbf{x} - \boldsymbol{\mu}) \tag{3.35}$$

Appendix A

where **U** is a matrix whose rows are given by $\mathbf{u}_i^{\mathrm{T}}$. From (3.29) it follows that **U** is an *orthogonal* matrix, i.e., it satisfies $\mathbf{U}\mathbf{U}^{\mathrm{T}} = \mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{I}$, where **I** is the identity matrix.

The quadratic form, and hence the Gaussian density, is constant on surfaces for which (3.33) is constant. If all the eigenvalues λ_i are positive, then these surfaces represent ellipsoids, with their centres at μ and their axes oriented along \mathbf{u}_i , and with scaling factors in the directions of the axes given by $\lambda_i^{1/2}$, as illustrated in Figure 3.3.

For the Gaussian distribution to be well defined, it is necessary for all the eigenvalues λ_i of the covariance matrix to be strictly positive, otherwise the distribution cannot be properly normalized. A matrix whose eigenvalues are strictly positive is said to be *positive definite*. When we discuss latent variable models, we will encounter Gaussian distributions for which one or more of the eigenvalues are zero, in

Chapter 16