Engineering Electromagnetics

Lecture 30

16/11/2023

by

Debolina Misra

Department of Physics IIITDM Kancheepuram, Chennai, India

Bound currents

The first term looks just like the potential of a volume current,

$$\mathbf{J}_b = \mathbf{\nabla} \times \mathbf{M}_b$$

while the second looks like the potential of a surface current,

$$\mathbf{K}_b = \mathbf{M} \times \mathbf{\hat{n}}$$

where $\hat{\mathbf{n}}$ is the normal unit vector. With these definitions,

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{\mathcal{V}} \frac{\mathbf{J}_b(\mathbf{r}')}{\imath} \, d\tau' + \frac{\mu_0}{4\pi} \oint_{\mathcal{S}} \frac{\mathbf{K}_b(\mathbf{r}')}{\imath} \, da'.$$

What this means is that the potential (and hence also the field) of a magnetized object is the same as would be produced by a volume current $\mathbf{J}_b = \nabla \times \mathbf{M}$ throughout the material, plus a surface current $\mathbf{K}_b = \mathbf{M} \times \hat{\mathbf{n}}$, on the boundary.

Total current

In Sect. 6.2, we found that the effect of magnetization is to establish bound currents $\mathbf{J}_b = \nabla \times \mathbf{M}$ within the material and $\mathbf{K}_b = \mathbf{M} \times \hat{\mathbf{n}}$ on the surface. The field due to magnetization of the medium is just the field produced by these bound currents. We are now ready to put everything together: the field attributable to bound currents, plus the field due to everything else—which I shall call the **free current**. The free current might flow through wires imbedded in the magnetized substance or, if the latter is a conductor, through the material itself. In any event, the total current can be written as

$$\mathbf{J} = \mathbf{J}_b + \mathbf{J}_f.$$

There is no new physics in Eq. 6.17; it is simply a *convenience* to separate the current into these two parts, because they got there by quite different means:

free current is there because somebody hooked up a wire to a battery—it involves actual transport of charge; the bound current is there because of magnetization—it results from the conspiracy of many aligned atomic dipoles.

$$\frac{1}{\mu_0}(\nabla \times \mathbf{B}) = \mathbf{J} = \mathbf{J}_f + \mathbf{J}_b = \mathbf{J}_f + (\nabla \times \mathbf{M})$$

$$\nabla \times \left(\frac{1}{\mu_0} \mathbf{B} - \mathbf{M}\right) = \mathbf{J}_f.$$

The quantity in parentheses is designated by the letter **H**:

$$\mathbf{H} \equiv \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}.$$

$$\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M})$$

$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$$

In terms of **H**, then, Ampère's law reads

$$\nabla \times \mathbf{H} = \mathbf{J}_f,$$

$$\oint \mathbf{H} \cdot d\mathbf{l} = I_{f_{\text{enc}}}$$

Susceptibility and permeability

$$\mathbf{M} = \chi_m \mathbf{H} \implies \text{linear media}$$

The constant of proportionality χ_m is called the **magnetic susceptibility**; it is a dimensionless quantity that varies from one substance to another—positive for paramagnets and negative for diamagnets. Typical values are around 10^{-5} (see Table 6.1).

$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}) = \mu_0(1 + \chi_m)\mathbf{H}$$
 for linear media.

Thus **B** is *also* proportional to **H**:

$$\mathbf{B} = \mu \mathbf{H},$$
 where $\mu \equiv \mu_0 (1 + \chi_m)$

 μ is called the **permeability** of the material.⁹ In a vacuum, where there is no matter to magnetize, the susceptibility χ_m vanishes, and the permeability is μ_0 . That's why μ_0 is called the **permeability of free space**.

► Calculate the magnetization of a magnetic material with length 5 cm and cross sectional area 2 cm² and the net magnetic moment of the material is 1Am².

Magnetization M = m/V m=mag. moment =1 Am² and V=volume=Area x Length

- A coil of wire 0.25 m long and having 400 turns carriers a current of 15 A. Find magnitude of magnetic field strength. Compute the flux density, B, if the coil is in vacuum.
- \rightarrow H = nI
- ► I = 15 A
- \rightarrow n= N/L = 400/0.25
- $B = \mu_0 H = \mu_0 n I$

The magnetic flux density within a bar of some material is 0.63 Tesla at an H field of 5 X 10⁵ A/m. Compute the following for this material: (a) Magnetic permeability, (b) Magnetic susceptibility, (c) Type of magnetism?

The magnetic flux density within a bar of some material is 0.63 Tesla at an H field of 5 X 10⁵ A/m. Compute the following for this material: (a) Magnetic permeability, (b) Magnetic susceptibility, (c) Type of magnetism?

(a) Magnetic permeability,
$$\mu = \frac{B}{H} = \frac{0.63}{5 \times 10^5} = 0.126 \times 10^{-5} H/m$$

(b) Magnetic susceptibility,
$$\chi = \mu_r - 1 = \frac{\mu}{\mu_0} - 1 = \frac{0.126 \ X \ 10^{-5}}{4 \ \pi X \ 10^{-7}} - 1 = 1.003185 - 1 = 0.003185$$

(c) Type of magnetism: Paramagnetism since the magnetic suscptibility is positive and low in magnitude.

Example 6.2. A long copper rod of radius R carries a uniformly distributed (free) current I (Fig. 6.19). Find \mathbf{H} inside and outside the rod.

Solution-2

Applying Eq. 6.20 to an Amperian loop of radius s < R,

$$H(2\pi s) = I_{f_{\text{enc}}} = I \frac{\pi s^2}{\pi R^2},$$

so, inside the wire,

Outside the wire

$$\mathbf{H} = \frac{I}{2\pi R^2} s \,\hat{\boldsymbol{\phi}} \qquad (s \le R).$$

$$\mathbf{H} = \frac{I}{2\pi s} \,\hat{\boldsymbol{\phi}} \qquad (s \ge R).$$

In the latter region (as always, in empty space) $\mathbf{M} = \mathbf{0}$, so

$$\mathbf{B} = \mu_0 \mathbf{H} = \frac{\mu_0 I}{2\pi s} \,\hat{\boldsymbol{\phi}} \qquad (s \ge R),$$

Thank You