Statistical Estimation	Homework 5
ASEN 5044 Fall 2018	Due Date: October 18, 2018
Name: Andrew Kramer	PhD Student

Problem 1

Consider two zero-mean uncorrelated random variables W and V with standard deviations σ_w σ_v , respectively. What is the standard deviation of the random variable X = W + V?

The variance of X can be expressed as

$$\begin{split} \sigma_X^2 &= E(X^2) - E(X)^2 \\ &= E((W+V)^2) - E(W+V)^2 \\ &= E(W^2 + 2WV + V^2) - (E(W) + E(V))^2 \\ &= E(W^2) + 2E(WV) + E(V^2) - E(W)^2 - 2E(W)E(V) - E(V)^2 \end{split}$$

Because W and V are uncorrelated, E(WV) = E(W)E(V). This means the above expression reduces to

$$\sigma_X^2 = E(W^2) - E(W)^2 + E(V^2) - E(V)^2$$

= $\sigma_W^2 + \sigma_V^2$

So the standard deviation of X is $\sqrt{\sigma_W^2 + \sigma_V^2}$.

Problem 2

Consider two scalar RVs X and Y.

Part a

Prove that if X and Y are independent their correlation coefficient $\rho = 0$.

For independent random variables E(XY) = E(X)E(Y). Because of this their covariance $C_{XY} = E(XY) - E(X)E(Y) = 0$. This means their correlation coefficient is

$$\rho = \frac{C_{XY}}{\sigma_x \sigma_y} = \frac{0}{\sigma_x \sigma_y} = 0$$

Part b

Find an example of two RVs that are not independent but have a correlation coefficient of zero.

Assume $X = \mathcal{U}(-1,1)$ and $Y = X^2$. Because $\rho = \frac{C_{XY}}{\sigma_X \sigma_Y}$ we just need to show that

$$C_{XY} = E(XY) - E(X)E(Y) = 0$$

to show $\rho = 0$. From the definition of the uniform distribution we know that $E(X) = \frac{1}{2}(-1+1) = 0$, so we know E(X)E(Y) = 0. We can now find

$$E(XY) = E(X^{3})$$

$$= \int_{-1}^{1} x^{3} dx$$

$$= \frac{1}{4} x^{4} \Big|_{-1}^{1}$$

$$= \frac{1}{4} - \frac{1}{4} = 0$$

So because $C_{XY} = E(XY) - E(X)E(Y) = 0 - 0E(Y) = 0$, ρ must also be equal to zero.

Part c

Prove that if Y is a linear function of X then $\rho = \pm 1$.

To show that $\rho = \pm 1$ when Y is a linear function of X we simply need to show that $|C_{XY}| = |\sigma_X \sigma_Y|$. We can do this by finding E(Y), $E(Y^2)$, E(XY), and σ_Y in terms of E(X), $E(X^2)$, and σ_X .

$$E(X) = \int_{-\infty}^{\infty} X dX = \frac{1}{2} X^{2} \Big|_{-\infty}^{\infty}$$

$$E(X^{2}) = \int_{-\infty}^{\infty} X^{2} dX = \frac{1}{3} X^{3} \Big|_{-\infty}^{\infty}$$

$$E(Y) = E(AX) + E(B)$$

$$= AE(X) + B$$

$$E(Y^{2}) = E((AX + B)^{2})$$

$$= E(A^{2}X^{2} + 2ABX + B^{2})$$

$$= A^{2}E(X^{2}) + 2ABE(X) + B^{2}$$

$$E(XY) = E(AX^{2} + BX)$$

$$= AE(X^{2}) + BE(X)$$

$$\sigma_{Y} = E(Y^{2}) - (E(Y))^{2}$$

$$= A^{2}E(X^{2}) + 2ABE(X) + B^{2} - (AE(X) + B)^{2}$$

$$= A^{2}E(X^{2}) + 2ABE(X) + B^{2} - A^{2}(E(X))^{2} - 2ABE(X) - B^{2}$$

$$= A^{2}(E(X^{2}) - (E(X)^{2}))$$

$$= A^{2}\sigma_{Y}^{2}$$

Given these preliminaries we can find

$$C_{XY} = E(XY) - E(X)E(Y)$$

$$= AE(X^2) + BE(X) - E(X)(AE(X) + B)$$

$$= AE(X^2) + BE(X) - AE(X)^2 - BE(X)$$

$$= A(E(X^2) - E(X)^2)$$

$$= A\sigma_X^2$$

$$\sigma_X \sigma_Y = \sigma_X \sqrt{A^2 \sigma_X^2}$$

$$= A\sigma_X^2$$

All of this shows that when Y is a linear function of X,

$$\rho = \frac{C_{XY}}{\sigma_X \sigma_Y} = \frac{A \sigma_X^2}{A \sigma_X^2} = 1$$

Problem 3

Consider the following function

$$f_{XY} = \begin{cases} ae^{-2x}e^{-3y} & x > 0, \ y > 0\\ 0 & \text{otherwise} \end{cases}$$

Part a

Find the value of a so that $f_{XY}(x,y)$ is a valid joint probability density function.

Because $\int_X \int_Y f_{XY} dy dx = 1$ we can find a by the following:

$$1 = \int_{-\infty}^{\infty} f_{XY} dy$$

$$= ae^{-2x} \int_{0}^{\infty} e^{-3y} dy$$

$$= -\frac{a}{3}e^{-2x}e^{-3y}\Big|_{0}^{\infty}$$

$$= \frac{a}{3}e^{-2x}$$

$$\int_{0}^{\infty} \frac{a}{3}e^{-2x} dx = -\frac{a}{6}e^{-2x}\Big|_{0}^{\infty}$$

$$= \frac{a}{6}$$

$$a = 6$$

Part b

Calculate \bar{x} and \bar{y} .

To find E(X) and E(Y) we do the following:

$$E(X) = \int_{-\infty}^{\infty} x f_X dx$$

$$= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f_{XY} dy dx$$

$$= \int_{-\infty}^{\infty} 2x e^{-2x} dx$$

$$= \frac{-2x - 1}{2} e^{-2x} \Big|_{0}^{\infty}$$

$$= \frac{1}{2}$$

$$E(Y) = \int_{-\infty}^{\infty} y f_Y dy$$

$$= \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f_{XY} dx dy$$

$$= \int_{-\infty}^{\infty} 2y e^{-3y} dy$$

$$= \frac{-3y - 1}{3} e^{-3y} \Big|_{0}^{\infty}$$

$$= \frac{1}{3}$$

Part c

Calculate $E(X^2)$, $E(Y^2)$, and E(XY).

$$E(X^{2}) = \int_{X} x^{2} f_{X} dx$$

$$= 2 \int_{X} x^{2} e^{-2x} dx$$

$$= \frac{-2x^{2} - 2x - 1}{2} e^{-2x} \Big|_{0}^{\infty}$$

$$= \frac{1}{2}$$

$$E(Y^{2}) = \int_{Y} y^{2} f_{Y} dy$$

$$= 3 \int_{Y} y^{2} e^{-3y} dy$$

$$= \frac{-9y^{2} - 6y - 2}{9} e^{-3y} \Big|_{0}^{\infty}$$

$$= \frac{2}{9}$$

$$E(XY) = \int_{Y} \int_{X} xy f_{XY} dx dy$$

$$= 6 \int_{Y} \int_{X} e^{-2x} e^{-3y} dx dy$$

$$= 6 \int_{Y} \left[\frac{-2x - 1}{4} e^{-2x} y e^{-3y} \right]_{x=0}^{\infty} dy$$

$$= \frac{6}{4} \int_{Y} y e^{-3y} dy$$

$$= \frac{6}{4} \frac{-3y - 1}{9} e^{-3y} \Big|_{y=0}^{\infty}$$

$$= \frac{1}{6}$$

Part d

Calculate the autocorrelation matrix of the random vector $[X\ Y]^T.$

$$R_{XY} = \begin{bmatrix} E(X^2) & E(XY) \\ E(YX) & E(Y^2) \end{bmatrix} = \begin{bmatrix} 1/2 & 2/9 \\ 2/9 & 1/6 \end{bmatrix}$$

Part e

Calculate the variance σ_x^2 and σ_y^2 and the covariance C_{XY} .

$$\sigma_x^2 = E(X^2) - E(X)^2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

$$\sigma_y^2 = E(Y^2) - E(Y)^2 = \frac{2}{9} - \frac{1}{9} = \frac{1}{9}$$

$$C_{XY} = E(XY) - E(X)E(Y) = \frac{1}{6} - \frac{1}{6} = 0$$

Part f

Calculate the autocovariance matrix of the random vector $[X \ Y]^T$.

$$C = \begin{bmatrix} \sigma_X^2 & C_{XY} \\ C_{XY} & \sigma_Y^2 \end{bmatrix} = \begin{bmatrix} 1/4 & 0 \\ 0 & 1/9 \end{bmatrix}$$

Part g

Calculate the correlation coefficient between X and Y.

Because the covariance $C_{XY} = 0$ the correlation coefficient $\rho = \frac{C_{XY}}{\sigma_x \sigma_y}$ is also equal to zero.

Problem 4

Prove the following two results used in lectire to derive the theoretical expectations for the Gaussian sampling experiment where $x \sim \mathcal{N}(\bar{x}, \sigma_x^2)$, $e \sim \mathcal{N}(0, \sigma_e^2)$, and y = cx + d.

Part a

$$cov(X, Y) = E[(x - \bar{x})(y - \bar{y})] = E[XY] - \bar{x}\bar{y}$$

Part b

$$var(Y) = E[(y - \bar{y})^2] = c^2 \sigma_x^2 + d^2 \sigma_e^2$$

Problem 5

Consider two continuous random variables x and y, where $y = \ln(x)$ and x > 0. Derive analytical closed-form expressions for each of the following:

Part a

p(y) if $p(x) = \mathcal{U}[a, b]$ (i.e. if x has a uniform pdf for $0 < a \le x \le b$)

Part b

p(y) if $p(\frac{1}{x}) = \mathcal{U}[c,d]$ (i.e. if $\frac{1}{x}$ has a uniform pdf $0 < c \le \frac{1}{x} \le d$)

Part c

p(x) if $p(y) = \mathcal{U}[l,m]$ (i.e. if y has a uniform pdf for $l \leq y \leq m)$

Part d

p(x) if $p(y) = \mathcal{N}(\mu_y, \sigma_y^2)$ (i.e. if y has a Gaussian pdf with mean μ_y and variance σ_y^2)