5/14/2019 task9

In [14]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [20]:

```
df = pd.read_csv("task9.csv", sep=";")
df = df[df.index > 0]
df
```

Out[20]:

	Проводимость	h	1	2	3	ПАВ	вода	С	lgC	sigma
1	28.1	22.333333	22.4	22.3	22.3	0.5	19.5	0.0004	-3.37	71.466667
2	63.9	20.833333	20.9	20.8	20.8	1.0	19.0	0.0009	-3.06	66.666667
3	125.5	17.333333	17.3	17.3	17.4	2.0	18.0	0.0018	-2.73	55.466667
4	195.1	13.433333	13.2	13.5	13.6	3.0	17.0	0.0029	-2.53	42.986667
5	238.0	11.733333	11.6	11.6	12.0	4.0	16.0	0.0042	-2.38	37.546667
6	200.0	11.566667	11.3	11.4	12.0	5.0	15.0	0.0055	-2.26	37.013333
7	345.0	11.233333	10.9	11.3	11.5	6.0	14.0	0.0071	-2.15	35.946667
8	392.0	11.700000	11.7	11.7	11.7	7.0	13.0	0.0089	-2.05	37.440000
9	514.0	11.400000	11.4	11.4	11.4	9.0	11.0	0.0136	-1.87	36.480000
10	557.0	11.300000	11.3	11.3	11.3	10.0	10.0	0.0166	-1.78	36.160000
11	594.0	11.166667	11.2	11.2	11.1	11.0	9.0	0.0203	-1.69	35.733333
12	625.0	11.333333	11.2	11.4	11.4	12.0	8.0	0.0249	-1.60	36.266667

5/14/2019 task9

In [21]:

```
plt.figure(figsize=(12, 6))
plt.style.use("ggplot")
plt.plot(df["C"], df["Проводимость"])
plt.scatter(df["C"], df["Проводимость"])
plt.title("Зависимость проводимости от концентрации")
plt.xlabel("C")
plt.ylabel("Проводимость (микро Сименс на см)")
```

Out[21]:

Text(0, 0.5, 'Проводимость (микро Сименс на см)')

5/14/2019 task9

In [22]:

```
plt.figure(figsize=(12, 6))
plt.style.use("ggplot")
plt.plot(np.log(df["C"]), df["sigma"])
plt.scatter(np.log(df["C"]), df["sigma"])
plt.title("Зависимость поверхностного натяжения от логарифма концентрации")
plt.xlabel("Log C")
plt.ylabel("Поверхностное натяжение")
```

Out[22]:

Text(0, 0.5, 'Поверхностное натяжение')

In [23]:

```
import scipy as sc
from scipy.stats import linregress
```

In [32]:

```
slope, intercept, r_value, p_value, std_err = linregress(np.log(df[df.index < 6]
["C"]), df[df.index < 6]["sigma"])
C = intercept
b = -slope
T = 298
R = 8.314</pre>
```

In [33]:

```
b, C
```

Out[33]:

(15.138056390131675, -43.488487250426694)