(v)
$$R_5 = \{(a, b), (b, a), (c, d), (d, e)\}$$

One-one function

Dom
$$R_5 = \{a,b,c,d\}$$

Dom $R_5 = \{a,b,d,e\}$

(vi)
$$R_4 = \{(1, 2), (2, 3), (1, 3), (3, 4)\}$$

Relation

Dom
$$R_6 = \{1,2,3\}$$

Dom $R_6 = \{2,3,4\}$

(vii)
$$R_7 =$$

one-one function

Dom
$$R_7 = \{1,2,3\}$$

Dom $R_7 = \{r,p,s\}$

Relation

Dom
$$R_8 = \{1,3,7\}$$

Dom $R_8 = \{c,a,b\}$

MISCELLANEOUS EXERCISE - 5

Q1. Multiple Choice Questions

Four possible answers are given for the following questions. Tick mark (\checkmark) the correct answer.

- (i) A collection ^f well-defined distinct objects is called
 - (a) subset

(b) power set

(c) set

- (d) none of these
- (ii) A set Q = $\left\{ \frac{a}{b} \mid a, b \in Z \land b \neq 0 \right\}$ is called a set of
 - (a) Whole numbers (b)

Natural numbers

- (c) Irrational numbers
- (d) Rational numbers

(iii)°	The diffe	rent number of ways to	o descri	he a set	g re
	(a)	1	(b)	2	ale
	(c)	3	(3)	4	
(iv)	A set wit	h no element is called	ζ- /	·	
(,	(a)	Subset	(L)	-	
	(c)	Singleton set	(b)	Empty	
(\			(d)	Super	set
(v)	The set {	$x \mid x \in W \land x \le 101$ is			
	(a)	Infinite set	(b)	Subset	
	(c)	Null set	(d)	Finite:	set
(vi)	The set h	naving only one elemen	t is calle	d	
	(a)	Nutl set	(b)	Power	set
	(c)	Singleton set	(d)	Subset	
(vii)	Power se	et of an empty set is			
	(a) φ	(b) {a}	(c) {φ,	{a}}	(d) {\phi}
(viii)	The num				
(• • • • • • • • • • • • • • • • • • •	(a)	nber of elements in pow	er set {1 (b)		5
	(c)	8	(d)	6	
(:-·\			• •	,	
(IX)		, then $\mathbf{A} \cup \mathbf{B}$ is equal to			
	(a)	A	(p)	В	C.1
	(c)	ф	(d)	none of	these
(x)		, then $A \cap B$ is equal to			
	(a) A	b) B	(c) φ		(d) none of these
(xi)	If A ⊊ B	, then A – B is equal to			
•	(a)	A	(b)	В	
	(c)	ф	(d)	B – A	
(xii)	$(A \cup B)$	∪ C is equal to			
()		$\cap (B \cup C)$	(b)	(A ∪ B)
		$A \cup (B \cup C)$	(d)		
(~!!!)	A (D .	c C) is squal to	, ,	`	,
(XIII)		∩ C) is equal to (A ∩ B) ∩ (A ∪ C)	(b)	A \(\cap \) (B	~ C)
		$(A \cap B) \cup (A \cap C)$			
	` ,	•		•	
(xiv)		B are disjoint sets, then		_	_
	(a)	A		(b)	В
	(c)	ф	•	$\mathbf{B} \cup \mathbf{A}$	
(xv)	If numbe	er of elements in set A is	3 and i	n set B	is 4, then number of elements in
	$A \times B$			<i>(</i> 1.)	•
	(a)	3		(b)	4
	(c)	12		(d)	7

(xvi)	If num	ber of	f elements	in	set	A	is	3	and	in	set	B	is	2,	then	number	of,	binary
	relation	s in A	× B is															

(a) 2^3 (c) 2^8

(b) 2^6 (d) 2^2

(xvii) The domain of $R = \{(0, 2), (2, 3), (3, 3); (3, 4)\}$ is

(a) $\{0,3,4\}$

(b) $\{0,2,3\}$

(c) $\{0,2,4\}$

(d) {2.3.4}

(xvii) The range of $R = \{(1, 3), (2, 2), (3, 1), (4, 4)\}$ is

(a) $\{1,2,4\}$

(b) {3,2,4}

(c) $\{1,2,3,4\}$

(d) {1,3,4}

(xix) Point (-1,4) lies in the quadrant

(a) I

(b) II

(c) III

(d) IV

(xx) The relation $\{(1, 2), (2, 3), (3, 3), (3, 4)\}$ is

(a) onto function

(b) into function

(c) not a function

(d) one-one function

Answers

i)	С	ii)	d	iii)	c	iv)	Ь	v)	d	
vi)	С	vii)	d	viii)	С	ix)	b	(x)	a	
xi)	C	xii)	С	xiii)	а	xiv)	d	xv)	С	
xvi)	Ь	xvii)	b	xviii)	С	xix)	Ь	(xx)	С	

Q2. Write short answers of the following questions.

(i) Define a subset and give one example.

Ans: Set A is said to be subset of a set B, denoted by $A \subseteq B$, if and only if each element of A is an element of B.

For example, if $A = \{2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5\}$ then A is subset of B.

(ii) Write all the, subsets of the set {a, b}.

Ans: Let $A = \{a, b\}$

Subsets of A are: ϕ , $\{a\}$, $\{b\}$, $\{a,b\}$

(iii) Show $A \cap B$ by Venn diagram. When $A \subseteq B$.

Ans:

(iv) Show by Venn diagram $A \cap (B \cup C)$.

Ans:

Double shaded region shows $A \cap (B \cup C)$.

(v) Define intersection of two sets.

Ans: The intersection of two sets A and B written as $A \cap B$ is the set consisting of all the common elements of a and B.

(vi) Define a function.

(vii) Define one-one function.

Ans:
$$f(x_1) = f(x_2) \Rightarrow x1 = x_2 \in A$$

Or
$$\forall x_1 \neq x_2 \in A \Rightarrow f(x_1) f(x_2)$$

(viii) Define an onto function.

Ans: A function $f: A \longrightarrow B$ is called an onto function. If every element of set B is an image of at least one element of set A i.e. Range f = B.

(ix)Define a bijective function.

Ans: A function $f: A \longrightarrow B$ is called bijective function if function f is one-one and onto.

$$f = \{(1,2), (2,3), (3,4), (4,5)\}.$$

This function is one-one because distinct element of A have distinct images in B. This is an onto function also because every element of B is the image of at least one element of A.

(x) Write De Morgan's laws.

Ans:

- (i) $(A \cap B)' = A' \cup B'$
- (ii) $(A \cup B)' = A' \cap B'$

O3. Fill in the blanks

- (i) If $A \subseteq B$, then $A \cup B =$ ____.
- (ii) If $A \cap B = \phi$ then A and B are _____.
- (iii) If $A \subseteq B$ and $B \subseteq A$ then _____.
- (iv) $A \cap (B \cup C) = \underline{\hspace{1cm}}$
- (v) $A \cup (B \cap C) = \underline{\hspace{1cm}}$
- (vi) The complement of U is _____.
- (vii)The complement of ϕ is _____.
- (viii) $A \cap A^c = \underline{\hspace{1cm}}$
 - (ix) $A \cup A^c$ _____.
 - (x) The set $\{x \mid x \in A \text{ and } x \in B\} = \underline{\hspace{1cm}}$.
 - (xi) The point (-5, -7) lies in _____ quadrant.
- (xii) The point (4, -6) lies in, quadrant.
- (xiii) The y co-ordinate of every point is _____ on-x-axis.
- (xiv) The x co-ordinate of every point is on-y-axis.
- (xv) The domain of $\{(a, b), (b, c), (c, d)\}\$ is _____.
- (xvi) The range of $\{(a, a), (b, b), (c, c)\}\$ is _____.
- (xvii) Venn-diagram was first used by _____.
- (xviii)A subset of A × A is called the _____ in A.
- (xix) If: $A \rightarrow B$ and range of f = B, then f s an _____ function.
- (xx) The relation {(a, b), (6, c), (a, d)} is _____ a function.

Answer

(i)	В	(ii)	Disjoint	(iii)	A = B
(iv)	(A∩B)	(v)	ф	(vi)	U
(vii)		(viii)	φ	(ix)	U

(x)	A\B	(xi)	III-quad	(xii)	IV quad
(xiii)	Zero	(xiv)	0	(xv)	{a, b, c}
(xvi)	{a, b, c}	(xvii)	John Venn	(xviii)	binary relation
(xix)	Onto	(xx)	Not		

SUMMARY

- ✓ A set is the well defined collection of distinct objects with some common properties:
- \checkmark Union of two sets A and B denoted by A \cup b is the set containing elements which either belong to A or to B or to both.
- Intersection of two sets A and B denoted by $A \cap B$ is the set of common elements of both A and B. In symbols $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$.
 - ✓ The set difference of B and A denoted by B A is the Set of all those elements of B which do not belong to A.
 - Complement of a set A w.r.t. universal set U denoted by $A^C = A' = U A$ contains all those elements of U which do not belong to A.
 - ✓ British mathematician John Venn (1834 1923) introduced rectangle for a universal set U and its subsets A and B as closed figures inside this rectangle.
 - An ordered pair of elements is written according to a specific order for which the order of elements is strictly maintained.
 - Cartesian product of two non-empty sets A and B denoted by A KB consists of all ordered pairs (x, y) such that $x \in A$, $y \in B$.
 - \checkmark If A and B are any two non-empty sets: then a non empty subset $R \subseteq A \times B$ is called binary relation from set A into set B.
- If A and B are two non empty sets, then relation $f: A \to B$ is called a function if (i) Dom f = set A (ii) every $x \in A$ appears in one and only one ordered pair $\in f$.
- Dom f is the set consisting of all first elements of each ordered pair \in f and Rang of f is the set consisting of all second elements of each ordered pair \in f.
- A function $f: A \to B$ is called an into function if at least one element in B is not an image of some element of set A i.e., range of $f \subseteq B$.
- ✓ A function $f: A \to B$ is called an onto function if every element of set B is an image of at least one element of set A i.e., range of f = B.
- ✓ A function f: A → B is called one-one function if all distinct elements of A have distinct images in B.
- \checkmark A function f: A \rightarrow B is called bijective function if f function f is one-one and onto.