数値計算 第14回 (最終回) 講義全体のまとめ

情報科学部情報科学科中條 首也

数値計算の講義実績(前半)

- 1回 総論: 数値計算を学ぶ意義, 講義の全体像とポイント
- 2回 MATLAB 使用法 第1回レポート
- 3回 計算機による数値の表現と演算
- 4回 関数計算
- 5回 テイラー展開法,ラグランジュ補間
- 6回 数値積分 第2回レポート
- 7回 線形方程式の解法(1) ガウスの消去法

3

今回の演習

演習14-1数値計算のコンセプトマップ作成

- ・コンセプトマップとは
 - 1. 中心にテーマとなるキーワードを描く
 - 2. 放射状に枝を伸ばしてキーワードを繋げる
 - 3. 枝ごとに色を分けてもよい
 - 4. 正解はなく、個別の理解のために作成

2

数値計算の講義実績(後半)

8回 線形方程式の解法(2) LU分解法

9回 線形方程式の解法(3) ノルムの定義、行列の条件数

10回 中間テスト

11回 非線形方程式の解法 2分法,ニュートン法,割線法第3回レポート

12回 常微分方程式の解法 オイラー法,ルンゲクッタ法

13回 連立常微分方程式

14回 最小二乗法

15回 講義全体のまとめ

(第1回)数値計算とは

- 計算機で数値を計算させること
 - プログラムを書けば簡単に計算できるように なっているが…
- コンピュータの計算能力 実は四則計算 (+-×÷) しかできない sin(x)やexp(x)は,近似式で計算
- コンピュータは32ビット,64ビットで計算 有限精度 円周率πなどは近似値

5

数値計算が役立つ分野

- 気象予報
 - 数値予報で地球をモデル化して気象を予測
- CAD, CAMによる設計, 製造
 - 交通事故での傷害メカニズムの解明
- ゲームでのリアルな戦闘シーンの計算
 - 物理計算エンジン
- 航空宇宙分野
 - 微分方程式に基づく軌道計算や制御

数値モデルの計算など基本計算部分を担う 実際には計算ライブラリを使用する

数值計算

- 正しく効率的な計算を行うための技術
- 数値計算では誤差が不可避
- 計算によって生じる誤差
 - 丸め誤差(有限の精度のため、不可避)
 - 桁落ち(計算法で避けられる)
- ・ 問題に応じた数値計算手法
 - 計算機の発展とともに応用範囲が拡大
 - ただし基本は不変

6

数值予報

- 物理学に基づく数値予報モデルを作成
- 風や気温などの時間変化を数値計算
- 将来の大気の状態を予測する

出典: http://www.jma.go.jp/jma/kishou/know/whitep/1-3-1.html

(第2回) MATLABについて

- ・ INRIA (フランス国立コンピュータ科学・制御研究所) による数値計算ソフト(フリーウェア)
- 特徴
 - インタプリタ型のためコンパイル不要で実行
 - 行列の演算が得意
 - for, while, if などプログラム制御文
 - 2次元, 3次元のグラフ出力
 - 便利なライブラリ関数(ツールボックス)
- MATLABのクローン
 - 愛知工業大学は研究用にMATLABライセンスを導入
 - 他にOctaveなどもある
 - 産業界ではMATLABがよく利用される

۵

(第3回) 数値計算の精度と誤差

		例1	例2	例3
真値	x	1.002	1000	10000
近似値	x'	1.004	999	9999
誤差	x'-x	2x10 ⁻³	-1	-1
絶対誤差	x'-x	2x10 ⁻³	1	1
相対誤差	x'-x / x	1.6x10 ⁻³	10-3	10-4
10進有効桁数	-log ₁₀ x'-x / x	2.8	3	4

11

CとMATLABの比較

	C言語	MATLAB	
実行形式	コンパイラ型 コンパイル→リンク→実行	インタプリタ型 記述すれば即実行可能	
デバッグ環境	デバッガ必要 (統合環境)	全ての変数値が残っている (メモリ量に依存)	
オンライン ヘルプ	利用できない (統合環境)	あり サンプルコードつき	
行列演算	配列データごとの演算 A(i, j) +B(i,j)	行列単位で可能 A+B	
グラフィックス	基本的に範囲外	グラフコマンドあり	
変数宣言	必要	不要	
数学ライブラリ	ない (別に用意する)	関数ライブラリ (関数補間,連立方程式,微 分方程式,非線形方程式)	
応用別ライブラ リ	ない (別に用意する)	SIMULINK (信号処理,制御,物理) 10	

(第4回) 関数計算

 cos(x)のテイラー展開の下式を使ってMATLABで近似関数 mvcos(x,n) を作りなさい

$$y_n = p_{2n-2}(x) = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \dots + (-1)^n \frac{x^{2n-2}}{(2n-2)!}$$

- [0:2*%pi]の区間で、mycos (x,n)(n=1,2,4,6)と変えて、標準関数cos(x)のグラフと比較しなさい
- リスト4-1のテイラー展開プログラムを修正

- ・ 微係数の計算が簡単でない関数に適用
- 分点(x₁, y₁)を通過する近似多項式を作る
- ラグランジュ補間

(第6回)補間型積分則

• 関数の定積分を有限個の関数値を使って近似

a • 前回説明した補間関数を使って、その積分で関数 の定積分を近似計算する

台形則の精度向上(高精度近似積分)

小区間の幅を小さくして精度を向上できる

(第7回) 線形方程式

- テーマ: 線形方程式とガウス消去法
- ・ 線形方程式: 数値計算で頻繁に使用
- ガウス消去法
 - 行列の計算は面倒そうに見えるが
 - 基本的に線形方程式の手計算方法と同じ (中学校で学習した方法)

$$\mathbf{A}\mathbf{x} = \mathbf{b} \qquad \mathbf{A}\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = b$$

(第8回) LU分解による線形方程 式解法

・ 線形方程式をLU分解

$$Ax = LUx = L(\bar{Ux}) = b$$

• cを使うと線形方程式

$$Lc = b$$
,

$$Ux = c$$

• 二つの行列は三角行列のため計算が容易

(第9回) 行列と条件数

・ 行列Aに対して、cond(A)を行列Aの条件式と呼ぶ

$$cond(A) \equiv ||A|| \cdot ||A^{-1}||$$
 (14)

・ 線形方程式の解の、誤差の影響の受け易さを示す。 - cond(A)が大きいと、誤差が大きくなりやすい

$$\frac{\|\Delta y\|}{\|y\|} \le cond(A) \frac{\|\Delta x\|}{\|x\|} \tag{15}$$

$$cond(I) = 1$$

(23)

$$cond(A^{-1}) = cond(A)$$

(第11回) 非線形方程式

- 非線形方程式は一般的には解析的に解けない
- 反復計算で近似解を計算する
 - 2分法 (bisection)
 - ニュートン法 (newton)
 - 割線法(secant)

演習9-2の解答

 1-ノルム, 2-ノルム, ∞-ノルムについて, ノルムが1 の2次元ベクトル u=(x,y) 全体を図に示せ

教科書99 ページ 9.3 ニュートン法 (newton)

- ニュートン法のアルゴリズム
 - 非線形方程式 f(x)=0
 - -解の近傍 x_0 で接線,x軸交点を近似値

(第12回) 常微分方程式 ルンゲ・クッタ型公式 ・ 点 (x_0, y_0) を通る解 $y(x) = \eta(x_0, y_0; x)$ $x_1 = x_0 + h$ 第7回の積分則を応用 $y_1 = y(x_0 + h) = y_0 + \int_{x_0}^{x_1} y'(x) dx$ (18)

コンセプトマップ(概念地図)とは

- ・ コンセプト (概念) 間の関係性を表現
 - 放射構造や木構造を用いて表現
- ・ コンセプトマップの効果, 使用例
 - 体系化された知識の全体像の理解
 - 複雑なアイデアの伝達にも利用

31

今回の演習

演習15-1数値計算のコンセプトマップ作成

- コンセプトマップの作り方
 - 1. 中心テーマとなるキーワードを描く
 - 2. 放射状に枝を伸ばしてコンセプトを繋げる
 - 3. 枝ごとに色を分けてもよい
 - 4. 正解はなく、個別理解のために作成

30

演習15-1 コンセプトマップの作成

数値計算