두주파수광대역초음파변환기의 합리적인 정합실현

최영호, 최경철

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《과학연구기관들과 과학자, 기술자들은 우리 나라의 실정에 맞고 나라의 경제발전에 이바지할수 있는 과학기술적문제를 더 많이 풀어야 하겠습니다.》(《김정일선집》 중보판 제13권 173폐지)

일반적으로 초음파변환기의 정합에 대한 연구[1, 3]는 주로 좁은 주파수범위에 국한되여있으며 복잡한 장치구성을 필요로 하고있다.

압전변환기는 일반적으로 동작주파수에서 용량성부하로 되며 그것의 완전저항은 주 파수의 함수로 표시된다.[2] 변환기의 정합을 실현하려면 주파수정합과 유효저항정합을 보장하여야 한다. 따라서 변환기와 전기회로사이에 무효성분요소를 련결함으로써 부하의 무효성분을 최소로 하여 등가저항전체가 유효성분만이 남도록 한다. 또한 주파수에 따르 는 유효저항성분의 변화를 최대로 작게 하여 변환기의 전저항이 전기회로의 출구저항과 같아지게 함으로써 최적송신출력이 보장되도록 한다.

론문에서는 주파수차가 심한 두주파수초음파변환기의 광대역정합실현에 대하여 고찰하였다.

1. 1개의 공진주파수를 가진 변환기에서의 정합

압전변환기는 공진주파수근방에서 용량성을 띠므로 1개의 선륜을 직렬 혹은 병렬련 결하여 용량성성분을 령으로 만들수 있다.

직렬등가회로의 완전저항은 다음과 같이 표시되다.

$$Z_L(\omega) = j\omega_0 L_s + R_L(\omega) + jX_L(\omega) \tag{1}$$

여기서 ω_0 은 변환기의 공진각주파수, L_s 는 정합회로의 직렬유도도, $R_L(\omega)$ 와 $X_L(\omega)$ 는 주파수함수로 표시되는 변환기의 유효저항과 무효저항이다.

병렬등가회로의 완전전도도는 다음과 같이 표시된다.

$$Y_L(\omega) = \frac{1}{j\omega_0 L_p} + G_L(\omega) + jB_L(\omega)$$
 (2)

여기서 L_p 는 정합회로의 병렬유도도, $G_L(\omega)$ 와 $B_L(\omega)$ 는 주파수의 함수로 표시되는 변환기의 유도전도도와 무효전도도이다.

전기회로의 동작효률이 최대로 되게 하기 위하여 즉 변환기에 가해지는 전압, 전류의 동위 상조건을 만족시키도록 하기 위해서는 식 (1), (2)로부터 다음과 같은 조건이 성립되여야 한다.

$$L_{s} = -\frac{X_{L}(\omega)}{\omega_{0}} = \frac{B_{L}}{\omega_{0}(G_{L}^{2} + B_{L}^{2})}$$
 (3)

$$L_p = -\frac{1}{\omega_0 B_L} \tag{4}$$

이때 변화기에서의 등가유효저항은 다음과 같다.

$$R_{L_s} = R_L = \frac{G_L}{G_L^2 + B_L^2} \tag{5}$$

$$R_{Lp} = \frac{1}{G_L} \tag{6}$$

결국 변환기의 정합을 보장하는것은 무효성분을 령으로 되도록 하면서 등가저항의 전체 변화특성이 순유효저항상태로 되게 하여 전기회로의 출력이 변환기에 최대로 전송 되도록 하는것이다.

2. 2개의 공진주파수를 가진 변환기에서의 정합

2개의 공진주파수 ω_1 과 ω_2 $(\omega_1\ll\omega_2)$ 에서 정합을 고찰하기 위하여 정합회로를 그림 1과 같이 구성한다. 그림 1에서 보는바와 같이 2개의 공진주파수 ω_1 과 ω_2 에서 변환기의 총체적인 부하의 변화범위를 작게 하기 위하여 저항 R'를 병렬련결하였다. 이때 완전전 도도는 다음과 같이 표시할수 있다.

$$Y_p(\omega) = G_s(\omega) + j \left[B_s(\omega) - \frac{1}{\omega L_p} \right]$$
 (7)

$$G_s(\omega) = \frac{R_L(\omega)}{R_L^2(\omega) + [X_L(\omega) + \omega L_2]^2}$$

$$B_s(\omega) = \frac{-[X_L(\omega) + \omega L_s]}{R_L^2(\omega) + [X_L(\omega) + \omega L_2]^2}$$
(9)

$$B_s(\omega) = \frac{-[X_L(\omega) + \omega L_s]}{R_L^2(\omega) + [X_L(\omega) + \omega L_s]^2}$$
(9)

여기서 $R_I(\omega), X_I(\omega)$ 는 진동자의 직렬등가유효저항과

무효저항이다.

주파수 ω_2 에서 $(\omega_2 \cdot L_p)^{-1} \approx 0$ 이므로 변환기의 정전용량 C_0 은 L_s 와 직렬공진회로를 구성하며 $\omega_{
m l}$ 에서는 L_p 와 병렬공진회로를 구성한다. 식 (7)로부터

$$L_s = \frac{1}{\omega_2^2 C_0 + 1/(C_0 R_{02}^2)} \tag{10}$$

$$L_p = \frac{1}{\omega_1^2 C_0} \tag{11}$$

로 표시할수 있다. 이때 ω_2 , ω_1 에서의 유효저항은 다음과 같다.

$$L_p = \frac{1}{1 + (\omega_2 C_0 R_{02})^2}, \quad R_{02} = R_{f_2} // R'$$
 (12)

$$R_{Lp} = \frac{R_{01}}{1 + (\omega_1 C_0 R_{01})^2 - \frac{2C_0 R_{01}^2}{L_p}}, \quad R_{01} = R_{f_1} // R'$$
(13)

이와 같이 주파수차가 큰 2개의 공진주파수를 가진 변환기의 정합에서 식 (10), (11) 로 설정되는 2개의 유도도로부터 부하의 무효성분을 상쇄시키고 유효저항 R_{01}, R_{02} 로 표 시되는 비교적 완만한 등가저항특성을 얻을수 있다.

3. 계산 및 실험결과

동작주파수가 $f_1=100$ kHz, $f_2=300$ kHz 이고 정전용량이 $C_0=\ln F$, f_1 과 f_2 에서의 공진저항은 $R_{f_1}=400\Omega$, $R_{f_2}=1\,000\Omega$ 인 압전사기변환자의 정합을 고찰하였다.

공진주파수 f_1 과 f_2 에서 저항의 변화를 줄이기 위하여 $R'=3\ 000\Omega$ 으로 선택하고 식 (11), (12)에 의하여 직렬유도도와 병렬유도도를 계산하면 $L_s=0.19{
m mH},\ L_p=2.54{
m mH}$ 이다. 이때

그에 대한 유효저항은 $R_{L_s}=250\Omega$, $R_{L_p}=353\Omega$ 이며 저항의 최대변화범위는 $\Delta R=103\Omega$ 이다.

이로부터 주파수 f_1 과 f_2 에서의 출력정합단을 설계제작하고 실험을 진행하였다. 이때 전압응답곡선은 그림 2와 같다. 그림 2에서 보는것처럼 두 공진주파수 f_1 과 f_2 에서 전압전달곁수가 증가되는데 그 값은 f_1 에서 $K_u=0.85$, f_2 에서 $K_u=0.79$ 이며 다른 주파수들에서는 전압전달결수가 작아진다는것을 알수 있다.

맺 는 말

주파수편차가 심한 2개의 공진주파수를 가진 압전사기변환기의 합리적인 정합실현에 대한 리론적고찰을 진행하고 실험적으로 얻은 전압응답곡선에 의해서 그에 대한 정확성을 검증하였다.

참 고 문 헌

- [1] N. Naharjuna et al.; IEEE Transactions on Circuits and Systems, 60, 6, 1635, 2013.
- [2] 方由艳 等; 声学技术, 29, 1, 112, 2010.
- [3] 吴运发; 声学技术, 87, 3, 87, 2000.

주체107(2018)년 6월 5일 원고접수

On the Reasonable Matching Implementation of Wide Band Ultrasonic Transducer with Two Frequencies

Choe Yong Ho, Choe Kyong Chol

We suggested a method for reducing reactive components in two frequencies ultrasonic transducer by using only two inductances and one equivalent effective resistance.

Key words: matching, ultrasonic transducer