Faculdade de Engenharia da Universidade do Porto

Physical Access Control System

Mestrado Integrado em Engenharia Informática e Computação

Métodos Formais em Engenharia de Software

Bruno Moreira

Márcio Fontes

November, 2015

Abstract

On this report we present a formal, tool-supported approach to the design and maintenance of access control policies expressed in the eXtensible Access Control Markup Language (XACML). Our aim is to develop an application using the model-oriented specification language from Vienna Development Method (VDM++), capable of perform actions based on targets, subjects and subjacent policies, and therefore apply the specified policy combination algorithms to determine its outcome status (e.g., denial, permit, etc.).

Content

1. Introduction	
1.1 Project Description	4
1.2 Objectives	
1.3 Requirements	
1.5 Requirements	
2. UML Modeling	6
2.1 Use Case Diagram	6
2.2 Class Diagram	6
O MDAG . AG . L.P.	_
3. VDM++ Modeling	
3.1 Classes	
3.2 Data Types	
3.3 Domains	7
4. Model Validation	8
4.1 Test Classes	
4.2 Test Results	
4.3 Requirements Traceability	
•	
5. Model Verification	
5.1 Domain Verification	9
5.2 Invariant Verification	9
6. Code Generation	10
7. Conclusions	11
7.1 Results Achieved	
7.2 Improvements	
7.3 Effort	
, E1101	±±
References	12

1. Introduction

1.1 Project Description

This project aims to develop a physical access control system using XACML¹ language, implemented in VDM++, in order to perform authorization, identification, authentication, access approval and keep records of all succeeded or failed access requests.

1.2 Objectives

The physical access control system should have the following features:

- may be used in all sorts of physical facilities, such as hotels, schools, banks, military facilities, etc.;
- should be able to control the access to buildings, sectors (inside a building), rooms, parking lots, floors (in elevators), and other facilities;
- each authorized user is given a contactless card to present at appropriate access points, communicating with NFC (near field communication) or other means;
- access cards may be temporary, with a defined date-time of expiration (e.g., for hotel guests);
- each access card has a unique identifier and access cards may be reused;
- both users and facilities may be organized into groups (e.g., students, teachers, classrooms, computer laboratories, etc.) to facilitate the definition of access rules;
- a user or facility may belong to multiple groups;
- access policies are defined by means of access rules;
- each access rule specifies a user or group of users, a facility or group of facilities, and possibly a temporal constraint (a specific date-time interval, a recurrent time interval, etc.);
- rules may be defined as exceptions to other rules (e.g., to deny access for some period of time);
- the system should be able to decide on access requests;
- the system should keep a log of all succeeded or failed access requests.

¹ XACML – eXtensible Access Control Markup Language

1.3 Requirements

2. UML Modeling

On this section it's presented the use cases and conceptual model for this project, as well as additional notes and constraints concerning the diagrams.

2.1 Use Case Diagram

2.2 Class Diagram

Conceptual modelling is the abstraction of a simulation model from the part of the real world it is representing - "the real system" (Robinson, 2008). After collecting the necessary requirements, we achieved the following conceptual model, represented by (Figure 1):

- 3. VDM++ Modeling
- 3.1 Classes
- 3.2 Data Types
- 3.3 Domains

- 4. Model Validation
- 4.1 Test Classes
- 4.2 Test Results
- 4.3 Requirements Traceability

- 5. Model Verification
- 5.1 Domain Verification
- 5.2 Invariant Verification

6. Code Generation

- 7. Conclusions
- 7.1 Results Achieved
- 7.2 Improvements
- 7.3 Effort

References

Bryans, J. W., & Fitzgerald, J. S. Formal Engineering of XACML Access Control Policies in VDM++. Newcastle University, School of Computer Science. Newcastle: Newcastle University.

Robinson, S. (2008). Conceptual Modelling for Simulation Part I: Definition and Requirements. Journal of the Operational Research Society.