Import Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
pd.options.display.float_format = "{:.2f}".format
sns.set_style("darkgrid")
```

Import Dataset

```
In [ ]: df = pd.read_csv("Train-Set.csv")
    df
```

:[]:		ProductID	Weight	FatContent	ProductVisibility	ProductType	MRP	OutletID	Est
	0	FDA15	9.30	Low Fat	0.02	Dairy	249.81	OUT049	
	1	DRC01	5.92	Regular	0.02	Soft Drinks	48.27	OUT018	
	2	FDN15	17.50	Low Fat	0.02	Meat	141.62	OUT049	
	3	FDX07	19.20	Regular	0.00	Fruits and Vegetables	182.09	OUT010	
	4	NCD19	8.93	Low Fat	0.00	Household	53.86	OUT013	
	•••							•••	
8	518	FDF22	6.87	Low Fat	0.06	Snack Foods	214.52	OUT013	
8	519	FDS36	8.38	Regular	0.05	Baking Goods	108.16	OUT045	
8	520	NCJ29	10.60	Low Fat	0.04	Health and Hygiene	85.12	OUT035	
8	521	FDN46	7.21	Regular	0.15	Snack Foods	103.13	OUT018	
8	522	DRG01	14.80	Low Fat	0.04	Soft Drinks	75.47	OUT046	

8523 rows × 12 columns

#TOP 3 Rows

In []:	df.head(3)									
Out[]:		ProductID	Weight	FatContent	ProductVisibility	ProductType	MRP	OutletID	Establ	
	0	FDA15	9.30	Low Fat	0.02	Dairy	249.81	OUT049		
	1	DRC01	5.92	Regular	0.02	Soft Drinks	48.27	OUT018		
	2	FDN15	17.50	Low Fat	0.02	Meat	141.62	OUT049		
									•	
	#Find Shape									

```
In [ ]: df.shape
Out[]: (8523, 12)
```

#Find Information

```
In [ ]: df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 8523 entries, 0 to 8522 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	ProductID	8523 non-null	object
1	Weight	7060 non-null	float64
2	FatContent	8523 non-null	object
3	ProductVisibility	8523 non-null	float64
4	ProductType	8523 non-null	object
5	MRP	8523 non-null	float64
6	OutletID	8523 non-null	object
7	EstablishmentYear	8523 non-null	int64
8	OutletSize	6113 non-null	object
9	LocationType	8523 non-null	object
10	OutletType	8523 non-null	object
11	OutletSales	8523 non-null	float64

dtypes: float64(4), int64(1), object(7)

memory usage: 799.2+ KB

#Find Data Types

```
In [ ]: df.dtypes
```

```
Out[]: ProductID
                               object
        Weight
                              float64
        FatContent
                               object
        ProductVisibility
                              float64
                               object
        ProductType
        MRP
                              float64
        OutletID
                               object
        EstablishmentYear
                                int64
                               object
        OutletSize
                               object
        LocationType
        OutletType
                               object
        OutletSales
                              float64
        dtype: object
In [ ]: df.select_dtypes(include="object").columns
Out[ ]: Index(['ProductID', 'FatContent', 'ProductType', 'OutletID', 'OutletSize',
                'LocationType', 'OutletType'],
               dtype='object')
In [ ]: df.select_dtypes(include="int").columns
Out[ ]: Index(['EstablishmentYear'], dtype='object')
In [ ]: df.select_dtypes(include="float").columns
Out[ ]: Index(['Weight', 'ProductVisibility', 'MRP', 'OutletSales'], dtype='object')
        #Statistical Summary
In [ ]: df.describe()
Out[ ]:
               Weight ProductVisibility
                                                 EstablishmentYear OutletSales
                                           MRP
         count 7060.00
                                8523.00 8523.00
                                                                      8523.00
                                                           8523.00
                 12.86
                                   0.07
                                         140.99
                                                           1997.83
                                                                      2181.29
         mean
           std
                  4.64
                                   0.05
                                          62.28
                                                              8.37
                                                                      1706.50
          min
                  4.55
                                   0.00
                                          31.29
                                                           1985.00
                                                                        33.29
          25%
                  8.77
                                   0.03
                                          93.83
                                                           1987.00
                                                                       834.25
          50%
                  12.60
                                   0.05
                                         143.01
                                                           1999.00
                                                                       1794.33
          75%
                 16.85
                                   0.09
                                         185.64
                                                           2004.00
                                                                       3101.30
```

```
In [ ]: df.describe(include="object")
```

2009.00

13086.96

266.89

0.33

21.35

max

Out[]:		ProductID	FatContent	ProductType	OutletID	OutletSize	LocationType	OutletTy
	count	8523	8523	8523	8523	6113	8523	8;
	unique	1559	5	16	10	3	3	
	top	FDW13	Low Fat	Fruits and Vegetables	OUT027	Medium	Tier 3	Supermar Туӷ
	freq	10	5089	1232	935	2793	3350	5!

#Unique Value In Columns

```
In []:
    def unique_columns(bdf):
        cat_var = bdf.select_dtypes(include="object").nunique().sort_values(ascending=F
        new_df = pd.DataFrame()
        for i in cat_var:
            new_df[i]= pd.Series(bdf[i].unique())
            new_df.replace(np.NaN,"",inplace=True)
        return new_df.T

unique_columns(df)
```

Out[]:		0	1	2	3	4	5	6
	ProductID	FDA15	DRC01	FDN15	FDX07	NCD19	FDP36	FDO10
	ProductType	Dairy	Soft Drinks	Meat	Fruits and Vegetables	Household	Baking Goods	Snack Foods
	OutletID	OUT049	OUT018	OUT010	OUT013	OUT027	OUT045	OUT017
	FatContent	Low Fat	Regular	low fat	LF	reg		
	OutletType	Supermarket Type1	Supermarket Type2	Grocery Store	Supermarket Type3			
	OutletSize	Medium		High	Small			
	LocationType	Tier 1	Tier 3	Tier 2				

#Checking Duplicate Values

```
In [ ]: df.duplicated().sum()
```

Out[]: 0

#Checking Null Values

```
In [ ]: df.isna().sum()
```

```
Out[]: ProductID
                                 0
        Weight
                              1463
                                 0
        FatContent
        ProductVisibility
                                 0
                                 0
        ProductType
        MRP
                                 0
                                 0
        OutletID
        EstablishmentYear
                                 0
                              2410
        OutletSize
        LocationType
                                 0
        OutletType
                                 0
        OutletSales
                                 0
        dtype: int64
```

DATA PREPROCESSING

#Filling Null Values

```
In [ ]: Total_missing = df.isna().sum()*100/len(df)
        Total_missing
Out[]: ProductID
                              0.00
                             17.17
        Weight
        FatContent
                              0.00
        ProductVisibility
                              0.00
        ProductType
                              0.00
                              0.00
        MRP
        OutletID
                              0.00
        EstablishmentYear
                              0.00
        OutletSize
                             28.28
                              0.00
        LocationType
        OutletType
                              0.00
        OutletSales
                              0.00
        dtype: float64
In [ ]: df["Weight"].fillna(df["Weight"].mode()[0],inplace=True)
        df["OutletSize"].fillna(df["OutletSize"].mode()[0],inplace=True)
        df.isna().sum()
Out[]: ProductID
                              0
        Weight
                              0
        FatContent
                              0
                              0
        ProductVisibility
                              0
        ProductType
        MRP
                              0
        OutletID
                              0
        EstablishmentYear
                              0
        OutletSize
                              0
                              0
        LocationType
                              0
        OutletType
        OutletSales
                              0
        dtype: int64
```

EXPLORATORY DATA ANALYSIS

#Finding Correlation

#Distribution Of ProductType By Location Type

```
In [ ]: plt.figure(figsize=(15,6))
    ax = sns.countplot(data=df,x=df["ProductType"],order=df["ProductType"].value_counts
    plt.xticks(rotation=90,weight ="bold")
    plt.yticks(weight="bold")
    plt.title("Distribution Of ProductType By Location Type",weight = "bold",pad=10,fon
    plt.xlabel("Product Type",fontweight="bold",fontsize = 15)
    plt.ylabel("")
    for i in ax.containers:
        i.datavalues
        ax.bar_label(i,fontweight="bold",color="white",label_type="center",rotation=90)
    plt.show()
```

Distribution Of ProductType By Location Type

#Distribution Of OutledID

```
In []: plt.figure(figsize=(15,6))
    sns.lineplot(data=df,x=df["OutletID"],y=df["MRP"])
    plt.xticks(rotation=90)
    plt.title("Distribution Of OutledID",pad=10,fontsize = 15,weight="bold")
    plt.ylabel("MRP (Avg)",weight="bold",labelpad= 10,fontsize=15)
    plt.xlabel("OutledID",weight="bold",labelpad=20,fontsize=15)
    plt.xticks(weight="bold")
    plt.yticks(weight="bold")
    plt.show()
```


#Distribution Of MRP And OutletSales By MRP_RANGE

```
In []: bins = np.arange(0,df["MRP"].max()+50,50)
   Range = ["0-50","50-100","100-150","150-200","200-250","250-above"]
   df["MRP_RANGE"] = pd.cut(df["MRP"],bins,labels=Range)

In []: plt.figure(figsize=(15,6))
   sns.scatterplot(data=df,x=df["MRP"],y=df["OutletSales"],hue=df["MRP_RANGE"])
   plt.xticks(weight="bold")
   plt.yticks(weight="bold")
   plt.title("Distribution Of MRP And OutletSales By MRP_RANGE",pad=10,fontsize = 15,w
   plt.ylabel("OutletSales",weight="bold",labelpad= 10,fontsize=15)
   plt.xlabel("MRP",weight="bold",labelpad=20,fontsize=15)

plt.show()
```


#Distribution Of EstablishmentYear And OutletSales By OutletSize

Distribution Of EstablishmentYear And OutletSales By OutletSize

EstablishmentYear