1. Matrizes. Noções gerais

1.1 Definição. Algumas matrizes especiais

Suponha-se que se está a trabalhar em estruturas algébricas conhecidas, como por exemplo, \mathbb{C} , \mathbb{R} ou \mathbb{Q} com as operações usuais de adição e de multiplicação. Considere \mathbb{K} um desses conjuntos. Aos elementos de \mathbb{K} chamam-se escalares.

Definição 1.1. Uma matriz do tipo (ou de tamanho) $p \times q$ sobre \mathbb{K} é uma tabela de dupla entrada com p linhas e q colunas cujos elementos pertencem a \mathbb{K} .

Em termos de notação representam-se matrizes por letras maiúsculas e usa-se a tabela de números dentro de parênteses rectos como indicado a seguir:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1q} \\ a_{21} & a_{22} & \cdots & a_{2q} \\ \vdots & \vdots & \vdots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pq} \end{bmatrix}.$$

Os escalares a_{ij} , com $i \in \{1, ..., p\}$ e $j \in \{1, ..., q\}$ dizem-se entradas (ou elementos) de A. Em termos gerais, também se escreve

$$A = [a_{ij}], \quad \text{com } i \in \{1, \dots, p\} \text{ e } j \in \{1, \dots, q\}.$$

O termo genérico a_{ij} representa a entrada da matriz A que se encontra na linha i e na coluna j e é usual referir como sendo a entrada (ou o elemento) (i, j).

Exemplo 1.2. A matriz

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 9 \\ 6 & 5 \end{bmatrix}$$

é uma matriz do tipo 3×2 pois é composta por 3 linhas e 2 colunas. A entrada a_{31} (ou entrada (3,1)) é 6.

Seja A uma matriz do tipo $p \times q$. Quando p = q diz-se que A é uma matriz quadrada de ordem p. Quando se tem uma matriz com uma só coluna (linha) chama-se matriz coluna $(matriz\ linha)$.

Exemplo 1.3. Considere as matrizes

$$A = \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad e \quad C = \begin{bmatrix} 2 & 3 \end{bmatrix}.$$

 $A\ matriz\ A\ \acute{e}\ quadrada\ de\ ordem\ 2,\ B\ \acute{e}\ uma\ matriz\ coluna\ e\ C\ \acute{e}\ uma\ matriz\ linha.$

Seja $A = [a_{ij}]$, com $i, j \in \{1, ..., p\}$, uma matriz quadrada. As entradas a_{ij} com i = j, isto é, as entradas da forma a_{ii} , formam a diagonal principal de A. Os elementos a_{ij} e a_{ji} , com $i \neq j$, estão dispostos simetricamente em relação à diagonal principal, e por isso dizem-se opostos.

Exemplo 1.4. Considere a matriz

$$A = \begin{bmatrix} 2 & 3 & 0 \\ 0 & 1 & 4 \\ 2 & 5 & 0 \end{bmatrix}$$

Os elementos da diagonal principal são 2, 1 e 0 e estão assinalados por \bigcirc . As entradas marcadas por \bigcirc são um exemplo de elementos opostos.

Definição 1.5. Chama-se matriz diagonal a uma matriz quadrada em que os elementos que não são da diagonal principal são iguais a zero, ou seja, $a_{ij} = 0$ para $i \neq j$.

Exemplo 1.6. A matriz

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

é uma matriz diagonal.

Definição 1.7. Chama-se matriz escalar a uma matriz diagonal em que os elementos da diagonal principal são todos iguais entre si.

Exemplo 1.8. As matrizes

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \qquad e \qquad B = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

são matrizes escalares.

Um caso especial de uma matriz escalar é a matriz em que todos os elementos da diagonal principal são iguais a 1. Essa matriz chama-se $matriz\ identidade$. Assim, a matriz identidade de ordem n, representa-se por I_n , e é a matriz

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}.$$

Se a sua ordem for depreendida do contexto, representa-se simplesmente por I. Observe-se que $I_n = [\delta_{ij}]$, sendo δ_{ij} o símbolo de Kronecker, ou seja,

$$\delta_{ij} = \left\{ \begin{array}{ll} 1 & \text{se} & i = j \\ 0 & \text{se} & i \neq j \end{array} \right..$$

A matriz nula do tipo $p \times q$ é uma matriz em que todas as suas entradas são iguais a zero e representa-se por $0_{p\times q}$. Por vezes representa-se apenas por 0 (zero), quando no contexto está subentendido o tipo da matriz.

Definição 1.9. Uma matriz quadrada diz-se matriz **triangular superior** se $a_{ij} = 0$ quando i > j, isto é, os elementos abaixo da diagonal principal são nulos. Analogamente, uma matriz quadrada diz-se matriz **triangular inferior** se $a_{ij} = 0$ quando i < j, isto é, os elementos acima da diagonal principal são nulos.

Exemplo 1.10. Sejam

$$A = \begin{bmatrix} 3 & 4 & \frac{1}{2} \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad e \qquad B = \begin{bmatrix} -2 & 0 & 0 \\ 7 & 0 & 0 \\ -4 & \frac{3}{2} & -1 \end{bmatrix}.$$

A matriz A é triangular superior e B é uma matriz triangular inferior.

Definição 1.11. Duas matrizes $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ e $B = \begin{bmatrix} b_{ij} \end{bmatrix}$ do tipo $p \times q$ dizem-se iguais se $a_{ij} = b_{ij}$, para todo $i \in \{1, \ldots, p\}$ e $j \in \{1, \ldots, q\}$.

1.2 Operações com matrizes e suas propriedades

1.2.1 Adição de matrizes

Seja $M_{p\times q}(\mathbb{K})$ o conjunto das matrizes do tipo $p\times q$ com elementos em \mathbb{K} . A adição de matrizes é uma aplicação definida no produto cartesiano

$$M_{p\times q}(\mathbb{K})\times M_{p\times q}(\mathbb{K})$$

que a cada par de matrizes (A, B) faz corresponder uma e uma só matriz $C \in M_{p \times q}(\mathbb{K})$ tal que C = A + B. Também se diz que esta é uma operação interna em $M_{p \times q}(\mathbb{K})$. Em termos de representação das entradas da matriz que resulta da adição de duas matrizes quaisquer pode apresentar-se a seguinte definição:

Definição 1.12. Sejam $A, B \in M_{p \times q}(\mathbb{K})$ tais que $A = [a_{ij}], B = [b_{ij}]$. A matriz soma A + B é a matriz de $M_{p \times q}(\mathbb{K})$ definida por:

$$A+B=\left[c_{ij}\right],$$

com $c_{ij} = a_{ij} + b_{ij}$, para todo $i \in \{1, \dots, p\}$ e $j \in \{1, \dots, q\}$. Por vezes escreve-se simplesmente $A + B = \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix}$.

Exemplo 1.13. Sejam

$$A = \left[\begin{array}{ccc} 1 & -2 & 3 \\ 4 & 5 & 0 \end{array}\right] \quad e \quad B = \left[\begin{array}{ccc} 6 & -1 & 2 \\ 7 & 8 & 9 \end{array}\right].$$

Tem-se que

$$A+B = \begin{bmatrix} 1+6 & -2+(-1) & 3+2 \\ 4+7 & 5+8 & 0+9 \end{bmatrix} = \begin{bmatrix} 7 & -3 & 5 \\ 11 & 13 & 9 \end{bmatrix}.$$

Propriedades da adição de matrizes

Apresentam-se agora algumas propriedades da adição de matrizes. Ir-se-á provar algumas destas propriedades e as restantes demonstrações são deixadas como exercício.

Sejam $A, B, C \in M_{p \times q}(\mathbb{K})$ matrizes quaisquer.

• Comutatividade: A + B = B + A.

Demonstração. Sejam $A=\begin{bmatrix}a_{ij}\end{bmatrix}$ e $B=\begin{bmatrix}b_{ij}\end{bmatrix}$, com $i\in\{1,\ldots,p\}$ e $j\in\{1,\ldots,q\}$. Tem-se:

$$A + B = \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix}$$
 por definição de adição de matrizes $= \begin{bmatrix} b_{ij} + a_{ij} \end{bmatrix}$ pela comutatividade em \mathbb{K} $= B + A$

• Associatividade: (A+B)+C=A+(B+C).

Demonstração. Sejam $A = [a_{ij}], B = [b_{ij}] \in C = [c_{ij}], \text{com } i \in \{1, \dots, p\}$ e $j \in \{1, \dots, q\}$. Tem-se:

 $(A+B)+C=\begin{bmatrix} a_{ij}+b_{ij}\end{bmatrix}+\begin{bmatrix} c_{ij}\end{bmatrix}$ por definição de adição de matrizes $=\begin{bmatrix} (a_{ij}+b_{ij})+c_{ij}\end{bmatrix}$ por definição de adição de matrizes $=\begin{bmatrix} a_{ij}+(b_{ij}+c_{ij})\end{bmatrix}$ pela associatividade em \mathbb{K} $=\begin{bmatrix} a_{ij}\end{bmatrix}+\begin{bmatrix} b_{ij}+c_{ij}\end{bmatrix}$ por definição de adição de matrizes $=\begin{bmatrix} a_{ij}\end{bmatrix}+\begin{pmatrix} b_{ij}\end{bmatrix}+\begin{bmatrix} c_{ij}\end{bmatrix}$ por definição de adição de matrizes =A+(B+C).

• Existência de elemento neutro: $0_{p\times q} + A = A$.

• Existência de elemento simétrico: $A + (-A) = 0_{p \times q}$, onde, se $A = [a_{ij}], -A = [-a_{ij}].$

As demonstrações da existência do elemento neutro e simétrico ficam como exercício.

Uma vez que são válidas estas quatro propriedades diz-se que $M_{p\times q}(\mathbb{K})$ munido da adição de matrizes é um grupo abeliano (ou comutativo).

Exercício 1.14. Considere as matrizes

$$A = \begin{bmatrix} -4 & 9 & 10 \\ 5 & -5 & 0 \\ 9 & 1 & 1 \end{bmatrix} \quad e \quad B = \begin{bmatrix} -4 & -1 & -3 \\ 9 & 1 & 5 \\ 2 & 0 & -1 \end{bmatrix}.$$

Calcule A - B.

1.2.2 Multiplicação por um escalar

Pode também definir-se uma operação externa entre o conjunto das matrizes e o conjunto \mathbb{K} . A multiplicação por um escalar é uma aplicação definida no produto cartesiano $\mathbb{K} \times M_{p \times q}(\mathbb{K})$ que a cada par (α, A) faz corresponder uma e uma só matriz $C \in M_{p \times q}(\mathbb{K})$ tal que $C = \alpha A$. Assim:

Definição 1.15. Seja $A \in M_{p \times q}(\mathbb{K})$ tal que $A = [a_{ij}]$ e seja $\alpha \in \mathbb{K}$ um escalar. A matriz αA é a matriz do tipo $p \times q$ que se obtém de A multiplicando todas as entradas de A pelo escalar α , ou seja:

$$\alpha A = \left[\alpha a_{ij}\right],\,$$

 $com \ i \in \{1, ..., p\} \ e \ j \in \{1, ..., q\}.$

Exemplo 1.16. $Seja \ A = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$, $ent\~ao$

$$2A = \left[\begin{array}{cc} 4 & 2 \\ 6 & 2 \end{array} \right].$$

Exercício 1.17. Calcule 2A - 3B, sabendo que

$$A = \left[\begin{array}{cc} 4 & 5 \\ -1 & 0 \end{array} \right] \quad e \quad B = \left[\begin{array}{cc} -1 & 2 \\ 3 & 1 \end{array} \right].$$

Propriedades da multiplicação por um escalar

Sejam α, β escalares quaisquer e sejam $A, B \in M_{p \times q}(\mathbb{K})$ matrizes quaisquer.

• Propriedade 1: $\alpha(A+B) = \alpha A + \alpha B$.

Demonstração. Sejam $A = [a_{ij}]$ e $B = [b_{ij}]$, com $i \in \{1, ..., p\}$ e $j \in \{1, ..., q\}$, e seja $\alpha \in \mathbb{K}$. Tem-se que:

$$\begin{split} \alpha(A+B) &= \alpha \left[a_{ij} + b_{ij} \right] & \text{por definição de adição de matrizes} \\ &= \left[\alpha(a_{ij} + b_{ij}) \right] & \text{por definição de multiplicação por um escalar} \\ &= \left[\alpha a_{ij} + \alpha b_{ij} \right] & \text{pela distributividade da multiplicação em relação à adição em } \mathbb{K} \\ &= \left[\alpha a_{ij} \right] + \left[\alpha b_{ij} \right] & \text{por definição de adição de matrizes} \\ &= \alpha \left[a_{ij} \right] + \alpha \left[b_{ij} \right] & \text{por definição de multiplicação por um escalar} \\ &= \alpha A + \alpha B. \end{split}$$

• Propriedade 2: $(\alpha + \beta)A = \alpha A + \beta A$.

Demonstração. Seja $A = [a_{ij}]$, com $i \in \{1, ..., p\}$ e $j \in \{1, ..., q\}$, e sejam $\alpha, \beta \in \mathbb{K}$. Tem-se que:

$$(\alpha + \beta)A = (\alpha + \beta) [a_{ij}]$$
 pela definição de matriz A

$$= [(\alpha + \beta)a_{ij}]$$
 por definição de multiplicação por um escalar
$$= [\alpha a_{ij} + \beta a_{ij}]$$
 pela distributividade da multiplicação em relação à adição em \mathbb{K}

$$= [\alpha a_{ij}] + [\beta a_{ij}]$$
 pela definição de adição de matrizes
$$= \alpha [a_{ij}] + \beta [a_{ij}]$$
 por definição de multiplicação por um escalar
$$= \alpha A + \beta A$$

- Propriedade 3: $\alpha(\beta A) = (\alpha \beta) A$.
- **Propriedade 4:** $\mathbf{1}_{\mathbb{K}}A = A$, onde $\mathbf{1}_{\mathbb{K}}$ é o elemento neutro da multiplicação usual em \mathbb{K} (note-se que, no nosso caso, $\mathbf{1}_{\mathbb{K}}$ é o elemento neutro da multiplicação usual em \mathbb{R} ou \mathbb{Q} , ou seja, 1).

As demonstrações das Propriedades 3 e 4 ficam como exercício.

Exercício 1.18. Considere as matrizes A e B do tipo 1×3 tais que:

$$2A = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \qquad e \qquad B = \begin{bmatrix} 2 & -3 & -1 \end{bmatrix}.$$

Calcule, aplicando as propriedades, $5(A+B) + 2\left(\frac{1}{2}A + B\right)$.

Prova-se também que é válida um tipo de "lei do anulamento" na multiplicação de uma matriz por um escalar.

Teorema 1.19. Sejam $A \in M_{p \times q}(\mathbb{K})$ $e \ \alpha \in \mathbb{K}$. Então

$$\alpha A = 0_{p \times q}$$
 se e só se $\alpha = 0_{\mathbb{K}}$ ou $A = 0_{p \times q}$

onde $0_{\mathbb{K}}$ é o elemento neutro da adição usual em \mathbb{K} (ou seja, no nosso caso, 0).

Demonstração. Seja $A = [a_{ij}]$, com $i \in \{1, ..., p\}$ e $j \in \{1, ..., q\}$. Então $\alpha A = 0_{p \times q}$ é equivalente a

$$\left[\alpha a_{ij}\right] = 0_{p\times q} \qquad \text{por definição de multiplicação escalar} \\ \Leftrightarrow \alpha a_{ij} = 0, \ \forall i \in \{1, \dots, p\}, j \in \{1, \dots, q\} \qquad \text{por definição de igualdade de matrizes} \\ \Leftrightarrow \alpha = 0_{\mathbb{K}} \lor a_{ij} = 0, \ \forall i \in \{1, \dots, p\}, j \in \{1, \dots, q\} \qquad \text{pela lei do anulamento do produto em } \mathbb{K} \\ \Leftrightarrow \alpha = 0_{\mathbb{K}} \lor A = \left[a_{ij}\right] = 0_{p\times q}$$

1.2.3 Produto entre matrizes

Dadas duas matrizes A e B, o produto $A \times B$ só é possível se o número de colunas da primeira matriz coincide com o número de linhas da segunda matriz. A matrizes que satisfazem esta relação chamam-se matrizes encadeadas. Assim, dadas duas matrizes A e B, se queremos efectuar o produto $A \times B$ e se A é uma matriz do tipo $p \times q$ então B tem de ser uma matriz do tipo $q \times m$. Nesse caso a matriz resultante, que se representa por AB, é uma matriz do tipo $p \times m$. Esquematicamente

$$\underbrace{A}_{p\times q}\times \underbrace{B}_{q\times m}=\underbrace{AB}_{p\times m}.$$

Sejam A uma matriz do tipo $p \times q$ e B uma matriz do tipo $q \times m$. Note-se que AB está definido. Relativamente a BA, três hipóteses poderão ocorrer:

- BA poderá não estar definido; isso acontece se $m \neq p$;
- BA está definido (isto é, p = m) e BA será uma matriz do tipo $q \times q$ e AB será uma matriz do tipo $m \times m$; e neste caso podem surgir duas situações:
 - se $q \neq m$, AB e BA são de tipos diferentes e, consequentemente, $AB \neq BA$;
 - se q=m, AB e BA são do mesmo tipo mas poderão ser diferentes.

Exemplo 1.20. Sejam A uma matriz do tipo 2×3 , B uma matriz do tipo 3×4 , C uma matriz do tipo 3×2 e D e E matrizes do tipo 4×4 . Então:

- AB é do tipo 2 × 4 e BA não está definida;
- AC é do tipo 2×2 e CA é do tipo 3×3 ;
- $DE \ \acute{e} \ do \ tipo \ 4 \times 4 \ e \ ED \ \acute{e} \ do \ tipo \ 4 \times 4.$

Veja-se então como se multiplicam matrizes. Considere-se primeiro o caso particular do produto de uma matriz linha por uma matriz coluna.

Definição 1.21.
$$Sejam \ A = \begin{bmatrix} a_1 & a_2 & \cdots & a_p \end{bmatrix} \ e \ B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_p \end{bmatrix}$$
. $Então \ o$

produto da matriz linha A pela matriz coluna B é:

$$AB = \left[a_1b_1 + a_2b_2 + \dots + a_pb_p \right].$$

Observe-se que se A é uma matriz do tipo $1 \times p$ e B é uma matriz do tipo $p \times 1$, então AB é uma matriz do tipo 1×1 .

Exemplo 1.22.
$$Sejam \ A = \begin{bmatrix} 1 & 0 & -2 \end{bmatrix} \ e \ B = \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix}$$
. $Ent\tilde{a}o$

$$AB = [1 \times 5 + 0 \times 3 + (-2) \times 4] = [-3].$$

Já é possível agora definir o produto entre duas matrizes encadeadas quaisquer tendo por base a definição do caso particular anterior.

Definição 1.23. Sejam A e B matrizes do tipo $p \times q$ e $q \times m$, respectivamente. O **produto de** A **por** B, representa-se por AB, é a matriz do tipo $p \times m$ que se obtém considerando para elemento (i,j) o produto da linha i da matriz A pela coluna j da matriz B.

Formalmente tem-se que, para $A = [a_{ik}]$ e $B = [b_{kj}]$, com $i \in \{1, ..., p\}$, $k \in \{1, ..., q\}$ e $j \in \{1, ..., m\}$, o produto de A por B é a matriz AB do tipo $p \times m$ definida por:

$$AB = [c_{ij}], \quad \text{com } i \in \{1, \dots, p\} \text{ e } j \in \{1, \dots, m\}$$

onde

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{iq}b_{qj} = \sum_{k=1}^{q} a_{ik}b_{kj}.$$

Esquematicamente

Exemplo 1.24. Sejam
$$A = \begin{bmatrix} 2 & 3 \\ 0 & -1 \\ 1 & 4 \end{bmatrix}$$
 $e \ B = \begin{bmatrix} 5 & 0 \\ -1 & 2 \end{bmatrix}$. Então

$$AB = \left[\begin{array}{ccc} 2 \times 5 + 3 \times (-1) & 2 \times 0 + 3 \times 2 \\ 0 \times 5 + (-1) \times (-1) & 0 \times 0 + (-1) \times 2 \\ 1 \times 5 + 4 \times (-1) & 1 \times 0 + 4 \times 2 \end{array} \right] = \left[\begin{array}{ccc} 7 & 6 \\ 1 & -2 \\ 1 & 8 \end{array} \right].$$

Exercício 1.25. Calcule, se possível, o produto AB sabendo que

$$A = \left[\begin{array}{ccc} 5 & 7 & -1 \\ 0 & 2 & 4 \end{array} \right] \qquad e \qquad B = \left[\begin{array}{ccc} 3 & 0 \\ -1 & 2 \\ 1 & 4 \end{array} \right].$$

Observe-se que dada uma matriz A do tipo $p \times q$, com $p \neq q$, não está definido o produto $A^2 = AA$. Facilmente se conclui que só se pode definir $potência\ de$ $uma\ matriz$ para matrizes quadradas. De uma forma geral, se A é uma matriz quadrada de ordem $n,\ A^k$, com $k \geq 1$, representa a matriz quadrada de ordem n definida por:

$$A^k = \underbrace{AA \cdots A}_{k \text{ factores}}.$$

Por convenção, $A^0 = I_n$.

Observe-se que pode ter-se $A^2=0_{p\times p}$ e, no entanto, $A\neq 0_{p\times p}$

Exemplo 1.26. Dada a matriz $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, tem-se que

$$A^2 = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] = 0_{2 \times 2}.$$

Pode então concluir-se que não é válida a lei do anulamento no conjunto $M_{n\times n}(\mathbb{K})$. De facto, dadas duas matrizes A e B encadeadas, pode ter-se AB=0 com $A\neq 0$ e $B\neq 0$.

Exemplo 1.27. Sejam
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} e B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$
. Então
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Propriedades do produto de matrizes

Sejam α um escalar e A, B, C matrizes quaisquer com tamanhos adequados.

- Existência de elemento neutro: Se A e B forem do tipo $p \times q$, então $I_p A = A$ e $BI_q = B$;
- Associatividade: A(BC) = (AB)C;
- Associatividade mista: $\alpha(AB) = (\alpha A)B = A(\alpha B)$;
- Distributividade: A(B+C) = AB + AC e (A+B)C = AC + BC.

Recorde-se que o produto de matrizes $\underline{\tilde{nao}}$ é comutativo (encontre um contra-exemplo!) e, consequentemente, multiplicar à direita ou à esquerda por uma matriz (\tilde{nao} nula) \tilde{nao} é a mesma coisa!

1.2.4 Transposta de uma matriz

Definição 1.28. Seja $A = [a_{ij}]$ uma matriz do tipo $p \times q$. Chama-se transposta da matriz A, e representa-se por A^T , à matriz do tipo $q \times p$ tal que

$$A^T = [a'_{ii}]$$
.

 $com \ a'_{ii} = a_{ij}, \ para \ todo \ j \in \{1, \dots, q\} \ e \ i \in \{1, \dots, p\}.$

Assim, se

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1q} \\ a_{21} & a_{22} & \cdots & a_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pq} \end{bmatrix},$$

 $\mathrm{ent}\, \tilde{\mathrm{a}}\mathrm{o}$

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{p1} \\ a_{12} & a_{22} & \cdots & a_{p2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1q} & a_{2q} & \cdots & a_{pq} \end{bmatrix}.$$

Ou seja, as linhas da matriz A^T são as colunas da matriz A.

Exemplo 1.29. Seja $A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \end{bmatrix}$. A transposta de A é a seguinte matriz:

$$A^T = \begin{bmatrix} 2 & 5 \\ 3 & 6 \\ 4 & 7 \end{bmatrix}.$$

Propriedades da transposta de uma matriz

Seja α um escalar e sejam A, B matrizes quaisquer com os tamanhos adequados.

• Transposta da transposta: $(A^T)^T = A$.

Demonstração. Seja $A = [a_{ij}]$, com $i \in \{1, ..., p\}$ e $j \in \{1, ..., q\}$. Por definição, $A^T = [a'_{ji}]$, com $a'_{ji} = a_{ij}$, para todo $j \in \{1, ..., q\}$ e $i \in \{1, ..., p\}$. Assim,

$$\left(A^{T}\right)^{T} = \left[a'_{ji}\right]^{T} = \left[a''_{ij}\right]$$

onde $a''_{ij}=a'_{ji}=a_{ij}$, para todo $i\in\{1,\ldots,p\}$ e $j\in\{1,\ldots,q\}$. Logo $\left(A^T\right)^T=A$.

• Transposta da multiplicação por um escalar: $(\alpha A)^T = \alpha A^T$.

Demonstração. Seja $A = [a_{ij}]$, com $i \in \{1, \dots, p\}$ e $j \in \{1, \dots, q\}$. Ora, sendo $A^T = [a'_{ji}]$, com $a'_{ji} = a_{ij}$, para todo $j \in \{1, \dots, q\}$ e $i \in \{1, \dots, p\}$, então

 $(\alpha A)^T = \left[\alpha a_{ij}\right]^T = \left[\alpha a'_{ji}\right] = \alpha \left[a'_{ji}\right] = \alpha A^T.$

• Transposta da soma: $(A+B)^T = A^T + B^T$.

Demonstração. Sejam $A = [a_{ij}]$ e $B = [b_{ij}]$, com $i \in \{1, ..., p\}$ e $j \in \{1, ..., q\}$. Por definição de adição de matrizes, $A + B = [c_{ij}]$, com $c_{ij} = a_{ij} + b_{ij}$, para todo $i \in \{1, ..., p\}$ e $j \in \{1, ..., q\}$. Assim,

$$(A+B)^T = \left[c'_{ji}\right]$$

com $c'_{ji} = c_{ij}$, para todo $j \in \{1, \dots, q\}$ e $i \in \{1, \dots, p\}$.

Por outro lado, como $A^{T} = [a'_{ji}]$, com $a'_{ji} = a_{ij}$, e $B^{T} = [b'_{ji}]$, com $b'_{ji} = b_{ij}$, vem que $A^{T} + B^{T} = [a'_{ji}] + [b'_{ji}] = [a'_{ji} + b'_{ji}] = [d_{ji}]$, onde a entrada (j, i) é

$$d_{ji} = a'_{ji} + b'_{ji} = a_{ij} + b_{ij} = c_{ij} = c'_{ji}.$$

E, portanto, $A^T + B^T = (A+B)^T$.

• Transposta do produto: $(AB)^T = B^T A^T$.

Demonstração. Sejam $A = [a_{ik}]$ e $B = [b_{kj}]$, com $i \in \{1, ..., p\}$, $k \in \{1, ..., q\}$ e $j \in \{1, ..., m\}$. Tem-se que

$$AB = \begin{bmatrix} c_{ij} \end{bmatrix}, \text{ onde } c_{ij} = \sum_{l=1}^{q} a_{il} b_{lj}$$

para cada $i \in \{1, \dots, p\}$ e $j \in \{1, \dots, m\}$. Assim

$$(AB)^T = \begin{bmatrix} c'_{ji} \end{bmatrix}, \quad \text{ onde } c'_{ji} = c_{ij}.$$

Por outro lado, $A^T = [a'_{ki}]$, com $a'_{ki} = a_{ik}$, e $B^T = [b'_{jk}]$, com $b'_{jk} = b_{kj}$, para todo $i \in \{1, \dots, p\}$, $k \in \{1, \dots, q\}$ e $j \in \{1, \dots, m\}$. Assim,

$$B^T A^T = \begin{bmatrix} d_{ji} \end{bmatrix}$$
, onde a entrada (j,i) é

$$d_{ji} = \sum_{l=1}^{q} b'_{jl} a'_{li} = \sum_{l=1}^{q} b_{lj} a_{il} = \sum_{l=1}^{q} a_{il} b_{lj} = c'_{ji}.$$

 $Logo (AB)^T = B^T A^T.$

Definição 1.30. Uma matriz A diz-se simétrica se $A = A^T$.

Observe-se que esta definição obriga a que a matriz A seja uma matriz quadrada. Além disso, uma matriz quadrada de ordem p é simétrica se existir simetria relativamente à diagonal principal, isto é, se é da forma

$$A = [a_{ij}], \text{ com } a_{ij} = a_{ji}, \forall i, j \in \{1, \dots, p\}.$$

Exemplo 1.31. A matriz $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ é simétrica.

Definição 1.32. Uma matriz A diz-se anti-simétrica se $A^T = -A$.

Assim, a definição obriga a que A, para ser anti-simétrica, seja quadrada e os elementos da sua diagonal principal sejam todos nulos. Além disso, em posições opostas em relação à diagonal principal, estão elementos simétricos entre si.

Exemplo 1.33. A matriz $\begin{bmatrix} 0 & 3 & 4 \\ -3 & 0 & 1 \\ -4 & -1 & 0 \end{bmatrix}$ é anti-simétrica.

Exercícios 1.34. 1. Seja A uma matriz quadrada. Prove que:

- a) $A + A^T$ é simétrica;
- b) $A A^T$ é anti-simétrica.
- 2. Mostre que qualquer matriz quadrada se pode decompor na soma de uma matriz simétrica com uma matriz anti-simétrica.
- 3. Em cada caso, prove que a afirmação é verdadeira ou apresente um contraexemplo mostrando que é falsa. Sejam A, B e C matrizes de tamanhos adequados.
 - a) Se A + B = A + C então B e C são do mesmo tipo.
 - b) Se A + B = 0, então B = 0.
 - c) Se a entrada (2,3) da matriz A é 7, então a entrada (3,2) de A^T é -7.
 - d) Se A = -A, então A = 0.
 - e) Para toda a matriz A, as matrizes A e A^T têm a mesma diagonal.
 - f) A igualdade $(A+B)^2 = A^2 + 2AB + B^2$ é sempre válida para quaisquer matrizes.
 - g) Se $A^2 = A$ então A = 0 ou A = I.
- 4. Sejam $A \in M_{p \times q}(\mathbb{K})$ e $B, C \in M_{q \times m}(\mathbb{K})$ matrizes quaisquer. Aplicando as propriedades das operações entre matrizes, mostre, de duas formas distintas, que

$$(A(B+C))^T = B^T A^T + C^T A^T.$$