073-08-13-Monday Hydrology & Agricultural Mateoxology

81) Define Hydrology? with water balance equation Hydrology means the science of water. It is the science That deals with the occurrence, circulation & distribution of water of the earth & earth's atmosphere As a branch of earth science it is concerned with the water in streams & lakes, rainfall & snowfall, snow & ice on land & water occuring below the earth's surface in the powes of the soil & rocks. Water balance equation can be given as, where I = 9nflow 0 = outflow & As= change in storage. S2) Brifly describe the hydrological cycle with its > Water occurs on the easth in all its three states ie solid, liquid & gaseous. Evaporation of water from water bodies such as oceans & lakes, formation & movement of clouds, rain & snowfall, streamflow and groundwater flow are some examples of the dynamic aspects of water. The various aspects of the water

related to the easth in terms of cycle is writer cycle

The various components of hydrologic cycle can be describe as. a) Precipitation: After the cloud is formed, they are condense & fall onto the land as a rain is precipitation b) Evaporation: When the heat energy is provided to the ocean or sea by means of solar voltiation, the wreter thus Evaporate & moves above the ocean level. 4 Transpration: Different vegetation sends a postion of the water from under ground surface back to the atmosphere through the process of transpiration. a) Infilteration A portion of water that reaches the ground enters the earth's surface through the process, of infilteration. es Runoff The portion of the precipitation which by a vastety of paths above or below the surface of the earth graches the stream channel is known as runoff. Once it enters a stream channel runoff becomes stream how

03) larite down the scope of hydrological study & its
03) larite down the scope of hydrological study & its application in agricultural engineering field
> The scope of hydrological study & its application in
agricultural engineering field are discussed below.
as Water resource projects.
Hydrology finds its greatest application in the design
and operation of water resources in engineering
projects. The hydrological study of a prosect should
necessarily proceed structural & other detailed design
studies. It involves the collection of relevent data &
analysis of the data by applying the principle &
theories of hydrology to seek solution to practical
problems.
b) Drinking water supply
There is a great scope of hydrology in drinking
water supply. Drinking water should be distributed
piper, etc. from the vivers or reservoirs.
piper, etc. from the vivers lor reservoirs.
e) Irrigation & drainage engineering
In irrigation projects a hydraulics structure there
finds a great scope while designing ixigation canal
& projects.

d) water power Nepal is a developing country & it in developing stage so there is comming many hydropower where it has great scope.U e) Navigation Navgation is the field of study that focuses on the process of monitoring & Controlling the. movement of a graft or vehicle from one place to another. fy Recreational uses. gy bridge, dam, reservoirs, etc Application of hydrology in agricultural engineering -> Designing irrigation chemes & managing agricultura productivity. > refermining the water-balance of a region. > retermining the agricultural waterbolance I resigning dams for water supply or hydroelectric power Ugeneration. > providing drinking coater. 2 resignifip sewel & urban availage system. Mitigating & predicting Good, landslide & drought

oriefly describe the important of hydrological study > Hydrology means science of water. Hydrology is the branch of earth science that deals with the occurance circulation & dictribution of water of the earth atmosphere As a branch of earth science it is concerned with the water in streams lakes rainfalle snowfall unow & ice on the land want water occurring below the earth surface in the pore of coil & rocks. Mepal is in the developing stage so there is a great importance of hydrological study. In Nepal hydrological study finds its greatest application in the design & operation of waterresources engineering projects, such as those for Dirrigiotion i) water supply ii) flood control inwater power & Navigation. i) issigation There involves numerous proved on insignion such as designing of canal, dams, reservoirs of In doing so there Unill be efficient , economic & efficient ii) water supply on supplying of water, there is great importance

of hydrological study. As hydrology is the science of water it controls & managed how to supply water from one place to another.

Hydrological study plays a Vital role in controlling a the Good. It determines how much ppt occurs wholf storage & rainfall by knowing these one can determine the column of control for Good.

There as are pronumber of projects involves in hydropower water there is a great role of hydrological study. To designing hydropower one have to know the discharge velocity irainfall, runoff, etc. These can only be done by good hydrologists.

Mavigation
There is a great importance of hydrological chap
in the field of Mavigation Navigation is the

monitoring & controlling the movement of a walt

or vehicle from one place to another by a ship.

aircraft or a spaceship involves under Navigation.

in the country like alopal, to develop the whole nation

•	
· Allmerica	1 Problems.
- AUTICOTE	Poulens.
	FI CONTRACTOR

2>	The mass curve	οĒ	an	isolo	ated	sty	m _	in a	500	har	Dates	Ξ
	shed is as follow			54					.1	1	io	_
	Time from start (h)	0	2	4	6	8	10	12	14	16	18	_
	cumulative rainfall	146 ALAN								14	10./	-
	(cm)	0	0.8	2.6	2.8	4.1	7.3	10.8	11-8	12.4	12.6	L_

If the direct runoff produced by the strom is measured at the outlet of the watershed as 0.340 Mm³, estimate the \$\phi\$-index of the strom & duration of rainfall excess.

Sol? (given, Total rainfall = EDP: 08, E ix ot where, i = DP: t = rate of rainfall

op = amount of rainfall in time st Time(bx) cumulative Incremental rainfall in each i= DP/ rainfall(cm) time interval (DP) (cm) · · · · · · · 0 0.4 0.8-0=0.8 0.8 0.9 2.6-0.8=1.8 2.6 4 2.8-2.6 = 0.2 0.1 2.8. 6 0.65 4.1-2.8=13 4.1 R 1.6. 7.3-4.1 = 3.2 7.3 10 10.8-7.3 = 3.5 1.75. 10.8 12 0.5 11.8-10.8 = 1.0 11.8 14 0.3 12.4-11.8=0.6 12.4 16 0.7 12-6 - 12-4 = 0.2 12.6 18

EDP = 12.6

	4
Trajī	1
Assume the runoff occurs from the begining of the rain	otal
& hence te = 18 hours	1
& hence te = 18 hours φ-index, φ = amount of infilteration time	-
	4
= total rainfall - total runoff	-
Eime	-4
$= P_e - Q$	
+ + + + + + + + + + + + + + + + + + +	
a 111 and clating during which runoff take	
11 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
te = effective time of which runoff take place	e.
te = effective time of which out the	
NOW 6.3 12 500 ha	
Runoff, Q= 0.34×10m3 over 500ha	
$= 0.34 \times 10^6 \text{m}^3 = 0.068 \text{m} = 6.8 \text{cm}$	ř
500×10 ⁴ m ²	
te 18	•
check	
B = [(0.4-0.322)+(0.9-0.322)+(0.1-0.322)+(0.65-0.322)+(1.6-0.3	521)
(+ (1.75-0.322)+ (0.5-0.322) +(0.3-0.322) +(0.1-0.322)	
$= \left[0.078 + 0.578 + 0 + 0.328 + 1.278 + 1.428 + 0.178 + 0 + 0\right] \times 2$	
= 7.736 cm + 6.8 cm	
So, Trial IL	

page.99

$$te = 18-6 = 12h8$$

$$Pe = 12.6 - 0.2 - 0.6 - 0.2 = 11.6$$

$$0 = 6.8 \text{ cm}$$

$$\phi = \frac{Pe - 0}{te} = \frac{11.6 - 6.8}{12} = 0.4 \text{ cm/h}8$$

check

$$Q = (0.4 - 0.4) + (0.9 - 0.4) + (0.1 - 0.4) + (0.65 - 0.4) + (1.6 - 0.4) + \chi_2$$

$$(1.75 - 0.4) + (0.5 - 0.4) + (0.3 - 0.4) + (0.1 - 0.4)$$

$$= [0+0.5+0+0.25+1.2+1.35+6.1+0+0]x^{2}$$

Here, calculated runoff is equal to the given runoff so, of = infiltration rate | o-index = 0.4 cm/hx

Ans.
$$\phi = 6.4 \text{cm/h/s}$$
. γ

$$te = 10 \text{ hours}$$

3.19) 2) The mass curve of an isolated strom over a watershed is given below.

_													
	Time from	0	0.5	1.0	1.5	2-0	2.5	3.0	3.5	4.0	4.5	50	
	start (h)												
,	rumulative	Ø	0.25	0.50	1.10	1.60	2.60	3.50	5.70	6.50	730	770	per contract
/'4	rainfall(con)												

If the strom produced a direct runoff of 35cm at the

outlet of the watershed estimate the of index of the size and duration of rainfall excess.

The state of the s	uniform time duration at = 0.5h are considera
Sola Pulses of	O. Miles
	100 100 100 100 100 100 100 100 100 100
17:me 100-7	infall (cm) time interval, pp (cm) st
start(h) ra	o -
	0.25-0=0.25
0.5	0.25 0.50-0.25 = 0.25 0.125
1.0	050 1.10-6.50 = 0.60 1.2
	1.10 1.60-1.10 = 6.50
2.0	$\frac{1.60}{2.60 - 1.60} = 1.0$
	$\frac{2.60}{3.50 - 2.60} = 0.9$
	$\frac{3.50}{5.70 - 3.50} = 2.20 \qquad 4.4$
3.0	5.70 = 0.8 1.6
33	6.50-570
1 2	2.30-8.50
.4.5	$\frac{30}{70}$ $\frac{7.70-7-30}{7.70-7-30} = 0.4$
5.0 4	DP= 7.70

Trial I runoff
Assume the rainfatt occurs from the begining of the rainfall & hence, te = 5 hr

Pe = 7.70 cm (biven) 0 = Pe - 0 = 7.70 - 3.5 = 0.84 cm/hr

te 5

Check
$$0 = \begin{cases} (0.5 - 0.84) + (0.5 - 0.84) + (1.2 - 0.84) + (1.6 -$$

A CONTRACTOR OF THE CONTRACTOR		•	4
eap apacity ro	des at various til	of are the infilteral of intervals after the application of the f-curve arm developed by Horald the excess rain	DE)
Time	Precipitation rate	Infilteration capacity	
(min)	ccm/hr)	(cm/hx)	,
 1	5.0	3.9	·
2.	5.0	3.4	

	Time	Precipitanon rate	Intilteration capacity	_
	(min)	ccm/hr)	(cm/hx)	,
	1	5.0	3.9	•
	2.	5.0	3.4	
	3	5.0	3.1	
,	4	5:0	2.7	
	5	5.0	2.5	
	6	7.5	2.3	
	8	7.5	2.0	
	10 10 M (61 6.	7.5	1.8	
	12:00	1. 1. 7.5	1.54	
	14	7.5	1.43	
	16	2.5	1.36	
	18	2.5	1.31	
	20	2.5	1.28	
2	22	2.5	1.25	
	24	2.5	1.23	
	26	2.5	1.22	
	78	2.5	1.20	

٠,

1.20

2.5

30

solo The precipitation & infilteration rates vexous time are
dell les a group.
plotted as in a graph. To the Hortons equation, the Horton's constant $k = f_0 - f_c$
Fe
In graph, one largest square curve = 1 cm x2min = 1 cm x1hr x2min
$= \frac{1}{30}$ cm
From graph,
() lale get
Fc = 8.5 sq. units (shaded portion)
Rainfall (P) = 66.25 59. Units
Area under f curve (Fp) = 26 sq. units
Mica and I concern
Now Excess rain Poet = P-Fp
= (66.25 - 26)34.01143
= 40.25 59.00%5
= (40.25) x 3/30 CM
= 1.34 cm
Total rain (P) = 66.25 59. units
= (66.25) x 1/30 cm
= 2.21 cm
Also, for Hoxton equation,
$F_{c} = 8.5 \text{ sq. units}$
= 8.5x1/30 cm = 0.28cm.

:.
$$K = f_0 - f_c$$
 $(4.5 - 1.2) cm/hY = 11.79 hY^{-1}$

Fc: 0.28 cm

:. The Horton's equation PS,

 $F = f_c + (f_0 - f_c) e^{-rt}$
 $= 1.2 + (4.5 - 1.2) e^{-11.79t}$

:. $F = 1.2 + \frac{3.3}{e^{11.79t}}$

B) A Fox a small catchment, the infilteration rate at the begining of the rain was observed to be go months & decreased exponentially to a constant rate of 8 months after 2 1/2 hr. The total infilteration during 2 1/2 hr was somm. Develop the Horton's equation for the infilteration rate at any time t<21/2 hr.

$$50/0$$
. Given, $f_0 = 90 \text{ mm/h} \times 6 = 8 \text{ mm/h} \times 6 =$

= 30 mm

They Hordon's constant, K = fo-fc

30 2.73 hr -1

& Hordon's equation is given as, $f = f_c + (f_0 - f_c)e^{-\kappa t}$ $= 8 + (90 - 8)e^{-7.73t}$ i.e. $f = 8 + 92e^{-7.73t}$ fin moths tin by

B) A 24-hour strom occurred over a catchment of 18km orea and the total xainfall observed was 10 cm. An infilteration carried prepared capacity curve prepared had the initial infilteration capacity of 1 cm/hx & attained a constant value of 0.3 cm/hx after 15 hours of rainfall with a Horton's constant K = 5 hr -1. An IMD pan installed in the catchment indicated a decrease of 0.6 cm in the water level (after allowing for rainfall) during 24 hours of its operation. Other losses were found to be regigible Determine the runoff from the catchment. Assume a participant of 0.7.

solo Given, $f_0 = 10 \text{ mm cm th} \times 1 \text{ cm/h} \times 1 \text{ c$

Now,

 $f = f(+(f_0 - f_0)e^{-kt}$ $= 0.3 + (10 - 0.3)e^{-5t}$ = 0.3 + 0.7 = 5t

Now, Horton's equation is given as,

$$F_{p} = \int_{0}^{24} (F_{e} + (F_{o} - F_{e})) f dt$$

$$= \int_{0}^{24} \left(0.3 + 0.7 , e^{-5t} \right) dt$$

$$= \left(0.3 + \frac{0.7}{-5 e^{-5t}} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24 - 0.7 , e^{-5t} \right) e^{-5t}$$

$$= \left(0.3 \times 24$$

$$\frac{1. \text{ Runoff}}{2. \text{ Runoff}} = \frac{P - F_P - F}{2.0 - 7.34 - (0.6 \times 0.7)} \\
= 2.24 \text{ cm}$$

And, volume of runoff from the catchment
$$= 2.24 \times 10^{6} \text{ m} \times (1.8 \times 10^{6}) \text{ m}^{2}$$

$$= 40320 \text{ m}^{3}$$

53.20) B) In a 140 min strom of following rates of rainfall were observed in successive 20-min intervals: 6.0, 6.0, 18.0, 13.0, 2.0, 8,2.0 & 12.0 mm/hx. Assuming the dindex value as 3.0 mm/hx & an initial loss of 0.8 mm determine the total rainfall net rainfall & Winder for the strom.

Soll	Given,	2	'3'	4=2-4	5=4-3	
	Time	Rainfall inf	Rainfall	effective rainfall	excess vainfall	
	(hx)	ensity (mm/h)	depth (mm)	intensity (mm/hx)	(mm)	
and the second s	20/60=1/3	6.0	2.0	6.0-3.0 = 3.0	7.0	
	40/60 = 2/3	6.0	24.0	6.0-3.0=3.0	7.0	
	60/60 = 1	18.0	6.0	18.0-3.0 = 15.0	5.0	
, .	80/60 = 4/3	13.0	4.33	13.0-3.0 = 10.0	3.33	
	100/60=5/3	2.0	0.67	2.0-3.0 = 0	0	
	120/60 = 2	2.0	0.67	2.0-3.0=0	0	
	140/60 = 7/3	12.0	4.0	12.0-3.0=9.0	3.0	
NAME OF TAXABLE PARTY OF TAXABLE						

Total rainfall = 19.67 mm Total rainfall = 13.33 mm

From Jable, duration of excess vainfall = 140-20-20 = toomin

 $= \frac{5}{3}h8.$

NOW,

we have,

w-index = P-R-Ia = P-R - Ia te te - = \$\phi-index-

$$\frac{1. \text{ 0-index} = 3 - 0.8}{5/3}$$
= 2.52 mm/h8.

53.21) O) The mass curve of rainfall of duration Joomin is

given below. If the catchment had an initial loss of

o.6 cm and of index of o.6 cm/hx, calculate the total

surface runoff from the catchment.

Time from start of rainfall (min) o 20 40 60 80 100

cumulative rainfall (cm) 0 0.5 1.2 2.6 3.3 3.5

sole (niven, initial loss (\overline{a}) = 0.6 cm ϕ -index = 0.6 cm 1h8

		φ ποιος.	, , , , , , , , , , , , , , , , , , , ,			- 3
	time	cumulative	incremental	increpental rainfall	excessive	exica
	(min)	rainfall (cm)	rainfall(op)	rainfall ly (PRY)	rainfall toxy.	(cunfall
	20	0.5	0.5	0.1671.5	0.9	8.3
	40	1.2	1.2-0.5=0.7	0-2332.1	1.5	0.5
4	60	2.6	2.6-1.2=1.4	0.467 4.2	3.6	1.2
+	80	3.3	3.3-2.6=0.7	0.2332.1	1.5	0.5
1	100	3.5	3.5-3.3=6.2	0.0670.6	0 .	0

: excess rainfall = 0.3 +0.5 + 1.2 +0.5

$$= 2.5 \, \text{cm}$$

ie Total surface rupoff = 2.5 cm.//

(3.3.22) (3) An isolated 3-h istrom occurred over a basin in the following fashion.

1:	1. of catchment	d-index		Rainfall (cr	n) -	
+	area	(cm/hr)	1st hour	and hour	15	
+	20	1.00	0.8	2.3	1.5	
+	30	0.75	0.7	2.1	1.0	
	50	0.50	1.0	2.5	0.8	

Estimate the runoff from the catchment due to the

50 1 For 20% catchment area.

		, c, c, c,			
Time	Rainfall	Rainfall	Effective Rainfall	Excess	_
(hx)	(cm)		intensity (cm/hx)	rainfall (cm)	
= 31	0.8	0.8	-0.8-1=0	0	
2雪	2.3	2.3	2.3-1.0=1.3	1.3	
553	1.5	1.5	1.5-1.0 = 0.5	0.5	

Total runoff = 1.8 cm 0-index = 1.00 cm/hr.

Fox 30% catchment area.

						
	Time	Rainfall	Rainfall	effective rainfall	Excess	
-,-	(hy)	(cm)	intensity (cm/hx)	intensity (conthr)	rainfair (cm)	
	1	6.7	0.7	0.7-6.75=0	0	
	2	7.1	2.1	2.1-0.75=1.35	1.35	
	3	1.0	1.0	1.0-0.75 =0.25	0.25	

Total runoff = 1.60 cm

prindex = 0.75 cm/h8

	Cay 5	o'/ catch	ment area		
		Rainfall	Kaintall	Effective rainfall	excess vainfall
	Time. (hr)	(cm)	intensity (com/hr)	intensity (m/hr)	(cm)
	1	1.0	1.0	1.0-0.5=05	0.5
	2 .	2.5	2.5	2.5-0.5 = 2.0	6-2.0
	3	0.8	0.8	0.8-0.5 = 0.3	0.3
<u> </u>				Total runoff	2 = 2.8 cm
		4		· ·	= 0.5 cm/hx

NOW,

Total runoff = A,R, +A2R2+A3R3

A, +Az+A3

 $= 20 \times 1.8 + 30 \times 16 + 50 \times 2.8 + 1$

20+30+50

= 224

100

 $= 2.24 \, \text{cm}$

54.3) 8)	The following as	æ	he c	data	ak	مادي م	ه لم		ر. جـــا. دا ه	·-,		ر ملم	man ins others.
	operation. A co	Me	ot	met	ey u	294h	a	calil	-51X	с <u>а</u> т 10 (- ga	2100	
	V= (0.32N+0.0	32)	mis	ah	ere	N=	xev	Huli	ons	DEX	Sec	ood_	ധവട
	used to measure	2 dt	e v	eloci	4 (1t.0	·6 d	epth	. 0,5	ng c	the	nid-	
	section method.	cal	culat	e t	be.	dis	daxa). De	in t	O:	Ske	J.D.	-
	distance from 81 bankim)	0	1	4	6	*		15		20			24
7	Depth (m)	0	0.50	1.10	1.95	2.25	1.85	1.75	1.65	1.50	1.25	0.75	0
	No. of revolutions	0	80	83	131	139	121	114	109	92	85	70	0
	observation Time(s)	0	180	120	1.20	120	120	120	120	120	120	150	0
		15	, 14 p			, y	, ·						·

23 2	24
5 0.75 0	_
// // -	0
70 0	0
0 150 0	0
1 0.47 0	
32 0.1824	ترحمه
7	0 150

segment $= \begin{cases} (\omega_1 + \frac{\omega_2}{2}) \\ -\frac{2\omega_1}{2} \end{cases}$ $= \begin{cases} (2 + \frac{2}{2}) \\ -\frac{2}{2} \times 2 \end{cases}$ Average dest

2:25 M

The calculation of discharge by the mid-section method is shown in tabular form below.

	<u> </u>	b	(do		A-Leading Control of the Control of
	distance from	Average	Depthiy	NIs	Vela el	f = bx cxe
	edge (m)	width (w)(m)	(m)	= Rev/sec.	(v) (m/s)	Segmental di 1
	0	0	0	0, 0	- (11)/5)	arge (00) (m3/5)
	2.	725	0.50	0.44	0.1728	0.0000
'	4	7.	1.10	. 6.69	0.2528	0.1944
	6	2.5	1.95	1-09	0.3808	0.55616
, A A	9	3	2.25	. 1.16	0.4032	1.8564
	12 .	3	1.85	1.00	0.3520	2.7216
	15	3	1.75	0.95	0 3360	1.764
	1 18	3 2.5	1.65	0.31	0.3232	1.3332
State of the last	20	2	1.50	0.77	0.2784	6.8352
- · · · · ·	22	21.5	1.25	0.71	0.2592	.0.4860
	23.	1.125	0.75	0.47	0 1824	0.1539
	24	. D	0	0	_	6.0000
/5	•					

sum = 11.85446 m/s.

Discharge in the stream = 11.85446 m3/sec.

2073-11-2-monday.

B) The following data was collected for a stream at a gauging station compute the discharge by, i) mid section method

99) mean section method

	<u> </u>	Marill C			
	orstance from one	Depth of water	Veloca	y mls.	
	and of water	(m)	6)	
	surface (m)		at 0.6d	at 0.2d	
, 1	0	0		4,0.29	01-0.80
	1.2	0.7	0.4		-
	2.4	1.7		A 7	-
	3.6	2-5		6.7	0.5
	4.8	1.3		0.9	0.6
	6.0	0.5	0.25	0.6	0.4
	7.1	0	0.35		-
	7, 7				

Now, for the calculation of width,

considering the area of both side of the bank, $b_1 = (\omega_1 + \omega_1/2)^2 = (1.2 + 1.2/2)^2 = 1.35m$ $2\omega_1$ 2×1.2

$$b_2 = \frac{\omega^2/2 + \omega^3/2}{2} = \frac{1 \cdot 2}{2} + \frac{1 \cdot 2}{2} = 1 \cdot 2m$$

$$b_3 = \frac{\omega^3/2 + \omega^4/2}{2} = \frac{1 \cdot 2}{2} + \frac{1 \cdot 2}{2} = 1 \cdot 2m$$

$$b_4 = \frac{\omega^4/2 + \omega^5/2}{2} = \frac{1 \cdot 2}{2} + \frac{1 \cdot 2}{2} = 1 \cdot 2m$$

$$b_5 = (\frac{\omega^6 + \omega^5/2}{2})^2 = (\frac{1 \cdot 2 + \frac{1 \cdot 2}{2}}{2})^2 = 1 \cdot 35m$$

$$2 \cdot \omega^6 = \frac{1 \cdot 2}{2} + \frac{1 \cdot 2}{2} = \frac{1 \cdot 35m}{2}$$

Then, average velocities of each section is given by $V_1 = V$ at 0.6d = 0.4mls

$$U_2 = U_1 a + o.2d + o.8d = o.7 + o.5 = o.6m/s$$

$$U4 = V \text{ at } 0.2d + 0.8d = 0.6 + 0.4 = 0.5 \text{ mls}$$

& the given depayexage depths of each section is, $d_1 = 0.7 \text{ m}$ $d_2 = 1.7 \text{ m}$ $d_3 = 2.5 \text{ m}$ $d_4 = 1.3 \text{ m}$ $d_5 = 0.5 \text{ m}$ so, calculating the discharge as total discharge as sum of discharge from each section

 $i e Q = Q_1 + Q_2 + Q_3 + Q_4 + Q_5$ $= b_1 d_1 V_1 + b_2 d_2 V_2 + b_3 d_3 V_3 + b_4 d_4 V_4 + b_5 d_5 V_5$ $= 1.35 \times 0.7 \times 0.4 + 1.2 \times 1.7 \times 0.6 + 1.2 \times 2.5 \times 0.75 + 1.2 \times 1.3 \times 0.5 + 1.35 \times 0.5 \times 0.35$

:. 8= 8 4.86825 m3/sec.

Hence, required discharge is 8 = 4.86825 m3/sec.

ii) mean section method.

no of segment = no of depth +1 = 5+1=6 Now, calculation of average depth of each segment $d_1 = (0+0.7)m = 0.35m$

dz = (0.7 + 1.7)m' = 1.2m

$$do = (\frac{1.7 + 2.5}{2}) m = 2.1 m$$

$$dq = (\frac{2.5 + 1.3}{2}) m = 1.9 m$$

$$d6 = (\frac{0.5 + 0}{2}) = 0.25 m$$

$$d6 = (\frac{0.5 + 0}{2}) = 0.25 m$$

$$2$$

$$d6 = (\frac{0.5 + 0}{2}) = 0.25 m$$

$$2$$

$$0 = 0.4 + (\frac{0.7 + 0.5}{2}) = 0.5 m/s$$

$$2$$

$$0 = (\frac{0.7 + 0.5}{2}) + (\frac{0.5 + 0.4}{2}) = 0.675 m/s$$

$$2$$

$$0 = (\frac{0.7 + 0.5}{2}) + (\frac{0.6 + 0.4}{2}) = 0.625 m/s$$

$$2$$

$$0 = (\frac{0.6 + 0.4}{2}) + (0.35) = 0.425 m/s$$

$$2$$

$$0 = (\frac{0.6 + 0.4}{2}) + (0.35) = 0.425 m/s$$

$$2$$

$$0 = 0.35 + 0 = 0.175 m/s$$

$$2$$

$$0 = 0.35 + 0 = 0.175 m/s$$

$$0 = 0.35 +$$

:. B= 4.4415 m3/5.

Hence, required discharge 95 Q = 4.4415 m3/sec.

				diam on an	
5.4.1	The following date	a were c	ollected during	g a stream gai	9
	operation is a sil	ies. compu	te the discharge	10 0	
	Distance from left	depth	Velocity	at-08d	\vdash
	water edge (m)	(m)	at-0.2d		
	0.0	0.0	0.0	0.0	-
	1.5	1.3	0.6	0-4	_
	3.0	2.5	6.9	0.6	
•	4.5	1.7	0.7	0.5	
	6.0	1.0	0-6	0.4	
	7.5	0.4	0.4	0.3	
	9.0	0.0	0.0	0.0	. 4

mid-section method Doing 0,01 6M 00 clore 0.411) 2.5M 1.7m

1.000

Now for the calculation of width $b_1 = (\omega_1 + \omega_{12})^2 = (1.5 + 1.5 h)^2 = 1.68757$ $b_2 = \omega_{1/2} + \omega_{3/2} = 1.5/2 + 1.5/2 = 1.5 \text{ m}$ bg = w3/2+w4/2 = 1.5/2+1.5/2 = 1.5M b4 = w4/2 + w5/2 = 1.5/2 + 1.5/2 = .1.5 M b5 = (66+65/2)2 = (15+15/2)2 = 1.6875 M 2×15 Then average velocities of each section is given by,

U, = U at 0.2d+0.8d = 0.6+0.4 = 0.5 mls. $U_2 = Vat 0.2d + 0.8d = 0.9 + 0.6 = 0.75 mls$ U3 = U at 0.2d +0.8d = 0.7+0.5 = 0.6 m/s. 64 = 0 at 0.20+0.8d = 0.6+0.4 = 0.5 m/s $U_5 = 0$ at 0.2d + 0.8d = 0.4 + 0.3 = 0.35 m/s& given average deths of each section 95,

 $d_1 = 1.3 \, \text{m}$ $d_2 = 2.5 \, \text{m}$

d3 = 1.7m d4 = 1.0m d5 = 0.4m

so, calculating total discharge as the sum of discharges through each sections.

ie @= &|+ &c+ &3+ &4+&5 = b|d|U|+ b2d2U2+ b3d3U3+ b4d4U4+ b5d5U5 = 1.6875×1.3×0.5+1.5×2.5×0.75+1.5×1.7×0.6+ 1.5×1.0×6.5+1.6875×0.4×0.35

:. 8 = 6.425625 m3/sec.

Hence, required discharge is 6.425625 m3/sec:

			Edward Control	
5.4.1	o) A small st	ream has a t	rapezoidal rense	s-section with base
	width of 121	n and side si	ope 2 horizonal:	I vextical in a
	reach of 800	som. During a	Flood the high	water levels
	xecord at al	ne ends of 1	he reach are as	Follows.
	section	elevation of	water surface	Remorks
	·		elevation(m)	
5 · · ·		100.20		manning's n=0.030
4 7 6	downstream	98.60	101.30	
		discharge in		
		J		
5019	- Using suff	fixes 1 & 2 t	o denote the	upstream and
	downstream	n sections re	spectively, the	cxoss-sectional
	properties	axe calculated	as follows;	
	section.		_ 1/ _	A
	$z_1 = 100$		Z2 = 98.60m	
•	p1 = 70		h2 = 101.30	m ·

	$z_1 = 100.200$	Z2 = 98.60M	
	h, = 102.70m	h2 = 101.30m	
	:. y1=h1-Z1	$y_2 = h_2 - Z_2$	2
	= 102.70 - 100.20	= 101.30 - 98.60	-2 -
	= 2.5m	= 2.7m	
1	$A_1 = b_1 y_1 + z y_1^2$	$A2 = b2y_2 + 2y_2^2$	
1	$=12\times2.5+2\times(2.5)^{2}$	$= 12 \times 2.7 + 2 \times (2.7)^{2}$	***
1	$= 42.5 \mathrm{m}^2$	$= 46.98 \mathrm{m}^2$	
-	P1 = b1 + 24, V1+z2	P2 = 62 + 242 V1+22	
	$= 12 + 2 \times 2.5 \sqrt{1+4}$	$= 12 + 2 \times 2.7 \sqrt{1+4}$	
-	= 23 1803 m	= 24.0748M	-
	:A = A1 = 42.5	: R2 = A2 = 46.98	
-	PI 23.1803	P2 24.0748	
	= 1.8334	= 1.9514M	
	and the second panels of the s		

		7/3
	$K_{i} = 1 R^{1/3} \Omega$	K2 = 1/0 A2 R2
	0 1 0	= 1/0.03 × 46.98× (1.9514) 1/3
-	= 1 x 42.5 x (1.8334)	= 2445.4341
	0.03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
, ,	2	

Average K for the reach, $K = \sqrt{\frac{K_1 K_2}{2122 \cdot 1325 \times 2445 \cdot 4341}}$ = 2278.0551

To start he = h_-h2 = 102.7-101.3 = 1.4 m is assumed Eddy 1055 he = 0 for uniform width.

The calculations are shown in table below: $\overline{S_F} = hF/L = 1.4 = 1.75 \times 10^4 \text{ m}$ 8000

 $B = K\sqrt{5}e = 2278.0551\sqrt{1.75}\times10^{-4}$ = 30.1358

$$\frac{V_{1}^{2} = (8) \times 1}{29 (42.5) (9.62)}$$

$$\frac{V_{2}^{2} = (8) \times 1}{29 (46.98) (9.62)}$$

 $hp = (h_1 - h_2) + \left(\frac{v_1^2 - v_1^2}{2q}\right) - he$

-				1/			
• •	Trial	The	SF (104m)	8	V1/29	V2/29	hf
		(tria)	1.4.1.	m 15.	(m) (v	(m)	
\perp	1	1.461	1.75	30.1358	0.0256	0.0210	1.4046
	2	1.4046	1.75575	30 1853	0.0257	0.0210	1.4047
	3	1.4047	1.7559	30.1864	0.0257	0.0210	1.4047

the state of the s	The state of the s	
Since the value of he	in found and	-
0. 71 . 10 1	Diowid same so w	e stop lyel
& The discharge in	the channelis a=	20 1000
- to 1.		30.1864 m/s.

During a flood flow the depth of water & in a lam wide rectangular channel was found to be 3.0m & 2.9m of water sections 2.00m apart. The drop in the water-enreace elevation was found to be 0.12m. Assuming Manning's coefficient to be 0.025, estimate the flood discharge through the drannel.

sold Using suffixes 1 & 2 to denote the upstream & downstream - sections respectively, the cross-sectional proposties are calculated as follows.

	· onouo.		
	Section 1	Section 2	
	$b_1 = b = 1$ om	b2=b=10m	ı
,	d1 = 3 om	$d_2 = 2.9 \text{m}$	
	:. A = b d += 10x3	$\therefore A_1 = b_2 d_2$	
	= 30m²	$= 10 \times 2.9 = 29 \text{ m}^2$	
	$P_1 = b_1 + 2d_1$	$P_2 = b_2 + 2d_2$	-
	= 10 + 2x3	$= 10 + 2 \times 2 \cdot 9$	-
	= 16W	= 15.8m	
T	$R_1 = A_1 = 30 = 1.875 \text{ m}$	$R_2 = A_2 = 29 \cdot = 1.8354$	L
T	P ₁ 16	P2 15.8	1
	$K = \frac{1}{2} A_1 R_1^{2/3}$	$K_2 = \frac{1}{4} A_2 R_2^{2/3}$	
	$=1/x(30) \times (1.875)^{2/3}$	1 x(29) x(1.8354)	
-	10.025	0.025	
-	= 1824.6606	= 1738 9155	
			10.00

Average K for the reach, K= VKIK2. = V1824.6606×1738.9155 = 1781.2722 To start, hF= h,-h2= 0.12 m (given) (ength (L) = 200m (given) Eddy 1055 he = 0 for ke =0 (uni for ke = 0 (uniform width) The calculations are shown in table below, 140.12 = 6x104m B = KV 5F = 1781.2722 V6x104 19.62 19.62 29 hF = 0.12 +

hf(tra) | Sf (104m) V2/29 (M) B (mils) V1/29 (m) Trial. hF 43.6321 0.1078 0.12 6.0 0.1154 0.1124 0.1124 2 5.62 42.2278 0.1010 0.1081 0.1129 3 0.1129 5.645 42.3216 0.1014 0.1085 0.1129

since the value of heis found some so we stop trial. I the discharge in the channel is a = 42.3216 m/s

Estimation of missing data. (Numericals).

3) The normal annual xainfall at stations A, B, C and D in a basin axe 80.97 cm, 67.59 cm, 76.28 cm and 32.01 cm respectively. In the year 1975, the station D was inoperative and the stations A, B&C recorded annual precipitation of 91.11 cm, 72.23 cm & 79.83 cm respectively. Estimate the rainfall at station D in that year.

solo Given,

Normal annual rainfall at station A, NA = 80.97cm

Normal annual rainfall at station B, No = 67.59cm

Normal annual rainfall at station C; Nc = 76.28cm

Normal annual rainfall at station D, No = 92.01cm

& Annual precipitation at station A, PA = 91.11cm

Annual precipitation at station B, PB = 72.23cm

Annual precipitation at station C, Pc = 79.89cm

Annual precipitation at station D, PD = ?

Annual precipitation at station D, PD = ?

cheok

No-NA X100% = 92.01-80.97 x100%.
NA 92.01

= 11.99%

Since, normal annual rainfall of station A exceed 10% of
the normal annual rainfall of station D so, we use
normal ratio method.

1 e PD = ND [PA + PB + Pc]
N-1 NA NO NC

or,
$$P_{D} = 92.01 \left[91.11 + 72.23 + 79.89 \right]$$

 $4-1 \left[80.97 67.59 76.28 \right]$

:. Po = 99.41 cm

Hence, Annual precipitation at station 0, Pp = 99.41 cm.

						NACO.			
S> S. 53.(2.7)	Fox a drain	rage ba	590 of 60	OKM iso	hyedols	drawn -			
(S) S.53.(2.7) Fox a drainage basin of 600 km², isohyedols drawn - from a strom gave the following data:									
Isobyet	als (interval)	cm 15	5-12/1/2	1-9 9-6	6-3	3-1			
7096x-	isohvetal are	ca (km²)	92 12	28. 120	175	85 _			
Estimate the average depth of precipitation over the									
cotonne	1.	Je de			711	-			
TO TO TO	114		, ,			-			
50 9 Given in	nformation ar	e tabulat	ed as,			- 6			
	als Average	Area, A							
(interval)		(km²)	AxP						
(cm)	(cm)		(cm. km2)						
	13.5	92	1242						
12-9	10.5	128	1344						
9-6	7.5	120	940						
6-3	4.5	17:5	787.5						
3-1	2.0	85	170						
Total		600	40835	1					
			4443.5	<u> </u>	_ ^ ^				
50,	Average	depth of	precipita	HOD (P)=	= ZAnP	<u>n</u>			
	<u> </u>					43:5			
	2	8 V		~	·	00			
	8 2 2 7 2 4 1			, =	= /				
				- ; . P	- 7	Alco			
¥ .	,			<u>, , р</u>		41 cm			

Hence, the average depth of precipitation over the catchment is found to be, $\bar{p} = 7.41 \text{ cm}$

8) A reservoir had an average surface area of 20 km during sune 2003. In that month the mean rate of inflow = 10mg/s outflow = 15 m/s, monthly rainfall = 10 cm & change in storage 16 x10 m3. Assuming the seepage losses to be 1.8 cm, estingto the evaporation in that month. 5010 (niver, Area (A) = 20 Km x = 20 X 10 m2 Inflow (I) = 10 m3/5 x 30x24x3600 sec. $= 25.92 \times 10^{6} \text{ m}^{3}$ $I = 25.92 \times 10^{6} \text{ m}^{3} = 1.296 \text{ m} = 129.6 \text{ cm}$ $= 20 \times 10^{6} \text{ m}^{2}$ outflow (0) = 15 m3/5 x 30x 24x 3600 SEC $= 38.88 \times 10^6 \, \text{m}^3$ Out = 38.88 × 10 m3 = 1.944m = 194.4cm 20 × 106 m2 rainfall (P) = Locm change in storage (DS) = 16x106 m3 ie 16 x 106 m3 20×106 M 0.8 W = 80 cm seepage losses = 1.8cm evaporation (E)=? Now, we have, DS = P+I-O-Seepage-evaporation or evaporation (E) = P+I-Out-seepage-155

= 10 + 129.6 - 194.4 - (-80)

or, E = 10 + 129.6 - 194.4 + 80E = 25.2 cm

Hence evaporation in that month is LE) = 25.2 cm.