Основы теории графов

осень 2013

Александр Дайняк

www.dainiak.com

Раскраски вершин

- Раскраска вершин графа G в k цветов это отображение $\phi:V(G) \to \{1,2,\dots,k\}$
- Вершинная раскраска ϕ называется *правильной*, если $\forall v' \forall v'' \left(v' v'' \in \mathrm{E}(G) \Rightarrow \phi(v') \neq \phi(v'') \right)$

Хроматическое число $\chi(G)$ — это минимальное число цветов, в которое можно правильно раскрасить вершины графа G.

Списочное хроматическое число

Пусть для каждой вершины v графа G указан конечный список $L_v \subseteq \mathbb{N}$ — цвета, в которые разрешается красить v.

Правильная списочная раскраска графа G (для набора списков $\{L_v\}_{v\in V(G)}$) — это отображение $\phi\colon V(G)\to \mathbb{N}$, которое

- является правильной раскраской в обычном понимании,
- каждая вершина покрашена в цвет из своего списка: $\phi(v) \in L_v$

Списочное хроматическое число

Списочное хроматическое число графа G — это такое минимальное k, что правильная списочная раскраска G существует для любого набора списков $\{L_v\}_{v\in V(G)}$, удовлетворяющего условию $\forall v \; |L_v| = k$.

Обозначение: $\chi_l(G)$.

Очевидно, $\chi_l(G) \ge \chi(G)$ (поскольку можно взять все списки равными $\{1,2,\ldots,k\}$).

Раскраски планарных графов

Задачу о раскраске карт можно переформулировать на языке раскрасок, рассмотрев планарный граф, двойственный карте:

• Сколькими цветами можно правильно раскрасить любой планарный граф?

Раскраски планарных графов

Teopeма (Four Color Theorem).

 $\chi(G) \leq 4$ для любого планарного графа G.

История:

Постановка задачи: Гютри (сер. XVIII века)

Первые «доказательства»: Кемпе, Тейт (1880-е)

<u>Первое доказательство:</u> Хакен, Аппель (1976)

<u>Признанные доказательства:</u> Хакен, Аппель (1989), Робертсон, Сандерс, Сеймур, Томас (1997)

Списочные раскраски планарных графов

Teopeма. (Thomassen '1994)

 $\chi_l(G) \leq 5$ для любого планарного графа G.

Teopeма. (Voigt '1993)

Существуют планарные графы с $\chi = 3$ и $\chi_l = 5$.

Теорема. (N. Alon — M. Tarsi '1992)

 $\chi_l(G) \leq 3$ для любого двудольного планарного графа G.

Teopeма. (M. Voigt)

Существуют планарные графы с $\chi = 3$ и $\chi_l = 5$.

Доказательство:

Для каждого $\alpha \in \{5,6,7,8\}$ и $\beta \in \{9,10,11,12\}$ определим граф $G_{\alpha,\beta}$ (со списками допустимых цветов), $\{\alpha,\beta,1,2\}$ изображённый справа.

У него нет правильной списочной раскраски.

Возьмём все 16 графов $G_{\alpha,\beta}$ для различных α,β и отождествим у них верхние и нижние вершины. Получим граф G:

Для верхней и нижней вершин G укажем списки $\{5,6,7,8\}$ и $\{9,10,11,12\}$ соответственно.

Тогда при любом выборе цветов α и β для верхней и нижней вершин G один из подграфов совпадёт с $G_{\alpha,\beta}$ и достроить раскраску графа G не получится.

Итак, мы обосновали, что $\chi_l(G) > 4$. В то же время, $\chi(G) = 3$:

Teopeма. (С. Thomassen)

 $\chi_l(G) \leq 5$ для любого планарного графа G.

Доказательство:

Квазитриангуляция — это планарный граф, границы всех граней которого являются простыми циклами, причём границы всех внутренних граней — треугольники.

Утверждение теоремы достаточно доказать для квазитриангуляций.

Индукцией по |G| докажем утверждение:

«Пусть G — квазитриангуляция, и C — цикл, ограничивающий внешнюю грань G. Пусть

- две смежные вершины $x,y \in C$ уже окрашены в цвета α и β соответственно,
- вершинам из $(C \{x, y\})$ приписаны списки допустимых цветов размера не менее 3,
- вершинам из (G-C) приписаны списки допустимых цветов размера не менее 5.

Тогда для вершин из $V(G) \setminus \{x,y\}$ можно выбрать цвета из их списков, так, чтобы получилась правильная раскраска графа G.»

При |G| = 3 утверждение очевидно. Пусть |G| > 3 и утверждение выполнено для всех квазитриангуляций меньшего размера.

Вначале рассмотрим случай, когда у цикла C, ограничивающего внешнюю грань, есть хорда $uv \in E(G) \setminus E(C)$. Она разбивает укладку G на части G_1 и G_2 . Подграф G_1 ,

по предположению, можно раскрасить. Цвета u и v тем самым определятся. Теперь, по предположению, можно докрасить и подграф G_2 .

Теперь рассмотрим случай, когда у ${\it C}$ нет хорд.

Пусть u — отличный от y сосед x на C. Пусть w — сосед u на C, отличный от x (возможно, w=y), а v_1, \dots, v_k — все остальные соседи u в графе G. Граф G' = G - u является квазитриангуляцией. В списке L_u есть два цвета γ, δ , отличные от α . В G' для вершин v_i возьмём списки $L_{v_i} \setminus \{\gamma, \delta\}$, где L_{v_i} — списки для v_i в графе G.

Осталось окрасить u в один из цветов γ , δ , отличных от цвета w.

раскрасить в цвета из списков.

По предположению, граф G' можно

Нелокальность хроматического числа

- Мы знаем простую оценку: $\chi(G) \geq \omega(G)$
- В планарных графах нет K_5 , то есть для них $\omega(G) \leq 4$. А по теореме о четырёх красках, для планарных графов имеем $\chi(G) \leq 4$.
- Можно ли в общем случае утверждать, что если $\omega(G)$ мало́, то и $\chi(G)$ мало́? —Нет!

Теорема. (Зыков '1949, Mycielski '1955)

При любом $k \ge 2$ существует связный граф G_k , для которого $\omega(G_k) = 2$ и $\chi(G_k) = k$.

Доказательство:

Построим последовательность $\{G_k\}_{k=2}^{\infty}$ по индукции.

Для начала, возьмём $G_2 \coloneqq K_2$.

Пусть $G_k=(V_k,E_k)$, и пусть $V_k=\{v_1,\dots,v_n\}.$ Тогда $G_{k+1}=(V_{k+1},E_{k+1})$, где

- $V_{k+1} = V_k \cup \{v'_1, \dots, v'_n\} \cup \{v\}$
- $E_{k+1} = E_k \cup \{v_i'v\}_{i=1}^n \cup \{v_i'v_i \mid v_iv_i \in E_k\}$

Пусть ϕ_k — раскраска G_k в цвета $\{1, ..., t\}$.

Тогда раскраску ϕ_{k+1} графа G_{k+1} можно построить так: $\phi_{k+1}(v_i) = \phi_{k+1}(v_i') \coloneqq \phi_k(v_i)$ и $\phi_{k+1}(v) \coloneqq t+1$.

Следовательно, $\chi(G_{k+1}) \le \chi(G_k) + 1$.

По раскраске ϕ_{k+1} графа G_{k+1} в t цветов можно построить раскраску ϕ_k графа G_k : $\phi_k(v_i) \coloneqq \phi_{k+1}(v_i)$, если $\phi_{k+1}(v_i) \neq \phi_{k+1}(v)$, и $\phi_k(v_i) \coloneqq \phi_{k+1}(v_i')$ иначе.

Раскраска ϕ_k является правильной раскраской графа G_k в (t-1) цветов. Отсюда $\chi(G_k) \leq \chi(G_{k+1}) - 1$, следовательно, $\chi(G_{k+1}) = \chi(G_k) + 1$. Так как $\chi(G_2) = 2$, получаем $\ \forall k \ \chi(G_k) = k$.

Покажем, что в графах G_{k+1} нет треугольников при условии, что их нет в G_k :

- Треугольник в G_{k+1} не может содержать более одной вершины среди $\{v_i'\}_{i=1}^n$.
- Треугольник в G_{k+1} не может содержать v, так как v смежна только с вершинами $\{v_i'\}_{i=1}^n$.
- Треугольник в G_{k+1} не может содержать только вершины из $\{v_i\}_{i=1}^n$, т.к. в G_k нет треугольников
- Значит, если в G_{k+1} есть треугольник, то он имеет вид $\{v_p,v_q,v_r'\}$. Но тогда вершины $\{v_p,v_q,v_r\}$ образуют треугольник в G_k противоречие.

Т.к. в G_2 нет треугольников, то их нет ни в одном G_k .

Нелокальность хроматического числа

Обхват графа G — это наименьший размер цикла в графе. Обозначение: g(G).

Если g(G) > k, то в G окрестность любой вершины радиуса $\lfloor k/2 \rfloor$ является деревом:

Teopeма. (Р. Erdős '1959)

При любом k существует граф G, для которого g(G) > k и $\chi(G) > k$.

Пусть $k \ge 10$. Положим $n \coloneqq (4k)^{4k}$ и рассмотрим случайный граф G на n вершинах, проводя каждое ребро с вероятностью $p \coloneqq n^{1/(2k)-1}$.

Введём случайную величину

 $X \coloneqq \#$ циклов длины $\leq k$ в нашем графе

Используя линейность матожидания, получаем

$$\mathbb{E}[X] = \sum_{i=3}^{k} {n \choose i} \cdot \frac{(i-1)!}{2} \cdot p^{i}$$

Выбираем длину цикла

Какие именно вершины участвуют в цикле Количество способов составить цикл из выбранных вершин

Вероятность того, что все рёбра этого цикла попадут в случайный граф

• X := #циклов длины $\leq k$ в нашем графе

$$\mathbb{E}[X] = \sum_{i=3}^{k} {n \choose i} \frac{(i-1)!}{2} p^{i} < \sum_{i=3}^{k} \frac{n^{i}}{i!} \frac{(i-1)!}{2} p^{i} < \sum_{i=3}^{k} (np)^{i} = \sum_{i=3}^{k} (n^{1/(2k)})^{i} < k\sqrt{n}$$

По неравенству Маркова,

$$\Pr[X \ge \frac{n}{2}] \le \frac{\mathbb{E}[X]}{n/2} < \frac{2k}{\sqrt{n}} < \frac{1}{2}$$

Итог: $\Pr[\#$ циклов длины $\leq k$ в графе $\geq \frac{n}{2}] < \frac{1}{2}$

Положим $t\coloneqq \left[n^{1-1/(4k)}\right]$ и введём с. в. $Y\coloneqq \#\text{н. м. размера }t$ в нашем графе

Пользуясь неравенством $1-p < e^{-p}$ и, помня, что $p = n^{1/(2k)-1}$, выводим

$$\mathbb{E}[Y] = \binom{n}{t} (1-p)^{\binom{t}{2}} < \left(\frac{en}{t}\right)^t e^{-pt(t-1)/2} = \left(t^{-1}ne^{1-p(t-1)/2}\right)^t < \left(t^{-1}ne^{2-pt/2}\right)^t \le \left(n^{1/(4k)}e^{2-0.5n^{1/(4k)}}\right)^t = \left(4ke^{2-2k}\right)^t < \frac{1}{2}$$

- $t \coloneqq \left[n^{1-1/(4k)} \right]$
- $Y \coloneqq \#$ н. м. размера t в нашем графе
- $\mathbb{E}[Y] < \frac{1}{2}$

Пользуясь неравенством Маркова, получаем

 $\Pr[$ в графе есть н. м. размера $t]=\Pr[Y\geq 1]\leq \mathbb{E}[Y]<\frac{1}{2}$

То есть

$$\Pr[\alpha(G) \ge n^{1-1/(4k)}] < \frac{1}{2}$$

- $\Pr[\#$ ц. дл. $\leq k$ в G превосходит $\frac{n}{2}] < \frac{1}{2}$
- $\Pr\left[\alpha(G) \ge n^{1-1/(4k)}\right] < \frac{1}{2}$

Вероятность того, что в графе G окажется более $\frac{n}{2}$ циклов длины $\leq k$ или хотя бы одно независимое множество размера $n^{1-1/(4k)}$,

$$<\frac{1}{2}+\frac{1}{2}=1$$

Значит, с положительной вероятностью случайный граф G содержит не более $\frac{n}{2}$ циклов длины $\leq k$ и имеет $\alpha(G) < n^{1-1/(4k)}$.

Мы показали, что существует граф G, в котором не более $\frac{n}{2}$ циклов длины $\leq k$ и при этом $\alpha(G) < n^{1-1/(4k)}$.

Удалим из каждого цикла длины $\leq k$ произвольную вершину.

Останется граф G', для которого

- g(G') > k
- $|G'| \geq \frac{n}{2}$
- $\alpha(G') \leq \alpha(G) < n^{1-1/(4k)}$

Мы показали, что существует граф G', в котором

- g(G') > k
- $|G'| \ge n/2$
- $\alpha(G') \leq \alpha(G) < n^{1-1/(4k)}$

Имеем

$$\chi(G') \ge \frac{|G'|}{\alpha(G')} > \frac{n/2}{n^{1-1/(4k)}} = 2k$$

Итог: g(G') > k и $\chi(G') > 2k$, что и требовалось.

Следствия теоремы Эрдёша

Teopeма. (Р. Erdős '1959)

При любом k существует граф G, для которого g(G) > k и $\chi(G) > k$.

Следствие.

При любом k существует граф, для которого g(G) > k и $\kappa(G) > k$.

Доказательство:

Пусть G — граф, у которого g(G) > k и $\chi(G) > 4k$.

В G есть подграф G', для которого $\delta(G') \geq \chi(G) - 1 \geq 4k$.

По теореме Мадера, в G' есть (k+1)-связный подграф G''.

Совершенные графы

Граф называется совершенным, если любой его порождённый подграф H удовлетворяет условию $\chi(H) = \omega(H)$.

Teopeма. (Lovász '1972)

Граф G является совершенным, если и только если любой его порождённый подграф H удовлетворяет условию $|H| \leq \alpha(H) \cdot \omega(H)$.

Доказательство. Необходимость следует из того, что в совершенном графе для любого порождённого подграфа H имеем

$$|H| \le \alpha(H)\chi(H) = \alpha(H)\omega(H).$$

Доказательство достаточности:

Пусть G-He совершенный граф. Нужно показать, что найдётся порождённый $H\subseteq G$, для которого неравенство $|H|\leq \alpha(H)\omega(H)$ нарушится.

Будем считать, что каждый порождённый подграф *отличный от самого* G, совершенный.

Так что требуется доказать, что $|G| > \alpha(G)\omega(G)$.

Для любого непустого независимого множества $A \subset V(G)$ выполнены равенства

$$\chi(G-A)=\omega(G-A)=\omega(G),$$

так как иначе оказалось бы, что $\chi(G) = \omega(G)$.

Обозначим $\alpha \coloneqq \alpha(G)$, $\omega \coloneqq \omega(G)$.

Пусть $A_0 = \{v_1, ..., v_{\alpha}\}$ — н.м. максимального размера в G.

Для каждого j раскраска графа $(G-v_j)$ порождает разбиение множества $V(G-v_j)$ на независимые множества $A_{j,1},\dots,A_{j,\omega}$.

Заметим, что любая клика размера ω в G пересекается со всеми, кроме одного из множеств $A_0, A_{1,1}, \dots, A_{1,\omega}, \dots, A_{\alpha,1}, \dots, A_{\alpha,\omega}$.

$$A_0 = \{v_1, \dots, v_{lpha}\}$$
 — н.м. размера $lpha$ в G . $V(G-v_j) = A_{j,1} \sqcup \dots \sqcup A_{j,\omega}$ при $j=1,\dots,lpha$. Пусть K — клика размера ω в G .

Если
$$K \cap A_0 = \emptyset$$
, то $\forall j \ K \subseteq V(G - v_j)$ и следовательно $\left| K \cap A_{j,l} \right| = 1$ для любых $j,l.$

Если
$$K \cap A_0 = \{v_s\}$$
, то при $j \neq s \mid K \cap A_{j,l} \mid = 1$ при всех l ; $\mid K \cap A_{s,l} \mid = 1$ при всех l , кроме одного.

$$A_0 = \{v_1, \dots, v_{\alpha}\}$$
 — н.м. размера α в G .

$$V(G-v_j)=A_{j,1}\sqcup\cdots\sqcup A_{j,\omega}$$
 при $j=1,\ldots,\alpha$.

Пусть B_0 — клика размера ω в графе $(G-A_0)$.

Аналогично определим клики $B_{i,j}$ в $(G - A_{i,j})$.

Занумеруем набор множеств $B_0, B_{1,1}, \dots, B_{\alpha,\omega}$ индексами $B_0, B_1, \dots, B_{\alpha\omega}$. И $A_0, A_{1,1}, \dots, A_{\alpha,\omega}$ занумеруем индексами $A_0, A_1, \dots, A_{\alpha\omega}$.

Получаем, что
$$\left|A_i \cap B_j\right| = \begin{cases} 1, \text{если } i \neq j \\ 0, \text{если } i = j \end{cases}$$

Лемма Гаспаряна

Лемма. (Gasparian '1996)

Пусть $X_1, \dots, X_m, Y_1, \dots, Y_m$ — подмножества множества $\{v_1, \dots, v_n\}$, такие, что

$$\left|X_{i} \cap Y_{j}\right| = \begin{cases} 1, \text{если } i \neq j \\ 0, \text{если } i = j \end{cases}$$

Тогда $m \leq n$.

Непосредственно из леммы Гаспаряна следует неравенство $\alpha(G)\omega(G)+1\leq |G|$, что доказывает теорему Ловаса.

Доказательство леммы Гаспаряна

Рассмотрим матрицу $X^{m \times n} = \{x_{i,j}\}$, в которой $x_{i,j} = 1$, если $X_i \ni v_j$ и $x_{i,j} = 0$ иначе.

Аналогично введём $Y^{n \times m} = \{y_{i,j}\}$, в которой $y_{i,j} = 1$, если $v_i \in Y_j$ и $y_{i,j} = 0$ иначе.

Тогда

$$\sum_{k=1}^{n} x_{i,k} y_{k,j} = \#\{k \mid v_k \in X_i \cap Y_j\} = egin{cases} 1$$
, если $i \neq j \\ 0$, если $i = j$

Доказательство леммы Гаспаряна

$$\sum_{k=1}^{n} x_{i,k} y_{k,j} = \#\{k \mid v_k \in X_i \cap Y_j\} = \begin{cases} 1, \text{если } i \neq j \\ 0, \text{если } i = j \end{cases}$$

Следовательно,

$$\mathbf{XY} = \begin{pmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 0 \end{pmatrix}$$

Таким образом, ранг матрицы XY равен m. Следовательно, ранги X и Y не меньше m. А значит, $n \geq m$. Лемма доказана.

Teopeма. (L. Lovász '1972)

Граф G является совершенным, если и только если любой его порождённый подграф H удовлетворяет условию $|H| \leq \alpha(H) \cdot \omega(H)$.

Следствие.

Граф, дополнительный к совершенному, также является совершенным.

Примеры совершенных графов:

- Двудольные графы
- Интервальные графы (V= отрезки на прямой, E= пары пересекающихся отрезков)
- Графы сравнимости (V= элементы ч.у.м., E= пары сравнимых элементов)
- Дистанционно-наследственные графы (расстояния между вершинами не меняются при переходе к связным порождённым подграфам)
- Графы, каждый блок которых совершенный
- Дополнения совершенных графов

Введём операцию подстановки графа H вместо вершины x графа G. (Считаем, что $V(G) \cap V(H) = \emptyset$)

Результатом операции является граф G':

- $V(G') = V(G x) \cup V(H)$
- $E(G') = E(G x) \cup E(H) \cup \{uv \mid u \in V(H), v \in V(G), vx \in E(G)\}$

Теорема: если G и H совершенны, то таков и G'.

Циклы на нечётном числе вершин, не меньшем 5, несовершенны, так как для них $\chi=3$, $\omega=2$.

Оказывается, это «минимальные несовершенные графы»:

Теорема. (Strong Perfect Graph Theorem)

Граф является совершенным тогда и только тогда, когда ни в нём, ни в его дополнении нет порождённых подграфов, являющихся циклами нечётной длины не менее 5.

Хроматический многочлен

Рассмотрим теперь вопрос о числе раскрасок.

Сколько различных раскрасок в (не более чем) x цветов существует у заданного графа G?

Обозначим это число через $\chi(G; x)$.

Утверждение. Имеют место равенства:

•
$$\chi(\overline{K}_n; x) = x^n$$

•
$$\chi(K_n; x) = \chi(x-1)(x-2) \cdot ... \cdot (x-n+1)$$

Хроматический многочлен

Утверждение. Для любого ребра uv графа G справедливо соотношение

$$\chi(G;x) = \chi(G - uv;x) - \chi(G/uv;x)$$

Доказательство:

Раскраски графа (G - uv) бывают двух типов:

ullet в которых u и v одного цвета — таких раскрасок ровно $\chi(G/$

Хроматический многочлен

Утверждение. Для любого ребра uv графа G справедливо соотношение

$$\chi(G;x) = \chi(G - uv;x) - \chi(G/uv;x)$$

Следствие. Для любого G величина $\chi(G;x)$ является многочленом от x.

Доказательство: рекурсивно применяя формулу из Утверждения, в конце концов придём к полным или пустым графам, для которых $\chi(...;x)$ являются многочленами.

• Если G_1 , ..., G_m — компоненты графа G, то

$$\chi(G;x) = \prod_{i=1} \chi(G_i;x)$$

Доказательство:

Раскраска графа G получается независимым выбором раскрасок компонент этого графа.

• Если графы G_1 и G_2 имеют ровно одну общую вершину, то

$$\chi(G_1 \cup G_2; x) = \frac{1}{x} \cdot \chi(G_1; x) \cdot \chi(G_2; x)$$

Доказательство: Пусть $V(G_1) \cap V(G_2) = \{v\}.$

Сначала раскрасим G_2 любым из $\chi(G_2; x)$ способов. Вершина v при этом получит некоторый цвет $c \in \{1, ..., x\}$.

Раскрасок графа G_1 в x цветов, в которых v имеет цвет c, имеется ровно $\frac{\chi(G_1;x)}{r}$.

• Если графы G_1 и G_2 имеют ровно одну общую вершину, то

$$\chi(G_1 \cup G_2; x) = \frac{1}{x} \cdot \chi(G_1; x) \cdot \chi(G_2; x)$$

• Следствие. Если B_1 , ..., B_m — блоки связного графа G, то

$$\chi(G;x) = x^{1-m} \cdot \prod_{i=1} \chi(B_i;x)$$

(Доказательство индукцией по числу блоков.)

• Если B_1 , ..., B_m — блоки связного графа G, то

$$\chi(G;x) = x^{1-m} \cdot \prod_{i=1} \chi(B_i;x)$$

• Следствие.

Если G — дерево, то $\chi(G; x) = x(x-1)^{\|G\|}$.

Доказательство:

В дереве каждое ребро является блоком. Остаётся заметить, что $\chi(K_2; x) = x(x-1)$.

- $\deg \chi(G; x) = |G|$
- Свободный член в $\chi(G; x)$ равен 0
- Коэффициент в $\chi(G;x)$ при $x^{|G|}$ равен 1
- Коэффициент при $x^{|G|-1}$ равен $-\|G\|$

Доказательства этих свойств проводятся индукцией по |G| с использованием основного рекуррентного соотношения.

Нетривиальные свойства (без доказательства):

- Для графа на n вершинах с k компонентами связности коэффициенты в $\chi(G;x)$ при $x^n,x^{n-1},...,x^k$ ненулевые, и их знаки чередуются
- Модули ненулевых коэффициентов хроматического многочлена образуют унимодальную последовательность