Customer Churn Prediction and Analytics System

Prepared by: Shashank Chauhan

Tools Used: Python, MySQL, Power BI

Introduction

This project aims to analyze customer behavior, segment users based on purchasing patterns, and predict customer churn in an online retail business. With customer acquisition costs rising, companies are increasingly focused on retaining existing customers and reducing churn. Utilizing a combination of data processing, statistical analysis, machine learning, and dashboard visualization, this project provides insights and predictions to inform customer retention strategies.

Technologies used include:

- SQL for data preprocessing and aggregation
- Python for data science, clustering, and machine learning
- Power BI for interactive dashboard visualization

Project Workflow Overview

- 1. Raw transaction data preprocessing and cleaning
- 2. RFM metric calculation and clustering-based customer segmentation
- 3. Exploratory and advanced data analysis
- 4. Churn prediction using machine learning models
- 5. Business dashboard creation for stakeholder insights

Key Results & Insights

- Total customers analyzed: 5,860
- At-risk customers identified: 1,159 (≈ 19.78%)
- Average customer churn probability: 80.22%
- The highest churn was observed in segments: Potential Loyalists, VIP Customers, and One-Time Buyers

- Segment with lowest churn: At-Risk Customers (due to classification bias)
- Country-level and product-level churn variation visualized via a dashboard

Visualizations:

• Churn probability distribution (Power BI/Python)

• Top-selling products (Python)

Monthly Revenue trends (Python/SQL)

Month	Monthly_Revenue
2009-12	686654.16
2010-01	557319.06
2010-02	506371.07
2010-03	699608.99
2010-04	594609.19
2010-05	599985.79
2010-06	639066.58
2010-07	591636.74
2010-08	604242.65
2010-09	831615
2010-10	1036680
2010-11	1172336.04
2010-12	884591.89
2011-01	569445.04
2011-02	447137.35
2011-03	595500.76
2011-04	469200.36
2011-05	678594.56
2011-06	661213.69
2011-07	600091.01
2011-08	645343.9
2011-09	952838.38
2011-10	1039318.79
2011-11	1161817.38
2011-12	99713.7

• Country-wise churn risk (Python/Power BI)

Revenue by Country

Churn Risk by Country

	Country	Total_Customers	Avg_Risk
•	Bahrain	2	1
	Czech Republic	1	1
	EIRE	5	1
	European Community	1	1
	Iceland	1	1
	Israel	4	1
	Malta	2	1
	Poland	6	1
	Singapore	1	1
	Switzerland	22	1
	Belgium	29	0.99
	Canada	5	0.99
	France	94	0.99
	Australia	15	0.98
	Germany	106	0.98
	Norway	13	0.98
	Lithuania	1	0.97
	Portugal	24	0.97
	Saudi Arabia	1	0.97
	Spain	40	0.96
	Finland	14	0.95
	Lebanon	1	0.95
	United Kingdom	5337	0.95
	Unspecified	6	0.95
	Netherlands	22	0.93
	Cyprus	11	0.92

Customer Segmentation (RFM + Clustering)

Recency, Frequency, and Monetary (RFM) metrics were calculated for each customer:

Recency: Days since last purchaseFrequency: Number of transactions

Monetary: Total spend amount

Using K-Means clustering, customers were segmented into meaningful groups:

- VIP Customers
- Potential Loyalists
- Average Buyers
- One-Time Buyers
- At-Risk Customers

Visualizations:

• RFM distribution plots (Python)

• Cluster scatterplots (Recency vs Frequency)

Recency vs. Frequency

Cluster distribution histogram/bar chart

Machine Learning for Churn Prediction

After preparing the labeled data with churn indicators, several models were trained and evaluated:

- Logistic Regression
- Random Forest (base and tuned)
- XGBoost Classifier

Model Evaluation:

- Best performance achieved with the tuned Random Forest model
- Evaluation metrics considered: Accuracy, ROC-AUC, Precision, Recall
- Model output saved in churn_predictions.csv for business usage

Visualizations:

Feature importance plot (Python)

Confusion matrix

Churn probability histogram

Power BI Dashboard Summary

An interactive Power BI dashboard was created to present key findings:

- Overview of customer base and churn risk
- Visual segmentation of at-risk customers
- Churn risk distribution by RFM segment and country
- Monthly trends and key product insights

Visualizations:

Dashboard summary panel

• Churn vs active by segment

Churn vs Active by Segment

Recency vs Monetary heatmap

Frequency X Monetary Over Avg Churn Risk

Country-level churn map

375

Churn Risk by Country

Business Recommendations

Based on data-driven insights:

- Target Potential Loyalists and Average Buyers with Retention Offers
- Launch loyalty programs and incentives for high-value VIP Customers
- Monitor One-Time Buyers for re-engagement campaigns
- Implement CRM alerts for high-risk segments

Actionable suggestions:

- Integrate churn probabilities into CRM workflows
- Personalize email campaigns based on segment behavior
- Focus retention budget on medium-risk, high-value customers

Visualizations:

• Retention curve (Python)

Segment-level churn summary

Churn vs Active by Segment

SQL-Based Advanced Analytics

Several SQL views were created to support advanced business insights:

Top_Stock_Revenue: Shows the top 10 products based on revenue generated. This
view supports product-level analysis in identifying key SKUs.

```
CREATE VIEW Top_Stock_Revenue AS

SELECT Description AS Stock, ROUND(SUM(Quantity * Price), 2) AS Revenue

FROM customer_clean_transactions GROUP BY Description ORDER BY Revenue DESC LIMIT 10;

SELECT * FROM Top_Stock_Revenue;
```

• Monthly_Revenue_Trend: Extracts monthly aggregated sales revenue, enabling time-based analysis of business performance.

```
CREATE VIEW Monthly_Revenue_Trend AS

SELECT CONCAT(SUBSTRING(InvoiceDate, 7, 4), '-', SUBSTRING(InvoiceDate, 4, 2)) AS Month,

ROUND(SUM(Quantity * Price), 2) AS Monthly_Revenue

FROM customer_clean_transactions GROUP BY Month ORDER BY Month;

SELECT * FROM Monthly_Revenue_Trend;
```

 Country_Wise_Churn_Risk_Summary: Joins transaction and churn prediction data to summarize churn risk by country, assisting in identifying geographic vulnerabilities.

```
CREATE VIEW Country_Wise_Churn_Risk_Summary AS
SELECT c.Country, COUNT(DISTINCT p.CustomerID) AS Total_Customers,
ROUND(AVG(p.Churn_Probability), 2) AS Avg_Risk FROM churn_predictions p
JOIN customer_clean_transactions c ON p.CustomerID = c.CustomerID
GROUP BY c.Country ORDER BY Avg_Risk DESC;
SELECT * FROM Country_Wise_Churn_Risk_Summary;
```

 Segment_Wise_Churn: Summarizes churn statistics (counts, average risk) across customer segments, useful for comparing churn behaviors across RFM clusters.

```
CREATE VIEW Segment_Wise_Churn AS

SELECT Segment, COUNT(*) AS Total_Customers,

SUM(CASE WHEN Predicted_Churn = 0 THEN 1 ELSE 0 END) AS Churned,

ROUND(AVG(Churn_Probability), 4) AS Avg_Risk FROM churn_predictions

GROUP BY Segment ORDER BY Avg_Risk DESC;

SELECT * FROM Segment_Wise_Churn;
```

Conclusion

This project successfully analyzed customer behavior, performed segmentation using RFM and KMeans, predicted churn using machine learning, and visualized business insights via a Power BI dashboard. These outcomes provide actionable intelligence for improving customer retention and reducing business loss due to churn.

Future enhancements may include:

- Hyperparameter tuning for XGBoost
- Feature enrichment from web/app logs
- Time-series forecasting of revenue and customer lifetime value

Appendix

GitHub: GitHub

Dashboard: Dashboard