

CURVAS ALGEBRAICAS Ficha Docente

ASIGNATURA

Nombre de asignatura (Código GeA): CURVAS ALGEBRAICAS (800600)

Créditos: 6

Créditos presenciales: 6,00 Créditos no presenciales:

Semestre: 1

PLAN/ES DONDE SE IMPARTE

Titulación: GRADO EN MATEMÁTICAS Plan: GRADO EN MATEMÁTICAS Curso: 4 Ciclo: 1

Carácter: Optativa

Duración/es: Primer cuatrimestre (actas en Feb. y Jul.)

Idioma/s en que se imparte: Español

Módulo/Materia: MATEMÁTICA PURA Y APLICADA/GEOMETRÍA ALGEBRAICA

PROFESOR COORDINADOR

Nombre	Departamento	Centro	Correo electrónico	Teléfono
FERNANDO GALVAN, JOSE FRANCISCO	Álgebra, Geometría y Topología	Facultad de Ciencias Matemáticas	josefer@ucm.es	

PROFESORADO

Nombre	Departamento	Centro	Correo electrónico	Teléfono
FERNANDO GALVAN, JOSE	Álgebra, Geometría y	Facultad de Ciencias	josefer@ucm.es	
FRANCISCO	Topología	Matemáticas	•	
SIGURDSSON , BALDUR	Álgebra, Geometría y	Facultad de Ciencias		
	Topología	Matemáticas		

SINOPSIS

BREVE DESCRIPTOR:

Teoría de las curvas algebraicas planas, afines y proyectivas. Introducción a conceptos en dimensión superior.

REQUISITOS:

Las asignaturas de Geometría Lineal, Estructuras Algebraicas y Ecuaciones Algebraicas.

OBJETIVOS:

Introducir al alumno en la teoría básica de las curvas algebraicas planas, tanto afines como proyectivas. Presentar las nociones básicas de cómo generalizar estos conceptos en dimensión superior.

COMPETENCIAS:

Generales

- Manejar con soltura los criterios de irreducibilidad de polinomios.
- Calcular los puntos singulares, tangentes, puntos de inflexión y asíntotas de una curva algebraica.
- Calcular el índice de intersección de dos curvas en un punto.
- Manejar con destreza los sistemas lineales de curvas.

Transversales:

Específicas:

Otras:

CONTENIDOS TEMÁTICOS:

- (1) Conjuntos algebraicos afines y proyectivos. Operaciones con ideales y conjuntos algebraicos. Nullstellensatz de Hilbert.
- (2) Conjuntos algebraicos del plano. Ecuaciones implícitas de curvas planas (afines y proyectivas). Intersección de curvas usando resultantes. Lema de Study.
- (3) Estudio local de los puntos de una curva: intersección con una recta en un punto; cono tangente; puntos regulares y singulares; puntos de inflexión.
- (4) Curvas parametrizadas. Paso a implícitas.
- (5) Anillos de series formales y series de Puiseux. Teorema de Newton-Puiseux.

CURVAS ALGEBRAICAS Ficha Docente

- (6) Lugares (ramas) de una curva. Multiplicidad de intersección. Teorema de Bézout.
- (7) Sistemas lineales de curvas. Haces de cónicas y cúbicas. Curvas racionales.
- (8) Ecuación reducida de una cúbica irreducible. Estructura de grupo de la cúbica.
- (9) Curvas polares. Curva dual. Fórmulas de Plücker.

ACTIVIDADES DOCENTES:

Clases teóricas:

Consistirán en clases magistrales del profesor, exponiendo en la pizarra los conceptos, resultados, demostraciones y ejemplos de la materia. De dos a tres horas por semana.

Seminarios:

No

Clases prácticas:

Consistirán en la resolución, por parte de los alumnos, de los ejercicios propuestos por el profesor bien de forma individual o en grupo.

De una a dos horas por semana.

Trabajos de campo

Prá	GH		 ıLa	3

Laboratorios:

Exposiciones:

Presentaciones:

Otras actividades:

TOTAL:

Cuatro horas de clase semanales

EVALUACIÓN:

Para obtener información suficiente acerca del aprovechamiento de cada alumno los profesores de esta asignatura realizarán exámenes escritos y propondrán otras actividades académicas (resolución de ejercicios y exposición de los mismos en la pizarra, trabajos, ponderación de las participaciones acertadas en clase,...). Habrá un examen final que puede contar el 100% de la calificación para los alumnos que no tengan evaluación continua.

BIBLIOGRAFÍA BÁSICA:

BIBLIOGRAFIA PRINCIPAL

J.F.Fernando: Curvas Algebraicas. Editorial Sanz y Torres, Primera edición (2022). ISBN: 978-84-18316-84-5.

BIBLIOGRAFIA DE CONSULTA

- -G. Fischer, Plane Algebraic Curves, Students Math. Lib. AMS, 2001.
- -G.G. Gibson, Elementary Geometry of Algebraic Curves: An Undergraduate Introduction, Cambridge Univ. Press, 1998.
- -W. Fulton, Curvas Algebraicas, Ed. Reverté, 1971.
- -R.J. Walker, Algebraic Curves, Springer-Verlag, 1978 (reimpreso de la edición de Princeton, 1950).

OTRA INFORMACIÓN RELEVANTE

Información sobre la asignatura (como hojas de problemas) se irá actualizando en el campus virtual o en páginas web creadas por los profesores, según el caso:

https://josefer-ucm.github.io/docencia/calg2324/calg2324.html (grupo de mañana)

CURVAS ALGEBRAICAS Ficha Docente

ASIGNATURA

Nombre de asignatura (Código GeA): CURVAS ALGEBRAICAS (900484)

Créditos: 6

Créditos presenciales: 6,00 Créditos no presenciales:

Semestre: 1

PLAN/ES DONDE SE IMPARTE

Titulación: DOBLE GRADO EN MATEMÁTICAS Y FÍSICA Plan: DOBLE GRADO EN MATEMÁTICAS Y FÍSICA (2019)

Curso: 4 Ciclo: 1

Carácter: Optativa

Duración/es: Primer cuatrimestre (actas en Feb. y Jul.)

Idioma/s en que se imparte: Español

Módulo/Materia: /

PROFESOR COORDINADOR

Nombre	Departamento	Centro	Correo electrónico	Teléfono
FERNANDO GALVAN, JOSE FRANCISCO	Álgebra, Geometría y Topología	Facultad de Ciencias Matemáticas	josefer@ucm.es	

PROFESORADO

Nombre	Departamento	Centro	Correo electrónico	Teléfono
FERNANDO GALVAN, JOSE	Álgebra, Geometría y	Facultad de Ciencias	josefer@ucm.es	
FRANCISCO	Topología	Matemáticas	•	
SIGURDSSON , BALDUR	Álgebra, Geometría y	Facultad de Ciencias		
	Topología	Matemáticas		

SINOPSIS

BREVE DESCRIPTOR:

Teoría de las curvas algebraicas planas, afines y proyectivas. Introducción a conceptos en dimensión superior

REQUISITOS:

Las asignaturas de Geometría Lineal, Estructuras Algebraicas y Ecuaciones Algebraicas.

OBJETIVOS:

Introducir al alumno en la teoría básica de las curvas algebraicas planas, tanto afines como proyectivas. Presentar las nociones básicas de cómo generalizar estos conceptos en dimensión superior

COMPETENCIAS:

Generales

- Manejar con soltura los criterios de irreducibilidad de polinomios.
- Calcular los puntos singulares, tangentes, puntos de inflexión y asíntotas de una curva algebraica.
- Calcular el índice de intersección de dos curvas en un punto.
- Manejar con destreza los sistemas lineales de curvas.

Transversales:

Específicas:

Otras:

CONTENIDOS TEMÁTICOS:

- (1) Conjuntos algebraicos afines y proyectivos. Operaciones con ideales y conjuntos algebraicos. Nullstellensatz de Hilbert.
- (2) Conjuntos algebraicos del plano. Ecuaciones implícitas de curvas planas (afines y proyectivas). Intersección de curvas usando resultantes. Lema de Study.
- (3) Estudio local de los puntos de una curva: intersección con una recta en un punto; cono tangente; puntos regulares y singulares; puntos de inflexión.
- (4) Curvas parametrizadas. Paso a implícitas.
- (5) Anillos de series formales y series de Puiseux. Teorema de Newton-Puiseux.

CURVAS ALGEBRAICAS Ficha Docente

- (6) Lugares (ramas) de una curva. Multiplicidad de intersección. Teorema de Bézout.
- (7) Sistemas lineales de curvas. Haces de cónicas y cúbicas. Curvas racionales.
- (8) Ecuación reducida de una cúbica irreducible. Estructura de grupo de la cúbica.
- (9) Curvas polares. Curva dual. Fórmulas de Plücker.

ACTIVIDADES DOCENTES:

Clases teóricas:

Consistirán en clases magistrales del profesor, exponiendo en la pizarra los conceptos, resultados, demostraciones y ejemplos de la materia. De dos a tres horas por semana.

Seminarios:

No

Clases prácticas:

Consistirán en la resolución, por parte de los alumnos, de los ejercicios propuestos por el profesor bien de forma individual o en

De una a dos horas por semana.

Trabajos de campo:	
Prácticas clínicas:	
Laboratorios:	
Exposiciones:	
Presentaciones:	

TOTAL:

EVALUACIÓN:

Otras actividades:

Para obtener información suficiente acerca del aprovechamiento de cada alumno los profesores de esta asignatura realizarán exámenes escritos y propondrán otras actividades académicas (resolución de ejercicios y exposición de los mismos en la pizarra, trabajos, ponderación de las participaciones acertadas en clase,...). Habrá un examen final que puede contar el 100% de la calificación para los alumnos que no tengan evaluación continua.

BIBLIOGRAFÍA BÁSICA:

BIBLIOGRAFIA PRINCIPAL

J.F.Fernando: Curvas Algebraicas. Editorial Sanz y Torres, Primera edición (2022). ISBN: 978-84-18316-84-5.

BIBLIOGRAFIA DE CONSULTA

- -G. Fischer, Plane Algebraic Curves, Students Math. Lib. AMS, 2001.
- -G.G. Gibson, Elementary Geometry of Algebraic Curves: An Undergraduate Introduction, Cambridge Univ. Press, 1998.
- -W. Fulton, Curvas Algebraicas, Ed. Reverté, 1971.
- -R.J. Walker, Algebraic Curves, Springer-Verlag, 1978 (reimpreso de la edición de Princeton, 1950).

OTRA INFORMACIÓN RELEVANTE

Información sobre la asignatura (como hojas de problemas) se irá actualizando en el campus virtual o en páginas web creadas por los profesores, según el caso:

https://josefer-ucm.github.io/docencia/calg2324/calg2324.html (grupo de mañana)

CURVAS ALGEBRAICAS Ficha Docente

ASIGNATURA

Nombre de asignatura (Código GeA): CURVAS ALGEBRAICAS (606173)

Créditos: 6

Créditos presenciales: 4,00 Créditos no presenciales:

Semestre: 1

PLAN/ES DONDE SE IMPARTE

Titulación: MASTER EN MATEMÁTICAS AVANZADAS

Plan: MÁSTER UNIVERSITARIO EN MATEMÁTICAS AVANZADAS

Curso: Ciclo:

Carácter: COMPLEMENTO DE FORMACION

Duración/es: Primer cuatrimestre (actas en Feb. y Jul.)

Idioma/s en que se imparte: Español

Módulo/Materia: /

Titulación: MASTER EN MATEMÁTICAS AVANZADAS

Plan: MÁSTER UNIVERSITARIO EN MATEMÁTICAS AVANZADAS

Curso: 1 Ciclo: 2

Carácter: COMPLEMENTO DE FORMACION

Duración/es: Primer cuatrimestre (actas en Feb. y Jul.)

Idioma/s en que se imparte: Español

Módulo/Materia: /

PROFESOR COORDINADOR

Nombre	Departamento	Centro	Correo electrónico	Teléfono
FERNANDO GALVAN, JOSE	Álgebra, Geometría y	Facultad de Ciencias	josefer@ucm.es	
FRANCISCO	Topología	Matemáticas		

PROFESORADO

Nombre	Departamento	Centro	Correo electrónico	Teléfono
FERNANDO GALVAN, JOSE	Algebra, Geometría y	Facultad de Ciencias	josefer@ucm.es	
FRANCISCO	Topología	Matemáticas		
MELLE HERNANDEZ,	Álgebra, Geometría y	Facultad de Ciencias	amelle@ucm.es	
ALEJANDRO	Topología	Matemáticas		

SINOPSIS

BREVE DESCRIPTOR:

Teoría de las curvas algebraicas planas, afines y proyectivas. Introducción a conceptos en dimensión superior.

REQUISITOS:

Las asignaturas de Geometría Lineal, Estructuras Algebraicas y Ecuaciones Algebraicas.

OBJETIVOS:

Introducir al alumno en la teoría básica de las curvas algebraicas planas, tanto afines como proyectivas. Presentar las nociones básicas de cómo generalizar estos conceptos en dimensión superior.

COMPETENCIAS:

Generales:

- Manejar con soltura los criterios de irreducibilidad de polinomios.
- Calcular los puntos singulares, tangentes, puntos de inflexión y asíntotas de una curva algebraica.
- Calcular el índice de intersección de dos curvas en un punto.
- Manejar con destreza los sistemas lineales de curvas.

Transversales:

Específicas:

Otras:

CURVAS ALGEBRAICAS Ficha Docente

CONTENIDOS TEMÁTICOS:

- (1) Conjuntos algebraicos afines y proyectivos. Operaciones con ideales y conjuntos algebraicos. Nullstellensatz de Hilbert.
- (2) Conjuntos algebraicos del plano. Ecuaciones implícitas de curvas planas (afines y proyectivas). Intersección de curvas usando resultantes. Lema de Study.
- (3) Estudio local de los puntos de una curva: intersección con una recta en un punto; cono tangente; puntos regulares y singulares; puntos de inflexión.
- (4) Curvas parametrizadas. Paso a implícitas.
- (5) Anillos de series formales y series de Puiseux. Teorema de Newton-Puiseux.
- (6) Lugares (ramas) de una curva. Multiplicidad de intersección. Teorema de Bézout.
- (7) Sistemas lineales de curvas. Haces de cónicas y cúbicas. Curvas racionales.
- (8) Ecuación reducida de una cúbica irreducible. Estructura de grupo de la cúbica.
- (9) Curvas polares. Curva dual. Fórmulas de Plücker. (Opcional)

ACTIVIDADES DOCENTES:

Clases teóricas:

Consistirán en clases magistrales del profesor, exponiendo en la pizarra los conceptos, resultados, demostraciones y ejemplos de la materia. De dos a tres horas por semana (en media).

Clases prácticas

Consistirán en la resolución, por parte de los alumnos, de los ejercicios propuestos por el profesor bien de forma individual o en grupo. De una a dos horas por semana (en media).

Trabajos de campo:

	nicas:

Laboratorios:

Exposiciones: Presentaciones:

Otras actividades:

TOTAL:

Cuatro horas de clase semanales

EVALUACIÓN

Para obtener información suficiente acerca del aprovechamiento de cada alumno los profesores de esta asignatura realizarán exámenes escritos y propondrán otras actividades académicas (resolución de ejercicios y exposición de los mismos en la pizarra, trabajos, ponderación de las participaciones acertadas en clase,...). Habrá un examen final que puede contar el 100% de la calificación para los alumnos que no tengan evaluación continua.

BIBLIOGRAFÍA BÁSICA:

BIBLIOGRAFIA PRINCIPAL

J.F.Fernando: Curvas Algebraicas. Editorial Sanz y Torres, Primera edición (2022). ISBN: 978-84-18316-84-5.

BIBLIOGRAFIA DE CONSULTA

- -G. Fischer, Plane Algebraic Curves, Students Math. Lib. AMS, 2001.
- -G.G. Gibson, Elementary Geometry of Algebraic Curves: An Undergraduate Introduction, Cambridge Univ. Press, 1998.
- -W. Fulton, Curvas Algebraicas, Ed. Reverté, 1971.
- -R.J. Walker, Algebraic Curves, Springer-Verlag, 1978 (reimpreso de la edición de Princeton, 1950).

OTRA INFORMACIÓN RELEVANTE:

Información sobre la asignatura (como hojas de problemas) se irá actualizando en el campus virtual o en páginas web creadas por los profesores, según el caso:

https://josefer-ucm.github.io/docencia/calg2324/calg2324.html (grupo de mañana)