

What is the dimension of a complex Stiefel manifold

Asked 2 days ago Active 2 days ago Viewed 39 times

The Stiefel manifold is defined as follows.

0

$$V_k(\mathbb{C}^n) = \left\{X \in \mathbb{C}^{n imes k} | X^*X = I_k
ight\}$$

where $n \geqslant k \geqslant 1$.

According to the pulic knowledge on Wikipedia on "Steifel manfiold", the dimension of manifold is given by

$$\dim V_k(\mathbb{C}^n) = 2nk - k^2$$
.

Actually, the above dimension is only correct when $V_k(\mathbb{C}^n)$ is considered a real manifold embedded in a 2nk-dimensional real vector space $\mathbb{C}^{n\times k}$.

More naturally, the vector space $\mathbb{C}^{n\times k}$ should be considered as complex rather than real, and the dimension of the complex vector space $\mathbb{C}^{n\times k}$ is nk rather than 2nk.

If the manifold $V_k(\mathbb{C}^n)$ is considered as complex rather than real, the dimension, given by Wikipedia, I contend, is not correct.

I can not find useful information on the complexification of $V_k(\mathbb{C}^n)$.

I also content, for example, when k=1, there is not such a thing as the complex Stiefel manifold, only real Stiefel manifold exists.

Under what condition, a complex Stiefel manifold exists?

What is the original source giving the resulf dim $V_k(\mathbb{C}^n)=2nk-k^2$? Is there anybody who can help?

differential-geometry

stiefel-manifolds

Share Cite Edit Delete Flag

edited 2 days ago

asked 2 days ago

Liang Liao 31 3

What do you mean by "complexification of $V_k(\mathbb{C}^n)$ "? The manifold $V_k(\mathbb{C}^n)$ is a real submanifold of $\mathbb{C}^{n \times k}$. For example, like you mentioned, when k = 1 then $V_k(\mathbb{C}^n)$ can be identified with S^{2n-1} which is an odd (real) dimensional sphere do it definitely doesn't have a structure of a complex manifold (which must be of even real dimension). – levap 2 days ago

3 As to the formula for the dimension, if you consider the map F from $C^{n\times k}$ to the subspace of self-

adjoint $k \times k$ matrices then $V_k(\mathbb{C}^n) = F^{-1}(I_k)$ and I_k is a regular value of F so $\dim V_k(\mathbb{C}^n) = 2nk - k^2$. – levap 2 days ago

Given a point $X \in V_k(\mathbb{C}^n)$, one can have the tangent space and normal space at X. A random vector $Z \in \mathbb{C}^{n \times k}$ can be projected onto the tangent space and normal space. Let Z_T and Z_N be the non-trivial projections of Z. I would like to have the tangent space and normal space be complex rather than be real. If the range space and normal space can be complex, one should have $tr(Z_T)^H Z_N = 0$. I call that the complexification of the Stiefel manifold. Is $tr(Z_T)^H Z_N = 0$ possible? — Liang Liao 2 days ago

If I understand you correctly, you are asking when the (real) tangent space of $V_k(\mathbb{C}^n)$ is a complex vector subspace of $\mathbb{C}^{n\times k}$. This never happens. Consider the point $X\in V_k(\mathbb{C}^n)$ whose columns are the first k elements of the standard basis of \mathbb{C}^n . The tangent space at X is $T_X(V_k(\mathbb{C}^n))=\{V\in M_{n\times k}(\mathbb{C})\,|\,V+V^*=0\}$ and this is never a complex vector subspace (if $V\in T_X(V_k(\mathbb{C}^n))$ then $V^*=-V$ but $(iV)^*=-i(-V)=iV$ so iV is not in the tangent space). – levap 2 days ago

If the tangent space can not be complex. To define the orthogonality between two vectors A and B respectively in the tangent space and normal space, the elegant inner product trA^HB usually used for the complex vector space $\mathbb{C}^{n\times k}$ had to be abandoned. If that is the situation, an inner product for real space has to be adopted. I wonder the inner product for the 2nk-dimensional real space $\mathbb{C}^{n\times k}$ will look awkward. — Liang Liao 2 days ago