Math 574 class # 05 09/02/2025

Sobolen Spres

Defr (Sobolev Spaces): let ke No, pe[1,00]. Suppose 52 5 Rd is open. The set

WKIP (D) := {V6[P(D) | 200 V6[P(D), 161016K}

is called the K,p Soboler Space. The norm

(5.1) $\|v\|_{W^{\epsilon,p}(\Omega)} := \begin{cases} \left(\sum_{|\alpha| \leq k} \|\partial^{\alpha}v\|_{L^{\infty}(\Omega)}\right)^{1/p} & |\leq p < \infty \\ |\alpha| \leq k & ||\partial^{\alpha}v||_{L^{\infty}(\Omega)} & p = \infty \end{cases}$

When p=2, we write $H^{k}(s2)=W^{k,2}(s2)$.

The latter has the inner product

 $(u_{1}v)_{k(n)}:=\sum_{|\alpha|\leq k}(\partial u_{1}\partial^{\alpha}v)_{l(n)}.$

Clearly, || u||_H^k(sz) = [(u,u)_H^k(sz).

Theorem: Let $SL \subseteq IR^d$ be open. The Sobolin Sporce $W^{E,P}(SL)$ is a Barrel sporer.

Proof: let {vn} be a Cauchy sequence in WKIP(sz).

Then, for any $\alpha \in \mathbb{N}_0^d$, $|\alpha| \leq k$, $\{ \}^{\alpha}v_n \}$ is

a Cauchy sequence in $L^p(\mathfrak{D})$.

```
But LP(II) is a Banach space, as we well
Know. There is V_{\infty} \in L^{p}(I) such that
(5.2) \partial^n v_n \xrightarrow{n\to\infty} v_{\alpha} \quad \text{in } L^p(52),
                          \| \partial^{\kappa} v_{n} - v_{\alpha} \|_{L^{p}(\Sigma_{1})} \xrightarrow{n \to \infty} 0
         We want to show that I'v exists and
                               dv = va a.e. in so,
          where
                                V_n \xrightarrow{n \to \infty} V \quad in \quad L^{(52)}
         For all \phi \in C^{\infty}(\Sigma),
                        \int v_n \delta^{\alpha} \phi \, d\vec{x} = (-1)^{|\alpha|} \int \delta^{\alpha} v_n \phi \, d\vec{x},
          Since vi & W FIP. But
                 | 「いってゆは」 - 「いかゆは」
                                 = [[いしい]のかめを
(5.4)
                                                                            (Hölder'S
                                  < 112-21/12 10 0x 61/19
                                                                               ineq)
                                  -> 0
```

(5.5)

From (5.3), (5.4) and (5.5), we have $\begin{cases}
v \delta^{\alpha} \phi \, d\vec{x} = (-1)^{|\alpha|} \int v_{\alpha} \phi \, d\vec{x}, \\
S^{2} & S^{3}
\end{cases}$

Therefore, for all α , $1 \le |\alpha| \le k$, $V_{\alpha} = \partial^{\alpha} V \quad \text{in} \quad L^{p}(SL).$

Henre vn -> v in Who (52). III

Corollary: H^k(SL) = W^{k,2}(SL) is a Hilbert space with the nines product

$$(u,v)_{H^{(s2)}} = \sum_{|\alpha| \leq k} (\partial_{\alpha} u, \partial_{\alpha})^{r_{2}(s2)}$$

for all u, we Ht (52).

Defn: Suppose $SZ \subseteq TZ^d$ is an open set. $W_0^{k,p}(SZ)$ is the dosine of $C_0^{\infty}(SZ)$ in $W_0^{k,p}(SZ)$. We solt

Defin: lit X be a normed linear space and YCX. Y is said to be dense in X iff for any xEX and any E>0, there is a point yEY such that

(1 x - y 11 x < E.

Example: By Weierstrood Theorem the polynomials are dense in (C(Ta, b], |1.110).

Atkinson and Han (2008)

Defin: let $(X, ||\cdot||_X)$ be a normed linear space. Define X to be the space obtained by adding the limit points of every Cauchy sequence in X. If X is a Bound space, then $X = \overline{X}$. Otherwise $X \subset \overline{X}$. \overline{X} is called the completion of X. X is a dense subset of \overline{X}

Examples: (LP(a,b), II·II,p) is the completion of (C(Ta,bJ), II·II,p), I=pco.

Theorem: Assum that $5L \subseteq \mathbb{R}^d$ is open and $v \in W^{E_1P}(\Omega)$, $1 \le p < \infty$. There exists a sequence $\{v_n\} \subset C^{\infty}(\Omega) \cap W^{E_1P}(52)$ such that

 $\|v_n - v\|_{kp} \rightarrow 0$ as $n \rightarrow \infty$

We say that $C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$.

Theorem: Assume that $\Omega \subseteq \mathbb{R}^d$ is a bounded open set with a lipselity smooth boundary $\partial \Omega$. Suppose that $v \in W^{k,p}(\Omega)$. There exists a sequence $\{v_n\} \subset C^{\infty}(\overline{\Omega})$ such that

1/vn-v||_{Kp} -> 0 as n->0.

Corollary: With the same hypotheses, WKIP (SI) is the completion of $C^{\infty}(\overline{SI})$ with $||\cdot||_{KIP}$.

Theorem: For any volution (SZ), there is a sequence Evn C Co(SZ) such that

||vn-v||_{kp}→0 ~ n→∞.

Sobolev Embedding Theorems

Defor: let V and W be two Bonnel spaces with V C W. We say that the space V is continuously embedded in W and write

 $V \hookrightarrow W$

iff there is a constant C>0 such that

for all veV.

We say that V is compactly embedded in W and write

VCONW

iff (i) there is a constant C>0 such that

for all vev and (ii) for every {vn}cv that is bounded, there is a subsequence

{vn_k} ⊆ {vn}

and a point vew such that

 $\|v_{n_k}-v\|_{W} \longrightarrow 0$ as $k \rightarrow \infty$.

VC>W iff the embedding operator is continuous VC>C>W iff the embedding operators is comprets.

How to remember the definitions?

For the map to be cont (bounded), I must be an C70 such that $\|v\|_{W} = \||Tv\|_{W} \leq C \|v\|_{V}$

Compret operators have the additional bit about sequences...

Theorem: let 52 c Rd be an open bounded domain with hipschitz boundary. Then the following are valid.

- 1) If K < d/p, then $W^{k,p}(SZ) \hookrightarrow L^{q}(SZ)$ for any $q \leq p^{k}$, where p^{k} $p^{k} = \frac{1}{p} - \frac{k}{d}$ (Conjugate Solvoler Exp.)
- 2) If $k = \frac{d}{p}$, then $W^{k_1 p}(\Omega) \hookrightarrow L^q(\Omega)$, for any $q < \infty$.
- 3) If $k > \frac{d}{p}$, then $W^{k_1p}(\Omega) \hookrightarrow C^{k-[d/p]-1,\beta}(\overline{\Omega})$

where $\beta = \begin{cases} [d/p] + 1 - d/p & d/p \notin \mathbb{Z} \\ any pos. real < 1 & d/p \in \mathbb{Z} \end{cases}$

Here [x] is the largest integer less than or equal to x.

Example: Suppose d=1. For any K71 and P>1,

Consequently, for 52 = (a,b), $W^{k_1P}(a_1b) \longrightarrow C([a_1b])$

This takes a bit of interpretation