PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-157451

(43) Date of publication of application: 03.06.1994

(51)Int.Cl.

C07C271/20 C08F 20/36

C09.I

(21)Application number: 04-308844

(71)Applicant: MITSUI TOATSU CHEM INC

(22) Date of filing:

18.11.1992

(72)Inventor: SUZUKI YORIYUKI

SASAGAWA KATSUYOSHI

(54) NEW POLYMERIZABLE MONOMER

(57) Abstract:

PURPOSE: To provide a new compound useful as a raw material for transparent resin, paint, adhesive, ink, etc.

CONSTITUTION: The compound of formula I [R is group of formula II or formula III (R1 to R4 are H or methyl)]. The compound can be produced by reacting norbornene diisocyanate with an acrylate compound (e.g. 2-hydroxyethyl (meth) acrylate) in the absence of solvent or in a solvent (e.g. hexane) at 30-90°C. The amount of the acrylate compound is 1.8-2.2mol based on 1mol of the norbornene diisocyanate. The resin produced by using the polymerizable monomer of formula I has excellent softness and toughness and is resistant to yellowing.

LEGAL STATUS

[Date of request for examination]

19.10.1999

Searching PAJ Page 2 of 2

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3377812

[Date of registration]

06.12.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-157451

(43)公開日 平成6年(1994)6月3日

(51) Int.Cl. ⁵	識別記号	庁内整理番号	FΙ	技術表示箇所
C 0 7 C 271/20		7188-4H		
C 0 8 F 20/36	MMW	7242-4 J		
C 0 9 D 4/00	PDZ	7921 – 4 J		
C 0 9 J 4/00	JBK	7921 - 4 J		

審査請求 未請求 請求項の数1(全10頁)

(21)出願番号	特願平4-308844	(71)出願人	
(22)出願日	平成4年(1992)11月18日		三井東圧化学株式会社 東京都千代田区霞が関三丁目2番5号
		(72)発明者	鈴木 順行 神奈川県横浜市栄区笠間町1190番地 三井
		(70) 50 HH +4	東圧化学株式会社内 笹川 勝好 神奈川県横浜市栄区笠間町1190番地 三井
		(72)発明者	
			東圧化学株式会社内

(54)【発明の名称】 新規な重合性単量体

(式中、Rは -OCHCH: OC-C=CH: または R: ÖR:

各々独立して、水素原子またはメチル基を表す)

【特許請求の範囲】

*単量体。

【請求項1】 一般式(I)(化1)で表される重合性* 【化1】

$$\begin{array}{c|c}
CH_2 - N - C - R \\
R - C - N - CH_2
\end{array}$$
(1)

各々独立して、水素原子またはメチル基を表す)

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光及び熱硬化樹脂、塗 料、接着剤、インキ等の原料として有用な、新規な重合 性単量体に関するものである。

[0002]

【従来の技術】光及び熱硬化樹脂、塗料、接着剤、イン キ等の原料としては、柔軟性、強靭性などが優れている ことから、ウレタンアクリレートが広く使用されてい る。しかしながら、ウレタンアクリレートの原料である トリレンジイソシアネートや、4,4 ージフェニルメタン ジイソシアネート等は黄変性があるため、これらを用い 30 【0005】 たウレタンアクリレートも透明な樹脂、塗料、接着剤な どへの利用はできない。

% [0003]

20 【発明が解決しようとする課題】本発明の目的は、透明 な樹脂、塗料、接着剤等に使用でき、しかも、黄変性の ないウレタンアクリレートである新規な重合性単量体を 提供することである。

[0004]

【課題を解決するための手段】本発明者らは、前記課題 を解決すべく鋭意研究を行った。その結果、ビシクロ環 を有する新規な重合性単量体を見出した。すなわち、本 発明は、一般式(I)(化2)で表される重合性単量体 に関するものである。

【化2】

(式中、Rは -OCHCH₂ OC-C=CH₂ R₂ Ö R₁

各々独立して、水素原子またはメチル基を表す)

本発明の重合性単量体としては、具体的には、下記の構

[0006]

造式(化3)で示される化合物が挙げられる。 50 【化3】

【0007】これらの化合物は、ノルボルネンジイソシ アネート (NBDI) と、2-ヒドロキシエチル (メタ) ア クリレート、2-ヒドロキシプロピルアクリレート、2 ーヒドロキシー 1,3-ジ (メタ) アクリロイルオキシブ ロパン、2-ヒドロキシ-3-アクリロイルオキシプロ 40 ピルメタクリレート等のアクリレート化合物とを、無溶 媒または溶媒中で反応させて得られるものである。溶媒 としては、原料類と反応性を有しない溶媒であり、例え ば、ヘキサン、クロロホルム、ベンゼン、トルエン等が 用いられる。

【0008】反応の際のNBDIとアクリレート化合物との 割合は、NBDI 1 モルに対し、アクリレート化合物 1.8~ 2.2モル、好ましくは 1.9~ 2.1モルである。反応は、 NBDIあるいはNBDIと溶媒の混合液にアクリレート化合物 を滴下し、無触媒で、またはジプチルスズジラウレート 50 50℃に保ちながら、2-ヒドロキシエチルアクリレート

などのウレタン化促進触媒の存在下に反応させる。反応 温度は30~90℃、好ましくは40~70℃である。ウレタン 化促進触媒の使用量は、イソシアネート重量に対し、0. 01~5重量%、好ましくは 0.1~1 重量%である。反応 終了後、反応液は、カラムクロマトグラフィー等により 精製することにより、本発明の重合性モノマーを得るこ とができる。

[0009]

【実施例】以下、実施例により本発明を詳しく説明する が、本発明はこの実施例によって何等限定されるもので はない。実施例中の部は重量部を表す。

実施例1

ノルポルネンジイソシアネート20.6部、トルエン30部、 ジブチルスズジラウレート 0.1部を混合し、反応温度を

23.2部を30分かけて滴下し、さらに1時間攪拌して反応を行った。反応終了後、反応液を濃縮した。濃縮液はクロマトグラフ法により精製し、無色透明な下記構造式 (化4)で示される単量体41.4部を得た。なお、¹H-* *NMRは下記(化5)の通りであった。 【0010】 【化4】

元素分析値 (C₂₁H₃₀N₂O₈として) 10※ [化5]

C H N

分析値 (%) 57.78 6.84 6.43
計算値 (%) 57.52 6.90 6.39

【0011】 ※

 $^{1}H-NMR$ ($\delta:CDCl_{3}$)

2.96 (m, 4 H,
$$-C\underline{H}_2 - N - 1$$
), 4.32 (s, 8 H, $-0C\underline{H}_2C\underline{H}_20 - 1$),

【0012】 実施例2

実施例1の2-ヒドロキシエチルアクリレート23.2部を、2-ヒドロキシプロピルアクリレート26.0部に代える以外は、実施例1と同様にして、下記構造式(化6)★

★で示される単量体46.9部を得た。なお、¹H-NMRは下記(化7)の通りであった。

[0013]

【化6】

$$\begin{array}{c} \text{CH}_2\text{NCOCHCH}_2\text{OCCH} = \text{CH}_2\\ \text{HO} \text{ CH}_3 = \text{CH}_2\text{CHOCNCH}_2 \end{array}$$

元素分析値 (C₂₃ H₂₄ N₂ O₆ として) (化7) C H N
分析値 (%) 59.09 7.42 6.13 計算値 (%) 59.21 7.35 6.00

[0014]

 $^{1}H-NMR$ ($\delta:CDCl_{3}$)

2. 95 (m, 4 H,
$$-C\underline{H}_2 - N -$$
), 4. 20 (m, 4 H, $-0C\underline{H}_2 CHO -$)

4.87
$$\left(m, 4H, -N - , -0\dot{C}\underline{H}CH_2O - \right)$$
,

5. 86
$$\left(m, 2 \text{ H,} \begin{array}{c} \underline{H} \\ C=C \\ C \end{array}\right)$$
, 6. 41 $\left(m, 4 \text{ H,} \begin{array}{c} \underline{H} \\ C=C \\ C \end{array}\right)$

【0015】 実施例3

実施例1の2-ヒドロキシエチルアクリレート23.2部を、2-ヒドロキシエチルメタアクリレート26.0部に代える以外は、実施例1と同様にして、下記構造式(化*

*8) で示される単量体46.2部を得た。なお、「H-NM Rは下記(化9) の通りであった。

[0016]

【化8】

$$CH_{2} = CH_{2} CH_{2} CH_{2} CCH_{2} CH_{2} CCH_{2} CH_{2} CCH_{2} CH_{2} CCH_{2} C$$

元素分析値 (C23 H34N2O8 として)

【化9】

 C
 H
 N

 分析値(%)
 59.23
 7.29
 6.08

 計算値(%)
 59.21
 7.35
 6.00

[0017]

 $^{1}H-NMR$ ($\delta:CDC1_{3}$)

2.96 (m, 4 H,
$$-CH_2 - N -$$
), 4.32 (s, 8 H, $-0CH_2CH_2O -$),

4.86
$$\left(\mathbf{m}, 2H, -\frac{N}{H}-\right)$$
, 5.58 $\left(\mathbf{s}, 2H, \frac{H}{C}\right)$ $\left(\mathbf{c}, \frac{CH_{2}}{C}\right)$,

6. 13 (s, 2 H,
$$\underline{\underline{H}}$$
 C=C $\begin{bmatrix} CH_3 \\ C - \end{bmatrix}$

【0018】 実施例4

実施例1の2-ヒドロキシエチルアクリレート23.2部 を、2-ヒドロキシプロピルメタクリレート28.8部に代 える以外は、実施例1と同様にして、下記構造式(化1* * 0) で示される単量体49.8部を得た。なお、 1 H-NM Rは下記(化11)の通りであった。

[0019]

【化10】

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CCOCH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_4 \\ \text{CH}_5 \\ \text{CH}_$$

元素分析値 (C25 Ha8 N2 O8 として)

Н N

С 60.69 分析值(%) 7.82 5.58

計算値(%) 60.71 7.74 5.66

[0020]

【化11】

11

 $^{1}H-NMR$ ($\delta:CDCl_{3}$)

2, 95 (m, 4 H,
$$-\text{CH}_2 - \text{N}_1 - \text{)}$$
 , 4, 22 (m, 4 H, $-\text{OCH}_2 \text{CHO}-\text{)}$,

4. 87
$$\left(m, 4 \text{ H}, -N -, -0 \stackrel{\downarrow}{\text{CH}} \text{CH}_2 0 - \right)$$
,

5. 57 (s, 2 H,
$$C=C$$
), 6. 13 (s, 2 H, $E=C$)

【0021】実施例5

実施例1の2-ヒドロキシエチルアクリレート23.2部を、2-ヒドロキシー1,3-ジアクリロイルオキシプロパン40.0部に代える以外は、実施例1と同様にして、下*

*記構造式(化12)で示される単量体61.4部を得た。なお、¹H-NMRは下記(化13)の通りであった。 【0022】 【化12】

元素分析値 (C29 H38 N2 O22 として)

【化13】

 C
 H
 N

 分析値(%)
 57.46
 6.42
 4.55

 計算値(%)
 57.42
 6.31
 4.62

[0 0 2 3]

13

 $^{1}H-NMR$ ($\delta:CDC1_{3}$)

2.97 (m, 4 H,
$$-C\underline{H}_2 - N -$$
), 4.34 (s, 8 H, $-C\underline{H}_2 0C -$),

4.84
$$\left(\mathbf{m}, 2\mathbf{H}, -\mathbf{N} - \mathbf{N} -$$

5. 89
$$\left(m, 4 \text{ H}, \frac{\underline{H}}{C}\right)$$
 C=C $\left(m, 8 \text{ H}, \underline{L}\right)$ C=C $\left(m, 8 \text{ H}, \underline{L}\right)$

【0024】実施例6

実施例1の2-ヒドロキシエチルアクリレート23.2部を、2-ヒドロキシー1,3-ジメタアクリロイルオキシプロパン45.6部に代える以外は、実施例1と同様にして、下記構造式(化14)で示される単量体66.3部を得*

*た。なお、 ¹ H – NM R は下記(化 1 5)の通りであった。

[0025]

【化14】

 $^{1}H-NMR$ ($\delta:CDCI_{3}$)

2.96 (m, 4 H,
$$-C\underline{H}_2 - N - 1$$
), 4.34 (m, 8 H, $-C\underline{H}_2 0C - 1$),

4.84
$$\left(m$$
, 2 H, $-\frac{N}{H} - \right)$, 5.26 $\left(m$, 2 H, $-\frac{0}{100} \frac{1}{2} \frac{1}{100} \right)$,

5. 60 (s. 4 H, C=C
$$\stackrel{\underline{H}}{\stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}{\stackrel{}}{\stackrel{}}}}$$
 C=C $\stackrel{\underline{CH}_3}{\stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}{\stackrel{}}}}$), 6. 12 (s. 4 H, $\stackrel{\underline{H}}{\stackrel{}{\stackrel{}}{\stackrel{}}}$ C=C $\stackrel{\underline{CH}_3}{\stackrel{}{\stackrel{}}{\stackrel{}}}$

【0027】実施例7

実施例1の2-ヒドロキシエチルアクリレート23.2部を、2-ヒドロキシ-3-アクリロイルオキシプロピルメタクリレート42.8部に代える以外は、実施例1と同様にして、下記構造式(化16)で示される単量体63.3部*

*を得た。なお、 ¹ H - NMRは下記 (化17) の通りであった。

16

[0028]

【化16】

--377-

17

 $^{1}H-NMR$ ($\delta:CDCl_{3}$)

0. 50~2. 30 (m. 16H.
$$H H H H$$
, $H H H H$, $H H H$, $H H H$, $H H H$, $H H H$

2.97 (m, 4 H,
$$-\underline{CH}_2 - \underline{N}_1 -)$$
, 4.34 (m, 8 H, $-\underline{CH}_2\underline{OC}_1 -)$,

4.84
$$\left(m$$
, 2 H, $-\frac{N}{H}-\right)$, 5.26 $\left(m$, 2 H, $-\frac{0}{\text{COCH}}\right)$,

5. 60 (s, 2 H,
$$\overset{\text{H}}{\longrightarrow}$$
 C=C $\overset{\text{CH}_a}{\overset{\text{C}}{\longleftarrow}}$), 5. 89 (m, 2 H, $\overset{\text{H}}{\longrightarrow}$ C=C $\overset{\text{C}}{\overset{\text{C}}{\longleftarrow}}$)

6. 12 (s, 2 H,
$$C=C$$
 $C=C$), 6. 26 (m, 4 H, $C=C$ $C=C$)

【0030】参考例1

実施例1の単量体50部に1,6-ヘキサンジオールジアクリレート10部、t-プチルパーオキシ-2-エチルヘキサノエート0.1部を溶解混合し、濾過、脱泡後、2枚の板ガラスと塩化ビニールのガスケットで構成 30されたモールドに注入し、40℃から100℃まで、24時間かけて昇温して重合を行った。その後、冷却し、モールドから離型して、表面が平滑で、透明な3m厚の樹脂板を得た。この樹脂板の光線透過率は89%であり、鉛筆硬度(JIS-K-5400 法による)は2Hであり、耐薬品性(4ソプロパノールおよびトルエンに、室温で

24時間浸漬後、HBの鉛筆で引っかき傷の出来ないものを良好とする)が良好で、金切ノコギリによる切断が可能であった。さらに、この板をサンシャインウェザロメーター (JIS-B-7753 による) にて100 時間暴露後、色相の変化を目視にて観察したが、変化は認められなかった。

[0031]

【発明の効果】本発明の新規重合性モノマーを用いた樹脂は、柔軟性、強靭性に優れ、かつ耐黄変性を有していることから、光学用樹脂等の透明樹脂、透明な塗料、接着剤、インク等の原料に適している。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

□ OTHER: _____