In [1]: import pandas as pd
 import numpy as np
 from matplotlib import pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Ridg
 from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\csvs_per_year\csvs_per_year\madrid_200
df

Out[2]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ	O_3	1
0	2001- 08-01 01:00:00	NaN	0.37	NaN	NaN	NaN	58.400002	87.150002	NaN	34.529999	105.00
1	2001- 08-01 01:00:00	1.50	0.34	1.49	4.10	0.07	56.250000	75.169998	2.11	42.160000	100.5§
2	2001- 08-01 01:00:00	NaN	0.28	NaN	NaN	NaN	50.660000	61.380001	NaN	46.310001	100.0§
3	2001- 08-01 01:00:00	NaN	0.47	NaN	NaN	NaN	69.790001	73.449997	NaN	40.650002	69.77
4	2001- 08-01 01:00:00	NaN	0.39	NaN	NaN	NaN	22.830000	24.799999	NaN	66.309998	75.18
217867	2001- 04-01 00:00:00	10.45	1.81	NaN	NaN	NaN	73.000000	264.399994	NaN	5.200000	47.88
217868	2001- 04-01 00:00:00	5.20	0.69	4.56	NaN	0.13	71.080002	129.300003	NaN	13.460000	26.80
217869	2001- 04-01 00:00:00	0.49	1.09	NaN	1.00	0.19	76.279999	128.399994	0.35	5.020000	40.77
217870	2001- 04-01 00:00:00	5.62	1.01	5.04	11.38	NaN	80.019997	197.000000	2.58	5.840000	37.88
217871	2001- 04-01 00:00:00	8.09	1.62	6.66	13.04	0.18	76.809998	206.300003	5.20	8.340000	35.3€

217872 rows × 16 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217872 entries, 0 to 217871
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	date	217872 non-null	object
1	BEN	70389 non-null	float64
2	CO	216341 non-null	float64
3	EBE	57752 non-null	float64
4	MXY	42753 non-null	float64
5	NMHC	85719 non-null	float64
6	NO_2	216331 non-null	float64
7	NOx	216318 non-null	float64
8	OXY	42856 non-null	float64
9	0_3	216514 non-null	float64
10	PM10	207776 non-null	float64
11	PXY	42845 non-null	float64
12	S0_2	216403 non-null	float64
13	TCH	85797 non-null	float64
14	TOL	70196 non-null	float64
15	station	217872 non-null	int64
dtyp	es: float	64(14), int64(1),	object(1)
memo	ry usage:	26.6+ MB	

In [4]: df1=df.dropna()
 df1

Out[4]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3
1	2001- 08-01 01:00:00	1.50	0.34	1.49	4.100000	0.07	56.250000	75.169998	2.11	42.160000
5	2001- 08-01 01:00:00	2.11	0.63	2.48	5.940000	0.05	66.260002	118.099998	3.15	33.500000
21	2001- 08-01 01:00:00	0.80	0.43	0.71	1.200000	0.10	27.190001	29.700001	0.76	56.990002
23	2001- 08-01 01:00:00	1.29	0.34	1.41	3.090000	0.07	40.750000	51.570000	1.70	51.580002
25	2001- 08-01 02:00:00	0.87	0.06	0.88	2.410000	0.01	29.709999	31.440001	1.20	56.520000
217829	2001- 03-31 23:00:00	11.76	4.48	7.71	17.219999	0.89	103.900002	548.500000	7.62	9.680000
217847	2001- 03-31 23:00:00	9.79	2.65	7.59	9.730000	0.46	91.320000	315.899994	3.75	6.660000
217849	2001- 04-01 00:00:00	5.86	1.22	5.66	13.710000	0.25	64.370003	218.300003	6.46	7.480000
217853	2001- 04-01 00:00:00	14.47	1.83	11.39	26.059999	0.33	84.230003	259.200012	11.39	5.440000
217871	2001- 04-01 00:00:00	8.09	1.62	6.66	13.040000	0.18	76.809998	206.300003	5.20	8.340000

29669 rows × 16 columns

In [5]: df1=df1.drop(["date"],axis=1)

```
In [6]: sns.heatmap(df1.corr())
Out[6]: <AxesSubplot:>
                                                       -1.0
            BEN
             CO
                                                       - 0.8
            EBE
            MXY
                                                       0.6
           NMHC
           NO_2
                                                       0.4
            NŌx
            OXY
                                                       0.2
            03
           PM10
                                                       0.0
            PXY
           SO 2
            TĊH
            TOL
          station
                In [7]: plt.plot(df1["EBE"],df1["PXY"],"o")
Out[7]: [<matplotlib.lines.Line2D at 0x1ec59f55370>]
          100
           80
           60
           40
           20
            0
                              30
                                         50
                    10
                         20
                                    40
                                              60
In [8]: data=df[["EBE","PXY"]]
In [9]: # sns.stripplot(x=df["EBE"],y=df["PXY"],jitter=True,marker='o',color='blue')
In [10]: x=df1.drop(["EBE"],axis=1)
         y=df1["EBE"]
```

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

LINEAR

```
In [11]: li=LinearRegression()
         li.fit(x_train,y_train)
Out[11]: LinearRegression()
In [12]: prediction=li.predict(x_test)
         plt.scatter(y_test,prediction)
Out[12]: <matplotlib.collections.PathCollection at 0x1ec5a01f340>
           40
           30
           20
           10
                                          50
                    10
                          20
                               30
                                     40
                                                60
                                                     70
In [13]: lis=li.score(x_test,y_test)
In [14]: |df1["TCH"].value_counts()
Out[14]: 1.28
                  988
         1.32
                  938
         1.33
                  908
         1.29
                  908
         1.27
                  905
         4.39
                    1
         3.57
                    1
         4.37
                    1
         3.59
                    1
         4.21
                    1
         Name: TCH, Length: 269, dtype: int64
In [15]: df1.loc[df1["TCH"]<1.40,"TCH"]=1</pre>
         df1.loc[df1["TCH"]>1.40,"TCH"]=2
         df1["TCH"].value_counts()
Out[15]: 1.0
                 17204
         2.0
                 12465
         Name: TCH, dtype: int64
In [ ]: # Lasso
```

```
In [16]: la=Lasso(alpha=5)
la.fit(x_train,y_train)

Out[16]: Lasso(alpha=5)

In [17]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[17]: <matplotlib.collections.PathCollection at 0x1ec5a085a90>

In [18]: las=la.score(x_test,y_test)

RIDGE

```
In [19]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[19]: Ridge(alpha=1)

```
In [20]: prediction2=rr.predict(x_test)
    plt.scatter(y_test,prediction2)
```

Out[20]: <matplotlib.collections.PathCollection at 0x1ec59f2c370>

In [21]: rrs=rr.score(x_test,y_test)

ElasticNet

```
In [22]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[22]: ElasticNet()

```
In [23]: prediction2=rr.predict(x_test)
   plt.scatter(y_test,prediction2)
```

Out[23]: <matplotlib.collections.PathCollection at 0x1ec5a504730>


```
In [24]: ens=en.score(x_test,y_test)
In [25]: print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
         0.7275996609918448
Out[25]: 0.7874511769269894
         LOGISTIC
In [26]: |g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value_counts()
Out[26]: Low
                 17204
         High
                 12465
         Name: TCH, dtype: int64
In [27]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [28]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out[28]: LogisticRegression()
In [29]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[29]: <matplotlib.collections.PathCollection at 0x1ec5a280f70>
          Low
                                                      High
              Low
In [30]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [31]: | from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
In [32]: |g1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [33]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [34]: |rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[34]: RandomForestClassifier()
In [35]: parameter={
              'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]
         }
In [36]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accur
         grid search.fit(x train,y train)
Out[36]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [37]: rfcs=grid_search.best_score_
In [38]: rfc_best=grid_search.best_estimator_
```

```
In [39]: from sklearn.tree import plot tree
                       plt.figure(figsize=(80,40))
                      plot tree(rfc best.estimators [5],feature names=x.columns,class names=['Yes',"N
Out[39]: [Text(2147.4545454545455, 2019.0857142857144, 'NMHC <= 0.195\ngini = 0.486
                       \nsamples = 13189\nvalue = [12124, 8644]\nclass = Yes'),
                         Text(868.0, 1708.457142857143, '0_3 <= 11.065\ngini = 0.235\nsamples = 856
                       1\nvalue = [11653, 1834]\nclass = Yes'),
                         Text(248.0, 1397.8285714285716, 'NO_2 <= 30.61 \setminus gini = 0.499 \setminus samples = 11
                       74\nvalue = [942, 883]\nclass = Yes'),
                         Text(90.18181818181819, 1087.2, '0 3 <= 2.755 \setminus 100 = 0.287 \nsamples = 41
                       \nvalue = [13, 62]\nclass = No'),
                         Text(45.09090909090909, 776.5714285714287, 'gini = 0.0\nsamples = 26\nvalu
                       e = [0, 53] \setminus nclass = No'),
                         Text(135.2727272727278, 776.5714285714287, 'gini = 0.483\nsamples = 15\nv
                       alue = [13, 9] \setminus class = Yes'),
                         Text(405.81818181818187, 1087.2, 'station <= 28079015.0\ngini = 0.498\nsam
                       ples = 1133\nvalue = [929, 821]\nclass = Yes'),
                         Text(225.454545454547, 776.5714285714287, 'MXY <= 12.15\ngini = 0.408\ns
                       amples = 241\nvalue = [262, 105]\nclass = Yes'),
                         Text(135.272727272728, 465.9428571428573, 'NO 2 <= 55.815 \cdot i = 0.292
                       \nspace{2mm} \ns
                         Text(90.181818181819, 155.3142857142857, 'gini = 0.464\nsamples = 26\nva
In [40]: |print("Linear:",lis)
                       print("Lasso:",las)
                       print("Ridge:",rrs)
                       print("ElasticNet:",ens)
                       print("Logistic:",los)
                       print("Random Forest:",rfcs)
```

Linear: 0.7276001378416694 Lasso: 0.5989676598608343 Ridge: 0.7275996609918448 ElasticNet: 0.7108933071115187 Logistic: 0.5810583080552747 Random Forest: 0.9137134052388289

Best Model is Random Forest

madrid_2002

In [43]: df2=pd.read_csv(r"C:\Users\user\Downloads\csvs_per_year\csvs_per_year\madrid_20
df2

Out[43]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	PM10
0	2002- 04-01 01:00:00	NaN	1.39	NaN	NaN	NaN	145.100006	352.100006	NaN	6.54	41.990002
1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.980000
2	2002- 04-01 01:00:00	NaN	0.80	NaN	NaN	NaN	103.699997	134.000000	NaN	13.01	28.440001
3	2002- 04-01 01:00:00	NaN	1.61	NaN	NaN	NaN	97.599998	268.000000	NaN	5.12	42.180000
4	2002- 04-01 01:00:00	NaN	1.90	NaN	NaN	NaN	92.089996	237.199997	NaN	7.28	76.330002
217291	2002- 11-01 00:00:00	4.16	1.14	NaN	NaN	NaN	81.080002	265.700012	NaN	7.21	36.750000
217292	2002- 11-01 00:00:00	3.67	1.73	2.89	NaN	0.38	113.900002	373.100006	NaN	5.66	63.389999
217293	2002- 11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.640000
217294	2002- 11-01 00:00:00	4.51	0.91	4.83	10.99	NaN	149.800003	202.199997	1.00	5.75	NaN
217295	2002- 11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.240000

217296 rows × 16 columns

In [44]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217296 entries, 0 to 217295
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype		
0	date	217296 non-null	object		
1	BEN	66747 non-null	float64		
2	CO	216637 non-null	float64		
3	EBE	58547 non-null	float64		
4	MXY	41255 non-null	float64		
5	NMHC	87045 non-null	float64		
6	NO_2	216439 non-null	float64		
7	NOx	216439 non-null	float64		
8	OXY	41314 non-null	float64		
9	0_3	216726 non-null	float64		
10	PM10	209113 non-null	float64		
11	PXY	41256 non-null	float64		
12	S0_2	216507 non-null	float64		
13	TCH	87115 non-null	float64		
14	TOL	66619 non-null	float64		
15	station	217296 non-null	int64		
dtype	es: float	64(14), int64(1),	object(1)		

memory usage: 26.5+ MB

In [45]: df3=df2.dropna()
df3

Out[45]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10
1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.980000
5	2002- 04-01 01:00:00	3.19	0.72	3.23	7.65	0.11	113.699997	187.000000	3.53	12.37	27.450001
22	2002- 04-01 01:00:00	2.02	0.80	1.57	3.66	0.15	93.860001	101.300003	1.77	6.99	33.000000
24	2002- 04-01 01:00:00	3.02	1.04	2.43	5.38	0.21	103.699997	195.399994	2.15	14.04	37.310001
26	2002- 04-01 02:00:00	2.02	0.53	2.24	5.97	0.12	91.599998	136.199997	2.55	6.76	19.980000
217269	2002- 10-31 23:00:00	1.24	0.28	1.26	2.64	0.11	60.080002	64.160004	1.23	15.64	13.910000
217271	2002- 10-31 23:00:00	3.13	1.30	2.93	7.90	0.28	84.779999	184.000000	2.23	7.94	32.529999
217273	2002- 11-01 00:00:00	2.50	0.97	3.63	9.95	0.19	61.759998	132.100006	4.46	5.45	29.500000
217293	2002- 11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.640000
217295	2002- 11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.240000

32381 rows × 16 columns

In [46]: df3=df3.drop(["date"],axis=1)

```
In [47]: sns.heatmap(df3.corr())
```

Out[47]: <AxesSubplot:>


```
In [48]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [49]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[49]: LinearRegression()

```
In [50]: prediction=li.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[50]: <matplotlib.collections.PathCollection at 0x1ec5b6674c0>


```
In [51]: lis=li.score(x_test,y_test)
In [52]: df3["TCH"].value_counts()
Out[52]: 1.29
                  1318
         1.30
                  1253
         1.27
                  1244
         1.28
                  1232
         1.31
                  1187
         2.51
                     1
         4.66
                     1
         2.63
                     1
         3.19
                     1
         3.34
         Name: TCH, Length: 232, dtype: int64
In [53]: |df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[53]: 1.0
                21925
         2.0
                 10456
         Name: TCH, dtype: int64
         Lasso
In [54]: la=Lasso(alpha=5)
         la.fit(x_train,y_train)
```

```
In [54]: la=Lasso(alpha=5)
la.fit(x_train,y_train)

Out[54]: Lasso(alpha=5)

In [55]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)

Out[55]: <matplotlib.collections.PathCollection at 0x1ec5b6b8df0>
```



```
In [56]: las=la.score(x_test,y_test)
```

Ridge

```
In [57]: rr=Ridge(alpha=1)
    rr.fit(x_train,y_train)
```

```
Out[57]: Ridge(alpha=1)
```

```
In [58]: prediction2=rr.predict(x_test)
   plt.scatter(y_test,prediction2)
```

Out[58]: <matplotlib.collections.PathCollection at 0x1ec5b715a60>


```
In [59]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [60]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[60]: ElasticNet()

```
In [61]: prediction2=rr.predict(x_test)
         plt.scatter(y_test,prediction2)
Out[61]: <matplotlib.collections.PathCollection at 0x1ec5b778130>
          4.0
          3.5
          3.0
          2.5
          2.0
          1.5
          1.0
                    1.5
                          2.0
                                           3.5
                                                4.0
                                                      4.5
                               2.5
                                     3.0
In [62]: ens=en.score(x_test,y_test)
In [63]: |print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
         0.7027639850503987
Out[63]: 0.7125089793152224
         Logistic
In [64]: | g={"TCH":{1.0:"Low",2.0:"High"}}
         df3=df3.replace(g)
         df3["TCH"].value_counts()
Out[64]: Low
                  21925
                  10456
         High
         Name: TCH, dtype: int64
In [65]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [66]: lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out[66]: LogisticRegression()
```

```
In [67]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
Out[67]: <matplotlib.collections.PathCollection at 0x1ec5b7d8400>
```

```
In [68]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [69]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV

In [70]: g1={"TCH":{"Low":1.0,"High":2.0}}
    df3=df3.replace(g1)

In [71]: x=df3.drop(["TCH"],axis=1)
    y=df3["TCH"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

In [72]: rfc=RandomForestClassifier()
    rfc.fit(x_train,y_train)

Out[72]: RandomForestClassifier()

In [73]: parameter={
    'max_depth':[1,2,4,5,6],
    'min_samples_leaf':[5,10,15,20,25],
    'n_estimators':[10,20,30,40,50]
}
```

```
In [74]: grid search=GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accur
         grid search.fit(x train,y train)
Out[74]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                  'n estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [75]: rfcs=grid search.best score
In [76]: rfc best=grid search.best estimator
In [77]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"
         6\nvaiue = |148, 103|\nciass = Yes ),
          Text(180.0, 155.3142857142857, 'gini = 0.498\nsamples = 96\nvalue = [77, 8
         7]\nclass = No'),
          Text(252.0, 155.3142857142857, 'gini = 0.3\nsamples = 60\nvalue = [71, 16]
         \nclass = Yes'),
          Text(432.0, 776.5714285714287, 'station <= 28079030.0\ngini = 0.372\nsampl
         es = 441\nvalue = [165, 504]\nclass = No'),
          Text(360.0, 465.9428571428573, 'BEN <= 2.435\ngini = 0.224\nsamples = 334

    \text{No'},

          Text(324.0, 155.3142857142857, 'gini = 0.269\nsamples = 236\nvalue = [58,
         Text(396.0, 155.3142857142857, 'gini = 0.092\nsamples = 98\nvalue = [7, 13
         7]\nclass = No'),
          Text(504.0, 465.9428571428573, 'NMHC <= 0.245\ngini = 0.472\nsamples = 107
         \nvalue = [100, 62]\nclass = Yes'),
          Text(468.0, 155.3142857142857, 'gini = 0.417 \setminus samples = 92 \setminus value = [100, 100]
         42]\nclass = Yes'),
          Text(540.0, 155.3142857142857, 'gini = 0.0\nsamples = 15\nvalue = [0, 20]
         \nclass = No'),
```

Text(864.0, 1087.2, 'TOL <= 14.08\ngini = 0.479\nsamples = 432\nvalue = [2 ▼

```
In [78]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.7027689416160163 Lasso: 0.5332187392608769 Ridge: 0.7027639850503987 ElasticNet: 0.587420509826319 Logistic: 0.680905815748842

Random Forest: 0.8953939821759463

```
In [ ]:
```