Social and Affective Neuroscience SoSe 20 Prof. Dr. Arthur M. Jacobs, and Franziska Usée

CONTENTS

Research question, Workflow Introduction

Methods Group, and Data Selection, Independent variable, and Dependent variable **Predicting Model**

Results Model Evaluation, and Model Tuning **BIG FIVE and IMMERSION**

Implications of the findings, Future Directions Discussion

Limitations Dataset. Score

References

Angela Sofia Royo Romero

RESEARCH QUESTION

HYPOTHESIS

WHAT FACTORS IMMERSION CAN BE PREDICTED FACILITATE BASED ON THE AROUSAL AND VALENCE RATING DATA IMMERSION?

WORKFLOW

Introduction

ENVIRONMENT SETTING

WORKFLOW

PART I: Group and Data Selection

PART II: Data Preprocessing

PART III: Regression Model

PART IV: Statistical Analysis with BIG FIVE

INDEPENDENT VARIABLE

GROUP SELECTION

& DATA SELECTION

bad data case list: [9, 19, 48, 84, 96, 87]

Selected Dataset (N=41)

INDEPENDENT VARIABLE

AROUSAL RATING: 1 - 5 & VALENCE RATING: 1 - 7

HARRY 125 RATING DATA: (24,250)

PIPPY 133 RATING DATA: (12,266)

Andreea Al-Afuni

DEPENDENT VARIABLE

READER RESPONSE

- 1. Focusing of attention
- 2. Text absorption
- 3. Imaginability
- 4. Spatial involvement
- 5. Reception termination
- 6. Suspense
- 7. Emotional involvement
- 8. General reading enjoyment
- 9. Identification
- 10. Parasocial interaction
- 11. Cognitive involvement
- 12. Thematic interest
- 13. Analytical reception
- 14. Ease of cognitive access

IMMERSION DISTRIBUTION

	Mean	Std	Min	50 %	Max
IMMERSION	4.0903	1.0554	1.8760	4.1875	5.8750

DEPENDENT VARIABLE

HARRY 125 RATING DATA: (24,1)

PIPPY 133 RATING DATA: (12,1)

PREDICTIVE MODELING

MODEL PIPELINE

REGRESSION MODELS

MLR Multiple Linear Regression k-NNR k-Nearest Neighbors Regression **Support Vector Regression**

SVR

XGB-R

NN-R

IiHoon Kim

XGBoost Regression Neural Network Regression MODEL SCORE, MEAN ABSOLUTE ERROR (MAE)

$$ext{MAE} = rac{\sum_{i=1}^{n} |y_i - x_i|}{n} = rac{\sum_{i=1}^{n} |e_i|}{n}$$

CORRELATION, ORDINARY LEAST SQUARES (OLS)

 \mathbb{R}^2 coefficient of determination P>[t] p-value, 0.05

BF1_OPENESS

OLS Regression Results

			<u></u>			
Dep. Variable:		IMMERSION	R-squared:			0.124
Model:		0LS	Adj. R-squ	iared:		0.102
Method:	L	east Squares.	F-statisti	c:		5.797
Date:	Tue,	29 Sep 2020	Prob (F-st	atistic):	0.0206
Time:		16:42:13	Log-Likeli	hood:		-51.944
No. Observations		43	AIC:			107.9
Df Residuals:		41	BIC:			111.4
Df Model:		1				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept BFI_OPENNESS	2.5075 0.3803	0.598 0.158	4.196 2.408	0.000 0.021	1.301 0.061	3.714 0.699

MODEL EVALUATION

MODEL EXECUTION EXAMPLE MODEL SCORE, MAE

XGB Regression

(TEXT: HARRY, CONDITION: COHERENT)

train score

expected value 2.8712053 real value [2.875] expected value 4.246798 real value [4.25] expected_value 5.7406764 real_value [5.75] expected value 5.6238847 real value [5.625] expected value 4.750317 real_value [4.75] expected value 5.124679 real value [5.125] expected value 2.369713 real value [2.375] expected_value 4.87198 real_value [4.875] expected value 3.7467732 real value [3.75] expected_value 4.1253195 real_value [4.125] expected_value 3.2460938 real_value [3.25] expected value 3.2475824 real value [3.25] expected value 4.6228137 real value [4.625] expected value 5.4976606 real value [5.5] expected value 3.2489967 real value [3.25] expected value 5.746959 real value [5.75] expected value 3.6226304 real value [3.625] expected_value 1.9332503 real_value [1.875] expected value 4.372049 real value [4.375] expected value 3.7485611 real value [3.75] MAE: 1.2524397712945938

test score

expected_value 5.026205 real_value [5.875] expected_value 4.187478 real_value [4.625] expected_value 4.153034 real_value [5.25] expected_value 4.596566 real_value [4.25] MAE 0.6996761560440063

TEXT	HARRY		PIP	PI
MODEL	Training set	Test set	Training set	Test set
MLR	2.6201e-15	0.7482	1.0214e-15	0.8470
k-NNR	0.0	0.9935	0.0	0.4256
SVR	1.0932	0.8244	0.8195	0.6250
XGB-R	1.2524	0.6997	0.8555	0.6250
NN-R	0.2608	1.0629	0.2419	0.6727

Score: MAE, Rounded to the fourth decimal place

MODEL OVERFITTING -> MODEL TUNING

MODEL TUNING

HYPERPARAMETER TUNING

Model	:	"sequential"	I

Layer (type)	Output Shape	Param #		
dense (Dense)	(None, 64)	16064		
dense_1 (Dense)	(None. 64) Model: "sequential 7'	4160		
dense_2 (Dense)	(N		Shape	Param #
dense_3 (Dense)	(N ====================================	(None		32128
Total params: 24,449 Trainable params: 24,449 Non-trainable params: 0	dense_29 (Dense)	(None,		8256
non tramable params. V	dense_30 (Dense)	(None,	128)	8320
	dense_31 (Dense)	(None,	1)	129
	Total params: 48,833 Trainable params: 48 Non-trainable params			

HYPERPARAMETER TUNING AND CROSS-

MODEL TUNING SCORE: LOSS, MAE

TEXT	HARRY		HARRY ((TUNED)
	LOSS	MAE	LOSS	MAE
TRAIN	0.0796	0.2608	0.7142	0.7523
TEST	1.4938	1.0629	0.3190	0.4619

CORRELATION BETWEEN BIG FIVE AND IMMERSION (Reader responses)

DISCUSSION

- Predicting the immersion by looking at the valence/arousal rating data
- Addressing possible explanations
- Implications of the findings
- Application Future study (future direction)
 - Integrating EEG signals
 - Feature reduction
 - Applied BIG FIVE (iv: arousal/valence, dv:)
 - Small dataset problem

LIMITATIONS

- Terminological ambiguity (immersion, engagement, etc.)
- \rightarrow The total sample amount is limited (N = 97, 36, Pippi 12, Harry 24).
- ➤ In data set as well, more data set points are needed to make comprehensive models
- N-P Problem (combine them) 250 (N > P)
- > Hyperparameter tuning optimization was not conducted in a general fashion. (cross-validation 1-by-1, classification we only used one)
- Elaborate statistical analysis and more variation in ... (Lasso... x)

"All models are wrong, but some models are useful"

George Box (Box and Draper 1987, pp. 424)*

THANK YOU!