

Curso 450

Linux Fundamentals in Cloud

Fundamentação

O núcleo do sistema operacional GNU/Linux, o "kernel", se comunica com os dispositivos de uma maneira muito interessante: praticamente todos os dispositivos em GNU/Linux são representados por um arquivo correspondente dentro do sistema de arquivos. Exceção a esta regra são as placas de rede.

O local onde são armazenadas estas representações é o diretório "/dev". Uma listagem deste diretório mostrará uma série de arquivos, todos eles representando uma parte do seu computador. A interação com estes arquivos, pelo sistema operacional GNU/Linux, é feito através de pedidos e respostas que são enviados e recebido por esses arquivos especiais.

Anotações:	

Objetivos da Aula

Aula 09

- Entender o funcionamento de dispositivos no Linux;
- Manipular partições com fdisk e cfdisk;
- Gerenciar tipos de FileSystem no Linux;
- Gerenciar espaço de partições e objetos no sistema;
- Configurar montagem manual e automática.

4LINUX

Anotações:		

Dispositivos no Linux:

- Dispositivo → Todo o componente de hardware e do sistema operacional (ex: impressora, mouse, portas,etc);
- No Linux, os dispositivos físicos são tratados como arquivos que são armazenados no /dev;

devfs → Gerenciador de dispositivos, o devfs tem com principal característica criar todos os arquivos de dispositivos na hora do boot, populando todo o /dev/;

udev → Gerenciador de dispositivos dinâmico, o udev tem como principal característica criar o arquivo de dispositivo no acionamento do dispositivo deixando o /dev/ apenas com "dispositivos em uso".

5

Explorando o /dev

O diretório "/dev" consiste de um "filesystem" (sistema de arquivos) especial e pode ser de dois tipos: "devfs" ou "udev".

Uma das diferenças entre os dois é que no "devfs" os arquivos de dispositivos são criados uma única vez, dessa forma, o diretório "/dev" contém os dispositivos para todos os hardwares suportados pelo Linux, não importando se eles existem de fato na máquina ou não.

Com o "udev" os dispositivos são criados de acordo com a disponibilidade no sistema. Dessa forma, o diretório contém apenas os arquivos de dispositivo para o "hardware" presentes na máquina.

Manipulando Hardware e Dispositivos Dispositivos no Linux: bloco → Dispositivos de armazenamento de dados (HD, pendrive); caracter → É aquele que envia/recebe um fluxo de caracteres usado para comunicação de "Hardware" (mouse/teclado/impressora); pseudo-dispositivo → Os arquivos dispostivos que não possuem um dispositivo físico correspondente são chamados de "pseudo-dispositivos". Eles são utilizados em várias funções, gerenciadas pelo sistema operacional. (Ex. /dev/null, /dev/randon).

Explorando o /dev

4LINUX

Uma diferença marcante entre sistemas MS-Windows e "Unix-like" é a forma de lidar com partições e dispositivos, como unidade de disquete e CD-ROM.

Em sistemas MS-Windows, desde uma partição no disco rígido a um "pen drive", o acesso é efetuado utilizando a idéia de "unidades"ou "drives", como o "drive" C: ou A: ou até mesmo uma unidade de rede.

Esse tipo de conceito faz com que o usuário final não precise saber o que está por trás do funcionamento desses equipamentos, simplificando sua utilização ao preço da perda do conhecimento.

Servidor:Webserver Interno / Máquina Linux Interna

Explorando o /proc:

O diretório /proc é um sistema de arquivos virtual que é montado no boot da máquina e reside na memória:

- 1# mount | grep proc
- Ele é usado como um recurso para se comunicar com o Kernel, seja para obter informações ou mudar o seu comportamento padrão:
- 2# ls /proc
- ➤ Generalizando, o /proc é dividido em 3 partes:
 - subdiretório de processos;
 - arquivos informativos;
 - parâmetros alteráveis.

1	=	==	. =:	==	==
		-			=

Anotações:		

Servidor:Webserver Interno / Máquina Linux Interna

Informações sobre o Sistema:

- Ao ser iniciado, o Kernel preenche o /proc com uma série de dados sobre o sistema:
- 1# cat /proc/<Arquivo>

```
/proc/cmdline → Argumentos passados para o Kernel pelo loader (grub);
```

/proc/cpuinfo → Informações específicas sobre processador;

/proc/filesystems → Sistemas de arquivos suportados pelo Kernel;

/proc/interrupts → Informações sobre o número de interrupções e seus dispositivos;

/proc/meminfo → Informações sobre a memória da máquina;

/proc/modules → Informações sobre os módulos carregados na memória;

/proc/partitions → Partições conhecidas pelo sistema;

/proc/uptime → Tempo que o sistema está ligado.

Anotações:			
	 	 	-

Servidor: Máquina Linux Interna

Comandos para manipulação:

- Muitas vezes será necessário listarmos os dispositivos do sistema para saber o tipo de hardware que o equipamento possui, fazer uma configuração, gerar um relatório ou simplesmente verificar a necessidade de uma atualização.
- É ai que precisamos conhecer alguns comandos para a inspeção do hardware, os mais usados são Ispci, Isusb e Ismod. Esses três comandos coletam informações do Isys e Iproc.

4LINUX

Anotações:	
	

Servidor: Máquina Linux Interna

Comandos para Ispci:

- O Ispci mostra os dispositivos integrados ao barramento PCI (Interconector de Componentes Periféricos) da máquina:
- 1# lspci

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02) 00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II] 00:01.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01) 00:02.0 VGA compatible controller: InnoTek Systemberatung GmbH VirtualBox Graphics

00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller 00:04.0 System peripheral: InnoTek Systemberatung GmbH VirtualBox Guest Service

00:06.0 USB controller: Apple Inc. KeyLargo/Intrepid USB

00:07.0 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)

4LINUX

Anotações:		

Servidor: Máquina Linux Interna

Comando Ispci:

- O primeiro item mostrado é o ID do dispositivo, então com o ID do dispositivo em mãos podemos saber mais detalhes sobre o mesmo, como o mapeamento da memoria usando o comando Ispci -s ID -v;
- Veja a saída do comando com o ID 00:03.0 (Ethernet controller):
- 1# lspci -s 00:03.0 -v

00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 02)

Subsystem: Intel Corporation **PRO/1000** MT Desktop Adapter Flags: bus master, 66MHz, medium devsel, latency 64, IRQ 19 Memory at f0000000 (32-bit, non-prefetchable) [size=128K] I/O ports at d010 [size=8]

Capabilities: [dc] Power Management version 2 Capabilities: [e4] PCI-X non-bridge device

Kernel driver in use: e1000

4LINUX

Anotações:		

Servidor: Máquina Linux nterna

Comando Isusb:

- O Isusb mostra os dispositivos conectados ao barramento USB (Universal Serial Bus) da maquina:
- 1# lsusb

Bus 001 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 001 Device 002: ID 80ee:0021 VirtualBox USB Tablet

4LINUX

Anotações:		

Servidor: Máquina Linux Interna

Comando Isusb:

- Com o ID do dispositivo em mãos podemos saber mais detalhes sobre o mesmo usando o comando Isusb -d ID -v.
- Veja a saída com o ID 80ee:0021 (VirtualBox USB Tablet):
- 1# lsusb -d 80ee:0021 -v

Device Descriptor:

bLength 18

bDescriptorType 1

bcdUSB 1.10

bDeviceClass 0 (Defined at Interface level)

bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 8

idVendor 0x80ee VirtualBox idProduct 0x0021 USB Tablet

4LINUX

Anotações:			

Servidor: Máquina Linux Interna

Comando Ismod:

- O Ismod lista os módulos ativos no sistema pelo kernel, também pode ser usado o comando cat /proc/modules.
- 1# lsmod

Module	Size	Used by
ppdev	12651	0
lp	12797	0
bnep	17288	2
rfcomm	28448	0
bluetooth	99230	10 rfcomm,bnep
rfkill	18715	2 bluetooth
uinput	12991	1
nfsd	173559	2

NOTA: a
coluna Module mostra o
nome do modulo
carregado, enquanto a
coluna Used mostra
os módulos que estão
usando aquele recurso.

4LINUX

Anotações:		

Servidor: Webserver Interno

Dispositivos de Armazenamento:

- ➤ Foi adicionado ma máquina **Webserver Interno** um segundo disco /dev/sdb para realizarmos os particionamentos e criamos um diretório para backup, uma partição nova para dados e uma swap slave.
- > Execute os comandos abaixo para verificar o tamanho do disco:
 - 1# cat /proc/partitions
 - 2# dmesg | egrep sd[a-b]
 - 3# fdisk -l | grep sdb

4LINUX 15

Anotações:		

O que é uma partição?

Uma partição é um espaço do disco que se destina a receber um sistema de arquivos ou, em um caso particular que veremos adiante, outras partições.

Partição estendida

Isso mesmo, no singular. Só pode haver uma partição estendida em cada disco. Uma partição estendida é um tipo especial de partição primária que não pode conter um sistema de arquivos. Ao invés disso, ela contém partições lógicas. Se existir uma partição estendida, ela toma o lugar de uma das partições primárias, podendo haver apenas três.

Partições lógicas

Também chamadas de unidades lógicas, as partições lógicas residem dentro da partição estendida. As partições lógicas são numeradas a partir de 5.

Servidor: Webserver Interno

Criaremos 3 partições primárias no /dev/sdb da seguinte maneira:

Dispositivo	Tamanho	Montagem
/dev/sdb1	5GB	/backup
/dev/sdb2	4.5GB	/srv
/dev/sdb3	500MB	swap

- Para criar as partições usaremos dois utilitários Fdisk e Cfdisk:
- 1# fdisk /dev/sdb
- 2# cfdisk /dev/sdb
- 3# fdisk -l /dev/sdb

4LINUX

17

Criando Partições no HD

Agora que já sabemos como montar um dispositivo precisamos saber como criar uma partição manualmente. Para isso, há duas ferramentas importantes, que fazem a mesma coisa, disponíveis em sistemas GNU/Linux, são elas: "fdisk" e "cfdisk".

Particionamento com FDISK

O particionador "fdisk" é o mais completo dos particionadores apesar de sua interface pouco amigável.

Particionamento com CFDISK

A ferramenta "cfdisk" não é tão completa quanto o comando "fdisk", mas é um pouco mais amigável, ou como se diz em inglês: "user friendly".

Servidor: Webserver Interno

- Instalando o parted para releitura da tabela de particionamento, sem a necessidade de reboot:
- 1# yum install parted
- 2# partprobe /dev/sdb
- 3# cat /proc/partitions
- ➤ Instalando um sistema de arquivos nas novas partições:
- 4# mkfs.<TAB>

4LINUX

Anotações:		

Gerenciar Tipo de FileSystem:

Aplicar o "filesystem" significa criar uma estrutura lógica acima dessas trilhas e setores, que permita organizar seus arquivos em uma estrutura de diretórios e subdiretórios.

Principais Tipos de FileSystem:

ext2 - Um dos primeiros "FileSystem" do linux;

ext3, ext4 - Evoluções do "ext2", mas com a técnica de "Journal";

xfs - Usado geralmente em banco de dados, tem suas vantagens com objetos grandes.

4LINUX

19

Aplicando um Filesystem

Para que possamos gravar informações de forma estruturada na partição que acabamos de criar precisamos aplicar um "filesystem" a ela.

Formatar é o processo de preparar a mídia magnética, como discos rígidos e disquetes, para receber informação. Esse tipo de preparo é de baixo nível e consiste em "desenhar" as trilhas e setores na mídia em questão.

Aplicar o "filesystem" significa criar uma estrutura lógica acima dessas trilhas e setores que permita organizar seus arquivos em uma estrutura de diretórios e subdiretórios.

Apesar das diferenças técnicas, os dois processos assemelham-se por apagar todo o conteúdo da partição. Portanto cuidado!

Gerenciar Tipo de FileSystem:

iso9660 - O sistema de arquivos padrão do CD-ROM;

vfat - Sistema de arquivos Windows (permite definição de nomes de arquivos com até 32 caracteres);

swap - Em alguns lugares ele é mencionado como um sistema de arquivos, mas SWAP é um espaço reservado para troca de dados com a memória RAM.

4LINUX 20

Anotações:			

Servidor: Webserver Interno

- > Formatando as partições:
- 1# mkfs.ext2 /dev/sdb1
- 2# mkfs.ext3 /dev/sdb2
- Acessando as novas partições:
- 3# mkdir /backup
- 4# mount /dev/sdb1 /backup
- 5# mount /dev/sdb2 /srv/
- 6# mount
- **7**# df -h

NOTA: Outro comando que permite formatar um sistema de arquivo em uma nova partição é o comando mke2fs.

4LINUX

Anotações:		

Servidor: Webserver Interno

- Copiando dados para a partição de backup:
- 1# cp -a /etc/ /backup
- 2# ls -1 /backup
- 3# du -hs /backup
- Desmontando as partições:
- 4# umount /backup
- 5# ls /backup
- 6# umount /dev/sdb2
- 7# mount
- **8**# df -h

4LINUX

Anotações:			

Laboratório Dexter Servidor: Webserver Interno LABEL e UUID: Para facilitar o gerenciamento das partições podemos criar apelidos (labels) ou gerenciar através de seu número de identifição, ao invés do device; Essa prática é muito importante, principalmente quando temos servidores com vários HDs com a possibilidade de troca a quente: | # blkid | 2# ls -1 /dev/disk/by-uuid/ | 3# tune2fs -1 /dev/sdb1 | egrep -i "name | uuid" | 28

Devices, UUID e Labels

Quando usamos dispositivos seguindo padrões como "/dev/hda3" ou "/dev/sda5", estamos especificando um dispositivo que pode vir a receber outro nome.

Portanto se houver alguma modificação no disco, o sistema não mais encontrará a partição especificada pois seu nome foi modificado.

Uma alternativa inteligente para evitar esse tipo de problema é utilizar o método "UUID - Universally Unique Identifier" ou o método de "Labels".

Para descobrirmos o "**UUID**" de nossa partição podemos utilizar dois aplicativos: "**vol_id**" ou "**blkid**".

Servidor: Webserver Interno

LABEL e UUID:

- > Definindo um LABEL para as partições:
- 1# tune2fs -L backup /dev/sdb1
- 2# tune2fs -l /dev/sdb1 | egrep -i "name | uuid"
- 3# tune2fs -L dados /dev/sdb2
- 4# tune2fs -1 /dev/sdb2 | egrep -i "name|uuid"

4LINUX 24

Anotações:		

Montagem automática de Filesystem no boot

Com o comando "**mount**" você aprendeu a montar um dispositivo de forma completa e manual, entretanto, há um arquivo que facilita a nossa vida: "**/etc/fstab**".

Nele devem estar as informações a respeito da montagem de todos os "**filesystems**" do sistema.

Sendo assim, o "**fstab**" armazena as informações dos dispositivos comumente acessados, como as partições do sistema, discos removíveis e alguns dispositivos USB.

Entretanto não mostra informação alguma a respeito de quais dispositivos estão montados neste exato momento.

Servidor: Webserver Interno

- Na primeira coluna do fstab podemos especificar a localização do device das 3 maneiras: Device, UUID e Label
- 1# blkid | grep sdb1
- 2# blkid | grep sdb1 | awk '{print \$3}' | sed -e s/\"//g
- 3# blkid | grep sdb1 | awk '{print \$3}' | sed -e s/\"//g >> /etc/fstab
- 4# vim /etc/fstab

 UUID=683dc-c6a0-4b-6b-64f23e /backup ext2 defaults 0 0

 LABEL=dados /srv/ ext3 defaults 0 0
- 5# mount -a ; df -h
- 6# cat /etc/mtab

4LINUX

Anotações:			
	_	 	

Pergunta LPI

Você quer ver todos os dispositivos montados atualmente no sistema. Qual comando você utiliza? (coloque apenas o nome do comando, sem argumentos)

O arquivo /etc/_____ mostra a lista de dispositivos montados atualmente no sistema.

4LINUX

Anotações:		

Pergunta LPI Você quer ver todos os dispositivos montados atualmente no sistema. Qual comando você utiliza? mount ou df O arquivo /etc/mtab mostra a lista de dispositivos montados atualmente no sistema.

REPOSTA CORRETA: mount ou df

O comando mount quando utilizado sem nenhum parâmetro permite a verificação de todos os dispositivos montados atualmente no sistema, já o comando df é utilizado para relatar o espaço em disco utilizado por um sistema de arquivos, para isso ele fará uma listagem de cada partição e seu respectivo sistema de arquivos mostrando dessa forma, todos os dispositivos montados.

REPOSTA CORRETA: mtab

O arquivo /etc/mtab consultado em aula é utilizado para mapear informações dos dispositivos montados no sistema

Pergunta LPI

______/dev/sda3 irá criar uma área de swap no dispositivo /dev/sda3.

Qual comando irá desativar a área de swap de um dispositivo? (coloque apenas o nome do comando, sem informações adicionais)

4LINUX

Anotações:		

Pergunta LPI mkswap/dev/sda3 irá criar uma área de swap no dispositivo /dev/sda3. Qual comando irá desativar a área de swap de um dispositivo? swapoff

REPOSTA CORRETA: mkswap

Utilize o comando mkswap para definir um determinado disco ou arquivo como área de troca (swap) do sistema.

REPOSTA CORRETA: swapoff

A área de troca de um dispositivo para ser desativada através do comando **swapoff** assim como pode ser reativada através do comando **swapon**.