Page 2 of 19

AMENDMENTS TO THE SPECIFICATION

Please amend the paragraph beginning on page 1, line 8 as follows:

--In MPEG (Moving Pictures Experts Group), there is-are three picture types: I-picture, P-picture and B-picture. I-pictures are coded without reference referring to other pictures. I-pictures They provide the coded sequence with access points, which is are the starting points for ef the decoding process, but are coded with only moderate compression. P-pictures are coded more efficiently using motion compensated prediction from a past I-picture or P-picture and are generally used as a reference for further prediction. B-pictures provide the highest degree of compression but require both past and future reference pictures for motion compensation. B-pictures are never used as references for prediction. The organization of the three picture types in a sequence is very flexible. The choice of the sequence is left to-determined by the encoder and will depend on the requirements of the application.--

Please amend the paragraph beginning on page 1, line 18 as follows:

--Because the B-pictures <u>must refer toreference</u> the past and future reference pictures, so the encoding process of the B-pictures is has to be delayed until the future reference picture is coded. Therefore, the display order is different to the coding order. This is called the reordering of B-pictures.--

Please amend the paragraph beginning on page 2, line 7 as follows:

--Typically, if the input signal for the encoder is in NTSC (National Television System Committee) format (29.97 fps), the GOP structure with N=15 and M=3 is used. If the input

signal is in PAL (25 fps) or film format (24 fps), the GOP structure with N=12 and M=3 is

used. These fixed default settings can achieve a good balance between the complexity of an

encoder and the coding performance for of most types of videos.--

Please amend the paragraph beginning on page 2, line 13 as follows:

--Typically, the editing process would cut the whole video sequence into pieces based on

the scene, and then rearrange them to form a new video sequence. If a video sequence is coded

with a fixed pattern composed with only I- and P-pictures, like IPPPPIPPPP..., the situation is

pretty simple. If a scene change occursived in an I-picture of the video sequence

(IPPPIPPPP...), the video sequence can be cut into two parts without any loss. If a scene

change occursived in a P-picture of the video sequence, the former part of the video sequence is in

a normal operation no problem, but the remaining part of the video sequence has to be re-

encodedr. The first P-picture of the remaining part of the video sequence has to be decoded and

then re-encode to an I-picture. However, because the re-encoded I-picture differs from the

original P-picture, there will be some error propagations. Re-encode the whole remaining part of

the GOP until the next I-picture would be a better solution, but we would remind that re-

encoding degrades the image quality significantly.--

Please amend the paragraph beginning on page 2, line 24 as follows:

--If there are B-pictures in the coded sequence, video editing becomes more complex.

Please reference to Fig. 2. If a scene change occursred in the picture just after the I-picture in the

coding order, like the picture B4, cutting from picture I6 can separate the two scenes easily.

However, even the picture P_3 and picture B_4 are belong to different scenes, there would be some macroblocks in picture B_4 and B_5 which needs to reference to the picture P_3 . Therefore the picture P_4 and P_5 have to be re-encoded according with only referencing to the picture P_4 and P_5 have to be re-encoded according with only referencing to the picture P_4 and P_5 is the easiest way, but losing the beginning some pictures of a scene would not be acceptable.—

Please amend the paragraph beginning on page 3, line 9 as follows:

--If a scene change occur<u>s</u>red in the picture B₅, the former part and the remaining part of the GOP have some pictures to be re-encoded. The picture B₄ has to be re-encoded to a P-picture and then append to the former part. In the remaining part, the coded data of the picture B₄ is removed and the picture B₅ has to be re-encoded.--

Please amend the paragraph beginning on page 3, line 13 as follows:

--If a scene change occur<u>s</u>red in the picture I_6 , the remaining part of the GOP has only to remove the coded data of the pictures B_4 and B_5 . However, the former part of the GOP requires a complicate process. One solution is to re-encode the picture B_5 to a P-picture, and then reencode the picture B_4 according by referencing to the pictures P_3 and P_5 . Another solution is to change the two B-pictures P_4 and P_5 to two P-pictures.--

Please amend the paragraph beginning on page 3, line 18 as follows:

--If a scene change occur<u>s</u>red in the picture B₇, the former part of the GOP doesn't needs no any additional process, but and a new I-picture has to be generated for the remaining part. A

choice is to change the picture B₇ to an I-picture, and then re-encode the remaining GOP.

However, because the B-pictures usually coded with a lower quality than the I- and P-pictures, a

better choice is would be to change the picture P9 to an I-picture, and re-encode the remaining

GOP. The pictures B_{45} and B_{56} are B-pictures with only backward reference. This method can

also reduce the number of P-pictures to reduce the error caused by referring referencing to a re-

encoded picture.--

Please amend the paragraph beginning on page 4, line 2 as follows:

-- If a scene change occursred in the picture B₈, the former part of the GOP has only to re-

encode the picture B₇ to a P-picture. The remaining part of the GOP can change the picture P₉ to

an I-picture and then re-encode the remaining part of the GOP .--

Please amend the paragraph beginning on page 4, line 5 as follows:

--Finally, if a scene change occursived in the picture P₉, the former part of the GOP is

processed like the situation of picture I₆. For the remaining part of the GOP, the picture P₉ has to

be changed to an I-picture, and then re-encode the remaining GOP .--

Please amend the paragraph beginning on page 4, line 11 as follows:

-- Generally, the I-pictures are designed for the purpose of random access and preventing

of error propagation. The P-pictures use the motion compensation to remove the temporal

redundancy between the current picture and the reference picture to improve the compression

performance. However, if there is almost no temporal redundancy between the current picture

and the reference picture, such asfor example a scene change, coding a picture as a P-picture

can't obtain any benefit. In this case, coding a picture as an I-picture can achieve the same

coding quality with fewer bits. Therefore, an encoder has to detect the existence of a scene

change and then start a new GOP. There areis already many researches of focus on the scene

change detection and the algorithmthen of adjusting the rate control. how to adjust the rate

eontrol algorithm. A general idea is to detect the difference of the current picture and the

reference picture from the result of motion estimation. If more than a percentage of macroblocks

select the intra-coded mode, the encoder can decide that there is only few temporal redundancy

existed, and therefore a scene change can be detected .--

Please amend the paragraph beginning on page 5, line 1 as follows:

--However, when a scene change is detected, if the encoder just starts a new GOP when

detect a scene change but with without no any other effort, the re-encoding of some pictures

would be unavoidable duringwhen the video sequence is being editing process, as we described

above.--

Please amend the paragraph beginning on page 5, line 5 as follows:

--In view of the above-mentioned problems, an object of the invention is to provide a

video encoding method capable of editing scene changes with support for editing when scene

changed.--

KM/GH/cl

Page 7 of 19

Please amend the paragraph beginning on page 5, line 7 as follows:

--To achieve the above-mentioned object, the video encoding method with support for editing when scene changed of the present invention encodes the pictures by the coding order when there are not scenes changed and encodes the pictures by a special coding process when there are scenes changed. Because the video encoding method encodes the pictures with considering the states of scenes changed and generates a new GOP when a scene change occurred, the video sequence can be cut into two parts by an image editing process without reencoding.--

Please amend the paragraph beginning on page 6, line 10 as follows:

--Before a scene change is detected, the encoder encodes the video sequence with a fixed GOP structure. Once a scene change is detected, the encoder decides how to encode the following pictures based on the type and position in a GOP of the <u>present just</u> coded pictures. Please note that because the B-pictures have to be coded just after the future reference picture being coded, a scene change ean needs to be detected far-before the coding actually happens. Fig. 2 depicts an example. The encoder captures pictures are captured and storesd them into a buffer byin the display order. The picture B₄ and B₅ are captured but ean't and not being encoded until the picture I₆ is coded. Assume that If the encoder can encode a picture in each period of capturing a picture. The picture I₆ is captured and then encoded in the same period. In the next period, the picture B₄ is encoded while the picture B₇ is being captured. The picture B₅ is encoded in the same period that when the picture B₈₂ is captured. The picture P₉ only needs to

take only the picture I_6 to as a reference, so that it can be captured and encoded in the same

period .--

Please amend the paragraph beginning on page 6, line 23 as follows:

--For Aan encoder, which encodes the video sequence with a fixed GOP structure, that

the distance between two reference pictures is defined as M and a reference picture (I- or P-

picture) is represented as an R. The first B-picture (in the display order) after the forward

reference picture R^X is called B^X₁, the second B-picture is called B^X₂, and so on. The final one

before the backward reference picture is called B^X_{M-1}. Fig. 3 illustrates an example of the GOP

in the display order and coding order according to this definition.--

Please amend the paragraph beginning on page 7, line 7 as follows:

--A. A scene change occurgred in the first B-picture--

Please amend the paragraph beginning on page 7, line 8 as follows:

--If there is no scene change occurred in the pictures from B^{A}_{1} to R^{B} , the picture B^{A}_{1} ~

B^A_{M-1} is captured and stored until the picture R^B is captured and coded. If the scene change<u>s</u>d in

the picture B^B₁, the pictures until R^B would belong to the former GOP and the pictures from B^B₁

would belong to a new GOP. After coding the picture BA_{M-1}, if the encoder starts a new GOP

and encodes the following pictures without referrencing to the picture RB, it can completely

separate the video sequence into two parts. An editing process can cut the video sequence from

the new GOP without any re-encoding .--

Page 9 of 19

Please amend the paragraph beginning on page 7, line 16 as follows:

--There are two strategies to start a new GOP. One is to start a fixed GOP structure from I-picture. In the above example, the original picture B^B_1 is changed to an I-picture R^C , the following M-1 pictures are B-picture $B^C_{1} \sim B^C_{M-1}$, the next picture is a P-picture R^D , then the following-up pictures are the M-1 B-pictures, and so on. Fig. 4 illustrates an example of this case.--

Please amend the paragraph beginning on page 7, line 21 as follows:

--However, a new GOP need not be started with an I-picture in the display order. By observing the coding order in Fig. 4, we can find that there is are no B-pictures between the picture R^C and R^D. B-pictures can be coded with lower quality and save the bit rate for than the I-pictures and P-pictures. If there are too many reference pictures in a short duration, the result is that each reference picture can't obtain enough bits to achieve a higher quality. Therefore, the second strategy of starting a new GOP is trying to maintain the ratio on the number of B-pictures and reference pictures. The first M-1 pictures of the new GOP are B-pictures, the next picture is an I-pictures, the following pictures are by other M-1 B-pictures, and then the picture is a P-picture, and so on. Fig. 5 illustrates an example of this case.--

Please amend the paragraph beginning on page 8, line 7 as follows:

--It Seems that the picture type of each picture is remaining the same as no scene change occurred. Actually, the difference is that the picture $B^B_{1} \sim B^B_{M-1}$ have only backward reference to

the <u>back</u> picture R^C. In fact, there may not be M-1 B-pictures before the picture R^C, and can be adjusted freely.--

Please amend the paragraph beginning on page 8, line 11 as follows:

--B. A scene change occursred in the second B-picture--

Please amend the paragraph beginning on page 8, line 12 as follows:

--Please reference to Fig. 3. If a scene change occurs in the picture B^B₂, the picture B^B₁ belongs to the former GOP and the pictures from B^B₂ form a new GOP. The new GOP can be encoded with the same method described in subsection A.--

Please amend the paragraph beginning on page 8, line 15 as follows:

--A GOP can be ended by a reference picture. Therefore the picture B^B₁ must be encoded as a reference picture. <u>Further, There is no reason to not encode</u> the picture B^B₁ as a P-picture but an I-picture. Fig. 6 illustrates an example of this case.--

Please amend the paragraph beginning on page 8, line 18 as follows:

-- C. A scene change occursred in the n-th B-picture--

Please amend the paragraph beginning on page 8, line 19 as follows:

--If a scene change occur<u>s</u>red in the n-th B-picture after the reference picture R^X , $2 \le n \le M-1$, the pictures until B^X_{n-1} belong to the former GOP and the pictures from B^X_n form a new GOP. The new GOP is encoded with the same method described in subsection A.--

Please amend the paragraph beginning on page 8, line 23 as follows:

--Based on the method described in section B, the encoder will encode the picture B_{n-1}^X as a P-picture, and the pictures B_{n-2}^X (if any) are encoded as B-pictures by referencing to the picture R^X and the new generated P-picture.--

Please amend the paragraph beginning on page 9, line 2 as follows:

-- D. A scene change occursred in a reference picture--

Please amend the paragraph beginning on page 9, line 3 as follows:

--Please reference to Fig. 3. If a scene change occursred in the picture R^B, the picture B^A_{M-1} belongs to the former GOP and the pictures from R^B form a new GOP. The former GOP can be coded by the method described in subsection C. The new GOP could be encoded with the same method described in subsection A.--

Page 12 of 19

Please amend the paragraph beginning on page 9, line 17 as follows:

--Step 708: If the picture PIC_{n-1} is not coded as a reference picture, the flowchart jumps to step S710. If the picture PIC_{n-1} is coded as a reference picture, the flowchart jumps to step S716.--

Please amend the paragraph beginning on page 9, line 22 as follows:

--Step S714: If there are B-pictures preceding the picture PIC_{n-1}, coding the B-pictures and jumping to step S718.--

Please amend the paragraph beginning on page 9, line 24 as follows:

--Step S716: If there are B-pictures preceding the picture PIC_{n-1}, coding the B-pictures and jumping to step S718.--