

Abbildung: TED How we'll become cyborgs and extend human potential [11].

Abbildung: TED How we'll become cyborgs and extend human potential [11].

Transhumanismus

Fortschritt oder Dystopie?

Marcel Ott, Nicolas Zander, Lorenz Branner, Severin Bittl, Thomas Gailinger

Ethik in der Informatik

15. Januar 2024

1. Einleitung

- 1.1 Begriffserläuterungen
- 1.2 Was ist normal?

2. Ethische Fragestellungen des Transhumanismus

- 2.1 Selbstbestimmung des Individuums
 - 2.2 Entscheidungen treffen für andere
 - 2.3 Fallbeispiel: Entscheidungen für ein Kind
 - 2.4 Autonomie einer Gruppe
 - 2.5 Unabschätzbare Folgen
 - 2.6 Gesundheit und darüber hinaus
 - 2.7 Gesellschaftliche Spaltung unausweichlich?
 - 2.8 Zukunft der Gesundheitsversorgung
 - 2.9 Ethische Forschung und wie es aktuell läuft

3. Risikoberwertung

3.1 Regulierungen

3.2 Risiken

4. EU-Riskoklassen

- 4.1 Erläuterung der Risikoklassen
- 4.2 Ungleichheit im Zugang zu technologischen Innovationen
- 4.3 Risiken für Individuen
- 4.4 Risiken für Organisationen
- 4.5 Risiken für die Gesellschaft
- 4.6 Medizinische Vorteile in der Gegenwart
- 4.7 Medizinische Vorteile in der Zukunft
- 4.8 Ist Transhumanismus Fortschritt oder Dystrophie?

Inhalt

1. Einleitung

- 1.1 Begriffserläuterungen
 - 1.2 Was ist normal?

2. Ethische Fragestellungen des Transhumanismus

- 2.1 Selbstbestimmung des Individuums
- 2.2 Entscheidungen treffen für andere
- 2.3 Fallbeispiel: Entscheidungen für ein Kind
- 2.4 Autonomie einer Gruppe
- 2.6 Gesundheit und darüber hinaus

- 2.9 Ethische Forschung und wie es aktuell läuft
- 3. Risikoberwertung

3.2 Risiker

4. EU-Riskoklassen

- 4.1 Erläuterung der Risikoklassen
- 4.2 Ungleichheit im Zugang zu technologischen Innovationen
- 4.3 Risiken für Individuen
- 4.4 Risiken für Organisationen
- 4.5 Risiken für die Gesellschaft
- 4.6 Medizinische Vorteile in der Gegenwart
- 4.7 Medizinische Vorteile in der Zukunft
- 4.8 Ist Transhumanismus Fortschritt oder Dystrophie?

▶ Transhumanismus

- Ausschöpfung der natürlichen menschlichen Grenzen mit Wissenschaft [15]
 - => Beibehaltung der Grundform des Menschen
- Posthumanimus
 - ▶ Überwindung der menschlichen Grenzen [15]
 - ► Mensch ist eine Sackgasse und Cyborg wird als nächster Schritt der Evolution angesehen [15]
 - => Grundform des Menschen wird abgeschafft
- Cyborg
 - ▶ Integriertes System aus menschlichen und maschinellen Teilen [20]

Grenzen zwischen Transhumanismus und Posthumanismus sind jedoch fließend werden, aber oft synonym verwendet, was jedoch aufgrund der Unterschiede von vielen Forschern kritisiert wird [15]

Prof. Dr. Anette Breczko: Die Überwachung biotechnologischer Möglichkeiten erfordert zweifellos eine Unterscheidung zwischen "therapeutischen" und "Verbesserungs"-Aktivitäten [4]

Zentrale Frage hierfür: Was ist normal?

Was ist normal?

Erscheint intuitiv als triviale Frage mit folgenden Antworten:

- Statischer Durchschnitt
- Mehrheit
- ► Herrschende Klasse z. B. POC als minderwertig bei Sklaverei

Genannte Punkte machen jedoch wenig Sinn:

- Schildmann (Erziehungswissenschafterlin): Normalität ist sehr indiviuell und vom Selbst und der umgebenden Gruppe bestimmt s. Cochlea-Implantat [18]
- Aguayo-Krauthausen (Aktivist): Behinderung als Eigenschaft, wie die Augenfarbe wahrnehmen [1]
- ► Ethische Grundaussagen der Lebenshilfe: "Es ist normal, verschieden zu sein." [7]
- => Ein allgemeines "das ist normal" gibt es hier nicht und es muss sehr indiviuell abgewogen werden

1. Einleitung

- 1.1 Begriffserläuterungen
- 1.2 Was ist normal?

2. Ethische Fragestellungen des Transhumanismus

- 2.1 Selbstbestimmung des Individuums
- 2.2 Entscheidungen treffen für andere
- 2.3 Fallbeispiel: Entscheidungen für ein Kind
- 2.4 Autonomie einer Gruppe
- 2.5 Unabschätzbare Folgen
- 2.6 Gesundheit und darüber hinaus
- 2.7 Gesellschaftliche Spaltung unausweichlich?
- 2.8 Zukunft der Gesundheitsversorgung
- 2.9 Ethische Forschung und wie es aktuell läuft

3. Risikoberwertung

3.1 Regulierungen

Inhalt

3.2 Risikei

4. EU-Riskoklassen

- 4.1 Erläuterung der Risikoklassen
- 4.2 Ungleichheit im Zugang zu technologischen Innovationen
- 4.3 Risiken für Individuen
- 4.4 Risiken für Organisationen
- 4.5 Risiken für die Gesellschaft
- 4.6 Medizinische Vorteile in der Gegenwart
- 4.7 Medizinische Vorteile in der Zukunft
- 4.8 Ist Transhumanismus Fortschritt oder Dystrophie?

15. Januar 2024

Selbstbestimmung des Individuums:

- ▶ **Recht auf freie Entfaltung:** Jeder hat das Recht auf freie Entfaltung, solange die Rechte anderer oder bestehendes Recht nicht verletzt werden [3].
 - Individuelle Identität: Menschen können ihre eigene Identität frei wählen.
 - Natürlichkeit bewahren: Der Wunsch, in seiner natürlichen Form zu bleiben, ist ein essentieller Aspekt.
- ► Freie Entscheidung in einer Welt der Verbesserung: In einer Gesellschaft, in der die Mehrheit von Enhancements profitiert, könnten jene, die sich dagegen entscheiden, im Alltagsleben benachteiligt sein z. B. Profi Bodybuilding und der Einsatz von Steroiden

Entscheidungen treffen für andere:

- Schwierigkeit der Entscheidungsfindung vor Allem bei Verbesserungen [16]
- Individuelle Abwägung von Nebenwirkungen
- Gesellschaftliche Verantwortung z.B. höhere
 Gesundheitskosten für alle
 Mögliche Pflicht zur Verbesserung
- ► Herausforderung bei Personen die nicht selbstbestimmt entscheiden können z. B. Locked-in-Syndrom [6] oder Kinder Entscheidungen gegen Verbesserungen könnten zu massiven Nachteilen im späteren Leben führen

Fallbeispiel: Entscheidungen für ein Kind

Fallbeispiel: Entscheidungen für andere treffen

- ► Gerichtsverhandlung wegen Entscheidung gegen ein Cochlea-Implantat bei gehörlosen Eltern [10]
- ▶ Die Klinik sah die Ablehnung als Gefährdung des Kindeswohls und leitete ein Kinderschutzverfahren ein.
- ► Familiengerichtsentscheidung am 29. Januar 2019:
 - ▶ Keine familienrechtlichen Maßnahmen aufgrund unzureichender Gründe.
 - ► Eltern können den optimalen Therapieverlauf nach der Implantation nicht gewährleisten.
 - Ohne Akzeptanz der Eltern ist es unmöglich, dass das Kind trotz Cochlea-Implantat die Hör- und Sprachfähigkeit erlangt. [10]

Autonomie einer Gruppe:

- Anliegen derjenigen, die sich gegen Normalisierung entscheiden, finden kaum Beachtung mehr. (Argument der leichteren Lösung)
- Minderheiten und Gruppen haben ihre eigene kulturelle Dynamik, die durch Normalisierung verloren gehen
 z. B. Gehörlosen-Community, die eine einzigartige Kommunikationsform pflegt und geschätzt werden sollte [14].
- ➤ Technologie ermöglicht betroffenen Gruppen selbstbestimmtes leben [6].

Unabschätzbare Folgen:

Neue Technologien bringen oft unvorhergesehene Folgen mit sich z.B. FCKWs wurden als Kälte- und Treibmittel genutzt und führten zur Entstehung des Ozonlochs [17] Beispiele beim Transhumanismus:

- DNA-Veränderungen
 - Unvorhersehbare Folgen bei DNA-Veränderungen
 => fatale und irreversible Auswirkungen auf den Körper
- ► DBS
 - Komplexität und mangelndes Wissen des Gehirns führt zu unerwünschten Nebenwirkungen, wie Depressionen oder Suizid [21].
 - ► Elektroden stimulieren großflächig, was zu ungewollten Stimulationen benachbarter Gehirnareale führen kann.

Gesundheit und darüber hinaus:

Allgemein gilt:

- Sehr eingeschränktes Wissen über Funktionsweise vom menschlichen Körper
- ► Eingriffe bergen ein gewisses Risiko, z.B. Misserfolg, Verletzungen, Tod
- ▶ Irreversibilität ist besonders bedenklich, z.B. bei BMI, DBS

Wiederherstellen des "Normalzustandes": Kranke Menschen haben starke Einschränkungen im Alltag und bei der Gestaltung ihres Lebens, daher wird Risiko des Eingriffs oftmals in Kauf genommen

Gesundheit und darüber hinaus

Erweiterung der Fähigkeiten:

- Dem Eingriffsrisiko steht nun der Vorteil der Verbesserung gegenüber
- Irreversibilität vermeidet möglicherweise künftige Eingriffe

Abbildung: The Neuralink transmitter [19].

Gesellschaftlichespaltung unausweichlich?

Probleme bei der Finanzierung und Vertrieb von transhumanistischer Technik [12]:

- Gesellschaft finanziert Verbesserungen? Kranke werden benachteiligt
- ▶ Private Organisationen? Unkontrollierte Ausbreitung möglich
- ▶ Der Einzelne? Viele haben nicht die finanziellen Mittel

Gesellschaftlichespaltung unausweichlich?

Aktuelle Situation: Gesell. Spaltung zwischen Arm und Reich Vergleich Lebenserwartung bei Männern [13]:

► Reiche: 80,9 Jahre

► Arme: 70,1 Jahre

Gründe für die Unterschiede:

- ► Bessere ärztliche Versorgung für Reiche
- ► Keine finanziellen Probleme bei teuren Medikamenten
- Zugang zu gesunder (teurer) Ernährung

Zukunft der Gesundheitsversorgung

Prognose: Die Spaltung in der Gesellschaft nimmt zu. Neue Organe, Tissue-Engineering, Verjüngungsmedikamente, Mikroroboter sind nur für einen (wohlhabenden) Teil der Bevölkerung verfügbar. Negative Folgen transhumanistischer Technologie [12]:

- ► Nachteile überwiegen die Vorteile
- Gefahr der Verschiebung der Gesundheitsversorgung in private Hände

Ethische Forschung und wie es aktuell läuft: Entwicklung transhumanistischer Technologie

- ▶ Die Entwicklung transhumanistischer Technologie ist vergleichbar mit der Entwicklung von Impfstoffen oder Medikamenten – teuer und langwierig.
- Die Zulassung solcher Technologien erfolgt nur mit Tests an Menschen.
- Starke Regulierungen in vielen Ländern, um die möglichen Testteilnehmer zu schützen.
 - => Mögliche Verlagerung der Entwicklung in wirtschaftlich schwächere Länder und damit verbundene Ausbeutung der dortigen Bevölkerung.

- ► Es besteht eine extreme Neigung zu transhumanistischer Technologie.
- Risiken könnten vernachlässigt werden.

Inhalt

- 1.1 Begriffserläuterungen

2. Ethische Fragestellungen des Transhumanismus

- 2.1 Selbstbestimmung des Individuums
- 2.2 Entscheidungen treffen für andere
- 2.3 Fallbeispiel: Entscheidungen für ein Kind
- 2.4 Autonomie einer Gruppe
- 2.6 Gesundheit und darüber hinaus

- 2.9 Ethische Forschung und wie es aktuell läuft
- 3. Risikoberwertung 3.1 Regulierungen

3. Risikoberwertung

3.2 Risiken

4. EU-Riskoklassen

- 4.1 Erläuterung der Risikoklassen
- 4.2 Ungleichheit im Zugang zu technologischen Innovationen
- 4.3 Risiken für Individuen
- 4.4 Risiken für Organisationen
- 4.5 Risiken für die Gesellschaft
- 4.6 Medizinische Vorteile in der Gegenwart
- 4.7 Medizinische Vorteile in der Zukunft
- 4.8 Ist Transhumanismus Fortschritt oder Dystrophie?

15. Januar 2024

Regulierungen

- Regulierungen, rechtliche Rahmenbedingungen und Ethikcodizes nötig
- ▶ Al Act der EU 2021 [9] und Fortschritte damit [2]
- ▶ Seit einigen Jahren im Diskurs anhand vergleichbarer Fälle [14]

Risiken

Individuum	Organisationen	Gesellschaft
 Folgen von Hackerangriffen [12] Eigengefährdung von Nutzenden [12] Unbekannte Langezeitfolgen [5] 	 Kapitalgetriebene Entscheidungen [12] Neuro- Marketing [12] Monopolbildung [12] 	 Unfairen Vorteil verschaffen [12] Militante Interessen [12] Verlust Autonomie und Menschlichkeit [5]

Inhalt

2. Ethische Fragestellungen des Transhumanismus

- 2.1 Selbstbestimmung des Individuums
- 2.2 Entscheidungen treffen für andere
- 2.3 Fallbeispiel: Entscheidungen für ein Kind
- 2.4 Autonomie einer Gruppe
- 2.6 Gesundheit und darüber hinaus
- 2.9 Ethische Forschung und wie es aktuell läuft

3. Risikoberwertung

Marcel Ott, Nicolas Zander, Lorenz Brann

15. Januar 2024

4. FU-Riskoklassen

3.2 Risiken

4. EU-Riskoklassen

- 4.1 Erläuterung der Risikoklassen
- 4.2 Ungleichheit im Zugang zu technologischen Innovationen
- 4.3 Risiken für Individuen
- 4.4 Risiken für Organisationen
- 4.5 Risiken für die Gesellschaft
- 4.6 Medizinische Vorteile in der Gegenwart
- 4.7 Medizinische Vorteile in der Zukunft
- 4.8 Ist Transhumanismus Fortschritt oder Dystrophie?

Abbildung: EU Risikoklassen [8].

Hochrisiko-Anwendungen

- Beeinflussen die Gesundheit, Sicherheit oder Lebenswege
- Beispiele: KI in Stromkraftwerken, Kredit- und Jobentscheidungen (Art. 6)
- Unterscheidung: KI-Systeme für bereits geprüfte Produkte und andere Anwendungen (Art. 6 und Anhang III)

Unannehmbares Risiko

- Verboten: Systeme mit nicht akzeptablem Risiko
- Beispiele: Verbot von staatlichen Social Scoring und schädlichen Manipulationssystemen (Art. 5)
- ➤ Verbot für schädliche Systeme: Systeme, die darauf abzielen, Personen zu manipulieren oder deren Entscheidungsfindung zu beeinflussen (Art. 5)

4.2 Ungleichheit im Zugang zu technologischen Innovationen Ungleichheit im Zugang zu technologischen Innovationen

gesundheitliche Gründe

finanzielle Gründe

Individuum

- Sicherheit der technischen Erweiterung (Hacking)
- Nutzer als Gefahr durch Veränderung der Geräteeinstellungen

15. Januar 2024

Organisationen

- Abwägung des Risikos geprägt durch den kapitalistischen Gedanken [12]
- ► Risiko durch Datenverkauf für "Neuro-Marketing-[12]
- ► Monopolbildung durch ungeregelten Vertrieb

Gesellschaft

- Vorteilsbeschaffung bei Test oder im Sport [12]
- ► Militärischer Einsatz der Technik
- Verlust der Autonomie [12]

Verbesserung physischer und psychischer Leistungsfähigkeit

- Gehörlosen
- Parkinson-Erkrankten
- Tremor
- Chochlea-Implantaten
- Locked-In-Syndrom

Heilen von Krankheiten (Transhumanismus)

- psychisches Leiden
- Angststörung
- Depressionen
- ► Posttraumatische Belastungsstörungen
- Verbesserung der Leistungsfähigkeit

Ist Transhumanismus Fortschritt oder Dystrophie?

Vorteile Nachteile Erweiterung der Unvorhersehbare Folgen menschlichen Fähigkeiten Teilhabe, z.B. Lösung von Arbeitsplatzverlust Gesundheitsproblemen Ungleichheit Verbesserung der Verlust der Menschlichkeit Lebensqualität Datenschutz und Mögliche Evolution der Privatsphäre Gesellschaft

Ist Transhumanismus Fortschritt oder Dystrophie?

- [1] R. Aguavo-Krauthausen und M. Kulik. Wer Inklusion will, findet einen Weg. Wer sie nicht will, findet Ausreden. Rowohlt E-Book, 2023. ISBN: 9783644014664.
 - [2] Artificial Intelligence Act: deal on comprehensive rules for trustworthy Al. Pressemitteilung, 2023. [3] Bundeszentrale für politische Bildung.
 - Grundgesetz: für die Bundesrepublik Deutschland: Textausgabe. Bundeszentrale für politische Bildung, 1996.
 - [4] Anetta Breczko u. a. "Human Enhancement in the Context of Disability (Bioethical Considerations from the Perspective of Transhumanism)". In: Białostockie Studia Prawnicze 3.26 (2021), S. 95-108.
 - [5] Sasha Burwell, Matthew Sample und Eric Racine, "Ethical aspects of brain computer interfaces: a scoping review". In: BMC Medical Ethics 18.1 (2017), S. 60. DOI: 10.1186/s12910-017-0220-y, URL: https://doi.org/10.1186/s12910-017-0220-v.
 - [6] Ioe M Das, Kingsley Anosike und Ria Monica D Asuncion, "Locked-in syndrome". In:
 - StatPearls [Internet]. StatPearls Publishing, 2022.
- [7] Die Lebenshilfe stellt sich vor. Flyer. Zugriff am 03.12.2023. Lebenshilfe, 2021. [8] EU Artificial Intelligence Act: The European Approach to Al. Accessed: April 21, 2021, 2021, URL: https://futurium.ec.europa.eu/sites/default/files/2021-
- 10/Kop EU%20Artificial%20Intelligence%20Act%20-%20The%20European%20Approach%20to%20AI 21092021 0.pdf.

15. Januar 2024

- [9] Content European Commission Directorate-General for Communications Networks und Technology. Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL LAYING DOWN HARMONISI 2021. [10] BR Fernsehen. Sehen statt Hören: Urteil zum Thema Zwangs-Cl. 10.12.2023. 2023. URL: https:
 - //www.br.de/br-fernsehen/sendungen/sehen-statt-hoeren/ci-zwang-urteil-102.html.
 - [11] Hugh Herr. How we'll become cyborgs and extend human potential. 2017. URL: https://www.voutube.com/watch?v=PLk8Pm XBJE.
 - [12] Shujhat Khan und Tipu Aziz. "Transcending the brain: is there a cost to hacking the nervous system?" In: Brain Communications 1.1 (Sep. 2019), fcz015, ISSN: 2632-1297, DOI:
 - 10.1093/braincomms/fcz015.eprint:
 - https://academic.oup.com/braincomms/article-pdf/1/1/fcz015/33639122/fcz015.pdf. URL: https://doi.org/10.1093/braincomms/fcz015. [13] Thomas Lampert und Lars Eric Kroll. "Soziale Unterschiede in der Mortalität und Lebenserwartung".

[14]

[15]

In: GBE kompakt 5.2 (2014), ISSN: 2191-4974, DOI: 10.17886/RKI-GBE-2016-017, URL:

- Joseph Lee. "Cochlear implantation, enhancements, transhumanism and posthumanism: some human
- "Technological Humanism"". In: Herald of the Russian Academy of Sciences 92.6 (Sep. 2022),
- S. S. Merzlyakov, "Posthumanism vs. Transhumanism: From the "End of Exceptionalism" to

https://www.rki.de/gbe-kompakt (besucht am 16.06.2016).

guestions". In: Science and Engineering Ethics 22 (2016), S. 67-92.

Ist Transhumanismus Fortschritt oder Dystrophie?

- S475-S482. ISSN: 1555-6492. DOI: 10.1134/S1019331622120073. URL: https://doi.org/10.1134/S1019331622120073.
- [16] Zlatica Plašienková und Martin Farbák. "Healthy people and biochemical enhancement: A new paradigmatic approach to the enhancement of human beings?" In: <a href="https://example.com/Ethics-Wilson-Wils
- [17] F Sherwood Rowland. "Stratospheric ozone depletion by chlorofluorocarbons (Nobel lecture)". In: Angewandte Chemie International Edition in English 35.16 (1996). S. 1786–1798.
- [18] Ulrike Schildmann. Was ist normal? Normalität-Behinderung-Geschlecht. Studien Verlag, 1999.
- [19] Eliza Strickland. An inside engineering look at the brain implant company's near and far term goals. IEEE Spectrum. 2021.
- [20] Kevin Warwick. "Cyborg 1.0". In: Wired 8.2 (2000).
- [21] Marcin Zygmunt Zarzycki und Izabela Domitrz. "Stimulation-induced side effects after deep brain stimulation-a systematic review". In: Acta Neuropsychiatrica 32.2 (2020). S. 57-64.

15. Januar 2024