

Simulation requires drawing from the error term distribution
Standard normal and uniform: use built-in random number generators

• Standard normal and uniform: use built-in random number generators

Standard Herman and annorms also bank in random manibel generators

• Other distributions: various transformation methods (e.g. -log(-log(rand())))

C:l-+:		ala	£	. مالد		L	distribution
Similiation	redilires	arawing	trom	The 6	≏rr∩r	Term	distribilition

• Standard normal and uniform: use built-in random number generators

• Other distributions: various transformation methods (e.g. $-\log(-\log(\text{rand}()))$)

• Multivariate normals: Choleski decomposition

Simulation requires drawing from the error term distribution

- Standard normal and uniform: use built-in random number generators
- Other distributions: various transformation methods (e.g. $-\log(-\log(rand()))$)
- Multivariate normals: Choleski decomposition
- Complex densities: accept-reject, importance sampling

• Antithetic draws: create mirror images to induce negative correlation

- Antithetic draws: create mirror images to induce negative correlation
- Halton sequences: systematically fill the distribution space "evenly"

- Antithetic draws: create mirror images to induce negative correlation
- Halton sequences: systematically fill the distribution space "evenly"
- Both provide better coverage than pure random draws

- Antithetic draws: create mirror images to induce negative correlation
- Halton sequences: systematically fill the distribution space "evenly"
- Both provide better coverage than pure random draws
- Can substantially reduce simulation error for given R

- Antithetic draws: create mirror images to induce negative correlation
- Halton sequences: systematically fill the distribution space "evenly"
- Both provide better coverage than pure random draws
- Can substantially reduce simulation error for given R

Practical benefit: fewer draws needed for same accuracy

When implementing simulation-based estimation:
• Use same draws across parameter values (prevents chatter)

- Use same draws across parameter values (prevents chatter)
- Consider variance reduction techniques for efficiency

- Use same draws across parameter values (prevents chatter)
- Consider variance reduction techniques for efficiency
- Increase R with sample size for SML

- Use same draws across parameter values (prevents chatter)
- Consider variance reduction techniques for efficiency
- Increase R with sample size for SML
- ullet SMM offers consistency with fixed R at cost of potential efficiency loss

- Use same draws across parameter values (prevents chatter)
- Consider variance reduction techniques for efficiency
- Increase R with sample size for SML
- SMM offers consistency with fixed R at cost of potential efficiency loss

Choice depends on computational resources and model complexity