Lenses

https://github.com/heptagons/lenses

2024/1/1

Abstract

Lenses are equilateral hexagons resembling concave and convex optical lenses. Lenses consecutive six internal angles are $(\theta_1, \theta_2, \theta_3, \theta_1, \theta_2, \theta_3)$ where $\theta_1 = X\theta_0$, $\theta_2 = Y\theta_0$, and $\theta_3 = Z\theta_0$ where $\theta_0 = 2\pi/S$ is the base angle of symmetry S = X + Y + Z.

- 1 Lenses
- 2 Stars
- 3 Symmetry 5

Symmetry 5 is based in angle $\beta = \frac{2\pi}{5}$ and produces the two rhombi (b, c) and the two lenses (B, C).

3.1 Rhombi (b,c)

Rhombus	θ_1	θ_2
b	$\beta/2$	$4\beta/2$
c	$2\beta/2$	$3\beta/2$

Table 1: Rhombi $(\boldsymbol{b},\boldsymbol{c})$ internal angles. $\theta_1+\theta_2=\pi$ and $\beta=2\pi/5$.

Figure 1: Rhombi $(\boldsymbol{b}, \boldsymbol{c})$ from dissecting stars S_{10} .

Table 1 show the rhombi $(\boldsymbol{b}, \boldsymbol{c})$ internal angles in terms of angle $\beta = 2\pi/5$. Figure 1 show the rhombi $(\boldsymbol{b}, \boldsymbol{c})$. Inspecting the stars we get the areas simply adding their rhombi. At (i) the star $S_{10}(1, 8)$ with area

 $A = 10\mathbf{b}$. At (ii) the star $S_{10}(2,6) = S_5(1,3)$ with area $A = 5\mathbf{c}$. At (iii) the regular decayon equivalent to stars $S_{10}(4,4) = S_5(2,2)$ with area $A = 5\mathbf{b} + 5\mathbf{c}$.

3.2 Regular pentagon and star |5/2|

Figure 2: Regular pentagon |5/1| at (i). Star |5/2| at (ii). Double pentagon at (iii).

Figure 2 show regular pentagon and isotoxal star |5/2| dissected with rhombi $(\boldsymbol{b}, \boldsymbol{c})$ plus concave pentagons (in gray). Let \boldsymbol{x} be the area of such gray piece. By inspection the area of regular pentagon at (i) is $A_1 = \boldsymbol{c} + \boldsymbol{x}$ and the area of regular pentagon at (iii) is $P_2 = \boldsymbol{b} + 5\boldsymbol{c} + 2\boldsymbol{x}$. Since the side of A_2 is the double of A_1 its area is four times so we can get the value of \boldsymbol{x} in terms of $(\boldsymbol{b}, \boldsymbol{c})$

$$4P_1 = P_4$$

$$4(\mathbf{c} + x) = \mathbf{b} + 5\mathbf{c} + 2x$$

$$x = \frac{\mathbf{b} + \mathbf{c}}{2}$$
(1)

We use the value of x to get the areas of pentagon (i) and star (ii):

$$A|5/1| = \mathbf{c} + \mathbf{x}$$

$$= \frac{\mathbf{b} + 3\mathbf{c}}{2}$$

$$A|5/2| = \mathbf{b} + 2\mathbf{x}$$

$$= 2\mathbf{b} + \mathbf{c}$$
(2)

3.3 Lenses (B,C)

Lense	θ_1	θ_2	θ_3
B	β	2β	2β
C	β	β	3β

Table 2: Lenses (B, C) internal angles $\theta_1 + \theta_2 + \theta_3 = 2\pi$ where $\beta = 2\pi/5$.

Figure 3: Lenses (B, C) build with rhombi (b, c).

Table 2 show the lenses $(\boldsymbol{B}, \boldsymbol{C})$ internal angles. Figure 3 show lenses $(\boldsymbol{B}, \boldsymbol{C})$ construction and two stars formed with them. At (i) we form the lense \boldsymbol{B} with perimeter $\overline{B_1...B_6}$ adding two rhombi \boldsymbol{b} $(\overline{B_1B_2B_3O})$ and $\overline{B_1OB_5B_6}$ and adding one rhombus \boldsymbol{c} $(\overline{OB_3B_4B_5})$ so its area is $2\boldsymbol{b} + \boldsymbol{c}$. Lense \boldsymbol{B} is equivalent to the hexagon $H_5(1,2,2)$. At (ii) we form the lense \boldsymbol{C} with perimeter $\overline{C_1...C_6}$ adding two rhombi \boldsymbol{c} $(\overline{OC_1C_2C_3})$ and $\overline{OC_3C_4C_5}$ and substracting one rhombus \boldsymbol{b} $(\overline{OC_1C_6C_5})$ so its area is $2\boldsymbol{c} - \boldsymbol{b}$. Lense \boldsymbol{C} is equivalent to the hexagon $H_5(1,1,3)$.

Figure 4: Two stars dissected with lenses (B, C).

Figure 4 show two stars dissected with lenses (\mathbf{B}, \mathbf{C}) . At (i) the star $S_5(1,3)$ dissection implies its area is $A = \mathbf{B} + 2\mathbf{C} = 5\mathbf{c}$. At (ii) the regular decagon or star $S_5(2,2)$ dissection implies its area is $A = 3\mathbf{B} + \mathbf{C} = 5(\mathbf{b} + \mathbf{c})$.

4 Symmetry 7

Symmetry 7 is based in angle $\gamma = \frac{2\pi}{7}$ and produces the three rhombi $(\mathbf{d}, \mathbf{f}, \mathbf{e})$ and the three lenses $(\mathbf{D}, \mathbf{E}, \mathbf{F})$.

4.1 Rhombi (d, e, f)

Rhombus	θ_1	$ heta_2$
d	$\gamma/2$	$6\gamma/2$
e	$2\gamma/2$	$5\gamma/2$
f	$3\gamma/2$	$4\gamma/2$

Table 3: Rhombi (d, e, f) internal angles. $\theta_1 + \theta_2 = \pi$ and $\gamma = 2\pi/7$.

Figure 5: Rhombi (d, e, f) from dissected stars S_{14} .

Table 3 show the symmetry 7 lenses internal angles based in angle $\gamma = 2\pi/7$. Figure 5 show rhombi $(\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f})$. Inspecting the stars we get the areas simply adding their rhombi. At (i) the star $S_{14}(1, 12)$ with area $A = 14\boldsymbol{d}$. At (ii) the star $S_{14}(2, 10) = S_7(1, 5)$ with area $A = 7\boldsymbol{e}$. At (iii) the star $S_{14}(4, 8) = S_7(2, 4)$ with area $A = 7(\boldsymbol{e} + \boldsymbol{f})$. At (iv) the regular 14-gon equivalent to stars $S_{14}(6, 6) = S_7(3, 3)$ with area $A = 7(\boldsymbol{d} + \boldsymbol{e} + \boldsymbol{f})$.

4.2 Regular heptagon and stars |7/3| and |7/2|

Figure 6: Heptagon |7/1| at (i). Star |7/3| at (ii). Star |7/2| at (iii). Double heptagon at (iv).

Figure 6 show regular heptagon and heptagrams dissected with rhombi (c, d, e) plus equilateral concave heptagons (in gray). Let y be the area of such gray piece. By inspection the area of regular heptagon at (i) is $A_1 = e + 2f + y$ while the area of regular heptagon at (iv) is $A_2 = d + 7(e + f) + 2y$. Since the side of A_2 is the double of A_1 its area is four times so we can get the value of y in terms of (d, e, f):

$$4A_1 = A_2$$

$$4(\mathbf{e} + 2\mathbf{f} + \mathbf{y}) = \mathbf{d} + 7(\mathbf{e} + \mathbf{f}) + 2\mathbf{y}$$

$$\mathbf{y} = \frac{\mathbf{d} + 3\mathbf{e} - \mathbf{f}}{2}$$
(4)

We use the value of y to calculate the areas of heptagon (i) and stars (ii) and (iii) in terms of (d, e, f):

$$A|7/1| = \mathbf{e} + 2\mathbf{f} + \mathbf{y}$$

$$= \frac{\mathbf{d} + 5\mathbf{e} + 3\mathbf{f}}{2}$$
(5)

$$A|7/3| = \mathbf{d} + 2\mathbf{y}$$

$$= 2\mathbf{d} + 3\mathbf{e} - \mathbf{f}$$
(6)

$$A|7/2| = A\{7/3\} + 7\mathbf{f}$$

= $2\mathbf{d} + 3\mathbf{e} + 6\mathbf{f}$ (7)

4.3 Lenses (D,E,F)

Lense	θ_1	θ_2	θ_3
D	γ	3γ	3γ
$oldsymbol{E}$	γ	2γ	4γ
$oldsymbol{F}$	2γ	2γ	3γ

Table 4: Lenses (D, E, F) internal angles. $\theta_1 + \theta_2 + \theta_3 = 2\pi$ and $\gamma = 2\pi/7$.

Figure 7: Lenses (D, E, F) build from rhombi (d, e, f).

Table 4 show the lenses $(\boldsymbol{D}, \boldsymbol{E}, \boldsymbol{F})$ internal angles. Figure 7 show lenses $(\boldsymbol{B}, \boldsymbol{C})$ construction. At (i) we form the lense \boldsymbol{D} with perimeter $\overline{D_1...D_6}$ adding two rhombi \boldsymbol{d} $(\overline{D_1D_2D_3O})$ and $\overline{D_1OD_5D_6}$ and adding one rhombus \boldsymbol{e} $(\overline{OD_3D_4D_5})$ so its area is $2\boldsymbol{d} + \boldsymbol{e}$. Lense \boldsymbol{D} is equivalent to the hexagon $H_7(1,3,3)$.

At (ii) we form the lense \mathbf{E} with perimeter $\overline{E_1...E_6}$ adding one rhombus \mathbf{e} ($\overline{E_1E_2OE_6}$) adding one rhombus \mathbf{f} ($\overline{OE_4E_5E_6}$) and substracting one rhombus \mathbf{d} ($\overline{E_2OE_4E_3}$) so its area is $-\mathbf{d} + \mathbf{e} + \mathbf{f}$. Lense \mathbf{E} is equivalent to the hexagon $H_7(1,2,4)$.

At (iii) we form the lense \mathbf{F} with perimeter $\overline{F_1...F_6}$ adding two rhombi $\mathbf{f}(\overline{F_1F_2F_3O})$ and $\overline{F_3F_4F_5O}$) and adding one rhombus $\mathbf{d}(\overline{F_1OF_5F_6})$ so its area is $\mathbf{d}+2\mathbf{f}$. Lense \mathbf{F} is equivalent to the hexagon $H_7(2,2,3)$.

Figure 8: Stars dissected with only lenses (D, E, F).

Figure 8 show stars $S_7(2,4)$ and $S_7(3,3)$ dissected with lenses $(\mathbf{D},\mathbf{E},\mathbf{F})$. At (i) we have star $S_7(2,4)$ and by inspection we deduce its area is $A = 2\mathbf{D} + 5\mathbf{E} + \mathbf{F}$. At (ii) we have regular 14-gon (or star $S_7(3,3)$) and by inspection we deduce its area is $4\mathbf{D} + 3\mathbf{E} + 2\mathbf{F}$. Both stars have in common an area in green resembling a tree leaf. The star at (i) also contains two regions in yellow resembling crowns while the star at (ii) contains a region in cyan resembling a moon phase.

Figure 9: Stars dissected with octagons O_7 (in blue) and lenses (D, E, F).

Figure 9 show Stars $S_7(1,5)$, $S_7(2,4)$ and $S_7(3,3)$ dissected with octagons O_7 (in blue) and lenses $(\mathbf{D},\mathbf{E},\mathbf{F})$. At (i) we have the star $S_7(1,5)$ and by inspection we deduce its area is $A = \mathbf{D} + 2O_7$. At (ii) we have the star $S_7(2,4)$ and we can conclude its area is $\mathbf{E} + 3\mathbf{F} + 2O_7$. Similarly the area of the 14-gon at (iii) is $3\mathbf{D} + \mathbf{E} + 3\mathbf{F} + O_7$. Comparing the areas of the two 14-gons of figures 8 and 9 we can find the area of O_7 in terms of $(\mathbf{E},\mathbf{F},\mathbf{G})$:

$$4D + 3E + 2F = 3D + E + 3F + O_7$$

$$O_7 = D + 2E - F$$
(8)