The following problem involves the number \$a_3\$, which is given by a computer code that represents \$a_3\$ as a computable number.

The code for \$a_3\$ is:

```
"Compute_a_3(n)
Input: natural number n
Output = 1 + (1/2)^n - 72^(-n)
end
```

Is it the case that the number \$a_3\$ is positive?

Thought for 110 seconds >

The computer code Compute_a_3(n) outputs the value $1+\left(\frac{1}{2}\right)^n-72^{-n}$ for any natural number n. This code represents a_3 as a computable number, meaning that it provides an approximation to a_3 with error less than 2^{-n} for each n.

The limit of the output as n approaches infinity is 1, since both $\left(\frac{1}{2}\right)^n$ and 72^{-n} approach 0. Therefore, $a_3=1$.

Since 1 > 0, a_3 is positive.

For any finite n, the output is greater than 1 because $\left(\frac{1}{2}\right)^n>72^{-n}$ (as 72>2, so $\frac{1}{72}<\frac{1}{2}$, and thus $\left(\frac{1}{2}\right)^n-72^{-n}>0$). Hence, all approximations are also positive.

Thus, a_3 is positive.

yes