Química Inorgánica

Abel Doñate

Contents

1	Cuá	ántica	3
	1.1	Problemas a los que se enfrentaban	3
	1.2	Modelo de Bohr	3
	1.3	Postulados de la Mecánica Cuántica	3
	1.4	Partícula en un pozo de potencial. Efecto túnel	3
2	Sist	ema Periódico	4
	2.1	Configuración electrónica	4
	2.2	Números cuánticos	4
		2.2.1 Reglas de Slater	4
	2.3	Propiedades Periódicas	4
		2.3.1 Efecto del par inerte	5
		2.3.2 Relaciones diagonales	5
3	Enl	ace covalente	5
	3.1	Estructuras de Lewis	5
	3.2	Hibridación (Modelo TEV)	5
	3.3	Modelo RPECV	6
	3.4	Teoría de orbitales moleculares. Combinación lineal de los orbitales atómicos	
		(CLOA)	7
	3.5	Propiedades de los enlaces	7
		3.5.1 Electronegatividad	7
		3.5.2 Carácter iónico	7
		3.5.3 Momento dipolar. Polaridad	8
		3.5.4 Energía y distancia del enlace	8
	3.6	Enlaces intermoleculares. Fuerzas de Van der Wals	8
4	Enl	ace metálico	8
	4.1	Direcciones y Planos	8
	4.2	Polimorfismo y alotropía	9
	4.3	Motivo y Red de Bravais	9
	4.4	Principales Empaquetamientos	9
	4.5	Densidades de la estructura	10
	4.6	Características	10
	4.7	Conductividad de calor y eléctrica	1
	4.8		l 1
			l 1

		4.8.2 4.8.3	Aislante Semiconducto												11 11
5	Met 5.1 5.2	Aleacie	aliaciones ones												12 12 12
6	Enla 6.1 6.2 6.3 6.4	Estruc Ciclo o	tura de los con turas modelo de Born-Haber dades del enlac								•				12 12 13 14 14
7	7.1 7.2 7.3 7.4	Solució Factor	dad de la reacción de la veloción de la veloción es que afectan de reacciones	lad para di a la veloci	$rac{ ext{dad}}{ ext{dad}}$.	s órde 	enes	· ·							14 14 15 15
8	Acid 8.1 8.2 8.3 8.4	Neutra													15 16 16 16
9	Rea 9.1 9.2 9.3	Ecuaci Tipos 9.2.1 9.2.2 9.2.3 9.2.4	s Redox dón de Nernst de reacciones r Celda galváni Celda de cono Celda de aireo Determinación mas Digramas de l Digramas de l Digramas de l	redox					 	 		 	 	 	17 17 17 17 17 17 17 18 18 18
10	10.1 10.2 10.3 10.4	Peste o Molécu Momen Funció	e para el exa del Estaño ıla de NH_3 y e nto dipolar de on de probabilio	efecto túne NH_3 y NI dad radial	l F ₃			· ·	 	 		 			19 19 19 19 19

1 Cuántica

1.1 Problemas a los que se enfrentaban

- ullet Teorema de equipartición de la E incorrecta para moléculas poliatómicas
- Existencia de espectros atómicos (H) $\bar{\nu} = R(\frac{1}{2^2} \frac{1}{2^n})$ (Serie de Balmer)
- Radiación del cuerpo negro (Planck)

Surgen teorías como el Efecto Fotoeléctrico $h\nu = h\nu_0 + E_c$, la Hipótesis de De Broglie $\lambda = h/p$ y el Modelo de Rutherford.

1.2 Modelo de Bohr

- 1) e^- ocupa órbitas estacionarias (no emiten E)
- 2) $L = mvr = \lambda \hbar$ cuantizado
- 3) Pueden cambiar de órbita (explica serie de Balmer)

1.3 Postulados de la Mecánica Cuántica

- 1) $\Psi(q_1, \cdots, q_n, t)$ función de onda
- 2) $\hat{H}\Psi = -\frac{\hbar}{i}\frac{\partial\Psi}{\partial t}$ (Schrödinger)
- 3) Normalización $\implies \int_{-\infty}^{\infty} \Psi \Psi^* d\tau 1 = 1$
- 4) Toda propiedad observable tiene asociado un operador, que aplicado a la función da como resultado un número real.
- 5) $= \int_{-\infty}^{\infty} \Psi \hat{p} \Psi^* d\tau$ (Ψ norlmalizado)

1.4 Partícula en un pozo de potencial. Efecto túnel

El potencial es ∞ en I y III y 0 en II. La solución es una onda sinusoidal en II (normalizar e igualar en 0 y l)

Cuando el potencial es finito se da el efecto túnel, ya que existe una pequeña probabilidad de que la partícula se encuentre fuera del pozo.

2 Sistema Periódico

2.1 Configuración electrónica

Escribimos la configuración electrónica como $1s^22s^2\cdots nc^{\alpha}$. Siempre ordenamos por niveles (pero teniendo en cuenta el diagrama de Moeller)

Hay 2 excepciones donde se produce la promoción electrónica:

- Cr: $[Ar] 3d^54s^1$
- Cu: $[Ar] 3d^{10}4s^1$

2.2 Números cuánticos

- \bullet n natural (capa o nivel) N. c. principal
- $l = 0, \dots n-1$ (grupo) N. c. azimutal
- $m = -l, \cdots l$ (tipo de orbital) N. c. magnético
- $s/m_s = 1/2, -1/2$ N. c. de spin

2.2.1 Reglas de Slater

La carga nuclear efectiva viene dada por $z^* = z - \sum \sigma$

Poner configuración en forma $(1s^2)(2s^2)...(ns\ np)(nd\ nf)$

- Si es s, p
 - $\sigma=0.35$ en esa capa ($\sigma=0.31$ si es1s)
 - $\sigma = 0.85$ en la capa inferior
 - $\sigma=1$ en los orbitales a la izquierda
- Si es d, f
 - $\sigma = 0.35$ en ese orbital
 - $\sigma=1$ en los orbitales a la izquierda

La energía de un átomo es $E = E_0 \sum_{i=0}^{\infty} \left(\frac{z^*}{n_i}\right)^2$

2.3 Propiedades Periódicas

- $\bullet\,$ EI (Energía de Ionización). E para formar el catión $\uparrow \to$
- \bullet AE (Afinidad Electrónica). E desprendida al formar un anión $\uparrow \rightarrow$

4

- Radio Atómico (depende de la definición y del compuesto). $\downarrow \leftarrow$
- Caracter metálico ↓←
- Electronegatividad $\uparrow \rightarrow$

2.3.1 Efecto del par inerte

Explica la tendencia de un par de e^- de un orbital s de un nivel externo a no ser utilizado para formar un un compuesto.

$$Al \rightarrow Al^{+3} + 3e^{-} \quad (3s^23p^1)$$

$$In \rightarrow In^+ + e^- \quad (5s^25p^1)$$

2.3.2 Relaciones diagonales

- $Li \leftrightarrow Mg$ forman nitruro, nitratos y carbonatos inestables a T^a alta. Misma facilidad para formar sales hidratadas.
- $Be \leftrightarrow Al$ forman óxidos anfóteros (ácidos/bases). $BCl_2, AlCl_3$ catalizadores en Fiedel Crafts.
- $B \leftrightarrow Si$ forman óxidos de carácter ácido y comportamiento vítreo. Boratos y silicatos parecidos.

3 Enlace covalente

3.1 Estructuras de Lewis

Hasta el segundo periodo se debe seguir la regla del octeto. Moléculas como el Ozono (O_3) tifenen varias formas canónicas

3.2 Hibridación (Modelo TEV)

El número de orbitales híbridos se calcula como $No\ hibridos = No\ enlaces + No\ pares\ libres.$

<u>Híbridos</u>	Tipo de hibridación	Geometría
2	$sp/sd(\sigma)$	lineal
3	$sp^2 (\sigma, \pi)$	trigonal plana/angular
4	$sp^3/sd^3 \ (\sigma,2\pi)$	tetraédrica/piramidal trigonal/angular
5	sp^3d/dsp^3	bipirámide trigonal/silla (balancín)/forma T/lineal
6	sp^3d^2/d^2sp^3	octaédrica/pirámide cuadrangular/planicuadrada

3.3 Modelo RPECV

Tipo de molécula ♦	Forma \$	Disposición electrónica [†] ♦	Angulación ♦	Geometría [‡] ♦	Ejemplos \$
AX ₁ E _n	Molécula diatómica		= 180°		HF, O ₂ , CO
AX ₂ E ₀	Lineal		= 180°		BeCl ₂ , HgCl ₂ , CO ₂ , PbCl ₂
AX ₂ E ₁	Angular		≈ 120°	•	NO ₂ ⁻ , SO ₂ , O ₃
AX ₂ E ₂	Angular forma "V"		≈ 104,45°		H ₂ O, OF ₂ , SCl ₂
AX ₂ E ₃	Lineal	-	= 180°		XeF ₂ , I ₃ ⁻
AX ₃ E ₀	Trigonal plana	3	= 120°		BF ₃ , CO ₃ ²⁻ , NO ₃ ⁻ , SO ₃
AX ₃ E ₁	Trigonal Piramidal	*	≈107,3°		NH ₃ , PCl ₃
AX ₃ E ₂	Forma de T	3	= 90°,180°	-	CIF ₃ , BrF ₃
AX ₄ E ₀	Tetraédrica	3	≈ 109,5°	*	CH ₄ , PO ₄ ³⁻ , SO ₄ ²⁻ , ClO ₄ ⁻
AX ₄ E ₁	Balancín	-	= 90°, 120°, 180°	-	SF ₄
AX ₄ E ₂	Cuadrada plana		= 90°, 180°		XeF ₄
AX ₅ E ₀	Bipirámide trigonal		= 90°, 120°, 180°		PCI ₅
AX ₅ E ₁	Pirámide cuadrangular	3	≈ 90°, 180°		CIF ₅ , BrF ₅
AX ₆ E ₀	Octaédrica	3	= 90°, 180°		SF ₆

3.4 Teoría de orbitales moleculares. Combinación lineal de los orbitales atómicos (CLOA)

Se supone que $\psi_j = \sum c_{ij}\phi_i$ es una combinación lineal de los orbitales simples ϕ_i . Los orbitales siguen las siguientes reglas:

- OM (Orbitales Moleculares) = OA (Orbitales Atómicos)
- OM enlazantes y OM antienlazantes (*)
- Principio de Aufbau
- Principio de exclusión de Pauli
- Regla de Hund
- Especies más estables tienen más orbitales enlazantes
- Hasta el N se llenan primero los π_x, π_y , después del O σ_z

El orden del enlace (OE) será:

$$OE$$
 (Orden del Enlace) = $\frac{OM - OM^*}{2}$

Cuanto mayor sea el OE, más estable será la molécula

3.5 Propiedades de los enlaces

3.5.1 Electronegatividad

Existe la escala de Pauling, calculada de la siguiente manera:

$$X_A - X_B = 0.208\sqrt{\Delta_{A-B}}$$
 donde $\Delta_{A-B} = D_{A-B} - \frac{1}{2}(D_{A-A} + D_{B-B})$

Se le asigna a X_F (el de mayor electronegatividad) el valor arbitrario de 4.

3.5.2 Carácter iónico

Se asigna un porcentaje de carácter iónico a cada elemento (fórmula en la hoja). También se puede calcular con la siguiente fórmula:

$$\%ionico = \frac{\mu_{exp}}{\mu_{teo}} * 100$$

3.5.3 Momento dipolar. Polaridad

A cada enlace se re asocia un momento dipolar $\vec{\mu_i}$ que apunta hacia el átomo más electronegativo.

Al sumar los momentos dipolares $\begin{cases} \sum \vec{\mu_i} = \vec{0} & \Longrightarrow \quad apolar \\ \sum \vec{\mu_i} \neq \vec{0} & \Longrightarrow \quad polar \end{cases}$

Podemos calcular el momento dipolar $\mu = dq$, donde d es la distancia entre los átomos.

3.5.4 Energía y distancia del enlace

Distancia de mínima energía favorecerá la formación del enlace.

Existen tablas ponderadas de distancia y de energía de los enlaces.

3.6 Enlaces intermoleculares. Fuerzas de Van der Wals

- Dipolo permanente Dipolo permanente.
 Se forman entre moléculas polares. Son las más fuertes si M es pequeña.
 Un caso particular son los puentes de Hidrógeno, que se forman cuando existe un enlace intermolecular entre H y N, O, F.
- Dipolo permanente Dipolo inducido. Se forman entre moléculas polares y apolares.
- Dipolo instantáneo Dipolo instantáneo o Fuerzas de dispersión de London. Se forman entre moléculas apolares. Aumenta la fuerza con M.

Las consecuencias de estas fuerzas son las siguientes:

- Variación regular en las propiedades físicas (T_f, T_e) .
- Solubilidad en disolventes de su misma polaridad.
- Formación de micelas o bicapas.

4 Enlace metálico

4.1 Direcciones y Planos

La notación para direcciones es $[\alpha \ \beta \ \gamma]$, donde las cordenadas $[1 \ 0 \ 0] = \vec{a}...$, etc y α, β, γ son enteros.

Para los planos se utiliza la notación de Miller ($\alpha \beta \gamma$), donde estos son los inversos de los cortes del plano con los respectivos ejes de coordenadas.

8

4.2 Polimorfismo y alotropía

El **Polimorfismo** se dacuando una sustancia presenta diferentes estructuras cristalinas en función de T, P. Cada estructura es una **Forma Alotrópica**

4.3 Motivo y Red de Bravais

El motivo es el conjunto de átomos de un cristal que se asocia a cada nodo.

$$Motivo = \frac{atomos}{P.\ reticulares}\ (atomos\ de\ X)$$

4.4 Principales Empaquetamientos

Los principares empaquetamientos son los siguientes:

Tipo Características Imagen BCC
$$FE=0.68$$
 , $IC=8$ y $\sqrt{3}a=4R$ FCC $FE=0.74$, $IC=12$ y $\sqrt{2}a=4R$ HCP $FE=0.74$, $IC=12$ y $a=2R$

No obstante estas estructuras presentan huecos:

- BCC Octaedricos las caras y mitad de la arista. 6/celda. r = 0.155 Tetraédricos 4 en cada cara. 12/celda. r = 0.291R
- FCC **Octaedricos** en el centro y mitad de la arista. 4/celda. r = 0.414R **Tetraédricos** en un cuarto de diagonal. 8/celda. r = 0.225R
- HCP Octaedricos 3 en cada plano paralelo a la base. 6/prisma. r = 0.414R Tetraédricos en aristas e interior. 12/prisma. r = 0.225R

4.5 Densidades de la estructura

La densidad cristalina viene dada por la fórmula

$$\rho = \frac{ZM}{N_A V}$$

La densidad reticular lineal dado una cierta dirección [a, b, c]

$$\rho_{[a,b,c]} = \frac{\mathbf{N}^{\mathbf{Q}} \text{ átomos en la dirección}}{\text{longitud de la línea}}$$

La densidad reticular planar dado un cierto plano $(a \ b \ c)$

$$\rho_{(a\ b\ c)} = \frac{N^0 \text{ átomos en el plano}}{\text{área del plano}}$$

4.6 Características

- Sólidos a T ambiente (-Hg)
- EI baja
- EN < 2
- Pocos e^- en el último nivel
- ρ altas
- Enlace fuerte
- Dúctiles y maleables
- Deformación elástica y plástica
- Brillo metálico y reflectividad

4.7 Conductividad de calor y eléctrica

R=Resistencia, $\rho=$ Resistividad, $\sigma=$ Conductividad, $J=\frac{I}{A}, n=e^-$ por unidad de volumen, $\mu=$ movilidad de e^- .

$$\sigma = \frac{1}{\rho}$$
 $R = \rho \frac{l}{A}$ $J = E\sigma = nqv \implies \sigma = nq\mu$

Además ρ varía en función de la temperatura de la siguiente manera:

$$\rho = \rho_0 (1 + \alpha T)$$

donde ρ_0 es la resisrividad a $T = 0^0 C$

4.8 Teoría de bandas

Es la aplicación de la Teoría de Orbitales Moleculares a los metales.

Los e^- de la capa de valencia se comparten, y sus orbitales moleculares tienen energías tan próximas que se forma una banda.

Las bandas se dividen en:

- Banda de valencia formada por los orbitales atómicos de valencia.
- Banda de conduccioón formada por los orbitales atómicos vacíos.

Estas bandas poeden solaparse energéticamente.

4.8.1 Conductor

En los conductores la banda de valencia está semillena o llena, pero se encuentra solapada con la banda de conducción.

Por esta razón los e^- tienen espacio y se conduce la electricidad.

4.8.2 Aislante

En los aislantes existe una separación importante entre la banda de valencia y la de conducción.

Por esta razón no conducen la electricidad.

4.8.3 Semiconductores

En los semiconductores la diferencia de energía entre las bandas $E_g \leq 1 eV$.

Existen dos tipos de semiconductores:

Los intrínsecos estan formados por un solo átomo

Los extrínsecos se consiguen mediante un proceso de dopaje

- Tipo P: se emplean elementos con 3 e⁻ de valrncia (B, In, Ga)
- Tipo N: se emplean elemontos con 5 e^- de valencia (P, As, Sb)

5 Metales y aliaciones

5.1 Aleaciones

Aleación = Disolución sólida de dos o más elementos, uno de los cuales es un metal.

Distinguimos los siguientes tipos:

• Sustitutivos (Ag, Au)

El minoritaro se coloca en las posiciones del mayoritario. Para que tenga solubilidad total ha de cumplir las **Reglas de Hume-Rothery**

- 1) Que todos los metales tengan la misma estructura cuando son puros.
- 2) Variación de radios < 15%.
- 3) EN similar y misma valencia.

• Intersticial (Acero Fe, C)

Átomos pequeños se situan en los huecos de la estructura cristalina de los grandes.

• Intermetálicos (TiAl, MgB₂)

Formado por al menos un metal. Estructura diferente de los puros.

5.2 Diagramas de fase

(a) Solubilidad total (Cu - Ni)

(b) Solubilidad parcial (Cu - Ag)

6 Enlace iónico

6.1 Estructura de los compuestos iónicos

Tendremos un IC diferente para el anión y el catión. $R_a > R_c$. Reglas de Pauling:

- La distacia catión anión = $R_a + R_c$
- Cada ión tiende a rodearse del mayor número de iones contrarios

 R_c/R_a indica el IC (Mirar tabla de IC en el formulario)

Diagrama Hierro-Carbono

- (a) Compuesto intersticial (Fe C)
- (b) Compuesto intermetálico (Cu Zn)

6.2 Estructuras modelo

AX - IC = 4 (ZnS)

Estructura de los aniones FCC. Los cationes se colocan en 4 huecos (tetraédricos). Tangente en la diagonal $\sqrt{3}a = 4R^- + 4R^+$

- IC = 6 (NaCl)

Estructura de los aniones FCC. Los cationes se colocan en los huecos (mitad de las aristas y centro).

Tangente en la arista $a = 2R^- + 2R^+$

- IC = 8 (CsCl)

Estructura de los aniones cúbica primitiva. El catión se coloca en el hueco del centro.

Tangente en la diagonal $\sqrt{3}a = 2R^- + 2R^+$

 $\mathbf{A_mX_p} \quad - \ \mathbf{IC} = \mathbf{4(cation)} \ (\mathbf{Na_2O}) \ (\mathbf{Antifluorita})$

Estructura de los aniones FCC. Los cationes se colocan en los huecos (tetraédricos). Tangente en la diagonal $\sqrt{3}a = 4R^- + 4R^+$

 $- IC = 8(cation) (CaF_2) (Fluorita)$

Estructura de los cationes FCC. Los aniones se colocan en los huecos (tetraédricos). Tangente en la diagonal $\sqrt{3}a=4R^-+4R^+$

A_mB_nX_p – Perovskita CaTiO₃

Estructura de Ca cúbica primitiva. O en las caras. Ti en el centro.

Estructura de Ti cúbica primitiva. O en las aristas. Ca en el centro.

6.3 Ciclo de Born-Haber

Otro método para conseguir la Enegía Reticular (esta vez de manera teórica) es a traves de la ecuación de la ecuación de **Born-Landé**

$$U = -\frac{AN_A e^2 z_A z_C}{4\pi\varepsilon_0 d_{AC}} \left(1 - \frac{1}{n} \right)$$

6.4 Propiedades del enlace iónico

- Alto punto de fusión
- Duros y frágiles
- Aislantes, pero conductores en disolución con agua
- Solubles en agua $(\Delta H_{disolucion} = -U + \Delta H_{vaporizacion} + \Delta H_{solvatacion})$
- Polarización. Reglas de Fajans
 - 1) + carga \acute{o} radio \implies cati \acute{o} n + polarizado
 - 2) + carga \acute{o} + radio \implies ani \acute{o} n + polarizado
 - 3) Sin configuración de gas noble \implies + polarización

7 Cinética

7.1 Velocidad de la reacción

$$aA + bB \rightarrow cC + dD$$

$$r = -\frac{1}{a}\frac{d[A]}{dt} = \dots = \frac{1}{d}\frac{d[D]}{dt} \qquad r = k[A]^{\alpha}[B]^{\beta} \qquad orden = \alpha + \beta$$

El tiempo de vida media es el tiempo que tarda en reducirse a la mitad $t_{1/2}: [A] \to [A]/2$

7.2 Solución de la velocidad para distintos órdenes

Orden 0

$$[A] = [A]_0 - akt$$

Orden 1

$$ln[A] = ln[A]_0 - akt$$

Orden 2

Si a = b y $[A]_0 = [B]_0$

$$\frac{1}{[A]} = \frac{1}{[A]_0} + akt$$

Si no se cumple alguna de las anteriores

$$\frac{1}{a[B]_0 - b[A]_0} ln\left(\frac{[A]_0[B]}{[B]_0[A]}\right) = kt$$

7.3 Factores que afectan a la velocidad

1) Temperatura.

Ecuación de Arrhenius
$$k = Ae^{\frac{-E_a}{RT}}$$

- 2) Concentración de los reactivos. Numero de colisiones.
- 3) Naturaleza de los reactivos.
- 4) **Grado de división**. En gas o líquido hay más colisiones. En sólido depende de la superfície de contacto.
- 5) Catalizadores.

7.4 Tipos de reacciones

Reacciones elementales

Suceden en una sola etapa. La molecularidad es la suma de los coeficientes de los reactivos.

Reacciones complejas Se llevan a cabo en diferentes etapas. Aparecen sustancias que no son reactivos ni productos llamadas intermedios de reacción. La velocidad depende de la etapa lenta.

8 Acido Base

8.1 Definiciones

• Arrhenius

Ácido = especie que cede H^+ cuando se disuelve en agua Base = especie que cede OH^- cuando se disuelve en agua

• Bronsted Lowry

Ácido = especie que es capaz de ceder H^+ cuando se disuelve en in disolvente Base = especie que es capaz de ceder OH^- cuando se disuelve en un disolvente

• Lewis

Ácido = compuesto capaz de recibir e^- Base = compuesto capaz de ceder e^-

En cada reacción hay un elemento y su ácido/base conjugada

- HCN es el ácido conjugado de CN^-
- CN^- es la base conjugada de HCN

La constante de acidez K_a y el pH en la reacción $HCN \rightarrow CN^- + H^+$

$$K_a = \frac{[CN^-][H^+]}{[HCN]}$$
 $K_w = [H^+][OH^-] = 10^{-14}$ $pH = -log[H^+]$

8.2 Planteamiento de un ejercicio

Paso 1

Escribir todas las reacciones involucradas (incluida la hidrólisis del agua)

Paso 2

Escribir los equilibrios $(K_a \ y \ K_w)$ y las los balances de masa y carga (bm, bc)

Paso 3

Resolver el sistema o usar el diagrama logarítmico

- 2 reacciones: ácido/base fuerte (HX o XOH) y agua \Rightarrow resolver sistema
- 2 reacciones: ácido/base débil y agua \Rightarrow gráfica logarítmica, despreciar $[OH^-]/[H^+]$ y resolver sistema
- Más de 2 reacciones: sares se disocian completamente (si no nos dan K_s). Despreciar $[OH^-]$ y $[H^+]$ en bc. Resolver sistema y razonar con diagrama logarítmico.

8.3 Neutralización

 $Acido + Base \longrightarrow Sal + H_2O$

Se utiliza para encontrar el punto de equivalencia en en una disolución.

8.4 Disoluciones tampón

Formados por ácido debil y su base conjugada $\Rightarrow pH$ constante al adicionar ácido/base.

Para el cálculo debemos realizar el equilibrio de nuevo. Normalmente nos darán una sal (se disocia completamente), y debemos añadir en equilibrio su correspondiente ácido/base, que se disociará con la K_a/K_b

9 Reacciones Redox

Lo primero que hay que hacer es ajustar las semirreacciones de oxidación (aumenta la valencia) y reducción (disminuye la valencia).

9.1 Ecuación de Nernst

Tenemos una reacción donde la \mathbf{r} educción se realiza en el \mathbf{c} átodo y la \mathbf{o} xidación en el $\mathbf{\acute{a}}$ nodo. La reacción se dará si

$$\varepsilon = E_{catodo} - E_{anodo} > 0$$

Ecuación de Nernst. Se utiliza cuando la concenntración molar es diferente de 1M

$$\varepsilon = \varepsilon^0 - \frac{0.059}{n} logQ$$

9.2 Tipos de reacciones redox

9.2.1 Celda galvánica

Anodo
$$Fe \longrightarrow Fe^{2+} + 2e^{-}$$
 $E^{0} = -0,44V$
Catodo $Cu^{2+} + 2e^{-} \longrightarrow Cu$ $E^{0} = 0,34V$

9.2.2 Celda de concentración

Anodo
$$Cu \longrightarrow Cu^{2+}(0.1M) + 2e^{-}$$

 $Catodo \quad Cu^{2+}(1M) + 2e^{-} \longrightarrow Cu$

Aplicando la ecuación de Nernst ($\varepsilon^0 = 0$ porque la especie que se reduce es la misma que se oxida)

$$\varepsilon = -\frac{0.059}{2}logQ = -\frac{0.059}{2}log\frac{0.1}{1} = 0.029V$$

9.2.3 Celda de aireo diferencial

Anodo
$$2H_2O \longrightarrow O_2(0.1atm) + 4H^+ + 4e^-$$

Catodo $O_2(1atm) + 4H^+ + 4e^- \longrightarrow 2H_2O$

Aplicando la ecuación de Nernst ($\varepsilon^0=0$ porque la especie que se reduce es la misma que se oxida)

$$\varepsilon = -\frac{0.059}{4}logQ = -\frac{0.059}{4}log\frac{0.1 \cdot [H^+]^4}{1 \cdot [H^+]^4} = 0.015V$$

9.2.4 Determinación del pH

Se basa en el hecho de que la reacción:

$$H^+ \longrightarrow H \qquad \varepsilon = -\frac{0.059}{1} log \frac{1}{[H^+]} = -0.059 pH$$

tiene un potencial que podemos medir y calcular así el pH.

9.3 Diagramas

9.3.1 Digramas de Latimer

Indican el potencial estandar de reducción cuando el elemento se reduce:

$$ClO_4^- \xrightarrow[+1.20V]{} ClO_3^- \xrightarrow[+1.18V]{} +HClO_2 \xrightarrow[+1.65V]{} HClO \xrightarrow[+1.67V]{} Cl_2 \xrightarrow[+1.36V]{} Cl^-$$

Para calcular el potencial estándar se utiliza

$$E^{\circ}_{+7\to+3} = \frac{n_{+7\to+5}E^{\circ}_{+7\to+5} + n_{+5\to+3}E^{\circ}_{+5\to+3}}{n_{+7\to+5} + n_{+5\to+3}} = \frac{2 \times 1.20 + 2 \times 1.18}{2 + 2} = 1.19V$$

9.3.2 Digramas de Frost

Se representa el Potencial estándar multiplicado por el número de oxidación en función del estado de oxidación.

Hay **desproporción** si una especie está por encima de la recta que une a sus vecinas

Hay **comproporción** si una especie está por debajo de la recta que une a sus vecinas

La más estable es la más baja de todas en el diagrama

9.3.3 Digramas de Pourbaix

En un diagrama de pourbaix tenemos 3 tipos de rectas que separan las zonas:

Horizontales

Cambios eléctricos. Debemos plantear la ecuación de Nernst y ver cual es el potencial al que se da la corrosión ($[M^+] = 10^{-6}M$).

Verticales

Cambios ácido-base. Debemos realizar el equilibrio y encontrar el pH en el que se da la reacción.

Transversales

Cambios electroquímicos. Planteamos la ecuación de Nerns y ponemos el potencial en función del pH.

Tenemos también otras dos rectas discontinuas:

Agua desaireada

$$2H^+ + 2e^- \longrightarrow H_2 \quad \Rightarrow \quad E = -0.059pH$$

Agua aireada

$$4H^+O_2 + 4e^- \longrightarrow 2H_2O \quad \Rightarrow \quad E = E^0(O_2/H_2O) - 0.059pH = 1.23 - 0.059pH$$

10 Importante para el examen

Esta es una recopilación de cosas que le gusta poner a Iñaki en el examen y que ha dicho de pasada en clase. Son conceptos recurrentes que han salido en examenes anteriores.

10.1 Peste del Estaño

El Sn tiene dos formas alotrópicas:

- Estaño blanco (β). Estructura tetragonal y se encuentra a temperatura ambiente.
- Estaño gris (α). Estructura cúbica y se encuentra a $-30^{\circ}C$.

Cuenta la leyenda que esta fue una de las causas de la derrota de las tropas napoleónicas en la guerra contra la Rusia Zarista de 1812. Debido a las bajas temperaturas, los soldados vestian botones de estaño que sufrieron esta transformación y se desintegraron, imposibilitándoles abrocharse la ropa.

10.2 Molécula de NH_3 y efecto túnel

Dada la geometría de la molécula de NH_3 , tenemos un par no enlazante del N, por lo que la geometría es trigonal plana.

Debido al efécto túnel este par puede pasar a través de la molécula e invertir la geometría (el par pasa a estar de arriba a abajo).

10.3 Momento dipolar de NH_3 y NF_3

Realizamos las estructuras de Lewis de las moléculas (ambas son trigonal plana). A priori nos podría parecer que al ser similares, $\mu(NH_3) < \mu(NF_3)$, ya que el F es más electronegativo que el H. No obstante, en la molécula de NF_3 , el vector del momento dipolar del par no elnazante y los del enlace NF se anulan parcialmente dado que F es más electronegativo que N.

Por todo esto tenemos que $\mu(NH_3) > \mu(NF_3)$.

Nota: esto también sucede con otras moléculas como H_2O y OF_2 .

10.4 Función de probabilidad radial

Si nos dan una función de onda Ψ en coordenadas polares podemos separarla en términos radiales y angulares:

$$\Psi = re^{-\frac{r}{2a_0}}sin\theta cos\phi \Rightarrow \begin{cases} R(r) = re^{-\frac{r}{2a_0}} \\ Y(\theta, \phi) = sin\theta cos\phi \end{cases}$$

Ahora definimos la función de densidad de probabilidad radial como

$$P(r) = r^2 R(r)^2$$

Buscamos el máximo de la función P(r), y en ese punto tendremos la probabilidad máxima de encontrar al electrón.

10.5 Promoción electrónica

Cuando se realiza la configuración electrónica tenemos dos excepciones donde se produce la promoción electrónica:

 $Cr: 1s^22s^22p^63s^23p^63d^54s^1$

Vemos como en lugar de llenar el orbital 4s, el último electrón se coloca semiocupando la 3d.

 $Cu:\ 1s^22s^22p^63s^23p^63d^{10}4s^1$

Vemos como en lugar de llenar el orbital 4s, el último electrón se coloca llenando la 3d.