Electronic Design Automation CSE 215

Lecture 17 High-Level Design – Verification

Mohamed Dessouky

Integrated Circuits Laboratory Ain Shams University Cairo, Egypt

Mohamed.Dessouky@eng.asu.edu.eg

High-Level Design - Verification

HDL Verification

- · Check that the behavioral RTL do really "fulfill" user's requirements.
- Methodology depends on the design complexity:
 - I. HDL simulator/Verification Environment
 - II. FPGA Prototyping
 - III. Emulation

M. Dessouky

(I) Logic Simulation

- ModelSim: Industry #1 standard
- Student version download

M. Dessouky

Analog Simulation

- Analog simulators must solve the entire analog system matrix (KVL & KCL) at every time step.
- Each element in the analog design can have an instantaneous influence on any other element in the matrix.
- Relies on feedback paths. There is no obvious signal flow in any direction.
- · Time is continuous rather than discrete.
- Behavior heavily depends on circuit loading.

M. Dessouky

Event-driven Simulation

- Typically, in a digital system, around 50% of the nets would keep their value unchanged on any given clock cycle.
- · Event-driven simulation is designed for digital circuits:
 - small number of signal values;
 - relatively sparse activity over time.
- Event-driven simulators try to update only those signals which change in order to reduce CPU time requirements.
- · An event is a change in a signal value.

M. Dessouky

High-Level Design - Verification

Events

- An event is a <u>change</u> in a net's value.
- An event has two components:
 - value;
 - time.
- Propagate events through simulation.
- · Only when nets change value.
- Don't simulate a block until its inputs change.
- If an input change doesn't cause an output change, no event is propagated.

M. Dessouky

Event Propagation

- Simulator traces structure of circuits to determine causality of events event at input of one gate may cause new event at gate's output.
- Events at primary inputs:
 - A changes at t=1;
 - B changes at t=2.
- Immediate causality:
 - C changes after 1ns delay at t=3.
- Event propagation:
 - D changes after 1ns delay at t=4.

M. Dessouky High-Level Design - Verification

Timewheel

- A timewheel is a queue of events.
- The timewheel is a data structure in the simulator that efficiently determines the order of events processed.
- Events are placed on the timewheel in time order.
- Events are taken out of the head of the timewheel to process them in order.

M. Dessouky High-Level Design - Verification

Scheduler

- 1. Removes events from the timewheel for a given time
- 2. Propagates values
- 3. Executes models
- 4. Creates new events and store at appropriate order in the timewheel according to model delays and fanouts (loading)
- 5. Go to (1)

M. Dessouky

High-Level Design - Verification

HDL Verification

- Check that the behavioral RTL do really "fulfill" user's requirements.
- Methodology depends on the design complexity:
 - I. HDL simulator/Verification Environment
 - II. FPGA Prototyping
 - III. Emulation

FPGA development board

M. Dessouky

Field-Programmable Gate Arrays-FPGAs Basic idea: two-dimensional array of logic blocks and flip-flops with a means for the user to configure (program): - The function of each block (CLB: Configurable Logic Block). - The interconnections between the logic blocks (PSM: Programmable Switch Matrices), Technical viewpoint: - For hardware/system-designers, just like ASICs, only better! - Fabricate a new chip every few hours. Re-configurability In-field Re-programmability At the expense of Performance (speed), Area and Power. - Versus ASICs: delay 3-4X, area 40X, and power 12X!!

High-Level Design - Verification

M. Dessouky

FPGA Prototyping

- Simulation speed and modeling accuracy limitations hinder hardware verification.
- FPGA prototyping is a method to prototype SoC and ASIC design on FPGA for hardware verification.
- Load design onto FPGA device (cable connects PC to development board)
- Optional "logic scope" on FPGA to access internal points
- Software development:
 - Due to time constrains, many projects cannot wait until the silicon is back from the foundry to start on software tests.
 - FPGA prototyping allows for much more time in area of software development and testing at the software-hardware integration stage.

Man de la constant de

FPGA development board

M. Dessouky

HDL Verification

- · Check that the behavioral RTL do really "fulfill" user's requirements.
- · Methodology depends on the design complexity:
 - I. HDL simulator/Verification Environment
 - II. FPGA Prototyping
 - III. Emulation

M. Dessouky

High-Level Design - Verification

(III) Hardware Emulation

- A special hardware of many FPGAs and dedicated software for real-time verification.
- Testbench runs on the computer, while the DUT runs on the FPGA.
- Imitating the behavior of a system under design with another piece of hardware.
- The emulator is fast enough to be plugged into a working target system in place of a yet-to-bebuilt chip, so the whole system can be debugged with live data.
- Example: http://www.mentor.com/products/f v/emulation-systems/

M. Dessouky

Summary

Logic simulation:

- Easy, accurate, flexible, and low cost.
- However, not fast enough for large designs.
- Too slow to run application software against the hardware design.

FPGA-based prototypes:

- Fast and inexpensive.
- Long time required to implement a large design.
- Little debugging capability.

Emulation:

- Improves greatly on FPGA prototyping's long time.
- Provides a comprehensive, efficient debugging capability.
- Test application software + hardware debug environment.
- At the expense of running speed and cost compared to FPGA.

M. Dessouky	High-Level Design - Verification

High-Level Design - Verification

References

- Franck Wajsbürt and Jean-Paul Chaput, "Outils de CAO pour VLSI Flot de conception VLSI Alliance", University of Paris VI.
- Wayne Wolf, "Modern VLSI Design", Third Edition, PEARSON, Prentice Hall

M. Dessouky