Линейный классификатор и логистическая регрессия

Цели занятия

- Рассмотреть задачу классификации
- Рассмотреть линейный классификатор
- Рассмотреть варианты линейного классификатора. Логистическую регрессию и SVM.

О чем поговорим и что сделаем

План занятия

1 Задача классификации

Логистическая регрессия: практическое задание

3 SVM

4

Практика

Классификация

Классификации – задача *предсказания ответа* из *конечного* множества вариантов.

Линейный классификатор - решает задачу разделения признакового пространства на две части, в каждом из которых находиться свой класс.

Отступ - расстояние от разделяющей гиперповерхности до объекта

$$M(\overrightarrow{x_i}) = y_i \vec{w}^T \overrightarrow{x_i}$$

Отступ можно понимать как «степень погруженности» объекта в свой класс.

https://habr.com/ru/company/ods/blog/323890/ https://dyakonov.org/логистическая-функция-ошибки/#more-6139

Функция потерь L как функция от отступа M

$$L = f(M)$$

Логистическая регрессия

Логистическая регрессия

Логистическая регрессия - линейный классификатор, позволяющий *оценивать* вероятности принадлежности объектов классам.

$$L = a_0 + a_1 X_1 + a_2 X_2 + ... + a_n X_n$$

$$p = \frac{1}{1 + e^{-L}}$$

https://habr.com/ru/post/485872/

https://habr.com/ru/company/ods/blog/323890/

https://dyakonov.org/логистическая-функция-ошибки/#more-6139

Функция потерь

Модель предсказывает вероятность классов {0, +1}

$$p(y_i | x_i, w) = a_i^{y_i} (1 - a_i)^{1 - y_i}$$

Максимизировать правдоподобие

$$p(y|X,w) = \prod_{i} p(y_i|x_i,w)$$

Функция потерь

$$\mathcal{L}_{log}(X, \vec{y}, \vec{w}) = \sum_{i} (-y_i \log a_i - (1 - y_i) \log(1 - a_i))$$

Функция потерь

Модель предсказывает вероятность классов {-1, +1}

$$P\left(y=y_i\mid \overrightarrow{x_i}, \overrightarrow{w}
ight) = \sigma(y_i \overrightarrow{w}^T \overrightarrow{x_i})$$

Максимизироват ь правдоподобие

$$egin{aligned} P\left(ec{y}\mid X,ec{w}
ight) &= \prod_{i=1}^{\ell} P\left(y = y_i \mid \overrightarrow{x_i}, ec{w}
ight) \ \log P\left(ec{y}\mid X, ec{w}
ight) &= -\sum_{i=1}^{\ell} \log(1 + \exp^{-y_i ec{w}^T \overrightarrow{x_i}}) \end{aligned}$$

Функция потерь

$$\mathcal{L}_{log}(X, ec{y}, ec{w}) = \sum_{i=1}^{\ell} \log(1 + \exp^{-y_i ec{w}^T ec{x_i}})$$

SVM

Множество гиперплоскостей

Множество решений для *a,b,c.*

SVM находит оптимальную разделяющую поверхность

Максимальный зазор

- w нормаль к разделяющей плоскости
- x_i sample
- y_i: класс sample i {+1, -1}
 (важно, не {0, 1})
- Классификатор: $f(x_i) = sign(\mathbf{w}^T \mathbf{x} + b)$
- Зазор для точки х $r = y \frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|}$
- Зазор всего датасета минимум зазора для всех точек

Формула

Итого получаем задачу оптимизации:

Найти **w** и *b* такие что

максимально; и для всех $\{(\mathbf{X}_{i}, y_{i})\}$

 $\mathbf{w}^{\mathsf{T}}\mathbf{x_{i}} + b \ge 1$ если $y_{i}=1$; $\mathbf{w}^{\mathsf{T}}\mathbf{x_{i}} + b \le -1$ если $y_{i}=-1$

Перепишем в более понятном виде:

Найти \mathbf{w} и b такие что

 $\Phi(\mathbf{w}) = \mathbf{0.5} \, \mathbf{w}^\mathsf{T} \mathbf{w}$ максимально

И для всех $\{(\mathbf{X_i}, y_i)\}$: $y_i(\mathbf{w^Tx_i} + b) \ge 1$

Non-linear SVMs

Линейно разделимые датасеты хорошо классифицируются

Но что делать, если они не линейно разделимы?

Можно попробовать отобразить данные в прво более высокой размерности

The «Kernel Trick»

- SVM зависит от скалярного произведения $K(x_i, x_j) = x_i^T x_j$
- Если каждая точка отображается в пр-во более высокой размерности при помощи Φ: x → φ(x), тогда скалярное произведение становится:
- $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$
- Функция ядра это функция, соответствующая скалярному произведению в пр-ве более высокой размерности

Kernels

• Полиномиальное

$$k(\mathbf{x},\mathbf{x}')=(\mathbf{x}\cdot\mathbf{x}')^d$$

 Полиномиальное со смещением

$$k(\mathbf{x},\mathbf{x}')=(\mathbf{x}\cdot\mathbf{x}'+1)^d$$

Kernels

Радиальная базисная функция

$$k(\mathbf{x},\mathbf{x}') = \exp(-\gamma \|\mathbf{x}-\mathbf{x}'\|^2)$$
, для $\gamma>0$

Радиальная базисная функция Гаусса

$$k(\mathbf{x},\mathbf{x}') = \exp\left(-rac{\|\mathbf{x}-\mathbf{x}'\|^2}{2\sigma^2}
ight)$$

Практика

Что мы сегодня узнали

Итоги занятия

- Вспомнили основы теории вероятностей
- Изучили линейные модели и требования к ним на основе функции правдоподобия
- Реализовали логистическую регрессию
- Изучили алгоритм градиентного спуска и потренировались в его реализации

Полезные материалы

Статья о линейных моделях в ODS https://habrahabr.ru/company/ods/blog/323890/

Курс «Основы статистики» на Stepik.org https://stepik.org/course/Основы-статистики-76

Спасибо за внимание!

