- 16. Wyznaczyć dziedzinę funkcji $f(x) = \sqrt{\log(3^x 2^x + 1)}$.
- 17. Trzy razy rzucamy dwiema kostkami do gry. Jakie jest prawdopodobieństwo tego, że co najmniej raz suma oczek będzie większa od 9?
- 18. Obliczyć granicę $\lim_{x\to 0} \log_2 \left(\frac{x^2}{1-\cos 4x}\right)$.
- 19. Niech f(m) oznacza liczbę pierwiastków równania $|4x^2-4x-3|=m$. Narysować wykres funkcji f(m).
- 20. Na prostej y-x-1=0 znaleźć punkt A taki, że pole trójkąta o wierzchołkach w punktach A, B(4,-1) i C(4,3) jest równe 2.
- 21. Obliczyć kat między wektorami \vec{a} i \vec{b} , jeśli wiadomo, że wektory $\vec{u} = -\vec{a} + 4\vec{b}$ i $\vec{v} = 3\vec{a} + 2\vec{b}$ są prostopadłe i $|\vec{a}| = |\vec{b}| = 1$.
- 22. Uzasadnić, że prosta 4x+2y-3=0 jest równoległa do prostej $\begin{cases} x=-t+1\\ y=2t-3 \end{cases}.$ Obliczyć odległość między tymi prostymi.
- 23. Zbadać monotoniczność funkcji $f(x) = x^3 3x^2 + 4x + \cos x$.
- 24. W trapez równoramienny o polu S wpisano czworokąt tak, że jego wierzchołki są środkami boków trapezu. Jaki to czworokąt? Obliczyć jego pole.
- 25. Niech A i B będą zdarzeniami losowymi takimi, że P(A)=0,7 i P(B)=0,9. Wykazać, że $P(A|B)\geqslant \frac{2}{3}$.
- 26. Obliczyć granice $\lim_{x \to +\infty} (x \sqrt{x^2 x + 1})$ oraz $\lim_{x \to -\infty} (x \sqrt{x^2 x + 1})$.
- 27. Rozwiązać równanie $1 + \frac{1}{2\sin x} + \frac{1}{4\sin^2 x} + \dots = \frac{2}{\sin x}$.
- 28. Wyznaczyć największą i najmniejszą wartość funkcji $f(x) = \frac{1}{\sin x + \cos x}$ w przedziałe $\langle 0; \frac{\pi}{2} \rangle$.
- 29. Podać definicję ciągu ograniczonego. Następnie wykazać, że ciąg

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

jest ograniczony.

30. Podać i udowodnić warunek konieczny istnienia maksimum lokalnego funkcji różniczkowalnej.