Sprawozdanie nr 3

Układy Elektroniczne – Laboratoria

Temat:

A-2. Filtry bierne + A-4. Filtry aktywne

WFiIS AGH

16.05.2021

Łukasz Wajda

1. Cel ćwiczenia

Celem ćwiczenia jest zbadanie charakterystyk i odpowiedzi impulsowych filtrów pracujących w różnych konfiguracjach układowych oraz zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracyjne oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne amplitudowych charakterystyk częstotliwościowych oraz obserwacja odpowiedzi układów RC na sygnał napięciowego skoku jednostkowego.

2. Przebieg ćwiczenia

- A. Badanie właściwości filtru dolnoprzepustowego biernego I-rzędu. Wyznaczenie wzmocnienia w paśmie przepustowym, częstotliwości granicznej i nachylenia asymptotycznego charakterystyki w paśmie zaporowym. Porównanie wyznaczonych wartości z teoretycznymi.
- B. Badanie właściwości filtru górnoprzepustowego biernego I-rzędu. Wyznaczenie analogicznych wartości jak w punkcie A.
- C. Analiza filtru górnoprzepustowego biernego II-rzędu. Wyznaczenie właściwości opisujących filtr takich jak w poprzednich punktach ćwiczenia.
- D. Przeprowadzenie pomiarów dla filtrów aktywnych II-rzędu, filtru Chebyshev'a, krytycznego oraz Bessela.

3. Wyniki i opracowanie

3.1. Filtr dolnoprzepustowy bierny I-rzędu

Pierwszym układem poddanym analizie był filtr dolnoprzepustowy bierny I-rzędu, którego schemat przedstawiono poniżej:

Rys.1. Filtr dolnoprzepustowy I rzędu (układ całkujący jednobiegunowy)

a) Wyznaczenie charakterystyki amplitudowej $K_u = f(f)$, częstotliwości granicznej, wzmocnienia w paśmie przepustowym oraz nachylenia asymptotycznego w paśmie zaporowym.

Na wejście filtru podano sygnał sinusoidalny o małej amplitudzie równej $U_1 = 100 \text{mV}_{pp}$.

Aby wyznaczyć szukane wielkości dokonano serii pomiarów amplitud sygnału wejściowego i wyjściowego dla częstotliwości z przedziału 100Hz – 1MHz z krokiem kilku punktów na dekadę. Odczytane dane z ekranu woltomierza zapisano w tabeli 1.

Tabela 1.Wyniki pomiarów napięć dla różnych częstotliwości filtra dolnoprzepustowego biernego I-rzędu

	1	T
Częstotliwość f [Hz]	Napięcie wejściowe U _{in} [mV]	Napięcie wyjściowe U _{out} [mV]
100	103,5	103,5
200	103,5	103,5
300	103,5	103,5
500	103,5	103,5
1k	103,5	103,5
2k	103,5	103
3k	103,5	101,5
5k	103,5	99,5
10k	103,5	90
20k	103,5	69,5
30k	102,5	54,5
50k	102	36
100k	101,5	18,4
200k	102,5	10
300k	102	6,9
500k	103,5	4,7
1M	106	2,75

Wykres 1. Charakterystyka amplitudowo-częstotliwościowa filtru dolnoprzepustowego

Wykres zrealizowaliśmy korzystając z wzoru:

$$|K(j\omega)| = 20\log\left|\frac{U_{out}}{U_{in}}\right| [dB] \tag{1}$$

Wartości R i C badanego filtru:

$$R = 20[k\Omega]$$
$$C = 470[pF]$$

<u>Wzmocnienie w paśmie przepustowym</u> filtru zgodnie z teorią wynosi $1 \left[\frac{V}{V} \right]$. Wynika to z tego, że dolnoprzepustowy filtr przepuszcza bez tłumienia sygnały o częstotliwościach od 0[Hz] do wartości częstotliwości granicznej f_a .

<u>Częstotliwość graniczna</u> to wartość graniczna częstotliwości dla której kończy się umowne pasmo przepustowe filtru. Przyjmujemy, że jest to częstotliwość dla której wzmocnienie jest równe wzmocnieniu maksymalnemu pomniejszonemu o 3dB. Tę wartość odczytujemy z wykresu jako przecięcie czerwonych linii pomocniczych.

Teoretyczną częstotliwość graniczną wyznaczamy ze wzoru: $f_g = \frac{1}{2\pi RC}$. (2)

$$f_g = \frac{1}{2\pi \cdot 20k\Omega \cdot 470pF} = 16931,38 [Hz] = 16,93 [kHz]$$

Wartość teoretyczna	Wartość obliczona
16,93 [kHz]	17,00 [<i>kHz</i>]

Jak widać wartość wyznaczona jest zbliżona do wartości teoretycznej.

W celu obliczenia <u>nachylenia asymptotycznego charakterystyki w paśmie zaporowym</u> dopasowaliśmy prostą widoczną na wykresie 1.

Wartość teoretyczna	Wartość obliczona
$-20\left[\frac{dB}{dec}\right]$	$-17,14\left[\frac{dB}{dec}\right]$

Wartość obliczona odbiega od wartości teoretycznej. Wpływ na to mogły mieć błędy pomiarowe i niedokładność urządzeń pomiarowych.

b) Pomiar odpowiedzi impulsowej układu oraz dopasowanie zależności eksponencjalnej i wyznaczenie stałej czasowej filtru.

Na wejście filtru podano przebieg prostokątny o okresie większym niż 10 stałych czasowych badanego filtru i małej amplitudzie równej $U_{in} = 100 \text{mV}_{pp}$. Aby dokonać pomiaru odpowiedzi impulsowej układu odczytano kilkanaście par punktów na narastającym odcinku odpowiedzi rozważanego filtru dolnoprzepustowego. Wyniki pomiarów przedstawiono w tabeli 2.

Tabela 2.Zmierzone wartości napięcia i czasu na narastającym zboczu filtru dolnoprzepustowego

L.p.	Napięcie [mV]	Czas [µs]
0	20,1	2,2
1	44,21	5,4
2	60,3	8,4
3	70,35	11,4
4	76,39	13,8
5	84,43	17,8
6	88,27	21,2
7	90,98	23,6
8	92,98	26,6
9	95,98	30,2
10	97,99	35,8
11	98,99	39,2
12	98,99	44,6

Teoretyczna stała czasowa wynosi: $\tau = RC = 20k\Omega \cdot 470pF = 9,4[\mu s]$, zatem wartość okresu przebiegu prostokątnego to $94[\mu s]$.

Wartość teoretyczna napięcia opisana jest wzorem $U_{out}(t) = \left(1 - e^{-\frac{t}{\tau}}\right) \cdot U_{in}$

Wykres 2. Przedstawienie odpowiedzi układu filtru dolnoprzepustowego na sygnał prostokątny

Stałą czasową można wyznaczyć, znając zależność między czasem narastania (między 10% a 90% wartości maksymalnego wychylenia amplitudy) $t_r = 2.2 \cdot \tau$. Wybraliśmy z naszych pomiarów te punkty, które najbardziej pasują do 10% i 90% wartości amplitudy i obliczyliśmy za ich pomocą stała czasową.

Rys.2. Zależność pomiędzy wartością stałej czasowej a amplitudą w filtrze dolnoprzepustowym

Wartość teoretyczna	Wartość obliczona
9,4μs	9,73μs

Wartość obliczona jest zbliżona do teoretycznej, jednak gdyby nasze pomiary były dokładniejsze, wyznaczona wartość stałej czasowej byłaby bliższa teoretycznej, nie można wykluczyć także błędów pomiarowych .

3.2. Filtr górnoprzepustowy bierny I-rzędu

W dalszej części ćwiczeń laboratoryjnych zajęliśmy się badaniem filtru górnoprzepustowego biernego I-rzędu. Jego budowę przedstawia Rys.3.

Rys.3. Filtr górnoprzepustowy I rzędu (układ różniczkujący jednobiegunowy)

a) Wyznaczenie charakterystyki amplitudowej $K_u = f(f)$, częstotliwości granicznej, wzmocnienia w paśmie przepustowym oraz nachylenia asymptotycznego w paśmie zaporowym

Na wejście filtru podano sygnał sinusoidalny o małej amplitudzie równej $U_I = 100 \text{mV}_{pp}$. Dokonano serii pomiarów amplitud sygnału wejściowego i wyjściowego dla częstotliwości z przedziału 100 Hz - 1 MHz z krokiem kilku punktów na dekadę. W celu dokładniejszej analizy wskazań oscyloskopu zastosowano uśrednianie na podstawie 8 próbek oraz usunięcie szumów. Odczytane dane zanotowano w tabeli 3.

Tabela 3. Wyniki pomiarów napięć dla różnych częstotliwości filtra górnoprzepustowego

Częstotliwość f [Hz]	Napięcie wejściowe U _{in} [mV]	Napięcie wyjściowe U _{out} [mV]
100	99,65	24,75
200	99,65	45,2
300	99,65	60,7
500	99,1	78,45
1k	99,15	92,1
2k	99,25	97,25
3k	99,25	98,35
5k	99,35	99,1
10k	99,25	99,5
20k	99,25	99,75
30k	99,1	99,35
50k	98,85	99,1
100k	98,75	98,75
200k	100,15	99,65
300k	100,5	99,75
500k	100,65	97,85
1M	104,9	95,35

Wykres 3. Charakterystyka amplitudowo-częstotliwościowa filtru górnoprzepustowego

Wartości R i C badanego filtru:

$$R = 20[k\Omega]$$
$$C = 22 [nF].$$

W tym zadaniu postępowaliśmy podobnie jak w 3.1a).

Górnoprzepustowy filtr przepuszcza bez tłumienia sygnały o częstotliwościach większych niż częstotliwość graniczna f_a .

Wzmocnienie w paśmie przepustowym filtru wynosi poza kilkoma ostatnimi pomiarami w przybliżeniu $1 \left[\frac{V}{V} \right]$. Wynik ten jest zgodny z oczekiwanym. Na wykresie 3. oraz w tabeli 3. widoczne są niezgodne z teorią wartości pomiarów dla największych częstotliwości. Przykładowo dla częstotliwości $1 \left[\text{MHz} \right]$ widzimy, że zmierzone napięcie U_{in} wynosi $104,9 \left[\text{mV} \right]$, podczas gdy na wejście filtru doprowadzone było stałe napięcie równe $100 \left[\text{mV} \right]$. Różnice te mogą wynikać z niedoskonałości użytych modeli oraz błędów pomiarowych.

<u>Częstotliwość graniczną</u> ponownie wyznaczamy odczytując wartość częstotliwości dla której linia pomocnicza -3dB przecina się z wykresem charakterystyki częstotliwościowej.

Teoretyczną częstotliwość graniczna:
$$f_g = \frac{1}{2\pi \cdot 20k\Omega \cdot 22nF} = 361,72[Hz]$$

Wartość teoretyczna	Wartość obliczona
361,72 [<i>Hz</i>]	400,00 [Hz]

Wyznaczona wartość odbiega od teoretycznej, co świadczy o możliwym popełnieniu błędu lub niedokładnym wykonaniu pomiarów.

W celu obliczenia <u>nachylenia asymptotycznego charakterystyki w paśmie zaporowym</u> dopasowaliśmy prostą widoczną na wykresie 3.

Wartość teoretyczna	Wartość obliczona
$20\left[\frac{dB}{dec}\right]$	$16,44 \left[\frac{dB}{dec} \right]$

Wartość obliczona odbiega od wartości teoretycznej, na co wpłynęły błędy pomiarowe oraz niedoskonałość układów.

b) Pomiar odpowiedzi impulsowej układu oraz dopasowanie zależności eksponencjalnej i wyznaczenie stałej czasowej filtru.

Na wejście filtru podano przebieg prostokątny o okresie większym niż 10 stałych czasowych badanego filtru i małej amplitudzie równej $U_{in} = 100 \text{mV}_{pp}$. Podobnie jak w punkcie 3.1b) odczytano kilkanaście par punktów na narastającym odcinku odpowiedzi rozważanego filtru, a wyniki pomiarów przedstawiono w tabeli 4. Tutaj również zastosowano uśrednianie próbek oraz usunięcie szumów.

Tabela 4.Zmierzone wartości napięcia i czasu na narastającym zboczu filtru górnoprzepustowego

L.p.	Napięcie [mV]	Czas [μs]
1	88,33	51
2	69,1	151
3	62,7	191
4	54,19	251
5	46,85	311
6	38,33	391
7	30,09	491
8	19,94	661
9	15,38	771
10	9,15	1001
11	5,08	1271
12	3,35	1461
13	1,83	1851
14	1,54	1971

Teoretyczna stała czasowa wynosi: $\tau = RC = 20k\Omega \cdot 22nF = 440[\mu s]$, więc wartość okresu przebiegu prostokątnego to $4400[\mu s]$.

Wartość teoretyczna napięcia opisana jest wzorem $U_{out}(t) = e^{-\frac{t}{\tau}} \cdot U_{in}$

Wykres 4. Przedstawienie odpowiedzi układu filtru górnoprzepustowego na sygnał prostokątny

Wartość stałej czasowej wyznaczamy tak samo jak w zadaniu 3.1b).

Wartość teoretyczna	Wartość obliczona
440,00[μs]	431,82[μs]

Podobnie jak w zadaniu 3.1b) obliczona wartość stałej czasowej nieznacznie różni się od wartości teoretycznej. Wartość ta byłaby dokładniejsza gdybyśmy dokonali pomiarów w miejscach bardziej zbliżonych do 10% i 90% wartości amplitudy.

3.3. Filtr górnoprzepustowy bierny II-rzędu

Następnym zbadanym przez nas filtrem był filtr górnoprzepustowy bierny II-rzędu, którego schemat przedstawia poniższy rysunek:

Rys.4. Filtr górnoprzepustowy II rzędu

a) Wyznaczenie charakterystyki amplitudowej $K_u = f(f)$, częstotliwości granicznej, wzmocnienia w paśmie przepustowym oraz nachylenia asymptotycznego w paśmie zaporowym.

Na wejście filtru podano sygnał sinusoidalny o małej amplitudzie $U_{in} = 100 \text{mV}_{pp}$ oraz ustawiono takie same stałe czasowe filtru $\tau_1 = \tau_2$.

Wartości R_1 , R_2 , C_1 i C_2 wykorzystanego filtru wynoszą:

$$R_1 = R_2 = 20 [k\Omega]$$

 $C_1 = C_2 = 2.2 [nF]$

Dokonano pomiarów amplitud sygnału wejściowego i wyjściowego dla częstotliwości z przedziału 200Hz – 1MHz z krokiem kilku punktów na dekadę. Wyniki zanotowano w tabeli 5. Podobnie jak w 3.2 w celu dokładniejszej analizy wskazań oscyloskopu zastosowano uśrednianie na podstawie 8 próbek oraz usunięcie szumów. Odczytane dane zanotowano w tabeli 5.

Tabela 5. Wyniki pomiarów napięć dla różnych częstotliwości filtra górnoprzepustowego II rzędu

Częstotliwość f [Hz]	Napięcie wejściowe U _{in} [mV]	Napięcie wyjściowe Uout [mV]
200	100,15	0,3
300	100,15	0,6
500	100,15	1,54
1k	100,2	5,52
2k	100,25	18,45
3k	100,3	33,5
5k	100,3	58,1
10k	100,25	84,25
20k	100,05	95,05
30k	99,95	97,25
50k	99,65	98,35
100k	99,2	98,35
200k	100,05	98,55
300k	100	97,75
500k	101,4	94,8
1M	105,45	85,85

Wykres 5. Charakterystyka amplitudowo-częstotliwościowa filtru górnoprzepustowego II rzędu

Górnoprzepustowy filtr II rzędu przepuszcza bez tłumienia sygnały o częstotliwościach większych niż częstotliwość graniczna f_q .

Wzmocnienie w paśmie przepustowym filtru wynosi 0,95 $\left[\frac{V}{V}\right]$. Wynik ten jest zbliżony do oczekiwanego (1 $\left[\frac{V}{V}\right]$). Niezgodności z teorią mogą być spowodowane niepewnościami pomiarowymi. Podobnie jak w 3.2widoczne są niezgodne z teorią wartości pomiarów dla największych częstotliwości.

<u>Częstotliwość graniczną</u> wyznaczamy odczytując wartość częstotliwości dla której linia pomocnicza -6dB przecina się z wykresem charakterystyki częstotliwościowej.

Teoretyczna częstotliwość graniczna:
$$f_g = \frac{1}{2\pi \cdot 20k\Omega \cdot 2,2nF} = 3617,16 \ [Hz] = 3,62 [kHz]$$

Wartość teoretyczna	Wartość obliczona
3,62 [kHz]	4,20 [<i>kHz</i>]

Wyznaczona wartość odbiega od teoretycznej. Przyczyną tego może być zbyt mała ilość pomiarów w przedziale spodziewanej wartości częstotliwości granicznej.

W celu obliczenia <u>nachylenia asymptotycznego charakterystyki w paśmie zaporowym</u> dopasowaliśmy prostą widoczną na wykresie 5.

Wartość teoretyczna	Wartość obliczona
$40,00 \left[\frac{dB}{dec} \right]$	$35,77 \left[\frac{dB}{dec} \right]$

Wartość obliczona różni się nieco od wartości teoretycznej. Wpłynąć na to mogły błędy pomiarowe oraz niedoskonałość użytych modeli.

b) Kompensacja ujemnego przerzutu odpowiedzi impulsowej poprzez dolączenie rezystancji włączonej równoległe oraz jej pomiar.

Ustawiono stałe czasowe filtru τ_1 = 10 τ_2 . Na wejście filtru podano przebieg prostokątny o małej amplitudzie równej U_{in} = 100mV_{pp} i okresie większym niż 10 stałych czasowych badanego filtru (τ_1).

Wartości R_1 , R_2 , C_1 i C_2 badanego filtru:

$$R_1 = 20 k\Omega$$

$$R_2 = 20 k\Omega$$

$$C_1 = 22 nF$$

$$C_2 = 2.2 nF$$

Teoretyczna stała czasowa wynosi: $\tau_2 = R_2C_2 = 20k\Omega \cdot 2, 2nF = 44[\mu s]$, więc wartość okresu przebiegu prostokątnego to $\tau_1 = 10\tau_2 = 440[\mu s]$.

Na wyjściu zaobserwowano przerzut $\Delta y = 6.3 [mV]$. Aby się go pozbyć należy dodać rezystor R'_2 , włączony równoległe w stosunku do kondensatora C_2 (Rys.4.), o odpowiednio dobranej wartości.

Wartość teoretyczna rezystora
$$R'_2 = \frac{\tau_1}{c_2} = \frac{R_1 \cdot C_1}{C_2} = 200[k\Omega] = 0,2[M\Omega].$$

W celu dokonania kompensacji należało kręcić potencjometrem, aby uzyskać wygładzenie wykresu, w miejscy gdzie wcześniej występował zaobserwowany przerzut, a następnie dokonać pomiaru ustalonej rezystancji, która wyniosła $R = 0.2[M\Omega]$.

Dobrana i zmierzona wartość rezystancji jest zgodna z wartością teoretyczną.

3.4. Filtry dolnoprzepustowe aktywne II-rzędu

Ostatnimi rodzajami filtrów, które zbadaliśmy były filtry dolnoprzepustowe aktywne II-rzędu, a dokładniej filtr krytyczny, Chebyshev'a oraz Bessel'a. W obliczeniach pominęliśmy filtr Butterworth'a ponieważ dane z niego były głównie niezmienne i nie nadawały się do stworzenia kształtnej charakterystyki. Prawdopodobnie układ był już uszkodzony.

Filtr KRYTYCZNY

Rys.5. Schemat filtru krytycznego na płytce PCB

CHEBYSHEV 0.5dB

Rys.6. Schemat filtru Chebyshev'a na płytce PCB

BESSEL

Rys.7. Schemat filtru Bessel'a na płytce PCB

a) Wyznaczenie charakterystyki amplitudowej $K_u=f(f)$, częstotliwości granicznej, wzmocnienia w paśmie przepustowym oraz nachylenia asymptotycznego w paśmie zaporowym

Na wejście filtru podano sygnał sinusoidalnie zmienny o małej amplitudzie U_{in} = 200mV_{pp}. Dokonano pomiarów amplitud sygnału wejściowego i wyjściowego dla częstotliwości z przedziału 200Hz – 1MHz z krokiem kilku punktów na dekadę. Wyniki pomiarów dla filtra krytycznego, Chebyshev'a i Bessel'a przedstawiono odpowiednio w tabeli 6, 7 i 8.

Tabela 6.Wyniki pomiarów napięć dla różnych częstotliwości dla filtra krytycznego

Częstotliwość f [Hz]	Napięcie wejściowe U _{in} [mV]	Napięcie wyjściowe Uout [mV]
100	200,6	201,40
200	200,6	201,10
300	200,6	201,10
500	200,8	200,90
1k	200,9	199,80
2k	200,9	194,10
3k	201,0	185,70
5k	201,0	163,30
10k	201,0	103,00
20k	200,8	42,71
30k	200,3	21,66
50k	200,1	8,22
100k	199,6	2,62
200k	200,8	3,90
300k	201,6	4,62
500k	203,1	4,98
1M	210,5	5,11

Tabela 7. Wyniki pomiarów napięć dla różnych częstotliwości dla filtra Chebyshev'a

Częstotliwość f [Hz]	Napięcie wejściowe U _{in} [mV]	Napięcie wyjściowe Uout [mV]
100	200,2	201,00
200	200,3	201,00
300	200,3	201,10
500	200,3	201,30
1k	200,5	202,00
2k	200,7	205,10
3k	200,6	209,30
5k	200,7	217,20
10k	200,7	153,90
20k	200,3	40,40
30k	200,1	17,40
50k	199,5	5,86
100k	198,2	2,40
200k	200,1	3,93
300k	201,4	4,55
500k	203,1	4,89
1M	210,2	5,01

Tabela 8. Wyniki pomiarów napięć dla różnych częstotliwości dla filtra Bessel'a

Częstotliwość f [Hz]	Napięcie wejściowe U _{in} [mV]	Napięcie wyjściowe U _{out} [mV]
100	199,6	199,4
200	199,8	199,7
300	199,6	199,4
500	199,4	199,1
1k	198,2	197,41
2k	196,2	194,54
3k	190	185,77
5k	177,4	168,41
10k	134	112,6
20k	68,1	42,65
30k	37,92	18,42
50k	15,3	5
100k	3,8	0,68
200k	3,72	0,66
300k	4,44	0,85
500k	7,6	1,84
1M	5	1,01
2M	5,8	1,25
3M	5,78	1,24
5M	3,86	0,7

Wykres 6. Charakterystyka amplitudowo-częstotliwościowa filtru krytycznego

Wykres 7. Charakterystyka amplitudowo-częstotliwościowa filtru Chebysheva

Wykres 8. Charakterystyka amplitudowo-częstotliwościowa filtru Bessela

<u>Wzmocnienie w paśmie przepustowym</u> filtru jest zgodne z oczekiwanym dla obu filtrów i wynosi w przybliżeniu 1 $\left[\frac{V}{V}\right]$.

<u>Częstotliwość graniczną</u> wyznaczamy odczytując wartość częstotliwości dla której linia pomocnicza -6[dB] przecina się z wykresem charakterystyki częstotliwościowej.

Wartości poszczególnych rezystorów i kondensatorów były takie, jak przedstawione na schematach z Rys.5, Rys.6 i Rys.7 zatem wartości teoretyczne są równe:

$$\begin{split} f_{g_krytyczny} &= \frac{1}{2 \cdot \pi \cdot R \cdot C} = \frac{1}{2 \cdot \pi \cdot 10k\Omega \cdot 1,6nF} = 9947,18[Hz] = 9,95[kHz] \\ f_{g_Chebysheva} &= \frac{1}{2 \cdot \pi \cdot R \cdot C_1 \cdot \sqrt{\frac{C_2}{C_1}}} = \frac{1}{2 \cdot \pi \cdot 10k\Omega \cdot 1nF \cdot \sqrt{\frac{3,6nF}{1nF}}} = 8388,2[Hz] = 8,39[kHz] \\ f_{g_Bessela} &= \frac{1}{2 \cdot \pi \cdot R \cdot C} = \frac{1}{2 \cdot \pi \cdot 10k\Omega \cdot 1,2nF} = 13262,9[Hz] = 13,3[kHz] \end{split}$$

	Wartość teoretyczna	Wartość obliczona
Filtr krytyczny	9,95 [<i>kHz</i>]	10,20 [kHz]
Filtr Chebysheva	8,39 [<i>kHz</i>]	12,00 [<i>kHz</i>]
Filtr Bessela	13,3 [kHz]	14,6[kHz]

Wartości teoretyczne oraz obliczone dla filtra krytycznego i dla filtra Bessela są do siebie bardzo zbliżone, co potwierdza teorię, natomiast w przypadku filtra Chebysheva widoczne są duże różnice pomiędzy tymi wielkościami. Różnica ta może wynikać ze zbyt małej ilości pomiarów oraz błędów.

<u>Nachylenie asymptotyczne charakterystyki w paśmie zaporowym</u> obliczyliśmy dla każdego filtru takim samym sposobem jak we wcześniejszych zadaniach, za pomocą dopasowanych prostych widocznych na wykresach 6, 7 i 8.

	Wartość teoretyczna	Wartość obliczona
Filtr krytyczny	$-40,00\left[\frac{dB}{dec}\right]$	$-34,54 \left[\frac{dB}{dec} \right]$
Filtr Chebysheva	$-40,00\left[\frac{dB}{dec}\right]$	$-34,53\left[\frac{dB}{dec}\right]$
Filtr Bessela	$-40,00 \left[\frac{dB}{dec} \right]$	$-30,94 \left[\frac{dB}{dec} \right]$

Widzimy, że wartości obliczone dość znacznie różnią się od teoretycznych oraz że wartości obliczone dla filtra krytycznego i Chebysheva są, z dokładnością do zaokrągleń, sobie równe. Wpływ na powstałe błędy miały czynniki analogiczne jak te opisane powyżej. Dla lepszego dostrzeżenia różnicy między filtrami przedstawiono ich charakterystyki częstotliwościowe na jednym wykresie:

b) Pomiar odpowiedzi impulsowej układu

Na wejście filtru podano sygnał prostokątny o małej amplitudzie równej $U_{in} = 200 \text{mV}_{pp}$ i częstotliwości f = 1[kHz]. Dokonano pomiaru kilkunastu par punktów (napięcia i czasu) podczas formowania się odpowiedzi filtru. Wyniki zanotowano w poniższych tabelach.

Tabela 8. Zmierzone wartości napięcia i czasu dla filtru krytycznego

L.p.	Napięcie [mV]	Czas [µs]
1	26,2	10
2	73,1	20
3	114,7	30
4	144,4	40
5	164,8	50
6	177,9	60
7	186,2	70
8	191,1	80
9	193,9	90
10	196,4	100
11	197,4	110
12	197,9	120

Tabela 9. Zmierzone wartości napięcia i czasu dla filtru Chebyshev'a

L.p.	Napięcie [mV]	Czas [µs]
1	37,5	13
2	75,8	20
3	115,6	27
4	173,1	39
5	204,7	49
6	220,7	59
7	224,5	69
8	221,8	79
9	215,1	90
10	208,4	100

11	203,1	110
12	199,7	120
13	197,9	133

Tabela 9. Zmierzone wartości napięcia i czasu dla filtru Bessel'a

L.p.	Napięcie [mV]	Czas [µs]
1	24,1	10
2	90,4	16
3	121,8	25
4	160,6	37
5	165,9	40
6	184,4	50
7	197,3	72
8	198,9	86
9	200,9	104
10	200,1	125
11	201	135
12	200,3	140

Na podstawie wyników zawartych w tabeli 8, 9 oraz 10 sporządzono wykresy w arkuszu kalkulacyjnym.

Wykres 8a. Odpowiedź impulsowa filtru krytycznego

Wykres 8b. Wysymulowana odpowiedź impulsowa filtru krytycznego.

Wykres 9a.Odpowiedź impulsowa filtru aktywnego Chebysheva

Wykres 9b. Wysymulowana odpowiedź impulsowa filtru aktywnego Chebysheva

Wykres 10a. Odpowiedź impulsowa filtru aktywnego Bessela

Wykres 10b. Wysymulowana odpowiedź impulsowa filtru aktywnego Bessela

Otrzymane na podstawie pomiarów wykresy (8a, 9a oraz 10a) są podobne do odpowiedzi filtrów wysymulowanych w programie *Quite Universal Circuit Simulator*. Widzimy, że na wykresie 8, przedstawiającym odpowiedź układu na filtr krytyczny, nie występuje przerzut, z kolei na wykresie 9 widać charakterystyczne dla filtru Chebysheva podbicie w paśmie przepustowym w pobliżu częstotliwości granicznej.