Universidade Federal do Amazonas Mestrado e Doutorado Interinstitucional

Cap 2. Agentes
Aulas 05-06

Inteligência Artificial 2016/1

José Francisco de Magalhães Netto

jnetto@icomp.ufam.edu.br

Boa Vista, 12/04/2016

Roteiro

Informes

Envio de Transparências, Solicitação de Instalação do SWI-Prolog e Apostila

Cap. 2 Agentes

Características dos Agentes

PEAS

Prolog

Características de Agentes

Básicas

- Pró-atividade
 - Atuam não somente em resposta ao ambiente são orientados a objetivos
- Interatividade
 - Se comunicam com outros agentes e com o ambiente
- Adaptação
 - São capazes de modificar, em algum grau, o seu comportamento devido à mudanças do ambiente e de outros agentes

Características de Agentes

Adicionais

- Aprendizado
 - São capazes de modificar o seu comportamento baseados em sua experiência (não é necessariamente relacionado às mudanças no ambiente)

Racionalidade

 São capazes de selecionar suas ações baseados em seus objetivos

Mobilidade

São capazes de se mover de um ambiente para outro

Características de Agentes

Adicionais

- Aprendizado
 - São capazes de modificar o seu comportamento baseados em sua experiência (não é necessariamente relacionado às mudanças no ambiente)
- Racionalidade
 - São capazes de selecionar suas ações baseados em seus objetivos
- Mobilidade
 - São capazes de se mover de um ambiente para outro

Atividade Didática I

Problema do Aspirador de Pó

Análise iniciada no quadro-branco.

Atividade Didática I - Análise

Estado

Estado Inicial, Estado Final, Estados Intermediários

Caminho entre o Estado Inicial e o Estado Final

Número de Estados

Fator de Ramificação

Atividade Didática I - Análise

Estado

Estado Inicial, Estado Final, Estados Intermediários

Caminho entre o Estado Inicial e o Estado Final

Número de Estados

Fator de Ramificação

Minimundo: aspirador de pó

Atividade Didática II

Um fazendeiro que foi ao mercado e comprou um lobo, um carneiro, e uma alface. No caminho para casa, o fazendeiro chegou à margem de um rio e arrendou um barco. Mas, na travessia do rio por barco, o agricultor poderia levar apenas a si mesmo e uma única de suas compras - o lobo, o carneiro, ou a alface.

- Se fossem deixados sozinhos em uma mesma margem, o lobo comeria o carneiro, e o carneiro comeria a alface.
- O desafio do fazendeiro é atravessar a si mesmo e as suas compras para a margem oposta do rio, deixando cada compra intacta. Como ele fará isso?

PEAS

- Ao projetar um agente, a primeira etapa deve ser sempre especificar o ambiente de tarefa.
 - Performance = Medida de Desempenho
 - Environment = Ambiente
 - Actuators = Atuadores
 - Sensors = Sensores

Exemplo de PEAS: Motorista de Táxi Automatizado

- Medida de desempenho: viagem segura, rápida, sem violações às leis de trânsito, confortável para os passageiros, maximizando os lucros.
- Ambiente: ruas, estradas, outros veículos, pedestres, clientes.
- Atuadores: direção, acelerador, freio, embreagem, marcha, seta, buzina.
- Sensores: câmera, sonar, velocímetro, GPS, hodômetro, acelerômetro, sensores do motor, teclado ou microfone.

Exemplo de PEAS: Sistema de Diagnóstico Médico

- Medida de desempenho: paciente saudável, minimizar custos, processos judiciais.
- Ambiente: paciente, hospital, equipe.
- Atuadores: exibir na tela perguntas, testes, diagnósticos, tratamentos.
- Sensores: entrada pelo teclado para sintomas, descobertas, respostas do paciente.

Exemplo de PEAS: Robô de seleção de peças

- Medida de desempenho: porcentagem de peças em bandejas corretas.
- Ambiente: correia transportadora com peças; bandejas.
- Atuadores: braço e mão articulados.
- Sensores: câmera, sensores angulares articulados.

Exemplo de PEAS: Instrutor de Inglês Interativo

- Medida de desempenho: maximizar nota de aluno em teste.
- Ambiente: conjunto de alunos.
- Atuadores: exibir exercícios, sugestões, correções.
- Sensores: entrada pelo teclado.

- Completamente observável (versus parcialmente observável)
 - Os sensores do agente d\u00e3o acesso ao estado completo do ambiente em cada instante.
 - Todos os aspectos relevantes do ambiente são acessíveis.
- Determinístico (versus estocástico)
 - O próximo estado do ambiente é completamente determinado pelo estado atual e pela ação executada pelo agente.
 - Se o ambiente é determinístico exceto pelas ações de outros agentes, dizemos que o ambiente é estratégico.

- Episódico (versus sequencial)
 - A experiência do agente pode ser dividida em episódios (percepção e execução de uma única ação).
 - A escolha da ação em cada episódio só depende do próprio episódio.
- Estático (versus dinâmico)
 - O ambiente não muda enquanto o agente pensa.
 - O ambiente é semidinâmico se ele não muda com a passagem do tempo, mas o nível de desempenho do agente se altera.

- Discreto (versus contínuo)
 - Um número limitado e claramente definido de percepções e ações.
- Agente único (versus multi-agente)
 - Um único agente operando sozinho no ambiente.
 - No caso multi-agente podemos ter
 - Multi-agente cooperativo
 - Multi-agente competitivo

- Agente único (versus multi-agente)
 - Um único agente operando sozinho no ambiente.

Lego Mindstorms nxt Rubik's cube solver mindcuber +building instruction HD https://www.youtube.com/watch?v=dreTvumjNyw

- No caso multi-agente podemos ter
 - Multi-agente cooperativo

Amazon warehouse robots https://www.youtube.com/watch?v=quWFjS3Ci7A

Multi-agente competitivo

RoboCup German Open 2015 Preliminaries: Nao-Devils vs. B-Human https://www.youtube.com/watch?v=kC959yoG9P0