# Prova scritta di Logica Matematica 26 febbraio 2019

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio che eccede 6 viene sommato al risultato della seconda parte per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

## PRIMA PARTE

|               | Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.                                                                                             |              |                |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|--|--|--|
| a.            | $p \to ((p \land q \to \neg r) \to r \land \neg q) \equiv (\neg r \lor q \to \neg p) \lor (p \land q \land r).$                                                             | $\mathbf{V}$ | $\mathbf{F}$   |  |  |  |
| b.            | Se $F \vDash G$ e $\neg F \vDash H$ allora $G \lor H$ è valida.                                                                                                             | $\mathbf{V}$ | $\mathbf{F}$   |  |  |  |
| c.            | . Quante delle seguenti sostituzioni sono ammissibili in $\neg \forall x  \exists y  r(x, f(y, z)) \vee r(u, \overline{z})$                                                 |              |                |  |  |  |
|               | $\{x/y\}, \{z/f(y,y)\}, \{z/u\}, \{u/f(x,y)\}.$                                                                                                                             | 2 3          | $oxed{4}$      |  |  |  |
| $\mathbf{d}.$ | Sia <i>I</i> l'interpretazione normale con $D^{I} = \{0, 1, 2, 3\}, f^{I}(0) = 2, f^{I}(1) = 0,$                                                                            |              |                |  |  |  |
|               | $f^{I}(2) = 0, f^{I}(3) = 3, p^{I} = \{0, 1\}, r^{I} = \{(0, 0), (1, 0), (1, 2), (1, 3), (2, 1), (3, 3)\}.$                                                                 |              |                |  |  |  |
|               | Allora $I \vDash \forall z (p(z) \lor \exists y (y \neq z \land r(f(y), f(z)))).$                                                                                           | $\mathbf{V}$ | F<br>F         |  |  |  |
| e.            | $\forall z  p(z) \lor \forall x  r(x, x) \equiv \forall z (p(z) \lor r(z, z)).$                                                                                             | $\mathbf{V}$ | $\mathbf{F}$   |  |  |  |
| f.            | Ogni interpretazione che soddisfa gli assiomi dell'uguaglianza $Eq_{\mathcal{L}}$ è normale.                                                                                | $\mathbf{V}$ | $\mathbf{F}$   |  |  |  |
| $\mathbf{g}.$ | Se $\sim$ è una relazione di congruenza su $I, d_0 \sim d_1$ e $(d_0, d_1) \in r^I$                                                                                         |              |                |  |  |  |
|               | allora $I, \sigma[x/d_1, y/d_0] \models r(x, y)$ .                                                                                                                          | $\mathbf{V}$ | $\mathbf{F}$   |  |  |  |
| h.            | Se un tableau sistematico per l'enunciato $F$ è aperto                                                                                                                      |              |                |  |  |  |
|               | allora nessun tableau (anche non sistematico) per $F$ è chiuso.                                                                                                             | $\mathbf{V}$ | $ \mathbf{F} $ |  |  |  |
| i.            | i. Esiste un insieme di Hintikka che contiene gli enunciati $\neg q(c)$ ,                                                                                                   |              |                |  |  |  |
|               | $\forall x(\neg p(x) \lor q(x)) \in \exists y  p(y).$                                                                                                                       | $\mathbf{V}$ | $ \mathbf{F} $ |  |  |  |
| j.            | Questo albero rappresenta una deduzione naturale corretta:                                                                                                                  | $\mathbf{V}$ | $ \mathbf{F} $ |  |  |  |
|               | $\frac{\frac{[p(f(x))]^1}{q(x)}}{\frac{[p(f(x))]^1}{p(f(x)) \wedge q(x)}} \frac{\frac{\forall x  q(x)}{q(x)}}{\frac{p(f(x)) \wedge q(x)}{\forall x (p(f(x)) \wedge q(x))}}$ |              |                |  |  |  |
|               | $[p(f(x))]^1$ $q(x)$                                                                                                                                                        |              |                |  |  |  |
|               | $\exists x  p(f(x)) \qquad \frac{p(f(x)) \wedge q(x)}{p(f(x))}$                                                                                                             |              |                |  |  |  |
|               | $\frac{1}{p(f(x)) \wedge q(x)} 1$                                                                                                                                           |              |                |  |  |  |
|               | $\frac{P(J(w)) \wedge Q(w)}{\forall x (n(f(x)) \land a(x))}$                                                                                                                |              |                |  |  |  |
|               | $\forall x (p(j(x)) \land q(x))$                                                                                                                                            |              |                |  |  |  |

k. Scrivete nel riquadro l'enunciato del lemma che stabilisce la relazione tra una  $\gamma$ -formula e le sue istanze.

# SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il numero 2.

1. Usando l'algoritmo di Fitting mettete in forma normale congiuntiva la formula

2pt

$$\neg(\neg r \vee \neg(\neg s \to p)) \to ((t \to \neg q \wedge v) \to w).$$

2. Sia  $\mathcal{L} = \{b, m, f, a, c\}$  un linguaggio dove b è un simbolo di costante, m un simbolo di funzione unario, f è un simbolo di relazione unario e a e c sono simboli di relazione binari. Interpretando b come "Beatrice", m(x) come "la miglior amica di x", f(x) come "x è invitato alla festa", a(x, y) come "x è amico di y", c(x, y) come "x conosce y", traducete la frase:

tutti gli invitati alla festa conoscono almeno un amico della miglior amica di Beatrice non invitato alla festa.

3pt

3. Usando il metodo dei tableaux stabilite se

$$(\neg r \to \neg s) \to (p \lor (\neg q \land \neg r) \to \neg (p \land \neg q \to s)) \lor p$$

è valida. Se la formula non è valida definite una valutazione che lo testimoni.

4. Mettete in forma prenessa la formula

$$\neg \forall x \,\exists y \, r(x, f(y)) \rightarrow \neg \exists y \, \forall z \, \neg r(f(y), z) \vee \neg \forall v \, p(v).$$

Se riuscite, usate il minimo numero di quantificatori possibili.

 $1 \mathrm{pt}$ 

5. Dimostrate che

$$\forall x (\forall y \, r(f(y), f(x)) \to p(x)), \neg p(c), \forall u (\forall v \, r(f(v), u) \lor p(u)) \vDash p(f(c)).$$

6. Dimostrate che l'insieme di enunciati

4pt

$$\{p(a) \land \neg p(b), \forall w \ f(w) \neq w, \forall x \ \forall y (p(x) \land \neg p(y) \rightarrow r(f(x), f(y))), \forall z \ \forall u (r(z, u) \rightarrow p(z) \land \neg p(u))\}$$

è soddisfacibile nella logica con uguaglianza.

7. Sia  $\mathcal{L} = \{p, r\}$  il linguaggio con un simbolo di relazione unario ed uno binario. Siano 3pt I e J le seguenti interpretazioni per  $\mathcal{L}$ :

$$D^I = \{0, 1, 2, 3\}, \quad p^I = \{0, 2\}, \quad r^I = \{(0, 1), (2, 1), (2, 2)\};$$

$$D^{J} = \{A, B, C, D, E, F, G\}, \quad p^{J} = \{A, D, E\}, \quad r^{J} = \{(A, B), (D, B), (E, B), (E, E)\}.$$

Definite un omomorfismo forte suriettivo di J in I.

Scrivete una formula nel linguaggio  $\mathcal{L}$  a cui sia aggiunta l'uguaglianza che sia vera in I ma non in J (consideriamo I e J interpretazioni normali).

8. Usando il metodo dei tableaux stabilite che l'insieme di enunciati

4pt

$$\{\exists z \, r(a, z), \forall x (p(x) \to \forall u \, \neg r(u, x)), p(a), \forall y (p(y) \vee r(y, a))\}$$

è insoddisfacibile.

**9.** Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

5pt

$$\forall x (\exists y \, r(y, x) \to \forall v \, \neg r(f(x), v)), \exists z (\neg p(z) \vee r(f(z), z)), \forall u (r(u, u) \to p(u)) \rhd \exists w \, \neg r(w, w).$$

#### Soluzioni

- a. V come si verifica per esempio con le tavole di verità.
- **b.** V sia v un'interpretazione qualsiasi: se v(F) = V allora v(G) = V, mentre se v(F) = V allora  $v(\neg F) = V$  e quindi v(H) = V; in ogni caso  $v(G \vee H) = V$ .
- c. 3 la seconda sostituzione non è ammissibile, perché la prima occorrenza libera di z è nel raggio d'azione di un quantificatore su y. La prima sostituzione è ammissibile perché x non ha occorrenze libere, la terza perché non ci sono quantificatori su u, la quarta perché l'unica occorrenza libera di u non è nel raggio d'azione di nessun quantificatore.
- **d.** F perché  $I, \sigma[z/3] \nvDash p(z) \vee \exists y (y \neq z \wedge r(f(y), f(z))).$
- e. F analogamente a quanto fatto nella seconda parte dell'Esercizio 7.77 delle dispense, non è difficile dimostrare che  $\forall z(p(z) \lor r(z,z)) \not\vDash \forall z \, p(z) \lor \forall x \, r(x,x)$ .
- f. F come mostrato nell'Esempio 7.105 delle dispense.
- **g.** V per definizione di relazione di congruenza  $d_0 \sim d_1$  e  $(d_0, d_1) \in r^I$  implicano  $(d_1, d_0) \in r^I$ , che significa  $I, \sigma[x/d_1, y/d_0] \models r(x, y)$ .
- h. V l'ipotesi e il Teorema di completezza (10.37 delle dispense) implicano che F è sod-disfacibile; allora il Teorema di correttezza (10.29 delle dispense) ci assicura che tutti i tableaux per F sono aperti.
- i. V  $\{\neg q(c), \forall x(\neg p(x) \lor q(x)), \exists y \, p(y), p(b), \neg p(c) \lor q(c), \neg p(c), \neg p(b) \lor q(b), q(b)\}$  è un insieme di Hintikka.
- **j.** F la presunta applicazione di  $(\exists i)$  nel passo contrassegnato da 1 non è corretta, perché x è libera in  $p(f(x)) \land q(x)$ .
- **k.** se G è una  $\gamma$ -formula e H una sua istanza allora  $G \models H$  (Lemma 10.6 delle dispense).
- 1. Utilizziamo l'Algoritmo 3.18 delle dispense, adottando le semplificazioni suggerite nella Nota 3.30:

$$\langle [\neg (\neg r \vee \neg (\neg s \to p)) \to ((t \to \neg q \wedge v) \to w)] \rangle$$

$$\langle [\neg r \vee \neg (\neg s \to p), (t \to \neg q \wedge v) \to w] \rangle$$

$$\langle [\neg r, \neg (\neg s \to p), (t \to \neg q \wedge v) \to w] \rangle$$

$$\langle [\neg r, \neg (\neg s \to p), \neg (t \to \neg q \wedge v), w] \rangle$$

$$\langle [\neg r, \neg s, \neg (t \to \neg q \wedge v), w], [\neg r, \neg p, \neg (t \to \neg q \wedge v), w] \rangle$$

$$\langle [\neg r, \neg s, t, w], [\neg r, \neg s, \neg (\neg q \wedge v), w], [\neg r, \neg p, t, w], [\neg r, \neg p, \neg (\neg q \wedge v), w] \rangle$$

$$\langle [\neg r, \neg s, t, w], [\neg r, \neg s, q, \neg v, w], [\neg r, \neg p, t, w], [\neg r, \neg p, q, \neg v, w] \rangle$$

La formula in forma normale congiuntiva ottenuta è

$$(\neg r \vee \neg s \vee t \vee w) \wedge (\neg r \vee \neg s \vee q \vee \neg v \vee w) \wedge (\neg r \vee \neg p \vee t \vee w) \wedge (\neg r \vee \neg p \vee q \vee \neg v \vee w).$$

**2.**  $\forall x (f(x) \rightarrow \exists y (c(x,y) \land a(y,m(b)) \land \neg f(y))).$ 

3. Per stabilire se la formula è valida applichiamo l'Algoritmo 4.5 delle dispense alla negazione della formula. In ogni passaggio sottolineiamo la formula su cui agiamo.

$$\begin{array}{c} \underline{\neg((\neg r \rightarrow \neg s) \rightarrow (p \lor (\neg q \land \neg r) \rightarrow \neg (p \land \neg q \rightarrow s)) \lor p)} \\ | \\ \neg r \rightarrow \neg s, \underline{\neg((p \lor (\neg q \land \neg r) \rightarrow \neg (p \land \neg q \rightarrow s)) \lor p)} \\ | \\ \neg r \rightarrow \neg s, \underline{\neg(p \lor (\neg q \land \neg r) \rightarrow \neg (p \land \neg q \rightarrow s))}, \neg p \\ | \\ \neg r \rightarrow \neg s, \underline{p \lor (\neg q \land \neg r)}, p \land \neg q \rightarrow s, \neg p \\ \\ \hline \neg r \rightarrow \neg s, p, p \land \neg q \rightarrow s, \neg p \\ \otimes \\ \hline \neg r \rightarrow \neg s, p, p \land \neg q \rightarrow s, \neg p \\ \otimes \\ \hline \neg r \rightarrow \neg s, p, p \land \neg q \rightarrow s, \neg p \\ \hline \\ \neg r \rightarrow \neg s, \neg q, \neg r, p \land \neg q \rightarrow s, \neg p \\ \hline \\ \neg r, \neg q, \neg r, p \land \neg q \rightarrow s, \neg p \\ \hline \\ \neg s, \neg q, \neg r, \underline{\neg (p \land \neg q)}, \neg p \\ \hline \\ \neg s, \neg q, \neg r, q, \neg r, q, \neg p \\ \hline \\ \hline \\ \neg s, \neg q, \neg r, \neg p, \neg p \\ \hline \\ \hline \\ \neg s, \neg q, \neg r, q, \neg p \\ \hline \\ \hline \end{array}$$

Il tableau è aperto e quindi la formula di partenza non è valida. La foglia aperta ci permette di definire un'interpretazione che non la soddisfa:  $v(p) = \mathbf{F}, \ v(q) = \mathbf{F}, \ v(r) = \mathbf{F}, \ v(s) = \mathbf{F}.$ 

4. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\neg \forall x \,\exists y \, r(x, f(y)) \to \neg \exists y \, \forall z \, \neg r(f(y), z) \vee \neg \forall v \, p(v)$$

$$\exists x \, \forall y \, \neg r(x, f(y)) \to \forall y \, \exists z \, r(f(y), z) \vee \exists v \, \neg p(v)$$

$$\exists x \, \forall y \, \neg r(x, f(y)) \to \forall y \, (\exists z \, r(f(y), z) \vee \exists v \, \neg p(v))$$

$$\exists x \, \forall y \, \neg r(x, f(y)) \to \forall y \, \exists z \, (r(f(y), z) \vee \neg p(z))$$

$$\forall x \, \forall y \, (\forall y \, \neg r(x, f(y)) \to \exists z \, (r(f(y), z) \vee \neg p(z)))$$

$$\forall x \, \forall y \, \exists z \, (\neg r(x, f(z)) \to r(f(y), z) \vee \neg p(z)).$$

5. Sia I sia un'interpretazione: dobbiamo dimostrare che I soddisfa i tre enunciati a sinistra del simbolo di conseguenza logica, che indichiamo con F, G e H, allora soddisfa anche p(f(c)).

Dato che  $I \vDash G$  si ha  $c^I \notin p^I$ . Da  $I \vDash F$  segue in particolare che  $I, \sigma[x/c^I] \vDash \forall y \, r(f(y), f(x)) \to p(x)$ . Se fosse  $I, \sigma[x/c^I] \vDash \forall y \, r(f(y), f(x))$  dovremmo avere  $c^I \in p^I$ , in contraddizione con quanto osservato in precedenza. Quindi  $I, \sigma[x/c^I] \nvDash \forall y \, r(f(y), f(x))$ , cioè per qualche  $d_0 \in D^I$  si ha  $I, \sigma[x/c^I, y/d_0] \nvDash r(f(y), f(x))$ . In altre parole, abbiamo  $(f^I(d_0), f^I(c^I)) \notin r^I$ .

Dall'ultima osservazione segue che  $I, \sigma[u/f^I(c^I)] \nvDash \forall v \, r(f(v), u)$ . Ma da  $I \vDash H$  segue in particolare  $I, \sigma[u/f^I(c^I)] \vDash \forall v \, r(f(v), u) \lor p(u)$  e quindi deve per forza essere  $I, \sigma[u/f^I(c^I)] \vDash p(u)$ , ovvero  $f^I(c^I) \in p^I$ . Abbiamo dunque ottenuto  $I \vDash p(f(c))$ , come volevamo.

**6.** Dobbiamo definire un'interpretazione normale che soddisfa i quattro enunciati dell'insieme. Due interpretazioni normali con queste caratteristiche sono definite da

$$\begin{split} D^I &= \{0,1,2,3\}, \quad a^I = 0, \quad b^I = 1, \quad f^I(0) = 2, f^I(1) = 3, f^I(2) = 0, f^I(3) = 1, \\ p^I &= \{0,2\}, \quad r^I = \{(0,1),(0,3),(2,1),(2,3)\}; \\ D^J &= \mathbb{N}, \quad a^J = 0, \quad b^J = 1, \quad f^J(n) = n+2, \\ p^J &= \{\, n \in \mathbb{N} \, : \, n \, \mathrm{\grave{e}} \, \mathrm{pari} \, \}, \quad r^J = \{\, (n,m) \, : \, n \, \mathrm{\grave{e}} \, \mathrm{pari} \, \mathrm{e} \, m \, \mathrm{\grave{e}} \, \mathrm{dispari} \, \}\,. \end{split}$$

Dato che le interpretazioni sono normali non abbiamo bisogno di specificare  $=^I$  e  $=^J$ . Sia  $\varphi$  l'omomorfismo forte di J in I che cerchiamo di costruire. Visto che  $A \in p^J$  e  $(A,A) \notin r^J$  deve essere  $\varphi(A) = 0$ , dato che 0 è l'unico elemento di  $D^I$  che sta in  $p^I$  ma tale che la coppia che lo ripete non sta in  $r^I$ . Per la stessa ragione deve essere  $\varphi(D) = 0$ . Invece  $E \in p^J$  e  $(E,E) \in r^J$  impongono che  $\varphi(E) = 2$ . Dato che  $(A,B) \in r^J$  deve essere  $(\varphi(A), \varphi(B)) \in r^I$ , ovvero  $(0, \varphi(B)) \in r^I$ : l'unica scelta possibile è  $\varphi(B) = 1$ . Notiamo invece che C, F e G non appartengono a nessuna coppia che sta in  $r^J$ : dato che  $(C) = \varphi(F) = \varphi(G) = 3$ .

Si verifica che la  $\varphi$  così definita è effettivamente un omomorfismo forte suriettivo. Estendendo il linguaggio con l'uguaglianza e considerando I e J come interpretazioni normali si può osservare che  $I \vDash \exists x \, \exists y (p(x) \land p(y) \land \forall z (p(z) \to x = z \lor y = z))$ , mentre J non soddisfa questo enunciato.

8. Per mostrare l'insoddisfacibilità del nostro insieme dobbiamo costruire (utilizzando l'Algoritmo 10.50 e le Convenzioni 10.21 e 10.23 delle dispense) un tableau chiuso con la radice etichettata dall'insieme. Indichiamo con F, G, H e K le  $\gamma$ -formule  $\forall x(p(x) \to \forall u \neg r(u,x)), \forall y(p(y) \lor r(y,a)), \forall u \neg r(u,a) \in \forall u \neg r(u,b).$  In ogni passaggio sottolineiamo le formule su cui agiamo.

Si noti la necessità di istanziare per due volte la  $\gamma$ -formula F.

**9.** Ecco una deduzione naturale che mostra quanto richiesto:

9. Ecco una deduzione naturale che mostra quanto richiesto: 
$$\frac{\forall u(r(u,u)\to p(u))}{\frac{\forall u(r(u,u)\to p(u))}{r(z,z)\to p(z)}} \underbrace{\frac{[r(f(z),z)]^1}{\exists y\,r(y,z)}}_{\frac{\exists y\,r(y,z)\to\forall v\,\neg r(f(z),v)}{\exists y\,r(y,z)\to\forall v\,\neg r(f(z),v)}}_{\frac{\neg r(z,z)}{\exists w\,\neg r(w,w)}}_{\frac{\neg r(z,z)}{\exists w\,\neg r(w,w)}_2}$$
$$\underbrace{\frac{[\neg p(z)\vee r(f(z),z)]^2}{\exists w\,\neg r(w,w)}}_{\frac{\exists w\,\neg r(w,w)}{2}}$$
Si noti l'utilizzo di  $(MT)$  per ottenere  $\neg r(z,z)$ .

# Prova scritta di Logica Matematica 26 febbraio 2019

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio che eccede 6 viene sommato al risultato della seconda parte per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

### PRIMA PARTE

Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.

- **a.** Quante delle seguenti sostituzioni sono ammissibili in  $\neg \forall y \, \exists x \, r(x, f(y, u)) \vee r(v, u)$ ?  $\{u/f(y, y)\}, \{u/v\}, \{x/y\}, \{v/f(y, x)\}.$   $\boxed{\mathbf{0} \, \mathbf{1} \, \mathbf{2} \, \mathbf{3} \, \mathbf{4}}$
- **b.** Sia I l'interpretazione normale con  $D^I = \{0, 1, 2, 3\}, f^I(0) = 2, f^I(2) = 0, f^I(1) = 2, f^I(3) = 3, p^I = \{1, 2\}, r^I = \{(0, 1), (1, 2), (1, 0), (1, 3), (2, 2), (3, 3)\}.$  Allora  $I \vDash \forall z (p(z) \lor \exists y (y \neq z \land r(f(y), f(z)))).$
- c. Se un tableau (anche non sistematico) per l'enunciato F è chiuso allora nessun tableau sistematico per F è aperto.
- d. Questo albero rappresenta una deduzione naturale corretta:

$$\frac{ \forall x \neg q(x) }{\neg q(x)} \frac{ [p(g(x))]^1}{[p(g(x))]^1}$$

$$\frac{\exists x \, p(g(x))}{\neg q(x) \land p(g(x))} \frac{\neg q(x) \land p(g(x))}{\forall x (\neg q(x) \land p(g(x)))}$$

 $\mathbf{F}$ 

 $\mathbf{V}|\mathbf{F}$ 

- **e.**  $(p \lor q \to \neg r) \lor (r \land q \land \neg p) \equiv r \to ((r \land q \to p) \to \neg p \land \neg q).$
- **f.** Se  $F \vDash H$  e  $G \vDash \neg H$  allora  $F \land G$  è insoddisfacibile.
- **g.** Esiste un insieme di Hintikka che contiene gli enunciati  $\neg p(a)$ ,  $\forall x(p(x) \lor q(x)) \in \exists y \neg q(y)$ . **b.**  $\exists z \ p(z) \land \exists x \ r(x \ x) = \exists z(p(z) \land r(z \ z))$
- **h.**  $\exists z \, p(z) \land \exists x \, r(x, x) \equiv \exists z (p(z) \land r(z, z)).$  **i.** Existe un'interpretazione che soddisfa gli assiomi dell'uguaglianza Eq.
- i. Esiste un'interpretazione che soddisfa gli assiomi dell'uguaglianza  $\mathsf{Eq}_{\mathcal{L}}$  ma non è normale.
- **j.** Se  $\sim$  è una relazione di congruenza su I,  $d_0 \sim d_1$  e  $(d_0, d_1) \in r^I$  allora I,  $\sigma[x/d_0, y/d_1] \models r(y, x)$ .  $\boxed{\mathbf{V} \mid \mathbf{F}}$
- **k.** Scrivete nel riquadro l'enunciato del lemma che stabilisce la relazione tra una  $\gamma$ -formula e le sue istanze.



### SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il numero 2.

1. Usando l'algoritmo di Fitting mettete in forma normale congiuntiva la formula

2pt

$$\neg(\neg p \lor \neg(q \to r)) \to ((s \to \neg t \land u) \to \neg v).$$

**2.** Sia  $\mathcal{L} = \{a, m, i, p, c\}$  un linguaggio dove a è un simbolo di costante, m un simbolo di funzione unario, i è un simbolo di relazione unario e p e c sono simboli di relazione binari. Interpretando a come "Andrea", m(x) come "il miglior amico di x", i(x) come "x è invitato alla festa", p(x, y) come "x è parente di y", c(x, y) come "x conosce y", traducete la frase:

tutti gli invitati alla festa conoscono almeno un parente del miglior amico di Andrea non invitato alla festa.

3pt

3. Usando il metodo dei tableaux stabilite se

3pt

$$(\neg p \to \neg q) \to r \lor ((s \land \neg p) \lor r \to \neg (r \land s \to q))$$

è valida. Se la formula non è valida definite una valutazione che lo testimoni.

4. Mettete in forma prenessa la formula

2pt

$$\neg \forall y \,\exists x \,\neg r(x, f(y)) \rightarrow \neg \exists x \,\forall z \, r(f(x), z) \vee \neg \forall u \, p(u).$$

Se riuscite, usate il minimo numero di quantificatori possibili.

1pt

**5.** Dimostrate che

4pt

$$\forall x (\forall y \, r(f(x), f(y)) \to \neg p(x)), \forall u (\forall v \, r(u, f(v)) \lor \neg p(u)), p(c) \vDash \neg p(f(c)).$$

6. Dimostrate che l'insieme di enunciati

4pt

$$\{\neg p(a) \land p(c), \forall x \, \forall y (\neg p(x) \land p(y) \rightarrow r(f(x), f(y))), \forall w \, f(w) \neq w, \forall z \, \forall u (r(z, u) \rightarrow \neg p(z) \land p(u))\}$$

è soddisfacibile nella logica con uguaglianza.

7. Sia  $\mathcal{L} = \{p, r\}$  il linguaggio con un simbolo di relazione unario ed uno binario. Siano 3pt I e J le seguenti interpretazioni per  $\mathcal{L}$ :

$$D^I = \{0, 1, 2, 3\}, \quad p^I = \{1, 3\}, \quad r^I = \{(1, 2), (3, 2), (3, 3)\};$$

$$D^{J} = \{A, B, C, D, E, F, G\}, \quad p^{J} = \{B, C, G\}, \quad r^{J} = \{(B, E), (C, E), (G, E), (G, G)\}.$$

Definite un omomorfismo forte suriettivo di J in I.

Scrivete una formula nel linguaggio  $\mathcal{L}$  a cui sia aggiunta l'uguaglianza che sia vera in I ma non in J (consideriamo I e J interpretazioni normali).

8. Usando il metodo dei tableaux stabilite che l'insieme di enunciati

4pt

$$\{\exists z \neg r(z,c), \forall x(p(x) \rightarrow \forall u \, r(x,u)), \forall y(p(y) \lor \neg r(c,y)), p(c)\}$$

è insoddisfacibile.

9. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

5pt

$$\forall v(r(v,v) \rightarrow p(v)), \exists y(r(y,f(y)) \lor \neg p(y)), \forall x(\exists z \ r(x,z) \rightarrow \forall u \ \neg r(u,f(x))) \rhd \exists w \ \neg r(w,w).$$

#### Soluzioni

- **a.** 3 la prima sostituzione non è ammissibile, perché la prima occorrenza libera di u è nel raggio d'azione di un quantificatore su y. La seconda sostituzione è ammissibile perché non ci sono quantificatori su v, la terza perché x non ha occorrenze libere, la quarta perché l'unica occorrenza libera di v non è nel raggio d'azione di nessun quantificatore.
- **b.** F perché  $I, \sigma[z/3] \nvDash p(z) \vee \exists y (y \neq z \wedge r(f(y), f(z))).$
- c. V l'ipotesi e il Teorema di correttezza (10.29 delle dispense) implicano che F è insoddisfacibile; allora il Teorema di completezza (10.37 delle dispense) ci assicura che nessun tableaux sistematico per F è aperto.
- **d.** F la presunta applicazione di  $(\exists i)$  nel passo contrassegnato da 1 non è corretta, perché x è libera in  $\neg q(x) \land p(g(x))$ .
- e. V come si verifica per esempio con le tavole di verità.
- **f. V** sia v un'interpretazione qualsiasi: se  $v(F) = \mathbf{V}$  allora  $v(H) = \mathbf{V}$ , mentre se  $v(G) = \mathbf{V}$  allora  $v(\neg H) = \mathbf{V}$  e perciò  $v(H) = \mathbf{F}$ ; quindi non può essere simultaneamente sia  $v(F) = \mathbf{V}$  che  $v(G) = \mathbf{V}$ , cioè deve essere  $v(F \wedge G) = \mathbf{F}$ .
- **g.** V  $\{\neg p(a), \forall x(p(x) \lor q(x)), \exists y \neg q(y), \neg q(b), p(a) \lor q(a), q(a), p(b) \lor q(b), p(b)\}$  è un insieme di Hintikka.
- **h.** F analogamente a quanto fatto nella seconda parte dell'Esercizio 7.77 delle dispense, non è difficile dimostrare che  $\exists z \ p(z) \land \exists x \ r(x,x) \nvDash \exists z (p(z) \land r(z,z))$ .
- i. V come mostrato nell'Esempio 7.105 delle dispense.
- **j.** V per definizione di relazione di congruenza  $d_0 \sim d_1$  e  $(d_0, d_1) \in r^I$  implicano  $(d_1, d_0) \in r^I$ , che significa  $I, \sigma[x/d_0, y/d_1] \models r(y, x)$ .
- **k.** se G è una  $\gamma$ -formula e H una sua istanza allora  $G \models H$  (Lemma 10.6 delle dispense).
- 1. Utilizziamo l'Algoritmo 3.18 delle dispense, adottando le semplificazioni suggerite nella Nota 3.30:

$$\langle [\neg (\neg p \vee \neg (q \to r)) \to ((s \to \neg t \wedge u) \to \neg v)] \rangle$$

$$\langle [\neg p \vee \neg (q \to r), (s \to \neg t \wedge u) \to \neg v] \rangle$$

$$\langle [\neg p, \neg (q \to r), (s \to \neg t \wedge u) \to \neg v] \rangle$$

$$\langle [\neg p, \neg (q \to r), \neg (s \to \neg t \wedge u), \neg v] \rangle$$

$$\langle [\neg p, q, \neg (s \to \neg t \wedge u), \neg v], [\neg p, \neg r, \neg (s \to \neg t \wedge u), \neg v] \rangle$$

$$\langle [\neg p, q, s, \neg v], [\neg p, q, \neg (\neg t \wedge u), \neg v], [\neg p, \neg r, s, \neg v], [\neg p, \neg r, \neg (\neg t \wedge u), \neg v] \rangle$$

$$\langle [\neg p, q, s, \neg v], [\neg p, q, t, \neg u, \neg v], [\neg p, \neg r, s, \neg v], [\neg p, \neg r, t, \neg u, \neg v] \rangle$$

La formula in forma normale congiuntiva ottenuta è

$$(\neg p \lor q \lor s \lor \neg v) \land (\neg p \lor q \lor t \lor \neg u \lor \neg v) \land (\neg p \lor \neg r \lor s \lor \neg v) \land (\neg p \lor \neg r \lor t \lor \neg u \lor \neg v).$$

**2.**  $\forall x(i(x) \to \exists y(c(x,y) \land p(y,m(a)) \land \neg i(y))).$ 

3. Per stabilire se la formula è valida applichiamo l'Algoritmo 4.5 delle dispense alla negazione della formula. In ogni passaggio sottolineiamo la formula su cui agiamo.

Il tableau è aperto e quindi la formula di partenza non è valida. La foglia aperta ci permette di definire un'interpretazione che non la soddisfa:  $v(p) = \mathbf{F}, \ v(q) = \mathbf{F}, \ v(r) = \mathbf{F}, \ v(s) = \mathbf{V}.$ 

4. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\neg \forall y \,\exists x \,\neg r(x, f(y)) \,\rightarrow \,\neg \exists x \,\forall z \, r(f(x), z) \,\vee \,\neg \forall u \, p(u)$$

$$\exists y \,\forall x \, r(x, f(y)) \,\rightarrow \,\forall x \,\exists z \,\neg r(f(x), z) \,\vee \,\exists u \,\neg p(u)$$

$$\exists y \,\forall x \, r(x, f(y)) \,\rightarrow \,\forall x \,(\exists z \,\neg r(f(x), z) \,\vee \,\exists u \,\neg p(u))$$

$$\exists y \,\forall x \, r(x, f(y)) \,\rightarrow \,\forall x \,\exists z (\neg r(f(x), z) \,\vee \,\neg p(z))$$

$$\forall y \,\forall x \,(\forall x \, r(x, f(y)) \,\rightarrow \,\exists z (\neg r(f(x), z) \,\vee \,\neg p(z)))$$

$$\forall y \,\forall x \,\exists z (r(z, f(y)) \,\rightarrow \,\neg r(f(x), z) \,\vee \,\neg p(z)).$$

5. Sia I sia un'interpretazione: dobbiamo dimostrare che I soddisfa i tre enunciati a sinistra del simbolo di conseguenza logica, che indichiamo con F, G e H, allora soddisfa anche  $\neg p(f(c))$ .

Dato che  $I \vDash H$  si ha  $c^I \in p^I$ . Da  $I \vDash F$  segue in particolare che  $I, \sigma[x/c^I] \vDash \forall y \, r(f(x), f(y)) \to \neg p(x)$ . Se fosse  $I, \sigma[x/c^I] \vDash \forall y \, r(f(x), f(y))$  dovremmo avere  $c^I \notin p^I$ , in contraddizione con quanto osservato in precedenza. Quindi  $I, \sigma[x/c^I] \nvDash \forall y \, r(f(x), f(y))$ , cioè per qualche  $d_0 \in D^I$  si ha  $I, \sigma[x/c^I, y/d_0] \nvDash r(f(x), f(y))$ . In altre parole, abbiamo  $(f^I(c^I), f^I(d_0)) \notin r^I$ .

Dall'ultima osservazione segue che  $I, \sigma[u/f^I(c^I)] \nvDash \forall v \, r(u, f(v))$ . Ma da  $I \vDash H$  segue in particolare  $I, \sigma[u/f^I(c^I)] \vDash \forall v \, r(u, f(v)) \lor \neg p(u)$  e quindi deve per forza essere  $I, \sigma[u/f^I(c^I)] \vDash \neg p(u)$ , ovvero  $f^I(c^I) \notin p^I$ . Abbiamo dunque ottenuto  $I \vDash \neg p(f(c))$ , come volevamo.

**6.** Dobbiamo definire un'interpretazione normale che soddisfa i quattro enunciati dell'insieme. Due interpretazioni normali con queste caratteristiche sono definite da

$$\begin{split} D^I &= \{0,1,2,3\}, \quad a^I = 0, \quad c^I = 1, \quad f^I(0) = 2, f^I(1) = 3, f^I(2) = 0, f^I(3) = 1, \\ p^I &= \{1,3\}, \quad r^I = \{(0,1),(0,3),(2,1),(2,3)\}; \\ D^J &= \mathbb{N}, \quad a^J = 0, \quad c^J = 1, \quad f^J(n) = n+2, \\ p^J &= \{\, n \in \mathbb{N} \, : \, n \, \, \text{\`e dispari} \, \} \,, \quad r^J = \{\, (n,m) \, : \, n \, \, \text{\`e pari e} \, m \, \, \text{\`e dispari} \, \} \,. \end{split}$$

Dato che le interpretazioni sono normali non abbiamo bisogno di specificare  $=^I$  e  $=^J$ . Sia  $\varphi$  l'omomorfismo forte di J in I che cerchiamo di costruire. Visto che  $B \in p^J$  e  $(B,B) \notin r^J$  deve essere  $\varphi(B) = 1$ , dato che 1 è l'unico elemento di  $D^I$  che sta in  $p^I$  ma tale che la coppia che lo ripete non sta in  $r^I$ . Per la stessa ragione deve essere  $\varphi(C) = 1$ . Invece  $G \in p^J$  e  $(G,G) \in r^J$  impongono che  $\varphi(G) = 3$ . Dato che  $(B,E) \in r^J$  deve essere  $(\varphi(B),\varphi(E)) \in r^I$ , ovvero  $(1,\varphi(E)) \in r^I$ : l'unica scelta possibile è  $\varphi(E) = 2$ . Notiamo invece che A, D e F non appartengono a nessuna coppia che sta in  $r^J$ : dato che 0 è l'unico elemento di  $D^I$  con queste caratteristiche (rispetto a  $r^I$ ) deve essere

Si verifica che la  $\varphi$  così definita è effettivamente un omomorfismo forte suriettivo.

 $\varphi(A) = \varphi(D) = \varphi(F) = 0.$ 

Estendendo il linguaggio con l'uguaglianza e considerando I e J come interpretazioni normali si può osservare che  $I \vDash \exists x \, \exists y (p(x) \land p(y) \land \forall z (p(z) \to x = z \lor y = z))$ , mentre J non soddisfa questo enunciato.

8. Per mostrare l'insoddisfacibilità del nostro insieme dobbiamo costruire (utilizzando l'Algoritmo 10.50 e le Convenzioni 10.21 e 10.23 delle dispense) un tableau chiuso con la radice etichettata dall'insieme. Indichiamo con F, G, H e K le  $\gamma$ -formule  $\forall x(p(x) \rightarrow \forall u \, r(x,u)), \, \forall y(p(y) \vee \neg r(c,y))), \, \forall u \, r(c,u) \in \forall u \, r(a,u).$  In ogni passaggio sottolineiamo le formule su cui agiamo.

$$\frac{\exists z \, \neg r(z,c), F, G, p(c)}{|} \\ \neg r(a,c), \underline{F}, G, p(c) \\ | \\ \neg r(a,c), F, \underline{p(c)} \to \underline{H}, G, p(c) \\ \otimes \\ \neg r(a,c), F, \underline{H}, \underline{G}, p(c) \\ \otimes \\ \neg r(a,c), F, \underline{H}, \underline{G}, \underline{p(c)} \\ \neg r(a,c), F, \underline{H}, G, \underline{p(a)} \vee \neg r(c,a), p(c) \\ \neg r(a,c), \underline{F}, \underline{H}, G, p(a), p(c) \\ \neg r(a,c), F, \underline{p(a)} \to \underline{K}, \underline{H}, G, p(a), p(c) \\ \neg r(a,c), F, \underline{p(a)} \to \underline{K}, \underline{H}, G, p(a), p(c) \\ \otimes \\ \neg r(a,c), F, \underline{K}, \underline{H}, G, p(a), p(c) \\ \otimes \\ \neg r(a,c), F, \underline{K}, \underline{H}, G, p(a), p(c) \\ \otimes \\ \otimes \\ \text{Si noti la necessità di istanziare per due volte la } \gamma\text{-formula } F.$$

Si noti la necessità di istanziare per due volte la  $\gamma$ -formula F.

9. Ecco una deduzione naturale che mostra quanto richiesto:

$$\forall v(r(v,v) \to p(v)), \exists y(r(y,f(y)) \lor \neg p(y)), \forall x(\exists z \, r(x,z) \to \forall u \, \neg r(u,f(x))) \rhd \exists w \, \neg r(w,w).$$

$$\frac{[r(y,f(y))]^1}{\exists z\,r(y,z)}\frac{\forall x(\exists z\,r(x,z)\to\forall u\,\neg r(u,f(x)))}{\exists z\,r(y,z)\to\forall u\,\neg r(u,f(y))}\underbrace{\frac{\forall v(r(v,v)\to p(v))}{r(y,y)\to p(v)}}_{[\neg p(y)]^1}\underbrace{\frac{\forall v(r(v,v)\to p(v))}{r(y,y)\to p(y)}}_{[\neg r(y,y)]^1}\underbrace{\frac{\neg r(y,y)}{\neg r(y,y)}}_{[\neg r(y,y)]^2}\underbrace{\frac{\exists v\,\neg r(w,w)}{\exists w\,\neg r(w,w)}}_{2}$$

$$\exists y(r(y,f(y))\vee\neg p(y))\underbrace{\frac{[r(y,f(y))\vee\neg p(y)]^2}{\exists w\,\neg r(w,w)}}_{2}$$
Si noti l'utilizzo di  $(MT)$  per ottenere  $\neg r(y,y)$ 

Si noti l'utilizzo di (MT) per ottenere  $\neg r(y, y)$ .