Санкт-Петербургский Государственный Университет

Факультет математики и компьютерных наук

Комплексный анализ

Конспект основан на лекциях Романа Викторовича Бессонова

3 сентября 2020 г.

Конспект основан на лекциях по комплексному анализу, прочитанных Романом Викторовичем Бессоновым студентам Факультета математики и компьютерных наук Санкт-Петербургского государственного университета в весеннем семестре 2019–2020 учебного года.

В конспекте содержится материал 40го семестра курса математического анализа.

Авторы:

Михаил Опанасенко Роман Бессонов

Помощник:

Станислав Крымский

Авторы рисунков:

Михаил Опанасенко Вячеслав Тамарин

© 2020 г.

Распространяется под лицензией Creative Commons Attribution 4.0 International License, см. https://creativecommons.org/licenses/by/4.0/.

Последняя версия конспекта и исходный код:

https://www.overleaf.com/read/ftfgybcrthgs

Оглавление

Комплексный анализ			
	1	Точные и замкнутые дифференциальные формы	1
	2	Аналитические функции	11
	3	Гармонические функции	21
	4	Интегральная теорема Коши	33
	5	Ряды Лорана	41
	6	Принцип аргумента и теорема Руше	54
	7	Аналитическое продолжение	62
	8	Римановы поверхности аналитических функций	69
	9	Преобразования Мёбиуса и их произведения	79
	10	Теорема Римана	87
	11	Теорема Каратеодори	91
	12	Модулярная функция и её применения	98
	13	Принцип Фрагмена–Линделёфа	102
	14	Теоремы Вейерштрасса и Миттаг-Леффлера	105
	15	Рост и коэффициенты ряда Тейлора целых функций	
	16	Формула Йенсена	111
	17	Теорема Адамара о факторизации целых функций	115
	18	Граничное поведение гармонических функций в единичном круге	122
A	Гра	фики комплексных функций	131

Комплексный анализ

1 Точные и замкнутые дифференциальные формы

Определение. Гладким путём в \mathbb{R}^2 называется отображение $\gamma \in C^1([0,1],\mathbb{R}^2)$, для которого выполнено условие $\gamma'(t) \neq 0$ для всех $t \in (0,1)$. Если $\gamma([0,1]) \subset \Omega$, то γ называется путём в области Ω .

Определение. Пусть γ_1, γ_2 — пути, причём $\gamma_1(1) = \gamma_2(0)$. *Суммой* γ_1 и γ_2 называется путь

$$\gamma_1 + \gamma_2 \colon t \mapsto \begin{cases} \gamma_1(2t), & t \in [0, \frac{1}{2}], \\ \gamma_2(2t-1), & t \in (\frac{1}{2}, 1]. \end{cases}$$

Определение. Кусочно-гладкий путь — конечная сумма гладких путей.

Определение. Если γ — путь, то $(-\gamma)$ — путь, заданный следующим образом:

$$(-\gamma)(t) = \gamma(1-t).$$

Если γ : $[0,1] \to \mathbb{C}$ — некоторый путь, то его конец $\gamma(1)$ будем обозначать через $e(\gamma)$, а начало — через $b(\gamma) = \gamma(0)$. Путь γ называется *замкнутым*, если $b(\gamma) = e(\gamma)$.

Определение. Если Ω — область в \mathbb{C} , то отображение $H \in C([0,1] \times [0,1], \Omega)$ называется гомотопией в Ω .

Определение. Будем говорить, что кусочно-гладкие пути γ_0 , γ_1 гомотопны в Ω , если между ними существует гомотопия H в Ω , такая, что

$$H(0,t) = \gamma_0(t),$$
 $H(1,t) = \gamma_1(t),$
 $H(\cdot,0) \equiv \text{const},$ $H(\cdot,1) \equiv \text{const}.$

Будем также считать, что H(s,t) — кусочно-гладкий путь для любого $s \in [0,1].$

Упражнение. В $\mathbb{C} \setminus \{0\}$ верхняя и нижняя полуокружности не гомотопны.

Определение. Дифференциальной 1-формой ω в области $\Omega\subset\mathbb{C}$ называется отображение из Ω в пространство линейных отображений из \mathbb{R}^2 в \mathbb{C} .

 $^{^{1}}$ Можно доказать, что все результаты из топологии, которые мы будем использовать, верны при этом условии. (ОМ)

Пример 1.1. dz = dx + i dy, $d\overline{z} = dx - i dy$ — дифференциальные 1-формы, где

$$(\mathrm{d}x) \begin{pmatrix} a \\ b \end{pmatrix} = a, \qquad (\mathrm{d}y) \begin{pmatrix} a \\ b \end{pmatrix} = b.$$

Ясно, что dz, d \overline{z} — постоянные формы на \mathbb{C} . Примеры непостоянных форм: z dz, y dx.

В этом курсе мы будем рассматривать только формы с непрерывными коэффициентами.

Определение. Пусть $\gamma = (\gamma_1, \gamma_2)$ — гладкий путь в Ω ,

$$\omega = P(x, y) dx + Q(x, y) dy$$

— непрерывная дифференциальная форма в Ω . Определим *интеграл* ω *по пути* γ следующим образом:

$$\int_{\gamma} \omega = \int_{0}^{1} P(\gamma_{1}(t), \gamma_{2}(t)) \cdot \gamma_{1}'(t) dt + \int_{0}^{1} Q(\gamma_{1}(t), \gamma_{2}(t)) \cdot \gamma_{2}'(t) dt.^{2}$$

Если же $\gamma = \gamma_1 + \dots + \gamma_n$ — кусочно-гладкий путь, то интеграл определяется по формуле

$$\int_{\gamma} \omega = \int_{\gamma_1} \omega + \cdots + \int_{\gamma_n} \omega.$$

Утверждение 1.1 (основная оценка интеграла). Пусть γ — кусочно-гладкий путь, ω — дифференциальная 1-форма. Тогда выполнено следующее неравенство:

$$\left| \int_{\gamma} \omega \right| \leq \ell(\gamma) \cdot \max_{t \in [0,1]} \sqrt{|P(\gamma_1(t), \gamma_2(t))|^2 + |Q(\gamma_1(t), \gamma_2(t))|^2},$$

где $\ell(\gamma)$ — длина пути γ .

Доказательство. Ясно, что можно считать, что γ — гладкий путь. В этом случае

$$\left| \int_{\gamma} \omega \right| \leqslant \int_{0}^{1} (|P(\gamma) \cdot \gamma_{1}'| + |Q(\gamma) \cdot \gamma_{2}'|) dt$$

$$\leqslant \int_{0}^{1} \sqrt{|P(\gamma)|^{2} + |Q(\gamma)|^{2}} \cdot \sqrt{\gamma_{1}'(t)^{2} + \gamma_{2}'(t)^{2}} dt.$$

 $^{^2}$ Если γ — простой путь, то γ — гладко параметризованное многообразие в \mathbb{R}^2 , и интеграл $\int_{\gamma} \omega$ совпадает с интегралом ω по многообразию $\gamma([0,1])$. Тем не менее, нам гораздо проще работать с определением выше, чем думать о многообразиях.

*

Значит,

$$\begin{split} \left| \int\limits_{\gamma} \omega \right| & \leq \int\limits_{0}^{1} \max_{t \in [0,1]} \sqrt{|P(\gamma)|^{2} + |Q(\gamma)|^{2}} \sqrt{\gamma_{1}'(t)^{2} + \gamma_{2}'(t)^{2}} \, dt \\ &= \max_{t \in [0,1]} \sqrt{|P(\gamma)|^{2} + |Q(\gamma)|^{2}} \cdot \int\limits_{0}^{1} \sqrt{\gamma_{1}'(t)^{2} + \gamma_{2}'(t)^{2}} \, dt \\ &= \max_{t \in [0,1]} \sqrt{|P(\gamma)|^{2} + |Q(\gamma)|^{2}} \cdot \ell(\gamma), \end{split}$$

что и требовалось.

Определение. 1-форма ω называется *точной* в области Ω , если существует функция $F: \Omega \to \mathbb{C}$, где $F \in C^1(\Omega)$, такая, что $\mathrm{d}F = \omega$.

Определение. 1-форма ω называется *замкнутой* в области Ω , если для любой точки $p \in \Omega$ существует такая окрестность $U(p) \subset \Omega$, что форма ω точна в U(p).

Теорема 1.2. Пусть Ω — область в \mathbb{C} , ω — непрерывная дифференциальная 1-форма в Ω . Следующие условия эквивалентны:

- (1) форма ω точна в Ω ;
- (2) для любых кусочно-гладких путей γ_1, γ_2 с совпадающими концами выполнено равенство

$$\int_{\gamma_1} \omega = \int_{\gamma_2} \omega.$$

Доказательство.

 $(1) \Longrightarrow (2)$. Пусть $\omega = \mathrm{d} F$ для некоторого отображения $F \in C^1(\Omega,\mathbb{C})$. Тогда

$$\int_{\gamma} \omega = \int_{0}^{1} F'_{x}(\gamma_{1}(t), \gamma_{2}(t)) \gamma'_{1}(t) dt + F'_{y}(\gamma_{1}(t), \gamma_{2}(t)) \gamma'_{2}(t) dt$$

$$= \int_{0}^{1} (F(\gamma_{1}(t), \gamma_{2}(t)))'_{t} dt = F(e(\gamma)) - F(b(\gamma)),$$

для любого гладкого пути γ в Ω . Значит, то же самое верно для кусочно-гладких путей (телескопическая сумма), и выполнено свойство (2).

 $(2)\Longrightarrow (1).$ Зафиксируем точку $a\in \Omega.$ Для любого $p\in \Omega$ обозначим через γ_p про-извольный путь, соединяющий a и p; и определим $F(p)=\int_{\gamma_p}\omega.$ Это определение корректно по условию (2). Ясно, что

$$\frac{F(x_0+\varepsilon \operatorname{th},y_0+\delta \operatorname{th})-F(x_0,y_0)}{\operatorname{th}}=\frac{1}{\operatorname{th}}\int\limits_{\gamma_{(x_0+\varepsilon \operatorname{th},y_0+\delta \operatorname{th})}}\omega-\frac{1}{\operatorname{th}}\int\limits_{\gamma_{(x_0,y_0)}}\omega.$$

Представим путь $\gamma_{(x_0+\varepsilon th, v_0+\delta th)}$ следующим образом:

$$\gamma_{(x_0+\varepsilon \, \text{th}, y_0+\delta \, \text{th})} = \gamma_{(x_0, y_0)} + [(x_0, y_0), (x_0+\varepsilon \, \text{th}, y_0+\delta \, \text{th})] = \gamma_{(x_0, y_0)} + I(\text{th}).$$

Тогда

$$\int_{I(\text{th})} \omega = \int_{\gamma_{(x_0+\varepsilon \, \text{th}, y_0+\delta \, \text{th})}} \omega - \int_{\gamma_{(x_0, y_0)}} \omega = F(x_0 + \varepsilon \, \text{th}, y_0 + \delta \, \text{th}) - F(x_0, y_0).$$

Пусть $\omega = P(x, y) dx + Q(x, y) dy$. Тогда

$$\int_{I(\th)} \omega = \int_{0}^{1} P(x_0 + \varepsilon t \th, y_0 + \delta t \th) \varepsilon \th dt + Q(x_0 + \varepsilon t \th, y_0 + \delta t \th) \delta \th dt$$

$$= \th \int_{0}^{1} P(x_0 + \varepsilon t \th, y_0 + \delta t \th) \varepsilon dt + Q(x_0 + \varepsilon t \th, y_0 + \delta t \th) \delta dt,$$

то есть

$$\lim_{t \to 0} \frac{\int_{I(th)} \omega}{th} = P(x_0, y_0)\varepsilon + Q(x_0, y_0)\delta,$$

так как P и Q непрерывны в точке (x_0, y_0) . Таким образом, для любых ε и δ

$$dF(\varepsilon,\delta) = \lim_{th\to 0} \frac{F(x_0 + \varepsilon th, y_0 + \delta th) - F(x_0, y_0)}{th} = P(x_0, y_0)\varepsilon + Q(x_0, y_0)\delta.$$

Значит, $dF = \omega$.

Теорема 1.3. Пусть Ω — область, ω — непрерывная дифференциальная 1-форма в Ω . Следующие условия эквивалентны:

- (1) ω замкнутая форма;
- (2) для любых гомотопных в Ω путей γ_1 и γ_2 выполнено равенство $\int_{\gamma_1} \omega = \int_{\gamma_2} \omega$.
- (3) для любого прямоугольника $\Pi \subset \Omega$ выполнено равенство $\int_{\partial \Pi} \omega = 0$. Доказательство.
- $(1)\Longrightarrow (2).$ Пусть H гомотопия между γ_1 и γ_2 . Покажем, что существует такое $\varepsilon>0$, что для любой точки $p\in H([0,1]\times[0,1])=K$ форма ω точна в круге $B(p,\varepsilon)$. По определению замкнутости для любого $p\in K$ существует такое $\varepsilon(p)$, что форма ω точна в $B(p,2\varepsilon(p))$. Заметим, что K компактно как непрерывный образ компакта. Значит, существует набор $p_1,\ldots,p_N\in K$, такой, что $\{B(p_k,\varepsilon(p_k))\}$ покрытие K. Тогда нетрудно убедиться, что подходит $\varepsilon=\min(\varepsilon(p_1),\ldots,\varepsilon(p_k))$.

По равномерной непрерывности H можно выбрать такое $\delta \in (0, \varepsilon/4)$, что для всех $(s_1, t_1), (s_2, t_2) \in [0, 1] \times [0, 1]$, удовлетворяющих условию $\|(s_1, t_1) - (s_2, t_2)\| < \delta$, имеет место неравенство $|H(s_1, t_1) - H(s_2, t_2)| < \varepsilon/4$.

Для произвольного $s \in [0,1]$ через γ_s будем обозначать путь

$$\gamma_s: t \mapsto H(s,t), \qquad t \in [0,1].$$

Зафиксируем $s_1 \in [0,1]$. Возьмём $N \in \mathbb{N}: \frac{1}{N} < \delta$; покажем, что для любого $s_2 \in [0,1]$ такого, что $|s_1 - s_2| < \frac{1}{N}$, верно равенство $\int_{\gamma_{S_1}} \omega = \int_{\gamma_{S_2}} \omega$. Рассмотрим сужения

$$\gamma_{1k} = \gamma_{s_1} \left| \left[\frac{k}{N}, \frac{k+1}{N} \right], \qquad \gamma_{2k} = \gamma_{s_2} \left| \left[\frac{k}{N}, \frac{k+1}{N} \right].$$

Ясно, что

$$\gamma_{s_1} = \gamma_{1,0} + \cdots + \gamma_{1,N-1}, \qquad \gamma_{s_2} = \gamma_{2,0} + \cdots + \gamma_{2,N-1}.$$

Для каждого k рассмотрим путь

$$\Gamma_k = \gamma_{1k} + [e(\gamma_{1k}), e(\gamma_{2k})] - \gamma_{2k} - [b(\gamma_{1k}), b(\gamma_{2k})].$$

Рис. 1: Контур Γ_k

По построению, Γ_k — кусочно-гладкий замкнутый контур. Нетрудно проверить, что

$$\Gamma_k \subset B(b(\gamma_{1k}), 2(\varepsilon/4) + 2\delta) \subset B(b(\gamma_{1k}), \varepsilon) = B,$$

а форма ω точна в B. По теореме 1.2 получаем $\int_{\Gamma_k} \omega = 0$ и

$$\int\limits_{\gamma_{S_1}-\gamma_{S_2}}\omega=\sum\limits_{k=0}^{N-1}\int\limits_{\Gamma_k}\omega=0.$$

Таким образом, $\int_{\gamma_{S_1}} \omega = \int_{\gamma_{S_2}} \omega$, когда $|s_1 - s_2| < \frac{1}{N}$. Отсюда следует, что это равенство выполнено и для $s_1 = 0$, $s_2 = 1$, так как отображение $s \mapsto \int_{\gamma_s} \omega$ локально постоянно на связном топологическом пространстве, то есть постоянно.

 $(2)\Longrightarrow (3).$ Граница любого прямоугольника в Ω стягиваема в точку, а интеграл формы по постоянному пути равен нулю, поскольку производная по обеим коорди-

натам равна нулю.

(3) \Longrightarrow (1). Зафиксируем $(x_0,y_0) \in \Omega$. Рассмотрим функцию $F(x,y) = \int_{\gamma(x,y)} \omega$, где $\gamma(x,y)$ — путь из двух отрезков, соединяющих (x_0,y_0) и (x,y). Если (x,y) близко к (x_0,y_0) , то такой путь всегда существует и соответствующий прямоугольник Π лежит в Ω . Можно проверить, что $\mathrm{d}F = \omega$ в некоторой окрестности Π . 3

Следствие 1.4. В односвязной области любая замкнутая форма точна.

Теорема 1.5. Пусть ω — C^1 -гладкая дифференциальная форма в Ω . Тогда ω замкнута в Ω в том и только том случае, когда $d\omega = 0$.

Доказательство. Пусть $p \in \Omega$ и $\omega = \mathrm{d}F$ в U(p), где U(p) — окрестность p. Тогда

$$d\omega = d(F'_x dx + F'_y dy)$$

= $(F''_{xx} dx + F''_{xy} dy) \wedge dx + (F''_{yx} dx + F''_{yy} dy) \wedge dy$
= $(-F''_{xy} + F''_{yx}) dx \wedge dy = 0.$

Наоборот, пусть форма $\omega = P(x,y)\,\mathrm{d} x + Q(x,y)\,\mathrm{d} y$ такова, что $\mathrm{d} \omega = 0$. Проверим, что интеграл по любому прямоугольнику $\Pi \subset \Omega$ равен нулю. Заметим, что

$$d\omega = 0 \iff (P'_x dx + P'_y dy) \wedge dx + (Q'_x dx + Q'_y dy) \wedge dy = 0$$

$$\iff P'_y dy \wedge dx + Q'_x dx \wedge dy = 0$$

$$\iff Q'_x = P'_y.$$

Пусть $\Pi = [a, b] \times [c, d]$. Рассмотрим контур $\Gamma = I_1 + I_2 + I_3 + I_4$, показанный на рисунке 2.

Рис. 2: Обход ∂П

Имеем:

$$\int_{\partial \Pi} \omega = \int_{I_1} \omega + \int_{I_2} \omega + \int_{I_2} \omega + \int_{I_4} \omega$$

³Доказательство аналогично предыдущей теореме.

$$= \int_{a}^{b} \underbrace{P(x,c) \cdot (x')}_{=P(x,c)} dx + \underbrace{Q(x,c) \cdot (c')}_{=0} dy + \int_{I_{2}} \omega + \int_{I_{3}} \omega + \int_{I_{4}} \omega$$

$$= \int_{a}^{b} P(x,c) dx + \int_{c}^{d} Q(b,y) dy - \int_{a}^{b} P(x,d) dx - \int_{c}^{d} Q(a,y) dy$$

$$= \int_{a}^{b} (P(x,c) - P(x,d)) dx + \int_{c}^{d} (Q(b,y) - Q(a,y)) dy$$

$$= -\int_{a}^{b} \int_{c}^{d} P'_{y}(x,y) dx dy + \int_{c}^{d} \int_{a}^{b} Q'_{x}(x,y) dx dy,$$

и последнее выражение равно нулю, так как можно переставить интегралы по теореме Фубини и $Q_x' = P_y'$. $\not<$

Примеры.

1. Пусть $a, b \in \mathbb{C}$. Покажем, что форма (a + bz) dz точна в \mathbb{C} . Это следует из замкнутости (a + bz) dz, так как \mathbb{C} односвязно; а замкнутость следует из того, что $d\omega = 0$:

$$d((a+bz) dz) = \left(\frac{\partial}{\partial x}(a+b(x+iy)) dx + \frac{\partial}{\partial y}(a+b(x+iy)) dy\right) \wedge (dx+i dy)$$
$$= b(dx+i dy) \wedge (dx+i dy) = b(i dx \wedge dy + i dy \wedge dx) = 0.$$

2. Для любого $a \in \mathbb{C}$ форма $\omega = \frac{1}{z-a} \, \mathrm{d}z$ замкнута, но не точна в $\mathbb{C} \setminus \{a\}$. Замкнутость следует из следующей цепочки равенств:

$$d\left(\frac{1}{(x+iy)-a}\right) \wedge dz = \left(-\frac{1}{((x+iy)-a)^2} dx - \frac{i}{((x+iy)-a)^2} dy\right) \wedge (dx+i dy)$$
$$= -\frac{1}{((x+iy)-a)^2} (dx+i dy) \wedge (dx+i dy) = 0.$$

Для того, чтобы понять, что ω не точна, покажем, что

$$\int_{C(a,r)} \frac{\mathrm{d}z}{z-a} = 2\pi i,$$

где $C(a,r)=\{z\in\mathbb{C}:|z-a|=r\}$ — окружность с центром в a, ориентированная против часовой стрелки⁴. Рассмотрим параметризацию $\gamma:t\mapsto a+re^{it}$. В этой

⁴Напомним, что интеграл точной формы по замкнутому пути должен быть равен нулю.

параметризации $C(a,r) = \gamma([0,2\pi])$, то есть

$$\int_{C(a,r)} \frac{\mathrm{d}z}{z-a} = \int_{0}^{2\pi} \frac{\mathrm{d}(re^{it}+a)}{(re^{it}+a)-a} = \int_{0}^{2\pi} \frac{r \cdot ie^{it} \, \mathrm{d}t}{r \cdot e^{it}} = \int_{0}^{2\pi} i \, \mathrm{d}t = 2\pi i.$$

3. Пусть $w \in B(a,r) = \{z \in \mathbb{C} : |z-a| < r\}$. Тогда

$$\int_{C(a,r)} \frac{\mathrm{d}z}{z-w} = 2\pi i.$$

Рассмотрим форму $\omega=\frac{\mathrm{d}z}{z-w}$. Мы уже доказывали, что ω замкнута в $\mathbb{C}\setminus\{w\}$. Рассмотрим замкнутый кусочно-гладкий контур $\Gamma=C(a,r)+\gamma-C(w,\varepsilon)-\gamma$, где ε выбрано таким образом, чтобы a лежало за пределами $C(w,\varepsilon)$ — см. рисунок 3.5

Рис. 3: Контур Г

Видно, что Γ стягиваем в точку в $\mathbb{C}\setminus\{w\}$, а потому $\int_{\Gamma}\omega=0$. Значит,

$$\int_{\Gamma} \omega = \int_{C(a,r)} \omega + \int_{\gamma} \omega - \int_{C(w,\varepsilon)} \omega - \int_{\gamma} \omega = 0,$$

то есть

$$\int_{C(a,r)} \omega = \int_{C(w,\varepsilon)} \omega = 2\pi i.$$

 $^{^{5}}$ На картинке путь γ расщеплён на две части для того, чтобы было видно, как он устроен; хотя на самом путь один. Далее будет использоваться это соглашение.

Лемма 1.6 (об устранении особенности). Пусть $ω = P \, \mathrm{d} x + Q \, \mathrm{d} y$ — непрерывная дифференциальная форма в области Ω ; пусть ω замкнута в $\Omega \setminus \{z_0\}$ для некоторого $z_0 \in \Omega$. Предположим, что

$$A = \sup_{x,y \in U(z_0)} (|P(x,y)| + |Q(x,y)|) < \infty,$$

где $U(z_0)$ — некоторая окрестность точки z_0 . Тогда форма ω замкнута в Ω .

Доказательство. Надо проверить, что $\int_{\partial\Pi} \omega = 0$ для любого прямоугольника Π в Ω . Если $z_0 \notin \Pi$, то $\int_{\partial\Pi} \omega = 0$, так как ω замкнута в $\Omega \setminus \{z_0\}$. Если $z_0 \in \Pi$, то рассмотрим контур $\Gamma_{\varepsilon} = \Gamma_{\varepsilon}^+ + \Gamma_{\varepsilon}^-$, как показано на рисунке 4. Поскольку контуры Γ_{ε}^+ и Γ_{ε}^- стягивае-

Рис. 4: Контур Γ_{ε}

мы,

$$\int\limits_{\Gamma_{\varepsilon}}\omega=\int\limits_{\Gamma_{\varepsilon}^{+}}\omega+\int\limits_{\Gamma_{\varepsilon}^{-}}\omega=0.$$

С другой стороны, нетрудно видеть, что

$$\int\limits_{\partial\Pi}\omega-\int\limits_{\Gamma_{\varepsilon}}\omega=-\int\limits_{C(z_{0},\varepsilon)}\omega.$$

Осталось показать, что

$$\left| \int_{C(z_0,\varepsilon)} \omega \right| \xrightarrow[\varepsilon \to 0]{} 0.$$

Действительно, из основной оценки интеграла дифференциальной формы (утвер-

≮

ждение 1.1) получаем, что

$$\left| \int_{C(z_0,\varepsilon)} \omega \right| \leqslant cA \cdot 2\pi\varepsilon \xrightarrow[\varepsilon \to 0]{} 0,$$

где $2\pi\varepsilon=\ell(C(z_0,\varepsilon)),$ аc — некоторая константа.

2 Аналитические функции

Теорема 2.1 (Коши, Гурса, Морера). Пусть Ω — область в \mathbb{C} , $f:\Omega\to\mathbb{C}$. Следующие утверждения равносильны:

(1) для любой точки $z_0 \in \Omega$ существует предел

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0};$$

- (2) $f \in C(\Omega)$ и форма f dz замкнута в Ω ;
- (3) для любой точки $z_0 \in \Omega$ существует такое число $r(z_0) > 0$, что

$$f(w) = \sum_{n \geqslant 0} c_n (w - z_0)^n,$$

для любого $w \in B(z_0, r(z_0)) \subset \Omega$.

Более того, если условия (1) — (3) выполнены, то в качестве $r(z_0)$ в пункте (3) можно брать любое $r \in (0, \operatorname{dist}(z_0, \partial\Omega))$.

Доказательство.

 $(1)\Longrightarrow (2).$ Очевидно, что $f\in C(\Omega)$, так как f — дифференцируема. Проверим, что для любого прямоугольника $\Pi\subset\Omega$ интеграл $\omega=f$ dz по границе Π равен нулю. Пусть это не так. Тогда существует $\varepsilon>0$ и такой прямоугольник Π_0 , что

$$\left| \int_{\partial \Pi_0} \omega \right| \geqslant \varepsilon^2 (\operatorname{diam} \Pi_0)^2.$$

Далее будем строить последовательность прямоугольников Π_n , чьи диаметры стремятся к нулю, а каждый из них лежит внутри предыдущего. Очевидно, каждый такой прямоугольник Π_n можно разбить на 4 равных прямоугольника Q_{n1}, \ldots, Q_{n4} вдвое меньшего диаметра. Заметим, что один из прямоугольников Q_{ni} должен удовлетворять условию

$$\left| \int_{\partial Q_{ni}} \omega \right| \geqslant \frac{\varepsilon^2 (\operatorname{diam} \Pi_n)^2}{4} = \varepsilon^2 (\operatorname{diam} Q_{ni})^2. \tag{2.1}$$

Действительно, рассмотрим контур, изображённый на рисунке 5. Нетрудно видеть, что

$$\int\limits_{\partial\Pi_0}\omega=\int\limits_{\Gamma_{1n}}\omega+\int\limits_{\Gamma_{2n}}\omega+\int\limits_{\Gamma_{3n}}\omega+\int\limits_{\Gamma_{4n}}\omega=\int\limits_{\partial Q_{n1}}\omega+\int\limits_{\partial Q_{n2}}\omega+\int\limits_{\partial Q_{n3}}\omega+\int\limits_{\partial Q_{n4}}\omega,$$

откуда требуемое неравенство следует очевидным образом. Именно прямоугольник Q_{ni} со свойством (2.1) мы и возьмём в качестве Π_{n+1} .

Рис. 5: Контур $\Gamma_{1n} + \Gamma_{2n} + \Gamma_{3n} + \Gamma_{4n}$

Таким образом, получаем последовательность вложенных прямоугольников $\Pi_0 \supset \Pi_1 \supset \Pi_2 \supset \dots$, причём для каждого $k \in \mathbb{N}_0$ выполнено

$$\left| \int_{\partial \Pi_k} \omega \right| \geqslant \varepsilon^2 (\operatorname{diam} \Pi_k)^2.$$

Найдём $z_0 \in \bigcap_{k=1}^{\infty} \Pi_k$ и воспользуемся условием (1):

$$\int_{\partial\Pi_{k}} \omega = \int_{\partial\Pi_{k}} \left(f(z_{0}) + f'(z_{0})(z - z_{0}) + \alpha(z - z_{0}) \right) dz$$

$$= \int_{\partial\Pi_{k}} (a + bz) dz + \int_{\partial\Pi_{k}} \alpha(z - z_{0}) dz, \tag{2.2}$$

где $a = f(z_0) - z_0 f'(z_0)$, $b = f'(z_0)$, и $|\alpha(z - z_0)| = o(|z - z_0|)$ при $k \to \infty$. В предыдущем параграфе мы показали, что форма (a + bz) dz точна, то есть левый интеграл в (2.2) равен нулю. По основной оценке интеграла,

$$\varepsilon^2(\operatorname{diam}\Pi_k)^2 \leqslant \left| \int\limits_{\partial\Pi_k} f \, \mathrm{d}z \right| \leqslant 4 \operatorname{diam}\Pi_k \cdot o(\operatorname{diam}\Pi_k) = o((\operatorname{diam}\Pi_k)^2),$$

что невозможно. Таким образом, мы доказали замкнутость формы f dz.

 $(1)\implies (3).$ Пусть $z_0\in\Omega,$ $r=r(z_0)<\mathrm{dist}(z_0,\partial\Omega).$ Тогда $B(z_0,r)\subset\Omega.$ Рассмотрим форму

$$\widetilde{\omega} = \frac{f(z) - f(z_0)}{z - z_0} dz.$$

 $\widetilde{\omega}$ — форма, замкнутая в $\Omega\setminus\{z_0\}$, так как можно применить импликацию $(1)\Longrightarrow(2)$ для функции

$$g: \Omega \setminus \{z_0\} \to \mathbb{C}, \qquad g(z) = \frac{f(z) - f(z_0)}{z - z_0},$$

— в любой точке $z \neq z_0$ по правилу дифференцирования сложной функции существует g'(z). Кроме того,

$$\left| \frac{f(z) - f(z_0)}{z - z_0} \right| \leqslant C$$

в некоторой окрестности $U(z_0)$, так как существует $f'(z_0)$. Значит, форма $\widetilde{\omega}$ замкнута в Ω по лемме об устранении особенности (1.6). Возьмём $w \in B(z_0, r)$; пусть окружность $C(z_0, r)$ ориентирована против часовой стрелки. Тогда

$$\int_{C(z_0,r)} \frac{f(z)}{z-w} dz = \int_{C(z_0,r)} \frac{f(z)-f(w)}{z-w} dz + \int_{C(z_0,r)} \frac{f(w)}{z-w} dz = 0 + 2\pi i f(w),$$

так как форма $\frac{f(z)-f(w)}{z-w}$ dz замкнута в Ω . Значит,

$$f(w) = \frac{1}{2\pi i} \int_{C(z_0,r)} \frac{f(z)}{z - w} dz = \frac{1}{2\pi i} \int_{C(z_0,r)} \frac{f(z)}{(z - z_0) + (z_0 - w)} dz$$

$$= \frac{1}{2\pi i} \int_{C(z_0,r)} \frac{f(z)}{(z - z_0) \left(1 - \frac{w - z_0}{z - z_0}\right)} dz = \frac{1}{2\pi i} \int_{C(z_0,r)} \frac{f(z)}{z - z_0} \sum_{n \ge 0} \left(\frac{w - z_0}{z - z_0}\right)^n dz$$

$$= \sum_{n \ge 0} c_n (w - z_0)^n,$$

где

$$c_n = \frac{1}{2\pi i} \int_{C(z_0, r)} \frac{f(z)}{(z - z_0)^{n+1}} dz.$$

Ряд $\sum_{n\geq 0} c_n (w-z_0)^n$, сходится, поскольку

$$|c_n(w-z_0)^n| \le \left| \frac{1}{2\pi i} \int\limits_{C(z_0,r)} \frac{f(z)(w-z_0)^n}{(z-z_0)^{n+1}} dz \right| \le C \sup_{z \in \Delta} \left(|f(z)| \cdot \left| \frac{w-z_0}{z-z_0} \right|^n \right),$$

где $\Delta = C(z_0, r)$ — компакт; при $z \in C(z_0, r)$ выполнено неравенство $|w - z_0| < |z - z_0|$, то есть последний ряд (сумма геометрической прогрессии) сходится. Значит, по признаку сравнения сходится и ряд $\sum_{n \ge 0} c_n (w - z_0)^n$.

- $(3) \Longrightarrow (1)$. Очевидно, так как степенной ряд можно дифференцировать в круге сходимости: $f'(z_0) = c_1$.
- $(2)\Longrightarrow (1)$. Раз f dz замкнута в Ω , в любой точке $z_0\in \Omega$ существует окрестность $U(z_0)$, в которой форма f dz точна. Значит, по лемме 2.2 (см. ниже) существует такая F, что F'(w)=f(w) для всех $w\in U(z_0)$. Применив к F импликацию $(1)\Longrightarrow (3)$, получим разложение

$$F(w) = \sum_{n>1} \widetilde{c}_n (w - z_0)^n,$$

*

для некоторых $\widetilde{c}_n \in \mathbb{C}, w \in B(z_0, \varepsilon)$. Значит,

$$f(w) = F'(w) = \sum_{n=1}^{\infty} n\widetilde{c}_n (w - z_0)^{n-1}$$

для всех $w \in B(z_0, \varepsilon)$. Последний степенной ряд можно продифференцировать в круге сходимости, а потому существует $f'(z_0)$.

Лемма 2.2. Пусть G — область в \mathbb{C} , отображение $g: G \to \mathbb{C}$ таково, что дифференциальная форма $\omega = g$ dz точна в G. Тогда существует такое $h: G \to \mathbb{C}$, что для любого $z_0 \in G$ существует предел

$$\lim_{z \to z_0} \frac{h(z) - h(z_0)}{z - z_0} = g(z_0).$$

Доказательство. Раз g dz — точная форма в G, существует функция $F: G \to \mathbb{C}$, удовлетворяющая условию dF = g dz. С другой стороны,

$$dF = F'_x(x, y) dx + F'_y(x, y) dy,$$

$$g dz = g(z) dx + ig(z) dy,$$

то есть

$$F'_{x}(x,y) = g(x+iy),$$

$$F'_{y}(x,y) = ig(x+iy).$$

Определим h по формуле

$$h(x+iy) = F(x,y).$$

По формуле Тейлора для $F \in C^1(G)$ в окрестности точки $z_0 = x_0 + iy_0$ имеем

$$h(z) = h(x+iy) = F(x,y)$$

$$= F(x_0, y_0) + F'_x(x_0, y_0)(x - x_0) + F'_y(x_0, y_0)(y - y_0) + o(|x - x_0| + |y - y_0|)$$

$$= h(z_0) + g(z_0)(x - x_0) + ig(z_0)(y - y_0) + o(|z - z_0|)$$

$$= h(z_0) + g(z_0)(z - z_0) + o(|z - z_0|).$$

Значит,

$$\frac{h(z) - h(z_0)}{z - z_0} = g(z_0) + o(1).$$

Таким образом, существует производная $h'(z_0) = g(z_0)$.

Определение. Пусть G — область в \mathbb{C} . Функция $f: G \to \mathbb{C}$ называется аналитической или голоморфной, если для f выполнено одно из условий (1) — (3) теоремы Коши – Гурса – Морера.

Определение. *Целой* функцией называется функция, аналитическая во всем С.

Теорема 2.3 (Лиувилль). Если целая функция ограничена, то она постоянна.

Доказательство. По теореме Коши – Гурса – Морера,

$$f(z) = \sum_{n \geqslant 0} c_n z^n,$$

причём последний ряд сходится во всей комплексной плоскости. Зафиксируем центр $z_0=0$. Коэффициенты

$$c_n = \frac{f^{(n)}(z_0)}{n!}$$

зависят лишь от значений f в окрестности нуля, и поэтому одинаковы для разложения f в любом круге с центром в нуле. Кроме того, из доказательства той же теоремы мы знаем, что

$$c_n = \frac{1}{2\pi i} \int \frac{f(z)}{(z - z_0)^{n+1}} dz$$

для всех r>0, где окружность ориентирована против часовой стрелки. Если существует такое M, что $|f(z)| \leq M$ на всем $\mathbb C$, то

$$|c_n| \leqslant \frac{1}{2\pi i} \cdot 2\pi r \cdot M \cdot \frac{1}{r^{n+1}} = \frac{M}{ir^n}.$$

Для $n \ge 1$ отсюда следует, что $c_n = 0$, так как можно перейти к пределу по $r \to \infty$. Значит, $f(z) = c_0$ для всех $z \in \mathbb{C}$.

Теорема 2.4 (основная теорема алгебры). Если p — многочлен в $\mathbb C$ степени $\geqslant 1$, то у него есть корень.

Доказательство. Пусть $p(z_0) \neq 0$ для всех $z \in \mathbb{C}$. Тогда во всех $z_0 \in \mathbb{C}$ существует производная

$$\left(\frac{1}{p}\right)'(z_0) = \frac{-p'(z_0)}{p^2(z_0)},$$

то есть 1/p — аналитическая функция в \mathbb{C} . Поскольку $\deg p \geqslant 1, 1/p(z) \leqslant 1$ при больших z. Значит, функция |1/p| ограничена некоторой константой в $\mathbb{C}^{.6}$ Таким образом, 1/p — целая ограниченная функция, и по теореме Лиувилля $1/p(z) \equiv c$. Но тогда $p(z) \equiv 1/c$, что противоречит условию на степень p.

Теорема 2.5 (теорема единственности для аналитических функций). Пусть Ω — область в \mathbb{C} , $f,g:\Omega\to\mathbb{C}$ — аналитические функции. Пусть E — множество таких точек $z\in\Omega$, что f(z)=g(z). Если E имеет предельную точку в Ω , то $f\equiv g$ в Ω .

Замечание. Точка $z_0 \in \Omega$ называется *предельной точкой* E, если для всех $\varepsilon > 0$ пересечение $B(z_0, \varepsilon) \cap E$ содержит бесконечно много точек. Например, множество $\{1/n\}_{n\in\mathbb{N}}$ не имеет предельных точек в $\{z : \text{Re } z > 0\}$.

 $^{^6}$ Так как она ограничена в любом круге, а за пределами достаточно большого круга не превосходит единицы

⁷Или "точкой сгущения". В нашем случае это определение эквивалентно обычному топологическому определению предельной точки.

Доказательство. Будем считать, что $g \equiv 0$ (иначе рассмотрим функцию f - g). Тогда E — множество нулей f. Обозначим через $G \subset \Omega$ множество точек, в окрестностях которых f равна нулю. Ясно, что G открыто, а E замкнуто и содержит G.

Пусть $z_0 \in \Omega$ — предельная точка для E. Найдём такое $\varepsilon > 0$, что

$$f(z) = \sum_{n>0} c_n (z-z_0)^n$$
 для всех $z \in B(z_0, \varepsilon)$.

Значит,

$$c_0 = f(z_0) = \lim_{n \to \infty} f(z_n) = 0,$$

где $z_n \in E, z_n \to z_0, z_n \neq z_0$. Тогда либо $f \equiv 0$ в $B(z_0, \varepsilon)$, либо для некоторого $m \in \mathbb{N}$

$$f(z) = c_m(z - z_0)^m (1 + o(1))$$
 при $z \to z_0, z \in B(z_0, \varepsilon), c_m \neq 0.$

Однако во втором случае

$$0 = |f(z_n)| = |c_m||z_n - z_0|^m (1 + \alpha(z_n)),$$

где $|\alpha(z_n)| < \frac{1}{2}$ при больших n, что невозможно, так как $c_m \neq 0$ и $z_n \neq z_0$. Значит, $f \equiv 0$ в $B(z_0, \varepsilon)$.

Таким образом, $z_0 \in G$, то есть G содержит множество предельных точек E. Значит, G совпадает с множеством предельных точек E (в частности, оно непусто), и потому G замкнуто в Ω . Итого, G — открыто-замкнутое непустое множество. В силу связности Ω , $G = \Omega$, и $f \equiv 0$ в Ω .

Теорема 2.6 (о замкнутости алгебры аналитических функций относительно равномерной сходимости на компактах). Пусть Ω — область; f, $\{f_n\}_{n\geqslant 1}$ — функции из Ω в $\mathbb C$, причём $f_n \Rightarrow f$ в любом компакте $K \subset \Omega$. Если функции f_n аналитичны, то и f аналитична.

Доказательство. Проверим условие (2) из теоремы Коши – Гурса – Морера, то есть докажем, что для всякого прямоугольника $\Pi \subset \Omega$ выполнено

$$\int_{\partial\Pi} f \, \mathrm{d}z = 0.$$

Поскольку П — компакт, а f — равномерный предел непрерывных функций на П, $f \in C(\Pi)$. Значит, интеграл $\int_{\partial \Pi} f \, \mathrm{d}z$ определён. Кроме того,

$$\left| \int_{\partial\Pi} f \, \mathrm{d}z \right| \leq \left| \int_{\partial\Pi} f_n \, \mathrm{d}z \right| + \left| \int_{\partial\Pi} (f - f_n) \, \mathrm{d}z \right|$$

$$\leq 0 + \ell(\partial\Pi) \sup_{z \in \partial\Pi} |f(z) - f_n(z)| \xrightarrow[n \to \infty]{} 0,$$

что и требовалось.

*

Теорема 2.7. Аналитические функции в Ω дифференцируемы бесконечное число раз.

Доказательство. Очевидно в силу пункта (3) теоремы Коши – Гурса – Морера.

≮

Теорема 2.8. Пусть $f: \Omega \to \mathbb{C}$ — аналитическая функция, не равная нулю тождественно, $f(z_0) = 0$. Тогда существует такое $n \in \mathbb{N}$, что

$$f(z) = (z - z_0)^n \cdot g(z),$$

где g — аналитическая функция в Ω , и $g(z_0) \neq 0$.

Доказательство. В окрестности z_0 имеем:

$$f(z) = \sum_{m \ge 0} c_m (z - z_0)^m, \qquad c_0 = f(z_0) = 0.$$

Тогда для некоторого натурального числа n для всех m < n выполнено $c_n \neq 0$, $c_m = 0$, и $f(z) = (z - z_0)^n g(z)$, где

$$g(z) = \sum_{m>0} c_{m+n} (z - z_0)^m$$

в окрестности z_0 . Если $z \neq z_0$, то

$$g = \frac{f}{(z - z_0)^n},$$

а последняя функция дифференцируема как производная частных. Таким образом, g дифференцируема во всех точках Ω , то есть аналитична в Ω .

Утверждение 2.9 (неравенство Лагранжа для аналитических функций). Пусть Ω — область в \mathbb{C} , $f:\Omega\to\mathbb{C}$ — аналитическая функция, $[z_1,z_2]\subset\Omega$. Тогда

$$|f(z_2) - f(z_1)| \le \max_{z \in [z_1, z_2]} |f'(z)| \cdot |z_1 - z_2|.$$

Доказательство. Так как f аналитична, то функция F(x,y)=f(x+iy) удовлетворяет условию $\mathrm{d}F=f'\,\mathrm{d}z$:

$$dF = F'_x dx + F'_y dy$$

= $f'(x+iy) \cdot (x+iy)'_x dx + f'(x+iy) \cdot (x+iy)'_y dy$
= $f'(z) dx + i f'(z) dy = f'(z) dz$.

Пусть $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$. Тогда

$$f(z_2) - f(z_1) = F(x_2, y_2) - F(x_1, y_1) = \int_{[(x_1, y_1), (x_2, y_2)]} dF = \int_{[z_1, z_2]} f' dz.$$

Следовательно,

$$|f(z_1) - f(z_2)| \le \max_{z \in [z_1, z_2]} |f'(z)| \cdot |z_1 - z_2|,$$

≮

Следствие 2.10. Если f аналитична в Ω и f'(z) = 0 на Ω , то $f \equiv \text{const.}$

Доказательство. Пусть $z_0 \in \Omega$. В малой окрестности z_0 любой отрезок $[z_0, z_1]$ лежит в Ω ; а потому $|f(z_0) - f(z_1)| = 0$ по теореме Лагранжа. Значит, в малой окрестности z_0 выполнено тождество $f \equiv f(z_0)$. Так как Ω связно, по теореме единственности для аналитических функций это значит, что $f \equiv \text{const}$ всюду на Ω .

Утверждение 2.11. Не существует аналитической функции g в области $\mathbb{C} \setminus \{0\}$, такой, что $e^{g(z)} = z$ для всех $z \in \mathbb{C} \setminus \{0\}$.

Доказательство. Предположим, что такая функция существует. Тогда имеет место равенство

$$1 = z' = (e^{g(z)})' = g'(z) \cdot e^{g(z)} = g'(z)z,$$

откуда следует, что

$$g'(z) = \frac{1}{z}$$
 при $z \in \mathbb{C} \setminus \{0\}.$

Заметим, что

$$\int\limits_{|z|=1}\frac{1}{z}\,\mathrm{d}z=2\pi\neq0,$$

RTOX

$$\int_{|z|=1} g'(z) dz = g(1) - g(1) = 0,$$

так как g'(z) dz — точная форма. Противоречие.

Определение. Пусть $\Omega \subset \mathbb{C} \setminus \{0\}$ — область. *Аналитической ветвью логарифма* будем называть любую аналитическую функцию $g: \Omega \to \mathbb{C}$, такую, что $e^{g(z)} = z$ на всем Ω .

Определение. Пусть $f: \Omega \to \mathbb{C}$ — аналитическая функция, где Ω — область в \mathbb{C} . Аналитической ветвью $\log f$ будем называть любую аналитическую функцию $g: \Omega \to \mathbb{C}$, удовлетворяющую условию $e^{g(z)} = f(z)$, где $z \in \Omega$.

Теорема 2.12. Пусть Ω — односвязная область, $f:\Omega\to\mathbb{C}$ — аналитическая функция, не принимающая значение ноль на Ω . Тогда существует аналитическая ветвь $\log f$, и любые две ветви g_1,g_2 отличаются в Ω на константу $2\pi i k$, где $k\in\mathbb{Z}$. В частности, ветвь задаётся однозначно своим значением в любой точке.

Доказательство. Поскольку функция f'/f аналитична, по теореме Коши – Гурса – Морера форма f'/f dz замкнута. Но раз область Ω односвязна, эта форма точна, то есть существует такая аналитическая функция h, что h' = f'/f в Ω . Проверим,

что h — это аналитическая ветвь логарифма с точностью до константы, то есть, что $e^{h(z)+c}=f(z)$ для некоторого $c\in\mathbb{C}$:

$$\left(\frac{e^{h(z)+c}}{f(z)}\right)'=e^c\left(\frac{e^h}{f}\right)'=e^c\frac{h'e^hf-e^hf'}{f^2}=e^c\frac{f'e^h-e^hf'}{f^2}\equiv 0.$$

Таким образом, $e^{h(z)+c} \equiv \mathrm{const} \cdot f(z)$. Осталось зафиксировать произвольное $z_0 \in \Omega$ и выбрать c таким образом, что бы значение $e^{h(z_0)+c}/f(z_0)$ равнялось единице.

Если g_1,g_2 таковы, что $e^{g_1}=e^{g_2}=f$ в Ω , то $e^{g_1-g_2}=1$ в Ω , то есть для всех $z\in\Omega$ существует

$$k(z) \in \mathbb{Z} : g_1(z) - g_2(z) = 2\pi i k(z),$$

так как $e^w=1$ тогда и только тогда, когда $w\in 2\pi i\mathbb{Z}$. k(z) — целочисленная непрерывная функция на связном множестве, то есть константа. Если же $g_1(z_0)=g_2(z_0)$ для некоторого $z_0\in\Omega$, то k(z)=0 и $g_1\equiv g_2$.

Определение. Пусть $\Omega \subset \mathbb{C} \setminus \{0\}$ — область. *Непрерывной ветвью аргумента* в Ω называется любая непрерывная функция $\psi \colon \Omega \to \mathbb{R}$, такая, что $|z|e^{i\psi(z)} \equiv z$ на Ω .

Аналогично, если $f: \Omega \to \mathbb{C} \setminus \{0\}$ — аналитическая функция, то *непрерывной* ветвью аргумента f в Ω называется любая непрерывная функция $\psi: \Omega \to \mathbb{R}$, такая, что $|f(z)|e^{i\psi(z)} = f(z)$, где $z \in \Omega$.

Теорема 2.13. Если Ω — односвязная область, $f:\Omega\to\mathbb{C}\setminus\{0\}$ — аналитическая функция, то существует непрерывная ветвь аргумента функции f в Ω . Более того, любые две ветви аргумента f отличаются на число $2\pi k$ всюду в Ω . В частности, любая ветвь аргумента однозначно определяется значением в одной точке.

Доказательство. Можно взять $\psi = \text{Im log } f$, где $\log f$ — произвольная аналитическая ветвь логарифма f. Если ψ_1, ψ_2 — две аналитические ветви, то

$$|f(z)|e^{i\psi_1(z)}=|f(z)|e^{i\psi_2(z)} \qquad (\forall z\in\Omega).$$

Значит, $\psi_1(z) - \psi_2(z) = 2\pi k(z)$, где $k(z) \in \mathbb{Z}$, и $k(z) \equiv k(z_0)$ по непрерывности. $\not<$

Определение. Главной ветвью логарифма в $\mathbb{C}\setminus\mathbb{R}_-$ называется аналитическая функция $g\colon\mathbb{C}\setminus\mathbb{R}_-\to\mathbb{C}$, удовлетворяющая условиям $e^{g(z)}=z$ в $\mathbb{C}\setminus\mathbb{R}_-$ и g(1)=0.

Соответственно, главная ветвь аргумента в $\mathbb{C} \setminus \mathbb{R}_-$ — это отображение

$$\psi \colon \mathbb{C} \setminus \mathbb{R}_- \to \mathbb{R}, \quad re^{i\varphi} \mapsto \varphi,$$

где r > 0 и $\varphi \in (-\pi, \pi)$.

Утверждение 2.14. Главные ветви логарифма и аргумента существуют, причём

$$\log z = \ln|z| + i\arg(z) \qquad \forall z \in \mathbb{C} \setminus \mathbb{R}_{-}, \tag{2.3}$$

где $\ln z$ — "старый" логарифм на $\mathbb{R}_+ \setminus \{0\}$, $\log(z)$ и $\arg(z)$ — главные ветви логарифма и аргумента соответственно.

Доказательство. Пусть g — некоторая ветвь логарифма в односвязной области $\mathbb{C}\setminus\mathbb{R}_-$. Тогда $e^{g(z)}\equiv z$ на $\mathbb{C}\setminus\mathbb{R}_-$. В частности, $e^{g(1)}=1$. Тогда главная ветвь логарифма — это функция

$$h: \mathbb{C} \setminus \mathbb{R}_- \to \mathbb{C}, \quad z \mapsto g(z) - g(1).$$

Действительно, $e^{h(z)} = z$, h — аналитична, и h(1) = 0.

Поймём, что $\psi\colon re^{i\varphi}\mapsto \varphi$ — действительно непрерывная ветвь аргумента. Если $z=re^{i\varphi}$, где r>0 и $\varphi\in (-\pi,\pi)$, то

$$|z|e^{i\psi(z)} = |re^{i\varphi}|e^{i\varphi} = re^{i\varphi} = z,$$

что и требовалось.

Наконец, проверим, что выполнена формула (2.3). Очевидно, что

$$e^{\log z} = z = |z|e^{i\psi(z)} = e^{\ln|z|+i\psi(z)}$$
.

причём $\log 1 = 0 = \psi(1)$. Значит, $\log z - (\ln |z| + i\psi(z))$ — целочисленная непрерывная функция в $\mathbb{C} \setminus \mathbb{R}_-$, равная нулю в точке 1. Отсюда следует, что $\log z \equiv \ln |z| + i\psi(z)$ в $\mathbb{C} \setminus \mathbb{R}_-$.

Определение. Пусть Ω — односвязная область, $f: \Omega \to \mathbb{C} \setminus \{0\}$ — аналитическая функция, $\log f$ — аналитическая ветвь логарифма f. Пусть $w \in \mathbb{C}$. Тогда функция $(f(z))^w = e^{w \log f}$ называется *степенью функции* f, *отвечающей выбранной ветви* $\log f$.

Замечание. Если $k \in \mathbb{N}$, то $z^k = z \cdot z \cdot \ldots \cdot z$ независимо от выбора ветви логарифма, так как

$$z^k = e^{k \log z} = e^{\log z + \dots + \log z} = e^{\log z} \cdot \dots \cdot e^{\log z}.$$

Аналогичным образом показывается, что определение комплексной степени совпадает с обычным при $k \in \mathbb{Z}$.

Пример 2.1. Вычислим i^i , если в зафиксирована главная ветвь логарифма для функции f(z) = z:

$$i^i = e^{i(\log z)(i)} = e^{i(\ln |i| + i \arg(i))} = e^{i(i \cdot \pi/2)} = e^{-\pi/2} > 0.$$

*

3 Гармонические функции

Определение. Говорят, что пара функций $u: \Omega \to \mathbb{R}$, $v: \Omega \to \mathbb{R}$, где Ω — область в \mathbb{R}^2 , удовлетворяет *условиям Коши – Римана* (CR), если $u, v \in C^1(\Omega)$,

$$u_x' \equiv v_y'$$
 и $u_y' \equiv -v_x'$

в области Ω .

Теорема 3.1. Пусть $\Omega \subset \mathbb{C}$ — область,

$$f: x + iy \mapsto u(x, y) + iv(x, y)$$
 для $x, y \in \mathbb{R}: x + iy \in \Omega$.

Функция f аналитична в Ω тогда и только тогда, когда функции u,v удовлетворяют условиям Коши – Римана.

Доказательство. Мы знаем, что f аналитична тогда и только тогда, когда fdz — замкнутая форма в Ω , что эквивалентно условию d(fdz) = 0:

$$d(u+iv) \wedge dz = 0 \iff (u'_x dx + u'_y dy + iv'_x dx + iv'_y dy) \wedge (dx + i dy) = 0$$

$$\iff iu'_x dx \wedge dy + u'_y dy \wedge dx - v'_x dx \wedge dy + iv'_y dy \wedge dx = 0$$

$$\iff (iu'_x - u'_y - v'_x - iv'_y) dx \wedge dy = 0,$$

а последнее — это просто условия Коши - Римана.

Теорема 3.2. Пусть $\Omega \subset \mathbb{C}$ — область, $f : \Omega \to \mathbb{C}$ — аналитическая функция, не равная тождественно константе. Тогда отображение f открыто, то есть переводит открытые множества в открытые.

 \mathcal{A} оказательство. Рассмотрим f как отображение из $\Omega \subset \mathbb{R}^2$ в \mathbb{R}^2 . Его якобиан равен

$$\det\begin{pmatrix} u_x' & u_y' \\ v_x' & v_y' \end{pmatrix} = [CR] = \det\begin{pmatrix} u_x' & u_y' \\ -u_y' & u_x' \end{pmatrix} = (u_x')^2 + (u_y')^2.$$

С другой стороны, если $z = x + iy \in \Omega$, то

$$f'(z) = \lim_{\substack{w \to 0 \\ w \in \mathbb{C}}} \frac{f(z+w) - f(z)}{w} = \lim_{\substack{w \to 0 \\ w \in \mathbb{R}}} \frac{f(z+w) - f(z)}{w}$$
$$= \frac{\partial}{\partial x} (f(x+iy)) = u'_x(x,y) + iv'_x(x,y)$$
$$= u'_x(x,y) - iu'_y(x,y).$$

Таким образом, $|f'(z)|^2 = (u_x')^2 + (u_y')^2$. Значит, если $f'(z) \neq 0$ для всех $z \in \Omega$, то отображение $f: \Omega \to \mathbb{C}$ открыто по теореме об открытости отображений с невырожденным дифференциалом.

В общем случае, покажем, что образ диска $B(z_0, \varepsilon) \subset \Omega$ под действием f содержит диск $B(f(z_0), \eta)$ для некоторого $\eta > 0$. Существует функция g, аналитическая в

 Ω и удовлетворяющая условию $g(z_0) \neq 0$, и число $n \in \mathbb{N}$, для которых имеет место равенство

$$f - f(z_0) = g(z)(z - z_0)^n$$
.

Тогда $f = h_1(h_2(h_3(z)))$, где

$$h_3: z \mapsto \widetilde{g}(z)(z-z_0),$$

 $h_2: z \mapsto z^n,$

$$h_1: z \mapsto z + f(z_0),$$

 \widetilde{g} — аналитичная функция, удовлетворяющая условию $(\widetilde{g})^n=g$ в $B(z_0,\varepsilon)$. Выберем $\varepsilon>0$ так, чтобы в $B(z_0,\varepsilon)$ было выполнено $g(z)\neq 0$. Тогда

$$\widetilde{g} = \exp\left(\frac{1}{n}\log g\right),\,$$

где $\log g$ — аналитическая ветвь g в $B(z_0, \varepsilon)$. Заметим, что

$$h_3'(z_0) = \widetilde{g}(z_0) \neq 0.$$

Значит, уменьшая при необходимости ε , можно добиться того, чтобы $h_3'(z) \neq 0$ было выполнено для всех $z \in B(z_0, \varepsilon)$. Таким образом, отображение $h_3 \colon B(z_0, \varepsilon) \to \mathbb{C}$ открыто, и

$$h_3(B(z_0,\varepsilon))\supset B(h_3(z_0),\eta_1)$$

для некоторого $\eta_1 > 0$. Отображение h_2 открыто, так как z^n — открытое отображение из $\mathbb{C} \setminus \{0\}$ в \mathbb{C} по первой части доказательства:

$$(z^n)' = nz^{n-1} \neq 0$$
 B $\mathbb{C} \setminus \{0\};$

и, кроме того, оно переводит диск B(0,r) в диск $B(0,r^m)$. Наконец, h_1 — открыто, так как $h_1'(z) = 1 \neq 0$ в \mathbb{C} . Следовательно, f открыто как композиция открытых: $f(B(z_0, \varepsilon))$ содержит шар $B(f(z_0), \eta)$ для некоторого $\eta > 0$.

Теорема 3.3 (принцип максимума для аналитических функций). Пусть Ω — область в \mathbb{C} , $f: \Omega \to \mathbb{C}$ — аналитическая функция.

- (1) Если существует такая точка $z_0 \in \Omega$, что $|f(z_0)| \ge |f(z)|$ для всех $z \in \Omega$, то $f \equiv$ const в Ω . Другими словами, непостоянная аналитическая функция не может достигать максимума внутри области.
- (2) Если область Ω ограничена и f допускает непрерывное продолжение на $\overline{\Omega}$, то существует такое $z_0 \in \overline{\Omega} \setminus \Omega$, что $|f(z_0)| \ge |f(z)|$ для всех $z \in \overline{\Omega}$.
- (3) Если $f(z) \neq 0$ в любой точке $z \in \Omega$, и существует $z_0 \in \Omega : |f(z_0)| \leq |f(z)|$ для всех $z \in \Omega$, то $f \equiv \text{const.}$

Доказательство. Если $z_0 \in \Omega$ — максимум |f|, то f не может быть открытым отобра-

жением⁸. Если $f(z) \neq 0$, то, рассматривая 1/|f(z)|, получим утверждение (3). Второе утверждение следует из первого и теоремы Вейерштрасса — максимум должен быть в $\overline{\Omega}$, но его нет в Ω .

Определение. Пусть Ω — область в \mathbb{C} . Оператор Лапласа — это отображение

$$\Delta \colon C^2(\Omega) \to C(\Omega),$$

действующее по правилу

$$\Delta \colon u \mapsto u''_{xx} + u''_{yy}.$$

Определение. Функция $u: \Omega \to \mathbb{R}$ называется вещественной гармонической, если $u \in C^2(\Omega)$ и $\Delta u = 0$. Функция $u: \Omega \to \mathbb{C}$ называется комплексной гармонической, если $\Delta u = 0$.

Лемма 3.4. Пусть функция $\alpha \colon \mathbb{C} \to \mathbb{R}$ такова, что $\alpha \in C^{\infty}(\mathbb{C})$, supp α — компакт в \mathbb{C} . Пусть $v \in L^1(\mathbb{C}, \lambda_2)$, где λ_2 — мера Лебега на $\mathbb{C} = \mathbb{R}^2$. Тогда функция

$$g: w \mapsto \int_{\mathbb{C}} v(z)\alpha(z-w) \,\mathrm{d}\lambda_2(z)$$

корректно определена и $g \in C^{\infty}(\mathbb{C})$.

Доказательство. Функция g корректно определена, так как

$$|\upsilon(z)\alpha(z-w)|\leqslant |\upsilon(z)|\cdot \sup_{\zeta\in\mathbb{C}}|\alpha(\zeta)|\quad \text{и}\quad \upsilon\in L^1(\mathbb{C},\lambda_2).$$

Покажем, что $g \in C^{\infty}(\mathbb{C})$. Рассмотрим $z_0 \in \mathbb{C}$. Тогда

$$g_x'(z_0) = \lim_{x \to 0} \frac{g(z_0 + x) - g(z_0)}{x}$$
(3.1)

$$= \lim_{x \to 0} \int_{\mathbb{C}} v(z) \frac{\alpha(z - (z_0 + x)) - \alpha(z - z_0)}{x} d\lambda_2(z)$$
 (3.2)

$$= \int_{C} v(z) \lim_{x \to 0} \frac{\alpha(z - (z_0 + x)) - \alpha(z - z_0)}{x} d\lambda_2(z)$$
 (3.3)

$$= -\int_{\mathbb{C}} v(z)\alpha_x'(z-z_0) \,\mathrm{d}\lambda_2(z),\tag{3.4}$$

причём $\alpha_x' \in C^{\infty}(\mathbb{C})$ и ѕирр α_x' компактен. Значит, существует g_x' . Аналогичным образом показывается, что существуют и g_{xx}'' , g_{xy}'' и так далее. Осталось доказать, что равенство (3.3) верно, то есть, что можно переставлять предел и интеграл. Для этого можно воспользоваться теоремой Лебега о мажорированной сходимости. Пусть

$$\kappa_x(z) = \frac{\alpha(z - (z_0 + x)) - \alpha(z - z_0)}{x}.$$

⁸А именно, у точки $f(z_0)$ нет окрестности, полностью лежащей в открытом множестве $f(\Omega)$.

*

Нужно найти мажоранту у функции $v(z)\kappa_x(z)$. Так как $v\in L^1(\mathbb{C})$, достаточно показать, что

$$\sup_{x\in\mathbb{R},\,z\in\mathbb{C}}|\kappa_x(z)|<\infty.$$

Это так по неравенству Лагранжа:

$$\sup_{x \in \mathbb{R}, z \in \mathbb{C}} |\kappa_x(z)| \leq \sup_{p \in \mathbb{C}} \|d_p \alpha\| \cdot \frac{|[z - (z_0 + x), z - z_0]|}{x}$$
$$\leq \sup_{p \in \mathbb{C}} \|d_p \alpha\| < \infty,$$

где последнее неравенство выполнено, так как у α компактный носитель.

Теорема 3.5. Пусть Ω — область в \mathbb{C} , $u \colon \Omega \to \mathbb{R}$. Следующие утверждения равносильны:

- (1) $u \in C^2(\Omega)$ и $\Delta u = 0$;
- (2) $u \in C(\Omega)$ и для всех $z_0 \in \Omega$ выполнено равенство

$$u(z_0) = \frac{1}{|C(z_0, r)|} \int_{C(z_0, r)} u(z) \, \mathrm{d}S_1(z),\tag{3.5}$$

где $C(z_0,r)=\{z:|z-z_0|=r\},\,r>0$ — любое число, такое, что $\{|z-z_0|< r\}\subset\Omega^9$

Более того, если Ω односвязно, то (1) и (2) равносильны условию:

(3) u = Re f для некоторой аналитической функции f в Ω .

Если в этих условиях выполнено Re f_1 = Re f_2 = u, где f_1 , f_2 — аналитические, то $f_1 = f_2 + iy$, где $y \in \mathbb{R}$.

Доказательство. Для начала предположим, что область Ω односвязна.

(3) \Longrightarrow (2). Пусть f — аналитическая функция в $\Omega,$ $u=\mathrm{Re}\,f,$ $z_0\in\Omega,$ $\overline{B(z_0,r)}\subset\Omega.$ Тогда

$$f(z_0) = \frac{1}{2\pi i} \int_{C(z_0,r)} \frac{f(z)}{z - z_0} dz,$$

где окружность $C(z_0, r)$ ориентирована против часовой стрелки. По определению,

$$\frac{1}{2\pi i} \int_{C(z_0,r)} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_0 + re^{it})}{z_0 + re^{iz} - z_0} d(z_0 + re^{it})$$
$$= \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_0 + re^{it}) \cdot rie^{it}}{re^{it}} dt$$

⁹Отметим, что $|C(z_0,r)| = 2\pi r$ — длина окружности. Такая запись используется для наглядности.

$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + re^{it}) dt.$$

Значит,

$$u(z_0) = \operatorname{Re} f(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re}(f(z_0 + re^{it})) dt = \frac{1}{2\pi} \int_{0}^{2\pi} u(z_0 + re^{it}) dt.$$

С другой стороны,

$$\frac{1}{|C(z_0,r)|} \int_{C(z_0,r)} u(z) \, \mathrm{d}S_1(z) = \frac{1}{2\pi r} \int_0^{2\pi} u(z_0 + re^{it}) \cdot \|\gamma'(t)\| \, \mathrm{d}t,$$

где γ : $t \mapsto (\text{Re } z_0 + r \cos t, \text{Im } z_0 + r \sin t)$,

$$\|\gamma'(t)\| = \sqrt{(\gamma_1')^2 + (\gamma_2')^2} = \sqrt{r^2} = r.$$

Значит,

$$\frac{1}{2\pi r} \int_{0}^{2\pi} u(z_0 + re^{it}) \cdot ||\gamma'(t)|| dt = \frac{1}{2\pi} \int_{0}^{2\pi} u(z_0 + re^{it}) dt.$$

Таким образом, мы доказали (3.5).

 $(2)\Longrightarrow (1)$. Рассмотрим точку $z_0\in\Omega$ и докажем, что $u\in C^\infty(B(z_0,\varepsilon))$ для некоторого $\varepsilon>0$: $B(z_0,\varepsilon)\subset\Omega$, и, более того, $(\Delta u)(z_0)=0$. Положим $\eta=\mathrm{dist}(z_0,\partial\Omega)$. Пусть $\varepsilon=\eta/10$, $\alpha\in C^\infty(\mathbb{R},\mathbb{R})$ — произвольная функция, удовлетворяющая условиям

$$\operatorname{supp} \alpha \subset [\varepsilon/20, \varepsilon/10]$$
 и $\int\limits_0^\infty \alpha(t) \, \mathrm{d}t = 1.$

Тогда

$$u(z_0) = \int_0^\infty u(z_0)\alpha(r) dr = \int_0^\infty \left(\int_{C(z_0,r)} u(z) \frac{\alpha(r)}{|C(z_0,r)|} dz \right) dr.$$

Продолжим u вне $B(z_0, \varepsilon/2)$ нулём; получим функцию $\widetilde{u} = L^1(\mathbb{C}, \lambda_2)$. Тогда

$$\int_{0}^{\infty} \left(\int_{C(z_{0},r)} u(z) \frac{\alpha(r)}{|C(z_{0},r)|} dz \right) dr = \int_{0}^{\infty} \int_{C(z_{0},r)} u(z) \frac{\alpha(|z-z_{0}|)}{2\pi|z-z_{0}|} dz dr$$
(3.6)

$$= \int_{\mathbb{C}} \widetilde{u}(z)\beta(z-z_0) \, \mathrm{d}\lambda_2(z), \tag{3.7}$$

где (3.7) выполнено по следствию из формулы коплощади,

$$\beta(w) = \frac{\alpha(|w|)}{2\pi|w|} \in C^{\infty}(\mathbb{C})$$

— функция, имеющая компактный носитель (как и α). По лемме 3.4 получаем, что отображение

$$z_0 \mapsto \int\limits_{\mathbb{C}} \widetilde{u}(z) \beta(z-z_0) \, \mathrm{d}\lambda_2(z)$$

лежит в $C^{\infty}(\mathbb{C})$. Заметим, что по условию на α в (3.7) нужно интегрировать только по таким z, что $\varepsilon/20 \leqslant |z-w| \leqslant \varepsilon/10$, то есть

$$\int\limits_{\mathbb{C}} \widetilde{u}(z)\beta(z-w)\,\mathrm{d}\lambda_2(z) = \int\limits_{\frac{\varepsilon}{20}\leqslant |z-w|\leqslant \frac{\varepsilon}{10}} \widetilde{u}(z)\beta(z-w)\,\mathrm{d}\lambda_2(z) = \int\limits_{\frac{\varepsilon}{20}\leqslant |z-w|\leqslant \frac{\varepsilon}{10}} u(z)\beta(z-w)\,\mathrm{d}\lambda_2(z).$$

Значит,

$$u(w) = \int_{\mathbb{C}} \widetilde{u}(z)\beta(z-w) \,\mathrm{d}\lambda_2(z).$$

В частности, $u \in C^{\infty}(B(z_0, \varepsilon/10))$. Осталось показать, что $\Delta u(z_0) = 0$. Для этого разложим функцию u в ряд Тейлора:

$$\begin{split} u(z) &= u(x_0, y_0) + u_x'(x_0, y_0)(x - x_0) + u_y'(x_0, y_0)(y - y_0) \\ &+ \frac{1}{2!} \big(u_{xx}''(x_0, y_0)(x - x_0)^2 + u_{yy}''(x_0, y_0)(y - y_0)^2 + 2u_{xy}''(x - x_0)(y - y_0) \big) + o(r^2). \end{split}$$

Обозначим $u(x_0, y_0)$ через A, сумму членов, в которых присутствует первая производная — через B, а сумму, в которой вторые производные — через C. Тогда

$$\begin{split} \frac{1}{2\pi r} \int\limits_{C(z_0,r)} u(z) \, \mathrm{d}S_1(z) &= \frac{1}{2\pi r} \int\limits_{C(z_0,r)} \left(A + B + C + o(r^2) \right) \, \mathrm{d}S_1(z) \\ &= \frac{1}{2\pi r} \int\limits_{C(z_0,r)} A \, \mathrm{d}S_1(z) + \frac{1}{2\pi r} \int\limits_{C(z_0,r)} B \, \mathrm{d}S_1(z) \\ &+ \frac{1}{2\pi r} \frac{1}{2!} \int\limits_{C(z_0,r)} C \, \mathrm{d}S_1(z) + o\left(\frac{1}{2\pi r} \cdot 2\pi r \cdot r^2 \right). \end{split}$$

Обозначим первый интеграл через I, второй — через II, третий — через III. Очевидно, что $I = u(x_0, y_0) = u(z_0)$. II = 0, так как, например,

$$\int_{C(z_0,r)} (x - x_0) \, dS_1(z) = \int_0^{2\pi} r^2 \cos \varphi \, d\varphi = 0.$$

Наконец, вычислим III:

$$\int_{C(z_0,r)} (x-x_0)(y-y_0) dS_1(z) = \int_0^{2\pi} (r\cos\varphi \cdot r\sin\varphi \cdot r) d\varphi = 0;$$

другие два слагаемых оказываются ненулевыми:

$$\int_{C(z_0,r)} (x - x_0)^2 dS_1(z) = \int_0^{2\pi} r^3 \cos^2 \varphi d\varphi = r^3 \pi,$$

$$\int_{C(z_0,r)} (y - y_0)^2 dS_1(z) = \int_0^{2\pi} r^3 \sin^2 \varphi d\varphi = r^3 \pi.$$

Таким образом,

$$\frac{1}{2\pi r} \int_{C(z_0,r)} u(z) \, dS_1(z) = u(z_0) + \frac{1}{2\pi r} \frac{1}{2!} \pi r^3 \Delta u(z_0) + o(r^2), \quad r \to 0.$$

Значит,

$$0 = \left(\frac{1}{2\pi r} \int_{C(z_0, r)} u(z) \, dS_1(z)\right) - u(z_0) = \frac{1}{4} r^2 \Delta u(z_0) + o(r^2), \quad r \to 0,$$

откуда следует, что $\Delta u(z_0) = 0$.

 $(1)\Longrightarrow (3)$. Пусть функция $u\in C^2(\Omega)$ такова, что $\Delta u=0$. Рассмотрим дифференциальную форму $\omega=u_x'$ d $y-u_y'$ dx в Ω . Ясно, что

$$d\omega = u''_{xx} dx \wedge dy - u''_{yy} dy \wedge dx = \Delta u dx \wedge dy = 0.$$

Так как область Ω односвязна, то существует функция $v \in C^1(\Omega)$: $dv = \omega$. Тогда

$$v_x' dx + v_y' dy = u_x' dy - u_y' dx,$$

то есть $u_x' = v_y'$ и $u_y' = -v_x'$. Это условия Коши – Римана, а потому u+iv — аналитическая функция в Ω , и $u=\mathrm{Re}(u+iv)$, что и требовалось.

Предположим, что $u={\rm Re}\ f_1={\rm Re}\ f_2$ для некоторых аналитических f_1, f_2 в Ω . Тогда f_1-f_2 — аналитическая функция, причём ${\rm Re}(f_1-f_2)\equiv 0$ в Ω . Из уравнений Коши — Римана получаем, что ${\rm Im}(f_1-f_2)_x'\equiv 0$ и ${\rm Im}(f_1-f_2)_y'\equiv 0$ всюду в Ω . Значит,

$$\operatorname{Im}(f_1 - f_2) \equiv \operatorname{const}, \quad \operatorname{u} \quad f_1 - f_2 \equiv iy$$

для некоторого $y \in \mathbb{R}$.

Эквивалентность (1) и (2) в общем случае сводится к односвязному случаю, так

как эти условия локальны, и можно сужать функцию u на круги $B(z_0,\varepsilon)\subset\Omega$. $\not<$

Обозначение. В дальнейшем используются следующие обозначения:

$$\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \},$$
$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}.$$

Другими словами, \mathbb{T} — единичная окружность, \mathbb{D} — открытый единичный диск.

Определение. Ядром Пуассона на единичной окружности \mathbb{T} , отвечающем точке $z \in \mathbb{D}$, называется отображение

$$\xi \mapsto \frac{1 - |z|^2}{\left|1 - \overline{\xi}z\right|^2}.$$

Обозначение. Будем через m обозначать меру $\frac{1}{2\pi}S_1$, где S_1 — поверхностная мера на \mathbb{T} , то есть

$$\int_{\mathbb{T}} f(z) \, \mathrm{d}m(z) = \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{it}) \, \mathrm{d}t.$$

Отметим, что m — вероятностная мера, то есть $m(\mathbb{T})=1$.

Лемма 3.6. Для любой точки $\xi \in \mathbb{T}$ отображение

$$P(\cdot,\xi)\colon z\mapsto \frac{1-|z|^2}{\left|1-\overline{\xi}z\right|^2}$$

является гармоническим и неотрицательным на \mathbb{D} . Кроме того, если $\{z_n\} \subset \mathbb{D}$ — такая последовательность, что $\lim_{n\to\infty} z_n = \xi_0 \in \mathbb{T}$, то $\{P(z_n,\,\cdot\,)\}_{n\in\mathbb{N}}$ — аппроксимативная единица с центром в ξ_0 , то есть:

- (1) $P(z_n, \xi) \ge 0$ для всех $n \in \mathbb{N}$ и $\xi \in \mathbb{T}$;
- (2) $\int_{\mathbb{T}} P(z_n, \xi) \, dm(\xi) = 1;$
- (3) для любого $\delta > 0$ выполнено

$$\sup_{\xi\in\mathbb{T}\setminus B(\xi_0,\delta)}P(z_n,\xi)\xrightarrow[n\to\infty]{}0.$$

Доказательство. Для начала проверим, что

$$\frac{1-|z|^2}{\left|1-\overline{\xi}z\right|^2} = \operatorname{Re}\left(\frac{1+\overline{\xi}z}{1-\overline{\xi}z}\right).$$

Действительно,

$$\operatorname{Re}\left(\frac{1+\overline{\xi}z}{1-\overline{\xi}z}\right) = \operatorname{Re}\left(\frac{(1-\xi\overline{z})(1+\overline{\xi}z)}{\left|1-\overline{\xi}z\right|^{2}}\right)$$

*

$$= \operatorname{Re}\left(\frac{1 - |\xi z|^2 + \overline{\xi}z - \xi \overline{z}}{\left|1 - \overline{\xi}z\right|^2}\right)$$
$$= \left[|\xi| = 1\right] = \frac{1 - |z|^2}{\left|1 - \overline{\xi}z\right|^2}.$$

Поскольку \mathbb{D} — односвязная область, а

$$z \mapsto \frac{1 + \overline{\xi}z}{1 - \overline{\xi}z}$$

— аналитическая функция в \mathbb{D} , из пункта (3) теоремы 3.5 следует, что $P(\,\cdot\,,\xi)$ — гармоническая функция.

Проверим, что $\{P(z_n,\,\cdot\,)\}_{n\geqslant 0}$ — аппроксимативная единица.

- (1) $P(z,\xi) \ge 0$, так как $1 |z|^2 \ge 0$ в \mathbb{D} .
- (2) Ясно, что

$$\int_{\mathbb{T}} P(z_n, \xi) \, dm(\xi) = \int_{\mathbb{T}} \operatorname{Re} \left(\frac{1 + \overline{\xi} z_n}{1 - \overline{\xi} z_n} \right) \, dm(\xi)$$

$$= \int_{\mathbb{T}} \operatorname{Re} \left(\frac{1 + \xi \overline{z}_n}{1 - \xi \overline{z}_n} \right) \, dm(\xi)$$

$$= \operatorname{Re} \left(\frac{1 + 0 \cdot \overline{z}_n}{1 - 0 \cdot \overline{z}_n} \right) = 1,$$

так как функция

$$\operatorname{Re}\left(\frac{1+\xi\overline{z}_n}{1-\xi\overline{z}_n}\right)$$

гармонична в \mathbb{D} по ξ .

(3) Так как $z_n \to \xi_0$, при больших n имеем

$$\sup_{\xi \in \mathbb{T} \setminus B(\xi_0, \delta)} \frac{1 - |z_n|^2}{|1 - \overline{\xi} z_n|^2} = \sup_{\xi \in \mathbb{T} \setminus B(\xi_0, \delta)} \frac{1 - |z_n|^2}{|\xi - z_n|^2} \leqslant \frac{1 - |z_n|^2}{(\delta/2)^2},$$

и очевидно, что последнее выражение стремится к нулю.

Лемма 3.7 (принцип максимума для гармонических функций). Если u — гармоническая функция в области Ω , и существует такое $z_0 \in \Omega$, что $u(z_0) \ge u(z)$ для любого $z \in \Omega$, то $u \equiv \text{const } B \Omega$.

Доказательство. Покажем, что множество $E = \{z \in \Omega : u(z) = u(z_0)\}$ непусто, открыто и замкнуто в Ω . Очевидно, что оно непусто, так как $z_0 \in E$, и что оно замкнуто, так как $u \in C(\Omega)$. Если $w \in E$, то для любого $r \in (0, \operatorname{dist}(w, \partial \Omega))$ имеем

$$u(w) = \frac{1}{|C(w,r)|} \int_{C(w,r)} u(\xi) \, dS_1(\xi).$$

Значит, $u(\xi) = u(w)$ почти всюду на C(w, r), так как

$$\frac{1}{|C(w,r)|} \int_{C(w,r)} \underbrace{(u(w) - u(\xi))}_{>0} dS_1(\xi) = 0.$$

Поскольку функция u непрерывна, это означает, что $u(\xi) = u(w)$ для всех $\xi \in C(w,r)$. Таким образом, E открыто; и так как Ω связно, отсюда следует, что $u \equiv \text{const} \ \text{в} \ \Omega$.

Теорема 3.8. Пусть $f \in C(\mathbb{T})$. Тогда

$$u(z) = \int_{\mathbb{T}} f(\xi) P(z, \xi) \, \mathrm{d} m(\xi),$$
 где $z \in \mathbb{D}$,

– гармоническая функция, причём

$$u(z) \xrightarrow[z \to \xi]{z \in \mathbb{D}} f(\xi)$$
 для всех $\xi \in \mathbb{T}$.

В частности, доопределяя u на $\mathbb T$ значениями f, получаем непрерывную в $\overline{\mathbb D}$ гармоническую функцию.

Наоборот, пусть u — непрерывная в $\overline{\mathbb{D}}$ и гармоническая в \mathbb{D} функция. Тогда

$$u(z) = \int_{\mathbb{T}} u(\xi) P(z, \xi) \, \mathrm{d}m(\xi).$$

Доказательство. Для начала заметим, что

$$u(z) = \operatorname{Re}\left(\int_{\mathbb{T}} f(\xi) \frac{1 + \overline{\xi}z}{1 - \overline{\xi}z} dm(\xi)\right),$$

а потому u — гармоническая функция в \mathbb{D} . Пусть $z_n \to \xi_0 \in \mathbb{T}$. Тогда

$$\begin{split} |f(\xi_{0}) - u(z_{n})| &= \left| \int_{\mathbb{T}} (f(\xi_{0}) - f(\xi)) P(z_{n}, \xi) \, \mathrm{d}m(\xi) \right| \leq \int_{\mathbb{T}} \left| (f(\xi_{0}) - f(\xi)) P(z_{n}, \xi) \right| \mathrm{d}m(\xi) \\ &\leq \int_{\mathbb{T} \setminus B(\xi_{0}, \delta)} \left| (f(\xi_{0}) - f(\xi)) P(z_{n}, \xi) \right| \, \mathrm{d}m(\xi) + \int_{\mathbb{T} \cap B(\xi_{0}, \delta)} \left| (f(\xi_{0}) - f(\xi)) P(z_{n}, \xi) \right| \, \mathrm{d}m(\xi) \\ &\leq 2 \max_{\xi \in \mathbb{T}} |f(\xi)| \sup_{\xi : |\xi - \xi_{0}| \geqslant \delta} |P(z_{n}, \xi)| + \sup_{|\xi - \xi_{0}| < \delta} |f(\xi) - f(\xi_{0})| \cdot \int_{\mathbb{T}} P(z_{n}, \xi) \, \mathrm{d}m. \end{split}$$

Значит, $|u(z_n) - f(\xi_0)| \to 0$ при $n \to \infty$. 11

Пусть теперь u — гармоническая функция в $\mathbb D$ и непрерывная в $\overline{\mathbb D}$. Рассмотрим

 $[\]overline{}^{10}$ Это доказательство обобщается на многомерный случай (где интеграл берётся по сферам).

 $^{^{11}}$ См. аналогичные доказательства по аппроксимативной единице в конспекте со второго семестра.

функцию

$$\widetilde{u}(z) = \int_{\mathbb{T}} u(\xi)P(z,\xi) \,\mathrm{d}m(\xi).$$

Тогда $(u-\widetilde{u})(\xi)=0$ для всех $\xi\in\mathbb{T}$. Воспользуемся теоремой максимума для гармонических функций. Пусть $u-\widetilde{u}\neq 0$ в $z_0\in\mathbb{D}$. На границах оно, очевидно, равно нулю. Если $u(z_0)-\widetilde{u}(z_0)>0$, то в максимуме разность $u-\widetilde{u}$ положительна, максимум лежит строго внутри \mathbb{D} . Но тогда по лемме $u-\widetilde{u}$ постоянно, т.е. равно нулю. Если же в точке z_0 выражение меньше нуля, то повторим те же рассуждения для $\widetilde{u}-u$ и придём к тому же выводу. Значит, $u\equiv\widetilde{u}$ в \mathbb{D} .

Теорема 3.9 (теорема Лиувилля для гармонических функций). Если u — ограниченная гармоническая функция в \mathbb{C} , то u \equiv const.

Доказательство. Комплексная плоскость односвязна, а потому существует такое отображение v, что

$$f(z) = u(z) + iv(z)$$

— целая функция. По условию, $|\text{Re } f| = |u| \leqslant c$, где c > 0. Значит,

$$g(z) = \frac{1}{f(z) + 2c}$$

— тоже целая функция. При этом $|g| \le 1/c$; по теореме Лиувилля, $g \equiv \text{const}$, откуда следует, что u постоянна в \mathbb{C} .

Определение. $\mathit{Ядром}$ $\mathit{Пуассонa}$, отвечающем точке $w \in \mathbb{C}$ в круге $\mathit{B}(z_0, R)$, называется отображение

$$P_{z_0,R}(w,\xi) = \frac{1}{2\pi R} \frac{R^2 - |w - z_0|^2}{|\xi - w|^2}.$$

Утверждение 3.10. Если u — гармонична в $B(z_0,R)$ и $u\in C(\overline{B(z_0,R)})$, то

$$u(w) = \int_{C(z_0,R)} u(\xi) P_{z_0,R}(w,\xi) \, dS_1(\xi),$$

где S_1 — поверхностная мера Лебега на $C(z_0, R)$.

Доказательство. Рассмотрим функцию

$$\widetilde{u}(z) = u(z_0 + Rz),$$
 где $z \in \mathbb{D}$.

Она гармонична в $\mathbb D$ и непрерывна в $\overline{\mathbb D}$. Значит,

$$\begin{split} \widetilde{u}(z) &= \int_{\mathbb{T}} u(z_0 + R\zeta) \frac{1 - |z|^2}{\left|1 - \overline{\zeta}z\right|^2} dm(\zeta) = \frac{1}{2\pi} \int_{\mathbb{T}} u(z_0 + R\zeta) \frac{1 - |z|^2}{|\zeta - z|^2} dS_1(\zeta) \\ &= \frac{1}{2\pi R} \int_{C(z_0, R)} u(\xi) \frac{1 - |z|^2}{\left|\frac{\xi - z_0}{R} - z\right|^2} dS_1(\xi) = \frac{1}{2\pi R} \int_{C(z_0, R)} u(\xi) \frac{R^2 - |Rz|^2}{|\xi - z_0 - Rz|^2} dS_1(\xi). \end{split}$$

*

Следовательно,

$$u(z_0 + Rz) = \int_{C(z_0,R)} u(\xi) \frac{1}{2\pi R} \frac{R^2 - |(z_0 + Rz) - z_0|^2}{|\xi - (z_0 + Rz)|^2} dS_1(\xi)$$
$$= \int_{C(z_0,R)} u(\xi) P_{z_0,R}(z_0 + Rz, \xi) dS_1(\xi),$$

что и требовалось.

Следствие 3.11 (неравенство Гарнака). Пусть u гармонична в $B(z_0,R)$, непрерывна в $\overline{B(z_0,R)}$, и $u\geqslant 0$ в $B(z_0,R)$. Пусть $w\in\mathbb{C}$ таково, что $|w-z_0|=r$, где $r\in(0,R)$. Тогда

$$u(z_0)\frac{R-r}{R+r} \le u(w) \le \frac{R+r}{R-r}u(z_0).$$

Доказательство. Поскольку $u \geqslant 0$,

$$u(w) = \int_{C(z_0,R)} u(\xi) P_{z_0,R}(w,\xi) \, dS_1(\xi) \leq \int_{C(z_0,R)} u(\xi) \sup_{\xi \in C(z_0,R)} P_{z_0,R}(w,\xi) \, dS_1(\xi).$$

По определению,

$$\sup_{\xi \in C(z_0,R)} P_{z_0,R}(w,\xi) \leq \frac{1}{2\pi R} \cdot \frac{R^2 - r^2}{(R-r)^2} = \frac{1}{2\pi R} \cdot \frac{R+r}{R-r}.$$

Значит,

$$\int_{C(z_0,R)} u(\xi) \sup_{\xi \in C_0(R)} P_{z_0,R}(w,\xi) \, \mathrm{d}S_1(\xi) \leqslant \frac{1}{2\pi R} \frac{R+r}{R-r} \int_{C(z_0,R)} u(\xi) \, \mathrm{d}S_1(\xi) = u(z_0) \, \frac{R+r}{R-r}.$$

Левое неравенство доказывается аналогично; надо воспользоваться следующей оценкой:

$$\inf_{\xi \in C(z_0, R)} P_{z_0, R}(w, \xi) \geqslant \frac{1}{2\pi R} \frac{R^2 - r^2}{(R + r)^2}.$$

Другое доказательство теоремы Лиувилля. Если *и* ограничено в \mathbb{C} , то для некоторого c > 0 выполнено $u + c \ge 0$. По неравенству Гарнака,

$$(u(0) + c) \frac{R - r}{R + r} \le u(w) + c \le (u(0) + c) \frac{R + r}{R - r}$$

верно для любого $w \in \mathbb{C}$, такого, что |w| = r, и любого R > r. Перейдём к пределу по $R \to \infty$, и получим, что u(w) + c = u(0) + c для всех $w \in \mathbb{C}$, то есть u — константа. $\not <$

4 Интегральная теорема Коши

Определение. Будем говорить, что у области $\Omega \subset \mathbb{C}$ *кусочно-гладкая граница*, если её граница представляется в виде объединения конечного числа кусочно-гладких замкнутых простых кривых. ¹²

Определение. Будем называть область $\Omega \subset \mathbb{C}$ с кусочно-гладкой границей *стандартной*, если для любой точки $z \in \partial \Omega$ существует такое $\delta > 0$, что для любого квадрата Q с центром в z диаметра меньше δ множество $Q \setminus \partial \Omega$ состоит из двух компонент связности, ровно одна из которых лежит в Ω .

Определение. Пусть Ω — стандартная область, $\partial\Omega = \bigcup \Gamma_k$, где $\Gamma_k = \gamma_{k1} + \cdots + \gamma_{kn_k}$, а γ_{ks} — гладкий инъективный путь для всех $s \in \{1, \ldots, n_k\}$. Будем говорить, что при обходе $\partial\Omega$ вдоль пути γ область Ω остаётся слева, если для всех $t_0 \in (0,1)$ существует такое $\varepsilon(t_0) > 0$, что

$$\gamma(t_0) + i\varepsilon\gamma'(t_0) \in \Omega \quad \forall \varepsilon \in (0, \varepsilon(t_0)).$$

Рис. 6: Пути, при обходе вдоль которых область остаётся слева

Определение. Пусть Ω — стандартная область, ω — непрерывная дифференциальная форма в $\overline{\Omega}$. Будем использовать обозначение

$$\oint_{\partial\Omega}\omega=\sum_{k=0}^N\sum_{s=1}^{n_k}\varepsilon_{ks}\int_{\gamma_{ks}}\omega,$$

 $^{^{12}}$ Интуитивно, это условие означает, что в области нет разрезов.

где

$$arepsilon_{ks} = egin{cases} 1, & ext{ если } \Omega ext{ остается слева при обходе вдоль } \gamma_{ks}, \ -1, & ext{ иначе.} \end{cases}$$

Наша основная цель в этом параграфе — доказать следующую теорему:

Теорема 4.1 (интегральная теорема Коши). Пусть Ω — ограниченная стандартная область, f — аналитическая функция в Ω и непрерывная в $\overline{\Omega}$; $w \in \Omega$. Тогда

$$f(w) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{f(z)}{z - w} dz.$$

Теорема 4.2. Пусть Ω — стандартная область, γ — гладкий участок границы Ω . Тогда при обходе либо по γ , либо по $-\gamma$ область Ω остаётся слева.

Доказательство. Ясно, что если

$$(a,b) \subset (0,1), \qquad (c,d) \subset (0,1), \qquad (a,b) \cap (c,d) \neq \emptyset,$$

и при обходе вдоль путей $\gamma|_{(a,b)}$ и $\gamma|_{(c,d)}$ область Ω остаётся слева, то Ω остаётся слева и при обходе вдоль $\gamma|_{(a,d)}$. Покажем что для всех $t_0 \in (0,1)$ существует такое $\delta > 0$, что $(t_0 - \delta, t_0 + \delta) \subset (0,1)$, и при обходе вдоль $\gamma|_{(t_0 - \delta, t_0 + \delta)}$ или вдоль $-\gamma|_{(t_0 - \delta, t_0 + \delta)}$ область остаётся слева.

Зафиксируем точку $t_0 \in (0,1)$ и будем доказывать существование такого δ . Ограничение $\gamma|_{(0,1)}$ — гладко параметризованное многообразие в \mathbb{R}^2 , поэтому по теореме о представлении г.п.м. в виде графика отображения, существует такой квадрат Q со стороной, перпендикулярной $\gamma'(t_0)$ и центром в $\gamma(t_0)$, что для некоторого $\delta_0 > 0$ кривая $\gamma|_{(t_0-\delta_0,t_0+\delta_0)}$ — график отображения из $p+T_p(\gamma)$ в $p+(T_p\gamma)^\perp$, где $p=\gamma(t_0)$ (см. рисунок 7).

Рис. 7

По определению стандартной области можно выбрать размер Q столь малым, что пересечение надграфика или подграфика этого отображения (которое мы обозначим буквой φ) с Q совпадает с $\Omega \cap Q$. Не умаляя общности, будем считать, что именно надграфик φ лежит в Ω — иначе заменим γ на $-\gamma$ и изменим направление осей координат.

Существует такое число $\tilde{\varepsilon} > 0$, что для любого $\varepsilon \in (0, \tilde{\varepsilon})$ точка $p + i \varepsilon \gamma'(t_0)$, соответствующая вектору $(0, \varepsilon)$, лежит в области Ω . При малом $\delta > 0$ вектор $p + i \varepsilon \gamma'(t_0 + x)$, где $|x| < \delta$, отвечает вектору $\varepsilon[(x, \varphi(x))]'$ в локальных координатах, повёрнутому на угол $\pi/2$ по часовой стрелке, то есть вектору $\tau = \varepsilon(-\varphi'(x), 1)$. Этот вектор близок к $(0, \varepsilon)$, так как $\varphi'(0) = 0$ (см. рисунок 8). В частности, он лежит в области Ω .

Если на отрезке с концами $(x, \varphi(x))$ и $(x, \varphi(x)) + \tau$ есть точка, не лежащая в Ω , то на нем есть точка $(x_*, \varphi(x_*))$ из $\partial \Omega$. Таким образом, точки $(x, \varphi(x))$, $(x_*, \varphi(x_*))$ оказываются лежащими на прямой y = kx + b, где $k = k(\delta) \to +\infty$. В частности,

$$\varphi(x) = kx + b,$$
 $\varphi(x_*) = kx_* + b.$

Отсюда следует, что

$$\left|\frac{\varphi(x_*)-\varphi(x)}{x^*-x}\right|=|k|\xrightarrow[\delta\to 0]{}\infty.$$

Но с другой стороны, для любой пары (x, x_*) существует такое $y \in [x; x_*]$, что левое выражение равно $\varphi'(y)$. Однако производная φ в окрестности нуля ограничена. Противоречие. Значит, при малом δ при обходе вдоль $\gamma|_{(t_0-\delta,t_0+\delta)}$ область остаётся слева.

Покажем, что множество E таких $t \in (0,1)$, что при обходе вдоль $\gamma|_{(t-\delta_t,t+\delta_t)}$ об-

ласть Ω остаётся слева (для некоторого числа $\delta_t > 0$) — открыто-замкнуто в (0,1). То, что E открыто, очевидно. Покажем замкнутость. Пусть $t_n \in E, t_n \to t$, где $t \in (0,1)$. В некоторой окрестности t существует квадрат Q с центром в $\gamma(t)$, такой, что $Q \cap \Omega$ — надграфик или подграфик γ . Но при больших n векторы $\gamma(t_n) + i \varepsilon \gamma'(t_n)$ лежат в надграфике γ и попадают в $Q \cap \Omega$, откуда следует, что $Q \cap \Omega$ — надграфик γ . Значит, $\gamma(t) + i \varepsilon \gamma'(t)$ лежит в Ω при малых ε . Таким образом, $t \in E$; а значит E замкнуто в (0,1).

Наконец, если множество E пусто, то область остаётся слева при обходе вдоль $-\gamma$; а если оно непусто, то должно совпадать со всем (0,1), и тогда Ω остаётся слева при обходе вдоль γ , что и требовалось. \not

Теорема 4.3 (интегральная теорема Коши). Пусть Ω — ограниченная стандартная область, f — аналитическая функция в Ω и непрерывная в $\overline{\Omega}$; $w \in \Omega$. Тогда

$$f(w) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{f(z)}{z - w} dz.$$

Доказательство.

(1) Если Ω — ограниченная стандартная область, g — аналитична в Ω и непрерывна в $\overline{\Omega}$, то

$$\oint_{\partial\Omega} g(z) \, \mathrm{d}z = 0.$$

Пусть $0 < \varepsilon < \min_{1 \le k,j \le N} \operatorname{dist}(\partial \Omega_k, \partial \Omega_j)/10$. Рассмотрим разбиение $\mathbb C$ на квадраты со стороной ε . Эти квадраты можно разбить на три класса:

- "превосходные" квадраты разбиения квадраты, лежащие в Ω вместе с замыканием;
- "хорошие" квадраты квадраты, пересекающие Ω по непустому множеству, но не пересекающиеся с концами путей γ_{ks} ;
- "плохие" квадраты квадраты, пересекающиеся с концами γ_{ks} .

Также обозначим через P компоненты связности пересечений $Q \cap \Omega$ по превосходным квадратам, через B — компоненты связности по плохим квадратам, и через G — по хорошим квадратам. Ориентируем куски границ квадратов, попавших в Ω , так, чтобы при обходе вдоль этих кусков пересечение $Q \cap \Omega$ оставалось слева. Так как область Ω ограничена, то

$$\oint_{\partial\Omega} g(z) dz = \sum_{S \in P \cup G \cup B} \oint_{\partial S} g(z) dz.$$

Этот ряд сходится абсолютно 13 , так как $\sum_{S} \ell(S) < \infty$. Посчитаем отдельно суммы по компонентам связности пересечений по превосходным, хорошим и плохим квадратам.

 $^{^{13}}$ Хотя непустых $Q \cap \Omega$ конечное число, компонент связности может быть бесконечно много, как, например, при пересечении квадрата с центром в нуле и графика функции $x^{10} \sin{(1/x)}$.

• Если Q — превосходный квадрат, то его граница стягиваема в Ω , а потому

$$\sum_{S\in P} \oint_{\partial S} g(z) \, \mathrm{d}z = 0.$$

• Сумма по плохим квадратам оценивается так:

$$\sum_{S \in B} \left| \oint_{\partial S} g(z) \, \mathrm{d}z \right| \leq M \cdot \max_{z \in \overline{\Omega}} |g(z)| \cdot \max_{S \in B} \ell(\partial S),$$

где M — количество концов γ_{kj} . Покажем, что для любого $S \in B$

$$\ell(\partial S) \xrightarrow[\varepsilon \to 0]{} 0.$$

Для этого параметризуем $\partial\Omega\cap S$ так, чтобы оно было графиком отображения в окрестности концов γ_{kj} . Тогда

$$\ell(\partial S) \leq 4\varepsilon + \max_{k,j} \ell(\gamma_{kj} | [0, \eta_{kj}(\varepsilon)] \cup [\widetilde{\eta}_{kj}(\varepsilon), 1]),$$

где 4ε — периметр квадрата, а $\eta_{kj}(\varepsilon)$, $1-\widetilde{\eta}_{kj}(\varepsilon)$ — это наименьшие числа, такие, что образ под действием γ_{kj} всего интервала $(\eta_{kj}(\varepsilon),\widetilde{\eta}_{kj}(\varepsilon))$ лежит вне S. Заметим, что так как локально γ_{kj} — это график отображения, то при малых $\varepsilon>0$ выполняются неравенства

$$\eta_{k_j}(\varepsilon) \leqslant \varepsilon, \qquad 1 - \widetilde{\eta}_{k_j}(\varepsilon) \leqslant \varepsilon.$$

При этом

$$\ell \big(\gamma_{kj} \big| \big[0, \eta_{kj}(\varepsilon) \big] \cup \big[\widetilde{\eta}_{kj}(\varepsilon), 1 \big] \big) \leq \max_{\substack{s \in [0,1] \\ k,j}} |\gamma'_{kj}(s)| \cdot \max_{k,j} (\eta_{kj}(\varepsilon), 1 - \eta_{kj}(\varepsilon)),$$

что стремится к нулю. Таким образом, мы доказали, что

$$\sum_{S \in B} \left| \int_{\partial S} g(z) \, \mathrm{d}z \right| \xrightarrow[\varepsilon \to 0]{} 0.$$

• Если Q — хороший квадрат, то $\partial\Omega\cap Q$ — кусочно-гладкий контур Γ , причём $\Gamma_{\varepsilon}=\{\gamma(t)+i\gamma'(t)\varepsilon\}\subset\Omega.$ Значит,

$$\int_{\Gamma} g(z) dz = \lim_{\varepsilon \to 0} \int_{\Gamma_{\varepsilon}} g(z) dz = 0,$$

где первое равенство следует из непрерывности g в $\overline{\Omega}$, а второе выполнено, так как Γ_{ε} стягиваемо в Ω . Таким образом, мы разобрали случай, когда

 $Q \cap \Omega$ состоит из одной компоненты связности. Если же $Q \cap \Omega$ состоит из счётного числа компонент связности, то надо применить этот аргумент к каждой из них.

Итого, мы показали, что

$$\oint_{\partial\Omega} g(z) \, \mathrm{d}z = 0,$$

если стандартная область Ω ограничена.

(2) Пусть $w \in \Omega$, $\varepsilon > 0$ таково, что $\overline{B(w,\varepsilon)} \in \Omega$. Очевидно, что $\Omega' = \Omega \setminus \overline{B(w,\varepsilon)}$ — стандартная область, а потому по первому пункту доказательства

$$\frac{1}{2\pi i} \oint \frac{f(z)}{z - w} \, \mathrm{d}z = 0,$$

так как отображение $z\mapsto f(z)/(z-w)$ аналитично в Ω и непрерывно в $\overline{\Omega'}$. Тогда

$$\frac{1}{2\pi i} \oint_{\partial \Omega} \frac{f(z)}{z - w} dz = \frac{1}{2\pi i} \oint_{\partial \Omega'} \frac{f(z)}{z - w} dz + \frac{1}{2\pi i} \oint_{C(w,\varepsilon)} \frac{f(z)}{z - w} dz = 0 + f(w),$$

что и требовалось.

Теорема 4.4 (интегральная теорема Коши для неограниченных стандартных областей). Пусть Ω — стандартная область, причём существует такое R>0, что $C(0,r)\subset\Omega$ для всех r>R. Пусть функция f аналитична в Ω , $|f(z)|\to 0$ при $|z|\to +\infty$. Тогда для всех $w\in\Omega$

$$f(w) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{f(z)}{z - w} dz.$$

Доказательство. Рассмотрим множества $\Omega_r = \Omega \cap B(0,r)$, где r > R. Для Ω_r можно применить обычную теорему Коши: если $w \in \Omega_r$, то

$$f(w) = \frac{1}{2\pi i} \oint_{\partial \Omega_x} \frac{f(z)}{z - w} dz.$$

При этом

$$\frac{1}{2\pi i} \oint\limits_{\partial \Omega_r} \frac{f(z)}{z-w} \,\mathrm{d}z = \frac{1}{2\pi i} \oint\limits_{\partial \Omega} \frac{f(z)}{z-w} \,\mathrm{d}z + \frac{1}{2\pi i} \oint\limits_{C(0,r)} \frac{f(z)}{z-w} \,\mathrm{d}z,$$

И

$$\left| \oint_{C(0,r)} \frac{f(z)}{z - w} dz \right| \leq \max_{|z| = r} |f(z)| \cdot 2\pi r \cdot O(1/r).$$

Переходя к пределу по $r \to \infty$ получаем требуемое равенство.

*

Как показывает следующий пример, условие про стремление функции к нулю на бесконечности существенно.

Пример 4.1. Для любого $w \in \mathbb{C} \setminus \overline{\mathbb{D}}$ выполнено равенство

$$\int_{C(0,1)} \frac{\mathrm{d}z}{z - w} = 0.$$

Иллюстрация к использованию интегральных представлений для функций.

Теорема 4.5 (Монтель). Пусть Ω — область в \mathbb{C} , $f_n \colon \Omega \to \mathbb{C}$ — аналитические функции для всех $n \in \mathbb{N}$. Пусть для любого $z \in \Omega$ существует такое число $\varepsilon = \varepsilon(z) > 0$, что

$$\sup_{\substack{w\in B(z,\varepsilon(z))\\w\in\Omega,\,n\in\mathbb{N}}}|f_n(w)|<\infty.$$

Тогда существует такая подпоследовательность $\{f_{n_k}\}$ и функция f, аналитическая в Ω , что f_{n_k} сходится к f равномерно на компактах в Ω .

Доказательство. Рассмотрим всюду плотное счётное подмножество $\{z_k\} \subset \Omega$. Обозначим $\varepsilon_k := \varepsilon(z_k)$, будем считать, что $\overline{B(z_k, \varepsilon_k)} \subset \Omega$. Покажем, что существует подпоследовательность $\{f_{n_j}\}$, сходящаяся в $B(z_k, \varepsilon_k/2)$. Для любой аналитической функции g в Ω и точки $w \in B(z_k, \varepsilon_k)$ имеем (по интегральной теореме Коши)

$$g'(w) = \lim_{\xi \to 0} \frac{g(w+\xi) - g(w)}{\xi}$$

$$= \lim_{\xi \to 0} \frac{1}{2\pi i} \oint_{C(z_k, \varepsilon_k)} g(z) \frac{\frac{1}{z - (w+\xi)} - \frac{1}{z - w}}{\xi} dz$$

$$= \frac{1}{2\pi i} \oint_{C(z_k, \varepsilon_k)} \frac{g(z)}{(z - w)^2} dz,$$

где последнее равенство выполнено по теореме Лебега о мажорированной сходимости. Значит, для всех w таких, что $|w-z_k|=\varepsilon_k/2$, выполнено

$$|f_n'(w)| \leqslant \frac{1}{2\pi i} \cdot \sup_{\substack{z \in B(z_k, \varepsilon_k) \\ n \in \mathbb{N}}} |f_n(z)| \cdot \frac{1}{(\varepsilon_k/2)^2} \cdot 2\pi \, \frac{\varepsilon_k}{2}.$$

Тогда $|f_n'(w)| \le C_k$ для некоторого C_k и любого $n \in \mathbb{N}$. По принципу максимума имеем $|f_n'(w)| \le C_k$ для всех $w : |w - z_k| \le \varepsilon_k/2$. Значит, $\{f_n\}$ — семейство равномерно ограниченных и равностепенно непрерывных функций из $\overline{B(z_k, \varepsilon_k/2)}$ в \mathbb{C} . По теореме Арцела – Асколи, существует подпоследовательность, сходящаяся равномерно на $\overline{B(z_k, \varepsilon_k/2)}$.

Используя канторовский диагональный процесс, выберем подпоследовательность $\{f_{n_i}\}$, сходящуюся равномерно в каждом шаре $B(z_k, \varepsilon_k/2)$ (и, как следствие, в

любом компакте, так как он накрывается всеми такими шарами вообще в силу непрерывности $\varepsilon(z)$, а в силу компактности имеет конечное покрытие шарами). Пусть её предел — f. Для любого компакта K в Ω существует конечное число шаров $B(z_k, \varepsilon_k/2)$, покрывающих K. Значит, $f_{n_k} \Rightarrow f$ на K. В частности, функция f аналитична в Ω . $\not<$

5 Ряды Лорана

Соглашение. Пусть $\Omega \subset \mathbb{C}$ — область, f_n — аналитические функции в Ω . Будем говорить, что ряд $\sum_{n \in \mathbb{Z}} f_n(z)$ сходится в Ω , если в ней сходятся ряды $\sum_{n \geqslant 0} f_n(z)$ и $\sum_{n < 0} f_n(z)$.

Теорема 5.1. Пусть $0 \le r < R \le +\infty$,

$$\Omega_{r,R}(z_0) = \{ z \in \mathbb{C} : r < |z - z_0| < R \},$$

f аналитична в $\Omega_{r,R}(z_0)$. Тогда существуют такие $c_n \in \mathbb{C}$, где $n \in \mathbb{Z}$, что

$$f(z) = \sum_{n \in \mathbb{Z}} c_n (z - z_0)^n, \tag{5.1}$$

причём ряд (5.1) сходится равномерно на компактах в $\Omega_{r,R}(z_0)$. Более того,

$$c_n = \frac{1}{2\pi i} \oint_{C(z_0,\rho)} \frac{f(z)}{(z-z_0)^m} dz,$$

где $\rho \in (r, R)$. Если

$$\sum_{n\in\mathbb{Z}}c_n(z-z_0)^n=\sum_{n\in\mathbb{Z}}c_n'(z-z_0)^n,$$

то $c_n = c'_n$ при всех $n \in \mathbb{Z}$.

Определение. Ряд $\sum_{n\in\mathbb{Z}}c_n(z-z_0)^n$ называется рядом Лорана функции f в $\Omega_{r,R}(z_0)$.

Во многих случаях ряд Лорана заменяет ряд Тейлора. Примеры областей, в которых аналитическая функция имеет ряд Лорана: $\mathbb{C}\setminus\{0\}=\Omega_{0,+\infty}(0)$, $\mathbb{C}\setminus\mathbb{D}=\Omega_{1,+\infty}(0)$, и так далее.

Доказательство теоремы. Будем считать, что $z_0 = 0$ — иначе можно рассмотреть функцию $z \mapsto f(z + z_0)$ в кольце $\Omega_{r,R}(0)$. $\Omega_{r',R'}(0)$ — стандартная область для всех r', R', удовлетворяющих условиям r < r' < R' < R. По интегральной теореме Коши,

$$\begin{split} f(z) &= \frac{1}{2\pi i} \oint\limits_{\partial\Omega_{r',R'}(0)} \frac{f(\xi)}{\xi - z} \,\mathrm{d}\xi \\ &= -\frac{1}{2\pi i} \oint\limits_{C_{r'}} \frac{f(\xi)}{\xi - z} \,\mathrm{d}\xi + \frac{1}{2\pi i} \oint\limits_{C_{R'}} \frac{f(\xi)}{\xi - z} \,\mathrm{d}\xi \\ &= -\frac{1}{2\pi i} \oint\limits_{C_{r'}} \frac{f(\xi)}{z(1 - \xi/z)} \,\mathrm{d}\xi + \frac{1}{2\pi i} \oint\limits_{C_{R'}} \frac{f(\xi)}{\xi(1 - z/\xi)} \,\mathrm{d}\xi. \end{split}$$

Заметим, что если $\xi \in C_{r'}$, $|z| = \mathfrak{r}$, где $\mathfrak{r} \in (r',R')$, то $|\xi/z| = r'/\mathfrak{r} < 1$. Если $\xi \in C_{R'}$, то $|z/\xi| = \mathfrak{r}/R' < 1$. Продолжим равенство:

$$-\frac{1}{2\pi i} \oint_{C_{r'}} \frac{f(\xi)}{z(1-\xi/z)} \, \mathrm{d}\xi + \frac{1}{2\pi i} \oint_{C_{R'}} \frac{f(\xi)}{\xi(1-z/\xi)} \, \mathrm{d}\xi =$$

$$= \frac{1}{2\pi i} \left(\oint_{C_{r'}} \frac{f(\xi)}{z} \sum_{k \geqslant 0} \left(\frac{\xi}{z} \right)^k \, \mathrm{d}\xi \right) + \frac{1}{2\pi i} \left(\oint_{C_{R'}} \frac{f(\xi)}{\xi} \sum_{k \geqslant 0} \left(\frac{z}{\xi} \right)^k \, \mathrm{d}\xi \right),$$

причём ряды в последнем выражении сходятся равномерно на окружности $|z|=\mathfrak{r}$. Значит, можно поменять местами сумму и интеграл, заменить в левой части k на -k-1 и получить, что

$$\frac{1}{2\pi i} \left(\oint_{C_{r'}} \frac{f(\xi)}{z} \sum_{k \ge 0} \left(\frac{\xi}{z} \right)^k d\xi \right) + \frac{1}{2\pi i} \left(\oint_{C_{R'}} \frac{f(\xi)}{\xi} \sum_{k \ge 0} \left(\frac{z}{\xi} \right)^k d\xi \right) = \\
= \sum_{k < 0} z^k \frac{1}{2\pi i} \oint_{C_{r'}} \frac{f(\xi)}{\xi^{k+1}} d\xi + \sum_{k \ge 0} z^k \frac{1}{2\pi i} \oint_{C_{R'}} \frac{f(\xi)}{\xi^{k+1}} d\xi. \quad (5.2)$$

Так как для любого $k \in \mathbb{Z}$ функция $f(\xi)/\xi^{k+1}$ аналитична в $\Omega_{r,R}(0)$, то для любого $\rho \in (r,R)$

$$\frac{1}{2\pi i} \oint_{C_{r'}} \frac{f(\xi)}{\xi^{k+1}} d\xi = \frac{1}{2\pi i} \oint_{C_{\rho}} \frac{f(\xi)}{\xi^{k+1}} d\xi = \frac{1}{2\pi i} \oint_{C_{\rho}'} \frac{f(\xi)}{\xi^{k+1}} d\xi.$$

Значит, (5.2) — искомое разложение в ряд Лорана. Из доказательства видно, что ряд Лорана сходится равномерно в любом кольце $\Omega_{r_1,r_2}(0)$, где $r < r_1 < r_2 < R$. Значит, ряд Лорана сходится на компактах в $\Omega_{r,R}(0)$.

Пусть $\sum c_n z^n = \sum c_n' z^n$ в $\Omega_{r,R}(0), \rho \in (r,R)$. Тогда

$$\frac{1}{2\pi i} \oint\limits_{C_o} \frac{\sum c_n \xi^n}{\xi^{k+1}} \,\mathrm{d}\xi = \frac{1}{2\pi i} \oint\limits_{C_o} \frac{\sum c_n' \xi^n}{\xi^{k+1}}.$$

Так как

$$\frac{1}{2\pi i} \oint_{C_0} \xi^m d\xi = \begin{cases} 1, & m = -1, \\ 0, & m \neq -1. \end{cases}$$

Для всех $m \in \mathbb{Z}$

$$\oint_{C_{\rho}} \xi^{m} d\xi = \int_{0}^{2\pi} \rho^{m} e^{imt} \cdot i\rho^{it} dt.$$

*

Определение. Пусть Ω — область в \mathbb{C} , $z_0 \in \Omega$. Если функция f определена и аналитична в $\Omega \setminus \{z_0\}$, то точка z_0 называется изолированной особой точкой f.

Определение. Точка $z_0 \in \Omega$ называется:

• устранимой особой точкой функции f, если для некоторого $\varepsilon > 0$

$$\sup_{z\in B(z_0,\varepsilon)\setminus\{z_0\}}|f(z)|<\infty;$$

• nолюсом функции f, если существует предел

$$\lim_{z \to z_0, z \neq z_0} |f(z)| = +\infty;$$

• существенно особой точкой функции f, если не существует предела

$$\lim_{z\to z_0,\,z\neq z_0}|f(z)|.$$

Теорема 5.2. Для изолированной особой точки $z_0 \in \Omega$ следующие условия равносильны:

- (1) z_0 устранимая особая точка функции f;
- (2) существует конечный предел $\lim_{z \to z_0, z \neq z_0} |f(z)|;$
- (3) $f = \sum_{n \ge 0} c_n (z z_0)^n$.

Доказательство.

- $(2), (3) \implies (1)$. Очевидно.
- $(1) \Longrightarrow (2), (3)$. Рассмотрим функцию

$$g(z) = \begin{cases} (z - z_0)f(z), & z \neq z_0, \\ 0, & z = z_0. \end{cases}$$

Очевидно, что $g \in C(\Omega)$; форма g dz замкнута в $\Omega \setminus \{z_0\}$, так как функция f(z) аналитична в $\Omega \setminus \{z_0\}$. Значит, по лемме об устранении особенности для дифференциальных форм g dz замкнута в Ω . По теореме Коши – Гурса – Морера функция g аналитична в Ω . Поскольку $g(z_0) = 0$,

$$g(z) = \sum_{n \ge 1} c_n (z - z_0)^n.$$

Значит,

$$f(z) = \sum_{n>0} c_{n+1} (z - z_0)^n, \qquad (\forall z \in \Omega \setminus \{z_0\}).$$

Отсюда видно, что предел $\lim_{z \to z_0, z \neq z_0} f(z)$ существует; и функция f, доопределённая значением $f(z_0)$ в z_0 , является аналитичной.

Пример 5.1. Ноль — устранимая особая точка функции $\sin z/z$, заданной в $\Omega \setminus \{0\}$.

Замечание. Мы доказали, что если f аналитична в $\Omega \setminus \{z_0\}$, и существует предел $\lim_{z \to z_0} f(z)$, то f доопределяется значением $f(z_0)$ в точке z_0 , и при этом получается аналитическая функция.

Определение. Пусть $f: \Omega \setminus \{z_0\} \to \mathbb{C}$ — аналитична, $f = \sum_{n \in \mathbb{Z}} c_n (z - z_0)^n$ — её разложение в ряд Лорана в кольце $\Omega_{0,\varepsilon}(z_0) \subset \Omega \setminus \{z_0\}$. Тогда сумма $\sum_{n<0} c_n (z-z_0)^n$ называется главной частью ряда Лорана функции f в окрестности точки z_0 .

Если f аналитична в кольце $\Omega_{\varepsilon,+\infty}(z_0)$, и $f = \sum_{n \in \mathbb{Z}} c_n (z-z_0)^n$ — её разложение в ряд Лорана в $\Omega_{\varepsilon,+\infty}(z_0)$, то главной частью ряда Лорана f в окрестности ∞ называется ряд $\sum_{n>0} c_n (z-z_0)^n$.

Замечания.

- 1. Главная часть ряда Лорана это либо $\sum_{n>0}$, либо $\sum_{n>0}$, в зависимости от того, какая из этих сумм не ограничена в окрестности z_0 .
- 2. Если f имеет устранимую особенность в точке z_0 , то главная часть её ряда Лорана равна нулю.

Теорема 5.3. Пусть z_0 — изолированная особая точка аналитической функции $f: \Omega \setminus \{z_0\} \to \mathbb{C}$. Следующие условия равносильны:

- (1) z_0 полюс f;
- (2) $f = \sum_{n \ge -N}^{\infty} c_n (z z_0)^n$, причём $N \ge 1$ и $c_{-N} \ne 0$.

Когда выполнено условие (2), говорят, что f имеет в точке z_0 полюс порядка N. Полюса порядка 1 также называются простыми полюсами.

Доказательство.

 $(1)\Longrightarrow (2)$. Рассмотрим функцию g(z)=1/f(z) в шаре $B(z_0,\varepsilon)\setminus\{z_0\}$, где $\varepsilon>0$, |f(z)|>1 в $B(z_0,\varepsilon)\setminus\{z_0\}$ и $B(z_0,\varepsilon)\subset\Omega$. Такое ε существует, так как $|f(z)|\to+\infty$ при $z\to z_0$. Функция g имеет устранимую особенность в точке z_0 , поэтому

$$\frac{1}{f(z)} = (z - z_0)^N h(z),$$

где $N\geqslant 1,^{14}h(z)\neq 0$ в шаре $B(z_0,\eta),\, 0<\eta<\varepsilon.$ Значит,

$$f(z) = \frac{1}{h(z)} \frac{1}{(z - z_0)^N} = \frac{\sum_{n \ge 0} a_n (z - z_0)^n}{(z - z_0)^N},$$

так как функция 1/h аналитична в $B(z_0, \eta)$, и поэтому раскладывается в этой области в ряд $\sum a_n(z-z_0)^n$. Таким образом,

$$f(z) = \sum_{k \geqslant -N}^{\infty} a_{k+N} (z - z_0)^k,$$

и из единственности разложения в ряд Лорана следует, что $a_{k+N}=c_k$ для любого $k\in\mathbb{Z}.$

 $^{^{14}}N$ — это просто кратность нуля функции g.

*

 $(2) \Longrightarrow (1)$. Если есть такое разложение, то

$$|f(z)| \sim rac{|c_{-N}|}{|z-z_0|^N}$$
 при $z
ightarrow z_0,$

а последнее число стремится к бесконечности.

Таким образом, z_0 — это полюс f тогда и только тогда, когда главная часть ряда Лорана в окрестности z_0 имеет лишь конечное число слагаемых.

Упражнение. Сформулируйте и докажите аналогичный критерий для $z_0 = \infty$.

Теорема 5.4. Пусть z_0 — изолированная особая точка аналитической функции $f: \Omega \setminus \{z_0\} \to \mathbb{C}$. Следующие условия равносильны:

- (1) z_0 существенно особая точка;
- (2) $f(z) = \sum_{n \in \mathbb{Z}} c_n (z z_0)^n$, причём для любого $N \in \mathbb{N}$ найдётся такое $m \geqslant N$, что $c_{-m} \neq 0$.

Доказательство. Очевидным образом следует из предыдущих двух теорем.

≮

Теорема 5.5 (Сохоцкий). Пусть $\Omega \subset \mathbb{C}$ — область, $z_0 \in \Omega$, функция $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ аналитична и имеет существенную особенность в z_0 . Тогда для любого $\varepsilon > 0$

$$\operatorname{Cl} f(B(z_0, \varepsilon) \cap (\Omega \setminus \{z_0\})) = \mathbb{C}.$$

Другими словами, в любой окрестности существенно особой точки аналитическая функция принимает плотное множество значений.

Доказательство. Можно считать, что $B(z_0, \varepsilon) = \Omega$. Предположим, что

$$\operatorname{Cl} f(B(z_0,\varepsilon)\setminus\{z_0\})\neq\mathbb{C}.$$

Тогда существует такая точка $w \in \mathbb{C}$, что $|w - f(z)| > \eta > 0$ для всех $z \in B(z_0, \varepsilon) \setminus \{z_0\}$. Значит, h(z) = 1/(f(z) - w) — аналитическая в $B(z_0, \varepsilon) \setminus \{z_0\}$ функция; z_0 — устранимая особая точка h, так как $|h| \le 1/\eta$. Следовательно,

$$\frac{1}{f(z)-w}=h(z)=(z-z_0)^mg(z), \qquad \text{где } m\geqslant 0, \ m\in\mathbb{Z},$$

причём $g(z) \neq 0$ в $B(z_0, \varepsilon)$. Тогда

$$f(z) - w = \frac{1}{(z - z_0)^m g(z)},$$

то есть

$$f(z) = w + \frac{1}{(z - z_0)^m g(z)}.$$

Значит, существует предел

$$\lim_{z \to z_0, z \neq z_0} |f(z)| \in [0, +\infty].$$

*

*

Однако тогда z_0 — либо полюс, либо устранимая особая точка. Противоречие.

На самом деле, верна ещё более сильная теорема.

Теорема 5.6 (Пикар). В любой окрестности существенно особой точки аналитическая функция принимает все значения, кроме, возможно, одного.

Доказательство. (пока без доказательства)

Определение. Пусть $f: \Omega \setminus \{z_0\} \to \mathbb{C}$ — аналитическая функция, где $z_0 \in \Omega$. Вычет мом f в мочке z_0 называется коэффициент c_{-1} ряда Лорана f в окрестности z_0 . Вычет обозначается следующим образом: $\operatorname{res}_{z_0} f$ (от слова $\operatorname{residue}$).

Определение. Вычетом в бесконечности функции f, аналитичной в некотором кольце $\{z \in \mathbb{C} : |z| > R\}$, называется коэффициент $-c_{-1}$ её ряда Лорана в этом кольце. Он обозначается как $\operatorname{res}_{\infty} f$.

Определение. Пусть $\Omega \subset \mathbb{C}$ — область, $E \subset \Omega$ — дискретное подмножество Ω^{15} . Функция $f: \Omega \setminus E \to \mathbb{C}$ называется *мероморфной в* Ω , если она аналитична, и в каждой точке E у f полюс. Если $\Omega = \mathbb{C}$, то f называется просто *мероморфной* функцией.

Пример 5.2. Если p_1, p_2 — многочлены, то p_1/p_2 — мероморфная функция в $\mathbb C$, где

$$E = \{ z \in \mathbb{C} : p_2(z) = 0 \}.$$

Теорема 5.7 (теорема Коши о вычетах). Пусть Ω — стандартная ограниченная область, f — мероморфная в Ω функция с конечным множеством особенностей E. Пусть $f \in C(\overline{\Omega} \setminus E)$, тогда

$$\frac{1}{2\pi i} \oint_{\partial \Omega} f(z) dz = \sum_{z \in E} \operatorname{res}_z f.$$

 \mathcal{A} оказательство. Рассмотрим область $\widetilde{\Omega}=\Omega\setminus\bigcup_{k=1}^N B_k$, где $N=|E|,\ B_k=B_k(z_k,\varepsilon_k),\ B_k\cap B_j=\varnothing$ для всех $k\neq j;\overline{B}_k\subset\Omega$ для всех $k,z_k\in E$. Ясно, что $\widetilde{\Omega}$ — стандартная ограниченная область, и f аналитична в $\widetilde{\Omega}$. Значит, по интегральной теореме Коши

$$\oint_{\partial \widetilde{\Omega}} f(z) \, \mathrm{d}z = 0.$$

С другой стороны,

$$\oint_{\partial\Omega} f(z) dz = \oint_{\partial\widetilde{\Omega}} f(z) dz + \sum_{k=1}^{N} \oint_{\partial B_k} f(z) dz.$$

Осталось показать, что

$$\frac{1}{2\pi i} \oint_{\partial B_k} f(z) \, \mathrm{d}z = \operatorname{res}_{z_k} f.$$

¹⁵ То есть подмножество Ω , не содержащее предельных точек E.

≮

*

Действительно,

$$f(z) = \sum_{n \in \mathbb{Z}} c_n (z - z_0)^n,$$

причём этот ряд сходится абсолютно на окружности ∂B_k . Значит,

$$\frac{1}{2\pi i} \oint_{\partial B_k} f(z) dz = \sum_{n \in \mathbb{Z}} c_n \cdot \frac{1}{2\pi i} \oint_{\partial B_k} (z - z_0)^n dz.$$

Обозначим слагаемые (без c_n) в правой части через A_n . Ясно, что

$$A_n = \begin{cases} 0, & n \neq -1, \\ 1, & n = -1. \end{cases}$$

Следовательно,

$$\frac{1}{2\pi i} \oint_{\partial B_k} f(z) dz = c_{-1} = \operatorname{res}_{z_k} f,$$

что и требовалось.

Упражнение. Сформулировать и доказать теорему Коши о вычетах для неограниченных стандартных областей.

Теорема 5.8. Пусть f мероморфна в $\mathbb C$ и имеет конечное множество E особых точек в $\mathbb C$. Тогда

$$\sum_{z_k \in F} \operatorname{res}_{z_k} f + \operatorname{res}_{\infty} f = 0.$$

Доказательство. Выберем R > 0 так, чтобы E содержалось в B(0,R). Тогда

$$0 = \oint_{\partial B(0,R)} f(z) dz + \oint_{\partial (\mathbb{C} \setminus \overline{B(0,R)})} f(z) dz.$$

При этом по предыдущей теореме

$$\oint_{\partial B(0,R)} f(z) dz = 2\pi i \sum_{z_k \in E} \operatorname{res}_{z_k} f,$$

И

$$\oint\limits_{\partial(\mathbb{C}\setminus\overline{B(0,R)})} f(z)\,\mathrm{d}z = -\oint\limits_{\partial B(0,R)} f(z)\,\mathrm{d}z = -2\pi i c_{-1} = 2\pi i \operatorname{res}_{\infty} f,$$

откуда следует требуемое равенство.

Применим теорему Коши о вычетах к функции $f: z \mapsto \frac{1}{z^2+1}$ в области

$$\Omega = \{ z \in \mathbb{C} : \operatorname{Im} z > 0, \ |z| < r \}.$$

Рис. 9: Область Ω

В этой области наша функция имеет всего один полюс — точку z=i, и он первого порядка. Таким образом,

$$\int_{\partial \Omega} f(z) dz = 2\pi i \operatorname{res}_i f = \frac{2\pi i}{2i} = \pi,$$

так как в окрестности z = i функция f имеет вид

$$f(z) = \frac{1}{(z-i)(z+i)} = \frac{1}{(z-i)} \left(\frac{1}{2i} + O(z-i) \right).$$

С другой стороны, интеграл по $\partial\Omega$ складывается из интеграла по отрезку [-r,r] и интеграла по полуокружности $\gamma_r=\{z\in\mathbb{C}:\ \mathrm{Im}\,z>0,|z|=r\}.$ Заметим, что

$$\left| \int_{\gamma_r} f(z) \, \mathrm{d}z \right| \leq \pi r \max_{z \in \gamma_r} |f(z)| \leq \frac{\pi r}{r^2 - 1} \to 0, \qquad r \to +\infty.$$

Значит.

$$\pi = \oint_{\partial \Omega} f(z) dz = \lim_{r \to +\infty} \left(\oint_{\gamma_r} + \int_{-r}^r \right) = \int_{\mathbb{R}} \frac{dx}{x^2 + 1}.$$

Таким образом, мы убедились, что с помощью теоремы Коши о вычетах можно посчитать интеграл

$$\int_{\mathbb{R}} \frac{\mathrm{d}x}{x^2 + 1} = \arctan(+\infty) - \arctan(-\infty) = \pi.$$

Попробуем применить наши знания для вычисления интеграла Дирихле:

$$\int\limits_{\mathbb{R}} \frac{\sin x}{x} \, \mathrm{d}x = ?$$

Если мы станем действовать как раньше, нам встретятся две проблемы:

- полюс функции $g=\sin z/z$ лежит на границе стандартной области Ω , а не внутри неё;
- функция g очень велика на окружности γ_R , и непонятно, почему $\int_{\gamma_R} g(z) \, \mathrm{d}z$ будет стремиться к нулю с ростом R.

Чтобы преодолеть эти трудности, нам понадобятся два утверждения: лемма о полувычете и лемма Жордана.

Лемма 5.9 (лемма о полувычете). Пусть $f: \Omega \to \mathbb{C}$ — мероморфная функция с простым полюсом в точке $\lambda \in \Omega$, и пусть

$$\gamma_{\varepsilon}(\lambda) = \{\lambda + \varepsilon e^{it}, \ t \in [0, \pi]\}$$

— полуокружность с центром в точке λ радиуса $\varepsilon > 0$. Тогда

$$\lim_{\varepsilon \to 0} \frac{1}{2\pi i} \oint_{\gamma_{\varepsilon}(\lambda)} f(z) dz = \frac{\operatorname{res}_{\lambda} f}{2}.$$

 \mathcal{A} оказательство. По предположению, λ — простой полюс функции f. Рассматривая разложение f в ряд Лорана в малом кольце $\widetilde{\Omega}$ с центром в точке λ , видим, что

$$f(z) = \frac{c_{-1}}{z - \lambda} + g(z), \qquad z \in \widetilde{\Omega},$$

где функция g аналитична в $\widetilde{\Omega} \cup \{\lambda\}$. Значит,

$$\oint_{\gamma_{\varepsilon}(\lambda)} f(z) dz = \oint_{\gamma_{\varepsilon}(\lambda)} \frac{c_{-1} dz}{z - \lambda} + \oint_{\gamma_{\varepsilon}(\lambda)} g(z) dz.$$

Заметим, что из локальной ограниченности функции g следует, что

$$\lim_{\varepsilon \to 0} \oint_{\gamma_{\varepsilon}(\lambda)} g(z) \, \mathrm{d}z = 0.$$

Поэтому нам осталось вычислить лишь

$$\oint_{\gamma_{\varepsilon}(\lambda)} \frac{c_{-1} dz}{z - \lambda} = \int_{0}^{\pi} \frac{c_{-1} \varepsilon i e^{it}}{\varepsilon e^{it}} dt = \pi i c_{-1} = \pi i \operatorname{res}_{\lambda} f.$$

*

*

Отсюда легко получить требуемую формулу.

Лемма 5.10 (лемма Жордана). Пусть $f: \{z: \operatorname{Im} z \geqslant 0\} \to \mathbb{C}$ — непрерывная функция со свойством

$$\lim_{r \to +\infty} \max_{z \in \gamma_r} |f(z)| = 0,$$
 где $\gamma_r = \{re^{it} : t \in [0,\pi]\}.$

Тогда для любого a > 0 имеет место равенство

$$\lim_{r\to+\infty} \left| \oint_{\gamma_r} e^{iaz} f(z) \, \mathrm{d}z \right| = 0.$$

Доказательство. По определению,

$$\oint_{\gamma_r} e^{iaz} f(z) dz = \int_0^{\pi} e^{iare^{it}} f(re^{it}) ire^{it} dt.$$

Так как $|e^z|=|e^{\operatorname{Re} z+i\operatorname{Im} z}|=e^{\operatorname{Re} z}$ для любого комплексного числа z, то

$$|e^{iare^{it}}| = |e^{iar(\cos t + i\sin t)}| = e^{-ar\sin t}$$

Вводя обозначение $M_r = \sup_{z \in \gamma_r} |f(z)|$, получаем оценку

$$\left| \oint_{\gamma_r} e^{iaz} f(z) dz \right| \leq r M_r \int_0^{\pi} e^{-ar \sin t} dt = 2r M_r \int_0^{\pi/2} e^{-ar \sin t} dt.$$

Вспомним, что $\sin t \ge 2t/\pi$ на промежутке $[0, \pi/2]$. Значит,

$$\int_{0}^{\pi/2} e^{-ar\sin t} dt \leqslant \int_{0}^{\pi/2} e^{-2art/\pi} dt \leqslant \int_{0}^{\infty} e^{-2art/\pi} dt = \frac{\pi}{2ar}.$$

Собирая всё вместе, получаем оценку

$$\left| \oint_{C_r} e^{iaz} f(z) dz \right| \leq \frac{2rM_r \pi}{2ar} = \frac{M_r \pi}{a},$$

что стремится к нулю с ростом r.

Определение. Пусть $f: E \to \mathbb{C}$ — измеримая функция на измеримом подмножестве $E \subset \mathbb{R}$, и пусть $f \in L^1(E_{\varepsilon}(x_0))$ для любого $\varepsilon > 0$, где

$$E_{\varepsilon} = \{ x \in E : |x - x_0| \ge \varepsilon \}.$$

Интегралом по множеству E в смысле главного значения ("principal value") в точке x_0

 ∂ ля функции f называют предел

$$p.v. \int_{E} f(x) dx = \lim_{\varepsilon \to 0} \int_{E_{\varepsilon}(x_{0})} f(x) dx,$$

в случае, если он существует.

Ясно, что если $x_0 \notin \overline{E}$ или если функция f суммируема в окрестности точки x_0 , то

$$p.v. \int_{E} f(x) dx = \int_{E} f(x) dx.$$

С другой стороны,

$$p.v. \int_{-1}^{2} \frac{\mathrm{d}x}{x} = \log 2,$$

в то время как функция 1/x не интегрируема по Лебегу на [-1,2]. Определение допускает естественное обобщение на случай, когда f имеет несколько "особых точек" x_0 , а также на случай, когда $x_0 = \infty$ (в этом случае рассматривается предел интегралов по отрезкам [-R,R], где $R \to +\infty$).

Теперь всё готово, чтобы посчитать интеграл $\int_{\mathbb{R}} \sin x/x \, dx$.

Утверждение 5.11. Значение интеграла Дирихле:

$$\int_{\mathbb{D}} \frac{\sin x}{x} \, \mathrm{d}x = \pi.$$

Доказательство. Рассматриваемый интеграл сходится по признаку Дирихле. Значит,

$$\int_{\mathbb{R}} \frac{\sin x}{x} dx = p.v. \int_{\mathbb{R}} \frac{\sin x}{x} dx = \operatorname{Im} \left(p.v. \int_{\mathbb{R}} \frac{e^{ix}}{x} dx \right).$$
 (5.3)

Возьмём число r>0 и рассмотрим стандартную область

$$\Omega_r = \left\{ z \in \mathbb{C} : \operatorname{Im} z > 0, |z| \in (1/r, r) \right\}.$$

(см. рисунок 10)

Как и ранее, обозначим через γ_r полуокружность радиуса r с центром в начале координат, лежащую в верхней полуплоскости. По теореме Коши о вычетах,

$$\oint_{\Omega_r} \frac{e^{iz}}{z} \, \mathrm{d}z = 0.$$

≮

Рис. 10: Область Ω_r

С другой стороны,

$$\oint_{\Omega_r} \frac{e^{iz}}{z} dz = \oint_{\gamma_r} \frac{e^{iz}}{z} dz + \int_{-r}^{-1/r} \frac{e^{ix}}{x} dx - \oint_{\gamma_{1/r}} \frac{e^{iz}}{z} dz + \int_{r}^{1/r} \frac{e^{ix}}{x} dx.$$
 (5.4)

По лемме Жордана,

$$\lim_{r \to +\infty} \oint_{\gamma_r} \frac{e^{iz}}{z} \, \mathrm{d}z = 0.$$

По лемме о полувычете,

$$\lim_{r \to +\infty} \oint_{\gamma_{1/r}} \frac{e^{ix}}{x} dz = \pi i \operatorname{res}_0 \frac{e^{ix}}{x} = \pi i.$$

Значит,

$$0 = \operatorname{Im} \left(-\pi i + \lim_{r \to +\infty} \int_{[-r,1/r] \cup [1/r,r]} \frac{e^{ix}}{x} dx \right),$$

откуда мы получаем, что

$$\int_{\mathbb{R}} \frac{\sin x}{x} dx = \operatorname{Im} \left(p.v. \int_{\mathbb{R}} \frac{e^{ix}}{x} dx \right) = \pi,$$

что и требовалось.

Замечание. Вместо того, чтобы проверять, почему справедливо второе равенство в формуле (5.3), можно было взять мнимую часть обеих частей в формуле (5.4) и перейти к пределу. Этот способ проще (не надо проверять существование главного

значения интеграла по \mathbb{R} от функции e^{ix}/x), хотя при первом знакомстве выглядит несколько менее естественно.

6 Принцип аргумента и теорема Руше

Определение. Пусть $\gamma: [0,1] \to \Omega$ — кусочно-гладкий путь в области $\Omega \subset \mathbb{C}$, и пусть $f: \Omega \to \mathbb{C}$ — аналитическая функция. Предположим, что $f(\gamma(t)) \neq 0$ при любом $t \in [0,1]$. Ветвью аргумента функции f вдоль пути γ назовём непрерывную функцию $\psi: [0,1] \to \mathbb{R}$, обладающую следующим свойством:

$$f(\gamma(t)) = |f(\gamma(t))|e^{i\psi(t)}, \qquad t \in [0,1].$$

Изменением аргумента f вдоль пути γ называется число

$$\Delta_{\gamma}$$
 arg $f = \psi(1) - \psi(0)$.

Пример 6.1. Если область Ω односвязна, а функция f не имеет нулей в Ω , то, как мы уже знаем, во всей области Ω определена ветвь аргумента

$$arg f = Im log f$$

функции f. В этом случае в качестве аргумента вдоль любого пути γ в Ω можно взять функцию ψ : $t\mapsto (\arg f)(\gamma(t))$. Действительно, равенство

$$f(z) = |f(z)|e^{i(\arg f)(z)}$$

выполнено всюду в области Ω , а значит,

$$f(\gamma(t)) = |f(\gamma(t))|e^{i(\arg f)(\gamma(t))} = |f(\gamma(t))|e^{i\psi(t)}, \quad t \in [0, 1].$$

Отметим также, что если путь γ замкнут (скажем, $\gamma(0) = \gamma(1) = z_0$), то

$$\Delta_{\nu} \arg f = \psi(1) - \psi(0) = (\arg f)(z_0) - (\arg f)(z_0) = 0.$$

Пример 6.2. Пусть n — натуральное число, рассмотрим функцию $f: z \mapsto z^n$ в области $\Omega = \mathbb{C}$ и путь $\gamma: t \mapsto e^{it}, t \in [0, 2\pi]$. Тогда в качестве аргумента f вдоль γ можно взять функцию $\psi: t \mapsto nt, t \in [0, 2\pi]$:

$$f(\gamma(t)) = (e^{it})^n = e^{int} = e^{i\psi(t)} = |f(\gamma(t))|e^{i\psi(t)}.$$

Заметим, что с одной стороны,

$$\Delta_{\nu} \arg f = \psi(2\pi) - \psi(0) = 2\pi n,$$

а с другой стороны, n — это кратность нуля функции f в единичном круге.

Замечание. В обоих примерах оказалось, что изменение аргумента связано с количеством (с учётом кратности) нулей функции f в области, которую обходит путь γ . За этим стоит общий принцип — *принцип аргумента*, который будет доказан в этом параграфе.

Утверждение 6.1. Пусть $f: \Omega \to \mathbb{C}$ — аналитическая функция, $\gamma: [0,1] \to \Omega$ — кусочногладкий путь, причём $f(\gamma(t)) \neq 0$ для любого $t \in [0,1]$. Тогда

- (1) существует ψ непрерывная ветвь arg f вдоль пути γ ;
- (2) если φ другая непрерывная ветвь $\arg f$, то $\psi(t) \varphi(t) \equiv 2\pi k$ для некоторого $k \in \mathbb{Z}$ и всех $t \in [0,1]$;
- (3) Δ_{γ} arg f не зависит от выбора ветви arg f, и, более того,

$$\Delta_{\gamma} \arg f = \operatorname{Im} \int_{\gamma} \frac{f'(z)}{f(z)} dz.$$

Доказательство. Идея доказательства пункта (1) заключается в разбиении пути γ на настолько мелкие части, что каждый из кусков содержится в односвязной области. В ситуации, изображённой на рисунке 11, можно обойтись тремя областями. Каждая из них будет содержать участок пути соответствующего цвета, но не будет содержать "лакун" в области Ω (выкинутых кругов) и нулей функции f (они на картинке обозначены точками).

Рис. 11: Разбиение пути γ на 3 части

Запишем это формально. Используя компактность интервала [0,1], можно разделить его на конечное число отрезков $[t_n,t_{n+1}]$ так, чтобы их образы $\gamma([t_n,t_{n+1}])$ содержались в областях $\Omega_n \subset \Omega$ со следующими свойствами:

- (a) Ω_n односвязна;
- $(b) \ f(z) \neq 0$ для любого $z \in \Omega_n$.

*

Из примера (6.1) теперь следует, что для любого n существует ветвь аргумента ψ_n функции f вдоль пути $\gamma_n = \gamma|_{[t_n,t_{n+1}]}$. Определим $\psi(t) = \psi_0(t)$ на отрезке $[t_0,t_1]$. Выберем $k_1 \in \mathbb{Z}$ так, что бы было выполнено равенство $\psi(t_1) = \psi_1(t_1) + 2\pi k_1$, и определим ψ на $[t_1,t_2]$ формулой $\psi(t) = \psi_1(t) + 2\pi k_1$. Продолжая этот процесс по индукции, за конечное число шагов мы определим ψ на всем промежутке [0,1]. По построению, полученная функция будет непрерывной ветвью arg f вдоль пути γ .

Пункт (2) следует из того, что непрерывная функция на связном топологическом пространстве, принимающая целочисленные значения, постоянна.

Докажем утверждение (3). В силу пункта (2), Δ_{γ} arg f не зависит от выбора ветви arg f. Кроме того, из определения Δ_{γ} arg f следует, что

$$\Delta_{\gamma} \arg f = \sum_{n} \Delta_{\gamma_n} \arg f.$$

Значит, достаточно проверить, что

$$\Delta_{\gamma_n} \arg f = \operatorname{Im} \int_{\gamma_n} \frac{f'(z)}{f(z)} dz.$$

Выберем ветвь $\log f$ в Ω_n и возьмём отображение $\psi\colon t\mapsto \mathrm{Im}\log f(\gamma_n(t))$ в качестве ветви $\arg f$ вдоль γ_n . Тогда

$$\Delta_{\gamma_n} \arg f = \int_{t_n}^{t_{n+1}} \psi'(t) \, dt = \int_{t_n}^{t_{n+1}} \operatorname{Im} \frac{f'(\gamma_n(t))}{f(\gamma_n(t))} \, \gamma'_n(t) \, dt = \operatorname{Im} \int_{\gamma_n} \frac{f'(z)}{f(z)} \, dz.$$

Утверждение доказано.

Упражнение. Проверьте, что функция

$$\psi \colon t \mapsto c + \operatorname{Im} \int_{|y|=0,t]} \frac{f'(z)}{f(z)} \, \mathrm{d}z$$

является ветвью аргумента функции f при правильном выборе постоянной c.

Пример 6.3. Пусть γ — единичная окружность, проходимая против часовой стрелки, а $f(z) = z^n$. Тогда

$$\Delta_{\gamma} \arg f = \operatorname{Im} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \operatorname{Im} \left(n \int_{\gamma} \frac{dz}{z} \right) = n \operatorname{Im}(2\pi i) = 2\pi n,$$

как мы уже видели в примере (6.2).

Пример 6.4. Пусть γ — единичная окружность, проходимая против часовой стрелки,

а $f(z) = e^{1/z}$. Тогда

$$\operatorname{Im} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \operatorname{Im} \left(-\int_{\gamma} \frac{dz}{z^2} \right) = 0.$$

С другой стороны, для $z = e^{it}$ имеем

$$e^{1/z} = e^{e^{-it}} = e^{\cos t - i\sin t},$$

откуда получаем, что ψ : $t\mapsto -\sin t$ — ветвь аргумента f. Как и ожидалось,

$$\Delta_{\gamma} \arg f = -\sin 2\pi + \sin 0 = 0.$$

Обозначение. Пусть функция f мероморфна в области Ω и имеет в ней конечное число нулей $\{z_k\}_{k=1}^n$ и полюсов $\{p_k\}_{k=n+1}^{n+m}$. Пусть j_k обозначает кратность нуля z_k или полюса p_k для каждого номера k. Числа

$$N_f = \sum_{k=1}^{n} j_k, \qquad P_f = \sum_{k=n+1}^{n+m} j_k,$$

будем называть общей кратностью нулей и полюсов функции f в Ω соответственно.

Обозначение. Для всякого числа $\delta > 0$ будем называть δ -окрестностью множества $S \subset \mathbb{C}$ область $S_{\delta} = \{z \in \mathbb{C} : \operatorname{dist}(z, S) < \delta\}.$

Обозначение. Если Ω — стандартная область, а функция f аналитична в δ -окрестности $\partial\overline{\Omega}$, положим

$$\Delta_{\partial\Omega}$$
 arg $f = \sum_{k} \Delta_{\gamma_k}$ arg f ,

где γ_k — кусочно-гладкие пути, составляющие границу $\partial\overline{\Omega}$, при обходе вдоль которых область Ω остаётся слева.

Теорема 6.2 (принцип аргумента). Пусть Ω — ограниченная стандартная область, функция f мероморфна в Ω_{δ} и имеет конечное число особых точек, каждая из которых является полюсом. Если $\partial\overline{\Omega}$ не содержит нулей и полюсов функции f, то

$$\Delta_{\partial\Omega}$$
 arg $f=2\pi(N_f-P_f)$,

где N_f — суммарная кратность нулей, а P_f — суммарная кратность полюсов функции f в Ω .

Доказательство. Из утверждения 6.1 следует, что нам достаточно доказать равенство

$$\operatorname{Im} \oint_{\partial \Omega} \frac{f'(z)}{f(z)} dz = 2\pi (N_f - P_f).$$

Обозначим через Z и E множества нулей и полюсов функции f в Ω соответственно. Функция $\frac{f'(z)}{f(z)}$ мероморфна в Ω , имеет конечное множество особых точек $Z \cup E$ в Ω , а

также непрерывна на множестве $\overline{\Omega} \setminus (Z \cup E)$. По теореме Коши о вычетах,

$$\oint_{\partial\Omega} \frac{f'(z)}{f(z)} dz = 2\pi i \sum_{w_k \in Z \cup E} \operatorname{res}_{w_k} \left(\frac{f'(z)}{f(z)} \right).$$

В окрестности каждого своего нуля $z_k \in Z$ кратности j_k функция f имеет вид $f(z) = (z - z_k)^{j_k} g(z)$, где $g(z) \neq 0$. Значит,

$$\frac{f'(z)}{f(z)} = \frac{j_k(z - z_k)^{j_k - 1}g(z) + (z - z_k)^{j_k}g'(z)}{(z - z_k)^{j_k}g(z)} = \frac{j_k}{z - z_k} + h(z),$$

где h — аналитическая функция. Отсюда следует, что,

$$\operatorname{res}_{z_k}\left(\frac{f'(z)}{f(z)}\right) = j_k.$$

Аналогично проверяется, что

$$\operatorname{res}_{p_k}\left(\frac{f'(z)}{f(z)}\right) = -j_k,$$

если $p_k \in E$. Суммируя по k и переходя к мнимой части, получаем требуемое равенство. $\not <$

Теорема 6.3 (теорема Руше). Пусть Ω — ограниченная стандартная область, f,g — аналитические функции в Ω_{δ} , причём |g|<|f| всюду на $\partial\overline{\Omega}.^{16}$ Тогда $N_f=N_{f+g}.$

Доказательство. Из принципа аргумента следует, что достаточно проверить равенство

$$\Delta_{\gamma} \arg(f + g) = \Delta_{\gamma} \arg f$$

вдоль любого замкнутого (как путь) куска γ границы $\partial\Omega$. Заметим, что отображение 1+g/f не обнуляется на $\partial\Omega$. Если $\arg f$ и $\arg(1+g/f)$ — ветви аргумента соответствующих функций вдоль пути γ , то $\arg f + \arg(1+g/f)$ является ветвью аргумента функции f+g вдоль γ :

$$|f+g|e^{i(\arg f + \arg(1+g/f))} = |f+g| \cdot \frac{f}{|f|} \cdot \frac{1+g/f}{|1+g/f|} = f+g.$$

Значит, нам достаточно показать, что

$$\Delta_{\gamma} \arg(1+g/f) = 0.$$

Заметим, что для $z \in \gamma([0,1])$

$$Re(1 + g(z)/f(z)) \ge 1 - |g(z)|/|f(z)| > 0.$$

 $^{^{16}}$ В частности, $f \neq 0$ на границе.

*

Значит, функция $\psi = \arg(1 + q/f)$ принимает значения в интервале

$$2\pi k + (-\pi/2, \pi/2)$$
 для некоторого $k \in \mathbb{Z}$.

Следовательно, в формуле

$$\Delta_{\gamma} \arg(1+g/f) = \psi(1) - \psi(0) = 2\pi m$$

число $m \in \mathbb{Z}$ таково, что $2\pi |m| \leqslant \pi$, то есть m=0.

Пример 6.5. Найдём число корней многочлена $z^{10}+3z^3-1$ в кольце 1<|z|<2. Пусть $f=3z^3,\,g=z^{10}-1$. Тогда

$$|f(z)| = 3 > 2 \ge |g(z)|$$
 при $|z| = 1$.

Отсюда по теореме Руше следует, что многочлен $z^{10}+3z^3-1$ имеет в круге |z|<1 столько же нулей, сколько и многочлен $3z^3$, то есть 3 (с учётом кратности). Далее, возьмём $f=z^{10},\,g=3z^3-1$. Тогда

$$|f(z)| = 1024 > 25 \ge |g(z)|$$
 при $|z| = 2$.

Значит, многочлен $z^{10}+3z^3-1$ имеет в круге |z|<2 столько же нулей, сколько и многочлен z^{10} , то есть 10. Кроме того, мы выяснили, что на окружности |z|=1 многочлен $z^{10}+3z^3-1$ нулей не имеет. Значит, в кольце 1<|z|<2 есть ровно 7 нулей указанного многочлена с учётом кратности. Они изображены на рисунке 12.

Рис. 12: Корни многочлена $z^{10} + 3z^3 - 1$

Вот ещё одно приложение принципа аргумента.

Теорема 6.4 (теорема Гурвица). Пусть $\Omega \subset \mathbb{C}$ — область, функции f_k аналитичны в Ω и сходятся равномерно на компактах в Ω к непостоянной функции f. Тогда если $z_0 \in \Omega$ — ноль функции f порядка m, то для любого достаточно малого числа $\delta > 0$ существует такой номер $N \in \mathbb{N}$, что каждая из функций f_k , $k \geqslant N$, имеет в $B(z_0, \delta)$ ровно m нулей с учётом кратности.

Сначала докажем полезную лемму.

Лемма 6.5. Пусть $\Omega \subset \mathbb{C}$ — область, функции f_k аналитичны в Ω и сходятся равномерно на компактах в Ω к функции f. Тогда функция f аналитична и последовательность f_k' сходится равномерно на компактах в Ω к функции f'.

Доказательство. Аналитичность функции f мы доказывали ранее (теорема 2.6). Пусть $z_0 \in \Omega$, рассмотрим круг $B(z_0, 3\delta) \subset \Omega$. Дифференцируя формулу Коши, получаем

$$f'_k(z) = \frac{1}{2\pi i} \oint_{\partial B(z_0, 2\delta)} \frac{f_k(w)}{(w - z)^2} dw, \qquad w \in B(z_0, \delta).$$

Правая часть сходится равномерно в круге $B(z_0, \delta)$ к числу

$$\frac{1}{2\pi i} \oint_{\partial B(z_0, 2\delta)} \frac{f(w)}{(w-z)^2} \, \mathrm{d}w = f'(z).$$

Итак, любая точка $z_0 \in \Omega$ имеет окрестность, в которой последовательность f_k' сходится равномерно к функции f'. Отсюда следует, что последовательность f_k' сходится равномерно к функции f' на любом компакте в Ω .

Доказательство теоремы Гурвица. Выберем число $\delta_0 > 0$ так, чтобы $B(z_0, \delta_0)$ лежало в Ω , и чтобы для любого $\delta \in (0, \delta_0]$ выполнялись условия

$$|f(z)| \geqslant \varepsilon > 0,$$
 если $|z-z_0| = \delta,$ $f(z) \neq 0,$ если $|z-z_0| \in (0,\delta],$

где ε зависит от δ . Такое число δ_0 существует по теореме 2.8 о виде аналитической функции в окрестности её нуля. Так как функции f_k равномерно на компактах сходятся к функции f, при больших k будет выполнено неравенство

$$|f_k(z)| \geqslant \varepsilon/2$$
, где $|z - z_0| = \delta$.

Из предыдущей леммы теперь вытекает, что

$$\oint\limits_{\partial B(z_0,\delta)} \frac{f_k'(z)}{f_k(z)} \,\mathrm{d}z \xrightarrow[k \to +\infty]{} \oint\limits_{\partial B(z_0,\delta)} \frac{f'(z)}{f(z)} \,\mathrm{d}z.$$

*

Обозначая через N_{f_k}, N_f количество нулей функций f_k, f в круге $B(z_0, \delta)$, мы получаем из принципа аргумента сходимость целых чисел

$$N_{f_k} \xrightarrow[k \to +\infty]{} N_f$$
.

Значит, $N_{f_k} = N_f = m$ начиная с некоторого номера k = N.

Теорема 6.6. Пусть Ω — область, $f_k \colon \Omega \to \mathbb{C}$ — набор инъективных аналитических функций. Пусть, кроме того, функции f_k сходятся равномерно на компактах в Ω к некоторой функции f. Тогда f либо постоянна, либо инъективна в области Ω .

Доказательство. Предположим, что f не является инъективной, и рассмотрим такие точки $z,w\in \Omega$, что f(z)=f(w). Тогда функция $g\colon \zeta\mapsto f(\zeta)-f(w)$ обращается в ноль в точках z,w. С другой стороны,

$$g = \lim_{k \to \infty} g_k, \qquad g_k \colon \zeta \mapsto f_k(\zeta) - f_k(w).$$

По теореме Гурвица, либо g (а вместе с ней и f) постоянна, либо начиная с некоторого номера N в окрестности $B(z,\delta)\subset \Omega$ точки z функции g_k будут обращаться в ноль. Тогда существует точка $\xi\in B(z,\delta)$, такая, что

$$f_N(\xi) - f_N(w) = 0.$$

Если $\delta \le |z-w|/3$, то $\xi \ne w$, и это приводит нас к противоречию с инъективностью функции f_N .

Теорема 6.7. Пусть Ω — область, $f \colon \Omega \to \mathbb{C}$ — инъективная аналитическая функция. Тогда функция f' не имеет нулей в области Ω .

Доказательство. Если $f'(z_0) = 0$ в некоторой точке $z_0 \in \Omega$, то по теореме Гурвица при больших $n \ge 1$ функции $g_n \colon z \mapsto n(f(z+1/n)-f(z))$ имеют ноль в области Ω . Это противоречит инъективности функции f.

7 Аналитическое продолжение

Определение. Пусть $f: \Omega \to \mathbb{C}$, $g: \Omega' \to \mathbb{C}$ — аналитические функции; Ω , Ω' — области в \mathbb{C} . Если $\Omega \subset \Omega'$ и $f \equiv g$ в области Ω , то функция g называется аналитическим продолжением функции f в область Ω' .

Пример 7.1. Функция

$$f: z \mapsto z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \dots$$

определена и аналитична в единичном круге |z| < 1, причём указанный ряд имеет радиус сходимости, равный единице. В частности, эта функция не допускает аналитического продолжения ни в какой круг $\{z \in \mathbb{C} : |z| < 1 + \varepsilon\}$, где $\varepsilon > 0$. С другой стороны, функция $g: z \mapsto \log(1+z)$ является аналитическим продолжением f в область $\Omega' = \mathbb{C} \setminus (-\infty, -1]$.

Рис. 13: Продолжение функции f

Лемма 7.1 (лемма о склеивании). Пусть $\{\Omega_{\alpha}\}_{\alpha\in I}$ — семейство областей в \mathbb{C} , для любых индексов $\alpha,\beta\in I$ множество $\Omega_{\alpha\beta}=\Omega_{\alpha}\cap\Omega_{\beta}$ связно. Пусть функции $f_{\alpha}\colon\Omega_{\alpha}\to\mathbb{C}$ аналитичны, и любая пара f_{α},f_{β} из них совпадает на подмножестве, имеющем предельную точку в $\Omega_{\alpha\beta}$, если $\Omega_{\alpha\beta}\neq\emptyset$. Тогда существует функция f, аналитичная в $\bigcup\Omega_{\alpha}$ и являющаяся аналитическим продолжением каждой из функций f_{α} .

Доказательство. Каждой точке $z \in \bigcup \Omega_{\alpha}$ сопоставим индекс $\alpha \in I$ так, чтобы точка z лежала в Ω_{α} , и определим $f(z) = f_{\alpha}(z)$. Покажем, что эта функция будет совпадать с f_{α} во всей области Ω_{α} . Действительно, если $z \in \Omega_{\alpha}$, но мы определили $f(z) = f_{\beta}(z)$ для некоторого индекса $\beta \in I : z \in \Omega_{\beta}$, значит, $z \in \Omega_{\alpha\beta}$, а в этой области $f_{\alpha} \equiv f_{\beta}$ по теореме 2.5 единственности для аналитических функций.

Следствие 7.2. На границе круга сходимости степенного ряда есть хотя бы одна точка, в окрестности которой степенной ряд невозможно продолжить аналитически.

Доказательство. Если это не так, то можно применить предыдущее утверждение к исходному кругу сходимости степенного ряда и кругам с центрами на его границе, в которые можно аналитически продолжить степенной ряд. Тогда окажется, что степенной ряд определяет аналитическую функцию в круге с тем же центром, но большего радиуса. По теореме Коши − Гурса − Морера ряд Тейлора этой функции будет сходиться в круге большего радиуса. Но он совпадает с исходным степенным рядом, что приводит нас к противоречию с определением радиуса сходимости. ≮

Определение. Функцию $f \in \mathbb{C}^{\infty}([a,b],\mathbb{C})$ будем называть вещественно-аналитической, если для каждой точки $x \in [a,b]$ существует такое число $\delta_x > 0$, что ряд Тейлора для функции f с центром в точке x сходится в круге $B(x,\delta_x)$ и совпадает с f на множестве $B(x,\delta_x) \cap [a,b]$.

Пример 7.2. Функции $\sin x$, e^{ix} являются вещественно-аналитическими на любом отрезке вещественной оси (и вообще на \mathbb{R}), а функция e^{-1/x^2} не является вещественно-аналитической на [-1,1], тотя и лежит в классе $C^{\infty}(\mathbb{R})$.

Теорема 7.3. Пусть $f \in \mathbb{C}^{\infty}([a,b],\mathbb{C})$. Следующие условия равносильны:

- (1) f вещественно-аналитична на [a,b];
- (2) существует область $\Omega\subset\mathbb{C}$ и аналитическая функция F, такие, что $[a,b]\subset\Omega$ и $F\equiv f$ на [a,b];
- (3) существует такое число $Q\geqslant 0$, что $\max_{x\in [a,b]}|f^{(n)}(x)|\leqslant Q^nn!$ для всех $n\geqslant 0.$

Доказательство.

- $(1)\Longrightarrow (2)$. Нужно применить лемму о склеивании: в качестве областей Ω_{α} можно взять круги $B(\alpha,\delta_{\alpha})$ из определения вещественной аналитичности по всем $\alpha\in [a,b]$, в качестве функций f_{α} ряды Тейлора функции f с центром в α . По условию, $f_{\alpha}(x)=f(x)=f_{\beta}(x)$ для всех $x\in [a,b]\cap B(\alpha,\delta_{\alpha})\cap B(\alpha,\delta_{\beta})$, а это множество либо пусто, либо имеет предельные точки в $B(\alpha,\delta_{\alpha})\cap B(\alpha,\delta_{\beta})$.
- (2) \Longrightarrow (3). Пусть прямоугольник $\Pi \subset \Omega$ содержит δ -окрестность отрезка [a,b], где $\delta > 0$. Дифференцируя интегральную формулу Коши, получаем

$$f^{(n)}(x) = F^{(n)}(x) = \frac{n!}{2\pi i} \oint_{\partial \Pi} \frac{F(z)}{(z-x)^{n+1}} dz.$$

Значит,

$$\max_{x \in [a,b]} |f^{(n)}(x)| \leq \frac{n!}{\pi \delta^n} \ell(\partial \Pi) \max_{z \in \partial \Pi} |F(z)|$$

для всех $n\geqslant 0$, и в качестве Q можно взять число $\left(\ell(\partial\Pi)\max_{z\in\partial\Pi}|F(z)|+1\right)/\delta.$

 $(3) \Longrightarrow (1)$. По условию на коэффициенты ряда Тейлора с центром в точке x, его радиус сходимости равен

$$\liminf_{n\to+\infty}\frac{1}{\sqrt[n]{|f^{(n)}(x)/n!|}}\geqslant\frac{1}{Q}>0.$$

 $^{^{17}}$ Раньше мы уже проверяли, что ряд Тейлора этой функции в нуле равен нулю.

Значит, достаточно показать, что этот ряд сходится к f(y) для всех $y \in B(x, Q^{-1})$. По неравенству Лагранжа и нашему предположению,

$$\left| f(y) - \sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!} (y - x)^k \right| \le \left| \frac{f^{(n)}(\xi)}{n!} \right| \cdot |\xi - x|^n \le Q^n |y - x|^n$$

для некоторой точки $\xi \in [x, y]$. Если Q|x - y| < 1, то правая часть в формуле выше стремится к нулю с ростом n. Таким образом, ряд Тейлора функции f с центром в точке x сходится к f всюду в круге $|x - y| < Q^{-1}$.

Следующие свойства обычно связаны с возможностью аналитического продолжения функции в более широкую область:

- отображение части границы области в интервал прямой или дугу окружности;
- наличие уравнения, связывающего значения функции;
- участие ветви логарифма в определении функции.

Изучим подробнее эти случаи.

Обозначение.
$$\mathbb{C}^+ = \{ z \in \mathbb{C} : \text{ Im } z > 0 \}, \mathbb{C}^- = \{ z \in \mathbb{C} : \text{ Im } z < 0 \}.$$

Утверждение 7.4 (принцип симметрии). Пусть функция f аналитична в области $\Omega \subset \mathbb{C}^+$, граница которой содержит интервал (a,b) вещественной прямой. Если f допускает непрерывное продолжение на множество $\Omega \cup (a,b)$, причём $f((a,b)) \subset \mathbb{R}$, то функция

$$F: z \mapsto \begin{cases} f(z), & z \in \Omega \cup (a, b), \\ \overline{f(\overline{z})}, & \overline{z} \in \Omega, \end{cases}$$

является аналитическим продолжением f в область

$$\{z \in \mathbb{C} : z \in \Omega \text{ или } \overline{z} \in \Omega\} \cup (a,b).$$

Рис. 14: Иллюстрация принципа симметрии

Доказательство. Пусть $\Omega^* = \{z \in \mathbb{C} : \overline{z} \in \Omega\}$. Поймём, что отображение $f^* : z \mapsto \overline{f(\overline{z})}$ аналитично в Ω^* и непрерывно в области $\Omega^* \cup (a,b)$. Действительно, предположим, что $\sum c_n(z-z_0)^n$ — разложение f в ряд в окрестности точки $z_0 \in \Omega$. Тогда нетрудно понять, что $\sum \overline{c}_n(z-\overline{z}_0)^n$ — разложение в ряд функции f^* в окрестности точки \overline{z}_0 . Непрерывность f^* проверяется непосредственно. Кроме того, $f^* \equiv f$ на (a,b). Таким образом, функция F аналитична в открытом множестве $\Omega \cup \Omega^*$ и непрерывна в области $\Omega \cup (a,b) \cup \Omega^*$. Значит, она аналитична в этой области (упражнение на применение критерия замкнутости формы F dz с помощью интегрирования по прямоугольникам).

Утверждение 7.5. Гамма-функция Эйлера (см. рисунки А.6 и А.7)

$$\Gamma \colon x \mapsto \int_{0}^{+\infty} t^{x-1} e^{-t} \, \mathrm{d}t$$

допускает аналитическое продолжение с вещественной полуоси $(0, +\infty)$ в область $\mathbb{C} \setminus \mathbb{Z}_-$, где \mathbb{Z}_- обозначает множество неположительных целых чисел. В точках множества \mathbb{Z}_- функция Γ имеет простые полюса, причём

$$\operatorname{res}_{-n}\Gamma = \frac{(-1)^n}{n!},$$
 где $n \in \mathbb{Z}_+.$

Доказательство. Определим

$$\Gamma(z) = \int_{0}^{+\infty} t^{z-1} e^{-t} dt, \qquad \operatorname{Re} z > 0.$$

Интеграл выше сходится в любой полуплоскости $\{z\in\mathbb{C}: \operatorname{Re} z\geqslant a>0\}$ по признаку Вейерштрасса:

$$\int_{0}^{+\infty} |t^{z-1}|e^{-t} dt \leqslant \int_{0}^{+\infty} t^{a-1}e^{-t} dt < \infty.$$

Кроме того, если $\operatorname{Re} z \ge 2a > 0$ и $|w| \le a$, то

$$\frac{\Gamma(z) - \Gamma(z+w)}{w} = \int_{0}^{+\infty} \frac{1 - t^{w}}{w} t^{z-1} e^{-t} dt,$$

причём $(1-t^w)/w \to \log t$ при $w \to 0$ и

$$\left|\frac{1-t^w}{w}\right| \leq \sup_{\xi \in [0,w]} \left| \left(t^{\xi}\right)' \right| \leq \sup_{|\xi| \leq a} \left| \left(t^{\xi}\right)' \right| = \left|\log t \right| \cdot e^{a\left|\log t\right|} \leq \left|\log t \right| \cdot \left(t^a + t^{-a}\right).$$

Так как Re $z\geqslant 2a$, то $|\log t|\cdot (t^a+t^{-a})\,t^{z-1}e^{-t}\in L^1(\mathbb{R}_+)$, и по теореме Лебега о мажори-

рованной сходимости существует предел

$$\lim_{w\to 0} \frac{\Gamma(z) - \Gamma(z+w)}{w} = \int_{0}^{+\infty} \log t \cdot t^{z-1} e^{-t} dt,$$

то есть Γ -функция дифференцируема по комплексному аргументу в точке z. Кроме того,

$$\Gamma(z+1) = \int_{0}^{+\infty} t^{z} e^{-t} dt = -\int_{0}^{+\infty} t^{z} (e^{-t})' dt = -t^{z} (e^{-t}) \Big|_{0}^{+\infty} + z \Gamma(z) = z \Gamma(z)$$
 (7.1)

во всех точках z: Re z > 0.

Для таких $z \in \mathbb{C}$, что $\operatorname{Re} z > -1$, $z \neq 0$, положим

$$\widetilde{\Gamma}(z) = \frac{\Gamma(z+1)}{z}$$

Полученная функция аналитична и удовлетворяет уравнению $\widetilde{\Gamma}(z+1)=z\widetilde{\Gamma}(z)$ во всей области $\{z\in\mathbb{C}:\operatorname{Re} z>-1\}\setminus\{0\}$. Кроме того, она совпадает с функцией Γ в области $\{z\in\mathbb{C}:\operatorname{Re} z>0\}$ по (7.1). В точке z=0 функция $\widetilde{\Gamma}$ имеет изолированную особенность. Это полюс первого порядка, так как $\Gamma(1)=1$, то есть

$$\lim_{z \to 0} |\widetilde{\Gamma}(z)| = \lim_{z \to 0} \left| \frac{\Gamma(z+1)}{z} \right| = +\infty,$$

в то время как

$$\lim_{z \to 0} |z\widetilde{\Gamma}(z)| = \Gamma(1) = 1.$$

В частности, из формулы выше следует, что $\operatorname{res}_0\widetilde{\Gamma}=1$. Снова используя функциональное уравнение, мы получим аналитическое продолжение $\widetilde{\Gamma}$ в область

$$\{z \in \mathbb{C} : \text{Re } z > -2\} \setminus \{-1, 0\}.$$

Продолжая этот процесс, получаем аналитическое продолжение Γ в область $\mathbb{C} \setminus \mathbb{Z}_-$. При этом будет выполнено функциональное уравнение

$$\Gamma(z) = \frac{\Gamma(z+n+1)}{z(z+1)\cdot\ldots\cdot(z+n)}, \qquad n\in\mathbb{N}_0,$$

которое показывает, что в точках множества \mathbb{Z}_- функция Γ имеет простые полюса, и $\operatorname{res}_{-n}\Gamma=(-1)^n/n!$ для $n\in\mathbb{N}_0.$

Определение. Пусть $f: \Omega \to \mathbb{C}$ — аналитическая функция, $\Gamma: [0,1] \to \mathbb{C}$ — такой путь, что $\Gamma(0) \in \Omega$. Набор пар $(\Omega_t, f_t)_{t \in [0,1]}$ называется *аналитическим продолжением* функции f вдоль пути Γ , если при каждом $t \in [0,1]$ выполняются следующие условия:

(1) Ω_t — область, и функция f_t аналитична в ней;

- (2) $\Gamma(t) \in \Omega_t$ для всех $t \in [0, 1]$;
- (3) существует такое число $\delta_t > 0$, что если $|s-t| < \delta_t$, то

$$f_t(z) = f_s(z)$$
 для всех $z \in \Omega_{st}$,

где
$$\Omega_{st} = \Omega_s \cap \Omega_t$$
;

(4)
$$\Omega_0 \subset \Omega$$
, $f_0 = f$.

Замечания.

- 1. В отличие от леммы о склеивании, в этом определении не предполагается, что $f_t(z) = f_s(z)$ для всех $z \in \Omega_{st}$ и всех $s, t \in [0,1]$ рассматриваются только близкие точки s и t.
- 2. Для каждого $t \in [0,1]$ существует такое $\delta_t > 0$, что если $|s-t| < \delta_t$, то $\Omega_{st} \neq \emptyset$.
- 3. Если $(\widetilde{\Omega}_t,\widetilde{f}_t)$ другое аналитическое продолжение f, то $\widetilde{f}_t=f_t$ в каждой области $\Omega_t\cap\widetilde{\Omega}_t$. Действительно, в силу теоремы единственности для аналитических функций, множество чисел $t\in[0,1]$ с этим свойством непусто (содержит ноль), открыто и замкнуто в [0,1].

Теорема 7.6. Пусть $\Omega \subset \mathbb{C}$ — произвольная область, функция $f: \Omega \to \mathbb{C}$ аналитична и не обращается в ноль в Ω ; в окрестности точки $p \in \Omega$ выбрана ветвь логарифма $\varphi = \log f$. Тогда для любого пути $\Gamma \colon [0,1] \to \Omega$ с началом в точке p функция φ допускает аналитическое продолжение вдоль Γ . Более того, если Γ — кусочно-гладкий путь, то можно взять $\varepsilon > 0$ так, чтобы все шары $\widetilde{\Omega}_t = B(\Gamma(t), \varepsilon), \ t \in [0,1]$, лежали в Ω и определить аналитическое продолжение формулой

$$\widetilde{\varphi}_t(w) = \varphi(\Gamma(0)) + \int_{\Gamma_{t,w}} \frac{f'(z)}{f(z)} dz, \qquad w \in \widetilde{\Omega}_t,$$

где
$$\Gamma_{t,w} = \Gamma|_{[0,t]} + [\Gamma(t), w].$$

Доказательство. Будем поступать так же, как и при доказательстве существования непрерывной ветви аргумента. Разобьём отрезок [0,1] на конечное число отрезков $I_n=[t_n,t_{n+1}]$, где $0=t_0< t_1< \cdots < t_N=1$, так, чтобы каждое множество $\Gamma(I_n)$ содержалось в открытом шаре $B_n=B(\Gamma(t_n),\varepsilon)$, где $\varepsilon>0$ выбрано таким образом, чтобы шар B_n лежал в Ω . В шаре B_0 возьмём исходную ветвь логарифма $\varphi_0=\log f$, в остальных шарах выберем произвольные ветви логарифма φ_{t_n} , где $n=1,2,\ldots,N-1$. Последовательно изменяя ветви логарифма на величины, кратные $2\pi i k_n, k_n \in \mathbb{Z}$, добьёмся того, что $\varphi_{t_n}=\varphi_{t_{n+1}}$ в каждой области $B_n\cap B_{n+1}$. Сохраним обозначение φ_{t_n} для полученных ветвей логарифма. Осталось положить

$$\Omega_t = B_n$$
, $\varphi_t = \varphi_{t_n}$, $t \in [t_n, t_{n+1})$, $\varphi_1 = \varphi_{t_{N-1}}$.

По построению, выполнены свойства (1), (2) и (4). В свойстве (3) можно взять, например, $\delta_t = \min |I_n|/10$.

≮

Предположим теперь, что Γ — кусочно-гладкий путь в Ω , определим аналитическое продолжение интегральной формулой. Тогда в каждой области

$$\varphi_t'(z) = \frac{f'(z)}{f(z)} = \widetilde{\varphi}_t'(z), \qquad z \in \Omega_t \cap \widetilde{\Omega}_t,$$

и $\varphi_t(\Gamma(t)) = \widetilde{\varphi}_t(\Gamma(t))$, откуда следует утверждение.

Пример 7.3. Пусть $\Omega=\mathbb{C}\setminus(-\infty,0], f\colon\Omega\to\mathbb{C}$ — главная ветвь логарифма,

$$\Gamma: t \mapsto e^{2\pi i t}, \quad t \in [0, 1].$$

Тогда f допускает аналитическое продолжение $\{(\Omega_t, f_t)\}_{t \in [0,1]}$ вдоль пути Γ , причём $f_1(1) = 2\pi i$. Действительно, окружность Γ не пересекает начало координат и

$$\int_{\Gamma} \frac{\mathrm{d}z}{z} = 2\pi i,$$

поэтому можно воспользоваться предыдущей теоремой.

8 Римановы поверхности аналитических функций

Определение. *Римановой поверхностью* называется одномерное комплексное связное многообразие.

Последнее означает, что M — связное хаусдорфово топологическое пространство, с атласом из карт $(\Omega_{\alpha}, \varphi_{\alpha}), \alpha \in I$, обладающих следующими свойствами:

- для каждого $\alpha \in I$ множество Ω_{α} область в \mathbb{C} ;
- отображения $\varphi_{\alpha} \colon \Omega_{\alpha} \to M$ гомеоморфизмы на свой образ;
- $M = \bigcup_{\alpha} \varphi(\Omega_{\alpha});$
- если множество $V = \varphi_{\alpha}(\Omega_{\alpha}) \cap \varphi_{\beta}(\Omega_{\beta})$ непусто, то $\varphi_{\beta}^{-1} \circ \varphi_{\alpha}$ аналитическая функция на открытом множестве $\varphi_{\alpha}^{-1}(V)$ в \mathbb{C} .

Определение. Два атласа на римановом многообразии называются *эквивалентными*, если их объединение задаёт атлас риманового многообразия. Класс эквивалентности атласов на римановой поверхности называется *комплексной структурой*.

В дальнейшем всегда предполагается, что комплексная структура на римановой поверхности выбрана и зафиксирована.

Пример 8.1. Любая область $\Omega \subset \mathbb{C}$ — риманова поверхность. Атлас можно взять состоящим из единственной карты (и тождественного отображения).

Пример 8.2. Комплексная проективная прямая \P ("риманова сфера") — риманова поверхность. Как множество, \P есть фактор-пространство множества $\mathbb{C}^2 \setminus \{0\}$ по отношению эквивалентности

$$a \sim b \iff \exists \lambda \in \mathbb{C} \setminus \{0\} : a = \lambda b.$$

Например,

$$\begin{pmatrix} 1 \\ 2i \end{pmatrix} \sim \begin{pmatrix} -2i \\ 4 \end{pmatrix}, \qquad \lambda = -2i.$$

Комплексные числа $\mathbb C$ можно рассматривать как подмножество \P : каждой точке $z\in\mathbb C$ сопоставляется класс эквивалентности

$$z = \begin{bmatrix} z \\ 1 \end{bmatrix}$$
.

Элементом ∞ проективной прямой ¶ называется класс эквивалентности

$$\infty = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix}.$$

При этом $\P = \mathbb{C} \cup \{\infty\}$. В качестве атласа для \P можно выбрать

$$\Omega_1 = \Omega_2 = \mathbb{C}, \qquad \varphi_1 \colon z \mapsto \left[egin{pmatrix} z \ 1 \end{pmatrix} \right], \quad \varphi_2 \colon z \mapsto \left[egin{pmatrix} 1 \ z \end{pmatrix} \right],$$

и определить топологию на \P так, чтобы эти отображения были гомеоморфизмами (то есть взять образы открытых множеств в $\mathbb C$ под действием этих отображений; тогда множества вида $\{z\in\mathbb C:|z|>R\}\cup\{\infty\}$ будут лежать в топологии и образовывать базу окрестностей для точки ∞). Так как

$$\varphi_1(\Omega_1) = \mathbb{C}, \qquad \varphi_2(\Omega_2) = (\mathbb{C} \cup \{\infty\}) \setminus \{0\},$$

свойства (1) — (3) определения комплексного многообразия выполнены. Проверим последнее свойство: полагая V равным $\varphi_1(\Omega_1) \cap \varphi_2(\Omega_2) = \mathbb{C} \setminus \{0\}$, получаем, что $\varphi_1^{-1}(V) = \mathbb{C} \setminus \{0\}$ и

$$\varphi_1(z) = \varphi_2(w) \iff \begin{bmatrix} z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ w \end{bmatrix} \iff w = 1/z,$$

то есть $\varphi_2^{-1}(\varphi_1(z))=1/z$ — аналитическое отображение на V. Аналогично, $\varphi_1^{-1}(\varphi_2(z))=1/z$, откуда получаем, что \P — риманова поверхность.

Определение. Универсальной накрывающей \widehat{X} топологического пространства X называется множество путей в X, начинающихся в фиксированной точке $p \in X$, профакторизованное по следующему отношению эквивалентности: два пути эквивалентны, если у них совпадают концы и они гомотопны в X.

Пример 8.3. Рассмотрим пути

$$\gamma_0 \colon t \mapsto 1, \quad \gamma_1 \colon t \mapsto e^{2\pi i t}, \qquad t \in [0, 1].$$

Можно проверить, что они порождают один элемент в пространствах $\widehat{\mathbb{C}}$, $\widehat{\P}$, $\widehat{\P}_*$, где $\P_* = \P \setminus \{0\}$, но разные элементы в пространстве $\widehat{\mathbb{C}}_*$, где $\mathbb{C}_* = \mathbb{C} \setminus \{0\}$.

Упражнение. Проверьте, что отображение

$$H: (s,t) \mapsto \left[\begin{pmatrix} 1 \\ s + (1-s)e^{-2\pi it} \end{pmatrix} \right]$$

осуществляет гомотопию из γ_0 в γ_1 в \P_* .

Теорема 8.1. Универсальная накрывающая $\widehat{\Omega}$ произвольной области $\Omega \subset \mathbb{C}$ является односвязной римановой поверхностью.

Доказательство. Зафиксируем точку $p \in \Omega$. Для каждого класса эквивалентности $[\gamma_{p,q}]$ гомотопных путей с концами в p,q, где $q \in \Omega$, зададим окрестность $U_q(\delta)$, состоящую из классов $[\gamma_{p,q}+[q,q+w]]$, где $|w|<\delta$, а $\delta>0$ выбирается так, чтобы $B(q,\delta)$ содержалось в Ω . Тогда

$$\widehat{\Omega} = \bigcup_{q \in \Omega} U_q(\delta).$$

Кроме того, множества $U_q(\delta)$ задают базу топологии в $\widehat{\Omega}$, и отображения

$$\varphi_{\gamma_{p,q}} \colon z \mapsto \left[\gamma_{p,q} + [q,z] \right]$$

в этой топологии являются гомеоморфизмами из $B(q,\delta)$ на $U_q(\delta)$. В частности, пары $\left(B(q,\delta),\varphi_{\gamma_{p,q}}\right)$ задают атлас $\widehat{\Omega}$. Если $U_q(\delta)\cap U_{q'}(\delta')\neq\varnothing$, то $B_q(\delta)\cap B_{q'}(\delta')\neq\varnothing$, и соответствующее отображение перехода тождественно — в частности, аналитично. Любая точка $[\gamma]\in\widehat{\Omega}$ соединена путём с точкой [p] (здесь символ [p] обозначает тождественный путь $t\mapsto p$). Действительно, если $\gamma|_{[0,s]}$ — сужение пути γ на [0,s], то путь γ в $\widehat{\Omega}$, задаваемый по правилу

$$\gamma: s \mapsto [\gamma|_{[0,s]}], \qquad s \in [0,1],$$

соединяет [p] и $[\gamma]$. Следовательно, пространство $\widehat{\Omega}$ связно. То, что $\widehat{\Omega}$ односвязно, доказывалось в курсе топологии. $\not<$

Теорема 8.2 (теорема о монодромии). Пусть $\Omega \subset \mathbb{C}$ — область, отображение

$$H(s,t): [0,1] \times [0,1] \rightarrow \mathbb{C}$$

— гомотопия путей γ_s : $t\mapsto H(s,t)$ с концами p=H(s,0), q=H(s,1), причём $p\in\Omega$. Если аналитическую функцию $f\colon\Omega\to\mathbb{C}$ можно аналитически продолжить вдоль любого пути γ_s , то аналитические продолжения вдоль γ_0,γ_1 совпадают в окрестности точки q.

Доказательство. Если $s \in [0,1]$, и $\{(\Omega_{s,t}, f_{s,t}, \gamma_s)\}_{t \in [0,1]}$ — соответствующее аналитическое продолжение, то в силу компактности отрезка [0,1] можно считать, для каждого $s \in [0,1]$ число областей $\Omega_{s,t}$ конечно¹⁸. В частности, далее будем считать, что выбраны такие числа $\delta_s > 0$, что

$$B(\gamma_s(t), \delta_s) \subset \Omega_{s,t}, \qquad t \in [0, 1].$$
 (8.1)

Рассмотрим множество F таких чисел $s \in [0,1]$, что аналитические продолжения f вдоль γ_0 и γ_s совпадают в окрестности q. Это множество обладает следующими свойствами:

- $0 \in F$, и, следовательно, $F \neq \emptyset$.

 $^{^{18}}$ Действительно, у каждой точки $t \in [0,1]$ есть окрестность (a,b), такая, что $\gamma \left((a,b) \cap [0,1]\right) \subset \Omega_{s,t}$. Значит, можно выбрать конечное покрытие [0,1] из таких интервалов и переопределить $(\Omega_{s,t},f_{s,t})$ так, чтобы получить новое аналитическое продолжение с конечным числом областей $\Omega_{s,t}$.

• Пусть $s_n \in F$, $s_n \to s$. Покажем, что $s \in F$. Применяя рассуждение из доказательства открытости, получаем, что начиная с некоторого n будет выполнено равенство $f_{s,1} \equiv f_{s_n,1}$ в $\Omega_{s,1} \cap \Omega_{s_n,1}$. Но по условию $f_{s_n,1} \equiv f_{0,1}$ в $\Omega_{s_n,1} \cap \Omega_{0,1}$, а потому $s \in F$.

Итак, в силу связности F = [0, 1], откуда следует, что $f_{1,1} = f_{0,1}$ в некоторой окрестности точки q.

Следствие 8.3. Если область Ω содержится в односвязной области Ω' , и аналитическую функцию f можно продолжить в любую точку $q \in \Omega'$ вдоль некоторого пути $\gamma_{p,q}$, обладающего свойством $\gamma_{p,q}([0,1]) \subset \Omega'$, то существует аналитическое продолжение f в область Ω' .

Доказательство. Пусть $\{(\Omega_{q,t}, f_{q,t}, \gamma_{p,q})\}_{t\in[0,1]}$ — аналитическое продолжение функции f вдоль пути $\gamma_{p,q}$. Тогда функция $g\colon q\mapsto f_{q,1}(\gamma_{p,q})$ будет задавать аналитическое продолжение f в область Ω' . Определение функции g корректно в силу односвязности области Ω' (то есть между любыми двумя путями есть гомотопия) и теоремы о монодромии.

Определение. Отображение f между двумя римановыми поверхностями M, \widetilde{M} с атласами $\{(\Omega_{\alpha}, \varphi_{\alpha})\}, \{(\widetilde{\Omega}_{\alpha}, \widetilde{\varphi}_{\alpha})\}$ называется *аналитическим*, если все отображения вида $\widetilde{\varphi}_{\beta}^{-1} \circ f \circ \varphi_{\alpha}$ являются аналитическими на области своего задания.

Важнейший случай в предыдущем определении — это $\widetilde{M}=\mathbb{C}$. В этом случае говорят об аналитическом отображении на M. Вот более общий случай предыдущего следствия:

Следствие 8.4. Пусть Ω — произвольная область в \mathbb{C} , и пусть f — аналитическая функция в Ω , не имеющая нулей. Тогда любая ветвь $\log f$, заданная в окрестности точки $p \in \Omega$, допускает аналитическое продолжение на универсальную накрывающую области Ω . Кроме того,

$$(\log f)([\gamma]) = \log f(p) + \int_{\widetilde{\gamma}} \frac{f'(z)}{f(z)} dz,$$

где $\widetilde{\gamma}$ — кусочно-гладкий представитель в классе эквивалентности $[\gamma]$.

Доказательство. Как и в предыдущем случае, достаточно определить аналитическое продолжение $\log f$ с помощью продолжения вдоль путей, начинающихся в точке p. Корректность определения следует из теоремы о монодромии. Формула для продолжения $\log f$ вдоль кусочно-гладкого пути была установлена ранее. $\not <$

Определение. *Римановой поверхностью логарифма* называется универсальная накрывающая области $\mathbb{C} \setminus \{0\}$.

Риманову поверхность $\log z$ можно получить, склеивая копии $\mathbb{C}\setminus [0,-\infty)$ как показано на рисунке: При этом верхний край разреза каждой копии $\mathbb{C}\setminus [0,-\infty)$ подклеивается к нижнему краю другой копии, расположенной ниже.

Рис. 15: Визуализация римановой поверхности логарифма

Следствие 8.5. Любая ветвь $\log z$, заданная в окрестности $p \in \mathbb{C} \setminus \{0\}$, аналитически продолжается на риманову поверхность логарифма. При этом для главной ветви $\log z$ и точки p=1 продолжение можно вычислить по формуле

$$(\log z)([\gamma]) = \int_{\gamma} \frac{\mathrm{d}z}{z}.$$

Пример 8.4. Если $\log z$ — главная ветвь логарифма, а $\gamma(t) = (1+t)e^{it}, t \in [0,4\pi]$, то

$$(\log z)([\gamma]) = \log(1 + 4\pi) + 4\pi i. \tag{8.2}$$

Действительно, если $\gamma_1\colon t\mapsto e^{it},\,t\in[0,2\pi],$ и $\gamma_2=[1,1+4\pi],$ то путь $\gamma_1+\gamma_1+\gamma_2$ гомотопен γ . При этом

$$\int_{\gamma_1} \frac{\mathrm{d}z}{z} = 2\pi i, \qquad \int_{\gamma_2} \frac{\mathrm{d}z}{z} = \log x \Big|_1^{1+4\pi} = \log(1+4\pi),$$

откуда и получается равенство (8.2).

Определение. Пусть $n \in \mathbb{N}$. *Римановой поверхностью корня* $\sqrt[n]{z}$ называется универсальная накрывающая области $\mathbb{C} \setminus \{0\}$, профакторизованная по следующему отношению эквивалентности: $[\gamma_1] \sim [\gamma_2]$, если

$$\Delta_{\gamma_1-\gamma_2} \arg z \in 2\pi n\mathbb{Z}.$$

Факторизация по отношению эквивалентности означает, что в римановой поверхности $\log z$ надо выбрать n подряд идущих слоёв, и подклеить нижний слой к верхнему вдоль разреза. В трёхмерном пространстве этого нельзя сделать без самопересечений. На рисунке ниже изображена риманова поверхность функции $\sqrt[3]{z}$.

Рис. 16: Визуализация римановой поверхности функции $\sqrt[3]{z}$

Следствие 8.6. Любая ветвь $\sqrt[n]{z}$, заданная в окрестности $p \in \mathbb{C} \setminus \{0\}$, аналитически продолжается на риманову поверхность $\sqrt[n]{z}$.

Доказательство. Так как $\sqrt[n]{z} = e^{\frac{1}{n}\log z}$ для некоторой ветви $\log z$, то продолжая аналитически эту ветвь, мы зададим $\sqrt[n]{z}$ на универсальной накрывающей $\mathbb{C}\setminus\{0\}$. Рассмотрим теперь такие пути γ_1,γ_2 , что $\Delta_{\gamma_1-\gamma_2}$ arg $z\in 2\pi n\mathbb{Z}$. Заметим, что если φ_1,φ_2 — продолжения $\sqrt[n]{z}$ вдоль путей γ_1,γ_2 , то

$$\begin{split} \varphi_1(\gamma_1(1)) &= \exp\left(\frac{1}{n} \left(\log|\gamma_1(1)| + i\Delta_{\gamma_1} \arg z\right)\right) \\ &= \exp\left(\frac{1}{n} \left(\log|\gamma_2(1)| + i\Delta_{\gamma_2} \arg z\right)\right) = \varphi_2(\gamma_2(1)), \end{split}$$

так как

$$\Delta_{\gamma_1-\gamma_2} \arg z = \Delta_{\gamma_1} \arg z - \Delta_{\gamma_2} \arg z \in 2\pi n\mathbb{Z},$$

и $e^{iq/n}=1$ для любой точки $q\in 2\pi n\mathbb{Z}.$

Определение. Пусть $n \in \mathbb{N}$. Римановой поверхностью корня $\sqrt[3]{1-z^2}$ называется универсальная накрывающая области $\mathbb{C} \setminus (\{-1\} \cup \{1\})$, профакторизованная по следующему отношению эквивалентности: $[\gamma_1] \sim [\gamma_2]$, если

$$\Delta_{\gamma_1-\gamma_2} \arg(1-z^2) \in 4\pi\mathbb{Z},$$

то есть если число обходов петли $\gamma_1 - \gamma_2$ вокруг точек ± 1 чётно.

Риманову поверхность корня $\sqrt[2]{1-z^2}$ можно получить склеиванием двух копий $\mathbb{C}\setminus[-1,1]$ вдоль разреза [-1,1] так, чтобы верхний берег верхней копии подклеивался к нижнему берегу нижней копии, и наоборот, нижний берег разреза верхней копии подклеивался к верхнему берегу разреза на нижней копии. Как и ранее, трёхмерный рисунок этой римановой поверхности содержит пересечения слоёв (подклеивающихся "крест накрест"), которые на деле отсутствуют.

Рис. 17: Визуализация римановой поверхности функции $\sqrt{1-z^2}$

Следствие 8.7. Любая из двух ветвей $\sqrt[2]{1-z^2}$, заданная в окрестности точки $p \in \mathbb{C} \setminus \{\pm 1\}$, аналитически продолжается на риманову поверхность $\sqrt[2]{1-z^2}$.

Доказательство. Так как

$$\sqrt[2]{1-z^2} = e^{\frac{1}{2}\log(1-z^2)},$$

и $1-z^2\neq 0$ в области $\mathbb{C}\setminus\{\pm 1\}$, то $\sqrt[2]{1-z^2}$ продолжается из окрестности p на универсальную накрывающую множества $\mathbb{C}\setminus\{\pm 1\}$. Осталось понять, что аналитические

*

*

продолжения вдоль эквивалентных классов путей $[\gamma_1]$, $[\gamma_2]$ будут совпадать. Для этого необходимо и достаточно, чтобы выполнялось условие

$$\frac{1}{2}\log(1-\gamma_1(1)^2) - \frac{1}{2}\log(1-\gamma_2(1)^2) \in 2\pi i \mathbb{Z}$$

Последнее равносильно условию $\Delta_{\gamma_1-\gamma_2} \arg(1-z^2) \in 4\pi \mathbb{Z}$.

После знакомства с этими примерами, можно дать общее определение римановой поверхности аналитической функции.

Определение. Римановой поверхностью аналитической функции $f: \Omega \to \mathbb{C}$ называется множество ее аналитических продолжений $\{(\Omega_t, f_t)\}$ вдоль путей $\gamma: [0,1] \to \mathbb{C}$, начинающихся в фиксированной точке $p \in \Omega$; при этом два продолжения (Ω_t, f_t) , $(\widetilde{\Omega}_t, \widetilde{f_t})$ вдоль $\gamma, \widetilde{\gamma}$ считаются одинаковыми, если

$$\gamma(1)=\widetilde{\gamma}(1)$$
 и $f_1\equiv\widetilde{f_1}$ в области $\Omega_1\cap\widetilde{\Omega}_1.$

Утверждение 8.8. Риманова поверхность аналитической функции действительно является римановой поверхностью.

Доказательство. Для каждого элемента $e = (\Omega_t, f_t, \gamma)$ римановой поверхности M функции f рассмотрим множества $U \subset M$ вида

$$U = \left\{ (\widetilde{\Omega}_t, \widetilde{f_t}, \widetilde{\gamma}) : \widetilde{\Omega}_1 = V, f_1 \equiv \widetilde{f_1} \text{ B } V \right\}$$

где V — произвольная подобласть Ω_1 , содержащая $\gamma(1)$. Полученное семейство множеств образует локальную базу в точке e. Топологию на M зададим как всевозможные объединения множеств из локальных баз. Атлас для M можно составить следующим образом: каждой точке $e = (\Omega_t, f_t, \gamma)$ сопоставим область Ω_1 и отображение $\varphi : w \mapsto (\Omega_{w,t}, f_{w,t}, \gamma_w)$, где $w \in \Omega_1$,

$$(\Omega_{w,t}, f_{w,t}) = \begin{cases} (\Omega_{2t}, f_{2t}), & t \in [0, 1/2], \\ (\Omega_1, f_1), & t \in [1/2, 1], \end{cases}$$
$$\gamma_w(t) = \begin{cases} \gamma(2t), & t \in [0, 1/2], \\ [\gamma(1), w](2t - 1), & t \in [1/2, 1], \end{cases}$$

где $[\gamma(1), w]$ — путь в Ω_1 , соединяющий $\gamma(1)$ и w. Отображения перехода в этом атласе будут тождественными, и, следовательно, аналитическими. Связность M следует из того, что любой элемент M соединён в M с тривиальным продолжением функции f:

$$(\Omega_t, f_t, \gamma) = (\Omega, f, [p]), \qquad t \in [0, 1],$$

где [p] — постоянный путь в Ω .

*Пример 8.5. Риманова поверхность функции $\arccos z$ получается склеиванием бесконечного числа копий областей $\Pi_n = \mathbb{C} \setminus ((-\infty, 1] \cup [1, +\infty))$ причём верхний берег

правого разреза Π_{2k} подклеивается к нижнему берегу правого разреза Π_{2k-1} , нижний берег правого разреза Π_{2k} подклеивается к верхнему берегу правого разреза Π_{2k-1} , верхний берег левого разреза Π_{2k} подклеивается к нижнему берегу левого разреза Π_{2k+1} , нижний берег левого разреза Π_{2k} подклеивается к верхнему берегу левого разреза Π_{2k-1} . Получается поверхность следующего вида (показана ее часть Im z > 0): Схема расположения слоёв Π_n показана ниже: Точки на каждом уровне Π_n можно

Рис. 18

Рис. 19

соединить путём, стягиваемым в Π_n .

Покажем, что описанная выше конструкция задаёт риманову поверхность для $\arccos z$. Для этого заметим, что функция $\cos z$ биективно отображает полосы $G_n =$

 $\{n\pi < |\operatorname{Re} z| < \pi n + \pi\}, n \in \mathbb{Z}$, на области Π_n . При этом закрашенные части полос на рисунке ниже переходят в верхнюю полуплоскость, а белые — в нижнюю: В каж-

Рис. 20

дой области Π_n можно задать аналитическую функцию $\varphi_n:\Pi_n\to G_n$ со свойством $\cos(\varphi_n(z))=z$. При этом аналитическое продолжение $\arccos z$ из окрестности $0\in\Pi_0$ вдоль любого пути γ , пересекающего N раз множество $(-\infty,-1)\cup(1,+\infty)$ получается цепочкой его продолжений $\varphi_{i_0},\varphi_{i_1},\varphi_{i_2},\ldots\varphi_{i_N}$, где $i_k\in\mathbb{Z}$: $|i_k-i_{k+1}|=1,i_0=0$. Например, если γ пересекает в первый раз множество $(-\infty,-1)\cup(1,+\infty)$ по его положительной части, то $i_1=-1$. Из двух прямых, ограничивающих область G_k лишь одна является границей $G_{k\pm 1}$. Это соответствует тому, что лишь один из разрезов $(-\infty,-1],[1,+\infty)$ области Π_k склеивается с разрезом области $\Pi_{k\pm 1}$. Так как $(\arccos x)'=-1/\sqrt{1-x^2}$, то аналитически продолжить $\arccos x$ в слое Π_0 вдоль пути, пересекающего точки ± 1 невозможно. Аналогичная причина не даёт продолжить $\arccos z$ вдоль любого пути пересекающего точки ± 1 в других слоях Π_n . Значит, мы аналитически продолжили агссоs z вдоль всех возможных путей и получили разные продолжения в разных точках римановой поверхности. Значит, предъявленная нами риманова поверхность – действительно риманова поверхность агссоs z.

*

9 Преобразования Мёбиуса и их произведения

Определение. Преобразованием Мёбиуса (или дробно-линейным отображением) с матрицей $A \in GL(2,\mathbb{C})$ называется отображение

$$\varphi_A \colon \P \to \P, \quad \left[\left(\begin{smallmatrix} z_1 \\ z_2 \end{smallmatrix} \right) \right] \mapsto \left[A \left(\begin{smallmatrix} z_1 \\ z_2 \end{smallmatrix} \right) \right].$$

Замечание. Условие $A \in \mathrm{GL}(2,\mathbb{C})$ означает, что

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \det A \neq 0, \quad a, b, c, d \in \mathbb{C}.$$

Если отождествить $\mathbb C$ с подмножеством \P отображением $z\mapsto \left[{z\choose 1}\right]$, то получится, что

$$\varphi_A(z) = \left[A {z \choose 1}\right] = \left[\left({az+b \atop cz+d}\right)\right] = \left[\left({az+b \atop cz+d}\right)\right] = {az+b \over cz+d}$$

во всех таких точках $z \in \mathbb{C}$, что $cz + d \neq 0$. Если же cz + d = 0, то $\varphi_A(z) = \infty \in \P$. Легко также проверить, что $\varphi_A(\infty) = a/c$, где $a/c = \infty$, если c = 0.

Утверждение 9.1. Для любых матриц $A_1, A_2 \in GL(2, \mathbb{C})$ справедливо тождество

$$\varphi_{A_1}\circ\varphi_{A_2}=\varphi_{A_1A_2}.$$

Доказательство. Действительно,

$$\varphi_{A_1}\Big(\varphi_{A_2}\Big(\left[\left(\begin{smallmatrix}z_1\\z_2\end{smallmatrix}\right)\right]\Big)\Big)=\left[A_1\left[A_2\left(\begin{smallmatrix}z_1\\z_2\end{smallmatrix}\right)\right]\right]=\left[A_1A_2\left(\begin{smallmatrix}z_1\\z_2\end{smallmatrix}\right)\right]=\varphi_{A_1A_2}\Big(\left[\left(\begin{smallmatrix}z_1\\z_2\end{smallmatrix}\right)\right]\Big),$$

что и требовалось.

Следствие 9.2. Преобразования Мёбиуса являются биекциями \P на \P , и каждое из них имеет неподвижную точку. Если $\det A = 1$, то обратное отображение к φ_A имеет вид

$$(\varphi_A)^{-1} \colon z \mapsto \frac{dz - b}{-cz + a}.$$

 \mathcal{A} оказательство. Пусть φ_A — преобразование Мёбиуса, $B=A^{-1}$. Тогда

$$(\varphi_B \circ \varphi_A)(z) = \varphi_I(z) = z, \quad z \in \P,$$

где I — единичная матрица размера 2×2 . Значит, φ_B — обратное отображение к φ_A . Если при этом $\det A = 1$, то

$$B = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} : \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} ad - bc & ab - ab \\ cd - cd & ad - bc \end{pmatrix} = I,$$

что задаёт формулу для $(\varphi_A)^{-1}$. Кроме того, если $z=\left(\begin{smallmatrix} z_1\\z_2 \end{smallmatrix} \right)$ — ненулевой собственный вектор матрицы A, соответствующий собственному числу λ , то

$$\varphi_A(z) = \left[A\left(\begin{smallmatrix} z_1\\z_2\end{smallmatrix}\right)\right] = \left[\lambda\left(\begin{smallmatrix} z_1\\z_2\end{smallmatrix}\right)\right] = \left[\left(\begin{smallmatrix} z_1\\z_2\end{smallmatrix}\right)\right] = z.$$

Значит, собственные вектора A отвечают неподвижным точкам φ_A , в частности, любое преобразование Мёбиуса имеет неподвижную точку. $\not <$

Утверждение 9.3. Преобразования Мёбиуса переводят прямые и окружности в прямые и окружности.

Доказательство. Любое преобразование Мёбиуса — это суперпозиция отображений вида $z \mapsto z + w$, $z \mapsto wz$, и $z \mapsto 1/z$. Ясно, что сдвиги $z \mapsto z + w$ переводят прямые и окружности в прямые и окружности.

Любая прямая в \mathbb{C} — это сдвиг прямой, проходящей через ноль и точку α на единичной окружности, то есть множество точек $\{\alpha x + b \mid x \in \mathbb{R}\}$. Но

$$\{w(\alpha x + b) \mid x \in \mathbb{R}\} = \{\widetilde{\alpha}y + \widetilde{b} \mid y \in \mathbb{R}\},\$$

где $\widetilde{\alpha} = w\alpha/|w|$, $\widetilde{b} = bw$. Значит, отображение $z \mapsto wz$ переводит прямые в прямые. Кроме того, окружность $|z - z_0|^2 = r^2$ оно переводит в множество таких точек ξ , что

$$|\xi/w-z_0|^2=r^2$$
,

то есть в окружность с центром $z_0 w$ и радиусом r|w|.

Рассмотрим теперь отображение $z\mapsto 1/z$. Окружность $|z-z_0|^2=r^2$ оно переводит в множество точек ξ , удовлетворяющих следующим условиям:

$$|1/\xi - z_0|^2 = r^2 \iff |1 - \xi z_0|^2 = |\xi|^2 r^2 \iff 1 - 2\operatorname{Re}(\xi z_0) + |\xi|^2 (|z_0|^2 - r^2) = 0.$$

Если $|z_0|^2 - r^2 \neq 0$, то последнее условие равносильно следующему:

$$|\xi|^2 - 2\operatorname{Re}(\xi\overline{\xi}_0) + |\xi_0|^2 - |\xi_0|^2 + \frac{1}{|z_0|^2 - r^2} = 0, \qquad \overline{\xi}_0 = \frac{z_0}{|z_0|^2 - r^2},$$

то есть уравнению окружности $|\xi - \xi_0|^2 = R^2$, где

$$R^{2} = |\xi_{0}|^{2} - \frac{1}{|z_{0}|^{2} - r^{2}} = \frac{r^{2}}{(|z_{0}|^{2} - r^{2})^{2}} > 0.$$

Если же $|z_0|^2-r^2=0$, то это условие равносильно уравнению прямой ${\rm Re}(\xi z_0)=1/2$, которому удовлетворяют точки множества $\{\xi=\alpha x+b\mid x\in\mathbb{R}\}$, где

$$\alpha = i\overline{z}_0/|z_0|, \qquad b = 1/(2z_0).$$

Проверка того, что отображение $z\mapsto 1/z$ переводит прямые в прямые и окружности оставляется читателю в качестве упражнения . $\not<$

Утверждение 9.4. Любые три различные точки z_1, z_2, z_3 на римановой сфере \P можно перевести в любые три различные точки w_1, w_2, w_3 на римановой сфере \P единственным преобразованием Мёбиуса.

Доказательство. Пусть сначала все 6 точек лежат в \mathbb{C} . Отображение φ , задаваемое

уравнением

$$\frac{\varphi(z) - w_1}{\varphi(z) - w_2} \frac{w_3 - w_2}{w_3 - w_1} = \frac{z - z_1}{z - z_2} \frac{z_3 - z_2}{z_3 - z_1},$$

является преобразованием Мёбиуса и переводит z_k в w_k , k=1,2,3. Если же $\widetilde{\varphi}$ — другое преобразование Мёбиуса с теми же свойствами, то

$$\frac{\widetilde{\varphi}(z) - w_1}{\widetilde{\varphi}(z) - w_2} \frac{w_3 - w_2}{w_3 - w_1} = \frac{z - \widetilde{z}_1}{z - \widetilde{z}_2} \frac{\widetilde{z}_3 - \widetilde{z}_2}{\widetilde{z}_3 - \widetilde{z}_1}$$

для некоторых \widetilde{z}_k , как следует из общего вида преобразований Мёбиуса. Подстановка z_1, z_2, z_3 в равенство выше показывает, что $\widetilde{z}_k = z_k$ и $\widetilde{\varphi} = \varphi$. Это завершает доказательство в рассматриваемом случае. Если же какие-нибудь из точек z_k, w_k равны ∞ , то формулу, определяющую φ , надо соответствующим образом модифицировать. Например, если $z_1 = \infty$, $w_3 = \infty$, то φ определяется из соотношения

$$\frac{\varphi(z)-w_1}{\varphi(z)-w_2}=\frac{z_3-z_2}{z-z_2}.$$

Проверка показывает, что все предыдущие рассуждения остаются верными и в этом случае. $\not <$

Определение. Аналитическое отображение называется *конформным*, если оно биективно.

Пример 9.1. Преобразования Мёбиуса конформно отображают ¶ на ¶.

Утверждение 9.5. Пусть |a| < 1, $|\alpha| = 1$. Тогда фактор Бляшке (или автоморфизм круга, преобразование Мёбиуса), то есть отображение

$$b_{\alpha,a}\colon z\mapsto \alpha\,\frac{a-z}{1-\overline{a}z},$$

осуществляет конформное отображение единичного диска $\mathbb D$ на себя.

Доказательство. Действительно, функция $b_{\alpha,a}$ аналитична в окрестности $\{z \in \mathbb{C} : |z| \leq 1\}$, и для всякой точки $\xi \in \mathbb{T}$ имеет место равенство

$$|b_{\alpha,a}(\xi)| = \left| \frac{a - \xi}{1 - \overline{a}\xi} \right| = \left| \frac{a - \xi}{\overline{\xi} - \overline{a}} \right| = 1.$$

По принципу максимума, это означает, что

$$|b_{\alpha,a}(z)| < 1, \qquad z \in \mathbb{D},$$
 $\left| \frac{1}{b_{\alpha,a}(z)} \right| < 1, \qquad z \in \mathbb{C} \setminus \overline{\mathbb{D}}.$

Значит, $b_{\alpha,a}(\mathbb{D})\subset \mathbb{D}$, $b_{\alpha,a}(\mathbb{T})\subset \mathbb{T}$ и $b_{\alpha,a}(\P\setminus\overline{\mathbb{D}})\subset \P\setminus\overline{\mathbb{D}}$. Так как преобразования Мёбиуса — биекции \P на \P , то эти включения суть равенства, и $b_{\alpha,a}$ осуществляет конформное отображение \mathbb{D} на \mathbb{D} .

*

Лемма 9.6 (лемма Шварца, классическая форма). Пусть $f: \mathbb{D} \to \mathbb{D}$ — аналитическая функция. Если f(0) = 0, то $|f(z)| \le |z|$ всюду в \mathbb{D} , причём $|f'(0)| \le 1$. Более того, если $|f(z_0)| = |z_0|$ для некоторой точки $z_0 \in \mathbb{D} \setminus \{0\}$ или |f'(0)| = 1, то $f(z) = \alpha z$ всюду в \mathbb{D} для некоторого $\alpha \in \mathbb{T}$.

Доказательство. См. доказательство леммы 9.8.

Теорема 9.7. Если $\varphi \colon \mathbb{D} \to \mathbb{D}$ — конформное отображение, то $\varphi = b_{\alpha,a}$ для некоторого $|\alpha| = 1$ и $a = \varphi^{-1}(0)$.

Доказательство. Рассмотрим отображение $f = \varphi \circ b_{1,a}$. По условию, $f : \mathbb{D} \to \mathbb{D}$ — конформное отображение, f(0) = 0. Из леммы Шварца мы получаем, что $|f'(0)| \leq 1$.

Пусть g — обратное отображение к f. Тогда $g\colon \mathbb{D}\to \mathbb{D}$ — конформное отображение, g(0)=0, и потому вновь $|g'(0)|\leqslant 1$. С другой стороны, g(f(z))=z, откуда следует, что

$$1 = z' = (g(f(z)))' = g'(f(z))f'(z),$$

то есть 1=g'(0)f'(0). Значит, |f'(0)|=1. По лемме Шварца, $f(z)\equiv\beta z$, откуда следует, что $\overline{\beta}\varphi$ — отображение, обратное к автоморфизму $b_{1,a}$. Итак, мы проверили, что для каждого конформного отображения $\varphi\colon \mathbb{D}\to\mathbb{D}$ существует такое $\beta\in\mathbb{T}$, что

$$(\varphi)^{-1}(\beta) = (\overline{\beta}\varphi)^{-1} = b_{1.a},$$

то есть $(\varphi)^{-1}(z) = b_{1,a}(\overline{\beta}z) = b_{\overline{\beta},a}(z)$, где "-1" обозначает обратное отображение. Применяя этот результат к $(\varphi)^{-1}$ вместо φ , получаем, что $\varphi = b_{\alpha,w}$ для некоторого $\alpha \in \mathbb{T}$, $w \in \mathbb{D}$. Равенство $\varphi(a) = 0$ влечёт равенство w = a.

Лемма 9.8 (лемма Шварца, инвариантная форма). Пусть $f: \mathbb{D} \to \mathbb{D}$ — аналитическая функция. Тогда

$$\left| \frac{f(z) - f(a)}{1 - \overline{f(a)}f(z)} \right| \le \left| \frac{z - a}{1 - \overline{a}z} \right|, \qquad \text{где } z, a \in \mathbb{D}.$$
 (9.1)

В частности,

$$|f'(a)| \le \frac{1 - |f(a)|^2}{1 - |a|^2}. (9.2)$$

Более того, если в (9.1) достигается равенство для пары точек $z \neq a$, или в (9.2) достигается равенство в одной из точек $a \in \mathbb{D}$, то $f = b_{\alpha,a}$ для некоторого $\alpha \in \mathbb{T}$.

Доказательство. Отметим, что классическая форма получается из инвариантной подстановкой a=0. Рассмотрим аналитическую функцию

$$g: z \mapsto \frac{f(z) - f(a)}{1 - \overline{f(a)}f(z)} = b_{-1,f(a)} \circ f.$$

Ясно, что $g(\mathbb{D})\subset \mathbb{D}$ и g(a)=0. Кроме того, при r<1 и $z\in \mathbb{T}$ аналитическая функция $g/b_{1,a}$ удовлетворяет оценке

$$|(g/b_{1,a})(rz)| \leq \frac{\sup_{\mathbb{T}} |g(rz)|}{\inf_{\mathbb{T}} |b_{1,a}(rz)|} \leq \frac{1}{\inf_{\mathbb{T}} |b_{1,a}(rz)|} \leq 1 + \varepsilon(r),$$

где $\varepsilon(r) \to 0, r \to 1$. Значит, по принципу максимума выполнено неравенство

$$|(g/b_{1,a})(rz)| \le 1 + \varepsilon(r)$$

для любой точки $z \in \mathbb{D}$. Устремляя r к единице, получаем, что

$$|(g/b_{1,a})(z)| \le 1$$

всюду в \mathbb{D} , то есть выполнено неравенство (9.1). Если в (9.1) достигается равенство для $z \neq a$, или же (9.2) обращается в равенство, то по принципу максимума функция $g/b_{1,a}$ постоянна в \mathbb{D} , и равна по модулю единице. Иными словами, $g = b_{\alpha,a}$ для некоторого $\alpha \in \mathbb{T}$.

Обозначение. Для $a \in \mathbb{D}$, положим

$$b_a = \frac{|a|}{a} \frac{a - z}{1 - \overline{a}z},$$

если $a \neq 0$, или $b_a = z$, если a = 0. В частности, $b_a(0) = |a| \geqslant 0$.

Определение. Бесконечное произведение $\prod_{n=1}^{\infty} f_n$ аналитических функций $f_n \colon \Omega \to \mathbb{C}$ называется *сходящимся в области* Ω , если для любого компакта $K \subset \Omega$ существует такое число $N \in \mathbb{N}$, что произведение $\prod_{n=N}^{\infty} f_n$ сходится равномерно на K к функции, не имеющей нулей на K.

Если произведение $\prod_{n=1}^{\infty} f_n$ из аналитических функций $f_n \colon \Omega \to \mathbb{C}$ сходится в области Ω , то функция $f \colon z \mapsto \prod_{n=1}^{\infty} f_n$ аналитична в Ω . Действительно, частичные произведения этого ряда сходятся равномерно на компактах в Ω к функции f.

Определение. Пусть $\{z_n\}_{n\in\mathbb{N}}$ — последовательность точек в \mathbb{D} . В случае, когда произведение $\prod b_{z_n}$ сходится в \mathbb{D} , оно называется *произведением Бляшке*.

Теорема 9.9. Пусть $\{z_n\}_{n\in\mathbb{N}}$ — последовательность точек в \mathbb{D} . Произведение $\prod b_{z_n}$ сходится в \mathbb{D} тогда и только тогда, когда

$$\sum_{n\geqslant 1}\left(1-|z_n|\right)<\infty.$$

Если же это условие не выполнено, то

$$\lim_{N\to+\infty}\prod_{n=1}^N b_{z_n}(z)=0$$

для каждой точки $z \in \mathbb{D}$.

Для доказательства нам потребуется следующая лемма.

Лемма 9.10. Если комплексные числа w_n таковы, что $|1-w_n| \in [0,1/2]$, то условие

$$\sum_{n=1}^{\infty} |1 - w_n| < \infty \tag{9.3}$$

*

достаточно для сходимости произведения $\prod_n w_n$ в \mathbb{C} к ненулевому числу. Если же $w_n \in (0,1)$, то сходимость ряда (9.3) необходима для сходимости произведения $\prod_n w_n$.

Доказательство. Сходимость произведения $\prod_n w_n$ к ненулевому комплексному числу равносильна сходимости ряда

$$\sum_{n=1}^{\infty} \log w_n,$$

где $\log z$ — главная ветвь логарифма. Положим $\xi_n = 1 - w_n$. Пусть выполнено условие (9.3), тогда $\sum |\xi_n| < \infty$, и так как $|\xi_n| \le 1$, то $\sum |\xi_n|^2 < \infty$. Значит, ряд из величин

$$\log w_n = \log(1 - \xi_n) = -\xi_n + O(\xi_n^2)$$

сходится абсолютно, вместе с произведением $\prod_n w_n$.

Пусть, наоборот, сходится произведение $\prod_n w_n$. Если при этом $w_n \in (0,1)$, то числа ξ_n положительны, и начиная с некоторого номера N попадут в интервал (0,1/2), так как $\log(1-\xi_n) \to 0$. Но сходимость ряда

$$\sum_{n>N} \left(-\xi_n + O(\xi_n^2) \right)$$

влечёт сходимость ряда

$$\sum_{n\geqslant 1}\xi_n=\sum_{n\geqslant 1}|1-w_n|,$$

что и требовалось.

Доказательство теоремы 9.9. Пусть $\prod b_{z_n}$ сходится в $\mathbb D$. Тогда для некоторого $N\in\mathbb N$ произведение

$$\prod_{n=N}^{\infty} b_{z_n}(0) = \prod_{n=N}^{\infty} |z_n|$$

сходится к ненулевому числу, и по предыдущей лемме

$$\sum_{n>M} (1-|z_n|) < +\infty.$$

Чтобы доказать сходимость $\prod b_{z_n}$ при условии $\sum_{n\geqslant 1}(1-|z_n|)<\infty$, преобразуем b_a к следующему виду:

$$\frac{|a|}{a}\frac{a-z}{1-\overline{a}z} = \frac{|a|}{a\overline{a}}\frac{a\overline{a}-\overline{a}z}{1-\overline{a}z} = \frac{1}{|a|}\left(\frac{|a|^2-1}{1-\overline{a}z}+1\right).$$

Следовательно,

$$\lim_{M\to\infty} \prod_N^M b_{z_n} = \lim_{M\to\infty} \prod_N^M w_n \left/ \prod_N^M |z_n|, \qquad \text{где } w_n = \frac{|z_n|^2 - 1}{1 - \overline{z}_n z} + 1.$$

*

Пусть N выбрано так, что $|1-\overline{z}_nz|>\varepsilon$ для всех $n\geqslant N$ и некоторого числа $\varepsilon>0$. Тогда

$$\sum_{n\geqslant 1}|1-w_n|\leqslant \varepsilon^{-1}\sum_{n\geqslant 1}(1-|z_n|^2)\leqslant 2\varepsilon^{-1}\sum_{n\geqslant 1}(1-|z_n|)<\infty,$$

что с учётом леммы показывает, что произведение $\prod_{N}^{M} b_{z_{n}}$ сходится к ненулевому числу.

Покажем, что доказанная сходимость равномерна на компактах. Если внимательно изучить оценки, которыми мы пользовались, будет видно, что они равномерны в каждом круге $|z| \leqslant r < 1$.

Есть и другой способ: если частичные произведения $B_M = \prod_N^M b_{z_n}$ сходятся к функции $B = \prod_N^\infty b_{z_n}$ неравномерно в некотором круге $|z| \leqslant r < 1$, то

$$\exists \varepsilon > 0, M_k \to +\infty : \quad \inf_{\substack{k \ |z| \le r}} |B_{M_k}(z) - B(z)| \ge \varepsilon.$$
 (9.4)

Но по теореме Монтеля и условию $\sup_{z\in\mathbb{D}}|B_{M_k}(z)|=1$, из последовательности $\{B_{M_k}\}$ можно выбрать подпоследовательность $\{B_{M_{k_j}}\}$ сходящуюся равномерно на компактах в \mathbb{D} . Ее пределом будет функция B, и мы получим противоречие с (9.4).

Пусть теперь $\sum_{n\geqslant 1}(1-|z_n|)=\infty$. Докажем, что $B_M(z)\to 0$, $M\to +\infty$. По теореме Монтеля, можно считать, что B_M сходится равномерно на компактах в $\mathbb D$ к некоторой функции B, и нам нужно доказать равенство B=0. Можно считать, что в некоторой окрестности нуля нет точек последовательности z_k . Действительно, любым конечным числом из них мы можем пренебречь, рассматривая последовательность $\{z_k\}_{k\geqslant N}$, а если их бесконечно много в круге |z|<1/2, то B=0 по теореме единственности для аналитических функций. Итак, пусть $|z_n|\geqslant 1/4$ для всех n. Тогда функции B_M не имеют нулей в |z|<1/4. Из принципа аргумента следует, что тоже верно и для функции B, в частности, $B(0)\neq 0$. Но

$$B(0) = \lim \prod_{1}^{N_k} |z_n| = \lim \exp \left(\sum_{1}^{N_k} \log |z_n| \right) \leqslant \lim \exp \left(-\sum_{1}^{N_k} 1 - |z_n| \right) = 0,$$

что приводит к противоречию.

Следствие 9.11. Пусть $\{z_n\}$ — последовательность нулей функции $f \not\equiv 0$, ограниченной и аналитической в \mathbb{D} , причём каждый ноль встречается в этой последовательности столько раз, какова его кратность. Тогда

$$\sum_{n\geqslant 1}(1-|z_n|)<\infty.$$

Наоборот, любая такая последовательность есть последовательность нулей некоторой ограниченной аналитической функции в \mathbb{D} .

Доказательство. Если $\sum_{n\geqslant 1}(1-|z_n|)<\infty$, то искомая функция — это произведение Бляшке с нулями $\{z_n\}$.

Пусть теперь f — какая-нибудь функция с нулями $\{z_n\}$; предположим, что

$$\sum_{n\geq 1}(1-|z_n|)=+\infty.$$

Будем считать, что $f(\mathbb{D})\subset \mathbb{D}$ (можно умножить f на малую константу). Тогда по лемме Шварца $f_1=f/b_{z_1}$ — аналитическая функция, и $f_1(\mathbb{D})\subset \mathbb{D}$, ибо особенность в точке z_1 устранима, а у границ модули значений не превосходят близких к единице. Итерируя процесс, получаем неравенство

$$\left| f(z) \middle/ \prod_{n=1}^{N} b_{z_n}(z) \right| \leq 1, \quad z \in \mathbb{D}, \quad N \geqslant 1.$$

Так как $\prod_{n=1}^N b_{z_n}(z) \xrightarrow[N \to \infty]{} 0$, отсюда следует, что f(z) = 0.

10 Теорема Римана

Определение. Области Ω_1 , Ω_2 называются конформно эквивалентными, если существует конформное отображение Ω_1 на Ω_2 .

Теорема Римана утверждает, что любые две односвязные области $\Omega_{1,2} \neq \mathbb{C}$ конформно эквивалентны.

Теорема 10.1 (теорема Римана об униформизации). Пусть Ω — односвязная область в \mathbb{C} , причём $\Omega \neq \mathbb{C}$. Тогда существует конформное отображение области Ω на единичный круг $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$.

Доказательство.

(1) Сведение к случаю $\Omega \subset \mathbb{D}$, $0 \in \Omega$.

Ясно, что вместо области Ω можно рассматривать любую область, конформно эквивалентную ей. Несколькими конформными отображениями "поместим" область Ω внутрь единичного круга. Так как $\Omega \neq \mathbb{C}$, существует точка $z_0 \notin \Omega$. Последнее означает, что $|z-z_0|>0$ в Ω , то есть в Ω корректно определена ветвь логарифма $g\colon z\mapsto \log(z-z_0)$. Покажем, что g — конформное отображение на свой образ $\Omega_1=g(\Omega)$. Действительно, если $g(z_1)=g(z_2)$, то

$$z_1 - z_0 = e^{g(z_1)} = e^{g(z_2)} = z_2 - z_0,$$

то есть $z_1 = z_2$.

Покажем, что $\Omega_1 \cap (\Omega_1 + 2\pi i) = \emptyset$. Пусть $w = g(z_1), w + 2\pi i = g(z_2)$. Тогда

$$z_1 - z_0 = e^{g(z_1)} = e^w = e^{w+2\pi i} = e^{g(z_2)} = z_2 - z_0,$$

то есть $z_1 = z_2$, что приводит к противоречивому равенству

$$w = g(z_1) = g(z_2) = w + 2\pi i$$
.

Выберем точку $a \in \Omega_1 + 2\pi i$, и пусть $\varepsilon > 0$ столь мало, что $B(a, \varepsilon) \subset \Omega_1 + 2\pi i$. Тогда $B(a, \varepsilon) \subset \mathbb{C} \setminus \Omega_1$. В частности, отображение

$$h: z \mapsto \frac{1}{z-a}$$

конформно отображает Ω_1 на свой образ $\Omega_2 = h(\Omega_1)$ — ограниченную область в \mathbb{C} . Наконец, преобразованием вида $z \mapsto \delta z + b$ можно конформно отобразить Ω_2 в область Ω_3 , удовлетворяющую условиям $0 \in \Omega_3$, $\Omega_3 \subset \mathbb{D}$. Так как как Ω и Ω_3 конформно эквивалентны, можно считать, что $\Omega = \Omega_3$ в условии теоремы.

(2) Множество аналитических функций

$$\mathcal{R} = \left\{ f \colon \Omega \to \mathbb{D} \;\middle|\; f(0) = 0, f(z) \neq f(w) \;\forall z, w \in \Omega : z \neq w \right\} \cup \{0\}$$

— секвенциальный компакт в топологии равномерной сходимости на компактах в Ω .

Пусть $f_n \in \mathcal{R}$, $n \in \mathbb{N}$. По теореме Монтеля, из последовательности f_n можно выбрать подпоследовательность f_{n_k} , сходящуюся на компактах в Ω к некоторой аналитической функции f.

По теореме Гурвица, любая последовательность однолистных (то есть аналитических и инъективных) отображений сходится к постоянному или однолистному отображению. Следовательно, либо $f(z) \equiv f(0) = 0$ всюду в Ω , либо f — однолистная функция. В обоих случаях $f \in \mathcal{R}$.

(3) Функционал Ψ : $f \mapsto |f'(0)|$ достигает максимума на \mathcal{R} .

Обозначим $A=\sup_{f\in\mathcal{R}}\Psi(f)$. Пусть f_n — последовательность функций, таких, что $|f_n'(0)|\to A$. В силу пункта (2), из этой последовательности можно выбрать подпоследовательность f_{n_k} , сходящуюся на компактах в Ω к некоторой функции $f\in\mathcal{R}$. Так как

$$f'(0) = \frac{1}{2\pi i} \oint_{|z|=\varepsilon} \frac{f(z)}{z^2} dz, \qquad B(0, 2\varepsilon) \subset \Omega,$$

для любой аналитической функции в Ω , и окружность $\{z \in \mathbb{C} : |z| = \varepsilon\}$ — компакт, то |f'(0)| = A. В частности, A конечно, и Ψ достигает своего максимума на множестве \mathcal{R} .

(4) Если $f \in \mathcal{R}$ и $f(\Omega) \neq \mathbb{D}$, то существуют такие отображения $g \in \mathcal{R}$, $\varphi \colon \mathbb{D} \to \mathbb{D}$, что $f = \varphi \circ g$ и $|\varphi'(0)| < 1$.

Пусть существует точка $w \in \mathbb{D} \setminus f(\Omega)$. Тогда определена ветвь логарифма

$$\psi \colon z \mapsto \log T_1(f(z)), \quad z \in \Omega, \qquad \text{где } T_1(\lambda) = \frac{w - \lambda}{1 - \overline{w} \lambda}, \quad \lambda \in \mathbb{D}.$$

Кроме того, так как $\log |T_1(\lambda)| < 0$ в \mathbb{D} , функция ψ конформно отображает Ω в подмножество левой полуплоскости $\{z \in \mathbb{C} : \operatorname{Re} z < 0\}$. Выберем отображение T_2 , конформно отображающее $\{z \in \mathbb{C} : \operatorname{Re} z < 0\}$ на единичный круг \mathbb{D} и такое, что $T_2(a) = 0$, где $a = \log T_1(0)$. Например, можно взять (выбор в действительности невелик) преобразование Мёбиуса

$$T_2: \mu \mapsto \frac{a-\mu}{a+\mu}.$$

Далее, определим

$$g(z) = T_2(\log T_1(f(z))), \qquad z \in \mathbb{D}.$$

По построению, $g \in \mathcal{R}$. Кроме того, $\exp(T_2^{-1}(g(z))) = T_1(f(z))$, то есть

$$f(z) = \varphi(g(z)), \qquad \varphi = T_1^{-1} \circ \exp \circ T_2^{-1},$$

причём φ — аналитическое отображение из $\mathbb D$ в $\mathbb D$. Так как $\exp z$ — не однолистна в $\{\operatorname{Re} z<0\}$, а отображение T_2^{-1} — биекция из $\mathbb D$ в $\{\operatorname{Re} z<0\}$, то φ —

не инъективно, в частности, $\varphi \not\equiv \alpha z$ ни для какого $\alpha \in \mathbb{T}$. По лемме Шварца, $|\varphi'(0)| < 1$.

(5) Если $f \in \mathcal{R}$ — функция, на которой достигается максимум Ψ , то $f(\Omega) = \mathbb{D}$. Пусть $f \in \mathcal{R}$ — функция, на которой достигается максимум Ψ . Если при этом $f(\Omega) \neq \mathbb{D}$, то из предыдущего шага следует, что существуют $g \in \mathcal{R}$, $\varphi : \mathbb{D} \to \mathbb{D}$ такие, что $f = \varphi \circ g$, $|\varphi'(0)| < 1$. Но тогда

$$f'(0) = \varphi'(g(0)) \cdot g'(0) = \varphi'(0) \cdot g'(0),$$

в частности, $\Psi(f) = |f'(0)| < |g'(0)| = \Psi(g)$, что приводит к противоречию. \checkmark

Следствие 10.2. Если область $\Omega \subset \mathbb{C}$ конформно эквивалентна \mathbb{C} , то $\Omega = \mathbb{C}$.

Доказательство. Так как конформные отображения сохраняют односвязность, область Ω — односвязна. В силу теоремы Римана, нам достаточно проверить лишь, что области $\mathbb C$ и $\mathbb D$ не являются конформно эквивалентными. Это вытекает из теоремы Лиувилля. ≮

Утверждение 10.3. Если $f: \mathbb{C} \to \mathbb{C}$ — конформное отображение, то f(z) = az + b.

Доказательство. Вычитая константу, можно считать, что f(0)=0. Так как f — аналитическое отображение, то $f(\mathbb{D})\supset \{z\in\mathbb{C}:|z|<\varepsilon\}$ при достаточно малых $\varepsilon>0$. Так как отображение f конформно,

$$f\big(\{z\in\mathbb{C}:|z|\geqslant 1\}\big)\cap\{z\in\mathbb{C}:|z|<\varepsilon\}=\varnothing.$$

Значит, $|f(z)| \geqslant \varepsilon$ для всех $z \in \mathbb{C}$: $|z| \geqslant 1$. Рассмотрим функцию

$$g(z) = \frac{f'(0)}{f(z)} - \frac{1}{z}.$$

У неё устранимая особенность в точке 0, в остальных точках она аналитична. Кроме того, для $|z|\geqslant 1$

$$|g(z)| \leq \frac{|f'(0)|}{\varepsilon} + 1.$$

По теореме Лиувилля функция g постоянна. Поскольку f конформно, существует такая последовательность точек $\{z_n\}$, что $|z_n| \to +\infty$ и $|f(z_n)| \to +\infty$. Значит, $g \equiv 0$, а потому f(z) = az + b, и утверждение доказано.

Утверждение 10.4. Если f, g — конформные отображения области Ω на единичный круг \mathbb{D} , то $\varphi = g \circ f^{-1}$ — преобразование Мёбиуса, $\varphi(\mathbb{D}) = \mathbb{D}$.

Доказательство. $\varphi(\mathbb{D}) = \mathbb{D}$ по построению. Поскольку φ конформно в \mathbb{D} , это преобразование Мёбиуса (теорема 9.7).

Утверждение 10.5. Пусть $a \in \mathbb{D}$, $\alpha \in \mathbb{T}$. Конформное отображение f в теореме Римана можно выбрать так, чтобы для заданной точки $z_0 \in \Omega$ выполнялись равенства $f(z_0) = a, f'(z_0) = \alpha |f'(z_0)|$. Более того, этот выбор полностью определяет отображение f.

Доказательство. Возьмём сначала произвольное конформное отображение g области Ω на \mathbb{D} . Тогда $h_{\xi,c} = b_{\xi,c} \circ g$ — конформное отображение Ω на \mathbb{D} для любых $\xi \in \mathbb{T}$, $c \in \mathbb{D}$. Кроме того,

$$h_{\xi,c}(z_0) = b_{\xi,c}(g(z_0)), \qquad h'_{\xi,c}(z_0) = b'_{\xi,c}(g(z_0))g'(z_0).$$

Значит, нам достаточно показать, что для любых $a\in\mathbb{D},$ $\alpha\in\mathbb{T}$ и $w\in\mathbb{D}$ найдётся преобразование Мёбиуса $b_{\xi,c}$ со свойством

$$b_{\xi,c}(w) = a, \qquad b'_{\xi,c}(w) = \alpha |b'_{\xi,c}(w)|.$$

Пусть сначала w = 0, $\alpha = -1$. Тогда подходит отображение

$$b_{1,a} = \frac{a-z}{1-\overline{a}z}, \qquad b'_{1,a}(0) = -(1-|a|^2).$$

В общем случае возьмём $b_{\xi,c}=b_{1,a}\circ b_{\alpha,w},$ тогда $b_{\xi,c}(w)=b_{1,a}(0)=a$ и

$$b_{\xi,c}'(w) = b_{1,a}'(0) \cdot b_{\alpha,w}'(w) = -b_{\alpha,w}'(w) = \frac{\alpha}{1-|w|^2} = \alpha |b_{\xi,c}'(w)|.$$

Теперь проверим единственность. Пусть f, g — конформные отображения Ω на \mathbb{D} , $f(z_0) = g(z_0) = a$, $f'(z_0)/|f'(z_0)| = g'(z_0)/|g'(z_0)|$. Тогда $\varphi = g \circ f^{-1}$ — конформное отображение \mathbb{D} на \mathbb{D} . Кроме того, $\varphi(a) = a$,

$$\varphi'(a) = g'(f^{-1}(a))(f^{-1})'(a) = \frac{g'(z_0)}{f'(z_0)}.$$

По лемме Шварца, $|\varphi'(a)| \leq (1-|\varphi(a)|^2)/(1-|a|^2)=1.$ Значит,

$$\left|\frac{g'(z_0)}{f'(z_0)}\right| \leqslant 1.$$

Рассматривая отображение $f \circ g^{-1}$, получаем неравенство

$$\left| \frac{f'(z_0)}{g'(z_0)} \right| \leqslant 1.$$

Значит, $|\varphi'(a)| = 1$, и в лемме Шварца для φ' достигается равенство, то есть $\varphi = b_{\alpha,a}$. Поскольку $\varphi(a) = a$, отсюда вытекает, что a = 0, $\varphi \equiv z$ и $f \equiv g$.

≮

11 Теорема Каратеодори

Определение. Жорданова кривая — это непрерывное инъективное отображение γ из единичной окружности $\mathbb T$ в $\mathbb C$.

Замечание. Из общей топологии следует, что жорданова кривая — гомеоморфизм на свой образ.

Теорема 11.1 (Жордан). Пусть *у* — жорданова кривая. Тогда

$$\mathbb{C} \setminus \gamma(\mathbb{T}) = \Omega_1 \cup \Omega_2,$$

где Ω_1 и Ω_2 — дизъюнктные области в \mathbb{C} , Ω_1 ограничена и односвязна, Ω_2 — неограничена; и для любых точек $z_1 \in \Omega_1$, $z_2 \in \Omega_2$ и любого пути γ_{z_1,z_2} , соединяющего z_1,z_2 , образ γ_{z_1,z_2} пересекает $\gamma(\mathbb{T})$.

Доказательство. Без доказательства. ¹⁹

Рис. 21: Визуализация теоремы Жордана

Определение. Жорданова область — это внутренняя область (Ω_1 в нашей формулировке теоремы 11.1) жордановой кривой.

Наша цель в этом параграфе — доказать следующую теорему.

Теорема 11.2 (Каратеодори). Пусть $f: \mathbb{D} \to \Omega$ — конформное отображение \mathbb{D} на жорданову область Ω . Тогда f продолжается до гомеоморфизма $\overline{\mathbb{D}}$ на $\overline{\Omega}$.

Для начала докажем несколько лемм.

¹⁹Это широко известный факт из топологии — ОМ.

*

Лемма 11.3. Пусть O — область в \mathbb{C} , f — конформное отображение O на f(O). Тогда

$$|f(O)| = \lambda_2(f(O)) = \int_O |f'(z)|^2 d\lambda_2(z),$$

где под |f(O)| понимается площадь множества f(O).

Доказательство. По определению,

$$|f(O)| = \int_{f(O)} 1 \,\mathrm{d}\lambda_2(z) = \int_O |J_f(z)| \,\mathrm{d}\lambda_2(z),$$

где J_f — якобиан f как отображения от двух переменных; f = u + iv,

$$J_f = \det \begin{pmatrix} u'_x & u'_y \\ v'_x & v'_y \end{pmatrix} = [CR] = \det \begin{pmatrix} u'_x & -v'_x \\ v'_x & u'_x \end{pmatrix} =$$

$$= (u'_x)^2 + (v'_x)^2 = |u'_x + iv'_x|^2 = |f'_x|^2 = |f'(z)|^2,$$

то есть $J_f(z) = |f'(z)|^2$, и лемма доказана.

Лемма 11.4. Пусть $\xi \in \mathbb{T}, r \in (0, 1),$

$$D(\xi, r) = \mathbb{D} \cap \{ z \in \mathbb{C} : |\xi - z| < r \};$$

 $\gamma_r = \partial \overline{D(\xi,r)} \cap \mathbb{D}$. Тогда в условиях теоремы Каратеодори для любого $\xi \in \mathbb{T}$ существует такая последовательность $\{r_n\}$, что $r_n \to 0$ и $\ell(f(\gamma_{r_n})) \to 0$.

Доказательство. Оценим длину кривой:

$$\ell(f(\gamma_r)) = \int_0^1 |f(\gamma_r(t))'| \, \mathrm{d}t = \int_0^1 |f'(\gamma_r(t))| \cdot |\gamma'_r(t)| \, \mathrm{d}t$$

$$\leq \left(\int_0^1 |f'(\gamma_r(t))|^2 \cdot |\gamma'_r(t)| \, \mathrm{d}t \right)^{1/2} \cdot \left(\int_0^1 |\gamma'_r(t)| \, \mathrm{d}t \right)^{1/2}.$$

Второй множитель не превосходит $\sqrt{2\pi r}$. Разделив на это число обе части неравенства, возведя в квадрат и проинтегрировав по r, получаем неравенство

$$\int_{0}^{1} \frac{\ell(f(\gamma_r))^2}{2\pi r} dr \leq \int_{0}^{1} \int_{0}^{1} |f'(\gamma_r(t))|^2 \cdot |\gamma'_r(t)| dt dr = \int_{0}^{1} \int_{\gamma_r} |f'(z)|^2 dS_1(z) dr,$$

где S_1 — поверхностная мера из предыдущего семестра. По формуле коплощади

получаем, что последний интеграл равен $\int_{D(\mathcal{E}_1)} |f'(z)|^2 \, \mathrm{d}\lambda_2(z)$, то есть

$$\int_{0}^{1} \frac{\ell(f(\gamma_r))^2}{2\pi r} dr \leqslant \int_{D(\xi,1)} |f'(z)|^2 d\lambda_2(z) \leqslant |\Omega| < \infty,$$

а потому

$$\int_{0}^{1} \frac{\ell(f(\gamma_r))^2}{2\pi r} \, \mathrm{d}r < \infty,$$

и так как $\int_0^1 \frac{1}{r} \, \mathrm{d}r = +\infty$, то существует такая последовательность r_n , сходящаяся к нулю, что $\ell(f(\gamma_{r_n})) \xrightarrow[n \to \infty]{} 0$.

Лемма 11.5. Пусть $f: \mathbb{D} \to \mathbb{C}$ — непрерывное отображение. Тогда следующие условия равносильны:

- (1) f продолжается до отображения из $C(\overline{\mathbb{D}}, \mathbb{C})$;
- (2) f равномерно непрерывно в \mathbb{D} ;
- (3) для любой точки $\xi \in \mathbb{T}$ и любой последовательности r_n , стремящейся к нулю, выполнено

$$\operatorname{diam} f(D(\xi, r_n)) \xrightarrow[n \to \infty]{} 0.$$

Доказательство.

- $(1)\Longrightarrow (2),(3).$ Пусть f продолжается до непрерывного отображения из $\overline{\mathbb{D}}$ в \mathbb{C} (будем для удобства обозначать его той же буквой). Тогда f непрерывно на компакте, и, значит, равномерно непрерывно. В частности, diam $f(D(\xi,r_n))\to 0$ для любой последовательности $\{r_n\}$, сходящейся к нулю.
- $(2) \implies (1)$. Пусть функция f равномерно непрерывна в \mathbb{D} . Тогда f ограничена в \mathbb{D} , то есть из любой последовательности $\{f(z_n)\}$ можно выбрать сходящуюся подпоследовательность. Определим f на \mathbb{T} следующим образом:

$$f(\xi) = \lim_{k \to \infty} f(z_{n_k}),$$

где $\{f(z_{n_k})\}$ — сходящаяся подпоследовательность $\{f(z_n)\}$, где $z_n \to \xi$. Определённая таким образом функция непрерывна в $\overline{\mathbb{D}}$: нетрудно проверить, что $f(z) \to f(\xi)$, если $z \to \xi$ по $z \in \mathbb{D}$, и что $f(\zeta) \to f(\xi)$, где $\zeta \to \xi$ и $\zeta \in \mathbb{T}$.

Осталось понять, что если $\dim(D(\xi,r_n))\to 0$ для любой точки $\xi\in\mathbb{T}$ и некоторой последовательности $\{r_n\}$, сходящейся к нулю, то f равномерно непрерывна в \mathbb{D} . Пусть это не так. Тогда существует $\varepsilon>0$ и последовательность $\{z_n\}\subset\mathbb{D}$, такие, что $|f(z_n)-f(z_{n+1})|>\varepsilon$, хотя $|z_n-z_{n+1}|\to 0$. Можно считать, что $z_n\to\xi\in\overline{\mathbb{D}}$: поскольку $\overline{\mathbb{D}}$ — компакт, можно выбрать подпоследовательность $\{z_{2n_k}\}$, сходящуюся к ξ , и рассмотреть последовательность индексов $\{2n_k\}\cup\{2n_k+1\}$. Тогда будет выполнено $|f(z_{2n_k})-f(z_{2n_k+1})|>\varepsilon$.

²⁰Детали оставляются в качестве упражнения.

Точка ξ не принадлежит $\mathbb D$, так как в окрестности точек $\mathbb D$ функция f равномерно непрерывна. Значит, $\xi \in \mathbb T$, и

$$\operatorname{diam} f(D(\xi, r_n)) \xrightarrow[n \to \infty]{} 0$$
 для $r_{n_k} = \max(|\xi - z_{2n_k}|, |\xi - z_{2n_k+1}|).$

Противоречие.

≮

Лемма 11.6 (вариант принципа симметрии). Пусть $U \subset \mathbb{D}$, $\partial U \cap \mathbb{T} \supset Z, Z$ — дуга \mathbb{T} , $f: U \to \mathbb{C}$ — аналитична. Пусть f непрерывно продолжается в $U \cup Z$ и пусть $f|_Z$ — вещественнозначная функция. Тогда f допускает аналитическое продолжение в область $U \cup Z \cup U^*$, где $U^* = \{\lambda \in \mathbb{C} : \lambda = 1/\overline{z}, z \in U\}$.

 \mathcal{A} оказательство. Определим \widetilde{f} в U^* по правилу $\widetilde{f}(z)=\overline{f(1/\overline{z})}$. Заметим, что \widetilde{f} аналитична в U^* , и $\widetilde{f}|_Z=f|_Z$, \widetilde{f} — непрерывна в $U^*\cup Z$. Положим

$$F = \begin{cases} f, & U \cup Z, \\ \widetilde{f}, & U^*. \end{cases}$$

Нетрудно проверить, что F dz — замкнутая форма в $U \cup Z \cup U^*$ (тест на прямоугольниках). $\not <$

Теорема 11.7 (Каратеодори). Пусть $f: \mathbb{D} \to \Omega$ — конформное отображение \mathbb{D} на жорданову область Ω . Тогда f продолжается до гомеоморфизма $\overline{\mathbb{D}}$ на $\overline{\Omega}$.

Доказательство. Покажем, что f продолжается до непрерывного отображения из $\overline{\mathbb{D}}$ в $\overline{\Omega}$. По лемме 11.5 нужно проверить, что diam $f(D(\xi,r_n))\to 0$. Возьмём в качестве r_n такую последовательность, что $\ell(f(\gamma_{r_n}))\to 0$ (она существует по лемме 11.4). Докажем, что существуют пределы

$$a_n = \lim_{t \to 0} f(\gamma_{r_n}(t)), \qquad b_n = \lim_{t \to 1} f(\gamma_{r_n}(t)),$$

где $a_n,b_n\in\partial\overline{\Omega}.$ Поскольку $\ell(f(\gamma_{r_n}))<\infty,$ для любого $\varepsilon>0$ найдётся такое $\delta>0,$ что

$$|f(\gamma_{r_n}(t_1)) - f(\gamma_{r_n}(t_2))| \leq \ell(f(\gamma_{r_n}|_{(0,\delta)})) \to 0,$$

так как $\ell(f(\gamma_{r_n})) < \infty$, то есть для последовательности $\{f(\gamma_{r_n})\}$ выполнен критерий Коши, что и требовалось.

Теперь покажем, что $a_n, b_n \in \partial \Omega$. Если это не так, то $a_n \in \Omega$ (очевидно, предел должен лежать в $\overline{\Omega}$), и существует окрестность $V(a_n) \subset \overline{V(a_n)} \subset \Omega$ и такая точка $w \in \mathbb{D}$ вместе с окрестностью U(w), что $U(w) \subset \overline{U(w)} \subset \mathbb{D}$, $f(U(w)) = V(a_n)$.

Тогда при некотором $\delta>0$ все точки $\gamma_{r_n}(t)$, где $t\in(0,\delta)$ попадут в U(w), так как $f(\gamma_{r_n}(t))\in V(a)$, а f — биекция $\mathbb D$ на Ω . Но это невозможно, так как

$$\lim_{t\to 0}\gamma_{r_n}(t)\in\mathbb{T},$$

в то время как $\overline{U(w)}\subset \mathbb{D}$. Таким образом, $a_n\in\partial\Omega$. Аналогичный аргумент с переходом к пределу $t\to 1$ показывает, что и $b_n\in\partial\Omega$.

По условию, $\partial\Omega$ — замкнутая жорданова кривая, то есть $\partial\Omega = \Gamma(\mathbb{T})$, где Γ — непрерывная инъекция. Значит, существуют такие точки $z_1, z_2 \in \mathbb{T}$ (зависящие от n), что $\Gamma(z_1) = a_n$, $\Gamma(z_2) = b_n$. Кроме того,

$$|a_n - b_n| \le \ell(f(\gamma_{r_n})) \xrightarrow[n \to \infty]{} 0.$$

Так как Γ — гомеоморфизм на свой образ²¹, то $|z_1 - z_2| \xrightarrow{n \to \infty} 0$. В частности, мы можем определить дуги $I_{z_1,z_2}^{(n)} \subset \mathbb{T}$ с концами z_1, z_2 таким образом, что $|I_{z_1,z_2}^{(n)}| \xrightarrow[n \to \infty]{} 0$.

Положим $J_n = \Gamma(I_{z_1,z_2}^{(n)})$ и рассмотрим кривую $f(\gamma_{r_n}) \cup J_n$. Нетрудно показать, что это жорданова кривая. Обозначим её внутреннюю область буквой V.

Для начала проверим, что $V \subset \Omega$. Это условие равносильно тому, что

$$\Omega_e = \mathbb{C} \setminus \overline{\Omega} \subset V_e = \mathbb{C} \setminus \overline{V}.$$

Очевидно, что существует $\lambda \in \Omega_e \cap V_e$. С другой стороны, области Ω_e , V_e связны. Поэтому, если существует $\lambda^* \in \Omega_e \cap V$, то существует путь $\gamma_{\lambda,\lambda^*}$, соединяющий точки λ,λ^* в Ω_e . Но такой путь по теореме Жордана пересекает $\partial V = \partial V_e$ в некоторой точке η , а $\eta \in \partial \Omega \cup f(\gamma_{r_n}) = W$, $W \cap \Omega_e = \emptyset$. Противоречие. Значит, $\Omega_e \cap V = \emptyset$, и потому $\Omega_e \subset V_e$.

Теперь докажем, что $V = f(D(\xi, r_n))$. По построению,

$$\Omega \setminus f(\gamma_{r_n}) = f(D(\xi, r_n)) \cup f(\mathbb{D} \setminus \overline{D(\xi, r_n)}) = V_1 \cup V_2,$$

то есть эта область состоит из двух компонент связности. Значит, либо $V\subset V_1$, либо $V\subset V_2$, так как V связно и $V\cap f(\gamma_{r_n})=\varnothing$. Пусть $V\subset V_1$. Тогда ясно, что V открыто в V_1 , так как оба этих множества открыты в $\mathbb C$. Кроме того, V замкнуто в V_1 , так как если Z_* — предельная точка V в V_1 , то

$$z_* \in \overline{V} \setminus (\partial \Omega \cup f(\gamma_{r_n})) \subset V.$$

Значит, $V_1 = V$. Аналогичные рассуждения показывают, что если $V \subset V_2$, то $V = V_2$. Заметим, что

$$|V_1| = \lambda_2(f(D(\xi, r_n))) \xrightarrow[n \to \infty]{} 0$$

по построению. Кроме того, $|V_1|+|V_2|=|\Omega| \not\to 0$, то есть $|V_2| \not\to 0$. При этом

$$\operatorname{diam} V \leq \operatorname{diam} J_n + \ell(f(\gamma_{r_n})) \xrightarrow[n \to \infty]{} 0,$$

так как Γ — гомеоморфизм. Поскольку площадь V_2 отделена от нуля, а диаметры V стремятся к нулю, мы получаем, что $V=V_1=f(D(\xi,r_n))$. Таким образом,

diam
$$f(D(\xi, r_n)) \xrightarrow[n \to \infty]{} 0$$
,

то есть f равномерно непрерывна в $\mathbb D$ и продолжается до непрерывного отображения

²¹Потому что это непрерывная биекция между хаусдорфовыми компактами — см. курс топологии.

на $\overline{\mathbb{D}}$ по лемме 11.5. Будем обозначать продолжение той же буквой f.

Осталось проверить, что f — инъекция на \mathbb{T} (f не может склеивать внутренние точки, поскольку оно конформно, и не может переводить внутренние точки в граничные). Пусть это неверно, и точки $z_1, z_2 \in \mathbb{T}$ таковы, что $f(z_1) = f(z_2) = \zeta \in \partial \Omega$. Тогда $f([z_1,0] \cup [0,z_2])$ — некоторая жорданова кривая γ , где $[z_1,0]$ и $[0,z_2]$ — отрезки, соединяющие центр окружности \mathbb{D} с z_1 и z_2 . При этом ясно, что $\gamma \subset \overline{\Omega}$ и $\gamma \cap \partial \overline{\Omega} = \zeta$. Обозначим внутреннюю область этой кривой через V. Если U_1, U_2 — секторы \mathbb{D} со сторонами $[z_1,0]$ и $[0,z_2]$, то либо $f(U_1) = V$, либо $f(U_2) = V$ (см. первую часть доказательства). Пусть f(U) = V, где $U = U_1$ или $U = U_2, Z = \partial U \cap \mathbb{T}$.

Покажем, что $f(z)=f(z_1)=f(z_2)$ для всех $z\in Z$. Действительно, f(U)=V, а потому

$$f(Z) \subset \overline{V} \cap \partial\Omega = \{\xi\} = \{f(z_1)\},\$$

то есть $f \equiv \text{const}$ на Z. Поскольку можно домножить f на константу, равную единице по модулю, можно считать, что f принимает на Z вещественные значения. Значит, f можно по лемме 11.6 аналитически продолжить на некоторую область, содержащую Z. Но аналитическая функция, постоянная на отрезке, сама постоянна по теореме единственности аналитических функций, а это невозможно, так как f конформна в \mathbb{D} .

Рассмотрим теперь задачу Дирихле. А именно, пусть Ω — область в \mathbb{C} , $f \in C(\partial\Omega)$. Надо найти гармоническую функцию u в Ω , такую, что $u(z) \to f(\xi)$, если $\xi \in \partial\Omega$ и $z \to \xi$.

Следствие 11.8. Пусть Ω — внутренняя область жордановой кривой. Тогда задача Дирихле разрешима с любыми граничными данными $f \in C(\partial\Omega)$.

 $extit{Доказательство}.$ По теореме Каратеодори и теореме Римана существует такой гомеоморфизм $\varphi\colon \overline{\mathbb{D}} \to \overline{\Omega}$, что $\varphi\colon \mathbb{D} \to \Omega$ — конформное отображение. Рассмотрим функцию $\widetilde{f}(\xi)=f(\varphi(\xi))$, где f — данные задачи Дирихле, $\xi\in\mathbb{T}$. Очевидно, что $\widetilde{f}\in C(\mathbb{T})$. Значит, как мы уже знаем, существует функция \widetilde{u} , задающаяся как

$$\widetilde{u}(z) = \int_{\mathbb{T}} \frac{1 - |z|^2}{|1 - \overline{\xi}z|^2} \widetilde{f}(\xi) \, \mathrm{d}m(\xi),$$

гармоническая в $\mathbb D$ и такая, что $\widetilde u(\widetilde z) \to \widetilde u(\widetilde \xi)$, если $\widetilde z \to \widetilde \xi \in \mathbb T$. Положим

$$u(z) = \widetilde{u}(\varphi^{-1}(z)), \qquad z \in \Omega.$$

Тогда u гармонична, так как существует такая аналитическая функция \widetilde{g} , что

$$\widetilde{u} = \operatorname{Re} \widetilde{g}, \qquad u = \operatorname{Re} \widetilde{g}(\varphi^{-1}(z)).$$

Кроме того, если $\widetilde{\varphi}(\widetilde{z})=\zeta o \xi=\varphi(\widetilde{\xi})$, то

$$u(z) = \widetilde{u}(\varphi^{-1}(z)) = \widetilde{u}(\widetilde{z}) \to \widetilde{u}(\widetilde{\xi}) = u(\xi).$$

≮

Значит, u — решение задачи Дирихле.

12 Модулярная функция и её применения

В дальнейшем мы будем использовать обозначение $\mathbb{C}_{0,1} = \mathbb{C} \setminus \{0,1\}$.

Теорема 12.1 (о модулярной функции). Существует конформное отображение из \mathbb{D} на универсальную накрывающую $\mathbb{C}_{0.1}$.

Замечание. Теорема утверждает, что $\widehat{\mathbb{C}_{0,1}} \simeq \mathbb{D}$. Тем не менее, $\widehat{\mathbb{C}} \setminus \{0\} \not\simeq \mathbb{D}$.

Определение. Произвольная функция $\varphi \colon \mathbb{D} \to \widehat{\mathbb{C}_{0,1}}$ из теоремы 12.1 называется модулярной функцией Лежандра.

Перед тем как доказывать саму теорему, приведём несколько её практических применений.

Теорема 12.2 (Пикар). Пусть f — целая функция, $f(z) \neq w_1$ и $f(z) \neq w_2$ для всех $z \in \mathbb{C}$ и некоторых $w_1 \neq w_2$. Тогда f — постоянная функция.

Доказательство. Будем считать, что $w_1=0, w_2=1$. Пусть $\varphi\colon \mathbb{D}\to \widehat{\mathbb{C}_{0,1}}$ — модулярная функция. Рассмотрим отображение $h\colon z\mapsto \varphi^{-1}([f\circ\gamma_z])$, где γ_z — путь в \mathbb{C} из нуля в z, $[f\circ\gamma_z]\in\widehat{\mathbb{C}_{0,1}}$ — класс эквивалентности путей в $\mathbb{C}_{0,1}$, содержащий путь $t\mapsto f(\gamma_z(t))$. Это отображение — целая функция, поскольку это суперпозиция аналитических функций. При этом h действует из \mathbb{C} в \mathbb{D} , по теореме Лиувилля, $h\equiv$ const. Значит, отображение $z\mapsto (f\circ\gamma_z)(1)$ постоянно, то есть отображение $z\mapsto f(z)$ постоянно, что и требовалось.

*Теорема 12.3 (Кёбе, Пуанкаре). Пусть $\Omega \subset \mathbb{C}$ — область, $\partial \Omega$ содержит хотя бы две точки. Тогда существует отображение $\varphi \colon \mathbb{D} \to \Omega$, удовлетворяющее следующим свойствам:

- (1) φ аналитическая функция, $\varphi(\mathbb{D}) = \Omega$.
- (2) $\varphi(z_1) = \varphi(z_2) \Longleftrightarrow z_1 = b(z_2)$ для некоторого $b \in G$, где G подгруппа группы автоморфизмов $\operatorname{Aut}(\mathbb{D})$ единичного круга.

Более того, группа G изоморфна $\pi_1(\Omega)$.

Замечание. Группа G из теоремы Кёбе–Пуанкаре называется фуксовой группой, порождённой областью Ω .

Доказательство. Можем считать, что $0,1\in\partial\Omega$. Пусть $\varphi\colon \mathbb{D}\mapsto \widehat{\mathbb{C}_{0,1}}$ – модулярная функция. Рассмотрим обратную к ней функцию в окрестности некоторой точки $z_*\in\Omega$. Так как $0,1\in\partial\Omega$, эта функция продолжается вдоль любого пути $\gamma\in\widehat{\Omega}$ с началом в точке z_* , и по теореме о монодромии, ее продолжения вдоль путей задают аналитическую функцию на $\widehat{\Omega}$. Обозначим ее через f. Для любого пути $\gamma_z\in\widehat{\Omega}$ с началом в точке $z_*=\gamma(0)$ и концом $\gamma(1)=z$ имеем $\varphi(f(\gamma_z))(1)=z$ так как это равенство выполнено в окрестности z_* , и функция $\varphi\circ f$ аналитична. Значит, множество

$$\mathcal{R} = \left\{ f \colon \widehat{\Omega} \to \mathbb{D} \ \middle| \ f(\gamma_{z_*}) = 0, \ \text{и} \ f(\gamma_z) = f(\gamma_w) \ \text{для} \ \gamma_z, \gamma_w \in \widehat{\Omega} \implies z = w
ight\} \cup \{0\}$$

непусто. Используя теоремы Монтеля и Гурвица (как в доказательстве теоремы Римана), мы получаем, что существует отображение $g \in \mathcal{R}$ такое, что $g(\widehat{\Omega}) = \mathbb{D}$. Положим теперь $\varphi(\lambda) = (g^{-1}(\lambda))(1)$ для $\lambda \in \mathbb{D}$. Так как $g \in \mathcal{R}$, такое определение корректно (у кривых, которые g переводит в λ , совпадают концы, поэтому множество $(g^{-1}(\lambda))(1)$ состоит из единственного элемента). Второй пункт остаётся без доказательства. Подробности можно найти в книге B. Simon, Szego's Theorem and Its Descendants, глава 9.5.

Теорема 12.4 (о модулярной функции). Существует конформное отображение из \mathbb{D} на универсальную накрывающую $\mathbb{C}_{0,1}$.

Доказательство. Будем строить конформное отображение из $\widehat{\mathbb{C}_{0,1}}$ на $\mathbb{C}_+ = \{ \operatorname{Im} z > 0 \}$ — очевидно, из этого будет следовать утверждение теоремы. Рассмотрим область

$$\Pi = \left\{ z \in \mathbb{C}_+ : \operatorname{Re} z \in (0, 1), |z - \frac{1}{2}| > \frac{1}{2} \right\}.$$

По теореме Римана, существует конформное отображение $\varphi_0\colon\Pi\to\mathbb{C}_+$. Области Π,\mathbb{C}_+ можно перевести дробно-линейными преобразованиями в жордановы области (например, отображением $z\mapsto\frac{1}{z-i}$). По теореме Каратеодори, φ_0 продолжается до непрерывного инъективного отображения из $\overline{\Pi}$ на $\overline{\mathbb{C}}_+$ (как суперпозиция непрерывных инъективных отображений). При этом точки 0,1 переходят в точки a,b на \mathbb{R} , а прямые $\mathrm{Re}\,z=0$, $\mathrm{Re}\,z=1$ и полуокружность $\{|z|-\frac{1}{2}=\frac{1}{2}\}\cap\mathbb{C}_+$ переходят в интервалы вещественной прямой. С помощью сдвига, растяжения и отображения $z\mapsto-\frac{1}{z}$ добъёмся того, чтобы бесконечность переходила в бесконечность, $\{0,1\}$ в $\{0,1\}$. Соответственно, прямые $\mathrm{Re}\,z=0$, $\mathrm{Re}\,z=1$ отобразятся в прямые $(\infty,0)$, $(1,\infty)$; $\{|z-\frac{1}{2}|=\frac{1}{2}\}\cap\mathbb{C}_+$ — в интервал (0,1).

Теперь заметим, что поскольку функция φ_0 принимает вещественные значения на границе, можно применить принцип симметрии — обычный для прямых Re z=0 и Re z=1, и вариант принципа симметрии для полуокружности (лемма 11.6). После этого мы можем ещё раз применить принципы симметрии, и так далее (см. рисунок 22a).

(а) Применение принципов симметрии

(b) Радиусы кругов стремятся к нулю

В результате после счётного числа отражений мы продолжим φ_0 на некоторое подмножество \mathbb{C}_+ . Покажем, что на самом деле получится всё \mathbb{C}_+ . Для этого достаточно доказать, что при отражениях радиусы кругов с центрами на \mathbb{R} стремятся к нулю.

Пусть r_n — последовательность радиусов смежных кругов, возникающих при отражениях. Заметим, что по построению

$$A \cdot B = r_1^2,$$

(см. рисунок 22b), то есть

$$(2r_1 - 2r_2)(2r_0 - 2r_1) = r_1^2.$$

Аналогично, можно показать, что

$$4(r_n - r_{n+1})(r_{n-1} - r_n) = r_n^2. (12.1)$$

Так как последовательность r_n убывает, существует предел $\lim_{n\to\infty} r_n = a \geqslant 0$. Устремляя в (12.1) n к бесконечности, получаем, что

$$4(a-a)(a-a) = a^2 \implies a = 0$$

что и требовалось.

Итак, мы получили продолжение $\widetilde{\varphi}_0$ исходного конформного отображения φ_0 на \mathbb{C}_+ . По построению, $\widetilde{\varphi}_0$ отображает \mathbb{C}_+ в $\mathbb{C}_{0,1}$ — все наши отражения не затрагивают точки 0 и 1.

Построим теперь модулярную функцию. Обозначим через $\gamma_{z_*,z}$ путь в \mathbb{C}_+ , соединяющий фиксированную точку z_* с точкой $z\in\mathbb{C}_+$. Положим $\varphi\colon z\mapsto [\widetilde{\varphi}_0\circ\gamma_{z_*,z}]$, где $\widetilde{\varphi}_0\circ\gamma_{z_*,z}\colon t\mapsto \widetilde{\varphi}_0(\gamma_{z_*,z}(t))$ — путь в $\mathbb{C}_{0,1}$, $[\widetilde{\varphi}_0\circ\gamma_{z_*,z}]$ — класс гомотопных путей в $\mathbb{C}_{0,1}$, содержащий $\widetilde{\varphi}_0\circ\gamma_{z_*,z}$.

Преобразовывая \mathbb{C}_+ в \mathbb{D} конформным образом, можно построить функцию из \mathbb{D} в $\widehat{\mathbb{C}_{0,1}}$. Она и будет искомой модулярной функцией. Осталось проверить биективность отображения $\varphi \colon \mathbb{C}_+ \to \widehat{\mathbb{C}_{0,1}}$.

(1) Сюръективность: для данного $[\Gamma] \in \widehat{\mathbb{C}}_{0,1}$ выберем в качестве представителя ломаную $\Gamma_0 \in [\Gamma]$ с конечным числом звеньев. Тогда $\Gamma_0 = \Gamma_{01} + \cdots + \Gamma_{0n}$, где $\Gamma_{0k} \subset \overline{\mathbb{C}}_+$ или $\Gamma_{0k} \subset \overline{\mathbb{C}}_-$. Каждый такой кусок — это прообраз пути в \mathbb{C}_+ , так как $\widetilde{\varphi}_0$ — биекция. А именно, по индукции мы можем определить такие пути γ_k , что $\widetilde{\varphi}_0 \circ \gamma_k = \Gamma_{0k}, k = 1, \ldots, n$, получим путь $\gamma = \gamma_0 + \cdots + \gamma_n$, для которого выполнено

$$\varphi(\gamma(1)) = [\widetilde{\varphi}_0 \circ \gamma] = [\Gamma_0] = [\Gamma].$$

(2) Инъективность: построим обратное отображение

$$\psi \colon [\Gamma] \mapsto \psi_1(\Gamma(1)),$$

где $(\Omega_t, \psi_t)_{t \in [0,1]}$ — аналитическое продолжение $\psi_0 = \varphi_0^{-1}$ из области $\Omega_0 = \mathbb{C}_+$ вдоль пути Γ .

*

Покроем путь Γ кругами (как в определении аналитического продолжения). Пусть B — один из этих кругов. Тогда можно выбрать множество U таким образом, что $\varphi_0(U)=B$ и $\varphi_0|_U$ — биекция. Достаточно, чтобы U пересекало не более двух областей, одна из которых синего, а другая — красного цветов, как на картинке 22а. Тогда это будет следовать из принципа симметрии. Осталось положить $\Omega_t=B, \psi_t=\widetilde{\varphi}_0^{-1}$ (где $\widetilde{\varphi}_0^{-1}$ — локально обратное отображение). Полученная функция ψ является аналитической из $\widehat{\mathbb{C}_{0,1}}$ в \mathbb{C}_+ . Таким образом, $\psi(\varphi(z))=z$ для всех $z\in\Pi$. Раз функции аналитические, по теореме единственности это равенство выполнено всюду.

Утверждение 12.5 (следствие из теоремы Пикара). Пусть h — мероморфная функция в \mathbb{C} , и пусть существуют различные точки w_1, w_2, w_3 , такие, что $h(z) \neq w_{1,2,3}$ на \mathbb{C} . Тогда $h \equiv \text{const.}$

Доказательство. Рассмотрим функцию

$$f\colon z\mapsto \frac{1}{h(z)-w_1}.$$

В полюсах h эта функция имеет устранимые особенности (f там можно доопределить нулём). Значит, f — целая функция, и

$$f(z) \neq \frac{1}{w_2 - w_1}, \qquad f(z) \neq \frac{1}{w_3 - w_1}$$

для всех $z \in \mathbb{C}$. Таким образом, по теореме Пикара $f \equiv \text{const}$ и $h \equiv \text{const}$.

Пример 12.1. Если f, g — целые функции, такие, что $f^n + g^n \equiv 1$, где $n \geqslant 3$, то f, g постоянны.

Доказательство. Действительно,

$$\left(\frac{f}{q}\right)^n = 1 - \frac{1}{q^n}.$$

Значит, f/g — мероморфная функция, не принимающая значения $\sqrt[n]{1}$, то есть $\{e^{\frac{2\pi i}{n}k}: k=0,1,\ldots,n-1\}$. Если $n\geqslant 3$, то это множество содержит хотя бы 3 элемента, и по предыдущему утверждению, $f/g\equiv {\rm const.}$ Из начального уравнения получаем, что $g^n\equiv {\rm const.}$ (по непрерывности), и, аналогично, $f^n\equiv {\rm const.}$ $\not<$

13 Принцип Фрагмена-Линделёфа

Обозначение. Будем писать

$$\Gamma_{\lambda} = \{ z \in \mathbb{C} : z = re^{i\varphi}, r \in (0, \infty), \varphi \in (\alpha, \beta) \},$$

где $\alpha, \beta \in \mathbb{R}$, причём $\beta - \alpha = \lambda \in (0, 2\pi]$ — угол раствора λ .

Теорема 13.1 (принцип Фрагмена–Линделёфа для угла). Пусть $f: \overline{\Gamma}_{\lambda} \to \mathbb{C}$ — аналитичная в Γ_{λ} и непрерывная в $\overline{\Gamma}_{\lambda}$ функция. Пусть также

$$|f(z)| \leqslant M$$
 на $\partial \overline{\Gamma}_{\lambda};$ $|f(z)| \leqslant c e^{|z|^{
ho}},$ где $ho: 0 <
ho < rac{\pi}{\lambda}.$

Тогда $|f(z)| \leq M$ на Γ_{λ} .

Пример 13.1. Функция $f(z) = e^{-iz}$ ограничена на $\partial \Gamma_{\pi} = \partial \overline{\mathbb{C}}_{+} - \mathbb{R}$, но не ограничена в \mathbb{C}_{+} (можно подставить z = iy). Действительно, наилучшее ρ , которое мы можем подставить, равно единице, но $\rho \not< \frac{\pi}{\lambda} = \frac{\pi}{\pi} = 1$. В частности, теорема ФЛ точна, то есть нельзя усилить условие $\rho < \frac{\pi}{\lambda}$.

Доказательство. Пусть $\varepsilon > 0, \, \rho < \rho_1 < \frac{\pi}{\lambda}$. Рассмотрим аналитическую функцию

$$h_{\varepsilon}(z) = f(z) \cdot e^{-\varepsilon z^{\rho_1}}$$

в угле $\Gamma_{\lambda} = \Gamma_{\lambda,\alpha,\beta}$, где $\alpha = -\lambda/2$, $\beta = \lambda/2$ (можно всегда считать, что угол симметричен относительно \mathbb{R} — иначе сделаем поворот). Тогда

$$|h_{\varepsilon}(z)| = |f(z)| \cdot e^{-\varepsilon \operatorname{Re}(z^{\rho_1})}.$$

Считаем:

$$Re(z^{\rho_1}) = Re(e^{\rho_1 \log z}) = Re(\exp(\rho_1 \log |z| + i\rho_1 \arg z))$$
$$= \exp(\rho_1 \log |z|) Re(\exp(i\rho_1 \arg z)) = |z|^{\rho_1} \cdot \cos(\rho_1 \arg z),$$

где везде берётся главная ветвь логарифма. Заметим, что

$$\rho_1 \arg z \in \left[-\frac{\rho_1 \lambda}{2}, \frac{\rho_1 \lambda}{2} \right] \subset \left[-\frac{\pi}{2} + \eta, \frac{\pi}{2} - \eta \right].$$

где $\eta > 0$, η не зависит от z.

Значит, $\cos(\rho_1\arg z)\geqslant \delta$ для некоторого $\delta>0$, не зависящего от $z\in\overline{\Gamma}_\lambda$. Если $z\in\partial\overline{\Gamma}_\lambda$, то

$$|h_{\varepsilon}(z)| \leq M \cdot \exp(-\varepsilon \cdot \delta |z|^{\rho_1}) \leq M.$$

Если $z \in \Gamma_{\lambda}$, то

$$|h_{\varepsilon}(z)| \leq c \exp(|z|^{\rho}) \cdot \exp(-\varepsilon \delta |z|^{\rho_1}) \xrightarrow[|z| \to \infty]{} 0,$$

так как $\rho<\rho_1$. Значит, существует $R_0^{\varepsilon}>0$: $|h_{\varepsilon}(z)|\leqslant M$ на $\partial(\overline{\Gamma}_{\lambda}\cap\overline{B(0,R)})$ для всех $R\geqslant R_0^{\varepsilon}$. Следовательно, по принципу максимума для ограниченной области $\Gamma_{\lambda}\cap B(0,R)$ получаем $|h_{\varepsilon}(z)|\leqslant M+\varepsilon$ для всех $\Gamma_{\lambda}\cap B(0,R)$. Тогда $|h_{\varepsilon}(z)|\leqslant M+\varepsilon$ на Γ_{λ} , то есть

$$|f(z) \cdot \exp(-\varepsilon z \rho_1)| \le M + \varepsilon \quad \forall z \in \Gamma_{\lambda}.$$

Фиксируя z, устремим ε к нулю. Получаем $|f(z)| \le M$, что и требовалось. $\not <$

Теорема 13.2 (принцип Фрагмена-Линделёфа для полосы). Пусть

$$\Pi_b = \{ z \in \mathbb{C} : |\operatorname{Im} z| < b \},\$$

 $f\colon \overline\Pi_b o \mathbb C$ — непрерывная, аналитичная в Π_b функция. Пусть $|f(z)| \leqslant M$ на $\partial \overline\Pi_b$ и $|f(z)| \leqslant c \cdot \exp(e^{\rho|z|})$ для некоторого $\rho \in (0, \frac{\pi}{2b})$ и всех $z \in \Pi_b$, где c > 0. Тогда $|f(z)| \leqslant M$ на Π_b .

Упражнение. Покажите, что условие $\rho < \frac{\pi}{2h}$ нельзя ослабить.

Доказательство. Выберем $\rho < \rho_1 < \frac{\pi}{2h}$ и положим

$$h_{\varepsilon}(z) = f(z) \exp(-\varepsilon \cosh(\rho_1 z)).$$

Тогда

$$|h_{\varepsilon}(z)| = |f(z)| \exp(-\varepsilon \operatorname{Re}(\cosh(\rho_1 z)))$$

При этом

$$Re(\cosh(\rho_1 z)) = \frac{1}{2} Re(e^{\rho_1 z} + e^{-\rho_1 z}),$$

= $\frac{1}{2} (e^{\rho_1 Re z} \cos(\rho_1 Im z) + e^{-\rho_1 Re z} \cos(\rho_1 Im z)),$
= $\cosh(\rho_1 Re z) \cdot \cos(\rho_1 Im z).$

Значит,

$$|h_{\varepsilon}(z)| = |f(z)| \exp(-\varepsilon \cosh(\rho_1 \operatorname{Re} z) \cos(\rho_1 \operatorname{Im} z)).$$

Пусть $\delta>0$: $\cos(\rho_1\operatorname{Im} z)\geqslant \delta$ для всех $z\in\overline\Pi_b$. Тогда $|h_\varepsilon(z)|\leqslant |f(z)|\leqslant M$ на $z\in\partial\overline\Pi_b$. С другой стороны,

$$|h_{\varepsilon}(z)| \leq \exp\left(e^{\rho|z|} - \varepsilon \cosh(\rho_1 \operatorname{Re} z)\right) \xrightarrow[z \to \infty]{z \in \Pi_b} 0,$$

так как $\rho<\rho_1$. По принципу максимума для ограниченных областей $|h_{\varepsilon}(z)|\leqslant M+\varepsilon$ на Π_b . Значит, $|f(z)|=\lim_{\varepsilon\to 0}|h_{\varepsilon}(z)|\leqslant M$.

Теорема 13.3 (теорема Адамара о трёх прямых). Пусть функция f аналитична в полосе $\{z \in \mathbb{C} : a < \operatorname{Re} z < b\}$ и непрерывна в её замыкании. Если f ограничена в этой полосе, и

$$M(t) = \sup_{\text{Re } z=t} |f(z)|, \qquad t \in [a,b],$$

то $\log M$ — выпуклая функция на промежутке [a, b]. В частности,

$$M(x) \leq M(a)^t \cdot M(b)^{1-t}$$
 для $x = ta + (1-t)b$.

Доказательство. Рассмотрим функцию $h(z)=M(a)^{\frac{z-b}{z-a}}M(b)^{\frac{a-z}{a-b}}$. Для любого $y\in\mathbb{R}$ имеем

$$|h(a+iy)| = M(a), |h(b+iy)| = M(b).$$

Пусть $g(z)=rac{f(z)}{h(z)}.$ Тогда $|g(z)|\leqslant 1$ на $\partial\overline\Pi_{a,b},$ где $\Pi_{a,b}=\{z\in\mathbb C:a<\mathrm{Re}\,z< b\}.$ Так как f ограничена, то

$$|g(z)| \leqslant c_1 \cdot e^{\frac{c_2|z|}{|a-b|}} \qquad \forall z \in \Pi_{a,b},$$

где $c_2>0$, и по теореме Фрагмена–Линделёфа $|g(z)|\leqslant 1$ на $\Pi_{a,b}$, то есть $|f(z)|\leqslant |h(z)|$ для любого $z\in\Pi_{a,b}$. Пусть $x=\operatorname{Re} z$. Тогда $|h(z)|=M(a)^{\frac{x-b}{a-b}}\cdot M(b)^{\frac{a-x}{a-b}}$,

$$\log M(x) \leqslant \frac{x-b}{a-b} \log M(a) + \frac{a-x}{a-b} \log M(b).$$

Заметим, что x = at + b(1 - t), где $t = \frac{x - b}{a - b}$:

$$a \cdot \frac{x-b}{a-b} + b\left(1 - \frac{x-b}{a-b}\right) = \frac{a(x-b) - b(a-x)}{a-b} = \frac{ax-bx}{a-b} = x.$$

Значит,

$$\log M(ta + (1-t)b) \le t \log M(a) + (1-t) \log M(b)$$

для любого $t \in (0,1)$. Такое же неравенство для $x_1, x_2 : a \le x_1 < x_2 \le b$ означает, что $\log M$ — выпуклая функция на [a,b].

14 Теоремы Вейерштрасса и Миттаг-Леффлера

Теорема 14.1 (Вейерштрасс). Пусть $\{a_n\}$ — последовательность комплексных²² чисел, причём $|a_n| \to +\infty$ при $n \to \infty$. Тогда существует такая целая функция f, что $\{a_n\}$ — это последовательность нулей f, причём каждый ноль имеет кратность, равную числу членов последовательности, совпадающих с ним.

Замечание. Условие на стремление модулей a_n к бесконечности эквивалентности требованию дискретности множества нулей. Это условие необходимо: если f обращается в ноль на множестве, содержащем предельную точку, то $f \equiv 0$ в $\mathbb C$ по теореме единственности.

Какую функцию можно было бы придумать? $f = \prod (z - a_n)$ — плохо, так как произведение не сходится. Более правдоподобный кандидат —

$$f = z^k \prod_{n \ge 1} \left(1 - \frac{z}{a_n} \right),\,$$

но эта функция определена только тогда, когда $\sum 1/a_n < \infty$.

Определение. Пусть $a \in \mathbb{C}$, $p \in \mathbb{Z}_+$. Тогда функция

$$G(a,p) = egin{cases} z, & ext{если } a = 0, \ \left(1 - rac{z}{a}
ight) \exp\left(1 + rac{z}{a} + rac{1}{2}\left(rac{z}{a}
ight)^2 + \dots + rac{1}{p}\left(rac{z}{a}
ight)^p
ight), & ext{иначе}, \end{cases}$$

называется множителем Вейерштрасса.

Отметим, что G(a, p) — целая функция для всех a и p, и (G(a, p))(a) = 0.

Утверждение 14.2. Пусть $\{a_n\}$ ⊂ \mathbb{C} , $|a_n| \to +\infty$. Тогда произведение

$$\prod_{n=1}^{\infty} G(a_n, n)$$

сходится как произведение аналитических функций.

Доказательство. Докажем, что произведение сходится равномерно на $\overline{B(0,R)}$ к некоторой функции, не обращающейся в ноль на $\overline{B(0,R)}$. Найдём такое N, что $\frac{R}{|a_n|} \leqslant \frac{1}{2}$ для всех $n \geqslant N$. Тогда условие сходимости равносильно тому, что

$$\prod_{n=N}^{\infty} G(a_n, n) = \prod_{n=N}^{\infty} \exp\left(\log\left(1 - \frac{z}{a_n}\right) + \frac{z}{a_n} + \dots + \frac{1}{n}\left(\frac{z}{a_n}\right)^n\right)$$
(14.1)

сходится равномерно к функции без нулей в $\overline{B(0,R)}$, где выбрана главная ветвь логарифма. Заметим, что каждый множитель в (14.1) можно представить в следующем

²²необязательно попарно различных

виде:

$$c_n(z) = \left[\log(1-w) = -\sum_{k=1}^{\infty} \frac{w^k}{k}\right] = -\sum_{k=n+1}^{\infty} \frac{1}{k} \left(\frac{z}{a_n}\right)^k.$$

Значит,

$$|c_n| \leq \sum_{k=n+1}^{\infty} \left| \frac{z}{a_n} \right|^k \leq \left[z \leq \overline{B(0,R)} \right] \leq \sum_{k=n+1}^{\infty} \frac{1}{2^k} = \frac{1}{2^{n+1}} \sum_{j=0}^{\infty} \frac{1}{2^j} = \frac{1}{2^n},$$

то есть

$$|c_n(z)| \leqslant \frac{1}{2^n}$$
 для $z \in \overline{B(0,R)}$.

Значит, по признаку Вейерштрасса сходимости рядов $\sum_{n\geqslant N} c_n(z)$ сходится равномерно в $\overline{B(0,R)}$, что и требовалось. $\not <$

Доказательство теоремы Вейерштрасса. Пусть $E = \{a_n\}_{n=1}^M$, где M — либо натуральное число, либо бесконечность. Функция $f = \prod_{n \geq 1} G(a_n, n)$ решает задачу, так как $f(a_n) = 0$ и $f(z) \neq 0$ для любого $z \in \mathbb{C} \setminus E$, поскольку $\prod_{n=N}^{\infty} G(a_n, n)$ не имеет нулей в круге B(0, |z| + 1) при большом N, а $\prod_{k=1}^{N-1} G(a_k, k)$ обнуляется только на $\{a_k\}_{k=1}^{N-1}$. $\not <$

Следствие 14.3. Пусть f — мероморфная функция в \mathbb{C} . Тогда существуют целые функции h_1, h_2 , такие, что $f = h_1/h_2$ всюду, кроме полюсов f.

Доказательство. Пусть E — множество полюсов f. Это дискретное подмножество \mathbb{C} . Построим h_2 по правилу

$$h_2 = \prod_{n=1}^{\infty} G(a_n, n),$$

где $\{a_n\}_{n\geqslant 1}=E$; каждый член последовательности повторяется столько раз, какова кратность полюса f. Тогда h_2 — целая функция, и $f\cdot h_2$ — аналитическая функция в $\mathbb{C}\setminus E$, причём каждая точка E — устранимая особенность. Значит, $h_1=f\cdot h_2$ — целая функция, и утверждение доказано.

Замечание. Если $\sum_{n\geqslant 1}\frac{1}{|a_n|^{p+1}}<\infty$, то сходится произведение $\prod_{n\geqslant 1}G(a_n,p)$. Действительно, в доказательстве утверждения о произведениях Вейерштрасса,

$$|c_n(z)| = \left|\log\left(1 - \frac{z}{a_n}\right) + \frac{z}{a_n} + \dots + \frac{1}{p}\left(\frac{z}{a_n}\right)^p\right| = O\left(\left|\frac{z}{a_n}\right|^{p+1}\right)$$
 при $n \to +\infty$.

Значит, ряд $\sum |c_n(z)|$ сходится равномерно на компактах в \mathbb{C} .

Теорема 14.4 (Миттаг-Леффлер). Пусть E — дискретное подмножество \mathbb{C} , каждой точке $a \in E$ сопоставлена функция

$$\varphi_a(z) = \frac{c_{a,-1}}{z-a} + \dots + \frac{c_{a,-N_a}}{(z-a)^{N_a}},$$

где $N_a \in \mathbb{N}$. Тогда существует мероморфная функция f, множество особенностей которой совпадает с E, и такая, что для любой точки $a \in E$ главная часть ряда Лорана f в окрестности a совпадает с φ_a .

Доказательство. Занумеруем точки E так, что $E = \{a_n\}_{n \geqslant 1}, |a_n| \leqslant |a_{n+1}|, |a_n| \to +\infty$. Для любого $n \in \mathbb{N}$, φ_{a_n} — аналитическая функция в круге $B(0, \frac{2}{3}|a_n|)$. Значит, существуют такие многочлены p_n , что

$$\max_{z\in B(0,|a_n|/2)}|\varphi_{a_n}-p_n|(z)\leqslant \frac{1}{2^n},$$

так как ряд Тейлора φ_{a_n} сходится равномерно в $B(0,|a_n|/2)$.

Рассмотрим функцию

$$f(z) = \sum_{n \geqslant 1} (\varphi_{a_n}(z) - p_n(z)),$$
 где $z \in \mathbb{C} \setminus E$.

Это аналитическая функция в $\mathbb{C} \setminus E$, так как для любого компакта K, не пересекающегося с E, найдётся такое число $N \in \mathbb{N}$, что

$$|\varphi_{a_n}(z)-p_n(z)| \leq \frac{1}{2^n} \qquad (\forall z \in K)(\forall n > N).$$

Значит, ряд $\sum_{n=N}^{\infty} (\varphi_{a_n}(z) - p_n(z))$ сходится равномерно к аналитической функции. Для любого $a_n \in E$ главная часть ряда Лорана f имеет вид φ_{a_n} (надо снова рассмотреть суммы $\sum_{N=1}^{\infty}, (\varphi_{a_n}(z) - p_n(z))$ и $\sum_{1}^{N-1},$ особенность в a_n имеет только $(\varphi_{a_n}(z) - p_n(z))$).

7

15 Рост и коэффициенты ряда Тейлора целых функций

Определение. Число $\rho \in [0, +\infty]$ называется порядком целой функции f, если

$$\rho = \inf\{k > 0 : |f(z)| \le c_k \cdot e^{|z|^k} \ \forall z \in \mathbb{C}, \ c_k > 0\}.$$

Определение. Пусть f — целая функция порядка $\rho \in (0, \infty)$. Тогда munom функции f относительно порядка p называется число

$$\sigma = \inf\{A > 0 : |f(z)| \le c_A \cdot e^{A|z|^{\rho}} \ \forall z \in \mathbb{C}, \ c_A > 0\}.$$

Пример 15.1. Функция e^{az} имеет порядок 1 и тип a.

Пример 15.2. Поймём, что порядок и тип функции $z \sin z$ равны единице. Действительно,

$$|z\sin z| \le |z|e^{|z|} = e^{|z|+\log|z|} \le m_{\varepsilon} \exp(|z|^{1+\varepsilon}).$$

Таким образом, порядок ≤ 1 . С другой стороны, если $z_y = iy$, то $|z_y \sin z_y| \sim |z_y| \frac{e^{|z_y|}}{2}$. Значит, не существует такого $\varepsilon > 0$, что

$$|z_y| \frac{e^{|z_y|}}{2} \leq m_{\varepsilon} \cdot e^{|z|^{1-\varepsilon}}.$$

Пример 15.3. У функции e^{3z^2} порядок 2 и тип 3.

Теорема 15.1. Пусть $f(z) = \sum_{n\geqslant 0} c_n z^n$ — целая функция. Тогда

$$\rho = \limsup_{n \to \infty} \frac{n \log n}{\log \frac{1}{|c_n|}}.$$

Если же $\rho>0$ — порядок f, то тип функции f определяется по формуле

$$\sigma = \limsup_{n \to \infty} \left(\frac{n}{e\rho} \sqrt[n]{|c_n|^{\rho}} \right).$$

Пример 15.4. Рассмотрим функцию

$$f(z) = e^z = \sum_{n \ge 0} \frac{z^n}{n!}.$$

Проверим первую формулу:

$$\limsup_{n\to\infty} \frac{n\log n}{\log n!} = \left[n! = \sqrt{2\pi n} \left(n/e\right)^n (1+o(1))\right] = \limsup_{n\to\infty} \frac{n\log n}{c + \log n + n\log \frac{n}{e}} = 1,$$

и это действительно совпадает с ρ .

Вторая формула:

$$\limsup_{n\to\infty} \frac{n}{e\cdot 1} \sqrt[n]{\frac{1}{n!}} = \lim_{n\to\infty} \left(\frac{n}{e} (2\pi n)^{-1/2n} \cdot \frac{e}{n}\right) (1+o(1)) = 1 = \sigma.$$

Лемма 15.2. Пусть $f(z) = \sum_{n \geqslant 0} c_n z^n$ — целая функция, $M_r(f) = \sup_{|z|=r} |f(z)|$. Если $M_r(f) \leqslant e^{Ar^k}$, то

$$|c_n| \le m_{k,A} \left(\frac{eAk}{n}\right)^{n/k} \quad \forall n \in \mathbb{N}.$$
 (15.1)

≮

Доказательство. Имеем

$$|c_n| = \left| \frac{1}{2\pi i} \int\limits_{|z|=r} \frac{f(z) dz}{z^{n+1}} \right| \leqslant \frac{M_r(f)}{r^n} \leqslant \exp(Ar^k - n\log r).$$

Найдём минимум выражения справа по r:

$$(Ar^{k} - n\log r)' = kAr^{k-1} - \frac{n}{r} = 0 \iff kAr^{k} = n,$$

откуда

$$|c_n| \le \exp\left(\frac{n}{k} - \frac{n}{k}\log\frac{n}{kA}\right) = e^{n/k} \cdot \left(\frac{n}{kA}\right)^{-n/k} = \left(\frac{eAk}{n}\right)^{n/k},$$

что и требовалось.

Лемма 15.3. Если $f(z) = \sum_{n\geqslant 0} c_n z^n$ — целая функция, коэффициенты c_n которой удовлетворяют неравенству (15.1), то для любого $\varepsilon > 0$ найдётся такое $x_{\varepsilon} > 0$, что

$$|f(z)| \le x_{\varepsilon} e^{(A+\varepsilon)|z|^k} \quad \forall z \in \mathbb{C}.$$

Доказательство. Считаем:

$$|f(z)| \le \sum |c_n| \cdot |z|^n = [|z| = r] = \sum |c_n| r^n \le \sum_{n \ge 1} \left(\frac{eAk}{n}\right)^{n/k} \cdot r^n.$$
 (15.2)

Можно прибавить к f многочлен $p = -\sum_{j=0}^{k-1} c_j z^j$, тогда оценка верна или неверна для f и f+p одновременно, и можно считать, что в последней сумме (15.2) суммирование ведётся от $n \ge [k]+1$. Пусть $m_n = [n/k]$. Тогда

$$\sum_{n\geqslant 1} \left(\frac{eAk}{n}\right)^{n/k} \cdot r^n \leqslant c_1 \cdot \sum_{n\geqslant \lfloor k\rfloor + 1} \left(\frac{eA}{m_n}\right)^{m_n} (r^k)^{m_n} \cdot r^{k+1}$$

$$\leqslant c_2 \left(\sum_{m\geqslant 1} \left(\frac{eA}{m}\right)^m (r^k)^m\right) r^{k+1}$$

$$\leqslant c_3 \sum_{m\geqslant 1} \frac{(r^k)^m}{m!} \cdot \sqrt{2\pi m} \left(\frac{m}{e}\right)^m \cdot \frac{e^m A^m}{m^m} \cdot r^{k+1}$$

*

*

$$= c_4 r^{k+1} \sum_{m \geqslant 1} \frac{(Ar^k)^m}{m!} \sqrt{m} \leqslant \left[(1+\varepsilon)^m \geqslant c_\varepsilon \sqrt{m} \right]$$

$$\leqslant c_\varepsilon r^{k+1} \sum_{m \geqslant 1} \frac{(A(1+\varepsilon)r^k)^m}{m!} \leqslant \widetilde{c_\varepsilon} e^{A(1+2\varepsilon)r^k},$$

что завершает доказательство.

Определение. Пусть $\{a_n\}$, $\{b_n\}$ — последовательности вещественных чисел. Будем писать $a_n \le_n b_n$, если существует такая возрастающая последовательность индексов n_j , что $a_{n_j} \le b_{n_j}$ для всех j.

Доказательство теоремы 15.1. Пусть $\rho \in (0, \infty)$ — порядок f. Тогда по доказанным леммам

$$c\left(rac{e(
ho-arepsilon)}{n}
ight)^{rac{n}{
ho-arepsilon}}\leqslant_n |c_n|\leqslant c\left(rac{e(
ho+arepsilon)}{n}
ight)^{rac{n}{
ho+arepsilon}}$$
 при больших $n,$

где левое неравенство выполнено, так как иначе порядок f не превосходил бы $\rho - \varepsilon$ по второй лемме. Значит,

$$\left(\frac{n}{\varepsilon(\rho+\varepsilon)}\right)^{\frac{n}{\rho+\varepsilon}} \leqslant \frac{1}{|c_n|} \leqslant_n \left(\frac{n}{e(\rho-\varepsilon)}\right)^{\frac{n}{\rho-\varepsilon}}.$$

Логарифмируя, получаем неравенства

$$\frac{n}{\rho + \varepsilon} (\log n + \text{const}) \le \log \frac{1}{|c_n|} \le_n \frac{n}{\rho - \varepsilon} (\log n + \widetilde{\text{const}}).$$

Тогда

$$\frac{n\log n(1+o(1))}{\log\frac{1}{|c_n|}}\leqslant \rho+\varepsilon \qquad \text{при больших } n,$$

$$\Longrightarrow \limsup_{n\to\infty}\frac{n\log n}{\log\frac{1}{|c_n|}}\leqslant \rho \qquad \text{так как } \varepsilon-\text{любое}.$$

Но для любого $\varepsilon > 0$ найдётся такая последовательность индексов n_j , что

$$\liminf_{j\to\infty}\frac{n_j\log n_j}{\log\frac{1}{|cn_j|}}\geqslant \rho-\varepsilon,\quad \lim_{n\to\infty}\frac{n\log n}{\log\frac{1}{|c_n|}}.$$

Посчитаем теперь формулу для σ . Если ρ — порядок f, и σ — тип f относительно ρ , то по леммам

$$\left(\frac{e(\sigma-\varepsilon)\rho}{n}\right)^{n/\rho} < f < \left(\frac{e(\sigma+\varepsilon)\rho}{n}\right)^{n/\rho}$$

Упражнение. Если f — целая функция, то порядок функций f и f' совпадает.

16 Формула Йенсена

Теорема 16.1 (Йенсен). Пусть f — функция, непрерывная в $\overline{B(0,r)}$ и аналитическая в B(0,r), не имеющая нулей в $C(0,r)=\partial\overline{B(0,r)}$, $f(0)\neq 0$. Пусть a_1,\ldots,a_N — нули f с учётом кратности. Тогда

$$\log |f(0)| - \sum_{n=1}^{N} \log \frac{|a_n|}{r} = \int_{\mathbb{T}} \log |f(r\xi)| \, \mathrm{d}m(\xi),$$

где m — нормированная мера Лебега на \mathbb{T} , то есть $m(\mathbb{T})=1$.

Доказательство.

(1) Пусть r = 1, нулей у f нет. Тогда определена ветвь логарифма:

$$\log |f(z)| = \operatorname{Re}(\log f(z)), \quad z \in \mathbb{D}.$$

При этом $\log f(z)$ — аналитическая функция, то есть $\log |f(z)|$ — гармоническая функция. Значит, по теореме о среднем

$$\log|f(0)| = \int_{\mathbb{T}} \log|f(\xi)| \,\mathrm{d}m(\xi).$$

(2) Пусть r = 1, есть нули a_1, \ldots, a_N . Рассмотрим произведение Бляшке

$$B = \prod_{j=1}^{N} \frac{|a_j|}{a_j} \frac{z - a_j}{1 - \overline{a}_j z}.$$

Тогда f/B — аналитическая функция без нулей в $\mathbb D$. К ней можно применить предыдущий пункт, и получить, что

$$\begin{split} \log|f(0)| - \log\prod_{k=1}^{N}|a_k| &= \log\left|\frac{f(0)}{B(0)}\right| = \int_{\mathbb{T}}\log\left|\frac{f(\xi)}{B(\xi)}\right| \mathrm{d}m(\xi) \\ &= \left[\xi \in \mathbb{T}, |B(\xi)| = 1\right] = \int_{\mathbb{T}}\log|f(\xi)| \,\mathrm{d}m(\xi), \end{split}$$

что и требовалось.

(3) Наконец, пусть r — любое число, большее нуля. Рассмотрим функцию g(z)=f(rz), где $z\in\mathbb{D}$, \widetilde{a}_n — нули g. Тогда

$$\log|g(0)| - \sum_{n=1}^{N} \log|\widetilde{a}_n| = \int_{\mathbb{T}} \log|g(\xi)| \, \mathrm{d}m(\xi) = \int_{\mathbb{T}} \log|f(r\xi)| \, \mathrm{d}m(\xi).$$

Осталось заметить, что $g(w) = 0 \Longleftrightarrow f(rw) = 0$, то есть $\widetilde{a}_n = a_n/r$.

Определение. Пусть f — целая функция, r > 0. Тогда функция n(r), равная количество нулей f в $\overline{B(0,r)}$, называется считающей функцией нулей.

Утверждение 16.2. Пусть f — аналитическая в B(0,r) и непрерывная в $\overline{B(0,r)}$ функция, не имеющая нулей на C(0,r) и имеющая нули a_1,\ldots,a_N в B(0,R), занумерованные с учётом кратности. Пусть также $f(0) \neq 0$. Тогда

$$-\sum_{n=1}^{N}\log\frac{|a_n|}{r}=\int_{0}^{r}\frac{n(t)}{t}\,\mathrm{d}t,$$

где n — считающая функция нулей f.

Доказательство. Покажем, что

$$N\varphi(r) - \sum_{n=1}^{N} \varphi(|a_n|) = \int_{0}^{r} n(t)\varphi'(t) dt, \qquad (16.1)$$

где $\varphi \in C^1(0, +\infty)$. Подставляя потом $\varphi = \log x$ получим искомую формулу. Занумеруем нули по возрастанию; тогда

$$\int_{0}^{r} n(t)\varphi'(t) = \int_{0}^{|a_{1}|} n(t)\varphi'(t) + \int_{|a_{1}|}^{|a_{2}|} n(t)\varphi'(t) + \int_{|a_{2}|}^{|a_{3}|} n(t)\varphi'(t) + \dots + \int_{|a_{N}|}^{r} n(t)\varphi'(t)$$

$$= 1 \cdot (\varphi(|a_{2}|) - \varphi(|a_{1}|)) + 2(\varphi(|a_{3}|) - \varphi(|a_{2}|)) + \dots + N(\varphi(r) - \varphi(|a_{N}|))$$

$$= -\varphi(|a_{1}|) - \varphi(|a_{2}|) - \dots - \varphi(|a_{N}|) + N\varphi(r),$$

что и требовалось.

≮

Следствие 16.3. Для любой целой функции f, такой, что f(0) = 1, выполнена оценка

$$n(r) \leq \log M_{er}(f) \quad \forall r \geq 0.$$

Доказательство. По формуле Йенсена и предыдущему утверждению

$$\log|f(0)| + \int_0^r \frac{n(t)}{t} dt = \int_{\mathbb{T}} \log|f(r\xi)| dm(\xi).$$

Поскольку f(0)=1, первое слагаемое уходит. Подставляя er вместо r, получаем оценку

$$\int_{0}^{er} \frac{n(t)}{t} dt \leq \int_{\mathbb{T}} \log \max_{|z|=er} |f(z)| dm(z) = \log M_{er}(f).$$

Тогда

$$n(r) = n(r) \int_{r}^{er} \frac{\mathrm{d}t}{t} \leqslant \int_{r}^{er} \frac{n(t)}{t} \, \mathrm{d}t \leqslant \int_{0}^{er} \frac{n(t)}{t} \, \mathrm{d}t \leqslant \log M_{er}(f),$$

что и требовалось.

*

Теорема 16.4. Пусть f — целая функция конечного порядка $\rho > 0$, $\{a_k\}$ — нули f, занумерованные с учётом кратности в порядке возрастания модуля. Тогда для любого $\varepsilon > 0$ сходится ряд

$$\sum_{k:a_k \neq 0} \frac{1}{|a_k|^{\rho + \varepsilon}}.$$
(16.2)

Доказательство. Можно считать, что $a_k \neq 0$ для любого k и f(0) = 1 (деля, если нужно, на z^m и умножая на константу — от этого порядок не изменится). Возьмём $\lambda = \rho + \varepsilon$, $N \in \mathbb{N}$, и рассмотрим сумму

$$\sum_{k=1}^N \frac{1}{|a_k|^\lambda} = \left[\text{формула (16.1) для } \varphi(t) = \frac{1}{t^\lambda}\right] = N \varphi(r) - \int\limits_0^r n \left(\frac{1}{t^\lambda}\right)' \, \mathrm{d}t,$$

где $|a_N| < r$, и в круге $\overline{B(0,r)}$ нет других нулей, кроме a_1, \ldots, a_N . Далее,

$$-\int_{0}^{r} n\left(\frac{1}{t^{\lambda}}\right)' dt + N\varphi(r) = \lambda \int_{0}^{r} \frac{n(t)}{t^{\lambda+1}} dt + N\varphi(r) \le$$
 (16.3)

$$\leq \lambda \int_{0}^{r} \frac{n(t)}{t^{\lambda+1}} dt + \lambda \int_{r}^{\infty} \frac{n(t)}{t^{\lambda+1}} dt$$
 (16.4)

$$\leq \lambda \int_{|a_1|}^{\infty} \frac{n(t)}{t^{\lambda+1}} \, \mathrm{d}t \tag{16.5}$$

$$\leq \lambda \int_{|a_1|}^{\infty} \frac{\log M_{et}(f)}{t^{\lambda+1}} \, \mathrm{d}t \tag{16.6}$$

$$\leq \lambda \int_{|a_1|}^{\infty} \frac{|et|^{\rho + \varepsilon/2} \cdot c_{\varepsilon/2}}{t^{\rho + \varepsilon + 1}} \tag{16.7}$$

$$= c_{\varepsilon/2} \cdot \lambda \cdot e^{\rho + \varepsilon/2} \int_{|a_1|}^{\infty} \frac{\mathrm{d}t}{t^{1+\varepsilon/2}} < \infty, \tag{16.8}$$

где (16.4) выполнено, так как $n(t) \ge N$ при $t \ge r$, (16.6) — по следствию 16.3.

Таким образом, все частичные суммы ряда (16.2) ограничены некоторым фиксированным числом, то есть ряд сходится. $\mbox{$\not<$}$

Следствие 16.5. Пусть f — целая функция конечного порядка ρ , $\{a_k\}$ — её нули, занумерованные с учётом кратности по возрастанию модуля. Тогда сходится произведение Вейерштрасса $\prod_{k=1}^{\infty} G(a_k, [\rho])$. В частности,

$$f = \prod_{k=1}^{\infty} G(a_k, [\rho]) \cdot e^g,$$

где g — целая функция.

Доказательство. Мы знаем, что произведение $\prod_{k=1}^{\infty} G(a_k,p)$ сходится, если

$$\sum_{k:a_k\neq 0}\frac{1}{|a_k|^{p+1}}<\infty.$$

Осталось заметить, что $[\rho]+1>\rho,$ и воспользоваться предыдущей теоремой,

$$g = \log \left(\frac{f}{\prod_{k=1}^{\infty} G(a_k, [\rho])} \right).$$

≮

17 Теорема Адамара о факторизации целых функций

Теорема 17.1 (Адамар). Пусть f — целая функция конечного порядка $\rho > 0$, $\{a_k\}_{k\geqslant 1}$ — нули, занумерованные с учётом кратности по возрастанию модуля, за исключением нуля в начале координат. Пусть $p=[\rho]$. Тогда существует многочлен P_p степени $\leqslant p$, такой, что

$$f(z) = z^m e^{P_p(z)} \prod_{k=1}^{\infty} G(a_k, p),$$

где $m \geqslant 0$ — кратность f в нуле.

Разобьём доказательство этой теоремы на несколько лемм.

Лемма 17.2. Пусть g — аналитическая в $\mathbb D$ и непрерывная в $\overline{\mathbb D}$ функция, $g(z) \neq 0$ для всех $z \in \mathbb D$. Тогда существует такая константа $c \in \mathbb R$, что

$$\log g(z) = \int_{\mathbb{T}} \log |g(\xi)| \frac{1 + \overline{\xi}z}{1 - \overline{\xi}z} \, \mathrm{d}m(\xi) + ic, \tag{17.1}$$

где $\log g$ — произвольная ветвь логарифма функции g.

Доказательство. Обозначим правую часть формулы (17.1) через F(z). Тогда

$$\operatorname{Re} F(z) = \int_{\mathbb{T}} \log|g(\xi)| \operatorname{Re} \left(\frac{1 + \overline{\xi}z}{1 - \overline{\xi}z} \right) dm(\xi)$$
 (17.2)

$$= \int_{\mathbb{T}} \log|g(\xi)| \frac{1 - |z|^2}{|1 - \overline{\xi}z|^2} \, \mathrm{d}m(\xi)$$
 (17.3)

$$= \log|g(z)| = \operatorname{Re}(\log g(z)), \tag{17.4}$$

где первое равенство в (17.4) выполнено по теореме 3.10. Поскольку функции F и $\log g$ аналитичны, а их вещественные части равны, эти функции совпадают с точностью до мнимой константы, то есть $F = \log g + ic$ для некоторого $c \in \mathbb{R}$.

Лемма 17.3. Пусть g — аналитическая в $\mathbb D$ и непрерывная в $\overline{\mathbb D}$ функция, $g(z) \neq 0$ на $\mathbb T$, B — произведение Бляшке, составленное из нулей функции g. Тогда

$$\log g(z) - \log B(z) = \int\limits_{\mathbb{T}} \log |g(\xi)| \frac{1 + \xi z}{1 - \overline{\xi} z} \, \mathrm{d} m(\xi) + ic$$

для некоторого $c \in \mathbb{R}$ в любой односвязной области в \mathbb{D} , не содержащей нулей g.

Доказательство. Применим предыдущую лемму к функции g/B (ясно, что она не равна нулю в \mathbb{D}). Получим

$$\log \frac{g}{B} = \int\limits_{\mathbb{T}} \log \frac{|g(\xi)|}{|B(\xi)|} \frac{1+\overline{\xi}z}{1-\overline{\xi}z} \, \mathrm{d}m(\xi) + ic \qquad z \in \mathbb{D}.$$

Осталось заметить, что в области из условии $\log g$ и $\log B$ определены, а потому $\log \frac{g}{B} = \log g - \log B$.

Доказательство теоремы 17.1 Адамара. Зафиксируем r > 0, $g: r \mapsto f(rz)$, $z \in \mathbb{D}$ — аналитическая функция в \mathbb{D} и непрерывная в $\overline{\mathbb{D}}$. Будем считать r таким, что $g(z) \neq 0$ для всех $z \in \mathbb{T}$. Пусть $\alpha_k = a_k/r$ — нули g в \mathbb{D} , где $k = 1, \ldots, N$, N = n(r), а n — считающая функция нулей f. Деля f на $z^m \cdot c$, можно считать, что f(0) = g(0) = 1.

По лемме,

$$\log g(z) - \log B(z) = \int_{\mathbb{T}} \log |g(\xi)| \frac{1 + \overline{\xi}z}{1 - \overline{\xi}z} \, \mathrm{d}m(\xi) + ic \qquad \forall z \in \Omega, \tag{17.5}$$

где Ω — некоторая односвязная область, не содержащая точек $\alpha_1, \dots, \alpha_n$,

$$B(z) = \prod_{k=1}^{N} \frac{|\alpha_k|}{\alpha_k} \frac{\alpha_k - z}{1 - \overline{\alpha}_k z}.$$

Хотим дифференцировать формулу (17.5). Так как

$$\frac{1+\overline{\xi}z}{1-\overline{\xi}z} = \frac{2}{1-\overline{\xi}z} - 1,$$

имеем

$$\left(\frac{1+\overline{\xi}z}{1-\overline{\xi}z}\right)^{(p+1)} = \frac{2(\overline{\xi})^{p+1} \cdot (p+1)!}{(1-\overline{\xi}z)^{p+2}}.$$

Далее,

$$\left(\log\left(\frac{|\alpha_k|}{\alpha_k}\frac{\alpha_k-z}{1-\overline{\alpha}_kz}\right)\right)^{(p+1)} = \left(-\frac{1}{\alpha_k-z} + \frac{\overline{\alpha}_k}{1-\overline{\alpha}_kz}\right)^{(p)} = -\frac{p!}{(\alpha_k-z)^{p+1}} + \frac{(\overline{\alpha}_k)^{p+1} \cdot p!}{(1-\overline{\alpha}_kz)^{p+1}}.$$

Значит,

$$(\log g)^{(p+1)}(z) + \sum_{k=1}^{N} \left[\frac{p!}{(\alpha_k - z)^{p+1}} - \frac{(\overline{\alpha}_k)^{p+1} \cdot p!}{(1 - \overline{\alpha}_k z)^{p+1}} \right] = \int_{\mathbb{T}} \log |g(\xi)| \frac{2(\overline{\xi})^{p+1} \cdot (p+1)!}{(1 - \overline{\xi}z)^{p+2}} dm(\xi).$$

Тогда

$$\begin{split} \left| (\log g)^{(p+1)}(z) + \sum_{k=1}^{N} \frac{p!}{(\alpha_k - z)^{p+1}} \right| &\leq \sum_{k=1}^{N} \frac{p!}{(1 - |z|)^{p+1}} + \log \max_{\xi \in \mathbb{T}} |g(\xi)| \cdot \frac{2(p+1)!}{(1 - |z|)^{p+2}} \\ &= \frac{p! \cdot N}{(1 - |z|)^{p+1}} + \log M_r(f) \cdot \frac{2(p+1)!}{(1 - |z|)^{p+2}}. \end{split}$$

Обозначим w = rz и запишем предыдущее неравенство для функции f:

$$\left| (\log f)^{(p+1)}(w) \cdot r^{p+1} + \sum_{k=1}^{N} \frac{p!}{\left(\alpha_k - \frac{w}{r}\right)^{p+1}} \right| \leq \frac{2(p+1)!}{\left(1 - \frac{|w|}{r}\right)^{p+1}} \left(N + \frac{\log M_r(f)}{1 - \frac{|w|}{r}} \right).$$

Оценим последний множитель (вспомним, что $N = n(r) \le \log M_{er}(f)$):

$$N + \frac{\log M_r(f)}{1 - \frac{|w|}{r}} \leq \log M_{er}(f) \cdot \left(1 + \frac{r}{r - |w|}\right) \leq \left((er)^{\rho + \varepsilon} + c_{\varepsilon}\right) \left(1 + \frac{r}{r - |w|}\right)$$

для любого r и некоторого $c_{\varepsilon} \in \mathbb{R}$. Таким образом,

$$\left| (\log f)^{(p+1)}(w) \cdot r^{p+1} + \sum_{k=1}^{N} \frac{p!}{\left(\alpha_k - \frac{w}{r}\right)^{p+1}} \right| \leq \frac{2(p+1)!}{(r-|w|)^{p+1}} \left((er)^{\rho+\varepsilon} + c_{\varepsilon} \right) \left(1 + \frac{r}{r-|w|} \right).$$

Выберем ε так, что $\rho + \varepsilon < [\rho] + 1 = p + 1$. Тогда при w в круге B(0,R) и $r \to \infty$ правая часть стремится к нулю. Значит,

$$(\log f)^{(p+1)}(w) = -p! \sum_{k=1}^{N_*} \frac{1}{(a_k - w)^{p+1}},$$
(17.6)

где N_* — число нулей f, если оно конечно, и бесконечность в противном случае. Последний ряд сходится (доказывали). Формула (17.6) верна в односвязной области Ω , не содержащей нулей f. ²³ Тогда

$$\frac{-p!}{(a_k - w)^{p+1}} = \left(\log\left(1 - \frac{w}{a_k}\right) + \frac{w}{a_k} + \dots + \left(\frac{w}{a_k}\right)^p\right)^{(p+1)} = (\log G(a_k, p))^{(p+1)},$$

так как

$$\left(\log\left(1-\frac{w}{a_k}\right)\right)^{(p+1)} = (\log(a_k-w))^{(p+1)} = -\left(\frac{1}{a_k-w}\right)^{(p)} = -\frac{p!}{(a_k-w)^{p+1}}.$$

Таким образом,

$$\left((\log f)(w) - \log \left[\prod_{k=1}^{\infty} G(a_k, p) \right](w) \right)^{(p+1)} \equiv 0 \quad \mathbf{B} \quad \Omega.$$

Значит,

$$\log f(w) - \log \prod_{k=1}^{\infty} G(a_k, p)(w) = P_p(w),$$

 $^{^{23}}$ Я не уверен на 100%, что это то, что имелось в виду. На картинке плоскость с разрезами, проходящими через нули f, за исключением начала координат. (ОМ)

где P_p — многочлен степени не выше p, а потому

$$f(w) = e^{P_p(w)} \cdot \prod_{k=1}^{\infty} G(a_k, p),$$
 (17.7)

так как $0 \in \Omega$ в любой области Ω указанного вида, P_p не зависит от выбора, и формула (17.7) верна всюду в \mathbb{C} .

Утверждение 17.4 (формула произведения для синуса).

$$\sin \pi z = \pi z \cdot \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right) \qquad \forall z \in \mathbb{C}.$$

Доказательство. Рассмотрим функцию

$$g(z) = \frac{\sin \pi \sqrt{z}}{\pi \sqrt{z}}.$$

Она целая, так как

$$g(z) = \frac{1}{\pi\sqrt{z}} \sum_{n \ge 0} \frac{(-1)^n}{(2n+1)!} (\pi\sqrt{z})^{2n+1} = \sum_{n \ge 0} \frac{(-1)^n \pi^{2n}}{(2n+1)!} z^n = \sum_{n \ge 0} c_n z^n.$$

Нетрудно проверить, что g имеет порядок $\rho=\frac{1}{2}.$ Тогда $[\rho]=p=0,$ и по теореме Адамара

$$\frac{\sin \pi \sqrt{z}}{\pi \sqrt{z}} = c \prod_{n=1}^{\infty} \left(1 - \frac{z}{n^2} \right),\,$$

где $c = g(0) = \lim_{x \to 0^+} g(x) = 1$. Значит,

$$\frac{\sin \pi z}{\pi z} = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right),\,$$

*

что и требовалось.

Теорема 17.5. Г-функция Эйлера — мероморфная функция без нулей, и

$$\frac{1}{\Gamma(z)} = ze^{\gamma z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-z/n}, \qquad z \in \mathbb{C},$$

где

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right)$$

— постоянная Эйлера.

Доказательство. Рассмотрим функцию

$$G(z) = \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-z/n}.$$

Это произведение Вейерштрасса с константой p = 1; оно сходится, так как

$$\sum_{n=1}^{\infty} \frac{1}{n^{p+1}} = \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty.$$

Ясно, что G(z-1) — тоже целая функция, причём её нули находятся в точках $-\mathbb{N}\cup\{0\}$. Тогда

$$G(z-1) = zG(z)e^{h(z)},$$
 (17.8)

так как любая целая функция без нулей представляется в виде e^h — это просто логарифм (здесь h(z) — целая функция). Покажем, что $h \equiv \gamma$. Для этого можно посчитать производную h и доказать, что она равна нулю.

$$(\log G(z))' = \sum_{n=1}^{\infty} \left(\frac{1}{1 + \frac{z}{n}} \cdot \frac{1}{n} - \frac{1}{n} \right) = \sum_{n=1}^{\infty} \left(\frac{1}{n+z} - \frac{1}{n} \right),$$

$$(\log G(z-1))' = \sum_{n=1}^{\infty} \left(\frac{1}{n-1+z} - \frac{1}{n} \right)$$

$$= \frac{1}{z} - 1 + \sum_{n=2}^{\infty} \left(\frac{1}{n-1-z} - \frac{1}{n-1} \right) + \sum_{n=2}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n} \right)$$

$$= \frac{1}{z} - 1 + \sum_{n=1}^{\infty} \left(\frac{1}{n-z} - \frac{1}{n} \right) + 1$$

$$= \frac{1}{z} + (\log G(z))'.$$

Тогда

$$h(z) = \log \frac{G(z-1)}{zG(z)},$$

$$h'(z) = (\log G(z-1))' - (\log G(z))' - \frac{1}{z} = 0.$$

Всё эти формулы верны на положительной полуоси, но так как функции аналитичны, это означает, что $h' \equiv 0$ в \mathbb{C} по теореме единственности. Таким образом, мы доказали, что h — константа. Подставим z = 1 в формулу (17.8):

$$1 = G(0) = 1 \cdot \prod_{n=1}^{\infty} \left(1 + \frac{1}{n} \right) e^{-1/n} \cdot e^{c}.$$

Получаем:

$$1 = \lim_{N \to \infty} \prod_{n=1}^{N} \frac{n+1}{n} \cdot \prod_{n=1}^{N} e^{-1/n} \cdot e^{c} \implies$$

$$1 = \lim_{N \to \infty} (N+1) \cdot \exp\left(-\sum_{k=1}^{N} \frac{1}{k}\right) \cdot e^{c} \implies$$

$$c = \lim_{N \to \infty} \left(\sum_{k=1}^{N} \frac{1}{k} - \log(N+1)\right) = \gamma,$$

что и требовалось.

Хотим теперь проверить, что

$$\frac{1}{\Gamma(z)} = z e^{\gamma z} G(z).$$

Рассмотрим функцию

$$\widetilde{\Gamma}(z) = \frac{1}{z e^{\gamma z} G(z)},$$

и покажем, что:

- (1) $\widetilde{\Gamma}(z+1) = z\Gamma(z)$;
- (2) $\log \widetilde{\Gamma}$ выпукла на \mathbb{R}_+ .

Тогда по теореме Бора–Моллерупа (см. первый семестр), $\widetilde{\Gamma}(x) = \Gamma(x)$ на \mathbb{R}_+ , а значит $\widetilde{\Gamma}(z) = \Gamma(z)$ на всём $\mathbb{C} \setminus \mathbb{Z}_-$.

Свойство (1) проверяется следующим образом:

$$\widetilde{\Gamma}(z) = \frac{1}{ze^{\gamma z}G(z)} = \frac{1}{e^{\gamma z}e^{-\gamma}G(z-1)} = \frac{z-1}{(z-1)e^{\gamma(z-1)}G(z-1)} = (z-1)\widetilde{\Gamma}(z-1).$$

Для доказательства (2) посчитаем вторую производную:

$$\begin{split} (\log(ze^{\gamma z}G(z)))'' &= (\log z)'' + (\log e^{\gamma z})'' + \sum_{n \geq 1} \left(\log\left(1 + \frac{z}{n}\right) - \frac{z}{n}\right) \leq 0 \iff \\ &-\frac{1}{z^2} + 0 - \frac{1}{\left(1 + \frac{z}{n}\right)^2} \cdot \frac{1}{n^2} \leq 0, \end{split}$$

что и требовалось.

Следствие 17.6 (формула дополнения Г**-функции).** Для любого $z \in \mathbb{C} \setminus \mathbb{Z}$ выполнено равенство

*

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}.$$

Доказательство. Считаем:

$$\begin{split} \Gamma(z)\Gamma(1-z) &= \Gamma(z)\Gamma(-z)\cdot (-z) \\ &= (-z)\cdot \frac{1}{ze^{\gamma z}\prod_{n\geqslant 1}\left(1+\frac{z}{n}\right)e^{-z/n}}\cdot \frac{1}{(-z)e^{-\gamma z}\prod_{n\geqslant 1}\left(1-\frac{z}{n}\right)e^{z/n}} \end{split}$$

$$= \frac{1}{z \lim_{N \to \infty} \prod_{n=1}^{N} \left(1 + \frac{z}{n}\right) e^{-z/n} \left(1 - \frac{z}{n}\right) e^{z/n}}$$
$$= \frac{\pi}{\sin \pi z}.$$

≮

18 Граничное поведение гармонических функций в единичном круге

Определение. Пусть μ — борелевский заряд на единичной окружности \mathbb{T} . Интегралом Пуассона заряда μ будем называть гармоническую функцию

$$(\mathcal{P}_{\mu})(z) = \int_{\mathbb{T}} \frac{1 - |z|^2}{|1 - \overline{\xi}z|^2} d\mu(\xi).$$

Замечания.

1. Гармоничность этой функции следует, например, из того, что это вещественная часть аналитической функции:

$$(\mathcal{P}_{\mu})(z) = \operatorname{Re}\left(\int_{\mathbb{T}} \frac{1 + \overline{\xi}z}{1 - \overline{\xi}z} d\mu(\xi)\right).$$

- 2. Если $\mu \geqslant 0$, то $\mathcal{P}_{\mu} \geqslant 0$ в \mathbb{D} .
- 3. Для $u = \mathcal{P}_{\mu}$ имеет место неравенство

$$\sup_{0 \leqslant r < 1} \int_{\mathbb{T}} |u(r\xi)| \, \mathrm{d} m(\xi) \leqslant |\mu|(\mathbb{T}).$$

Действительно,

$$\int_{\mathbb{T}} |u(r\xi)| \, \mathrm{d}m(\xi) \leq \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{1 - |r\xi|^2}{|1 - r\xi\overline{\zeta}|^2} \, \mathrm{d}\mu(\zeta) \, \mathrm{d}m(\xi)$$

$$= \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{1 - |r\xi|^2}{|1 - r\xi\overline{\zeta}|^2} \, \mathrm{d}m(\xi) \, \mathrm{d}\mu(\zeta).$$

Значение под вторым интегралом равно единице по свойству ядра Пуассона, а потому

$$\int_{\mathbb{T}} |u(r\xi)| \, \mathrm{d}m(\xi) = \int_{\mathbb{T}} |\mu|(\xi) = |\mu|(\mathbb{T}).$$

Замечание. Если $u \geqslant 0$ — гармоническая функция в \mathbb{D} , то

$$\sup_{0\leqslant r<1}\int_{\mathbb{T}}|u(r\xi)|\,\mathrm{d}m(\xi)=u(0)<\infty.$$

Теорема 18.1. Пусть u — гармоническая функция в \mathbb{D} , причём

$$\sup_{0\leqslant r<1}\int_{\mathbb{T}}|u(r\xi)|\,\mathrm{d}m(\xi)<\infty.$$

Тогда существует такой единственный борелевский заряд μ , что $u = \mathcal{P}_{\mu}$.

В доказательстве используется несколько следствий из теорем Рисса – Маркова и Банаха – Алаоглу из функционального анализа:

1. Если $\{\mu_n\}$ — последовательность зарядов на \mathbb{T} , таких, что $|\mu|(\mathbb{T}) \leqslant C$ для всех $n \geqslant 1$, то можно извлечь подпоследовательность $\{\mu_{n_k}\}$, *-слабо сходящуюся к некоторому борелевскому заряду μ на \mathbb{T} , то есть для любой функции $\varphi \in C(\mathbb{T})$ существует предел

$$\lim_{k\to\infty}\int\limits_{\mathbb{T}}\varphi\,\mathrm{d}\mu_{n_k}=\int\limits_{\mathbb{T}}\varphi\,\mathrm{d}\mu.$$

2. Выполнено равенство

$$|\mu|(\mathbb{T}) = \sup_{\|\varphi\| \le 1} \left| \int_{\mathbb{T}} \varphi \, \mathrm{d}\mu \right|.$$

В частности, если

$$\int \varphi \, \mathrm{d}\mu_1 = \int \varphi \, \mathrm{d}\mu_2 \qquad \forall \varphi \in C(\mathbb{T}),$$

то $|\mu_1 - \mu_2|(\mathbb{T}) = 0$, то есть $\mu_1 \equiv \mu_2$.

Доказательство. Рассмотрим последовательность $\{r_n\}\subset [0,1)$, такую, что $r_n\to 1$. Пусть $\mu_n=u(r_n\xi)\,\mathrm{d} m(\xi)$. По условию,

$$|\mu_n|(\mathbb{T}) = \int_{\mathbb{T}} |u(r_n \xi)| \, \mathrm{d}m(\xi) \leqslant c \qquad \forall n \in \mathbb{N}.$$

Значит, существует такая подпоследовательность $\{\mu_{n_k}\}$, что для любой функции $\varphi \in C(\mathbb{T})$ будет сходимость $\int_{\mathbb{T}} \varphi \, \mathrm{d} \mu_{n_k} \to \int_{\mathbb{T}} \varphi \, \mathrm{d} \mu$. В частности,

$$\mathcal{P}_{\mu}(z) = \int_{\mathbb{T}} \frac{1 - |z|^2}{|z - \xi z|^2} d\mu = \lim_{k \to \infty} \int_{\mathbb{T}} \frac{1 - |z|^2}{|1 - \xi z|^2} d\mu_{n_k} = \lim_{k \to \infty} u(r_{n_k} z),$$

так как для любой функции v, гармонической в $\mathbb D$ и непрерывной в $\overline{\mathbb D}$, выполнено $v(z)=(\mathcal P_{v\,\mathrm dm})(z).$ Значит,

$$(\mathcal{P}_{\mu})(z) = \lim_{k \to \infty} u(r_{n_k}z) = u(z) \quad \forall z \in \mathbb{D},$$

то есть $u = \mathcal{P}_{\mu}$.

Теперь докажем единственность. Если $\widetilde{\mu}$ таково, что $u=\mathcal{P}_{\widetilde{\mu}}$, то $\mathcal{P}_{\mu}=\mathcal{P}_{\widetilde{\mu}}, \mathcal{P}_{\mu-\widetilde{\mu}}=0$ в \mathbb{D} .

Достаточно показать, что если ν — заряд на \mathbb{T} , $\mathcal{P}_{\nu} \equiv 0$ в \mathbb{D} , то $\nu=0$. Если $\mathcal{P}_{\nu}=0$ в \mathbb{D} , то

$$\operatorname{Re}\left(\int_{\mathbb{T}} \frac{1+\xi z}{1-\overline{\xi}z} \, \mathrm{d}\nu\right) = 0 \qquad \forall z \in \mathbb{D},$$

$$\operatorname{Re}\left(\int_{\mathbb{T}} \left(\frac{2}{1-\overline{\xi}z} - 1\right) d\nu\right) = 0 \qquad \forall z \in \mathbb{D},$$

$$\operatorname{Re}\left(\int_{\mathbb{T}} d\nu\right) = \mathcal{P}_{\nu}(0) = 0 \implies$$

$$\operatorname{Re}\left(\int_{\mathbb{T}} \frac{d\nu(\xi)}{1-\overline{\xi}z}\right) = 0 \qquad \forall z \in \mathbb{D}.$$

Продифференцируем k раз по z:

$$\operatorname{Re}\left(\int_{\mathbb{T}} \frac{\overline{\xi}^{k} \, \mathrm{d}\nu(\xi)}{1 - \overline{\xi}z}\right) = 0 \qquad \forall z \in \mathbb{D}, \implies$$

$$\operatorname{Re}\left(\int_{\mathbb{T}} \overline{\xi}^{k} \, \mathrm{d}\nu(\xi)\right) = 0 \implies$$

$$\operatorname{Re}\left(\int_{\mathbb{T}} \varphi \, \mathrm{d}\nu(\xi)\right) = 0 \qquad \forall \varphi \in C(\mathbb{T}),$$

так как система тригонометрических полиномов $\sum_{k=-N}^M c_k \xi^k$ не исчезает ни в какой точке и разделяет точки $\mathbb T$, то есть, по теореме Стоуна – Вейерштрасса она плотна в $C(\mathbb T)$.

Тогда для любого φ существует такое $p = \sum_{k=-N}^M c_k \xi^k$, что

$$\sup_{\xi\in\mathbb{T}}|\varphi(\xi)-p(\xi)|<\varepsilon.$$

Значит,

$$\left| \operatorname{Re} \int_{\mathbb{T}} \varphi \, \mathrm{d}\mu \right| \leq \left| \operatorname{Re} \int_{\mathbb{T}} p \, \mathrm{d}\nu \right| + \int_{\mathbb{T}} |p - \varphi| \, \mathrm{d}|\nu| \leq |\nu|(\mathbb{T}) \cdot \varepsilon \qquad \forall \varepsilon > 0,$$

то есть $\operatorname{Re}\left(\int_{\mathbb{T}}\varphi\,\mathrm{d}\nu\right)=0$. Если $\nu=\overline{\nu}$, то это означает, что $\nu\equiv0$, см. свойство (2). Если же ν — произвольный, то $\mathcal{P}_{\operatorname{Re}\nu}(z)=0$, $\mathcal{P}_{\operatorname{Im}\nu}(z)=0$ в \mathbb{D} и всё сводится к вещественному случаю.

Следствие 18.2. Если $u \geqslant 0$, то $u = \mathcal{P}_{\mu}$ для неотрицательной меры μ на \mathbb{T} . Действительно, μ — это *-слабый предел неотрицательных мер, то есть $\mu \geqslant 0$.

Основная цель — следующая теорема:

Теорема 18.3. Пусть μ — борелевский заряд на \mathbb{T} , $\mu = f \, dm + \mu_s$ — его разложение в абсолютно непрерывную и сингулярную части $f \, dm$, μ_s . ²⁴ Тогда для любого $\alpha \in (0,1)$

²⁴см. теорему Радона – Никодима из предыдущего семестра

при почти всех $\xi \in \mathbb{T}$ по мере Лебега существует предел

$$\lim_{z \to \xi, z \in \Gamma_{\alpha}} \mathcal{P}_{\mu}(z) = f(\xi),$$

где $\Gamma_{\alpha}=\mathrm{conv}ig(\{\xi\}\cup\{z\in\mathbb{C}:|z|\leqslant\alpha\}ig)$ — угол Штольца.

Эту теорему можно сформулировать следующим образом: любая гармоническая функция u в $\mathbb D$ со свойством

$$\sup_{0 \leqslant r < 1} \int_{\mathbb{T}} |u(r\xi)| \, \mathrm{d} m(\xi) < \infty$$

почти всюду имеет угловые граничные значения, и они совпадают с производной Радона – Никодима её порождающей меры.

Лемма 18.4. Пусть $\varphi \in C[-a,a]$ — непрерывная неотрицательная чётная функция, убывающая на промежутке [0,a]. Тогда для любого $\varepsilon > 0$ существует конечный набор чисел $\{\lambda_k\}_{k=1}^N \subset [0,+\infty)$, такой, что:

$$(1) \max_{t \in [-a,a]} \left| \varphi(t) - \sum_{k=1}^{N} \lambda_k \frac{1}{|I_k|} \chi_{I_k}(t) \right| \leq \varepsilon;$$

(2)
$$\sum_{k=1}^{N} \lambda_k \leqslant \int_{-a}^{a} \varphi(t) \, \mathrm{d}t + 2a\varepsilon;$$

где I_k — промежутки вида $[-a_k, a_k], a_k \in [0, a].$

Доказательство. Выберем ступенчатую функцию на [-a, a] так, чтобы эта функция (скажем, φ_{ε}), принимала конечное число значений, была выполнена оценка

$$\max_{t\in[-a,a]}|\varphi(t)-\varphi_{\varepsilon}(t)|\leqslant\varepsilon,$$

и φ_{ε} убывала бы на [0,a]. Пусть $\varphi_{\varepsilon} = \sum_{k=1}^{N} c_k \chi_{[-a_k,a_k]}, c_k \geqslant 0, \lambda_k = c_k \cdot |I_k|$, где $I_k = [-a_k,a_k]$. Очевидно, что свойство (1) выполнено. Проверим второе:

$$\sum_{k=1}^{N} \lambda_k = \int_{-a}^{a} \varphi_{\varepsilon},$$

и тогда (2) получается из пункта (1).

Теорема 18.5. Пусть μ — заряд на единичной окружности \mathbb{T} , $u = \mathcal{P}_{\mu}$, $\mu = f \, \mathrm{d} m + \mu s$, $\xi \in \mathbb{T}$. Если существует предел

*

$$\lim_{\delta \to 0} \frac{\mu(B(\xi, \delta))}{m(B(\xi, \delta))} = L \in [-\infty, \infty],$$

то существует предел $\lim_{r\to 1} u(r\xi) = L$. В частности, при почти всех $\xi\in\mathbb{T}$ по мере Лебега существует предел $\lim_{r\to 1} u(r\xi) = f(\xi)$.

Доказательство. Достаточно доказать первое утверждение и воспользоваться теоремой Лебега о дифференцировании мер.

Зафиксируем такое ξ , что

$$\lim_{\delta \to 0} \frac{\mu(B(\xi, \delta))}{m(B(\xi, \delta))} = L.$$

Рассмотрим функцию

$$p_r = \frac{1 - r^2}{|1 - \overline{\xi}(r\xi_0)|^2}.$$

Так как ядро Пуассона — аппроксимативная единица, то по лемме

$$p_r(\xi) = \sum_{k=1}^{N_r} \lambda_{r,k} \frac{\chi_{I_k}}{m(I_k)} + g_r(\xi), \tag{18.1}$$

*

где $\lambda_{r,k} \geqslant 0$, $\sum_{k=1}^{N_r} \lambda_{r,k} \xrightarrow{r \to 1} 1$, $I_k = \left\{e^{i(\operatorname{th_0} + \operatorname{th})}, \operatorname{th} \in [-a_k, a_k]\right\}$, $\xi_0 = e^{i\operatorname{th_0}}, \max_{\xi \in \mathbb{T}} |g_r(\xi)| \xrightarrow{r \to 1} 0$. Почему такое разложение существует? Рассмотрим $\widetilde{\varphi}(\operatorname{th}) = p_r(e^{i(\operatorname{th} + \operatorname{th_0})})$, $\operatorname{th} \in [-\pi, \pi]$.

$$g_{1} = \chi_{E_{r}}(e^{i(\th_{0} + \th)}) \cdot p_{r}(e^{i(\th_{0} + \th)}),$$

$$g_{2} = \chi_{[-\pi,\pi] \setminus E_{r}}(e^{i(\th_{0} + \th)}) \cdot p_{r}(e^{i(\th_{0} + \th)}) - \varphi_{\varepsilon_{r}},$$

где φ_{ε_r} — функция из леммы для $\varphi=\chi_{[-\pi,\pi]\setminus E_r}(e^{i(\th_0+\th)})\cdot p_r(e^{i(\th_0+\th)}),\, \varepsilon_r\to 0,\, g_r=g_1+g_2.$ Пользуясь разложением (18.1) получаем

$$\begin{split} u(r\xi_0) &= \int\limits_{\mathbb{T}} p_r(\xi) \,\mathrm{d}\mu(\xi) = \int\limits_{k=1}^{N_{r,k}} \lambda_{r,k} \frac{\chi_{I_k}(\xi)}{m(I_k)} \,\mathrm{d}\mu(\xi) + \int\limits_{\mathbb{T}} g_r(\xi) \,\mathrm{d}\mu(\xi). \\ &\left| \int\limits_{\mathbb{T}} g_r(\xi) \,\mathrm{d}\mu \right| \leqslant \max|g_r(\xi)| \cdot |\mu|(\mathbb{T}) \xrightarrow{r \to 1} 0. \\ &\sum_{k=1}^{N_{r,k}} \lambda_{r,k} \int\limits_{\mathbb{T}} \frac{\chi_{I_k}(\xi)}{m(I_k)} \,\mathrm{d}\mu(\xi) = \sum_{k=1}^{N_{r,k}} \lambda_{r,k} \frac{\mu(I_k)}{m(I_k)} \xrightarrow{r \to 1} L, \end{split}$$

что и требовалось.

Напомним определение максимальной функции Харди – Литтлвуда меры μ:

$$(M^*\mu)(\xi) = \lim_{\Delta \to 0} \sup_{0 < \delta < \Delta} \frac{\mu(B(\xi, \delta))}{m(B(\xi, \delta))}.$$

Радиальная максимальная функция гармонической функции и — это

$$(M_r^*u)(\xi) = \lim_{\Delta \to 0} \sup_{r \in [1-\Delta,1)} |u(r\xi)|.$$

Угловая максимальная функция гармонической функции и:

$$(M_a^*u)(\xi) = \lim_{\Delta \to 0} \sup_{z \in \Gamma_\alpha(\xi) \cap B(\xi, \Delta)} |u(z)|,$$

где $\Gamma_{\alpha}(\xi) = \text{conv}(\{\xi\} \cup \{z \in \mathbb{C} : |z| \leq \alpha\}).$

Лемма 18.6. Пусть $u = \mathcal{P}_{\mu}$, где μ — заряд на \mathbb{T} . Тогда существует такая константа $c = c(\alpha)$, что для всех $\xi \in \mathbb{T}$

$$(M_a^* u)(\xi) \leqslant c M_r^* \widetilde{u}(\xi), \tag{18.2}$$

$$(M_r^*\widetilde{u})(\xi) \leqslant cM_{|u|}^*(\xi),\tag{18.3}$$

где $\widetilde{u} = \mathcal{P}_{|\mu|}$.

Доказательство. $u \le \widetilde{u}$, а потому можно считать, что $\mu \ge 0$ и $u = \widetilde{u}$. В этом случае неравенство (18.2) следует из неравенства Гарнака.

 $u\geqslant 0$ в B_1 и отношение радиусов кругов B_1 к B_2 не зависит от $r\in [0,1)$. Тогда

$$\frac{r_1 - r_2}{r_1 + r_2} u(r\xi) \le u(z) \le \frac{r_1 + r_2}{r_1 - r_2} u(r\xi) \qquad \forall z \in B_2,$$

где r_1 — радиус B_1 , r_2 — радиус B_2 . Тогда

$$(M_a^*u)(\xi) \leqslant \frac{r_1/r_2 + 1}{r_1/r_2 - 1}(M_r^*u)(\xi).$$

Кроме того, $(M_r^*u)(\xi) \leqslant (M^*u)(\xi)$, так как ядро Пуассона — выпуклая комбинация функций $\frac{\chi_I}{m(I)}$ + малая поправка (по лемме). $\not <$

Следствие 18.7. Если $\mu \perp m$, то

$$\lim_{z \to \xi, z \in \Gamma_{\alpha}(\xi)} \mathcal{P}_{\mu}(z) = 0$$

при m-почти всех $\xi \in \mathbb{T}$.

Доказательство. Снова по неравенству Гарнака достаточно проверить, что $\lim_{r\to 1} \mathcal{P}_{\mu}(r\xi) = 0$ при почти всех $\xi \in \mathbb{T}$. Но это так, потому что

*

$$\lim_{\delta \to 0} \frac{\mu(B(\xi, \delta))}{m(B(\xi, \delta))} = 0.$$

Так как $\mu \perp m$, по теореме 18.5 всё получается.

Доказательство теоремы 18.3. Можно считать, что μ — вещественный заряд, $\mu_s=0$, так как $\mathcal{P}_{\mu_1+\mu_2}=\mathcal{P}_{\mu_1}+\mathcal{P}_{\mu_2}$ для любых зарядов μ_1,μ_2 и

$$\mathcal{P}_{\mu_s}(z) \xrightarrow[z \to \xi, z \in \Gamma_{\alpha}]{} 0$$

при почти всех $\xi \in \mathbb{T}$ по предыдущему следствию (сведение к неотрицательному случаю возможно благодаря разложению Хана и тому, что $\mathcal{P}_{\mu_1+\mu_2}=\mathcal{P}_{\mu_1}+\mathcal{P}_{\mu_2}$).

Пусть теперь $\mu=f$ d $m,\ f\in L^1(\mathbb T),\ u:=\mathcal P_\mu$ — гармоническая функция в $\mathbb D.$ При почти всех $\xi\in\mathbb T$

$$\sup_{z\in\Gamma_{\alpha}}|u(z)|<\infty,$$

так как $(M_{\alpha}^*u)(\xi) \leqslant c(M^*f)(\xi)$, и

$$m\{(M^*f)(\xi) > t\} \leqslant c \frac{\|f\|}{t} L^1(\mathbb{T}) \qquad \forall t > 0,$$

(слабая оценка на максимальную функцию Харди – Литлвуда, см. предыдущий семестр). Таким образом, предел $\lim_{z\to \xi,\,z\in\Gamma_\alpha(\xi)}u(z)$ существует тогда и только тогда, когда

$$\lim_{r \to 1} (\Omega_r u)(\xi) = 0, \tag{18.4}$$

где

$$(\Omega_r u)(\xi) = \sup_{\substack{z \in \Gamma_\alpha(\xi) \\ |z| = r}} u(z) - \inf_{\substack{z \in \Gamma_\alpha(\xi) \\ |z| = r}} u(z).$$

Докажем, что (18.4) выполнено для почти всех $\xi \in \mathbb{T}$. Для этого проверим, что для всех t>0 выполнено равенство

$$m(\{\xi : \limsup_{r\to 1}(\Omega_r u)(\xi) > t\}) = 0.$$

Заметим, что если v — гармоническая функция в \mathbb{D} , то для всех $r \in [0,1)$

$$\Omega_r(u) \leq \Omega_r(u-v) + \Omega_r(v)$$
.

так как $\sup u\leqslant \sup(u-v)+\sup v$, $\inf u\geqslant \inf(u-v)+\inf v$. Пусть $\varepsilon>0$. Выберем функцию $g\in C(\mathbb{T})$, такую, что $\|f-g\|_{L^1(\mathbb{T})}\leqslant \varepsilon$. Такая функция существует, так как $C(\mathbb{T})$ плотно в $L^1(\mathbb{T})$. Пусть также $v=\mathcal{P}_g$. Будем в дальнейшем писать для удобства |E| вместо m(E). Тогда

$$|\{\xi: \limsup(\Omega_r u)(\xi) > t\}| \leq |\{\limsup(\Omega_r v)(\xi) > \frac{t}{2}\}| + |\{\limsup\Omega_r (u - v)(\xi) > \frac{t}{2}\}|.$$

Первое слагаемое равно нулю при $r \to 1$, так как g непрерывно.

$$\Omega_r(u-v)(\xi) \leq 2M_a^*(u-v)(\xi) \leq 2cM^*(u-v)(\xi)$$

для всех $r \in [0, 1)$. Значит,

$$\{\xi : \limsup \sup(\Omega_r u)(\xi) > t\} \le |\{\xi : M^*(f-g)(\xi) > \frac{t}{2c}\}| \le \frac{2c\|f-g\|_{L^1(\mathbb{T})}}{t} \le \frac{2c\varepsilon}{t}.$$

Это неравенство выполнено для всех $\varepsilon > 0$, а потому

$$\left|\left\{\xi: \limsup_{r\to 1}\Omega_r(u)(\xi)>t\right\}\right|=0.$$

Итак, при почти всех ξ существует предел $\widetilde{f}(\xi) := \lim_{z \to \xi, z \in \Gamma_\alpha} u(z)$. Но, как мы знаем, при почти всех $\xi \in \mathbb{T}$ существует предел $\lim_{r \to 1} u(r\xi) = f(\xi)$. Значит, почти везде на \mathbb{T} выполнено $f = \widetilde{f}$, что и требовалось.

Следствие 18.8. Пусть f — ограниченная аналитическая функция в \mathbb{D} . Тогда при почти всех $\xi \in \mathbb{T}$ существует предел $\lim_{z \to \xi, z \in \Gamma_{\alpha}(\xi)} f(z)$.

Доказательство. Применим теорему 18.3 к функциям u = Re f, v = Im f. Тогда

$$\int\limits_{\mathbb{T}} |u(r\xi)| \, \mathrm{d} m \leqslant \sup_{z \in \mathbb{D}} |f(z)| \qquad \forall r \in [0,1).$$

Значит, u и v имеют угловые граничные значения почти везде в \mathbb{T} .

Следствие 18.9. Пусть $\sum_{n=0}^{\infty} |a_n|^2 < \infty$. Тогда $f = \sum_{n \ge 0} a_n z^n$ имеет угловые граничные значения почти везде на \mathbb{T} .

*

*

Доказательство. Проверим условие на $\overline{u}, \overline{v}$:

$$\int\limits_{\mathbb{T}} |f(r\xi)|^2 \, \mathrm{d}m(\xi) = \int\limits_{\mathbb{T}} \sum a_n \overline{a}_k r^{n+k} \xi^n \overline{\xi}^k \, \mathrm{d}m = \sum_{k,n \geq 0} a_k \overline{a}_k r^{n+k} \int\limits_{\mathbb{T}} \xi^{n-k} \, \mathrm{d}m(\xi).$$

Заметим, что

$$\int_{\mathbb{T}} \xi^{j} dm(\xi) = \frac{1}{2\pi} \int_{0}^{2\pi} e^{jt} dt = \begin{cases} 0, & j \neq k, \\ 1, & j = k. \end{cases}$$

Значит,

$$\sum_{k,n\geqslant 0} a_k \overline{a}_k r^{n+k} \int_{\mathbb{T}} \xi^{n-k} \, \mathrm{d} m(\xi) = \sum |a_k|^2 r^{2k} \leqslant \sum |a_k|^2 < \infty.$$

Таким образом,

$$\left(\int 1 \cdot |f(r\xi)| \, \mathrm{d}m(\xi)\right) \le [\mathrm{KBIII}] \le \sqrt{\int |f(r\xi)|^2 \, \mathrm{d}m(\xi)} \le \sqrt{\sum |a_k|^2},$$

$$\int |u(r\xi)| \, \mathrm{d}m \le \int |f(r\xi)| \, \mathrm{d}m \le \left(\sum |a_k|^2\right)^{1/2}.$$

Значит, u, v, f имеют угловые граничные значения.

Следствие 18.10. Пусть $\{a_k\} \subset \mathbb{D}, \sum (1-|a_k|) < \infty$,

$$B = \prod \frac{|a_k|}{a_k} \frac{a_k - z}{1 - \overline{a}_k z}.$$

Тогда B имеет угловые граничные значения, равные по модулю единице почти всюду на \mathbb{T} .

Доказательство. Так как $|B(z)| \le 1$ в \mathbb{D} , B имеет угловые граничные значения, назовём их $f, f \in L^1(\mathbb{T})$. По формуле Йенсена,

$$\begin{split} \log |B(0)| - \sum_{a_k:|a_k|\leqslant r} \log \frac{|a_k|}{r} &= \int\limits_{\mathbb{T}} \log |B(r\xi)| \, \mathrm{d} m(\xi) \\ &\leqslant [\log \text{— вогнутая функция}] \leqslant \log \int\limits_{\mathbb{T}} |B(r\xi)| \, \mathrm{d} m(\xi) \xrightarrow{r \to 1} \log \int\limits_{\mathbb{T}} |f(\xi)| \, \mathrm{d} m \end{split}$$

Тогда

$$L_r \to \log|B(0)| - \sum_{k\geqslant 0} \log|a_k| = \log\left| \prod \frac{|a_k|}{a_k} \frac{a_k - 0}{1 - \overline{a}_k 0} \right| - \sum_{k\geqslant 0} \log|a_k|$$
$$= \log\left(\prod |a_k| \right) - \sum_{k\geqslant 0} \log|a_k| = 0.$$

Значит,

$$1 \leqslant \int_{\mathbb{T}} |f(\xi)| \, \mathrm{d}m(\xi). \tag{18.5}$$

При этом $|f(\xi)| \le 1$ почти везде на \mathbb{T} , так как

$$f(\xi) = \lim_{z \to \xi, \, z \in \Gamma_{\zeta}(\xi)} B(z), \qquad |B| \leqslant 1.$$

Условие (18.5) теперь влечёт $|f(\xi)|=1$ при почти всех $\xi\in\mathbb{T}$. $\not<$

Приложение А

Графики комплексных функций

Для того, чтобы в трехмёрном (или даже двумерном) пространстве нарисовать график комплексной функции, приходится восполнять нехватку размерности другими средствами — а именно, цветом и его насыщенностью. Стандартный трёхмерный график комплексный функции выглядит так: точкам плоскости OXY (соответствующей комплексной плоскости $\mathbb C$) на оси Z сопоставляется значение модуля f. Аргумент же показывается с помощью циклической цветовой функции. Смотря на цвета можно что-то узнать о самой функции f: например, аргумент закручивается в разную сторону в зависимости от того, проходит он вокруг нуля или полюса (принцип аргумента), как показано на картинке ниже:

Рис. А.1: Нули, полюса и существенные особенности на комплексном графике

Двумерный график можно представлять себе как "вид сверху" на трёхмерный график, причём значение модуля обозначается насыщенностью цвета — чем больше значение, тем более он близок к белому.

Справа от трёхмерных графиков на картинках ниже показано, как именно изменяется цвет в зависимости от аргумента, а на двумерных также показана зависимость насыщенности от значений модуля.

Рис. А.2: Трёхмерный график $\exp(z)$

Рис. А.3: Двумерный график $\exp(z)$

Рис. А.4: Главная ветвь $\log z$

Рис. А.5: Главная ветвь $\log z$

Рис. А.6: Гамма-функция Эйлера $\Gamma(z)$

Рис. А.7: Вернуться к утверждению 7.5

Рис. А.8: sin z

Рис. А.9: sin *z*

Рис. А.10: $\tan z$

Рис. A.11: tan z