Theory of Computation, Fall 2022 Assignment 9 (Due November 21 Monday 10:00am)

Q1. Let D be a DFA. Consider the following decision problem.

Given a string w, does D accept w?

- (a) What is the language corresponding to the following problem?
- (b) Is this language recursive?
- (c) Prove that every regular language is recursive.
- Q2. Let $SB_{DFA} = \{ "D_1" "D_2" : D_1 \text{ and } D_2 \text{ are two DFAs with } L(D_1) \subseteq L(D_2) \}$. Give a reduction from SB_{DFA} to E_{DFA} .
- Q3. Let $L = \{w \in \{0,1\}^* : w \text{ contains an odd number of 1's}\}$. Define

$$A_L = {\text{``D"} : D \text{ is a DFA that accepts } L}.$$

Give a reduction from A_L to EQ_{DFA} .

- Q4. In class we have proved that E_{DFA} and EQ_{DFA} are recursive. What conclusion can you draw about SB_{DFA} and A_L ?
- Q5. Let A and B be two languages. Suppose that we have a reduction f from A to B.
 - (a) If B is recursively enumerable, what conclusion can you draw about A? Prove your conclusion.
 - (b) If A is NOT recursive, what conclusion can you draw about B? Prove your conclusion.
- Q6. Prove that every language is countable. You can use any theorem that we have proved in class.
- Q7. Prove that there is an undecidable subset of $\{1\}^*$.