Annexe 52/65

Annexe

Compléments de mathématiques

I – Vecteurs et systèmes de coordonnées

I.1 – Vecteurs

I.1.1 – Définition : On appelle un vecteur toute grandeur orientée qui possède une direction et un sens (exemples vitesse d'un point matériel, champ gravitationnel, champ magnétique terrestre,...)

Notation: un vecteur dont l'origine est le point A et l'extrémité est le point B est noté \overrightarrow{AB} , son module (longueur du vecteur) est noté $|\overrightarrow{AB}|$ ou AB.

I.1.2 – Repérage d'un vecteur

Soient (OXYZ) un repère orthonormé direct et $(\vec{i}, \vec{j}, \vec{k})$ une base de l'espace vectoriel.

i- La direction et le sens d'un vecteur \vec{V} peuvent être définis par un vecteur unitaire \vec{u} porté par \vec{V} . Son module est donné par $|\vec{V}| = V$. On écrit $\vec{V} = V\vec{u}$.

ii- En utilisant directement la base $(\vec{i}, \vec{j}, \vec{k})$, ce vecteur peut être mis sous la forme

$$\vec{V} = x.\vec{i} + y.\vec{j} + z.\vec{k}$$

où x, y, z sont les composantes du vecteur \vec{V} . On note $\vec{V} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \sqrt{x^2 + y^2 + z^2}$.

Remarque:

Pour un même vecteur, si on change de base on change de composantes et pour une même base, si on change de composantes on change de vecteur.

I.2 – Produit scalaire de deux vecteurs

Le produit scalaire de deux vecteurs \vec{V}_1 et \vec{V}_2 est un scalaire noté

$$\vec{V}_1 \cdot \vec{V}_2 = |\vec{V}_1| |\vec{V}_2| \cdot \cos(\vec{V}_1, \vec{V}_2)$$

i- Propriétés du produit scalaire

- Si deux vecteurs non nuls sont orthogonaux leurs produit scalaire est nul et inversement $\vec{V}_1 \perp \vec{V}_2 \implies \cos(\vec{V}_1, \vec{V}_2) = 0$ et $\vec{V}_1.\vec{V}_2 = 0$
- Commutativité $\vec{V}_1 \cdot \vec{V}_2 = \vec{V}_2 \cdot \vec{V}_1$

Annexe 53/65

Distributivité par rapport à l'addition vectorielle

 $\vec{V} \cdot (\vec{V}_1 + \vec{V}_2) = \vec{V} \cdot \vec{V}_1 + \vec{V} \cdot \vec{V}_2$ **ii**- Expression analytique du produit scalaire de deux vecteurs dans une base orthonormée

Soient
$$\vec{V}_1 = x_1 \cdot \vec{i} + y_1 \cdot \vec{j} + z_1 \cdot \vec{k}$$
 et $\vec{V}_2 = x_2 \cdot \vec{i} + y_2 \cdot \vec{j} + z_2 \cdot \vec{k}$

$$\vec{V_1} \cdot \vec{V_2} = x_1 x_2 + y_1 y_2 + z_1 z_2$$

car pour une base orthonormée $\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$ et $\vec{i} \cdot \vec{j} = \vec{i} \cdot \vec{k} = \vec{j} \cdot \vec{k} = 0$

Cas particulier: Module d'un vecteur

$$\vec{V_1} \cdot \vec{V_1} = \vec{V_1}^2 = x_1^2 + y_1^2 + z_1^2$$
$$|\vec{V_1}| = V_1 = \sqrt{x_1^2 + y_1^2 + z_1^2}$$

I.3 - Produit vectoriel de deux vecteurs

Le produit vectoriel de deux vecteurs $\vec{V_1}$ et $\vec{V_2}$ est un vecteur noté $\vec{V_1} \wedge \vec{V_2}$ défini par

- Sa direction perpendiculaire au plan défini par \vec{V}_1 et \vec{V}_2 .
- Le sens tel que le trièdre $(\vec{V}_1, \vec{V}_2, \vec{V}_1 \wedge \vec{V}_2)$ soit direct. C'est-à-dire toute rotation qui amène \vec{V}_1 vers \vec{V}_2 est accompagnée d'une translation suivant le vecteur $\vec{V}_1 \wedge \vec{V}_2$.

Son module

$$|\vec{V}_1 \wedge \vec{V}_2| = |\vec{V}_1| |\vec{V}_2| \sin(\vec{V}_1, \vec{V}_2)$$

Cette expression représente l'air (surface) du parallélogramme construit en prenant pour côté les vecteurs \vec{V}_1 et \vec{V}_2 .

- i- Propriétés du produit vectoriel
 - Si deux vecteurs non nuls sont parallèle leurs produit vectoriel est nul et inversement. $\vec{V}_1 / / \vec{V}_2 \implies \sin(\vec{V}_1, \vec{V}_2) = 0 \text{ et } \vec{V}_1 \wedge \vec{V}_2 = \vec{0}.$
 - Commutativité

$$\vec{V}_1 \wedge \vec{V}_2 = -(\vec{V}_2 \wedge \vec{V}_1)$$

 $\vec{V}_1 \wedge \vec{V}_2 = -(\vec{V}_2 \wedge \vec{V}_1)$ • Distributivité par rapport à l'addition vectorielle

$$\vec{V} \wedge (\vec{V_1} + \vec{V_2}) = \vec{V} \wedge \vec{V_1} + \vec{V} \wedge \vec{V_2}$$

ii- Expression analytique du produit vectoriel de deux vecteurs dans une base orthonormée

$$\vec{V}_1 \wedge \vec{V}_2 = (x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}) \wedge (x_2 \vec{i} + y_2 \vec{j} + \vec{z}_2 \vec{k})$$

$$= (y_1 z_2 - z_1 y_2) \vec{i} + (z_1 x_2 - x_1 z_2) \vec{j} + (x_1 y_2 - y_1 x_2) \vec{k}$$

Annexe 54/65

$$\vec{V}_1 \wedge \vec{V}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \vec{i} \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} - \vec{j} \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} + \vec{k} \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$$

I.4 – Systèmes de coordonnées (espace à trois dimensions)

En général, on choisit un système de cordonnée en fonction de la géométrie et les symétries du corps étudié.

I.4.1 – Coordonnées cartésiennes

Un point M de l'espace est repéré par les coordonnées x, y et z dans la base orthonormée directe $(\vec{i}, \vec{j}, \vec{k})$.

Soient *m* la projection de *M* sur le plan OXY

x la projection de m sur l'axe OX

y la projection de m sur l'axe OY

z la projection de M sur l'axe OZ

$$\overrightarrow{OM} = \overrightarrow{Om} + \overrightarrow{mM} = (\overrightarrow{Ox} + \overrightarrow{Oy}) + \overrightarrow{Oz} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$

- Les variables sont $(x, y, z) \Rightarrow \overrightarrow{OM} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
- Déplacement élémentaire associé à un point M est $\overrightarrow{dl} = \overrightarrow{MM'} = dx.\overrightarrow{i} + dy.\overrightarrow{j} + dz.\overrightarrow{k}$

■ Surfaces élémentaires associées à un point *M* sont

dS=dx.dy dans le plan (\vec{i}, \vec{j})

dS=dx.dz dans le plan (\vec{i}, \vec{k})

dS=dy.dz dans le plan (\vec{j}, \vec{k})

• Volume élémentaire associé à un point M est dv=dx.dy.dz

Annexe 55/65

I.4.2 – Coordonnées cylindriques

Un point M de l'espace est repéré par les coordonnées ρ , φ et z dans la base orthonormée directe $(\vec{e}_{\rho}, \vec{e}_{\varphi}, \vec{e}_{z})$.

Soient *m* la projection de *M* sur le plan OXY

$$\rho = |\overrightarrow{Om}| \text{ la distance à l'axe OZ } (0 \le \rho < \infty)$$

$$\varphi = (OX, \overrightarrow{Om}) \text{ l'angle dans le plan OXY entre l'axe OX et le vecteur } \overrightarrow{Om} \ (0 \le \varphi \le 2\pi)$$

$$z = |\overrightarrow{mM}| \text{ la distance entre les points } m \text{ et } M \ (-\infty < z < +\infty)$$

$$\overrightarrow{OM} = \overrightarrow{Om} + \overrightarrow{mM} = \rho.\vec{e}_{\rho} + z.\vec{e}_{z} = \rho.\vec{e}_{\rho} + z.\vec{k}$$

Les variables sont
$$(\rho, \varphi, z) \Rightarrow \overrightarrow{OM}$$

$$e_{\rho}, e_{\varphi}, e_{z}$$

$$\begin{pmatrix} \rho \\ 0 \text{ et dans } (\vec{i}, \vec{j}, \vec{k}) \text{ on a } \overrightarrow{OM} \\ z \end{pmatrix} \begin{pmatrix} x = \rho.\cos\varphi \\ y = \rho.\sin\varphi \\ z \end{pmatrix}$$

■ Déplacement élémentaire associé à un point M est $\overrightarrow{dl} = \overrightarrow{MM} = d\rho \cdot \overrightarrow{e}_{\rho} + \rho \cdot d\phi \cdot \overrightarrow{e}_{\phi} + dz \cdot \overrightarrow{e}_{z}$

■ Surfaces élémentaires associées à un point M sont

 $dS = \rho . d\rho . d\varphi$ dans le plan $(\vec{e}_{\rho}, \vec{e}_{\varphi})$

 $dS = d\rho . dz$ dans le plan $(\vec{e}_{\rho}, \vec{e}_{z})$

 $dS = \rho.d\varphi.dz$ dans le plan ($\vec{e}_{\varphi}\,,\vec{e}_{z}\,)$

■ Volume élémentaire associé à un point M est $dv = \rho.d\rho.d\varphi.dz$

Annexe 56/65

Cas particulier : Coordonnées polaires

Si z=0, le système de coordonnées cylindriques se réduit au système de coordonnées polaires planes

Où
$$\rho = |\overrightarrow{OM}|$$
 est le rayon polaire $(\theta \le \rho < \infty)$

$$\varphi = (OX, \overrightarrow{OM})$$
 est l'angle polaire $(0 \le \varphi \le 2\pi)$

$$\overrightarrow{OM} = \rho . \overrightarrow{e}_{\rho}$$
 et dans la base $(\overrightarrow{i}, \overrightarrow{j})$ on l'exprime par $\overrightarrow{OM}_{i,j,k} \begin{pmatrix} x = \rho.\cos\varphi \\ y = \rho.\sin\varphi \end{pmatrix}$

avec
$$\rho = \sqrt{x^2 + y^2}$$
 et $\varphi = arctg\left(\frac{y}{x}\right)$

I.4.3 – Coordonnées sphériques

Un point M de l'espace est repéré par les coordonnées r, θ et φ dans la base orthonormée directe $(\vec{e}_r, \vec{e}_\theta, \vec{e}_\omega)$.

Soient *m* la projection de *M* sur le plan OXY

$$r = |\overrightarrow{OM}|$$
 la distance par rapport à $O(0 \le r < \infty)$

$$\theta = (OZ, \overrightarrow{OM})$$
 l'angle entre l'axe OZ et le vecteur \overrightarrow{OM} $(0 \le \theta \le \pi)$

$$\varphi = (OX, \overrightarrow{Om})$$
 l'angle dans le plan OXY entre l'axe OX et le vecteur \overrightarrow{Om} $(0 \le \varphi \le 2\pi)$

$$\overrightarrow{OM} = r.\overrightarrow{e}_r$$

$$OM = r.\vec{e}_r$$

Les variables sont $(r, \theta, \varphi) \Rightarrow \overrightarrow{OM}$

$$e_r, e_\theta, e_\varphi$$

$$\begin{pmatrix} r \\ 0 \\ 0 \end{pmatrix}$$

Annexe 57/65

et dans
$$(\vec{i}, \vec{j}, \vec{k})$$
 on a \overrightarrow{OM}

$$(x = r.\sin\theta.\cos\varphi)$$

$$y = r.\sin\theta.\sin\varphi$$

$$z = r.\cos\theta$$

 \blacksquare Déplacement élémentaire associé à un point M est

$$\overrightarrow{dl} = \overrightarrow{MM'} = dr.\overrightarrow{e}_r + r.d\theta.\overrightarrow{e}_\theta + r.\sin\theta.d\varphi.\overrightarrow{e}_\phi$$

 \blacksquare Surfaces élémentaires associées à un point M sont

$$dS = r.dr.d\theta$$
 dans le plan $(\vec{e}_r, \vec{e}_\theta)$

$$dS = r \cdot \sin \theta \cdot dr \cdot d\varphi$$
 dans le plan $(\vec{e}_r, \vec{e}_{\varphi})$

$$dS = r^2 . \sin \theta . d\theta . d\varphi$$
 dans le plan $(\vec{e}_{\theta}, \vec{e}_{\varphi})$

• Volume élémentaire associé à un point M est $dv = r^2 . \sin \theta . dr . d\theta . d\phi$

II – Analyse vectorielle

II.1 – Champs scalaire ou vectoriel

i- On dit qu'on a un champ scalaire dans une région si à chaque point de l'espace M(x,y,z) est associé une fonction scalaire f(M)=f(x,y,z) par exemple champ de température, champ de densité, etc.

ii- On dit qu'on a un champ vectoriel dans une région si à chaque point de l'espace M(x,y,z) est associé un vecteur $\vec{V}(M) = V_x.\vec{i} + V_y.\vec{j} + V_z.\vec{k}$ par exemple champ électrique, champ de pesanteur, etc.

II.2 – Opérateurs différentiels

II.2.1- Gradient d'un champ scalaire

Soit f(x,y,z) une fonction scalaire, calculons sa différentielle totale en coordonnées cartésiennes

$$df(x, y, z) = \left(\frac{\partial f}{\partial x}\right)_{y, z} dx + \left(\frac{\partial f}{\partial y}\right)_{z, x} dy + \left(\frac{\partial f}{\partial z}\right)_{x, y} dz$$

On remarque que c'est un produit scalaire de deux vecteurs

Annexe 58/65

le vecteur déplacement $d\vec{l}$ $\begin{pmatrix} dx \\ dy \\ dz \end{pmatrix}$ et d'un vecteur gradient de f(x,y,z) noté \overrightarrow{grad} $\begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}_{z,x} \begin{pmatrix} \frac{\partial f}{\partial z} \\ \frac{\partial f}{\partial z} \end{pmatrix}_{x,y}$

d'où
$$df(x, y, z) = \overrightarrow{grad}f.\overrightarrow{dl}$$
 et
$$\overrightarrow{grad}f(x, y, z) = \left(\frac{\partial f}{\partial x}\right)_{y, z} \overrightarrow{i} + \left(\frac{\partial f}{\partial y}\right)_{z, x} . \overrightarrow{j} + \left(\frac{\partial f}{\partial z}\right)_{x, y} \overrightarrow{k}$$

Le gradient est un vecteur attaché à une fonction scalaire. Il nous renseigne sur la variation de f(x,y,z) au voisinage d'un point M(x,y,z).

Cas important: Potentiel scalaire

En coordonnées cartésiennes, un champ de vecteurs $\vec{V}(x,y,z)$ de composantes (V_x, V_y, V_z) dérive d'un potentiel scalaire U(x,y,z) si en tout point de définition du vecteur \vec{V} on a

$$\vec{V}(x, y, z) = -\overrightarrow{grad}U$$

avec
$$V_x = -\left(\frac{\partial U}{\partial x}\right)_{y,z}$$
, $V_y = -\left(\frac{\partial U}{\partial y}\right)_{z,x}$ et $V_z = -\left(\frac{\partial U}{\partial z}\right)_{x,y}$

II.2.2- Divergence d'un champ vectoriel

Soit $\vec{V}(x, y, z)$ un champ de vecteur de composantes (V_x, V_y, V_z) . Par définition la divergence de \vec{V} est donnée en coordonnées cartésiennes par

$$div\vec{V} = \left(\frac{\partial V_x}{\partial x}\right)_{y,z} + \left(\frac{\partial V_y}{\partial y}\right)_{z,x} + \left(\frac{\partial V_z}{\partial z}\right)_{x,y}$$

La divergence est un scalaire attaché à une fonction vectorielle.

II.2.3- Rotationnel d'un champ vectoriel

Par définition le rotationnel de $\vec{V}(x,y,z)$ en coordonnées cartésiennes est donné par

$$\overrightarrow{rot}\overrightarrow{V} = \left(\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z}\right)\overrightarrow{i} + \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x}\right)\overrightarrow{j} + \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y}\right)\overrightarrow{k}$$

Le rotationnel est un vecteur attaché à une fonction vectorielle.

II.2.4- Laplaciens scalaire et vectoriel

Soient f(x,y,z) une fonction scalaire et $\vec{V}(x,y,z)$ un vecteur. Le Laplacien en coordonnées cartésiennes est donné par

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$
$$\Delta \vec{V} = \Delta V_x \cdot \vec{i} + \Delta V_y \cdot \vec{j} + \Delta V_z \cdot \vec{k}$$

59/65 Annexe

II.3 – Intégrales vectorielles

II.3.1- Circulation d'un vecteur

On appelle circulation du vecteur \vec{V} le long de la courbe (C) de A à B, l'intégrale curviligne notée

$$\zeta(\vec{V}) = \int_{AB} \vec{V} \cdot d\vec{l} = \int_{AB} V \cdot dl \cdot \cos\theta$$

Cas particulier : Circulation d'un vecteur \vec{V} qui dérive d'un potentiel scalaire

Si
$$\vec{V}(M) = -\overrightarrow{grad}U(M)$$

sa circulation le long d'un chemin AB est donnée par

$$\zeta(\vec{V}) = \int_{A}^{B} \vec{V}(M) . d\vec{l} = -\int_{A}^{B} \overline{gradU(M)} . d\vec{l} = -\int_{A}^{B} dU(M) = U_{A} - U_{B}$$
 Elle ne dépend pas du chemin suivi mais seulement des points initial A et final B . Par

conséquent, la circulation sur un contour fermé est donc nulle quel que soit (C)

$$\oint_{(C)} \vec{V}(M) . d\vec{l} = 0$$

II.3.2- Flux d'un vecteur à travers une surface

En définissant un vecteur unitaire \vec{n} orienté de la face intérieure à la face extérieure, alors un élément de surface est donné par $\overrightarrow{dS} = \overrightarrow{n}.dS$

On appelle flux totale de \vec{V} à travers une surface (S) l'expression

$$\Phi = \iint_{(S)} d\Phi = \iint_{(S)} \vec{V}(M) \cdot \vec{dS} = \iint_{(S)} V(M) \cdot dS \cdot \cos\theta$$

II.3.3- Théorème de Stokes

Soit (C) une courbe fermée et orientée dans un sens et soit (S) une surface qui s'appuie sur (C) et dont la normale \vec{n} est engendrée par l'orientation de (C) en appliquant la règle du tirebouchon.

La circulation d'un vecteur \vec{V} sur le contour (C) est égale au flux de \overrightarrow{rotV} à travers la surface (S) s'appuyant sur (C)

$$\oint_{(C)} \vec{V}(M).d\vec{l} = \iint_{(S)} \overrightarrow{rotV}(M).\overrightarrow{dS} = \iint_{(S)} \overrightarrow{rotV}(M).\vec{n}.dS$$

Annexe 60/65

Conséquence :

Si
$$\vec{V}(M) = -\overrightarrow{grad}U(M) \implies \oint_{(C)} \vec{V}(M).d\vec{l} = 0 \quad \forall (C)$$

et par la suite

$$\iiint_{(S)} \overrightarrow{rotV}(M).\overrightarrow{dS} = 0 \quad \forall (S)$$

La condition nécessaire et suffisante pour qu'un champ de vecteurs \vec{V} dérive d'un potentiel scalaire est $\overrightarrow{rotV} = \vec{0}$

$$\vec{V}(M) = -\overrightarrow{grad}U(M) \Leftrightarrow \overrightarrow{rot}\vec{V}(M) = \vec{0}$$

II.3.4- Théorème d'Ostragradski ou Green

Soit une surface (S) fermée limitant un volume (θ) et orientée suivant \vec{n} vers l'extérieur.

Le flux d'un vecteur \vec{V} à travers une surface fermée (S) est égale à l'intégrale triple de la divergence de \vec{V} sur le volume (θ) limité par cette surface.

$$\iint_{(S)} \vec{V}(M) \cdot \vec{dS} = \iiint_{(S)} di \vec{W}(M) \cdot d\tau$$

Conséquence : Flux conservatif

Si \vec{V} est à flux conservatif on a

$$\iint_{(S)} \vec{V}(M) . \vec{dS} = 0 \ \forall (S)$$

et par la suite

$$\iiint_{(\mathfrak{S})} di \vec{W}(M) d\tau = 0 \quad \forall (\mathfrak{S})$$

La condition nécessaire et suffisante de conservabilité du flux d'un champ de vecteurs \vec{V} est $div\vec{V}(M) = 0$

$$\vec{V}$$
 à flux conservatif $\Leftrightarrow div\vec{V}(M) = 0$

III – Angle solide

III.1 – Angle plan

Soit un cercle de centre O, de rayon R et de périmètre (P)

L'angle plan élémentaire $d\theta$ est défini par le rapport

$$d\theta = \frac{dP}{R}$$

où dP est un arc de cercle en mètre et R est le rayon du cercle en mètre. L'unité de ce rapport (sans dimension) est le radian (rd). Annexe 61/65

III.2 - Angle solide

Par analogie, on définit un angle élémentaire dans l'espace en remplaçant l'arc dP par une surface élémentaire dS ($\forall M \in dS$ est à la distance R du point O) par le rapport (sans dimension)

$$d\Omega = \frac{dS}{R^2}$$

Cet angle est appelé l'angle solide sous lequel on voit l'élément de surface dS à partir de O. Son unité est le stéradian (Sr).

Cas général : dS est quelconque

$$d\Omega = \frac{dS_1}{(OM)^2} = \frac{dS \cdot \cos \theta}{(OM)^2} = \frac{dS \cdot \vec{n} \cdot \vec{u}}{(OM)^2}$$

En considérant le vecteur unitaire $\vec{u} = \frac{\overrightarrow{OM}}{OM}$ d'où

$$d\Omega = \frac{\overrightarrow{dS}.\overrightarrow{u}}{(OM)^2}$$

L'angle solide totale sous lequel on voit toute la surface (S) à partir du point O est donné par

$$\Omega = \iint_{(S)} \frac{\overrightarrow{dS}.\overrightarrow{u}}{(OM)^2} = \iint_{(S)} \frac{\overrightarrow{OM}}{(OM)^3} \overrightarrow{dS}$$