A/B Test Analysis for Foodtech Company

Yu-Jen Wang

Table of contents

- Abstract
- Experimental background
- Experimental Procedure
- Key Findings & Statistical Analysis
- Final Conclusion &Business Recommendation

Abstract

This study examines whether larger food images on restaurant menus improve conversion rates through A/B testing. We evaluated data preprocessing methods (removing missing values, imputation, and stratified sampling) to ensure reliability.

Key Findings:

- Larger images → Higher conversion
- Stratified sampling → Stability & reduced bias
- Event type & platform → UX impact

Business Impact:

- Better images → Higher engagement & conversions
- Segmentation (iOS vs. Android) → Improved UX
- A/B testing expansion → Long-term validation

Experimental Background

- Objective → Test if larger menu images boost conversions.
- **Hypothesis** → Bigger images increase engagement & orders.
- **Key Metrics** → Conversion rate (successful orders).
- Challenges → Missing data, bias, sampling strategies.
- Analysis → Preprocessing, Statistical Testing, UX impact.

Experimental Procedure

1. Data Preprocessing

- Handle missing values (final_order_status, shop_id)
- Convert datetime format, remove duplicates

2. Data Processing Methods

- df_1 → Original data
- df_2 → Drop **shop_id** missing values
- df_3 → Drop **final_order_status** missing values
- $df_3 = df_4 \rightarrow Only keep df_3$

3. Variance Analysis

- Check event_id, session_id, user_id impact
- Ensure variation balance (A/B groups)
- Analyze platform & event type effects

Impact of Key Variables on A/B Testing

Dataset	Duplicate event_id	Unique session_id	Unique user_id	Total records
df_1 (Original Data)	603	179294	100000	326921
df_2 (Drop shop_id NaN)	561	168215	96293	315842
df_3 (Drop final_order_stat us NaN)	169	52418	42338	17063

A/B Test Group Distribution Across Different Dataframes

Experimental Procedure

4. Statistical Testing

- Conversion rate comparison
- T-test & Chi-square test to measure significance

5. Robustness Test: Stratified Sampling (frac=0.5)

• Ensured stability & reduced bias

Key Findings & Statistical Analysis

- Larger images significantly increased conversion rates
- Stratified sampling confirmed result stability
- NaN Imputation & Stratified Sampling produced consistent results
- T-Test and Chi-Square Test confirmed statistical significance (p < 0.05)

Dataset	T-Statistic	P-Value
df_3 (Original)	27.68	3.80e-168 (Significant)
Stratified Sampling (30%)	15.83	3.01e-56 (Significant)
Stratified Sampling (50%)	20.59	6.35e-94 (Significant)
Stratified Sampling (70%)	22.64	3.14e-113 (Significant)

Dataset	Chi-Square Statistic	P-Value
df_3 (Original)	698.27	7.11e-154 (Significant)
Stratified Sampling (30%)	226.89	2.84e-51 (Significant)
Stratified Sampling (50%)	384.67	1.19e-85 (Significant)
Stratified Sampling (70%)	468.35	7.32e-104 (Significant)

Final Conclusion

- Larger food images significantly increased conversion rates across all dataset versions.
- Statistical analysis confirmed a significant improvement (p < 0.05).
- Stratified sampling ensured stability & reduced bias, confirming the robustness of results.
- Platform differences (iOS vs. Android) impact user behavior, suggesting potential UX optimization.

Business Recommendation

Short-Term Actions (Immediate Implementation)

- Deploy larger images across all restaurant menus to maximize conversion rates.
- Monitor key UX events (entry_to_shop, order_paid) to further optimize the user journey.
- Refine the design for mobile platforms, addressing differences in iOS vs. Android engagement.

Long-Term Strategies (Future Optimization)

- Expand A/B testing to other UI elements, such as image positioning and restaurant page layout.
- Segment analysis for different user groups (e.g., frequent vs. occasional buyers).
- Explore personalization strategies, such as AIdriven recommendations based on user preferences.

Future Considerations: Limitations & Recommendations

Test design limitations

1. **Test Duration** – The 6-day test period (11/25 - 11/30) may be too short to capture long-term user behavior and repurchase trends.

2. **Randomization** – No detailed verification of user randomization; potential imbalances in user behavior could skew results.

3. **External Factors** – Black Friday (11/29) promotions and time-based activity peaks (lunch/dinner) may have influenced conversion rates.

Improvements: Extend test duration, validate randomization, and control for external influences to ensure reliable results.

Thank you for listening

Yu-Jen Wang

ztex060033153@gmail.com

Platform (iOS vs. Android) & Conversion Rate

datetime_event (time) & conversion rate

Event_type & conversion rate

Chi-Square Test: Platform vs. Converted

Chi-Square Test: Event Type vs. Converted

