EEE205 – Digital Electronics (II) Lecture 10

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

1

3

The Prime Implicant Chart

- If a minterm is covered by only one prime implicant (a column contains only one X), the prime implicant is an *essential prime implicant* and the X is circled.
- Essential prime implicants must be included in the minimum sum of products.

		0	1	2	5	6	7	8	9	10	14	
(0, 1, 8, 9)	b'c'	×	×					×	\otimes			
(0, 2, 8, 10)	b'd'	×		X				X		×		
(2, 6, 10, 14)	cd'			×		×				×	\otimes	
(1, 5)	a'c'd		×		×							
(5, 7)	a'bd				×		×					
(6, 7)	a'bc					×	×					

The Prime Implicant Chart

- The minterms are listed across the top.
- The prime implicants are listed down the side.
- If a prime implicant covers a given minterm, an X is placed at the intersection.

		0	1	2	5	6	7	8	9	10	14	
(0, 1, 8, 9)	b'c'	×	×					×	\otimes			
(0, 2, 8, 10)	b'd'	×		×				×		×		
(2, 6, 10, 14)	cd'			×		×				×	\otimes	
(1, 5)	a'c'd		X		×							
(5, 7)	a'bd				×		×					
(6, 7)	a'bc					×	×					

- 2

The Prime Implicant Chart

- Each time a prime implicant is selected for inclusion in the minimum sum, cross out:
 - The corresponding row
 - The columns which correspond to all minterms covered by that prime implicant.

•

The Prime Implicant Chart

- The essential prime implicants are chosen first.
- Then additional non-essential prime implicants are selected by trial.
- They should cover as many minterms as possible.

f = b'c' + cd' + a'bd (minimum sum of products)

5

7

Karnaugh Map's View

Finding Prime Implicants

6

The Prime Implicant Chart

This example is to show how to select non-essential prime implicants when alternative solutions exist.

$$F = \sum m(0, 1, 2, 5, 6, 7)$$

The Prime Implicant Chart

Step 2

There are two minimum sum-of-products solutions.

The Prime Implicant Chart

Equivalent Karnaugh Maps

$$F = a'b' + bc' + ac.$$

$$F = a'c' + b'c + ab$$

11

Simplification of Functions with Don't Cares

- In finding the prime implicants, the don't cares are treated as minterms.
- When forming the prime implicant chart, the don't cares are NOT listed at the top.

$$F(A, B, C, D) = \sum m(2, 3, 7, 9, 11, 13) + \sum d(1, 10, 15)$$

10

Simplification of Functions with Don't Cares

Find Prime Implicants

1	0001 🗸	(1, 3)	00–1 🗸
2	0010 🗸	(1, 9)	-001 ✔
3	0011 🗸	(2, 3)	001- ✓
9	1001 🗸	(2, 10)	- 010 ✓
10	1010 🗸	(3, 7)	0-11 🗸
7	0111 🗸	(3, 11)	- 011 ✓
11	1011 🗸	(9, 11)	10–1 🗸
13	1101 🗸	(9, 13)	1-01 🗸
15	1111 🗸	(10, 11)	101- ✓
		(7, 15)	-111 ✓
		(11, 15)	1–11 🗸
		(13, 15)	11-1 🗸

Simplification of Functions with Don't Cares

Karnaugh Map's View

Simplification of Functions with Don't Cares

Find Prime Implicants

1	0001 🗸	(1, 3)	00−1 🗸	(1, 3, 9, 11)	-0-1
2	0010 🗸	(1, 9)	-001 ✔	(2, 3, 10,11)	-01-
3	0011 🗸	(2, 3)	001- ✔	(3, 7, 11, 15)	11
9	1001 🗸	(2, 10)	-010 ✔	(9, 11, 13, 15)	11
10	1010 🗸	(3, 7)	0-11 🗸		
7	0111 🗸	(3, 11)	- 011 ✓		
11	1011 🗸	(9, 11)	10-1 🗸		
13	1101 🗸	(9, 13)	1-01 🗸		
15	1111 ✓	(10, 11)	101- ✓		
		(7, 15)	-111 ✓		
		(11, 15)	1–11 🗸		
		(13, 15)	11-1 🗸		

Simplification of Functions with Don't Cares

Karnaugh Map's View

Simplification of Functions with Don't Cares

Prime Implicant Chart

- This is to find the minimum set of prime implicants.
- Always start from essential prime implicants.

^{*}indicates an essential prime implicant.

Simplification of Functions with Don't Cares

Karnaugh Map's View

