SMD-Übungsblatt 11

Abgabe: 24.01.19

Yvonne Kasper yvonne.kasper@udo.edu , Robert Appel robert.appel@udo.edu , Julian Schröer julian.schroeer@udo.edu

1 Aufgabe1

Wir betrachten zwei Hypotesen:

$$\Delta E_A = 31.3\,\mathrm{meV} \quad \mathrm{und} \quad \Delta E_B = 30.7\,\mathrm{meV} \;. \tag{1}$$

Der χ^2 -Test wird wie folgt durch geführt:

$$t = \sum_{i=1}^{n} \frac{(\Delta E_i - \Delta E_H)^2}{\sigma_{t,i}^2} = \chi^2 , \qquad (2)$$

dabei bezeichnet t die Testgröße, ΔE_i die Messwerte, ΔE_H den Wert der Hypothese und σt , t = 0, 5 den Fehler dessen. Die Hypothese wird angenommen, wenn t einer χ^2 -Verteilung folgt. Das wird überprüft indem die χ^2 -Verteilung für die n Freiheitsgerade der Messwerte betrachtet wird und ein Annahme- und Verwurfsbereich abgesteckt wird. Der Annahmebreich enthält $(1-\alpha)$ der Fläche unter der Wahrscheinlichkeitsdichte des Testes. Der Verwurfsbreich enthält α der Fläche und ist die Signifikanz.

Hier ist n = 7 und $\alpha = 0,05$, damit ergibt sich $\chi^2_{(1-\alpha)} = 14,07^{1}$. Mit Gleichung (2) ergibt sich

$$t_A \approx 3,04 \quad \text{und} \quad t_B \approx 10,96$$
 (3)

Für beide Testgrößen gilt $\leq 14,07$ damit wären beide Hypotesen angenommen. Bei genauerer Betrachtung ist $t_A < t_B \leq 14,7$ also t_B wesentlich nähr an der Verteilung als t_A . Deshalb sollte die Hypotese A verworfen werden und die Hypotese B weiterverfolgt werden, da diese die Messung besser beschreibt.

4/SP.

2 Aufgabe 2

2.1 Teil a)

Da bei der Poissonverteilung sowohl der Mittelwert als auch die Varianz durch λ gegeben ist, wählen wir für die Gaußverteilung $\mu = \lambda$ und $\sigma^2 = \lambda$. Da ich nicht weiß, wie ich das beweisen soll, habe ich ein Paar Beispielplots gemacht.

O.5P.

¹Entnommen aus http://eswf.uni-koeln.de/glossar/chivert.htm.

Abbildung 1: Beispielplots der Gauß- und Poissonverteilung mit drei unterschiedlichen λ .

Das sieht doch ganz ähnlich aus.

stimmt "

2.2 Teil b)

Kolmogorow-Smirnow-Test wurde wie in der Vorlesung beschreiben implementiert.

2.3 Teil c) und d)

Es wurden für die Konfidenzniveaus $\alpha=0,05$, $\alpha=0,025$ und $\alpha=0,001$ alle ganzzahligen $\lambda\in[1,15]$ getestet.

Für $\alpha=0,05$ kann der Kolmogorow–Smirnow-Test ab $\lambda=8$ nicht mehr unterscheiden.

Für $\alpha=0,025$ kann der Kolmogorow–Smirnow-Test für $\lambda=6$ nicht mehr unterscheiden, dann für $\lambda=7$ gehts wieder und ab $\lambda=8$ dann nicht mehr. Ich nehme an das liegt an den gezogenen Zufallszahlen.

Für $\alpha=0,001$ kann der Kolmogorow–Smirnow-Test ab $\lambda=5$ nicht mehr unterscheiden.

45

5/5P.

3 Aufgabe 5

a Die Nullhypotese hier besagt, dass der Bin i den Erwartungswert μ_i besitzt. Die Zahl der Eintrage n_i im Bin i sind Zufallsvariablen verteilt gemäß der Poisson-Verteilung. Damit folgt

$$P(n_i|\mu_i) = \frac{\mu_i^{n_i} \exp(-\mu_i)}{n_i!} \quad \text{für} \quad n_i$$
 (4)

$$P(m_i|\mu_i) = \frac{\mu_i^{m_i} \exp(-\mu_i)}{m_i!} \quad \text{für} \quad m_i \quad \checkmark$$
 (5)

die Wahrscheinlichkeitsdichte für ein Eintrag in einem Bin.

ABOR: Wintmin

AP

b Hier bietet es sich an die negative Log-Likelyhood Funktion zu verwenden.

$$F(\mu_{i}) = -\sum_{i=1}^{r} \log(P(n_{i}|\mu_{i}) \cdot P(m_{i}|\mu_{i}))$$

$$= -\sum_{i=1}^{r} \log\left(\frac{\mu_{i}^{n_{i}} \exp(-\mu_{i})}{n_{i}!}\right) - \sum_{i=1}^{r} \log\left(\frac{\mu_{i}^{m_{i}} \exp(-\mu_{i})}{m_{i}!}\right)$$

$$= -\sum_{i=1}^{r} (n_{i} + m_{i}) \log(\mu_{i}) + 2\sum_{i=1}^{r} \mu_{i} + \sum_{i=1}^{r} \log(n_{i}! \cdot m_{i}!)$$

$$= konst, da \mu_{i} unabhängig$$
(6)

Die Likelyhood muss nun minimiert werden,deshalb

Augabe ist

$$\frac{dF(\mu_i)}{d\mu_i} \stackrel{!}{=} 0 \tag{7}$$

dF = 0!

$$\frac{dF(\mu_i)}{d\mu_i} = -\sum_{i=1}^r \frac{(n_i + m_i)}{\mu_i} + 2\sum_{i=1}^r 1$$
 (8)

$$\implies -\frac{1}{\mu_i} \sum_{i=1}^{r} (n_i + m_i) + 2r = 0 \tag{9}$$

$$\implies \hat{\mu}_i = \frac{\sum_{i=1}^r (n_i + m_i)}{2r} = \frac{N+M}{2r} \tag{10}$$

c Der χ^2 -Test ist gegeben über

$$t = \chi^2 = \sum_{i=1}^r \frac{(n_i - n_0)^2}{n_0} + \sum_{i=1}^r \frac{(m_i - m_0)^2}{m_0}$$
(11)

mit $n_0 = \frac{N}{r}$ und $m_0 = \frac{M}{r}$. \leftarrow Nimmt in Jeden Sir gleichen vert ni, mi an?

d Die χ^2 -Verteilung hat k=r Freiheitsgerade, vorrausgesetzt die Einträge sind nicht normiert. Dann wäre der Freiheitsgerade k=r-1.

Für den hier verwendeten χ^2 -Test wird die Gaußsche-Nährung $\sigma^2=n_0$ verwendet, diese ist aber nur für n_o hinreichend groß (> 10) erfüllt. Ist $n_0<10$ kann dem Test nicht mehr vertraut werden, da er nicht mehr einer χ^2 -Verteilung folgt.

16.

e Für den angegeben χ^2 -Test ergibt sich $t \approx 8.43$. Nun werden die Signifikanzen $\alpha = 0, 1; 0, 05; 0, 01$ betraachtet, damit ergibt sich $(1 - \alpha) = 0, 9; 0, 95; 0, 99$. Die dazu gehörigen χ^2 -Werte für k = 3 sind $\chi^2(3) = 6, 25; 7, 81; 11, 34$ damit würde die Nullhypotese nur für $\alpha = 0, 01$ nicht verworfen werden.

AP.

h=2, ansonsten on

Code fuer Blatt11

Kasper, Appel, Schroeer 28. Januar 2019

```
ldef Aufgabe2():
              def G(x, mu, sigma):
                       return ((1/np.sqrt(2 * np.pi * sigma**2)) * np.exp(-((x - mu)**2)/(2 * sigma**2)))
              1 \text{ values} = [12, 17, 22]
              linestyles_values = ['-', '--', ':']
              for lamdahh, ls_v in zip(l_values, linestyles_values):
                       dist = poisson(lamdahh)
                       x = np.arange(-1, 300)
                       plt.plot(x, dist.pmf(x), ls=ls_v, color='black',
13
                                            label=r'Poisson mit $\lambda=\is' \% lamdahh)
14
                       plt.plot(x, G(x, lamdahh, np.sqrt(lamdahh)), ls=ls\_v, color='red', label=r'Gauß mit $\pi = 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.000 + 1.0
              \sigma^2=%i$'%lamdahh )
15
             plt.xlim(-0.5, 40)
16
             plt.ylim(0, 0.2)
             plt.legend()
19
             plt.xlabel('$x$')
19
             plt.ylabel(r'$p(x)$')
20
             plt.title('Poisson und Gauß')
21
             plt.savefig('testplot.pdf')
             plt.clf()
             def Kologomorow(A, B, alpha):
27
                       KulSummeA = np.cumsum(A[0])
28
                       KulSummeB = np.cumsum(B[0])
                      Abstand = max(np.abs(KulSummeA - KulSummeB))
29
                      langeA, langeB = len(A[0]), len(A[0])
30
                      d = np.sqrt(langeA * langeB / (langeA + langeB)) * Abstand
32
                      K_alpha = np.sqrt(1/2 * np.log(2 / alpha))
33
34
                      ablehnen = False
35
                      if(d > K_alpha):
37
                               ablehnen = True
                      return ablehnen
             #-test- Kologomorow spuckt True aus.
             # lamdahh = 8
             # mu = lamdahh
41
             # sigma = np.sqrt(lamdahh)
42
             # p = np.random.poisson(lamdahh, 10000)
43
             # g = np.random.normal(mu, sigma, 10000)
44
             # g = np.floor(g)
45
46
             \# bins = np.linspace(lamdahh - 5*np.sqrt(lamdahh), lamdahh + 5*np.sqrt(lamdahh), 100)
48
             # phist = np.histogram(p, bins=bins, density=True)
             # ghist = np.histogram(g, bins=bins, density=True)
             # print(Kologomorow(phist,ghist,0.25))
             for alpha in (0.05, 0.025, 0.001):
53
                      print('alpha ist:', alpha)
54
                       for lamdahh in range(1, 15, 1):
55
```

mu = lamdahh

```
sigma = np.sqrt(lamdahh)
57
                 p = np.random.poisson(lamdahh, 10000)
g = np.random.normal(mu, sigma, 10000)
58
59
60
                  g = np.floor(g)
61
                  bins = np.linspace(lamdahh - 5*np.sqrt(lamdahh), lamdahh + 5*np.sqrt(lamdahh), 100)
62
                  phist = np.histogram(p, bins=bins, density=True)
ghist = np.histogram(g, bins=bins, density=True)
64
65
€6
67
                  Kolo = Kologomorow(phist, ghist, alpha)
83
                  print('bei alpha =', alpha, 'und lambdah=', lamdahh, 'sagt -KolmogorowSmirnow:',
       Kolo)
70
71
       print ('Sorry für den Spam')
72
73 if __name__ == '__main__':
74 import numpy as np
75 from scipy.stats import poisson
       import matplotlib.pyplot as plt
76
77
       Aufgabe2()
```