scClassifier-Human-PBMC

Feng Zeng

2019/12/18

Basic Steps of scClassifier

scClassifier provides a supervised method for the identification of common and rare cell types. scClassifier is comprised of two components. The first component is a probabilistic bag-of-standard-cells model to characterize the transcriptome complexity associated with cell types. The second component is a cell network to tackle the interference of sequencing noises on cell type prediction.

Therefore, the basic steps of the use of scClassifier are as follows,

- 1. Select a set of genes that are informative;
- 2. Train the bag models and then predict cell types for single cells;
- 3. Use the network ensemble to tackle the disturbance of sequencing noises.

This quick tutorial is to walk through the above steps of scClassifier by applying it to analyze a simple PBMC scRNA-seq dataset.

Step Zero

First, we load the required packages, PBMC scRNA-seq dataset, and the reference database.

```
# load packages
suppressPackageStartupMessages(
  suppressWarnings({
  library(dplyr)
 library(scClassifier)
  library(SingleCellExperiment)
}))
# load PBMC dataset
# The scRNA-seq data is a Seurat object.
load("pbmc3k.RData")
# load Immuno-Navigator database as reference
# The reference database is a ExpressionSet object.
load("immuno_navigator_human_expression.RData")
immuno.X <- exprs(immuno_navigator_human_expression)</pre>
immuno.X[immuno.X < 0] <- 0</pre>
immuno.y <- pData(immuno_navigator_human_expression)</pre>
```

Step One

This step is to select the informative genes. The procedures are as follows:

- 1. Collect highly variable genes;
- 2. Collect significant genes from PCA;
- 3. Combine genes collected at 1 and 2;
- 4. Identify differentially expressed genes out of genes collected at 3.

The above procedure is wrapped in SeuratDEGenes as a function of scClassifier.

```
genes.use <- SeuratDEGenes(pbmc3k@raw.data %>% as.matrix, min.diff.pct = 0.01)
genes.use <- intersect(genes.use, rownames(immuno.X))</pre>
```

Step Two

This step is to predict cell types for single cells. The training procedure is built in DirichletMultinomialClassifier.

Step Three

This step is to tackle the disturbance of technical noises by cell network ensemble.

The classification accuracy is calculated as follows.

```
k <- z.smooth$celltype %>% as.character
message(cat("The accuracy is ", sum(k == pbmc3k@meta.data$type) / length(pbmc3k@cell.names)))
## The accuracy is 0.9613333
##
```