Information Retrieval

Weike Pan

The slides are adapted from those provided by Prof. Hinrich Schütze at University of Munich (http://www.cis.lmu.de/~hs/teach/14s/ir/).

Chapter 21 Link analysis

- 21.1 The Web as a graph
- 21.2 PageRank
- 21.3 Hubs and Authorities
- 21.4 References and further reading

Outline

- 21.1 The Web as a graph
- 21.2 PageRank
- 21.3 Hubs and Authorities
- 21.4 References and further reading

The web as a directed graph

- Assumption 1: A hyperlink is a quality signal.
 - The hyperlink d1 -> d2 indicates that d1's author deems (认为) d2
 high-quality and relevant.
- Assumption 2: The anchor text describes the content of d2.
 - We use anchor text somewhat loosely here for the text surrounding the hyperlink.

- Searching on [text of d2] + [anchor text -> d2] is often more effective than searching on [text of d2] only.
- Searching on [anchor text -> d2] is better for the query IBM.
 - In this representation, the page with the most occurrences of IBM is www.ibm.com.

- Indexing anchor text
 - Anchor text is often a better description of a page's content than the page itself.
 - Anchor text can be weighted more highly than the document text (based on Assumptions 1 and 2).

- Question
 - Assumption 1: A link on the web is a quality signal the author of the link thinks that the linked-to page is of high quality.
 - Is assumption 1 true in general?
 - Assumption 2: The anchor text describes the content of the linked-to page.
 - Is assumption 2 true in general?

 The terms Google bombing and Googlewashing refer to the practice of causing a website to rank highly in web search engine results for irrelevant, unrelated or off-topic search terms by linking heavily.

https://en.wikipedia.org/wiki/Google_bomb

- **Citation analysis**: analysis of citations in the scientific literature
- Example citation: "Miller (2001) has shown that physical activity ..."
 - We can view "Miller (2001)" as a hyperlink linking two scientific articles (即本论文和Miller (2001)论文).
- One application of these "hyperlinks" in the scientific literature:
 - Measure the similarity of two articles by the overlap of other articles citing them. This is called co-citation similarity.

- Another application: Citation frequency can be used to measure the impact of a scientific article
 - Simplest measure: Each citation gets one vote, citation frequency = inlink count
- However: A high inlink count does not necessarily mean high quality... mainly because of link spam.
 - Better measure: weighted citation frequency or citation rank
 - This is basically PageRank, which was invented in the context of citation analysis.

Outline

- 21.1 The Web as a graph
- 21.2 PageRank
- 21.3 Hubs and Authorities
- 21.4 References and further reading

- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably (相同概率地)
- In the steady state, each page has a long-term visit rate
- This long-term visit rate is the page's PageRank
- PageRank = long-term visit rate = steady state probability

Formalization of random walk: Markov chains

- A Markov chain consists of N states, plus an N × N transition probability matrix P.
- state = page
- At each step, we are on exactly one of the pages.
- For $1 \le i, j \le N$, the matrix entry P_{ij} tells us the probability of j being the next page, given we are currently on page i.
- Clearly, for each i, $\sum_{j=1}^{N} P_{ij} = 1$

$$(d_i) \xrightarrow{P_{ij}} (d_j)$$

- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- What properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain
 - Irreducibility (不可约): There is a path from any page to any other page.
 - Aperiodicity (非周期): The pages cannot be partitioned such that the random walker visits the partitions sequentially.

- At a dead end, jump to a random web page with probability 1/N.
- At a non-dead end
 - With probability $\frac{10\%}{10}$, jump to a random web page (to each with a probability of $\frac{0.1}{N}$)
 - With remaining probability 90%, go out on a random hyperlink
 - 10% is a parameter called the teleportation rate
- Note: "jumping" from a dead end is independent of the teleportation rate.
- With teleporting, we cannot get stuck in a dead end.
- Teleporting makes the web graph ergodic.

Calculation of PageRank (1/2)

- $\vec{\pi} = (\pi_1, \pi_2, \dots, \pi_N)$ is the PageRank vector, i.e., the vector of steady-state probabilities
- If the distribution in this step is \vec{x} (probability vector), then the distribution in the next step is $\vec{x}P$
- Because $\vec{\pi}$ is the steady state, we have $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$, which is the principal left eigenvector for P, i.e., $\vec{\pi}$ is the left eigenvector with the largest eigenvalue
- All transition probability matrices have largest eigenvalue 1

Calculation of PageRank (2/2)

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of P until convergence.
- This is called the power method.
- Regardless of where we start, we eventually reach the steady state $\vec{\pi}$

Example web graph

	PageRank
d_0	0.05
d_1	0.04
d_2	0.11
d_3	0.25
d_4	0.21
d_5	0.04
d_6	0.31

Why PageRank(d6) > PageRank(d2)?

																		P					
	d_0	d_1	d_2	d_3	d_4	d_5	d_6		d_0	d_1	d_2	d_3	d_4	d_5	d_6		d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0	0	1	0	0	0	0	d_0	0.00	0.00	1.00	0.00	0.00	0.00	0.00	d_0	0.02	0.02	0.88	0.02	0.02	0.02	0.02
d_1	0	1	1	0	0	0	0	d_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00	d_1	0.02	0.45	0.45	0.02	0.02	0.02	0.02
d_2	1	0	1	1	0	0	0	d_2	0.33	0.00	0.33	0.33	0.00	0.00	0.00	d_2	0.31	0.02	0.31	0.31	0.02	0.02	0.02
d_3	0	0	0	1	1	0	0	d_3	0.00	0.00	0.00	0.50	0.50	0.00	0.00	d_3	0.02	0.02	0.02	0.45	0.45	0.02	0.02
d_4	0	0	0	0	0	0	1	d_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00	d_4	0.02	0.02	0.02	0.02	0.02	0.02	0.88
d_5	0	0	0	0	0	1	1	d_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50	d_5	0.02	0.02	0.02	0.02	0.02	0.45	0.45
d_6	0	0	0	1	1	0	1	d_6	0.00	0.00	0.00	0.33	0.33	0.00	0.33	d_6	0.02	0.02	0.02	0.31	0.31	0.02	0.31

Step 1. Link matrix

Step 2. Transition probability matrix

Step 3. Transition matrix with teleporting

	\vec{x}	$\vec{x}P^1$	$\vec{x}P^2$	$\vec{x}P^3$	$\vec{x}P^4$	$\vec{x}P^5$	$\vec{x}P^6$	$\vec{x}P^7$	$\vec{x}P^8$	$\vec{x}P^9$	$\vec{x}P^{10}$	$\vec{x}P^{11}$	$\vec{x}P^{12}$	$\vec{x}P^{13}$
d_0	0.14	0.06	0.09	0.07	0.07	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05	0.05
d_1	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
d_2	0.14	0.25	0.18	0.17	0.15	0.14	0.13	0.12	0.12	0.12	0.12	0.11	0.11	0.11
d_3	0.14	0.16	0.23	0.24	0.24	0.24	0.24	0.25	0.25	0.25	0.25	0.25	0.25	0.25
											0.21			
d_5	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
											0.30			

Step 4. Power method

- Application of PageRank in IR
 - Step 1: Query processing
 - Step 2: Retrieve pages satisfying the query
 - Step 3: Rank them by their PageRank (In practice: rank according to weighted combination of raw text match, anchor text match, PageRank and other factors)
 - Step 4: Return a re-ranked list to the user

How important is PageRank?

Frequent claim: PageRank is the most important component of web ranking.

The reality:

- There are several components that are at least as important, e.g.,
 anchor text, phrases, proximity, tiered indexes ...
- Rumor has it that PageRank in its original form (as presented here)
 now has a negligible impact on ranking!
- However, variants of a page's PageRank are still an essential part of ranking.
- Addressing link spam is difficult and crucial.

Outline

- 21.1 The Web as a graph
- 21.2 PageRank
- 21.3 Hubs and Authorities
- 21.4 References and further reading

- There are two different types of relevance on the web
- Relevance type 1: Hubs. A hub page is a good list of [links to pages answering the information need].
- Relevance type 2: Authorities. An authority page is a direct answer to the information need.
- Most approaches to search (including PageRank ranking) don't make the distinction between these two very different types of relevance.

- A good hub page for a topic links to many authority pages for that topic.
- A good authority page for a topic is linked to by many hub pages for that topic.
- Circular definition -- we will turn this into an iterative computation.

- Do a regular web search first. Call the search result the root set.
- Find all pages that are linked from or link to pages in the root set. Call this larger set the base set.
- Finally, compute hubs and authorities for the base set (which we'll view as a small web graph)

- Root set typically has 200-1000 nodes
- Base set may have up to 5000 nodes
- Computation of base set, as shown on the previous slide
 - Follow outlinks by parsing the pages in the root set
 - Find d's inlinks by searching for all pages containing a link to d

- HITS can pull together good pages regardless of page content.
- Once the base set is assembled, we only do link analysis, no text matching.
- Pages in the base set often do not contain any of the query words.
- In theory, an English query can retrieve Japanese-language pages if supported by the link structure between English and Japanese pages.
- Danger: topic drift the pages found by following links may not be related to the original query.

- Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1
- Iteratively update all h(d), a(d)

- For all d: $a(d) = \sum_{y \mapsto d} h(y)$ ③
- Iterate these two steps until convergence

- After convergence:
 - Output pages with the highest h scores as top hubs
 - Output pages with the highest a scores as top authorities
 - So we output two ranked lists

- Scaling
 - To prevent the a() and h() values from getting too big, can scale down
 () after each iteration
 - Scaling factor doesn't really matter
 - We care about the **relative** (as opposed to absolute) values of the scores
- In most cases, the algorithm converges after a few iterations.

Step 0

Assuming the query *jaguar* and **double-weighting** of links whose anchors contain the query word.

$$\vec{h}_0$$
 \vec{h}_1 \vec{h}_2 \vec{h}_3 \vec{h}_4 \vec{h}_5
 d_0 0.14 0.06 0.04 0.04 0.03 0.03
 d_1 0.14 0.08 0.05 0.04 0.04 0.04
 d_2 0.14 0.28 0.32 0.33 0.33 0.33
 d_3 0.14 0.14 0.17 0.18 0.18 0.18
 d_4 0.14 0.06 0.04 0.04 0.04 0.04
 d_5 0.14 0.08 0.05 0.04 0.04 0.04
 d_6 0.14 0.30 0.33 0.34 0.35 0.35
Step 1 Step 3

$$\vec{a}_1$$
 \vec{a}_2 \vec{a}_3 \vec{a}_4 \vec{a}_5 \vec{a}_6 \vec{a}_7
 d_0 0.06 0.09 0.10 0.10 0.10 0.10 0.10
 d_1 0.06 0.03 0.01 0.01 0.01 0.01 0.01
 d_2 0.19 0.14 0.13 0.12 0.12 0.12 0.12
 d_3 0.31 0.43 0.46 0.46 0.46 0.47 0.47
 d_4 0.13 0.14 0.16 0.16 0.16 0.16 0.16
 d_5 0.06 0.03 0.02 0.01 0.01 0.01 0.01
 d_6 0.19 0.14 0.13 0.13 0.13 0.13 0.13
Step 2 Step 4

Example

	1.62	www.geocities.com/Colosseum/1778
www.nba.com/bulls		"Unbelieveabulls!!!!!"
www.essex1.com/people/jmiller/bulls.htm	1.24	www.webring.org/cgi-bin/webring?ring=chbulls
"da Bulls"		"Erin's Chicago Bulls Page"
www.nando.net/SportServer/basketball/nba/chi.html	0.74	www.geocities.com/Hollywood/Lot/3330/Bulls.html
"The Chicago Bulls"		"Chicago Bulls"
users.aol.com/rynocub/bulls.htm	0.52	www.nobull.net/web_position/kw-search-15-M2.htm
"The Chicago Bulls Home Page"		"Excite Search Results: bulls"
www.geocities.com/Colosseum/6095	0.52	www.halcyon.com/wordsltd/bball/bulls.htm
"Chicago Bulls"		"Chicago Bulls Links"
haul et al, WWW8)	(Ben-S	haul et al, WWW8)
	www.essex1.com/people/jmiller/bulls.htm "da Bulls" www.nando.net/SportServer/basketball/nba/chi.html "The Chicago Bulls" users.aol.com/rynocub/bulls.htm "The Chicago Bulls Home Page" www.geocities.com/Colosseum/6095	www.nba.com/bulls www.essex1.com/people/jmiller/bulls.htm 1.24 "da Bulls" www.nando.net/SportServer/basketball/nba/chi.html 0.74 "The Chicago Bulls" users.aol.com/rynocub/bulls.htm 0.52 "The Chicago Bulls Home Page" www.geocities.com/Colosseum/6095 0.52 "Chicago Bulls"

Authorities for query [Chicago Bulls]

Hubs for query [Chicago Bulls]

- Proof of convergence (1/3)
 - We define an N × N adjacency matrix A. (We called this the link matrix earlier.)
 - For $1 \le i, j \le N$, the matrix entry A_{ij} tells us whether there is a link from page i to page j $(A_{ij} = 1)$ or not $(A_{ij} = 0)$.
 - Example:

- Proof of convergence (2/3)
 - Define the hub vector $\vec{h} = (h_1, \dots, h_N)$ as the vector of hub scores. h_i is the hub score of page d_i .
 - Similarly for \vec{a} , the vector of authority scores
 - Now we can write $h(d) = \sum_{d \mapsto y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a}$, and we can write $a(d) = \sum_{v \mapsto d} h(y)$ as $\vec{a} = A^T \vec{h}$
 - HITS algorithm in matrix notation:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
 - Iterate until convergence

- Proof of convergence (3/3)
 - HITS algorithm in matrix notation. Iterate:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
 - By substitution we get: $\vec{h} = AA^T\vec{h}$ and $\vec{a} = A^TA\vec{a}$
 - Thus, \vec{h} is an eigenvector of AA^T and \vec{a} is an eigenvector of A^TA .
 - So the HITS algorithm is actually a special case of the power method, and hub and authority scores are eigenvector values.
 - HITS and PageRank both formalize link analysis as eigenvector problems.

- PageRank can be precomputed
- HITS has to be computed at query time (HITS is too expensive in most application scenarios)

- PageRank and HITS make two different design choices concerning
 - (i) the eigen problem formalization
 - (ii) the set of pages to apply the formalization to

These two are orthogonal (we could also apply HITS to the entire web and PageRank to a small base set)

- Claim: On the web, a good hub is almost always also a good authority.
- The actual difference between PageRank ranking and HITS ranking is therefore not as large as one might expect.

Summary

- 21.1 The Web as a graph
- 21.2 PageRank
- 21.3 Hubs and Authorities
- 21.4 References and further reading