Υπολογιστική Νοημοσύνη Εργασία 3 Regression

Ηλιάνα Κόγια (AEM: 10090) ilianakogia@ece.auth.gr

1 Εφαρμογή σε απλό dataset

Χωρίζουμε το dataset σε train - check - test με αντίστοιχα ποσοστά 60 - 20 - 20

	Πλήθος συναρτήσεων συμμετοχής	Μορφή εξόδου
TSK_model_1	2	Singleton
$TSK _model_2$	3	Singleton
TSK_model_3	2	Polynomial
TSK_model_4	3	Polynomial

Παρακάτω παρατίθενται τα αποτελέσματα για τα 4 μοντέλα: συναρτήσεις συμμετοχής πριν και μετα την εκπαίδευση, learning curves και διαγράμματα των prediction errors Model 1

Model 2

Model 3

Model 4

	Model 1		Model 2		Model 3		Model 4
R2	0.72145	R2	0.85489	R2	0.86781	R2	0.72821
RMSE	3.6147	RMSE	2.5315	RMSE	2.6332	RMSE	3.5971
NMSE	0.27855	NMSE	0.14511	NMSE	0.13219	NMSE	0.27179
NDEI	0.52777	NDEI	0.38093	NDEI	0.36358	NDEI	0.52134

Συμπεραίνουμε από τις παραπάνω μετρικές ότι τα μοντέλο 3 με 2 συναρτήσεις συμμετοχής και πολυωνιμική έξοδο παρουσιάζει τα καλύτερα αποτελέσματα για το συγκεκριμένο dataset. Τα μοντέλα 2 και 3 έχουν παρόμοια επίδοση.

2 Εφαρμογή σε **dataset** με υψηλή διαστασιμότητα

Χρησιμοποιούμε grid search για την επιλογή του βέλτιστου αριθμού features και την ακτίνα των clusters / αριθμό των κανόνων. Χωρίζουμε το αρχικό dataset σε 60-20-20 όπως πριν και χρησιμοποιώντας το training set υλοποιούμε 5-fold cross-validation. Ελέγχουμε τα μοντελά για αριθμό features = 5, 8, 12, 15 και ακτίνα = 0.3, 0.5, 0.7, 0.9.

Κριτήριο επιλογής είναι ο μέσος όρος του RMSE κάθε μοντέλου μετά από τα 5 fold.

Από τα παραπάνω διαγράμματα βλέπουμε ότι όσο αυξάνεται ο αριθμός των features (με r σταθερό) το μέσο RMSE μειώνεται εκτός από r=0.9

Επίσης, παρατηρούμε όσο αυξάνεται ο αριθμός των κανόνων (με αριθμό feat σταθερό) μειώνεται το σφάλμα.

Το καλύτερο από τα παραπάνω μοντέλα είναι για 15 features και ακτίνα 0.3

Εκπαιδεύουμε το τελικό μοντέλο με τις υπερπαραμέτρους που επιλέχθηκαν από την προηγούμενη διαδικασία.

Στο διαγραμμα της καμπύλης μάθησης φαίνεται να έχουμε μικρό overfitting.

Έχουμε παρόμοια στατιστικά για το RMSE και στο test set:

Best Model

R2	0.82861
RMSE	14.106
NMSE	0.17139
NDEI	0.41399