Formula Sheet

Effective rate of interest: $i_{u+1} = \frac{S(u+1) - S(u)}{S(u)}$

Payment of 1	Compound interest	Simple interest
Accumulated value after	$(1+i)^t$	(1+ti)
t years		
Present value at time 0	$v^t = (1+i)^{-t}$	$(1+it)^{-1}$

i paid at the *end* of the period on the balance at the *beginning* of the period.
d paid at the *beginning* of the period on the balance at the *end* of the period.

$$d = \frac{i}{1+i}$$

Present value with simple discount: $(1-d \cdot t)$

Real interest rate: $1 + i_{real} = \frac{1+i}{1+r}$

The accumulated value of 1 from time 0 to time t under compound interest:

$$S(t) = \left(1 + \frac{i^{(m)}}{m}\right)^{mt} = \left(1 + i\right)^{t} = v^{-t} = (1 - d)^{-t} = \left(1 - \frac{d^{(m)}}{m}\right)^{-mt} = e^{\delta t}$$

The present value at time 0 of 1 payable at time t under compound interest is:

$$S(0) = \left(1 + \frac{i^{(m)}}{m}\right)^{-mt} = \left(1 + i\right)^{-t} = v^{t} = (1 - d)^{t} = \left(1 - \frac{d^{(m)}}{m}\right)^{mt} = e^{-\delta t}$$

Force of interest

For constant force of interest, (under compound interest) $\delta = \ln(1+i)$

	Constant force of interest ($\delta_t = \delta$)	Variable force of interest
Accumulation at time t_2	$S(t_2) = S(t_1) \cdot e^{\delta(t_2 - t_1)}$	
of an amount $S(t_1)$		$S(t_2) = S(t_1) \cdot \exp\left(\int_{t_1}^{t_2} \delta_t dt\right)$
invested at t_1		t_1
Present value at time t_1	$S(t_1) = S(t_2) \cdot e^{-\delta(t_2 - t_1)}$	$\begin{pmatrix} t_2 \\ f & z \end{pmatrix}$
of an amount $S(t_2)$ due		$S(t_1) = S(t_2) \cdot \exp\left(-\int_{t_1}^{t_2} \delta_t dt\right)$
at time t_2		

Annuities

n payments of 1	Payments made in arrears (at	Payments made in advance
	end of each period)	(at start of each period)
Accumulated value	$s_{\overrightarrow{n}} = \sum_{t=0}^{n-1} (1+i)^t = \frac{(1+i)^n - 1}{i}$	$\ddot{s}_{n} = \sum_{t=1}^{n} (1+i)^{t} = \frac{(1+i)^{n} - 1}{d}$
Present value	$a_{\overline{n}} = \sum_{t=1}^{n} v^{t} = \frac{1 - v^{n}}{i}$	$\ddot{a}_{\overline{n}} = \sum_{t=0}^{n-1} v^t = \frac{1 - v^n}{d}$

_ 1	Payments made in arrears	Payments made in advance
Payments of $\frac{1}{m}$ made each	.,	.,
$\frac{1}{m}^{th}$ of a year for n years		
Accumulated value	$s_{\overline{n} }^{(m)} = \frac{(1+i)^n - 1}{i^{(m)}}$	$\ddot{s}_{n}^{(m)} = \frac{(1+i)^{n} - 1}{d^{(m)}}$
Present value	$a_{\overrightarrow{n}}^{(m)} = \frac{1 - v^n}{i^{(m)}}$	$\ddot{a}_{\vec{n}}^{(m)} = \frac{1 - v^n}{d^{(m)}}$
Payments of 1 for perpetuity	Payments made in arrears	Payments made in advance
Present value of 1 per period	$a_{\overline{\infty}} = \frac{1}{i}$	$\ddot{a}_{\overline{\infty} } = \frac{1}{d}$
Present value of $\frac{1}{m}$ per	$a_{\overline{a}}^{(m)} = \frac{1}{i^{(m)}}$	$\ddot{a}_{\overline{\triangle}} = \frac{1}{d}$ $\ddot{a}_{\overline{\triangle}}^{(m)} = \frac{1}{d^{(m)}}$
period of length $\frac{1}{m}$		
Continuous annuity of 1 per period for n periods	Fixed rate of interest	Variable rate of interest
Accumulated value	$\overline{s}_{n} = \int_{0}^{n} (1+i)^{n-t} dt = \frac{(1+i)^{n} - 1}{\delta}$	$\overline{s}_{\overline{n} \delta_r} = \int_0^n \exp\left(\int_t^n \delta_r dr\right) dt$
Present value	$\overline{a}_{\overline{n} } = \int_{0}^{n} v^{t} dt = \frac{1 - v^{n}}{\delta}$	$\overline{a}_{\overline{n} \delta_r} = \int_0^n \exp\left(-\int_0^t \delta_r dr\right) dt$
Arithmetically increasing	Payments made in arrears	Payments made in advance
annuity of n payments (first payment amount = 1,		
subsequent payments		
increase by 1 per period)		
Accumulated value	$(Is)_{\overline{n}} = \frac{\ddot{s}_{\overline{n}} - n}{i}$	$(I\ddot{s})_{\overline{n}} = \frac{\ddot{s}_{\overline{n}} - n}{d}$
Present value	$(Is)_{\overline{n}} = \frac{\ddot{s}_{\overline{n}} - n}{i}$ $(Ia)_{\overline{n}} = \frac{\ddot{a}_{\overline{n}} - nv^{n}}{i}$	$(I\ddot{s})_{\overline{n}} = \frac{\ddot{s}_{\overline{n}} - n}{d}$ $(I\ddot{a})_{\overline{n}} = \frac{\ddot{a}_{\overline{n}} - nv^{n}}{d}$
Arithmetically decreasing	Payments made in arrears	Payments made in advance
annuity of n payments (first		
payment amount= n,		
subsequent payments		
decrease by 1 per period) Accumulated value	12 (1 + 2\)n =	r (1 + 2\n =
	$(Ds)_{\overline{n}} = \frac{n \cdot (1+i)^n - s_{\overline{n}}}{i}$	$(D\ddot{s})_{\overline{n}} = \frac{n \cdot (1+i)^n - s_{\overline{n}}}{d}$
Present value	$(Da)_{\overline{n}} = \frac{n - a_{\overline{n}}}{i}$	$(D\ddot{a})_{\overline{n}} = \frac{n - a_{\overline{n}}}{d}$

Increasing annuity	with discrete increases and continuous payments	with continuous increases and continuous payments
Present value	$(I\overline{a})_{\overrightarrow{n}} = \int_{0}^{n} \lceil t \rceil v^{t} dt = \frac{\ddot{a}_{\overrightarrow{n}} - nv^{n}}{\delta}$	$(\overline{Ia})_{\overline{n}} = \int_{0}^{n} t v^{t} dt = \frac{\overline{a_{\overline{n}}} - n v^{n}}{\delta}$

Geometric series summation formula:
$$1 + x + x^2 + x^3 + ... + x^k = \frac{1 - x^{k+1}}{1 - x} = \frac{x^{k+1} - 1}{x - 1}$$

Present value at time 0 of a series of n payments, each of amount 1, commencing at time k+1: $_k |a_{\overline{n}}| = v^k \cdot a_{\overline{n}}| = a_{\overline{n+k}}| - a_{\overline{k}}|$

General formula for increasing annuity

n-payment annuity with first payment A and subsequent payment B larger (or smaller) than the previous one. Payments made in arrears. Accumulated value at time n is

$$S(n) = (A - B)s_{\overline{n}|i} + B(Is)_{\overline{n}|i}$$

Solving Equations of Value

Quadratic form:
$$a((1+i)^n)^2 + b(1+i)^n + c = 0$$
 solution: $(1+i)^n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Linear interpolation: Given
$$i_1$$
, i_2 , $f(i_1)$ and $f(i_2)$: $\frac{f(i_0) - f(i_1)}{f(i_2) - f(i_1)} \cong \frac{i_0 - i_1}{i_2 - i_1}$

$$\Rightarrow i_0 \cong i_1 + \frac{f(i_0) - f(i_1)}{f(i_2) - f(i_1)} \cdot (i_2 - i_1)$$