Index

'Note: Page numbers followed by "f" indicate figures, "t" indicate tables, and "b" indicate boxes.'

A	dipstick assay, 66
Ablate neurons, 266	Drosophila behavioral assays, 39
Ablation, 194	Drosophila behavioral paradigms, 63-67
Abnormal phenotypes, 219	electromyogram, 50
Absolute recovery, 173–174	elevated plus maze, 60, 61f
Action potential, 88, 88f	ethical considerations, 42b
Acute cultures, 297–298	ethology, 40-41
Acute vs. chronic recordings, 110	face validity, 44
Adeno-associated virus, 255–256	feeding acceptance assay, 66
Aggression, 67	five choice serial reaction time task, 57
Agonist, 195–196	flight, 63
Allatostatin receptor (Alstr), 198–199, 265	footprint pattern assay, 48, 48f
Amino acids, 214–215	forced swim test, 62
Amperometry, 174–175	formalin assay, 51-52
Amplifier, 89–90, 90b–92b	Geller-Seifter conflict test, 60-61
Anesthesia, 77–78	go/no-go task, 57
Anesthetized vs. awake animals, 110–111	hanging wire assay, 48
Anhedonia, 62	Hargreaves assay, 51
Animal behavior	homecage activity, 45, 46f
aggression, 67	hot plate assay, 51, 52f
anhedonia, 62	human behavior model, 44
anxiety, 59–61	impulsivity, 39, 57
appropriate behavioral paradigm, 42–43	Institutional Animal Care and Use
ataxia, 48	Committee (IACUC), 42b
attention, 39, 57	learned helplessness paradigm, 61
Barnes maze, 53, 54f	learning and memory assay, 66
C. elegans behavioral assays, 39	locomotor activity, 45-46
C. elegans behavioral paradigms, 67–68	locomotor behavior, 63, 67
chemosensation, 68	match to sample task, 56-57
chemosensory jump assay, 66	mechanosensation, 67–68
chronic mild stress, 61	Morris water maze, 52-53, 53f
circadian rhythms, 45	motor coordination and balance, 47-49
classical conditioning, 56b	neuroethology, 41b
conditioned place preference/avoidance, 58	nociception, 51-52
conditioned stimulus (CS), 56b	nonhuman primate behavioral paradigms,
construct validity, 44	39, 69–70, 70f
contextual fear conditioning, 56b	nonmatch to sample task, 56-57
countercurrent apparatus, 64–65, 64f	nonspatial learning and memory, 55-57
courtship, 67	novel object recognition, 55
cued fear conditioning, 56b	olfaction assays, 50, 65-66
defensive marble burying assay, 60	olfactory avoidance assay, 66
depression, 61–62	olfactory jump response, 66
r,	

Animal behavior (Continued)	vision assays, 64-65
open field test, 45-46, 46f, 59-60, 60f	visual cliff assay, 49, 49f
operant conditioning, 56b	Von Frey assay, 51
Pavlovian conditioning, 56b	Worm Tracker, 67, 68f
phototaxis, 64–65	Anion-conducting channelrhodopsins
Porsolt test, 62	(ACRs), 201
predictive validity, 44	Antagonist, 195-196
prepulse inhibition (PPI), 50	Anterograde, 164, 164f
proboscis extension response, 66	retrograde tracers, 164
progressive ratio, 58	Antibodies, 306, 312-316, 312f
radial arm maze, 54–55, 54f	Antigens, 312
real-time place preference assay, 58	Anxiety, 59-61
resident-intruder assay, 59	Appropriate behavioral paradigm, 42–43
reward-related behaviors, 57-58	Archaerhodopsin-3 (Arch), 201
rodent anxiety assays, 39	Archaerhodopsin (Arch), 265
rodent behavioral paradigms, 45-62	Array tomography, 161–162
rodent depression assays, 39	Ataxia, 48
rodent motor assays, 39	Ataxin, 197-198
rodent motor coordination assays, 39	Attention, 39, 57
rodent nociception assays, 39	Autoclave, 76
rodent nonspatial learning and memory	Autofluorescence, 126-127
assays, 39	Autoradiography, 154b-156b
rodent reward-related assays, 39	
rodent sensory assays, 39	ъ
rodent social assays, 39	В
rodent spatial learning and memory assays,	Bacteriophage/phage, 234
39	Barnes maze, 53, 54f
rotarod, 47, 47f	Base pair, 211
running wheel, 45	Basic local alignment search tool (BLAST),
sample/nonmatch to sample task delayed	220-221
match, 56-57	Basophilic and fiber stains, 152f
self-administration, 58	Bead sterilizer, 76
sensory behavior, 67-68	Bicuculline, 196
sensory function, 49-50, 63-66	Binary expression systems, 277–285,
social approach/avoidance, 59	278f-279f
social behaviors, 59, 66–67	Binary transgenic system, 261
spatial learning and memory, 52-55	Biolistics, 249-250, 250f
startle response assay, 50	Biotin, 154b—156b
sucrose preference test, 62	Blocked designs, 27
tail Flick Assay, 51	Blood oxygen level-dependent (BOLD)
tail suspension assay, 62	effect, 14, 15f
taste assays, 66	Blunt ends, 228
taste/flavor assays, 50	Botulinum toxin (BoNT), 198, 266
thermosensation, 68	Brain
three Rs, 42b	accessing, 79
T-maze, 65, 65f	atlases, 74–75
unconditioned stimulus (US), 56b	composition of, 3f
validity, 44	lesion, 194, 194t
variability in individuals, 43-44	penetrating, 79–81
vertical pole test, 48–49	regions coordinates, 74-76
virtual reality mazes, 55	sectioning methods, 148t
virtual reality mazes, 55	ε ,

Bregma, 74-75, 75f	pluripotent cell, 300
Brightfield microscopy, 124	primary neurosphere, 302–303
Brodmann's areas, 32–33	progenitor cells, 300
Bromodeoxyuridine (BrdU), 171-172, 172f	secondary neurosphere assays, 302–303 unipotent, 300
C	water bath, 293
C	Cell fractionation, 321-322, 322f
Calcium indicator dyes, 178–179	Cerebral angiogram, 3
Calcium phosphate transfection, 252f	Cerebral angiography, 3, 5f
Canine adenovirus, 256	Channelrhodopsin-2 (ChR2), 200–201
Cannulae, 80	Chemical gene delivery, 251–252
Capsaicin receptor (TrpV1), 198–199	calcium phosphate transfection, 251, 252f
C. elegans behavioral assays, 39	lipid transfection, 251–252
C. elegans behavioral paradigms, 67–68	liposomes, 251–252
Cell-attached mode, 102-103	Chemical mutagenesis, 217–218
Cell body stains, 151	Chemogenetic manipulation, 198–199
Cell culture techniques	allatostatin receptor (Alstr), 198–199
acute cultures, 297-298	capsaicin receptor (TrpV1), 198–199
cells in culture manipulating, 304-306	clozapine-N-oxide (CNO), 199
antibody interference, 306	designer receptors exclusively activated by
coculturing, 305	designer drugs (DREADDs), 199
optogenetics, 306	hM4Di receptor, 199
pharmacology, 305-306	hM3Dq receptor, 199
transfection and infection, 304	Chemosensation, 68
culture media, 294-295, 295f	
dissociated cell cultures, 298-300	Cherry 201
equipment, 292-294	ChETA, 201
explant cultures, 298	Chinese hamster ovary (CHO) cells, 106–107
HeLa cells, 295	ChIP-Seq, 223
human embryonic kidney 293T	Chromogenic/colorimetric labels,
(HEK-293T) cells, 295	154b—156b
immortalized cell lines, 295–297, 296t	Chronic mild stress, 61
microscope, 293–294	Circadian rhythms, 45
organotypic slice cultures, 297–298	CLARITY, 149–150
passaging, 295	Classical conditioning, 56b
primary cell and tissue culture, 296t,	Classical DNA targeting in mice, 269–270
297–300, 299f, 302f	Cloning vectors, 235
reagents, 292–294	Clozapine-N-oxide (CNO), 199
biosafety hood, 292	Coculturing, 305
cell culture room, 293f	Codon, 214–215
cell incubator, 292	Cognitive neuroscience, 24
refrigerator, 294	Common electrophysiological approaches, 85
slice cultures, 297–298	Common electrophysiological
specially prepared cell culture flasks/plates,	preparations, 85
	Competent cells, 237
293	Complementary DNA (cDNA), 221, 231,
stem cell cultures, 300–304	241b-242b
brain organoids, 303–304, 304f	Complementary strands, 211
embryonic stem cells, 301	Complementation test, 219
induced pluripotent stem (iPS) cells, 303	Compound microscope design, 119-121,
multipotent cell, 300	122f
neural progenitors, 301	Computer, 89-90, 90b-92b
neural stem cells (NSCs), 302–303	Computerized tomography (CT), 4-6, 5f
neurospheres, 302–303	

Condenser, 120	bacteriophage/phage, 234
Conditioned place preference/avoidance, 58	cloning vectors, 235
Conditioned stimulus (CS), 56b	competent cells, 237
Confocal microscopy, 128–129	DNA construct, 235
Construct validity, 44	DNA vector, 234
Contextual fear conditioning, 56b	expression vector, 235
Coomassie blue, 319	host cells, purifying DNA from, 237
Coronal plane, 149	ligation, 237
Countercurrent apparatus, 64-65, 64f	multiple cloning site, 235
Courtship, 67	plasmids, 234
Cranial windows, 186	replication, 235
Cre-ER fusion transgene, 282–283	restriction enzyme sites, 235
Cre/lox system, 280-284	selectable marker, 235
CRISPR/Cas9 endonucleases, 270-272	transformation, 237
CRISPR-Cas9 screens, 223-224	vectors, 234-235
Cross-linking fixatives, 146-147	construct, 235
Cryostat, 149	fragments, isolating
Cued fear conditioning, 56b	blunt ends, 228
Culture media, 294-295, 295f	complementary DNA (cDNA), 231,
Current clamp mode, 93	241b-242b
Current over time, 96b-97b	DNA synthesis, 231
Cyclic voltammogram, 175	gel electrophoresis, 233-234
Cytokines, 311–312	genomic DNA library, 241b-242b
D	isolation and characterization of, 233–234
D	polymerase chain reaction (PCR),
Darkfield microscopy, 124–125	229–232, 230f
Data acquisition, 30–31	primers hybridization, 230-231
Data analysis, 32–33, 94b–96b	quantitative real-time PCR (qRT-PCR),
Deconvolution, 187	231–232, 232f
Defensive marble burying assay, 60	recognition, 228
Dehydrating fixatives, 146–147	restriction digest, 228
Dependent variable, 26	restriction enzymes, 228, 229f
Depolarization, 86–87	reverse transcription PCR (RT-PCR),
Depression, 61–62	231
Designer receptors exclusively activated by	standard PCR, 229-231, 241b-242b
designer drugs (DREADDs), 199, 266	sticky/cohesive ends, 228
Differential interference contrast (DIC)	strand separation, 230
microscopy, 124–125	identifying, 237–240
Diffuse optical imaging (DOI), 22	DNA sequencing, 238–239, 238f
Diffusion magnetic resonance imaging, 13	high-throughput sequencing, 239
Diffusion tensor imaging, 13, 13f	next-generation sequencing, 239
Digoxigenin, 154b—156b	northern blot, 239–240
Diphtheria toxin receptor (DTR), 197–198,	nucleic acid hybridization techniques,
266	239
Dipstick assay, 66	RNA-seq, 239
Direct IHC, 159–160	Sanger dideoxy chain termination
Disrupting endogenous gene function, 260	method, 238
Dissecting microscope, 123	southern blot, 239, 240f
Dissociated cell cultures, 298–300	western blot, 239–240
dLight, 264–265	sequencing, 238–239, 238f
DNA, 211–212, 212f	synthesis, 231
cloning	•

targeting/editing, 270-272	intracellular recording, 102
vector, 234	I/V Curves, 94b—96b
Double helix, 211	local field potentials, 100
Double-inverse orientation (DIO) construct,	localized potentials, 86–87
281	loudspeaker system, 89–90, 90b–92b
Doxycycline, 284	microdrive, 90b—92b
Drosophila behavioral assays, 39	microelectrode, 89–90, 90b–92b
Drosophila behavioral paradigms, 63–67	micromanipulator, 90b—92b
Dynamic clamp, 105	microscope, 89–90, 90b–92b
y	multielectrode array (MEA), 100-101
E	neurons, electrical properties of, 86–89
Electrical manipulation, 195	neuropixels, 101
electrolytic lesion, 195	Ohm's law, 86
microstimulation, 195	oscilloscope, 89-90, 90b-92b
Electrical potential, 86	outside-out recording, 103
Electroencephalography (EEG), 20–21, 20f	patch clamp techniques, 85–86, 102–105,
Electrolytic lesion, 195	104f
Electromyogram, 50	peri-stimulus time histogram (PSTH),
Electron microscope tomography, 134	98b-100b
Electron microscopy (EM), 115, 132-134	primary cultures, 108-109
Electrophysiology	raster plot, 98b-100b
action potential, 88, 88f	recordings, categories of, 93-105, 93f
acute vs. chronic recordings, 110	resting potential, 86
amplifier, 89-90, 90b-92b	rig, 89–90, 89f, 90b–92b
anesthetized vs. awake animals, 110-111	silicon probe technology, 101
cell-attached mode, 102-103	slice cultures, 109
Chinese hamster ovary (CHO) cells,	spike, 88, 98b–100b
106-107	sorting, 101–102
common electrophysiological	tissue preparations, 105–111
approaches, 85	vibration isolation system, 90b–92b
common electrophysiological	in vitro electrophysiology experiment,
preparations, 85	107b-108b
computer, 89–90, 90b–92b	in vitro recordings, 106–109
current clamp mode, 93	in vivo recordings, 109–111 voltage clamp, 93
current over time, 96b—97b	whole-cell recording, 103
data analysis, 94b—96b	Electrophysiology implants, 80
depolarization, 86–87 dynamic clamp, 105	Electrophysiology implants, 60 Electroporation, 247–249, 248f–249f
electrical potential, 86	Elevated plus maze, 60, 61f
excitatory postsynaptic potential (EPSP),	Embedding, 147
86–87	Emission filter, 125–126
extracellular recording, 85–86, 97–102,	Endogenous genetic material, 261
98f	Enzymatic histochemistry, 162, 162f
faraday cage, 90b—92b	Enzyme-linked immunosorbent assay
graded potentials, 86–87	(ELISA), 322
headstage, 90b–92b	Epifluorescent and confocal microscopy, 127f
heterologous expression systems, 106–107	Epifluorescent microscopy, 127–128
holding potential, 93	Epitope, 312
hyperpolarization, 86–87	Event-related designs, 27
inhibitory postsynaptic potential (IPSP),	Event-related field (ERF), 22
86-87	Event-related potentials (ERPs), 21
inside-out recording, 103	Excitation filter, 125–126

Excitatory postsynaptic potential (EPSP),	Forward genetic screen, 215-219
86-87	Freezing microtome, 148-149
Exon, 214	Functional brain imaging techniques, 2,
Explant cultures, 298	14-24
Expression vector, 235	Functional imaging experimental design,
Extracellular neurochemistry in vivo,	24-35
classical methods of, 173-175	Functional imaging experiment, experimental
absolute recovery, 173-174	paradigm of, 26-27
amperometry, 174-175	Functional magnetic resonance imaging
cyclic voltammogram, 175	(fMRI), 14–17, 16f, 17b, 35b–36b
fast-scan cyclic voltammetry (FCV), 175	Fuorophores, 125
microdialysis, 173-174, 173f	Fused reporter proteins, 325-327
relative recovery, 173–174	
reverse microdialysis, 174	G
in vivo microdialysis, 173f	
voltammetry, 174-175	Gain-of-function, 191
Extracellular recording, 85-86, 97-102, 98f	Gal4/UAS system, 279—280, 281f
	GCaMP, 177, 178f
F	Gel electrophoresis, 233–234
-	Geller-Seifter conflict test, 60–61
Face validity, 44 Faraday cage, 90b—92b	Gene delivery strategies
Fast-scan cyclic voltammetry (FCV), 175	categories of, 246t
	chemical gene delivery, 251–252
Feeding acceptance assay, 66 Fiber photometry, 184–185	calcium phosphate transfection, 251, 252f
Fiber stains, 151–153	
	lipid transfection, 251–252
Five choice serial reaction time task, 57	liposomes, 251–252
Fixation, 146–147 Fixed tissue	physical gene delivery, 246–250
	biolistics, 249–250, 250f
cellular function in, 171–172	electroporation, 247—249, 248f—249f
neural activity in, 170–171	microinjection, 246–247, 247f
Flat skull position, 78	viral gene delivery, 253–256 adeno-associated virus, 255–256
Flight, 63	
Flp/FRT system, 284 Fluorescence microscopy, 115, 125–132	canine adenovirus, 256 lentivirus, 256
± •	
Fluorescence recovery after photobleaching (FRAP), 326, 326f	neuroscience, 255t
Fluorescent biosensors, visualizing and	packaging cell, 253–254 rabies virus, 256
measuring activity from, 183–186,	transduction, 253
184f	
cranial windows, 186	virus production, 254f Genes, 209
fiber photometry, 184–185	clone, 219
GRIN lenses, 185	encode for, 210–215
microendoscopy, 185–186	Genetically encoded actuators, 200f
miniscopes, 186	Genetically encoded calcium indicator
Fluorescent in situ hybridization (FISH),	(GECI), 177, 264–265
158–159, 159f	Genetically encoded voltage indicators
Fluorescent labels, 154b–156b	(GEVIs), 179, 264–265
Fluorophores, 154b—156b	Genetically modified organisms
FM dyes, 180–181	binary expression systems, 277–285,
Footprint pattern assay, 48, 48f	278f—279f
Forced swim test, 62	binary transgenic system, 261
Formalin assay, 51–52	classical DNA targeting in mice, 269–270
	21 angetting in innee, 200 210

Cre-ER fusion transgene, 282–283	single-guide RNA (sgRNA), 271–272
Cre/lox system, 280–284	tamoxifen, 282–283
CRISPR/Cas9 endonucleases, 270–272	tet-off/tet-on system, 284–285
CRISPR/Cas9 genome editing, 260	transgenes, 261, 262t–263t, 263–266
disrupting endogenous gene function, 260	ablate neurons, 266
disrupting gene products	allatostatin receptor (Alstr), 265
knock down gene, 285	archaerhodopsin (Arch), 265
morpholinos, 287, 288f	botulinum toxin (BoNT), 266
RNA-induced silencing complex	capsaicin receptor (TrpV1), 265
(RISC), 285	channelrhodopsin-2 (ChR2), 265
RNA interference (RNAi), 285–287,	designer receptors exclusively activated
286f	by designer drugs (DREADDs), 266
short hairpin RNA (shRNA), 285-287	diphtheria toxin receptor (DTR), 266
small interfering RNAs (siRNAs), 285	dLight, 264-265
DNA targeting/editing, 270-272	functional, 261
double-inverse orientation (DIO) construct,	genetically encoded calcium indicators
281	(GECIs), 264–265
doxycycline, 284	genetically encoded voltage indicators
endogenous genetic material, 261	(GEVIs), 264–265
engineering genetically modified	GRAB-DA, 264-265
organisms, 273-277	green fluorescent protein (GFP), 264
founders, 273–274	halorhodopsin (NpHR), 265
making genetically engineered mice,	iGABASnFR, 264–265
273-275	iGluSnFR, 264–265
pronucleus, 273	lacZ, 264
pseudopregnant, 273-274	manipulate neural activity, 265-266
flex construct, 281	neural activity, 264-265
flippase recognition targets (FRTs), 284	reporter genes, 264
flippase recombinase (Flp), 284	shabire, 266
Flp/FRT system, 284	silence neural activity, 266
Gal4/UAS system, 279–280, 281f	tetanus toxin (TeNT), 266
general strategies for, 268-272	TRAP system, 283–284, 283f
genetically engineered flies, 275–277	Genetic manipulation, 197–198
P elements, 275–276, 275f	ataxin, 197-198
transposition, 275	botulinum toxin (BoNT), 198
transposons, 275	diphtheria toxin receptor, 197–198
genome modification, general strategies	shabire, 198
for, 268–272	tetanus toxin (TeNT), 198
homologous recombination, 269-270	Genetic model organisms, 216b–217b
homology arms, 269	Genetic screens
homology-directed repair (HDR), 270	abnormal phenotypes, 219
humanized mouse, 261	chemical mutagenesis, 217–218
knockin animal, 261	complementation test, 219
knockout mice, 260	forward genetic screen, 215–219
nonhomologous end-joining (NHEJ), 270	gene clone, 219
nonspecific transgene insertion, 268–269	insertional mutagenesis, 217–218
purposes for engineering, 260–261	irradiation mutagenesis, 217–218
regulate gene expression, promoters to,	linkage analysis, 219
267–268	map, 219
introns, 267	mutagenize eggs/larvae, 217–218
promoter sequences, 267	perform complementation analysis, 219
transcription factors, 267	phenotype, 217

Genetic screens (Continued)	Immunofluorescence, 159
reverse genetic screen, 215-216	Immunohistochemistry (IHC), 159-162,
transposons, 217–218	161f, 170-171, 324-325
Genomic DNA libraries, 241b-242b	Implants attaching, 79–81, 79f
Genotype, 209	Impulsivity, 39, 57
Gold labels, 154b-156b	Index of refraction, 116–118
Golgi stain, 153, 153b, 154f	Indirect IHC, 159-160
Go/no-go task, 57	Inhibitory postsynaptic potential (IPSP),
GRAB-DA, 264–265	86-87
Graded potentials, 86-87	Insertional mutagenesis, 217-218
Green fluorescent protein (GFP), 163, 177,	Inside-out recording, 103
264, 325–326	In silico screens, 220
GRIN lenses, 185	In situ hybridization, 157-159, 158f
	Institutional Animal Care and Use Committee
	(IACUC), 42b
Н	Institutional Review Board (IRB), 29
Halorhodopsin (NpHR), 201, 265	Interpreting images, 137–138, 137f
Hanging wire assay, 48	Intracellular recording, 102
Hargreaves assay, 51	Intracellular signaling
Headstage, 90b-92b	antibodies, 312–316, 312f, 313t
HeLa cells, 295	antigens, 312
Hemoglobin, 14	cytokines, 311–312
Heterologous expression systems, 106-107	epitope, 312
High-throughput sequencing, 221-223, 239	fundamental tools, 312–318
HM4Di receptor, 199	growth factors, 311–312
HM3Dq receptor, 199	Janus Kinase (JAK), 311f
Holding potential, 93	monoclonal antibodies, 312–313, 312f,
Homecage activity, 45, 46f	314f
Homologous recombination, 269–270	
Horizontal plane, 149	polyclonal antibodies, 312–313, 312f, 315f
Horseradish peroxidase (HRP), 164	
Host cells, purifying DNA from, 237	posttranslational modification (PTM),
Hot plate assay, 51, 52f	336–338, 336f, 337t
Human behavior model, 44	detection of, 336–337
Human embryonic kidney 293T (HEK-293T)	kinase assay, 338
cells, 295	PTM-specific assays, 338
Hyperpolarization, 86–87	protein—DNA interactions, 339—343
5FF	ChIP-seq, 341–342, 342f
•	chromatin immunoprecipitation (ChIP),
l	340–342, 341f
Ibotenic acid, 196	cross-linked, 341
iGABASnFR, 264–265	electrophoretic mobility shift assay
iGluSnFR, 264-265	(EMSA), 339, 340f
Image processing, 135-136, 136f	gel shift assay, 339
Imaging calcium dynamics biosensors,	luciferase assay, 342-343, 343f
177—179	protein expression, 318–327, 319t
Imaging membrane voltage biosensors, 179	cell fractionation, 321–322, 322f
Imaging presynaptic vesicle release,	Coomassie blue, 319
180-181	enzyme-linked immunosorbent assay
Immediate early genes (IEGs), 170-171	(ELISA), 322
Immersion, 147	fluorescence recovery after
Immortalized cell lines, 295-297, 296t	photobleaching (FRAP), 326, 326f
Immunocytochemistry, 159	fused reporter proteins, 325–327

K Ketamine, 77–78 Knock down gene, 285 L Labeling molecular probes, 154b–156b LacZ, 264 Lambda, 74–75, 75f Learned helplessness paradigm, 61 Learning and memory assay, 66 Lectins, 165 Lentivirus, 256 Ligation, 237 Light microscopy, 115, 124–125, 125f Light sheet fluorescence microscopy, 131–132, 131f Linkage analysis, 219 Lipid transfection, 251–252 Liposomes, 251–252
Local field potentials, 100 Localized potentials, 86–87
Locomotor activity, 45–46 Locomotor behavior, 63, 67
Magnetic resonance imaging (MRI), 6–12 electromagnetic basis, 6–7, 7f human subject/patient in, 7f image generating, 8–11 radiofrequency (RF) pulses, 8–10, 9f slice, 11–12 spatial resolution, 11 voxel, 11 Magnetoencephalography (MEG), 21–22, 21f Manipulating neural activity chemogenetic manipulation, 198–199 allatostatin receptor (Alstr), 198–199 capsaicin receptor (TrpV1), 198–199 clozapine-N-oxide (CNO), 199 designer receptors exclusively activated by designer drugs (DREADDs), 199 hM4Di receptor, 199 hM3Dq receptor, 199 electrical manipulation, 195 electrolytic lesion, 195 microstimulation, 195 experimental logic of, 193 gain-of-function, 191 genetic manipulation, 197–198 ataxin, 197–198

Manipulating neural activity (Continued)	Microiontophoresis, 197
botulinum toxin (BoNT), 198	Microscopy, 293-294
diphtheria toxin receptor, 197-198	autofluorescence, 126-127
shabire, 198	brightfield microscopy, 124
tetanus toxin (TeNT), 198	compound microscope design, 119-121,
loss-of-function, 191	122f
methods of, 192f	condenser, 120
neuromodulation techniques	confocal microscopy, 128-129
humans, 203–204	darkfield microscopy, 124-125
transcranial magnetic stimulation	different forms of, 141
(TMS), 204	differential interference contrast (DIC)
ultrasonic neuromodulation (USNM),	microscopy, 124-125
204	dissecting microscope, 123
optogenetic manipulation, 199-200	electron microscope tomography, 134
anion-conducting channelrhodopsins	electron microscopy (EM), 115, 132-134
(ACRs), 201	electron tomography, 134
archaerhodopsin-3 (Arch), 201	emission filter, 125–126
channelrhodopsin-2 (ChR2), 200-201	epifluorescent and confocal microscopy,
ChETA, 201	127f
genetically encoded actuators, 200f	epifluorescent microscopy, 127-128
halorhodopsin (NpHR), 201	excitation filter, 125–126
nervous system, delivering light to, 202	fluorescence microscopy, 115, 125–132
neural circuits, 202-203	fluorophores, 125
optogenetic inhibition, 201	fundamental parameters in, 116-119
optogenetic stimulation, 200–201	image processing, 135–136, 136f
optogenetic transgenes, 200-201	index of refraction, 116-118
step function opsins, 201	interpreting images, 137-138, 137f
pharmacological manipulation, 195-197	inverted microscope, 120-121, 122f
agonist, 195-196	light microscopy, 115, 124-125, 125f
antagonist, 195-196	light sheet fluorescence microscopy,
bicuculline, 196	131–132, 131f
ibotenic acid, 196	magnification, 116
intracerebroventricular (ICV)	microscopy data, 115
injection, 197	microscopy data, preparing and
intraperitoneal (IP) injection, 197	interpreting, 134–138
inverse agonist, 195-196	Nomarski microscopy, 124–125
microiontophoresis, 197	numerical aperture (NA), 116-118
muscimol, 196	objective lens, 120
osmotic minipumps, 197	ocular lens, 120
partial agonist, 195-196	phase-contrast microscopy, 124-125
tetrodotoxin (TTX), 196	photobleaching, 126–127
physical manipulation, 193-195	phototoxicity, 126–127
ablation, 194	principles of, 116–124
brain lesion, 194, 194t	refractive index, 116–118
thermal cooling, 194–195	resolution, 116
Manipulating neural activity during an	resolving power, 116, 117f
experiment, 31–32, 32f	scanning electron microscopy (SEM), 133
Match to sample task, 56–57	134f
Mechanosensation, 67–68	standard stereomicroscope, 123f
Microdialysis, 173–174, 173f	stereomicroscope, 123–124
Microendoscopy, 185–186	super resolution fluorescence microscopy,
Microinjection, 246–247, 247f	118-119

total internal reflection fluorescent (TIRF) microscopy, 132	imaging calcium dynamics biosensors, 177–179
transmission electron microscopy (TEM), 133, 134f	imaging membrane voltage biosensors,
two-photon laser scanning microscopy	nonratiometric dyes, 178–179
(TPLSM), 129	ratiometric dyes, 178
two-photon microscopy, 129-131, 130f	voltage-sensitive dyes, 179
upright microscope, 120-121, 122f	Neural circuits, 202–203
visible spectrum of light, 119f	Neural dynamics
wide-field fluorescent microscopy, 127-128	extracellular neurochemistry in vivo, classical methods of, 173–175
Microscopy data, 115	absolute recovery, 173-174
preparing and interpreting, 134-138	amperometry, 174-175
Microstimulation, 195	cyclic voltammogram, 175
Microtome, 148–149	fast-scan cyclic voltammetry (FCV),
Midsagittal cut, 149	175
Miniscopes, 186	microdialysis, 173–174, 173f
Mixed design, 28	relative recovery, 173–174
MNI template, 32–33	reverse microdialysis, 174
Modified rabies virus, 165, 166f Molecular biology, central dogma of, 210	in vivo microdialysis, 173f
Molecular screens	voltammetry, 174–175 fluorescent biosensors, visualizing and
ChIP-Seq, 223	measuring activity from, 183–186,
complementary DNA (cDNA), 221	184f
CRISPR-Cas9 screens, 223–224	cranial windows, 186
high-throughput sequencing, 221–223	fiber photometry, 184–185
next generation sequencing, 221–223	GRIN lenses, 185
reverse transcription, 221	microendoscopy, 185-186
RNA sequencing, 221-223, 222f	miniscopes, 186
single-cell RNA sequencing, 223	static markers of activity
TRAP-seq, 223	bromodeoxyuridine (BrdU), 171-172,
Monoclonal antibodies, 312-313, 312f, 314f	172f
Monosynaptic retrograde tracing, 166f	fixed tissue, cellular function in,
Morpholinos, 287, 288f	171-172
Morris water maze, 52–53, 53f	fixed tissue, neural activity in, 170–171
Motor coordination and balance, 47–49	immediate early genes (IEGs), 170–171
Multiple cloning site, 235	immunohistochemistry (IHC), 170–171
Muscimol, 196 Myelin, 151–153	thymidine analogs, cell proliferation with, 171–172
Myelli, 131–133	visualization experiments, image
	processing in
N	deconvolution, 187
Near-infrared spectroscopy (NIRS), 22	regions of interest (ROIs), 187
Nervous system, delivering light to, 202	registration, 186–187
Neural activity biosensors, 175–179, 176t, 264–265	visualizing neural activity biosensors, 175–179, 176t
calcium indicator dyes, 178–179 GCaMP, 177, 178f	calcium indicator dyes, 178-179
genetically encoded calcium indicator	GCaMP, 177, 178f
(GECI), 177	genetically encoded calcium indicator
genetically encoded voltage indicators	(GECI), 177
(GEVIs), 179	genetically encoded voltage indicators
green fluorescent protein (GFP), 177	(GEVIs), 179
C (- // - //	

Neural dynamics (Continued)	diffuse optical imaging (DOI), 22
green fluorescent protein (GFP), 177	diffusion magnetic resonance imaging, 13
imaging calcium dynamics biosensors,	diffusion tensor imaging, 13, 13f
177—179	electroencephalography (EEG), 20-21,
imaging membrane voltage biosensors,	20f
179	event-related designs, 27
nonratiometric dyes, 178-179	event-related field (ERF), 22
ratiometric dyes, 178	event-related potentials (ERPs), 21
voltage-sensitive dyes, 179	experiment conducting, 29-31
visualizing neurotransmission biosensors,	experiment planning, 25–29
180t	functional brain imaging techniques, 2,
FM dyes, 180–181	14-24
imaging presynaptic vesicle release,	functional imaging experimental design,
180-181	24-35
neuromodulator signaling, 181-183	functional imaging experiment,
neurotransmitter signaling, 181	experimental paradigm of, 26–27
pH-sensitive fluorescent proteins,	functional magnetic resonance imaging
170-171	(fMRI), 14–17, 16f, 17b, 35b–36b
synapto-pHluorin, 181	functional techniques, 1
Neuroanatomical planes, 150f	hemoglobin, 14
Neuroethology, 41b	human subjects working, 29–30
Neuromodulator signaling, 181–183	independent variable, 26
Neuronal tracer, 164	Institutional Review Board (IRB), 29
Neuron doctrine, 153b	magnetic resonance imaging (MRI), 6–12
Neuroscience, 255t	electromagnetic basis, 6–7, 7f
Neurotransmission biosensors, 180t	human subject/patient in, 7f
FM dyes, 180–181	image generating, 8–11
imaging presynaptic vesicle release,	radiofrequency (RF) pulses, 8–10, 9f
180–181	slice, 11–12
neuromodulator signaling, 181–183	spatial resolution, 11
neurotransmitter signaling, 181	voxel, 11
pH-sensitive fluorescent proteins, 170–171	magnetoencephalography (MEG), 21–22,
synapto-pHluorin, 181	21f
Neurotransmitter signaling, 181	manipulating neural activity during an
Next generation sequencing, 221–223, 239	experiment, 31–32, 32f
Nociception, 51–52	mixed design, 28
Nomarski microscopy, 124–125	MNI template, 32–33
Nonhuman primate behavioral paradigms, 39,	near-infrared spectroscopy (NIRS), 22
69–70, 70f	optical imaging, 22–24, 23f
Noninvasive brain imaging	optrodes, 22
blocked designs, 27	pilot experiments, 28–29
blood oxygen level-dependent (BOLD) effect, 14, 15f	positron emission tomography (PET), 18–19, 18f
brain, composition of, 3f	postexperimental data analysis, 32-35
Brodmann's areas, 32-33	practical considerations, 25–26
cerebral angiogram, 3	preparation of figures, 33-35, 34f
cerebral angiography, 3, 5f	region-of-interest (ROI), 33
cognitive neuroscience, 24	single-proton emission computerized
computerized tomography (CT), 4-6, 5f	tomography (SPECT), 19-20
data acquisition, 30-31	structural brain imaging techniques, 2-13
data analysis, 32-33	structural techniques, 1
dependent variable, 26	systems neuroscience, 24

Talairach space, 32–33	Passaging, 295
task paradigms, 27–28, 28t	Pavlovian conditioning, 56b
temporal delay, 15–17	Perfusion, 147
temporal resolution, 15–17	Pharmacological manipulation, 195–197
ultrasonic neuromodulation (USNM), 32	agonist, 195–196
voxelwise analysis, 33	Phase-contrast microscopy, 124–125
X-ray technology, 2–3, 4f	Phenotype, 209
Nonmatch to sample task, 56–57	Photoactivates, 327
Nonratiometric dyes, 178–179	Photobleaching, 126–127
Nonspatial learning and memory, 55–57	Photoconversion, 327
Northern blot, 239–240	Phototaxis, 64–65
Novel object recognition, 55	Phototoxicity, 126–127
Nucleic acid hybridization techniques, 239	PH-sensitive fluorescent proteins,
Numerical aperture (NA), 116-118	170-171
	Physical gene delivery, 246–250
0	biolistics, 249–250, 250f
Objective lens, 120	electroporation, 247–249, 248f–249f
Ocular lens, 120	microinjection, 246–247, 247f
Olfaction assays, 50, 65–66	Pilot experiments, 28–29
Olfactory avoidance assay, 66	Plant lectins, 165
Olfactory jump response, 66	Plasmids, 234
Open field test, 45–46, 46f, 59–60, 60f	Polyacrylamide gel electrophoresis (PAGE),
Operant conditioning, 56b	318–319
Optical imaging, 22–24, 23f	Polyclonal antibodies, 312–313, 312f
Optical implants, 80–81	Polyclonal antibody, 315f
Optimal cutting temperature (OCT)	Polymerase chain reaction (PCR), 229–232,
compound, 147	230f
Optogenetic inhibition, 201	Porsolt test, 62
Optogenetic manipulation, 199–200, 306	Positron emission tomography (PET), 18–19,
anion-conducting channelrhodopsins	18f
(ACRs), 201	Postexperimental data analysis, 32–35
archaerhodopsin-3 (Arch), 201	Posttranslational modification (PTM),
channelrhodopsin-2 (ChR2), 200-201	214–215, 336–338, 336f, 337t
ChETA, 201	detection of, 336–337 kinase assay, 338
genetically encoded actuators, 200f	
halorhodopsin (NpHR), 201	PTM-specific assays, 338 Predictive validity, 44
nervous system, delivering light to, 202	Prepulse inhibition (PPI), 50
neural circuits, 202-203	Primary antibody, 159—160
optogenetic inhibition, 201	Primary cell and tissue culture, 296t,
optogenetic stimulation, 200-201	297–300, 299f, 302f
optogenetic transgenes, 200-201	Primers, 229
step function opsins, 201	hybridization, 230–231
Optogenetic stimulation, 200-201	Proboscis extension response, 66
Optogenetic transgenes, 200-201	Progressive ratio, 58
Optrodes, 22	Promoters, 214
Organotypic slice cultures, 297–298	Pronucleus, 273
Osmotic minipumps, 197	Protein expression, 318–327, 319t
	cell fractionation, 321–322, 322f
P	Coomassie blue, 319
Packaging cell, 253–254	enzyme-linked immunosorbent assay
Partial agonist, 195–196	(ELISA), 322
1 artial agomst, 195—190	\

Protein expression (Continued)	Radioimmunoassay, 322–323, 324f
fluorescence recovery after photobleaching	Ratiometric dyes, 178
(FRAP), 326, 326f	Reagents, 292–294
fused reporter proteins, 325–327	biosafety hood, 292
green fluorescent protein (GFP), 325-326	cell culture room, 293f
immunohistochemistry (IHC), 324-325	cell incubator, 292
photoactivates, 327	Real-time place preference assay, 58
photoconversion, 327	Refractive index, 116–118
polyacrylamide gel electrophoresis	Refrigerator, 294
(PAGE), 318–319	Regions of interest (ROIs), 33, 187
protein dynamics, 325–327	Registration, 186–187
pulse-chase labeling, 327	Relative recovery, 173–174
radioimmunoassay, 322-323, 324f	Replication, 235
reporter protein, 325–326	Reporter genes, 264
SDS-PAGE, 318–319	Reporter proteins, 163, 163f, 325–326
sodium dodecyl sulfate (SDS), 318–319	Resident—intruder assay, 59
Western blot, 318-322, 320f-321f	Resolving power, 116, 117f
Proteins, 209	Restriction digest, 228
amino acids, 214–215	Restriction enzymes, 228, 229f, 235
base pair, 211	Retrobeads, 164
codon, 214–215	Retrograde, 164, 164f
complementary strands, 211	Reverse genetic screen, 215–216
DNA, 211–212, 212f	Reverse microdialysis, 174
double helix, 211	Reverse transcription, 221
dynamics, 325–327	Reverse transcription PCR (RT-PCR), 231
exon, 214	Reward-related behaviors, 57-58
genes encode for, 210-215	Ribosomes, 214–215
intron, 214	RNA-induced silencing complex (RISC), 285
molecular biology, central dogma of, 210	RNA interference (RNAi), 285–287, 286f
molecular structure of, 212f	RNA polymerase, 213
posttranslational modifications (PTMs),	RNA-seq, 221–223, 222f, 239
214-215	RNA splicing, 214
promoters, 214	Rodent anxiety assays, 39
ribosomes, 214–215	Rodent behavioral paradigms, 45–62
RNA polymerase, 213	Rodent depression assays, 39
RNA splicing, 214	Rodent motor assays, 39
spliceosome, 214	Rodent motor coordination assays, 39
transcription, 212–214	Rodent nociception assays, 39
translation, 214–215	Rodent nonspatial learning and memory
Pseudopregnant, 273–274	assays, 39
Pulse-chase labeling, 327	Rodent reward-related assays, 39
	Rodents, 76–81
0	sensory assays, 39
Quantitative real-time PCR (qRT-PCR),	social assays, 39
231–232, 232f	spatial learning and memory assays, 39
Quantum dots, 154b—156b	Rotarod, 47, 47f
Quantum 0005, 1570 1500	Running wheel, 45
В	
R	S
Rabies virus, 256	Sagittal plane, 149
Radial arm maze, 54-55, 54f	Sample/nonmatch to sample task delayed
Radioactive labels, 154b-156b	match, 56–57
	11111011, 50 57

Sangar didancy chain termination method	unipotent 300
Sanger dideoxy chain termination method, 238	unipotent, 300 Step function opsins, 201
Scanning electron microscopy (SEM), 133,	Stereomicroscope, 123–124
134f	Stereotaxic instrument, 74–75, 75f, 78
SDS-PAGE, 318–319	Stereotaxic surgeries
Sealable chambers, 79f, 80	anesthesia, 77–78
Secondary antibody, 159–160	brain accessing, 79
Sectioning, 148–149	brain atlases, 74–75
Selectable marker, 235	brain penetrating, 79–81
Self-administration, 58	brain regions coordinates, 74–76
Sensory behavior, 67–68	bregma, 74–75, 75f
Sensory function, 49–50, 63–66	cannulae, 80
Shabire, 198, 266	electrophysiology implants, 80
Short hairpin RNA (shRNA), 285–287	flat skull position, 78
Silence neural activity, 266	implants attaching, 79–81, 79f
Single-cell RNA sequencing, 223	intracerebroventricular, 80
Single-guide RNA (sgRNA), 271–272	isoflurane, 78
Single-proton emission computerized	Ketamine, 77–78
tomography (SPECT), 19-20	lambda, 74–75, 75f
Slice cultures, 297–298	nonhuman primates
Social approach/avoidance, 59	eye coil, 82
Social behaviors, 59, 66–67	headpost, 82
Sodium dodecyl sulfate (SDS), 318–319	sealable chamber, 82
Southern blot, 239, 240f	optical implants, 80-81
Spatial learning and memory, 52–55	rodents, 76–81
Specially prepared cell culture flasks/plates,	sealable chambers, 79f, 80
293	stereotaxic instrument, 74-75, 75f
Spliceosome, 214	rodent on, 78
Standard PCR, 229–231, 241b–242b	sterile environment, 76–77, 77f
Standard stereomicroscope, 123f	surgery finishing, 81
Startle response assay, 50	sutures, 81
Static markers of activity	xylazine, 77–78
bromodeoxyuridine (BrdU), 171–172, 172f	Stereotaxic surgery, 73
fixed tissue, cellular function in, 171–172	Sterile, 76 environment, 76–77, 77f
fixed tissue, regral activity in, 170–171	field, 77
immediate early genes (IEGs), 170–171	Sticky/cohesive ends, 228
immunohistochemistry (IHC), 170–171	Strand separation, 230
thymidine analogs, cell proliferation with,	Structural brain imaging techniques,
171–172	2–13
Stem cell cultures, 300–304	Sucrose preference test, 62
brain organoids, 303-304, 304f	Super resolution fluorescence microscopy,
embryonic stem cells, 301	118-119
induced pluripotent stem (iPS) cells, 303	Surgery finishing, 81
multipotent cell, 300	Sutures, 81
neural progenitors, 301	Synapto-pHluorin, 181
neural stem cells (NSCs), 302-303	Systems neuroscience, 24
neurospheres, 302-303	
pluripotent cell, 300	-
primary neurosphere, 302-303	T
progenitor cells, 300	Tail Flick Assay, 51
secondary neurosphere assays, 302-303	Tail suspension assay, 62

Talairach space, 32–33	capsaicin receptor (TrpV1), 265
Task paradigms, 27-28, 28t	channelrhodopsin-2 (ChR2), 265
Taste assays, 66	designer receptors exclusively activated by
Taste/flavor assays, 50	designer drugs (DREADDs), 266
Temporal delay, 15-17	diphtheria toxin receptor (DTR), 266
Temporal resolution, 15–17	dLight, 264-265
Tetanus toxin (TeNT), 198, 266	functional, 261
Tet-off/tet-on system, 284-285	genetically encoded calcium indicators
Tetrodotoxin (TTX), 196	(GECIs), 264–265
Thermal cooling, 194–195	genetically encoded voltage indicators
Thermosensation, 68	(GEVIs), 264–265
Three Rs, 42b	GRAB-DA, 264-265
Thymidine analogs, cell proliferation with,	green fluorescent protein (GFP), 264
171-172	halorhodopsin (NpHR), 265
Tissue clearing, 149–150	iGABASnFR, 264–265
Tissue preparation, 145–150	iGluSnFR, 264-265
brain sectioning methods, 148t	lacZ, 264
CLARITY, 149–150	manipulate neural activity, 265-266
coronal plane, 149	neural activity, 264–265
cross-linking fixatives, 146–147	reporter genes, 264
cryostat, 149	shabire, 266
dehydrating fixatives, 146–147	silence neural activity, 266
embedding, 147	tetanus toxin (TeNT), 266
fixation, 146–147	Translation, 214–215
freezing microtome, 148-149	Transmission electron microscopy (TEM),
horizontal plane, 149	133, 134f
immersion, 147	Transposons, 217–218
microtome, 148-149	Transsynaptic labeling, 164–165
midsagittal cut, 149	Transsynaptic tracers, 164
neuroanatomical planes, 150f	TRAP-seq, 223
optimal cutting temperature (OCT)	r
compound, 147	• •
perfusion, 147	U
sagittal plane, 149	Ultrasonic neuromodulation (USNM), 32,
sectioning, 148–149	204
tissue clearing, 149–150	Unconditioned stimulus (US), 56b
vibratome, 149	
whole-mount preparations, 149	V
T-maze, 65, 65f	Validity, 44
Total internal reflection fluorescent (TIRF)	Variability
microscopy, 132	individuals, 43–44
Transcranial magnetic stimulation (TMS),	Vectors, 234–235
204	Vertical pole test, 48–49
Transcription, 212-214	Vibratome, 149
factors, 214	Viral gene delivery, 253–256
Transduction, 253	adeno-associated virus, 255–256
Transformation, 237	canine adenovirus, 256
Transgenes, 261, 262t-263t, 263-266	lentivirus, 256
ablate neurons, 266	neuroscience, 255t
allatostatin receptor (Alstr), 265	packaging cell, 253–254
archaerhodopsin (Arch), 265	rabies virus, 256
botulinum toxin (BoNT), 266	transduction, 253

virus production, 254f	freezing microtome, 148-149
Virtual reality mazes, 55	horizontal plane, 149
Virus, 165	immersion, 147
production, 254f	microtome, 148-149
Vision assays, 64–65	midsagittal cut, 149
Visual cliff assay, 49, 49f	neuroanatomical planes, 150f
Visualization experiments, image processing	optimal cutting temperature (OCT)
in	compound, 147
deconvolution, 187	perfusion, 147
regions of interest (ROIs), 187	sagittal plane, 149
registration, 186-187	sectioning, 148-149
Visualizing circuitry	tissue clearing, 149-150
anterograde, 164, 164f	vibratome, 149
anterograde and retrograde tracers, 164	whole-mount preparations, 149
horseradish peroxidase (HRP), 164	visualizing cell morphology, 145
lectins, 165	visualizing circuitry, 163-165
modified rabies virus, 165, 166f	anterograde, 164, 164f
monosynaptic retrograde tracing, 166f	anterograde and retrograde tracers,
neuronal tracer, 164	164
plant lectins, 165	horseradish peroxidase (HRP), 164
retrobeads, 164	lectins, 165
retrograde, 164, 164f	modified rabies virus, 165, 166f
transsynaptic labeling, 164–165	monosynaptic retrograde tracing, 166f
transsynaptic tracers, 164	neuronal tracer, 164
viruses, 165	plant lectins, 165
Visualizing gene and protein expression, 145,	retrobeads, 164
157-163	retrograde, 164, 164f
array tomography, 161–162	transsynaptic labeling, 164–165
direct IHC, 159–160	transsynaptic tracers, 164
enzymatic histochemistry, 162, 162f	viruses, 165
fluorescent in situ hybridization (FISH),	visualizing gene and protein expression,
158–159, 159f	145, 157–163
green fluorescent protein (GFP), 163	array tomography, 161–162
immunocytochemistry, 159	direct IHC, 159–160
immunofluorescence, 159	enzymatic histochemistry, 162, 162f
immunohistochemistry (IHC), 159–162,	fluorescent in situ hybridization (FISH),
161f	158–159, 159f
indirect IHC, 159–160	green fluorescent protein (GFP), 163
primary antibody, 159–160	immunocytochemistry, 159
reporter proteins, 163, 163f	immunofluorescence, 159
secondary antibody, 159–160	immunohistochemistry (IHC), 159–162,
in situ hybridization, 157–159, 158f	161f
Visualizing nervous system structure	indirect IHC, 159–160
tissue preparation, 145–150	primary antibody, 159–160
brain sectioning methods, 148t	reporter proteins, 163, 163f
CLARITY, 149—150	secondary antibody, 159–160
coronal plane, 149	in situ hybridization, 157–159, 158f
cross-linking fixatives, 146–147	visualizing morphology, 151–157
cryostat, 149	autoradiography, 154b—156b
dehydrating fixatives, 146–147	basophilic and fiber stains, 152f
embedding, 147 fixation, 146–147	biotin, 154b—156b cell body stains, 151
11x2HOIL 140-147	cen pouv siams. 131

Visualizing nervous system structure (Continued) chromogenic/colorimetric labels,	nonratiometric dyes, 178–179 ratiometric dyes, 178 voltage-sensitive dyes, 179
154b—156b	Visualizing neurotransmission biosensors,
	180t
digoxigenin, 154b–156b fiber stains, 151–153	
fluorescent labels, 154b–156b	FM dyes, 180–181
,	imaging presynaptic vesicle release, 180-181
fluorophores, 154b—156b	
gold labels, 154b—156b	neuromodulator signaling, 181–183
golgi stain, 153, 153b, 154f labeling molecular probes, 154b—156b	neurotransmitter signaling, 181
	pH-sensitive fluorescent proteins, 170–171
myelin, 151–153 neuron doctrine, 153b	synapto-pHluorin, 181 Voltage-sensitive dyes, 179
	•
quantum dots, 154b—156b	Von Frey assay, 51
radioactive labels, 154b—156b	Voxelwise analysis, 33
visualizing neural circuitry, 145	
Visualizing neural activity biosensors, 175–179, 176t	W
calcium indicator dyes, 178-179	Water bath, 293
GCaMP, 177, 178f	Western blot, 239-240, 318-322, 320f-321f
genetically encoded calcium indicator	Whole-mount preparations, 149
(GECI), 177	Worm Tracker, 67, 68f
genetically encoded voltage indicators	
(GEVIs), 179	N/
green fluorescent protein (GFP), 177	X
imaging calcium dynamics biosensors,	X-ray technology, 2-3, 4f
177-179	Xylazine, 77–78
imaging membrane voltage biosensors, 179	