Homework Assignment 1

Arjun Subramanian

1.

a.
$$r \land \neg p$$

b.
$$p \wedge q \wedge r$$

c.
$$\neg p \implies \neg r$$

d.
$$p \land \neg q \land r$$

e.
$$(p \land q) \implies r$$

f.
$$r \iff (q \lor p)$$

2.

- a. $\forall x \in P \exists y \in P, loves(x, y); \exists x \in P \forall y \in P, \neg loves(x, y)$
- b. $\exists x \in P \ \forall y \in P, loves(x, y); \ \forall x \in P \ \exists y \in P, \neg loves(x, y)$
- c. $\forall x \in \mathbb{Z} \exists y \in \mathbb{Z}, 2 \mid x \implies x = 2 \times y; \exists x \in \mathbb{Z} \forall y \in \mathbb{Z}, 2 \mid x \wedge x \neq 2 \times y$
- d. $\exists P \, \forall q, P(q) = C(q); \, \forall P \, \exists q, P(q) \neq C(q)$
- e. Let $P = \{ p \in \mathbb{Z} \mid \forall x \in \mathbb{Z} \land (x = 1 \lor p = x \lor \neg(x \mid p)) \}$ (the list of all primes) $\exists p \in P \ \forall x \in \mathbb{Z}, p \geq y \land p \leq y \times 2; \ \forall p \in P \ \exists x \in \mathbb{Z}, p < y \lor p > y \times 2 \}$

3.

a. This proposition forms a tautology

p	q	$p \vee q$	$\neg p \lor \neg q$	$(p \vee q) \vee (\neg p \vee \neg q)$
TRUE	TRUE	TRUE	FALSE	TRUE
TRUE	FALSE	TRUE	TRUE	TRUE
FALSE	TRUE	TRUE	TRUE	TRUE
FALSE	FALSE	FALSE	TRUE	TRUE

b. This proposition forms a tautology

p	q	$p \wedge q$	$p \implies q$	$(p \land q) \implies (p \implies q)$
TRUE	TRUE	TRUE	TRUE	TRUE
TRUE	FALSE	FALSE	FALSE	TRUE
FALSE	TRUE	FALSE	TRUE	TRUE
FALSE	FALSE	FALSE	TRUE	TRUE

4.

a. 2 is a prime number, but 2 + 2 = 4 is not prime. It can be represented as $4 = 2 \times 2$.

- b. Let m-n be even without loss of generality. It is known that m+n=(m-n)+2n. Since n is an integer, 2n is even. That way m+n will be even if m-n is even, or odd otherwise.
- c. Let $x=10 \land y=0.2$, so $0.2 \le 10$. Here $\lfloor x-y \rfloor = \lfloor 10-0.2 \rfloor = \lfloor 9.8 \rfloor = 9$. On the other hand $\lfloor x \rfloor \lfloor y \rfloor = \lfloor 10 \rfloor \lfloor 0.2 \rfloor = 10 0 = 10$. Since $9 \ne 10$, the proposition is false
- d. If x is even, then $x^2 x$ will be even because both x^2 and x is even, and subtraction of 2 even numbers results in an even number. Similarly If x is odd, then $x^2 x$ will be even because both x^2 and x are odd, and subtraction of 2 odd numbers results in an even number. Adding $x^2 x$, which is an even number, to 3, which is an odd number, will result in $x^2 x + 3$ being an odd number due to addition rules.
- e. If m is even, 2 is a factor of m by definition. Since m^7 is m multiplied by itself 7 times over, m is a factor of $m^7.m \mid m^7 \land 2 \mid m \implies 2 \mid m^7$ because of a multiplication property. Obviously since $2 \mid m^7, m^7$ is even, by definition.
- 5. $d \mid a \implies a = d \times k$ for some integer k, so $ax = d \times k \times x$. $d \mid b \implies b = d \times l$ for some integer l, so $by = d \times l \times y$. $ax + by = (d \times k \times x) + (d \times l \times b)$ which simplifies to $d \times (k \times x + l \times b)$. Since ax + by is a multiple of d, $d \mid ax + by$.
- 6. Let x-y=2k+1 for some integer k, and y-z=2l for some integer l. x-z=(x-y)+(y-z)=(2k+1)+2l=2(k+l)+1. Since both k and l are integers k+l is an integer, and x-z is odd.
- 7. The contrapositive of the proposition is if $r^{1/t}$ is rational then r is rational. Since $(r^{1/t})^t$ is a rational number multiplied by itself t times, so $(r^{1/t})^t$ is a rational number. $(r^{1/t})^t = r$ when simplified, so r is rational.
- 8. Since $4 \mid n-3$, $4 \mid n-3+4$ or $4 \mid n+1$. $4 \mid n+1 \land 2 \mid 4 \implies 2 \mid n+1$, so $2 \mid n-1$ because n-1=(n+1)-2. $n^2-1=(n+1)\times(n-1)$. Since $4 \mid n+1$ and $2 \mid n-1$: $8 \mid n^2+1$.
 - a. $n^3 n = (n-1)(n)(n+1)$. $n^3 + n$ is a multiple of 3 consecutive numbers. There are 3 cases for the remainder of n/3:

 $0:3 \mid n$

9.

1: n is 1 greater than a multiple of 3, so $3 \mid n - 1$.

2: n is 1 less than a multiple of 3, so $3 \mid n + 1$.

In all 3 cases one of the factors of $n^3 + n$, as described above, is a multiple of 3. Therefore, regardless of the remainder of n/3, $3 \mid n^3 + n$ for all integers n.

- b. $2x^2 4x + 3 > 0$ becomes $2(x^2 2x) + 3 > 0$ when factoring out the 2. Next it can be factored into a square becoming: $2((x-1)^2 1) + 3 > 0$. Taking the -1 out, the inequality would become $2(x-1)^2 + 1 > 0$. Since a square can't become negative, the least is can be is 0. In that case, 1 (or greater) will always be > 0.
- 10. If p and q equals 1, then the expression would become $1+1 \le 1+1 \times 1$ (which is true). 1 is the smallest number that both p and q can be since they are positive integers. Next let p increase by one without loss of generality. The left side going up by 1, and the right side going up by q. Since $q \ge 1$ by definition, the right side will continue to be \ge to the left side. In order to reach any integer pair (p,q), you can keep increasing p or q by 1 to reach the desired numbers. That way $p+q \le 1+pq$ will be true for all integers.

11.

- a. When $A=\{1,2\}, B=\{1,3\}, C=\{2,3\}$ $A\cap B\cap C=\varnothing \text{ because the } 3 \text{ sets share no common elements}$ $A\cup B\cup C=\{1,2,3\} \text{ and its cardinality is } 3$ |A|+|B|+|C|=2+2+2=6 The proposition is false, $3\neq 6$
- b. Let $x \in A \cap B$. Since $A \cap (B C) = \emptyset$ and $x \in A$, $x \notin B C$. $x \in B$, so the only way for $x \notin B C$ is for $x \in C$. That way $(\forall x \in A \cap B) \in C \implies A \cap B \subseteq C$.
- c. Without loss of generality let $x \in A \cap C$. $x \in A \implies x \in A \cup B$. $x \in C \implies x \in C \cup D$. Since x is in both the left and right sides of the intersection, $x \in (A \cup B) \cap (C \cup D)$. Every element in $(A \cap B) \cup (C \cap D)$ is in $(A \cup B) \cap (C \cup D)$, so $(A \cap B) \cup (C \cap D) \subseteq (A \cup B) \cap (C \cup D)$.
- d. For every element in A there should be |B| elements in $A \times B$. We know that there is at least one element in A because $A \neq \emptyset$. Since that is the case, if $A \times B = \emptyset$ then there has to be 0 for every element in A. This means that |B| = 0 or $B = \emptyset$.
- e. Let $A=\{1\}$, $B=\{2\}$, and $A\cup B=\{1,2\}$. $\mathscr{P}(A)=\{\varnothing,\{1\}\}$ and $\mathscr{P}(A)=\{\varnothing,\{2\}\}$. Furthermore, $\mathscr{P}(A)\cup\mathscr{P}(B)=\{\varnothing,\{1\},\{2\}\}$ and $\mathscr{P}(A\cup B)=\{\varnothing,\{1\},\{2\},\{1,2\}\}$. Since $\{1,2\}\in\mathscr{P}(A\cup B)$ but $\{1,2\}\notin\mathscr{P}(A)\cup\mathscr{P}(B)$, so the proposition is false.