

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

(A State Government University)

B. Tech, 2024

Minor Degree in

POWER CONVERTERS & DRIVES

Offered By: Electrical Engineering

CURRICULUM

	Minor (Power Converters & Drives)												
SI. No:	Semester	Course	Course Title	Credit Structur		Credit Structure Total Marks		Total Marks		Total Marks			Hrs./
S	Ser	Code	(Course Name)	L	T	P	SS	CIA	ESE	Credits	Week		
1	3	MNEET309	Electric Circuit Analysis	3	1	0	5	40	60	4	4		
2	4	MNEET409	Electrical Machines	3	0	2	5.5	40	60	4	5		
3	5	MNEET509	Power Electronic Converters	3	1	0	5	40	60	4	4		
4	6	MNEET609	Power Semiconductor Drives	3	0	0	4.5	40	60	3	3		
			Total				20/21			15	15/17		

ELECTRIC CIRCUIT ANALYSIS

Course Code	MNEET309	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:1:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GXEST104 / GZEST204	Course Type	Theory

Course Objectives:

- 1. This course introduces circuit analysis techniques applied to dc and ac electric circuits in steady state and dynamic conditions.
- **2.** This course serves as the most important prerequisite of almost all advanced courses in electrical engineering.

Module No.	Syllabus Description			
1	NETWORK THEOREMS : Review of Kirchoff's laws - Mesh analysis – Nodal	11		
	analysis - network theorems - Superposition theorem - Source transformation -			
	Thevenin's theorem – Maximum power transfer theorem - DC and AC circuits			
	with dependent and independent sources			
2	THREE-PHASE NETWORKS: Review of 3-phase balanced system – active, reactive	11		
	and apparent power in balanced star and delta - unbalanced system – 3-wire delta, 4-wire			
	star, 3-wire star without neutral impedance (solution using Milman's method only) -			
	active, reactive and apparent power in unbalanced star and delta - 3-phase power			
	measurement using two-wattmeter method in balanced and unbalanced systems.			
3	STEADY STATE and TRANSIENT RESPONSE: Laplace Transforms –	11		
	inverse Laplace transforms - DC response of RL, RC and RLC circuits with initial			
	conditions - complete solution using Laplace Transforms - Time constant -			
	damping in RLC series circuit.			
4	TWO-PORT NETWORKS : Z, Y, h and T parameters - conditions for symmetry	11		
	& reciprocity – Relationship between parameters – interconnection of two-port			
	networks – series, parallel and cascade connections – T and π networks.			

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Electric Circuits & Networks	Suresh Kumar	Pearson	2008		
2	Network Analysis	Van Valkenburg	Pearson	2019		
3	Network Analysis and Synthesis	Ravish R Singh	McGraw Hill Education	2019		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering Circuit Analysis	Hayt and Kemmerly	McGraw Hill	2013		
			Education,			
2	Circuit Theory Analysis and	Chakrabarti	Dhanpat Rai& Co.	2018		
	Synthesis					
3	Engineering Network Analysis &	Gopal G Bhise, Prem	Umesh Publications	2012		
	Filter Design	R Chadha, Durgesh				
		Kulshreshtha				

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Total
5	15	10	10	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply circuit theorems to solve complex DC and AC electric networks	K3
CO2	Apply transformation from time domain to s-domain, solve dynamic electric	K3
	circuits.	
CO3	Analyse three-phase networks in star and delta configurations under balanced	K3
	and unbalanced conditions	
CO4	Describe two-port networks in terms of various parameters	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3										3
CO3	3	3										3
CO4	3	3										3

MODEL QUESTION PAPER

	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY					
TI	HIRD SEMESTER B. TECH MINOR DEGREE EXAMINATION, MONTH A	ND YI	EAR			
	Course Code: MNEET309					
	Course Name: ELECTRIC CIRCUIT ANALYSIS					
Max.	Marks: 60 Duration: 2 Hours 30	Minute	es			
	PART A					
	Answer all questions. Each question carries 3 marks	СО	Marks			
1	For the circuit shown in figure (1), find the load impedance for maximum		(3)			
1	power transfer if i) the load impedance is complex and ii) if the load impedance					
	is purely resistive.					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
2	For the circuit shown in figure (2), using source transformation technique,		(3)			
	determine the equivalent circuit using a single voltage source and a resistance					
	and hence find the current.					
3	Define active power and reactive power in 3-phase circuits.		(3)			
4	A 3-phase supply is connected to an unbalanced delta connected load with load		(3)			
	impedances $1\angle 0^{\circ}\Omega$, $1\angle 90^{\circ}\Omega$ & $1\angle -90^{\circ}\Omega$. If the magnitude of the currents					
	through each load impedance is 10A, find the active power consumed by the					
	3-phase load.					
5	Determine the voltage $v(t)$ across a 2Ω resistor, if the current is given by,		(3)			
	$I(s) = \frac{2s+4}{s^2+4s+3}$.					
6	Explain different types of damping in series RLC circuit.		(3)			
7	Derive the condition for reciprocity of a 2-port network in terms of Z -		(3)			
	parameters.					
8	Derive expression for the equivalent T-parameters if two 2-port networks with		(3)			
	T-parameters T _A and T _B are connected in cascade.	<u> </u>				
	PART B					
	Answer any one full question from each module. Each question carries 9 ma	rks				
	Module 1					

a) Find V_{AB} in the circuit shown in figure (3) using Thevenin's Theorem.

(5)

ELECTRICAL MACHINES

Course Code	MNEET409	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:2	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	Theory + Lab

Course Objectives:

The purpose of the course is to provide the fundamentals of DC and AC machines giving emphasis to applications in engineering field

Module No.	Syllabus Description	Contact Hours
1	DC Machines - principle of operation of DC generator – concepts and comparison of lap and wave windings - emf equation - types of excitations - separately excited,	11
	shunt, series and compound generators - concept of armature reaction - open circuit characteristics (determination of critical field resistance and voltage build up) and load characteristics (external characteristics only) of shunt generators only	
	- simple numerical problems. DC motors - Principle of operation - torque and speed equations – separately excited, shunt, series and compound motors – torque-	
	speed characteristics of shunt and series motors – losses and efficiency - starting of shunt motor using 3-point starter - applications of dc motors - simple numerical problems.	
2	Transformers – principle of operation – emf equation – constructional details – shell-type and core-type – ideal transformer – practical transformer – phasor diagram – equivalent circuit - voltage regulation - losses and efficiency – maximum efficiency – OC and SC tests – simple numerical problems.	11
3	Synchronous machines – constructional details of synchronous generator – principle of operation – types – emf equation – coil-span factor and distribution factor (no derivation) – open circuit and short circuit characteristics - armature reaction - voltage regulation of alternator at lagging and leading power factors – determination of voltage regulation by emf method – simple numerical problems - Principle of operation of synchronous motors - methods of starting	11
4	3-phase induction motors – constructional details - slip ring and squirrel cage types - principle of operation - rotating magnetic field (no derivation) – equivalent circuit - torque slip characteristics – no-load and blocked rotor tests – simple numerical problems - methods of starting – direct online, star delta, auto transformer and rotor resistance starting – single-phase induction motors – principle of operation – split-phase and capacitor-start induction motors.	11

Experiment List

(Maximum 8 Experiments)

Experiment	Experiment
No.	
1	Open circuit characteristics of DC shunt generator - determine critical field resistance and
	maximum voltage build up for given shunt field resistance
2	Load characteristics (V Vs I _L) of DC shunt generator
3	Load test on DC shunt motor and determine speed Vs torque characteristics
4	Load test on DC series motors and determine speed Vs torque characteristics
5	Open circuit and short circuit tests on 1-phase transformer
	Determine the equivalent circuit parameters
	Predetermine of voltage regulation and efficiency at full load and unity, 0.8 lag and 0.8 lead power
	factors.
6	Load test on 1-phase transformer at full-load and unity power factor – determine full load regulation
	and efficiency
7	Open circuit and short circuit tests on 3-phase alternator.
	Predetermine of voltage regulation at full load and unity, 0.8 lag and 0.8 lead power factors.
8	Load test on 3-phase squirrel cage induction motor and determine torque and efficiency at full load.
9	Load test on 3-phase slip-ring induction motor and determine torque and efficiency at full load
10	Load test on 1-phase induction motor and determine torque and efficiency at full load

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Electrical Machinery	P.S. Bimbhra	Khanna Publishers	2020				
2	Electric Machines	D P Kothari & I J Nagrath	Tata McGraw Hill	2017				

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Electric Machinery	Fitzgerald A. E., C.	McGraw Hill,	2020					
		Kingsley and S.							
		Umans							
2	Theory of Alternating Current	Langsdorf M. N	Tata McGraw Hill	2001					
	Machinery								
3	DC Machines & Transformers	K Murugesh Kumar	Vikas Publishing House	2004					
4	Induction & Synchronous Machines	K Murugesh Kumar	Vikas Publishing House	2000					
5	Theory & Performance of Electrical	J.B. Gupta	S K Kataria	2013					
	Machines								

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	5	10	10	10	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyze the working of DC machines	K3
CO2	Analyze the working of 1-phase transformer	K3
CO3	Analyze the working of 3-phase synchronous machines	K3
CO4	Analyze the working of induction motors	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		2					2	2		3
CO2	3	3		2					2	2		3
CO3	3	3		2					2	2		3
CO4	3	3		2					2	2		3

	MODEL QUESTION PAPER						
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY						
F	OUF	RTH SEMESTER B. TEC	CH MINOR DEGREE EXA	AMINATION, MONTH	AND Y	EAR	
	Course Code: MNEET409						
		Cours	se Name: ELECTRICAL M	IACHINES			
Max	. M	arks: 60		Duration: 2 Ho	ours 30	Minutes	
			PART A				
		Answer all q	questions. Each question car	ries 3 marks	CO	Marks	
1	What are the necessary conditions for voltage build in a DC shunt generator? CO1				CO1	(3)	
2	2 Explain the significance of back emf in a DC motor. CO1			CO1	(3)		
3	3 List the characteristics of an ideal transformer. CO2			(3)			
4	Draw the phasor diagram of a 1-phase transformer delivering upf load. CO2 (3)				(3)		

_			000	(2)
5		Two alternators run on the same shaft (ie, runs at same speed). One generates	CO3	(3)
		voltage at 50Hz and the other at 40Hz. Find the maximum possible speed. Also		
		find another possible speed.		
6		Explain the effect of armature reaction of an alternator at zero power factor	CO3	(3)
		lagging.		
7		What is the need for starter in a 3-phase induction motor?	CO4	(3)
8		Explain the working of a 1-phase split-phase induction motor.	CO4	(3)
	-	PART B		
		Answer any one full question from each module. Each question carries 9 ma	arks	
		Module 1		
9	a)	Explain the construction of a DC machine with neat diagram.	CO1	(5)
	b)	A 400V DC shunt generator has a full load current of 190A. Its armature	CO1	(4)
		resistance is 0.08Ω ; shunt field resistance 200Ω , iron and mechanical loss		
		together 2000W. Find the full load efficiency.		
10	a)	Draw and explain the speed – torque characteristics of DC series motor.	CO1	(4)
	b)	A 440V shunt motor takes 105A as armature current from the supply and runs	CO1	(5)
	′	at 1000rpm. The armature resistance is 0.15Ω . If the total torque developed is		
		unchanged, calculate the speed and armature current if the magnetic field is		
		reduced to 70% of the initial value.		
		Module 2		
11	(a)	Derive the emf equation of a 1-phase transformer.	CO2	(4)
	b)	A 20kVA, 250/2500V single phase transformer gave the following test results	CO2	(5)
		OC Test (LV side): 200V 1.4A 105W	552	(0)
		SC Test (HV side): 120V 8A 320W		
		Draw the equivalent circuit of single-phase transformer referred to LV side.		
12	a)	Explain the voltage regulation of a 1-phase transformer.	CO2	(4)
	b)	A 25kVA, 3300/230V, 50Hz 1-phase transformer has iron loss of 300W and	CO2	(5)
		copper loss of 400W on full-load. (a) Find the efficiency of the transformer at		(3)
		half load at 0.8 power factor lagging. (b) At what load will the efficiency be		
		maximum? Also, find the maximum efficiency.		
13	(a)	Module 3	CO2	(4)
13	a)	Compare between cylindrical type and salient-pole type synchronous	CO3	(4)
	1. \	generators.	CO2	(5)
	b)	A 3-phase, 10-pole alternator has 2 slots/pole/phase on its stator with 10	CO3	(5)
		conductors per slot. The air gap flux is sinusoidally distributed and equals		
		0.05Wb. The stator has a double layer winding with a coil span of		
		150°(electrical). If the alternator is running at 600rpm, calculate the emf		
		generated/phase at no load.		. = \
14	a)	Explain the principle of operation of a synchronous motor.	CO3	(5)
	b)	A 3-phase, 230V(phase), 10A, delta connected synchronous generator has	CO3	(4)
		synchronous reactance $X_s = 3\Omega$, determine the full load voltage regulation at		
		zero power factor lag and lead. Module 4		
15	(a)	Explain the working of a 3-phase induction motor. Also, explain the torque Vs	CO4	(5)
13	"	speed characteristics of induction motor.		(3)
	h)	*	CO4	(4)
	b)	In a 6 pole, 3 phase, 50Hz motor with star-connected rotor, the rotor resistance	004	(+)
		per phase is 0.3Ω , the reactance at standstill is 1.5Ω per phase and an emf		

		between the slip rings on open circuit is 175V. Calculate i) slip at a speed of 950 rpm ii) rotor emf per phase iii) rotor frequency and reactance at a speed of				
		950 rpm.				
16	a)	Explain the working of a star-delta starter in a 3-phase induction motor.	CO4	(4)		
	b)	A 10KW 400V 4pole delta connected squirrel cage induction motor gave the	CO4	(5)		
		following test results:				
		No load test: 400V 8A 250W				
		Blocked rotor test: 90V 35A 1350W				
		The stator resistance is $0.72\Omega/ph$. Determine the equivalent circuit parameters.				

POWER ELECTRONIC CONVERTERS

Course Code	MNEET509	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:2	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)		Course Type	Theory + Lab

Course Objectives:

- 1. To give a strong foundation on power converters,
- 2. To motivate students to design and implement power electronic converters having high efficiency, small size, high reliability and low cost

Module Syllabus Description		Contact
No.	Syllabus Description	Hours
1	Power semiconductor devices and their symbols (power diode, SCR, Power MOSFET	11
	and IGBT) – structure of SCR – forward blocking, forward conduction and reverse	
	blocking - static characteristics - two transistor analogy - turn-on methods - gate	
	triggering circuits – RC and UJT firing circuits - comparison of power diode, SCR, Power MOSFET and IGBT.	
2	Controlled rectifiers – half-wave controlled rectifier with R load – single phase fully	11
	controlled and half-controlled bridge rectifier with R (discontinuous) and RLE loads	
	(continuous conduction only) - waveforms - output voltage equation (continuous	
	conduction) – 3-phase fully-controlled bridge rectifier with RLE load (continuous	
	conduction) – waveforms – output voltage equation – simple numerical problems	
3	AC voltage controllers (ACVC) – 1-phase full-wave ACVC with R, L & RL loads –	11
	waveforms – RMS output voltage – input power factor - sequence control (two stage)	
	with R load.	
	Inverters – voltage source inverters – single phase full bridge inverter with R, L & RL	
	loads – waveforms – RMS output voltage – fundamental RMS output voltage - voltage	
	control in inverters – single pulse width modulation – sine PWM – modulation index &	
	frequency modulation ratio – fundamental RMS output voltage - 3-phase bridge inverter	
	with star and delta connected R load –180° conduction mode.	
4	DC-DC converters – step down and step up choppers – single-quadrant (Type A and B),	11
	two-quadrant (Type C and D) & four quadrant chopper (class E) – pulse width modulation	
	& current limit control in dc-dc converters. Switching regulators – buck, boost & buck-	
	boost – operation in continuous conduction mode – waveforms – design of filter	
	inductance and capacitance.	

Experiment List

(Maximum 8 Experiments)

Experiment	Experiment
No.	
1	Static characteristics of SCR
2	UJT triggering circuit
3	1-phase fully-controlled / semi-controlled rectifier with R load
4	1-phase AC voltage controller
5	Chopper controlled DC motor
6	Simulation of 1-phase fully controlled and semi controlled rectifier
7	Simulation of 3-phase fully controlled bridge rectifier
8	Simulation of buck, boost and buck-boost converter
9	Simulation of 1-phase full bridge square wave inverter
10	Simulation of 1-phase sine PWM inverter

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Power Electronics – Converters	Mohan, Undeland,	Wiley-India	2022
	Application and Design	Robbins		
2	Power Electronics – Circuits,	Muhammad H.	Pearson Education	2017
	Devices and Applications	Rashid		
3	Power Electronics	P.S. Bimbhra	Khanna Publishers	2024

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Power Electronics – Essentials & Applications	L. Umanand	Wiley-India	2009			
2	Power Electronics- Principles and Applications	Joseph Vithayathil	Tata McgrawHill	2010			
3	Power Electronics	Cyril W Lander	McGrawHill	1993			

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	5	10	10	10	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the operation, control and characteristics of power semiconductor	K2
	devices.	
CO2	Analyze the working of the various types of controlled rectifiers	K3
CO3	Explain the working of AC voltage controllers and analyze its operation.	K3
CO4	Describe the operation and voltage control techniques of inverters.	K3
CO5	Analyze the working of dc-dc converters	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2	2	2				2	2		3
CO2	3	3	2	2	3				2	2		3
CO3	3	3	2	2	3				2	2		3
CO4	3	3	2	2	3				2	2		3
CO5	3	3	3	2	3				2	2		3

	MODEL QUESTION PAPER APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY					
F	IFTH SEMESTER B. TECH MINOR DEGREE EXAMINATION, MO	NTH AN	D YE	AR		
	Course Code: MNEET509					
	Course Name: POWER ELECTRONIC CONVERTER					
Max.	. Marks: 60 Duration:	2 Hour	rs 30 I	Minutes		
	PART A		~~	3.5.1		
	Answer all questions. Each question carries 3 marks	•	СО	Marks		
1	Explain the static characteristics of SCR.			(3)		
2	Explain the working of RC triggering circuit with necessary waveform	s.	CO1	(3)		
3	Draw the source current and output voltage waveforms of a 1-phase	e fully-	CO2	(3)		
	controlled bridge rectifier with R load at a firing angle of 90°.					
4	Derive the expression for the average output voltage of a 1-phase	semi-	CO2	(3)		
	converter with continuous and ripple-free load current.					
5	Explain the working of a 1-phase AC voltage controller with R loa	d with	CO3	(3)		
	necessary waveforms.					
6	Explain the working of a 1-phase full-bridge inverter with L loa	d with	CO4	(3)		
	necessary waveforms.					
7	Derive the expression for the average output voltage of a boost convert	Derive the expression for the average output voltage of a boost converter. CO5 (3)				
8	Explain the current limit control in a DC-DC converter. CO5 (3)					
	PART B					

		Answer any one full question from each module. Each question carries 9 ma	ırks	
		Module 1		
9	a)	Explain the two-transistor analogy of SCR.	CO1	(5)
	b)	Explain any two turn-on methods of SCR.	CO1	(4)
10	a)	Explain the working of a UJT triggering circuit.	CO1	(4)
	b)	Draw the symbols of IGBT and power MOSFET and list any 3 comparisons.	CO1	(5)
		Module 2		
11	a)	Explain the working of a 1-phase fully controlled bridge rectifier with	CO2	(5)
		necessary waveforms (source current and load current). Assume continuous		
		and ripple-free load current.		
	b)	A 1-phase semi-converter is operated from a source of 120V and 50Hz, which	CO2	(4)
		supplies to a load resistance of 10Ω . If the average output voltage is 25% of		
		the maximum average output voltage, determine i) the firing angle α and ii)		
		the average load current I _{dc} .		
12		Explain the working of a 3-phase fully-controlled bridge rectifier with	CO2	(9)
		necessary waveforms (source current, load voltage) at a firing angle of 30°.		
		Assume continuous and ripple-free load current.		
		Module 3		
13	a)	Explain the sine PWM technique in 1-phase full-bridge inverters. Define the	CO4	(5)
		terms modulation index and frequency modulation ratio.		
	b)	A 1-phase full wave ac voltage controller has a resistive load of 20Ω while the	CO3	(4)
		input voltage is 220V at 50Hz. If the firing angles of each of the anti-parallel		
		thyristors are 90°, calculate i) the RMS value of the output voltage and ii) the		
		input power factor.		
14		Explain the working of a 3-phase full-bridge inverter with star connected R-	CO4	(9)
		load in 180° conduction mode. Also, draw the line voltages and phase voltages		
		across the load showing the devices conducting during each period.		
	<u>'</u>	Module 4	'	
15	a)	Explain the working of a four-quadrant chopper (type E).	CO5	(6)
	b)	Explain the working of two-quadrant chopper (type C).	CO5	(3)
16	a)	Explain the working of a buck-boost converter with necessary waveforms.	CO5	(4)
		Assume the load voltage is ripple-free.		
	b)	A buck converter topology was used to obtain the required dc load voltage	CO5	(5)
		output of 5V from a dc input of 12V. The peak-to-peak output ripple was		
		restricted to 20mV. The switching frequency is 25kHz. For maintaining the		
		peak-to-peak ripple current of inductor to 0.8A, determine i) the duty cycle ii)		
		the filter inductance L and capacitance C. ****		

POWER SEMICONDUCTOR DRIVES

Course Code	MNEET609	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)		Course Type	Theory

Course Objectives:

To impart knowledge about the DC and AC motor drives and its applications.

Module No.	Syllabus Description	Contact Hours
1	Introduction to electric drives – Block diagram – advantages of electric drives – classification of load torques – four quadrant operation - fundamental torque equation – components of load torque - Steady state stability – calculation of time	9
	in transient operation – concept of closed loop control of motor drives.	
2	DC motor drives- constant torque and constant power operation - separately excited dc motor drives using single phase and 3-phase fully controlled converters. Chopper controlled separately excited DC drives - single quadrant chopper drives	9
	(class A and B) - regenerative braking control - two quadrant chopper drives (class C) - four quadrant chopper drives (class E).	
3	Induction Motor Drives- speed control of 3-phase induction motor - Stator voltage control –Stator voltage and frequency control - voltage source inverter control – static rotor resistance control – slip power recovery control schemes – static Kramer drive – static Scherbius drive - sub synchronous and super synchronous speed variations.	9
4	Synchronous motor drives – variable frequency control- open loop inverter fed synchronous motor drive – self-controlled synchronous motor drive. Permanent magnet synchronous motor (PMSM) – principle of operation and control – Brushless DC motor drives (BLDC) – principle of operation and control – Switched reluctance motor (SRM) – principle of operation and control – converter circuit.	9

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamentals of electric drives	G.K. Dubey	Pearson Education	2002			
2	Electric Drives	Vedam	MC Graw Hill	2017			
		Subrahmanyam	Education				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Power electronics	P. S. Bimbhra	Khanna publishers	2022				
2	Modern power electronics and AC drives	Bimal K. Bose	Pearson Education	2015				
3	Power semiconductor control drives	Dubey G. K.	Prentice Hall	1989				
4	Power Electronics and Motor Control	W. Shepherd, L. N. Hulley and D. T.	Cambridge University Press	2015				
		Liang						

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Total
5	15	10	10	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the transient and steady state aspects electric drives	K3
CO2	Apply the appropriate configuration of controlled rectifiers for the speed control	К3
	of DC motors	
CO3	Analyse the operation of chopper-fed DC motor drive in various quadrants	К3
CO4	Describe the various speed control techniques of induction motors	K3
CO5	Explain the different speed control methods of synchronous motor drives	K3
CO6	Describe the principle of operation and the speed control of special electrical	K3
	machine drives.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3		2	2							3
CO3	3	3		2	2							3
CO4	3	3		2	2							3
CO5	3	2										3
CO6	3	2										3

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER R. TECH MINOR DEGREE EXAMINATION, MONTH AND YEAR

5	SIXTH SEMESTER B. TECH MINOR DEGREE EXAMINATION, MONTH AND YEAR							
		Course Code: MNEET609						
	Course Name: POWER SEMICONDUCTOR DRIVES							
Max. Marks: 60 Duration: 2 Hours 30 M								
		D.D.						
	PART A Answer all questions. Each question carries 3 marks CO Marks							
1		Answer all questions. Each question carries 3 marks						
1		Explain the block diagram of an electric drive. Explain the classification of load torques.						
2	CO1	(3)						
	Describe the regenerative control in a separately excited DC motor.							
4		Explain the working of a two-quadrant (type C) chopper.	CO3	(3)				
5								
	voltage and reduced supply frequency is not preferred?							
6		Explain the static rotor resistance control of a 3-phase induction motor.	CO4	(3)				
7		List the advantages of self-control of synchronous motor.	CO5	(3)				
8		List the applications of switched reluctance motor.	CO6	(3)				
		PART B						
		Answer any one full question from each module. Each question carries 9 mg	ırks					
0		Module 1	GO 1	(5)				
9	(a)	Explain the four-quadrant operation of a motor driving a hoist load with	CO1	(5)				
	1.	necessary sketches.	001	(4)				
	b)	A drive has following parameters: - J=10kg-m ² , T=100-0.1N and T ₁ =0.05N	CO1	(4)				
	where N is the speed in rpm. Initially the drive is operating in steady state. Now it is to be reversed. For this motor characteristics is changed to $T = -100$ -							
10	0.1N. Calculate the time of reversal.							
10	(a)	Explain the different components of load torques.	CO1	(4)				
	b)	Explain the steady-state stability in a drive using speed-torque characteristics.	COI	(5)				
11		Module 2	002	(5)				
11	a)	Derive an expression relating speed and torque of 1-phase full-converter fed	CO2	(5)				
	1.	separately excited DC motor drive operating in continuous conduction mode.	002	(4)				
	b)	A 220V, 960rpm, 12.8A SEDCM has $R_a=2\Omega$ and $L_a=150$ mH. It is fed from a	CO2	(4)				
		3-phase fully controlled rectifier with source voltage of 400V, 50Hz. Calculate						
		i) motor torque for α =60° and speed = 600rpm ii) motor speed for α =60° and						
12		T = 20Nm.	CO2	(5)				
12	a)	Explain the working of a four-quadrant chopper fed separately excited DC	CO3	(5)				
	1. \	motor.	CO2	(4)				
	b)	A 200V, 875rpm, 150A separately excited DC motor has an armature resistance	CO2	(4)				
		of 0.06Ω . It is fed from a 1-phase fully-controlled rectifier with an ac source						
		voltage of 220V, 50Hz. Assuming continuous conduction, calculate firing						
		angle for rated motor torque and 750rpm.						
12	6)	Module 3	CO4	(5)				
13	a)	Using torque-speed curve, explain the stator voltage control of a 3-phase	CO4	(5)				
	1	induction motor.						

	b)	A 440V, 3-phase, 50Hz, 6-pole, 945rpm, delta connected induction motor has	CO4	(4)
		following parameters referred to the stator: $R_s = 2\Omega$, $R_r' = 2\Omega$, $X_s = 3\Omega$, $X_r' = 2\Omega$		
		4Ω . When driving a fan load at rated voltage it runs at rated speed. The motor		
		speed is controlled by stator voltage control. Determine motor speed, current		
		and torque for the terminal voltage of 280V.		
14	a)	Explain the working of static Kramer drive for the speed control of a 3-phase	CO4	(5)
		slip-ring induction motor and derive the expression for slip.		
	b)	A 3-phase, 3560rpm, 460V, 60Hz, 2-pole, star connected induction motor has	CO4	(4)
		$R_s = 0.2\Omega, R_r' = 0.18\Omega, X_s = 0.13\Omega, X_r' = 0.2\Omega$. The motor is controlled by a		
		constant volt to Herts ratio corresponding to the rated voltage and rated		
		frequency. Calculate the maximum torque and the corresponding slip for 30Hz.		
		Module 4		
15	a)	Explain the open loop v/f control of synchronous motor drive.	CO5	(4)
	b)	Explain the principle of operation of a brushless DC motor.	CO6	(5)
16	a)	Explain the working of a self-controlled synchronous motor drive employing	CO5	(5)
		load commutated current source inverter.		
	b)	Explain the principle of operation of a switched reluctance motor.	CO6	(4)
