

CCNA 200-301 Day 14

Subnetting (Part 2)

Things we'll cover

- Subnetting practice questions (Class C networks)
- · Subnetting Class B networks

Subnetting

192.168.1.0/24

Divide the 192.168.1.0/24 network into four subnets that can accommodate the number of hosts required.

QUIZ

The first subnet (Subnet 1) is 192.168.1.0/26. What are the remaining subnets?

HINT: Find the broadcast address of Subnet 1. The next address is the network address of Subnet 2. Repeat the process for Subnets 3 and 4.

192.168.1.0/24

Subnet 1: 192.168.1.0/26

192.168.1.0 - 192.168.1.63

Subnet 2: 192.168.1.64/26

192.168.1.64 - 192.168.1.127

Subnet 3: 192.168.1.128/26

192.168.1.128 - 192.168.1.191

Subnet 4: 192.168.1.192/26

192.168.1.192 - 192.168.1.255

QUIZ

The first subnet (Subnet 1) is 192.168.1.0/26. What are the remaining subnets?

HINT: Find the broadcast address of Subnet 1. The next address is the network address of Subnet 2. Repeat the process for Subnets 3 and 4.

192.168.1.0/24

192

•

168

•

1

•

0

a

128

6

64

NETWORK PORTION 0

HOST

PORTION

32

0

16

0

0

8

8

192

168

128

64

32

16

NETWORK PORTION

HOST PORTION

192

•

168

•

1

•

128

128 64

0

NETWORK PORTION 0

32

6

16

0

0

8

8

RK HOST N PORTION

192

168

32

192

128 64

16

NETWORK PORTION

HOST PORTION

QUIZ

The first subnet (Subnet 1) is 192.168.1.0/26. What are the remaining subnets?

HINT: Find the broadcast address of Subnet 1. The next address is the network address of Subnet 2. Repeat the process for Subnets 3 and 4.

192.168.1.0/24

Subnet 1:

Subnetting

SW4

53

Subnet 4:

SW1

SW2

Borrowing 0 bits = can't make any subnets

Borrowing 1 bit = can make 2 subnets

 2^x = number of subnets (x = number of 'borrowed' bits) $2^{n} - 2 =$ number of hosts (n = number of host bits)

Borrowing 2 bits = can make 4 subnets

Borrowing 3 bits = can make 8 subnets

192.168.255.0/27

192

168

255

128 64

32

16

NETWORK PORTION

Subnetting

SW1

192.168.255.0/27

Subnet 2:

192.168.255.32/27

Subnet 3:

192.168.255.64/27

Subnet 4:

192.168.255.96/27

Subnet 5:

Subnet 6: 192.168.255.160/27

192.168.255.128/27

Subnet 7: 192.168.255.192/27

Subnet 8: 192.168.255.224/27

Divide the 192.168.255.0/

equal size. Identify the five subnets.

192.168

What subnet does host 192.168.5.57/27 belong to?

Subnet ID: /27

What subnet does host 192.168.5.57/27 belong to?

Subnet ID: 192.168.5.32 /27

What subnet does host 192.168.29.219/29 belong to?

Subnet ID: /29


```
      1 1 0 0 0 0 0 0 . 1 0 1 0 1 0 0 0 . 0 0 0 1 1 1 0 1 . 1 1 0 1 1

      192
      . 168
      . 29
      . 219
```


What subnet does host 192.168.29.219/29 belong to?

Subnet ID: <u>192.168.29.216/29</u>

Subnets/Hosts (Class C)

Prefix Length	Number of Subnets Number of Hos	
/25	2	126
/26	4	62
/27	8	30
/28	16	14
/29	32	6
/30	64	2
/31	128	0 (2)
/32	256	0 (1)

Subnetting Class B Networks

Class	Leading bits	Size of <i>network number</i> bit field	Size of rest bit field	Number of networks	Addresses per network
Class A	0	8	24	128 (2 ⁷)	16,777,216 (2 ²⁴)
Class B	10	16	16	16,384 (2 ¹⁴)	65,536 (2 ¹⁶)
Class C	110	24	8	2,097,152 (2 ²¹)	256 (2 ⁸)

The process of subnetting Class A, Class B, and Class C networks is EXACTLY THE SAME!

Subnetting Class B Networks

You have been given the 172.16.0.0/16 network. You are asked to create 80 subnets for your company's various LANs. What prefix length should you use?

172.16.0.0/16


```
      10101100.00010000.000000.00000.00000

      172

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      <t
```

Borrowing 0 bits = can't make any subnets

```
2^x = number of subnets
(x = number of 'borrowed' bits)
```



```
      10101100.00010000.000000.00000.00000

      172

      16

      .

      0

      .

      0
```

Borrowing 1 bit = 2 subnets


```
      10101100.00010000.0000000.00000.00000

      172

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      .

      <
```

Borrowing 2 bits = 4 subnets


```
      10101100.00010000.000000.00000.00000

      172

      16

      .

      0

      .

      0
```

Borrowing 3 bits = 8 subnets

Subnet mask:

 10101100.00010000.0000000.000000.000000

 172

 .
 16

 .
 0

 .
 0

Borrowing 4 bits = 16 subnets

11111111.1111111.1110000.000000

255 · 255 · 240 · 0

Subnet mask:

 10101100.00010000.0000000.000000.000000

 172

 16

 .
 0

 .
 0

Borrowing 5 bits = 32 subnets

255 · 255 · 248 · 0

172 16

Borrowing 6 bits = 64 subnets

Subnet mask: 111111.1111111.1111100.00000000 252 255 255

/23

Borrowing 7 bits = 128 subnets

You have been given the 172.22.0.0/16 network. You are required to divide the network into 500 separate subnets. What prefix length should you use?

172.22.0.0/16

Borrowing 9 bits = 512 subnets

You have been given the 172.18.0.0/16 network. Your company requires 250 subnets with the same number of hosts per subnet. What prefix length should you use?

172.18.0.0/16

Borrowing 8 bits = 256 subnets

8 host bits = 254 hosts per subnet

Identify the subnet

What subnet does host 172.25.217.192/21 belong to?

Subnet ID: /21

Identify the subnet

What subnet does host 172.25.217.192/21 belong to?

Subnet ID: 172.25.216.0 /21

Subnets/Hosts (Class B)

Prefix Length	Number of Subnets	Number of Hosts	Prefix Length	Number of Subnets	Number of Hosts
/17	2	32766	/25	512	126
/18	4	16382	/26	1024	62
/19	8	8190	/27	2048	30
/20	16	4094	/28	4096	14
/21	32	2046	/29	8192	6
/22	64	1022	/30	16384	2
/23	128	510	/31	32768	0 (2)
/24	256	254	/32	65536	0 (1)

QUZ

You have been given the 172.30.0.0/16 network. Your company requires 100 subnets with at least 500 hosts per subnet. What prefix length should you use?

What subnet does host **172.21.111.201/20** belong to?

What is the **broadcast address** of the network

192.168.91.78/26 belongs to?

You divide the 172.16.0.0/16 network into 4 subnets of equal size. Identify the **network** and **broadcast** addresses of the second subnet.

You divide the 172.30.0.0/16 network into subnets of 1000 hosts each. How many subnets are you able to make?