Clustering

Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- Clustering introduction
- Representative-based clustering
- 3 DBScan

Aim of clustering

- Clustering is partitioning of objects into groups so that:
 - inside groups objects are very similar
 - objects from different groups are dissimilar
- Unsupervised learning
- No definition of "similar"
 - different algorithms use different formalizations of similarity

Clustering demo

Applications of clustering

- data summarization
 - feature vector is replaced by cluster number
- feature extraction
 - cluster number, cluster average target, distance to native cluster center / other clusters
- customer segmentation
 - e.g. for recommender service
- community detection in networks
 - nodes people, similarity number of connections
- outlier detection
 - outliers do not belong any cluster

Clustering algorithms comparison

We can compare clustering algorithms in terms of:

- computational complexity
- do they build flat or hierarchical clustering?
- can the shape of clustering be arbitrary?
 - if not is it symmetrical, can clusters be of different size?
- can clusters vary in density of contained objects?
- robustness to outliers

Table of Contents

- Clustering introduction
- 2 Representative-based clustering
- 3 DBScan

Representative-based clustering

- Clustering is flat (not hierarchical)
- Number of clusters K is specified in advance
- Each object x_n is associated cluster z_n
- Each cluster C_k is defined by its representative μ_k , k = 1, 2, ... K.
- Criterion to find representatives $\mu_1, ... \mu_K$:

$$Q(z_1,...z_K) = \sum_{n=1}^{N} \min_{k} \rho(x_n, \mu_k) \to \min_{\mu_1,...\mu_K}$$
 (1)

Generic algorithm

```
initialize \mu_1,...\mu_K from
random training objects
WHILE not converged:
    FOR n = 1, 2, ...N:
         z_n = \arg\min_{k} \rho(x_n, \mu_k)
    FOR k = 1, 2, ...K:
         \mu_k = \arg\min_{\mu} \sum_{n:z_n=k} \rho(x_n, \mu)
RETURN z_1,...z_N
```

Comments

- different distance functions lead to different algorithms:
 - $\rho(x, x') = ||x x'||_2^2 =$ K-means
 - $\rho(x, x') = ||x x'||_1 = > \text{K-medians}$
- μ_k may be arbitrary or constrained to be existing objects
- K unknown parameter
 - if chosen small=>distinct clusters will get merged
 - better to take K larger and then merge similar clusters.
- Shape of clusters is defined by $\rho(\cdot,\cdot)$
- Close clusters will have similar size.

K-means algorithm

- Suppose we want to cluster our data into *K* clusters.
- Cluster i has a center μ_i , i=1,2,...K.
- Consider the task of minimizing

$$\sum_{n=1}^{N} \|x_n - \mu_{z_n}\|_2^2 \to \min_{z_1, \dots z_N, \mu_1, \dots \mu_K}$$
 (2)

where $z_i \in \{1, 2, ...K\}$ is cluster assignment for x_i and $\mu_1, ...\mu_K$ are cluster centers.

- Direct optimization requires full search and is impractical.
- K-means is a suboptimal algorithm for optimizing (2).

K-means algorithm

Initialize
$$\mu_j$$
, $j=1,2,...K$.

WHILE not converged:

FOR
$$i=1,2,...N$$
:
find cluster number of x_i :
 $z_i = \arg\min_{j \in \{1,2,...K\}} ||x_i - \mu_j||_2^2$

FOR
$$j = 1, 2, ...K$$
:

$$\mu_j = \frac{1}{\sum_{n=1}^{N} \mathbb{I}[z_n = j]} \sum_{n=1}^{N} \mathbb{I}[z_n = j] x_i$$

K-means properties

Convergence conditions:

- maximum number of iterations reached
- cluster assignments $z_1, ... z_N$ stop to change (exact)
- $\{\mu_i\}_{i=1}^K$ stop changing significantly (approximate)

Initialization:

• typically $\{\mu_i\}_{i=1}^K$ are initialized to randomly chosen training objects

K-means properties

Optimality:

- criteria is non-convex
- solution depends on starting conditions
- may restart several times from different initializations and select solution giving minimal value of (2).

Complexity: O(NDKI)

- K is the number of clusters
- I is the number of iterations.
 - usually few iterations are enough for convergence.

Gotchas

• K-means assumes that clusters are convex:

- It always finds clusters even if none actually exist
 - need to control cluster quality metrics

K-means for non-convex clusters

K-means for data without clusters

K-means and EM algorithm

```
Initialize \mu_j, j=1,2,...K. repeat while stop condition not satisfied: for i=1,2,...N: find cluster number of x_i: z_i = \arg\min_{j \in \{1,2,...g\}} ||x_i - \mu_j|| for j=1,2,...K: \mu_j = \frac{1}{\sum_{n=1}^N \mathbb{I}[z_n=j]} \sum_{n=1}^N \mathbb{I}[z_n=j] x_i
```

• K-means is EM-algorithm when:

K-means and EM algorithm

```
Initialize \mu_j, j=1,2,...K. repeat while stop condition not satisfied: for i=1,2,...N: find cluster number of x_i: z_i = \arg\min_{j \in \{1,2,...g\}} ||x_i - \mu_j|| for j=1,2,...K: \mu_j = \frac{1}{\sum_{n=1}^N \mathbb{I}[z_n=j]} \sum_{n=1}^N \mathbb{I}[z_n=j] x_i
```

- K-means is EM-algorithm when:
 - applied to Gaussians
 - with equal priors
 - with unity covariance matrices
 - with hard clustering

K-means

- Not robust to outliers
 - K-medians is robust
- K-representatives may create singleton clusters in outliers if centroids get initialized with outlier
 - better to init centroids with mean of *m* randomly chosen objects
- Constructs spherical clusters of similar radii
 - Allows kernel version which can find non-convex clusters in original space

General comments on K-representatives

- Init $\{\mu_k\}_{k=1}^K$ with
 - random objects from training set
 - centroids of m randomly selected objects from training set (more robust to outliers)
- K-representatives has non-convex optimization criteria
 - depends in initialization of $\{\mu_k\}_{k=1}^K$
 - so we can restart clustering from different starting conditions and select the one, maximizing (1)
- Outliers can create singleton clusters consisting of 1 point.
 - apply outlier filtering beforehand
 - alternatively during clustering for clusters with too few points replace cluster centroids with random objects.

Table of Contents

- Clustering introduction
- Representative-based clustering
- 3 DBScan

DBScan

- Core point: point having $\geq k$ points in its ε neighbourhood
- \bullet Border point: not core point, having at least 1 core point in its ε neighbourhood
- Noise point: neither a core point nor a border point

• k, ε - parameters of the method.

Algorithm

INPUT: training set, parameters ε, k .

- 1) Determine core, border and noise points with ε, k .
- 2) Create graph in which core points are connected if they are within ε of one another
- 3) Determine connected components in the graph
- Assign each border point to connected component with which it is best connected

RETURN points in each connected component as a cluster