

損傷モデル

つくる情熱を、支える情熱。

CYBERNET

- 損傷モデルとは?
 - 材料(特に複合材)の内部損傷における剛性低下現象を 表現できるモデル。
- 必要な材料物性値
 - 材料定義①. 損傷発生の基準則(tb,dmgi)
 - 損傷発生を判断に使用するは基準則を指定
 - 材料定義②. 損傷発生の閾値(tb,fcli)
 - 基準則に対応した損傷発生の閾値を指定
 - 材料定義③. 損傷発生時の剛性減少率 (tb,dmge,..tbopt)
 - 損傷が発生したときの、材料物性値の減少率を指定
 - tbopt=1またはmpdg
 - 単純な瞬間材料剛性の減少に基づいた進行性損傷過程
 - tbopt=2またはcdm(V15.0~)
 - 連続体損傷力学に基づいた進行性損傷過程

- 材料定義①. 損傷発生の基準則
 - 損傷の発生を判断する指標は複数存在するため、使用する基 準を指定する。
 - tb,dmgi,,,,tbopt(tboptは1またはfcrt)
 - tbdata,,C1,C2,C3,C4

定数	意味
C1	繊維の引張破壊タイプ※
C2	繊維の圧縮破壊タイプ※
C3	マトリクスの引張破壊タイプ※
C4	マトリクスの圧縮破壊タイプ※

※ 破壊タイプ

1: 最大ひずみ 4: Hashin 5: LaRc03 2:最大応力 3: Puck 6: LaRc04

11~19: ユーザー定義

アメリカの航空宇宙学会(AIAA)が各 国の研究者にアンケートを送り、各種 破損則の使用状況を調べた結果

- ・ 材料定義②. 損傷発生の閾値
 - 損傷の発生し始める閾値を指定する。
 - tb,fcli,,,,tbopt
 - tbdata,,C1,C2,C3,~

定数	意味		
上级	TBOPT=1	TBOPT=2	
C1	材料 X 方向引張許容応力	材料X方向引張許容ひずみ	
C2	材料 X 方向圧縮許容応力	材料X方向圧縮許容ひずみ	
C3	材料 Y 方向引張許容応力	材料 Y 方向引張許容ひずみ	
C4	材料 Y 方向圧縮許容応力	材料 Y 方向圧縮許容ひずみ	
C5	材料 Z 方向圧縮許容応力	材料 Z 方向引張許容ひずみ	
C6	材料 Z 方向圧縮許容応力	材料 Z 方向圧縮許容ひずみ	
C7	XY せん断許容応力	XY せん断許容ひずみ	
C8	YZ せん断許容応力	YZ せん断許容ひずみ	
C9	XZ せん断許容応力	XZ せん断許容ひずみ	

- ・ 材料定義②. 損傷発生の閾値
 - 損傷の発生し始める閾値を指定する。
 - tb,fcli,,,,tbopt
 - tbdata,,C1,C2,C3,~
 - TBOPT=2では、定数はC1~C9のみ。

定数	意味 TBOPT=1
C10	Tsai-Wu 強度指数の XY カップリング係数
C11	Tsai-Wu 破壊指数の YZ カップリング係数
C12	Tsai-Wu 破壊指数の XZ カップリング係数
C13	Puck 破壊指数の XZ 方向の引張の勾配パラメータ
C14	Puck 破壊指数の XZ 方向の圧縮の勾配パラメータ
C15	Puck 破壊指数のYZ 方向の引張の勾配パラメータ
C16	Puck 破壊指数の YZ 方向の圧縮の勾配パラメータ
C17	GI (モード I) と GII (モード II) のあいだの破壊靭性率
C18	長手方向の摩擦係数
C19	横せん断方向の摩擦係数
C20	純せん断圧縮時の破壊角度

• 材料定義②. 損傷発生の各初期化基準で指定できる閾値

定数	最大ひずみ基準	最大応力基準	Tsai-Wu強度比率	Puck基準	Hashin基準	LaRc03/04基準	ユーザー定義
C1	0	0	0	0	0	0	0
C2	0	0	0	0	0	0	0
C3	0	0	0	0	0	0	0
C4	0	0	0	0	0	0	0
C5	0	0	0				0
C6	0	0	0				0
C7	0	0	0	0	0	0	0
C8	0	0	0		0		0
C9	0	0	0				0
C10			0				0
C11			0				0
C12			0				0
C13				0			0
C14				0			0
C15				0			0
C16				0			0
C17						0	0
C18	∐ (── · ⊤₽	BOPT=	: TBOP1			0	0
C19	. 16		. 1001 1			0	0
C20						0	0

- ・ 材料定義③. 損傷発生時の剛性減少率
 - 各定数の意味は下記の表に示す。
 - MPDGオプションでは減少率を定義
 - CDMオプションではエネルギー散逸率と減衰係数を定義

定数	意味		
	TBOPT=1またはMPDG	TBOPT=2またはCDM	
C1	引張繊維剛性の減少	繊維引張損傷による単位面積あたりのエネルギー散逸	
C2	圧縮繊維剛性の減少	繊維引張損傷の <mark>粘性減衰係数</mark>	
C3	引張マトリクス剛性の減少	繊維圧縮損傷による単位面積あたりのエネルギー散逸	
C4	圧縮マトリクス剛性の減少	繊維圧縮損傷の <mark>粘性減衰係数</mark>	
C5		マトリクス引張損傷による単位面積あたりのエネルギー散逸	
C6		マトリクス引張損傷の <mark>粘性減衰係数</mark>	
C7		マトリクス圧縮損傷による単位面積あたりのエネルギー散逸	
C8		マトリクス圧縮損傷の粘性減衰係数	

INSYS 材料の損傷

- エネルギー散逸の考え方
 - 単位面積あたりのエネルギー散逸は、すべての損傷モード(繊 維引張、繊維圧縮、マトリクス引張、マトリクス圧縮)で個別に指 定し、下記の式で与えられる。

$$G_C = \int_0^{U_e^f} \sigma_e dU_e$$

- σ_e :相当応力
- U_e:相当変位
- Uf_e:極限等価変位

- 相当応力は、Hashin破壊基準に基づいて計算される。
- 相当変位は、ヤング率および相当応力に基づいて計算される。
- 極限等価変位は、エネルギー散逸Gc(tb,dmge,,,,cdm)で計算 される。

INSYS 材料の損傷

- 粘性減衰係数の考え方
 - 粘性減衰係数nもすべての損傷モード(繊維引張、繊維圧縮、 マトリクス引張、マトリクス圧縮)で個別に指定し、下記の式で与 えられる。

$$d'_{t+\Delta t} = \frac{\eta}{\eta + \Delta t} d'_{t} + \frac{\Delta t}{\eta + \Delta t} d_{t+\Delta t}$$

- d'_{t+ ∧ t}: 現在での正則化された損傷度変数。
- d',: 最終サブステップの最後での正則化された損傷度変数。
- d_{++ A+}: 正則化されていない現在の損傷度変数。
- 解析安定化を図るための減衰パラメータ

- 従来のMPDGモデルと新しいCDMモデルとの違い。
 - CDMモデルとは、損傷の進展に伴い剛性が連続的に低下する 挙動を表現する機能。複合材料特有のフェールセーフ特性を表 現可能。

- 【補足】フェールセーフ構造とは
 - 材料の一部が破壊しても引き続き力を負荷でき、構造としての機 能を保持し、安全を確保することができる仕組みのこと

- 動作検証例:
 - 1x1の1要素平面応力モデル
 - 境界条件
 - X=0のラインを固定
 - X=1のラインにサイクル荷重を負荷
 - 損傷パラメータ(全損傷モード同一)
 - エネルギー散逸:0.05
 - 粘性減衰係数:1e-3
 - Hashin破壞基準使用
 - 破壊基準応力閾値:0.5
 - CDMオプション使用

ステップ番号	荷重値(強制変位)
0	0
1	0.13
2	-0.13
3	0.18
4	-0.18

サイクル荷重値

• 検証結果:

• 対応要素タイプ一覧

カテゴリ	MPDG(従来モデル)	CDMZ(新モデル)
線要素	LINK180 BEAM188/189 PIPE288/289 ELBOW290	PIPE288/289 (薄肉パイプのみ) ELBOW290
ソリッド要素	PLANE182/183 SOLID185/186/187 /272/273/285 SOLSH190	PLANE182/183 (平面応力のみ)
シェル要素	SHELL181/208/209/281	SHELL181/208/209/281