Q4

April 17, 2024

$$\begin{array}{l} {\rm p1:\ (0,0),}\\ {\rm p2:\ (1,2),}\\ {\rm p3:\ [2,0),}\\ {\rm p4:\ [8,8),}\\ {\rm p5:\ [9,9),}\\ {\rm p6:\ [10,8)}\\ {\rm choose\ two\ initial\ centroid\ }\mu_1:(1,1)\ {\rm and\ }\mu_2:(9,9)\\ \end{array}$$

0.1 Iteration 1 computer the distance of poinst to the centrol

	C_1	C_2	k
p1	$\sqrt{(0-1)^2 + (0-1)^2} =$	$\sqrt{(0-9)^2 + (0-9)^2} =$	C_1
	1.41	12.7	
p2	$\sqrt{(1-1)^2 + (2-1)^2} =$	$\sqrt{(1-9)^2 + (2-9)^2} =$	C_1
	1.00	10.6	
p3	$\sqrt{(2-1)^2 + (0-1)^2} =$	$\sqrt{(2-9)^2 + (0-9)^2} =$	C_1
	1.41	11.4	
p4	$\sqrt{(8-1)^2 + (8-1)^2} =$	$\sqrt{(8-9)^2 + (8-9)^2} =$	C_2
	9.90	1.41	
p5	$\sqrt{(9-1)^2 + (9-1)^2} =$	$\sqrt{(9-9)^2 + (9-9)^2} =$	C_2
	11.3	0.00	
p6	$\sqrt{(10-1)^2 + (8-1)^2} =$	$=\sqrt{(10-9)^2+(8-9)^2}=$	$=C_2$
	11.4	1.41	

optimization of centroids

$$\begin{split} \mu_1 &= \frac{\sum_n r_{n1} x_n}{\sum_n r_{n1}} \\ &= \frac{1 \cdot [0,0] + 1 \cdot [1,2] + 1 \cdot [2,0] + 0 \cdot [8,8] + 0 \cdot [9,9] + 0 \cdot [10,8]}{1 + 1 + 1 + 0 + 0 + 0} \end{split}$$

$$\begin{split} [1,\frac{2}{3}] \\ \mu_2 &= \frac{\sum_n r_{n2} x_n}{\sum_n r_{n2}} \\ &= \frac{0 \cdot [0,0] + 0 \cdot [1,2] + 0 \cdot [2,0] + 1 \cdot [8,8] + 1 \cdot [9,9] + 1 \cdot [10,8]}{0 + 0 + 0 + 1 + 1 + 1} \\ &\qquad [9,\frac{25}{3}] \end{split}$$

0.2 Iteration 2

computer the distance of poinst to the centrol

	C_1	C_2	k
p1		$\sqrt{(0-9)^2+(0-\frac{25}{3})^2}$	$=C_1$
p2	$\frac{1.20}{\sqrt{(1-1)^2 + (2-\frac{2}{3})^2}} =$	$12.3 \sqrt{(1-9)^2 + (2-\frac{25}{3})^2} =$	$=C_1$
p3	1.33	$10.2 \times \sqrt{(2-9)^2 + (0 - \frac{25}{3})^2} =$	
	1.20	10.9	
p4	10.1	$\sqrt{(8-9)^2 + (8-\frac{25}{3})^2} = 1.05$	
p5	$\sqrt{(9-1)^2 + (9-\frac{2}{3})^2} = 11.6$	$\sqrt{(9-9)^2 + (9-\frac{25}{3})^2} = 0.67$	$=C_2$
p6		$=\sqrt{(10-9)^2+(8-\frac{25}{3})^2}$	$=C_2$
	11.6	1.05	

optimization of centroids

$$\begin{split} \mu_1 &= \frac{\sum_n r_{n1} x_n}{\sum_n r_{n1}} \\ &= \frac{1 \cdot [0,0] + 1 \cdot [1,2] + 1 \cdot [2,0] + 0 \cdot [8,8] + 0 \cdot [9,9] + 0 \cdot [10,8]}{1 + 1 + 1 + 0 + 0 + 0} \\ &\qquad \qquad [1,\frac{2}{3}] \\ \\ &\qquad \qquad \mu_2 = \frac{\sum_n r_{n2} x_n}{\sum_n r_{n2}} \\ &\qquad \qquad = \frac{0 \cdot [0,0] + 0 \cdot [1,2] + 0 \cdot [2,0] + 1 \cdot [8,8] + 1 \cdot [9,9] + 1 \cdot [10,8]}{0 + 0 + 0 + 1 + 1 + 1} \end{split}$$

$$[19, \frac{25}{3}]$$

The centroid has converge