Measuring the Cost of Living

Look for the answers to these questions:

- What is the Consumer Price Index (CPI)?
 How is it calculated? What's it used for?
- What are the problems with the CPI? How serious are they?
- How does the CPI differ from the GDP deflator?
- How can we use the CPI to compare dollar amounts from different years? Why would we want to do this, anyway?
- How can we correct interest rates for inflation?

The Consumer Price Index

- Consumer price index (CPI)
 - Measure of the overall level of prices
 - Measure of the overall cost of goods and services
 - Bought by a typical consumer
 - Computed and reported every month by the Bureau of Labor Statistics

Calculating CPI

1. Fix the basket

 The Bureau of Labor Statistics (BLS) surveys consumers to determine what's in the typical consumer's "shopping basket."

2. Find the prices

 The BLS collects data on the prices of all the goods in the basket.

3. Compute the basket's cost

Use the prices to compute the total cost of the basket

Calculating CPI

4. Choose a base year and compute the CPI

- Cost of basket of goods and services in current year divided by cost of basket in base year
- -Times 100

5. Compute the inflation rate

The percentage change in the CPI from the preceding period

Inflation rate =
$$\frac{CPI \text{ this year-CPI last year}}{CPI \text{ last year}} \times 100$$

EXAMPLE: basket: {4 pizzas, 10 lattes}

year	price of pizza	price of latte	cost of basket
2014	\$10	\$2.00	$$10 \times 4 + $2 \times 10 = 60
2015	\$11	\$2.50	$$11 \times 4 + $2.5 \times 10 = 69
2016	\$12	\$3.00	$$12 \times 4 + $3 \times 10 = 78

Compute CPI in each year (2014 base year)

Inflation rate:

2014:
$$100 \times (\$60/\$60) = 100$$

$$15\% = \frac{115 - 100}{100} \times 100\%$$
2015: $100 \times (\$69/\$60) = 115$

2016:
$$100 \times (\$78/\$60) = 130$$
 $= \frac{130}{115} \times 10$

Calculating the CPI

CPI basket:
{10 lbs beef,
20 lbs chicken}
The CPI basket
cost \$120 in 2014,
the base year.

	price of beef	price of chicken
2014	\$4	\$4
2015	\$5	\$5
2016	\$9	\$6

- A. Compute the CPI in 2015.
- B. What was the CPI inflation rate from 2015–2016?

Answers

CPI basket:
{10 lbs beef,
20 lbs chicken}
The CPI basket
cost \$120 in 2014,
the base year.

	price of beef	price of chicken
2014	\$4	\$4
2015	\$5	\$5
2016	\$9	\$6

A. Compute the CPI in 2015.

Cost of CPI basket in 2015=(\$5x10)+(\$5x20)=\$150

CPI in $2015 = 100 \times (\$150/\$120) = 125$

Answers

CPI basket:
{10 lbs beef,
20 lbs chicken}
The CPI basket
cost \$120 in 2014,
the base year.

	price of beef	price of chicken
2014	\$4	\$4
2015	\$5	\$5
2016	\$9	\$6

B. What was the CPI inflation rate from 2015–2016? Cost of CPI basket in 2016=(\$9 x10)+(\$6 x20)=\$210

CPI in 2016 = $100 \times (\$210/\$120) = 175$

CPI inflation rate = (175 - 125)/125 = 40%

What's in the CPI's Basket?

Substitution bias

CPI basket:
{10 lbs beef,
20 lbs chicken}
In 2014 and 2015,
households
bought CPI basket.

	beef	chicken	cost of CPI basket
2014	\$4	\$4	\$120
2015	\$5	\$5	\$150
2016	\$9	\$6	\$210

In 2016, households bought {5 lbs beef, 25 lbs chicken}.

- A. Compute cost of the 2016 household basket.
- B. Compute % increase in cost of household basket over 2015–2016, compare to CPI inflation rate.

Answers

CPI basket:
{10 lbs beef,
20 lbs chicken}
In 2014 and 2015,
households
bought CPI basket.

	beef	chicken	cost of CPI
			basket
2014	\$4	\$4	\$120
2015	\$ 5	\$ 5	\$150
2016	\$9	\$6	\$210

In 2016, households bought {5 lbs beef, 25 lbs chicken}.

A. Compute cost of the 2016 household basket.

$$(\$9 \times 5) + (\$6 \times 25) = \$195$$

Answers

CPI basket:
{10 lbs beef,
20 lbs chicken}
In 2014 and 2015,
households
bought CPI basket.

	beef	chicken	cost of CPI basket
2014	\$4	\$4	\$120
2015	\$5	\$5	\$150
2016	\$9	\$6	\$210

In 2016, households bought {5 lbs beef, 25 lbs chicken}.

B. Compute % increase in cost of household basket over 2015–2016, compare to CPI inflation rate.

Rate of increase: (\$195 - \$150)/\$150 = 30%

CPI inflation rate from previous problem = 40%

Substitution Bias

- Over time, some prices rise faster than others
- Consumers substitute toward goods that become relatively cheaper, mitigating the effects of price increases.
- The CPI misses this substitution because it uses a fixed basket of goods.
- Thus, the CPI overstates increases in the cost of living.

Introduction of New Goods

- The introduction of new goods increases variety, allows consumers to find products that more closely meet their needs.
- In effect, dollars become more valuable.
- The CPI misses this effect because it uses a fixed basket of goods.
- Thus, the CPI overstates increases in the cost of living.

Unmeasured Quality Change

- Improvements in the quality of goods in the basket increase the value of each dollar.
- The BLS tries to account for quality changes but probably misses some, as quality is hard to measure.
- Thus, the CPI overstates increases in the cost of living.

• It's an AVERAGE!

- The "average urban market basket"
- Does that apply equally to students and seniors?
- Especially the Social SecurityCOLA (cost of living allowance)
- What do seniors spend most of their income on?

- Each of these problems causes the CPI to overstate cost of living increases.
 - The BLS has made technical adjustments, but the CPI probably still overstates inflation by about 0.5 percent per year.
 - This is important because Social Security payments and many contracts have COLAs tied to the CPI.

Two Measures of Inflation, 1965–2016

Contrasting the CPI and GDP Deflator

- Imported consumer goods:
 - Included in CPI
 - Excluded from GDP deflator
- Capital goods:
 - Excluded from CPI
 - Included in GDP deflator (if produced domestically)

Contrasting the CPI and GDP Deflator

The basket:

- -CPI uses fixed basket
- GDP deflator uses basket of currently produced goods & services
- This matters if different prices are changing by different amounts.

CPI vs. GDP deflator

In each scenario, determine the effects on the CPI and the GDP deflator.

- A. Starbucks raises the price of Frappuccinos.
- B. Caterpillar raises the price of the industrial tractors it manufactures at its Illinois factory.
- C. Armani raises the price of the Italian jeans it sells in the U.S.

Answers

- A. Starbucks raises the price of Frappuccinos.
 The CPI and GDP deflator both rise.
- B. Caterpillar raises the price of the industrial tractors it manufactures at its Illinois factory. The GDP deflator rises, the CPI does not.
- C. Armani raises the price of the Italian jeans it sells in the U.S.
 - The CPI rises, the GDP deflator does not.

- Comparing dollar figures from different times
 - Inflation makes it harder to compare dollar amounts from different times.
 - Example: the minimum wage
 - \$1.25 in Dec 1963
 - \$7.25 in Dec 2013
 - Did min wage have more purchasing power in Dec 1963 or Dec 2013?
 - To compare, use CPI to convert 1963 figure into "2013 dollars"...

- Dollar figures from different times
 Amount in today's dollars =
 - = Amount in year T dollars $\times \frac{Price \ level \ today}{Price \ level \ in \ year \ T}$

In our example:

- "year T" is 1963, "today" is 2013
- Min wage was \$1.25 in year T
- CPI = 30.9 in year T, CPI = 234.6 today
- The minimum wage in 1963 was"
 - $1.25 \times 234.6/30.9 = 9.49 \text{ in } 2013 \text{ dollars.}$

- Comparing dollar figures from different times
 - Researchers, business analysts, and policymakers often use this technique to convert a time series of current-dollar (nominal) figures into constant-dollar (real) figures.
 - They can then see how a variable has changed over time after correcting for inflation.
 - Example: the minimum wage…

The U.S. Minimum Wage in Current Dollars and Today's Dollars, 1960–2013

Comparing tuition increases

Tuition and Fees at U.S. Colleges and Universities			
	1990	2015	
Private non-profit 4-year	\$9,340	\$32,405	
Public 4-year	\$1,908	\$9,410	
Public 2-year	\$906	\$3,435	
CPI	130.7	237.7	

- Express the 1990 tuition figures in 2015 dollars, then compute the percentage increase in real terms for all three types of schools.
- Which type experienced the largest increase in real tuition costs?

Answers

	1990	2015	% change
CPI	130.7	237.7	81.9%
Private non-profit 4-year (current \$)	\$9,340	\$32,405	
Private non-profit 4-year (in 2015 \$)	\$16,986	\$32,405	90.8%
Public 4-year (current \$)	\$1,908	\$9,410	
Public 4-year (in 2015 \$)	\$3,470	\$9,410	171.2%
Public 2-year (current \$)	\$906	\$3,435	
Public 2-year (in 2015 \$)	\$1,648	\$3,435	108.4%

Indexation

- A dollar amount is indexed for inflation if it is automatically corrected for inflation by law or in a contract.
- The increase in CPI automatically determines:
 - The COLA in many multi-year labor contracts.
 - Adjustments in Social Security payments and federal income tax brackets.

Real vs. Nominal Interest Rates

- The nominal interest rate:
 - Interest rate not corrected for inflation
 - Rate of growth in the dollar value of a deposit or debt
- The real interest rate:
 - Corrected for inflation
 - Rate of growth in the purchasing power of a deposit or debt

Real interest rate=(nominal interest rate)-(inflation rate)

Real vs. Nominal Interest Rates

Example:

- Deposit \$1,000 for one year.
- Nominal interest rate is 9%.
- During that year, inflation is 3.5%.
- Real interest rate
 - = Nominal interest rate Inflation
 - = 9.0% 3.5% = 5.5%
- The purchasing power of the \$1000 deposit has grown 5.5%.

Real and Nominal Interest Rates in the U.S., 1960–2015

Summary

- The Consumer Price Index is a measure of the cost of living. The CPI tracks the cost of the typical consumer's "basket" of goods & services.
- The CPI is used to make Cost of Living
 Adjustments and to correct economic variables for the effects of inflation.
- The real interest rate is corrected for inflation and is computed by subtracting the inflation rate from the nominal interest rate.