LCPB 23-24 Exercise 2, data visualization and clustering

Exercise 4A

Visualize and clusterize the data in the file $x_12d.dat$ (N=600 samples, L=12 dimensions), which has also labels for checking the performances ($y_12d.dat$).

1. "eps" (ϵ) and "minPts" (m_P) in DBSCAN algorithm for clustering

Refine the grid with more values of "eps" and "minPts" and show a heat-map of the normalized mutual information (NMI) between true and predicted clusters is varying.

The result might look like this one on the right.

Is there a correlation between these two parameters in providing a $^{\circ}_{150}$ high NMI?

Note: in the lesson we have looked at the typical distance between a point and its closest neighbor, but this does not say what is the typical distance from the 2^{nd} , 3^{rd} , ..., m_P -neighbor.

The plots of ranked distances to the i-th neighbor might also help choose the ε for a given i=m_P.

2. Understanding the 12-dimensional data

Use the PCA to visualize the first components of the data. Does it help to understand its structure?

3. Compare different clustering methods

- a) Perform a k-means clustering of the data, with k=3. Does it work better than DBSCAN? Why?
- b) Perform a hierarchical clustering of the data. Does it work better than DBSCAN?
- 4. **OPTIONAL:** Visualize the data with other methods from the scikit package