SOLUTIONS TO PRACTICE PROBLEMS FOR THE FINAL EXAM

1. (a) (e-1)/2. (b) (1.136, 1.652). **2.** 1/2.

3. (a)
$$3\pi/2$$
. (b) $\left(\frac{\pi}{8}\right) \ln 5$. **4.** $1/12$; $(2/5, 1/5, 2/5)$.

5.

(a)
$$\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{4-x^2-y^2}} (x+2y+z) \, dz dy dx,$$

(b)
$$\int_0^{2\pi} \int_0^{\sqrt{2}} \int_r^{\sqrt{4-r^2}} r(r\cos\theta + 2r\sin\theta + z) dz dr d\theta,$$

(c)
$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^2 \rho^3 (\sin \varphi \cos \theta + 2 \sin \varphi \sin \theta + \cos \varphi) \sin \varphi \, d\rho d\varphi d\theta.$$

6. (a) (a) $2ma^3/3$. (b) $\pi/14$.

7.

$$\int_0^{\pi/2} \int_1^2 \int_0^{\sqrt{4-r^2}} r(z^2+r) \, dz dr d\theta.$$

8.

$$\int_0^{2\pi} \int_0^2 \int_{-\sqrt{16-r^2+6r\sin\theta}}^{\sqrt{16-r^2+6r\sin\theta}} r \, dz dr d\theta$$

9. (i) $\pi - 9/2$. (ii) $-3\pi/4$. The force field is not conservative because $\int_{c} \vec{F} \cdot d\vec{r}$ is not path independnt.

10. 4/5.

11. (a) 2π , \vec{F} is not conservative. (b) curl $\vec{F} = 0$. This does not contradict Green's Theorem because the partial derivatives of \vec{F} are not continuous at the origin.

12. (a) 10. (b) 17.

13. No, since div(curl \vec{G}) must be 0 but div $(2x\vec{i} + 3yz\vec{j} - xz^2\vec{k}) = 2 + 3z - 2xz \neq 0$.

14. (a) $(2a/\pi, 2a/\pi)$. (b) (3a/8, 3a/8, 3a/8). **15.** 500, 000 π .

16. 11π . **17.** -1/2. **18.** 4π .