Отчёт по лабораторной работе №3: Система контроля версий Git

дисциплина: Архитектура компьютера

Ибатулина Дарья Эдуардовна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
5	Выводы	19
Список литературы		20

Список иллюстраций

4.1	Открытие стартовои страницы Гитхаб	9
4.2	Регистрация и ввод основынх данных	10
4.3	Вход в свой аккаунт	10
4.4	Ввод имени и фамилии	11
4.5	Ввод электронного адреса пользователя	11
4.6	Задание кодировки utf-8	11
4.7	Задание имени начальной ветки	11
4.8	Параметр autocrlf	11
4.9	Параметр safecrlf	11
4.10	Генерация SSH-ключа	11
4.11	Установка пакета xclip	12
4.12	Ввод скопированного ключа на Гитхаб	12
4.13	Окно созданного ключа	12
4.14	Создание директории предмета	13
4.15	Выбор шаблона репозитория	13
4.16	Задание имени репозитория	14
4.17	Переход в созданный каталог «Архитектура компьютера»	14
4.18	Клонирование репозитория в каталог arch-pc	14
4.19	Выполнение клонирования	15
4.20	Переход в каталог курса	15
4.21	Удаление лишних файлов	15
	Создание курса «Архитектура компьютера», его структуры	16
4.23	Отправка файлов на сервер	16
4.24	Проверка правильности создания рабочего пространства в локаль-	
	ном репозитории	16
4.25	Проверка правильности создания рабочего пространства на веб-	
	странице Гитхаб	17
4.26	Проверка правильности создания рабочего пространства на веб-	
	странице Гитхаб	17
4.27	Переход в подкаталог labs	17
4.28	Переход в подкаталог lab01/report	18
4.29	Перемещение отчётов по лабораторным работам на GitHub посред-	
	ством локального репозитория	18

Список таблиц

3.1 Основные команды для работы с системой контроля версий Git . 7

1 Цель работы

Целью работы является изучение идеологии и применения средств контроля версий, приобретение практических навыков работы с системой git.

2 Задание

- 1. Ознакомиться с теоретическим введением к лабораторной работе №3;
- 2. Создать учётную запись в системе контроля версий GitHub;
- 3. Произвести базовую настройку Git;
- 4. Сгенерировать ключи для дальнейшей идентификации пользователя на сервере;
- 5. Создать репозиторий и каталоги курса;
- 6. Сделать выводы по данной работе;
- 7. Оформить отчёт по данной работе;
- 8. Загрузить файлы этой и предыдущих лабораторных работ на GitHub, а также ссылку на собственный Github.

3 Теоретическое введение

Система контроля версий (также носит название Version Control System, VCS) – система, записывающая изменения в файл или набор файлов в течение всего времени работы над проектом. Применяется для групповой разработки приложений, файлов, программ, позволяет ограничивать и разрешать доступ определённой группе пользователей. Также система позволяет возвращаться к более ранней версии проекта, если это необходимо. Можно даже увидеть, кто именно вносил изменения, и ограничить доступ к журналу изменений. Примеры систем контроля весрий: CVS, Subversion, Git, Bazaar, Mercurial. В данной работе мы будем использовать систему GitHub.

Система контроля версий Git представляет собой набор программ командной строки. Доступ к ним можно получить из терминала посредством ввода команды git с различными опциями.

В табл. 3.1 приведены основные команды для работы с системой контроля версий Git:

Таблица 3.1: Основные команды для работы с системой контроля версий Git

Имя ко-			
манды	Описание команды		
git	Создание основного дерева репозитория		
init			
git	Получение обновлений (изменений) текущего дерева из центрального		
pull	репозитория		

Имя ко-				
манды	Описание команды			
git	Отправка всех произведённых изменений локального дерева в			
push	центральный репозиторий			
git	Просмотр списка изменённых файлов в текущей директории			
status				
git	Просмотр текущих изменений			
diff				
git	Добавить все изменённые и/или созданные файлы и/или каталоги			
add	пользователя			
git rm	Удаление файлов и/или каталогов			
имена_файлов				
git	Сохранить все добавленные изменения и все изменённые файлы			
commit				
-am				
'Описание				
коммита'				
git	Отправка изменений конкретной ветки в центральный репозиторий			
push				
origin				
имя_ветки				

4 Выполнение лабораторной работы

Для начала необходимо зарегистрироваться на сайте Github, создать учётную запись. (рис. 4.1 4.2 4.3)

Рис. 4.1: Открытие стартовой страницы Гитхаб

Рис. 4.2: Регистрация и ввод основынх данных

Рис. 4.3: Вход в свой аккаунт

Сначала сделаем предварительную конфигурацию Git. Для этого введём в терминал следующие команды. (рис. 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10)

Рис. 4.4: Ввод имени и фамилии

```
[deibatulina@fedora ~]$ git config --global user.email "<fdarisha@yandex.ru>"
[deibatulina@fedora ~]$
```

Рис. 4.5: Ввод электронного адреса пользователя

```
[deibatulina@fedora ~]$ git config --global core.quotepath false
[deibatulina@fedora ~]$
```

Рис. 4.6: Задание кодировки utf-8

```
[deibatulina@fedora ~]$ git config --global init.defaultBranch master
```

Рис. 4.7: Задание имени начальной ветки

```
[deibatulina@fedora ~]$ git config --global core.autocrlf input
[deibatulina@fedora ~]$
```

Рис. 4.8: Параметр autocrlf

```
[deibatulina@fedora ~]$ git config --global core.safecrlf warn
[deibatulina@fedora ~]$
```

Рис. 4.9: Параметр safecrlf

```
[deibatulina@fedora ~]$ ssh-keygen -С "Дарья Ибатулина <fdarisha@yandex.ru>"
Generating public/private rsa key pair.
Enter file in which to save the key (/home/deibatulina/.ssh/id_rsa):
Created directory '/home/deibatulina/.ssh'.
Enter passphrase (empty for no passphrase):
```

Рис. 4.10: Генерация SSH-ключа

Мы видим, что система ждёт от пользователя ввода сгенерённого открытого ключа. Далее с помощью команды саt копируем ключ (предварительно установив пакет xclip). (рис. 4.11)

```
[deibatulina@fedora ~]$ cat ~/.ssh/id_rsa.pub | xclip -sel clip
bash: xclip: команда не найдена...
Установить пакет «xclip», предоставляющий команду «xclip»? [N/y] у
* Ожидание в очереди...
* Загрузка списка пакетов....
Следующие пакеты должны быть установлены:
Продолжить с этими изменениями? [N/y] у
* Ожидание в очереди...
* Ожидание аутентификации...
* Ожидание в очереди...
* Загрузка пакетов...
* Запрос данных...
* Проверка изменений...
* Установка пакетов...
[deibatulina@fedora ~]$ cat ~/.ssh/id_rsa.pub | xclip -sel clip
```

Рис. 4.11: Установка пакета хсlір

Переходим на сайт и вставляем скопированный ключ. (рис. 4.12)

Рис. 4.12: Ввод скопированного ключа на Гитхаб

Ключ создан. (рис. 4.13)

Рис. 4.13: Окно созданного ключа

Создаем директорию для предмета «Архитектуры компьютеров». (рис. 4.14)

Рис. 4.14: Создание директории предмета

Переходим на веб-сайт и нажимаем Use this template. (рис. 4.15)

Рис. 4.15: Выбор шаблона репозитория

Далее вводим имя репозитория, как приведено в указаниях, и нажимаем Create repository from template. (рис. 4.16)

Рис. 4.16: Задание имени репозитория

Открываем терминал и переходим в каталог «Архитектура компьютера». (рис. 4.17)

```
[deibatulina@fedora ~]$ cd ~/work/study/2022-2023/"Архитектура компьютера"
[deibatulina@fedora Архитектура компьютера]$
```

Рис. 4.17: Переход в созданный каталог «Архитектура компьютера»

Выполняем клонирование в каталог arch-pc, предварительно скопировав ссылку на рег @fig:019], [-@fig:020])

```
[deibatulina@fedora Архитектура компьютера]$ git clone --recursive git@github.co
m:deibatulina/study_2022-2023_arh-pc.git arch-pc
Клонирование в «arch-pc»…
```

Рис. 4.18: Клонирование репозитория в каталог arch-pc

```
deibatulina@fedora:~/work/study/2022-2023/Архитектура ко...
 \oplus
                                                                                         \equiv
Are you sure you want to continue connecting (yes/no/[fingerprint])? y
Please type 'yes', 'no' or the fingerprint: yes
Warning: Permanently added 'github.com' (ED25519) to the list of known hosts.
remote: Enumerating objects: 26, done.
remote: Counting objects: 100% (26/26), done.
remote: Compressing objects: 100% (25/25), done.
remote: Total 26 (delta 0), reused 17 (delta 0), pack-reused 0
Получение объектов: 100% (26/26), 16.03 КиБ | 149.00 КиБ/с, готово.
Подмодуль «template/presentation» (https://github.com/yamadharma/academic-presen
tation-markdown-template.git) зарегистрирован по пути «template/presentation»
Подмодуль «template/report» (https://github.com/yamadharma/academic-laboratory-r
eport-template.git) зарегистрирован по пути «template/report»
Клонирование в «/home/deibatulina/work/study/2022-2023/Архитектура компьютера/ar
ch-pc/template/presentation».
remote: Enumerating objects: 71, done.
remote: Counting objects: 100% (71/71), done.
remote: Compressing objects: 100% (49/49), done.
remote: Total 71 (delta 23), reused 68 (delta 20), pack-reused 0
Получение объектов: 100% (71/71), 88.89 КиБ | 181.00 КиБ/с, готово.
Определение изменений: 100% (23/23), готово.
Клонирование в «/home/deibatulina/work/study/2022-2023/Архитектура компьютера/аг
ch-pc/template/report».
remote: Enumerating objects: 78, done.
remote: Counting objects: 100% (78/78), done.
```

Рис. 4.19: Выполнение клонирования

Далее мы переходим в каталог курса с помощью команды cd. (рис. 4.20)

```
[deibatulina@fedora Архитектура компьютера]$ cd ~
[deibatulina@fedora ~]$ cd ~/work/study/2022-2023/"Архитектура компьютера"/arch-
pc
[deibatulina@fedora arch-pc]$ ■
```

Рис. 4.20: Переход в каталог курса

Удаляем лишние файлы посредством команды rm, изученной на прошлой лабораторной работе. (рис. 4.21)

```
[deibatulina@fedora arch-pc]$ rm package.json
[deibatulina@fedora arch-pc]$
```

Рис. 4.21: Удаление лишних файлов

Вводим команды для создания каталога (используя команды echo >). (рис. 4.22)

```
[deibatulina@fedora arch-pc]$ echo arch-pc > COURSE
[deibatulina@fedora arch-pc]$ git add .
[deibatulina@fedora arch-pc]$ git commit -am 'feat(main): make course structure'
[master cc93661] feat(main): make course structure
91 files changed, 8229 insertions(+), 14 deletions(-)
create mode 100644 labs/lab01/presentation/Makefile
create mode 100644 labs/lab01/presentation/image/kulyabov.jpg
create mode 100644 labs/lab01/presentation/presentation.md
create mode 100644 labs/lab01/report/Makefile
create mode 100644 labs/lab01/report/bib/cite.bib
create mode 100644 labs/lab01/report/image/placeimg_800_600_tech.jpg
create mode 100644 labs/lab01/report/pandoc/csl/gost-r-7-0-5-2008-numeric.csl
create mode 100644 labs/lab01/report/report.md
create mode 100644 labs/lab02/presentation/Makefile
create mode 100644 labs/lab02/presentation/image/kulyabov.jpg
create mode 100644 labs/lab02/presentation/presentation.md
create mode 100644 labs/lab02/report/Makefile
create mode 100644 labs/lab02/report/bib/cite.bib
create mode 100644 labs/lab02/report/image/placeimg_800_600_tech.jpg
create mode 100644 labs/lab02/report/pandoc/csl/gost-r-7-0-5-2008-numeric.csl
create mode 100644 labs/lab02/report/report.md
```

Рис. 4.22: Создание курса «Архитектура компьютера», его структуры

Отправляем файлы на сервер. (рис. 4.23)

```
[deibatulina@fedora arch-pc]$ git push
Перечисление объектов: 22, готово.
Подсчет объектов: 100% (22/22), готово.
Сжатие объектов: 100% (16/16), готово.
Запись объектов: 100% (20/20), 310.95 Киб | 1.05 МиБ/с, готово.
Всего 20 (изменений 1), повторно использовано 0 (изменений 0), повторно использовано пакетов 0
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To github.com:deibatulina/study_2022-2023_arh-pc.git
    cb03f28..cc93661 master -> master
[deibatulina@fedora arch-pc]$
```

Рис. 4.23: Отправка файлов на сервер

Проверяем правильность создания рабочего пространства в локальном репозитории (рис. 4.24) и на странице Гитхаб. (рис. 4.25, 4.26)

```
[deibatulina@fedora arch-pc]$ ls
CHANGELOG.md COURSE LICENSE prepare README.git-flow.md template
config labs Makefile README.en.md README.md
[deibatulina@fedora arch-pc]$ cd labs
[deibatulina@fedora labs]$ ls
lab01 lab02 lab03 lab04 lab05 lab06 lab07 lab08 lab09 lab10 lab11
[deibatulina@fedora labs]$
```

Рис. 4.24: Проверка правильности создания рабочего пространства в локальном репозитории

Рис. 4.25: Проверка правильности создания рабочего пространства на вебстранице Гитхаб

Рис. 4.26: Проверка правильности создания рабочего пространства на вебстранице Гитхаб

Переходим в подкаталог labs. (рис. 4.27)

Рис. 4.27: Переход в подкаталог labs

Вывод: все каталоги созданы верно, иерархия соблюдена.

Далее мы переходим в подкаталог lab01/report, согласно практическому заданию, требуется загрузить отчёт на лабораторную работу №1. Лабораторная

работа №2 загружается в соответствующий подкаталог lab02. (рис. 4.28)

Рис. 4.28: Переход в подкаталог lab01/report

Далее необходимо переместить отчёты по лабораторным работам в соответствующие каталоги GitHub: lab01/report, lab02/report, lab03/report. (рис. 4.29)

```
\oplus
       deibatulina@fedora:~/work/study/2022-2023/Архитектура ко...
                                                                      Q ≡
Определение изменений: 100% (12/12), готово.
[deibatulina@fedora Архитектура компьютера]$ mc
/bin/bash: -c: строка 1: неожиданный конец файла во время поиска «'»
/bin/bash: -c: строка 2: синтаксическая ошибка: неожиданный конец файла
[deibatulina@fedora study_2022-2023_arh-pc]$ git add .
[deibatulina@fedora study_2022-2023_arh-pc]$ git commit -am 'feat(main): make co
urse structure'
[master 2242227] feat(main): make course structure
 1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 labs/lab01/report/Л01_И6атулина_отчёт.pdf
[deibatulina@fedora study_2022-2023_arh-pc]$ git push
Перечисление объектов: 10, готово.
Подсчет объектов: 100% (10/10), готово.
Сжатие объектов: 100% (4/4), готово.
Запись объектов: 100% (6/6), 798.46 КиБ | 3.68 МиБ/с, готово.
Всего 6 (изменений 3), повторно использовано 4 (изменений 2), повторно использов
client_loop: send disconnect: Broken pipe
send-pack: unexpected disconnect while reading sideband packet
fatal: the remote end hung up unexpectedly
[deibatulina@fedora study_2022-2023_arh-pc]$ git push
Перечисление объектов: 10, готово.
```

Рис. 4.29: Перемещение отчётов по лабораторным работам на GitHub посредством локального репозитория

5 Выводы

В результате выполнения лабораторной работы я научилась работать с системой контроля версий Git через командную строку и непосредственно на самом сайте GitHub. Узнала об идеологии системы контроля версий, как и для чего она используется.

Список литературы

1. Руководство по выполнению лабораторной работы №3 "Система контроля версий Git".