UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS

Viernes 28 de Junio del 2024

Modelo en 4D para el Método de los Elementos Finitos

Docente: Ing. Jorge Alfredo López Sorto

Integrantes

RICARDO ALEXANDER LOPEZ HERNANDEZ 00107521 RICARDO JOSÉ SIBRIAN RIVERA 00173821 BILLY RENÉ VALENCIA MARROQUÍN 00124621 CHRISTIAN JOEL LÓPEZ ORTEGA 00179320

Planteamiento del Modelo en 4D

Primero, definimos el operador gradiente en 4D:

$$\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \\ \frac{\partial}{\partial w} \end{pmatrix}$$

La ecuación diferencial en 4D se plantea como:

$$-\left(\frac{\partial}{\partial x}\left(k\frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k\frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right)+\frac{\partial}{\partial w}\left(k\frac{\partial T}{\partial w}\right)\right)=Q$$

En forma matricial, esto se expresa como:

$$-\left(\nabla\cdot\left[k\nabla T\right]\right) = Q$$

Donde ∇ en 4D es:

$$\nabla = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \\ \frac{\partial}{\partial w} \end{pmatrix}$$

Por lo tanto, la formulación completa en 4D es:

$$-\left(\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \\ \frac{\partial}{\partial w} \end{pmatrix} \cdot \begin{pmatrix} k \frac{\partial T}{\partial x} \\ k \frac{\partial T}{\partial y} \\ k \frac{\partial T}{\partial z} \\ k \frac{\partial T}{\partial w} \end{pmatrix}\right) = Q$$

Localizacion

Funciones de Forma:

$$N_{1} = 1 - \epsilon - \eta - \phi - \theta$$

$$N_{2} = \epsilon$$

$$N_{3} = \eta$$

$$N_{4} = \phi$$

$$N_{5} = \theta$$

Dada la forma y naturaleza de un elemento localizado como un pentacoro resulta dificil visualizar su geometria en el plano isoparametrico, sin embargo podemos partir de las funciones de forma que tenemos y establecer las coordenadas de sus vertices como los siguientes: (0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1).

Condición de Partición de la Unidad:

$$N_1 + N_2 + N_3 + N_4 + N_5 = 1 - \epsilon - \eta - \phi - \theta + \epsilon + \eta + \phi + \theta = 1$$

Condición de Mantenimiento de la Frontera:

Interpolación del modelo

Usando las siguientes funciones de forma:

$$\begin{cases} N_1 = 1 - \epsilon - \eta - \phi - \theta \\ N_2 = \epsilon \\ N_3 = \eta \\ N_4 = \phi \\ N_5 = \theta \\ -\nabla \cdot (k\nabla T) = Q \end{cases}$$

$$T \approx N_1 T_1 + N_2 T_2 + N_3 T_3 + N_4 T_4 + N_5 T_5$$

$$=\begin{bmatrix} N_1 & N_2 & N_3 & N_4 & N_5 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \end{bmatrix} = \mathbf{NT}$$

$$T \approx \mathbf{NT}$$

Aproximación del modelo

$$-\nabla \cdot (k\nabla T) = Q$$
$$-\nabla \cdot (k\nabla (NT)) \approx Q$$

Definición del Residual

$$\mathcal{R} = Q + \nabla \cdot (k\nabla(NT))$$

Método de los residuos ponderados

$$\mathcal{R} = Q + \nabla \cdot (k\nabla(NT))$$

$$\int_{H} \mathbf{W} \mathcal{R} \, dH = 0$$

$$\int_{H} \mathbf{W} \left(Q + \nabla \cdot (k\nabla(NT)) \right) \, dH = 0$$

Metodo de Galerkin

$$\mathbf{W} = \mathbf{N}$$

$$\int_{H} \mathbf{N}^{T} \left(Q + \nabla \cdot (k \nabla (NT)) \right) \, dH = 0$$

Planteamiento de la integral

$$\begin{split} & \int_{H} \mathbf{N}^{T} Q \, dH + \int_{H} \mathbf{N}^{T} \nabla \cdot (k \nabla (NT)) \, dH = 0 \\ & \int_{H} \mathbf{N}^{T} Q \, dH + \left(\int_{H} \mathbf{N}^{T} \nabla \cdot (k \nabla \mathbf{N}) \, dH \right) \mathbf{T} = 0 \\ & - \left(\int_{H} \mathbf{N}^{T} \nabla \cdot (k \nabla \mathbf{N}) \, dH \right) \mathbf{T} = \int_{H} \mathbf{N}^{T} Q \, dH \end{split}$$

Lado derecho de la integral

$$Q \int_{H} \begin{bmatrix} N_{1} \\ N_{2} \\ N_{3} \\ N_{4} \\ N_{5} \end{bmatrix} dH$$

$$Q \int_{H} \begin{bmatrix} 1 - \epsilon - \eta - \phi - \theta \\ \epsilon \\ \eta \\ \phi \\ \theta \end{bmatrix} dx dy dz dw$$

Usando el Jacobiano de transformación:

$$dxdydzdw = Jd\epsilon d\eta d\phi d\theta$$

Entonces:

$$Q \int_{H} \begin{bmatrix} 1 - \epsilon - \eta - \phi - \theta \\ & \eta \\ & \phi \end{bmatrix} J d\epsilon d\eta d\phi d\theta$$

$$QJ \int_{0}^{1} \int_{0}^{1-\theta} \int_{0}^{1-\phi-\theta} \int_{0}^{1-\eta-\phi-\theta} \begin{bmatrix} 1 - \epsilon - \eta - \phi - \theta \\ & \eta \\ & \phi \end{bmatrix} d\epsilon d\eta d\phi d\theta$$

Integral con respecto a ϵ

$$QJ \int_0^1 \int_0^{1-\theta} \int_0^{1-\phi-\theta} \int_0^{1-\eta-\phi-\theta} \epsilon \, d\epsilon \, d\eta \, d\phi \, d\theta$$

Paso 1: Integral más interna La integral más interna es:

$$\int_0^{1-\eta-\phi-\theta} \epsilon \, d\epsilon$$

Resolvemos esta integral:

$$\int \epsilon \, d\epsilon = \frac{\epsilon^2}{2}$$

Evaluamos de 0 a 1 – η – ϕ – θ :

$$\left.\frac{\epsilon^2}{2}\right|_0^{1-\eta-\phi-\theta} = \frac{(1-\eta-\phi-\theta)^2}{2}$$

Por lo tanto, el resultado de la integral más interna es:

$$\frac{(1-\eta-\phi-\theta)^2}{2}$$

Paso 2: Segunda integral

Ahora consideramos la segunda integral, utilizando el resultado anterior:

$$\int_0^{1-\phi-\theta} \frac{(1-\eta-\phi-\theta)^2}{2} \, d\eta$$

Expandimos el integrando:

$$\frac{1}{2} \int_0^{1-\phi-\theta} (1-\eta-\phi-\theta)^2 d\eta$$

La integral de $(1 - \eta - \phi - \theta)^2$ respecto a η es:

$$\int (1 - \eta - \phi - \theta)^2 \, d\eta$$

Expandimos el cuadrado:

$$(1 - \eta - \phi - \theta)^2 = (1 - \phi - \theta - \eta)^2 = (1 - \phi - \theta)^2 - 2(1 - \phi - \theta)\eta + \eta^2$$

Ahora integramos término a término:

$$\int_{0}^{1-\phi-\theta} \left[(1-\phi-\theta)^{2} - 2(1-\phi-\theta)\eta + \eta^{2} \right] d\eta$$

Esto se puede dividir en tres integrales:

$$(1-\phi-\theta)^2 \int_0^{1-\phi-\theta} 1 \, d\eta - 2(1-\phi-\theta) \int_0^{1-\phi-\theta} \eta \, d\eta + \int_0^{1-\phi-\theta} \eta^2 \, d\eta$$

Evaluamos cada una de estas integrales:

$$\int_0^{1-\phi-\theta} 1 \, d\eta = (1-\phi-\theta)$$

$$\int_{0}^{1-\phi-\theta} \eta \, d\eta = \left. \frac{\eta^{2}}{2} \right|_{0}^{1-\phi-\theta} = \frac{(1-\phi-\theta)^{2}}{2}$$

$$\int_{0}^{1-\phi-\theta} \eta^{2} \, d\eta = \left. \frac{\eta^{3}}{3} \right|_{0}^{1-\phi-\theta} = \frac{(1-\phi-\theta)^{3}}{3}$$

Sustituimos estos resultados en la integral original:

$$\frac{1}{2} \left[(1 - \phi - \theta)^2 (1 - \phi - \theta) - 2(1 - \phi - \theta) \frac{(1 - \phi - \theta)^2}{2} + \frac{(1 - \phi - \theta)^3}{3} \right]$$

Simplificamos:

$$\frac{1}{2} \left[(1 - \phi - \theta)^3 - (1 - \phi - \theta)^3 + \frac{(1 - \phi - \theta)^3}{3} \right]$$
$$= \frac{1}{2} \left[\frac{(1 - \phi - \theta)^3}{3} \right] = \frac{(1 - \phi - \theta)^3}{6}$$

Paso 3: Tercera integral La siguiente integral es:

$$\int_0^{1-\theta} \frac{(1-\phi-\theta)^3}{6} \, d\phi$$

Resolvemos esta integral:

$$\int_0^{1-\theta} (1-\phi-\theta)^3 d\phi$$

Sea $u=1-\phi-\theta,$ entonces $du=-d\phi.$ Los límites de integración cambian de $\phi=0$ a $\phi=1-\theta,$ a $u=1-\theta$ a u=0.

La integral se convierte en:

$$-\int_{1-\theta}^{0} u^3 \, du = \int_{0}^{1-\theta} u^3 \, du$$

Integramos:

$$\int u^3 \, du = \frac{u^4}{4}$$

Evaluamos de 0 a $1 - \theta$:

$$\left. \frac{u^4}{4} \right|_0^{1-\theta} = \frac{(1-\theta)^4}{4}$$

No olvidemos el factor $\frac{1}{6}$:

$$\frac{1}{6} \cdot \frac{(1-\theta)^4}{4} = \frac{(1-\theta)^4}{24}$$

Paso 4: Integral más externa

Finalmente, consideramos la integral más externa:

$$\int_0^1 \frac{(1-\theta)^4}{24} \, d\theta$$

Resolvemos esta integral:

$$\frac{1}{24} \int_0^1 (1-\theta)^4 \, d\theta$$

Sea $u = 1 - \theta$, entonces $du = -d\theta$. Los límites de integración cambian de $\theta = 0$ a $\theta = 1$, a u = 1 a u = 0.

La integral se convierte en:

$$-\frac{1}{24} \int_{1}^{0} u^{4} du = \frac{1}{24} \int_{0}^{1} u^{4} du$$

Integramos:

$$\int u^4 \, du = \frac{u^5}{5}$$

Evaluamos de 0 a 1:

$$\left. \frac{u^5}{5} \right|_0^1 = \frac{1}{5}$$

No olvidemos el factor $\frac{1}{24}$:

$$\frac{1}{24} \cdot \frac{1}{5} = \frac{1}{120}$$

Por lo tanto, el resultado de la integral cuádruple es:

$$QJ\cdot\frac{1}{120}$$

Integral con respecto a η

$$QJ \int_0^1 \int_0^{1-\theta} \int_0^{1-\phi-\theta} \int_0^{1-\eta-\phi-\theta} \eta \, d\epsilon \, d\eta \, d\phi \, d\theta$$

Paso 1: Integral más interna La integral más interna es:

$$\int_0^{1-\eta-\phi-\theta} \eta \, d\epsilon$$

Como η es constante respecto a ϵ , podemos sacarla fuera de la integral:

$$\eta \int_0^{1-\eta-\phi-\theta} 1 \, d\epsilon$$

La integral de 1 respecto a ϵ es simplemente ϵ , por lo que:

$$\eta \epsilon \Big|_0^{1-\eta-\phi-\theta} = \eta(1-\eta-\phi-\theta)$$

Por lo tanto, el resultado de la integral más interna es:

$$\eta(1-\eta-\phi-\theta)$$

Paso 2: Segunda integral

Ahora consideramos la segunda integral, utilizando el resultado anterior:

$$\int_0^{1-\phi-\theta} \eta (1-\eta-\phi-\theta) \, d\eta$$

Expandimos el integrando:

$$\int_0^{1-\phi-\theta} (\eta-\eta^2-\eta\phi-\eta\theta)\,d\eta$$

Podemos dividir esto en cuatro integrales separadas:

$$\int_{0}^{1-\phi-\theta} \eta \, d\eta - \int_{0}^{1-\phi-\theta} \eta^{2} \, d\eta - \phi \int_{0}^{1-\phi-\theta} \eta \, d\eta - \theta \int_{0}^{1-\phi-\theta} \eta \, d\eta$$

Evaluamos cada una de estas integrales:

$$\int_{0}^{1-\phi-\theta} \eta \, d\eta = \frac{\eta^{2}}{2} \Big|_{0}^{1-\phi-\theta} = \frac{(1-\phi-\theta)^{2}}{2}$$

$$\int_{0}^{1-\phi-\theta} \eta^{2} \, d\eta = \frac{\eta^{3}}{3} \Big|_{0}^{1-\phi-\theta} = \frac{(1-\phi-\theta)^{3}}{3}$$

$$\phi \int_{0}^{1-\phi-\theta} \eta \, d\eta = \phi \left. \frac{\eta^{2}}{2} \right|_{0}^{1-\phi-\theta} = \phi \cdot \frac{(1-\phi-\theta)^{2}}{2}$$

$$\theta \int_{0}^{1-\phi-\theta} \eta \, d\eta = \theta \left. \frac{\eta^{2}}{2} \right|_{0}^{1-\phi-\theta} = \theta \cdot \frac{(1-\phi-\theta)^{2}}{2}$$

Sustituimos estos resultados en la integral original:

$$\frac{(1 - \phi - \theta)^2}{2} - \frac{(1 - \phi - \theta)^3}{3} - \phi \cdot \frac{(1 - \phi - \theta)^2}{2} - \theta \cdot \frac{(1 - \phi - \theta)^2}{2}$$

Simplificamos:

$$\frac{(1-\phi-\theta)^2}{2} - \frac{(1-\phi-\theta)^3}{3} - \frac{\phi(1-\phi-\theta)^2}{2} - \frac{\theta(1-\phi-\theta)^2}{2}$$
$$= \frac{(1-\phi-\theta)^2}{2} (1-\phi-\theta) - \frac{(1-\phi-\theta)^3}{3}$$

Paso 3: Tercera integral La siguiente integral es:

$$\int_0^{1-\theta} \left[\frac{(1-\phi-\theta)^2}{2} \left(1 - \phi - \theta \right) - \frac{(1-\phi-\theta)^3}{3} \right] d\phi$$

Podemos dividir esto en dos integrales separadas:

$$\int_0^{1-\theta} \frac{(1-\phi-\theta)^2}{2} (1-\phi-\theta) \, d\phi - \int_0^{1-\theta} \frac{(1-\phi-\theta)^3}{3} \, d\phi$$

Resolvemos cada una de estas integrales por separado.

Para la primera integral, sea $u=1-\phi-\theta$, entonces $du=-d\phi$. Los límites de integración cambian de $\phi=0$ a $\phi=1-\theta$, a $u=1-\theta$ a u=0.

La integral se convierte en:

$$-\int_{1-\theta}^{0} \frac{u^2}{2} u \, du = \int_{0}^{1-\theta} \frac{u^3}{2} \, du$$

Integramos:

$$\frac{1}{2} \int u^3 du = \frac{1}{2} \left. \frac{u^4}{4} \right|_0^{1-\theta} = \frac{1}{2} \cdot \frac{(1-\theta)^4}{4} = \frac{(1-\theta)^4}{8}$$

Para la segunda integral, utilizamos el mismo cambio de variable:

$$-\int_{1-\theta}^{0} \frac{u^3}{3} du = \int_{0}^{1-\theta} \frac{u^3}{3} du$$

Integramos:

$$\frac{1}{3} \int u^3 du = \frac{1}{3} \left. \frac{u^4}{4} \right|_0^{1-\theta} = \frac{1}{3} \cdot \frac{(1-\theta)^4}{4} = \frac{(1-\theta)^4}{12}$$

Sumamos las dos integrales:

$$\frac{(1-\theta)^4}{8} - \frac{(1-\theta)^4}{12}$$

Combinamos los términos:

$$\frac{3(1-\theta)^4}{24} - \frac{2(1-\theta)^4}{24} = \frac{(1-\theta)^4}{24}$$

Paso 4: Integral más externa

Finalmente, consideramos la integral más externa:

$$\int_0^1 \frac{(1-\theta)^4}{24} \, d\theta$$

Resolvemos esta integral:

$$\frac{1}{24} \int_0^1 (1-\theta)^4 d\theta$$

Sea $u=1-\theta,$ entonces $du=-d\theta.$ Los límites de integración cambian de $\theta=0$ a $\theta=1,$ a u=1 a u=0.

La integral se convierte en:

$$-\frac{1}{24} \int_{1}^{0} u^{4} du = \frac{1}{24} \int_{0}^{1} u^{4} du$$

 ${\bf Integramos:}$

$$\int u^4 \, du = \frac{u^5}{5}$$

Evaluamos de 0 a 1:

$$\left. \frac{u^5}{5} \right|_0^1 = \frac{1}{5}$$

No olvidemos el factor $\frac{1}{24}$:

$$\frac{1}{24} \cdot \frac{1}{5} = \frac{1}{120}$$

Por lo tanto, el resultado de la integral cuádruple es:

$$QJ\cdot\frac{1}{120}$$

Integral con respecto a ϕ

$$QJ \int_0^1 \int_0^{1-\theta} \int_0^{1-\phi-\theta} \int_0^{1-\eta-\phi-\theta} \phi \, d\epsilon \, d\eta \, d\phi \, d\theta$$

Paso 1: Integral más interna La integral más interna es:

$$\int_0^{1-\eta-\phi-\theta} \phi \, d\epsilon$$

Dado que ϕ es una constante respecto a ϵ , podemos sacarla fuera de la integral:

$$\phi \int_0^{1-\eta-\phi-\theta} d\epsilon$$

Resolvemos esta integral:

$$\phi \epsilon \Big|_0^{1-\eta-\phi-\theta} = \phi(1-\eta-\phi-\theta)$$

Paso 2: Segunda integral

Ahora consideramos la segunda integral, utilizando el resultado anterior:

$$\int_0^{1-\phi-\theta} \phi(1-\eta-\phi-\theta) \, d\eta$$

Distribuimos ϕ :

$$\phi \int_{0}^{1-\phi-\theta} (1-\eta-\phi-\theta) \, d\eta$$

La integral de $(1-\eta-\phi-\theta)$ respecto a η es:

$$\int (1 - \eta - \phi - \theta) d\eta = (1 - \phi - \theta)\eta - \frac{\eta^2}{2}$$

Evaluamos esta integral desde $\eta = 0$ hasta $\eta = 1 - \phi - \theta$:

$$\left[(1 - \phi - \theta)\eta - \frac{\eta^2}{2} \right]_0^{1 - \phi - \theta} = (1 - \phi - \theta)(1 - \phi - \theta) - \frac{(1 - \phi - \theta)^2}{2}$$

Simplificamos:

$$(1 - \phi - \theta)^2 - \frac{(1 - \phi - \theta)^2}{2} = \frac{(1 - \phi - \theta)^2}{2}$$

Paso 3: Tercera integral La siguiente integral es:

$$\int_0^{1-\theta} \phi \cdot \frac{(1-\phi-\theta)^2}{2} \, d\phi$$

Simplificamos:

$$\frac{1}{2} \int_0^{1-\theta} \phi (1 - \phi - \theta)^2 d\phi$$

Para resolver esta integral, sea $u=1-\phi-\theta$, entonces $du=-d\phi$ y los límites de integración cambian de $\phi=0$ a $\phi=1-\theta$, a $u=1-\theta$ a u=0.

La integral se convierte en:

$$-\frac{1}{2} \int_{1-\theta}^{0} (1-u-\theta)u^2 du = \frac{1}{2} \int_{0}^{1-\theta} (1-u-\theta)u^2 du$$

Distribuimos u^2 :

$$\frac{1}{2} \int_0^{1-\theta} (u^2 - u^3 - \theta u^2) \, du$$

Integramos término a término:

$$\frac{1}{2} \left[\int_0^{1-\theta} u^2 \, du - \int_0^{1-\theta} u^3 \, du - \theta \int_0^{1-\theta} u^2 \, du \right]$$

Resolvemos cada integral:

$$\int_0^{1-\theta} u^2 du = \frac{u^3}{3} \Big|_0^{1-\theta} = \frac{(1-\theta)^3}{3}$$

$$\int_0^{1-\theta} u^3 du = \frac{u^4}{4} \Big|_0^{1-\theta} = \frac{(1-\theta)^4}{4}$$

$$\theta \int_0^{1-\theta} u^2 du = \theta \cdot \frac{(1-\theta)^3}{3}$$

Sustituimos estos resultados en la integral original:

$$\frac{1}{2} \left[\frac{(1-\theta)^3}{3} - \frac{(1-\theta)^4}{4} - \theta \cdot \frac{(1-\theta)^3}{3} \right]$$

Simplificamos:

$$\frac{1}{2} \left[\frac{(1-\theta)^3}{3} \left(1 - \theta - \frac{1-\theta}{4}\right) \right]$$

Paso 4: Integral más externa

Finalmente, consideramos la integral más externa:

$$\int_0^1 \frac{(1-\theta)^4}{24} \, d\theta$$

Resolvemos esta integral:

$$\frac{1}{24} \int_0^1 (1-\theta)^4 \, d\theta$$

Sea $u = 1 - \theta$, entonces $du = -d\theta$ y los límites de integración cambian de $\theta = 0$ a $\theta = 1$, a u = 1 a u = 0.

La integral se convierte en:

$$-\frac{1}{24} \int_{1}^{0} u^{4} du = \frac{1}{24} \int_{0}^{1} u^{4} du$$

Integramos:

$$\int u^4 \, du = \frac{u^5}{5}$$

Evaluamos de 0 a 1:

$$\frac{u^5}{5}\Big|_{0}^{1} = \frac{1}{5}$$

No olvidemos el factor $\frac{1}{24}$:

$$\frac{1}{24} \cdot \frac{1}{5} = \frac{1}{120}$$

Por lo tanto, el resultado de la integral cuádruple es:

$$QJ \cdot \frac{1}{120}$$

Integral con respecto a θ

$$QJ \int_0^1 \int_0^{1-\theta} \int_0^{1-\phi-\theta} \int_0^{1-\eta-\phi-\theta} \theta \, d\epsilon \, d\eta \, d\phi \, d\theta$$

Paso 1: Integral más interna:

La integral más interna es:

$$\int_0^{1-\eta-\phi-\theta} \theta \, d\epsilon$$

Dado que θ es una constante respecto a ϵ , podemos sacarla fuera de la integral:

$$\theta \int_{0}^{1-\eta-\phi-\theta} d\epsilon$$

Resolvemos esta integral:

$$\theta \epsilon \Big|_0^{1-\eta-\phi-\theta} = \theta(1-\eta-\phi-\theta)$$

Paso 2: Segunda integral:

Ahora consideramos la segunda integral, utilizando el resultado anterior:

$$\int_0^{1-\phi-\theta} \theta (1-\eta-\phi-\theta) \, d\eta$$

Distribuimos θ :

$$\theta \int_0^{1-\phi-\theta} (1-\eta-\phi-\theta) d\eta$$

La integral de $(1-\eta-\phi-\theta)$ respecto a η es:

$$\int (1 - \eta - \phi - \theta) d\eta = (1 - \phi - \theta)\eta - \frac{\eta^2}{2}$$

Evaluamos esta integral desde $\eta=0$ hasta $\eta=1-\phi-\theta$:

$$\left[(1 - \phi - \theta)\eta - \frac{\eta^2}{2} \right]_0^{1 - \phi - \theta} = (1 - \phi - \theta)(1 - \phi - \theta) - \frac{(1 - \phi - \theta)^2}{2}$$

Simplificamos:

$$(1 - \phi - \theta)^2 - \frac{(1 - \phi - \theta)^2}{2} = \frac{(1 - \phi - \theta)^2}{2}$$

Entonces, la segunda integral es:

$$\theta \cdot \frac{(1-\phi-\theta)^2}{2}$$

Paso 3: Tercera integral:

La siguiente integral es:

$$\int_0^{1-\theta} \theta \cdot \frac{(1-\phi-\theta)^2}{2} \, d\phi$$

Simplificamos:

$$\frac{\theta}{2} \int_0^{1-\theta} (1-\phi-\theta)^2 d\phi$$

Para resolver esta integral, sea $u=1-\phi-\theta$, entonces $du=-d\phi$ y los límites de integración cambian de $\phi=0$ a $\phi=1-\theta$, a $u=1-\theta$ a u=0.

La integral se convierte en:

$$-\frac{\theta}{2} \int_{1-\theta}^{0} u^2 \, du = \frac{\theta}{2} \int_{0}^{1-\theta} u^2 \, du$$

Integramos:

$$\int u^2 \, du = \frac{u^3}{3}$$

Evaluamos de u = 0 a $u = 1 - \theta$:

$$\frac{u^3}{3}\bigg|_{0}^{1-\theta} = \frac{(1-\theta)^3}{3}$$

Entonces, la tercera integral es:

$$\frac{\theta}{2} \cdot \frac{(1-\theta)^3}{3} = \frac{\theta(1-\theta)^3}{6}$$

Paso 4: Integral más externa:

Finalmente, consideramos la integral más externa:

$$\int_0^1 \frac{\theta (1-\theta)^3}{6} \, d\theta$$

Simplificamos:

$$\frac{1}{6} \int_0^1 \theta (1-\theta)^3 d\theta$$

Para resolver esta integral, utilizamos el cambio de variable $u=1-\theta$, entonces $du=-d\theta$ y los límites de integración cambian de $\theta=0$ a $\theta=1$, a u=1 a u=0.

La integral se convierte en:

$$-\frac{1}{6} \int_{1}^{0} (1-u)u^{3} du = \frac{1}{6} \int_{0}^{1} (1-u)u^{3} du$$

Distribuimos u^3 :

$$\frac{1}{6}\int_0^1 (u^3 - u^4) du$$

Integramos término a término:

$$\frac{1}{6} \left[\int_0^1 u^3 \, du - \int_0^1 u^4 \, du \right]$$

Resolvemos cada integral:

$$\int_0^1 u^3 du = \left. \frac{u^4}{4} \right|_0^1 = \frac{1}{4}$$
$$\int_0^1 u^4 du = \left. \frac{u^5}{5} \right|_0^1 = \frac{1}{5}$$

Sustituimos estos resultados en la integral original:

$$\frac{1}{6}\left(\frac{1}{4} - \frac{1}{5}\right) = \frac{1}{6}\left(\frac{5}{20} - \frac{4}{20}\right) = \frac{1}{6} \cdot \frac{1}{20} = \frac{1}{120}$$

Por lo tanto, el resultado de la integral cuádruple es:

$$QJ \cdot \frac{1}{120}$$

Integral con respecto a $1-\epsilon-\eta-\phi-\theta$

$$QJ \int_{0}^{1} \int_{0}^{1-\theta} \int_{0}^{1-\phi-\theta} \int_{0}^{1-\eta-\phi-\theta} (1-\epsilon-\eta-\phi-\theta) \, d\epsilon \, d\eta \, d\phi \, d\theta$$

Dado que la integral por sí sola es muy compleja, tomemos los resultados conocidos de integrar el resto de funciones de forma $\epsilon, \eta, \phi, \theta$ y solo integremos el "1" que falta para reducir la cantidad de operaciones

$$\int_{0}^{1} \int_{0}^{1-\theta} \int_{0}^{1-\phi-\theta} \int_{0}^{1-\eta-\phi-\theta} 1 \, d\epsilon \, d\eta \, d\phi \, d\theta$$

Paso 1: Integral más interna La integral más interna es:

$$\int_0^{1-\eta-\phi-\theta} 1 \, d\epsilon$$

Resolvemos esta integral:

$$\epsilon|_0^{1-\eta-\phi-\theta} = 1 - \eta - \phi - \theta$$

Paso 2: Segunda integral

Ahora consideramos la segunda integral, utilizando el resultado anterior:

$$\int_0^{1-\phi-\theta} (1-\eta-\phi-\theta) \, d\eta$$

La integral de $(1 - \eta - \phi - \theta)$ respecto a η es:

$$\int (1 - \eta - \phi - \theta) d\eta = (1 - \phi - \theta)\eta - \frac{\eta^2}{2}$$

Evaluamos esta integral desde $\eta = 0$ hasta $\eta = 1 - \phi - \theta$:

$$\left[(1 - \phi - \theta)\eta - \frac{\eta^2}{2} \right]_0^{1 - \phi - \theta} = (1 - \phi - \theta)(1 - \phi - \theta) - \frac{(1 - \phi - \theta)^2}{2}$$

Simplificamos:

$$(1 - \phi - \theta)^2 - \frac{(1 - \phi - \theta)^2}{2} = \frac{(1 - \phi - \theta)^2}{2}$$

Paso 3: Tercera integral: La siguiente integral es:

$$\int_0^{1-\theta} \frac{(1-\phi-\theta)^2}{2} \, d\phi$$

Simplificamos:

$$\frac{1}{2} \int_0^{1-\theta} (1-\phi-\theta)^2 d\phi$$

Para resolver esta integral, sea $u=1-\phi-\theta$, entonces $du=-d\phi$ y los límites de integración cambian de $\phi=0$ a $\phi=1-\theta$, a $u=1-\theta$ a u=0.

La integral se convierte en:

$$-\frac{1}{2}\int_{1-\theta}^{0} u^2 du = \frac{1}{2}\int_{0}^{1-\theta} u^2 du$$

Integramos:

$$\int u^2 \, du = \frac{u^3}{3}$$

Evaluamos de u = 0 a $u = 1 - \theta$:

$$\frac{u^3}{3}\bigg|_{0}^{1-\theta} = \frac{(1-\theta)^3}{3}$$

Entonces, la tercera integral es:

$$\frac{1}{2} \cdot \frac{(1-\theta)^3}{3} = \frac{(1-\theta)^3}{6}$$

Paso 4: Integral más externa:

Finalmente, consideramos la integral más externa:

$$\int_0^1 \frac{(1-\theta)^3}{6} \, d\theta$$

Simplificamos:

$$\frac{1}{6} \int_0^1 (1-\theta)^3 d\theta$$

Para resolver esta integral, utilizamos el cambio de variable $u=1-\theta$, entonces $du=-d\theta$ y los límites de integración cambian de $\theta=0$ a $\theta=1$, a u=1 a u=0.

La integral se convierte en:

$$-\frac{1}{6} \int_{1}^{0} u^{3} du = \frac{1}{6} \int_{0}^{1} u^{3} du$$

Integramos:

$$\int u^3 \, du = \frac{u^4}{4}$$

Evaluamos de u = 0 a u = 1:

$$\left. \frac{u^4}{4} \right|_0^1 = \frac{1}{4}$$

No olvidemos el factor $\frac{1}{6}$:

$$\frac{1}{6} \cdot \frac{1}{4} = \frac{1}{24}$$

El resultado de la integral para "1" es:

$$\frac{1}{24}$$

Ahora bien ya que conocemos el resultado de esta integral operemos con el resultado del resto de integrales de las funciones de forma que separamos al inicio de este bloque:

$$\frac{1}{24} - \frac{1}{120} - \frac{1}{120} - \frac{1}{120} - \frac{1}{120} = \frac{1}{120}$$

Por lo tanto, el resultado completo de la integral es:

$$QJ \int_{0}^{1} \int_{0}^{1-\theta} \int_{0}^{1-\phi-\theta} \int_{0}^{1-\eta-\phi-\theta} (1-\epsilon-\eta-\phi-\theta) \, d\epsilon \, d\eta \, d\phi \, d\theta = QJ \frac{1}{120}$$

Una vez obtenidas todas las integrales de cada funcion de forma, podemos visualizar la matriz 'b' de esta forma:

$$QJ \begin{bmatrix} \int_{0}^{1} \int_{0}^{1-\theta} \int_{0}^{1-\phi-\theta} \int_{0}^{1-\eta-\phi-\theta} (1-\epsilon-\eta-\phi-\theta) \, d\epsilon \, d\eta \, d\phi \, d\theta \\ \int_{0}^{1} \int_{0}^{1-\theta} \int_{0}^{1-\phi-\theta} \int_{0}^{1-\phi-\theta} \int_{0}^{1-\eta-\phi-\theta} \epsilon \, d\epsilon \, d\eta \, d\phi \, d\theta \\ \int_{0}^{1} \int_{0}^{1-\theta} \int_{0}^{1-\phi-\theta} \int_{0}^{1-\phi-\theta} \int_{0}^{1-\eta-\phi-\theta} \eta \, d\epsilon \, d\eta \, d\phi \, d\theta \\ \int_{0}^{1} \int_{0}^{1-\theta} \int_{0}^{1-\phi-\theta} \int_{0}^{1-\phi-\theta} \int_{0}^{1-\eta-\phi-\theta} \phi \, d\epsilon \, d\eta \, d\phi \, d\theta \\ \int_{0}^{1} \int_{0}^{1-\theta} \int_{0}^{1-\phi-\theta} \int_{0}^{1-\phi-\theta} \int_{0}^{1-\eta-\phi-\theta} \theta \, d\epsilon \, d\eta \, d\phi \, d\theta \end{bmatrix} = QJ \begin{bmatrix} \frac{1}{120} \\ \frac{1}{120} \\ \frac{1}{120} \\ \frac{1}{120} \end{bmatrix} = \frac{QJ}{120} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \mathbf{b}$$

Lado izquierdo de la integral

$$-\int_{H} N^{T} \nabla \cdot (k \nabla N) \, dH$$

Usamos integración por partes para facilitar su plantemiento y evitar la nulificación de la ecuación a raiz de la derivada de orden superior:

$$\begin{split} \int_{H} U \, dV &= \left[UV \right] \big|_{H} - \int_{H} dU \, V \\ U &= N^{T} \\ dU &= \nabla N^{T} \\ dV &= \nabla \cdot (k \nabla N) \\ V &= k \nabla N \end{split}$$

Sustituyendo en la fórmula:

$$-\left(\left[N^Tk\nabla N\right]\right|_H - \int_H \nabla N^Tk\nabla N\,dH\right)$$

Del lado izquierdo nos queda lo que será la condición de Neumann:

$$-[N^Tk\nabla N]\big|_H$$

Resolviendo la integral:

$$\int_{H} \nabla N^{T} k \nabla N \, dH$$

Desglosemos ∇N

$$\nabla \mathbf{N} = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \\ \frac{\partial}{\partial w} \end{bmatrix} \begin{bmatrix} N_1 & N_2 & N_3 & N_4 & N_5 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \\ \frac{\partial}{\partial w} \end{bmatrix} \begin{bmatrix} 1 - \epsilon - \eta - \phi - \theta & \epsilon & \eta & \phi & \theta \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial}{\partial \epsilon} \\ \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial \phi} \\ \frac{\partial}{\partial \theta} \end{bmatrix} = \mathbf{J} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \\ \frac{\partial}{\partial w} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \\ \frac{\partial}{\partial \theta} \end{bmatrix} = \mathbf{J}^{-1} \begin{bmatrix} \frac{\partial}{\partial \epsilon} \\ \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial \phi} \\ \frac{\partial}{\partial \theta} \end{bmatrix}$$

$$\nabla \mathbf{N} = \mathbf{J}^{-1} \begin{bmatrix} \frac{\partial}{\partial \epsilon} \\ \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial \phi} \\ \frac{\partial}{\partial \theta} \end{bmatrix} \begin{bmatrix} 1 - \epsilon - \eta - \phi - \theta & \epsilon & \eta & \phi & \theta \end{bmatrix}$$

$$= \mathbf{J}^{-1} \begin{bmatrix} \frac{\partial}{\partial \epsilon} (1 - \epsilon - \eta - \phi - \theta) & \frac{\partial \epsilon}{\partial \epsilon} & \frac{\partial \eta}{\partial \epsilon} & \frac{\partial \phi}{\partial \epsilon} & \frac{\partial \theta}{\partial \epsilon} \\ \frac{\partial}{\partial \eta} (1 - \epsilon - \eta - \phi - \theta) & \frac{\partial \epsilon}{\partial \eta} & \frac{\partial \eta}{\partial \eta} & \frac{\partial \phi}{\partial \eta} & \frac{\partial \theta}{\partial \eta} \\ \frac{\partial}{\partial \phi} (1 - \epsilon - \eta - \phi - \theta) & \frac{\partial \epsilon}{\partial \theta} & \frac{\partial \eta}{\partial \theta} & \frac{\partial \phi}{\partial \theta} & \frac{\partial \theta}{\partial \theta} \\ \frac{\partial}{\partial \theta} (1 - \epsilon - \eta - \phi - \theta) & \frac{\partial \epsilon}{\partial \theta} & \frac{\partial \eta}{\partial \theta} & \frac{\partial \phi}{\partial \theta} & \frac{\partial \theta}{\partial \theta} \\ \frac{\partial}{\partial \theta} (1 - \epsilon - \eta - \phi - \theta) & \frac{\partial \epsilon}{\partial \theta} & \frac{\partial \eta}{\partial \theta} & \frac{\partial \phi}{\partial \theta} & \frac{\partial \theta}{\partial \theta} \end{bmatrix}$$

$$= \mathbf{J}^{-1} \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{J}^{-1} \mathbf{B}$$

En este punto, necesitamos encontrar la inversa de J, pero dado que su cálculo es muy complejo para desglosarlo paso a paso, solo haremos un breve análisis dimensional de su definición:

$$\mathbf{J}^{-1} = \frac{1}{\det(\mathbf{J})} \mathbf{A}$$

Como se observa, obtenemos una matriz $\bf A$ denotada como la matriz adjunta de $\bf J$ y esta se puede expresar en términos de los cofactores de $\bf J$:

$$\mathbf{J} = \begin{bmatrix} x_2 - x_1 & x_3 - x_1 & x_4 - x_1 & x_5 - x_1 \\ y_2 - y_1 & y_3 - y_1 & y_4 - y_1 & y_5 - y_1 \\ z_2 - z_1 & z_3 - z_1 & z_4 - z_1 & z_5 - z_1 \\ w_2 - w_1 & w_3 - w_1 & w_4 - w_1 & w_5 - w_1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix}$$

Donde cada elemento A_{ij} es el cofactor de **J**. El cofactor A_{ij} se obtiene eliminando la *i*-ésima fila y la *j*-ésima columna de **J**, y luego calculando el determinante del menor resultante, multiplicado por $(-1)^{i+j}$.

Debido a la complejidad y longitud del cálculo, no se escribirán todos los cofactores aquí, pero el procedimiento es el mismo: calcular el determinante de cada menor 3×3 y aplicar el signo correspondiente.

Finalmente, la inversa de ${\bf J}$ se expresa como:

$$\mathbf{J}^{-1} = \frac{1}{J}\mathbf{A}$$

Finalmente aplicamos la misma logica para la transpuesta de ∇N , y obtenemos estos resltutados listos para sustituir en su definición en la integral:

$$\nabla N = \frac{1}{J}AB$$
$$\nabla N^T = \frac{1}{J}B^TA^T$$

Sustituimos en la integral que teníamos:

$$\begin{split} &= \int_{H} \frac{1}{J} B^{T} A^{T} k \frac{1}{J} A B \, dH \\ &= \frac{k}{J^{2}} B^{T} A^{T} A B \int_{H} dH \\ &= \frac{kH}{J^{2}} B^{T} A^{T} A B = \mathbf{K} \end{split}$$

Modelo final de la forma KT= b

$$\left(-[N^T k \nabla N] \right|_H + \frac{kH}{J^2} B^T A^T A B \right) \mathbf{T} = \frac{QJ}{120} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$$

$$\left(\frac{kH}{J^2} B^T A^T A B \right) \mathbf{T} = \frac{QJ}{120} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} + \begin{bmatrix} N^T k \nabla N^T \end{bmatrix} \Big|_H$$

$$\left(\frac{kH}{J^2} B^T A^T A B \right) \mathbf{T} = \frac{QJ}{120} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{KT} = b \end{bmatrix}$$