Positive Definite Matrices Notes on Linear Algebra

Chia-Ping Chen

Department of Computer Science and Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan ROC

Introduction

- Recall that the eigenvalues of Hermitian matrices are real.
- What about the signs?
- The signs of eigenvalues are important in some cases. For example, in differential equation, we need eigenvalues to be negative so the system is stable.
- Matrices whose eigenvalues are all positive are called positive definite. They are related to positive definite functions.

Quadratic Form

A function f of two variables x, y is said to have a quadratic form if

$$f(x,y) = ax^2 + 2bxy + cy^2.$$

f is related to a real symmetric matrix,

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

The partial derivatives are 0 at the origin. It is called a stationary point of f. In addition, f(0,0) = 0.

Positive Definite

- A quadratic form is said to be *positive definite* if f is positive for all points except for the origin.
- For $f(x,y) = ax^2 + 2bxy + cy^2$ to be p.d., a > 0 and c > 0. This can be shown by looking at points (1,0) and (0,1).
- But these are merely necessary conditions. For example, $f(x,y) = x^2 4xy + y^2 < 0$ at (1,1).

Sufficient Condition

We can express f using squares by

$$f(x,y) = ax^2 + 2bxy + cy^2 = a(x + \frac{b}{a}y)^2 + (c - \frac{b^2}{a})y^2$$

From above we see that f is positive definite if

$$a > 0, \ ac > b^2.$$

Negative Definite

- $f(x,y) = ax^2 + 2bxy + cy^2$ is negative definite if f(x,y) < 0 except for (x,y) = (0,0).
- f is negative definite iff -f is positive definite. So the sufficient condition for negative definiteness is

$$(-a) > 0, (-a)(-c) > (-b)^2.$$

Equivalently, getting rid of negative signs,

$$a < 0, ac > b^2.$$

Singular Case

We have a singular case if

$$ac = b^2$$
.

If a > 0, f is still non-negative everywhere, since

$$f(x,y) = a(x + \frac{b}{a}y)^2.$$

The surface z = f(x, y) degenerates from a bowl to a valley, along the line ax + by = 0.

If is said to be positive semidefinite (psd) if a > 0 and negative semidefinite if a < 0.

Saddle Point

The remaining case is when

$$ac < b^2$$
.

- (0,0) is a saddle point. We can find two directions. Along one direction (0,0) is a minimum, and along the other direction (0,0) is a maximum.
- For example, $f(x,y) = x^2 y^2$. (0,0) is a minimum along the x-axis, a maximum along the y-axis.
- f is said to be indefinite. It has a stationary point that is neither a minimum nor a maximum.

Quadratic Form and Matrix

A quadratic form can be represented by a real symmetric matrix A, where $a_{ij} + a_{ji}$ equals the coefficient of term $x_i x_j$.

$$x^{T}Ax = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i,j=1}^{n} a_{ij}x_ix_j$$

o is a stationary point of $x^T A x$. The signs of eigenvalues of A determine whether 0 is a maximum, minimum or saddle point.

Hessian Matrix

■ The Taylor series near x = 0 is

$$F(x) = F(0) + x^T \nabla F + \frac{1}{2} x^T A x + \text{higher-order terms.}$$

A, the second-order derivative matrix, is called the Hessian matrix.

$$a_{ij} = \frac{\partial^2 F}{\partial x_i \partial x_j}.$$

Whether a stationary point (with $\nabla F = 0$) is a minimum, maximum or saddle point is determined by A.

Positive Definite Matrices

- A real symmetric matrix A is said to be positive definite if $x^T A x > 0$ except for x = 0.
- In the two-dimensional case,

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

is positive definite iff a > 0 and $ac > b^2$.

We want to generalize to n-dimensional case.

Conditions for Positive Definiteness

- Note that a and $ac b^2$ are the determinants of the principle submatrices.
- We can generalize the above condition
 - "all principle submatrices have positive determinants."
- The following conditions are also sufficient and necessary for positive definiteness:
 - For all eigenvalues, $\lambda_i > 0$.
 - For all pivots, $d_i > 0$.

Positive Eigenvalues

Suppose A is positive definite, then the eigenvalues $\lambda_i's$ are positive. Let x_i be an eigenvector of A with eigenvalue λ_i .

$$x_i^T A x_i = \lambda_i(x_i^T x_i) > 0 \implies \lambda_i > 0.$$

Conversely, if $\lambda_i > 0$ for all λ_i , then A is positive definite. Since A is Hermitian, it has a complete set of orthonormal eigenvectors, and

$$x^T A x = x^T Q \Lambda Q^T x = \sum_i c_i^2 \lambda_i > 0.$$

Positive Determinants

- Suppose A is positive definite, then the determinants of all principle submatrices are positive.
- We first show any principle submatrix A_k is positive definite. Let x be a non-zero vector with the last n-k components being 0,

$$x^T A x = \begin{bmatrix} x_k^T & 0 \end{bmatrix} \begin{bmatrix} A_k & * \\ * & * \end{bmatrix} \begin{bmatrix} x_k \\ 0 \end{bmatrix} = x_k^T A_k x_k > 0.$$

 \blacksquare since all eigenvalues of A_k are positive,

$$|A_k| = \prod_i \lambda_i > 0.$$

Positive Pivots

Suppose A is positive definite, then all pivots d_i are positive.

$$d_k = \frac{|A_k|}{|A_{k-1}|} > 0,$$

- since $|A_k| > 0$ for all k.
- Conversely, if $d_i > 0$ for all d_i , then A is positive definite.

$$A = LDL^T \Rightarrow x^T A x = \sum_i d_i (L^T x)_i^2 > 0.$$

Relation to Least Squares

In a least squares problem Rx = b we solve the normal equation

$$R^T R \bar{x} = R^T b.$$

- Note that the matrix $A = R^T R$ is symmetric.
- lacksquare A is positive definite if R has linearly independent columns.

$$x^{T}Ax = x^{T}R^{T}Rx = (Rx)^{T}(Rx)\begin{cases} = 0, & x = 0, \\ > 0, & x \neq 0 \end{cases}$$

Cholesky Decomposition

A is p.d. iff there exists a matrix R with independent columns such that $A = R^T R$.

(if)
$$x^T A x = x^T R^T R x = |Rx|^2 > 0$$
 if $x \neq 0$.
(only if) $A = LDL^T = LD^{1/2}D^{1/2}L^T = R^T R$.

This Cholesky decomposition splits the pivots evenly between L and L^T .

There are infinite ways to decompose a positive definite $A = R^T R$. In fact, R' = RQ, where Q is orthogonal, also satisfies $A = R'^T R'$.

Ellipsoids in n Dimensions

- Consider the equation $x^T A x = 1$, where A is p.d.
- If A is diagonal, the graph is easily seen as an ellipsoid.
- If A is not diagonal, the graph is still an ellipsoid, since

$$x^T A x = x^T Q \Lambda Q^T x = y^T \Lambda y = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2$$
.

 $y_i = q_i^T x$ is the component of x along the ith eigenvector q_i .

Principle Axes

- The axes of the ellipsoid defined by $x^T A x = 1$ point toward the eigenvectors (q_i) of A.
- They are called *principle axes*.
- The principle axes of an ellipsoid are mutually orthogonal.
- The length of the axis along q_i is $1/\sqrt{\lambda_i}$.

Semidefinite Matrices

A matrix is said to be positive semidefinite if

$$x^T A x \ge 0$$
 for all x .

- Each of the following conditions is sufficient and necessary for positive semidefiniteness.
 - All eigenvalues are non-negative.
 - $|A_k| \ge 0$ for all principle submatrices A_k .
 - All pivots are non-negative.
 - $A = R^T R$ for some R.

An Example

The following matrix is positive semidefinite.

$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

- $x^T A x = (x_1 x_2)^2 + (x_2 x_3)^2 + (x_3 x_1)^2 \ge 0.$
- The eigenvalues are 0, 3, and 3.
- The pivots are $2, \frac{3}{2}$.
- $|A_1| = 2, |A_2| = 3, |A_3| = 0.$

Congruence Transform

- Suppose we have a change of variable x = Cy with C nonsingular. Then $x^TAx = y^TC^TACy$.
- The congruence transform is defined by

$$C^TAC$$

- C is required to be non-singular.
- $C^T AC$ is symmetric, just like A.
- For comparison, similarity transform is defined by

$$C^{-1}AC$$
.

Sylvester's Law

- The signs of eigenvalues are invariant under congruence transform $A \rightarrow C^T A C$.
- \blacksquare Suppose A is nonsingular for simplicity. Let

$$C = QR, C(t) = tQ + (1 - t)QR.$$

- The eigenvalues of $C(t)^T A C(t)$ change gradually as we vary t from 0 to 1, but they are never 0 since C(t) = Q(tI + (1-t)R) is invertible. So the signs are preserved.
- Since Q^TAQ and A have the same eigenvalues, the law is proved.

Signs of Pivots

- For a symmetric matrix A, the LDU-decomposition is $A = LDU = U^TDU$.
- $\blacksquare A$ is a congruence transformation of D.
- According to Sylvester's law, the signs of eigenvalues of A and D (the pivots) are the same.
- Therefore the signs of the pivots agree with the signs of the eigenvalues.

Locating Eigenvalues

- The relation between pivots and eigenvalues can be used to locate eigenvalues.
- First, note that if A has an eigenvalue λ , then A-cI has the eigenvalue $\lambda-c$ with the same eigenvector,

$$Ax = \lambda x \implies (A - cI)x = (\lambda - c)x.$$

Example

Consider

$$A = \begin{bmatrix} 3 & 3 & 0 \\ 3 & 10 & 7 \\ 0 & 7 & 8 \end{bmatrix}, B = A - 2I = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 8 & 7 \\ 0 & 7 & 6 \end{bmatrix}.$$

- $lue{B}$ has a negative pivot, so it has a negative eigenvalue. A is positive definite.
- It follows

$$\lambda_A > 0, \lambda_B = \lambda_A - 2 < 0 \implies 0 < \lambda_A < 2.$$

Generalized Eigenvalue Problem

A generalized eigenvalue problem is

$$Ax = \lambda Mx$$
.

- The right-hand side has a matrix M.
- A generalized eigenvalue problem can be converted to an equivalent eigenvalue problem.

Equivalent Eigenvalue Problem

- We consider only the case that A is symmetric and M is positive definite. We can write $M = R^T R$, where R is invertible.
- Let y = Rx,

$$Ax = \lambda Mx = \lambda R^T Rx \Rightarrow AR^{-1}y = \lambda R^T y.$$

Let $C = R^{-1}$ so $(R^T)^{-1} = C^T$. Then

$$C^T A C y = \lambda y.$$

This is an equivalent eigenvalue problem, with the same eigenvalues and related eigenvectors x = Cy.

Properties

- The eigenvalues are real since C^TAC is symmetric.
- They have the same signs as the eigenvalues of A since C^TAC is a congruence transformation of A.
- The eigenvectors y_j can be chosen orthonormal, so the eigenvectors x_j are M-orthonormal, i.e.

$$x_i^T M x_j = x_i^T R^T R x_j = y_i^T y_j = \delta_{ij}.$$

Simultaneous Diagonalization

lacksquare M and A can both be diagonalized by the eigenvectors x_i .

$$x_i^T M x_j = y_i^T y_i = \delta_{ij},$$

$$x_i^T A x_j = \lambda_j x_i^T M x_j = \lambda_j \delta_{ij}.$$

- Using x_i 's as the columns of S, we have $S^TAS = \Lambda$ and $S^TMS = I$.
- Note they are congruence transforms to diagonal matrices rather than similarity transforms, as S^T is used, not S^{-1} .

Singular Value Decomposition

The singular value decomposition, SVD, is

$$A = U\Sigma V^T.$$

- U, Σ, V are related to the matrices A^TA and AA^T .
- Unlike earlier discussion, here A is not limited to be a square matrix. A is rectangular.

SVD Theorem

Any $m \times n$ real matrix A with rank r can be factored by

 $A = U\Sigma V^T = (orthogonal)(diagonal)(orthogonal).$

- U is $m \times m$. Columns of U are the eigenvectors of AA^T .
- V is $n \times n$. Columns of V are the eigenvectors of A^TA .
- Σ is $m \times n$. It contains r singular values on the diagonal. A singular value is the square root of a non-zero eigenvalue of A^TA .

Proof

Let v_1, \ldots, v_n be orthonormal eigenvectors of $A^T A$. We have

$$v_i^T A^T A v_j = \lambda_j v_i^T v_j = \lambda_j \delta_{ij}.$$

- Since A^TA has the same nullspace as A, there are r non-zero eigenvalues. These non-zero eigenvalues are positive since A^TA is p.s.d.
- **Define** the singular values for the positive λ_j ,

$$\sigma_j = \sqrt{\lambda_j}$$
.

Proof

Define $u_j = \frac{Av_j}{\sigma_j}$. They are orthonormal eigenvectors of AA^T

$$AA^Tu_j = \frac{AA^TAv_j}{\sigma_j} = \lambda_j \frac{Av_j}{\sigma_j} = \lambda_j u_j, \quad u_i^Tu_j = \delta_{ij}.$$

 \blacksquare Construct V with v and U with u,

$$(U^T A V)_{ij} = u_i^T A v_j = \begin{cases} 0 & \text{if } j > r, \\ \sigma_j u_i^T u_j = \sigma_j \delta_{ij} & \text{if } j \le r. \end{cases}$$

That is, $U^TAV = \Sigma$. So $A = U\Sigma V^T$.

Remarks

 $AV = U\Sigma$. A multiplied by a column of V produces a multiple of column of U,

$$Av_j = \sigma_j u_j.$$

- $AA^T = U\Sigma\Sigma^TU^T$ and $A^TA = V\Sigma^T\Sigma V^T$. U is the eigenvector matrix of AA^T and V is the eigenvector matrix of A^TA .
- The non-zero eigenvalues of AA^T and A^TA are the same. They are in $\Sigma\Sigma^T$.

Example

Consider

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \cdot AA^{T} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}.$$

- The singular values are $\sqrt{3}$, 1.
- Finding v_i and u_i , one has

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 & (/\sqrt{6}) \\ -1 & 0 & 1 & (/\sqrt{2}) \\ 1 & 1 & 1 & (/\sqrt{3}) \end{bmatrix}$$

Applications of SVD

Through SVD, we can represent a matrix as a sum of rank-one matrices

$$A = U\Sigma V^T = u_1\sigma_1v_1^T + \dots + u_r\sigma_rv_r^T.$$

- Suppose we have a 1000×1000 matrix, for a total of 10^6 entries. Suppose we use the above expansion and keep only the 50 most significant terms. This would require 50(1 + 1000 + 1000) numbers, a save of space of almost 90%.
- This is commonly used in image processing.

SVD for Image

Pseudo-Inverse

Consider the normal equation

$$A^T A \hat{x} = A^T b.$$

- If A has dependent columns, then A^TA is not invertible and \hat{x} is not unique. Any vector in the nullspace of A^TA can be added to \hat{x} .
- Among all solution, we denote the one with the minimum length by x^+ .
- The matrix that produces x^+ from b is called the *pseudo-inverse* of A, denoted by A^+ .

Properties of Pseudoinverse

By our definition, $A^+b = x^+$, where x^+ is the shortest solution for

$$A^T A \hat{x} = A^T b.$$

 $\blacksquare A^+$ is related to SVD $A = U\Sigma V^T$ by

$$A^+ = V\Sigma^+ U^T,$$

where Σ^+ is $n \times m$ with diagonals $\frac{1}{\sigma_1}, \ldots, \frac{1}{\sigma_r}$.

Proof of Minimum Length

 $lue{}$ Multiplication by U^T leaves the length unchanged,

$$|Ax-b| = |U\Sigma V^T x - b| = |\Sigma V^T x - U^T b| = |\Sigma y - U^T b|,$$

where
$$y = V^T x = V^{-1} x$$
.

- Since Σ is a diagonal matrix, the minimum-length least-square solution is $y^+ = \Sigma^+ U^T b$.
- The minimum-length least-square solution for x is

$$x^+ = Vy^+ = V\Sigma^+ U^T b = A^+ b.$$

Rayleigh's Quotient

- A problem may have an equivalent problem in the form of minimizing an objective function.
- The eigenvalue problem

$$Ax = \lambda x$$

can be solved by looking at the Rayleigh's quotient

$$R(x) = \frac{x^T A x}{x^T x}.$$

Rayleigh's Principle

- The minimum value of the Rayleigh's quotient R(x) is the smallest eigenvalue λ_1 of A, achieved by the corresponding eigenvector x_1 .
- This follows from

$$R(x) = \frac{(Qy)^T A(Qy)}{(Qy)^T (Qy)} = \frac{y^T \Lambda y}{y^T y} = \frac{\lambda_1 y_1^2 + \dots + \lambda_n y_n^2}{y_1^2 + \dots + y_n^2}.$$

Each diagonal entry is between λ_1 and λ_n since the Rayleigh quotient equals a_{ii} when $x = e_i$, the unit vector along direction x_i .

Maximin Principle

A vector perpendicular to x_1 is in the subspace spanned by x_2, \ldots, x_n , so

$$\lambda_2 = \min_{x \perp x_1} R(x).$$

For arbitrary v, the following equations hold

$$\lambda_2 \ge \min_{x \perp v} R(x), \quad \lambda_2 = \max_v \min_{x \perp v} R(x).$$

Let S_j be a j-dimensional subspace, then

$$\lambda_{j+1} = \max_{S_j} \min_{x \perp S_j} R(x).$$