CS6690: Pattern Recognition Assignment #2

Group 3: Akshay & Suthirth September 25, 2014

1 Bayesian Classifiers

According to Bayes Theorem, for a dataset x with classes ω_i , Probability of a datapoint belonging to class ω_i is defined as:

$$P(\omega_i|x) = \frac{(P(x|\omega_i)P((\omega_i)))}{P(x)}$$
(1)

- Here, $P(x|\omega_i)$ is known as the class likelihood. To estimate this value, we require the distribution of ω_i . Based on the central limit theorem, we can assume that this would be Gaussian distribution for large datasets.
- The value $P(\omega_i)$ is the class prior and is calculated using:

$$P(\omega_i) = N_i/N \tag{2}$$

This term becomes irrelevant if the classes have equal probabilities.

• P(x) is termed as 'evidence' and can be calculated as:

$$P(x) = \sum_{i} P(x|\omega_i)P(\omega_i)$$
 (3)

2 Gaussian Likelihood Distribution

For multi-dimensional data, the Gaussian Distribution is:

$$P(x; \mu, \Sigma) = \frac{1}{2\pi^{k/2} |\Sigma|^{1/2}} e^{-(x-\mu)^T \Sigma^{-1}(x-\mu)}$$
(4)

where

- μ is the mean
- Σ is the covariance matrix

The above parameters are calculated for the following cases:

- 2.1 Bayes Classifier with Covariance same for all classes
- 2.2 Bayes Classifier with Covariance different for all classes
- **2.3** Naive Bayes Classifier with $C = \Sigma^2 * I$
- 2.4 Naive Bayes Classifier with C same for all classes
- 2.5 Naive Bayes Classifier with C different for all classes

3 Bayes Classification

If
$$P(\omega_1|x) > P(\omega_2|x)$$
 then x belongs to class ω_1
If $P(\omega_1|x) < P(\omega_2|x)$ then x belongs to class ω_2

Using equation (1), this can be written as:

$$P(x|\omega_1)P(\omega_1) \geqslant P(x|\omega_2)P(\omega_2) \tag{5}$$

The value x_0 at which the RHS and LHS is called the threshold value.

This classification rules minimizes number of misclassifications.

Based on this classification, the following quantities can be defined:

 $TruePositiveRate = \frac{\Sigma TruePositive}{\Sigma ConditionPositive}$

 $FalsePositiveRate = \frac{\Sigma FalsePositive}{\Sigma ConditionNegative}$

A plot of these two quantities is known as a DET Curve.

4 Experiments

4.1 Data

Red - Class 1, Green - Class 2, Blue - Class 3, Cyan - Class 4 Black (solid) - 1st Eigenvector Black (dashed) - 2nd Eigenvector

Figure 1: Linearly Separable Data

Figure 2: Non-linearly Separable Data

Figure 3: Overlapping Data

Figure 4: Real World Data: Vowel utterance formant frequencies ${\rm F1}$ and ${\rm F2}$

4.2 Decision Boundaries

Following plots describe the decision boundaries for various datasets with different Bayesian classifiers.

For every figure,

Row 1: Bayes with: (L) Same covariance for all classes, (R) Different covariance for all classes

Row 2: Naive Bayes with: (L) $C = \Sigma^2 * I$, (R) Same C for all classes

Row 3: Naive Bayes with different C for all classes

Legends:

Red - Class 1

Green - Class 2

Blue - Class 3

Cyan - Class 4

White - $\mu_1 - \mu_2, \mu_3, \mu_4$

Yellow - Decision Boundary b/w Class 1 and 2

Magenta - Decision Boundary b/w Class 1 and 3

Cyan (line) - Decision Boundary b/2 Class 1 and 4

Figure 5: Decision Boundary for Dataset 1

Figure 6: Decision Boundary for Dataset 2

Figure 7: Decision Boundary for Dataset 3

Figure 8: Decision Boundary for Dataset 4

4.3 DET Curves

Figure 9: DET Curves for Linearly Separable Data

Figure 10: DET Curves for Non-linearly Separable Data

Figure 11: DET Curves for Overlapping Data