course:

Database Systems (NDBlo25)

SS2017/18

lecture 8:

### Relational design – normal forms

doc. RNDr. Tomáš Skopal, Ph.D. RNDr. Michal Kopecký, Ph.D.

Department of Software Engineering, Faculty of Mathematics and Physics, Charles University in Prague

#### Today's lecture outline

- motivation
  - data redundancy and update/insertion/deletion anomalies
- functional dependencies
  - Armstrong's axioms
  - attribute and dependency closures
- normal forms
  - 3NF
  - BCNF

#### Motaivation

- result of relational design
  - a set of relation schemas
- problems
  - data redundancy
    - unnecessary multiple storage of the same data increased space cost
  - insert/update/deletion anomalies
    - insertions and updates must preserve redundant data storage
    - deletion might cause loss of some data
  - solution
    - relation schema normalization

#### Example of "abnormal" schema

| Empld | Name           | Position   | Hourly salary | Hours completed |
|-------|----------------|------------|---------------|-----------------|
| 1     | John Goodman   | accountant | 200           | 50              |
| 2     | Paul Newman    | salesman   | 500           | 30              |
| 3     | David Houseman | salesman   | 500           | 45              |
| 4     | Brad Pittman   | accountant | 200           | 70              |
| 5     | Peter Hitman   | accountant | 200           | 66              |
| 6     | Adam Batman    | lecturer   | 300           | 10              |

- 1) From functional analysis we know that position determines hourly salary. However, hourly salary data is stored multiple times redundancy.
- 2) If we delete employee 6, we lose the information on lecturer salary.
- 3) If we change the accountant hourly salary, we must do that in three places.

#### How could this even happen?

- simply
  - during "manual" design of relation schemas
  - badly designed conceptual model
    - e.g., too many attributes in a class



the UML diagram results in 2 tables:

Person(<u>id</u>, address, education, ...)
Mobil(<u>serial nr.</u>, manufacturer, model, ..., id)

### How could this even happen?

| Serial nr. | Manufacturer | Model     | Made in | Certificate |
|------------|--------------|-----------|---------|-------------|
| 13458      | Nokia        | Lumia     | Finland | EU, USA     |
| 34654      | Nokia        | Lumia     | Finland | EU, USA     |
| 65454      | Nokia        | Lumia     | Finland | EU, USA     |
| 45464      | Apple        | iPhone 4S | USA     | EU, USA     |
| 64654      | Samsung      | Galaxy S2 | Taiwan  | Asia, USA   |
| 65787      | Samsung      | Galaxy S2 | Taiwan  | Asia, USA   |

Redundancy in attributes Manufacturer, Model, Made in, Certificate

What happened?

Class Phone includes also other classes – Manufacturer, Model, ...

How to fix it?

Two options

- 1) fix the UML model (design of more classes)
- 2) alter the already created schemas (see next)

#### Functional dependencies

- attribute-based integrity constraints defined by the user (e.g., DB application designer)
- kind of alternative to conceptual modeling (ER and UML invented much later)
- functional dependency (FD)  $X \rightarrow Y$  over schema R(A)
  - mapping  $f_i: X_i \to Y_i$ , where  $X_i, Y_i \subseteq A$  (kde i = 1..number of FDs in R(A))
  - n-tuple from X<sub>i</sub> determines m-tuple from Y<sub>i</sub>
  - m-tuple from Y<sub>i</sub> is determined by (is dependent on) n-tuple from X<sub>i</sub>

#### Functional dependencies

- simply, for  $X \rightarrow Y$ , values in X together determine the values in Y
- if  $X \rightarrow Y$  and  $Y \rightarrow X$ , then X and Y are **functionally equivalent** 
  - could be denoted as X ↔ Y
- if  $X \rightarrow a$ , where  $a \in A$ , then  $X \rightarrow a$  is **elementary FD**
- FDs represent a generalization of the key concept (identifier)
  - the key is a special case, see next slides

# Example – wrong interpretation

| Empld | Name           | Position   | Hourly salary | Hours completed |
|-------|----------------|------------|---------------|-----------------|
| 1     | John Goodman   | accountant | 200           | 50              |
| 2     | Paul Newman    | salesman   | 500           | 30              |
| 3     | David Houseman | salesman   | 500           | 45              |
| 4     | Brad Pittman   | accountant | 200           | 70              |
| 5     | Peter Hitman   | accountant | 200           | 66              |
| 6     | Adam Batman    | lecturer   | 300           | 10              |

One might **observe** from the **data**, that:

Position → Hourly salary and also Hourly salary → Position EmpId → everything Hours completed → everything Name → everything

(but that is nonsense w.r.t. the natural meaning of the attributes)

# Example – wrong interpretation

| Empld | Name           | Position   | Hourly salary | Hours completed |
|-------|----------------|------------|---------------|-----------------|
| 1     | John Goodman   | accountant | 200           | 50              |
| 2     | Paul Newman    | salesman   | 500           | 30              |
| 3     | David Houseman | salesman   | 500           | 45              |
| 4     | Brad Pittman   | accountant | 200           | 70              |
| 5     | Peter Hitman   | accountant | 200           | 66              |
| 6     | Adam Batman    | lecturer   | 300           | 10              |
| 7     | Fred Whitman   | advisor    | 300           | 70              |
| 8     | Peter Hitman   | salesman   | 500           | 55              |

newly inserted records

Position → Hourly salary Empld → everything

Hourly salary → Position
Hours completed → everything
Name → everything

### Example – correct interpretation

- at first, after the data analysis the FDs are set "forever", limiting the content of the tables
  - e.g. Position → Hourly salary
     EmpId → everything
  - insertion of the last row is not allowed as it violates both the FDs

| Empld | Name           | Position   | Hourly salary | Hours completed |
|-------|----------------|------------|---------------|-----------------|
| 1     | John Goodman   | accountant | 200           | 50              |
| 2     | Paul Newman    | salesman   | 500           | 30              |
| 3     | David Houseman | salesman   | 500           | 45              |
| 4     | Brad Pittman   | accountant | 200           | 70              |
| 5     | Peter Hitman   | accountant | 200           | 66              |
| 5     | Adam Batman    | salesman   | 300           | 23              |

### Armstrong's axioms

Let us have R(A,F). Let X, Y,  $Z \subseteq A$  and F is the set of FDs

1) if 
$$Y \subseteq X$$
, then  $X \rightarrow Y$ 

(trivial FD, really axiom)

2) if 
$$X \rightarrow Y$$
 and  $Y \rightarrow Z$ , then  $X \rightarrow Z$ 

(transitivity, rule)

3) if 
$$X \rightarrow Y$$
 and  $X \rightarrow Z$ , then  $X \rightarrow YZ$ 

(composition, rule)

4) if 
$$X \rightarrow YZ$$
, then  $X \rightarrow Y$  and  $X \rightarrow Z$ 

(decomposition, rule)

### Armstrong's axioms

#### Armstrong's axioms:

- are correct (sound)
  - what is derived from F is valid for any instance from R
- are complete
  - all FDs valid in all instances in R (w.r.t. F) can be derived using the axioms
- 1,2,3 (trivial, transitivity, composition) are independent
  - removal of any axiom 1,2,3 violates the completeness (decomposition could be derived from trivial FD and transitivity)

Proof follows from the FD definition (from the properties of mapping, respectively).

### Example – deriving FDs

```
R(A,F)
   A = \{a,b,c,d,e,f\}
   F = \{ab \rightarrow c, ac \rightarrow d, cd \rightarrow ed, e \rightarrow f\}
We could derive, e.g.,:
    ab \rightarrow a (trivial)
                   (composition with ab \rightarrow c)
    ab \rightarrow ac
   ab \rightarrow d
                     (transitivity with ac \rightarrow d)
                     (composition with ab \rightarrow c)
    ab \rightarrow cd
                     (transitivity with cd \rightarrow ed)
    ab \rightarrow ed
                     (decomposition)
   ab \rightarrow e
    ab \rightarrow f
                     (transitivity)
```

# Example – deriving the decomposition rule

```
R(A,F)
   A = \{a,b,c\}
   F = \{a \rightarrow bc\}
Deriving:
   a \rightarrow bc
                   (assumption)
   bc \rightarrow b (trivial FD)
   bc \rightarrow c (trivial FD)
   a \rightarrow b (transitivity)
                   (transitivity)
   a \rightarrow c
   i.e., a \rightarrow bc \Rightarrow a \rightarrow b \land a \rightarrow c
```

#### Closure of set of FDs

- closure F<sup>+</sup> of FDs set F (FD closure) is the set of all FDs derivable from F using the Armstrong's axioms
  - generally exponential size w.r.t. |F|
- a FD f is redundant in F if
   (F {f})<sup>+</sup> = F<sup>+</sup>, i.e., f can be derived from the rest of F

#### Example – closure of set of FDs

R(A,F), A = {a,b,c,d}, F = {ab 
$$\rightarrow$$
 c, cd  $\rightarrow$  b, ad  $\rightarrow$  c}

F<sup>+</sup> =

{a  $\rightarrow$  a, b  $\rightarrow$  b, c  $\rightarrow$  c,

ab  $\rightarrow$  a, ab  $\rightarrow$  b, ab  $\rightarrow$  c,

cd  $\rightarrow$  b, cd  $\rightarrow$  c, cd  $\rightarrow$  d,

ad  $\rightarrow$  a, ad  $\rightarrow$  c, ad  $\rightarrow$  d,

abd  $\rightarrow$  a, abd  $\rightarrow$  b, abd  $\rightarrow$  c, abd  $\rightarrow$  d,

abd  $\rightarrow$  abcd,...}

#### Cover

- cover of a set F is any set of FDs G such that F+=G+
- canonic cover = cover consisting of elementary FDs
   (decompositions are performed to obtain singleton sets on the right side)
- non-redundant cover of F
  - = cover of F after removing all redundant FDs
  - note the order of removing FDs matters a redundant FD could become non-redundant FD after removing another redundant FD
    - implies that there may exist multiple non-redundant covers of F

#### Example – cover

```
R1(A,F), R2(A,G),

A = {a,b,c,d},

F = {a \rightarrow c, b \rightarrow ac, d \rightarrow abc},

G = {a \rightarrow c, b \rightarrow a, d \rightarrow b}
```

For the check of  $G^+ = F^+$  we do not have to establish the whole closures, it is sufficient to derive F from G, and vice versa, i.e.,  $F' = \{a \rightarrow c, b \rightarrow a, d \rightarrow b\}$  — decomposition  $G' = \{a \rightarrow c, b \rightarrow ac, d \rightarrow abc\}$  — transitivity and composition

 $\Rightarrow$  G<sup>+</sup> = F<sup>+</sup>

Schemas R1 and R2 are equivalent because G is cover of F, while they share the attribute set A.

Moreover, G is minimal cover, while F is not (for minimal cover see next slides).

#### Example – redundant FDs

R1(A,F), R2(A,G),  
A = {a,b,c,d},  
F = {a 
$$\rightarrow$$
 c, b  $\rightarrow$  a, b  $\rightarrow$  c, d  $\rightarrow$  a, d  $\rightarrow$  b, d  $\rightarrow$  c}

FDs 
$$b \rightarrow c$$
,  $d \rightarrow a$ ,  $d \rightarrow c$  are redundant

after their removal  $F^+$  is not changed, i.e., they could be derived from the remaining FDs

```
b \rightarrow c derived using transitivity a \rightarrow c, b \rightarrow a
 d \rightarrow a derived using transitivity d \rightarrow b, b \rightarrow a
 d \rightarrow c derived using transitivity d \rightarrow b, b \rightarrow a, a \rightarrow c
```

#### Attribute closure, key

- attribute closure X<sup>+</sup> (w.r.t. F)
   is a subset of attributes from A determined by X (using F)
  - consequence: if X<sup>+</sup> = A, then X is a super-key
- if F contains a FD X  $\rightarrow$  Y and there exist an attribute  $\alpha$  in X such that Y  $\subseteq$  (X  $\alpha$ )<sup>+</sup>, then  $\alpha$  is **attribute redundant in X**  $\rightarrow$  Y
- reduced FD is such FD that does not contain any redundant attributes (otherwise it is a partial FD)
- **key** is a set K  $\subseteq$  A such that it is a super-key (i.e., K  $\rightarrow$  A) and K  $\rightarrow$  A is moreover reduced
  - there could exist multiple keys (at least one)
  - if there is no FD in F, it trivially holds  $A \rightarrow A$ , i.e., the key is the entire set A
  - key attribute = attribute that is in any key

#### Example – attribute closure

$$R(A,F), A = \{a,b,c,d\}, F = \{a \rightarrow c, cd \rightarrow b, ad \rightarrow c\}$$

$$\{a\}+ = \{a,c\} \quad \text{it holds} \quad a \rightarrow c \quad (+\text{ trivial } a \rightarrow a)$$

$$\{b\}+ = \{b\} \quad (\text{trivial } b \rightarrow b)$$

$$\{c\}+ = \{c\} \quad (\text{trivial } c \rightarrow c)$$

$$\{d\}+ = \{d\} \quad (\text{trivial } d \rightarrow d)$$

$$\{a,b\}+ = \{a,b,c\} \quad ab \rightarrow c \quad (+\text{ trivial})$$

$$\{a,d\}+ = \{a,b,c,d\} \quad ad \rightarrow bc \quad (+\text{ trivial})$$

$$\{c,d\}+ = \{b,c,d\} \quad cd \rightarrow b \quad (+\text{ trivial})$$

#### Example – redundant attribute

```
R(A,F), A = \{i,j,k,l,m\},

F = \{m \rightarrow k, lm \rightarrow j, ijk \rightarrow l, j \rightarrow m, l \rightarrow i, l \rightarrow k\}
```

#### **Hypothesis:**

**k** is redundant in **ijk**  $\rightarrow$  **I**, i.e., it holds ij  $\rightarrow$  **I** 

#### **Proof:**

- based on the hypothesis let's construct FD ij  $\rightarrow$ ?
- 2. **ijk**  $\rightarrow$  I remains in F because we **ADD** new FD **ij**  $\rightarrow$ ? so that we can use **ijk**  $\rightarrow$  I for construction of the attribute closure {i,j}+
- we obtain {i,j}<sup>+</sup> = {i, j, m, k, l},
   i.e., there exists ij → I which we add into F (it is the member of F<sup>+</sup>)
- 4. now forget how  $ij \rightarrow I$  got into F
- 5. because  $ijk \rightarrow I$  could be trivially derived from  $ij \rightarrow I$ , it is redundant FD and we can remove it from F
- 6. so, we removed the redundant attribute **k** in **ijk**  $\rightarrow$  **l**

In other words, we transformed the problem of removing redundant attribute on the problem of removing redundant FD.

#### Minimal cover

- non-redundant canonic cover that consists of only reduced FDs
  - is constructed by removing redundant attributes in FDs followed by removing of redundant FDs (i.e., the order matters)

**Example:** abcd  $\rightarrow$  e, e  $\rightarrow$  d, a  $\rightarrow$  b, ac  $\rightarrow$  d

#### **Correct order of reduction:**

- b,d are redundant
   in abcd → e, i.e., removing them
- 2.  $ac \rightarrow d$  is redundant

#### Wrong order of reduction:

- 1. no redundant FD
- 2. redundant b,d in abcd  $\rightarrow$  e (now not a minimal cover, because ac  $\rightarrow$  d is redundant)

#### First normal form (1NF)

Every attribute of in a relation schema is of **simple non-structured type**.

(1NF is the basic condition on "flat database" – a table is really two-dimensional array, not a hidden graph or tree)

### Example – 1NF

Person(Id: Integer, Name: String, Birth: Date)

is in 1NF

Employee(Id: Integer, Subordinate : Person[], Boss : Person)

#### not in 1NF

(nested table of type Person in attribute Subordinate, and the Boss attribute is structured)

#### 2<sup>nd</sup> normal form (2NF)

■ 1NF + there do not exist partial dependencies of non-key attributes on (any) key, i.e., it holds  $\forall x \in NK \not\exists KK : KK \rightarrow x$  (where NK is the set of non-key attributes and KK is subset of some key)



## Example – 2NF

| Company     | DB server | HQ     | Purchase date |
|-------------|-----------|--------|---------------|
| John's firm | Oracle    | Paris  | 1995          |
| John's firm | MS SQL    | Paris  | 2001          |
| Paul's firm | IBM DB2   | London | 2004          |
| Paul's firm | MS SQL    | London | 2002          |
| Paul's firm | Oracle    | London | 2005          |

← not in 2NF, because HQ is determined by a part of key (Company)

consequence: redundancy of HQ values

Company, DB Server  $\rightarrow$  everything

Company  $\rightarrow$  HQ

both schemas are in  $2NF \rightarrow$ 

| Company     | DB server | Purchase date |
|-------------|-----------|---------------|
| John's firm | Oracle    | 1995          |
| John's firm | MS SQL    | 2001          |
| Paul's firm | IBM DB2   | 2004          |
| Paul's firm | MS SQL    | 2002          |
| Paul's firm | Oracle    | 2005          |

| Company     | HQ     |
|-------------|--------|
| John's firm | Paris  |
| Paul's firm | London |

Company  $\rightarrow$  HQ

Company, DB Server  $\rightarrow$  everything

# Transitive dependency on key

- FD A  $\rightarrow$  B such that A  $\not\rightarrow$  some key
  (A is not a super-key), i.e., we get transitivity  $key \rightarrow$  A  $\rightarrow$  B
- Transitivities point to probable redundancies, because from the definition of FD as a mapping:
  - unique values of key are mapped to the same or less unique values of A, and those are mapped to the same or less unique values of B

Example in 2NF: ZIPcode  $\rightarrow$  City  $\rightarrow$  Country

| ZIPcode     | City      | Country     |
|-------------|-----------|-------------|
| CZ 118 00   | Prague -  | Czech rep.  |
| CZ 190 00   | Prague    | Czech rep.  |
| CZ 772 00   | Olomouc   | Czech rep.  |
| CZ 783 71   | Olomouc   | Czech rep.  |
| SK 911 01 - | Trenčín - | Slovak rep. |
| 7           | Ť         | 1           |

no redundancy medium redundancy high redundancy

# 3<sup>rd</sup> normal form (3NF)

1NF + non-key attributes are not transitively dependent on key



- as the 3NF using the above definition cannot be tested without construction of F<sup>+</sup>,
   we use a definition that assumes only R(A,F)
  - at least one condition holds for each FD X  $\rightarrow a$  (where X  $\subseteq$  A,  $a \in$  A)
    - FD is trivial
    - X is super-key



#### Example – 3NF

| Company       | HQ      | ZIPcode  |
|---------------|---------|----------|
| John's firm   | Prague  | CZ 11800 |
| Paul's firm   | Ostrava | CZ 70833 |
| Martin's firm | Brno    | CZ 22012 |
| David's firm  | Prague  | CZ 11000 |
| Peter's firm  | Brno    | CZ 22012 |

Company  $\rightarrow$  everything ZIPcode  $\rightarrow$  HQ

is in 2NF, **not** in 3NF (transitive dependency of HQ on key through ZIPcode)

consequence:

redundancy of HQ values

Company  $\rightarrow$  everything ZIPcode  $\rightarrow$  everything

both schemas are in 3NF

| Company       | ZIPcode  |
|---------------|----------|
| John's firm   | CZ 11800 |
| Paul's firm   | CZ 70833 |
| Martin's firm | CZ 22012 |
| David's firm  | CZ 11000 |
| Peter's firm  | CZ 22012 |

| ZIPcode  | HQ      |
|----------|---------|
| CZ 11800 | Prague  |
| CZ 70833 | Ostrava |
| CZ 22012 | Brno    |
| CZ 11000 | Prague  |

### Boyce-Codd normal form (BCNF)

- 1NF + every attribute is (non-transitively) dependent on key
- more exactly, in a give schema R(A, F) there holds at least one condition for each FD X  $\rightarrow \alpha$  (where X  $\subseteq$  A,  $\alpha \in$  A)
  - FD is trivial
  - X is super-key
- the same as 3NF without the last option (α is key attribute)



#### Example – BCNF

| Destination | Pilot       | Plane     | Day     |
|-------------|-------------|-----------|---------|
| Paris       | cpt. Oiseau | Boeing #1 | Monday  |
| Paris       | cpt. Oiseau | Boeing #2 | Tuesday |
| Berlin      | cpt. Vogel  | Airbus #1 | Monday  |

Pilot, Day  $\rightarrow$  everything Plane, Day  $\rightarrow$  everything Destination  $\rightarrow$  Pilot

is in 3NF, **not in BCNF** (Pilot is determined by Destination, which is not a super-key)

consequence: redundancy of Pilot values

Destination  $\rightarrow$  Pilot Plane, Day  $\rightarrow$  everything

| Destination | Pilot       |  |
|-------------|-------------|--|
| Paris       | cpt. Oiseau |  |
| Berlin      | cpt. Vogel  |  |

| Destination | Plane     | Day     |
|-------------|-----------|---------|
| Paris       | Boeing #1 | Monday  |
| Paris       | Boeing #2 | Tuesday |
| Berlin      | Airbus #1 | Monday  |

both schemas are in BCNF