

DeepRob

Discussion 3
How to Read Deep Learning Research Papers
University of Michigan and University of Minnesota

Science Robotics

Today's Agenda

- The importance of reading papers
- How to approach research papers in deep learning
- Discussion of AlexNet, PoseCNN and NeRF

Reading Papers is an Important Skill

Applied Side

- Practitioners want state of the art performance
- Look to academia for what exists and how it can be replicated

Research Side

- Understand the field as a way to find ideas for contributing
- New datasets, techniques, methods defined by research community

State of the Art is Always Changing

Where to Look for Deep Learning Papers in Robotics?

Where to Look for Deep Learning Papers in Robotics?

Publishing Never Stops

Publishing Never Stops

Publishing Never Stops

How to Read Deep Learning Research Papers?

Everyone develops their own style over time

What is the primary field and subfield of the work?

What is the primary field and subfield of the work?

What problem are the authors trying to address?

What is the primary field and subfield of the work?

What problem are the authors trying to address?

What progress have other researchers made on this problem?

What is the primary field and subfield of the work?

What problem are the authors trying to address?

What progress have other researchers made on this problem?

What are the primary claims and contributions?

What is the primary field and subfield of the work?

What problem are the authors trying to address?

What progress have other researchers made on this problem?

What are the primary claims and contributions?

What are the key results?

What is the primary field and subfield of the work?

What problem are the authors trying to address?

What progress have other researchers made on this problem?

What are the primary claims and contributions?

What are the key results?

How were these results achieved? Using which techniques evaluated under which methods?

What is the primary field and subfield of the work?

What problem are the authors trying to address?

What progress have other researchers made on this problem?

What are the primary claims and contributions?

What are the key results?

How were these results achieved? Using which techniques evaluated under which methods?

What problems, questions, or findings could be expanded on as future work?

Discussion: AlexNet

ImageNet Classification with Deep Convolutional **Neural Networks**

Alex Krizhevsky

University of Toronto

kriz@cs.utoronto.ca

Ilya Sutskever

University of Toronto

ilya@cs.utoronto.ca

Geoffrey E. Hinton

University of Toronto

hinton@cs.utoronto.ca

Discussion: PoseCNN

PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes

Yu Xiang^{1,2}, Tanner Schmidt², Venkatraman Narayanan³ and Dieter Fox^{1,2} ¹NVIDIA Research, ²University of Washington, ³Carnegie Mellon University yux@nvidia.com, tws10@cs.washington.edu, venkatraman@cs.cmu.edu, dieterf@nvidia.com

Discussion: NeRF

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Ben Mildenhall^{1*} Pratul P. Srinivasan^{1*} Matthew Tancik^{1*} Jonathan T. Barron² Ravi Ramamoorthi³ Ren Ng¹

¹UC Berkeley ²Google Research ³UC San Diego

DeepRob

Discussion 3
How to Read Deep Learning Research Papers
University of Michigan and University of Minnesota

Science Robotics

