Лабораторная работа №7 «Помехоустойчивое кодирование. Мажоритарное декодирование»

Матяш A.A., KKCO-01-19

Цель работы: ознакомление с принципами построения систем передачи с мажоритарным декодированием и приобретение практических навыков постановки и проведения исследований.

Для линейных кодов, рассчитанных на исправление многократных ошибок, часто более простыми оказываются декодирующие устройства, построенные по мажоритарному принципу.

Идея мажоритарного декодирования линейного кода базируется на системе проверочных равенств, а именно, в кодах с мажоритарным декодированием, каждый символ может быть выражен через другие символы несколькими способами. Это позволяет для определения истинного значения символа воспользоваться принципом большинства (мажоритарным принципом).

Любой символ a_i , выражается d (минимальное кодовое расстояние) различными независимыми способами в виде линейных комбинаций других символов. Результаты вычислений подаются на соответствующий этому символу мажоритарный элемент. Последний представляет собой схему, имеющую d входов и один выход, на котором появляется единица, когда возбуждается больше половины его входов, и нуль, когда возбуждается число таких входов меньше половины. Если ошибки отсутствуют, то проверочные равенства не нарушаются, и на выходе мажоритарного элемента получаем истинное значение символа. Рассмотрим процесс мажоритарного декодирования на примере. Пусть передано кодовое слово (8,2) линейного кода:

$$U = (u_8, u_7, u_6, u_5, u_4, u_3, u_2, u_1)$$

символы которого сформированы в соответствии с системой проверочных уравнений (правилом кодирования) на основе информационных бит (a_2, a_1) вида:

$$u_8 = a_2, u_7 = a_2, u_6 = a_2, u_5 = a_1, u_4 = a_1, u_3 = a_1, u_2 = a_1 \oplus a_2, u_8 = a_1 \oplus a_2$$

На входе декодера наблюдается принятая последовательность:

$$R = (r_8, r_7, r_6, r_5, r_4, r_3, r_2, r_1)$$

и необходимо ее декодировать, то есть определить оценки передаваемой информационной последовательности (a_2^*, a_1^*) .

Для начала предположим, что ошибок в принятой последовательности R нет, тогда по принятой последовательности R можно легко найти оценку переданной информационной последовательности (a_2^*, a_1^*) , причем не единственным способом:

$$a_1^* = r_1 \oplus r_6, a_1^* = r_2 \oplus r_7, a_1^* = r_3, a_1^* = r_4, a_1^* = r_5$$

 $a_2^* = r_1 \oplus r_3, a_2^* = r_2 \oplus r_4, a_2^* = r_6, a_2^* = r_7, a_2^* = r_8.$

Таким образом, получилось пять независимых систем уравнений для определения одних и тех же компонент (a_2^*, a_1^*) , причем, они будут иметь одинаковые решения только при отсутствии ошибок в принятой последовательности г. В противном случае решения для (a_2^*, a_1^*) , даваемые различными системами, будут разными.

Если считать, что в принятой последовательности возможна только одиночная ошибка, то ошибочным будет решение одного уравнения из пяти для каждого из элементов (a_2^*, a_1^*) , остальные четыре уравнения дадут правильное решение. Тогда правильный ответ может быть получен по «большинству голосов».

В ходе лабораторной работы рассмотрена 1 задача:

Исследование системы передачи с мажоритарным декодированием группового (8,2)-кода.

Даны информационные биты $a_2a_1=01$. Они преобразуются в кодовое слово $U=(u_8,u_7,u_6,u_5,u_4,u_3,u_2,u_1)=(a_2,a_2,a_2,a_1,a_1,a_1,a_1\oplus\oplus a_2,a_1\oplus a_2)=00011111$. Выполним моделирование при отсутствии и наличии ошибок, результаты зафиксируем в таблице:

Количество	U	E	R	a ₁ v			из		Итог a_1^*	а* исходя из				Итог a_2^*	
ошибок				проверочных				_	проверочных				_		
				уравнений					уравнений						
0	00011111	00000000	00011111	1	1	1	1	1	1	0	0	0	0	0	0
1	00011111	00000001	00011110	0	1	1	1	1	1	1	0	0	0	0	1
2	00011111	00000011	00011100	0	0	1	1	1	1	1	1	0	0	0	1
3	00011111	10000011	10011100	0	0	1	1	1	1	1	1	0	0	1	1
4	00011111	11000011	11011100	0	1	1	1	1	1	1	1	0	1	1	1
5	00011111	11100011	11111100	1	1	1	1	1	1	1	1	1	1	1	1
6	00011111	11110011	11101100	1	1	1	1	0	1	1	1	1	1	1	1
7	00011111	11111011	11100100	1	1	1	0	0	1	1	0	1	1	1	1
8	00011111	111111111	11100000	1	1	0	0	0	0	0	0	1	1	1	0

Исходя из таблицы делаем вывод, что мажоритарное декодирование эффективно справляется с ошибками, если их количество менее трёх. В противном случае происходит искажение переданной информации.

Вывод: в ходе работы я ознакомился с принципами построения систем передачи с мажоритарным декодированием, а также приобрёл практические навыки постановки и проведения исследований.