Lernkrücken für den Amateurfunkkurs der Klasse E von A02

Thomas Fritzsche

1. November 2025

Inhaltsverzeichnis

8	Grundlegende Schaltungen									
	8.4	Mischer (Klasse E)								
	8.5	Konverter und Transverter								
	8.6	Verstärker								
9	Modulation									
	9.1	Unmodulierter Träger								
	9.2	Einseitenbandmodulation (SSB)								
	9.3	Frequenzmodulation (FM)								
	9.4	Bandbreite								
	9.5	Dynamikkompressor								
10	Emi	ofänger 10								
-0	-	Detektorempfänger								
		Überlagerungsempfänger (Einfachsuper)								
		Trennschärfe I								
		BFO I								
		Vorverstärker und Dämpfungsglied								
		Automatische Verstärkungsregelung (AGC) I								
		Notch-Filter								
		Rauschunterdrückung								
		Frequenzmessung I								
11	Sene	der 23								
		ALC								
		Senderausgangsleistung								
		Unerwünschte Aussendungen II								
		Störende Beeinflussung elektronischer Geräte I								
19	Digi	itale Übertragungsverfahren 33								
14	_	Binäres Zahlensystem								
		Digimode per SSB								
		9600-Port								
		Übersteuerung								
		Automatische Empfangsberichte								
		Paketvermittelte Netzwerke								
		Amplituden- und Frequenzumtastung (ASK, FSK)								
		AFSK								
		Datenübertragungsrate								
		Vielfachzugriff 4								

Einleitung

In diesem Dokument stellen wir einige Informationen für den Klasse E Aufbaukurs des Ortsverbands A02 zusammen. Es sei darauf hingewiesen, dass der Author ein Funkamateur im wahrsten Sinne des Wortes ist, und als Amateur keine berufliche Ausbildung im Bereich der hier dargestellten Amateurfunkthemen hat.

Deshalb kann dieses Dokument inhaltliche Fehler, sachlich falsche Aussagen enthalten. Der Author ist dafür nicht haftbar. Das Ziel des Dokuments ist auch nicht ein möglichst genaue Fachliche Darstellung der Themen, sondern vielmehr Lernhilfen zu geben, damit die Fragen in der Amateurfunkprüfung der Klasse E richtig beantwortet werden können.

Da sich Funker immer per "Du" ansprechen, will ich in diesem Dokument auch nicht anders machen. Dieses Dokument verwendet die Kapitalstruktur der DARC Lernplattform http://50ohm.de. Du kannst also alle Inhalte dort nachlesen. In diesem Dokument fassen wir die Inhalte absichtlich nur sehr knapp zusammen. Wir beschränken uns auf die nach Inhalte die im Fragenkatalog vorkommen.

Wenn es sich nicht im ein triviale definition handelt wird die Lösung jeder Frage im Detail im Block "Lösungsansatz" erklärt.

8 Grundlegende Schaltungen

8.4 Mischer (Klasse E)

In einem Mischer werden zwei Eingangssignale zu einem Ausgangssignal gemischt. Das Blockschaltdiagramm eines Mischers sieht aus wie eine Waschmaschine. Tatsächlich soll uns das Kreuz in der Mitte des Symbols an ein Multiplikationszeichen erinnern, da es sich um meine multiplikative Mischung von Frequenzen handelt. Beim Mischen entsteht aus den beiden Eingangsfrequenzen die Summe und Differenz Frequenz:

Wie solch ein Mischer funktioniert kannst Du mit dieser App interaktiv ausprobieren.

Hier nur eine kurze Erklärung wie sich dies Mathematisch herleiten lässt. Für die Prüfung brauchst Du diese Details nicht wissen! In unserem Beispiel haben wir ein empfangenes Signal $S_{\rm empf}$ und das Signal eines lokalen Oszillator $S_{\rm LO}$.

$$S_{\rm empf}(t) = A_{\rm empf} \cdot \sin(\omega_{\rm empf} t)$$

$$S_{\rm LO}(t) = A_{\rm LO} \cdot \sin(\omega_{\rm LO} t)$$

Ein Multiplikativer Mixer wird unser Signal zu einem wie eine einfache Ausgangssignal $S_{\rm out}$ multiplizieren:

$$S_{\text{out}}(t) = S_{\text{empf}}(t) \cdot S_{\text{LO}}(t)$$

Wir verwenden die folgende Trigonometrie Formel:

$$\sin(A) \cdot \sin(B) = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$

Also gilt:

$$\begin{split} S_{\rm out}(t) &= A_{\rm empf} A_{\rm LO} \cdot \sin(\omega_{\rm empf} t) \cdot \sin(\omega_{\rm LO} t) \\ S_{\rm out}(t) &= \frac{1}{2} A_{\rm empf} A_{\rm LO} \left[\cos((\omega_{\rm empf} - \omega_{\rm LO}) t) - \cos((\omega_{\rm empf} + \omega_{\rm LO}) t) \right] \end{split}$$

Summe und Differenz entstehen also einfach aus unserer Formel.

EF201 Welche wesentlichen Ausgangsfrequenzen erzeugt die in der Abbildung dargestellte Stufe?

Lösungsansatz:

Wir rechnen:

- 31.7 MHz 21 MHz = 10.7 MHz
- $\bullet \ 31{,}7\ \mathrm{MHz} + 21\ \mathrm{MHz} = 52{,}7\ \mathrm{MHz}$
- (A) 10,7 MHz und 52,7 MHz
- (B) 42 MHz und 63,4 MHz
- (C) 21 MHz und 63,4 MHz
- (D) 21.4 MHz und 105.4 MHz

EF202 Einem Mischer werden die Frequenzen 28 MHz und 38,7 MHz zugeführt. Welche Mischfrequenzen werden hauptsächlich erzeugt?

Lösungsansatz:

Wir rechnen:

- 38,7 MHz 28 MHz = 10,7 MHz
- 38,7 MHz + 28 MHz = 66,7 MHz
- (A) 10,7 MHz und 66,7 MHz
- (B) 17,3 MHz und 49,4 MHz
- (C) 56 MHz und 77,4 MHz
- (D) 45,3 MHz und 88,1 MHz

EF203 Welches sind die erwünschten Produkte, die bei der Mischung der Frequenzen 30 MHz und 39 MHz am Ausgang des Mischers entstehen?

Lösungsansatz:

Wir rechnen:

- 39 MHz 30 MHz = 9 MHz
- 39 MHz + 30 MHz = 69 MHz
- (A) 9 MHz und 69 MHz
- (B) 9 MHz und 39 MHz
- (C) 30 MHz und 39 MHz
- (D) 39 MHz und 69 MHz

EF204 Einem Mischer werden die Frequenzen 136 MHz und 145 MHz zugeführt. Welche Mischfrequenzen werden hauptsächlich erzeugt?

Lösungsansatz:

Wir rechnen:

- 145 MHz 136 MHz = 9 MHz
- 145 MHz + 136 MHz = 281 MHz
- (A) 9 MHz und 281 MHz
- (B) 127 MHz und 154 MHz
- (C) 272 MHz und 290 MHz
- (D) 118 MHz und 163 MHz

EF205 Welches sind die erwünschten Produkte, die bei der Mischung der Frequenzen 136 MHz und 145 MHz am Ausgang des Mischers entstehen?

Lösungsansatz:

Wir rechnen:

- 145 MHz 136 MHz = 9 MHz
- 145 MHz + 136 MHz = 281 MHz
- (A) 9 MHz und 281 MHz
- (B) 127 MHz und 154 MHz
- (C) 272 MHz und 290 MHz
- (D) 154 MHz und 281 MHz

EF206 Wie sollte eine Mischstufe beschaffen sein, um unerwünschte Abstrahlungen zu vermeiden?

Lösungsansatz:

In der Frage geht es um "unerwünschte Abstrahlungen", wir müssen also abschirmen.

- (A) Sie sollte gut abgeschirmt sein.
- (B) Sie sollte niederfrequent entkoppelt werden.
- (C) Sie sollte nicht geerdet werden.
- (D) Sie sollte möglichst lose mit dem VFO gekoppelt sein.

8.5 Konverter und Transverter

Wir müssen Konverter und Transverter unterscheiden können.

Konverter setzen das Signal nur in eine Richtung um (entweder im Sendepfad oder im Empfangspfad).

Transverter verfügen über eine interne Sende-/Empfangsumschaltung und setzen das Signal in Sendeund Empfangsrichtung um (ähnlich wie ein Transceiver).

Wenn also eine "Sende-/Empfangsumschaltung" vorhanden ist, dann ist es ein Transverter.

EF501 Welche der nachfolgenden Antworten trifft für die Wirkungsweise eines Transverters zu? Ein Transverter setzt...

Lösungsansatz:

Der Transverter setzt natürlich vom 70cm Signal ins 10m Band um und umgekehrt. Aufpassen bei Antwort (B): Hier wird beim Senden und Empfangen jeweils von 70cm in's 10m Band umgesetzt. Das macht keinen Sinn.

- (A) beim Empfangen z. B. ein 70 cm-Signal in das 10 m-Band und beim Senden das 10 m-Sendesignal auf das 70 cm-Band um.
- (B) sowohl beim Senden als auch beim Empfangen z. B. ein 70 cm-Signal in das 10 m-Band um.
- (C) sowohl beim Senden als auch beim Empfangen z. B. ein frequenzmoduliertes Signal in ein amplitudenmoduliertes Signal um.
- (D) sowohl beim Senden als auch beim Empfangen z. B. ein DMR-Signal in ein D-Star-Signal um.

EF502 Durch welchen Vorgang setzt ein Transverter einen Frequenzbereich in einen anderen um?

Lösungsansatz:

Im letzten Kapitel haben wir über den Mixer gesprochen. Hier wird Summe und Differenz Frequenz gebildet.

- (A) Durch Mischung
- (B) Durch Vervielfachung
- (C) Durch Frequenzteilung
- (D) Durch Rückkopplung

EF503 Was stellt folgendes Blockschaltbild dar?

Lösungsansatz:

Im Blockschaltbild können wir die Sende-/Empfangsumschaltung erkennen wie zwischen RX und TX umschaltet. Es ist also der **Transverter**.

- (A) Einen Transverter für das 2 m-Band
- (B) Einen Empfangskonverter für das 2 m-Band
- (C) Einen Vorverstärker für das 10 m-Band

(D) Einen Transceiver für das 10 m-Band

EF504 Was stellt die nachfolgende Schaltung dar?

Lösungsansatz:

Es gibt keine Sende-/Empfangsumschaltung und überhaupt nur den Empfang. Es ist also ein Konverter.

- (A) Einen 13 cm-Konverter für einen VHF-Sender
- (B) Einen 13 cm-Transverter zur Vorschaltung vor einen VHF-Sender
- (C) Einen 13 cm-Transverter zur Vorschaltung vor einen VHF-Empfänger
- (D) Teile eines I/Q-Mischers für das 13 cm-Band

EF505 Warum soll der Lokaloszillator (XO) in einem Transverter für Satellitenbetrieb mit einer Uplinkfrequenz von 2,4 GHz temperaturstabilisiert oder durch ein höherwertiges Frequenznormal synchronisiert sein?

Lösungsansatz:

Diese Fragen hat viele ähnlich Antworten. Liess dies alle genau durch! Es geht um den Satellitenbetrieb über die hohe Frequenz von 2,4 GHz. Wir müssen also die Sendefrequenz vervielfachen und damit vervielfachen wir auch Frequenzabweichungen.

- (A) Da die Frequenz des Oszillators für die Sendefrequenz vervielfacht wird, vervielfacht sich auch die Abweichung, die für SSB-Betrieb zu groß wäre.
- (B) Da die Frequenz des Oszillators für die Sendefrequenz heruntergemischt wird, verringert sich dadurch die Abweichung.
- (C) Da die Frequenz des Oszillators für die Sendefrequenz vervielfacht wird, nehmen die Nebenaussendungen mit zunehmender Frequenzabweichung zu.
- (D) Da die Frequenz des Oszillators für die Sendefrequenz heruntergemischt wird, verringert sich bei zunehmender Frequenzabweichung der Modulationsgrad.

8.6 Verstärker

Der Transistor ist für moderne Verstärker das Entscheidende Bauelement, dass uns hilft die Schaltungen aufeinander halten zu können. Für viele Jahre wurden auch Röhren verwendet, die auch heute noch viele Amateurfunker verwenden. Allerdings kommen sie nicht mehr im Fragenkatalog vor.

ED401 Was versteht man in der Elektronik unter Leistungsverstärkung?

Lösungsansatz:

Die Frage ist einfach zu beantworten, hat aber mal wider viele ähnlich Antworten. Zunächst schließen wir Antwort (C) und (D) aus, da wir ja mit dem Verstärker die Ausgangsleistung erhöhen wollen. Der unterschied von (A) und (B) ist nur ab eine Spannungsquelle notwendig ist und auch dies ist einleuchtend, dass für ein Verstärkung Energie zugeführt werden muss. Deshalb brauchen wir ein Spannungsquelle.

- (A) Die Ausgangsleistung ist gegenüber der Eingangsleistung größer und dazu ist eine Spannungsquelle notwendig.
- (B) Die Ausgangsleistung ist gegenüber der Eingangsleistung größer, obwohl keine Spannungsquelle notwendig ist.
- (C) Die Ausgangsleistung ist gleich der Eingangsleistung, obwohl keine Spannungsquelle notwendig ist.
- (D) Die Ausgangsleistung ist gleich der Eingangsleistung, da eine Spannungsquelle notwendig ist.

ED402 Worum handelt es sich bei dieser Schaltung?

Lösungsansatz:

In der Schaltung finden wir ganz Zentral den Transistor, der ja typisch ist für den Verstärker, also schließen wir schon mal (D) aus. Weiterhin finden wir das Schaltzeichen eines Lautsprechers im Schema, es geht also um Audio (NF).

- (A) NF-Verstärker
- (B) ZF-Verstärker
- (C) HF-Verstärker
- (D) Tongenerator

ED403 Für welchen Zweck werden HF-Leistungsverstärker eingesetzt?

Lösungsansatz:

Die Antwort sollte klar sein, die alternativen Antworten (B),(C),(D) machen überhaupt keinen Sinn.

- (A) Anhebung des Sendesignals
- (B) Modulation des Sendesignals
- (C) Mischung des Sendesignals
- (D) Filterung des Sendesignals

EF307 Welcher Frequenzgang ist am besten für den Mikrofonverstärker eines Sprechfunkgeräts geeignet?

Hier geht es um Audio Signale vom Mikrofon. Das Menschliche Ohr kann bis maximal ca. 20k Hz hören, allerdings verwenden wird im Amateurfunk nur die untersten 2700Hz davon um nicht unnötig Bandbreite zu verschwenden. Die untersten 300Hz können wir nicht hören, deshalb kann ein Mikrofonverstärker mit der Kennlinie (A) auch als extra Filter dienen.

EF308 Über welche Bandbreite sollte der in der Blockschaltung dargestellte NF-Verstärker für eine gute Sprachverständlichkeit mindestens verfügen?

Lösungsansatz:

Bereits aus der Frage erfahren wir, dass es um einen NF-Verstärker geht, auch wenn zur Verwirrung noch Mixer und Bandpass eingezeichnet sind. Die Bezeichnungen SSB und LSB/USB lässt uns erkennen, dass es um das gewünschte Audiospektrum von ca. 2,5 kHz geht.

- (A) ca. 2,5 kHz
- (B) ca. 6,0 kHz

- (C) ca. 1,0 kHz
- (D) ca. 12,5 kHz

EF403 Wie ist die Ausgangsstufe eines SSB-Senders aufgebaut?

Lösungsansatz:

Wichtig ist, dass wir uns merken, dass ein SSB Verstärker die Signale **linear** verstärken soll. Er muss dabei z.B. die gesamte Bandbreite des Signals gleichmäßig abdecken und sollte nicht bei gewünschten Frequenzen (SSB) oder Amplituden einbrechen (die Amplitude eines SSB Signals hängt von der Lautstärke des NF Signals ab).

- (A) Als linearer Verstärker
- (B) Als Begrenzerverstärker
- (C) Als nichtlinearer Verstärker
- (D) Als Vervielfacher

EF405 Wie sollte die Stromzufuhr in einem Sender beschaffen sein?

Lösungsansatz:

Die Stromversorgung in einem Sender, sollte niederohmig sein, um eine stabile und effiziente Energieversorgung der Senderendstufe zu gewährleisten. Die Antwort (C) und (D) macht ebenso keinen Sinn. Also merken wir uns, dass wir keine HF in der Stromzufuhr haben wollen. Bei Netzversorgung würden wir ja sonst auch die HF über das Stromnetz in der ganzen Nachbarschaft verteilen.

- (A) Sie sollte gegen HF-Einstrahlung gut entkoppelt sein.
- (B) Sie sollte möglichst hochohmig sein.
- (C) Sie sollte über das Leistungsverstärkergehäuse geführt werden.
- (D) Sie sollte mit möglichst wenig Kapazität gegen Masse ausgelegt werden.

9 Modulation

9.1 Unmodulierter Träger

Der unmodulierter Träger entspricht im zeitlichen Verlauf eine Sinus Funktion.

Lösungen

EE101 Welches der folgenden Diagramme zeigt einen unmodulierten Träger?

Lösungsansatz:

In (A) haben wir einen unmodulierten Sinus. (B) ist Frequenzmoduliert (C) ist Phasenmoduliert und (D) ist Amplitudenmoduliert. Schau Dir einfach an was sich abweichend von einem Sinus Signal in den Diagrammen ändert.

9.2 Einseitenbandmodulation (SSB)

Wir haben die SSB Modulation bereits im Klasse N Kurs kennengelernt. Ein SSB Signal entspricht im Grunde der Amplitudenmodulation AM, bei der der Träger und ein Seitenband unterdrückt werden.

Im Amateurfunk verwenden wir in der Regel die Audio Frequenzen von 300 Hz bis 3000 Hz, dies entspricht also in etwa 2.7 kHz. Auch die Bandbreite des ausgesendeten HF Seitenbandes ist in etwas so groß. Es gibt im Katalog viele Fragen zur Bandbreite von SSB oder des NF Signals die Du alle mit der Antwort um die 2.5-3 kHz richtig beantwortest.

Lösungen

EE201 Wie unterscheidet sich SSB von AM in Bezug auf die Bandbreite?

Lösungsansatz:

SSB unterscheidet sich von AM dadurch, dass nur eins von den beiden Seitenbändern hat und keinen Träger. In Bezug auf die Bandbreite ist es deshalb nur etwa halb so breit. Ansonsten unterscheidet sich SSB von AM nicht, Du kannst mit einem SSB Empfänger AM Empfangen, in dem Du deinen Empfänger auf jeweils eines der Seitenbänder einstellst.

- (A) SSB beansprucht weniger als die halbe Bandbreite der Modulationsart AM.
- (B) SSB beansprucht etwas mehr als die halbe Bandbreite der Modulationsart AM.
- (C) SSB beansprucht etwa 1/4 Bandbreite der Modulationsart AM.
- (D) SSB und AM lassen keinen Vergleich zu, da sie grundverschieden erzeugt werden.

EE202 Wie groß ist in etwa die HF-Bandbreite, die für die Übertragung eines SSB-Signals erforderlich ist?

Lösungsansatz:

Die Bandbreite des NF Signals überträgt sich auf das HF Signal. Praktisch für Dich in der Prüfung, es gibt einige Fragen zur Bandbreite von NF und/oder SSB die nur minimal abweichen. Bei 2,4 kHz - 2,7 kHz liegst Du also fast immer richtig.

- (A) Sie entspricht der Bandbreite des NF-Signals.
- (B) Sie entspricht der Hälfte der Bandbreite des NF-Signals.
- (C) Sie entspricht der doppelten Bandbreite des NF-Signals.
- (D) Sie ist Null, weil bei SSB-Modulation der HF-Träger unterdrückt wird.

EE203 Ein Träger von 21,250 MHz wird mit der NF-Frequenz von 1 kHz in SSB (USB) moduliert. Welche Frequenz tritt im ideal modulierten HF-Signal auf?

Lösungsansatz:

Wir addieren, da das Signal im oberen Seitenband liegt (USB). Pass mit MHz bzw. KHz auf! Rechnung: 21,250 Mhz + 1 kHz = 21,251 MHz

- (A) 21,251 MHz
- (B) 21,250 MHz
- (C) 21,249 MHz
- (D) 21,260 MHz

EE204 Ein Träger von 3,65 MHz wird mit der NF-Frequenz von 2 kHz in SSB (LSB) moduliert. Welche Frequenz/Frequenzen treten im modulierten HF-Signal hauptsächlich auf?

Lösungsansatz:

Wir subtrahieren, da das Signal im unteren Seitenband liegt (LSB). Pass mit MHz bzw. kHz auf! Rechnung: $3,65~\rm Mhz+2~kHz=3,648~\rm MHz$

- (A) 3,648 MHz
- (B) 3,648 MHz und 3,650 MHz
- (C) 3,652 MHz
- (D) 3,648 MHz und 3,652 MHz

EE205 Welche der aufgeführten Maßnahmen verringert die Ausgangsleistung eines SSB-Senders?

Lösungsansatz:

Die Amplitude des NF Signal regelt bei SSB die Ausgangsleistung. Wenn wir die Ausgangsleistung reduzieren wollen sollten wir die Amplitude des NF Signals reduzieren.

- (A) Verringern der NF-Amplitude
- (B) Lauter ins Mikrofon sprechen
- (C) Verringern der Squelcheinstellung
- (D) Erhöhen der NF-Bandbreite

EE206 Was bewirkt eine zu geringe Mikrofonverstärkung bei einem SSB-Transceiver?

Lösungsansatz:

Die Amplitude des NF Signal regelt bei SSB die Ausgangsleistung. Wenn unsere Mikrofonverstärkung nicht ausreicht haben wir auch nur eine geringe Ausgangsleistung.

- (A) geringe Ausgangsleistung
- (B) Störungen von Stationen, die auf einem anderen Frequenzband arbeiten
- (C) geringe Bandbreite
- (D) Störungen bei Stationen, die auf dicht benachbarten Frequenzen arbeiten

EE207 Wie groß ist die Bandbreite von CW im Vergleich zu einem Sprachsignal in SSB oder AM?

Lösungsansatz:

CW hat eine deutliche geringere Bandbreite als Sprachsignale via SSB oder AM. Deshalb ist es deutlich effektiver und erfreut sich großer Beliebtheit der der Welt des Amateurfunk.

- (A) In beiden Fällen weist CW eine kleinere Bandbreite auf.
- (B) In beiden Fällen weist CW eine größere Bandbreite auf.
- (C) Die Bandbreite von CW ist kleiner als bei SSB, jedoch größer als bei AM.
- (D) Die Bandbreite von CW ist größer als bei SSB, jedoch kleiner als bei AM.

EF310 Welche Bandbreite sollte das nachgeschaltete Filter zur Unterdrückung eines Seitenbandes bei der Erzeugung eines SSB-Telefoniesignals haben?

Lösungsansatz:

Wie bei vielen anderen SSB Fragen ist die Antwort um 2,5 kHz richtig, also (A)!

- (A) 2,4 kHz
- (B) 800 Hz
- (C) 455 kHz
- (D) 10.7 MHz

EJ210 Um Störungen auf benachbarten Frequenzen zu minimieren, sollte die Übertragungsbandbreite bei SSB ...

Lösungsansatz:

Wie bei vielen anderen SSB Fragen ist die Antwort um 2,5 kHz richtig, also (A). In dieser Frage liegt der Wert bei 2,7 kHz noch ca. 300 Hz zum (gefilterten) Träger Abstand sind. Dies entspricht den tiefen NF Frequenzen die wir Menschen nicht hören können.

- (A) höchstens 2,7 kHz betragen.
- (B) höchstens 1,8 kHz betragen.
- (C) höchstens 3,1 kHz betragen.
- (D) höchstens 15,0 kHz betragen.

EJ211 Um etwaige Funkstörungen auf Nachbarfrequenzen zu begrenzen, sollte bei SSB-Telefonie die höchste zu übertragende NF-Frequenz ...

- (A) unter 3 kHz liegen.
- (B) unter 1 kHz liegen.
- (C) unter 5 kHz liegen.
- (D) unter 10 kHz liegen.

EJ215 Was bewirkt in der Regel eine zu hohe Mikrofonverstärkung bei einem SSB-Transceiver?

Lösungsansatz:

Eine zu hohe Mikrofonverstärkung führt zu einer Übersteuerung der Verstärkerendstufe und zu Splatter auf die Nachbarfrequenzen. Zudem machen wir es unserem Filter schwerer die Frequenzen außerhalb des Bandpass-Filter zu unterdrücken.

- (A) Störungen bei Stationen, die auf dicht benachbarten Frequenzen arbeiten
- (B) Störungen von Stationen, die auf einem anderen Frequenzband arbeiten
- (C) Störungen der Stromversorgung des Transceivers
- (D) Störungen von anderen elektronischen Geräten

9.3 Frequenzmodulation (FM)

Wie der Name Frequenzmodulation (FM) bereits verrät wird beim FM die Frequenz des HF Trägers moduliert (verändert). Der Hub gibt an wie weit die Frequenz von der Grundfrequenz abgelenkt wird. Hier wird das NF Signal und die entsprechende Auslenkung des HF Trägers gezeigt:

Da FM über die Frequenz moduliert wird ist FM unempfindlicher gegenüber Amplitudenstörungen.

Lösungen

EE301 Welches Modulationsverfahren zeigt das Bild?

Lösungsansatz:

In diesem Bild ändert sich die Frequenz des Signals, wie sehen also FM.

- (A) FM
- (B) AM
- (C) USB
- (D) LSB

EE302 FM hat gegenüber SSB den Vorteil der ...

Lösungsansatz:

Schon beim Empfang von FM Rundfunk hast Du bestimmt bemerkt, dass FM klarer klingt. Das liegt u.A. daran dass FM nicht von der Amplitude abhängt, die von vielen Einflüssen z.B. in der Atmosphäre (QRN / QRM) beeinflusst wird. Früher haben auch die Zündung in Automotoren für Störungen in AM gesorgt, die mit FM nicht auftreten.

- (A) geringeren Beeinflussung durch Amplitudenstörungen.
- (B) geringen Anforderungen an die Bandbreite.
- (C) größeren Entfernungsüberbrückung.
- (D) geringeren Leistungsaufnahme bei fehlender Modulation.

EE303 Welches der nachfolgenden Modulationsverfahren wird am wenigsten durch Amplitudenstörungen in Kraftfahrzeugen beeinträchtigt?

Lösungsansatz:

FM wie in Frage EE302.

- (A) FM
- (B) SSB
- (C) DSB
- (D) AM

EE304 Größerer Frequenzhub führt bei einem FM-Sender zu ...

Lösungsansatz:

Der Frequenzhub gibt an wie weit (Frequenz) der der Träger moduliert wird. Deshalb führt ein großer Frequenzhub zu einer großen HF Bandbreite.

- (A) einer größeren HF-Bandbreite.
- (B) einer Erhöhung der Senderausgangsleistung.
- (C) einer Erhöhung der Amplitude der Trägerfrequenz.
- (D) einer Reduktion der Amplituden der Seitenbänder.

EE305 Durch welche Maßnahme kann eine zu große Bandbreite einer FM-Aussendung verringert werden? Durch die Verringerung der ...

Lösungsansatz:

Wir müssen den Frequenzhub reduzieren.

- (A) Hubeinstellung.
- (B) HF-Begrenzung.

- (C) Vorspannungsreglereinstellung.
- (D) Trägerfrequenz.

EE306 Wodurch wird bei Frequenzmodulation die Lautstärke-Information übertragen?

Lösungsansatz:

Wie der Name Frequenzmodulation (FM) bereits impliziert wird die Lautstärke (NF Amplitude) über die Trägerfrequenzauslenkung moduliert.

- (A) Durch die Trägerfrequenzauslenkung.
- (B) Durch die Häufigkeit der Trägerfrequenzänderung.
- (C) Durch die Häufigkeit des Frequenzhubes.
- (D) Durch die Größe der Amplitude des HF-Signals.

9.4 Bandbreite

Lösungen

EA105 Welche Einheit wird üblicherweise für die Bandbreite verwendet?

Lösungsansatz:

In Hertz (Hz).

- (A) Hertz (Hz)
- (B) Baud (Bd)
- (C) Bit pro Sekunde (Bit/s)
- (D) Dezibel (dB)

9.5 Dynamikkompressor

Lösungen

EF306 Wie heißt die Stufe in einem Sender, welche die Eigenschaft hat, leise Anteile eines Sprachsignale gegenüber den lauten etwas anzuheben?

Lösungsansatz:

Da SSB von der Amplitude des NF (Audio) Signals abhängt, gebt der Dynamikkompressor schwache Audio Anteile an um ein stärkeres und klarer verständlicheres Signal zu erzeugen. Ist der Dynamikkompressor zu hoch eingestellt klingt das Signal aber unnatürlich und übermoduliert.

- (A) Dynamic Compressor
- (B) Noise Blanker
- (C) Clarifier
- (D) Notchfilter

10 Empfänger

10.1 Detektorempfänger

Das in Frage EF101 gezeigte Schaltbild zeigt bereits alles was einen Detektorempfänger ausmacht. Wir haben keine externe Spannungsversorgung. Die Antenne fängt das HF Signal ein. Variabler Kondensator und eine Induktivität (Spule) bilden ein **Parallelschwingkreis** und selektieren die gewünschte Frequenz. Das Signal wird über eine Diode **gleichgerichtet**. Durch die Trägheit eines (hochohmigen) Kopfhörers wird ein hörbares NF Signal erzeugt. Die Nachteile sind klar: ohne Verstärker können nur sehr starke (AM) Stationen empfangen werden. Der Parallelschwingkreis ist sehr ungenau es wird ein großer Teil des Frequenzspektrums empfangen. Dennoch auch heute noch ein faszinierendes Bastelprojekt.

Lösungen

EF101 Was stellt nachfolgende Schaltung dar?

- (A) Detektorempfänger
- (B) Verstärker
- (C) Oszillator
- (D) Modulator

10.2 Überlagerungsempfänger (Einfachsuper)

Wir haben im letzten Kapitel mit dem Detektorempfänger ein Beispieleines sogenannten Geradeausempfänger kennengelernt. Hier entsteht die Audio Frequenz direkt aus der HF. Üblicher weise wird die HF direkt auf Audio Frequenz gemischt. Deshalb spricht man auch von einem Direktüberlagerungsempfänger. Es ist jedoch üblich zunächst auf eine feste Zwischenfrequenz zu mischen. Diese Art von Empfänger nennt man Überlagerungsempfänger. Der Vorteil besteht einer festen Zwischenfrequenz besteht darin, dass speziell für diese Zwischenfrequenz optimierte Filter verwendet werden können, z.B. für CW mit nur 300 Hz oder SSB mit 2400 Hz. Dadurch ergibt sich eine bessere Trennschärfe.

EF102 Welchen Vorteil bietet ein Überlagerungsempfänger gegenüber einem Geradeaus-Empfänger?

Lösungsansatz:

Die Zwischenfrequenz eines Überlagerungsempfänger hat hat den Vorzeit, dass mit speziellen Filtern eine höhere **Trennschärfe** erreicht werden kann.s

- (A) Bessere Trennschärfe
- (B) Höhere Bandbreiten
- (C) Geringere Anforderungen an die VFO-Stabilität
- (D) Wesentlich einfachere Konstruktion

EF208 Wo liegt bei einem Direktüberlagerungsempfänger üblicherweise die Oszillatorfrequenz für den Mischer?

Lösungsansatz:

Der Direktempfänger mischt das HF Signal direkt auf Audiofrequenz NF. Im Mischer wird die Tatsache ausgenutzt, dass die Differenz der Frequenzen im gemischten Ausgang erzeugt wird. Wenn jetzt Empfangsfrequenz und HF annähernd die selbe Frequenz haben kommt man also in der Differenz in den NF Bereich.

- (A) Sie liegt in nächster Nähe zur Empfangsfrequenz.
- (B) Sie liegt sehr weit über der Empfangsfrequenz.
- (C) Sie liegt sehr viel tiefer als die Empfangsfrequenz.
- (D) Sie liegt bei der Zwischenfrequenz.

10.3 Trennschärfe I

Je kleiner die Empfangsbandbreite ist, desto enger ist auch mein Filter und das Signal wird deutlich besser. D.h. eine schmale Empfängerbandbreite führt zu einer hohen **Trennschärfe**. Für guten Empfang ist also eine schmale Bandbreite von Vorteil. Deshalb sind schmalbandige Übertragungsverfahren effektiver. Vergleiche z.B. CW mit SSB.

Lösungen

EF210 Wozu führt eine schmale Empfängerbandbreite?

- (A) Hohe Trennschärfe.
- (B) Niedrige Trennschärfe.
- (C) Niedrige Spiegelfrequenzunterdrückung.
- (D) Hohe Spiegelfrequenzunterdrückung.

10.4 BFO I

Mit dem "Beat Frequenz Oscillator" (BFO) wird in Überlagerungsempfänger die ZF auf Audio gemischt und damit hörbar gemacht.

EF209 Welchem Zweck dient ein BFO in einem Empfänger?

- (A) Zur Hilfsträgererzeugung, um CW- oder SSB-Signale hörbar zu machen
- (B) Zur Mischung mit einem Empfangssignal zur Erzeugung der ZF
- (C) Zur Unterdrückung der Amplitudenüberlagerung
- (D) Um FM-Signale zu unterdrücken

10.5 Vorverstärker und Dämpfungsglied

Lösungen

EF217 Welche Baugruppe vermindert die Übersteuerung eines Empfängereingangs?

Lösungsansatz:

Seht starke Signale können einen Empfänger überlasten und müssen gedämpft werden. Dazu verwenden wir ein **Dämpfungsglied**.

- (A) Dämpfungsglied
- (B) ZF-Filter
- (C) Rauschsperre
- (D) Oszillator

EF218 An welcher Stelle einer Amateurfunkanlage sollte ein UHF-Vorverstärker eingefügt werden?

Lösungsansatz:

Im UHF (Ultra Hoch Frequenz) sind die Verluste auf den Zuleitungen besonders hoch. Im schlimmsten Fall ist das Nutzsignal durch diese Dämpfung bereits komplett im Rauschen verschwunden. Deshalb werden HF (Vor-)Verstärker im UHF Bereit möglichst direkt an der Antenne montiert.

- (A) Möglichst direkt an der UHF-Antenne
- (B) Möglichst unmittelbar vor dem Empfängereingang
- (C) Zwischen Senderausgang und Antennenkabel
- (D) Zwischen Stehwellenmessgerät und Empfängereingang

10.6 Automatische Verstärkungsregelung (AGC) I

AGC steht für Automatic Gain Control oder auf Deutsch auch Automatische Verstärkerregelung.

Sie steuert der HF Verstärker automatisch nach. Wenn sehr starte Signale empfangen werden reduziert die AGC die Verstärker Leistung, wenn die Signale schwach sind regelt die AGC die Verstärkung nach oben. Dadurch wird das NF signal stabiler.

Achtung: Die AGC regelt den Empfänger. Es gibt eine Verstärkerregelung für den Sender (ALC), diese solltest Du in der Prüfung nicht verwechseln.

EF211 Womit werden Pegelschwankungen des NF-Ausgangssignals verringert, die durch Schwankungen im HF-Eingangssignal hervorgerufen werden?

- (A) Automatische Verstärkungsregelung
- (B) NF-Störaustaster
- (C) NF-Filter
- (D) NF-Vorspannungsregelung

EF212 Was bedeutet an einem Schalter eines Empfängers die Abkürzung AGC?

- (A) Automatische Verstärkungsregelung
- (B) Automatischer Antennentuner
- (C) Automatische Gleichlaufsteuerung
- (D) Automatische Frequenzkorrektur

10.7 Notch-Filter

Sehr schmalbandige Störungen (QRM) können mit einem Kerbfilter auch Notch-filter eliminiert werden.

Lösungen

EF215 Welche Baugruppe kann empfangsseitig Störungen in einem schmalen Frequenzbereich unterdrücken?

- (A) Notchfilter
- (B) Tiefpassfilter
- (C) Hochpassfilter
- (D) Bandpassfilter

EF216 Welches Diagramm stellt den Frequenzverlauf eines Empfänger-Notchfilters dar?

Lösungsansatz:

Der Notchfilter ist ein Kerb-filter, d.h. er filtert nur einen kleinen Teil des Frequenzspektrums heraus, lässt den übrigen Teil des NF Spektrums durch. Es ist also die Kerbenform von (A).

10.8 Rauschunterdrückung

Die **Rauschunterdrückung**, auch auf Englisch als Noise Reduction(NR) benannt dient der Unterdrückung von Rauschen. Der **Noise Blanker** hingegen eliminiert impulsartige Störungen, wie sie z.B. früher von Motor Zündungen erzeugt wurden.

Lösungen

EF213 Welche Aufgabe hat das Rauschunterdrückungsverfahren (Noise Reduction) in einem Empfänger?

- (A) Verringerung des Rauschanteils im Signal
- (B) Verringerung des Rauschanteils in der Versorgungsspannung
- (C) Verringerung der Umgebungsgeräusche im Kopfhörer
- (D) Verringerung des Dynamikbereichs im ZF-Signal

EF214 Welche Baugruppe könnte in einem Empfänger gegebenenfalls dazu verwendet werden, impulsförmige Störungen auszublenden?

- (A) Noise Blanker
- (B) Notch Filter
- (C) Passband Tuning
- (D) Automatic Gain Control

10.9 Frequenzmessung I

Frequenzzähler sind nützliche Messgeräte die, wie der Name bereits andeutet, um die Frequent eines Signals zu messen. Genauer gesagt: die Frequenz eines unmodulierten Hochfrequenzsignals. Dies kann z.B. genutzt werden um die Frequenz z.B. eines lokalen Oszillator (LO) zu bestimmen.

Lösungen

 $\textbf{EI501} \ \ \text{Womit kann die Frequenz eines unmodulierten Hochfrequenzsignals gemessen werden? Mit einem Gemessen werden gemessen gemessen werden gemessen get gemessen gemessen gemessen gemessen gemessen gemessen gemessen$

- (A) Frequenzzähler.
- (B) Widerstandsmessgerät.
- (C) Wechselspannungsmessgerät.
- (D) Wechselstromzähler.

EI502 Das Bild stellt die Anzeige eines Frequenzzählers dar. Welchen Stellenwert hat die mit X gekennzeichnete Ziffer?

Lösungsansatz:

Der Zähler zeigt MHz an. Dies bezieht sich auf den Punkt hinter der Ziffer 5. Wir Zählen die Stellen durch:

- $5 \cdot 1 \, \mathrm{MHz}$
- 0 · 100 kHz
- 0 · 10 kHz
- $\underbrace{1 \cdot 1 \text{ kHz}}_{\text{Stelle mit X}}$

- (A) ein Kilohertz
- (B) ein Hertz
- (C) hundert Hertz
- (D) zehn Hertz

EI503 Das Bild stellt die Anzeige eines Frequenzzählers dar. Welchen Stellenwert hat die mit X gekennzeichnete Ziffer?

Lösungsansatz:

Der Zähler zeigt MHz an. Dies bezieht sich auf den Punkt hinter der Ziffer 5. Wir Zählen die Stellen durch:

- 5 · 1 MHz
- $0 \cdot 100 \, \text{kHz}$
- $0 \cdot 10 \, \text{kHz}$
- 1 · 10 kHz
- 3 · 100 Hz
- $7 \cdot 10 \text{ Hz}$ Stelle mit X
- (A) zehn Hertz
- (B) ein Hertz
- (C) hundert Hertz
- (D) ein Kilohertz

EI504 Wenn ein 10:1-Frequenzteiler vor einem Frequenzzähler geschaltet wird und der Zähler 14,5625 MHz anzeigt, beträgt die tatsächliche Frequenz ...

Lösungsansatz:

Ein 10:1 Frequenzteiler hat die Frequenz um einen einen Faktor 10 reduziert, aus 10 MHz wurde 1 MHz in der Anzeige. Für die Aufgabe müssen wir den angezeigten Wert mit 10 multiplizieren.

 $14,5625\,\mathrm{MHz} \cdot 10 = 145,625\,\mathrm{MHz}$

Check: die Frequent liegt im 2-Meter Amateurfunkband.

- (A) 145,625 MHz.
- (B) 1,45625 MHz.
- (C) 14,5625 MHz.
- (D) 14,5625 kHz.

11 Sender

11.1 ALC

Wir haben bereits im Kapitel 10.6 über die AGC gesprochen. Dies ist eine automatische Verstärker Steuerung für den Empfänger. Aber auch der Sender hat hat solch eine Steuerung: Automatic Level Control (ALC). Wie Du im Kapitel über SSB gelernt hast hängt hier die Signalstärke von der Amplitude des NF Signals ab, welches ganz natürlich schwankt wenn wir in das Mikrofon sprechen. Um diese Schwankungen entgegenzuwirken und damit die Endstufe zu schützen, reduziert die ALC Signalstärke (Amplitude) wenn sie über ein definiertes Limit geht.

EF305 Was bewirkt die ALC (Automatic Level Control) bei zu starkem NF-Signal in einem Transceiver?

- (A) Sie reduziert die Amplitude des Signals im Sendezweig vor dem Leistungsverstärker.
- (B) Sie erhöht die Amplitude des Signals im Sendezweig vor dem Leistungsverstärker.
- (C) Sie reduziert die Verstärkung von Verstärkerstufen im Empfangsteil.
- (D) Sie erhöht die Verstärkung von Verstärkerstufen im Empfangsteil.

11.2 Senderausgangsleistung

Die Definitionen der Senderausgangsleistung musst Du Dir einfach merken. Wie Du bereits bei der Klasse N gelernt hast, bist Du als Funkamateur verpflichtet dich an entsprechende Grenzwerte zu halten.

Lösungen

EF401 Die Ausgangsleistung eines Senders ist die unmittelbar nach ...

Lösungsansatz:

Die "Ausgangsleistung" ist natürlich die Leistung direkt am Senderausgang (vor Zusatzgeräten). Vor- bzw. rücklaufende Leistung spielen keine Rolle.

- (A) dem Senderausgang messbare Leistung, bevor sie Zusatzgeräte durchläuft.
- (B) dem Senderausgang gemessene Differenz aus vorlaufender und rücklaufender Leistung.
- (C) der Antenne messbaren Leistung, die durch ein Feldstärkenmessgerät im Nahfeld ermittelt werden kann.
- (D) dem Senderausgang gemessene Summe aus vorlaufender und rücklaufender Leistung.

EF402 Wie und wo wird die Ausgangsleistung eines SSB-Senders gemessen? Die maximale Hüllkurvenleistung (PEP) wird gemessen...

Lösungsansatz:

Die Peak Envelop Power (PEP) oder auf Deutsch maximale Hüllkurvenleistung wird direkt am Senderausgang gemessen. Mit der Klasse E sind oft 100 W zulässig. Eine Antenne mit Gewinn kann die Abstrahlung noch verstärken.

- (A) direkt am Senderausgang bei Ein- oder Zweitonaussteuerung.
- (B) zwischen Antennentuner und Speisepunkt der Antenne mit unmoduliertem Träger.
- (C) zwischen Antennentuner und Speisepunkt bei Sprachmodulation.
- (D) direkt am Senderausgang mit unmoduliertem Träger.

EJ209 Wie erfolgt die Messung der Leistungen, die zu unerwünschten Aussendungen führen?

Lösungsansatz:

Hier geht es mit die Leistung die zu unerwünschten Aussendungen führt. Deshalb wird hier auch Stehwellenmessgerät und ggf. ein verwendeter Tiefpassfilter berücksichtigt werden.

- (A) Die Messung erfolgt am Senderausgang unter Einbeziehung des gegebenenfalls verwendeten Stehwellenmessgeräts und des gegebenenfalls verwendeten Tiefpassfilters.
- (B) Die Messung erfolgt am Fußpunkt der im Funkbetrieb verwendeten Antenne unter Einbeziehung des gegebenenfalls verwendeten Antennenanpassgeräts.

- (C) Die Messung erfolgt am Ausgang der Antennenleitung unter Einbeziehung des im Funkbetrieb verwendeten Antennenanpassgeräts.
- (D) Die Messung erfolgt am Senderausgang mit einem hochohmigen HF-Tastkopf und angeschlossenem Transistorvoltmeter.

11.3 Unerwünschte Aussendungen II

Unerwünscht Aussendungen entstehen oft durch **Oberwellen**. Diese können in der Regel durch einen **Tiefpassfilter** vermieden werden.

Lösungen

EF404 Wann sollte ein Sender auf mögliche Oberwellenaussendungen überprüft werden?

Lösungsansatz:

Wenn die Senderendstufe neu eingestellt wurde wollte zur Sicherheit überprüft werden, dass keine Oberwellen entstehen. Wenn nach der Einstellung z.B. kein reiner Sinus mehr erzeugt wird sind Oberwellen dabei.

- (A) Wenn der Arbeitspunkt der Endstufe neu justiert wurde.
- (B) Bei Empfang eines Störsignals.
- (C) Vor jedem Sendebetrieb.
- (D) Wenn Splatter-Störungen zu hören sind.

EJ201 Welche Signalform sollte der Träger einer hochfrequenten Schwingung haben, um Störungen durch Oberwellen zu vermeiden?

Lösungsansatz:

Nur sinusförmige Schwingungen haben keine Oberwellen. In dieser App kannst Du ausprobieren welche Oberwellen unterschiedliche Signale haben.

- (A) sinusförmig
- (B) rechteckförmig
- (C) dreieckförmig
- (D) kreisförmig

EJ202 Wie kann man hochfrequente Störungen reduzieren, die durch Harmonische hervorgerufen werden? Sie können reduziert werden durch ein ...

Lösungsansatz:

Hochfrequente Störungen durch Harmonische werden durch Tiefpassfilter gefiltert. Hier wird explizit nach einen Oberwellenfilter gefragt. Nicht irritieren lassen! Die Frage EJ203 wird der Begriff Tiefpassfilter verwendet.

- (A) Oberwellenfilter.
- (B) Nachbarkanalfilter.
- (C) ZF-Filter.
- (D) Hochpassfilter.

EJ203 Was für ein Filter muss zwischen Transceiver und Antennenzuleitung eingefügt werden, um Oberwellen zu reduzieren?

Lösungsansatz:

In dieser Fragen finden wir schnell, dass uns ein Tiefpassfilter hilft. Du kannst einen Tiefpassfilter in dieser App praktisch ausprobieren, in dem ein Rechtecksignal durch bei geeigneten Parametern durch einen Tiefpassfilter zu einem Sinus Signal wird.

- (A) Tiefpassfilter
- (B) Hochpassfilter
- (C) CW-Filter
- (D) NF-Filter

EJ204 Welches Filter wäre zwischen Senderausgang und Antenne eingeschleift am besten zur Verringerung der Oberwellenausstrahlungen geeignet?

Lösungsansatz:

Der Tiefpassfilter ist mal wieder die richtige Antwort.

- (A) Ein Tiefpassfilter
- (B) Ein Hochpassfilter
- (C) Ein Antennenfilter
- (D) Ein Sperrkreisfilter

EJ205 Um Oberwellenaussendungen eines UHF-Senders zu minimieren, sollte dem Gerät ...

Lösungsansatz:

Auch für UHF Sender wird man einen Tiefpassfilter verwenden, wenn man Oberwellen unterdrücken will.

- (A) ein Tiefpassfilter nachgeschaltet werden.
- (B) ein Hochpassfilter nachgeschaltet werden.
- (C) eine Bandsperre vorgeschaltet werden.
- (D) ein Notchfilter vorgeschaltet werden.

EJ206 Welche Schaltung wäre, zwischen Senderausgang und Antenne eingeschleift, am besten zur Verringerung der Oberwellenausstrahlungen geeignet?

Lösungsansatz:

Es gibt mehrere Fragen nach denen dem Schaltbild eines Filters gefragt wird. Bei all Fragen kann man sich die Position des Kondensators im Vergleich zur Spule ansehen. Ist der Kondensator "unten" so handelt es sich um einen Tiefpass, sonst om einen Hochpass. Da Oberwellen mit einem Tiefpassfilter gedämpft werden bleibt nur diese Antwort. Beachte bitte, dass dies natürlich im allgemeinen nicht gild, da es davon abhängt wie der Schaltplan gezeichnet wurde, aber die Schaltpläne des aktuelle Fragekatalogs wurden alle so gezeichnet, dass die Regel gilt.

EJ207 Welche Charakteristik sollte ein Filter zur Verringerung der Oberwellen eines KW-Senders haben?

Ein Filter zur Verringerung von Oberwellen ist ein Tiefpassfilter. D.h. die Tiefen Frequenzen werden ungehindert durchgelassen, die hohen Frequenzen werden abgeschwächt. In der Frage geht es um einen Kurzwellen-Sender, d.h. wir wollen alle Frequenzen unterhalb von 30 MHz durchlassen und nur oberhalb filtern. Dies finden wird in Bild A.

EJ208 Welche Filtercharakteristik würde sich am besten für den Ausgang eines KW-Mehrband-Senders eignen?

Lösungsansatz:

Wie bei Frage EJ207: Ein Filter zur Verringerung von Oberwellen ist ein Tiefpassfilter. D.h. die Tiefen Frequenzen werden ungehindert durchgelassen, die hohen Frequenzen werden abgeschwächt. In der Frage geht es um einen Kurzwellen-Sender, d.h. wir wollen alle Frequenzen unterhalb von 30 MHz durchlassen und nur oberhalb filtern. Dies finden wird in Bild A.

11.4 Störende Beeinflussung elektronischer Geräte I

Auch in diesem Kapitel geht es um unterschiedliche Störungen die mir einem Sender verursacht werden können. Wir unterschieden zwei unterschiedliche Arten von Störungen.

Einströhmungen Die Störung, bzw. die HF wird durch eine Zuleitung, z.B. Netzzuleitung, Antennenzuleitung, Lautsprecherkabel etc. verursacht.

Einstrahlung Die HF gelangt direkt in der gestörte Gerät, z.B. da die Abschirmung nicht ausreicht.

Lösungen

EJ101 In welchem Fall spricht man von Einströmungen? Einströmungen liegen dann vor, wenn Hochfrequenz ...

Lösungsansatz:

Siehe Definition am Anfang des Kapitel.

- (A) über Leitungen oder Kabel in ein Gerät gelangt.
- (B) über das ungenügend abgeschirmte Gehäuse in die Elektronik gelangt.
- (C) über nicht genügend geschirmte Kabel zum Anpassgerät geführt wird.
- (D) wegen eines schlechten Stehwellenverhältnisses wieder zum Sender zurück strömt.

EJ102 In welchem Fall spricht man von Einstrahlungen bei EMV? Einstrahlungen liegen dann vor, wenn die Hochfrequenz ...

Lösungsansatz:

Siehe Definition am Anfang des Kapitel.

- (A) über das ungenügend abgeschirmte Gehäuse in die Elektronik gelangt.
- (B) über Leitungen oder Kabel in das gestörte Gerät gelangt.
- (C) über nicht genügend geschirmte Kabel zum gestörten Empfänger gelangt.
- (D) wegen eines schlechten Stehwellenverhältnisses wieder zum Sender zurück strahlt.

EJ103 Bereits durch die Aussendung des reinen Nutzsignals können in benachbarten Empfängern Störungen beim Empfang anderer Frequenzen auftreten. Dabei handelt es sich um eine ...

Das Schlüsselwort ist **Übersteuerung**. D.h. das Signal ist einfach zu stark und überlasten den Empfänger in der Nähe.

- (A) Übersteuerung oder störende Beeinflussung.
- (B) Störung durch unerwünschte Aussendungen.
- (C) Störung durch unerwünschte Nebenaussendungen.
- (D) hinzunehmende Störung.

EJ104 Um die Störwahrscheinlichkeit zu verringern, sollte die benutzte Sendeleistung ...

Lösungsansatz:

Dies ist leider ein Grundsatz der oft zu wenig berücksichtigt wird.

- (A) auf das für eine zufriedenstellende Kommunikation erforderliche Minimum eingestellt werden.
- (B) nur auf den zulässigen Pegel eingestellt werden.
- (C) auf die für eine zufriedenstellende Kommunikation erforderlichen 100 W eingestellt werden.
- (D) die Hälfte des maximal zulässigen Pegels betragen.

EJ105 Bei einem Wohnort in einem Ballungsgebiet empfiehlt es sich, während der abendlichen Fernsehstunden ...

Lösungsansatz:

Nicht mit unnötig hoher Sendeleistung zu senden lohnt sich immer.

- (A) mit keiner höheren Leistung zu senden, als für eine sichere Kommunikation erforderlich ist.
- (B) nur mit effektiver Leistung zu senden.
- (C) nur mit einer Hochgewinn-Richtantenne zu senden.
- (D) die Antenne unterhalb der Dachhöhe herabzulassen.

EJ106 Eine 432 MHz-Sendeantenne mit hohem Gewinn ist unmittelbar auf eine Fernseh-Empfangsantenne gerichtet. Dies führt ggf. zu ...

Lösungsansatz:

Mit hohem Gewinn senden wir ein Signal in der Nachbarschaft von TV Kanälen aus. Dies kann den Empfänger im TV Gerät übersteuern.

- (A) einer Übersteuerung eines TV-Empfängers.
- (B) Problemen mit dem 432 MHz-Empfänger.
- (C) Eigenschwingungen des 432 MHz-Senders.
- (D) dem Durchschlag des TV-Antennenkoaxialkabels.

EJ107 Wodurch können Sie die Übersteuerung eines Empfängers erkennen?

Lösungsansatz:

Bei sehr starken Signalen wird ein Empfänger (z.B. AGC) die Verstärker zurückfahren um eine Übersteuerung zu vermeiden. Deshalb geht die Empfindlichkeit zurück.

- (A) Rückgang der Empfindlichkeit
- (B) Empfindlichkeitssteigerung
- (C) Auftreten von Pfeifstellen im gesamten Abstimmungsbereich
- (D) Zeitweilige Blockierung der Frequenzeinstellung

EJ108 Wie sollte ein Abschirmgehäuse für HF-Baugruppen beschaffen sein?

Lösungsansatz:

Das Abschirmgehäuse ist in der Regel aus Metall um unerwünschte Aussendungen abzufangen.

- (A) Möglichst geschlossenes Metallgehäuse
- (B) Kunststoffgehäuse mit niedriger Dielektrizitätszahl
- (C) Metallblech unter der HF-Baugruppe
- (D) Kunststoffgehäuse mit hoher Dielektrizitätszahl

EJ109 Falls sich eine Kurzwellen-Sendeantenne in der Nähe und parallel zu einer 230 V-Wechselstromleitung befindet, ...

Lösungsansatz:

Ohne Abschirmung können HF Signale in die 230 V Wechselstromleitung gelangen und dann über die Leitung in andere Geräte einströmen.

- (A) können Hochfrequenzströme ins Netz eingekoppelt werden.
- (B) können harmonische Schwingungen erzeugt werden.
- (C) könnte erhebliche Überspannung im Netz erzeugt werden.
- (D) kann 50 Hz-Modulation aller Signale auftreten.

EJ111 Um die Störwahrscheinlichkeit im eigenen Haus zu verringern, empfiehlt es sich vorzugsweise ...

Lösungsansatz:

Diese Frage lässt sich gut durch das Ausschlussprinzip beantworten. Aber auch direkt mach es Sinn eine getrennte HF Erdung zu verwenden.

- (A) für Sendeantennen eine separate HF-Erdleitung zu verwenden.
- (B) Sendeantennen auf dem Dachboden zu errichten.
- (C) die Amateurfunkgeräte mit einem Wasserrohr zu verbinden.
- (D) die Amateurfunkgeräte mittels des Schutzleiters zu erden.

EJ112 Welches Gerät kann durch Aussendungen eines Amateurfunksenders störende Beeinflussungen zeigen?

Lösungsansatz:

Einströmung via Netzanschluss.

- (A) LED-Lampe mit Netzanschluss
- (B) Dampfbügeleisen mit Bimetall-Temperaturregler
- (C) Staubsauger mit Kollektormotor

- (D) Antennenrotor mit Wechselstrommotor
- **EJ113** Wie kommen Geräusche aus den Lautsprechern einer abgeschalteten Stereoanlage möglicherweise zustande?

Die abgeschaltete Stereoanlage verhält sich hier wir ein Detektorenempfänger.

- (A) Durch Gleichrichtung starker HF-Signale in der NF-Endstufe der Stereoanlage.
- (B) Durch Gleichrichtung der ins Stromnetz eingestrahlten HF-Signale an den Dioden des Netzteils.
- (C) Durch Gleichrichtung abgestrahlter HF-Signale an PN-Übergängen in der NF-Vorstufe.
- (D) Durch eine Übersteuerung des Tuners mit dem über die Antennenzuleitung aufgenommenen HF-Signal.
- **EJ114** Bei der Musik-Anlage des Nachbarn wird Einströmung in die NF-Endstufe festgestellt. Eine mögliche Abhilfe wäre ...

Lösungsansatz:

Geschirmte Laubsprecherbkabel können Einstrahlungen reduzieren.

- (A) geschirmte Lautsprecherleitungen zu verwenden.
- (B) ein NF-Filter in das Koaxialkabel einzuschleifen.
- (C) einen Serienkondensator in die Lautsprecherleitung einzubauen.
- (D) ein geschirmtes Netzkabel für den Receiver zu verwenden.
- **EJ115** In einem Einfamilienhaus wird die Türsprechanlage durch den Betrieb eines nahen Senders gestört. Eine Möglichkeit zur Verringerung der Beeinflussungen besteht darin, ...

Lösungsansatz:

Abschirmen.

- (A) für die Türsprechanlage ein geschirmtes Verbindungskabel zu verwenden.
- (B) die Länge des Kabels der Türsprechanlage zu verdoppeln.
- (C) für die Türsprechanlage eine Leitung mit niedrigerem Querschnitt zu verwenden.
- (D) für die Türsprechanlage eine Leitung mit versilberten Kupferdrähten zu verwenden.
- **EJ116** Ein 28 MHz-Sender beeinflusst den Empfänger eines DVB-T2-Fernsehgerätes über dessen Antenneneingang. Was sollte zur Abhilfe vor den Antenneneingang des Fernsehgerätes eingeschleift werden?

Lösungsansatz:

Die Frequenz von 28 MHz liegt im 10 m Band am oberen Ende der Kurzwelle. Dies sollte aus der Klasse N noch bekannt sein. Die TV Signale liegen vie höher. Wir wollen also hohe Frequenzen durchlassen (TV) aber die niedrigen HF Signale unterdrücken. Wir brauchen also einen Hochpassfilter.

- (A) Ein Hochpassfilter
- (B) Ein Tiefpassfilter
- (C) Ein UHF-Abschwächer

- (D) Eine UHF-Bandsperre
- **EJ117** Eine KW-Amateurfunkstelle verursacht im Sendebetrieb in einem in der Nähe betriebenen Fernsehempfänger Störungen. Welches Filter schleifen Sie in das Fernsehantennenkabel ein, um die Störwahrscheinlichkeit zu verringern?

Wie in Frage EJ116 brauchen wir einen Hochpassfilter. Nach der Merkregel sind bei einem Hochpass Filter die Kondensatoren auch oben. Also Schaltbild A.

EJ118 Durch eine Mantelwellendrossel in einem Fernseh-Antennenzuführungskabel ...

Lösungsansatz:

Eine so genannte Mantelwellensperre oder auch Mantelwellendrossel reduziert Gleichtaktströme. Dies ist HF die sich z.B. auf dem Außenmantel von Koaxialleitungen bilden könnte.

- (A) werden Gleichtakt-HF-Störsignale unterdrückt.
- (B) werden niederfrequente Störsignale unterdrückt.
- (C) werden alle Wechselstromsignale unterdrückt.
- (D) wird Netzbrummen unterdrückt.

EJ119 Die Signale eines 144 MHz-Senders werden in das Koax-Antennenkabel eines UKW-/DAB-Rundfunkempfängers induziert und verursachen Störungen. Eine Möglichkeit zur Verringerung der Störungen besteht darin, ...

Lösungsansatz:

Wie in EJ118 kann eine Mantelwellendrossel diese unerwünschten Gleichtaktströme verringern und muss in das Koax vor dem Empfänger eingebaut werden.

- (A) eine Mantelwellendrossel in das Kabel vor dem Rundfunkempfänger einzubauen.
- (B) die Erdverbindung des Senders abzuklemmen.
- (C) das Abschirmgeflecht am Antennenstecker des Empfängers abzuklemmen.
- (D) den 144 MHz-Sender mit einem Tiefpassfilter auszustatten.

Es werden Mischfrequenzen erzeugt, Phantomsignale. Wir haben bereits über den Mischer gesprochen und eine der Frequenzen abgeschaltet wird verschwindet natürlich auch das Signal.

- (A) Es treten Phantomsignale auf, die bei Abschalten einer der beteiligten Mischfrequenzen verschwindet.
- (B) Das Nutzsignal wird mit einem anderen Signal moduliert und dadurch verständlicher.
- (C) Es treten Phantomsignale auf, die selbst bei Einschalten eines Abschwächers in den HF-Signalweg nicht verschwinden.
- (D) Dem Empfangssignal ist ein pulsierendes Rauschen überlagert, das die Verständlichkeit beeinträchtigt.
- **EJ121** Ein korrodierter Anschluss an der Fernseh-Empfangsantenne des Nachbarn kann in Verbindung mit ...

Lösungsansatz:

Wir merken uns die Antwort.

- (A) dem Signal naher Sender unerwünschte Mischprodukte erzeugen, die den Fernsehempfang stören.
- (B) dem Oszillatorsignal des Fernsehempfängers unerwünschte Mischprodukte erzeugen, die den Fernsehempfang stören.
- (C) Einstreuungen aus dem Stromnetz durch Intermodulation Bild- und Tonstörungen hervorrufen.
- (D) dem Signal naher Sender parametrische Schwingungen erzeugen, die einen überhöhten Nutzsignalpegel hervorrufen.
- **EJ122** Ihr Nachbar beklagt sich über Störungen seines Fernsehempfangs und vermutet ihre Amateurfunkaussendungen als Ursache. Welcher erste Schritt bietet sich an?

Lösungsansatz:

Das einfachste zuerst! Passen die Störungen überhaupt zeitlich zum Funkbetrieb? Es ist bereits oft vorgekommen, dass die Störungen auftreten obwohl wohl die Amateurfunkanlage nicht in Betrieb war.

- (A) Sie überprüfen den zeitlichen Zusammenhang der Störungen mit ihren Aussendungen.
- (B) Sie überprüfen, ob der Nachbar sein Fernsehgerät ordnungsgemäß angemeldet hat.
- (C) Sie empfehlen die Erdung des Fernsehgerätes durch einen örtlichen Fachhändler.
- (D) Sie verweisen den Nachbarn auf die Angebote von Internet-Streamingplattformen.
- **EJ123** Beim Betrieb eines 2 m-Senders wird bei einem Nachbarn ein Fernsehempfänger gestört, der mit einer Zimmerantenne betrieben wird. Zur Behebung des Problems ...
 - (A) schlagen Sie dem Nachbarn vor, eine außen angebrachte Fernsehantenne zu installieren.
 - (B) ein doppelt geschirmtes Koaxialkabel für die Antennenleitung zu verwenden.
 - (C) einen Vorverstärker in die Antennenleitung einzuschleifen.
 - (D) den Fernsehrundfunkempfänger zu wechseln.

EJ124 Die Bemühungen, die durch eine in der Nähe befindliche Amateurfunkstelle hervorgerufenen Fernsehstörungen zu verringern, sind fehlgeschlagen. Als nächster Schritt ist ...

Lösungsansatz:

Eine Zimmerantenne ist für den Empfang nicht optimal und führen zu einem schlechten Signal Rauschabstand. Durch sind im Verhältnis auch die Störungen viel Stärker (siehe auch AGC). Eine AUßenantenne kann die Situation verbessern.

- (A) die zuständige Außenstelle der Bundesnetzagentur um Prüfung der Gegebenheiten zu bitten.
- (B) der Sender an die Bundesnetzagentur zu senden.
- (C) die Rückseite des Fernsehgeräts zu entfernen und das Gehäuse zu erden.
- (D) ein Fernsehtechniker des Fachhandwerks um Prüfung des Fernsehgeräts zu bitten.

EJ212 Sie modulieren Ihren FM-Sender mit einem AFSK-Signal (Niederfrequenzumtastung). Wie können Sie die Bandbreite der Aussendung reduzieren? Durch ...

Lösungsansatz:

AFSK (Audio Frequency Shift Keying) wirkt hier wie FM. Durch absenken des audio Pegel reduzieren wir also die Bandbreite.

- (A) Absenken des NF-Pegels oder des Frequenzhubs
- (B) Anheben des NF-Pegels oder des Frequenzhubs
- (C) Absenken der Sendeleistung oder der ZF
- (D) Anheben der Sendeleistung oder der ZF

EJ213 Die Übersteuerung eines Leistungsverstärkers führt zu ...

Lösungsansatz:

Ist der Leistungsverstärker übersteuert, so sieht das Signal nicht mehr wie ein Sinus sondern eher wie ein Rechtecksignal. Dies führt zu viel Oberwellen. Aber auch Benachbarte Frequenzen werden durch sogenannte Splatter beeinflusst.

- (A) einem hohen Anteil an Nebenaussendungen.
- (B) lediglich geringen Verzerrungen beim Empfang.
- (C) einer besseren Verständlichkeit am Empfangsort.
- (D) einer Verringerung der Ausgangsleistung.

 $\mathbf{EJ214}$ Ein SSB-Sender wird Störungen auf benachbarten Frequenzen hervorrufen, wenn \dots

Lösungsansatz:

Insbesondere im SSB Bereich sind Splatter (Störungen auf Nachbarfrequenzen) zu beobachten, wenn die Leistungsendstufe übersteuert wird. In einem modernen SDR Transceiver kann man sofort erkennen, dass dabei die übliche Bandbreite von ca. 2,4 kHz deutlich überschritten wird.

- (A) der Leistungsverstärker übersteuert wird.
- (B) das Antennenkabel unterbrochen ist.
- (C) die Ansteuerung der NF-Stufe zu gering ist.
- (D) der Antennentuner falsch abgestimmt ist.

EJ216 Welche unerwünschte Auswirkung kann mangelhafte Frequenzstabilität eines Senders haben?

Lösungsansatz:

Die Antwort sollte unmittelbar klar sein.

- (A) Aussendungen außerhalb der Bandgrenzen
- (B) Spannungsüberschläge in der Endstufe des Senders
- (C) Überlastung der Endstufe des Senders
- (D) Verstärkte Oberwellenaussendung innerhalb der Bandgrenzen

12 Digitale Übertragungsverfahren

12.1 Binäres Zahlensystem

Wir verwenden im Alltag üblicherweise Zahlen im Dezimalsystem. D.h wir verwenden die Ziffern 0 bis 9 alle Zahlen darzustellen. In der Digitaltechnik hat sich allerdings hauptsächlich das Binärsystem durchgesetzt in dem nur die Ziffern 0 und 1 verwendet werden, die durch zwei Zustände (Strom ist ein oder aus) abgebildet werden können. Das Binärsystem wird manchmal auch Dualsystem genannt. Eine Ziffer die im Binärsystem (0 oder 1) wird auch Bit genannt. Üblicherweise fassen wir 8 Bit zu einer Zahl zusammen und nennen es Byte. Für die Stellen einer 8 Bit Zahl gilt:

$$2^{7} = 128$$
 $2^{6} = 64$
 $2^{5} = 32$
 $2^{4} = 16$
 $2^{3} = 8$
 $2^{2} = 4$
 $2^{1} = 2$
 $2^{0} = 1$

Tipp für die Prüfung: viele Schul-Taschenrechner (nicht programmierbar und deshalb vielleicht von der Bundesnetzagentur für die Prüfung akzeptiert) können zwischen Zahlsystemen umrechnen.

Lösungen

EA201 Was ist der Vorteil des binären Zahlensystems gegenüber dem dezimalen Zahlensystem in elektronischen Schaltungen?

- (A) Die binären Ziffern 0 und 1 können als zwei elektrische Zustände dargestellt und dadurch einfach mittels Schaltelementen (z. B. Transistoren) verarbeitet werden.
- (B) Die Genauigkeit des binären Systems (mit zwei Ziffern) ist um den Faktor 5 höher als die des Dezimalsystems (mit 10 Ziffern).
- (C) Der Zwischenbereich zwischen 0 und 1 kann von analogen Verstärkerschaltungen mit hoher Genauigkeit abgebildet werden.
- (D) Je Ziffer kann mehr als ein Bit an Information übertragen werden (1 binäre Ziffer erlaubt die Übertragung von 8 Dezimalziffern).

EA202 Wie viele unterschiedliche Zustände können mit einer Dualzahl dargestellt werden, die aus einer Folge von 3 Bit besteht?

Lösungsansatz:

Wir haben also 3 Bits. Wir können die Zahl 111_2 berechnen:

128	64	32	16	8	4	2	1	
0	0	0	0	0	1	1	1	1

Also $111_2 = 4 + 2 + 1 = 7$. Dies ist aber keine der möglichen Antworten! Wir haben die 0 vergessen, es wurde ja nach "unterschiedliche(n) Zuständen" gefragt! Also ist 8 die richtige Antwort.

Es geht auch einfacher 1000_2 die nächst höhere Zahl ist können wird direkt mit $8=2^3$ antworten.

- (A) 8
- (B) 4
- (C) 6
- (D) 16

EA203 Wie viele unterschiedliche Zustände können mit einer Dualzahl dargestellt werden, die aus einer Folge von 4 Bit besteht?

Lösungsansatz:

Analog zu Frage EA202 rechnen wir $2^4 = 16$.

- (A) 16
- (B) 4
- (C) 6
- (D) 8

EA204 Wie viele unterschiedliche Werte können mit einer fünfstelligen Dualzahl dargestellt werden?

Lösungsansatz:

Analog zu Frage EA202 rechnen wir $2^5 = 32$.

- (A) 32
- (B) 5
- (C) 64
- (D) 128

EA205 Berechnen Sie den dezimalen Wert der Dualzahl 01001110. Die Dezimalzahl lautet:

Lösungsansatz:

Wir rechnen:

Also: 64 + 8 + 4 + 2 = 78

- (A) 78
- (B) 156
- (C) 142
- (D) 248

EA206 Berechnen Sie den dezimalen Wert der Dualzahl 10001110. Die Dezimalzahl lautet:

Lösungsansatz:

Wir rechnen:

128	64	32	16	8	4	2	1	
1	0	0	0	1	1	1	0	

Also: 128 + 8 + 4 + 2 = 142

- (A) 142
- (B) 78
- (C) 156
- (D) 248

EA207 Berechnen Sie den dezimalen Wert der Dualzahl 10011100. Die Dezimalzahl lautet:

Lösungsansatz:

Wir rechnen:

Also: 128 + 16 + 8 + 4 = 156

- (A) 156
- (B) 142
- (C) 78
- (D) 248

EA208 Berechnen Sie den dezimalen Wert der Dualzahl 11111000. Die Dezimalzahl lautet:

Lösungsansatz:

Wir rechnen:

Also: 128 + 64 + 32 + 16 = 248

- (A) 248
- (B) 78
- (C) 156
- (D) 142

12.2 Digimode per SSB

Digitale Signale werden oft nicht direkt (nativ) vom Funkgerät verarbeitet. Vielmehr wird das Funkgerät im Modus SSB betrieben, die Audio Signale kommen aber natürlich nicht via Mikroton sondern werden per USB Audio interface von einem Computer erzeugt.

EE402 Welche Modulation wird am Transceiver eingestellt, um ein schmalbandiges digitales Signal (z. B. BPSK31 oder FT8), das per Audiosignal als NF eingespeist wird, unter Beibehaltung der Bandbreite in HF umzusetzen?

Lösungsansatz:

Wie im Eingang zu diesem Kapitel beschrieben wird in der Regel SSB verwendet.

- (A) Einseitenbandmodulation (SSB)
- (B) Frequenzmodulation (FM)
- (C) Amplitudenmodulation (AM)
- (D) Phasenmodulation (PM)

EE403 Bei der Aussendung eines digitalen Signals mittels eines Funkgerätes in SSB-Einstellung beträgt die NF-Bandbreite des in das Funkgerät eingespeisten Signals 50 Hz. Wie groß ist die HF-Bandbreite?

Lösungsansatz:

Wie bereits im Kapitel zur Modulation erklärt sind bei SSB NF unf HF Bandbreite identisch.

- (A) 50 Hz
- (B) 100 Hz
- (C) 25 Hz
- (D) $\sqrt{\{2\}} \cdot 50 \text{ Hz}$

EE404 Wie viele digitale Signale unterschiedlicher Stationen können mit einem analogen Funkgerät (2,4 kHz SSB-Bandbreite) und einem über die Audio-Schnittstelle angeschlossenen Computer gleichzeitig empfangen und dekodiert werden?

Lösungsansatz:

Über die Audio Schnittstelle wird am PC die komplette Bandbreite von 2,4 kHz empfangen. Digitale Signale haben oft eine Bandbreite von nur wenigen Hertz und können somit gleichzeitig empfangen werden. Hier ein Bild eines Wasserfalls mit Spektrum. Im Audio Empfangsbereich liegen viele Signale:

- (A) Es können je nach Art der Signale ein oder mehrere Signale empfangen werden.
- (B) Es können maximal zwei Signale empfangen werden (eines pro Seitenband).
- (C) Es kann maximal ein Signal empfangen werden, da ein Seitenband genutzt wird.
- (D) Es kann maximal ein Signal empfangen werden, außer das Funkgerät verfügt über doppelte Kanalbandbreite.

EE415 Welcher Unterschied zwischen ATV und SSTV ist richtig?

Lösungsansatz:

Du musst die einfach merken, dass SSTV (Slow Scan TV) Bilder sind. Diese werden z.B. auch von der ISS im 2 m Band gesendet. Hier als Anschauung ein SSTV Bild:

- (A) SSTV überträgt Standbilder, ATV bewegte Bilder.
- (B) SSTV wird nur auf Kurzwelle, ATV auf UKW verwendet.
- (C) SSTV belegt eine größere Bandbreite als ATV.
- (D) SSTV ist schwarzweiß, ATV in Farbe.

12.3 9600-Port

Der 9600-Port dient der schnellen digitalen Datenkommunikation (z.,B. Packet Radio, APRS) mit 9600 Baud. Er umgeht die sprachoptimierte Audioverarbeitung des Transceivers durch direkte Einspeisung analoger Audiosignale vom externen Modem/TNC in den Frequenzmodulator. Dies ermöglicht höhere Übertragungsraten im Vergleich zu herkömmlichen 1200-Baud-Verbindungen über den Mikrofonanschluss. Die übertragenen Signale sind analog (AFSK/FSK Töne), nicht digital im Sinne von TTL-Pegeln. Damit hat der 9600-Port eine größere Bandbreite als die Anbindung via SSB die wir im vorherigen Kapitel kennengelernt haben und steuert den Modulator/Demodulator direkt an.

Lösungen

EF219 Manche FM-Transceiver verfügen über einen analogen Datenanschluss (z. B. mit DATA beschriftet oder als 9600-Port bezeichnet). Welcher Punkt im dargestellten Empfangszweig wird über diesen Anschluss üblicherweise herausgeführt?

Wie wir im Eingang zu diesem Kapitel gelernt haben umgeht der 9600-Port den Audio Bereich des Funkgeräts und steuert direkt den Demodulator an. Der Demodulator ist zwischen 3 und 4. Wir wählen 4, da dies nach der NF Verarbeitung aber vor dem Demodulator ist.

- (A) Punkt 4
- (B) Punkt 1
- (C) Punkt 2
- (D) Punkt 3

EF309 Welcher der eingezeichneten Punkte in einem FM-Sender ist für die Zuführung eines 9600-Baud-Datensignals am besten geeignet?

Lösungsansatz:

Wir gehen analog zu Frage EF219 vor. Es kommt nur 2 in Frage, da dies nach dem NF Bandpassfilter aber vor dem Modular ist. Achtung: die Position 1 ist im NF Teil des Senders. Bitte nicht verwirren lassen.

- (A) Punkt 2
- (B) Punkt 1
- (C) Punkt 3
- (D) Punkt 4

12.4 Übersteuerung

Wir haben gelernt, dass viele Digitale Signale über ein Audio Interface und dem Transceiver im SSB Modus erzeugt werden. Wir wissen auch, dass es in SSB auf den Audio Pegel ankommt um einen störungsfreien Betrieb durchzuführen.

EJ217 Was kann auftreten, wenn bei digitalen Übertragungsverfahren (z. B. RTTY, FT8, Olivia) die automatische Pegelregelung (ALC) eines Funkgerätes im SSB-Betrieb eingreift?

Lösungsansatz:

Wenn die ALC eingreif ist das Audio Signal zu hoch eingestellt. Dadurch kann es zu Störungen auf den Nachbarfrequenzen kommen.

- (A) Störungen von Übertragungen auf Nachbarfrequenzen
- (B) Störungen von Computern oder anderen digitalen Geräten
- (C) Störungen von Stationen auf anderen Frequenzbändern
- (D) Störungen von nachfolgenden Sendungen auf derselben Frequenz

EJ218 Wie sollte bei digitalen Übertragungsverfahren (z. B. FT8, JS8, PSK31) der NF-Pegel am Eingang eines Funkgerätes mit automatischer Pegelregelung (ALC) im SSB-Betrieb eingestellt sein, um Störungen zu vermeiden?

Lösungsansatz:

Wie schon seit Frage EJ217 bekannt wollen wir nicht, dass die ALC aktiv wird. Allerdings sollte der Pegel natürlich möglichst hoch sein. Deshalb stellen wir den Pegel genau so hoch, dass die ALC gerade so keinen Ausschlag hat. Dies können wir z.B. für den FT-8 Betrieb machen in dem wir der Audio Regler (am Computer) des Audio Interface hochdrehen und dabei die ALC beobachten. Wenn die ALC ausschlägt gehen wir mit der Lautstärke noch etwas herunter.

- (A) So niedrig, dass die automatische Pegelregelung (ALC) nicht eingreift.
- (B) 18 dB höher als die Lautstärke, bei der die automatische Pegelregelung (ALC) eingreift.
- (C) Alle Bedienelemente sind auf das Maximum einzustellen.
- (D) Die NF-Lautstärke muss $-\infty$ dB (also Null) betragen.

EJ219 Was ist zu tun, wenn es bei digitalen Übertragungsverfahren zu Störungen kommt, weil die automatische Pegelregelung (ALC) eines Funkgerätes im SSB-Betrieb eingreift?

Lösungsansatz:

Wie in Frage EJ218 erklärt reduzieren wir den NF-Pegel (Lautstärke) noch etwas.

- (A) Der NF-Pegel am Eingang des Funkgerätes sollte reduziert werden.
- (B) Die Sendeleistung sollte erhöht werden.
- (C) Das Oberwellenfilter sollte abgeschaltet werden.
- (D) Es sollte mit der RIT gegengesteuert werden.

12.5 Automatische Empfangsberichte

Viele Stationen Empfangen Radio Signale und verbreiten diese via Internet (WebSDR), Besonders im digitalen Bereich könne diese Signale automatisch dekodiert werden und der Empfang kann an zentrale Server berichtet werden. Dort können sie zentral eingesehen werden. Z.B. werden automatisiert dekodierte CW Signale vom Reverse Beaken Network gesammelt. FT8 und PSK vom PSK reporter.

EE405 Wie können Sie automatische Empfangsberichte zu Aussendungen erhalten, z. B. um die Reichweite ihrer Sendeanlage zu testen?

- (A) Durch Aussendung einer Nachricht mittels geeignetem digitalen Verfahren (z. B. CW oder WSPR) und Suche nach Ihrem Rufzeichen auf passenden Internetplattformen
- (B) Durch Aussendung einer Nachricht mittels geeignetem digitalen Verfahren (z. B. CW oder WSPR) unter Angabe Ihrer E-Mail-Adresse und der Anzahl der maximal gewünschten Empfangsberichte
- (C) Durch Aussendung Ihres Rufzeichens mittels Telegrafie (5 WPM) mit dem Zusatz AUTO RSVP (vom französischen répondez s'il vous pla textasciicircumit) und Abhören der 10 kHz höher gelegenen Frequenz
- (D) Durch Aussendung Ihres Rufzeichens mittels Telegrafie (12 WPM) mit dem Zusatz R (für Report) und Abhören der 10 kHz tiefer gelegenen Frequenz

12.6 Paketvermittelte Netzwerke

In diesem Kapitel haben wir einige Fragen zu den Grundlagen eines **Paketvermittelten Netzwerk**. Es geht konkret um das IP-Protokoll, dass dem Internet wie Du es kennst zu Grunde liegt. Die Details verrate ich jeweils bei den Fragen.

Lösungen

EE412 Wie können Informationen innerhalb eines paketvermittelten Netzes zwischen zwei Stationen ausgetauscht werden, die sich nicht direkt erreichen können?

Lösungsansatz:

Wie allgemein bekannt werden Informationen im Internet via Paketen verteilt. Das Internet besteht dabei aus vielen kleinen Netzwerken die diese Pakete austauschen. Du hast vermutlich bei Dir zuhause einen Internet Router (in vielen Fällen ist dies eine FritzBox). Er stellt für Dich die Verbindung von Deinem lokalen Netzwerk (WLAN) zu allen anderen Netzwerken her. D.h. wenn Du an Deinem Computer eine Internetseite öffnest, werden eine oder mehrere Pakete erzeugt die zunächst alle an Deinen Router gehen. Der Leitet sie dann an das Netzwerk Deines Internet Providers weiter und solange weitergeleitet bis das Paket den Zielserver erreicht.

- (A) Durch Weiterleitung über Zwischenstationen (Paketweiterleitung)
- (B) Durch wiederholte Aussendung (Paketwiederholung)
- (C) Durch Entpacken vor der Sendung (Paketdekompression)
- (D) Durch Zusammenfassung von Übertragungen (Paketdefragmentierung)

EE413 Was ergibt sich aus der eingestellten IP-Adresse und Subnetzmaske einer Kommunikationsschnittstelle beim Internetprotokoll (IP)?

Lösungsansatz:

Die IP-Adresse und die Subnetzmaske definieren zusammen das lokale Netzwerk, indem sie bestimmen, welcher Teil der IP-Adresse die Netzwerk-ID (das lokale Netz) und welcher Teil die Host-ID (ein spezifisches Gerät innerhalb dieses Netzes) identifiziert.

- (A) Der direkt (d. h. ohne Router) über die Schnittstelle erreichbare Adressbereich
- (B) Die Protokoll- und Portnummer des über die Schnittstelle verwendeten Protokolls
- (C) Die Gegenstelle und die durch das Teilnetz verwendete Bandbreite
- (D) Das Standardgateway und die maximale Anzahl der Zwischenstationen (Hops)

Für diese Frage ist die Musterantwort schlecht formuliert. Das Internet ist zunächst ein Netzwerk, dass das Internet Protokoll (IP) befolgt. Diese IP Pakete können auch mit Amateurfunk weitergeleitet werden, wobei z.B. das Rufzeichen in höheren Netzwerkebene (z.B. TCP) ausgetauscht werden. Wir merken uns die Formulierung der Musterantwort.

- (A) Ja, es ist nicht auf das Internet beschränkt.
- (B) Ja, die Kodierung des Amateurfunkrufzeichens erfolgt in der Subnetzmaske.
- (C) Nein, Internetnutzern würde so Zugang zum Amateurfunkband ermöglicht.
- (D) Nein, die benötigte Bandbreite steht im Amateurfunk nicht zur Verfügung.

12.7 Amplituden- und Frequenzumtastung (ASK, FSK)

Im Kapitel 9 zur Modulation hast Du bereits FM und AM kennengelernt. Diese Arten der Modulation lassen sich auch auf digitale Übertragungsverfahren anwenden. Da die Grundlage der Modulation hier digital ist sprechen wir von einer **Umtastung**.

ASK (Amplitude Shift Keying) oder auf Deutsch Amplitudenumtastung. Hier werden für 0 bzw. 1 jeweils unterschiedliche Amplituden gesendet.

FSK (Frequency Shift Keying) oder auf Deutsch Frequenzumtastung. Es werden unterschiedliche Frequenzen gesendet.

Lösungen

EE406 Welches der folgenden Diagramme zeigt einen erkennbar durch Amplitudenumtastung (ASK) modulierten Träger?

Lösungsansatz:

Nur in der Musterlösung A ändert sich die Amplitude.

EE407 Welches der folgenden Diagramme zeigt einen erkennbar durch Frequenzumtastung (FSK) modulierten Träger?

Nur in der Musterlösung A ändert sich die Frequenz.

12.8 AFSK

Wir haben bereits ASK und FSK im letzten Kapitel kennengelernt. Bei AFSK (Audio Shift Keying) wird das NF Signal digital umgetastet, in dem verschiedene Tonhöhen für 0 und 1 erzeugt werden. Dies wird dann z.B. via FM moduliert und gesendet (also FSK). Ein bekanntest AFSK Signal ist z.B. APRS (Automatic Packet Reporting System), dass in Europa auf 144,800 MHz gesendet wird.

Lösungen

EE408 Was ist Audio Frequency Shift Keying (AFSK)?

(A) Ein durch Frequenzumtastung erzeugtes NF-Signal, mit dem ein Hochfrequenzträger (z. B. mittels FM) moduliert werden kann

- (B) Ein hochfrequentes PSK-Signal, das mittels automatischer Umtastung auf zwei NF-Träger übertragen wird, um Bandbreite zu sparen
- (C) Eine Kombination aus digitaler Amplituden- und Frequenzmodulation, um zwei Informationen gleichzeitig zu übertragen
- (D) Ein unmodulierter Hochfrequenzträger, bei dem die Frequenzabweichung im hörbaren Bereich liegt

12.9 Datenübertragungsrate

In diesem Kapitel geht es um die Datenübertragungsrate. Wir haben im Kapitel 12.1 zum binären Zahlensystem bereits gelernt, was ein **Bit** ist. Die Datenübertragungsrate gibt einfach an wie viele **Bits pro Sekunde** übertragen werden.

Lösungen

EA106 Welche Einheit wird üblicherweise für die Datenübertragungsrate verwendet?

- (A) Bit pro Sekunde (Bit/s)
- (B) Baud (Bd)
- (C) Hertz (Hz)
- (D) Dezibel (dB)

EE401 Welcher Unterschied besteht zwischen der Bandbreite und der Datenübertragungsrate?

Lösungsansatz:

Wie wissen die Bandbreite wird in Hertz angegeben es geht um den genutzten Frequenzbereich. Die Datenübertragungsrate aber in Bits pro Sekunde also der Datenmenge die pro Sekunde übertragen wird

- (A) Als Bandbreite wird der genutzte Frequenzbereich (in Hz) und als Datenübertragungsrate die je Zeiteinheit übertragene Datenmenge (in Bit/s) bezeichnet.
- (B) Als Bandbreite wird die übertragene Datenmenge (in Hz) und als Datenübertragungsrate die je Zeiteinheit übertragenen Symbole (in Baud) bezeichnet.
- (C) Die Datenübertragungsrate (in Bit/s) entspricht der Symbolrate (in Baud). Die Bandbreite (in Hz) entspricht der maximal möglichen Datenübertragungsrate (in Bit/s).
- (D) Die Datenübertragungsrate (in Baud) entspricht der Symbolrate (in Bit/s). Die Bandbreite (in Hz) entspricht der minimal möglichen Datenübertragungsrate (in Baud).

12.10 Vielfachzugriff

In der drahtlosen Kommunikation sind Frequenzmultiplex (FDMA), Zeitmultiplex (TDMA) und Codemultiplex (CDMA) die zentralen Verfahren, um das gemeinsame Frequenzspektrum effizient unter mehreren Nutzern aufzuteilen und Interferenzen zu minimieren. Die Wahl des Verfahrens hängt von den spezifischen Anforderungen an Bandbreite, Nutzerzahl und Robustheit ab.

FDMA (Frequency Division Multiple Access)

- Funktionsweise: Das Frequenzband wird in mehrere getrennte Frequenzkanäle unterteilt, wobei jeder Kanal einem einzelnen Nutzer fest zugewiesen wird (**Trennung über Frequenz**).
- Kurzcharakteristik: Einfaches, etabliertes Verfahren; jedoch bandbreitenineffizient bei vielen Nutzern.
- Anwendungsbeispiele: Analoge Mobilfunknetze (z.B. AMPS), Satellitenkommunikation.

TDMA (Time Division Multiple Access)

- Funktionsweise: Alle Nutzer teilen sich denselben Frequenzkanal, erhalten aber nacheinander in festgelegten Zeitintervallen Zugriff auf den Kanal (Trennung über Zeit).
- Kurzcharakteristik: Hohe Frequenzeffizienz; erfordert jedoch präzise Synchronisation der Zeitschlitze.
- Anwendungsbeispiele: GSM (2G Mobilfunknetze), DECT.

CDMA (Code Division Multiple Access)

- Funktionsweise: Alle Nutzer nutzen denselben Frequenzkanal zur gleichen Zeit. Die Trennung erfolgt über individuelle, orthogonale **Spreizcodes**.
- Kurzcharakteristik: Höchste Flexibilität und Kapazität; sehr robust gegen Störungen; erfordert aber komplexe Signalverarbeitung.
- Anwendungsbeispiele: UMTS (3G Mobilfunknetze), GPS.

Zusammenfassung: FDMA ist die einfachste Methode, während TDMA und insbesondere CDMA zunehmend effizienter und komplexer werden. CDMA bietet die größte Flexibilität bei begrenzter Bandbreite und vielen Nutzern, erfordert jedoch auch die technologisch aufwendigste Umsetzung.

Lösungen

EE409 Wie werden bei Zeitmultiplexverfahren (TDMA) mehrere Signale gleichzeitig übertragen?

Lösungsansatz:

Das T in TDMA steht für "time" also Zeit.

- (A) Im schnellen zeitlichen Wechsel auf derselben Frequenz
- (B) Zeitgleich auf unterschiedlichen Frequenzen
- (C) Zeitgleich mit Spreizcodierung im selben Frequenzbereich
- (D) Zeitgleich auf unterschiedlichen Wegen

EE410 Wie werden bei Frequenzmultiplexverfahren (FDMA) mehrere Signale gleichzeitig übertragen?

Lösungsansatz:

Das F in FDMA steht für "frequency" also **Frequenz**.

- (A) Zeitgleich auf unterschiedlichen Frequenzen
- (B) Im schnellen zeitlichen Wechsel auf derselben Frequenz
- (C) Zeitgleich mit Spreizcodierung im selben Frequenzbereich
- (D) Zeitgleich auf unterschiedlichen Wegen

EE411 Wie werden bei Codemultiplexverfahren (CDMA) mehrere Signale gleichzeitig übertragen?

Lösungsansatz:

Das C in CDMA steht für "code", hier geht es um Spreizcodes.

- (A) Zeitgleich mit Spreizcodierung im selben Frequenzbereich
- (B) Zeitgleich auf unterschiedlichen Frequenzen
- (C) Im schnellen zeitlichen Wechsel auf derselben Frequenz
- (D) Zeitgleich auf unterschiedlichen Wegen