Appunti Comunicazioni Numeriche

Francesco Mignone

Professori: Luca Sanguinetti - Marco Moretti

Figure 1: uwu

AA 2022 - 2023

Contents

1	one	2						
2	Richiamo Sui Numeri Complessi							
	2.1	Strutt	ura di un numero complesso	3				
		2.1.1	Forma Cartesiana	3				
		2.1.2	Forma Polare	3				
		2.1.3	Complesso Coniugato	3				
	2.2	Relazi	one Tra Forma Polare e Cartesiana	3				
	2.3	Opera	zioni	4				
	2.4	Funzio	oni Complesse a Variabile Reale	4				
3	Introduzione Ai Segnali							
	3.1	Classi	ficazione di segnale in base alla continuità dei domini	5				
4	Seg	Segnali Analogici						
	4.1	Grand	lezze dei segnali Analogici	6				
		4.1.1	Potenza istantanea	6				
		4.1.2	Energia	6				
		4.1.3	Potenza Media	6				
		4.1.4	Valore Efficace	7				
		4.1.5	Valore Medio	7				
	4.2		si energetiche su segnali comuni	7				
		4.2.1	Costante	7				
		4.2.2	Sinusoide	7				
		4.2.3	Gradino	7				
		4.2.4	Rettangolo	7				
		4.2.5	Esponenziale unilatera	7				
		4.2.6	Esponenziale bilatera	7				
		4.2.7	segno $\operatorname{sgn}(\mathbf{x_{(t)}})$	7				
A	lphal	oetical	Index	8				

1 Introduzione

I seguenti appunti sono presi seguendo le lezioni del corso di Comunicazioni Numeriche di Ingegneria Informatica dell'Univertistá di Pisa. Questi appunti non vanno a sostituire il materiale e le lezioni dei professori. I testi consigliati sono:

S.Hawking Digital Communication System Wiley Leon Digital Analog Communication System Pearson

2 Richiamo Sui Numeri Complessi

2.1 Struttura di un numero complesso

2.1.1 Forma Cartesiana

$$z\in\mathbb{C}:z=a+jb$$
 Parte reale: $a=Re\{z\}$ Parte Immaginaria: $b=Img\{z\}$ j o i é la $\sqrt{-1}$

2.1.2 Forma Polare

$$z \in \mathbb{C} : z = \rho \ e^{j\theta}$$

Modulo: $\rho = |z|$
Fase: $\theta = \arg(z)$

grafico forma polare-cartesiana

2.1.3 Complesso Coniugato

• Forma Cartesiana

$$z^* = a - jb$$

• Forma Polare

$$z^* = \rho \ e^{-j\theta}$$

2.2 Relazione Tra Forma Polare e Cartesiana

• Parte Reale e parte Immaginaria

$$a = \rho \cos(\theta) \ b = \rho \sin(\theta)$$

• Modulo

$$\rho = |z| = \sqrt{a^2 + b^2}$$

• Fase

$$a > 0 \Rightarrow \theta = \arg(z) = \arctan\left(\frac{b}{a}\right)$$

$$a < 0 \Rightarrow \theta = \arg(z) = \pi + \arctan\left(\frac{b}{a}\right)$$

2.3 Operazioni

Dati: $z_1 = a_1 + jb_1 = \rho_1 \ e^{j\theta_1}, \ z_2 = a_2 + jb_2 = \rho_2 \ e^{j\theta_2}$

• Somma

$$z = z_1 + z_2 = (a_1 + a_2) + j(b_1 + b_2)$$

• Sottrazione

$$z = z_1 - z_2 = (a_1 - a_2) + j(b_1 - b_2)$$

• Moltiplicazione

$$z = z_1 z_2 = \rho_1 \rho_2 \ e^{j(\theta_1 + \theta_2)}$$

• Divisione

$$z = \frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} e^{j(\theta_1 - \theta_2)}$$

• Modulo

$$|z| = \sqrt{zz^*} = \sqrt{a^2 + b^2}$$

 $|z|^2 = zz^* = a^2 + b^2$

2.4 Funzioni Complesse a Variabile Reale

$$z \in \mathbb{C}$$
 $t \in \mathbb{R} \to z_{(t)} = a_{(t)} + jb_{(t)} = \rho_{(t)}e^{j\theta_{(t)}}$

• Integrale

$$\int_{a}^{b} z_{(t)} dt = \int_{a}^{b} a_{(t)} + jb_{(t)} dt = \int_{a}^{b} a_{(t)} dt + \int_{a}^{b} jb_{(t)} dt$$

• Derivata

$$\frac{d}{dt}z_{(t)} = \frac{d}{dt}a_{(t)} + jb_{(t)} = \frac{d}{dt}a_{(t)} + \frac{d}{dt}jb_{(t)}$$

3 Introduzione Ai Segnali

- Deterministici: Segnale rappresentabile con funzioni analitiche e noto $\forall t$
- Aleatori: Segnale rappresentabile tramite statistiche

3.1 Classificazione di segnale in base alla continuità dei domini

- Dominio del tempo:
 - Segnale tempo continuo: $t \in \mathbb{R}$ assume con conitinuità tutti i valori contenuti all'interno di un intervallo
 - Segnale a tempo discreto: $t = \{nT\}n \in \mathbb{Z}\ T$ =periodo di campionamento, la variabile temporale assume solo valori discreti

Figure 2: tempo continuo, tempo discreto

- Dominio dell'ampiezza (spazio):
 - Segnale ad ampiezza continua: $x_{(t)}$ continua, la grandezza fisica del segnale assume con continuità tutti i valori all'interno di un intervallo
 - Segnale ad ampiezza discreta: $x_{(t)}$ discreta,
se restringo l'intervallo posso renderla continua, la grandezza fisica pu
ó assumere solo valori discreti

Figure 3: ampiezza continua, ampiezza discreta

Segnale	Cotinuo	Discreto	t
Continua	Analogico	Sequenza/Digitale	
Discreta	Quantizzato	Binario	-
$x_{(t)}$			

4 Segnali Analogici

4.1 Grandezze dei segnali Analogici

4.1.1 Potenza istantanea

$$P_x \triangleq |x_{(t)}|^2$$

4.1.2 Energia

$$E_x \triangleq \int_{-\infty}^{\infty} P_x(t) dt = \int_{-\infty}^{\infty} |x_{(t)}|^2 dt$$

4.1.3 Potenza Media

Definiamo il **Segnale Troncato**:

$$x_{(t)} = X_{(t)} \triangleq \begin{cases} x_{(t)} & -\frac{T}{2} \le t \le \frac{T}{2} \\ 0 & altrove \end{cases}$$

T = Periodo di osservazione

Figure 4: Segnale troncato

La potenza media é:

$$P_{x_T} \triangleq E_{x_T}$$

dalla quale possiamo ricavare la potenza istantanea se $T \to \infty \Rightarrow P_{x_T} = P_x$:

$$P_x \triangleq \lim_{T \to \infty} \frac{E_{x_T}}{T} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x_{(t)}|^2 dt$$

- 4.1.4 Valore Efficace
- 4.1.5 Valore Medio
- 4.2 Analisi energetiche su segnali comuni
- 4.2.1 Costante
- 4.2.2 Sinusoide
- 4.2.3 Gradino
- 4.2.4 Rettangolo
- 4.2.5 Esponenziale unilatera
- 4.2.6 Esponenziale bilatera
- $\textbf{4.2.7} \quad \mathbf{segno} \ \mathbf{sgn}(\mathbf{x_{(t)}})$

Alphabetical Index

Segnale Troncato, 6