Let Go be a group and |G| is finite we define order of Go, denoted by O(G) to be equal to |G|.

08/08

Orthogonal Groups

Definition:

An nxn matrix A is said to be orthogonal if $AA^T = A^TA = I$

$$O_n(R) = \{ A \in M_n(R) \mid A \text{ is orthogonal} \}$$

claim :-

On (IR) is a group under matrix multiplication

i) Let A, B & On (R)

$$(AB)(AB)^{T} = (AB)(B^{T}A^{T}) = (ABB^{T})(A^{T})$$

= $AA^{T} - I$

Similarly, (AB) = I

- ii) Associativity is hereditary
- iii) Since I & On (IR), it has identity element
- in) Let A & On (IR)

Note that
$$I = (A A T)^{-1} = (A^T)^{-1} A^{-1} = (A^T)^T (A^T)$$

Similarly, $(A^{-1})(A^{-1})^T = I$

· Let A & On (IR)

$$A = \begin{pmatrix} 1 & 1 & 1 \\ A_1 & A_2 & \dots & A_n \\ 1 & 1 & \dots & 1 \end{pmatrix} \qquad A^T A = \begin{pmatrix} a_{ij} \\ a_{ij} \\ \vdots \end{pmatrix}$$

$$a_{ij} = A_i \cdot A_j$$

$$A: Aj = 1 \quad \text{if } i = j$$

$$A: Aj = 0 \quad \text{if } i \neq j$$

$$\{A_1, \ldots, A_n\}$$
 is called an orthonormal basis of \mathbb{R}^n .

- . Any man matrix A gives rise to a linear transformation $L_A: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ $u \longmapsto A \cdot u$
- · Let $A \in On(IR)$. On R^n , we have a usual dot product of vectors defined as $v \cdot v = v^T v$

$$U^T = (U_1, ..., U_n)$$
 \rightarrow transpose is row vector $U = \begin{pmatrix} V_1 \\ \vdots \\ V_n \end{pmatrix}$ \rightarrow usual vector denotion is column vector

· Let u, v e IRn. Then

$$L_{A}(u) \cdot L_{A}(v) = (Au) \cdot (Av)$$

$$= (Au)^{T}(Av)$$

$$= U^{T}A^{T}Av = U^{T}V$$

$$= U \cdot V$$

- -) LA preserves dot products in IR"
- = LA preserves horms in IR
- 2 => LA preserves distance between two vectors

A function $f:\mathbb{R}^n \to \mathbb{R}^n$ is said to be an isometry if f preserves distance between any two points.

) If $A \in On(IR)$, then $L_A : IR^n \to IR^n$ is an isometry

For n=2, let $A \in O_2(\mathbb{R})$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 $a^{2} + c^{2} = 1$ $ab + cd = 0$

let $(a, c) = (six \theta, cos \theta)$ for some $\theta \in [0, 2\pi)$

(cose, sine) case-1: ad-bc=1

$$(\cos \theta) d + (\sin \theta) d = 0$$

$$(-\sin \theta) b + (\cos \theta) d = 1$$

$$(b,d) = (-\sin \theta) - \cos \theta$$

$$= A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Case -2: ad -bc = -1

$$A = M_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

Exercise: Show that Mo represents the reflection about the line joining (0,0) and $(\cos \frac{10}{2}, \sin \frac{10}{2})$

Dihedral group

Let us consider a regular n-gon inscribed in a unit circle, with one of the vertices at (1,0)

Let T denote the rotation of the plane counter-clock wise by an angle $2\pi/n$

$$T = \begin{pmatrix} \cos \frac{2\pi}{\Omega} & -\sin \frac{2\pi}{\Omega} \\ \sin \frac{2\pi}{\Omega} & \cos \frac{2\pi}{\Omega} \end{pmatrix}$$

$$T' = \begin{pmatrix} \cos \frac{2\pi i}{n} & -\sin \frac{2\pi i}{n} \\ \sin \frac{2\pi i}{n} & \cos \frac{2\pi i}{n} \end{pmatrix}$$

$$\Rightarrow$$
 T , T , T^2 , ..., T^{n-1} are all distinct

. Let S represent the reflection about X-axis

$$S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad S^2 = I$$

Proof: -
$$(\theta = \frac{2\pi}{n})$$

$$TS = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

$$ST^{n-1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos \theta (n-1) & -\sin \theta (n-1) \\ \sin (\theta (n-1)) & \cos (\theta (n-1)) \end{pmatrix}$$

$$TS = ST^{n-1}$$

$$TS = ST^{-1}$$

$$\tau^{2}S = T(TS)$$

 $\tau^{2}S = T(ST^{-1}) = ST^{-2}$

· Define D_{2n} as follows

 $D_{2n} = \{x, T, T^2, ..., T^{n-1}, S, ST, ST^2, ... ST^{n-1}\}$

showing that Dan is a group

(closed) $T^{i} T^{j} = T^{(i+j)} \mod n$ $(ST^{i})(ST^{i}) = S(T^{i}S)T^{j} = SST^{-i}T^{j}$ $T^{i} ST^{j} \in D_{2n}, \quad ST^{i}T^{j} \in D_{2n}$ $(T^{i})^{-1} = T^{-i} = T^{-i}$ $(ST^{i})^{-1} = T^{-i}S^{-1} = T^{-i}S \in T^{-i}S$ $= ST^{i-n} = ST^{i}$

Dan is called a Dihedral group of order 2n.

The Heisenberg Group

Let F be a field

F = Q, R, C, $\frac{7L}{pZ}$ are examples of fields

Let
$$H(F) = \left\{ \begin{bmatrix} 1 & b \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \mid a, b, c \in F \right\}$$

claim: H(F) is a group under matrix multiplication

Check that

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -a & ac-b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{pmatrix}$$

H(F) is called the Heisenberg group

Quaternions

$$I = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad i = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$K = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$

$$Q = \{ \pm I, \pm i, \pm i, \pm i, \pm k \}$$