# Pre-Learning Environment Representations for Data-Efficient Neural Instruction Following



David Gaddy and Dan Klein













"Remove the block on the right"









"Remove the block on the right"



## How do we do?



## How do we do?

#### **Baseline Neural**





## How do we do?

#### **Baseline Neural**



Logical Form Gap

Logical Forms (Wang et al. 2016)





"Układaj czerwone bloki na niebieskich blokach"









"Układaj czerwone bloki na niebieskich blokach"







stack(red, with(orange))



"Układaj czerwone bloki na niebieskich blokach"







stack(red, with(orange))









"Układaj czerwone bloki na niebieskich blokach"







stack(red, with(orange))













"Układaj czerwone bloki na niebieskich blokach"



















"Układaj czerwone bloki na niebieskich blokach"











"Układaj czerwone bloki na niebieskich blokach"









"Układaj czerwone bloki na niebieskich blokach"















"Układaj czerwone bloki na niebieskich blokach"















## Logical Form Gap

#### **Baseline Neural**



Logical Forms (Wang et al. 2016)

Phase 1:

**Environment Learning** 

Learn abstractions

No Language data needed

Phase 2: Language Learning

Map to abstractions
Needs less data

































Language Learning

















































Language Learning

Environment Learning









Environment Learning



## Results

#### **Baseline Neural**



Logical Forms (Wang et al. 2016)



## Results

#### **Baseline Neural**



#### **Environment Learning**



Logical Forms (Wang et al. 2016)

Problem: The semantics we want to learn may be discrete, not continuous



## Discrete Representations





## Discrete Representations





## Discrete Representations



## **Gumbel Softmax**

$$G(x_i) = \frac{\exp(x_i + \epsilon_i)}{\sum_{j=0}^k \exp(x_j + \epsilon_j)}$$



## Results

#### **Baseline Neural**



#### **Environment Learning**



Logical Forms (Wang et al. 2016)



## Results

+1.7

#### **Baseline Neural**



Environment Learning



Logical Forms (Wang et al. 2016)

Problem: What happens if the language encoder uses a different part of the space than the autoencoder?





Pre-training encoder representations



## Language encoder representations



Pre-training encoder representations



## Language encoder representations



Pre-training encoder representations















## Results

+1.7

#### **Baseline Neural**



Environment Learning



Logical Forms (Wang et al. 2016)



## Results

#### **Baseline Neural**



**Environment Learning** 

28.5%

+.9

Logical Forms (Wang et al. 2016)



## **String Manipulation Task**

```
c replace consonants with p x
```

s fines

s' pxipxepx

```
c add a letter k before every b
```

s rabbles

 $s^\prime$  rakbkbles

```
c replace vowel consonant pairing with v g
```

s thatched

s' thygchyg

c add b for the third letter

s thanks

s' thbanks



#### **Baseline Neural**





#### **Baseline Neural**



#### **Environment Learning**

46.5%









# Question: Do our representations behave like logical forms?





















84% consistent with logical form16%





## Conclusions

Neural models struggle from lack of inductive bias

It is possible to learn good representations with unsupervised observation

Mapping to pre-learned representations makes instruction following more data efficient



# Thanks!







# Language Module





# **Block Stacking Modules**







# **String Manipulation Modules**







# **Transition Examples**











