Matemática discreta

Ley de doble negación

р	¬р	¬(¬p)
V	F	V
F	V	F

Ley de Morgan (para la conjunción): $\neg(p \land q) \equiv (\neg p \lor \neg q)$

р	q	pΛq	¬(p ∧ q)	¬р	¬q	(¬p ∨ ¬q)
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

Ley de Morgan (para la disyunción): $\neg(p \lor q) \equiv (\neg p \land \neg q)$

р	q	p∨q	¬(p ∨ q)	¬р	¬q	(¬p ∧ ¬q)
V	V	V	F	F	F	F
V	F	V	F	F	V	F
F	V	V	F	V	F	F
F	F	F	V	V	V	V

Ley conmutativa (para la conjunción): $p \land q \equiv q \land p$

р	q	pΛq	qΛp
V	V	V	V
V	F	F	F
F	V	F	F
F	F	F	F

Ley conmutativa (para la disyunción): p ∨ q ≡ q ∨ p

р	q	pVq	qVp
V	V	V	V
V	F	V	V
F	V	V	V
F	F	F	F

Ley asociativa (para la conjunción): $(p \land q) \land r \equiv p \land (q \land r)$

р	q	r	(p ∧ q) ∧ r	p ∧ (q ∧ r)
V	V	V	V	V
V	V	F	F	F
V	F	V	F	F
V	F	F	F	F
F	V	V	F	F
F	V	F	F	F
F	F	V	F	F
F	F	F	F	F

Ley asociativa (para la disyunción): (p V q) V r ≡ p V (q V r)

р	q	r	(p V q) V r	p ∨ (q ∨ r)
V	V	V	V	V
V	V	F	V	V
V	F	V	V	V
V	F	F	V	V
F	V	V	V	V
F	V	F	V	V
F	F	V	V	V
F	F	F	F	F

Ley distributiva (de la conjunción sobre la disyunción): $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

р	q	r	qVr	p ∧ (q ∨ r)	pΛq	pΛr	(p ∧ q) ∨ (p ∧ r)
V	V	V	V	V	V	V	V
V	V	F	V	V	V	F	V
V	F	V	V	V	F	V	V
V	F	F	F	F	F	F	F
F	V	V	V	F	F	F	F
F	V	F	V	F	F	F	F
F	F	V	V	F	F	F	F
F	F	F	F	F	F	F	F

Ley distributiva (de la disyunción sobre la conjunción): $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

р	q	r	qΛr	p ∨ (q ∧ r)	p∨q	p∨r	(p∨q) ∧ (p∨r)
V	V	V	V	V	V	V	V
V	V	F	F	V	V	V	V
V	F	V	F	V	V	V	V
V	F	F	F	V	V	F	V
F	V	V	V	V	V	V	V
F	V	F	F	F	V	F	F
F	F	V	F	F	F	V	F
F	F	F	F	F	F	F	F

Ley idempotente (para la conjunción): $p \land p \equiv p$

p	р∧р
V	V
F	F

Ley idempotente (para la disyunción): p ∨ p ≡ p

p	p∨p
V	V
F	F

Ley del elemento neutro (para la conjunción): p ∧ V ≡ p

р	V	pΛV
V	V	V
F	V	F

Ley del elemento neutro (para la disyunción): p ∨ F ≡ p

р	F	p V F
V	V	V
F	F	F

Ley de la inversa (para la conjunción): $p \land \neg p \equiv F$

р	¬р	р∧¬р
V	F	F
F	V	F

Ley de la inversa (para la disyunción): p ∨ ¬p ≡ V

р	¬р	p∨¬p
V	F	V
F	V	V

Ley de la dominación (para la conjunción): $p \land F \equiv F$

р	F	pΛF
V	F	F
F	F	F

Ley de la dominación (para la disyunción): p ∨ V ≡ V

р	V	pVV
V	V	V
F	V	V

Ley de la absorción (para la conjunción): $p \land (p \lor q) \equiv p$

р	q	pVq	p∧(p∨q)
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	F

Ley de la absorción (para la disyunción): $p \lor (p \land q) \equiv p$

р	q	pΛq	p∨(p∧q)
V	V	V	V
V	F	F	V
F	V	F	F
F	F	F	F