Zadanie 1. Załóżmy, że funkcja f=f(t,x) jest klasy C^1 na zbiorze $t_0 \le t < \infty$, $-\infty < y < \infty$ oraz spełnia dodatkowe oszacowanie $|f(t,y)| \le K$ na całym tym zbiorze dla pewnej stałej K>0. Udowodnić, że rozwiązanie zagadnienia

$$x' = f(t, x), \quad x(t_0) = x_0$$

istnieje dla wszyskich $t \geq t_0$.

18:35

f, of - ciaote, z CP-L) rozwiązanie istnieje na jakimś [to, to+a]. Żeby móc pizedłużyć sprawdzamy oszacowanie weigny doudne T>to i to rozwiązanie y(t) sup |y(t)| ≥ ∞ z równania cathowego many: $y(t) = y(t_0) + \int_{t_0}^{t} f(s, y) ds$ 1 y(t) | = |yo|+ St |f(s,y) | ds = $\leq |y_0| + S_{t_0}^t K ds = |y_0| + K(t - t_0)$ sup |yol+ K(t-to) = |yol+K(T-to) < 00 skoro T byto dowolne, to z tw. o przedtużaniu dostajemy rozwiązanie dla wszystkich

t> to