Studying the Response of RLC Circuits to Sinusoidal Inputs Using Simulink

R Kwong - kwong@control.utoronto.ca, F Mansouri - farrokh.mansouri@mail.utoronto.ca

•	• Name:	Lab Date:	
	• Student No.:	Day of the week:	Time:
	• Name:	TA Signature:	
•	• Student No.:	Grade:	
	1. Natural freque	ncy of an RLC Circui	t
1.1 Exer	rcise 1.1 the natural frequency for the following systems (1 pt)	
1. C=	= 0.01, L = 0.01		
2. C=	= 0.02, L = 0.01		
3. C=	= 0.04, L = 0.01		
4. <i>C</i> =	= 0.01, L = 0.02		
5. C=	= 0.01, L = 0.04		
1.2 Exer			
	ry the resistance values to show that damping factor of omstrate to TA (TA to check box) (1 pt)	r increases as you increase the	resistance (set C=0.01 and L=0.01)
b. At v	what resistance does the system transition from un	derdamped to overdamped? ((Keep L=0.01 and C=0.01) (0.5 pt)
c. Ho	w would underdamped to overdamped transition o	change if you increase L to 0.0	22 and C to 0.02? (0.5 pt)

2. RLC circuit response to an external voltage source

2.1 Exercise 2.1			
a. Set the amplitude of your voltage source to 1 and measure the amplitude of the response of the circuit for the following			
input frequencies.(1 pt)			
1. Natural frequency / 5			
2. Natural frequency / 2			
3. Natural frequency			
4. Natural frequency * 2			
5. Natural frequency * 5			
2.2 Exercise 2.2			
Demonstrate the square wave Simulink model and explain peaks in spectrum analyzer. (TA to check box) (1 pt)			
3. Applying Fourier Series in circuit analysis			
3.1 Exercise 3.1			
a. Use a square wave with 1/32 sec period. Read the frequency of the first 4 peaks on the frequency spectrum, and record			
the results below. (0.5 pt)			
b. Calculate the first 4 terms of the Fourier series for the square wave using the equation provided, and write down the frequency and amplitude of each term from the Fourier approximation below. (0.5 pt)			
c. Demonstrate the 4-term Fourier series approximation to the square wave. (TA check box) (0.5 pt)			
c. Demonstrate the 4-term Pourter series approximation to the square wave. (1A check box) (0.5 pt)			
3.2 Exercise 3.2			
Compare the response of RLC circuit to the 4-term Fourier series approximation to that of the square wave. (TA check box) (1			
pt)			
3.3 Exercise 3.3			
a. Demonstrate the 8-term Fourier series approximation to the square wave. (TA check box) (0.5 pt)			
b. Compare the response of RLC circuit to the 8-term Fourier series approximation to that of the square wave. (TA check			
box) (1pt)			
c. Does the 8-term Fourier series approximate the square wave better, or does the output response with the 8-term Fourier			
series approximate the output response for the square wave better? (TA check box for explanation) (1pt)			