Calculus I Area between two parabolas, part 2

Todor Milev

2019

Find the point of intersection.

Find the point of intersection.

$$x^2 = 2x - x^2$$

Find the point of intersection.

$$x^2 = 2x - x^2$$

$$0=2x-2x^2$$

Find the point of intersection.

$$x^2 = 2x - x^2$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

Find the point of intersection.

$$x^2 = 2x - x^2$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$x = 0 \text{ or } 1.$$

- Find the point of intersection.
- @ Graph the functions.

$$x^2 = 2x - x^2$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$x = 0 \text{ or } 1.$$

- Find the point of intersection.
- @ Graph the functions.

$$x^2 = 2x - x^2$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$x = 0 \text{ or } 1.$$

- Find the point of intersection.
- @ Graph the functions.

$$x^2 = 2x - x^2$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$x = 0 \text{ or } 1.$$

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.

$$x^2 = 2x - x^2$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$x = 0 \text{ or } 1.$$

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.

$$x^2 = 2x - x^2$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$x = 0 \text{ or } 1.$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$0 = 2x - 2x^2 = 2x(1 - x)$$

 $x = 0$ or 1.

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

$$x^2 = 2x - x^2$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$x = 0 \text{ or } 1.$$

$$A = \int_0^1 (2x - 2x^2) dx$$

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

$$x^{2} = 2x - x^{2}$$

 $0 = 2x - 2x^{2} = 2x(1 - x)$
 $x = 0 \text{ or } 1$

$$A = \int_0^1 (2x - 2x^2) dx = 2 \int_0^1 (x - x^2) dx$$

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

$$x^2 = 2x - x^2$$

 $0 = 2x - 2x^2 = 2x(1 - x)$
 $x = 0$ or 1.

$$A = \int_0^1 (2x - 2x^2) dx = 2 \int_0^1 (x - x^2) dx$$
$$= 2 \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1$$

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

$$x^2 = 2x - x^2$$

 $0 = 2x - 2x^2 = 2x(1 - x)$
 $x = 0$ or 1.

$$A = \int_0^1 (2x - 2x^2) dx = 2 \int_0^1 (x - x^2) dx$$
$$= 2 \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = 2 \left(\frac{1}{2} - \frac{1}{3} \right)$$

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

$$x^{2} = 2x - x^{2}$$

 $0 = 2x - 2x^{2} = 2x(1 - x)$
 $x = 0 \text{ or } 1$.

$$A = \int_0^1 (2x - 2x^2) dx = 2 \int_0^1 (x - x^2) dx$$

$$=2\left[\frac{x^2}{2}-\frac{x^3}{3}\right]_0^1=2\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{1}{3}.$$