Electronic Key-Tag

Design Review

May 17, 2019

Key-Tag

- This key-tag will start to blink for 30 seconds if it has been at rest for a few hours.
- One can also turn on the LED's using a switch.

Physical Structure:

Side profile of Reach Truck with load.

Figure 1 [1]

Key-Tag

Purpose:

- Most of us keep our keys on a counter or hang them to a keystand after use.
- Some of us, just throw them on a couch or leave them in pockets. In such cases it is easy to find keys when the attached key tag BLINKS or MAKES SOME NOISE.

Extra Features:

- The RGB lights on the Key Tag can be turned on using a switch button.
- The circuit is re-programmable, a user guide will be provided.
- MSP FET can be used to program the circuit board.

System Requirements

Requirements:

- The system requires a motion sensor that can let us know when the key is in use or at rest.
- A low power microcontroller, to control the LED's and Buzzer based on interrupts from motion sensor and to run an RTC to measure time.
- A battery to power all the system components. (Battery should last for at least six months.)
- Turn on Lights with a switch button.
- Cost: \$7.50/key-tag.

How I met my "Requirements":

 The low power Accelerometer -LIS3DHTR

 A low power microcontroller – MSP430FR2422.

- A battery CR2032. (225 mAh). Battery life depends on the duty cycle.
- RGB LED, tactile switch button.
- Cost: \$6.24/key-tag.

Block Diagram

Figure 2

System Specifications

Component	Specs
Boost Regulator	I/P - 3.0V; O/P - 3.5 V; DC/DC; I_out - 30mA; 91% efficient;
RGB LED	Red: 4 mA @ 1.8V; Green: 3 mA @ 2.8V; Blue: 3mA @ 2.8V;
Buzzer	10mA @ 3.2V; 2.7KHz; 85dB max;
Accelerometer	2uA – low power mode; 11uA – Normal mode; supply voltage range 1.7V to 3.6V
MSP430fr2422	0.7uA – low power mode; 120uA – Active mode; supply voltage range: 1.8V to 3.6V
Battery	225mAh, 3V

System Specs Cont...

Battery Life:

- Sleep mode: 2.7uA
- Active mode: 30mA
- Total average current consumption: 177uA
- Estimated battery life: 53 days assuming the circuit is in fully active mode for 60 seconds every once in 3 hours.
- Worst case: Always fully active: 5.2 hrs. to 7.5 hrs. based on consumption rate. (9 hrs. to 6.3 hrs. if current drawn is 25mA).

ESD Protection:

TVS diodes are used to protect the circuit from ESD.

Reverse Voltage Protection:

Since the battery container is "one way" only, circuit for reverse voltage protection has not been implemented.

Software Design Flow

 The accelerometer will interrupt the MSP430, every time it senses acceleration.

 MSP430 will start a timer when there is no acceleration for a period of time.

- If the MSP is interrupted before the counter overflows, MSP resets the timer.
- If the timer is set and the MSP is interrupted by Switch button, Interrupt from switch will be given priority and the timer will be reset.

References

- [1] Physical Structure of keychain Josh Smith, Designer, Mechanical development.
- [2] Feedback google images
- [3] Thank you google images