12/12/2022. Segundo Recuperatorio. Análisis Matemático III. Cursos 5 A y B.

1. Probar que para todo número α : $-1 < \alpha < 1$ la siguiente integral impropia es convergente y calcularla para $\alpha = 1/2$: $\int_0^{+\infty} \frac{1}{x^{\alpha}(16 + x^2)} dx$.

Sugerencia: para el cálculo de la integral efectúe el cambio de variable $t=x^{1/2}$.

- 2. Dada la función $f(z) = \frac{1}{z} cosh(\frac{1}{z}) + \frac{z+2}{z^2(z-2)}$. Hallar la parte principal de su serie de Laurent válida en un entorno reducido de z=0, indicando la región de convergencia. A partir de ésta, **a)** determinar el tipo de singularidad en z=0. **b)** hallar el valor del residuo de f(z) en z=0.
- 3. a) Hallar todas las funciones f(z) analíticas de la forma f(z) = u(x) + iv(y).
 - b) Sea f holomorfa en todo el plano complejo, excepto en z_0 donde tiene un polo de orden 3, y $|z_0| < 3$ y $f(z) \neq 0$ para todo z: $|z| \leq 3$. Calcular $\int_{|z|=3} \frac{f'(z)}{f(z)} dz$.
- 4. Dada $T(z) = \frac{2-8z^2}{1+4z^2}$. Indique en qué puntos es conforme y halle T(D), siendo:

$$D = \left\{ z \in \mathbb{C} : |z| \le 1/2; \ 0 \le Arg(z) \le \frac{\pi}{2} \right\}$$

5. Sea $f(z) = \sum_{n=0}^{\infty} \frac{n+1}{(-2)^{3n}} z^{n-4}$. a) Hallar el dominio de holomorfía de f, b) Hallar el valor de $I_1 = \int_{\mathcal{C}^+} z^2 f(z) dz$ y de $I_2 = \int_{\mathcal{C}^+} \frac{f(z) dz}{z^2}$, con $\mathcal{C} = \{|z-1| = 3\}$

12/12/2022. Segundo Recuperatorio. Análisis Matemático III. Cursos 5 A y B.

1. Probar que para todo número α : $-1 < \alpha < 1$ la siguiente integral impropia es convergente y calcularla para $\alpha = 1/2$: $\int_0^{+\infty} \frac{1}{x^{\alpha}(16+x^2)} dx$.

Sugerencia: para el cálculo de la integral efectúe el cambio de variable $t=x^{1/2}$.

- 2. Dada la función $f(z) = \frac{1}{z} cosh\left(\frac{1}{z}\right) + \frac{z+2}{z^2(z-2)}$. Hallar la parte principal de su serie de Laurent válida en un entorno reducido de z=0, indicando la región de convergencia. A partir de ésta, **a)** determinar el tipo de singularidad en z=0. **b)** hallar el valor del residuo de f(z) en z=0.
- 3. a) Hallar todas las funciones f(z) analíticas de la forma f(z) = u(x) + iv(y).
 - b) Sea f holomorfa en todo el plano complejo, excepto en z_0 donde tiene un polo de orden 3, y $|z_0| < 3$ y $f(z) \neq 0$ para todo z: $|z| \leq 3$. Calcular $\int_{|z|=3} \frac{f'(z)}{f(z)} dz$.
- 4. Dada $T(z) = \frac{2 8z^2}{1 + 4z^2}$. Indique en qué puntos es conforme y halle T(D), siendo:

$$D = \left\{ z \in \mathbb{C} : |z| \le 1/2; \ 0 \le Arg(z) \le \frac{\pi}{2} \right\}$$

5. Sea $f(z) = \sum_{n=0}^{\infty} \frac{n+1}{(-2)^{3n}} z^{n-4}$. **a)** Hallar el dominio de holomorfía de f, **b)** Hallar el valor de $I_1 = \int_{\mathcal{C}^+} z^2 f(z) dz$ y de $I_2 = \int_{\mathcal{C}^+} \frac{f(z) dz}{z^2}$, con $\mathcal{C} = \{|z-1| = 3\}$