Thesis

Nachvollziehbarkeit von Nutzerinteraktion und Anwendungsverhalten am Beispiel JavaScript-basierter Webanwendungen

An der Fachhochschule Dortmund im Fachbereich Informatik Studiengang Software- und Systemtechnik Vertiefung Softwaretechnik erstellte Thesis zur Erlangung des akademischen Grades Bachelor of Science

von Marvin Kienitz geb. am 26.04.1996 Matr.-Nr. 7097533

Betreuer:

Prof. Dr. Sven Jörges Dipl.-Inf. Stephan Müller

Dortmund, 21. Januar 2021

Kurzfassung

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, conque eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada portitior diam. Donec felis erat, conque non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, conque eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada portitior diam. Donec felis erat, conque non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung		1
	1.1	Motiva	ation	1
	1.2	Zielset	zung	2
		1.2.1	Abgrenzung	2
	1.3	Vorgel	nensweise	3
	1.4	Open	Knowledge GmbH	3
2	Aus	gangss	situation	4
	2.1	Brows	erumgebung	4
		2.1.1	Browserprodukte	4
		2.1.2	JavaScript	5
	2.2	Client	basierte Webanwendungen	6
		2.2.1	JavaScript-basierte Webanwendungen	6
		2.2.2		6
	2.3	Nachv	ollziehbarkeit	7
		2.3.1	Nutzen	7
		2.3.2	Nachvollziehbarkeit bei SPAs	7
		2.3.3	Browserbedingte Hürden	8
				8
			2.3.3.2 Content-Security-Policy	9
		2.3.4	Logdaten	9
		2.3.5	Fernzugriff	9
3	Met	hoden	und Praktiken 1	0
	3.1	Metho	den	0
		3.1.1	Logging	0
		3.1.2	Structured Logging	0
		3.1.3	Metriken	0
		3.1.4	Tracing	.1
		3.1.5	Fehlerberichte	2
	3.2	Prakti		2
		3.2.1	Observability	2

In halts verzeichnis

		3.2.2	, 9	13
		3.2.3	Log Management	13
		3.2.4	Application Performance Monitoring (APM)	13
		3.2.5	0 ()	14
		3.2.6	V	14
		3.2.7	Error/Crash Monitoring	14
		3.2.8	Session-Replay	14
	3.3	Werkz	euge und Technologien	15
		3.3.1	OpenTelemetry	16
		3.3.2	Weiteres	17
		3.3.3	New Relic	17
		3.3.4	Dynatrace	18
		3.3.5	Sentry	18
		3.3.6	LogRocket	19
		3.3.7	Splunk	19
		3.3.8	Honeycomb	20
		3.3.9	Jaeger	21
		3.3.10	TraVista	21
		3.3.11	FAME	22
		3.3.12	The Kaiju Project	23
4	Ers	tellung	Proof-of-Concept	24
	4.1	Anford	$\operatorname{lerungen}$	24
		4.1.1	Definitionen	24
		4.1.2	Anforderungsanalyse	25
		4.1.3	Anforderungsliste	26
			4.1.3.1 Grundanforderungen	26
			4.1.3.2 Funktionsumfang	27
			4.1.3.3 Eigenschaften	29
			4.1.3.4 Partnersysteme	29
	4.2	Vorste	llung der Demoanwendung	31
		4.2.1	Verhaltensdefinition	31
		4.2.2	Backend	35
		4.2.3	Frontend	36
		4.2.4	Fehlerszenarien	40
			4.2.4.1 "Keine Übersetzungen"	40
			4.2.4.2 "Gültige Straßen sind ungültig"	40
				40
			<i>"</i>	41
				41
			,, , , , , , , , , , , , , , , , , , , ,	41
			1.2.1.0 ", or and resonanting worden as oscillation	

In halts verzeichnis

		4.2.5	4.2.4.8 Repräser	"Lange ${ m V}$ ntation .											41 42
	4.3		pt												43
	1.0	4.3.1	•	rarbeitung											43
			4.3.1.1	Erhebung	•										43
			4.3.1.2	Auswerti	_										44
			4.3.1.3	Visualisi											44
		4.3.2	Architek	tur							 		 		 45
		4.3.3	Technolo	gie-Stack							 				 47
		4.3.4	Übertrag	gbarkeit .							 				 48
	4.4	Impler	nentierun	g							 			•	 49
5	Erge	ebnis													50
	5.1		$_{ m nstration}$								 		 		 50
	5.2	Kriteri	ien								 		 		 50
	5.3	Überti	agbarkeit								 		 		 50
	5.4	Einsch	ätzung vo	on anderei	n Entv	vickl	ern	(op	tion	nal)	 				 50
6	$\mathbf{A}\mathbf{b}\mathbf{s}$	$_{ m chluss}$													52
	6.1	Fazit									 		 		 52
	6.2	Ausbli	ck								 				 52
Aı	nhan	${f g}$													53
7	Anh 7.1		n zur Bro	wserkomp	atibili	ität				• •	 		 	•	 53 53
Ei	desst	attlich	ıe Erklär	ung											5 4
Al	okürz	$_{ m zungsv}$	erzeichn	is											55
Αŀ	bild	ungsve	erzeichni	${f s}$											56
Ta	belle	enverze	eichnis												57
			zeichnis												57
•			eichnis												58

1 Einleitung

1.1 Motivation

Die Open Knowledge GmbH ist als branchenneutraler Softwaredienstleister in einer Vielzahl von Branchen wie Automotive, Logistik, Telekommunikation und Versicherungs- und Finanzwirtschaft aktiv. Zu den zahlreichen Kunden der Open Knowledge GmbH gehört auch ein führender deutscher Direktversicherer.

Ein Direktversicherer bietet Versicherungsprodukte seinen Kunden ausschließlich im Direktvertrieb, d. h. vor allem über das Internet und zusätzlich auch über Telefon, Fax oder Brief an. Im Unterschied zum klassischen Versicherer verfügt ein Direktversicherer jedoch über keinen Außendienst oder Geschäftsstellen, bei denen Kunden eine persönliche Beratung bekommen können. Da das Internet der primäre Vertriebskanal ist, gehört heute ein umfassender Online-Auftritt zum Standard. Dieser besteht typischerweise aus einem Kundenportal mit der Möglichkeit Angebote für Versicherungsprodukte berechnen und abschließen zu können, sowie persönliche Daten und Verträge einzusehen.

Während in der Vergangenheit Online-Auftritte i. d. R. als Webanwendung mit serverseitigen Rendering realisiert wurden, sind heutzutage Javascript-basierte Webanwendung mit clientseitigem Rendering die Norm. Bei einer solchen Webanwendung befindet sich die gesamte Logik mit Ausnahme der Berechnung des Angebots und der Verarbeitung der Antragsdaten im Browser des Nutzers.

Im produktiven Einsatz kommt es auch bei gut getesteten Webanwendungen hin und wieder vor, dass es zu unvorhergesehenen Fehlern in der Berechnung oder Verarbeitung kommen kann. Liegt die Ursache für den Fehler im Browser, z. B. aufgrund einer ungültigen Wertkombination, ist dies eine Herausforderung. Während bei Server-Anwendungen Fehlermeldungen in den Log-Dateien einzusehen sind, gibt es für den Betreiber der Anwendung i. d. R. keine Möglichkeit die notwendigen Informationen über den Nutzer und seine Umgebung abzurufen. Noch wichtiger ist, dass er mitbekommt, wenn ein Nutzer ein Problem bei der Bedienung der Anwendung hat. Ohne eine aktive Benachrichtigung durch den Nutzer, sowie detaillierte Informationen, ist es dem Betreiber nicht möglich, Kenntnis über das Problem zu erlangen, geschweige denn dieses nachzustellen.

Dies stellt ein Kernproblem von Webanwendungen dar [Fil20]. Im Rahmen der Arbeit soll daher ein Proof-of-Concept konzipiert und umgesetzt werden, welcher dieses Kernproblem am Beispiel einer Demoanwendung löst.

1.2 Zielsetzung

Das grundlegende Ziel dieser Arbeit soll es sein, den Betreibern einer JavaScript-basierten Webanwendung die Möglichkeit zu geben das Verhalten ihrer Applikation und die Interaktionen von Nutzern. Diese Nachvollziehbarkeit soll insbesondere bei Fehlerfällen u. Ä. gewährleistet sein, aber auch in sonstigen Fällen soll eine Nachvollziehbarkeit möglich sein. Eine vollständige Überwachung der Applikation und des Nutzers (wie bspw. bei Werbe-Tracking) sind jedoch nicht vorgesehen. Daraus ergibt sich die Forschungsfrage:

Wie sieht ein Ansatz aus, um bei clientseitigen JavaScript-basierten Webanwendung den Betreibern eine Nachvollziehbarkeit zu gewährleisten?

Vom Leser wird eine Grundkenntnis der Informatik in Theorie oder Praxis erwartet, aber es sollen keine detaillierten Erfahrungen in der Webentwicklung vom Leser erwartet werden. Daher sind das Projektumfeld und seine besonderen Eigenschaften zu erläutern.

Die anzustrebende Lösung soll ein Proof-of-Concept sein, welches eine, zu erstellenden, Demoanwendung erweitert. Die Demoanwendung soll repräsentativ eine abgespeckte JavaScript-basierte Webanwendung darstellen, bei der die zuvor benannten Hürden zur Nachvollziehbarkeit bestehen.

Vor der eigentlichen Lösungserstellung soll jedoch die theoretische Seite beleuchtet werden, indem die Nachvollziehbarkeit sowie Methoden und Praktiken zur Erreichung dieser beschrieben werden. Es gilt aktuelle Literatur und den Stand der Technik zu erörtern, in Bezug auf die Forschungsfrage. Beim Stand der Technik sollen Technologien aus Fachpraxis und Literatur näher betrachtet werden und beschrieben werden.

Weiterhin gilt es zu beleuchten, wie die Auswirkungen für die Nutzer der Webanwendung sind. Wurde die Leistung der Webanwendung beeinträchtigt (erhöhte Ladezeit, erhöhte Datenlast)? Werden mehr Daten von ihm erhoben und zu welchem Zweck?

Am Ende der Ausarbeitung soll überprüft werden, ob und wie die Forschungsfrage beantwortet wurde. Auch die Übertragbarkeit der erstellten Lösung (PoC) und Ergebnisse gilt es hierbei näher zu betrachten.

1.2.1 Abgrenzung

Die Demoanwendung wird als Single-Page-Application (SPA) realisiert, denn hier bewegt sich das Projektumfeld von der Open Knowledge GmbH. Bei der Datenerhebung und -verarbeitung sind datenschutzrechtliche Aspekte nicht näher zu betrachten. Bei der Betrachtung von Technologien aus der Wirtschaft ist eine bewertende Gegenüberstellung nicht das Ziel.

1.3 Vorgehensweise

Zur Vorbereitung eines Proof-of-Concepts wird zunächst die Ausgangssituation geschildert. Speziell wird auf die Herausforderungen der Umgebung "Browser" eingegangen, besonders in Hinblick auf die Verständnisgewinnung zu Interaktionen eines Nutzers und des Verhaltens der Applikation. Des Weiteren wird die Nachvollziehbarkeit als solche formal beschrieben und was sie im Projektumfeld genau bedeutet.

Darauf aufbauend werden allgemeine Methoden vorgestellt, mit der die Betreiber und Entwickler eine bessere Nachvollziehbarkeit erreichen können. Dabei werden die Besonderheiten der Umgebung beachtet und es wird erläutert, wie diese Methoden in der Umgebung zum Einsatz kommen können. Hiernach sind Ansätze aus der Literatur und Fachpraxis zu erörtern, welche eine praktische Realisierung der zuvor vorgestellten Methoden darstellen.

Auf Basis des detaillierten Verständnisses der Problemstellung und der Methoden wird nun ein Proof-of-Concept erstellt. Ziel soll dabei sein, die Nachvollziehbarkeit einer Webanwendung zu verbessern. Der Proof-of-Concept erfolgt auf Basis einer Demoanwendung, die im Rahmen dieser Arbeit erstellt wird.

Ist ein Proof-of-Concept nun erstellt, wird analysiert, welchen Einfluss es auf die Nach-vollziehbarkeit hat und ob die gewünschten Ziele erreicht wurden (vgl. Zielsetzung).

1.4 Open Knowledge GmbH

Die Bachelorarbeit wird im Rahmen einer Werkstudententätigkeit innerhalb der Open Knowledge GmbH erstellt. Der Standortleiter des Standortes Essen, Dipl.-Inf Stephan Müller, übernimmt die Zweitbetreuung.

Die Open Knowledge GmbH ist ein branchenneutrales mittelständisches Dienstleistungsunternehmen mit dem Ziel bei der Analyse, Planung und Durchführung von Softwareprojekten zu unterstützen. Das Unternehmen wurde im Jahr 2000 in Oldenburg, dem Hauptsitz des Unternehmens, gegründet und beschäftigt heute 74 Mitarbeiter. Mitte 2017 wurde in Essen der zweite Standort eröffnet, an dem 13 Mitarbeiter angestellt sind.

Die Mitarbeiter von Open Knowledge übernehmen in Kundenprojekten Aufgaben bei der Analyse über die Projektziele und der aktuellen Ausgangssituationen, der Konzeption der geplanten Software, sowie der anschließenden Implementierung. Die erstellten Softwarelösungen stellen Individuallösungen dar und werden den Bedürfnissen der einzelnen Kunden entsprechend konzipiert und implementiert. Technisch liegt die Spezialisierung bei der Mobile- und bei der Java Enterprise Entwicklung, bei der stets moderne Technologien und Konzepte verwendet werden. Die Geschäftsführer als auch diverse Mitarbeiter der Open Knowledge GmbH sind als Redner auf Fachmessen wie der Javaland oder als Autoren in Fachzeitschriften wie dem Java Magazin vertreten.

2 Ausgangssituation

2.1 Browserumgebung

Web Browser haben sich seit der Veröffentlichung von Mosaic, einer der ersten populären Browser, im Jahr 1993 stark weiterentwickelt. Das Abrufen und Anzeigen von statischen HTML-Dokumenten wurde mithilfe von JavaScript um interaktive und später um dynamische Inhalte erweitert. Heutzutage können in Browsern komplexe Webanwendungen realisiert werden, welche zudem browserunabhängig entwickelt werden können. Durch diese Entwicklung und die breiten Anwendungsfälle, besitzt die Umgebung "Browser" besondere Eigenschaften, welche nachfolgend beschrieben werden.

2.1.1 Browserprodukte

Die Vielfalt an Browsern bereitet Webentwicklern immer wieder eine Herausforderung, nämlich ob ein von ihnen bereitgestelltes Produkt für die Nutzer einwandfrei funktioniert, unabhängig der Browserpräferenz des Nutzers. Die Häufigkeit solcher Probleme, auch Cross-Browser-Incompatibilities (XBI) genannt, hat jedoch abgenommen. Dies ist unter anderem durch den Trend von offenen Web-Standards, wie die des W3C [W3C20], erklärbar.

Generell lässt sich feststellen, dass auch in der Literatur die Veröffentlichungen in Bezug auf (In-)Kompatibilität von Browsern abnimmt, wie in Abbildung 2.1 zu betrachten. Dies spricht dafür, dass das Problem von XBIs weniger präsent ist als zuvor. Somit wird die besondere Hürde, die XBIs darstellen, nicht als eine relevante Hürde in dieser Arbeit angesehen.

Abb. 2.1: Studien zur Browserkompatibilität, eigene Darstellung (vgl. 7.1)

Im Jahr 2020 gab es weitere Entwicklungen, die die Kompatibilität zwischen Browsern erhöhte. Microsoft ist beim Folgeprodukt zum Internet Explorer, dem Microsoft Edge Browser, von einer proprietären Browser-Engine zu Chromium gewechselt [Mic20b] und verwendet denselben Kern wie Chrome und Opera. Ende 2020 wurde zudem der Support für den Internet Explorer 11 eingestellt [Mic20a]. Im Januar 2021 meldete Stat Counter eine Marktverteilung bei Desktop-Browsern von 65,96% Chrome, 10,43% Safari, 8,39% Firefox, 7,43% Edge, 2,59% Opera und 2,54% Internet Explorer [Sta21].

2.1.2 JavaScript

Als JavaScript 1997 veröffentlicht und in den NetScape Navigator integriert wurde, gab es die berechtigen Bedenken, dass das Öffnen einer Webseite dem Betreiber erlaubt Code auf dem System eines Nutzers auszuführen. Damit dies nicht eintritt, wurde der JavaScript Ausführungskontext in eine virtuelle Umgebung integriert, einer Sandbox [Pow06].

Die JavaScript-Sandbox bei Browsern schränkt u. A. den Zugriff auf das Dateisystem ein. Auch Zugriff auf native Bibliotheken oder Ausführung von nativem Code ist nicht möglich [OKSK15]. Browser bieten darüber hinaus aber einige Schnittstellen an, die es erlauben z. B. Daten beim Client zu speichern oder auch Videos abzuspielen.

1999 nahm Microsoft im Internet Explorer 5.0 eine neue Methode in ihre JavaScript-Umgebung auf: Ajax (Asynchronous JavaScript and XML). Ajax erlaubt die Datenabfrage von Webservern mittels JavaScript. Hierdurch können Inhalte auf Webseiten dynamisch abgefragt und dargestellt werden, wofür zuvor ein weiterer Seitenaufruf notwendig war. Das Konzept wurde kurz darauf von allen damals gängigen Browser übernommen. Jedoch fand erst mit der Standardisierung 2006 durch das W3C [W3C06] die Methode bei Entwicklern Anklang und ist seitdem der Grundstein für unser dynamisches und interaktives Web [Hop06].

Durch dies wurden Webanwendungen immer beliebter, aber Entwickler klagten darüber, dass Browser die Abfragen von JavaScript nur auf dem bereitstellenden Webserver, also "same-origin", erlauben [Ran09]. Um dies zu ermöglichen, wurde im selben Jahr der Standardisierung von Ajax ein erster Entwurf zur Absicherung von Abrufen domänenfremder Ressourcen eingereicht [OPBW06], das sogenannte Cross-Origin Resource Sharing.

Über die Jahre wurde der JavaScript Standard immer umfangreicher, was Entwicklern erlaubte mächtige Werkzeuge sowie Frameworks zu entwickeln, welche die Erstellung von Webanwendungen vereinfachen. Mit Webanwendungen war es nun möglich, einen großen Teil der Funktionalitäten eines Produktes abzubilden. Diese "clientbasierten" Anwendungen werden im nächsten Abschnitt näher beleuchtet.

2.2 Clientbasierte Webanwendungen

2.2.1 JavaScript-basierte Webanwendungen

Eine JavaScript-basierte Webanwendung, ist eine Webanwendung, die in JavaScript realisiert wurde und bei jener der Browser als Laufzeitumgebung verwendet wird. Dies umfasst unter anderem Interaktivität und dynamische Inhaltsdarstellung. Hierbei werden meist nur Grundgerüste der Anwendung in HTML und CSS bereitgestellt, jedoch werden die eigentlichen Inhalte dynamisch mit JavaScript erstellt. Die Inhalte werden auch über zusätzliche Schnittstellen der Webanwendung zu Partnersystemen bereitgestellt.

2.2.2 Single-Page-Applications

Single-Page-Applications (SPAs) sind eine Teilmenge der JavaScript-basierten Webanwendungen und gehen bei der dynamischen Inhaltsdarstellung einen Schritt weiter. Die gesamte Anwendung wird über ein einziges HTML-Dokument und die darin referenzierten Inhalte erzeugt. Oftmals wird auf Basis dessen ein erheblicher Teil der Logik auf Clientseite umgesetzt, was die Anwendung zu einem Rich- bzw. Fat-Client macht.

Für das Bereitstellen einer solchen Applikation, ist meist nur ein simpler Webserver ausreichend und ein oder mehrere Dienste, von dem aus die SPA ihre Inhalte abrufen kann. Populäre Frameworks sind beispielsweise Angular [Goo20a], React [Fac20b] oder Vue.js [YM20] zur Realisierung von SPAs.

SPAs bieten zudem durch ihre clientbasierte Herangehensweise Stakeholdern die Möglichkeit, die Anwendung als Offline-Version bereitzustellen. Sind neben der Logik keine externen Daten notwendig oder wurden diese bereits abgerufen und gecached, so kann eine SPA auch "offline" von Benutzern verwendet werden. Weiterhin steigern SPAs die User Experience (UX), indem sie u. A. schneller agieren, da keine kompletten Seitenaufrufe notwendig sind [AMWR20].

Durch diesen grundsätzlich anderen Ansatz, gibt es aber auch negative Eigenschaften. Unter anderem werden native Browserfunktionen umgangen, wie die automatisch befüllte Browserhistorie, denn es werden keine neuen HTML-Dokumente angefragt. Weiterhin leiden "virtuelle" Verlinkungen und Buttons darunter, dass sie nicht alle Funktionen unterstützten, die normale HTML-Elemente aufweisen. Um dies und andere verwandte Probleme zu beheben, besitzen die zuvor genannten Frameworks spezielle Implementierungen oder ggf. muss eine zusätzliche Bibliothek herangezogen werden, wie z. B. die jeweiligen Router-Bibliotheken.

Nichtsdestotrotz ist ein jahrelanger Trend von der Einführung von Single-Page-Applications zu erkennen, heutzutage steht eine große Auswahl an erprobten Technologien zur Verfügung [GB20].

2.3 Nachvollziehbarkeit

Neben der Umgebung Browser beschäftigt sich die arbeit hauptsächlich mit der Nachvollziehbarkeit. Nachvollziehbarkeit bedeutet allgemein, dass über ein resultierendes Verhalten eines Systems auch interne Zustände nachvollzogen werden können. Dies ist keine neue Idee, sondern fand bereits 1960 im Gebiet der Kontrolltheorie starke Bedeutung [Ká60]. Nach Freedman [Fre91] und Scrocca et al. [STM⁺20] lässt sich diese Definition auch auf Softwaresysteme übertragen und wird dabei mit "Observability" bezeichnet. Scrocca adaptiert dabei die von Majors genannte Definition:

Observability for software is the property of knowing what is happening inside a distributed application at runtime by simply asking questions from the outside and without the need to modify its code to gain insights.

2.3.1 Nutzen

Tritt beispielsweise ein Softwarefehler (Bug) bei einem Nutzer auf, aber die Betreiber erhalten nicht ausreichende Informationen, so kann der Bug ignoriert werden oder gering priorisiert und in Vergessenheit geraten. Dies geschah im Jahr 2013, als Khalil Shreateh eine Sicherheitslücke bei Facebook fand und diesen bei Facebooks Bug-Bounty-Projekt meldete [SD13]. Sein Fehlerreport wurde aufgrund mangelnder Daten abgelehnt:

Unfortunately your report [...] did not have enough technical information for us to take action on it. We cannot respond to reports which do not contain enough detail to allow us to reproduce an issue.

Durch den Bug konnte Shreateh auf die private Profilseite von Nutzern schreiben, ohne dass er mit ihnen vernetzt war. Um Aufmerksamkeit auf das Sicherheitsproblem zu erregen, hinterließ er eine Nachricht auf der Profilseite von Facebook Gründer und CEO Mark Zuckerberg. Erst danach nahm sich Facebooks Team dem Problem an.

2.3.2 Nachvollziehbarkeit bei SPAs

Speziell in dieser Arbeit wird die Nachvollziehbarkeit bei Webanwendungen näher betrachtet. Wie zuvor in Abschnitt 2.2 "Clientbasierte Webanwendungen" geschildert, gibt es bei Webanwendungen und insbesondere Singe-Page-Applications besondere Eigenschaften, die es den Betreibern und Entwicklern erschwert das Verhalten einer Applikation und die Interaktionen eines Nutzers nachzuvollziehen. Meist lassen sich aus Sicht der Betreiber nur die Kommunikationsaufrufe der Anwendung zum Backend nachvollziehen, aber nicht wie es dazu gekommen ist und wie diese Daten weiterverarbeitet werden. Somit ist eine SPA standardmäßig nicht gut nachvollziehbar.

2.3.3 Browserbedingte Hürden

2.3.3.1 Cross-Origin Resource Sharing (CORS)

Wie aus der Geschichte zu JavaScript zu sehen ist, entwickelte CORS sich aus dem Wunsch von Entwicklern, nicht auf einen einzelnen Webserver beschränkt zu sein. Diese Einschränkung existierte, um vor Nutzer vor Missbrauch zu schützen. CORS hebt diese Einschränkung teilweise auf, aber unter Berücksichtigung der sicherheitskritischen Aspekte. Das Konzept von CORS stellt sicher, dass aus einer JavaScript-Umgebung heraus keine Ressourcen von Webservern angefragt werden, welche nicht explizit der Anfrage zustimmen [MM20c].

Wie eine "cross-origin" Ajax-Anfrage nach dem Konzept von CORS gehandhabt wird, ist in Abbildung 2.2 zu betrachten. Wenn eine HTTP-Anfrage nicht standardmäßig¹ist, führt der Browser einen sogenannten "Preflighted Request" aus, bei dem vor der eigentlicher Anfrage eine zusätzliche OPTIONS-Anfrage gesendet wird. Bestätigt nun der Webserver in seiner Antwort auf die OPTIONS-Anfrage, dass die Anfrage so erlaubt ist, wird auch die eigentliche Ajax-Anfrage ausgeführt. Ansonsten schlägt die Anfrage fehl und im JavaScript-Kontext ist lediglich der Fehlschlag zu sehen, ohne einen Hinweis auf die Diskrepanz bzgl. CORS.

Abb. 2.2: Flowchart über den Ablauf von Ajax-Anfragen mit CORS [Blu15]

¹Standardmäßig ist eine Anfrage, wenn 1. die Methode GET, HEAD oder POST entspricht; 2. keine eigene Headern enthält; und 3. der "Content-Type" von POST-Anfragen einem der folgenden Werte entspricht: "application/x-www-form-urlencoded", "multipart/form-data" oder "text/plain" [MM20c].

2.3.3.2 Content-Security-Policy

Neben CORS gibt es im Browser eine Möglichkeit zu bestimmen, welche Funktionalitäten einer Webanwendung zur Verfügung stehen und wie diese vom Browser einzuschränken sind. Diese Funktion heißt Content-Security-Policy (CSP) und dient unter anderem dem Schutz vor Cross-Site-Scripting, indem eine Webanwendung beschränken kann, welche Funktionalitäten in JavaScript verfügbar sind und von wo aus Skripte und Daten geladen werden dürfen [MM20b]. Weiterhin kann bei einem Versuch diese Regeln zu umgehen, eine Berichterstattung darüber eingerichtet werden.

2.3.4 Logdaten

Ähnlich wie bei anderen Umgebungen gibt es eine standardisierte Log- bzw. Konsolenausgabe für die JavaScript Umgebung [MM20a]. Diese Ausgabe ist aber für den Standard-Benutzer eher unbekannt und es kann nicht erwartet werden, dass Nutzer dieses Log bereitstellen. Hinzukommend ist es, durch die zuvor beschrieben Härtungsmaßnahmen von Browsern, nicht möglich das Log direkt in eine Datei zu schreiben.

Um die Logdaten also zu erheben, gilt es entweder ein spezielles Log-Framework in der Webanwendung zu verwenden oder die bestehende Schnittstelle zu überschreiben oder zu wrappen. Nachdem die Datenerhebung gewährleistet ist, gilt es jedoch zudem die Daten an ein Partnersystem weiterzuleiten, welches die Beachtung der zuvor beschriebenen Einschränkungen erfordert. Alles in Allem stellt sich die Logdatenerhebung als nicht trivial dar, eine genauere Betrachtung erfolgt in der Untersuchung bestehender Lösungen.

2.3.5 Fernzugriff

Ein weiterer Punkt, der den "Browser" von anderen Umgebungen unterscheidet, ist, dass die Betreiber und Entwickler sich normalerweise nicht auf die Systeme der Nutzer schalten können. Bei Expertenanwendungen, bei denen die Nutzerschaft bekannt ist, ließe sich solch eine Funktionalität ggf. realisieren. Es gibt jedoch keine standardmäßige Funktionalität auf das gesetzt werden kann, wie z. B. das Remote Application Debugging [Ora20] von Java. Weiterhin sind bei einer Webanwendung, die für den offenen Markt geschaffen ist, hierbei sind die Nutzer zahlreich sowie unbekannt und so eine Funktionalität lässt sich nicht realistisch umsetzen.

3 Methoden und Praktiken

3.1 Methoden

3.1.1 Logging

Mit Logging bezeichnet man die systematische Protokollierung von Softwareprozessen und ihren internen Zuständen. Mithilfe von Logs, also Protokollen, kann Betreibern und Entwicklern ermöglicht werden, dass sie das Anwendungsverhalten nachvollziehen können. Beispielsweise ist es sinnvoll einen fehlgeschlagenen Login eines Nutzers zu loggen, dabei ist es hilfreich, wenn viele Kontextinformationen mitgeloggt werden.

Logging bei Webfrontends stellt eine besondere Hürde dar, denn wie bereits in Unterabschnitt 2.3.4 geschildert, müssen die Logs an ein Partnersystem weitergeleitet werden.

3.1.2 Structured Logging

Logmeldungen erfolgen meist textbasiert und in einem menschenlesbaren Format. Wenn nun jedoch Informationen aus einer großen Menge von Logs extrahiert werden sollen, ist so ein simples Format hinderlich. Hierbei kommt Structured Logging ins Spiel, bei dem zwar auch menschenlesbare Logmeldungen produziert werden, aber das Format ist fest definiert und erlaubt einer anderen Software Informationen einfacher zu extrahieren.

3.1.3 Metriken

Mit Metriken versucht man Softwareeigenschaften in Zahlenwerten abzubilden. Diese Zahlenwerte werden über Messungen ermittelt. Beispiele für Metriken sind:

- 1. Eine Zeitmessung, bzgl. der Dauer einer HTTP-Anfrage
- 2. Eine Messung der CPU-Auslastung

Mit den Ergebnissen lassen sich wiederum Rückschlüsse zu Softwareeigenschaften ziehen, dass bspw. eine Anfrage deutlich länger benötigt als andere "gleichwertige" Anfragen. Weiterhin lassen sich historische Veränderungen in den Metriken erkennen und können unerwünschte Abweichungen aufdecken.

3.1.4 Tracing

Tracing beschäftigt sich mit dem Aufzeichnen von Kommunikationsflüssen. Hierbei erfasst Tracing einerseits die Kommunikationsflüsse innerhalb einer Applikation bzw. innerhalb eines Systems. Andererseits zeichnet Tracing aber auch die Kommunikationsflüsse bei verteilten Systemen auf, um diese, meist komplexen Zusammenhänge, zu veranschaulichen. Ein herstellerunabhängiger Standard, der sich aus diesem Gebiet entwickelt hat, ist OpenTracing [Ope20g].

OpenTracing definiert zwei grundlegende Objekte: Traces und Spans. Ein Trace ist eine Menge an Events, die über eine einzelne logische Aktion - wie z. B. den Druck eines Knopfes - ausgelöst wurde oder resultiert. Spans besitzen den Namen einer Methode oder Operation, welche der Span umschließt. Wird in der Methode oder Operation eine weitere Methode oder Operation aufgerufen, welche von einem Span umschlossen ist, so ist dies nun ein Kindspan des ursprünglichen Spans. Spans haben einen Start- sowie einen Endzeitpunkt und sie speichern die Beziehung zu ihrem Elternspan (außer es handelt sich um den "root"-Span). Sie können darüber hinaus Attribute enthalten, sowie eingetretene Events.

OpenTracing definiert Traces implizit über ihre Spans. Ein Trace ist damit ein gerichteter Graph ohne Zyklus, wobei die Knoten hierbei die Spans darstellen und die Kanten die Eltern-/Kindbeziehung veranschaulichen [Ope20f]. Ein beispielhafter Trace mit seinen Spans und deren Beziehungen ist in Abbildung 3.1 zu betrachten. Die zeitliche Reihenfolge der Spans kann auch eine hilfreiche Visualisierung sein, um die Entwicklung der Spans zu verstehen (vgl. Abbildung 3.2). Diese Definition wurde in den Nachfolgestandard OpenTelemetry aufgenommen, welcher an späterer Stelle erläutert wird.

Ein verteilter Trace, oftmals "Distributed Trace" genannt, ist ein Trace, der sich aus den Events von verschiedenen Systemen zusammensetzt, die miteinander kommunizieren. Hierbei beinhaltet der Trace Events, die über die Grenzen von Anwendungen, Prozessen und Netzwerken hinausgehen [Ope20f].

Abb. 3.1: Kausale Beziehung zwischen Spans. Eigene Darstellung.

Abb. 3.2: Zeitliche Beziehung zwischen Spans. Eigene Darstellung.

3.1.5 Fehlerberichte

Fehlerberichte sind ein klassisches Mittel, um den Nutzer selber aktiv werden zu lassen und zu erfragen, welche Aktionen er durchgeführt hat und was schiefgelaufen ist (vgl Abbildung 3.3). Hiermit können Fehler, aber auch unverständliche Workflows, aufgedeckt werden. Weiterhin kann die Intention des Nutzers ermittelt werden, vorausgesetzt er gibt dies an.

Konträr zu den genannten stehen jedoch die von Bettenburg et al. [BJS⁺08] gefunden Ergebnisse über die Effektivität von Fehlerberichten. Denn Nutzer meldeten Informationen und Details, die sich für die Entwickler als nicht allzu hilfreich herausstellten. Diese Diskrepanz kann u. A. dadurch erläutert werden, dass Nutzer im Regelfall kein technisches Verständnis vom System vorweisen.

Abb. 3.3: Fehlerbericht in der Instagram App [Fac20a]

3.2 Praktiken

In der Fachpraxis haben sich einige Technologien über die Jahre entwickelt und etabliert, welche die Nachvollziehbarkeit von Anwendungsverhalten und Nutzerinteraktion ermöglichen oder verbessern. Auf Basis der zuvor vorgestellten Methoden und teils neuen Ansätze haben sich in der Wirtschaft einige Praktiken entwickelt. Diese werden folgend näher beleuchtet.

3.2.1 Observability

In der Wirtschaft hat sich bei Werkzeugen, die auf eine verbesserte Nachvollziehbarkeit abzielen, der Begriff "Observability" etabliert, um diese zu beschreiben. Es kann mit "Beobachtbarkeit" übersetzt werden, aber ließe sich auch freier mit Nachvollziehbarkeit gleichsetzen. Observability enstand aus dem klassischen Monitoring von Software, aber beinhaltet neben Monitoring noch einige weitere Disziplinen, wie Logging, Tracing und Metriken. Graf [Gra20] definiert Observability wie folgt:

Ziel ist es, Anwendungen und Systeme exakt zu beobachten, Informationen über technische Fehlfunktionen zu erhalten und schnell an die Verantwortlichen zu übermitteln. Logfiles, Informationen zur Ressourcennutzung und

Anwendungs-Traces sollen den Administratoren und Entwicklern dabei helfen, die Fehlerursachen zu erkennen, die Probleme zu beheben und künftige Ausfälle nach Möglichkeit zu vermeiden [Sri18].

3.2.2 System Monitoring

System Monitoring beschäftigt sich mit der Überwachung der notwendigen Systeme und Dienste in Bezug auf Hardware- und Softwareressourcen. Es handelt sich hierbei um ein projektunabhängiges Monitoring, welches sicherstellen soll, dass die Infrastruktur funktionstüchtig bleibt.

Ein Beispiel für System Monitoring wäre u. A., wenn man eine Menge an Systemen auf die Festplatten- und CPU-Auslastung hin kontrolliert und überwacht. Es können weitere Aspekte überwacht werden, aber im Regelfall hat die Überwachung selbst nichts mit einem eigentlichen Projekt zu tun, außer dass die Infrastruktur hierfür sichergestellt wird.

3.2.3 Log Management

Log Management umfasst die Erfassung, Speicherung, Verarbeitung und Analyse von Logdaten von Anwendungen. Neben den datenspezifischen Funktionen bieten solche Werkzeuge oftmals fundierte Suchfunktionen und Visualisierungsmöglichkeiten. Um die Daten aus einer Anwendung heraus zu exportieren, gibt es meist eine Vielzahl an Integrationen für Frameworks und Logbibliotheken.

Einer der wichtigsten Punkte beim Log Management, ist der Umgang mit großen Datenmengen und die gewünschten Operationen, die Nutzer damit durchführen möchten.

3.2.4 Application Performance Monitoring (APM)

Beim Application Performance Monitoring werden Messdaten innerhalb von Anwendungen gesammelt, um das Anwendungsverhalten nachvollziehbar zu gestalten [ABC⁺16]. Auf Basis der Daten lassen sich u. A. Abweichungen von der Norm feststellen, von einzelnen Systemen oder vom aktuellen Gesamtsystem zu einem vorherigen Zeitpunkt.

Mithilfe von APM lassen sich allgemeine Aspekte von Software, wie die Ressourcennutzung, überprüfen aber auch spezielle Faktoren, wie die Ausführungszeit einer wichtigen Methoden, lassen sich so beleuchten. Die zu veranschaulichenden Aspekte werden zum Großteil über Metriken in numerische Werte abgebildet.

3.2.5 Real User Monitoring (RUM)

Real User Monitoring beschäftigt sich mit dem Mitschneiden von allen Nutzerinteraktionen und Umgebungseigenschaften einer Webanwendung [CGL⁺15]. Hiermit lässt sich nachvollziehen, wie ein Nutzer die Anwendung verwendet. RUM kann weiterhin dazu verwendet werden, um nachzuvollziehen, wie ein Zustand vom Nutzer erreicht worden ist. Aber es können auch ineffiziente Klickpfade hierdurch festgestellt werden und darauf basierend UX Verbesserungen vorgenommen werden.

Weiterhin ist es beim RUM auch üblich Nutzerinteraktionen gruppierte zu analysieren, um verbreitete und unübliche Sitzungen zu identifizieren. Hiermit wird die Nutzerschaft und ihre Verhaltensweisen nachvollziehbarer gemacht.

3.2.6 Synthetic Monitoring

Beim Synthetic Monitoring werden Endnutzer simuliert, um Aspekte wie Funktionalität oder Verfügbarkeit zu verifizieren [CGL⁺15]. Hierbei können Werkzeuge zur Browserautomatisierung eine echte Benutzung einer Webanwendung simulieren. Des Weiteren ist aber auch eine Nachstellung des Verhaltens der Webanwendung eine Option, indem z. B. Aufrufe zu Partnersystemen simuliert werden.

3.2.7 Error/Crash Monitoring

Das Error Monitoring konzentriert sich auf das Erfassen und Melden von Fehlern [BT19]. Neben den eigentlichen Fehlern, werden meist alle verfügbaren Kontextinformationen mit erfasst. Darunter finden sich u. A. Daten aus den Gebieten RUM und Logging. Das Error Monitoring wird oftmals eng mit einem Issue-Management verbunden, da aufgetretene Fehler und deren Behebungen zu verfolgen sind [BT19].

3.2.8 Session-Replay

Session-Replay beschreibt das Vorgehen, eine Sitzung eines Nutzers nachzustellen, so als ob sie gerade passiert. Hierbei können einzelne Aspekte der Anwendung nachgestellt werden, bspw. der Kommunikationsablauf oder die DOM-Manipulationen. Desto mehr Aspekte nachgestellt werden, desto realitätsnaher ist die Nachstellung und entsprechend hilfreich ist sie beim Nachvollziehen.

Realitätsnahes Session-Replay nimmt so eine enorme Datenmenge für jede Nutzersitzung auf und benötigt besonders bei Browsern eine effiziente Kommunikation, um die UX nicht negativ zu beeinflussen.

Bereits 2013 entwickelten Burg et al. [BBKE13] mit "Timelapse" ein Framework, um Benutzersitzungen bei Webanwendungen aufzunehmen und wiederzugeben. Timelapse unterscheidet sich zu gängigen Session-Replay-Ansätzen dahingehend, dass die Wiedergabe keine vereinfachte Nachstellung der Anwendung ist. Stattdessen wird die JavaScript-Eventloop abgekapselt und es werden die Aufrufe von und zu der Eventloop mitgeschnitten (vgl. Abbildung 3.4).

Beim Abspielen werden die Aufrufe dann in derselben Reihenfolge an die Eventloop übergeben (vgl. Abbildung 3.5). Dies bedeutet es ist ein exaktes wiederholtes Ausführen in der selben Umgebung möglich, und dies ermöglicht eine detaillierte Nachvollziehbarkeit des Anwendungsverhaltens. Leider wird für diesen Ansatz eine gepatchte Version von WebKit benötigt, somit auch Zugriff auf das Endnutzersystem benötigt. Aus diesem Grund und weil es sehr mehr als 5 Jahren nicht mehr gepflegt wird¹,

von

Abb.

Abb. 3.4: Mitschneiden DOM-Events, aus [BBKE13]

Abb. 3.5: Abspielen von DOM-Events, Abb. aus [BBKE13]

ist es ungeeignet für die hier angestrebte Lösung. Die vorgestellten Konzepte stellen jedoch nützliche Kernprinzipien für das Session-Replay im Allgemeinen dar.

3.3 Werkzeuge und Technologien

Bei der Recherche zu Werkzeugen und Technologien wurden einige Produkte aus Fachpraxis und Literatur näher betrachtet. Hierbei wurden die Technologien dahingehend evaluiert, ob sie für eine angestrebte Lösung in Frage kommen. Folgend werden die einzelnen Technologien vorgestellt, eine Auswahl erfolgt jedoch erst ist Unterabschnitt 4.3.3. Weiterhin ist bei dieser Vorstellung keine bewertende Gegenüberstellung das Ziel gewesen.

Des Weiteren kam bei der Recherche wiederholt der Begriff **OpenTelemetry** auf, deswegen und aufgrund der Beziehung zu OpenTracing wird der Standard folgend kurz beschrieben.

¹Timelapse GitHub Repo https://github.com/burg/replay-staging/

3.3.1 OpenTelemetry

OpenTelemetry (OTel) [Ope20b] ist ein sich derzeit entwickelnder herstellerunabhängiger Standard, um Tracing-, Metrik- und Logdaten² zu erfassen, zu verarbeiten, zu analysieren und zu visualisieren. OTel fasst die beiden Standards OpenTracing und OpenCensus [Ope20a] zusammen und hat sich als Ziel gesetzt diese zu erweitern [Jos19]. Hinter dem Standard stehen u. A. die Cloud Native Computing Foundation (CN-CF), Google, Microsoft, und führende Hersteller von Tracing- und Monitoring-Lösungen. Ein erster Release ist für Ende 2020/Anfang 2021 geplant. Ziel ist es, dass Entwicklertools und -werkzeuge benutzen können, ohne jedesmal eine hochspezifische Anbindung schreiben und konfigurieren zu müssen. Stattdessen definiert der Standard Komponenten, die spezielle Aufgabengebiete haben und mit einer allgemeinen API anzusprechen sind. Die technische Infrastruktur einer auf OTel basierenden Lösung ist in Abbildung 3.6 zu betrachten. Im groben definiert OTel folgende Komponenten: API, SDK, Exporter, Collector und Backend (vgl. Abbildung 3.7).

Abb. 3.6: Schaubild einer Lösung auf Basis von OTel [Ope20c]

In der Bachelorarbeit von Graf "Bedeutung von Telemetrie für den Software-Development-Life-Cycle" [Gra20] beschäftigt sich Graf intensiv mit dem Einfluss und dem Nutzen von Telemetrie in modernen Softwareprojekten. Speziell beschreibt er den OTel Standard und seine Bedeutung im aktuellen Gebiet der Telemetrie. Er bewertet die Entwicklung des Standards positiv, besonders auf Basis der Aspekte Interoperabilität, Plattformunabhängigkeit und Erweiterbarkeit. Jedoch mahnt er zudem, dass das Projekt noch jung ist und keine Prognosen über den Erfolg gemacht werden können. Grafs Arbeit sichert somit zu, dass OpenTelemetry ein, nicht zu vernachlässigender, Standard im Gebiet der Observability darstellt.

Abb. 3.7: OTel Komponenten [Dyn20c]

²Logging ist noch nicht gut im OTel Standard definiert/aufgenommen [Ope20e]

3.3.2 Weiteres

Bei der Recherche und Evaluierung wurden nicht alle auf dem Markt verfügbaren Werkzeuge und Technologien tiefergehend betrachtet. Deshalb werden weitere Funde, die nicht betrachtet wurden, hier kurz notiert:

- APM & RUM: AppDynamics, DataDog
- Error Monitoring: Airbrake, Instabug, Rollbar, Bugsnag, TrackJS
- Tracing oder Observability: Google Cloud Trace, Zipkin, Logz.io, Lightstep

Auch diese Auflistung stellt nicht die komplette Bandbreite an Werkzeugen und Technologien dar und die vorhergehende Betrachtung ist nicht als Empfehlung zu verstehen.

3.3.3 New Relic

New Relic [New20b] ist eine Software-as-a-Service (SaaS) der gleichnamigen Firma, welcher Betreiber von Softwareprojekten dabei unterstützt das Verhalten ihrer Anwendungen zu überwachen. Der Dienst konzentriert sich auf System Monitoring, APM und RUM und erfasst die notwendigen Daten mit proprietären Lösungen. Neben den Kernfunktionalitäten unterstützt New Relic auch Log Management, Synthetic Monitoring, Tracing und Error Monitoring.

New Relic steht sowohl als kostenlose sowie als kommerzielle Lösung zur Verfügung. Da die kostenlose Version aber benötigte Features abdeckt, wurde diese im Rahmen der Arbeit eingesetzt. Der New Relic Agent, welcher die Daten beim Client sammelt, wird über ein Skript eingebunden und sendet in regelmäßigen Abständen Daten an New Relic. Über die Oberfläche von New Relic können dann allgemeine Charakteristika der Clients betrachtet werden, wie Ladezeiten, Browserhersteller, Ajax-Antwortzeiten. Spezielle Eigenschaften eines einzelnen Nutzers sind jedoch nicht möglich auszulesen. Im Fehlerfall stehen jedoch mehr Informationen, wie Stacktrace, genaue Browserversion, Uhrzeit zur Verfügung und in der Oberfläche dargestellt.

Mithilfe dieser Informationen erhält ein Entwickler oder Betreiber einen guten Rahmen, um die Umgebung als solches zu verstehen und den eigentlichen Fehler einzusehen. Jedoch geben diese Informationen nicht darüber Aufschluss, wie es zu dem Fehler kam, also welche Ereignisse direkt dem Fehler vorgelagert waren - es sind unter anderem keine Logdaten einzusehen.

New Relic bietet darüber hinaus eine Unterstützung von OTel-Daten [New20a], welches jedoch nicht mit evaluiert werden konnte, da es in der kostenlosen Version nicht enthalten war. Auf der offiziellen Seite von OTel werden jedoch öffentliche Exporter für New Relic angeboten [Ope20d].

3.3.4 Dynatrace

Dynatrace [Dyn20b] ist eine SaaS-Lösung des gleichnamigen Unternehmens und ähnelt im Funktionsumfang stark New Relic. Es werden wie bei New Relic die Kernfunktionalitäten APM und RUM, sowie die Disziplinen Log Management, Synthetic Monitoring, Tracing und Error Monitoring.

Dynatrace bietet neben dem kostenpflichtigen Dienst eine 14-tägige Testversion dessen, welche im Rahmen dieser Arbeit verwendet wurde. Die Datenerhebung erfolgt über den Dynatrace OneAgent, welcher genauso wie New Relics Agent kontinuierlich Daten sendet. In der Oberfläche von Dynatrace sind ähnliche Datenkategorien zu finden, wie bei New Relic, wobei Dynatrace diese visuell ansprechender darstellt. Dynatrace bietet zudem auch die Funktionalität des Error Monitoring, aber leidet unter demselben Problem wie New Relic: zu wenig Kontextinformationen.

Dynatrace ist zudem dem OpenTelemetry Team beigetreten und hat angegeben, an der Weiterentwicklung mitzuhelfen [Dyn20a]. Eine Integration des Dienstes Dynatrace ins Ökosystem von OTel gibt es jedoch noch nicht.

3.3.5 Sentry

Sentry [Fun20] ist ein SaaS-Produkt der Functional Software Inc., welcher sich auf das Error Monitoring spezialisiert. Die Kernfunktionalitäten beschränken sich auf das Error Monitoring, auch wenn von anderen Praktiken einige Aspekte präsent sind, stellen diese keine eigens abgeschlossene Funktionalität dar.

Neben einer kommerziellen Version, bietet Sentry auch eine unbegrenzte kostenlose Version bereit, welche im Rahmen dieser Arbeit evaluiert wurde. Um von Webanwendungen Fehler zu erfassen und an Sentry zu melden, bietet Sentry bei NPM quelloffene Pakete an [Sen20a]. Dabei werden Pakete für folgende Frameworks bereitgestellt: JavaScript, Angular, AngularJS, Backbone, Ember, Gatsby, React und Vue.

Anders als bei den beiden vorherigen Tools wird zu Sentry nur kommuniziert, wenn ein Fehler auftritt. Hierbei werden dafür aber umso mehr Daten erhoben: Detaillierte Klickpfade des Nutzers, Logmeldungen der Browserkonsole sowie die Informationen, die auch die anderen Tools bereitstellen.

In der Oberfläche von Sentry werden die gemeldeten Fehler in sogenannten "Issues" zusammengefasst. Diese entsprechen Fehlertickets und die Oberfläche erlaubt eine Zuweisung dieser Tickets sowie ein detailliertes Nachhalten der Fehlerbehebung.

Die angeboten Fehlerinformationen von Sentry sind zahlreich und helfen beim Nachvollziehen besser als die vorher beleuchteten Werkzeuge, jedoch mangelt es an einer ganzheitlichen Nachvollziehbarkeit auch in nicht Problemszenarien.

Der Quellcode von Sentry wurde veröffentlicht und weiterhin wird bei Sentry auch eine OnPremise-Lösung, basierend auf Docker, angeboten [Sen20b].

3.3.6 LogRocket

LogRocket [Log20a] ist ein SaaS-Produkt des gleichnamigen Unternehmens und konzentriert sich auf detailliertes Session-Replay von JavaScript-basierten Clientanwendungen, um Probleme identifizieren, nachvollziehen und lösen zu können.

LogRocket bietet eine kostenlose Testversion des SaaS-Produktes an Für die Evaluierung wurde die kostenlose Testversion von LogRocket verwendet. Zur Datenerhebung wurde das Paket logrocket von NPM hinzugezogen und nach der Initialisierung sammelt es eigenständig die notwendigen Daten. Mithilfe der gesammelten Daten wird die gesamte Sitzung des Nutzers nachgestellt. Hierbei ist die Anwendung, die Nutzerinteraktionen, die Netzwerkaufrufe sowie das DOM zu sehen. Die Reproduktion wird videoähnlich aufbereitet und erlaubt ein präzises Nachvollziehen der zeitlichen Reihenfolge und Bedeutung (vgl. Abbildung 3.8).

Neben dem JavaScript SDK bietet LogRocket quelloffenene Plugins für folgende Bibliotheken: Redux, React, MobX, Vuex, ngrx, React Native. LogRocket ist zudem als OnPremise-Lösung verfügbar. Zusätzlich bietet LogRocket auch Integration für andere Tools, wie z. B. Sentry. Bei der Integration zu Sentry wird bei einem gemeldeten Fehler direkt auf das "Video" in LogRocket verlinkt, sodass der Fehler genau betrachtet werden kann.

Abb. 3.8: Beispiel eines Session-Replays bei LogRocket

3.3.7 Splunk

Splunk [Spl20] ist ein Softwareprodukt und eine SaaS-Lösung des gleichnamigen Unternehmens. Splunk fungiert als eine universelle Datensenke, z. B. für Metriken und Log-

daten. Es bietet Funktionen diese Daten zu durchsuchen, überwachen, analysieren und visualisieren. Weiterhin wird Splunk klassisch für Log Management eingesetzt, kann aber auch Aspekte von APM, RUM und Error Monitoring erfüllen.

Splunk bietet neben kostenpflichtigen Versionen der SaaS- und OnPremise-Lösung jeweils kostenlose Varianten an, welche in dieser Arbeit zur Evaluierung herangezogen wurden. Splunk selber bietet keine JavaScript-Pakete an, um Daten von einer Webanwendung an Splunk zu senden. Jedoch ist eine HTTP-Schnittstelle vorhanden mit der eigene Datensätze in Splunk gespeichert werden können.

Über diese HTTP-Schnittstelle wurden aus der Webanwendung einerseits Loginformationen gesendet, aber auch Fehlerdaten, wie man sie z. B. bei Sentry finden konnte. Die Daten ließen sich effizient in Splunk manuell durchsuchen, filtern, und visualisieren. Durch den Fakt, dass Splunk als dieselbe Datensenke für Fehler- und Loginformationen agierte, erlaubte die Kombination aus diesen beiden Datenkategorien. Speziell heißt dies, dass man bei Fehlerfällen direkt zu den Loginformationen zur selben Sitzung wechseln konnte.

Jedoch ist das Error-Monitoring nicht vergleichbar gut wie das von Sentry, da die Funktionalität des Issue-Managements nicht vorhanden ist. Weiterhin wurde evaluiert, ob auch Tracingdaten in Splunk aufgenommen werden können, aber hierbei besitzt Splunk keine gängigen Visualisierungen, wie ein Trace-Gantt-Diagramme.

3.3.8 Honeycomb

Honeycomb [Hou20] ist eine SaaS-Lösung der Hound Technology Inc. und verspricht die Speicherung vieler (Tracing-)Daten und darauf basierend effiziente Abfragen zu ermöglichen. Es ist hauptsächlich als Tracingdienst anzusehen, womit jedoch auch Aspekte des APM, RUM und Error Monitoring mit abgebildet werden können.

Honeycomb wurde mit der kostenlosen Version evaluiert. Honeycomb bietet sog. "Beelines" an, welche Werkzeuge zur automatischen Datenerfassung sind. Diese Beelines sind für Node.js, Go, Python, Java, Ruby und Rails verfügbar. Da keine Beelines für JavaScript in Browsern verfügbar ist, wurden die Daten mit OTel-Komponenten erhoben und ein eigener Exporter für Honeycomb entwickelt.

Honeycomb konzentriert sich auf die Datenkategorien Tracing und Metriken, ähnlich wie der Standard OpenTelemetry. Dabei bietet Honeycomb in der Oberfläche Möglichkeiten selber Graphen auf Basis der Daten zu erstellen. Somit ist dies keine ausgefertigte Lösung, wie es teils bei New Relic und Dynatrace zu finden ist und kann somit auf die Anforderungen des Projektes besser angepasst werden. Jedoch ist dieser Ansatz mit einem höheren Aufwand und einer notwendigen Expertise verbunden.

3.3.9 Jaeger

Jaeger wurde 2017 als ein OpenSource-Projekt der CNCF gestartet [Jae20b]. Es ist ein System für verteiltes Tracing und bietet Funktionalitäten zur Datensammlung, - verarbeitung, -speicherung bis hin zur Visualisierung. Jaeger unterstützt und implementiert den Standard OpenTracing, unterstützt aber auch Datenformate anderer Hersteller (wie z. B. Zipkin). Eine Unterstützung des OpenTelemetry Standards ist derzeit im Gange. Weiterhin kann Jaeger dazu benutzt werden, Metriken nach Prometheus [Pro20] zu exportieren, einem weiteren CNCF Projekt zur Speicherung und Visualisierung von Daten.

Jaeger spezialisiert sich auf Tracing und bietet hierfür eine skalierbare Infrastruktur zur Speicherung und Analyse der Daten. Die Traces werden als angereicherte Trace-Gantt-Diagramme dargestellt, wie in Abbildung 3.9 zu sehen ist. Hierbei sind sowohl hierarchische als auch zeitliche Beziehungen visualisiert. Wie bei OpenTracing und OpenTelemetry besteht ein Trace aus mehreren Spans, welche meist eine Methode umschließen. Zu den einzelnen Spans lassen sich weitere Informationen anzeigen, wenn vorhanden, wie bspw. Logmeldungen oder Kontextinformationen.

Anhand der Traces generiert Jaeger zudem automatisch eine Architektur, indem die Beziehungen zwischen Diensten zu sehen ist. In Abbildung 3.10 kann so eine Darstellung betrachtet werden.

3.3.10 TraVista

Passend zu Jaeger konnte in der Literatur ein Werkzeug identifiziert worden, welches auf bestehende Visualisierungen mittels Trace-Gantt-Diagrammen aufsetzt und diese erwei-

Abb. 3.9: Trace-Detailansicht. Quelle: Don Schenck [Sch20]

Abb. 3.10: Dienst-Abhängigkeits-Graph. Quelle: Yuri Shkuro [Shk20]

tert. Anand et al. [ASD+20] argumentieren in ihrem Bericht, dass Visualisierungen rund ums Tracing zu strikt die unterschiedlichen Daten einer Anwendung trennen, statt diese zu kombinieren und strukturiert zu veranschaulichen. Mit TraVista haben die Autoren Visualisierungen erstellt, die genau diese Verknüpfung der unterschiedlichen Datentypen versuchen.

In der Oberfläche von TraVista werden Metriken, Events sowie Tracedaten simultan dargestellt, um dem Nutzer ein komplementäres Bild des eigentlichen Traceverlaufs zu präsentieren. Diese Visualisierung kann in Abbildung 3.12 betrachtet werden, und ein Zoom ist bei Abbildung 3.11 zu finden. Das Trace-Gantt-Diagramm wurde u. A. bei 2 um einige Metriken erweitert, wobei der aktuelle Trace hervorgehoben im Vergleich zu anderen Traces dargestellt wird.

Abb. 3.11: Zoom von Abbildung 3.12,
Abbildung aus
[ASD+20]

Weiterhin lassen sich im Zoom bei (7) aufgetretene Events als Balken betrachten, wobei selten aufgetretene Events schwarz hervorgehoben werden.

Leider ist TraVista keine ausgereifte Software und wird seit einigen Monaten nicht mehr weiterentwickelt³. Aufgrund dessen wird es in dieser Arbeit nicht verwendet, dennoch zeigt sich durch den Bericht, dass bestehende und etablierte Produkte wie Jaeger und Zipkin ein Verbesserungspotenzial aufweisen.

Abb. 3.12: TraVistas Gantt-Diagramm, Abbildung aus [ASD⁺20]

3.3.11 FAME

2018 arbeiteten Oriol et al. [OS⁺18] mit der Firma SEnerCon GmbH zusammen, um ein Framework zu Erstellen, welches Daten aus Nutzerfeedback und Monitoring kombiniert. SEnerCon wurde hinzugezogen, um das Framework zu evaluieren, die Entwicklung des Frameworks fand durch die Forscher selbst statt. Das Framework wurde FAME⁴ genannt und steht für "Feedback Acquisition and Monitoring Enabler".

In dem Bericht wurde erforscht, ob die kombinierten Daten aus Nutzerfeedback und Monitoring dabei helfen können, um neue Anforderungen zu ergründen. Auf Basis dieser

³TraVista auf GitHub: https://github.com/vaastav/TraViz

⁴FAME auf GitHub: https://github.com/supersede-project/monitor_feedback

Forschungsfrage wurde das Framework erstellt und es konnte am Ende ein Mehrwert für die SEnerCon GmbH identifiziert werden.

3.3.12 The Kaiju Project

Scrocca et al. [STM⁺20] identifizierten 2020 eine Lücke im Gebiet der Observability, nämlich fehlt ein Werkzeug, welches die unterschiedlichen Datentypen Logs, Traces und Metriken kombiniert sammeln und aufbereiten kann und dies in quasi-Echtzeit. Aus diesem Mangel ergab sich die Forschungsfrage, ob eine Kombination dieser Datenkategorien einen Mehrwehrt für die Nachvollziehbarkeit bedeuten kann.

Um die Forschungsfrage zu beantworten wurde ein Prototyp konzipiert, welcher genau diese Datenkategorien aggregiert und diese zu High-Level-Events zusammenfasst. Bei der Evaluierung mit der IT Dienstleistungsfirma SighUp konnte festgestellt werden, dass die resultierenden High-Level-Events hilfreiche Informationen zur Problemfindung beinhalten.

Das Projekt Kaiju hat bisher nicht die Phase des Prototypen verlassen und wird seit einigen Monaten auch nicht weiterentwickelt⁵. Jedoch ist die Erkenntnis, dass die Kombination von Daten unterschiedlicher Quellen und Kategorien einen Mehrwert bietet, eine wegbereitende für diese Arbeit und die angestrebte Lösung. Somit wird in der hier angestrebten Lösung auch versucht unterschiedliche Kategorien miteinander zu verknüpfen, um Synergieeffekte für die Betreiber und Entwickler zu erzeugen. Folgend wird mit der Konzeption und Erstellung des Proof-of-Conceptes fortgesetzt.

⁵Kaiju auf GitHub: https://github.com/marioscrock/Kaiju

4 Erstellung Proof-of-Concept

4.1 Anforderungen

Das zu erstellende Proof-of-Concept soll einige Rahmenbedingungen erfüllen. In diesem Abschnitt werden diese Bedingungen näher beschrieben.

4.1.1 Definitionen

Um die Anforderungen systematisch einzuordnen, werden folgend zwei Modelle vorgestellt, anhand dessen die Kategorisierung erfolgt.

Beim ersten Modell handelt es sich um das Kano-Modell [Kan68] der Kundenzufriedenheit, welches in Tabelle 4.1 erläutert wird.

Kürzel	Titel	Beschreibung
В	Basismerkmal	Merkmale, die als selbstverständlich angesehen werden.
		Eine Erfüllung erhöht kaum die Zufriedenheit, jedoch eine
		Nichterfüllung führt zu starker Unzufriedenheit
L	Leistungs-	Merkmale, die der Kunde erwartet und bei nicht Vorhan-
	merkmal	densein in Unzufriedenheit äußert. Ein Vorhandensein er-
		zeugt Zufriedenheit, beim Übertreffen umso mehr.
S	Begeisterungs-	Merkmale, die eine Herabsetzung von der Konkurrenz er-
	merkmal	möglichen und die den Nutzenfaktor steigern. Sind sie vor-
		handen, steigern sie die Zufriedenheit merklich.
U	Unerhebliches	Für den Kunden belanglos, ob vorhanden oder nicht.
	Merkmal	
R	Rückweisungs-	Diese Merkmale führen bei Vorhandensein zu Unzufrie-
	merkmal	denheit, sind jedoch beim Fehlen unerheblich.

Tab. 4.1: Merkmale nach dem Kano-Modell der Kundenzufriedenheit

Neben der Unterscheidung nach dem Kano-Modell werden die Anforderungen in funktionale und nicht-funktionale Anforderungen [Bra16] aufgeteilt (vgl. Tabelle 4.2).

Kürzel	Titel	Beschreibung					
f	funktional	Beschreiben Anforderungen, welche ein Produkt ausma-					
		chen und von anderen differenzieren ("Was soll das Pro-					
		dukt können?"). Sie sind sehr spezifisch für das jeweilige					
		Produkt. Ein Beispiel: Das Frontend fragt Daten für X					
		vom Partnersystem 1 über eine SOAP-API ab, etc.					
nf	nicht-funktional	Beschreiben Leistungs- und Qualitätsanforderungen und					
		Randbedingungen ("Wie soll das Produkt sich verhal-					
		ten?"). Sie sind meist unspezifisch und in gleicher Form					
		auch in unterschiedlichsten Produkten vorzufinden. Bei-					
		spiele sind: Benutzbarkeit, Verfügbarkeit, Antwortzeit,					
		etc. Zur Überprüfung sind oftmals messbare, vergleichbare					
		und reproduzierbare Definitionen notwendig.					

Tab. 4.2: Kategorien der Anforderungen

4.1.2 Anforderungsanalyse

Die erste Quelle von Anforderungen ergibt sich durch die wissenschaftliche Fragestellung und somit durch den Autor selbst. Jedoch stellen die primäre Quelle von Anforderungen die Stakeholder selbst dar. Die Stakeholder dieser Arbeit sind Christian Wansart und Stephan Müller von Open Knowledge. Sie betreuen die Arbeit und haben ein starkes Interesse, dass ein sinnvolles und übertragbares Ergebnis aus der Arbeit entspringt, um es z.B. bei Kunden anwenden zu können. Mit den beiden Stakeholdern wurde sich mindestens wöchentlich zu einer (virtuellen) Diskussionsrunde getroffen, um die bisherigen Ergebnisse zusammenzutragen, das weitere Vorgehen zu besprechen und auch um Lösungsansätze zu diskutieren. In der Motivation wurde ein Kunde der Open Knowledge beschrieben, welcher von den Ergebnissen dieser Arbeit profitieren könnte. Die beiden Stakeholder arbeiten u. A. auch für diesen Kunden und brachten Wünsche und betriebliche Gegebenheiten des Kunden in die wöchentlichen Diskussionsrunden mit ein. Diese indirekte Kommunikation stellt die dritte Quelle an Anforderungen dar.

Anforderungen können neben einer auch eine Kombination von mehreren Quellen besitzen, wenn die Anforderung aus einer gemeinsamen Bestrebung oder Diskussion entstand. In den Anforderungen werden die Quellen mit Kürzeln angegeben, vgl. Tabelle 4.3.

Kürzel	Titel	Beschreibung
A	Autor	Hiermit ist der Autor dieser Arbeit gemeint.
S	Stakeholder	Die beiden Stakeholder Christian Wansart und Stephan Müller
K	Kunde	Ein Kunde der Open Knowledge, ein Direktversicherer.

Tab. 4.3: Quellen der Anforderungen

4.1.3 Anforderungsliste

Um die Anforderungen strukturiert zu erfassen, werden sie ähnlich einer Karteikarte, wie in Tabelle 4.4 zu sehen, dargestellt. Hierbei erhält jede Anforderung eine Kategorisierung nach dem Kano-Modell, ob sie funktional oder nicht-funktional ist und aus welcher Anforderungsquelle sie entstammt. Jede Anforderung erhält zudem eine eindeutige Id, die nachfolgend in der Arbeit zur Referenzierung dient.

Id	Name	Kano-Modell	Funktionsart	Quelle					
1234	Dummy	S	nf	S					
Hier wire	Hier wird die Anforderung beschrieben.								

Tab. 4.4: Beispiel einer Anforderung

4.1.3.1 Grundanforderungen

Id	Name	Kano-Modell	Funktionsart	Quelle				
1010	Konzept	В	f	A				
Es wird	Es wird ein System konzipiert, welches darauf abzielt die Nachvollziehbarkeit eines							
Frontends zu verbessern. Speziell sollen Benutzerinteraktionen und Anwendungsver-								
halten nachvollziehbarer gemacht werden.								

Id	Name	Kano-Modell	Funktionsart	Quelle				
1020	Demoanwendung	В	f	A				
Eine De	Eine Demoanwendung ist zu Erstellen und soll dazu dienen, das Konzept darauf							
anwende	anwenden zu können.							
Diese Demoanwendung soll Fehlerverhalten beinhalten, die dann mithilfe der Lösung								
besser na	besser nachvollziehbar zu gestalten sind.							

Id	Name	Kano-Modell	Funktionsart	Quelle				
1030	Proof-of-Concept	В	f	A				
Auf Basis des Konzeptes, ist die Demo-Anwendung zu erweitern.								

Id	Name	Kano-Modell	Funktionsart	Quelle					
1031	Bewertung Proof-of-Concept	В	f	A					
Nach Ab	Nach Abschluss der Implementierung des Proof-of-Concepts soll dieser veranschau-								
licht und	licht und bewertet werden. Grundlage hierfür sind diese Anforderungen sowie die, zu								
identifizierende, Fähigkeit die Fehlerszenarien der Demoanwendung nachvollziehbar									
zu gestal	zu gestalten.								

4.1.3.2 Funktionsumfang

Id	Name	Kano-Modell	Funktionsart	Quelle					
2010	Schnittstellen-Logging	В	f	S					
Das Auf	Das Aufrufen von Schnittstellen ist mittels einer Logmeldung zu notieren. Hierbei								
sind rele	sind relevante Informationen wie Aufrufparameter ebenfalls zu notieren.								

Id	Name	Kano-Modell	Funktionsart	Quelle	
2011	Use-Case-Logging	В	f	S	
Tritt ein Use-Case auf, soll dieser im Log notiert werden. Beispielsweise soll notiert					
werden, wenn ein Nutzer ein Formular absendet.					

Id	Name	Kano-Modell	Funktionsart	Quelle	
2020	Error-Monitoring	В	f	S	
Tritt ein Fehler auf, der nicht gefangen wurde, so ist dieser automatisch zu erfasst					
und um weitere Attribute zu ergänzen.					
Sonstige Fehler können auch erfasst werden, aber hierbei ist keine automatische Er-					
fassung gefordert.					

Id	Name	Kano-Modell	Funktionsart	Quelle	
2030	Tracing	В	f	S	
Es werden Tracingdaten ähnlich wie bei OpenTracing und OpenTelemetry erfasst.					
Optimalerweise werden die Tracingdaten mit OpenTelemetry-konformen Komponen-					
ten erfasst.					

Id	Name	Kano-Modell	Funktionsart	Quelle	
2040	Metriken	В	f	S	
Es werden Metrikdaten ähnlich wie bei OpenTelemetry erfasst.					
Optimalerweise werden die Tracingdaten mit OpenTelemetry-konformen Komponen-					
ten erfasst.					

Id	Name	Kano-Modell	Funktionsart	Quelle	
2050	Session-Replay	В	f	S	
Es sollen Session-Replay-Daten erhoben werden, anhand dessen die Benutzerinterak-					
tionen und das Anwendungsverhalten nachgestellt werden kann. Diese Funktionalität					
darf jedoch standardmäßig deaktiviert sein.					

4 Erstellung Proof-of-Concept

Id	Name	Kano-Modell	Funktionsart	Quelle
2110	Übertragung von Logs	В	f	S
Ausgewählte Logmeldungen sind an ein Partnersystem weiterzuleiten. Die Auswahl				
könnte über die Kritikalität, also dem Log-Level, der Logmeldung erfolgen.				

Id	Name	Kano-Modell	Funktionsart	Quelle	
2120	Übertragung von Fehlern	В	f	S	
Sämtlich erfasste Fehler sind an ein Partnersystem weiterzuleiten.					

Id	Name	Kano-Modell	Funktionsart	Quelle	
2130	Übertragung von Tracingdaten	В	f	S	
Sämtlich erfasste Tracingdaten sind an ein Partnersystem weiterzuleiten.					

Id	Name	Kano-Modell	Funktionsart	Quelle	
2140	Übertragung von Metrikdaten	В	f	S	
Sämtlich erfasste Metrikdaten sind an ein Partnersystem weiterzuleiten.					

Id	Name	Kano-Modell	Funktionsart	Quelle	
2150	Übertragung von Session-Replay-	В	f	S	
	Daten				
Sämtlich erfasste Session-Replay-Daten sind an ein Partnersystem weiterzuleiten.					

Id	Name	Kano-Modell	Funktionsart	Quelle	
2160	Datadump	S	f	S	
Möglichkeit zum Export des fachlichen Modells des Frontends.					

Id	Name	Kano-Modell	Funktionsart	Quelle	
2161	Datadump-Import	S	f	S	
Re-Import des fachlichen Modells des Frontends, um diesen Zustand auf anderen					
Systemen und für andere Systeme einsehbar zu machen.					

4.1.3.3 Eigenschaften

Id	Name	Kano-Modell	Funktionsart	Quelle	
3010	Resilienz der Übertragung	S	f	S	
Daten, die der Nachvollziehbarkeit dienen, sollen, wenn möglich, bei einer fehlgeschla-					

Daten, die der Nachvollziehbarkeit dienen, sollen, wenn möglich, bei einer fehlgeschlagenen Verbindung nicht verworfen werden. Sie sind mindestens 120s vorzuhalten und in dieser Zeit sind wiederholt Verbindungsversuche zu unternehmen.

Id	Name	Kano-Modell	Funktionsart	Quelle	
3020	Batchverarbeitung	S	f	S	
Daten, die der Nachvollziehbarkeit dienen, sind, wenn möglich, gruppiert an externe					
Systeme	Systeme zu senden. Hierbei ist eine kurze Aggregationszeit von bis zu 10s akzeptabel.				

Id	Name	Kano-Modell	Funktionsart	Quelle	
3100	Anzahl Partnersysteme	В	f	K	
Die Anzahl an zusätzlichen Partnersystemen, die für die Lösung benötigt werden, ist					
so gering zu halten wie möglich.					

Id	Name	Kano-Modell	Funktionsart	Quelle
3200	Structured Logging	L	f	A+S

Das Logging soll mit einem vordefinierten Format durchgeführt werden. Für ähnliche Funktionsgruppen (wie ein Schnittstellenaufruf) soll das gleiche Format verwendet werden. Ein anwendungsübergreifendes Format ist nicht gefordert.

4.1.3.4 Partnersysteme

	Id	Name	Kano-Modell	Funktionsart	Quelle	
İ	5010	Partnersystem Log-Management	В	f	A+S	
	Es existiert ein Partnersystem, zu dem Logmeldungen weitergeleitet werden. Dieses					
	System soll die Logmeldungen speichern und den Entwicklern und Betreibern eine					
	Einsicht in die erfassten Logmeldungen bieten.					

Id	Name	Kano-Modell	Funktionsart	Quelle
5020	Partnersystem Error-Monitoring	В	f	A+S

Es existiert ein Partnersystem, zu dem Fehler weitergeleitet werden. Dieses System soll die Fehler speichern und den Entwicklern und Betreibern eine Einsicht in die erfassten Fehler bieten.

4 Erstellung Proof-of-Concept

Id	Name	Kano-Modell	Funktionsart	Quelle	
5021	Visualisierung Error-Monitoring	\mid L	f	A+S	
Das Partnersystem, zu dem die Fehler weiterzuleiten sind, soll diese grafisch darstellen					
können.					

Id	Name	Kano-Modell	Funktionsart	Quelle	
5022	Alerting Error-Monitoring	S	f	A + S	
Das Partnersystem, zu dem die Fehler weiterzuleiten sind, soll bei Auftreten von					
bestimmten Fehlern oder Fehleranzahlen eine Meldung erzeugen (per E-Mail, Slack,					
o. Ä.).					

Id	Name	Kano-Modell	Funktionsart	Quelle	
5030	Partnersystem Tracing	В	f	A+S	
Es existiert ein Partnersystem, zu dem Tracingdaten weitergeleitet werden. Dieses					
System soll die Fehler speichern und den Entwicklern und Betreibern eine Einsicht					
in die erfassten Tracingdaten bieten.					

Id	Name	Kano-Modell	Funktionsart	Quelle	
5031	Visualisierung <i>Tracing</i>	В	f	A+S	
Das Partnersystem, zu dem die Tracingdaten weitergeleitet werden, soll diese grafisch					
als Tracing-Wasserfallgraph darstellen können.					

Id	Name	Kano-Modell	Funktionsart	Quelle	
5040	Partnersystem Metriken	L	f	A+S	
Es existiert ein Partnersystem, zu dem Metriken weitergeleitet werden. Dieses System					
soll die Fehler speichern und den Entwicklern und Betreibern eine Einsicht in die					
erfassten Metriken bieten.					

Id	Name	Kano-Modell	Funktionsart	Quelle	
5041	Visualisierung Metriken	$\mid \mathrm{L}$	f	A+S	
Das Partnersystem, zu dem die Metriken weiterzuleiten sind, soll diese grafisch dar-					
stellen können.					

Id	Name	Kano-Modell	Funktionsart	Quelle
5042	Alerting Metriken	S	f	A+S
Das Partnersystem, zu dem die Metriken weiterzuleiten sind, soll bei Auftreten von				
bestimmten Metrikwerten oder Überschreitungen von Schwellen eine Meldung erzeu-				
gen (per E-Mail, Slack, o. Ä.).				

Id	Name	Kano-Modell	Funktionsart	Quelle
5050	Partnersystem Session-Replay	В	f	A+S
Es existiert ein Partnersystem, zu die Session-Replay-Daten weitergeleitet werden.				
Dieses System soll anhand dieser Daten eine Benutzersitzung rekreieren können.				

4.2 Vorstellung der Demoanwendung

Wie in Anforderung 1020 beschrieben, ist eine Demoanwendung zu erstellen, auf Basis dessen das Konzept anzuwenden ist und somit praktisch umgesetzt werden kann. Dieser Abschnitt beschäftigt sich mit der Vorstellung der Demoanwendung und der repräsentativen Aufgabe, die diese übernimmt.

In der Motivation wurde ein konkretes Problem eines Kunden der Open Knowledge genannt. Damit die Demoanwendung realistisch eine moderne Webanwendung darstellt, wird sie in Grundzügen die Webanwendung des Direktversicherers nachahmen. Bei der Webanwendung handelt es sich um eine mit Angular erstellte SPA, die den Nutzer verschiedene, teils dynamische, Formulare ausfüllen lässt und am Ende diese Daten an einen Dienst sendet und ein Ergebnis erhält, welches dargestellt wird. Während der Eingabe der Formulare werden einzelne Werte gegen Dienste validiert.

Es wurde sich dafür entschieden, dass die Webanwendung eine Bestellfunktionalität eines Obst-Webshops darstellen soll. Der Warenkorb hierfür wird anfangs dynamisch generiert und dies soll so simulieren, dass eine andere Komponente diesen erstellt hat. Der Nutzer soll seine Rechnungs- und Lieferdaten eingeben und am Ende die Bestellung ausführen können. Um das gewünschte Verhalten der Demoanwendung zu definieren, wird es im folgenden Abschnitt festgelegt.

4.2.1 Verhaltensdefinition

Mit den beiden Stakeholdern, also Christian Wansart und Stephan Müller, die beide am Projekt für den Kunden involviert sind, wurde diese Verhaltensdefinition erstellt. Diesen Ansatz der Definition der Software anhand des Verhaltens nennt man Behaviour Driven Development (BDD). Um die BDD-Definition festzuhalten wurde sie in der gängigen

Gherkin [Sma19] Syntax geschrieben. Die Syntax ist natürlich zu lesen, folgend werden alle gewünschten Features der Demoanwendung in der Gherkin-Syntax aufgelistet.

```
1
   Feature: Warenkorb
2
3
       Der Warenkorb ist eine Übersicht über die gewählten Artikel. Hier
           sollen die Artikel samt Name, Anzahl sowie Preis angezeigt werden.
            Der Warenkorb stellt den Einstieg der Software dar.
4
5
       Scenario: Kundin öffnet den Warenkorb
           When die Kundin den Warenkorb öffnet
6
7
           Then soll sie die ausgewählten Artikel mit Bild, Artikelnamen,
               Anzahl und dem Gesamtpreis des Artikels sehen
8
           And sie soll den Gesamtpreis für alle Artikel sehen
9
10
       Scenario: Kundin soll zur nächsten Seite wechseln können
11
           Given die Kundin hat die gewählten Produkte prüft
12
           When sie auf den "Bestellvorgang starten"-Button klickt
13
           Then soll sie auf die Seite "Rechnungsadresse" gelangen
```

Quellcode 4.1: Demoanwendung: Gherkin Definition zum Feature "Warenkorb"

```
1
   Feature: Rechnungsadresse
3
       Die zweite Seite ist die Rechnungsadresse. Hier sollen die Nutzer ihre
            Rechnungsadresse eingeben können, welche die Pflichtfelder Anrede
           , Vornamen, Nachnamen, Straße, Hausnummer, Postleitzahl sowie die
           E-Mail-Adresse umfassen.
4
       Scenario: Kundin kommt auf die Rechnungsadresse-Seite vom Warenkorb
5
           aus
6
           When die Rechnungsadresse-Seite zum ersten Mal aufgerufen wird
7
           Then sollen die Eingabefelder leer sein
8
       Scenario: Kundin kommt auf die Rechnungsadresse-Seite von der
           Lieferadresse-Seite aus
10
           Given die Kundin hatte bereits zuvor die Rechnungsadresse ausgefü
11
           Then sollen die zuvor eingegebenen Adressdaten weiterhin vorhanden
12
13
       Scenario: Kundin kann ihre Rechnungsadresse eingeben
14
           When die Kundin die Rechnungsadresse-Seite betritt
15
           Then soll sie die Möglichkeit haben
16
           * eine Anrede anzugeben
17
           * den Vornamen eingeben zu können
           * den Nachnamen eingeben zu können
18
19
           * die Straße eingeben zu können
20
           * die Hausnummer eingeben zu können
           * die Postleitzahl (PLZ) eingeben zu können
21
22
           * die Stadt eingeben zu können
           \star die E-Mail-Adresse eingeben zu können
23
```

```
^{24}
25
       Scenario: Kundin soll zur nächsten Seite wechseln können
            Given die Kundin hat alle Felder ausgefüllt
26
27
            When sie auf den "weiter"-Button klickt
28
            Then soll sie auf die Seite "Lieferdaten" gelangen
29
30
       Scenario: Kundin füllt nicht alle benötigten Felder aus und klickt auf
            "weiter"
31
            Given die Kundin hat alle Felder außer der Hausnummer eingegebenen
32
            When sie auf "weiter" klickt
33
            Then soll sie informiert werden, dass sie alle Felder ausfüllen
               muss
34
35
       Scenario: Kundin gibt invalide Daten ein
36
            When die Kundin eine andere Rechnungsadresse eingibt
37
            * Vorname und Nachname Sonderzeichen enthalten außer Bindestriche
               enthält
38
            * Straße Sonderzeichen außer Bindestriche und Punkte enthält
39
            * Hausnummer. Sonderzeichen enthält
40
            * PLZ alles andere außer Zahlen enthält
41
            * Stadt keine deutsche Stadt ist
42
            * das @ bei der E-Mail-Adresse fehlt
43
            Then soll eine Warnung angezeigt werden und der "weiter"-Button
               blockiert werden
```

Quellcode 4.2: Demoanwendung: Gherkin Definition zum Feature "Rechnungsadresse"

```
Feature: Lieferdaten
2
3
       Auf der dritten Seite sollen die Kunden die Lieferdaten eintragen kö
           nnen. Hier soll es die Möglichkeit geben, die Rechnungsadresse als
            Lieferadresse übernehmen zu können. Alternativ sollen die Nutzer
           die Pflichtfelder Anrede, Vornamen, Nachnamen, Straße, Hausnummer,
            Postleitzahl, Stadt eingeben können.
4
       Scenario: Kundin kommt auf die Lieferdaten-Seite von der
5
           Rechnungsadresse-Seite aus
6
           When die Kundin zum ersten mal auf die Lieferdaten-Seite kommt
           Then soll das Häkchen bei "Gleiche Lieferdaten wie
7
               Rechnungsadresse" gesetzt sein
8
           And das gleiche Formular wie von der Rechnungsadresse-Seite
               erscheinen, mit den zuvor eingegebenen Daten
9
           And das Formular soll deaktiviert sein, solange das Häkchen
               gesetzt ist
10
11
       Scenario: Kundin kommt auf die Lieferdaten-Seite von der Zahlungsdaten
           -Seite aus
12
           Given die Kundin hatte bereits zuvor die Lieferdaten ausgefüllt
13
           Then sollen die zuvor eingegebenen Adressdaten weiterhin vorhanden
14
```

```
15
       Scenario: Kundin möchte die Rechnungsadresse übernehmen
16
            Given das Häkchen bei "Gleiche Lieferdaten wie Rechnungsadresse"
                ist gesetzt
17
            When sie auf den "weiter"-Button klickt
18
            Then soll sie auf die Seite "Zahlungsdaten" gelangen
19
20
       Scenario: Kundin möchte andere Lieferdaten nutzen
21
            Given das Häkchen bei "Gleiche Lieferdaten wie Rechnungsadresse"
               wurde entfernt
22
            When die Kundin hat alle Felder ausgefüllt
23
            And sie auf den "weiter"-Button klickt
24
            Then soll sie auf die Seite "Zahlungsdaten" gelangen
25
26
       Scenario: Kundin möchte andere Lieferdaten nutzen, ohne alle Felder
           ausgefüllt zu haben
27
            Given das Häkchen bei "Gleiche Lieferdaten wie Rechnungsadresse"
               wurde entfernt
^{28}
            When die Kundin eine andere Lieferdaten eingibt
^{29}
            * Vorname und Nachname Sonderzeichen enthalten außer Bindestriche
               enthält
            * Straße Sonderzeichen außer Bindestriche und Punkte enthält
30
            * Hausnummer. Sonderzeichen enthält
31
32
            * PLZ alles andere außer Zahlen enthält
33
            * Stadt keine deutsche Stadt ist
34
            * das @ bei der E-Mail-Adresse fehlt
35
            And sie auf den "weiter"-Button klickt
36
            Then soll eine Warnung angezeigt und der "weiter"-Button blockiert
```

Quellcode 4.3: Demoanwendung: Gherkin Definition zum Feature "Lieferadresse"

```
1
   Feature: Zahlungsart
2
3
       Die vierte Seite enthält die Auswahl der Zahlungsart. Hier sollen den
           Kunden die Zahlungsarten Rechnung, Lastschrift, PayPal und
           Kreditkarte zur Auswahl gestellt werden.
4
5
       Scenario: Kundin kommt zum ersten Mal auf die Zahlungsdaten-Seite von
           der Lieferdaten-Seite
6
           When die Kundin die Seite zum ersten Mal betritt
7
           Then soll "Rechnung" vorausgewählt sein
8
9
       Scenario: Kundin kommt auf die Zahlungsdaten-Seite von der "Bestellung
            abschließen"-Seite aus
10
           Given die Kundin hatte bereits zuvor die Zahlungsart ausgefüllt
11
           Then sollen die zuvor eingegebenen Zahlungsdaten weiterhin
               vorhanden sein
```

Quellcode 4.4: Demoanwendung: Gherkin Definition zum Feature "Zahlungsdaten"

```
1 Feature: Bestellung abschließen
```

```
2
3
       Die letzte Seite soll eine Übersicht über die zuvor eingegebenen Daten
            geben, bevor die Kundin die Bestellung abschließt.
4
5
       Scenario: Kundin betritt die Seite
           When die Kundin die Seite betritt soll eine Bestellübersicht über
6
               die Artikel von Seite 1 angezeigt werden
7
           * die Artikel angezeigt werden
8
            * die Rechnungsadresse angezeigt werden
9
            * die Lieferadresse angezeigt werden
10
           * die Rechnungsart angezeigt werden
           * ein "kostenpflichtig bestellen"-Button angezeigt werden
11
12
13
       Scenario: Kundin schließt die Bestellung ab
14
           When die Kundin auf den "kostenpflichtig bestellen"-Button klickt
15
           Then soll eine Serverinteraktion ausgelöst werden, die die
               Bestellung speichert
16
           And die Bestellbestätigung soll dargestellt werden
```

Quellcode 4.5: Demoanwendung: Gherkin Definition zum Feature "Bestellung abschließen"

Neben des eigentlichen User-Interfaces soll auch ein Backend teil der Demoanwendung sein. Hierfür wurde auf Basis der Verhaltensdefinition eine Architektur entworfen, die im folgenden Abschnitt näher beschrieben wird.

4.2.2 Backend

Das Backend wurde als Microservice-Architektur konzipiert und wurde ebenso wie die Webanwendung auch an das Projekt des Open Knowledge Kunden angelehnt. In Abbildung 4.1 lässt sich die konzipierte und umgesetzte Architektur betrachten, dargestellt als Kubernetes [The20] Deployment Diagramm. Diese Architektur wurde mit den Stakeholdern zusammen konzipiert und ähnelt dem des Direktversicherers.

Durch diese recht komplexe Architektur kann eine realitätsnahe Repräsentation erfolgen. Speziell wird bei einer solchen Architektur Tracing hilfreicher, um die Zusammenhänge zwischen den Diensten nachvollziehen zu können. Dies wird beim Einsatz und der Vorstellung der Lösung näher betrachtet.

Abb. 4.1: Demoanwendung: Deployment-Diagramm, Quelle: Eigene Darstellung

4.2.3 Frontend

Das Frontend stellt das Herzstück der Demoanwendung dar und wurde auf Basis der Verhaltensdefinition erstellt. Wie beim Direktversicherer wurde es mit Angular erstellt und als zustandsreiche SPA umgesetzt. Genauere Implementierungsdetails werden jedoch nicht behandelt, außer sie sind relevant für die Lösung oder die Lösungsüberprüfung.

Das Frontend sowie das Backend wurden mit einigen Fehlern implementiert. Hintergrund ist, dass bei der Betrachtung der Lösung solche Fehler notwendig sind, um diese zu bewerten. Diese Fehler werden näher im nachfolgenden Unterabschnitt 4.2.4 betrachtet.

Die einzelnen Features der Verhaltensdefinition wurden als Seiten umgesetzt und das Layout verknüpft diese Seiten in einem blätternden Format, bei dem man vor- und zurückspringen kann. Dies kann in den folgenden 6 Abbildungen betrachtet werden.

Abb. 4.2: Demoanwendung: Startseite "Warenkorb"

Abb. 4.3: Demoanwendung: Seite "Rechnungsadresse"

Abb. 4.4: Demoanwendung: Seite "Lieferdaten"

Abb. 4.5: Demoanwendung: Seite "Zahlungsdaten"

Abb. 4.6: Demoanwendung: Seite "Bestellübersicht"

Abb. 4.7: Demoanwendung: Finale Seite "Bestellbestätigung"

4.2.4 Fehlerszenarien

Wie zuvor erwähnt und in Anforderung 1020 gewünscht, besitzt die Demoanwendung einige simulierte Fehler. Diese Fehler wurden in Zusammenarbeit mit den Stakeholdern erstellt und es wurde versucht möglichst realitätsnahe oder sogar tatsächlich beim Kunden aufgetretene Probleme einzubauen.

Diese Fehler gehören unterschiedlichen Problemgruppen an, sie reichen von unerwünscht strenger Validierung, über Konfigurationsfehlern bis hin zu ineffizienter Datenverarbeitung. Sie werden mit Fehlerszenarien beschrieben, aus der Sicht eines Projektteams, welches die Szenarien berichtet bekommen oder selbst notiert hat.

4.2.4.1 "Keine Übersetzungen"

- Problem: Nutzer berichten, dass manchmal die Webanwendung beim Start keine Artikeltexte anzeigt (vgl Abbildung 4.8).
- Ursache: Die Pods, die den Übersetzungsdienst enthalten werden repliziert bereitgestellt. Einer der Pods hat eine defekte Konfiguration, dieser ist in Abbildung 4.1

Abb. 4.8: Fehlende Texte

visuell hervorgehoben. Wird man durch den LoadBalancer mit diesem Pod verbunden tritt das Fehlverhalten auf. Dies ist eine Nachstellung eines tatsächlichen Problems beim Kunden.

4.2.4.2 "Gültige Straßen sind ungültig"

- Problem: Nutzer berichten, dass Ihr Straßenname nicht eingeben werden kann. Beispielsweise die Eingabe "Ährenweg" führt zu einem Fehler.
- Ursache: Der Adressvalidierungsdienst validiert Straßen mit dem RegEx [a-zA-Z\,\-\]+, welches keine gängigen Sonderzeichen (ä ,ö ,ü, ß) erlaubt.

4.2.4.3 "Gültige Hausnummern sind ungültig"

- Problem: Nutzer berichten, dass Hausnummern, die nicht nur aus Zahlen bestehen, zum Fehler führen.
- Ursache: Der Adressvalidierungsdienst validiert Hausnummern als Zahl und schlägt im o. g. Fall in der Konvertierung fehl.

4.2.4.4 "Gültige Städte sind ungültig"

- Problem: Nutzer aus Gießen berichten, dass Sie das Formular zur Rechnungsadresse nicht ausfüllen können
- Ursache: Der Adressvalidierungsdienst meldet die Stadt "Gießen" als ungültig, weil sie nicht in der lokalen Tabelle vorhanden ist.

4.2.4.5 "Ungültige Adressen sind gültig"

- Problem: Nutzer können in den Lieferdaten ungültige Eingaben tätigen und absenden, bei der Bestellaufgabe kommt es zu einem Fehler.
- Ursache: Das Frontend überprüft lediglich die Rechnungsadresse, aber nicht die Lieferadresse

4.2.4.6 "Vor- und Nachnamen werden abgeschnitten"

- Problem: Nutzer berichten, dass in der Bestellbestätigung Ihre Vor- und Nachnamen abgeschnitten dargestellt werden.
- Ursache: Der Bestelldienst begrenzt den Vor- sowie den Nachnamen auf 20 Zeichen.

4.2.4.7 "Falsche Zahlungsart"

- Problem: Nutzer berichten, dass in der Bestellbestätigung die falsche Zahlungsart angezeigt wird. In der Bestellübersicht wurde jedoch die korrekte Zahlungsart angezeigt.
- Ursache: Das Frontend sendet alle Formulardaten an Bestelldienst, dieser nimmt aber an, dass alle nicht ausgewählten Formulare null sind.

4.2.4.8 "Lange Verarbeitung"

- Problem: Beim Absenden des Formulars auf der Seite "Warenkorb" kommt es zu einer unerwünschten Wartezeit (von min. 6-10s).
- Ursache: Dies ist eine simulierte Wartezeit im Frontend je nach Anzahl der Positionen (2s pro Position), um eine ineffiziente Verarbeitung nachzuahmen.

4.2.5 Repräsentation

Eine wichtige Eigenschaft der Demoanwendung sollte sein, dass sie repräsentativ für das Kundenprojekt und im Allgemeineren auch für SPAs ist. Durch den groben Aufbau der Demoanwendung, also einer zustandsreichen und größtenteils clientbasierten SPA, stellt die Demoanwendung eine moderne Webanwendung dar. Auch die Verwendung von Angular ist repräsentativ, denn Angular ist eines der meist verwendeten Frontend-Frameworks [GB20].

Weiterhin ist durch die nicht simple Backend-Architektur auch eine realitätsnähere Infrastruktur gegeben. Die Microservice-orientierte Architektur stellt zudem einen modernen Ansatz dar [NMMA16].

Dennoch muss gesagt werden, dass die Demoanwendung eine sehr vereinfachte Form einer modernen Webanwendung darstellt. Viel spezifischer in der Implementierung kann die Webanwendung jedoch auch nicht erstellt werden, da so die Übertragbarkeit zu anderen Projekten verloren ginge.

Nun da die Demoanwendung beschrieben ist, wird das Konzept erstellt, welches letztendlich auf die Demoanwendung anzuwenden ist. Das Konzept selber ist jedoch losgelöst von der Demoanwendung zu verstehen.

4.3 Konzept

4.3.1 Datenverarbeitung

Auf Basis der zuvor vorgestellten Methoden und Praktiken wird nun eine sinnvolle Kombination für das Frontend konzeptioniert, die als Ziel hat, die Nachvollziehbarkeit nachhaltig zu erhöhen. Es werden die Disziplinen Datenerhebung, -auswertung und -visualisierung unterschieden und nacheinander beschrieben. Danach und darauf aufbauend wird eine grobe Architektur vorgestellt, die diese Ansätze in ein Gesamtbild bringt.

4.3.1.1 Erhebung

Im Standardfall erhalten Betreiber und Entwickler, bis auf die Kommunikation mit Partnersystemen, keine Informationen von einer SPA. Deswegen sollen zunächst Loginformationen des Frontends erhoben und an ein weiteres System gesendet werden. Hierbei ist eine Unterscheidung sinnvoll, welche Logmeldungen tatsächlich gesendet werden sollen (bspw. anhand der Log Kritikalität). Diese Unterscheidung sollte konfigurativ änderbar sein. Dieser Datenstrom wird erfahrungsgemäß unregelmäßig aber doch schon sehr häufig mit Daten befüllt, um eine gute Nachvollziehbarkeit zu erreichen.

Neben den Loginformationen sollten nicht gefangene Fehler und optional gefangene Fehler an ein weiteres System weitergeleitet werden (vgl. Anforderung 2020). Dabei sollen alle relevanten und zugreifbaren Informationen mitgesendet werden.

Eine Datenerhebung wie beim Real-User-Monitoring, wo jede Benutzerinteraktion aufgezeichnet wird, um bspw. Klickpfade zu optimieren oder um festzustellen wie lange ein Nutzer sich auf einer Seite aufhielt, wird nicht umgesetzt. Jedoch ist ein Session-Replay Mechanismus enorm hilfreich und gewünscht, welcher ebenso jede Benutzerinteraktion aufzeichnen muss. Damit nicht zu viele Daten erhoben werden und damit nicht jede Nutzersitzung mitgeschnitten wird, soll die Aufzeichnung erst nach Einwilligung und Aktivierung seitens des Nutzers erfolgen oder bei speziellen Umgebungen ggf. automatisch (bspw. einer Staging-Umgebung). Weiterhin könnten die Loginformationen nach dieser Einwilligung auch feingranularer übertragen werden, bspw. ohne Einwilligung würden Logs der Kritikalität INFO und höher übertragen werden und mit Einwilligung auch Logs der Kritikalität DEBUG und höher.

Des Weiteren soll ein Tracing der Kommunikation zwischen Frontend und Partnersystemen eingesetzt werden. Hierbei könnten auch wichtige Verarbeitungsmethoden des Frontends im Tracing erfasst werden, dies wird jedoch hier nicht definiert und ist Teil der eigentlichen Implementierung. Es soll, wenn möglich, auf den neuen Standard OpenTelemetry (OTel) aufgesetzt werden. Hierdurch wird das Erheben von Tracing- und Metrikdaten standardisiert und zukünftig auch für Logdaten möglich. Auf Basis von OTel sollen

beispielhaft Metriken erfasst werden, um das Anwendungsverhalten nachzuhalten und zu überwachen. Durch diese Metriken können Aspekte eines Application Performance Monitorings erfüllt werden.

Alle gesendeten Datensätze sollen möglichst mit Metadaten angereichert werden, die einerseits den Nutzer, die Umgebung und die Anwendung identifizieren. Diese Daten umfassen u. A.: Zeitstempel, Session-Id, User-Agent, IP, Hostsystem.

4.3.1.2 Auswertung

Bei der Auswertung der Daten soll hauptsächlich auf bestehende Technologien aufgebaut werden, wie z.B. die Technologien, die in Abschnitt 3.3 evaluiert wurden. Das heißt im Konzept kann nicht im Detail darauf eingegangen werden, wie diese Daten tatsächlich verarbeitet werden und dies ist auch nicht direkt von Relevanz. Eine Beschreibung folgt im Unterabschnitt 4.3.3 sowie beim Einsatz von den Technologien selbst.

Lediglich bei der Vorverarbeitung des Tracings im Client kann nun bereits eine Aussage getroffen werden. Wird hierbei nämlich, wie gewünscht, auf OTel gesetzt, dann erfolgt eine Vorverarbeitung von den Komponenten von OTel selbst. Dabei werden u. A. die Spankontexte fürs Tracing und die Beziehung zwischen den Spans gepflegt.

4.3.1.3 Visualisierung

Wie bei der Auswertung wird auch die Visualisierung stark abhängig von den eingesetzten Technologien sein. Nichtsdestotrotz können bereits hier gewünschte Ansichten/Funktionen definiert werden:

- Die Logdaten sollen abrufbar sein und filterbar sein.
- Fehlerinformationen sind gesondert der Logdaten darzustellen.
 - Fehler sollen gruppiert werden, um gleiche Fehlerbilder zusammenzufassen.
 - Zu den Fehlerbildern sollen übergreifende Informationen dargestellt werden.
 - Es lassen sich auch einzelne Fehler einer Fehlergruppe anzeigen.
- Für einen ausgewählten Trace soll ein Trace-Gantt-Diagramm dargestellt werden (vgl. Unterabschnitt 3.1.4)
- Die beispielhaften Metriken sind visuell darzustellen.
- Die Daten zum Session-Replay sollen, wenn vorhanden, visuell dargestellt werden, sodass die Interaktionen des Nutzers nachzuvollziehen sind.

4.3.2 Architektur

Auf Basis der zuvor definierten Grundkonzepte zur Datenverarbeitung, wird nun eine grobe Architektur konzipiert. Im Allgemeinen sollen die Funktionsbereiche Log Management, Error Monitoring, Application Monitoring, Tracing sowie Session-Replay erfüllt werden. Im Client soll es für jeden Funktionsbereich eine eigene Komponente geben, die die jeweiligen Daten erfasst und an das entsprechende Partnersystem weiterleitet. Lediglich die Erfassung von Metriken und Tracing soll auf Basis von OpenTelemetry erfolgen und daher dieselben Komponenten verwenden. Dieser Aufbau lässt sich auf der linken Seite der Abbildung 4.9 betrachten.

Es wurde nach Anforderung 3100 versucht die Anzahl der Partnersysteme gering zu halten. Für die Datenverarbeitung, -analyse und -visualisierung von Logs, Fehlern und Metriken soll ein einzelnes System zuständig sein. Denn für die Bewältigung dieser verschiedenen Kategorien sind ähnliche Disziplinen notwendig, wodurch ein einzelnes System ausreichen sollte. Grundlegende Funktionen dieses Systems belaufen sich auf die Langzeitspeicherung, eine performante Suche und die Visualisierung in Graphen.

Für Tracing wird ein zweites System benötigt, hauptsächlich weil in der Evaluation kein Werkzeug identifiziert werden konnte, welches neben den 3 zuvor genannten Datenkategorien auch Tracingdaten gut unterstützt. Tracingdaten sind zudem anders, dadurch dass sie einen hohen Datendurchsatz und ein hohes Volumen aufweisen.

Ein drittes System soll die Funktionalität rund um Session-Replay übernehmen. Hierbei liegt auch der Grund darin, dass kein Werkzeug identifiziert werden konnte, welches neben Session-Replay auch andere Disziplinen erfüllen kann. Weiterhin sind, wie beim Tracing, die Eigenschaften der Daten anders, denn hier werden nahezu konstant Daten versendet, um alle Benutzerinteraktionen und das Anwendungsverhalten nachstellen zu können.

Abb. 4.9: Grobe Architektur

Wie in der Datenerfassung erwähnt, werden die einzelnen Datentypen unterschiedlich erhoben und besitzen somit auch andere Eigenschaften. Wie IBM bei Big Data definiert [ZE11], lassen sich auch hier die Eigenschaften Volume, Velocity und Variety identifizieren. Der Aspekt Volume ist weniger präsent, denn die Datenmengen sind nicht vergleichbar mit echten Big-Data-Anwendungen. Genau ist dies nicht prognostizierbar, aber in der Evaluierung des Stands der Technik, ließ sich ein Datendurchsatz von 1 MB/min feststellen - somit stellt dies im Frontend keine Herausforderung dar, jedoch in den verarbeitenden Systemen kann dies natürlich durch eine große Menge an Frontends multipliziert werden, was jedoch nicht im Fokus der Arbeit steht.

Eine Variety der Daten, also Unterschiedlichkeit der Datenstruktur, ist definitiv vorhanden und entspringt den verschiedenen Funktionsgebieten. Auch innerhalb derselben Datenströme kann eine Variety identifiziert werden, denn bspw. sind Logmeldungen sehr individuell, sie folgen meist nicht streng einem Format und enthalten unterschiedliche Mengen an Informationen.

Der Aspekt des Velocity ist zudem auch sehr wichtig und eine Visualisierung dessen für das vorhergehende Konzept findet sich in Abbildung 4.10.

Abb. 4.10: Grobe Architektur mit hervorgehobenem Datendurchsatz

4.3.3 Technologie-Stack

Im Frontend sind für den Logger und den Error-Handler keine speziellen Technologien zu verwenden, es soll somit auf die erstellte Demoanwendung aufgesetzt werden. Da die Demoanwendung in Angular geschrieben ist, soll ein ErrorHandler implementiert werden, welcher die Information dann weiterleitet. Die Tracing- und Metrikdaten werden mit OpenTelemetry JavaScript-Komponenten erfasst und an ein Partnersystem gesendet. Für die Session-Replay-Daten wird jedoch auf eine proprietäre Komponente gesetzt, denn bei der Evaluierung konnte keine quelloffene Datenerhebung identifiziert werden.

Als Log- und Monitoringsystem soll Splunk zum Einsatz kommen. Nach der Evaluation von Splunk lassen sich hiermit gut die drei Datenkategorien Logs, Metriken und Fehler speichern, analysieren und visualisieren. Alternativen wären u. A. Dynatrace und New Relic, basieren jedoch auf einer proprietären Datenerhebung. Diese bieten eher ausgefertigte Dashboards und Graphen, mit zu weniger Flexibilität zur Datenvisualisierung. Honeycomb wäre zudem auch eine Alternative, eignet sich aber weniger für strikte Logdaten. Unter anderem werden die Daten bei Honeycomb nur für 60 Tage gespeichert. Somit blieb Splunk als einziger Kandidat, der den gewünschten Rahmen erfüllt. Es sollten jedoch auch andere Werkzeuge Splunk ersetzen können, bspw. der Elastic Stack könnte hierfür auch geeignet sein, dieser wurde jedoch nicht zuvor evaluiert.

Für das Partnersystem, welches Session-Replay übernimmt, wurde nur ein Werkzeug evaluiert, nämlich LogRocket. Da diese Art von Software als sehr zielführend empfunden wurde, wird LogRocket somit in der Lösung verwendet. Jedoch ist anzumerken, dass ähnlich wie bei Splunk, LogRocket nicht zwingend vorgeschrieben ist, sondern gegen ein äquivalentes Werkzeug austauschbar ist (vgl. Unterabschnitt 3.3.2). LogRocket kann jedoch auch überzeugen, denn es bietet Funktionen, um datenschutzkritische Aspekte zu beachten aber auch um die Performanz der eigentlichen Anwendung nicht zu stark einzuschränken. So wird LogRockets eigentliche Logik erst nach dem Seitenladen dynamisch nachgeladen und die Hauptarbeit findet generell in Worker-Threads statt, nicht im Hauptthread [Log20b]. Des Weiteren schränkt LogRocket die Aufnahmequalität ein, wenn eine unzureichende Bandbreite bemerkt wird.

Allgemein werden bei LogRocket zudem Daten nicht im JSON-Format kommuniziert, sondern mit Google Protobufs (protocol buffers) [Goo20b], welche effizienter sind (siehe Abbildung 4.11). Die Verwendung von Protobufs könnte ggf. auch interessant sein bei der Datenübertragung der anderen Datenkategorien, jedoch wird sich an dieser Stelle nicht darauf festgelegt. Sollte eine hohe Übertragungseffizienz tatsächlich vonnöten sein, so werden Protobufs ggf. näher betrachtet.

Abb. 4.11: Serialisierte Datengröße je Format [SM12]

Um die Tracingdaten zu beleuchten und so Einblick in den architektonischen Verlauf eines Aufrufs zu erhalten, wird Jaeger verwendet. Jaeger bietet jene Tracing-Visualisierungen, die Splunk fehlen und ist zudem darauf spezialisiert Tracingdaten zu speichern und zu analysieren. Um diese Funktionen anzubieten und eine schnelle Datenabfrage zu gewährleisten, besitzt Jaeger eine darauf konzipierte Infrastruktur (vgl. Abbildung 4.12). Jaeger unterstützt

Abb. 4.12: Architektur von Jaeger, angepasst [Jae20a]

die beiden NoSQL Datenbanken Cassandra und ElasticSearch und für Analyse- und Verarbeitungszwecke wird Apache Spark eingesetzt.

Somit ergibt sich durch den definierten Technologiestack die in Abbildung 4.13 zu betrachtende Architektur.

Abb. 4.13: Architektur mit speziellen Technologien

4.3.4 Übertragbarkeit

Übertragbarkeit beschäftigt sich mit der Eigenschaft eines Ansatzes oder Konzeptes auch für andere Softwareprojekte anwendbar zu sein. Grundlegend muss genannt werden, dass das Konzept sich auf Softwareprojekte, die JavaScript-basierte Webanwendungen enthalten, beschränkt. Somit wird auch die Übertragbarkeit auch nur für ähnliche Softwareprojekte bewertet.

Da das Konzept nicht eine Basisstruktur darstellt, auf das man ein Projekt basieren kann, sondern viel eher ein bestehendes Projekt erweitert, lässt sich das Konzept bei reellen Projekten in verschiedensten Phasen integrieren. Weiterhin wurden die Grundkonzepte, wie die Erhebung von Tracingdaten, nicht auf etablierten Technologien basiert, sondern viel eher auf die zugrundeliegenden Disziplinen. Deswegen sind alle vorgeschlagenen

Technologien und Partnersysteme austauschbar, um verschiedene Projekt- und Unternehmensvorgaben zu erfüllen. Hinzukommend ist das Konzept modular zu verstehen, denn einzelne Disziplinen werden von spezialisierten Systemen übernommen und sind somit auch austausch- oder entfernbar. Diese Flexibilität der Auswahl an Komponenten und der Zusammensetzung verspricht Projektteams eine reell umsetzbare Lösung.

Ein identifizierbares Manko ist jedoch die Menge an Partnersystemen, die die Lösung vorschlägt. Dies kann aus Wartungs- oder Kostengründen nicht für jedes Projektteam attraktiv sein, jedoch konnte leider keine weitere Verringerung der Partnersysteme erzielt werden. Wenn aber auf einer der Datenkategorien verzichtet werdem kann, dann ließe sich ggf. auch ein Partnersystem entfernen. Sollte aber eine Technologie existieren oder sich über Zeit entwickeln, welche mehrere Disziplinen löst, so kann die Anzahl ebenso verringert werden. Dabei ist aber auch anzumerken, dass damit eine gewisse Flexibilität verloren geht. Es lässt sich aber nicht definitiv eine Bewertung hierzu erstellen, da eben solch eine Technologie nicht gefunden werden konnte.

Alles in Allem, sollte das vorgeschlagene Konzept aber für den Großteil von Softwareprojekten in der Frontendentwicklung adaptierbar sein. Eine tiefergehende Betrachtung der Übertragbarkeit erfolgt in Abschnitt 5.3, auf Basis der tatsächlichen Implementierung. Diese Übertragbarkeit wird wahrscheinlich nicht gleich bleiben, denn die Implementierung wird bspw. einige spezifische Entscheidungen beinhalten, die eine Übertragbarkeit behindern könnten.

4.4 Implementierung

Auf Basis des Konzeptes soll nun eine Implementierung erfolgen.

5 Ergebnis

5.1 Demonstration

Nach Abschluss der Implementierung, soll die Erweiterung auf nicht-technische Weise veranschaulicht werden. Hier soll dargestellt werden, wie die Nachvollziehbarkeit nun verbessert worden ist.

5.2 Kriterien

Die zuvor definierten Kriterien in 4.1 sollen hier überprüft werden.

Auch interessant: Wie sieht der Datendurchsatz generell aus? Wie sieht der Datendurchsatz pro Komponente aus?

5.3 Übertragbarkeit

Wie gut lassen sich die ermittelten Ergebnisse im PoC auf andere Projekte im selben Umfeld übertragen?

5.4 Einschätzung von anderen Entwicklern (optional)

Dieser Abschnitt kann ggf. wegfallen, wenn nicht genügend Zeit besteht oder der Nutzen nicht den Aufwand gerechtfertigt.

In diesem Abschnitt werden Frontend-Entwickler mit der Demo-Anwendung konfrontiert, einerseits mit und andererseits ohne die Lösung. Daraufhin werden den Entwicklern bspw. folgende Fragen gestellt:

- 1. Wie gut entspricht die Demo-Anwendung einem realen Szenario?
- 2. Sind die vorgestellten Probleme realitätsnah?

- 3. Wie gut lassen sich die Probleme ohne die Lösung beheben?
- 4. Wie gut lassen sich die Probleme mit der Lösung beheben?
- 5. Ist der Lösungsansatz zu komplex?
- 6. Gibt es Bedenken zum Lösungsansatz?

6 Abschluss

6.1 Fazit

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

6.2 Ausblick

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

7 Anhang

7.1 Studien zur Browserkompatibilität

Im Unterabschnitt 2.1.1 wurde die Anzahl an Studien zur Browserkompatiblität dargestellt. Die Daten hierfür wurden über die Literatursuchmaschine "Google Scholar" am 14.01.2021 abgerufen

Für die Suche wurde folgender Suchterm benutzt:

"cross browser" compatibility|incompatibility|inconsistency|XBI

Die Trefferanzahl für ein spezielles Jahr wurde jeweils als Datenpunkt benutzt. Dies soll dazu dienen, um einen ungefähren Trend der Literatur zu erkennen.

$_{ m Jahr}$	Treffer
2015	299
2016	246
2017	286
2018	238
2019	187
2020	160

Tab. 7.1: Suchtreffer zu Studien über Browserkompatibilität

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig angefertigt und m	ich
keiner fremden Hilfe bedient sowie keine anderen als die angegebenen Quellen und Hi	lfs-
mittel benutzt habe. Alle Stellen, die wörtlich oder sinngemäß veröffentlichten oder ni	cht
veröffentlichten Schriften und anderen Quellen entnommen sind, habe ich als sole	$ch\epsilon$
kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner P	rü-
fungsbehörde vorgelegen.	

D	
Dortmund, am	
	(Unterschrift)

Abkürzungs- und Erklärungsverzeichnis

Ajax Asynchronous JavaScript and XML

CDN Content Delivery Network

Clientseitiges Rendering Der Server stellt dem Client lediglich die Logik und die notwendigen Daten bereit, die eigentliche Inhaltsgenerierung geschieht im Client. Für ein Beispiel siehe Unterabschnitt 2.2.2

CNCF Cloud Native Computing Foundation

CORS Cross-Origin Resource Sharing

CPU Central Processing Unit, auf Deutsch "Prozessor".

CSP Content-Security-Policy

HTTP Hyper-Text-Transfer-Protocol

OTel OpenTelemetry

PoC Proof-of-Concept

SaaS Software-as-a-Service

Serverseitiges Rendering Die darzustellenden Inhalte, werden beim Server generiert und der Client stellt diese dar. Beispielsweise sind Anwendungen mit PHP oder auch eine Java Web Application

UI User-Interface

W3C World Wide Web Consortium

XBI Cross-Browser-Incompatibilities

XHR XMLHttpRequest

XSS Cross-Site-Scripting

Abbildungsverzeichnis

2.1	Studien zur Browserkompatibilität, eigene Darstellung (vgl. 7.1)	4
2.2	Flowchart über den Ablauf von Ajax-Anfragen mit CORS [Blu15]	8
3.1	Kausale Beziehung zwischen Spans. Eigene Darstellung.	11
3.2	Zeitliche Beziehung zwischen Spans. Eigene Darstellung	11
3.3	Fehlerbericht in der Instagram App [Fac20a]	12
3.4	Mitschneiden von DOM-Events, Abb. aus [BBKE13]	15
3.5	Abspielen von DOM-Events, Abb. aus [BBKE13]	15
3.6	Schaubild einer Lösung auf Basis von OTel [Ope20c]	16
3.7	OTel Komponenten [Dyn20c]	16
3.8	Beispiel eines Session-Replays bei LogRocket	19
3.9	Trace-Detailansicht. Quelle: Don Schenck [Sch20]	21
3.10	Dienst-Abhängigkeits-Graph. Quelle: Yuri Shkuro [Shk20]	21
3.11	Zoom von Abbildung 3.12, Abbildung aus [ASD ⁺ 20]	22
3.12	TraVistas Gantt-Diagramm, Abbildung aus [ASD ⁺ 20]	22
4.1	Demoanwendung: Kubernetes-Architektur-Diagramm, Quelle: Eigene Darstellung	36
4.2	Demoanwendung: Startseite "Warenkorb"	37
4.3	Demoanwendung: Seite "Rechnungsadresse"	37
4.4	Demoanwendung: Seite "Lieferdaten"	38
4.5	Demoanwendung: Seite "Zahlungsdaten"	38
4.6	Demoanwendung: Seite "Bestellübersicht"	39
4.7	Demoanwendung: Finale Seite "Bestellbestätigung"	39
4.8	Fehlende Texte	40
4.9	Grobe Architektur	45
4.10	Grobe Architektur mit hervorgehobenem Datendurchsatz	46
4.11		47
	Architektur von Jaeger, angepasst [Jae20a]	48
	Architektur mit speziellen Technologien	

Tabellenverzeichnis

4.1	Merkmale nach dem Kano-Modell der Kundenzufriedenheit
4.2	Kategorien der Anforderungen
4.3	Quellen der Anforderungen
4.4	Beispiel einer Anforderung
7.1	Suchtreffer zu Studien über Browserkompatibilität

Quellcodeverzeichnis

4.1	Demoanwendung:	Gherkin	Definition	zum	Feature "Warenkorb"	32
4.2	Demoanwendung:	Gherkin	Definition	zum	Feature "Rechnungsadresse"	32
4.3	Demoanwendung:	${\rm Gherkin}$	Definition	zum	Feature "Lieferadresse"	33
4.4	Demoanwendung:	${\rm Gherkin}$	Definition	zum	Feature "Zahlungsdaten"	34
4.5	Demoanwendung:	Gherkin	Definition	zum	Feature "Bestellung abschließen"	34

Literaturverzeichnis

- [ABC⁺16] Ahmed, Tarek M.; Bezemer, Cor-Paul; Chen, Tse-Hsun; Hassan, Ahmed E.; Shang, Weiyi: Studying the effectiveness of application performance management (APM) tools for detecting performance regressions for web applications: an experience report. In: 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR) IEEE, 2016, S. 1–12
- [AMWR20] ASROHAH, Hanun; MILAD, Mohammad K.; WIBOWO, Achmad T.; Rho-FITA, Erry I.: Improvement of academic services using mobile technology based on single page application. In: *Telfor Journal* 12 (2020), Nr. 1, S. 62–66
- [ASD⁺20] Anand, Vaastav; Stolet, Matheus; Davidson, Thomas; Beschastnikh, Ivan; Munzner, Tamara; Mace, Jonathan: Aggregate-Driven Trace Visualizations for Performance Debugging. In: arXiv preprint arXiv:2010.13681 (2020)
- [BBKE13] Burg, Brian; Bailey, Richard; Ko, Andrew J.; Ernst, Michael D.: Interactive Record/Replay for Web Application Debugging. In: *Proceedings of the 26th annual ACM symposium on User interface software and technology*, 2013, S. 473–484
- [BJS⁺08] Bettenburg, Nicolas; Just, Sascha; Schröter, Adrian; Weiss, Cathrin; Premraj, Rahul; Zimmermann, Thomas: What makes a good bug report? In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, 2008, S. 308–318
- [Bra16] Braun, Michael: Nicht-funktionale Anforderungen. In: Juristisches IT-Projektmanagement Lehrstuhl für Programmierung und Softwaretechnik Ludwig-Maximilians-Universität München (2016). S. 3-5
- [BT19] Bruhin, Florian; Tavernini, Luca: Crashbin Dokumentation. Hochschule für Technik Rapperswil & Fachhochschule Ostschweiz, 2019

- [CGL⁺15] CITO, Jürgen; GOTOWKA, Devan; LEITNER, Philipp; PELETTE, Ryan; SULJOTI, Dritan; DUSTDAR, Schahram: Identifying Web Performance Degradations through Synthetic and Real-User Monitoring. In: *J. Web Eng.* 14 (2015), Nr. 5&6, S. 414–442
- [Dyn20a] DYNATRACE: Dynatrace joins the OpenTelemetry project. https://www.dynatrace.com/news/blog/dynatrace-joins-the-opentelemetry-project/, 2020. [Online; abgerufen am 20.11.2020]
- [Dyn20b] DYNATRACE: The Leader in Cloud Monitoring | Dynatrace. https://www.dynatrace.com/, 2020. [Online; abgerufen am 20.11.2020]
- [Dyn20c] DYNATRACE: What is OpenTelemetry? Everything you wanted to know. https://www.dynatrace.com/news/blog/what-is-opentelemetry/, 2020. [Online; abgerufen am 20.11.2020]
- [Fac20a] FACEBOOK: Instagram App Screenshot. https://www.instagram.com/, 2020
- [Fac20b] FACEBOOK: React A JavaScript library for building user interfaces. https://reactjs.org, 2020. [Online; abgerufen am 12.10.2020]
- [Fil20] FILIPE, Ricardo Ângelo S.: Client-Side Monitoring of Distributed Systems, Universidade de Coimbra, Diss., 2020
- [Fre91] Freedman, Roy S.: Testability of software components. In: *IEEE transactions* on Software Engineering 17 (1991), Nr. 6, S. 553–564
- [Fun20] FUNCTIONAL SOFTWARE: About Sentry | Sentry. https://sentry.io/about/, 2020. [Online; abgerufen am 23.11.2020]
- [GB20] GREIF, Sacha; BENITTE, Raphaël: State of JS 2020: Front-end Frameworks. https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/, 2020. [Online; abgerufen am 15.11.2020]
- [Goo20a] GOOGLE: Angular. https://angular.io, 2020. [Online; abgerufen am 12.10.2020]
- [Goo20b] GOOGLE: Protocol Buffers / Google Developers. https://developers.google.com/protocol-buffers/, 2020. [Online; abgerufen am 16.12.2020]
- [Gra20] Graf, Michael: Bedeutung von Telemetrie für den Software Development Life Cycle. Hochschule Heilbronn, 2020
- [Hop06] HOPMANN, Alex: The story of XMLHTTP. https://web.archive.org/web/20070623125327/http://www.alexhopmann.com/xmlhttp.htm, 2006. [Online; abgerufen am 27.10.2020]

- [Hou20] HOUND TECHNOLOGY: Why Honeycomb Honeycomb. https://www.honeycomb.io/why-honeycomb/, 2020. [Online; abgerufen am 23.11.2020]
- [Jae20a] JAEGER AUTHORS, The: Architecture Jaeger documentation. https://www.jaegertracing.io/docs/1.21/architecture/, 2020. [Online; abgerufen am 31.12.2020]
- [Jae20b] JAEGER AUTHORS, The: Jaeger: open source, end-to-end distributed tracing. https://www.jaegertracing.io/, 2020. - [Online; abgerufen am 19.11.2020]
- [Jos19] Josephsen, Dave: iVoyeur: Distributive Tracing. In: ;login: 44 (2019), Nr. 4, S. 56. ISSN 1044-6397
- [Ká60] KÁLMÁN, Rudolf E.: On the general theory of control systems. In: Proceedings First International Conference on Automatic Control, Moscow, USSR, 1960, S. 481–492
- [Kan68] Kano, Noriaki: Concept of TQC and its Introduction. In: Kuei 35 (1968), Nr. 4, S. 20–29
- [Log20a] LOGROCKET: LogRocket | Logging and Session Replay for JavaScript Apps. https://logrocket.com/, 2020. [Online; abgerufen am 23.11.2020]
- [Log20b] LOGROCKET: Performance. https://docs.logrocket.com/docs/performance, 2020. [Online; abgerufen am 16.12.2020]
- [Mic20a] MICROSOFT: Microsoft 365 apps say farewell to Internet Explorer 11 and Windows 10 sunsets Microsoft Edge Legacy. https://techcommunity.microsoft.com/t5/microsoft-365-blog/microsoft-365-apps-say-farewell-to-internet-explorer-11-and/ba-p/1591666, 2020. [Online; abgerufen am 29.10.2020]
- [Mic20b] MICROSOFT: New year, new browser The new Microsoft Edge is out of preview and now available for download. https://blogs.windows.com/windowsexperience/2020/01/15/new-year-new-browser-the-new-microsoft-edge-is-out-of-preview-and-now-available-for-01.15, 2020. [Online; abgerufen am 29.10.2020]
- [MM20a] MOZILLA; MITWIRKENDE individuelle: console Web APIs / MDN. https://developer.mozilla.org/en-US/docs/Web/API/Console, 2020. [Online; abgerufen am 19.10.2020]
- [MM20b] MOZILLA; MITWIRKENDE individuelle: Content Security Policy (CSP) HTTP / MDN. https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP/, 2020. [Online; abgerufen am 15.10.2020]

- [MM20c] MOZILLA; MITWIRKENDE individuelle: Cross-Origin Resource Sharing (CORS) HTTP / MDN. https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS, 2020. [Online; abgerufen am 15.10.2020]
- [New20a] NEW RELIC: Announcing OpenTelemetry Beta support in New Relic One New Relic Blog. https://blog.newrelic.com/product-news/opentelemetry-beta-support-new-relic-one/, 2020. [Online; abgerufen am 20.11.2020]
- [New20b] NEW Relic: New Relic | Deliver more perfect software. https://opentelemetry.io/registry/, 2020. [Online; abgerufen am 20.11.2020]
- [NMMA16] NADAREISHVILI, Irakli; MITRA, Ronnie; McLarty, Matt; Amundsen, Mike: *Microservice architecture: aligning principles, practices, and culture*. O'Reilly Media, Inc., 2016. 3–8 S.
- [OKSK15] OREN, Yossef; Kemerlis, Vasileios P.; Sethumadhavan, Simha; Keromytis, Angelos D.: The spy in the sandbox: Practical cache attacks in javascript and their implications. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 2015, S. 1406–1418
- [OPBW06] OSHRY, Matt; PORTER, Brad; BODELL, Michael; W3C, World Wide Web C.: Authorizing Read Access to XML Content Using the <?access-control?> Processing Instruction 1.0. https://www.w3.org/TR/2006/WD-access-control-20060517/, 2006. [Online; abgerufen am 27.10.2020]
- [Ope20a] OpenCensus: OpenCensus. https://opencensus.io/introduction/#overview, 2020. [Online; abgerufen am 19.11.2020]
- [Ope20b] OPENTELEMETRY: About | OpenTelemetry. https://opentelemetry.io/about/, 2020. [Online; abgerufen am 19.11.2020]
- [Ope20c] OPENTELEMETRY: opentelemetry-specification/unified-collection.png. https://github.com/open-telemetry/opentelemetry-specification/blob/8e7b2cc17f2c572282c4e5e4d3cc54401749d8ff/specification/logs/img/unified-collection.png, 2020. [Online; abgerufen am 19.11.2020]
- [Ope20d] OPENTELEMETRY: Registry | OpenTelemetry. https://opentelemetry.io/registry/, 2020. [Online; abgerufen am 20.11.2020]
- [Ope20e] OPENTELEMETRY: Write guidelines and specification for logging libraries to support OpenTelemetry-compliant logs. https://github.com/opentelemetry/opentelemetry-specification/issues/894, 2020. [Online; abgerufen am 19.11.2020]

- [Ope20f] OPENTRACING: The OpenTracing Semantic Specification.

 on. https://github.com/opentracing/specification/blob/
 c064a86b69b9d170ace3f4be7dbacf47953f9604/specification.md, 2020.

 [Online; abgerufen am 11.12.2020]
- [Ope20g] OPENTRACING: What is Distributed Tracing? https://opentracing.io/docs/overview/what-is-tracing/, 2020. [Online; abgerufen am 19.11.2020]
- [Ora20] ORACLE: Java Debug Wire Protocol. @https://download.java.net/java/GA/jdk14/docs/specs/jdwp/jdwp-spec.html, 2020. [Online; abgerufen am 23.10.2020]
- [OS⁺18] ORIOL, Marc; STADE, Melanie; FOTROUSI, Farnaz; NADAL, Sergi; VARGA, Jovan; SEYFF, Norbert; ABELLO, Alberto; FRANCH, Xavier; MARCO, Jordi; SCHMIDT, Oleg: FAME: Supporting Continuous Requirements Elicitation by Combining User Feedback and Monitoring. In: 2018 IEEE 26th International Requirements Engineering Conference (RE) IEEE, 2018, S. 217–227
- [Pow06] Powers, Shelley: Learning JavaScript. O'Reilly Media Inc., 2006 (Java Series). ISBN 9780596527464
- [Pro20] PROMETHEUS AUTHORS, The: Prometheus Monitoring system & time series database. https://prometheus.io/, 2020. [Online; abgerufen am 19.11.2020]
- [Ran09] RANGANATHAN, Arun: cross-site xmlhttprequest with CORS. https://hacks.mozilla.org/2009/07/cross-site-xmlhttprequest-with-cors/, 2009. [Online; abgerufen am 27.10.2020]
- [Sch20] SCHENCK, Don: Istio Tracing & Monitoring: Where Are You and How Fast Are You Going? https://developers.redhat.com/blog/2018/04/03/istio-tracing-monitoring/, 2020. [Online; abgerufen am 17.12.2020]
- [SD13] Shreateh, Khalil; Dewey, Caitlyn: Mark Zuckerberg's Facebook page was hacked by an unemployed Web developer. In: *The Washington Post* (2013), Aug. [Online; abgerufen am 21.12.2020]
- [Sen20a] SENTRY: getsentry/sentry-javascript: Official Sentry SDKs for Javascript. https://github.com/getsentry/sentry-javascript, 2020. [Online; abgerufen am 23.11.2020]
- [Sen20b] SENTRY: Self-Hosted Sentry | Sentry Developer Documentation. https://develop.sentry.dev/self-hosted/, 2020. [Online; abgerufen am 23.11.2020]

- [Shk20] SHKURO, Yuri: Take Open Tracing for a HotROD ride. https://medium.com/opentracing/take-opentracing-for-a-hotrod-ride-f6e3141f7941, 2020.

 [Online; abgerufen am 17.12.2020]
- [SM12] Sumaray, Audie; Makki, Shamila K.: A comparison of data serialization formats for optimal efficiency on a mobile platform. In: Proceedings of the 6th international conference on ubiquitous information management and communication, 2012, S. 1–6
- [Sma19] SMARTBEAR SOFTWARE: Gherkin Syntax. https://cucumber.io/docs/gherkin/, 2019. [Online; abgerufen am 14.11.2020]
- [Spl20] SPLUNK: The Data-to-Everything Platform Built for the Cloud | Splunk. https://www.splunk.com/, 2020. [Online; abgerufen am 24.11.2020]
- [Sri18] Sridharan, Cindy: Distributed Systems Observability: A Guide to Building Robust Systems. O'Reilly Media Inc., 2018. ISBN 9781492033424
- [Sta21] STATCOUNTER: Desktop Browser Market Share Worldwide (Jan Dec 2020). https://gs.statcounter.com/browser-market-share/desktop/worldwide/2020, 01 2021. [Online; abgerufen am 15.01.2021]
- [STM+20] SCROCCA, Mario; TOMMASINI, Riccardo; MARGARA, Alessandro; VAL-LE, Emanuele D.; SAKR, Sherif: The Kaiju Project: Enabling Event-Driven Observability. In: Proceedings of the 14th ACM International Conference on Distributed and Event-based Systems ACM, 2020, S. 85–96
- [The 20] THE LINUX FOUNDATION: Kubernetes Components. https://kubernetes.io/docs/concepts/overview/components/, 2020. [Online; abgerufen am 14.11.2020]
- [W3C06] W3C, World Wide Web C.: The XMLHttpRequest Object. https://www.w3.org/TR/2006/WD-XMLHttpRequest-20060405/, 2006. [Online; abgerufen am 27.10.2020]
- [W3C20] W3C, World Wide Web C.: Abou W3C Standards. https://www.w3.org/standards/about.html, 2020. [Online; abgerufen am 29.10.2020]
- [YM20] YOU, Evan; MITWIRKENDE individuelle: Vue.js. https://vuejs.org/, 2020. [Online; abgerufen am 12.10.2020]
- [ZE11] ZIKOPOULOS, Paul ; EATON, Chris: Understanding big data: Analytics for enterprise class hadoop and streaming data. McGraw-Hill Osborne Media, 2011. 5 S. ISBN 9780071790543