Homework № 1 for "Basics of abstract algebra and coding theory" course

Artem Petrov

February 13, 2020

Problem #2

Δ

Let's select arbitrary $z \in G$.

$$z = zzz^{-1} = ez^{-1} = z^{-1}$$

So, $\forall z \in G : z = z^{-1}$. Let's select arbitrary $x, y \in G$.

$$xy = x^{-1}y^{-1} = (yx)^{-1} = yx$$

Problem #3

Λ

According to the definition of group $\forall g \in G, \exists ! g^{-1} \in G : gg^{-1} = e$.

$$g^{-1} = g \Leftrightarrow g^2 = e,$$

so if $g \neq f$ (and $g \neq e$), than $g \neq g^{-1}$. (otherwise we would have $g^2 = gg^{-1} = e \Rightarrow |g| = 2$, which is forbidden by problem condition).

$$\prod_{g \in G} g = efg_1g_1^{-1}g_2g_2^{-1}... = f$$

Problem #4

 \triangle

Suppose |h| = m.

To proof that $|ghg^{-1}| = m$ we should prove that $m = min\{x \in \mathbb{N} : (ghg^{-1})^x = e\}$. Let's do this:

1.1) $(ghg^{-1})^m = gh^mg^{-1} = geg^{-1} = e$.

1.2) Suppose we have found $k \in \mathbb{N}$: $k < m, (ghg^{-1})^k = e$. Then, $e = (ghg^{-1})^k = gh^kg^{-1} \Rightarrow g^{-1} = h^kg^{-1} \Rightarrow e = h^k$, which is impossible since |h| = m > k.

So, we have proved that $m = |ghg^{-1}|$

Moving on to the next question:

Suppose |gh| = m. We will prove that |hg| = m following the same scheme we have followed in the previous proof:

- 2.1) $e = (hg)^m = h(gh)^{m-1}g \Leftrightarrow e = geg^{-1} = gh(gh)^{m-1}gg^{-1} = (gh)^m$
- 2.2) Suppose we have found $k \in \mathbb{N}$: $k < m, (hg)^k = e$. Then, similarly to 2.2, we get $(gh)^k = e$, which is impossible since |h| = m > k.

So, we have proved that |gh| = m = |hg|

Problem #6

 \triangle

```
 \begin{array}{l} \big] X = \{z \in \mathbb{C} : z^n = 1\} = \{exp(i2\pi k/n) : k \in \{0,1,2...(n-1)\}\} \\ \text{Clearly, } (X;*) \cong (\{0,1,2...(n-1)\},+). \text{ And therefore } (X,*) \text{ is a group.} \\ \forall x \in X \exists y \in X : y^3 = x \Leftrightarrow \forall k \in \{0,1...n-1\} \exists m \in \{0,1...n-1\} : m*3 = k. \\ \big] n = 35, k \in \{0,1...n-1\}. \end{array}
```

In this case if $k \equiv 0 \pmod{3}$, then m = k/3. If $k \equiv 1 \pmod{3}$, then m = (k+35)/3. If $k \equiv 2 \pmod{3}$, then m = (k+2*35)/3. We found corresponding m for every $k \in X$. Hence, every $x \in X(n = 35)$ is a cube.

 $n = 36, k \in \{0, 1...n - 1\} : k \equiv 1 \pmod{3}$. Let's prove by contradiction. Assume, $\exists m \in \{0, 1...n - 1\} : m * 3 = k$. Then $m * 3 \equiv k + 36 * l \pmod{3}$; $(l \in \mathbb{N}) \Rightarrow 0 \equiv 1 \pmod{3}$, which is impossible. Therefore not every $x \in X(n = 36)$ is a cube.

Problem #7

Δ

 $(\mathbb{Z}/5\mathbb{Z})^* = (\{1,2,3,4\},*); (\mathbb{Z}/12\mathbb{Z})^* = (\{1,5,7,11\}).$ Clearly, they have the same amount of elements.

Let's build multiplication tables for both of these groups:

1: Multiplication table for $(\mathbb{Z}/5\mathbb{Z})^*$

#	1	2	3	4
1	1	2	3	4
$\parallel 2 \mid$	2	4	1	3
3	3	1	4	2
4	4	3	2	1

2: Multiplication table for $(\mathbb{Z}/12\mathbb{Z})^*$

	#	1	5	7	11
ſ	1	1	5	7	11
İ	5	5	1	11	7
	7	7	11	1	5
	11	11	7	5	1

Let's prove by contradiction. Suppose $\exists \phi: (\mathbb{Z}/5\mathbb{Z})^* \to (\mathbb{Z}/12\mathbb{Z})^*$ - isomorphism. Isomorphism between groups maps 1 to 1. $\forall x \in (\mathbb{Z}/12\mathbb{Z})^*$ $x^2 = 1$. Then $\forall y \in (\mathbb{Z}/5\mathbb{Z})^*$ $\phi(y*y) = \phi(y)\phi(y) = 1 \Rightarrow y*y = 1$, which is impossible, since $2^2 = 4$ in $(\mathbb{Z}/5\mathbb{Z})^*$. Therefore there are no isomorphisms between this groups.