Name:....

Roll	<i>No.</i> :											
Invig	gilato	r's Sig	gnat	ure :	• • • • • • • • • • • • • • • • • • • •			•••••				
			cs/	B.Tech/(E	CE-NEW	/)/S	EM	I-4/EC-402/2	013			
	2013											
	DI	GIT.	AL	ELECTR	ONICS	& I	N7	TEGRATED				
				CI	RCUIT	S						
Time	Time Allotted : 3 Hours						Full Marks: 70					
		The	e figi	ures in the m	nargin ind	dicat	e fi	ıll marks.				
Са	ndida	ates a	ure r	equired to gi	ve their a	เทรพ	ers	in their own wo	ords			
				as fo	ır as prad	ctical	ble.					
				GR	ROUP A	1						
			(M	ultiple Cho	ісе Туре	Que	est	ions)				
1.	Choose the correct altern tives for any <i>ten</i> of the following: $10 \times 1 = 10$								_			
	i) A 10 MHz signal is applied to a Mod-5 counter followed by a Mod 8 counter. The output frequency will be							lowed				
		a)	10	kH	1	b)	2.5	5 kHz				
		c)	5 k	Hz		d)	25	kHz.				
	ii) Which family has better speed?											
		a)	EC	L	1	b)	DΊ	L				
		c)	TTI	Ĺ		d)	M	OS.				
	iii)	Digi	tal :	multiplexer	is basic	ally	a	combinational	logic			
	circuit to perform the operation											
		a)	AN	D-AND	1	b)	OF	R-OR				
		c)	AN	D-OR		d)	OF	R-AND.				
	_							_				
440	6							[Turr	ı over			

CS/B.Tech/(ECE-NEW)/SEM-4/EC-402/2013

iv)	Gray code equivalent of binary number (1000001) $_{2}$ is								
	a)	(1100001)	b)	(1100011)					
	c)	(1000011)	d)	(110101).					
v)	The decimal equivalent of 10111.0110 is								
	a)	22.3	b)	23.375					
	c)	25.5	d)	26.55.					
vi)	Whi	Which flipflop may act as buffer ?							
	a)	SR	b)	JK					
	c)	D	d)	T.					
vii)	$2\mbox{'s}$ complement of (24) $_{10}$ is								
	a)	00011000	b)	11100111					
	c)	11101000	d)	11110011.					
viii)	Full	Full form of FPGA is							
	a)	Full Programm ble Gated Array							
	b)	o) Field Programmable Gated Array							
	c)	Full Peripheral Gated Array							
	d Field Peripheral Gated Array.								
ix)	A bubbled AND gate is equivalent to								
	a)	OR gate	b)	NAND gate					
	c)	NOR gate	d)	X-OR gate.					
x)	A carry look ahead adder is frequent, because it is								
	a)	faster	b)	more accurate					
	c)	uses fewer gate	d)	costs less.					
6		2							

CS/B.Tech/(ECE-NEW)/SEM-4/EC-402/2013

xi) Given that $(\sqrt{61})_b = (7)_{10}$, the value of *b* is

a) 6

b) 8

c) 4

d) 5.

xii) A decoder with enables input can be used as

a) encoder

b) demultiplexer

c) comparator

d) decoder.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following

 $3 \times 5 = 15$

2. Simplify using k-map in SOP form :

$$f(A, B, C, D) = \sum_{m} (1, 2, 4, 5, 9, 10) + \sum_{d} (6, 7, 8, 13).$$

- 3. Describe successive approximation type A/D converter.
- 4. a) Describe the design of 4 bit ring counter and Johnson counter.
 - b) Mention the differences in terms of Mod-value. 1
- 5. Design a full adder using 3 to 8 decoder with all active low outputs and additional logic gates, if required.
- 6. Design a full adder with two half adders.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Give the design of synchronous decade counter using D flipflop. 5
 - b) Give design of asynchronous decade counter. 5
 - c) Explain with circuit one shift left-shift right shift register. 5

4406 3 [Turn over

CS/B.Tech/(ECE-NEW)/SEM-4/EC-402/2013

- 8. a) Design the following function using suitable MUX : $F(A, B, C, D) = \sum_{m} (1, 3, 4, 11, 12, 13, 14, 15).$ 5
 - b) Design a 16: 1 MUX using 4: 1 MUX. 5
 - c) Design a full subtractor using decoder and necessary gates. 5
- 9. a) Describe DRAM and SRAM. Distinguish between them.

4 + 4 + 2

- b) Mention differences of ROM, RAM, EPROM, EEROM. 5
- 10. a) Design a combinational circuit for excess 3 code to BCD conversion using minimum number of logic gates.

9

6

b) Describe dual slope A/D converter.

3 × 5

- 11. Write short notes n any *three* of the following :
- •

- a) Priority encoder
- b) Up-down counter
- c) PLA
- d) TTL
- e) BCD to 7 segment decoder driver.

4406 4