

Point-like IRF support proposal

T. Hassan, C. Deil

Open DL3 status

Current DL3 specs:

https://gamma-astro-data-formats.readthedocs.io/en/latest/

- They include:
 - Event lists: gamma-like events (no additional cuts)
 - Full-enclosure IRFs (calculated with no directional cut) as a function of the energy and FoV
 - This 'a-la-Fermi' approach is different to the one used by IACTs up to now
 - Intends to convert the "3D analysis" to the default options for CTA

Open DL3 status – Full-enclosure IRFs

- Given current status of the CTA project, this format may not be enough:
 - Very different approach to the one used by current IACTs
 - Even if CTA intends to do things differently (hopefully better), data formats should at least have backwards compatibility (support the IRF format used up to now)
 - Current public CTA IRFs are optimized to maximize differential sensitivity of a point-like source at 20° za
 - Custom cuts are required to reach this sensitivity, therefore current full-enclosure IRFs do not allow to reach that level of sensitivity

Open DL3 status – Full-enclosure IRFs

Current CTA IRFs:

https://www.cta-observatory.org/science/cta-performance/

- All public IRFs shown are point-like
- Regarding CTA internal IRFs format
 - Until now, only ROOT files containing point-like IRFs were generated
 - We want to start using proposed science tools with IRFs in FITS files

- Here we propose the addition to the specs of point-like IRFs
 - Each IRF is calculated post (E-dependent) θ^2 cut
 - Effective area, energy dispersion and background rate is calculated as a function of the FoV
 - An additional column is added to store the θ^2 cut
- Available PR at gitHub:

```
https://github.com/open-gamma-ray-astro/gamma-astro-
data-formats/pull/79
```

See proposal in:

```
http://www.gae.ucm.es/~thassan/gamma/index.html
```

IRF specifications were slightly re-organized

Additional column "RAD_MAX", containing the applied cut

Effective Area vs true energy

Columns:

- THETA_LO , THETA_HI ndim: 1
 Field of view offset axis
- ENERG_LO , ENERG_HI ndim: 1, unit: TeV
 True energy axis
- EFFAREA ndim: 2
 - Effective area value as a function of true energy

Effective Area vs true energy

Columns:

- ENERG_LO , ENERG_HI ndim: 1, unit: TeV
 True energy axis
- THETA_LO , THETA_HI ndim: 1
- RAD_MAX ndim: 2, unit: deg
 - · Radial cut applied to calculate the IRF component
- EFFAREA ndim: 2
 - Effective area value as a function of true energy

Additional column "RAD_MAX", containing the applied cut

Proposal – Open questions

- HDUCLASS and HDUCLASn keywords hierarchy
 - This keyword (HFWG recommendation), is a hierarchical classification added to each HDU within the FITS file
 - They are used by the science tools to select the correct IRF
 - Proposal:

HDUCLASS	HDUCLAS1	HDUCLAS2	HDUCLAS3	HDUCLAS4
OGIP	RESPONSE	EFF_AREA	POINT-LIKE	aeff_2d
		RPSF	FULL-ENCLOSURE	edisp_2d
		EDISP		psf_table
	GTI			
	EVENTS			