1 Popis systému

Kód			
zprávy	hexa	Směr	Popis
1	01	out	Chyba přenosu - neshoda v kontrolních bytech
2	02	out	Chyba přenosu - zahájeno nesprávným znakem
3	03	out	Chyba měření šířky - více zastíněných ploch
4	04	out	Chyba IRC - změna obou vstupů
5	05	out	Chyba IRC - rozdíl IRC oproti referenci
7	07	out	Chyba přenosu - plná odesílací fronta
9	09	$_{ m in}$	zastavuje nebo spouší odesílání z katru
10	0A	$_{ m in}$	Ulož do EEPROM
17	10	$_{ m in}$	Nastav konstantu pro přenásobení hodnoty
18	11	$_{ m in}$	Nastav vzálenost referenčního bodu
19	13	$_{ m in}$	Vypíná přepočet průměru na skutečný
	16	$_{ m in}$	Pokyn k odeslání datové zprávy
20	14	out	Potvrení příjmu
64	40	out	Datová zpráva
vozík			
4	04	in	Chyba IRC - změna obou vstupů
10	0A	in/out	Ulož do EEPROM (i na katru)
17	0E	$_{ m in}$	Nastav konstantu pro přenásobení hodnoty (vozík)
18	0F	$_{ m in}$	Nastav vzálenost referenčního bodu (vozík)
20	14	out	Potvrení příjmu
	16	out	Pokyn k odeslání datové zprávy z katru
	1A	in	Nastavení zdroje dat měření šířky
64	40	in	Datová zpráva
	41	out	Jméno zákazníka
	42	out	Naměřený strom
	43	out	Odesláno poslední měření
	44	out	Zahájení odesílání dat

Tabulka 1: Tabulka typů zpráv - katr

Následuje podrobnější popis některých zpráv a situací, v nichž mohou být zprávy vyslány.

- (1) Chyba přenosu Při příjmu zprávy byla nalezena chyba v posledních třech kontrolních bytech.
- (2) Chyba přenosu Tato zpráva je vyslána v případě že při příjmu zprávy není první byte 255.

2

- (3) Chyba měření šířky Tato zpráva informuje o tom, že na měřící liště se objevuje více zastíněných ploch.
- (4) Chyba IRC Při zpracování vstupů z inkrementálního čidla bylo zjištěno, že oproti minulému zpracování došlo ke změně hodnot na obou vstupech. To znemožňuje určit, na kterou stranu se IRC pootočilo. Značí to, že se čidlo otáčí příliš rychle, nebo že je třeba zkrátit dobu mezi voláním obslužné funkce.
- (5) Chyba IRC Při dosažení referenčního bodu se lišila dosavadní hodnota čítače IRC a přednastavená hodnota referenčního bodu. Velikost (Δ_{IRC}) lze určit dle prvních dvou datových bytů $(B_1 \ a \ B_2)$:

$$\Delta_{IRC} = (B_1 \cdot 256) + B_2 \tag{1}$$

Výstup ve stejných jednotkách jako data ve zprávě s kódem 64.

- (7) Chyba přenosu Došlo k naplnění odesílací fronty.
- (20) Potvrzení příjmu Tato zpráva je vysílána v případě správného příjmu některých zpráv.
- (64) Datová zpráva Obsahem této zprávy jsou naměřené velikosti d_v a d_{h_namer} . Zpráva je odesílána při změně některé z hodnot. Velikosti jsou dány vzorci 2 a 3, kde B_1 , B_2 , B_3 a B_4 jsou čtyři datové byty.

$$d_v = (B_1 \cdot 256) + B_2 \tag{2}$$

$$d_{h_namer} = (B_3 \cdot 256) + B_4 \tag{3}$$

- (16) Ulož do EEPROM Obdrží-li jednočip tuto zprávu, uloží do paměti EEPROM obsah čítače IRC.
- (17) Nastav irc_k Po obdržení této zprávy je nastavena hodnota irc_k dle vzorce 4

$$irc_{-}k = (B_1 \cdot 256) + B_2$$
 (4)

Hodnoty bytů B_1 a B_2 lze získat následujícím způsobem:

$$B_1 = irc_-k \operatorname{div} 256 \tag{5}$$

$$B_2 = irc k \mod 256 \tag{6}$$

2 SOFTWARE 3

2 Software

2.1 Uživatelské rozhraní

Systém komunikuje s uživatelem prostřednictvím 40x4 LCD displeje, klávesnice a několika tlačítek. Displej je překreslován několikrát za vteřinu. Modul, který se o toto stará se jmenuje lcd.c. Data která jsou vypisována na LCD jsou uložena v poli.

Uživatelské rozhraní je tvořeno obrazovkami s několika rozdílými funkcemi. O správu jednotlivých obrazovek se stará modul gui.c Zajišťuje správné přepínání, alokaci všech proměnných před vykreslením obrazovky a uvolnění paměti při jejím nahrazení jinou obrazovkou. Jednotlivé obrazovky jsou v naimplementovány v modulech, jejichž jména jsou *_scr.c. V modulu je obvykle funkce void *_scr_init(void), která inicializuje potřebné proměnné při startu jednočipu. Funkce void *_scr_draw(void) se stará o vykreslování příslušné obrazovky, ale počítá s tím, že jsou již naalokovány všechny prostředky. Alokace je zajištěna prostřednictvím funkce void *_scr_open(void). Uvolňování naalokovaných proměnných je prováděno funkcí void *_scr_close(void).

3 Hardware

3.1 Převodník RS232 - RS422

Převodník je realizován prostřednictvím obvodu MAX232 a dvojice budičů linky RS485, které zajišťují převod z TTL. Zapojení má několik možností napájení. Jednou možnstí je napájet z venkovního napáječe, druhou možností je napájení po volém vodiči vedení RS422 (tab 2). Další možností je napájení přímo ze sériového portu. To předpokládá nastavení flagů DTR a RTS. Pro úplnost je na obrázku 1 schéma zapojení sériové linky.

Obrázek 1: Schéma zapojení RS232na konektor Cannon - 9

3 HARDWARE 4

Tabulka 2: Zapojení konektoru Cannon-9 pro RS422

Pin	Popis
1	GND
2	U_0 (12V) (nestandartní!)
4	TxD+
5	TxD-
8	RxD+
9	RxD-

3.2 Napájení

Celý systém je napájen z jednoho zdroje. Napájení je vedeno k dílčím zařízením prostřednictvím nevyužitých vodičů. Napájení je 12 V. Stabilizace by neměla být nezbytná, neboť všechny dílší systémy dále napětí stabilizují na 5 V.

3.3 Kabeláž

Kabeláž zajišťuje spojení jednotlivých částí systému. Propojení je realizováno prostřednictvím linky RS422.

Obrázek 2: Schéma propojení zařízení prostřednictvím linky RS422