14. Final Review!

- 1. Final Review!
- 1.1 Checking Soundness for Alt. Rules
- 1.2 Applications of soundness & completeness
- 1.3 Alt. Cases of Membership Lemma
- 1.4 Translations in QL, with Identity

Only, Neither, Counting

'The' Definite Description

- 1.5 Interpretations/Models for QL
- 1.6 Derivations in QND

14. Final Review!

Rules

a. Checking Soundness for Alt.

Alternative Natural Deduction Rules

► As we did with trees (system STD), we can consider whether modifying SND with a new rule preserves soundness

Method for generating new cases: take a case in the book and add a negation symbol(s) somewhere;

then figure out what a sound rule would give you.

Negated Conjunction Introduction

- ► Consider a system SND* just like SND except that we add the following rule:
- ▶ Negated Conjunction Introduction: from $\sim Q$ derive $\sim (Q \& R)$
- ▶ Does this rule preserve soundness? If so, extend our proof by adding a case to the induction (showing that the new line is righteous); If not, provide a concrete counterexample to soundness of SND*
- ► Strategy: first do a heuristic: do the earlier accessible sentences semantically entail the final sentence?
 - If yes, then the new rule preserves soundness (proceed to formally extend the proof!)
 - If no, then you should be able to construct a concrete counterexample to soundness (i.e. case where $\Gamma \vdash_{SND^*} P$ but $\Gamma \nvDash P$ for a concrete set of SL sentences Γ

14 a 2

Notation for Soundness Cases

- ▶ Γ_i stands for the set of assumptions that are open at the i-th line, i.e. these are the accessible premises/assumptions at line i. They are every premise/assumption (sentence sitting on a horizontal line) such that its scope line (vertical line) travels all the way down to line i, and line i is to the right of this vertical line.
- ightharpoonup P_i stands for the sentence that is on the *i*-th line.
- ▶ $\Delta \subseteq \Gamma$ means that the set Δ is a subset of Γ .
- ▶ $\Gamma \cup \{Q\}$ means that we have added the sentence Q to the set of sentences Γ (we have taken their union).

Induction Hypothesis and Key Fact

- ► Induction hypothesis for Soundness: assume that the soundness/righteousness property holds for all lines i less than the k+1-st line, i.e. if $i \le k$ and if $\Gamma_i \vdash \mathbf{P_i}$, then $\Gamma_i \models \mathbf{P_i}$.
- ▶ In words: we are assuming that if we can derive a sentence P_i from a set of assumptions Γ_i , then those assumptions semantically entail that sentence.
- ▶ Lemma 6.3.2 (a.k.a. Useful Fact 1): if $\Gamma \models \mathbf{P}$ and Γ is a subset of a larger set Γ' , then the larger set semantically entails the sentence \mathbf{P} as well, i.e. $\Gamma' \models \mathbf{P}$.

Negated Conjunction Introduction

- ▶ Negated Conjunction Introduction: from $\sim Q$ derive $\sim (Q \& R)$
- ▶ Draw the deduction with the final sentence on line #k+1; label everything schematically so that you can refer to earlier line numbers and their open premise sets Γ_m
- ► Extend the proof of soundness by showing that a line generated by this rule is righteous, i.e. $\Gamma_{k+1} \models \mathcal{P}_{k+1}$
- Rely on the relevant subset relations between the various Γ premise sets
- Reason about relevant semantic entailment claims by using the truthtables for the connectives

Schematic Solution Steps (if you're totally lost)

- 1. Label the lines in your diagram with lowercase letters (e.g. j, ℓ , m, n, etc.) so that you can refer to them. Label the LAST LINE as k+1.
- 2. Reexpress the derivation diagram in terms of single turnstiles, i.e. if you have P on line j, then $\Gamma_j \vdash P$ (i.e. the set of open assumptions at line j provides a derivation for P).
- 3. Apply the induction hypothesis to any lines that are less than the k+1-th line. This lets you convert these single turnstiles into double turnstiles, e.g. $\Gamma_j \vDash P$, provided that j < (k+1).
- 4. Relate the set of assumptions open at various lines (your Γ 's) to the set of assumptions open at the last line, Γ_{k+1} . This will involve the subset relation \subseteq , e.g. $\Gamma_j \subseteq \Gamma_{k+1}$.
 - If the sentence P_j at line j is an additional open assumption that is not open at line k+1, then you need to tack this on, using the union operation: $\Gamma_j \subseteq (\Gamma_{k+1} \cup P_j)$.

Schematic Solution Steps continued

- 5. Apply useful fact 1 (i.e. lemma 6.3.2), using the relation(s) in the previous step. E.g., if you have $\Gamma_j \vDash P$ (from step 3) and $\Gamma_j \subseteq \Gamma_{k+1}$ (from step 4), then useful fact 1 entails that $\Gamma_{k+1} \vDash P$.
- 6. Next, consider an arbitrary truth value assignment that makes all of the sentences in Γ_{k+1} true. Use whatever double turnstiles are at your disposal to infer that some other sentence(s) is true.
- 6. Then, use a truth table to argue why the sentence on the last line (line k+1) must be true as well under this truth value assignment.
- 8. Pat yourself on the back (soundly)!

For additional guidance on Soundness, see...

- ► Section 6.3 of *The Logic Book* (reading for Week 12)
- ▶ pages 246-250 contain most of the cases for our system SND
- ► PS12 #1 handles negation elimination (case 10)
- ▶ §6.3 Exercises on page 250-251, problem #4 parts a thru d
- ► Think of your own cases by throwing in negation symbols, thinking about de Morgan's or other semantically equivalent sentences, etc.!

14. Final Review!

completeness

b. Applications of soundness &

Applying soundness and/or completeness theorems

► PS12, problems #4-7 illustrate simple applications of the soundness and/or completeness theorems

► The final might contain problems of a similar flavor

A Key Fact to Remember, Understand, Retain

- ▶ If $\Gamma \cup \{\sim P\}$ is unsatisfiable, what else can we say?
- ► Answer: $\Gamma \vDash \mathcal{P}$ (and vice-versa)
- ▶ If $\Gamma \vDash \sim \mathcal{Q}$, what else can we say?
- ► Answer: $\Gamma \cup \{Q\}$ is unsatisfiable (and vice-versa)
- ► See p. 245 if you don't believe this; but should be able to give valid arguments for these claims verbally!

Practice w/ Applying Soundness & Completeness

To avoid ambiguity, let the sentences and sets of sentences be from QL, and let ' \vdash ' denote \vdash_{QND}

- 1. Prove or provide a counterexample to the following statement: If $\Gamma \vDash \mathcal{P}$ and $\Delta \vdash \mathcal{Q}$, then $\Gamma \cup \Delta \vdash \mathcal{P} \& \mathcal{Q}$
- 2. If $\Gamma \vdash (S \lor R)$ and $\Gamma \vdash \sim (S \lor R)$, prove or provide a counterexample that $\Gamma \vDash S$
- 3. If $\Gamma \cup \{\sim P\}$ is unsatisfiable and $\Delta \vdash R$, prove or provide a counterexample to $(\Gamma \cup \Delta) \vdash (\sim P \equiv R)$.
- 4. Prove or give a counterexample to the following statement: If Γ is satisfiable, then $\{\sim S \mid S \in \Gamma\}$ is satisfiable.

Concept Review (if totally lost)

- Soundness theorem for SND: if you have a single turnstile (in SND), then you have a double turnstile. In words: if a set of assumptions gives you a derivation (in SND) for a sentence S, then those assumptions semantically entail that sentence S. In symbols: if $\Gamma \vdash_{SND} S$, then $\Gamma \vDash S$.
- ► Completeness theorem for SND: if you have a double turnstile, then you have a single turnstile (in SND). In words: if a set of assumptions semantically entails a sentence S, then those assumptions gives you a derivation (in SND) for that sentence S. In symbols: if $\Gamma \models S$, then $\Gamma \vdash_{SND} S$.
- ► Likewise for QL and QND

Solution Tips for Logically Complete Students

- 1. Use the soundness theorem to convert any single turnstiles you have (from system SND) into double turnstiles.
- 2. Convert claims about unsatisfiability into double turnstile relations
- 3. Use the completeness theorem to convert any double turnstiles you have into single turnstiles.
- 4. If you get stuck, write out the definitions of any key terms involved. These will guide you on your path to victory.
- 5. If you have to provide a counterexample, think about the simplest counterexample that gets the job done. Your counterexample must involve ACTUAL sentences; not metavariables
- 6. Pray for a stroke of insight! (Jk! Try reasoning backwards to figure out what you need!)

14.b.5

c. Alt. Cases of Membership Lemma

14. Final Review!

Alternative Cases of Membership Lemma

- ► In the completeness proofs, recall that the five SND membership lemma cases are motivated by truth-functional considerations
- ▶ We can prove variants of these cases, e.g. the following: modified version of case (e): $\sim P \equiv Q \in \Gamma^*$ if and only if either i) both $P \notin \Gamma^*$ and $Q \in \Gamma^*$ or ii) both $P \in \Gamma^*$ or $Q \notin \Gamma^*$.
- ► Alternately, one can be given an alternative SND rule (replacing one of our 11 sanctioned rules) from which to reprove a given case of the membership lemma (using the Door lemma)

Mega Reminder: TWO directions to show!

- Note that all of these cases have TWO directions, and you need to prove BOTH directions to complete the problem.
 - First, you want to assume the thing on the left and derive the thing on the right (forward direction).
 - Second, you want to assume the thing on the right and derive the thing on the left (backwards direction).
- ► Sometimes a case involves subcases, each of which can require its own non-trivial SND deduction (e.g. cases (c) and (d) for disjunction and conditional)
- ► Finally, remember that the membership lemma is purely syntactic! No mention of truth-value assignments here!

Membership Lemma (not that I'm a bouncer!)

- ▶ Membership Lemma for club Γ^* : if \mathcal{P} and \mathcal{Q} are SL wffs, then:
 - a.) $\sim \mathcal{P} \in \Gamma^*$ if and only if $\mathcal{P} \notin \Gamma^*$
 - b.) $\mathcal{P} \& \mathcal{Q} \in \Gamma^*$ if and only if both $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$
 - c.) $P \lor Q \in \Gamma^*$ if and only if either $P \in \Gamma^*$ or $Q \in \Gamma^*$
 - d.) $P \supset Q \in \Gamma^*$ if and only if either $P \notin \Gamma^*$ or $Q \in \Gamma^*$
 - e.) $\mathcal{P} \equiv \mathcal{Q} \in \Gamma^*$ iff either (i) $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$ or (ii) $\mathcal{P} \notin \Gamma^*$ and $\mathcal{Q} \notin \Gamma^*$
- ► Notice how these syntactic constraints mirror truth-conditions!

Two Examples of Membership Lemma

- ► Case (a) is very useful: $\sim P \in \Gamma^*$ if and only if $P \notin \Gamma^*$
- ► (modified version of case b): $P\&\sim Q \in \Gamma^*$ if and only if $P\in \Gamma^*$ and $Q\notin \Gamma^*$
- Additional practice problem (modified version of case c): prove that $P \lor \sim Q \in \Gamma^*$ if and only if either $P \in \Gamma^*$ or $Q \notin \Gamma^*$.
- ► Study case (d) for the conditional (bottom of p. 258)!
- Note that the 7-line derivation for case d) has a serious typo on line 2: the justification should be ":A / ⊃ I", i.e. :AS for conditional intro.

Maximally Consistent-in-SND

- ► Γ^* is maximally-SND-consistent provided that both (i) Γ^* is consistent in SND (i.e. can't derive any contradictions) and (ii) if **P** is not in Γ^* , then $\Gamma^* \cup \{\mathbf{P}\}$ is inconsistent in SND.
- ▶ In other words: you can't derive a contradiction from assumptions in Γ^* . And if $\mathbf{P} \notin \Gamma^*$, then $\Gamma^* \cup \{\mathbf{P}\}$ lets you derive a contradictory pair (i.e. you can derive both \mathbf{R} and $\sim \mathbf{R}$).
- Assuming that you are not asked to prove a variant of case (a), you can help yourself to this result. Hence, if a sentence $\mathbf{P} \notin \Gamma^*$, then case (a) lets you conclude that $\sim \mathbf{P} \in \Gamma^*$, and vice versa: if $\sim \mathbf{P} \in \Gamma^*$, then you can conclude that $\mathbf{P} \notin \Gamma^*$.

The Door Lemma

- ▶ Lemma 6.4.9 (a.k.a. 'The Door'): this lemma helps you show that a sentence S is a member of a maximally SND-consistent set Γ^* :
 - if you can derive S from a subset Γ of a maximally SND-consistent set Γ^* , then S is a member of Γ^* .
 - In symbols: if $\Gamma \vdash S$ and $\Gamma \subseteq \Gamma^*$, then $S \in \Gamma^*$. In particular, if $\Gamma^* \vdash S$, then $S \in \Gamma^*$.
 - Hence the strategy: if you are trying to show that $S \in \Gamma^*$, figure out how to derive S in SND from sentences you have assumed are in Γ^* . Then, apply The Door.

14. Final Review!

d. Translations in QL, with Identity

Some Structures to remember from SL

▶ **P only if Q**: $P \supset Q$ (order preserved) (equiv: $\sim Q \supset \sim P$)

 \triangleright Q if P; Q provided that P; Q given that P; if P, then Q: $P \supset Q$

- ► Unless B, C or C unless B: use OR: B ∨ C
- ▶ J just in case K: $J \equiv K$

14.d.1

Some Simple Examples not involving identity

Domain: all people;

Predicates: Dx: x went to Disneyland; Kxy: x knows y;

Constants/Names: j for John; m for Mary

► Schematize "Everyone who went to Disneyland knows someone who didn't go there":

Answer: $(\forall x)(Dx \supset (\exists y)(Kxy \& \sim Dy))$

"There is someone who knows both Mary and John but doesn't know themself":

Answer: $(\exists x)(Kxm \& Kxj \& \sim Kxx)$

► "Everyone who knows John also knows Mary": Answer: $(\forall x)(Kxj \supset Kxm)$

Singular "only"

- "Only Greta is a hero":
- ► Content: No-one other than Greta is a hero, AND Greta is a hero:

$$(\forall x)(Hx\supset x=g) \& Hg$$

$$(\forall x)(Hx \equiv x = g)$$

Schematizing 'Neither'

► "Neither hero inspires": this means that

There are exactly 2 heroes, and neither of them inspires:

$$(\exists x)(\exists y)\Big(\big((\sim x = y \& (Hx \& Hy)) \& (\forall z)(Hz \supset (z = x \lor z = y))\big) \& (\sim Ix \& \sim Iy)\Big)$$

At least n

- ► Remember: we interpret "three heros are inspiring" to mean "at least three heros are inspiring"
- ► At least 1 hero is inspiring:

$$(\exists x)(Hx \& Ix)$$

► At least 2 heroes are inspiring:

$$(\exists x)(\exists y)(\sim x=y \& ((Hx \& Ix) \& (Hy \& Iy)))$$

At least 3 heroes are inspiring:

$$(\exists x)(\exists y)(\exists z)\Big((\sim x = y \& (\sim y = z \& \sim x = z)) \& \\ ((Hx \& Ix) \& ((Hy \& Iy) \& (Hz \& Iz)))\Big)$$

At least n

► Note: must state that **every pair** of variables is different, e.g.,

$$(\exists x_1)(\exists x_2)(\exists x_3)((\sim x_1 = x_2 \& \sim x_2 = x_3) \& (Hx_1 \& (Hx_2 \& Hx_3)))$$

only says "There are at least two heroes"!

- Take extension of Hx to be: 1, 2
- Then 1 can play role of x_1 and x_3 , 2 role of x_2 .
- Both " \sim 1 = 2" and " \sim 2 = 3" are true.
- ► UD: People. Predicates: Dx: x went to Disneyland; Kxy: x knows y
- ► "There is somebody who went to Disneyland and knows at least
 two people who didn't go there"

Answer: $(\exists x)(Dx \& (\exists y)(\exists z)(\sim y = z \& Kxy \& Kxz \& \sim Dy \& \sim Dz))$

At most n

▶ There are at most n As \Leftrightarrow There are not at least n + 1 As

$$(\exists^{\leq n} x) Ax \Leftrightarrow \sim (\exists^{\geq (n+1)} x) Ax$$

► For instance: There are at most two heroes:

$$\sim (\exists x)(\exists y)(\exists z)((Hx \& (Hy \& Hz)) \& (\sim x = y \& (\sim x = z \& \sim y = z)))$$

 $(\forall x)(\forall y)(\forall z)((Hx \& (Hy \& Hz)) \supset (x = y \lor (x = z \lor y = z)))$

"At most one person who knows Mary doesn't know John"

Answer: $\sim (\exists x)(\exists y)(\sim x = y \& Kxm \& Kym \& \sim Kxj \& \sim Kyj)$

Definite descriptions

- ▶ Reminder: singular possessives like "Earth's moon" can be interpreted like the definite description "the moon of Earth." But plural possessives like "Mars's moons" aren't definite descriptions.
- ► Definite description: the so-and-so
- Russell's analysis of definite description: to say

"The A is B"

- is to say:
- ► There is something, which:
 - is *A*,
 - is the **only** A (i.e. the unique thing that is A),
 - is *B*.
- ► In QL:

Example: 'The author of Waverley is blah'

- ► Schematize "The author of Waverley is Scottish":
- Use the following symbolization key:
- ► Ax: x is an author; Wxz: x wrote z; Sx: x is Scottish; ℓ : Waverley

$$(\exists x)(Ax \& Wx\ell \& (\forall y)((Ay \& Wy\ell) \supset x=y) \& Sx)$$

Singular possessive (a definite description)

- ► Singular possessives form noun phrases, e.g., "Joe's cape"
- ► They work like definite descriptions: Joe's cape is the cape Joe owns. E.g.:
 - "Autumn wears Joe's cape" symbolizes the same as:
 "Autumn wears the cape that Joe owns":

$$(\exists x) \Big(((Ex \& Ojx) \& \\ (\forall y) ((Ey \& Ojy) \supset x = y)) \& \\ Wax \Big)$$

Singular vs. plural possessive

- ► Compare plural possessives: those are '∀'s':
 - "Autumn wears Joe's capes" symbolizes the same as:

"Autumn wears every cape that Joe owns":

$$(\forall x)((Ex \& Ojx) \supset Wax)$$

► So plural possessives are NOT definite descriptions.

e. Interpretations/Models for QL

14. Final Review!

Interpretations/Models for QL

- ► Study PS9, especially problems like 9, 10, 13, 15, 17, and 19
- ► Understand how to input this stuff into *Carnap*!
- ► Understand what it takes to make an existential statement true (at least one object in the domain must satisfy the statement)
- Understand what it takes to make a universal statement true (every object in the domain must satisfy the statement)
- Watch out for conditionals, which are trivially satisfied if the antecedent is false

Truth of sentences of QL

- ightharpoonup Given an interpretation $I \dots$
- ► An atomic sentence is true iff the referents of the constants are in the extension of the predicate:
 - Pa is true iff referent 'r' of a is in extension of P
 - Rab is true iff ⟨r, p⟩ is in extension of R
 (where r is referent of a, and p is referent of b)
- $ightharpoonup \sim \mathcal{A}$ is true iff \mathcal{A} is false
- $ightharpoonup \mathcal{A} \vee \mathcal{B}$ is true iff at least one of \mathcal{A} , \mathcal{B} is true
- \blacktriangleright A & B is true iff both A, B are true
- $ightharpoonup \mathcal{A} \supset \mathcal{B}$ is true iff \mathcal{A} is false or \mathcal{B} is true

Truth of quantified sentences

- ► $(\exists x) Ax$ is true iff Ax is satisfied by at least one object in the domain
 - ullet r satisfies $\mathcal{A}x$ in I iff $\mathcal{A}r$ is true in the interpretation

 \blacktriangleright $(\forall x) Ax$ is true iff Ax is satisfied by every object in the domain

Truth of quantified sentences

- ► $(\exists x) (Ax \& Bx)$ is true iff some object satisfies 'Ax & Bx'
 - o satisfies 'Ax & Bx' iff it satisfies both Ax and Bx
- ▶ $(\forall x) (Ax \supset Bx)$ is true iff **every** object satisfies ' $Ax \supset Bx$ '
 - o satisfies ' $Ax \supset Bx$ ' iff either
 - o does not satisfy Ax (vacuously true conditional)

or

• o does satisfy $\mathcal{B}x$

f. Derivations in QND

14. Final Review!

Quick Tips and a Practice Problem

- ► If you can do the derivations on PS10, you are probably in great shape!
- ► Focus in particular on the rules/syntax surrounding Existential Elimination, conditional introduction, and Universal Instantiation
- If you are going to do ∃E, it's typically best to start your proof with that and work within the ∃E subproof until you get what you need (which may not be what you want)
- Construct a deduction showing the following:
 (∃x)Qx, (∀y)(Qy ⊃ Py) ⊢_{QND} (∃z)Pz
 Another practice problem!:
- $(\exists x) Gx \supset Fa \vdash_{OND} (\forall x) (Gx \supset Fa)$
- ► The other direction is MUCH trickier (but can be done in 10 lines)! $(\forall x)(Gx \supset Fa) \vdash_{OND} (\exists x)Gx \supset Fa$

Some General Advice (locate the MAIN quantifier)

- ► Make sure you have a firm grip on the four rules of QND, and the rules of SND (see PS6), and the rule sheet
- ► Make sure especially that you know how to correctly apply existential elimination (and check those three conditions) and universal introduction (and check those two conditions).
- ► There are no special conditions for universal elimination, and the one for existential introduction is technically enforced by our recursive defN of QL wffs
- ► Note that you CANNOT apply any of the SND rules within the scope of a quantifier! You must first eliminate the quantifiers to apply any SND rules to the stuff inside.
- ▶ In general, each rule applies only to the WHOLE sentence, not a part. So you CANNOT apply a rule to just part of a sentence.
 14.f.2

Some more Specific Advice

- Make sure you understand how to build up a conditional by using conditional introduction!
 Assume the conditional's antecedent, justified by :AS for > I
 - Derive the consequent in the scope of this assumption (possibly starting further subproofs to get to the consequent, like negation elimination)
 - Then discharge the assumption and write the conditional!
 You may then apply a quantifier rule to the conditional, e.g.
 - Existential Introduction, to which you could then finish an existential elimination if you were in the scope of an EE subproof
 - If you get stuck, try to work from the bottom up. Think about what you would first have to derive to build your ultimate goal.
 If you get stuck on a subgoal, assume the opposite of your
 - subgoal to try using either negation introduction or negation elimination to keep going.

14 f 3