Boston Airbnb Pricing

An investigation using machine learning

Group 7: Abhay Kasturia, Nakul Camasamudram, Philip Parker

Northeastern University

Content

- 1. Introduction
- 2. Methodology
- 3. Results
- 4. Discussion

Introduction

Background Information

BACKGROUND:

- Airbnb is a popular online company where property owners (known as "hosts") can short-term rent their spaces
- A host must decide what daily price to charge for his or her space
- · With data, this is clearly a supervised ML problem
- Issue: many real estate datasets include categorical location features with large numbers of levels

With this in mind, in this project we investigate two questions:

Questions to Investigate

- To what degree can supervised machine learning techniques be used to assist an Airbnb host in determining an appropriate listing price for their property?
- 2. For Airbnb data, can the categorical feature of "neighborhood" be replaced with a continuous feature of driving distance to a geographic point of interest (e.g., an airport) and have comparable results?

Methodology

Data Collection and Preprocessing

DATA Source: Inside Airbnb Project - 4870 rows, 96 columns FEATURES SELECTED:

- · host is superhost
- host_identity_verified
 bedrooms
- neighborhood
- property_type
- room type
- accommodates

- hathrooms
- heds · bed_type
- · guests included
- · minimum nights

- · number of reviews
- · instant bookable
- · is business travel ready
- · cancellation_policy
- price

OUTLIERS: 240 rows removed above the 95th percentile for price MISSING VALUES: 14 rows with missing values removed

Data Transformations and Partitions

TRANSFORMATIONS: Neighborhood feature replaced with distance to BOS Airport, to Downtown Crossing, and both

PARTITIONS: Data partitioned into training, model selection, and two validation sets

	Training	Model Selection	Validation#1	Validation #2
Neighborhood	55%	15%	15%	15%
Distance to Downtown	55%	15%	15%	15%
Distance to Airport	55%	15%	15%	15%
Both Distances	55%	15%	15%	15%

Applying Methods

METHODS CHOSEN: Linear Regression, GAMs, and Regression Trees

- For each method, we apply it to the different transformations in order to compare the effect of replacing the "neighborhood" feature
- Afterward, we take the best transformation/method combination, and predict using the second validation set for a quality assessment of performance

Linear Regression

Models: All predictors, Subset Selection, Lasso, Ridge

BEST: Lasso with $\lambda = 0.1135332$ and 58 predictors

Generalized Additive Models

SETUP: Cubic splines for continuous features

TERM SELECTION:

- · Regression Subset Selection
- · Forward Selection
- · Smoothness penalties with additional shrinkage term

Regression Trees

CONSIDERATIONS:

- Boosting used, as the importance of interpretability is small for our questions
- Cross-validation used to select number of trees = 10,000

Results

Most Important Predictors

LINEAR REGRESSION: neighborhood.South.End, neighborhood.Downtown, neighborhood.Beacon.Hill, neighborhood.Back.Bay, room_type.Shared.room, room_type.Private.room, property_type.Other, bedrooms, accommodates

GAMs: neighborhood, property_type, room_type, instant_bookable, accommodates, bedrooms, guests_included

REGRESSION TREES:

	NVar	NRel	DDVar	DDRel	DAVar	DARel	DBVar	DBRel
First	room_type	46.9	room_type	50.6	room_type	51.7	room_type	50.1
Second	neighborhood	20.3	bedrooms	15.7	dairport	15.7	bedrooms	15.8
Third	bedrooms	15.7	ddowntown	15.1	bedrooms	15.1	ddowntown	11.5

Final Results

METHOD/TRANSFORMATION COMPARISON:

	Linear Regression	GAM	Regression Trees
Neighborhood	56.82	55.15	55.75
Distance to Downtown	58.95	58.05	57.00
Distance to Airport	60.76	56.24	56.57
Both Distances	58.16	55.77	56.54

BEST METHOD/TRANSFORMATION PERFORMANCE:

GAM on the original dataset with MSE = 52.30

Discussion

Question 1: Performance Useful?

QUESTION: To what extent can supervised ML techniques be used to assist a host in determining listing price?

Answer: Useful, but information outside of these features is important.

Question 2: Transformations Reasonable?

QUESTION: For Airbnb data, can the "neighborhood" feature be replaced with distance to a geographic point of interest?

Answer: Yes.

Potential Improvements

- · More sophisticated selection of POI
- Try to access information contained in textual data (e.g., sentiment analysis in reviews)

Visualizations

LISTING PRICE DISTRIBUTION ACROSS BOSTON (DARKER = EXPENSIVE)

Audience Questions

QUESTIONS?