Lecture 18

	& Lossless-Join Decomposition:
(Recap)	Def: For the case of R=(R, , R2), we require that
J -	for all possible relations r on Schema R
	r= TTRI(r) M TTR2(r)
	A decomposition of R into R, and R2 is lossless join if at least one of the following dependencies is in Ft;
	at least one of the following dependencies is in Ft:
	(i) RINRZ -> RI 7
	(i) $R_1 \cap R_2 \rightarrow R_1$ } sufficient condition (ii) $R_1 \cap R_2 \rightarrow R_2$ } sufficient condition
.x. E	Identification of lossy/lossless Join The following conditions must hold. (i) R, UR2 = R
	The following conditions must hold.
	(i) $R_1 UR_2 = R$
	(ii) R, n R2 & p and
	(iii) RiNR2→Rier RiNR2→R2
	Example: Supplier-Parts (S.No, S-Name, City, P.No, aty)
	fd: S_NO → S_Name.
	S-NO -> City
	S-NO, P-NO -> Qty
	Decouposition: Supplier (S-NO, S-Name, City, Qty)
	Parts (PNO, Qty)
	Determine Cossy/Cossless Join.
	U /

Soln: we have to determine Supplier & Parts

Supplier Ports

	SINO	1 S-Name	City	PNO	1 Qhy	
	3	3 mith	London	301	20	Name and Address of the Owner, where
	5	Nick	NY	500	50	THE PERSON NAMED AND POST OF
	2	Steve	Boston	20	10	
_	5	Nick	NY	400	40	
	5	Nick	NY	301	10	

Supplier					7	Parts		7
	SNO	S-Norme	City	aty		P-NO	Qty	
	3	Smith	London	20		301	20	
	5	Nick	NY	50		500	50	
	Z	Steve	Boston	10		20	10	
	5	Nick	NY	40		400	40	
	5	Nick	NY	10		301	10	

Supplier & Ports

		- Proce	or rucha				
ijhoj	ds	5-NO	S-Name	city	P-NO	aty	We get extra tuples
(i) holo	A	3	Smith	London	301	20	
		5	Nick	NY	500	50	Attributes common to both
		5	Nick	NY	20	10 *	RIARZ: ive RINR2 =
		2	Steve	Boston	20	10	Qty.
		5	Nick	NY	900	40	then none of the f'ds
		5	Nick	NY	301	10	can determine Partion
		2	Steve	Boston	301	10 *	Supplier given Qty.
			[Lossy.	-	7		i: (II) does not hold.

my yourself: Example: Given Supplier-Parts (S-NO, S-Name, City, P-NO, Gly)

fils: {S-NO -> S-Name, S-NO -> City, (S-NO, P-NO)-> Qty) Decomposition: Supplier (S-No, S-Name, City) R, Parts (S-NO, P-NO, Qty) R2 Determine if lossy/ lossless join. Soln: Check for: is does RIVRz=R ie Supplier V Parts = Supplier-Parts Ly holds true. (ii) does R, NR2 + 9 i.e. Supplier 1) Parts = 5-No Las holds true. (iii) does RINR2 -> RI Or RINR2 -> R2 Ly holds true using ie RINR2 = S-NO asing fls: S-NO -> S-Name ? Covers S-No -> City Supplier (iii) holds true Condude: Losslese join and decomposition holds/is valid as it preserves all fd's. S_NO is the superkey.

2 NF and Examples: {NOTE: R should be in INF}

Objective: a) determining if a relation is in 2NF b) if it is not in 2NF how decompose the relation such that it is in 2NF.

Example 1: given R(ABCDE) with fds AB>C,D>E

determine y it is in 2NF; y not then

decompose.

solution: {search for partial dependencies}

given: R(ABCDE) {AB>C, D>E}
Step1: use the edge diagram to identify the
candidate key.

R(ABCDE)

¿ potential candidate key = ABD

ABD = ABDCE : ABD is the candidate key:

step 2: identify partial dependencies from fd's.

D >E

of the the candidate key; then that fd'is a partial dependancy.

D → E is a partial depen.

.. R(ABCDE) is not in 2NF. Converting/Decompose R in 2NF. R (ABCDE) RI (ABC) based on partial dep AB≥C -> R2 (DE) based on pd D→E the candidate key; to > R3 (ABD) ensure lossless Joins. R (ABCDE) Exemple 2: A >B BAE C → D State (True / False) R is in 2NF R(ABCDE) AC+ = ACBED ... AC is the candidate key. given Act: A >B - This is a partial dep. 3 - Ethis is a partial depos R is not in 2NF. [False] R(ABCDE) > RI (ABE) ? NECESTY. Decemposition

Example 3: R(ABCDEFGHIJ)

AB > C

AD -> GH

BD > EF

A >I

HIJ

soln:

ABDT: ABDCGHEFIJ X

AB > C partial dep. in the fds. AD > GH BD > EF A > I

decomposition:

R, R2 R3 R4 & R5 are in 2NF.

5 3NF Examples: {Note R should be in 2NF }
E 3NF Examples: {Note R should be in 2NF} Eget vid of transitive dependencies}
Objective: a) to determine if R is in 3NF
6) to decompose such that Relations are in
3NF
Example 1: given R (ABCDE) fd's: {AB>C, B>D, D>E} determine if R is in 3NF and decompose.
determine if R is in 3NF and decompose.
Soln: R(ABCDE)
$AB \rightarrow C$
B →D
$\mathcal{D} \ni \mathcal{E}$
Step 1: the candidate key is: AB as ABT: ABCDE
Step 2: traverse through the fol's to identify folds that are partially dependant on the candidate key
are partially dependant on the candidate key
AB.
AB > C
B > D & this fd is partially dep. 3
B > D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
So conclude that R is not in 3NF.
Step3: DecomposeR(ABCDE)
HRI(ABC)~ 7
RO(BDE) (SNE)
$ \begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & $
Ly R22 (DE)W

Eample 2: R(ABCDE) $A \rightarrow B$ $B \rightarrow E$ $C \rightarrow D$

Soln:

R (A) B CDE

AC+: ACBED : AC is the candidate key.

traverse through Fd's to identify partial dependencies & transitive dependencies.

 $A \rightarrow B$ pd. $B \rightarrow E$ td. $C \rightarrow D$ pd.

: Ris not in 3NF

decomposition; R(ABCDE)

 $R_{i}(ABE)$ $R_{ii}(AB)$ $R_{i2}(BE)$ $R_{2}(CD)$ $R_{3}(AC)$

: R decomp -> R, , R2, R3 -> 2NF R decomp -> R11, R12, R2, R3 -> 3NF. Example 3: quen R. (ABCDEFGHIJ) with

fole AB > C

A > DE

B > F

F > GH

D > IJ

and AB is the candidate key.

Decompose into 3NF.

Solm: R(ABCDEFGHIJ)

R, (ADEIJ)

R, (ADEIJ)

R, (ADEIJ)

R, (BFGH)

R, R, (BF)

R, R, (BF)

R, R, (ABC)

R11, R12, R21, R22, and R3 are on 3NF