VII. Evénements indépendants

Définition : Soient (Ω, \mathcal{F}, P) un espace probabilisé et A et B sont deux évènements dans \mathcal{F} . On dit que les deux évènements sont indépendants si $P(A \cap B) = P(A)P(B)$

Si deux évènements A et B ont indépendants, alors la réalisation de A ne porte aucune information sur la réalisation de B et n'a aucune influence sa probabilité de se réaliser et vice versa. D'où P(A|B)=P(A), P(B|A)=P(B).

Définition : Les évènements $A_1,...,A_n$ sont dits mutuellement indépendants dans leur ensemble si, pour tout sous-ensemble $J \subseteq \{1,...,n\}$

$$P(\bigcap_{j\in J}A_j)=\prod_{j\in J}P(A_j)$$

Ex . Une expérience aléatoire consiste à lancer un dé équilibré deux fois de suite. Quelle est la probabilité d'obtenir deux fois un nombre pair?

Solution : Soit A_i (i=1,2) l'évènement d'obtenir un nombre paire au i^{ième} jet. Les deux évènements sont indépendants, alors

$$P(\bigcap_{j\in J}A_j)=\prod_{j\in J}P(A_j)$$

Supposons deux expériences E1 et E2

- E1 : lancer un dé non-truqué
- E2 : lancer une pièce de monnaie
- > Espaces de possibilités associés :
 - $\Omega_1 = \{1, 2, \dots, 6\}$
 - $\Omega_2 = \{p, f\}$
- > Probabilité individuelle:
 - $P_1(k) = \frac{1}{6} \quad \forall k \in \{1, \dots, 6\}$
 - $P_2(k) = \frac{1}{2} \quad \forall k \in \{p, f\}$
- \succ E1 et E2 sont réalisées simultanément \Rightarrow quelle est la probabilité d'obtenir A = (2, f)?

> Nouvel espace de possibilités :

•
$$\Omega = \Omega_1 \times \Omega_2 = \{(1, p), (2, p), \dots, (6, p), (1, f), (2, f), \dots, (6, f)\}$$

•
$$Card(\Omega) = Card(\Omega_1) \times Card(\Omega_2) = 6 \times 2 = 12$$

> Deux expériences indépendantes

•
$$P(A = (2, p)) = P(2)P(p) = \frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$$

• Cas équiprobable
$$\Rightarrow P(A) = \frac{1}{12} \ \forall A \in \Omega$$

- ☐ Généralité : cas de *N* expériences combinées
 - > Espaces de possibilités associés :
 - $\Omega = \Omega_1 \times \cdots \times \Omega_N$
 - $Card(\Omega) = Card(\Omega_1) \times \cdots \times Card(\Omega_N) = C_1 \times \cdots \times C_N$

- ☐ Généralité : cas de *N* expériences combinées
 - > Espaces de possibilités associés :
 - $\Omega = \Omega_1 \times \cdots \times \Omega_N$
 - $Card(\Omega) = Card(\Omega_1) \times \cdots \times Card(\Omega_N) = C_1 \times \cdots \times C_N$
 - > Deux expériences indépendantes
 - Cas équiprobable $\Rightarrow P(A) = \frac{1}{c_1 \times \dots \times c_N} \ \forall A \in \Omega$

VIII.Les essais répétés

- ☐ Epreuve de Bernoulli : on appelle épreuve de Bernoulli une épreuve n'ayant que deux issues :succès (S) et échec (E).
 - La loi de Bernoulli de paramètre p associe à l'issue succès (S) la probabilité p et à l'issue échec (E) la probabilité (1-p)
- lacksquare Schéma de Bernoulli : la répétition n fois, de manière indépendante, une épreuve de Bernoulli.
 - Suppose que la probabilité d'un événement A dans l'expérience \mathcal{E} est égale à P(A). On répète \mathcal{E} N fois $\Rightarrow \Omega = \Omega_{\mathcal{E}} \times \cdots \times \Omega_{\mathcal{E}}$ et on cherche la probabilité, $P_N(k)$, que l'événement A apparaisse k fois.
 - Suppose P(A) = p et $P(\overline{A}) = 1 p = q$
 - > On peut montrer que

$$P_N(k) = \binom{N}{k} p^k q^{N-k}$$

Démonstration???

V. Variables aléatoires discrètes

Définition : On appelle variable aléatoire discrète une application X de Ω dans E telles que $X(\Omega)$ est fini ou dénombrable et, pour tout, $x \in E, X^{-1}(\{x\}) \in \mathcal{F}(\Omega)$. On dit que X est une variable aléatoire discrète réelles si $E = \mathbb{R}$

Exemples:

- Jeter deux dés et s'intéresser à la somme des faces obtenues $\rightarrow X = (i + j) \in \mathbb{R}$
- o L'erreur de mesure d'une balance $X \in \mathbb{R}$

- O Soit X une variable aléatoire discrète et notons $X(\Omega)=\{x_n;n\in I\}$ où I est fini ou dénombrable . La loi de probabilité de X est la suite $(p_n)_{n\in I}$ où pour tout $n\in I$, $p_n=P(X=x_n)$
- O Soit $(\Omega_1, \mathcal{F}(\Omega_1), P_1)$ et $(\Omega_2, \mathcal{F}(\Omega_2), P_2)$ deux espaces de probabilités. Soient X et Y deux variables aléatoires discrètes définies respectivement sur Ω_1 et Ω_2 . On dit que X et Y ont la même loi si $X(\Omega_1) = Y(\Omega_2)$ et si, pour tout $X \in X(\Omega_1)$, Y(X) = X(X) = Y(X)

V. Variables aléatoires discrètes

Définition : On appelle couple de variables aléatoires discrètes un couple (X,Y) où X et Y sont deux variables aléatoires discrètes. La loi conjointe du couple (X,Y) est la loi de (X,Y) vue comme variable aléatoire.

$$\forall (x, y) \in X(\Omega) \times Y(\Omega) \Rightarrow P(X = x, Y = y)$$

Proposition : Deux variables aléatoires discrètes X et Y sont indépendantes si et seulement si, pour tout $A \subset X(\Omega)$ et tout $B \subset Y(\Omega)$, on a

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

Proposition : Soit $(X_n)_{n\in I}$ une famille de variables aléatoires, où I est fini ou dénombrable. On dit que les variables aléatoires $(X_n)_{n\in I}$ sont mutuellement indépendantes lorsque, pour toute partie finie $J=\left\{i_1,\cdots,i_p\right\}\subset I$ pour tout $\left(x_{i_1},\cdots,x_{i_p}\right)\in X_{i_1}\left(\Omega\right)\times\cdots\times X_{i_p}\left(\Omega\right)$ on a :

$$P(X_{i_1} = x_{i_1}, \dots, X_{i_p} = x_{i_p}) = P(X_{i_1} = x_{i_1}) \dots P(X_{i_p} = x_{i_p})$$

Loi de Bernoulli:

Expérience à deux issues: 1 ou 0, $P(X = 1) = 1 - P(X = 0) = p \in [0,1]$

Ex: jeter une pièce

Loi binomiale:

La loi du nombre de succès obtenus à l'issue de n épreuves de Bernoulli indépendantes de paramètres p: $P(X = k) = C_n^k p^k (1-p)^{n-k}, p \in [0,1], k \in \{0,1...,n\}$

Ex: jeter une pièce *n* fois

Loi de Poisson:

Il décrit le comportement du nombre d'évènements se produisant dans un laps de temps fixé. Si le nombre moyen d'occurrences dans un intervalle de temps fixé est λ , alors la probabilité qu'il existe exactement k occurrences est $\mathrm{P}(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}, k\in\mathbb{N}, \lambda>0$

Loi géométrique : La loi géométrique de paramètre $p \in [0,1]$ est la loi de la variable aléatoire Y qui compte le nombre de répétions indépendantes d'un épreuve de Bernoulli (de paramètre p) jusqu'au premier succès.

$$X \sim \mathcal{G}(p)$$
: $P(X = k) = p(1-p)^{k-1}$; $k = 1, \dots, n$

☐ Convergence de la loi binomiale vers la loi de Poisson

Proposition : Soit X_n une variable aléatoire discrète suivant la loi binomiale $\mathcal{B}(n;p_n)$ avec $\lim_{n\to +\infty} p_n = 0$, $\lim_{n\to +\infty} np_n = \lambda$, $(p_n \sim \frac{\lambda}{n})$. La suite $(X_n)_{n\in\mathbb{N}}$ converge en loi vers une variable aléatoire X qui suit une loi de Poisson $\mathcal{P}(\lambda)$

Démonstration??

☐ Convergence de la loi binomiale vers la loi de Poisson

Proposition : Soit X_n une variable aléatoire discrète suivant la loi binomiale $\mathcal{B}(n;p_n)$ avec $\lim_{n\to +\infty} p_n = 0$, $\lim_{n\to +\infty} np_n = \lambda$, $(p_n \sim \frac{\lambda}{n})$. La suite $(X_n)_{n\in\mathbb{N}}$ converge en loi vers une variable aléatoire X qui suit une loi de Poisson $\mathcal{P}(\lambda)$

En pratique: on peut faire cette approximation lorsque p < 0.1, $n \ge 30$ et np < 15