MATH2023 Multivariable Calculus

From the textbook Calculus of Several Variables (5th) by R. Adams, Addison Wesley.

Homework 8 (Total: 12 questions)

2013

Ex. 15.1

- 7 Sketch the plane vector field $\mathbf{F}(x,y) = \nabla \ln(x^2 + y^2)$ and determine its field lines.
- 9 Describe the streamlines of the velocity fields $\mathbf{v}(x, y, z) = y \mathbf{i} y \mathbf{j} y \mathbf{k}$.
- <u>16</u> Describe the streamlines of the velocity fields $\mathbf{v}(x,y) = x\mathbf{i} + (x+y)\mathbf{j}$. (Hint: let y = xv(x).)

Ex. 15.3

- 2 Let C be the conical helix with parametric equations $x = t \cos t, y = t \sin t, z = t, (0 \le t \le 2\pi)$. Find $\int_C z \, ds$.
- 8 Find $\int_C \sqrt{1+4x^2z^2} \, ds$, where C is the curve of intersection of the surfaces $x^2+z^2=1$ and $y=x^2$.
- 15 Find $\int_C \frac{ds}{(2y^2+1)^{3/2}}$, where C is the parabola $z^2=x^2+y^2$, x+z=1.

Ex. 15.4

3 Evaluate the line integral of the tangential component of the vector field

$$\mathbf{F}(x, y, z) = y \mathbf{i} + z \mathbf{j} - x \mathbf{k}$$

along the straight line from (0,0,0) to (1,1,1).

- 5 Evaluate the line integral of the tangential component of the vector field $\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$ from (-1,0,0) to (1,0,0) along either direction of the curve of intersection of the cylinder $x^2 + y^2 = 1$ and the plane z = y.
- 11 Determine the values of A and B for which the vector field

$$\mathbf{F} = Ax \ln z \,\mathbf{i} + By^2 z \,\mathbf{j} + \left(\frac{x^2}{z} + y^3\right) \,\mathbf{k}$$

is conservative. If C is the straight line from (1,1,1) to (2,1,2), find

$$\int_C 2x \ln z \, dx + 2y^2 z \, dy + y^3 \, dz.$$

- 1 -

13 If C is the intersection of $z = \ln(1+x)$ and y = x from (0,0,0) to $(1,1,\ln 2)$, evaluate

$$\int_C (2x\sin(\pi y) - e^z) \, dx + (\pi x^2 \cos(\pi y) - 3e^z) \, dy - xe^z \, dz.$$

- 14 Is each of the following sets a domain? a connected domain? a simply connected domain?
 - (a) the set of points (x, y) in the plane such that x > 0 and $y \ge 0$
 - (b) the set of points (x, y) in the plane such that x = 0 and $y \ge 0$
 - (c) the set of points (x, y) in the plane such that $x \neq 0$ and y > 0
 - (d) the set of points (x, y, z) in 3-space such that $x^2 > 1$
 - (e) the set of points (x, y, z) in 3-space such that $x^2 + y^2 > 1$
 - (f) the set of points (x, y, z) in 3-space such that $x^2 + y^2 + z^2 > 1$
- $\underline{22} \quad \text{Evaluate } \frac{1}{2\pi} \oint_C \frac{-y \, dx + x \, dy}{x^2 + y^2}$
 - (a) counterclockwise around the circle $x^2 + y^2 = a^2$,
 - (b) clockwise around the square with vertices (-1, -1), (-1, 1), (1, 1), and (1, -1),
 - (c) counterclockwise around the boundary of the region $1 \le x^2 + y^2 \le 2$, $y \ge 0$.

Homework 9

(Total: 9 questions)

Ex. 15.2

5 Determine whether the vector field

$$\mathbf{F}(x, y, z) = (2xy - z^2)\mathbf{i} + (2yz + x^2)\mathbf{j} - (2zx - y^2)\mathbf{k}$$

is conservative and find a potential if it is conservative.

- 7 Find the three-dimensional vector field with potential $\phi(\mathbf{r}) = \frac{1}{\|\mathbf{r} \mathbf{r}_0\|^2}$
- 9 Show that the vector field

$$\mathbf{F}(x,y,z) = \frac{2x}{z}\mathbf{i} + \frac{2y}{z}\mathbf{j} - \frac{x^2 + y^2}{z^2}\mathbf{k}$$

is conservative, and find its potential. Describe the equipotential surfaces. Find the field lines of ${\bf F}$.

- 10 Find the area of the part of the cylinder $x^2 + z^2 = a^2$ that lies inside the cylinder $y^2 + z^2 = a^2$.
- 14 Find $\iint_S y \, dS$, where S is the part of the cone $z = \sqrt{2(x^2 + y^2)}$ that lies below the plane z = 1 + y.

Ex. 15.6

- 1 Find the flux of $\mathbf{F} = x\mathbf{i} + z\mathbf{j}$ out of the tetrahedron bounded by the coordinate planes and the plane x + 2y + 3z = 6.
- 6 Find the flux of $\mathbf{F} = x\mathbf{i} + x\mathbf{j} + \mathbf{k}$ upward through the part of the surface $z = x^2 y^2$ lying inside the cylinder $x^2 + y^2 = a^2$.
- 10 Find the flux of $\mathbf{F} = 2x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ upward through the surface $\mathbf{r} = u^2v\mathbf{i} + uv^2\mathbf{j} + v^3\mathbf{k}$, $(0 \le u \le 1, 0 \le v \le 1)$.
- 15 Define the flux of a plane vector field across a piecewise smooth curve. Find the flux of $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$ outward across
 - (a) the circle $x^2 + y^2 = a^2$.
 - (b) the boundary of the square $-1 \le x, y \le 1$.

Homework 10

(Total: 9 questions)

Ex. 16.4

4 Use the Divergence Theorem to calculate the flux of the vector field

$$\mathbf{F} = x^3 \mathbf{i} + 3yz^2 \mathbf{j} + (3y^2z + x^2) \mathbf{k}$$

out of the sphere S with equation $x^2 + y^2 + z^2 = a^2$, where a > 0.

- 8 Evaluate the flux of $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$ outward across the boundary of the solid cylinder $x^2 + y^2 \leqslant 2y$, $0 \leqslant z \leqslant 4$.
- $\underline{11}$ A conical domain with vertex (0,0,b) and axis along the z-axis has as base a disk of radius a in the xy-plane. Find the flux of

$$\mathbf{F} = (x+y^2)\mathbf{i} + (3x^2y + y^3 - x^3)\mathbf{j} + (z+1)\mathbf{k}$$

upward through the conical part of the surface of the domain.

23 If \mathbf{F} is a smooth vector field on D, show that

$$\iiint\limits_{D} \phi \, \nabla \cdot \mathbf{F} \, dV + \iiint\limits_{D} \nabla \phi \cdot \mathbf{F} \, dV = \iint\limits_{S} \phi \, \mathbf{F} \cdot \hat{\mathbf{n}} \, dS.$$

24 If $\nabla^2 \phi = 0$ in D and $\phi(x, y, z) = 0$ on S, show that $\phi(x, y, z) = 0$ in D.

Ex. 16.5

- 2 Evaluate $\oint_C y \, dx x \, dy + z^2 \, dz$ around the curve C of intersection of the cylinders $z = y^2$ and $x^2 + y^2 = 4$, oriented counterclockwise as seen from a point high on the z-axis.
- 3 Evaluate $\iint_S \nabla \times \mathbf{F} \cdot \hat{\mathbf{n}} dS$, where S is the hemisphere $x^2 + y^2 + z^2 = a^2, z \ge 0$ with outward normal, and $\mathbf{F} = 3y \, \mathbf{i} 2xz \, \mathbf{j} + (x^2 y^2) \, \mathbf{k}$.
- 8 Evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = ye^x \mathbf{i} + (x + e^x) \mathbf{j} + z^2 \mathbf{k}$ and C is the curve

$$\mathbf{r} = (1 + \cos t)\mathbf{i} + (1 + \sin t)\mathbf{j} + (1 - \sin t - \cos t)\mathbf{k}$$

where $0 \le t \le 2\pi$.

9 Let C_1 be a straight line joining (-1,0,0) to (1,0,0) and let C_2 be the semicircle $x^2 + y^2 = 1$, z = 0, $y \ge 0$. Let S be a smooth surface joining C_1 to C_2 having upward normal, and let

$$\mathbf{F} = (\alpha x^2 - z)\mathbf{i} + (xy + y^3 + z)\mathbf{j} + \beta y^2(z+1)\mathbf{k}.$$

Find the values of α and β for which $\mathbf{I} = \iint_S \mathbf{F} \cdot \hat{\mathbf{n}} \, dS$ is independent of the choice of S, and find the value of \mathbf{I} for these values of α and β .

- 2 Let C be the conical helix with parametric equations $x=t\cos t,\,y=t\sin t,\,z=t,\,(0\leqslant t\leqslant 2\pi).$ Find $\int_C z\,ds.$
- 8 Find $\int_C \sqrt{1+4x^2z^2} \, ds$, where C is the curve of intersection of the surfaces $x^2+z^2=1$ and $y=x^2$.
- 15 Find $\int_C \frac{ds}{(2y^2+1)^{3/2}}$, where C is the parabola $z^2=x^2+y^2, \, x+z=1$.

$$\int_{0}^{2\pi} t \sqrt{t^{2}+2} dt$$

- 8 Find $\int_C \sqrt{1+4x^2z^2} \, ds$, where C is the curve of intersection of the surfaces $x^2+z^2=1$ and $y=x^2$.
- 15 Find $\int_C \frac{ds}{(2y^2+1)^{3/2}}$, where C is the parabola $z^2=x^2+y^2,\,x+z=1.$

f.

< cost, cost, sint>

3 Evaluate the line integral of the tangential component of the vector field

$$\mathbf{F}(x,y,z) = y\,\mathbf{i} + z\,\mathbf{j} - x\,\mathbf{k}$$

along the straight line from (0,0,0) to (1,1,1).

5 Evaluate the line integral of the tangential component of the vector field $\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$ from (-1, 0, 0) to (1, 0, 0) along either direction of the curve of intersection of the cylinder $x^2 + y^2 = 1$ and the plane z = y.

Ja y7 (-sint) dt + x2 (wst) dt + xy (wst) dt

 $\underline{11}$ Determine the values of A and B for which the vector field

$$\mathbf{F} = Ax \ln z \,\mathbf{i} + By^2 z \,\mathbf{j} + \left(\frac{x^2}{z} + y^3\right) \,\mathbf{k}$$

is conservative. If C is the straight line from (1,1,1) to (2,1,2), find

$$\int_C 2x \ln z \, dx + 2y^2 z \, dy + y^3 \, dz.$$

$$\frac{\partial}{\partial x} \qquad \frac{\partial}{\partial z} \qquad \frac{\partial}{\partial z} \\
A \times M_{z} \qquad B y^{2} z \qquad \frac{x^{2}}{z} + y^{3}$$

$$(3y^2 - By^2, \frac{Ax}{3} - \frac{2x}{3}, 0)$$

 $B=3, A=2.$

13 If C is the intersection of $z = \ln(1+x)$ and y = x from (0,0,0) to $(1,1,\ln 2)$, evaluate

$$\int_C (2x\sin(\pi y) - e^z) \, dx + (\pi x^2 \cos(\pi y) - 3e^z) \, dy - xe^z \, dz.$$

14 Is each of the following sets a domain? a connected domain? a simply connected domain?

- (a) the set of points (x,y) in the plane such that x>0 and $y\geqslant 0$
- (b) the set of points (x,y) in the plane such that x=0 and $y\geqslant 0$
- (c) the set of points (x,y) in the plane such that $x \neq 0$ and y > 0
- (d) the set of points (x, y, z) in 3-space such that $x^2 > 1$
- (e) the set of points (x, y, z) in 3-space such that $x^2 + y^2 > 1$
- (f) the set of points (x,y,z) in 3-space such that $x^2+y^2+z^2>1$
- $\underline{22} \quad \text{Evaluate } \frac{1}{2\pi} \oint_C \frac{-y \, dx + x \, dy}{x^2 + y^2}$
 - (a) counterclockwise around the circle $x^2 + y^2 = a^2$,
 - (b) clockwise around the square with vertices (-1,-1), (-1,1), (1,1), and (1,-1),
 - (c) counterclockwise around the boundary of the region $1 \leqslant x^2 + y^2 \leqslant 2$, $y \geqslant 0$.

5 Determine whether the vector field

$$\mathbf{F}(x,y,z) = (2xy-z^2)\,\mathbf{i} + (2yz+x^2)\,\mathbf{j} - (2zx-y^2)\,\mathbf{k}$$

is conservative and find a potential if it is conservative.

7 Find the three-dimensional vector field with potential $\phi(\mathbf{r}) = \frac{1}{\|\mathbf{r} - \mathbf{r}_0\|^2}$.

7.

9 Show that the vector field

$$\mathbf{F}(x,y,z) = \frac{2x}{z}\,\mathbf{i} + \frac{2y}{z}\,\mathbf{j} - \frac{x^2 + y^2}{z^2}\,\mathbf{k}$$

is conservative, and find its potential. Describe the equipotential surfaces. Find the field lines of ${\bf F}.$

- 10 Find the area of the part of the cylinder $x^2 + z^2 = a^2$ that lies inside the cylinder $y^2 + z^2 = a^2$.
- 14 Find $\iint_S y \, dS$, where S is the part of the cone $z = \sqrt{2(x^2 + y^2)}$ that lies below the plane z = 1 + y.

(4.) 1. 就出的特相及之间

2.
$$Z = \sqrt{2(v^2+y^2)}$$
, 就 Z_{x} , Z_{y} .

$$\iint_{S} dS = \iint_{S} \sqrt{\frac{1+2x^2+2y^2}{2}} dA$$

3. Change of vaniable,
$$x=x, y=\frac{1+\sqrt{2}}{\sqrt{x^2+y^2-1}}$$

$$(y^2+y^2-1)$$

<u>1</u> Find the flux of $\mathbf{F} = x \mathbf{i} + z \mathbf{j}$ out of the tetrahedron bounded by the coordinate planes and the plane x + 2y + 3z = 6.

- 1 Find the flux of $\mathbf{F} = x \mathbf{i} + z \mathbf{j}$ out of the tetrahedron bounded by the coordinate planes and the plane x + 2y + 3z = 6.
- 6 Find the flux of $\mathbf{F} = x\mathbf{i} + x\mathbf{j} + \mathbf{k}$ upward through the part of the surface $z = x^2 y^2$ lying inside the cylinder $x^2 + y^2 = a^2$.

- 10 Find the flux of $\mathbf{F} = 2x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ upward through the surface $\mathbf{r} = u^2v\mathbf{i} + uv^2\mathbf{j} + v^3\mathbf{k}$, $(0 \leqslant u \leqslant 1, 0 \leqslant v \leqslant 1).$
- 15 Define the flux of a plane vector field across a piecewise smooth curve. Find the flux of $\mathbf{F} = x \mathbf{i} + y \mathbf{j}$ outward across
 - (a) the circle $x^2 + y^2 = a^2$.

(b) the boundary of the square
$$-1 \le x, y \le 1$$
.
10. $\forall u = \begin{cases} 2uv, v^2, 0 \\ u^2, 2uv, 3v^2 \end{cases}$

$$\int_{0}^{1} \int_{0}^{1} 2 \times 13^{4} + 4 \left(-6 \pi v^{3}\right) + 2 \left(3 \pi^{2} v^{2}\right) dn dv$$

$$= \int_{0}^{7} \int_{0}^{1} 2 u^{2} v \left(3 v^{4}\right) + \left(v v^{2}\right) \left(-6 u v^{3}\right) + \left(v^{3}\right) \left(3 u^{2} v^{2}\right) d u d v$$

Ex. 16.4

 $\underline{4}$ Use the Divergence Theorem to calculate the flux of the vector field

$$\mathbf{F} = x^3 \mathbf{i} + 3yz^2 \mathbf{j} + (3y^2z + x^2) \mathbf{k}$$

out of the sphere S with equation $x^2 + y^2 + z^2 = a^2$, where a > 0.

8 Evaluate the flux of $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$ outward across the boundary of the solid cylinder $x^2 + y^2 \le 2y$, $0 \le z \le 4$.

8 Evaluate the flux of $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$ outward across the boundary of the solid cylinder $x^2 + y^2 \leqslant 2y, \ 0 \leqslant z \leqslant 4.$

$$x^{2}+y^{2}-2y+1-1\leq 0$$

 $x^{2}+(y-1)^{2}\leq 1$

$$r = 2rsin\theta$$

$$r = 2sin\theta$$

11 A conical domain with vertex (0,0,b) and axis along the z-axis has as base a disk of radius a in the xy-plane. Find the flux of

$${\bf F} = (x+y^2)\,{\bf i} + (3x^2y+y^3-x^3)\,{\bf j} + (z+1)\,{\bf k}$$

upward through the conical part of the surface of the domain.

23 If \mathbf{F} is a smooth vector field on D, show that

$$\mathop{\iiint}\limits_{D} \phi \, \nabla \cdot \mathbf{F} \, dV + \mathop{\iiint}\limits_{D} \nabla \phi \cdot \mathbf{F} \, dV = \mathop{\oiint}\limits_{S} \phi \, \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS.$$

$$\phi \nabla \cdot F + \nabla \phi \cdot F = \nabla (\phi \cdot F)$$

24 If $\nabla^2 \phi = 0$ in D and $\phi(x, y, z) = 0$ on S, show that $\phi(x, y, z) = 0$ in D.

Ex. 16.5

2 Evaluate $\oint_C y \, dx - x \, dy + z^2 \, dz$ around the curve C of intersection of the cylinders $z = y^2$ and $x^2 + y^2 = 4$, oriented counterclockwise as seen from a point high on the z-axis.

3 Evaluate $\iint_S \nabla \times \mathbf{F} \cdot \hat{\mathbf{n}} dS$, where S is the hemisphere $x^2 + y^2 + z^2 = a^2, z \ge 0$ with outward normal, and $\mathbf{F} = 3y \, \mathbf{i} - 2xz \, \mathbf{j} + (x^2 - y^2) \, \mathbf{k}$.

$$V(u_1v) = \langle asinucos v, asinusinv, acos n \rangle$$

$$0 \langle u_{\xi} = \frac{1}{2} \langle asinucos v, asinusinv, acos n \rangle$$

$$0 \langle u_{\xi} = \frac{1}{2} \langle asinucos v, asinusinv, acos n \rangle$$

$$= \langle -2y + 2x, -2x, -2z - 3 \rangle$$

(1)针以下.

$$\text{D} \int \int_{S} \nabla x \vec{F} \cdot \vec{n} \, dS = \oint_{C} \vec{F} \cdot d\vec{r}$$

8 Evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = ye^x \mathbf{i} + (x + e^x) \mathbf{j} + z^2 \mathbf{k}$ and C is the curve $\mathbf{r} = (1 + \cos t) \mathbf{i} + (1 + \sin t) \mathbf{j} + (1 - \sin t - \cos t) \mathbf{k}$,

where $0 \leq t \leq 2\pi$.

$$= \int_{0}^{\pi} (1+\zeta_{i}nt) e^{Htost} (-sint) + (Htost + e^{Htost})$$

$$(ost + (1-sint-tost)^{2} (-cst + sint) dt$$

9 Let C_1 be a straight line joining (-1,0,0) to (1,0,0) and let C_2 be the semicircle $x^2 + y^2 = 1$, z = 0, $y \ge 0$. Let S be a smooth surface joining C_1 to C_2 having upward normal, and let

$$\mathbf{F} = (\alpha x^2 - z)\mathbf{i} + (xy + y^3 + z)\mathbf{j} + \beta y^2(z+1)\mathbf{k}.$$

Find the values of α and β for which $\mathbf{I} = \iint_S \mathbf{F} \cdot \hat{\mathbf{n}} \, dS$ is independent of the choice of S, and find the value of \mathbf{I} for these values of α and β .