V500 Käsekuchenmuffins

Katharina Brägelmann Tobias Janßen katharina.braegelmann@tu-dortmund.de tobias2.janssen@tu-dortmund.de

Durchführung: 22. November 2017, Abgabe: 23. November 2017

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3
3	Aufbau und Durchführung	4
4	Auswertung4.1Einregeln der optimalen Verzögerungszeit4.2Kalibrierung des Multi-Channel-Analysers4.3Messung der Lebensdauer	6
5	Diskussion	9

1 Zielsetzung

Hier könnte Ihre Werbung stehen.

2 Theorie

Hier könnte Ihre Werbung stehen.

3 Aufbau und Durchführung

Hier könnte Ihre Werbung stehen.

4 Auswertung

4.1 Einregeln der optimalen Verzögerungszeit

Da die Leitungen von den SEV zur Koinzidenzschaltung nicht zwingend gleich schnell sind, wird die Verzögerung zwischen den beiden Seiten optimiert. Die Verzögerungszeit kann in beiden Leitungen separat erhöht werden, indem Kabel mit definierten Verzögerungen zugeschaltet werden. Eine Verzögerung bei der einen Kabelleitung bewirkt eine relative 'Beschleunigung' der anderen Kabelleitung. Die Zählrate N wird in Abhängigkeit verschiedener Verzögerungszeiten $T_{\rm VZ}$ gemessen.

Tabelle 1: Messdaten zur	Optimierung der '	Verzögerungszeit der	Kabel
--------------------------	-------------------	----------------------	-------

$T_{\rm VZ}/10^{-9}s$	Impulshöhe	$T_{\rm VZ}/10^{-9} s$	Impulshöhe
-32	2	-2	227
-30	8	0	208
-28	15	2	216
-26	55	4	217
-24	75	6	214
-22	141	8	212
-20	168	10	200
-18	185	12	194
-16	198	14	189
-14	196	16	161
-12	180	18	97
-10	214	20	84
-8	189	22	38
-6	189	24	4
-4	197	-	-

Es wird eine Ausgleichsrechnung der Form

$$N = -a \left(T_{\text{VZ}} + b \right)^4 + c$$

mit Python **HIER NOCH DIE VERSION ETC** vorgenommen. Die Parameter ergeben sich zu

$$a = (4,821 \, 491 \, 380 \pm 0,236 \, 142 \, 743) \cdot 10^{-40} \, \frac{1}{s^5}$$

$$b = (2,085 \, 435 \, 930 \pm 0,229 \, 205 \, 656) \cdot 10^{-9} \, s$$

$$c = (208,001 \, 211 \, 00 \pm 3,503 \, 661 \, 99) \, \frac{1}{s}$$

Abbildung 1: Optimierung der Verzögerungszeit: Verzögerungszeit $T_{\rm VZ}$ gegen Spannungsimpuls U

4.2 Kalibrierung des Multi-Channel-Analysers

Tabelle 2: Messdaten zu Kalibrierung des Multi-Channel-Analysers

Channel	Δ t	Channel	Δ t
24	1407	247	1680
46	1561	270	1555
69	1400	292	1608
91	1294	315	1384
113	1298	337	1952
136	1034	359	1880
158	1502	382	2008
180	1336	404	2088
203	1700	427	2024
225	1644	445	3384

Abbildung 2: Kalibrierung des Multi-Channel-Analysers: Zeitlicher Abstand des Doppelimpulses Δ t gegen den zugehörigen Channel

Fit: $C \cong Channel$

$$\Delta t = a \cdot C + b$$

Fitparameter:

$$a = (0.02234091000 \pm 1.28401231692) \cdot 10^{-5} \frac{1}{s}$$

$$b = -0.03080493000000 \pm 0.00345318109864$$

4.3 Messung der Lebensdauer

Fit

$$y = a \exp\left(-xb\right) + c$$

Abbildung 3: Häufigkeit der Myonenzerfälle in Abhängigkeit ihrer Lebensdauer

Fitparameter

a =	$51,\!81005345\pm0,\!96774030$
b =	$0{,}52824244\pm0{,}01864355$
c =	$0,74055349\pm0,31446226$

5 Diskussion

Hier könnte Ihre Werbung stehen.