Extending LLVM optimization repertoire to build a highly optimizing compiler

Ehsan Amiri, Bryan Chan
Huawei Technologies Canada
ehsan.amiri@huawei.com, bryan.chan@huawei.com

Introduction

- We report some of the optimizations developed for Bisheng Compiler at Huawei.
- Focus on work that is either contributed to the community or is likely to be contributed.
- Several colleagues at Huawei have contributed to the work reported here:
 - Alexey Zhikhartsev
 - Congzhe Cao
 - > Justin Kreiner
 - > Sagar Kulkarni
 - > Shruthi Ashwathnarayan
 - Yibo (Nigel) Yu
 - > Zhongduo (Jimmy) Lin

Agenda

- DFA Jump Threading
- Speculative Instruction Combining
- Loop Interchange
- ARMv9-A Scalable Matrix Extension

Jump Threading

Limitations of the existing jump threading

- Iterative approach:
 - Look at a couple of BBs, catch the opportunity, iterate.

Don't thread across loop headers.

```
/// processBlock - If there are any predecessors whose control can be threaded
/// through to a successor, transform them now.
bool JumpThreadingPass::processBlock(BasicBlock *BB) {

static cl::opt<bool> ThreadAcrossLoopHeaders(
    "jump-threading-across-loop-headers",
    cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
    cl::init(false), cl::Hidden);

// Don't alter Loop headers and latches to ensure another pass can
// detect and transform nested loops later.
!LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
```

Limitations of the existing jump threading

- Iterative approach:
 - Look at a couple of BBs, catch the opportunity, iterate.

Don't thread across loop headers.

```
/// processBlock - If there are any predecessors whose control can be threaded
/// through to a successor, transform them now.
bool JumpThreadingPass::processBlock(BasicBlock *BB) {

static cl::opt<bool> ThreadAcrossLoopHeaders(
    "jump-threading-across-loop-headers",
    cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
    cl::init(false), cl::Hidden);

// Don't alter Loop headers and latches to ensure another pass can
// detect and transform nested loops later.
!LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
```

Impact: Missing opportunities. Notable example is CoreMark.

Not a jump threading for CoreMark

Let's review the problem

- > Have a missed performance opportunity.
- > Rewriting jump threading is a much bigger project.
- Extending current jump threading is not an option.
- > Let's start from the immediate case that we need to solve.
- > Try to design a general/generalizable solution.

Example

```
loop control logic */) {
            Loop
                                                                         Switch
                             switch (state)
                                                                       statement
                               case START:
                                  if (/*some condition */)
                                    state = STATE 1;
                                 else
                                    state = STATE 2;
                                 break;
                               case STATE_1;
                                 if (/* another condition */) {
Value is set to a
                                            STATE_2;
                                    state =
   constant
                                 break;
                               case STATE_2:
                                 /* do some work */
                                 break;
```

DFA implementation is a typical example, but the algorithm is not limited to DFA implementation.

Basic idea

```
/* Preprocessing */
switch (state) {
 case START:
    if (/* some condition */)
      state = STATE 1;
    else
      state = STATE_2;
    break;
  case STATE 1:
    if (/* another condition */) {
      state = STATE_2;
     /* Update IV. Compare bound and branch */
     /* Preprocessing */
     /* Goto 'case STATE_2:' */
    break;
  case STATE_2:
   /* do some work */
    break;
```

What is the problem to solve?

■ We need to decide:

- > Which basic blocks need to be cloned.
 - » And how many clones of each basic block we need.
- > How to connect cloned basic blocks.
- > Whether the transformation is profitable.

Toy example to demonstrate analysis algorithm

<if.end>

Toy example to demonstrate analysis algorithm

<if.end, if.else>

Toy example to demonstrate analysis algorithm

<if.end, if.else, for.end>

Toy example to demonstrate analysis algorithm

- <if.end, if.else, for.end>
- <if.end>

Toy example to demonstrate analysis algorithm

- <if.end, if.else, for.end>
- <if.end, if.else>

Toy example to demonstrate analysis algorithm

- <if.end, if.else, for.end>
- <if.end, if.else, for.inc>

Toy example to demonstrate analysis algorithm

- <if.end, if.else, for.end>
- <if.end, if.else, for.inc, if.end>

Toy example to demonstrate analysis algorithm

- <if.end, if.else, for.end>
- <if.end, if.else, for.inc, if.end>
- <if.end, sw.bb, if.then, for.inc, if.end>

Toy example to demonstrate analysis algorithm

- <if.end, if.else, for.end>
- <if.end, if.else, for.inc, if.end>
- <if.end, sw.bb, if.then, for.inc, if.end>

- One copy of each BB, for each pair of (BB, color).
- For our example: if.end, if.end, if.end means three copies of "if.end".
- Adjacent nodes in one path should be connected to each other.
- Irreducible control flow can be detected if needed.
- A fairly simple cost model: weighing code size increase vs. #conditional branches eliminated.
- CodeGen relies on this information and heavily utilizes SSAUpdaterBulk.
- https://reviews.llvm.org/D99205

Statistics and compile time

Number of transformed switch statements:

```
CTMark/kimwitu++/kimwl.stats:
                                "dfa-jump-threading.NumTransforms": 1
CTMark/7zip/LzmaEnc.stats:
                                "dfa-jump-threading.NumTransforms": 1
CTMark/7zip/DeflateDecoder.stats:
                                        "dfa-jump-threading.NumTransforms": 1
CTMark/7zip/GzHandler.stats:
                                "dfa-jump-threading.NumTransforms": 1
CTMark/7zip/CabHandler.stats:
                                "dfa-jump-threading.NumTransforms": 3
CTMark/7zip/ShrinkDecoder.stats:
                                        "dfa-jump-threading.NumTransforms": 1
CTMark/7zip/Update.stats:
                                "dfa-jump-threading.NumTransforms": 1
CTMark/7zip/List.stats: "dfa-jump-threading.NumTransforms": 1
CTMark/7zip/Extract.stats:
                                "dfa-jump-threading.NumTransforms": 1
CTMark/7zip/ZipHandlerOut.stats:
                                        "dfa-jump-threading.NumTransforms": 1
                                "dfa-jump-threading.NumTransforms": 1
CTMark/7zip/TarHandler.stats:
CTMark/7zip/7zUpdate.stats:
                                "dfa-jump-threading.NumTransforms": 2
CTMark/7zip/XzDec.stats:
                                "dfa-jump-threading.NumTransforms": 1
CTMark/7zip/OpenArchive.stats:
                               "dfa-jump-threading.NumTransforms": 1
CTMark/7zip/BwtSort.stats:
                                "dfa-jump-threading.NumTransforms": 1
CTMark/ClamAV/libclamav_untar.stats:
                                        "dfa-jump-threading.NumTransforms": 1
CTMark/ClamAV/libclamav message.stats: "dfa-jump-threading.NumTransforms": 1
CTMark/sqlite3/sqlite3.stats:
                                "dfa-jump-threading.NumTransforms": 10
CTMark/SPASS/iascanner.stats:
                                "dfa-jump-threading.NumTransforms": 1
CTMark/SPASS/dfgscanner.stats: "dfa-jump-threading.NumTransforms": 1
CTMark/consumer-typeset/z36.stats:
                                        "dfa-jump-threading.NumTransforms": 1
CTMark/consumer-typeset/z49.stats:
                                        "dfa-jump-threading.NumTransforms": 1
CTMark/consumer-typeset/z38.stats:
                                        "dfa-jump-threading.NumTransforms": 1
```

NewPM-03:

Old	New	
60426M	60478M (+0.09%	6)
52644M	52802M (+0.30%	6)
47826M	48036M (+0.44%	6)
118033M	117991M (-0.04%	6)
104978M	105086M (+0.10%	6)
45849M	45833M (-0.03%	6)
71376M	71413M (+0.05%	6)
86159M	86165M (+0.01%	6)
57941M	57987M (+0.08%	6)
172904M	173201M (+0.17%	6)
74581M	74669M (+0.12%	6)
	60426M 52644M 47826M 118033M 104978M 45849M 71376M 86159M 57941M 172904M	60426M 60478M (+0.09% 52644M 52802M (+0.30% 47826M 48036M (+0.44% 118033M 117991M (-0.04% 104978M 105086M (+0.10% 45849M 45833M (-0.03% 71376M 71413M (+0.05% 86159M 86165M (+0.01% 57941M 57987M (+0.08% 172904M 173201M (+0.17% 173201M (+0.

Agenda

- DFA Jump Threading
- Speculative Instruction Combining
- Loop Interchange
- ARMv9-A Scalable Matrix Extension

Speculative instruction combining - motivation

```
float f1(float *vals, int idx, float weight) {
  float temp1 = vals[idx];
  float temp2 = vals[idx];

if (idx < 10) {
   temp1 += vals[idx+1];
  }
  return temp1 * weight + temp2 * (1 - weight);
}</pre>
```

Speculative instruction combining - motivation

```
float f1(float *vals, int idx, float weight) {
  float temp1 = vals[idx];
  float temp2 = vals[idx];

if (idx < 10) {
   temp1 += vals[idx+1];
  }
  return temp1 * weight + temp2 * (1 - weight);
}</pre>
```



```
float f1(float *vals, int idx, float weight) {
  float temp1 = vals[idx];
  float temp2 = vals[idx];

if (idx < 10) {
    temp1 += vals[idx+1];
    return temp1 * weight + temp2 * (1 - weight);
}

return temp1 * weight + temp2 * (1 - weight);
}</pre>
```

Speculative instruction combining - motivation

```
float f1(float *vals, int idx, float weight) {
float f1(float *vals, int idx, float weight) {
                                                                     float temp1 = vals[idx];
  float temp1 = vals[idx];
                                                                     float temp2 = vals[idx];
  float temp2 = vals[idx];
                                                                     if (idx < 10) {
  if (idx < 10) {
                                                    Manual Change
                                                                       temp1 += vals[idx+1];
    temp1 += vals[idx+1];
                                                                       return temp1 * weight + temp2 * (1 - weight);
  return temp1 * weight + temp2 * (1 - weight);
                                                                      return temp1 * weight + temp2 * (1 - weight);
                      float f1(float *vals, int idx, float weight) {
                        float temp1 = vals[idx];
                        float temp2 = vals[idx];
                                                                                   Inst Combine
                        if (idx < 10) {</pre>
                          temp1 += vals[idx+1];
                          return temp1 * weight + temp2 * (1 - weight);
                        return temp1;
```

How to do it automatically? A look at the IR

```
; Function Attrs: norecurse nounwind readonly uwtable willreturn
define dso local float @f1(float* nocapture readonly %vals, i32 %idx, float %weight) local unnamed addr #0 {
entry:
 %idxprom = sext i32 %idx to i64
 %arrayidx = getelementptr inbounds float, float* %vals, i64 %idxprom
 %0 = load float, float* %arrayidx, align 4, !tbaa !6
 %cmp = icmp slt i32 %idx, 10
  br i1 %cmp, label %if.then, label %if.end
if.then:
                                                  ; preds = %entry
 %add = add nsw i32 %idx, 1
 %idxprom3 = sext i32 %add to i64
 %arrayidx4 = getelementptr inbounds float, float* %vals, i64 %idxprom3
 %1 = load float, float* %arrayidx4, align 4, !tbaa !6
 %add5 = fadd fast float %1, %0
  br label %if.end
if.end:
                                                  ; preds = %if.then, %entry
 %temp1.0 = phi float [ %add5, %if.then ], [ %0, %entry ]
 %2 = fsub fast float %temp1.0, %0
 %3 = fmul fast float %2, %weight
 %add7 = fadd fast float %3, %0
 ret float %add7
```

A look at the IR

■ We want to focus on this BB

A look at the IR

■ Clone it to 2 BBs, one for each incoming value of the phi node.

High level idea

- Clone the IR. Use known value/property of some variable to optimize the code.
 - > Call site splitting does this for call instructions.
 - Loop peeling does this for loops.
 - > Function specialization performs this for an entire function.

Challenges and the current implementation

- What should be the scope of optimization? For now, we chose one Basic Block.
- InstCombine can follow use-def chains to anywhere in the function. So the Basic Block has to be isolated.
- Currently we isolate the BB into a separate function and run InstCombine on it.
 We keep a clone if there is a good enough reduction in the number of instructions.

Agenda

- DFA Jump Threading
- Speculative Instruction Combining
- Loop Interchange
- ARMv9-A Scalable Matrix Extension

Loop interchange

- Disabled by default in the pipeline.
- The pass is not functionally stable and has fairly significant limitations.
- We have improved this pass to make it functionally stable and more aggressive.
- Today it is turned on for some of our workloads with positive impact on the performance.
 We expect to be able to turn it on by default soon.
- Part of the work upstreamed. More patches will be posted soon.
- Will provide a more detailed report on this in near future.

_	_			
- Г	nctior	. - I D		
FIII	1CT1M	א וגו	rnn	iems.
ı uı		ıuı		

Detection of perfect loop nest

Legality check for triangular loops

Handling LCSSA phis

Transformation of reduction phis

Connection of new outer latch to header

Missed Opportunities

Multiple outer/inner induction vars

Better ordering of loops in a loop nest

Better coverage of reduction loops

- Under Complex control flow
- Floating point
- Multi level loop nests.

Contributed Patches

https://reviews.llvm.org/D98263

https://reviews.llvm.org/D101305

https://reviews.llvm.org/D102300

https://reviews.llvm.org/D98475

https://reviews.llvm.org/D100792

https://reviews.llvm.org/D102743

Agenda

- DFA Jump Threading
- Speculative Instruction Combining
- Loop Interchange
- ARMv9-A Scalable Matrix Extension

Clang Support for ARMv9-A Scalable Matrix Extension

- Matrix outer product instructions: fewer loops, better memory access patterns
- Project Goal: Clang intrinsics for SME programming in C

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture

Ingredients

- Clang Intrinsics
- LLVM IR Extension
- Instruction Selection and Lowering
- Stack Management
- Register Allocation
- MC Support

LLVM IR Extension

- Every row and column in a scalable matrix register ("tile") is a scalable vector
 - > Can be moved to or from a SVE register

- Therefore number of elements in a tile is proportional to (vscale * vscale)
 - Cannot be represented with a ScalableVectorType
- Need a new class of IR types

- Proposal: Add a new implementation-defined scaling factor rscale, used together with vscale
- Matrix types would look like:
 - > <rscale x vscale x 16 x i8>, <rscale x vscale x 8 x half>, <rscale x vscale x 4 x float>, etc.
- Pros and Cons
 - > Rectangular (non-square) scalable matrices without IR-level predication <
 - > Construction very different from existing scalable vector types *
 - Rows and columns are not equally scalable vectors *
 - Unnecessary complexity for AArch64 x

- Consider a scalable vector type, which multiplies a fixed vector type with a scaling factor
 - > vscale * <16 x i8> = <vscale x 16 x i8>
- Think of a scalable matrix type as multiplying a basic matrix type with a scaling factor
 - > Example: A basic matrix of bytes consisting of 16 * <16 x i8> vectors = <256 x i8>
 - > mscale * <256 x i8> = <mscale x 256 x i8>

- Consider a scalable vector type, which multiplies a fixed vector type with a scaling factor
 - > vscale * <16 x i8> = <vscale x 16 x i8>
- Think of a scalable matrix type as multiplying a basic matrix type with a scaling factor
 - > Example: A basic matrix of bytes consisting of 16 * <16 x i8> vectors = <256 x i8>
 - > mscale * <256 x i8> = <mscale x 256 x i8>
- Another example

```
FixedVectorType ScalableVectorType "Basic Matrix" ScalableMatrixType <a href="text-align: center;">ScalableMatrixType</a> <a href="text-align: center;"><4 x float><a href="text-align: center;"><5calableMatrixType</a> <a href="text-align: center;"><mscale x 16 x float></a>
```


Think of a scalable matrix type as multiplying a basic matrix size with a scaling factor

ValueType	FixedVectorType	ScalableVectorType	Elements Per Row /Column	ScalableMatrixType
i8	<16 x i8>	<vscale 16="" i8="" x=""></vscale>	16 * vscale	<mscale 256="" i8="" x=""></mscale>
i16	<8 x i16>	<vscale 8="" i16="" x=""></vscale>	8 * vscale	<mscale 64="" i16="" x=""></mscale>
i32	<4 x i32>	<vscale 4="" i32="" x=""></vscale>	4 * vscale	<mscale 16="" i32="" x=""></mscale>
i64	<2 x i64>	<vscale 2="" i64="" x=""></vscale>	2 * vscale	<mscale 4="" i64="" x=""></mscale>
i128	<1 x i128>	<vscale 1="" i128="" x=""></vscale>	1 * vscale	<mscale 1="" i128="" x=""></mscale>
half	<8 x half>	<pre><vscale 8="" half="" x=""></vscale></pre>	8 * vscale	<mscale 64="" half="" x=""></mscale>
float	<4 x float>	<pre><vscale 4="" float="" x=""></vscale></pre>	4 * vscale	<mscale 16="" float="" x=""></mscale>
double	<2 x double>	<vscale 2="" double="" x=""></vscale>	2 * vscale	<mscale 4="" double="" x=""></mscale>

Pros and Cons

- > Similarity to existing scalable vector types: less effort ✓
- \rightarrow Rows and columns are both scalable vectors with the same vscale \checkmark
- > Requires explicit predication to handle non-square matrices *

On-going Work

- Can compile Clang intrinsics into LLVM IR, then into ARMv9-A SME instructions!
- Arm has upstreamed MC support for SME instructions this summer
- Rebase prototype on main branch and refine
- RFC: LLVM IR extension for scalable matrix types and intrinsics
- TLX: New proposal for Tensor LLVM Extensions

Example of scalable matrix IR

Thank you

www.huawei.com

Copyright©2021 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.

