

20.4 Combined Bayes-Frequentist Estimation

May 29, 2018

PRESENTER: JongYun Kim

UNIST Autonomous System LAB

Address. 112-#810, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea Tel. +82 52 217 2368 Web. https://sites.google.com/site/aslunist/

Introduction

Bayesian estimates

- Immune from selection bias
- A data-based model selection rule has no effect on the likelihood function or posterior distribution

• • •

In high dimensions

- To set proper prior becomes difficult and possibly dangerous in higher dimensions
- A chosen prior has to apply to the entire parameters and not just the part we are interested in

Introduction to a Bayes-frequentist estimation technique like

Tweedie's rule in Empirical Bayes methods

Problem Definition

First, suppose $\mathcal{F} = \{f_{\alpha}(x)\}\$ is a multi-dimensional family of $\mathcal{F} = \{f_{\mu}(x); x \in \mathcal{X}, \mu \in \Omega\}$

Note that we now have different notations.

We want to estimate

$$\theta = t(\alpha)$$

A prior $g(\alpha)$ yields a posterior expectation as follows

$$\hat{\theta} = E\left\{t(\alpha)|x\right\}$$

Q: How accurate is $\widehat{\theta}$?

- If we believe the prior, the posterior distribution has the exact answer.
- But, the prior reflects mathematical convenience and a desire to be uninformative in most cases of high Dim.
- There's a danger of circular reasoning in using a self-selected prior distribution to compute the accuracy of its own estimator

An Alternative Way: Frequentist Accuracy

$$\hat{\theta} = E\{t(\alpha)|x\} \rightarrow Q: \text{How accurate is } \widehat{\theta}?$$

Calculating frequentist accuracy of $\widehat{\boldsymbol{\theta}}$ might be applicable.

Note: Although $\hat{\theta}$ is a Bayes estimate, we consider $\hat{\theta}$ is a function of x. And then suppose that the prior is unavailable or uncertain in order to put it on frequentist calculations.

Let the family be a p-parameter exponential family. And then we get $f_{\alpha}(x) = e^{\alpha' x - \psi(\alpha)} f_0(x)$ Now we obtain the frequentist accuracy at the following theorem.

Theorem 20.4
$$\widehat{\text{se}}_{\text{delta}} \left\{ \hat{\theta} \right\} = \left(\text{Cov}_x' V_{\hat{\alpha}} \text{Cov}_x \right)^{1/2}$$

Where, $V_{\hat{\alpha}}$ is V_{α} evaluated at the MLE $\hat{\alpha}$

with given
$$V_{\alpha} = \text{cov}_{\alpha}(x) : p \times p$$
 covariance matrix of x
 $\text{Cov}_{x} = \text{cov}\{\alpha, t(\alpha)|x\}$: the posterior covariance given x between θ and α

Bayesian Accuracy

Now, we are going to compute Bayesian accuracy and compare the two accuracies.

In order to generate posterior distribution of α given x, suppose we've employed an MCMC or Gibbs sampling algorithm : $\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(B)}$

The usual estimate for the expectation of θ given x is

$$\hat{\theta} = \frac{1}{B} \sum_{b=1}^{B} t \left(\alpha^{(b)} \right)$$

Then the Bayesian accuracy is calculated as follows. (ignore the i notation for now..)

$$\widehat{\operatorname{se}}_{\mathrm{Bayes}}\left(\widehat{\theta}_{i}\right) = \left[\frac{1}{B}\sum_{b=1}^{B}\left(\theta_{i} - \widehat{\theta}_{i}\right)^{2}\right]^{1/2}$$

Comparison with an Example

To get the two accuracies, we consider the diabetes data of Section 20.1.

 x_i ': the transpose of the vector of *i*th patient the *i*th raw of X

X: the 442 \times 10 matrix of predictions

y: response vector of progression scores (Note: rescaled to have variance 1 in the normal regression model) $y \sim \mathcal{N}_n(X\beta, I)$

The prior is given : $g(\beta) = ce^{-\lambda \|\beta\|_1}$

Note that B = 10000 samples for an MCMC algorithm.

A similar expression of covariance between θ and α is given :

$$Cov_x = \frac{1}{B} \sum_{b=1}^{B} \left(\alpha^{(b)} - \alpha^{(\cdot)} \right) \left(t^{(b)} - t^{(\cdot)} \right)$$

where, $t^{(b)} = t(\alpha^{(b)}), t^{(i)} = \sum_b t^{(b)}/B$, and $\alpha^{(i)} = \sum_b \alpha^{(b)}/B$

Comparison with an Example(1)

- The point estimate $\hat{\theta}_i$ equaled 2.41
- Bayes and frequentist standard error estimates are as follows

$$\widehat{se}_{Bayes} = 0.203$$
 and $\widehat{se}_{delta} = 0.186$

- The figure shows the 10,000 MCCM replications for $\hat{\theta}_i^{(b)} = x_i' \beta$ for patient i=322.
- The frequentist standard error is 9% smaller in this case; even smaller for all 422 patients. (averagely 5%)

Comparison with an Example(2)

Let's consider cdf of θ_{322} given y, when $t\left(c,\beta^{(b)}\right) = \begin{cases} 1 & \text{if } x'_{322}\beta^{(b)} \leq c \\ 0 & \text{if } x'_{332}\beta^{(b)} > c \end{cases}$

$$\operatorname{cdf}(c) = \frac{1}{B} \sum_{b=1}^{B} t\left(c, \beta^{(b)}\right)$$

Regardless of belief of the prior, Thm.20.4 is available.

- The central 90% credible interval is (2.08, 2.73)
- The interval has standard errors about 0.185 for each end point (28% of the interval length)
- In a new study, the result might vary much, even ignoring selection bias

The solid curve is the posterior cdf of θ_{322} . Vertical red bars indicate \pm one frequentist standard error, as obtained from Theorem 20.4. Black triangles are endpoints of the 0.90 central credible interval.

Conclusion

- Bayesian calculations encourage a disregard for model selection effects. This can be dangerous in objective Bayes settings where one can't rely on genuine prior experience.
- Theorem 20.4 serves as a frequentist checkpoint, offering some reassurance as in the left figure, or sounding a warning as in the right figure.

THANK YOU

Q&A