Linguagem R de programação Estatística

Professor Eduardo Monteiro de Castro Gomes

Matrizes

As matrizes são objetos com comportamento semelhante aos vetores mas apresentam duas dimensões organizando seus elementos em linhas e colunas

```
mat1 <- matrix(data = 1:12, nrow = 3)
mat1</pre>
```

```
##
          [,1] [,2] [,3] [,4]
## [1,]
             1
                   4
                              10
                         7
             2
                   5
## [2,]
                         8
                              11
## [3,]
             3
                   6
                         9
                              12
```

na definição da matriz acima foram definidos os valores que compõe a matriz e foi definida uma das dimensões da matriz. A outra dimensão não precisou ser definida pois as matrizes em R sempre devem ser completas em sua forma retangular e assim se existem 12 elementos dispostos em 3 linhas consequentemente serão utilizadas 4 colunas. Nos casos em que as dimensões e a quantidade valores não for equivalente o princípio de reciclagem será utilizado para que a matriz tenha a forma retangular e seja completa com elementos. Nos casos em que a reciclagem não é completa uma mensagem de aviso é passada.

```
mat2 <- matrix(1:5, nrow = 2)</pre>
```

```
## Warning in matrix(1:5, nrow = 2): data length [5] is not a sub-multiple or
## multiple of the number of rows [2]
```

mat2

```
## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 1
```

Note que os números das matrizes foram preenchidos por colunas, mas pode-se optar por fazer o preenchimento por linhas utilizando o argumento byrow = TRUE na definição da matriz

```
mat3 <- matrix(data = 1:12, nrow = 3, byrow = TRUE)
mat3</pre>
```

```
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12
```

Os princípios de reciclagem se aplicam tambêm para as operações com matrizes conforme ilustrado a seguir $\mathtt{mat3} * \mathtt{10}$

```
[,4]
##
         [,1] [,2] [,3]
## [1,]
           10
                 20
                       30
                             40
## [2,]
           50
                 60
                       70
                             80
## [3,]
           90
                100
```

```
mat3 * c(-10,10,1000)
```

```
## [,1] [,2] [,3] [,4]
## [1,] -10 -20 -30 -40
## [2,] 50 60 70 80
```

```
## [3,] 9000 10000 11000 12000
```

A indexação dos elementos na matrix segue o mesmo princípio de endereçamento considerado para os vetores, mas agora com um endereço de linha e outro de coluna na forma [linha, coluna]. Por exemplo, o elemento que está na segunda linha e terceira coluna da matriz mat3, que é o número 7, pode ser acessado por:

```
mat3[ 2 , 3 ]
```

```
## [1] 7
```

Podendo-se omitir o endereço de uma das dimensões para indicar o acesso a toda uma linha ou coluna. No exemplo a seguir é selecionada toda a quarta coluna da matriz mat3 omitindo-se o endereço de linha e selecionando a quarta coluna.

```
mat3[,4]
```

```
## [1] 4 8 12
```

É possível utilizar vetores para indicar endereços de linhas e colunas e assim para selecionar a primeira e terceira linha da matriz mat3 pode-se utilizar um vetor conforme o exemplo

```
mat3[ c(1,3) , ]
```

```
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 9 10 11 12
```

As matrizes tambêm são objetos homgêneos, de forma que todos os elementos contidos em uma matriz devem ser do mesmo tipo. Assim como ocorre para os vetores a linguagem faz a coerção dos elementos inseridos para que todos sejam conforme no sentido de serem do mesmo tipo.

É muito comum que as informações armazenadas contenham tipos diferentes de informações envolvendo números, nomes, categorias. Para armazenar informações de diferentes tipos em um mesmo objeto pode se utilizar um data.frame.

Dataframe

O dataframe é um objeto semelhante a matriz por ter duas dimensões sendo elas linahs e colunas mas o dataframe tem a propriedade que cada coluna pode ser de um tipo diferente. Pode-se considerar que um dataframe é um agrupamento de vetores em colunas, onde cada coluna deve ser homogênea e possuir elementos de um único tipo.

Nesse contexto, de uma forma geral, as linhas representam as observações ou indivíduos e as colunas representam as diferentes variáveis coletadas para cada observação ou indivíduo.

O exemplo a seguir ilustra um dataframe que armazena informações médicas de personagens fictícios.

```
##
         nome idade numeroconsultas tem plano
## 1
                  30
                                     3
                                             TRUE
           Ana
## 2
                  40
                                     7
                                           FALSE
          Bia
## 3
        Carol
                  50
                                     1
                                           FALSE
## 4
      Daniela
                  60
                                     6
                                             TRUE
## 5 Fernanda
                  70
                                     2
                                             TRUE
```

O acesso aos elementos do dataframe podem ser feitos de forma semelhante ao acesso na matriz, pelo endereço de linha e coluna [linha,coluna] e as diferentes colunas podem tambêm ser acessadas por seus nomes de duas formas conforme os seguintes exemplos:

tabela_medica\$idade

```
## [1] 30 40 50 60 70
tabela_medica[,c("nome","tem_plano")]
```

```
##
         nome tem_plano
## 1
           Ana
                    TRUE
## 2
          Bia
                   FALSE
## 3
        Carol
                   FALSE
## 4
      Daniela
                    TRUE
## 5 Fernanda
                    TRUE
```

• Ordenação do data.frame

É comum o interesse em ordenar os dados por uma variável de interesse. Deve-se observar que é fundamental preservar as informações de cada um dos indivíduos. Deve-se determinar a ordem em que as linhas do data.frame será apresentado e a função *order* será utilizada. No exemplo seguinte a tabela médica é ordenada pelo número de consultas, de forma que as pessoas com mais consultas são apresentadas no topo da tabela.

tabela_medica

```
##
         nome idade numeroconsultas tem_plano
## 1
           Ana
                  30
                                    3
                                            TRUE
## 2
                  40
                                    7
                                           FALSE
          Bia
## 3
        Carol
                  50
                                    1
                                           FALSE
## 4
      Daniela
                  60
                                    6
                                            TRUE
                                    2
## 5 Fernanda
                  70
                                            TRUE
tabela_medica[order(tabela_medica$numeroconsultas, decreasing = TRUE),]
```

```
##
          nome idade numeroconsultas tem_plano
## 2
           Bia
                   40
                                      7
                                            FALSE
## 4
      Daniela
                   60
                                      6
                                              TRUE
## 1
                   30
                                      3
                                              TRUE
           Ana
                                      2
                   70
                                              TRUE
## 5 Fernanda
## 3
         Carol
                   50
                                      1
                                            FALSE
```

Todas as colunas de um dataframe devem ter a mesma dimensão ou número de elementos.