#	release	delay	final	reaction	invariant	Semantics	Compare	Condition
1							inconsistent	inv ₁ • inv ₂ ¬((trig ₁ V trig ₂ V inv ₁ V inv ₂) → (rel ₁ V fin ₁ Λrea ₁)) ¬((trig ₁ V trig ₂ V inv ₁ V inv ₂) → (rel ₂ V fin ₂ Λrea ₂))
							inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
							inconsistent	trig ₂ • inv ₁ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₁ V fin ₁ \land rea ₁))
	rel₁	del ₁	fin₁	rea₁	inv₁	$\begin{aligned} \mathbf{G}(trig_1 &\to ((inv_1 \\ \wedge \neg fin_1 \mathbf{W} rel_1) \lor \\ (inv_1 \mathbf{U}(fin_1 \land \\ (inv_1 \land del_1 \\ \mathbf{U}(rel_1 \lor rea_1)))))) \end{aligned}$	inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$ $\neg ((rel_1 \lor fin_1 \lor fin_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$
							inconsistent	$rel_{1} \rightarrow fin_{2}$ $rel_{1} \rightarrow fin_{2}$ $rea_{1} \rightarrow fin_{2}$ $rea_{1} \rightarrow fin_{2}$ $rea_{1} \bullet inv_{2}$ $\neg ((rel_{1} \lor rea_{1} \lor fin_{2}) \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}))$
							consistent	$inv_1 \rightarrow inv_2$ $fin_1 \rightarrow fin_2$ $del_1 \rightarrow del_2$ $rea_1 \rightarrow rea_2$ $rel_1 \rightarrow rel_2$
_					_		unknown	other cases
2	true	del₁	fin ₁	rea ₁	inv ₁	TRUE	unknown	all cases
3							inconsistent	$inv_1 \bullet inv_2$ $\neg ((trig_1 \lor trig_2 \lor inv_1 \lor inv_2) \rightarrow (fin_1 \land rea_1))$
	false	4-1	£.			$G(trig_1 \rightarrow G(trig_1 \land G(trig_1 $	inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
		false del ₁	del ₁ fin ₁	rea₁	inv₁	$(inv_1 \land del_1 \mathbf{U}$ $(rea_1))))$	inconsistent	trig ₂ • inv ₁ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow (fin ₁ \land rea ₁))
							Inconsistent	$fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$
							Inconsistent	$rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2$

							consistent	$inv_1 \rightarrow inv_2$ $fin_1 \rightarrow fin_2$
								$del_1 \rightarrow del_2$ $rea_1 \rightarrow rea_2$
							unknown	other cases
4							inconsistent	$inv_1 \bullet inv_2$ $\neg ((trig_1 \lor trig_2 \lor inv_1 \lor inv_2) \rightarrow (fin_1 \land rea_1))$
							inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
	false	true	fin₁	rea₁	inv ₁	$\begin{aligned} \mathbf{G}(trig_1 & \rightarrow \\ (inv_1 \mathbf{U} (fin_1 \land \\ (inv_1 \mathbf{U} rea_1)))) \end{aligned}$	inconsistent	$trig_2 \bullet inv_1$ $\neg ((trig_1 \lor trig_2 \lor inv_1 \lor inv_2) \rightarrow (fin_1 \land rea_1))$
							Inconsistent	$fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$
							Inconsistent	$rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2$
							consistent	$ \begin{array}{c} \text{inv}_{1} \rightarrow \text{inv}_{2} \\ \text{fin}_{1} \rightarrow \text{fin}_{2} \\ \text{rea}_{1} \rightarrow \text{rea}_{2} \end{array} $
							unknown	other cases
5							inconsistent	$inv_1 \bullet inv_2$ $\neg ((trig_1 \lor trig_2 \lor inv_1 \lor inv_2) \rightarrow (fin_1 \land rea_1))$
							inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ ∨ trig ₂ ∨ inv ₁ ∨ inv ₂) \rightarrow (rel ₂ ∨ (fin ₂ \wedge rea ₂)))
	false	false	fin ₁	rea₁	inv ₁	$\begin{aligned} \mathbf{G}(trig_1 &\rightarrow \\ (inv_1 \mathbf{U} \\ (fin_1 \land \ rea_1))) \end{aligned}$	inconsistent	$trig_2 \bullet inv_1$ $\neg ((trig_1 \lor trig_2 \lor inv_1 \lor inv_2) \rightarrow (fin_1 \land rea_1))$
							Inconsistent	$fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$
							Inconsistent	$rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2$
							consistent	$inv_1 \rightarrow inv_2$ $fin_1 \rightarrow fin_2$ $rea_1 \rightarrow rea_2$
							unknown	other cases
6	false	del₁	true	rea₁	inv₁	$G(trig_1 \rightarrow (inv_1 \land del_1 \mathbf{U}))$	inconsistent	$inv_1 $
	false	e del ₁ tro	true	rea₁	inv₁	$(inv_1 \land del_1 \mathbf{U}$ $rea_1))$	inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow

								(rel₂ V fin₂∧rea₂))
							inconsistent	trig ₂ • inv ₁ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow rea ₁)
							Inconsistent	$\begin{array}{c} \operatorname{fin}_{1} \to \operatorname{fin}_{2} \\ \operatorname{fin}_{1} \bullet \operatorname{inv}_{2} \end{array}$
							Inconsistent	$rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2$
							consistent	$\begin{array}{l} \text{inv}_{1} \rightarrow \text{inv}_{2} \\ \text{fin}_{1} \rightarrow \text{fin}_{2} \\ \text{del}_{1} \rightarrow \text{del}_{2} \\ \text{rea}_{1} \rightarrow \text{rea}_{2} \end{array}$
							unknown	other cases
7							inconsistent	$inv_1 \bullet inv_2$ $\neg ((trig_1 \lor trig_2 \lor inv_1 \lor inv_2) \rightarrow rea_1)$
							inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
	false	true	true	rea₁	inv ₁	$\mathbf{G}(trig_1 \to \\ (inv_1 \ U \ rea_1))$	inconsistent	trig ₂ • inv ₁ $\neg((trig_1 \lor trig_2 \lor inv_1 \lor inv_2)$ $\rightarrow rea_1)$
							Inconsistent	$\neg ((\text{trig}_1 \ V \ \text{trig}_2 \ V \\ \text{inv}_1 \ V \ \text{inv}_2) \\ \rightarrow \text{rea}_1)$ $\frac{\text{fin}_1 \rightarrow \text{fin}_2}{\text{fin}_2 \rightarrow \text{fin}_2}$ $\text{rea}_1 \rightarrow \text{fin}_2$ $\text{rea}_1 \rightarrow \text{fin}_2$ $\text{rea}_1 \rightarrow \text{fin}_2$
							Inconsistent	
							consistent	$\begin{array}{c} \text{inv}_{1} \rightarrow \text{inv}_{2} \\ \text{fin}_{2} \rightarrow \text{fin}_{2} \\ \text{del}_{1} \rightarrow \text{del}_{2} \\ \text{rea}_{1} \rightarrow \text{rea}_{2} \end{array}$
							unknown	other cases
8							inconsistent	$inv_1 $
							inconsistent	trig ₁ • inv ₂ $\neg ((\text{trig}_1 \lor \text{trig}_2 \lor \text{inv}_1 \lor \text{inv}_2) \rightarrow \text{(rel}_2 \lor \text{fin}_2 \land \text{rea}_2))$
	false	false	true	rea₁	inv ₁	$G(trig_1 \rightarrow rea_1)$	inconsistent	trig ₂ • inv ₁ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow rea ₁)
							Inconsistent	$fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$
							Inconsistent	rea₁ • inv₂
							consistent	$\begin{array}{c} \text{inv}_1 \rightarrow \text{inv}_2 \\ \text{fin}_1 \rightarrow \text{fin}_2 \\ \text{del}_1 \rightarrow \text{del}_2 \end{array}$

								rea₁ → rea ₂
							unknown	other cases
9							inconsistent	$inv_1 \bullet inv_2$ $\neg ((trig_1 \lor trig_2 \lor inv_1 \lor inv_2) \rightarrow fin_1)$
							inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ \lor trig ₂ \lor inv ₁ \lor inv ₂) \rightarrow (rel ₂ \lor (fin ₂ \land rea ₂)))
	false	del ₁	fin₁	true	inv ₁	$G(trig_1 \rightarrow inv_1 U fin_1)$	inconsistent	trig ₂ • inv ₁ \neg ((trig ₁ \lor trig ₂ \lor inv ₁ \lor inv ₂) \rightarrow fin ₁)
							Inconsistent	$fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$
							consistent	$ \begin{array}{c} \text{inv}_{1} \rightarrow \text{inv}_{2} \\ \text{fin}_{1} \rightarrow \text{fin}_{2} \\ \text{del}_{1} \rightarrow \text{del}_{2} \end{array} $
							unknown	rea₁ → rea₂ other cases
10	false	del ₁	truo	truo	inv.	TRUE	unknown	all cases
11	juise	uei ₁	true	true	inv ₁	TRUE	ulikilowii	trig ₁ • inv ₂
11							inconsistent	$\neg (rel_2 \lor fin_2 \land rea_2)$
	false						Inconsistent	$fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$
		del₁	fin₁	rea₁	true	$G(trig_1 \rightarrow F (fin_1 \land A))$	Inconsistent	$rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2$
						del ₁ U rea ₁))	consistent	$\begin{array}{c} \text{inv}_1 \rightarrow \text{inv}_2 \\ \text{fin}_1 \rightarrow \text{fin}_2 \\ \text{del}_1 \rightarrow \text{del}_2 \\ \text{rea}_1 \rightarrow \text{rea}_2 \end{array}$
							unknown	other cases
12							inconsistent	trig ₁ • inv ₂ ¬(rel ₂ V fin ₂ ∧rea ₂)
	false	true	fin₁	rea₁	true	$G(trig_1 \rightarrow F(fin_1 \land Frea_1))$	Inconsistent	$fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$
						T (IIII] XT Tea1//	Inconsistent	$rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2$
							unknown	other cases
13							inconsistent	trig ₁ • inv ₂ \neg (rel ₂ V fin ₂ \land rea ₂)
	false	false	fin₁	rea₁	true	$\mathbf{G}(trig_1 \to F(fin_1 \land rea_1))$	Inconsistent	$fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$
	faise					\mathbf{F} (fin ₁ \wedge rea ₁))	Inconsistent	$rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2$
			<u> </u>				unknown	other cases
14	false					G(trig ->	inconsistent	trig ₁ • inv ₂ ¬(rel ₂ V fin ₂ Λ rea ₂)
		false del ₁ trud	lel ₁ true	rue rea ₁	True	$G(trig_1 \rightarrow del_1 U rea_1)$	Inconsistent	$rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2$
							unknown	other cases
					•	•		•

15								trig₁ • inv₂					
13							inconsistent	$\neg (rel_2 \lor fin_2 \land rea_2)$					
	false	true	true	rea₁	true	$G(trig_1 \rightarrow Frea_1)$		$rea_1 \rightarrow fin_2$					
	,					(* 62 * ********************************	Inconsistent	rea₁ • inv₂					
							unknown	other cases					
16								trig₁ • inv₂					
					_		inconsistent	¬(rel₂ V fin₂∧rea₂)					
	false	false	true	rea₁	true	$G(trig_1 \rightarrow rea_1)$	Inconsistent	rea₁ • inv₂					
							unknown	other cases					
17								trig₁ • inv₂					
		del₁					inconsistent	¬(rel₂ V					
	false	true	fin ₁	true	true	$G(trig_1 \rightarrow F fin_1)$		fin₂∧rea₂))					
	juise	false	1	truc	l truc	C(trigi / i iiii)	Inconsistent	$fin_1 \rightarrow fin_2$					
		,						fin₁ • inv₂					
							unknown	other cases					
18													
	false	nise any true true true TRUE		TRUE	unknown	all cases							
	•	arry	ally	ariy	ally	arry	٠						
40	C. I		C. 1	•		FALCE							
19	false	any	false	true	true	FALSE	inconsistent	all cases					
20	false	any	any	any	false	FALSE	inconsistent	all cases inv₁ • inv₂					
21								$\neg ((\text{trig}_1 \lor \text{trig}_2 \lor$					
								$inv_1 \lor inv_2) \rightarrow$					
							inconsistent	rel ₁)					
							miconsistent	\neg ((trig ₁ V trig ₂ V					
								$inv_1 \lor inv_2) \rightarrow$					
								$(rel_2 \ V \ fin_2 \land rea_2))$					
								trig₁ • inv₂					
	1		Cular			$G(trig_1 \rightarrow$		¬((trig ₁ V trig ₂ V					
	rel₁	any	false	any	inv ₁	inv ₁ W rel ₁)	inconsistent	$inv_1 \lor inv_2) \rightarrow$					
								$(rel_2 \ V \ fin_2 \land rea_2))$					
								trig₂ • inv₁					
							inconsistent	\neg ((trig ₁ V trig ₂ V					
										miconsistent	$inv_1 \lor inv_2) \rightarrow$		
								rel ₁)					
							inconsistent	$rel_1 \rightarrow fin_2$					
							lea acces	rel₁ • inv₂					
22		201	falso		201	TDUE	unknown	other cases					
22	true	any	false	any	any	TRUE	unknown	all cases inv₁ • inv₂					
23								$\neg ((\text{trig}_1 \lor \text{trig}_2 \lor$					
							inconsistent	$((G Ig_1 \lor G Ig_2 \lor Inv_1 \lor Inv_2) \rightarrow$					
								$(rel_2 \ V \ fin_2 \land rea_2))$					
	_							$trig_1 \bullet inv_2$					
	false	any	false	any	inv ₁	$G(trig_1 \rightarrow inv_1)$		\neg ((trig ₁ V trig ₂ V					
							inconsistent	$inv_1 \lor inv_2) \rightarrow$					
								$(rel_2 \ V \ fin_2 \land rea_2))$					
							inconsistent	$trig_2 \bullet inv_1$					
							unknown	other cases					
24	false	any	false	any	true	TRUE	unknown	all cases					
25	false	any	false	any	false	FALSE	inconsistent	all cases					
26	rel₁	any	false	any	true	$G(trig_1 \rightarrow$	unknown	all cases					

						<i>true</i> W rel₁) = TRUE		
27	rel ₁	any	false	any	false	$G(trig_1 \rightarrow false W rel_1) = FALSE$	inconsistent	all cases
28							inconsistent	inv ₁ •• inv ₂ ¬((trig ₁ V trig ₂ V inv ₁ V inv ₂) → (rel ₁ V rea ₁)) ¬((trig ₁ V trig ₂ V inv ₁ V inv ₂) → (rel ₂ V fin ₂ \wedge rea ₂))
						C(hris.	inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ \lor trig ₂ \lor inv ₁ \lor inv ₂) \rightarrow (rel ₂ \lor fin ₂ \land rea ₂))
	rel₁	del₁	true	rea₁	inv ₁	$G(\operatorname{trig}_1 \to ((\operatorname{inv}_1 \land \operatorname{del}_1) \mathbf{U} \\ (\operatorname{rel}_1 \lor \operatorname{rea}_1)))$	inconsistent	trig ₂ • inv ₁ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₁ V rea ₁))
							$(rel_1 \lor rea_1))$ $rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $\neg(fin_2 \rightarrow (rel_2 \lor rea_2))$ $rea_1 \rightarrow fin_2$	
							inconsistent	rea ₁ \rightarrow fin ₂ rea ₁ • inv ₂ \neg (fin ₂ \rightarrow (rel ₂ V rea ₂))
							unknown	other cases
29							inconsistent	$inv_1 \bullet inv_2$ $\neg ((trig_1 \lor trig_2 \lor inv_1 \lor inv_2) \rightarrow$
						C(hris.	inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
	rel ₁	true	true	rea₁	inv ₁	$G(trig_1 \rightarrow (inv_1 U (rel_1 V rea_1)))$	inconsistent	trig ₂ • inv ₁ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₁ V rea ₁))
							inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $\neg (fin_2 \rightarrow (rel_2 \lor rea_2))$
							inconsistent	rea ₁ \rightarrow fin ₂ rea ₁ • inv ₂ \neg (fin ₂ \rightarrow (rel ₂ V rea ₂))
							unknown	other cases

		l			l			
30	rel_1	false	true	rea₁	any	$G(trig_1 \rightarrow$	inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
	1011	Juise	1740	real	arry	$(rel_1 \lor rea_1))$	inconsistent	$rel_1 \bullet inv_2$
							inconsistent	
								rea ₁ • inv ₂
24						0/: : >	unknown	other cases
31	any	any	true	true	any	$G(\operatorname{trig}_1 \to ((\operatorname{inv}_1 \land \operatorname{del}_1) \mathbf{U} \\ (\operatorname{rel}_1 \lor \operatorname{true}))) = \\ \mathbf{TRUE}$	unknown	all cases
32							inconsistent	inv ₁ • inv ₂ ¬((trig ₁ ∨ trig ₂ ∨ inv ₁ ∨ inv ₂) \rightarrow rel ₁) ¬((trig ₁ ∨ trig ₂ ∨ inv ₁ ∨ inv ₂) \rightarrow (rel ₂ ∨ fin ₂ ∧rea ₂))
	rel_1	del ₁	true	false	inv ₁	$G(trig_1 \rightarrow ((inv_1 \land del_1) U)$	inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
						rel ₁))	inconsistent	trig ₂ • inv ₁ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow rel ₁)
							inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $\neg(fin_2 \rightarrow (rel_2 \lor rea_2))$
							unknown	other cases
33	rel_1	false	true	false	any	$G(trig_1 \rightarrow ((inv_1 \land false) U rel_1)) = FALSE$		all cases
34							inconsistent	inv ₁ • inv ₂ ¬((trig ₁ ∨ trig ₂ ∨ inv ₁ ∨ inv ₂) \rightarrow rel ₁) ¬((trig ₁ ∨ trig ₂ ∨ inv ₁ ∨ inv ₂) \rightarrow (rel ₂ ∨ fin ₂ ∧rea ₂))
	rel₁	true	true	false	inv ₁	$\mathbf{G}(trig_1 \to \\ (inv_1 \ \mathbf{U} \ rel_1))$	inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
							inconsistent	$trig_2 \bullet inv_1$ $\neg ((trig_1 \lor trig_2 \lor inv_1 \lor inv_2) \rightarrow rel_1)$
							inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $\neg (fin_2 \rightarrow (rel_2 \lor rea_2))$

							unknown	other cases
35						$G(trig_1 \rightarrow$		
	rel ₁	any	true	any	false	$((false \land del_1) U$ $(rel_1 \lor rea_1))) =$ FALSE	inconsistent	all cases
36							inconsistent	trig ₁ • inv ₂ \neg (rel ₂ V fin ₂ \land rea ₂)
	rel_1	del₁	true	rea₁	true	$\mathbf{G}(trig_1 \to (del_1 U \; (rel_1 V$	inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $\neg (fin_2 \rightarrow (rel_2 \lor rea_2))$
						rea ₁)))	inconsistent	rea ₁ \rightarrow fin ₂ rea ₁ • inv ₂ \neg (fin ₂ \rightarrow (rel ₂ V rea ₂))
							unknown	other cases
37							inconsistent	trig ₁ • inv ₂ \neg (rel ₂ V fin ₂ \land rea ₂)
	rel₁	true	true	rea₁	true	$G(trig_1 \rightarrow$	inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $\neg (fin_2 \rightarrow$ $(rel_2 \lor rea_2))$
	1011					F (rel ₁ V rea ₁))	inconsistent	$rea_{1} \rightarrow fin_{2}$ $rea_{1} \bullet inv_{2}$ $\neg (fin_{2} \rightarrow (rel_{2} \lor rea_{2}))$
							unknown	other cases
38						24	inconsistent	trig ₁ • inv ₂ ¬(rel ₂ ∨ fin ₂ ∧rea ₂)
	rel_1	false	true	rea₁	true	$G(trig_1 \rightarrow $	inconsistent	rel₁ • inv₂
						rel ₁ V rea ₁)	inconsistent	rea₁ • inv₂
							unknown	other cases
39	rel₁	any	true	true	true	$G(trig_1 \rightarrow (del_1 U rel_1 \lor true))) = TRUE$	unknown	all cases
40							inconsistent	trig ₁ • inv ₂ \neg (rel ₂ V fin ₂ \land rea ₂)
	rel_1	del ₁	true	false	true	$\mathbf{G}(trig_1 \to (del_1 \mathbf{U} \; rel_1)$	inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $\neg (fin_2 \rightarrow (rel_2 \lor rea_2))$
							unknown	other cases
41							inconsistent	trig ₁ • inv ₂ \neg (rel ₂ V fin ₂ \land rea ₂)
	rel_1	true	true	false	true	$G(trig_1 \rightarrow F rel_1)$	inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $\neg (fin_2 \rightarrow (rel_2 \lor rea_2))$
							unknown	other cases
42	rel₁	false	true	false	true	$G(trig_1 \rightarrow rel_1)$	inconsistent	trig ₁ • inv ₂ \neg (rel ₂ V fin ₂ \land rea ₂)
		Jaise		74.50		-(11.81 > 10.11)	inconsistent	rel₁ • inv₂
			-				unknown	other cases

48								inv₁ • inv₂
.0								\neg ((trig ₁ V trig ₂ V
								$inv_1 \lor inv_2) \rightarrow$
							inconsistent	$(rel_1 \lor fin_1 \land rea_1))$
								¬((trig ₁ V trig ₂ V
								$inv_1 \lor inv_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$
								trig ₁ • inv ₂
								\neg ((trig ₁ V trig ₂ V
							inconsistent	$inv_1 \lor inv_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$
								$trig_2 \bullet inv_1$
								\neg ((trig ₁ V trig ₂ V
							inconsistent	$(v_1,v_2) \rightarrow v_1,v_2$
								$(rel_1 \lor fin_1 \land rea_1))$
						$G(trig_1 \rightarrow ((inv_1)))$		$rel_1 \rightarrow fin_2$
						$\wedge \neg fin_1 \mathbf{W} rel_1 \vee \vee$		$rel_1 \bullet inv_2$
	<u>rel₁</u>	true	<u>fin</u> ₁	rea₁	inv ₁	$(inv_1\mathbf{U}(fin_1 \wedge$		$fin_1 \rightarrow fin_2$
	<u>. c.1</u>		···· <u>ı</u>			(inv ₁ U	inconsistent	$fin_1 \bullet inv_2$
						$(rel_1 Vrea_1)))))$		\neg ((rel ₁ V fin ₁ V
						(. 0.1 (0 0 1))))		$fin_2) \rightarrow$
								$(rel_2 \lor fin_2 \land rea_2))$
								$rel_1 \rightarrow fin_2$
								$rel_1 \bullet inv_2$
							inconsistent	$rea_1 \rightarrow fin_2$
								rea ₁ • inv ₂
								¬((rel₁ V rea₁V
								$fin_2) \rightarrow$
								(rel₂ V fin₂∧rea₂))
								$inv_1 \rightarrow inv_2$
								fin₁ → fin₂
							consistent	del₁ → del ₂
								rea₁ → rea ₂
								$rel_1 \rightarrow rel_2$
							unknown	other cases
49						$G(trig_1 \rightarrow$		
	rol	truo	fin	roa	truo	((¬fin₁ W rel₁) ∨	inconsistent	trig₁ • inv₂
	<u>rel₁</u>	true	<u>fin₁</u>	rea₁	true	F (fin₁ ∧	inconsistent	$\neg (rel_2 \lor fin_2 \land rea_2)$
						F (rel₁∨rea₁))))		
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$fin_1 \rightarrow fin_2$
							inconsistent	fin ₁ • inv ₂
								¬((rel₁ V fin₁V
								$fin_2) \rightarrow$
								(rel₂ V fin₂∧rea₂))
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$rea_1 \rightarrow fin_2$
							inconsistent	rea₁ • inv₂
								¬((rel₁ V rea₁V
								$fin_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$

							unknown	other cases
50	<u>rel</u> 1	true	<u>fin₁</u>	rea₁	false	$\mathbf{G}(trig_1 \to (rel_1 \\ V \; (fin_1 \land rea_1)))$	inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
							inconsistent	$\begin{aligned} \text{rel}_1 &\rightarrow \text{fin}_2 \\ \text{rel}_1 &\bullet \text{inv}_2 \\ \text{fin}_1 &\rightarrow \text{fin}_2 \\ \text{fin}_1 &\bullet \text{inv}_2 \\ \neg ((\text{rel}_1 \lor \text{fin}_1 \lor \text{fin}_2) \rightarrow \\ (\text{rel}_2 \lor \text{fin}_2 \land \text{rea}_2)) \end{aligned}$
							inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $rea_1 \rightarrow fin_2$ $rea_1 \bullet inv_2$ $\neg ((rel_1 \lor rea_1 \lor fin_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$
							unknown	other cases
51							inconsistent	$inv_1 $
	<u>rel</u> 1	true	<u>fin</u> 1	true	inv ₁	$\mathbf{G}(\operatorname{trig}_1 \to ((\operatorname{inv}_1 \land \neg \operatorname{fin}_1 \mathbf{W} \operatorname{rel}_1) \lor (\operatorname{inv}_1 \mathbf{U} \operatorname{fin}_1)))$	inconsistent	$ inv_1 \lor inv_2) \rightarrow $ $ (rel_2 \lor fin_2 \land rea_2)) $ $ trig_2 \bullet inv_1 $ $ \neg ((trig_1 \lor trig_2 \lor inv_1 \lor inv_2) \rightarrow $ $ (rel_1 \lor fin_1)) $
							inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$ $\neg ((rel_1 \lor fin_1 \lor fin_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$
							unknown	other cases
52							inconsistent	trig ₁ • inv ₂ \neg (rel ₂ V fin ₂ \land rea ₂)
	<u>rel₁</u>	true	<u>fin</u> 1	true	true	$G(trig_1 \rightarrow (\neg fin_1 \ Wrel_1) \lor F fin_1))$	inconsistent	$ rel_1 \rightarrow fin_2 $ $ rel_1 \bullet inv_2 $ $ fin_1 \rightarrow fin_2 $ $ fin_1 \bullet inv_2 $ $ \neg ((rel_1 \lor fin_1 \lor fin_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)) $ $ other cases $

	1							· · · ·
53							inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
	<u>rel₁</u>	true	<u>fin₁</u>	true	false	$G(trig_1 \rightarrow (rel_1 \lor fin_1))$	inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$ $\neg((rel_1 \lor fin_1 \lor fin_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$
							unknown	other cases
54							inconsistent	inv ₁ • inv ₂ ¬((trig ₁ ∨ trig ₂ ∨ inv ₁ ∨ inv ₂) \rightarrow rel ₁) ¬((trig ₁ ∨ trig ₂ ∨ inv ₁ ∨ inv ₂) \rightarrow (rel ₂ ∨ fin ₂ ∧rea ₂))
						C/hris \/im.	inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
	<u>rel₁</u>	true	<u>fin₁</u>	false	inv_1	$\mathbf{G}(trig_1 \to (inv_1 \\ \land \neg fin_1 \mathbf{W} rel_1))$	inconsistent	$trig_2 \bullet inv_1$ $\neg ((trig_1 \lor trig_2 \lor inv_1 \lor inv_2) \rightarrow rel_1)$
							inconsistent	rel ₁ \rightarrow fin ₂ rel ₁ • inv ₂ fin ₁ \rightarrow fin ₂ fin ₁ • inv ₂ \neg ((rel ₁ V fin ₁ Vfin ₂) \rightarrow (rel ₂ V fin ₂ \wedge rea ₂))
55							inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₂) \rightarrow
	<u>rel₁</u>	true	<u>fin₁</u>	false	false	$G(trig_1 \rightarrow rel_1)$	inconsistent	$ \frac{(\text{rel}_2 \vee \text{fin}_2 \wedge \text{rea}_2))}{(\text{rel}_1 \bullet \text{inv}_2} $ $-((\text{trig}_1 \vee \text{trig}_2 \vee \text{rel}_1 \vee \text{inv}_2) \rightarrow $ $(\text{rel}_2 \vee \text{fin}_2 \wedge \text{rea}_2)) $
							unknown	other cases
56							inconsistent	trig ₁ • inv ₂ ¬(rel ₂ V fin ₂ ∧rea ₂)
	<u>rel₁</u>	true	<u>fin₁</u>	false	true	$G(trig_1 \rightarrow (\neg fin_1 \mathbf{W} rel_1))$	inconsistent	$rel_1 \rightarrow fin_2$ $rel_1 \bullet inv_2$ $fin_1 \rightarrow fin_2$ $fin_1 \bullet inv_2$ $\neg((rel_1 \lor fin_1 \lor fin_2) \rightarrow$ $(rel_2 \lor fin_2 \land rea_2))$
			r.		•		unknown	other cases
57	<u>rel₁</u>	false	<u>fin₁</u>	rea₁	inv_1		inconsistent	inv₁ • inv₂

							inconsistent	$\neg((\text{trig}_1 \ V \ \text{trig}_2 \ V \\ \text{inv}_1 \ V \ \text{inv}_2) \rightarrow \\ (\text{rel}_1 \ V \ \text{fin}_1 \land \text{rea}_1)) \\ \neg((\text{trig}_1 \ V \ \text{trig}_2 \ V \\ \text{inv}_1 \ V \ \text{inv}_2) \rightarrow \\ (\text{rel}_2 \ V \ \text{fin}_2 \land \text{rea}_2)) \\ \text{trig}_1 \bullet \text{inv}_2 \\ \neg((\text{trig}_1 \ V \ \text{trig}_2 \ V \\ \text{inv}_1 \ V \ \text{inv}_2) \rightarrow \\ (\text{rel}_2 \ V \ \text{fin}_2 \land \text{rea}_2)) \\ \text{trig}_2 \bullet \text{inv}_1 \\ \neg((\text{trig}_1 \ V \ \text{trig}_2 \ V \\ \text{rel}_2 \ V \ \text{fin}_2 \land \text{rea}_2))$
						$\mathbf{G}(trig_1 \to ((inv_1 \land \neg fin_1 \mathbf{Wrel}_1) \lor (inv_1 \mathbf{U}(fin_1 \land (rel_1 \lor rea_1)))))$	inconsistent	$\begin{array}{c} (trig_1 \vee trig_2 \vee trig_1 \vee trig_2 \vee trig_1 \vee trig_2 \vee trig_1 \vee trig_2 \vee trig_1 \wedge trig_2 \vee trig_1 \wedge trig_2 \vee trig_1 \wedge trig_2 \vee trig_1 \wedge trig_2 \vee trig_1 \vee trig_1 \vee trig_2 \vee trig_2 \vee trig_2 \wedge trig_2 \vee trig_2 \wedge trig_2 $
EO							inconsistent	rel₁ • inv₂ rea₁ → fin₂ rea₁ • inv₂ ¬((rel₁ V rea₁V fin₂) → (rel₂ V fin₂Λrea₂)) other cases
58	<u>rel₁</u>	false	<u>fin₁</u>	rea₁	true	$G(trig_1 \rightarrow (\neg fin_1 \ Wrel_1) \lor \ F(fin_1 \land$	inconsistent	trig ₁ • inv ₂ $\neg (rel_2 \lor fin_2 \land rea_2)$ rel ₁ $\rightarrow fin_2$ rel ₁ • inv ₂ fin ₁ $\rightarrow fin_2$ fin ₁ • inv ₂ $\neg ((rel_1 \lor fin_1 \lor fin_2) \rightarrow (rel_2 \lor fin_2 \land rea_2))$ rel ₁ $\rightarrow fin_2$
						(rel₁∨rea₁)))	inconsistent	rel₁ • inv₂ rea₁ → fin₂ rea₁ • inv₂ ¬((rel₁ V rea₁V fin₂) → (rel₂ V fin₂Λrea₂)) other cases
59	<u>rel₁</u>	false	<u>fin₁</u>	rea₁	false	$\mathbf{G}(\operatorname{trig}_1 \to (\operatorname{rel}_1 V \\ (\operatorname{fin}_1 \wedge \operatorname{rea}_1)))$	inconsistent	trig ₁ • inv ₂ $\neg ((\text{trig}_1 \lor \text{trig}_2 \lor \text{inv}_2) \rightarrow (\text{rel}_2 \lor \text{fin}_2 \land \text{rea}_2))$ $\text{rel}_1 \rightarrow \text{fin}_2$ $\text{rel}_1 \bullet \text{inv}_2$ $\text{fin}_1 \rightarrow \text{fin}_2$

	1	ı	1	l		1		Τ _
								fin ₁ • inv ₂
								¬((rel₁ V fin₁V
								$fin_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$rea_1 \rightarrow fin_2$
							inconsistent	
								¬((rel₁ V rea₁V
								$fin_2) \rightarrow$
								$(rel_2 \lor fin_2 \land rea_2))$
							unknown	other cases
60	rel ₁	false	fin ₁	true	any	TRUE	unknown	all cases
61	1611	juise	<u> </u>	true	arry	TROL	UTIKITOWIT	inv ₁ • inv ₂
01						Cltria > //inv		
						$G(trig_1 \rightarrow ((inv_1 \rightarrow (inv_1 $		¬((trig ₁ V trig ₂ V
	<u>rel₁</u>	false	<u>fin</u> ₁	false	inv_1	$\land \neg fin_1 \mathbf{W}rel_1) \lor$	inconsistent	$inv_1 \lor inv_2) \rightarrow rel_1$
	_		_			(inv₁ U (fin₁ ∧		¬((trig ₁ V trig ₂ V
						rel ₁))))		$inv_1 \lor inv_2) \rightarrow$
								(rel₂ V fin₂∧rea₂))
								trig ₁ • inv ₂
							inconsistent	¬((trig ₁ V trig ₂ V
								$inv_1 \lor inv_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$
								trig₂ • inv₁
							inconsistent	\neg ((trig ₁ V trig ₂ V
								$inv_1 \lor inv_2) \rightarrow rel_1$
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$fin_1 \rightarrow fin_2$
							inconsistent	fin₁ • inv₂
								¬((rel₁ V fin₁V
								$fin_2) \rightarrow$
								(rel₂ V fin₂∧rea₂))
							unknown	other cases
62						$G(trig_1 \rightarrow$		
						(¬fin ₁ W rel ₁) ∨		trig₁ • inv₂
	<u>rel₁</u>	<u>del₁</u>	<u>fin₁</u>	rea₁	true	$(\mathbf{F}(fin_1 \land (del_1)))$	inconsistent	$\neg (rel_2 \lor fin_2 \land rea_2)$
						U (rel ₁ Vrea ₁))))))		(1012 1 111121 11 002)
						2(. c.1 (. ca1//////		$rel_1 \rightarrow fin_2$
								rel ₁ • inv ₂
								$fin_1 \rightarrow fin_2$
							inconsistent	
							inconsistent	
								\neg ((rel ₁ V fin ₁ V
								fin_2) \rightarrow
								$(rel_2 \ V \ fin_2 \land rea_2))$
								$rel_1 \rightarrow fin_2$
								rel₁ • inv₂
								$rea_1 \rightarrow fin_2$
							inconsistent	
								¬((rel ₁ V rea ₁ V
								$fin_2) \rightarrow$
								$(rel_2 \ V \ fin_2 \land rea_2))$
							unknown	other cases

63	rel.	del₁	fin₁	rea ₁	false	$G(trig_1 \rightarrow (rel_1 \lor V))$	inconsistent	trig₁ • inv₂ ¬((trig₁ ∨ trig₂ ∨
	<u>rel₁</u>	<u>uei</u> 1	<u> </u>	rea ₁	juise	$fin_1 \land rea_1)$	inconsistent	$ \text{inv}_2\rangle \rightarrow $ $ \text{rel}_2 \lor \text{fin}_2 \land \text{rea}_2\rangle)$
							inconsistent	$ rel_1 \rightarrow fin_2 $ $ rel_1 \bullet inv_2 $ $ fin_1 \rightarrow fin_2 $ $ fin_1 \bullet inv_2 $ $ \neg ((rel_1 \lor fin_1 \lor fin_2) \rightarrow (rel_2 \lor fin_2 \land rea_2)) $
							inconsistent	$rel_{1} \rightarrow fin_{2}$ $rel_{1} \bullet inv_{2}$ $rea_{1} \rightarrow fin_{2}$ $rea_{1} \bullet inv_{2}$ $\neg((rel_{1} \lor rea_{1} \lor fin_{2}) \rightarrow (rel_{2} \lor fin_{2} \land rea_{2}))$
							unknown	other cases
64	<u>rel₁</u>	<u>del₁</u>	<u>fin₁</u>	true	any	TRUE	unknown	all cases
65	rel ₁	del ₁	fin₁	false	inv ₁	G (trig ₁ \rightarrow (inv ₁ \land ¬fin ₁ W rel ₁))	inconsistent	inv ₁ • inv ₂ ¬((trig ₁ V trig ₂ V inv ₁ V inv ₂) → rel ₁) ¬((trig ₁ V trig ₂ V inv ₁ V inv ₂) → (rel ₂ V fin ₂ Λrea ₂))
							inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
							inconsistent	trig ₂ • inv ₁ \neg ((trig ₁ V trig ₂ V inv ₁ V inv ₂) \rightarrow rel ₁)
							inconsistent	$ rel_1 \rightarrow fin_2 $ $ rel_1 \bullet inv_2 $ $ fin_1 \rightarrow fin_2 $ $ fin_1 \bullet inv_2 $ $ \neg ((rel_1 \lor fin_1 \lor fin_2) $ $ \rightarrow $ $ (rel_2 \lor fin_2 \land rea_2)) $
							unknown	other cases
66	<u>rel₁</u>	del₁	<u>fin₁</u>	false	false	$G(trig_1 \rightarrow rel_1)$	inconsistent	trig ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
							inconsistent	rel ₁ • inv ₂ \neg ((trig ₁ V trig ₂ V rel ₁ V inv ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
							unknown	other cases
67	<u>rel₁</u>	del₁	<u>fin₁</u>	false	true	$G(trig_1 \rightarrow (\neg fin_1 \mathbf{W} rel_1))$	inconsistent	trig₁ • inv₂ ¬(rel₂ V fin₂∧rea₂)
							inconsistent	$rel_1 \rightarrow fin_2$

				rel ₁ • inv ₂ fin ₁ \rightarrow fin ₂ fin ₁ • inv ₂ \neg ((rel ₁ V fin ₁ Vfin ₂) \rightarrow (rel ₂ V fin ₂ \land rea ₂))
			unknown	other cases