A Comparison of Antenna Placement Algorithms

Abhinav Jauhri

March 12, 2015

► Antenna placement on a multi-platform is a manual, and time consuming process

- Antenna placement on a multi-platform is a manual, and time consuming process
- Number of possible placements (search space) of antennas becomes exponentially large in the number of antennas to be placed

- Antenna placement on a multi-platform is a manual, and time consuming process
- Number of possible placements (search space) of antennas becomes exponentially large in the number of antennas to be placed
- ► Stochastic algorithms have been used effectively to find antenna designs (Reference: Hornby, Lohn, & Linden.

 "Computer-Automated Evolution of an X-Band Antenna for NASA's Space Technology 5 Mission." 2011)

- Antenna placement on a multi-platform is a manual, and time consuming process
- Number of possible placements (search space) of antennas becomes exponentially large in the number of antennas to be placed
- ► Stochastic algorithms have been used effectively to find antenna designs (Reference: Hornby, Lohn, & Linden.

 "Computer-Automated Evolution of an X-Band Antenna for NASA's Space Technology 5 Mission." 2011)

How can we automate the process by use of stochastic algorithms?

Antenna Placement Example

- ► A₁ has 24 possible antenna placements
- ► A₂ has 33 possible antenna placements
- \blacktriangleright A_3 has 136 possible antenna placements

Size of search space $= m^n$

Given:

▶ platform *P* with its surface gridded such that end points represent possible antenna placement

Given:

- ► platform *P* with its surface gridded such that end points represent possible antenna placement
- ▶ set of m (m>1) antennas $A = A_1, A_2, ..., A_m$

Given:

- ► platform *P* with its surface gridded such that end points represent possible antenna placement
- ▶ set of m (m>1) antennas $A = A_1, A_2, ..., A_m$
- ▶ for each A_i , let L_i denote the set of allowable placements locations $\in \mathbb{R}^3$ such that $|L_i| = n_i$ and $\forall i, n_i > 1$; $L_i = \{(x_1, y_1, z_1) ... (x_{n_i}, y_{n_i}, z_{n_i})\}$

Given:

- ► platform *P* with its surface gridded such that end points represent possible antenna placement
- ▶ set of m (m>1) antennas $A=A_1,A_2,...,A_m$
- ▶ for each A_i , let L_i denote the set of allowable placements locations $\in \mathbb{R}^3$ such that $|L_i| = n_i$ and $\forall i, n_i > 1$; $L_i = \{(x_1, y_1, z_1)...(x_{n_i}, y_{n_i}, z_{n_i})\}$

Goal: A set of m optimal antenna locations on P

Stochastic Algorithms

We will consider algorithms which rely on randomization principle.

- ► Simple Genetic Algorithm
- Evolutionary Strategy
- ► Simulated Annealing
- ► Hill Climbing

Representation

A hypothesis is represented by a set of antenna placements. For instance - $((x_1, y_1, z_1), (x_1, y_1, z_1), (x_1, y_1, z_1))$

Evolutionary Strategy

Algorithm 1: AP-ES

```
Data: Set of placements L = \{L_1, \dots, L_m\}; \mu; \lambda; gen_{max} - maximum number of
          generations
  Result: H* from P
1 Initialize P \leftarrow generate \mu random hypothesis;
 gen_{id} = 0;
3 while genid < genmax do
        Create \lambda/\mu offsprings from each \mu hypotheses by applying mutation operator, and
        add all offsprings to P;
        Compute the fitness(h_i), i = 1,...,\lambda;
        Keep \mu best hypotheses in P, and discard remaining \lambda - \mu hypotheses;
        Update gen_{id} \leftarrow gen_{id} + 1
```

4

5

6

7 8 end

Simulated Annealing

Algorithm 2: AP-SA

```
Data: Set of placements L = \{L_1, \dots, L_m\}; T - initial temperature; i_m - maximum
           iterations; f_{cooling} - cooling factor
   Result: H^* from P
   Initialize H \leftarrow generate a random hypothesis;
   Compute fitness(H);
  i=0;
  while i < i_m do
         Mutation - Apply the operation on H as stated in Algorithm . Call the
5
         pertubrated/mutated hypothesis C;
         Compute \delta f = fitness(C) - fitness(H);
6
         if \delta f > 0 then
7
8
              Generate a random number \epsilon using a uniform distribution over [0,1];
              if \epsilon < e^{-\delta f/T} then
9
                    H \leftarrow C
10
              end
11
         else
12
              H ← C :
13
         end
14
         T \leftarrow T \cdot f_{cooling};
15
         i \leftarrow i + 1:
16
17 end
```

Antenna Placement Objectives

Antenna Placement Issues

- → Coupling among antennas
- → Parasitic effects and reflections from the host platform
- → Loss of efficiency
- Difficulty conforming to aerodynamic, thermal, other enovironment factors

Desired Antenna Placement Objectives

- → Gain in radiation pattern
- → Minimize coupling

Minimize Difference in Radiation Pattern

Pattern defines the ratio of energy radiated and input energy in a particular direction. For each antenna A_i :

$$F_{RP}(A_i) = \sum_{\theta} \sum_{\phi} \|ISG_i(\theta, \phi) - FSG_i(\theta, \phi)\|^2, \tag{1}$$

where

- ightharpoonup θ, ϕ spherical and cylindrical coordinates
- ▶ $ISG(\cdot)$ returns in-situ gain pattern
- ▶ $FSG(\cdot)$ returns free-space gain pattern

Minimize Coupling

Coupling is the absorption of radiated energy by nearby antennas

$$F_{MC} = \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} CP(A_i, A_j),$$
 (2)

where

- $ightharpoonup CP(\cdot)$ computes the coupling between two antennas
- ► $i \neq j$

Overall Fitness Function

For an hypothesis, fitness is defined as:

$$F = \alpha F_{MC} + \beta \sum_{i} F_{RP}(A_i), \qquad (3)$$

TODO: about weights

Experimental Setup

- Create (s) such that each individual is defined by a placement for each of the m antennas
- ► Run all individuals through *NEC* simulator ¹ to get fitness parameters
- Apply EA operators
- ► Repeat...

¹http://www.nec2.org

Experiments: Test Cases

Test Case	Antennas	Total allowable placements
1	2	7,056 (83×83)
2	3	50,625 (45×45×25)
3	3	126,025 (71×71×25)
4	4	20,736 (12×12×12×12)

^{*}Allowable placements for each antenna are provided within parenthesis

Results - Success Probability

Results - Success Probability

Results: Mean Evaluations

Mean number of evaluations to reach the best solution (over 10 runs):

method test case	GA	ES	SA	НС
tc1(7056) ²	2350	1728	667	164
tc2(50,625)	31680	11165	1653	174
tc3(126,025)	45 900	26880	4809	227
tc4(20,736)	6150	4466	423	90

²Total number of possible evaluations within parenthesis

Equivalence of fitness to efficiency

For a particular test case, fitness change of 0.01 is equivalent to either the corresponding value under expected gain (\mathbb{E}_g) column, or difference in coupling (Δ_c) .

ID	\mathbb{E}_{g}	Δ_c (dB)
tc1	872.277	0.5474
tc2	862.082	1.3034
tc3	861.845	1.5180
tc4	871.049	0.5693

$$\mathbb{E}_g = \frac{1}{N \cdot m} \sum_{i}^{m} F_{RP}(A_i), \text{ where } N = |\theta| \cdot |\phi|$$

Conclusion

- ► Formulation of the antenna placement problem
- Generic to accommodate multiple antennas and platforms
- Optimal placements found using stochastic algorithms