

洛必達法則與反常積分

單元八

+ Outline

- 不定型的極限與洛必達法則
- 反常積分

* 洛必達法則 L'Hospital's Rule (8.1&8.2)

■ 假設f和 g 是可微的,且在包含 a 的開區間 I 中 $g'(x) \neq 0$ 。若:

$$\lim_{x \to a} f(x) = 0 \quad \boxed{\exists} \quad \lim_{x \to a} g(x) = 0$$

$$\vec{\exists} \quad \boxed{\exists} \quad$$

則

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

+例1(不定型的極限)

若存在,求下列極限:

$$\mathbf{A.} \quad \lim_{x \to 1} \frac{\ln x}{x - 1}$$

$$\lim_{x\to\infty}\frac{e^x}{x^2}$$

C.
$$\lim_{x\to 0^+} x \ln x$$

$$\lim_{x\to(\pi/2)^{-}}(\sec x - \tan x)$$

+ 反常積分

- 直到目前為止所涉及的積分的條件為:
 - ◆ 函數在<u>閉區間</u>[a,b]上是<u>連續</u>的。
- 反常積分(或瑕積分):
 - ◆第一型:無窮區間

◆ 第二型: 在閉區間[a, b]上無界。

+ 範例: 無窮區間

■ 考慮曲線 $y = 1/x^2$ 和 x 軸間於 $[1, +\infty)$ 的面積:

+ 第一型反常積分 (8.3)

a) 若對任意 $t \ge a$, $\int_a^t f(x) dx$ 都存在,則

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx$$

b) 若對任意 $t \le b$, $\int_t^b f(x) dx$ 都存在,則

$$\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx$$

c) 若 a) 和 b) 的極限都存在,則定義

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx$$

- 若對應極限存在,則稱瑕積分收斂 (convergent);
- 若對應極限不存在,則稱瑕積分發散(divergent).

+ 例2

■ 判別下列積分是收斂的或是發散的?

$$A. \int_1^\infty \frac{1}{x} dx$$

$$B. \int_1^\infty \frac{1}{x^2} dx$$

$+\int_{1}^{\infty}\frac{1}{x^{p}}dx$ 的收斂與發散

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \begin{cases} \infty, & p \le 1\\ \frac{1}{p-1}, & p > 1 \end{cases}$$

■ 即:

- ◆ $p \le 1$ 時: $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ 發散.
- p > 1時: $\int_1^\infty \frac{1}{x^p} dx$ 收斂.

+ 第二型反常積分(8.4)

■ 若f在 [a,b] 上連續而在x = c 上不連續,其中a < c < b,若 $\lim_{x \to c} |f(x)| = \infty$,定義

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

其中:

$$\int_{a}^{c} f(x)dx = \lim_{t \to c^{-}} \int_{a}^{t} f(x)dx$$
$$\int_{c}^{b} f(x)dx = \lim_{t \to c^{+}} \int_{t}^{b} f(x)dx$$

◆ 若 $\int_a^c f(x)dx$ 和 $\int_c^b f(x)dx$ 均收斂,則 $\int_a^b f(x)dx$ 收斂,否則 $\int_a^b f(x)dx$ 發散。

+例3

■ 求下列積分:

$$A. \int_2^5 \frac{1}{\sqrt{x-2}} dx$$

$$B. \quad \int_0^3 \frac{1}{x-1} \, dx$$

+例4

■ 求下列積分: (單元六例3B)

$$\int_0^1 \ln x \, dx$$

+ 教材對應閱讀章節及練習

- **8.1-8.4**
- 對應習題: (可視個人情況定量)
 - **♦**8.1: 1-18
 - **♦**8.2: 1-10
 - **♦**8.3: 1-18
 - **◆**8.4: 1-18