# Second-order kernel online convex optimization withadaptivesketching



Daniele Calandriello, Alessandro Lazaric, Michal Valko

#### Motivation

- ► Non-parametric models are versatile and accurate
- First-order methods are fast but high regret
- Second-order methods suffer low regret but slow

$$\mathcal{O}(t^3)$$
 time  $\mathcal{O}(t^2)$  space ( $t$  steps)

Current limitation: No interpretation for non-parametric regret, no approximate second-order methods

We propose Sketched-KONS, the first approximate algorithm for second-order Kernel Online Convex Optimization

- $\rightarrow$  approximation  $\Rightarrow 1/\gamma$  times more regret but a  $\gamma^2$  speedup
- using a novel kernel matrix sketching technique
- regret scales with the effective dimension of the problem

### Kernel Online Convex Optimization

**Online** game between learner and adversary, at each round  $t \in [T]$ 

- 1. the adversary reveals a new point  $\varphi(\mathbf{x}_t) = \phi_t \in \mathcal{H}$
- 2. the learner chooses  $\mathbf{w}_t$  and predicts  $f_{\mathbf{w}_t}(\mathbf{x}_t) = \varphi(\mathbf{x}_t)^\mathsf{T} \mathbf{w}_t$ ,
- 3. the adversary reveals the curved loss  $\ell_t$ ,
- 4. the learner suffers  $\ell_t(\boldsymbol{\phi}_t^\mathsf{T}\mathbf{w}_t)$  and observes gradient  $\mathbf{g}_t$ .

#### Kernel

- ullet  $\varphi(\cdot): \mathcal{X} o \mathcal{H}$  is the high-dimensional (possibly infinite) map
- $oldsymbol{\Phi}_t = [oldsymbol{\phi}_1, \dots, oldsymbol{\phi}_t], \ oldsymbol{\Phi}_t^{\scriptscriptstyle\mathsf{T}} oldsymbol{\Phi}_t = oldsymbol{\mathrm{K}}_t \ ext{(kernel trick)}$
- $\bullet \ \mathbf{g}_t = \ell_t'(\boldsymbol{\phi}_t^{\mathsf{\scriptscriptstyle T}} \mathbf{w}_t) \boldsymbol{\phi}_t := \dot{g}_t \boldsymbol{\phi}_t$

Minimize **regret** 

$$R(\mathbf{w}) = \sum_{t=1}^{T} \ell_t(\boldsymbol{\phi}_t^{\mathsf{T}} \mathbf{w}_t) - \ell_t(\boldsymbol{\phi}_t^{\mathsf{T}} \mathbf{w})$$

against the best-in-hindsight  $\mathbf{w}^* := \arg\min_{\mathbf{w} \in \mathcal{H}} \sum_{t=1}^T \ell_t(\boldsymbol{\phi}_t^{\mathsf{T}} \mathbf{w})$ 

### Kernel Online Newton Step (KONS)

Second-Order Gradient Descent

- 1.  $\mathbf{A}_0 = \alpha \mathbf{I}$
- $2. \mathbf{A}_t = \mathbf{A}_{t-1} + \sigma \mathbf{g}_t \mathbf{g}_t^\mathsf{T}$
- 3.  $\mathbf{w}_{t+1} = \mathbf{w}_t \mathbf{A}_t^{-1} \mathbf{g}_t$



$$R(\mathbf{w}) \leq \mathcal{O}\left(\sum_{t=1}^{T} \mathbf{g}_{t}^{\mathsf{T}} \mathbf{A}_{t}^{-1} \mathbf{g}_{t}\right) \leq \mathcal{O}\left(\sum_{t=1}^{T} \mathbf{g}_{t}^{\mathsf{T}} \left(\mathbf{G}_{t} \mathbf{G}_{t}^{\mathsf{T}} + \alpha \mathbf{I}\right)^{-1} \mathbf{g}_{t}\right) \leq \mathcal{O}\left(L \sum_{t=1}^{T} \boldsymbol{\phi}_{t}^{\mathsf{T}} \left(\boldsymbol{\Phi}_{t} \boldsymbol{\Phi}_{t}^{\mathsf{T}} + \alpha \mathbf{I}\right)^{-1} \boldsymbol{\phi}_{t}\right) \leq \begin{cases} \mathsf{LOCO:} \ \mathcal{O}(d \log(T)) \\ \mathsf{KOCO:} \ \mathcal{O}(\log(\mathrm{Det}(\mathbf{K}_{T} + \alpha \mathbf{I}))) \end{cases}$$

#### Effective dimension

#### Lemma 1

$$egin{aligned} oldsymbol{d_{\mathsf{onl}}^T}(oldsymbol{lpha}) &:= \sum_{t=1}^T oldsymbol{\phi}_t^{\mathsf{T}} \left( oldsymbol{\Phi}_t oldsymbol{\Phi}_t^{\mathsf{T}} + lpha \mathbf{I} 
ight)^{-1} oldsymbol{\phi}_t \ &\leq \log(\mathrm{Det}(\mathbf{K}_T/lpha + \mathbf{I})) \leq 2 oldsymbol{d_{\mathsf{eff}}^T}(oldsymbol{lpha}) oldsymbol{\log(T/lpha)}. \end{aligned}$$

Given a kernel matrix  $\mathbf{K}_T \in \mathbb{R}^{t \times t}$ 

- $\Rightarrow \alpha$ -ridge leverage score
- $\tau_{T,i}(\alpha) = \mathbf{e}_{T,i} \mathbf{K}_T^{\mathsf{T}} (\mathbf{K}_T + \alpha \mathbf{I}_T)^{-1} \mathbf{e}_{T,i}$  $= \boldsymbol{\phi}_i^{\mathsf{T}} (\boldsymbol{\Phi}_T \boldsymbol{\Phi}_T^{\mathsf{T}} + \alpha \mathbf{I})^{-1} \boldsymbol{\phi}_i$
- ⇒ Effective dimension
- $\mathbf{d}_{\mathsf{eff}}(\alpha)_{\mathbf{T}} = \sum_{i=1}^{T} \tau_{T,i}(\alpha)$  $= \operatorname{Tr} \left( \mathbf{K}_T (\mathbf{K}_T + \alpha \mathbf{I}_T)^{-1} \right)$ 
  - $= \sum_{i=1}^{T} \frac{\lambda_i(K_T)}{\lambda_i(K_T) + \alpha}$  $\leq \operatorname{Rank}(\mathbf{K}_T) = r$



### Kernel Online Row Sampling (KORS)

**Input:** Regularization  $\alpha$ , accuracy  $\varepsilon$ , budget  $\beta$ 

- 2: **for**  $t = \{0, \dots, T-1\}$  **do**
- receive  $\phi_{\scriptscriptstyle +}$
- construct temporary dictionary  $\overline{\mathcal{I}}_t := \mathcal{I}_{t-1} \cup (t,1)$

- (2)  $|\mathcal{I}_t| \leq d_{eff}^t(\alpha) \frac{6\rho \log^2(\frac{2T}{\delta})}{\varepsilon^2}$ .
- (3) Satisfies  $\tau_{t,t} \leq \widetilde{\tau}_{t,t} \leq \rho \tau_{t,t}$ .

 $\mathcal{O}(d_{eff}^t(\alpha)^2 \log^4(T))$  time per iteration.

#### Curvature and first vs second order



First order (GD)

Zinkevich 2003, Kivinen et al. 2004

- $\triangleright$   $\mathcal{O}(d)/\mathcal{O}(t)$  time/space per-step
- ightharpoonup regret  $\sqrt{T}$

Approximation avoids  $\mathcal{O}(t)$  runtime

but introduces approximation error



- Hazan, Rakhlin, et al. 2008
- $\triangleright$   $\mathcal{O}(d)/\mathcal{O}(t)$  time/space per-step
- ightharpoonup regret  $\log(T)$

but often **not satisfied** in practice  $\vdash$  (e.g.  $(y_t - \boldsymbol{\phi}_t^\mathsf{T} \mathbf{w}_t)^2$ )



First order (GD)

- $\triangleright$   $\mathcal{O}(d)/\mathcal{O}(t)$  time/space per-step

Hazan, Kalai, et al. 2006, Zhdanov and Kalnishkan 2010

- $\triangleright$   $\mathcal{O}(d^2)/\mathcal{O}(t^2)$  time/space per-step

Luo et al. 2016

no approximate methods for kernel case

### **Assumptions**

- 1: the losses  $\ell_t$  are scalar Lipschitz  $|\ell'_t(z)| \leq L$
- 2:  $\ell_t(\boldsymbol{\phi}_t^\mathsf{T}\mathbf{w}) \ge \ell_t(\boldsymbol{\phi}_t^\mathsf{T}\mathbf{u}) + \nabla \ell_t(\boldsymbol{\phi}_t^\mathsf{T}\mathbf{u})^\mathsf{T}(\mathbf{w} \mathbf{u}) + \sigma \left(\nabla \ell_t(\boldsymbol{\phi}_t^\mathsf{T}\mathbf{u})^\mathsf{T}(\mathbf{w} \mathbf{u})\right)^2$

#### Challenge

Reduce computational cost without losing logarithmic regret?

#### References

- Elad Hazan, Adam Kalai, et al. "Logarithmic regret algorithms for online convex optimization". In: COLT. 2006.
- Elad Hazan, Alexander Rakhlin, et al. "Adaptive online gradient descent". In: *NIPS*. 2008.
- J. Kivinen et al. "Online Learning with Kernels". In: IEEE Transactions on Signal Processing (2004). Haipeng Luo et al. "Efficient second-order online learning via
- sketching". In: Neural Information Processing Systems. 2016. Fedor Zhdanov and Yuri Kalnishkan. "An Identity for Kernel
- Ridge Regression". In: Algorithmic Learning Theory. 2010. Martin Zinkevich. "Online Convex Programming and Generalized Infinitesimal Gradient Ascent". In: ICML. 2003.

# Convex

(potentially  $\mathcal{O}(T)$  regret)





- ightharpoonup regret  $\sqrt{T}$

Second order (Newton-like)

ightharpoonup regret  $\log(T)$ 

Fast approximations for linear case

### Counterexample

Adversary always plays same sample  $\phi_{exp}$ , but alternates label  $\{+1,-1\}$ Class of updates:  $\mathbf{A}_t - \mathbf{A}_{t-1} = w_t \mathbf{g}_t$ 

#SV budget  $B = \#\mathbb{I}\{w_t \neq 0\}$  drives complexity cumulative weight  $W_t = \sum_{s=1}^t w_s$  drives regret



(1) Increase  $W_t$  quickly (2) Increase  $W_t$  slowly (3) Increase  $W_t$  sparsely ightharpoonupreduce  $R_G$ ightharpoonupreduce Bightharpoonupreduce  $R_D$ 

Only constant speedup over exact

Contrasting goals cannot be satisfied at the same time.

## 1: Initialize $\mathcal{I}_0 = \emptyset$

- compute  $\widetilde{p}_t = \min\{\beta \widetilde{\tau}_{t,t}, 1\}$  using  $\overline{\mathcal{I}}_t$  and Eq. 4 in the paper.
- draw  $z_t \sim \mathcal{B}(\widetilde{p}_t)$  and if  $z_t = 1$ , add  $(t, 1/\widetilde{p}_t)$  to  $\mathcal{I}_t$
- 7: end for

**Theorem 1.** Given parameters  $0 < \varepsilon \le 1$ ,  $0 < \alpha$ ,  $0 < \delta < 1$ ,  $| let \ \rho = \frac{1+\varepsilon}{1-\varepsilon} \ and \ run \ KORS \ with \ \beta \geq 3\log(T/\delta)/\varepsilon^2$ . Then  $| w.p. 1 - \delta, for all steps t \in [T],$ 

- (1)  $(1-\varepsilon)\mathbf{A}_t \leq \mathbf{A}_t^{\mathcal{I}_t} \leq (1+\varepsilon)\mathbf{A}_t$ .

Moreover, the algorithm runs in  $\mathcal{O}(d_{eff}^t(\alpha)^2 \log^4(T))$  space, and

#### Sketched-KONS

Naive Approach:  $\widetilde{\mathbf{A}}_t = \widetilde{\mathbf{A}}_{t-1} + (\mathbb{I}\{\text{coin flip w.p. } p_t\}/\mathbf{p_t})\sigma\mathbf{g}_t\mathbf{g}_t^\mathsf{T}$  with  $p_t \propto \widetilde{\tau}_{t,t}$ 



 $\blacktriangleright$  w.h.p.  $\widetilde{A}_t$  updated only  $d_{\text{eff}}^T(\alpha) \log^2(T)$  times

 $\triangleright$   $\widetilde{\mathcal{O}}(d_{\mathsf{eff}}^T(\alpha)^2 + t)$  per-step space/time complexity

- **Expected** regret  $d_{\text{eff}}^T(\alpha) \log(T)$
- ▶ The weights  $1/p_t \sim 1/\widetilde{\tau}_{t,t}$  can be large

$$\widetilde{A}_{t}^{-1} = \left(\begin{array}{c} \\ \\ \\ \end{array}\right)^{-1} = \left(\begin{array}{c} \\ \\ \end{array}\right)^{-1} = \left($$

**Theorem 2.** For any sequence of losses  $\ell_t$  satisfying Asm.1-2, let  $\widetilde{\tau}_{\min} = \min_{t=1}^T \widetilde{\tau}_{t,t}$ . For all  $t, \alpha \leq \sqrt{T}, \beta \geq 3\log(T/\delta)/\varepsilon^2$ , then  $w.p. 1 - \delta$  the regret of Sketched-KONS satisfies

 $\widetilde{R}_T \leq \alpha \|\mathbf{w}^*\|^2 + 2 \frac{d_{eff}^T (\alpha/(\sigma L^2)) \log(2\sigma L^2 T)}{\sigma \max\{\gamma, \beta \widetilde{\tau}_{\min}\}},$ 

SKETCHED-KONS  $\widetilde{\mathbf{A}}_t = \widetilde{\mathbf{A}}_{t-1} + (\mathbb{I}\{\text{coin flip w.p. } p_t\}) \quad \sigma \mathbf{g}_t \mathbf{g}_t^\mathsf{T} \text{ with } p_t \propto \max\{\gamma, \widetilde{\tau}_{t,t}\}$ 

- and the algorithm runs in  $\mathcal{O}(d_{eff}^t(\alpha)^2 + t^2\gamma^2)$  time and  $\mathcal{O}(d_{eff}^t(\alpha)^2 + t^2\gamma^2)$  $t^2\gamma^2$ ) space complexity for each iteration t.
- ► Trade-off computation and regret  $\rightarrow$  1/ $\gamma$  increase in regret for  $\gamma^2$  space/time improvement
- ► Neither uniform nor RLS  $\rightarrow$  keep updates with high  $\tau_{t,t}$  for accuracy
- uniformly update for stability
- $\triangleright$  Can we get rid of dependency on t?

 $\rightarrow$  not when  $\mathbf{A}_t - \mathbf{A}_{t-1} = w_t \mathbf{g}_t \mathbf{g}_t^\mathsf{T}$ 

# HOW CAN WE AVOID THIS?

Support Removal

Learn how to remove old  $g_{t-1}$  from  $A_t$ ? could be large

Functional embedding

Instead of approximating  $\mathbf{A}_t$ , approximate  $\phi_t$ Random features not strong enough (yet)

Avron et al. ICML'17 satisfy guarantee (1) of Thm. 1 → only in batch setting

Nyström-based embeddings?

→ ongoing work