

Controllable Person Image Synthesis with Attribute-Decomposed GAN (ADGAN)

Yifang Men¹, Yiming Mao², Yuning Jiang², Wei-Ying Ma², **Zhouhui Lian¹***¹Wangxuan Institute of Computer Technology, Peking University

²Bytedance Al Lab

• Synthesize person images in arbitrary pose

• Synthesize person images in arbitrary pose

 Achieve flexible and continuous control of human attributes, including pose and component attributes (i.e. head, upper clothes and pants)

 Achieve flexible and continuous control of human attributes, including pose and component attributes (i.e. head, upper clothes and pants)

Also bring a significant quality boost compared with previous methods

Previous Work

Pose Transfer PG2 --> DPIG --> Def-GAN --> ... --> PATN

(c) Generating from a sequence of poses

"Pose Guided Person Image Generation." [Ma et al. NIPS 2017]

- Unsatisfied quality
- Limited controllability

Previous Work

Appearance Transfer

"A Generative Model of People in Clothing." [Lassner et al. ICCV 2017]

Fail to model the intricate interplay of the inherent pose --> deformed textures

Previous Work

Facial Attributes Editing

• Require strict attribute annotation (e.g., smiling, beard and eyeglasses exist or not in the training dataset)

"AttGAN: Facial Attribute Editing by Only Changing What You Want." [He et al. TIP 2019]

Contributions

We introduce Attribute-Decomposed GAN, a neat and effective model

- It achieves flexible and continuous user control of human attributes, such as head, pant and upper clothes.
- It brings a significant quality boost for the original person image synthesis task.
- It makes an automatic and unsupervised attribute separation.

What We Have

• A typical person image dataset (e.g. DeepFashion)

	Pose1	Pose2	Pose3	Pose4	Pose5
Person 1	٠.		·	·.	
Person 2		٠٠.		٠٠	?
Person 3			?	?	

RGB image

What We Have

• A typical person image dataset (e.g. DeepFashion)

	Pose1	Pose2	Pose3	Pose4	Pose5
Person 1	٠-		٠٠	·	
Person 2		٠٠		٠٠	?
Person 3		?	?	?	

The Core Idea

• Learn an automatic, unsupervised attribute separation

The Core Idea

• Multiple source persons with desired attributes -> style code

The Core Idea

Control human attributes by editing the style code

Generated images with varying style codes

Details of global texture encoder T_{enc}

Effects of the decomposed component encoding (DCE) & global texture encoding (GTE)

speeds up the convergence of model and achieves more realistic results in less time.

Auxiliary effects of the fusion module (FM) for DCE

(a) Source (b) Target pose (c) w/o DCE (d)w/ DCE, w/o FM (e)w/ DCE&FM

Discriminator

Discriminator D_p : pose consistence

{target pose P_t , target image I_t }—real pair {target pose P_t , generated image I_g }—fake pair

Discriminator D_t : texture coherence

{source image I_s , target image I_t }—real pair {source image I_s , generated image I_g }—fake pair

Loss Function

(1) Adversarial loss with two discriminator and one generator

$$\mathcal{L}_{adv} = \mathbb{E}_{P_t \in \mathcal{P}, (I_s, I_g) \in \mathcal{I}} \{ \log [D_{II}(I_s, I_g) \cdot D_{PI}(P_t, I_g)] \}$$

$$+ \mathbb{E}_{P_t \in \mathcal{P}, I_s \in \mathcal{I}, I_t \in \hat{\mathcal{I}}} \{ \log [(1 - D_{II}(I_s, I_t)) \cdot (1 - D_{PI}(P_t, I_t))] \}$$

(2) L1 loss between fake generated image and ground truth

$$\mathcal{L}_1 = \|\ I_g - I_t\ \|_1$$

(3) Perception loss with extracted feature via pretrained-VGG

$$\mathcal{L}_{per} = \| \mathcal{G}(\mathcal{F}^l(I_t)) - \mathcal{G}(\mathcal{F}^l(I_g)) \|_2$$

(4) Contextual loss for unaligned pairs (effective in person image synthesis task)

$$\mathcal{L}_{CX} = -\log(\mathrm{CX}(\mathcal{F}^l(I_t), \mathcal{F}^l(I_g)))$$

Loss Function

Effects of the contextual loss

Pose Transfer (synthesize person images in arbitrary poses)

Pose Transfer (synthesize person images in arbitrary poses)

Results

Motion Transfer (animate a single person image with driving action video)

Comparison with state-of-the-arts

Comparison with state-of-the-arts

Table 1: Quantitative comparison on DeepFashion.

Model	IS↑	SSIM↑	DS↑	CX-GS↓	CX-GT
PG^2	3.202	0.773	0.943	2.854	2.795
DPIG	3.323	0.745	0.969	2.761	2.753
Def-GAN	2.265	0.770	0.973	2.751	2.713
PATN	3.209	0.774	0.976	2.628	2.604
Ours	3.364	0.772	0.984	2.474	2.474

Table 2: Results of the user study (%).

Indicator	PG^2	DPIG	Def-GAN	PATN	Ours
R2G	9.2	-	12.42	19.14	23.49
G2R	14.9	-	24.61	31.78	38.67
Prefer	1.61	1.35	16.23	7.26	73.55

Results

Component Attribute Transfer (transfer pants or upper clothes from left exemplar)

Results

Component Attribute Transfer (provide continuous user control)

Another recently-published work

ACM TOG (SIGGRAPH 2020)

Attribute2Font: Creating Fonts You Want From Attributes

YIZHI WANG*, Wangxuan Institute of Computer Technology, Peking University, China YUE GAO*, Wangxuan Institute of Computer Technology, Peking University, China ZHOUHUI LIAN†, Wangxuan Institute of Computer Technology, Peking University, China

Thank you!

王选计算机研究所

字形计算技术实验室

http://www.wict.pku.edu.cn/cscl lianzhouhui@pku.edu.cn

