```
History
                                                                              Citation
                                                                                                Literature Cutoff Date
                                                            Author
                                            Type
                                                          Jun Chen
                                                                        NDS 140,1 (2017)
                                                                                                     30-Sep-2015
                                      Full Evaluation
Q(\beta^{-})=-1504.40 \ 6; S(n)=9869 \ 5; S(p)=12528.7 \ 17; Q(\alpha)=-6800.69 \ 19
S(2n)=16467.71 19, S(2p)=22757 7 (2012Wa38).
First identification of <sup>40</sup>Ar nuclide by 1919As01 (later in 1921As01) in a mass spectrometer (2012Th10).
Other reactions:
2012Zh06: <sup>9</sup>Be(<sup>40</sup>Ar,X), 181Ta(<sup>40</sup>Ar,X) E=57 MeV/nucleon. Measured fragment yields.
2006LiZX: <sup>9</sup>Be(<sup>38</sup>S,X) E=5.45 MeV/nucleon, Measured Eγ, Iγ,
1999Ma14: ^{40}Ar(\mu-,X) E=125 MeV. Measured capture rates.
1996Ri19,1996Ri09: <sup>40</sup>Ar(<sup>16</sup>O,<sup>16</sup>O') E=250 MeV/nucleon. Deduced structure near isovector dipole and isoscalar quadrupole giant
    resonances.
1994An39: ^{36}S(\alpha,\alpha). Resonances were observed at E\alpha=13320 (J^{\pi}=7<sup>-</sup>) and E\alpha=14120 (J^{\pi}=8<sup>+</sup>).
1992Wa11,1991Mo05; <sup>40</sup>Ca(π-π+) E=295 MeV. Deduced double isovector giant-dipole resonance at 31.1 MeV with a width of
    90 MeV
1990Va11: <sup>40</sup>Ar(X,X) E=5.9 keV. Measured E(x-ray).
1989A115: ^{40}Ar(^{32}S, ^{32}S) E=100 MeV. Measured \sigma(\theta). 1989Gr06: E=180, 240 MeV; 1979Da16: E=290 MeV.
1986Ge01,1985Ge04: ^{40}Ar(π,π) E=180 MeV. Measured \sigma(\theta).
1985Sh06: {}^{40}Ar({}^{16}O, {}^{16}O) E=100 MeV. Measured \sigma(\theta).
1983To18: {}^{40}Ca(E,\pi+) E=400 MeV.
1980KoZI: <sup>48</sup>Ca(<sup>3</sup>He, <sup>11</sup>Be). Deduced 8-particle transfer and isospin=4 isotopic multiplet.
Muonic x ray: 2p<sub>3/2</sub> to 1s<sub>1/2</sub>: 643.674 keV 20 (1981Fr25, 1992Fr01), 643.94 keV 11 (1971Bb11,1976Pf01).
Hyperfine structure and isotope shift measurements: 2008BeZH, 2005Bl33, 2003Sa20, 1996Kl04, 1988Mo30, 1986Mu06, 1982Ei01.
Mass measurement: 2005Go36, 2003Fr08, 2002Bf02, 2001Wa50, 1998Ca53, 1997Br44, 1995Ya15, 1995Di08, 1968Sc01, 1968Fu11.
```

⁴⁰Ar Levels

Cross Reference (XREF) Flags

J

K

M

 40 Cl β^- decay (1.35 min)

 $^{12}C(^{36}S.2\alpha\gamma)$

 $^{26}\text{Mg}(^{18}\text{O},2\text{p}2\text{n}\gamma)$

 40 K ε decay (1.248×10⁹ y)

 26 Mg(16 O,2p γ), 27 Al(18 O,p $\alpha\gamma$)

Α

В

C

 38 Ar(α , 2 He)

 40 Ar(p,p' γ)

 40 Ar(e,e'),(e,e)

 $^{40}\mathrm{Ar}(\mathrm{n,n'}\gamma),\!(\mathrm{n,n})$

 40 Ar(γ , γ'),(pol γ , γ')

 40 Ar(α,α'),(α,α)

⁴⁰Ca(¹⁴C, ¹⁴O)

⁴²Ca(¹⁴C, ¹⁶O)

 41 K(d, 3 He)

S

Coulomb excitation

```
^{40}Ar(p,p'),(pol p,p')
                                                                                                                             <sup>44</sup>Ca(<sup>3</sup>He, <sup>7</sup>Be)
                         F
                                ^{36}S(\alpha, \gamma):resonances
                                                                         N
                                                                                 ^{40}Ar(pol d,d'),(d,d')
                                ^{37}\text{Cl}(\alpha,\text{p}\gamma)
                                                                                                                             ^{44}\text{Ca}(\alpha,2\alpha)
                         G
                                                                         0
                                                                                                                             ^{208}Pb(^{40}Ar,X\gamma)
                                                                                 <sup>40</sup>Ar(<sup>3</sup>He, <sup>3</sup>He'), (<sup>3</sup>He, <sup>3</sup>He)
                                ^{38}Ar(t,p)
                                                            XREF
                                             ABCDEFGHIJKLMNOPORSTUVWX
                                                                                      J^{\pi}: Optical spectroscopy measurements: 1937Ko03,
                                                                                          1953Me73; no hyperfine structure seen.
                                                                                       Evaluated rms charge radius=3.4274 fm 26 (2013An02).
                                                                                       \Delta < r^2 > (^{38}Ar - ^{40}Ar) = 0.169 \text{ fm}^2 33 (1996Kl04), 0.17 fm<sup>2</sup>
                                                                                         (1986Mu06).
                                                                                       charge radius \langle r^2 \rangle_{1/2} = 3.415 fm 5 (1976Pf01), 3.429 fm 6
                                                                                         (1971Bb11) from Muonic x-ray data; 3.393 fm 15(stat)
                                                                                         (1976Fi12), 3.41 fm 4, (1971Sc09), 3.47 fm 5
                                                                                         (1971Gr27,1975GrYY), 3.48 fm 4 (1974We02) from
                                                                                         <sup>40</sup>Ar(e,e') data.
                                                                                      \mu=-0.04 6 (2008Sp04,2014StZZ)
1460.849° 5 2+
                             1.15 ps 5 ABCDEFGHIJKLMNOPQRSTUVWX
                                                                                       O=+0.01 4 (1970Na05.2013StZZ)
                                                                                       J^{\pi}: L(\alpha,\alpha')=L(t,p)=L(pol\ d,d')=L(pol\ p,p')=L(d,^{3}He)=2.
```

E(level) [†]	$J^{\pi \#}$	T _{1/2} @	XREF		Comments
					T _{1/2} : weighted average of 1.09 ps 28 from $^{37}\text{Cl}(\alpha,\text{p}\gamma)$, 1.11 ps 4 from $^{40}\text{Ar}(\text{e,e'})$, 1.35 ps 10 from $^{40}\text{Ar}(\text{p,p'}\gamma)$ and 1.25 ps 14 from $^{12}\text{C}(^{36}\text{S},2\alpha\gamma)$. μ : using transient-field technique (2008Sp04). Others: $-2\ 2\ (1992\text{Cu}04)$, $-0.03\ 8\ (2005\text{St}22)$. Q: from reorientation in Coulomb Excitation (1970Na05).
2120.91 ^f 17	0+	104 ps <i>14</i>	A C EFGH LMNO	Q UVWX	J ^π : L(α , α')=L(p,p')=0; 680 γ (θ) is isotropic from (n,n' γ). T _{1/2} : from p γ (t) in (p,p' γ).
2524.09 ^f 11	2+	0.23 ps 4	A C EFGH KLMNO	Q TVX	J^{π} : L(α , α')=L(pol d,d')=L(pol p,p')=2. $T_{1/2}$: weighted average of 0.24 ps 4 from (α ,p γ), 0.194 ps 35 from (e,e') and 0.34 ps 6 from (p,p' γ). Others: 0.50 ps 8 from 36 S(α , γ):resonances, 0.47 ps 7 from 12 C(36 S, 2 $\alpha\gamma$).
2892.65 ^c 9	4+	1.95 ps 28	A CDEFGHI LMNO	Q VX	J ^π : L(α,α')=L(pol d,d')=L(pol p,p')=4. $T_{1/2}$: weighted average of 2.9 ps 14 from 26 Mg(16 O,2pγ), 2.3 ps 6 from (α,pγ), 1.80 ps 28 from 12 C(36 S,2αγ), and 3.0 ps +18–9 from (p,p'γ).
3207.93 13	2+	34 fs 7	A C FGH KLMNO	Q TUV X	J^{π} : L(t,p)=L(pol p,p')=2. $T_{1/2}$: weighted average of 28 fs 14 from $(\alpha,p\gamma)$ and 35 fs 7 from (e,e'). Others: 62 fs 12 from (α,γ) :resonances, <24 fs from $(p,p'\gamma)$.
3464.56 ^c 12	6+	0.680 ns 21	DE GHI	Q X	J^{π} : 571.88 γ E2 to 4 ⁺ , $L(t,p)$ =(6). $T_{1/2}$: from $(\alpha, p\gamma)$.
3511.54 20	2+	59 fs <i>12</i>	A FGH K MNO	q TVX	J ^{π} : L(pol d,d')=L(d, 3 He)=2. T _{1/2} : weighted average of 62 fs 12 from (α,γ) :resonances, 49 fs 14 from $(\alpha,p\gamma)$ and 83 fs 31 from $(p,p'\gamma)$.
$3515^{f} 1$	4 ⁺	0.139 ps 28	E G	q	J ^π : from $\gamma(\theta)$ in $(\alpha,p\gamma)$ and $\gamma(DCO)$ and band assignment in $^{26}Mg(^{18}O,2p2n\gamma)$.
3680.60 12	3-	0.132 ps 28	A C FGH K MNO	Q V X	J ^{π} : L(α , α')=L(pol d,d')=L(pol p,p')=3. T _{1/2} : from (α ,p γ). Other: 0.10 ps +6–5 from (p,p' γ).
3918.85 <i>12</i>	2+	0.29 ps <i>3</i>	A FGH K MNo	p	J^{π} : 3918.6 γ E2 to 0 ⁺ , L(t,p)=L(pol p,p')=2. $T_{1/2}$: weighted average of 0.28 ps 3 from $(\alpha,p\gamma)$ and 0.30 ps 4 from $(p,p'\gamma)$.
3941.9? 2			A o	q w	XREF: A(?). J^{π} : (1,2 ⁺) from possible 3941.7 γ to 0 ⁺ g.s.
4042 2	NATURAL		FGH MN	Q w	XREF: N(4053). E(level): from (p,p' γ). J $^{\pi}$: 0 ⁺ , 1 ⁻ , 2 ⁺ , 3 ⁻ , 4 ⁺ from γ to 2 ⁺ and π =natural in (α, α') .
4082.63 <i>16</i>	3-	40 fs <i>14</i>	A FGH MN	Q w	J^{π} : based on $\gamma(\theta, \text{pol})$ in $(\alpha, \text{p}\gamma)$ and $p\gamma(\theta)$ in $(p, p'\gamma)$, log $ft = 5.9$ from 2^- in 40 Cl β^- decay.
4178.9? <i>3</i> 4230 <i>2</i>	4 ⁽⁻⁾	>2.8 ps	A C G m		XREF: A(?). J^{π} : based on $\gamma(\theta, \text{pol})$ in $(\alpha, \text{p}\gamma)$.
4230 2 4232 2	$(1^+, 2^-, 3^+)$	0.166 ps 28		Q	XREF: N(4240). J^{π} : possible unnatural parity from (α, α') ; 1705 γ and 2768 γ to 2^{+} .
4301.08 23	(3)-	58 fs <i>14</i>	A FGh MN	Q u	J^{π} : log ft =5.1 from 2 ⁻ in 40 Cl β ⁻ decay;

E(level) [†]	$\mathbf{J}^{\pi extbf{\#}}$	T _{1/2} @		X	REF			Comments
4324.5 3	2+	16 fs 6	A	FGh		Q	Tu	possible natural parity in (α, α') ; L(p,p')=(2,3). XREF: T(4360).
1321.3 3	2	10 13 0		1 011		٧	Iu	J^{π} : L(d, 3 He)=0, L(t,p)=2.
								$T_{1/2}$: weighted average of 15 fs 6 from
								36 S(α,γ):resonances and 18 fs 7 from ($\alpha,p\gamma$).
4358.0 <i>3</i>			Α		N	Q	u	XREF: A(?)N(?). J^{π} : π =(natural) from (α, α') , $(1,2^+)$ from possible
4420 1	(2+ 2-)				1010			4357.6γ to 0^+ g.s.
4420 <i>1</i>	$(2^+,3^-)$			G	MNO	q		XREF: N(4430). J^{π} : 2959 γ , 1896 γ and 1212 γ to 2 ⁺ gives (0 ⁺ :4 ⁺);
								natural parity in (α, α') for 4420 and/or 4427
								levels gives $1^-, 2^+, 3^-, 4^+$; L(pol d,d')=(2) gives (2^+) ; L(pol p,p')=3 gives 3^- .
4427 <i>1</i>	(4^+)	0.125 ps 21		GH		q		J^{π} : L(t,p)=3,4; $\gamma(\theta,\text{pol})$ in $(\alpha,\text{p}\gamma)$ gives $3^+,4,5^+$;
		1				•		$4^{-},5^{+}$ is ruled out by RUL for 2966 γ to 2^{+} .
4473 <i>1</i>	1&	0.070 eV 13		FG J	N			XREF: N(4484).
								J^{π} : from $\gamma(\theta)$ in (α, γ) :resoances, (γ, γ') and
								$(\alpha, p\gamma)$.
								$T_{1/2}$: from $(2J+1)\Gamma_0^2/\Gamma=0.21$ eV 4 with $\Gamma_0/\Gamma=1$ in (γ,γ') .
4481.0 <i>3</i>	1-	<0.07 ps	A		M	Q		$10/1 = 1 \text{ in } (\gamma, \gamma).$ XREF: A(?).
	-	того / Ро						J^{π} : from $\gamma(\theta)$ in $(p,p'\gamma)$; natural parity in (α,α') .
								$T_{1/2}$: from $(p,p'\gamma)$.
4494 <mark>d</mark> 1	5-	0.50 ps 7	C I	E GH				J^{π} : 1601 γ E1(+M2) to 4 ⁺ , 1029 γ d(+Q) to 6 ⁺ .
4562.36 <i>16</i>	(1,3)-		A	G		Q	T	$T_{1/2}$: from $(\alpha, p\gamma)$. XREF: T(4530).
								J^{π} : log ft =5.4 from 2 ⁻ in ⁴⁰ Cl β ⁻ decay; possible
	.()							natural parity in (α, α') .
4578 <i>1</i>	3(-)	37 fs <i>14</i>	A	G	N	Q		XREF: A(?).
								J^{π} : 2 ⁺ ,3 is given by 1983Bi08 in $(\alpha, p\gamma)$ based on $\gamma(\theta)$, but $J^{\pi}=2^+$ should be ruled out since it
								results in $\Delta J=2$ for the 1685 γ to 4 ⁺ , which
								expects positive A ₂ value while the measured A ₂
								by 1983Bi08 is negative. Natural parity in (α, α')
4600 1		52 f- 20		EC	M	^		gives $\pi = -$ for $J = 3$.
4602 1		53 fs 20		FG	N	Q		J^{π} : 2078 γ and 3141 γ to 2 ⁺ ; possible natural parity in (α, α') .
								$T_{1/2}$: unweighted average of 73 fs 12 from
								(α, γ) :resonances and 33 fs 14 from $(\alpha, p\gamma)$.
4674 <i>1</i>	$(1^+, 2^-, 3^+)$	66 fs <i>17</i>		GH	N	Q	u	XREF: N(4683).
4737.8? <i>4</i>			Δ.			0		J^{π} : 3213 γ to 2 ⁺ ; possible π =unnatural in (α, α') .
4/3/.0: 4			A			Q	u	XREF: A(?). J^{π} : (1,2 ⁺) from possible 4737.5γ to 0 ⁺ g.s.
4769.0 <i>3</i>	1-	0.82 eV 6	A	G J	N	Q		J^{π} : based on $\gamma(\theta, \text{pol})$ in (pol γ, γ') and $\gamma(\theta)$ in
								$(\alpha, p\gamma)$; possible π =natural in (α, α') .
								$T_{1/2}$: from $(2J+1)\Gamma_0^2/\Gamma = 2.46$ eV 17 with
4704 1	4+	50 C 14		CII		_		$\Gamma_0/\Gamma=1$ in (γ,γ') .
4794 <i>1</i>	4+	52 fs <i>14</i>		GH	N	Q		XREF: N(4808). J^{π} : 1901 γ M1+E2 to 4 ⁺ , L(t,p)=3,4.
4858 <i>1</i>	5-	37 fs 10		G				J^{π} : 1965 γ E1(+M2) to 4 ⁺ , 1394 γ to 6 ⁺ .
4870 10	3-			Н	NO	Q		E(level): from (t,p) .
10010 -								J^{π} : L(pol d,d')=3; L(t,p)=3,4.
4901? 3	(1= to 4+)			J	M			J^{π} : (1,2 ⁺) from possible 4901 γ to 0 ⁺ g.s.
4929 <i>1</i>	$(1^- \text{ to } 4^+)$			G	N			XREF: N(4941).

E(level) [†]	J^{π} #	$T_{1/2}^{@}$		X	REF				Comments
10.12.60.4									J^{π} : 2405 γ and 3468 γ to 2 ⁺ and 1248 γ to 3 ⁻ .
4942.6? <i>4</i>	-1		Α			q			XREF: A(?).
4959 ^{<i>f</i>} 1	6+	0.10 ps 4		E Gh		q			J^{π} : 1444 γ and 2066 γ E2 to 4 ⁺ ; γ (DCO) and band
1070 1	(2+ 2 4+)			61					assignment in 26 Mg(18 O,2p2n γ).
4972 1	$(2^+,3,4^+)$			Gh					J^{π} : 2079 γ to 4 ⁺ and 3511 γ to 2 ⁺ .
4991 <i>I</i>	4 ⁽⁻⁾	2.1 ps 7		G	N	Q			XREF: N(5004).
5 4400 0									J ^{π} : based on $\gamma(\theta, \text{pol})$ of 765 γ in $(\alpha, \text{p}\gamma)$, which implies a parity conserving transition to 4 ⁽⁻⁾ . But the parity is inconsistent with possible natural parity in (α, α') , which is π =+ for J=4.
5110? 3	(5-)			J					J^{π} : (1,2 ⁺) from possible 5110 γ to 0 ⁺ .
5115 2	(5^{-})	<10 fo		GH					J^{π} : L(t,p)=(5).
5143 2	(5)	<10 fs		G					J^{π} : 1628 γ to 4 ⁺ and 1678 γ to 6 ⁺ gives (4 ⁺ ,5,6 ⁺); $T_{1/2}$ disfavors E2 for either transition.
5165.6 8	(2)+		A	G		Q	t		J^{π} : 1650 γ to 4 ⁺ and 3704.6 γ to 2 ⁺ ; natural parity in (α, α') favors (2,4) ⁺ ; L(d, ³ He)=0 from 3/2 ⁺ for a level at 5200 gives 1 ⁺ ,2 ⁺ ; (1,2 ⁺) from possible 5165.5 γ to 0 ⁺ .
5191 <i>15</i>				H			t		E(level): from (t,p).
									J^{π} : L(d, ³ He)=0 from 3/2 ⁺ for a level at 5200 gives
	(0)			_					1+,2+.
5245 2	$(0^+ \text{ to } 4^+)$			G		•			J^{π} : 3784 γ to 2 ⁺ .
5269.6 3	(1 ⁻ ,3 ⁻)		A	G	n	Q	u		J ^{π} : 1186.7 γ and 1589.0 γ to 3 ^{$-$} and 2063.0 γ to 2 ^{$+$} ; possible natural parity in (α, α') ; log ft =5.9 from 2 ^{$-$} in ⁴⁰ Cl β ^{$-$} decay.
5293 2	(2^{+})			Gh	n		u		J^{π} : 3832 γ to 2 ⁺ ; L=2 for a level at 5298 15 in (t,p).
5310 2	(2^{+})		Α	Gh	n	Q	u		XREF: A(?).
5350 2				G			u		J ^{π} : possible natural parity from (α, α') ; 1228 γ and 1629 γ to 3 ⁻ ; L=2 for a level at 5298 <i>15</i> in (t,p). J ^{π} : 2457 γ to 4 ⁺ .
5378 2	$(4^+,5,6^+)$			G			u		J^{π} : 1863 γ and 2485 γ to 4 ⁺ and 1913 γ to 6 ⁺ .
5400.5 8	1-	0.030 eV 7	Α	НЈ	N	Q			XREF: N(?).
									J^{π} : spin from $\gamma(\theta)$ in (γ, γ') ; natural parity in (α, α') . $L(p, p') = (5)$ for a level at 5410 is inconsistent and it might imply that it is a different level.
									T _{1/2} : from $(2J+1)\Gamma_0^2/\Gamma=0.09$ eV 2 in (γ, γ') assuming $\Gamma_0/\Gamma=1$.
5454 15	3-,4+			H	N	Q			E(level): from (t,p) .
5508 2	NATURAL			GH		0			J^{π} : L(t,p)=3,4. J^{π} : natural parity from (α,α') ; 1993 γ to 4 ⁺ .
5544 2	$(0^+ \text{ to } 4^+)$			G		Q			J^{π} : 4083 γ to 2 ⁺ .
5559 2	$(4^+,5^-,6^+)$			G		Q			J^{π} : 2044 γ and 2666 γ to 4 ⁺ and 2094 γ to 6 ⁺ ;
2007 2	(. ,e ,e)			_					natural parity in (α, α') .
5608.8 10	(1,2,3)		A	G		q			J ^{π} : 4147.8 γ to 2 ⁺ ; log f_t =6.3 from 2 ⁻ in ⁴⁰ Cl β ⁻ decay; possible natural parity in (α, α') for a group near 5608.
5611 2				G		q			J^{π} : 2147 γ to 6 ⁺ .
5630 <i>I</i>			Α	Ğ		q			XREF: A(?).
						•			J^{π} : 1203 γ to (4 ⁺); possible natural parity from (α , α') for a doublet.
5654 2				G					J^{π} : 3130 γ to 2 ⁺ .
5662 2				G	n				J^{π} : 2769 γ to 4 ⁺ .
5675 2	$(3^-,4^+)$			GH	n	Q			J^{π} : L(t,p)=3,4; possible natural parity in (α,α') .
5717.8? 10			A			Q		W	* * * * * *

E(level) [†]	$J^{\pi \#}$	T _{1/2} @		XI	REF			Comments
5766 2 5818 2	(3 ⁻ ,4 ⁺)			G GH		Т	W W	J^{π} : 2558 γ to 2 ⁺ . XREF: H(5835). J^{π} : L(t,p)=3,4.
5880.3 4	1-	0.117 eV <i>13</i>	A	J	o q			J ^π : log ft =4.9 from 2 ⁻ in ⁴⁰ Cl β ⁻ decay; spin=1 from $\gamma(\theta)$ in (γ, γ') . T _{1/2} : from (2J+1) Γ_0^2/Γ =0.35 eV 4 in (γ, γ')
5885 2	3-			GH	No q			assuming $\Gamma_0/\Gamma=1$. XREF: N(5900). J ^{π} : L(pol p,p')=3; L(pol d,d')=(3). But L(t,p)=2 for a
5906.0 7	(1-)		A		q			level at 5883 15 is inconsistent. J^{π} : 3784.9 γ to 0 ⁺ ; log ft =5.8 from 2 ⁻ in ⁴⁰ Cl β ⁻ decay; possible natural parity in (α, α') .
5912 3	1&	0.050 eV <i>17</i>		J	q			E(level): a level at the same energy is also observed in $(\alpha, p\gamma)$ but with completely different decay mode and it is considered by evaluator as a separate level. $T_{1/2}$: from $(2J+1)\Gamma_0^2/\Gamma=0.15$ eV 5 in (γ, γ') assuming $\Gamma_0/\Gamma=1$.
5912 2 5931 2 5950.5 10	$(1^{-} \text{ to } 4^{+})$ $(2^{+},3,4^{+})$ (1,2)		A	G G	q			J ^π : 1830 γ to 3 ⁻ and 2704 γ to 2 ⁺ . J ^π : 3038 γ to 4 ⁺ and 4470 γ to 2 ⁺ . J ^π : 5950.0 γ to 0 ⁺ ; log ft =6.9 from 2 ⁻ in ⁴⁰ Cl β ⁻
5973 ^e 2	(6-)			E G				decay. J^{π} : from $(\alpha,p\gamma)$ based on analog in 42 Ca, and from $\gamma(DCO)$ in $^{26}Mg(^{18}O,2p2n\gamma)$.
6013 ^d 2	(7-)			E G				J^{π} : from $(\alpha,p\gamma)$ based on analog in 42 Ca, and from $\gamma(DCO)$ and band assignment in $^{26}Mg(^{18}O,2p2n\gamma)$.
6053.6 8	1(-)	0.41 eV 6	A	J	q			J ^{π} : spin from $\gamma(\theta)$ in (γ, γ') ; log $ft=5.9$ from 2 ⁻ in 40 Cl β^{-} decay.
6054	4 ⁺				0 q			$T_{1/2}$: from $(2J+1)\Gamma_0^2/\Gamma=1.24$ eV 19 in (γ,γ') assuming $\Gamma_0/\Gamma=1$. E(level): as quoted in 1976Se09 in (pol d,d'). A level at the same energy is also observed in 40 Cl β^- decay and (γ,γ') but with $J^{\pi}=1^{(-)}$. Therefore it is
6100 2	(1,2+)			G J				considered as a separate level. J^{π} : L(pol d,d')=4. J^{π} : based on $\gamma\gamma(\theta)$ in (γ,γ') and 6100 γ to 0 ⁺ . Γ_0 =0.22 eV 6 for J(6100)=1 and 0.13 eV 4 f0r J(6100)=2 from $(2J+1)\Gamma_0^2/\Gamma$ =0.17 eV 5 in (γ,γ')
6104 2 6138 2			A	G GH	N Q			with Γ_0/Γ =0.26. J ^{π} : 3211 γ to 4 ⁺ . XREF: A(?). J ^{π} : 2674 γ to 6 ⁺ , but L=(2,3) in (p,p') and L(t,p)=(5) are inconsistent.
6158 2 6185 2 6203 2	(4+,5,6+)			G G G	q	Т		J^{π} : 2693 γ to 6 ⁺ and 3265 γ to 4 ⁺ . J^{π} : 1691 γ to 5 ⁻ . XREF: T(6230).
6208.5 8	(1,2)		A		q			J ^{π} : 3310 γ to 4 ⁺ ; natural parity in (α , α'). J ^{π} : 6208 γ to 0 ⁺ ; log ft =6.6 from 2 ⁻ in ⁴⁰ Cl β ⁻ decay.
6270 2 6276.0? 9	1-,2-,3-		A	G	n n			J^{π} : 2806 γ to 6 ⁺ . XREF: A(?).
6305 2	$(4^+,5,6^+)$			GH	n			J ^π : log ft =5.6 from 2 ⁻ in ⁴⁰ Cl $β$ ⁻ decay. J ^π : 2790 $γ$ to 4 ⁺ and 2840 $γ$ to 6 ⁺ .

E(level) [†]	${\sf J}^{\pi \#}$	$T_{1/2}^{\bigcirc}$		XI	REF	Comments
6338.7 11	1-	0.29 eV 3	A	J		J ^π : spin from $\gamma\gamma(\theta)$ in (γ,γ') ; log ft =5.6 from 2 ⁻ in ⁴⁰ Cl β ⁻ decay. T _{1/2} : from $(2J+1)\Gamma_0^2/\Gamma$ =0.87 eV 10 in (γ,γ') with
6356 2 6421 [‡]	(4 ⁺ to 7 ⁻) (8 ⁻) ^b			G E		$\Gamma_0/\Gamma=1$. J^{π} : 1498 γ to 5 ⁻ and 2891 γ to 6 ⁺ .
6450? <i>3</i> 6476.0 8	1-	0.43 eV 5	A	Н Ј	N	J ^{π} : spin from $\gamma\gamma(\theta)$ in (γ,γ') ; log ft =5.6 from 2 ^{$-$} in 40 Cl β^{-} decay. L(t,p)=(2) is inconsistent. T _{1/2} : from $(2J+1)\Gamma_0^2/\Gamma$ =1.29 eV 16 in (γ,γ') with Γ_0/Γ =1.
6651.7 8	0		A	Н	N	$1_{0}/1 = 1$. XREF: A(?)N(6650).
6703 <i>3</i> 6760 <i>15</i>	1& 3 ⁻ ,4 ⁺			J H		E(level): from (t,p) . J^{π} : $L(t,p)=3,4$.
6806 ^f	(8+)			E G		E(level): from $(\alpha,p\gamma)$. Other: 6801 from $^{26}\text{Mg}(^{18}\text{O},2p2n\gamma)$. J ^{π} : from γ (DCO) and band assignment in $^{26}\text{Mg}(^{18}\text{O},2p2n\gamma)$; possible analog state of ^{42}Ca (1983Bi08) from $(\alpha,p\gamma)$.
6835 <i>15</i>	3-,4+			Н		E(level): from (t,p) . J^{π} : $L(t,p)=3,4$.
6979 ^e	(8-)			E G		J ^{π} : from γ (DCO) and band assignment in 26 Mg(18 O,2p2n γ); possible analog state of 42 Ca (1983Bi08) from (α ,p γ).
7070 15				Н		E(level): from (t,p).
7168 <i>3</i>	1&			нЈ		
7246 <i>3</i>	1&			J		
7281 <i>3</i>	1&			нЈ	N	XREF: H(7300)N(7300).
7519 <i>3</i>	1&			НJ		XREF: H(7495).
7626 3	1& 2+			J		
7640 15	2+			Н		E(level): from (t,p) . J^{π} : $L(t,p)=2$.
7688 [‡] <i>d</i> 7708 <i>3</i>	(9 ⁻) ^b 1 ⁻ &			E J		
7730 <i>3</i>	1			Н		E(level): from (t,p) .
7918 2	1- &			нј		XREF: H(7890).
7993 <i>3</i>	1-&			ЕНЈ		XREF: H(7980).
7999 [‡] e	$(10^{-})^{b}$			E		
8032 <i>3</i>	1-&			J		
8163 2	1-&			J		
8191 <i>3</i>	1-&			J		
8303 3	1-&			j		
8552 <i>3</i>	1-&			J		
8585 <i>3</i>	1-&			j		
8644 <i>3</i>	1-&			J		
8676 <i>3</i>	1,2+ &			J		
8834 <i>4</i>	1-&			J		
00011	*			,		

E(level) [†]	$J^{\pi \#}$	T _{1/2} @	XREF	Comments
8884 <i>3</i>	1-&		J	
8918 <i>3</i>	1-&	0.34 eV <i>14</i>	F iJ	$T_{1/2}$: from (γ, γ') .
8946 [‡] d	$(11^{-})^{b}$	0.51 6 7 17	E	1/2. Hom (7,7).
$9070^{\ddagger f}$	$(10^+)^{b}$			
	1-&	0.71 37.14	E	The state of the s
9127 <i>3</i> 9138 <i>6</i>	$(1^-,2^+)^a$	0.71 eV <i>14</i>	F iJ	$T_{1/2}$: from (γ, γ') . 0.72 eV 16 from $^{36}S(\alpha, \gamma)$:resonances.
9138 0 9147 5	1^{-a}		F F	
9178 3	1^{-a}		F	
9197 6	$(1^-,2^+)^a$		F	
9216 <i>4</i>	1^{-a}		F	
9234 <i>4</i>	1^{-a}		F	
9240 <i>6</i>	1^{-a}		F	
9264 <i>4</i>	$(1^-,2^+)^a$		F	
9273 6	1^{-a}		F	
9287 <i>4</i> 9296 <i>5</i>	$(1^-,2^+)^a$		F F	
	$\frac{(1,2)^{n}}{1-&a}$			
9314 <i>4</i> 9330 <i>4</i>	$\frac{1}{1}a$		F J F	
9337 3	1^{-a}		F J	
9355 3	$1^{-}&a$	1.0 eV 3	F J	$T_{1/2}$: from (γ, γ') . 1.1 eV 3 from (α, γ) :resonances.
9373 4	1	1.0 CV 3	F	$1_{1/2}$. Holli (y,y) . 1.1 ev 3 Holli (α,y) . resolutions.
9416 3	₁ -& <i>a</i>	3.4 eV <i>18</i>	F J	E(level): doublet: 9408+9417 in (α, γ) with same J^{π} for both; the second component seems to correspond to 9416 in (γ, γ') .
0.425 5	(1 = 0 ± \) (1		_	$T_{1/2}$: from (γ, γ') . 4.0 eV 20 from $^{36}S(\alpha, \gamma)$:resonances.
9425 5	$(1^-,2^+)^a$		F F	
9433 <i>5</i> 9450 <i>3</i>	$(1^-,2^+)^a_{1^-a}$		F	
9472 <i>4</i>	$(1^-,2^+)^a$		F	
9485 5	1^{-a}		F	
9491?			F	
9504.2 <i>14</i>	1^{-} &a	7.9 eV <i>13</i>	F J	$T_{1/2}$: from (γ, γ') . 8.2 eV 18 from $^{36}S(\alpha, \gamma)$:resonances.
9527 <i>4</i>			F	
9565 <i>4</i>	1^{-a}		F	
9583 <i>3</i>	₁ -& <i>a</i>	7.3 eV 21	F J	E(level): doublet:9581+9586 in (α, γ) , 9580+9585 in (γ, γ') ; the second component has $J^{\pi}=(1^{-}, 2^{+})$ in (α, γ) . $T_{1/2}$: from (γ, γ') .
9596 <i>4</i>			F	$1_{1/2}$. Holli (y,y) .
9608 <i>5</i>			F	
9617 3	₁ -&a		F J	
9656 <i>4</i>	1^{-a}		F	
9669 <i>4</i>	1^{-a}		F	
9690 <i>5</i>	$(1^-,2^+)^a$		F	E(level), J^{π} : doublet: 9687+9694 with the same J^{π} for both.
9736 <i>3</i>	1^{-a}		F	
9757 <i>3</i>	1+&	0.56 eV 22	F J	J^{π} : $(1^{-},2^{+})$ from $\gamma(\theta)$ and natural parity in (α,γ) :resonances. $T_{1/2}$: from (γ,γ') .
9769 4	$(1^-,2^+)^a$		F	-1/2 (/,// /.
9787 <i>4</i>	1^{-a}		F	

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\bigcirc}$		XREF	7	Comments
9813 <i>3</i>	1^{-a}		F			
9825 <i>3</i>	1^{-a}		F			
9840 <i>3</i>	1-&			J		
9851 2	$1^{-\&a}$	21 eV 4	F	J		E(level): doublet: 9849+9852 in (α, γ) .
						$T_{1/2}$: from (γ, γ') . 22 eV 6 from $^{36}S(\alpha, \gamma)$:resonances.
9866 <i>4</i>			F			
9881 <i>4</i>	1^{-a}		F			
9893 <i>4</i>	1^{-a}		F			
9912 5	$(1^-,2^+)^a$		F			
9944 <i>3</i>	1^{-a}		F			
9952 <i>3</i>	1-&	10 eV 3	F	J		E(level): weighted average of 9954 3 from (α, γ) , 9950 3 from (γ, γ') .
						$T_{1/2}$: from (γ, γ') . ≥ 9.6 eV from $^{36}S(\alpha, \gamma)$:resonances.
10090 <i>3</i>	1-&			J		
10151 <i>3</i>	1-&			J		
10179 2	1-&			J		
10362 <i>3</i>	1,2+&			J		
10745 <i>3</i>	1-&			J		
10857 <i>3</i>	1-&			J		
11769 [‡]	$(12^{+})^{b}$		E			
$17.7 \times 10^3 \ 2$	2+				Q	E(level), J^{π} : isoscalar giant-quadrupole resonance with $L(\alpha,\alpha')=2$.

[†] From a least-squares fit to γ -ray energies if values with uncertainties are available, otherwise, from $(\alpha, p\gamma)$ up to 6979 level and from (α, γ) :resonances after 8919 level if available, unless otherwise noted.

[‡] From 26 Mg(18 O,2p2n γ).

[#] In (d, 3He) reaction, 41 K target J^{π} (g.s.)=3/2+.

[@] Values of half-lives are from $(\alpha, p\gamma)$, unless otherwise noted; widths are from (γ, γ') and/or (α, γ) . Some half-lives are also available from $(p, p'\gamma)$ and (α, γ) and weighted averages are taken when values are from more than one reactions. In addition to the width values from (γ, γ') given here for levels with known γ -decay branching ratios, width data for other levels (mostly α -unbound) with unknown γ -decay branching ratios are also available in that dataset.

[&]amp; From (γ, γ') , based on $\gamma(\theta)$ in (γ, γ') , parity from polarization asymmetry if available.

^a From (α, γ) :resonances, based on $\gamma(\theta)$ and natural parity.

 $[^]b$ From $^{26}{\rm Mg}(^{18}{\rm O},2{\rm p2n}\gamma)$ based on $\gamma({\rm DCO})$ and band assignment.

^c Band(A): Member of $f_{7/2}^2$ yrast sequence.

^d Band(B): Band based on 5^- , $\alpha=1$.

^e Band(C): Band based on (6⁻), α =0.

^f Band(D): SD band. Q(transition)=1.45 +49−31(stat) 15(syst) (2010Id02) from ²⁶Mg(¹⁸O,2p2nγ). Possible configuration= π [(d5/2)^{-1.2}(s_{1/2}d_{3/2})^{-3.8} (fp)^{2.5}(g9_{/2})^{0.5}]⊗ ν [(d5/2)^{-0.7}(s_{1/2}d_{3/2})^{-2.4} (fp)^{4.5}(g9_{/2})^{0.5}].

γ (⁴⁰Ar)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{ extbf{@}}$	Comments
1460.849	2+	1460.820 5	100	0	0+	E2		B(E2)(W.u.)=9.0 4
								E_{γ} : from ⁴⁰ K ε decay. Other: 1460.73 5 from ⁴⁰ Cl β ⁻ decay.
								Mult.: from $\gamma(\theta, \text{pol})$ in $^{26}\text{Mg}(^{16}\text{O}, 2\text{p}\gamma)$, $\gamma(\theta)$ in $^{40}\text{Ar}(\text{p}, \text{p}'\gamma)$ and ce data in
								$^{40}{ m K}~arepsilon$ decay.
2120.91	0_{+}	660.1 <i>4</i>	100	1460.849	2+	[E2]		B(E2)(W.u.)=5.3 8
		0_						E_{γ} : from 40 Cl β^- decay.
2524.09	2+	403&	<1.7	2120.91	0_{+}	3.64 770	0.44 6.40	E_{γ},I_{γ} : from 40 Ar(p,p' γ). B(M1)(W.u.)=0.037 6; B(E2)(W.u.)=18 5
		1063.1 2	100 2	1460.849	2 ⁺	M1+E2	-0.41 + 6 - 13	B(M1)(W.u.)=0.037 6; B(E2)(W.u.)=18 5
								I_{γ} : from $^{37}Cl(\alpha,p\gamma)$. Others: 100 10 from $^{40}Cl \beta^-$ decay, and 100 3 from $^{40}Ar(p,p'\gamma)$.
				_	- 1			Mult., δ : from $(p,p'\gamma)$.
		2524.1 2	74 2	0	0_{+}	E2		B(E2)(W.u.)=1.19 18
								I _y : weighted average of 86 10 from 40 Cl β^- decay, 75.4 18 from 37 Cl(α ,py),
								and 69 3 from 40 Ar(p,p' γ). Mult.: Q from (p,p' γ); M2 is ruled out by RUL.
2892.65	4+	369.0 <i>6</i>	1.0 5	2524.09	2+	[E2]		B(E2)(W.u.)= $5\times10^1 \ 3$
2072.03		1431.82 10	100 10	1460.849	2+	E2		B(E2)(W.u.)=5.9 9
								E _γ : weighted average of 1432.1 4 from 40 Cl β^- decay and 1431.80 10 from 37 Cl(α ,pγ). Additional information 1.
								Mult.: from $\gamma(\theta, \text{pol})$ in $^{26}\text{Mg}(^{16}\text{O}, 2\text{p}\gamma)$, $\gamma(\theta)$ in $(\text{p,p'}\gamma)$; M2 is ruled out by RUL.
3207.93	2+	315.0 <i>5</i> 1087.6 <i>4</i>	0.9 <i>3</i> 3.0 <i>15</i>	2892.65 2120.91	4 ⁺ 0 ⁺	[E2] [E2]		B(E2)(W.u.)= 5.1×10^3 21 is much higher than allowed by RUL. B(E2)(W.u.)= 35 19
		1746.5 2	100 <i>I</i>	1460.849	-	M1+E2	+0.11 7	B(M1)(W.u.)=0.104 22; B(E2)(W.u.)=1.3 +17-13
								I _{γ} : from ³⁷ Cl(α ,p γ). Others: 100 9 from ⁴⁰ Cl β ⁻ decay and 100 3 from ⁴⁰ Ar(p,p' γ).
								Mult., δ : D+Q from $\gamma(\theta)$ in (p,p' γ), polarity from no level-parity change determined from other evidence.
		3208.2 <i>3</i>	11.7 16	0	0^{+}	[E2]		B(E2)(W.u.)=0.61 16
				-		[]		I_{γ} : weighted average of 18 3 from ⁴⁰ Cl β^- decay, 11.1 11 from ³⁷ Cl(α ,p γ),
								and 10 3 from 40 Ar(p,p' γ).
3464.56	6+	571.91 8	100	2892.65	4+	E2		B(E2)(W.u.)=1.67 6
								E_{γ} : from (α, p_{γ}) .
								Mult.: from $\gamma(\theta, \text{pol})$ in $^{26}\text{Mg}(^{16}\text{O}, 2\text{p}\gamma)$, $\gamma(\theta)$ in $(\alpha, \text{p}\gamma)$; M2 is ruled out by RUL.
3511.54	2+	303.0 6	3.2 18	3207.93	2+			I_{γ} : weighted average of 5 3 from 40 Cl β^- decay and 2.2 23 from 40 Ar(p,p' γ).
		621.1 <i>6</i>	2 2	2892.65	4+	[E2]		B(E2)(W.u.)= $2.0 \times 10^2 + 2I - 20$ I _{γ} : from (α ,p γ).

$\gamma(^{40}\text{Ar})$ (continued)

Adopted Levels, Gammas (continued)

E_i (level)	J_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbb{E}_f	J_f^{π}	Mult.	δ@	Comments
3511.54	2+	987 2050.5 <i>4</i>	6.2 <i>12</i> 100 2	2524.09 1460.849	2 ⁺ 2 ⁺	M1(+E2)	-0.05 11	I_{γ} : from (α,pγ). B(M1)(W.u.)=0.034 7 I_{γ} : from ⁴⁰ Ar(p,p'γ). Others: 100 15 from ⁴⁰ Cl β ⁻ decay, 100 4 from
		3511.0 5	14.7 <i>17</i>	0	0+	[E2]		 ³⁷Cl(α,pγ). Mult.,δ: D(+Q) from γ(θ) in (p,p'γ), polarity from no level-parity change determined from other evidence. B(E2)(W.u.)=0.26 6 I_γ: weighted average of 15 6 from ⁴⁰Cl β⁻ decay, 17.3 25 from ³⁷Cl(α,pγ), and 12.4 23 from ⁴⁰Ar(p,p'γ).
3515	4+	622	52 3	2892.65	4+	M1(+E2)	-0.07 10	B(M1)(W.u.)=0.20 5 Mult., δ : D(+Q) from $\gamma(\theta)$ in $(\alpha,p\gamma)$; E1(+M2) ruled out by RUL.
		991 2054	15 <i>8</i> 100 <i>3</i>	2524.09 1460.849	2 ⁺ 2 ⁺	[E2] [E2]		B(E2)(W.u.)=5×10 ¹ 3 B(E2)(W.u.)=8.2 18
3680.60	3-	170 ^{&} 472.0 <i>4</i> 788.1 <i>3</i>	<8 3.5 <i>12</i> 11.9 <i>12</i>	3207.93	2 ⁺ 2 ⁺ 4 ⁺	[E1] [E1]		E_{γ}, I_{γ} : from $(p, p'\gamma)$. $B(E1)(W.u.) = 0.0012 \ 5$ $B(E1)(W.u.) = 0.00086 \ 21$
		1156.2 4	5.2 7	2524.09	2+	[E1]		I _γ : weighted average of 11.6 <i>12</i> from ⁴⁰ Cl β^- decay, 11.6 <i>12</i> from ³⁷ Cl(α ,pγ), and 18 4 from ⁴⁰ Ar(p,p'γ). B(E1)(W.u.)=0.00012 3 I _γ : weighted average of 7.0 <i>12</i> from ⁴⁰ Cl β^- decay, 4.7 6 from ³⁷ Cl(α ,pγ), and 7 4 from ⁴⁰ Ar(p,p'γ).
		2220.0 2	100 2	1460.849	2+	E1(+M2)	-0.07 +5-11	B(E1)(W.u.)=0.00032 7 I _γ : from ³⁷ Cl(α,pγ). Others: 100 <i>14</i> from ⁴⁰ Cl β ⁻ decay, and 100 4 from ⁴⁰ Ar(p,p'γ). Mult.,δ: D(+Q) from pγ(θ) in (p,p'γ), polarity from level-parity change determined from other evidence.
3918.85	2+	3681 ^{&} 239.0 <i>3</i>	<6 1.4 8	0 3680.60	0 ⁺ 3 ⁻	[E3] [E1]		B(E3)(W.u.)<3×10 ² B(E1)(W.u.)=0.0012 7 E _γ : from ⁴⁰ Cl β ⁻ decay, observed in (p,p' γ) but not in (α ,p γ). I _γ : scaled from I _γ (2457.7)=30 3 from (α ,p γ) by the factor of I _γ (239.0)/I _γ (2457.7)=4.8 23/100 17 from ⁴⁰ Cl β ⁻ decay.
		1394.7 <i>3</i> 1797.8 2	22 <i>3</i> 15 <i>3</i>		2 ⁺ 0 ⁺	[E2]		I_{γ} : from (α ,p γ). Others: 13.6 <i>17</i> from (p,p' γ), 26 4 from ⁴⁰ Cl β ⁻ decay. B(E2)(W.u.)=1.1 3
		2457.7 4	30 3	1460.849	2+	M1+E2		 I_γ: from (α,pγ). Others: 20 3 from (p,p'γ), 47 7 from ⁴⁰Cl β⁻ decay. I_γ: from (α,pγ). Others: 36 5 from (p,p'γ), 100 17 from ⁴⁰Cl β⁻ decay. Mult.: D+Q from γ(θ) in (p,p'γ), polarity from no level-parity change determined from other evidence.
		3918.6 2	100 7	0	0+	E2		δ : <-0.3 or >+6 from (p,p'γ). B(E2)(W.u.)=0.154 21 I _γ : from (α,pγ). Others: 100 5 from (p,p'γ), 83 9 from ⁴⁰ Cl β ⁻ decay. It is seen

Adopted Levels, Gammas (continued)	Adopted	Levels,	Gammas	(continued)
------------------------------------	---------	---------	--------	-------------

γ ⁽⁴⁰Ar) (continued)

\mathbf{L}_i	(level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	J_f^{π}	Mult.	$\delta^{@}$	Comments
									from the gamma spectrum in 1972Kl06 in 40 Cl β^- decay that the 3919 single–escape–peak+full–energy–peak is much stronger than the 2458 peak. It is possible that the intensity of 3919 single-escape peak is not taken into account for the total intensity of the 3919 gamma-ray by 1972Kl06. Mult.: Q from $\gamma(\theta)$ in $(p,p'\gamma)$; M2 is ruled out by RUL.
26	11.00		3941.7 <mark>&</mark> 2	100	0	0+			Mult.: Q from $\gamma(\theta)$ in (p,p γ); M2 is fulled out by ROL.
	941.9?	NIATIIDAI		100	0	0+			
40)42	NATURAL	1518 2	100 16	2524.09	2+			E_{γ} : from $(p,p'\gamma)$. I_{γ} : from $^{36}S(\alpha,\gamma)$:resonances. Other: 100 22 from $^{40}Ar(p,p'\gamma)$.
			2581	62 16	1460.849	2+			I_{γ} : weighted average of 59 16 from $^{36}S(\alpha,\gamma)$:resonances and 67 22 from $^{40}Ar(p,p'\gamma)$.
40	082.63	3-	1558.7 <i>4</i>	3.3 4	2524.09	2+	[E1]		B(E1)(W.u.)=0.00012 5
			2621.7 2	100 9	1460.849	2+	[E1]		B(E1)(W.u.)=0.0008 3
			4082.1 8	1.7 3	0	0^{+}	[E3]		$B(E3)(W.u.)=2.7\times10^2 11$
41	78.9?		4178.7 ^{&} 3	100	0	0^{+}			
	230	4 ⁽⁻⁾	547 2	89 <i>4</i>	3680.60	3-	D+Q	-10 + 3 - 9	E_{γ} : from $(p,p'\gamma)$.
'-	250		3172	0, ,	2000.00	5	DiQ	10 15 7	Mult., δ : based on $\gamma(\theta, pol)$ in $(\alpha, p\gamma)$.
			1338 2	100 4	2892.65	4+	D(+Q)	+0.6 +4-8	Mult., δ : based on $\gamma(\theta)$ in $(\alpha, p\gamma)$.
									E_{γ} : from $(p,p'\gamma)$.
42	232	$(1^+, 2^-, 3^+)$	1708 2	100 4	2524.09	2+			E_{γ} : from $(p,p'\gamma)$.
			2771	30 4	1460.849				
43	801.08	$(3)^{-}$	621.1 6	< 0.9	3680.60	3-			
			1092.9 8	1.0 2	3207.93	2+	[E1]		$B(E1)(W.u.)=8\times10^{-5} 3$
			1776.9 8	0.06 1	2524.09	2+	[E1]		$B(E1)(W.u.)=1.1\times10^{-6} 4$
			2840.1 <i>3</i>	100 15	1460.849		[E1]		B(E1)(W.u.)=0.00043 14
43	324.5	2+	2864	43 9	1460.849	2+			I_{γ} : from from 36 S(α, γ):resonances. Not seen in 40 Cl β^- decay. Other: 100 7 from ($\alpha, p\gamma$).
			4324.2 <i>3</i>	100 9	0	0^{+}	[E2]		B(E2)(W.u.)=0.8 4
									I_{γ} : from ${}^{36}S(\alpha,\gamma)$:resonances. Other: 41 7from $(\alpha,p\gamma)$.
42	358.0		4357.6 <mark>&</mark> 3	100	0	0^{+}			
	120	$(2^+,3^-)$	1212	11 2	3207.93	2+			
``	-	\ 	1896	10 2	2524.09	2 ⁺			
			2959	100 5	1460.849	2+			E_{γ} : 2958 3 from $(p,p'\gamma)$.
44	127	(4^+)	1534	75 9	2892.65	4+	D+Q		Mult.: from $(\alpha, p\gamma)$ based on $\gamma(\theta)$. δ : -0.2 to $+1.0$ from $(\alpha, p\gamma)$ based on $\gamma(\theta)$.
			2966	100 9	1460.849	2+	[E2]		B(E2)(W.u.)=1.4 3
44	173	1	4473 3	100	0	0^{+}	L——J		A Minney of A
	81.0	1-	4480.7 3	100	0	0+	D		Mult.: based on $\gamma(\theta)$ in $(p,p'\gamma)$.
44	194	5-	264	3.0 5	4230	4(-)			I_{γ} : from (α, p_{γ}) .

$\gamma(^{40}\text{Ar})$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}^{\ \#}$	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.@	$\delta^{ extbf{@}}$	Comments
4494	5-	979	15 2	3515	4+	[E1]		B(E1)(W.u.)=0.000113 23 I_{γ} : from $(\alpha, p\gamma)$.
		1029	46 <i>3</i>	3464.56	6+	D(+Q)	+0.06 +7-10	I_{γ} : from $(\alpha, p\gamma)$. I_{γ} : from $(\alpha, p\gamma)$. Mult., δ : from $(\alpha, p\gamma)$, based on $\gamma(\theta)$.
		1601	100 5	2892.65	4+	E1(+M2)	0.00 +6-9	B(E1)(W.u.)=0.00017 3 I_{γ} : from $(\alpha,p\gamma)$.
								Mult., δ : from $(\alpha, p\gamma)$, based on $\gamma(\theta, pol)$.
4562.36	$(1,3)^{-}$	261.2 7	7.1 7	4301.08	(3)-			1 1 10 10 10 10 ()
		479.9 <i>4</i>	7.9 14	4082.63	3-			I_{γ} : other: 18.4 21 from $(\alpha,p\gamma)$.
		643.6 <i>3</i> 881.3 <i>3</i>	59 <i>4</i> 22.9 22	3918.85 3680.60	2 ⁺ 3 ⁻			I_{γ} : other: 86 8 from (α, p_{γ}) .
		1051.1 5	4.3 7	3511.54	3 2 ⁺			
		1353.7 5	1.8 7	3207.93	2+			
		3101.7 4	100 14	1460.849				I_{γ} : other: 100 8 from (α, p_{γ}) .
4578	3(-)	222.5 ^{&} 5	100 17	4358.0	_			E_{γ} : observed only in ${}^{40}\text{Cl }\beta^-$ decay.
4376	3.	1067	90 10	3511.54	2+			E_{γ} . observed only in $C_1 p$ decay.
		1370	38 5	3207.93	2+			
		1685	100 10	2892.65	4 ⁺	D+Q		Mult.: based on $\gamma(\theta)$ in $(\alpha, p\gamma)$.
		1000	100 10	20/2.00	•	2.4		δ : -0.05 to $+0.72$ for J=3 based on $\gamma(\theta)$ in $(\alpha,p\gamma)$.
		3117	28 5	1460.849	2+			
		4580.1 ^{&} 5		0	0^{+}	[E3]		E_{γ} : observed only in 40 Cl β^- decay.
4602		2078	100 2	2524.09	2+	[]		_,
		3141	11 2	1460.849	2+			
4674	$(1^+, 2^-, 3^+)$	3213	100	1460.849				
4737.8?		4737.5 <mark>&</mark> 4	100	0	0^{+}			
4769.0	1-	4768.7 <i>3</i>	100	0	0^{+}			
4794	4 ⁺	1901	100 10	2892.65	4+	M1+E2		Mult., δ : based on $\gamma(\theta,\text{pol})$ in $(\alpha,\text{p}\gamma)$ with $\delta(\text{E2/M1})=0.22 +13-5$ or $+1.60$ 15.
		3333	100 10	1460.849	2+	[E2]		B(E2)(W.u.)=1.6 5
4858	5-	364	15 8	4494	5-			
		1394	36 2	3464.56	6+	[E1]		B(E1)(W.u.)=0.0014 4
		1965	100 3	2892.65	4+	E1(+M2)	-0.09 +8-12	B(E1)(W.u.)=0.0014 4 Mult., δ : based on $\gamma(\theta, \text{pol})$ in $(\alpha, \text{p}\gamma)$.
4901?		4901 <mark>&</mark>		0	0^{+}			
4929	$(1^- \text{ to } 4^+)$	1248	100 8	3680.60	3-			
		2405	44 6	2524.09	2+			
		3468	56 <i>6</i>	1460.849				
4942.6?		361.3 <mark>&</mark> 5	90 20	4578	3 ⁽⁻⁾			
		381.0 <mark>&</mark> 5	100 40	4562.36	$(1,3)^{-}$			
4959	6+	1444	100 5	3515	4+	E2		$B(E2)(W.u.)=7\times10^{1} 3$
								Mult.: based on $\gamma(\theta)$ in $(\alpha, p\gamma)$; RUL rules out M2.

$\gamma(^{40}\text{Ar})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.@	Comments
4959	6+	2066	56 5	2892.65	4+	E2	B(E2)(W.u.)=7 3 Mult.: based on $\gamma(\theta)$ in $(\alpha, p\gamma)$; RUL rules out M2.
4972	$(2^+,3,4^+)$	2079	100 7	2892.65	4+		
	, , , ,	3511	69 7	1460.849			
4991	4(-)	761	100 2	4230	4(-)	(M1+E2)	Mult., δ : from $\gamma(\theta, \text{pol})$ in $(\alpha, \text{p}\gamma)$, with $\delta(Q/D) = -0.13$ to $+0.77$ or -0.72 to -1.5 .
		909	11 <i>I</i>	4082.63	3-	, ,	
		1310	10 <i>I</i>	3680.60	3-		
5110?		5110 ^{&} 3		0	0^{+}		
5115	(5^{-})	1651	100	3464.56	6+		
5143	(5)	1628	20 2	3515	4+		
	(-)	1678	100 2	3464.56	6+		
5165.6	(2)+	1650	100 4	3515	4+		E_{γ} , I_{γ} : observed in $(\alpha, p\gamma)$ only. This strong transition is not seen in 40 Cl β^- decay. It could suggest that it may be misplaced.
		3704.6 8	43 <i>4</i>	1460.849	2+		I_{γ} : from (α, p_{γ}) . Other: 100 10 from 40 Cl β^- decay.
		5165.5 ^{&} 10	4 2	0	0+		E_{γ} : observed in 40 Cl β^- decay only.
		3103.3 10	7 2	Ü	O		I_{γ} : observed in C1 β decay only. I_{γ} : normalized to $I(3704.6\gamma)=43$ 4 from (α, p_{γ}) by the factor of $I(5165.5\gamma)/I(3704.6\gamma)=10$ 5/100 10 from ⁴⁰ Cl β decay.
5245	$(0^+ \text{ to } 4^+)$	3784	100	1460.849	2+		
5269.6	$(1^-,3^-)$	1186.7 <i>4</i>	75 8	4082.63	3-		
		1589.0 <i>3</i>	100 17	3680.60	3-		
		2063.0 10	42 17	3207.93	2+		
5293	(2^{+})	3832	100	1460.849			
5310	(2^{+})	748	23 2	4562.36	$(1,3)^{-}$		
		1228	85 6	4082.63	3-		
		1629	100 6	3680.60	3-		
		5309.6 ^{&} 10		0	0+		E_{γ} : only transition observed from a level at 5310 in ⁴⁰ Cl β^- decay, not observed in other studies. The evaluator has considered this transition as questionable.
5350		2457	100	2892.65	4+		
5378	$(4^+,5,6^+)$	1863	42 <i>4</i>	3515	4+		
		1913	55 4	3464.56	6+		
		2485	100 8	2892.65	4+		
5400.5	1-	5400.1 8	100	0	0+		
5508	NATURAL	1993	100	3515	4 ⁺		
5544	$(0^+ \text{ to } 4^+)$	4083	100	1460.849			
5559	$(4^+,5^-,6^+)$	2044	46 4	3515	4+		
		2094	61 4	3464.56	6 ⁺		
5600.0	(1.0.2)	2666	100 7	2892.65	4 ⁺		
5608.8	(1,2,3)	4147.7 10	100	1460.849			
5611		2147	100	3464.56	6 ⁺		
5630		1203	100	4427	(4^{+})		

$\gamma(^{40}\text{Ar})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
5630		5629.0 ^{&} 10		0	0+	E_{γ} : only transition observed from a level at 5630 in 40 Cl β^- decay, not observed in other studies. The evaluator has considered this transition as questionable.
5654		3130	100	2524.09	2+	•
5662		2769	100	2892.65	4+	
5675	$(3^-,4^+)$	1994	100	3680.60	3-	
5717.8?		3193.7 & <i>10</i>	100	2524.09	2+	
5766		2558	100	3207.93	2+	
5818	$(3^-,4^+)$	2925	100	2892.65	4 ⁺	
5880.3	1-	1317.2 5	10 <i>I</i>	4562.36	$(1,3)^{-}$	
		1579.9 8	8 2	4301.08	$(3)^{-}$	
		3356.6 8	8 3	2524.09	2+	
		3759.9 10	2.6 13	2120.91	0^{+}	
		5879.6 12	100 5	0	0+	
5885	3-	2992	100 7	2892.65	4+	
		4424	87 <i>7</i>			
5906.0	(1^{-})	3784.9 6	100	2120.91	0^{+}	
5912	ì	5912 <i>3</i>	100	0	0^{+}	
5912	$(1^- \text{ to } 4^+)$	1830	100 10	4082.63	3-	
	, ,	2704	100 10	3207.93	2+	
5931	$(2^+,3,4^+)$	3038	100 6	2892.65	4+	
		4470	39 6	1460.849	2+	
5950.5	(1,2)	5950.0 10	100	0	0_{+}	
5973	(6^{-})	2508	100	3464.56	6+	
6013	(7^{-})	1519	100 6	4494	5-	E_{γ} : 1522 from ${}^{26}Mg({}^{18}O,2p2n\gamma)$.
	, ,	2548	100 6	3464.56	6+	E_{γ} : 2553 from ${}^{26}Mg({}^{18}O,2p2n\gamma)$.
6053.6	1(-)	6053.1 8	100	0	0+	_/·
6100	$(1,2^+)$	4638 <i>3</i>	100 7	1460.849		E_{γ} : from (γ, γ') .
0100	(1,2)	6100	33 7	0	0+	<i>zy.</i> nom (1,1).
6104		3211	100	2892.65	4 ⁺	
6138		2674	100	3464.56	6+	
6158	$(4^+,5,6^+)$	2693	100 2	3464.56	6 ⁺	
	(, ,,,,,,,,)	3265	15 2	2892.65	4 ⁺	
6185		1691	100	4494	5-	
6203		3310	100	2892.65	4+	
6208.5	(1,2)	6208.0 8	100	0	0+	
6270	. , ,	2805	100	3464.56	6+	
6276.0?	1-,2-,3-	1333.4 <mark>&</mark> 8	100	4942.6?	-	
6305	$(4^+,5,6^+)$	2790	100 8	3515	4+	
0303	(+ ,5,0)	2840	67 8	3464.56	6 ⁺	
6338.7	1-	6338.2 11	100	0	0+	
6356	$(4^+ \text{ to } 7^-)$	1498	100 8	4858	5-	

$E_i(level)$	$\boldsymbol{\mathrm{J}}_{i}^{\pi}$	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\#}$	E_f	J_f^π	Mult.@	Comments
6356	$(4^+ \text{ to } 7^-)$	2891	49 8	3464.56	6+		
6421	(8-)	2956 [‡]		3464.56	6+		
6450?		6450 <mark>&</mark> 3		0	0^+		
6476.0	1-	6475.5 8	100	0	0+		
6651.7		1042.3 ^{&} 3	100	5608.8	(1,2,3)		
6703	1	6703 <i>3</i>	100	0	0+		
6806	(8^{+})	1847	100	4959	6+		E_{γ} : from $(\alpha, p\gamma)$. Other: 1841 from ($^{18}O, 2p2n\gamma$).
6979	(8-)	1006	100	5973	(6^{-})		
7168	1	7168 <i>3</i>	100	0	0^{+}		
7246	1	7246 <i>3</i>	100	0	0+		
7281	1	7281 <i>3</i>	100	0	0+		
7519	1	7519 <i>3</i>	100	0	0_{+}		
7626	1	6168 ^{&} 3		1460.849	2+		
		7626 3	100	0	0^{+}		
7688	(9-)	709 [‡]		6979	(8^{-})		
		1671 [‡]		6013	(7^{-})		
7708	1-	7708 <i>3</i>	100	0	0^+	E1	
7918	1-	7918 2	100	0	0^{+}	E1	
7993	1-	7993 <i>3</i>	100	0	0_{+}	E1	
7999	(10^{-})	311 [‡]		7688	(9-)		
		1020 [‡]		6979	(8^{-})		
		1578 [‡]		6421	(8-)		
8032	1-	6570 ^{&} 3		1460.849			
0032	1	8032 3	100	0	0^{+}	E1	
8163	1-	6703 ^{&} 2	100	1460.849			
0103	1	8163 2	100	0	0+	E1	
8191	1-	8191 3	100	0	0+	E1	
8303	1-	8303 <i>3</i>	100	0	0^{+}	E1	
8552	1-	8552 <i>3</i>	100	0	0^{+}	E1	
8585	1-	8585 <i>3</i>	100	0	0^{+}	E1	
8644	1-	8644 <i>3</i>	100	0	0+	E1	
8676	1,2+	8676 3	100	0	0+		
8834	1-	8834 4	100	0	0+	E1	
8884	1-	8884 3	100	0	0+	E1	D/E1)/W\ 0.0006_2
8918	1-	8917 <i>3</i>	100	0	0+	E1	B(E1)(W.u.)=0.0006 3
8946	(11^{-})	947 [‡]		7999	(10^{-})		
		1258 [‡]		7688	(9-)		
9070	(10^+)	2269 [‡]		6806	(8^{+})		

	E (I P	\mathbf{I}^{π}	- t	. #	F ***		$\underline{\gamma}^{(40}\text{Ar}) \text{ (continued)}$	⁴⁰ ₁₈ Ar ₂₂ -16
	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	Comments	
	9127	1-	9128 <i>3</i>	100	$0 0_{+}$	E1	B(E1)(W.u.)=0.00118 24	
	9314	1-	9313		0 0+			
	9337	1-	9337 <i>3</i>	100	$0 0^+$			
	9355	1-	5054	7	4301.08 (3)			
			5436 9356 <i>3</i>	8 100	3918.85 2 ⁺ 0 0 ⁺	E1		
	9416	1-	5333	54	4082.63 3	EI		
	7410	1	5497	40	3918.85 2 ⁺			
			5904	51	3511.54 2 ⁺			
		1-	6891	9	2524.09 2+			
			7954	31	1460.849 2+			
			9416 <i>3</i>	100	0 0+	E1		
	9450		5938	23	3511.54 2 ⁺			
			6242	23	3207.93 2 ⁺	[152]		
			6557 6925	11 37	2892.65 4 ⁺ 2524.09 2 ⁺	[E3]		
			7328	34	2120.91 0 ⁺			Fr
			7988	100	1460.849 2 ⁺			Om
16	9504.2		9449	69	0 0+			From ENSDF
		1-	5585	3	3918.85 2 ⁺			ISN
			7383	2	$2120.91 0^{+}$) F
			8043	7	1460.849 2+			
	0502	1-	9503	100	$0 0^{+}$	E1		
	9583	1-	5664 6690	12 12	3918.85 2 ⁺ 2892.65 4 ⁺	[E3]		
			7058	27	2524.09 2 ⁺	[E3]		
			7461	61	2120.91 0+			
			8121	44	1460.849 2 ⁺			
			9582 <i>3</i>	100	$0 0^{+}$	(E1)		
	9617		5698	11	3918.85 2 ⁺			
			5936	4	3680.60 3			
			6105	4	3511.54 2 ⁺			
			6409	9	3207.93 2 ⁺	EE21		
			6724 7092	7 15	2892.65 4 ⁺ 2524.09 2 ⁺	[E3]		
			7495	7	2120.91 0 ⁺			
			8155	100	1460.849 2 ⁺			
			9616	67	0 0+			
	9690	$(1^-,2^+)$	5088	26	4602			
			5365	15	4324.5 2+			4::
			5771	11	3918.85 2+			⁴⁰ ₁₈ Ar ₂₂ -16
			6178	11	3511.54 2 ⁺			r ₂₂
								1 -

 γ (⁴⁰Ar) (continued)

$$\frac{E_{i}(\text{level})}{10857} \quad \frac{J_{i}^{\pi}}{1^{-}} \quad \frac{E_{\gamma}^{\dagger}}{108573} \quad \frac{I_{\gamma}^{\#}}{100} \quad \frac{E_{f}}{0} \quad \frac{J_{f}^{\pi}}{0^{+}} \quad \frac{\text{Mult.}^{\textcircled{@}}}{\text{E1}}$$

$$11769 \quad (12^{+}) \quad 2699^{\ddagger} \quad 9070 \quad (10^{+})$$

- [†] Values with uncertainties are from 40 Cl β^- decay if available, otherwise from (γ, γ') , and those without uncertainties are for transitions reported in (α, γ) up to 6979 level ($\Delta E \gamma = 1-2 \text{ keV}$) and in (α, γ) :resonances after 8919 level ($\Delta E \gamma = 3-5 \text{ keV}$) and are taken from level-energy differences by evaluator, unless otherwise noted.
- † Observed in 26 Mg(18 O,2p2n γ) only.
- # From ${}^{40}\text{Cl }\beta^-$ decay if available, otherwise from $(\alpha, p\gamma)$ up to 6979 level and from (α, γ) :resonances after 8919 level, unless otherwise noted.
- [@] From $(\alpha, p\gamma)$ based on measured $\gamma(\theta)$ and $\gamma(\text{lin pol})$ up to 6979 level, and from (γ, γ') based on polarization asymmetry after that, unless otherwise noted.
- & Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{40}_{18}\mathrm{Ar}_{22}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{40}_{18}\mathrm{Ar}_{22}$