WHAT IS CLAIMED IS:

- 1 1. A method for managing latency comprising:
- 2 receiving data from a high-order synchronous transport
- module (STM) and synchronous transport signal (STS) sources
- 4 and low-order tributary unit (TU) and virtual tributary
- 5 (VT) sources;
- 6 providing a provisioning bit for each output associated
- 7 with a memory; and
- adjusting a pointer for the low-order sources based on
- 9 the provisioning bit such that the high-order and low-order
- 10 outputs are synchronized.
- 1 2. The method of claim 1 further comprising determining an
- adjustment for the pointer based on a predetermined delay.
- 1 3. The method of claim 1 wherein adjusting the pointer
- 2 includes adjusting the pointer by a predetermined number of
- 3 time slots.
- 4 4. The method of claim 1 further comprising
- 5 assembling synchronized outputs from the memory
- 1 5. The method of claim 1 further comprising
- adjusting the pointer to synchronize the output of the
- 3 high-order and low-order sources, wherein the high-order
- 4 sources incur less delay to pass through the memory than
- 5 low-order sources.
- 1 6. The method of claim 1 wherein providing a provisioning bit
- 2 includes storing the provisioning bit in a connection
- 3 memory.

10360-099001 / 16383ROUS01U

1	7	The	method	of	claim	1	wherein	ad.	iustina	a	pointer	for	the
J	L /.	. The	method	OT	CIAIM		MIICT CIII	au.	Juberna	u	POTHOUT		

- low-order sources based on the provisioning bit includes
- adjusting the pointer when the provisioning bit is set.
- 8. The method of claim 7, further comprising
- 2 setting the provisioning bit for low-order sources.
- 9. The method of claim 1 wherein adjusting a pointer for the
- 2 low-order sources based on the provisioning bit includes
- 3 not adjusting the pointer when the provisioning bit is not
- 4 set.
- 1 10. The method of claim 9 further comprising
- 2 setting the provisioning bit for high-order sources.
- 1 11. A computer program product tangible embodied on a
- 2 computer readable medium, for provisioning cross-connects
- in network switching environment comprising instructions
- 4 for causing a computer to:
- 5 receive data from high-order synchronous transport module
- 6 (STM) and synchronous transport signal (STS) sources and
- 7 low-order tributary unit (TU) and virtual tributary (VT)
- 8 sources;
- 9 provide a provisioning bit for each output associated
- 10 with a memory; and
- adjust a pointer for the low-order sources based on the
- 12 provisioning bit such that the high-order and low-order
- outputs are synchronized.
 - 1 12. The computer program product 11 further comprising
- 2 instructions for causing a computer to:

10360-099001 / 16383ROUS01U

3		determine	an	adjustment	for	the	pointer	based	on	a
4	,	predetermine	d d	elay.						

- 1 13. The computer program product of claim 11 further comprising instructions for causing a computer to:
- adjust the pointer by a predetermined number of time slots.
- 1 14. The computer program product of claim 11 further comprising instructions for causing a computer to:
 3 assemble synchronized outputs from the memory.
- 1 15. The computer program product of claim 11 further comprising instructions for causing a computer to:
- adjust the pointer to synchronize the output of the loworder and high-order sources, wherein the high-order sources incur less delay to pass through the memory than
- 6 low-order sources.
- 1 16. The computer program product of claim 11 further comprising instructions for causing a computer to:

 store a provisioning bit in a connection memory.
- 1 17. The computer program product of claim 11 further
 2 comprising instructions for causing a computer to:
 3 adjust a pointer for the low-order sources based on the
 4 provisioning bit includes adjusting the pointer when the
 5 provisioning bit is set.
- 1 18. The computer program product of claim 11 further comprising instructions for causing a computer to:

10360-099001 / 16383ROUS01U

3	adjust a pointer for the low-order sources based on the
4	provisioning bit includes not adjusting the pointer when
5	the provisioning bit is not set.
1	19. An apparatus including:
2	a memory for storing a provisioning bit for each output
3	associated with a memory;
4	a first circuit configured to receive data from high-
5	order synchronous transport module (STM) and synchronous
6	transport signal (STS) sources and low-order tributary unit
7	(TU) and virtual tributary (VT) sources;
8	a second circuit configured to adjust a pointer for the
9	low-order sources based on the provisioning bit such that
10	the high-order and low-order outputs are synchronized.
1	20. The apparatus of claim 19 wherein the second circuit
2	is configured to adjust the pointer by a predetermined
3	number of time slots.
1	21. The apparatus of claim 19 wherein the second circuit
2	is configured to adjust the pointer to synchronize the
3	output of the high-order and low-order sources, wherein the

memory than low-order sources.

high-order sources incur less delay to pass through the