Cours d'électronique spécialisée : Les alimentations

A. Arciniegas V. Gauthier

IUT Cergy-Pontoise, Dep GEII, site de Neuville

Plan du cours

- Généralités
- 2 Circuits de redressement sans filtrage
- 3 Circuits de redressement avec filtrage
- Régulateur de tension
- Synthèse globale

Généralités

Généralités

Composants d'une alimentation (d'après A. Malvino).

Redresseur

Définition : Circuit permettant au courant de circuler dans une seule direction (polarité).

Redresseur

Définition: Circuit permettant au courant de circuler dans une seule direction (polarité).

Il en existe différents types :

Simple alternance

Redresseur

Définition: Circuit permettant au courant de circuler dans une seule direction (polarité).

Il en existe différents types :

- Simple alternance
- Double alternance

Redresseur

Définition: Circuit permettant au courant de circuler dans une seule direction (polarité).

Il en existe différents types :

- Simple alternance
- Double alternance
- En pont

En BUT1, nous avons étudié le montage suivant :

La tension $v_E(t)$ est une tension sinusoïdale de valeur efficace $V_{Eeff}=\frac{V_P}{\sqrt{2}}$ et de fréquence $f_\theta=50~{\rm Hz}.$

En BUT1, nous avons étudié le montage suivant :

La tension $v_E(t)$ est une tension sinusoïdale de valeur efficace $V_{Eeff}=\frac{V_P}{\sqrt{2}}$ et de fréquence $f_{\rm el}=50$ Hz.

Comportement redresseur simple alternance (d'après A. Malvino).

En BUT1, nous avons étudié le montage suivant :

La tension $v_E(t)$ est une tension sinusoïdale de valeur efficace $V_{Eeff}=\frac{V_P}{\sqrt{2}}$ et de fréquence $f_{\rm e}=50\,{\rm Hz}.$

Comportement redresseur simple alternance (d'après A. Malvino).

Caractéristiques

1 diode;

En BUT1, nous avons étudié le montage suivant :

La tension $v_E(t)$ est une tension sinusoïdale de valeur efficace $V_{Eeff}=\frac{V_P}{\sqrt{2}}$ et de fréquence $f_{\rm el}=50$ Hz.

Comportement redresseur simple alternance (d'après A. Malvino).

- 1 diode;
- ullet Entrée du redresseur : signal sinusoïdal $v_E(t)$ de tension crête $V_{\mathcal{P}}$;

En BUT1, nous avons étudié le montage suivant :

La tension $v_E(t)$ est une tension sinusoïdale de valeur efficace $V_{E\!e\!f\!f}=\frac{V_D}{\sqrt{2}}$ et de fréquence $f_\theta=50\,{\rm Hz}.$

Comportement redresseur simple alternance (d'après A. Malvino).

- 1 diode;
- Entrée du redresseur : signal sinusoïdal $v_E(t)$ de tension crête V_D ;
- lacktriangle Sortie du redresseur (idéal) : signal sinusoïdal $v_{\mathcal{S}}(t)$ de tension crête $V_{\mathcal{P}}$;

En BUT1, nous avons étudié le montage suivant :

La tension $v_E(t)$ est une tension sinusoïdale de valeur efficace $V_{E\!e\!f\!f}=\frac{V_P}{\sqrt{2}}$ et de fréquence $f_e=50\,{\rm Hz}.$

Comportement redresseur simple alternance (d'après A. Malvino).

- 1 diode;
- Entrée du redresseur : signal sinusoïdal $v_E(t)$ de tension crête V_p ;
- ullet Sortie du redresseur (idéal) : signal sinusoïdal $v_{\mathcal{S}}(t)$ de tension crête $V_{\mathcal{P}}$;
- ullet Sortie du redresseur (réel) : signal sinusoïdal $v_{\rm S}(t)$ de tension crête $V_{
 ho}'=V_{
 ho}$ 0,7 V ;

En BUT1, nous avons étudié le montage suivant :

La tension $v_E(t)$ est une tension sinusoïdale de valeur efficace $V_{E\!e\!f\!f}=\frac{V_D}{\sqrt{2}}$ et de fréquence $f_\theta=50\,{\rm Hz}.$

Comportement redresseur simple alternance (d'après A. Malvino).

- 1 diode;
- Entrée du redresseur : signal sinusoïdal $v_E(t)$ de tension crête V_p ;
- ullet Sortie du redresseur (idéal) : signal sinusoïdal $v_{\mathcal{S}}(t)$ de tension crête $V_{\mathcal{P}}$;
- Sortie du redresseur (réel) : signal sinusoïdal $v_{\rm S}(t)$ de tension crête $V_{\rm p}'=V_{\rm p}$ 0,7 V ;
- Sortie DC ($V_p \gg$ 0,7) : $V_{Smoy} \approx \frac{V_p}{\pi}$;

En BUT1, nous avons étudié le montage suivant :

La tension $v_E(t)$ est une tension sinusoïdale de valeur efficace $V_{E\!e\!f\!f}=\frac{V_D}{\sqrt{2}}$ et de fréquence $f_\theta=50\,{\rm Hz}.$

Comportement redresseur simple alternance (d'après A. Malvino).

- 1 diode;
- ullet Entrée du redresseur : signal sinusoïdal $v_{\it E}(t)$ de tension crête $V_{\it p}$;
- ullet Sortie du redresseur (idéal) : signal sinusoïdal $v_{\mathcal{S}}(t)$ de tension crête $V_{\mathcal{P}}$;
- Sortie du redresseur (réel) : signal sinusoïdal $v_{\rm S}(t)$ de tension crête $V_{\rm p}'=V_{\rm p}$ 0,7 V ;
- Sortie DC ($V_p \gg 0.7$): $V_{Smoy} \approx \frac{V_p}{\pi}$;
- Fréquence ondulation : f_e ;

On étudie le montage suivant :

Redresseur double alternance (d'après A. Malvino).

On étudie le montage suivant :

Redresseur double alternance (d'après A. Malvino).

La tension du secondaire $v_2(t) = \frac{N_2}{N_1} v_1(t)$ est une tension sinusoïdale, avec $v_1(t)$ la tension du primaire et $\frac{N_2}{N_1}$ le rapport de transformation.

Circuit équivalent pour l'alternance positive (d'après A. Malvino).

On étudie le montage suivant :

Redresseur double alternance (d'après A. Malvino).

Circuit équivalent pour l'alternance positive (d'après A. Malvino).

Circuit équivalent pour l'alternance négative (d'après A. Malvino).

En résumé :

Signal de sortie du redresseur.

En résumé :

Signal de sortie du redresseur.

Caractéristiques '

2 diodes;

En résumé :

Signal de sortie du redresseur.

- 2 diodes;
- ullet Entrée du redresseur : signal sinusoïdal $v_{\it E}(t)$ de tension crête 0,5 $V_{\it P}$ du secondaire ;

En résumé :

Signal de sortie du redresseur.

- 2 diodes;
- $\bullet~$ Entrée du redresseur : signal sinusoïdal $v_{E}(t)$ de tension crête 0,5 V_{p} du secondaire ;
- ullet Sortie du redresseur (idéal) : signal sinusoïdal $v_{\mathcal{S}}(t)$ de tension crête 0,5 $V_{\mathcal{P}}$ du secondaire ;

En résumé :

Signal de sortie du redresseur.

- 2 diodes;
- $\bullet~$ Entrée du redresseur : signal sinusoïdal $v_{\it E}(t)$ de tension crête 0,5 $V_{\it p}$ du secondaire ;
- ullet Sortie du redresseur (idéal) : signal sinusoïdal $v_{\mathcal{S}}(t)$ de tension crête 0,5 $V_{\mathcal{P}}$ du secondaire ;
- Sortie du redresseur (réel) : signal sinusoïdal $v_{\rm S}(t)$ de tension crête $V_{\rm p}'=0.5V_{\rm p}$ 0,7 V ;

En résumé :

Signal de sortie du redresseur.

- 2 diodes;
- $\bullet~$ Entrée du redresseur : signal sinusoïdal $v_{\it E}(t)$ de tension crête 0,5 $V_{\it p}$ du secondaire ;
- ullet Sortie du redresseur (idéal) : signal sinusoïdal $v_{\mathcal{S}}(t)$ de tension crête 0,5 $V_{\mathcal{P}}$ du secondaire ;
- Sortie du redresseur (réel) : signal sinusoïdal $v_{\rm S}(t)$ de tension crête $V_{\rm p}'=0.5V_{\rm p}$ 0,7 V ;
- Sortie DC : $V_{Smoy} = \frac{V_p}{\pi}$;

En résumé :

Signal de sortie du redresseur.

- 2 diodes;
- ullet Entrée du redresseur : signal sinusoïdal $v_E(t)$ de tension crête 0,5 V_p du secondaire ;
- ullet Sortie du redresseur (idéal) : signal sinusoïdal $v_{\mathcal{S}}(t)$ de tension crête 0,5 $V_{\mathcal{P}}$ du secondaire ;
- Sortie du redresseur (réel) : signal sinusoïdal $v_s(t)$ de tension crête $V_p'=0.5V_p$ 0.7 V ;
- Sortie DC : $V_{Smoy} = \frac{V_p}{\pi}$;
- Fréquence ondulation : 2f_θ ;

On étudie le montage suivant :

Redresseur double alternance (d'après A. Malvino).

On étudie le montage suivant :

Redresseur double alternance (d'après A. Malvino).

Circuit équivalent pour l'alternance positive (d'après A. Malvino).

On étudie le montage suivant :

Redresseur double alternance (d'après A. Malvino).

Circuit équivalent pour l'alternance positive (d'après A. Malvino).

Circuit équivalent pour l'alternance négative (d'après A. Malvino).

En résumé :

Signal de sortie du redresseur.

En résumé :

Signal de sortie du redresseur.

Caractéristiques

4 diodes;

En résumé :

Signal de sortie du redresseur.

- 4 diodes;
- ullet Entrée du redresseur : signal sinusoïdal $v_{\it E}(t)$ de tension crête $V_{\it p}$ du secondaire ;

En résumé :

Signal de sortie du redresseur.

- 4 diodes ;
- ullet Entrée du redresseur : signal sinusoïdal $v_{\it E}(t)$ de tension crête $V_{\it p}$ du secondaire ;
- ullet Sortie du redresseur (idéal) : signal sinusoïdal $v_{\mathcal{S}}(t)$ de tension crête $V_{\mathcal{P}}$ du secondaire ;

En résumé :

Signal de sortie du redresseur.

- 4 diodes;
- ullet Entrée du redresseur : signal sinusoïdal $v_{\it E}(t)$ de tension crête $V_{\it p}$ du secondaire ;
- ullet Sortie du redresseur (idéal) : signal sinusoïdal $v_{\mathcal{S}}(t)$ de tension crête $V_{\mathcal{P}}$ du secondaire ;
- ullet Sortie du redresseur (réel) : signal sinusoïdal $v_{\mathbb{S}}(t)$ de tension crête $V_{\mathcal{P}}'=V_{\mathcal{P}}$ 1,4 V ;

En résumé :

Signal de sortie du redresseur.

- 4 diodes;
- ullet Entrée du redresseur : signal sinusoïdal $v_{\it E}(t)$ de tension crête $V_{\it P}$ du secondaire ;
- ullet Sortie du redresseur (idéal) : signal sinusoïdal $v_{\mathbb{S}}(t)$ de tension crête $V_{\mathcal{P}}$ du secondaire ;
- Sortie du redresseur (réel) : signal sinusoïdal $v_{\mathcal{S}}(t)$ de tension crête $V_{\mathcal{P}}' = V_{\mathcal{P}}$ 1,4 V ;
- Sortie DC : $V_{Smoy} = \frac{2V_{D}}{\pi}$;

Redresseur en pont de Graetz (2/2)

En résumé :

Signal de sortie du redresseur.

Caractéristiques

- 4 diodes;
- ullet Entrée du redresseur : signal sinusoïdal $v_{\it E}(t)$ de tension crête $V_{\it p}$ du secondaire ;
- ullet Sortie du redresseur (idéal) : signal sinusoïdal $v_{\mathcal{S}}(t)$ de tension crête $V_{\mathcal{P}}$ du secondaire ;
- Sortie du redresseur (réel) : signal sinusoïdal $v_{S}(t)$ de tension crête $V_{\rho}'=V_{\rho}$ 1,4 V ;
- Sortie DC : $V_{Smoy} = \frac{2V_{D}}{\pi}$;
- Fréquence ondulation : 2f_θ ;

	Simple alternance	Double alternance	Pont
Nombre de diodes	1	2	4
Entrée du redresseur	$V_{p(2)}$	0,5V _{p(2)}	$V_{p(2)}$
Sortie du redresseur (idéal)	$V_{p(2)}$	0,5V _{p(2)}	$V_{p(2)}$
Sortie du redresseur (réel)	V _{p(2)} -0,7	0,5V _{p(2)} -0,7	V _{p(2)} -1,4
Sortie DC	$\frac{V_p}{\pi}$	$\frac{V_{\mathcal{D}}}{\pi}$	$\frac{2V_p}{\pi}$
Fréquence ondulation	f _e	2f _e	2f _e

Circuits de redressement avec filtrage

Redresseur avec filtre à condensateur chargé (d'après A. Malvino).

ullet Pour que le filtre à condensateur en tête soit utile, il doit être relié à une résistance de charge (R_L) .

- ullet Pour que le filtre à condensateur en tête soit utile, il doit être relié à une résistance de charge (R_L) .
- ullet Tant que la constante de temps $au=R_LC$ est nettement plus grande que la période, le condensateur reste largement chargé et la tension est approximativement V_p .

- ullet Pour que le filtre à condensateur en tête soit utile, il doit être relié à une résistance de charge (R_L) .
- Tant que la constante de temps $\tau=R_LC$ est nettement plus grande que la période, le condensateur reste largement chargé et la tension est approximativement V_p .
- ullet La seule perturbation par rapport à une tension DC idéale est la faible ondulation (tension V_R).

- ullet Pour que le filtre à condensateur en tête soit utile, il doit être relié à une résistance de charge (R_L) .
- Tant que la constante de temps $\tau = R_L C$ est nettement plus grande que la période, le condensateur reste largement chargé et la tension est approximativement V_p .
- ullet La seule perturbation par rapport à une tension DC idéale est la faible ondulation (tension $V_{
 m R}$).
- Pour un filtre à condensateur connecté à un redresseur double alternance ou à un redresseur en pont, l'amplitude de l'ondulation est divisée par deux.

- ullet Pour que le filtre à condensateur en tête soit utile, il doit être relié à une résistance de charge (R_L) .
- Tant que la constante de temps $\tau = R_L C$ est nettement plus grande que la période, le condensateur reste largement chargé et la tension est approximativement V_p .
- ullet La seule perturbation par rapport à une tension DC idéale est la faible ondulation (tension $V_{
 m R}$).
- Pour un filtre à condensateur connecté à un redresseur double alternance ou à un redresseur en pont, l'amplitude de l'ondulation est divisée par deux.
- La tension d'ondulation crête-à-crête vaut $V_R = \frac{V_P}{f_R \tau}$ (non démontré).

	Simple alternance	Double alternance	Pont
Nombre de diodes	1	2	4
Entrée du redresseur	$V_{p(2)}$	0,5V _{p(2)}	$V_{p(2)}$
Sortie DC (idéale)	$V_{p(2)}$	0,5V _{p(2)}	$V_{p(2)}$
Sortie DC (réelle)	V _{p(2)} -0,7	0,5V _{p(2)} -0,7	V _{p(2)} -1,4
Fréquence ondulation	f _e	2f _e	2f _e
Tension Inverse Crête	2V _{p(2)}	$V_{p(2)}$	$V_{p(2)}$
Courant dans la diode	I _{DC}	0,5I _{DC}	0,5I _{DC}

Régulateur de tension

Caractéristiques

C'est une diode au silicium que le constructeur a optimisée pour opérer dans la zone de claquage.

Caractéristiques

C'est une diode au silicium que le constructeur a optimisée pour opérer dans la zone de claquage.

Dans cette zone :

• Elle présente un coude de tension inverse très net, suivi d'une croissance presque verticale du courant.

Caractéristiques

C'est une diode au silicium que le constructeur a optimisée pour opérer dans la zone de claquage.

Dans cette zone :

- Elle présente un coude de tension inverse très net, suivi d'une croissance presque verticale du courant.
- ullet La tension est presque constante, approximativement égale à $V_{\mathbf{Z}}$.

Caractéristiques

C'est une diode au silicium que le constructeur a optimisée pour opérer dans la zone de claquage.

Dans cette zone :

- Elle présente un coude de tension inverse très net, suivi d'une croissance presque verticale du courant.
- ullet La tension est presque constante, approximativement égale à $V_{\mathbf{Z}}$.

Utilisation

Régulation de tension connectée en dérivation (**régulateur** shunt) car elle permet d'obtenir une tension continue fixe inférieure à celle donnée par une alimentation.

Caractéristiques

C'est une diode au silicium que le constructeur a optimisée pour opérer dans la zone de claquage.

Dans cette zone :

- Elle présente un coude de tension inverse très net, suivi d'une croissance presque verticale du courant.
- ullet La tension est presque constante, approximativement égale à $V_{\rm Z}$.

Utilisation

Régulation de tension connectée en dérivation (**régulateur** shunt) car elle permet d'obtenir une tension continue fixe inférieure à celle donnée par une alimentation.

Application: alimentation stabilisée et protection contre les surtensions.

Diode Zener (d'après A. Malvino).

Diode Zener (d'après A. Malvino).

Régulateur Zener chargé (d'après A. Malvino).

Diode Zener (d'après A. Malvino).

Régulateur Zener chargé (d'après A. Malvino).

• À cause du pont diviseur, la tension de Thévenin appliquée sur la diode est $V_{TH} = \frac{R_L}{R_S + R_L} V_S$. Elle doit être supérieure à V_Z .

Diode Zener (d'après A. Malvino).

Régulateur Zener chargé (d'après A. Malvino).

- À cause du pont diviseur, la tension de Thévenin appliquée sur la diode est $V_{TH} = \frac{R_L}{R_S + R_L} V_S$. Elle doit être supérieure à V_Z .
- Le courant série à travers la résistance de limitation de courant R_S est $I_S = \frac{V_{TH} V_Z}{R_S}$.

Diode Zener (d'après A. Malvino).

Régulateur Zener chargé (d'après A. Malvino).

- À cause du pont diviseur, la tension de Thévenin appliquée sur la diode est $V_{TH} = \frac{R_I}{R_S + R_L} V_S$. Elle doit être supérieure à V_Z .
- Le courant série à travers la résistance de limitation de courant R_S est $I_S = \frac{V_{TH} V_Z}{R_S}$.
- Le courant dans la charge est $I_L = \frac{V_Z}{R_I}$.

Diode Zener (d'après A. Malvino).

Régulateur Zener chargé (d'après A. Malvino).

- À cause du pont diviseur, la tension de Thévenin appliquée sur la diode est $V_{TH} = \frac{R_L}{R_S + R_L} V_S$. Elle doit être supérieure à V_Z .
- Le courant série à travers la résistance de limitation de courant R_S est $I_S = \frac{V_{TH} V_Z}{R_S}$.
- Le courant dans la charge est $I_L = \frac{V_Z}{R_L}$.
- Le courant dans la diode est $I_Z = I_S I_L$.

(CYU)

Diode Zener (d'après A. Malvino).

Régulateur Zener chargé (d'après A. Malvino).

Autre solution : utilisation d'un régulateur de tension intégré (p.e séries LM78XX et LM79XX).

Synthèse globale

Problème	Vı	V ₂	V _C	V_R	f_R	État de sortie non régulée
Fusible coupé	zéro	zéro	zéro	zéro	rien	pas de signal

Problème	Vı	V ₂	V _C	V _R	f_R	État de sortie non régulée
Fusible coupé	zéro	zéro	zéro	zéro	rien	pas de signal
Toutes les diodes coupées	OK	OK	zéro	zéro	rien	pas de signal

Problème	Vı	V ₂	V _C	V _R	f_R	État de sortie non régulée
Fusible coupé	zéro	zéro	zéro	zéro	rien	pas de signal
Toutes les diodes coupées	OK	OK	zéro	zéro	rien	pas de signal
Une diode coupée	OK	OK	basse	haute	f _e	signal simple alternance

Problème	Vı	V ₂	V _C	V _R	f_R	État de sortie non régulée
Fusible coupé	zéro	zéro	zéro	zéro	rien	pas de signal
Toutes les diodes coupées	OK	OK	zéro	zéro	rien	pas de signal
Une diode coupée	OK	OK	basse	haute	f _e	signal simple alternance
Condensateur coupé	OK	OK	basse	haute	2f _e	signal double alternance

Problème	Vı	V ₂	V _C	V _R	f_R	État de sortie non régulée
Fusible coupé	zéro	zéro	zéro	zéro	rien	pas de signal
Toutes les diodes coupées	OK	ОК	zéro	zéro	rien	pas de signal
Une diode coupée	OK	OK	basse	haute	f _e	signal simple alternance
Condensateur coupé	OK	OK	basse	haute	2f _e	signal double alternance
Fuite du condensateur	OK	OK	basse	haute	2f _e	basse

Problème	<i>V</i> 1	V ₂	V _C	V _R	f _R	État de sortie non régulée
Fusible coupé	zéro	zéro	zéro	zéro	rien	pas de signal
Toutes les diodes coupées	OK	OK	zéro	zéro	rien	pas de signal
Une diode coupée	OK	OK	basse	haute	f _e	signal simple alternance
Condensateur coupé	OK	ОК	basse	haute	2f _e	signal double alternance
Fuite du condensateur	OK	OK	basse	haute	2f _e	basse
Enroulement court-circuité	OK	basse	basse	OK	2f _e	basse