Лекция 5

Ilya Yaroshevskiy

15 марта 2021 г.

Содержание

1 Плотности 1

 $\mathbf{2}$

1 Плотности

Мера лебега

Плотность (X,\mathfrak{A},μ) и $\nu:\mathfrak{A}\to\overline{\mathbb{R}}$ — мера Плотность меры ν онсительно μ — это функция $\omega:X\to\overline{\mathbb{R}}$ $\forall B\in A\quad \nu B=\int_B\omega d\mu$

Теорема 1.1 (критерий плотности).

- $(X,\mathfrak{A},\mu),\ \nu$ еще одна мера
- $\omega: X \to \overline{\mathbb{R}}, \ \omega \ge 0$ измеримая

Тогда ω — плотность ν отнеительно $\mu \Leftrightarrow$

$$\forall A \in \mathfrak{A} \ \mu A \cdot \inf_{A} \omega \leq \nu(A) \leq \mu A \cdot \sup_{A} \omega$$

Пример (нет плотности).

- $X = \mathbb{R}$
- $\mathfrak{A} = \mathfrak{M}'$
- $\bullet \ \mu = \lambda_1$
- ν одноточечная мера $\nu(A)=\left[\begin{array}{cc}1&,$ если $0\in A\\0&,$ иначе считаем $\nu:\mathfrak{A}\to\mathbb{R}$

Теорема 1.2 (Необходимое условие существования плотности). $\mu A = 0 \Rightarrow \nu A = 0$

Теорема 1.3 (теорема Радона-Никодина). Это так-же достаточное условие

Доказательство критерия плотности. (\Rightarrow) очевидно

(\Leftarrow) Не умаляя общности $\omega>0$: $e=X(\omega=0)$ $\nu(e)=\int_e\omega d\mu=0$ Для случая когда $A\cup e=\emptyset$ все только лучше Фиксируем $q\in(0,1)$ $A_j=A(q^j\leq\omega< q^{j-1}), j\in\mathbb{Z}$

$$\xrightarrow[0 \quad q^2 \quad q \quad 1 = q^0]{q^{-1} \quad q^{-2}}$$

$$A = \bigsqcup_{j \in \mathbb{Z}} A_j$$

$$\mu A_j \cdot q^j \le \nu A_j \le \mu A_i \cdot q^{j-1} \tag{1}$$

$$\mu A_j \cdot q^j \le \int_{A_j} \omega d\mu \le \mu A_j \cdot q^{j-1} \tag{2}$$

Тогда

$$q \cdot \int_A \omega d\mu \leq q \cdot \sum \int_{A_j} \leq \sum q^j \mu A_j \leq \sum \nu A_j \leq \frac{1}{q} \sum q^j \mu A_j \leq \frac{1}{q} \sum \int_{A_j} = \frac{1}{q} \int_A \omega d\mu$$

то есть:

$$q \int_A \omega d \le \nu A \le \frac{1}{q} \int_A \omega d\mu$$

и $q \rightarrow 1 - 0$

Лемма 1.

• f, g - cyммupyeмыe

- (X,\mathfrak{A},μ)
- $\forall A \in \mathfrak{A}$
- $\int_A f = \int_A g$

Tог $\partial a \ f = g \ n$ очти вез ∂e

Доказательство. g := f - g

Дано $\forall A \int_A h = 0$ Доказать h = 0 почти везде

- $A_+ := X(h \ge 0)$
- $A_{-} := X(h < 0)$

 $X = A_+ \sqcup A_-$

$$\int_{A_{+}} |h| = \int_{A_{+}} h = 0$$

$$\int_{A_{-}} |h| = -\int_{A_{-}} h = 0$$

тогда

$$\int_{X} |h| = 0$$

 $\Rightarrow h = 0$ почти везде

 Π римечание. $\mathcal{L}(X)$ — линейное пространство отображений $l_A: f \mapsto \int_A f d\mu$ — линейный функционал Таким образом множество функционалов $\{l_A, A \in \mathfrak{A}\}$ — разделяет точки $\forall f,g \in \mathcal{L}(X) \exists A l_A(f) \neq l_A(g)$

2 Мера лебега

Лемма 2 (о мере образа малых кубических ячеек).

- $O \subset \mathbb{R}^m om \kappa p \omega m oe$
- $a \in O$
- $\Phi: O \to \mathbb{R}^m$
- $\Phi \in C^1$

Пусть $c > |\det \Phi'(a)| \neq 0$ Тогда $\exists \delta > 0 \ \forall \ \kappa y \delta a \ Q \subset B(a, \delta), \ a \in Q$ выполняется неравенство $\lambda \Phi(Q) < c \cdot \lambda Q$

Примечание. Здесь можно считать что кубы замкнутые

Доказательство. $L:=\Phi'(a)$ — обратимо

$$\Phi(x) = \Phi(a) + L \cdot (x - a) + o(x - a) \quad x \to a$$

$$\underbrace{a + L^{-1}(\Phi(x) - \Phi(a))}_{\Psi(x)} = x + o(x - a)$$

$$\forall \varepsilon > 0 \exists \operatorname{map} B_{\varepsilon}(a) \ \forall x \in B_{\varepsilon}(A) \ |\Psi(x) - x| < \frac{\varepsilon}{\sqrt{m}} |x - a|$$

Пусть $Q\subset B_{\varepsilon}(a)a\in Q$ — куб со стороной h. При $x\in Q:\ |x-a|\leq \sqrt{m}h$

$$|\Psi(x) - x| \le \frac{\varepsilon}{\sqrt{m}} |x - a| \le \varepsilon h$$

Тогда $\Psi(Q) \subset$ Куб со стороной $(1+2\varepsilon)h$: при $x,y \in Q$

$$|\Psi(x)_i - \Psi(y)_i| \le |\Psi(x)_i - x_i| + |x_i - y_i| + |\Psi(y)_i - y_i| \le |\Psi(x) - x| + h + |\Psi(y) - y| \le (1 + 2\varepsilon)h$$
$$\lambda(\Psi(Q)) \le (1 + 2\varepsilon)^m \cdot \lambda Q$$

 Ψ и Φ отличаются только сдвигом и линейным отображением

$$\lambda\Phi(Q) = |\det L| \cdot \lambda\Psi(Q) \leq \underbrace{|\det L| \cdot (1+2\varepsilon)^m}_{\text{выбираем ε чтобы } \ldots < c} \lambda Q$$

потом берем $\delta = \text{радиус } B_{\varepsilon}(a)$

Лемма 3.

- $O \subset \mathbb{R}^m$ $om\kappa pытое$
- $f: O \to \mathbb{R}$ непрерывное
- ullet $Q\subset \overline{Q}\subset O$ кубическая ячейка
- $A \subset Q$

Tог ∂a

$$\inf_{\substack{G: A \subset G \\ G \ - \ omkrutmoe \ \subset O}} \left(\lambda(G) \sup_G f\right) = \lambda A \cdot \sup_A f$$

Теорема 2.1.

ullet $\Phi:O\subset\mathbb{R}^m o\mathbb{R}^m$ — диффеоморфизм

Тогда $\forall A \in \mathfrak{M}^m, A \in O$

$$\lambda \Phi(A) = \int_{A} |\det \Phi'(x)| \, d\lambda(x)$$

Доказательство. Обозначим якобиан $J_{\Phi}(x) = |\det \Phi'(x)|$

 $\nu A:=\lambda \Phi(A)$ — мера. Т.е. надо доказать: J_Φ — плотность ν относительно λ . Тогда достаточно проверить условие критерия плотности

$$\inf_{A} J_{\Phi} \cdot \lambda A \le \nu A \le \sup_{A} J_{\Phi} \cdot \lambda A \tag{3}$$

Достаточно проверить только правое неравенство.
левое — это "правое для $\Phi(A)$ и отображения Φ^{-1} "

$$\inf \frac{1}{|\det(\Phi')|} \cdot \lambda \Phi(A) \le \lambda A$$

1. Проверяем второе неравенство 3 для случая когда A — кубическая ячейка. $A \subset \overline{A} \subset O$. От противного:

$$\lambda Q \cdot \sup_{Q} J_{\Phi} < \nu(Q)$$

Возьмем $C>\sup_Q J_\Phi: C\cdot \lambda Q<\nu(Q)$. Запускаем процесс половинного деления: Режем Q на 2^m более мелких кубических ячеек. Выберем "мелкую" ячейку $Q_1\subset Q: C\cdot \lambda Q_1<\nu Q_1$. Опять делим на 2^m частей, берем $Q_2: C\cdot \lambda Q_2<\nu Q_2$ и так далее

$$Q_1 \supset Q_2 \supset \dots \quad \forall nC \cdot \lambda Q_n < \nu Q_n$$
 (4)

$$a\in\bigcap\overline{Q_i}\quad c>\sup_Q J_\Phi=\sup_{\overline{Q}}J_\Phi,\,\,$$
в частности $c>|\det\Phi'(a)|$

Получаем противоречие с леммой: с скол угодно малой окрестности a имеются кубы $\overline{Q_n}$, где выполняется 4. **Противоречие**

2. Проверим второе неравенство 3 для открытых множеств $A\subset O$ Это очевидно $A=\bigsqcup Q_j,\,Q_j$ — кубическая ячейка, $Q_j\subset \overline{Q_j}\subset A$

$$\nu A = \sum_{Q_j} \lambda Q_j \le \sum_{Q_j} \mu Q_j \sup_{Q_j} J_{\Phi} \le \sup_{A} J_{\Phi} \sum_{A} \mu Q_j = \sup_{A} J_{\Phi} \cdot \lambda A \tag{5}$$

3. По лемме второе неравенство 3 выполнено для всех измеримых A

$$O = \bigsqcup Q_j$$
 — куба $Q_j \subset \overline{Q_j} \subset O$

$$A = \coprod \underbrace{A \cup Q_j}_{A_i} \quad A \subset G$$
 — открытое

$$JA_j \le \nu G \le \sup_G J_{\Phi} \cdot \lambda G \Rightarrow \nu A_j \le \int_G (\sup_{A_j} J_{\Phi} \cdot \lambda G) = \sup_{A_j} f \cdot \lambda A_j$$

Аналогично 5 получаем $\nu A \leq \sup_A f \cdot \lambda A$

Теорема 2.2.

• $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$ — дифференцируемое

$$\int_{O'} f(y)d\lambda = \int_{O} f(\Phi(x)) \cdot J_{\Phi} \cdot d\lambda$$

, где $J_{\Phi}(x)=|\det\Phi'(x)|.$ То же верно для суммируемых функций f

Доказательство. Применяем теорему о взвешенном образе меры. Дано:

- (X,\mathfrak{A},μ)
- (T, \mathfrak{B}, ν)
- $\Phi: X \to Y \mathbf{c}$ сохранением измеримости
- $\Phi^{-1}(\mathfrak{B}) \subset \mathfrak{A}$
- $\omega: Y \to \mathbb{R}, \geq 0$, измеримый
- ν взвешенный образ μ с весом ω :

$$\mu(B) = \int_{\Phi^{-1}(B)} \omega d\mu$$

Тогда

$$\int_B f d\nu = \int_{\Phi^{-1}(B)} f(\Phi(x))\omega(x) d\mu$$

В нашем случае

- $X = Y \mathbb{R}^m$
- $\mathfrak{A} = \mathfrak{B} = \mathfrak{M}^m$
- Ф диффеоморфизм
- $\mu = \lambda$
- $\nu(A) = \lambda \Phi(A)$

Под действием гладкого отображния $\Phi,\,\sigma\text{-аглебра }\mathfrak{M}^m$ сохраняется По теореме

$$\nu(B) = \int_{\Phi^{-1}(A)} J_{\Phi} d\lambda$$

т.е. λ — взвешенный образ исходной меры Лебега по отношению к Φ

Пример. Полярные координаты в \mathbb{R}^2 .

$$\begin{cases} x=r\cos\varphi\\ y=r\sin\varphi \end{cases}, \Phi: \{(r,\varphi), r>0, \varphi\in(0,2\pi)\}\to\mathbb{R}^2$$
 диффеоморфизм

$$\Phi = \begin{pmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{pmatrix}$$
$$\det \Phi' = r \quad J_{\Phi} = r$$
$$\iint_{\Omega} f(x, y) = d\lambda_r = \iint_{\Phi^{-1}(\Omega)} f(r \cos \varphi, r \sin \varphi) r \frac{d\lambda_r}{d\lambda_r(r, \varphi)}$$

 Π ример. Сферические координаты в R^3

$$\begin{cases} x = r \cos \varphi \cos \psi \\ y = r \sin \varphi \cos \psi \\ z = r \sin \psi \end{cases} \qquad \begin{cases} r > 0 \\ \varphi \in (0, 2\pi) \\ \psi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \end{cases}$$

$$\Phi' = \begin{pmatrix} \cos\varphi\cos\psi & -r\sin\varphi\cos\psi & -r\cos\varphi\sin\psi\\ \sin\varphi\cos\psi & r\cos\varphi\cos\psi? & -r\sin\varphi\sin\psi\\ \sin\psi & 0 & r\cos\psi \end{pmatrix}$$

— для географических координат: r — растояние от центра Земли, ψ — угол к плоскости экватора