DFFMD- A Deepfake Face Mask Dataset for Infectious Disease Era with Deepfake Detection Algorithms

A report submitted in partial fulfillment of the requirements for the award of a degree of

Bachelor of Technology

in

Computer Science and Engineering

by

Ch.Sweekruthi Reshma (21EG505810)

L.Sreepadh Varma (21EG505845)

T.Meghanath (21EG505865)

Under The Guidance of

Mrs.B.Ujwala,

Asst. Professor, Department of CSE

Department of Computer Science and Engineering
ANURAG UNIVERSITY

Venkatapur (V), Ghatkesar (M), Medchal (D)., T.S-500088
(2023-2024)

DECLARATION

We hereby declare that the report entitled "DFFMD- A Deepfake Face Mask Dataset for Infectious Disease Era with Deepfake Detection Algorithms" submitted for the award of the degree of Bachelor of Technology (B. Tech) in Computer Science and Engineering is a record of an original work done by us and the report has not formed the basis for the award of any degree, diploma, associateship or fellowship of similar other titles. It has not been submitted to any other University or Institution for the award of any degree or diploma.

Ch.Sweekruthi Reshma 21EG505810

L.Sreepadh Varma 21EG505845

T.Meghanath

21EG505865

Place:

Date:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the report entitled "DFFMD- A Deepfake Face Mask Dataset for Infectious Algorithms" Disease Era with Deepfake Detection that is being submitted by Ms. Ch.Sweekruthi Reshma the Hall Ticket number 21EG505810. bearing Mr. L.Sreepadh Varma bearing the Hall Ticket number 21EG505845, Mr. T.Meghanath bearing the Hall Ticket number 21EG505865 in partial fulfillment for the award of the Bachelor of Technology in Computer Science and Engineering to the Anurag University is a record of bonafide work carried out by them under my guidance and supervision.

The results embodied in this report have not been submitted to any other University or Institute for the award of any other degree or diploma.

Mrs. B. Ujwala Dean, CSE

Assistant Professor

External Examiner:

ACKNOWLEDGEMENT

We would like to express our sincere thanks and deep sense of gratitude to project supervisor **Mrs. B. Ujwala**, Assistant Professor, Dept of CSE for her constant encouragement and inspiring guidance without which this project could not have been completed. Her critical reviews and constructive comments improved our grasp of the subject and steered to the fruitful completion of the work. Her patience, guidance and encouragement made this project possible.

We would like to express our special thanks to **Dr. V. Vijaya Kumar**, Dean School of Engineering, Anurag University, for his encouragement and timely support in our B.Tech program.

We would like to acknowledge our sincere gratitude for the support extended by **Dr. G. Vishnu Murthy**, Dean, Dept. of CSE, Anurag University. We also express our deep sense of gratitude to **Dr. V V S S S Balaram**, Academic Coordinator, **Dr. Pallam Ravi**, Project Coordinator and Project Review Committee members, whose research expertise and commitment to the highest standards continuously motivated us during the crucial stage of our project work.

CH.SWEEKRUTHI RESHMA
(21EG505810)
L. SREEPADH VARMA
(21EG505845)
T.MEGHANATH
(21EG505865)

ABSTRACT

The advent of deep-fake technology, allowing the creation of fabricated images and videos with convincingly replaced or synthesized faces, has raised significant societal concerns. This phenomenon poses risks, including the malicious generation of false political news, dissemination of misleading information, fabrication of electronic evidence, and perpetration of digital harassment and fraud. The utilization of face masks during the COVID-19 pandemic has exacerbated the challenge, making it easier to create deep-fake while simultaneously complicating their detection. To address this evolving threat, the proposed system uses a pioneering Deep-fake Face Mask Dataset (DFFMD) and different algorithms based on Inception-ResNet-v2, incorporating preprocessing stages, feature-based analysis, residual connections, and batch normalization. The system results, compared with state-of-the-art methods, demonstrate heightened accuracy in detecting face-mask-enhanced deep-fake videos, surpassing traditional methods like InceptionResNetV2 and VGG19. Furthermore, the main aim of the system which advocates for the integration of Convolutional Neural Networks (CNN) and an extension using Xception, underscoring their efficacy in enhancing deep-fake detection accuracy. Our proposed system future goal is to focus on evaluating the accuracy through subsequent experimental iterations, emphasizing the continued development of robust methods for increased detection of deep-fake with facemasks in the ever-evolving technological landscape.

Keywords: Deep-Fake, Convolution Neural Network, Deep-fake Face Mask Dataset(DFFMD), Inception-ResNet-v2, VGG19, Xception.

CONTENTS

Гitle	Pageno
Abstract	v
List of Figures	vii
1.Introduction	1
1.1. Motivation	3
1.2. Problem Definition	4
1.3. Objective of the Project	4
2.Literature Survey	5
3.Analysis	7
3.1.Existing System	7
3.2.Proposed System	7
3.3.System Requirement Specification	8
3.3.1 Purpose	8
3.3.2 Scope	9
3.3.3Overall Description	9
4.Design	10
4.1. System Architecture	11
5.Implementation	18
5.1.Modules	18
5.2.Module Description	19
5.3.Introduction to Technologies Used	25
5.4.Sample code	37
6.Test Cases	74
7.Screenshots	75
8. Conclusion	83
9.Future Enhancement	84
10. Bibliography	85

LIST OF FIGURES

FigureNo	FigureName	Page No
Fig.4.1	System Architecture	15
Fig.7.1.1	Sample Dataset of Fake Videos	75
Fig.7.1.2	Sample Dataset of Real Videos	76
Fig.7.2.1a	Home Page	76
Fig.7.2.1b	Home Page	77
Fig.7.2.2	SignUp Page	77
Fig.7.2.3	SignIn Page	78
Fig.7.2.4	Upload Page	78
Fig.7.2.5a	Result Page	79
Fig.7.2.5b	Result Page	79
Fig.7.3	Overall Models Comparision Graph	80
Fig.7.3.1	Inception ResNet V2 Model Graph	80
Fig.7.3.2	VGG 19 Model Graph	81
Fig.7.3.3	CNN Model Graph	81
Fig.7.3.4	Xception Model Graph	82