HORNSBY GIRLS' HIGH SCHOOL

2008 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time 5 minutes
- Working Time 2 hours
- Write using a black or blue pen
- o Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown for every question
- o Begin each question on a fresh sheet of paper.

Total marks (84)

- Attempt Questions 1 7
- o All questions are of equal value

BLANK PAGE

Total Marks

Attempt Questions 1-7

All Questions are of equal value

Begin each question on a NEW SHEET of paper, writing your student number and question number at the top of the page. Extra paper is available.

Question 1 (12 marks) Use a SEPARATE sheet of paper.

Marks

(a) Find
$$\lim_{x\to 0} \frac{\sin 3x}{2x}$$
.

1

(b) Find the acute angle between the lines
$$y = 2x - 9$$
 and $3y = x + 8$.

2

(c) Find
$$\frac{d(3^x)}{dx}$$
.

1

(d) State the domain and range of the function
$$y = 2\cos^{-1} 3x$$
.

2

(e) Use the substitution
$$u = \tan x$$
 to evaluate
$$\int_{-\pi/2}^{\pi/2} \frac{dx}{\cos^2 x \tan x}$$
.

3

(f) Consider the function
$$y = x \cos^{-1} x - \sqrt{1 - x^2}$$
,

(i) Show that
$$\frac{dy}{dx} = \cos^{-1} x$$
.

2

(ii) Hence, or otherwise, evaluate
$$\int_{0}^{1} \cos^{-1} x dx$$
.

Question 2 (12 marks) Use a SEPARATE sheet of paper.

Marks

(a) Solve
$$x-5 < \frac{14}{x}$$
.

3

(b) Find the general solution to $\tan 2\theta = \sqrt{3}$. Express your answer in terms of π .

2

(c) The polynomial $f(x) = 2x^3 + ax^2 + bx + 6$ has a remainder of -6 when divided by (x-1) and f(-2) = 0.

2

Find the values of a and b.

(d) Find the exact value of $\int_0^{\frac{\pi}{4}} \cos^2\left(\frac{1}{2}x\right) dx$.

3

(e)

Given that PQ = PR and AB is a tangent to the circle PQR at P, prove that $RQ \parallel BA$.

Question 3 (12 marks) Use a SEPARATE sheet of paper.

Marks

- (a) 8 people are to be seated at a round table
 - (i) How many seating arrangements are possible?

1

(ii) Two people, Sarah and Ken, can not sit together.

How many seating arrangements are then possible?

2

- (b) The function $f(x) = x^3 + ax^2 + bx + c$ has a relative maximum at $x = \lambda$ and a relative minimum $x = \beta$.
 - (i) Prove $\lambda + \beta = -\frac{2}{3}a$.

2

(ii) Show that a point of inflexion occurs at $x = \frac{\lambda + \beta}{2}$. (A check for concavity is not required.)

2

(c) A roast chicken has been taken from an oven and placed in a room of constant temperature 20°C. At time t minutes its temperature T decreases according to the equation

 $\frac{dT}{dt} = -k(T-20)$ where k is a positive constant.

The initial temperature of the chicken is 80°C and cools to 50°C after 10 minutes.

(i) Verify that $T = 20 + Ae^{-kt}$ is a solution of this equation where A is a constant.

1

(ii) Find the values of A and k.

2

(iii) How long will it take for the chicken to cool to 30°C?

Give your answer to the nearest minute.

Question 4 (12 marks) Use a SEPARATE sheet of paper.

Marks

(a) A body is in Simple Harmonic Motion and its position at a time t is given by the equation

$$x = R\cos(nt + \alpha) + 1.$$

The period of motion is π seconds. Initially the body is at rest 3 units to the left of the origin.

(i) Find the values of R, n and α .

3

(ii) Find the velocity of the body when $t = \frac{\pi}{6}$.

•

1

(b) (i) Consider the equation $x \ln x - 1 = 0$. Show that a solution of this equation lies between x = 1 and x = 2.

1

(ii) Using x = 2 as a first approximation for a solution, apply Newton's method once to find a better approximation.Give your answer to 1 decimal place.

2

- Oxyo your and wor to I dooman place
- (c) Prove the identity $\frac{2 \tan \theta}{1 + \tan^2 \theta} = \sin 2\theta$.

2

(d) A 'Wheel of Chance' has 9 equal compartments around its rim.
When this wheel is spun a player can win \$100 on 1 designated compartment.
Grace is given the opportunity to have 25 consecutive spins of the wheel.
Find, giving your answer correct to 4 decimal places, the probability that she will win:

1

(i) exactly \$200,

(ii) at least \$200.

Question 5 (12 marks) Use a SEPARATE sheet of paper.

Marks

(a) Use the principle of mathematical induction to show that

$$1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)^2$$
 for all $n \ge 1$

3

(b)

The diagram shows a conical wheat flu. The flu is being filled with wheat at the rate of $2m^3$ per minute. The height of wheat at time t minutes is h metres and the radius of the wheat's top surface is r metres.

(i) Show that
$$r = \frac{3h}{10}$$
.

1

3

(ii) Find the rate at which the height is increasing when the height of the wheat is 8m.

(Volume of cone $=\frac{1}{3}\pi r^2 h$)

(c) Solve $x^3 - 21x^2 + 126x - 216$ given that the roots form 3 consecutive terms of a geometric series.

3

(d) Use Simpson's Rule with 3 function values to find an approximation to

$$\int_{0}^{0.4} \sin^{-1}x \, dx$$
 to one decimal place.

Question 6 (12 marks) Use a SEPARATE sheet of paper.

Marks

2

(a) A stone is projected with a velocity of 10 metres per second at an angle of elevation of $\theta = \tan^{-1} \left(\frac{3}{4} \right)$ from the top of a cliff 27 metres high overlooking a lake.

Assume that the equations of motion of the stone are

$$\ddot{x} = 0 \qquad \qquad \ddot{y} = -10$$

referred to the coordinate axes shown.

- (i) Let (x, y) be the position of the stone at time t seconds after it was thrown, and before the stone hits the lake. It is known that x = 8t. Show that $y = -5t^2 + 6t + 27$.
- (ii) Calculate the time which elapses before the stone hits the lake and find the horizontal distance of the point of contact from the base of the cliff.
- (iii) What is the maximum height reached by the stone?
- (b) Find the coefficient of x^7 in the expansion of $\left(x^2 \frac{1}{x}\right)^{12} \left(5 \frac{1}{x^2}\right)^6$.
- (c) Find the Cartesian equation of a curve with the parametric equations $x = t + \frac{1}{t} \text{ and } y = t \frac{1}{t}.$

Question 7 (12 marks) Use a SEPARATE sheet of paper.

Marks

- (a) Let $(3+2x)^{20} = \sum_{r=0}^{20} a_r x^r$
 - (i) Write down an expression for a_r .

1

1

(ii) Show that $\frac{a_{r+1}}{a_r} = \frac{40 - 2r}{3r + 3}$.

2

- (iii) Hence, or otherwise, find the value of the greatest coefficient in the expansion of $(3+2x)^{20}$.
- (b) Consider the function $f(x) = \frac{1}{1+x^2}$,
 - (i) Sketch the function y = f(x), finding any asymptotes and stationary points.

2

(ii) Write down the largest domain that contains x = -1 for which y = f(x) has an inverse function.

1

(iii) Find the inverse function $f^{-1}(x)$ for this domain and state the domain of $f^{-1}(x)$.

2

(iv) Find the area bounded by the curve $f(x) = \frac{1}{1+x^2}$, the x axis and the values x = -1 and x = 1.

2

(v) Prove that the area between this curve and the x axis is always less than π units².

1

End of Examination

BLANK PAGE

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = \frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$, x > 0

2008 HGHS Extension 1	Trial Sol ^{ns} 12	
BUESTION 1.		QUESTION 2
	163	
a) Cim Son 34	= /hu/13	(a)
クケス	1/13	THRE = LEAR (Li op eg
1 m 3 5.3%	= In 13 + (n J3	
× 40	= 4 2/m /3	x7(x-5)-14x 40 :: R&[184 (alt h's equal)
II Why	= 1m3	
	= 1.099.	x (x-1)(x+1) <0
6) 4=2x-9		:. x <-2, 0 < x < 7
1	$(t) i) y = x \cos^{-1} x - \sqrt{1-x^{2}}$	
0	50	b) tan 20 = 13
Paro = 2-3	لدا	1
1+2×5	= (25 x - x + x	20 = NT + N3
ال الروان الروان	1/-x-1	
3 5	, co2 =	
/ N	,	c) f(x) = 2x 3+ ax 7+ 6x + 6
0 = 45°	11) /65-124x = 1x605 x - J1-xx	f(1) = 2+ a+6+6 = -6
	7	a+b=-14:-()
c) d(3x) = d e selm3	= (05/(1)-0-0+1	4(-2) = -16+49-36+6=0
ďĸ	N	4a-2b = 10(2)
= 1,3exm3		4×0-0×4 66 = -66
= 3 × /m 3		11-=4
		.: $\alpha = -3$
d) D: - 3 = x = 3		: a=-3 6=-1/
R: 05452T		
. X		$\alpha / (\cos(\frac{x}{2})) dn = \frac{1}{2} (\cos x + 1) dn$
(e) I = / dx		o o
The Gost tour		= 2/Sinx + x
= / Sex 4 dh		-
torn town		= ナ(ニ+井)
at a = tank		
du = Sect Kdx.		= 2/2 + 2 = 3/2+11
when x = 78, 11 = 13		
0.711 0.70		

$\frac{dT}{dt} = \frac{a0 + He}{-k(T-10)}$ $\frac{dT}{dt} = -k(T-10)$ $\frac{f(t)}{dt} = -(t)$ $\frac{f(t)}{dt} $

, QUESTION 5	BURSTION 5	
41 0 Poulo 410 As 1=1	1 / / / v	") (it cooks be
LHS = 13 = 1	3 10	a ar
	1 3 L	-
: The Br=1	8	a+ar = 21
· Assume true for n= k	1) dv = 2	All the second s
1.e 13+23+ + k3 = (1+2+3++k)2	की वर	ع المر <i>=</i>
e true for 1=k+1		. 6.
12. 13+23+ + k3+(k+1)3 = (1+2+ + k+ (k+1))2		
S. = (1+2+ + R)2+ (k+1)3	r = π. qh² h	
(A) + (A+1) 3 (B)	A 300 7c	= 2 + 2r + 2r2
	= 911 L ³ 202	212-51+2=0
$= (k+i)^2 \left(\frac{k^2}{k} + k+i\right) / D$		(21-1)(1-2)=0
$= (k_{+})^{2} (k^{2} + 4k + 4) $	_ 27#k²	5= 22 2
1	dr 300	-
$= (k+1)^2 (k+2)^2$	i dh, dh, dv	ots one, 3,612
+	ं वेर े वेर	
$R.H.S. = (k+1)(k+1+1)7^{2}$	$= 100 \times 2$ dx	dx = 0.4 (0+4×0.20104)
	वृगा ५	
$= (k_{+1})^{2}(k_{+2})^{2}$	_ 120	180.0 =
#	9777	= 0.1
=	8 = ۱۸ سمادن	
: Two to n= k+1.	dh = 100	
	= 2 + 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	
	× 25	
	72.1	
(A)		•

, Quesmon 6.	GUESTION 7
a) i ==10 c) x = ++1	2,0
y = -10t + 10 sing	$a\rangle i\rangle (3+2\chi)^{20} = \sum_{c} 2c_{c} 3 \cdot 2.\chi$
ĮI,	0 11
	. ar = 20, 320-12°
= -10++6	
= -1007 + 66 + 37	11) AC+1 20C+1. 3"-" 2"+1
チェーナーク	20, 32°F
17	
カニュケース	0.1
5E-66-27 = 0	7 20-7 2
ļ (I	r+1 × 3.
n	
ر ا ا	17-04
when E>3 x=8x3	
ተሪ።	111) 40-21 ×
in max bught when y=0	
1.e106+6=0	40-25 > 30+3,
$\frac{9}{9} = \frac{7}{7}$	37
when t = 0.6 y = -5(0.6) +6(0.6) +27	70
•	= 7
9	
$ b \geq c_{a}(x^{2})^{a}(-j)^{a}(x^{-1})^{a} = c_{a} \leq c_{a}(-j)^{a}(x^{-2})^{a}$:. du = do = 200.31.28
A = 0	~ 1.11×
$\lambda = \lambda - \lambda - \lambda = \lambda$	
7 . coff 13 = 12 (-1) 6, 6,5 (-1)	
r / 7	
= 14850000 + 82500	
R r=3k+2c = 14767560	
5 1 17	
3 4 17	
·	

W. 1	_	٠.	•		1
4 / / * * * * * * * * * * * * * * * * *	* 2 ((((((((((((((((((area alsays less Has T.	*		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\psi'(x) = -(1+x^2)^{-1} \cdot 2x$ $= -2x$ $(1+x^2)^{-1}$ $2 \Rightarrow \alpha + 1 + x^2$ $(1 = 0^{+})$	1+xx 1+xx 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\frac{1}{2} = X = \frac{1}{2}$	$\frac{1+y^2=1}{y^2=\frac{\pi}{x^2-1}}$ $\frac{y+\frac{\pi}{x}}{y+\frac{\pi}{x}-1}$ $\frac{y+\frac{\pi}{x}-1}{x+\frac{\pi}{x}}$ $\frac{y+\frac{\pi}{x}-1}{x+\frac{\pi}{x}-1}$ $\frac{y+\frac{\pi}{x}-1}{x+\frac{\pi}{x}-1}$	(v) 4 = 1 + dr = [46-12]