МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ и систем» Тема: Изучение режимов адресации и формирования исполнительного адреса

Студентка гр. 0383	Александрович В.П.
_	 , <u>, , , , , , , , , , , , , , , , , , </u>
Преподаватель	 Ефремов М.А.

Санкт-Петербург 2021

Цель работы.

Изучение режимов адресации и формирования исполнительного адреса.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения

Выполнение работы.

Bap. 1

vec1 1,2,3,4,8,7,6,5

vec2 -10,-20,10,20,-30,-40,30,40

matr 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-6,-5

- 1. Попытка протранслировать программу lr2_comp.asm привела к возникновению следующих ошибок:
 - 1. mov mem3,[bx], lr2_comp.asm(50): error A2052: Improper operand type. Нельзя перемещать данные из одной ячейки памяти в другую (только между регистрами или между регистром и ячейкой памяти).

- 2. mov cx,vec2[di], lr2_comp.asm(59): warning A4031: Operand types must match. Попытка поместить данные размером в 1 байт а регистр размером 2 байта.
- 3. mov cx,matr[bx][di], lr2_comp.asm(64): warning A4031: Operand types must match. Попытка поместить данные размером в 1 байт а регистр размером 2 байта.
- 4. mov ax,matr[bx*4][di], lr2_comp.asm(65): error A2055: Illegal register value. Недопустимое значение регистра.
- 5. mov ax,matr[bp+bx], lr2_comp.asm(85): error A2047: Multiple base registers. Попытка использовать несколько базовых регистров для адресации.
- 6. mov ax,matr[bp+di+si], lr2_comp.asm(86): error A2047: Multiple index registers. Попытка использовать несколько индексных регистров для адресации.
- 2. После того, как строки с ошибками были закомментированы, файл был протранслирован без ошибок и предупреждений. Был создан диагностический файл lr2_comp.lst и объектный файл lr2_comp.obj. Был собран lr2_comp.exe и запущен в отладчике.
 - (CS) = 1A0A
 - (DS) = 19F5
 - (ES) = 19F5
 - (SS) = 1A05
 - (CX) = 00B0
 - (BP) = 0000
 - (DX) = 0000

Табл. 1

Адрес	Символический код	16-ричный код	Содержимое регистров и ячеек	
команды	команды	команды	памяти	
			До выполнения	После выполнения
0000	PUSH DS	1E	(AX) = 0000	(AX) = 0000
			(DS) = 19F5	(DS) = 19F5
			(IP) = 0000	(IP) = 0001
			(SP) = 0018	(SP) = 0016
			Stack +0 0000	Stack +0 19F5
0001	SUB AX, AX	2BC0	(AX) = 0000	(AX) = 0000
			(DS) = 19F5	(DS) = 19F5
			(IP) = 0001	(IP) = 0003
0003	PUSH AX	50	(AX) = 0000	(AX) = 0000
			(DS) = 19F5	(DS) = 19F5
			(IP) = 0003	(IP) = 0004
			(SP) = 0016	(SP) = 0014
			Stack +0 19F5	Stack +0 0000
			+2 0000	+0 19F5
0004	MOV AX, 1A07	B8071A	(AX) = 0000	(AX) = 1A07
			(DS) = 19F5	(DS) = 19F5
			(IP) = 0004	(IP) = 0007
0007	MOV DS, AX	8ED8	(AX) = 1A07	(AX) = 1A07
			(DS) = 19F5	(DS) = 1A07
			(IP) = 0007	(IP) = 0009
0009	MOV AX, 01F4	B8F401	(AX) = 1A07	(AX) = 01F4
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0009	(IP) = 000C
000C	MOV CX, AX	8BC8	(AX) = 01F4	(AX) = 01F4
			(DS) = 1A07	(DS) = 1A07
			(IP) = 000C	(IP) = 000E
			(CX) = 00B0	(CX) = 01F4
000E	MOV BL, 24	B324	(AX) = 01F4	(AX) = 01F4
			(DS) = 1A07	(DS) = 1A07
			(IP) = 000E	(IP) = 0010

			(BX) = 0000	(BX) = 0024
0010	MOV BH, CE	B7CE	(AX) = 01F4	(AX) = 01F4
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0010	(IP) = 0012
			(BX) = 0024	(BX) = CE24
0012	MOV [0002], FFCE	C7060200CEF	(AX) = 01F4	(AX) = 01F4
		F	(DS) = 1A07	(DS) = 1A07
			(IP) = 0012	(IP) = 0018
			Data seg +2	Data seg +2 CEFF
			0000	
0018	MOV BX, 00076	BB0600	(AX) = 01F4	(AX) = 01F4
			(DS) = 1A07	(DS) = 1A07
			(BX) = CE24	(BX) = 0006
			(IP) = 0018	(IP) = 001B
001B	MOV [0000], AX	A30000	(AX) = 01F4	(AX) = 01F4
			(DS) = 1A07	(DS) = 1A07
			(IP) = 001B	(IP) = 001B
			Data seg +0	Data seg +0 F401
			0000	
001E	MOV AL, [BX]	8A07	(AX) = 01F4	(AX) = 0101
			(DS) = 1A07	(DS) = 1A07
			(IP) = 001E	(IP) = 0020
0020	MOV AL, [BX+03]	8A4703	(AX) = 0101	(AX) = 0104
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0020	(IP) = 0023
0023	MOV CX, [BX+03]	8B4F03	(AX) = 0104	(AX) = 0104
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0023	(IP) = 0026
			(CX) = 01F4	(CX) = 0804
0026	MOV DI, 0002	BF0200	(AX) = 0104	(AX) = 0104
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0026	(IP) = 0029
			(DI) = 0000	(DI) = 0002
0029	MOV AL, [000E+DI]	8A850E00	(AX) = 0104	(AX) = 0104

			(DS) = 1A07	(DS) = 1A07
			(IP) = 0029	(IP) = 0029
			(DI) = 0002	(DI) = 0002
002D	MOV BX, 0003	BB0300	(AX) = 0104	(AX) = 010A
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0029	(IP) = 0030
			(BX) = 0006	(BX) = 0003
0030	MOV AL,	8A811600	(AX) = 010A	(AX) = 01FD
	[0016+BX+DI]		(DS) = 1A07	(DS) = 1A07
			(IP) = 0030	(IP) = 0034
			(DI) = 0002	(DI) = 0002
			(BX) = 0003	(BX) = 0000
0034	MOV AX, 1A07	B8071A	(AX) = 01FD	(AX) = 1A07
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0034	(IP) = 0037
0037	MOV ES, AX	8EC0	(AX) = 1A07	(AX) = 1A07
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0037	(IP) = 0039
			(ES) = 19F5	(ES) = 1A07
0039	MOV AX, ES:[BX]	268B07	(AX) = 1A07	(AX) = 00FF
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0039	(IP) = 003C
			(ES) = 1A07	(ES) = 1A07
003C	MOV AX, 0000	B80000	(AX) = 00FF	(AX) = 0000
			(DS) = 1A07	(DS) = 1A07
			(IP) = 003C	(IP) = 003F
003F	MOV ES, AX	BEC0	(AX) = 0000	(AX) = 0000
			(DS) = 1A07	(DS) = 1A07
			(IP) = 003F	(IP) = 0041
			(ES) = 1A07	(ES) = 0000
0041	PUSH DS	1E	(AX) = 0000	(AX) = 0000
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0041	(IP) = 0042
			(SP) = 0014	(SP) = 0012

			Stack +0 0000	Stack +0 1A07
0042	POP ES	07	(AX) = 0000	(AX) = 0000
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0042	(IP) = 0043
			(SP) = 0012	(SP) = 0014
			(ES) = 0000	(ES) = 1A07
			Stack +0 1A07	Stack +0 0000
			+0 0000	+2 19F5
0043	MOV CX,	268B4FFF	(AX) = 0000	(AX) = 0000
	ES:[BX-01]		(DS) = 1A07	(DS) = 1A07
			(IP) = 0043	(IP) = 0047
			(ES) = 1A07	(ES) = 1A07
			(BX) = 0000	(BX) = 0003
			(CX) = 0804	(CX) = FFCE
0047	XCHG AX, CX	91	(AX) = 0000	(AX) = FFCE
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0047	(IP) = 0048
			(CX) = FFCE	(DI) = 0002
0048	MOV DI, 0002	BF0200	(AX) = FFCE	(AX) = FFCE
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0048	(IP) = 004B
			(DI) = 0002	(DI) = 0002
004B	MOV ES:[BX+DI],	268901	(AX) = FFCE	(AX) = FFCE
	AX		(DS) = 1A07	(DS) = 1A07
			(IP) = 004B	(IP) = 004E
			(DI) = 0002	(DI) = 0002
			(BX) = 0003	(BX) = 0003
			(ES) = 1A07	(ES) = 1A07
004E	MOV BP, SP	8BEC	(AX) = FFCE	(AX) = FFCE
			(DS) = 1A07	(DS) = 1A07
			(IP) = 004E	(IP) = 0050
			(BP) = 0000	(BP) = 0014
			(SP) = 0014	(SP) = 0014
0050	PUSH [0000]	FF360000	(AX) = FFCE	(AX) = FFCE

			(DS) = 1A07	(DS) = 1A07
			(IP) = 0050	(IP) = 0054
			(SP) = 0014	(SP) = 0012
			Stack +0 0000	Stack +0 01F4
			+2 19F5	+2 0000
			+4 0000	+4 19F5
0054	PUSH [0002]	FF360200	(AX) = FFCE	(AX) = FFCE
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0054	(IP) = 0058
			(SP) = 0012	(SP) = 0010
			Stack +0 01F4	Stack +0 FFCE
			+2 0000	+2 01F4
			+4 19F5	+4 0000
			+6 0000	+6 19F5
0058	MOV BP, SP	8BEC	(AX) = FFCE	(AX) = FFCE
			(DS) = 1A07	(DS) = 1A07
			(IP) = 0058	(IP) = 005A
			(SP) = 0010	(SP) = 0010
			(BP) = 0014	(BP) = 0010
005A	MOV DX, [BP+02]	8B5602	(AX) = FFCE	(AX) = FFCE
			(DS) = 1A07	(DS) = 1A07
			(IP) = 005A	(IP) = 005D
			(SP) = 0010	(SP) = 0010
			(BP) = 0010	(BP) = 0010
			(DX) = 0000	(DX) = 01F4
005D	RET Far 0002	CA0200	(AX) = FFCE	(AX) = FFCE
			(DS) = 1A07	(DS) = 1A07
			(IP) = 005D	(IP) = FFCE
			(SP) = 0010	(SP) = 0016
			Stack +0 FFCE	Stack +0 19F5
			+2 01F4	+2 0000

Программа не завершила работу, так как на стек были записаны ненужные данные. Чтобы исправить эту ошибку, нужно закомментировать две строки, которые добавляют эти значения на стек.

Выводы.

По ходу выполнения данной лабораторной работы мы изучили режимы адресации и формирование исполнительного адреса.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lr2_comp.asm

```
; Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
     DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 1,2,3,4,8,7,6,5
vec2 DB -10, -20, 10, 20, -30, -40, 30, 40
matr DB 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-6,-5
DATA ENDS
; Код программы
CODE SEGMENT
     ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
     push DS
     sub AX, AX
     push AX
     mov AX, DATA
     mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
 Регистровая адресация
     mov ax, n1
     mov cx, ax
     mov bl, EOL
     mov bh, n2
; Прямая адресация
     mov mem2, n2
     mov bx, OFFSET vec1
     mov mem1, ax
; Косвенная адресация
     mov al, [bx]
     ;mov mem3, [bx]
; Базированная адресация
```

```
mov al, [bx]+3
     mov cx, 3[bx]
; Индексная адресация
     mov di,ind
     mov al, vec2[di]
     ;mov cx,vec2[di]
; Адресация с базированием и индексированием
     mov bx,3
     mov al,matr[bx][di]
     ;mov cx,matr[bx][di]
     ;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
 ----- вариант 1
     mov ax, SEG vec2
     mov es, ax
     mov ax, es:[bx]
     mov ax, 0
; ----- вариант 2
 mov es, ax
 push ds
 pop es
 mov cx, es:[bx-1]
 xchg cx,ax
; ----- вариант 3
 mov di,ind
 mov es:[bx+di],ax
; ----- вариант 4
 mov bp, sp
 ;mov ax,matr[bp+bx]
 ;mov ax,matr[bp+di+si]
; Использование сегмента стека
     push mem1
     push mem2
     mov bp, sp
     mov dx, [bp]+2
     ret 2
Main ENDP
CODE ENDS
           END Main
```

ПРИЛОЖЕНИЕ Б

ФАЙЛ ДИАГНОСТИЧЕСКИХ СООБЩЕНИЙ ПРОГРАММЫ

Название файла: lr2_comp.lst

```
Microsoft (R) Macro Assembler Version 5.10
                                                                10/5/21
20:51:17
                                                                 Page
                                                                           1-1
                       ; Программа изучения режимов адресации процессо
                       pa IntelX86
                            EOL EQU '$'
 = 0024
 = 0002
                            ind EOU 2
= 01F4
                            n1 EQU 500
 =-0032
                            n2 EQU -50
                       ; Стек программы
 0000
                       AStack SEGMENT STACK
 0000
       000C[
                                  DW 12 DUP(?)
         ????
                  ]
 0018
                       AStack ENDS
                       ; Данные программы
 0000
                       DATA SEGMENT
                       ; Директивы описания данных
 0000
       0000
                            mem1 DW 0
 0002
       0000
                            mem2 DW 0
 0004
       0000
                            mem3 DW 0
 0006
       01 02 03 04 08 07
                            vec1 DB 1,2,3,4,8,7,6,5
       06 05
 000E
       F6 EC 0A 14 E2 D8
                            vec2 DB -10, -20, 10, 20, -30, -40, 30, 40
       1E 28
                            matr DB 1,2,3,4,-4,-3,-2,-1,5,6,7,8,-8,-7,-6,-
 0016
       01 02 03 04 FC FD
5
       FE FF 05 06 07 08
       F8 F9 FA FB
 0026
                       DATA ENDS
                       ; Код программы
                       CODE SEGMENT
 0000
                            ASSUME CS:CODE, DS:DATA, SS:AStack
                       ; Головная процедура
 0000
                       Main PROC FAR
 0000
       1E
                            push DS
 0001
       2B C0
                                  sub AX, AX
 0003
       50
                            push AX
       B8 ---- R
                            mov AX, DATA
 0004
 0007
       8E D8
                                  mov DS, AX
```

```
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
                      ; Регистровая адресация
                                  mov ax, n1
 0009
       B8 01F4
 000C
       8B C8
                                  mov cx, ax
 000E
       B3 24
                                  mov bl, EOL
 0010
       B7 CE
                                  mov bh, n2
                       ; Прямая адресация
 0012
       C7 06 0002 R FFCE
                                  mov mem2, n2
 0018
       BB 0006 R
                            mov bx, OFFSET vec1
 001B
       A3 0000 R
                            mov mem1, ax
Microsoft (R) Macro Assembler Version 5.10
                                                               10/5/21
20:51:17
                                                                          1-2
                                                                Page
                      ; Косвенная адресация
 001E 8A 07
                                  mov al, [bx]
                            ;mov mem3,[bx]
                      ; Базированная адресация
 0020
       8A 47 03
                                  mov al, [bx]+3
 0023
       8B 4F 03
                                  mov cx,3[bx]
                       ; Индексная адресация
 0026
       BF 0002
                                  mov di, ind
 0029
       8A 85 000E R
                                  mov al, vec2[di]
                            ;mov cx,vec2[di]
                      ; Адресация с базированием и индексированием
       BB 0003
 002D
                                  mov bx,3
 0030
       8A 81 0016 R
                                  mov al,matr[bx][di]
                            ;mov cx,matr[bx][di]
                            ;mov ax,matr[bx*4][di]
                      ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
                        Переопределение сегмента
                         ----- вариант 1
 0034
       B8 ---- R
                            mov ax, SEG vec2
 0037
       8E C0
                                  mov es, ax
                            mov ax, es:[bx]
 0039
       26: 8B 07
 003C
       B8 0000
                                 mov ax, 0
                        ----- вариант 2
 003F
       8E C0
                             mov es, ax
 0041
       1E
                       push ds
 0042
       07
                       pop es
 0043
       26: 8B 4F FF
                             mov cx, es:[bx-1]
 0047
       91
                       xchg cx, ax
                      ; ----- вариант 3
 0048
       BF 0002
                             mov di,ind
       26: 89 01
 004B
                       mov es:[bx+di],ax
                       ; ----- вариант 4
 004E
       8B EC
                             mov bp,sp
                        ;mov ax,matr[bp+bx]
                        ;mov ax,matr[bp+di+si]
```

```
; Использование сегмента стека
 0050
      FF 36 0000 R
                                push mem1
 0054
      FF 36 0002 R
                                push mem2
 0058
      8B EC
                                mov bp, sp
 005A
      8B 56 02
                                mov dx,[bp]+2
 005D
      CA 0002
                                ret 2
 0060
                     Main ENDP
 0060
                     CODE ENDS
                           END Main
Microsoft (R) Macro Assembler Version 5.10
                                                            10/5/21
20:51:17
                                                             Symbols-1
Segments and Groups:
                                                      Combine Class
                Name
                                Length
                                            Align
0018 PARA STACK
CODE . . . . . . . . . . . . . . . .
                                      0060 PARA NONE
                                      0026 PARA NONE
DATA . . . . . .
Symbols:
                Name
                                Type
                                      Value
                                                 Attr
EOL . . . . . . . . . . . . . . .
                                      NUMBER
                                                0024
IND . . . . . . . . . . . . . . .
                                      NUMBER
                                                0002
F PROC
                                                0000 CODE Length = 0060
                                      L BYTE
                                                 0016 DATA
MATR . . . . . . . . . . . .
MEM1 . . . . . . . . . . . . . . .
                                      L WORD
                                                 0000 DATA
MEM2 . . . . . . .
                                      L WORD
                                                 0002 DATA
                                                0004 DATA
MEM3 . . . . . . . . . . . . . . . .
                                      L WORD
N1 . . . . . . . . . . . . . . . . .
                                      NUMBER
                                                01F4
                                      NUMBER
                                                 -0032
N2 . . . . . . . . . . . . . . .
VEC1 . . . . . . . . . . . . . . . .
                                      L BYTE
                                                0006 DATA
VEC2 . . . . . . . . . . . . . . . .
                                      L BYTE
                                                000E DATA
@CPU . . . . . . . . . . . . . . . .
                                      TEXT
                                            0101h
@FILENAME
                                      TEXT
                                            LR2_COMP
@VERSION . . . . . . . . . . . . . . . . .
                                      TEXT
                                            510
     95 Source Lines
     95 Total
                Lines
     19 Symbols
  47792 + 461515 Bytes symbol space free
      0 Warning Errors
```

O Severe Errors