







## Gradient descent algorithm

## Repeat until convergence

## Learning rate Derivative

Simultaneously update w and b

Correct: Simultaneous update

tmp\_w = 
$$w - \alpha \frac{\partial}{\partial w} J(w, b)$$
  
tmp\_b =  $b - \alpha \frac{\partial}{\partial b} J(w, b)$   
 $w = tmp_w$   
 $b = tmp_b$   
tmcorrect  
tmp\_w =  $w - \alpha \frac{\partial}{\partial w} J(w, b)$   
 $tmp_b = b - \alpha \frac{\partial}{\partial b} J(w, b)$   
 $tmp_b = b - \alpha \frac{\partial}{\partial b} J(w, b)$ 

Incorrect
$$tmp_{-}w = w - \alpha \frac{\partial}{\partial w} J(w, b)$$

$$w = tmp_{-}w$$



$$\frac{\partial}{\partial w} J(w,b) = \frac{1}{J_{w}} \sum_{i=1}^{m} \left( f_{w,b}(x^{(i)}) - y^{(i)} \right)^{2} = \frac{1}{J_{w}} \sum_{i=1}^{m} \left( w x^{(i)} + b - y^{(i)} \right)^{2}$$

$$= \frac{1}{2m} \sum_{i=1}^{m} \left( w x^{(i)} + b - y^{(i)} \right) \left( x^{(i)} \right)^{2} = \frac{1}{m} \sum_{i=1}^{m} \left( f_{w,b}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$= \frac{1}{2m} \sum_{i=1}^{m} \left( f_{w,b}(x^{(i)}) - y^{(i)} \right)^{2} = \frac{1}{2m} \sum_{i=1}^{m} \left( w x^{(i)} + b - y^{(i)} \right)^{2}$$

$$= \frac{1}{2m} \sum_{i=1}^{m} \left( w x^{(i)} + b - y^{(i)} \right) \left( w x^{(i)} + b - y^{(i)} \right)^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left( f_{w,b}(x^{(i)}) - y^{(i)} \right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left( f_{w,b}(x^{(i)}) - y^{(i)} \right)$$

$$w = w - \boxed{a} \frac{d}{dw} J(w)$$

If  $\alpha$  is too small... Gradient descent may be slow.

If  $\alpha$  is too large...

Gradient descent may:

- Overshoot, never reach minimum

