

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to M-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formula 2023

MATEMATYKA Poziom podstawowy

TEST DIAGNOSTYCZNY

Symbol arkusza **MM**AP-P0-**100**-2412

DATA: **6 grudnia 2024 г.**

GODZINA ROZPOCZĘCIA: 9:00

Czas trwania: 180 minut

WYPEŁNIA ZESPÓŁ NADZORUJĄCY							
Uprawnienia zdającego do:							
dostosowania zasad oceniania							
dostosowania w zw. z dyskalkulią							
nieprzenoszenia odpowiedzi na kartę.							

LICZBA PUNKTÓW DO UZYSKANIA: 50

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- Jeżeli przekazano Ci niewłaściwy arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 31 stron (zadania 1–30).
 Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Symbol zamieszczony w nagłówku zadania oznacza, że rozwiązanie zadania zamkniętego musisz przenieść na kartę odpowiedzi. Ocenie podlegają wyłącznie odpowiedzi zaznaczone na karcie odpowiedzi.
- 4. Odpowiedzi do zadań zamkniętych zaznacz na karcie odpowiedzi w części przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 5. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 6. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 7. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 8. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 9. Nie wpisuj żadnych znaków w tabelkach przeznaczonych dla egzaminatora. Tabelki umieszczone są na marginesie przy odpowiednich zadaniach.
- 10. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 11. Możesz korzystać z *Wybranych wzorów matematycznych*, cyrkla i linijki oraz z kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z okładką taką jak widoczna poniżej.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

Zadanie 1. (0-1)

Liczby x_1 i x_2 są różnymi rozwiązaniami równania |x+4|=7.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Suma $x_1 + x_2$ jest równa

- **A.** (-14) **B.** (-8) **C.** 3

D. 8

0000 Zadanie 2. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba $\left(\sqrt[5]{5} \cdot \frac{1}{5}\right)^{-5}$ jest równa

- **A.** 5^4
- **B.** 5^{-4} **C.** $5^{0,25}$
- **D.** $5^{-0.25}$

Zadanie 3. (0-2)

Wykaż, że liczba $2^{100} + 4^{49} + 16^{24}$ jest podzielna przez 21.

Zadanie 4. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Dla każdej dodatniej liczby rzeczywistej x i dla każdej dodatniej liczby rzeczywistej ywartość wyrażenia $\log_7 x + 6 \log_7 y$ jest równa wartości wyrażenia

A.
$$\log_7\left(\frac{x}{y^6}\right)$$

B.
$$\log_7(xy)^6$$

B.
$$\log_7(xy)^6$$
 C. $\log_7(6xy)$

D.
$$\log_7(xy^6)$$

Zadanie 5. (0-1)

Pani Aniela wpłaciła do banku kwotę 60000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości p% w skali roku od kwoty bieżącego kapitału znajdującego się na lokacie – zgodnie z procentem składanym. Na koniec okresu oszczędzania kwota na tej lokacie była równa 67 925,76 zł wraz z odsetkami (bez uwzględniania podatków).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Oprocentowanie lokaty w skali roku było równe

Zadanie 6. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Dla każdej liczby rzeczywistej x różnej od (-1), 0 oraz 1 wartość wyrażenia $\frac{x}{x^2-1}:\frac{3x^2}{x+1}$ jest równa wartości wyrażenia

$$A. \ \frac{x}{x-1}$$

A.
$$\frac{x}{x-1}$$
 B. $\frac{1}{3x^2-3x}$ **C.** $-3x$ **D.** $-\frac{1}{3x}$

C.
$$-3x$$

D.
$$-\frac{1}{3x}$$

Zadanie 7. (0-1)

Para liczb x=-1 i y=6 jest rozwiązaniem układu równań

$$\begin{cases} ax + 3y = 20 \\ x + by = 5 \end{cases}$$

gdzie a oraz b są liczbami rzeczywistymi.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wartość wyrażenia $a \cdot b$ jest równa

Zadanie 8. (0-3)

Rozwiąż równanie

$$\frac{x+3}{x-1} = \frac{x}{2x-2}$$

Zapisz konieczne założenie i obliczenia.

Zadanie 9. (0-2)

Rozwiąż nierówność

9.

$x(x-6) \le 7$

Zapisz obliczenia.

Zadanie 10. (0-4)

Funkcja f jest określona następująco:

$$f(x) = \begin{cases} 3 & \text{dla } x \in (-4, -2] \\ -x + 1 & \text{dla } x \in (-2, 2] \\ x - 3 & \text{dla } x \in (2, 4] \end{cases}$$

Wykres funkcji y = f(x) przedstawiono w kartezjańskim układzie współrzędnych (x, y) na rysunku poniżej.

10. 0-1-2-3-4 Uzupełnij zdania. Wpisz odpowiednie przedziały w wykropkowanych miejscach, aby zdania były prawdziwe.

- **1.** Dziedziną funkcji f jest przedział
- **2.** Zbiorem wartości funkcji f jest przedział
- **3.** Zbiorem wszystkich argumentów, dla których funkcja *f* przyjmuje wartości ujemne, jest przedział
- **4.** Zbiorem wszystkich argumentów, dla których funkcja f przyjmuje największą wartość, jest przedział

В	rua	lno	pis														

Zadanie 11. (0–1)

Miejscem zerowym funkcji liniowej f jest liczba 2, a punkt przecięcia wykresu funkcji f z osią Oy kartezjańskiego układu współrzędnych (x,y) ma współrzędne (0,4) (zobacz rysunek).

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Współczynnik kierunkowy prostej, która jest wykresem funkcji f , jest równy (-2) .	Р	F
Pole trójkąta ograniczonego osiami kartezjańskiego układu współrzędnych (x,y) oraz wykresem funkcji f jest równe 8.	Р	F

Zadanie 12.

W kartezjańskim układzie współrzędnych (x,y) wykresem funkcji kwadratowej f jest parabola, której wierzchołkiem jest punkt (3,0). Ta parabola przechodzi przez punkt o współrzędnych (0,-9).

Zadanie 12.1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Funkcja f jest malejąca w przedziale

A.
$$(-\infty, 0]$$

B.
$$(-\infty, 3]$$

C.
$$[0, +\infty)$$

D.
$$[3, +\infty)$$

12.2. Zadanie 12.2. (0-2)

0–1–2

Uzupełnij zdanie. Wybierz <u>dwie</u> właściwe odpowiedzi spośród oznaczonych literami A–F i wpisz te litery w wykropkowanych miejscach.

Wzór funkcji f zapisano w odpowiedziach oznaczonych literami: oraz

A.
$$f(x) = -x^2 - 9$$

B.
$$f(x) = -(x-3)^2$$

C.
$$f(x) = -(x+3)^2$$

D.
$$f(x) = -x^2 + 6x - 9$$

E.
$$f(x) = -x^2 - 6x + 9$$

F.
$$f(x) = -x^2 - 6x - 9$$

Zadanie 12.3. (0-1)

Funkcja kwadratowa g jest określona za pomocą funkcji f następująco: g(x) = f(x) - 1.

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Funkcja g ma jedno miejsce zerowe.	Р	F
W kartezjańskim układzie współrzędnych (x,y) osią symetrii wykresu funkcji g jest prosta o równaniu $x=3$.	Р	F

Zadanie 13. (0-1)

Funkcja logarytmiczna f jest określona wzorem $f(x) = \log_6 x$ dla każdej dodatniej liczby rzeczywistej x.

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Wartość funkcji f dla argumentu 36 jest równa 6 .	Р	F
Funkcja f jest rosnąca.	Р	F

Zadanie 14. (0–1)

Ciąg (a_n) jest określony wzorem $a_n = 3 \cdot (-1)^n + 10$ dla każdej liczby naturalnej $n \ge 1$.

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Ciąg (a_n) jest geometryczny.	Р	F
Suma ośmiu początkowych kolejnych wyrazów ciągu (a_n) jest równa 80 .	Р	F

Trzywyrazowy ciąg (5m, 4+2m, m) jest arytmetyczny, gdy liczba m jest równa

- **A.** (-4)
- **B.** (-1)
- **C**. 1

D. 4

Zadanie 16. (0-1)

Dany jest ciąg geometryczny (a_n) określony dla każdej liczby naturalnej $n \geq 1$, w którym $a_2 = \frac{1}{6}$ oraz $a_3 = \frac{1}{9}$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Piąty wyraz ciągu (a_n) jest równy

- **A.** $\frac{1}{15}$
- **B.** $\frac{2}{27}$ **C.** $\frac{4}{81}$
- **D.** $\frac{8}{243}$

Zadanie 17.

Dany jest trójkąt prostokątny ABC, w którym $|AC| = \sqrt{15}$ i |BC| = 8. Na przyprostokątnej AB leży taki punkt D, że |BD| = 6 (zobacz rysunek).

Zadanie 17.1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Sinus kata ostrego ABC jest równy

A. $\frac{1}{2}$

B. $\frac{7}{8}$

c. $\frac{\sqrt{15}}{4}$

D. $\frac{\sqrt{15}}{8}$

Zadanie 17.2. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Tangens kata ostrego ADC jest równy

A. $\sqrt{15}$

B. $\frac{1}{2}$

c. $\frac{7}{8}$

D. $\frac{\sqrt{15}}{8}$

Kąt o mierze α jest <u>rozwarty</u> oraz $\sin \alpha = \frac{\sqrt{3}}{4}$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Cosinus kąta o mierze α jest równy

A.
$$\left(-\frac{\sqrt{13}}{4}\right)$$
 B. $\left(-\frac{1}{2}\right)$ **C.** $\frac{1}{2}$ **D.** $\frac{\sqrt{13}}{4}$

B.
$$\left(-\frac{1}{2}\right)$$

c.
$$\frac{1}{2}$$

D.
$$\frac{\sqrt{13}}{4}$$

Zadanie 19. (0-4)

W trapezie prostokątnym ABCD dłuższa podstawa AB ma długość 7,5. Krótsza przekątna AC ma długość równą 6 i dzieli trapez na dwa trójkąty prostokątne (zobacz rysunek).

19. 0–1– 2–3–4

Oblicz pole trapezu ABCD. Zapisz obliczenia.

Zadanie 20. (0-1)

Dany jest okrąg o środku w punkcie S i promieniu 6. Miara kąta wpisanego ACB jest równa 60° (zobacz rysunek).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Długość łuku AB, na którym oparty jest kąt wpisany ACB, jest równa

- **A.** 2π
- B. 4π
- C. 6π
- **D.** 12π

Zadanie 21. (0–1)

W kartezjańskim układzie współrzędnych (x,y) punkty A=(-2,-1) oraz C=(3,4) są przeciwległymi wierzchołkami kwadratu ABCD.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Długość boku kwadratu ABCD jest równa

A. 5

- **B.** 10
- **C.** $5\sqrt{2}$
- **D.** $\sqrt{10}$

Zadanie 22. (0–1)

W kartezjańskim układzie współrzędnych (x,y) dana jest prosta k o równaniu y=-7x+3. Prosta l jest równoległa do prostej k i przecina oś 0y w punkcie (0,6). Punkt o współrzędnych (1,p) należy do prostej l.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba p jest równa

- **A.** (-4)
- **B.** (-1)
- **c**. $\frac{5}{7}$

D. 7

W kartezjańskim układzie współrzędnych (x,y) dane są cztery okręgi: o_1 , o_2 , o_3 , o_4 , o równaniach:

$$o_1$$
: $(x-1)^2 + (y-2)^2 = 1$

$$o_2$$
: $(x+1)^2 + (y+2)^2 = 9$

$$o_3$$
: $(x-3)^2 + (y-4)^2 = 4$

$$o_4$$
: $(x+3)^2 + (y+4)^2 = 16$

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Okręgiem, który <u>nie ma żadnego</u> punktu wspólnego z osiami układu współrzędnych (x, y), jest

- **A.** o_1
- B. o_2
- **C.** o_3
- **D.** o_4

Zadanie 24. (0–1)

Podstawą ostrosłupa prawidłowego czworokątnego jest kwadrat o boku długości 4. Ściana boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod takim kątem α , że $tg \alpha = 3$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wysokość tego ostrosłupa jest równa

A. 3

B. 6

- **C.** $6\sqrt{2}$
- **D.** 12

Zadanie 25. (0-1)

Długości trzech krawędzi wychodzących z jednego wierzchołka prostopadłościanu są trzema kolejnymi parzystymi liczbami naturalnymi. Najdłuższa krawędź tego prostopadłościanu ma długość p.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Objętość tego prostopadłościanu jest równa

A.
$$p^3 - 3p^2 + 2p$$

B.
$$p^3 + 3p^2 + 2p$$

C.
$$p^3 - 6p^2 - 8p$$

D.
$$p^3 - 6p^2 + 8p$$

Zadanie 26. (0-2)

Objętość stożka o wysokości $\,2\,$ jest równa $\,8\pi.$

Oblicz miarę kąta rozwarcia tego stożka. Zapisz obliczenia.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wszystkich liczb naturalnych pięciocyfrowych <u>nieparzystych</u>, w których zapisie dziesiętnym występują wyłącznie cyfry 0, 1, 2, 3 (np. 12303, 11111), jest

A. 32

B. 384

C. 512

D. 576

Zadanie 28. (0-2)

Dane są dwa zbiory: $C = \{1, 2, 3, 4, 5, 6\}$ oraz $D = \{7, 8, 9, 10\}$. Losujemy jedną liczbę ze zbioru C, a następnie losujemy jedną liczbę ze zbioru D.

Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że wylosujemy liczby, których iloczyn będzie podzielny przez 4. Zapisz obliczenia.

Zadanie 29. (0-2)

Do szkolnego koła czytelniczego należy 50 uczniów. Opiekun koła zebrał dane dotyczące liczby książek przeczytanych przez tych uczniów w listopadzie 2024 roku. W poniższej tabeli przedstawiono wyniki zebrane przez opiekuna.

Liczba przeczytanych książek	4	5	6	7	8
Liczba uczniów, którzy przeczytali daną liczbę książek	5	8	12	13	12

Uzupełnij zdania. Wpisz odpowiednie liczby w wykropkowanych miejscach, aby zdania były prawdziwe.

	29.
	0-1-2
١	
ı	

- 1. Średnia arytmetyczna liczby przeczytanych książek w tej grupie uczniów jest równa
- 2. Mediana liczby przeczytanych książek w tej grupie uczniów jest równa

Zadanie 30. (0-4)

Rozważamy wszystkie prostopadłościany ABCDEFGH, w których krawędź AE jest 3 razy dłuższa od krawędzi AB, a suma długości wszystkich dwunastu krawędzi prostopadłościanu jest równa 48 (zobacz rysunek).

Niech P(x) oznacza funkcję pola powierzchni całkowitej takiego prostopadłościanu w zależności od długości x krawędzi AB.

Wyznacz wzór i dziedzinę funkcji P. Oblicz długość x krawędzi AB tego z rozważanych prostopadłościanów, którego pole powierzchni całkowitej jest największe. Zapisz obliczenia.

BRUDNOPIS (nie podlega ocenie)

MATEMATYKA Poziom podstawowy Formuła 2023

MATEMATYKA Poziom podstawowy Formuła 2023

MATEMATYKA Poziom podstawowy Formuła 2023