Examenul de bacalaureat național 2014 Proba E. c) – 2 iulie 2014 Matematică *M_tehnologic* Barem de evaluare și de notare

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	` -	,
1.	$\left(1 - \frac{1}{2}\right)^2 = \frac{1}{4}$	3p
	$\frac{1}{4} + \frac{3}{4} = 1$	2p
2.	f(0) = 4	3p
	Coordonatele punctului de intersecție sunt $x = 0$ și $y = 4$	2p
3.	3x-1=2	3 p
	x=1	2p
4.	Numerele naturale de o cifră mai mici sau egale cu 3 sunt 0, 1, 2 și 3, deci sunt 4 cazuri	2 p
	favorabile	2p
	Sunt 10 numere naturale de o cifră, deci sunt 10 cazuri posibile	1p
	n_ nr. cazuri favorabile _ 4 _ 2	•
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{10} = \frac{2}{5}$	2p
5.	AB = 3	2p
	$BC = 3 \Rightarrow AB = BC$	3p
6.		2p
	$\mathcal{A}_{\Delta ABC} = \frac{6 \cdot 8}{2} = 24$	3 p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	1 2	_
	$\det A = \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} =$	2p
	$=1\cdot 4-2\cdot 2=0$	3р
b)	$A \cdot A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 10 & 20 \end{pmatrix} =$	3 p
	$=5 \cdot \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = 5A$	2p
c)	$A + \begin{pmatrix} x & y \\ y & -3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} + \begin{pmatrix} x & y \\ y & -3 \end{pmatrix} = \begin{pmatrix} 1+x & 2+y \\ 2+y & 1 \end{pmatrix}$	3р
	$\begin{pmatrix} 1+x & 2+y \\ 2+y & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow x = 0, \ y = -2$	2p
2.a)	$(-1) \circ 1 = -1 + 1 + (-1) \cdot 1 =$	3 p
	=0-1=-1	2p
b)	$x \circ y = x + xy + y + 1 - 1 =$	2p
	=x(y+1)+(y+1)-1=(x+1)(y+1)-1 pentru orice numere reale x și y	3 p

c)	$(x+2)(x-2)-1=4 \Leftrightarrow x^2-9=0$	3 p
	$x_1 = -3$ și $x_2 = 3$	2p

SUBIECTUL al III-lea

(30 de puncte)

БОВП	SUBIECTUL al III-lea (30 de pr	
1.a)	$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{x - 1}{x - 2} =$	2p
	$=\frac{3-1}{3-2}=2$	3 p
b)	$f'(x) = \frac{(x-1)'(x-2)-(x-1)(x-2)'}{(x-2)^2} =$	2p
	$= \frac{x-2-x+1}{(x-2)^2} = -\frac{1}{(x-2)^2}, \ x \in (2,+\infty)$	3 p
c)	y - f(3) = f'(3)(x-3)	2p
	f(3) = 2, $f'(3) = -1$, deci ecuația tangentei este $y = -x + 5$	3 p
2.a)	$\int_{-1}^{1} (2x+1) dx = (x^2 + x) \Big _{-1}^{1} =$	3p
	= 2 - 0 = 2	2p
b)	$V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} x^{4} dx =$	2 p
	$=\pi \frac{x^5}{5} \Big _0^1 = \frac{\pi}{5}$	3p
c)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x)$	2p
	$F'(x) = (x+1)^2 \ge 0$ pentru orice $x \in \mathbb{R}$, deci funcția F este crescătoare pe \mathbb{R}	3p