

Mn-Verunreinigungen in Graphen: Eine Tight Binding Modellierung

Yanick Kind

8. August 2022

AG Anders Fakultät Physik

Übersicht

Einleitung

Motivation

Struktur von Graphen und der Störstelle

Eigenschaften von Graphen

Theoretische Grundlagen

Greensche Funktionen

Tight Binding Modell

Slater-Koster-Integrale

Ergebnisse

Slater-Koster-Integrale

Hybridisierungsfunktion mittels Basistransformation

Einfluss der Höhe des Mn

Zusammenfassung und Ausblick

Y. Kind | 8. August 2022

Motivation I

Pin-Cheng Lin et al., ACS Nano 15.3 (2021), 10.1021/acsnano.1c00139.

Motivation II

Pin-Cheng Lin et al., ACS Nano 15.3 (2021), 10.1021/acsnano.1c00139.

Struktur von Graphen und der Störstelle I

- Unterteilung in zwei Untergitter (A und B)
 - zweidimensionales, hexagonales
 Bravais-Gitter
- typische Honigwabenstruktur
- nächste-Nachbar Abstandsvektoren:

$$\vec{\delta}_1 = a \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \vec{\delta}_2 = a \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}, \quad \vec{\delta}_3 = a \begin{pmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix}$$

Struktur von Graphen und der Störstelle II

- Annahme: Mn mittig von den drei umliegenden C
- spiegelsymmetrisch um Graphenebene
 - -> irrelevant ob negative oder positive z-Komponente
- Höhe des Mn variabel

Struktur von Graphen und der Störstelle II

- Annahme: Mn mittig von den drei umliegenden C
- spiegelsymmetrisch um Graphenebene
 - -> irrelevant ob negative oder positive z-Komponente
- Höhe des Mn variabel

- reziproke Gitter = um 90° gedrehtes hexagonales Gitter
- Dirac-Punkte bei

$$\vec{K} = \frac{2\pi}{3\sqrt{3}a} \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}, \quad \vec{K}' = \frac{2\pi}{3\sqrt{3}a} \begin{pmatrix} \sqrt{3} \\ -1 \end{pmatrix}$$

Eigenschaften von Graphen

- **s** p^2 -Hybridorbitale -> σ -Bindung
- p-Orbtiale -> π -Bindung

wikipedia.org

Eigenschaften von Graphen

- sp^2 -Hybridorbitale -> σ -Bindung
- p-Orbtiale -> π -Bindung

$$= \varepsilon_{\vec{k}} \propto \pm \sqrt{3 + 2\cos\left(\sqrt{3}ak_y\right) + 2\cos\left(\frac{3}{2}ak_x + \frac{\sqrt{3}}{2}ak_y\right) + 2\cos\left(\frac{3}{2}ak_x - \frac{\sqrt{3}}{2}ak_y\right)}$$

- Dispersionsrelation um Dirac-Punkte entwickeln
 - -> $\varepsilon_{\vec{k}} \propto \pm |\vec{k}|$
- Beschreibung der Dirac-Elektronen mit masseloser Dirac-Gleichung
- Geschwindigkeit der Dirac-Elektronen ist v_F mit $\frac{v_F}{c} \approx \frac{1}{300}$
 - -> hohe Ladungsträgerbeweglichkeit
- sehr hohe Leitfähigkeit mit ca. 10⁶ S/m
- geringe Dichte mit ca. 0,77 mg/m²

wikipedia.org

A. H. Castro Neto et al., Rev. Mod. Phys. 81

Greensche Funktionen

- zwei Operatoren mit zeitl. Entwicklung $A(\tau) = e^{H\tau}A_c e^{-H\tau}$ und $B(\tau') = e^{H\tau'}B_c e^{-H\tau'}$
- Greensche Funktion $G_{A,B}(\tau,\tau') = -\langle T_s(A(\tau)B(\tau'))\rangle = -\langle (A(\tau)B(\tau'))\Theta(\tau-\tau') + s\langle B(\tau')A(\tau)\rangle\Theta(\tau'-\tau)\rangle$
- Bewegungsleichung $\frac{\partial}{\partial \tau}G_{A,B}(\tau,\tau') = G_{[H,A],B}(\tau,\tau') \langle \{A,B\} \rangle \delta(\tau-\tau')$
- Fourier-transformierte Bewegungsleichung $zG_{A,B}(z) = \langle \{A,B\} \rangle G_{[H,A],B}(z)$

Tight Binding Modell

- Ausgang: stark gebundene, lokalisierte Elektronen mit Wellenfunktionen $\Psi_{lm}(\vec{r} \vec{l}_i \vec{R}_a)$
- Betrachtung des Hamiltonians für ein Elektron $H = \frac{\vec{p}^2}{2M} + \sum_{j\alpha} v(\vec{r} \vec{l}_j \vec{R}_\alpha) = \frac{\vec{p}^2}{2M} + v_{\vec{R}}(\vec{r})$
- Konstruktion von Blochzuständen $\Psi_{lm}^{\alpha}(\vec{k}, \vec{r}) = \frac{1}{\sqrt{N}} \sum_{j} e^{i\vec{k}\cdot\vec{l}_{j}} \Psi_{lm}(\vec{r} \vec{l}_{j} \vec{R}_{\alpha})$
- $\blacksquare \text{ ben\"{o}tigtes Matrixelement } \langle \Psi_{lm}^{\alpha}(\vec{k}) | H | \Psi_{l'm'}^{\alpha'}(\vec{k}) \rangle = \varepsilon_{lm,l'm'}^{\alpha\alpha} \langle \Psi_{lm}^{\alpha}(\vec{k}) \big| \Psi_{l'm'}^{\alpha'}(\vec{k}) \rangle \frac{1}{N} \sum_{j\alpha\neq j'\alpha'} e^{i\vec{k}(\vec{l}_{j'}-\vec{l}_{j})} t_{lm,l'm'}^{j\alpha'j'\alpha'} e^{i\vec{k}(\vec{l}_{j'}-\vec{l}_{j'})} t_{lm,l'm'}^{j\alpha'j'\alpha'} e^{i\vec{k}(\vec{l}_{j'}-\vec{l}_{j'})} t_{lm,l'm'}^{j\alpha'j'\alpha'} e^{i\vec{k}(\vec{l}_{j'}-\vec{l}_{j'})} t_{lm,l'm'}^{j\alpha'j'\alpha'} e^{i\vec{k}(\vec{l}_{j'}-\vec{l}_{j'})} e^{i\vec{k}(\vec{l}_{j'}-\vec{$
- $= t_{lm,l'm'}^{j\alpha,j'\alpha'} = -\int \mathrm{d}^3r\,\overline{\Psi}_{lm}\left(\vec{r}-\vec{l}_j-\vec{R}_\alpha\right)\left(v_{\vec{R}}(\vec{r})-v\left(\vec{r}-\vec{l}_{j'}-\vec{R}_{\alpha'}\right)\right)\Psi_{l'm'}\left(\vec{r}-\vec{l}_{j'}-\vec{R}_{\alpha'}\right)$
- Dreizentren-Beiträge vernachlässigen, da Elektronen stark lokalisiert sind

$$- > \boxed{ t_{lm,l'm'}^{j\alpha,j'\alpha'} = - \int \mathsf{d}^3 r \, \overline{\Psi}_{lm} \left(\vec{r} - \vec{l}_j - \vec{R}_\alpha \right) v \left(\vec{r} - \vec{l}_j - \vec{R}_\alpha \right) \Psi_{l'm'} \left(\vec{r} - \vec{l}_{j'} - \vec{R}_{\alpha'} \right) }$$

■ Tight Binding Hamiltonian in zweiter Quantisierung $H = -\sum_{jj'} \sum_{\alpha\alpha'} \sum_{ll'} \sum_{mm'} t_{lm,l'm'}^{j\alpha',j'\alpha'} c_{jlm\alpha}^{\dagger} c_{j'l'm'\alpha'}$

Slater-Koster-Integrale

$$E_{lm,l'm'} = \int d^3r \, \overline{\Psi}_{lm} \left(\vec{r} - \vec{d} \right) V \left(\vec{r} - \vec{d} \right) \Psi_{l'm'} \left(\vec{r} \right)$$

- SK-Integrale als Bestimmung der Hüpfmatrixelemente
- hängen nur vom Abstand ab
- lacktriangle Unterteilung in SK-Integrale zu den zugehörigen Symmetrien $V_{ll'n}$
- lacktriangleright im Allgemeinen Aufteilung der SK-Integrale in die einzelnen Integrale $V_{ll'n}$ mit Richtungskosinus als Vorfaktoren

$$l = \frac{\vec{d} \cdot \hat{x}}{\left| \vec{d} \right|} \; , \quad m = \frac{\vec{d} \cdot \hat{y}}{\left| \vec{d} \right|} \; , \quad n = \frac{\vec{d} \cdot \hat{z}}{\left| \vec{d} \right|}$$

Beispiel:
$$E_{z,x^2-y^2}=\frac{\sqrt{3}}{2}n(l^2-m^2)V_{pd\sigma}-n(l^2-m^2)V_{pd\pi}$$

Slater-Koster-Integrale

Beispiel: $E_{z,x^2-y^2}=\frac{\sqrt{3}}{2}n(l^2-m^2)V_{pd\sigma}-n(l^2-m^2)V_{pd\pi}$

$$H = H_0 + H_{Def} + H_{Kop}$$

$$H = H_0 + H_{Def} + H_{Kop}$$

$$H = \underbrace{-t\sum_{i=1}^{N}\sum_{j=1}^{3}\left(c_{\mathbb{A},\vec{l}_{i}}^{\dagger}c_{\mathbb{B},\vec{l}_{i}*\vec{\delta}_{j}} + c_{\mathbb{B},\vec{l}_{i}*\vec{\delta}_{j}}^{\dagger}c_{\mathbb{A},\vec{l}_{i}}\right)}_{H_{0}}$$

$$H = H_0 + H_{Def} + H_{Kop}$$

$$H = \underbrace{-t \sum_{i=1}^{N} \sum_{j=1}^{3} \left(c_{\mathbb{A}, \vec{l}_{i}}^{\dagger} c_{\mathbb{B}, \vec{l}_{i} + \vec{\delta}_{j}} + c_{\mathbb{B}, \vec{l}_{i} + \vec{\delta}_{j}}^{\dagger} c_{\mathbb{A}, \vec{l}_{i}} \right)}_{H_{0}} + \underbrace{\sum_{m=1}^{5} \varepsilon_{m} d_{m}^{\dagger} d_{m}}_{H_{Def}}$$

$$H = H_0 + H_{Def} + H_{Kop}$$

$$H = \underbrace{-t\sum_{i=1}^{N}\sum_{j=1}^{3}\left(c_{\mathbb{A},\vec{l}_{i}}^{\dagger}c_{\mathbb{B},\vec{l}_{i}+\vec{\delta}_{j}} + c_{\mathbb{B},\vec{l}_{i}+\vec{\delta}_{j}}^{\dagger}c_{\mathbb{A},\vec{l}_{i}}\right)}_{H_{\mathsf{Def}}} + \underbrace{\sum_{m=1}^{5}\varepsilon_{m}d_{m}^{\dagger}d_{m}}_{H_{\mathsf{Def}}} + \underbrace{\sum_{m=1}^{5}\sum_{j=1}^{3}\left(V_{mj}d_{m}^{\dagger}c_{\mathbb{B},\vec{l}+\vec{\delta}_{j}} + \overline{V}_{mj}c_{\mathbb{B},\vec{l}+\vec{\delta}_{j}}^{\dagger}d_{m}\right)}_{H_{\mathsf{Kop}}}$$

Slater-Koster-Integrale

	j-tes €		
	1	2	3
$E_{z,xy}$	0	$-\tfrac{3}{4}bV_{pd\sigma}+\tfrac{\sqrt{3}}{2}bV_{pd\pi}$	$\frac{3}{4}bV_{pd\sigma} - \frac{\sqrt{3}}{2}bV_{pd\pi}$
$E_{z,xz}$	$\sqrt{3}fV_{pd\sigma} + hV_{pd\pi}$	$-\frac{\sqrt{3}}{2}fV_{pd\sigma}-\frac{1}{2}hV_{pd\pi}$	$-\frac{\sqrt{3}}{2}fV_{pd\sigma}-\frac{1}{2}hV_{pd\pi}$
$E_{z,zy}$	0	$\frac{3}{2}fV_{pd\sigma} + \frac{\sqrt{3}}{2}hV_{pd\pi}$	$-\frac{3}{2}fV_{pd\sigma}-\frac{\sqrt{3}}{2}hV_{pd\pi}$
$E_{z,3z^2-r^2}$	$qV_{pd\sigma}+\sqrt{3}bV_{pd\pi}$	$qV_{pd\sigma}+\sqrt{3}bV_{pd\pi}$	$qV_{pd\sigma} + \sqrt{3}bV_{pd\pi}$
E_{z,x^2-y^2}	$\frac{\sqrt{3}}{2}bV_{pd\sigma} - bV_{pd\pi}$	$-\frac{\sqrt{3}}{4}bV_{pd\sigma} + \frac{1}{2}bV_{pd\pi}$	$-\frac{\sqrt{3}}{4}bV_{pd\sigma}+\frac{1}{2}bV_{pd\pi}$
$b \coloneqq -\sin^2(\theta)\cos(\theta)$ $f \coloneqq -\cos^2(\theta)\sin(\theta)$			
$h \coloneqq -\sin(\theta)(1-2\cos^2(\theta)) \qquad q \coloneqq -\cos^3(\theta) + \frac{1}{2}\sin^2(\theta)\cos(\theta)$			

$$H = -t \sum_{i=1}^{N} \sum_{j=1}^{3} \left(c_{\mathbb{A},\vec{l}_{i}}^{\dagger} c_{\mathbb{B},\vec{l}_{i}+\vec{\delta}_{j}} + c_{\mathbb{B},\vec{l}_{i}+\vec{\delta}_{j}}^{\dagger} c_{\mathbb{A},\vec{l}_{i}} \right) + \sum_{m=1}^{5} \varepsilon_{m} d_{m}^{\dagger} d_{m} + \sum_{m=1}^{5} \sum_{j=1}^{3} \left(V_{mj} d_{m}^{\dagger} c_{\mathbb{B},\vec{l}+\vec{\delta}_{j}} + \overline{V}_{mj} c_{\mathbb{B},\vec{l}+\vec{\delta}_{j}}^{\dagger} d_{m} \right)$$

Fouriertransformationen der p_z -Orbitale

$$c_{\mathbb{A},\vec{l}_i} = \frac{1}{\sqrt{N}} \sum_{\vec{k}}^{1.BZ} e^{i\vec{k}\vec{l}_i} c_{\mathbb{A},\vec{k}} \,, \quad c_{\mathbb{B},\vec{l}_i + \vec{\delta}_j} = \frac{1}{\sqrt{N}} \sum_{\vec{k}}^{1.BZ} e^{i\vec{k}(\vec{l}_i + \vec{\delta}_j)} c_{\mathbb{B},\vec{k}}$$

$$H = -t \sum_{i=1}^{N} \sum_{j=1}^{3} \left(c_{\mathbb{A},\vec{l}_{i}}^{\dagger} c_{\mathbb{B},\vec{l}_{i}+\vec{\delta}_{j}} + c_{\mathbb{B},\vec{l}_{i}+\vec{\delta}_{j}}^{\dagger} c_{\mathbb{A},\vec{l}_{i}} \right) + \sum_{m=1}^{5} \varepsilon_{m} d_{m}^{\dagger} d_{m} + \sum_{m=1}^{5} \sum_{j=1}^{3} \left(V_{mj} d_{m}^{\dagger} c_{\mathbb{B},\vec{l}+\vec{\delta}_{j}} + \overline{V}_{mj} c_{\mathbb{B},\vec{l}+\vec{\delta}_{j}}^{\dagger} d_{m} \right)$$

Fouriertransformationen der p_{\star} -Orbitale

$$c_{\mathbb{A},\vec{l}_{i}} = \frac{1}{\sqrt{N}} \sum_{\vec{k}}^{1.\mathsf{BZ}} e^{i\vec{k}\vec{l}_{i}} c_{\mathbb{A},\vec{k}} \,, \quad c_{\mathbb{B},\vec{l}_{i}+\vec{\delta}_{j}} = \frac{1}{\sqrt{N}} \sum_{\vec{k}}^{1.\mathsf{BZ}} e^{i\vec{k}(\vec{l}_{i}+\vec{\delta}_{j})} c_{\mathbb{B},\vec{k}}$$

$$\longrightarrow H = -t \sum_{j\vec{k}} \left(\mathrm{e}^{\mathrm{i}\vec{k}\vec{\delta}_j} c_{\mathbb{A},\vec{k}}^\dagger c_{\mathbb{B},\vec{k}} + \mathrm{e}^{-\mathrm{i}\vec{k}\vec{\delta}_j} c_{\mathbb{B},\vec{k}}^\dagger c_{\mathbb{A},\vec{k}} \right) + \sum_m \varepsilon_m d_m^\dagger d_m + \frac{1}{\sqrt{N}} \sum_{mj\vec{k}} \left(V_{mj} \mathrm{e}^{\mathrm{i}\vec{k}(\vec{l}+\vec{\delta}_j)} d_m^\dagger c_{\mathbb{B},\vec{k}} + V_{mj} \mathrm{e}^{-\mathrm{i}\vec{k}(\vec{l}+\vec{\delta}_j)} c_{\mathbb{B},\vec{k}}^\dagger d_m \right)$$

$$H = -t \sum_{i=1}^{N} \sum_{j=1}^{3} \left(c_{\mathbb{A},\vec{l}_{i}}^{\dagger} c_{\mathbb{B},\vec{l}_{i}+\vec{\delta}_{j}} + c_{\mathbb{B},\vec{l}_{i}+\vec{\delta}_{j}}^{\dagger} c_{\mathbb{A},\vec{l}_{i}} \right) + \sum_{m=1}^{5} \varepsilon_{m} d_{m}^{\dagger} d_{m} + \sum_{m=1}^{5} \sum_{j=1}^{3} \left(V_{mj} d_{m}^{\dagger} c_{\mathbb{B},\vec{l}+\vec{\delta}_{j}} + \overline{V}_{mj} c_{\mathbb{B},\vec{l}+\vec{\delta}_{j}}^{\dagger} d_{m} \right)$$

Fouriertransformationen der p_{\star} -Orbitale

$$\begin{split} c_{\mathbb{A},\vec{l}_i} &= \frac{1}{\sqrt{N}} \sum_{\vec{k}}^{1.BZ} e^{i\vec{k}\vec{l}_i} c_{\mathbb{A},\vec{k}} \,, \quad c_{\mathbb{B},\vec{l}_i+\vec{\delta}_j} = \frac{1}{\sqrt{N}} \sum_{\vec{k}}^{1.BZ} e^{i\vec{k}(\vec{l}_i+\vec{\delta}_j)} c_{\mathbb{B},\vec{k}} \\ &\longrightarrow H = -t \sum_{i\vec{k}} \left(e^{i\vec{k}\vec{\delta}_j} c_{\mathbb{A},\vec{k}}^\dagger c_{\mathbb{B},\vec{k}} + e^{-i\vec{k}\vec{\delta}_j} c_{\mathbb{B},\vec{k}}^\dagger c_{\mathbb{A},\vec{k}} \right) + \sum_{m} \varepsilon_m d_m^\dagger d_m + \frac{1}{\sqrt{N}} \sum_{mi\vec{k}} \left(V_{mj} e^{i\vec{k}(\vec{l}+\vec{\delta}_j)} d_m^\dagger c_{\mathbb{B},\vec{k}} + V_{mj} e^{-i\vec{k}(\vec{l}+\vec{\delta}_j)} c_{\mathbb{B},\vec{k}}^\dagger d_m \right) \end{split}$$

Damit ergibt sich folgende Greensche Funktion

$$(z - \varepsilon_m) G_{d_m, d_{m'}^{\dagger}} = \delta_{mm'} + \frac{1}{\sqrt{N}} \sum_{j\vec{k}} V_{mj} e^{i\vec{k}(\vec{l} + \hat{\delta}_j)} G_{c_{B,\vec{k}}, d_{m'}^{\dagger}}$$

$$H = -t \sum_{i=1}^{N} \sum_{j=1}^{3} \left(c_{\mathbb{A},\vec{l}_{i}}^{\dagger} c_{\mathbb{B},\vec{l}_{i}+\vec{\delta}_{j}} + c_{\mathbb{B},\vec{l}_{i}+\vec{\delta}_{j}}^{\dagger} c_{\mathbb{A},\vec{l}_{i}} \right) + \sum_{m=1}^{5} \varepsilon_{m} d_{m}^{\dagger} d_{m} + \sum_{m=1}^{5} \sum_{j=1}^{3} \left(V_{mj} d_{m}^{\dagger} c_{\mathbb{B},\vec{l}+\vec{\delta}_{j}} + \overline{V}_{mj} c_{\mathbb{B},\vec{l}+\vec{\delta}_{j}}^{\dagger} d_{m} \right)$$

Fouriertransformationen der p_z -Orbitale

$$\begin{split} c_{\mathbb{A},\vec{l}_i} &= \frac{1}{\sqrt{N}} \sum_{\vec{k}}^{1.\,\mathrm{BZ}} \mathrm{e}^{\mathrm{i}\vec{k}\vec{l}_i} c_{\mathbb{A},\vec{k}} \,, \quad c_{\mathbb{B},\vec{l}_i + \vec{\delta}_j} = \frac{1}{\sqrt{N}} \sum_{\vec{k}}^{1.\,\mathrm{BZ}} \mathrm{e}^{\mathrm{i}\vec{k}(\vec{l}_i + \vec{\delta}_j)} c_{\mathbb{B},\vec{k}} \\ \longrightarrow H &= -t \sum_{:\vec{L}} \left(\mathrm{e}^{\mathrm{i}\vec{k}\vec{\delta}_j} c_{\mathbb{A},\vec{k}}^{\dagger} c_{\mathbb{B},\vec{k}} + \mathrm{e}^{-\mathrm{i}\vec{k}\vec{\delta}_j} c_{\mathbb{B},\vec{k}}^{\dagger} c_{\mathbb{A},\vec{k}} \right) + \sum_{m} \varepsilon_m d_m^{\dagger} d_m + \frac{1}{\sqrt{N}} \sum_{n:\vec{L}} \left(V_{mj} \mathrm{e}^{\mathrm{i}\vec{k}(\vec{l} + \vec{\delta}_j)} d_m^{\dagger} c_{\mathbb{B},\vec{k}} + V_{mj} \mathrm{e}^{-\mathrm{i}\vec{k}(\vec{l} + \vec{\delta}_j)} c_{\mathbb{B},\vec{k}}^{\dagger} d_m \right) \end{split}$$

Damit ergibt sich folgende Greensche Funktion

$$\left(z-\varepsilon_{m}\right)G_{d_{m},d_{m'}^{\dagger}}=\delta_{mm'}+\frac{1}{\sqrt{N}}\sum_{j\vec{k}}V_{mj}\mathrm{e}^{\mathrm{i}\vec{k}(\vec{l}+\vec{\delta}_{j})}G_{\varsigma_{\mathbb{B},\vec{k}},d_{m'}^{\dagger}}$$

$$G_{c_{B,\vec{k}},d_{m'}^{\dagger}} = \frac{1}{z} \left(-t \sum_{j} \mathrm{e}^{-\mathrm{i}\vec{k}\vec{\delta}_{j}} G_{c_{A,\vec{k}},d_{m'}^{\dagger}} + \frac{1}{\sqrt{N}} \sum_{mj} V_{mj} \mathrm{e}^{-\mathrm{i}\vec{k}(\vec{l}+\vec{\delta}_{j})} G_{d_{m'}d_{m'}^{\dagger}} \right)$$

$$H = -t \sum_{i=1}^{N} \sum_{j=1}^{3} \left(c_{A,\vec{l}_{i}}^{\dagger} c_{B,\vec{l}_{i}+\vec{\delta}_{j}} + c_{B,\vec{l}_{i}+\vec{\delta}_{j}}^{\dagger} c_{A,\vec{l}_{i}} \right) + \sum_{m=1}^{5} \varepsilon_{m} d_{m}^{\dagger} d_{m} + \sum_{m=1}^{5} \sum_{j=1}^{3} \left(V_{mj} d_{m}^{\dagger} c_{B,\vec{l}+\vec{\delta}_{j}} + \overline{V}_{mj} c_{B,\vec{l}+\vec{\delta}_{j}}^{\dagger} d_{m} \right)$$

Fouriertransformationen der p_z -Orbitale

$$\begin{split} c_{\mathbb{A},\vec{l}_i} &= \frac{1}{\sqrt{N}} \sum_{\vec{k}}^{1.BZ} \mathrm{e}^{\mathrm{i}\vec{k}\vec{l}_i} c_{\mathbb{A},\vec{k}} \,, \quad c_{\mathbb{B},\vec{l}_i + \vec{\delta}_j} = \frac{1}{\sqrt{N}} \sum_{\vec{k}}^{1.BZ} \mathrm{e}^{\mathrm{i}\vec{k}(\vec{l}_i + \vec{\delta}_j)} c_{\mathbb{B},\vec{k}} \\ &\longrightarrow H = -t \sum_{i\vec{b}} \left(\mathrm{e}^{\mathrm{i}\vec{k}\vec{\delta}_j} c_{\mathbb{A},\vec{k}}^{\dagger} c_{\mathbb{B},\vec{k}} + \mathrm{e}^{-\mathrm{i}\vec{k}\vec{\delta}_j} c_{\mathbb{B},\vec{k}}^{\dagger} c_{\mathbb{A},\vec{k}} \right) + \sum_{m} \varepsilon_m d_m^{\dagger} d_m + \frac{1}{\sqrt{N}} \sum_{mi\vec{b}} \left(V_{mj} \mathrm{e}^{\mathrm{i}\vec{k}(\vec{l} + \vec{\delta}_j)} d_m^{\dagger} c_{\mathbb{B},\vec{k}} + V_{mj} \mathrm{e}^{-\mathrm{i}\vec{k}(\vec{l} + \vec{\delta}_j)} c_{\mathbb{B},\vec{k}}^{\dagger} d_m \right) \end{split}$$

Damit ergibt sich folgende Greensche Funktion

$$\left(z - \varepsilon_{m}\right) G_{d_{m},d_{m'}^{\dagger}} = \delta_{mm'} + \frac{1}{\sqrt{N}} \sum_{j\bar{k}} V_{mj} \mathrm{e}^{\mathrm{i}\bar{k}(\bar{l} + \bar{\delta}_{j})} G_{c_{B,\bar{k}},d_{m'}^{\dagger}}$$

$$G_{c_{B,\bar{k}},d_{m'}^{\dagger}} = \frac{1}{z} \left(-t \sum_{i} \mathrm{e}^{-\mathrm{i}\bar{k}\bar{\delta}_{j}} G_{c_{A,\bar{k}},d_{m'}^{\dagger}} + \frac{1}{\sqrt{N}} \sum_{mi} V_{mj} \mathrm{e}^{-\mathrm{i}\bar{k}(\bar{l} + \bar{\delta}_{j})} G_{d_{m},d_{m'}^{\dagger}}\right), \qquad G_{c_{A,\bar{k}},d_{m'}^{\dagger}} = -\frac{t \sum_{j} \mathrm{e}^{\mathrm{i}\bar{k}\bar{\delta}_{j}} G_{c_{B,\bar{k}},d_{m'}^{\dagger}}}{z}$$

$$\left(\underline{\underline{G}}^{-1}\right)_{mn} = \left(z - \varepsilon_m\right) \delta_{mn} - \frac{z}{N} \sum_{\hat{i}_b} \frac{\sum_{j} V_{mj} e^{ik\delta_j} \sum_{j'} V_{nj'} e^{-ik\delta_{j'}}}{z^2 - \varepsilon_{\hat{i}_b}^2}$$

Struktur von \underline{G}^{-1}

$$\underline{\underline{G}}^{-1} = \underline{\underline{Z}} - \underline{\underline{E}} - \underline{\underline{\Delta}}$$

Die gesuchte Hybridisierungsfunktion ist gegeben durch

$$\left(\underline{\underline{\Delta}}\right)_{mn} = \frac{Z}{N} \sum_{\vec{k}} \frac{\sum_{j} V_{mj} \mathrm{e}^{\mathrm{i}\vec{k}\vec{\delta}_{j}} \sum_{j'} V_{nj'} \mathrm{e}^{-\mathrm{i}\vec{k}\vec{\delta}_{j'}}}{z^{2} - \varepsilon_{\vec{k}}^{2}}$$

Hybridisierungsfunktion mittels Basistransformation I

Basistransformation

$$\begin{split} \tilde{C}_{0} &= \frac{1}{\sqrt{3}} \left(c_{\text{B},\vec{l}+\vec{\delta}_{1}} + c_{\text{B},\vec{l}+\vec{\delta}_{2}} + c_{\text{B},\vec{l}+\vec{\delta}_{3}} \right) \\ \tilde{C}_{1} &= \frac{1}{\sqrt{3}} \left(c_{\text{B},\vec{l}+\vec{\delta}_{1}} + e^{i\frac{2\pi}{3}} c_{\text{B},\vec{l}+\vec{\delta}_{2}} + e^{i\frac{4\pi}{3}} c_{\text{B},\vec{l}+\vec{\delta}_{3}} \right) \\ \tilde{C}_{2} &= \frac{1}{\sqrt{3}} \left(c_{\text{B},\vec{l}+\vec{\delta}_{1}} + e^{i\frac{4\pi}{3}} c_{\text{B},\vec{l}+\vec{\delta}_{2}} + e^{i\frac{2\pi}{3}} c_{\text{B},\vec{l}+\vec{\delta}_{3}} \right) \\ \tilde{C}_{2} &= \frac{1}{\sqrt{3}} \left(c_{\text{B},\vec{l}+\vec{\delta}_{1}} + e^{i\frac{4\pi}{3}} c_{\text{B},\vec{l}+\vec{\delta}_{2}} + e^{i\frac{2\pi}{3}} c_{\text{B},\vec{l}+\vec{\delta}_{3}} \right) \\ \tilde{C}_{2} &= \frac{1}{\sqrt{3}} \left(c_{\text{B},\vec{l}+\vec{\delta}_{1}} + e^{i\frac{4\pi}{3}} c_{\text{B},\vec{l}+\vec{\delta}_{2}} + e^{i\frac{2\pi}{3}} c_{\text{B},\vec{l}+\vec{\delta}_{3}} \right) \end{split}$$

$$H_{\text{Kop}} = \sum_{m=1}^{5} \sum_{i=1}^{3} \left(V_{mj} d_{m}^{\dagger} c_{B, \vec{l} + \vec{\delta}_{j}} + \overline{V}_{mj} c_{B, \vec{l} + \vec{\delta}_{j}}^{\dagger} d_{m} \right)$$

Hybridisierungsfunktion mittels Basistransformation II

$$\begin{split} H_{\text{Kop}} &= \frac{1}{\sqrt{3}} \Biggl(\Biggl(\Bigl(-\frac{3}{4} \sqrt{3} i b V_{pd\sigma} + \frac{3}{2} i b V_{pd\pi} \Bigr) \widetilde{c}_{1}^{\dagger} + \Bigl(\frac{3}{4} \sqrt{3} i b V_{pd\sigma} - \frac{3}{2} i b V_{pd\pi} \Bigr) \widetilde{c}_{2}^{\dagger} \Bigr) d_{1} \\ &+ \Biggl(\Bigl(\frac{3}{2} \sqrt{3} f V_{pd\sigma} + \frac{3}{2} h V_{pd\pi} \Bigr) \widetilde{c}_{1}^{\dagger} + \Bigl(\frac{3}{2} \sqrt{3} f V_{pd\sigma} + \frac{3}{2} h V_{pd\pi} \Bigr) \widetilde{c}_{2}^{\dagger} \Bigr) d_{2} \\ &+ \Biggl(\Bigl(\frac{3}{2} \sqrt{3} i f V_{pd\sigma} + \frac{3}{2} i h V_{pd\pi} \Bigr) \widetilde{c}_{1}^{\dagger} + \Bigl(-\frac{3}{2} \sqrt{3} i f V_{pd\sigma} - \frac{3}{2} i h V_{pd\pi} \Bigr) \widetilde{c}_{2}^{\dagger} \Bigr) d_{3} \\ &+ \Bigl(3 q V_{pd\sigma} + 3 \sqrt{3} b V_{pd\pi} \Bigr) \widetilde{c}_{0}^{\dagger} d_{4} \\ &+ \Bigl(\Bigl(\frac{3}{4} \sqrt{3} b V_{pd\sigma} - \frac{3}{2} b V_{pd\pi} \Bigr) \widetilde{c}_{1}^{\dagger} + \Bigl(\frac{3}{4} \sqrt{3} b V_{pd\sigma} - \frac{3}{2} b V_{pd\pi} \Bigr) \widetilde{c}_{2}^{\dagger} \Bigr) d_{5} \Biggr) \\ &+ \text{h.c.} \end{split}$$

$$\begin{split} \tilde{d_0} &= \frac{1}{\sqrt{2}} (d_5 - id_1) & d_{\chi^2 - y^2}, \ d_{\chi y} \\ \tilde{d_1} &= \frac{1}{\sqrt{2}} (d_2 + id_3) & d_{\chi z}, \ d_{zy} \end{split} \qquad \qquad \tilde{d_2} = \frac{1}{\sqrt{2}} (d_5 + id_1) \\ \tilde{d_3} &= \frac{1}{\sqrt{2}} (d_2 - id_3) \end{split}$$

Hybridisierungsfunktion mittels Basistransformation III

Erinnerung:
$$H_{\text{Kop}} = \sum_{m=1}^{5} \sum_{i=1}^{3} \left(V_{mj} d_m^{\dagger} c_{B,\vec{l}+\vec{\delta}_j} + \overline{V}_{mj} c_{B,\vec{l}+\vec{\delta}_j}^{\dagger} d_m \right)$$

$$\begin{split} H_{\text{Kop}} &= \frac{\sqrt{2}}{\sqrt{3}} \bigg(\bigg(\frac{3}{4} \sqrt{3} b V_{pd\sigma} - \frac{3}{2} b V_{pd\pi} \bigg) \bigg(\tilde{d}_{0}^{\dagger} \tilde{c}_{1} + \tilde{d}_{2}^{\dagger} \tilde{c}_{2} \bigg) \\ &+ \bigg(\frac{3}{2} \sqrt{3} f V_{pd\sigma} + \frac{3}{2} h V_{pd\pi} \bigg) \bigg(\tilde{d}_{1}^{\dagger} \tilde{c}_{1} + \tilde{d}_{3}^{\dagger} \tilde{c}_{2} \bigg) \\ &+ \bigg(\frac{3}{\sqrt{2}} q V_{pd\sigma} + 3 \frac{\sqrt{3}}{\sqrt{2}} b V_{pd\pi} \bigg) \tilde{d}_{4}^{\dagger} \tilde{c}_{0} \bigg) + \text{h.c.} \end{split}$$

Effektives Drei-Bänder Modell

Hybridisierungsfunktion mittels Basistransformation IV

$$H = -t\sum_{i=1}^{N}\sum_{j=1}^{3}\left(c_{\mathbb{A},\vec{l}_{i}}^{\dagger}c_{\mathbb{B},\vec{l}_{i}+\vec{\delta}_{j}} + c_{\mathbb{B},\vec{l}_{i}+\vec{\delta}_{j}}^{\dagger}c_{\mathbb{A},\vec{l}_{i}}\right) + \varepsilon\sum_{m=0}^{4}\tilde{d}_{m}^{\dagger}\tilde{d}_{m} + \sum_{m=0}^{4}\sum_{l=0}^{2}\left(\gamma_{ml}\tilde{d}_{m}^{\dagger}\tilde{c}_{l} + \gamma_{ml}\tilde{c}_{l}^{\dagger}\tilde{d}_{m}\right)$$

$$\underbrace{ Y}_{=} = \begin{pmatrix} 0 & \left(\frac{3}{\sqrt{8}} b V_{pd\sigma} - \frac{\sqrt{3}}{\sqrt{2}} b V_{pd\pi} \right) & 0 \\ 0 & \left(\frac{3}{\sqrt{2}} f V_{pd\sigma} + \frac{\sqrt{3}}{\sqrt{2}} h V_{pd\pi} \right) & 0 \\ 0 & 0 & \left(\frac{3}{\sqrt{8}} b V_{pd\sigma} - \frac{\sqrt{3}}{\sqrt{2}} b V_{pd\pi} \right) \\ 0 & 0 & \left(\frac{3}{\sqrt{8}} f V_{pd\sigma} + \frac{\sqrt{3}}{\sqrt{2}} h V_{pd\pi} \right) \end{pmatrix} = \begin{pmatrix} 0 & \xi & 0 \\ 0 & \chi & 0 \\ 0 & 0 & \xi \\ 0 & 0 & \chi \\ \zeta & 0 & 0 \end{pmatrix}$$

Hybridisierungsfunktion mittels Basistransformation V

- \blacksquare Die Struktur der Hybridisierungsfunktion $\underline{\Delta}$ kann direkt abgelesen werden
 - -> <u>∆</u> wird eine blockdiagonale Struktur mit zwei 2 × 2-Blöcken und einem 1 × 1-Block haben

Hybridisierungsfunktion mittels Basistransformation VI

$$\underline{\underline{\Delta}} = \begin{pmatrix} \begin{pmatrix} \xi^2 & \xi \chi \\ \xi \chi & \chi^2 \end{pmatrix} G_{\bar{c}_1, \bar{c}_1^{\dagger}} & 0 & 0 & 0 \\ 0 & 0 & \begin{pmatrix} \xi^2 & \xi \chi \\ \xi \chi & \chi^2 \end{pmatrix} G_{\bar{c}_2, \bar{c}_2^{\dagger}} & 0 \\ 0 & 0 & 0 & 0 & \zeta^2 G_{\bar{c}_n, \bar{c}_1^{\dagger}} \end{pmatrix}$$

- lacksquare $G_{\tilde{c}_l, \tilde{c}_l^\dagger}$ über Rücktransformation von $G_{c_R, l_l, c_R^\dagger}$ bestimmen
- lacksquare $oldsymbol{G}_{c_{oldsymbol{B},ar{oldsymbol{k}}},c_{oldsymbol{B},ar{oldsymbol{k}}}^{\dagger}$ des ungestörten Graphens benutzen
 - Einfluss des Mn geht für große Systemgrößen gegen 0

$$\text{Erinnerung: } H_0 = -t \sum_{i=1}^N \sum_{j=1}^3 \left(c_{\mathbb{A},\vec{l}_i}^\dagger c_{\mathbb{B},\vec{l}_i+\vec{\delta}_j} + c_{\mathbb{B},\vec{l}_i+\vec{\delta}_j}^\dagger c_{\mathbb{A},\vec{l}_i} \right) = -t \sum_{j\vec{k}} \left(\mathrm{e}^{\mathrm{i}\vec{k}\vec{\delta}_j} c_{\mathbb{A},\vec{k}}^\dagger c_{\mathbb{B},\vec{k}} + \mathrm{e}^{-\mathrm{i}\vec{k}\vec{\delta}_j} c_{\mathbb{B},\vec{k}}^\dagger c_{\mathbb{A},\vec{k}} \right) = -t \sum_{j\vec{k}} \left(\mathrm{e}^{\mathrm{i}\vec{k}\vec{\delta}_j} c_{\mathbb{A},\vec{k}}^\dagger c_{\mathbb{B},\vec{k}} + \mathrm{e}^{-\mathrm{i}\vec{k}\vec{\delta}_j} c_{\mathbb{B},\vec{k}}^\dagger c_{\mathbb{A},\vec{k}} \right) = -t \sum_{j\vec{k}} \left(\mathrm{e}^{\mathrm{i}\vec{k}\vec{\delta}_j} c_{\mathbb{A},\vec{k}}^\dagger c_{\mathbb{B},\vec{k}} + \mathrm{e}^{-\mathrm{i}\vec{k}\vec{\delta}_j} c_{\mathbb{B},\vec{k}}^\dagger c_{\mathbb{A},\vec{k}} \right)$$

Hybridisierungsfunktion mittels Basistransformation VII

$$G_{c_{B,\vec{k}},c_{B,\vec{k}}^{\dagger}} = \frac{z}{z^2 - \varepsilon_{\vec{k}}^2} \quad \Longrightarrow \quad G_{\bar{c}_{l},\bar{c}_{l'}^{\dagger}} = \sum_{\vec{k}} D_{l,\vec{k}} D_{l',\vec{k}}^{\dagger} G_{c_{B,\vec{k}},c_{B,\vec{k}}^{\dagger}}$$

Die Koeffizienten $D_{l\,ec{k}}$ können von den Fouriertransformationen für $ilde{c}_l$ abgelesen werden

$$\tilde{c}_0 = \frac{1}{\sqrt{3N}} \sum_{\vec{k}} \sum_{j=1}^3 \mathrm{e}^{\mathrm{i} \vec{k} (\vec{l} + \vec{\delta}_j)} c_{\mathrm{B}, \vec{k}} \; , \quad \tilde{c}_1 = \frac{1}{\sqrt{3N}} \sum_{\vec{k}} \sum_{j=1}^3 \mathrm{e}^{\mathrm{i} \vec{k} (\vec{l} + \vec{\delta}_j) + \mathrm{i} \frac{2(j-1)\pi}{3}} c_{\mathrm{B}, \vec{k}} \; , \quad \tilde{c}_2 = \frac{1}{\sqrt{3N}} \sum_{\vec{k}} \sum_{j=1}^3 \mathrm{e}^{\mathrm{i} \vec{k} (\vec{l} + \vec{\delta}_j) - \mathrm{i} \frac{2(j-1)\pi}{3}} c_{\mathrm{B}, \vec{k}} \; , \quad \tilde{c}_3 = \frac{1}{\sqrt{3N}} \sum_{\vec{k}} \sum_{j=1}^3 \mathrm{e}^{\mathrm{i} \vec{k} (\vec{l} + \vec{\delta}_j) - \mathrm{i} \frac{2(j-1)\pi}{3}} c_{\mathrm{B}, \vec{k}} \; , \quad \tilde{c}_4 = \frac{1}{\sqrt{3N}} \sum_{\vec{k}} \sum_{j=1}^3 \mathrm{e}^{\mathrm{i} \vec{k} (\vec{l} + \vec{\delta}_j) - \mathrm{i} \frac{2(j-1)\pi}{3}} c_{\mathrm{B}, \vec{k}} \; , \quad \tilde{c}_{1} = \frac{1}{\sqrt{3N}} \sum_{\vec{k}} \sum_{j=1}^3 \mathrm{e}^{\mathrm{i} \vec{k} (\vec{l} + \vec{\delta}_j) - \mathrm{i} \frac{2(j-1)\pi}{3}} c_{\mathrm{B}, \vec{k}} \; , \quad \tilde{c}_{2} = \frac{1}{\sqrt{3N}} \sum_{\vec{k}} \sum_{j=1}^3 \mathrm{e}^{\mathrm{i} \vec{k} (\vec{l} + \vec{\delta}_j) - \mathrm{i} \frac{2(j-1)\pi}{3}} c_{\mathrm{B}, \vec{k}} \; , \quad \tilde{c}_{3} = \frac{1}{\sqrt{3N}} \sum_{\vec{k}} \sum_{j=1}^3 \mathrm{e}^{\mathrm{i} \vec{k} (\vec{k} + \vec{\delta}_j) - \mathrm{i} \frac{2(j-1)\pi}{3}} c_{\mathrm{B}, \vec{k}} \; , \quad \tilde{c}_{3} = \frac{1}{\sqrt{3N}} \sum_{\vec{k}} \sum_{j=1}^3 \mathrm{e}^{\mathrm{i} \vec{k} (\vec{k} + \vec{\delta}_j) - \mathrm{i} \frac{2(j-1)\pi}{3}} c_{\mathrm{B}, \vec{k}} \; , \quad \tilde{c}_{3} = \frac{1}{\sqrt{3N}} \sum_{\vec{k}} \sum_{j=1}^3 \mathrm{e}^{\mathrm{i} \vec{k} (\vec{k} + \vec{\delta}_j) - \mathrm{i} \frac{2(j-1)\pi}{3}} c_{\mathrm{B}, \vec{k}} \; , \quad \tilde{c}_{3} = \frac{1}{\sqrt{3N}} \sum_{\vec{k}} \sum_{j=1}^3 \mathrm{e}^{\mathrm{i} \vec{k} (\vec{k} + \vec{\delta}_j) - \mathrm{i} \frac{2(j-1)\pi}{3}} c_{\mathrm{B}, \vec{k}} \; , \quad \tilde{c}_{3} = \frac{1}{\sqrt{3N}} \sum_{\vec{k}} \sum_{j=1}^3 \mathrm{e}^{\mathrm{i} \vec{k} (\vec{k} + \vec{\delta}_j) - \mathrm{i} \frac{2(j-1)\pi}{3}} c_{\mathrm{B}, \vec{k}} \; , \quad \tilde{c}_{3} = \frac{1}{\sqrt{3N}} \sum_{\vec{k}} \sum_{j=1}^3 \mathrm{e}^{\mathrm{i} \vec{k} (\vec{k} + \vec{k} + \vec{k$$

$$G_{\bar{c}_0,\bar{c}_0^{\dagger}} = \frac{z}{3N} \sum_{\vec{k}} \frac{\sum_{j} e^{i\vec{k}\vec{\delta}_j} \sum_{j'} e^{-i\vec{k}\vec{\delta}_{j'}}}{z^2 - \varepsilon_{\vec{k}}^2} \;, \quad G_{\bar{c}_1,\bar{c}_1^{\dagger}} = \frac{z}{3N} \sum_{\vec{k}} \frac{\sum_{j} e^{i\vec{k}\vec{\delta}_j + i\frac{2(j'-1)\pi}{3}} \sum_{j'} e^{-i\vec{k}\vec{\delta}_{j'} - i\frac{2(j'-1)\pi}{3}}}{z^2 - \varepsilon_{\vec{k}}^2} \;, \quad G_{\bar{c}_2,\bar{c}_2^{\dagger}} = \frac{z}{3N} \sum_{\vec{k}} \frac{\sum_{j} e^{i\vec{k}\vec{\delta}_{j'} - i\frac{2(j'-1)\pi}{3}} \sum_{j'} e^{-i\vec{k}\vec{\delta}_{j'} + i\frac{2(j'-1)\pi}{3}}}{z^2 - \varepsilon_{\vec{k}}^2}$$

Hybridisierungsfunktion mittels Basistransformation VIII

$$\underline{\underline{\Delta}} = \begin{pmatrix} \begin{pmatrix} \xi^2 & \xi \chi \\ \xi \chi & \chi^2 \end{pmatrix} G_{\bar{c}_1,\bar{c}_1^{\dagger}} & 0 & 0 & 0 \\ 0 & 0 & & \begin{pmatrix} \xi^2 & \xi \chi \\ \xi \chi & \chi^2 \end{pmatrix} G_{\bar{c}_2,\bar{c}_2^{\dagger}} & 0 \\ 0 & 0 & & \begin{pmatrix} \xi^2 & \xi \chi \\ \xi \chi & \chi^2 \end{pmatrix} G_{\bar{c}_2,\bar{c}_2^{\dagger}} & 0 \\ 0 & 0 & 0 & & \zeta^2 G_{\bar{c}_0,\bar{c}_0^{\dagger}} \end{pmatrix}$$

Einfluss der Höhe des Mn

- b klein bei geringen Höhen $\rightarrow E_{z,xy}$ und E_{z,x^2-y^2} verschwinden
- lacktriangledown h klein bei geringen Höhen o $V_{pd\pi}$ geringen Einfluss bei $E_{z,xz}$ und $E_{z,zy}$
- $\blacksquare \ q=0$ bei genau $z=1\,\mathring{\rm A} \to V_{pd\sigma}$ kein Einfluss bei $E_{z,3z^2-r^2}$

Zusammenfassung und Ausblick

- Hybridisierungsfunktion bestimmt
 - in neuer Basis in irreduzible Blöcke zerfallen
- effektives Drei-Bänder Modell für Ankopplung der 3*d*-Orbitale an Graphenbandstruktur
- Höhe des Mn diskutiert

Zusammenfassung und Ausblick

- Hybridisierungsfunktion bestimmt
 - in neuer Basis in irreduzible Blöcke zerfallen
- effektives Drei-Bänder Modell für Ankopplung der 3*d*-Orbitale an Graphenbandstruktur
- Höhe des Mn diskutiert
- Zusammhang zwischen q = 0 bei Höhe z = 1 Å?
- Coulomb-Wechselwirkung zwischen Elektronen
- σ -Orbitale mit einbeziehen
 - Bindung durch fehlendes C aufgebrochen
- Linearkombinationen der p_z -Orbitale und ein σ -Zustand als Abschirmkanäle
 - -> Spin von $\frac{1}{2}$ bleibt übrig