Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

ИНСТИТУТ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ КАФЕДРА №31 ПРИКЛАДНАЯ МАТЕМАТИКА

Отчет

по научно-исследовательской работе на тему:

«Оптимизация канального радиатора»

Выполнил: Есис А. И.

Руководитель проекта: Чмыхов М. А.

Аннотация

В данной работе проведено комплексное исследование теплоотводящей системы радиатора с использованием интегрированных вычислительных инструментов. В начальной стадии исследования была построена геометрия и сетка радиатора с применением программного комплекса SALOME Meca. Далее, для получения данных о тепловом и газодинамическом поведении системы, были проведены численные симуляции с использованием программного пакета OpenFOAM.

Основным этапом работы стал анализ результатов численных симуляций и СОВЕР-ШЕНСТВОВАНИЯ геометрии радиатора с использованием методов оптимизации. Первоначальная оптимизация включала в себя полный перебор точек в пространстве параметров, что позволило выделить оптимальные конфигурации. ЗАТЕМ был применен эволюционный алгоритм, который существенно ускорил процесс оптимизации, сократив количество необходимых расчетов.

Дополнительно, использовались градиентные методы оптимизации, такие как L-BFGS-B, для повышения эффективности процесса оптимизации. Каждый этап исследования включал в себя визуализацию результатов при помощи ParaView.

Полученные результаты могут быть использованы для разработки и улучшения радиаторов в различных инженерных областях, где теплоотвод играет ключевую роль.

Содержание

1	Введение	4
2	Введение	4
3	Данные предыдущего этапа исследования	6
4	Проблема с автоматической генерацией сетки в SALOME	16
	4.1 SubShapeAllIDs	17
	4.2 GetShapesOnBoxIDs	17
	4.3 GetShapesOnPlaneWithLocationIDs	17
5	Автоматизированный процесс генерации сетки и расчета	18
6	Особенности фиксации и движения цилиндров	18
7	Первые результаты	19
8	Оптимизация процесса расчета	20
9	Увеличение количества точек для анализа	21
10	Первые результаты и наблюдения	22
11	Эксперименты с геометрией и анализ результатов	23
12	Оптимизация расчетной сетки	25
13	Модификация геометрии и уменьшение воздуховода	26
14	Анализ реальной системы и изменения параметров	26
1 5	Применение эволюционного алгоритма в оптимизации	28
16	Использование градиентного метода	29
17	Заключение	31
18	Приложение А	34
19	Приложение Б	35

1 Введение

2 Введение

Программные продукты OpenFOAM, ParaView и SALOME Меса представляют собой мощный инструментарий, широко используемый в области вычислительной гидрогазодинамики (CFD) и численного моделирования. Совместное использование этих инструментов обеспечивает комплексное решение для анализа и визуализации сложных физических процессов, таких как течение жидкостей, теплообмен, движение твердых тел и другие.

OpenFOAM (Open Field Operation and Manipulation) — свободное и открытое программное обеспечение, предназначенное для решения уравнений Навье-Стокса и других математических моделей, связанных с течением жидкостей и газов. Этот инструмент предоставляет разнообразные методы решения, что позволяет исследовать различные типы потоков и применять различные физические модели. ОреnFOAM является расширяемым и настраиваемым инструментом, который можно адаптировать под конкретные задачи и требования.

ParaView обеспечивает возможности визуализации результатов численных симуляций. Он поддерживает создание различных графических представлений, включая 2D и 3D графику, контурные изображения, срезы и анимации. ParaView также обладает интерактивными возможностями для анализа данных в реальном времени и взаимодействия с моделью, что облегчает глубокий анализ результатов.

SALOME Меса является интегрированной средой для предварительной обработки геометрии и настройки расчетной сетки для OpenFOAM. Этот инструмент обеспечивает интуитивный пользовательский интерфейс для создания и манипулирования сложными геометрическими моделями, а также настройки сеток различной структуры. SALOME Меса предоставляет инструменты для проверки качества сетки и ее подготовки к последующим симуляциям в OpenFOAM [1].

В совокупности OpenFOAM, ParaView и SALOME Meca предоставляют мощный комплект инструментов для моделирования и визуализации в области CFD. Они позволяют проводить сложные численные симуляции, анализировать результаты и визуализировать данные, способствуя лучшему пониманию физических процессов и принятию информированных решений в различных областях применения, таких как авиация,

автомобильная промышленность, энергетика и др.

3 Данные предыдущего этапа исследования

В данном проекте исследуется задача охлаждения нагретого тела с помощью установки радиатора.

В начале проекта геометрия радиатора строится с использованием графического интерфейса SALOME. Используя интуитивно понятный пользовательский интерфейс, создается геометрия радиатора. Этот этап позволяет получить исходную геометрию, которая будет использоваться для последующих анализов.

Затем, для повышения гибкости и автоматизации процесса, создается скрипт на языке Python, который генерирует геометрию радиатора. В этом скрипте можно устанавливать параметры радиатора, такие как расположение элементов. Это позволяет быстро создавать и изменять различные варианты геометрии радиатора для дальнейшего анализа и оптимизации.

Для исследования были использованы три различных варианта геометрии радиатора. Примеры геометрии:

Рис. 1: Модель геометрии 1

Рис. 2: Модель геометрии 2

Рис. 3: Модель геометрии 3

Рис. 4: Модель геометрии 1

Рис. 5: Модель геометрии 2

Рис. 6: Модель геометрии 3

В данных моделях части радиатора (3 цилиндрических элемента) являются подвижными и могут быть сдвинуты по оси Ох. Их радиус основания равен 5 мм, а высота 10 мм. Размеры подложки радиатора по ширине и длине 30 мм, а по высоте 2 мм. Нагреватель представляет собой куб с длиной ребра 10 мм и объемной плотностью источников тепла 2.94 * 10⁷ Вт/³. Скорость потока воздуха 5.6 м/с. Воздух находится в параллелепипеде размерами 300 мм по длине, 50 мм по ширине и 100 мм по высоте. Начальная температура –296.9 К. Параметры материалов приведены в таблице 1 [2].

	Нагреватель	Радиатор	Воздух
Плотность [кг/ 3]	1280	2700	1.196
Ср [Дж/кг*К]	1004	900	1005
Коэффициент теплопроводности [Вт/м*К]	80	200	
Молекулярная масса [г/моль]	50	27	28.9
Вязкость [кг/м*с]			$1.8 * 10^{-5}$
Число Прандтля			0.7

Таблица 1: Параметры задачи

Затем по модели была построена сетка с уплотнением в области радиатора и нагревателя и произведено разбиение на регионы:

Рис. 7: Сетка модели 1

Для численного решения задачи используется решатель chtMultiRegionFoam. Он применяется для расчета теплообмена между жидкостью/газом и твердым телом. А также для моделирования сложных задач, связанных с теплопередачей и теплообменом в многорегиональных системах [3]. Для каждого региона задавались начальные и граничные условия. Были также заданы дополнительные функции для анализа [2]. Для моделей были получены следующие результаты распределений по температурам:

Рис. 8: Распределение температуры для модели 1

Рис. 9: Распределение температуры для модели 2

Рис. 10: Распределение температуры для модели 3

Были получены следующие результаты для моделей:

1. Первая модель:

- Средняя температура радиатора: 508.381 К
- Средняя температура нагревателя: 533.363 К
- Средняя температура интерфейса между нагревателем и радиатором: 521.537 K

2. Вторая модель:

- Средняя температура радиатора: 555.23 К
- Средняя температура нагревателя: 576.306 К
- Средняя температура интерфейса между нагревателем и радиатором: 564.451
 К

3. Третья модель:

- Средняя температура радиатора: 519.325 К
- Средняя температура нагревателя: 537.741 К
- Средняя температура интерфейса между нагревателем и радиатором: 525.862
 К

Построены графики температуры в нагревателе:

Рис. 11: Распределение температуры в нагревателе для модели 1

Рис. 12: Распределение температуры в нагревателе для модели 2

Рис. 13: Распределение температуры в нагревателе для модели 3

Рис. 14: Распределение температур в нагревателях для всех моделей

Затем было проведено 2000 итераций расчета. Для отслеживания сходимости во время проведения расчета были построены следующие графики (пример для модели 1):

Рис. 15: Зависимость максимальной температуры радиатора от шага

Рис. 16: Зависимость средней температуры радиатора от шага

Рис. 17: Зависимость средней температуры интерфейса между нагревателем и радиатором от шага

Рис. 18: Зависимость максимальной температуры нагревателя от шага

Рис. 19: Зависимость средней температуры нагревателя от шага

Далее были построены графики распределений температуры в центральном сечении:

Рис. 20: Распределение температуры для модели 1

Рис. 21: Распределение температуры для модели 2

Рис. 22: Распределение температуры для модели 3

И графики распределений скоростей:

Рис. 23: Распределение скоростей для модели 1

Рис. 24: Распределение скоростей для модели 2

Рис. 25: Распределение скоростей для модели 3

Рис. 26: Распределение скоростей для модели 1

4 Проблема с автоматической генерацией сетки в SALOME

В ходе исследованиЯ при перегенерации геометрии в SALOME, используя дамп скрипта, мы получали сетку с ошибками из-за нарушения идентификаторов (ID) сущностей.

Для решения данной проблемы был использован Python API в SALOME и применялись следующие методы:

4.1 SubShapeAllIDs

Функция SubShapeAllIDs в Python API SALOME используется для получения всех идентификаторов (ID) подформ в геометрии. Это полезно, когда необходимо провести операции с каждой подформой в модели.

Пример использования:

```
subshape_ids = geompy.SubShapeAllIDs(main_shape)
print(f"ID подформ: {subshape_ids}")
```

В данном примере main_shape - это главная форма в вашей геометрии.

4.2 GetShapesOnBoxIDs

Функция GetShapesOnBoxIDs возвращает идентификаторы форм, которые содержатся внутри заданного объема, определенного прямоугольным параллелепипедом.

Пример использования:

```
box = geompy.MakeBox(0, 0, 0, 10, 10, 10)
shapes_inside_box_ids = geompy.GetShapesOnBoxIDs(main_shape, box)
print(f"ID форм внутри прямоугольного параллелепипеда: {shapes_inside_box_ids}")
```

Здесь main_shape - это опять же главная форма, а box - созданный прямоугольный параллелепипед.

4.3 GetShapesOnPlaneWithLocationIDs

Функция GetShapesOnPlaneWithLocationIDs возвращает идентификаторы форм, которые пересекают заданную плоскость.

Пример использования:

```
plane = geompy.MakePlane(0, 0, 1, 0)
shapes_on_plane_ids = geompy.GetShapesOnPlaneWithLocationIDs(main_shape, plane)
print(f"ID форм, пересекаемых плоскостью: {shapes_on_plane_ids}")
```

В этом примере main_shape - главная форма, а plane - созданная плоскость.

Используя эти методы, мы смогли стабилизировать процесс генерации сетки, обеспечивая постоянство идентификаторов форм даже при обновлении геометрии. Это решение позволило нам успешно использовать скрипт в дальнейших этапах нашего исследования.

5 Автоматизированный процесс генерации сетки и расчета

На данном этапе работы рассматривается процесс автоматизации генерации сетки в программе SALOME и выполнения расчетов в OpenFOAM для различных комбинаций параметров. Ключевыми параметрами, подлежащими варьированию, являются shift_first_cylinder и shift_second_cylinder.

Переменная shift_first_cylinder представляет собой сдвиг первого цилиндра в радиаторе, a shift_second_cylinder — сдвиг второго цилиндра. Эти параметры влияют на геометрию радиатора и, следовательно, на условия теплообмена в системе.

Скрипт создает уникальное имя для каждой комбинации параметров и затем копирует исходный кейс в новую директорию. После этого SALOME запускается в режиме командной строки для выполнения генерации сетки с учетом новой геометрии, заданной параметрами сдвига цилиндров. Далее запускаются соответствующие bash-скрипты для выполнения кейса в OpenFOAM.

После завершения расчета, автоматически извлекаются результаты. Сценарий ищет и анализирует файл с данными теплообмена в постпроцессинговой директории. Это позволяет собирать и систематизировать конечные результаты для каждой конфигурации геометрии. Такой подход обеспечивает эффективный анализ влияния различных параметров на теплоотдачу системы.

6 Особенности фиксации и движения цилиндров

Необходимо отметить, что в проведенных исследованиях у нас было три цилиндра в системе. Тем не менее, третий цилиндр был зафиксирован в положении (0, 0), и двигались только два оставшихся цилиндра. Такой выбор сделан с целью упростить визуализацию и анализ результатов.

Такой подход облегчает анализ и интерпретацию результатов, обеспечивая более ясное представление о влиянии конкретных параметров на эффективность теплообмена в рассматриваемой системе.

7 Первые результаты

На основе автоматизированного процесса были получены первые результаты, охватывающие 25 точек варьирования параметров. Исследуемые параметры shift_first_cylinder и shift_second_cylinder изменялись от 0 до 20 с шагом 5. Эти значения представляют различные комбинации сдвигов цилиндров в радиаторе, что отражает влияние геометрических параметров на теплоотдачу системы.

Рис. 27: Зависимость максимальной температуры нагревателя от сдвигов цилиндров

Рис. 28: Зависимость максимальной температуры нагревателя от сдвигов цилиндров

Рис. 29: Зависимость максимальной температуры нагревателя от сдвигов цилиндров

Для улучшения визуализации и наглядности полученных данных была проведена интерполяция поверхности. Интерполированная поверхность дает представление о поведении системы в пространстве параметров и позволяет выявить области оптимальных значений для исследуемых параметров.

Этот этап анализа предоставляет первичное представление о влиянии сдвига цилиндров на теплообмен в системе.

8 Оптимизация процесса расчета

С целью оптимизации процесса расчета для большего количества точек был реализован многопоточный код на языке программирования Python. Для этого был использован модуль multiprocessing, который позволяет создавать и управлять параллельными процессами.

Прежде всего, были внесены некоторые изменения в существующий код. Введены параметры shift_third_cylinder и all_data для адаптации к третьему цилиндру и сбору результатов в разделяемом словаре. Это позволило более гибко настраивать геометрию и эффективно собирать результаты расчетов.

С использованием модуля multiprocessing была реализована функция run_simulation, которая выполняет расчет для каждой комбинации параметров в отдельном процессе. Результаты каждого процесса сохраняются в разделяемом словаре all_data, где ключами являются уникальные идентификаторы (например, _0_0_0), а значениями — результаты расчетов.

Затем, с использованием библиотеки Pool и метода starmap, были запущены отдельные процессы для каждой комбинации параметров. Это позволило распараллелить выполнение расчетов и значительно ускорить процесс.

Результаты расчетов были собраны в разделяемом словаре all_data, который после завершения всех процессов может быть использован для анализа и построения интерполяции. Это позволяет обработать большой объем данных более эффективно, особенно при увеличении числа комбинаций параметров для анализа.

9 Увеличение количества точек для анализа

Оптимизация процесса расчета с использованием многопоточности значительно повысила эффективность анализа.

Так, на следующем этапе было проведено исследование с шагом 2, что дало 121 точку для анализа. Это уже более подробное и детальное исследование, что позволяет получить более точные представления о влиянии параметров на характеристики системы.

Рис. 30: Зависимость максимальной температуры нагревателя от сдвигов цилиндров (121 точка)

Рис. 31: Зависимость максимальной температуры нагревателя от сдвигов цилиндров (121 точка)

Затем мы перешли к шагу 1, что привело к анализу 441 точки.

Рис. 32: Зависимость максимальной температуры нагревателя от сдвигов цилиндров (441 точка)

Рис. 33: Зависимость максимальной температуры нагревателя от сдвигов цилиндров (441 точка)

10 Первые результаты и наблюдения

Первые результаты анализа геометрии системы показали интересные закономерности. В частности, было отмечено, что минимумы характеристик системы наблюдаются при равных сдвигах первого и второго цилиндров.

Рис. 34: Зависимость максимальной температуры нагревателя от сдвигов цилиндров (441 точка)

При равных сдвигах цилиндров они касаются друг друга. Такая конфигурация способствует более эффективному теплообмену между цилиндрами и более равномерному распределению тепловой нагрузки.

Рис. 35: Геометрия при которой достигается минимальное значение

11 Эксперименты с геометрией и анализ результатов

Однако эта геометрия не демонстрировала реальной зависимости между расположением цилиндров и температурой. В ответ на это наблюдение был проведен ряд экспериментов с общей геометрией системы.

В первом эксперименте было решено уменьшить диаметр цилиндров в два раза, сделав их тоньше (2.5 мм). Это привело к тому, что цилиндры перестали касаться друг друга, создавая новые условия для теплообмена. Теперь теплообмен между цилиндрами осуществляется через воздушный зазор.

Рис. 36: Новая геометрия

После внесения изменений в геометрию системы были получены более интересные результаты, которые отличаются от предыдущих экспериментов. Новая конфигурация цилиндров более чувствительна к расположению внутри системы, и температурные различия стали более заметными.

Например, можно заметить, что при размещении ближе к центру системы температуры становятся меньше. Это может быть обусловлено более равномерным распреде-

лением тепла в системе и более эффективным теплообменом.

Рис. 37: Зависимость максимальной температуры нагревателя от сдвигов цилиндров

Рис. 38: Зависимость максимальной температуры нагревателя от сдвигов цилиндров

Рис. 39: Зависимость максимальной температуры нагревателя от сдвигов цилиндров

В ходе экспериментов было обнаружено, что существует оптимальная конфигурация, при которой достигается минимум температуры в системе. Эта конфигурация характеризуется расстановкой цилиндров по диагонали.

Рис. 40: Пример миниму при новой геометрии

А также при данной конфигурации будет достигаться минимум максимальной температуры нагревателя.

Рис. 41: Пример минимума при новой геометрии

12 Оптимизация расчетной сетки

Для более глубокого анализа системы и выявления потенциальных выбросов в температурных данных, мы решили оптимизировать расчетную сетку. Используя параметры NETGEN_3D, мы уменьшили размер элементов сетки.

Этот подход позволил нам более детально рассмотреть поведение системы в местах с высокими градиентами температуры и выделить потенциальные выбросы. Результаты показали, что некоторые точки действительно являются выбросами, что может быть связано с особенностями теплового распределения в этих областях.

13 Модификация геометрии и уменьшение воздуховода

Далее мы провели серию изменений в геометрии системы. Одним из ключевых моментов было уменьшение воздуховода практически до минимального зазора в 2 мм к цилиндрам. Это решение позволило избежать дополнительных условий на границе между воздуховодом и цилиндрами, создавая более естественные условия для теплового обмена.

С учетом внесенных изменений в геометрию системы и уменьшения воздуховода, мы провели новый ряд расчетов и получили следующие результаты.

Рис. 42: Зависимость максимальной температуры нагревателя от сдвигов цилиндров

Рис. 43: Зависимость максимальной температуры нагревателя от сдвигов цилиндров

14 Анализ реальной системы и изменения параметров

Далее в нашем исследовании мы перешли к анализу более реалистичных условий, представляющих реальную систему охлаждения. Внесенные изменения включают снижение скорости воздуха внутри воздуховода до 3 м/с (по сравнению с предыдущим

Рис. 44: Скорость течения

Рис. 45: Новая геометрия

значением $5.6~\mathrm{m/c}$), замену материала радиатора на медь (предыдущий материал - алюминий), а также модификацию геометрии нагревателя, сделав его тоньше и значительно больше по размерам, а саму подложку радиатора сделав толще.

Рис. 46: Измененная геометрия

Рис. 47: Зависимость максимальной температуры нагревателя от сдвигов цилиндров

Рис. 48: Зависимость максимальной температуры нагревателя от сдвигов цилиндров

15 Применение эволюционного алгоритма в оптимизации

Для более эффективного и быстрого поиска оптимальных параметров в задаче охлаждения был применен эволюционный алгоритм. Эволюционные алгоритмы — это класс методов оптимизации, вдохновленных процессами биологической эволюции. Они включают в себя механизмы отбора, скрещивания и мутации, а применительно к задачам оптимизации, такие алгоритмы позволяют находить оптимальные решения в пространствах больших размерностей.

Принцип работы эволюционного алгоритма можно кратко описать следующим образом:

- 1. **Инициализация популяции:** Создается начальная популяция индивидов (наборов параметров) случайным образом или на основе каких-то эвристик.
- 2. **Оценка приспособленности:** Каждый индивид из популяции оценивается по степени приспособленности в соответствии с целевой функцией. В нашем контексте целевая функция минимизация максимальной температуры внутри нагрева-

теля.

- 3. **Отбор:** Выбираются наиболее приспособленные индивиды для следующего поколения. Это может происходить различными методами, такими как турнирный отбор, рулеточный отбор и др.
- 4. **Скрещивание:** Происходит кроссовер (скрещивание) между выбранными индивидами, что приводит к созданию новых индивидов. Это позволяет объединить положительные черты родителей.
- 5. **Мутация:** Некоторые индивиды могут подвергаться мутациям, изменяя свои параметры с определенной вероятностью. Это вносит элемент случайности и разнообразия в популяцию.
- 6. **Повторение:** Описанные шаги повторяются в цикле до достижения критерия остановки, такого как заданное количество поколений или достижение требуемой точности.

Эволюционные алгоритмы являются мощным инструментом для оптимизации в больших пространствах параметров, позволяя находить приближенно оптимальные решения в условиях ограниченной информации о системе.

Применение эволюционного алгоритма в задаче оптимизации параметров системы охлаждения значительно снизило количество необходимых расчетов. Вместо полного перебора всех 441 точек в пространстве параметров, алгоритм смог достичь точек минимума всего за 50 расчетов.

16 Использование градиентного метода

Помимо дифференциальной эволюции, наша работа включала использование градиентного метода для оптимизации. Градиентные методы основаны на использовании градиента (производной) целевой функции для нахождения экстремума. В контексте оптимизации, где целью является минимизация или максимизация функции, градиентный метод может эффективно приближаться к оптимальному решению.

В рамках градиентного метода особенно полезными являются методы оптимизации с использованием градиента первого и второго порядка, такие как метод наименьших квадратов (L-BFGS-B) или метод сопряженных градиентов (CG).

Преимущества использования градиентных методов включают:

- 1. **Быстрая сходимость:** Градиентные методы могут сходиться быстро, особенно при правильном выборе параметров и хорошей обусловленности задачи.
- 2. **Точность результатов:** Градиентные методы могут предоставить точные результаты в задачах, где необходимо достичь высокой точности оптимизации.

Рис. 49: Зависимость максимальной температуры нагревателя от сдвигов цилиндров

17 Заключение

В ходе нашей работы мы провели комплексное исследование системы охлаждения, используя численные методы и оптимизацию. Ниже представлены ключевые выводы и результаты нашей работы:

- 1. **Геометрические изменения:** Изначально мы провели анализ геометрии системы, исследуя влияние расположения цилиндров на эффективность охлаждения. Эксперименты с различными конфигурациями позволили нам выявить оптимальные расстановки и влияние контакта цилиндров друг с другом на тепловые характеристики.
- 2. Оптимизация с использованием полного перебора: Мы провели первоначальную оптимизацию системы, используя полный перебор, что позволило нам выявить оптимальные точки в пространстве параметров. Это дало общий обзор зависимостей и минимумов целевой функции.
- 3. **Многопоточность для улучшения производительности:** В процессе увеличения количества точек в пространстве параметров мы использовали многопоточность для оптимизации, что значительно ускорило процесс расчета и позволило нам провести более подробное исследование.
- 4. **Изменения в геометрии и параметрах системы:** Мы исследовали влияние различных параметров, таких как скорость воздуха и материалы, на эффективность охлаждения. Изменения в геометрии и параметрах системы привели к новым интересным результатам, позволяя лучше понять зависимости и оптимизировать систему.
- 5. **Эволюционный алгоритм:** Мы применили эволюционный алгоритм для оптимизации системы. Этот метод позволил нам более эффективно находить точки минимума, снижая количество расчетов по сравнению с полным перебором.
- 6. **Градиентные методы оптимизации:** Использование градиентных методов, таких как L-BFGS-B, добавило эффективность и точность в наш арсенал оптимизационных методов.
- 7. **Выводы и перспективы:** На основе результатов исследования мы делаем вывод о том, что оптимизация геометрии и параметров системы охлаждения может суще-

ственно повысить ее эффективность. Подход с использованием различных методов оптимизации и численного моделирования предоставляет мощный инструментарий для разработки и улучшения теплоотводящих систем. В будущем возможно проведение более глубоких исследований с учетом дополнительных факторов и условий эксплуатации системы.

Список литературы

- [1] Introduction to Salome Platform GUI 9.5.0 documentation. URL: https://docs.salome-platform.org/latest/gui/GUI/introduction.html.
- [2] Conjugate heat transfer CFD tutorial for plate fin heat sink. 2020. URL: http://rgdoi.net/10.13140/RG.2.2.26603.36640.
- $[3] \begin{tabular}{ll} OpenFOAM: User Guide: chtMultiRegionFoam. URL: \\ https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-heat-transfer-chtMultiRegionFoam.html. \\ \end{tabular}$

18 Приложение А

Проект можно найти на github (github.com/AlexEsn/FOAM_project), где содержатся все скрипты и кейсы.

19 Приложение Б

В процессе работы был найден баг в SALOME-9.9.0: при дампе Python скрипта с сеткой создается файл с ошибкой.

```
try:
    Mesh_1.ExportUNV( r'C:/File', 0')
    pass
except:
    print('ExportUNV() failed. Invalid file name?')
```

Рис. 50: Ошибка экспорта сетки

Для её решения достаточно удалить лишние символы:

```
try:
    Mesh_1.ExportUNV( r'C:/File')
    pass
except:
    print('ExportUNV() failed. Invalid file name?')
```

Рис. 51: Решение ошибки экспорта сетки