Лабораторная работа №10. Колебания жидкости в сообщающихся сосудах.

Цель: рассчитать период колебания гармонического осциллятора и сравнить с периодом колебания, полученным практически с помощью секундомера.

Оборудование: стеклянная трубка; мензурка с водой; секундомер; штатив с муфтой и лапкой.

Содержание и метод выполнения работы.

 $S_{\text{ТРУБКИ}}$

 $S_{\text{КОЛЬЦА}}$

Эксперимент лучше выполнять с трубкой и мензуркой больших диаметров. Это заметно уменьшает затухание колебаний.

Допущения:

- 1. При расчёте периода колебания жидкости мы будем считать, что площадь сечения трубки S_{TP} равна площади кольца S_K , внешней границей которого служат стенки мензурки, а внутренней границей стенки трубки (см. рисунок). То есть $S_{TP} = S_K = S_0$ система, в которой происходят колебания консервативна и является гармоническим осциллятором.
- 2. Объём воды V, участвующий в колебаниях, примем равным V=Sh, где h глубина погружения трубки в воду при отсутствии колебаний в системе.

где ρ – плотность воды, $\,m$ – её масса, а T – период колебаний воды в сосуде.

Тогда
$$T = 2\pi \sqrt{\frac{V}{2gS}}$$
.

Порядок выполнения работы

При выполнении работы обращайтесь с оборудованием осторожно. Не допускайте ударов стеклянной трубки о стенки мензурки.

Для того, чтобы возбудить колебания жидкости в сообщающихся сосудах, поднимите трубку над водой в мензурке, ладонью другой руки плотно закройте верхнее отверстие трубки. Опустите трубку в мензурку до упора (упором служит резиновое кольцо, надетое на трубку) и отнимите ладонь от трубки. Уровни воды в трубке и в мензурке начнут колебаться. Удаётся наблюдать более 20 колебаний.

Амплитуда колебаний измеряется при помощи линейки, период колебаний – при помощи секундомера.

Измерьте время двадцати колебаний, время первых и последних трёх колебаний, а также определите средние амплитуды первых и последних трёх колебаний.

Каждый опыт повторите по три раза.

Результаты всех измерений и вычислений занесите в таблицу.

N=____. (количество колебаний которое измеряли, при условии, если оно меньше 20)

	1 опыт	2 опыт	3 опыт	Среднее
				значение
tn, c				
t _{1:3} , c				
$t_{n-2:n}, c$ $A_1, 10^{-2} M$				
A_2 , 10^{-2} M				
A_3 , 10^{-2} M				
A_{n-2} , 10^{-2} M				
A ₃ , 10 ⁻² M A _{n-2} , 10 ⁻² M A _{n-1} , 10 ⁻² M				
A_n , 10^{-2} M				

Объясните разницу между расчётной и измеренной величиной периода колебаний жидкости в сосудах..

Сравните разницу периодов «первых» и «последних» колебаний.

Попытайтесь определить логарифмический декремент затухания $\lambda=\beta T=\ell nx_n \ / \ x_{n+1}$, где x_n и x_{n+1} амплитуды n и n+1 по счёту колебаний, а β — коэффициент затухания.

Дополнительное задание.

Как будут совершаться колебания, если трубку опустить не в мензурку, а в озеро?