The poweRlaw package: Examples

Colin S. Gillespie

Last updated: May 27, 2014

The poweRlaw package provides an easy to use interface for fitting and visualising heavy tailed distributions, including power-laws. This vignette provides examples of the fitting procedure.

1 Discrete data: Moby Dick

The Moby Dick dataset contains the frequency of unique words in the novel Moby Dick by Herman Melville. This data set can be downloaded from

http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm or loaded directly

```
library("poweRlaw")
data("moby")
```

To fit a discrete power-law to this data¹, we use the displ constructor

¹ The object moby is a simple R vector.

```
m_pl = displ$new(moby)
```

The resulting object, m_pl, is a displ² object. It also inherits the discrete_distribution class. After creating the displ object, a typical first step would be to infer model parameters.³ We can estimate the lower threshold, via

```
est = estimate_xmin(m_pl)
m_pl$setXmin(est)
```

For a given value x_{\min} , the scaling parameter is estimated by numerically optimising the log-likelihood. The optimiser is *initialised* using the analytical MLE

$$\hat{\alpha} \simeq 1 + n \left[\sum_{i=1}^{n} \log \left(\frac{x_i}{x_{\min} - 0.5} \right) \right]^{-1}.$$

This yields a threshold estimate of $x_{\min} = 7$ and scaling parameter $\alpha = 1.95$, which matches results found in Clauset et~al. [2009].

Alternatively, we could perform a parameter scan for each value of x_{\min}

```
estimate_xmin(m_pl, pars=seq(1.5, 2.5, 0.1))
```

The parameter scan will typically be slower than using the optimiser. To fit a discrete log-normal distribution, we follow a similar procedure, except we begin by creating a dislnorm.⁴

The object moby is a simple it vector.

² displ: discrete power-law.

 3 When the displ object is first created, the default parameter values are NULL and x_{\min} is set to the minimum x-value.

⁴ dislnorm: discrete log normal object

```
m_ln = dislnorm$new(moby)
est = estimate_xmin(m_ln)
```

which yields a lower threshold of $x_{\min} = 3$ and parameters (-17.9, 4.87). A similar procedure is applied to fit the Poisson distribution; we create a distribution object using dispois, then fit as before.

The data CDF and lines of best fit can be easily plotted

```
plot(m_pl)
lines(m_pl, col=2)
lines(m_ln, col=3)
lines(m_pois, col=4)
```

to obtain figure 1. It clear that the Poisson distribution is not appropriate for this data set. However, the log-normal and power-law distribution both provide reasonable fits to the data.

Parameter uncertainty 1.1

To get a handle on the uncertainty in the parameter estimates, we use a bootstrapping procedure, via the bootstrap function. This procedure can be applied to any distribution object.⁵ Furthermore, the bootstrap procedure can utilize multiple CPU cores to speed up inference.6

```
## 5000 bootstraps using two cores
bs = bootstrap(m_pl, no_of_sims=5000, threads=2)
```

By default, the bootstrap function will use the maximum likelihood estimate to estimate the parameter and check all values of x_{min} . When possible x_{min} values are large, then it is recommend that the search space is reduced. For example, this function call

```
bootstrap(m_pl, xmins = seq(2, 20, 2))
```

will only calculate the Kolmogorov-Smirnoff statistics at values of x_{\min} equal to

$$2, 4, 6, \ldots, 20$$
.

A similar argument exists for the parameters.⁷

The bootstrap function, returns bs_xmin object that has three components:

- 1. The goodness of fit statistic obtained from the Kolmogorov-Smirnoff test. This value should correspond to the value obtained from the estimate_xmin function.
- 2. A data frame containing the results for the bootstrap procedure.
- 3. The average simulation time, in seconds, for a single bootstrap.

The boostrap results can be explored in a variety way. First we can estimate the standard deviation of the parameter uncertainty, i.e.

Figure 1: Data CDF of the Moby Dick data set. The fitted power-law (green line), log-normal (red line) and poisson (blue) distributions are also given.

⁵ For example, bootstrap(m_ln).

⁶ The output of this bootstrapping procedure can be obtained via data(bootstrap_moby).

⁷ For single parameter models, pars should be a vector. For the log-normal distribution, pars should be a matrix of values.

Figure 2: Results from the standard bootstrap procedure (for the power-law model) using the Moby Dick data set: bootstrap(m_pl). The top row shows the mean estimate of parameters x_{\min} and α . The bottom row shows the estimate of standard deviation for each parameter. The dashed-lines give approximate 95% confidence intervals.

After 5000 iterations, the standard deviation of x_{min} and α is estimated to be 2.1 and 0.03 respectively.

```
sd(bs$bootstraps[,2])
## [1] 1.879
sd(bs$bootstraps[,3])
## [1] 0.02447
```

Alternatively, we can visualise the results using the plot function:

```
## trim=0.1 only displays the final 90% of iterations
plot(bs, trim=0.1)
```

to obtain figure 2. This top row of graphics in figure 2 give a 95% confidence interval for the mean estimate of the parameters. The bottom row of graphics give a 95% confidence for the standard deviation of the parameters. The parameter trim in the plot function controls the percentage of samples displayed.⁸ When trim=0.1, we only display the final 90% of data.

We can also construct histograms.

```
hist(bs$bootstraps[,2])
hist(bs$bootstraps[,3])
```

to get figure 3.

A similar bootstrap analysis can be obtained for the log-normal distribution

```
bs1 = bootstrap(m_ln)
```

in this case we would obtain uncertainty estimates for both of the log-normal parameters.

8 When trim=0, all iterations are displayed.

Figure 3: Characterising uncertainty in parameter values. (a) x_{min} uncertainty (standard deviation 2) (b) α uncertainty (std dev. o.o3)

Figure 4: Results from the bootstrap procedure (for the power-law model) using the Moby Dick data set: bootstrap $_p(m_pl)$. The top row shows the mean estimate of parameters x_{\min} , α and the *p*-value. The bottom row shows the estimate of standard deviation for each parameter. The dashed-lines give approximate 95% confidence intervals.

Testing the power-law hypothesis

Since it is possible to fit a power-law distribution to any data set, it is appropriate to test whether the observed data set actually follows a power-law. Clauset et~al. [2009] suggest that this hypothesis is tested using a goodness-of-fit test, via a bootstrapping procedure. This test generates a p-value that can be used to quantify the plausibility of the hypothesis. If the *p*-value is large, than any difference between the empirical data and the model can be explained with statistical fluctuations. If $p \simeq 0$, then the model does not provide a plausible fit to the data and another distribution may be more appropriate. In this scenario,

 H_0 : data is generated from a power-law distribution.

 H_1 : data is not generated from a power-law distribution.

To test these hypothesis, we use the bootstrap_p function

```
bs_p = bootstrap_p(m_pl)
```

The point estimate of the *p*-value is one of the elements of the bs_p object9

```
bs_p$p
## [1] 0.6778
```

Alternatively we can plot the results

```
plot(bs_p)
```

to obtain figure 4. The graph in the top right hand corner gives the cumulative estimate of the *p*-value; the final value of the purple line corresponds to bs_p\$p. Also given are approximate 95% confidence intervals.

⁹ Also given is the average time in seconds of a single bootstrap: $bs_psim_time = 1.75$.

Comparing distributions

A second approach to test the power law hypothesis is a direct comparison of two models. A standard technique is to use Vuong's test, which a likelihood ratio test for model selection using the Kullback-Leibler criteria. The test statistic, *R*, is the ratio of the log-likelihoods of the data between the two competing models. The sign of R indicates which model is *better*. Since the value of *R* is obviously subject to error, we use the method proposed by Vuong, 1989.¹⁰

To compare two distributions, each distribution must have the same lower threshold. So we first set the log normal distribution object to have the same x_{\min} as the power law object

```
m_ln$setXmin(m_pl$getXmin())
```

Next we estimate the parameters for this particular value of x_{min} :

```
est = estimate_pars(m_ln)
m_ln$setPars(est)
```

Then we can compare distributions

```
comp = compare_distributions(m_pl, m_ln)
```

This comparison gives a *p*-value of 0.6824. This *p*-value corresponds to the *p*-value on page 29 of the Clauset paper (the paper gives 0.69).

Overall these results suggest that one model can't be favoured over the other.

Investigating the effect in x_{min}

The estimate of the scaling parameter, α , is typically highly correlated with the threshold limit, x_{min} . This relationship can be easily investigated with the poweRlaw package. First, we create a vector of thresholds to scan

```
xmins = 1:1500
```

then a vector to store the results

```
est_scan = 0*xmins
```

Next, we loop over the x_{min} values and estimate the parameter value conditional on the x_{\min} value

```
for(i in seq_along(xmins)){
  m_pl$setXmin(xmins[i])
  est_scan[i] = estimate_pars(m_pl)$pars
```

The results are plotted figure 5. For this data set, as the lower threshold increases, so does the point estimate of α .

See the "Comparing distributions" vignette for other examples.

While the bootstrap method is useful, it is computationally intensive.

10 Q.H. Vuong. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica: Journal of the Econometric Society, 57:307-333, 1989

Figure 5: Estimated parameter values conditional on the threshold, x_{\min} . The horizontal line corresponds to $\alpha = 1.95$.

Continuous data: electrical blackouts

In this example, we will investigate the numbers of customers affected in electrical blackouts in the United States between 1984 and 2002.¹¹ The data set can be downloaded from Clauset's website¹²

```
blackouts = read.table("blackouts.txt")
```

Although the blackouts data set is discrete, since the values are large it makes sense to treat the data as continuous. Continuous power-law objects take vectors as inputs, so

```
m_bl = conpl$new(blackouts$V1)
```

then we estimate the lower-bound via

```
est = estimate_xmin(m_bl)
```

This gives a point estimate of $x_{min} = 50000$. We can then update the distribution object

```
m_bl$setXmin(est)
```

and plot the data with line of best fit

```
plot(m_bl)
lines(m_bl, col=2, lwd=2)
```

to get figure 6. To fit a discrete log-normal distribution we follow a similar procedure:

```
m_bl_ln = conlnorm$new(blackouts$V1)
est = estimate_xmin(m_bl_ln)
m_bl_ln$setXmin(est)
```

and add the line of best fit to the plot via

```
lines(m_bl_ln, col=3, lwd=2)
```

It is clear from figure 6 that the log-normal distribution provides a better fit to this data set.

11 M.E.J. Newman. Power laws, Pareto distributions and Zipf's law. Contemporary Physics, 46(5):323-351, 2005

12 http://goo.gl/BsqnP

Figure 6: CDF plot of the blackout dataset with line of best fit. Since the minimum value of x is large, we fit a continuous power-law as this is more it efficient. The power-law fit is the green line, the discrete log-normal is the red line.

Multiple data sets: the American-Indian war

In a recent paper, Bohorquez et~al. investigated insurgent attacks in Afghanistan, Iraq, Colombia, and Peru.¹³ Each time, the data resembled power laws. Friedman used the power-law nature of casualties to infer under-reporting in the American-Indian war. Briefly, by fitting a power-law distribution to the observed process, the latent, unobserved casualties can be inferred.¹⁴

The number of casualties observed in the American-Indian War can be obtained via

```
data("native_american")
data("us_american")
```

Each data set is a data frame with two columns. The first column is number of casualties recorded, the second the conflict date

```
head(native_american, 3)
     Cas
               Date
     18 1776-07-15
## 1
## 2 26 1776-07-20
## 3 13 1776-07-20
```

The records span around one hundred years, 1776 – 1890. The data is plotted in figure 7.

It is straightforward to fit a discrete power-law to this data set. First, we create discrete power-law objects:

```
m_na = displ$new(native_american$Cas)
m_us = displ$new(us_american$Cas)
```

then we estimate x_{\min} for each data set:

¹³ J.C. Bohorquez, S.~Gourley, A.R. Dixon, M.~Spagat, and N.F. Johnson. Common ecology quantifies human in-Nature, 462(7275):911–914, surgency. 2009

Figure 7: Casualty record for the Indian-American war, 1776 – 1890. Native Americans casualties (purple circles) and US Americans casualties (green triangles). Data taken from Friedman [2014].

¹⁴ J.A. Friedman. Using power laws to estimate conflict size. The Journal of Conflict Resolution, 2014

```
est_na = estimate_xmin(m_na, pars=seq(1.5, 2.5, 0.001))
est_us = estimate_xmin(m_us, pars=seq(1.5, 2.5, 0.001))
```

and update the power-law objects

```
m_na$setXmin(est_na)
m_us$setXmin(est_us)
```

The resulting fitted distributions can be plotted on the same figure

```
plot(m_na)
lines(m_na)
## Don't create a new plot
## Just store the output
d = plot(m_us, draw=FALSE)
points(d$x, d$y, col=2)
lines(m_us, col=2)
```

The result is given in figure 8. The tails of the distributions appear to follow a power-law. This is consistent with the expectation that smaller-scale engagements are less likely to be recorded. However, for larger scale engagements, it is very likely that a record is made.

Figure 8: Plots of the CDFs for the Native American and US American casualties. The lines of best fit are also given.

References

- J.C. Bohorquez, S.~Gourley, A.R. Dixon, M.~Spagat, and N.F. Johnson. Common ecology quantifies human insurgency. Nature, 462 (7275):911-914, 2009.
- A.~Clauset, C.R. Shalizi, and M.E.J. Newman. Power-law distributions in empirical data. SIAM Review, 51(4):661-703, 2009.
- J.A. Friedman. Using power laws to estimate conflict size. The Journal of Conflict Resolution, 2014.
- M.E.J. Newman. Power laws, Pareto distributions and Zipf's law. Contemporary Physics, 46(5):323–351, 2005.
- Q.H. Vuong. Likelihood ratio tests for model selection and nonnested hypotheses. Econometrica: Journal of the Econometric Society, 57:307-333, 1989.

Session Info

```
print(sessionInfo(), locale = FALSE)
## R version 3.1.0 (2014-04-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
##
## attached base packages:
## [1] stats graphics grDevices utils
## [5] datasets methods base
##
## other attached packages:
## [1] poweRlaw_0.20.3 knitr_1.6
##
## loaded via a namespace (and not attached):
## [1] VGAM_0.9-3 codetools_0.2-8
## [3] digest_0.6.4 evaluate_0.5.5
## [5] formatR_0.10 highr_0.3
## [7] parallel_3.1.0 stats4_3.1.0
## [9] stringr_0.6.2 tools_3.1.0
```