

Dose-escalation designs for combination & dose-schedule studies

Lecture 6: Intro to combination/schedule problem

Pavel Mozgunov & Thomas Jaki

MRC Biostatistics Unit September 27, 2023

Motivation

There is growing clinical interest in

- Combining several agents;
 - To achieve a better efficacy (synergistic/additive effect on efficacy);
 - To achieve better tolerability (antagonistic effect on toxicity)
- Studying various administration schedules:
 - Less intensive schedules (but with a higher dose) can result in similar efficacy but could be better tolerated by patients
- A shift to integrate both Phase I and Phase II clinical trials for Molecularly Target Agents (MTA)
 - efficacy reaches a plateau after a particular level
 - efficacy has an inverted-U shape

Single agent dose-escalation designs

Model-based methods

CRM

EWOC

Model-Assisted methods

mTPI

BOIN

Fundamental assumption - a **monotonic** dose-response relation.

Cannot be applied to:

- Combination trials with many treatments.
- Scheduling of drugs
- Non-monotonic relationships;

Overreaching theme: **unknown ordering** of combination/schedules/doses

Unknown ordering problem: Illustration

Let us consider drugs combination dose-escalation trial with

- 3 dose levels of drug A: A₁, A₂, A₃
- 3 dose levels of drug B: B₁, B₂, B₃

$(A_1; B_3)$	$(A_2; B_3)$	$(A_3; B_3)$
$(A_1; B_2)$	$(A_2; B_2)$	$(A_3; B_2)$
$(A_1; B_1)$	$(A_2; B_1)$	$(A_3; B_1)$

Even assuming monotonicity with each drug, we cannot order

 $(A_1; B_2)$ and $(A_2; B_1);$

 $(A_1; B_3)$ and $(A_2; B_1);$

 $(A_1; B_3)$ and $(A_3; B_1)$ and so on...

Unknown ordering problem: Illustration

Unknown ordering problem: Illustration

Dose-schedule problem

Consider a 6 days treatment of an experimental treatment:

- 10 mg, every day
- 15 mg, 2d on / 2d off
- 20 mg, 3d on / 3d off
- 5 mg, 3 times per day every day.

Possible drivers of toxicity:

- Single dose;
- Total dose;
- Schedule;
- Combination of the above?

Dose-escalation for MTAs

Dose-escalation for MTAs

Dose-escalation for MTAs

Combination-schedule for MTAs

Combinations (immunotherapy + chemo) under different schedules:

- 2 days immunotherapy AFTER chemotherapy (S₁)
- 3 days immunotherapy AFTER chemotherapy (S2)
- 4 days immunotherapy OVERLAP with chemotherapy for 1 days (S₃)
- 4 days immunotherapy OVERLAP with chemotherapy for 2 days (S₄)

Six regimens are considered in the trial:

Regimen	R ₁	R ₂	R_3	\mathbf{R}_4	R ₅	R ₆
Cycle 1		S_1	S_2	S_3	S_3	S_4
Cycle 2	S_1	S_2	S_2	S_3	S_4	S_4

Single-agent design in combination-schedule problem

	R ₁	R ₂	R ₃	R_4	R_5	R_6	Stop	Mean	DLTs
Scenario 1.1									
True	0.05	0.10	0.20	0.30	0.45	0.70			
CRM	0.00	5.54	23.21	47.60	21.71	2.07	0.01	29.99	8.85
mTPI	2.68	12.32	32.20	38.65	13.71	0.41	0.03	29.99	7.08
Scenario 1.2									
True	0.05	0.10	0.30	0.20	0.45	0.70			
CRM	0.06	8.50	18.65	40.14	29.55	3.10	0.00	30.00	8.59
mTPI	2.77	28.75	22.71	31.68	13.66	0.40	0.03	29.99	6.84
Scenario 1.3									
True	0.05	0.10	0.20	0.45	0.30	0.70			
CRM	0.00	9.03	34.87	35.80	16.36	3.94	0.01	30.00	8.89
mTPI	2.68	12.42	58.45	14.28	11.73	0.41	0.03	29.99	7.07

Content of this course

- While these problems look different, the associated statistical challenges are similar (if not the same);
- In this part of the course, we will introduce the methods allowing to relax monotonicity assumption in;
 - combination trials with one agent being fixed;
 - combination trials with both agents being escalated;
 - dose-schedule trials;
 - Phase I/II trials;
- And learn how to implement them in R.