GRADIENT - THÉORÈME DES ACCROISSEMENTS FINIS

1 Tangentes et plans tangents

Exercice 1 - Tangentes

Soit \mathscr{C} la courbe définie par l'équation :

$$y^2 - x^2(x+1) = 0.$$

- 1. Déterminer les points où les dérivées partielles de $f(x,y) = y^2 x^2(x+1)$ s'annulent simultanément. Est-ce que ces points appartiennent à \mathscr{C} ? Ces points seront exclus dans la suite de l'exercice.
- 2. Calculer l'équation de la tangente en un point de \mathscr{C} .
- 3. Pour quels points la tangente est-elle horizontale? Verticale?

Correction 1 – 1.

$$\frac{\partial f}{\partial x}(x,y) = -3x^2 - 2x$$
 $\frac{\partial f}{\partial y}(x,y) = 2y.$

Si en (x, y) les deux dérivées partielles s'annulent, alors d'une part 2y = 0 donc y = 0 et d'autre part $-3x^2 - 2x = -x(3x + 2) = 0$ donc x = 0 ou $x = -\frac{2}{3}$.

Ainsi f admet deux points critiques (0,0) et $(-\frac{2}{3},0)$.

On a f(0,0) = 0 donc $(0,0) \in \mathcal{C}$, par contre $f(-\frac{2}{3},0) \neq 0$ donc $(-\frac{2}{3},0) \notin \mathcal{C}$.

2. On fixe $(x_0, y_0) \in \mathcal{C} \setminus \{(0, 0)\}$. L'équation de la tangente en ce point est :

$$\frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) = 0.$$

Pour notre fonction f cela donne :

$$(-3x_0^2 - 2x_0)(x - x_0) + 2y_0(y - y_0) = 0,$$

ou encore:

$$(-3x_0^2 - 2x_0)x + 2y_0y + 3x_0^3 + 2x_0^2 - 2y_0^2 = 0.$$

On peut encore simplifier un peu le terme constant en utilisant la relation $f(x_0, y_0) = 0$:

$$-x_0(3x_0+2)x + 2y_0y + x_0^3 = 0.$$

3. Rappelons que l'équation de la tangente en (x_0, y_0) est :

$$\frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) = 0.$$

Une droite horizontale a une équation du type y= cst, donc la tangente est horizontale si et seulement si $\frac{\partial f}{\partial x}(x_0,y_0)=0$. Or

$$\frac{\partial f}{\partial x}(x,y) = 0 \iff -3x^2 - 2x = 0 \iff x = 0 \text{ ou } x = -\frac{2}{3}.$$

Si $x_0=0$ alors, comme $f(x_0,y_0)=0$, on obtient $y_0=0$, or le point (0,0) est exclu de l'étude (la tangente n'y est pas bien définie). Si $x_0=-\frac{2}{3}$, alors $f(x_0,y_0)=0$ implique $y_0^2-\frac{4}{27}=0$, donc $y_0=\pm\frac{2}{3\sqrt{3}}$. Bilan : il y a deux points où la tangente est horizontale : $(-\frac{2}{3},-\frac{2}{3\sqrt{3}})$, $(-\frac{2}{3},+\frac{2}{3\sqrt{3}})$.

Une droite verticale a une équation du type x= cst, donc la tangente est verticale si et seulement si $\frac{\partial f}{\partial y}(x_0,y_0)=0$. Or $\frac{\partial f}{\partial y}(x,y)=0$ si et seulement si y=0. Si $y_0=0$ alors la relation $f(x_0,y_0)=0$ implique $x_0=0$ ou $x_0=-1$. On a exclu (0,0), donc la tangente est verticale à $\mathscr C$ uniquement au point (-1,0).

Exercice 2 - Plans tangents

- 1. Trouver l'équation du plan tangent à la surface d'équation $z = \sin(\pi xy) \exp(2x^2y 1)$ au point $(1, \frac{1}{2}, 1)$.
- 2. Trouver l'équation du plan tangent à la surface d'équation $z = \sqrt{19 x^2 y^2}$ au point (1, 3, 3).
- 3. Trouver les points sur le paraboloïde d'équation $z = 4x^2 + y^2$ où le plan tangent est parallèle au plan d'équation x + 2y + z = 6.

Indications 2 -

Le plan tangent à la surface d'équation z = f(x, y) au point $(x_0, y_0, f(x_0, y_0))$ est donné par l'équation :

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

Correction 2 -

On répond à la dernière question.

Le plan tangent à la surface d'équation z = f(x, y) au point $(x_0, y_0, f(x_0, y_0))$ est donné par l'équation :

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

Ainsi, le plan tangent à la surface d'équation $z = 4x^2 + y^2$ au point (x_0, y_0, z_0) a pour équation :

$$z = (4x_0^2 + y_0^2) + 8x_0(x - x_0) + 2y_0(y - y_0)$$

$$\iff z = 8x_0x + 2y_0y - (4x_0^2 + y_0^2).$$

Donc l'équation est :

$$8x_0x + 2y_0y - z = 4x_0^2 + y_0^2.$$

Pour que ce plan soit parallèle au plan d'équation x+2y+z=6, il faut et il suffit que leurs vecteurs normaux $(8x_0,2y_0,-1)$ et (1,2,1) soient colinéaires. Le facteur de colinéarité est $\lambda=-1$, donc $x_0=-\frac{1}{8}$ et $y_0=-1$. Par conséquent, le point recherché sur le paraboloïde est le point $(-\frac{1}{8},-1,\frac{17}{16})$.

Exercice 3 – Y'a comme un problème

On demande à un étudiant de trouver l'équation du plan tangent à la surface d'équation $z=x^4-y^2$ au point (2,3,7). Sa réponse est

$$z = 4x^3(x-2) - 2y(y-3).$$

- 1. Expliquer, sans calcul, pourquoi cela ne peut en aucun cas être la bonne réponse.
- 2. Quelle est l'erreur commise par l'étudiant?
- 3. Donner la réponse correcte.

Indications 3 -

Ne pas confondre les variables pour l'équation de la surface, les variables pour l'équation de la tangente en un point, et les coordonnées du point de contact.

Correction 3 – 1. L'équation d'un plan tangent doit être une équation linéaire en x, y et z! En plus le point (2,3,7) ne vérifie pas l'équation proposée.

- 2. Il a confondu les coordonnées du point de contact et les variables de l'équation du plan.
- 3. L'équation du plan tangent à la surface f(x, y, z) = k en (x_0, y_0, z_0) est :

$$\frac{\partial f}{\partial x}(x_0, y_0, z_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0, z_0)(y - y_0) + \frac{\partial f}{\partial z}(x_0, y_0, z_0)(z - z_0) = 0.$$

Ici $f(x, y, z) = x^4 - y^2 - z$, on vérifie d'abord que f(2, 3, 7) = 0. Ensuite le plan tangent en (2, 3, 7) a pour équation :

$$\frac{\partial f}{\partial x}(2,3,7)(x-2) + \frac{\partial f}{\partial y}(2,3,7)(y-3) + \frac{\partial f}{\partial z}(2,3,7)(z-7) = 0$$

$$\iff 32(x-2) - 6(y-3) - z + 7 = 0$$

$$\iff z = 32x - 6y - 39$$

On aurait aussi pu considérer que la surface est le graphe de la fonction de deux variable $g(x, y) = x^4 - y^2$ et appliquer la formule adaptée :

$$z = g(x_0, y_0) + \frac{\partial g}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial g}{\partial y}(x_0, y_0)(y - y_0).$$

Exercice 4 - Cône

Soit \mathscr{C} le cône d'équation $z^2 = x^2 + y^2$. On note \mathscr{P}_{M_0} le plan tangent au cône \mathscr{C} en $M_0 \in \mathscr{C} \setminus \{(0,0,0)\}$.

- 1. Déterminer un vecteur normal et l'équation du plan tangent \mathcal{P}_{M_0} en un point $M_0(x_0, y_0, z_0)$ du cône autre que l'origine.
- 2. Déterminer les autres points du cône ayant le même plan tangent que \mathcal{P}_{M_0} .

Indications 4 -

Un vecteur normal de la surface d'équation f(x, y, z) = 0 au point (x_0, y_0, z_0) est le vecteur gradient en ce point.

Correction 4 -

Un vecteur normal de la surface d'équation f(x, y, z) = 0 au point (x_0, y_0, z_0) est le vecteur gradient :

$$\left(\frac{\partial f}{\partial x}(x_0, y_0, z_0), \frac{\partial f}{\partial y}(x_0, y_0, z_0), \frac{\partial f}{\partial z}(x_0, y_0, z_0)\right).$$

1. Un vecteur normal du cône $\mathscr C$ au point (x_0, y_0, z_0) de $\mathscr C \setminus \{(0,0,0)\}$ est le vecteur $(x_0, y_0, -z_0)$ et le plan tangent au cône $\mathscr C$ en ce point est donné par l'équation :

$$x_0(x-x_0) + y_0(y-y_0) - z_0(z-z_0) = 0$$

c'est-à-dire :

$$x_0x + y_0y - z_0z = x_0^2 + y_0^2 - z_0^2 = 0 \quad \text{car } M_0 \in \mathscr{C}.$$

2. Pour que $M_0' = (x_0', y_0', z_0') \in \mathscr{C} \setminus \{(0,0,0)\}$ vérifie $\mathscr{P}_{M_0'} = \mathscr{P}_{M_0}$, il faut et il suffit que les vecteurs $(x_0, y_0, -z_0)$ et $(x_0', y_0', -z_0')$ soient colinéaires, donc que (x_0, y_0, z_0) et (x_0', y_0', z_0') soient colinéaires. On en conclut que l'ensemble des points du cône ayant le même plan tangent que \mathscr{P}_{M_0} est constitué de la droite (OM_0) privée du point O.

2 Approximations – Théorème des accroissements finis

Exercice 5 – Approximations

Utiliser une approximation affine bien choisie pour calculer une valeur approchée des nombres suivants :

$$\exp[\sin(3.16)\cos(0.02)], \quad \arctan[\sqrt{4.03} - 2\exp(0.01)], \quad \exp[-0.02\sqrt{4.03}].$$

Indications 5 -

On prend

$$f(x,y) = \exp[\sin(\pi + x)\cos(y)] = \exp[-\sin(x)\cos(y)], (x_0, y_0) = (0,0), (h,k) = (0.02, 0.02)$$

$$f(x,y) = \arctan\left[\sqrt{4 + x} - 2\exp(y)\right], (x_0, y_0) = (4,0), (h,k) = (0.03, 0.01)$$

$$f(x,y) = \exp[-x\sqrt{y}], (x_0, y_0) = (0,4), (h,k) = (0.02, 0.03).$$

Correction 5 -

La formule de l'approximation affine à l'ordre 1 (DL1) est :

$$f(x_0 + h, y_0 + k) \simeq f(x_0, y_0) + h \cdot \frac{\partial f}{\partial x}(x_0, y_0) + k \cdot \frac{\partial f}{\partial y}(x_0, y_0).$$

1. Pour la première approximation on considère $3.16 \simeq \pi + 0.02$. On considère donc :

$$f(x, y) = \exp[\sin(\pi + x)\cos(y)] = \exp[-\sin(x)\cos(y)], \quad (x_0, y_0) = (0, 0), \quad (h, k) = (0.02, 0.02).$$

On calcule:

$$f(x,y) = \exp[\sin(\pi + x) \cdot \cos(y)] = \exp[-\sin(x) \cdot \cos(y)] \implies f(0,0) = 1,$$

$$\frac{\partial f}{\partial x}(x,y) = -\cos x \cdot \cos y \cdot \exp[-\sin x \cdot \cos y] \implies \frac{\partial f}{\partial x}(0,0) = -1,$$

$$\frac{\partial f}{\partial y}(x,y) = \sin x \cdot \sin y \cdot \exp[-\sin x \cdot \cos y] \implies \frac{\partial f}{\partial y}(0,0) = 0.$$

L'approximation affine de f au voisinage de (0,0) s'écrit donc

$$f(h,k) \simeq 1-h$$
.

Avec h = k = 0.02 on trouve $f(0.02, 0.02) \approx 0.98$.

2. De même avec

$$f(x,y) = \arctan\left[\sqrt{4+x} - 2\exp(y)\right], \quad (x_0,y_0) = (0,0), \quad (h,k) = (0.03,0.01).$$

$$\frac{\partial f}{\partial x} = \frac{1}{2(1 + (\sqrt{4 + x} - 2\exp(y))^2)\sqrt{4 + x}}$$
$$\frac{\partial f}{\partial y} = \frac{-2\exp(y)}{1 + (\sqrt{4 + x} - 2\exp(y))^2}$$

etc. d'où, avec $\frac{\partial f}{\partial x}(0,0) = \frac{1}{4}$ et $\frac{\partial f}{\partial y}(0,0) = -2$,

$$f(0+h,0+k) = f(0,0) + h\frac{\partial f}{\partial x}(0,0) + k\frac{\partial f}{\partial y}(0,0) + \dots = \frac{1}{4}h - 2k + \dots$$

Avec h = 0.03 et k = 0.01 on trouve, pour $\arctan[\sqrt{4.03} - 2\exp(0.01)]$, la valeur approchée 0.0075 - 0.02 = -0.0125.

4

3.

$$f(x, y) = \exp[-x\sqrt{y}], \quad (x_0, y_0) = (0, 4), \quad (h, k) = (0.02, 0.03)$$

On trouve:

$$f(0+h, 4+k) \simeq 1-2 \cdot h + 0 \cdot k$$
.

Exercice 6 - Résistances

Deux résistances R_1 et R_2 sont connectées en parallèle. La résistance totale R du circuit est donnée par la formule

 $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}.$

La résistance R_1 vaut environ 1; R_2 vaut environ 2 (en kilo-ohms). Écrire l'approximation linéaire correspondante, puis donner une valeur approchée de R lorsque $R_1=1.2$ et $R_2=1.9$.

Correction 6 -

Posons

$$f(x,y) = \frac{1}{\frac{1}{x} + \frac{1}{y}} = \frac{xy}{x+y},$$

de sorte que $R=f(R_1,R_2)$. Par exemple, si $R_1=1$ et $R_2=2$, on trouve $R=\frac{2}{3}\simeq 0.666$.

On calcule:

$$\frac{\partial f}{\partial x}(x,y) = \frac{y^2}{(x+y)^2}$$
 et $\frac{\partial f}{\partial y}(x,y) = \frac{x^2}{(x+y)^2}$.

Posons $(x_0, y_0) = (1, 2)$. On a

$$f(x_0, y_0) = \frac{2}{3}$$
, $\frac{\partial f}{\partial x}(x_0, y_0) = \frac{4}{9}$ et $\frac{\partial f}{\partial y}(x_0, y_0) = \frac{1}{9}$.

L'approximation linéaire de f au voisinage de (x_0, y_0) s'écrit donc

$$f(1+h,2+k) \simeq \frac{2}{3} + \frac{4}{9}h + \frac{1}{9}k.$$

Avec h = 0.2 et k = -0.1, on trouve $f(1.2, 1.9) \approx 0.744$.

Exercice 7 - Théorème des accroissements finis

Démontrer les résultats suivants énoncés dans le cours.

1. Soit $f:U\to\mathbb{R}$ une fonction de classe \mathscr{C}^1 sur un ouvert convexe $U\subset\mathbb{R}^2$ muni de la norme euclidienne. On suppose qu'il existe k>0 tel que

$$\forall c \in U$$
, $\| \operatorname{grad} f(c) \| \leq k$.

Alors

$$\forall a, b \in U, |f(b) - f(a)| \leq k||b - a||.$$

- 2. Soit $f: U \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 sur un ouvert convexe $U \subset \mathbb{R}^2$. Si grad f(x, y) = (0, 0) pour tout $(x, y) \in U$, alors f est constante sur U.
- 3. Trouver toutes les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathscr{C}^1 telles que

$$\forall (x, y) \in \mathbb{R}^2$$
, grad $f(x, y) = (3x^2 + 2y, 2x - 2y)$.

Indications 7 – 1. Appliquer le théorème des accroissements finis en une variable à la fonction g(t) = f((1-t)a + tb).

2. Appliquer la question précédente.

3. Intégrer d'abord $\frac{\partial f}{\partial x}$. Attention à la « constante »!

Correction 7 – 1. Considérons $g:[0,1] \to \mathbb{R}$ définie par :

$$g(t) = f((1-t)a + tb).$$

On a g(0) = f(a) et g(1) = f(b). Comme f est \mathcal{C}^1 alors f est continue et dérivable. On peut donc appliquer le théorème des accroissements finis en une variable à la fonction g. Il existe $g \in [0, 1[$ tel que :

$$g(1) - g(0) = g'(s)(1-0).$$

On a déjà dit que g(0) = f(a) et g(1) = f(b).

Calculons g'(t) comme la dérivée d'une composition. On peut refaire les calculs sur cet exemple ou bien utiliser la formule plus générale de la dérivée de g(t) = f(x(t), y(t)):

$$g'(t) = x'(t)\frac{\partial f}{\partial x} + y'(t)\frac{\partial f}{\partial y} = \left\langle \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} | \operatorname{grad} f(x(t), y(t)) \right\rangle$$

Appliqué à notre exemple et en notant $a = (a_1, a_2), b = (b_1, b_2)$:

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = (1-t)a + tb = \begin{pmatrix} (1-t)a_1 + tb_1 \\ (1-t)a_2 + tb_2 \end{pmatrix} \qquad \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} -a_1 + b_1 \\ -a_2 + b_2 \end{pmatrix} = b - a$$

Ainsi:

$$g'(t) = \langle b - a \mid \operatorname{grad} f((1-t)a + tb) \rangle$$

Donc par l'inégalité de Cauchy-Schwarz :

$$|g'(t)| \le ||b-a|| \cdot || \operatorname{grad} f || \le k ||b-a||.$$

Ainsi l'égalité g(1) - g(0) = g'(s)(1-0) implique l'inégalité :

$$|f(b) - f(a)| \le k||b - a||$$
.

2. Soient a, b deux points de U. Comme U est convexe on a le segment [a,b] contenu dans U. Comme le gradient est partout nul, on peut choisir k=0 comme constante dans la formule de la question précédente, ce qui donne immédiatement :

$$|f(b)-f(a)| \leq 0.$$

Et donc f(a) = f(b). Ainsi la valeur de f en deux points quelconque de U est toujours la même, c'est exactement dire que f est une fonction constante.

3. Dans la pratique on intègre par rapport à une variable, puis par rapport à l'autre, en prenant bien soin d'expliquer les constantes d'intégration.

Intégrer d'abord $\frac{\partial f}{\partial x}$. Comme $\frac{\partial f}{\partial x}(x,y) = 3x^2 + 2y$ alors :

$$f(x,y) = x^3 + 2xy + C(y)$$
.

C est une constante pour la variable x, mais peut dépendre de la variable y, c'est donc une fonction de y.

Repartant de cette expression, l'équation $\frac{\partial f}{\partial y}(x, y) = 2x - 2y$ devient :

$$2x + C'(y) = 2x - 2y.$$

Donc C'(y) = -2y d'où $C(y) = -y^2 + K$, où $K \in \mathbb{R}$. Conclusion : les solutions cherchées sont de la forme $f(x,y) = x^3 + 2xy - y^2 + K$ et on vérifie qu'elles conviennent, quel que soit $K \in \mathbb{R}$.

Corrections : Arnaud Bodin, Stephan de Bièvre. Relecture : Axel Renard.