Model Evaluation and Selection Report

1. Executive Summary

- **Objective**: To develop a predictive model for default risk, evaluating multiple algorithms and techniques to identify the most effective model for deployment.
- Selected Model: XGBoost with Under-Sampling
 - Key Metrics:

■ AUC: 0.98

■ Gini Coefficient: 0.97 ■ KS Statistic: 86.87%

- **Reason for Selection**: Best separation of default and non-default classes with strong interpretability using SHAP and LIME analysis.
- **Conclusion**: XGBoost (under-sampling) is recommended for deployment, supported by robust evaluation metrics and meaningful insights into feature importance.

2. Data Preparation and Feature Engineering

2.1 Data Preprocessing

- Target Variable: Default (binary classification)
- **Imbalanced Dataset**: The dataset exhibited a class imbalance with~10% defaults and~90% non-defaults.
- Addressed imbalance through:
 - Over-sampling: SMOTE (Synthetic Minority Oversampling Technique)
 - o Under-sampling: Random majority class reduction

2.2 Selected Features

Based on VIF analysis and domain relevance, the following features were retained:

- Numerical: credit utilization ratio, age, income, dmtlm, lti, etc.
- Categorical: loan_purpose, residence_type, employment_status, etc.

3. Model Development

3.1 Models Evaluated

- Logistic Regression
- Random Forest
- XGBoost

3.2 Evaluation Metrics

- AUC-ROC Curve
- Precision on default class (50%+) and recall on default class (90%+)
- Gini Coefficient
- KS Statistic
- Decile Analysis (Event/Non-Event Rates)

4. Model Performance

4.1 Comparison of Models (All the models satisfies Precision on default class (50%+) and recall on default class (90%+)

Model	KS Statistic (%)	AUC	Gini Coefficient	Remarks	
XGBoost Best Model (Under-Sampling, Optuna)	86.87	0.9863	0.9726	Selected for deployment due to highest performance	
XGBoost Best Model (Under-Sampling)	86.67	0.9857	0.9715	Excellent performance, close to the best	
Logistic Regression (Best Over-Sampling)	86.25	0.9833	0.9665	Strong model, consistent results	
Logistic Regression (Best Under-Sampling)	86.25	0.9833	0.9666	Similar performance to over-sampling	
Logistic Regression (Optuna Over-Sampling)	86.15	0.9833	0.9665	Comparable to best logistic regression models	

Logistic Regression (Optuna Under-Sampling)	86.25	0.9833	0.9666	Similar to other logistic regression models
XGBoost (Standard Under-Sampling)	86.25	0.9824	0.9648	Slightly lower performance than optimized XGBoost
Logistic Regression (Standard Over-Sampling)	86.25	0.9833	0.9665	Similar performance to best logistic regression
Logistic Regression (Standard Under-Sampling)	86.25	0.9832	0.9664	Similar to other logistic regression models

Key Highlights:

- The **XGBoost (Optuna Under-Sampling)** model showed the best overall performance, with the highest KS statistic, AUC, and Gini coefficient.
- Logistic Regression models (both under-sampling and over-sampling) performed well but fell slightly short compared to XGBoost models.
- XGBoost models with Optuna tuning consistently outperformed their counterparts, making them the preferred choice for deployment.

4.2 Selected Model: XGBoost (Optuna Under-Sampling)

• Tuned Hyperparameters:

```
{'eta': 0.0396, 'max_depth': 3, 'subsample': 0.6272, 'colsample_bytree': 0.7137, 'n_estimators': 388}
```

• Key Insights:

- Best AUC, Gini, and KS values among all models.
- o Demonstrated superior ability to separate default and non-default classes.

5. Interpretability

5.1 SHAP Analysis

- Top Features Influencing Predictions:
 - 1. credit_utilization_ratio (highly correlated with default risk)
 - 2. dmtlm (deliquency months to loan months ratio)
 - 3. lti (loan-to-income ratio)
- Visualization SHAP summary plot

5.2 LIME Analysis

- Explained individual predictions with local interpretability.
- Example (instance from first test data):
 - Predicted as non-default with 97% probability and matched with actual outcome.
 - Influencing factors: Low credit utilization ratio, no recent missed payments, and high income.

6. Decile Analysis (XGBoost Optuna Under-Sampling)

The decile analysis provides a detailed breakdown of the model's predictions, segmented into ten deciles based on predicted probabilities. Each decile represents a group of instances with similar predicted probabilities, sorted from highest to lowest risk. The table below summarizes key metrics for each decile.

Decile	Min Probab ility	Max Probab ility	Event Count	Non-E vent Count	Event Rate	Non-E vent Rate	Cumul ative Event Rate	Cumul ativeul ative Non-E vent Rate	KS (%)
1	0.00	0.00	0	1236	0.00%	11.28%	0.00%	11.28%	10.94
2	0.00	0.00	0	1236	0.00%	11.28%	0.00%	22.57%	21.88
3	0.00	0.00	0	1235	0.00%	11.27%	0.00%	33.84%	32.81
4	0.00	0.00	0	1236	0.00%	11.28%	0.00%	45.12%	43.75
5	0.00	0.00	0	1235	0.00%	11.27%	0.00%	56.39%	54.68
6	0.00	0.01	0	1236	0.00%	11.28%	0.00%	67.67%	65.62
7	0.01	0.05	0	1235	0.00%	11.27%	0.00%	78.94%	76.55
8	0.05	0.26	6	1230	0.49%	11.22%	0.01%	90.17 %	86.87
9	0.26	0.83	159	1076	12.87%	9.81%	16.32%	97.06%	81.37
10	0.83	1.00	893	343	72.43%	3.12%	100.00	100.00	0.00

Key Observations:

- 1. **Event Distribution**: The majority of events (defaults) are concentrated in deciles 9 and 10, confirming the model's ability to rank high-risk instances accurately.
- 2. KS Statistic: The KS statistic reaches its peak at 86.87% in decile 8, indicating excellent discriminatory power between events and non-events.
- 3. **Non-Event Concentration**: Deciles 1–7 contain only non-events, aligning with their lower predicted probabilities.
- 4. **Cumulative Analysis**: The cumulative event rate and non-event rate trends highlight the model's consistent separation between high- and low-risk groups.

This decile analysis further supports the **XGBoost Optuna Under-Sampling** model as a strong candidate for deployment due to its robust performance in identifying and separating events and non-events effectively.

7. Visualizations

1. ROC Curve:

• AUC: 0.99 (Excellent classification performance)

8. Deployment Considerations

8.1 Justification for Deployment

- XGBoost (under-sampling) shows consistent performance across key metrics and decile analysis.
- Interpretability tools (SHAP, LIME) make the model explainable and suitable for regulatory and business use.

8.2 Risks and Mitigations

- **Risk**: Under-sampling may lose information from the majority class.
- Mitigation: Regular retraining, monitoring, and exploration of hybrid sampling methods.

9. Conclusion

- XGBoost (under-sampling) is the recommended model for deployment based on its superior discriminatory power and robust evaluation.
- Next Steps:
 - 1. Develop a monitoring framework after deployment.
 - 2. Perform stress testing on newer data for validation.
 - 3. Ensure interpretability reports accompany the deployed model.