# CART(Classification And Regression Trees)

- : 트리 생성 알고리즘 중 하나
- 이진 트리로만 이루어져 있다.

터미널 노드에 적합하는 상수 C는 어떻게 도출할 수 있을까?



$$f(X) = \sum_{m=1}^{M} c_m I (X \in R_m)$$
 회귀: y값들의 평균 분류: 최빈값

when  $\bigcup R_m = \mathbb{R}^p$  and  $R_m \cap R_p = \emptyset$  (non – overlapping, distinct)

and  $\mathbb{R}^p$  is a p – dimensional input space

### 2) Decision Tree Classifier

비슷한 관측치들끼리 몰려 있는 형태가 이상적



#### 회귀 모델

: 관측치들이 어떤 <mark>범주</mark>에 속할 지에 대한 불확실성이 줄어드는 것

분류 모델

Н

불순도가 줄어들도록 트리가 나뉘도록 하자 관측치들이 각자의 범주에 따라 <mark>적절히 분류</mark> 되었음을 의미 3) Tree-based Model에서 과적합 피하기

복잡도 (Complexity): 트리모델 > 선형회귀 모델

? Why

분류가 진행되며 관측치들이 나뉘는 과정

11

모델의 파라미터가 늘어나는 효과



#### Tree-based Models

3) Tree-based Model에서 과적합 피하기

모델 간 분산이 큰 경우를 해결해주자



Idea

**여러 개**의 트리모델을 적합해 이들을 **종합적**으로 **평가**해보자!







랜덤 포레스트 모델링 기법

#### Ensemble Model

## 앙상블 모델(Ensemble Model)

지금까진 단일한 트리 기반 모델에 관한 내용이었다!

앙상블 기법은 여러 모델을 독립적으로 학습시킨 후, 각 모델의 결과를 조합하여 최종 결과를 생성

## 앙상블 모델(Ensemble Model)

앙상블 기법은 아래와 같은 갈래로 분류



#### Ensemble Model

# 배깅(Bagging)

Bootstrap sampling을 하는 이유?



샘플 데이터셋을 각각 다르게 해 모델에 적합 시켰을 때 발생할 수 있는 모델 variance를 최소화

### **Ensemble Model**

## 랜덤 포레스트(Random Forest)

랜덤 포레스트는 매 모델링마다 사용할 독립변수를 임의로 선택

부트스트랩 샘플에 대한 배깅 실시



트리 적합 과정에서 일부 X변수만을 사용



변수의 종류가 다양해지면서 Decorrelation 달성

# 1) LGBM



# 1) LGBM



## 1) LGBM

Light Gradient Boosting Machine

GOSS (Gradient Based One Side Sampling) : 큰 error를 보이는 관측치들의 error를 줄이는데 집중



# 2) XGBoost

a.k.a. GBM Killer



회귀, 분류 문제 모두 수행 가능