RSI買、賣超區間離散交易策略

壹、緒論

許多判別強弱的技術指標都有一共通點,即以價量判別是否超買、超賣,但在進入超買、超賣區間後並未再提供判別指標。如超買發生後,繼續且連續上漲或是下跌的機率為何?如何依據個股特性分配賣出量?離散單位步長如何選擇?故本專題即以 RSI 作為強弱指標、以買賣超區間連續走勢服從 Poisson 分配的假設,估計並檢定特定標的資產。在標的資產的選擇上,本專題分為指數、上市 ETF 與上櫃 ETF 三個部分討論。另外在附錄的部分討論以 Binomial 分配作為買、賣超後離散分配估計可能面臨的問題。

貳、研究方法

一、研究標的

本專題將欲研究的標的資產分成三組: 加權指數與櫃買指數、上市市值前 5 名的 ETF 與上櫃市值前 5 名的 ETF。使用資料的時間區間為2023/01/01 至 2024/01/01,故 ETF 部分的標的選擇是從當前(2024/06/07)市值排行、扣除未在 2023 年間全年交易者取前 5 名。

名稱	Yahoo Finance 代號
加權指數	^TWII
櫃買指數	^TWOII
元大台灣 50	0050.tw
元大高股息	0056.tw
國泰永續高股息	00878.tw
群益台灣精選高息	00919.tw
富邦台 50	006208.tw
元大美債 20 年	00679b.two
國泰 20 年美債	00687b.two
元大 AAA 至 A 公司債	00751b.two

元大投資級公司債	00720b.two
中信高評級公司債	00772b.two

(表一)本專題研究的標的資產,順序為指數、上市 ETF、上櫃 ETF

二、RSI 值計算

相對強弱指數(Relative Strength Index, RSI)是一種常用的技術分析指標,用於評估資產的價格變動強度和速度、判斷股票是否超買或超賣,進而輔助交易決策。依據 J. Welles Wilder 的預設值,我們將基於近 14 個交易日的標的資產價格計算 RSI:

$$RSI \coloneqq 100 - \frac{100}{1 + RS}$$

$$where RS \coloneqq \frac{Average \ Gain}{Average \ Loss}$$

在計算統計檢定時,我們將買超、賣超水準設定在30、70:

if
$$RSI \ge 70$$
, overbought; if $RSI \le 30$, oversold.

三、Poisson 分配交易策略-估計連續上漲、下跌次數發生機率

給定特定期間的歷史收盤價格數據,定義 k 為觸發買、賣超後連續下跌、上漲的次數,且服從 Poisson 分配。

$$P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

根據上述的歷史資料,先統計出連續上漲次數實際出現的機率,假設最高 連續上漲次數為 K 次,則我們會有針對指定連續上漲次數的次數資料如下:

Let
$$K := \max(k)$$

 $\{c_1, ..., c_k\}$

where c_i : the times of continuous rise or down after overbought or oversold observed.

基於服從 Poisson 分配的假設下,依照 Poisson 分配的期望值公式

$$E[X] = \lambda$$

我們可得λ參數的不偏參數估計式

$$\bar{\lambda} \coloneqq \frac{\sum_{k=0}^{K} c_k * k}{K+1}$$

基於上述估計方法,在資料引入的動態過程中,我們會發現如下特性:

- 1. λ參數估計值隨買、賣超發生後連續上漲、下跌情形變化。
- 2. 若價格觸及買、賣超界線即上漲或下跌,則定義為k=0。
- 3. 若在觸及買超並連續上漲後出現一個下跌的跳動,則連續上漲次數終止;若在觸及賣超並連續下跌後出現一個上漲的跳動,則連續上漲次數終止。

四、Poisson 分配交易策略-估計連續上漲、下跌百分比發生機率

給定特定期間的歷史收盤價格數據,定義 k 為觸發買、賣超後連續下 跌、上漲的百分比,且服從 Poisson 分配。

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

根據上述的歷史資料,先統計出觸發買、賣超後連續上漲、下跌百分比實際出現的機率。假設最高連續上漲、下跌的百分比為 K%,則我們會有針對指定連續上漲次數的次數資料如下:

Let
$$K := \max(k)$$

 $\{c_1, ..., c_K\}$

where c_i : observed times of k% continuous rise or down as price going into

the overbought or oversold area.

基於服從 Poisson 分配的假設下,依照 Poisson 分配的期望值公式

$$E[X] = \lambda$$

故我們可得み參數的不偏參數估計式

$$\bar{\lambda} \coloneqq \frac{\sum_{k=0}^{K} c_k * k}{K+1}$$

基於上述估計方法,在資料引入的動態過程中,我們會發現如下特性:

- 1. λ參數估計值隨買、賣超發生後連續上漲情形變化。
- 2. 若價格觸及買、賣超界線即上漲或下跌,則定義為k=0。
- 3. 若在觸及買超並連續上漲後出現一個下跌的跳動,則連續上漲次數終止;若在觸及賣超並連續下跌後出現一個上漲的跳動,則連續上漲次數終止。
- 4. 本篇計算統計檢定時,定義離散分配的級距為 2%,實務層面可隨標的資產的股價高低調整。

五、統計檢定

本專題選用 Chi-square 分配用於統計檢定,其目的在於檢定位於買、 賣超區的間離散數據分布是否服從 Poisson 分配。檢定統計量的計算如下:

Let
$$K := \max(k)$$

$$\{c_1, ..., c_K\}$$

where c_i : the observed times of k% or k-th continuous rise or down

依據 K 生成個數為所有觀察次數合的期望值,其中 λ 參數使用觀察值的 算數平均估計:

$$\{c_1',...,c_K'\}$$
 where $c_j'{\sim}Poisson(\bar{\lambda})$ and $\sum_{j=1}^K c_i' = \sum_{i=1}^K c_i$

計算檢定統計量並與 Chi-Square 分配、自由度為 K-2 的分配比較、求出 p-value。其中假設虛無假設為觀察值與估計值的 λ 參數相等、對立假設即以前述為否,以 p-value = 0.01 作為判別基準。

Let
$$H_0$$
: $\lambda_{observed} = \lambda_{expected}$ and H_1 : $\lambda_{observed} \neq \lambda_{expected}$

$$Comparing \sum\nolimits_{k=0}^{K} \frac{(c_k - c'_k)^2}{c'_k} \text{ to } \chi^2_{K-2},$$

$$if \ p-value \geq 0.01, then \ we \ don't \ reject \ H_0;$$

$$if \ p-value < 0.01, then \ we \ rejected \ it.$$

若檢定結果支持虛無假設,則我們稱進入買超或賣超區間的連續趨勢、以次數或以百分比為單位服從 Poisson 分配,並適用上述交易策略;若拒絕虛無假設,則認為進入買超、賣超區間的連續趨勢不服從 Poisson 分配。

參、研究結果

以下本專題將標的資產分成三個部分討論,即加權指數與櫃買指數、 上市市值前 5 名的 ETF 與上櫃市值前 5 名的 ETF。價格資料的時間區間為 2023/01/01 至 2024/01/01,故會剔除在 2023 年中或 2024 才開始交易的標 的資產。

強弱指標使用 RSI,並定義 RSI 值大於等於 80 為超買、RSI 小於等於 20 為超賣。於超買、超賣區間計算連續漲、跌次數(以下稱為 Assumption 1)或是連續漲、跌百分比(以下稱為 Assumption 2),以此估計 Poisson 分配之 λ 參數。

透過與自由度為K-2的 Chi-Square 分配(K 為 Poisson 分配的次數總量)

比較、設定p-value=0.05,大於此值接受虛無假設、超買超賣區間連續漲跌服從 Poisson 分配,反之則拒絕(檢定拒絕者以紅字標示)。

一、加權指數與櫃買指數

標的資產	Assumption 1-	Assumption 1-	Assumption 2-	Assumption 2-
	overbought	oversold	overbought	oversold
^TWII	0.231	0.194	0.558	1.0
^TWOII	0.0	0.489	0.06	0.739

(表二) 加權指數、櫃買指數在兩種假設的檢定結果

二、上市 ETF、市值前 5 名

標的資產	Assumption 1-	Assumption 1-	Assumption 2-	Assumption 2-
	overbought	oversold	overbought	oversold
0050.tw	0.114	0.346	0.28	0.346
0056.tw	0.0	0.346	0.216	0.682
00878.tw	0.003	0.682	0.026	0.607
00919.tw	0.0	0.48	0.086	1.0
006208.tw	0.083	0.379	0.084	0.346

(表三) 上市市值前 5 名的 ETF 在兩種假設的檢定結果

三、上櫃 ETF、市值前 5 名

標的資產	Assumption 1-	Assumption 1-	Assumption 2-	Assumption 2-
	overbought	oversold	overbought	oversold
00679b.two	0.039	0.0	0.667	0.0
00687b.two	0.233	0.044	0.774	0.101
00751b.two	0.039	0.002	0.357	0.213
00720b.two	0.0	0.267	0.178	0.641
00772b.two	0.104	0.308	0.357	0.349

(表四) 上櫃市值前 5 名的 ETF 在兩種假設的檢定結果

肆、結論

一、統計檢定結果判讀

從上述統計檢定結果可見,假設1,即離散單位設為買超、賣超後連

續上漲、下跌的步數,其虛無假設被拒絕的次數較多。就理論而言,以百分比做為離散單位將使得價格走勢較趨近於 Poisson 分配。

然而這其中亦存在過度擬合問題,由觀察上三表可知,假設 2 在賣超的部分,部分標的出現 p-value = 1 的情況,這代表其進入賣超後,連續下跌的百分比低於本專題所設定的單位步長,即 2%。這意味著在實際應用於交易策略時,需針對各股買超、賣超後連續上漲、下跌情況,調整單位步長。

二、賣出、買進量分配策略

我們可透過 Poisson 機率質量函數分配買、賣超後的階段性賣出、買進量。在此策略下,一次連續漲跌的總賣出、買進量可由累積密度函數求得,這使得在服從 Poisson 分配的假設下,賣出與買進量亦遵循特定連續漲跌情況出現的機率做出相應調整,在實務交易上可減少計算量、增快速度。

相較於較為人熟知的黃金分割率,其最大特點為交易量分配為常數。 然而這無法反映特定標的資產在買、賣超後的連續漲跌情況,反觀以本專 題以 Poisson 分配估計,則交易量分配取決於 λ 参數的價格歷史資料,較能 反映其直實情況。

伍、附錄: Binomial 與 Poisson 分配作為買、賣超指標的比較

先回顧 Binomial 分配的機率質量函數:

$$P(X = k) = C_k^n p^k (1 - p)^{n-k}$$

其中 k 可代表超越買、賣超基準後連續上漲、下跌次數或是百分比。考慮以下情形,則可推得成功機率存在上界,且該上界與總試驗次數n有關。

$$P(X = k) > P(X = k + 1)$$
 with $k + 1 \le \frac{n}{2}$

先探討簡單案例,即P(X = 0) > P(X = 1),推算試驗成功機率p之上界:

$$C_0^n p^0 (1-p)^n > C_1^n p^1 (1-p)^{n-1}$$

$$= > \frac{C_0^n}{C_1^n} * \frac{1-p}{p} > 1$$

$$= > \frac{1-p}{p} > n$$

$$= > 1-p > n * p$$

$$= > p < \frac{1}{n+1}$$

再推廣至P(X = k) > P(X = k + 1) with $k + 1 \le \frac{n}{2}$ 的情形:

$$C_{k}^{n}p^{k}(1-p)^{n-k} > C_{k+1}^{n}p^{k+1}(1-p)^{n-k-1}$$

$$= > \frac{\frac{n!}{k!(n-k)!}}{\frac{n!}{(k+1)!(n-k-1)!}} * \frac{(1-p)}{p} > 1$$

$$= > \frac{1-p}{p} > \frac{n-k}{k+1}$$

$$= > \frac{1}{p} - 1 > \frac{n-k}{k+1}$$

$$= > \frac{1}{p} > \frac{n-k+k+1}{k+1}$$

$$= > \frac{1}{p} > \frac{n+k+1}{k+1}$$

$$= > \frac{1}{p} > \frac{n+1}{k+1}$$

$$= > p < \frac{k+1}{n+1}$$

由此可知,若P(X=k)>P(X=k+1)且 $k+1\leq \frac{n}{2}$ 這項條件成立,則其 p 參數之上界隨總試驗次數 n 增加而降低,即在前述條件下,若要討論的離散步數越多,則將影響特定X=k事件之成功率 p 的上界。

然而 Poisson 分配並沒有這項缺點,因在 Poisson 分配中討論特定事件,其機率取決於 A 參數,與總試驗次數或是較高離散步數的事件無關。

陸、參考資料

- 、 黃金分割率是什麼?如何用黃金分割率找到股票轉折點?
 https://www.stockfeel.com.tw/%E9%BB%83%E9%87%91%E5%88%86%E5%89%
 B2%E7%8E%87-%E9%BB%83%E9%87%91%E6%AF%94%E4%BE%8B-%E8%B2%BB%E6%B0%8F%E6%95%B8%E5%88%97-%E6%8C%87%E6%A8%99/
- 二、ETF 市值排行 (113/06/07)

https://www.money-

link.com.tw/stxba/imwcontent0.asp?page=etfs1&ID=etfs1&menusub=96