Disaster Detection: Harnessing NLP and Machine Learning for Crisis Classification in Social Media

Arham Hundia (hundia@purdue.edu)
Sowmya Jayaram Iyer (jayarami@purdue.edu)
Parth Patel (pate1384@purdue.edu)

CS57700 (Spring 2023)

INTRODUCTION

 Objective: Develop and compare machine learning models for accurate classification of disaster-related tweets

• Importance: Timely and accurate information for disaster response and management

Models: Linear SVM, DAN, RNN, LSTM, Bi-LSTM, and BERT

Dataset: A Kaggle competition dataset that consists of 10,000 hand-classified tweet

(Target: disaster-related (1) and non-disaster (0))

	id	keyword	location	text	target
0	1	NaN	NaN	Our Deeds are the Reason of this #earthquake M	1
1	4	NaN	NaN	Forest fire near La Ronge Sask. Canada	1
2	5	NaN	NaN	All residents asked to 'shelter in place' are	1
3	6	NaN	NaN	13,000 people receive #wildfires evacuation or	1
4	7	NaN	NaN	Just got sent this photo from Ruby #Alaska as	1

INTRODUCTION

The contributions of this paper aim to answer the following questions:

- How can disaster-related tweets be accurately classified using various machine learning and natural language processing techniques?
- How do different techniques perform in the classification task, and which method is the most effective?
- How do simpler models like SVM with TF-IDF perform compared to more complex models like BERT and LSTM?
- What are the limitations of the explored models, and how can they be improved for better performance?

Reference(s): [5]

Methods

- **Preprocessing steps:** Lowercasing, Tokenization, Lemmatization **Feature extraction:** TfidfVectorizer, GloVe word embeddings and BERT Tokenizer
- **Linear SVM:** SVM works by finding an optimal hyperplane that best separates the data points belonging to different classes. SVM minimizes classification errors by maximizing the margin between the classes.
- **DAN:** Deep Averaging Network (DAN) averages the word embeddings of input tokens and feeds the result through a series of fully connected layers.
- RNN: Are designed to process sequential data, with connections that allow information to persist from one step of the sequence to the next.
- **LSTM**: Are a type of RNN architecture that use gated cells to regulate the flow of information and overcome the vanishing gradient problem in standard RNNs.
- **Bi-LSTM:** Processes the input sequence in both forward and backward directions using two LSTMs.
- **BERT:** Based on the Transformer architecture that is bidirectionally context-aware, enabling it to understand the context of words using both preceding and following words in a sentence.
- Evaluation metric: Test accuracy, precision, recall, and F1-score

EXPERIMENTATION

SVM:

Train Accuracy: 0.9775041050903119 Test Accuracy: 0.7977675640183848

Classification Report:

		precision	recall	f1-score	support
	0	0.80	0.87	0.83	874
	1	0.80	0.70	0.75	649
accui	racy			0.80	1523
macro	avg	0.80	0.79	0.79	1523
weighted	avg	0.80	0.80	0.80	1523

DAN

Train Accuracy: 0.6218390804597701 Test Accuracy: 0.6014445173998687

Classification Report:

	precision	recall	f1-score	support
0 1	0.62 0.55	0.77 0.37	0.69 0.44	874 649
accuracy macro avg weighted avg	0.59 0.59	0.57 0.60	0.60 0.57 0.58	1523 1523 1523

RNN

Train Accuracy: 0.7326765188834155 Test Accuracy: 0.7367038739330269

Classification Report:

	precision	recall	f1-score	support
0	0.74	0.85	0.79	874
1	0.74	0.59	0.66	649
accuracy macro avg weighted avg	0.74 0.74	0.72 0.74	0.74 0.72 0.73	1523 1523 1523

Observation: reduced performance on the test data could be indicative of overfitting

Observation: ineffectiveness of the DAN model in tasks which require context

Observation: improved language processing capabilities and context understanding of RNN from DAN

EXPERIMENTATION

LSTM
Train Accuracy: 0.819047619047619
Test Accuracy: 0.7150361129349967

Classification Report:

precision recall f1-score support 0.76 0.74 0.75 874 0.66 0.67 0.67 649 0.72 1523 accuracy 0.71 0.71 0.71 1523 macro avq 0.72 1523 weighted avg 0.72 0.72

Bi-LSTM

Train Accuracy: 0.7479474548440066 Test Accuracy: 0.7150361129349967

Classification Report:

precision recall f1-score support 0.76 874 0.73 0.80 0.69 0.60 0.64 649 0.72 1523 accuracy 0.71 0.70 0.70 1523 macro avg 0.71 0.72 0.71 1523 weighted avg

Train Accuracy: 0.9320197044334976
Test Accuracy: 0.8273145108338804

Classification Report:

precision recall f1-score support 0.86 0.83 0.85 874 0.78 0.82 0.80 649 0.83 1523 accuracy 0.82 macro avq 0.82 0.83 1523 weighted avg 0.83 0.83 0.83 1523

Observation: demonstrates the effectiveness of the LSTM model in language processing tasks along with understanding context.

Observation: demonstrates the effectiveness of understanding context in both directions for the given input.

Observation: the effectiveness of the BERT model with attention mechanism in the binary disaster classification task

Performance

Discussions

- The Linear SVM model shows good performance with test accuracy of 0.79.
- The DAN model falls short with a test accuracy of 0.59.
- The RNN and LSTM models exhibit better language processing capabilities with test accuracies of 0.745 and 0.729, respectively.
- The Bi-LSTM model further enhances the understanding of context by taking into account bidirectional information, achieving a test accuracy of 0.719.
- Overfitting observed in some models: Linear SVM, LSTM, and Bi-LSTM
- SVM was able to generalize better than DAN, RNN, LSTM, and Bi-LSTM to the test dataset.
- With transfer learning along with attention mechanism, pre-trained BERT model outperforms all other models, achieving an impressive test accuracy of 83%.
- Overall, our results demonstrate the effectiveness of BERT in NLP tasks that require a deeper understanding of context and reaffirm its position as state-of-the-art.

Reference(s): [5]

Discussions

- Dataset limitations:
 - Limited size
 - ambiguity
 - subjectivity
- Lack of additional context: External links, non-ASCII characters, emojis
- Language intricacies:
 - Sarcasm,
 - metaphors,
 - misleading keywords or hashtags
- Short length of tweets: Limited context and information

We would do numerous things if we had another month/6 months/full phd time on this subject:

- First, fixing dataset issues like size and imbalance can improve model performance.
 More data could reduce overfitting and increase generalization.
- We could also leverage attention methods, extra layers, or recent transformer-based models like GPT-3 to better capture context and semantics.
- Addressing ambiguity, subjectivity, sarcasm, metaphors, and misleading hashtags is another topic for improvement.
- Multilingual embeddings or machine translation can assist creating models for more languages and groups