The R EdSurvey Package

Analyzing NAEP and TIMSS Data Using R: Day 3

Presenters: Eric Buehler, Paul Bailey, Charles Blankenship & Sinan

Yavuz

October 2021

Workshop Goal

Provide participants with an overview of the methods used to analyze national and international large-scale assessment data using the R package EdSurvey

Follow along in edsurvey_training_day3.R

Outline of EdSurvey Workshop - Day 3

- Summary statistics -edsurveyTable, etc
- Linear regression (mention HLM/WeMix)
- Percentile analysis
- Quantile regression
- Doing your own analyses using NAEP/TIMSS data

Data Processing

• First, load the **EdSurvey** package and read in the data

```
# to load the package
library(EdSurvey)
```

NAEP Primer:

summary2() produces both weighted and unweighted descriptive statistics for a variable. **summary2()** takes four following arguments in order:

- data : an EdSurvey object.
- **variable** : name of the variable you want to produce statistics on.
- weightVar : name of the weight variable; or NULL if users want to produce unweighted statistics.
- **omittedLevels**: if **TRUE**, the function will remove omitted levels for the specified variable before producing descriptive statistics. If **FALSE**, the function will include omitted levels in the output statistics.

For a continuous variable (i.e., composite Math score):

```
summary2(sdf, "composite")

## Estimates are weighted using the weight variable 'origwt'

## Variable N Weighted N Min. 1st Qu. Median Mean 3rd Qu. Max. SD NA's Zero-weights

## 1 composite 16915 16932.46 126.11 251.9626 277.4784 275.8892 301.1827 404.184 36.5713 0 0
```

For NAEP data and other datasets that have a default weight variable, summary2 produces weighted statistics by default. If a specified variable is a plausible value and weight option is selected, summary2 statistics account for both plausible value pooling and weighting.

For a continuous variable (i.e., composite Math score):

• By specifying weightVar = NULL, the function prints out unweighted descriptive statistics for the variable, or each plausible value if the variable is a plausible value name.

```
summary2(sdf, "composite", weightVar = NULL)

## Estimates are not weighted.
## Variable N Min. 1st Qu. Median Mean 3rd Qu. Max. SD NA's
## 1 mrpcm1 16915 130.53 252.0600 277.33 275.8606 300.7200 410.80 35.89864 0
## 2 mrpcm2 16915 124.16 252.2100 277.33 275.6399 300.6900 408.58 36.08483 0
## 3 mrpcm3 16915 115.09 252.0017 277.19 275.6570 300.5600 398.17 36.09278 0
## 4 mrpcm4 16915 137.19 252.4717 277.44 275.7451 300.5767 407.41 35.91078 0
## 5 mrpcm5 16915 123.58 252.4900 277.16 275.6965 300.5000 395.96 36.10905 0
```

For a categorical variable (i.e., frequency of students talking about studies at home):

```
summary2(sdf, "b017451")
## Estimates are weighted using the weight variable 'origwt'
                 b017451
                            N Weighted N Weighted Percent Weighted Percent SE
## 1 Never or hardly ever 3837 3952.4529
                                             23,34245648
                                                                   0.4318975
## 2 Once every few weeks 3147 3190.8945
                                             18,84483329
                                                                   0.3740648
        About once a week 2853 2937.7148
                                             17,34960077
                                                                   0.3414566
     2 or 3 times a week 3362 3425.8950
                                             20.23270282
                                                                   0.3156289
## 5
               Every day 3132 3223.8074
                                             19.03921080
                                                                   0.4442216
## 6
                 Omitted 575
                               194.3312
                                            1.14768416
                                                                   0.1272462
                Multiple
## 7
                                 7,3676
                                              0.04351168
                                                                   0.0191187
```

• By default, **omittedLevels** is set to **FALSE**. That is, the function includes omitted levels of the variable **b017451** in the output statistics.

For a categorical variable (i.e., frequency of students talking about studies at home):

• By specifying **omittedLevels** = **TRUE**, the function removes omitted levels out of the output statistics.

```
summary2(sdf, "b017451", omittedLevels = TRUE)
## Estimates are weighted using the weight variable 'origwt'
                          N Weighted N Weighted Percent Weighted Percent SE
                b017451
## 1 Never or hardly ever 3837
                              3952,453
                                              23.62386
                                                                0.4367548
## 2 Once every few weeks 3147
                              3190.894
                                              19,07202
                                                                0.3749868
       About once a week 2853
                              2937,715
                                              17,55876
                                                                0.3486008
## 4 2 or 3 times a week 3362
                              3425.895
                                              20,47662
                                                                0.3196719
               Every day 3132
                              3223.807
                                              19.26874
                                                                0.4467063
```

Cross tabulation

edsurveyTable(): creates a summary table of outcome and categorical variables. There are 3 important arguments:

- formula: typically written as a ~ b + c, in which:
 - **a**: a continuous variable (optional) that the function will return the weighted mean for.
 - **b** and **c**: categorical variable(s) that the function will run cross-tabulation on; multiple crosstab categorical variables can be separated using **+** symbol.
- data: an EdSurvey object
- **pctAggregationLevel**: a numeric value (i.e., 0, 1, 2) that indicates the level of aggregation in the cross-tabulation result's percentage column.

Cross tabulation

- Summary table of NAEP composite mathematics performance scale scores (composite) of 8th grade students by two student factors:
 - dsex: gender
 - b017451: frequency of studies talk about studies at home
- **pctAggregationLevel** is by default set to **NULL** (or **1**). That is, the **PCT** column adds up to 100 within each level of the first categorical variable **dsex**.

dsex	b017451	N	WTD_N	PCT	SE(PCT)	MEAN	SE(MEAN)
Male	Never or hardly ever	2350	2434.844	29.00978	0.6959418	270.8243	1.057078
Male	Once every few weeks	1603	1638.745	19.52472	0.5020657	275.0807	1.305922
Male	About once a week	1384	1423.312	16.95795	0.5057265	281.5612	1.409587

Cross tabulation

• By specifying **pctAggregationLevel = 0**, the **PCT** column adds up to 100 across the entire sample.

es2 <- edsurveyTable(composite ~ dsex + b017451, data = sdf, pctAggregation

dsex	b017451	N	WTD_N	PCT	SE(PCT)	MEAN	SE(MEAN)
Male	Never or hardly ever	2350	2434.844	14.553095	0.3738531	270.8243	1.057078
Male	Once every few weeks	1603	1638.745	9.794803	0.2651368	275.0807	1.305922
Male	About once a week	1384	1423.312	8.507154	0.2770233	281.5612	1.409587
Male	2 or 3 times a week	1535	1563.393	9.344421	0.2670298	284.9066	1.546072
Male	Every day	1291	1332.890	7.966700	0.3000579	277.2597	1.795784
Female	Never or hardly ever	1487	1517.609	9.070768	0.2984443	266.7897	1.519020
Female	Once every few weeks	1544	1552.149	9.277216	0.2498498	271.2255	1.205528
Female	About once a week	1469	1514.403	9.051606	0.2899668	278.7502	1.719778
Female	2 or 3 times a week	1827	1862.502	11.132198	0.2552321	282.7765	1.404107
Female	Every day	1841	1890.918	11.302039	0.3497982	275.4628	1.219439

Self-Reflection - edsurveyTable

Ask yourself: How would you use **edsurveyTable** to create a summary table with these parameters:

- overall math performance across subscales (composite)
- a variable that has to do with IEP status
- a variable that has to do with number of books at home

Self-Reflection - edsurveyTable

Scenario Result:

```
edexercise <- edsurveyTable(composite ~ iep + b013801,
                                              weightVar = 'origwt', data = sdf)
 edexercise
##
## Formula: composite ~ iep + b013801
##
## Plausible values: 5
## jrrIMax: 1
## Weight variable: 'origwt'
## Variance method: jackknife
## JK replicates: 62
## full data n: 17606
## n used: 16351
##
  Summary Table:
   iep b013801
                      WTD N
                                PCT SE(PCT)
                                                 MEAN SE(MEAN)
          0-10 304 297.1972 17.33406 1.0388812 226.1623 2.3075125
        11-25 430 429.6252 25.05794 1.4034976 231.8103 2.3796081
   Yes 26-100 517 530.9539 30.96795 1.5297784 249.2306 2.4682667
   Yes
        >100 457 456.7507 26.64004 1.6556494 257.6787 2.8205193
        0-10 1720 1890.3037 12.56502 0.4765198 257.6975 1.2861579
        11-25 2936 3170.9954 21.07789 0.5632689 266.0401 0.9908671
    No 26-100 5330 5350.4978 35.56524 0.6242526 281.5820 0.8305656
         >100 4657 4632.3807 30.79185 0.8511616 296.2606 1.0533164
```

Linear Regression

Linear Regression - lm.sdf()

lm.sdf() : fits a linear model formula using sampling weights and a variance estimation method. The format is:

```
myfit <- lm.sdf(formula, data, weightVar, varMethod,
relevels)</pre>
```

- formula: model to be fit.
- data: an EdSurvey object containing the data to be used in fitting the model.
- weightVar: indicates the weight variable to use.
- **varMethod**: the variance estimation method (Jackknife or Taylor series) with the Jackknife as the default.
- **relevels**: is used when the user wants to change the reference level of a categorical variable.

Linear Regression - lm.sdf()

The resulting object (**myfit** in this case) is a list containing extensive information about the fitted model.

Formula notation is typically written as:

$$Y \sim X1 + X2 + \ldots + Xk$$

- The ~ separates the response variable on the left from the predictor variables on the right.
- The + sign separates the predictor variables.

Example of bivariate regression:

```
lm1 <- lm.sdf(composite ~ b017451,</pre>
                      weightVar = 'origwt', data = sdf)
 summary(lm1)
##
## Formula: composite ~ b017451
##
## Weight variable: 'origwt'
## Variance method: jackknife
## JK replicates: 62
## Plausible values: 5
## jrrIMax: 1
## full data n: 17606
## n used: 16331
##
## Coefficients:
                                                t dof Pr(>|t|)
##
                              coef
```

• Note: we can also use **lm.sdf** for **TIMSS** data.

Example of multiple regression:

• the sampling weight for this regression: origwt

summary(1m2)

```
##
## Formula: composite ~ dsex + b017451
##
## Weight variable: 'origwt'
## Variance method: jackknife
## JK replicates: 62
## Plausible values: 5
## jrrIMax: 1
## full data n: 17606
## n used: 16331
##
## Coefficients:
##
                                                        dof Pr(>|t|)
                                coef
                                                    t
## (Intercept)
                           0.60423 -4.8965 54.991 8.947e-06 ***
## dsexFemale
                            -2.95858
## b0174510nce every few weeks 4.23341
                                     1.18327 3.5777 57.316 0.0007131 ***
## b017451About once a week
                                     1.25854
                                              8.9200 54.683 2.983e-12
                            11.22612
## b0174512 or 3 times a week 14.94591
                                     1.18665 12.5951 72.582 < 2.2e-16 ***
## b017451Every day
                           7.52998
                                     1.30846 5.7549 48.470 5.755e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared: 0.0224
```

Adding **src** = **TRUE** displays standardized regression coefficients

```
summary(lm2, src = TRUE)
## Formula: composite ~ dsex + b017451
## Weight variable: 'origwt'
## Variance method: jackknife
## JK replicates: 62
## Plausible values: 5
## jrrIMax: 1
## full data n: 17606
## n used: 16331
## Coefficients:
                                                               dof Pr(>|t|) stdCoef
                                    coef se
                                                                                        stdSE
                                          1.0244340 263.9615 54.670 0.0000e+00
## (Intercept)
                             270.4111210
## dsexFemale
                              -2.9585783
                                          0.6042285 -4.8965 54.991 8.9474e-06 -0.0407 0.008313 **
## b0174510nce every few weeks 4.2334144
                                          1.1832671
                                                     3.5777 57.316 7.1311e-04 0.0458 0.012791 *
## b017451About once a week
                              11,2261232
                                          1,2585369
                                                     8.9200 54.683 2.9834e-12 0.1175 0.013175 *
## b0174512 or 3 times a week 14.9459085
                                          1.1866461 12.5951 72.582 0.0000e+00 0.1659 0.013175 *
## b017451Every day
                          7.5299837
                                          1.3084558 5.7549 48.470 5.7550e-07 0.0817 0.014200 *
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Multiple R-squared: 0.0224
```

Use **relevels** to set omitted / reference level of **dsex** to "Female":

summary(1m3)

```
##
## Formula: composite ~ dsex + b017451
##
## Weight variable: 'origwt'
## Variance method: jackknife
## JK replicates: 62
## Plausible values: 5
## jrrIMax: 1
## full data n: 17606
## n used: 16331
##
## Coefficients:
##
                                                            dof Pr(>|t|)
                                   coef
## (Intercept)
                             267,45254
                                        1.13187 236.2919 76.454 < 2.2e-16 ***
                                        0.60423 4.8965 54.991 8.947e-06 ***
## dsexMale
                                2.95858
## b0174510nce every few weeks 4.23341
                                        1.18327 3.5777 57.316 0.0007131 ***
## b017451About once a week
                                        1.25854
                                                  8.9200 54.683 2.983e-12
                              11.22612
## b0174512 or 3 times a week 14.94591
                                        1.18665 12.5951 72.582 < 2.2e-16 ***
## b017451Every day
                             7.52998
                                        1.30846 5.7549 48.470 5.755e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared: 0.0224
```

Self-Reflection - lm.sdf

Ask yourself: How would you use **lm.sdf** to perform a regression with multiple predictors using these parameters:

- overall math performance across subscales (composite)
- variable that has to do with computers at home
- variable that has to do with language other than English spoken in home

Self-Reflection - lm.sdf

Scenario Result:

```
lmexercise2 <- lm.sdf(composite ~ b017101 + b018201,</pre>
                              weightVar = 'origwt', data = sdf)
 summary(lmexercise2)
##
## Formula: composite ~ b017101 + b018201
##
## Weight variable: 'origwt'
## Variance method: jackknife
## JK replicates: 62
## Plausible values: 5
## jrrIMax: 1
## full data n: 17606
## n used: 15884
##
## Coefficients:
                          coef
                                      t
                                               dof Pr(>|t|)
## (Intercept)
                      ## b017101No
                      -22.44306 1.36521 -16.43932 42.935 < 2.2e-16 ***
## b0182010nce in a while
                      0.63672 0.90717 0.70188 61.423
## b018201Half the time
                     -7.32985 1.58448 -4.62604 50.514 2.624e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared: 0.0658
```

HLM - WeMix; mixed.sdf()

- EdSurvey has the ability to fit weighted hierarchical linear models using the WeMix package that accounts for the sampling strategy as well as random effects.
- When the outcome is not represented with plausible values users may use mix() directly
- To fit these models users need information about the weights at every level modeled
- This topic deserves its own series see **?mixed.sdf** and or the WeMix documentation for examples and more details

Even More Plausible Values

- Plausible values only work when the model used to generate them includes all regressors
- When a variable is not included in the conditioning model the estimates will be biased
- If you want to include additional variables, such as those from an external data source, in a regression you need to use marginal maximum likelihood
- The Dire package does this and can be used with mml.sdf in EdSurvey

```
m1 <- mml.sdf(algebra ~ dsex + b013801, sdf, weightVar='origwt')

## Warning in mml.sdf(algebra ~ dsex + b013801, sdf, weightVar = "origwt"): Using IRT parameters for National tests by default.

## Warning in mml.sdf(algebra ~ dsex + b013801, sdf, weightVar = "origwt"): These items were in the assessment, but not in your dat

## m140501, m140901, m141501, m141901, m052501, m067001, m051701, m140701, m141601, m0732c1, m092201, m092601, m140601, m141201,

## m141401, m141701, m021001, m020901, m092401, m140401, m140801, m141001, m013331, m073301, m019201, m141101, m141301, m141801,

## m012231, m073001, m073101, m012431, m091901, and m073601

## Warning in getData(data = sdf, varnames = c(polyParamTab$ItemID, dichotParamTab$ItemID,: Updating labels on 'm144901' because

## there are multiples of the label 'Correct'.

## Warning in getData(data = sdf, varnames = c(polyParamTab$ItemID, dichotParamTab$ItemID,: Updating labels on 'm145101' because

## there are multiples of the label 'Correct'.

## Pre-processing Completed.
```

Percentile Analysis

Percentile Analysis

percentile() - calculates the percentiles of a numeric variable

- typically a subject scale or subscale ("composite")
- numeric vector of percentiles in the range 0 to 100 (c(25,50,75))

```
# 25th, 50th and 75th percentiles
 per <- percentile("composite", percentiles = c(25,50,75), data = sdf)
 per
## Percentile
## Call: percentile(variable = "composite", percentiles = c(25, 50, 75),
     data = sdf)
## full data n: 17606
## n used: 16915
  percentile estimate se
                                 df confInt.ci_lower confInt.ci_upper
         25 251.9626 1.0179363 42.53475
                                          249,7120
                                                         254,0142
         50 277.4784 1.1375443 51.15378
                                          275,7035
                                                         279,1926
         75 301.1827 0.9141083 70.56403
                                          299,4265
                                                        302,8973
```

Related Documentation - EdSurvey-Percentiles.pdf

Percentile Analysis

percentile() - the full range of quantiles

```
# note df/se at 0 and 100. We would not report these.
per <- percentile("composite", percentiles = c(0:100), data = sdf)</pre>
```

	percentile	estimate	se	df	confint.ci_lower	conflnt.ci_upper
P0	0	126.1100	13.7363161	2.80821	126.1100	143.0444
P1	1	185.9546	3.3733809	44.17526	179.4243	190.7146
P2	2	196.7552	1.6605381	39.21315	192.5669	200.4021
P3	3	203.8506	1.6674788	58.18808	200.2818	206.6049
P4	4	208.7937	1.3931131	33.14432	205.8532	211.2580
P5	5	212.9238	1.0713696	23.75427	210.0002	215.7760
P6	6	216.6267	1.4713185	44.29842	213.8604	219.3234
P7	7	219.9586	1.1825717	47.74121	217.1187	222.3583

Related Documentation - EdSurvey-Percentiles.pdf

Self-Reflection - percentile (Breakout Session - 10min)

How to use EdSurvey functions to create a percentile results using **percentile()** with these parameters:

- algebra sub-scale
- by gender (dsex)
- 5th and 95th percentile

hint: you can use EdSurvey's subset() function

Self-Reflection Solution - percentile

One of many possible solutions:

```
sexes <- levels( sdf$dsex )</pre>
 sexes # lapply to pass each sex to subset() using an anon function
## [1] "Male" "Female"
 sex list <- lapply( sexes , function(each sex) {</pre>
                                                               subset(sdf, subset=dsex==eac
 # create an edsurvey df list, labelling each subset
 esdflist <- edsurvey.data.frame.list(sex list, labels= sexes)</pre>
 percentile("algebra", percentiles = c(5,95), weightVar = "origwt", esdflist
## percentileList
## Call: percentile(variable = "algebra", percentiles = c(5, 95), data = esdflist,
     weightVar = "origwt")
                                df confInt.ci_lower confInt.ci_upper
## labels percentile estimate se
    Male
             5 215,227 1,354715 23,63708
                                          211.7716
                                                      218,6158
## Female
         5 218.4289 1.760181 67.02682
                                          214.8175
                                                      221,6092
          95 338.8147 1.614728 37.56567
    Male
                                                      342,7369
                                          335.4467
## Female
            95 336.329 1.436898 24.86614
                                          333,9032
                                                      339,4471
```

Quantile Regression Analysis

Quantile Regression Analysis

Quantile Regression; a visual example

```
invisible(lapply(c("EdSurvey", "ggplot2", "RColorBrewer"), library, charact
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEF</pre>
# make a regular data frame, with some columns we may be interested in
allvars <- colnames(sdf)
somevars <- allvars[c(1:10, grep(sdf$stratumVar , allvars),grep(sdf$psuVar</pre>
df <- getData(data=sdf, varnames=somevars)</pre>
# for demo purposes, add a random continuous IV that varies by sex
rand vals <- list(df$mrpcm1 * pmax(.01, rnorm(1:nrow(df),mean=7,sd=2.5)), (
df$stu rand[df$dsex==1] <- df$mrpcm1[df$dsex==1]/7 + rand vals[[1]][df$dsex
df$stu rand[df$dsex==2] <- df$mrpcm1[df$dsex==2]/8 + rand vals[[2]][df$dsex
# ggplot will plot quantile regression lines. see ggplot2::geom quantile
ggplot(df, aes(y=mrpcm1, x=stu rand, color=dsex)) + geom point(alpha=.1) +
 geom quantile(aes(y=mrpcm1, x=stu rand, color=dsex), quantiles= c(.01,
```

Quantile Regression Analysis

rq.sdf() - computes an estimate on the tau-th conditional quantile function of the response

- assumes a linear specification of the quantile regression function
- jackknife is the only available variance estimator
- at present only accepts a single tau value (median is the default)
- based on quantreg package (Roger Koenker, 2021)
- ?rq.sdf
- Related Documentation quantreg.pdf

```
sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEF</pre>
 # conduct quantile regression at a given tau value (by default, tau is set
 rq1 <- rq.sdf(composite ~ dsex + b017451, data=sdf, tau = .75)
 summary(rq1)
##
## Formula: composite ~ dsex + b017451
##
## tau: 0.75
## jrrIMax: 1
## Weight variable: 'origwt'
## Variance method: jackknife
## JK replicates: 62
## full data n: 17606
## n used: 16331
##
## Coefficients:
                                                     dof Pr(>|t|)
                              coef
                                   1.36145 216.03674 31.146 < 2.2e-16 ***
## (Intercept)
                         294.12400
                                    0.99955 -4.33195 28.455 0.0001668 ***
## dsexFemale
                          -4.33000
## b0174510nce every few weeks 6.26800
                                   1,42437
                                           4.40053 62.544 4.289e-05 ***
## b017451About once a week
                        12,71800
                                   1.77125
                                           7.18022 38.021 1.400e-08 ***
## b0174512 or 3 times a week 15.77400
                                   1.52721 10.32867 32.974 7.224e-12 ***
## b017451Every day
                         12.20000
                                   1,69426
                                           7.20078 65.993 7.115e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Often we want multiple quantiles. First, some setup.

```
# convert the data frame back to an edsurvey data frame using rebindAttribut
new_sdf <- rebindAttributes(df, sdf)
# typically, one is interested in multiple quantiles, which can be achieved
taus <- c(.01, .25, .50, .75, .99)
# set color palette (blue for boys, red for girls), go slightly darker for
shades <- c(RColorBrewer::brewer.pal(length(taus)+2, "Blues")[1:length(taus)+2, "Reds")[1:length(taus)+2, "Reds"]</pre>
```

Run quantile regressions and plot lines for multiple quantiles.

```
plot(df$stu rand, df$mrpcm1, col= alpha(c("blue", "pink")[df$dsex], .33), ce
for( tau n in 1:length(taus)) {
                                                  # tau n = 1, 2, 3... to num
  for (sex n in 1:length(levels(df$dsex))) { # sex n = 1 for males (ds
    rq <- rq.sdf(composite ~ stu rand, data=new sdf[new sdf$dsex==sex n,],
    abline(rq$coef, lwd=2.5, col=shades[((sex n-1)*5) + tau n])
    if (tau n==1 & sex n==1) { # add text to margins and stack output
      mtext(line=sex n, adj=0, text=paste(levels(df$dsex)[sex n], " "), col=
      mtext(line=sex n, adj=tau n*.21-.1, text=bquote(tau ~ "=" ~ .(taus[taus])
      models <- data.frame("sex"=levels(df$dsex)[sex n], "tau"=taus[tau n];</pre>
    } else {
      mtext( line=sex n, adj=tau n*.21-.1, text=bquote(tau ~ "=" ~ .(taus[1
      models <- rbind(models, data.frame("sex"=levels(df$dsex)[sex n], "tal</pre>
```


View quantile regression output.

models

```
sex tau
                                                coef
                                                                                   dof
                                                                                           Pr...t..
                                   term
                                                               se
## (Intercept)
                  Male 0.01 (Intercept) 1.478264e+02 10.048776068 14.7108815 13.166714 1.486446e-09
## stu rand
                  Male 0.01
                               stu rand 2.105768e-02
                                                      0.005142682 4.0946876
                                                                             7.066032 4.512358e-03
## (Intercept)1 Female 0.01 (Intercept) 1.561453e+02
                                                      8.513109361 18.3417528
                                                                              5.308803 5.255287e-06
## stu rand1
                Female 0.01
                               stu rand 1.661817e-02
                                                      0.005030714
                                                                  3.3033425
                                                                              5.495577 1.859703e-02
## (Intercept)2 Male 0.25 (Intercept) 2.132601e+02
                                                      3.006779681 70.9264261 64.250801 0.000000e+00
                               stu rand 1.847013e-02
## stu rand2
                  Male 0.25
                                                      0.001309691 14.1026591 59.555640 0.000000e+00
## (Intercept)3 Female 0.25 (Intercept) 2.231061e+02
                                                      4.172641280 53.4687942 27.661700 0.000000e+00
## stu rand3
                Female 0.25
                               stu rand 1.240042e-02
                                                      0.002090418
                                                                  5.9320284 31.429547 1.413860e-06
## (Intercept)4 Male 0.50 (Intercept) 2.411147e+02
                                                      4.191589755 57.5234588 46.489502 0.000000e+00
## stu rand4
                  Male 0.50
                               stu rand 1.594234e-02
                                                      0.001892846 8.4224190 67.012213 4.164225e-12
## (Intercept)5 Female 0.50 (Intercept) 2.506785e+02
                                                      3.135979237 79.9362703 33.337581 0.000000e+00
                Female 0.50
## stu rand5
                               stu rand 1.012357e-02
                                                      0.001280927 7.9033197 39.592343 1.148096e-09
## (Intercept)6 Male 0.75 (Intercept) 2.657499e+02
                                                      3.005208219 88.4297757 35.901705 0.000000e+00
## stu rand6
                  Male 0.75
                               stu rand 1.442751e-02
                                                      0.001339846 10.7680360 43.597286 7.305268e-14
## (Intercept)7 Female 0.75 (Intercept) 2.763398e+02
                                                      3.006205995 91.9231182 61.067210 0.000000e+00
## stu rand7
                Female 0.75
                               stu rand 7.836809e-03
                                                      0.001313441 5.9666252 61.609772 1.291356e-07
## (Intercept)8
                Male 0.99 (Intercept) 3.222462e+02
                                                      4.601881826 70.0248804 15.955738 0.000000e+00
## stu rand8
                  Male 0.99
                               stu rand 1.170366e-02
                                                      0.002519903 4.6444888 26.444339 8.281088e-05
## (Intercept)9 Female 0.99 (Intercept) 3.330185e+02 13.270026428 25.0955386 32.382937 0.000000e+00
## stu rand9
                Female 0.99
                               stu rand 4.072766e-03 0.006786260 0.6001489 34.567650 5.523214e-01
```

Self-Reflection - Quantile Regression (Breakout Session 10min)

Ask yourself: Use EdSurvey functions to perform quantile regression using rq.sdf() with these parameters:

- algebra performance by sex and race
- 5th and 95th percentile
- compare run times of Frisch-Newton vs default method qr.fit method

Self-Reflection Solution - Quantile Regression

```
qfit5 <- rq.sdf(composite ~ dsex + sdracem , tau=.05, data = sdf)</pre>
 qfit95 <- rq.sdf(composite ~ dsex + sdracem , tau=.95, data = sdf)</pre>
 summary(qfit5)
## Formula: composite ~ dsex + sdracem
##
## tau: 0.05
## jrrIMax: 1
## Weight variable: 'origwt'
## Variance method: jackknife
## JK replicates: 62
## full data n: 17606
## n used: 16915
##
## Coefficients:
##
                                                         dof Pr(>|t|)
                                coef
## (Intercept)
                           230.02800
                                      2.96635 77.54584 51.3270 < 2.2e-16 ***
## dsexFemale
                           1.95800
                                      2.89235
                                              0.67696 33.2492
## sdracemBlack
                           -33,15800
                                     3.30823 -10.02289 32.9875 1.535e-11 ***
## sdracemHispanic
                           -28,69800
                                     2.98598 -9.61090 72.0220 1.533e-14 ***
## sdracemAsian/Pacific Island -7.73200
                                    3.46678 -2.23031 55.2389 0.02981 *
## sdracemAmer Ind/Alaska Natv -22.15800
                                     8.43002 -2.62846 3.6187 0.06458 .
## sdracemOther
                          -10.41800 11.38321 -0.91521 55.2939 0.36406
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Self-Reflection Solution - Quantile Regression

```
#install.packages("rbenchmark")
 rbenchmark::benchmark(replications = 3, columns = c("test", "replications"
  "Barrodale & Roberts" ={v1<-rq.sdf(composite ~ dsex , tau=.95, data = sdf,
  "Frisch-Newton"
                       ={v2<-rq.sdf(composite ~ dsex , tau=.95, data = sdf
               test replications elapsed relative user.self sys.self
## 1 Barrodale & Roberts
                              28.85
                                     4.873
                                            28.81
                                                    0.00
        Frisch-Newton
                             5.92
                                     1,000
                                             5.91
                                                    0.02
 v2$coefmat
             coef
                                    dof Pr(>|t|)
## (Intercept) 335.558 2.149052 156.142345 57.04900 0.00000000
## dsexFemale -4.162 1.785129 -2.331485 60.48926 0.02307631
 v1$coefmat
             coef
                                    dof Pr(>|t|)
## (Intercept) 335.558 2.149052 156.142345 57.04900 0.00000000
## dsexFemale -4.162 1.785129 -2.331485 60.48926 0.02307631
```

Logistic Regression

logit.sdf() and **probit.sdf()** - predict binary outcomes from a set of continuous predictor variables (sampling weights and variance estimates)

• I() used to specify the outcome level of the **b013801** variable (Books in home)

Logistic Regression

summary(logit1)

```
##
## Formula: b013801 ~ dsex
## Family: binomial (logit)
##
## Weight variable: 'origwt'
## Variance method: jackknife
## JK replicates: 62
## full data n: 17606
## n used: 16359
##
## Coefficients:
## coef se t dof Pr(>|t|)
## (Intercept) -0.920421 0.046355 -19.855835 60.636 < 2.2e-16 ***
## dsexFemale 0.178274 0.050129 3.556331 54.578 0.0007863 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The *log* odds of having more than 100 books in home (versus less than or equal to 100 books) increases by 0.178274 for female students, compared with male students.

Logistic Regression

oddsRatio(logit1)

```
## OR 2.5% 97.5%
## (Intercept) 0.3983511 0.3630823 0.4370459
## dsexFemale 1.1951531 1.0809029 1.3214796
```

Alternatively, the odds of having more than 100 books in home (versus less than or equal to 100 books) increases by 1.1951531 for female students, compared with male students.

Bonus point: The Wald test is available for logit.sdf and lm.sdf models. See details in ?waldTest.

Related Documentation - EdSurvey-Wald Test.pdf

Self-Reflection - Logistic Regression

Ask yourself: Use EdSurvey functions to perform a logistic regression using logit.sdf using these parameters:

- use an outcome variable that has to do with English Langauge Learners (ELL)
 - ∘ code it to 1 when **%in%** "Yes"
- use a predictor variable that has to do with language spoken at home

Self-Reflection - Logistic Regression

Scenario Result:

```
logitexercise1 <- logit.sdf(I(lep %in% "Yes") ~ b018201,</pre>
                                        weightVar = 'origwt', data = sdf)
 summary(logitexercise1)
##
## Formula: lep ~ b018201
## Family: binomial (logit)
## Weight variable: 'origwt'
## Variance method: jackknife
## JK replicates: 62
## full data n: 17606
## n used: 16159
##
## Coefficients:
                                                      dof Pr(>|t|)
                             coef
                                           t
                        -4.78197 0.19709 -24.26309 9.8977 3.796e-10 ***
## (Intercept)
## b0182010nce in a while 1.94536
                                 0.20702 9.39713 26.0267 7.539e-10 ***
                                 0.15354 20.44573 38.9521 < 2.2e-16 ***
## b018201Half the time
                       3.13919
## b018201All or most of time 3.63098
                                  0.17657 20.56339 26.7407 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Homework - 1

Get prepared for the next week

Homework - 2

 Additionally, read one more country data of your choice for 4th grade TIMSS data.