IRAC F/A-18 RFCS on NASA 853

NASA Dryder Fight Research Center Photo Collection
MASA Protoc ECIG-0264-3. Date November 15, 2002. Photo by Carla Thomas
The modified First 18 being flown in the joint NASA/H crock active Across device when the program shows off its colors during its first checkout flight from NASA/s Dryden Flight Research
Center.

http://www.dfrc.nasa.gov/gallery/photo/index.html
NASA Photo: EC96-43479-5 Date: March 22, 1996 Photo by: Dan Murri

F-18 HARV configured with nose strakes during smoke test

Scope

F/A-18 RFCS History

- Quad 1750A RFCS addition to F/A-18 production FCS allowed by 701B to 701E upgrade (1987-1989)
 - Almost all I/O routed through production Input and Actuator Signal Management
 (1) analog channel to RFCS I/O
 - Addition of TVCS ASM (6 aileron actuators), later added Forebody Strakes (2)
 - RFCS integrated with F/A-18 version 10.1 Control laws
 - Production Mission Computer (MC) modified to provide additional inputs to RFCS, increased rate (80 Hz)
 - Class-B RFCS S/W environment and envelope
 - System design stressed flexibility and testability (validated by 20 year legacy)
 - Shared S/W development and testing (NASA, BAE (GE), Boeing (McAIR))
- Programs that utilized 1750A RFCS
 - HARV (1989-1996)
 - PSFCC (1997-1999) [demod TVCS and FBS actuation, include RFCS CCDL]
 - Mini-stick (1998-1999)
 - AFF (2000-2002)
 - AARD (2006-2007)

Pace 1750A: 16 bit

Speed: 40 Mhz

Memory available for control laws: 32K

F/A-18 RFCS History (cont.)

- Quad 68040 RFCS upgrade to allow more capable Claws for AAW (1995-1999)
 - All I/O routed through production Input and Actuator Signal Management
 - RFCS integrated with 10.1 Claw (same as 1750A)
 - Addition of OutBoard Leading Edge Flap Actuator Signal Management
 - First RFCS Class-A S/W environment and envelope
 - Boeing RFCS S/W development, shared S/W testing (NASA, Boeing, BAE)
- Programs that utilized 68040 RFCS
 - AAW

68040: 32 bit

Speed: 40 Mhz (?)

Memory available for control laws: 2Mb

Next Generation RFCS

Next generation RFCS Assumptions

- Useful system lifespan between 5 and 10 years
- Most time-critical flight control processing done within RFCS
- Maximize use of Matlab/Simulink and features such as RTW, autotest, etc.
- Bulk of RFCS S/W testing done at NASA or NRA partners
- RFCS interface to each engine
- External high-speed datalink (Ethernet to ARTS) for eventual instrumentation feedback (structural, IVHM, etc.) into flight control
- Incorporate lessons learned from past RFCS programs and other research flight systems (ARTS II (IFCS on 837), ARTS III, AAW, etc.)

Requirements Framework

- RFCS and ARTS H/W
 - Provide throughput, memory, and computational resources to support current and future research control laws (2x to 10x the memory and complexity/computation of F/A-18 replication control laws)
 - Provide external I/O to RFCS/701E with external high-speed datalink (minimize time delay)

F/A-18 TN853 IRAC

- RFCS and ARTS S/W
 - Design for level B and the potential for Level A

RFCS/ARTS "use cases" How may this architecture be used

- Mini-stick, AFF, AARD RFCS/ARTS
 - External stick or sensor inputs into ARTS, F/A-18 claws in RFCS
- PSFCC RFCS primary or RFCS/ARTS
 - F/A-18 replication control law mods
 - Also USN reconfigurable retrofit
- IFCS Gen II (837) RFCS/ARTS or ARTS primary
 - Claws in RFCS or ARTS, Adaptive control law elements in ARTS
- FADS, IVHM RFCS primary or RFCS/ARTS
 - External I/O processed in ARTS
- HARV, AAW not represented
 - Not possible without significant FCS modifications (level A)

One Set of Potential RFCS Upgrade Options

701e

1750A

• Already exists 10.1 CLAWS in the 701E (used for HARV, PSFCC, mini-stick, AFF, AARD)

- Limited throughput and memory
- •Very limited external I/O (2 analog A/D channels)
- Ancient TLD Ada compiler and no/limited S/W support

68040 Demod

701e

68040

- •Already exists, 10.1CLAWS in the 701E (modified for AAW)
- Better throughput and memory than 1750A
- •Very limited external I/O
- •No flight qualified compiler at DFRC and limited S/W support. Tartan compiler at Boeing?
- •Requires mod to 701E to remove additional AAW LEF commands

68040 upgrade

701e

68040

1553 ARTS

•1553 on 68040 already exists but not activated, 10.1 CLAWS in the 701E

Concept Selected

- •Better throughput and memory than 1750A
- •Untested compiler at DFRC and limited S/W support
- •Requires mod to 701E to remove additional AAW LEF commands
- •Requires H/W and S/W mod to box and RFCS to allow 1553

RFCS upgrade

701E or upgrade

RFCS upgrade

- •10.7 CLAWS in the 701E
- •Best throughput and memory within the RFCS
- •No compiler yet at DFRC, S/W support likely available
- Very limited external I/O

RFCS+HSDL upgrade

701e RFCS upgrade

- •10.7 CLAWS in the 701E
- •Best throughput and memory within the RFCS and ARTS
- •No compiler yet at DFRC, S/W support likely available
- extensive external I/O using the ARTS
- •Potential for sharing IFCS computation within the ARTS and PPC/RFCS

701E and RFCS integration

Notional RFCS and ARTS Timing

701E/RFCS and ARTS Timing

ARTS IV

- Curtiss-Wright 183 PowerPC
- 3 SBCs per unit (2 units)
 - SBC 2 and SBC 3 are dedicated to research.
 - SBC1 performs critical I/O and host safety critical software.
- Specifications:
 - 6U VME based computer
 - 512 MB RAM
 - 1 Gigahertz PowerPC CPU
 - Discovery III System Controller
- On board I/O:
 - Ethernet, USB, RS-232
 - 2 PCI Mezzanine Card (PMC) Sites

RFCS/ARTS IV integration

F/A-18 Research System Components

Current IRAC Schedule

- FCCs (with 68040) and ARTS IV to DFRC in April/May '09
- Integration on the DFRC Test Bench in Aug '09
- Testing on the DFRC Bench with F-18 Sim Aug-Nov '09
- Install RFCS and ARTS IV in F-18 TN 853 Jul-Aug '09
- Peer review of IRAC controls experiment Sept '09
- Ground Tests Sept-Nov '09
- FRR for 1st Flight (RFCS & ARTS w/o Research S/W) Nov **'09**
- 1st Flight (RFCS & ARTS w/o Research S/W) Feb '10
- Select Adaptive Research Control Laws Sept '10
- IRAC Milestone 4.1.2.2 Mar '11 (adaptive integrated flight/propulsion control experiment)

Potential IRAC Experiments

- Integrated aero/propulsion control
- Integrated adaptive structural control
- Adaptive aeroservoelastic experiments
- Adaptive guidance / mission management
- Adaptive algorithm validation
- Upset recovery control validation
- Pilot interaction with adaptive system

