

Transfer learning key points

Image

Transfer learning key points

	very similar dataset	very different dataset
very little data	?	?
quite a lot of data	?	?

<u>cs231</u>

Transfer learning key points

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Universal Language Model Fine-tuning for Text Classification (ULMFiT)

- Sebastian Ruder (DeepMind researcher, <u>blogger</u>) & Jeremy Howard (<u>fast.ai</u>)
- Discriminative fine-tuning

$$\theta_t^l = \theta_{t-1}^l - \eta^l \cdot \nabla_{\theta^l} J(\theta)$$

We empirically found it to work well to first choose the learning rate η^L of the last layer by fine-tuning only the last layer and using $\eta^{l-1}=\eta^l/2.6$ as the learning rate for lower layers.

- Gradual unfreezing
- Slanted triangular learning rate

Figure 1: ULMFiT consists of three stages: a) The LM is trained on a general-domain corpus to capture general features of the language in different layers. b) The full LM is fine-tuned on target task data using discriminative fine-tuning ('Discr') and slanted triangular learning rates (STLR) to learn task-specific features. c) The classifier is fine-tuned on the target task using gradual unfreezing, 'Discr', and STLR to preserve low-level representations and adapt high-level ones (shaded: unfreezing stages; black: frozen).

https://arxiv.org/pdf/1801.06146.pdf

Multi-task learning

Tf.Hubs

- <u>Transfer learning with Hubs</u>
- Available models

Using pretrained CNN

Transfer learning with a pretrained ConvNet