

SANKHYAR MAJA AR MAJAR SANKHYA

[Fun with Mumbers and Funny Numbers]

Basanta Kumar Samaota

০ পশ্চিমান্ত স্থান্ত পত্তৰ পৰ্যৎ

সংখ্যার মজা

O West Bengal State Book Board

আর

इ (प्रकृष्णकार)

মজার সংখ্যা

क्षणान तमानी

পশ্চিমকন্ধ বাজা পুত্তক পৰ্যন বিশণন কেন্দ্ৰ

ें श्रीया आविष्ठि विदे

010002-1000

2 10 14 19 13

পৰিয়েশৰ ভাষা পুস্তক পৰিং

अर्थ, दाला मृत्यम असिक (कारान्

TOCO COF-TOTO TO

ISBN : 81-247-6200-X

বসস্ত কুমার সামস্ত, এম. এ., পি. এইচ্. ডি.

প্রাক্তন অধ্যক্ষ, হগলী মহসিন কলেজ

PRO 00 5 45 15 16 16

পদিচলবাদ রাজ্য সুদ্রবাপর্যাপ

আঞ্চলিক ভাষাহ বিশ্ববিদ্যালয় জন্মে হাছ প্রচনা জহতে পশ্চিনানে কান্দ্রকানিক আর্থান্দ্রভাগ পশ্চিমবল মান্ত পূত্রক পর্যাধনার মুখ্য দিন্দ্রী আর্থিকানিক আত্তাল্যাল মঞ্চলেয় কঠক প্রভালিত।

SANKHYAR MAJA AR MAJAR SANKHYA [Fun with Numbers and Funny Numbers] Basanta Kumar Samanta

© West Bengal State Book Board

© পশ্চিমবঙ্গ রাজ্য পৃস্তক পর্ষৎ

প্রকাশকাল ঃ

প্রথম মূদ্রণ ঃ ডিসেম্বর, ১৯৯০/ বি দ্বিতীয় সংস্করণ ঃ নভেম্বর, ১৯৯৮/বি

প্রকাশক ঃ

পশ্চিমবঙ্গ রাজ্ঞ পৃস্তক পর্যৎ; ৬এ, রাজা সূবোধ মল্লিক স্কোয়ার; কলিকাতা-৭০০ ০১৩।

বিপাদন কেন্দ্র ঃ স্তক পর্যৎ; পশ্চিমবঙ্গ রাজ্য পুস্তক পর্যৎ বিপাদন কেন্দ্র, মল্লিক স্কোয়ার; ১, বঙ্কিম চ্যাটার্জি স্ট্রিট.

नगढ क्यांत जायह. स.व. है के है

কলিকাতা-৭০০ ০৭৩

ISBN: 81-247-0290-X

ডিটিপি টাইপ সেটার ঃ শ্রীশ্যামলকান্তি কুমার

মিত্র প্রেস

১২, গৌরমোহন মুখার্জী স্ট্রিট

কলিকাতা-৭০০ ০০৬

অফসেট প্রিন্টার ঃ

মেঃ রয়্যাল হাফটোন কোং

৪, সরকার বাই লেন

কলিকাতা-৭০০ ০০৭

म्ला : यां । वांका

ভারত সরকারের মানবসম্পদ উন্নয়ন মন্ত্রক (শিক্ষা বিভাগ), নৃতন দিল্লী কর্তৃক আঞ্চলিক ভাষায় বিশ্ববিদ্যালয় স্তরের গ্রন্থ রচনা প্রকল্পে পশ্চিমবঙ্গ সরকারের অর্থানুকৃল্যে পশ্চিমবঙ্গ রাজ্য পৃস্তক পর্যৎ-এর মুখ্য নির্বাহী আধিকারিক শ্রীগুণেজ্রনাথ মজুমদার কর্তৃক প্রকাশিত। আমার ঋষিতৃল্য গণিত-শিক্ষক মহাশয়দের উদ্দেশে শ্রদ্ধাঞ্জলি SAME STORM MAJA AR MAJAR pursue

Lines with Humanus and Funny Numbers

Bettern Kennar Emperie

C West Designal State Little States of the Printer City Type 1984

KONTHAN.S

PROPER L

estable top eye, eye, and were upon tiltue count. Street one u

विकास प्राप्त सुरुप स्थान इ. स्थापन स्थापित होता

চন্ট্ৰালয়ে কৰ্মন-জনীত ফুডুভীত

ISBN - 51-247-0200-T

POPOS PROPERTY

the same of the sa

''যথা শিখা ময়্রাণাং নাগানাং মণয়ো যথা।
তদ্বদোদশাস্ত্রাণাং গণিতং মূর্বনি স্থিতম্॥''
—বেদাদ্স জ্যোতিষ
ময়্রের শিখার মতো, সর্পের মস্তকের মণির মতো
বেদাদ্স-শাস্ত্রগুলির শীর্ষদেশে গণিতের অবস্থিতি।

क्या निया भगूनभार नागागर मगरमा गर्था। उत्तरानानभाग्राभार शनियर प्रयोग शिक्य।।" —्रामाग स्थाविय समूरमत नियास भएटा भएले समास्य भनित भएटा समास्य नामानिया नीमालाम गरिएटर सामीक्षि।

দ্বিতীয় সংস্করণের ভূমিকা

'সংখ্যার মজা আর মজার সংখ্যা' পুস্তকের দ্বিতীয় সংস্করণে অল্প পরিমার্জনার অবকাশ আছে। আশা করি গ্রন্থের বর্তমান সংস্করণ শিক্ষার্থীদের আরও বেশি প্রয়োজনীয় মনে হবে। উৎসাহ ও পরামর্শ দানের জন্য অধ্যাপক ডঃ মনীন্দ্রচন্দ্র চাকী মহাশয়কে কৃতজ্ঞতা জানাই।

প্রথম সংস্করণে অল্প যে মুদ্রণ প্রমাদ ছিল সেগুলি সংশোধিত হয়েছে। যথাসম্ভব সাবধানতা নেওয়া হলেও এ-জাতীয় গণিত পুস্তকের নির্ভুল মুদ্রণ সহজসাধ্য নয়। তাই সম্ভাব্য প্রমাদের জন্য অগ্রিম দুঃখ প্রকাশ করছি। বর্তমানে মুদ্রণের অসুবিধার কারণে তৃতীয় অধ্যায়ে কিছু যাদুবর্গের ছবি পুরাপুরি বর্গাকার করা যায়নি। এজন্য দুঃখিত। তবে আলোচনার ক্ষেত্রে সেজন্য অবশ্যই কোন অসুবিধা হবে না।

যে কোনও ধরনের ভূলপ্রান্তি নজরে এলে সহৃদয় পাঠক অনুগ্রহ করে জানাবেন। এ জন্য ঠিকানা ও ফোন নং দেওয়া থাকল। ইতি—১ ফেব্রুয়ারি ১৯৯৮ 'মণিকোঠা', কালীতলা,
পাঃ ও জেলা—হগলী
পিন-৭১২১০৩
ফোন-৮০ ২৭২৬

বিতীয় সংক্ষরতার ভূমিকা

সংখাল চঞা আর নজার সংখা। পুস্তবের বিতীয় সংকরণে আর পরিমার্থনার অব্যক্তাশ আছে। আশা করি এছের বর্ডনান সংকরণ শিকার্থীলের আরও বেশি আনক্ষীয় মনে হবে। উৎসাহ ও পরামর্শ দানের জন্য অধ্যাপক ডঃ মনীজ্ঞতা চাকী মহানানে কৃতভাত। জানাই।

্রথম সংসরণে হার বে মূরণ গ্রেমান ছিল সেগুলি সংলোধিত মুখেছ। বথাসভব সাবধানতা নেওয়। হলেও এ-জাতীয় বণিত পুস্তকের নির্দ্ধন মূরণ সহজসাধা নম। ভাই গভাবা গ্রমানের ছেনা অগ্রিম দুংগ হারাশ করছি। বর্তমানে মূরণের অসুবিধার কাবণে তৃতীয় অধ্যাহে বিছু মাদুবর্গের জবি পুরাপুরি বর্গনগর জনা মামনি। এজনা দুইখিত। তবে আলোচনার কেন্দ্রে সেজনা জনাগাই বেচন অসুবিধা হবে না।

ে কোনও ধরনের ভূলবাতি নজনে এনে সজনা। গাঠক আনুধার করে
জানাবেন। এ জন্য বিকানা ও কোন নং দেওয়া থাবেন। ইতি--> মেন্তবাতি ১৯৯৮
মালিখেলে, কালীভলা,

নাগ্ৰেতার , কালাতলার পোয় ও ছেলা—হগলী শিনন্দ্র ২০০০ প্রায় দু'বৎসর আগে আমার কয়েকজন প্রাক্তন ছাত্র—যারা এখন গণিতের লব্ধপ্রতিষ্ঠ অধ্যাপক এবং সহকর্মী বিশিষ্ট দু'এক জন বন্ধু আমাকে একটি রম্য-গণিত-গ্রন্থ রচনার কথা বলেন। এ-বিষয়ে আমার ভাবনা-চিন্তা যে অনেক দিন থেকেই চলেছে তখন সন্ধোচে তাদের সে কথা বলতে পারিনি। আমার ছাত্র-জীবনে পৃজ্ঞাপাদ শিক্ষক মহাশয়গণ যেভাবে আমাকে গণিতের প্রতি আকৃষ্ট করেছিলেন, গণিতের কোনও কোনও বিষয়ে নৃতন যে পদ্ধতি তাঁরা জানিয়েছিলেন, সেই সব কথা ও প্রাসঙ্গিক অন্যান্য তথ্য আজকের শিক্ষার্থীদের কাছে পরিবেশনের জন্য বর্তমান গ্রন্থের খসড়া করেছিলাম সাত বৎসর আগে। কিন্তু প্রকাশনার জগৎ সম্বন্ধে কোনও ধারণা না থাকায় দু'একটি নামী প্রকাশক-সংস্থার সঙ্গে যোগাযোগের ব্যর্থ প্রচেষ্টার পরে এ-বিষয়ে নিরুৎসাহ বোধ করি।

এর পরে গণিতের অধ্যাপক হলেও ঘটনাচক্রে আমাকে এক জন 'শিক্ষার্থী' লেখক হিসাবে ইতিহাসের ধূসর জগতে সসদ্ধোচে হাজির হতে হয়েছিল এবং তারই জেরে আমার লেখা 'জয়কৃষ্ণ মুখোপাধ্যায়' ও 'হিতকরী সভা ঃ স্ত্রীশিক্ষা ও তৎকালীন বঙ্গসমাজ' প্রকাশিত হয়—যে দু'টি গ্রন্থ যথাক্রমে উত্তরপাড়া অঞ্চলের এক উজ্জ্বল ব্যক্তিত্ব ও এক অমর সংস্থার কাহিনী। 'মনীষার শ্রীক্ষেত্র' আমাদের হুগলী জেলায় শিক্ষা ও সংস্কৃতি প্রসারের ক্ষেত্রে গত শতকে যে আন্দোলন শুরু হয়েছিল সে-বিষয়ে জানার ব্যক্তিগত আগ্রহ ছিল পূর্বোক্ত প্রকাশনা দু'টির ক্ষেত্রে মূল সঞ্চালক শক্তি। তবে অনুঘটকের কাজ করেছিলেন উত্তরপাড়া জয়কৃষ্ণ সাধারণ গ্রন্থাগার কর্তৃপক্ষ ও উত্তরপাড়া হিতকরী সভার পরিচালকবৃন্দ। পরে হুগলী মহসিন কলেজে অধ্যক্ষ হিসাবে কাজ করার সময় সেখানকার প্রাক্তন ছাত্র বিপ্লবী শহীদ কানাইলাল দন্তের বাজেয়াপ্ত' বি. এ. ডিগ্রি খুঁজে পাওয়ার সূত্রে আরও ব্যাপক অনুসন্ধান ও অনুশীলনের ফসল হিসাবে সম্প্রতি প্রকাশিত হয়েছে আমার তৃতীয় গ্রন্থ 'শহীদ কানাইলাল ঃ নৃতন তথ্যের আলোকে'।

এদিকে বৎসর দুই আগে রাজ্য পুস্তক পর্যৎ-এর বর্তমান মুখ্য প্রশাসন আধিকারিক আমার পূবর্তন সহকর্মী অধ্যাপক শিবনাথ চট্টোপাধ্যায়ের আগ্রহে আমার পরিকল্পিত রম্য-গণিত বিষয়ক পূর্বোক্ত পাণ্ডুলিপি প্রয়োজন মতো পরিমার্জন করে জমা দিলে খসড়া অবস্থায় দীর্ঘ দিন ফেলে-রাখা সেই 'প্রথম' পুস্তক দীর্ঘ সাত বৎসর পরে পর্যৎ-এর প্রয়ত্মে মুদ্রিত চতুর্থ গ্রন্থ হিসাবে প্রকাশিত হল। গ্রন্থটির বহু অংশ বিধান শিশু উদ্যানের অধুনালুপ্ত 'খেয়াল-খুশী' পত্রিকায় গাণিতিক প্রবন্ধাকারে মুদ্রিত হয়েছিল। উদ্যানের কিশোর সদস্যদের আবাসিক শিবিরে এর কিছু অংশ আলোচনার সুযোগও পেয়েছিলাম। তখন প্রকাশিত প্রবন্ধগুলি ও উক্ত আলোচনা তাদের ভাল লেগেছিল। সেই সব কিশোর পাঠক তথা শ্রোতাদের ভাল-লাগা বর্তমান গ্রন্থটি সমাপ্ত

করার জন্য আমাকে পরোক্ষভাবে উৎসাহিত করেছে। প্রত্যক্ষ উৎসাহ পেয়েছি সাধন দাশগুপ্ত লিখিত গণিতের রম্য কথা 'ভাষাগণিত' ও অনুরূপ আরও কিছু জনপ্রিয় গণিত গ্রন্থ থেকে এবং অখ্যাপক ডঃ সুশীল চন্দ্র দাশগুপ্ত, অখ্যাপক নব কুমার নন্দী, অধ্যাপক সোমনাথ চক্রবর্তী, অধ্যাপক ডঃ বরুণ বন্দ্যোপাধ্যায়, অধ্যাপক মনোরঞ্জন মোদক, অধ্যাপিকা দুর্গেশনন্দিনী মোদক, অধ্যাপক ডঃ জীবেন্দু রায়, রঞ্জিত বন্দ্যোপাধ্যায়, নির্মল চৌধুরী প্রমুখ শুভানুধ্যায়ীদের কাছে।

'সংখ্যার মজা আর মজার সংখ্যা' গ্রন্থে আলোচিত বিষয়বস্তু সম্বন্ধে বলা যায়—এখানে তেমন নৃতন কিছু নেই, তবে নৃতনত্ব আছে। প্রসঙ্গত গাণিতিক পাস্কালের একটি কথা মনে পড়ছে। "'Let no one say that I have said nothing new' writes Pascal in his 'Pense'es'; 'The arrangement of the subject is new. When we play tennis, we both play with the same ball, but one of us places it better." [পাস্কাল তাঁর 'পেন্সিস' পুস্তকে লিখেছিলেন—'কেউ যেন না বলেন যে আমি নৃতন কিছু বলিনি; বিষয়বস্তুর বিন্যাসটি নৃতন। যখন আমরা টেনিস খেলি, উভয়ে একই বল দিয়ে খেলি; তবে আমাদের একজন এটি অপেক্ষাকৃত ভালভাবে উপস্থাপিত করে।'] অবশ্য বর্তমান গ্রন্থে আমি কত ভালভাবে সংখ্যার মজা আর মজার সংখ্যাকে উপস্থাপিত করতে পেরেছি তার বিচার পাঠক-সমাজের। তবে বইটি পড়ে যদি একজন কিশোর পাঠকও অঙ্কের আতঙ্ক থেকে মুক্তি পায় এবং ভালবেসে তার কাছে এগিয়ে যায়, তা হলেই আমার শ্রম সার্থক মনে করব। কারণ, শিক্ষক হিসাবে আমি বিশ্বাস করি 'এক' থেকে অনেক' আসে। বইটি পড়ে ঠিক মতো বুঝতে হলে অল্প বীজগণিত, অল্প জ্যামিতি ও একটু বেশি পাটীগণিতের জ্ঞান প্রয়োজন, যেগুলি নবম-দশম শ্রেণীর ছাত্র-ছাত্রীদের আয়ত্তে আছে ধরা যেতে পারে। তবে দু'এক ক্ষেত্রে উচ্চ মাধ্যমিক স্তরের কিছু গাণিতিক তথ্য জানা দরকার হবে। প্রসঙ্গত মনে রাখা দরকার, অঙ্কের বাহিরে একটা শক্ত আবরণ আছে ঠিক নারিকেলের মতো। নারিকেলের ভিতরে যেমন সুপেয় মিষ্ট জল আর উপাদেয় শাঁস-খাদ্য আছে, তেমনই অঙ্কের মধ্যে প্রবেশ করলে জ্ঞানা যাবে—অঙ্ক শাস্ত্র কত আনন্দকর ও প্রয়োজনীয়।

এই গ্রন্থ রচনার ক্ষেত্রে আমার মূল ঋণ যাঁদের কাছে তাঁরা মনীয়ী ও বিদর্ধ পণ্ডিত। তাঁরা আমাদের স্বীকৃতি চান না, গ্রন্থের মধ্যে ও সহায়ক গ্রন্থপঞ্জীতে তাঁদের নামোল্লেখ করে আমরা কৃতার্থ হই। আমি বিশেষভাবে কৃতজ্ঞতা জ্ঞানাই আমার ছাত্র-জীবনের সেই শিক্ষক মহাশয়দের যাঁরা আমাকে অঙ্ককে ভালবাসতে শিথিয়েছিলেন এবং শিক্ষক-জীবনের সেই সব ছাত্রদের যাদের আগ্রহ ও কৌতৃত্ল আমার সেই গণিত-প্রেমে গভীরতা এনে দিয়েছিল।

গ্রন্থের মধ্যে যে বিশেষ নাম-শব্দগুলি ব্যবহৃত হয়েছে তাদের ইংরাজী

পরিভাষা পরিশিষ্টে মুদ্রিত হয়েছে। তবে এ-জাতীয় বছল-প্রচলিত পদগুলির ক্ষেত্রে রাজশেখর বসুর 'চলন্তিকা' বা অনুরূপ কোনও অভিধানের প্রাসঙ্গিক অধ্যায়ের সাহায্য নেওয়া যেতে পারে।

'সংখ্যার মজা আর মজার সংখ্যা' সকল শ্রেণীর পাঠকদের ভাল লাগবে বলে আমি আশা করি। পুস্তকটি মুদ্রণের সময় ছাপাখানার কর্মী-বন্ধুরা যে ভাবে বইটির কোনও কোনও অংশ সম্বন্ধে আগ্রহ প্রকাশ করেছেন তাতে উৎসাহিত বোধ করেছি। তাই 'বামনের চাঁদ ধরা'র কথা ভাবতে নেই জেনেও ই. পি. নর্থপ্-এর এক জনপ্রিয় পস্তককে বিজ্ঞাপিত করতে ব্যঞ্জনাযুক্ত যে কথাণ্ডলি সেখানে লেখা হয়েছিল তা বার বার মনে আসছে ঃ "Whether you are a person who left mathematics behind at school; or some one who was left at school by mathematics; or a teacher in need of ideas to amuse your pupils; or a pupil in need of them to bemuse your teacher; or an up-andcoming young executive aspiring to impress your boss; or a boss requiring to suppress your up-and-coming young executives,.... this book is for YOU" ['আপনি কি গণিতকে স্কুলে ফেলে রেখে এসেছেন, না কি স্কুল জীবনে গণিতই আপনাকে পিছনে ফেলে এসেছে? শিক্ষক হিসাবে ছাত্রদের আনন্দ দেওয়ার জ্বন্য ধারণার ('আইডিয়া'র) অভাবে পড়েছেন, না কি ছাত্র হিসাবে শিক্ষককে বিভ্রান্ত করার জন্য সেই ধারণার ('আইডিয়া'র) প্রয়োজন বোধ করছেন? তৎপর তরুণ নির্বাহী হিসাবে আপনার উর্ধ্বতন কর্তাকে প্রভাবিত করতে চান: না কি উর্ধ্বতন কর্তা হিসাবে উৎসাহী তরুণ নির্বাহীদের বশে রাখতে চান ?.... আপনি যাই হোন বা যাই চান, এ-গ্রন্থ আপনারই জন্য।']

আমার ঋষিতৃল্য শিক্ষক-মহাশয়দের আশীর্বাদ মাথায় নিয়ে এবং আমার প্রীতিভান্ধন সহকর্মীদের শুভেচ্ছা ও স্নেহাস্পদ ছাত্রছাত্রীদের শ্রদ্ধা হাদয়ে রেখে সম্ভাবনা নেই জেনেও ভূমিকার শেষে আমার স্বপ্ন দেখার কথা সসঙ্কোচে নিবেদন করলাম। ইতি ২১শে ডিসেম্বর ১৯৯০।

'মণিকোঠা', কালীতলা, পোঃ ও জেলা—হগলী পিন ৭১২১০৩ বসম্ভ কুমার সামম্ভ

भवितास अर्थ का वर्षिक स्वाहर प्रकार अध्यक्षित स्वाहर अर्थ का विकास स्वाहर अर्थ का विकास হায়ণে হর চলার বা তার বা করের লাভ্যানের রাসনিক অধ্যানের

अर्थता त्राचा काल प्रकाल अस्तार जवज राहतीय लोकराव काल वाकरच वाल ক্ষাত্র কালে কুলেন পুরুকটি ভূচপার কর্মনার্থার কর্মনানুধার কে আবের বাইটির কোনও কোনও আগে নৰকো আগুৰ্ম **হালাশ করে**ছেন জ্যাত **উ**ংগাহিত বেল কহা<mark>লি</mark>। applied and the hope by a sound and a sound a sound the best of a best to be sound and the best of the THE USE STORE & "Whether you are a parson who left methemorus behind as school, or some one who was left at school by mathematics; or a confer in need of ideas to anuse your papills, or a pupil in need of them to because year reached or an up-andcould worse executive aspiring to leapness your boss, or a boss requiring to suppress your up-and-coming young enecutives. This के कि (FUND) [TURNED कि अभिकास कुछ एक एक्स क्षाप्त व्याप्त व्याप्त हो। भी कून की शहर अभूपते जानामा के निक्का (मान अस्तिक किया के विभास प्रकार অনুষ্ঠ হার ক্ষা ক্ষা ধারণার (আইডিলা'র) অভাবে নাজেনে, নাগতি হার ক্ষিত্রত त्र कार्य होते । एक स्वरूपत कार्य कार्य होते अपनीत ("कार्यक्रिय होता) वेद्याब्रम्भ (मार्यक्रम्भ) ত্ৰপত্ৰ ভাগত চাৰ্যান্ত চিনাং ব নালগাছ উপতিন কৰিলে ছালানিত কৰ্যাণ্ড চনা নাল্ড छश्चारिक कहा छित्रास्त्र छ त्याली उक्कन किन्दियाक गान गांचरक होत्र १८ व्यानिक होत व्यापिता पाई होता, व शुषु कार्यमात्रक वासागुर । सार स्थापना विकास

trum tors may train supplies another amin details. Finish at ME THE THE POSTURES WHERE & THESE PRINCES AND MISSES त्वा कार्य के निवास के कार्य का कार्य के किस के किस का कार्य के किस का कार्य के किस का का का का का का का का का

मान्यकार्थः ज्ञानिकार्यः । स्टब्स्ट्रास्यः । स्टब्स्ट्रास्यः । स्टब्स्ट्रास्यः । स्टब्स्ट्रास्यः । स्टब्स्ट्रा स्टब्स्ट्रास्यः । स्टब्स्ट्राः स्टब्स्ट्राः THE RESIDENCE OF THE PARTY OF T

সূচীপত্র

	83
	œ\
	86
	220
8 mm i a symple	>80
	393
	390

即信息

		—াচিত্ৰ কুমন কিছে সংখ্যা
		তালের পরিভৱ ও ধর্ম
		वातमान वर्गनेनी
68		জীয়াত নালগীলতাৰ প্ৰস্থায়
		हर्गकार प्रतिप
		The later street the fe
	*** *** ***	ত ই পথ জড়িয় সংখ্যা
344	the second of the	NAME AND DESCRIPTION OF THE PARTY OF THE PAR
		W Stations states
		अधिकामित अस (सर्वामक्रिक)
3/6	14 14 14	গ্রারক প্রচন্ত্র

"To Archimedes came a youth eager for knowledge,
Teach me, O Master, he said, that art divine
Which has rendered so noble a service to the lore of the heavens,
And back of Uranus yet another planet revealed.
Truly, the sage replied, this art is divine as thou sayest,
But divine it was ere it ever the Cosmos explored
Ere noble service it rendered the lore of the heavens
And back of Uranus yet another planet revealed.
What in the Cosmos thou seest is but the reflection of God,
The God that reigns in Olympus is Number Eternal."

-K. G. J. Jocobi

"To Archimodes came a youth onger for knowledge, leach me, O Mastar, he said, that art divine who has rendered so noble a service to the lore of the housest Ard back of Uranus yet mother planet revealed.

Truly, the sage replied, this art is divine as thos entest. But divine it was one it ever the Cosmos explored. Her noble service it readered the lore of the heavens. And back of Uranus yet another planet sevesled.

What in the Cosmos thou seem is but the reflection of God.

What in the Cosmos thou seem is but the reflection of God.

The God that resgns in Olympus in Number Eternal."

-K. G. J. Jacobi

প্রথম অখ্যায় কিন্তু

वितित्र जाताव प्रिकृति स्थान प्राची वित्र को वित

"All things which can be known have number;
for it is not possible that without number
anything can be either conceived or known."

BE OF THE STATE STATE STATE BY THE STATE STATE STATE OF Philolaus

বিচিত্র নামের কিছু সংখ্যা—তাদের পরিচয় ও ধর্ম আন্তর্গালি

প্রাচীন পৃথিবীতে মানুষ 1, 2, 3, 4,.... সংখ্যাগুলিকে জেনেছিলেন। তবে সেগুলিকে বিভিন্ন দেশে বিভিন্নভাবে লেখা হত। প্রয়োজনের তাগিদে স্বাভাবিকভাবে এসেছিল বলে এই সকল সংখ্যা স্বাভাবিক সংখ্যা বা প্রাকৃত সংখ্যা নামে পরিচিত। সভ্যতার অগ্রগতির সঙ্গে ঋণাত্মক পূর্ণসংখ্যার কথা ভাবার সুবাদে 1, 2, 3, 4,... ইত্যাদি স্বাভাবিক সংখ্যাকে ধনাত্মক পূর্ণসংখ্যাও বলা হয়েছে। গণনার প্রয়োজনে ব্যবহারের কথা ভেবে এদের গণক সংখ্যা নামেও অভিহিত করা হয়। বিখ্যাত গ্রীক গাণিতিক পীথাগোরাস (খ্রিঃ পৃঃ 582-493) প্রথম স্বাভাবিক সংখ্যা 1 কে 'কারণ' বা 'হেতু' ও অন্য সংখ্যাগুলির উৎপত্তি স্থল বলেছিলেন। কারণ 1 কে পর পর যোগ করে সেগুলি পাওয়া যায়। যথা, 1, (1+1) = 2, (1+1+1) = 2+1 = 3, (1+1+1+1) = 3+1 = 4 ইত্যাদি।

যুগা ও অযুগা

ters has both their

এই স্বাভাবিক সংখ্যাগুলিকে মানুষ বিভিন্ন নিরিখে বিভিন্নভাবে ভাগ করেছেন। তার মধ্যে প্রাচীনতম একটি ভাগ—সম, যুগ্ম বা যোড় এবং বিষম, অযুগ্ম বা বিয়েড়। 1, 3, 5,.... ইত্যাদি সংখ্যাগুলিকে—যাদের বীজগণিতীয় ভাষায় 2n-1, (n = 1, 2, 3...) বা 2n+1, (n = 0, 1, 2, 3...) দ্বারা সূচিত করা যায়—তাদের বলা হয় বিয়োড় সংখ্যা। গ্রীক গাণিতিকগণ এগুলিকে gnomon-ও বলতেন। আর 2, 4, 6, 8,... ইত্যাদি সংখ্যাগুলি যোড় সংখ্যা—যাদের বীজগণিতীয় সূত্র হচ্ছে 2n, (n = 1, 2, 3,...)। সংখ্যার এই ধরনের ভাগ যে প্রাচীন তা বোঝা যায় খ্রিস্টপূর্ব 1100 অব্দের বিন্যাস সম্পর্কে এক চীনা পুস্তকে যোড়-বিয়োড়ের ব্যবহার দেখে। প্রাচীন গ্রীক গাণিতিকগণ যোড় সংখ্যাকে পার্থিব, মানবিক, সৌভাগ্যহীন ও স্ত্রী সংখ্যা এবং বিযোড় সংখ্যাকে ব্যোমমার্গীয়, স্বর্গীয়, সৌভাগ্যবান ও পুরুষ সংখ্যা বলতেন। সম্ভবত এই একই কারণে প্রাচীন চীনা গাণিতিকগণ যোড় সংখ্যাকে কালো রঙের বৃত্ত বা কালো ফুটকি ও বিয়োড় সংখ্যাকে সাদা রঙের বৃত্ত বা সাদা ফুটকি দ্বারা চিহ্নিত করতেন। যেমন, 1, 2, 3, 4 সুচিত হত যথাক্রমে

2 ... , 0-00 , 0-0-0

দ্বারা। এভাবে লেখা একটি পুরাতন চীনা যাদুবর্গের কথা যথাস্থানে উল্লিখিত হবে। সংখ্যার মজা-১

যোড়-বিযোড় সংক্রান্ত একটি খেলা

সংখ্যার যোড়-বিযোড় ভাগ সকলেরই জানা। এখন কিশোর পাঠক-পাঠিকাদের জন্য যোড়-বিযোড় নিয়ে একটি অঙ্কের যাদুর খেলা আলোচনা করা যাক। একটি পাঁচ পয়সা ও একটি দশ পয়সা যাদুকর তাকে না দেখিয়ে কোনও দর্শককে দুহাতে দুটি মুদ্রা রাখতে বলবেন (দুটি মুদ্রা একই মুঠোর মধ্যে রাখলে চলবে না)। তারপর যাদুকর ঐ দর্শককে মনে মনে তার ডান হাতের মুদ্রামানকে দুগুণ ও বাম হাতের মুদ্রামানকে তিনগুণ করে গুণফল দুটি যোগ করে যোগফল যোড় কি বিযোড় শুধু এ খবরটি বলতে বলবেন। যদি তার উত্তর যোড় হয় তবে দর্শকের ডান হাতে পাঁচ পয়সা ও বাম হাতে দশ পয়সা আছে। আর তার উত্তর বিযোড় হলে দর্শকের ডান হাতে দশ পয়সা ও বাম হাতে পাঁচ পয়সা থাকবে। প্রসঙ্গত মনে রাখা দরকার অঙ্কের যাদু যাদু নয়;—তা হচ্ছে গণিতের কোনও নিয়মের ফলশ্রুতি। যেমন, এক্ষেত্রে যাদুর নিয়ামক নীতি হচ্ছে— মুক্ত মুক্তি কাৰ্যাল নামেও কাৰ্যালয় কলা ক্ষম মুক্ত নিয়ালয় নিয়ালয় কলা কৰা কৰা কৰা কৰা কৰা কৰা

याष्ट्र × याष्ट्र + विरयाष्ट्र × विरयाष्ट्र = याष्ट्र + विरयाष्ट्र = विरयाष्ट्र এবং যোড় × विरयाড़ + विरयाড़ × याड़ = याड़ + याड़ = याड़। কাজেই পূর্বোক্ত যাদুর খেলা পাঁচ পয়সা-দশ পয়সার বদলে যে কোনও দুরকম বিযোড় ও যোড় মানের মুদ্রা নিয়ে হতে পারে। আর দর্শকের শুণ করার ক্ষেত্রে দুগুণ ও তিন গুণের বদলে যে কোনও দুটি যোড় ও বিয়োড় সংখ্যা দিয়ে গুণ করলেও শেষ সিদ্ধান্ত একই থাকবে। এই সাজাবিক সংখ্যাত বিকে মানুধ বিভিন্ন নিবিদে। নিবি

লেও বিষয় সমূহত এন্ত্র সভ্য মৌলিক ও যৌগিক লেভ বিষয় সম্প্রিটি চাম স্বাভাবিক সংখ্যাণ্ডলিকে অন্য এক নিরিখে প্রাচীন কাল থেকে ভাগ করা হয়েছিল। সে ভাগ হচ্ছে মৌলিক বা অযৌগিক সংখ্যা এবং যৌগিক সংখ্যা। প্রাচীন গ্রীক গাণিতিক ইউক্লিড (আনুমানিক 300 খ্রিঃ পৃঃ) ও ইরাটোস্থিনিস (খ্রিঃ পৃঃ 275-194) মৌলিক সংখ্যার কথা ভেবেছিলেন। কাজেই একথা বলা চলে—অন্তত 300 খ্রিস্ট-পূর্বাব্দে গ্রীসে সংখ্যার মৌলিক ও যৌগিক ভাগ জানা ছিল। যে স্বাভাবিক সংখ্যা 1 ও সেই সংখ্যা ছাড়া অন্য সংখ্যার দ্বারা নিঃশেষে বিভাজ্য নয় তা মৌলিক এবং যে সংখ্যা 1 ও সেই সংখ্যা ছাড়াও অন্য সংখ্যার দ্বারা বিভাজ্য তা যৌগিক। যেমন 7, 13, 17 মৌলিক এবং 6, 12, 18 যৌগিক। খ্রিঃ পৃঃ 300 অব্দের কাছাকাছি সময়ে ইউক্লিড প্রমাণ করেছিলেন যে মৌলিক সংখ্যার সংখ্যা অসংখ্য। স্বাভাবিক সংখ্যা শ্রেণী থেকে মৌলিক সংখ্যা নির্ণয়ের যে পদ্ধতি ইরাটোস্থিনিস আবিষ্কার করেছিলেন তাকে বলা হয় 'ইরাটোস্থিনিসের চালনী'। চালনীর কাজ হচ্ছে কোনও জিনিসের অপ্রয়োজনীয় অংশ বর্জন করে প্রয়োজনীয় অংশ গ্রহণ করা। মিশরের বিখ্যাত জ্ঞানপীঠ আলেকজান্দ্রিয়া শহরের গ্রন্থাগারের গ্রন্থাগারিক

- TOP BITERY

ইরাটোস্থিনিস তাঁর চালনী পদ্ধতির সাহায্যে স্বাভাবিক সংখ্যা থেকে যৌগিক সংখ্যাগুলি বাদ দিয়ে মৌলিক সংখ্যা নির্ণয় করেছিলেন। ল্যাটিনে এই গাণিতিক চালনীকে বলা হয়েছে 'Cribrum Arithmeticum' (গাণিতিক শিশুর খাঁচা)। মৌলিক সংখ্যার গুরুত্ব আছে বলে সংখ্যাতত্ত্ব তা নিয়ে বহু আলোচনা হয়েছে। মৌলিক সংখ্যার বিশেষ ধর্মের মধ্যে আছে—যে কোনও যৌগিক সংখ্যা কতকগুলি মৌলিক সংখ্যার গুণফল এবং মাত্র এক ভাবেই মৌলিক উৎপাদকগুলির গুণফল হবে সংখ্যাটি। অবশ্য কোনও মৌলিক উৎপাদক পুনরাবৃত্ত হতে পারে। যেমন, $48 = 2 \times 2 \times 2 \times 2 \times 3 = 2^4 \times 3$

ইরাটোস্থিনিসের চালনী

এখন ইরাটোস্থিনিসের চালনী নিয়মে 1 থেকে 100 পর্যন্ত স্বাভাবিক সংখ্যা শ্রেণী থেকে মৌলিক সংখ্যাগুলি নির্ণয় করা যাক। প্রথমে একটা কাগজে 1, 2, 3, 4,...,100 পর্যন্ত সংখ্যাগুলি লেখা হল। সাধারণত 1-কে মৌলিক সংখ্যার তালিকাভুক্ত করা হয় না। কাজেই কাগজে লিখিত সংখ্যা শ্রেণী থেকে 1 বাদ গেল। পরবর্তী সংখ্যা 2 একমাত্র যোড় মৌলিক সংখ্যা—সেটি থাকল। এখন অন্যান্য যোড় সংখ্যাগুলি 4, 6, 8 ইত্যাদি যাদের উৎপাদক 2 তারা অবশ্যই মৌলিক হতে পারে না। তাই সংখ্যার ঐ তালিকার 3 থেকে 100-এর মধ্যে 4, 6, 8,..., 98, 100 অর্থাৎ প্রত্যেকটি যোড় সংখ্যা বাদ দেওয়া হল অর্থাৎ সেগুলি গাণিতিক চালনীর নিচে পড়ল অপ্রয়োজনীয় অংশ হিসাবে। এখন কাগজের লেখা দাঁড়াল—

24 23 22 21 13 14 15 16 19 20 37 38 IE PER P 36 34 35 32 33 26 27 28 29 38 31 49 50 39 49 41 42 43 44 45 46 48 47 61 62 51 52 53 54 55 56 57 58 59 60 73 74 72 70 71 63 64 65 66 67 68 69 83 84 85 86 75 78 77 78 79 80 81 82

87 88 89 90 91 92 93 94 95 96 97 98 99 100 পরবর্তী মৌলিক সংখ্যা 3-কে রাখা হল এবং 4 থেকে 100-এর মধ্যে বাদ না যাওয়া সংখ্যাগুলি থেকে 3-এর গুণিতকগুলি অর্থাং 9, 15, 21, ..., 93, 99 বাদ পড়ল। 3-এর যোড় গুণিতক 6, 12, 18, ..., 96 আগেই বাদ পড়েছিল 2-এর গুণিতক হিসাবে। এর পরে কাগজে লেখা সংখ্যা শ্রেণী থেকে পরবর্তী মৌলিক সংখ্যা 5-কে রেখে 6 থেকে 100-এর মধ্যে বাদ না যাওয়া সংখ্যাগুলি থেকে 5-এর গুণিতক অর্থাং 25, 35, 55, 65, 85, 95-কে ছাঁটাই করা হল। অবশিষ্ট সংখ্যাগুলি থেকে একই ভাবে মৌলিক সংখ্যা 7-কে রেখে 7-এর গুণিতক 49, 77, 91 কে বাদ দেওয়া

হল। 100-এর বর্গমূল 10; সেইজন্য 2 থেকে 10-এর মধ্যে থাকা মৌলিক সংখ্যাণ্ডলি রেখে তাদের গুণিতকগুলিকে বাদ দিলেই হবে। কারণ 100 বা 100-এর ছোট কোনও যৌগিক সংখ্যার একটি মৌলিক গুণনীয়ক অন্তত 10-এর কম হবেই। এখন 7-এর পরবর্তী মৌলিক সংখ্যা 11, যা 10-এর বেশি। কাজেই আর এগোবার দরকার নেই;—চালনীর কাজ শেষ হয়েছে। কাগজে লেখা 1 থেকে 100 পর্যন্ত সংখ্যার তালিকা (কাটা যাওয়া সংখ্যা সহ) দাঁড়িয়েছে এই রকম— ১৯৮১ সংখ্যা সহ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 98 91 92 93 94 95 96 97 98 99 108

এখানে গাণিতিক চালনীতে বাদ না যাওয়া সংখ্যাগুলিই 1 থেকে 100-এর মধ্যে অবস্থিত নির্ণেয় মৌলিক সংখ্যা। সেগুলি হচ্ছে—2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97;—কাজেই প্রথম 100টি স্বাভাবিক সংখ্যার মধ্যে মৌলিক সংখ্যার সংখ্যা 25টি। একই ভাবে 1 থেকে 1000 পর্যন্ত সংখ্যার মধ্যে অবস্থিত মৌলিক সংখ্যাগুলি ইরাটোস্থিনিসের চালনীর সাহায্যে নির্ণয় করতে হলে 2 থেকে শুরু করে 31 পর্যন্ত মৌলিক সংখ্যাগুলি রেখে তাদের গুণিতকগুলি বাদ দিতে হবে; কারণ, 1000-এর বর্গমূল 31.6।

28 22 28 29 30 31 32 33 134 কিশোর পাঠক-পাঠিকাদের জন্য একটি প্রশ্ন দেওয়া থাকল। নিয়মটি বুঝে ইরাটোস্থিনিসের চালনীর সাহায্যে তাদের 200 থেকে 250 পর্যন্ত সংখ্যাগুলির মধ্যে অবস্থিত মৌলিক সংখ্যাগুলি নির্ণয় করতে বলা হচ্ছে। যারা সমাধান করতে পারবে তাদের মেলাবার জন্য উত্তর দেওয়া থাকল; 211, 223, 227, 229, 233, 239, 241—মোট 7টি মৌলিক সংখ্যা আছে উক্ত সংখ্যা শ্রেণীতে।

মৌলিক সংখ্যা সন্বন্ধে দু-একটি কথা দেখা গেল 1 থেকে 100 পর্যন্ত সংখ্যা শ্রেণীর মধ্যে মৌলিক সংখ্যার সংখ্যা 25। একটা নির্দিষ্ট সংখ্যা পর্যন্ত স্বাভাবিক সংখ্যা শ্রেণীর মধ্যে মৌলিক সংখ্যার সংখ্যা নির্ণয়ের তত্ত্ব আবিষ্কারের বহু চেষ্টা হয়েছে। শেষ পর্যন্ত জার্মান গাণিতিক গাউস (1777—1855 খ্রিঃ) তাঁর মৌলিক সংখ্যার উপপাদ্যে খুবই বৃহৎ কোনও সংখ্যা a পর্যন্ত সমস্ত স্বাভাবিক সংখ্যার মধ্যে মৌলিক সংখ্যার মোটামুটি সংখ্যা নির্ণয়ের সূত্র

দিয়েছেন $\frac{a}{1a}$ অর্থাৎ $\frac{a}{\log_e a}$ । কৌতৃহলের খোরাক হিসাবে জানাই, 1 থেকে 10^7 অর্থাৎ 10,000,000 (এক কোটি) পর্যন্ত সংখ্যাগুলির মধ্যে মৌলিক সংখ্যার সংখ্যা 664579টি।

এখন মান্যের জ্ঞানের সীমার মধ্যে স্থিরীকত বহুত্তম মৌলিক সংখ্যার সংবাদ জানাই। 1927 খ্রিস্টাব্দে ফকিন বার্গ স্থিরীকৃত 2127-1 সংখ্যাটিকে অর্থাৎ 170 141 183 460 469 231 731 687 303 715 884 105 727-কে (যার অঙ্ক সংখ্যা 39) সর্ববহৎ মৌলিক সংখ্যা ভাবা হত। 79টি অঙ্ক সমন্বিত 5210 644 015 679 228 794 060 694 325 391 135 853 335 898 483 908 056 458 352 201 854 618 372 555 735 221 সংখ্যাটিকে পরবর্তী যুগে বহুত্তম মৌলিক সংখ্যা ভাবা হয়েছিল। 1952 খ্রিস্টাব্দে আর. এম. রবিনসন পাঁচটি বড মৌলিক সংখ্যা নির্ণয় করেন। সেগুলি হল ঃ 2⁵²¹-1, 2⁶⁰⁷-1, 2¹²⁷⁹-1, 2²²⁰³-1 এবং 2²²⁸¹-1; শেষোক্ত সংখ্যাটি—যার মান সাধারণ প্রক্রিয়ায় নির্ণয় করতে 60 বৎসরের বেশি সময় লাগত তা পাশ্চাত্য মান-অনুসারী স্বয়ং-সঞ্চালিত যন্ত্রগণক দ্বারা প্রায় এক ঘন্টায় নির্ণীত ও পরীক্ষিত হয়েছিল। এতে অঙ্কের সংখ্যা 687টি। 1963 খ্রিস্টাব্দে বহুত্তম মৌলিক সংখ্যা হিসাবে 'এনসাইক্রোপিডিয়া ব্রিটানিকা'-তে উল্লিখিত হয়েছে 2¹¹²¹³—1: এটি ইলিয়াক (দ্বিতীয়) তাঁর বিশ্ববিদ্যালয়ের যন্ত্রগণকে নির্ণয় করেছিলেন। 1989-এ প্রকাশিত এক সংবাদ থেকে জানা যাচ্ছে কালিফোর্নিয়ার গণিতবিদ জন ব্রাউন ও তাঁর সহযোগিরা বৃহত্তম মৌলিক সংখ্যা হিসাবে নির্ণয় করেছেন 2^{216198} imes391581-1 সংখ্যাটি—যার অঙ্ক সংখ্যা হবে 65087টি। তবে বিজ্ঞানের অগ্রগতির সঙ্গে এ-বিষয়ে শেষ সংবাদের মাঝে মাঝে পরিবর্তন ঘটবে।

যোড় (2n) ও বিযোড় (2n+1) বা 2n-1) সংখ্যার মত মৌলিক সংখ্যা নির্ধারণের জন্য সাধারণ সূত্র আবিষ্কারের চেষ্টা হয়েছে বরাবর। 1640 খ্রিস্টাব্দে আধুনিক সংখ্যাতত্ত্বের জনক ফার্মাট (1601-1665) খ্রিঃ) জানালেন $2^{2^n}+1$, (n=0,1,2,...) সূত্র দ্বারা প্রাপ্ত সংখ্যাগুলি হবে মৌলিক। তাঁর নামানুসারে $F_n\equiv 2^{2^n}+1$ সূত্রের সাহায্যে প্রাপ্ত সংখ্যাগুলিকে ফার্মাট সংখ্যা বলা হয়। এই সূত্রের ক্ষেত্রে দেখা গেল n=0,1,2,3,4 ধরে প্রথম পাঁচটি ফার্মাট সংখ্যা $F_0\equiv 3$, $F_1\equiv 5$, $F_2\equiv 17$, $F_3\equiv 257$, $F_4\equiv 65537$ অবশ্যই মৌলিক। উক্ত সূত্র দ্বারা যে সব সময়ে মৌলিক সংখ্যা পাওয়া যাবে—সে বিষয়ে পরে ফার্মাটের মনেও সন্দেহ শুরু হয়েছিল। যা হোক, প্রায় এক শত বৎসর পরে সুইজারল্যাণ্ডের গাণিতিক অয়লার (1707-1783) খ্রিঃ) দেখালেন ষষ্ঠ ফার্মাট সংখ্যা $F_1\equiv 4294967297=$

 641×6700417 ; সূতরাং সংখ্যাটি মৌলিক নয়। প্রসঙ্গত উল্লেখ্য— F_6 মৌলিক নয়—এ তথ্য প্রমাণ করেছিলেন ল্যান্ড্রি 1880 খ্রিস্টাব্দে এবং F_7 ও F_8 মৌলিক নয়—তা দেখিয়েছিলেন 1909 খ্রিস্টাব্দে মৌরহেড ও ওয়েস্টার্ন তাঁদের যৌথ প্রচেষ্টায়। পরে দেখা গেছে $n=9,\ 11,\ 12,\ 15,\ 18,\ 23,\ 36,\ 38,\ 73$ ধরলে যে ফার্মাটি সংখ্যা পাওয়া যায় তারাও মৌলিক নয়।

তবে ফার্মাট সংখ্যার মধ্যে কিছু সংখ্যা মৌলিক না হলেও এবং সে দিক থেকে ফার্মাটের সিদ্ধান্তের মধ্যে কিছু ভ্রান্তি থাকলেও ফার্মাট সংখ্যার অন্য গুরুত্বপূর্ণ ব্যবহার আছে। তার মধ্যে একটি বিশেষ জ্যামিতিক ব্যবহারের কথা উল্লেখ করা হচ্ছে। কোন বহুভুজের বাহুসংখ্যা প্রথম পাঁচটি ফার্মাট সংখ্যা হলে সেই বহুভুজ ইউক্লিডিয়ান অঙ্কনের সাহায্যে (অর্থাৎ রুলার ও কম্পাসের সাহায্যে) আঁকা যায়। যে তত্ত্ব অনুসারে এই বক্তব্যের যথার্থতা যাচাই হয়েছে তা গাউস প্রমাণ করেছিলেন মাত্র উনিশ বৎসর বয়সে। তত্ত্বটি হচ্ছেঃ p মৌলিক হলে বৃত্তবিভাজক সমীকরণ $x^p=1$ —এর সমাধান ক্রমিক করেকটি দ্বিঘাত সমীকরণের সমাধানে পরিণত হবে, যদি কেবল মাত্র (p—1), 2—এর ঘাত—সংখ্যা হয়। অতএব p=3, 5, 17, 257,... হবে। তাছাড়া এদের গুণফলগুলি অর্থাৎ $3\times 5=15$, $3\times 17=51$, $5\times 17=85$, $3\times 5\times 17=255$,... ইত্যাদি সংখ্যক বা 2"p সংখ্যক বাহুসমন্বিত বহুভুজ আঁকাও সম্ভব হবে রুলার ও কম্পাসের সাহায্যে। একথা শ্মরণীয় যে সপ্তদশ ভুজের অন্ধন প্রথম করেছিলেন রিচমণ্ড।

ালীগঙ্গল মালার লি তেত । লিছেও মার্সিনী সংখ্যা কাল মাল - নীতেলা 1-1881EE

ফরাসী গাণিতিক মার্টিন মার্সিনী (1588-1648 খ্রিঃ) 1644 খ্রিস্টাব্দে জানিয়েছিলেন 257-এর মধ্যে সীমাবদ্ধ কেবল p=1,2,3,5,7,13,17,19,31,67,127,257 মানের জন্য 2^p-1 হবে মৌলিক। সংখ্যাগুলিকে ($M_p \equiv 2^p-1$) তাঁর নামে মার্সিনী সংখ্যা বলা হয়। পরবর্তী কালে ডবলিউ. ডবলিউ. আর. বল দেখালেন যে 67 ছাপার ভুল—ওটা 61 হবে। 1911 খ্রিস্টাব্দ পর্যন্ত মার্সিনী সংখ্যা সম্বন্ধে এই সংশোধিত বক্তব্য ঠিক আছে ভাবা হয়েছিল। পরে আর. ই. পাওয়ার্স যথাক্রমে 1911 ও 1914 খ্রিস্টাব্দে দেখালেন $2^{8p}-1$, $2^{10p}-1$ সংখ্যা দৃটিও মৌলিক এবং 1922 খ্রিস্টাব্দে ক্রেইটিক্ জানালেন $2^{257}-1$ মৌলিক নয়। কার্জেই মার্সিনীর বিবৃতিতে ছাপার ভুল ছাড়াও তিনটি ভুল ছিল। তাঁর উক্ত তালিকায় 67-এর বদলে 61 হবে, 89, 107 আসবে এবং বাদ যাবে 257 অর্থাৎ p-এর সংশোধিত মান হবে 1. 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127। অবশ্য এটা আশ্চর্য যে মার্সিনীর উক্ত চারটি ভুল খুঁজতে সময় লেগেছে তিন শত বৎসর। মার্সিনী সংখ্যার ক্ষেত্রে p-এর পরবর্তী মানগুলি নির্ধারিত হয়েছে 521, 607, 1279, 2203, 2281,

3217, 4253, 4423, 9689, 9941, 11213, 19937। কাজেই এখন পর্যন্ত সর্ববৃহৎ মার্সিনী সংখ্যা 2¹⁹⁹³⁷—1—যাতে মোট অঙ্ক সংখ্যা 6002টি।

মৌলিক সংখ্যা নিয়ে আরও কিছু কথা

মৌলিক সংখ্যার সাধারণ সূত্র নির্ধারণের ক্ষেত্রে ফার্মটি ও মার্সিনীর চিন্তা ও তাঁদের নামীয় সংখ্যার উল্লেখ করা হল। মৌলিক সংখ্যার পরিবর্ত সূত্র হিসাবে গাণিতিক অয়লার n^2+n+41 -এর কথা ভেবেছিলেন। কিন্তু এই সূত্রে n=0, 1,...39 ধরে মৌলিক সংখ্যা পাওয়া গেলেও n=40 ধরলে ঐ সূত্রানুসারে আসে 1681; সংখ্যাটি অবশ্যই মৌলিক নয়, কারণ $1681=41\times 41$; তাছাড়া $n^2+n+41=(n+1)^2$ থেকেও পাওয়া যায় n=40। কাজেই অয়লারের উক্ত সূত্রও ভুল। এই ভাবে পূর্বোক্ত সূত্রওলির ভুল ধরা পড়লেও আজ্বও এমন কোনও সাধারণ সূত্র পাওয়া যায়নি যার সাহায্যে কেবল মৌলিক সংখ্যা মিলবে। তবে দেখা গেছে 2 ছাড়া যে কোনও মৌলিক সংখ্যাকে 4n+1 বা 4n+3 আকারে প্রকাশ করা যায়।

এখন মৌলিক সংখ্যার ক্ষেত্রে দু-একটি বিশেষ ধর্ম ও বিচিত্র কিছু মৌলিক সংখ্যার উল্লেখ করা হল এদের বিষয়ে আগ্রহের খোরাক হিসাবে। (a) সংখ্যাতত্ত্বে গোল্ডবাক 1742 খ্রিস্টাব্দে বলেছেন প্রত্যেকটি যুগ্ম সংখ্যা দুটি মৌলিক সংখ্যার যোগফল; যেমন 18 = 7+11, 32 = 3 + 29। অবশ্য এ-বিষয়ে কোনও সাধারণ প্রমাণ এখনও পাওয়া যায়নি। (b) 4n + 1 আকারের যে কোনও মৌলিক সংখ্যা বা তার শক্তি দুটি বর্গের যোগফল হিসাবে প্রকাশ করা যায়। যেমন $41 = 4^2+5^2$, আবার $41^2 = 1681 = 9^2 + 40^2$,

 $41^3 = 68921 = 13225 + 55696 = 115^2 + 236^2$ (c) কেবল 1 অঙ্কটির পৌনঃপুনিক (n বার) ব্যবহারের দ্বারা প্রাপ্ত মৌলিক সংখ্যাকে $\frac{10^n-1}{9}$ আকারে প্রকাশ করা যায়। সংখ্যাটি মৌলিক হলে n মৌলিক হবে তবে বিপরীত কথা সত্য নয়। এ পর্যন্ত এ ধরনের চারটি সংখ্যা জানা গেছে।

n = 2, উক্ত বিশেষ মৌলিক সংখ্যা 11 (দুটি 1)

n = 19, বিশেষ মৌলিক সংখ্যাটি হবে 1 111 111 111 111 111 111 (উনিশটি 1)

n = 23, বিশেষ মৌলিক সংখ্যা হবে 23টি 1-এর সমবায়।

n = 317, বিশেষ মৌলিক সংখ্যা হবে 317টি 1-এর সমবায়। এ ধরনের শেষোক্ত বৃহৎ সংখ্যাটি নির্ণীত হয়েছে 1977 খ্রিস্টাব্দে। এই সকল Repunit prime-কে বাংলা ভাষায় 'আবৃত্ত একক মৌলিক' বলা যেতে পারে। 🥦 (d) সমান্তর শ্রেণীতে মৌলিক সংখ্যা—

প্রথম উদাহরণঃ 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089; এখানে প্রথম পদ 199, সাধারণ অন্তর 210, মোট পদ সংখ্যা 10 এবং শেষ পদ 2019

দ্বিতীয় উদাহরণঃ প্রথম পদ 22 36 133 941, সাধারণ অন্তর 22 30 92 870 মোট পদ সংখ্যা 16 শেষ পদ 55 82 52 6991

এখনও পর্যন্ত এটি সর্ব বৃহৎ এ-ধরনের সমান্তর শ্রেণী।

(e) যে কোনও বিযোড় মৌলিক সংখ্যা দুটি বর্গের অন্তরফল হিসাবে মাত্র একভাবে প্রকাশ করা যায়। যেমন $3=2^2-1^2$, $5=3^2-2^2$, $7=4^2-3^2$, $11=6^2-5^2$, $41=21^2-20^2$ ইত্যাদি।

[দেখা যায় $4n+1=\{(2n+1)+2n\}$ $\{(2n+1)-2n\}=(2n+1)^2-(2n)^2;$ একইভাবে $4n+3=[\{(2n+2)+(2n+1)\}$ $\{(2n+2)-(2n+1)\}=(2n+2)^2-(2n+1)^2]$

(f) $\sum_{n=0}^{n}(2n+1)$ অর্থাৎ 1+3+5+7+....+(2n+1)—একটি বর্গসংখ্যা হবে। যেমন, $1+3+5+7+9+11+13+15=64=8^2$ [কারণ, $S_{_{n}}=1+3+5+7+....$ n-সংখ্যক পদ পর্যন্ত

$$= \frac{n}{2} [2.1 + (n-1)2] = \frac{n}{2} \cdot 2n = n^2$$

(g) 4n+1 আকারের যে কোনও মৌলিক সংখ্যা মাত্র এক রকম ভাবে একটি সমকোণী ত্রিভুজের অতিভুজ হতে পারে, ঐ মৌলিক সংখ্যার বর্গ মাত্র দুই রকম ভাবে অতিভুজ হতে পারে, আবার ঐ মৌলিক সংখ্যার ঘন মাত্র তিন রকম ভাবে অতিভুজ হতে পারে ইত্যাদি। যেমন 5-এর ক্ষেত্রে $3^2 + 4^2 = 5^2$; অতএব 3, 4, একক বাছ বিশিষ্ট সমকোণী ত্রিভুজের অতিভুজ 5 একক; 5^2 অর্থাৎ 25-এর ক্ষেত্রে $15^2 + 20^2 = 7^2 + 24^2 = 25^2$; অতএব 15, 20 একক বাছ বিশিষ্ট ও 7, 24 একক বাছ বিশিষ্ট দুটি সমকোণী ত্রিভুজের অতিভুজই 25 একক। একই ভাবে 5^3 অর্থাৎ 125-এর ক্ষেত্রে দেখা যায় $75^2 + 100^2 = 35^2 + 120^2 = 44^2 + 117^2 = 125^2$ ইত্যাদি।

মৌলিক সংখ্যা সংক্রান্ত একটি খেলা

মৌলিক সংখ্যার একটি বিশেষ ধর্মের সাহায্যে একটি অঙ্কের যাদুর খেলা দেখানো যায়। 3-এর চেয়ে বড় যে কোনও মৌলিক সংখ্যা কোনও বন্ধুকে ভাবতে বলা হল। যে সংখ্যাটি সে ভাবল তার বর্গফলের সঙ্গে 17 যোগ করে যোগফলকে 12 দ্বারা ভাগ করতে বল। এই প্রক্রিয়াগুলি বন্ধুটি যাদুকরকে না জানিয়ে গোপনে করল। এখন ভাগশেষ যা হবে তা বন্ধুর সংখ্যা ভাবার আগেই যাদুকর একটা কাগজে লিখে রেখেছিল। দেখা যাবে, বন্ধুর করা ভাগশেষ কাগজে লিখে রাখা উত্তরের সঙ্গে মিলে গেছে। অপরের মনের চিন্তা জানার এই যাদু দেখাতে যাদুকরকে কিছুই ভাবতে হচ্ছে না। কারণ, আগের থেকে সে উত্তর হিসাবে কাগজে 6 লিখে রেখেছিল। অঙ্কের এই প্রক্রিয়ার ক্ষেত্রে উত্তর সব সময়েই 6 হবে। তাই উত্তর লিখতে কোনও অসুবিধা নেই। যেমন, বন্ধু যদি ভাবে মৌলিক সংখ্যা 19, তা হলে $19^2 = 361$ -এর সঙ্গে 17 যোগ করলে পাওয়া যাবে 378 এবং 378-কে 12 দ্বারা ভাগ করলে ভাগশেষ হবে 6 যা যাদুকরের লেখা উত্তরের সঙ্গে মিলে যাবে। এর গাণিতিক কারণ, এই ধরনের মৌলিক সংখ্যা $6n \pm 1$ আকারে প্রকাশ করা যায়। এক্ষেত্রে উক্ত প্রক্রিয়াগুলির পর পাওয়া যায় ($36n^2 \pm 12n + 1 + 17$) \div 12 যার ভাগশেষ অবশ্যই 6 হবে।

সম্পূর্ণ সংখ্যা

মৌলিক সংখ্যা সম্বন্ধে প্রয়োজনীয় কিছু আলোচনা করা হল। এখন এক বিচিত্র নিরিখের সাহায্যে যৌগিক সংখ্যার যে শ্রেণী বিভাগ করা হয়েছে তার সম্বন্ধে জানান হচ্ছে। যৌগিক সংখ্যার সেই তিনটি ভাগ—(ক) সম্পূর্ণ সংখ্যা বা নিখুঁত সংখ্যা, (খ) অতিরিক্ত সংখ্যা ও (গ) অসম্পূর্ণ বা ঘাটতি সংখ্যা। যে সংখ্যা 1 সহ তার প্রকৃত উৎপাদকগুলির যোগফলের সমান তাকে সম্পূর্ণ সংখ্যা বা নিখুঁত সংখ্যা বলে।* সর্বনিম্ন সম্পূর্ণ সংখ্যা 6; কারণ, 6-এর প্রকৃত উৎপাদক 1, 2, 3 এবং এদের যোগফল 6। এই সম্পূর্ণ সংখ্যার ধারণা প্রথম আনেন প্রাচীন গ্রীক গাণিতিক পীথাগোরাস ও তাঁর শিয্যবর্গ। পরবর্তী সম্পূর্ণ সংখ্যা 28; কারণ, 28-এর প্রকৃত উৎপাদক 1, 2, 4, 7, 14 এবং এদের যোগফল 28। প্রথম দুটি সম্পূর্ণ সংখ্যা পীথাগোরাস নির্ণয় করেছিলেন। তখনকার দিনে সম্পূর্ণ সংখ্যাকে পবিত্র ও রহস্যময় ভাবা হত। প্রাচীন গাণিতিকগণ ভাবতেন, 6, 28 সম্পূর্ণ সংখ্যা বলেই ঈশ্বর 6 দিনে সৃষ্টিকার্য সমাধা করেছিলেন এবং এক চান্দ্র মাসে আছে 28 দিন। (প্রকৃতপক্ষে এক চান্দ্র মাস = প্রায় $27\frac{1}{3}$ দিন ও synodic মাস $29\frac{1}{2}$ দিন।) 6 ও 28-এর পরবর্তী দুটি সম্পূর্ণ সংখ্যা 496 ও 8128-এর কথা ভেবেছিলেন আলেকজান্দ্রিয়ার গাণিতিক নিকোম্যাকাস। 1644 খ্রিস্টাব্দে মার্সিনী পরের চারটি সম্পূর্ণ সংখ্যা নির্ণয় করেছিলেন; তারা হচ্ছে 33550336, 8589869056, 13743869128 ও 230584300813-

^{*} সম্পূর্ণ সংখ্যার সংজ্ঞা অন্যভাবেও দেওয়া যায়। যে সংখ্যার 1 ও সেই সংখ্যা সহ সমস্ত উৎপাদকগুলির যোগফল সংখ্যাটির দ্বিগুণ, তাকে সম্পূর্ণ সংখ্যা বলে।

9952128। লক্ষণীয় প্রত্যেকটি সম্পূর্ণ সংখ্যার শেষে 6 অথবা 28 আছে এবং 6-এর আগের অঙ্ক বিযোড়। ক্রমের বিজ্ঞানিক বিজ্ঞানিক

যে সংখ্যা 1 সহ তার প্রকৃত উৎপাদকগুলির যোগফলের অপেক্ষা কম তাকে বলা হয় অতিরিক্ত বা বাড়তি সংখ্যা। অতীতে এই ধরনের সংখ্যাকে খুঁতযুক্ত সংখ্যা বলা হত। যেমন 12; কারণ 12-এর প্রকৃত উৎপাদক 1, 2, 3, 4, 6 এবং 12<1+2+3+4+6।

যে সংখ্যা 1 সহ তার প্রকৃত উৎপাদকগুলির যোগফল অপেক্ষা বেশি তাকে বলা হয় অসম্পূর্ণ বা ঘাটতি সংখ্যা। এই ধরনের সংখ্যাকে এক সময়ে 'এক্সেসিভ নাম্বার'ও বলা হত। যেমন ৪; কারণ ৪-এর প্রকৃত উৎপাদক 1, 2, 4 এবং ৪>1+2+4। সম্পূর্ণ ও অসম্পূর্ণ সংখ্যা নিয়ে বাইবেলের কাহিনীকে ব্যাখ্যা করা হয়েছিল অতীতে। বলা হত ঈশ্বর 6টি প্রাণী সৃষ্টি করেছিলেন, যেহেতু 6 সম্পূর্ণ সংখ্যা; কিন্তু নোয়ার নৌকায় ছিল ৪টি প্রাণী—যা থেকে দ্বিতীয়বার প্রাণী জগৎ সৃষ্ট হয়েছিল, কারণ ৪ অসম্পূর্ণ বা ঘাটতি সংখ্যা।

সম্পূর্ণ সংখ্যার তালিকা

ইউক্লিড প্রমাণ করেছিলেন যে মৌলিক সংখ্যা p-এর ক্ষেত্রে 2°-1 যদি মৌলিক হয় তবে 2°-1 (2°-1) অবশাই সম্পূর্ণ সংখ্যা হবে। পরে অয়লার দেখিয়েছিলেন যে এই সূত্রের সাহায্যে সকল যুগা সম্পূর্ণ সংখ্যা পাওয়া যাবে। প্রমাণ না করতে পারলেও বিশ্বাস করার কারণ আছে যে কোনও অযুগা সংখ্যা (অন্তত 2,000,000-এর ছোট কোনও অযুগা সংখ্যা) সম্পূর্ণ সংখ্যা হতে পারে না। দেখা যায়—

p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,... মানগুলির ক্ষেত্রে 2P-1 মৌলিক সংখ্যা—যেগুলিকে মার্সিনী সংখ্যা বলা হয়েছে। p-এর উক্ত মানগুলির উপর নির্ভর করে সংশ্লিষ্ট মার্সিনী সংখ্যা ও সম্পূর্ণ সংখ্যা স্থির করা গেছে। যেমন,

p-এর মান	THE SE O PERSON NOW	Done when the INTE
2 80 8	भार्तिनी সংখ্যা	সম্পূর্ণ সংখ্যা
3	3	6
5	7	28
7	31	496
13	127	8128
17		33550336
19	131071	8589869056
31	524287	
	2147483647	. 2305843008139952128
THE PART OF THE PARTY	NO THE WAY AND ADDRESS OF	(অঙ্ক সংখ্যা 19)

ת בוויונסיו אוכעוולות וניטח שוכם אייניו יוניעו בטו

p = 61 ধরে নবম সম্পূর্ণ সংখ্যা নির্ণয় করেছিলে পি. সিল্হফ 1885 খ্রিস্টাব্দে; $2^{60} (2^{61}-1)$ সম্পূর্ণ সংখ্যাটিতে অঙ্ক সংখ্যা হবে 37টি। p=89 ধরে দশম সম্পূর্ণ সংখ্যা 2⁸⁸ (2⁸⁹—1) নির্ধারিত হয়েছিল পাওয়ার্স-এর দ্বারা 1912 খ্রিস্টাব্দে। 1951 খ্রিস্টাব্দ পর্যন্ত 12টি সম্পূর্ণ সংখ্যা জানা ছিল। দ্বাদশ সম্পূর্ণ সংখ্যা 2126 (2127-1)-তে অঙ্ক সংখ্যা 77টি। 1952 খ্রিস্টাব্দে p = 521, 607, 1279, 2203, 2281—এই পাঁচটি ক্ষেত্রে আর. এম্. রবিনসন্ সম্পূর্ণ সংখ্যা নির্ধারণ করেছিলেন শক্তিশালী যন্ত্রগণকের সাহায্যে। এইভাবে 1971 খ্রিস্টাব্দ পর্যন্ত 24টি সম্পূর্ণ সংখ্যা নির্ধারিত হয়েছে। 24-তম সম্পূর্ণ সংখ্যা 2¹⁹⁹⁹⁶ (2¹⁹⁹³⁷—1)–তে আছে 12,003টি অঙ্ক। এ-বিষয়ে গাণিতিকদের অনুসন্ধানের কোনও সমাপ্তি রেখা থাকতে পারে না। তাই জনপ্রিয় এক গণিত পুস্তকে মন্তব্য করা হয়েছে—'সম্পূর্ণ সংখ্যার তালিকা নির্ণয় এখনও অনুসন্ধিৎসু মনের আগ্রহের খোরাক। তবে দুর্লভতম ডাকটিকিট অনুসন্ধানের চেয়ে এ-কাজ আরও কঠিন।'

বহু-সম্পূর্ণ সংখ্যা ্রসম্পূর্ণ সংখ্যার পথ ধরে বহু-সম্পূর্ণ সংখ্যার কথা ভাবা হয়েছে। যদি কোনও সংখ্যার 1 ও সেই সংখ্যা সহ সমস্ত উৎপাদকগুলির যোগফল সংখ্যাটির কোনও পূর্ণসংখ্যক গুণিতক হয় তবে সংখ্যাটিকে বহু সম্পূর্ণ সংখ্যা বলে। যেমন, 120; 120-এর উৎপাদকগুলি 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60 ও 120—যাদের যোগফল 360 উক্ত 120 সংখ্যাটির 3 গুণ। সেদিক থেকে বছ্-সম্পূর্ণ সংখ্যা 120 ক্রমের দিক থেকে **ত্রি-সম্পূর্ণ** সংখ্যা। স্বভাবতই এর আগে আলোচিত সম্পূর্ণ সংখ্যাগুলি প্রকৃত পক্ষে দ্বি-সম্পূর্ণ সংখ্যা। তবে সাধারণত সম্পূর্ণ সংখ্যাকে বছ-সম্পূর্ণ সংখ্যার তালিকাভুক্ত করা হয় না।

বহু-সম্পূর্ণ সংখ্যা নির্ণয়ের কোনও সূত্র বা নিয়ম এখনও জানা যায় নি। তবে বহু পরিশ্রম করে 'মানব গণক' অ্যালোন্ এল্. ব্রাউন বিভিন্ন ক্রমের মোট 550টি বহু-সম্পূর্ণ সংখ্যার তালিকা নির্ণয় করেছিলেন—যাদের মধ্যে ত্রি-সম্পূর্ণ সংখ্যা 6টি, চতুঃ-সম্পূর্ণ সংখ্যা 36টি, পঞ্চ-সম্পূর্ণ সংখ্যা 62টি, ষড়-সম্পূর্ণ সংখ্যা 222টি, সপ্ত-সম্পূর্ণ সংখ্যা 217টি এবং অষ্ট-সম্পূর্ণ সংখ্যা 7টি। এদের মধ্যে ত্রি-সম্পূর্ণ সংখ্যা ছটি হল ঃ 120, 672, 523776, 459818240, 1476304896 এবং 31001180160। খুবই চিত্তাকর্ষক এবংবিধ বহু সম্পূর্ণ সংখ্যা সম্বন্ধে গাণিতিকগণের গবেষণা চলেছে। ভবিষ্যতে এ-বিষয়ে আরও সংবাদ আশা করা যায়।

সংখ্যা সমবায়

এখন সংখ্যা সমবায়ে আসা যাক। দু-ধরনের সমবায় নিয়ে আলোচনা করা হবে—(1) মিত্র সংখ্যাসমূহ এবং (2) পরস্পর সম্পর্কযুক্ত সংখ্যাত্রয়ী—যার মধ্যে বিশেষ শুরুত্বপূর্ণ পীথাগোরাসের সংখ্যাত্রয়ী।

্নতাকৈরী ১৪৪। প্রদানী কৌ চাত মিত্রসংখ্যা-দ্বিত্য স্কুলন কোন চার চার = বু ক

ি মিত্র সংখ্যা-দ্বিতয় ঃ—দুইটি সংখ্যা যদি এমন হয় যে একে অপরের 1 সহ প্রকৃত উৎপাদকগুলির যোগফলের সমান তবে তাদের মিত্রসংখ্যা-দ্বিতয় বলে। এ ধরনের সংখ্যাদ্বয়ের ধারণা বেশ প্রাচীন। খ্রিস্টীয় চতুর্থ শতাব্দীতে গ্রীক গাণিতিক আয়মব্লিকাস মিত্র সংখ্যাযুগ্মের উল্লেখ করেছিলেন। এমন এক যোড়া মিত্র সংখ্যা 220 ও 284; কারণ 220-এর উৎপাদক 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 যাদের যোগফল 284 এবং 284-এর উৎপাদক 1, 2, 4, 71, 142 যাদের যোগফল 220। এই মিত্র সংখ্যা দুটি সবচেয়ে ছোট জুড়ি—যা বহু পূর্বে পীথাগোরাস নির্ণয় করেছিলেন। তিনি 'মিত্র কে?' প্রশ্নের উত্তরে বলেছিলেন—'অন্য আমিই হচ্ছে মিত্র'।

এ পর্যন্ত প্রায় 1200 মিত্র সংখ্যা জুড়ি জানা গেছে; এমন কয়েকটি জুড়ি হচ্ছে 2620 · 2924, 6232 · 6368, 10744 · 10856, 17296 · 18416, 9363584 ও 9437056, 111448537712 ও 118853793424। এমন দুটি মিত্র সংখ্যা-দ্বিতয় জানা গেছে, যাদের প্রত্যেকটিতে 152টি অঙ্ক আছে।

মিত্র সংখ্যা জুড়ি সম্পর্কে গাণিতিক সূত্র পরিবেশন করেছেন মেসোপটেমিয়ার গাণিতিক তাবিত ইবন কোরা (836 খ্রিঃ—901 খ্রিঃ)। তিনি সম্পূর্ণ সংখ্যা সম্পর্কে ইউক্লিডের নিয়মের ধরনে মিত্র সংখ্যা-দ্বিতয় নির্ণয়ের সূত্র নির্দেশ করেছিলেন। যদি p ≡ 3.2ⁿ−1, q ≡ 3.2^{n−1}−1 এবং r ≡ 9.2^{2n−1}−1 (n>1) তিনটি মৌলিক সংখ্যা হয়, তবে $2^n.pq$ ও $2^n.r$ এক যোড়া মিত্র সংখ্যা হবে। এখন n=2 হলে $p\equiv 11$, $q\equiv 5,\ r\equiv 71$ সংখ্যা তিনটি মৌলিক। $\therefore \ 2^2\ (11)\ (5)$ ও $2^2\ (71)$ অর্থাৎ 220ও 284 হচ্ছে মিত্র সংখ্যা জুড়ি। পীথাগোরাস এই প্রথম জুড়ি নির্ণয় করলেও দ্বিতীয় ও তৃতীয় জুড়ির জন্য অপেক্ষা করতে হয়েছিল দু হাজার বৎসরেরও বেশি সময়। ${f n}=3$ ধরলে ${f p}=23,\ {f q}=11$ ও ${f r}=287;$ এখানে ${f r}$ মৌলিক নয়। কাজেই উক্ত সূত্র এক্ষেত্রে প্রয়োগ করা যাবে না। n=4 ধরলে $p=47,\ q=23,\ r=1151$ সংখ্যা তিনটি মৌলিক। এক্ষেত্রে মিত্র সংখ্যা জুড়ি হবে (2⁴). (47). (23) ও (2⁴). (1151) অর্থাৎ 17296 ও 18416। এই মিত্র সংখ্যা জুড়ি ফার্মাট 1636 খ্রিস্টাব্দে আবিষ্কার করেছিলেন। ফরাসী গাণিতিক দে কার্তে (1596—1650 খ্রিঃ) মিত্র সংখ্যাদ্বয় 9363584 ও 9437056 নির্ণয় করেছিলেন। অয়লার উক্ত তিন জোড়াসহ মোট 62 জোড়া মিত্র সংখ্যার তালিকা করেন। তবে স্পষ্টতই উক্ত সূত্র দারা মিত্র সংখ্যাদ্বয় পাওয়া গেলেও সব জুড়ি মিলবে না।

মিত্র সংখ্যা-ত্রিতয়

মিত্র সংখ্যা-ত্রিতয় ঃ—তিনটি সংখ্যা যদি এমন হয় যে প্রত্যেকটির 1-সহ প্রকৃত উৎপাদকগুলির যোগফল অন্য দুটি সংখ্যার যোগফলের সমান, তবে তাদের মিত্র সংখ্যা-ত্রিতয় বলে। এই ধরনের সংখ্যা সমবায়ের দৃটি উদাহরণ—103340640,

33112 1122

123228768 ও 124015008; 1945330728960, 2324196638720 ও 2615631953920। অবশ্যই মিত্র সংখ্যা-ত্রিভয় নির্ণয় করা সহজসাধ্য নয়।

🍑 💮 পীথালোরাসের সংখ্যাত্রয়ী

পীথাগোরাসের সংখ্যাত্রয়ী ঃ—পীথাগোরাস এক জ্যামিতিক উপপাদ্য আবিষ্কার করেছিলেন। এই উপপাদ্যের প্রতিপাদ্য বিষয় ছিল—কোনও সমকোণী ত্রিভুজের দুই বাহুর উপর অন্ধিত বর্গক্ষেত্রের যোগফল অতিভুজের উপর অন্ধিত বর্গক্ষেত্রের সমান। বিখ্যাত এই উপপাদ্য অনেকেই পড়েছেন। কথিত আছে এমন যুগান্তকারী উপপাদ্য আবিষ্কারের আনন্দে পীথাগোরাস গ্রীক দেবতাদের উদ্দেশে বাঁড় উৎসর্গ করেছিলেন। অবশ্য ভারতে এই উপপাদ্য অনেক আগে আবিষ্কৃত হয়েছিল।

এখন বাহু দুটি 3 ও 4 একক হলে অতিভুজ হবে 5 একক; কারণ, 3²+4² = 25 = 5²। পরস্পর মৌলিক তিনটি সংখ্যা x, y, z-এর মধ্যে সম্পর্ক x²+y² = z²

যেতেতু $(b^2-c^2)^2 + (2bc)^2 = (b^2 + c^2)^2$

 $x = b^2 - c^2$, y = 2bc ও $z = b^2 + c^2$ হতে পারে। তবে পীথাগোরাস সংখ্যাত্রয়ীকে 'প্রাথমিক' পর্যায়ের হতে হলে b > c, b ও c-কে পরস্পর মৌলিক সংখ্যা হতে হবে এবং b ও c উভয়েই বিযোড় হতে পারবে না। এখন b ও c-এর মানের উপর নির্ভর করে করেকটি প্রাথমিক পীথাগোরাস সংখ্যাত্রয়ীর উদাহরণ দেওয়া হচ্ছে (পরপৃষ্ঠায়) ঃ

THE I

ত্রভারত পীথাগোরাস সংখ্যাত্রয়ী			radio -	-20	12.10	পীথ	াগোরাস	সংখ্যাত্র	ग्री		
ь	С	X	У	Z		ь	c	x	v	Z	
2	1	3	4	5	-40778	5	4	9	40	41	26
3	2	5	12	13		7	2	45	28	53	
4	1	15	8	17	150 0617	6	5	11	60	61	
4	3	7	24	25		8	1	63	16	65	
-5	2	21	20	29	marie-	7	4	33	56	65	
6	1	35	12	37	stil ikn	8	3	35	48	73	105
K NES	biological and the second	Series Con	1866	August 196	Derivative Co.	a file		Alan II	ইত্য	ा पि	

লক্ষ্য করার বিষয় b ও c-এর অন্তর 1 হলে পীথাগোরাস সংখ্যাত্রয়ীর যে কোনও দুটি সংখ্যার অন্তরও 1 হবে। ভারতীয় গাণিতিক ব্রহ্মগুপ্ত (628 খ্রিঃ) উক্ত সূত্রটি প্রথম ব্যবহার করেন। অবশ্য প্রাচীন শুল্ব সূত্রে এ-জাতীয় সংখ্যাত্রয়ী নির্ণয়ের কোনও সাধারণ সূত্র না থাকলেও সেখানে কয়েকটি সংখ্যাত্রয়ীর উল্লেখ আছে। যেমন, (3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25), (12, 35, 37)। ব্যাবিলনের একটি মৃত্তিকা ফলকে (1500 খ্রিঃ পূঃ) 4961, 6480, 8161 সংখ্যাত্রয়ীর কথা আছে।

পীথাগোরাসের নাম-চিহ্নিত সংখ্যাত্রয়ী নির্ণয়ের জন্য পীথাগোরাসের নামে দৃটি স্ত্রের উল্লেখ দেখা যায় ঃ—

$$x=2n+1,\ y=2n^2+2n,\ z=2n^2+2n+1\ (n=$$
 পূর্ণ সংখ্যা) $x=n,\ y=\frac{n^2-1}{2},\ z=\frac{n^2+1}{2}$... $(n=$ বিয়োড় সংখ্যা)

কিন্তু পীথাগোরাসের সূত্র দৃটিতে একটি সীমাবদ্ধতা আছে। দৃ'ক্ষেত্রেই সংখ্যাত্রয়ীর মধ্যে দৃটি সংখ্যার অন্তর হবে 1 অর্থাৎ ব্রহ্মগুপ্তের সূত্রে b ও c-এর অন্তর 1 হলে যে ধরনের সংখ্যাত্রয়ী পাওয়া যায়, পীথাগোরাসের সূত্রে কেবল সেগুলিই পাওয়া যাবে; (15, 8, 17), (35, 12, 37), (45, 28, 53), (63, 16, 65), (33, 56, 65), (35, 48, 73) ধরনের সংখ্যাত্রয়ী পাওয়া যাবে না। সেদিক থেকে পীথাগোরাসের সূত্র দৃটি সাধারণভাবে সকল সংখ্যাত্রয়ী নির্ণয়ে সাহায্য করবে না।

পীথাগোরাস সংখ্যাত্রয়ী নির্ণয়ের আরও দুটি সূত্র নিম্নোক্ত অভেদ দুটি থেকে নির্ণীত হতে পারে। এ দুটির সঙ্গে দুজন গাণিতিকের নাম জড়িয়ে আছে।

$$(2n)^2 + (n^2-1)^2 = (n^2+1)^2$$
 প্লেটো (আনুমানিক 380 খ্রিঃ পূঃ)

$$(2n+1)^2 + \left[\frac{(2n+1)^2 - 1}{2}\right]^2 = \left[\frac{(2n+1)^2 - 1}{2} + 1\right]^2$$

—প্রোক্লাস (আঃ 460 খ্রিঃ)

পীথাগোরাসের সূত্রের মতো এ দুটি সূত্রেরও সীমাবদ্ধতা আছে। কারণ প্রথমটিতে সংখ্যাত্রয়ীর মধ্যে দুটির অন্তর হবে সর্বক্ষেত্রে 2 এবং দ্বিতীয়টিতে এই

मावडे भरवा। में जारव

72 = 12 + 821 0000

অন্তর হবে সব সময়েই 1। কাজেই ব্রহ্মণ্ডপ্তের সূত্রটি অসাধারণ এবং তা প্রাচীন ভারতের গাণিতিক অগ্রগতিকে নিঃসন্দেহে প্রমাণিত করে। আরও লক্ষণীয় পীথাগোরাসের উপপাদ্য প্রাচীন ভারতীয় গ্রন্থ শুল্ব সূত্রে (খ্রিঃ ৪০০—খ্রিঃ পৃঃ 500) নিম্নোক্ত আকারে উপস্থিত ছিল ঃ আয়তক্ষেত্রের কর্ণের ক্ষেত্রফল তার দৈর্ঘ্য ও প্রস্থ

প্রদত্ত ক্ষেত্রফলের যোগফলের সমান অর্থাৎ আয়তক্ষেত্রের কর্ণের বর্গ তার দৈর্ঘ্য ও প্রস্থের বর্গদ্বয়ের সমষ্টির সমান। বৈদিক যজ্ঞবেদী গঠনের ক্ষেত্রে সংশ্লিষ্ট সূত্র থেকে উপপাদ্যের প্রমাণ মেলে। ভূমিকা ছিল পেই উপবালী

 $AC^2 = ACEF = ABCD + CDEG = AB^2 + BC^2$

অবশ্য এখানে আয়তক্ষেত্রের বিশেষ রূপ নেওয়া হয়েছে—যেখানে আয়তক্ষেত্রের দৈর্ঘ্য = প্রস্থ অর্থাৎ আয়তক্ষেত্রটি একটি বর্গক্ষেত্র।

পীথাগোরাসের সংখ্যাত্রয়ীর তালিকা থেকে দেখা যায় যে একই সংখ্যা দুভাবে দুটি বর্গের যোগফল হতে পারে। যেমন $25^2 = 625 = 15^2 + 20^2 = 7^2 + 24^2$, $65^2 = 4225 = 33^2 + 56^2 = 16^2 + 63^2$

ফার্মাট উপপাদ্য

 $x^2 + y^2 = z^2$ সম্বন্ধযুক্ত পীথাগোরাস সংখ্যাত্রয়ীর অনুসরণে গাণিতিকগণ $x^3 + y^3 = z^3$, $x^4 + y^4 = z^4$, $x^5 + y^5 = z^5$ ধরনের সম্বন্ধ-যুক্ত সংখ্যাত্রয়ীর কথা ভেবেছেন অর্থাৎ n>2 হলে $x^n+y^n=z^n$ সম্পর্কটি সাধারণভাবে সত্য কি না এবং সত্য হলে সেক্ষেত্রে x, y, z সংখ্যাত্রয়ী নির্ণয়ের কোনও সূত্র আছে কি না সে বিষয়ে অনুসন্ধান করেছেন। তারই ফলশ্রুতিতে ফার্মটি উপপাদ্যের অবতারণা। অসাধারণ এই উপপাদ্যে আছে 🕯 x, y, z-এর এমন কোনও পূর্ণসংখ্যা মান সম্ভব নয় যাতে xʰ + yʰ = zʰ (n>2) সম্বন্ধটি (সাধারণ ভাবে) সত্য হয়। এই তত্ত্ব সত্য হলেও এবং n = 3, 4, 5 ও আরও অনেক মানের জন্য পরীক্ষিত হলেও ফার্মটি উপপাদ্য প্রমাণের জন্য পুরস্কার ঘোষণা সত্ত্বেও আজও এর কোনও প্রমাণ উপস্থাপিত হয়নি।*

^{*} সম্প্রতি এক প্রমাণের কথা শোনা গেলেও সেটি যে অকাট্য প্রমাণ—এমন সংবাদ নেই। THE PER MENT 1739-213 DESIGNED 1, T. 17, 19, 91, 131, 247

কিন্তু উক্ত উপপাদ্যের জনক ফার্মাট এই তত্ত্বের প্রমাণ আবিদ্ধার করেছিলেন বলে লিখেছিলেন। তাঁর 'ডায়োফাণ্টাস্'-এর একটি কপির কিনারায় (মার্জিনে) তিনি মন্তব্য রেখেছেনঃ 'আমি একটি সত্যিকার অসাধারণ প্রমাণ পেয়েছি, কিন্তু কিনারায় স্থানাভাবে তা লেখা গেল না।' তাঁর মন্তব্যকে মেনে নিলে একথা বলা যায় যে তাঁর আবিদ্ধৃত সেই অসাধারণ প্রমাণটি স্থান-সন্ধীর্ণতার জন্য ফার্মাট না লিখে রাখায় গণিতের জগতে অবশ্যই এক বড় ক্ষতি হয়েছে।

অন্য ধরনের সংখ্যাত্রয়ী

একই সংখ্যা দু'ভাবে দুটি বর্গের যোগফল হিসাবে প্রকাশ করা যায় তার উদাহরণ দেওয়া হয়েছে। আর একটি উদাহরণ এখন উল্লেখ করা হচ্ছে । 65 = 4² + 7² = 1² + 8²। এগুলি দেখে ভাবনা এসেছে ঘন, চতুর্থ শক্তি ইত্যাদির ক্ষেত্রে অনুরূপ ফল সম্ভব কি না। এ-প্রশ্নের সমাধান প্রসঙ্গে ভারতীয় গাণিতিক শ্রীনিবাস রামানুজন্কে (1887-1920) নিয়ে এক সুন্দর কাহিনী আছে। রামানুজন্ তখন বিলাতে গবেষণা কর্মে রত আছেন। তাঁকে ওদেশে নিয়ে যাওয়ার ক্ষেত্র যাঁর বিশেষ ভূমিকা ছিল সেই উপকারী বন্ধু বিখ্যাত গাণিতিক গডফ্রে হ্যারল্ড হার্ডি (1877-1947) অসুহ রামানুজনের সঙ্গে দেখা করতে গেছেন। যে গাড়িতে তিনি গিয়েছিলেন তার নম্বর ছিল 1729। হার্ডি গাড়িটির নম্বর দেখিয়ে বললেন—নম্বরের সংখ্যাটি নিশ্চয়ই সাধারণ এবং আশা করি অশুভ নয়। রামানুজন্ তখনই উত্তর দিলেন—1729 সংখ্যাজগতের একটি বিশেষ সংখ্যা, কারণ এটি সেই ক্ষুদ্রতম সংখ্যা যেটি দুটি সংখ্যার ঘন-ফলের সমষ্টি হিসাবে দু'ভাবে প্রকাশ করা যায়। সত্যই,

$$1729 = 1^3 + 12^3 = 9^3 + 10^3$$

চতুর্থ শক্তির ক্ষেত্রে অনুরূপ উদাহরণ—

 $635318657 = 59^4 + 158^4 = 133^4 + 134^4$

সংখ্যাতত্ত্ব সম্বন্ধে রামানুজনের কাজ ও আগ্রহ শ্রদ্ধার সঙ্গে স্মরণীয়। তিনি বলতেন 'ধনাত্মক পূর্ণসংখ্যাণ্ডলি আমার ব্যক্তিগত বন্ধু'।

দুটি সংখ্যার বর্গ, ঘন বা চতুর্থ শক্তির যোগফল হিসাবে কিছু সম্বন্ধের উল্লেখ করা হল। আরও কিছু উদাহরণ দেওয়া যায়, যেখানে সংখ্যাটি বর্গ বা ঘনফলের অন্তর হিসাবে লেখা হয়েছে। যথা,

এনের মধ্যে
$$7 = 2^3 - 1^3$$
, $13 = 3^2 + 2^2$, $19 = 3^3 - 2^3$
 $91 = 3^3 + 4^3$
 $= 10^2 - 3^2$,
 $= 13^2 - 6^2$,
 $= 13^2 - 6^2$,

আবার 1729-এর সমস্ত উৎপাদকগুলির যোগফল = 511 = 83 - 13

আরও কিছু মজার সম্বন্ধ

(a) এতক্ষণ পর্যন্ত তিনটি সংখ্যার মধ্যে সম্বন্ধ নিয়ে কথা হল। কিন্তু এই ধরনের মজার সম্পর্ক চার বা ততোধিক সংখ্যার মধ্যেও হতে পারে। তারই কয়েকটি উদাহরণ সংখ্যা-সমবায় প্রসঙ্গে উপস্থিত করা হচ্ছেঃ

$$10^2 + 11^2 + 12^2 = 13^2 + 14^2 = 365$$

আবার 212 + 222 + 232 + 242 = 252 + 262 + 272 = 2030

উপরের উদাহরণ দুটি একটি তত্ত্ব থেকে এসেছে। তত্ত্বটিতে হোপেনট্ দেখিয়েছেন যে যাদের বৃহত্তমটি 2n(n+1) এমন ক্রমিক (n+1)—সংখ্যক পূর্ণ-সংখ্যার বর্গের যোগফল পরবর্তী ক্রমিক n-সংখ্যক সংখ্যার বর্গের যোগফলের সমান। কাজেই প্রদত্ত উদাহরণ দুটির মতো প্রথমটিতে তত্ত্বের n=2 এবং দ্বিতীয়টিতে n=3) আরও বর্গ-সংখ্যা সমবায় পাওয়া যাবে। যেমন,

n = 4 ধরে,
$$36^2 + 37^2 + 38^2 + 39^2 + 40^2 = 41^2 + 42^2 + 43^2 + 44^2$$

n = 5 ধরে, $55^2 + 56^2 + 57^2 + 58^2 + 59^2 + 60^2 = 61^2 + 62^2 + 63^2 + 64^2 + 65^2$

(b) ঘন শক্তির ক্ষেত্রে কয়েকটি সংখ্যা-সমবায়ের উল্লেখ করা হল ঃ
3³ + 4³ + 5³ = 6³ = 216, 1³ + 6³ + 8³ = 9³
আবার 1³ + 2³ + 4³ + 8³ + 9³ + 12³ = 3³ + 5³ + 7³ + 10³ + 11³

পীথাগোরাস সংখ্যাত্রয়ী সংক্রান্ত একটি প্রশ্ন

প্রশ্নঃ পাশের চাকাতে চাকা সোজা রাখবার দশটি কাঠি আছে। কাঠিগুলির শেষে আয়তাকার ফলক আছে 10টি—যারা A, B, C, D, E, F, G, H, I, J

চিহ্নযুক্ত। এর মধ্যে A, B ও উল্টোদিকের ফলক F, G-তে যথাক্রমে 22, 19 এবং 26, 13 সংখ্যাগুলি আছে যাদের মধ্যে পারস্পরিক সম্বন্ধ হিসাবে পাওয়া যায় $22^2 + 19^2 = 13^2 + 26^2$ । এখন প্রশ্ন বাকি ছ'টি ফলকে কি কি সংখ্যা থাকবে— যাতে একই ধরনের পারস্পরিক সম্বন্ধ চাকার চারপাশের সংখ্যাগুলিতে বজায় থাকে।

সমাধান ঃ প্রদত্ত সম্বন্ধ থেকে পাওয়া যায়— $19^2 - 13^2 = 26^2 - 22^2 =$ 192; এখন 192-কে পাঁচভাবে এক যোড়া যোড় উৎপাদকে ভাঙা সম্ভব— 2 × 96, 4 × 48, 6 × 32, 8 × 24 এবং 12 × 16। প্রদত্ত সম্বন্ধ (19 – 13) × (19 + 13) এবং (26 – 22) × (26 + 22) অর্থাৎ 6 × 32 ও 4 × 48-এর সঙ্গে সম্পর্কিত।

বিপরীত দিকে চিম্ভা করলে 6×32 থেকে $\left(\frac{32+6}{2}\right)^2 - \left(\frac{32-6}{2}\right)^2$ বা 19^2-13^2 পাওয়া যায়। অনুরূপভাবে হিসাব করলে পাওয়া যাবে 4×48 থেকে 26^2-22^2 , 2×96 থেকে 49^2-47^2 , 8×24 থেকে 16^2-8^2 , 12×16 থেকে $14^2 - 2^2$ । ফলে সম্বন্ধ দাঁড়াচ্ছে (1) $19^2 - 13^2 = 16^2 - 8^2$ যা থেকে $19^2 + 8^2$ = 13² + 16², (2) 16² - 8² = 14² - 2² যা থেকে 8² + 14² = 16² + 2², (3) $14^2 - 2^2 = 49^2 - 47^2$ যা থেকে $14^2 + 47^2 = 2^2 + 49^2$, (4) $49^2 - 47^2 = 26^2$ – 22² যা থেকে 47² + 26² = 49² + 22²; এই সম্বন্ধগুলির ভিত্তিতে বলা যায় C ফলকে 8, D ফলকে 14, E ফলকে 47, H ফলকে 16, I ফলকে 2 এবং J ফলকে 49 সংখ্যা বসবে।

িত বিজ্ঞানত চিত্ৰাল **ত্ৰিভূজ সংখ্যা**তিক চত্ৰত সংক্ৰীৰ কল (d) এবার জ্যামিতিক বিভিন্ন আকারে আঁকা যায় (বা নৃড়ির সাহায্যে সেই আকারে গড়া ষায়) এমন কিছু সংখ্যা নিয়ে আলোচনা করা হচ্ছে। যে নির্দিষ্ট সংখ্যার সমান সংখ্যক ফুটকি (নুড়ির প্রতীক) ত্রিভূজের আকারে সাজানো যায় সেটি ত্রিভূজ সংখ্যা। যেমন একটি ফুটকি, তার নিচে দুটি ফুটকি, তার নিচে তিনটি ফুটকি ইত্যাদি ক্রমিক ভাবে সাজালে পাওয়া যাবে— HISTORY NOTICE STATE EXPLORED FOR

এখানে প্রথম ত্রিভূজ সংখ্যা $T_1=1$, দ্বিতীয় ত্রিভূজ সংখ্যা $T_2=1+2=3$, তৃতীয় ত্রিভুজ সংখ্যা $T_3=1+2+3=6$, চতুর্থ ত্রিভুজ সংখ্যা $T_4=1+2+3+4=10$; এই ভাবে $T_s=15$, $T_e=21$, $T_{\gamma}=28$ ইত্যাদি। বীজ্বগণিতীয় ভাষায় n-তম ত্রিভুজ সংখ্যা $T_n = 1+2+3+...+n = \frac{n(n+1)}{2}$

কৌতৃহলের খবর হিসাবে উল্লেখ করা যায় যে ত্রিভুজ সংখ্যা 10-কে পীথাগোরাস খুবই পবিত্র সংখ্যা ভাবতেন। কারণ, বিন্দুকে 1, রেখাকে 2 (দুটি বিন্দুকে সংযোগ করে রেখা পাওয়া যায়), তলকে 3 (তিনটি বিন্দুর সাহায্যে ত্রিভুজ আঁকা যায়—যা একটি সামতালিক ক্ষেত্র) এবং ঘনকে 4 ঘারা (চারটি বিন্দুর সাহায্যে পিরামিড আঁকা যায় যা একটি ঘন বা ত্রিমাত্রিক গঠন) সূচিত করা অর্থবহ এবং পীথাগোরাস এই রকমই ধারণা পোষণ করতেন। তাঁর হিসাবে তাই 10 = 1 (বিন্দু) + 2 (রেখা) + 3 (তল) + 4 (ঘন) অর্থাৎ 10-এর মধ্যে সব মাত্রারই গঠন আছে। 10-কে তিনি বলতেন 'হোলি টেট্রাক্টিস্ (Holy Tetraktys) বা পবিত্র চতুষ্কোণ সংখ্যা।

ত্রিভূজ সংখ্যার গুরুত্ব নিয়ে একটি বড় তত্ত্বের কথা আছে প্রসিদ্ধ গাণিতিক গাউসের দিনপঞ্জীতে। তিনি তত্ত্তুলিকে খুব সংক্ষিপ্ত আকারে (অনেক সময় অনেকের পক্ষে দুর্বোধ্য আকারে) লিখতে ভালবাসতেন। 1796 খ্রিস্টাব্দের 10ই জুলাই তিনি দিনপঞ্জীতে লিখেছেন 'EYPHKA! num = $\Delta + \Delta + \Delta$ ' যেটিকে বোধগম্য ভাষায় লিখলে সংখ্যাতত্ত্বের জগতের একটি বিখ্যাত ফল পাওয়া যাবে ঃ 'ইউরেকা, খুব ভালো ফল পেয়েছি; প্রতিটি ধনাত্মক পূর্ণ-সংখ্যা তিনটি ত্রিভূজ সংখ্যার যোগফল'।

বৰ্গসংখ্যা

যে নির্দিষ্ট সংখ্যার সমান-সংখ্যক ফুটকি বর্গের আকারে সাজানো যায় সেটি বর্গসংখ্যা। যেমন,

এখানে প্রত্যেক স্থলে যতগুলি সারি ততগুলি স্তম্ভ। প্রথম বর্গসংখ্যা $Q_1=1^2=1$, দ্বিতীয় বর্গসংখ্যা $Q_2=2^2=4$, তৃতীয় বর্গসংখ্যা $Q_3=3^2=9$; একইভাগে $Q_4=4^2=16$, $Q_3=5^2=25$ ইত্যাদি। n-তম বর্গসংখ্যা Q_n বীজগণিতীয় ভাষায় হবে n^2 । কোন সংখ্যার বর্গ নির্ণয়ের অপেক্ষাকৃত সহজ পদ্ধতি আলোচিত হচ্ছে।

পদ্ধতিটি এসেছে $n^2 \equiv (n+a)(n-a)+a^2$ এই অভেদ থেকে। যেমন, $297^2 = (297+3)(297-3)+3^2$

= $294 \times 300 + 9 = 88200 + 9 = 88209$; এক্ষেত্রে পূর্ণসংখ্যা a-কে এমনভাবে পছন্দ করতে হবে যাতে n + a বা n - a এদের মধ্যে একটি এমন সংখ্যা হয় যা দিয়ে গুণ করা অপেক্ষাকৃত সহজসাধ্য।

আর একটি পদ্ধতি আলোচিত হচ্ছে, যার সাহায্যে কোনও সংখ্যার বর্গ জানা থাকলে তার পূর্ববর্তী বা পরবর্তী সংখ্যার বর্গ সহজে পাওয়া যায়। উদাহরণ থেকেই পদ্ধতি বোঝা যাবে। যেমন,

$$20^2 = 20 \times 20 = 400$$
 জানা আছে; $25^2 = 25 \times 25 = 625$ জানা আছে; এখন $21^2 = 400 + (20+21) = 441$ এখন $24^2 = 625 - (25+24) = 576$ $22^2 = 441 + (21+22) = 484$ $23^2 = 576 - (24+23) = 529$

এই পদ্ধতির ব্যাখ্যা হিসাবে বলা যায় $(a+1)^2 = a^2 + 2a + 1 = a^2 + (a+a+1)$; একইভাবে $(a-1)^2 = a^2 - 2a + 1 = a^2 - (a+a-1)$

সংখ্যাতত্ত্বের তত্ত্ব হিসাবে পীথাগোরাস বলেছিলেন—ক্রমিক দুটি বর্গসংখ্যার অস্তরফল একটি বিযোড় সংখ্যা। কোনও বর্গসংখ্যাজ্ঞাপক ফুটকিগুলির পাশে বিযোড় সংখ্যক ফুটকি L আকারে সীমানায় যুক্ত করলে পরবর্তী বর্গসংখ্যাটির ছবি পাওয়া যাবে।

$$1^2 + 3 = 2^2$$
 $2^2 + 5 = 3^2$

L আকারের উক্ত সীমানাকে গ্রীক গণিতে বলা, হত 'Gnomon' অর্থাৎ কাঠমিন্ত্রির কলার এবং এটিকে শুরুত্বপূর্ণ ভাবা হত। ছবি থেকে বোঝা যাচ্ছে কেন গ্রীক গাণিতিকগণ বিযোড় সংখ্যাকে Gnomon বলতেন।

ফার্মাটের একটি উপপাদ্যে আছে প্রত্যেকটি পূর্ণসংখ্যা চারটি বর্গসংখ্যার (শূন্যকেও একটি সম্ভাব্য বর্গসংখ্যা ধরা হবে) যোগফল। যেমন,

আর একটি কথা মনে রাখা দরকার। ক্রমিক এক যোড়া ত্রিভুজ সংখ্যার যোগফল একটি বর্গসংখ্যা ঃ গণিতের ভাষায় $T_{i-1}+T_i=Q_i$ (এখানে $T_0=0$ ধরা হবে)।

ত্রিভুজ সংখ্যা শ্রেণী = 1 3 6 10 15 21 28 36...
ত্র = 0 1 3 6 10 15 21 28...
যোগফল = বর্গসংখ্যা শ্রেণী 1 4 9 16 25 36 49 64...

ছবিতে

বীজগণিতীয় ভাষায় এই তত্ত্বের সত্যতা সহজে প্রমাণিত। দেখা যাচ্ছে

$$T_{i-1} + T_i = \frac{(i-1)i}{2} + \frac{i(i+1)}{2} = \frac{i(i-1+i+1)}{2} = \frac{2i^2}{2} = i^2 = Q_i$$

আবার ক্রমিক অযুগ্ম সংখ্যাগুলির যোগফল হবে বর্গসংখ্যা। কারণ,

$$1 + 3 + 5 + 7 + ... + (2n-1) = \frac{n}{2}[2.1 + (n-1)2] = n^2$$

কিছু মজার উদাহরণঃ মাল্যসংখ্যা, অসমবাহু সংখ্যা

- (a) এখন একই সঙ্গে ত্রিভুজ সংখ্যা ও বর্গসংখ্যা হয়েছে এমন কয়েকটি সংখ্যার উল্লেখ করা হচ্ছে ঃ 1, 36, 1225, 41616, 1413721, 48024900 ইত্যাদি।
- (b) বর্গসংখ্যা 698896 উল্টে লিখলে 'সুবর্ণা বসুর' মতো একই থাকবে। এ ধরনের বিশেষত্ব যেখানে থাকে তাকে প্যালিনড্রমিক বা দ্বিমুখী অবিকল বলা হয়। সাহিত্যে এরূপ কিছু প্যালিনড্রমিক কথার উদাহরণ আছে। যেমন, 'a man a plan a canal panama,' 'draw pupils lip upward'। ভারতীয় গণিতে এ ধরনের সংখ্যাকে বলা হয়েছে মাল্যসংখ্যা। যথা, 88, 1331 (এটি ঘন সংখ্যাও), 10001 ইত্যাদি। বর্গ মাল্যসংখ্যার অনেক উদাহরণ আছে—যেমন 121, 484, 12321 ইত্যাদি।
- (c) যার উৎপাদকগুলির যোগফল বর্গসংখ্যা এমন ক্ষুদ্রতম সংখ্যার উদাহরণ 22; কারণ 22-এর উৎপাদক 1, 2, 11, 22 এবং 1 + 2 + 11 + 22 = 6²
- (d) সমান্তর প্রগতিতে বর্গসংখ্যার উদাহরণ—1, 25, 49; এখানে প্রত্যেকটি সংখ্যা বর্গসংখ্যা এবং তাদের সাধারণ অন্তর 24

(f) 6561-এর অঙ্কগুলির যোগফল 18; 18-এর বিপরীত সংখ্যা 81-এর বর্গ 6561 আবার 8281-এর অঙ্কগুলির যোগফল 19;

া 19-এর বিপরীত সংখ্যা 91-এর বর্গ 8281

দুটি সমান সংখ্যার গুণফল বর্গসংখ্যা। এর বাহিরে দুটি অসমান সংখ্যার গুণফলকে বলা হয়েছে 'অসমবাহু সংখ্যা'। যেমন $5 \times 7 = 35$

সংখ্যাটি যে দুটি সংখ্যার যোগফল, বর্গসংখ্যা সে দুটি পাশাপাশি লিখলে যা হয় ঠিক তাই।

লটাল জিলা বাৰ্তানিক জন্মল ভিত্ত**ঘন সংখ্যা** এতি নাম্মল ও চিন্মলালিক বা

যে নির্দিষ্ট সংখ্যার সমান ফুটকি ঘনকের আকারে সাজানো যায় সেটি ঘন সংখ্যা। এখানে ছবিতে দৈর্ঘ্য, প্রস্থ ও বেধের দিকে সমান সংখ্যক ফুটকি থাকবে। ঘন সংখ্যার উদাহরণ 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728,... বীজগণিতীয় ভাষায় ঘন সংখ্যা হবে n³

ছবিতে
$$2^3=8$$

আমরা জানি $n^3 = n(n+a)(n-a) + a^2(n-a) + a^3$ $= n(n+a)(n-a) + a^2(n+a) - a^3$

উক্ত অভেদের কোনও একটি ব্যবহার করে উপযুক্ত ভাবে a নির্বাচন করে কোনও সংখ্যার ঘন শক্তি অপেক্ষাকৃত সহজসাধ্য ভাবে নির্ণয় করা যায়। যেমন,

$$13^3 = 13 (13+3)(13-3) + 3^2 (13-3) + 3^3$$
 $= 2080 + 90 + 27 = 2197$
আবার, $18^3 = 18 (18+2)(18-2) + 2^2 (18+2) - 2^3$
 $= 5760 + 80 - 8 = 5832$

প্রথম ক্ষেত্রে 13-3 বা 10 দ্বারা গুণ করা সহজ বলে 'n-a' দু'বার আছে এমন অভেদ ব্যবহার করা হয়েছে। দ্বিতীয় ক্ষেত্রে 18+2 বা 20 দ্বারা গুণ করা সহজ বলে 'n+a' দু'বার আছে তেমন অভেদকে কাজে লাগানো হয়েছে।

ঘন সংখ্যার একটি বিশেষত্ব আছে। 1 থেকে শুরু করে ক্রমিক ঘন সংখ্যাগুলির যোগফল হবে কোনও ত্রিভুজ সংখ্যার বর্গ। যেমন, $1^3=1^2$, $1^3+2^3=1+8=9=3^2$, $1^3+2^3+3^3=1+8+27=36=6^2$,...এর কারণ বীজগণিতীয় ভাষায়

$$1^3 + 2^3 + 3^3 + ... + n^3 = \left[\frac{n(n+1)}{2}\right]^2 = (1 + 2 + ... + n)^2$$

কয়েকটি মজার সম্বন্ধ

(a) প্রথম বিযোড় সংখ্যা $1=1^3$, পরবর্তী দু'টি বিযোড় সংখ্যার যোগফল $3+5=2^3$, পরবর্তী তিনটি বিযোড় সংখ্যার যোগফল $7+9+11=3^3$, পরবর্তী চারটি বিযোড় সংখ্যার যোগফল $13+15+17+19=4^3$, একই ভাবে $21+23+25+27+29=5^3$,...

- (b) 343 এমন একটি ঘন সংখ্যা যেটির সমস্ত উৎপাদকগুলির যোগফল একটি বর্গ সংখ্যা। কারণ, $343 = 7^3$ উৎপাদকগুলি হবে $1, 7, 7^2$ এবং 7^3 ; এখন এদের যোগফল $1 + 7 + 7^2 + 7^3 = 400 = 20^2$
 - (c) 533 = 148877 যাদের অন্ধ সমষ্টি 35 এবং 35 ওল্টালে হবে 53, 623 = 238328 যাদের অন্ধ সমষ্টি 26 এবং 26 ওল্টালে হবে 62, 723 = 373248 যাদের অন্ধ সমষ্টি 27 এবং 27 ওল্টালে হবে 72, 813 = 531441 যাদের অন্ধ সমষ্টি 18 এবং 18 ওল্টালে হবে 81, 823 = 551368 যাদের অন্ধ সমষ্টি 28 এবং 28 ওল্টালে হবে 82

চতুস্তলক সংখ্যা

ক্রমিক ত্রিভুজ সংখ্যাগুলির যোগফল হবে চতুস্তলক সংখ্যা। প্রদত্ত ছবির মতো এর চেহারা হবে। এটি প্রকৃতপক্ষে ত্রিভুজ পিরামিড-এর ছবি। ত্রিভুজ সংখ্যা

ছিল দ্বিমাত্রিক। চতুস্তলক সংখ্যা অবশ্যই ত্রিমাত্রিক। চতুস্তলক সংখ্যাশ্রেণী হবে 1, 1+3, 1+3+6, 1+3+6+10+15,.... অর্থাৎ 1, 4, 10, 20, 35,.... বীজগণিতীয় ভাষায় এদের n-তম সংখ্যাটি হবে $\frac{1}{6}n(n+1)(n+2)$; কারণ n-তম ত্রিভুজ সংখ্যা $T_n=\frac{n(n+1)}{2}$; $\therefore T_1+T_2+...+T_n=\sum_1^n\left[\frac{n(n+1)}{2}\right] = \frac{1}{2}\sum \left(n^2+n\right)=\frac{1}{2}\left[\sum n^2+\sum n\right] = \frac{1}{2}\left[\frac{1}{6}n(n+1)(2n+1)+\frac{n(n+1)}{2}\right]\left(\because \sum n^2=\frac{1}{6}n(n+1)(2n+1)\right) = \frac{1}{2}n(n+1)\left[\frac{2n+1}{6}+\frac{1}{2}\right]=\frac{1}{2}n(n+1).\frac{n+2}{3}=\frac{1}{6}n(n+1)(n+2)$ পরে দেখা যাবে চতুস্তলক সংখ্যাগুলি প্রকৃতপক্ষে দ্বিতীয় ক্রমের ত্রিভুজ সংখ্যা।

শিখর সংখ্যা

ক্রমিক বর্গসংখ্যাগুলির যোগফল হবে শিখর সংখ্যা বা পিরামিড সংখ্যা। প্রদত্ত ছবির মতো এর চেহারা হবে। এটি প্রকৃত পক্ষে একটি বর্গ পিরামিড-এর ছবি। বর্গ

সংখ্যা ছিল দ্বিমাত্রিক। শিখর সংখ্যা অবশ্যই ত্রিমাত্রিক। শিখর সংখ্যা শ্রেণী হবে 1, 1+4, 1+4+9, 1+4+9+16, 1+4+9+16+25, 1+4+9+16+25+36,... অর্থাৎ 1, 5, 14, 30, 55, 91,... বীজগণিতীয় লঘুলিপিতে n-তম শিখর সংখ্যা হবে 35 कर्नाम हार 53

$$1^2 + 2^2 + 3^2 + ... + n^2 = \sum n^2 = \frac{1}{6}n(n+1)(2n+1)$$

দেখা যায় ক্রমিক দুটি চতুস্তলক সংখ্যার যোগফল শিখরসংখ্যা। যেমন, 1 + 4 = 5, 4 + 10 = 14, 10 + 20 = 30, 20 + 35 = 55,...। এদিক থেকে হিসাব করেও n-তম শিখর সংখ্যা নির্ণয় করা যায়।

(n-1)-তম চতুস্তলক সংখ্যা + n-তম চতুস্তলক সংখ্যা

$$= \frac{1}{6}(n-1)n(n+1) + \frac{1}{6}n(n+1)(n+2) = \frac{1}{6}n(n+1)[n-1+n+2]$$

$$= \frac{1}{6}n(n+1)(2n+1)$$
শিখৰ সংখ্যাক্তি প্ৰস্থাক বি

শিখর সংখ্যাগুলি প্রকৃতপক্ষে দ্বিতীয় ক্রমের বর্গসংখ্যা।

একই সঙ্গে বর্গসংখ্যা ও শিখর সংখ্যার একমাত্র উদাহরণ (অবশ্য 1 বাদে) 49001

চতুস্তলক সংখ্যা প্রকৃত পক্ষে ত্রিভূজ পিরামিড; সেদিক থেকে চতুস্তলক সংখ্যাকেও শিখর সংখ্যা শ্রেণীভূক্ত করা যেতে পারে।

পঞ্চভুজ সংখ্যা একটি নির্দিষ্ট ক্রমের ত্রিভুজ সংখ্যা ও পরবর্তী ক্রমের বর্গসংখ্যার যোগফল হবে পঞ্চভুজ সংখ্যা। এখানে সংখ্যার ফুটকি পঞ্চভুজের আকারে সাজানো যায়।

বীজগণিতীয় লঘুলিপিতে $P_n = T_{n-1} + Q_n = \frac{n(n-1)}{2} + n^2$

$$= \frac{n(n-1)}{2} + \frac{n \cdot 2n}{2} = \frac{n}{2} (3n-1), n = 1, 2, 3, 4,...$$

যুভুজ সংখ্যা

যে নির্দিষ্ট সংখ্যার সমান সংখ্যক ফুটকি ষড়ভুজের আকারে সাজানো যায় সেটি ষড়ভুজ সংখ্যা। ছবিতে দেখা যাচ্ছে

অর্থাৎ সংখ্যাগুলি হবে 1, 7, 19, 37,...
এখানে $1+H_2=8=2^3$, $(1+7)+H_3=2^3+19=3^3$, $(1+7+19)+H_4=3^3+37=4^3$...
অতএব $H_2=n^3-(n-1)^3=3n^2-3n+1$, n=1,2,3,4,...

বিকল্প ষড়ভুজ সংখ্যা

বিকল্প ষড়ভুজ সংখ্যাগুলি হল—1, 6, 15, 28, 45,...
যেহেতু সংখ্যাগুলি 1 × 1, 2 × 3, 3 × 5, 4 × 7, 5 × 9,...
= 1 ×(2-1), 2 ×(4-1), 3 ×(6-1), 4 ×(8-1), 5 ×(10-1),...
সূতরাং n-তম বিকল্প ষড়ভুজ সংখ্যা হবে n(2n-1), n = 1, 2, 3, 4,...

তারকা সংখ্যা

একটি নির্দিষ্ট ক্রমের বর্গসংখ্যার সঙ্গে চারটি পূর্ববর্তী ক্রমের ত্রিভুজ সংখ্যা
 যোগ করলে তারকা সংখ্যা পাওয়া যায়। ছবিতে সংখ্যাগুলিকে তারকার মতো দেখতে
 লাগে।

তারকা সংখ্যাগুলি হবে 1, 8, 21, 40,...

বীজগণিতীয় ভাষায়
$$S_n=Q_n+4T_{n-1}=n^2+\frac{4n(n-1)}{2}$$
 = $3n^2$ – $2n$, $n=1$, 2 , 3 ,...

বিভিন্ন ক্রমের ত্রিভুজ সংখ্যা

যে ত্রিভুজ সংখ্যার কথা আগে বলা হয়েছে তা সাধারণ ত্রিভুজ সংখ্যা বা প্রথম ক্রমের ত্রিভুজ সংখ্যা। পরবর্তী ক্রমের ত্রিভুজ সংখ্যাগুলি একইভাবে তৈরি করা যায়। এদের গঠন কৌশল নিচে দেওয়া হল। স্বাভাবিক সংখ্যাকে ত্রিভুজ সংখ্যার পূর্ববর্তী ধাপ বলা যেতে পারে।

বীজগণিতীয় ভাষায় স্বাভাবিক সংখ্যাগুলি n = ^c,

প্রথম ক্রমের (সাধারণ) ত্রিভুজ সংখ্যাগুলি
$$\frac{n(n-1)}{2}={}^n c_2,$$

দ্বিতীয় ক্রমের ত্রিভুজ সংখ্যাগুলি
$$\frac{n(n-1)(n-2)}{6} = {}^n c_3$$
,

ভূতীয় ক্রমের ত্রিভূজ সংখ্যাগুলি
$$\frac{n(n-1)(n-2)(n-3)}{24} = {}^nc_4$$
,

একইভাবে চতুর্থ ক্রমের ত্রিভুজ সংখ্যাগুলি = n C $_5$, পঞ্চম ক্রমের ত্রিভুজ সংখ্যাগুলি = n C $_{m+1}$

বিভিন্ন শ্রেণীর বর্গসংখ্যা

কতকগুলি 1 ধরে নিয়ে যে প্রক্রিয়ায় স্বাভাবিক সংখ্যা ও বিভিন্ন ক্রমের ব্রিভুজ সংখ্যা তৈরি করা হয়েছে, একই প্রক্রিয়ায় বেশ কিছু 1, 2 ধরে নিয়ে আমরা সংখ্যাশ্রেণী তৈরি করতে পারি। াতিক বেমন, এক বিভাগে স্কুল্ড চ্চাৰ্চ চ্চাৰ্চ চ্চাৰ্চ

বিতীয় জাতাম কি—মান মানগা

ी दक्ति अर्चा। जनमा चर्चमारका

10525	195	,nje	21	=	1	EM	FE		73	MAS	en 1	91 1	=	1	
SERVE	55	1	2	=	3	Vine	005	1		E 750	1	3	=	4	U/F
RIVIE	1	2	2	=	5					1	3	5	=	9.	
1	2	2	2	_	7	10		7 3	1	3	5	7	=	16	77
1 2	2	2	2	n=	9	outie	1	to the	3	5	7	9	=	25	35)
						N. 373	Pie								
বিযোগ	সং	খা	19 1	207	18	gie i	59	সাং	ার	া বৰ্গ	সংখ্য	(প্রথ	ম	ক্রমের)	15
			1	=	1		- T				-	1	=	ar 1	
0-6	BOH.	1	4	1710	5	921	100			10. 40	1	5	=	6	-
yourse	1	4	9	-	14	7 15	Fire	507	19	1	5	14	=	20	PE
1	4	9	16	=	30		Barton		1	5	14	30	=	50	
1 4	9	96-1	25		55	s the	FI.	17	5	14	30	55	=	105	
			0 0			103	citie 6								7 (5)
দ্বিতীয়	ক্র	মর ব	বৰ্গ স	ংখ্য				তৃত	ीय	ক্রমে:	র বর্গ	সংখ্য	1		
= 1	াখর	সংখ	II									13			

আরও কিছু সংখ্যাশ্রেণীঃ বহুভুজ সংখ্যা

একের প্রভেদে তৈরি সমান্তর শ্রেণী অর্থাৎ স্বাভাবিক সংখ্যাশ্রেণী থেকে পরের শ্রেণী হিসাবে এসেছে ত্রিভূজ সংখ্যা, দুই-এর প্রভেদে তৈরি সমান্তর শ্রেণী অর্থাৎ বিযোড় সংখ্যাশ্রেণী থেকে পরের শ্রেণীতে পাওয়া গেছে বর্গসংখ্যা, তেমনই তিন বা চারের তফাতে তৈরি সমান্তর শ্রেণী থেকে পরের শ্রেণী হিসাবে এসেছে পঞ্চভূজ সংখ্যা ও বিকল্প বড়ভূজ সংখ্যা।

এ পর্যন্ত আলোচিত সাধারণ ত্রিভুজ সংখ্যা, বর্গসংখ্যা, পঞ্চভুজ সংখ্যা, যড়ভুজ সংখ্যা ইত্যাদির সাধারণ নাম বহুভুজ সংখ্যা। বহুভুজ সংখ্যার সাধারণ পদ হবে $S_n=\frac{1}{2}\,n\,\left\{2+(n-1)d\right\}$, যেখানে d+2 হচ্ছে বহুভুজের বাহুসংখ্যা। যেমন d=1 ধরলে পাওয়া যাবে সাধারণ ত্রিভুজ সংখ্যা যার পদগুলি হবে

$$\begin{split} T_1 &= \frac{1}{2} \cdot 1 \; \{2 + (1-1)1\}, \; T_2 = \frac{1}{2} \cdot 2 \; \{2 + (2-1) \; 1\}, \\ T_3 &= \frac{1}{2} \cdot 3 \; \{2 + (3-1) \; 1\}, \; T_4 = \frac{1}{2} \cdot 4 \; \{2 + (4-1) \; 1\}, \dots \\ \text{SEMP}(1, \; 3, \; 6, \; 10, \; 15, \dots) \\ d &= 2 \; \text{ধরলে পাওয়া যাবে} \; 1, \; 4, \; 9, \; 16, \; 25, \dots \; \text{বর্গসংখ্যাণ্ডলি,} \end{split}$$

d = 2 ধরলে পাওয়া যাবে 1, 5, 12, 22, 35,...পঞ্চভুজ সংখ্যাগুলি,

d = 4 ধরলে পাওয়া যাবে বিকল্প ষড়ভুজ সংখ্যা 1, 6, 15, 28, 45,...
মনে রাখা দরকার প্রথম ক্রমের ত্রিভুজ সংখ্যা, বর্গসংখ্যা, পঞ্চভুজ সংখ্যা,
ষড়ভুজ সংখ্যা,... এক কথায় বহুভুজ সংখ্যা দ্বিমাত্রিক, তাদের দ্বিতীয় ক্রমের
সংখ্যাগুলি ত্রিমাত্রিক, তেমনই তৃতীয় ক্রমের সংখ্যাগুলি চতুঃমাত্রিক—যার ধারণা
কেবল কল্পনায় করা যেতে পারে। কারণ, আমাদের ত্রিমাত্রিক জগতে এদের আঁকা
যাবে না এবং ফুটকি-রূপ নুড়ি দিয়ে গড়া সম্ভব হবে না।

ফার্মাটের একটি উপপাদ্যে আছে (প্রমাণ দেওয়া নেই)—যে কোনও সংখ্যা বিভূজ সংখ্যা অথবা দুই বা ততোধিক বিভূজ সংখ্যার যোগফল, অথবা বর্গসংখ্যা অথবা দুই বা ততোধিক বর্গসংখ্যার যোগফল, অথবা পঞ্চভূজ সংখ্যা অথবা দুই বা ততোধিক পঞ্চভূজ সংখ্যার যোগফল অথবা একইভাবে বহুভূজ সংখ্যার দ্বারা প্রকাশিতব্য।

জ্যামিতিক নক্সাসংখ্যা

সংখ্যাকে জ্যামিতিক ছবির সাহায্যে প্রকাশ করাকে বলা হয় অন্ধ চিত্রণ। বহুতুজ্ব সংখ্যাকে জ্যামিতিক আকারে আঁকা যায় বলে এদের জ্যামিতিক নক্সা সংখ্যা বলে। নক্সা সংখ্যাশ্রেণীর সাহায্যে ঘন সংখ্যা, চতুস্তলক সংখ্যা, শিখর সংখ্যার মতো ঘন বস্তুর আকার আনা যায়। তিন ধরনের ঘন বস্তুর সম্ভব—পিরামিড, প্রিজম ও পলিহেড্রা। পিরামিড তৈরি হবে একই ধরনের নক্সা সংখ্যা ক্রম অনুসারে সাজিয়ে। \mathbf{n} -তম সংখ্যার উপরে থাকবে $(\mathbf{n}-1)$ -তম সংখ্যা, তার উপর $(\mathbf{n}-2)$ -তম সংখ্যা—এইভাবে। এ-বিষয়ে সূত্র হবে $(\mathbf{F}_n+\mathbf{F}_{n-1}+\mathbf{F}_{n-2}+...+1)$, যেখানে \mathbf{F}_n হচ্ছে \mathbf{n} -তম জ্যামিতিক নক্সা-সংখ্যা। যেমন, ত্রিভুজ সংখ্যাশ্রেণী থেকে হবে ত্রিভুজ পিরামিড, যার সূত্র $(\mathbf{T}_n+\mathbf{T}_{n-1}+...+1)$ -এর সাহায্যে। প্রিজম তৈরি হবে একই ধরনের একই ক্রমের \mathbf{m} সংখ্যক নক্সা সংখ্যা পর পর সাজিয়ে, যেমন, ত্রিভুজ প্রিজমের সূত্র হিসাবে লেখা যায় $(\mathbf{T}_n+\mathbf{T}_n+...\mathbf{m}$ সংখ্যক)। বর্গ সংখ্যার ক্ষেত্রে $\mathbf{m}=\mathbf{n}$ হলে এই প্রিজম রূপ পাবে ঘনকে। পিরামিডের একটা তল-এর সঙ্গে আর একটা পিরামিডের তল মিলিয়ে তৈরি হয় পলিহেড্রা বা বহুতলক।

ফিবোনাচি সংখ্যা

স্বাভাবিক সংখ্যা-শ্রেণী থেকে প্রথম দৃটি সংখ্যার পর যেখানে পরবর্তী প্রতিটি সংখ্যা পূর্ববর্তী দৃটি সংখ্যার যোগফল, তাতে যে সংখ্যা শ্রেণী পাওয়া যায় তারা ফিবোনাচি সংখ্যা। যেমন, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,...। প্রখ্যাত ইটালিয়ান মনীয়ী লিওনার্দো দ্য পিসা (ফিবোনাচি, 1200 খ্রিঃ) প্রথমে এই ধরনের সংখ্যাগুলি সম্বন্ধে জানিয়েছিলেন। ফিবোনাচি সংখ্যার বিশেষ

33.012 -> 35 (of HISTIR) 1

ব্যবহার আছে উদ্ভিদ বিদ্যার জগতে। দেখা যাচ্ছে—বয়োবৃদ্ধির সঙ্গে গাছের ডালপালা বাড়ছে।

গাছের বৃদ্ধির সঙ্গে ফিবোনাচি সংখ্যার সম্পর্ক নিয়ে 1928 খ্রিস্টাব্দে আন্তর্জাতিক গণিত সম্মেলনে একটি গবেষণা প্রবন্ধ পেশ করেছিলেন ই. জিলিনস্কি। সূর্যমুখী ফুলের দলবিন্যাস, শামুকের স্পাইর্য়াল আকৃতির ধরন ইত্যাদির ক্ষেত্রে এই সংখ্যাশ্রেণীর প্রতিফলন দেখা যায়।

ফিবোনাচি সংখ্যাগুলির একটি বিশেষত্ব উল্লেখ্য। যে কোনও সংখ্যার বর্গ এবং ঐ সংখ্যার ঠিক পূর্ববর্তী ও ঠিক পরবর্তী সংখ্যার গুণফলের অন্তর সব সময়েই 1 হবে। যেমন, $1^2-0\cdot 1=1$, $1\cdot 2-1^2=1$, $2^2-1\cdot 3=1$, $2\cdot 5-3^2=1$, $5^2-3\cdot 8=1$, $5\cdot 13-8^2=1$, $13^2-8\cdot 21=1$ ইত্যাদি। একবার বর্গসংখ্যাটি বেশি হবে, আর একবার গুণফল সংখ্যা বেশি হবে—এই ধারায় চলবে। আবার পর পর চারটি ফিবোনাচি সংখ্যার প্রথম ও চতুর্থটির গুণফল থেকে দ্বিতীয় ও তৃতীয়ের গুণফলের অন্তরও সর্বদা 1 হবে। যেমন, 8, 13, 21, 34 নিলে $8\times 34\sim 13\times 21=272\sim 273=1$

আর একটি কথা, ফিরোনাচি সংখ্যার সাহায্যে দুটি ফিরোনাচি অনুপাত শ্রেণী 1/1, 2/3, 5/8, 13/21,... ও 1/2, 3/5, 8/13, 21/34,... তৈরি করা যায় যারা ক্রমশ $\frac{\sqrt{5-1}}{2}$ বা $\cdot 618034$...এ পৌঁছাবে। $\frac{\sqrt{5-1}}{2}$ সংখ্যাটি প্রাচীন গ্রীক গাণিতিকগণের কল্পিত 'সুবর্ণ-অনুপাত'-এর প্রতি দিক নির্দেশ করে, যে কারণে পূর্বোক্ত ফিরোনাচি সংখ্যাগুলিকে কোনও কোনও সময়ে 'সুবর্গ সংখ্যা' বলা হয়। 0-কে বাদ দিয়ে $\mathbf{F}_{\mathbf{r}}$ ও $\mathbf{F}_{\mathbf{r}+1}$ যথাক্রমে \mathbf{n} -তম ও $(\mathbf{n}+1)$ -তম ফিরোনাচি সংখ্যা

र्ट्न (मथा (वन वा) वा = (१५) (१६) (१४) व विष्ण विष्ण विष्ण विष्ण

$$\frac{F_n}{F_{n+1}} \to \frac{\sqrt{5-1}}{2} = .618034....$$
তাত এব, $\frac{F_{n+1}}{F_n} \to \frac{2}{\sqrt{5-1}} = \frac{\sqrt{5+1}}{2} = 1.618...$

এই অনুপাতের সাহায্যে পূর্ববর্তী ফিবোনাচি সংখ্যা থেকে পরবর্তী ফিবোনাচি সংখ্যা পাওয়া যায়। যেমন $F_{10}=F_{9} \times 1.618....=34 \times 1.618....=$ 55.012 → 55 (পূর্ণ সংখ্যায়)।

এ বিষয়ে একটি সূত্র হল ঃ

$$F_{n+1}=rac{F_n+\sqrt{5F_n^2+4(-1)^n}}{2}$$
অতথ্য, $F_{10}=rac{34+\sqrt{5 imes34^2-4}}{2}$

$$=rac{34+\sqrt{5776}}{2}$$

$$=rac{34+76}{2}$$

$$=55$$

= 55
আবার,
$$F_{11} = \frac{55 + \sqrt{5 \times 55^2 + 4}}{2}$$

$$= \frac{55 + 123}{2}$$

$$= 89$$

াম্প্রতির বাংলারির ক্রান্তর ক্রান্তর তা চত্তবাহিত বিশ্বাসার বিশ্বাসার বিশ্বাসার বিশ্বাসার া প্রাপ্ত কর্ম হ ৪ জন 🔠 গৌদিক সংখ্যা

भूगित्रको भूतमा स्थाविसाम, भावाहरू

1 থেকে শুরু করে ক্রমিক n-সংখ্যার গুণফলকে গৌণিক সংখ্যা n বলা হয় এবং এখন গৌণিক n লেখা হয় n! চিহেন্র দ্বারা অর্থাৎ $n!=1,\ 2,\ 3....$ n \therefore 1! = 1, 2! = 2, 3!= 6, 4!= 24, 5!= 120, 6!= 720, 7!= 5040, 8!= 40320, 9!= 362880, 10!= 3628800 ইত্যাদি। 0! অর্থহীন হলেও ব্যবহার ও প্রয়োগের দিক থেকে এর মান 1 ধরা হয়। গৌণিক সংখ্যার ধারণা বেশ প্রাচীন। গ্রীক গাণিতিক ইউক্লিড এর ব্যবহার জানতেন। গৌণিক সংখ্যা সংক্রান্ত একটি তত্ত্বের উল্লেখ করা হচ্ছে ঃ P মৌলিক সংখ্যা হলে 1 + (p −1)। সংখ্যাটি p-এর গুণিতক হবে। যেমন p = 7 হলে দেখা যাচেছ 1 + 6! = 721, 7-এর গুণিতক। গৌণিক সংখ্যা বিষয়ে দু' একটি মজার ফল ঃ (1!) (3!) (5!) = 6!, (1!) (3!) (5!) (7!) = 10!

সম্প্রতি গৌণিকেতর সংখ্যার কথা ভাবা হয়েছে। গৌণিকেতর n-কে !n চিহ্ণের দ্বারা লেখা হয় এবং !n=n! $\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+...+(-1)^n imes \frac{1}{n!}\right]!$

হিসাব করে দেখা যাবে !1= 0, !2= 1, !3= 2, !4= 9, !5= 44, !6= 265, !7= 1854, !8= 14833, !9= 133496 ইত্যাদি।

স্বানুরূপ সংখ্যা

n-অঙ্ক বিশিষ্ট কোনও সংখ্যার অঙ্কগুলি সংখ্যাটির বর্গফলের শেষ n-সংখ্যক অঙ্কের সঙ্গে সম্পূর্ণভাবে মিলে গেলে, সংখ্যাটিকে স্বানুরূপ সংখ্যা বলে। আবার যে কারণে বর্গের শেষে সংখ্যাটির পুনরাবৃত্তি ঘটেছে, সেই কারণে সংখ্যাটির ঘন শক্তি বা অন্য উচ্চ শক্তির ক্ষেত্রেও ফলের শেষে অঙ্কগুলি পুনরায় দেখা যাবে। উদাহরণ, 5, 25, 76, 625 ইত্যাদি। কারণ $5^2=25$, $25^2=625$, $76^2=5776$, $625^2=390625$, আবার $5^3=125$, $5^4=625$,..., $76^3=438976$,.... অবশ্য 0, 1 সংখ্যা দুটি স্বানুরূপ সংখ্যা হলেও এগুলি উদ্লেখযোগ্য নয়।

অাত্মপ্রেমী সংখ্যা

গ্রীক পুরাণে আছে নার্সিসাস জলের মধ্যে নিজের সুন্দর মুথের ছায়া দেখে তাকে ভালবেসেছিলেন এবং সেই ভালবাসার জন্য দিনের পর দিন সেখানে অপেক্ষা করেছিলেন। খাদ্য-পানীয় গ্রহণ না করে এইভাবে অপেক্ষা করতে করতে আত্মপ্রেমী নার্সিসাসের মৃত্যু ঘটে এবং নার্সিসাস ফুলে রূপান্তরিত হন। এই গল্প মনে রেখে এক ধরনের সংখ্যাকে আত্মপ্রেমী সংখ্যা বলা হয়েছে। যে সংখ্যার সংগঠক অঙ্কণ্ডলির উপর বিভিন্ন গাণিতিক প্রক্রিয়া সম্পন্ন করে সেই সংখ্যার অনুরূপ ফল পাওয়া য়য় তাকে আত্মপ্রেমী সংখ্যা বলে। জি. এইচ. হার্ডি তাঁর 'এ ম্যাথেমেটিসিয়ান্স অ্যাপোলজি' পুস্তকে এমন চারটি সংখ্যার উদাহরণ দিয়েছিলেন যারা সংগঠক অঙ্কণ্ডলির ঘনশক্তির যোগফলের অনুরূপ ঃ

$$153 = 1^3 + 5^3 + 3^3, \quad 370 = 3^3 + 7^3 + 0^3$$

$$371 = 3^3 + 7^3 + 1^3$$
, $407 = 4^3 + 0^3 + 7^3$

এখানে 153, 370, 371, 407 সংখ্যাগুলি আত্মপ্রেমী। আরও বিভিন্ন ধরনের কিছু আত্মপ্রেমী সংখ্যার উদাহরণঃ

 $1233 = 12^2 + 33^2$, $8833 = 88^2 + 33^2$, $10100 = 10^2 + 100^2$,....

 $48 = 4^2 \sim 8^2$, $3468 = 34^2 \sim 68^2$, $34188 = 34^2 \sim 188^2$...

 $41833 = 4^3 + 18^3 + 33^3$, $221859 = 22^3 + 18^3 + 59^3$,...

 $81 = 9^2 = (8+1)^2$, $4913 = 17^3 = (4+9+1+3)^3$,...

 $63 = 6^2 + 3^3$, $135 = 1^1 + 3^2 + 5^3$, $1306 = 1^1 + 3^2 + 0^3 + 6^4$,...

145 = 1! + 4! + 5!,

3435 সংখ্যাটি খুব মজার আত্মপ্রেমী সংখ্যা;

কারণ $3435 = 3^3 + 4^4 + 3^3 + 5^5$, এখানে সংগঠক অঙ্কগুলি ও তাদের শক্তির অভিন্নতা লক্ষণীয়।

্টের ভারে বিষয়ে বিষয়ের সংখ্যা এ নাম বিষয়ের বিষয়ের বিষয়ের বিষয়ের বিষয়ের বিষয়ের বিষয়ের বিষয়ের বিষয়ের

কোনও সংখ্যার প্রকৃত উৎপাদকগুলির যোগফল থেকে যে সংখ্যা পাওয়া যায় তার প্রকৃত উৎপাদকগুলির যোগফল হবে নৃতন যে সংখ্যা, তার প্রকৃত উৎপাদকগুলির যোগফল থেকে আর একটি সংখ্যা পাওয়া যাবে। ক্রমিকভাবে এই প্রক্রিয়া (অন্তত দু'বারের বেশি) চালিয়ে গেলে যদি মূল সংখ্যাটি পাওয়া যায় তবে সেই সংখ্যাকে বলা হয় সামাজিক সংখ্যা। যেমন, প্রথমত 12496-এর প্রকৃত উৎপাদকগুলি 1, 2, 4, 8, 11, 16, 22, 44, 88, 142, 176, 284, 568, 781, 1136, 1562, 3124 এবং 6248; এদের যোগফল হবে 14288; দ্বিতীয়ত 14288-এর প্রকৃত উৎপাদকগুলি 1, 2, 4, 8, 16, 19, 38, 47, 76, 94, 152, 188, 304, 376, 752, 893, 1786, 3572 এবং 7144—এদের যোগফল হচ্ছে 15472; তৃতীয় স্তরে 15472-এর উৎপাদকগুলি 1, 2, 4, 8, 16, 967, 1934, 3868 এবং 7736, যাদের যোগফল 14576; চতুর্থ স্তরে 14576-এর উৎপাদকগুলি হবে 1, 2, 4, 8, 23, 46, 79, 92, 158, 184, 316, 632, 1817, 3634 এবং 7268, এদের যোগফল 14264; পঞ্চম স্তরে 14264-এর উৎপাদকগুলি হচ্ছে 1, 2, 4, 8, 1783, 3566 এবং 7132 যাদের যোগফল 12496 অর্থাৎ যে সংখ্যা নিয়ে উৎপাদক প্রক্রিয়া শুরু হয়েছিল সেই সংখ্যা ফিরে এল পঞ্চম স্তরে (দু'বারের বেশি সংখ্যক স্তরে)। সূতরাং 12496 একটি সামাজিক সংখ্যা। 14316 আর একটি সামাজিক সংখ্যা— যেটি উৎপাদক প্রক্রিয়ার 28-তম স্তরে ফিরে আসবে। সামাজিক সংখ্যার সংজ্ঞার ক্ষেত্রে উৎপাদক প্রক্রিয়ার স্তর সংখ্যার কথা বাদ দিলে সম্পূর্ণ সংখ্যাকে এমন সামাজিক সংখ্যা' ভাবা যেত,—যেখানে প্রথম স্তরেই সংখ্যাটি ফিরে এসেছে।

রহস্যময় ও পবিত্র সংখ্যা

রহস্যময় সংখ্যা সংখ্যা-জগতে পৃথক কোনও শ্রেণী নয়। প্রাচীন যুগ থেকে বিভিন্ন দেশে কিছু কিছু সংখ্যাকে রহস্যময়, কিছু সংখ্যাকে পবিত্র ভাবা হয়েছে। প্রীথাগোরাস স্বাভাবিক সংখ্যাদের সঙ্গে গুণ, সামাজিক সম্পর্ক, বস্তু ইত্যাদির সংশ্লেষ কল্পনা করেছিলেন। পূর্বেই উল্লেখ করা হয়েছে 1-কে তিনি অন্য সংখ্যার উৎপত্তি স্থল, 'কারণ' বা 'হেতু' বলেছিলেন। একইভাবে 2-এর সঙ্গে অভিমত বা প্রথম মহিলা, 3-এর সঙ্গে প্রথম পুরুষ (গ্রীক গাণিতিকেরা যোড় সংখ্যা ও বিযোড় সংখ্যাকে যথাক্রমে স্ত্রী ও পুরুষ সংখ্যা ভাবতেন), 4-এর সঙ্গে ন্যায় বিচার ও 5-এর সঙ্গে বিবাহকে (কারণ, 5 = 3+2 = প্রথম পুরুষ + প্রথম মহিলা) জড়ানো হয়েছিল। 3, 7 ও 10 সংখ্যাকে বিশেষ পবিত্র সংখ্যা ধরা হয় বিভিন্ন দেশে। আমরা জেনেছিলী প্রথমোরাস 10-কে 'পবিত্র চতুষ্কোণ সংখ্যা' ভাবতেন। সংখ্যা 3-এর পবিত্রতার সঙ্গে মিশে গেছে ভারতীয় চিন্তায় ব্রন্ধা, বিষ্ণু ও মহেশ্বর—যথাক্রমে সৃষ্টি, স্থিতি ও

প্রলয়ের দেবতা, সত্ত্ব রক্ষঃ তমঃ—তিন গুণ, স্বর্গ, মর্ত্য, পাতাল—ত্রিভুবন, জ্ঞান-নেত্র সহ তিন নেত্র ইত্যাদি। তেমনই খ্রিস্টীয় ধর্মশাস্ত্রোক্ত সাত ধরনের 'আমেন', সাত পুণ্য, সাত দুষ্টাত্মা, সাত মহাপাপ, ভারতীয় চিস্তায় সপ্ত ঋষি, সুর সপ্তক, সাত সমুদ্র—সব ক্ষেত্রেই পবিত্র 7 সংখ্যার ছাপ পড়েছে। এইসব কথা চিস্তা করে উল্লিখিত সংখ্যাগুলিকে এবং 13, 40, 60 ও অনুরূপ সংখ্যাদের পবিত্র ভাবা হয়েছে।

রহস্যময় অর্থ আরও অনেক সংখ্যায় আরোপ করা হয়েছিল। তাদের মধ্যে একটির উল্লেখ করা হচ্ছে কৌতৃহলের খোরাক হিসাবে। 99 সংখ্যাটি বোঝাত প্রার্থনার শেষে উচ্চারিত স্বস্তি বচন 'আমেন'। কারণ, গ্রীক অক্ষরে $A(\alpha)=1$, $M(\mu)=40$, $H(\eta)=8$, $N(\nu)=50$ এবং 99 এদের যোগফল। গ্রীক বা হিরু বর্ণমালার অক্ষরের সঙ্গে সংখ্যাকে জড়িয়ে এইভাবে যে অঙ্কুত পদ্ধতি গড়ে উঠেছিল তাকে বলা হয় গেমাত্রিয়া, যা আজও ভক্ত হিরু জ্ঞানীদের পাঠ্যসূচীর মধ্যে পড়ে। বিশেষ পবিত্র সংখ্যা 7-কে মর্যাদা দিতে খ্রিস্টীয় ধর্মশান্ত্রের যে বাক্যটি উদ্ধৃতি-যোগ্য তা হচ্ছেঃ 'সাত দিন ধরে সাত পুরোহিত, সাত জয়ঢাকের সাহায্যে জেরিকো অবরোধ করলেন এবং সপ্তম দিনে নগরকে সাত বার পরিক্রমা করলেন।' এই ধরনের আরও অনেক উদ্ধৃতি দেওয়া যেতে পারে বিভিন্ন পবিত্র সংখ্যার সমর্থনে।

कि एक प्राप्त कि । कि विक्र कि विक्र विक्र श्री मून्। जीवार प्राप्त विक्र कि विक्र

এখন সবচেয়ে গুরুত্বপূর্ণ সংখ্যা কি — এ-প্রশ্নের উত্তরে যে বিশেষ সংখ্যাকে মনে আসবে তা হচ্ছে শূন্য বা নির্বোধক। প্রথমে সংখ্যা লিখনের ক্ষেত্রে বিভিন্ন দেশে শূন্যের ব্যবহার ছিল না। তাই সংখ্যা লিখন বেশি দূর অগ্রসর হতে পারে নি। পরে ভারতে দশমিক প্রথায় সংখ্যা লিখনের ক্ষেত্রে শৃন্যের ব্যবহার শুরু হয়। গণিতের ইতিহাসে একে কলম্বাস ভ্রাণ বলা হয়েছে। প্রথমে ফুটকি (·) থেকে শুরু হয়ে বিবর্তনের পথে বর্তমান চিহ্ন '0' দ্বারা একে বোঝানো হয়েছে। ভারতীয় গণিতের শূন্য আবিষ্কার যুগান্তকারী ঘটনা। 'শূন্য (0) আবিষ্কার গণনা-কাঠামোর কারাগার থেকে মানব-বুদ্ধিকে মুক্ত করেছে',—একথা বলেছেন ল্যান্সিলট হগ্বেন তাঁর 'ম্যাথেমেটিক্স ফর দি মিলিয়ন' পৃস্তকে। শূন্য কথার অর্থ 'কিছু না'। এই অর্থে শুন্যের কোনও প্রয়োজন বাস্তব জীবনে থাকার কথা নয়। আমরা নিশ্চয়ই দোকানে বা বাজারে শূন্য সংখ্যক সওদা কিনতে যাব না এবং শূন্য টাকা আয়ের জন্য চাকরি বা ব্যবসা করব না। কিন্তু সেই আপাত-অপ্রয়োজনীয় বস্তুটি উন্নত বিজ্ঞানসম্মত চিস্তার ফসল হিসাবে সর্বাপেক্ষা বেশি প্রয়োজনীয় সংখ্যার শিরোপা পেয়েছে। শূন্য আবিষ্কার ও তার সার্থক ব্যবহার তাই সভ্যতার ইতিহাসে যুগান্তকারী ঘটনা। '0' চিহ্নকে ভারতে 'শূন্য', 'শূন্য বিন্দু' বা 'বিন্দু' বলা হয়েছে। বিন্দু অতি ক্ষুদ্র এবং প্রায় নিরবয়ব—এত ক্ষুদ্র যে শূন্য অর্থাৎ ফাঁকা মনে হয়। হয়তো এ থেকে শূন্যের অর্থ 'বিন্দু' ধরা হয়েছিল। ইংরেজীতে শ্ন্যকে জিরো, সাইফার, নট, নীল, নাল ইত্যাদি

বলা হয়। এর মধ্যে জিরো নামটি প্রাচীন। ভারতীয় শূন্যকে আরবে বলা হয়েছিল 'সিফর'; সেই 'সিফর' শব্দটির ল্যাটিন রূপ দাঁড়িয়েছিল 'জিফিরাম্'—তা থেকে সম্ভবত জিরো নামটি এসেছিল।

দশমিক প্রথায় সংখ্যা লিখন ও তৎপ্রসঙ্গে শৃন্যের ব্যবহার এখন এত সহজ ও স্বাভাবিক হয়ে গিয়েছে যে সারা পৃথিবীতে শিক্ষার্থীগণ খুবই অল্প বয়সে এগুলি আয়ত্ত করতে পারে। কাজেই শৃন্য আবিষ্কারের পিছনে প্রাচীন ভারতের বহু মনীষীর বহুদিনের যে বিপ্লবাত্মক কর্মসাধনা আছে আজ সে বিষয়ে কেউ আর চিন্তা করেন না। অথচ শূন্য আবিষ্কার গণিতের ইতিহাসে অবশ্যই এক বৈপ্লবিক পদক্ষেপ। আবিষ্কারের ক্ষেত্রে অক্ষর আবিষ্কারের পরেই এর স্থান হওয়া উচিত। মানুষের বুদ্ধিমত্তা ও ক্ষমতা বিকাশের ক্ষেত্রে শূন্যের অসাধারণ ভূমিকা সম্বন্ধে অধ্যাপক হ্যালস্টেড বলেছেন ই 'শূন্য চিহ্ন সৃষ্টির গুরুত্ব সম্পর্কে অত্যুক্তি কখনই সম্ভব নয়। বায়বীয় অনস্তিত্বকে তা' (0) এইভাবে কেবল স্থানিক আশ্রয় এবং নাম, চিত্র ও প্রতীক দেয়নি, দিয়েছে এক সহায়ক শক্তি যা এই চিহ্নের স্রষ্টা হিন্দু জাতির বিশেষ চারিত্রা। এ যেন চলিষ্ণুতার মধ্যে নির্বাণ প্রাপ্তি। বুদ্ধি ও শক্তির সাধারণ অগ্রগতির পক্ষে একক কোনও গাণিতিক সৃষ্টি এর (শূন্য চিহ্ন সৃষ্টির) চেয়ে কখনও অধিক কার্যকর হয় নি।'

একথা জোরের সঙ্গে বলা যায় গণিতের মুক্তি এনেছে শূন্য পরিকল্পনা ও দশমিক স্থানীয় মান পদ্ধতি। এই মুক্তি ও আনন্দের স্বাদ বোঝা যাবে যদি আমরা রোমক প্রথায় এবং স্থানীয় মান ও শূন্য ব্যবহার করে ভারতীয় প্রথায় যে কোনও একটি সংখ্যা, ধরা যাক 309 লিখি। রোমক প্রথায় সংখ্যা লেখা হয় I (1), V (5), X (10), L (50), C (100), D (500) ও M (1000) অক্ষর চিহ্নগুলির সাহায্যে যোগ বা বিয়োগ প্রক্রিয়া (বাম দিকে অক্ষরটি বসলে বিয়োগ বোঝাবে) অবলম্বন করে। যেমন 60 = 50 + 10 = LX এবং 40 = 50 - 10 = XL; এখন 309 = 100 + 100 + 100 + 10 - 1 লেখা হবে রোমক প্রথায় CCCIX হিসাবে। কিন্তু ভারতীয় প্রথায় এটি হবে 309 অর্থাৎ শতক স্থানের 3 বোঝাচ্ছে 300 এবং একক স্থানের 9 বোঝাচ্ছে 9; মাঝে দশকের স্থানে কিছু থাকবে না বলে সেখানে শূন্য (0) বসানো হয়েছে। কাজেই শূন্য দুটি উদ্দেশ্য সাধন করল— দশক নেই' জানাল এবং বাকি অঙ্ক দুটিকে নিজের স্থান নিতে সাহায্য করল। শূন্য চিহ্ন দিয়ে এই ভাবে খালি জায়গা দখল না করলে এটি হয়ে যেত 39—যেটি 'তিনশত নয়' নয়, তা আজ একজন প্রথম শিক্ষার্থীও বোঝে। শূন্য সহ দশমিক প্রথার উৎকর্ষতা বোঝাতে আরও তিনটি সংখ্যাকে রোমক পন্থায় ও প্রচলিত দশমিক প্রথায় পাশাপাশি লেখা হল ঃ

নয় শত আটাত্তর = CMLXXVIII = 978 দু'হাজার সাত শত নয় = MMDCCIX = 2709 তিন হাজার চার শত চুয়াল্লিশ = MMMCDXLIV = 3444

PART FIRE

এই সংখ্যা লিখন পদ্ধতি ও শূন্য ভারতীয়গণ একদিনে আবিষ্কার করেন নি অথবা কোনও একজন নির্দিষ্ট ভারতীয় গণিতবিদ্ এগুলির সন্ধান পান নি। দশমিক প্রথা ও সুন্য বহু শতাব্দী ধরে বহু গাণিতিকের নিরলস পরিশ্রমের ফল থেকে উদ্ভত। হ্যালস্টেড তাঁর এক প্রকাশিত গবেষণা প্রবন্ধে বলেছেন, প্রায় 200 খ্রিস্টপূর্বাব্দে রচিত পিঙ্গলাচার্যের ছন্দঃবিজ্ঞান বিষয়ক গ্রন্থ 'ছন্দঃ সূত্র' প্রমাণ করে যে সে-সময়ে ভারতে শূন্যের প্রচলন ছিল। খুব সাবধানী মনোভাব নিয়ে বিশ্বকোষে লেখা হয়েছে— 'শূন্য ব্যতীত অন্য অঙ্কণুলি 200 খ্রিস্টাব্দের সময়ে উদ্ভূত হয়েছে। শূন্য চিহ্ন 800 খ্রিস্টাব্দে বা তারও আগে 600 খ্রিস্টাব্দে ব্যবহৃত হয়েছিল। অন্য দিক থেকে দেখা যায় দ্বিতীয় জয়বর্ধনের রাখোলি তাম্রপত্রে 30 সংখ্যাটি দশমিক প্রথায় লেখা আছে। গোয়ালিয়রে ৪76 খ্রিস্টাব্দের এক শিলালিপিতে 50 ও 270 সংখ্যা দুটি শ্নের সাহায্যে লেখা হয়েছে। খ্রিস্টীয় ভৃতীয় শতকে রচিত বাকশালী (বখস্হালী) পাণ্ডলিপিতে শূন্যের ব্যবহার দেখা যায়। বরাহমিহিরের (505 খ্রিঃ) 'পঞ্চসিদ্ধান্তিকা'য় শূন্যের যোগ ও বিয়োগ প্রণালী সম্বন্ধে প্রাসঙ্গিক উল্লেখ আছে। 'আর্যভট্টীয়' গ্রন্থের প্রথম ভাস্কর (522 খ্রিঃ)-লিখিত টীকাতে 1 থেকে 9 পর্যন্ত সংখ্যা ও শৃন্য নিয়ে যে পাটীগণিতের উদ্ভব তার স্পষ্ট রূপ দৃষ্ট হয়। কাজেই প্রকৃত পক্ষে শূন্যের ব্যবহার হয়েছে বিশ্বকোষে উল্লিখিত 600 খ্রিস্টাব্দের অনেক অনেক আগে।

শূন্য কিভাবে সংখ্যা-জগতকে নিয়ন্ত্রণ করে, সে বিষয়ে মানব জীবনের এক বিশেষ অধ্যায়কে টেনে এনে 'শূন্য' শীর্ষক একটি রস রচনা লিখেছিলেন রবীন্দ্রনাথ। সেখান থেকে কিছু অংশ এখানে উদ্ধৃত করা অবশ্যই অপ্রাসঙ্গিক হবে না। "এক একজন লোক আছে, তাহারা যতক্ষণ একলা থাকে ততক্ষণ কিছুই নহে—একটা শূন্য (০) মাত্র; কিন্তু একের সহিত যখনি যুক্ত হয় তখনি দশ (১০) হইয়া পড়ে। একটা আশ্রয় পাইলে তাহারা কি না করিতে পারে। সংসারে শত সহস্র 'শূন্য' আছে, বেচারীদের সকলেই উপেক্ষা করিয়া থাকে—তাহার একমাত্র কারণ সংসারে আসিয়া তাহারা উপযুক্ত 'এক' পাইল না, কাজেই তাহাদের অস্তিত্ব না থাকার মধ্যেই হইল। এই সকল শূন্যদের এক মহাদোষ এই যে, পরে বসিলে ইহারা ১-কে ১০ করে বটে, কিন্তু আগে বসিলে দশমিকের নিয়মানুসারে ১-কে তাহার শতাংশে পরিণত করে (৩১) অর্থাৎ ইহারা অন্যের দ্বারা চালিত হইলেই চমৎকার কাজ করে বটে, কিন্তু অন্যকে চালনা করিলে সমস্ত মাটি করে। ইহারা এমন চমৎকার সৈন্য যে মন্দ সেনাপতিকেও জিতাইয়া দেয়, কিন্তু এমন খারাপ সেনাপতি যে ভাল সৈন্যদেরও হারাইয়া দেয়। স্ত্রী-মর্যাদা-অনভিজ্ঞ গোঁয়ারগণ বলেন যে, স্ত্রীলোকেরা এই শূন্য। ১-এর সহিত যতক্ষণ তাহারা যুক্ত না হয় ততক্ষণ তাহারা শূন্য। কিন্তু ১-এর সহিত বিধিমতে যুক্ত হইলে সে ১-কে এমন বলীয়ান করিয়া তুলে যে, সে দশের কাজ করিতে পারে। কিন্তু এই শূন্যগণ যদি ১-এর পূর্বে চড়িয়া বসেন তবে এই ১বেচারীকে তাহার শতাংশে পরিণত করেন। স্ত্রৈণ পুরুষদের এক নাম ০১। কিন্তু এই অযৌক্তিক লোকদের সঙ্গে আমি মিলি না।" সত্যই 'শূন্য' নিয়ে কি অসাধারণ রস-রচনা!

পাটীগণিতে ভারতীয়গণ দুই সমান বস্তুর বিয়োগফলকে শ্নোর সংজ্ঞা বলে গ্রহণ করেছিলেন। ব্রহ্মণ্ডপ্তের (628 খ্রিঃ) রচনায় আমরা এই সংজ্ঞার উল্লেখ দেখি। অন্য যে কোনও সংখ্যা ও শূন্যের পারস্পরিক যোগ-বিয়োগ-গুণ-ভাগ প্রভৃতি প্রণালীর ফল সম্বন্ধে ভারতীয় গাণিতিকগণের জ্ঞান যে অনেক দূর অগ্রসর হয়েছিল, তার বহু প্রমাণ দেখা যায়। বীজগণিতে শূন্য ব্যবহারের প্রথম উল্লেখ পাওয়া যায় ব্রহ্মণ্ডপ্ত প্রণীত 'ব্রহ্মস্ফুট সিদ্ধান্ত'-এ। ভারতীয় মনীষার ফসল বিশেষ সংখ্যা শূন্য যে পাটীগণিত ও বীজগণিতের সীমা অতিক্রম করে অনেক দূর অগ্রসর হয়েছিল ব্রহ্মগুপ্ত ও দ্বিতীয় ভাস্করের শূন্য বিষয়ক অভিমতগুলি তা' নিঃসন্দেহে প্রমাণ করে। এ কথা বলা যায় যে ব্রহ্মগুপ্তের অভিমতাশ্রিত 'ক্ষুদ্রাতিক্ষুদ্র' সম্বন্ধে অস্পষ্ট ধারণা পরবর্তীকালে প্রাচীন ভারতের সর্বশ্রেষ্ঠ গণিতজ্ঞ ভাস্করাচার্যের (1150 খ্রিঃ) বৈদক্ষ্যে শত সম্ভাবনাময় অন্তরকলন শাস্ত্রের সূচনা করেছিল। ক্রমশূন্যতাপ্রাপ্ত ক্ষুদ্রাতিক্ষুদ্রকে অন্য কোনও যোগ্য অভিধার পরিবর্তে তাঁরা পুরাতন শূন্য নামেই অভিহিত করেছিলেন। কোনও সংখ্যাকে শূন্য দ্বারা ভাগ করলে যে ভাগফল হয়, তাকে ভাস্করাচার্য 'খ-হর' নাম দিয়েছিলেন। 'খ-হর'-এর মান সম্পর্কে তিনি লিখেছিলেন— 'সৃষ্টি মুহুর্তে যখন বহুবিধ প্রাণের উদ্ভব ঘটে, অথবা প্রলয়ক্ষণে যখন অনেক জীবনের বিলুপ্তি আসে তখনও অনন্ত অব্যয় সেই পরব্রন্মের যেমন কোনও রূপান্তরই সম্ভব হয় না, তেমনই শূন্য-হর-বিশিষ্ট এই 'খ-হর' বহু বস্তুর সংযোজন বা বিয়োজন সত্ত্বেও অপরিবর্তিত থেকে যায়।" উক্ত কবিত্বময় উদ্ধৃতি নিশ্চিতভাবে প্রমাণ করে যে $\frac{a}{0}$ $= \infty, \ a \neq 0$ এবং $\infty + k = \infty, \ \infty - k = \infty$ ফল ভাস্করাচার্য জ্ঞাত ছিলেন। গণিত জগতের বহু-কথিত 'অনম্ভ' (∞)-ই নিঃসন্দেহে তাঁর শূন্য হর-বিশিষ্ট সংখ্যা 'খ-হর'।

সাধন দাশগুপ্ত তাঁর অসাধারণ গ্রন্থ 'ভাষাগণিত'-এ শূন্যকে তুলনা করেছেন গল্পের মধুস্দন দাদার দই-এর ভাঁড়ের সঙ্গে। ''মধুস্দন দাদা ছোট ছেলে যতের হাতে একটি ছোট খালি ভাঁড় দিয়ে বললেন, গুরুমহাশয়ের পিতৃপ্রান্ধের সব দই ঐ ভাঁড়টি থেকে পাওয়া যাবে। ভাঁড় সোজা করে ধরলে শূন্য, ফাঁকা, কিছু নেই সেখানে। কিছু দিলেও থাকে না। আর সেই ভাঁড় উপুড় করলে দই-এর অনস্ত প্রবাহ। যত দই চাওয়া যাবে ততই পাওয়া যাবে। আবার সোজা করে ধরলে শূন্যি। শূন্য যখন সোজা পথে চলে তখন তার গুণ হল, সব কিছু হরণ করা। সব সে হজম করে নিজের নির্বিকার আকৃতিটি বজায় রেখে। সে যোগে নেই, বিয়োগে নেই, এবং গুণের ফলাফলে সে থাকে শূন্যি। তাকে উপেটা ধরলে, তাকে দিয়ে ভাগ করতে চাইলে পাওয়া যাবে অনন্ত সম্ভাবনা। যে অনস্ত রাশি গুণের সময় সে লুকিয়ে রেখেছিল ভাগের সময় তারা সবাই ফিরে আসে।''

অনেক অনেক বড় সংখ্যা

সংখ্যা জগতের কোনও সীমানা নেই। কারণ, যে কোনও সংখ্যা n ভাবা হলে তার পরবর্তী সংখ্যা n+1 আমরা কল্পনা করতে পারি। সংখ্যার শেষ নেই—এমন ধারণা থেকে উদ্ভূত হয়েছে 'অনন্ত' (Infinity)—যাকে ∞ চিহ্ন দ্বারা প্রকাশ করা হয়। 'অনন্ত' ধারণার বাহিরে দেশে দেশে যুগে যুগে অনেক বড় সংখ্যা হিসাবে কিছু সংখ্যার কথা ভাবা হয়েছে—তাদের নামকরণও হয়েছে। প্রাচীন ভারতীয় গণিতে এমন কয়েকটি সংখ্যার নাম—

'পরার্ধ' (= 10000000000000000, সংক্ষেপে 10¹⁷),

তল্পকণ' (= 10⁵³), 'অসংখ্যেয়' (= 10¹⁴⁰)

কাল পরিমাণে বড় সংখ্যা বোঝাতে প্রাচীন ভারতে ব্যবহৃত হয়েছে 'পূর্বি' যার অর্থ 756 × 10¹¹ বৎসর এবং 'শীর্ষ প্রহেলিকা'—যেটির মান (8400000)²⁸ বৎসর। শীর্ষ প্রহেলিকার বৎসর সংখ্যা লিখতে মোট 194টি অঙ্ক লাগবে।

পাশ্চাত্যে খ্ব বড় সংখ্যার কথা ভাবতে গিয়ে এসেছে 'মিলিয়ন', 'বিলিয়ন', 'ট্রিলিয়ন', 'কোয়াড্রিলিয়ন' ইত্যাদি। মিলিয়ন 10°, বিলিয়ন 10¹², ট্রিলিয়ন 10¹৪ এবং কোয়াড্রিলিয়ন 10²⁴ (অবশ্য আমেরিকা যুক্তরাষ্ট্র ও আরও কয়েকটি স্থানে মিলিয়ন 10° হলেও পরের তিনটি নাম বোঝায় যথাক্রমে 10°, 10¹² ও 10¹⁵)। মিলিয়ন শ্রেণীতে মিলিয়ন, বিলিয়ন, ট্রিলিয়ন, কোয়াড্রিলিয়ন এই চারটি নামের পর আছে যথাক্রমে কুইনটিলিয়ন, সেক্সটিলিয়ন, সেপ্টিলিয়ন, অক্টিলিয়ন, ননিলিয়ন ডেসিলিয়ন, আনডেসিলিয়ন, ডুওডেসিলিয়ন, ট্রিডেসিলিয়ন, কোয়াতুয়োরডেসিলিয়ন, কুইনডেসিলিয়ন, সেক্সডেসিলিয়ন, সেপ্টেনডেসিলিয়ন, অক্টোডেসিলিয়ন, নভেম্ডেসিলিয়ন, ভিজিনটিলিয়ন। আমেরিকা যুক্তরাষ্ট্রে ও ইয়োরোপের কিছু রাষ্ট্রে প্রতি স্তরে তিনটি শূন্য এবং গ্রেট ব্রিটেন, জার্মানী প্রভৃতি দেশে প্রতি স্তরে ছ'টি শূন্য বাড়বে। অর্থাৎ প্রথমোক্ত দেশগুলিতে হাজার মিলিয়নে এক বিলিয়ন, হাজার বিলিয়নে এক ট্রিলিয়ন ইত্যাদি এবং শেষোক্ত দেশগুলিতে মিলিয়ন মিলিয়নে এক বিলিয়ন, মিলিয়ন বিলিয়নে এক ট্রিলিয়ন—এইভাবে এগোয়। সকল দেশেই মিলিয়ন অবশ্য 10°; তাই মিলিয়ন পরিবারের সর্বশেষে উল্লিখিত সদস্য ভিজিনটিলিয়ন

= 1063 (প্রথমোক্ত দেশগুলিতে)

= 10¹²⁰ (শেষোক্ত দেশগুলিতে)।

পুরাতন যুগে প্লেটোনিক সংখ্যা নামে এক বিশেষ সংখ্যার কথা ভাবা হয়েছিল যার মান $60^4 = 12960000$; পীথাগোরাস সম্ভবত ব্যাবিলনবাসীদের নিকট এই সংখ্যার ধারণা পেয়েছিলেন এবং প্লেটো এর কথা জেনেছিলেন পীথাগোরাসের থেকে। প্লেটোর রিপাব্লিক-এ উন্নত এবং অনুন্নত জন্মের অধিকর্তা প্রসঙ্গে উক্ত সংখ্যা উল্লিখিত হয়েছে। গণিতের ইতিহাস থেকে জানা যায় যে হিন্দু ও ব্যাবিলনবাসীদের রহস্যবাদ-এর ক্ষেত্রে সংখ্যাটি গুরুত্বপূর্ণ ভূমিকা নিয়েছিল।

বড় সংখ্যারও প্রয়োজন ছিল এবং আছে বড় বড় মাপের জিনিসকে ধারণার মধ্যে আনার জন্য। প্রাচীন পৃথিবীতে মনুষ্যসংখ্যা হিসাবে 29 অঙ্ক বিশিষ্ট বৃহৎ সংখ্যা $2^{2^6} \cdot 2^{2^5} = 2^{96}$ -এর কথা ভাবা হয়েছিল। আজ আমরা জানি পৃথিবীর নিকটতম নক্ষত্র প্রক্সিমা সেন্ট্রি বা স্বাতী নক্ষত্রের দূরত্ব 26 বিলিয়ন মাইল এবং পৃথিবীর ওজন প্রায় 6000 ট্রিলিয়ন টন।

বর্তমান যুগে বড় সংখ্যা ভাবতে গিয়ে কয়েকটি নৃতন নামের সংখ্যার কথা এসেছে। এদের মধ্যে প্রথম নামটি 'গৃগোল' যেটি 10^{100} অর্থাৎ 1-এর পিঠে একশটি শূন্য। এই সংখ্যাটির কথা ভেবেছিলেন মার্কিনী গাণিতিক এডওয়ার্ড কাস্নার; তবে তার নামকরণ করেছিল কাস্নারের পাশে বসা তার প্রিয় ভাইপো যার বয়স তখন ছিল ন'বৎসর। গৃগোলের চেয়ে বড় সংখ্যা হিসাবে কাস্নার ভেবেছিলেন এমন সংখ্যা যেখানে 1-এর পিঠে গৃগোল সংখ্যক শূন্য আছে অর্থাৎ গাণিতিক ভাষায় $10^{10^{100}}$ । গৃগোলের সঙ্গে মিলিয়ে নৃতন সংখ্যার নাম দেওয়া হল 'গৃগোলপ্লেক্স'।

বিজ্ঞানী এডিংটন মহাবিশ্বে কটি কণা থাকতে পারে তার হিসাব কষলেন— এটি হল 2×136×2²⁵⁶। এই সংখ্যাটিকে বলা হয় 'মহাজাগতিক সংখ্যা'। এটিতে অঙ্ক সংখ্যা হবে আশিটি অর্থাৎ সংখ্যাটি গূগোলের চেয়ে ছোট।

পরিকল্পিত আর একটি বড় সংখ্যা স্কুয়েস্ সংখ্যা যার মান শক্তির ভাষায়

10^{10¹⁰³⁴}। এই সংখ্যার গুরুত্ব সম্পর্কে নিউম্যান-এর 'ম্যাথেমেটিক্স অ্যাণ্ড ইমাজিনেশন' পুস্তকে বলা হয়েছে ঃ স্কুয়েস্ সংখ্যা মৌলিক সংখ্যার বিন্যাস সম্পর্কে সংবাদ দেয়। জি. এইচ. হার্ডি উল্লেখ করেছেন ঃ যদি আমরা সমগ্র বিশ্ব জগৎকে দাবার ছক এবং এর 'প্রোটন'গুলিকে দাবার ঘুঁটি মনে করি এবং যদি আমরা এর মধ্যেকার যে কোনও দুটি প্রোটনের পারম্পরিক স্থান পরিবর্তনকে এই মহাজাগতিক ক্রীড়ায় একটি দাবার চাল বলে কল্পনা করি তবে আকস্মিক ভাবে মিলে-যাওয়া সকল সম্ভাব্য চালের সংখ্যা-সমষ্টি হবে স্কুয়েস্ সংখ্যা।

বর্তমান গণিত জগতে 'ভিজিনটিলিয়ন', 'গৃগোল', 'গৃগোলপ্লেক্স', 'মহাজাগতিক সংখ্যা' ও 'স্কুয়েস্ সংখ্যা' নামে কতিপয় অতি বৃহৎ সংখ্যা ভাবা হলেও প্রাচীন গ্রীক গাণিতিক অসাধারণ আর্কিমিডিস (আঃ 287—212 খ্রিঃ পৃঃ) তাঁর 'স্যাণ্ড রেকনার' পৃস্তকে এক বৃহৎ সংখ্যার কল্পনা করেছিলেন। তাঁর হিসাবে মহাবিশ্বকে ভরতে ধূলিকণা লাগবে প্রায় হাজার মাইরিয়াডকে অক্টেড দিয়ে সাতবার গুণ—যা হিসাব করলে পাওয়া যাবে $1000 \times 10000 \times (100000000)^7 = 10^{63}$ । মনে রাখতে হবে গ্রীক গণিতের বড় সংখ্যা দশ হাজারকে বলা হত 'মাইরিয়াড' এবং দশ কোটিকে বলা হত

the stimest & pompies

এক 'অক্টেড'—যা মাইরিয়াড সংখ্যক মাইরিয়াড। মাইরিয়াডকে প্রথম শ্রেণীর ইউনিট ভেবে অকটেডকে বলা হল দ্বিতীয় শ্রেণীর; অকটেড অকটেড হল তৃতীয় শ্রেণীর।

বড় সংখ্যার কথা অন্যভাবে জ্যামিতিক কিছু চিহ্নের সাহায্যে ভাবা হয়েছে।

এক্ষেত্রে a সংখ্যাকে ত্রিভুজের মধ্যে a চিহ্ন দিয়ে লেখা হল। তারপর a সংখ্যক ক্রমিক ত্রিভুজের মধ্যে a থাকলে তার চিহ্ন ধরা হয়েছে বর্গের মধ্যে a এবং শেষে a সংখ্যক ক্রমিক বর্গের মধ্যে a থাকলে তার চিহ্ন ভাবা হয়েছে বৃত্তের মধ্যে a (চিত্রে প্রথম তিনটি চিহ্ন লক্ষণীয়)। এখন দুটি বড় সংখ্যার কথা উল্লেখ করা হচ্ছে 'মেগা' ও 'মেগিস্টন' যাদের সংজ্ঞা উক্ত চিহ্নের সাহায্যে সহজে দেওয়া যায়ঃ মেগা = বৃত্তের মধ্যে 2 ও মেগিস্টন = বৃত্তের মধ্যে 10। 'মেগা' যে কত বড় সংখ্যা তা বিশ্লেষণ করলে বোঝা যাবে।

মেগা = বৃত্তের মধ্যে 2 = দুটি ক্রমিক বর্গের মধ্যে 2

এইভাবে 256-তম শক্তি ক্রিয়া পর্যন্ত। একইভাবে মেগিস্টনের মান নির্ণয় করা যায়। এখানে 2-এর বদলে 10 ধরতে হবে। (এই পৃষ্ঠার প্রথম চিত্রে শেষ তিনটি চিহ্ন দ্রষ্টব্য।) মেগিস্টন অবশ্যই মেগার চেয়ে অনেক অনেক বড় সংখ্যা।

বড় সংখ্যা নিয়ে একটি ধাঁধা-জাতীয় প্রশ্ন আলোচনা করা যাক। মাত্র তিনটি অঙ্কের সাহায্যে বৃহত্তম কোন্ সংখ্যা লেখা যায়—এই প্রশ্নের সমাধান হচ্ছে 9⁹⁹।

বিচিত্র নামের কিছু সংখ্যা সম্বন্ধে প্রাথমিক আলোচনার শ্রেষে একথা মনে রাখতে হবে আলোচ্য বিষয়ে আমাদের আরও অনেক কিছু জানার আছে।

ত বিশ্বনীৰ বাচেৰ সংখ্যা উভ চিছে। সাহায়ে সহাজ দেওছা বাচ চলাল

যোগা = ব্ৰেল মধ্যে ? = মৃটি ক্ৰিক বৰ্গের সংখা 2

= व्टब्ब घटना १०। हमान तम् वर्ष वर्ष जाना आ

ार्ट है एक्स है जिसके हैं। उन्हें के विकास महिन्द में

ইেভাবে ১৯৮৮চম শক্তি ফ্রিকা পর্যন্ত। তেওঁ নে প্রোপ্তর্ণনর অন মিশ্র

वास अध्या नित्य अवसी अधा-सावीत होते आधारणा बता राजा मात्र रिजार

निर्मात अधीर २००३ होते । तुम्बर व्यवस्थात हो भारत व्यवस्था । विभाव ।

to the states of the first that the last are in problem to be

্রাচন কর (L) ক্রেনিট্র, জানট (সাগার তেন্ত্র জানের **জা**নিত্র (L) ইন কর্নী

ক্রিড নাম স্ক্রালিক্টা দ্বিতীয় অধ্যায় সামনি রীভেট হাল্ট

"For, contrary to the unreasoned opinion of the ignorant, the choice of a system of numeration is a mere matter of convention."

THE WALL SHE HER THE TANK

िसारा रहेक्का महाराम में विद्यारा अधार कार्यात कार्यात व्याप्त व्याप्त । व्याप्त व्याप्त

-Pascal

বিবিধ সংখ্যা-লিখন পদ্ধতি

1, 2, 3, 4, 5, 6, 7, 8, 9 এই নয়টি অঙ্কের চিহ্ন ও গুরুত্বপূর্ণ বিশেষ সংখ্যা 0-এর সাহায্যে সংখ্যালিখন পদ্ধতি এখন ব্যাপকভাবে প্রচলিত। মোট দশটি চিহ্নের ব্যবহার করে দশ গুণোত্তর স্থানীয় মানের ভিত্তিতে লিখিত এবংবিধ সংখ্যাপাতন প্রণালীকে দশমিক পদ্ধতি বলা হয়। ভারতীয় গণিতের অসাধারণ অবদান দশমিক পদ্ধতি তার ট্রহ্মকর্যতার জন্য সমগ্র পৃথিবীতে গৃহীত। আমেরিকার অধ্যাপক হ্যালস্টেড বলেছেন—'1 থেকে 9 এবং 0 ধরে অর্থাৎ দশ ধরে গণনা পদ্ধতি আবিষ্ণারের ফলেই হিন্দুরা গণিতে গ্রীকদের চেয়ে বেশি উন্নতিলাভ করেছিলেন। এই সংখ্যা-গণনা পদ্ধতি ইয়োরোপ আরবদের কাছে শিক্ষা করে। সেজন্য ইয়োরোপীয়গণ এগুলিকে আরবীয় সংখ্যা মনে করেন। তবে আরবীয়েরা স্বীকার করেন যে দশমিক গণনা পদ্ধতি তাঁরা হিন্দুদের কাছে শিক্ষা করেছিলেন।' ম্যাকডোনেল সাহেব তাঁর সংস্কৃত সাহিত্যের ইতিহাসে লিখেছেন, 'সমস্ত সভ্যতার ক্রমবিকাশের উপর এই দশ ধরে গণনা পদ্ধতি আবিষ্কারের প্রভাব অপরিসীম। অষ্টম ও নবম শতাব্দীতে ভারতীয়েরা পাটীগণিত ও বীজগণিতে আরবদের ও তাদের মারফতে পাশ্চাত্য জাতিসমূহের শিক্ষাদাতা হয়েছিল।' একদল ভারতীয় মনীষা দশমিক পদ্ধতি আবিষ্কার করেছিলেন। দত্ত ও সিং লিখিত 'হিস্ট্রি অব হিন্দু ম্যাথেমেটিক্স' গ্রন্থের প্রথম ভাগে আছে—আবুল হাসান আল্ মাসুদি (943 খ্রিঃ) বলেছেন ঃ 'সৃষ্টিকর্তা ব্রহ্মার নির্দেশে এক ঋষি-সম্মেলন নয়টি সংখ্যা এবং তাঁদের (হিন্দুদের) জ্যোতির্বিদ্যা ও অন্য বিজ্ঞানসমূহ আবিষ্কার করেন। প্রাগৈতিহাসিক যুগে মানুষ তার আঙ্গুলের সাহায্যে সংখ্যা গণনা করত। এই অভ্যাসের জেরে দু'হাতের দশ আঙ্গুলের উপর নির্ভর করায় সংখ্যা লিখনের ক্ষেত্রে সম্ভবত দশ-কে ভিত্তি করা হয়েছিল। লিওনার্দো অব পিসা (ফিবোনাচি) হচ্ছেন ইয়োরোপের প্রথম খ্যাতনামা গাণিতিক যিনি সংখ্যা লিখনের উক্ত 'আরবীয়' পদ্ধতিকে (প্রকৃতপক্ষে ভারতীয় পদ্ধতি) 1275 খ্রিস্টাব্দের কাছাকাছি সময়ে ইয়োরোপে চালু করার ব্যবস্থা করেন।

প্রাচীন পৃথিবীতে দেশ ভেদে পাঁচ, কুড়ি, ষাট ও একশ পদ্ধতি চালু ছিল। এক হাতে পাঁচটি আঙ্গুল—সে দিক থেকে পাঁচ যেন এক হাত-ওয়ালা মানুষের পাটাগণিতকে

নিয়ন্ত্রণ করেছে। সভ্যতার ইতিহাসে প্রথমে গণনার ক্ষেত্রে একটি হাতের ব্যবহার এসেছে; পরে চালু হয়েছে দু'হাতের ব্যবহার—যেখানে দশটি আঙ্গুল দশমিক প্রথাকে প্রচলনের ক্ষেত্রে অগ্রগতি দিয়েছে। প্যারাগুয়ের আদিম অধিবাসীদের গণনা পদ্ধতিতে পাঁচ মানে এক হাত, দশ হল দু' হাত, পনের মানে দু' হাত এক পা এবং কুড়ি হল দু' হাত দু' পা। রোমক সংখ্যালিখন পদ্ধতিতেও পাঁচের প্রভাব থেকে গেছে। সেখানে 1 = I, 5 = V, 10 = X, 50 = L, 100 = C, 500 = D, 1000 = M। হাত-পায়ের মোট আঙ্গুল সংখ্যা 20; মধ্য আমেরিকায় প্রাচীন মায়া সভ্যতায় এই কুড়িকে নিয়ে এক পদ্ধতি (বিংশকালক বা বিংশমাত্রিক প্রণালী) চালু ছিল। আমাদের দেশে গ্রাম্য গণনার ক্ষেত্রে কুড়ির প্রভাব অনেক দিন পর্যন্ত ছিল—এখনও কোনও কোনও ক্ষেত্রে আছে। গ্রামে অনেক জিনিসের সংখ্যা গোণা হয় এক কুড়ি, দু' কুড়ি হিসাবে। জমির পরিমাণের ক্ষেত্রে ছিল কুড়ি কাঠায় বিঘা, ওজনের ক্ষেত্রে ছিল কুড়ির দ্বিগুণ চল্লিশ সেরে মণ। ক্রিকেটে যে স্কোর (score) লেখা হয়, সেই 'score' শব্দের পুরানো অর্থ কুড়ি এবং কুড়ি মানেই গোণা। বেবিলনীয় গণিতে ষষ্ঠিক পদ্ধতি চালু ছিল। সেখানে $1\cdot 4=60+4=64$, $1\cdot 21=60+21=81$ ইত্যাদি। বেবিলনবাসীরা কেন ষাটকে তাদের গণনা পদ্ধতিতে ব্যবহার করেছিলেন তার অর্থ খুঁজতে গাণিতিক ক্যান্টর বলেছেন—ওদের বৎসর ছিল 360 দিনে। সূর্যের বৃত্তীয় গতি পথকে তারা 360 ভাগে ভাগ করেছিলেন—যাতে প্রতিদিন সূর্য অতিক্রম করবে 1 ভাগ, যাকে 1 ডিগ্রী (1°) বলা হয়। তাদের ধারণা অনুসারে বৃত্তের ব্যাসার্ধ ও জ্যা-কে সমান ধরে একটি বৃত্তকে 6টি সমান অংশে ভাগ করা যাবে। এই ভাগগুলিকে অবলম্বন করে জ্যা ও দুই ব্যাসার্ধ নিয়ে তৈরি হবে একটি ত্রিভুজ যার প্রতিটি কোণ 60°। এই 60 সংখ্যাকে তারা বড় সংখ্যা ভাবলেন এবং গণনার ক্ষেত্রে ব্যবহার করলেন। 60 সংখ্যাটি আজও কোণের মাপে ও সময়ের মাপে থেকে গেছে। গণনার দুটো রীতি প্রাচীন বেবিলন ও মিশর থেকে পাওয়া যায়—একটি ষাটকিয়া ও অন্যটি শতকিয়া। ষাট-পদ্ধতির কথা বলা হল। শতকিয়া-পদ্ধতি মূলত দশ-মূলক। তবে দশগুণোত্তর প্রণালীর চেয়ে দ্রুতগামী শতগুণোত্তর প্রণালী এক সময়ে ভাবা হয়েছিল। দশগুণোত্তর প্রণালীতে ভারতীয় মতে পর পর এসেছে এক (1), দশ (10), শত (100), সহস্র বা হাজার (1000), অযুত (10000), লক্ষ (100000), প্রযুত বা নিযুত (1000000), কোটি (10000000), অর্দ (100000000 = 10^{8}), বৃদ বা অজ (10^{9}), খর্ব (10^{10}), নিখর্ব (10^{11}), মহাসরোজ বা শঙ্খ (10^{12}), শঙ্কু বা পদ্ম (10^{13}), সাগর বা সরিৎপতি (10^{14}), অস্ত্য (10^{15}) , মধ্য (10^{16}) , পরার্ধ (10^{17}) । এদের মধ্যে নিযুত = মিলিয়ন, শঙ্খ = বিলিয়ন, এবং দশ পরার্ধ = ট্রিলিয়ন। দশগুণোত্তর প্রণালীতে শ্রীধর আচার্য (750 খ্রিঃ)-নিবেদিত উক্ত তালিকার কিছু কিছু নামের পরিবর্ত নামও দেখা যায়। আনুমানিক খ্রিস্টপূর্ব পঞ্চম শতাব্দীতে শত গুণোত্তর প্রণালীতে সংখ্যা লিখনের সার্থক প্রচেষ্টা দেখা যায়। এ-বিষয়ে খ্রিস্টপূর্ব প্রথম শতকে রচিত বিখ্যাত বৌদ্ধ সাহিত্য 'ললিত বিস্তর' থেকে উদ্ধৃতি

দেওয়া যেতে পারে। রাজকুমার গৌতম অর্থাৎ বোধিসত্বকে গণিতের পরীক্ষা দিতে হয়েছে গাণিতিক অর্জুনের কাছে। অর্জুন তাঁকে কোটির পর থেকে শত গুণোত্তর প্রণালীতে সংখ্যা গণনা কেমন ভাবে এগিয়েছে তা বলতে বললেন। উত্তরে বোধিসত্ব জানালেন 100 কোটিতে এক অযুত, 100 অযুতে এক নিযুত, 100 নিযুতে এক কঙ্কর, 100 কঙ্করে এক বিবর, 100 বিবরে এক ক্ষোভ্য, ইত্যাদি। তিনি শেষ করেছেন তিল্লক্ষণ'-এ পৌঁছে—যা এসেছে কোটির পর 23-তম স্থানে। এখানে প্রত্যেক স্থান পূর্ববর্তী স্থানের 100 গুণ। সেই হিসাবে তল্লক্ষণ হবে এক কোটি × $100^{23} = 10^{7} \times 10^{46} = 10^{53}$ অর্থাৎ 1-এর ডান দিকে 53টি শূন্য। অবশ্যই বোধিসত্ব কথিত অযুত' (10^{9}) দশ গুণোত্তর প্রণালীতে উল্লিখিত অযুত' (10^{4}) থেকে স্বতন্ত্র। ভারতীয় গাণিতিকেরা এ-ব্যাপারে অনেক এগিয়ে ছিলেন। তাঁরা কোটি গুণোত্তর প্রণালীর কথাও ভেবেছিলেন। কাত্যায়নের পালি ব্যাকরণে কোটির গুণিতকে সংখ্যা বিস্তারের উল্লেখ আছে—যে পদ্ধতিতে সর্বশেষে এসেছে পূর্ব অধ্যায়ে আলোচিত সংখ্যা 'অসংখ্যেয়' (10^{140})—যা বিশালতর বপু নিয়ে 'তল্লক্ষণ'-এর মহাশক্তিশালী জ্যেষ্ঠ ভ্রাতা-সদৃশ।

দ্বাদশিক পদ্ধতি

দশমিক পদ্ধতি বর্তমানে চালু থাকলেও এটিকে শ্রেষ্ঠ পদ্ধতি ভাবার কারণ নেই। ভারতীয় দশমিক পদ্ধতির প্রকৃত শক্তি ও উৎকর্ষ নিহিত ছিল লিখিত সংখ্যার অঙ্কগুলির ক্ষেত্রে তাদের স্থানীয় মানের জন্য। অন্য যে পদ্ধতিগুলি এখানে আলোচিত হবে তাতে স্থানীয় মানের মর্যাদা অবশ্যই রক্ষিত থাকবে। দশ সংখ্যার আলাদা কোনও রহস্য বা পবিত্রতা নেই—যার জন্য দশমিক প্রথাকেই গ্রহণ করতে হবে। অবশ্য পীথাগোরাস ও তাঁর শিষ্যবর্গ পবিত্র চতুদ্ধোণ সংখ্যায় দশের কথা বলেছিলেন; তবে সে বলার মধ্যে তেমন কোনও বিজ্ঞানসম্মত যুক্তি ছিল না। এখনকার গাণিতিকেরা উপযোগিতার দিক থেকে 'দ্বাদশিক পদ্ধতি'-কে অপেক্ষাকৃত ভাল বলেছেন। 10-এর উৎপাদক 2, 5 ও 10; কাজেই দশমিক পদ্ধতিতে লেখা সংখ্যার এককের অঙ্কে শূন্য থাকলে তা বিভাজ্য হবে 2, 5 এবং 10 দ্বারা। কিন্তু 12-এর উৎপাদক 2, 3, 4, 6 ও 12। তাই দ্বাদশিক পদ্ধতিতে লেখা একক স্থানে শূন্য-থাকা সংখ্যা অনায়াসে বিভাজ্য হবে 2, 3, 4, 6 এবং 12 দ্বারা। কোনও সংখ্যার বেশি সংখ্যক উৎপাদকের খবর জানা ক্রত হিসাবের দিক থেকে অবশ্যই সুবিধাজনক।

দশমিক পদ্ধতিতে যেমন 1 থেকে 9 — ন'টি অঙ্ক চিহ্ন ও শূন্য লাগছে সংখ্যা লিখনের ক্ষেত্রে, তেমনই দ্বাদশিক পদ্ধতিতে শূন্য ছাড়াও লাগবে 11টি সংখ্যা চিহ্ন— যেগুলি আমরা 1, 2, 3, 4, 5, 6, 7, 8, 9, कं, o' চিহ্ন দিয়ে বোঝাতে পারি। 'দশ' ও 'এগার' বোঝাতে कं, o' চিহ্নের বদলে যথাক্রমে দশ ও এগার'র ইংরাজীর প্রথম অক্ষর t, e ব্যবহার করা চলে। দ্বাদশিক পদ্ধতিতে স্থানীয় মান হবে দ্বাদশ গুণোত্তর

সূত্রানুসারে। অর্থাৎ এককের অঙ্কের স্থানীয় মান অঙ্কটির $12^\circ = 1$ গুণ, ডানদিক থেকে দ্বিতীয় স্থানের (পূর্ব কথিত 'দশকের' স্থান) অঙ্কের স্থানীয় মান অঙ্কটির $12^\circ = 12$ গুণ, তেমনই ডান দিক থেকে তৃতীয় স্থানের (দশমিক প্রথায় কথিত 'শতকের' স্থান) অঙ্কের স্থানীয় মান $12^\circ = 144$ গুণ,.... হবে। এখানে 12, 144 প্রভৃতিকে পরিচিত দশমিক প্রথায় লেখা হয়েছে। যেমন দ্বাদশিক পদ্ধতিতে লেখা 5 **ঠ**0 **৫** বা 510e-এর মান দশমিক পদ্ধতিতে হবে

5 × 12³ + (10) × 12² + 0 × 12¹ + (11) × 1 = 8640 + 1440 + 0 + 11 = 10091; আবার দশমিক পদ্ধতিতে লেখা কোনও সংখ্যাকে ক্রমিকভাবে 12 দ্বারা ভাগ করে শেষ ভাজক ও শেষ থেকে লেখা ভাগশেষগুলির সাহায্যে পাশের ছক অনুসারে

দ্বাদশিক পদ্ধতিতে লেখা যায়। উদাহরণ স্বরূপ পরিচিত দশমিক পদ্ধতিতে লেখা 57300-কে রূপান্তরিত করলে দ্বাদশিক পদ্ধতিতে হবে 291% বা 291e0। এখানে এককের অঙ্কে যেহেতু শূন্য আছে, তাই কোনও হিসাব না করেই বলা যায় সংখ্যাটি 2, 3, 4, 6 এবং 12 দ্বারা বিভাজ্য।

494 978

কাল বিভাগে 12 মাসে 1 বৎসর, 12 × 2 বা 24 ঘণ্টায় 1 দিন, 12 × 5 বা 60 মিনিটে 1 ঘণ্টা ও 60 সেকেণ্ডে 1 মিনিট। সেদিক থেকে ভাবলে ঘাদশিক পদ্ধতিতে এসব ক্ষেত্রে বাড়তি কিছু স্বিধা পাওয়া যাবে। এই একই কারণে একদিন যষ্টিক পদ্ধতি বা ষাটের পদ্ধতি চালু ছিল এবং কোণের ও সময়ের বিভাজনে 60-এর ভূমিকা এখনও আছে। রাশিচক্রে মেষ, বৃষ প্রমুখ বারটি রাশির ব্যবহার থাকায় সেখানেও ঘাদশিক পদ্ধতি সুবিধার সঙ্গে ব্যবহার করা যাবে। অবশ্য স্বভাবতই মনে হতে পারে ষষ্টিক পদ্ধতি এসকল ক্ষেত্রে আরও সুবিধাজনক হতে পারত। কিন্তু ষষ্টিক পদ্ধতি গ্রহণ করলে সংখ্যা লিখনের ক্ষেত্রে আমাদের 59টি অঙ্ক চিহ্নের কথা অর্থাৎ 1 থেকে 9 ছাড়াও আরও 50টি চিহ্নের কথা ভাবতে হত এবং তাদের মনে রাখতে হত। সে কাজ নিশ্চয়ই সহজ্ব নয় এবং সম্ভবও নয়। ড্যানজিগ তাঁর অসাধারণ গ্রন্থ নাম্বার'-এ বলেছেন ঃ 'মানব জ্বাতির দশ্মিক পদ্ধতি গ্রহণ এক শরীরতাত্ত্বিক আক্মিকতা। যাঁরা সব কিছুতেই ঈশ্বরের হাত লক্ষ্য করেন, তাঁদের শ্বীকার করতে হবে যে ঈশ্বর একজন দুর্বল গাণিতিক। অষ্ট্যাদশ শতকের শেষভাগে মহান প্রকৃতিবিজ্ঞানী বৃক্ষ প্রস্তাব করেছিলেন যে দ্বাদশিক (12-মূলক) পদ্ধতি বিশ্বজ্বনীনভাবে গৃহীত হোক।'

পঞ্চতপা এক অখ্যাপকের আত্মজীবনী

জনৈক অধ্যাপকের আত্মজীবনীর একটি পৃষ্ঠা থেকে উদ্ধৃত করা হল। তিনি এখানে তাঁর পাঠ্য জীবনের কিছু কথা ও সাংসারিক অনুপপত্তির ব্যাপারে মতামত জানাচ্ছেন উত্তম পুরুষে। ''আমি 31 বংসর বয়সে প্রবেশিকা পরীক্ষায় প্রথম বিভাগে উত্তীর্ণ ইই। 4 বংসর পরে মফস্বলের এক মহাবিদ্যালয় থেকে গণিতে সাম্মানিক পাঠক্রমে দ্বিতীয় শ্রেণীতে উচ্চ স্থান পাই। তখন আমার বয়স 40 বংসর। এর পরে অসুস্থতার জন্য নিয়মিত ভাবে পড়াশুনা করা সম্ভব না হওয়ায় আরও 4 বংসর পরে বিশুদ্ধ গণিতে এম. এ. পরীক্ষা দিই এবং দ্বিতীয় শ্রেণীতে প্রথম স্থান লাভ করি। শেষ পরীক্ষার ফল তেমন ভাল না হওয়ায় দু-তিন বংসর বেকার জীবন কাটাবার পর দূর মফস্বলের এক মহাবিদ্যালয়ে মাসিক মাত্র 1120 টাকা বেতনে অধ্যাপনার কাজ পাই। এই সামান্য আয়ের মধ্যে 31 টাকা আমার বিধবা পিসীমাকে কাশীতে পাঠাতে হত। বাকি 1034 টাকায় আমি, বাবা-মা, ছোট তিন ভাই ও তিন বোন সহ মোট 14 জনের ভরণ পোষণ খুব অসুবিধার মধ্যে চালাতাম। কারণ, পরিবারের প্রত্যেক সদস্যের জন্য গড়পড়তা খরচ করতে পারতাম মাত্র 31 টাকা।"

আত্মজীবনীর এই কয়েকটি ছত্র পড়ে অধ্যাপকমশায় যে মানসিকভাবে সৃষ্ট্ ছিলেন না তা মনে হবে। কারণ 31 বংসরের 4 বংসর পরে কারুর বয়স 40 বংসর হয় না। 1120 টাকা থেকে 31 টাকা পিসীমাকে পাঠালে 1034 টাকা বাকি থাকে— এমন কথা কোনও ছোট ছেলে মেয়েকেও বোঝানো যাবে না। বাবা-মা, তিন ভাই, তিন বোন ও নিজেকে নিয়ে গণনায় কিভাবে মোট 14 জন হতে পারে? তবে কি অধ্যাপক মশায় পাগল ছিলেন, না, অন্য কোনওভাবে বাতিকগ্রস্ত ছিলেন?

কিন্তু আমরা যদি ভাবি—গণিতে উক্ত অধ্যাপক তাঁর আত্মজীবনীর পৃষ্ঠায় পরিচিত দশমিক পদ্ধতির বদলে অন্য কোনও পদ্ধতি ব্যবহার করেছেন এবং সেই পদ্ধতিকে খুঁজে বার করতে পারি তা হলে অদ্ভূত কথাগুলি আর অদ্ভূত থাকবে না;— অসম্ভব ও অসংলগ্ন কথাগুলির ঠিকমতো ব্যাখ্যা পাওয়া যাবে। আত্মজীবনীতে উল্লিখিত সংখ্যাগুলিতে 4-এর বড়ো সংখ্যার ব্যবহার নেই এবং নৃতন কোনও চিহ্নও নেই; তাই এক্ষেত্রে পাঁচ থেকে নয়-এর সংযুক্ত কোনও পদ্ধতি ব্যবহাত হয়েছে ভাবা যায়। 31 + 4 = 40 কিংবা সংসারের 9 জন সদস্যকে লেখা হয়েছে 14—এদের যে কোনও একটি তথ্য থেকে বোঝা যায় অধ্যাপকমশাই 'পঞ্চতপা' ছিলেন—'পাঁচ'-এর তপস্যা ছিল তাঁর জীবনের ব্রত। পাঁচ-প্রথাকে বা পঞ্চমাত্রিক পদ্ধতিকে তিনি তাঁর আত্মজীবনীর পৃষ্ঠায় সংখ্যা লিখনের ক্ষেত্রে ব্যবহার করেছিলেন।

উদ্ধৃত উক্ত ছ্ত্রগুলি পরিচিত দশ-প্রণালীতে পরিবর্তিত করে পড়লে হবে— 'আমি 16 বৎসর বয়সে প্রবেশিকা পরীক্ষায় প্রথম বিভাগে উত্তীর্ণ হই। 4 বৎসর পরে মফস্বলের এক মহাবিদ্যালয় থেকে গণিতে সাম্মানিক পাঠক্রমে দ্বিতীয় শ্রেণীতে

10 Per 10 10

18 105 as

উচ্চস্থান পাই। তখন আমার বয়স 20 বৎসর। এর পরে অসুস্থতার জন্য নিয়মিতভাবে পড়াশুনা করা সম্ভব না হওয়ায় আরও 4 বৎসর পরে বিশুদ্ধ গণিতে এম. এ. পরীক্ষা দিই এবং দ্বিতীয় শ্রেণীতে প্রথম স্থান লাভ করি। শেষ পরীক্ষার ফল তেমন ভাল না হওয়ায় দু-তিন বংসর বেকার জীবন কাটাবার পর দূর মফস্বলের এক মহাবিদ্যালয়ে মাসিক মাত্র 160 টাকা বেতনে অধ্যাপনার কাজ পাই। এই সামান্য আয়ের মধ্যে 16 টাকা আমার বিধবা পিসীমাকে কাশীতে পাঠাতে হত। বাকি 144 টাকায় আমি, বাবা-মা, ছোট তিন ভাই ও তিন বোন সহ মোট 9 জনের ভরণ পোষণ খুব অসুবিধার মধ্যে চালাতাম। কারণ, পরিবারের প্রত্যেক সদস্যদের জন্যে গড়পড়তা খরচ করতে পারতাম মাত্র 16 টাকা।"

কাজেই দেখা যাচ্ছে অধ্যাপক মশায়ের লেখায় কোনও অসঙ্গতি নেই। তাই বলা চলে তিনি পাগল ছিলেন না; তবে একটু খেয়ালী ছিলেন (পাগলাটে বলা চলে কি?) এবং সেই খেয়ালের বশে তিনি সুপরিচিত দশমিক পদ্ধতির বদলে ব্যবহার করেছিলেন অপরিচিত পাঁচ-প্রণালী।

পাঁচ প্রথায় স্থানীয় মান হবে পঞ্চগুণোত্তর সূত্র অনুসারে। এই প্রথায় যোগের ও গুণের নামতা দাঁড়াবে ঃ

19.4	F31	যোগ	ার না	মতা 🏻	গুণের নামতা					TO IN THE	
+	0	1	2	3	4	×	1	2	3	4	OS II UF
0	0	1	2	3	4	1	1	2	3	4	
1	1	- 2	- 3	4	10	21	2	4	11	13	8 MPD F
2	2	3	4	10	11	3	3	11	14	22	
3	3	4	10	11	12	4	4	13	22	31	BAR DUTY
4	4	10	11	12	13	1917		7 6	IF I	74	0 6

পাঁচ মৌলিক সংখ্যা। সেই দিক থেকে পাঁচ প্রথার একটি বাড়তি সুবিধা আছে। এক্ষেত্রে যে কোনও ভগ্নাংশ মাত্র এক ভাবেই লেখা যাবে। দশমিক প্রথায় সে সুবিধা নেই। $\cdot 36$ -এর বদলে সেখানে ভগ্নাংশ হিসাবে $\frac{36}{100}$, $\frac{18}{50}$ বা $\frac{9}{25}$ লিখতে পারা যায়। সে দিক থেকে গাণিতিক ল্যাগরাঞ্জি এমন প্রথা চেয়েছিলেন যেখানে সংখ্যাটি হবে মৌলিক। পাঁচ বা সাত ছোট হওয়ার কারণে মৌলিক সংখ্যা 11-কে ধরে যে সংখ্যা লিখন প্রণালী (11-পদ্ধতি) তাকে একদল গাণিতিক পছন্দ করবেন। প্রচলিত দশমিক প্রথার 10 মৌলিক না হওয়ায় এ দিক থেকেও তার হার হচ্ছে।

এইভাবে যে কোনও পদ্ধতিতে সংখ্যা লেখা যায়; তবে বেশি সংখ্যক উৎপাদক থাকার জন্য বার পদ্ধতি (12-পদ্ধতি) এবং মৌলিক হওয়ার কারণে এগার পদ্ধতি (11-পদ্ধতি) গাণিতিকদের দুটি দলের সমর্থন পেয়েছে বা পেতে পারে। বিভিন্ন পদ্ধতিতে লেখা সংখ্যার গঠন বোঝার জন্য দশমিক প্রথায় লেখা পরিচিত 49 সংখ্যার বিভিন্ন রূপান্তর দেখানো হচ্ছেঃ এটি দুই-প্রণালীতে 110001, তিন-প্রণালীতে 1211, চার-প্রণালীতে 301, পাঁচ-প্রণালীতে 144, ছয়-প্রণালীতে 121, সাত-প্রণালীতে 100, আট-প্রণালীতে 61, নয়-প্রণালীতে 54, এগার প্রণালীতে 45 ও বার-প্রণালীতে 41 হবে।

জ্ঞান (প্ৰাপ্তবাৰ) দুই প্ৰণালী বা দ্বাংশক পদ্ধতি

এর পরে গুরুত্বপূর্ণ দ্বাংশক পদ্ধতি বা দুই-প্রণালী নিয়ে আলোচনা করা যাক। এই পদ্ধতি কোনও নৃতন ধারণা নয়। খ্রিঃ পৃঃ 3000 অব্দে লিখিত বলে বিশ্বাস করা হয় এমন চীনা পুস্তকে দ্বাংশক পদ্ধতির কথা আছে। 46 শতক পরে লাইবনিংস (1646-1716 খ্রিঃ) এই পদ্ধতির পুনরাবিদ্ধার করেন এবং একে এক নৃতন সৃষ্টি মনে করে বিশ্বয়ান্বিত হন। দুই-প্রণালীতে সংখ্যা লেখা হয় মাত্র দুটি চিহ্নের সাহায্যে—1 ও ০। এখানে যোগের ও গুণের নামতা হচ্ছে সংক্ষিপ্ততম ঃ ০ +1 = 1 + 0 = 1, 1 + 1 = 10; 1 × 1 = 1 এবং স্থানীয় মানে আসছে দুই গুণোত্তর সূত্র। দশমিক প্রথায় লেখা 10 সংখ্যাকে দ্বাংশক পদ্ধতিতে লিখতে হলে 10-কে 2 দিয়ে ক্রমিকভাবে ভাগ করতে হবে। পরে শেষ ভাগফল ও ভাগশেষগুলি শেষ দিক থেকে পর পর লিখলে সংখ্যাটি দুই প্রণালীতে পরিবর্তিত হবে। যেমন 10 রূপান্তরিত হবে 1010 আকারে। অনুরূপ ভাবে 45-কে দ্বাংশক পদ্ধতিতে লিখলে পাওয়া যাবে 101101 সংখ্যাটি।

ानिष्ठ स्थाना

এই পদ্ধতিতে সংখ্যাগুলি খুব তাড়াতাড়ি বড় হয়ে যায়। তবে এতে মজার একটা দিক আছে। শুধু 0 (শূন্য) একান্ডই ফাঁক বা ফাঁকি। 1 (এক) সেই শূন্যের সাহায্যে অর্থাৎ ফাঁকার মধ্য থেকে ক্রমশ সমগ্র সংখ্যা-জগৎ তৈরি করেছে। তাই দ্বাংশক সংখ্যা-চিহ্ন পদ্ধতির মধ্যে প্রসিদ্ধ গাণিতিক লাইবনিৎস সৃষ্টি রহস্যের ইসারা দেখেছিলেন। এই পদ্ধতি তাঁর খুব প্রিয় ছিল। গণিতজ্ঞ ল্যাপলেশ (1749-1827 খ্রিঃ) এ-বিষয়ে য়ে কথা লিখেছেন তা উল্লেখযোগ্য। 'লাইবনিৎস তাঁর দ্বাংশক পাটাগণিতে সৃষ্টির প্রতিরূপ দেখেছিলেন। তিনি কল্পনা করেছিলেন যে এক ঈশ্বরের ও শূন্য শূন্যতার প্রতীক এবং এক আর শূন্য যেমন তাঁর সংখ্যালিখন প্রণালীতে সব সংখ্যাকে প্রকাশ করে, তেমনই পরমেশ্বর সৃষ্টিকর্তা শূন্যতা থেকে সকল সন্তাকে সৃষ্টি করেছিলেন।'

দ্বাংশক পদ্ধতিতে লেখা কোনও সংখ্যাকে পরিচিত দশমিক পদ্ধতিতে পরিবর্তিত করা যাবে 2-এর বিভিন্ন শক্তির সাহায্যে স্থানীয় মানের উপর নির্ভর করে। এই ক্ষেত্রে ডান দিক থেকে পর পর আসবে $2^\circ = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$ ইত্যাদি। এইগুলিই দুই-প্রণালীর 'এক-দশ-শত-সহস্র' ইত্যাদি। তাই দ্বাংশক পদ্ধতিতে লেখা $100011 = 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 32 + 0 + 0 + 0 + 2 + 1 = 35$ (দশ্মিক প্রণালীতে)। একটি কথা লক্ষণীয় ইকোন সংখ্যায় ক'টি অন্ধ থাকবে তা সংখ্যাটির ধর্ম (property) নয়, তা হচ্ছে সংখ্যাটির 'সংখ্যা চিহ্ন পদ্ধতি'র ধর্ম। যেমন দশ্মিক পদ্ধতিতে দুই অঙ্কের সাহাযে লিখিত 37 দ্বাংশক-সংখ্যাচিহ্ন পদ্ধতিতে হবে 100101—যাতে আছে মোট ছ'টি অন্ধ। সংখ্যা লিখনের এমন সরলতম পদ্ধতির বিশেষ গুরুত্ব ও প্রয়োজনীয়তা আছে। গণনা যন্ত্রে দ্বাংশক সংখ্যাচিহ্ন পদ্ধতি ব্যবহার করা হয়। যন্ত্রগণক নির্মাণ ও পরিচালন পদ্ধতিতে দুই-পদ্ধতির অন্তর্নিহিত তত্ত্বের বিশেষ ভূমিকা আছে। বর্তমান বিশ্বের অন্যতম এক বিশ্বয় এই যন্ত্রের সুইচ 'অন' হলে 1 অর্থাৎ 'সত্য' এবং সুইচ 'অফ' হলে 0 অর্থাৎ মিথ্যা। আর আছে যোগ, গুধুই যোগ—এই নিয়েই যন্ত্রগণক—সে যত বিরাটই হোক, বিশালই হোক আর জটিলই হোক। যন্ত্রগণকের অন্ধ হল এটাই।

এখন দ্বাংশক পদ্ধতিতে লেখা সংখ্যার যোগ-বিয়োগ-গুণ-ভাগ প্রক্রিয়া লক্ষ্য করা যাক। সেগুলি আবার পরিচিত দশমিক পদ্ধতিতে সমাধান করে ফল মিলিয়ে নেওয়া হচ্ছেঃ—

a) যোগ করঃ	अस्ताल कार्य कर एक ग्रांक श्रामक
(দুই-প্রণালীতে)	(দশমিক প্রণালীতে)
100011	0113 35
11010	26
1101	13 14
110	6
14 17 12 H	3 .
1	1
1010100	84

ঘাংশক পদ্ধতিতে করা উপরের যোগক্রিয়াকে অনুসরণ করলে দেখা যায় ডানদিকের প্রথম স্তন্তের অকগুলি যোগ করলে পাওয়া যায় 1+0+1+0+1+1=10 +10=100; 0 নামার পর হাতে থাকল 10; দ্বিতীয় স্তন্তে 1+1+0+1+1+1=10; 1+1+1=10; 1+1+1=10; 1+1=1

= 64 + 16 + 4 = 84; সরাসরি সব সংখ্যাকে দশমিক পদ্ধতিতে লিখে সমাধান করে এই উত্তরই পাওয়া গেছে। তালি কালালী লালালী ভালাল

মাসারি ভারতির 📆 b) বিয়োগ কর : নাও লাগের রক্ত ক্রাচ) করেন্ডে বীয়েলে রঞ্জে प्रकाशक प्रकेश ताला । हा (प्र

THE RESERVE OF THE STREET कारीकाम कानकाम मार्चामक

ই-প্রণালীতে)	(দশমিক প্রণালীতে)	THE BOTE HIZED
101010	42 200 100	
-11101	-29	
1101	13	
to broke the second little of	County Charles Services Assistance	a new comments to their

বিয়োগের ক্ষেত্রে ডানদিক থেকে প্রথম.স্তন্তে 0-1; এখানে পরবর্তী স্থানের দরুন 1 ধার নিয়ে এটা দাঁড়াবে 0 + 10 - 1 = 1; 1 বসানো হল। দ্বিতীয় স্তম্ভে 1 – (0 + ধার শোধের দরুন 1) = 1 − 1 = 0; 0 বসানো হল। তৃতীয় স্তম্ভে 0 -1 অর্থাৎ পরবর্তী স্থানের দরুন 1 ধার নিয়ে হবে $10-1=1;\ 1$ বসানো হল। চতুর্থ স্তম্ভে 1 – (1 + ধার শোধের দরুন 1) = 1 – 10;—এখানে পরবর্তী স্থান থেকে 1 ধার নিলে এটা দাঁড়াবে 11-10=1; 1 বসানো হল। পঞ্চম স্তম্ভে 0-(1 + 413 (শাধের 1) = 0 - 10; এখন পরবর্তী স্থান থেকে 1 ধার নিলে দাঁড়াবে 10-10=0; শেষে ষষ্ঠ স্তন্তে 1- ধার শোধের 1=0; বাঁ দিকে শুরুর অঙ্ক হিসাবে পঞ্চম ও ষষ্ঠ স্থানের শূন্য দৃটি বসানো হয় নি। এইভাবে বিয়োগফল দাঁড়াল 1101 = 13 (দশমিক প্রণালীতে)।

c) গুণ কর : (দুই-প্রণালীতে)	্ (দশমিক প্রণালীতে)
STATE (MILES PA	WE ISSUITE FEET FEET BOISTE
×101	THE RELEASE WHEN THE BOLES WHE
111	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100011	the model and and

গুণের কাজ সহজেই বোঝা যাচ্ছে। কারণ 1 দিয়ে গুণ করলে সংখ্যাটি একই থাকে। আর আংশিক গুণের সারিগুলি যোগ করা হয়েছে পূর্বোক্ত যোগের নিয়মে। গুণফল হল 100011, যার দশমিক প্রণালীতে মান 35 হবে।

d) ভাগ কর ঃ (দুই-প্রণালীতে)	(দশমিক প্রণালীতে)
1111) 110110010 (11100	15) 434 (28
1111	30
11000	134
1111	120
10010	14
1111	ভাগফল – 28
1110	ভাগশেষ – 14

ভাগের সূত্রগুলি সহজেই বোঝা যায়। তারপর আংশিক বিয়োগগুলি করা হয়েছে পূর্বোক্ত বিয়োগের নিয়মে। শেষ পর্যন্ত ভাজ্য থেকে একটি অঙ্ক নামিয়েও যখন সংখ্যাটি ভাজক থেকে কম থেকেছে তখন ভাগফলে 0 এসেছে, প্রচলিত নিয়মে যেমন হয়ে থাকে। এইভাবে ভাগফলে আর একটি শূন্য এসেছে। শেষ পর্যন্ত ভাগফল ও ভাগশেষ হল যথাক্রমে 11100 ও 1110, যেগুলি দশমিক প্রথায় 28 ও 14 হবে।

দ্বাংশক প্রথায় লিখিত সংখ্যাগুলির ক্ষেত্রে যোগ-বিয়োগ-গুণ-ভাগ প্রাথমিক চার প্রক্রিয়ার প্রয়োগ দেখা গেল। অন্য প্রক্রিয়া তো প্রাথমিক প্রক্রিয়াগুলি থেকে এসেছে। সূতরাং সেক্ষেত্রেও ফল ঠিক মতো পাওয়া যাবে। উদাহরণস্বরূপ একটি বর্গমূলের অঙ্ক করা হচ্ছেঃ

মনে রাখতে হবে 1 এর দিগুণ $= 1 \times 10 = 10$; 11-এর দিগুণ $11 \times 10 = 110$; এখানে বর্গমূল 111-যা দশমিক প্রথায় 7 হবে। এইভাবে অন্য যে কোনও প্রক্রিয়া দ্ব্যংশক পদ্ধতিতে লিখিত সংখ্যার উপর প্রয়োগ করা যায়। দুই পদ্ধতির সাহায্যে সাধারণের করার মতো গুণ (চাষীদের গুণ) সম্ভব হতে পারে। যেমন, ধরা যাক 43-কে 87 দিয়ে গুণ করতে হবে। এখানে আগে সাধারণের উপযোগী সহজে করণীয় গুণ প্রক্রিয়া দেখিয়ে পরে তা দ্ব্যংশক পদ্ধতিতে ব্যাখ্যা করা হবে।

ক্রামক ভাবে দু'ভাগ করা হচ্ছে প্রয়োজন হলে অতিরিক্ত 1	43
--	----

এখন বামদিকের স্তম্ভের যোড় সংখ্যার সংশ্লিষ্ট ডানদিকের সংখ্যাগুলি বাদ দিয়ে বাকি সংখ্যাগুলি যোগ করলে নির্দেয় গুণফল পাওয়া যাবে। এখানে গুণফল হবে 87 + 174 + 696 + 2784 = 3741।

দ্ব্যংশক প্রক্রিয়ার সাহায্যে উক্ত গুণের নিয়ম বোঝানো হচ্ছে। দুই-পদ্ধতিতে 43 = 101011 (43-কে ক্রমিকভাবে 2 দিয়ে ভাগ করা হচ্ছে—ভাগফল যোড় হলে 0 ও বিযোড় হলে 1 নেওয়া হবে)। যেমন—

যেহেভূ
$$101011 = 1.2^5 + 0.2^4 + 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0$$
, জাতএব $43 \times 87 = \begin{cases} 1 \times 2^0 \times 87 = & 1 \times 87 = 87 \\ 1 \times 2^1 \times 87 = & 1 \times 174 = 174 \\ 0 \times 2^2 \times 87 = & 0 \times 348 = 348 \text{ dl } 0 \\ 1 \times 2^3 \times 87 = & 1 \times 696 = 696 \\ 0 \times 2^4 \times 87 = & 0 \times 1392 = \frac{1392}{1292} \text{ dl } 0 \end{cases}$

কাজেই দেখা যাচ্ছে উক্ত চাষীদের গুণন-এ প্রকৃত পক্ষে 43-কে দ্যাংশক পদ্ধতিতে পরিবর্তন করে তার সাহায্যে 87-কে গুণ করা হয়েছে।

আমরা কোন্ সংখ্যাকে কোন্ পদ্ধতিতে লিখেছি তা নির্দিষ্ট করে জানাবার জন্য সংখ্যাটিকে লিখে তার ডান পাশে নিচের দিকে উপাক্ষর হিসাবে পদ্ধতির সংখ্যাটি বানানে বা অঙ্কে লেখা হয়। বিশেষত একাধিক পদ্ধতির কথা একসঙ্গে এলে সেখানে গোলমাল এড়াতে তা করতেই হয়। অবশ্য পরিচিত দশমিক পদ্ধতিতে লেখা সংখ্যার ক্ষেত্রে কোনও উপাক্ষর দেওয়া হয় না স্বাভাবিক কারণেই। পূর্বে 49-কে বিভিন্ন পদ্ধতিতে লেখা হয়েছিল। সেই রূপান্তরকে বর্তমানের সঙ্কেত অনুসারে লেখা হচ্ছে ঃ

 $49 = (110001)_2 = (1211)_3 = (301)_4 = (144)_5 = (121)_6 = (100)_7$ $= (61)_8 = (54)_9 = (45)_{11} = (41)_{12}$

রূপান্তরিত সংখ্যাটি $110001_{\eta \xi}$ বা $41_{\eta \eta \eta \eta}$ আকারেরও লেখা যেত। উপাক্ষর যখন অঙ্কে লেখা হয় তখন ভুল এড়াবার জন্য বন্ধনী ব্যবহার করা ভাল—যেমন এখানে করা হয়েছে।

কোন পদ্ধতিতে রূপান্তরের কাজ সেই পদ্ধতির সংখ্যানুসারে দল তৈরি করেও সহজে বলা যায়। একটি প্রশ্নের আকারে ছবির সাহায্যে রূপান্তরজনিত বক্তব্যটি বোঝানো হচ্ছেঃ

প্রশ্ন। 14 সংখ্যাটিকে চার-পদ্ধতি ও পাঁচ-পদ্ধতিতে লেখ। উত্তর। এখানে 14টি ফুটকি এঁকে চারটি ও পাঁচটি হিসাবে দল করা হয়েছে।

প্রথম ক্ষেত্রে তিনটি দল ও দৃটি বাড়তি; তাই $14=(32)_4$ দ্বিতীয় ক্ষেত্রে দু'টি দল ও চারটি বাড়তি; সূতরাং $14=(24)_5$

বিভিন্ন পদ্ধতিতে রূপান্তরের কথা এবং এই সব পদ্ধতির মধ্যে 12-পদ্ধতি বা 11-পদ্ধতির গুণগত প্রাধান্যের কথা আলোচনা করা হয়েছে। তবে প্রচলিত 10-পদ্ধতি তার পৃথিবী-জ্বোড়া রাজত্বে এখনও রাজত্ব করে চলেছে এবং তাকে আমরা রাজ্ঞা বলে মেনেও নিয়েছি। ভারতীয় মনীষা অতীতে যে দশমিক পদ্ধতি আবিষ্কার করেছিল ও পৃথিবীকে দিয়েছিল তাতে পদ্ধতির সংখ্যা-মান '10' বড় কথা নয়, সবচেয়ে গুরুত্বপূর্ণ কথা ছিল সেখানে সংখ্যাস্থ প্রতিটি অঙ্কের স্থানীয় মান ও নিজম্ব মান—দুটি মানের মধ্যে এবং সংখ্যা লিখনের সময় ফাঁক ভরাট করার জন্য শূন্যের ব্যবহারে। দশমিক প্রথায় তাই 1 থেকে 9—ন'টি অঙ্ক চিহ্ন ও 0 (শূন্য)—মোট দশটি প্রতীক ব্যবহৃত হয়েছিল। সংখ্যাস্থ অঙ্কের দুটি মানের গুরুত্ব সম্পর্কে গাণিতিক ল্যাপলেস বলেছিলেন ঃ 'দশটি প্রতীকের সাহায্যে সকল সংখ্যা প্রকাশের কৌশলী পদ্ধতি ভারতই আমাদের শিখিয়েছে। প্রতিটি প্রতীকের স্থানিক মূল্যমানের সঙ্গে পরম মানও আছে। এই গভীর ও গুরুত্বপূর্ণ ধারণা এখন আমাদের কাছে এত সহজ-সরল যে আমরা এ-কাজের জ্ঞান-গরিমা অগ্রাহ্য করি।... যখন ভাবি প্রাচীন যুগের দুই শ্রেষ্ঠ মনীষী আর্কিমিডিস ও অ্যাপোলোনিয়াসের প্রতিভাতে এ-পদ্ধতি ধরা পড়েনি তখনই আমরা এর ঐশ্বর্যগরিমা উপলব্ধি করতে পারি।' উপযুক্ত মন্ত্রী ও সেনাপতির জোরে যেমন দুর্বল রাজার রাজত্বও চলে তেমনই স্থানীয় মান ও নিজস্ব মান—দুই মানে মানী 'দশ' এর রাজত্ব চলেছে। 'চলছে' বলেই 12 বা 11-পদ্ধতির সুবিধার কথা ভাবলেও সে পরিবর্তনের ব্যাপারে তেমন ভাবে মাথা ঘামানো হয় নি। তবে সে যুগে ভারতীয় পদ্ধতির শ্রেষ্ঠত্ব কোথায় ছিল তা সহজেই বোঝা যাবে যদি যে কোনও একটি সংখ্যা, যেমন 1326 প্রাচীন মিশরীয় পদ্ধতি ও রোমক পদ্ধতিতে লেখা হয় ঃ

প্রাচীন মিশরীয় পদ্ধতিতে প্র ୨୨୨ nn /// রোমক পদ্ধতিতে Mcccxx VI

অক্ষের দুটি ধাঁধা ও দুটি পদ্ধতি

প্রথমে যে ধাঁধার উল্লেখ করা হচ্ছে তার সমাধানে লাগে দ্ব্যংশক পদ্ধতি।

ক) ধাঁধা—এক টাকার নোটে 511 টাকা এবং 1 থেকে 9 পর্যন্ত নম্বর দেওয়া 9টি

খাম দেওয়া হল। টাকাণ্ডলি 9টি খামের মধ্যে কিভাবে রাখলে 1 টাকা থেকে 511 টাকা পর্যন্ত যে কোনও পরিমাণ পূর্ণসংখ্যক টাকা খাম না খুলে কেবল নম্বর-যুক্ত এক বা একাধিক খাম বাছাই করে দেওয়া যাবে? নির্দিষ্ট কোনও পরিমাণ টাকা দিতে গেলে খাম বাছাই বা কিভাবে করা হবে? সমাধান ঃ এই ধাঁধার উত্তর নির্ভর করছে দ্বাংশক পদ্ধতির উপর। বিভিন্ন খামে টাকা রাখতে হবে দূই প্রণালীর 'এক-দশ-শত...' অনুসারে অর্থাৎ 1 নং খামে 2° বা 1 টাকা, 2 নং খামে 2¹ বা 2 টাকা, 3 নং খামে 2² বা 4 টাকা, এমনি ভাবে 4 নং খামে 8 টাকা, 5 নং খামে 16 টাকা, 6 নং খামে 32 টাকা, 7 নং খামে 64 টাকা, 8 নং খামে 128 টাকা এবং 9 নং খামে 256 টাকা থাকবে। বীজগণিতীয় ভাষায় n নং খাবে 2ⁿ⁻¹ সংখ্যক টাকা রাখতে হবে। এটি হল খামে টাকা রাখার নিয়ম। এখন যদি কোনও নির্দিষ্ট পরিমাণ টাকা, ধরা যাক 203 টাকা দরকার হয়, তখন কেবল 1নং, 2নং, 4নং, 7 নং এবং ৪নং খাম তুলে নিলেই ঐ টাকাটা মিলবে। (কারণ খামগুলির টাকা যোগ করে দেখা যাচ্ছে 1 + 2 + 8 + 64 + 128 = 203)। এখন প্রয়োজনীয় খামের নম্বর কিভাবে পাওয়া গেল, তা জানা যাবে 203-কে দ্বাংশক পদ্ধতিতে লিখলে।

দেখা যাচেছ 203 = (11001011),

অঙ্কানাং বামতো গতি'—অঙ্কের গতি ডান দিক থেকে বাম দিকে। এখানে ডান দিক থেকে অশ্ন্য অঙ্ক আছে প্রথম, দ্বিতীয়, চতুর্থ, সপ্তম ও অষ্টম স্থানে। তাই 203 টাকার ক্ষেত্রে বাছাই করতে হবে 1নং, 2নং, 4নং, 7নং ও ৪নং খাম।

তেমনই 435 টাকা নিতে হলে বাছাই করে নিতে হবে 1নং, 2নং, 5নং, 6নং, 8নং ও 9 নং খাম। কারণ $435=(110110011)_2$ । মনে রাখতে হবে মোট টাকা $511=2^9-1$ এবং নম্বর যুক্ত 9টি খাম এক্ষেত্রে নেওয়া হয়েছে। একই ধরনের ধাঁধা 2^8-1 বা 255 টাকা ও 8টি খাম, 2^7-1 বা 127 টাকা ও 7টি খাম, 63 টাকা ও 6টি খাম, 31 টাকা ও 5টি খাম নিয়েও চলতে পারে।

এই ধাঁধাকে আরও একটু কঠিন করা যায় যদি 511 টাকার চেয়ে বেশি টাকা, ধরা যাক 600 টাকা ও 9িটর বদলে 10িটি খাম নেওয়া হয়। এক্ষেত্রে প্রথমে বাড়ভি 600 – 511 বা 89 টাকা 10 নং খামে রেখে বাকি 511 টাকা আগের মতো 1নং থেকে 9 নং খামে রাখতে হবে। এখন যদি 511 টাকা বা তার চেয়ে কম পরিমাণ টাকা চাওয়া হয় তবে দুই-প্রণালীর সাহায্যে 1নং থেকে 9নং খামের মধ্যে বাছাই করে প্রয়োজনীয় খাম/খামগুলি নিলেই চলবে। আর যদি 512 টাকা থেকে 600 টাকার মধ্যে কোনও নির্দিষ্ট পরিমাণ টাকা দিতে হয়, তবে প্রার্থিত টাকা থেকে 89 টাকা বাদ দিয়ে বাকি টাকার সংখ্যাকে দুই-প্রণালীর সাহায্যে লিখে খামের হিসাব করতে হবে; কেবল সঙ্গে নিতে হবে 10নং খামও—যাতে 89 টাকা আছে, যেমন 583 টাকা দিতে হলে 583–89 = 494–কে দ্বাংশক পদ্ধতিতে রূপান্তরিত করতে হবে। 494 = (111101110)2, : এখানে লাগবে 2নং, 3নং, 4নং, 6নং, 7নং, ৪নং ও 9নং খাম এবং তার সঙ্গে 10নং খামও। এইভাবে সামান্য কিছু পরিবর্তন করে ধাঁধাকে জটিলতর করা যায়। মূল কথা মনে রাখতে হবে—যেখানে যোগ ক্রিয়ার দ্বারা নির্দিষ্ট সংখ্যার পৌঁছাতে হয়, সেখানে সংখ্যা বাছাই-এর ক্ষেত্রে দ্বাংশক পদ্ধতির প্রয়োজন।

কিন্তু যে প্রশ্নের সমাধানে যোগ ও বিয়োগ উভয় ক্রিয়াই সম্ভব সেখানে নির্দিষ্ট সংখ্যায় পৌঁছাবার জন্য প্রয়োজন হবে তিন-পদ্ধতির। এ-বিষয়ে একটি ধাঁধা ও তার সমাধান আলোচিত হল।

(খ) ধাঁধা—একটি 40 কিলোগ্রাম ওজনের পাথরের বাটখারা হাত থেকে পড়ে চার টুকরা হয়ে গেল। টুকরাগুলোর ওজন এমন দাঁড়াল যে তাদের সাহায্যে 1 কিলো থেকে 40 কিলো পর্যন্ত সমস্ত পূর্ণসংখ্যক কিলোগ্রাম ওজন সম্ভব হল। এখন প্রশ্ন এই যে টুকরা চারটির ওজন কত ছিল এবং কেমন ভাবে যে কোনও পূর্ণসংখ্যক কিলোগ্রাম ওজন তাদের সাহায়্যে করা গিয়েছিল?

সমাধান ঃ 40 সংখ্যাটি তিন-পদ্ধতিতে হবে 1111; স্থানীয় মানের হিসাবে 1111 সংখ্যার ডানদিক থেকে চারটি স্থানের অঙ্কের মান হবে $1\times3^\circ$, 1×3^1 , 1×3^2 , 1×3^3 অর্থাৎ 1, 3, 9 ও 27। এখানে চারটি টুকরার ওজন হবে 1 কিলো, 3 কিলো, 9 কিলো ও 27 কিলো। ওজনের ক্ষেত্রে দাঁড়িপাল্লার দ্টি দিক থাকাতে যোগ ও বিয়োগ উভয় ক্রিয়ারই প্রয়োগ সম্ভব। সাধারণভাবে হিসাব করে বোঝা যাচ্ছে, 1 কিলো জিনিস ওজন 1 কিলো টুকরার সাহায্যে, 2 কিলো জিনিস ওজন ওজনের দিকে 3 কিলো টুকরা ও জিনিসের দিকে 1 কিলো টুকরা (কারণ 3-1=2) ব্যবহার করে এবং 4 কিলো জিনিসের ক্ষেত্রে 1 কিলো ও 3 কিলো দ্টি টুকরা ওজন হিসাবে নিলে সম্ভব হবে। এইভাবে 5=9-(3+1), 6=9-3, 7=(9+1)-3, 8=9-1 ইত্যাদি। এখন কোনও নির্দিষ্ট পূর্ণসংখ্যক কিলোগ্রাম ওজনের ক্ষেত্রে কোন্ কোন্ টুকরা কিভাবে ব্যবহার করতে হবে তার জন্য তিন-পদ্ধতির প্রয়োগ আলোচনা করা হচ্ছে। ধরা যাক, 32 কিলো জিনিস ওজন করতে হবে। $32=(1012)_3$; এখন তিন পদ্ধতিতে লেখা এই 1012-কে কেবল 1-এর সাহায্যে (বিয়োগ চিহ্ন ব্যবহার করে) লেখা হচ্ছে; মনে রাখতে হবে 3-পদ্ধতিতে 3 পেলে সেটা তার বাঁ দিকের

আঙ্ককে 1 বাড়ায় (যেমন হয় দশমিক পদ্ধতিতে 10 পেলে)। এখন তিন-পদ্ধতিতে লেখা সংখ্যা

1012 = 101 (3-1) = 102(-1) = 10 (3-1) (-1)
$$\kappa_{-}$$
 = 11(-1) (-1)

এর প্রকৃত অর্থ $32 = 1.3^3 + 1.3^2 + (-1)3^1 + (-1)3^0 = 27 + 9 - 3 - 1$ কাজেই 32 কিলো জিনিস মাপতে হলে বাটখারার দিকে থাকবে 27 কিলো ও 9 কিলো টুকরা পাথর দুটি এবং জিনিসের দিকে থাকবে 3 কিলো ও 1 কিলো পাথর দুটি।

রোমক পদ্ধতিতে সংখ্যা লিখনের ক্ষেত্রে যোগ ও বিয়োগ উভয় ক্রিয়াই আছে। কোনও বড় সংখ্যার প্রতীকের ডান পাশে ছোট সংখ্যার প্রতীক থাকলে সেক্ষেত্রে সংখ্যা দৃটির যোগ এবং ঐ ছোট সংখ্যা বড় সংখ্যার বাঁদিকে থাকলে বড় সংখ্যা থেকে ছোট সংখ্যাটির বিয়োগ বোঝায়। সেজন্য VI = 6, IV = 4; LX = 60, XL = 40 ইত্যাদি। রোমক সংখ্যা লিখন পদ্ধতির ধাঁচকে নিয়ে বিখ্যাত গাণিতিক কেপলার (1571-1630 খ্রিঃ) 1, 3, 9, 27,..... ইত্যাদি সংখ্যার প্রতীকের সাহায্যে পূর্ণ সংখ্যাগুলি লিখেছিলেন। গণিতের ইতিহাস থেকে জানা যায়—'কেপলার তাঁর সিদ্ধান্তগুলিকে লিপিবদ্ধ করেছিলেন এক কৌতুহলোদ্দীপক উপায়ে—যেখানে প্রসঙ্গত বিয়োগ ও যোগক্রিয়া সমন্বিত রোমক সংখ্যালিখন পদ্ধতির ভিত্তিতে বিচিত্র সংখ্যা-প্রতীক ব্যবহৃত হয়েছে। কেপলার I, V, X, L-এর অনুরূপ প্রতীক ব্যবহার করেছিলেন, তবে এক্ষেত্রে তিনি 1, 5, 10, 50,... সংখ্যার পরিবর্তে 1, 3, 9, 27 প্রভৃতি সংখ্যা বেছে নিয়েছিলেন। এইভাবে তিনি যে কোনও পূর্ণ সংখ্যাকে খুব অল্প পরিসরে প্রকাশ করেছিলেন।'

উদাহরণ স্বরূপ বলা যায় রোমক সংখ্যালিখন পদ্ধতিতে 36 = XXXVI; কিন্তু কেপলারের সিদ্ধান্ত অনুসারে LX বোঝাবে 36 সংখ্যাটি। (L=27, X=9, LX=27+9=36)।

जानको एवं का स्नामरणा एक व स्व प्रवास द्वास है, इ.स. १८८० है। इ.स. १८८०

ভ্যান্তিক । কর্মান (ব্যাহ্য কর্মান কর্মান কর্মান কর্মান । কর্মান

ান্ধর চেম্বর ৪.৪ চুমার্ক ৭৫ চুমার করি চ্চার্মের চ্চার্মের চ্চার্মের বর্তী চিচ্চী ১৪ বিশ্ব চুমার চিচ্চার সংখ্যা জগতে সমতা চন্দ্রবিধী করি চ্চার

জ্যামিতিক সমতা

বর্তমানে জ্যামিতির সংশোধিত পাঠ্যস্চীতে 'প্রতিসাম্য'-এর একটা বড় ভূমিকা আছে। দৃ'ধরনের প্রতিসাম্যের কথা বিশেষভাবে আলোচিত হয়েছে সেখানে—রৈখিক প্রতিসাম্য ও ঘূর্ণন প্রতিসাম্য। কোনও চিত্রের একটি নির্দিষ্ট রেখার বাম পাশের অংশ ডান পাশের অংশের প্রতিরূপ হলে ঐ রেখাকে প্রতিসাম্য রেখা বা প্রতিসাম্য অক্ষবলে এবং চিত্রের এই ধর্মকে রৈখিক প্রতিসাম্য বলে। সহজ ভাষায় বলা যায় কাগজে অঙ্কিত চিত্র প্রতিসাম্য রেখা বরাবর ভাঁজ করলে চিত্রটির এক পাশের অংশ অন্য পাশের অংশের সঙ্গে ছরছ মিলে যাবে। চিত্র ভেদে এক বা একাধিক প্রতিসাম্য রেখা থাকতে পারে। সমির্বিহাই ত্রিভুজের অসম বাহুর মধ্যবিন্দু ও ঐ বাহুর বিপরীত কৌণিক বিন্দু যোগ করলে যে মধ্যমা (AD) পাওয়া যায় তা ত্রিভুজটির একমাত্র প্রতিসাম্য রেখা। কিন্তু সমবাহু ত্রিভুজ তার তিনটি মধ্যমা (AD, BE, CF) সাপেক্ষে প্রতিসম।

আবার বৃত্ত বা গোলকের ক্ষেত্রে যে কোনও ব্যাসই (AA', BB', CC', DD'...)
প্রতিসাম্য রেখা; স্বভাবতই তাদের সংখ্যা অসংখ্য। কোন চিত্র যদি কোন নির্দিষ্ট কোণে
ঘূর্ণনের ফলে মূল চিত্রের সঙ্গে ছবছ মিলে যায়, তবে যে বিন্দুর সাপেক্ষে ঘূর্ণনক্রিয়া
সম্পাদিত হয়েছে, সেই বিন্দুকে বলা হয় প্রতিসাম্য কেন্দ্র এবং চিত্রের এই ধর্মকে
ঘূর্ণন-প্রতিসাম্য বলে। চার সমকোণ 360°-কে প্রতিসাম্য ঘূর্ণন কোণের পরিমাণ দ্বারা
ভাগ করলে যে পূর্ণ সংখ্যা পাওয়া যায়, তাকে বলা হয় ঘূর্ণন প্রতিসাম্য-কেন্দ্র এবং
সমবাছ ব্রিভুজের তিন মধ্যমার ছেদ বিন্দু ভরকেন্দ্র G তার প্রতিসাম্য-কেন্দ্র এবং

যেহেতু ঐ কেন্দ্রের চারদিকে 120°, 240° ও 360° আবর্তন করলে সমবাহু ত্রিভুজের

আপাত-অবস্থান একই থাকে, তাই এখানে ঘূর্ণন প্রতিসাম্য ক্রম তিন। বর্গক্ষেত্রে চার ক্রম-বিশিষ্ট ঘূর্ণন প্রতিসাম্য বর্তমান এবং সেখানে কর্ণদ্বয়ের ছেদবিন্দুই (P) প্রতিসাম্য কেন্দ্র। আবার বৃত্তের ক্ষেত্রে তার কেন্দ্রই (O) প্রতিসাম্য কেন্দ্র এবং ঘূর্ণন প্রতিসাম্য অসংখ্য ক্রম-বিশিষ্ট।

আমাদের চারপাশের পৃথিবীতে বহু প্রতিসম বস্তুর সঙ্গে পরিচয় ঘটছে। স্পষ্টতই ইংরাজ্রী '8' সংখ্যাটির দুটি প্রতিসাম্য রেখা (AA', BB') আছে;— একটি

(AA') উল্লম্ব ও অপরটি (BB') অনুভূমিক। আবার এই দুই প্রতিসাম্য রেখার ছেদবিন্দু 0, 8 সংখ্যার প্রতিসাম্য কেন্দ্র। কাজেই 8-এর রৈথিক প্রতিসাম্য ও দুই ক্রমাবিশিষ্ট ঘূর্ণন প্রতিসাম্য—উভয় ধর্মই বর্তমান। ইংরাজী 'H' ও 'X' অক্ষরের ক্ষেত্রেও দুই ধরনের প্রতিসাম্য লক্ষ্য করা যায়। বাস্তব জগতে ফুলের পাপড়ি, প্রজাপতি, মৌচাক, গাছের পাতা, গাড়ির চাকা, বৈদ্যুতিক পাখা, পাড়ের নক্সা, কৃষ্ট্যাল বা স্ফটিক ইত্যাদি বহুবিধ জিনিসের ক্ষেত্রে প্রতিসাম্যের অস্তিত্ব আছে।

আয়নায় নিজেদের দেখতে আমরা অভ্যস্ত। এখানে মূল ছবির সঙ্গে প্রতিফলিত ছবির অর্থাৎ প্রতিচ্ছবির সমতা আছে; তবে এখানে ডানদিকের অংশ

বামদিকে ও বামদিকের অংশ ডানদিকে যায়। এই ধরনের সমতার ক্ষেত্রে আয়না

বরাবর রেখাকে প্রতিফলন অক্ষ এবংবিধ প্রক্রিয়াকে রৈখিক প্রতিফলন বলা হয়। তাছাড়া আছে বিন্দু প্রতিফলন—যেমন কোনও সসীম সরল রেখার (AA') মধ্যবিন্দু (G) তার প্রতিফলন কেন্দ্র এবং ঐ বিন্দুর এক দিকের রেখাংশ অন্য দিকের রেখাংশের প্রতিফলন। মনে রাখতে হবে এক দিকের রেখাংশের যে কোনও বিন্দু P অন্য দিকের রেখাংশের বিন্দু P'-এর প্রতিফলন, যেখানে GP = GP'; স্পষ্টতই A ও A' পারস্পরিক প্রতিফলিত বিন্দু।

গাণিতিক সমতা

আমরা এখন পাটীগণিতের জগতের কিছু সমতার কথা উদ্লেখ করব। সকল সমতা পূর্ববর্ণিত প্রতিসাম্য ও প্রতিফলন জনিত সমতার আওতায় অবশ্য পড়বে না; তবে যেগুলি পড়বে তাদের ক্ষেত্রে উদ্রেখ করা হবে। সমতার একটি সাধারণ ব্যাখ্যা আছে—যে ব্যাখার উপর নির্ভর করে বর্তমান শতাব্দীর প্রসিদ্ধ গাণিতিক হারম্যান্ ভাইল্ ধারাবাহিকভাবে এ বিষয়ে বিজ্ঞানসম্মত আলোচনা করেছিলেন। সমতার সংজ্ঞার ক্ষেত্রে তিনি বলেছিলেন ঃ 'যত বিস্তৃতভাবে বা সঙ্কীর্ণভাবে তুমি প্রতিসাম্যের সংজ্ঞা নির্দেশ কর না কেন, এর অর্থ একটি ধারণা—যা দিয়ে মানুষ যুগে যুগে শৃঙ্খলা, সৌন্দর্য ও সম্পূর্ণতা উপলব্ধি করে তাদের সৃষ্টি করতে চেষ্টা করেছে।' প্রতিসাম্য সম্পর্কে তিনি তাঁর আলোচনা করেছেন গণিতের অনেক জটিল দিক থেকে। আমরা তাঁর পদাঙ্ক অনুসরণ করে কিছু সহজ উদাহরণ উপস্থিত করছি গণিতের জগতের নিয়ম-শৃঙ্খলা, সৌন্দর্য ও পরিপূর্ণতা অনুভব করতে।

গাণিতিক সমতার বিচিত্র উদাহরণ

প্রদত্ত উদাহরণগুলিতে গাণিতিক সমতা লক্ষণীয়। কয়েকটি ক্ষেত্রে তাদের সমতার পিছনে যে আঙ্কিক ব্যাখ্যা আছে তা দেওয়া হল। অনুরূপভাবে অন্যগুলির ক্ষেত্রে ব্যাখ্যা খুঁজে পাওয়ার চেষ্টা করা যায়।

```
THE CONTRACTOR STORY STORY IN THE PARK HAVE BUT OF STORY OF STORY
  Notice that the property of 0 \times 9 + 1 = 1
                    1\times9+2=11
        12 \times 9 + 3 = 111
12.3 \times 9 + 4 = 1.1.11
                 1234 \times 9 + 5 = 111111
            12 3 4 5 × 9 + 6 = 1 1 1 1 1 1
              123456 \times 9 + 7 = 11111111
            1234567×9 + 8 = 11111111
           12 3 4 5 6 7 8 × 9 + 9 = 1 1 1 1 1 1 1 1 1
          12 3 4 5 6 7 8 9 × 9 + 10 = 1 1 1 1 1 1 1 1 1 1
```

ব্যাখ্যা ঃ এখানে গুণ ও যোগ প্রক্রিয়ার সাহায্যে যে আবৃত্ত একক জাতীয় সমতা দেখা যাচ্ছে তার কারণ সহজে বোঝা যায়। যেমন,

$$12345 \times 9 + 6 = 12345 \times (10 - 1) + 6 = 123450 + 6 - 12345$$

= $123456 - 12345 = 111111$

অনুরূপভাবে অন্য ফলগুলিও ব্যাখ্যাত হতে পারে। এক্ষেত্রে যে পর্যায় পর্যন্ত সমতাধর্মী ফলগুলি লেখা হয়েছে তাকে আরও এগিয়ে নিয়ে যাওয়া সম্ভব। যথা,

$$123456789t \times 9 + 11 = 111111111111$$
 (t = 10)
 $123456789te \times 9 + 12 = 111111111111$ (e = 11)

উপরের ফলগুলির মধ্যে 11 সংখ্যাটি মৌলিক হওয়ায় এটি আবৃত্ত-একক মৌলিক সংখ্যা এবং $\frac{10^n-1}{9}(n=2)$ আকারে প্রকাশযোগ্য। পরবর্তী আবৃত্ত-একক মৌলিক সংখ্যা 'পাশাপাশি উনিশটি 1'-কে আমরা উক্ত সমতার শ্রেণীভুক্ত করতে পারি যদি অঙ্কের ক্ষেত্রে আমরা 18 পর্যন্ত প্রতীকের সাহায্যে লিখতে পারি; প্রতীক ব্যবহার না করে বন্ধনীর মধ্যে সংখ্যাকে একটি অঙ্ক ভাবলে এটি হবে—

1 2 3 4 5 6 7 8 9 (10) (11) (12) (13) (14) (15) (16) (17) (18) × 9 + 19 = 1111111111111111111 (অর্থাৎ উনিশটি 1)

শেষোক্ত আবৃত-একক মৌলিক সংখ্যাটি $\frac{10^{19}-1}{9}$ আকারে প্রকাশ করা যাবে। আবৃত্ত-একক মৌলিক সংখ্যা সম্বন্ধে প্রথম অধ্যায়ে 'মৌলিক সংখ্যা নিয়ে আরও কিছু কথা' পর্যায়ে আলোচনা করা হয়েছে।

(2) প্রথম উদাহরণগুলির স্থায়ী গুণক 9-এর স্থলে 8 নিয়ে সামান্য অদল বদল করে পাওয়া গেছেঃ

্ৰ এখন এই বিয়োগফলকে (পরপৃষ্ঠায়) সাজানো হচ্ছে—

সুতরাং 1111111 – 123457 = 987654

অন্য ফলগুলির ক্ষেত্রেও এই ভাবে ব্যাখ্যা করা যাবে। শেষের ফলটি খুবই মজার; গুণ্য 123456789-এর উপর ক্রিয়াগুলি সম্পন্ন করে ফল পাওয়া গেছে 987654321—যেটি গুণ্যকে উপ্টো দিক থেকে লিখলে পাওয়া যাবে। 1 থেকে 9 পর্যন্ত অঙ্কগুলি ক্রমিকভাবে ব্যবহার করে গুণ্য ও তার যে শেষ ফল পাওয়া গিয়েছে তাদের মধ্যে সম্পর্ক প্রতিফলন-জনিত সমতার।

এখানে কেবল 9-এর কেরামতি। ফলে এসেছে $9 \cdot 3 \cdot 0$ সমান সংখ্যায়, তার সঙ্গে মধ্যস্থ হিসাবে একটি $8 \cdot 3 \cdot 0$ একটি 1; লক্ষণীয় $9 + 0 = 9 \cdot 3 \cdot 0$ এবং 8 + 1 = 9। সূতরাং নয়েরই জয়-জয়-কার।

```
বাখাঃ 999 × 999 = (999–1) (999 + 1) +1²
[থেহেডু a² = (a–b) (a+b) + b²]
= 998 × 1000 + 1
= 998001
(4)
```

```
0 × 9 + 8 = 8

9 × 9 + 7 = 8 8

9 8 × 9 + 6 = 8 8 8

9 8 7 6 × 9 + 5 = 8 8 8 8 8

9 8 7 6 5 × 9 + 3 = 8 8 8 8 8 8

9 8 7 6 5 4 × 9 + 2 = 8 8 8 8 8 8 8

9 8 7 6 5 4 3 2 × 9 + 0 = 8 8 8 8 8 8 8 8 8

9 8 7 6 5 4 3 2 1 × 9 - 1 = 8 8 8 8 8 8 8 8 8 8
```

এখানে 9 দিয়ে শুণ; কিন্তু ফলে এসেছে কেবল 8; প্রথম উদাহরণের ক্ষেত্রে শুণ্য ছিল 1 থেকে ক্রমিক অঙ্কগুলি পরপর—বর্তমান উদাহরণে শুণ্য হয়েছে 9 থেকে অধঃক্রমিকভাবে অঙ্কগুলি 1 পর্যন্ত। যোগের অঙ্কগুলিও এখানে এসেছে 8 থেকে কমতে কমতে (–1) পর্যন্ত।

বাখাঃ 999999 × 4 = (1000000 - 1) × 4 = 4000000 - 4 = 3999996

এখানে ছ'টি 9 নেওয়া হয়েছে। অন্য কোনও সংখ্যক 9 নিয়েও তাকে যথাক্রমে 1, 2, 3,....10 দিয়ে গুণ করলে যে ফলগুলি পাওয়া যাবে, তাতে অনুরূপ সমতা থাকবে।

```
(6)  (1 \times 1) - 10 (0 \times 0) = 1 
 (11 \times 11) - 10 (1 \times 1) = 111 
 (111 \times 111) - 10 (11 \times 11) = 11111 
 (1111 \times 1111) - 10 (111 \times 111) = 1111111 
 (11111 \times 11111) - 10 (1111 \times 1111) = 11111111
```

এখানে কেবল 1-এর কেরামতি; তবে সমতার ধারা এভাবে এগিয়ে যেতে পারে

可可 \$ (1111 × 1111) - 10 (111 × 111) = (1000 + 111) × 1111-1110 × 111 = 1111000 + 1111 × 111 - 1110 × 111 = 1111000 + 111 (1111 - 1110) = 1111000 + 111 = 1111111

(7)

এখানেও 1-এর খেলা; কিন্তু গুণফলে এসেছে সমতাধর্মী বিচিত্র সংখ্যা।
ব্যাখ্যাঃ তালিকার পরবর্তী ফল আসছে পূর্ববর্তী ফলের সাহায্যে। যেমন,
11 × 11 = 121 ধরে নিয়ে এগোলে পাওয়া যাবে 111 × 111
(111 + 11) × (111 - 11) + 11² = 122 × 100 + 121 = 12200 + 100
+ 21 = 12321;

জাবার 1111 × 1111 = (1111 + 111) (1111 - 111) + (111)² = 1222 × 1000 + 12321 = 1222000 + 12000 + 321 = 1234321

ইত্যাদি। দশটি 1 আসার থেকে প্রতিসাম্য বিঘ্নিত হবে। ডানদিকের গুণফলে যে ধরনের সমতা এসেছে তাকে প্রাচীন ভারতীয় গাণিতিক মহাবীরাচার্য তাঁর 'গণিত সার সংগ্রহ' (৪50 খ্রিঃ)-এ 'মাল্য গুণফল' বলেছেন; কারণ মালার মত দুদিক থেকে দেখলে একই ধরনের সাজানো দেখা যাবে। বাংলা ভাষায় এই ধরনের সমতাকে 'দ্বিমুখী অবিকল' বা ইংরাজীতে প্যালিণ্ড্রোম বলা যায়; প্যালিণ্ড্রোম শব্দের অর্থ কোনও শব্দ বা শ্লোক বা বাক্য যা উভয় দিক হতে পড়লে একই থাকে। প্রথম অধ্যায়ে 'বর্গসংখ্যা' 836² = 698896 প্রসঙ্গে 'দ্বিমুখী অবিকল' বা মাল্য সংখ্যার উল্লেখ করা হয়েছে। এখানে ডান দিকের প্রত্যেকটি গুণফলই দ্বিমুখী অবিকল। তা ছাড়া, বিযোড় সংখ্যক অঙ্কবিশিষ্ট উক্ত সংখ্যাগুলিতে মাঝের অঙ্কের পরিপ্রেক্ষিতে প্রতিফলন-জনিত সমতা আছে এবং এই ধমের্র জন্য এগুলি হয়েছে মাল্য সংখ্যা। কৌতৃহলের খোরাক হিসাবে এখানে কিছু দ্বিমুখী অবিকল নাম ও বাক্যের উদাহরণ বাংলা ও ইংরাজী ভাষা থেকে দেওয়া হল ঃ সুবর্ণা বসু, সুবললাল বসু, সদানন দাস, রায়মনি ময়রা, রমাকান্ত কামার, (এদের মধ্যে 'সুবর্ণা বসু' ছাড়া অন্য নামগুলি প্যালিজ্রোম করার জন্য তৈরি)। নবো, রমার মা কি কাকিমার মার বোন? 'A man a plan, a canal Panama' 'Draw pupils lip upward,' 'Ten deer put up reed net' 'Top part at a trap-pot, 'able was I ere I saw Elba,' শেষের কথাটি নেপোলিয়ন প্রসঙ্গে। প্রথম মানব-মানবীর পরস্পর পরিচিত হওয়ার ক্ষেত্রে প্যালিড্রোম নাট্য-সংলাপ লক্ষণীয়। অ্যাডাম ইভের উদ্দেশে বলেছেন—"Madam, I'm Adam" তখন সংক্ষিপ্ত উত্তরে ইভ পরিচয় দিচ্ছেন—"Eve"। মনে রাখতে হবে ভাষার ক্ষেত্রে পড়ার সময় বড় অক্ষর (capital letter), যতি চিহ্ন, উর্ধ্ব কমা ইত্যাদিকে অবহেলা করলে তবে এগুলি 'প্যালিণ্ডোম' ভাবা যাবে।

পূর্বোক্ত গুণফলগুলির ক্ষেত্রে আর একটি ধর্ম লক্ষণীয়। যেমন, প্রথম গুণফল $1=\frac{1\times 1}{1}, দ্বিতীয় গুণফল <math>121=\frac{22\times 22}{1+2+1}=\frac{11^2\times 2^2}{2^2}=(11)^2,$ তৃতীয় গুণফল

 $12321 = \frac{333 \times 333}{1+2+3+2+1} = \frac{111^2 \times 3^2}{3^2} = (111)^2,...$ অনুরূপভাবে শেষ

গুণফল 12345678987654321

গুণফলের ক্ষেত্রে মাল্যগুণফলের আরও কিছু উদাহরণ এখানে দেওয়া হল ঃ $7 \times 11 \times 13 = 1001$, $101 \times 11 = 1111$, $3 \times 7 \times 13 \times 37 = 10101$, $139 \times 109 = 15151$, $3 \times 7 \times 11 \times 13 \times 37 = 111111$, $3 \times 7 \times 11 \times 13 \times 37 \times 101 \times 9901 = 11111111$, $152207 \times 73 = 11111111$, $12345679 \times 9 = 111111111$, $14287143 \times 7 = 100010001$, $142857143 \times 7 = 1000000001$.

11011011 × 91 = 1002002001 } (এখানে গুণা ও গুণফল উভয়েই 3003003 × 37 = 1111111111 } মাল্য সংখ্যা।)

 $33346667 \times 3 = 100040001$,

 $5882353 \times 17 = 100000001, 27994681 \times 441 = 12345654321$ $333333666667 \times 33 = 11000011000011,$

 $1587415873 \times 7 = 111119111111$

1122334455667789 × 9 = 10101010101010101 ইত্যাদি।

আর একটি কথা লক্ষণীয় (6) নং উদাহরণের সমতার ব্যাখ্যা (7) নং উদাহরণের সাহায্যেও করা যায়। যেমন,

 $1111 \times 1111 - 10 (111 \times 111) = 1234321 - 10 (12321)$ = 1234321 - 123210 = 11111111

এখন (8) থেকে (16) উদাহরণে যে সমতাধর্মী ফল উল্লিখিত হয়েছে তাদের ব্যাখ্যা উদাহরণগুলির শেষে দেওয়া হল।

(8)

9 = 888 888 888 9 987654321 × 987654321 × 18 = 1 777 777 777 8 27 = 2 666 666 6667 987654321 × 36 = 3 555 555 555 6 987654321 × 45 = 4 444 444 444 5 987654321 × = 5 333 333 333 4 987654321 × 54 6 222 222 222 3 987654321 × 63 = 987654321 × 7 111 111 111 2 987654321 × 81 = 8 000 000 000 1

এখানে গুণফলে দু' ধরনের সমতা চলেছে—মাঝের অঙ্কগুলিতে ন'টি একই অঙ্ক আসছে এবং সেগুলি ক্রমশ কমছে। দু' ধারের অঙ্ক দুটি এমন (প্রথম গুণফলের ক্ষেত্রে বামদিকে একটা শূন্য আছে ভেবে নেওয়া যায়) যাদের যোগফল সব সময়েই 9 এবং বামদিকের অঙ্কটি ক্রমিকভাবে বাড়ছে ও ডানদিকের অঙ্কটি কমছে। শেষোক্ত ধর্মটি (5) নং উদাহরণেও দেখা গিয়েছে; সেখানে অবশ্য মাঝের অঙ্কগুলিতে কেবল 9 ছিল।

(9) যাদু সংখ্যা 1089-কে 1, 2,... 9 দ্বারা গুণ করলে যে গুণফলগুলি পাওয়া যাবে সেগুলিতে অদ্ভুত ধরনের সমতা দেখা যাবে। গুণফলের এককের ও দশকের অঙ্ক ক্রমশ কমেছে এবং শতকের ও সহস্রের অঙ্ক ক্রমশ বেডেছে।

> 1 0 8 9 × 1 = 1 0 8 9 1 0 8 9 × 2 = 2 1 7 8 1 0 8 9 × 3 = 3 2 6 7 1 0 8 9 × 4 = 4 3 5 6 1 0 8 9 × 5 = 5 4 4 5 1 0 8 9 × 6 = 6 5 3 4 1 0 8 9 × 7 = 7 6 2 3 1 0 8 9 × 8 = 8 7 1 2 1 0 8 9 × 9 = 9 8 0 1

স্বভাবতই প্রথম গুণফল ও নবম (শেষ) গুণফলে মিল আছে—একটির অঙ্কগুলি উল্টো দিক থেকে লিখলে অন্যটি পাওয়া যাবে। একইভাবে মিল আছে দ্বিতীয় ও অষ্টম গুণফলে, তৃতীয় ও সপ্তম গুণফলে, এবং চতুর্থ ও ষষ্ঠ গুণফলে। পঞ্চম গুণফলটির অঙ্কগুলি নিজেদের মধ্যে উলটে আছে অর্থাৎ সেটি দ্বিমুখী অবিকল।

(10) ছোট সংখ্যা 19ও একটি যাদু সংখ্যা। কারণ 19 × 1 = 19, 19 × 2 = 38, 19 × 3 = 57, 19 × 4 = 76, 19 × 5 = 95, 19 × 6 = 114, 19 × 7 = 133, 19 × 8 = 152, 19 × 9 = 171, 19 × 10 = 190; এখানে শুণফলগুলিতে এককের অঙ্ক ক্রমশ কমেছে এবং তাদের বাকি অংশগুলি (যেমন, 1, 3, 5, 7,...19) সমান্তর শ্রেণীতে বেড়েছে, যেখানে সাধারণ অন্তর 2; আর একটা কথা, গুণফলগুলির ক্ষেত্রে অঙ্ক সমষ্টি (digital sum) শেষ পর্যন্ত যথাক্রমে 1 থেকে 9 পর্যন্ত হয়ে আবার 1 (সমতার জন্য 1-এর বদলে 10 বলা চলে।) যথা 19 = 1 + 9 = 10 = 1 + 0 = 1, 38 = 3 + 8 = 11 = 1 + 1 = 2,...., 171 = 1 + 7 + 1 = 9, 190 = 1 + 9 + 0 = 10 অর্থাৎ 1

(11) আর একটি যাদুসংখ্যা 9109; এক্ষেত্রে

দেখা যাচ্ছে গুণফলগুলিতে একক ও সহমের অঙ্ক দৃটি সমান এবং ক্রমিকভাবে কমেছে। আবার দশক ও অযুতের অঙ্ক দৃটি (প্রথম গুণফলে অযুতের ঘরে ০ আছে ভাবা চলে) সমান ও ক্রমিকভাবে বেড়েছে। শতকের অঙ্কটি পর পর 1 থেকে 9 এবং গুণফলগুলির অঙ্ক সমষ্টি যথাক্রমে 19, 20, 21,.... 27 যাদের থেকে শেষ পর্যন্ত 1 থেকে 9 অঙ্কগুলিই পাওয়া যাচ্ছে।

(12) এখন আবৃত্ত বা পৌনঃপুনিক দশমিক প্রসঙ্গে প্রাপ্ত এমন কিছু সংখ্যার কথা বলা হচ্ছে, যাদেরও পূর্বানুরূপ ধর্মের জন্য যাদুসংখ্যা বলতে পারা যায়। $\frac{1}{7}$ ভগ্নাংশকে দশমিকে রূপান্তরিত করলে হয় . i^{4285} i^{7} ; এইভাবে প্রাপ্ত 142857 সংখ্যাটি বেশ মজার। যথা,

দেখা যাচ্ছে প্রথম ছ'টি গুণফলের ক্ষেত্রে 1, 4, 2, 8, 5, 7 অস্কণ্ডলি একই ক্রমে বিভিন্ন সংখ্যার আকারে এসেছে এবং শেষের গুণফল হয়েছে ছ'টি 9—যেটি $.14285\dot{7}$ —কে ভগ্নাংশ রূপে অর্থাৎ $\frac{142857}{999999}$ আকারে লিখলে স্পষ্ট হবে এবং এই ভগাংশেরই লঘিষ্ঠ রূপ পূর্বোক্ত $\frac{1}{7}$ ভগ্নাংশটি। লক্ষণীয়, এখানে দশমিক প্রকাশে আছে ছ'টি অঙ্ক—যেগুলি প্রথম ছ'টি গুণের ক্ষেত্রে আবর্তিত হয়েছে।

(13) অনুরূপভাবে দেখা যায় $\frac{1}{19} = .05263157894736842$ যাতে 18টি অঙ্ক আছে। এখানে

 $52631578947368421 \times 1 = 052631578947368421$ $52631578947368421 \times 2 = 105263157894736842$

 $52631578947368421 \times 8 = 421052631578947368$

52631578947368421 × 18 = 947368421052631578 এবং 52631578947368421 × 19 = 9999999999999999

আগের মতই গুণফলে উক্ত 18টি অঙ্ক আবৃত্ত হয়ে এসেছে শেষ গুণফলে পাওয়া গেছে 9 অঙ্কটি 18 বার।

ন্দ্ৰ-নাৰ্যন্ত। ভিন্ত জীকন নিয়ন্ত ক্ষেত্ৰা মাজত গীৰা কিচাপী নাম । চ্যাতক ব্ৰাদানক

সংখ্যার মজা-৫

অস্টম গুণফলের সংখ্যাটিও মেজাজি সংখ্যা—মজারও। এ-বিষয়ে এক গাণিতিক দেখিয়েছেন ঃ

 $421052631578947368 \times 2 = 842105263157894736$

এখানে গুণফলে আবৃত্ত হয়েছে অঙ্কগুলি; শেষের ৪ এসেছে শুরুতে। তা ছাড়া, এটি প্রকৃতপক্ষে পূর্বোক্ত সংখ্যা 52631578947368421 imes 16 অর্থাৎ $\frac{16}{19}$ -এর আবৃত্ত দশমিক রূপের সঙ্গে সংশ্লিষ্ট এবং স্বভাবতই প্রথম তালিকার অংশ।

- 4 2 10 ③ 2 6 3 1 5 7 8 9 4 7 3 6 8× 3 = ① 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 ④
- 4 2 10 5 2 6 3 1 5 7 8 9 4 7 3 6 8 × 4 = 1 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 2
- 4 ② 10 5 2 6 3 1 5 7 8 9 4 7 3 6 8 × 5 = ② 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 ①
- 4 2 10 5 2 6 3 1 5 7 8 9 4 7 3 6 8 × 6 = 2 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 10 8
- 4 2 10 5 2 6 3 1 5 7 (8) 9 4 7 3 6 8 × 7 = (2) 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 (6)
- 4 2 10 5 2 6 3 1 5 7 8 9 4 ⑦ 3 6 8 × 8 = ③ 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 ④ 4 2 10 5 2 6 3 1 3 7 8 9 4 7 3 6 8 × 9 = 3 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 2

লক্ষ্য করার বিষয় 3 থেকে 9 গুণের ক্ষেত্রে গুণ্যের অঙ্কগুলি একই ক্রমে আবৃত্ত হয়েছে; শুণ্যের যে সংখ্যাটি (বৃত্তের মধ্যে চিহ্নিত করা হয়েছে বুঝবার সুবিধার জন্য) গুণফলে উপস্থিত নেই, সেটির সমান দুটি সংখ্যা গুণফলের শুরুতে ও ,শেষে আছে (এ দৃটি সংখ্যাও বৃত্তের সাহায্যে চিহ্নিত করা হয়েছে)। যেমন, 3 দ্বারা গুণের ক্ষেত্রে গুণোর 5 গুণফলে নেই; তার বদলে গুণফলের শুরুতে ও শেষে আছে 1 ও 4 যাদের যোগফল 5। তেমনই 4, 5, 6, 7, 8 এবং 9 গুণের ক্ষেত্রে গুণ্যের অনুপস্থিত সংখ্যাটি গুণফলের দুই অংশে আছে; সেগুলি যথাক্রমে 3=1+2, 2 = 2 + 0, 10 = 2 + 8, 8 = 2 + 6, 7 = 3 + 4, 15 = 3 + 12

(14) $\frac{1}{13}$ দশমিক ভগ্নাংশে হবে .076923; এক্ষেত্রে 76923 একটি রহস্যময় সংখ্যা। এই সংখ্যাকে গুণ্য ধরে কিছু গুণফল লেখা হল ঃ

76923 × 1 = 076923 $76923 \times 2 = 153846$ $76923 \times 10 = 769230$ 76923 × 9 = 692307 $76923 \times 7 = 538461$ $76923 \times 5 = 384615$ $76923 \times 12 = 923076$ 76923 × 11 = 846153 $76923 \times 3 = 230769$ 76923 × 6 = 461538 $76923 \times 4 = 307692$ $76923 \times 8 = 615384$

বাম দিকের ছ'টি গুণের ক্ষেত্রে 076923 সংখ্যাটি আবর্তিত হয়েছে ধারাবাহিকভাবে। ডান দিকের ছ'টি গুণের ক্ষেত্রে নৃতন একটি সংখ্যা 153846-এর ক্রমিক আবর্তন ঘটেছে। গুণফলগুলি এমনভাবে সাজানো হয়েছে যাতে বাঁ দিকের ছ'টি গুণফলের অঙ্কগুলি পাশাপাশি বা উপর-নিচে নির্দিষ্ট ক্রমিকতা রক্ষা করে। ডান দিকের গুণফলের ক্ষেত্রেও সেই একই কথা। আবার 76923 × 13 = 999999 যে সংখ্যার সাহায্যে (5) নং উদাহরণের সমতা-ধর্মী ফলগুলি পাওয়া গিয়েছে। (15) (12) নং উদাহরণের গুণফলগুলিকে 7 দিয়ে গুণ করলে এক ধরনের সমতা পাওয়া যায়ঃ

গুণফলগুলিতে মাঝে আছে পাঁচটি 9; ধারের অঙ্ক দুটি এক দিকে কমেছে, অন্য দিকে বেড়েছে।

এদের মধ্যে 12345679 (যার মধ্যে 8 বাদে ক্রমিকভাবে 1 থেকে 9 পর্যন্ত অঙ্কগুলি আছে) সংখ্যাটির থেকে সমতা-ধর্মী মজার কিছু ফল পাওয়া যায়। যেমন,

12345679 × 3 = 037037037 অর্থাৎ 037 অঙ্কত্রয় তিন বার এসেছে। এখানে প্রথমের শ্ন্যটি সমতার প্রয়োজনে লেখা হয়েছে—যার কোনও স্থানীয় মূল্য নেই।

আবার 12345679 × 30 = 370370370 (370 অঙ্কত্রয় 3 বার)
12345679 × 57 = 703703703 (703 অঙ্কত্রয় 3 বার)
লক্ষণীয় উক্ত তিনটি গুণফলে 0, 3, 7 অঙ্কত্রয়ীই তিনটি আকারে এসেছে।

এখন (৪) থেকে (16) উদাহরণের ব্যাখ্যা দেওয়া হল ঃ

(৪) নং উদাহরণের ব্যাখাঃ

এখানে প্রথম সম্বন্ধ 987654321 × 9 = 987654321 × (10 - 1)

= 9876543210 - 987654321

= 9876543210 + 12345678 - 987654321 - 12345678

= (9876543210 + 12345678) - (987654321 + 12345679 - 1)

= 98888888888 - 10000000000 + 1

= 888888889

দ্বিতীয় থেকে নবম যে কোনও সম্পর্কের ক্ষেত্রে, যেমন চতুর্থটির ক্ষেত্রে 987654321 × 36 = 8888888889 × 4

 $= (10000000000 - 11111111111) \times 4$

=3555555556

অনুরূপভাবে অন্য সম্বন্ধগুলি প্রমাণিত হবে।

(9) नः উদাহরণের ব্যাখ্যা ঃ

এদের যে কোনটির ক্ষেত্রে, যেমন সপ্তম সম্বন্ধের ক্ষেত্রে

$$1089 \times 7 = (1000 + 100 - 10 - 1) \times 7$$

$$= 7000 + 700 - 70 - 7 = 7700 - 77 = 7623$$

অনুরূপভাবে অন্য সম্পর্কগুলি প্রমাণিত হবে।

(10) নং উদাহরণের ব্যাখ্যাঃ ক্রিক্তির স্থান্ত স্থান্ত নির্মাণ্ড (১)

এক্ষেত্রে যে কোনও একটি সম্বন্ধ, যেমন নবম সম্বন্ধের ক্ষেত্রে

19 × 9 = (10 + 10 – 1) × 9 = 90 + 90 – 9 = 90 + 80 + 1 = 171 অনুরূপভাবে অন্য সম্পর্কগুলি ব্যাখ্যাত হতে পারে।

(11) নং উদাহরণের ব্যাখ্যাঃ

এদের যে কোনটি, যেমন ষষ্ঠ সম্বন্ধ নিলে দেখা যায়

$$9109 \times 6 = (10000 - 1000 + 100 + 10 - 1) \times 6$$

অন্য সম্বন্ধের ক্ষেত্রে একই ভাবে এগোনো যাবে।

(12) নং উদাহরণের ব্যাখ্যাঃ

যেহেতু . $142857 = \frac{1}{7}$, যে কোনও একটি সম্বন্ধ, যেমন চতুর্থ সম্বন্ধটির ক্ষেত্রে দেখা যায়

$$.\dot{1}4285\dot{7}\times4=\frac{1}{7}\times4=\frac{4}{7};$$

এখন $\frac{4}{7}$ -কে দশমিকে পরিবর্তিত করার সময় ভাগফলে $\cdot 57$ আসার পর অবশিষ্ট থাকছে 1 অর্থাৎ এর পর থেকে $\frac{1}{7}$ -এর দশমিক ফলটি আসবে। কাজেই শেষ পর্যন্ত ফল পাওয়া যাবে $\cdot 142957 \times 4 = \frac{4}{7} = .571428$

অর্থাৎ <u>142857</u> × 4 = <u>571428</u> 99999

অতএব 142857 × 4 = 571428 । এই বিষয়ের বিষয়ের প্রকিট্রার অন্য সম্বন্ধগুলি প্রমাণ করা যাবে। এই বিষয়ের ভ

(13) নং উদাহরণের ব্যাখাঃ

এক্ষেত্রে $\frac{1}{19}$ -এর পৌনঃপুনিক দশমিক ফল মনে রেখে (12) নং উদাহরণের ধরনের এগোলে সম্বন্ধগুলি প্রমাণিত হবে।

আর মেজাজী অন্তম গুণফল থেকে যে সমতাধর্মী ফলগুলি এসেছে তার পিছনে আঙ্কিক কারণ আছে। যেমন 7 দিয়ে গুণের ক্ষেত্রে :421052631578947368 × 7

$$= \frac{8}{19} \times 7 = 2\frac{18}{19} = 2.947368421052631578$$

∴ 42105263157(8)947368 × 7 = (2) 94736842105263157(6)

অনুরূপভাবে অন্য সম্বন্ধগুলি প্রমাণ করা যাবে। এক্ষেত্রে (5) নং উদাহরণও

দ্বন্ধব্য।

ে (14) নং উদাহরণের ব্যাখ্যাঃ 🎉 ১৯৫ ১৯৯১ । ১৯৯১ ১০১১ ১০১১

আমরা জানি $\frac{1}{13}$. $\dot{0}7692\dot{3}$, কিন্তু $\frac{2}{13}$ = $\dot{1}5384\dot{6}$,

 $\frac{3}{13}$ = 230769-এর ক্ষেত্রে $\frac{1}{13}$ -এর অঙ্কগুলি আবর্তিত হয়েছে।

আবার $\frac{5}{13}$ = 384615-এর ক্ষেত্রে $\frac{2}{13}$ -এর অঙ্কণুলি আবর্তিত হয়েছে।

অর্থাৎ এখানে আবর্তিত অঙ্কগুলির দুটি বিভিন্ন সেট আছে। তার জন্য উল্লিখিত সমতাধর্মী ফলগুলির সমতার ব্যাখ্যা পাওয়া যাবে (5) নং উদাহরণের সাহায্যে।

(15) নং উদাহরণের ব্যাখ্যাঃ

এই সম্বন্ধগুলির ব্যাখ্যা মিলবে (5) নং উদাহরণের সাহায্যে।

(16) নং উদাহরণের ব্যাখ্যা ঃ

এক্টের 12345679 × 9 = 111111111

অতএব 12345679 × 3 = $\frac{111111111}{3}$ = 037037037

আবার 12345679 × 30 = 037037037 × 10

৪১৯। তে ব্যাহ্ব প্রচার চেচের ব্যাহ্ব প্রচার চিচের বাহি

এবং 12345679 × 57 = 12345679 × (10 + 9) × 3

 $= 12345679 \times 30 + 12345679 \times 9 \times 3$

= 370370370 + 3333333333

= 703703703 pag is the file of the page of

আবৃক্তএকক সংখ্যা ও একটি অঙ্কের যাদু 🕬 🏸 (EI)

আবৃত্ত-একক সংখ্যাগুলির যে কোনওটি ব্যবহার করে অঙ্কের একটি যাদুখেলা দেখানো যায়—যার নাম 'তুমি কোন্ অঙ্কটি পছন্দ কর?' সাধারণত খুব ছোট ছেলেমেয়ের ক্ষেত্রে 37 সংখ্যাটি ও অপেক্ষাকৃত বড়দের ক্ষেত্রে 1 2 3 4 5 6 7 9 সংখ্যাটি (মনে রাখার সুবিধার জন্য) ব্যবহার করা হয়। একটি কাগজে 37 লিখে এখন ছোটদের কাউকে জিজ্ঞাসা করা হল 1, 2, 3, 4, 5, 6, 7, 8, 9 এই ন'টি অঙ্কের মধ্যে কোন্টিকে তুমি পছন্দ কর? সে যদি বলে 7, তখন তাকে প্রশ্ন করা হবে—তিন সাত্তে? সে যখন বলবে 21, তখন তাকে কাগজে লেখা 37-কে তার বলা 21 দিয়ে গুণ করতে বলা হবে। গুণ করে সে ফল পাবে 777 (অর্থাৎ তার পছন্দ করা অঙ্কটি পাশাপাশি তিন বার)। যদি কেউ 7-এর বদলে 9 পছন্দ করে তখন তাকে 3 × 9 বা 27 দ্বারা গুণ করতে হবে উক্ত 37 সংখ্যাকে।

যারা বয়সে বড়, তাদের ক্ষেত্রে কাগজে লেখা সংখ্যাটি নেওয়া হল 12345679; এক্ষেত্রে 1 থেকে 9-এর মধ্যে যে সংখ্যাটি পছন্দ হবে, ধরা যাক 8, তাকে মজার মধ্য দিয়ে অনেকবার পেতে হলে গুণ করতে হবে $9\times 8=72$ দ্বারা; $12345679\times 72=888888888$ অর্থাৎ পছন্দ-করা অঙ্ক 8 এসেছে পাশাপাশি ন'বার।

সহজেই বোঝা যাচ্ছে, অঙ্কের সমতাধর্মী এই যাদুর মূল কারণ আছে কাগজে লেখা সংখ্যাটির মধ্যে। যেমন, 12345679 × 9 = 111111111 (ন'টি 1), তাই 8 × 9 বা 72 দিয়ে সংখ্যাটিকে গুণ করলে গুণফলে অবশ্যই পাশাপাশি ন'টি ৪ পাওয়া যাবে।

(17) সমতার এখন যে উদাহরণ দেওয়া হচ্ছে তাতে গুণক সব ক্ষেত্রেই 9, গুণা ক্রমিকভাবে লেখা সংখ্যা যার অঙ্ক সংখ্যা ক্রমশ বাড়ছে সমতা রেখে। এক্ষেত্রে যে গুণফলগুলি পাওয়া যাচ্ছে তাতে বামদিকের প্রথম অঙ্কটি গুণ্যের বাম দিকের প্রথম অঙ্কের সমান, তবে বাকি অঙ্কগুলি কেবল 1 অর্থাৎ পূর্ব উদাহরণের মতো আবৃত্ত-একক।

$$79 \times 9 = 711$$

$$679 \times 9 = 6111$$

$$5679 \times 9 = 51111$$

$$45679 \times 9 = 411111$$

$$345679 \times 9 = 3111111$$

$$2345679 \times 9 = 21111111$$

$$12345679 \times 9 = 1111111$$

শেষের গুণফলে সমতার পথ ধরে এসেছে সবগুলি 1 অর্থাৎ সেটি হয়েছে পুরাপুরি আবৃত্ত-একক। এক্ষেত্রে গুণ্য 12345679 সংখ্যাটির বিশেষত্ব পূর্বেই আলোচিত হয়েছে।

সংখ্যা গঠন পরিকল্পনাঃ সমতার একটি দিক

পিঙ্গলাচার্যের (200 খ্রিঃ পৃঃ) রচনায় মেরু প্রস্তর পদ্ধতিতে প্রাপ্ত সংখ্যাগুলির মধ্যে সমতা আছে। এই পদ্ধতিতে প্রাস্তীয় সংখ্যা দুটি হয় 1 এবং মাঝের সংখ্যাগুলি লেখা হয় আগের ছত্রের উভয় দিকের সংখ্যা দুটির যোগফল হিসাবে।

লক্ষণীয় এখানে তৃতীয় ছত্রের সংখ্যাগুলি ${}^2\mathbf{c}_0, {}^2\mathbf{c}_1, {}^2\mathbf{c}_2$, অর্থাৎ 1, 2, 1 যেগুলি $(\mathbf{a}+\mathbf{b})^2$ -এর ফলের সহগ। চতুর্থ ছত্রের সংখ্যাগুলি ${}^3\mathbf{c}_0, {}^3\mathbf{c}_1, {}^3\mathbf{c}_2, {}^3\mathbf{c}_3$ অর্থাৎ 1, 3, 3, 1— $(\mathbf{a}+\mathbf{b})^3$ -এর বিস্তৃতির সহগ। এই ভাবে সপ্তম ছত্রের সংখ্যাগুলি যথাক্রমে ${}^6\mathbf{c}_0, {}^6\mathbf{c}_1, {}^6\mathbf{c}_2, {}^6\mathbf{c}_3, {}^6\mathbf{c}_4, {}^6\mathbf{c}_5, {}^6\mathbf{c}_6,$ অর্থাৎ 1, 6, 15, 20, 15, 6, 1— যেগুলি অবশ্যই $(\mathbf{a}+\mathbf{b})^6$ -এর বিস্তৃতির সহগ। এই ভাবে $(\mathbf{n}+1)$ -তম ছত্রের

সংখ্যাগুলি হবে $^{
m n}c_0, ^{
m n}c_1, ^{
m n}c_2,, ^{
m n}c_n$, যেগুলি দ্বিপদ উপপাদ্য (a+b) $^{
m n}$ এর বিস্তৃতির সহগ। এখানে স্পষ্টতই

$$4_{C_3} + 4_{C_2} = 10 = 5_{C_3};$$

একই ভাবে $^{n}c_{r}+^{n}c_{r-1}=^{n+1}c_{r}$ (বীজগণিতে প্রমাণিত) এই ফলটিই মেরুপ্রস্তর পদ্ধতিতে পূর্বের সারির সংখ্যা থেকে পরের সারির সংখ্যা লিখনে ব্যবহৃত হয়েছে। পাস্কাল ত্রিভুজ আইনেও মেরু প্রস্তর পদ্ধতিতে প্রাপ্ত সংখ্যাগুলি পাওয়া যায়। তবে মেরুপ্রস্তর পদ্ধতি খুবই প্রাচীন। পিঙ্গলাচার্যের এই পদ্ধতির টীকাকার হলায়ুধও পাস্কালের ছয় শতাব্দী আগেকার।

মেরু প্রস্তর পদ্ধতিতে লেখা উক্ত সংখ্যাগুলি সম্পর্কে আরও দু'টি কথা স্মরণীয়। শীর্ষ থেকে প্রতি স্তরের সংখ্যাগুলির যোগফল যথাক্রমে $2^0=1,\ 2,\ 2^2,\ 2^3,\ 2^4,\ 2^5,\ 2^6,...।$ আবার ধারের সারি ছাড়া কোনাকুনি অন্য সারিগুলির সংখ্যাশ্রেণী বিশেষ গুরুত্বপূর্ণ। প্রান্তিক সারির পরের সংখ্যাগুলি কোনাকুনি পড়লে পাওয়া যায় 1, 2, 3, 4, 5, 6,... অর্থাৎ স্বাভাবিক সংখ্যা, তার পরের কোনাকুনি সারিতে আছে 1, 3, 6, 10, 15,... (ত্রিভুজ সংখ্যা) তার পরের সংখ্যা শ্রেণী হচ্ছে 1, 4, 10, 20,... (দ্বিতীয় ক্রমের ত্রিভুজ সংখ্যা বা চতুস্তলক সংখ্যা), এর পরে পাওয়া যায় 1, 5, 15, 35,... (তৃতীয় ক্রমের ত্রিভুজ সংখ্যা)...; এইভাবে কোনাকুনি লেখা সংখ্যাগুলি ধরলে বিভিন্ন ক্রমের ত্রিভুজ সংখ্যা পাওয়া যাবে।

ক্রম-শ্ন্যতা-প্রাপ্ত ত্রিভুজের ক্ষেত্রেও সংখ্যাগুলির এক ধরনের সমতা দেখা যায়। এখানে কোনও সারির দুই সংখ্যার বিয়োগফল তার আগের সারির মাঝে থাকবে—এইভাবে ত্রিভুজাকারে সাজানো সংখ্যাগুলির উর্ধ্ব প্রান্তে কেবল শূন্য হবে। এমন কয়েকটি উদাহরণ উল্লিখিত হল ঃ

(a)

(b)

0 1 1 3 4 5 ------স্বাভাবিক সংখ্যা 3 6 10 15 ---------------বিভূজ সংখ্যা 1 4 10 20 35 -------চ্টুক্তলক সংখ্যা

भूर्वत्र एए। स्थायात्मव भाव निर्दान स्वतं ह 🗷 (१) अवेदक्व व्यक्त । याकत्व अक कव हार हा 20 0 1 र अमानि किल हुई × तार है अमिनि 5 7 9 11বিয়োড় সংখ্যা 4 9 16 25 36......বর্গ সংখ্যা া 5 14 30 55 91.....শিখর সংখ্যা

(e)

🕒 আবৃত্ত দশমিকঃ ঘূর্ণন প্রতিসাম্য

পূর্ণত আবৃত্ত দশমিক বৃত্তাকারে লিখলে ঘূর্ণন প্রতিসাম্যের উদাহরণ হতে পারে।

= .142857142857..... এক্ষেত্রে ঘূর্ণন প্রতিসাম্যের ক্রম হবে 6 $\frac{1}{19}$ = 0.05263157894736842iবিতীয় ক্ষেত্রে ঘূর্ণন প্রতিসাম্যের ক্রম 18

্ব 🖽 অন্য ধরনের কিছু সমতা 💮 🚧 🗀

(1) স্বানুরূপ সংখ্যায় এক ধরনের সমতা আছে; এসব ক্ষেত্রে সংখ্যার বর্গের শেষে সংখ্যাটিকে পাওয়া যায়। যথা,

$$5^2 = 2(5), 25^2 = 6(25), 76^2 = 57(76), 625^2 = 390(625)$$

- (2) গুণফলে গুণকের অঙ্কগুলি বিপরীতক্রমে ফিরে এসেছে এমন উদাহরণ— 2178 × 4 = 8712, 1089 × 9 = 9801; গুণা ও গুণফলের মধ্যে এক্ষেত্রে প্রতিফলন জ্বাতীয় সমতা বর্তমান।
- (3) গুণ্য ও গুণকের অঙ্কগুলিই গুণফলে এসেছে এরূপ কয়েকটি উদাহরণ— $3 \times 51 = 153$, $6 \times 21 = 126$, $8 \times 473 = 3784$, $9 \times 351 = 3159$,

 $15 \times 93 = 1395$, $21 \times 87 = 1827$, $27 \times 81 = 2187$, $35 \times 41 = 1435$,... শক্তি সহযোগে অনুরূপ একটি বিশেষ উদাহরণ $2^5 \times 9^2 = 2592$

শেষোক্ত উদাহরণের কোনও সাধারণ প্রমাণ সম্ভব নয়; এটি ক্রমিক চেষ্টার ('ট্রায়াল' পদ্ধতির) দ্বারা স্থিরীকৃত। অন্যগুলির দু-একটির ক্ষেত্রে সমীকরণের মাধ্যমে পূর্ণসংখ্যা-সমাধানের পথ নির্দেশ করা হল। (i) এককের অঙ্কে 1 থাকলে এক অঙ্ক বিশিষ্ট সংখ্যা × দুই অঙ্ক বিশিষ্ট সংখ্যার ক্ষেত্রে হবে

a(10b+1) = 100 + 10b + a, 4 + 10ab = 100 + 10b,

বা ab = 10 + b, বা $b = \frac{10}{a-1}$; এখানে সম্ভাব্য সমাধান মাত্র দুটি a = 3, b = 5 এবং a = 6, b = 2;

অতএব এ ধরনের দুটি গুণ পাওয়া যাচ্ছে— $3 \times 51 = 153,6 \times 21 = 126.$

(ii) এককের অঙ্কে 1 থাকলে এক অঙ্ক বিশিষ্ট সংখ্যা × তিন অঙ্ক বিশিষ্ট সংখ্যার ক্ষেত্রে a(100b + 10c + 1) = 1000 + 100c + 10b + a

বা = 1000 + 100b + 10c + a

বা = 1000b + 100 + 10c + a

বা = 1000b + 100c + 10 + a

বা = 1000c + 100b + 10 + a

বা = 1000c + 100 + 10b + a

এই সমীকরণগুলি থেকে শেষ পর্যন্ত পাওয়া যাবে

 $a = \frac{100+10b+c}{10b+c}, \frac{100+10c+b}{10b+c}, \frac{100b+10+c}{10b+c},$ $= \frac{100b+10c+1}{10b+c}, \frac{100c+10+b}{10b+c}, \frac{100c+10b+1}{10b+c}$

প্রথমটি থেকে সম্ভাব্য সমাধান b = 2, c = 5, a = 5 সম্ভাব্য (1)

ৰা b = 5, c = 0, a = 3

এক্ষেত্রে শুণ দৃটি হবে 5 × 251 = 1255, 3 × 501 = 1503 দ্বিতীয়টির কোনও পূর্ণসংখ্যা সমাধান নেই।

তৃতীয়টি থেকে সম্ভাব্য সমাধান b = 3, c = 5, a = 9

এক্ষেত্রে গুণটি হবে 9 × 351 = 3159 এইভাবে ক্রমিক চেষ্টার দ্বারা অন্য ক্ষেত্রে শুণ্য ও শুণকের সংখ্যাগুলি নির্ণয় করা যায়।

(iii) দুই অন্ধ বিশিষ্ট সংখ্যা × দুই অন্ধ বিশিষ্ট উক্তরূপ সংখ্যার ক্ষেত্রে

এ থেকে শেষ পর্যন্ত যে দু'টি সমীকরণ পাওয়া যাবে

অভএব 27 × 81 = 2187, 87 × 21 = 1827, 35 × 41 = 1435,

(iv) গুণ্যের এককের স্থানে 3 আছে এমন ক্ষেত্রে a(100b + 10c + 3) = 3000 + 100c + 10b + a থেকে a = 8, b = 4, c = 7 (10a + b) (10c + 3) = 1000a + 300 + 10c + b থেকে

a = 1, b = 9, c = 5

অতএব 8 × 473 = 3784, 15 × 93 = 1395

এইভাবে প্রধানত ট্রায়াল' পদ্ধতিতে উদাহরণে প্রদন্ত সমতাধর্মী গুণ্য, গুণক ও গুণফলসমূহ পাওয়া যেতে পারে।

(4) আত্মপ্রেমী সংখ্যার ক্ষেত্রে শক্তি, মূল বা অন্যবিধ প্রক্রিয়া সহযোগে এক ধরনের সমতা দেখা যায়। যথা,

153 =
$$1^3 + 5^3 + 3^3$$
, $135 = 1^1 + 3^2 + 5^3$, $1233 = 12^2 + 33^2$, $147 = 14^2 \sim 7^2$, $48 = 4^2 \sim 8^2$, $145 = 1! + 4! + 5!$, $3435 = 3^3 + 4^4 + 3^3 + 5^5$
Similar, $\sqrt{81} = 8 + 1 = 9$, $\sqrt{2025} = 20 + 25 = 45$, $\sqrt{3025} = 30 + 25 = 55$, $\sqrt{9801} = 98 + 01 = 99$,

 $\sqrt[3]{4913} = 4 + 9 + 1 + 3 = 17$

এই সকল উদাহরণের সব ক্ষেত্রে কোনও সাধারণ প্রমাণ সম্ভব নয়। তবে অনেক সময় সমীকরণ এনে প্রধানত দ্রায়াল' পদ্ধতিতে সমাধান করা যায়। যেমন, (i) প্রথম ধরনের উদাহরণের ক্ষেত্রে একটি সংখ্যা 1 ধরে

 $100 + 10x + y = 1^3 + x^3 + y^3$ বা 99 + $10x - x^3 = (y-1)$ y(y+1) সম্ভাব্য সমাধান x = 5, y = 3; অতথ্য $153 = 1^3 + 5^3 + 3^3$

(ii) আবার $100 + 10x + y = 1^1 + x^2 + y^3$ -এর ক্ষেত্রে আসবে $99 + 10x - x^2 = (y-1) y(y+1)$

সম্ভাব্য সমাধান x = 3, y = 5; অতএব $135 = 1^1 + 3^2 + 5^3$

(iii) দু'টি দুই অঙ্ক বিশিষ্ট সংখ্যাকে x, y ধরে সমীকরণ হবে $x^2 + y^2 =$ 100x + y বা y(y-1) = x(100-x); সম্ভাব্য সমাধান x = 12, y = 33, অতএব $12^2 + 33^2 = 1233$

(iv)
$$x^2 \sim y^2 = 10x + y$$
-এর অর্থ $x^2 - y^2 = 10x + y$
বা $y^2 - x^2 = 10x + y$

এদের প্রথমটি থেকে x(x-10) = y(1+y) যার সমাধান x = 14, y = 7এবং দ্বিতীয়টি থেকে x(x+10)=y(y-1) যার সমাধান $x=4,\ y=8$ অতএব $147 = 14^2 \sim 7^2$, $48 = 4^2 \sim 8^2$

(v) $\sqrt{10x + y} = x + y$ at $10x + y = (x+y)^2$

এখন দুই অঙ্ক বিশিষ্ট পূৰ্ণবৰ্গ সংখ্যা 16, 25,...81 থেকে দেখা যায় একমাত্ৰ সমাধান x = 8, y = 1; অতএব $\sqrt{81} = 8 + 1 = 9$

 $({
m vi}) \ \sqrt{2025} = 20 + 25$ জাতীয় সম্বন্ধের ক্ষেত্রে জে. গ্রাজিয়া একটি প্রমাণ দিয়েছেন। সেটি এখানে উল্লিখিত হল \sharp এক্ষেত্রে আমরা সমীকরণকে $100\mathrm{x}-\mathrm{y}=$ $(x-y)^2$ হিসাবে লিখতে পারি। যদি x পূর্ণসংখ্যা হয় তবে পূর্বোক্ত সম্পর্ক থেকে লেখা যাবে 2500-99y= কোনও পূর্ণবর্গ সংখ্যা Q^2 ; এ থেকে পাওয়া যায় 99y = (50 − Q) (50 + Q)। এখন y-এর বদলে uv লিখলে আসে 99uv = (50 - Q)(50 + Q)

= (50 – Q) (50 + Q) যেহেতু 99 = 1 × 99 বা 3 × 33 বা 9 × 11, অতএব তিনটি সম্ভাবনা আছে

 $3u = 50 \pm Q$, $33v = 50 \mp Q$

 $9u = 50 \pm Q$, $11v = 50 \mp Q$ এই তিন যোড়া সমীকরণ থেকে শেষ পর্যন্ত পাওয়া যাবে

 $(98 + 01)^2 = 9801$, $(30 + 25)^2 = 3025$, $(20 + 25)^2 = 2025$.

অতএব $\sqrt{9801} = 98 + 01 = 99$, $\sqrt{3025} = 30 + 25 = 55$ $\sqrt{2025} = 20 + 25 = 45$

(5) দুই অঙ্ক বিশিষ্ট গুণ্য ও গুণক ওল্টালেও গুণফল একই থাকবে। অবশ্য বীজগণিতের সাহায্যে এমন সংখ্যা দুটির সম্পর্ক নির্ণয় করা যায়। ধরা যাক, সংখ্যা দুটি 10a + b এবং 10x + y : প্রশ্নানুসারে (10a + b) (10x + y) = (10b + a) (10y + x) বা 100ax + 10bx + 10ay + by = 100by + 10ay + 10bx + ax বা 99ax = 99by বা ax = by $\therefore \frac{a}{b} = \frac{y}{x}$ এই শর্ত মিলবে এমন অনেক দুই অঙ্ক বিশিষ্ট গুণ্য ও গুণক পাওয়া যায়। তাদের কয়েকটি—

(6) গুণ্য ও গুণক ওল্টালে গুণফলও ওল্টাবে এমন উদাহরণ— 312 × 221 = 68952 এবং 213 × 122 = 25986 গুণক 11 হলে ওল্টালেও 11 থাকবে। এমন ক্ষেত্রে উদাহরণ 2618 × 11 = 28798 এবং 8162 × 11 = 89782

আবার 263542 × 11 = 2898962 এবং 245362 × 11 = 2698982

(7) সংখ্যা ওল্টালে তার বর্গফল উল্টেছে এমন উদাহরণ হিসাবে পাওয়া যায় 122 = 144 এবং 212 = 441, 132 = 169 এবং 312 = 961,

এই ধরনের আরও অনেক সংখ্যা—112, 113, 122, 1112, 1113, 1122, 11112, 11113, 11122, 1111112 ইত্যাদি। উল্লিখিত সংখ্যাগুলিতে অঙ্কসমূহ উল্টে পাল্টে নিলে বা 0 (শূন্য) আনলে যে সংখ্যাগুলি পাওয়া যাবে তাতেও সমতাধর্মী উক্ত বিশেষত্ব বজায় থাকবে। যেমন 1121, 11012, 110102, ইত্যাদির ক্ষেত্রে।

- (৪) সংখ্যা দুটির যোগফল ওল্টালে তাদের গুণফল পাওয়া যাবে এমন সংখ্যাদ্বয় 9 + 9 = 18, 9 × 9 = 81; 24 + 3 = 27, 24 × 3 = 72, 47 + 2 = 49, 47 × 2 = 94; 497 + 2 = 499, 497 × 2 = 994 ইতাদি।
- (९) গুণা, গুণক ও গুণফল মিলিয়ে 1 থেকে 9 প্রতিটি অঙ্ক মাত্র একবার আছে নিম্নলিখিত উদাহরণগুলিতে—

$$12 \times 483 = 5796$$
, $42 \times 138 = 5796$, $18 \times 297 = 5346$

$$27 \times 198 = 5346, 39 \times 186 = 7254$$

$$28 \times 157 = 4396, 48 \times 159 = 7632$$

(10) যোগফল ও গুণফল সমান এমন সংখ্যা-যুগলের উদাহরণ—

$$2 + 2 = 2 \times 2 = 4$$
, $4 + 1\frac{1}{3} = 4 \times 1\frac{1}{3} = 5\frac{1}{3}$, $11 + 1 \cdot 1$
= $11 \times 1 \cdot 1 = 12 \cdot 1$

বীজগণিতের কৌশলে উক্ত শর্তটি দাঁড়াবে

$$n imes rac{n}{n-1} = n + rac{n}{n-1} = rac{n^2}{n-1}$$
 এখানে $n=2,\ 4,\ 11$ ধরলে উক্ত তিনটি ফল পাওয়া যাবে।

তেমনই $3+1\frac{1}{2}=3\times1\frac{1}{2}=4\frac{1}{2}$, $6+1\cdot2=6\times1\cdot2=7\cdot2$ ইত্যাদি।

(11) স্বাভাবিক সংখ্যা শ্রেণীর নিম্নরূপ আংশিক যোগফল নিয়ে সমতা লক্ষণীয়। প্রথম দুটি সংখ্যার যোগফল 1 + 2 = তৃতীয় সংখ্যা 3, পরবর্তী তিনটি সংখ্যার যোগফল অর্থাৎ 4+5+6=7+8 অর্থাৎ তার পরের দুটি সংখ্যার যোগফল।

এইভাবে 9 + 10 + 11 + 12 (চারটি সংখ্যা) = 13 + 14 + 15 (তিনটি সংখ্যা)

16 + 17 + 18 + 19 + 20 = 21 + 22 + 23 + 24

25 + 26 + 27 + 28 + 29 + 30 = 31 + 32 + 33 + 34 + 35; ইত্যাদি।

(12) তিনটি ক্রমিক সংখ্যার বৃহত্তমটি 3 দ্বারা বিভাজ্য হলে তাদের যোগফলের অঙ্ক-সমষ্টি শেষ পর্যন্ত সর্বদা 6 হবে। যথা, 61, 62, 63; এখন 61 + 62 + 63 = 186 -> 1 + 8 + 6 = 15 -> 1 + 5 = 6.

(13) যার অন্ধ-সমষ্টি 10 এমন দুই অন্ধ-বিশিষ্ট সংখ্যাকে 9, 99, 999, 9999 ইত্যাদি সংখ্যা দিয়ে গুণ করলে গুণফল সর্বদা মাল্যসংখ্যা বা 'প্যালিণ্ড্রোম' হবে। যেমন,

64 × 99 = 6336, 19 × 999 = 18981 ইত্যাদি।

(14) যাতে প্রথম ও শেষ অঙ্কের তফাৎ 1-এর বেশি এমন চার অঙ্ক-বিশিষ্ট সংখ্যা নিয়ে তার সঙ্গে প্রথম ও শেষ অঙ্ক উল্টে যে সংখ্যা হবে সেটির অন্তরফল নেওয়া হল; এখন ঐ অন্তরফলের সঙ্গে তার প্রথম ও শেষ অঙ্ক উল্টে যে সংখ্যা পাওয়া যাবে তা যোগ করলে যোগফল সর্বদা 10989 হবে। যেমন, 5708-এর ক্ষেত্রে 5708 ~ 8705 = 2997; এখন 2997 + 7992 = 10989.

চার অঙ্ক-বিশিষ্ট সংখ্যার বদলে পাঁচ অঙ্ক-বিশিষ্ট ঐ ধরনের সংখ্যা নিলে অনুরূপ প্রক্রিয়াগুলির পর শেষ ফল সর্বদাই 109989 হবে। ছয় অঙ্ক-বিশিষ্ট, সাত অঙ্ক-বিশিষ্ট.... ঐ ধরনের সংখ্যার ক্ষেত্রে শেষ ফল পাওয়া যাবে

1099989, 10999989,.....

[বইটির পঞ্চম অধ্যায়ে দশটি মজার যাদুখেলার প্রথমটি সংখ্যার উক্ত গুণের উপর নির্ভরশীল। ষষ্ঠ অধ্যায়ে এ-বিষয়ে প্রমাণ সহ আলোচনা আছে।]

(15) যে কোন সংখ্যা নিয়ে তাকে উপ্টে লিখে দুটি সংখ্যাকে যোগ করা হল। এই যোগফলের সঙ্গে তাকে উল্টে লিখে যে সংখ্যা পাওয়া যাবে তা যোগ করে নূতন যোগফলের উপর একই প্রক্রিয়া ক্রমাগত অনুসরণ করলে শেষ পর্যন্ত ফল সর্বদা মাল্য সংখ্যা হবে। যেমন,

সংখ্যাটি 9470 হলে 9470 + 0749 = 10219, আবার 10219 + 91201 = 101420;

এখন 101420 + 024101 = 125521 এখানে শেষ ফল 125521 মাল্য সংখ্যা।

এ ধরনের ফল-লাভের বীজগণিতীয় ব্যাখ্যা দেওয়া যায়। যেমন, চার অঙ্ক-বিশিষ্ট সংখ্যা নিয়ে শুরু করা হলে

সংখ্যাটি = 1000a + 100b + 10c + d ওন্টালে পাওয়া যায় 1000d + 100c + 10b + a

যোগ করলে 1000(a+d) + 100(b+c) + 10(b+c) + (a+d)

যদি a+d<10, b+c<10 হয় তাহলে এই যোগফলই মাল্য সংখ্যা হবে; কারণ একক ও সহস্রের দুটি অঙ্কই (a+d) এবং দশক ও শতকের দুটি অঙ্কই (b+c)। কিন্তু যদি a+d ≥10 হয়, ধরা যাক a+d=10+e এবং যদি $b+c\ge10$ হয়, ধরা যাক b+c=10+f (এখানে, e, f উভয়েই ≤9), তখন পূর্বোক্ত যোগফল হবে 10000+1000 (e+1)+100 (f+1)+10 (f+1)+e

ওল্টালে আসবে 10000e + 1000 (f+1) + 100 (f+1) + 10 (e+1)+1
যোগ করলে 10000 (e+1) + 1000 (e+f+2) + 100 (2f+2) +
10 (e+f+2) + (e+1)

যদি e+1 < 10, e+f+2 < 10, 2f+2 < 10 হয় অর্থাৎ e < 9, f < 4, e+f < 8 হয়, তবে এই স্তরেই যোগফল মাল্য সংখ্যা হবে। তা না হলে আবার একইভাবে এগোতে হবে এবং কোনও একটি স্তরে মাল্য সংখ্যা পাওয়া যাবেই।

(16) বর্গ সংখ্যায় 1 থেকে 9 সব ক'টি অঙ্কই একবার ব্যবহার হয়েছে এমন দু'টি উদাহরণ—11826² = 139854276, 30384² = 923187456

গুণ্য, গুণক ও গুণফলে 1 থেকে 9 সব ক'টি অঙ্কই একবার ব্যবহার হয়েছে এমন একটি উদাহরণ—

 $(246913578) (987654312) = (493827156)^2;$

এখানে গুণফলে সংখ্যাটি এসেছে দু'বার অর্থাৎ এটি বর্গ সংখ্যা হয়েছে।

अरचान्त्री याववाच इत्याता कृष्टीत

(17) গুণ্য-গুণক মিলিয়ে ও গুণফলে 1 থেকে 9 সব ক'টি অঙ্ক আছে এমন তিনটি উদাহরণ ঃ

 $51249876 \times 3 = 153749628$

 $32547891 \times 6 = 195287346$

 $16583742 \times 9 = 149253678$

ফলের সমতাঃ অঙ্কের যাদু

এখানে (12) নং-এ উল্লিখিত বিশেষ ক্ষেত্রে নির্দিষ্ট শেষ ফলের ভিত্তিতে অঙ্কের যাদু খেলা তৈরি হতে পারে। এ খেলায় যাদুকর আগে উত্তর লিখে সেটিকে খামে ভরে জমা রাখবেন কোনও দর্শকের কাছে এবং অন্য এক বা একাধিক দর্শকের সাহায্যে নির্দিষ্ট প্রক্রিয়াগুলি করে শেষ ফল ঐ খামে রাখা ফলের সঙ্গে মিলিয়ে দিতে পারবেন। যেমন খামের মধ্যে 'উত্তর 6' লিখে রাখা হল। এখন কোনও দর্শককে পর পর তিনটি সংখ্যা নিতে বলা হল যার শেষেরটি 3 দ্বারা বিভাজ্য। দ্বিতীয় দর্শক সংখ্যা তিনটি যোগ করলেন যাদুকরের নির্দেশে। তৃতীয় দর্শককে সেই যোগফল থেকে তার অঙ্কসমষ্টি—সেই সমষ্টির অঙ্কসমষ্টি—এইভাবে শেষ অঙ্কসমষ্টি ঠিক করতে বলা হল। তিনি শেষে যে সংখ্যা পাবেন তার সঙ্গে খামে জমা রাখা উত্তর 6 নিশ্চয়ই মিলবে।

যাদুবৰ্গ

TO DE and OLD bis Mr

मिलिक मिल विकास मिलिक के बिला मिलिक के

এখন গাণিতিক সমতার উদাহরণ হিসাবে যাদুবর্গ, যাদুঘনক, যাদুচক্র ইত্যাদির আলোচনা করা হবে। নির্দিষ্ট কিছু সংখ্যাকে বিশেষ কোনও জ্যামিতিক আকারে এমনভাবে সাজানো হল যে সব দিক থেকে তাদের যোগফলগুলি সমান দেখা গেল। এইভাবে সাজানো সংখ্যাগুলিকে যে ভাবে লেখা হয়েছে তার আকার অনুসারে যাদুবর্গ, যাদুঘনক, যাদুচক্র ইত্যাদি সমতাধর্মী সংখ্যা-সংগঠন পাওয়া যাবে।

প্রদত্ত কিছু সংখ্যা যদি বর্গাকারে এমনভাবে লেখা হয় যাতে প্রতি স্তম্ভের উপর-নীচে, প্রতি সারির পাশাপাশি এবং প্রতি কর্ণের কোণাকুণি সংখ্যাগুলির যোগফল সমান হয়, তবে সাজানো সংখ্যাসহ সেই বর্গকে যাদুবর্গ বলা হয়। প্রদত্ত সংখ্যাসমূহ 1 থেকে n^2 পর্যন্ত ক্রমিক পূর্ণসংখ্যা হলে স্তম্ভ, সারি ও কর্ণের সংখ্যাগুলির প্রত্যেক ক্ষেত্রে যোগফল হবে $\frac{n(n^2+1)}{2}$, যেটি এক্ষেত্রে যাদু ধ্রুবক। ক্রমিক সংখ্যার বদলে সমান্তর শ্রেণীর সংখ্যার ক্ষেত্রেও অনুরূপ নিয়ম প্রয়োগ করা যেতে পারে। তখন যাদু ধ্রুবক হবে $n\left\{\frac{2a+d(n^2-1)}{2}\right\}$, যেখানে a= প্রথম পদ, d= সাধারণ অন্তর। মোট n^2 সংখ্যক সংখ্যা বর্গাকারে এভাবে সাজানো হলে সেটি হবে n-তম ক্রমের যাদুবর্গ।

যাদুবর্গের ধারণা অনেক প্রাচীন এবং সে যুগে যাদুবর্গকে পবিত্র ও শক্তিসম্পন্ন ভাবা হত। প্রাচীনতম যাদুবর্গের সন্ধান মেলে চীনে—যেখানে 1 থেকে 9 পর্যন্ত সংখ্যাগুলি ব্যবহৃত হয়েছে তৃতীয় ক্রমের যাদুবর্গে এবং সব দিক থেকে সমান পূর্বোক্ত যোগফলটি (যাদুগ্রুবক) হয়েছে $\frac{3(3^2+1)}{2}=15$; চীনের এই বিখ্যাত যাদুবর্গ লো-সু ছবির সাহায্যে উপস্থাপিত হয়েছে চেং তাই ওয়েই-এর 1593 খ্রিস্টাব্দে প্রকাশিত সুয়ান্ফা টুংৎসুং অর্থাৎ পাটীগণিতে প্রতিসাম্য বিষয়ক পুস্তকে। যাদুবর্গের উৎপত্তি সম্পর্কে তেমন কিছু জানা যায় না। তবে উপকথায় আছে, প্রাচীন যুগে মনস্বী

সম্রাট-যোগী উ (আনুমানিক 2000 খ্রিঃ পৃঃ) ঝঞ্জাবিক্ষুব্ধ পীত নদীতে এক স্বর্গীয় কচ্ছপ দেখেছিলেন যার পিঠে 1 থেকে 9 সংখ্যাগুলি ছবির সাহায্যে যাদুবর্গাকারে সাজানো ছিল ঃ

লক্ষ্য করার ব্যাপার সংখ্যাগুলি সূতায় বাঁধা গিঁটের সাহায্যে দেখানো হয়েছে। কালো রঙের গিঁটগুলি যুগ্ম সংখ্যা (অপূর্ণতা বোঝাতে) এবং সাদা রঙের গিঁটগুলি অযুগ্ম সংখ্যা (পূর্ণতা বোঝাতে)। পবিত্র কচ্ছপের পিঠে হো-তু নামে আরও একটি গাণিতিক ছবি ছিল—অবশ্য সেটি যাদুবর্গ নয়। প্রাচ্য ভূখণ্ডে জ্যোতিষীগণের অনেকে

1024	9	W.
3	5	7
PERCE	1	PF B

যাদুবর্গ ব্যবহার করতেন অশুভ গ্রহের প্রতিকারের জন্য। উক্ত যাদুবর্গ থেকে অপবিত্র যোড় সংখ্যাগুলিকে বাদ দিয়ে ক্রশের আকারে সাজানো সংখ্যা-পঞ্চককে প্রাচ্যের বিভিন্ন দেশে অশুভ শক্তি প্রতিকারক মন্ত্র সংখ্যা ভাবা হত। যাদুবর্গ ছাড়া যাদুচক্রের কথাও প্রাচীন যুগে চিম্ভা করা হয়েছিল। চীন থেকে এ-ধরনের সংখ্যা-সংগঠন সম্বন্ধে জ্ঞান ভারত, জাপান ও সন্নিহিত দক্ষিণের দেশগুলিতে বিস্তারলাভ করেছিল।

2	7	6
9	5	1
4	3	8

পাশ্চাত্যে ত্রয়োদশ শতকের এক রচনায় এক প্রশ্নের সমাধান প্রসঙ্গে যে সংখ্যাগুলি পাওয়া গিয়েছিল, সেগুলি এক যাদুবর্গেরই সূচনা করে। উপরে এটি দেওয়া হল। এখানে দেখা যাচ্ছে লো-সু যাদুবর্গটি নৃতন রূপে (স্তম্ভ ও সারি হিসাবে) ফিরে সংখ্যার মজা-৬ এসেছে। ভারতে যাদুবর্গের বেশ উন্নতি হয়েছিল। পবিত্রতার কথা বাদ দিলেও আনন্দমূলক গণিত চর্চা হিসাবে এর বহুল প্রচলন দেখা গিয়েছে। প্রসিদ্ধ গাণিতিক অয়লার ও কেইলি এ-বিষয়ে চর্চা করেছিলেন। স্বনামখ্যাত বেঞ্জামিন ফ্রাঙ্কলিন প্রথম জীবনে যাদুবর্গের চর্চায় অনেক সময় কাটিয়েছেন।

প্রসঙ্গত একটি ল্যাটিন বাক্যের শব্দবর্গের উল্লেখ করা হচ্ছে—যা অনেকটা যাদুবর্গের সমগোত্রীয়। 1868 খ্রিস্টাব্দে সিরেনসিস্টার-এ খনন কার্যের সময় এই শব্দবর্গের শিলালিপিটি আবিষ্কৃত হয়েছিল এবং এখন এটি কুরিনিয়াম যাদুঘরে রক্ষিত আছে। শব্দবর্গে ব্যবহৃত পদগুলির সমবায়ে যে ল্যাটিন বাক্য পাওয়া যাচ্ছে তা একটি প্রবচনঃ "Sator arepo tenet opera rotas"—এর অর্থ এ্যারেপো চাষী চক্রের বিলম্ব ঘটাচ্ছে তার কাজের জন্য*। লক্ষণীয় এখানে Tenet পদটি গোপন ক্রশের দুটি

S	A	T	0	R
A	R	Е	P	0
T	Е	N	Е	Т
0	P	Е	R	A
R	0	Т	A	S

বাছ তৈরি করেছে। প্রাচীন এই শব্দবর্গের বিশেষত্ব এই যে এটি উপর নিচে, বাম থেকে ডাইনে, এমন কি নিচ থেকে উপরে ও ডাইনে থেকে বামে একইভাবে পড়া যাবে। সেদিক থেকে এটি অসাধারণ শব্দবর্গ।

তৃতীয় ক্রমের যাদুবর্গের একটি উদাহরণ দেওয়া হয়েছে। আরও একটি উদাহরণ হাজির করা হয়েছে—যেটি প্রথমটিরই রকমফের। এখন 1 থেকে 16 পর্যন্ত ক্রমিক সংখ্যাগুলি ব্যবহার করে চতুর্থ ক্রমের তিনটি যাদুবর্গ নিচে দেওয়া হল। প্রতি ক্ষেত্রে যাদুগ্রুবক হবে

6	NET NET	PRI I		$\frac{4(4^2)}{2}$	+1)	= 3	4 %
1	15	14	4	7	12	1	14
12	6	7	9	2	13	8	11
8	10	11	5	16	3	10	5
13	3	2	16	9	6	15	4

15	10	3	6
4	5	16	9
14	11	2	7
1	8	13	12

কাৰ সংখ্যা (কুলি বিকি আৰম্ভ সংখ্যা (কুলি বিকি য

^{*}Readers' Digest পত্রিকায় ল্যাটিন প্রবচনটির অর্থ বলা হয়েছিল—'এ্যারেপো চাষী চক্রটিকে জোরের সঙ্গে ধরে আছে'।

এদের মধ্যে প্রথম যাদুবর্গটি যোড়শ শতাব্দীর এক রৌপ্যফলকে অঙ্কিত আছে। শোনা যায়—এটি ঐ ফলকের মালিককে বিপদ থেকে রক্ষা করেছিল। তৃতীয় যাদুবর্গটি সমকর্ণ বা 'প্যাণ্ডিগোন্যাল' (এ বিষয়ে পরে আলোচনা করা হবে।)

নিয়মানুসারে পঞ্চম ক্রমে যাদুগ্রুবক হবে $\frac{5(5^2+1)}{2}=65$, ষষ্ঠ ক্রমে এটি হবে $\frac{6(6^2+1)}{2}=111$, একইভাগে সপ্তম, অস্তম, নবম ও দশম ক্রমের যাদুবর্গে যাদুগ্রুবক যথাক্রমে 175, 260, 369 ও 505 হবে। অবশ্য সব কটি ক্ষেত্রে যাদুবর্গের সংখ্যাগুলি ধরা হয়েছে 1, 2, 3,.... ক্রমিক স্বাভাবিক সংখ্যাসমূহ; যেমন পঞ্চমক্রমে 1 থেকে 25, ষষ্ঠক্রমে 1 থেকে 36 ইত্যাদি।

যাদুবর্গ গঠনের কয়েকটি নিয়ম

যাদুবর্গকে ইয়োরোপের কাছে পরিচিত করেছিলেন পঞ্চদশ শতানীর প্রথম ভাগে কনস্টাণ্টিনোপল-বাসী মস্কো পাউলুস। পরে খাতনামা গাণিতিক কর্ণেলিয়াস এটাগ্রিপ্পা (1486—1535 খ্রিঃ) তৃতীয়, চতুর্থ, পঞ্চম, ষষ্ঠ, সপ্তম, অষ্টম ও নবম ক্রমের যাদুবর্গ তৈরি করেছিলেন যথাক্রমে জ্যোতিষের সপ্ত গ্রহ শনি, বৃহস্পতি, মঙ্গল, সূর্য, শুক্র, বুধ ও চন্দ্রের উদ্দেশে। যাদুবর্গ তৈরি করার গাণিতিক নিয়ম সংক্রান্ত আলোচনা শুক্র হয়েছিল সপ্তদশ শতকে। সেই নিয়মগুলি বুঝতে হলে প্রাথমিক কিছু তথ্য জানা দরকার। ছোট ছোট বর্গক্ষেত্র (খোপ)—যাতে একটি সংখ্যা লেখা হয়, তাদের বলা হয় কোষ। সারিকে গণনা করা হবে উপর থেকে নিচের দিকে এবং স্তম্ভ গণনা করা হবে বাম দিক থেকে ডান দিকে। n-ক্রমের যাদুবর্গে h-তম সারি (বা স্তম্ভ) এবং (n+1-h)-তম সারি (বা স্তম্ভ) পরস্পর যোগফলে পূরক। আবার h-তম সারির k-তম কোষ ও (n+1-h)-তম সারির (n+1-k)-তম কোষ তির্যক্-ভাবে সম্পর্কযুক্ত; এমন দুটি কোষ যাদুবর্গের কেন্দ্রের পরিপ্রেক্ষিতে সমঞ্জস। সারির বদলে স্তম্ভ নিলেও অনুরূপ বক্তব্য থাকবে। যাদুবর্গ তৈরি করার প্রধানত তিনটি নিয়ম আছে তিন ধরনের যাদুবর্গের ক্ষেত্রে (একাধিক নিয়ম থাকলে এখানে অপেক্ষাকৃত সহজ্ব নিয়মগুলি লিপিবদ্ধ করা হচ্ছে)।

- (i) যখন যাদুবর্গের ক্রম অযুগ্ম সংখ্যা 2m +1; যথা 3, 5, 7, 9,...
- (ii) যখন যাদুবর্গের ক্রম একক-যুগ্ম সংখ্যা 2(2m +1); যথা, 6, 10,...
- (iii) যখন যাদুবর্গের ক্রম দ্বৈত-যুগ্ম সংখ্যা 4m; যথা, 4, 8,....
- (i) অযুগ্ম ক্ষেত্রে নিয়ম ঃ এই নিয়ম পাওয়া গেছে দ্য লা লুবেরা যিনি চতুর্দশ লুই-এর দৃত হিসাবে শ্যাম দেশে 1687-88 খ্রিস্টাব্দে ছিলেন—তাঁর থেকে। মনে হয় তিনি শ্যাম দেশে যাদুবর্গ সম্বন্ধে জ্ঞান অর্জন করেছিলেন। এখানে পঞ্চম ক্রমের যাদুবর্গের ক্ষেত্রে নিয়মটি প্রয়োগ করা হয়েছে। প্রথমে প্রথম সারির মাঝের ঘরে

1 বসানো হল। তারপর পর পর সংখ্যাগুলি ডান হাতি কর্ণ বরাবর বসাতে হবে তিনটি বাড়তি কথা মনে রেখে—

(a) উপরের সারির পরে সংখ্যা একেবারে সংশ্লিষ্ট নিচের সারিতে এমনভাবে লিখতে হবে যেন সংখ্যাটি উপরের উপরে অদৃশ্য সারিতে 'ডানহাতি কর্ণ' নিয়মে লেখা হয়েছিল; (b) ডান দিকের শেষ স্তম্ভের পরে পরবর্তী সংখ্যা লিখতে হবে বাম দিকের সংশ্লিষ্ট প্রথম স্তম্ভে এমনভাবে যেন ডান দিকের ডান দিকে অদৃশ্য স্তম্ভে 'ডান-হাতি কর্ণ' নিয়মে সংখ্যাটি লেখা হয়েছিল; (c) যখন প্রয়োজনীয় ঘর (খোপ) আগেই কোনও সংখ্যা দখল করেছে বা উপরের সারিতে ডান দিকের শেষ ঘরে

L	15	8	1	24	17
2	16	14	7	5	23
[22	20	13	6	4
้น	3	21	19	12	10
	9	2	25	18	11

পঞ্চম ক্রম ক্রম

পৌঁছেছে তখন সংখ্যা শ্রেণীর পথ সরাসরি ঠিক নিচের সারিতে নেমে আবার 'ডান-হাতি কর্ণ' নিয়মে কোণাকুণি উঠবে। পাশের উদাহরণে সীমানার বাহিরে লেখা বাতিল সংখ্যা ও তীর চিহ্ন থেকে যাদুবর্গ গঠনের এই নিয়মটির প্রয়োগ বোঝা যাবে। (পঞ্চম ক্রমের উক্ত যাদুবর্গে ভিতরের বর্গের সংখ্যাগুলির কোণাকুণি যোগফল সমান)। এই নিয়মটি প্রয়োগ করে তৃতীয় ক্রম, সপ্তম ক্রম ও নবম ক্রমের যাদুবর্গ গঠন করা হল।

20	39	48	7	-	1 2	
_	-	48	1	10	19	28
38	47	7	9	18	27	29
46	6	8	17	26	35	37
5	14	16	25	34	36	45
13	15	24	33	42	44	4
21	23	32	41	43	3	12
22	31	40	49	2	11	20

47	58	69	80	1	12	23	34	45
57	68	79	9	11	22	33	44	46
67	78	8	10	21	32	43	54	56
77	7	18	20	31	42	53	55	66
6	17	19	30	41	52	63	65	76
16	27	29	40	51	62	64	75	5
26	28	39	50	61	72	74	4	15
36	38	49	60	71	73	3	14	25
37	48	59	70	81	2	13	24	35

विर्वत-सार अपने रहे । अस महि

नार्थं वन्त्रज्ञानिकामानान्त्रमात्री आधिका (1486—1535 मे

DEF RED DEF HERE

नव्या करा

(ii) একক-যুগ্ম ক্ষেত্রে নিয়ম ঃ এই নিয়ম রাল্ফ্ ষ্ট্র্যাচি-পরিকল্পিত। তিনি 1918 খ্রিস্টাব্দের আগস্টে রাউজ বল্ কে এ-বিষয়ে এক চিঠিতে জানিয়েছিলেন। সমগ্র বর্গকে সমান চারটি বর্গে, যথা A, B, C, D, অংশে ভাগ করা হল। পরে A অংশের খোপগুলিতে 1 থেকে $\frac{n^2}{4}$ পর্যন্ত সংখ্যাগুলি দ্য লা লুবেরার নিয়মানুসারে লিখতে হবে। একইভাবে B, C, D বর্গক্ষেত্রগুলির খোপে যথাক্রমে ঐ একই আইনে $\frac{n^2}{4}+1$ থেকে $\frac{n^2}{2}$ পর্যন্ত, $\frac{n^2}{2}+1$ থেকে $\frac{3n^2}{4}$ পর্যন্ত এবং $\frac{3n^2}{4}+1$ থেকে n^2 পর্যন্ত সংখ্যাগুলি বসাতে হবে। যাদু বর্গের ক্রম 2(2m+1)=6 হলে, m=1; এখন A বর্গের সারেরে সারিতে m (এখানে 1) ঘর পরের সংখ্যা ও অন্য সারিগুলিতে বাঁ

A	С
D	В

দিকের পাশের m-(এখানে 1) সংখ্যক ঘরগুলির সংখ্যার সঙ্গে D অংশের অনুরূপ সংখ্যাগুলি বদল করতে হবে। এ-ছাড়া C-এর ডান দিকে (m-1) সংখ্যক স্তম্ভের প্রত্যেকটি সংখ্যা B-এর অনুরূপ সংখ্যাগুলির সঙ্গে পাণ্টালে নির্ণেয় যাদুবর্গ পাওয়া যাবে। এখানে m=1 হওয়াতে m-1=0; সুতরাং n=6-এর ক্ষেত্রে B ও C-এর মধ্যে সংখ্যা বদল দরকার হবে না।

	A(1-	9)		C(19	-27)	an an
8	1	6	26	19	24	HERE I
3	3	7	21	23	25	FIRE
4	9	2	22	27	20	→(ঘর → বদল
33	28	33	17	10	15	→ করে
30	32	34	12	14	16	P(0) (P4)
31)	36	29	13	18	11	1918
D(25	8-36)			B(1	0-18	1576

(A, B, C, D চারটি 9-ঘরের বর্গে (i)-এ উল্লিখিত নিয়মানুসারে সংখ্যাণ্ডলি সাজানো হয়েছে।)

	ab	ষষ্ঠ	ক্রম	15%	113
35	1	6	26	19	24
3	32	7	21	23	25
31	9	2	22	27	20
8	28	33	17	10	15
30	5	34	12	14	16
4	36	29	13	18	11

(বৃত্তের মধ্যে ঘেরা A-এর সংখা গুলির সঙ্গে D-এর অনুরূপ সংখা-গুলির স্থান বদল হয়েছে।)

এখন দশম ক্রমের যাদুবর্গের ক্ষেত্রে 2 (2m+1) = 10; অতএব m=2, m-1=1; কাজেই দশম ক্রমের যাদুবর্গ তৈরি করতে হলে আগের মত A, B, C,

D চারটি 25-ঘরের বর্গে 1 থেকে 100 পর্যন্ত সংখ্যাগুলি বসিয়ে A বর্গের মাঝের সারিতে 2-ঘর পরের সংখ্যা ও অন্য সারিগুলিতে বাঁ দিকের পাশের দুটি ঘরগুলির সংখ্যার সঙ্গে D অংশের অনুরূপ সংখ্যাগুলির বদল করতে হবে। তা ছাড়া C বর্গের ডান দিকের প্রথম স্তন্তের প্রত্যেকটি সংখ্যা B বর্গের অনুরূপ সংখ্যাগুলির সঙ্গে বদল করলে নির্দের দশম ক্রমের যাদুবর্গ পাওয়া যাবে। নিচে A, B, C, D চারটি ব্লক ও তা থেকে সমাধানে পৌঁছাবার স্তর বোঝানো হয়েছে। এক্ষেত্রে বদল-হওয়া সংখ্যাগুলি বৃত্তের সাহায্যে চিহ্নিত।

1 7 13 19 25	8 14 20 21	15 16 22 3	67 73 54	74 55 56	51	58 64	66	B	92	99	11	8	15	67	74	51	58	40
13	20	22			2000	64	_	1	-			100	1000	-	10.00	121	20	
19		35,000	54	56	62		00	7	98	80	7	14	16	73	55	57	64	4
	21	3			63	70	1		4	81	88	20	22	54	56	63	70	4
25			60	62	69	71	(3)		85	87	19	21	3	60	62	69	71	2
23	2	9	61	68	75	52	9	-	86	93	25	2	9	61	68	75	52	34
76	83	90	42	49	26	33	40	→	17	24	76	83	90	1000		2.74		6:
82	89	91	48	30	32	39	(41)	į	23	5	82		15.50		Sull	100	Lon	234
88	95	97	29	31	38	45	_	-	79				25	79. 1	Harris .	rgit 1	1750	60
94	96	78	35	37	44	_	-	4	-		220					79.50	2	7.
100	77	84	36	43	50	55. 11.5	-	2	COLUMN TO A							-		53
(82 88 94 00	82 89 88 95 94 96	82 89 91 88 95 97 94 96 78 00 77 84	82 89 91 48 88 95 97 29 94 96 78 35 00 77 84 36	82 89 91 48 30 88 95 97 29 31 94 96 78 35 37 00 77 84 36 43	82 89 91 48 30 32 88 95 97 29 31 38 94 96 78 35 37 44 00 77 84 36 43 50	82 89 91 48 30 32 39 88 95 97 29 31 38 45 94 96 78 35 37 44 46 00 77 84 36 43 50 27	82 89 91 48 30 32 39 (4) 88 95 97 29 31 38 45 (4) 94 96 78 35 37 44 46 (28) 00 77 84 36 43 50 27 (34)	82 89 91 48 30 32 39 41 88 95 97 29 31 38 45 47 94 96 78 35 37 44 46 28 00 77 84 36 43 50 27 34	82 89 91 48 30 32 39 41 23 88 95 97 29 31 38 45 47 79 94 96 78 35 37 44 46 28 10 00 77 84 36 43 50 27 34 11	82 89 91 48 30 32 39 41 23 5 88 95 97 29 31 38 45 47 79 6 94 96 78 35 37 44 46 28 10 12 00 77 84 36 43 50 27 34 11 18	82 89 91 48 30 32 39 41 23 5 82 88 95 97 29 31 38 45 47 79 6 13 94 96 78 35 37 44 46 28 10 12 94 00 77 84 36 43 50 27 34 11 18 100	82 89 91 48 30 32 39 41 23 5 82 89 88 95 97 29 31 38 45 47 79 6 13 95 94 96 78 35 37 44 46 28 10 12 94 96 00 77 84 36 43 50 27 34 11 18 100 77	82 89 91 48 30 32 39 41 23 5 82 89 91 88 95 97 29 31 38 45 47 79 6 13 95 97 94 96 78 35 37 44 46 28 10 12 94 96 78 00 77 84 36 43 50 27 34 11 18 100 77 84	82 89 91 48 30 32 39 41 23 5 82 89 91 48 88 95 97 29 31 38 45 47 79 6 13 95 97 29 94 96 78 35 37 44 46 28 10 12 94 96 78 35 00 77 84 36 43 50 27 34 11 18 100 77 84 36	82 89 91 48 30 32 39 41 23 5 82 89 91 48 30 88 95 97 29 31 38 45 47 79 6 13 95 97 29 31 94 96 78 35 37 44 46 (28) 00 77 84 36 43 50 27 (34) 11 18 100 77 84 36 43	76 83 90 42 49 26 33 40 + 17 24 76 83 90 42 49 26 82 89 91 48 30 32 39 41 23 5 82 89 91 48 30 32 88 95 97 29 31 38 45 47 79 6 13 95 97 29 31 38 94 96 78 35 37 44 46 28 10 12 94 96 78 35 37 44 00 77 84 36 43 50 27 34 11 18 100 77 84 36 43 50	76 83 90 42 49 26 33 40 + 17 24 76 83 90 42 49 26 33 82 89 91 48 30 32 39 41 23 5 82 89 91 48 30 32 39 88 95 97 29 31 38 45 47 79 6 13 95 97 29 31 38 45 94 96 78 35 37 44 46 28 90 77 84 36 43 50 27 34

(iii) দৈত যুগা ক্ষেত্রে নিয়ম ঃ সারির ক্রমানুসারে সংখ্যাগুলি পর পর লিখে কর্ণদ্বরের উপরিস্থিত সংখ্যাগুলিকে তাদের যোগফলে-পূরক-স্থানের সংখ্যাগুলির সঙ্গে বদল করতে হবে অর্থাৎ i-তম সারি ও j-তম স্তন্তের সংযোগ স্থলের সংখ্যার সঙ্গে বদল হবে (n+1-i)-তম সারি ও (n+1-j)-তম স্তন্তের সংযোগ স্থলের সংখ্যা। এখন n=4 (ক্রম সংখ্যা)। কাজেই, প্রথম সারির প্রথম স্তন্তের সংখ্যা (4+1-1)-তম বা চতুর্থ সারির চতুর্থ স্থন্তের সংখ্যার সঙ্গে স্থান পরিবর্তন করবে; দ্বিতীয় সারির দ্বিতীয় স্তন্তের সংখ্যা বদল হবে তৃতীয় সারির তৃতীয় স্তন্তের সংখ্যার সঙ্গে ইত্যাদি। অংশ-বর্গের কর্ণস্থ সংখ্যাগুলিরও অনুরূপ বদল হবে। চতুর্থ ক্রম যাদুবর্গের ক্ষেত্রে—

1	2	3/	4/
5	6	1/	8
9/	10	II	12
13	14	15	16

কর্ণস্থ সংখ্যাগুলি → বদলের পর

16	2	3	13
5	11	10	8
9	7	6	12
4	14	15	1

া লক্ষনীয় এই যাদুবর্গের দ্বিতীয় ও তৃতীয় বা সারি স্তম্ভ পরস্পর বদল হলে সেটিও যাদুবর্গ থাকরে এবং যাদুবর্গের মধ্যে চারটি সংখ্যার কোণাকুণি যোগফল সমান। অন্তম ক্রমের যাদুবর্গ একইভাবে তৈরি করা যাবে। এখানে অংশ-বর্গের কর্ণস্থ সংখ্যাগুলিরও বদল হয়েছে।

1	2	3	4	3	6	7	8
9	100	11	12	13	14)	13	16
17	18)	19	20	21	22	23	24
23)	26	27	28	29	30	31	32
33	34	35	36	37)	38	39	49
41	42	43	44	45	46	47)	48
49	0	1	52	53	9	(3)	56
37	-58	59	60		62	63	(4)

64	2	3	61	60	6	7	57
9	55	54	12	13	51	50	16
17	47	46	20	21	43	42	24
40	26	27	37	36	30	31	33
32	34	35	29	28	38	39	25
41	23	22	44	45	19	18	48
49	15	14	52	53	11	10	56
8	58	59	5	4	62	63	1

-1+m) হয়ীত হেড-(d-1+n) গ্রহ্ম লক্ষ্য হেড-প্রায়াল **অন্তম ক্রম** লিল প্রচারত

30 24 18 12 31 34 28 15 21 10 4 32 11 20 14 29 2

E) KIE

দ্বৈত যুগ্ম ক্ষেত্রের নিয়ম কিছু সংশোধন করে একক-যুগ্ম 36 স্তম্ভ অনুসারে বাম দিক থেকে পর পর গণনা করে কেবল দুই কর্ণস্থ সংখ্যাণ্ডলি লেখা হয়েছে। এখন 35 থেকে বাকি সংখ্যাণ্ডলি

বড় থেকে ছোট হিসাবে সাজিয়ে বাম দিকের ছবির মতো লেখার পর যোগ করে দেখা যাচ্ছে প্রথম সারি থেকে সারির সংখ্যাগুলির যোগফল 116, 114, 112, 110, 108, 106 এবং প্রথম স্তম্ভ থেকে স্তম্ভের সংখ্যাগুলির যোগফল 141, 129, 117, 105, 93, 81

ষষ্ঠক্রমের এ-জ্বাতীয় যাদুবর্গে প্রতি কর্ণ, সারি ও স্তন্তের সংখ্যাণ্ডলির যোগফল

হয় $\frac{6(6^2+1)}{2} = 111$ ।

এখন দেখা যাচ্ছে প্রথম সারির যোগফল 116, 111 থেকে 5 বেশি এবং ষষ্ঠ সারির যোগফল 106, 111 থেকে 5 কম। তাই প্রথম সারির 12 ও ষষ্ঠ সারির 7 পরস্পর বদল করা হল। এইভাবে দ্বিতীয় ও পঞ্চম সারি, তৃতীয় ও চতুর্থ সারি এবং পরে প্রথম ও ষষ্ঠ স্তম্ভ, দ্বিতীয় ও পঞ্চম স্তম্ভ, তৃতীয় ও চতুর্থ স্তম্ভের

1	30	18	24	7	31
35	8	20	17	26	5
33	10	15	21	28	4
34	27	16	22	9	3
2	11	23	14	29	22
6	25	19	13	12	36

মধ্যে হিসাব করে সংখ্যার অদল বদল করলে একটি ষষ্ঠ ক্রমের যাদুবর্গ (উপরের ছবি) পাওয়া যাচ্ছে। অদল-বদল করার সময় বাকি সংখ্যাগুলি একই ঘরে রাখতে হবে।

আলোচিত তিনটি নিয়মের সাহায্যে তৃতীয় ক্রম থেকে দশম ক্রমের যাদুবর্গগুলির গঠন কর্ম দেখানো হল। অবশ্য বিকল্প অন্য নিয়মও কিছু আছে।

কোনও ক্রমের যাদুবর্গের সংখ্যা কত হতে পারে—এ প্রশ্নের উত্তরে বলা যায় প্রথম ক্রমের 'তুচ্ছ' যাদুবর্গ যে কোনও সংখ্যা নিজেই। দ্বিতীয় ক্রমের কোনও যাদুবর্গ হয় না অর্থাৎ দ্বিতীয় ক্রমের যাদুবর্গের সংখ্যা শূন্য। তৃতীয় ক্রমের যাদুবর্গ মূলত এক প্রকার—যদিও সারি ও স্তম্ভ বদল করে প্রতিফলন ও ঘূর্ণনের সাহায্যে মোট আট প্রকার চেহারা হতে পারে; প্রদত্ত উদাহরণসমূহে তাদের তিনটি এখানে দেওয়া হয়েছে। চতুর্থ ক্রমের যাদুবর্গ মূলত ৪৪০ প্রকারের—সারি ও স্তভের রকমফের করে যে সংখ্যা 880 × 8 = 7040 প্রকারের হতে পারে। কিন্তু পঞ্চম ক্রমের যাদুবর্গের সংখ্যা সঠিকভাবে নির্ণয় করা যায় নি; তবে মোটামুটি 320000000 প্রকারের হতে পারে ধারণা। এর থেকে উচ্চতর ক্রমের যাদুবর্গের সংখ্যা এখনও অনির্ণীত।

যাদূবর্গ সম্পর্কে আরও কিছু কথা

যাদুবর্গ তৈরি করার ক্ষেত্রে বাড়তি কিছু শর্ত আরোপ করে আরও বিশেষ ধরনের যাদুবর্গ তৈরি হয়েছে। যেমন n-ক্রম যাদুবর্গে তির্যক-ভাবে সম্পর্ক যুক্ত দুটি কোষের অর্থাৎ h-তম সারির k-তম কোষ এবং (n+1-h)-তম সারির (n+1-k)-তম কোষের সংখ্যা দুটির যোগফল যদি ধ্রুবক ও $n^2 + 1$ -এর সমান হয়, তবে যাদুবগটিকে সমঞ্জস বা সংযোজিত যাদুবর্গ বলে। যেমন, 'মেলাঙ্কোলিয়া' শীর্ষক বিখ্যাত ছবি—যা অ্যালবার্ট্ ডুরার 1514 খ্রিস্টাব্দে এঁকেছিলেন তাতে নিচের যাদুবর্গটি ছিল। লক্ষণীয় নিচের সারির মাঝের কোষদুটিতে ছবি আঁকার সাল 1514 আছে। এই বিখ্যাত যাদুবর্গটি সমঞ্জস। কারণ, এখানে প্রথম সারির প্রথম স্তম্ভের সংখ্যা + চতুর্থ সারির চতুর্থ স্তম্ভের সংখ্যা = 16 + 1 = 17 = 4² + 1 (ধ্রুবক)

16	3	2	13
5	10	11	8
9	6	7	12

d (and as 191 158" 115"

विकास सहित होताओं जनगणा

4 15 14 1 একই ভাবে 3 + 14 = 2 + 15 = 13 + 4 = 5 + 12 = 10 + 7 = $11+6=8+9=17=4^2+1$

অযুগ্ম ক্ষেত্রে গঠন সংক্রান্ত নিয়মের উদাহরণ হিসাবে পঞ্চম ক্রমের যে যাদুবর্গটি তৈরি করা হয়েছিল সেটিও সমঞ্জস। কারণ সেখানে তির্যক্-ভাবে সম্পর্কযুক্ত কোষদ্বয়ের সংখ্যা দুটির যোগফল (যেমন 17 + 9 = 24 + 2 = = 23 + 3 = 5 + 21 = ... = 5² + 1) সব ক্ষেত্রেই 26 (ধ্রুবক)—যেটি 5² + 1-এর সমান।

আর যাদ্বর্গের প্রধান দুটি কর্ণ ছাড়াও ভাঙা কর্ণ বরাবর সংখ্যাগুলির যোগফল সমান হলে সেই যাদুবর্গকে সমকর্ণ বলে। এই ধরনের যাদুবর্গকে সর্ব-মনোহর বা অতিবলী যাদ্বর্গও বলা হয়। চতুর্থ ক্রমের সমকর্ণ যাদ্বর্গের উদাহরণ (এটি আগে উল্লিখিত হয়েছে)—

13	10	3	6
4	5	16	6 ⑨ 7 12
14	11	2	7
1	8	13	12

এখানে মূল কর্ণদ্বয় বরাবর সংখ্যাগুলির যোগফল

$$15 + 5 + 2 + 12 = 34 = 6 + 16 + 11 + 1$$

ছয়টি ভাঙা কর্ণ বরাবর সংখ্যাগুলির যোগফল

$$15 + 9 + 2 + 8 = 10 + 4 + 7 + 13$$

$$= 3 + 5 + 14 + 12 = 6 + 4 + 11 + 13$$

$$= 3 + 9 + 14 + 8 = 10 + 16 + 7 + 1 = 34$$

পঞ্চম ও সপ্তম ক্রমের দুটি সমকর্ণ যাদুবর্গের উদাহরণ উল্লিখিত হল ঃ

7	20	3	-11	24
13	21	9	17	5
19	2	15	23	6
25	8	16	4	12
1	14	22	10	18

সমকর্ণ পঞ্চম ক্রম

THE RE DIST HOST THINK

ALES IND COLL STREET BY

26	21	9	4	48	36	31	
44	39	34	22	17	12	7	1
20	8	3	47	42	30	25	
38	33	28	16	11	6	43	
14	2	46	41	29	24	19	
32	27	15	10	5	49	37	-0.00
1	45	40	35	23	18	13	

সমকর্ণ সপ্তম ক্রম

এটা জানা গেছে সমকর্ণ যাদুবর্গের ক্রম তিনের বেশি হবে এবং একক যুগ্ম ক্রমের ক্ষেত্রে সমকর্ণ যাদুবর্গ সম্ভব নয়। কাজেই চতুর্থ, পঞ্চম, সপ্তম, নবম ইত্যাদি ক্রমের সমকর্ণ যাদুবর্গ পাওয়া যেতে পারে।

বিখ্যাত একটি চতুর্থ ক্রমের যাদুবর্গের উল্লেখ করা হচ্ছে—যেটি খাজুরাহোতে ক্ষোদিত আছে। এটিও সমকর্ণ যাদুবর্গ। তবে এই যাদুবর্গের বিশেষত্ব এই যে প্রতিটি ব্লক-বর্গের পাশাপাশি সংখ্যা দুটি যোগ করলে যে সংখ্যা শ্রেণী পাওয়া যায় তা অভিন্ন। যেমন, প্রথম ব্লকে 7 + 12 = 19, 12 + 13 = 25,

$$13 + 2 = 15, 2 + 7 = 9$$

	12	1	14 11 5 4
2	13	8	11
6	3	10	5
0	6	15	4

অর্থাৎ সকল ব্লকেই এই যোগফলগুলি 9, 15, 19 ও 25 হয়েছে।

এই বিশেষ বিশেষত্বের জন্য বলা যায় খাজুরাহোতে ক্ষোদিত যাদুবর্গে উন্নত ভারতীয় মনীষার পরিচয় বর্তমান।

সপ্তম ক্রমের একটি যাদুবর্গের উল্লেখ করা হচ্ছে যেখানে সীমানা বাদে বাকি

বর্গটিও যাদুবর্গ। এ ধরনের যাদুবর্গকে বলা যায় সীমানা-যুক্ত বর্গ। সপ্তম ক্রমের সমগ্র যাদুবর্গের ক্ষেত্রে যাদু ধ্রুবক 175; তবে সীমানা বাদে ভিতরের পঞ্চম ক্রমের যাদুবর্গের ক্ষেত্রে যাদু ধ্রুবক 125; যেহেতু ভিতরের বর্গে 13 থেকে 37 পর্যন্ত সংখ্যাণ্ডলি আছে :. সূত্রানুসারে যাদু ধ্রুবক =

$$n\left[\frac{2a+d(n^2-1)}{2}\right]=5\left[\frac{2\times13+1(5^2-1)}{2}\right]=\frac{5\times50}{2}=125,$$

40	41	42	3	2	1	46
5	31	32	14	13	35	45
6	16	26	21	28	34	44
43	33	27	25	23	17	7
38	30	22	29	24	20	12
39	15	18	36	37	19	11
4	9	8	47	48	49	10

ভিতরের যাদুবর্গে যে কোনও সারি, স্তম্ভ বা কর্ণ বরাবর যোগ করলে ঐ সংখ্যা পাওয়া যায়। নিচের এই তৃতীয় ক্রমের যাদুবর্গের সংখ্যাণ্ডলি মৌলিক। মৌলিক সংখ্যার সাহায্যে গঠিত যাদুবগটির যাদু ধ্রুবক 177; এইভাবে মৌলিক সংখ্যাকে অবলম্বন করে বিভিন্ন ক্রমের যাদুবর্গ তৈরি করা হয়েছে। মান্সি প্রথম 144টি অযুগ্ম মৌলিক সংখ্যা নিয়ে দ্বাদশ ক্রমের যাদুবর্গ তৈরি করেছেন। তিনি অবশ্য 1-কে মৌলিক সংখ্যার মধ্যে নিয়েছেন। इक-बदर्गत नामालाम्ब अरबात मृति ह

71	89	17
5	59	113
101	29	47

অভিন্ন। বেমন, ধ্যাম ব্যক্ত 7 + 12 স্বনাম-খ্যাত বেঞ্জামিন ফ্রাঙ্কলিন যাদ্বর্গের অনুরাগী ছিলেন। তাঁর করা একটি অষ্টম ক্রমের যাদ্বর্গের উদাহরণ পরে দেওয়া হল। এর যাদুধ্রুবক 260 এবং এটি সমকর্ণ বা অতিবলী জাতীয়। তা ছাড়া এই যাদ্বর্গের বিশেষত্ব এই যে যে কোনও অর্ধস্তম্ভ বা অর্ধ সারির সংখ্যার যোগফল 130; এমনকি, বর্গের চার কোণের সংখ্যা ও মাঝের বর্গাকার চারটি খোপের সংখ্যার যোগফল = (52 + 16 + 17 + 45) + (54 + 10 + 23 + 43) = 130 + 130 = 260; এখানে ভাঙা কর্ণগুলির যোগফল এবং চারটি বক্র কর্ণের যোগফল প্রত্যেক ক্ষেত্রেই 260 অর্থাৎ যাদুধ্রুবকের সমান। বিশেষ ধরনের গুণ–সম্পন্ন একটি যোড়শ ক্রমের যাদুবর্গও ফ্রাঙ্কলিন তৈরি করেছিলেন। এ-বিষয়ে তিনি একটি চিঠিতে লিখেছিলেন—'আমি কোনও প্রশ্ন করছি না; তবে তুমি অবশ্যই স্বীকার করবে 16-এর বর্গ এখনও পর্যন্ত যে-কোনও যাদুকরের তৈরি যে-কোনও যাদুবর্গের মধ্যে যাদুর দিক থেকে যাদুত্য।

हत्सी लोश १ लाल ६४

দুল্যান ক্যাৎ্য চাল্ট

± 4 = 42, 23 4

2 + 14 + 26 #

र्गिकानम् साम् स्माध्यानि

阿拉伯 的复数经验 电神经	52	61	4	13	20	29	36	45
(EMPROVIEW SA I	14	3	62	51	46	35	30	19
गान्त्र (त्यान, 18 + २०	53	60	5	12	21	28	37	44
comme him non sonsio	11	6	59	54	43	38	27	22
Shills have the track	55	58	7	10	23	26	39	42
8 + 14 + 10 = 42	9	8	57	56	41	40	25	24
42 होत्। एड्रथं बन्धार	50	63	2	15	18	31	34	47
a man a market this	16	1	64	49	48	33	32	17

স্পষ্টত যাদুবর্গ গঠন এক আনন্দকর গাণিতিক ব্যায়াম। ফলে বিভিন্ন প্রকারের যাদুবর্গ তৈরি হয়েছে এবং হচ্ছে। মৌলিক সংখ্যা নিয়ে ত্রয়োদশ ক্রমের এমন যাদুবর্গ গঠন করা সম্ভব হয়েছে যার মধ্যে পর পর একাদশ, নবম, সপ্তম, পঞ্চম ও তৃতীয় ক্রমের যাদুবর্গ নিহিত আছে। যাদুবর্গের মধ্যে যাদুবর্গ, তার মধ্যে যাদুবর্গ, তার মধ্যে আবার যাদুবর্গ—এইভাবে যাদুবর্গের শ্রেণী চলেছে; অবশ্যই এটি এক বিস্ময়কর গাণিতিক প্রচেষ্টা।

যাদু ঘনক

n³ সংখ্যক নির্বাচিত সংখ্যাকে একটি n × n × n ঘনকের n³ সংখ্যক খোপে যদি এমনভাবে সাজানো যায় যে সকল দিক থেকে প্রত্যেক সারির প্রত্যেক স্তম্ভের ও ঘনকের চারটি কর্ণ বরাবর n-সংখ্যক সংখ্যাগুলির যোগফল সমান তবে সেই সাজানো সংখ্যা সমবায়কে যাদুঘনক বলে। যদি নির্বাচিত সংখ্যাণ্ডলি 1 থেকে \mathbf{n}^3 পর্যস্ত ক্রমিক স্বাভাবিক সংখ্যা হয়, তবে ঐ যোগফল হবে $rac{\mathbf{n}(\mathbf{n}^3+\mathbf{l})}{2}$ যেটি যাদু ঘনকের যাদু ধ্রুবক। একক যুগা ক্ষেত্রে যাদু ঘনক তৈরি করার কোনও নিয়ম জানা নেই। তবে অযুগ্ম ও দ্বৈতভাবে যুগ্ম ক্ষেত্রে যাদুবর্গ গঠনের নিয়মের প্রয়োজনীয় পরিবর্ধন বা পরিবর্তন করে যাদু ঘনক তৈরি করা যায়। এখন দুটি যাদু ঘনকের উদাহরণ দেওয়া হচ্ছেঃ

তৃতীয় ক্রমের যাদু ঘনকটিতে 1 থেকে 27 পর্যন্ত স্বাভাবিক সংখ্যাগুলিকে ঘনকের আকারে সাজানো হয়েছে, যাতে ঘনকের উপর দিক থেকে তিনটি স্তরে বর্গাকারে লেখা সংখ্যাগুলি হবে—

FULL PARTY	18	23	1
to still	22	3	17
F 15711	2	16	24

20	7	15		
9	14	19) TO	
13	21	8		

4	12	26
11	25	6
27	5	10

মাঝের স্তর

নিচের স্তর

এখানে যাদু ধ্রুবক হবে $\frac{3(3^3+1)}{2}$ = 42; যে-কোনও স্তরের সারির বা

স্তন্তের সংখ্যা যোগ করলে 42 পাওয়া যাবে। (যাদু ঘনকের ক্ষেত্রে বর্গস্তরের কর্ণের কোনও গুরুত্ব নেই; কাজেই তেমন সংখ্যাগুলির যোগফল 42 না হতেও পারে)। উপর থেকে নিচের দিকে যে কোনও স্তম্ভের সংখ্যার যোগফল (যেমন, 18 + 20 + 4 = 42, 23 + 7 + 12 = 42 ইত্যাদি) এবং ঘনকের চার কর্ণ বরাবর সংখ্যাগুলির যোগফল (যেমন, 1 + 14 + 27 = 42, 18 + 14 + 10 = 42, 2 + 14 + 26 = 42, 24 + 14 + 4 = 42) অবশ্যই 42 হবে। চতুর্থ ক্রমের নিম্নোক্ত যাদু ঘনকটি তৈরি করেছেন হীথ্; এখানে ঘনকের 64টি খোপে 1 থেকে 64

পর্যন্ত স্বাভাবিক সংখ্যাণ্ডলি আছে। স্বভাবতই যাদু ধ্রুবক $\frac{4(4^3+1)}{2}$ = 130 হবে। PER, REEL, CHEST & VERY

त्य बहुमा शास्त्राची, व्याप बहुमा		প্রথম		TE	E C	140	গীয় ভ		OFE
BANKS OF STREET	1	8	61	60	48	41	20	21	
	62	59	2	7	19	22	47	42	> 10
	52	53	16	9	29	28	33	40	Pine
	15	10	51	54	34	39	30	27	
	32	25	36	37	49	56	13	12	
HOURS TRAINE AN EASTER	35	38	31	26	14	11	50	55	
DUNK STORE WHEN YOU	45	44	17	24	4	5	64	57.	
Mary Section of Colors	18	23	46	43	63	58	3	6 DIE STETLE	िक

তৃতীয় স্তর

ক ক্রমের বা বার্লালাক করিছে তথ্য স্তর এই ছকটি স্তর অনুসারে সাজালে একটি চতুর্থ ক্রমের সমকর্ণ যাদুঘনক হবে। আর যেমন ভাবে পাশাপাশি লেখা আছে তা একটি 64 ঘরের ছক ভাবলে এটি হবে একটি অন্তম ক্রমের যাদুবর্গ—যার একটি বিশেষ ধর্ম আছে। তা হচ্ছে যে কোনও সারি, স্তম্ভ বা কর্ণ বরাবর একটি অন্তর সংখ্যাগুলির যোগফল 130; অন্তম ক্রমের

যাদুবর্গ হিসাবে এখানে যাদুধ্রুবক $\frac{8(8^2+1)}{2}$ = 260; উক্ত 130 তার অর্ধেক। আবার প্রতিটি স্তরই স্বতন্ত্র ভাবে চতুর্থ ক্রমের যাদুবর্গ যাদের প্রত্যেকটির যাদুধ্রুবক 130 হবে।

यापूठक वा यापूर्व

নির্বাচিত কিছু সংখ্যা বৃত্তাকারে কোনও গঠন গত পরিকল্পনা অনুসারে যদি এমন ভাবে সাজানো হয় যে কোনও ব্যাসার্ধ বরাবর (বা অন্য কোনও নির্দিষ্ট ধারায়) সংখ্যাগুলির যোগফল সমান হয় তবে ঐ ভাবে সাজানো সংখ্যা-সমবায়কে যাদুচক্র বা যাদুবৃত্ত বলে। অবশ্য নির্বাচিত সংখ্যাগুলি 1 থেকে ক্রমিক স্বাভাবিক সংখ্যাশ্রেণীও হতে পারে। 1 থেকে 64 পর্যন্ত সংখ্যা ব্যবহার করে প্রদত্ত যাদুবৃত্তটি তৈরি হয়েছে। এখানে যে কোনও ব্যাসার্ধ বরাবর সংখ্যাগুলির যোগফল 260; আবার আটটি

ব্যাসার্ধের প্রত্যেকটির নিচের দিক থেকে প্রথম সংখ্যাগুলির যোগফল 31+34+23+42+24+41+32+33=260; একই ভাবে নিচের দিক

থেকে দ্বিতীয় সংখ্যাগুলির, তৃতীয় সংখ্যাগুলির,...... অন্তম সংখ্যাগুলির যোগফল 260 যেটি এক্ষেত্রে যাদুগ্রনক। স্বভাবতই চারটি ব্যাস বরাবর প্রত্যেক ক্ষেত্রে 16টি সংখ্যার যোগফল 260 × 2 = 520 হবে। আরও বিভিন্ন দিক থেকে এই যাদুচক্রের সমতা আছে। ব্যাসার্ধগুলিকে প্রথম, দ্বিতীয়,.... অন্তম হিসাবে চিহ্নিত করে প্রথম ও দ্বিতীয় ব্যাসার্ধের অনুরূপ সংখ্যাদ্বয় (উপর থেকে একই নম্বরের সংখ্যা) যোগ করলে 65 হবে যোগফল। একই ফল পাওয়া যাবে তৃতীয় ও চতুর্থ ব্যাসার্ধ থেকে; একই ভাবে পঞ্চম ও ষষ্ঠ এবং সপ্তম ও অন্তম ব্যাসার্ধ একসঙ্গে বিবেচিত হতে পারে। আবার, প্রথম থেকে চতুর্থ বা পঞ্চম থেকে অন্তম ব্যাসার্ধ নিয়ে অনুরূপ সংখ্যাগুলি যোগ করলে যোগফল হবে 130; প্রথম থেকে ষষ্ঠ ব্যাসার্ধ একসঙ্গে ভাবলে অনুরূপ সংখ্যার যোগফল 195 হবে।

অন্য ধরনের যাদু গঠন

এই শ্রেণীর মধ্যে সংখ্যা-শ্রেণী নিয়ে বিচিত্র ধরনের সমতাধর্মী গঠন ভাবা যেতে পারে। তাদের মধ্যে একটির উল্লেখ করা হচ্ছে। সেটি তারকা পঞ্চভুজ বা পঞ্চভুজাকৃতি নক্ষত্র। এই বিশেষ ধরনের সমতাধর্মী জ্যামিতিক চিত্র আর্কিমিডিস- যুগের। তাঁর সম্প্রদায়ের অর্থাৎ আর্কিমিডীয় সম্প্রদায়ের প্রতীক চিহ্ন ছিল তারকা পঞ্চভুক্ত। তাঁরা ভাবতেন, এর মধ্যে একটা রহস্য আছে, আছে পবিত্রতা ও অশুভ থেকে রক্ষার প্রতিষেধক শক্তি। তাই তারকা পঞ্চভুক্তকে তাঁরা বলতেন 'পেণ্টাগ্রামা মিস্টিকাম'। বিপদ ত্রাণের কবচ হিসাবে পীথাগোরাসের শিষ্যদের মতো প্রাচীন

পৃথিবীর অনেক ধর্ম সম্প্রদায় তারকা পঞ্চভুজকে গ্রহণ করেছিলেন। এই তারকাকল্প জ্যামিতিক চিত্রের ছেদবিন্দু দশটিতে নির্বাচিত সংখ্যাগুলি যদি এমনভাবে বসানো যায় যে যাদুবর্গের মতো ফলের সমতা পাওয়া যায় তা হলে সেটি হবে যাদু তারকা পঞ্চভুজ। এখানে ছেদবিন্দুগুলিতে 1, 2, 3, 4, 5, 6, 8, 9, 10, 12—এই সংখ্যাগুলি এমনভাবে বসানো আছে যে যে কোনও বাহু বরাবর সংখ্যাগুলির যোগফল হবে 24, যেটি এক্ষেত্রে যাদুধ্বক।

প্রদত্ত তিনটি যাদুবৃত্তের ছেদবিন্দুতে 1, 2, 3, 4, 5, 6—এই ছ'টি সংখ্যা সাজ্ঞানো হয়েছে। এখানে যে-কোনও বৃত্তের উপরিস্থিত সংখ্যাগুলির যোগফল অন্য

। বৃত্তের উপরিস্থিত সংখ্যাগুলির যোগফলের সমান। যেমন একটি বৃত্তে 1 + 2 + 6

+ 5 = 14, অন্য বৃত্ত দুটিতে যথাক্রমে 1 + 3 + 6 + 4 = 14, 4 + 2 + 3 + 5 = 14 অর্থাৎ একই যোগফল হয়েছে।

এখানে সাতটি সুষম
বড়ভূজের শীর্ষ বিন্দুতে 1 থেকে
24 সংখ্যাগুলি এমনভাবে
সাজানো হয়েছে যাতে প্রতিটি
বড়ভূজের শীর্ষবিন্দুস্থ ছ'টি

সংখ্যার যোগফল সমান হয়েছে। দেখা যাচ্ছে

$$= 17 + 11 + 13 + 9 + 3 + 22$$

$$= 13 + 12 + 16 + 2 + 23 + 9$$

$$= 5 + 20 + 18 + 10 + 14 + 8$$

$$= 18 + 6 + 19 + 7 + 15 + 10$$

$$= 15 + 7 + 1 + 24 + 16 + 12$$

আবার ষড়ভুজগুলির সম্মিলিত নক্সার সবচেয়ে বাহিরের ধারের সংখ্যাদ্বয়ের যোগফল প্রতি ক্ষেত্রে 25; যেমন, 4 + 21 = 5 + 20 = 6 + 19 = 1 + 24 = 2 + 23 = 3 + 22 = 25 I (মোট 6টি 25)

লক্ষণীয় 1 থেকে 24 সংখ্যা শ্রেণীর মধ্যবর্তী দৃটি সংখ্যা (দ্বাদশ ও ত্রয়োদশ সংখ্যা) 12, 13 যাদের যোগফল 25।

সাতটি ষড়ভুজের ঠিক মাঝের ষড়ভুজের শীর্যবিন্দুস্থ সংখ্যা 10, 11, 12, 13, 14, 15 এবং এগুলি 1 থেকে 24 সংখ্যাশ্রেণীর মধ্যবর্তী ছ'টি সংখ্যা। এখানে শ্রেণীর মোট 24টি সংখ্যার মধ্যে 1 থেকে 9 অর্থাৎ প্রথম ন'টি এবং 16 থেকে 24 অর্থাৎ শেষ ন'টি বাদ গেছে।

উক্ত ষড়ভুজ-সপ্তকের বাহিরের শীর্ষ বিন্দুস্থ সংখ্যাণ্ডলির যোগফল = 6×25 $+ (17+8) + (18+7) + (16+9) = 9 \times 25 = 225$

এইভাবে বিভিন্ন ধরনের যাদু-জ্যামিতিক গঠনের কথা ভাবা হয়েছে।

ত্যালিকার ত্রেকর দেখে ব্যাহ লাল অযাদু বর্গ । ৪০% সভার ভিত্ত ই নিশ্বন ইত্যাস

যদি $n \times n$ বর্গাকার ক্ষেত্রের n^2 -সংখ্যক কোষে 1 থেকে n^2 পর্যন্ত স্বাভাবিক সংখ্যাণ্ডলি এমনভাবে বসানো যায় যে, সকল সারি, স্তম্ভ ও কর্ণ বরাবর সংখ্যাণ্ডলির যোগফল প্রতি ক্ষেত্রে পৃথক হয়, তবে সংখ্যাসহ সেই বর্গাকার ক্ষেত্রকে অসমবর্গ MAK MERO KUTHU DAKE

नमाम। गृहर्ग सम्भू आक्रम	1	2	3	4	= 10	
17, 23, 4, 10, 11 30	5	6	7	8	= 26	1618
एकात गाना भारतन ।, 7. 11. 2 मेर पनि धन्तर भारत	5 9 13	10	11	12	=42 psq , 41p ss 25 , 41	
महाराज्य स्थाप कारकी रीवा	13	14	16	15	= 58 0 2 20 01 21	जीव ^ह
नवाक कर वर्गावा	*	II 32	II 37	39	े अपनीत है। इस ति हिन्दू कि उस जा र कर है।	

प्राप्तक बार्डि बनावन क वर्ग नवावन (प्राप्तक नवास बादन) प्रमुद्ध काव ब्रद्धाव्यम বলে। নিচের 16-কোষ সমন্বিত বর্গ—যেখানে সারি, স্তম্ভ ও কর্ণ বরাবর যোগফল বিভিন্ন, সেটি স্পষ্টত একটি অসমবর্গ। এখন অসমবর্গের ক্ষেত্রে যদি সারি, স্তম্ভ ও

কর্ণ বরাবর সংখ্যাসমূহের যোগফলগুলি ক্রমিক সংখ্যাশ্রেণী গঠন করে, তবে সেই বর্গকে অযাদুবর্গ বলে। অযাদুবর্গ গঠন করা অবশ্যই পরিশ্রম-সাধ্য। এখানে একটি চতুর্থ ক্রমের অযাদুবর্গের উদাহরণ সন্নিবিষ্ট হলঃ

দেখা যাচ্ছে সারি, স্তম্ভ ও কর্ণ বরাবর সংখ্যাশ্রেণীর যোগফল 30, 31, 32, 33, 34, 35, 36, 37, 38 এবং এগুলি ক্রমিক সংখ্যা। যাদুবর্গ গঠনের যেমন নিয়ম আছে, অযাদুবর্গ গঠনের তেমন কোনও নিয়ম নেই। সেদিক থেকে অযাদুবর্গ গঠন এক জটিল মজার গাণিতিক ব্যায়াম।

4000 at 10 = 1 + 24	15	2	12	4	=33	
	1 ,	14	10	5	= 33 = 30	
MARKE & HOLE) (BOX II)	8	9	3	16	=36	
	11	13	6	7	=37	naesi
4 € width 10, 11, 12, 13,	315	38	311	32	ाय कर्ता एक उटकेंग विकास	

ान, 15 सहस्र ताव मि 1 दशहर देन महत्वादिशीय अस्पर्ध के कि महत्वता संबद्धि द्वांतीय বিশেষ ধরনের একটি খাঁধা

এখন বিশেষ ধরনের ধাঁধা ও তার সমাধান সম্বন্ধে জানানো হচ্ছে। এই ধাঁধার সমাধানে যাদুবর্গ না লাগলেও সমতাধর্মী এক জাতীয় সংখ্যা বিভাগ আছে।

প্রশ্ন ঃ নম্বর দেওয়া মোট পঁচিশটি থলি আছে। এখন 1 নং থলিতে 1টাকা, 2 নং থলিতে 2 টাকা, 3 নং থলিতে 3 টাকা,..... এইভাবে 25 নং থলিতে 25 টাকা আছে। এখন 5 জন ব্যক্তির মধ্যে ঐ থলিগুলি সমানভাগে ভাগ করতে হবে যাতে প্রত্যেকে পাঁচটি থলি পায় এবং প্রত্যেকের প্রাপ্য সমান হয়। কোনও থলির টাকা ভাঙা যাবে না—প্রয়োজনে থলি পুরাপুরি দিতে হবে।

সমাধান ঃ এই ধাঁধার সমাধান নির্ভর করছে পঞ্চম ক্রমের এমন 'যাদুবর্গের' উপর যেখানে কেবল সংখ্যাগুলির স্তম্ভ বরাবর যোগফল সমান। পূর্বে প্রদত্ত পঞ্চম ক্রমের যাদুবর্গ থেকে জানা যাচ্ছে—প্রথম ব্যক্তি পাবেন 17, 23, 4, 10, 11 নং থলি, দ্বিতীয় ব্যক্তি পাবেন 24, 5, 6, 12, 18 নং থলি, তৃতীয় ব্যক্তি পাবেন 1, 7, 13, 19, 25 নং থলি, চতুর্থ ব্যক্তি পাবেন 8, 14, 20, 21, 2 নং থলি এবং পঞ্চম ব্যক্তি 15, 16, 22, 3, 9 নং থলি পাবেন। প্রত্যেকে পাঁচটি হিসাবে থলি পাচ্ছেন এবং প্রত্যেকের টাকার পরিমাণ হবে 65 টাকা। যাদুবর্গে সংখ্যাগুলির স্তম্ভ বরাবর ছাড়াও সারি বরাবর ও কর্ণ বরাবর যোগফল সমান থাকে। এখানে তার প্রয়োজন নেই বলে অন্যভাবে সহজে সমাধান করা যায়। সেই সমাধান যে নিয়মে হচ্ছে তা প্রয়োগ করে দেখালে বোঝা যাবে। 5 × 5 খোপ-যুক্ত বর্গ নিয়ে তার প্রধান কর্ণ (বাম

जिल्ली द्यान कहा करिय सह।'

দিকের উপর থেকে ডান দিকের নিচে) বরাবর 1, 2, 3, 4, 5 বসিয়ে তারপর উপর থেকে প্রথম সারি বরাবর ফাঁকা খোপে বাম দিক থেকে পর পর 6, 7, 8, 9 বসানো হল। এর পরে দ্বিতীয় সারিতে ফাঁকা খোপে 10, 11, 12, 13 বসিয়ে ক্রমে তৃতীয়, চতূর্থ ও পঞ্চম সারিতে ফাঁকা খোপে 14 থেকে 25 সংখ্যাগুলি বসাতে হবে। এখন যোগ করলে দেখা যাবে প্রতি স্তন্তের সংখ্যাগুলির যোগফল 65; আমাদের প্রশ্নের সমাধান এই নৃতন ধরনের 'যাদুবর্গ' থেকেও পাওয়া যাবে—যেখানে কেবল স্বস্ত বরাবর যোগফল সমান হয়। কাজেই প্রথম ব্যক্তি পাবেন, 1, 10, 14, 18, 22 নং থলি, দ্বিতীয় ব্যক্তি পাবেন 2, 6, 15, 19, 23 নং থলি, তৃতীয় ব্যক্তি পাবেন 3, 7, 11, 20, 24 নং থলি, চতুর্থ ব্যক্তি পাবেন 4, 8, 12, 16, 25 নং থলি এবং পঞ্চম ব্যক্তি পাবেন 5, 9, 13, 17, 21 নং থলি। স্কুল্ক ক্রিক্ট সালের স্কুল্

1	6	7	8	9
10	2	11	S12	13
14	15	3	16	17
18	19	20	4	21
22	23	24	25	5
65	65	65	65	65

এখন যে নিয়মটির কথা বলা হল তা n²-কোষযুক্ত যে-কোনও বর্গক্ষেত্রে প্রয়োগ করা যাবে। তার সাহায্যে ${f n}$ সংখ্যক ব্যক্তির মধ্যে ${f 1,\ 2,\ 3,....n^2}$ নম্বর যুক্ত টাকার থলি (যে থলিতে টাকার পরিমাণ তার নম্বরের সমান) ভাগ করা যাবে যাতে প্রত্যেক ব্যক্তি n সংখ্যক থলিতে মিলে সমান পরিমাণ টাকা পান। স্পষ্টত এক্ষেত্রে প্রত্যেক ব্যক্তির প্রাপ্য টাকার মোট পরিমাণ হবে $\frac{n(n^2+1)}{2}$; পাঁচ ব্যক্তি ও পূর্ব এড়িয়ে-বেডে চাওরা সমস্যাসমূল 2-সংখ্যাল লিছনে লা ছুটে যে বেড়বোলী সম্বন্ধে

কথিত পঁচিশটি টাকার থলি থাকলে প্রত্যেকে মোট টাকা পাবেন $\frac{5(5^2+1)}{2}$ অর্থাৎ যোগের মংগ্রা হলে সক্ষা মোটের তেগী সংগ্রা। বস্তুত, সামাসের সংগ্ সকর হোচের জেনীর 2-সংগা। কিছুল কান্তুত পোনাকাও এই স

जर-विश्वक जनर जरकान दा वर्जकनित खोजक खामता यामा कवि वहि गरका व्यक्ति

नेपालक की स्थान है। जिल्ला की किया जिल्ला की स्थान र्वाह में नात्य तक वाजा कात जल क्षण क्षण कार, तक क्षाज़ हाड, तक क्षाज़ কাইন, এক বোভা পাছরা চি বোলা। তা ছামলা ইনিছত ভাবে জানি। যোড়ামের

(अभीद अस्था शक कथाय जन त्यापापन (अनीत्स त्याचापह । डाट

कारणा । (सरे सर भावता निरम

াপ্ৰীদ ক্ৰছে তীম নাক বীদাৰ

सेंग्र मेंहे अध्याता अध्या कि हो।

स्थाहरू तका स्थाप

THE PART WHITE BEING STORY ভিত্তি 'ট্ট' সংখ্যার এট সংঘ্যা

চতুর্থ অধ্যায়

"The mathematical method reflected the universe,

It had the power to produce an inexhaustible
variety of rational forms."

86

THE PART STIER FROM SECTION AT PARTY IN - Dantzig. SPORE

নালের হালালে কি ক্লোলাল ক্লিক্স ক্রিক্স ক্রিক্স সংখ্যা কতিপয় কৃত্রিম সংখ্যা

ার 🖎 🐉 👫 ়া সংখ্যার সংজ্ঞা নিয়ে দু'-একটি কথা 🚟 🕬 🕬 🕬

পূর্ববর্তী তিনটি অধ্যায়ে স্বাভাবিক সংখ্যাসমূহ ও বিশেষ সংখ্যা শূন্য দিয়ে অনেক ধরনের আলোচনা হয়েছে। অবশ্য এই সংখ্যাগুলি কি—তাদের প্রকৃত সংজ্ঞা কি—সে-সম্পর্কে তত্ত্বগত কোনও কথা বলা হয় নি। উনিশ শতকের মাঝামাঝি সময় থেকে দার্শনিকেরা নানাভাবে সংখ্যার সংজ্ঞা পেশ করেছেন। সেই সব সংজ্ঞা নিয়ে তর্ক-বিতর্ক হয়েছে;—কিন্তু মীমাংসা হয় নি। দুটি চোখ, দুটি কান, দুটি হাত, দুটি পা বলার সময় দুই কি বোঝাচ্ছে তা ধারণা করতে পারলেও দুই সংখ্যার সংজ্ঞা কি তা ভাষায় বোঝানো সহজ নয়। সংজ্ঞার ভাষা সেখানে সংখ্যাকে কেমন যেন ধোঁয়াটে করে তোলে; কোনও ভাবে ভাসা ভাসা বোঝা গেলেও মনের মধ্যে সংখ্যার ধারণাবোধ স্পষ্ট হয় না। তবু পাঠক-পাঠিকাদের অবগতার্থে 'দুই' সংখ্যার যে সংজ্ঞা বার্ট্রাণ্ড রাসেল তাঁর 'য়্যান ইনট্রোডাক্সন টু ম্যাথমেটিক্যাল ফিলোজফি' গ্রন্থে দিয়েছেন তা হল ঃ আমরা স্বভাবতই মনে করি যে যোড় শ্রেণী 2 সংখ্যা থেকে কিছু পৃথক বস্তু। কিন্তু যোড় শ্রেণী সম্বন্ধে কোনও সন্দেহের অবকাশ নেই; এটি দ্বিধা-সংশয়-মুক্ত এবং এর সংজ্ঞা নিরূপণ কঠিন নয়। অথচ অন্য কোনও অর্থে 2-সংখ্যা হল এমন গাণিতিক বস্তু, যেটির অস্তিত্ব আছে অথবা তাকে আমরা ঠিকভাবে খুঁজে পেয়েছি— এ বিষয়ে আমরা কোনও সময়ে নিশ্চিত হতে পারি না। তাই আমাদের সব সময়ে এড়িয়ে-যেতে-চাওয়া সমস্যা-সঙ্কুল 2-সংখ্যার পিছনে না ছুটে যে যোড়শ্রেণী সম্বন্ধে আমরা নিশ্চিত, তাকে নিয়ে সস্তুষ্ট থাকাই বুদ্ধিমানের কাজ।.... এইভাবে একটি যোড়ের সংখ্যা হবে সকল যোড়ের শ্রেণী–সংখ্যা। বস্তুত, আমাদের সংজ্ঞা অনুসারে সকল যোড়ের শ্রেণীই 2-সংখ্যা। কিছুটা অদ্ভুত শোনালেও এই সংজ্ঞা সুনির্দিষ্ট ও সংশরমুক্ত এবং সংখ্যার যে ধর্মগুলির অস্তিত্ব আমরা আশা করি এই সংজ্ঞা থেকে সেগুলি প্রমাণ করা কঠিন নয়।

একথা ঠিক যোড়দের শ্রেণী 'দুই'-সংখ্যা থেকে স্বতন্ত্র। কিন্তু 'দুই'-সংখ্যাকে বুঝতে না পারলেও এক যোড়া কান, এক যোড়া চোখ, এক যোড়া হাত, এক যোড়া কাঁকন, এক যোড়া পায়রা কি বোঝায় তা আমরা নিশ্চিত ভাবে জানি। যোড়াদের শ্রেণীর সংখ্যা এক কথায় সব যোড়াদের শ্রেণীকে বোঝাচ্ছে। তাই একটু অস্বাভাবিক

লাগলেও সর্ব প্রকার যমকের শ্রেণী আর 'দুই' সংখ্যাকে সমার্থক ভাবা যায়। একই ভাবে সর্বজাতীয় তিনের শ্রেণী থেকে 'তিন' সংখ্যা, চারের শ্রেণী থেকে 'চার' সংখ্যা.... ইত্যাদির সংজ্ঞা নির্ধারিত হতে পারে। রাসেলের উক্ত সংজ্ঞা নিয়ে আপত্তি উঠেছে; আবার সংখ্যার অন্যবিধ সংজ্ঞাও এসেছে। কিন্তু সে সবের উল্লেখ দার্শনিকদের 'কচাল' মনে হবে এবং সংখ্যার মজা ও মজার সংখ্যা বুঝতে বিন্দুমাত্রও সাহায্য করবে না। তাই বর্তমান গ্রন্থে সংখ্যার সংজ্ঞা নিয়ে আলোচনা এখানেই শেষ হওয়া ভাল।

ন্দ্রকার হয় নিয়ন্ত্র নতুন সংখ্যা সাম্রাজ্যের বিস্তার ব্রহমেন্সম । সিন্তি ইং (🗝 o প্রসিদ্ধ জার্মান গাণিতিক লিওপোল্ড ক্রনেকার্ বলেছেন, ঈশ্বর আমাদের পূর্ণসংখ্যাগুলি দিয়েছিলেন; বাকি সবই মানুষের সৃষ্টি।' প্রয়োজনের তাগিদে ও মনীষী মানুষদের চিন্তার ফসল হিসাবে স্বাভাবিক সংখ্যা জগতের বাহিরে বিচিত্র সংখ্যা শূন্য ছাড়াও অন্য যে সব সংখ্যার কথা ক্রমশ জানা গেল তাদের কৃত্রিম সংখ্যা নামে এক সাধারণ শ্রেণীর অন্তর্ভুক্ত করা যায়। স্বাভাবিক সংখ্যাণ্ডলি সংখ্যার শ্রেণী বিভাগ অনুসারে প্রকৃত পক্ষে ধনাত্মক পূর্ণ সংখ্যা। এদের নিয়ে যোগ-বিয়োগ-গুণ-ভাগ প্রাথমিক চারটি গাণিতিক প্রক্রিয়া শুরু হয়েছিল। যোগের বিপরীত প্রক্রিয়া বিয়োগের ব্যবহার শুরু হলে দেখা গেল (5 – 3), (8 – 7) কিংবা অনুরূপ ক্ষেত্রে বিয়োগফল পরিচিত স্বাভাবিক সংখ্যা হলেও (5 – 5) বা (7 – 8)-এর মতো প্রশ্নের সমাধান করা যাচ্ছে না। অভাবই উদ্ভাবনের জননী। তখন স্বাভাবিক সংখ্যা-শ্রেণীর মধ্যে সমাধান না পাওয়ায় ঐ ধরনের প্রশ্নের সদৃত্তরের প্রয়োজনে শূন্য (0) ও ঋণাত্মক পূর্ণসংখ্যা যথা -1, -2, -3, -4,... ইত্যাদির কথা ভাবা হল। এইভাবে ধনাত্মক পূর্ণ সংখ্যা (স্বাভাবিক সংখ্যা), শূন্য ও ঋণাত্মক পূর্ণসংখ্যা নিয়ে সন্মিলিত পূর্ণ সংখ্যার জগং পাওয়া গেল।

विकास (१३) माळाळा विकास में मूलप जर्था এর পরে গুণন কার্যে অসুবিধা না হলেও বিপরীত প্রক্রিয়া ভাগ করতে গিয়ে $16 \div 4 = 4$, $51 \div 17 = 3$, $(-15) \div 3 = (-5)$, $(-70) \div (-10) = 7$, $0 \div 9 =$ 0, প্রভৃতি ক্ষেত্রে সমাধান পেলেও 8 ÷ 15, (-11) ÷ 24, (-25) ÷ (-7), $53 \div (-99)$ ধরনের ভাগের কোনও সমাধান মিলল না। তখন সংকট এড়াতে $\frac{8}{15}$,

 $-\frac{11}{24}, \frac{25}{7}, -\frac{53}{99}$ জাতীয় নূতন সংখ্যা উদ্ভাবিত হল—যাদের বলা হয় সামান্য ভগ্নাংশ। পূর্বোক্ত পূর্ণ সংখ্যার জগতের সঙ্গে ধনাত্মক ও ঋণাত্মক ভগ্নাংশ রাশির সমন্বয়ে -ব্যাপকতর যে সংখ্যা জগত পাওয়া গেল তার নাম মূলদ রাশি জগং।

গাণিতিকগণ মূলদ সংখ্যার সংজ্ঞা হিসাবে বলেছেন যে যদি p, q পরস্পর মৌলিক

পূর্ণ সংখ্যা এবং $\mathbf{q} \neq 0$ হয় তবে মূলদ সংখ্যা অবশ্যই $\frac{\mathbf{p}}{\mathbf{q}}$ আকারে লেখা যাবে। কোনও মূলদ সংখ্যাকে নির্দিষ্ট একটি মাত্র আকার দেওয়ার জন্য \mathbf{q} -কে সব সময়ে ধনাত্মক পূর্ণ সংখ্যা হিসাবে নেওয়া যেতে পারে। যেমন, $\mathbf{2} = \frac{2}{1}$ (এখানে $\mathbf{p} = 2$, $\mathbf{q} = 1$), $-4 = \frac{(-4)}{1}$ ($\mathbf{p} = -4$, $\mathbf{q} = 1$), $\frac{4}{6} = \frac{2}{3}$ ($\mathbf{p} = 2$, $\mathbf{q} = 3$), $-\frac{5}{17} = \frac{(-5)}{17}$ ($\mathbf{p} = -5$, $\mathbf{q} = 17$ ইত্যাদি)। $\mathbf{1}$ সংখ্যা থেকে শুরু হয়ে যোগ-বিয়োগ-শুণ-ভাগ এই চারটি মূল প্রক্রিয়ার সাহায্যে $\frac{\mathbf{p}}{\mathbf{q}}$ ধরনের সংখ্যা এসেছে; তাই এর নামকরণ হয়েছে মূলদ সংখ্যা। সসীম দশমিক ভগ্নাংশ আকারে লিখিত সংখ্যাগুলিও প্রকৃত পক্ষে মূলদ; কারণ, $0 \cdot 3 = \frac{3}{10}$, $\cdot 45 = \frac{45}{100} = \frac{9}{20}$, $7 \cdot 77 = \frac{777}{100}$... ইত্যাদি। স্বাভাবিক সংখ্যাকে 'অক্ষর' ভাবলে মূলদ সংখ্যাকে ধরা যেতে পারে সংখ্যাজগতের 'মুক্তাক্ষর'। মূলদ $\frac{\mathbf{p}}{\mathbf{q}}$ -কে নির্দিষ্ট ক্রমে লেখা নির্ধারিত নিয়মের অধীন পূর্ণসংখ্যা-যমক (\mathbf{p} , \mathbf{q}) বলা চলে।

আরও একটি কথা, পরিণাম মূল্যকে মূল্য হিসাবে গণ্য করে আবৃত্ত দশমিককেও মূলদ রাশির অন্তর্ভুক্ত করা হয়। যেমন— $\cdot \dot{3} = \cdot 3333... = \cdot 3 + \cdot 03 + \cdot 003 + \cdot 0003 +$

$$= \frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \frac{3}{10000} + \dots = \frac{3}{10} \left(1 + \frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \dots \right)$$

$$= \frac{3}{10} \left[\frac{1}{1 - \frac{1}{10}} \right] \quad (\text{ФРЗ Ф}, \ \underline{a + ar + ar^2 + \dots + to }, \ r < 1)$$

$$= \frac{3}{10} \times \frac{10}{9} = \frac{3}{9} = \frac{1}{3}$$

অন্যদিক থেকে দেখা যায় দশমিক সংখ্যাটিতে 3-এর সংখ্যা যত বাড়বে ততই তার মানের সঙ্গে $\frac{1}{3}$ -এর তফাৎ কমে আসবে;—শেষ পর্যন্ত এই পার্থক্য তুচ্ছ থেকে তুচ্ছতর, তুচ্ছতম হয়ে যাবে। ক্ষুদ্রাতিক্ষুদ্র সেই অন্তরফল ক্রমশ ধারণাকৃত যে কোনও ছোট সংখ্যার চেয়ে ছোট হওয়ায় ঐ অন্তরকে অ্বীকার করে $\cdot 3$ -এর মান বলা হয় $\frac{1}{3}$, যেটি একটি মূলদ রাশি। এই ভাবে

$$2 \cdot 285714 \rightarrow 2 \frac{285714}{999999} = 2 \frac{2}{7} = \frac{16}{7}$$

$$3 \cdot 2\dot{5}\dot{7} \rightarrow \frac{3257 - 32}{990} = \frac{3225}{990} = \frac{215}{66}$$

DA INFRIE SIL

এবং অনুরূপ আবৃত্ত দশমিকগুলি প্রকৃত পক্ষে মূলদ সংখ্যা।

অমূলদ সংখ্যা

এখন 1–একক বাহুবিশিষ্ট একটি বর্গক্ষেত্রের কর্ণের পরিমাণ হবে $\sqrt{1^2+1^2}=$ √2; স্বতন্ত্র চেহারার সংখ্যা এই √2 কি মূলদ? এ-প্রশ্নের উত্তর দিয়েছিলেন গ্রীক গাণিতিক পীথাগোরাস নিম্নোক্ত ব্যতিরেকী-জাতীয় প্রমাণের সাহায্যে। যদি √2 মূলদ

সংখ্যা হয় তবে $\sqrt{2}=rac{p}{q}$, যেখানে p ও q পরস্পর মৌলিক পূর্ণসংখ্যা এবং q ≠

 $p^2 = 2$ বা $p^2 = 2q^2$; দেখা যাচেছ p^2 কাজেই p-ও যুগ্ম সংখ্যা, যেটিকে অবশ্যই 2r আকারে লেখা যায়। এখন $p^2=2q^2$ থেকে পাওয়া যায় $4r^2=2q^2$ বা $\mathbf{q}^2=2\mathbf{r}^2$ \therefore \mathbf{q}^2 এবং তা থৈকে \mathbf{q} অবশ্যই যুগ্ম। \mathbf{p} , \mathbf{q} উভয়েই যুগ্ম হওয়ায় পরস্পর মৌলিক হতে পারে না—যে সিদ্ধান্তটি p, q সম্বন্ধে পূর্বগৃহীত সর্ত-বিরোধী। কাজেই √2 সংখ্যাটি মূলদ—এই সিদ্ধান্ত ভুল। √2 মূলদ নয়।

আবার √2-এর মান নির্ণয় প্রসঙ্গে দেখা যায় যে এর সঠিক কোনও মান নেই। উক্ততে বলা যায় √2-এর মান 1-এর বেশি, কিন্তু 2-এর কম। আরও হিসাব করলে ক্রমশ পাওয়া যাবে 1.4 < √2 < 1.5, 1.41 < √2 < 1.42, 1.4142 1.415, 1·41421 < √2 < 1·41422,...এইভাবে এগিয়ে যাওয়া যায়। কাজেই √2 = 1·41421... একটি অসীম অনাবৃত্ত দশমিক। এবংবিধ সংখ্যা—যা পূর্বেই প্রমাণিত ইয়েছে মূলদ নয়, তাকে বলা হয় অমূলদ সংখ্যা। অমূলদ সংখ্যা দু' জাতেরঃ

(1) বীজগণিতীয় অমূলদ সংখ্যা—যেগুলি কোনও বীজগণিতীয় সমীকরণের সমাধান। যেমন $\sqrt[3]{2}$, $\sqrt{5}$, $\sqrt[4]{7}$, এক কথায় $\sqrt[9]{a}$ (যেখানে a কোনও মূলদ সংখ্যার n শক্তি নয়), $\sqrt{2} + \sqrt{3}$, $\sqrt[3]{5} + \sqrt[4]{7}$, $5 + \sqrt{7}$ ইত্যাদি।

(2) তুরীয় অমূলদ সংখ্যা—যেগুলি কোনও বীজগণিতীয় সমীকরণের সমাধান নয়। যেমন, π, e,....

বাস্তব সংখ্যা 🖺 🖂 🗸 🗸 💮 অমূলদ সংখ্যার আগমনে সংখ্যা-জগৎ আরও সম্প্রসারিত হল। মূলদ ও অমূলদ সকল সংখ্যাকে বাস্তব সংখ্যা—এই সাধারণ নামে অভিহিত করা হয়। কাজেই বাস্তব সংখ্যার মধ্যে আছে ধনাত্মক পূর্ণ সংখ্যা, শূন্য, ঋণাত্মক পূর্ণসংখ্যা, ধনাত্মক ও ঋণাত্মক ভগ্নাংশ এবং করণী জাতীয় সংখ্যাসমূহ। বাস্তব সংখ্যাজগৎকে গণিতে একটি সম্পূর্ণ জগৎ ভাবা যেতে পারে।

अवन १- मानक वार्वित है अकार वर्षा अध्यक्ष भटना श्रीनाम बेंदर र्या १ - १ -

কৃতি দলভীমনী চতুৰ প্ৰায়ত্ত **জটিল সংখ্যা** হ_{চ মাণস} লাস্ত্ৰত ক্ষেত্ৰ হৈছ যেহেতু শূন্য ছাড়া যে কোনও বাস্তব সংখ্যার বর্গ ধনাত্মক, এবং $0^2=0$, তাই ঋণাত্মক সংখ্যার বর্গমূল কোনও বাস্তব সংখ্যা হতে পারে না। এই অসুবিধা দূর করতে একটি কাল্পনিক সংখ্যা $\sqrt{-1}=i$ -এর কথা ভাবা হল। a, b বাস্তব সংখ্যা হলে কাল্পনিক সংখ্যা i সহযোগে লিখিত মিশ্র সংখ্যা a + ib-কে বলা হয় জটিল সংখ্যা। এখানে a=0 হলে জটিল সংখ্যাটি বিশুদ্ধ কাল্পনিক সংখ্যা হবে এবং b=0 হলে সংখ্যাটি পরিণত হবে বাস্তব সংখ্যাতে। জটিল সংখ্যা a + ib-কে নির্ধারিত নিয়মের অধীন নির্দিষ্ট ক্রমে লেখা বাস্তব সংখ্যা-যমক (a, b) বলা হয়। একইভাবে e + iπ লেখা হবে (e, π) হিসাবে; (-5) = (-5) + oi = (-5, 0), (-4i) = 0 + (-4)i = (0, -4) ইত্যাদি।

(ত, -4) ইত্যাদি।

(ত, -4) ইত্যাদি।

इंग्लबर शहरू एक जातको p तुक्बिम मरथा p काल 13 महा sp .. रेट व sp প্রয়োজনের তাগিদে এই ভাবে সংখ্যা জগতের রাজত্ব ক্রমশ বিস্তৃত হয়েছে। স্বাভাবিক সংখ্যা—যা স্বভাবত এসেছিল তার বাহিরে গবেষক মনীষীদের উদ্ভাবনী শক্তির মাধ্যমে যে নৃতন সংখ্যাগুলি এল—যথা, ঋণাত্মক পূর্ণসংখ্যা, সামান্য ভগ্নাংশ (সসীম বা আবৃত্ত দশমিক সংখ্যা সহ) করণী জাতীয় সংখ্যা, তুরীয় সংখ্যা, জটিল সংখ্যা—তাদের সবগুলিকে সাধারণভাবে কৃত্রিম সংখ্যা নামে অভিহিত করা হয়েছে। 14143,

সংখ্যা জগতের কথা প্রাথমিকভাবে উল্লিখিত হল তার ব্যাপ্তি বোঝাতে। এ-বিষয়ে তত্ত্বগত কোনও দুরূহ আলোচনায় না যেয়ে বর্তমান অধ্যায়ে বিশেষ কয়েক প্রকার কৃত্রিম সংখ্যা সম্পর্কে শিক্ষার্থীদের পক্ষে প্রয়োজনীয় কিছু বক্তব্য রাখা হয়েছে।

আবৃত্ত দশমিক

এ কথা মনে রাখা দরকার, যে ভগ্নাংশের হর 2, 5 বা তাদের গুণিতক সেই ভগ্নাংশকে দশমিকে রূপান্তরিত করলে তা সসীম দশমিক হবে। আবার যে ভগ্নাংশের হরের উৎপাদক 2 বা 5 নয় সেগুলি দশমিকে আনলে তা হবে পুরাপুরি আবৃত্ত। ভগ্নাংশের হরে 2 বা 5 ছাড়াও অন্য উৎপাদক থাকলে সেটি দশমিকে হবে অংশত আবৃত্ত অর্থাৎ সেখানে অনাবৃত্ত অংশও থাকবে। 🔠 🕯 শিল্প 😢 👀 🕬 🕬 🖽 🖽 🖽 🖽

ভগ্নাংশকে আবৃত্ত দশমিকে পরিণত করার সহজ উপায়
প্রথমে $\frac{3}{7}$, $\frac{3}{13}$, $\frac{1}{19}$ -এর মতো ভগ্নাংশ যেখানে হরের উৎপাদক 2 বা 5 নয়, তাদের বিষয়ে বলা হচ্ছে। হরের এককাঙ্ক 9 না হলে উপযুক্ত কোনও সংখ্যা দিয়ে লব ও হরকে গুণ করতে হবে যাতে পরিবর্তিত হরের এককাঙ্ক 9 হয়। এই হরের সঙ্গে 1 যোগ করে যে সংখ্যা আসবে তার এককাঙ্কের 0 বাদে পাওয়া সংখ্যাটি এক্ষেত্রে প্রয়োজনীয় চাবির কাজ করবে। এর পরে লবের এককাঙ্ক লিখে তাকে ঐ চাবি সংখ্যা দিয়ে শুণ করে গুণফলের সঙ্গে লবের দশকাঙ্ক (যদি থাকে) যোগ করে যোগফলের এককাঙ্ক পূর্বে লেখা লবের এককাঙ্কের বাম দিকে লেখা হবে। নৃতন লেখা এই অঙ্কটিকে চাবি সংখ্যা দ্বারা গুণ করে আগের যোগফলের দশকাঙ্ক যোগ করে যোগফলের এককাঙ্ক লেখা হবে অব্যবহিত পূর্বে লেখা অঙ্কটির বাম দিকে। এইভাবে চলবে যতক্ষণ না পূর্বে পাওয়া অঙ্কগুলি আবৃত্ত হয়। পরে হিসাব করে দশমিক বিন্দৃটি বসাতে হবে। সহজ এই

নিয়মটি প্রয়োগ করে $\frac{2}{7}$ -কে দশমিকে পরিবর্তিত করা হচ্ছে।

 $\frac{2}{7} = \frac{2 \times 7}{7 \times 7} = \frac{14}{49}$; এখন 49 + 1 = 50 যার এককের 0 বাদ দিলে 5 হবে প্রয়োজনীয় চাবি–সংখ্যা। এখন হরের এককাঙ্ক (4) লিখে তাকে 5 দিয়ে গুণ করে তার সঙ্গে লবের দশকাঙ্ক 1 যোগ করলে পাওয়া যায় 21 যার (1) বসছে পূর্বোক্ত 4-এর বাম দিকে; হাতে থাকছে 2; এর পরে নৃতন লেখা 1-কে চাবি সংখ্যা 5 দিয়ে গুণ করে হাতের 2 যোগ করলে (7) হয় এবং এটি অব্যবহিত আগে লেখা 1-এর বাম দিকে বসবে। অনুরূপভাবে পরের ধাপে 7×5 বা 35-এর (5) বসছে; হাতে থাকছে 3; পরবর্তী ধাপে 5 × 5 + 3 অর্থাৎ 28-এর (8) বসবে; হাতে থাকবে 2; এর পরে হবে 8 × 5 + 2 অর্থাৎ 42-এর (2) অঙ্কটি এবং পরে আসবে 2 × 5 + 4-এর (4)। এর পরে এগোলে আবার পাওয়া যাবে (1) অর্থাৎ অম্বণ্ডলি আবৃত্ত হচ্ছে। এইভাবে চাবি

সংখ্যা 5-এর সাহায্যে ক্রমিকভাবে গুণ ও হাতের যোগের সাহায্যে ডান দিক থেকে বাম দিকে লিখে পাওয়া গেল... 14285714 যার আবৃত্ত অংশ 14 বাদ দিয়ে থাকে 285714; যেহেতু $rac{2}{7}$ -এর ক্ষেত্রে প্রথমেই দশমিক বিন্দু আসবে তাই

ভণ ক্রিয়ার বদলে ভাগ ক্রিয়ার সাহায্যেও পূর্বোক্ত ফলটি পাওয়া যায়; চাবি সংখ্যা 5 এ-ক্ষেত্রে ভাজক হবে এবং ফলের অঙ্কগুলি পাওয়া যাবে বাম দিক থেকে ডান দিকে পর পর। নিয়মটি উদাহরণের সাহায্যে বোঝা যাবে। লব 14-কে চাবি সংখ্যা 5 দিয়ে ভাগ করে ভাগফল হল (2); অবশিষ্ট 4-এর পাশে ভাগফল 2 লিখে যে 42 সংখ্যা পাওয়া গেল তাকে 5 দ্বারা ভাগ <mark>করলে ভাগফল হবে (8); ভাগশেষ 2-এর পাশে</mark> এই 8 লিখে সেই 28-কে 5 ভাগ করে ভাগফল আসবে (5); এইভাবে 35 ÷ 5 থেকে (7), 7 ÷ 5 থেকে (1), 21 ÷ 5 থেকে (4) এবং 14 ÷ 5 থেকে আবার 2 অর্থাৎ পুরাতন 2 ফিরে এসেছে। এর পরে দশমিক বিন্দু বসিয়ে $\frac{2}{7}$ = $\frac{1}{2}$ 8571 $\frac{1}{4}$

অনুরূপভাবে $\frac{1}{19}$ -এর ক্ষেত্রে চাবি সংখ্যা 19+1 অর্থাৎ 20-এর শূন্য বাদে সংখ্যাটি অর্থাৎ 2; গুণক্রিয়া অপেক্ষাকৃত সহজসাধ্য বলে সেইভাবে করে উত্তরের অঙ্কগুলি ডানদিক থেকে পর পর পাওয়া যাবে। শেষ পর্যন্ত হবে

সহজসাধ্য এই নতুন পদ্ধতির যে গাণিতিক কারণ আছে তা বুঝতে একটি গুণোত্তর শ্রেণী নেওয়া হল যার যোগফল S; ব সার সারের চালা চুত্র চালা বিজ্ঞান স্থিত।

এখন S =
$$\frac{1}{20} + \frac{1}{20^2} + \frac{1}{20^3} + \frac{1}{20^4} + \dots + \frac{1}{20^{n-1}} + \frac{1}{20^n}$$
 (1)

অতএব
$$20S = 1 + \frac{1}{20} + \frac{1}{20^2} + \frac{1}{20^3} + \dots + \frac{1}{20^{n-2}} + \frac{1}{20^{n-1}}$$
(2) থেকে (1) বিয়োগ করে প্রাওয়া যায়

$$19S = 1 - \frac{1}{20^{n}} : S = \frac{1}{19} \left(1 - \frac{1}{20^{n}} \right)$$

এখন
$$n \to \infty$$
 হলে $\frac{1}{20^n} \to 0$ \therefore $S = \frac{1}{19}$

কাজেই দেখা যাচেছ
$$\frac{1}{19} = \frac{1}{20} + \frac{1}{20^2} + \frac{1}{20^3} + \frac{1}{20^4} + \dots$$
 অনম্ভ পর্যন্ত $= \frac{1}{2.10} + \frac{1}{2^2.10^2} + \frac{1}{2^3.10^3} + \frac{1}{2^4.10^4} + \dots$ অনম্ভ পর্যন্ত

$$=\frac{1}{2.10}+\frac{1}{2^2.10^2}+\frac{1}{2^3.10^3}+\frac{1}{2^4.10^4}+....$$
 অনম্ভ পর্যন্ত

$$= \frac{.1}{2} + \frac{.01}{2^2} + \frac{.001}{2^3} + \frac{.0001}{2^4} + \dots$$
 অনন্ত পর্যন্ত
ভাগ ক্রিয়ার ক্ষেত্রে পর পর ধাপগুলি হবে

2)
$$1 (0$$
 2) $10 (5$ 2) $5 (2$ 2) $12 (6$ 2) $6 (3$ 2) $3 (1)$ $\frac{0}{1}$ $\frac{10}{1}$ $\frac{10}{1}$ $\frac{4}{1}$ $\frac{12}{1}$ $\frac{12}{0}$ $\frac{6}{1}$ $\frac{6}{1}$ $\frac{2}{1}$

2) 13
$$\begin{pmatrix} 6 & 2 \end{pmatrix}$$
 16 $\begin{pmatrix} 8 & 2 \end{pmatrix}$ 8 $\begin{pmatrix} 4 & 2 \end{pmatrix}$ 4 $\begin{pmatrix} 2 & 2 \end{pmatrix}$ 2 $\begin{pmatrix} 2 & 2 \end{pmatrix}$ 2 $\begin{pmatrix} 1 & 2 & 2 \end{pmatrix}$

এখন অসীম শ্রেণী (3) থেকে প্রতিপদের মান নির্ণয় করলে দেখা যাচ্ছে $\frac{1}{2}$ = $\cdot 05$, $\frac{.01}{2^2}$ = $\cdot 0025$, $\frac{.001}{2^3}$ = $\cdot 000125$, $\frac{.0001}{2^4}$ = $\cdot 00000625$,....; স্থানীয় মান অনুসারে এই পদগুলি যোগ করলে দশাংশ স্থানে হবে '0' যেটি পূর্বোক্ত ভাগের নিয়মে প্রথম ভাগফল, শতাংশ স্থানে হবে '5' যেটি দ্বিতীয় ভাগফল, সহস্রাংশ স্থানে আসবে 2 (তৃতীয় ভাগফল), এইভাবে অযুতাংশ স্থানে 5+1 বা 6 (চতুর্থ ভাগফল), লক্ষাংশ স্থানে 3 (পঞ্চম ভাগফল) ইত্যাদি। লক্ষ্ণীয় অসীম শ্রেণী (3)-এর হর উক্ত 2 সংখ্যাই সাফল্যের 'চাবি সংখ্যা'।

এর পরে $\frac{1}{35}$ -এর মতো ভগ্নাংশ যেখানে হরের উৎপাদকে 2 বা 5 আছে তাদের ক্ষেত্রে পূর্বোক্ত নিয়মটিই প্রয়োজনীয় কৌশলের সঙ্গে প্রযুক্ত হবে। যেমন $\frac{1}{35} = \frac{1}{5} \times \frac{1}{7} = \frac{1}{10} \times \frac{2}{7} = \frac{1}{10} \times .2 \times \frac{2}{10} \times \frac{2}{10} \times \frac{2}{10} \times \frac{2}{100} \times \frac{2}{10$

$$=\frac{1}{100} \times 3.57142$$
 (পূর্বোক্ত নিয়মে $\frac{4}{7}$ নির্ণয় করে)

 $= .03 \pm 7142$ ঠু হবে। কাজেই দেখা যাচ্ছে—এ ধরনের ভগ্নাংশকে দুটি অংশের গুণফল হিসাবে লেখা হচ্ছে যার একটি অংশ $\frac{1}{10}$, $\frac{1}{100}$, $\frac{1}{1000}$ এর মতো ভগ্নাংশ। তার পরে অন্য অংশটিকে আবৃত্ত দশমিকে রূপান্তরিত করে সেই ফলকে প্রয়োজন মত,

<u>1</u> 10, <u>1</u> 1000 ইত্যাদি দ্বারা গুণ করা হয়েছে।

অভিনব পূর্বোক্ত পদ্ধতিতে হরের এককান্ধ 9 আনার বদলে তার শেষ অঙ্কগুলি 99, 999 ইত্যাদি এনে তাতে 1 যোগ করে 0 বাদ দিয়ে ভগ্নাংশের আবৃত্ত রূপ অপেক্ষাকৃত তাড়াতাড়ি পাওয়া যেতে পারে। যেমন $\frac{3}{13} = \frac{3 \times 23}{13 \times 23} = \frac{69}{299}$, 299 + 1 = 300 \therefore এখানে চাবি সংখ্যা 3, এক্ষেত্রে আবৃত্ত দশমিকে দুটি করে সংখ্যা একসঙ্গে আসবে। '69'-কে বসিয়ে 69×3 বা 207-এর '07' তার বামদিকে বসান হল। এখন 07×3 বা 21-এর সঙ্গে 207-এর হাতের 2 যোগ করে যে সংখ্যা '23' পাওয়া গেল তা '07'-এর বামে এল। এর পরে $23 \times 3 = 69$ আসবে যা আগেই পাওয়া গিয়েছে। ঠিক মতো হিসাব করে দশমিক বিন্দু বসিয়ে পাওয়া গেল $\frac{3}{13} = 23076$

আবৃত্ত দশমিক থেকে ভগ্নাংশে পরিবর্তন

ভগ্নাংশকে আবৃত্ত দশমিকে রূপান্তরিত করার পূর্বোক্ত নিয়মটি বিপরীত ভাবে প্রয়োগ করে কিছু আবৃত্ত দশমিককে ভগ্নাংশে পরিবর্তিত করা যায়। এক্ষেত্রে হিসাব করে চাবি সংখ্যাটি নির্ণয় করতে হবে। উদাহরণ-সহযোগে প্রযুক্ত নিয়ম ব্যাখ্যা করা হচ্ছে।

আবৃত্ত দশমিক \cdot $\stackrel{.}{0}$ 12658227848 $\stackrel{.}{1}$ -এর ক্ষেত্রে দেখা যাচ্ছে ডান দিকের প্রথমাঙ্ক 1-কে 8 দিয়ে গুণ করে ডান দিক থেকে দ্বিতীয়াঙ্ক পাওয়া গিয়েছে। কাজেই 8 সংখ্যাটি চাবি সংখ্যা হতে পারে সেক্ষেত্রে 80 - 1 = 79 হবে নির্ণেয় ভগ্নাংশের হর এবং লব হবে আবৃত্ত দশমিক রূপের ডান দিকের প্রথমাঙ্ক 1; কাজেই প্রদত্ত আবৃত্ত দশমিকের ভগ্নাংশরূপে $\frac{1}{79}$ হতে পারে। এখন পূর্বোক্ত নিয়ম অনুসারে কাজ করে আবৃত্ত দশমিকের কিছু অংশ মিলিয়ে নিয়ে নিশ্চিত বলা যাবে যে এক্ষেত্রে নির্ণেয় ভগ্নাংশ $\frac{1}{79}$ = প্রদত্ত আবৃত্ত দশমিক।

আর একটি উদাহরণ নেওয়া হচ্ছে নিয়মটি ভালভাবে বোঝার জন্য। আবৃত্ত দশমিক \cdot $\dot{0}$ 18867924528 $\dot{3}$ -এর ক্ষেত্রে ডানদিকের প্রথমান্ধ 3 থেকে কোনও সংখ্যা দারা গুণ করে দ্বিতীয়ান্ধ 8-এ পৌঁছাতে হবে—যে সংখ্যাটি হবে এক্ষেত্রে সাফল্যের চাবিকাঠি। চিন্তা করলে দেখা যায় $3\times 16=48$ -এর 8 দ্বিতীয় স্থানে থাকতে পারে; সেক্ষেত্রে হাতের 4 তৃতীয় স্থান নির্ণয়ের সময় যোগ হবে। এখন প্রাথমিক ভাবে 16-কে চাবি সংখ্যা ভাবলে নির্ণোয় ভগ্নাংশের হর হবে 160-1 অর্থাৎ 159 এবং লব হবে প্রদত্ত আবৃত্ত দশমিকের ডান দিক থেকে প্রথমান্ধ অর্থাৎ 3; কাজেই ভগ্নাংশটি $\frac{3}{159}=\frac{1}{53}$ ভেবে পূর্বোক্ত নিয়মে দশমিকরাপের আরও দু-একটি অন্ধ মিলিয়ে ফল

সম্বন্ধে নিশ্চিত হতে হবে। দেখা যাবে প্রদত্ত আবৃক্ত দশমিক $= \frac{1}{53}$

ালে তৃতীয় আর একটি উদাহরণ থেকে দেখা যাবে চাবি-সংখ্যা নির্ণয় করতে হয় খুব সতর্কতার সঙ্গে। আবৃত্ত দশমিক · 84615 j-এর ক্ষেত্রে প্রথমে মনে হতে পারে চাবি সংখ্যা 5 (যেহেতু আবৃত্ত দশমিকের ডান দিকের প্রথমাঙ্ক 3 ও দ্বিতীয়াঙ্ক 5 এবং 3 × 5 =15) কিন্তু সেক্ষেত্রে নির্ণোয় ভগ্নাংশ হবে $rac{3}{49}$ এবং পূর্বোক্ত নিয়মানুসারে দশমিক রূপে ডান দিক থেকে পর পর পাওয়া যাবে 3, 5, 6, 2.... যা অবশ্যই প্রদত্ত দশমিক রূপের সঙ্গে মিলছে না। এক্ষেত্রে বুঝতে হবে নির্লেয় ভগ্নাংশের লবে কেবল প্রদত্ত দশমিকের প্রথমান্ধ 3 নেই আছে এককান্ধ 3-যুক্ত কোন বড় সংখ্যা। · 84615 3-এর সবচেয়ে ছোট অঙ্ক 1-এর বাম পাশের অঙ্ক 6 ও তার বাম দিকের অঙ্ক 4 থেকে সম্ভাব্য চাবি সংখ্যা 4 ভাবা যেতে পারে। সেক্ষেত্রে ভগ্নাংশের হর 40 – 1 = 39 হবে; চাবি-সংখ্যা 4 দ্বারা আবৃত্ত দশমিকের ডান দিকের প্রথমাঙ্ক 3-কে গুণ করে যে গুণফল 12 পাওয়া গেল, তার সঙ্গে হাতের (3) যোগ করলে হয় 15 যার 5 দশমিকে ডান দিক থেকে দ্বিতীয়াঙ্ক হতে পারে। এই হিসাবে নির্দেয় ভগ্নাংশের লব হবে (হাতের 3 হবে দশকের অন্ধ) 33; এখন ভগ্নাংশ $\frac{33}{39} = \frac{11}{13}$ দাঁড়াচ্ছে। সম্ভাব্য এই উত্তরের ক্ষেত্রে পূর্বোক্ত নিয়মানুসারে আবৃত্ত দশমিকে ডান দিক থেকে পর পর আসবে 3, 5, 1, 6— যা প্রদত্ত দশমিক রূপের সঙ্গে ঠিক মিলেছে। সূতরাং নির্ণেয় ভগ্নাংশ $\frac{11}{13}$ হবে।

অমূলদ সংখ্যা √2 গ্রীক গাণিতিক পীথাগোরাস সে যুগে প্রমাণ করেছিলেন যে √2 মূলদ সংখ্যা নয়। √2-এর মান নির্ণয় করলে পাওয়া যাবে এক অসীম অনাবৃত্ত দশমিক ভগ্নাংশ— 1-4142135...। কুর মান্দেটির লব সব সব সময়ে । কুরু: এই প্রাথ

প্রাচীন ভারতীয় গণিতে আছে নাম চলত প্রাণাত ক্লম ছান হর চুকুর স্কুন

''সমস্য দ্বিকরণি। প্রমাণং তৃতীয়েন বর্ধয়েৎ। তচ্চতুর্থেনাত্ম চতুন্ত্রিংশোনেন সবিশেষতঃ॥"

কাত্যায়ন শুল্ব সূত্ৰ ও বোধায়ন শুল্ব সূত্ৰেও (খ্ৰিঃ পৃঃ 800—খ্ৰিঃ পৃঃ 500) অনুরূপ ফলের কথা আছে। গণিতের ভাষায় লিখলে এক্ষেত্রে পাওয়া যায় √2 = 1 + $\frac{1}{3} + \frac{1}{3.4} - \frac{1}{3.4.34}$ যা থেকে $\sqrt{2}$ -এর মান হবে 1·4142156...; অবশ্যই প্রাচীন ভারতে স্থিরীকৃত করণী √2-এর উক্ত মান পাঁচ দশমিক পর্যন্ত শুদ্ধ। $\sqrt{2}$ -এর দশমিক মানকে প্রথম শিক্ষার্থীর মনে রাখার জন্য মজার এক ছড়া

আছে 'দু সাত্তে দু' বার, তিন সাত্তে আবার, পাঁচ সাত্তে কাবার।' অর্থাৎ $\sqrt{2}$ -এর দশমিক মানে $7 \times 2 = 14$ আসবে দু বার, $3 \times 7 = 21$ আসবে একবার এবং $5 \times 7 = 35$ লিখে শেষ করা যাবে। তাই পাওয়া যাচ্ছে 14142135; এর মধ্যে স্বভাবতই বাম দিকের 1-এর পরে দশমিক বিন্দু বসবে (যেহেতু $\sqrt{2}$ -এর মান 1-এর বেশি); তবে ছড়ায় মেলাবার জন্য 'কাবার' বললেও দশমিক মানটি অবশ্যই অসীম হবে। এইভাবে $\sqrt{2} = 1.4142135...$ পাওয়া গেল।

গ্রীক গাণিতিক থিওন $2=\frac{288}{144}$ জেনে (যেখানে হর পূর্ণবর্গ) তারপর লবের সঙ্গে 1 যোগ করে তাকেও পূর্ণবর্গ করেছিলেন। এইভাবে তিনি 2-এর মান $\frac{289}{144}=\left(\frac{17}{12}\right)^2$ -এর প্রায় সমান ধরে নিয়ে $\sqrt{2}$ -এর মোটামুটি মান $\frac{17}{12}$ বলেছিলেন। থিওনের এই ভগ্নাংশ মান দুই দশমিক পর্যন্ত শুদ্ধ ছিল।

উচ্চতর গণিতের ছাত্রছাত্রীদের কাছে $\sqrt{2}$ -এর অবিরত ভগ্নাংশের সাহায্যে লেখা মান বোধগম্য হবে। সেই মান বেশ মজার ধরনের এবং সহজে নির্ণয়যোগ্য। ধরা যাক, $\sqrt{2}=1+rac{1}{y}$;

$$\therefore y = 1 + \sqrt{2} = 2 + rac{1}{y}$$
 এই সম্বন্ধ থেকে ক্রমশ পাওয়া যাবে

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}$$
which has a property of the prop

2+...
√2-এর মান উক্ত অবিরত ভগ্নাংশটির লব সব সময়ে 1 হওয়ায় এটি সরল এবং একই হর বার বার আসার জন্য এটি আবৃত্ত জাতীয়।

विশেষ जूतीय সংখ্যা π

 π (পায়ই) কি? প্রাথমিক উত্তর—এটি গ্রীক বর্ণমালার একটি অক্ষর; সংখ্যা লিখনের ইতিহাসে গ্রীক বর্ণমালা-সংখ্যার জগতে π বোঝাত 80 সংখ্যাকে। তবে কিশোর ছাত্রছাত্রীদের জানার কথা, যে কোনও বৃত্তের পরিধির সঙ্গে তার ব্যাসের অনুপাত একটি ধ্রুবক—যার নাম দেওয়া হয়েছে π অর্থাৎ পরিধি \mathbf{c} , ব্যাস \mathbf{d} ও ব্যাসার্ধ \mathbf{r} হলে $\mathbf{c}=\pi\mathbf{d}=2\pi\mathbf{r}$ হবে। অন্য অনেক দিক থেকে বিশেষ তুরীয় সংখ্যা π -এর প্রয়োজন হলেও এখানে প্রথমে পরিচিত অনুপাত π -এর মান সম্বন্ধে বলা হবে। উক্ত মান—যার দশমিক রূপ অসীম ও অনাবৃত্ত—তা জানার জন্য চেষ্টা হয়েছে দেশে দেশে যুগে যুগে।

প্রাচীন ধর্ম পুস্তক 'ওল্ড টেস্টামেন্ট'-এর অন্তর্গত ক্রেনিকল্স্' (iv, 2)-এ আছে—'তিনি (সলোমন) দশ হাত চওড়া এক গোলাকার গলিত সমুদ্র নির্মাণ করলেন যার গভীরতা পাঁচ হাত এবং ত্রিশ হাত এক রেখা এটিকে পরিবেষ্টিত করেছিল।' কাজেই সলোমনের গলিত সমুদ্রের ব্যাস ছিল 10 হাত ও পরিধি 30 হাত; সূতরাং এখানে π = 3 ধরা হয়েছে। খ্রিস্টীয় ধর্ম পুস্তক 'দি বুক অফ কিংস্' থেকেও অনুরূপ মান পাওয়া যায়। গণিতের ইতিহাস থেকে জানা যাচ্ছে হিব্রুদের মতো ব্যাবিলনবাসীগণও π -এর মান 3 ধরতেন। তাঁরা বৃত্তের পরিধিকে 6 ভাগ করে দৈর্ঘ্যের দিক থেকে মোটামুটি ব্যাসার্ধের দৈর্ঘ্যের সমান চাপ (পরিধির অংশ) পেয়েছিলেন। সভ্যতার যে স্তরে গরুর গাড়ির চাকা তৈরি করা হত তাতে বাইবেলে উল্লিখিত মান 3 দিয়ে কাজ চালানো গেলেও পরবর্তীকালে π -এর অপেক্ষাকৃত শুদ্ধ মানের প্রয়োজন হয়েছিল এবং প্রয়োজনের তাগিদে গাণিতিকগণ তা নির্ণয় করেছিলেন। প্রসঙ্গত একটি কৌতুককর ঘটনার উল্লেখ করা হচ্ছে—যেখানে ধর্মের নামে সভ্যতার ঘড়ির কাঁটাকে পিছিয়ে দেওয়ার চেষ্টা হয়েছিল। বিখ্যাত বিবর্তন-তত্ত্বের বিচারের সময় আমেরিকার পশ্চাৎপদ এক কৃষি রাজ্যে বাইবেল-কথিত π -এর উক্ত মান 3-কে পুনঃপ্রবর্তনের জন্য সেখানকার আইন সভায় একটি বিল আনা হয়েছিল।

মিশরীয় সভ্যতা বেশ প্রাচীন। 1500 খ্রিস্ট পূর্বাব্দের মধ্যে মিশরীয়গণ $\pi=3\cdot16$ জেনেছিলেন। এ-বিষয়ে প্রমাণ পাওয়া যায় ব্রিটিশ মিউজিয়ামে রক্ষিত 'রিহ্দল প্যাপিরাস' থেকে। এটি মিশরীয় পুরোহিত আহ্মেশের সঙ্কলিত এবং পণ্ডিতেরা বলেন এর রচনাকাল 1700 খ্রিস্ট পূর্বান্দেরও আগে। উক্ত প্যাপিরাসে বলা হয়েছে ব্যাসের দৈর্ঘ্য থেকে তার নবমাংশ $\left(\frac{1}{9}\right)$ বাদ দিয়ে অবশিষ্টকে বর্গ করলে বৃত্তের ক্ষেত্রফল পাওয়া যাবে। এর গাণিতিক অর্থ, ক্ষেত্রফল $=\left(d-\frac{d}{9}\right)^2=\left(2r-\frac{2r}{9}\right)^2=\left(\frac{16}{9}\right)^2r^2$ । বৃত্তের এই ক্ষেত্রফলের মান π r^2 ধরা হয়। তাই দেখা যাচ্ছে প্যাপিরাসে পরোক্ষভাবে কেএর মান ধরা হয়েছে $\left(\frac{16}{9}\right)^2=3.1604...$ । গ্রীক গাণিতিক য়্যানাক্সোগোরাস (500-428 খ্রিঃ পূঃ) য্যানাক্সিমেনেসের (জন্ম 570 খ্রিঃ পূঃ) শিষ্য এবং 'আয়নিক' গোষ্ঠীর শেষ দার্শনিক ছিলেন। বন্দী অবস্থায় তিনি বৃত্তের ক্ষেত্রফলের সমান ক্ষেত্রফলবিশিষ্ট শেষ দার্শনিক ছিলেন। বন্দী অবস্থায় তিনি বৃত্তের ক্ষেত্রফলের সমান ক্ষেত্রফলবিশিষ্ট বর্গক্ষেত্র অঙ্কনের জন্য π -এর মোটামুটি শুদ্ধমান ব্যবহার করেছিলেন। হিপোক্রেটিস বর্গক্ষেত্র অঙ্কনের জন্য π -এর মোটামুটি শুদ্ধমান ব্যবহার করেছিলেন। হিপোক্রেটিস (আনুমানিক 460 খ্রিঃ পূঃ)-এরও π -এর ব্যবহার সম্পর্কে স্পষ্ট ধারণা ছিল। গ্রীসের (আনুমানিক মনীষী আর্কিমিডিস জ্যামিতির আলোচনায় অনেক এগিয়ে ছিলেন। তিনি অসাধারণ মনীষী আর্কিমিডিস জ্যামিতির আলোচনায় অনেক এগিয়ে ছিলেন। তিনি

অপেক্ষা বেশি এবং $3\frac{1}{7}$ অপেক্ষা কম অর্থাৎ গাণিতিক সঙ্কেতে $3\frac{10}{71} < \pi < 3\frac{1}{7}$, দশমিক ভগ্নাংশে এর অর্থ $3\cdot 1408.... < \pi < 3\cdot 1428...$ । একথা বিশেষভাবে স্মরণীয় যে সুদূর অতীতে আর্কিমিডিস কর্তৃক নির্ণীত মানের উর্ধ্বসীমা $3\frac{1}{7}$ অর্থাৎ $\frac{22}{7}$ বর্তমানে π -এর সাধারণ ভাবে গ্রহণযোগ্য মান হিসাবে ধরা হয়। 150 খ্রিস্টাব্দে টলেমির সময়ে $\pi = 3.1416$ জানা ছিল। এই মান চার দশমিক পর্যন্ত শুদ্ধ এবং এখন আমরা অনেক ক্ষেত্রে এটি ব্যবহার করি।

মিশরীয় সভ্যতার মতো চৈনিক সভ্যতাও অনেক প্রাচীন। চীনের গাণিতিক ইতিহাস থেকে জানা যায়—পুরাতন চীনা পুঁথিতে $\pi=3$ ধরা হলেও 125 খ্রিস্টাব্দে চ্যাং হং $\pi=\sqrt{10}$ অর্থাৎ $3\cdot16...$ নির্ণয় করেছিলেন। 265 খ্রিস্টাব্দে ওয়াং ফ্যান্ ও 289 খ্রিস্টাব্দে লিউ সী π -এর মান যথাক্রমে $\frac{142}{45}$ অর্থাৎ $3\cdot155...$ এবং $3\cdot125$ বলেছিলেন। 450 খ্রিস্টাব্দে গাণিতিক য়ু নির্ণীত মানকে ধরা হয়েছিল $3\cdot1432$ -এর চেয়ে বেশি। কৃষি ইঞ্জিনিয়ার তু চুং সী 470 খ্রিস্টাব্দে (মতান্তরে 48 খ্রিস্টাব্দে) এই ধ্রুবকের মান $\frac{22}{7}$ ও $\frac{355}{113}$ নির্ণয় করেছিলেন। ইঞ্জিনিয়ার সী তাঁর যুগের অনেক অগ্রবর্তী ছিলেন। তিনি পূর্বোক্ত মান দু'টিকে মোটামুটি গ্রহণযোগ্য ধরেও ব্যাসের পরিমাণ 10^8 ধরে সুক্ষতর গণনার সাহায্যে π -এর মানের নিম্ন সীমা $3\cdot1415926$ ও উর্ধ্বসীমা $3\cdot1415927$ বলেছিলেন। এই মান অনেক উন্নত এবং ছয় দশমিক পর্যন্ত শুদ্ধ। $\frac{355}{113}$ মানটি প্রাচীন জাপানেও জানা ছিল। তবে পাশ্চাত্য জগতে বহুদিন পর্যন্ত তা অজ্ঞাত ছিল। ইয়োরোপ খণ্ডে সহস্রাধিক বৎসর পরে 1573 খ্রিস্টাব্দে গাণিতিক ভ্যালেন্টিন অটো π -এর উক্ত চীনা মানকে গ্রহণ করেছিলেন। 1585 থেকে 1625 খ্রিস্টাব্দের মধ্যে আদ্রিয়েন য্যান্টনী π -এর $\frac{355}{113}$ মানটি নুতন করে নির্ণয় করেছিলেন।

মহামিশরীয় ও মহাচৈনিক সভ্যতার মতো মহাভারতীয় সভ্যতাও প্রাচীনত্বের দাবি করতে পারে। π -এর মান প্রসঙ্গে প্রাচীন ভারতীয় গণিতের ইতিহাসের দিকে তাকালে জানা যায় যে প্রথম দিকে $\pi=3$, পরে $\sqrt{10}$ বা $3\cdot 16...$ ধরলেও প্রথম আর্যভট্ট (আনুমানিক 478 খ্রিঃ) $\pi=\frac{62832}{20000}$ নির্ণয় করেছিলেন। এ বিষয়ে তিনি লিখেছিলেন—

''চতুরধিকং শতমষ্টগুণং দাযষ্টিস্তথা সহস্রাণাম্। অযুতদ্বয় বিদ্ধংভস্যাসন্মো বৃত্ত পরিণাহঃ॥'' বিশেষভাবে লক্ষণীয় আর্যভট্ট তাঁর কথিত মানের ক্ষেত্রে 'আসন' কথাটি ব্যবহার করেছেন এবং এই মানের দশমিক রূপ $3\cdot1416$ চার দশমিক পর্যন্ত শুদ্ধ। দিতীয় আর্যভট্টের (950 খ্রিঃ) যুগে π -এর পূর্বোক্ত মানই চলিত ছিল। গাণিতিক পূলিশ (এর সম্বন্ধে ব্রহ্মগুপ্ত বলেছেন) এবং পরবর্তী যুগে দ্বিতীয় ভাস্করাচার্য (1150 খ্রিঃ) π -এর মান $\frac{3927}{1250}$ (যেটি প্রথম আর্যভট্ট লিখিত ভগ্নাংশ মানের লঘিষ্ঠ রূপ মাত্র) ধরেছিলেন। ভাস্কর অবশ্য π -এর মোটামুটি মান হিসাবে $\frac{22}{7}$ সংখ্যাটিও জানতেন। কারণ পদ্ধতি' থেকে π -এর মান পাওয়া যায় $31415926536/10^{10}$ —যেটি 10 দশমিক পর্যন্ত শুদ্ধ। এই ধ্রুবকের 17 দশমিক পর্যন্ত শুদ্ধ মান $314159265358979324/10^{17}$ শঙ্কর বর্মণ লিখিত জ্যোতির্বজ্ঞান বিষয়ক পুস্তক শতরত্বমালা' থেকে পাওয়া গিয়েছে।

গণিতের উন্নতির সঙ্গে সঙ্গে π -এর মান অঁসীম শ্রেণীর সাহায্যে প্রকাশ করা সম্ভব হয়েছে। এমন দুটি শ্রেণী ও একটি অবিরত ভগ্নাংশ আবিষ্কর্তার নাম সহ উল্লিখিত হল ঃ

$$\frac{\pi}{2} = \frac{2.2}{1.3} \cdot \frac{4.4}{3.5} \cdot \frac{6.6}{5.7} \cdot \frac{8.8}{7.9} \cdot \dots \qquad \text{SMP} \qquad (1616-1703)$$

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots \qquad \qquad \text{SMP} \qquad (1638-1675)$$

$$\frac{4}{\pi} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{9^2}{2 + \dots}}}}$$

$$\frac{3^2}{2 + \frac{9^2}{2 + \dots}} \qquad \text{SPAPIS} \qquad (1620-1684)$$

এখন বিখ্যাত এই ধ্রুবকের চিহ্ন ব্যবহারের ইতিহাস অনুসরণ করা যাক্। অট্রেড (1574-1660) চিহ্ন ব্যবহারের দিকে যাঁর খুবই ঝোঁক ছিল তিনি এই ধ্রুবক অনুপাতকে $\frac{\pi}{8}$ চিহ্ন দিয়ে লিখেছিলেন তাঁর লেখা 'ক্ল্যাভিস্ ম্যাথ্মেটিক' পুস্তকের 1647 খ্রিস্টাব্দের ও তৎপরবর্তী সংস্করণে। এই চিহ্নের ব্যাপক ব্যবহার করেছিলেন ব্যারো (1630 - 1677)। 1706 খ্রিস্টাব্দে জোন্স তাঁর গণিতসারসংগ্রহ বিষয়ক পুস্তকের 263 পৃষ্ঠায় π চিহ্ন প্রথম ব্যবহার করলেন। 1737 খ্রিস্টাব্দে অয়েলার π চিহ্নের সঙ্গে তার মান $3\cdot14159...$ কে স্বীকৃতি দিলেন। তার পর থেকে এই চিহ্ন সার্বজনীন ভাবে গৃহীত হয়েছে।

π-এর মান অসীম অনাবৃত্ত দশমিক। তাই এর মান ক্রমশ আরও বেশি দশমিক স্থান পর্যন্ত নির্ণয়ের চেষ্টা হয়েছে। সেই প্রাণান্তকর চেষ্টার কয়েকটি নমুনা দেওয়া হচ্ছেঃ

রোমানুস্	(1561-1615)	D (F)	17 দশমিক পর্যন্ত		
লুডল্ফ্ ভ্যান্ সিউলেন্		41819	35 দশমিক পর্যন্ত		
(এঁর নামে স্থ	মর্মানীতে π কে লুডল্ফ স	ংখ্যা :	বলা হত।)		
শার্প	(1651-1742)	n (lab	72 দশমিক পর্যন্ত		
মাচিন্	(1680-1751)	D-77	100 দশমিক পর্যন্ত		
ভেগা	(1756-1802)	19	140 দশমিক পর্যন্ত		
	(এই মানের 136টি সংখ্যা শুদ্ধ ছিল।)				
জ্যাকারিয়াস্ দেস্	(1824-1861)	TIED	200 দশমিক পর্যস্ত		
রিশার্	(1854 খ্রিস্টাব্দে মৃত্যু)	othe B	500 দশমিক পর্যস্ত		
শ্যাঙ্গ্	(1812-1882)	A AIL	707 দশ্যিক পর্যস্ত		

এ ধরনের চেষ্টার স্বভাবতই কোনও শেষ নেই। সংবাদ হিসাবে জানাই 1956 খ্রিস্টাব্দে 'এনিয়াক্' যন্ত্রগণকের সাহায্যে 70 ঘণ্টায় π-এর মান 2035 দশমিক স্থান পর্যন্ত নির্ণয় করা হয়েছিল—যন্ত্রের সাহায্য ব্যতিরেকে যা একজন মানুষের সারাজীবনের পরিশ্রমের ফসল হতে পারত। তবে এ-কথা মনে রাখা দরকার, রাস্তব ক্ষেত্রে ব্যবহারের জন্য এ-ধরনের কষ্টকর প্রয়াসের দরকার নেই। মাত্র দশ দশমিক স্থান পর্যন্ত শুদ্ধ মানের সাহায্যে পৃথিবীর যে পরিধি নির্ণীত হবে তাতে বড় জোর এক সেণ্টিমিটার ভূল থাকবে এবং প্রচলিত চার দশমিক স্থান পর্যন্ত শুদ্ধ মান (3·1416) ব্যবহার করে বিমানের ইঞ্জিন নির্খুতভাবে তৈরি করা সম্ভব।

 π -এর ভগ্নাংশ মান $\frac{355}{113}$ মনে রাখার জন্য প্রথম তিনটি বিযোড় অন্ধ 1, 3, 5 প্রত্যেককে দুবার পাশাপাশি লিখে ডান দিক থেকে তার প্রথম তিনটি অঙ্ককে লব ও বাকি তিনটি অঙ্ককে হর হিসাবে রাখতে হবে। যেমন, $113355 \rightarrow 113 \mid 355 \rightarrow \frac{355}{113}$ ভগ্নাংশটি π -এর মান। প্রয়োজনীয় এই ধ্রুবকের দশমিক মানকে মনে রাখার জন্য নানারকম কৌশল করা হয়েছে। তার তিনটি উদাহরণ দেওয়া হল ঃ

(a) 'Yes, I have a number π ' বাক্যের সাহায্যে। এখানে বাক্যের পদগুলির অক্ষর সংখ্যাই সূত্র। 'Yes'-এর তিনটি অক্ষর থেকে 3, তার পরের 'কমা' চিহ্ন থেকে দশমিক বিন্দু, 'I' থেকে 1, 'have' থেকে 4, 'a' থেকে 1 এবং 'number' থেকে 6;—সব মিলে $\pi=3\cdot1416$ পাওয়া গেল।

(b) অর্-এর কবিতা (মহামনীষী আর্কিমিডিসের উদ্দেশ্যে শ্রদ্ধাঞ্জলি)
"Now I, even I, would celebrate
In rhymes inapt, the great
Immortal Syracusan rivaled nevermore,
Who in his wondrous lore
Passed on before,

Left men his guidance how to circles mensurate."

অবলম্বনে। এখানেও পদের অক্ষর সংখ্যা প্রয়োজনীয় সংখ্যাগুলিকে জানাচ্ছে। এটি ব্যবহার করে π-এর মান পাওয়া যাবে

3·141592653589793238462643383279.... (30 দশমিক পর্যম্ভ)

(c) সব শেষে চন্দননগর কানাইলাল বিদ্যামন্দিরের (ভৃতপূর্ব দ্যুপ্লেক্স কলেজের স্কুল বিভাগের) প্রধান শিক্ষক স্বর্গীয় ফটিকলাল দাস রচিত একটি সংস্কৃত শ্লোক উদ্ধৃত করা হচ্ছে π-এর মান নির্ণয় কল্পে। শ্লোকটি উক্ত বিদ্যামন্দিরের প্রাক্তন শিক্ষক রঞ্জিত বন্দ্যোপাধ্যায়ের মাধ্যমে সংগৃহীত।

''সন্ধ্যাথ বিন্দুর্বিধুবেদচন্দ্রাঃ বাণাঙ্কপক্ষর্ত্বিযুবহ্নিবাণাঃ। ব্যাসেন নৃনং পরিধৌ বিভক্তে যথোক্তসংখ্যাং বিবুধা লভন্তে॥''

এখানে নাম সংখ্যার সাহায্যে মানটি পাওয়া যাবে, তবে এ সংখ্যাগুলিকে লিখতে হবে শ্লোকের পদের ক্রম অনুসারে বাম দিক থেকে ডান দিকে। সন্ধ্যা (=3), ত্রথ (অনন্তর), বিন্দু (দশমিক বিন্দু), বিধু (=1), বেদ (=4), চন্দ্র (=1), বাণ (=5), ত্রম্ব (=9), পক্ষ (=2), ঋতু (=6), ইয়ু (=5), বহিল (=3), বাণ (=5)—পরিধি ও ব্যাসের এই অনুপাত পণ্ডিতগণ প্রাপ্ত হন। সহজ্ব ভাষায় $\pi = 3.1415926535$ (দশ দশমিক পর্যন্ত)

वित्नंय जूतीय সংখ্যा e

 $e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...$ পর্যন্ত একটি ধ্রুবক সংখ্যা যার মান 2 ও 3-এর মধ্যে। নেপিয়ার লগারিদম্ প্রসঙ্গে সূচক সংখ্যা e-এর বিশেষ ভূমিকা আছে; এটি ঐ জাতীয় লগারিদমের নিধান। অনন্ত শ্রেণীতে লিখিত e-এর পূর্বোক্ত মানকে এটি ঐ জাতীয় লগারিদমের নিধান। অনন্ত শ্রেণীতে লিখিত e-এর পূর্বোক্ত মানকে সূচক শ্রেণী বলে। অবিরত ভগ্নাংশ হিসাবে গাণিতিক অয়লার e-কে প্রকাশ করেছিলেন ঃ

সংখ্যার মজা-৮

$$e = 2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \dots}}}} \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}} \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}} \frac{1}{1 + \frac{1}{1 + \dots}} \frac{1}{1 + \dots}$$

তাঁর স্থিরীকৃত e-এর দশমিক মান 2·7182818284590452353602874... (25 দশমিক স্থান পর্যস্ত); সূচক সংখ্যা e-এর মান মনে রাখার জন্য একটি ছড়া দেওয়া হচ্ছে—

সাতাশ দিয়ে শুরু হল, আঠার আটাশ দু'বার এল। পঁয়তাল্লিশ লিখে এগিয়ে যান তাতেই আছে e-এর মান।

1 sosie of 18 mesterings

ने मार्गिक कर है है। जो होता भी कर है। जह स्थापित से

উপযুক্ত স্থানে দশমিক বিন্দু বসিয়ে এই ছড়া থেকে পাওয়া যাচ্ছে e = 2·71828182845.... (11 দশমিক স্থান পর্যন্ত)।

मंत्राहर माम संस्थाद अखारक विशेष नामका बादि प्राप्त मान प्राप्ताचित

विष्यु हे दूरत (ज्ञास्त्र १ तम्ब क्रम प्रावृत्ताता याद्र विक हार्रक प्राव मिता । गक्षा (=3), यथ (यातप्रय), शिन्न (मर्गाध्य विन्न), विश्व (=1), (तम (=4), क्रम (=1), यम (=5), यक्ष (=9), शक (=2), क्षर्ड (=6), क्षेत्र (=5), यद्धि (=3), यम (=5)—मोर्गिन ख

े हरे, याचा व्यक्तिया संगतिता व्यवस्त एक साथा हन्स विकास स्वित्र चात्र

ক্ষাই ও কার্যান করে। করিছে প্রাথের জনার কার্যানের করিছে ক্ষেত্রার করে। নাচক বেলী বর্জন করিছে প্রাথের জিলারে জানিবের জানাবের করিছে।

পঞ্চম অখায়

"...it is undeniable that mathematical recreations "...it is undernable that materials and a power-furnish a challange to imagination and a powerful stimulus to mathematical activity." THE PARK SIZE OF A STREET, THE FIRST STEET NEWMAN IS SAID.

মুখ্য বিক্র সমার দিয়ে ব্রেক মজা^{জ র দর্ভক সাল}

off R = 3 art R = 3 augm aven A = 2

গুপ্ত অক্ষর কৌশল সংক্রান্ত ধাঁধা—বর্ণগণিত

সংখ্যাকে অক্ষরে রূপান্তরিত করার প্রক্রিয়াকে অবলম্বন করে মজার অনেক ধাঁধা তৈরি করা হয়েছে—যাদের বলা যায় বর্ণগণিত। এক্ষেত্রে দশটি অঙ্কের বদলে নির্দিষ্ট দশটি অক্ষর কোনও পূর্ব-নির্ধারিত সূত্রানুসারে আসেনি। তবে একটি নির্দিষ্ট অঙ্কের বদলে একটি নির্দিষ্ট বর্ণ বা অক্ষর ব্যবহার করা হয় একই ধাঁধার ক্ষেত্রে। অন্য ধাঁধার ক্ষেত্রে স্বভাবতই সেই সব বর্ণ অন্য অঙ্কের বদলে বসতে পারে। বর্ণগণিত পর্যায়ের ধাঁধা খুবই মজার এবং এর সমাধান সূত্র প্রদত্ত ধাঁধার মধ্য থেকেই পেতে হয়। এখানে এই ধরনের একটি ধাঁধার সমাধান-কৌশল আলোচিত হল ঃ

ধাঁধা। নিম্নোক্ত ভাগ অঙ্কটির প্রত্যেক ইংরাজী অক্ষর এক একটি সংখ্যাজ্ঞাপক। অক্ষরগুলির সংখ্যামান নির্ণয় কর। (সিভিল সার্ভিস পরীক্ষার প্রশ্নপত্র থেকে) wiser Mars - 2503; year and M - 5 age [-

ASIA) A M E R I C A (SSEE KRSI ASIA ASMKC SEKMP ALPEA SEKMP G (NEW L 1978) 2 - 2 (NEW LAND) WILL

সমাধান। যেহেতু ASIA \times S = ASIA, অতএব S = 1; S-এর এই মান ধাঁধার সংশ্লিষ্ট স্থানগুলিতে বসিয়ে ভাগক্রিয়ায় একটি অংশে পাওয়া যায়— 0 = 1 350 0 m 3

RATE PROPERTY (SEE PARTY) A TELEFOR TO STREET THE STREET PARTY OF STREET

উদ্যুক্ত সমস্যান্ত প্রস্তুত্ব (বিয়োগ) A 1 M K দেখা যাচ্ছে R-1 (কিংবা R-2, যদি আগের থেকে হাতে 1 থাকে) =1, অতএব R = 2 বা 3; কিন্তু ভাগক্রিয়ার আর একটি অংশে আছে

এখন R=2 হলে A=1 হয়; কিন্তু S অক্ষরের মান আগেই 1 হয়েছে। যেহেতু বিভিন্ন অক্ষরের অঙ্ক-মান বিভিন্ন, সূতরাং R=2 হতে পারে না।

তাই R=3 এবং R=3 হওয়ার কারণে A=2

ভাগ অঙ্কটির R ও A অক্ষরের জায়গায় তাদের মান বসালে একটি অংশে পাওয়া যায়

K-এর এই মান যথাস্থানে বসিয়ে ভাগক্রিয়ার দুটি অংশে পাওয়া যায়

I ও P-এর মান যথাস্থানে বসালে একটি অংশে আসবে 2ME3-2162=431, অতএব $2ME3\equiv 2593$; তুলনা করে M=5 এবং E=9

M ও E-এর প্রাপ্ত মানগুলি যথাস্থানে বসিয়ে ভাগক্রিয়ার একটি অংশে পাওয়া যায়

ম্পষ্টতই C=8+9 অর্থাৎ 17-এর এককাঙ্ক, অতএব $\underline{C=7}$ আবার এই বিয়োগের শতকের অঙ্ক থেকে 5-5 (হাতের 1 ধরে) =L সূতরাং $\underline{L=0}$

ধাঁধাটির পুরাপুরি সমাধান পাওয়া গেল। এখানে $S=1,\ A=2,\ R=3,\ K=4,\ M=5,\ I=6,\ C=7,\ P=8,$ E=9 এবং L=0

বর্ণগণিতের প্রশ্নে বর্ণ ব্যবহার না করে অজানা * (তারকা চিহ্ন) ব্যবহার করে ধাঁধা তৈরি করা যায়। বর্ণগুলি প্রত্যেকে নির্দিষ্ট অঙ্ক বোঝায়; তাই সমাধানে অনেক বাড়তি সূত্র পাওয়া যায়—তারকা চিহ্নের ক্ষেত্রে যেটি সম্ভব নয়। কারণ, তারকা চিহ্নের বদলে যে কোনও অঙ্ক হতে পারে। এরূপ একটি ধাঁধার সমাধান নিচে দেওয়া

হল। অবশ্য বর্ণ ব্যবহৃত হচ্ছে না বলে এ ধরনের ধাঁধাকে বর্ণগণিত পর্যায়ে ফেলা ঘণ্ডারে বথারারে ভারত পারিকারের সামানের উদ্ধি প্রাথিত হবে

आकारमा स्टाएक वार्यात अकेस स्थादमार बीभागूर अ

अवधा प्रत्न गांचा मत्रवंता है। आधी वीष व्यक्ति वत

विकि हारा अक्टाना

দ্যত ক্ষাত ভগুল ক্ষিত্ৰ হৈছে বীয়াৰ দল

计以对于 对时 阿尔

ধাঁধা। তারকা চিহ্নিত-স্থানের অঙ্কগুলি নির্ণয় করঃ विश्व विश्वाद स्था ताला वृत्व निवास स

3598 THE ROTH PURE OF IXINE

সমাধান। যেহেতু 8 × গুণকের একক স্থানের * =2, ∴ গুণকের এককের অঙ্ক 4 বা 9; এখন 3598 × 4 = **382 হতে পারে না। অতএব গুণকের এককের অঙ্ক [9]; এই 9 দিয়ে গুণ্যকে গুণ করে গুণক্রিয়া লিখলে পাওয়া যাবে—

স্পষ্টতই প্রথম শুণে দ্বিতীয় আংশিক শুণফলের এককের অঙ্ক 0; এখন যেহেতু 8 × গুণকের দশকের অঙ্ক = ... 0 সূতরাং গুণকের দশকের অঙ্ক [5] হবে। এখন 5 দ্বারা গুণ করে সম্পূর্ণ গুণ ক্রিয়াকে লিখলে পাওয়া যাবে দ্বিতীয় গুণটি।

এই গুণফলের শতকের অঙ্ক নির্ণয়ের ক্ষেত্রে এসেছে 3 + 9 + * = ...8; স্পষ্টতই তৃতীয় আংশিক গুণফলের এককের অঙ্ক 6; এখন যেহেতু গুণ্যের একক স্থানের 8 × গুণকের শতকের অঙ্ক = ...6, সূতরাং গুণকের শতকের অঙ্ক 2 বা 7; কিন্তু তৃতীয় আংশিক গুণফলে মোট পাঁচটি অঙ্ক আছে। 3598 × 2-তে অঙ্ক-সংখ্যা মাত্র 4টি। অতএব গুণকের শতকের অঙ্ক [7]; এখন সম্পূর্ণ গুণক্রিয়াটি দাঁড়াবে—

3598 এটাই ধাঁধার OPTOME LETER FOR 759 32382 17990 সমাধান। 25186 2730882

বর্ণগণিত-জাতীয় ও তারকা চিহ্ন-সমন্বিত আরও কিছু মজার প্রশ্ন বর্তমান অধ্যায়ে যথাস্থানে পাঠক-পাঠিকাদের সমাধানের উদ্দেশ্যে সন্নিবিষ্ট হবে। 📧 🖂

এখন মজার কিছু অঙ্কের ধাঁধা, গাণিতিক কূটাভাস ও হেত্বাভাস, অতীতের কিছু বিখ্যাত প্রশ্ন দেওয়া হল। বিচিত্রতা আনতে প্রশ্নগুলিকে এলোমেলো করে সাজানো হয়েছে অর্থাৎ একই ধরনের ধাঁধাকে একসঙ্গে পর পর হাজির করা হয় নি। একথা মনে রাখা দরকার, দ্-একটি বাদে বাকি সব প্রশ্ন বিভিন্ন সূত্র থেকে সংগৃহীত।

নানা ধরনের মজার প্রশ্ন

প্রঃ 1. ple gatish or a state I Hausk জমা হয়া যেতা সেপাই। হুগলি গিয়া উসকা তেহাই॥ পদ্মা-পার গিয়া আধ। দশমা ভাগ জাহানাবাদ॥ বাকি রহা এক হাজার। কেন্তা সেপাই কহ জমাদার॥ (তেহাই = তিন ভাগের এক ভাগ = $\frac{1}{3}$)

(শুভঙ্করী*)

** = 4 × 8021 FPE :0 IN A WIN

कारण हाती है हैं। है। अपन

প্রঃ 2. যদি কোনও লোক কোনও ব্রাহ্মণকে প্রথম দিনে চার দ্রক্ষ এবং প্রত্যেক দিন পাঁচটি করে দ্রক্ষ বেশি দিতে থাকে তবে একপক্ষ দিনকালে ঐ লোক কত দ্রক্ষ দান করেছিল ? (দ্বিতীয় ভাস্করাচার্য 1156 খ্রিঃ), দ্রক্ষ = মুদ্রা।

প্রঃ 3. 3 পণ পায়রা 5 মুদ্রায়, 5 পণ সারস 7 মুদ্রায় ও 9 পণ ময়্র 3 মুদ্রায় পাওয়া গেলে রাজপুত্রের মনোরঞ্জনের জন্য যদি 100 মুদ্রায় 100 পণ পক্ষী সংগৃহীত হয়ে থাকে, তবে প্রত্যেক প্রকার পক্ষীর জন্য ব্যয়ের পরিমাণ কত?

(মহাবীরাচার্য—850 খ্রিঃ) প্রঃ 4. দুটি মূর্তির মধ্যে কথোপকথন চলেছে ঃ— প্রথম মূর্তি। পাদপীঠ সহ আমার ওজন কত জান? দ্বিতীয় মূর্তি। আমি জানি, পাদপীঠ-সহ তোমার ওজন পাদপীঠ-সহ আমার ওজনের সমান। কিছ চুতীয় আন্তিক গুলালের মোট লাগ্রী আরু আছে। ১১০

ভৃগুরাম দাস নামক জনৈক বিখ্যাত গণিতজ্ঞ পাটীগণিতের প্রয়োজনীয় অঙ্ক কষবার জন্য কতকগুলি সহজ নিয়ম কবিতাকারে রচনা করেন। শুভঙ্কর দাস, ভৃগুরাম দাস প্রভৃতির ভণিতাযুক্ত গণিতবিদ্যার বিশেষ উপকারী (শুভকর) এই নিয়মসমূহ প্রণয়ন করেছিলেন বলে তিনি 'শুভক্বর' নামে খ্যাত হয়েছিলেন। তাঁর প্রণীত নিয়মের কবিতা (আর্যা), সংশ্লিষ্ট আলোচনা, নানা ধরনের প্রশ্ন—সব কিছু 'শুভঙ্করী' পৃস্তকের অংশ বলে ধরা হত। অতীতে 'শুভঙ্করী' গণিতের পাঠ্য বিষয়ের অন্তর্ভুক্ত

প্রথম মূর্তি। আমি নিজে তোমার পাদপীঠের দিণ্ডণ ভারী। দ্বিতীয় মূর্তি। আমি কিন্তু তোমার পাদপীঠের ওজনের তিনগুণ।

('গ্রীক অথরিটি' আঃ 500 খ্রিঃ)

প্রঃ 5. 1 থেকে 9-এর মধ্যে পাঁচটি ক্রমিক অঙ্ক নিয়ে এমন একটি সংখ্যা গঠন কর যার বামদিক থেকে প্রথম দুটি অঙ্কের সংখ্যাকে তৃতীয় অঙ্ক দিয়ে গুণ করলে চতুর্থ ও পঞ্চম অঙ্কের সমবারে গঠিত সংখ্যাটি পাওয়া যায়।

থঃ **6. নিচের বৃত্তকে চারটি ব্যাসের দ্বারা আটটি** অংশে ভাগ করে সাতটি অংশে বিশেষ নিয়মে সংখ্যা ইংরাজী বর্ণমালার অক্ষরের সাহায্যে লেখা আছে। বাকি শূন্য ঘরে কি অক্ষর বসবে?

कीर हा भगा क्षेत्र-वाके विश्वविकास

প্রঃ 7. কোনও গাড়ি অর্ধেক পথ ঘন্টায় 60 কি. মি. বেগে এবং বাকি অর্ধেক পথ ঘণ্টায় 40 কি. মি. বেগে গেল। গাড়ির গড় গতিবেগ কত?

প্রঃ ৪. দশটি বাক্সের প্রত্যেকটিতে দশটি করে সোনার মোহর আছে। এদের মধ্যে কোনও একটি বাক্সের প্রতি মোহরের ওজন 90 গ্রাম। বাকি বাক্সগুলির সব ক'টিতে মোহরগুলি প্রত্যেকটি 100 গ্রামের। এখন মাত্র একবার ওজন করে কিভাবে কোন্ বাক্সে কম ওজনের মোহরগুলি আছে তা নির্ণয় করা যাবে?

প্রঃ 9. দুটি 2-এর সাহায্যে কিভাবে 32 লেখা যাবে? (এখানে যে কোনও গাণিতিক চিহ্ন ব্যবহার করা যাবে।)

প্রঃ 10. দুই বৃক্ষে দুই দল পারাবত বসি। একটি অন্যের প্রতি কহিছে সম্ভাষি॥ যদ্যপি একটি আসে তব দল হতে। তোদের ত্রিগুণ হই তাহার সহিতে॥ অন্যে বলে, যোগে মোরা সম হতে পারি। এক পক্ষী আসে যদি তব দল ছাড়ি॥ প্রতি দলে ছিল কত কপোত বসিয়া। প্রকৃত উত্তর দেহ হিসাব করিয়া॥

(শুভঙ্করী)

থঃ 11. নিচের গুণ অঙ্কটিতে প্রত্যেকটি অক্ষর বসেছে একটি নির্দিষ্ট অঙ্কের বদলে। যুক্তির সাহায্যে কোন্ অক্ষরের মান কত নির্ণয় করতে হবে। [বর্ণগণিত-জাতীয় এই ধাঁধার আবিষ্কর্তা পিজিওলেট্]

ABC
ABC
DEFC
CEBH
EKKH
EAGFFC

প্রঃ 12. পাঁচজন বণিক একত্রে একটি মূল্যবান রত্ন ক্রয় করবে। রত্নের দাম মেটাতে প্রথম বণিকের তহবিলের অর্ধেকের সঙ্গে বাকি চার জনের তহবিলের সব টাকা অথবা দ্বিতীয় বণিকের তহবিলের এক-তৃতীয়াংশের সঙ্গে বাকি চার জনের পুরা তহবিল লাগবে। আবার তৃতীয় বণিকের তহবিলের এক-চতুর্থাংশ ও বাকি চার জনের তহবিলের সব টাকা অথবা চতুর্থ বণিকের তহবিলের এক-পঞ্চমাংশ ও বাকি চার জনের পুরা তহবিল অথবা পঞ্চম বণিকের তহবিলের এক-ষঠাংশ ও বাকি বণিক চার জনের তহবিলের সব টাকা দিয়ে রত্নটি ক্রয় করা যাবে। এখন প্রত্যেক বণিকের তহবিলের অর্থের পরিমাণ ও রত্নটির মূল্য নির্ণয় কর। (এই প্রশ্নটি তৃতীয় বা চতুর্থ শতাব্দীর বখ্শালী পাণ্ডুলিপি থেকে গৃহীত)

প্রঃ 13. দুটি সংখ্যার অন্তরফল 12; তাদের গুণফলকে যোগফল দিয়ে গুণ করলে গুণফল হয় 14560; সংখ্যা দুটি কত?

প্রঃ 14. একটি বানর 30 মিটার উচ্চ একটি তৈলাক্ত দণ্ডে উঠতে চায়। সে প্রতি মিনিটে 3 মিটার উঠতে পারলেও দণ্ডটি তৈলাক্ত হওয়ার কারণে তৎক্ষণাৎ 2 মিটার নেমে যায়। পুরা দণ্ডটিতে উঠতে বানরের কত সময় লাগবে?

প্রঃ 15. নিচের গাণিতিক যুক্তি প্রক্রিয়ার মধ্যে হেত্বাভাষ অর্থাৎ যুক্তির ভুল কোথায় তা নির্ণয় কর ঃ—

যুক্তি \circ মনে করা যাক, A, B, C তিন বিভিন্ন ধনাত্মক সংখ্যা যাদের সম্পর্ক A+B=C; তা থেকে পাওয়া যাবে $(A+B)^2=C$ (A+B)

বা $A^2 + 2AB + B^2 = CA + BC$

 $A^2 + AB - CA = -AB - B^2 + BC$

বা A(A + B - C) = -B(A + B - C); অতথ্য A = -B

বা A + B = 0 যে সম্পর্ক স্বভাবতই অসম্ভব।

প্রঃ 16. কেবল 1 দিয়ে গঠিত এমন দু'টি সংখ্যা নির্ণয় করতে হবে যাদের যোগফল ও গুণফল সমান। (দশমিক বিন্দু ব্যবহার করা যেতে পারে।)

প্রঃ 17. আট লিটার-ধারণ-ক্ষমতা বিশিষ্ট এক পাত্র জলপূর্ণ আছে। একটি পাঁচ লিটার ও একটি তিন লিটার ধারণ-ক্ষমতাযুক্ত পাত্রের সাহায্যে কিভাবে আট লিটার জলকে সমান দু'ভাগে ভাগ করা যাবে?

(জলের বদলে মদ নিয়ে পয়সন অনুরূপ প্রশ্ন রেখেছিলেন।)

প্রঃ 18. উদ্যান মাঝারে এক আছে সরোবর। তার তিন ঘাটে তিন আছেন শঙ্কর॥ প্রাতঃকালে উঠি এক ব্রাহ্মণ তনয়। ক্রমান কি উদ্যানের ফুলগুলি করেন সঞ্চয়॥ মাতেতে সঞ্চিত ফুল যেমন ধুইল। প্রচার চ্যান্ত নি নাত্র শিবের কৃপায় তাহা দ্বিশুণ হইল॥ 🕬 । চল্ট চল্টি কিছু ফুল লয়ে দ্বিজ প্রথমে পৃজিল। াত আৰু হালাভ ু বাকি পুষ্প ধুয়ে পুনঃ দ্বিগুণিত হল।। আগ্ৰাস — এই স্বাস ্ৰাইভাবে ক্ৰমান্বয়ে পৃদ্ধি তিন হরে। নির্বাচন বিক্ত হস্তে ফিরিলেন আপনার ঘরে॥ সম সংখ্যা পুষ্পে দিজ সকলে পুজিল। কত ফুল তুলি, প্রতি দেবে কত দিল॥ 💮 (শুভঙ্করী)

প্রঃ 19. এমন একটি সংখ্যা নির্ণয় কর যার ঘন থেকে 19 বিয়োগ করে বিয়োগফলকে সেই ঘন দ্বারা গুণ করলে 6-এর ঘন পাওয়া যায়।

প্রঃ 20. ম্যাকিলিস ও কচ্ছপের দৌড়ে কচ্ছপ শুরুতে 100 মিটার এগিয়েছিল। স্থাকিলিসের গতি কচ্ছপের গতির দশ গুণ। কচ্ছপ কত দূরত্ব যাওয়ার পর য্যাকিলিস তাকে ধরতে পারবে?

(গ্রীক গাণিতিক জ্বেনো'র দৌড় সম্পর্কে ধাঁধা অবলম্বনে)

প্রঃ 21. দাবার ছকে 64টি ঘর আছে। দাবা খেলা আবিষ্কারের জন্য রাজা আবিষ্কারককে প্রার্থিত ধন দিতে চাইলেন। তিনি জানালেন আমি সামান্য লোক। ধনের বদলে আমাকে গমের দানা মঞ্জুর করুন দাবার প্রথম ঘরের জন্য একটি দানা, দিতীয় ঘরের জন্য দু'টি দানা, তৃতীয় ঘরের জন্য চারটি দানা, চতুর্থ ঘরের জন্য আটটি দানা—এই হিসাবে। রাজা বললেন—'এই মাত্র তোমার প্রার্থনা।' প্রত্যুত্তরে আবিষ্কারক জানালেন যে এ-প্রার্থনা সামান্য নয়। কেন একথা রাজাকে বললেন আবিষ্কারক এবং মোট কত গম-দানা দিতে হবে এক্ষেত্রে?

প্রঃ 22. A, B-এর কাছে 7 দীনার পেলে তার অর্থ B-এর 5 গুণ হবে; কিন্তু B, A-এর কাছে 5 দীনার পেলে তার অর্থ A-এর 7 গুণ হবে। কার কাছে কডদীনার ছিল ? (কথিত আছে এই ধাঁধা পিসার লিওনার্দোকে দেওয়া হয়েছিল সমাধানের क्रमा)

প্রঃ 23. একটি নৌকায় মাত্র 20 স্টোন ওজন বহন করা চলে। এখন এই স্মংচালিত নৌকার সাহায্যে কি ভাবে 20 স্টোন ওজনের এক ব্যক্তি এবং প্রতি জন 10 স্টোন ওজনের তার এমন দু'টি যমজ পুত্র নদীর ও-পারে যাবে?

প্রঃ 24. কলকাতা শহরের দামী অঞ্চলে একটি ত্রিভূজাকৃতি জমি (যার মাপ 5 মিটার, 12 মিটার ও 6 মিটার) বিক্রি হবে। জমিটি সস্তায় প্রতি বর্গমিটার মাত্র 500 টাকা দরে পাওয়া যাবে। এ জমির সম্ভাব্য ক্রেতাকে মোট কত টাকা দিতে হবে?

প্রঃ 25. 21টি সমান মাপের সিরাপের বোতল—যার 7টি খালি, 7টি অর্ধেক ভর্তি ও 7টি পুরা ভর্তি। এইগুলি তিন বন্ধুর মধ্যে সমানভাবে ভাগ করে দিতে হবে যাতে প্রত্যেকে প্রত্যেক ধরনের বোতল সমান সংখ্যায় পায়। সেটা কিভাবে সম্ভব?

প্রঃ 26. তিন জন বণিক পথে একটি টাকার তহবিল কুড়িয়ে পেল। প্রথম বিশিক বলল— আমাকে যদি এই তহবিলের টাকা পুরাপুরি দাও, আমার মোট টাকা তোমাদের দু'জনের মোট টাকার দ্বিগুণ হবে'। তখন দ্বিতীয় বণিক জানাল যে সে যদি এ তহবিলের টাকা পুরা পায় তবে তার মোট টাকা বাকি দু'জনের মোট টাকার তিন গুণ হবে। তৃতীয় বণিক সে কথা শুনে বলল—'তহবিলের টাকা যদি পুরা পাই, তবে আমার মোট টাকা তোমাদের দু'জনের মোট টাকার পাঁচ গুণ হবে।' এখন প্রশ্ন— এ কুড়ানো তহবিলে মোট কত অর্থ ছিল এবং বণিকদের তিন জনের প্রত্যেকের সঙ্গে কি পরিমাণ অর্থ ছিল ? (মহাবীরাচার্য—850 খ্রিঃ)

প্রঃ 27. এমন দুটি পূর্ণ সংখ্যা নির্ণয় কর যাদের শেষে শূন্য নেই অথচ যাদের শুণফল 1000000000.

প্রঃ 28. দশটি দিয়াশলাই কাঠির সাহায্যে নিম্নলিখিত যোগ অঙ্কটি করা আছে **ঃ**

XI + I = X

(যার অর্থ 11 + 1 = 10); দেখা যাচ্ছে যোগফল ঠিক নেই। এখন কোনও কাঠি না ছুঁয়ে কি ভাবে অঙ্কটিকে ঠিক করা যাবে?

প্রঃ 29. তিনটি দুই ব্যবহার করে (অন্য কোনও চিহ্ন সহযোগে নয়) সব চেয়ে বড় সংখ্যা ও সবচেয়ে ছোট সংখ্যা লিখ।

প্রঃ 30. নিম্নোক্ত সংখ্যা-শ্রেণী নিয়ম মেনে শৃঙ্খলার সঙ্গে লেখা হয়েছে। এই শ্রেণীগুলির ক্ষেত্রে অনুপস্থিত সংখ্যাগুলি নির্ণয় কর।

- (i) 3, 6, 9, 12, *, 18, 21, *, 27,...
- (ii) 1, 2, 4, 5, 7, 8, *, *, 13, 14,...
- (iii) 2, 4, 3, 5, 4, *, 5, *, 6, 8,...
- (iv) 4, 8, 16, *, 64, 128, *, 512,...
 - (v) 1,·3, 6, 8, 11, 13, 16, *, *,...

প্রঃ 31. দু'জন সাইকেল আরোহী একটি সোজা রাস্তায় পরস্পরের দিকে ঘণ্টায় 20 কিলোমিটার গতিতে এগোচ্ছে। যখন তাদের দূরত্ব 40 কিলোমিটার, তখন একটি মৌমাছি একটি সাইকেল ছুঁয়ে ঘণ্টায় 25 কিলোমিটার গতিতে উড়ে অন্য সাইকেলকে ছুঁল এবং সঙ্গে সঙ্গে আবার উড়ে এসে প্রথম সাইকেলকে, আবার একইভাবে দ্বিতীয় সাইকেলকে, এইভাবে দৃটি সাইকেল আরোহীর পরস্পর দেখা হওয়া পর্যন্ত সাইকেল দৃ'টির মধ্যে উড়তে লাগল। মৌমাছি মোট কত দূরত্ব অতিক্রম করেছিল?

প্রঃ 32. পাঁচ ভাই পাঁচিশ মরাই। এক আদি পাঁচিশ বিশ ধান। গুরু বলে দ্বিজ শরণ ভনে। মরাই ভাগ চায় পাঁচ ভাই॥ পাঁচ জনে দাও সমান সমান॥ এ হদিশ না পায় পণ্ডিত জনে॥ (শুভঙ্করী)

(শুভরুরা)

(মরাই = ধান রাখার জন্য খড়ের তৈরি এক ধরনের ঘর। বিশ = ধানের পুরাতন
এক জাতীয় মাপ। এখানে বৃঝতে হবে মোট পাঁচিশটি মরাই-এর প্রথম মরাই-এ 1

বিশ, দ্বিতীয় মরাই-এ 2 বিশ, তৃতীয় মরাই-এ 3 বিশ, এইভাবে মরাই-এ ধানের
পরিমাণ বাড়তে বাড়তে পাঁচিশ নম্বর মরাই-এ 25 বিশ ধান আছে। মোট ধান পাঁচ
জনের মধ্যে সমানভাবে ভাগ করতে হবে মরাই সমানভাবে ভাগ করে।)

প্রঃ 33. ন'টি মুদ্রার মধ্যে আটটি সম-ওজনের; অবশিষ্ট মুদ্রাটির ওজন সামান্য বেশি। মাত্র দু'বার ওজন করে কি ভাবে ঐ অপেক্ষাকৃত বেশি ওজনের মুদ্রাকে বার করা যাবে?

প্রঃ 34. দুটি 4-এর সাহায্যে কিভাবে 64 লেখা যাবে? (যে কোনও গাণিতিক চিহ্নের সাহায্য নেওয়া যেতে পারে)

প্রঃ 35. কোনও একটি সংস্থায় মোট সদস্য সংখ্যা 30-এর বেশি। তাদের থেকে মোট বার্ষিক সভ্য চাঁদা পাওয়া গেল 12876 টাকা। সংস্থায় মোট সভ্য সংখ্যা কত এবং মাসিক চাঁদার পরিমাণ কত টাকা তা নির্ণয় কর।

প্রঃ 36. এমন তিনটি সংখ্যা নির্ণয় কর যাদের যোগফল ও গুণফল সমান। প্রঃ 37. সম্ভান–সম্ভবা এক মহিলার স্বামী তাঁর ইচ্ছাপত্রে ঘোষণা করেছিলেন যে যদি পুত্র সম্ভান হয় সে পাবে সম্পত্তির $\frac{3}{4}$ এবং স্ত্রী পাবে $\frac{1}{4}$, আর যদি কন্যা সম্ভান হয় তবে সে পাবে মাত্র $\frac{1}{4}$ এবং স্ত্রী পাবে $\frac{3}{4}$; এখন এক্ষেত্রে মহিলার যমজ সম্ভান হল—একটি পুত্র ও একটি কন্যা; সম্পত্তি কিভাবে ভাগ হলে ইচ্ছাপত্রের ইচ্ছা পুরাপুরি রক্ষিত হবে?

প্রঃ 38. নিচের গুণ অঙ্কের তারকা চিহ্নিত স্থানগুলির অঙ্ক নির্ণয় করে গুণ্য, গুণক ও গুণফল কত বল?

PULL OF THE PARTY BOTH BOTH 3.5 ইলফাত ৬৩% মানে কলে ছটা কলেকটোল THE WHENTER PROPERTY COME वाके हाराय विश्वीत । मुद्रीत्रकताहका बेहिनाता हुति ज ত্রেরা প্রত্যুক্ত কর্মান প্রামার + 3 3 দ ভার্মান হয়। দুন্দার ক্রাম্বর প্রামার

প্রঃ 39. একটি পদ্ম জলের উপর 2 হাত জেগেছিল; বায়ু বেগে 4 হাত দুরে গিয়ে জলমগ্ন হল। এখন পদ্ম গাছটির উচ্চতা কত?

প্রঃ 40. নম্বর দেওয়া 10টি মুদ্রা নিচের ত্রিভুজের আকারে সাজানো আছে— যার মাথা উপর দিকে। মাত্র তিনটি মুদ্রার স্থান পরিবর্তন করে ত্রিভূজটির মাথা নিচের দিকে (অর্থাৎ পাঠকের দিকে) করতে হবে। সাধ্যান স্ক্রাণান নাম = ইনিচা

া জ-রাজ্য রাধ্য ওজ-রাজ্য বাধ্ববিদ 🕦 চতে ততার সাল্য রাজ্য বার্ত্তিক কর্ম निया विश्वीय समाई व व विश्व प्रदेश 🔞 💿 व विश्व व्यवस्था विश्व বাৰ ক্ষা বিভাগ প্ৰবাহ কৰা স্থান 📵 🕲 📵 প্ৰথম দ্বীৰ হুবহাটে ইণ্ডাইটি THE REPORT OF THE PROPERTY AND A RESTRICT OF THE PROPERTY AND

অল্প দিনে রথ দিতে মন কৈ'ল রায়। THE PERSON NAMED AND ADDRESS OF THE PARTY AND প্রঃ 41. চারি কারিগর এল রাজার সভায়॥ কেহ বলে পারি আটচল্লিশ দিবসে। কেহ কহে পারি আমি দিবস চব্বিশে॥ কেহ বলে ষোল দিনে যদি পাই কাষ্ঠ। অন্য বলে তবে মোর লাগে দিন অষ্ট॥ একেবারে দিল রাজা সহম্রেক ধন। একযোগে কর্মেতে লাগিল চারি জন।। কত দিনে রথখানি তৈয়ার হইবে। বল দেখি কেবা কত বেতন পাইবে॥

(শুভঙ্করী)

প্রঃ 42. এক ব্যক্তির গাড়ির নম্বরের প্লেট খুলে পুনরায় বসানোর সময় উল্টোভাবে লাগানো হয়েছিল। দেখা গেল তখনও নম্বর পড়া যাচ্ছে; তবে এই পরিবর্তিত নম্বর আগের নম্বরের চেয়ে 78633 বেশি। তার গাড়ির ঠিক নম্বরের সংখ্যাতে যদি প্রত্যেকটি অঙ্ক পৃথক থেকে থাকে, তবে ঠিক নম্বর কত ছিল?

প্রঃ 43. এক গাণিতিকের খাতা থেকে তার করা একটি যোগ অঙ্ক ও ভাগ অঙ্ক দেখা গেল। নিচে সেগুলিকে উল্লেখ করা হল। এখন তাঁর অঙ্ক কষার মধ্যে কোনও ভল আছে কিনা যুক্তিসহ বিবেচনা করতে হবে।

260	52) 2 6 2 5 (36
2 4	216
246	435
563	435
	and the second s

প্রঃ 44. দশটি ভেড়া দশ মিনিটে একটি বেড়া পর পর লাফিয়ে পার হল। একই ভাবে এক ঘন্টায় ঐ বেড়া পার হবে ক'টি ভেড়া?

প্রঃ 45. কুহুর বয়স এখন কেকা ও পিউ-এর বয়সের যোগফলের সমান। গত . বৎসর কেকার বয়স পিউ-এর বয়সের দ্বিগুণ ছিল। দু' বৎসর পরে কুহুর বয়স পিউ-এর বয়সের দ্বিগুণ হবে। এদের এখনকার বয়স কত?

46. দুটি সংখ্যা 4783205468 ও 673106-এর গুণফল 3219604299*43608; এখানে * চিহ্নিত স্থানে কি অঙ্ক আছে? (গুণ না করে অঙ্কটি নির্ণয় করতে হবে।)

প্রঃ 47. কোনও সংস্থার সদস্যদের নিয়ে 3, 5, 7 বা 11 সদস্যযুক্ত কয়েকটি উপসমিতি তৈরি করা ঠিক হল। কিন্তু 3 জন নিয়ে উপসমিতি করলে 2 জন সদস্য বাদ পড়ে। তখন 5 জন নিয়ে চেষ্টা করা হল; দেখা গেল 4 জন বাড়তি; 7 বা 11 জন সদস্য নিয়ে উপসমিতি গড়ার ক্ষেত্রে বাদ পড়ছে যথাক্রমে 6 জন ও 10 জন। ঐ সংস্থার সর্বনিম্ন সদস্য সংখ্যা কত ছিল?

প্রঃ 48. একটি মোটা বই-এর পাঁচ কপি আলমারিতে পাশাপাশি ছিল। বই-এর পোকা প্রথম বইটির প্রথম পৃষ্ঠার পর থেকে শেষ বইটির শেষ পৃষ্ঠা পর্যন্ত সোজাসুদ্ধি গর্ত করেছিল। বইটি ও বই-এর শক্ত কাগজের প্রতিটি মলাট যদি যথাক্রমে 2∙৪ সেন্টিমিটার ও 0∙1 সেন্টিমিটার হয় তবে বইগুলিতে সোজাসুজি গর্ত (ফুটো) করতে পোকাকে কতখানি যেতে হয়েছিল?

প্রশ্নঃ 49: 7টি দিয়াশলাই-এর কাঠি দিয়ে নিচের ভুল সম্বন্ধটি তৈরি করা ইয়েছে। মাত্র একটি কাঠির স্থান পরিবর্তন করে সম্বন্ধটিকে শুদ্ধ করতে হবে। ST. All on A . I = 1 C X SE - CHI-NA CACE CAN CAM

থঃ 50. একটি ভন্নুক তার বাসগুহা থেকে দক্ষিণে সোজা এক কিলোমিটার পথ গেল; তারপর সে বাম দিকে 90° পরিমাণ ঘুরে সোজা এক কিলোমিটার যাওয়ার পর আবার বাম দিকে 90º পরিমাণ ঘুরে আরও এক কিলোমিটার গেল। ওখানে পৌঁছে আবার বাম দিকে 90° পরিমাণ ঘুরে এক কিলোমিটার যেয়ে ভদ্পুকটি দেখল সে দক্ষিণ মুখে দাঁড়িয়ে আছে এবং গুহায় পৌঁছেছে। এটা কিভাবে সম্ভব এবং रहीन करने शासका एक्स 17380 किन्द्र विकेश स्थान ভদুক কোন রঙের?

প্রঃ 51. একটি জলযানের গতি ঘণ্টায় 13 $rac{1}{2}$ কিলোমিটার। স্রোতের অনুকূলে ঐ জলযানে কোনও দূরত্ব যেতে লাগল 1 ঘন্টা ৪ মিনিট এবং ফেরার সময় সময় লাগল আরও ৪ মিনিট বেশি। স্রোতের গতি কত?

- প্রঃ 52. (a) দুই অঙ্ক বিশিষ্ট কোন্ সংখ্যা তার অঙ্ক-সমষ্টির তিন গুণ?
 - (b) তিন অঙ্ক বিশিষ্ট কোন্ সংখ্যা তার অঙ্ক-সমষ্টির এগার গুণ?
- প্রঃ 53. ত্রিশ হাত উচ্চ বৃক্ষ ছিল এক স্থানে। চূড়ায় উঠিতে এক কীট করে মনে॥ দিবাভাগে দশ হাত উঠিতে লাগিল। সভা দানা বীচাৰ নিশাযোগে অষ্ট হাত নীচেতে নামিল॥ াজক দল ও চালক জীনা পার যাবৎ চূড়া করে সে অটন। 🖙 প্রিয়া প্রারাক্তর্য া াছ বিভাগে লাভ চ কত দিনে উঠেছিল কর নিরূপণ॥ বিভাগে (শুভঙ্করী)

থঃ 54. 5901643220186100 সংখ্যাটি বর্গসংখ্যা কিনা তা বর্গমূল না করে নির্ণয় করতে হবে।

প্রঃ 55. পাঁচটি বিড়াল পাঁচ মিনিটে পাঁচটি ইঁদুর ধরে। একশ মিনিটে একশটি ইঁদুর ধরতে ক'টি বিড়াল লাগবে?

প্রঃ 56. 1599 খ্রিস্টাব্দের 11ই এপ্রিল তারিখে বেলা 12টায় তিনটি ঘড়িতে ঠিক সময় দেখা গেল। এদের মধ্যে প্রথম ঘড়িটি প্রতিদিন এক মিনিট বেশি যায়, দ্বিতীয় ঘড়িটি প্রতিদিন এক মিনিট কম যায় এবং তৃতীয় ঘড়িটি বরাবরই ঠিক চলে। এর পরে কোন্ দিন কোন্ সময়ে ঘড়িগুলি পুনরায় একসঙ্গে ঠিক সময় নির্দেশ করেছিল ? PERSON HE SELECTION THE STREET

প্রঃ 57. দুটি গুণ $A \times B = CD$, $CD \times EF = GHI$ -এর ক্ষেত্রে দেখা গেল 9 টি বিভিন্ন অক্ষর 1 থেকে 9—ন'টি অঙ্ক বুঝিয়েছে। গুণ দুটি অঙ্কে লিখ।

প্রঃ 58. দেখা যাচেছ 2536 × 11 = 27896; এখন 2536-কে উল্টে লিখলে পাওয়া যায় 6352 এবং 6352 × 11 = 69872 যেটি আগের গুণফলের উল্টো সংখ্যা। এরূপ আর কোনও উদাহরণ আছে কিনা বল।

প্রঃ 59. কোনও একটি ভাগ অঙ্কে ভাগফল ছিল 57 এবং অবশিষ্ট 52; ভাগ অঙ্কটি ঠিক হয়েছে কিনা জানার জন্য ভাজককে ভাগফল দিয়ে গুণ করে ভাগশেষ যোগ করে পাওয়া গেল 17380; কিন্তু এটি ভাজ্যের সঙ্গে মিলল না। তার কারণ হিসাবে দেখা গেল তাড়াতাড়িতে ভাজকের দশকের অঙ্ক 6 কে 0 ধরা হয়েছিল। এখন ভাজক ও ভাজ্য ঠিক কত?

প্রঃ 60. 30 মিটার ও 40 মিটার উঁচু দুটি থাম পরস্পর থেকে 50 মিটার দূরত্বে ছিল। দুটি থামের সংযোগকারী সোজা রাস্তায় একটা বৃত্তাকার ছোট পাতলা পাথর ছিল। দুটি থামের উপর বসা দুটি কাক একসঙ্গে উড়ে সোজা এসে ঐ পাথরে এক সঙ্গে পৌঁছাল। থাম দুটি থেকে ঐ বৃত্তাকার পাথরটির দূরত্ব কত ছিল?

প্রঃ 61. কোনও এক কোম্পানীতে কর্মীর 50 বংসর থেকে 80 বংসর বয়সের মধ্যে স্বেচ্ছায় অবসর নিলে তার তখনকার বয়সের উপর নির্ভর করে নির্দিষ্ট সূত্র অনুসারে বার্ষিক অবসর ভাতা ঠিক করা হত। কোনও কর্মী 50 বৎসর বয়সে অবসর নিলে অবসর ভাতা হবে 504 ডলার, 60 বৎসর বয়সে অবসর নিলে এটি হবে 630 ডলার, 70 বৎসরের ও 80 বৎসরের ক্ষেত্রে এটি হবে যথাক্রমে 840 ডলার ও 1260 ডলার। এক কর্মী অবসর নেওয়ার পর ভাতা পেলেন বার্ষিক 700 ডলার। যদি তিনি আরও এক বংসর পরে অবসর নিতেন তার বার্ষিক ভাতার পরিমাণ কত হত ?

প্রঃ 62. রাম রহিমকে কোনও একটি সংখ্যা ভাবতে বলল। তারপর রহিমকে তার ভাবা সংখ্যার বর্গ, সেই বর্গফলকে আবার বর্গ করে প্রাপ্ত ফলকে প্রথমে ভাবা সংখ্যা দিয়ে গুণ করতে বলার পর জিজ্ঞাসা করে মাত্র দু'টি কথা জানতে পারল— শেষ গুণফল হয়েছে সাত অঙ্কের এবং তাতে এককের অঙ্কও সাত। রাম সামান্য সময় চিন্তা করে রহিমের ভাবা সংখ্যা ঠিক মত বলতে পারল। কি ভাবে রাম তা জানল এবং এক্ষেত্রে রহিমের ভাবা সংখ্যাটি কত ছিল?

প্রঃ 63. শহরের নৃতন আয়তাকার শিশু উদ্যানের মাপ জানতে চাইলে ধাঁধায় উত্তর পাওয়া গেল। জানা গেল, উদ্যানের কর্ণ দু'টি ও দৈর্ঘ্য দুটি একসঙ্গে প্রস্থের সাত গুণ; তা ছাড়া কর্ণের মাপ প্রস্থের মাপের চেয়ে 250 মিটার বেশি। শিশু উদ্যানের ক্ষেত্রফল কত?

প্রঃ 64. নিচের যোগ অঙ্কে বিভিন্ন অক্ষর বিভিন্ন অঙ্ক বোঝাচ্ছে। যোগ অঙ্কটি সংখ্যার সাহায্যে লিখতে হবে।

> SEND MORE MONEY

এক গোষ্ঠ ত্রিপথগামী, খঃ 65. সপ্ত ঘাটে পিয়ে পানি। দ্বাদশ গোপে গাভী দোয়, নব বৃক্ষের তলায় শোয়। (শুভঙ্করী)

11 12 13

প্রঃ 66. তিন পথিকের একসঙ্গে দেখা হল। তাদের প্রথম জনের কাছে তিনটি কটি, দ্বিতীয় জনের কাছে দু'টি রুটি এবং তৃতীয় জনের কাছে কোনও রুটি ছিল না। এখন এই রুটিগুলি তারা সমানভাবে ভাগ করে খেল। তৃতীয় জন তার খাদ্যের মূল্য হিসাবে এক টাকা দিলে তা থেকে বাকি দুই পথিকের কার কত পাওনা হবে?

প্রঃ 67. কোনও এক প্রতিযোগিতামূলক পরীক্ষায় ইংরাজী, হিন্দী ও বাংলা ভাষার পরীক্ষা নেওয়া হয়েছিল এবং তাতে সকলেই খারাপ করেছিল। পরীক্ষকগণ যখন পরীক্ষার খারাপ ফল নিয়ে আলোচনা করছিলেন তখন দেখা গেল পরীক্ষার্থীদের $\frac{2}{3}$ অংশ বাংলায়, $\frac{3}{4}$ অংশ হিন্দীতে ও $\frac{4}{5}$ অংশ ইংরাজীতে অকৃতকার্য হয়েছে। সমগ্র ফল থেকে জানা গেল 26 জন তিন বিষয়েই অকৃতকার্য হয়েছে এবং ওটিই সম্ভাব্য সর্বনিম্ন সংখ্যা ছিল। মোট পরীক্ষার্থীর সংখ্যা কতং

প্রঃ 68. গাণিতিক পীথাগোরাস এক অন্যায়কারী ভৃত্যকে শান্তিস্বরূপ ডায়েনা দেবীর মন্দিরের সাতটি স্তম্ভের সারির পাশ দিয়ে যাওয়া-আসা করে ও শেষ স্তম্ভকে ঘূরে স্তম্ভগুলিকে গণনা করতে বললেন যতক্ষণ না সে 1000 সংখ্যায়, পৌঁছায়। গণনার সময় সপ্তম স্তম্ভকে ঘূরে যখন প্রথমবার ষষ্ঠ স্তম্ভে আসবে, তখন তার নম্বর হবে 8; এই ভাবে চললে এবং গণনা করলে ভৃত্যের 1000 গণনা শেষ হবে কোন্ স্তম্ভে এসে?

প্রঃ 69. গাণিতিক ডায়াফান্টাসের সমাধিতে ক্ষোদিত আছে যে তিনি তাঁর জীবনের $\frac{1}{6}$ অংশ শৈশবে, $\frac{1}{12}$ অংশ যৌবনে, আরও $\frac{1}{7}$ অংশ অবিবাহিত অবস্থায় কাটান। বিবাহের পাঁচ বৎসর পরে তাঁর যে পুত্র জন্মগ্রহণ করে সে ডায়াফান্টাসের মৃত্যুর চার বৎসর আগে যখন তার বয়স ছিল ডায়াফান্টাসের জীবন-কালের অর্ধেক তখন মারা যায়। গাণিতিক ডায়াফান্টাসের জীবনকাল কত?

প্রঃ 70. গণিতজ্ঞ এক হবু রাজার দেশে নৃতন তিনটি অক্ষরকে দশমিক প্রথায় লেখা অস্কগুলির সঙ্গে নিয়ে নৃতন করে সাজিয়ে সংখ্যাকে নৃতন প্রথায় লেখা শুরু হয়েছিল। নৃতন নিয়মটি দশ্মিক প্রথার পরিচিত ভাষায় ছিলঃ

পরিচিত সংখ্যা... 1 2 3 4 5 6 7 8 9 10 11 12 13 হবু রাজার দেশে

তার নৃতন রূপ 1 2 3 X 4 5 Y 6 7 8 Z 9 10 এখন হবু রাজার দেশের নিয়মে লেখা 1X-এর বর্গ সংখ্যাকে সেখানকার লোক কিভাবে লিখবে?

থঃ 71. 6 থেকে 9, 9 থেকে 10 এবং 40 থেকে 50 বাদ দিয়ে সব মিলে হাতে থাকল 6; এটা কি ভাবে সম্ভব?

প্রঃ 72. পৃথিবীকে একটি নিটোল গোলক ভাবা হল এবং দেখা গেল 25000 মাইল একটি তার এই পৃথিবীকে ঠিক মতো ঘিরতে পারে। এই তারকে আরও 44 গজ্ঞ বাড়ানো হলে সেই তারের দ্বারা পৃথিবীকে বৃত্তাকারে ঘিরলে তারটি ভূপৃষ্ঠ থেকে কত উচুতে থাকবে?

প্রঃ 73. 1 থেকে 9 এই ন'টি অঙ্ক ও সাধারণ গাণিতিক চিহ্ন ব্যবহার করে কি ভাবে ফল হিসাবে 100 পাওয়া যাবে? জীলাস স্থিত চোলাল সংস্কৃত নিয়ে ইয়াই

প্রঃ 74. একটি 100 মিটার বাহুযুক্ত বর্গাকার ক্ষেত্রের চার কৌণিক বিন্দুতে চারটি ছাগল 50 মিটার দড়িতে বাঁধা অবস্থায় ঘাস খেত। পরে চারটি ছাগলের বদলে একটি রাম ছাগল কেনা হল এবং ঐ ক্ষেত্রের এক কৌণিক বিন্দুতে একটি বড় দড়িতে বাঁধা হল। দেখা গেল আগের চারটি ছাগল যে পরিমাণ জমির ঘাস খেয়েছিল, এখন রামছাগল সেই পরিমাণ জমির ঘাস খাচ্ছে। রামছাগলের দড়ি কত লম্বা ছিল?

প্রঃ 75. একটি প্রাচীরে ওঠার জন্য একটি মই এনে দেখা গেল, মইটি ঠিক প্রাচীরের সমান উঁচু। তখন প্রাচীর থেকে 10 ফুট দূরে একটা 2 ফুট উঁচু বাক্সের উপর মইকে রাখতে মই ঠিক প্রাচীরের সমান সমান হল এবং ওঠা গেল। প্রাচীরের উচ্চতা কত?

প্রঃ 76. এক ব্যক্তির 7 পিণ্ট ও 8 পিণ্ট মাত্র দু'মাপের পাত্র ছিল। এদের সাহায্যে সে কি ভাবে 1 পিণ্ট থেকে 8 পিণ্ট পর্যন্ত পূর্ণসংখ্যক যে কোনও পিণ্টপরিমাণ মাপতে পারবে?

প্রঃ 77.

ADJECTION MODERNICATION

BUTH PRISE IN THEIR

रेश्यांव प्रका

সভা মধ্যে বসেছিল চারি সহোদর। হেনকালে মতি লয়ে এল সদাগর॥ 🕬 🔀 বড় ভাই বলে আমি তিনের ধন পাই। আপনার অর্ধ দিয়া মতি কিনি লই॥ মধ্যম বলিল আমি তিনের ধন পাই। আপনার সিকি দিয়া মতি কিনি লই॥ ন-মধ্যম বলে আমি তিনের ধন পাই। দিয়া নিজ নয় পাই মতি কিনি লই॥ ছোট ভাই বলে আমি তিনের ধন পাই। কিনি তবে মতি, সহ নিজ সাত পাই॥ চারি জনের কত ধন, মতির কি বা দাম। দিখিজয়ী খড়ি এই দর্গচূর্ণ নাম॥

(শুভঙ্করী)

[এখানে পাই = পুরাতন পয়সা অর্থে = $\frac{1}{64}$; খড়ি = ধাঁধা তভঙ্করীর এই প্রশাটি বাখ্শালী পাণ্ডুলিপিতে উল্লিখিত এই অধ্যায়ের 12 নং প্রশ্নের অনুরূপ।]

প্রঃ 78. এক ব্যক্তি তার সঙ্গের মুদ্রাগুলিকে টেবিলের উপর বর্গাকারে সাজিয়ে রাখল। এইভাবে মুদ্রাগুলিকে রেখে বাহিরে থেকে ঘুরে এসে দেখল, মাত্র দু'টি মুদ্রা পড়ে আছে। ভৃত্যকে ডেকে বাকি মুদ্রার খোঁজ করতে সে বলল যে এ ব্যক্তির তিন বন্ধু এসে সব মুদ্রাকে সমান তিন ভাগ করে দুটো বাড়তি হয়েছে দেখেছিল। তারা প্রত্যেকে এক এক ভাগ করে নিয়ে গেছে; বাড়তি মুদ্রা দু'টি রেখে গেছে। ভৃত্য তিন বন্ধুর মুদ্রা ভাগের ব্যাপারে যা বলেছিল তা কি সত্য?

প্রঃ 79. এক গণিতজ্ঞ ব্যক্তির তিন পুত্র ছিল যারা এক বংসর অন্তর জন্মছিল।
দুর্গা পূজার সময় তিনি তিন পুত্রকে গল্পের বই কেনার জন্য টাকা দিতেন একটি নির্দিষ্ট
সূত্র অনুসারেঃ প্রত্যেক পুত্র পেত অন্য দুই পুত্রের বয়সের গুণফলের সমান টাকা।
তার বড় ছেলে এখন ষষ্ঠ শ্রেণীতে পড়ে; সম্প্রতি তাদের পিতৃবন্ধু হিসাবে আমাকে
চিঠি দিয়েছে যে আমি শেষ যে-বার দুর্গা পূজায় তাদের বাড়ি গিয়েছিলাম, এবারের
পূজায় বাবার কাছে তার চেয়ে সব ভাই মিলে 120 টাকা বেশি পেয়েছে। আমি এখন
থেকে ক'বৎসর আগে তাদের ওখানে গিয়েছিলাম এবং ছেলেগুলির এখন বয়স
কত?

প্রঃ 80. এক মহিলার বয়স পঞ্চাশ বৎসরের কম। তার সাত বৎসরের কন্যা মহিলার ও তার মায়ের বয়স জানতে চাইলে মহিলা সোজাসুজি ব্য়স না বলে জানাল—'তোমার দিদিমার বয়স (পূর্ণ-সংখ্যক বৎসরে)-এর বর্গ ও আমার বয়স (পূর্ণ সংখ্যক বৎসরে)-এর বর্গের অস্তরফল 2720; এখন বলতে হবে মহিলা ও তার মা'র বয়স কত?

প্রঃ 81. কোনও এক ব্যক্তি তার বন্ধুর কাছে তাদের পুরাতন 18 জন সহপাঠীর ঠিকানা চাইলে বন্ধু জানাল তারা শহরের একই রাস্তায় বাস করছে এবং তাদের বাড়ির নম্বর 1, 3, 13, 16, 21, 27, 28, 39, 52, 63, 70, 78, 156, 175, 189, 208, 243, 256। সেই ব্যক্তি যখন নম্বরগুলি লিখছিল, বন্ধুটি বলল এই আঠারটি নম্বরের মধ্যে মজা আছে; তাদের তিন-তিনটি নম্বর নিয়ে এমন ছ'টি ভাগ করা যাবে, যাতে প্রতি ভাগের যোগফল একই হবে। তাছাড়া, প্রতি ভাগের তিনটি নম্বরের মধ্যে নির্দিষ্ট একটি বিশেষ ধর্ম আছে। কি সে ধর্ম এবং ভাগগুলি কেমন ছিল?

প্রঃ 82. (BE)² = MOB—এই বর্গ অঙ্কে প্রতিটি অক্ষর একটি নির্দিষ্ট অঙ্ক বোঝালে বর্গ অঙ্কটি পাটীগণিতের ভাষায় লিখ।

প্রঃ 83. 1থেকে 9 এই ন'টি অঙ্ক, 0 (শ্ন্য) ও সাধারণ গাণিতিক চিহ্ন ব্যবহার করে কিভাবে ফল হিসাবে 100 পাওয়া যাবে? এ ধরনের আর দু'টি উদাহরণ দাও, যেখানে ফল 1 ও 7 হবে।

প্রঃ 84. $a^2 - b^2 = (a + b) (a - b)$ সূত্রের সাহায্যে এমন কয়েকটি সংখ্যাযুগল নির্ণয় কর যাদের বর্গের অন্তরফলে একই অঙ্ক বার বার আসবে।

প্রঃ 85. সরোবরে বিকশিত কমল নিকর। মধুলোভে এল তথা অনেক ভ্রমর॥ প্রতি পদ্মে বসে যদি ভ্রমর যুগল। অলিহীন রহে তবে একটি কমল॥ একৈক ভ্রমর বসে প্রত্যেক কমলে। বাকী রহে এক অলি, সংখ্যা দেহ বলে॥ (শুভঙ্করী)

থঃ ৪৫. বুড়ো দাদুর জন্মদিনে তাঁর যত বৎসর বয়স হল তত সংখ্যক আতশ বাজি আনা হয়েছিল। কিন্তু অর্ধেক বাজি সাাঁতসেতে হওয়ায় কাজে লাগল না ও অবশিষ্টের তিন ভাগের এক ভাগ বাজি নাতিরা চুরি করে নিয়ে গোপনে পুড়িয়ে ফেলল এবং বাকি বাজিগুলির মধ্যে 21 টাতে খুঁত ছিল। অবস্থা দেখে দাদু হতাশ না হয়ে বলল—'ঠিক আছে, প্রতি দশ বছর বয়সের জন্য একটা বাজি পুড়ুক, তা হলে তো ঐ বাজিতে হয়ে যাচ্ছে।' দাদুর জন্মদিনে তার বয়স কত হয়েছিল?

थः 87. ঝড়ো বাতাসের বিরুদ্ধে বাইসাইকেলে 1 কিলোমিটার যেতে চার মিনিট লাগলেও ফেরার সময় বাতাসের অনুকূলে লাগল মাত্র তিন মিনিট। শাস্ত দিনে (যেদিন বাতাসের আলাদা কোনও গতি নেই) 1 কিলোমিটার বাইসাইকেলে যেতে কত সময় লাগবে? क विद्यातिया चिक काँडे वज गर्डे वाद।

থঃ ৪৪. এক চাষী 30টি হাঁস নিয়ে প্রতি তিনটি হাঁস দশ টাকা দরে বিক্রয় করবার জন্য বাজারে যাচ্ছিল। পথে তার বন্ধু তার নিজের 30টি হাঁস দিয়ে প্রতি দুটি হাঁস দশ টাকায় বিক্রয় করে দিতে বলল। চাষী আলাদাভাবে বিক্রয় না করে তার ও তার বন্ধুর হাঁসগুলি প্রতি পাঁচটি হাঁস কুড়ি টাকা দরে বিক্রয় করল। ফেরার সময় তার বন্ধুর প্রাপ্য 150 টাকা দিয়ে বাড়ি এসে হিসাব করে দেখল তার নিজের হাঁস বিক্রয়ের দরুন যে 100 টাকা থাকা উচিত ছিল তার থেকে 10 টাকা কম হচ্ছে। সে কোনও টাকা বাজে খরচ করেনি বা হারায় নি। তবে তার এই ঘাটতি কেমন ভাবে रुल १ # n? - n(2n + 1): Test ofter - (2n + 1) Guist #308

থঃ 89. প্রায় একশ টাকার কাছাকাছি পরিমাণ তহবিল নিয়ে এক ব্যক্তি বাজারে গিয়েছিল। তার তহবিলে সব এক টাকার নোট; কেবল এক টাকার মতো খুচরা সবই পয়সায় ছিল। বাজারে অর্ধেক পরিমাণ অর্থ ব্যয়িত হওয়ার পর সে দেখল তার তহবিলে বাজারে আসার সময় যতগুলি এক টাকার নোট ছিল ততগুলি পয়সা আছে আর শুরুতে যতগুলি পয়সা ছিল তার অর্ধেক-সংখ্যক এক টাকার নোট আছে। কত টাকা কত পয়সা নিয়ে সে বাজারে গিয়েছিল?

প্রঃ 90. তিন-অঙ্ক বিশিষ্ট কোন্ সংখ্যার আগে পরে 7 বসালে তার মধ্যে সংখ্যাটি উৎপাদক হিসাবে থাকবে?

প্রঃ 94.

প্রঃ 91. এক একটি অক্ষরে এক একটি অঙ্ক এবং ABC + DEF - GHI = 100; এই যোগ-বিয়োগের অঙ্কটি পাটাগণিতের ভাষায় লিখ।

প্রঃ 92. এক পাউণ্ড পালক ও এক পাউণ্ড সোনা—এদের মধ্যে কোন্টি বেশি ভারী ?

প্রঃ 93. (i) চারটি 4 ও (ii) চারটি 9-এর সাহায্যে 100 লিখ। (দশমিক বিন্দু ও গাণিতিক চিহ্ন ব্যবহার করা যেতে পারে।)

পাটনা শহরে এক ধনী সদাগর। ব্যবসাতে রত সদা, ধর্মেতে তৎপর॥ যত টাকা লাভ তাঁর হয় প্রতি সনে। তাহার তেহাই যায় আহার কারণে॥ অন্টম ভাগের ভাগ পোষাকেতে যায়। দশম ভাগের ভাগ গরীবে বিলায়॥ বাণের পৃষ্ঠেতে নেত্র স্থাপন করিয়া। যথাক্রমে দিক্ রস বেদেতে পুরিয়া। তাহাতে যতেক তঙ্কা হইবে নির্ণয়। খরচ বাদেতে তাঁর লভ্য তত রয়॥ বিচারিয়া শিশু ভাই বল এই বার। প্রতি সনে কত লাভ হইত তাঁহার॥

(শুভঙ্করী)

[এখানে নাম সংখ্যার ব্যবহার হয়েছে। বাণ = 5, নেত্র = 3, দিক = 10, রস = 6 এবং বেদ = 41

প্রঃ 95. নিচের গাণিতিক সিদ্ধান্তের মধ্যে কোথায় ভুল আছে তা নির্ণয় কর ঃ—আমরা জানি $(n+1)^2 = n^2 + 2n + 1$ বা $(n+1)^2 - (2n+1)$ $= n^2$ উভয় পক্ষ থেকে n(2n+1) বাদ দিলে $(n+1)^2 - (n+1)(2n+1)$ = n² - n(2n + 1); উভয় পক্ষে $\frac{1}{4}$ (2n + 1)² যোগ করলে $(n+1)^2 - (n+1)(2n+1) + \frac{1}{4}(2n+1)^2$ $= n^2 - n (2n + 1) + \frac{1}{4} (2n + 1)^2$ বা $[(n+1) - \frac{1}{2}(2n+1)]^2 = [n - \frac{1}{2}(2n+1)]^2$ বা $n+1-\frac{1}{2}(2n+1)=n-\frac{1}{2}(2n+1)$, অত্এব n+1=nআমরা একটি অসম্ভব সিদ্ধান্তে পৌঁছেছি। কেন এমন হল? প্রঃ 96. প্রথম, দ্বিতীয় ও তৃতীয় ব্যক্তির যথাক্রমে 7টি অশ্ব (ভালো জাতের ঘোড়া), 9টি হয় (সাধারণ ঘোড়া) ও 10টি উট ছিল। এদের প্রত্যেকে অপর দুজনকে একটি হিসাবে প্রাণী দান করলে প্রত্যেকের প্রাণী-সম্পদের মূল্য সমান হল। এখন প্রত্যেক প্রকার প্রাণীর দাম নির্ণয় কর। (বাখ্শালী পাণ্ডুলিপি থেকে)

প্রঃ 97. কচুরি পানার বৃদ্ধি খুব, প্রতিদিন পূর্বদিনের তুলনায় দ্বিগুণ হয়ে যায়। 1988 খ্রিস্টান্দের ফেব্রুয়ারি মাসে একটি পুকুরে কচুরি পানা শুরু হয়ে মাসের শেষে পুকুরটি পানায় পুরাপুরি ভর্তি হয়েছিল। এক্ষেত্রে ঐ মাসের কোন্ তারিখে পুকুরটি ঠিক সিকি ভাগ পানায় ভর্তি হয়েছিল।

প্রঃ 98. সমান সংখ্যক ফল-ভরা পাঁচটি বাক্স-এর ফল এবং আরও দুটি ফল 9 জনের মধ্যে ভাগ করা হল। আর ঐ ধরনের ছ'বাক্স ফল এবং আরও চারটি ফল 8 জনের মধ্যে ভাগ করা গেল। আবার ঐ ধরনের চার বাক্স ফল এবং আরও একটি ফল 7 জনের মধ্যে ভাগ করা সম্ভব হল। প্রতি বাক্সে ফলের সংখ্যা কত? ('মহাবীরাচার্যের গণিত সার সংগ্রহ' থেকে গৃহীত)

প্রঃ 99. কোনও দোকানদারের ওজন-দাঁড়ির দু'বাছ সমান নয়। এক বৃদ্ধিমান ক্রেতা তার কাছে ময়দা কেনার সময় প্রথমে অর্ধেক পরিমাণ ময়দা ওজন করালো; পরে পাল্লা পালটে বাকি অর্ধেক পরিমাণ ময়দা ওজন করিয়ে নিল। এতে ক্রেতার লাভ না লোকসান হল?

প্রঃ 100. 20 মিটার উঁচু একটা টিলা থেকে একটি ভালুক পড়ে গেল; ভূ-পৃষ্ঠে পৌঁছাতে তার সময় লাগল 2 সেকেণ্ড। ভালুকের গায়ের রং কি?

প্রঃ 101. 24 জন লোককে 6টি সারিতে এমনভাবে সাজাতে হবে যাতে প্রত্যেক সারিতে 5 জন থাকবে। এ-ব্যবস্থা কি ভাবে সম্ভব হবে?

প্রঃ 102. অঙ্ক নিয়ে পাগলামি করে এমন একটি ছেলেকে তার বয়স জিজ্ঞাসা করা হলে সে জানাল—"এখন থেকে 3 বৎসর পরে আমার যে বয়স হবে তাকে 3 গুণ করে তা থেকে আমার 3 বৎসর আগেকার বয়সের 3 গুণ বিয়োগ করলে আমার বয়স পাবে"।

সেই পাগলাটে ছেলেটির বয়স কত?

প্রঃ 103. দু'জন টাইপিস্টের মধ্যে অভিজ্ঞ জন যে টাইপ 2 ঘণ্টায় করেন, অন্য জন সে কাজ করেন 3 ঘণ্টায়। দু'জনে মিলে 1 ঘণ্টা 12 মিনিটে একটি পাণ্ডুলিপি টাইপ করার কাজ শেষ করলেন। অপেক্ষাকৃত কমগতিসম্পন্ন টাইপিস্ট ঘণ্টায় 10 পৃষ্ঠা টাইপ করতে পারেন। ঐ পাণ্ডুলিপির পৃষ্ঠাসংখ্যা কত?

প্রঃ 104. বৃদ্ধ রামবাবু তাঁর জীবনের পুরাতন এক দিনের গল্প বলছেন—সে গল্পে আছেন কম-বয়সী রাম ও তাঁর দাদু। তাঁদের কথা হচ্ছে নিজ নিজ জন্ম-বংসর নিয়ে। রাম বললেন—"1932 সালে আমার বয়স ছিল আমার জন্ম-সালের শেষ দু'

অঙ্কের সমান।" তা শুনে তাঁর দাদু বললেন—"আমার বয়সের ক্ষেত্রেও ঐ একই কথা।" কিন্তু দাদু তো রামের সমবয়সী হতে পারেন না। তাই প্রশ্ন—রাম ও তাঁর দাদুর জন্ম বৎসর কি? प्रकृति विभारत शाली माम बनाइन व्यापनारक वाना-मान

প্রঃ 105. 1 থেকে 9 ও শূন্য—এই দশটি অঙ্কের যে কোনও ন'টি অঙ্কের সাহায়ে 11 দ্বারা বিভাজ্য বৃহত্তম ও ক্ষুদ্রতম সংখ্যা দুটি নির্ণয় কর।

প্রঃ 106. এক যাদুকর প্রদর্শনীতে উপস্থিত সকল দর্শককে আহ্বান করে বললেন—"পঞ্চাশ পয়সা, কুড়ি পয়সা ও পাঁচ পয়সা তিন রকম মিলিয়ে মোট কুড়িটি মুদ্রায় যদি আমাকে কেউ পাঁচ টাকা দিতে পারেন তাঁকে আমি একশ টাকা দেব। দেখুন, এভাবে পাঁচ টাকা দিয়ে একশ টাকা কেউ নেবেন কি?" এখানে প্রশ্ন এই—কোনও দর্শক কি 5 টাকা দিয়ে 100 টাকা নিতে পেরেছিলেন?

প্রঃ 107. আছিল দেউল এক বিচিত্র গঠন। ক্রোধে জলে ফেলে দিল পবন-নন্দন॥ অর্ধেক পঙ্কেতে তার তেহাই সলিলে। দশম ভাগের ভাগ শেওলার দলে॥ জন্ম হাত ... উপরে দ্বাদশ গজ রহে বিদ্যমান। কর শিশু দেউলের উচ্চতা প্রমাণ॥

(শুভঙ্করী)

প্রঃ 108. একটি গল্প শোনা যায়—নোবেল পুরস্কার বিজয়িনী পার্ল বাক কোনও এক সালে বলেছিলেন—''এ-সালের বর্গমূল যত আমার বয়সও তত বংসর"। এখন প্রশ্ন—পার্ল বাক কোন্ সালে জন্মেছিলেন এবং কোন্ সালে এ-কথা বলেছিলেন ?

এই প্রগ্নগুলির সমাধান বা সমাধানের সঙ্কেত পরবর্তী অধ্যায়ে সন্নিবিষ্ট হয়েছে। অবশ্য সমাধান প্রথমেই না দেখা ভাল।

দশটি মজার যাদু খেলা

(যাদু খেলাগুলির আঙ্কিক ব্যাখ্যার জন্য পরবর্তী অধ্যায় দ্রষ্টব্য)

(1) তোমার মনকে আমি নিয়ন্ত্রিত করতে পারিঃ

অঙ্কের এই যাদুখেলায় গাণিতিক যাদুকর একটি কাগজে 10989 লিখে একটি খামের মধ্যে সেটি রেখে দর্শকদের কারুর কাছে জমা রাখল। এখন অন্য যে কোনও দর্শককে ডেকে যাদুকর বলবে—তুমি যে কোনও চার অঙ্কযুক্ত সংখ্যা (যার প্রথম ও শেষ অঙ্কের তফাৎ কমপক্ষে 2) ভাব এবং আমাকে না জানিয়ে একটা কাগজে লেখ। এখন তোমাকে দিয়ে কিছু অঙ্ক করাব; কিন্তু তোমার মনকে এমনভাবে নিয়ন্ত্রণ করব যাতে তোমার অঙ্কের ফল খামে গচ্ছিত রাখা আমার লেখা ফলের সঙ্গে মিলে दाः 10४ कृत क्षत्रमान् होता कीवरंतवं भूतास्त्र धेक मित्ततं च

এখন সেই দর্শককে তার লেখা চার অঙ্কের সংখ্যার প্রথম ও শেষ অঙ্ক দুটিকে পরস্পর পাল্টাতে বল যাতে নৃতন একটি চার অঙ্কের সংখ্যা পাওয়া যায়। এখন ভাবা সংখ্যা ও নৃতন সংখ্যার অন্তরফল নির্ণয় করতে বলতে হবে। তারপর ঐ অন্তরফলের প্রথম ও শেষ অন্ধ দৃটি পরস্পর স্থান বদল করে নৃতন যে সংখ্যা পাওয়া যাবে তার ও পূর্বোক্ত অন্তরফলের যোগফল নির্ণয় করতে বল। এখন সবাইকে বিশ্মিত করে দেখানো যাবে খামে গচ্ছিত রাখা সংখ্যা দর্শকের করা যোগফলের সঙ্গে হবহু মিলে গেছে। উদাহরণ দেওয়া যাক ভালভাবে বোঝার জন্য ঃ—

(a) মনে করা যাক, দর্শক ভেবেছে	3508
(b) এখন প্রথম ও শেষ অঙ্ক ওল্টালে পাওয়া যাবে	
(c) এদের অন্তরফল হবে	1005
(d) অন্তরফলের প্রথম ও শেষ অঙ্ক ওল্টালে হবে	
(e) এদের যোগফল হবে	

এখন রকমফের করার জন্য চার অঙ্কের সংখ্যার বদলে পাঁচ, ছয়, সাত.....
আঙ্কের সংখ্যা নেওয়া যেতে পারে; তবে সব ক্ষেত্রেই সংখ্যাটির প্রথম ও শেষ অঙ্কের
তফাং কমপক্ষে 2 হতে হবে। মনে রাখতে হবে যাদুকরের গচ্ছিত উত্তর নির্ভর
করছে প্রথমে ভাবা সংখ্যার অঙ্ক-সংখ্যার উপর। পাঁচ অঙ্কের ক্ষেত্রে এটি হবে
109989, ছ' অঙ্কের ক্ষেত্রে 1099989, সাত অঙ্কের ক্ষেত্রে 10999989,.....
এইভাবে ক্রমান্বয়ে মাঝে বাড়তি একটা 9 এনে যে কোনও সংখ্যক অঙ্ক-বিশিষ্ট
সংখ্যার ক্ষেত্রে এই যাদু খেলা দেখানো যাবে।

(2) তোমার জন্ম সাল আমি বলতে পারি ঃ

PRIST T

PALIE

এক্ষেত্রে যার জন্ম সাল যাদুকর বলবে, তাকে দিয়ে যাদুকর কিছু অঙ্ক করাবে যার একটি অংশ ও শেষ ফল ছাড়া যাদুকর কিছু জানবে না বা জানতে চাইবে না। উদাহরণ দিয়ে এই যাদুটি বোঝানো হচ্ছে ঃ—

মনে করা যাক সেই দর্শক 1957 খ্রিস্টাব্দে জন্মেছিল। যাদুকরের নির্দেশ দর্শকের করা অঙ্ক

- (a) জন্ম বৎসরের শতকটি (অর্থাৎ প্রথম দুটি অঙ্ক) লেখ।
- (b) শতকের পরের সংখ্যাটি তার সঙ্গে যোগ কর।
 - (c) ঐ যোগফলকে 5 দ্বারা গুণ কর।
 - (d) প্রাপ্ত গুণফলের ডান দিকে 0 বসাও।
 - (e) এখন 10 থেকে 99-এর মধ্যে দর্শক যে কোনও সংখ্যা বলবে

সে 19-এর সঙ্গে 20 যোগ করে পেল 39

দর্শক লিখল 19

এখন সে পেল 39 × 5 = 195 একটি চার অঙ্কের সংখ্যা 1950 পাওয়া গেল।

মনে করা যাক দর্শক বলল 36 (যাদুকরও জানল) এবং 1950যাদুকরের নির্দেশ এবং সেই বলা সংখ্যা পূর্বোক্ত চার অঙ্কের সংখ্যার সঙ্গে যোগ করবে।

দর্শকের করা অঙ্ক এর সঙ্গে 36 যোগ করে পেল 1986।

(f) এই যোগফলের সঙ্গে দর্শকের জন্ম-সালের শেষ দৃটি অঙ্ক (অর্থাৎ শতক বাদে জন্ম-সাল) যোগ করে নৃতন যোগফল যাদুকরকে বলতে হবে।

যোগফল 1986-এর সঙ্গে জন্ম-সালের শেষ দুটি অঙ্ক 57 যোগ করে সে নৃতন যোগফল 2043 যাদুকরকে জানাল।

এখন যাদ্কর নিজে মনে মনে 2043 থেকে 50 ও দর্শকের বলা দুই অঙ্কের সংখ্যা 36 অর্থাৎ মোট 86 বিয়োগ করে পাবে 1957—যেটি সগর্বে দর্শকের জন্ম-সাল হিসাবে জানাতে পারবে।

(3) তোমার জন্ম বার আমি বলতে পারি ঃ

এক্ষেত্রে একাধিক পদ্ধতির মধ্যে শকুন্তলা দেবীর পদ্ধতিটি ব্যাখ্যা করা হচ্ছে। প্রথমে মাস্যঙ্কণ্ডলি মনে রাখতে হবে—

জানুয়ারি—1, (অতি বর্ষে 0), ফেব্রুয়ারি—4, (অতি বর্ষে 3), মার্চ—4, এপ্রিল—0, মে—2, জুন—5, জুলাই—0, আগস্ট—3, সেপ্টেম্বর—6, অক্টোবর—1, নভেম্বর—4 এবং ডিসেম্বর—6। এখানে জানুয়ারির মাসাক্ষ 1 বা 0 মনে রেখে বাকি মাসগুলির মাসাঙ্ক পূর্ববর্তী মাসের মাসাঙ্ক ও দিনগুলির সংখ্যা ও 7 ভাগ (mod 7)-এর সাহায্যে নির্ণয় করা যায়। যেমন সাধারণ বৎসরে ফেব্রুয়ারির মাসাঙ্ক হবে জানুয়ারির 1+ জানুয়ারির দিন সংখ্যা 31 অর্থাৎ 32-কে 7 দিয়ে ভাগ করলে যে ভাগশেষ হবে সেই সংখ্যা অর্থাৎ 4; মার্চের ক্ষেত্রে হবে (4 + 28) mod <mark>7 বা 4 ইত্যাদি। অতি বর্ষে জানুয়ারির মাসাঙ্ক 0 ধরে ফেব্রুয়ারির মাসাঙ্ক হবে (0</mark> + 31) mod 7 বা 3, মার্চে হবে (3 + 29) mod 7 বা 4; তারপর সাধারণ বৎসরেরই মতো। এখন জন্ম বার নির্ণয় করতে হলে (এখন যাদের জন্ম বার নির্ণয় করা হবে তারা প্রায়ই বর্তমান শতাব্দীতে জন্মেছে) শতক বাদে তার জন্ম বৎসর নিয়ে তার সঙ্গে চতুর্থাংশের পূর্ণসংখ্যা ও জন্ম মাসের মাসাঙ্ক ও জন্ম তারিখ যোগ করতে হবে। এই যোগফলকে 7 দিয়ে ভাগ করে অবশিষ্ট অনুসারে জন্ম বার বলা যাবে; যেমন 1 হলে রবিবার, 2 হলে সোমবার, এইভাবে পর পর হয়ে 6 হলে শুক্রবার এবং 0 হলে অবশ্যই শনিবার হবে। খুবই বয়স্ক কোনও ব্যক্তি ঊনবিংশ শৃতকে জন্মে থাকলে তাঁর ক্ষেত্রে উক্ত যোগফলের সঙ্গে বাড়তি 2 যোগ করে নেওয়া দরকার। উদাহরণস্বরূপ স্বাধীন <mark>ভারতের জন্মবার নির্ণয় করা যাক। অর্থাৎ 1947 খ্রিস্টান্দের</mark> 15 আগস্ট কি বার ছিল জানতে <mark>হবে। পূর্বোক্ত নিয়মে আসবে 47 + 11 (47-এর</mark>

সিকি ভাগের পূর্ণসংখ্যা অংশ) + 3 (আগস্ট মাসের মাসাঙ্ক) + 15 অর্থাৎ 76; এখন 76-কে 7 দিয়ে ভাগ করলে ভাগশেষ থাকে 6; সুতরাং ঐ দিন ছিল শুক্রবার।

শকুন্তলা দেবীর পদ্ধতিতে অষ্টাদশ শতকের জন্য বাড়তি 4, ঊনবিংশ শতকের জন্য বাড়তি 2 এবং একবিংশ শতকের ক্ষেত্রে বাড়তি 6 যোগ করলে সংশ্লিষ্ট শতকে নির্দিষ্ট তারিখের বার নির্ণয় করা যাবে। দু'টি উদাহরণ দেওয়া হল ঃ

(1) পলাশীর যুদ্ধের তারিখ 1757 খ্রিস্টাব্দের 23 জুন কি বার ছিল? শতক বাদে সালের সংখ্যা 57, তার চতুর্থাংশ (পূর্ণ সংখ্যায়) 14, জুনের মাসাঙ্ক 5, তারিখ 23 এবং অষ্টাদশ শতকের বাড়তি 4 যোগ করলে আসে 103; 103-কে 7 ভাগ করলে অবশিষ্ট থাকে 5, অতএব পলাশীর যুদ্ধের দিন বৃহস্পতি বার।

(2) একবিংশ শতকের প্রথম দিন (2001 খ্রিস্টাব্দের 1 জানুয়ারি) কি বার হবে?

এখানে শতক বাদে সালের সংখ্যার 1, তার চতুর্থাংশ (পূর্ণ সংখ্যায়) 0, সাধারণ (অতি বর্ষে নয়) বংসরে জানুয়ারির মাসাঙ্ক 1, তারিখ 1 এবং একবিংশ শতকের জন্য বাড়তি 6 যোগ করলে পাওয়া যায় 9; 9-কে 7 দিয়ে ভাগ করলে অবশিষ্ট থাকে 2; তাই একবিংশ শতকের প্রথম দিন হবে সোমবার।

(4) তোমার পুরা জম্ম তারিখ আমি বলতে পারিঃ

এখানে যার জন্ম তারিখ যাদুকর বলতে চায় তাকে দিয়ে কিছু অঙ্ক নির্দেশ মত করাতে হবে। অঙ্কের শেষ ফল জেনে যাদুকর ঐ জন্ম তারিখ পুরাপুরি বলতে পারবে। উদাহরণ সহযোগে নিয়মটি ব্যাখ্যা করা যাকঃ—

মনে করা যাক অনমিত্র রায়ের জন্ম তারিখ 1.2.1925 এখন যাদুকরের নির্দেশে অনমিত্র অঙ্ক করছে।

যাদুকরের নির্দেশ

- (a) জন্ম মাসের সংখ্যা লিখে তার সঙ্গে পরবর্তী সংখ্যা যোগ করে যোগফলকে 5 দিয়ে গুণ করে তার ডান দিকে শৃন্য বসাও।
- (b) এখন যে কোনও দুই অঙ্কের সংখ্যা ভেবে যাদুকরকে তা বলে ঐ আগের পাওয়া সংখ্যার সঙ্গে সেটি ও জন্ম তারিখ যোগ করতে হবে।

অনমিত্রের করা অঙ্ক

জন্ম মাসের সংখ্যা 2 লিখে তার সঙ্গে 3 যোগ করে পাওয়া গেল 5; এখন 5 × 5 বা 25-এর ডান দিকে শৃন্য বসালে পাওয়া যাবে 250

এক্ষেত্রে অনমিত্র 32 ভেবে থাকলে তা যাদুকরকে জানিয়ে 250-এর সঙ্গে উক্ত 32 এবং তার জন্ম তারিখ 1 যোগ করে পাবে 283

🚃 🔐 ু যাদুকরের নির্দেশ 🛶 💢 উদ্বাহন 👉 অনমিত্রের করা অঙ্ক 🚽 🖂

(c) আবার যে কোনও দুই অঙ্ক এবারে অনমিত্র 16 ভেবেছিল; বিশিষ্ট সংখ্যা ভেবে যাদুকরকে তা বলে সেটিকে আগের পাওয়া সংখ্যার ডান দিকে বসাতে হবে।

সেটি যাদুকরকে জানিয়ে তার আগে পাওয়া সংখ্যা 283-এর ডান দিকে 16 বসালে সে পাবে 28316

(d) এখন প্রাপ্ত ফলের সঙ্গে জন্ম \$ 18 16 1 বৎসরের শতক বাদে বাকি 103-64 7 সংখ্যা (জন্ম সালের শেষ দৃটি সংখ্যা) যোগ করে যোগফলটি যাদুকরকে জানাতে বলতে হবে।

অনমিত্র 28316-এর সঙ্গে জন্ম সালের 25 যোগ করে যোগফল 28341 যাদুকরকে জানাল।

(1) नज़ाना गुरुत जाविन

ाडक वाक्ष जाटनहां नदस्या 57

विवाहन मेरूक सास्त्र मास्त्र मास्त्र । जात प्रदर्शन (वर्ष मासाम) অনমিত্রকে যখন অঙ্ক করানো হচ্ছে তার মধ্যে যাদুকর মনে মনে অনমিত্রের প্রথম বলা সংখ্যায় (এক্ষেত্রে 32) সঙ্গে 50 যোগ করে যোগফলের ডান দিকে পরে-বলা দৃ' অঙ্কের সংখ্যাটি (এক্ষেত্রে 16) বসিয়ে পেয়েছে 8216—যেটি হবে যাদুকরের চাবি। অনমিত্র যখন তার শেষ ফল 28341 বলবে, তখন যাদুকর ঐ ফল থেকে উক্ত চাবি সংখ্যা 8216 বিয়োগ করে পাবে 20125—যেটিকে সে ভাগ করবে 2/01/25 হিসাবে এবং তা থেকে অনমিত্রের জন্ম মাস 2 অর্থাৎ ফেব্রুয়ারি, জন্ম তারিখ 1 অর্থাৎ পয়লা এবং জন্ম সাল 1925 বলতে পারবে। দর্শকের চেহারা থেকে তার বার্ধক্য বোঝা যায়। কাজেই কোনও ক্ষেত্রে অঙ্কের মাধ্যমে জন্ম সালের শেষ দুই অঙ্ক 85 পেলে সেটি 1985 না হয়ে 1885 হবে কি না তা বুঝতে নিশ্চয়ই কোনও জ্যোতিষবিদ্যা লাগবে না। অনমিত্রের জন্ম তারিখ পুরাপুরি জানবার পর (3) নং পদ্ধতির সাহায্যে তার জন্মবারও নির্ণয় করা যায়। এ-ক্ষেত্রে সেটি হবে রবিবার।

(5) যোগের উত্তর যৌগিক প্রক্রিয়ায় আগেই জানা যায় ঃ

এক্ষেত্রে দর্শক একটি বড় সংখ্যা লিখবে, তার নিচে যাদুকর একটি সংখ্যা লিখবে। তার পর যৌথভাবে আরও কত যোড়া সংখ্যা লেখা হবে তা ঠিক করতে হবে। (মনে রাখতে হবে দর্শকের লেখার কোনও সংখ্যারই অঙ্ক-সংখ্যা প্রথমে লেখা সংখ্যার অঙ্ক-সংখ্যার বেশি হবে না) এখন যাদুকর যোগের উত্তর হিসাবে একটি সংখ্যা কাউকে না জানিয়ে লিখে লেখা কাগজটি ভাঁজ করে খামে ভরে জমা রাখবে। তার পর আগের প্রস্তাব মত নির্দিষ্ট কয়েক জ্বোড়া সংখ্যা লিখে (দর্শক একটি সংখ্যা ও যাদুকর একটি সংখ্যা এইভাবে) সংখ্যাগুলিকে যোগ করতে বলবে ঐ দর্শককে বা অন্য কোনও দর্শককে। খুব মজা হবে, যখন দেখা যাবে নির্ণীত যোগফল কাগজে

আগের থেকে লেখা যাদুকরের যোগফলের সঙ্গে হুবহু মিলে গেছে। এখন একটি উদাহরণ সহযোগে যাদু-যোগটি বোঝানো হচ্ছেঃ—

মনে করা যাক দর্শক লিখেছে 425909

যাদুকর এখন একটি সংখ্যা লিখবে 152080 (যাতে প্রতি স্তন্তের যোগফল 9 বা 9-এর কম হয়।)

এখন ঠিক করা হল আরও তিন যোড়া সংখ্যা লেখা হবে। যাদুকর কাগজে উত্তর লিখবে 3577989 (অর্থাৎ বাম দিকে 3 বসিয়ে তার পাশে বাম দিক থেকে স্তম্ভ অনুসারে সংখ্যা দুটি যোগ করে অঙ্কগুলি লিখে যাবে)।

এখন দর্শক লিখল369247	এখানে দর্শকের সংখ্যার
যাদুকর লিখবে630753	সংখ্যা লেখার সময় মনে
দর্শক আবার লিখল973291	্ হিসাব করতে হবে যাতে ও
যাদুকর লিখবে 26709	সংখ্যার প্রতি স্তম্ভের যোগফ
দর্শক এখন লিখল 57989	দিক থেকে 9 হয় এবং একক
যাদুকর লিখবে942011	যোগফল 10 হয়।
व्यक्ति इ	विति प्रश्नित कामाकः (T)

এখানে দর্শকের সংখ্যার নিচে সংখ্যা লেখার সময় মনে মনে হিসাব করতে হবে যাতে ঐ দুটি সংখ্যার প্রতি স্তম্ভের যোগফল বাম দিক থেকে 9 হয় এবং একক দুটির যোগফল 10 হয়।

এখন মোট আটটি 📑 🛼 💮 সংখ্যার যোগফল হবে 3577989

ে েযেটি যাদুকরের লেখা যোগফলের সঙ্গে মিলেছে।

া তবে এই যাদু অঙ্কটি একই লোকের কাছে বার বার না দেখানো ভাল। আর, দর্শকের সংখ্যার নিচে বাম দিক থেকে সংখ্যা লেখার সময় খুব দ্রুত সংখ্যা লেখা অভ্যাস করতে হবে যাদুকরকে, যাতে ঐ সংখ্যা যে হিসাব করে লেখা হচ্ছে তা বোঝা না যায়। আর একটি কথা, প্রথম দুটি সংখ্যা লেখার পর যদি আরও '2n' সংখ্যক সংখ্যা লেখা ঠিক হয়, তবে যাদুকরের লেখা যোগফলে বাম দিকের অঙ্ক 'n' হবে।

(6) তোমার ভাবা তাস আমি বলতে পারি ঃ

এক্ষেত্রে প্রথমে মনে রাখতে হবে চার রঙের তাসের মধ্যে চিড়িতন (Club)-এর ক্রীড়া মূল্য 6, রুইতন (Diamond)-এর 7, হরতন (Heart)-এর 8 ও ইস্কাবন (Spade)-এর 9 এবং প্রতি রং-এর তাসে আছে 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, গোলাম (Jack) = 11, বিবি (Queen) = 12 ও সাহেব (King) = 13; অর্থাৎ প্রতি রং-এর 13 খানি তাস হিসাবে চার রং-এ 52 খানি তাস আছে। এখন কোনও দর্শককে কোনও একটি তাস ভাবতে বল। সেই ভাবা তাসকে খুঁজে পাওয়া যাবে দর্শক যদি যাদুকরের নির্দেশ মত কিছু অঙ্ক করে এবং অঙ্কের শেষ ফল জানায়। উদাহরণ সহযোগে তাস সংক্রান্ত অঙ্কের যাদু খেলাটি বোঝানো হচ্ছে :—

ান্ড নাদুকরের নির্দেশ স্থান দর্শকের করা অঙ্ক

(a) দর্শককে তার ভাবা তাসের নম্বরের সঙ্গে তার পরবর্তী সংখ্যা যোগ করে যোগফলকে 5 দ্বারা গুণ করতে বলা হল।

দর্শক যদি ইস্কাবনের বিবির কথা ভেবে থাকে তবে সে 12-এর সঙ্গে 13 যোগ করে নির্দেশ মত গুণফল পাবে 25 × 5 क्रिका क्षेत्र करा हुन व्यथित विका

(b) প্রাপ্ত গুণফলের সঙ্গে ভাবা তাসের রং-এর ক্রীড়ামূল্য যোগ করে সেই যোগফল যাদুকরকে জানাতে হবে।

প্রাপ্ত গুণফল 125-এর সঙ্গে ইস্কাবনের ক্রীড়ামূল্য 9 যোগ করে যোগফল 134 যাদুকরকে দর্শক জানাল।

এখন যাদুকর 134 থেকে মনে মনে 5 বিয়োগ করে পাবে 129 — যার এককের অঙ্ক '9' বোঝাবে ক্রীড়ামূল্য অর্থাৎ তাসের রং 'ইস্কাবন' এবং বাকি অংশ '12' বোঝাবে তাসটি 'বিবি'। সূতরাং যাদুকর দর্শককে বলতে পারবে দর্শকের ভাবা তাসটি ছিল ইস্কাবনের বিবি।

(7) তোমার ভাবা সংখ্যা আমি জানি ঃ উদাহরণের সাহায্যে অঙ্কের এই যাদুখেলাকে বোঝানো হল— যাদুকরের নির্দেশ

দর্শকের করা অঙ্ক

(a) একটি তিন অঙ্কের সংখ্যা দর্শক যদি 706 ভেবে থাকে তা হলে সে পাশাপাশি দুবার লেখ যাতে একটি ছ' অঙ্কের সংখ্যা পাওয়া যায়। দিং সামত সংগ্ৰহণ কৰা সমূহ এই বিহাৰ বাৰ্ড কিছ

ভাব এবং সেই সংখ্যাটি নির্দেশ মত পাবে 706706 সংখ্যাটি।

(b) প্রাপ্ত সংখ্যাটিকে 13 দিয়ে দর্শক ভাগ করে ভাগফল পাবে 54362। ভাগ করতে বল।

(c) প্রাপ্ত ভাগফলকে এখন 11 দিয়ে ভাগ করে ভাগফলটি জানাতে বল।

দর্শক এবারে ভাগ করে ভাগফল পাবে 4942 যেটি সে যাদুকরকে বলবে।

এখন যাদুকর দর্শকের বলা সংখ্যা 4942-কে মনে মনে 7 দিয়ে ভাগ করে ভাগফল হিসাবে 706 সংখ্যাটি পাবে যেটি অবশ্যই দর্শকের ভাবা সংখ্যা।

এই খেলাটিকে সামান্য বদল করে আরও দু'টি যাদু খেলা দেখানো যায়। প্রথম ক্ষেত্রে দর্শক ভাববে দৃ' অঙ্কের যে কোনও সংখ্যা এবং তাকে পাশাপাশি তিন বার লিখে ছ' অঙ্কের সংখ্যা পাওয়া যাবে। এখন প্রাপ্ত সংখ্যাকে যাদুকরের নির্দেশ মত দর্শক প্রথমে 37 দিয়ে ভাগ, সেই ভাগফলকে 13 দিয়ে ভাগ এবং নৃতন এই

ভাগফলকে 3 দিয়ে ভাগ করে ভাগফল জানাবে। তখন যাদুকর দর্শকের বলা শেষ ভাগফলকে মনে মনে 7 দিয়ে ভাগ করে দর্শকের ভাবা সংখ্যাটি বলতে পারবে।

আর দ্বিতীয় ক্ষেত্রে দর্শক ভাববে 1 থেকে 9 — যে কোনও একটি অঙ্ক। সেই অঙ্ককে পাশাপাশি ছ'বার লিখে পাওয়া যাবে একটি ছ' অঙ্কের সংখ্যা। এখন প্রাপ্ত সংখ্যাকে আগের মত দর্শককে দিয়ে ভাগ করাতে হবে 37, 13, 11 এবং 3 দিয়ে পর পর। এখন শেষ ভাগফল দর্শক যাদুকরকে জানালে সে সংখ্যাটিকে মনে মনে 7 দিয়ে ভাগ করে দর্শকের ভাবা সংখ্যাটি বলতে পারবে।

(৪) গুণ-যোগের খেলায় উত্তরের কেরামতি ঃ

এক্ষেত্রে প্রথমে দর্শককে একটি তিন অঙ্কের সংখ্যা বলতে বলা হবে এবং ঐ সংখ্যাকে দুটি কাগজে লেখানো হবে দুটি গুণ করার জন্য। এখন সেই তখনও না-করা গুণ অঙ্ক দু'টির গুণফলকে যোগ করে যে যোগফল পাওয়া যাবে সেই উত্তর যাদুকর একটি কাগজে লিখে খামের মধ্যে জমা রাখতে পারে। পরে যখন তা মিলে যাবে সকলে বেশ অবাক হবে নিশ্চিতই। দর্শক যদি 342 লিখে থাকে তবে যাদুকর উত্তর লিখে রাখবে 341658 সংখ্যাটি। এখন উদাহরণ দিয়ে অঙ্কের এই যাদুখেলাটি বোঝানো হচ্ছে।

যাদুকরের নির্দেশ

দর্শকের করা অঙ্ক

(a) দৃটি কাগজে লেখা তোমার বলা দর্শক গুণ করে গুণফল হিসাবে পাবে সংখ্যাটিকে 172 এবং 827 দিয়ে যথাক্রমে 58824 এবং 282834 গুণ কর।

(b) এখন গুণফল দু'টিকে যোগ কর। দর্শক যোগ করে পারে 341658 যেটি যাদুকরের লেখা উত্তরের সঙ্গে মিলে গেছে।

যাদুকরের উত্তর লেখার পদ্ধতিটি বোঝা দরকার। দর্শকের বলা সংখ্যাটি যদি x y z (অর্থাৎ x শতক y দশক z একক) হয় তবে উত্তর আসবে পাশাপাশি ছ'টি অঙ্ক যেণ্ডলি বাম দিক থেকে হবে যথাক্রমে x, y, z — 1, 9 — x, 9 — y, 9 — (z–1)। আর যাদুকরের বলা গুণক দুটি অর্থাৎ 172 এবং 827 বদল করে অন্য গুণকদ্বয় নেওয়া যায়;—এরূপ অসংখ্য গুণকের যোড়া আছে। কেবল যাদুকরকে মনে রাখতে হবে প্রথম গুণক ও দ্বিতীয় গুণকের যোগফল হবে 999; অতএব প্রথম গুণক 347 হলে দ্বিতীয় গুণক 652 হবে।

(9) আমার ভাবনা তোমায় ভাবাব ঃ অঙ্কের এই যাদুখেলাটি উদাহরণের সাহায্যে সহজে বোঝানো যাবে। . দর্শকের করা অঙ্ক যাদুকরের নির্দেশ

 (a) যাদুকর 100 থেকে 200-এর মধ্যে যে দর্শক খামটি নির্দেশ মত রেখে দিল। সে কোনও সংখ্যা, ধরা যাক 183 লিখে জানে না খামের মধ্যে যাদুকরের কি

খামে ভরে দর্শকের কাছে জমা রাখল। লেখা আছে।

যাদুকরের নির্দেশ দর্শকের করা অঙ্ক

থেকে কোনও সংখ্যা লিখতে বললে—যেটা ি ক্ষিত্ৰ হৈছে ১৯৯১ চনত লগত স্থানিক কিছে কৰে লেগুর চ্নান্ত হক্ষ্য যাদুকরকে জানাবে না। বিদ্যান ক্র্যনীলেগ্র হে হ্যান্ত্র হার্ট্রাল ক্রান্ত

(b) এখন যাদুকর দর্শককে 200 ধরা যাক, দর্শক লিখেছে 756 — যেটি 1000-এর মধ্যে যাদুকর জানল না।

(c) যাদুকর এর মধ্যে মনে মনে 999 থেকে তার লেখা সংখ্যা 183 বিয়োগ করে HERRY IL STEEL পেয়েছে 816; দর্শককে मि अस १० । हा তার লেখা সংখ্যার সঙ্গে 816 যোগ করতে বলা रुल।

দর্শক 756-এর সঙ্গে 816 যোগ করে পেল 1572—যেটি যাদুকর জানবে না।

भारत स्था वीम होड स्थापना अस्य वीम वास

क्षान्त्रात होता करते होते व्यक्तिक नाम

जारणहरू श्रवात्र पर्वद्वत नवहि जिल

(d) দর্শককে তার প্রাপ্ত যোগফলের বাম দিকের প্রথম অঙ্ক কেটে বাকি সংখ্যার সঙ্গে কাটা অঙ্কটি যোগ করতে বলা হল।

দর্শক 1572 থেকে বাঁ দিকের 1 কেটে বাকি 572-এর সঙ্গে 1 যোগ করে পেল 573; এ ফলও যাদুকর জানল না।

(e) এখন যাদুকর দর্শককে তার প্রথমে লেখা সংখ্যা থেকে এখন পাওয়া সংখ্যাটি বিয়োগ করতে বলল এবং V K THIS STORY জানাল যে তার বিয়োগফল ह जिल्ला अ যাদুকরের লেখা কাগজ— যা দর্শকেরই কাছে জমা HOW POSTER আছে, তার সঙ্গে মিলে গেছে। কাজেই যাদুকরের ভাবনার সঙ্গে দর্শকের ভাবনা (অবশ্যই অঙ্কের দ্বারা নিয়ন্ত্রিত হয়ে) এক रुख (भन।

নির্দেশ মত দর্শক 756 থেকে 573 বিয়োগ করে পেল 183; যাদুকরের লেখা কাগজ—যা তার কাছে খামে বন্ধ অবস্থায় ক্ষমা ছিল, সেটি খুলে দেখতে পেল যাদুকরের কথা সত্য।

Mg (855 254 885241 X X R -- 1, 8

data figurale 115 was 151 Juni

210年度(2015) 中国第一区间的 2015年

PINTER WHEND, THE BUY THEFT (C) NO.

(10) অঙ্কের যাদূকর কি গুণের রাজা?

এক্ষেত্রে যাদুকর দর্শককে যে কোনও নয় অঙ্ক-বিশিষ্ট সংখ্যা লিখতে বলবে। সংখ্যাটি লেখা হওয়ার পর তার বেশ খানিকটা নিচে যাদুকর একটা আঠার অঙ্কের সংখ্যা লিখবে। এখন দর্শককে তার লেখা সংখ্যাকে 142857143 এই নয় অঙ্কের সংখ্যা নিয়ে গুণ করতে বলা হল। দর্শক এই বিরাট গুণ করতে বেশ অস্থির হয়ে উঠবে। কাজেই বল, পরের বারে তাকে খুব ছোট গুণ দেওয়া হবে। দর্শকের লেখা নয় অঙ্কের সংখ্যাকে পূর্বোক্ত নয় অঙ্কের সংখ্যা দিয়ে গুণ করে যে গুণফল পাওয়া যাবে তাকে এখন 7 দিয়ে গুণ করতে বলতে হবে। এই ছোট গুণটি করা শেষ হলে দেখা যাবে যাদুকর যে সংখ্যাটি আগেই লিখেছিল তার সঙ্গে গুণফল মিলে গেছে। যাদুকর গুণ না করেই আঠার অঙ্কের অত বড় গুণফল লিখতে পারল—তাকে তো গুণের রাজা' বলা যায়;—যদিও এক্ষেত্রে গুণ তার নেই—প্রকৃত গুণ আছে 142857143 এবং 7 সংখ্যার মধ্যে। লক্ষণীয় $\frac{1}{7}$ -কে আবৃক্ত-দশমিকে লিখলে পাওয়া যায় \cdot 142857143 যার দশমিক ফুটকি বাদ দিলে পূর্বোক্ত গুণকটি পাওয়া যায় । দর্শক যদি প্রথমে তার কাগজে 570875836 সংখ্যাটি লেখে, তা হলে যাদুকর উত্তর হিসাবে সেখানে 570875836570875836 লিখবে, অর্থাৎ দর্শকের লেখা সংখ্যাটি দু'বার পাশাপাশি লিখলেই উত্তর পাওয়া যাবে।

এক মজার যাদুবর্গ

অসাধারণ এই মজার যাদুবর্গে পীথাগোরাসের উপপাদ্য নৃতন অর্থ পেয়েছে। দেখা যাচ্ছে তৃতীয় ও চতুর্থ ক্রমের দুটি যাদুবর্গ আছে বাছ দুটির উপর এবং অতিভুজের উপর আছে পঞ্চম ক্রমের যাদুবর্গ। ক্রমের হিসাবে মূর্ত হয়েছে পীথাগোরাসের সংখ্যাত্রয়ী 3, 4, 5 যেখানে $3^2 + 4^2 = 5^2$ সম্বন্ধ সত্য। বিভিন্ন ক্রমের এই যাদুবর্গগুলি এমনই যে তাদের মধ্যে সমতা আছে। প্রত্যেকটি যাদুবর্গের ক্ষেত্রে সংখ্যাগুলির সারি অনুসারে, স্বস্তু অনুসারে এবং কর্ণ বরাবর যোগফল সব ক্ষেত্রেই 174; কাজেই তৃতীয়

ক্রমের যাদুবর্গের ন'টি সংখ্যার যোগফল 522, চতুর্থ ক্রমের যাদুবর্গের যোলটি সংখ্যার

যোগফল 696 এবং সমকোণী ত্রিভুজের অভিভুজের উপর অঞ্চিত পঞ্চম ক্রমের যাদুবর্গের পাঁচিশটি সংখ্যার যোগফল 870 হবে। এক্ষেত্রেও 522² + 696² = 870² অর্থাৎ পীথাগোরাসের উপপাদ্যে প্রমাণিত তত্ত্ব সংখ্যা–সমবায়ের ক্ষেত্রেও সত্য হয়েছে। কাজেই এখানে এমন তিনটি যাদুবর্গ পাওয়া গেল যাদের 'পীথাগোরাসের যাদুবর্গত্রিয়ী' বলা যেতে পারে।

তরুণ গণিত শিক্ষার্থীকে মজার গণিত রাজ্যের বেশ কিছু খবর প্রথম চারটি অধ্যায়ে দেওয়া হয়েছে। বর্তমান অধ্যায়ে সমাধানের উদ্দেশ্যে প্রশ্ন, অঙ্কের য়াদ্খেলা ও অসাধারণ এক য়াদ্বর্গ-সমবায় উপস্থিত করা হল। মূল উদ্দেশ্য দৃ'টি—প্রথমত অঙ্কের আতঙ্ক দ্র করে তাকে ভালবাসার ধন করে তোলা এবং দ্বিতীয়ত সেই গণিত-প্রেমিকদের একনিষ্ঠ জ্ঞান সাধনায় গণিত রাজ্যকে সমৃদ্ধতর করার স্বপ্ন দেখা। এ-ধরনের গ্রন্থ রচনার ক্ষেত্রে অগ্রণী বিদেশী দৃই গাণিতিকের মন্তব্যের অনুসরণে জ্ঞানাইঃ 'এখনও আশা রাখা য়ায় এই গণিত জগতে আরও কৌতৃহল সৃষ্টির প্রেরণা পাওয়ার য়থেষ্ট সুয়োগ আছে এবং তা হবে মননজগতের সর্বাপেক্ষা গর্বিতা রানীর প্রতি সম্মান প্রদর্শনের জন্য।'

करा आहा हुने व सहस्र क्षाप्त हो। समुख बारार आस सुद्ध होता है स्वाप्त क्षाप्त को आहार नीका लागा क्षाप्त होता ह

THE THE PERSON NAMED IN THE PERSON NAMED IN

''তবু অঙ্ক প্রার্থনা জানায় না, সে চায় নিজের ক্ষমতায় কঠিনকে সহজ করে নিতে। জানার আকাজ্জায় মনোমত হাতিয়ার তৈরি করে চলে অঙ্ক।''

এক চিচাল নিয়ার নিয়ার বিষয়ের বিষয়ের বাজা বিষয়ের বিষয়ের বাজা

নিরও চাও ইট । কর দিক করিও জান ছিলান বাবে নির্ভুগ্ন বার্যার বীও। বার্থ্য নির্ভুগ্ন বিলাই প্রশ্নের সমাধান ও যাদুর গাণিতিক ব্যাখ্যা বাই নির ০০১১

নানা ধরনের মজার প্রশ্নের সমাধান

উঃ 1. সিপাহী সংখ্যা x হলে $\frac{1}{3}x + \frac{1}{2}x + \frac{1}{10}x + 1000 = x$ অর্থাৎ x = 15000, মোট সিপাহী সংখ্যা 15000 উঃ 2. অঙ্কটি সমান্তর শ্রেণী সম্পর্কিত। এখানে নির্দেয় দ্রক্ষের সংখ্যা

$$=\frac{15}{2}[2.4 + (15 - 1) 5] = 585$$

উঃ 3. ধরা যাক পায়রা, সারস ও ময়ুরের সংখ্যা যথাক্রমে x পণ, y পণ ও z পণ, অতএব $\frac{5}{3}x+\frac{7}{5}y+\frac{3}{9}z=100$ যেখানে x+y+z=100

সূতরাং x + y + z = 10025x + 21y + 5z = 1500

সম্ভাব্য উত্তর বহু প্রকার হতে পারে তাদের মধ্যে কয়েকটি 46, 5, 49; 42, 10, 48; 38, 15, 47; 34, 20, 46; লক্ষণীয় x, y, z নির্দিষ্ট পরিমাণে কমছে বা বাড়ছে।

উঃ 4. ধরা যাক, প্রথম মূর্তি, তার পাদপীঠ, দ্বিতীয় মূর্তি ও তার পাদপীঠের ওজন x, y, u, v একক। সেক্ষেত্রে x + y = u + v, x = 2v, u = 3y, অতএব x = 4y, y = $\frac{1}{3}$ u, u = $\frac{3}{2}$ v; এখানেও সম্ভাব্য উত্তর বহু প্রকারের হতে পারে ঃ x = 12k, y = 3k, u = 9k, v = 6k, (k = 1, 2, 3,...)।

উঃ 5. 13452

উঃ 6. লক্ষ্য করলে দেখা যাবে—অক্ষরগুলির ক্রম অনুসারে তার মান। যেমন D = 4, I = 9 ইত্যাদি। এখন সংখ্যাশ্রেণী দাঁড়াচ্ছে (ফাঁকা জায়গার সংখ্যা ম ধরে) 4, 9, 8, 13, 12, 17, 16, x; এখানে শ্রেণীটিতে দুটি ধারা আছে—যেমন বাম দিক থেকে প্রথম, তৃতীয়, পঞ্চম ও সপ্তম স্থানে যথাক্রমে আছে 4, 8, 12, 16—সংখ্যার মজা-১০

একটি সমান্তর শ্রেণী এবং দ্বিতীয়, চতুর্থ, ষষ্ঠ ও অন্তম স্থানে থাকছে যথাক্রমে 9, 13, 17, x = 21; অতএব শূন্য ঘরে 21 অর্থাৎ অক্ষর হিসাবে আসবে U অক্ষর। উঃ 7. মনে করি পথ 2x কি.মি. এবং ঘন্টায় v কি.মি. গড গতিবেগ।

সূতরাং $\frac{x}{60} + \frac{x}{40} = \frac{2x}{v}$, অতএব, v = 48 কি.মি. ঘণ্টায়।

উঃ ৪. বাক্সগুলিতে 1নং, 2নং, 3নং,....., 10 নং লাগানো হল।

এখন 1নং বাক্স থেকে 1টি, 2নং বাক্স থেকে 2টি,.... এইভাবে 10নং বাক্স থেকে 10টি মোহর একুনে 55টি মোহর নিয়ে ওজন করা হল। এই প্রাপ্ত ওজন 5500 গ্রাম থেকে বিয়োগ করে বিয়োগফলকে 10 দিয়ে ভাগ করলে হালকা ওজনের মোহরযুক্ত বাব্দের নম্বর পাওয়া যাবে।

উঃ 9. 32 \(2⁵ = \(\frac{3}{2} \) = \(\frac{2}{2} \).

উঃ 10. দুটি দলের পারাবত সংখ্যা x ও y হলে এখানে x + 1 = 3 (y -1), এবং x - 1 = y + 1, অতএব x = 5, y = 3; দুটি দলে পারাবতের সংখ্যা 5 ও 3 উঃ 11. এখানে C × C = ...C, সূতরাং C হতে পারে 0, 5, 6 যেহেতু AB × C = DEFC, C শূন্য হতে পারে না।

ABC
ABC
DEFC
CEBH
EKKH
EAGFFC

দেখা যাচ্ছে F+H=F, অতএব, $\underline{H=0}$ । শুণকের দ্বিতীয় ও তৃতীয় স্থানের দক্রন ফল থেকে পাই $C\times B=...H$ এবং $C\times A=...H$

কাজেই $C \times B$ এবং $C \times A$ দুটি গুণফলেই এককের অঙ্ক শূন্য; দুটি ক্ষেত্রেই এটি হতে পারে যদি $\underline{C}=\underline{5}$ হয়।

যেহেতু $5^2 = 25$ এবং কোনও সংখ্যার বর্গফলের একক ও দশকের অঙ্ক নির্ভর করে সেই সংখ্যার এককের অঙ্কের উপর; অতএব $\underline{F} = 2$ । এখন গুণ অঙ্কটি দাঁড়াল ঃ

Et 5 13452

SCHOOL PURT

A B 5
A B 5
D E 2 5
5 E B O
E K K O
E A G 2 2 5

দেখা যাচেছ AB5 × B = ...0, অতএব B যোড় সংখ্যা। এছাড়া B × 5-এর গুণের হাতের অঙ্ক নিয়ে B × B-এর ফল হয়েছে.... B অর্থাৎ B × B + হাতের অঙ্ক =...B.

এখন বিভিন্ন অঙ্ক নিয়ে দেখা যাচ্ছে (B = 2, 4, 6, 8 ধরে)

এখন $A85 \times 8 = 5E80$ অর্থাৎ $A \times 8 +$ হাতের 6 = 5E স্পষ্টতই A = 7 হতে পারে না; কাজেই A = 6 এবং তা থেকে E = 4 শেষ পর্যন্ত গুণ্য ABC = 685 এবং গুণক 685

সূতরাং গুণফল = $685 \times 685 = 469225$; এখন অক্ষরের সঙ্গে মিলিয়ে পাওয়া যাবে $A=6,\ B=8,\ C=5,\ D=3,\ E=4,\ F=2,\ G=9,\ H=0,\ K=1$

উঃ 12. ব্যবসায়ীদের অর্থ \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , \mathbf{x}_4 ও \mathbf{x}_5 এবং রত্নের দাম \mathbf{p} মুদ্রা হলে এখানে হবে $\frac{1}{2}\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5$

$$= x_1 + \frac{1}{3}x_2 + x_3 + x_4 + x_5$$

$$= x_1 + x_2 + \frac{1}{4}x_3 + x_4 + x_5$$

$$= x_1 + x_2 + x_3 + \frac{1}{5}x_4 + x_5$$

$$= x_1 + x_2 + x_3 + x_4 + \frac{1}{6}x_5 = p$$

কাজেই $\frac{1}{2}x_1 = \frac{2}{3}x_2 = \frac{3}{4}x_3 = \frac{4}{5}x_4 = \frac{5}{6}x_5 = q$ ধরা হল।

এই মান যে কোনও সমীকরণে বসিয়ে পাওয়া যাবে $p=\frac{377}{60}q$. পূর্ণসংখ্যার সমাধান পেতে হলে q=60m ধরা যেতে পারে (m= যে কোনও ধনাত্মক পূর্ণসংখ্যা)। অতএব p=377~m; m-এর বিভিন্ন মানের জন্য এখানে প্রশ্নের সমাধানের সংখ্যা বহু। তাদের মধ্যে m=1 ধরে সর্বনিন্ন সমাধান হবে $p=377~\chi$ র্ঘা, $x_1=120~\chi$ দ্রা, $x_2=90~\chi$ দ্রা, $x_3=80~\chi$ দ্রা, $x_4=75~\chi$ দ্রা, $x_5=72~\chi$

यूषा।

উঃ 13. সংখ্যা দুটি x ও y হলে x-y = 12, xy (x+y) = 14560

সমাধান করে গ্রহণযোগ্য ফল হবে x = 26, y = 14

উঃ 14. শেষ মিনিটে দণ্ডের মাথায় উঠলে আর নামার কথা ওঠে না।
এখানে দণ্ডের 27 মিটার উঠতে বানরের লাগবে [27÷ (3 – 2)] মিনিট
অর্থাৎ 27 মিনিট। পরবর্তী মিনিটে 3 মিটার উঠলে দণ্ডের মাথায় পৌঁছানো যাবে।
মোট সময় লাগবে 28 মিনিট।

উঃ 15. এখানে গাণিতিক যুক্তি প্রক্রিয়ার মধ্যে যেখানে উভয় পক্ষকে A+B-C দিয়ে ভাগ করা হয়েছে সেখানেই হেত্বাভাস ঘটেছে। কারণ, প্রদত্ত শর্তানুসারে A+B-C=0 এবং 0 দ্বারা ভাগ করা অর্থহীন প্রক্রিয়া।

উঃ 16. সংখ্যা দৃটি হবে 11 ও 1·1।

উঃ 17. ধরা যাক A, B, C তিনটি পাত্র; প্রথমটি পূর্ণ, বাকি দুটি পাত্র শূ্ন্য এবং তাদের মধ্যে B 5 লিটার ধারণ ক্ষমতা-যুক্ত ও C 3 লিটার ধারণ ক্ষমতা-যুক্ত। গণিতের ভাষায় বর্তমান অবস্থা (A, B, C) = (8, 0, 0)। এখন A থেকে জল ঢেলে B পূর্ণ করা হলে অবস্থা দাঁড়াবে (3, 5, 0); এর পরে B থেকে জল ঢেলে C পূর্ণ করা হলে আসবে (3, 2, 3)। তার পরবর্তী ঢালাঢালির ধাপগুলি পাত্র তিনটির জলের পরিমাণের পরিবর্তন থেকে বোঝা যাবে। সেগুলি $(6, 2, 0) \rightarrow (6, 0, 2) \rightarrow (1, 5, 2) \rightarrow (1, 4, 3) \rightarrow (4, 4, 0)$ অর্থাৎ মোট 7 বার ঢালাঢালি করলে প্রার্থিত ভাগ পাওয়া যাবে।

উঃ 18. এখানে প্রশ্নটির সমাধান শেষ থেকে সুরু করতে হবে। প্রতি শিবকে x সংখ্যক ফুল দিয়ে পূজা করা হলে তৃতীয় দেবতাকে পূজা করার আগে ফুল ছিল x সংখ্যক। তৃতীয় ঘাটে ধুইবার আগে ফুলের সংখ্যা $\frac{1}{2}x$ (যেটি দ্বিশুণ হয়ে x হয়েছিল)। দ্বিতীয় দেবতাকে পূজার আগে ফুল ছিল $\frac{1}{2}x+x=\frac{3}{2}x$; দ্বিতীয় ঘাটে ধুইবার আগে যার সংখ্যা $\frac{3}{4}x$ —যা থেকে প্রথম দেবতাকে পূজার আগে ফুলের সংখ্যা দাঁড়ায় $\frac{3}{4}x+x=\frac{7}{4}x$; এখন প্রথম ঘাটে ধুইবার আগে ফুলের সংখ্যা ছিল $\frac{7}{8}x$ যা থেকে সর্বনিম্ন উত্তর হবে ব্রাহ্মণ 7টি ফুল তুলেছিল এবং প্রতি দেবতাকে ৪টি হিসাবে ফুল দিয়ে পূজা করেছিল। অবশ্যই প্রশ্নটির বহু সমাধান সম্ভব; সেজন্য উত্তর দু'টি সাধারণ ভাবে 7n ও 8n, যেখানে n=1,2,3,...

উঃ 19. সংখ্যাটি x হলে এখানে পাওয়া যাবে $(x^3 - 19)$ $x^3 = 6^3$ বা, $x^6 - 19x^3 - 216 = 0$,

অতএব,
$$x^3 = \frac{19 \pm \sqrt{361 + 864}}{2} = \frac{19 \pm 35}{2} = 27, -8$$

এখন x=3,-2; দুটি সমাধানই সম্ভব হবে; তবে ঋণাত্মক সমাধানকে বাদ দিয়ে সাধারণত প্রশ্নটির উত্তর 3 বলা হয়।

উঃ 20. নির্ণেয় দূরত্ব d মিটার ও কচ্ছপের গতিবেগ সময়ের এককে v মিটার হলে এখানে পাওয়া যাবে $\frac{d}{v} = \frac{100+d}{10v}$

নির্ণেয় দূরত্ব $11\frac{1}{9}$ মিটার। তার সামস্থান সামস্থান সামস্থান স্থান স্থা

উঃ 21. স্পষ্টতই গম-দানার সংখ্যা হবে

$$1 + 2 + 2^2 + 2^3 + \dots + 2^{63} = 2^{64} - 1$$

= 18446744073709551615 (কুড়ি অঙ্কের সংখ্যা)।

এই সংখ্যা কত বিশাল তা' বোঝা যাবে সহজ একটি হিসাব থেকে। প্রতি সেকেণ্ডে একটি হিসাবে গম দানা রাখলে ও দিনরাত খাটলে উক্ত গম দানাগুলি রাখতে সময় লাগবে 58454204609 শতাব্দী এবং আরও ছ'বংসর কয়েক দিন।

উ፡፡ 22.
$$x + 7 = 5 (y - 7), y + 5 = 7 (x - 5)$$

সমাধান করে পাওয়া যাবে A-এর অর্থ x দীনার $=7\frac{2}{17}$ দীনার এবং B-এর

অর্থ y দীনার = $9\frac{14}{17}$ দীনার।

উঃ 23. এ ধাঁধা সাধারণ বৃদ্ধির সাহায্যে সমাধান করতে হবে; এমন ব্যবস্থা রাখা দরকার—যাতে ও-পারে যাওয়ার পর নৌকাকে আবার এ-পারে আনা যায়। এক্ষেত্রে প্রথমে পার হবে দুই যমজ পুত্র; তার পর তাদের একজন নৌকা এ-পারে আনবে। এবার পার হবে তাদের বাবা। বাবা ওপারে থেকে যাবে এবং নৌকা ফিরিয়ে আনবে যমজের বাকি জন—যে ওপারে ছিল। তার পর দুই যমজ ভাই এক সঙ্গে নৌকায় ও-পারে যাবে।

উই 24. এটি ঠকাবার অঙ্ক। জ্যামিতিক জ্ঞান থাকলে বা আঁকলে বোঝা যাবে ঐ মাপের কোনও ত্রিভূজাকৃতি জমি হয় না (যেহেতু 5 + 6 > 12)। তাই কোনও দামের প্রশ্ন ওঠে না।

উঃ 25. এটি সাধারণ বৃদ্ধির অঙ্ক। প্রথমে 7টি অর্ধেক ভর্তি বোতল থেকে $4\bar{b}$ নিয়ে ঢালাঢালি করে 2টি বোতলকে খালি ও 2টি বোতলকে পুরা ভর্তি করতে হবে। ফলে এখন খালি বোতল হবে $7+2=9\bar{b}$, অর্ধেক ভর্তি বোতল দাঁড়াবে $7-4=3\bar{b}$ এবং পুরা ভর্তি বোতল হবে $7+2=9\bar{b}$ । এবার তিন জন বন্ধুর মধ্যে সমান ভাবে ভাগ করতে কোনও অসুবিধা নেই; প্রত্যেকে পাবে $3\bar{b}$ খালি বোতল, $1\bar{b}$ আধ ভর্তি বোতল এবং $3\bar{b}$ পুরা ভর্তি বোতল—একুনে $7\bar{b}$ হিসাবে।

উঃ 26. x, y, z বণিকদের অর্থ ও u তহবিলের অর্থ হলে u + x = 2 (y + z), u + y = 3 (z + x), u + z = 5 (x + y),এই সমীকরণগুলি থেকে 3u = 7x + 6y + 4z

THE DEPOSIT OF THE PART WAS

এবং
$$4x - 3y = -z$$

 $x + 3y = 2z$

সূতরাং $x = \frac{1}{5}z$, $y = \frac{3}{5}z$ এবং u = 3z

z-এর বিভিন্ন মান ধরে এখানে বহু সমাধান পাওয়া সম্ভব। া তবে z = 5 ধরে সর্বনিম্ন পূর্ণসংখ্যার সমাধান হবে—x = 1, y = 3, u = 15,

তহবিলে মোট অর্থ 15 একক এবং প্রথম, দ্বিতীয় ও তৃতীয় বণিকের অর্থ ছিল যথাক্রমে 1 একক, 3 একক ও 5 একক। গ্রীক গাণিতিক ইতিহাসে এই অঙ্কের সঙ্গে ইউক্লিডের নাম জড়িয়ে আছে।

উঃ 27. আমরা জানি 10 = 2 × 5; ∴ 1000000000 = 10° $= (2 \times 5)^9 = 2^9 \times 5^9 = 512 \times 1953125$

স্বভাবতই এ-ধরনের আরও প্রশ্ন তৈরি করা যায়—যাদের সমাধান এইভাবে হবে। উঃ 28. এটা রোমান পদ্ধতিতে লেখা অঙ্ক নিয়ে সাধারণ বৃদ্ধিতে সমাধানযোগ্য ধাঁধা। কোনও কাঠি ছুঁতে হবে না—কোনও কিছু করতে হবে না এক্ষেত্রে। কেবল প্রদত্ত যোগ অঙ্কটিকে টেবিলের অন্য পাশে যেয়ে দেখলেই হবে; তখন এটি দেখাবে

(অৰ্থাৎ 10 = 1 + 9 যে যোগফলটি অবশ্যই ঠিক।)

উঃ 29. কোনও চিহ্ন ব্যবহার না করে তিনটি দুই নিয়ে মোট চারটি সংখ্যা লেখা যায়—222, 22^2 , 2^{2^2} , 2^{2^2} এদের মধ্যে $2^{2^2}=16$ সর্বনিম্ন এবং 2^{2^2} 4194304 সর্ব বৃহৎ সংখ্যা।

উঃ 30. (i) এটি সমান্তর শ্রেণী। অনুপস্থিত সংখ্যা দুটি 15, 24 হবে।

- (ii) এখানে ক্রমিক দুটি সংখ্যার পর তৃতীয় সংখ্যা অনুপস্থিত। অতএব নির্দেয়ি সংখ্যা দৃটি হবে 10, 11
- (iii) এখানে প্রথম, তৃতীয়, পঞ্চম..... সংখ্যা এবং দ্বিতীয়, চতুর্থ, ষষ্ঠ সংখ্যা.... দুক্ষেত্রে দুটি ক্রমিক সংখ্যা শ্রেণী চলেছে। কাজেই নির্ণেয় সংখ্যা দুটি হবে 6, 7
 - (iv) এটি গুণোত্তর শ্রেণী। অনুপস্থিত সংখ্যা দুটি 32, 256 হবে।
- (v) এখানে দুটি সমান্তর শ্রেণী চলেছে—প্রথম, তৃতীয়, পঞ্চম,... এবং দ্বিতীয়, চতুর্থ, ষষ্ঠ..... নিয়ে। অতএব নির্ণেয় সংখ্যা দৃটি 18, 21 হবে।

উঃ 31. প্রশ্নটি আপাতপক্ষে কঠিন মনে হলেও খুবই সোজা। সাইকেল আরোহী দু'জনের গতি থেকে বোঝা যাচ্ছে এক ঘণ্টা পরে তাদের দেখা হয়েছিল। এই 1 ঘণ্টায় মৌমাছি উড়তে পারে 25 কি.মি.। মৌমাছির মোট অতিক্রান্ত পথ 25 কি. মি.।

উঃ 32. এ জাতীয় একটি প্রশ্নের সমাধান তৃতীয় অধ্যায়ে 'বিশেষ ধরনের একটি ধাঁধা' শিরোনামযুক্ত পরিচ্ছেদে করা হয়েছে। এখানে সেই একই নিয়ম অনুসরণ করলে উত্তর পাওয়া যাবে। পাঁচ ভাই-এর ভাগে পাওয়া মরাইগুলির (প্রত্যেকে পাঁচটি মরাই পাবে এবং তাতে মোট ধানের পরিমাণ হবে 65 বিশ) নম্বর হবে—1, 10, 14, 18, 22; 2, 6, 15, 19, 23; 3, 7, 11, 20, 24; 4, 8, 12, 16, 25 এবং 5, 9, 13, 17, 21.

উঃ 33. মুদ্রাগুলিকে তিনটি করে নিয়ে মোট তিনটি ভাগ (ধরা যাক A, B. C ভাগ) পাওয়া গেল। এদের মধ্যে যে কোনও দুটি ভাগ (মনে করা যাক, A ও B ভাগ) দাঁড়ি পাল্লার দু'পাল্লায় রেখে ওজন করা হল। মোট সম্ভাবনা তিন রকমের $A>B,\ B>A$ অথবা A=B; স্পষ্টতই প্রথম ক্ষেত্রে A ভাগে, দ্বিতীয় ক্ষেত্রে Bভাগে, তৃতীয় ক্ষেত্রে C ভাগে বেশি ওজনের মুদ্রাটি আছে। এখন যে ভাগে বেশি ওজনের মুদ্রাটি আছে তাতে মুদ্রা তিনটি 1, m , n ধরা হল; সেই তিনটি মুদ্রার মধ্যে যে কোনও দুটি, (ধরা যাক, l, m) দাঁড়ি পাল্লার দুদিকে রাখা হল। এক্ষেত্রেও তিনটি সম্ভাবনা 1 > m, m > 1 অথবা 1 = m ; প্রথম ক্ষেত্রে 1, দ্বিতীয় ক্ষেত্রে m ও তৃতীয় ক্ষেত্রে n মুদ্রাটি অপেক্ষাকৃত বেশি ওজনের মুদ্রা।

উঃ 34.

উঃ 34.
$$64 = 4^3 = \sqrt{4^6} = \sqrt{\sqrt{4^{12}}} = \sqrt{\sqrt{\sqrt{4^{24}}}}$$

$$= \sqrt{\sqrt{\sqrt{4^{4!}}}} \quad (যেহেতু 4! = 24)$$

উঃ 35. যেহেতু সভ্য সংখ্যা × দেয় মাসিক চাঁদা × 12 = 12876; এখন $\frac{12876}{12} = 1073$ অতএব সভ্য সংখ্যা ও দেয় মাসিক চাঁদার পরিমাণ উভয়েই 1073-এর উৎপাদক হবে। এখন 1073 = 29 × 37; সভ্য সংখ্যা যেহেতু 30-এর বেশি, সূতরাং সভ্যসংখ্যা 37 এবং দেয় মাসিক চাঁদা 29 টাকা।

উঃ 36. 1, 2, 3; এদের যোগফল ও গুণফল দুই-ই 6 (সর্বনিম্ন সম্পূর্ণ বা নিখুঁত সংখ্যা এই 6)

উঃ 37. পুত্র সন্তান হলে ইচ্ছাপত্র অনুসারে পুত্র ঃ স্ত্রী = 3 ঃ 1 এবং কন্যা সম্ভান হলে ইচ্ছাপত্র অনুসারে স্ত্রী ঃ কন্যা = 3 ঃ 1 এক্ষেত্রে পুত্র ও কন্যা সম্ভান হওয়ায় উপরের দুটি অনুপাতের সাহায্যে মিশ্র অনুপাত হবে

পুত্ৰ ঃ স্ত্ৰী ঃ কন্যা = 9 ঃ 3 ঃ 1।

পুত্র পাবে সম্পত্তির $\frac{9}{13}$ অংশ, স্ত্রী $\frac{3}{13}$ অংশ এবং কন্যা $\frac{1}{13}$ অংশ।

উঃ 38. গুণফলের এককের অঙ্ক 1, সূতরাং প্রথম আংশিক গুণফলের এককের অঙ্ক 1 হবে। এখন $7 \times 3 = 21$ থেকে 1 আসবে; কাজেই গুণ্যের এককের অঙ্ক [7] হবে। দ্বিতীয় আংশিক গুণফলের একক 3 এবং 7 imes 9 = 63-এর 3 নামে। সূতরাং গুণকের দশকের অঙ্ক [9] হবে। দ্বিতীয় আংশিক গুণফলের কথা চিম্ভা করলে পাওয়া যায় 3*7 × 9 = 3*33; এই গুণফলে দশকের অঙ্ক 3 এসেছে গুণ্যের অজানা অঙ্ক * কে 9 দিয়ে গুণ করে সেই গুণফলের সঙ্গে হাতের 6 যোগ করে। কাজেই $* \times 9 =7$ (7 + 6 = 13) 9-এর নামতা থেকে দেখা যাচ্ছে গুণোর দশকের অঙ্ক [3] হবে। এইভাবে গুণ্য দাঁড়াল 337 এবং গুণক *93; এই গুণ সম্পন্ন করলে আংশিক গুণফলে পাওয়া যাবে—

हाल) में हि नाबाद प्रान्तिक त्याप प्रकार 101 है। त्यार में कार्या हिने के कराव A > B, B > A signi K = B, wheek a signi A < B, E < A ৰিচা গ্ৰেছ কেছে তেখা কৰি ভাৰ <u>২ * * 2 শাহা বিচা</u> কাছত এছিল বিশ

এখানে শতকের অঙ্কগুলির যোগফল থেকে জানা যাচ্ছে তৃতীয় আংশিক গুণফলের একক 9; কাজেই গুণকের শতকের অঙ্ক [7] (যেহেতু $7 \times 7 = 49$) সূতরাং গুণা 337, গুণক 793 এবং গুণফল 267241

উঃ 39. AD = পদ্ম-গাছের প্রথম অবস্থান। CD = প্রথম অবস্থায় পদ্মের জলের উপরে উচ্চতা = 2 হাত, AB = পদ্মগাছের নিমজ্জিত অবস্থান, এখানে AB

= AD, CB = 4 হাত। পদ্মগাছের উচ্চতা AD, x হাত হলে $AC^2+CB^2=AB^2$ থেকে পাওয়া যায় $(x-2)^2+4^2=x^2$; সূতরাং x=5; গাছটির উচ্চতা 5 হাত। উঃ 40. 7নং মুদ্রাকে সরিয়ে 2নং মুদ্রার বাম পাশে আনতে হবে। 10নং মুদ্রাকে সরিয়ে 3নং মুদ্রার ডান পাশে আনতে হবে।

1নং মুদ্রাকে ৪নং ও 9নং মুদ্রার মাঝামাঝি অবস্থানে নিচের সারিতে বসাতে হবে।

> 0000 000 00 DIS CHEE PLOUBLE STAMPS OF STORY STARY

(1) 美国的中国

कि होताहर अल्डाहर का नहीं

উঃ 41. চার জনে এক সঙ্গে এক দিনে করে কাজের $\frac{1}{48} + \frac{1}{24} + \frac{1}{16} + \frac{1}{8}$ বা $\frac{1}{4}$ অংশ। সূতরাং রথটি তৈরি হবে 4 দিনে। এই চার দিনে উক্ত চার কারিগর

কাজের $\frac{1}{12}$, $\frac{1}{6}$, $\frac{1}{4}$ ও $\frac{1}{2}$ অংশ করে। তাদের প্রাপ্য হবে যথাক্রমে 1000 মুদ্রার

 $\frac{1}{12}$, $\frac{1}{6}$, $\frac{1}{4}$ ও $\frac{1}{2}$ অংশ অর্থাৎ $83\frac{1}{3}$ মুদ্রা, $166\frac{2}{3}$ মুদ্রা, 250 মুদ্রা ও 500 মুদ্রা।

উঃ 42. প্রশ্নটি বেশ মজার। দশটি অঙ্ক চিহ্নের মধ্যে কেবল 1, 6, 8, 9, 0— এই পাঁচটি উপ্টে গেলেও অঙ্ক হিসাবে পড়া যায়। সূতরাং লোকটির গাড়ির নম্বরে মাত্র এই ক'টি অঙ্ক ছিল। এদের মধ্যে আবার 1, 8, 0 ওল্টালেও একই অঙ্ক থাকে; কেবল 6 উপ্টে 9 হয় এবং 9 উপ্টে 6 হয়। এই কথাগুলি মনে রেখে কয়েকবার চেষ্টা করলে বোঝা যাবে গাড়ির নম্বর ছিল 10968 (এটি উপ্টে লাগালে হবে 89601)।

উঃ 43. উত্তর আপাত পক্ষে অশুদ্ধ (দশমিক প্রথা বিবেচনা করলে)। এখন দেখা যাচ্ছে অঙ্কে 6-এর উপরের সংখ্যা নেই এবং যোগের ক্ষেত্রে 0 + 4 + 6 = 10-এর 3 নেমেছে; এটা সম্ভব হয় যদি অঙ্কগুলি সাত প্রথায় লেখা হয়ে থাকে। বাকি অংশগুলি এই নিরিখে বিবেচনা করলে যোগ ও ভাগ ক্রিয়ার অর্থ বোধগম্ম হবে। বলা যায় অঙ্ক দুটি সাত প্রথায় করা আছে এবং সেখানে কোনও ভুল নেই।

উঃ 44. এখানে মনে রাখতে হবে দশটি ভেড়ার প্রথমটি যখন বেড়া পার হল তখন থেকে সময় হিসাব করে দশ মিনিট অতিক্রান্ত হয়েছে দশম ভেড়া পার হওয়া পর্যন্ত। এখানে সময় লেগে যাচ্ছে একটি ভেড়া লাফাবার পর আর একটি ভেড়া লাফানোর কাজ শুরু করার মধ্যে। সেদিক থেকে 10টি ভেড়া লাফানোর ক্ষেত্রে 9টি এ ধরনের সময় বিরতি আছে যাতে সময় লেগেছে 10 মিনিট। সুতরাং প্রতি বিরতিতে সময় লাগছে $\frac{10}{9}$ মিনিট। এই হিসাবে এক ঘন্টায় এই ধরনের সময় বিরতি পাওয়া যাচ্ছে 54টি। অতএব মোট 55টি ভেড়া এক ঘন্টায় ঐ বেড়া পার হবে।

উ॰ 45. x = y + z, y - 1 = 2 (z - 1), x + 2 = 2 (z + 2), কাজেই x = 8, y = 5, z = 3; কুছ, কেকা ও পিউ-এর বয়স এখন যথাক্রমে 8 বৎসর, 5 বৎসর ও 3 বৎসর।

উঃ 46. এ ধরনের অঙ্কের সমাধান অঙ্ক-মূল এর উপর নির্ভর করে। 'নয় বাদ দেওয়া' পদ্ধতি অঙ্কমূলের উপর নির্ভরশীল এবং এই পদ্ধতির সাহায্যে গাণিতিক প্রক্রিয়া ঠিক আছে কিনা তা মোটামুটি বোঝা যায়। এখানে গুণ্য সংখ্যার অঙ্কমূল $4+7+8+3+2+0+5+4+6+8=47 { } \to 4+7=11 { } \to 1+1=2$; একইভাবে গুণকের অঙ্কমূল 5; সূত্রাং গুণফলের অঙ্কমূল হওয়া উচিত $2\times 5=10 \to 1$; এখন প্রদত্ত গুণফলে * ছাড়া অন্য অঙ্কগুলির জন্য অঙ্কমূল 3

হচ্ছে। গুণফলের অঙ্কমূল 1 অর্থাৎ এক্ষেত্রে 10 হওয়ার জন্য * চিহ্নিত স্থানের অঙ্ক 10 - 3 অর্থাৎ 7 হবে।

উঃ 47. স্পষ্টতই নির্ণেয় সদস্য সংখ্যা = 3, 5, 7, 11-এর ল. সা. গু.–1 (কারণ, বাড়তি বা অবশিষ্ট সদস্য সংখ্যা প্রতি ভাগের সদস্য সংখ্যা থেকে প্রতি ক্ষেত্রে 1 কম) = 3 × 5 × 7 × 11 – 1 = 1154

উঃ 48. প্রতিটি বই মলাটসহ $2\cdot 8$ সে.মি. + $0\cdot 2$ বা 3 সে.মি. মোটা। তাই স্বাভাবিকভাবে মনে হবে পোকাটি 3 সে. মি. × 5 অর্থাৎ 15 সে. মি. ফুটো করেছিল। কিন্তু প্রথম বই-এর প্রথম পৃষ্ঠা থেকে পঞ্চম বই-এর শেষ পৃষ্ঠা ফুটো করার ক্ষেত্রে বাদ যাচ্ছে প্রথম বই-এর প্রথম মলাট ও প্রথম বই এবং পঞ্চম বই ও পঞ্চম বই-এর শেষ মলাট (এটা আলমারীতে যেভাবে বই সাজানো হয় তা লক্ষ্য করলে বোঝা যাবে) অর্থাৎ বাদ যাচ্ছে $(0\cdot 1+2\cdot 8) imes 2$ সে. মি. বা $5\cdot 8$ সে.মি.। অতএব পোকাটি যে সোজাসুজি ফুটো করেছিল তার দূরত্ব 15 সে.মি. – 5.8 সে.মি. = 9.2 সে.মি. (অঙ্কটি অন্যদিক থেকেও ভাবা যায়—পোকাটি মোট ৪টি মলাট ও মাঝের 3টি বই ्यं यह वास है-या है शर्म स्था तम मार हमार्थ है ফুটো করেছিল।)

উঃ 49. এ ধরনের রোমক সংখ্যা লিখনের ধাঁধার সমাধান বার বার চেষ্টার সাহায্যে করতে হয়। এখানে সঠিক সমাধান হবে (আগের অবস্থানের বামদিক থেকে তৃতীয় শোয়ানো কাঠিকে আনা হয়েছে প্রথম স্থানে দাঁড়ানো অবস্থায়।)

प्रदेश द्वारक स्थात है तहत वहता की सम्बद्धा X के बद्धारक वर्षात्र करता है। উঃ 50. এ প্রশ্নটি সাধারণ জ্ঞানের। ছবি এঁকে বোঝা যাবে যে ভল্লক যখন গুহায় পৌঁছাল তখন তার মুখ হওয়া উচিত পশ্চিম দিকে। এ অবস্থায় তার মুখ দক্ষিণে হতে হলে ভল্পকটির অবস্থান হতে হবে উত্তর মেরুতে—যেখানে সব দিকই দক্ষিণ দিক। কাজেই ভন্নুক ছিল সাদা রঙের। সুন্তার প্রান্তার বিল্লা

উঃ 51. স্রোতের গতি ঘণ্টায় x কিলোমিটার ধরলে এখানে প্রশ্নানুসারে আসবে $\left(\frac{27}{2} + x\right) \times \frac{17}{15} = \left(\frac{27}{2} - x\right) \times \frac{19}{15}$ বা $17x + 19x = \frac{27}{2}(19 - 17)$ বা

36x = 27, সূতরাং $x = \frac{3}{4}$ এবং স্রোতের গতি ঘণ্টায় $\frac{3}{4}$ কি.মি.।

উঃ 52. (a) দশকের অঙ্ক x ও এককের অঙ্ক y হলে সংখ্যাটি হবে 10x + y; সূতরাং প্রশানুসারে 10x + y = 3 (x + y) বা 7x = 2y বা, $\frac{x}{y} = \frac{2}{7}$; এখানে 2, 7 একমাত্র উত্তর। সংখ্যাটি 27 হবে।

উঃ 52. (b) শতকের অঙ্ক x, দশকের অঙ্ক y ও এককের অঙ্ক z হলে সংখ্যাটি হবে 100x + 10y + z; এখানে প্রশ্নানুসারে 100x + 10y + z = 11 (x + y +z) = 11x + 11y + 11z অতএব y + 10z = 89x; y + 10z-এর সর্বাধিক মানও দুই অঙ্ক বিশিষ্ট সূতরাং এক্ষেত্রে x = 1; এখন y + 10z = 89; যেহেতু y, z, পূর্ণসংখ্যা, $y + 10z = 89 = 9 + 10 \times 8$ হবেই। কাজেই y = 9, z = 8 এবং সংখ্যাটি 198 হবে।

উঃ 53. এখানে এক পুরা দিনে (দিন ও রাতে) কীট মোট দু'হাত ওঠে। তার ওঠার শেষদিকে একটি দিবাভাগে সে শেষ দশ হাত উঠলে চূড়ায় ওঠা হবে। বাকি কুড়ি হাত কীট ওঠা-নামা করে উঠেছিল $\frac{20}{2}$ বা দশ দিনে। অতএব মোট সময় লাগবে পুরা 10 দিন + একটি দিবাভাগ $=10\frac{1}{2}$ দিন।

উঃ 54. এক্ষেত্রে বর্গসংখ্যাগুলির এককের অঙ্ক ও বর্গসংখ্যার অঙ্ক মূল সম্বন্ধে প্রাথমিক কথাগুলি জানা দরকার। 1 থেকে 9 পর্যন্ত অঙ্কগুলির বর্গ লক্ষ্য করলে দেখা যায় বর্গসংখ্যার এককের অঙ্ক 1, 4, 5, 6, 9 বা 0 হতে পারে এবং বর্গসংখ্যার অঙ্কমূল (যেমন $4^2 = 16 \rightarrow$ অঙ্কমূল 7, $6^2 = 36 \rightarrow$ অঙ্কমূল 9 ইত্যাদি) 1, 4, 7 অথবা 9 হবে। এখানে প্রদত্ত সংখ্যাটির এককের অঙ্ক 0; সেদিক থেকে প্রথম পরীক্ষায় উত্তীর্ণ হলেও সংখ্যাটির অঙ্ক-সমষ্টি 48 অর্থাৎ অঙ্কমূল 3 হওয়ায় বোঝা যাচ্ছে সংখ্যাটি বর্গসংখ্যা নয়। (তবে মনে রাখতে হবে উক্ত গুণ দুটি থাকলেই বর্গসংখ্যা হবে না; যেমন 160 - অন্য পরীক্ষা দরকার হবে।)

উঃ 55. এখানে প্রশ্নটি করা হয়েছে ঠকাবার জন্য—যাতে সংখ্যার ধাকায় কেউ উত্তরে একশ বিড়াল হাজির করে ঠকে যান। যে সংখ্যক বিড়াল দিয়ে পাঁচ মিনিটে পাঁচটি ইঁদুর ধরা যায় তাদের দিয়েই একশ মিনিটে একশ ইঁদুর ধরা যাবে। কাজেই এখানে উত্তর পাঁচটি বিড়াল।

উঃ 56. ঘড়িতে বার ঘণ্টা বা 720 মিনিট কম-বেশি হলে পুনরায় একই সময় ফিরে আসে। অতএব প্রথম ও দ্বিতীয় ঘড়ি 720 দিন পরে ঠিক সময় দেখাবে; তৃতীয় ঘড়ি তো ঠিক সময় দেখাচ্ছেই। কাজেই নির্দেয় সময় হবে 1599 খ্রিস্টাব্দের 11ই এপ্রিল বেলা 12টা থেকে ঠিক 720 দিন পরে অর্থাৎ 10 দিন কম দু'বৎসর পরে। তাই মনে হবে নির্দেয় তারিখ ছিল পয়লা এপ্রিল, 1601 খ্রিস্টাব্দ। কিন্তু যেহেতু 1600 খ্রিস্টাব্দ লীপইয়ার (অতিবর্ষ) যার দিন সংখ্যা 366, তাই এক্ষেত্রে নির্দেয় তারিখ ও সময় ছিল 1601 খ্রিস্টাব্দের 31শে মার্চ বেলা 12টা।

উঃ 57. এক্ষেত্রে বার বার চেষ্টার দ্বারা সমাধান পাওয়া যায়। সমাধান— 3 × 6 = 18, 18 × 54 = 972

উঃ 58. 11 দ্বারা গুণের ক্ষেত্রে এরূপ অসংখ্য উদাহরণ আছে। লক্ষ্য করে দেখা যায় প্রদত্ত উদাহরণের দুটি ক্ষেত্রে গুণফল এসেছে দুটি আংশিক গুণফলের যোগফল হিসাবে। স্পষ্টত যদি কোনও সময়ে একই স্তম্ভের অঙ্ক দুটির যোগফল

$$\begin{array}{c}
2 & 5 & 3 & 6 \\
2 & 5 & 3 & 6 \\
\hline
2 & 7 & 8 & 9 & 6
\end{array} \qquad \begin{array}{c}
6 & 3 & 5 & 2 \\
\hline
6 & 3 & 5 & 2 \\
\hline
6 & 9 & 8 & 7 & 2
\end{array}$$

9-এর বেশি না হয় তাহলে ওণ্টানো গুণ্যের ক্ষেত্রে ওণ্টানো গুণফল পাওয়া যাবে। কাজেই যে কোনও গুণ্য সংখ্যা—যেখানে পাশাপাশি দুটি অঙ্কের যোগফল 9-এর বেশি নয়, সেখানেই 11 দ্বারা গুণের ক্ষেত্রে অনুরূপ গুণফল পাওয়া যাবে। যেমন 27 × 11 = 297 এবং 72 × 11 = 792; 507 × 11 = 5577 এবং 705 × 11 = 7755; 263542 × 11 = 2898962 এবং 245362 × 11 = 2698982 ইত্যাদি।

উঃ 59. (17380 – 52) ÷ 57 = 17328 ÷ 57 = 304; এই 304 ঠিক ভাঙ্গকের স্থলে তাড়াতাড়িতে ভুল করে নেওয়া ভাঙ্গক—যেখানে দশকের 6-এর বদলে 0 নেওয়া হয়েছিল। কাজেই প্রকৃত ভাক্তক 364 এবং প্রকৃত ভাক্তা

উঃ 60. AB = 30 মি., CD = 40 মি., AC = 50 মি.। স্পষ্টত BP = PD = a মি.; ধরা যাক, AP = x মি.। এখন $a^2 = 30^2 + x^2 = 40^2 + (50 - x)^2$ বা, 48 श्रमार जावजून ३ स्थमास ज्याचा

THE DUNKER STREET STATE

কেই উকলে ধনাশ বিজ্ঞান হাজিব কৰে ঠানে যান। যে সংখ্যান বিজ্ঞা দিয়ে পাঁচ 100x=3200 বা x=32; বৃত্তাকার পাথরটি ছোট থাম থেকে 32 মি. ও বড় থাম থেকে 18 মি. দূরে ছিল। महाराष्ट्र विश्वास काला निवास

উঃ 61. দেখা যাচ্ছে 60 বৎসর বয়সে অবসর নিলে অবসর ভাতা যত হয়, 80 বংসর বয়সে অবসর নিলে ভাতা তার দ্বিগুণ হয়। এখন 100 থেকে 60-এর বিয়োগফল 100 থেকে 80-এর বিয়োগফলের দ্বিগুণ; সূতরাং অবসর ভাতার পরিমাণ 100 বৎসর থেকে অবসর গ্রহণের বয়সের বিয়োগফলের সঙ্গে ব্যস্ত অনুপাতে থাকতে পারে। অবসর গ্রহণের বয়স y বংসর হলে বার্ষিক অবসর ভাতার পরিমাণ হবে, ধরা যাক $rac{ extbf{n}}{100- extbf{y}}$, যেখানে $extbf{n}$ = কোনও নির্দিষ্ট পরিমাণ টাকা। এখন

 $rac{n}{100-60}=630$ ডলার, যা থেকে n=630 imes 40 ডলার =25200 ডলার। 50বংসর বয়সে অবসর নিলে অবসর ভাতা হবে $\frac{25200}{100-50}$ ডলার =504 ডলার ও

70 বংসরে অবসর নিলে এটি হবে $rac{25200}{100-70}$ ডলার = 840 ডলার। সুতরাং

অবসর ভাতার সূত্র ঠিকই ধরা হয়েছে। এখানে প্রশ্নানুসারে $\frac{25200}{100-y}=700$ বা y=64 অর্থাৎ উক্ত কর্মী 64 বৎসর বয়সে অবসর নিয়েছিলেন। আরও এক বৎসর পরে অবসর নিলে তার বার্ষিক অবসর ভাতা হত $\frac{25200}{100-65}$ ডলার =720 ডলার।

উঃ 62. এখানে রহিমের ভাবা সংখ্যার পঞ্চম শক্তি একটি সাত অঙ্কের সংখ্যা এবং তার এককের অঙ্ক 7; দেখা যায় যে কোনও সংখ্যার এককের অঙ্ক পঞ্চম শক্তিতে একই থাকে। অতএব রহিমের ভাবা সংখ্যার একক 7 হবে। এখন 10-এর পঞ্চম শক্তিতে আছে 6টি অঙ্ক, 20-এর পঞ্চম শক্তিতে আছে 7টি অঙ্ক এবং 30-এর পঞ্চম শক্তিতে আছে ৪টি অঙ্ক। একটু চিন্তা করলে দেখা যাবে এক্ষেত্রে রহিমের ভাবা সংখ্যা 27 হতে পারে না (275-এ আটটি অঙ্ক আছে), তা অবশ্যই 17 হবে।

উঃ 63. আয়তাকার উদ্যানে দৈর্ঘ্য 1 মিটার, প্রস্থ b মিটার ও কর্ণ d মিটার হলে প্রশ্নানুসারে $b^2=d^2-1^2=(d+1)$ (d-1),

আবার 2 (d + 1) = 7b অর্থাৎ $b^2 = \frac{4}{49}$ (d + 1) (d + 1)

সূতরাং $\frac{4}{49}$ (d+1) (d + 1) = (d + 1) (d - 1)

বা 4 (d + 1) = 49 (d − 1) :. 45d = 531 এখন d = 53k মিটার ধরলে

1 হবে 45k; সেক্ষেত্রে b হবে $\sqrt{53^2-45^2}$ k=28k

যেহেতু ${f d}-{f b}=250$ মিটার, অর্থাৎ $53{f k}-28$ ${f k}=250$ বা ${f k}=10$ মিটার।

দেখা যাচ্ছে শিশু উদ্যানের দৈর্ঘ্য 450 মি., প্রস্থ 280 মি. এবং ক্ষেত্রফল = (450 × 280) বর্গমিটার = 126000 বর্গমিটার।

উঃ 64. যেহেতু SM স্তম্ভের যোগফল কোনও সময়ে 20 হতে পারে না। সূতরাং $\underline{M=1}$; আবার S-এর সঙ্গে 1 যোগ করে কমপক্ষে 10 হয়েছে (যাতে

SEND <u>MORE</u> MONEY

যোগফলের অযুতের অঙ্কে 1 এসেছে), কাজেই S অবশ্যই 8 বা 9 হবে। এখন S = 8 বা 9 এবং M=1, সূতরাং SM স্তম্ভের (সম্ভবপর ক্ষেত্রে আগের স্তম্ভের দক্ষন হাতের 1 সহ) যোগফল 10 বা 11 হতে পারে। দ্বিতীয় ক্ষেত্রে 0 অক্ষর 1 বোঝাবে; কিন্তু আগেই M=1 পাওয়া গেছে; অতএব SM স্তম্ভের যোগফল অবশ্যই 10 হবে, এবং 0 অক্ষর 0 (শূন্য)। এখন 0 স্তম্ভের যোগফল 0-এর কম হবে অর্থাৎ 0 স্তম্ভ থেকে হাতের 0 পাওয়া যাবে না। সূতরাং 0 0 অর্থাৎ 0 স্তম্ভ থেকে হাতের 0 পাওয়া যাবে না। সূতরাং 0

10 থেকে অবশ্যই S=9 হবে। যেহেতু EO স্তম্ভের যোগফল N এবং O অক্ষর শ্ন্য, অতএব E=N অথবা N, E অপেক্ষা 1 বেশি। কিন্তু পৃথক অক্ষরে পৃথক অক্ষ, তাই E, N-এর সমান হতে পারে না। সূতরাং E+1=N; এখন NR স্তম্ভে পাওয়া যায় N + R + (সম্ভবত হাতের 1) = E+10; (যেহেতু EO স্তম্ভের যোগফলে হাতের 1 আছে)। এখন N + R + (1?) = E+10 থেকে N = E+10 বিয়োগ করলে পাওয়া যাবে E+100 থেকে N = E+101 বিয়োগ করলে পাওয়া যাবে E+101 বিয়োগ করলে পাওয়া যাবে E+101 বিয়োগ করলে পাওয়া যাবে E+102 তার মান হি E+103 তার মান কি তার মান হি হি তার মান হি তার মান হি হি তার মান হ

 $\frac{(1-b)\frac{9567}{1085}}{10652}(1+b)(1+b)\frac{b}{2b}$

উঃ 65. স্পষ্টত এখানে গোষ্ঠের গাভী সংখ্যা এমন হবে যা 3, 7, 12 ও 9 দ্বারা বিভাজ্য অর্থাৎ নির্ণেয় সংখ্যা 3, 7, 9, 12-এর সাধারণ গুণিতক। 3, 7, 9, 12-এর ল. সা. গু. 252। গাভীর সংখ্যা 252 বা তার যে কোনও গুণিতক। সর্বনিম্ন উত্তর অবশ্যই 252 গাভী।

উঃ 66. দেখা যাচ্ছে প্রত্যেকে $\frac{5}{3}$ সংখ্যক রুটি খেয়ে ছিল। কাজেই তৃতীয় পথিককে প্রথম জন দিয়েছে $\frac{4}{3}$ সংখ্যক রুটি ও দ্বিতীয় জন দিয়েছে $\frac{1}{3}$ সংখ্যক। \therefore তৃতীয় পথিকের প্রদত্ত এক টাকা ভাগ হবে 4 ঃ 1-এ অর্থাৎ প্রথম পথিক পাবে 10 পয়সা।

উঃ 67. এখানে পরীক্ষার্থীদের $\frac{1}{3}$ অংশ বাংলায়, $\frac{1}{4}$ অংশ হিন্দীতে ও $\frac{1}{5}$ অংশ ইংরাজীতে পাশ করেছে। কাজেই পরীক্ষার্থীদের $\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)$ অংশ বা $\frac{47}{60}$ অংশ তিনটি বিষয়েই অকৃতকার্য হয়ে না থাকতে পারে। এ থেকে বলা যায় পরীক্ষার্থীদের বাকি $\frac{13}{60}$ অংশ অবশ্যই তিন বিষয়ে অকৃতকার্য হয়েছে এবং এদিক থেকে $\frac{13}{60}$

অংশই সর্বনিম্ন। প্রশ্নানুসারে পরীক্ষার্থীদের $\frac{13}{60}$ অংশ = 26 জন। অতএব পরীক্ষার্থীদের সংখ্যা 120 জন।

উঃ 68. এখানে দেখা যাচ্ছে প্রতিবার যাতায়াতে ভৃত্যটি গণনা করছে মোট 12টি সংখ্যা। কাজেই 1000-কে 12 দ্বারা ভাগ করে অবশিষ্ট দেখে কোথায় শেষ

হবে তা বোঝা যাবে। অবশিষ্ট 1 হলে প্রথম স্তন্ত, অবশিষ্ট 2 বা 0 হলে দ্বিতীয় স্তন্ত, 3 বা 11 হলে তৃতীয় স্তন্ত, 4 বা 10 হলে চতুর্থ স্তন্ত, 5 বা 9 হলে পঞ্চম স্তন্ত, 6 বা 8 হলে ষষ্ঠ স্তন্ত এবং 7 হলে সপ্তম স্তন্ত গণনা করে শেষ হবে। 1000-কে 12 দ্বারা ভাগ করলে অবশিষ্ট থাকে 4; সুতরাং চতুর্থ স্তন্তে ভৃত্যটির গণনা শেষ হবে।

উঃ 69. ডায়াফাণ্টাসের জীবনকাল x বৎসর হলে প্রশ্নানুসারে

$$(x-4) - (\frac{1}{6}x + \frac{1}{12}x + \frac{1}{7}x + 5) = \frac{1}{2}x$$

বা
$$x - \frac{11}{28}x - \frac{1}{2}x = 9$$
 বা $\frac{3}{28}x = 9$, সূতরাং $x = 84$

ডায়াফান্টাসের মোট জীবনকাল ছিল 84 বৎসর।

উঃ 70. স্পষ্টই বোঝা যাচ্ছে হবু রাজা বাড়তি তিনটি অক্ষরের সাহায্য নিয়ে নৃতন এক ত্রয়োদশমিক প্রথা (13-System) চালু করেছিলেন। ঐ দেশের 1X = একত্রয়োদশ + 4 = 13 + 4 = 17; আমাদের দশমিক প্রথায় $17^2 = 289$; এখন এই 289-কে হবু রাজার দেশের নিয়মে লিখতে হবে।

$$289 = 1 \times 13^2 + 9 \times 13 + 3$$

সূতরাং ত্রয়োদশমিক প্রথার নূতন নিয়মে বর্গ সংখ্যাটি 173 হবে। উঃ 71. অসম্ভব এই বিয়োগ সম্ভব হবে রোমক সংখ্যা লিখনের সাহায্যে।

$$\begin{cases}
SIX - IX = S \\
IX - X = I \\
XL - L = X
\end{cases} = SIX$$

উঃ 72. পৃথিবী গোলকাকার। এর পরিধির ক্ষেত্রে যে 44 গজ বাড়ল তাতে ব্যাসার্থ বাড়ে $(44 \div 2\pi)$ গজ $= (44 \div \frac{44}{7})$ গজ = 7 গজ। অর্থাৎ তারটি ভূপৃষ্ঠ থেকে 7 গজ উঁচুতে থাকবে।

উঃ 73. এ প্রশ্নের সমাধান বার বার চেষ্টার উপর নির্ভর করে; এর কয়েকটি সমাধান—

(ii)
$$97 + \frac{8}{12} + \frac{4}{6} + \frac{5}{3} = 100$$

(iii)
$$1 + 2 + 3 + 4 + 5 + 6 + 7 + (8 \times 9) = 100$$

(iv)
$$\frac{2}{3} + 1\frac{4}{8} + 97\frac{5}{6} = 100$$

$$(v) 91 + \frac{5742}{638} = 100$$

(vi)
$$123 + 45 - 67 + 8 - 9 = 100$$

(vii)
$$123 - 45 - 67 + 89 = 100$$

(viii)
$$1.23\dot{4} + 98.76\dot{5} = 100$$

উঃ 74. প্রথমে চারটি ছাগলের বিচরণ ক্ষেত্রের মোট পরিমাণ

 $=\left[4 imesrac{1}{4}\pi.50^2
ight]$ বর্গমিটার $=rac{1}{4}\pi.100^2$ ব.মি.। এখন রাম ছাগলের ক্ষেত্রে দড়ির দৈর্ঘ্য x মি. হলে তার বিচরণ ক্ষেত্র হবে $rac{1}{4}.\pi$ x^2 ব.মি.

যেহেতু উভয় ক্ষেত্রে বিচরণ ক্ষেত্র সমান; সূতরাং $\frac{1}{4}\pi x^2 = \frac{1}{4}.\pi.100^2$; বা x=100; কাজেই রামছাগলের ক্ষেত্রে দড়ি 100 মিটার লম্বা ছিল। উঃ 75. AB প্রাচীরের উচ্চতা = AD মই-এর দৈর্ঘ্য = x ফুট ধরা হল। CD

= বাব্লের উচ্চতা = BE = 2 ফুট; BC = DE = 10 ফুট। এখন ADE Δ থেকে $x^2=(x-2)^2+10^2$ বা 4x=104 বা x=26; মইটি 26 ফুট উঁচু।

উঃ 76. লোকটি প্রথমে ৪ পিণ্ট পূর্ণ করবে এবং তা থেকে ঢেলে 7 পিণ্ট পাত্র পূর্ণ করবে। ফলে ৪ পিণ্ট পাত্রে 1 পিণ্ট পরিমাণ থেকে যাবে। এইভাবে 1 মিণ্ট মাপা যাবে। 2 পিণ্ট পেতে হলে পূর্বোক্ত প্রক্রিয়া সমাধা করে পূর্ণ 7 পিণ্ট পাত্র খালি করে 8 পিন্ট পাত্র থেকে ঐ 1 পিন্ট তাতে ঢেলে রাখা হবে। এখন ৪ পিন্ট পাত্র পূর্ণ করে তা থেকে সবটা 7 পিন্ট পাত্রে ঢালতে গেলে 7 পিন্ট পাত্র পূর্ণ হয়ে ৪ পিন্ট পাত্রে 2 পিন্ট থেকে যাবে। এই ভাবে 2 পিন্ট পরিমাণ মাপা যাবে। পূর্বোক্ত প্রক্রিয়া ক্রমাণত চালালে অনুরূপভাবে 3 পিন্ট থেকে 6 পিন্ট পর্যন্ত পূর্ণ সংখ্যক পিন্ট মাপা সম্ভব হবে। এখন 7 পিন্ট ও ৪ পিন্ট মাপ প্রদত্ত পাত্র দুটির সাহায্যে অনায়াসে সম্ভব। পূর্বোক্ত ঢালাঢালির প্রক্রিয়াণ্ডলি গাণিতিকভাবে লেখা হল—(0 = খালি অবস্থা)

7-পিন্ট-০ 7 0 1 1 7 0 2 2 7 0 3 3 7 0 4 4 7 0 5 5 7 8-পিন্ট-৪ \bigcirc 1 0 8 \bigcirc 2 0 8 \bigcirc 3 0 8 \bigcirc 4 0 8 \bigcirc 5 0 8 \bigcirc উঃ 77. [12 নং সমাধান দুষ্টব্য; এ ক্ষেত্রে \mathbf{x}_5 লাগবে না ।] প্রশ্নানুসারে $\frac{1}{2}\mathbf{x}_1+\mathbf{x}_2+\mathbf{x}_3+\mathbf{x}_4=\dot{\mathbf{x}}_1+\frac{1}{4}\mathbf{x}_2+\mathbf{x}_3+\mathbf{x}_4=\mathbf{x}_1+\mathbf{x}_2+\mathbf{x}_3+\mathbf{x}_4=\mathbf{x}_1+\mathbf{x}_2+\mathbf{x}_3+\frac{7}{64}\mathbf{x}_4=\mathbf{p}$ তা থেকে $\frac{1}{2}\mathbf{x}_1=\frac{3}{4}\mathbf{x}_2=\frac{55}{64}\mathbf{x}_3=\frac{57}{64}\mathbf{x}_4=\mathbf{p}$ ধরা হলে পূর্বোক্ত যে

কোনও সমীকরণ থেকে $p=\frac{14483}{3135}$ q; পূর্ণসংখ্যায় সমাধান পেতে q=3135 m $(m=1,\,2,\,3...)$ ধরা হল। সূতরাং p=14483 m

এখন $m=1,\ 2,\ 3...$ ধরে বহু সমাধান পাওয়া সম্ভব। তাদের মধ্যে m=1 ধরে সবনিম্ন সমাধান হবে $x_1=2q=2\times 3135$ $m=6270,\ একইভাবে <math>x_2=4180,\ x_3=3648,\ x_4=3520,\ p=14483.$

অতএব জ্যেষ্ঠের 6270 মুদ্রা, মধ্যমের 4180 মুদ্রা, তৃতীয়ের 3648 মুদ্রা, এবং কনিষ্ঠের 3520 মুদ্রা ছিল। মতির দাম 14483 মুদ্রা ছিল।

উঃ 78. ভৃত্য সত্য কথা বলে নি। কারণ, যে কোনও পূর্ণ সংখ্যাকে 3k, 3k + 1 ও 3k + 2 আকারে লেখা যায়। এদের বর্গ যথাক্রমে 9k², 9k² + 6k + 1, 9k² + 12k + 4; যেহেতু মুদ্রাগুলিকে বর্গাকারে সাজানো গিয়েছিল, : মুদ্রার সংখ্যা পূর্বোক্ত তিনটি বর্গরূপের যে কোনও একটি হবে। এখন তিন ভাগ করলে প্রথম ক্ষেত্রে অবশিষ্ট থাকবে না। দ্বিতীয় ও তৃতীয় ক্ষেত্রে অবশিষ্ট থাকবে 1; কাজেই বর্গাকারে সাজানো মুদ্রাগুলিকে তিন ভাগ করে দুটি মুদ্রা বাড়তি হয়েছিল—এ বক্তব্য অবশ্যই অসত্য।

উঃ 79. মনে করা যাক ছেলে তিনটির এখনকার বয়স x+1, x, x-1 বংসর। সেক্ষেত্রে বাবার কাছে তারা মোট পেয়েছে x (x-1)+(x-1)(x+1)+(x+1)x টাকা = $(3x^2-1)$ টাকা। এর আগে যে বংসর সংখ্যার মজা-১১

পূজায় তাদের ওখানে গিয়েছিলাম তখন তাদের বয়স যদি $y+1,\,y;\,y-1$ বংসর হয়, তবে তখন বাবার কাছে তাদের প্রাপ্য হয়েছিল $(3y^2-1)$ টাকা।

প্রশানুসারে $(3x^2-1)-(3y^2-1)=120$ বা $x^2-y^2=40=20\times 2=10\times 4$ বা (x+y) (x-y)=40; এর পূর্ণ সংখ্যা সমাধান হবে x=11, y=9 এবং x=7, y=3; যেহেতু বড় ছেলে ষষ্ঠ শ্রেণীতে পড়ে; তার বয়স 8 বংসর হতে পারে না। কাজেই একমাত্র সমাধান x=11, y=9 অতএব আমি দু বংসর আগে তাদের ওখানে গিয়েছিলাম এবং এখন ছেলেদের বয়স 12, 11 ও 10 বংসর।

উঃ 80. মহিলার বয়স y বংসর ও তার মার বয়স x বংসর হলে প্রশানুসারে $x^2-y^2=2720$ বা (x+y) (x-y)=2720 2720-এর যোড় গুণনীয়ক হিসাব করে পাওয়া যাবে তিনটি সম্ভাবনা

- (1) x + y = 68, x y = 40, অতথ্য x = 54, y = 14
- (2) x + y = 80, x y = 34, অতথৰ x = 57, y = 23
- (3) x + y = 136, x y = 20, অতএব x = 78, y = 58

এখন স্পষ্টত মহিলার বয়স 14 বৎসর বা 58 বৎসর হতে পারে না। তাই মহিলার বয়স 23 বৎসর ও তার মার বয়স 57 বৎসর হবে।

উঃ 81. বাড়ির নম্বরের সংখ্যাগুলি যোগ করে তাকে 6 দ্বারা ভাগ করলে পাওয়া যায় 273; কাজেই তিনটি হিসাবে এমনভাবে নম্বর সাজাতে হবে যাতে তাদের যোগফল হবে 273; তারপর বার বার চেষ্টা করে নিচের ছ'টি ভাগ পাওয়া যাবে ঃ—

(1)	1	16	256	ভাগগুলি করার সময় সম্পর্কযুক্ত
(2)	3	27	243	সংখ্যাণ্ডলিকে এক সঙ্গে নিয়ে চেষ্টা
(3)	13	52	208	করতে হবে। যেমন, 13-এর সঙ্গে
(4)	21	63	189	তার গুণিতক 52 ও 20৪-এর কথা
(5)	28	70	175	ভाবा হয়েছে।
(6)	39	78	156	9111 (0302)

এখন লক্ষ্য করলে দেখা যাবে প্রতি ভাগের তিনটি সংখ্যার মধ্যে মাঝের সংখ্যাটি গুণোত্তর মধ্যক।

উঃ 82. এটির সমাধান খুবই সহজ। B অবশ্যই 1, 2, বা 3 হবে। কারণ B = 0 হলে $(BE)^2 =$ তিন অঙ্কের সংখ্যা হবে না; আর $B \ge 4$ হলে $(BE)^2 =$ চার অঙ্কের সংখ্যা হবে; যেহেতু $(40^2 = 1600)$ । B বর্গ সংখ্যার একক; কাজেই এটি অবশ্যই 1 হবে। সেক্ষেত্রে E হবে 1 বা 9; কিন্তু B আগেই 1 হয়েছে, $\therefore E = 9$ কাজেই বর্গ অঙ্কটি দাঁড়াল $(19)^2 = 361$

CC-BRE FIRST

উঃ 83. এই প্রশ্নের সমাধান নির্ভর করে বার বার চেষ্টার উপর।

যেমন,
$$50 + 49 + \frac{38}{76} + \frac{1}{2} = 100$$

$$5\frac{3}{6} + 70 + 24\frac{9}{18} = 100, \ 19\frac{3}{6} + 80\frac{27}{54} = 100$$

$$\frac{35}{70} + \frac{148}{296} = 1$$
, $\cdot 0123\dot{4} + \cdot 9876\dot{5} = 1$, $6 + \frac{39}{78} + \frac{52}{104} = 7$

উঃ 84. একই অঙ্ক বার বার এসেছে এমন কোনও সংখ্যা নেওয়া হল যেটি

m, n দু'টি সংখ্যার গুণফল। এখন $a=rac{m+n}{2},\ b=rac{m-n}{2}$ হবে। যেমন 333=

$$111 \times 3$$
, অতথ্য $a = \frac{111+3}{2} = 57$, $b = \frac{111-3}{2} = 54$,

যা থেকে পাওয়া যাবে 57² – 54² = 333;

$$5560^2 - 5551^2 = 99999,$$

$$556^2 - 445^2 = H1111,...$$

উঃ 85. পদ্ম সংখ্যা x ও ভ্রমর সংখ্যা y হলে প্রশ্নানুসারে y=2 (x-1), y=x+1; সূতরাং x=3, y=4; সরোবরে 3টি পদ্ম ছিল এবং 4টি ভ্রমর এসেছিল।

উঃ 86. দাদুর বয়স ও আতশ বাজির সংখ্যা যথাক্রমে n বৎসর ও n হলে

প্রশানুসারে
$$\frac{n}{2} - \frac{n}{6} - 21 = \frac{n}{10}$$
 বা $\frac{7n}{30} = 21$

অর্থাৎ n = 90; দাদুর বয়স 90 বৎসর।

উঃ 87. সাইকেলের গতি 1 মিনিটে x কিলোমিটার ও বাতাসের গতি 1 মিনিটে y কিলোমিটার হলে প্রশ্নানুসারে $x-y=\frac{1}{4}, \ x+y=\frac{1}{3}.$

কাজেই $\mathbf{x}=\frac{7}{24}$; সূতরাং 1 মিনিটে $\frac{7}{24}$ কি. মি. যাওয়া যায় যদি বাতাসের কোনও গতি না থাকে। সূতরাং ঐ রকম দিনে সাইকেলে 1 কি. মি. যেতে লাগবে $\frac{24}{7}$ মিনিট = $3\frac{3}{7}$ মিনিট।

উঃ 88. চাষী তার বিক্রয়ের গড় দর হিসাব করতে ভূল করেছিল। সে তিনটি হাঁস দশ টাকায় ও দুটি হাঁস দশ টাকায়—এই হিসাব থেকে সাধারণ যোগ করে গড়ে দর করেছে পাঁচটি হাঁস কুড়ি টাকা অর্থাৎ প্রতি হাঁস 4 টাকা। কিন্তু তার গড় দর হবে হাঁস পিছু $\frac{1}{2}\Big[\frac{10}{3}+\frac{10}{2}\Big]$ টাকা $4\frac{1}{6}$ টাকা। সে প্রতিটি হাঁস বিক্রয় করেছে 4 টাকায়। ফলে প্রতি হাঁসে $\frac{1}{6}$ টা. ঘাটতি হয়ে মোট ঘাটতি হয়েছে 10 টাকা।

উঃ 89. মনে করা যাক, বাজারে যাওয়ার সময় তহবিলে x সংখ্যক এক টাকার নোট ও 2y সংখ্যক পয়সা ছিল। 1 টাকায় 100 পয়সা মনে রেখে এক্ষেত্রে প্রশানুসারে হবে 100x + 2y = 2 (100y + x) \therefore 98x = 198y অর্থাৎ $\frac{x}{2y} = \frac{99}{98}$; কাজেই x = 99k, 2y = 98k; সূতরাং তহবিলে 99k সংখ্যক এক টাকার নোট ও 98k সংখ্যক পয়সা ছিল। যেহেতু তহবিলে 100 টাকার কাছাকাছি ছিল, অর্থাৎ এখানে k = 1; কাজেই সে 99 টাকা 98 পয়সা নিয়ে বাজারে গিয়েছিল।

উঃ 90. এক্ষেত্রে প্রথমে 70007-এর মৌলিক উৎপাদক নির্ণয় করতে হবে; সেগুলি হচ্ছে 7, 73 এবং 137; এদের গুণফল হিসাবে তিন অঙ্ক-বিশিষ্ট সংখ্যা পাওয়া যাবে $7\times 73=511$ এবং $7\times 137=959$, অতএব নির্ণেয় তিন অঙ্ক-বিশিষ্ট সংখ্যা হবে তিনটি—137, 511 এবং 959; পরীক্ষা করে দেখা যাবে $71377=137\times 521$, $75117=511\times 147$, $79597=959\times 83$

উঃ 91. যোগ-বিয়োগের অঙ্কটি স্তম্ভ অনুসারে করলে পাওয়া যাবে C+F-I=0 বা $10,\,B+E-H=0$ বা $9,\,A+D-G=1$ বা $0,\,$ সবগুলি যোগ করে পাওয়া যায়—

A + B + C + D + E + F - (G + H + I) = 1 বা 19..... (1)
কিন্তু যেহেতু A, B, C, D, E, F, G, H, I এই ন'টি অক্ষরে 1 থেকে 9
পর্যন্ত অঙ্কগুলি বোঝাচ্ছে (অবশ্য কোন্ অক্ষরে কোন্ অঙ্ক তা জানা নেই), সূতরাং
A + B + C + D + E + F + G + H + I = 45.... (2)

(2) নং সম্বন্ধ থেকে (1) নং সম্বন্ধ বিয়োগ করে বিয়োগফলকে দুভাগ করে পাওয়া যায় G + H + I = 22 বা 13.

এই সম্পর্কগুলি থেকে চেষ্টার সাহায্যে সমাধান পাওয়া যাবে

458 + 321 - 679 = 100

অথবা 257 + 189 - 346 = 100

উঃ 92. এ ধাঁধাটি পুরাতন। সাধারণভাবে মনে হবে দুটো জিনিসের ওজন 1 পাউগু। কাজেই কমবেশি ভারীর কথা ওঠে না। কিন্তু পালকের ওজনের পাউগু 'এভরডুপইস' যা 7000 গ্রেণের সমান; আর সোনার ক্ষেত্রে ওজন ট্রিয়' ওজন— যা 5760 গ্রেণের সমান। তাই এক পাউগু পালক এক পাউগু সোনার চেয়ে অবশ্যই ভারী।

উঃ 93. এগুলি চেষ্টার সাহায্যে করতে হবে।

the found of Fall of the feet

(i)
$$\frac{4}{.4} \times \frac{4}{.4} = 10 \times 10 = 100$$

(ii)
$$99 + \frac{9}{9} = 99 + 1 = 100$$

উঃ 94. নাম সংখ্যাকে সংখ্যায় রূপান্তরিত করলে খরচ বাদে সওদাগরের লভ্য হয় 53 × 10 × 6 × 4 তন্ধা = 12720 তন্ধা। তার মোট লাভ x তন্ধা হলে প্রশানুসারে পাওয়া যায়

$$x - \left[\frac{x}{3} + \frac{x}{8} + \frac{x}{10}\right] = 12720$$
, সূতরাং $\frac{53}{120}x = 12720$,
বা $x = \frac{12720 \times 120}{53} = 240 \times 120 = 28800$

সুতরাং সওদাগরের মোট লাভ 28800 তঙ্কা।

উঃ 95. এখানে যুক্তির শেষ পর্যায়ে বর্গমূল করার সময় ভুল হয়েছে। আসলে বর্গমূল করলে দুটি বর্গমূল আসে—তার একটি নেওয়া হয়েছে; ±-এর মধ্যে প্রকৃত যে চিহ্নটি এখানে ব্যবহার হওয়া উচিত তা দেখা হয় নি।

 $(n+1)-\frac{1}{2}(2n+1)=\frac{1}{2}$ এবং $n-\frac{1}{2}(2n+1)=-\frac{1}{2}$; এদের বর্গ সমান হলেও এরা নিশ্চয়ই সমান নয়। সমান হতে হলে এক্ষেত্রে বামপক্ষের বর্গমূলে ও ভানপক্ষের বর্গমূলে বিপরীত চিহ্ন আসবে অর্থাৎ বামপক্ষে '+' হলে ভানপক্ষে হবে '–' অথবা বামপক্ষে '–' হলে ডানপক্ষে হবে '+'; কাজেই বর্গমূলের ক্ষেত্রে উপযুক্ত চিহ্ন ব্যবহার না করায় ভুল সিদ্ধান্তে পৌঁছাতে হয়েছে।

উঃ 96. মনে করা যাক অশ্ব, হয় ও উটের দাম যথাক্রমে x_1, x_2, x_3 মুদ্রা। এখন প্রশানুসারে $5x_1 + x_2 + x_3 = x_1 + 7x_2 + x_3 = x_1 + x_2 + 8x_3$ অতএব $4x_1 = 6x_2 = 7x_3 = K$ ধরা যাক; এখন পূর্ণসংখ্যা সমাধানের জন্য K = 4, 6, 7-এর ল. সা. শু. বা তার শুণিতক হওয়া দরকার। K=(4 imes 6 imes 7) p ধরা হলে $x_1 = 42p, x_2 = 28p, x_3 = 24p$

স্পষ্টতই বহু সমাধান হবে; তাদের মধ্যে সর্বনিম্ন মূল্য হবে অশ্ব 42 মূদ্রা, হয় 28 মুদা ও উট 24 মুদা।

(ভাস্করাচার্যের 'লীলাবতী'তে অনুরূপ একটি প্রশ্ন আছে।)·

উঃ 97. এখানে প্রশ্নটি সাধারণ বৃদ্ধির। 1988 খ্রিস্টাব্দের ফেব্রুয়ারি মাস 29 দিনে। 29শে ফেব্রুয়ারি শেষে পুকুরটি পুরোপুরি পানা ভর্তি হয়ে থাকলে তার আগের দিন অর্থাৎ 28শে ফেব্রুয়ারির শেষে পুকুরটির অর্ধেক পানা ভর্তি হয়েছিল এবং স্বভাবতই তার আগের দিন অর্থাৎ 27শে ফেব্রুয়ারি তারিখের শেষে পুকুরটির সিকি ভাগ পানা ভর্তি হয়েছিল।

উঃ 98. প্রতি বাক্সে ফলের সংখ্যা x হলে প্রশ্নানুসারে $9p_1=5x+2$, $8p_2=6x+4$, $7p_3=4x+1$; প্রথম সম্বন্ধ থেকে x-এর সাধারণ সমাধান x=5+9t, $8p_2=6$ (5+9t)+4, সূতরাং $4p_2=27t+17$ কাজেই t=1+4m; এখন তৃতীয় সম্বন্ধ থেকে $7p_3=21+36t$, বা $7p_3=57+144m$, সূতরাং m=7n-2; কাজেই $p_3=144n-33$ অর্থাৎ 4x+1=1008n-231 বা x=252n-58; এখানে বহু সমাধান আছে। সর্বনিম্ন উত্তরের জন্য n=1 ধরা হলে x=252-58=194 অর্থাৎ প্রতি বাব্দে ফলের সংখ্যা 194

উঃ 99. ওজন দাঁড়ির অসমান দু' বাহুর দৈর্ঘ্য ধরা যাক $u,\ v$ একক। যে পরিমাণ বাটখারা দিয়ে প্রথমবারে, পরে দ্বিতীয়বারে ময়দা ওজন করা হয়েছে তার

পরিমাণ x একক হলে মোট ময়দা কেনা হবে 2x একক। মনে করা যাক, প্রথমবারে ময়দার প্রকৃত ওজন y একক এবং দ্বিতীয়বারে z একক। এখন C বিন্দুর পরিপ্রেক্ষিতে ভ্রামক নিয়ে ux=vy এবং দ্বিতীয়বারে vx=uz; দু'বারে ময়দার মোট প্রকৃত ওজন $y+z=\frac{ux}{v}+\frac{vx}{u}$ ফলে ক্রেতা 'বেশি' পেল $y+z-2x=x\left(\frac{u}{v}+\frac{v}{u}-2\right)$

$$= x \left(\frac{u^2 + v^2 - 2uv}{uv} \right) = x \frac{(u - v)^2}{uv}$$
; u , v -এর মান যে পরিমাণই হোক,

 $\frac{(u-v)^2}{uv}$ ধনাত্মক। সূতরাং ক্রেতার লাভ হবে। (প্রশ্নটিতে স্থিতিবিদ্যার সংশ্লিষ্ট সূত্র ব্যবহৃত হয়েছে।)

উঃ 100. আমরা জানি $h=\frac{1}{2}\,gt^2;$ এখানে h (উচ্চতা) = 20 মি., t= সময়

পরিমাণ = 2 সেকেণ্ড। সূতরাং $20=\frac{1}{2}g.4=2g$ কাজেই g (মাধ্যাকর্ষণ জনিত ত্বরণ) = 10 মি/সেকেণ্ড²। এখানে g-এর মান খুব বেশি; এখন g-এর 10 মি./সেকেণ্ড² (পূর্ণ সংখ্যায়) এর মতো বেশি মান হতে পারে একমাত্র মেরুপ্রদেশে। কাজেই ভল্পকের রং ছিল সাদা। (এখানে গতিবিদ্যার সংশ্লিষ্ট সূত্র ব্যবহৃত হয়েছে। লক্ষণীয় মেরুতে g=9.83... একক)

উঃ 101. লোকগুলিকে একটি সুষম ষড়ভুজের আকারে দাঁড় করালে তা সম্ভব হবে। 24টি ফুটকি এ-ভাবে আঁকলে সমাধান বোঝা যাবে।

উঃ 102. ছেলেটির বয়স x বৎসর ধরলে প্রদন্ত শর্ত থেকে পাওয়া যাবে 3(x+3)-3(x-3)=x, অতএব x=18

∴ ছেলেটির বয়স 18 বৎসর।

উঃ 103. অভিজ্ঞ টাইপিন্টের কর্মক্ষমতা অন্য জনের দেড়গুণ; অতএব তিনি ঘন্টায় 15 পৃষ্ঠা টাইপ করেন। 1 ঘন্টা 12 মিনিট $=1\frac{1}{5}$ ঘন্টা। কাজেই পাণ্ডুলিপির পৃষ্ঠাসংখ্যা $=(15+10)\times 1\frac{1}{5}=30$

উঃ 104. 1932 সালে রামের বয়স = জন্মসালের শেষ দু'অঙ্ক। অতএব, রামের তখন বয়স $\frac{32}{2}$ বা 16 বৎসর। কাজেই রামের জন্ম বৎসর 1916 খ্রিস্টাব্দ। দাদু যখন একই কথা বলেছেন তখন স্পষ্টত দাদুর জন্ম উনবিংশ শতাব্দীতে অর্থাৎ তাঁর জন্মসালের প্রথম দুই অঙ্ক 18; অতএব রামের ক্ষেত্রে যা 32, এখানে তা 132; এখন 132 ÷ 2 = 66, কাজেই দাদুর জন্ম বৎসর 1866 খ্রিস্টাব্দ।

উঃ 105. এই প্রশ্নের সমাধানে 11 দ্বারা বিভাজ্যতা সম্বন্ধে নিয়ম জানা দরকার ঃ কোনও সংখ্যার অযুগ্ম স্থানীয় অঙ্কের যোগফল ও যুগ্ম স্থানীয় অঙ্কের যোগফলের অন্তর শূন্য বা 11-এর কোনও গুণিতক হলে সংখ্যাটি 11 দ্বারা বিভাজ্য হবে। তা ছাড়া, বৃহত্তম সংখ্যাতে বামদিক থেকে 98765.... এবং ক্ষুদ্রতম সংখ্যাতে বামদিক থেকে 10234..... থাকবে। সংখ্যা দু'টির পরবর্তী চারটি অঙ্ক বাকি অঙ্কগুলি থেকে বেছে এমন ভাবে বসাতে হবে যাতে. 11 দ্বারা বিভাজ্যতার প্রয়োজন সিদ্ধ হয়। একটু চেষ্টা করলে পাওয়া যাবে বৃহত্তম সংখ্যা 987652413 এবং ক্ষুদ্রতম সংখ্যা 102347586

উঃ 106. কোনও দর্শক 5 টাকা দিয়ে 100 টাকা নিতে পারে নি। কারণ, ঐ ভাবে 5 টাকা দেওয়া সম্ভব ছিল না। x, y, z যথাক্রমে 50 পয়সা, 20 পয়সা ও 5 পয়সা মুদ্রার সংখ্যা হলে প্রশ্নানুসারে আসবে 50x + 20y + 5z = 500 এবং x + y + z = 20

সমীকরণ দৃটি থেকে z-কে অপসৃত করে পাওয়া যাবে $3x + y = 26\frac{2}{3}$ যার পূর্ণ সংখ্যায় কোনও সমাধান নেই; অথচ মুদ্রার সংখ্যা তো পূর্ণসংখ্যা হবে।

উঃ 107. দেউলের উচ্চতা x গজ হলে প্রশ্নানুসারে

$$\frac{x}{2} + \frac{x}{3} + \frac{x}{10} + 12 = x$$

অতএব x = 180; দেউলের উচ্চতা 180 গজ।

উঃ 108. নোবেল পুরস্কার দেওয়া শুরু হয়েছে 1901 খ্রিস্টাব্দ থেকে। কাজেই পার্ল বাক একথা বলেছেন বিংশ শতকের কোনও বর্গসংখ্যা-সূচক বৎসরে—যেটি অবশ্যই 44² = 1936; এখন 1936 খ্রিস্টাব্দে বয়স 44 বৎসর হলে জন্মসাল হবে

1892 খ্রিস্টাব্দ। কাজেই পার্ল বাক 1892 খ্রিস্টাব্দে জন্মেছিলেন এবং 1936 খ্রিস্টাব্দে এ-কথা বলেছিলেন। ভাটার এক ভালালের হাত্রাগরিক ছাত্রা হটা বি

দশটি মজার যাদুখেলার আঙ্কিক ব্যাখ্যা

পূর্ব অধ্যায়ে প্রদত্ত যাদুখেলাগুলির আঙ্কিক ব্যাখ্যা দেওয়া দরকার। কারণ, অঙ্কের যাদুখেলা প্রকৃত পক্ষে কোনও যাদু নয়, তা কেবল অঙ্কের কৌশলী ব্যবহার— একথা কিশোর পাঠকদের জানা উচিত। তা ছাড়া, যাদুর গাণিতিক ব্যাখ্যা বুঝে অনুরূপ নৃতন কোনও যাদুখেলা তৈরি করাও তাদের পক্ষে সম্ভব হবে।

(1) তোমার মনকে আমি নিয়ন্ত্রিত করতে পারি ঃ असून मध्ये देवाल सामह साम

ধরা যাক দর্শকের ভাবা চার অঙ্কের সংখ্যা

শর্ত অনুসারে নৃতন সংখ্যা হবে

$$1000w + 100y + 10z + x$$
(ii)

প্রথম সংখ্যা (i) ও দ্বিতীয় সংখ্যা (ii) এর অন্তর ফল (এক্ষেত্রে বিয়োগফল) হবে 1000 (x - w - 1) + 900 + 90 + (10 + w -x), কারণ, w < x হওয়ায় একক স্থানের বিয়োগফল হয় 10 + w - x, দশকের স্থানে

হয় 100 + 10z - (10z + 10) = 90, শতকের স্থানে 1000 + 100y - (100y + 100) = 900 এবং সহস্রের স্থানে 1000x - (1000w + 1000) = 1000 (x - w - 1)

উক্ত বিয়োগফল সংখ্যা (iii) থেকে শর্ত অনুসারে পাওয়া যাবে

1000
$$(10 + w - x) + 900 + 90 + (x - w - 1)$$
 (iv)

(iii) সংখ্যা ও (iv) সংখ্যা দুটি যোগ করলে হবে

$$1000 (10 - 1) + 1800 + 180 + (10 - 1)$$

$$= 10000 - 1000 + 1000 + 800 + 100 + 80 + 9 = 10989$$

অনুরূপভাবে বেশি অঙ্ক-বিশিষ্ট সংখ্যার ক্ষেত্রেও যাদুর ফল প্রমাণ করা যাবে।

(2) তোমার জন্মসাল আমি বলতে পারি ঃ

এখানে প্রদত্ত উদাহরণকে ব্যাখ্যা করলেই বোঝা যাবে সমগ্র পদ্ধতিই একটা অভেদ। (a) থেকে (d) পর্যন্ত প্রক্রিয়া শেষ করা হলে পাওয়া যাচ্ছে—

[জন্ম শতকের অঙ্ক 19 + পরবর্তী সংখ্যা 20] × 5 × 10

(যেহেতু ডান দিকে শূন্য বসানোর অর্থ 10 গুণ করা)

$$= (19 + 19 + 1) \times 5 \times 10 = 19 \times 2 \times 5 \times 10 + 50$$

= 19 × 100 + 50; এখন (e), (f) প্রক্রিয়া অনুসারে 1900 + 50 + 36 + 57 পাওয়া যাওয়ার পর যাদুকর নিজে মনে মনে 50 + 36 অর্থাৎ 86 বিয়োগ

করছে। অতএব, শেষ ফল হচ্ছে 1900 + 50 + 36 + 57 – 86 = 1957; এর ুঅর্থ পর পর সম্পাদিত প্রক্রিয়ার ফলে যে বাড়তি 50 + দর্শকের বলা 36 এসেছিল ্রসেটাই ৪6 বিয়োগের সাহায্যে বাদ হয়ে গেল এবং কেবল জন্ম সালই থেকে গেল।

াচল (3) তোমার জন্ম বার আমি বলতে পারি ঃ সম্প্রসামের ১৯৮০ ১ চচচ

্রান আমরা জানি 7 দিনে সপ্তাহ; কাজেই 7 দিন পরে একই বার আসে। সাধারণ ্বংসরে 365 দিন। যেহেতু 365-কে 7 দিয়ে ভাগ করলে 1 বাকি থাকে এখানে বার া দিন পিছোবে। আর অতিবর্ষে 366 দিন হওয়ায় বার বাড়তি আরও একদিন েপেছোয়। আর প্রতি চার বৎসরে একটি অতিবর্ষ হয়। এই তথ্যগুলি মনে রেখে শকুন্তলা দেবীর পদ্ধতিটি তৈরি হয়েছে। সাধ্যম সাম সিমান নির্দী এ সমান হ

প্রসঙ্গত বার নির্ণয়ের আর একটি পদ্ধতির উল্লেখ করা হচ্ছে—যার সাহায্যে গ্রেগরীয়ান ক্যালেণ্ডার পত্তনের বৎসর 1582 খ্রিস্টাব্দের পর থেকে যে কোনও তারিখের বার বলা যাবে। নিয়মের সূত্র হচ্ছে— ১ × (CF + SF) । স্ক্র

$$d = \left\{ N + [2.6M - 0.2] + Y + \left[\frac{Y}{4} \right] + \left[\frac{C}{4} \right] - 2C - (1 + L) \left[\frac{M}{11} \right] \right\}$$
mod 7

এখানে N= দিনাঙ্ক, M= মার্চ থেকে হিসাব করে মাসাঙ্ক, C= বংসরের শতক অংশ, Y= বৎসরের বাকি অংশ, L=1 (অতিবর্ষে), 0 (অন্যথায়) d = বার (0 = রবি, 1 = সোম,..... 6 = শনি)। সূত্রে [∙] চিহ্ন ব্যবহার হয়েছে চারটি অংশে; এই চিহ্নের বিশেষ অর্থ আছে; যেমন [x] = x সংখ্যার চেয়ে বড় নয় এমন বৃহত্তম পূর্ণসংখ্যা। 🗀 🚈 🕮 📉 🔻 ১০% 🖛 1991 🗵 ১০% — ১০% ১০%

ে (4) তোমার পুরা জন্ম তারিখ আমি বলতে পারিঃ ্রত্রথানে ব্যাখ্যা (2) নং যাদুর অনুরূপ।

যেমন (2 + 3) × 5 × 10 + 32 + 1 (32 দর্শকের বলা সংখ্যা) $= (2 + 2 + 1) \times 5 \times 10 + 32 + 1$ $= 2 \times 2 \times 5 \times 10 + 50 + 32 + 1 - 10101$

ইলাপ্ট ই⊫ 201 + 82 নিশাপাপ চার'র সংখ্যা হ'ব কিবল এখন এর ডানদিকে দর্শকের নৃতন ভাবা 16 বসানোর অর্থ (201 + 82) সংখ্যা শতকের স্থানে যাওয়া এবং তার সঙ্গে 16 যুক্ত হওয়া অর্থাৎ তখন অবস্থা দাঁড়াচ্ছে (শতক বাদে জন্ম সাল যোগ করে)

 $(201 + 82) \times 100 + 16 + 25 = 20100 + 8216 + 25 = 20125 + 8216$ এবার যাদুকর 8216 বিয়োগ করে পাচ্ছে 20125 যার মধ্যে বাম দিক থেকে তিনটি অংশে (2, 01, 25) পর পর আছে মাসাঙ্ক, তারিখ ও শৃতক বাদে জন্মসাল।

আর শতক 19 হবে না 18 হবে তা দর্শকের চেহারা থেকেই বোঝা যাবে।

ে (5) যোগের উত্তর যৌগিক প্রক্রিয়ায় আগেই জানা যায় ঃ

প্রথমে দর্শকের লেখা সংখ্যার নিচে যাদুকর এমনভাবে একটি সংখ্যা লিখেছে যাতে (হাতের 1 না আসার জন্য) যোগ করা খুব সহজ। যাদুকর মনে মনে যোগ করে এ ক্ষেত্রে পেয়েছে 577989 সংখ্যাটি। এখন ঠিক হল দর্শক আর তিনটি সংখ্যা ও যাদুকর তিনটি সংখ্যা পর্যায় ক্রমে লিখবে। লক্ষণীয় দর্শকের প্রতিটি সংখ্যার নিচে যাদুকর দ্রুত এমনভাবে সংখ্যা লিখেছে যাতে সেই দুটি সংখ্যার যোগফল হয়েছে 1000000। অতএব তিন যোড়া সংখ্যাতে আসবে 3000000 এবং সর্ব মোট ্যোগফল হবে 3577989—যা' যাদুকর প্রথমে যোগ করা দুটি সংখ্যার যোগফলের বাঁ-পাশে 3 লিখে আগেই জমা রেখেছিল। স্ক্রান নিজ্ঞ নিজ্ঞান লাল্ড নিজ্ঞান

(6) তোমার ভাবা তাস আমি বলতে পারি ঃ প্রতিষ্ঠা (2) নং যাদ্র অনুরূপ। । ক্রান্তাই চনক্রম ক্রান্তাক নার্নিট্র যেমন (12 + 13) × 5 + 9, (এখানে বিবি = 12, ইস্কাবন = 9)

$$= (12 + 12 + 1) \times 5 + 9 = 12 \times 10 + 5 + 9$$

$$= 129 + 5$$

ি ১০০০ পরে বাড়তি 5 বিয়োগ করা হলে পাওয়া গেল 129 া যার একক অংশ তাসের রং ও বাকি অংশ তাসের নাম বোঝাবে।

(গালা) (7) তোমার ভাবা সংখ্যা আমি জানি ঃ বিচ্চাত্তি কর্ম ক্রিক কর্ম

ালত এই যাদুতে উৎপাদকের সাহায্য নেওয়া হয়েছে। যেমন, তিন অঙ্কবিশিষ্ট সংখ্যার ক্ষেত্রেত লাজ্য 🗴 = [১] মন্ত্রত ক্রোল ছিল মান্ত্র মন্ত্রতী বিচ ক্রান্তর

 $706706 = 706 \times 1001 = 706 \times 7 \times 11 \times 13$

অতএব তিন অঙ্ক-বিশিষ্ট সংখ্যাকে দুবার পাশাপাশি লিখে সেই সংখ্যাকে 13 ও 11 দ্বারা পর পর ভাগ করলে যে ফল পাওয়া যাবে তাকে যাদুকর 7 দ্বারা ভাগ করে অবশ্যই দর্শকের ভাবা সংখ্যা বলতে পারবে।

দুই অঙ্ক-বিশিষ্ট সংখ্যা তিন বার পাশাপাশি লেখার ক্ষেত্রে সাহায্যকারী উৎপাদক হবে 10101 = 37 × 13 × 7 × 3

এবং এক অঙ্ক-বিশিষ্ট সংখ্যা ছ'বার পাশাপাশি লেখার ক্ষেত্রে এই উৎপাদক হবে 111111 = 37 × 13 × 11 × 7 × 3

(৪) গুণ-যোগের খেলায় উত্তরের কেরামতি ঃ ক্রান্ত ক্রান্ত ক্রান্ত

এখানে দর্শকের ভাব তিন অঙ্ক-বিশিষ্ট সংখ্যা 342-কে 172 ও 827 দ্বারা আলাদা গুণ করে গুণফল দৃটি যোগ করলে পাওয়া যাচ্ছে

342 × 172 + 342 × 827

 $= 342 \times (172 + 827) = 342 \times 999$

 $= 342 \times (1000 - 1) = 342000 - 342$

Cool fatigle) - 197 the

hoh) - Walley Program Was guaragor-non onitrolimisa

= 341000 + 1000 - 342

= 341000 + 658 = 341658

(৭) আমার ভাবনা তোমায় ভাবাব ঃ

यापुकरतत लिथा 183 यापुकत जारन किन्छ पर्यक जारन ना।

আর দর্শকের লেখা 756 দর্শক জানে, কিন্তু যাদুকর জানে না।

দর্শকের করা প্রক্রিয়া মতে 756 + (999 – 183) = 756 + 1000 – 183 — 1 = 1756 – 184 (এক্ষেত্রে সহস্রের অন্ধ 1 হবেই)। এখন (1756 – 184) সংখ্যার বাঁ-দিকের 1 কেটে ডান দিকে 1 যোগ করার অর্থ—সংখ্যাটি 1000 কমে যাওয়া ও 1 বেড়ে যাওয়া। অতএব এখন দাঁড়াচ্ছে 1756 – 184 – 1000 + 1 = 756 – 183; এবার (e) প্রক্রিয়া অনুসারে দর্শক 756 থেকে (756 – 183) বিয়োগ করলে অবশ্যই 183 পাবে—যেটি যাদুকরের ভাবা সংখ্যা।

(10) অঙ্কের যাদুকর কি গুণের রাজা? এটির ব্যাখ্যা (7) নং যাদুর মতো উৎপাদকের সাহায্যে হবে। কোনও নয় অঙ্ক-বিশিষ্ট সংখ্যা × 142857143 × 7 = উক্ত সংখ্যা × 1000000001

অবশ্যই গুণফল হিসাবে নয় অঙ্ক-বিশিষ্ট সংখ্যাটি পাশাপাশি দু'বার হবে। যেমন, 570875836 × 142857143 × 7

(kuriteb)

= 570875836570875836

(dinon moul) - Figure

chief styll-(conging number)

sizer a m - (stellate aumber)

THE PERSON NAMED IN

leabed mistornion in

পারিভাষিক শব্দ (বর্ণানুক্রমিক)

टाउर व समयान ७ सामूब वार्निकिक बाजा

CPC

	CAUTAGES & DOUTE
অঙ্ক মূল—(digital root)	
	করণী—(surd)
অতিরিক্ত সংখ্যা—(abundant number)	
অতিবৰ্ষ—(leap year)	কাল্পনিক সংখ্যা—(imaginary
অতি–সম্পূৰ্ণ—(over-perfect)	
অনন্ত—(infinity)	কৃটাভাস—(paradox)
অন্তরকলন—(differential calculus)	কৃত্রিম সংখ্যা—(artificial number)
অনুভূমিক—(horizontal)	ক্রম—(order)
অবিরত ভগ্নাংশ—(continued fraction)	ক্রম-শ্ন্যতা প্রাপ্ত ত্রিভুজ—(vanishing triangle)
অমূলদ সংখ্যা—(irrational number)	ক্ষুদ্রতিক্ষুদ্র—(infinitesimal)
অযাদুবৰ্গ—(antimagic square)	গণক সংখ্যা—(counting number)
অন্ত সম্পূৰ্ণ—(octo-perfect)	গুগোল—(googol)
অসম বৰ্গ—(hetero square)	গ্গোলপ্লেক্স—(googolplex)
অসমবাহু সংখ্যা—(heteromecic	গৌণিক সংখ্যা—(factorial number)
number)	গৌণিকেতর সংখ্যা—(sub-factorial
অসম্পূর্ণ বা ঘাটতি সংখ্যা—(deficient	number)
number)	ঘন সংখ্যা—(cube number)
অসীম অনাবৃত্ত দশমিক—(non-	ঘূর্ণন প্রতিসাম্য—rotational
terminating non-recurring	symmetry)
decimal) অসীম শ্রেণী—(infinite series)	চতুঃসম্পূর্ণ—(quadriperfect)
আর্থেমী সংখ্যা—Narcistic num-	চতুস্তলক সংখ্যা—(tetrahedral
ber)	number)
আবৃত্ত একক—(repunit)	চান্দ্রমাস—(lunar month)
আবৃত্ত বা পৌনঃপুনিক দশমিক—	চাষীদের গুণ—(peasant multi- plication)
(recurring decimal)	ছবির সাহায্যে লেখা—
উপাক্ষর—(subscript)	(hieroglyphics)
উল্লম্ব—(vertical)	জটিল সংখ্যা—(complex number)
উর্ধ্বপ্রান্ত—(apex)	জ্যামিতিক নক্সা সংখ্যা—(figurate
ঋণাত্মক পূৰ্ণসংখ্যা—(negative	number)
integer)	তারকা পঞ্জুজ—star pentagon/
একক যুগ্ম—(singly even)	stellated pentagon)
এগার পদ্ধতি—(eleven-system)	তারকা সংখ্যা—(stellate number)

তিন পদ্ধতি—(three system) তির্যকভাবে—(skewly) সংখ্যা—(transcendental number) ত্রিভুজ সংখ্যা—(triangle number) ত্রিমাত্রিক সংখ্যা—(solid number) ত্রিসম্পূর্ণ—(triperfect) দশমিক পদ্ধতি—(decimal system/ (redgy knes) ten-system) দশ্মিক ভগ্নাংশ—(decimal fraction) দুই-প্রণালী বা দ্বাংশক পদ্ধতি—(twosystem/ binary system/ diadic system) দ্বাদশিক পদ্ধতি—(duodecimal system) সমীকরণ—(quadratic দ্বিঘাত equation) উপপাদ্য—(binomial দ্বিপদ theorem) দ্বিমাত্রিক সংখ্যা—(plane number) দ্বিম্থী অবিকল—(palindromic) দ্বি-সম্পূর্ণ—(biperfect) দ্বৈত যুগ্য—(doubly even) ধনাত্মক পূর্ণসংখ্যা—(positive integer) নিধান—(base) of a logarithm পঞ্চজ সংখ্যা—(pentagonal number) পঞ্চ মাত্রিক পদ্ধতি—(five system/ quinary system) পঞ্চ-সম্পূর্ণ—(quinque perfect) চতুষোণ সংখ্যা—(holy পবিত্র tetraktys)

পরিণাম মূল্য—(limiling value) পাস্কাল ত্রিভূজ—(Pascal triangle) পীথাগোরাস সংখ্যাত্রয়ী—(Phythagorean number triple) পূরক—(complementary) পেণ্টাগ্রামা মিষ্টিকাম—(Pentagrama Mysticum) প্রক্রিয়া—(operation) প্রতিফলন অক্ষ—(axis of reflection) প্রতিফলন কেন্দ্র—(centre of reflec-প্রতিসাম্য—(symmetry) প্রতিসাম্য রেখা—(line of symmetry) প্রাথমিক পীথাগোরাস ত্রিভুজ—(primitive Pythagorean triangle) প্লেটোনিক সংখ্যা—(Platonic oldesing number) ফার্মাট উপপাদ্য—(Farmat theorem) ফার্মাট সংখ্যা—(Farmat number) সংখ্যা—(Fibonacci ফিবোনাচি number) বড় অক্ষর—(capital letter) বর্গসংখ্যা—(square number) বর্ণগণিত—(alphamatics) বহুতলক—(polyhedra) বহুভূজ—(polygon) সংখ্যা—(polygonal বহুভুজ (adm number) বহু-সম্পূৰ্ণ—(multiperfect) প্রণালী— বিংশকালক/ বিংশমাত্রিক (vigesimal / vicenary system) বিকল্প যড়ভুজ সংখ্যা—(alternative

hexagonal number)

বিন্যাস—(permutation) বিবর্তন তত্ত—(theory of evolution) বিশ্বকোষ—(encyclopaedia) বিষম/ অযুগ্ম/ বিযোড়—(odd) বিস্তৃতি—(expansion) বীজগণিতীয় সংখ্যা—(algebraic number) বৃত্ত-বিভাজক সমীকরণ—(cyclotomic equation) ভগ্নাংশ—(fraction) ভ্ৰামক—(moment) মন্ত্ৰ সংখ্যা—(charm number) মহাজাগতিক সংখ্যা—(cosmical number) মার্সিনী সংখ্যা—(Marsene number) মাল্য গুণফল—(garland product) মাল্য সংখ্যা—(garland number) মিত্র সংখ্যা-ত্রিতয়—(amicable (mercadi famina) - triplets) সংখ্যা-দ্বিতয়—(amicable doublets) মিত্র সংখ্যাসমূহ--(amicable numbers) মূলদ সংখ্যা—(rational number) মেগা—(Mega) মেগিস্টন—(Megiston) মৌলিক/ অযৌগিক—(Prime/ incomposite) যন্ত্ৰগণক—(computer) যাদুঘণক—(magic cube) যাদুচক্ৰ/ যাদুবৃত্ত—(magic wheel/ magic circle) যাদু ধ্রুবক—(magical constant) যাদুবৰ্গ—(magic square)

যৌগিক সংখ্যা—(composite number) রহস্যময় সংখ্যা—(mystic number) বৈখিক প্রতিসাম্য—(linear symmetry) শতকিয়া পদ্ধতি—(centesimal system) শিখর/ পিরামিড সংখ্যা—(pyramidal number) শূন্য/ নির্বোধক—(zero/ cypher) ষড়-সম্পূৰ্ণ—(sexiperfect) সপ্ত-সম্পূর্ণ—(septiperfect) সম/ যুগ্ম/ যোড়—(even) সমকৰ্ণ—(pandigonal) সমঞ্জস/ সংযোজিত—(symmetrical/ associated) প্রগতি—(arithmetic সমান্তর progression) সমান্তর শ্রেণী—(arithmetic series) নিখঁত সংখ্যা—(perfect number) সম্প্রদায়—(school), যেমন আর্কিমিডীয় সম্প্রদায় সামাজিক সংখ্যা— (sociable (name number) সামান্য ভগ্নাংশ—(vulgar fraction) সীমানাযুক্ত বৰ্গ—(bordered square) সুবৰ্ণ অনুপাত—(golden ratio) সূচক শ্রেণী—(exponential series) স্কুয়েস সংখ্যা—(Skewes' number) ফেলার সংখ্যা—(scalar number) স্বানুরূপ সংখ্যা—(automorphic number) প্রাকৃত সংখ্যা—(natural number) হেত্বাভাস—(fallacy)

সহায়ক গ্রন্থপঞ্জী

The World of Mathematics-J. Newman Vols. I, II, III, IV Number-T. Dantzig

An Introduction to the Theory of Numbers-I. Niven & H. S. Zuckerman

An Introduction of Mathematical Philosophy-Bertrand Russel Mathematical Snapshots-H. Steinhaus Mathematics for the Million-L. Hogben Mathematics in Every Day Things-W. C. Vergava Mathematics and Imagination—E. Casner & J. Newman Riddles in Mathematics—E. Northrop Mathematical Recreations and Essays-Ball Mathematical Puzzles-G. M. Smith Tricks and Amusements-R. M. Abraham My Best Puzzles in Mathematics-H. Phillips Madachy's Mathematical Recreations-J. S. Madachy Mathematical Tricks, Brain Twisters & Puzzles-J. De Grazia Mathemagic-R. V. Heath Mathematics-Its Magic and Mastery-A. Bakst History of Mathematics-D. E. Smith, Vols, I, II History of Mathemactics-F. Cajori History of Hindu Mathematics—Dutta & Singh, Vol. I Some Novel Methods of Arithmetic-H. C. Chowdhury ভাষা গণিত—সাধন দাশগুপ্ত আমাদের দৃষ্টিতে গণিত—প্রদীপকুমার মজুমদার অঙ্কের খেলা (অনুবাদ)—ইয়াকভ পেরেলম্যান গণিতের রহস্যপুরী—এ. কে. বজলুল করিম

মজার অঙ্কের ম্যাজিক খেলা—চন্দ্রমোহন বসু

প্রাচীন ভারতে গণিত চর্চা-প্রদীপকুমার মজুমদার

শুভঙ্করী—মধুসুদন দেব

TOP OR DUTCH

The Worldt of Mathematics of Newman Vols L. II, III all Secure street

An Introduction to the Theory of Numbers -L Niven and

An Introduction of Mathematical Philosophy-Berfrand Russel Mathematical Snapshots-H. Stemhaus

Mathematics for the Million-L. Fogizen

Vaulemainer in Every Day Things-W. C. Vingava

Manness and Imprination—E. Casser & J. Nevenan

Mathematical Recreations and Essays Haft,

Mathematical Parzies - O. M. Sanin

Fricks and Aspusyments -R M Abraham -

My Best Preciles in Mathematics - H. Phillips

Madaciw's Mathematical Recreations—J. S. Madacity and corn

Mulberrand Its Magic and Mastery A Shiest

History of Mathemactics- P. Cajone.

Bistory of Hindu Mahematics - Cons & Single, Vol. 1. Some Nord Methods of Anthumideeth C. Opendhary

PIERSON S TEL-(RESON MES) 1-12

TO PROPERTY BY

FARE STATE OF THE PROPERTY OF THE PERSON OF

FINANCE PROPERTY OF A STREET PARTY IN OR PROPERTY OF THE PROPERTY WAS A

রম্যুগণিত পর্যায়ের এই গ্রন্থে আলোচিত হয়েছে 'আত্মপ্রেমী সংখ্যা' 'স্বানুরূপ সংখ্যা', 'মাল্য-সংখ্যা' ও 'সম্পূর্ণ সংখ্যা'র মতো বহুবিধ মজার সংখ্যা। বড সংখ্যা নিয়ে ভাবনার ক্ষেত্রে লেখক আমাদের নিয়ে গেছেন 'পরার্ধ' থেকে 'শীর্ষ-প্রহেলিকা'য় এবং 'মিলিয়ন' থেকে 'মেগিস্টন'-এ। যন্ত্রগণকের মূল কথা যার উপর দাঁড়িয়ে আছে সেই দ্ব্যংশক পদ্ধতির বিশদ আলোচনা শিক্ষার্থীদের ভাল লাগবে। সংখ্যা-জগতের সমতাধর্মী ফলগুলি উল্লিখিত হয়েছে তাদের সেই ধর্মের আঙ্কিক ব্যাখ্যাসহ। প্রসঙ্গত যাদবর্গ ও তার গঠন-পদ্ধতি এবং অযাদুবর্গের কথাও এসেছে। বিশেষভাবে উল্লেখ্য ভগ্নাংশকে আবৃত্ত দশমিকে পরিণত করার নৃতন এক সহজ নিয়ম এখানে সন্নিবিষ্ট হয়েছে। এ-ছাড়া আছে সমাধানের সূত্রসহ নানা ধরনের মজার প্রশ্ন ও গাণিতিক ব্যাখ্যাসহ দশটি মজার যাদুখেলা। গ্রন্থকারের দীর্ঘ শিক্ষক-জীবনের অভিজ্ঞতার ভিত্তিতে রচিত হয়েছে তাঁর 'সংখ্যার মজা আর মজার সংখ্যা'।