Problem Set 7

Parvesh Adi Lachman

November 2023

1 Problem 1

Consider the algorithm below, which takes an $n \geq 0$ and finds it remainder when divided by $c \geq 1$

```
 \begin{aligned} & \textbf{function} \ \operatorname{REMAINDER}(n) : \\ & \textbf{if} \ n \leq c-1 \ \textbf{then} \\ & \textbf{return} \ n \\ & \textbf{else} \\ & \textbf{return} \ \operatorname{Remainder}(n-c) \\ & \textbf{end if} \\ & \textbf{end function} \end{aligned}
```

Claim: Let $c \ge 1$. For any $n \ge 0$, remainder $(n) = n \mod c$.

Step 0: For $n \ge 0$, we want to show that **remainder** $(n) = n \mod c$.

Step 1: For any $n \ge 0$, Let P(n) be the property that **remainder** $(n) = n \mod c$.

Step 2: As base cases, consider when

n=0. We will show that P(0) is true: that is **remainder**(0) = 0 mod c. Fortunately, this is true since $c \ge 1$ and in the algorithm, if $n \le c-1$, and in this case n=0, $c \ge 1$. This implies $0 \le 1-1=0 \le 0$ which is true, then **remainder**(n) = n. Thus, **remainder**(0) = n, so RHS = n0. Also, n0 mod n0 so LHS = n0. Thus, LHS = RHS, so n2 remainder

n=1. We will show that P(1) is true: that is **remainder(1)** = 1 mod c. Fortunately, this is true since $c \geq 1$ and in the algorithm, if $n \leq c-1$, then **remainder(n)** = n. Thus, **remainder(1)** = 1, so RHS = 1. Also, 1 mod c = 1, so LHS = 1. Thus, LHS = RHS, so P(1) is true.

Step 3: Let $k \geq 2$. For the induction hypothesis, suppose that $P(0), P(1), \ldots, P(k)$ are true, or equivalently, that for all $0 \leq k' \leq k : P(k')$. That is, suppose that **remainder** $(k') = k' \mod c$.

Step 4: Now we prove that P(k+1) is true, using our induction assumptions that $P(0), P(1), \ldots, P(k)$ are true. That is, we prove that **remainder** $(k+1) = (k+1) \mod c$.

Step 5: The proof that P(k+1) is true (given that $P(0), P(1), \ldots, P(k)$ are true) is as follows:

```
Left hand side of P(k+1) = remainder(k+1)

= remainder((k+1)-c) By def of algorithm, since k+1 \ge c-1

= ((k+1)-c) \mod c By IH, since 0 \le (k+1)-c \le k

= (k+1) \mod c - c \mod c By def of mod

= (k+1) \mod c Since c \ge 1, c \mod c = 0

= Right hand side of P(k+1)
```

Step 6: The steps above have shown that for any $k \geq 2$, if $P(0), P(1), \ldots, P(k)$ are true, then P(k+1) is also true. Combined with the base cases, which show that P(0) and P(1) are true, we have shown that for all $n \geq 0$, P(n) is true, as desired.

2 Problem 2

Claim: Let $n, c \ge 1$ and $c \le n$. The number of simple paths of length c in the complete graph on n nodes is $\frac{n!}{(n-c-1)!}$ which is equal to $n(n-1)\cdots(n-c)$.

complete graph K_n : an undirected graph on n nodes with an edge between every pair of nodes.

simple path: a sequence of distinct nodes with edges between consecutive nodes in the sequence.

length of a path: the number of *edges* in the path (**not** number of nodes).

3 Problem 3

Recall the Fibonacci numbers, as defined by:

$$f_1 = 1$$

 $f_2 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for $n \ge 3$

Recall the Sharp numbers from PS6, as defined by:

$$\begin{aligned} s_1 &= 2 \\ s_2 &= 4 \\ s_n &= s_{n-1} + s_{n-2} \text{ for } n \geq 3 \end{aligned}$$

Claim: For all $n \geq 3$, $s_n = 4 \cdot f_{n-1} + 2 \cdot f_{n-2}$.