Máquinas

Prof^a Jerusa Marchi

Departamento de Informática e Estatística
Universidade Federal de Santa Catarina
e-mail: jerusa@inf.ufsc.br

Tipos de Máquinas...

... e sua relação com geradores e reconhecedores

Máquina	Linguagem	Gramática	Hierarquia
MT	Recursivamente Enumerável	Irrestrita	Tipo 0
MT	Recursiva	Irrestrita	
MT	Sensível ao Contexto	Sensível ao Contexto	Tipo 1
Pilha	Livre de Contexto	Livre de Contexto	Tipo 2
Finito	Regular	Regular	Tipo 3

- Dispositivo simples
 - fita de entrada
 - cabeçote de leitura
 - unidade central de processamento (estados)
 - memória limitada conceito de estado

Aplicações:

- Análise léxica (compiladores)
- Busca em texto
- Implementação de sistemas de controle simples baseados em estados (máquinas de refrigerante, jornais, salgadinhos, chocolates e elevadores).

- Há dois tipos de máquinas de estados finitos:
 - transdutores de linguagens com entrada e saída
 - reconhecedores de linguagens com duas saídas possíveis
 - aceitação
 - rejeição

- Podem ser:
 - Determinímisticos
 - Não Determinísticos

Autômatos Finitos Determinísticos

Um autômato finito (AFD) é um quíntupla:

$$M = (K, \Sigma, \delta, s, F)$$

Onde:

- K = conjunto finito de estados
- Σ = conjunto finito de símbolos de entrada
- $\delta: K \times \Sigma \to K$ = função de transição
- s =estado inicial ($s \in K$)
- $F = \text{conjunto de estados finais } (F \subseteq K)$

Autômatos Finitos Determinísticos

- ullet O autômato é dito determinístico pois pela definição da função de transição δ , cada par (*estado*, *símbolo*) mapeia para **exatamente** *um* estado.
 - $q, p \in K e a \in \Sigma$

$$\delta(q, a) = p$$

Autômatos Finitos Não Determinísticos

Um autômato finito não determinístico (AFN) é um quíntupla:

$$M = (K, \Sigma, \delta, s, F)$$

Onde:

- K = conjunto finito de estados
- Σ = conjunto finito de símbolos de entrada
- $\delta: K \times (\Sigma \cup \{\varepsilon\}) \times K = \text{função de transição}$
- s =estado inicial ($s \in K$)
- $F = \text{conjunto de estados finais } (F \subseteq K)$

Autômatos Finitos Não Determinísticos

- O autômato é dito não determinístico se há pelo menos uma transição δ, para um par (estado, símbolo) que mapeia para um subconjunto de estados.
 - $q, p, r \in K$ e $a \in \Sigma$

$$\delta(q, a) = \{p, r\}$$

- Há duas formas de representar um AF:
 - Diagrama de transição
 - Tabela de transição

- Diagrama de Transição:
 - é um grafo direcionado e rotulado
 - os vértices representam os estados (círculos)
 - o estado inicial é diferenciado por uma seta
 - os estados finais são representados por círculos duplos
 - ullet as arestas representam as transições $\delta(p,a) o q$

• Exemplo: $L_1 = \{ w \mid \in \Sigma^* = \{a,b\} \text{ e } \mid w \mid \text{ é par } \}$ Diagrama de transição

- Tabela de Transição
 - forma tabular de representar um AF onde a primeira coluna lista os estados e a primeira linha, os símbolos do alfabeto. O conteúdo da posição (q,a) será p se existir uma transição $\delta(q,a) \to p$.

• Exemplo: $L_1 = \{w \mid \in \Sigma^{\star} = \{a,b\} \text{ e} \mid w \mid \text{\'e par } \}$

δ	a	b
$\rightarrow *q_0$	q_1	q_1
q_1	q_0	q_0

- Configuração:
 - uma configuração é determinada pelo estado corrente e pela parte ainda não processada da palavra

 $[q_0, abab]$

que representa a configuração inicial para a palavra w=abab

Computação:

- é uma sequência de configurações
- usa-se a relação ⊢ (resulta em) para indicar que a máquina passa de uma configuração à outra. Diz-se que:

$$[q_1, w] \vdash [q_2, y]$$

se e somente se existe uma transição de q_1 para q_2 sob a, onde $a \in \Sigma$ e w = ay

Exemplo:

$$[q_0, abab] \vdash [q_1, bab] \vdash [q_0, ab] \vdash [q_1, b] \vdash [q_0, \varepsilon]$$

■ Uma sentença w é aceita (reconhecida) por um autômato finito $M=(K,\Sigma,\delta,q_0,F)$ sse $\widehat{\delta}(q_0,w)\to q$ e $q\in F$, ou seja, há uma computação

$$[q_0, w] \vdash_M^* [q, \varepsilon]$$

 ${\color{red} \blacktriangleright}$ A linguagem aceita por um autômato M é aquela cujo conjunto de sentenças é aceito por M

$$L(M) = \{ w \mid \widehat{\delta}(q_0, w) \to q \ \mathbf{e} \ q \in F \}$$

- Dois autômatos finitos M_1 e M_2 são ditos equivalentes sse $L(M_1) = L(M_2)$
- Uma linguagem é regular sse ela for aceita por um autômato finito

- Autômato finito acrescido de memória auxiliar (pilha)
- A manipulação é permitida somente no topo da pilha (LIFO)

- Aplicações:
 - Análise Sintática (compiladores)
 - Verificação de parênteses em editores de texto e/ou ambientes de programação (emacs/xemacs)

Um autômato de pilha (AP) é um sêxtupla:

$$M = (K, \Sigma, \Gamma, \Delta, s, F)$$

Onde:

- K = conjunto finito de estados
- Σ = conjunto finito de símbolos de entrada
- Γ = conjunto finito de símbolos de pilha
- $\delta: (K \times (\Sigma \cup \{\varepsilon\}) \times \Gamma^*) \times (K \times \Gamma^*)$ = relação de transição
- s =estado inicial $(s \in K)$
- $F = \text{conjunto de estados finais } (F \subseteq K)$

- Se $((p, a, \beta), (q, \gamma)) \in \Delta$ então sempre que o autômato estiver no estado p com β no topo da pilha, poderá ler o símbolo a na fita de entrada (se $a = \varepsilon$ então a entrada não é consultada), substituindo β por γ no topo da pilha e passando para o estado q
- Empilhar $((p, u, \varepsilon), (q, a))$
- Desempilhar $((p, u, a), (q, \varepsilon))$

- Configuração
 - ullet uma configuração é definida como um membro de $K imes \Sigma^\star imes \Gamma^\star$

- $m{\varrho} \quad q \in K$ é o estado atual da máquina
- $m \omega$ é a parte da sentença de entrada ainda não processada
- abc é o conteúdo armazenado da pilha, lido a partir do topo

Computação:

Como nos autômatos finitos, é uma sequência de configurações, separadas pelo símbolo ⊢ (resulta em) que indica que a máquina passa de uma configuração à outra

$$[p, x, \alpha] \vdash [q, y, \iota]$$

se e somente se existe uma transição de $((p,a,\beta),(q,\gamma))\in \delta$, tal que x=ay, $\alpha=\beta\eta$ e $\iota=\gamma\eta$ para algum $\eta\in\Gamma^\star$

■ Uma sentença w é aceita (reconhecida) por um autômato de pilha $M = (K, \Sigma, \Gamma, \delta, q_0, F) \text{ sse}$

$$[q_0, w, \varepsilon] \vdash_M^* [p, \varepsilon, \varepsilon]$$

para algum $p \in F$

- extstyle A linguagem aceita por um autômato M é aquela cujo conjunto de sentenças é aceito por M
- A classe de linguagens aceitas por autômatos de pilha é exatamente a classe de linguagens livres de contexto

Exemplo

- $L = \{w|w \in \Sigma = \{a,b,c\}^* \text{ e } w = xcx^R \text{ tal que } x \in \{a,b\}^*\}$
- $M=(K,\Sigma,\Gamma,\delta,s,F)$ onde:
 - $K = \{s, f\}$

 - $\Gamma = \{a, b\}$
 - $F = \{f\}$
 - $\delta = \{$
 - **1.** $((s, a, \varepsilon), (s, a))$
 - **2.** $((s, b, \varepsilon), (s, b))$
 - 3. $((s,c,\varepsilon),(f,\varepsilon))$
 - **4.** $((f, a, a), (f, \varepsilon))$
 - **5.** $((s, b, b), (f, \varepsilon))$

- unidade de Controle Finito
- fita
- cabeçote de leitura/escrita

- Ao contrário dos demais tipos de autômatos, MT não são um modelo a ser suplantado
- Ainda que este modelo seja fortalecido (multifitas, acesso aleatório), todos os melhoramentos mostram-se equivalentes, em poder computacional, às MT

- Operações da Unidade de Controle
 - 1. Levar a unidade de controle para um novo estado
 - 2.(a) Gravar um símbolo na célula apontada pelo cabeçote, substituindo algum símbolo lá encontrado ou não
 - (b) Mover o cabeçote de leitura/escrita para apontar para uma célula à direita ou à esquerda na fita em relação a posição corrente

- Quanto a fita:
 - infinita à direita
 - delimitada à esquerda pelo símbolo >
 - a cadeia de entrada é gravada logo a direita do símbolo ⊳ e o restante da fita é preenchido com espaços em branco (denotados por □)
- Quanto ao cabeçote de leitura/escrita
 - por convenção, sempre que o cabeçote for posicionado sobre o símbolo delimintador de fita, ele é movido automaticamente para a direita
 - São usados os símbolos → e ← para denotar o movimento do cabeçote para a direita e para a esquerda, respectivamente
 - os símbolos → e ← não fazem parte de nenhum alfabeto

Uma Máquina de Turing (MT) é uma quíntupla:

$$M = (K, \Sigma, \delta, s, H)$$

Onde:

- K = conjunto finito de estados
- Σ = alfabeto de entrada $\cup \{ \sqcup, \rhd \}$
- s =estado inicial ($s \in K$)
- $H = \text{conjunto de estados de parada } (H \subseteq K)$
- $\delta: (K-H) \times \Sigma$ para $(K \times (\Sigma \cup \{\leftarrow, \rightarrow\})$, tal que
 - 1. para todos os $q \in K H$, se $\delta(q, \triangleright) = (p, b)$ então $b = \rightarrow$
 - 2. para todos os $q \in K-H$ e $a \in \Sigma$, se $\delta(q,a)=(p,b)$ então $b \neq \rhd$

- Se $q \in K H$, $a \in \Sigma$ e $\delta(q, a) = (p, b)$, então M, quando no estado q e tendo lido o símbolo a, transitará para o estado p e,
 - 1. se b for um símbolo contido em Σ , M irá substituir na fita o símbolo corrente a pelo símbolo b ou,
 - 2. se b for um dos símbolos \to ou \leftarrow , M moverá sua cabeça na direção convencionada para o símbolo b
- lacksquare M pára quando atingir algum dos estados de parada.

Exemplo

- $M = (K, \Sigma, \delta, s, \{h\})$ onde:
 - $K = \{q_0, q_1, h\}$

 - $s = \{q_0\}$
 - $oldsymbol{\circ}$ δ :

q	σ	$\delta(q,\sigma)$
q_0	a	(q_1,\sqcup)
q_0	Ш	(h,\sqcup)
q_0	\triangleright	$ (q_0, \rightarrow) $
q_1	a	(q_0, a)
q_1	Ш	(q_0, \rightarrow)
q_1	\triangleright	(q_1, \rightarrow)

- Configuração
 - uma configuração é definida como um membro de $K \times \triangleright \Sigma^* \times (\Sigma^*(\Sigma \{\sqcup\}) \cup \{\varepsilon\})$

$$[q, \varepsilon, \triangleright aaaa]$$

- $m{\wp} \quad q \in K$ é o estado atual da máquina
- $m{\omega}$ ϵ é a parte da sentença de entrada já processada
- > aaaa é a parte da sentença ainda não processada
- Para simplificar adota-se a notação $[q, \triangleright \underline{a}aaa]$, indicando que o cabeçote encontra-se sob o símbolo sublinhado

Computação:

• Sejam duas configurações de uma Máquina de Turing MT, $[q_1, w_1a_1u_1]$ e $[q_2, w_2a_2u_2]$ onde $a_1, a_2 \in \Sigma$. Então

$$[q_1, w_1\underline{a_1}u_1] \vdash [q_2, w2\underline{a_2}u_2]$$

sse para algum $b \in \Sigma \cup \{\rightarrow, \leftarrow\}$, $\delta(q_1, a_1) = (q_2, b)$ e também

1.
$$b \in \Sigma$$
, $w_1 = w_2$, $u_1 = u_2$ e $a_2 = b$, ou

2.
$$b = \leftarrow, w_1 = w_2 a_2$$
 e

(a)
$$u_2 = a_1 u_1$$
, se $a_1 \neq \cup$ ou $u_1 \neq \varepsilon$, ou

(b)
$$u_2 = \varepsilon$$
, se $a_1 = \sqcup$ e $u_1 = \varepsilon$, ou ainda

3.
$$b = \rightarrow$$
, $w_2 = w_1 a_1$ e

(a)
$$u_1 = a_2 u_2$$
, ou

(b)
$$u_1 = u_2 = \varepsilon$$
, e $a_2 = \sqcup$

- Para transformar uma máquina de Turing em um mecanismo reconhecedor de Linguagens, é necessário alterar minimamente a sua definição, para que, ao terminar de computar a entrada a máquina finalize sua execução em um de dois estados:
 - aceitação
 - rejeição
- ullet Outra consideração útil é permitir que a máquina escreva símbolos na fita que não pertençam ao alfabeto Σ

Uma Máquina de Turing (MT) é uma séptupla:

$$M = (K, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

Onde:

- K = conjunto finito de estados
- Σ = alfabeto de entrada $\cup \{ \triangleright \}$
- Γ = alfabeto da fita, onde $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$
- q_0 = estado inicial $(q_0 \in K)$
- q_{accept} = conjunto de estados de parada que aceitam a entrada $(q_{accept} \in K)$
- q_{reject} = conjunto de estados de parada que rejeitam a entrada $(q_{reject} \in K)$
- $\delta: K \times \Gamma$ para $(K \times \Gamma \times \{\leftarrow, \rightarrow\})$

- Uma máquina de Turing MT decide uma linguagem $L \in \Sigma^*$, se para qualquer cadeia $w \in \Sigma^*$
 - MT aceita w, se $w \in L$
 - MT rejeita w, se $w \notin L$
- ${\color{red} \blacktriangleright}$ Se uma linguagem L é decidível então L é dita Recursiva ou Turing Decidível