Devoir surveillé n° 05 - Résumé

Barème.

- Calculs : chaque question sur 2 points, total sur 32 points, ramené sur 5 points.
- Problèmes : chaque question sur 4 points (sauf III.2.d et III.4, sur 2 points), puis ramené sur 15 points.

Statistiques descriptives.

	Calculs	Ex. I et II	Ex. III	Ex. IV	Note finale
Note maximale	29	25	13	19	18
Note minimale	11	3	0	3	6
Moyenne	$\approx 20,06$	$\approx 13,06$	$\approx 6,39$	$\approx 10,61$	$\approx 10,23$
Écart-type	$\approx 4,28$	$\approx 5,13$	$\approx 3,66$	$\approx 4,31$	$\approx 3,43$

Remarques générales.

Je lis encore des « $P \Leftrightarrow Q$ » écrits au lieu de « on a P, donc Q (est vrai) ». Je le répète une dernière fois : si P et Q sont faux, $P \Leftrightarrow Q$ est vrai ...

Il est consternant de trouver encore cela écrit dans vos copies.

Vous pensez tous à encadrer vos réponses : c'est bien! Par contre la main levée fait son grand retour : utilisez cette outil antique et néanmoins formidable et plein d'avenir : la règle!

Exercice I

N'oubliez pas de distinguer les cas x > 0 et x < 0 dans la première question : cela change le sens des inégalités.

Et apprenez l'inégalité $\lfloor x \rfloor \leq x < \lfloor X \rfloor + 1!$

Exercice II

1 Il fallait montrer que (G, \times) est un groupe, avant de montrer sa commutativité! Et pour montrer que G était un groupe, il fallait commencer par montrer que \times était une l.c.i, et pour cela il y avait DEUX points à montrer.

Pour connaître son neutre, il suffisait de lire la question suivante.

Une fois que vous avez montré que \times est une l.c.i. sur G, commencez par montrer que \times est commutative. Cela allège un peu la rédaction par la suite.

2a Nul besoin de récurrence dans cette question!

- **2b** J'ai encore trouvé des hypothèses de récurrence écrites de la manière suivante. $H_n: \langle \forall n \in \mathbb{N}, 0 \leqslant b_n < a_n \rangle$. Je le répète : c'est une horreur, et la question se voit automatiquement attribuée la note nulle!
 - Avec ℓ la limite de (b_n) , la relation $\forall n \in \mathbb{N}, \ 5b_n < b_{n+1}$ donne, par passage à la limite, $5\ell \leqslant \ell$ et non $5\ell < \ell$.
- **3a** Si vous dites « à partir d'un rang p_0 , $b_p > p$ » (ce qui est juste), vous ne pouvez pas en déduire que p_0 est le plus petit tel rang. En effet, vous avez pris p_0 quelconque. Par exemple, si $b_p > b$ à partir du rang 987, alors $b_p > b$ à partir du rang 1515. L'argument à utiliser est toujours le même : A est un ensemble non vide d'entiers naturels et possède donc un minimum. Il ne fallait oublier non plus de montrer que n > 0.
- **3bcd** La question **3b** est la plus difficile de l'exercice. Mais, même si vous n'arrivez pas à la résoudre, les questions suivantes sont accessibles. Il est alors dommage de ne pas les traiter.

Exercice III

1 Écrire $f(t) \xrightarrow[t \to 0]{} \lambda t$ est une horreur : la variable ne peut apparaı̂tre dans la limite, qui est forcément une CONSTANTE!

Si $f(0) \neq 0$, alors $\frac{f(t)}{t}$ n'a pas de limite en 0. J'ai lu plusieurs fois $\frac{f(t)}{t} \xrightarrow[t \to 0]{} \pm \infty$. Cela ne veut rien dire (je me le permets parfois au tableau, mais c'est une honte)!

On a juste $\left| \frac{f(t)}{t} \right| \xrightarrow[t \to 0]{} +\infty$.

Exercice IV

Vous ne pouvez espérer comprendre ce (beau!) problème, et donc encore moins le résoudre, si vous ne manipulez pas précisément les objets considérés.

- **2ab** Questions simples, presque des cadeaux. Inutile d'y mettre plus de 5 lignes chacune. La continuité n'a rien à faire ici, et le TVI non plus.
- **2c** Cette question a souvent été mal comprise. Montrer que A possède une bonne inférieure est aisé : ce n'est pas l'objet de cette question. Il fallait se concentrer sur le vrai résultat : montrer que cette borne inférieure est atteinte. Se borner à un simple « et la borne inférieure est atteinte » ne convient pas.

Par manque de rigueur, vous en venez à ne pas comprendre certains énoncés.

3 Ce n'est pas le clone de la question 1! L'hypothèse est $K \subset f(K)$, et non $f(K) \subset K$...