Lab Session 5

MA-423: Matrix Computations

September-November 2020

S. Bora

Instructions: The report question 4 is to be written clearly in a single pdf file.

1. Write a MATLAB function program $[\mathbb{Q}, \mathbb{R}] = \mathsf{cgs}(\mathbb{V})$ to orthonormalize the columns of an $n \times m$ matrix V, $(n \geq m)$ by the Classical Gram Schmidt procedure so that Q is an isometry satisfying

- 2. A slight modification of the above program leads to the Modified Gram Schmidt procedure for orthonormalizing the columns of V. Perform this modification to obtain another function program $[\mathbb{Q}, \mathbb{R}] = mgs(\mathbb{V})$.
- 3. Write a function program [Q, R] = cgsrep(V) that performs Classified Gram Schmidt with reorthogonalization by making appropriate changes to your function program cgs.

 Take care to replace for loops by matrix-vector multiplications as far as possible in each of the above programs.
- 4. Use the program A = condmat(n, kappa) written during the assessment for Module 2 to generate a random 50 × 50 positive definite matrix A with given condition number 10⁵. Store the matrix in a workspace file Q4-1.mat and run the cgs, mgs and cgsrep codes written above on the matrix. Finally also find a condensed QR decomposition of the matrix using the appropriate MATLAB command. (Find out what this is!)
 - Generate two more 50×50 positive definite matrices with condition numbers 10^7 and 10^{11} and store them in workspace files Q4-2.mat and Q4-3.mat respectively. Repeat the above process on those matrices also.
 - Record the departure from orthonormality for the isometries obtained from each of the processes and record them in a properly labeled table that also mentions the condition numbers.
- 5. Given a vector $x \in \mathbb{R}^n$, write a MATLAB function program $[\mathbf{u}, \gamma, \tau] = \mathtt{reflect}(\mathbf{x})$ to compute $u \in \mathbb{R}^n$, and $\gamma \in \mathbb{R}$ so that $Qx = [-\tau, 0, \dots, 0]^T$ where $\tau = \pm ||x||_2$ and the sign is chosen so that it is the same as that of the first entry of x.
- 6. Write another function program B = applreflect(u, gamma, A) to efficiently perform the multiplication QA where $Q = I \gamma uu^T$.
- 7. Use the programs written above to write another function program $R = \mathtt{reflectqr}(A)$ that computes the R of a QR decomposition of $A \in \mathbb{R}^{n \times n}$ via reflectors. The program should be such that the lower triangular part of A contains the vectors u (apart from the leading 1 entry) required to construct the reflectors used at each stage and the values of γ corresponding to each reflector are stored in a separate vector.