DSC40B: Theoretical Foundations of Data Science II

Lecture 2: Nested loops and asymptotic time complexity

Instructor: Yusu Wang

Today's Agenda

- Warm up: analyzing nested loops
- \blacktriangleright What is Θ notation ?

More examples: Nest loops

The median problem

- Design an algorithm for the following problem
 - Input: given n numbers $X = \{x_1, x_2, ..., x_n\}$
 - Dutput: find h minimizing the total absolute loss:
 - $Loss(h) = \sum_{i=1}^{n} |x_i h|$
- Recall from DSC40A
 - Solution: h^* is a median of numbers in X
 - i.e, the number whose order in X (if sorted) is $\lfloor \frac{n}{2} \rfloor$ or $\lceil \frac{n}{2} \rceil$
- Question:
 - ▶ How to compute this median?

One algorithm

Idea:

- h^* has to be one of $X = \{x_1, x_2, \dots, x_n\}$
- ightharpoonup compute all $Loss(x_1), ..., Loss(x_n)$
- return the one whose loss is smallest

One algorithm

```
def median(X):
       min h = None
       min_value = float('inf')
       for h in X:
           total_abs_loss = 0
           for x in X:
              total abs loss += abs(x - h)
           if total_abs_loss < min_value:
              min_value = total_abs_loss
              min h = h
       return min h
```

Inner-for loop:

Outer-for loop:

Total:

One algorithm

```
def median(X):
       min h = None
       min_value = float('inf')
       for h in X:
           total abs loss = 0
           for x in X:
              total abs loss += abs(x - h)
           if total_abs_loss < min_value:
              min value = total abs loss
              min_h = h
       return min_h
```

$$T(n) = \Theta(n^2)$$

We will see how to do better later in class.

More abstract form

```
def foo_0(n):
    for x in range(n):
        for y in range(n):
            print(x + y)
```

Inner-most line will be called n^2 times. Thus the time complexity is $T_0(n) = n^2$

Caution!

Not all nested loop takes $\Theta(n^2)$ time

```
def foo_1(n):
    for x in range(n):
        for y in range(n, n+10):
        print(x + y)
```

$$T_1(n) = \Theta(n)$$

```
def foo_2(n):
    for x in range(n):
        for y in range(n, 2n-10):
            print(x + y)
```

$$T_2(n) = \Theta(n^2)$$

A second example

lacktriangle Alex is given n sticks. He needs to design an algorithm to compute the tallest pole he can make by stacking two sticks

```
def tallest pole(heights):
1. max height = -float ('inf')
  n = len(heights)
  for i in range(n):
   for j in range(i+1, n):
  h = heights[i] + heights[j]
  if h > max height
           max height = h
   return max height
```

```
On outer iter.#1, inner body runs _____ times
On outer iter.#2, inner body runs _____ times
On outer iter.#3, inner body runs _____ times

On outer iter.#n, inner body runs _____ times

For the k-th iteration of outer loop, the inner loop takes c(n-k) time.
```

▶ How many times does line 5 - 7 (inner body) run?

Tallest_pole, cont.

▶ Total times line 5-7 (inner body) is executed:

$$\underbrace{(n-1)}_{\text{1st outer iter}} + \underbrace{(n-2)}_{\text{2nd outer iter}} + \dots + \underbrace{(n-k)}_{\text{kth outer iter}} + \underbrace{(n-(n-1)}_{\text{(n-1)th outer iter}} + \underbrace{(n-n)}_{\text{nth outer iter}}$$

$$= 1 + 2 + 3 + \dots + (n-3) + (n-2) + (n-1)$$

$$=$$

- ▶ Recall an arithmetic sum:
 - $1 + 2 + 3 + \dots + m = \frac{m(m+1)}{2}$

- ▶ Algorithm tallest_pole has $T(n) = \Theta(n^2)$
- Another way to see the time complexity:
 - Number of pairs of n objects is $\binom{n}{2} = \frac{\mathrm{n}(\mathrm{n}-1)}{2} = \Theta(n^2)$

Exercise: Find a linear-time algorithm for this problem.

Note

lacktriangle Alex is given n sticks. He needs to design an algorithm to compute the tallest pole he can make by stacking two sticks

```
def tallest pole(heights):
   max height = -float ('inf')
  n = len(heights)
   for i in range(n):
     for j in range(i+1, n):
4.
        h = heights[i] + heights[j]
5.
     if h > max height
6.
            max height = h
   return max height
```

Essentially the same as the following

```
def foo_3(n):
    for x in range(n):
        for y in range(i+1, n):
        do sth. in constant time
```


What's the difference?

▶ The number of iterations of the inner loop depends on the outer loop

```
def foo_0(n):
    for x in range(n):
        for y in range(n):
            print(x + y)
```

- Inner loop doesn't depend on outer loop iteration #.
- I Just multiply: inner body executed n^2 times

```
def foo_3(n):
    for x in range(n):
        for y in range(i+1, n):
            print(x + y)
```

- Inner loop depends on outer loop iteration #.
- Cannot just multiply: need to figure out for each outer loop iteration #, how many times inner loop will run.

Depended Nested Loop

```
def foo_3(n):
    for x in range(n):
        for y in range(i+1, n):
        print(x + y)
```

- lacktriangle Step 1: Find formula f(k) for "number of iterations of inner loop during outer iteration k
- ▶ Step 2:Then sum up the total cost as $\sum_{k=1}^{n} f(k)$
 - For this example, f(k) = n k. Thus total cost is $\sum_{k=1}^n f(k) = \sum_{k=1}^n (n-k) = \frac{n(n-1)}{2} = \Theta(n^2)$
 - What if there are more two layers of nested loops?
 - Always calculate the cost inside-out! First figure out the cost of inner-most loop
 - What if the loops are not just –loops?
 - We will see examples of while loops soon

Linear vs quadratic growth

Scaling

- $T(n) = \Theta(n)$
 - ightharpoonup means "T(n) grows like n"
 - linear growth
- $T(n) = \Theta(n^2)$
 - means "T(n) grows like n^2 "
 - quadratic growth

▶ Suppose your algorithm runs 5 sec on 1000 points

Linear growth

If the input has 100,000 points, then it takes 500 seconds (8.3 min)

Quadratic growth

If the input has 100,000 points, then it will take 50,000 seconds (~14 hours)

Some common growth rates

- $\triangleright \Theta(1)$: constant
- ▶ $\Theta(\log n)$: logarithmic
- $\triangleright \Theta(n)$: linear
- ▶ $\Theta(n \log n)$: linearithmic
- \bullet $\Theta(n^2)$: quadratic
- ▶ $\Theta(n^3)$: cubic
- \bullet $\Theta(2^n)$: exponential

Asymptotic notations

- We have seen $\Theta(\cdot)$ allows us to ignore unnecessary details and focus on dominating terms of growth
 - Informally, $\Theta(\cdot)$ forgets constant factors, lower-order terms.
 - $5n^3 + 2n 42 = \Theta(n^3)$
- ▶ Simpler, easier to analyze, and focus on key growth rate
- But: what exactly are we ignoring?
- Before we introduce this formally
 - First introduce big-O and big- Ω notations
 - ▶ Then big-Θ
 - Intuitively, big- Ω , big- Ω , and big- Θ "roughly" corresponds to \leq , \geq , and =, respectively (up-to constants)

Definition

We write f(n) = O(g(n)) if there are positive constants n_0 and c such that for all $n \ge n_0$:

$$f(n) \le c \cdot g(n)$$

- ▶ More precisely, should be $f(n) \in O(g(n))$
- Intuitively, f(n) = O(g(n)) means that
 - f(n) grows at most as fast as g(n) (up to multiplicative constant factor)
 - We also say g(n) is an asymptotic upper bound for f(n) in this case

Definition

We write f(n) = O(g(n)) if there are positive constants n_0 and c such that for all $n \ge n_0$:

$$f(n) \le c \cdot g(n)$$

Examples

$$n^3 - 3n^2 + 5n - 1 = O(n^3)$$

Proof:

- $5n^2 + 6\sqrt{n} + 8 = O(n^2)?$
- Proof:

More examples

- $\sqrt{6n^3 + 7n^2 + 3n} = O(n^2) ?$
- $\sqrt{6n^3 + 7n^2 + 3n} = O(n^{1.5}) ?$

- $\rightarrow n \lg n = O(n)$?
- $\log_2 n = O(\log_{10} n)$?

A useful result

Lemma [Upper Bound]

If
$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$
 exists, then $f(n)=O\bigl(g(n)\bigr)$ if and only if $\lim_{n\to\infty}\frac{f(n)}{g(n)}\le c$, where c is a positive constant.

Corollary [Upper Bound]

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, then $f(n) = O(g(n))$.

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = +\infty$$
, then $f(n) = O(g(n))$ does not hold.

More examples

- $n^{100} = O(n^2)$?
- $ightharpoonup 50 \lg n = O(n) ?$
- $n^{100} = O(2^n)$?
- $\triangleright 2^n = O(3^n)$?

Big- Ω notation

Big- Ω notation

Definition

We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that for all $n \ge n_0$:

$$f(n) \ge c \cdot g(n)$$

- ▶ More precisely, should be $f(n) \in \Omega(g(n))$
- Intuitively, $f(n) = \Omega(g(n))$ means that
 - f(n) grows at least as fast as g(n) (up to multiplicative constant factor)
 - We also say g(n) is an asymptotic lower bound for f(n) in this case

Big- Ω notation

Definition

We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that for all $n \ge n_0$:

$$f(n) \ge c \cdot g(n)$$

Examples

- $n^3 3n^2 + 5n = \Omega(n^3) ?$
- Proof:

A useful result

Lemma [Lower Bound]

If
$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$
 exists, then $f(n)=\Omega\big(g(n)\big)$ if and only if $\lim_{n\to\infty}\frac{f(n)}{g(n)}\geq c$, where c is a positive constant.

Corollary [Lower Bound]

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = +\infty$$
, then $f(n) = \Omega(g(n))$.

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, then $f(n) = \Omega(g(n))$ cannot hold.

More Examples

```
\blacktriangleright 5n^2 + 6n + 8 = \Omega(n^3)?
\blacktriangleright 5n^2 + 6n + 8 = \Omega(n^2)?
n^2 = \Omega(100 n^2)?
\sqrt{6n^3-7n^2+3n}=\Omega(n^{1.5})?
P = \Omega(n^2)?

ightharpoonup 3 \lg n = \Omega(n)?
\rightarrow 3^n = \Omega(2^n) ?
P = \Omega(3^n)?
  \log_{10} n = \Omega(\log_2 n) ?
```


Definition

We write $f(n) = \Theta(g(n))$ if there are positive constants n_0 , c_1 , and c_2 such that for all $n \ge n_0$:

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

- ▶ More precisely, should be $f(n) \in \Theta(g(n))$
- Intuitively, $f(n) = \Theta(g(n))$ means that
 - f(n) grows like g(n) (up to multiplicative constant factor)

Definition

We write $f(n) = \Theta(g(n))$ if there are positive constants n_0 , c_1 , and c_2 such that for all $n \ge n_0$: $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$

A useful result

Lemma [Big-Theta]

If
$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$
 exists, then $f(n)=\Theta\bigl(g(n)\bigr)$ if and only if

$$c_1 \leq \lim_{n \to \infty} \frac{f(n)}{g(n)} \leq c_2$$
, where c_1 and c_2 are positive constants.

Corollary [Big-Theta]

If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ for some positive constant c, then $f(n) = \Theta(g(n))$.

Examples

- $2n^3 3n^2 = \Theta(n^3)$
- Proof:

More Examples

- $5n^2 + 6n + 8 = \Theta(n^2) ?$
- $n^2 \lg n = \Theta(n^2) ?$
- $\rightarrow 3^n = \Theta(2^n)$?

In summary

Big-O (upper bounded)

We write f(n) = O(g(n)) if there are positive constants n_0 and c such that for all $n \ge n_0$:

$$f(n) \le c \cdot g(n)$$

Big- Ω (lower bounded)

We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that for all $n \ge n_0$:

$$f(n) \ge c \cdot g(n)$$

Big- Θ (asymptoticly the same)

We write $f(n) = \Theta(g(n))$ if there are positive constants n_0 , c_1 , and c_2 such that for all $n \ge n_0$:

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

More on nested loops analysis

A first example

- $\mathbf{1} \ x \leftarrow 0;$
- $i \leftarrow 0$;
- з while $(i \leq n)$ do
- 4 $x \leftarrow x + i$
- $i \leftarrow i + 3i$
- 6 end
- **7 return** (x);

#iteration	value of i	Cost of this iteration

A pseudo-code example

- $\mathbf{1} \ x \leftarrow 0;$
- $i \leftarrow 0$;
- 3 while $(i \leq n)$ do
- 4 $x \leftarrow x + i$
- $i \leftarrow i + 3;$
- 6 end
- 7 return (x);

- Each iteration of the while loop takes c time for some constant c
- In the k-th iteration of the **while** loop, the value of i is i = 3(k-1)
- The **while** loop terminates when i > n, meaning that

$$3(k-1) > n \Rightarrow k > \frac{n}{3} + 1$$

- Thus, the **while** loop runs $\frac{n}{3} + 1$ iterations.
- Hence the total time complexity of the while loop is #iterations × c. The time complexity of the algorithm is

$$T(n) = c\left(\frac{n}{3} + 1\right) + \Theta(1) = \Theta(n)$$

A second example

- $\mathbf{1} \ x \leftarrow 0;$
- $i \leftarrow 1$;
- з while $(i \leq n)$ do
- 4 $x \leftarrow x + i;$
- $i \leftarrow i * 3$
- 6 end
- **7 return** (x);

#iteration	value of i	Cost of this iteration

A second example

- $\mathbf{1} \ x \leftarrow 0;$
- $i \leftarrow 1$
- з while $(i \leq n)$ do
- 4 $x \leftarrow x + i$
- $i \leftarrow i * 3$
- 6 end
- **7 return** (x);

- Each iteration of the while loop takes c time for some constant c
- In the k-th iteration of the **while** loop, the value of i is $i = 3^{k-1}$
- The **while** loop terminates when i > n, meaning that

$$3^{(k-1)} > n \Rightarrow k > \log_3 n + 1$$

- Thus, the **while** loop runs $\log_3 n + 1$ iterations.
- Hence the total time complexity of the while loop is #iterations \times c. The time complexity of the algorithm is

$$T(n) = \Theta(\log_3 n) = \Theta(\lg n)$$

A third example

```
function func(n)
 \mathbf{1} \ x \leftarrow 0;
 2 for i \leftarrow 1 to n do
         j \leftarrow 1;
       while (j \le n) do
          x \leftarrow x + (i - j);
         j \leftarrow 2 * j;
 6
         \mathbf{end}
  8 end
 9 \text{ return } (x);
```

- By the same analysis as the previous slide, the inner **while** loop takes $c \lg n$ time for some constant c for each iteration of outer-for loop
- The outer-for loop has n iterations
- Hence the total time complexity of the algorithm is

$$T(n) = n \times (c \lg n) = \Theta(n \lg n)$$

A fourth example

```
function func(n)
 \mathbf{1} \ x \leftarrow 0;
 2 for i \leftarrow 1 to n do
        j \leftarrow 1;
      while (j \leq i) do
       x \leftarrow x + (i - j);j \leftarrow 2 * j;
         end
 8 end
 9 return (x);
```

- By the same analysis as the previous slide, for the *i*-th iteration of the outer-for loop, the inner while loop takes c lg i time for some constant c
- For the outer-for loop, i changes from 1 to n.
 Hence the total time complexity is

$$T(n) = \sum_{i}^{n} (c \lg i)$$

$$= c(\lg 1 + \lg 2 + \lg 3 + \dots + \lg n) = c \lg(n!) = \Theta(n \lg n)$$

FIN

