Course handout (2024-2025) (24252)

Course Name	:	Discrete Structures for Computer Science				
Course Code	••	DSN 4002				
Credits	••	4				
LTP	:	310				

Course Objectives:

- To develop logical thinking and its application to computer science, vital for data analysis.
- To reason mathematically about basic data types and structures (such as numbers, sets, graphs, and trees) used in computer algorithms and systems; synthesize elementary proofs, especially proofs by induction to establish the mathematical foundations of data manipulation and algorithms.
- To model and analyze computational processes using analytic and combinatorial methods.
- To apply principles of discrete probability to calculate probabilities and expectations of simple random processes.

Total No. of Lectures- 42

Lecture Wise Breakup					
Unit 1	MATHEMATICAL REASONING	Lectures 7			
	Mathematical reasoning, Propositions, Negation, disjunction and				
	conjunction, Implication and Equivalence, Truth tables, Predicates,				
	Quantifiers, Natural deduction, Rules of Inference, Methods of proofs,				
	Resolution principle, Application to PROLOG.				
Unit 2	SET THEORY	8			
	Paradoxes in set theory, Inductive definition of sets and proof by induction,				
	Peano postulates, Relations, Properties of relations, Equivalence Relations				
	and partitions, Partial orderings, POSETs, Linear and well-ordered sets.				
Unit 3	FUNCTIONS	6			
	Functions; mappings, Injection and Surjections, Composition of functions,				
	Inverse functions, Special functions, Recursive function theory.				
Unit 4	COMBINATORICS	8			
	Elementary combinatorics, Pigeonhole principle, Permutations and				
	Combinations, Counting techniques, Recurrence relations, Solving Linear				
	Recurrence relations, Generating functions, Combinatorial Optimization				
	techniques				
Unit 5	GRAPH THEORY	8			
	Elements of graph theory, Graph Isomorphism, Euler graph, Hamiltonian				
	path, trees, Tree traversals, Huffman coding, Spanning trees Graph				
	Analytics for data visualization				
	GROUPS, RINGS, FIELDS				
	Definition and elementary properties of groups, Semigroups, Monoids,				
TI '4 C	Rings, Fields, Vector spaces, lattices, matrices and linear transformations				
Unit 6	DISCRETE PROBABILITY	5			
	Introduction, Probability Theory, Bayes' Theorem, Expected Value and				
	Variance, Discrete random variables, Markov chains, Entropy and				
	Information theory				

Cours	se Outcomes: At the end of the course, students will be able to:			
1	Utilize logical notations to define and reason about fundamental mathematical concepts like			
	sets, relations, functions, and integers, which are essential for data analysis and problem-			
	solving.			
2	Synthesize induction hypotheses and perform simple induction proofs to reason about data			
	patterns and structures, especially in recursive algorithms and data modeling.			
3	Calculate the number of possible outcomes in elementary combinatorial processes, such as			
	permutations and combinations, which are essential for data sampling and data-driven			
	decision-making.			
4	Apply graph theory models of data structures and state machines to solve problems of			
	connectivity and constraint satisfaction, for example, scheduling.			
5	Calculate probabilities and discrete distributions for simple combinatorial processes;			
	calculate expectations for data driven decision making			

Text I	Text Books:					
Sr. No.	Name of Book/ Authors/ Publisher	Year of Publication / Reprint				
1.	K. H. Rosen, Discrete Mathematics and applications, 7th Edition, McGraw Hill	2012				
Refere	ence Books:					
Sr. No.	Name of Rook/ Authors/ Publisher Publication					
1.	Seymour Lipschutz and Marc Lipson, Schaum's Outline of Discrete Mathematics, 3rd Edition 2010					
2.	J. L. Mott, A. Kandel, T. P. Baker, Discrete Mathematics for Computer Scientists and Mathematicians, 2nd Edition, Pearson India					
3.	C. L. Liu and D. P. Mohapatra, Elements of Discrete Mathematics, 4th Edition., McGraw-Hill					
4.	C. Stein, R. L. Drysdale, K. Bogart, Discrete Mathematics for Computer Scientists, Second edition, Pearson Education Inc.	2011				
5.	W. K. Grassmann and J. P. Trembnlay, Logic and Discrete Mathematics, A Computer Science Perspective, Prentice Hall Inc					
6.	M. Litvin and G. Litvin, Coding in Python and Elements of Discrete mathematics, Skylight Publishing					
7.	A. M. Stavely, Programming and Mathematical Thinking, The New Mexico Tech Press	2014				

Equivalent MOOCs courses:

	Equivalent 1100 cs courses.					
Sr. No.	Course Links	Offered by				
1.	https://ocw.mit.edu/courses/6-042j-mathematics-for-computer-science-fall-	MIT Open				
	2010/video_galleries/video-lectures/	Courseware				
2.	https://onlinecourses.nptel.ac.in/noc20_cs82/preview	NPTEL				

Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	-	-	-	-	2	1	-	1	-	-
CO2	3	1	3	-	1	-	-	-	1	2	-	1	1	2	-
CO3	1	2	1	3	1	2	1	1	-	1	-	2	2	1	1
CO4	2	1	3	1	1	-	-	-	-	-	1	-	2	-	-
CO5	3	2	1	1	2	-	-	-	1	1	-	-	2	1	-

1-Low, 2-Medium, 3-High

As per point 6.3 Grading System (page no. 56) of 2020-21 prospectus, the breakup of various evaluation component is as follow:

Component Particulars*	Weightage in Percentage				
Mid Term Examination	15-25				
Assignments, Quizzes (min 3), Project	30-40				
End Term Examination	40-50				
Total	100				

^{*} Uniformity in evaluation to be maintained, in case a common course is being taught by multiple instructors, in terms of evaluation and weightage.

Weighatge for this course:

Component Particulars	Weightage in Percentage				
Mid Term Examination	20				
Theory Quizzes	20				
End Term Examination	40				
Tutorial Sheets	10				
Assignment	10				
Total	100				

- 1. You can visit your instructor in her office from 11.00 am to 1.00 pm of all working days to discuss any topic/problems related to this subject or to clarify any doubt.
- 2. Final grades earned by an individual student shall be lowered as per his/her attendance (as approved by the Senate in its 80th meetings held on 9-5-2019 agenda item no. 80.14) which is given as follow:
 - If attendance is more or equal to 75% then **grade is not lowered.**
 - If attendance lies between 50% and less than 75% then grade is **lowered by ONE** level.
 - If attendance is less than 50% then grade is **lowered by TWO** level.