Prove Max-Ergotropy

October 23, 2020

For now i'll work with direct Lanczos diagonalization.

We break the symmetry with a little field h and then we calculate on two sites in the middle of the chain:

- $E(\rho)/2|\epsilon_0|$
- $E(\rho^{pass})/2|\epsilon_0|$
- $E(\rho^{a-pass})/2|\epsilon_0|$
- Ergotropy = $E(\rho)/2|\epsilon_0| E(\rho^{pass})/2|\epsilon_0|$
- Anti-Ergotropy $E(\rho^{a-pass})/2|\epsilon_0|-E(\rho)/2|\epsilon_0|$
- Max-Ergotropy $E(\rho^{a-pass})/2|\epsilon_0| E(\rho^{pass})/2|\epsilon_0|$

It's important to normalize everything since the quantities depend strongly on the Hamiltonian eigenvalues

We also calculate some known quantities:

- Purity
- Entropy
- Concurrence

1 Experimental trials, broken symmetry

Figure 1

N=12, h=0.0001

Figure 2

N=12, h=0.0001

Figure 3

N=12, h=0.0001

Figure 4

2 Experimental trials, preserved symmetry

Figure 5

Figure 6

Figure 7

Figure 8

3 Theoretical calculations, preserved symmetry

Figure 9

Figure 10

Figure 11