Cálculo I

Índice general

1	runda	imentos	. 2
	1.1	Conjuntos	. 2
	1.2	Sucesiones y límites	. 2
2	Funcio	ones	. 4
	2.1	Derivadas	. 7
3	Polinomios y Teorema de Taylor		
4	Geometría de gráficas de funciones		
5	Integra	ales	. 12
	5.1	Integral de Riemann	. 12
	5.2	Integrales impropias	. 14
Índice	alfahát	ioo	15
muice	สเเสมยเ	LICO	13

 $^{^{}m 0}$ Documento compilado el 30 de enero de 2016 a las 03:18

1. Fundamentos

A rellenar: Inducción

Teorema 1.1 (Binomio de Newton).

$$(a+b)^k = \sum_{n=0}^k \binom{n}{k} a^n b^{n-k}$$

1.1. Conjuntos

Un conjunto es una colección de elementos. Hay tres formas de definirlo:

- 1. Enumerar los elementos: $A = \{a, b, c, ...\}$.
- 2. Operaciones con conjuntos: $A = B \cap C$.
- 3. A través de una fórmula: $A = \{x \in B / P(x)\}$

Par ordenado *Definición 1.1* **Par ordenado**. $(a,b) = \{\{a\}, \{a,b\}\}.$

Lema 1.2. $(a,b)=(c,d)\iff (a=c)\land (b=d).$

Producto cartesiano o directo

Definición 1.2 Producto cartesiano o directo. Sean X e Y dos conjuntos. Entonces $X \times Y = \{(a,b) / a \in X \ b \in B\}$.

Si
$$X$$
 e Y son finitos, $\#(X \times Y) = \#X \cdot \#Y$

1.2. Sucesiones y límites

Una sucesión es una colección ordenada de números.

Convergencia

Definición 1.3 Convergencia. Una sucesión x_n es convergente a l (o tiene límite l) si $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} / \forall n > n_0 \ |x_n - l| < \varepsilon$.

 n_0 suele depender del ε que tomemos.

Teorema 1.3 (Teorema del Sandwich o principio de comparación). Sean a_n, b_n, c_n tres sucesiones, y $a_n \leq b_n \leq c_n \forall n$. Si a_n y c_n convergen al mismo límite α , entonces b_n tiene límite y es α .

Proposición 1.4 (Cálculo de límites).

$$\lim(a_n \pm b_n) = \lim a_n \pm \lim b_n$$
$$\lim(a_n b_n) = \lim a_n \cdot \lim b_n$$
$$\lim \frac{a_n}{b_n} = \frac{\lim a_n}{\lim b_n} ; \lim b_n \neq 0$$

Lema 1.5. Si $A \neq \emptyset$ entonces $\exists \{a_n\} \in A$ monótona creciente tal que $\exists \lim_{n \to \infty} a_n = \sup(A)$.

Sucesión de Cauchy Definición 1.4 Sucesión de Cauchy. Una sucesión $\{a_n\}$ es de Cauchy si $\forall \varepsilon > 0 \ \exists n_o \in \mathbb{N} \ / \ |y_n - y_{n'}| < \varepsilon \ \forall n, n' \geq n_o$.

Proposición 1.6. Toda sucesión de Cauchy tiene límite.

Subsucesión

Definición 1.5 **Subsucesión**. Dada una sucesión $\{x_n\}$ se dice que $\{y_k\}$ es una subsucesión de $\{x_n\}$ si existen índices $n_1 < n_2 < \cdots < n_k < \cdots$ tales que $y_k = x_{n_k}$.

Teorema 1.7 (Principio del palomar). Sean A y B dos conjuntos tales que #(A) < #(B). No existe una aplicación inyectiva entre A y B.

Es decir, si tenemos m huecos y tenemos que meter n>m elementos, en algún hueco hay más de un elemento.

Teorema 1.8 (Teorema de Bolzano-Weierstrass). Toda sucesión $\{x_n\}$ acotada posee una subsucesión convergente.

Demostración. Supongamos que $a_0 \leq x_n \leq b_0 \ \forall n$. Hay infinitos \times_n distintos. Sea $I_0 = [a_0, b_0]$: una de sus dos mitades, que llamaremos $I_1 = [a_1, b_1]$, contiene infinitos elementos x_n . A su vez, una de sus dos mitades de I_1 , a la que llamamos $I_2 = [a_2, b_2]$, contiene infinitos elementos.

Por recurrencia, existen intervalos $I_0\subset I_1\subset\cdots\subset I_k=[a_k,b_k]$ cada uno de los cuales contiene infinitos elementos de la sucesión. Además, la longitud de cada uno es la mitad del anterior. Observamos que $a_0\leq a_1\leq\cdots\leq a_k\leq a_{k+a}\leq\cdots\leq b_{k+1}\leq b_k\leq\cdots\leq b_1\leq b_0$. Luego $\exists \lim_{k\to\infty}a_k=\lim_{k\to\infty}b_k$.

Construimos la subsucesión de forma siguiente. $x_{n_1} \in I_1$, $x_{n_2} \in I_2$ pero con $n_1 < n_2$. Luego $\exists \lim_{k \to \infty} x_{n_k} = \lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k$.

Corolario 1.9. Toda sucesión de Cauchy es convergente en \mathbb{R} .

Demostración. Sea $\{x_n\}$ de Cauchy, luego es acotada. Por el teorema de Bolzano-Weierstrass existe una sucesión convergente $\{x_{n_k}\}$. Por lo tanto $\exists L = \lim_{k \to \infty} x_{n_k}$. Entonces, se tiene que $\exists \lim_{n \to \infty} x_n = L$.

Lema 1.10. La serie $\sum^{\infty} a_n$ converge si $\exists \lim_{n\to\infty} S_n$.

2. Funciones

Función

Definición 2.1 Función. Una relación $f \subset A \times B$ es función si $\forall x \in A \exists ! y \in B$. Se denota como $f : A \longmapsto B$.

Antiimagen

Definición 2.2 **Antiimagen**. Sea $f: X \longmapsto Y$. La antiimagen de un conjunto $B \subset Y$ es

$$f^{-1}(B) = \{x \in X / f(x) \in B\}$$

Observación: No confundir la antiimagen con la función inversa. La antiimagen es sólo con conjuntos, la inversa con elementos. Por ejemplo, si x es un elemento y X es un conjunto, $f^{-1}(f(x)) = x$, pero $f^{-1}(f(X))$ no tiene por qué ser igual a X.

Por ejemplo, sea X=[0,2] y $f(x)=x^2$. La imagen de X es [0,4]. Sin embargo, la antiimagen de [0,4] es $[-2,2]\neq X$.

Función invectiva Definición 2.3 Función inyectiva. Una función $f: X \longmapsto Y$ es inyectiva si elementos distintos tienen imágenes distintas: $f(x) = f(y) \implies x = y$.

Función sobreyectiva Definición 2.4 Función sobreyectiva. Una función $f: X \longmapsto Y$ es sobreyectiva si f(X) = Y, es decir: $\forall y \in Y \exists x \in X \diagup f(x) = y$.

Función biyectiva Definición 2.5 Función biyectiva. Una funcion es biyectiva si es inyectiva y sobreyectiva.

Función inversa Definición 2.6 Función inversa. Sea $f: X \longmapsto Y$ una función. La relación inversa es $f^{-1}: Y \longmapsto X$, y si es función, se dice que f^{-1} es la inversa de f.

Proposición 2.1. f es invertible si y sólo si es inyectiva.

Demostración. Para que $f: X \longmapsto Y$ sea invertible, $f^{-1}: Y \longmapsto X$ tiene que ser función. Es decir, que $\forall y \in Y \exists ! \ x \in X$. Comprobamos primero la existencia de imagen para cualquier elemento de Y. Si f es sobreyectiva, entonces tenemos que Y = f(X). Por lo tanto, cualquier elemento de Y tiene una imagen en X. Si no fuese sobreyectiva existiría algún elemento en Y que no fuese imagen de un elemento de X, así que f^{-1} no sería función.

Pasamos ahora a demostrar la unicidad de la imagen para cualquier elemento de Y. Si f es inyectiva, tenemos que $\forall x, x' \in X \ f(x) = f(x') \iff x = x'$. Cada elemento de X esta relacionado con un sólo un elemento de Y, por lo que cada elemento de Y tiene una sola imagen. Si no fuera inyectiva, algún elemento de Ytendría dos imágenes en X y la relación inversa no sería función.

Composición

Definición 2.7 Composición. Sean $f:A \mapsto B$ y $g:C \mapsto D$, y $f(A) \subset C$. Entonces se define la composición f compuesto con q como $q \circ f : A \longmapsto D$, tal que $(g \circ f)(x) = g(f(x)), x \in A.$

La composición de funciones cumple la propiedad asociativa $((f \circ g) \circ h = f \circ (g \circ h))$. Si f y q son sobrevectivas, entonces $q \circ f$ también lo es.

Límite

Definición 2.8 Límite. Sea $f:A \longmapsto \mathbb{R}, A \subset \mathbb{R}$ se dice que f tiene límite L en el punto $a \text{ si } \forall \varepsilon > 0 \ \exists \delta > 0 \ / \ (x \in A \land |x - a| < \delta) \implies |f(x) - L| < \varepsilon.$

Se escribe como

$$\lim_{x \to a} f(x) = L$$

Observación: No es necesario que $a \in A$.

Límite lateral

Definición 2.9 Límite lateral. Se define el límite lateral por la derecha de $f:A \mapsto$ $\mathbb{R}, A \subset \mathbb{R}$ (con valor L_d como aquel que cumple que $\forall \varepsilon > 0 \ \exists \delta > 0 \ / \ (x \in \mathcal{R})$ $A \wedge |x-a| < \delta \wedge x > a) \implies |f(x) - L_d| < \varepsilon$. La definición de límite lateral por la izquierda es análoga, salvo que x < a.

Los límites laterales por la derecha e izquierda se escriben, respectivamente, como

$$\lim_{x \to a^{+}} f(x) = L_{d}$$
$$\lim_{x \to a^{-}} f(x) = L_{i}$$

$$\lim_{x \to a^{-}} f(x) = L_i$$

Límite en el infinito

Definición 2.10 Límite en el infinito. Se dice que $f:A \longmapsto \mathbb{R}, A \subset \mathbb{R}$ tiene límite L para $x \to +\infty$ si $\forall \varepsilon > 0 \; \exists M > 0 \; / \; (x > M \land x \in A) \implies |f(x) - L| < \varepsilon$. La definición es análoga cuando $x \to -\infty$, salvo que x < -M.

Teorema 2.2. f tiene límite L en a si y sólo si \underline{toda} sucesión $\{x_n\} \subset dom(f)$ con $\lim_{n\to\infty} x_n = a$ cumple que $\{f(x_n)\}$ forman una sucesión convergente a L $\lim_{n\to\infty} f(x_n) = L$).

Continuidad en un pun-

to

Definición 2.11 Continuidad en un punto. Se dice que $f:A \longmapsto \mathbb{R}$ es continua

en a si cumple que $a \in A \land \exists \lim_{x \to a} f(x) \land \lim_{x \to a} f(x) = f(a)$.

Función continua

Definición 2.12 Función continua. Una función es continua si lo es en todos los puntos de su dominio.

Teorema 2.3 (Lema del sándwich para funciones - Principio de comparación).

$$(f(x) \le g(x) \le h(x) \ \forall x \ne c \land \exists \lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L) \implies \exists \lim_{x \to c} g(x) = L$$

Demostración. Sea $\{x_n\}$ una sucesión tal que $\neg c \in \{x_n\}$ y $\lim_{n \to \infty} x_n = c$. Entonces, tenemos que $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} h(x_n) = L$. Por el lema del sandwich para las sucesiones, tenemos que $f(x_n) \leq g(x_n) \leq h(x_n) \implies \exists \lim_{n \to \infty} g(x_n) = L \implies \exists \lim_{n \to \infty} g(x) = L$.

Teorema 2.4 (Teorema de los valores intermedios - Teorema de Bolzano). Si $f:[a,b] \longmapsto \mathbb{R}$ es continua y f(a) < f(b), $\forall v \in (f(a),f(b)) \ \exists z \in [a,b] \diagup f(z) = v.$

Demostración. Sea $a_0 = a$, $b_0 = b$ y $I_0 = [a_0, b_0]$. Sea m_0 el punto medio de I_0 . Si $f(m_0) = v$, hemos terminado. Si no, cogemos I_1 como la parte izquierda de I_0 si $f(m_0) > v$ o la parte derecha si $f(m_0) < v$.

Por recurrencia encontramos intervalos $I_n=[a_n,b_n]$ tal que $I_0\supset I_1\supset\cdots\supset I_n$, de forma que $f(a_n)< v< f(b_n)$. Se tiene que $a_0\leq a_1\leq\cdots\leq a_n\leq\cdots\leq b_n\leq\cdots\leq b_1\leq b_0$. z es el límite de a_n , que coincide con el límite de b_n . Por ser f continua, $f(z)=\lim_{n\to\infty}f(a_n)\leq v$ y $f(z)=\lim_{n\to\infty}f(b_n)\geq v$, por lo tanto f(z)=v.

Acotación de funciones Definición 2.13 Acotación de funciones. Se dice que $f:A \mapsto \mathbb{R}$ está acotada superiormente si $\exists M \nearrow f(x) \leq M \ \forall x \in A$. La definición es análoga para la cota inferior.

Teorema 2.5 (Teorema de Weierstrass). Toda función continua en un intervalo cerrado está acotada y alcanza su máximo y mínimo.

Teorema 2.6. Sea $f:[a,b] \mapsto \mathbb{R}$ inyectiva y continua. Entonces, f es estrictamente creciente o decreciente y f^{-1} es continua.

Observación: Esto también quiere decir que

$$f([a,b]) = [f(a), f(b)]$$

Demostración. Como f es inyectiva, $\forall a \neq b \ f(a) \neq f(b)$, es decir que f(a) < f(b)o f(a) > f(b). Suponemos el primer caso f(a) < f(b).

Previo: Sabemos que $a < x < b \implies f(a) < f(x) < f(b)$, ya que si f(a) < f(b) < f(x) dado un $v \nearrow f(b) < v < f(x)$ por Bolzano $\exists x_1 \in [a,x]; \ x_2 \in [x,b] \nearrow f(x_1) = f(x_2) = v$, contradicción con que la función es inyectiva.

Si la función no fuese estrictamente creciente, entonces $\exists x,y \in [a,b] \nearrow x <$ $y \wedge f(x) > f(y)$. En ese caso, a < x < y y f(a) < f(y) < f(x), lo que es imposible según el argumento previo.

Demostramos la segunda parte, la continuidad de la inversa. Sea $\varepsilon > 0, x_0 \in$ $dom f^{-1} \nearrow f(x_0) = y_0, \text{ buscamos } \delta \nearrow |y - y_0| < \delta \implies |f^{-1}(y) - x_0| < \varepsilon.$ Suponemos que $a < x_0 - \varepsilon < x_0 + \varepsilon < b$. Sea $\delta = min(y_0 - f(x_0 - \varepsilon), f(x_0 + \varepsilon) - y_0)$. Entonces $|y_0 - y| < \delta \implies y \in (f(x_0 - \varepsilon, f(x_0 + \varepsilon)) |\text{ luego } |f^{-1}(y) - x_0| < \varepsilon$. \square

2.1. **Derivadas**

Definición 2.14 Derivada. Sea f una función continua. La derivada en un punto a Derivada es

$$f'(a) = \frac{df}{dx}(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Se dice que una f es derivable en a si y sólo si $\exists \lim_{x\to a} \frac{f(x)-f(a)}{x-a}$.

La derivada en un punto marca la pendiente de la recta tangente a la función en ese punto.

Proposición 2.7. Si H(x) es una recta que pasa por el punto de la gráfica de f(a, f(a)) y cumple que

$$\lim_{x \to a} \frac{f(x) - H(x)}{x - a} = 0$$

entonces f es derivable en a y su derivada en ese punto es la pendiente de H.

Demostración. Sea H(x) = f(a) + m(x - a). Entonces

$$\frac{f(x)-H(x)}{x-a}=\frac{f(x)-f(a)-m(x-a)}{x-a}=\frac{f(x)-f(a)}{x-a}-m$$
 que tiende a 0 cuando $x\to a$. Por lo tanto,
$$f(x)-f(a)$$

$$\exists \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = m$$

7

Proposición 2.8 (Cálculo operativo). Sean f, g derivables en a. Entonces

- $(f \pm g)'(a) = f'(a) \pm g'(a)$.
- (fg)'(a) = f'(a)g(a) + f(a)g'(a).
- Si $g(a) \neq 0$, $\left(\frac{1}{g}\right)'(a) = \frac{-g'(a)}{(g(a))^2}$.
- Si $g(a) \neq 0$, $\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) f(a)g'(a)}{(g(a))^2}$.
- $(g \circ f)'(a) = g'(f(a))f'(a)$.

Proposición 2.9. La derivada de una función derivable en un extremo local (máximo o mínimo) vale cero.

Teorema 2.10 (Teorema de Rolle). Sea $f:[a,b] \mapsto \mathbb{R} \nearrow f(a) = f(b)$ continua en el cerrado y derivable en el abierto. Entonces $\exists c \in (a,b) \nearrow f'(c) = 0$.

Demostración. Sólo es necesario buscar un extremo local en (a,b). Por el teorema de Weierstrass (2.5) f alcanza el máximo y mínimo x_1, x_2 en el intervalo [a,b]. Si $x_1 \in (a,b)$ o $x_2 \in (a,b)$, hemos terminado. Si no, el máximo y mínimo están en los extremos y como f(a) = f(b) f es constante y su derivada siempre vale 0.

Teorema 2.11 (Teorema del valor medio de Lagrange). Sea $f:[a,b] \mapsto \mathbb{R}$ continua en el cerrado y derivable en el abierto. Entonces, $\exists t \in (a,b) \nearrow f'(t) = \frac{f(b)-f(a)}{b-a}$.

Demostración. Sea

$$h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

. Es claro que h(a)=h(b), por lo tanto $\exists c\in(a,b)\diagup h'(c)=0.$ Derivamos h(x):

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

Si
$$h'(c) = 0$$

$$h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$$
$$0 = f'(c) - \frac{f(b) - f(a)}{b - a}$$
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Teorema 2.12 (Teorema del valor medio de Cauchy). Sean f y $g:[a,b] \mapsto \mathbb{R}$ continuas en el cerrado y derivables en el abierto. Entonces $\exists t \in (a,b)$ tal que

$$(f(b) - f(a)) g'(t) = (g(b) - g(a)) f'(t)$$

Si $g(b) \neq g(a)$

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(t)}{g'(t)}$$

Demostración. Sea h(x) = (f(b) - f(a)) g'(x) - (g(b) - g(a)) f'(x). Es claro h(a) = h(b), así que $\exists t \in (a,b) \neq h'(t) = 0$.

Lema 2.13. Sea $f:(a,b) \longrightarrow \mathbb{R}$ derivable. Si $f'(x) \ge 0$ la función es creciente.

Teorema 2.14 (Regla de L'Hopital). Sean f y g derivables definidas sobre un intervalo abierto I salvo quizás en un punto $a \in I$. Supongamos

- 1. $g'(t) \neq 0 \forall t \in I$.
- 2. $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$.
- 3. $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$

Entonces

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L$$

Lema 2.15 (Resolución indeterminaciones 0/0). Sean $f, g:(a,b) \longmapsto \mathbb{R}$ derivables. Supongamos

- 1. $\lim_{x} a^+ f = \lim_{x \to a^+} g(x) = 0$.
- 2. $g'(x) \neq 0 \ \forall x \in (a, b)$.
- 3. $\exists \lim_{x \to a^+} \frac{f'(x)}{g'(x)} = L$.

Entonces,

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$$

Polinomios y Teorema de Taylor 3.

Definición 3.1 .Se dice que f(x) es o de una función $\varphi(x)$ cuando $x \to a$ (notación: $f(x) = o(\varphi(x)), x \to a$) si

$$\lim_{x \to a} \frac{f(x)}{\varphi(x)} = 0$$

Definición 3.2 .Se dice que f y g tienen orden de contacto superior a n cuando

$$f(x) - g(x) = o(|x - a|^n); x \to a$$

, es decir

$$\lim_{x \to a} \frac{f(x) - g(x)}{(x - a)^n}$$

En particular, f y su recta tangente tienen orden de contacto superior a 1.

Derivada superiore

Definición 3.3 Derivada superiore. Si f es una función derivable en un intervalo I podemos considerar la función derivada $f': I \longmapsto \mathbb{R}$. Si ésta es a su vez derivable, la segunda derivada es f''(x), y así sucesivamente para la n-ésima derivada.

Polinomio de Taylor

Definición 3.4 Polinomio de Taylor. Sea f n veces derivable en el entorno de un punto a. Se define el polinomio de Taylor de orden n asociado a f en el punto x=acomo

$$P_n(x) = P_{n,a}f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}}{n!}(x-a)^n = \sum_{k=0}^n \frac{d^n f}{dx^n}(a) \cdot \frac{(x-a)^n}{n!}$$

Propiedades del polinomio de Taylor:

1.
$$P_n(a) = f(a), P_n^{(k)}(a) = f^{(k)}(a), k = 1, 2, \dots, n.$$

2.
$$\frac{d}{dx}(P_n(f))(x) = P_{n-1}f'(x)$$
.

3. f y P_n tienen orden de contacto superior a n para $x \to a$.

4. P_n es el único polinomio de grado menor o igual que n con la propiedad anterior.

Demostración. Propiedad 2:

$$\frac{d}{dx}\left(P_n(f)\right)(x) = f'(a) + f''(a)(x-a) + \dots + \frac{f^n(a)}{(n-1)!}(x-a)^{n-1} = P_{n-1,a}f'(x)$$
. Propiedad 1: $P_n(a) = f(a)$ es evidente. $P_n^{(k)} = f^{(k)}(a)$ también lo es a partir

Propiedad 3: Usando L'Hopital siempre que el límite exista:

$$\lim_{x \to a} \frac{f(x) - P_n(x)}{(x - a)^n} = {}^{0/0} \lim_{x \to a} \frac{f'(x) - P'_n(x)}{n(x - a)^{n-1}} = \dots = \lim_{x \to a} \frac{f^{(n-1)}(x) - P^{(n-1)}_n(x)}{n!(x - a)}$$

$$P^{(n-1)}_n(x) \text{ es la ecuación de la recta tangente a } f^{(n-1)}(x) \text{ en } x = a \text{, así que}$$

$$\lim_{x \to a} \frac{f^{(n-1)}(x) - P_n^{(n-1)}(x)}{n!(x-a)} = 0$$

Propiedad 4: Sea Q un polinomio de grado menor o igual que n que cumpla la propiedad 3. Entonce P_n-Q tiene orden de aproximación superior a n en $x\to a$

$$\lim_{x \to a} \frac{P_n(x) - Q(x)}{(x - a)^n} = \lim_{x \to a} \left(\frac{P_n(x) - f(x)}{(x - a)^n} + \frac{f(x) - Q(x)}{(x - a)^n} \right) = 0 - 0 = 0$$

Si $P_n(x)-Q(x)$ es un polinomio de grado menor o igual que n, entonces

$$0=\lim_{x\to a}\frac{R(x)}{(x-a)^n}=\lim_{x\to a}\frac{A_0+A_1(x-a)+\cdots}{(x-a)^n}$$
 , por lo que $A_0=0$. Como A_0 es 0, reducimos una potencia y
$$\lim_{x\to a}\frac{A_1+A_2(x-a)+\cdots}{(x-a)^{n-1}}$$

$$\lim_{x \to a} \frac{A_1 + A_2(x - a) + \cdots}{(x - a)^{n-1}}$$

 $\lim_{x\to a}\frac{A_1+A_2(x-a)+\cdots}{(x-a)^{n-1}}$, de forma que A_1 es 0 y así sucesivamente cualquier A_n vale 0. Por lo tanto, R=0

Teorema 3.1 (Teorema de Taylor). Sea f derivable (n+1) veces alrededor del punto a. Entonces, dado un $x \exists t \in (a, x)$ tal que

$$f(x) - P_n(x) = \frac{f^{(n+1)}(t)}{(n+1)!}(x-a)^{n+1}$$

Resto

Definición 3.5 Resto. $R_{n,a}f(x) = f(x) - P_{n,a}f(x)$ se denomina resto y el teorema nos da la forma de Lagrange de este resto.

4. Geometría de gráficas de funciones

Asíntota vertical

Definición 4.1 **Asíntota vertical**. Se dice que f tiene una asíntota vertical por la derecha para x=c si $\lim_{x\to c^+} f(x)=\pm\infty$. La definición es análoga para la asíntota vertical por la izquierda.

Asíntota oblicua Definición 4.2 **Asíntota oblicua**. Se dice que f tiene una asíntota horizontal para $x \to \pm \infty$ si $\lim_{x \to \pm \infty} f(x) = m$.

5. Integrales

5.1. Integral de Riemann

Suma superior e inferior Definición 5.1 Suma superior e inferior. La suma superior asignada a una partición $P = \{x_0 = a, x_1, \dots, x_n = b\}$ de un conjunto [a, b] se define como

$$S_p f = \sum_{k=1}^n (long. \ I_k) \sup_{I_k} f$$

De forma análoga, se define la suma inferior (notación s_pf).

Función integrable Definición 5.2 Función integrable. Dada $f:[a,b] \mapsto \mathbb{R}$ acotada, se dice que f es integrable (Riemann) si

$$\sup s_p f = inf S_p f$$

y se denota por

$$\int_{a}^{b} f \equiv \int_{a}^{b} f(x) \, \mathrm{d}x$$

Proposición 5.1.

$$f$$
 integrable $\iff \forall \varepsilon > 0, \exists P \text{ particion } / S_P f - s_P f \leq \varepsilon$

Proposición 5.2. Si $f:[a,b]\longmapsto \mathbb{R}$ es continua, entonces es integrable.

Observación: Algunas funciones con una cantidad numerable de discontuinidades son integrables.

Propiedades de la integral: Sean f y g dos funciones integrables y $\alpha \in \mathbb{R}$. Entonces se cumplen las siguientes propiedades:

$$\int_{b}^{a} (f+g) = \int_{b}^{a} g + \int_{b}^{a} g$$

$$\int_{b}^{a} \alpha f = \alpha \int_{b}^{a} f$$

$$f \leq g \implies \int_{b}^{a} f \leq \int_{b}^{a} g$$

$$m \leq f \leq M \implies m \leq \frac{1}{b-a} \int_{b}^{a} f \leq M$$

$$\left| \int_{b}^{a} f \right| \leq \int_{b}^{a} |f|$$

$$c \in (a,b) \implies \int_{b}^{a} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Proposición 5.3. Si f no es positiva, entonces llamamos $f_+ = max(f(x), 0)$ y $f_- = -min(f(x), 0)$. f es integrable si y sólo si f_+ y f_- lo son, y

$$\int_{b}^{a} f = \int_{b}^{a} f_{+} - \int_{b}^{a} f_{-}$$

Función Lipschitziana Definición 5.3 Función Lipschitziana. Una función es Lipschitziana si para cierta constante $k | f(x) - f(y) | \le k|x - y|$.

Teorema 5.4. Si f es integrable y acotada, entonces la función $F(x) = \int_a^x f$ es continua y Lipschitziana.

Teorema 5.5 (Teorema Fundamental del Cálculo). Si F es continua en [a,b], entonces $F(x) = \int_a^x f(t)dt$ es derivable y F'(x) = f(x).

Demostración. Fijado $x_0 \in (a,b)$ queremos ver que

$$\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$$

.

Usamos que f es continua en x_0 : dado $\varepsilon>0,\ \exists \delta>0\ /\ |x_0-t|<\delta \implies |f(x_0)-f(t)|<\varepsilon.$ Sea $|h|<\delta$, h>0. Entonces

$$\frac{F(x_0+h) - F(x_0)}{h} = \frac{1}{h} \int_{x_0}^{x_0+h} f(t) dt$$

У

$$f(x_0) - \varepsilon \le \frac{1}{h} \int_{x_0}^{x_0 + h} f(t) dt \le f(x_0) + \varepsilon$$

$$-\varepsilon \le \frac{1}{h} \int_{x_0}^{x_0+h} f(t) \ dt - f(x_0) \le \varepsilon$$

Por lo tanto el límite existe y es $f(x_0)$.

Consecuencia: F(x) es una primitiva de f si es continua y F(a) = 0.

Si G(x) es otra primitiva $\big(G'=f\big)$ entonces F(X)=G(X)+C, donde C es una constante.

En particular,

$$0 = F(a) = G(a) + C \implies C = -G(a)$$

Luego

$$\int_a^b f(t)dt \stackrel{\mathrm{TFC}}{=} F(b) = G(b) + c = G(b) - G(a)$$

Regla de Barrow y a esto lo llamamos la Regla de Barrow.

5.2. Integrales impropias

Usamos los métodos de integración más general cuando f no es acotada o cuando la región de integración no es acotada.

$$\int_{a}^{\infty} f = \lim_{R \to \infty} \int_{a}^{R} f(t) \ dt$$

Sean $\varphi(x)$, $\psi(x)$ derivables. Entonces

$$H(x) = \int_{\varphi(x)}^{\psi(x)} f(t) dt$$

es derivable y su derivable es fácil de hallar si nos damos cuenta de que, si llamamos $F(x) = \int_a^x f(t) \ dt$ entonces $H(x) = F(\psi(x)) - F(\varphi(x))$.

Índice alfabético

Antiimagen, 4 Asíntota oblicua, 12 vertical, 12 Cálculo de límites, 2 Cálculo operativo, 7 Cauchy Sucesión de, 3 Continuidad, 5 Convergencia de sucesiones, 2	Regla de L'Hopital, 9 Resolución indeterminaciones 0/0, 9 Resto, 11 Subsucesión, 3 Suma superior e inferior, 12 Teorema de Bolzano, 6 de Bolzano-Weierstrass, 3 de Rolle, 8 de Taylor, 11
Derivada, 7 superiore, 10	de Weierstrass, 6 del sándwich, 2, 6 del valor medio de Cauchy, 9
Función, 4 acotada, 6 biyectiva, 4 composición de, 5 continua, 6 integrable, 12 inversa, 4 inyectiva, 4 Lipschitziana, 13 sobreyectiva, 4	del valor medio de Cauchy, 9 del valor medio de Lagrange, 8 Fundamental del Cálculo, 13
Límite, 5 en el infinito, 5 lateral, 5	
Newton Binomio, 2	
Par ordenado, 2 Polinomio de Taylor, 10 Principio del palomar, 3 Producto cartesiano, 2	
Regla de Barrow, 14	