

UNIVERSIDADE ESTADUAL DE MARINGÁ

Centro de Tecnologia - CTC Departamento de Informática - DIN

5184-32 – PROJETO E ANÁLISE DE ALGORITMOS BACHARELADO EM INFORMÁTICA – 2° sem /2017 Prof. Rodrigo Calvo

2º PROJETO

Calcular o custo mínimo de um voo envolve o cálculo da altitude ótima dependendo da força do vento presente em cada altitude. O custo mínimo não é encontrado somente considerando a velocidade do vento em cada altitude. Devido à massa da aeronave, o gasto de combustível é variável quando esta passa de uma altitude para outra. Além disso, algumas regulamentações de segurança são adotadas no voo quando a aeronave ultrapassa certa altitude. Para simplificar o problema, assume-se que a cada 100 milhas de voo, a aeronave pode tomar uma das três ações a seguir. Para cada uma delas, uma quantidade de combustível é gasta:

- 1) Subir uma unidade de altitude: 60 unidades de combustível;
- 2) Manter a altitude: 30 unidades de combustível:
- 3) Descer uma altitude: 20 unidades de combustível

Para cada altitude e a cada 100 milhas a força do vento w pode ser identificada. A força w assume valores no conjunto [-10, 10]. Uma força negativa indica que o vento está contra a direção do voo. Assim, para cada unidade de força negativa, uma unidade extra de combustível é necessária. Uma força positiva indica que o vento está a favor da direção do voo. Assim, para cada unidade de força positiva, uma unidade de combustível é economizada. Por exemplo, para subir uma unidade de altitude com uma força do vento w = -5, é necessário 65 unidades de combustível em um trecho de 100 milhas.

Objetivo do problema: Dado a força do vento nas diferentes altitudes e a cada 100 milhas para um trecho de X a Y, calcular o a quantidade mínima de combustível necessária para o voo, utilizando Programação Dinâmica. Para tanto, mostre os quatro passos deste paradigma de projeto de algoritmos.

A aeronave deve iniciar na altitude 0, não ultrapassar a altitude 9 e retornar à altitude 0 ao alcançar Y. A distância *dist* entre X e Y deve ser no máximo 1000. Desta forma, cada altitude possui 1000/100 trechos e, consequentemente, 1000/100 forças de vento. Considerando todas as altitudes do trecho, têm-se 10x10 forças de vento.

Dados de entrada: um valor inteiro *dist* (múltiplo de 100) que indica a distância entre X e Y; e uma matriz M 10x(*dist*/100), em que a linha indica a quantidade de altitudes e a coluna os trechos (de tamanho 100 milhas). Cada célula da matriz representa uma força de vento.

Dado de saída: A saída corresponde à quantidade mínima de combustível usado no voo de X (altitude 0) até Y (altitude 0).

Exemplo:

400							
1	1	1	1				
1	1	1	1				
1	1	1	1				
1	1	1	1				
1	1	1	1				
1	1	1	1				
1	1	1	1				
1	1	1	1				
1	9	9	1				
1	- 9) .	- 9	1			

Possíveis soluções:

1	-9 	-9- -=== 2	> 1 - ===== 3	> 0 ======= 4 (x100)
1	9	9	1	1
1	1	1	1	2
1	1	1	1	3
1	1	1	1	4
1	1	1	1	5
1	1	1	1	6
1	1	1	1	7
1	1	1	1	8
1	1	1	1	9

Considerações:

- O trabalho deverá ser feitos em até 3 alunos;
- Obrigatório: Deverá ser escrito um relatório contendo os quatro passos da programação dinâmica;
- Opcional: deverá ser escrito um programa para a solução dos passos 3 e 4 da programação dinâmica. A não entrega não prejudicará a avaliação. A entrega do programa resultará em uma melhor nota;
- Serão verificados trabalhos nos quais haja quaisquer tipos de cópia ou plágio.

Modo de entrega: Fazer upload no Moodle. O nome do arquivo deve ter o seguinte formato: projeto2_ra1_ra2_ra3.zip.

Prazo de entrega: 22/12/2017