Machine Learning 1

Shitian Li (PID: A13294481)

10/22/2021

Clustering methods

Kmeans clustering in R is done with the ${\tt kmeans}$ () function. Here we make up some data to test and learn with.

```
tmp <- c(rnorm(30, 3), rnorm(30, -3))
data <- cbind(tmp, rev(tmp))
plot(data)</pre>
```


Run kmeans() set k (# of centers) to 2 and nstart (iteration) to 20. The thing with kmeans() is that you need to tell it how many clusters you want.

```
km <- kmeans(data, centers=2, nstart=20)
km</pre>
```

```
\#\# K-means clustering with 2 clusters of sizes 30, 30
```

##

Cluster means:

```
##
       tmp
## 1 3.090196 -2.958701
## 2 -2.958701 3.090196
##
## Clustering vector:
 ## Within cluster sum of squares by cluster:
## [1] 52.57245 52.57245
  (between_SS / total_SS = 91.3 %)
## Available components:
##
## [1] "cluster"
               "centers"
                          "totss"
                                     "withinss"
                                                "tot.withinss"
## [6] "betweenss"
               "size"
                          "iter"
                                     "ifault"
```

Q. How many points are in each cluster?

km\$size

[1] 30 30

Q. What 'component' of your result object details cluster alignment/membership?

km\$cluster

Q. What 'component' of your result object details cluster center?

km\$centers

```
## tmp
## 1 3.090196 -2.958701
## 2 -2.958701 3.090196
```

Q. Plot x colored by the kemans cluster assignment and add cluster centers as blue points.

```
plot(data, col=km$cluster)
points(km$centers, col="blue", pch=15, cex=2)
```


Hierarchical Clustering

We will use the hclust() function on the same data as before and see how this method works.

```
hc <- hclust(dist(data))
hc

##
## Call:
## hclust(d = dist(data))
##
## Cluster method : complete
## Distance : euclidean
## Number of objects: 60</pre>
```

Cluster Dendrogram

dist(data) hclust (*, "complete")

To find our membership vector we need to "cut" the tree and for this we use the <code>cutree()</code> function and tell it the height to cut at.

```
plot(hc)
abline(h=7, col="red")
```

Cluster Dendrogram

dist(data) hclust (*, "complete")

We can also use cutree() and state the number of k clusters we want:

```
grps <- cutree(hc, k=2)
plot(data, col=grps)</pre>
```


Principal Component Analysis (PCA)

Import the data from a CSV file

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)</pre>
```

Q. How many rows and cols?

[1] 17 5

dim(x)

Q. How do we inspect and clean up the data?

```
rownames(x) <- x[,1]
x <- x[, -1]
x
```

##		England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
##	Cheese	105	103	103	66
##	Carcass_meat	245	227	242	267
##	Other_meat	685	803	750	586
##	Fish	147	160	122	93
##	Fats_and_oils	193	235	184	209
##	Sugars	156	175	147	139
##	Fresh_potatoes	720	874	566	1033
##	Fresh Veg	253	265	171	143

```
570
## Other_Veg
                       488
                                     418
                                              355
## Processed_potatoes
                      198
                             203
                                     220
                                              187
                                              334
## Processed_Veg
                      360
                             365
                                     337
## Fresh_fruit
                      1102 1137
                                     957
                                              674
## Cereals
                      1472 1582
                                    1462
                                             1494
## Beverages
                        57
                              73
                                      53
                                               47
## Soft_drinks
                      1374 1256
                                             1506
                                    1572
## Alcoholic_drinks
                       375
                            475
                                     458
                                              135
## Confectionery
                        54
                              64
                                      62
                                               41
```

Or we can read the data properly:

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names=1)
x</pre>
```

##		England	Wales	Scotland	N.Ireland
##	Cheese	105	103	103	66
##	Carcass_meat	245	227	242	267
##	Other_meat	685	803	750	586
##	Fish	147	160	122	93
##	Fats_and_oils	193	235	184	209
##	Sugars	156	175	147	139
##	Fresh_potatoes	720	874	566	1033
##	Fresh_Veg	253	265	171	143
##	Other_Veg	488	570	418	355
##	Processed_potatoes	198	203	220	187
##	Processed_Veg	360	365	337	334
##	Fresh_fruit	1102	1137	957	674
##	Cereals	1472	1582	1462	1494
##	Beverages	57	73	53	47
##	Soft_drinks	1374	1256	1572	1506
##	Alcoholic_drinks	375	475	458	135
##	Confectionery	54	64	62	41

barplot(as.matrix(x), col=rainbow(17))

mycols <- rainbow(nrow(x))
pairs(x, col=mycols)</pre>

Anyways... None of these plots make sense.

PCA to the rescue

Here we will use the base R function for PCA, which is called prcomp(). This function wants the transpose of our data.

```
pca <- prcomp(t(x))</pre>
summary(pca)
## Importance of components:
                                PC1
                                         PC2
                                                   PC3
                                                             PC4
##
## Standard deviation
                           324.1502 212.7478 73.87622 4.189e-14
                                      0.2905 0.03503 0.000e+00
## Proportion of Variance
                             0.6744
## Cumulative Proportion
                                      0.9650 1.00000 1.000e+00
                             0.6744
plot(pca)
```

pca

We want score plot(aka PCA plot). Basically, of PC1 vs PC2

```
attributes(pca)
```


We can also examine the PCA "loadings", which tell us how much the original variables contribute to each PC.

PCA baby one more time!!!

```
url2 <- "https://tinyurl.com/expression-CSV"</pre>
rna.data <- read.csv(url2, row.names=1)</pre>
head(rna.data)
                   wt3 wt4 wt5 ko1 ko2 ko3 ko4 ko5
##
          wt1 wt2
## gene1 439 458
                   408
                       429 420 90 88 86 90 93
## gene2 219 200
                   204
                        210 187 427 423 434 433 426
## gene3 1006 989 1030 1017 973 252 237 238 226 210
## gene4
         783 792
                   829
                        856 760 849 856 835 885 894
## gene5
         181 249
                   204
                        244 225 277 305 272 270 279
## gene6 460 502
                   491
                        491 493 612 594 577 618 638
     Q. How many genes and samples?
nrow(rna.data)
## [1] 100
ncol(rna.data)
## [1] 10
colnames(rna.data)
   [1] "wt1" "wt2" "wt3" "wt4" "wt5" "ko1" "ko2" "ko3" "ko4" "ko5"
pca.rna <- prcomp(t(rna.data), scale=T)</pre>
summary(pca.rna)
## Importance of components:
                             PC1
                                    PC2
                                             PC3
                                                     PC4
                                                             PC5
                                                                     PC6
## Standard deviation
                          9.6237 1.5198 1.05787 1.05203 0.88062 0.82545 0.80111
## Proportion of Variance 0.9262 0.0231 0.01119 0.01107 0.00775 0.00681 0.00642
## Cumulative Proportion 0.9262 0.9493 0.96045 0.97152 0.97928 0.98609 0.99251
##
                              PC8
                                       PC9
                                                PC10
                          0.62065 0.60342 3.348e-15
## Standard deviation
## Proportion of Variance 0.00385 0.00364 0.000e+00
## Cumulative Proportion 0.99636 1.00000 1.000e+00
Note here that nearly 93% of feature is captured by PC1.
plot(pca.rna)
```

pca.rna


```
plot(pca.rna$x[, 1:2])
text(pca.rna$x[, 1:2], labels=colnames(rna.data))
```



```
library(ggplot2)

df <- as.data.frame(pca.rna$x)

# Our first basic plot
ggplot(df) +
   aes(PC1, PC2) +
   geom_point()</pre>
```


PCA of RNASeq Data

PC1 clealy seperates wild-type from knock-out samples

