TD 02: GROUPE FONDAMENTAL

► Cette feuille de TD 2 nous occupera une semaine.

Exercices fondamentaux

1. DEGRÉ D'UNE APPLICATION DU CERCLE DANS LE CERCLE

- (a) Montrer que, pour tout x dans \mathbf{S}^1 , l'application $\varphi_x:\pi_1(\mathbf{S}^1,x)\to\mathbf{Z}$, définie par $[\gamma]\mapsto\tilde{\gamma}(1)-\tilde{\gamma}(0)$ où $\tilde{\gamma}:[0,1]\to\mathbf{R}$ est un relèvement du lacet γ , est un isomorphisme de groupes. Si c est un chemin dans \mathbf{S}^1 , d'origine x et d'extrémité y, et si $\phi_c:\pi_1(\mathbf{S}^1,y)\to\pi_1(\mathbf{S}^1,x)$ est l'isomorphisme de groupes canonique, montrer que $\varphi_x\circ\phi_c=\varphi_y$.
- (b) Soient $f: \mathbf{S}^1 \to \mathbf{S}^1$ une application continue et x un point de \mathbf{S}^1 . Posons y = f(x). La composition des morphismes de groupes

$$\mathbf{Z} \xrightarrow{\varphi_x^{-1}} \pi_1(\mathbf{S}^1, x) \xrightarrow{f_*} \pi_1(\mathbf{S}^1, y) \xrightarrow{\varphi_y} \mathbf{Z}$$

est un morphisme de groupes de ${\bf Z}$ dans ${\bf Z}$. C'est donc la multiplication par un entier n, qui ne dépend pas de x par ce qui précède. Nous le notons $\deg(f)$, et nous l'appelons le degré de f. Dans ce qui suit, f et g sont des applications continues de ${\bf S}^1$ dans ${\bf S}^1$.

- (c) Si f est une rotation, calculer $\deg(f)$. Pour $n \in \mathbb{N}$, calculer le degré de l'application $z \mapsto z^n$.
- (d) Montrer que $\deg(f \circ g) = \deg(f)\deg(g)$. En déduire que si f est un homéomorphisme, alors $\deg(f) = \pm 1$.
- (e) Montrer que $\deg(f) = \deg(g)$ si et seulement si f et g sont homotopes. En déduire que $\deg(f) = 0$ si et seulement si f se prolonge continûment en une application continue $f': \mathbf{B}^2 \to \mathbf{S}^1$.
- (f) Montrer qu'il n'existe pas de rétraction ${f B}^2 o {f S}^1.$
- (g) Démontrer le théorème de d'Alembert : tout polynôme complexe non constant admet au moins une racine complexe.
- (h) Soit $f: \mathbf{S}^1 \to \mathbf{S}^1$ une application continue telle que f(-x) = -f(x). Montrer que f est de degré impair.
- (i) Déterminer le groupe fondamental du cylindre et du ruban de Möbius. Ces deux espaces topologiques sont-ils homéomorphes?

2. GROUPE FONDAMENTAL D'UN PRODUIT

Soit $(X_i,x_i)_{i\in I}$ une famille d'espace topologiques pointés. Montrer que les groupes $\pi_1\left(\prod_{i\in I}X_i,(x_i)_{i\in I}\right)$ et $\prod_{i\in I}\pi_1(X_i,x_i)$ sont isomorphes. Pour $n\geqslant 1$, en déduire le groupe fondamental de \mathbf{T}^n .

3. COMPLÉMENTAIRE D'UN SOUS ESPACE VECTORIEL DANS UN ESPACE VECTORIEL

Soit V un espace vectoriel réel de dimension $n \geqslant 1$. Soit W un sous espace vectoriel de dimension $n-1 \geqslant k \geqslant 0$. On munit V de la topologie usuelle.

- (a) Montrer que V-W est connexe si et seulement si $n-2\geqslant k$.
- (b) On suppose maintenant que $n \geqslant 2$ et $n-2 \geqslant k$. Montrer que V-W a le même type d'homotopie que la sphère \mathbf{S}^{n-k-1} . En déduire le groupe fondamental de V-W en fonction de n et k.

Exercices complémentaires

- 1. GROUPE FONDAMENTAL DE L'ESPACE PROJECTIF COMPLEXE Pour $n\geqslant 1$, montrer que $\mathbf{P}_n(\mathbf{C})$ est simplement connexe.
- 2. GROUPES TOPOLOGIQUES

Soit G un groupe topologique connexe par arcs d'identité e. Soient γ et σ deux lacets de base e.

- (a) Montrer que $\gamma * \sigma$ est homotope aux lacets $\gamma \sigma$ et $\sigma \gamma$. On remarquera que γ est homotope aux lacets $\gamma * e$ et $e * \gamma$.
- (b) En déduire que $\pi_1(G,e)$ est abélien.