Data Structures and Algorithms

(ESO207)

Lecture 9:

Inventing a new Data Structure with

- Flexibility of lists for updates
- Efficiency of arrays for search

Important Notice

There are basically two ways of introducing a new/innovative solution of a problem.

- 1. One way is to just <u>explain</u> it without giving any clue as to how the person who invented the concept came up with this solution.
- 2. Another way is to start from scratch and take a journey of the route which the inventor might have followed to arrive at the solution. This journey goes through various hurdles and questions, each hinting towards a better insight into the problem if we have patience and open mind.

Which of these two ways is better?

I believe that the second way is better and more effective.

The current lecture is based on this way. The data structure we shall invent is called a Binary Search Tree. This is the most fundamental and versatile data structure. We shall realize this fact many times during the course ...

Doubly Linked List based implementation versus array based implementation of "List"

Operation	Time Complexity per operation for array based implementation	Time Complexity per operation for doubly linked list based implementation
IsEmpty(L)	O (1)	O(1)
Search(x,L)	$\mathbf{O}(n)$	$\mathbf{O}(n)$
Successor(p,L)	O (1)	O (1)
Predecessor(p,L)	O (1)	O(1)
CreateEmptyList(L)	O (1)	O(1)
Insert(x,p,L)	O(n)	O(1)
Delete(p,L)	O (<i>n</i>)	O (1)
MakeListEmpty(L)	O (1)	O (1)

Problem

Maintain a telephone directory

Operations:

- Search the phone # of a person with ID no. x
- Insert a new record (ID no., phone #,...)

Inventing a new data structure

Restructuring doubly linked list

A new data structure emerges

A new data structure emerges

Binary Tree: A mathematical model

Definition: A collection of nodes is said to form a binary tree if

- There is exactly one node with no incoming edge.
 This node is called the root of the tree.
- 2. Every node other than root node has exactly one incoming edge.
- 3. Each node has at most two outgoing edges.

Binary Tree: some terminologies

- If there is an edge from node u to node v,
 then u is called parent of v ,and v is called child of u.
- The Height of a Binary tree T is the maximum number of edges from the root to any leaf node in the tree T.

Varieties of Binary trees

We call it Perfectly balanced

skewed

Height of a perfectly balanced Binary tree

H(n): Height of a perfectly balanced binary tree on n nodes.

$$H(1) = 0$$

$$H(n) \leq 1 + H\left(\frac{n}{2}\right)$$

Height of a perfectly balanced Binary tree

H(n): Height of a perfectly balanced binary tree on n nodes.

$$H(1) = 0$$

$$H(n) \leq 1 + H\left(\frac{n}{2}\right)$$

$$\leq 1 + 1 + H\left(\frac{n}{4}\right)$$

$$\leq 1 + 1 + \dots + H\left(\frac{n}{2^{i}}\right)$$

$$\leq \log_{2} n$$

Implementing a Binary tree

Binary Search Tree (BST)

Definition: A Binary Tree **T** storing values is said to be **Binary Search Tree** if for each node **v** in **T**

- If left(v) <> NULL, then value(v) > value of every node in subtree(left(v)).
- If right(v)<>NULL, then value(v) < value of every node in subtree(right(v)).

Search(T,x) Searching in a Binary Search Tree

Search(T,x) Searching in a Binary Search Tree

```
Search(T,x)
      p \leftarrow T;
      Found ← FALSE;
      while(|
                 Found= FALSE & p<> NULL
               if(value(p) = x) Found \leftarrow TRUE
               else if (value(p) < x) p \leftarrow right(p)
                     else
                                  p \leftarrow left(p)
      return p;
```

Insert(T,x) Insertion in a Binary Search Tree

A question

Time complexity of

Search(T,x) and Insert(T,x) in a Binary Search Tree T = O(Height(T))

Homeworks

- Write pseudocode for Insert(T,x) operation similar to the pseudocode we wrote for Search(T,x).
- 2. Design an algorithm for the following problem:

Given a <u>sorted array</u> **A** storing n elements, build a <u>"perfectly balanced"</u> BST storing all elements of **A** in O(n) time.

Homework 3

```
What does the following algorithm accomplish?
Traversal(T)
     p \leftarrow T;
     if(p=NULL) return;
               if(left(p) <> NULL) Traversal(left(p));
     else{
               print(value(p));
               if(right(p) <> NULL) Traversal(right(p));
                       Ponder over this algorithm for a few minutes to
                       know what it is doing. You might like to try it out
                                 on some example of BST.
```

Time complexity of <u>any search</u> and <u>any single insertion</u> in a perfectly balanced Binary Search Tree on *n* nodes

Time complexity of <u>any search</u> and <u>any single insertion</u> in a sqewed Binary Search Tree on *n* nodes

Our Original Problem

Maintain a telephone directory

Operations:

Search the phone # of a person with ID no. x

Linked list based

Log n

Array based

O(n)

Insert a new record (ID no., phone #,...)

Solution: We may keep perfectly balanced BST.

Hurdle: What if we insert records in increasing order of **ID**?

→ BST will be skewed 🕾