Кафедра информационной безопасности киберфизических систем

Москва 2024

Криптографические методы защиты информации

Криптография с открытым ключом

Общие сведения

Проблема управления ключами

- Генерация ключевой информации.
- Распределение ключей между пользователями.

информации

Криптографические методы защиты

- Безопасное хранение долговременных ключей.
- Обновление ключей.
- Уничтожение ключевой информации.

Криптография с открытым ключом

Криптосистемы с открытым ключом (асимметричные криптосистемы) используют ключа: два различных открытый ключ зашифрования и закрытый ключ расшифрования.

Криптографические методы защиты

информации

- Асимметричное шифрование основано на использовании однонаправленных функций с лазейкой (ловушкой, люком):
 - открытый ключ определяет конкретную реализацию однонаправленной функции;
 - закрытый ключ содержит информацию о лазейке.

Известные криптосистемы с открытым ключом

информации

- Основные математические задачи:
 - факторизация целых чисел;
 - дискретное логарифмирование.

- Асимметричные криптосистемы:
 - криптосистема RSA;
 - криптосистема Рабина;
 - криптосистема Эль-Гамаля.

Протокол Диффи-Хеллмана

Протокол Диффи-Хеллмана

Московский институт электроники

и математики им. А.Н. Тихонова

- Предназначен для формирования общего секретного ключа двумя (или более) пользователями по открытому каналу связи.
 - общего Основан на проблеме **дискретного** более) **логарифмирования**:

$$- g^x(\text{mod } p) = c, x = \log_g c = ?$$

Атака «человек посередине»

A

Московский институт электроники

и математики им. А.Н. Тихонова

$$1 < x < p - 1$$

$$g^x (\text{mod } p)$$

$$\frac{(g^m)^x (\bmod p) = g^{mx}}{g^{mx}}$$

Ε

Криптография с открытым ключом

$$1 < m < p - 1$$

$$g^{m} (\text{mod } p)$$

$$(g^{x})^{m} (\text{mod } p) = g^{xm}$$

$$g^{mx}$$

$$1 < n < p - 1$$

$$g^{n} (\text{mod } p)$$

$$(g^{y})^{n} (\text{mod } p) = g^{yn}$$

$$g^{yn}$$

В

1 < y < p - 1 $g^{y} (\text{mod } p)$ $(g^n)^y (\text{mod } p) = g^{ny}$ g^{yn}

Криптосистема RSA

Общее описание

• Первая криптосистема с открытым ключом (1978).

Криптографические методы защиты

информации

• Криптосистема RSA основана на задаче факторизации целых чисел:

$$-n=p_1p_2\dots p_k,$$

$$n$$
 – известно, $p_1 = ?$, $p_2 = ?$, ..., $p_k = ?$

$1125899839733759 \cdot 489133282872437279 = 55071508479452453847089478640176$	Легко
$70951999110841802331327559 = n_1 \cdot n_2 = ?$	Сложно

Алгоритм генерации ключей

- 1. Алиса генерирует два больших простых 4. числа p и q, отличных друг от друга, причем |p - q| – большое число.
- Держа p и q в секрете, Алиса вычисляет их произведение $n=p\cdot q$, которое называют модулем алгоритма.
- Алиса вычисляет значение функции Эйлера ДЛЯ nформуле ПО $\varphi(n) = (p-1)(q-1).$

Алиса выбирает целое число e, взаимно простое со значением функции $\varphi(n)$. Это экспонентой называется число зашифрования.

Криптография с открытым ключом

- Алиса вычисляет значение удовлетворяющее соотношению $e \cdot d \equiv 1 \pmod{\varphi(n)}$. Это значение называется экспонентой расшифрования.
- Пара (e, n) публикуется в качестве открытого ключа Алисы, dявляется закрытым ключом и держится в секрете.

Алгоритмы зашифрования и расшифрования

• Алгоритм зашифрования:

- 1. Боб получает аутентичную копию открытого ключа Алисы (e, n).
- 2. Боб представляет сообщение в виде числа m, меньшего модуля алгоритма n, либо в виде последовательности таких чисел $m_1, m_2, ..., m_k$.
- 3. Боб вычисляет $c_i = m_i^e \pmod{n}$.
- 4. Боб отправляет шифртекст Алисе.

• Алгоритм расшифрования:

- 1. Алиса получает от Боба шифртекст в виде числа c , меньшего модуля алгоритма n , либо в виде последовательности таких чисел c_1 , c_2 , ..., c_k .
- 2. Алиса вычисляет $m_i = c_i^d \pmod{n}$.

Доказательство корректности шифрования в RSA

- Покажем, что $m^{ed} \equiv m \pmod n$ для любого $n = p \cdot q$, где $e \cdot d \equiv 1 \pmod {\varphi(n)}$.
- **Случай 1:** HOД(m,n) = 1. Тогда верно следующее
 - $-m \in \mathbb{Z}_n^*$ и по теореме Эйлера $m^{\varphi(n)} \equiv 1 \pmod{n}$;
 - $m^{ed} = m^{1+k\cdot\varphi(n)} = m \cdot \left(m^{\varphi(n)}\right)^k \equiv m \pmod{n}.$
- **Случай 2:** HOД(m,n) = p. Тогда верно следующее:
 - $-m^{ed} \equiv 0 \pmod{p}$;
 - $-m\in\mathbb{Z}_q^*$ и по теореме Эйлера $m^{\varphi(q)}\equiv 1\ (\mathrm{mod}\ q);$
 - $m^{ed} = m^{1+k\cdot(p-1)\cdot(q-1)} = m \cdot \left(m^{(q-1)}\right)^{k\cdot(p-1)} \equiv m \pmod{q};$
 - $-m^{ed} \equiv m \pmod{n}$ согласно китайской теореме об остатках.

Доказательство корректности шифрования в RSA

• Применение китайской теоремы об остатках:

$$-\begin{cases} m^{ed} \equiv 0 \pmod{p}; \\ m^{ed} \equiv m \pmod{q}. \end{cases}$$

$$-a_1=0, a_2=m, n_1=p, n_2=q; N=pq, N_1=N/n_1=q, N_2=N/n_2=p;$$

$$-v_1n_1+u_1N_1=1$$
, следовательно $v_1p+u_1q=1$;

$$-v_2n_2+u_2N_2=1$$
, следовательно $v_2q+u_2p=1$;

$$-a \equiv \left(\sum_{i=1}^k a_i u_i N_i\right) \mod N \equiv \left(0 \cdot u_1 q + m u_2 p\right) \mod pq \equiv \left(m u_2 p\right) \mod pq;$$

$$-u_2p=1-v_2q$$
 и $m=sp$, так как $\mathrm{HOД}(m,n)=p$;

$$-a \equiv (m(1-v_2q)) \mod pq \equiv (m-v_2spq) \mod pq \equiv m \mod pq$$
.

Московский институт электроники

и математики им. А.Н. Тихонова

• Генерация ключей:

1. Пара простых чисел:

2. Модуль алгоритма:

3. Значение функции Эйлера:

4. Экспонента зашифрования:

5. Экспонента расшифрования:

$$p = 113, q = 191$$

$$n = p \cdot q = 113 \cdot 191 = 21583$$

$$\varphi(n) = (113 - 1)(191 - 1) = 21280$$

$$e = 13$$

$$d = 1637$$

q	r	y	$\varphi(n)$	е	y_2	y_1
_	_	_	21280	13	0	1
1636	12	-1636	13	12	1	-1636
1	1	1637	12	1	-1636	1637
12	0		1		1637	

Зашифрование:

e = 13, n = 21583Открытый ключ:

Открытый текст:

CRYPTOСимволы:

ASCII-коды: (0x43, 0x52, 0x59, 0x50, 0x54, 0x4F)

Двоичная строка:

Криптография с открытым ключом

Длина блока: $\lfloor \log_2 21583 \rfloor = 14$

 $m_4 = 0000000010000_2 = 16_{10}$ Блоки:

 $m_3 = 11010100100101_2 = 13605_{10}$

 $m_2 = 10010101000001_2 = 9537_{10}$

 $m_1 = 01010001001111_2 = 5199_{10}$

• Зашифрование:

3. Шифртекст:

- Длина блока: $\lfloor \log_2 21583 \rfloor + 1 = 15$

- Блоки: $c_4 = 16^{13} \mod 21583 = 12649_{10} = 011000101101001_2$

 $c_3 = 13605^{13} \mod 21583 = 5288_{10} = 001010010101000_2$

 $c_2 = 9537^{13} \mod 21583 = 12068_{10} = 010111100100100_2$

 $c_1 = 5199^{13} \mod 21583 = 2148_{10} = 000100001100100_2$

– ASCII-коды: (0x06,0x2D,0x25,0x2A,0x17,0x92,0x08,0x64)

Символы: □-%*↓Т□d

Криптосистема Рабина

Алгоритм генерации ключей

- 1. Алиса генерирует два больших простых числа p и q таких, что $p \equiv q \equiv 3 \pmod 4$. Такой специальный вид простых чисел ускоряет процедуру извлечения квадратных корней по модулю p и q.
- 2. Алиса вычисляет n = pq.
- 3. Открытый ключ Алисы есть n.
- 4. Закрытый ключ Алисы есть пара (p,q).

Алгоритмы зашифрования и расшифрования

Алгоритм зашифрования:

- 1. Боб получает аутентичную копию ключа Алисы n.
- 2. Боб представляет сообщение в виде числа m, меньшего n, либо в виде последовательности таких чисел m_1 , $m_2, ..., m_k$.
- 3. Боб вычисляет $c_i = m_i^2 \pmod{n}$.
- Боб отправляет шифртекст Алисе.

Алгоритм расшифрования:

Криптография с открытым ключом

- 1. Алиса получает от Боба шифртекст в виде числа c, меньшего n, либо в виде последовательности таких чисел $C_1, C_2, ..., C_k$.
- 2. Алиса извлекает из каждого значений c_1 , c_2 , ..., c_k 4 квадратных корня по модулю n.
- 3. Алиса определяет нужные значения $m_1, m_2, ..., m_k$ для каждой четверки корней

Московский институт электроники

и математики им. А.Н. Тихонова

- Генерация ключей:
 - 1. Пара простых чисел:
 - 2. Модуль алгоритма:

$$p = 127, q = 199$$

$$n = p \cdot q = 127 \cdot 199 = 25273$$

Криптография с открытым ключом

Пример шифрования

• Зашифрование:

1. Открытый ключ: n = 25273

2. Открытый текст:

- Символы: *CRYPTO*

– ASCII-коды: (0x43, 0x52, 0x59, 0x50, 0x54, 0x4F)

- Длина блока: $[\log_2 25273] = 14$

- Блоки: $m_4 = 000000010000_2 = 16_{10}$

 $m_3 = 11010100100101_2 = 13605_{10}$

 $m_2 = 10010101000001_2 = 9537_{10}$

 $m_1 = 01010001001111_2 = 5199_{10}$

• Зашифрование:

3. Шифртекст:

- Длина блока: $[\log_2 25273] + 1 = 15$

– Блоки: $c_4 = 16^2 \mod 25273 = 256_{10} = 000000100000000_2$

 $c_3 = 13605^2 \mod 25273 = 21846_{10} = 101010101010110_2$

 $c_2 = 9537^2 \mod 25273 = 22115_{10} = 101011001100011_2$

 $c_1 = 5199^2 \mod 25273 = 12764_{10} = 011000111011100_2$

– ASCII-коды: (0x20, 0x15, 0x55, 0xAB, 0x31, 0xB1, 0xDC)

– Символы: §Uл1

Криптосистема Эль-Гамаля

Общее описание

- Основана на задаче дискретного логарифмирования в мультипликативной группе конечного поля F_p^* или группе точек эллиптической кривой $E_{a,b}(F_p)$.
- Использует параметры домена, общие для некоторой группы пользователей и не держащиеся в секрете.

- Параметры домена для криптосистемы Эль-Гамаля над F_p^* :
 - большое простое число p;
 - число $g ∈ F_p^*$.
- Параметры домена для криптосистемы Эль-Гамаля над $E_{a,b}(F_p)$:
 - параметры эллиптической кривой a,b,p;
 - точка $G \in E_{a,b}(F_p)$.

Алгоритм генерации ключей

- 1. Алиса выбирает случайное число x в интервале 1 < x < p-1.
- 2. Алиса вычисляет $h = g^x \pmod{p}$.
- 3. Открытый ключ Алисы есть h, закрытый ключ Алисы есть x.

Алгоритм зашифрования

- 1. Боб получает аутентичную копию открытого ключа Алисы число h.
- 2. Боб представляет сообщение в виде числа m в интервале $1 < m < p \, -1.$
- 3. Боб выбирает сеансовый ключ k в интервале 1 < k < p-1.
- 4. Боб вычисляет два значения:
 - $-C_1 = g^k \pmod{p};$
 - $-C_2 = m \cdot h^k \pmod{p}$.
- 5. Боб отправляет пару (C_1, C_2) Алисе.

Алгоритм расшифрования

- 1. Алиса получает шифртекст пару (C_1, C_2) .
- 2. Алиса, используя свой секретный ключ, осуществляет расшифрование ПО следующей формуле:

Криптография с открытым ключом

$$\frac{C_2}{(C_1)^x} = \frac{m \cdot h^k}{(g^k)^x} = \frac{m \cdot (g^x)^k}{(g^k)^x} = m$$

• Выбор параметров домена:

$$-p = 9973$$
,

$$-g = 5, O(5) = 9972.$$

• Генерация ключей:

- Закрытый ключ x = 3157,
- Открытый ключ $h = 5^{3157} = 1808$.

Московский институт электроники

и математики им. А.Н. Тихонова

• Зашифрование:

1. Открытый ключ h = 1808.

2. Открытый текст:

- Символы: *CRYPTO*

– ASCII-коды: (0x43, 0x52, 0x59, 0x50, 0x54, 0x4F)

- Длина блока: $[\log_2 p] = [\log_2 9973] = 13$

- Блоки: $m_4 = 0000010000110_2 = 134_{10}$

 $m_3 = 1010010010110_2 = 5270_{10}$

 $m_2 = 0101010000010_2 = 2690_{10}$

 $m_1 = 1010001001111_2 = 5199_{10}$

• Зашифрование:

3. Шифртекст:

- Длина блока: $[\log_2 9973] + 1 = 14$

– Сеансовый ключ: k = 47

- Блоки: $C^1 = 5^{47} \mod 9973 = 5065_{10} = 000001001111001001_2$

 $C_4^2 = 134 \cdot 1808^{47} \mod 9973 = 8702_{10} = 00001000011111111110_2$

 $C_3^2 = 5270 \cdot 1808^{47} \mod 9973 = 8512_{10} = 000010000101000000_2$

 $C_2^2 = 2690 \cdot 1808^{47} \mod 9973 = 4553_{10} = 000001000111001001_2$

 $C_1^2 = 5199 \cdot 1808^{47} \mod 9973 = 6134_{10} = 00000101111111110110_2$

– ASCII-коды: (0x21, 0xFE, 0x08, 0x50, 0x01, 0x1C, 0x90, 0x5F, 0xD8, 0x13, 0xC9)

– Символы: !■□Р□∟Р_≠‼ г

Тесты на простоту

Генерация простых чисел

Московский институт электроники

и математики им. А.Н. Тихонова

- Генерация больших простых чисел является распространенной операцией в криптографии с открытым ключом.
- Известны алгоритмы, позволяющие проверить число $n \in \mathbb{N}$ на простоту со сколь угодно малой вероятностью ошибки, и называемые тестами на простоту:
 - тест Ферма;
 - тест Миллера-Рабина;
 - и др.

- Тест Ферма основан на многократном возведении случайных чисел из \mathbb{Z}_n в степень n-1. Если результат отличен от 1, то n-1составное число.
- Существуют составные числа, называемые числами Кармайкла, для которых тест Ферма демонстрирует недостаточную эффективность. Числа Кармайкла обладают свойством: если HOД(a, n) = 1, то $a^{n-1} \equiv 1 \pmod{n}$.
- Миллера-Рабина Тест включает дополнительную проверку ΤΟΓΟ, ЧТО сравнения $x^2 \equiv 1 \pmod{n}$ нет нетривиальных решений. Наличие таких решений является признаком составного модуля.

Тест Ферма

Вход: нечетное число n, число итераций k.

Выход: ответ на вопрос «является ли n простым».

Шаг 1. Для $i = \overline{1, k}$ выполнить следующее:

Шаг 1.1. Выбрать случайное число a из интервала [2, ..., n-1].

Шаг 1.2. Вычислить $r = a^{n-1} \pmod{n}$.

Шаг 1.3. Если $r \neq 1$, то возврат «n — составное».

Шаг 2. Возврат «n — предположительно простое».

Криптография с открытым ключом

Тест Миллера-Рабина

нечетное число n, число итераций k. Вход:

Выход: ответ на вопрос «является ли n простым».

Шаг 1. Представить $n-1=2^{s} \cdot t$, где t — нечетное число.

Шаг 2. Для $i = \overline{1, k}$ выполнить следующее:

Шаг 2.1. Выбрать случайное число a из интервала [2, ..., n-1].

Шаг 2.2. Вычислить $r = a^t \pmod{n}$.

Шаг 2.3. Если $r \neq 1$, то выполнить следующее для $j = \overline{1,s}$:

Шаг 2.3.1. Если r=n-1, то прервать цикл и перейти к шагу 2.1.

Шаг 2.3.2. Если j = s - 1, то возврат «n — составное».

Шаг 2.3.2. Вычислить $r = r^2 \pmod{n}$.

Шаг 3. Возврат «n — предположительно простое».

Кафедра информационной безопасности киберфизических систем

Криптографические методы защиты информации

Спасибо за внимание!

Евсютин Олег Олегович

Заведующий кафедрой информационной безопасности киберфизических систем Канд. техн. наук, доцент

+7 923 403 09 21 oevsyutin@hse.ru