

## **Art of Problem Solving** 2008 Romania Team Selection Test

Romania Team Selection Test 2008

| Day 1     | May 1st                                                                                                                                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | Let $n$ be an integer, $n \geq 2$ . Find all sets $A$ with $n$ integer elements such that the sum of any nonempty subset of $A$ is not divisible by $n + 1$ .                                                         |
| 2         | Let $a_i, b_i$ be positive real numbers, $i = 1, 2,, n, n \ge 2$ , such that $a_i < b_i$ , for all $i$ , and also                                                                                                     |
|           | $b_1 + b_2 + \dots + b_n < 1 + a_1 + \dots + a_n.$                                                                                                                                                                    |
|           | Prove that there exists a $c \in \mathbb{R}$ such that for all $i = 1, 2,, n$ , and $k \in \mathbb{Z}$ we have                                                                                                        |
|           | $(a_i + c + k)(b_i + c + k) > 0.$                                                                                                                                                                                     |
| 3         | Let $ABCDEF$ be a convex hexagon with all the sides of length 1. Prove that one of the radii of the circumcircles of triangles $ACE$ or $BDF$ is at least 1.                                                          |
| 4         | Prove that there exists a set $S$ of $n-2$ points inside a convex polygon $P$ with $n$ sides, such that any triangle determined by 3 vertices of $P$ contains exactly one point from $S$ inside or on the boundaries. |
| 5         | Find the greatest common divisor of the numbers                                                                                                                                                                       |
|           | $2^{561} - 2, 3^{561} - 3, \dots, 561^{561} - 561.$                                                                                                                                                                   |
| <br>Day 2 |                                                                                                                                                                                                                       |
| 1         | Let $n \geq 3$ be an odd integer. Determine the maximum value of                                                                                                                                                      |
|           | $\sqrt{ x_1-x_2 } + \sqrt{ x_2-x_3 } + \ldots + \sqrt{ x_{n-1}-x_n } + \sqrt{ x_n-x_1 },$                                                                                                                             |
|           | where $x_i$ are positive real numbers from the interval $[0,1]$ .                                                                                                                                                     |
| 2         | Are there any sequences of positive integers $1 \le a_1 < a_2 < a_3 < \dots$ such that for each integer $n$ , the set $\{a_k + n \mid k = 1, 2, 3, \dots\}$ contains finitely many prime numbers?                     |



# **Art of Problem Solving** 2008 Romania Team Selection Test

| 1     | Let $ABCD$ be a convex quadrilateral and let $O \in AC \cap BD$ , $P \in AB \cap CD$ , $Q \in BC \cap DA$ . If $R$ is the orthogonal projection of $O$ on the line $PQ$ prove that the orthogonal projections of $R$ on the sidelines of $ABCD$ are concyclic.                                                                                                                                                                        |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day 4 | June 12th                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4     | Let $n$ be a nonzero positive integer. A set of persons is called a $n$ -balanced set if in any subset of 3 persons there exists at least two which know each other and in each subset of $n$ persons there are two which don't know each other. Prove that a $n$ -balanced set has at most $(n-1)(n+2)/2$ persons.                                                                                                                   |
| 3     | Let $m, n \ge 3$ be positive odd integers. Prove that $2^m - 1$ doesn't divide $3^n - 1$ .                                                                                                                                                                                                                                                                                                                                            |
|       | Remark. The triangle obviously doesn't need to be acute.                                                                                                                                                                                                                                                                                                                                                                              |
| 2     | Let $ABC$ be an acute triangle with orthocenter $H$ and let $X$ be an arbitrary point in its plane. The circle with diameter $HX$ intersects the lines $AH$ and $AX$ at $A_1$ and $A_2$ , respectively. Similarly, define $B_1$ , $B_2$ , $C_1$ , $C_2$ . Prove that the lines $A_1A_2$ , $B_1B_2$ , $C_1C_2$ are concurrent.                                                                                                         |
|       | Author: Cosmin Pohoata                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1     | Let $ABC$ be a triangle with $\angle BAC < \angle ACB$ . Let $D, E$ be points on the sides $AC$ and $AB$ , such that the angles $ACB$ and $BED$ are congruent. If $F$ lies in the interior of the quadrilateral $BCDE$ such that the circumcircle of triangle $BCF$ is tangent to the circumcircle of $DEF$ and the circumcircle of $BEF$ is tangent to the circumcircle of $CDF$ , prove that the points $A, C, E, F$ are concyclic. |
| Day 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4     | Let $G$ be a connected graph with $n$ vertices and $m$ edges such that each edge is contained in at least one triangle. Find the minimum value of $m$ .                                                                                                                                                                                                                                                                               |
|       | Note. If the pentagon is labeled $ABCDE$ , the adjacent vertices of $A$ are $B$ and $E$ , the ones of $B$ are $A$ and $C$ etc.                                                                                                                                                                                                                                                                                                        |
| 3     | Show that each convex pentagon has a vertex from which the distance to the opposite side of the pentagon is strictly less than the sum of the distances from the two adjacent vertices to the same side.                                                                                                                                                                                                                              |

Contributors: Valentin Vornicu, turcas\_c, pohoatza, The QuattoMaster 6000, freemind



# **Art of Problem Solving** 2008 Romania Team Selection Test

| 2     | Let $m, n \geq 1$ be two coprime integers and let also $s$ an arbitrary integer. Determine the number of subsets $A$ of $\{1, 2,, m + n - 1\}$ such that $ A  = m$ and $\sum_{x \in A} x \equiv s \pmod{n}$ .                                                                                                         |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | Let $n \geq 3$ be a positive integer and let $m \geq 2^{n-1} + 1$ . Prove that for each family of nonzero distinct subsets $(A_j)_{j \in \overline{1,m}}$ of $\{1,2,,n\}$ there exist $i,j,k$ such that $A_i \cup A_j = A_k$ .                                                                                        |
| Day 5 | June 13th                                                                                                                                                                                                                                                                                                             |
| 1     | Let $n$ be a nonzero positive integer. Find $n$ such that there exists a permutation $\sigma \in S_n$ such that $\left  \{  \sigma(k) - k  : k \in \overline{1, n} \} \right  = n.$                                                                                                                                   |
| 2     | Let $ABC$ be a triangle and let $\mathcal{M}_a$ , $\mathcal{M}_b$ , $\mathcal{M}_c$ be the circles having as diameters the medians $m_a$ , $m_b$ , $m_c$ of triangle $ABC$ , respectively. If two of these three circles are tangent to the incircle of $ABC$ , prove that the third is tangent as well.              |
| 3     | Let $\mathcal{P}$ be a square and let $n$ be a nonzero positive integer for which we denote by $f(n)$ the maximum number of elements of a partition of $\mathcal{P}$ into rectangles such that each line which is parallel to some side of $\mathcal{P}$ intersects at most $n$ interiors (of rectangles). Prove that |
|       | $3 \cdot 2^{n-1} - 2 \le f(n) \le 3^n - 2.$                                                                                                                                                                                                                                                                           |
|       |                                                                                                                                                                                                                                                                                                                       |