Maths Apps Unit 3 (page1) Jenna Hogan 2017 4. Sequences - some specific types 1. Bivariate data Arithmetic seguences(AP) (Linear graph) · Two-way frequency bables Constant first difference partern/gradient · Explanatory variable eg. Gender · Response variable eq. Transport to school Diff:+4 = 7,11,15,19,23.The explanatory variable is the variable $7n+1 = 7n + diff(d), 7_i = 1st term(a)$ Geometric Sequences (4) (Exponential graph) used to explain or predict a Multiplying previous term by constant amoun difference in the response variable) Bus Car Train Other Totals Ratio: 3 = 5,15,45,135,405... $T_{n+1} = ratio(r) \times T_n$, $T_1 = 1st term(a)$ Male 26 47 32 19 124 Female 35 70 45 24 174 AP - jumps eq. Bus Car Train Other Totals 7n+1=7n+7,7=25 Male 21% 38% 26% 15% 100% $7_2 = 7_1 + 7 = 32$ 100% Female 20% 40% 26% 14%. $T_{100} = T_1 + 99(7) = 25 + 693 = 718$ Genral Rule: $- T_n = a + (n-1) d$ - If the explanatory variable uses ap - jumps the rows to show its different or: categories use row percentages (basedon row total) Calc: Sequences - If the explanatory variable uses the Sequences can show growth + decay First order linear recuimne relations columnste show its different categories use column percentages (based on column Lotal) Total = b+ Tota 2. Bivariate data - further analysis Eq. Tn+1=1.2 x Tn-50, 7,=400 · Form: linear or non linear T2=1,2x7,-50=430 · Direction: Positive or regutive 73=1.2 × 72-50=466 · Strength: Strong, moderate, weak 14=1.2×73-50= 509.2 (examples page 42, Unit 3 Madhs Apps TextBook) 5. Networks Stats Call: Ineur regression Euler's Rule · predicted value vertices + faces = edges +2 · correlation coefficient (r) V+f=e+2 · coefficient of determination (r2) eg. Edges? 3. Seguences V+f=e+2 Repeatedly: 6+5= e12 11-2= e adding Haking # +3/-2 ·multiplying/dividing # ×3/-2 9 Recursive Rule/Formula edges on this network

	Maths Apps Unit 3 (page	2) 2017 Jenner Hogan
	5. Network cont. Vocab	· Traversability - can it be drawn
	· Loop - any ealge that starts and ends at same wither	without taking the pen off the paper
	Multiple Edges - if two or more edges connect	and without going over the same
	the same two vertices, then the edges are	eelge + wice (can go through vertices)?
	said to be multiple edges	Traversable:
	Weighted Graph/Network - when each eally is	
	numbered showing a particular value	Not Travisable:
7	Directed Graph/Diagraph - has directed edges (arrows)	
	· Undirected Graph - no direct edges (no arrows)	Planar graphs- can be drawn
	· Simple Graph/Network-undirected,	with its edges only intersecting
	unweighted, no loops, no multiple edges	at vertices
	· Simple Directed Graph - simple, acrow	
	· Simple Weighted Graph - simple, weighted	Eulerian circuit connected graph,
	WALKS:	travels every edge once and
	· (losed - starts+finishes at same vertex	only once, repeated vertices permitted
	· Open - doesn't finish at starting vurtex	eq.
	· Path - a walk, no repeated use edge or vertex	
	· OpenPath-starting+finish vertices different	Semi-Eulerian - a connected graph,
	"Closed Path-finishies at starting vertex	open trail, every edge only once,
	· Trail - no repeated use of an edge	must have two odd vertices
	· Closed Trail - ends at writer it started from	eg.
	· Length of Walk, Path, Trail - # of edges travelled	count
	VERTICES & B	Hamiltonian - every vertex in a
	Connected: B+C	graph only once, exception of startifinish
	·Adjacent: A+B	eg. (closed path)
	· Uniconnected: A+D · D	
	Complete Graph-every vertex is	Semi Hamiltonian-open path that
	connected to every one by single edge	includes every vertex in graph once
	Bridge - in connected network, any	(open path)
	edge which, when removed, leaves	
	the network disconnected	Eulerian - no odd vertices
	Connections with directed networks-	Semi-Eulenan - 2 odd vertices
	with diructed networks we instead	6. Shortet path
	talk about the "strength" of the connections	A 5 7 find shortest peth