

INTRODUCTION

METHODS:

DESCRIPTIVE STATISTICS
STATISTICAL ESTIMATION
STATISTICAL TESTING
ANALYSIS OF VARIANCE

DESCRIPTIVE STATISTICS

- BASIC DSCRIPTIVE STATISTICS
- HISTOGRAM
- BOXPLOT

PROGRAMMING CODE

PC Functions.py

```
from Functions import Bd
from Functions import Bp
from Functions import Hg
import sys
import os
def clear():
    clear = lambda: os.system('cls')
    clear()
clear()
def mainMenu():
    print("\n
                         ***** WELCOME TO MY PROJECT **** \n\n")
    print("
                   ***** GLOBAL SMART IT CONVERGENCE\n\n\n\n\n")
    print("COURSE: DATA ANALYSIS ")
    print ("STUDENTS: SATTOROV SAMARIDDIN, BATIROV SULTONBEK")
    input()
    return 0
mainMenu()
clear()
```

```
def menu():
                          print()
   choice = input("""
   if choice == "A" or choice == "a":
       clear()
       Bd ()
       print("2.Main menu")
       chose = int(input("Enter:"))
       if chose == 1:
          clear()
          Bd()
          input()
          clear()
          menu()
       elif chose == 2:
           clear()
          menu()
       else: sys.exit()
```

```
elif choice == "B" or choice =="b":
    clear()
    Hg()
    print("\n")
    print("1.Again")
    print("2.Main menu")
    print("3.Quit")
    chose = int(input("Enter:"))
    if chose == 1:
        clear()
        Hq()
        clear()
        menu()
    elif chose == 2:
         clear()
        menu()
    else:
         sys.exit()
```

```
elif choice == "C" or choice == "c":
    clear()
    Bp()
    print("\n")
    print("1.Again")
    print("2.Main menu")
    print("3.Quit")
    chose = int(input("Enter:"))
    if chose == 1:
        clear()
        Bp()
        clear()
        menu()
    elif chose == 2:
        clear()
        menu()
    else:
        sys.exit()
```

```
elif choice=="D" or choice=="d":
        sys.exit
    else:
        clear()
        print("You must only select either A, B or C.")
        print("Please try again")
        menu()
menu()
```


SUPERIORITY OF OUR SOFTWARE

C:\WINDOWS\system32\cmd.exe - python my_project.py

How much data do you want to enter?

For dataA = 5

Number1=15 Number2=73

Number3=46

Number4=92

Number5-81

For dataB = 5

Number1=135

Number2=256

Number3=305

Number4-467

Number5=578

You can choose how much data you want to enter

You can enter data directly in the app (You don't have to extract it from excel)

dataA=[15.0, 73.0, 46.0, 92.0, 81.0] dataB=[135.0, 256.0, 305.0, 467.0, 578.0]

dataA dataB data A and B

Max=92.0 Max=578.0 Max=578.0

Min=15.0 Min=135.0 Min=15.0

Sum=307.00 Sum=1741.00 Sum=2048.00

SUPERIORITY OF OUR SOFTWARE

C:\WINDOWS\system32\cmd.exe - python my_project.py

dataA=[15.0, 73.0, 46.0, 92.0, 81.0]

dataB=[135.0, 256.0, 305.0, 467.0, 578.0]

It calculates data A and B together as well

dataA	dataB	data A and B
Max=92.0	Max=578.0	Max=578.0
Min=15.0	Min=135.0	Min=15.0
Sum=307.00	Sum=1741.00	Sum=2048.00
Range=77.00	Range=443.00	Range=563.00
Mean= 61.40	Mean= 348.20	Mean= 204.80
StDev=31.00	StDev=175.17	StDev=192.13
Median=73.00	Median=305.00	Median=113.50
Mode = Null	Mode = Null	Mode = Null

Median and Mode were added

1.Again

Main menu

3.Quit

Enter:

FUTURE UPDATES

C:\WINDOWS\system32\cmd.exe - python my_project.py

dataA=[15.0, 73.0, 46.0, 92.0, 81.0] dataB=[135.0, 256.0, 305.0, 467.0, 578.0]

1.Again

3.Quit Enter:

2.Main menu

dataA	dataB	data A and B
Max=92.0	Max=578.0	Max=578.0
Min=15.0	Min=135.0	Min=15.0
Sum=307.00	Sum=1741.00	Sum=2048.00
Range=77.00	Range=443.00	Range=563.00
Mean= 61.40	Mean= 348.20	Mean= 204.80
StDev=31.00	StDev=175.17	StDev=192.13
Median=73.00	Median=305.00	Median=113.50
Mode = Null	Mode = Null	Mode = Null

Adding more data types

INFERIORITY OF OUR SOFTWARE

FUTURE UPDATES

```
C:\WINDOWS\system32\cmd.exe - python my project.py
['Grade1', 'Grade2', 'Grade3', 'Grade4', 'Grade5']
Which grade do
                a want to choose:1
Grade1=[65.0, 61
                  81.0, 88.0, 69.0, 89.0, 55.0, 84.0, 86.0, 84.0, 71.0,
81.0, 84.0, 81.0,
                   .0, 67.0, 96.0, 66.0, 73.0, 75.0, 59.0, 71.0, 69.0, 63
.0, 79.0, 76.0, 63 85.0, 87.0, 88.0, 80.0, 71.0, 65.0, 84.0, 71.0, 75.0
, 81.0, 79.0, 64.0, (.0, 84.0, 77.0, 70.0, 75.0, 84.0, 75.0, 73.0, 92.0,
90.0, 79.0, 80.0, 71 \ 73.0, 71.0, 58.0, 79.0, 73.0, 64.0, 77.0, 82.0, 81
.0, 59.0, 54.0, 82.0, 7.0, 79.0, 79.0, 73.0, 74.0, 82.0, 63.0, 64.0, 73.0
, 69.0, 87.0, 68.0, 81 73.0, 83.0, 73.0, 80.0, 73.0, 73.0, 71.0, 66.0,
78.0, 64.0, 74.0, 68.0, 7.0, 75.0, 75.0, 80.0, 85.0, 74.0, 76.0, 80.0, 77
.0, 93.0, 70.0, 86.0, 80
                          81.0, 83.0, 68.0, 60.0, 85.0, 64.0, 74.0, 82.0
                          1.0, 81.0, 69.0, 60.0, 83.0, 72.0
, 81.0, 77.0, 66.0, 85.0,
Please Enter number of bins
```

Input data yourself (not read it from excel file)

SUPERIORITY OF OUR SOFTWARE

```
C:\WINDOWS\system32\cmd.exe - python my_project.py
['Grade1', 'Grade2', 'Grade3', 'Grade4', 'Grade5'] or All
Which grade do you want to choose:3
Grade3=[69.0, 70.0, 71.0, 80.0, 74.0, 78.0, 60.0, 80.0]
                                                         1.0, 86.0, 73
.0, 80.0, 80.0, 81.0, 90.0, 73.0, 80.0, 75.0, 64.0, 82
                                                          67.0, 69.0,
68.0, 75.0, 91.0, 80.0, 62.0, 88.0, 85.0, 89.0, 73.0,
                                                         0, 69.0, 85.0
, 62.0, 73.0, 56.0, 65.0, 78.0, 65.0, 84.0, 85.0, 80.0
                                                         7.0, 59.0, 75
.0, 82.0, 71.0, 88.0, 65.0, 83.0, 69.0, 82.0, 82.0, 66
                                                          70.0, 74.0,
83.0, 79.0, 76.0, 74.0, 66.0, 67.0, 69.0, 63.0, 70.0,
                                                         0, 82.0, 78.0
, 86.0, 72.0, 77.0, 73.0, 71.0, 78.0, 74.0, 78.0, 78.0]
                                                         9.0, 70.0, 76
.0, 79.0, 70.0, 75.0, 84.0, 77.0, 75.0, 75.0, 73.0, 67
                                                          81.0, 72.0,
72.0, 86.0, 60.0, 79.0, 59.0, 72.0, 80.0, 67.0, 73.0,
                                                         0, 81.0, 78.0
                                                         3.0, 85.0, 83
, 77.0, 70.0, 72.0, 66.0, 78.0, 72.0, 68.0, 75.0, 78.0
.0, 73.0, 74.0, 86.0, 77.0]
```

Choosing all the grades

FUTURE UPDATES

```
C:\WINDOWS\system32\cmd.exe - python my_project.py
['Grade1', 'Grade2', 'Grade3', 'Grade4', 'Grade5'] or All
Which grade do 📂 want to choose:3
Grade3=[69.0, 70
                   71.0, 80.0, 74.0, 78.0, 60.0, 80.0, 81.0, 86.0, 73
.0, 80.0, 80.0, 8. \, 90.0, 73.0, 80.0, 75.0, 64.0, 82.0, 67.0, 69.0,
68.0, 75.0, 91.0,
                  0, 62.0, 88.0, 85.0, 89.0, 73.0, 76.0, 69.0, 85.0
, 62.0, 73.0, 56.0, (.0, 78.0, 65.0, 84.0, 85.0, 80.0, 67.0, 59.0, 75
.0, 82.0, 71.0, 88.0 55.0, 83.0, 69.0, 82.0, 82.0, 66.0, 70.0, 74.0,
83.0, 79.0, 76.0, 74. 66.0, 67.0, 69.0, 63.0, 70.0, 71.0, 82.0, 78.0
, 86.0, 72.0, 77.0, 73
                        11.0, 78.0, 74.0, 78.0, 78.0, 89.0, 70.0, 76
.0, 79.0, 70.0, 75.0, 8 7, 77.0, 75.0, 75.0, 73.0, 67.0, 81.0, 72.0,
72.0, 86.0, 60.0, 79.0, 0, 72.0, 80.0, 67.0, 73.0, 72.0, 81.0, 78.0
, 77.0, 70.0, 72.0, 66.0, 8.0, 72.0, 68.0, 75.0, 78.0, 73.0, 85.0, 83
.0, 73.0, 74.0, 86.0, 77.0
```

Input data yourself (not read it from excel file)

STATISTICAL TESTING

- One-sample t test
- •Two-sample t test

Paired t test

MINI PROJECT - 1

MINI PROJECT - 2

PROGRAMMING CODE

PC Functions.py

Two-sample t Test

Test whether means of two samples are the same or not.

■ Example: An engineer want to test whether weight of products manufactured by two different machines is the same or not. Take two groups of sample (n₁ = 10, n₂=10) from the two machines.

Machine X: 4, 6, 2, 3, 8, 9, 4, 3, 6, 5

Machine Y: 7, 9, 5, 8, 7, 8, 8, 5, 6, 7

Machine X: 4, 6, 2, 3, 8, 9, 4, 3, 6, 5

There are 10 data (sample size is 10)

PYTHON CODE

```
print("Enter size of sample")
sample1 = float(input("Group x:"))
```



```
C:\WINDOWS\system32\cmd.exe - python my_project.py
Group y
                                              Machine Y: 7, 9, 5, 8, 7, 8, 8, 5, 6, 7
Data(1)=7
Data(2)=9
Data(3)=5
Data(4)=8
Data(5)=7
Data(6)=8
Data(7)=8
                                               We input all the data
Data(8)=5
Data(9)=6
Data(10)=7
       I = 0
       print("\nGroup y")
       while I < sample2:
           list sample2.append(I)
           list_sample2[I] = float(input("Data(" + str(I + 1) + ")" + "="
           I = I + 1
```

```
Group y
Data(1)=7
Data(2)=9
Data(3)=5
Data(4)=8
Data(5)=7
                                                  Step 1. Set hypothesis
Data(6)=8
Data(7)=8
Data(8)=5

 Null: H<sub>0</sub>: μ<sub>x</sub> = μ<sub>y</sub>

Data(9)=6
Data(10)=7
                                                                                               Two-tailed

 Alternative: H<sub>1</sub>: μ<sub>r</sub> ≠ μ<sub>r</sub>

H0: Mx=Mv
Please choose alternative hypothesis
                                                                            H_1: \mu_x < \mu_y
                                                                                               Left-tailed
1) H1: Mx≠My (Two-tailed)
2) H1: Mx<My (Left-tailed)</p>
                                                                            H_1: \mu_r > \mu_v
3) H1: Mx>My (Right-Tailed)
                                                                                               Right-tailed
Enter:1
                    print("\nH0: Mx=My")
                    print("Please choose alternative hypothesis")
                    print("1) H1: Mx≠My (Two-tailed)")
                    print("2) H1: Mx<My (Left-tailed)")</pre>
                    print("3) H1: Mx>My (Right-Tailed)")
                    alt hypothesis = int(input("Enter:"))
```

C:\WINDOWS\system32\cmd.exe - python my_project.py

```
H0: Mx=My
```

Please choose alternative hypothesis

- 1) H1: Mx≠My (Two-tailed)
- H1: Mx<My (Left-tailed)
- 3) H1: Mx>My (Right-Tailed)

Enter:1

- 1)Yes
- 2)No
- Enter:1_

$$T = \frac{(\bar{x} - \bar{y}) - (\mu_x - \mu_y)}{\sqrt{s_{||}^2 (\frac{1}{n} + \frac{1}{m})}} \sim t(n + m - 2) \qquad s_{|||}^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 + \sum_{j=1}^m (y_j - \bar{y})^2}{n + m - 2}$$

• Different (unequal) variance: $\bar{x} - \bar{y} \sim N(\mu_x - \mu_y, \frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m})$

$$T = \frac{(\bar{x} - \bar{y}) - (\mu_x - \mu_y)}{\sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}} \sim t(\emptyset) \qquad \phi = \frac{(\frac{s_x^2}{n} + \frac{s_y^2}{m})^2}{\frac{(s_x^2/n)^2}{n-1} + \frac{(s_y^2/m)^2}{m-1}}$$


```
C:\WINDOWS\system32\cmd.exe - python my_project.py
Group(x):[4.0, 6.0, 2.0, 3.0, 8.0, 9.0, 4.0, 3.0, 6.0, 5.0]
Group(y):[7.0, 9.0, 5.0, 8.0, 7.0, 8.0, 8.0, 5.0, 6.0, 7.0]
H0: Mx=My
H1: Mx≠My
Variable
           Sample size
                           Mean
                                     SD
                                            Variance
                                                         SE Mean
Group(x):
               10
                            5.00
                                     2.26
                                              5.11
                                                          0.71
Group(y):
               10
                            7.00
                                     1.33 1.78
                                                          0.42
Difference:
                           -2.00
                                     0.93
                                              3.33
                                                          0.29
Difference: Mu(Group(x)-Mu(Group(y))
Estimate for difference:-2.0
T value:-2.41
Degree of freedom:18
Significance level:0.05
t(18,0.025)=2.1
for T(-2.41)>t(2.1)/T(-2.41)<-t(-2.1)
H1(Mx≠My)rejected
H0(Mx=My) accepted
1.Again
Main menu
3.Quit
Enter:_
```

```
import statistics
                                          Libraries
from scipy import stats
from scipy.stats import sem
9 9
variance = float(input("\nAssume equal variance\n1)Yes\n2)No\nEnter:"))
Xx = statistics.mean(list sample1)
   = statistics.mean(list sample2)
Ху
n = len(list sample1)
m = len(list sample2)
                                                Some statistical
Sx = statistics.variance(list sample1)
                                                    functions
    statistics.variance(list sample2)
Sy
SDx = statistics.stdev(list sample1)
SDy = statistics.stdev(list sample2)
```

import math

```
variance = float(input("\nAssume equal variance\n1)Yes\n2)No\nEnter:"
Xx = statistics.mean(list sample1)
Xy = statistics.mean(list sample2)
n = len(list sample1)
m = len(list sample2)
Sx = statistics.variance(list sample1)
Sy = statistics.variance(list sample2)
SDx = statistics.stdev(list sample1)
SDy = statistics.stdev(list sample2)
```


Finding differences

```
variance = float(input("\nAssume equal variance\n1)Yes\n2)No\nEnter:"))
if variance == 1:
     Sx1 = 0
     for i in list sample1:
                                                                 s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} + \sum_{j=1}^{m} (y_{j} - \bar{y})^{2}}{n + m - 2}
          Sx1 = pow((i - Xx), 2) + Sx1
    Sx2 = 0
     for x in list sample2:
          Sx2 = pow((x - Xy), 2) + Sx2
     T = (Xx - Xy) / math.sqrt(S *
     o = n + m - 2 \leftarrow
     a = 0.05
     t = abs(float("%.21" % stats.t.ppf(a, o)))
                                                                              \emptyset = n + m - 2
                                                                5% significance level (\alpha)
```


• Left-tailed: $T < -t(\phi, \alpha)$

• Right-tailed: $T > t(\phi, \alpha)$

- Reject H₀ otherwise accept H₀

Numbers in each row of the table are values on a t-distribution with (df) degrees of freedom for selected right-tail (greater-than) probabilities (ρ) .

df/p	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0005
1	0.324920	1.000000	3.077684	6.313752	12.70620	31.82052	63.65674	636.6192
2	0.288675	0.816497	1.885618	2.919986	4.30265	6.96456	9.92484	31.5991
3	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	5.84091	12.9240
4	0.270722	0.740697	1.533206	2.131847	2.77645	3.74695	4.60409	8.6103
5	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	4.03214	6.8688
6	0.264835	0.717558	1.439756	1.943180	2.44691	3.14267	3.70743	5.9588
7	0.263167	0.711142	1.414924	1.894579	2.36462	2.99795	3.49948	5.4079
8	0.261921	0.706387	1.396815	1.859548	2.30600	2.89646	3.35539	5.0413
9	0.260955	0.702722	1.383029	1.833113	2.26216	2.82144	3.24984	4.7809
10	0.260185	0.699812	1.372184	1.812461	2.22814	2.76377	3.16927	4.5869
11	0.259556	0.697445	1.363430	1.795885	2.20099	2.71808	3.10581	4.4370
12	0.259033	0.695483	1.356217	1.782288	2.17881	2.68100	3.05454	43178
13	0.258591	0.693829	1.350171	1.770933	2.16037	2.65031	3.01228	4.2208
14	0.258213	0.692417	1.345030	1.761310	2.14479	2.62449	2.97684	4.1405
15	0.257885	0.691197	1.340606	1.753050	2.13145	2.60248	2.94671	4.0728
16	0.257599	0.690132	1.336757	1.745884	2.11991	2.58349	2.92078	4.0150
17	0.257347	0.689195	1.333379	1.739607	2.10982	2.56693	2.89823	3.9651
18	0.257123	0.688364	1.330391	1.734064	2.10092	2.55238	2.87844	3.9216
19	0.256923	0.687621	1.327728	1.729133	2.09302	2.53948	2.86093	3.8834
20	0.256743	0.686954	1.325341	1.724718	2.08596	2.52798	2.84534	3.8495
21	0.256580	0.686352	1.323188	1.720743	2.07961	2.51765	2.83136	3.8193
22	0.256432	0.685805	1.321237	1.717144	2.07387	2.50832	2.81876	3.7921
23	0.256297	0.685306	1.319460	1.713872	2.06866	2.49987	2.80734	3.7676
24	0.256173	0.684850	1.317836	1.710882	2.06390	2.49216	2.79694	3.7454
25	0.256060	0.684430	1.316345	1.708141	2.05954	2.48511	2.78744	3.7251
26	0.255955	0.684043	1.314972	1.705618	2.05553	2.47863	2.77871	3.7066
27	0.255858	0.683685	1.313703	1.703288	2.05183	2.47266	2.77068	3.6896
28	0.255768	0.683353	1.312527	1.701131	2.04841	2.46714	2.76326	3.6739
29	0.255684	0.683044	1.311434	1.699127	2.04523	2.46202	2.75639	3.6594
30	0.255605	0.682756	1.310415	1.697261	2.04227	2.45726	2.75000	3.6460
z	0.253347	0.674490	1.281552	1.644854	1.95996	2.32635	2.57583	3.2905
CI	-		80%	90%	95%	98%	99%	99.9%


```
if variance == 1:
    Sx1 = 0
    for i in list sample1:
       Sx1 = pow((i - Xx), 2) + Sx1
    Sx2 = 0
    for x in list sample2:
        Sx2 = pow((x - Xy), 2) + Sx2
    S = (Sx1 + Sx2) / ((n + m) - 2)
    T = (Xx - Xy) / math.sqrt(S * (1 / n + 1 / m))
    o = n + m - 2
   t = abs(float("%.2f" % stats.t.ppf(a, o)))
```



```
print("\nH0: Mx=My")
 print("Please choose alternative hypothesis")
 print("1) H1: Mx≠My (Two-tailed)")
 print("2) H1: Mx<My (Left-tailed)")</pre>
 print("3) H1: Mx>My (Right-Tailed)")
 alt hypothesis = int(input("Enter:"))
  if alt hypothesis == 1:
      clear()
      print("Group(x):" + str(list sample1))
      print("Group(y):" + str(list sample2))
      print("H0: Mx=My")
      print("H1: Mx≠My")
C:\WINDOWS\system32\cmd.exe - python my_project.py
Group(x):[4.0, 6.0, 2.0, 3.0, 8.0, 9.0, 4.0, 3.0, 6.0, 5.0]
Group(y):[7.0, 9.0, 5.0, 8.0, 7.0, 8.0, 8.0, 5.0, 6.0, 7.0]
H0: Mx=My
H1: Mx≠My
```

```
for T(-2.41)>t(2.1)/T(-2.41)<-t(-2.1)
                H1(Mx≠My)rejected
                H0(Mx=My) accepted
t = abs(float("%.2f" % stats.t.ppf(a, o)))
print("t(" + str(o) + ", " + str(a) + ") = " + str(t))
print("\n")
if T > t and T < -t:
   print("for T(" + str("%.2f" % T) + ")" + ">" + "t(" + str(t) + ")" + "/" + "T(" + str(
       "%.2f" % T) + ")" + "<" + "-t(" + str(-t) + ")")
    print("H0(Mx=My) rejected" + "\nH1(Mx≠My) accepted")
else:
    print("for T(" + str("%.2f" % T) + ")" + ">" + "t(" + str(t) + ")" + "/" + "T(" + str(
       "%.2f" % T) + ")" + "<" + "-t(" + str(-t) + ")")
   print("H1(Mx≠My)rejected\nH0(Mx=My) accepted")
```

elif alt_hypothesis == 2:


```
if T < -t:
    print("for T(" + str("%.2f" % T) + ")" + "<" + "-t(" + str(-t) + ")")
    print("H0(Mx=My)rejected\nH1(Mx<My)accepted")
else:
    print("for T(" + str("%.2f" % T) + ")" + "<" + "-t(" + str(-t) + ")")
    print("H1(Mx<My)rejected\nH0(Mx=My)accepted")</pre>
```

```
elif alt hypothesis == 3:
if T > t:
    print("for T(" + str("%.2f" % T) + ")" + ">" + "t(" + str(t) + ")")
    print("H0(Mx=My)rejected" + "\nH1(Mx>My)accepted")
else:
    print("for T(" + str("%.2f" % T) + ")" + ">" + "t(" + str(t) + ")")
    print("H1 (Mx>My) rejected\nH0 (Mx=My) accepted")
```

variance = float(input("\nAssume equal variance\n1)Yes\n2)No\nEnter:"))

$$\phi = \frac{(\frac{s_x^2}{n} + \frac{s_y^2}{m})^2}{\frac{(s_x^2/n)^2}{n-1} + \frac{(s_y^2/m)^2}{m-1}}$$

$$T = \frac{(\bar{x} - \bar{y}) - (\mu_x - \mu_y)}{\sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}}$$


```
C:\WINDOWS\system32\cmd.exe - python my_project.py
 Group(x-y):[-3.0, -3.0, -3.0, -5.0, 1.0, 1.0, -4.0, -2.0, 0.0, -2.0]
 H0: Md=0
 H1: Md<0
Variable Sample size Mean SD Variance SE Mean
Group(x-y): 10
                         -2.00 2.05
                                            4.22
                                                       0.65
 T value:-3.08
 Degree of freedom:9
 Significance level:0.05
 t(9,0.05)=1.83
 for T(-3.08)<-t(-1.83)
 H0(Md=0)rejected
 H1(Md<0)accepted
1.Again
 Main menu
 3.Quit
 Enter:
```

Step 1. Set hypothesis

Null: H₀: μ_d = 0

• Alternative: $H_1: \mu_d \neq 0$ Two-tailed

 $H_1: \mu_d < 0$ Left-tailed

 $H_1: \mu_d > 0$ Right-tailed

```
print("\nH0: Md=0")
print("Please choose alternative hypothesis")
print("1) H1: Md≠0 (Two-tailed)")
print("2) H1: Md<0 (Left-tailed)")
print("3) H1: Md>0 (Right-Tailed)")
alt_hypothesis = int(input("Enter:"))
```

THANK YOU FOR YOUR ATTENTION