EXERCICE 19 p 117 (niveau 1-2)

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{140}_{55}Cs + ^{94}_{37}Rb + 2 ^{1}_{0}n$$

Transformation de type fission nucléaire, se produit dans une centrale nucléaire.

$${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$$

Transformation de type fusion nucléaire, se produit dans le Soleil.

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{140}_{54}Xe + ^{94}_{38}Sr + 2 ^{1}_{0}n$$

Transformation de type fission nucléaire, se produit dans une centrale nucléaire.

EXERCICE 21 p 94 (niveau 1-2)

a.
$$N_2(g) + 2 H_2(g) \rightarrow N_2 H_4(g)$$

b. 2
$$C_2H_6(g) + 7O_2(g) \rightarrow 6H_2O(\ell) + 4CO_2(g)$$

c.
$$CuO(s) + 2 H^{+}(aq) \rightarrow Cu^{2+}(aq) + H_{2}O(\ell)$$

d. 11
$$H_2O(\ell) + 12 CO_2(g) \rightarrow C_{12}H_{22}O_{11}(s) + 12 O_2(g)$$

Exercice 23 p 117 (niveau 1-2)

- 1. L'industrie nucléaire utilise l'uranium 235 car il est fissile, et c'est la fission qu'on utilise Dans les centrales nucléaires pour produire de l'énergie.
- 2.

a.
$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{94}_{38}Sr + ^{141}_{54}Xe + ^{1}_{0}n$$

b. $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{92}_{58}Ce + ^{141}_{34}Se + 3 ^{1}_{0}n$

b.
$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{92}_{58}Ce + ^{141}_{34}Se + 3 ^{1}_{0}n$$

EXERCICE 26 p 95 (niveau 1-2)

	État initial		État final	Réactif limitant
	H_2	O_2	H_2 , O_2 , H_2O	H_2 , O_2
Exp 1	9 9	6 8	8 8	H_2
Exp 2	9 8	0 0	8	H ₂ , O ₂ mélange stoechiométrique
Exp 3	8 8	0 8	\$ & & & & & & & & & & & & & & & & & & &	O_2