

Automatic Dysarthric Speech Detection Exploiting Pairwise Distance-Based Convolutional Neural Networks

Parvaneh Janbakhshi^{1,2}, Ina Kodrasi¹, Hervé Bourlard^{1,2}

¹Idiap Research Institute, Martigny, Switzerland ²École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

{parvaneh.janbakhshi, ina.kodrasi, herve.bourlard}@idiap.ch

Aim

- Dysarthric speech detection
- Exploiting deep learning approaches while alleviating problems
- ➤ Overfitting (due to limited training dysarthric data) and lack of robustness to unrelated speaker variabilities

Objectives

- Exploit pairwise training: advantageous for limited training data while guiding the network to extract robust features
- ► Use a single network for different utterances

Hypothesis

- The frame-level distance matrix between two healthy utterance representations has a different pattern than between a healthy and a pathological utterance representation
 - Analysing pairs of phonetically-balanced representations; one from a healthy speaker (i.e., the reference) and one from a test speaker

 \mathbf{r}_i and \mathbf{t}_j : reference and test feature vectors at time frame i and j.

Distance matrix \mathbf{D} with (i, j)—th entry: the distance d between \mathbf{r}_i and $\mathbf{t}_j \to \mathbf{D}_{i,j} = d(\mathbf{t}_i, \mathbf{r}_j)$

Proposed method

- 1 Converting utterances to articulatory posteriors (APs) representations
 - Advantageous in comparison to short-time Fourier transform (STFT): AP representation characterises articulation, is robust to noise, has multilingual and crosslingual portability
- 2 Considering pairs of phonetically-balanced representations, one from a healthy speaker (i.e., the reference) and the other from the test speaker
- ► Resizing to the same temporal dimension
- 3 Extracting features using a front-end convolutional layer
- Computing the frame-level distance matrix from pairs of extracted feature representations
- 5 Analysing the computed distance matrices by the CNN classifier
- ▶ Predicting whether the test speaker used for the distance matrix computation is healthy or dysarthric

The neural network blocks 3 4 5 are jointly optimized in an end-to-end framework

Evaluation

Databases

- ▶ 50 Spanish-speaking patients with Parkinson's disease vs. 50 healthy speakers (10-fold cross-validation paradigm)
- ➤ 20 French-speaking patients with Amyotrophic Lateral Sclerosis and Parkinson's disease vs. 20 healthy speakers (5-fold cross-validation paradigm)

Performance evaluation

➤ Detection accuracy: percentage of correctly classified speakers and AUC: area under ROC curve

Baseline networks

- ► B-CNN₁: CNN trained on representations of short (i.e., 160 ms) segments of speech
- ▶ B-CNN₂: CNN trained on distance matrices computed directly from pairs of input representations (i.e., without using the front-end feature extraction layer)

Results

► Classification results using B-CNN₁ and two input representations

Database	Input representation	AUC Acc	curacy [%]
Spanish PC-GITA	STFT	0.56	53.67
Spanish PC-GITA	AP	0.75	$\boldsymbol{72.00}$
French MoSpeeDi	STFT	0.64	52.50
French MoSpeeDi	AP	0.73	60.83

► Classification results using AP representations

Database	CNN	AUC A	AUC Accuracy [%]	
Spanish PC-GITA	Baseline B-CNN ₁	0.75	72.00	
Spanish PC-GITA	Baseline B-CNN ₂	0.78	68.33	
Spanish PC-GITA	Proposed	0.83	77.67	
French MoSpeeDi	Baseline B-CNN ₁	0.733	60.83	
French MoSpeeDi	Baseline B-CNN ₂	0.77	70.83	
French MoSpeeDi	Proposed	0.84	76.67	

- ► AP representations perform better than STFT independently of the language or diseases
- ▶ Proposed approach outperforms baseline systems for different databases

Conclusion

The proposed automatic dysarthric speech detection system using a pairwise distance-based CNN operating on speech AP representations is feasible while being generalizable across languages and outperforming state-of-the-art CNN-based systems