INDEX

1. Numpy 기본 사용법

2. Numpy 연산과 함수

3. Numpy 활용 및 응용

Numpy의 기본 사용법

Numpy의 차원

- 1차원 축(행) = vector
- 2차원 축(열) = Matrix(행렬)
- 3차원 축(채널) = Tensor(3차원 이상)

	(골
행	1	2
	3	4

Numpy의 연산과 함수

Numpy의 상수 연산

1. 더하기

2. 곱셈

Numpy의 연산과 함수

서로 다른 형태의 numpy 연산

브로드캐스트: 형태가 다른 배열의 연산 하기 위해 배열의 형태를 동적으로 변환해준다.

Numpy의 연산과 함수

Numpy의 마스킹 연산

- 마스킹: 각 원소에 대해 체크합니다. 어떤 조건문에 대해서

	Ar	ray1				Arra	ay2	
1	2	3	4		Т	Т	Т	Т
5	6	7	8	Array2 = Array1 < 10	Т	Т	Т	Т
9	10	11	12		Т	F	F	F

- 마스킹 응용 : True 부분을 다른 값으로 대체 할 수 있음. Array[A]

	Arra	ay2				Arr	ay1	
Т	Т	Т	Т		100	100	100	100
Т	Т	Т	Т	Array1[Array2] = 100	100	100	100	100
Т	F	F	F		100	F	F	F

Numpy의 활용

Numpy의 저장과 불러오기

Result

Numpy의 활용

Numpy의 원소 정렬 (Default : 오름차순)

인덱싱 기법으로 내림차순으로 정렬가능

Numpy의 활용

Numpy의 원소 정렬 2차원 배열일 때 열을 기준으로 정렬

9	28	21	1	3	4	Axis = ?	1	28	14	1	2	4
1	29	14	33	2	5		9	29	21	33	3	5