LEADING 2022 Unsupervised Learning

Shadi Rezapour, Ph.D.

Assistant Professor

Drexel University

sr3563@Drexel.edu

https://www.shadirezapour.com/

Supervised and Unsupervised ML

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by **labels** indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

What is Cluster Analysis?

- Unsupervised learning: no predefined classes
- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Similarity measures (types of objects, similarity dissimilarity measures)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Clustering: Rich Applications and Multidisciplinary Efforts

- Pattern Recognition
- Spatial Data Analysis
 - Create thematic maps in GIS by clustering feature spaces
 - Detect spatial clusters or for other spatial mining tasks
- Image Processing
- Economic Science (especially market research)
- WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

Major Clustering Approaches

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square err
- Typical methods: k-means, k-medoids, CLARANS

• <u>Hierarchical approach</u>:

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON

• <u>Density-based approach</u>:

- Based on connectivity and density functions
- Typical methods: DBSACN, OPTICS, DenClue

• Grid-based approach:

- based on a multiple-level granularity structure
- Typical methods: STING, WaveCluster, CLIQUE

The K-Means Clustering Method

- Given *k*, the *k-means* algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., mean point, of the cluster)
 - Centroid: the "middle" of a cluster $C_{m} = \frac{\sum_{i=1}^{N} (t_{ip})}{C_{ip}}$
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when no more new assignment

The K-Means Clustering Method

Example

Euclidean Distance

	X1	X2
Α	2	3
В	6	1
С	1	2
D	3	0

	X1	X2	
AB	4	2	
CD	2	1	

Choose two centroids AB and CD,

AB = Average of A, B

CD = Average of C,D

	X1	X2
Α	2	3
В	6	1
С	1	2
D	3	0

	X1	X2
AB	4	2
CD	2	1

	A	В	С	D
AB	5	5	9	5
CD	4	16	2	2

Choose two centroids AB and CD, AB = Average of A, B CD = Average of C,D

Calculate squared Euclidean distance between all data points to the centroids AB, CD.

For example; distance between A(2,3) and AB (4,2) can be given by $s^2 = (2-4)^2 + (3-2)^2$

	X1	X2
Α	2	3
В	6	1
С	1	2
D	3	0

	X1	X2
AB	4	2
CD	2	1

|--|

	A	В	С	D
AB	5	5	9	5
CD	<mark>4</mark>	16	2	2

Choose two centroids AB and CD, AB = Average of A, B CD = Average of C,D Calculate squared Euclidean distance between all data points to the centroids AB, CD.

For example; distance between A(2,3) and AB (4,2) can be given by $s^2 = (2-4)^2 + (3-2)^2$.

	X1	X2
Α	2	3
В	6	1
С	1	2
D	3	0

	Α	В	С	D
В	20	0	26	10
ACD	3.78	16.44	1.11	3.78

	Α	В	С	D
AB	5	5	9	5
CD	4	16	2	2

	X1	X2
В	6	1
ACD	2	1.67

Choose two centroids AB and CD, AB = Average of A, B CD = Average of C,D Calculate squared Euclidean distance between all data points to the centroids AB, CD.

For example; distance between A(2,3) and AB (4,2) can be given by $s^2 = (2-4)^2 + (3-2)^2$.

Choose new centroids

ACD = Average of A, C, D

B = B

Comments on the K-Means Method

- <u>Strength:</u> Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations.
 Normally, k, t << n.
 - Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))
- <u>Comment:</u> Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms
- Weakness
 - Applicable only when mean is defined, then what about categorical data?
 - Need to specify *k*, the *number* of clusters, in advance

Selecting K: Elbow Method

Comments on the K-Means Method

- <u>Strength:</u> Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations.
 Normally, k, t << n.
 - Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))
- <u>Comment:</u> Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as: *deterministic annealing* and *genetic algorithms*

Weakness

- Applicable only when mean is defined, then what about categorical data?
- Need to specify *k*, the *number* of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with *non-convex shapes*

Hierarchical Clustering

• Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination

condition

Bottom-up Clustering

- Input: data
- Output: cluster hierarchy
- Algorithm:
 - Step 1: consider every data point as its own cluster
 - Step 2: compute the distance between all cluster pairs
 - Step 3: merge/combine the nearest two clusters into one
 - Step 4: repeat steps 2 and 3 until all data instances is in one cluster

Bottom-up Clustering

- Computing the distance between two clusters
 - Single-Link: the distance between the two nearest data points
 - Complete-Link: the distance between the two data points that are farthest apart
 - Average-Link: the average distance between all data points pairs in the two different clusters
 - Centroid-Link: the distance between the centroids of two different clusters

• Step 1: consider each data point its own cluster

- Step 2: compute the distance between all cluster pairs
- Step 3: merge/combine the nearest two clusters into one

- Step 2: compute the distance between all cluster pairs
- Step 3: merge/combine the nearest two clusters into one

- Step 2: compute the distance between all cluster pairs
- Step 3: merge/combine the nearest two clusters into one

- Step 2: compute the distance between all cluster pairs
- Step 3: merge/combine the nearest two clusters into one

• Step 2: compute the distance between all cluster pairs

• Step 3: merge/combine the nearest two clusters into one

• Step 2: compute the distance between all cluster pairs

• Step 3: merge/combine the nearest two clusters into one

Coding time!