മാരൂ ම മിയാൽ අපිරිණි / സുസൂവ വക്ക്വവുണ്ടാവന്യ /All Rights Reserved

தெருவை இது முறுக்குக்கும் இருவர்கள் குறிக்கு கொற்கு இது இது இது இது குறிக்கு இது குறிக்கு இருவர்கள் இருவர்கள் இருவர்கள் இருவர்கள் இருவர்கள் இருவர்கள் இருவர்கள் இருவர்கள் இருவர்கள் முறிக்கு இருவர்கள் இருவர்கள் முறிக்கு இருவர்கள் இருவர்கள் முறிக்கு இருவர்கள் இருவர்கள

අධානයන පොදු සහතික පතු (උසස් පෙළ) විතාගය, 2023(2024) නබාහිධ ධොrනුන් නූரානුග් ධුන්නුග් (உயர் தூ)ப் பரீட்சை, 2023(2024) General Certificate of Education (Adv. Level) Examination, 2023 (2024)

රසායන ව්දහාව இரசாயனவியல் I Chemistry

ථාදය *ලඳහායි* இரண்டு மணித்தியாலம் Two hours

அறிவுறுத்தல்கள் :

- இவ்வினாத்தாள் 08 பக்கங்களைக் கொண்டுள்ளது.
- ※ ஆவர்த்தன அட்டவணையும் வழங்கப்பட்டுள்ளது.
- 🔆 எல்லா வினாக்களுக்கும் விடை எழுதுக.
- 🔆 கணிப்பானைப் பயன்படுத்த இடமளிக்கப்படமாட்டாது.
- 🔆 விடைத்தாளில் தரப்பட்டுள்ள இடத்தில் உமது சுட்டெண்ணை எழுதுக.
- 🛠 விடைத்தாளின் மறுபக்கத்தில் தரப்பட்டுள்ள அறிவுறுத்தல்களைக் கவனமாக வாசித்துப் பின்பற்றுக.
- 🔆 1 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (1),(2),(3),(4),(5) என இலக்கமிடப்பட்ட விடைகளில் சரியான அல்லது மிகப் பொருத்தமான விடையைத் தெரிந்தெடுத்து, அதனைக் குறித்து நிற்கும் இலக்கத்தைத் தரப்பட்டுள்ள அறிவுறுத்தல்களுக்கு அமைய விடைத்தாளில் புள்ளடி (×) இடுவதன் மூலம் காட்டுக.

அகில வாயு மாறிலி

උප්ාර පහු පරිකෂකවරුන්ගේ

සුඥෝජන්ය යැදහා පමණි

அகில வாயு மாறிலி $R=8.314~\mathrm{J~K^{-1}~mol^{-1}}$ பிளாங்கின் மாறிலி $h=6.626\times 10^{-34}~\mathrm{J~s}$ அவகாதரோ மாறிலி $N_A=6.022\times 10^{23}~\mathrm{mol^{-1}}$ ஒளியின் வேகம் $c=3\times 10^8~\mathrm{m~s^{-1}}$

1. உணவை வெப்பமாக்குவதற்குப் பயன்படுத்தப்படும் ஒரு நுண்ணலைக் கனலடுப்பில் (Microwave oven) பயன்படுத்தப்படும் கதிர்வீசலின் அலைநீளம் 1.1 cm எனின், இந்நுண்ணலைக் கதிர்வீசலின் ஒரு போட்ட னின் சக்தி

(குறிப்பு : கணிப்புக்குப் பிளாங்கின் மாறிலி, $h = 6.6 \times 10^{-34} \; \mathrm{J \, s}$ ஐப் பயன்படுத்துக)

- (1) $6.0 \times 10^{-26} \text{ J}$ (2) $1.8 \times 10^{-24} \text{ J}$ (3) $1.8 \times 10^{-23} \text{ J}$ (4) $1.8 \times 10^{-22} \text{ J}$ (5) $6.0 \times 10^{-20} \text{ J}$

2. கீழே தரப்பட்ட பட்டியலிலிருந்து, ஐதரசன் நிறமாலையில் மிகவும் கூடிய மீடினையும் மிகவும் குறைந்த மீடிறனையும் உடைய காலற் கோடுகளை முறையே இனங்காண்க.

காலற் கோட்டுப் பட்டியல் ($\mu = \mu$ முதன்மைச் சக்திச் சொட்டெண்)

 $n=3 \rightarrow n=1$, $n=2 \rightarrow n=1$, $n=3 \rightarrow n=2$, $n=4 \rightarrow n=2$, $n=4 \rightarrow n=3$

- (1) $n=3 \rightarrow n=1$, $n=2 \rightarrow n=1$ (2) $n=3 \rightarrow n=1$, $n=4 \rightarrow n=3$
- (3) $n=2 \rightarrow n=1, n=4 \rightarrow n=3$ (4) $n=3 \rightarrow n=1, n=3 \rightarrow n=2$
- (5) $n=2 \rightarrow n=1, n=3 \rightarrow n=2$
- 3. கீழே தரப்பட்டுள்ள சேர்வைகள் வெப்பமாக்கப்படும்போது தாக்கம்

 $MCO_2(s) \xrightarrow{\Delta} MO(s) + CO_2(g)$ இற்கேற்பப் பிரிகையடைகின்றன. மிகவும் குறைந்த பிரிகை வெப்பநிலை உள்ள சேர்வையை இனங்காண்க.

- (1) BeCO₂
- (2) MgCO₃
- (3) CaCO,
- (4) $SrCO_3$
- 4. $F_2 IO_2^{-+}, F_2 BrO_2^{--}$, $IBrCl_3^{--}$ ஆகியவற்றின் மத்திய அணுக்களைச் சுற்றி உள்ள இலத்திரன் சோடிக் கேத்திரகணிதங்கள் முறையே
 - சீசோ, நான்முகி, எண்முகி ஆகும்.
 - (2) நான்முகி, சீசோ, சதுரக் கூம்பகம் ஆகும்.
 - (3) முக்கோண இருகூம்பகம், சதுரத் தளம், சதுரக் கூம்பகம் ஆகும்.
 - (4) நான்முகி, சீசோ, எண்முகி ஆகும்.
 - (5) நான்முகி, முக்கோண இருகூம்பகம், என்முகி ஆகும்.
- 5. பின்வரும் சேர்வையின் tUPAC பெயர் யாது?
 - (1) 4-amino-3-oxohex-5-en-2-ol
 - (2) 5-hydroxy-4-oxohex-1-en-3-amine
 - (3) 3-amino-5-hydroxyhex-1-en-4-one
 - (4) 4-amino-2-hydroxyhex-5-en-3-one
 - (5) 3-amino-5-hydroxy-4-oxobex-1-ene
- $\begin{array}{c} \operatorname{CH_2} & \operatorname{NH_2} \\ \operatorname{HO-CH-C-CH-CH=CH_2} \end{array}$

17

இரசாயனவியல் (புள்ளி வழங்கும் திட்டம்) - க.பொ.த (உயர் தர)ப் பரீட்சை - 2022(2023) - இறுதித் திருத்தங்கள்

ரு்தரங்கமா**ன**த 6. ஒரு தரப்பட்ட வெப்பநிலையில் உலோகக் குளோரைட்டுகள் சிலவற்றின் கரைதிறன் டெருக்கங்கள் கீழே பட்டியற்படுத்தப்பட்டுள்ளன. உலோகக் குளோரைட்டு கரைதிறன் பெருக்கம் $5.00 \times 10^{-7} \text{ mol}^3 \text{ dm}^{-9}$ A: PbCl₂ $1.60 \times 10^{-7} \text{ mol}^2 \text{ dm}^{-6}$ B: CuCl $1.60 \times 10^{-10} \text{ mol}^2 \text{ dm}^{-6}$ C: AgCl $1.08 \times 10^{-16} \text{ mol}^3 \text{ dm}^{-9}$ D: Hg₂Cl₂ உலோகக் குளோரைட்டுகள் அவற்றின் நிரம்பிய நீர்க் கரைசல்களின் குளோரைட்டு அயன் செறிவு அதிகரிக்கும் வரிசையில் ஒழுங்குபடுத்தப்பட்டிருக்கும் தொடரி யாது? (2) B < A < C < D(3) A < B < D < C(1) A < B < C < D(5) D < C < A < B(4) D < C < B < A7. பிழையான கூற்றைத் தெரிந்தெடுக்க. (1) கரு ஏற்றம் அதிகரிக்கும்போது சமவிலத்திரன் ஓரணு அயன்களின் அயன் ஆரைகள் குறைகின்றன. (2) எல்லா அணுக்களிலும் He (ஈலியம்) அணுவே மிகவும் சிறியதாகும். (3) Na⁺ இன் ஆரை Li இன் அணு ஆரையிலும் பெரியதாகும். (4) LiI, KF, KI ஆகியவற்றிடையே மிகக் கூடிய அயன் இயல்பை KF காட்டுகின்றது. (5) விழுமிய வாயுக்களிடையே மிகப் பெரிய கொதிநிலையை Xe கொண்டுள்ளது. 8. CH_2CH_2Br , $CH_3=CHF$, $CH_3=CHCl$, HC=CF ஆகியவற்றில் கீழே கோடிடப்பட்ட காபன் அணு (\underline{C}) இன் மின்னெதிர்த்தன்மை **அதிகரிக்கும்** வரிசை $_{i}$ (1) $CH_{3}CH_{2}Br < CH_{2}=\underline{C}HF < CH_{2}=\underline{C}HCl < HC\equiv\underline{C}F$ (2) $HC \equiv \underline{CF} < CH_2 = \underline{CHCI} < CH_2 = \underline{CHF} < CH_3\underline{CH}_2Br$ (3) $CH_2 = \underline{C}HF < CH_2 = \underline{C}HCI < CH_2\underline{C}H_2Br < HC \equiv \underline{C}F$ (4) $CH_3CH_2Br < CH_2 = \underline{C}HCl < CH_2 = \underline{C}HF < HC = \underline{C}F$ (5) $CH_3CH_2Br < CH_2=CHF < HC=CF < CH_2=CHCl$ 9. மெதேனின் சுயாதீன மூலிகக் குளேறினேற்றத் தாக்கத்தின் ஒரு சங்கிலி விருத்திப் படிமுறையைப் பின்வருவனவற்றில் எது வகைகுறிக்கின்றது? (1) $CH_3Cl + \dot{C}l \longrightarrow CH_2Cl_2 + \dot{H}$ (2) $CH_2Cl_2 + \dot{C}l \longrightarrow \dot{C}HCl_2 - HCl$ (3) $\dot{C}H_3 + \dot{C}l \longrightarrow CH_3Cl$ (4) $CHCl_3 + \dot{C}l \longrightarrow CCl_4 + HCl$

(5) $\dot{C}l$ + $\dot{C}l$ \longrightarrow Cl_3

 ${f 10.}$ தாக்கம் ${f A_2}+{f B_2}\longrightarrow {f A_2}{f B_2}$ இன் பரிசோதனைமுறையாகத் துணியப்பட்ட வீத விதியானது வீதம் $= k \mid ext{A}_j$] எனக் காணப்பட்டுள்ளது. இங்கு k வீத மாறிலியாகும். இத்தாக்கத்திற்காகப் பின்வரும் பொறிமுறைகள் முன்மொழியப்பட்டுள்ளன.

 $A_2B + B \longrightarrow A_2B_2$ (ណិចារុខគេមាទូរូ)

மேற்குறித்த தாக்கம் தொடர்பாகப் பின்வரும் கூற்றுகளில் சரியானது எது?

- (1) I, II ஆகிய பொறிமுறைகள் மாத்திரம் வீத விதியுடன் இசைகின்றன.
- (2) II, III ஆகிய பொறிமுறைகள் மாத்திரம் வீத விதியுடன் இசைகின்றன.
- (3) I, III ஆகிய பொறிமுறைகள் மாத்திரம் வீத விதியுடன் இசைகின்றன.
- (4) பொறிமுறை எதுவும் வீத விதியுடன் இசையவில்லை.
- (5) எல்லாப் டொறிமுறைகளும் வீத விதியுடன் இசைகின்றன.

11. கீழே தரப்பட்டுள்ள உப்புகளின் வெப்பப் பிரிகை தொடர்பாகப் பிழையான கூற்றை இனங்காண்க. NH_4CI , NH_4NO_2 , NH_4NO_3 , $(NH_4)_2CO_3$, $(NH_4)_2Cr_2O_7$ ஆகியன

- (1) உப்புகளில் இரண்டு மாத்திரம் NH ஆ ஒரு விளைபொருளாகத் தருகின்றன.
- (2) உப்புகளில் இரண்டு மாத்திரம் N_2 ஐ ஒரு விளைபொருளாகத் தருகின்றன.
- (3) உப்புகளில் இரண்டு மாற்றிரம் ஓர் அமில வாபுகை ஒரு விலாடொருளாகற் நருகின்றன.
- (4) உப்புகளில் ஒன்று மாத்திரம் அழை வெப்பநிலையில் திண்மமாக இருக்கும் ஒரு விளைபொருளைத் கருகின்றது.

(5) உப்புகளில் இரண்டு மாத்திரம் $m H_2O$ ஐ ஒரு விளைபொருளாகத் தருகின்றன.

19

20.

- 12. தரப்பட்டுள்ள நியமிப்பு வளையி ஓர் ஒருமூல மென்னமிலத்தை NaOH உடன் நியமிப்புச் செய்வதனால் பெறப்பட்டது.'**்**கீழே தரப்பட்ட கூற்றுகளிடையே **பிழையான** கூற்றை இனங்காண்க.
 - (1) புள்ளி A இல், நியமிப்புக் கலவையின் pH ஆனது மென்னமிலத்தின் pK இற்குச் சமமாகும்.
 - (2) புள்ளி A இல், நியமிப்புக் கலவையில் எஞ்சியுள்ள மென்னமிலத்தினதும் அதன் இணை முலத்தினதும் செறிவுகள் சமமாகும்.
 - (3) புள்ளி **B** இல், நியமிப்புக் கலவையில் H^+,OH^- ஆகியவற்றின் செறிவுகள் சமமாகும்.
 - (4) இந்நியமிப்புக்கான ஒரு காட்டியாகப் பினோப்தலீனைப் பயன்படுத்தலாம்.
 - (5) புள்ளி C இல், நியமிப்புக் கலவையின் pH ஆனது பயன்படுத்தப்பட்ட NaOH கரைசலின் pH இலும் குறைவாகும்.

- 13. ஒரு சேதனச் சேர்வை A ஆனது 2,4-இருநைத்திரோபெனில்ஹைட்றசீனுடன் ஒரு நிற வீழ்படிவைத் தருகின்றது. சேர்வை 🗛 ஆனது அமிலமாக்கப்பட்ட பொற்றாசியம் இருகுரோமேற்றுடன் தாக்கம் புறியச் செய்யப்பட்டபோது, சேர்வை **B உண்**டாகும் அதேவேளை கரைசல் பச்சை நிறமாகின்றது. சேர்வை **B** ஆனது 2,4-இருநைத்திரோபெனில்ஹைட்றசீனுடன் நிற வீழ்படிவைத் தரவில்லை. A இன் கட்டமைப்பாக இருக்கக் *கூடியது*.

(4) HOCHCH,CH,CH,CHO (5) HOCHCH,CH,CH,CH,OH

14. அடர்த்தி 1.4 g cm⁻³, திணிவுக்கேற்ப 30% NaOH இன் 20.0 cm³ உடன் முற்றாகத் தாக்கம் புரிவதற்குத் தேவையான 5.0 mol dm⁻³.H₂SO₄ இன் கனவளவு

(H = 1, O = 16, Na = 23)

- (1) 15.0 cm³
- (2) 21.0 cm³
- $(3) 30.0 \text{ cm}^3$
- (4) 42.0 cm³
- (5) 84.0 cm³
- 15. அறை வெப்பநிலையில் இருக்கும் ஒரு முடிய விறைத்த கொள்கலத்தில் He, Ne ஆகிய வாயுக்களின் சம திணிவுகள் உள்ளன. கொள்கலத்தின் பொத்த அமுக்கம் P ஆகும். He இன் பகுதியமுக்கம் (He = 4, Ne = 20)

(1) P

- (2) $\frac{5P}{6}$ (3) $\frac{6P}{5}$ (4) $\frac{P}{2}$ (5) $\frac{P}{6}$

16. $H_{2}(g) + I_{2}(g) \rightleftharpoons 2HI(g)$

மாறா வெப்பநிலையில் உள்ள ஒரு முடிய விறைத்த கொள்கலத்தில் மேற்குறித்த தாக்கம் சமநிலையில் காணப்படுகின்றது. $I_{\gamma}(g)$ இன் ஒரு குறித்த அளவைக் கொள்கலத்தில் சேர்த்தவுடன் முன்முகத் தாக்கத்தினதும் பிற் தாக்கத்தினதும் வீதங்களில் உள்ள வேறுபாட்டினைப் பின்வரும் கூற்றுகளில் எது சரியாக விளக்குகின்றது?

- (1) முன்முகத் தாக்கத்தினதும் பிற் தாக்கத்தினதும் வீதங்கள் குறைகின்றன.
- (2) முன்முகத் தாக்கத்தினதும் பிற் தாக்கத்தினதும் வீதங்கள் அதிகரிக்கின்றன.
- (3) முனமுகத் தாக்கத்தினதும் பிற் தாக்கத்தினதும் வீதங்கள் மாறுவதில்லை.
- (4) முன்முகத் தாக்கத்தின் வீதம் அதிகரிக்கும் அதேவேளை பிற் தாக்கத்தின் வீதம் மாறுவதில்லை.
- (5) முன்முகத் தாக்கத்தின் வீதம் குறையும் அதேவேளை பிற் தாக்கத்தின் வீதம் மாறுவதில்லை.
- 17. 1.0 mol dm⁻³ CH₂COOH(aq) இன் 100.0 cm³ ஐயும் 1.0 mol dm⁻³ CH₂COONa(aq) இன் 100.0 cm³ ஐயும் கலப்பதன் மூலம் ஒரு கரைசல் தபாரிக்கப்பட்டது. கிடைக்கும் கரைசலின் $25~^\circ\mathrm{C}$ இலான pH ஆனது 4.8ஆகும். இக்கரைசலுடன் $0.10~{
 m mol~dm}^{-3}~{
 m HCl}({
 m aq})$ இன் சில துளிகளைச் சேர்த்து நன்றாகக் கலக்கும்போது pH பெறுமானம் 4.8 இலேயே காணப்பட்டது. கரைசலின் pH பெறுமானம் மாறுவதைத் தடுப்பதத்தப் பின்வரும் தாக்கங்களில் எது நடைபெற்றிருத்தல் வேண்டும்?
 - (1) $H_3O^+(aq) + OH^-(aq) \longrightarrow 2H_3O(1)$
 - (2) $H_{\lambda}^{*}O^{+}(aq) + CH_{\lambda}^{*}COO^{*}(aq) \longrightarrow CH_{\lambda}^{*}COO^{*}(aq) + H_{\lambda}O(1)$
 - (3) $H_3O^+(aq) + CI^-(aq) \longrightarrow HCl(aq) + H_3O(l)$
 - (4) $H_3O^+(aq) + CH_3COOH(aq) \longrightarrow CH_3COOH_2^+(aq) + H_2O(!)$
 - (5) $H_3O^+(aq) + OH^-(aq) + CH_3COOH(aq) \longrightarrow CH_3COO^-(aq) + 2H_2O(aq) + H^+(aq)$

21.

6

CARLIENTAU (MUMT): VIM 2"2

18. H–H, Cl–Cl, H–Cl ஆகியவற்றின் பிணைப்புச் சக்திகள் முறையே $430,240,430~{
m kJ~mol}^{-1}$ ஆகும். தாக்கம் ${
m H_2(g)+Cl_2(g)}\longrightarrow 2{
m HCl(g)}$ இன் சக்தி வரிப்படத்தைப் பின்வருவனவற்றில் எது வகைகுறிக்கின்றது?

19. கீழே தரப்பட்டுள்ள தாக்கங்களைக் கருதுக. வெப்பநிலை T இல் ΔG பெறுமானங்கள் $\,$ தரப்பட்டுள்ளன.

$$4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(l)$$
 $\Delta G = -1010 \text{ kJ mol}^{-1}$ $2NO_2(g) \longrightarrow 2NO(g) + O_2(g)$ $\Delta G = 70 \text{ kJ mol}^{-1}$ $4NO_2(g) + O_2(g) + 2H_2O(l) \longrightarrow 4HNO_3(aq)$ $\Delta G = -170 \text{ kJ mol}^{-1}$ தாக்கம் $NH_3(g) + 2O_2(g) \longrightarrow HNO_3(aq) + H_2O(l)$ இன் வெப்பறிலை T இலான ΔG (kJ mol $^{-1}$) ஆனது

(1) -1320 (2) -1250 (3) -1110 (4) -580 (5) -330

20. கீழே தரப்பட்டுள்ள சேர்வைகளில் எது பின்வரும் முன்று தாக்கங்களுக்கும் (I,II,III) உட்படும்?

I PCl₅ உடன் தாக்கம் புரிந்து ஒரு குளோரோச் சேர்வையைத் தோற்றுவிக்கும்.

II நீர் NaOH இன் முன்னிலையில் தன் ஒடுக்கலுக்கு உட்படும்.

III LiAlH₄ உடன் ஒரு தாழ்த்தல் நாக்கத்திற்கு உட்படும்.

(1)
$$CH_{3} - C - CH_{2} - C - NH_{2}$$
 (2) $CH_{3} - CH - CH_{2} - CHO$ (3) $H - C - \bigcirc - CH_{3}$ (4) $CH_{3} - C - CH_{2} - CH_{3}$ (5) $CH_{3}O - C - \bigcirc - CH_{2}OH$

🛂 பின்வரும் மீள் தாக்கத்தைக் கருதுக.

$$FeF_2(s) + 2H^+(aq) \rightleftharpoons Fe^{2+}(aq) + 2HF(aq)$$

(மேற்குறித்த தாக்கத்தின் சமநிலை மாறிலி K ஆகும்.)

இச்சமநிலை பின்வரும் பொறிமுறையினூடாக அடையப்படுகின்றது.

$$\text{FeF}_2(s) \rightleftharpoons \text{Fe}^{2+}(\text{aq}) + 2\text{F}^-(\text{aq})$$
 $K_1 = 2.0 \times 10^{-6} \text{ mol}^3 \text{ dm}^{-9}$
 $\text{F}^-(\text{aq}) + \text{H}^+(\text{aq}) \rightleftharpoons \text{HF}(\text{aq})$ $K_2 = 1.0 \times 10^3 \text{ mol}^{-1} \text{ dm}^3$

இந்த ஒட்டுமொத்தச் சமநிலை தொடர்பாகப் பின்வரும் எக்கூற்று சரியானது?

(1) $K_{\gamma}>1$ ஆகையால் சமநிலைத் தானம் விளைபொருள்களை நோக்கி நகர்ந்துள்ளது.

(2) $K_{\bf q} < 1$ ஆகையால் சமநிலைத் தானம் தாக்கிகளை நோக்கி நகர்ந்துள்ளது.

(3) 😰 🕻 ஆலையால் சமநிலைத் நானம் விளைபொருள்ளன. நோக்கி நகர்ந்துள்ளது.

(4) K < 1 ஆகையால் சமநிலைத் தானம் தாக்கிகளை நோக்கி நகர்ந்துள்ளது.

(5) தூப்பட்டுள்ள தகவல்களின் மூலம் சமநிலைத் தானத்தைத் துணிய முடியாது.

- (1) NaBH, உடன் காபொட்சிலிக் அமிலங்களை அறீக்கோல்களாகத் தாழ்த்த முடியாது.
- (2) காபொட்சிலிக் அமிலங்களின் கொதிநிலைகள் ஒப்பீட்டளவில் சமமான சார் மூலக்கூற்றுத் திணிவுகளைக் கொண்ட அற்ககோல்களின் கொதிநிலைகளிலும் கூடியனவாகும்.
- (3) காபொட்சிலிக் அமிலங்கள் $\mathrm{CO}_2(\mathsf{g})$ ஐ வெளிவிட்டுக் கொண்டு நீர் NaOH உடன் தாக்கம் புரிகின்றன.
- (4) ஐதரசன் பிணைப்பாக்கம் காரணமாகக் காபொட்சிலிக் அமிலங்கள் இருபகுதியக் கட்டமைப்புகளை உண்டாக்கலாம்.
- (5) காபொட்சிலிக் அமிலங்களின் சார் மூலக்கூற்றுத் திணிவு அதிகரிக்கும்போது அவற்றின் நீர்க் கரைதிறன் குறைகின்றது.

23. $\Delta H^{\circ} = 91 \text{ kJ mol}^{-1}$ $CH_3OH(g) \longrightarrow CO(g) + 2H_2(g)$

ஒரு வெட்பக் காவலிட்ட மூடிய விறைத்த கொள்கலத்தில் மேற்குறித்த தாக்கம் நிறைவேறும் நிலைக்கு நடைபெறுகின்றது.

- (i) கொள்கலத்தில் உள்ள பொருள்களின் வெப்பநிலை
- (ii) தாக்கத்தின் ΔS° இன் குறி

தொடர்பாகப் பின்வருவனவற்றில் எது சரியானது?

வெப்பநிலை (1) அதிகரிக்கின்றது ΔS° இன் குறி

(2) குறைகின்றது

(3) குறைகின்றது (4) அதிகரிக்கின்றது

(5) மாறாது

- ஒரு முசலத்தைக் கொண்ட மூடிய கொள்கலத்தில் வெப்புநிலை T இலும் அமுக்கம் P_1 இலும் ஓர் இலட்சிய வாயு உள்ளது. வாயு இடங்கொள்ளும் கனவளவு $2.0\,\mathrm{dm}^3$ ஆகும். இவ்வெப்பநிலையில் கனவளவு $5.0\,\mathrm{dm}^3$ இந்கு அதிகரிக்கப்படும்போது அமுக்கம் $P_{m{\gamma}}$ ஆக மாறியது. இத்தொகுதி தொடர்பாகப் பின்வரும் எக்கூற்று
 - (1) வாயுவின் சராசரி இயக்கப்பாட்டுச் சக்தி அவ்வாறே இருக்கும் அதேவேளை P_2 = $0.4\,P_1$ ஆகும்.
 - (2) வாயுவின் சராசரி இயக்கப்பாட்டுச் சக்தி அதிகரிக்கும் அதேவேளை $P_2 = 2.5 \ ilde{P}_1$ ஆகும்.
 - (3) வாயுவின் சராசரி இயக்கப்பாட்டுச் சக்தி அதிகரிக்கும் அதேவேளை $P_2^{''}=0.4~P_1^{'}$ ஆகும்.
 - (4) வாயுவின் சராசரி இயக்கப்பாட்டுச் சக்தி அட்வாறே இருக்கும் அதேவேளை $P_2=2.5\ P_1$ ஆகும்.
 - (5) வாயுவின் சராசரி இயக்கப்பாட்டுச் சக்தி குறையும் அதேவேளை $P_2 = 2.5 \, P_1$ ஆகும்.
- ஒரு தரப்பட்ட வெப்பநிலையில் நடைபெறும் பின்வரும் தாக்கத்தைக் கருதுக. 25.

$$N_2O(g) + CO(g) \rightarrow N_2(g) + CO_2(g)$$

Pd தூளின் சிறிதளவின் முன்னிலையில் தாக்கம் நடைபெறும்போது இத்தாக்கத்தின் வீதம் அதிகரிக்கின்றது. பின்வரும் எது இந்த அவதானிப்பை மிகச் சிறந்த விதத்தில் விளக்குகின்றது?

- Pd தூள் தூக்கத்தின் ஏவற் சக்தியைக் குறைக்கின்றது.
- (2) Pd தூள் தாக்கத்திற்குச் சக்தியை வழங்குகின்றது.
- (3) Pd தூள் விளைபொருள்களின் செறிவைக் குறைப்பதற்கு உதவுகின்றது.
- (4) ஒரு விளைபொருள் ${
 m Pd}$ உடன் பிணைந்து விளைபொருள்களின் செரிவைக் குறைப்பதன் மூலம் தாக்கத்தின் வீதத்தைக் கூட்டுகின்றது.
- (5) குறைந்தபட்சம் ஒரு தாக்கியேனும் Pd உடன் பிணைந்து தாழ்ந்த ஏவற் சக்தியைக் கொண்ட ஒரு மாற்றுப் பாதை வழியே தாக்கம் நடைபெறுகின்றது.
- 26. உகந்த நிலைமைகளின் சீழ் $\mathrm{C_{7}H_{5}OH}$ இன் ஒரு மூலானது $\mathrm{CO_{7}}$ ஆக ஒட்சியேற்றப்படும்போது வெளிவிடப்படும் இலத்திரன்களின் முல்களின் எண்ணிக்கை

(3) 7

(4) 10

27. ஓர் அற்கைன் ஐதான $m H_2SO_4/HgSO_4$ உடன் தாக்கம் புரிந்து ஒரு கீற்றோனைத் தரும் தாக்கத்தைக் கருதுக. இத்தாக்கம் நடைபெறுகையில் உண்டாகத்தக்க ஒரு கட்டமைப்பானது

(4)
$$CH_3 - CH_2 - C = C - CH_3$$
 (5) $CH_3 - CH - CH = C - CH_3$ OH CH_3

28. 298 K இல் பின்வரும் அரைத் தாக்கங்களைக் கருதுக.

$$Mg^{2+}(aq) + 2c \rightarrow Mg(s)$$
 $E^{o} = -2.37 \text{ V}$

$$Cr^{3+}(aq) + 3e \rightarrow Cr(s)$$
 $E^{0} = -0.74 \text{ V}$

மேற்குறித்த மின்வாய்களினால் உண்டாக்கப்படும் ஒரு மின்னிரசாயனக் கலத்தின் ஒட்டுமொத்தக் கலத் தூக்கத்தையும் மின்னியக்க விசை ($E_{\mathrm{cell}}^{^{\mathrm{o}}}$) ஐயும் பின்வரும் எது தருகின்றது?

$$E_{\text{cell}}^{\sigma}(V)$$

- (1) $2Cr^{3+}$ (aq) + $3Mg(s) \rightarrow 2Cr(s) + <math>3Mg^{2+}$ (aq) 5.63
- (2) $3Mg^{2+}$ (aq) + $2Cr^{3+}$ (aq) $\rightarrow 3Mg(s) + 2Cr(s)$ 1.63
- (3) $3Mg^{2+}(aq) + 2Cr(s) \rightarrow 3Mg(s) + 2Cr^{3+}(aq)$ 1.63
- (4) $3Mg^{2+}$ (aq) + 2Cr(s) $\rightarrow 3Mg(s) + <math>2Cr^{3+}$ (aq) 5.63
- (5) $2Cr^{3+}$ (aq) + 3Mg(s) $\rightarrow 2Cr(s) + <math>3Mg^{2+}$ (aq) 1.63
- **29.** ${
 m TiCl}_4$ ஒரு முக்கிய கைத்தொழில் இரசாயனப் பொருளாகும். ${
 m TiO}_2(s), {
 m Cl}_3(g), {
 m Cl}_3(g), {
 m Cl}_3(g)$ ஆகியவற்றைத் தாக்கம் புரியச் செய்வதன் மூலம் இதனைத் தயாரிக்கலாம். தாக்கத்திற்கான சமன்படுத்தூத இரசாயனச் சமன்பாடு லீழே தரப்பட்டுள்ளது.

$$TiO_2(s) + Cl_2(g) + C(s) \rightarrow TiCl_4(s) + CO_2(g)$$

 ${
m TiO_2(s)}$ இன் ${
m 160~g.~Cl_2(g)}$ இன் ${
m 213~g.~C(s)}$ இன் ${
m 60~g.}$ ஆகியவற்றைத் தாக்கம் புரியச் செய்யவிடப்படும்போது பெறப்படத்தக்க ${
m TiCl_4}$ இன் உயர்ந்தபட்ச அளவு

- (C = 12, O = 16, Cl = 35.5, Ti = 48)
- (1) 190 g
- (2) 285 g
- (3) 380 g
- (4) 570 g
- (5) 950 g
- 30. ஒரு மாறா வெப்பநிலையில் நடைபெறும் பின்வரும் தாக்கத்தைக் கருதுக.

$$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$$
 $K_C = 6.5 \text{ mol}^{-1} \text{ dm}^3$

முன்கூட்டியே ஹெற்றிடமாக்கப்பட்ட, கனவளவு 1.0 dm³ ஐ உடைய ஒரு மூடிய விறைத்த கொள்கலத்தினுள்ளே $PCl_3(g)$ இன் 1.5 mol, $Cl_2(g)$ இன் 1.0 mol, $PCl_5(g)$ இன் 2.5 mol ஆகியன புதத்தப்பட்டன. தாக்கம் சமநிலையை அடைகையில் கொள்கலத்தின் அளக்கப்பட்ட அமுக்கம் மாறும் விதத்தைப் பின்வரும் எது மிகச் சிறந்த விதத்தில் விவரிக்கின்றது?

 $(Q_C =$ தாக்க ஈவு, $K_C =$ சமநிலை மாறிலி)

- (1) $Q_{\rm C} < K_{\rm C}$ ஆகையால் அமுக்கம் அதிகரிக்கின்றது.
- (2) $Q_{
 m C} > K_{
 m C}$ ஆகையால் அமுக்கம் அதிகரிக்கின்றது.
- (3) $Q_{\rm C} < K_{\rm C}$ ஆகையால் அமுக்கம் குறைகின்றது.
- (4) $Q_{\rm C} > K_{\rm C}$ ஆகையால் அமுக்கம் குறைகின்றது.
- (5) $Q_{C} = K_{C}$ ஆகையால் அமுக்கம் மாறுவதில்லை.
- இ 31 தொடக்கம் 40 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (a), (b), (c), (d) என்னும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்பட்டவை திருத்தமானவை, திருத்தமான தெரிவை / தெரிவுகளைத் தேர்ந்தெடுக்க.
 - (a),(b) ஆகியன மாத்திரம் திருத்தமானையெனில் (1) இன் மீதும்
 - (b), (c) ஆகியன மாத்திரம் திருத்தமானவையெனில் (2) இன் மீதும்
 - (c), (d) ஆகியன் மாத்திரம் திருத்துமானவையெனில் (3) இன் மீதும்
 - (d),(a) ஆகியன மாத்திரம் திருத்தமானவைபெனில் (4) இன் மீதும்

வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவையெனில் (5) இன் மீதும் உயது விடைத்தாளில் கொடுக்கப்பட்ட அறிவுறுத்தல்களுக்கமைய விடையைக் குறிப்பிடுக.

மேற்கூறிய அறிவுறுத்தற் சுருக்கம்

			• •		
1	(1)	(2)	(3)	(4)	(5)
	(a). (b) ஆகியன	(b), (c) ஆகியன	(c), (d) ஆகியன	(<i>d</i>), (<i>a</i>) ച്ലുങ്കിധങ	வேறு தெரிவுகளின்
	மாத்திரம்	மாத்திரம்	மாத்திரம்	மாத்திரம்	எண்ணோ சேர்மானங்களோ
	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திரு <u>த்</u> தபானவை

- 31. வெப்பநிலை அதிகரிக்கையில் ஓர் இரசாயனத் தாக்கத்தின் வீதம் ஏன் அதிகரிக்கின்றது என்பதைப் பின்வரும் எக்கூற்றுகள் / கூற்று சரியாக விளக்குகின்றன / விளக்குகின்றது?
 - (a) உயர் வெப்பநிலையில் தாக்கத்தின் ஏவற் சக்தி குறைகின்றது.
 - (b) உயர் வெப்பநிலையில் தாக்கத்தின் ஏவற் சக்தி அதிகரிக்கின்றது.
 - (r) உயர் வெப்பறிலையில் ஜாக்கி மூலக்குறுகளின் ஒவ்வொரு மோதுகையிலும் விணைபொருள்கள் உண்டாகின்றன.
 - (d) உயர் வெப்பநிலையில் தாக்கத்தின் ஏவற் சக்தியிலும் பார்க்கக் கூடுதலான சக்தியைக் கொண்ட மோதுகைகளின் பின்னம் அதிகரிக்கும்.

- பின்வரும் எந்த அற்கைன் / அந்கைன்கள் ஊக்கல் ஆதரசனேற்றத்தினால் 3--ethylhexane ஐத் தரலாம்?
 - (a) $CH_3 CH_2 CH CH_2 C \equiv CH$
- $\text{(b)} \quad \text{HC} \equiv \text{C} \text{CH}_2 \text{CH}_2 \text{CH} \text{CH}_3$
- CH,-CH,
 - ĊH,-CH,
- 33. பின்வரும் எக்கூற்று / கூற்றுகள் சரியானது / சரியானவை?
 - (a) அமுக்கம் அதிகரிக்கும்போது ஒரு திரவத்தின் கொதிநிலை குறைகின்றது.
 - (b) அமுக்கம் அதிகரிக்கும்போது ஒரு திரவத்தின் கொதிநிலை அதிகரிக்கின்றது.
 - (c) எவறெஸ்ட் சிகரத்தின் உச்சியில் $100~^{\circ}\mathrm{C}$ இலும் குறைந்த ஒரு வெப்பநிலையில் நீரைக் கொதிக்க லைக்கலாம்.
 - (d) ஒரு மூடிய விறைத்த கொள்கலத்தில் நீரை ஆவியாக்க முடியாது.
- ${f 34.}\;\;p$ -தொகுப்பு மூலகங்களையும் அவற்றின் சேர்வைகளையும் பற்றிப் பின்வரும் கூற்றுகளில் எது / எவை உண்மையானது / உண்மையானவை?
 - (a) நீருடன் PCl_5 உம் SCl_2 உம் தாக்கம் புரியும்போது முறையே ஒரு விளைபொருளாக $\mathrm{H_3PO_4(aq)}$ உம் S(s) உம் கிடைக்கின்றன.
 - (h) நீருடன் $\operatorname{Cl}_2(g)$ இன் தாக்கமும் $\operatorname{H}_2\operatorname{O}_2(\operatorname{aq})$ இன் பிரிகையும் இருவழிவிகாரத் தாக்கங்களுக்கு உதாரணங்களாகும்.
 - (c) மிகையான $\mathrm{NH}_3(\mathrm{g})$ உடன் $\mathrm{Cl}_2(\mathrm{g})$ இன் தாக்கத்தின்போது கிடைக்கும் விளைபொருளை நீரைத் தொற்றுநீக்கப் பயன்படுத்தப்படலாம்.
 - (d) $\mathrm{SO}_2(\mathbf{g})$ ஒரு தாழ்த்தும் கருவியாகச் செயற்பட முடியாததாகும்.
- அற்ககோல்களின் தாக்கங்கள் பற்றிப் பின்வரும் எக்கூற்று / கூற்றுகள் சரியானது / சரியானவை?
 - (a) அற்ககோல்களுக்கும் HBr இற்குமிடையே உள்ள தாக்கத்தில் புரோமொ அற்கேன்கள் கிடைக்கும்போது வெளியேறும் கூட்டம் OH ஆகும்.
 - (h) அந்ககோல்களைச் செறிந்த $\mathrm{H_2SO_4}$ உடன் வெப்பமாக்குவதனால் சில அற்கீன்களைத் தயாரிக்கலாம்.
 - (c) அற்ககோல்கள் HI உடன் தாக்கம் புரிந்து அற்கைல் அயடைட்டுகளைத் தருவது லூபி அமிலங்களின் முன்னிலையில் மாத்திரமாகும்.
 - (d) முதல் அற்ககோல்கள் லூக்கஸ் சோதனைக்கு உட்படுத்தப்படும்போது கலங்கற்றன்மையை ஏற்படுத்தாமைக்கு முதல் அற்ககோல்கள் நீரிற் கரைகின்றமையே காரணமாகும்.
- $36.~~{
 m Co}^{2+}, {
 m Ni}^{2+}, {
 m Cu}^{2+}, {
 m Zn}^{2+}$ ஆகியவற்றின் ஒவ்வொரு கற்றயன் வீதம் அடங்கியுள்ள நீர்க் கரைசல்களுடன் (i) மிகையான NaOH(aq), (ii) மிகையான $\mathrm{NH_4OH(aq)}$ ஆகியவற்றை வேறுவேறாகச் சேர்க்கும்போது கிடைக்கும் வீழ்படிவுகளில் / கரைசல்களில் அவதானித்த நிறங்கள் தொடர்பாகச் சரியான கூற்று / கூற்றுகள் யாது / யாவை?
 - (a) Co^{2+} ஆனது முறையே (i) ஒரு கபிலநிற வீழ்படிவையும் (ii) ஒரு செந்நிறக் கரைசலையும் தருகின்றது.
 - (b) Ni^{2+} ஆனது முறையே (i) ஒரு நீலநிற வீழ்படிவையும் (ii) ஒரு பச்சைநிறக் கரைசலையும் தருகின்றது.
 - (c) Cu^{2+} ஆனது முறையே (i) ஒரு நீலநிற வீழ்படிவையும் (ii) ஒரு கருநீலநிறக் கரைசலையும் தருகின்றது. (d) Zn^{24} ஆனது முறையே (i) ஒரு நிறமற்ற கரைச்லையும் (ii) ஒரு நிறமற்ற கரைசலையும் தருகின்றது.
- 37. பின்வரும் எக்கூற்று / கூற்றுகள் சரியானது / சரியானவை?
 - (a) மண்ணுடன் பொசுபேற்று வளமாக்கிகளைச் சேர்த்தல் வளிமண்டலத்தில் $\mathrm{N_2O}$ மட்டம் அதிகரிப்பதற்குப் பங்களிப்புச் செய்கின்றது.
 - (b) பசுக்கள், வெள்ளாடுகள் போன்ற பண்ணை விலங்குகளின் சுவாசம் வளிமண்டலத்தில் CO_2 மட்டம் அதிகரிப்பதற்குப் பங்களிப்புச் செய்கின்றது.
 - (c) சுவட்டு எரிபொருள் தகனம் வளிமண்டலத்தில் $\mathrm{CH_4}$ மட்டம் அதிகரிப்பதற்குப் பங்களிப்புச் செய்கின்றது.
 - (d) உயிரெரிபொருள் தகனம் வளிமண்டலத்தில் CO_2 மட்டம் அதிகரிப்பதற்குப் பங்களிப்புச் செய்வதில்லை.
- 38. பின்வரும் எக்கூற்று / கூற்றுகள் கீழே தரப்பட்டுள்ள தாக்கம் தொடர்பாகச் சரியானது / சரியானவை? $Cu(OH)_2(s) \rightleftharpoons Cu^{2+}(aq) + 2OH^{-}(aq)$
 - (a) கரைசலின் pH பெறுமானத்தைக் கூட்டுதல் $\mathrm{Cu}(\mathrm{OH})_{2}(s)$ இன் கரைதிறனைக் குறைக்கின்றது.
 - (b) கரைசலுடன் NaOH(s) ஐச் சேர்த்தல் Cu(OH),(s) இன் கரைதிறனை மாற்றமாட்டாது.
 - (c) $\mathrm{Cu}(\mathrm{OH})_{\mathfrak{I}}(\mathrm{s})$ இன் கரைதிறன் வெப்பநிலையைச் சார்ந்ததன்று.
 - (d) கரைசலுடன் மேலதிக $\operatorname{Cu}(\operatorname{OH})_2(s)$ ஐச் சேர்த்தல் $\operatorname{Cu}(\operatorname{OH})_2(s)$ இன் கரைதிறனை மாற்றமாட்டாது.
- 39. உயிர்த்தீசல் உற்பத்தியில் திரான்ஸ்எகத்தராக்கல் (transesterification) தாக்கம் தொடர்பாகப் பின்வரும் எக்கூற்று / கூற்றுகள் சரியானது / சரியானவை?
 - (u) கிளிசரோல் ஒரு பக்க விளைபெருளாகும்.
 - (b) மூலங்களை ஊக்கிகளாகப் பயன்படுத்த முடியாது.
 - (c) சுயாதீனக் கொழுப்பமிலங்கள் இருத்தல் தாக்கத்திற்குச் சாதகமானது.
 - (d) சவர்க்காரம் உண்டாகின்றமையால் ஊக்கியின் தொழிற்பாடு குறைகின்றது

10

- 40. திரவ உயிர்ச்சுவட்டு எரிடொருள் தகனமடையும் வாகனத்தின் வெளிப்படுத்தியில் (exhaust) இருக்கும் வாயுக்கள் தொடர்பாகப் பின்வரும் எக்கூற்று / கூற்றுக**ற்** சரியானது / சரியானவை?
 - (a) வெளிப்படுத்தியில் ஒளியிரசாயனப் புகாருக்குப் பங்களிப்புச் செய்யும் வாயுக்கள் உள்ளன.
 - (b) வெளிப்படுத்தியில் பூகோள வெப்ப**மாதலு**க்குப் பங்களிப்புச் செய்யும் வாயுக்கள் உள்ளன.
 - (c) வெளிப்படுத்தியில் அமில மழைக்குப் பங்களிப்புச் செய்யும் வாயுக்கள் உள்ளன.
 - (d) வெளிப்படுத்தியில் ஓசோன் படை வறிதாக்கத்திற்கு (நலிவடையச் செய்தலுக்கு)ப் பங்களிப்புச் செய்யும் வாயுக்கள் உள்ளன.
- 41 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுகள் தரப்பட்டுள்ளன. அட்டவணையில் உள்ள (1),(2),(3),(4),(5) ஆகிய தெரிவுகளிலிருந்து ஒவ்வொரு வினாவுக்கும் தரப்பட்டுள்ள இரண்டு கூற்றுகளுக்கும் மிகவும் சிறப்பாகப் பொருந்தும் தெரிவைத் தெரிந்து பொருத்தமாக விடைத்தாளிற் குறிப்பிடுக.

தெரிவு	முதலாம் கூற்று		இரண்டாம் கூற்று					
(1)	உண்மை	உண்மையாக	இருந்து	முதலாம்	கூற்றுக்குத்	திருத்துறான	விளக்கத்தைத்	தருவது
(2)	உண்மை	உண்மையாக	இருந்து	முதலாம்	ு ற்றுக்குத்	திருத்தமான	விளக்கத்தைத்	தராதது
(3)	ഉ_ൽ!ക്കഥ	பொப்						
(4)	பொய்	உண்மை						
(5)	பொய்	பொய்						

	முதலாம் கூற்று	இரண்டாம் கூற்று
41.	உகந்த நிலைமைகளின் கீழ் H ₂ S(g) ஆனது ஒரு தாழ்த்தும் கருவியாகவும் ஓர் ஒட்சியேற்றும் கருவியாகவும் தொழிற்படக் கூடியது.	கந்தகமானது ஒட்சயேற்ற எண்கள் —2 தொடக்கம் +6 வரையான வீச்சில் உள்ள ஓர் அல்லுலோகமாகும்.
42.	புரொபனொனின் கொதிநிலை பியூற்றேனின் கொதிநிலையிலும் குறைந்ததாகும்.	புரொபனொனில் ஒரு பை (π) பிணைப்பு இருக்கும் அதே வேளை பியூற்றேனில் ஒரு π பிணைப்பு இல்லை.
43.	சில நிபந்தனைகளின் கீழ் ஒரு மெய் வாயு மாதிரியின் அமுக்கம் இலட்சிய வாயு விதியினால் எதிர்வுகூறப்படும் பெறுமானத்திலும் குறைவானதாக இருக்கலும்.	மெய் வாயு மூலக்கூறுகளிடையே மூலக்கூற்றிடைக் கவர்ச்சி விசைகள் இருக்கின்றன.
44.	Mn இன் மின்னெதிர்த்தன்மை Cr, Fe ஆகியவற்றின் மின்னெதிர்த்தன்மையிலும் குறைந்ததாகும்.	Mn இன் இலத்திரனியல் நிலையமைப்பானது Cr, Fe ஆகியவற்றின் இலத்திரனியல் நிலையமைப்புகளிலும் பார்க்க மேலும் உறுதியானது.
45.	அரோமற்றிக் டயசோனியம் உப்புகள் நீருடன் இளஞ்சூடாக்கப்படும்போது பீனொல்கள் உண்டாகின்றன.	அரோமற்றிக் டயசோனியம் அயன்கள் இலத்திரன் நாடிகளாகும்.
46.	ஒரு மின்னிரசாயனக் கலத்தில் குறைந்த தாழ்த்தல் அழுத்தத்தைக் கொண்ட மின்வாய் அனோட்டாகத் தொழிற்படுகின்றது.	ஒரு மின்னிரசாயனக் கலத்தில் ஒப்பீட்டளவில் குறைந்த தாழ்த்தல் அழுத்தத்தைக் கொண்ட மின்வாயிலிருந்து இலத்திரன்கள் எளிதாக விடுவிக்கப்படலாம்.
47.	ஒஸ்வால்ட் முறையைப் பயன்படுத்தி நைத்திரிக் அமிலத்தை உற்பத்தி செய்கையில் $\mathrm{NH}_3(\mathrm{g})$ ஆனது $\mathrm{O}_2(\mathrm{g})$ உடன் தாக்கம் புரியச் செய்யப்படும் வெப்பநிலையிலும் கூடுதலான ஒரு வெப்பநிலையில் $\mathrm{NO}(\mathrm{g})$ ஆனது $\mathrm{O}_2(\mathrm{g})$ உடன் தாக்கம் புரியச் செய்யப்படுகின்றது.	மறை (எதிர்) எந்திரப்பி மாற்றங்கள் உள்ள தாக்கங்களுக்கு உயர் வெப்பநிலைகள் சாதகமானவையல்ல.
48.	லு, கரையத்தின் பங்கீட்டுக் குணகம் வெப்பநிலையைச் சார்ந்தது.	வெவ்வேறு கரைப்பான்களில் உள்ள ஒரு கரையத்தின் கரைதிறன் வெப்பநிலையுடன் ஒரே அளவினால் மாறுகின்றது.
49.	சல்பூரிக் அமில உற்பத்தியில் $\mathrm{SO}_3(g)$ ஆனது பல படிமுறைகளில் $\mathrm{SO}_3(g)$ ஆக மாற்றப்படுகின்றது.	சல்பூரிக் அமில உற்பத்தியில் பயன்படுத்தப்படும் நிலைமைகளின் கீழ் ஒரு தனிப் படிமுறையில் $\mathrm{SO}_2(\mathrm{g})$ ஐ $\mathrm{SO}_3(\mathrm{g})$ ஆக முற்றாக மாற்றல் சுயமானதன்று.
50.	HFC (hydrofluorocarbon) வாயு மேல் வளிமண்டலத்தில் ஓசோன் படை வறிதாக்கத்திற்குப் பங்களிப்புச் செய்வதில்லை.	C-F பிணைப்பை உடைப்பகன் மூலம் மேல் எளிமண்டலத்தில் HFC விரைவாக அழிக்கப் டுகின்றது.

கீக்கு ම හිමිකම් ඇවිරීම් /முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

ලි ලංකා විශාත දෙපාර්තරම්න්තුව ලි ලංකා විභාග දෙපාර්තරම්න්තුව ලි. ලංකා විභාග දෙපාර්තරම්න්ත් ලිස්තරම්න්ත් ලිස්තරම්න්ත් ලිස්තරම්න්තරම්න්ත් ලිස්තරම්න්තරම්

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2023 (2024) கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பிர்ப்சை, 2023 (2024) General Certificate of Education (Adv. Level) Examination, 3823 (2024)

රසායන විදපාව II **இரசாயனவி**யல் II Chemistry II

02 T II

පියෝජනය සඳහා පමණි

පැය තුනයි

முன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය දිගුලානික නැත්වා දීක - මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம் Additional Reading Time - 10 நிமிடங்கள் - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

- 🛪 ஆவர்த்தன அட்டவணை பக்கம் 16 இல் வழங்கப்பட்டுள்ளது.
- * கணிப்பாணப் பயன்படுத்த இடமளிக்கப்படமாட்டாது.
- * அகில வாயு மாறிலி $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$.

* அவகாதரோ மாநிலி $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$.

※ இவ்வினாத்தாளுக்கு விடை எழுதும்போது அற்கைற் கூட்டங்களைச் சுருக்கமான விதத்தில் காட்டலாம்.

உதாரணம் : H— C— — C— கூட்டத்தை
$$\mathrm{CH_{3}CH_{2}}$$
 எனக் காட்டலாம்.

ப பகுதி A - அமைப்புக் கட்டுரை (பக்கங்கள் 2 - 8)

- 🛠 எல்லா வினாக்களுக்கும் இவ்வினாத்தாளிலேயே விடை எழுதுக.
- ※ ஒவ்வொரு வினாவுக்குக் கீழும் விடப்பட்டுள்ள இடத்தில் உமது விடைகளை எழுதுக. கொடுக்கப்பட்டுள்ள இடம் விடைகளை எழுதுவதற்குப் போதுமானது என்பதையும் விரிவான விடைகள் எதிர்பார்க்கப்படவில்லை என்பதையும் கவனிக்க.
 - ப பகுதி B உம் பகுதி C உம் கட்டுரை (பக்கங்கள் 9 15)
- ஒவ்வொரு பகுதியிலிருந்தும் இரண்டு வினாக்களைத் தெரிவுசெய்து எல்லாமாக நான்கு வினாக்களுக்கு விடை எழுதுக.
 உமக்கு வழங்கப்படும் எழுதும் தாள்களை இதற்குப் பயன்படுத்துக.
- இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேர முடிவிலே பகுதி A மேலே இருக்கும்படியாக A, B, C ஆகிய மூன்று பகுதிகளின் விடைத்தாள்களையும் ஒன்றாகச் சேர்த்துக் கட்டிய பின்னர் பரீட்சை மேற்பார்வையாளரிடல் கையளிக்க.
- * வினாத்தாளின் **B**, C ஆகிய பகுதிகளை **மாத்திரம் ப**ரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.

பரீட்சகர்களின் உபயோகத்திற்கு மாத்திரம்

பகுதி	ഖിങ്ങ இல.	புள்ளிகள்
	1	
A	2	_
A	3	
	4	
	5	
В	6	
	7	
	.8	
C	9	
	10	
a	மாத்தம்	

	ு வயத்தம
இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

பகுதி A - அமைப்புக் கட்டுரை

நான்கு வினாக்களுக்கும் விடைகளை இத்தாளிலேயே எழுதுக. (ஒவ்வொரு வினாவின் விடைக்கும் 100 புள்ளிகள் வழங்கப்படும்.) **இப்பகுதியில்** எதனையும் எழுதுதல் ஆகாது.

- 1. (a) பின்வரும் வினாக்களுக்கு விடையைப் புள்ளிக் கோட்டின் மீது எழுதுக.
 - (i) பின்வரும் I, II, III ஆகிய சக்திச் சொட்டெண் தொடைகளில் எது ஓர் அணு ஓபிற்றலை விவரிப்பதில் ஏற்றுக்கொள்ளப்பட முடியாதது? (I) n=2 l=1 $m_i=-1$ (II) n=3 l=1 $m_i=+2$ (III) n=4 l=3 $m_i=-3$
 - (ii) Na+, K+, Ca²⁺ ஆகிய மூன்று அயன்களிடையே **மிகப் பெரிய** அயன் ஆரையை உடையது யாது?
 - (iii) Li⁺, Na⁺, Mg²⁺ ஆகிய மூன்று கற்றயன்களிலும் **மிகக் குறைந்த** முனைவாக்குதிறனை உடையது யாது?
 - (iv) Li, Be, B ஆகிய மூன்று மூலகங்களிடையேயும் **மிகக் குறைந்த** இரண்டாம் அயளாக்கச் சக்தியை உடையது எது?
 - (v) Li, C, Na ஆகிய மூன்று மூலகங்களிடையேயும் இலத்திரன்களைப் பெறுவதற்கான சக்திக்காக **மிகக் கூடுதலான** எதிர்ப் பெறுமானத்தை உடையது எது?
 - (vi) CH₃OH, CH₃CH₂OH, CH₃CH₂CH₂OH ஆகிய மூன்று சேர்வைகளிடையேயும் **மிகவும் வலிமையான** மூலக்கூற்றிடை விசைகளை உடையது எது?

(24 புள்ளிகள்)

- (b) (i) மூலக்கூறு FBrO₃ இற்கு மிகவும் ஏற்றுக்கொள்ளத்தக்க லூயி குற்றுக் கோட்டுக் கட்டமைப்பை வரைக.
 - (ii) மேலே (i) இல் வரைந்த கட்டமைப்பின் (I) மத்திய அணுவைச் சுற்றியுள்ள வடிவத்தையும் (II) மத்திய அணுவின் ஒட்சியேற்ற எண்ணையும் தருக.
 - (I) (வடிவம்) (II) (ஒட்சியேற்ற எண்)
 - (iii) சேர்வை SO₄ ஆனது SO₃ இற்கும் O₃ இற்குமிடையே உள்ள தாக்கத்தினால் தயாரிக்கப்படலாம். மூலக்கூறு SO₄ இற்கு ஓர் ஏற்றுக்கொள்ளத்தக்க (உறுதியான) லூயி குற்றுக் கோட்டுக் கட்டமைப்பு கீழே தரப்பட்டுள்ளது. இம்மூலக்கூற்றுக்கு மேலும் மூன்று லூயி குற்றுக் கோட்டுக் கட்டமைப்புகளை (பரிவுக் கட்டமைப்புகளை) வரைந்து, அவற்றின் உறுதிநிலைகளைத் தரப்பட்டுள்ள கட்டமைப்புத் தொடர்பாகக் குறிப்பிடுவதற்கு அக்கட்டமைப்புகளின் கீழ் உறுதியானது அல்லது கூறைந்த உறுதியானது அல்லது கறைந்த உறுதியானது அல்லது உறுதியானது.

(iv) பின்வரும் லூயி குற்று - கோட்டுக் கட்டமைப்பையும் அதன் குறியீடிடப்பட்ட அடிப்படைக் கட்டமைப்பையும் அடிப்படையாகக் கொண்டு தரப்பட்டுள்ள அட்டவணையைப் பூரணப்படுத்துக.

$$\ddot{N} \equiv C - \ddot{N} = C - \ddot{N} - H \qquad N - C^{1} - N^{2} - C^{3} - N^{4} - H \\
H \qquad \qquad H$$

சுட்டெண்:

4 இப்பத்தியி எதனையும் எழுத்தல் ஆகாது

		C ¹	N ²	C ³	N ⁴
I.	அணுவைச் சுற்றி VSEPR சோடிகளின் எண்ணிக்கை				
II.	அணுவைச் சுற்றி இலத்திரன் சோடிக் கேத்திரகணிதம்				
пі.[அணுவைச் சுற்றி வடிவம்				
IV.	அணுவின் கலப்பாக்கம்				

- (v) தொடக்கம் (viii) வரையுள்ள பகுதிகள் மேலே பகுதி (iv) இல் தரப்பட்ட லூயி குற்றுக் -கோட்டுக் கட்டமைப்பை அடிப்படையாகக் கொண்டவை. அணுக்களுக்குக் குறியீடிடுதல் பகுதி (iv)
 இல் உள்ளவாறாகும்.
 - (v) கீழே தரப்பட்ட இரு அணுக்களுக்கிடையேயும் σ பிணைப்புகளை உண்டாக்குதலுடன் சம்பந்தப்பட்ட அணு / கலப்பின ஓபிற்றல்களை இனங்காண்க.

I.	$N-C^1$	N	C^1
II.	$C^1 - N^2$	C^1	N ²
Ш.	$N^2 - C^3$	N^2	C ³
IV.	C^3-N^4	C ³	N ⁴
V.	$N^4 - H$	N ⁴	Н
VI.	C^3-H	C ³	Н

(vi) கீழே தரப்பட்ட இரு அணுக்களுக்கிடைபேயும் π பிணைப்புகளை உண்டாக்குதலுடன் சம்பந்தப்பட்ட ஓபிற்றல்களை இனங்காண்க.

 $(vii)\ C^1,N^2,C^3,N^4$ ஆகிய அணுக்களைச் சுற்றி உள்ள அண்ணளவான பிணைப்புக் கோணங்களைக் குறிப்பிடுக.

(viii) C^1, N^2, C^3, N^4 ஆகிய அணுக்களை அவற்றின் மின்னெதிர்த்தன்மை **அதிகரிக்கும்** வரிசையில் ஒழுங்குபடுத்துக.

- (i) மூலக்கூறு \widehat{OF}_4 இற்கு ஓர் ஏற்றுக்கொள்ளத்தக்க லூயி குற்றுக் கோட்டுக் கட்டமைப்பை வரைய **முடியாது.**
- (ii) NO_2^+ , NBr_3 , $NO_2Cl_1HNO_2$ ஆகியவற்றில் நைதரசனின் மின்னெதிர்த்தன்மை **அதிகரிக்கும்** வரிசை $NBr_3 < NO_2Cl < HNO_2 < NO_2^+$ ஆகும்.

100

(56 புள்ளிகள்)

AL/202.	.2024)/02/1-11(A) - 4 -	
;	A ஆனது ஆவந்த்தன அட்டவணையின் ஓர் சதொகுப்பு முலகமாகும். அதன் அணு என் 20 இலும் இறைவாகும். A ஐ நைதரகுடி ஆமி சி.சி.ஜய். இம் வெய்வோரும் வெய்யவர்க்கும்போது முறையே இறைவாகும். A ஐ நைதரகுடி இறி சி.சி.ஜய். இடினது நிருட்கு தடக்கம் புரிந்து மூலச் "சீற்கை D இயும் காரமான மணம் உள்ள, செம் பாசிச்சாயத்தை நீலமாக மாற்றும் ஒரு நிறுமற்ற வாயு E ஐயும் தகுகின்றது. அறை வெய்யநிலையில் A ஆனது நிருடன் தாக்கம் புரிந்து மேற்கை நீற்கும். இரும் மாய்கு நிறும்று மாற்கு நிறும்றும் வாயு F ஐயும் தகுகின்றது. A ஆனது இது உய்பு G ஐயும் வாயு F ஐயும் தகுகின்றது. D ஆனது CO ₂ உடன் தாக்கம் புரிந்து சேற்கை U மூற்கு கடியத்தின்றது. H வெட்டமேற்றப்படும்போது பிற்கையடைந்து சேற்கை C ஐயும் OC ஐயும் நகுகின்றது. B ஆனது நிறுடன் இரசாயணச் குத்திரங்களை எழுதுக. A. E B. F C. G D. H (ii) பின்வரும் தாக்கங்களுக்குச் சமன்படுத்திய இரசாயணச் சமன்பாடுகளை எழுதுக. I. A ஆனது நிறுடன் II. A ஆனது நிறுடன் IV. H இன் பிற்கை (iii) A இன் உப்புகள் சுவாலைச் சோதனையில் தரும் சுவாலையின் நிறத்தை எழுதுக. (65 புள்ளிகள்) P.Q. R. S ஆலியவற்றின் இரசாயனச் குத்திரங்களை எழுதுக. (i) P ஒரு நிறுமற்று கரைசலாகும். CO ₂ ஆனது P இனூடகை குமிழிபிட்டுச் செல்லும்போது கரைசல் மால் நிறும் மாறுகின்று. மிகையான CO ₂ ஐப் பாற்நிறக் கரைசலினுட்டிக் குமிழியிட்டுச் சேரதனைக்கு உட்படுத்தும்போது ஒரு நிறமற்ற முலக்களு. இம் கிகையான CO ₂ ஐப் பாற்நிறக் கரைசலினுட்டிக் குமிழியிட்டுச் சேரதனைக்கு உட்படுத்தும்போது ஒரு செல்மஞ்சுட் சிவப்பு நிறச்சு சுவாலை கிடைக்கின்றது. P ஐ இனங்காண்க. P (iii) உயோகம் M ஆனது ஆவர்த்தன அட்டவணையின் முன்றாம் நிரைச்கு உரியது. M ஒரு கிறைநடிய இருகள் நிறச் சுவாலையத் நி வன் அடில்கின்றது. இல் செல்கைடு ஐயு நாக்கம் புரிம்சி செல்வம்படுவது. இல் கேர்களையாகும் R ஆனது கிலைப்படுக்கிறது. இரு கின்றது. இருக்கின்றது. இரு விளைப்பாருளாக த் நடிகின்றது. இரு விளைப்பாருளாக திரும்சிறது. இரு விளைப்பாருளாக திரும்சின்றது. இருக்கிறது உடிய இருக்கிறது. R இரு அன்பகைக்கை. R (65 புரிக்கிறது. R இல் உள்ள உலோகை அப்படுக்கிப்படுக்கிறது. R இ திவிப்புக் கரைவையையும் R இருக்கிறது. R இரு கின்றது. R இ இருக்கினது. R இ	
	A	
	B F	
	C G	
	D H	
(i) பின்வரும் தாக்கங்களுக்குச் சமன்படுத்திய இரசாயனச் சமன்பாடுகளை எழுதுக.	
	I. A. ஆனது நீருடன்	
	II. A ஆனது ஐதான H ₂ SO ₄ உடன்	
	III. B ஆனது நீருடன்	
	IV. H இன் பிரிகை	
(i	- ,	
	(65 പണ്ണിക്ക്)	 கள்) சல்
	47444444444444444444444444444444444444	
(b)		() · · · · · · · · · · · · · · · · · · ·
	P, Q, R, S ஆகியவற்றின் இரசாயனச் சூத்திரங்களை எழுதுக. i) P ஒரு நிறமற்ற கரைசலாகும். CO ₂ ஆனது P இனூடாகக் குமிழியிட்டுச் செல்லும்போது கரைசல் பால் நிறமாக மாறுகின்றது. மிகையான CO ₂ ஐப் பால்நிறக் கரைசலினூடாகக் குமிழியிட்டுச் செல்லவிடும்போது ஒரு நிறமற்ற தெளிவான கரைசல் கிடைக்கின்றது. P ஐச் சுவாலைச் சோதனைக்கு உட்படுத்தும்போது ஒரு செம்மஞ்சட் சிவப்பு நிறச் சுவாலை கிடைக்கின்றது.	ag.a
	P, Q, R, S ஆகியவற்றின் இரசாயனச் சூத்திரங்களை எழுதுக. i) P ஒரு நிறமற்ற கரைசலாகும். CO ₂ ஆனது P இனூடாகக் குமிழியிட்டுச் செல்லும்போது கரைசல் பால் நிறமாக மாறுகின்றது. மிகையான CO ₂ ஐப் பால்நிறக் கரைசலினூடாகக் குமிழியிட்டுச் செல்லவிடும்போது ஒரு நிறமற்ற தெளிவான கரைசல் கிடைக்கின்றது. P ஐச் சுவாலைச் சோதனைக்கு உட்படுத்தும்போது ஒரு செம்மஞ்சட் சிவப்பு நிறச் சுவாலை கிடைக்கின்றது. P ஐ இனங்காண்க.	•
	P, Q, R, S ஆகியவற்றின் இரசாயனச் சூத்திரங்களை எழுதுக. i) P ஒரு நிறமந்ந கரைசலாகும். CO ₂ ஆனது P இனூடாகக் குமிழியிட்டுச் செல்லும்போது கரைசல் பால் நிறமாக மாறுகின்றது. மிகையான CO ₂ ஐப் பால்நிறக் கரைசலினூடாகக் குமிழியிட்டுச் செல்லவிடும்போது ஒரு நிறமந்ந தெளிவான கரைசல் கிடைக்கின்றது. P ஐச் சுவாலைச் சோதனைக்கு உட்படுத்தும்போது ஒரு செம்மஞ்சட் சிவப்பு நிறச் சுவாலை கிடைக்கின்றது. P ஐ இனங்காண்க. P ஐ இனங்காண்க. p உலோகம் M ஆனது ஆவர்த்தன அட்டவணையின் மூன்றாம் நிரைக்கு உரியது. M ஆனது ஐதான நீர் வன் அமிலங்களுடனும் மூலங்களுடனும் தாக்கம் புரிகின்றது. M ஒரு குறித்த ஐதான நீர் வன்னமிலத்துடன் தாக்கம் புரியும்போது உப்பு Q ஐ ஒரு விளைபொருளாகத் தருகின்றது. இக்கரைசலுடன் நீர் BaCl, ஐச் சேர்க்கும்போது ஒரு வெண்ணிற வீழ்படிவு உண்டாகின்றது.	•
	P, Q, R, S ஆகியவற்றின் இரசாயனச் சூத்திரங்களை எழுதுக. i) P ஒரு நிறமற்ற கரைசலாகும். CO ₂ ஆனது P இனூடாகக் குமிழியிட்டுச் செல்லும்போது கரைசல் பால் நிறமாக மாறுகின்றது. மிகையான CO ₂ ஐப் பால்நிறக் கரைசலினூடாகக் குமிழியிட்டுச் செல்லவிடும்போது ஒரு நிறமற்ற தெளிவான கரைசல் கிடைக்கின்றது. P ஐச் சுவாலைச் சோதனைக்கு உட்படுத்தும்போது ஒரு செம்மஞ்சட் சிவப்பு நிறச் சுவாலை கிடைக்கின்றது. P ஐ இனங்காண்க. P ஐ இனங்காண்க. P	
(P, Q, R, S ஆகியவற்றின் இரசாயனச் சூத்திரங்களை எழுதுக. i) P ஒரு நிறமற்ற கரைசலாகும். CO ₂ ஆனது P இனூடாகக் குமிழியிட்டுச் செல்லும்போது கரைசல் பால் நிறமாக மாறுகின்றது. மிகையான CO ₂ ஐப் பால்நிறக் கரைசலினூடாகக் குமிழியிட்டுச் செல்லவிடும்போது ஒரு நிறமற்ற தெளிவான கரைசல் கிடைக்கின்றது. P ஐச் சுவாலைச் சோதனைக்கு உட்படுத்தும்போது ஒரு செம்மஞ்சட் சிவப்பு நிறச் சுவாலை கிடைக்கின்றது. P ஐ இனங்காண்க. P	
(P, Q, R, S ஆ. பெவற்றின் இரசாயனச் சூத்திரங்களை எழுதுக. i) P ஒரு நிறமற்ற கரைசலாகும். CO ₂ ஆனது P இனூடாகக் குமிழியிட்டுச் செல்லும்போது கரைசல் பால் நிறமாக மாறுகின்றது. மிகையான CO ₂ ஐப் பால்நிறக் கரைசலினூடாகக் குமிழியிட்டுச் செல்லவிடும்போது ஒரு நிறமற்ற தெளிவான கரைசல் கிடைக்கின்றது. P ஐச் சுவாலைச் சோதனைக்கு உட்படுத்தும்போது ஒரு செம்மஞ்சட் சிவப்பு நிறச் சுவாலை கிடைக்கின்றது. P ஐ இனங்காண்க. P	

$\overline{}$				
		(v)) பின்வரும் தாக்கங்களுக்குச் சமன்படுத்திய இரசாயனச் சமன்பாடுகளைத் தருக. வீழ்படிவுகளைக் b	ரிசாசி: நிர்நித்ல நெர்நிதல் இப்பகுதியி
			I. P ஆனது Q உடன்	
			II. P ஆனது R உடன்	
			III. R ஆனது S உடன்	
			(35 புள்ளிகள்)	100
3.	(a)	(i)	ஒரு மூடிய விறைப்பற்ற கொள்கலத்தில் ஒரு தரப்பட்ட வெப்பநிலை (T) இலும் அமுக்கம் (P) இலும் ஓர் இலட்சிய வாயுவின் n மூல்கள் உள்ளன. வாயுவின் மூல்களின் எண்ணிக்கைக்கும் கனவளவு V இற்குமிடையே உள்ள தொடர்பை எழுதுக.	
	f		கனவளவு $150~{\rm cm^3}$ ஐ உடைய ஒரு மூடிய விறைப்பற்ற கொள்கலத்தில் ஒரு தரப்பட்ட வெப்பநிலையிலும் அமுக்கத்திலும் ${\rm O_2}({\rm g})$ இன் $3.75~{\rm g}$ உள்ளது. இதே வெப்பநிலையிலும் அமுக்கத்திலும் ${\rm O_2}({\rm g})$ இன் வேறொரு $1.25~{\rm g}$ இக்கொள்கலத்தில் இடப்படுமெனின், கொள்கலத்தின் புதிய கனவளவு யாது? $({\rm O}=16)$	
	(iii)	மாறா வெப்பநிலையிலும் அமுக்கத்திலும் ஓர் இலட்சிய வாயுவின் மூலர்த் திணிவு (<i>M</i>) ஆனது இவ்வாயுவின் அடர்த்தி (<i>d</i>) இற்கு நேரடி விகிதசம ெனன க் காட்டுக.	
				ļ

(40 புள்ளிகள்)

(b) கீழே தரப்பட்ட மீள் தாக்கத்தைக் கருதுக.

$$BF_4^-(aq) + H_2O(l) \rightleftharpoons BF_3OH^-(aq) + HF(aq)$$

(குறிப்பு: HF இன் அயனாக்கத்தைப் புறக்கணிக்க.)

மேற்குறித்த தாக்கத்தின் இயக்கப்பாட்டியல் (kinetics) பற்றிக் கற்பதற்குச் செய்யப்பட்ட ஒரு பரிசோதனையில் 0.20 mol dm⁻³ BF₄(aq) பயன்படுத்தப்பட்ட அதேவேளை நேரத்துடன் HF(aq) விளைபொருளின் செறிவு ஒரு மாறா வெப்பநிலையில் அளக்கப்பட்டது. பெற்ற பேறுகள் பின்வரும் வரைபில் காட்டப்பட்டுள்ளன.

சமநிலையில் $\mathrm{HF}(\mathrm{aq})$ இன் செறிவு $0.04~\mathrm{mol~dm^{-3}}$ என்னும் மாநாப் பெறுமானத்தை அடைந்தது. முன்முகத் தாக்கமானது வீதம் = $k_f[\mathrm{BF_4^-(aq)}]$ என்னும் வீத விதியைப் பின்பற்றும் அதேவேளை k_f இன் பெறுமானம் $1.0 \times 10^{-5}~\mathrm{s^{-1}}$ எனக் காணப்பட்டுள்ளது.

(i) நேரத்துடன் $[BF_4^-(aq)]$ இன் மாறலைக் காட்டுவதற்கு ஒரு வரைபை வரைக.

(ii) இவ்வெப்புநிலையில் நேரம் 600 s இற்குப் பின்னர் முன்முகத் தாக்கத்தின் வீதத்தைக் கணிக்க.

(iii) பின் தாக்கம் (reverse reaction) ஆனது [BF₃OH⁻(aq)] ஐக் குறித்து முதலாம் வரிசை எனவும் [HF(aq)] ஐக் குறித்து முதலாம் வரிசை எனவும் காணப்பட்டது. பின் தாக்கத்தின் வீத மாறிலி k_r எனக் கொண்டு அத்தாக்கத்தின் வீத விதியை எழுதி, இவ்வெப்பநிலையில் k_rஇன் பெறுமானத்தைக் கணிக்க.

(iv) மேற்குறித்த பரிசோதனையில் பின் தாக்கத்தின் வீத விதியைக் காண்பதற்குத் தொடக்க வீத முறையைப் பயன்படுத்த முடியுமா எனக் குறிப்பிடுக. உங்கள் விடைக்குக் காரணங்களைத் தருக.

100

4. (a) **A, B, C** ஆகியன மூலக்கூற்றுச் சூத்திரம் $C_5H_{10}O$ ஐக் கொண்ட கட்டமைப்புச் சமபகுதியங்களாகும். அவற்றில் ஒன்று கூட ஒளியியற் சமபகுதிச்சேர்வைக் காட்டாது. A,B,C ஆகிய மூன்று சேர்வைகளும் 2, 4-டைநைத்திரோபெனில்ஹைட்றசீன் (2,4-DNP) உடன் நிற வீழ்படிவுகளைத் தருகின்றன. A, B ${f C}$ ஆகிய இம்மூன்று சேர்வைகளிலும் ${f B}$ மாத்திரம் அமோனியஞ்சேர் ${f AgNO_3}$ உடன் ஒரு வெள்ளி ஆடியைத் தருகின்றது. A,B,C ஆகியன $NaBH_4/CH_3OH$ உடன் தனித்தனியாகத் தாக்கம் புரியச் செய்யப்பட்டபோது, முறையே $\mathbf{D},\mathbf{E},\mathbf{F}$ ஆகிய சேர்வைகள் உண்டாகின. \mathbf{D} ஆனது செறிந்த $\mathbf{H}_2\mathbf{SO}_4$ உடன் வெப்பமாக்கப்படும்போது, ஒவ்வொன்றும் மற்றையதன் ஈர்வெளிமையச்சமபகுதியங்களாக இருக்கும் ${f G}$, ${f H}$ ஆகிய சேர்வைகள் உண்டாகின்றன. ${f E}$, ${f F}$ ஆகியன செறிந்த ${f H}_2{f SO}_4$ உடன் தனித்தனியாக வெப்பமாக்கப்படும்போது சேர்வை ${f E}$ ஆனது ${f I}$ ஐத் தரும் அதேவேளை சேர்வை ${f F}$ ஆனது ${f G},{f H},{f I}$ ஆகிய மூன்று சேர்வைகளையும் தருகின்றது. G,H,I ஆகிய சேர்வைகள் $\mathrm{Br}_2/\mathrm{H}_2\mathrm{O}$ ஐ நிறம்நீக்குகின்றன. ${f A}, {f B}, {f C}, {f D}, {f E}, {f F}, {f G}, {f H}, {f I}$ ஆகியவந்நின் கட்டமைப்புகளைக் கீழே தரப்பட்டுள்ள அடைப்புகளில் வரைக. B A D C Е Ι **G உம் H உம்** (54 புள்ளிகள்) (b) (i) பின்வரும் (I-V) தாக்கங்களின் $\mathbf{J},\mathbf{K},\mathbf{L},\mathbf{M},\mathbf{N}$ ஆகிய விளைபொருள்களின் கட்டமைப்புகளைத் தரப்பட்டுள்ள அடைப்புகளில் வரைக. 0-5℃ H₂/Pd-BaSO₄ (II) $CH_3 - C \equiv C - CH_3$ குவிணொலின் K

- - (1) C₂H₅MgBr/உலர் ஈதர் (2) H⁺/H₂O
- PCl₃

(25 புள்ளிகள்)

(c) கீழே தரப்பட்டுள்ள $\mathbf{P},\mathbf{Q},\mathbf{R}$ ஆகிய சேர்வைகளைக் கருதுக.

- (i) P, Q, R ஆகிய சேர்வைகள் நீர் NaOH உடன் தனித்தனியாகப் பரிகரிக்கப்படும்போது;
 - I. எந்தச் சேரவை ஒரு கருநாட்டப் பிரதியீட்டுத் தாக்கத்தில் மிகக் குறைவாக ஈடுபடும்?
 - II. எந்தச் சேர்வை ஒரு படிமுறையில் நடைபெறும் ஒரு கருநாட்டப் பிரிதியீட்டுத் தாக்கத்திற்குப் பெரும்பாலும் உட்படலாம்?
 - III. எந்தச் சேர்வை **இரு படிமுறைகளில்** நடைபெறும் ஒரு கருநாட்டப் பிரிதியீட்டுத் தாக்கத்திற்குப் பெரும்பாலும் உட்படலாம்?

(12 புள்ளிகள்)

(ii) மேலே (c)(i)III இல் உள்ள தாக்கத்தின் பொறிமுறையையும் உண்டாகும் விளைபொருளின் கட்டமைப்பையும் தருக.

සියලු ම හිමිකම් ඇවිරිමේ / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

H

ПП

ලි ලංකා විතාන දෙපාර්ගමේන්තුව ලී ලංකා විතාන දෙපාර්ගමේන්තුවල් පෙන්වා ලෙපාල් මා සිතුන් සිතුන් විතාන දෙපාර්ගමේන්තුව මුහේසනයේ ප්රද්යාවේ නිතානස්සන්ගේ මුහේසනයේ පැවැත්වේ නිතානස්සන්ගේ ප්රදේශයේ ප්රදේශයේ ප්රදේශයේ මුහේසනයේ ප්රද්යාවේ නිතානස්සන්ගේ Department of Examinations, Sri Lavka Department ගිනුවෙන්නේ සිතුන් ස

> අධායත පොදු සහතික පතු (උසස් පෙළ) විහාගය, 2023 (2024) கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2023 (2024) General Certificate of Education (Adv. Level) Examination, 2023 (2024)

රසායන විදහාව **இரசாயனவியல்** Chemistry

அகில வாயு மாநிலி $R=8.314~\mathrm{J~K}^{-1}~\mathrm{mol}^{-1}$ # அவகாதரோ மாநிலி $N_A=6.022~\mathrm{x~10}^{23}~\mathrm{mol}^{-1}$

பகுதி B — கட்டுரை

இரண்டு வினாக்களுக்கு மாத்திரம் விடை எழுதுக. (ஒவ்வொரு வினாவுக்கும் 150 புள்ளிகள் வீதம் வழங்கப்படும்.)

5. (a) கீழே காட்டப்பட்டவாறு CaO(s) ஆனது நீருடன் தாக்கம் புரிகின்றது.

$$CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s) \Delta H^\circ = -64 \text{ kJ mol}^{-1}$$

பின்வரும் வினாக்கள் மேலே தரப்பட்ட தாக்கத்தை அடிப்படையாகக் கொண்டவை.

- (i) CaO(s) இன் ஒரு குறித்த திணிவுடன் H₂O(l) இன் 200 g தாக்கம் புரிய விடப்பட்டபோது நீரின் வெப்பநிலை 25 °C இலிருந்து 75 °C இற்கு மாறியது. நீரினால் உறிஞ்சப்பட்ட வெப்பத்தின் அளவை (kJ இல்) கணிக்க. நீரின் தன்வெப்பக் கொள்ளளவு 4.2 J g⁻¹ °C⁻¹ஆகும். (குறிப்பு: Ca(OH)₂ உண்டாவதன் விளைவாக நீரின் திணிவில் ஏற்படும் மாற்றத்தைப் பறக்கணிக்க.)
- (ii) மேலே (i) இல் நிகழ்ந்த வெப்பநிலை மாற்றத்தை ஏற்படுத்துவதற்குத் தேவையான CaO(s) இன் குறைந்தபட்சத் திணிவு யாது? (O = 16, Ca = 40)
- (iii) CaO(s), $H_2O(l)$, $Ca(OH)_2(s)$ ஆகியவற்றின் நியம எந்திரப்பிப் பெறுமானங்கள் முறையே 40, 70, $80~\mathrm{J}~\mathrm{K}^{-1}~\mathrm{mol}^{-1}$ ஆகும். தாக்கத்தின் எந்திரப்பி மாற்றத்தைக் கணிக்க.
- (iv) 300 K இல் தாக்கத்தின் சுயவியல்பை எதிர்வுகூறுக. எடுகோள்கள் எவற்றையும் கருதிக்கொண்டால் அவற்றைக் குறிப்பிடுக.
- (v) திரவ நீருக்குப் பதிலாகக் கொதிநீராவி $(H_2O(g))$ பயன்படுத்தப்படுமெனின், 400~K இல் உள்ள தாக்கத்தின் சுயவியல்பை எதிர்வுகூறுக.

$$H_2O(g) \longrightarrow H_2O(1) \Delta H^o = -44 \text{ kJ mol}^{-1}$$

 $S_{H_2O(g)}^o = 190 \text{ J K}^{-1} \text{ mol}^{-1}$ (80 Usinellesit)

(b) (i) வெப்பநிலை $570~^{\circ}$ C இல் ஒரு மூடிய விறைத்த கொள்கலத்தில் கீழே தரப்பட்டுள்ள சமநிலை இருக்கின்றது. $Ca(OH)_2(s) \rightleftharpoons CaO(s) + H_2O(g)$

கொள்கலத்தின் அமுக்கம் 7.0×10^5 Pa எனக் காணப்பட்டது. வெப்பநிலை 570 °C இல் தாக்கத்திற்கான $K_{\rm P}$, $K_{\rm C}$ ஆகியவற்றைக் கணிக்க (570 °C இல் ${\rm RT}=7000~{\rm J~mol}^{-1}$).

- (ii) பின்வரும் மாற்றங்கள் நிகழும்போது மேலே (b)(i) இன் சமநிலை மீது ஏற்படும் விளைவைக் காரணங்களைக் காட்டிச் சுருக்கமாக விளக்குக.
 - I. Ca(OH)₂(s) ஐச் சேர்க்கும்போது.
 - \mathbf{H} . சிறிதளவு $\mathbf{H}_2\mathbf{O}(\mathbf{g})$ அகற்றப்படும்போது.
- (iii) உண்டாக்கப்பட்ட நீராவியின் அமுக்கம் (P_{H_2O}) இற்கும் கொள்கலத்தில் புகுத்தப்பட்ட ${\rm Ca(OH)}_2(s)$ இன் திணிவு $({\rm M}_{{\rm Ca(OH)}_2})$ இற்குமிடையே உள்ள தொடர்பைத் துணிவதற்காக ஒரு வெற்றிடமாக்கப்பட்ட விறைத்த கொள்கலத்தில் $570~{\rm ^C}$ இல் ${\rm Ca(OH)}_2(s)$ இன் சிறிய அளவுகளைச் சேர்த்த பின்னர் அமுக்கம் அளக்கப்பட்டது. ${\rm M}_{{\rm Ca(OH)}_2}$ உடன் ${\rm P}_{{\rm H}_2O}$ இன் மாறலுக்காக எதிர்பார்க்கப்படும் வரைபை வரைந்து அதனைச் சுருக்கமாக விவரிக்க.
- (c) (i) வெப்பநிலை 25 $^{\circ}$ C இல் $\mathrm{Ca(OH)}_2(s)$ இன் நீரிலான கரைதலுக்கான மீளுந் தாக்கத்தை எழுதுக.
 - (ii) வெப் பநிலை $25\,^{\circ}$ C இல் ${\rm Ca(OH)_2(s)}$ இன் கரைதிறன் பெருக்கத்தின் $(K_{\rm sp})$ பெறுமானம் $4.0\times 10^{-6}\,{\rm mol}^3\,{\rm dm}^{-9}$ ஆகும். இவ்வெப்பநிலையில் ${\rm Ca(OH)_2(s)}$ இன் மூலர்க் கரைதிறனைக் கணிக்க.
 - (iii) NaOH, NaCl, Ca(NO₃)₂ ஆகியவற்றின் நீரக் கரைசல்களில் (கரைசல்களின் செறிவுகள் 0.1 mol dm⁻³) Ca(OH)₂(s) இன் கரைதிறன் ஆனது நீரில் Ca(OH)₂(s) இன் கரைதிறனுடன் ஒப்பிடப்படும்போது உயர்ந்ததா, குறைந்ததா, சமமானதா என்பதைக் காரணங்கள் தந்து குறிப்பிடுக.

- 6. (a) கீழே காட்டப்பட்டுள்ளவாறு 25 °C இல் மெதனொஏற்று (methanoate) அயன் HCOO¯(aq) ஆனது நீருடன் தாக்கம் புரிந்து மெதனொயிக் அமிலம், HCOOH(aq), OH¯(aq) ஆகியவற்றை உண்டாக்குகின்றது.

 HCOO¯(aq) + H₂O(l) ⇌ HCOOH(aq) + OH¯(aq)
 - (i) HCO_2Na இன் 0.10~mol ஐ நீரின் $1.0~dm^3$ இற் கரைத்துத் தயாரிக்கப்பட்ட ஒரு கரைசலில் $[OH^-(aq)] = 1.0 \times 10^{-6}~mol~dm^{-3}$ எனத் தரப்பட்டிருப்பின், $25~^{\circ}C$ இல் பின்வருவனவற்றைக் கணிக்க.
 - I. மெதனொஏற்று அயனின் $K_{
 m h}$ இன் பெறுமானம்
 - II. மெதனொயிக் அமிலத்தின் $K_{\rm a}$ இன் பெறுமானம் (25 °C இல் $K_{\rm w}=1.0 \times 10^{-14}~{
 m mol}^2~{
 m dm}^{-6}$)
 - $\stackrel{\cdot \cdot \cdot}{}$ (ii) செறிவு $0.10~{
 m mol~dm}^{-3}$ ஐ உடைய ஒரு மெதனொயிக் அமிலக் கரைசலின் pH பெறுமானத்தைக் கணிக்க.
 - (iii) $0.10 \; \mathrm{mol} \; \mathrm{dm}^{-3}$ செறிவுள்ள $\; HCOOH(\mathrm{aq}) \; \mathrm{கரைசலின்} \; 50.00 \; \mathrm{cm}^{3} \;$ இல் $\; HCO_{2}\mathrm{Na} \;$ இன் $3.40 \; \mathrm{g}$ கரைக்கப்பட்டபோது. கனவளவில் மாற்றம் ஏற்படவில்லையென அவதானிக்கப்பட்டது. $\; (H=1,C=12,O=16,\mathrm{Na}=23) \;$
 - I. இக்கரைசலின் pH பெறுமானத்தைத் துணிக.
 - II. இக்கரைசல் எவ்வாறு ஒரு தாங்கற் கரைசலாகத் தொழிற்படுகின்றது என்பதை விளக்குக. (**80 புள்ளிகள்**)
 - ம்) (i) இவ்வினா முற்றாகக் கலக்கும் A, B என்னும் இரு திரவங்களைக் கலப்பதன் மூலம் தயாரிக்கப்படும் ஒரு கரைசல் தொடர்பானதாகும். பின்வரும் அட்டவணையை உங்கள் விடைத்தாளில் பிரதிசெய்து அதில் உள்ள வெற்றிடங்களை நிரப்புக. வெவ்வேறு வகையாகத் தயாரிக்கப்படக்கூடிய (இலட்சிய, இலட்சியமற்ற / நேர் விலகலுள்ள, இலட்சியமற்ற / எதிர் விலகலுள்ள) கரைசல்கள் அட்டவணையில் தரப்பட்டுள்ளன. கரைசலில் A, B என்பவற்றின் மூல் பின்னங்கள் முறையே X_A, X_B ஆக இருக்கும் அதேவேளை ஒரு தரப்பட்ட வெப்பநிலையில் A, B ஆகியவற்றின் ஆவி அமுக்கங்கள் முறையே P_A, P_B ஆகும். இவ்வெப்பநிலையில் A, B ஆகியவற்றின் நிரம்பல் ஆவியமுக்கங்கள் முறையே P_A, P_B ஆகும். இவ்வெப்பநிலையில் A, B ஆகியவற்றின் நிரம்பல் ஆவியமுக்கங்கள் முறையே P_A, P_B ஆகும். A இற்கும் இடையேயும் B இற்கும் B இற்கும் இடையேயும், A இற்கும் B இற்கும் இடையேயும், A இற்கும் B இற்கும் இடையேயும், A இற்கும்

	இலட்சியக்	இலட்சியமற்ற கரைசல்			
இயல்பு	கரைசல்	இரவோல்ற்றின் விதியிலிருந்து நேர் விலகல்	இரவோல்ற்றின் விதியிலிருந்து எதிர் (மறை) விலகல்		
கலக்கும்போது <i>ΔH</i>					
$f_{\mathbf{A-A}}, f_{\mathbf{B-B}}, f_{\mathbf{A-B}}$ ஆகியவற்றுக்கிடையே உள்ள தொடர்புடைமை	,				
$P_{\mathbf{A}}^{\circ}$, $P_{\mathbf{A}}$, $X_{\mathbf{A}}$ ஆகியவற்றுக்கிடையே உள்ள தொடர்புடைமை					

- (ii) தூய நீரின் அவத்தை வரிப்படம் கீழே தரப்பட்டுள்ளது.
 இவ்வரிப்படத்தை உங்கள் விடைத்தாளிற் பிரதிசெய்து பின்வரும் வினாக்களுக்கு விடை எழுதுக.
 I. தூய நீரின் சாதாரண கொதிநிலை (V) ஐயும் உருகுநிலை (L) ஐயும் குறிக்க.
 - $\stackrel{-}{\mathrm{II}}$. $\stackrel{-}{BT}$, TC ஆகிய கோடுகளினாலும் புள்ளி T இனாலும் வகைகுநிக்கப்படுபவை யாவை?
 - III. தூய நீர் மாதிரியுடன் உப்பின் (NaCl) ஒரு சிறிய அளவு சேர்க்கப்படுகிறதெனக் கொள்க. உப்பைச் சேர்த்த பின்னர் அவத்தை வரிப்படத்தில் BT, TC ஆகிய கோடுகளின் அமைவுகள் மாறின. அவற்றின் புதிய அமைவுகள் முறையே B'T', T'C' ஆகும். நீங்கள் பிரதிசெய்த அவத்தை வரிப்படத்தில் அவற்றின் புதிய அமைவுகளை வரைந்து அவற்றை B'T', T'C' எனக் குறியிட்டுக் காட்டுக. புதிய கொதிநிலையை (V') எனவும் புதிய உருகுநிலையை (L') எனவும் அவத்தை வரிப்படத்தில் குறிக்க.

7. (a) ஒரு டானியல் கலம் முறையே ZnSO₄(aq, 1.0 mol dm⁻³), CuSO₄(aq, 1.0 mol dm⁻³) ஆகியவற்றில் அமிழ்த்தப்பட்ட Zn, Cu கோல்களைக் கொண்டுள்ளது. இக்கரைசல்கள் ஒரு நுண்டுளை மென்சவ்வினால் வேறாக்கப்பட்டுள்ளன. கலம் தொழிற்படும்போது அதற்கான ஒட்டுமொத்தக் கலத் தாக்கம் கீழே தரப்பட்டுள்ளது.

 $\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(aq) \longrightarrow \operatorname{Zn}^{2+}(aq) + \operatorname{Cu}(s)$

- (i) அனோட்டையும் கதோட்டையும் இனங்காண்க.
- (ii) கலத்தின் அனோட்டு அரைத் தாக்கத்தை எழுதுக.
- (iii) கலத்தின் கதோட்டு அரைத் தாக்கத்தை எழுதுக.
- (iv) மேற்குறித்த கலத்தின் கலக் குறிப்பீட்டைத் தருக.
- (v) மேலே தரப்பட்ட டானியல் கலத்திற்கு 25 °C இல் உள்ள மின்னியக்க விசை $(E_{\rm cell}^{\rm o})$ ஐக் கணிக்க. $E_{\rm Cu}^{\rm o}{}^{2+}{\rm (aq)/Cu(s)}=0.34~{
 m V}$ $E_{\rm Zn}^{\rm o}{}^{2+}{\rm (aq)/Zn(s)}=-0.76~{
 m V}$
- (vi) கலத்திலூடாக $5.0~{\rm A}$ ஓட்டம் பாயும்போது ${\rm Cu}({\rm s})$ இன் $3.175~{\rm g}$ படிதற்குத் தேவையான நேரத்தைச் செக்கனிற் கணிக்க. (${\rm Cu}=63.5, 1~{\rm F}=96500~{\rm C}~{\rm mol}^{-1}$)
- (vii) கலத்திலிருந்து ஓர் ஓட்டம் எடுக்கப்படும்போது Zn-கோலைக் கொண்ட கல அறையில் உள்ள கரைசலின் கடத்தாறு எங்ஙனம் மாறும்? காரணங்கள் தந்து விளக்குக.
- (viii) கலத்திலிருந்து ஓர் ஓட்டம் எடுக்கப்படும்போது Cu-கோலைக் கொண்ட கல அறையில் உள்ள கரைசலின் நிறத்தின் செறிவு மாறுகின்றதென அவதானிக்கப்பட்டது. இந்த அவதானிப்பை விளக்குக.
 - (ix) வரிப்படத்தில் காட்டப்பட்டுள்ளவாறு மேலே (v) இல் கணிக்கப்பட்ட மின்னியக்க விசையிலும் உயர்ந்த ஒரு புற வோல்ற்றளவு டானியல் கலத்திற்குப் பிறிதொரு இலத்திரனியல் இரசாயனக் கலத்திலிருந்து பிரயோகிக்கப்பட்டது. டானியல் கலத்திற்கான ஒட்டுமொத்தக் கலத் தாக்கத்தை இந்நிபந்தனையின் கீழ் எழுதுக.

(75 புள்ளிகள்)

(b) A, B, C, D ஆகியன எண்முகக் கேத்திரகணிதத்தைக் கொண்ட இரும்பின் இணைப்புச் சேர்வைகளாகும். இச்சேர்வைகளின் மூலக்கூற்றுச் சூத்திரங்கள் ${\rm FeH_{14}N_2O_4Br_3}$, ${\rm FeH_{15}N_5Br_2}$, ${\rm FeKH_4O_2Br_4}$, ${\rm FeH_{15}N_3O_3Br_2}$ (இதே ஒழுங்குமுறையிலன்றி) ஆகும்.

ஒவ்வொரு சேர்வையிலும் இணையியின் இரு வகைகள் உலோக அயனுடன் இணைந்துள்ளன.

சேர்வை A: நீரக் கரைசலில் மூன்று அயன்களைத் தருகின்றது. Aஇன் ஒரு நீரக் கரைசலுடன் Ag $NO_3(aq)$ சேர்க்கப்படும்போது Aஇன் ஒரு மூலுக்கு ஒரு மஞ்சள் நிற வீழ்படிவின் இரு மூல்கள் உண்டாகின்றன. சேர்வை B: நீரக் கரைசலில் நான்கு அயன்களைத் தருகின்றது. B இன் ஒரு நீரக் கரைசலுடன் Ag $NO_3(aq)$ சேர்க்கப்படும்போது B இன் ஒரு மூலுக்கு ஒரு மஞ்சள் நிற வீழ்படிவின் மூன்று மூல்கள் உண்டாகின்றன.

சேர்வை C : நீரக் கரைசலில் இரு அயன்களைத் தருகின்றது. Cஇன் ஒரு நீரக் கரைசலுடன் $AgNO_3(aq)$ சேர்க்கப்படும்போது C இன் ஒரு மூலுக்கு ஒரு மஞ்சள் நிற வீழ்படிவின் ஒரு மூல் உண்டாகின்றது.

சேர்வை ${f D}$: நீர்க் கரைசலில் இரு அயன்களைத் தருகின்றது. ${f D}$ இன் ஒரு நீர்க் கரைசலுடன் ${
m AgNO}_3(aq)$ சேர்க்கப்படும்போது மஞ்சள் நிற வீழ்படிவு உண்டாவதில்லை.

- (i) இரும்பின் (Fe) பொது ஒட்சியேற்ற நிலைகள் யாவை?
- (ii) மஞ்சள் நிற வீழ்படிவை இனங்காண்க. (இரசாயனச் சூத்திரத்தைத் தருக.) இவ்வீழ்படிவைக் கரையச் செய்யத்தக்க ஓர் இரசாயனச் சோதனைப் பொருளைப் பெயரிடுக.
- (iii) **A**, **B**, **C**, **D** ஆகிய சேர்வைகள் ஒவ்வொன்றிலும் உலோக அயனுடன் இணைந்த இணையிகளை இனங்காண்க.
- (iv) A, B, C, D ஆகிய சேர்வைகள் ஒவ்வொன்றிலும்
 - I. இரும்பின் ஒட்சியேற்ற நிலையை எழுதுக.
 - II. இரும்பின் இலத்திரனியல் நிலையமைப்பை எழுதுக.
- (v) A, B, C, D ஆகியவற்றின் கட்டமைப்புகளைத் தருக.

<u>(75 புள்ளிகள்)</u>

பகுதி C -- கட்டுரை

இரண்டு வினாக்களுக்கு மாத்திரம் விடை எழுதுக. (ஒவ்வொரு வினாவுக்கும் 150 புள்ளிகள் வீதம் வழங்கப்படும்.)

8. (a) $(CH_3)_2CHCO_2H$ ஆனது கீழே தரப்பட்டுள்ள தாக்க ஒழுங்குமுறையைப் பயன்படுத்திச் சேர்வை ${f F}$ ஆக மாற்றப்பட்டது.

$$(CH_3)_2CHCO_2H$$
 தாக்கம் 1 A தாக்கம் 2 B தாக்கம் 3 C OH D C E தாக்கம் 5 $(CH_3)_2CH-C-CH_2CH(CH_3)_2$ $CH_2CH(CH_3)_2$

A, B, C, D, E ஆகிய சேர்வைகளின் கட்டமைப்புகளையும் தாக்கங்கள் 1 - 5 இற்குத் தேவையான சோதனைப் பொருள்களையும் தந்து மேற்குறித்த தாக்க ஒழுங்குமுறையைப் பூரணப்படுத்துக. சோதனைப் பொருள்களாகக் கீழே தரப்பட்டுள்ள இரசாயனப் பொருள்களை (தனித்தனியே அல்லது சேர்மானங்களாக) மாத்திரம் பயன்படுத்துதல் வேண்டும்.

இரசாயனப் பொருள்கள்:

 C_2H_5OH , உலர் ஈதர், $LiAlH_4$, Mg, PBr_3 , செறிந்த H_2SO_4 , ஐதான H_2SO_4

(45 புள்ளிகள்)

(b) (i) தொடக்கும் சேர்வையாக $\mathbf{C_2H_2}$ ஐ மாத்திரம் பயன்படுத்தி **நான்கிற்கு (04)** மேற்படாத படிமுறைகளைப் பயன்படுத்திச் சேர்வை \mathbf{G} தயாரிக்கப்படும் விதத்தைக் காட்டுக.

U

- m (ii) சேர்வை m G மிகையான $m Cl_2$ உடன் தாக்கம் புரியச் செய்யப்படும்போது உண்டாகும் சேர்வை m H இன் கட்டமைப்பைத் தருக. m (30~ புள்ளிகள்)
- (c) செறிந்த $\mathrm{HNO_3}$ /செறிந்த $\mathrm{H_2SO_4}$ உடன் பென்சீனின் தாக்கத்தின் விளைபொருளையும் பொறிமுறையையும் எழுதுக.
- (d) பின்வரும் மாற்றல்கள் ஒவ்வொன்றையும் **மூன்றிற்கு (03)** மேற்படாத படிமுறைகளில் நிறைவேற்றும் வித**த்தை**க் காட்டுக.

(i)
$$\longrightarrow$$
 CH_2CH_3 CI

(ii)
$$CH_3CHCH_3$$
 — > $CH_3CH_2CH_2OH$ (50 புள்ளிகள்)

9. (a) (i) MgSO₄, NaOH, BaCl₂, Na₂SO₄, Zn(NO₃)₂ என்னும் சேர்வைகளின் நீர்க் கரைசல்கள் A, B, C, D, E (இதே வரிசையிலன்று) எனச் சுட்டுத்துண்டிடப்பட்ட ஐந்து 100 cm³ முகவைகளில் உள்ளன. கீழே தரப்பட்டுள்ள அவதானிப்புகளை அடிப்படையாகக் கொண்டு A, B, C, D, E ஆகியவற்றை இனங்காண்க. (காரணங்கள் அவசியமல்ல.)

குறிப்பு : கரைசல்களின் சிறிய அளவுகள் சோதனைக் குழாய்களில் கலக்கப்படுகின்றன.

D ஐயும் E ஐயும் கலக்கும்போது ஒரு வெண்ணிற வீழ்படிவு உண்டாகின்றது. அவ்வீழ்படிவுடன் மிகையான E ஐச் சேர்க்கும்போது வீழ்படிவு கரைந்து ஒரு நிறமற்ற கரைசல் கிடைக்கின்றது. C உடன் E ஐச் சேர்க்கும்போது ஒரு வெண்ணிற வீழ்படிவு உண்டாகின்றது. A உடன் E ஐச் சேர்க்கும்போதும் B உடன் E ஐச் சேர்க்கும்போதும் வீழ்படிவுகள் உண்டாவதில்லை. A ஐயும் B ஐயும் கலக்கும்போது ஒரு வெண்ணிற வீழ்படிவு உண்டாகின்றது. A உடன் C ஐச் சேர்க்கும்போது ஒரு வெண்ணிற வீழ்படிவு உண்டாகின்றது. A உடன் C ஐச் சேர்க்கும்போது ஒரு வெண்ணிற வீழ்படிவு உண்டாகின்றது. எனினும், B உடன் C ஐச் சேர்க்கும்போது வீழ்படிவு உண்டாவதில்லை.

(ii) ஒரு நீர்க் கரைசல் **M இ**ல் **மூன்று** கற்றயன்கள் உள்ளன. இக்கற்றயன்களை இனங்காண்பதற்குப் பின்வரும் சோதனைகள் (1-5) நிறைவேற்றப்பட்டன.

சோதனை எண்	சோதனை	அவதானிப்பு
1	கரைசல் M உடன் ஐதான HCl சேர்க்கப்பட்டது.	ஒரு வெண்ணிற வீழ்படிவு $(\mathbf{P_1})$
2	${f P_1}$ வடித்து அகற்றப்பட்டு, கரைசலினூடாக ${f H_2S}$ வாயு குமிழியிட்டுச் செல்லுமாறு செய்யப்பட்டது.	வீழ்படிவு இல்லை
3	எல்லா $ m H_2S$ உம் அகற்றப்படும் வரைக்கும் கரைசல் கொதிக்கச் செய்யப்பட்டு, பின்னர் குளிர்ச்சியாக்கப்பட்டது. $ m NH_4Cl/NH_4OH$ சேர்க்கப்பட்டது.	വ് ഗ്ഗ്വശ്യ ഇ ல്லை
4	இக்கரைசலினூடாக $\mathbf{H}_2 \mathbf{S}$ குமிழியிட்டுச் செல்லுமாறு செய்யப்பட்டது.	ஒரு வெளிறிய இளஞ்சிவப்பு வீழ்படிவு ($\mathbf{P_2}$)
5	P ₂ வடித்து அகற்றப்பட்டு, எல்லா H ₂ S உம் அகற்றப்படும் வரைக்கும் கரைசல் கொதிக்கச் செய்யப்பட்டது. (NH ₄) ₂ CO ₃ கரைசல் சேர்க்கப்பட்டது.	ஒரு வெண்ணிற வீழ்படிவு (P ₃)

 ${f P_1, P_2, P_3}$ ஆகிய வீழ்படிவுகளுக்குப் பின்வரும் சோதனைகள் நிறைவேற்றப்பட்டன.

លឺប្លំបច្ចេត្យ	சோதனை	அவதானிப்பு
P ₁	P ₁ உடன் ஐதான அமோனியாக் கரைசல் சேர்க்கப்பட்டது.	P ₁ கரைந்தது.
P ₂	ஐதான HNO_3 இல் $\mathbf{P_2}$ கரைக்கப்பட்டு, கரைசலுடன் மிகையான ஐதான NaOH சேர்க்கப்பட்டது.	காலப்போக்கில் கபிலநிறமாக மாறும் ஒரு வெண்ணிற வீழ்படிவு
P_3	செறிந்த HCl இல் P ₃ கரைக்கப்பட்டு, கரைசல் சுவாலைச் சோதனைக்கு உட்படுத்தப்பட்டது.	ஒரு பச்சை நிறச் சுவாலை

I. கரைசல் M இல் உள்ள **மூன்று** கற்றயன்களையும் இனங்காணக. (காரணங்கள் **அவசியமல்ல**.) II. P_1, P_2, P_3 ஆகிய வீழ்படிவுகளின் இரசாயனச் சூத்திரங்களை எழுதுக. (24 புள்ளிகள்)

(iii) X, Y, Z ஆகியன அயன் திண்மங்களாகும். மூன்று சேர்வைகளிலும் சோடியமே கற்றயனாகும். X, Y, Z ஆகியவற்றில் உள்ள அனயன்களை இனங்காண்பதற்குப் பின்வரும் சோதனைகள் நிறைவேற்றப்பட்டன.

சோதனை எண்	சோதனை	அவதானிப்பு
1	(i) ¾ இன் ஒரு பகுதி ஒரு சோதனைக் குழாயில் உள்ள நீரில் கரைக்கப்பட்டது.	ஒரு நிறமற்ற கரைசல்
	(ii) நிறமற்ற கரைசலுடன் Pb(CH ₃ COO) ₂ கரைசல் சேர்க்கப்பட்டது.	ஒரு மஞ்சள் நிற வீழ்படிவு

	(iii) கிடைத்த கலவை (மஞ்சள் நிற வீழ்படிவும் கரைசலும்) வெப்பமாக்கப்பட்டது.	வீழ்படிவு கரைந்து ஒரு நிறமந்ற கரைசலைத் தந்தது
	(iv) இந்நிநமற்ற கரைசல் குளிர்ச்சியாக்கப்பட்டது.	ஒரு மஞ்சள் நிற வீழ்படிவு (பொன் மஞ்சள் நிறமுள்ள தகடுகளாக)
2	(i) Y இன் ஒரு பகுதி ஒரு சோதனைக் குழாயில் உள்ள நீரிற் கரைக்கப்பட்டது.	ஒரு நிறமற்ற கரைசல்
	(ii) நிறமற்ற கரைசலுடன் ஒரு BaCl ₂ கரைசல் சேர்க்கப்பட்டது.	ஒரு வெண்ணிற வீழ்படிவு
	(iii) கிடைத்த கலவையுடன் (வெண்ணிற வீழ்படிவும் . கரைசலும்) ஐதான HCl சேர்க்கப்பட்டது.	ஒரு வாயுவை வெளியேற்றிக் கொண்டு ஒரு தெளிவான நிறமற்ற கரைசல்
	(iv) வெளியேற்றப்பட்ட வாயுவினைப் பரீட்சிப்பதற்காக அமிலமாக்கிய K ₂ Cr ₂ O ₇ இனால் ஈரமாக்கப்பட்ட ஒரு வடிகட்டித் தாள் சோதனைக் குழாயின் வாய்க்கு மேலே பிடிக்கப்பட்டது.	செம்மஞ்சள் நிறமுள்ள வடிகட்டித் தாள் பச்சை நிறமாக மாறியது
3	(i) Z இன் ஒரு பகுதி ஒரு சோதனைக் குழாயில் உள்ள நீரிற் கரைக்கப்பட்டது.	ஒரு நிறமற்ற கரைசல்
	(ii) நிறமற்ற கரைசலுடன் AgNO ₃ கரைசல் சேர்க்கப்பட்டது.	ஒரு கருமைநிழ வீழ்படிவு
	(iii) ஒரு சோதனைக் குழாயில் உள்ள திண்மம் Z இ ன் ஒரு பகுதியுடன் ஐதான HCl சேர்க்கப்பட்டது.	ஒரு நிறமற்ற வாயு வெளியேறியது
	(iv) வெளிபேற்றப்பட்ட வாயுவினைப் ப ரீ ட்சிப்பதற்காக Pb(CH ₃ COO) ₂ கரைசலினால் ஈரமாக்கப்பட்ட ஒரு வடிகட்டித் தாள் சோதனைக் குழாயின் வாய்க்கு மேலே பிடிக்கப்பட்டது.	வடிகட்டித் தாள் கருமை நிறமாக மாறியது

- I. X, Y, Z ஆகியவற்றில் உள்ள அபைன்களை இனங்காண்க. (காரணங்கள் அவசியமல்ல.)
- II. **டீ**மலே தரப்பட்ட சோதனைகளில் நடைபெறும் தாக்கங்களுக்கான சமன்படுத்திய இரசாயனச் சமன்பாடுகளை எழுதுக. (26 புள்ளிகள்)
- (b) ஒரு திண்ம மாதிரி X இல் P, Q என்னும் சேர்வைகளும் ஒரு சடத்துவப் பதார்த்தமும் அடங்கியுள்ளன. இங்கு $P = Fe_2O_3$ உம் $Q = Fe_3O_4$ உம் ஆகும். Q ஒரு **தனிச்** சேர்வையாக இருக்கும் அதேவேளை அதில் Fe^{2+} , Fe^{3+} என்னும் ஒட்சியேற்ற நிலைகளில் உள்ள இரும்பு அடங்கியுள்ளது. அது ஓர் அமில ஊடகத்தில் Γ உடன் பின்வருமாறு தாக்கம் புரிகின்றது.

$$Fe_3O_4 + 2I^- + 8H^+ \longrightarrow 3 Fe^{2+} + 4H_2O + I_2$$

X இல் **P, Q ஆ**கியவற்றின் திணிவுச் சதவீதங்களைத் துணிவதற்குப் பின்வரும் பரிசோதனை நடைமுறை பயன்படுத்**தப்ப**ட்டது.

மாதிரி \mathbf{X} இன் 3.2 g ஆளது ஐதான $\mathbf{H}_2\mathbf{SO}_4$ இன் முன்னிலையில் மிகையான $\mathbf{K}\mathbf{I}$ கரைசலுடன் பரிகரிக்கப்பட்டபோது அபடினை விடுவித்துக்கொண்டு அதில் உள்ள எல்லா \mathbf{Fe}^{3+} உம் \mathbf{Fe}^{2+} ஆக மாற்றப்பட்டது. இவ்வாறு கிடைத்த கரைசல் $100.00~\mathrm{cm}^3$ இற்கு ஐதாக்கப்பட்டது (\mathbf{S} எனக் குறிப்பிடப்பட்டது). இந்த ஐதான கரைசலின் (\mathbf{S}) $25.00~\mathrm{cm}^3$ கனவளவில் உள்ள அயடினை அயடைட்டாக மாற்றுவதற்கு $0.50~\mathrm{mol~dm}^{-3}$ $\mathbf{Na}_2\mathbf{S}_2\mathbf{O}_3$ இன் $15.00~\mathrm{cm}^3$ தேவைப்பட்டது.

ஐதாக்கிய கரைசலின் (S) வேறொரு $50.00~{\rm cm}^3$ கனவளவில் உள்ள எல்லா அயடினையும் முற்றாக அகற்றிய **பின்னர்** அதில் உள்ள எல்லா ${\rm Fe}^{2+}$ ஐயும் ஒட்சியேற்றுவதற்கு ஐதான ${\rm H_2SO_4}$ ஊடகத்தில் $0.25~{\rm mol~dm}^{-3}~{\rm KMnO_4}$ இன் $14.00~{\rm cm}^3$ தேவைப்பட்டது.

- (i) **யேற்குறித்த செயன்முறையி**ல் நடைபெறும் தாக்கங்களுக்குச் சமன்படுத்திய இரசாயனச் ச**மன்பாடுகளை எழுதுக**.
- (ii) X இல் உள்ள P,Q ஆகியவற்றின் திணிவுச் சதவீதங்களைக் கணிக்க. (O=16, Fe=56)

(75 புள்ளிகள்)

- **10.**(*a*) பின்வரும் வினாக்கள் டவ் (Dow) செயன்முறையினால் மகளீசியத்தைப் பிரித்தெடுத்தலை அடிப்படையாகக் கொண்டவை.
 - (i) பயன்படுத்தப்படும் மூலப்பொருள்களைக் குறிப்பிடுக.
 - (ii) சமன்படுத்திய இரசாயனச் சமன்பாடுகளை/அரைத்தாக்கங்களை அவை டவ் செயன்முறையில் நடைபெறும் ஒழுங்குமுறைக்கேற்பத் தருக. உரிய நிலைமைகளைத் தேவைக்கேற்பக் குறிப்பிடுதல் வேண்டும்.
 - (iii) மகனீசியத்தின் இரு கைத்தொழிற் பயன்பாடுகளைத் தருக.
 - (iv) டவ் செயன்முறை சூழலின் மீது பாதகமான விளைவைக் கொண்டிருக்கும் **இரு** விதங்களைத் தருக. (50 புள்ளிகள்)
 - (b) வளிமண்டலத்தில் உள்ள சில மாசாக்கிகள் கீழே தரப்பட்டுள்ளன. **மாசாக்கிப் பட்டியல்**

CH₄, CO₂, NO, NO₂, N₂O, SO₂, SO₃, CH₃CH₂CH₂CH₂CH₃,

பின்வரும் வினாக்கள் மேலே தரப்பட்டுள்ள மாசாக்கிப் பட்டியலை அடிப்படையாகக் கொண்டவை.

- (i) வளிமண்டலத்தில் உள்ள ஓசோனின் மட்டம் அதிகரிப்பதில் நேரடியாகப் பங்களிப்புச் செய்யும் மாசாக்கியை இனங்காண்க.
- (ii) மேலே (i) இல் நீங்கள் இனங்கண்ட மாசாக்கி வளிமண்டலத்தில் உள்ள ஓசோனின் மட்டத்தை அதிகரிக்கச் செய்யும் விதத்தைச் சமன்படுத்திய இரசாயனச் சமன்பாடுகளைப் பயன்படுத்தி விளக்குக.
- (iii) மேல் வளிமண்டலத்தில் உள்ள ஓசோனின் மட்டம் குறைவதற்குப் பங்களிப்புச் செய்யும் இரு மாசாக்கிகளை இனங்காண்க.
- (iv) மேலே (iii) இல் நீங்கள் இனங்கண்ட ஒரு மாசாக்கி மேல் வளிமண்டலத்தில் உள்ள ஓசோனின் மட்டத்தைக் குறைப்பதற்குப் பங்களிப்புச் செய்யும் விதத்தைச் சமன்படுத்திய இரசாயனச் சமன்பாடுகளின் துணையுடன் சுருக்கமாக விளக்குக.
- (v) ஒளியிரசாயனப் புகாரை உண்டாக்கும் இரு மாசாக்கிகளை இனங்காண்க.
- (vi) வளிமண்டலத்தில் உள்ள செங்கீழ்க் கதிர்ப்பை உறிஞ்சத்தக்க, வளிமண்டலத்தில் நெடுங்காலத்திற்கு உறுதியாக இருக்கும் நான்கு மாசாக்கிகளை இனங்காண்க.
- (vii) நீங்கள் மேலே (vi) இல் இனங்கண்ட மாசாக்கிகளின் நடத்தையை விவரிப்பதற்குப் பொதுவாகப் பயன்படுத்தப்படும் பெயர் யாது?
- (viii) நீரில் கரையும்போது சில நீர்த் தரப் பரமானங்களில் கணிசமான அளவு மாற்றத்தை ஏற்படுத்துவதில் பங்களிப்புச் செய்யும் இரு மாசாக்கிகளை இனங்காண்க. நீங்கள் இனங்கண்ட மாசாக்கிகளினால் எந்நீர்த் தரப் பரமானத்தில் / பரமானங்களில் மாற்றம் ஏற்படுமெனக் குறிப்பிடுக. (50 பள்ளிகள்)
- (c) கீழே தரப்பட்ட கூட்டம் A இன் ஓர் ஒருபகுதியம் கூட்டம் B இன் ஓர் ஒருபகுதியத்துடன் தாக்கம் புரியும்போது நடைபெறும் பல்பகுதியமாக்கல் தாக்கங்களைக் கருதுக.

- இங்கு n ஒரு நிறையெண்ணாகும்.
 - (i) பல்பகுதியமாக்கல் தாக்கத்தின்போது ஓர் அமில மூலக்கூறை விடுவிக்கும் ஒருபகுதியச் சோடியை/ சோடிகளை எழுதுக.
- (ii) பல்பகுதியமாக்கல் தாக்கத்தின்போது ஒரு நடுநிலை மூலக்கூறை விடுவிக்கும் ஒருபகுதியச் சோடியை/ சோடிகளை எழுதுக.
- . (iii) மீள்வரும் அலகு $= C (CH_2)_n C N (CH_2)_n N +$ இன் மூலர்த் திணிவு $226 \, \mathrm{g} \, \mathrm{mol}^{-1}$ ஆகும் ஒரு மீள்வரும் அலகில் உள்ள $= CH_2$ அலகுகளின் எண்ணிக்கையைக் கணிக்க. $= CH_2$ அலகுகளின் எண்ணிக்கையைக் கணிக்க. $= CH_2$ இலகுகளின் எண்ணிக்கையைக் கணிக்க. $= CH_2$ இலக்களின் எண்ணிக்கையின் கணிக்க கணிக்