6 Condizioni

6.1 Condizioni su array

Dato un array a di dimensione N, voglio verificare se la proprietà P vale per tutti gli elementi dell'array.

$$\forall i \in [0, N). \mathcal{P}(a[i]) \tag{4}$$

Esempio 6.1. Verifico che tutti gli elementi dell'array siano dispari.

$$\forall i \in [0, N).a[i] \tag{5}$$

```
1
       int check_array_dispari(int a[], size_t dim) {
2
          int indice = 0;
          while (indice < dim && a[indice]%2 == 1){</pre>
3
            indice++;
5
6
          if (indice == dim) {
            return 1;
8
            else {
            return 0;
10
       }
11
```

Listing 8: Verifica di proprietà su tutti gli elementi mathescape

Blocco lo scorrimento dell'array quando la proprietà NON viene soddisfatta almeno una volta.

Se invece voglio verificare che la proprietà P valga per almeno un elemento:

$$\exists i \in [0, N). \mathcal{P}(a[i]) \tag{6}$$

Esempio 6.2. Verifico che almeno un elemento dell'array è uguale a 26.

$$\exists i \in [0, N). a[i] == 26 \tag{7}$$

```
int esiste_in_array(int a[], size_t dim, in n) {
2
          size_t indice = 0;
          _Bool trovato = 0;
3
          while (indice < dim && !trovato){
            if(a[indice] == n) {
5
              trovato = 1;
7
            indice++;
8
         }
10
          return trovato:
       }
11
```

Listing 9: Verifica di proprietà su almeno un elemento

Blocco lo scorrimento dell'array nel momento in cui trovo un elemento che soddisfa la proprietà, utilizzando un flag.

6.2 Condizioni su matrici

Una **matrice** è un array di array. Può essere *multidimensionale* $N \times M$ e voglio verificare se tutti i suoi elementi oppure solo uno di essi verificano una proprietà P.

$$\forall i \in [0, N), \forall j \in [0, M). \mathcal{P}(a[i, j]) \tag{8}$$

$$\exists i \in [0, N), \exists j \in [0, M). \mathcal{P}(a[i, j]) \tag{9}$$

Definizione 6.1 (Matrice quadrata). Una matrice è quadrata se a lo stesso numero di righe e di colonne. In questo caso per scorrerla si può usare un solo indice:

$$\exists i, j \in [0, N). \mathcal{P}(a[i, j]) \tag{10}$$

Esempio 6.3. Verifico se tutti gli elementi della matrice sono positivi.

$$\forall i \in [0, N), \forall j \in [0, M). a[i, j] > 0 \tag{11}$$

```
int check_matrice_pos(int a[][COL], size_t dim) {
1
2
          size_t row, col;
         row = col = 0;
3
          while (row < dim && a[row][col] > 0) {
5
            col = 0;
            while (col < COL && a[row][col] > 0) {
6
7
              col++;
8
            if (col == COL) {
10
              row++;
11
12
          if (row == dim && col == COL) {
13
14
         }
15
16
          else {
17
           return 0;
18
19
       }
```

Listing 10: Verifica di proprietà su tutti gli elementi della matrice

Definizione 6.2 (Matrice simmetrica). Una matrice è simmetrica se è quadrata e se le posizioni simmetriche rispetto alla diagonale principale contengono gli stessi elementi.

Definizione 6.3 (Matrice triangolare). Una matrice è **triangolare** superiore o inferiore se le posizioni rispettivamente sopra o sotto la diagonale contengono tutti 0.

Definizione 6.4 (Matrice tridiagonale). Una matrice tridiagonale può avere elementi non nulli solo sulla diagonale principale e la sua diagonale superiore ed inferiore.

6.3 Contare elementi che verificano una proprietà

Dato un array \mathbf{a} di dimensione N per contare tutti gli elementi che verificano una proprietà P:

$$\#\{i|i \in [0, N-1] \land \mathcal{P}(a[i])\} \tag{12}$$

Data invece una matrice **a** di dimensione $N \times M$:

$$\#\{(i,j)|i\in[0,N-1]\land j\in[0,M-1]\}\tag{13}$$