Zadanie 1.

Pewien decydent posiada wyjściowy majątek w kwocie w = 10. Narażony jest on na stratę X o rozkładzie normalnym z parametrami $(\mu, \sigma^2) = (2, 6)$. (Strata jest tutaj terminem umownym, ponieważ z pewnym prawdopodobieństwem będzie ujemna, a więc de facto wystąpi zysk).

W swoich decyzjach kieruje się maksymalizacją funkcji użyteczności o postaci:

$$u(x) = -\exp\left(-\frac{1}{5} \cdot x\right)$$

Decydent dokonuje wyboru współczynnika $\beta \in [0,1]$, w efekcie czego na jego udziale pozostanie strata w wysokości $\beta \cdot X$, natomiast pozostałą część straty w wysokości

$$(1-\beta)\cdot X$$
 pokryje inny podmiot za cenę równą $\frac{6}{5}\cdot (1-\beta)\cdot \mu$.

Decydent wybierze współczynnik β równy:

- (A) 0
- (B) $\frac{1}{3}$
- (C) $\frac{1}{2}$
- (D) $\frac{2}{3}$
- (E) 1

Zadanie 2.

Ubezpieczyciel majątkowy planuje, że w pierwszym roku działalności uzyska składkę zarobioną w wysokości 33 mln euro. Rozkład łącznej wartości szkód dla wartości przybliżamy rozkładem normalnym o średniej odpowiadającej współczynnikowi szkodowości równemu 65% i odchyleniu standardowym 7 mln euro. Zakłada się, że 80% wartości zaistniałych szkód zostanie wypłacone, a na pozostałe 20% będzie utworzona rezerwa szkodowa. Utworzona zostanie ponadto rezerwa składki w wysokości 2 mln euro.

Ubezpieczyciel chce zawrzeć umowę reasekuracyjną typu quota share, która zapewni, że z prawdopodobieństwem 0,95 wartość marginesu wypłacalności nie przekroczy 6 mln euro. Ile powinien wynieść udział reasekuratora?

- (A) 17%
- (B) 19%
- (C) 21%
- (D) 23%
- (E) 25%

Zadanie 3.

 $Y_1, Y_2, \dots, Y_n, \dots$ są niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na przedziale [0,1]. N jest zmienną losową o rozkładzie Poissona z parametrem częstotliwości λ , niezależną od zmiennych Y_i . Niech:

$$M = \begin{cases} \max \left\{ Y_1, Y_2, \dots, Y_N \right\} & gdy & N > 0 \\ 0 & gdy & N = 0 \end{cases}$$
 Warunkowa wartość oczekiwana $E(N|M)$ wynosi:

- (A) $\lambda \cdot M$
- (B) $1 + \lambda \cdot M$

(C)
$$\begin{cases} 1 + \lambda \cdot M & gdy \quad M > 0 \\ 0 & gdy \quad M = 0 \end{cases}$$

(D) $e^{\lambda \cdot M}$

(E)
$$\begin{cases} e^{\lambda \cdot M} & gdy \quad M > 0 \\ 0 & gdy \quad M = 0 \end{cases}$$

Uwaga (dopisana po egzaminie): to zadanie ma ciekawą ogólniejszą wersję, gdy o zmiennych $Y_1, Y_2, \dots, Y_n, \dots$ zakładamy iż pochodzą z dowolnego rozkładu określonego na półosi dodatniej - wtedy jednak w odpowiedzi w miejsce M pojawi się $F_{\nu}(M)$.

Zadanie 4.

Ubezpieczyciel majątkowy osiągnął w pierwszym roku sprzedaży ubezpieczeń w pewnej grupie następujące wyniki:

Ilość umów	200
Przypis	20 000 zł
Koszty akwizycji	4 000 zł
Rezerwa składki	6 000 zł
Odszkodowania	10 000 zł
Rezerwa szkodowa	2 000 zł

Były to roczne umowy ze składką jednorazową.

Zakładamy, że:

- ryzyko rozkłada się równo w czasie (nie jest sezonowe),
- inflacja jest pomijalna,
- nie było reasekuracji.

Wysokość rezerwy na pokrycie ryzyka niewygasłego (ponad zwykłą rezerwę składki) należy na koniec roku utworzyć w wysokości:

- (A) 0 zł
- (B) 1 000 zł
- (C) 1 200 zł
- (D) 1 500 zł
- (E) 2 000 zł

Zadanie 5.

Rozważamy klasyczny proces nadwyżki ubezpieczyciela postaci:

$$U(t) = u + c \cdot t - S(t),$$

gdzie:

- $\bullet \quad S(t) = \sum_{i=1}^{N(t)} Y_i ,$
- Y_1, Y_2, \ldots są wartościami kolejnych szkód (niezależnymi, o identycznych rozkładach danych dystrybuantą $F_Y(\cdot)$,
- N(t) jest procesem Poissona z parametrem częstotliwości λ .

Oznaczmy przez Ψ prawdopodobieństwo ruiny:

$$\Psi = \Pr(T < \infty)$$
, gdzie T oznacza moment zajścia ruiny: $T = \inf\{t: t \ge 0, U(t) < 0\}$.

Załóżmy, iż mamy dodatni narzut bezpieczeństwa, a więc iż zachodzi:

$$\theta = \frac{c}{\lambda \cdot E(Y)} - 1 > 0$$

Wiadomo, że przy tym założeniu prawdopodobieństwo ruiny $\Psi(u)$ jako funkcja nadwyżki początkowej u równe jest ogonowi dystrybuanty maksymalnej całkowitej straty L:

$$\Psi(u) = 1 - F_{I}(u)$$

Aproksymacja funkcji prawdopodobieństwa ruiny metodą Beekmanna – Bowersa wymaga, aby między dystrybuantami $F_{\gamma}(\cdot)$ oraz $F_{L}(\cdot)$ zachodził określony związek, oraz aby rozkład zmiennej L posiadał skończone momenty pierwszych dwóch rzędów.

Na to, aby wymagania metody Beekmanna – Bowersa były spełnione, potrzeba i wystarcza, aby dodatkowo założyć:

- (A) iż rozkład zmiennej Y posiada funkcję generującą momenty o wartościach skończonych w pewnym otoczeniu zera
- (B) iż rozkład zmiennej Y posiada momenty wszystkich rzędów (skończone)
- (C) iż rozkład zmiennej Y posiada skończone momenty rzędu 1, 2, 3 i 4
- (D) iż rozkład zmiennej Y posiada skończone momenty rzędu 1, 2 i 3
- (E) iż rozkład zmiennej Y posiada skończone momenty rzędu 1 i 2

Zadanie 6.

Proces zgłaszania szkód jest poissonowski, ze stałym w czasie natężeniem (powiedzmy, rzędu wielu tysięcy rocznie). Dla każdej zgłaszanej szkody czas, jaki upływa od momentu jej zgłoszenia do momentu likwidacji, ma rozkład wykładniczy z wartością oczekiwaną równą pół roku.

Wybieramy pewien moment czasu t. Ze zbioru wszystkich szkód, które w tym momencie oczekują na likwidację, wybieramy losowo jedną szkodę. Oznaczmy przez T_1 moment jej zgłoszenia, zaś przez T_2 moment jej likwidacji. Oczywiście zachodzi:

$$T_1 < t < T_2$$

Przyjmujemy, iż zmienne T_1 i T_2 są dobrze określone (pomijamy jako praktycznie nieprawdopodobne zdarzenie, iż w danym momencie zbiór szkód oczekujących na likwidację jest pusty).

$$E(T_2 - T_1)$$
 wynosi:

(A)
$$\frac{1}{2}$$
 roku

(B)
$$\frac{4}{6}$$
 roku

(C)
$$\frac{3}{4}$$
 roku

(D)
$$\frac{5}{6}$$
 roku

Zadanie 7.

W pewnym rodzaju ubezpieczenia każde ryzyko generuje szkode (co najwyżej jedna) z takim samym prawdopodobieństwem. Populacja ryzyk charakteryzuje się jednak dużym zróżnicowaniem, reprezentowanym przez zmienną losową B, której realizacja β dla danego ryzyka jest parametrem rozkładu wartości szkody (wykładniczego):

$$f_{Y|B=\beta}(y) = \beta \cdot e^{-\beta \cdot y}$$
,

Jeśli przyjmiemy, iż parametr B ma w populacji ryzyk rozkład jednostajny na przedziale (0,1),

to rozkład losowo wybranej szkody z tego portfela (przy założeniu, iż portfel wygenerował przynajmniej jedną szkodę) ma gęstość:

(A)
$$f_Y(y) = \frac{1}{y^2} \cdot (1 - e^{-y} - y \cdot e^{-y})$$

(B)
$$f_Y(y) = \frac{1}{y} \cdot (1 - e^{-y} - y \cdot e^{-y})$$

(C)
$$f_Y(y) = \frac{1}{y} \cdot (1 - e^{-y})$$

(D)
$$f_Y(y) = \frac{1}{y^2} \cdot (1 - e^{-y})$$

(E)
$$f_Y(y) = \frac{1}{y^2} \cdot (1 - y \cdot e^{-y})$$

Zadanie 8.

Niech przy danej wartości parametru θ łączna wartość szkód w portfelu liczącym n ryzyk:

$$S(n) = Y_1 + \ldots + Y_{N(n)},$$

ma złożony rozkład Poissona o częstotliwości równej $n \cdot \lambda$ i rozkładzie pojedynczego składnika o parametrach:

$$E(Y|\Theta=\theta)=\mu(\theta)$$

$$VAR(Y|\Theta=\theta)=(\mu(\theta))^2$$
.

Parametr θ rozkładu zmiennej Y pochodzi z rozkładu zmiennej losowej Θ , o którym wiemy, że:

$$E(\mu(\Theta)) = \mu$$

$$VAR(\mu(\Theta)) = a^2$$

Kwadrat współczynnika zmienności zmiennej S(n), to znaczy iloraz:

$$\frac{VAR(S(n))}{[E(S(n))]^2}$$

wynosi:

(A)
$$\frac{a^2 + \frac{2}{n \cdot \lambda} \cdot (\mu^2 + a^2)}{\mu^2}$$

(B)
$$\frac{3 \cdot a^2 + 2 \cdot \mu^2}{\mu^2 \cdot n \cdot \lambda}$$

(C)
$$\frac{a^2 + 2 \cdot \mu^2}{\mu^2 \cdot n \cdot \lambda}$$

(D)
$$\frac{a^2 + \frac{1}{n \cdot \lambda} \cdot (\mu^2 + a^2)}{\mu^2}$$

(E)
$$\frac{3 \cdot a^2 + 2 \cdot \mu^2}{\mu^2 \cdot n^2 \cdot \lambda^2}$$

Wskazówka: zwróć uwagę, iż parametr ryzyka Θ realizuje się na tym samym poziomie dla całego portfela (to może być np. poziom cen, który staramy się przewidzieć – i wtedy μ oraz a^2 interpretować możemy odpowiednio jako nieobciążoną prognozę punktową i jej wariancję)

Zadanie 9.

Niech przy danej wartości parametru λ łączna wartość szkód w portfelu liczącym n ryzyk:

$$S(n) = Y_1 + \ldots + Y_{N(n)},$$

ma złożony rozkład Poissona o częstotliwości równej $n \cdot \lambda$ i rozkładzie pojedynczego składnika o parametrach:

$$E(Y) = \mu$$

$$VAR(Y) = \mu^2$$
.

Parametr λ rozkładu ilości szkód N(n) pochodzi z rozkładu zmiennej losowej Λ , o którym wiemy, że:

$$E(\Lambda) = L$$

$$VAR(\Lambda) = A^2$$

Kwadrat współczynnika zmienności zmiennej S(n), to znaczy iloraz:

$$\overline{[E(S(n))]^2}$$

wynosi:

(A)
$$\frac{2 \cdot L + A^2}{n \cdot L^2}$$

(B)
$$\frac{\frac{2}{n} \cdot L + A^2}{L^2}$$

(C)
$$\frac{\frac{2}{n} \cdot L + 2 \cdot A^2}{L^2}$$

(D)
$$\frac{L+A^2}{n \cdot L^2}$$

(E)
$$\frac{\frac{1}{n} \cdot L + A^2}{L^2}$$

Wskazówka: zwróć uwagę, iż (podobnie jak w poprzednim zadaniu) parametr ryzyka Λ realizuje się na tym samym poziomie dla całego portfela, co może mieć podobną interpretację w kategoriach prognozy obarczonej błędem.

Zadanie 10.

Łączna wartość szkód w portfelu liczącym n ryzyk:

$$S(n) = Y_1 + \ldots + Y_{N(n)},$$

ma złożony rozkład Poissona o częstotliwości równej $0.1 \cdot n$ i rozkładzie pojedynczego składnika o dystrybuancie:

$$F_{Y}(y) = 1 - e^{-0.01y}$$
.

Niech teraz zmienna R(n) oznacza łączną wartość nadwyżek każdej ze szkód ponad wartość 100, pokrywaną przez reasekuratora:

$$R(n) = \max\{(Y_1 - 100), 0\} + ... + \max\{(Y_{N(n)} - 100), 0\}$$

Kwadrat współczynnika zmienności zmiennej R(n), to znaczy iloraz:

VAR(R(n))

$$\overline{[E(R(n))]^2}$$
,

wynosi:

(A)
$$20 \cdot \frac{e^{-1}}{n}$$

(B)
$$2 \cdot \frac{e^{-1}}{n}$$

(C)
$$10 \cdot \frac{e^{-1}}{n}$$

(D)
$$10 \cdot \frac{e}{n}$$

(E)
$$20 \cdot \frac{e}{n}$$

Egzamin dla Aktuariuszy z 17 czerwca 2000 r.

Matematyka ubezpieczeń majątkowych

${\bf Arkusz\ odpowiedzi}^*$

K L U C Z	O D P O W I E D Z I
Dogal	

Zadanie nr	Odpowiedź	Punktacja⁴
1	В	
2	D	
3	С	
4	С	
5	D	
6	E	
7	A	
8	A	
9	В	
10	Е	

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypelnia Komisja Egzaminacyjna.