Corrigé – barème IE2 (5 mai 2017)

Dans les 2 exercices ; pas de justification → pas de points, et pas d'unité dans les A.N. → pas de points non plus

Г	T	10pt+1ptbonus
1.1	1 et 3 sont brutales = rapides = pas de temps pour les échanges thermiques (en A et B il y a	0.5
	seulement équilibre mécanique et pas thermique)	
	2 et 4: la pression extérieure est constante: P _{ext} = Pgaz(debut)=Pgaz(fin)	
1.2	a) 1, 2, 3, 4 P_{ext} =cst \rightarrow W=- $P_{\text{ext}}\Delta V \rightarrow$ W ₁ =-2 $P_{\text{o}}(V_{\text{A}}-V_{\text{o}})$, W ₂ =-2 $P_{\text{o}}(V_{\text{o}}/2-V_{\text{A}})$, W ₃ =- $P_{\text{o}}(V_{\text{B}}-V_{\text{o}}/2)$ et W ₄ =-	1
	$P_{o}(V_{o}-V_{B})$	
	b) 1 et 3 adiabatiques $Q=0 \rightarrow Q_1=Q_3=0$	0.5
	2 et 4 monobares Q= Δ H = $n\overline{C_p}$ (Δ T) \rightarrow Q ₂ = $n_o\overline{C_p}$ (T _o -T _A) et Q ₄ = $n_o\overline{C_p}$ (T _o -T _B)	0.5
1.3	Cycle $\Delta U=0=W+Q$ et $Q_{piece}=-Q$	0/5
	Donc Q_{piece} =- Q = W = W_1 + W_2 + W_3 + W_4 = $P_0V_0/2$	q 5
1.4	$T_{1}=T_{F}$ donc $\Delta U_{1+2}=n_{o}\overline{C_{v}}(\Delta T)=0$ donc $Q_{1+2}=-W_{1+2}$	9,5
	$n\overline{C_p}(T_o-T_A) = -P_oV_o = -n_oRT_o \rightarrow T_A = T_o\frac{2\gamma-1}{\gamma}$	d 5
	de même : $n_o \overline{C_p}$ (T _o -T _B) = P _o V _o /2 = - n_o RT _o /2 \rightarrow T _B = T _o $\frac{\gamma+1}{2\gamma}$	05
1.5	Cycle ΔS=0 (S est une fonction d'état)	0.5
	$\Delta S_{\text{piece}} = Q_{\text{piece}}/T_o = -(Q_2 + Q_4)/T_o$ car la pièce est un thermostat	0.5
	$\Delta S_{\text{piece}} = -(Q_2 + Q_4)/T_0 = -n_o \overline{C_p} (2T_0 - T_B - T_A)/T_0 = n_o \overline{C_p} (\gamma - 1)/2 \gamma$	0.5
1.6	$Sc = \Delta S_{univers} = \Delta S + \Delta S_{piece} = n_o \overline{C_p} (\gamma - 1)/2 \gamma$	0.5
	Sc > 0 → possible irréversible	
1.7	n _{pièce} =P _o V/RT _o (pas de pt si les notations de l'énoncé ne sont pas respectées) → n _{pièce} =1,0 10 ³	0.5+0.5
	moles (accepter entre 1 et 3 cs, pas plus !)	
1.8	$Q_{total} = n_{pièce} \overline{C_p}$ (ΔT) (pas de point si n à la place de n_{piece}) $\rightarrow Q_{total} = 1,2 \cdot 10^5$ J (accepter entre 1 et 3 cs.)	0.5+0.5
	pas plus !). Accepter $Q_{total} = n_{pièce} \overline{C_v} (\Delta T) = 0.86 \cdot 10^5 J$ si ils considèrent volume cst au lieu de P cste	
1.9	F=P₀*S=100N → correspond à lever 10kg : bon entrainement !	-0.5(+0.5bonus)
1.10	N _{cycle} =Q _{total} /W _{1cycle} = 1200 cycles (resp. 860 si V cst) (→ Vu qu'il faut attendre le refroidissement ça	0.5(+0.5bonus)
	risque de faire un peu long mais en regardant youtube ça passe. (tout commentaire faisant allusion	(0.15)
	au refroidissement non instantané mérite le 0,5bonus)	

Pierre

6.25

11.1								10pt		
".1	25°C	Brûleur P	Produits:	105°C				0,25		
	and an analysis of the second	en mem	condusti	Su's						
		45°C	Eau	Marion III						
			7 17 ()	15°C						
11.2	$C_3H_8(g) + 5O_2(g) \rightarrow 4H_2O(g) + 3CO_2(g)$ A l'entrée du brûleur :							0,5		
	$\dot{n}_{O2,e} = 1.4 \times 5 \times \dot{n}_{C3H8,e} = 0.07 \text{ mol/s}$									
	d'où n _{N2,e} =									
	Composé	CaHa	O ₂	N ₂	CO ₂	H₂O	Total	1,75		
	Entrée brûleur (mol/s)	ṁ _{C3H8,e} = 0,01	$\dot{n}_{02,e} = 0.07$	$\dot{n}_{N2,e} = 0.28$	ἡ _{CO2,e} = 0	п̂ _{Н2О,е} = 0	$\dot{n}_{tot,e} = 0.36$	(-0,25/erreur)		
	Etat intermédiaire	$0.01 - \dot{\xi}$	$0.07 - 5\dot{\xi}$	0,28	3ξ	$4\dot{\xi}$	$0.36 + \dot{\xi}$			
	Sortie brûleur (mol/s)	ἡ _{C3H8,s} = 0	$\dot{n}_{02,s} = 0.02$	$\dot{n}_{N2,s} = 0.28$	$\dot{n}_{CO2,s} = 0.03$	h _{H2O,s} = 0,04	$\dot{\mathbf{n}}_{tot,s} = 0.37$			
11.4	$\Delta_{\rm r} \text{H}^{\circ}_{298} = 4 \times (-241.8) + 3 \times (-393.5) - (-103.8) - 5 \times 0 = -2043.9 \text{ kJ/mol}$									
11.5	a) $\dot{Q}_r = \dot{n}_{C3H8,e} \times \Delta_r H^{\circ}_{298} = \dot{n}_{C3H8,e} \times \Delta_r H^{\circ}_{298}$							0,5		
	$\dot{Q}_{eau} = \frac{\dot{m}_{eau}}{M_{H2O}} \times \overline{C_p}(eau liq) \times (T_{e,s} - T_{e,e})$									
								0,5		
	$\dot{Q}_{\text{gaz}} = \int_{T_{g,e}}^{T_{g,s}} (\dot{n}_{\text{H2O,s}} \times \overline{C_p}(H_2O) + \dot{n}_{\text{CO2,s}} \times \overline{C_p}(CO_2) + \dot{n}_{\text{N2,s}} \times \overline{C_p}(N_2) + \dot{n}_{\text{O2,s}} \times \overline{C_p}(O_2)) dT$							0,3		
11.6		$\dot{Q}_{r} + \dot{Q}_{eau} + \dot{Q}_{gaz} = 0$								
11.7	$\dot{Q}_r = 0.01 \times (-2043.9) = -20.44 \text{ kW}$							0,5		
	$\dot{Q}_{gaz} = \int_{320}^{378} (0.04 \times 32.59 + 0.03 \times 39.80 + 0.28 \times 28.14 + 0.02 \times 28.97) dT = 876.5 W$							0,5		
	$\dot{m}_{eau} = \frac{M_{H20}}{\overline{C_p}(eau liq) \times (T_{e.s} - T_{e.e})} \times \left(-\dot{Q}_r - \dot{Q}_{gaz}\right) = \frac{18}{75,32 \times 30} \times (20,44 \cdot 10^3 - 876,5)$									
	$m_{\text{eau}} = \frac{\overline{C_p}(\text{eau liq}) \times (T_{\text{e,s}} - T_{\text{e,e}})}{75,32 \times 30} \times (20,44 \cdot 10^{-876,5})$ = 155.8 g·s ⁻¹									
		1								
1.8	On peut chauffer 155,8 g d'eau par seconde avec un débit de propane de 0,01 mol/s, soit une									
	puissance reçue par l'eau égale à $\dot{Q}_{eau}=20{,}44-0{,}8765=19{,}56\mathrm{kW}$									
	Pour fournir 100 kW.h à l'eau, il faudra donc brûler									
	$m_{C3H8} = M_{C3H8} \times \dot{n}_{C3H8,e} \times 3600 * 100 \cdot \frac{10^3}{\dot{Q}_{eau}} = 8098 \text{ g} = 8,098 \text{ kg de propane, soit un coût}$									
	de 13,77€									
.9	Si toute l'eau est à l'état vapeur à 45° C en sortie du brûleur, d'après le bilan matière $x_{H20,s} = 0.04$									
	$\frac{0.04}{0.37}$ = 0,11 soit une pression partielle en eau de 0,11 bar = 11000 Pa > P* _{45°C}							1		
	Donc une partie de l'eau est à l'état liquide.									
.10	Accepter plusieurs raisonnements suivant que les étudiants considèrent que l'on garde soit le débit d'eau, soit le débit de propane constant, et/ou que la liquéfaction de l'eau est incluse dans									
	le \dot{Q}_r ou dans le									
	plutôt que 105°									
	vapeur « gâche	1								
	Par exemple ra									
	réaction forme									
	La température									
	Si \dot{Q}_{gaz} et \dot{Q}_{r} din									
	prix, le coût din									