Welcome to instats

The Session Will Begin Shortly

(At the top of the hour, Eastern USA time)

1

START

Nonlinear Time Series Analysis, Part I: Detecting Nonlinearity

Barney Ricca Lyda Hill Institute for Human Resilience University of Colorado Colorado Springs

3

Seminar Overview

- Day 1
 - Session 1: Introduction to Nonlinear Time Series (NTLS)
 - Session 2: Behaviors and State Spaces
- Day 2
 - Session 3: State Spaces (continued)
 - Session 4: Recurrences
- Dav 3
 - Session 5: Tests
 - Session 6: Singular Spectrum Analysis and Noise
- Day 4
 - Session 7: Surrogate Data
 - Session 8: Convergent Cross Mapping

Derivatives, Differences, and Dynamics

- Recall: Differences are not dynamic because of the time delay
 - But differences estimate derivatives for dynamics
- Some nomenclature

Symbol	Spoken	Description
<i>x</i> *	x star	Fixed point
x(t)	x of t	x as a function of continuous time
x_t	x sub t	x as a function of discrete time
х	x dot	Velocity (1st derivative) of x
\hat{x}	x hat	Statistical estimate of x

5

Population: Linear approach

$$P(t) = \dot{P} = b_p P(t) - d_p P(t) = b_p P - d_p P$$

 $\Delta P_t = P_{t+1} - P_t = b_p P_t - d_p P_t$

- where:
 - P is the population (at time t for P(t), P, and P_t , and at time t+1 for P_{t+1})
 - b_p is the birth rate, assumed to be constant
 - d_p is the death rate, also assumed to be constant
- Population models

Population: Logistic Model

• Another population model:

$$x_{t+1} = Rx_t(1 - x_t)$$

- where:
 - x is the normalized population (relative to the carrying capacity)
 - t is the (discrete) time
 - R is a parameter that reflects the combined birth and death rates
- Population models

7

Changing Behaviors

Haken-Kelso-Bunz (HKB) Model

- Flexing fingers
- Two modes
 - Both stable at low frequencies
 - One stable at high frequencies
- look at landscape in R.

symmetrisch (in-phase)

parallel (anti-phase)

9

Bifurcations in General

- Many types, including
 - Pitchfork bifurcation (logistic)
 - Supercritical Hopf bifurcation (HKB)
- The pitchfork is a local bifurcation
 - Stability changes
- Hopf is a *global* bifurcation
 - Topology (e.g., number of fixed points) changes
- Near the bifurcation point
 - Critical slowing down
 - Emerging unstable behaviors can grow rapidly

Lessons Learned

- Reconstructed v. Original
 - Same topology
- Parameters and behaviors
 - Change behaviors through model forms or parameters
 - Synergetics
- Noise ugh!

13

Shadow State Spaces

- Several approaches to reconstruction
 - Constant Delay
 - Maximally orthogonal
 - Principle Component Analysis
 - · Reconstruction from Multivariate

Constant Delay State Spaces

- Common in the literature, although not optimal
- Process
 - Dimension choice (theory, Takens)
 - Delay choice (ACF, MI)
 - False nearest neighbors (radius and Theiler window choices)
- Delay State Spaces in RStudio

15

Questions

Reconvene at 1600 UTC

STOP