PDAC gene expression analysis

Richard Moffitt, Ryan Kawalerski

Contents

Setup	1
load required libraries	1
Results	1
Popular signatures in matched samples	1
Add classifier geneset to dataset	51
Popular signatures and classifier score	52

Setup

load required libraries

Results

Popular signatures in matched samples

```
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
## 'geom_smooth()' using formula 'y ~ x'
```

Moffitt.Basal.25

'geom_smooth()' using formula 'y ~ x'

Moffitt.Classical.25

'geom_smooth()' using formula 'y ~ x'

Moffitt.Normal.25

'geom_smooth()' using formula 'y ~ x'

Moffitt.Activated.25

'geom_smooth()' using formula 'y ~ x'

Moffitt.Tumor

'geom_smooth()' using formula 'y ~ x'

Puleo.Centroids

'geom_smooth()' using formula 'y ~ x'

Collisson.Classical

'geom_smooth()' using formula 'y ~ x'

Collisson.Exocrine

'geom_smooth()' using formula 'y ~ x'

Collisson.QM

'geom_smooth()' using formula 'y ~ x'

ICGC.ADEX.Up

'geom_smooth()' using formula 'y ~ x'

ICGC.ADEX.Down

'geom_smooth()' using formula 'y ~ x'

ICGC.Immunogenic.Up

'geom_smooth()' using formula 'y ~ x'

ICGC.Immunogenic.Down

'geom_smooth()' using formula 'y ~ x'

ICGC.Progenitor.Up

'geom_smooth()' using formula 'y ~ x'

ICGC.Progenitor.Down

'geom_smooth()' using formula 'y ~ x'

ICGC.Squamous.Up

'geom_smooth()' using formula 'y ~ x'

ICGC.Squamous.Down

'geom_smooth()' using formula 'y ~ x'

ICGC.SAM

'geom_smooth()' using formula 'y ~ x'

Scarpa_PanNET

'geom_smooth()' using formula 'y ~ x'

Moffitt.Top5s

'geom_smooth()' using formula 'y ~ x'

Moffitt.Top25s

'geom_smooth()' using formula 'y ~ x'

Moffitt.F1_Liver.top25

'geom_smooth()' using formula 'y ~ x'

Moffitt.F1_Liver.top250

'geom_smooth()' using formula 'y ~ x'

Moffitt.F1_Liver.top100

Moffitt.F2.top25

'geom_smooth()' using formula 'y ~ x'

Moffitt.F2.top250

'geom_smooth()' using formula 'y ~ x'

Moffitt.F2.top100

'geom_smooth()' using formula 'y ~ x'

Moffitt.F3_Exocrine.top25

'geom_smooth()' using formula 'y ~ x'

Moffitt.F3_Exocrine.top250

'geom_smooth()' using formula 'y ~ x'

Moffitt.F3_Exocrine.top100

Moffitt.F4_CellCycle.top25

'geom_smooth()' using formula 'y ~ x'

Moffitt.F4_CellCycle.top250

'geom_smooth()' using formula 'y ~ x'

Moffitt.F4_CellCycle.top100

'geom_smooth()' using formula 'y ~ x'

Moffitt.F5_ActivatedStroma.top25

'geom_smooth()' using formula 'y ~ x'

Moffitt.F5_ActivatedStroma.top250

'geom_smooth()' using formula 'y ~ x'

Moffitt.F5_ActivatedStroma.top100

'geom_smooth()' using formula 'y ~ x'

Moffitt.F6_BasalLike.top25

'geom_smooth()' using formula 'y ~ x'

Moffitt.F6_BasalLike.top250

'geom_smooth()' using formula 'y ~ x'

Moffitt.F6_BasalLike.top100

'geom_smooth()' using formula 'y ~ x'

Moffitt.F7_Immune.top25

'geom_smooth()' using formula 'y ~ x'

Moffitt.F7_Immune.top250

'geom_smooth()' using formula 'y ~ x'

Moffitt.F7_Immune.top100

'geom_smooth()' using formula 'y ~ x'

Moffitt.F8_Classical.top25

'geom_smooth()' using formula 'y ~ x'

Moffitt.F8_Classical.top250

Moffitt.F8_Classical.top100

'geom_smooth()' using formula 'y ~ x'

Moffitt.F9_Lung.top25

Moffitt.F9_Lung.top250

'geom_smooth()' using formula 'y ~ x'

Moffitt.F9_Lung.top100

'geom_smooth()' using formula 'y ~ x'

Moffitt.F10.top25

'geom_smooth()' using formula 'y ~ x'

Moffitt.F10.top250

'geom_smooth()' using formula 'y ~ x'

Moffitt.F10.top100

'geom_smooth()' using formula 'y ~ x'

Moffitt.F11_Muscle.top25

Moffitt.F11_Muscle.top250

'geom_smooth()' using formula 'y ~ x'

Moffitt.F11_Muscle.top100

Moffitt.F12_Endocrine.top25

'geom_smooth()' using formula 'y ~ x'

Moffitt.F12_Endocrine.top250

Moffitt.F12_Endocrine.top100

'geom_smooth()' using formula 'y ~ x'

Moffitt.F13_NormalStroma.top25

Moffitt.F13_NormalStroma.top250

'geom_smooth()' using formula 'y ~ x'

Moffitt.F13_NormalStroma.top100

Moffitt.F14.top25

'geom_smooth()' using formula 'y ~ x'

Moffitt.F14.top250

'geom_smooth()' using formula 'y ~ x'

Moffitt.F14.top100

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.B.cells.naive

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.B.cells.memory

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.Plasma.cells

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.T.cells.CD8

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.T.cells.CD4.naive

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.T.cells.CD4.memory.resting

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.T.cells.CD4.memory.activated

CIBERSORT.T.cells.follicular.helper

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.T.cells.regulatory..Tregs.

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.T.cells.gamma.delta

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.NK.cells.resting

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.NK.cells.activated

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.Monocytes

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.Macrophages.M0

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.Macrophages.M1

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.Macrophages.M2

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.Dendritic.cells.resting

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.Dendritic.cells.activated

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.Mast.cells.resting

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.Mast.cells.activated

'geom_smooth()' using formula 'y ~ x'

CIBERSORT. Eosinophils

'geom_smooth()' using formula 'y ~ x'

CIBERSORT.Neutrophils

'geom_smooth()' using formula 'y ~ x'

Notta.BasalA

'geom_smooth()' using formula 'y ~ x'

Notta.BasalB

'geom_smooth()' using formula 'y ~ x'

Notta.ClassicalA

'geom_smooth()' using formula 'y ~ x'

Notta.ClassicalB

ADEX_unique

'geom_smooth()' using formula 'y ~ x'

'geom_smooth()' using formula 'y ~ x'

Immunogenic_unique

'geom_smooth()' using formula 'y ~ x'

Progenitor_unique

'geom_smooth()' using formula 'y ~ x'

Squamous_unique

'geom_smooth()' using formula 'y ~ x'

'geom_smooth()' using formula 'y ~ x'

molgrad_Puleo

'geom_smooth()' using formula 'y ~ x'

molgrad_ICGCarray

'geom_smooth()' using formula 'y ~ x'

molgrad_ICGCrnaseq

'geom_smooth()' using formula 'y ~ x'

'geom_smooth()' using formula 'y ~ x'

Add classifier geneset to dataset

Popular signatures and classifier score

[1] 23 ## [1] 23

'geom_smooth()' using formula 'y ~ x'

