Models of amino acid and codon substitution

Comparative Genomic Analyses

Rui Borges Vetmeduni Vienna

Phylogenetic models

Models of sequence substitution can be built for different evolutionary units

- \triangleright nucleotides: 4 states $\{A, C, G, T\}$
- ▶ amino acids: 20 states { Phe, Leu, Ile, ...}
- ► codons: 61 states {AAA, AAC, AAT, ...}

Models of amino acid and codon substitution

Substitutions between amino acids in proteins or between codons in protein-coding genes can be very informative

- natural selection operates mainly at the protein level
- synonymous or silent substitutions: nucleotide substitutions that do not change the encoded amino acid
- nonsynonymous or replacement substitutions: those that change the amino acid

Amino acid and codon substitutions

	U		С		A		G		
	Codon	Amino acid	Codon	Amino acid	Codon	Amino acid	Codon	Amino acid	
U	UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys	U
	UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys	C
U	UUA	Leu	UCA	Ser	UAA	STOP	UGA	STOP	Α
	UUG	Leu	UCG	Ser	UAG	STOP	UGG	Trp	G
С	CUU	Leu	CCU	Pro	CAU	His	CGU	Arg	U
	CUC	Leu	CCC	Pro	CAC	His	CGC	Arg	C
	CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg	Α
	CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg	G
	AUU	Ile	ACU	Thr	AAU	Asn	AGU	Ser	U
	AUC	Ile	ACC	Thr	AAC	Asn	AGC	Ser	C
A	AUA	Ile	ACA	Thr	AAA	Lys	AGA	Arg	Α
	AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg	G
	GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly	U
	GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly	C
G	GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly	Α
	GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly	G

Types of phylogenetic models

Empirical models

- describe the relative rates of substitution
- do not consider explicitly factors that influence the evolutionary process
- large quantities of sequence data

Mechanistic models

- consider the biological process involved: mutational biases, natural selection...
- more interpretative power
- particularly useful for studying the evolutionary forces and mechanisms

First empirical amino acid substitution matrix

DAYHOFF78

Dayhoff et al. (1978)

- protein sequences available at the time
- parsimony argument was used to reconstruct ancestral protein sequences and transitions

Other empirical substitution matrices

Empirical substitution matrices:

- ► nuclear proteins: DAYHOFF, JTT, WAG Whelan and Goldman (2001)
- mitochondrial proteins: mtMAM, mtREV Adachi and Hasegawa (1966)
- chloroplast proteins: cpREV Adachi et al. (2000)

Amino acid replacements

Several features of these matrices are worth noting:

- ▶ the genetic code has a major impact on the interchange rates
- acids with similar physicochemical properties interchange more than dissimilar amino acids

Amino acid replacements

Models of amino acid replacement have several applications:

- phylogeny reconstruction
- alignment of protein sequences: can be used as cost matrices to penalize mismatches (heavier penalties applied to rarer changes)

Codon evolution and selection

Understanding the selective pressures underlying genetic variation is a central goal in evolutionary biology

- nonsynonymous mutations can directly affect protein function
- nonsynonymous mutations are more likely to influence the fitness of an organism than synonymous mutations

Codon evolution and selection

Comparing the relative rates of non-synonymous and synonymous substitutions became a standard measure of selective pressure Miyata and Yasunaga (1980)

$$\omega = \frac{dN}{dS}$$

- $ightharpoonup \omega pprox 1$: signifies neutral evolution
- $ightharpoonup \omega < 1$: negative selection
- $ightharpoonup \omega > 1$: positive selection

Models of codon substitution

The models of codon evolution describe substitution from one codon to another

- codon triplet is the unit of evolution
- the state space includes only the sense codons (stop codons are ignored)
- the genetic code is not universal

Models of codon substitution

 $Q = \{q_{ij}\}$: the instantaneous rate from codon i to j Nielsen & Yang (1998)

$$q_{ij} = \left\{ \begin{array}{ll} \pi_j & i \text{ and } j \text{ synonymous transversion} \\ \kappa \pi_j & i \text{ and } j \text{ synonymous transition} \\ \omega \pi_j & i \text{ and } j \text{ nonsynonymous transversion} \\ \omega \kappa \pi_j & i \text{ and } j \text{ nonsynonymous transition} \\ 0 & i \text{ and } j \text{ more than one DNA substitution} \end{array} \right.$$

- \triangleright κ : transition/transversion rate ratio,
- ightharpoonup ω : nonsynonymous/synonymous rate ratio
- $\blacktriangleright \pi_j$: equilibrium frequency of codon j

Models of codon substitution

- Synonymous transversion: CTG → CTA
- Synonymous transition: CTT → CTA
- Nonsynonymous transversion: CCA → CTA
- Nonsynonymous transition: CAA → CTA

Codon evolution and selection

Condon models help to answer several questions:

- ▶ Is there evidence of selection operating on a gene?
- ▶ Where did selection happen?
- ▶ When did selection happen?

Testing for positive selection

To test for positive selection, the null hypothesis is often the neutral scenario and the alternative allowing for positive selection.

- lacktriangleright null hypothesis: ω is constrained to be smaller than 1
- ightharpoonup alternative hypothesis: ω higher than 1 (i.e., allowing for diversifying selection)

Testing for positive selection

There are several different tests for positive selection: the M7 vs. M8 is a widely used model comparison.

- \blacktriangleright the null model M7 (beta) assumes a beta distribution for ω
- ▶ the alternative model M8 (beta& ω) adds an extra class of sites under positive selection with $\omega > 1$.
- ▶ LRT $\rightarrow \chi^2$ with two degrees of freedom

Model	Description	Free parameters
M7: Beta	All sites are from $B(\alpha, \beta)$	lpha and eta
M8: Beta & ω	p_0 sites from $B(\alpha, \beta)$,	$lpha$, eta , \emph{p}_0 and ω
	$p_1=1-p_0$ sites with $\omega>1$	

Literature

Computational Molecular Evolution by Yang (2006)

Oxford University Press

► Chapter 2: sections 2.1, 2.2 and 2.4