Semantic Theory Week 1 – Predicate Logic

Noortje Venhuizen Harm Brouwer

Universität des Saarlandes

Summer 2019

Information about this course

Contact information:

- · Course website: http://njvenhuizen.github.io/teaching/ST19/index.html
- Email: noortjev@coli.uni-saarland.de / brouwer@coli.uni-saarland.de

Recommended literature:

- Gamut: Logic, Language, and Meaning, Vol. 2, University of Chicago Press, 1991
- Kamp and Reyle: From Discourse to Logic, Kluwer, 1993
- Winter: Elements of Formal Semantics, Edinburgh University Press, 2016
 (first three chapters freely available for download: http://www.phil.uu.nl/~yoad/efs/main.html)

Final exam:

Exam date (provisional): 18.07.2019

Part I: Sentence semantics

Sentence meaning

- Tina is tall and thin ⇒ Tina is tall
- Tina is tall, and Ms. Turner is not tall ⇒ Tina is not Ms. Turner
- A dog entered the room ⇒ An animal entered the room
- Tweety is a bird ⇒ Tweety can fly

Entailment

Given an indefeasible relation between two natural language sentences S_1 and S_2 , where speakers intuitively judge S_2 to be true whenever S_1 is true, we say that S_1 entails S_2 , and denote it $S_1 \Rightarrow S_2$

Formalizing sentence meaning

How to formally describe the meaning of sentences?

- Defining differences between various linguistic forms
- Using formal mathematical methods

Truth-conditional semantics:

To know the meaning of a (declarative) sentence is to know what the world would have to be like for the sentence to be true:

Sentence meaning = truth-conditions

Indirect interpretation

1. Translate sentences into logical formulas:

Every student works $\mapsto \forall x (student'(x) \rightarrow work'(x))$

2. Interpret these formulas in a logical model:

$$[\![\forall x (student'(x) \rightarrow work'(x))]\!]^{M,g} = 1 \text{ iff}$$

 $V_M(student') \subseteq V_M(work')$

Step 1: Translation

Limits of propositional logic: propositions with internal structure

Every man is mortal.

Socrates is a man.

Therefore, Socrates is mortal.

Solution: first-order predicate logic

predicates are expressions that contain *arguments* (constants and variables)

predication & quantification over *individuals*

Gottlob Frege Begriffsschrift (1879)

Predicate Logic: Vocabulary

Non-logical expressions:

Individual constants: CON

n-place relation constants: PREDⁿ, for all $n \ge 0$

Infinite set of individual variables: VAR

Logical connectives: \land , \lor , \neg , \rightarrow , \leftrightarrow , \forall , \exists

Brackets: (,)

Predicate Logic: Syntax

Terms: TERM = VAR ∪ CON

Atomic formulas:

- $R(t_1,...,t_n)$ for $R \in PRED^n$ and $t_1,...,t_n \in TERM$
- $t_1 = t_2$ for $t_1, t_2 \in TERM$

Well-formed formula (WFF):

- 1. All atomic formulas are WFFs;
- 2. If ϕ and ψ are WFFs, then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$, $(\phi \leftrightarrow \psi)$ are WFFs;
- 3. If $x \in VAR$, and φ is a WFF, then $\forall x \varphi$ and $\exists x \varphi$ are WFFs;
- 4. Nothing else is a WFF.

Variable binding

- Given a quantified formula ∀xφ (or ∃xφ), we say that φ (and every part of φ) is in the scope of the quantifier ∀x (or ∃x);
- A variable x is **bound** in formula ψ if x occurs in the scope of $\forall x$ or $\exists x$ in ψ ;
- If a variable is not bound in formula ψ, it occurs free in ψ;
- A closed formula is a formula without free variables.

Formalizing Natural Language

- 1. Bill loves Mary.
- 2. Bill reads an interesting book.
- 3. Every student reads a book.
- 4. Bill passed every exam.
- 5. Not every student answered every question.
- 6. Only Mary answered every question.
- 7. Mary is annoyed when someone is noisy.
- 8. Although nobody makes noise, Mary is annoyed.

Step 2: Interpretation

Logical models are simplified representations of the state of affairs in the world

John is a student: for any M, [student'(john)]^M = 1 iff V_M(john) ∈ V_M(student')

 $V_{M1}(john) \in V_{M1}(student')$ therefore: $[student'(john)]^{M1} = 1$

 $V_{M2}(john) \not\in V_{M2}(student')$ therefore: [student'(john)] $^{M2} = 0$

A formal description of a model

Model M = $\langle U_M, V_M \rangle$, with:

- U_M is the universe of M and
- V_M is an interpretation function

$$U_M = \{e1, e2, e3, e4, e5\}$$
 universe

$$V_M(john) = e1$$

... **constants**
 $V_M(bill) = e5$

 V_M (student) = {e1, e2, e4} V_M (drink_coffee) = {e1, e2, e3, e4}

 $V_M(love) = \{\langle e1, e2 \rangle, \langle e2, e1 \rangle, \langle e4, e5 \rangle\}$

1-place predicates

2-place predicates

Interpretation in the model

 V_M is an interpretation function assigning individuals ($\in U_M$) to individual constants and n-ary relations over U_M to n-place predicate symbols:

- $V_M(c) \in U_M$ if c is an individual constant
- $V_M(P) \subseteq U_{M^n}$ if P is an n-place predicate symbol
- $V_M(P) \in \{0,1\}$ if P is an 0-place predicate symbol

Variables and quantifiers

How to interpret the following sentence in our model M:

Someone is sad → ∃x(sad'(x))

Intuition:

- find an entity in the universe for which the statement holds: $V_M(sad') = e_4$
- replace x by e4 in order to make ∃x(sad'(x)) true

More formally:

Interpret sentence relative to assignment function g: i.e., $[\exists x(sad'(x))]^{M,g}$, such that $g(x) = e_4$; this can be generalised to any g' as follows: $g'[x/e_4](x) = e_4$

Assignment functions

An assignment function **g** assigns values to all variables

- g :: VAR \rightarrow U_M
- We write g[x/d] for the assignment function g' that assigns d to x and assigns the same values as g to all other variables.

	Х	У	Z	u	
g	e ₁	e ₂	e ₃	e 4	
g[y/e ₁]	e ₁	e ₁	e ₃	e ₄	
g[x/e ₁]	e ₁	e ₂	e ₃	e ₄	
g[y/g(z)]	e ₁	e ₃	e ₃	e ₄	
g[y/e ₁][u/e ₁]	e ₁	e ₁	e ₃	e ₁	
g[y/e ₁][y/e ₂]	e ₁	e ₂	e ₃	e ₄	

Interpretation of terms

Interpretation of terms with respect to a model *M* and a variable assignment *g*:

```
[\![\alpha]\!]^{M,g} = V_M(\alpha) if \alpha is an individual constant
```

 $g(\alpha)$ if α is a variable

Interpretation of formulas

Interpretation of formulas with respect to a model M and variable assignment g:

$$\begin{split} &\cdot \quad \llbracket R(t_1, \, ..., \, t_n) \rrbracket^{M,g} = 1 & \text{ iff } \quad \langle \llbracket t_1 \rrbracket^{M,g}, \, ..., \, \llbracket t_n \rrbracket^{M,g} \rangle \in V_M(R) \\ &\cdot \quad \llbracket t_1 = t_2 \rrbracket^{M,g} = 1 & \text{ iff } \quad \llbracket t_1 \rrbracket^{M,g} = \llbracket t_2 \rrbracket^{M,g} \\ &\cdot \quad \llbracket \neg \varphi \rrbracket^{M,g} = 1 & \text{ iff } \quad \llbracket \varphi \rrbracket^{M,g} = 0 \\ &\cdot \quad \llbracket \varphi \wedge \psi \rrbracket^{M,g} = 1 & \text{ iff } \quad \llbracket \varphi \rrbracket^{M,g} = 1 & \text{ and } \llbracket \psi \rrbracket^{M,g} = 1 \\ &\cdot \quad \llbracket \varphi \vee \psi \rrbracket^{M,g} = 1 & \text{ iff } \quad \llbracket \varphi \rrbracket^{M,g} = 1 & \text{ or } \llbracket \psi \rrbracket^{M,g} = 1 \\ &\cdot \quad \llbracket \varphi \leftrightarrow \psi \rrbracket^{M,g} = 1 & \text{ iff } \quad \llbracket \varphi \rrbracket^{M,g} = \llbracket \psi \rrbracket^{M,g} \\ &\cdot \quad \llbracket \exists x \varphi \rrbracket^{M,g} = 1 & \text{ iff } \quad \llbracket \varphi \rrbracket^{M,g} = \llbracket \psi \rrbracket^{M,g} \\ &\cdot \quad \llbracket \exists x \varphi \rrbracket^{M,g} = 1 & \text{ iff } \quad \text{ there is a } d \in U_M \text{ such that } \llbracket \varphi \rrbracket^{M,g[x/d]} = 1 \\ &\cdot \quad \llbracket \forall x \varphi \rrbracket^{M,g} = 1 & \text{ iff } \quad \text{ for all } d \in U_M, \, \llbracket \varphi \rrbracket^{M,g[x/d]} = 1 \end{split}$$

Truth, Validity and Entailment

A formula φ is true in a model M iff:

 $[\![\varphi]\!]^{M,g} = 1$ for every variable assignment g

A formula ϕ is valid ($\models \phi$) iff:

φ is true in all models

A formula φ is satisfiable iff:

there is at least one model M such that φ is true in model M

A set of formulas Γ is (simultaneously) satisfiable iff:

there is a model M such that every formula in Γ is true in M ("M satisfies Γ ," or "M is a model of Γ ")

Γ entails a formula φ ($\Gamma \models \varphi$) iff:

φ is true in every model structure that satisfies Γ

Logical Equivalence

Formula ϕ is logically equivalent to formula ψ ($\phi \Leftrightarrow \psi$), iff:

• $[\![\varphi]\!]^{M,g} = [\![\psi]\!]^{M,g}$ for all models M and variable assignments g.

For all *closed* formulas ϕ and ψ , the following assertions are equivalent:

- φ⇔ψ (logical equivalence)
- 2. $\phi \models \psi$ and $\psi \models \phi$ (mutual entailment)
- 3. $\models \varphi \leftrightarrow \psi$ (validity of "material equivalence")

Logical Equivalence Theorems: Propositions

1) $\neg\neg\varphi \Leftrightarrow \varphi$

Double negation

2) $\phi \wedge \psi \Leftrightarrow \psi \wedge \phi$

Commutativity of A, V

3) $\phi \lor \psi \Leftrightarrow \psi \lor \phi$

4) $\phi \land (\psi \lor \chi) \Leftrightarrow (\phi \land \psi) \lor (\phi \land \chi)$

Distributivity of ∧ and ∨

5) $\phi \lor (\psi \land \chi) \Leftrightarrow (\phi \lor \psi) \land (\phi \lor \chi)$

6) $\neg(\phi \land \psi) \Leftrightarrow \neg \phi \lor \neg \psi$

de Morgan's Laws

7) $\neg(\phi\lor\psi)\Leftrightarrow\neg\phi\land\neg\psi$

8) $\varphi \rightarrow \neg \psi \Leftrightarrow \psi \rightarrow \neg \varphi$

Law of Contraposition

9) $\phi \rightarrow \psi \Leftrightarrow \neg \phi \lor \psi$

10) $\neg(\varphi \rightarrow \psi) \Leftrightarrow \varphi \land \neg \psi$

Logical Equivalence Theorems: Quantifiers

11) ¬	∀хф ⇔	Эх¬ф
-------	-------	------

Quantifier negation

12)
$$\neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi$$

13)
$$\forall x(\phi \land \Psi) \Leftrightarrow \forall x\phi \land \forall x\Psi$$

Quantifier distribution

14)
$$\exists x(\phi \lor \Psi) \Leftrightarrow \exists x\phi \lor \exists x\Psi$$

15)
$$\forall x \forall y \varphi \Leftrightarrow \forall y \forall x \varphi$$

Quantifier Swap

16)
$$\exists x \exists y \varphi \Leftrightarrow \exists y \exists x \varphi$$

17)
$$\exists x \forall y \varphi \Rightarrow \forall y \exists x \varphi$$

... but not vice versa!

Logical Equivalence Theorems: Quantifiers (cont.)

The following equivalences are valid theorems of FOL, provided that x does not occur free in φ:

Here, $\phi[x/y]$ is the result of replacing all free occurrences of y in ϕ with x

18)
$$\exists y \varphi \Leftrightarrow \exists x \varphi[x/y]$$

19)
$$\forall y \varphi \Leftrightarrow \exists x \varphi[x/y]$$

20)
$$\phi \wedge \forall x \Psi \Leftrightarrow \forall x (\phi \wedge \Psi)$$

21)
$$\varphi \land \exists x \Psi \Leftrightarrow \exists x (\varphi \land \Psi)$$

22)
$$\phi \lor \forall x \Psi \Leftrightarrow \forall x (\phi \lor \Psi)$$

23)
$$\phi \lor \exists x \Psi \Leftrightarrow \exists x (\phi \lor \Psi)$$

24)
$$\varphi \rightarrow \forall x \Psi \Leftrightarrow \forall x (\varphi \rightarrow \Psi)$$

25)
$$\varphi \rightarrow \exists x \Psi \Leftrightarrow \exists x (\varphi \rightarrow \Psi)$$

26)
$$\exists x \Psi \rightarrow \varphi \Leftrightarrow \forall x (\Psi \rightarrow \varphi)$$
 on slide 11!

27)
$$\forall x \Psi \rightarrow \varphi \Leftrightarrow \exists x (\Psi \rightarrow \varphi)$$

Equivalence Transformations

- (1) ¬∃x∀y(Py → Rxy) "Nobody masters every problem"
- (2) ∀x∃y(Py ∧ ¬Rxy) "Everybody fails to master some problem"

We show the equivalence of (1) and (2) as follows:

$$\neg\exists x \forall y (Py \rightarrow Rxy) \qquad \Leftrightarrow \forall x \neg \forall y (Py \rightarrow Rxy) \qquad (\neg\exists x \varphi \Leftrightarrow \forall x \neg \varphi)$$

$$\Leftrightarrow \forall x \exists y \neg (Py \rightarrow Rxy) \qquad (\neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi)$$

$$\Leftrightarrow \forall x \exists y (Py \land \neg Rxy) \qquad (\neg (\varphi \rightarrow \psi) \Leftrightarrow \varphi \land \neg \psi)$$

Background reading material

- Gamut: Logic, Language, and Meaning Vol I Chapter 3
- Winter: Elements of Formal Semantics Chapter 2 http://www.phil.uu.nl/~yoad/efs/main.html
- For a more basic introduction, see:
 http://www.logicinaction.org Chapter 4