

22nd Iberoamerican Congress on Pattern Recognition

# Benchmarking Head Pose Estimation In-The-Wild

Elvira Amador, Roberto Valle Dep. Inteligencia Artificial Univ. Politécnica de Madrid

Boadilla del Monte, Spain rvalle@fi.upm.es

José Miguel Buenaposada **Ū** Dep. Ciencias Computación Univ. Rey Juan Carlos Móstoles, Spain

Luis Baumela Dep. Inteligencia Artificial Univ. Politécnica de Madrid Boadilla del Monte, Spain josemiguel.buenaposada@urjc.es lbaumela@fi.upm.es

http://www.dia.fi.upm.es/~pcr/research.html

#### **Abstract**

What? We review the problem of estimating head pose by regressing the yaw, pitch and roll head angles from images acquired "in-the-wild".

Why? Key preprocessing step for several tasks such as facial attributes estimation, human machine interaction, focus of attention, gaze, etc.

#### Contributions

- A brief survey of the best head pose estimation algorithms.
- Definition of an evaluation methodology and publicly available benchmark to precisely compare the performance of head pose estimation algorithms.
- The establishment of the state-of-the-art on this benchmark.

## Benchmarking head pose

To have comparable results all algorithms should use the same train, validation and test data-sets publicly available, hence it is impossible to make a fair comparison among any of these approaches.

| Method                    | AFLW (MAE)     |                |                | AFW    | 300W (MAE)     |                |                |
|---------------------------|----------------|----------------|----------------|--------|----------------|----------------|----------------|
|                           | yaw            | pitch          | roll           | yaw    | yaw            | pitch          | roll           |
| Peng <i>et al</i> . [5]   | _              | -              | -              | 86.3%  | _              | -              | -              |
| Valle et al. [9]          | 12.26°         | -              | -              | 83.54% | _              | -              | -              |
| Gao <i>et al</i> . [1]    | 6.60°          | $5.75^{\circ}$ | _              | _      | _              | -              | _              |
| Yang <i>et al</i> . [10]  | _              | -              | _              | _      | $4.20^{\circ}$ | $5.19^{\circ}$ | $2.42^{\circ}$ |
| Ranjan <i>et al</i> . [6] | 7.61°          | $6.13^{\circ}$ | $3.92^{\circ}$ | 97.7%  | _              | -              | -              |
| Kumar et al. [4]          | $6.45^{\circ}$ | $5.85^{\circ}$ | $8.75^{\circ}$ | 96.67% | _              | -              | -              |

## Results



## Transfer learning methodology



## **Experiments in-the-wild**

We provide regressors based on AlexNet, VGG, GoogLeNet and ResNet.

| Method         | AFLW (MAE)     |                |                | AFW    | 300W (MAE)    |                |                |
|----------------|----------------|----------------|----------------|--------|---------------|----------------|----------------|
|                | yaw            | pitch          | roll           | yaw    | yaw           | pitch          | roll           |
| AlexNet [3]    | 6.28°          | 5.02°          | 3.36°          | 86.32% | 6.86°         | 6.61°          | 5.82°          |
| GoogLeNet [8]  | $6.40^{\circ}$ | $5.31^{\circ}$ | $3.74^{\circ}$ | 95.51% | 5.71°         | $7.99^{\circ}$ | $6.85^{\circ}$ |
| VGG-16 [7]     | 6.23°          | $4.96^{\circ}$ | $3.35^{\circ}$ | 85.68% | 6.35°         | $7.02^{\circ}$ | 5.98°          |
| VGG-19 [7]     | 5.78°          | $4.79^{\circ}$ | $3.20^{\circ}$ | 94.23% | 5.56°         | $6.35^{\circ}$ | $4.65^{\circ}$ |
| ResNet-50 [2]  | 6.00°          | $4.90^{\circ}$ | $3.14^{\circ}$ | 94.44% | 5.71°         | $5.91^{\circ}$ | 3.23°          |
| ResNet-101 [2] | 5.59°          | <b>4.79</b> °  | <b>2.83</b> °  | 94.44% | <b>5.13</b> ° | <b>5.87</b> °  | <b>3.03</b> °  |
| ResNet-152 [2] | 5.61°          | $4.79^{\circ}$ | $3.03^{\circ}$ | 94.01% | 5.52°         | $6.16^{\circ}$ | $3.18^{\circ}$ |

#### References

- [1] Gao, B.B., Xing, C., Xie, C.W., Wu, J., Geng, X.: Deep label distribution learning with label ambiguity. IEEE Trans. on Image Processing (TIP) 26(6), 2825–2838 (2016)
- [2] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
- [3] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proc. Neural Information Processing Systems (NIPS) (2012)
- [4] Kumar, A., Alavi, A., Chellappa, R.: Kepler: Keypoint and pose estimation of unconstrained faces by learning efficient H-CNN regressors. In: Proc. International Conference on Automatic Face and Gesture Recognition (FG) (2017)
- [5] Peng, X., Huang, J., Hu, Q., Zhang, S., Metaxas, D.N.: Three-dimensional head pose estimation in-the-wild. In: Proc. International Conference on Automatic Face and Gesture Recognition (FG) (2015)
- [6] Ranjan, R., Patel, V.M., Chellappa, R.: Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. CoRR abs/1603.01249 (2016)
- [7] Simonyan, K., Zisserman, A.: Very deep convolutional networks for largescale image recognition. CoRR abs/1409.1556 (2014)
- [8] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
- [9] Valle, R., Buenaposada, J.M., Valdés, A., Baumela, L.: Head-pose estimation in-the-wild using a random forest. In: Proc. Articulated Motion and Deformable Objects (AMDO) (2016)
- [10] Yang, H., Mou, W., Zhang, Y., Patras, I., Gunes, H., Robinson, P.: Face alignment assisted by head pose estimation. In: Proc. British Machine Vision Conference (BMVC) (2015)

Acknowledgements: The authors gratefully acknowledge computer resources provided by the Super-computing and Visualization Center of Madrid (CeSViMa) and funding from the Spanish Ministry of Economy and Competitiveness under projects TIN2013-47630-C2-2-R and TIN2016-75982-C2-2-R.