2012.12.09

This report describes data from 2012.12.09 experiment (1 day of D and / or T).

day 1 body weight (g)

Treatment	Average (SD; n)
Vehicle	21.5 (0.393; n = 5)
Dexa	23.6 (0.437; n = 5)
Testo	22.2 (0.736; n = 5)
Dexa + Testo	23.1 (0.502; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0867

contrasts four	dunns.P
V vs D	0.287
D vs DT	0.01228
	V vs D

Kruskal-Wallis p value for the three-way comparison is 0.121

	Comparison	P value	Direction
3	V vs D	0.4813	V < D
1	D vs DT	0.05117	D > DT

day 2 body weight (g)

Treatment	Average (SD; n)
Vehicle	22.1 (0.402; n = 5)
Dexa	24.4 (0.395; n = 5)
Testo	23 (0.645; n = 5)
Dexa + Testo	23.7 (0.485; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0528

contrasts four	dunns.P
V vs D	0.1747
D vs DT	0.004062
	V vs D

	Comparison	P value	Direction
3	V vs D	0.206	V > D
1	D vs DT	0.01298	D > DT

body weight gain after 1 days (g)

Treatment	Average (SD; n)
Vehicle	0.66 (0.051; n = 5)
Dexa	0.82 (0.26; n = 5)
Testo	0.86 (0.268; n = 5)
Dexa + Testo	0.54 (0.051; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.786

	contrasts four	dunns.P
$egin{array}{c} 5 \ 1 \end{array}$	V vs D D vs DT	$0.1881 \\ 0.4255$

Kruskal-Wallis p value for the three-way comparison is 0.0211

	Comparison	P value	Direction
3	V vs D	0.002776 0.03224	V > D
1	D vs DT		D < DT

body weight gain after 2 days (g)

Treatment	Average (SD; n)
Vehicle	3.07 (0.24; n = 5)
Dexa	3.52 (1.12; n = 5)
Testo	3.97 (1.28; n = 5)
Dexa + Testo	2.34 (0.238; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.708

	contrastsfour	dunns.P
5	V vs D	0.168
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.5

	Comparison	P value	Direction
3	V vs D	0.001969	V > D
1	D vs DT	0.04573	D < DT

levator (mg)

Treatment	Average (SD; n)
Vehicle	51.4 (4.28; n = 5)
Dexa	54.1 (3.62; n = 5)
Testo	54.1 (4.45; n = 5)
Dexa + Testo	50.8 (3.95; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.907

	contrasts four	dunns.P
5	V vs D	0.3344
1	D vs DT	0.3442

Kruskal-Wallis p value for the three-way comparison is $0.876\,$

	Comparison	P value	Direction
3	V vs D	0.3365	V > D
1	D vs DT	0.3113	D < DT

tibialis (mg)

Treatment	Average (SD; n)
Vehicle	47.7 (2.37; n = 5)
Dexa	49 (4.62; n = 5)
Testo	55 (4.31; n = 5)
Dexa + Testo	48.3 (5.73; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.386

	contrasts four	dunns.P
5	V vs D	0.3345
1	D vs DT	0.2606

	Comparison	P value	Direction
3	V vs D	0.2949	V > D
1	D vs DT	0.2483	D < DT

gastrocnemius (mg)

Treatment	Average (SD; n)
Vehicle	121 (5.13; n = 5)
Dexa	117 (4.67; n = 5)
Testo	122 (6.95; n = 5)
Dexa + Testo	118 (2.78; n = 5)

Kruskal-Wallis p value for the four-way comparison is $0.886\,$

	contrastsfour	dunns.P
$egin{array}{c} 5 \\ 1 \end{array}$	V vs D D vs DT	0.4787 0.2436

Kruskal-Wallis p value for the three-way comparison is 0.679

	Comparison	P value	Direction
3	V vs D	0.2558	V > D
1	D vs DT	0.4813	D < DT

quadriceps (mg)

Treatment	Average (SD; n)
Vehicle	161 (3.91; n = 5)
Dexa	176 (4.62; n = 5)
Testo	172 (8.89; n = 5)
Dexa + Testo	166 (7.8; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.374

	contrastsfour	dunns.P
5	V vs D	0.1308
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.04359

	Comparison	P value	Direction
3	V vs D	0.1071	V > D
1	D vs DT	0.03554	D < DT

triceps (mg)

Treatment	Average (SD; n)
Vehicle	99.1 $(7.57; n = 5)$
Dexa	99 (2.09; $n = 5$)
Testo	104 (3.57; n = 5)
Dexa + Testo	100 (4.62; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.708

	contrastsfour	dunns.P
5	V vs D	0.3345
1	D vs DT	0.4574

Kruskal-Wallis p value for the three-way comparison is 0.679

	Comparison	P value	Direction
3	V vs D	0.1929	V > D
1	D vs DT	0.2558	D < DT

levator (permille)

Treatment	Average (SD; n)
Vehicle	2.31 (0.157; n = 5)
Dexa	2.22 (0.168; n = 5)
Testo	2.34 (0.168; n = 5)
Dexa + Testo	2.15 (0.168; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.722

	contrastsfour	dunns.P
5	V vs D	0.5
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.2436

	Comparison	P value	Direction
3	V vs D	0.4906	V > D
1	D vs DT	0.2789	D < DT

tibialis (permille)

Treatment	Average (SD; n)
Vehicle	2.16 (0.138; n = 5)
Dexa	2.01 (0.195; n = 5)
Testo	2.38 (0.161; n = 5)
Dexa + Testo	2.04 (0.243; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.354

	contrasts four	dunns.P
5	V vs D D vs DT	0.4153 0.2783
1	D VS D1	0.2783

Kruskal-Wallis p value for the three-way comparison is 0.839

	Comparison	P value	Direction
3	V vs D	0.4626	V > D
1	D vs DT	0.3451	D < DT

gastrocnemius (permille)

Treatment	Average (SD; n)
Vehicle	5.46 (0.146; n = 5)
Dexa	4.81 (0.171; n = 5)
Testo	5.31 (0.255; n = 5)
Dexa + Testo	5 (0.0876; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0436

	contrastsfour	dunns.P
5	V vs D	0.2271
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.004407

	Comparison	P value	Direction
3	V vs D	0.5	V > D
1	D vs DT	0.03375	D < DT

quadriceps (permille)

Treatment	Average (SD; n)
Vehicle	7.27 (0.258; n = 5)
Dexa	7.22 (0.165; n = 5)
Testo	7.46 (0.285; n = 5)
Dexa + Testo	7.01 (0.189; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.679

	contrastsfour	dunns.P
5 1	$\begin{array}{c} V \text{ vs D} \\ D \text{ vs DT} \end{array}$	0.1818 0.3152

Kruskal-Wallis p value for the three-way comparison is 0.595

	Comparison	P value	Direction
3	V vs D	0.1567	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.303	D < DT

triceps (permille)

Treatment	Average (SD; n)
Vehicle	4.48 (0.343; n = 5)
Dexa	4.06 (0.0997; n = 5)
Testo	4.54 (0.174; n = 5)
Dexa + Testo	4.22 (0.147; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.277

	contrastsfour	dunns.P
5	V vs D	0.1962
1	D vs DT	0.06724

	Comparison	P value	Direction
3	V vs D	0.1929	V > D
1	D vs DT	0.05815	D < DT

fat mass before (g)

Treatment	Average (SD; n)
Vehicle	2.78 (0.103; n = 5)
Dexa	2.94 (0.189; n = 5)
Testo	2.77 (0.104; n = 5)
Dexa + Testo	2.24 (0.175; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0633

	contrastsfour	dunns.P
5	V vs D	0.005148
1	D vs DT	0.2606

Kruskal-Wallis p value for the three-way comparison is 0.121

	Comparison	P value	Direction
3	V vs D	0.04573	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.4441	D < DT

lean mass before (g)

Treatment	Average (SD; n)
Vehicle	17.4 (0.382; n = 5)
Dexa	19 $(0.378; n = 5)$
Testo	18.2 (0.655; n = 5)
Dexa + Testo	19.6 $(0.421; n = 5)$

Kruskal-Wallis p value for the four-way comparison is 0.031

	contrastsfour	dunns.P
5	V vs D	0.2113
1	D vs DT	0.02398

	Comparison	P value	Direction
3	V vs D	0.116	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.116	D < DT

total water before (g)

Treatment	Average (SD; n)
Vehicle	14.2 (0.946; n = 5)
Dexa	14.9 (0.337; n = 5)
Testo	13.8 (0.502; n = 5)
Dexa + Testo	14.9 (0.418; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.151

	contrastsfour	dunns.P
5 1	V vs D D vs DT	$0.3541 \\ 0.03068$

Kruskal-Wallis p value for the three-way comparison is 0.192

	Comparison	P value	Direction
3	V vs D	0.3196	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.04803	D < DT

fat mass after (g)

Treatment	Average (SD; n)
Vehicle	2.91 (0.136; n = 5)
Dexa	3.29 (0.18; n = 5)
Testo	2.85 (0.133; n = 5)
Dexa + Testo	2.71 (0.19; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.136

	contrastsfour	dunns.P
5	V vs D	0.01238
1	D vs DT	0.06724

	Comparison	P value	Direction
3	V vs D	0.01957	V > D
1	D vs DT	0.09866	D < DT

lean mass after (g)

Treatment	Average (SD; n)
Vehicle	17.6 (0.323; n = 5)
Dexa	18.5 (0.306; n = 5)
Testo	18.6 (0.546; n = 5)
Dexa + Testo	18.7 (0.496; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.169

	contrastsfour	dunns.P
5	V vs D	0.4787
1	D vs DT	0.03068

Kruskal-Wallis p value for the three-way comparison is 0.192

	Comparison	P value	Direction
3	V vs D	0.3196	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.1405	D < DT

total water after (g)

Treatment	Average (SD; n)
Vehicle	13.6 (0.488; n = 5)
Dexa	14.8 (0.684; n = 5)
Testo	15.1 (0.752; n = 5)
Dexa + Testo	14.7 (0.703; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.541

	contrastsfour	dunns.P
5	V vs D	0.4787
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.1425

	Comparison	P value	Direction
3	V vs D	0.3538	V > D
1	D vs DT	0.2483	D < DT

fat mass before (percent of BW)

Treatment	Average (SD; n)
Vehicle	12.9 (0.422; n = 5)
Dexa	$12.4 \ (0.737; n = 5)$
Testo	12.5 (0.418; n = 5)
Dexa + Testo	9.67 (0.732; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0177

	contrastsfour	dunns.P
5	V vs D	0.009339
1	D vs DT	0.2783

Kruskal-Wallis p value for the three-way comparison is 0.0294

	Comparison	P value	Direction
3	V vs D	0.03203	V > D
1	D vs DT	0.3714	D < DT

lean mass before (percent of BW)

Treatment	Average (SD; n)
Vehicle	81 (1.07; n = 5)
Dexa	80.6 (1.85; n = 5)
Testo	82.2 (1.69; n = 5)
Dexa + Testo	84.9 (3.2; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.536

	contrastsfour	dunns.P
5	V vs D	0.1095
1	D vs DT	0.4574

	Comparison	P value	Direction
3	V vs D	0.2127	V > D
1	D vs DT	0.4256	D < DT

total water before (percent of BW)

Treatment	Average (SD; n)
Vehicle	66.1 (4.72; n = 5)
Dexa	63.4 (1.31; n = 5)
Testo	62.2 (2.23; n = 5)
Dexa + Testo	64.5 (2.89; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.997

	contrasts four	dunns.P
$\frac{-5}{1}$	V vs D D vs DT	$0.4153 \\ 0.4363$

Kruskal-Wallis p value for the three-way comparison is 0.495

	Comparison	P value	Direction
3	V vs D	0.1353	V > D
1	D vs DT	0.1512	D < DT

fat mass after (percent of BW)

Treatment	Average (SD; n)
Vehicle	13.2 (0.564; n = 5)
Dexa	13.4 (0.559; n = 5)
Testo	12.4 (0.495; n = 5)
Dexa + Testo	11.5 (0.952; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.166

	contrastsfour	dunns.P
5 1	V vs D D vs DT	0.01855 0.3345
1	DVSDI	0.5545

	Comparison	P value	Direction
3	V vs D	0.04141	V > D
1	D vs DT	0.3451	D > DT

lean mass after (percent of BW)

Treatment	Average (SD; n)
Vehicle	79.5 (0.591; n = 5)
Dexa	75.7 (0.572; n = 5)
Testo	80.6 (0.513; n = 5)
Dexa + Testo	79 (2.85; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0423

	${\rm contrasts four}$	dunns.P
5 1	V vs D D vs DT	$0.03068 \\ 0.03068$

Kruskal-Wallis p value for the three-way comparison is 0.128

	Comparison	P value	Direction
3	V vs D	0.03375	V > D
1	D vs DT	0.03375	D < DT

total water after (percent of BW)

Treatment	Average (SD; n)
Vehicle	61.5 (1.6; n = 5)
Dexa	60.7 (3.03; n = 5)
Testo	65.7 (3.58; n = 5)
Dexa + Testo	62.3 (4.19; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.741

	contrastsfour	dunns.P
5	V vs D	0.3742
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.2606

	Comparison	P value	Direction
3	V vs D	0.3451	V > D
1	D vs DT	0.206	D < DT

fat mass gain (g)

Treatment	Average (SD; n)
Vehicle	0.138 (0.0866; n = 5)
Dexa	0.35 (0.108; n = 5)
Testo	0.0864 (0.0904; n = 5)
Dexa + Testo	0.469 (0.271; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.261

	contrastsfour	dunns.P
5	V vs D	0.3541
1	D vs DT	0.1198

Kruskal-Wallis p value for the three-way comparison is 0.267

	Comparison	P value	Direction
3	V vs D	0.4165	V > D
1	D vs DT	0.1303	D < DT

lean mass gain (g)

Treatment	Average (SD; n)
Vehicle	0.197 (0.301; n = 5)
Dexa	-0.505 (0.44; n = 5)
Testo	0.341 (0.393; n = 5)
Dexa + Testo	-0.904 (0.567; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.183

	contrastsfour	dunns.P
5	V vs D	0.5
1	D vs DT	0.07448

	Comparison	P value	Direction
3	V vs D	0.3538	V > D
1	D vs DT	0.2483	D < DT

total water gain (g)

Treatment	Average (SD; n)
Vehicle	-0.542 (1.14; n = 5)
Dexa	$-0.126 \ (0.888; n = 5)$
Testo	1.32 (1.01; n = 5)
Dexa + Testo	-0.189 (0.369; n = 5)

Kruskal-Wallis p value for the four-way comparison is $0.608\,$

	contrastsfour	dunns.P
$egin{array}{c} 5 \\ 1 \end{array}$	V vs D D vs DT	0.3541 0.2113

Kruskal-Wallis p value for the three-way comparison is 0.423

	Comparison	P value	Direction
3	V vs D	0.206	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.09465	D < DT

fat mass gain (percent of BW)

Treatment	Average (SD; n)
Vehicle	0.239 (0.365; n = 5)
Dexa	1.01 (0.413; n = 5)
Testo	-0.105 (0.32; n = 5)
Dexa + Testo	1.82 (1.2; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.179

	contrastsfour	dunns.P
5	V vs D	0.2783
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.1425

	Comparison	P value	Direction
3	V vs D	0.303	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.206	D > DT

lean mass gain (percent of BW)

Treatment	Average (SD; n)
Vehicle	-1.52 (1.42; n = 5)
Dexa	-4.85 (1.82; n = 5)
Testo	-1.63 (2.07; n = 5)
Dexa + Testo	-5.82 (2.51; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.488

	contrastsfour	dunns.P
$\frac{-}{5}$ 1	V vs D D vs DT	0.4787 0.09977
	B 18 B I	0.00011

Kruskal-Wallis p value for the three-way comparison is 0.401

	Comparison	P value	Direction
3	V vs D	0.3803	V > D
1	D vs DT	0.1114	D < DT

total water gain (percent of BW)

Treatment	Average (SD; n)
Vehicle	-4.55 (5.32; n = 5)
Dexa	-2.61 (4.06; n = 5)
Testo	3.43 (4.87; n = 5)
Dexa + Testo	-2.15 (1.43; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.7

	contrasts four	dunns.P
5	V vs D	0.3152
1	D vs DT	0.1962

	Comparison	P value	Direction
3	V vs D	0.1742	V > D
1	D vs DT	0.06678	D < DT

fat mass gain (percent)

Treatment	Average (SD; n)
Vehicle	5 (3; n = 5)
Dexa	12.6 (4.17; n = 5)
Testo	3.17 (3.3; n = 5)
Dexa + Testo	24.8 (14.2; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.22

	contrastsfour	dunns.P
$\frac{-}{5}$ 1	V vs D D vs DT	0.2436 0.1818

Kruskal-Wallis p value for the three-way comparison is 0.253

	Comparison	P value	Direction
3	V vs D	0.3451	V > D
1	D vs DT	0.1567	D < DT

lean mass gain (percent)

Treatment	Average (SD; n)
Vehicle	1.22 (1.72; n = 5)
Dexa	-2.53 (2.35; n = 5)
Testo	2.06 (2.35; n = 5)
Dexa + Testo	-4.5 (2.78; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.185

	contrastsfour	dunns.P
5	V vs D	0.4574
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.06056

	Comparison	P value	Direction
3	V vs D	0.3983	V > D
1	D vs DT	0.1929	D < DT

total water gain (percent)

Treatment	Average (SD; n)
Vehicle	-2.18 (6.75; n = 5)
Dexa	-0.463 (6.04; n = 5)
Testo	10.5 (8.28; n = 5)
Dexa + Testo	-1.43 (2.5; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.586

	contrasts four	dunns.P
5	V vs D	0.3742
1	D vs DT	0.1962

Kruskal-Wallis p value for the three-way comparison is 0.38

	Comparison	P value	Direction
3	V vs D	0.2266	V < D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.08334	D > DT

quadriceps calpain activity (RU)

Treatment	Average (SD; n)
Vehicle	31500 (5720; n = 5)
Dexa	20000 (3770; n = 5)
Testo	29900 (3590; n = 5)
Dexa + Testo	19400 (2610; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.182

	contrastsfour	dunns.P
5	V vs D	0.4153
1	D vs DT	0.0823

	Comparison	P value	Direction
3	V vs D	0.1994	V < D
1	D vs DT	0.0288	D > DT

gastrocnemius calpain activity (RU)

Treatment	Average (SD; n)
Vehicle	30300 (2530; n = 5)
Dexa	18300 (2190; n = 5)
Testo	26700 (1570; n = 5)
Dexa + Testo	18300 (2190; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.01

	contrastsfour	dunns.P
5	V vs D	0.5
1	D vs DT	0.004698

Kruskal-Wallis p value for the three-way comparison is 0.044

	Comparison	P value	Direction
3	V vs D	0.4906	V < D
1	D vs DT	0.02468	D > DT

gastrocnemius proteasome activity (RU)

Treatment	Average (SD; n)
Vehicle	6890 (949; n = 5)
Dexa	5140 (380; n = 5)
Testo	12400 (1210; n = 5)
Dexa + Testo	7550 (605; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.00346

	contrastsfour	dunns.P
5	V vs D	0.01855
1	D vs DT	0.07448

	Comparison	P value	Direction
3	V vs D	0.01222	V < D
1	D vs DT	0.0798	D > DT

quadriceps proteasome activity (RU)

Treatment	Average (SD; n)
Vehicle	10500 (1000; n = 5)
Dexa	7620 (1380; n = 5)
Testo	12500 (1660; n = 5)
Dexa + Testo	7630 (1250; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0621

	contrasts four	dunns.P
$\frac{-}{5}$ 1	V vs D D vs DT	0.4153 0.04359

Kruskal-Wallis p value for the three-way comparison is 0.273

	Comparison	P value	Direction
3	V vs D	0.4906	V > D
1	D vs DT	0.1071	D < DT

triceps proteasome activity (RU)

Treatment	Average (SD; n)
Vehicle	15200 (1360; n = 5)
Dexa	12000 (698; n = 5)
Testo	14300 (1110; n = 5)
Dexa + Testo	10200 (1430; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.169

	contrastsfour	dunns.P
5	V vs D	0.2582
1	D vs DT	0.08003

	Comparison	P value	Direction
3	V vs D	0.3035	V > D
1	D vs DT	0.117	D < DT

gastrocnemius cathepsin activity (RU)

Treatment	Average (SD; n)
Vehicle	8400 (290; n = 5)
Dexa	7020 (239; n = 5)
Testo	8690 (261; n = 5)
Dexa + Testo	7400 (400; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0114

	contrastsfour	dunns.P
5	V vs D	0.2113
1	D vs DT	0.009339

Kruskal-Wallis p value for the three-way comparison is 0.0956

	Comparison	P value	Direction
3	V vs D	0.241	V < D
1	D vs DT	0.02071	D > DT

quadriceps cathepsin activity (RU)

Treatment	Average (SD; n)
Vehicle	39700 (1380; n = 5)
Dexa	33900 (1140; n = 5)
Testo	42500 (1930; n = 5)
Dexa + Testo	40400 (1440; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0255

	contrastsfour	dunns.P
5	V vs D	0.01421
1	D vs DT	0.01855

	Comparison	P value	Direction
3	V vs D	0.02585	V > D
1	D vs DT	0.02191	D < DT

triceps cathepsin activity (RU)

Treatment	Average (SD; n)
Vehicle	35500 (1650; n = 5)
Dexa	26000 (1120; n = 5)
Testo	34400 (1290; n = 5)
Dexa + Testo	31100 (1070; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.00565

	contrasts four	dunns.P
5	V vs D	0.04359
1	D vs DT	0.0008061

Kruskal-Wallis p value for the three-way comparison is 0.0155

	Comparison	P value	Direction
3	V vs D	0.04573	V > D
1	D vs DT	0.001969	D < DT

triceps calpain activity (RU)

Treatment	Average (SD; n)
Vehicle	11600 (1310; n = 5)
Dexa	5430 (1000; n = 5)
Testo	13500 (870; n = 4)
Dexa + Testo	3370 (606; n = 3)

Kruskal-Wallis p value for the four-way comparison is 0.00451

	contrastsfour	dunns.P
5	V vs D	0.2576
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.02254

	Comparison	P value	Direction
3	V vs D	0.1944	V < D
1	D vs DT	0.0368	D > DT

gastrocnemius Ct(Becn1)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	5.74 (0.323; n = 4)
Dexa	$6.6 \ (0.454; n = 4)$
Testo	5.64 (0.336; n = 4)
Dexa + Testo	6.06 (0.443; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.314

	contrastsfour	dunns.P
$\frac{-5}{1}$	V vs D D vs DT	$0.1672 \\ 0.03735$

Kruskal-Wallis p value for the three-way comparison is 0.328

	Comparison	P value	Direction
3	V vs D	0.2448	V > D
1	D vs DT	0.06938	D < DT

gastrocnemius Ct(Bnip3)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	0.89 (0.297; n = 4)
Dexa	1.05 (0.474; n = 4)
Testo	0.586 (0.516; n = 4)
Dexa + Testo	0.575 (0.533; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.872

	contrastsfour	dunns.P
5	V vs D	0.2762
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.5

	Comparison	P value	Direction
3	V vs D	0.4218	V > D
1	D vs DT	0.4218	D < DT

gastrocnemius Ct(Ctsl)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	5.11 (0.246; n = 4)
Dexa	5.16 (0.373; n = 4)
Testo	4.29 (0.282; n = 4)
Dexa + Testo	4.88 (0.441; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.303

	contrastsfour	dunns.P
$egin{array}{c} 5 \\ 1 \end{array}$	V vs D D vs DT	0.252 0.441

Kruskal-Wallis p value for the three-way comparison is 0.741

	Comparison	P value	Direction
3	V vs D	0.4347	V < D
1	D vs DT	0.2993	D < DT

gastrocnemius Ct(Ddit4)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	6.88 (0.614; n = 4)
Dexa	3.98 (0.608; n = 4)
Testo	6.82 (0.202; n = 4)
Dexa + Testo	3.97 (0.256; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.01

	contrastsfour	dunns.P
5	V vs D	0.441
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.01295

	Comparison	P value	Direction
3	V vs D	0.4089	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.01064	D < DT

gastrocnemius Ct(Fbxo32)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	2.29 (0.525; n = 4)
Dexa	0.992 (0.389; n = 4)
Testo	2.88 (0.27; n = 4)
Dexa + Testo	0.675 (0.184; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0168

	contrastsfour	dunns.P
5	V vs D	0.3016
1	D vs DT	0.06874

Kruskal-Wallis p value for the three-way comparison is 0.107

	Comparison	P value	Direction
3	V vs D	0.3465	V > D
1	D vs DT	0.06938	D < DT

gastrocnemius Ct(Foxo1)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	8 (0.4; n = 4)
Dexa	6.61 (0.537; n = 4)
Testo	8.28 (0.167; n = 4)
Dexa + Testo	6.5 (0.332; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.021

	contrastsfour	dunns.P
5	V vs D	0.4704
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.03735

	Comparison	P value	Direction
3	V vs D	0.3344	V < D
1	D vs DT	0.01763	D > DT

gastrocnemius Ct(Foxo3a)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	8.83 (0.529; n = 4)
Dexa	8.54 (0.625; n = 4)
Testo	9.79 (0.215; n = 4)
Dexa + Testo	8.4 (0.302; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.201

	contrastsfour	dunns.P
$egin{array}{c} 5 \\ 1 \end{array}$	V vs D D vs DT	0.441 0.328

Kruskal-Wallis p value for the three-way comparison is 0.564

	Comparison	P value	Direction
3	V vs D	0.2246	V > D
1	D vs DT	0.1462	D < DT

gastrocnemius Ct(Foxo4)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	5.44 (0.327; n = 4)
Dexa	6.59 (0.551; n = 4)
Testo	6.34 (0.234; n = 4)
Dexa + Testo	5.88 (0.35; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.306

	contrastsfour	dunns.P
5	V vs D	0.2289
1	D vs DT	0.05116

	Comparison	P value	Direction
3	V vs D	0.3711	V > D
1	D vs DT	0.1317	D > DT

gastrocnemius Ct(Igf1)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	7.27 (0.418; n = 4)
Dexa	9.38 (0.533; n = 4)
Testo	6.96 (0.389; n = 4)
Dexa + Testo	8.23 (0.396; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0296

	contrastsfour	dunns.P
5	V vs D	0.1672
1	D vs DT	0.005787

Kruskal-Wallis p value for the three-way comparison is 0.0866

	Comparison	P value	Direction
3	V vs D	0.2246	V < D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.01624	D < DT

gastrocnemius Ct(Igf1r)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	7.86 (0.439; n = 4)
Dexa	8.84 (0.448; n = 4)
Testo	8.66 (0.235; n = 4)
Dexa + Testo	8.42 (0.255; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.235

	contrastsfour	dunns.P
5	V vs D	0.1672
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.02675

	Comparison	P value	Direction
3	V vs D	0.2769	V > D
1	D vs DT	0.05716	D < DT

gastrocnemius Ct(Klf15)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	6.88 (0.405; n = 4)
Dexa	6.9 (0.376; n = 4)
Testo	7.86 (0.188; n = 4)
Dexa + Testo	7.09 (0.251; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.203

	contrastsfour	dunns.P
${5}$ 1	V vs D D vs DT	$0.2762 \\ 0.3552$

Kruskal-Wallis p value for the three-way comparison is 0.564

	Comparison	P value	Direction
3	V vs D	0.1462	V > D
1	D vs DT	0.2246	D < DT

gastrocnemius Ct(Map1lc3b)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	3.19 (0.362; n = 4)
Dexa	4 (0.486; n = 4)
Testo	3.34 (0.204; n = 4)
Dexa + Testo	3.89 (0.424; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.239

	contrastsfour	dunns.P
5	V vs D	0.3832
1	D vs DT	0.03169

	Comparison	P value	Direction
3	V vs D	0.4869	V > D
1	D vs DT	0.07859	D < DT

gastrocnemius Ct(Nr3c1)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	3.67 (0.242; n = 4)
Dexa	5.87 (0.483; n = 4)
Testo	5.06 (0.257; n = 4)
Dexa + Testo	5.73 (0.57; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0308

	contrastsfour	dunns.P
5	V vs D	0.3552
1	D vs DT	0.003001

Kruskal-Wallis p value for the three-way comparison is 0.0487

	Comparison	P value	Direction
3	V vs D	0.4607	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.01911	D > DT

gastrocnemius Ct(Odc)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	0.854 (0.189; n = 4)
Dexa	0.165 (0.395; n = 4)
Testo	0.453 (0.478; n = 4)
Dexa + Testo	-1.37 (0.617; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0667

	contrastsfour	dunns.P
5	V vs D	0.04382
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.207

	Comparison	P value	Direction
3	V vs D	0.07388	V > D
1	D vs DT	0.2346	D > DT

gastrocnemius Ct(Stk11)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	4.57 (0.333; n = 4)
Dexa	5.39 (0.485; n = 4)
Testo	5.5 (0.23; n = 4)
Dexa + Testo	5.15 (0.443; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.292

	contrasts four	dunns.P
$\frac{-}{5}$	V vs D D vs DT	$0.3016 \\ 0.05116$

Kruskal-Wallis p value for the three-way comparison is 0.523

	Comparison	P value	Direction
3	V vs D	0.4607	V > D
1	D vs DT	0.1618	D > DT

gastrocnemius Ct(Trim63)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	1.2 (0.306; n = 4)
Dexa	0.274 (0.256; n = 4)
Testo	1.16 (0.4; n = 4)
Dexa + Testo	0.154 (0.371; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.119

	contrastsfour	dunns.P
5	V vs D	0.4704
1	D vs DT	0.03735

	Comparison	P value	Direction
3	V vs D	0.3344	V > D
1	D vs DT	0.01763	D > DT

quadriceps Ct(Becn1)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	7.79 (0.248; n = 4)
Dexa	3.62 (1.11; n = 4)
Testo	7.58 (0.0748; n = 4)
Dexa + Testo	3.19 (0.343; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.00835

	contrastsfour	dunns.P
$\frac{1}{5}$	V vs D D vs DT	$0.3832 \\ 0.002387$

Kruskal-Wallis p value for the three-way comparison is 0.0364

	Comparison	P value	Direction
3	V vs D	0.3874	V > D
1	D vs DT	0.04306	D < DT

quadriceps Ct(Bnip3)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	3.56 (0.302; n = 4)
Dexa	0.444 (0.611; n = 4)
Testo	3.38 (0.198; n = 4)
Dexa + Testo	2.21 (0.0899; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0068

	contrastsfour	dunns.P
5	V vs D	0.1864
1	D vs DT	0.001487

	Comparison	P value	Direction
3	V vs D	0.2836	V > D
1	D vs DT	0.01106	D < DT

quadriceps Ct(Ctsl)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	4.7 (0.232; n = 4)
Dexa	1.32 (0.561; n = 4)
Testo	4.13 (0.212; n = 4)
Dexa + Testo	0.761 (0.418; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.00723

	contrastsfour	dunns.P
5	V vs D	0.328
1	D vs DT	0.005787

Kruskal-Wallis p value for the three-way comparison is 0.0364

	Comparison	P value	Direction
3	V vs D	0.3874	V < D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.04306	D < DT

quadriceps Ct(Ddit4)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	8.62 (0.248; n = 4)
Dexa	0.32 (1.33; n = 4)
Testo	7.74 (0.549; n = 4)
Dexa + Testo	0.712 (0.236; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.00673

	contrastsfour	dunns.P
5	V vs D	0.2762
1	D vs DT	0.001165

	Comparison	P value	Direction
3	V vs D	0.5	V < D
1	D vs DT	0.02827	D < DT

quadriceps Ct(Fbxo32)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	5.14 (0.333; n = 4)
Dexa	-0.51 (0.967; n = 4)
Testo	5.87 (0.238; n = 4)
Dexa + Testo	-0.0944 (0.155; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.00673

	contrasts four	dunns.P
5	V vs D	0.2762
1	D vs DT	0.01066

Kruskal-Wallis p value for the three-way comparison is 0.0379

	Comparison	P value	Direction
3	V vs D	0.5	V > D
1	D vs DT	0.02827	D < DT

quadriceps Ct(Foxo1)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	9.34 (0.283; n = 4)
Dexa	3.02 (1.25; n = 4)
Testo	8.76 (0.408; n = 4)
Dexa + Testo	3.2 (0.229; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.00738

	contrastsfour	dunns.P
5	V vs D	0.2762
1	D vs DT	0.001487

	Comparison	P value	Direction
3	V vs D	0.5	V > D
1	D vs DT	0.02827	D < DT

quadriceps Ct(Foxo3a)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	10.7 (0.389; n = 4)
Dexa	4.37 (1.37; n = 4)
Testo	10.3 (0.254; n = 4)
Dexa + Testo	4 (0.252; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.00835

	contrastsfour	dunns.P
5	V vs D	0.2762
1	D vs DT	0.002387

Kruskal-Wallis p value for the three-way comparison is 0.0379

	Comparison	P value	Direction
3	V vs D	0.5	V > D
1	D vs DT	0.02827	D < DT

quadriceps Ct(Foxo4)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	7.36 (0.252; n = 4)
Dexa	3.48 (1.17; n = 4)
Testo	7.42 (0.289; n = 4)
Dexa + Testo	2.81 (0.208; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0183

	contrastsfour	dunns.P
5	V vs D	0.441
1	D vs DT	0.01564

	Comparison	P value	Direction
3	V vs D	0.4244	V > D
1	D vs DT	0.05252	D < DT

quadriceps Ct(Igf1)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	9.61 (0.467; n = 4)
Dexa	8.79 (0.561; n = 4)
Testo	8.52 (0.048; n = 4)
Dexa + Testo	8.2 (0.232; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0795

	contrastsfour	dunns.P
$\frac{5}{1}$	V vs D D vs DT	0.3552 0.02248

Kruskal-Wallis p value for the three-way comparison is 0.0825

	Comparison	P value	Direction
3	V vs D	0.1263	V > D
1	D vs DT	0.2523	D < DT

quadriceps Ct(Igf1r)-Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	9.15 (0.326; n = 4)
Dexa	5.26 (1.24; n = 4)
Testo	9.19 (0.413; n = 4)
Dexa + Testo	4.82 (0.329; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0327

	contrastsfour	dunns.P
5	V vs D	0.3832
1	D vs DT	0.01564

	Comparison	P value	Direction
3	V vs D	0.3515	V > D
1	D vs DT	0.09096	D < DT

quadriceps Ct(Klf15)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	7.4 (0.254; n = 4)
Dexa	3.6 (0.808; n = 4)
Testo	8.02 (0.343; n = 4)
Dexa + Testo	3.96 (0.153; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.00673

	contrastsfour	dunns.P
5	V vs D	0.2762
1	D vs DT	0.01066

Kruskal-Wallis p value for the three-way comparison is 0.0379

	Comparison	P value	Direction
3	V vs D	0.5	V < D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.02827	D < DT

quadriceps Ct(Map1lc3b)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	3.16 (0.273; n = 4)
Dexa	-0.376 (0.677; n = 4)
Testo	2.84 (0.199; n = 4)
Dexa + Testo	-0.85 (0.352; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.00861

	contrastsfour	dunns.P
5	V vs D	0.441
1	D vs DT	0.004673

	Comparison	P value	Direction
3	V vs D	0.2836	V < D
1	D vs DT	0.06356	D > DT

quadriceps Ct(Nr3c1)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	3.92 (0.335; n = 4)
Dexa	2.03 (0.62; n = 4)
Testo	3.55 (0.107; n = 4)
Dexa + Testo	2.04 (0.186; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0496

	contrastsfour	dunns.P
5	V vs D	0.441
1	D vs DT	0.01066

Kruskal-Wallis p value for the three-way comparison is 0.0958

	Comparison	P value	Direction
3	V vs D	0.3515	V < D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.09096	D < DT

quadriceps Ct(Odc)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	3.18 (0.168; n = 4)
Dexa	-0.829 (0.712; n = 4)
Testo	2.43 (0.11; n = 4)
Dexa + Testo	-2.57 (0.725; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.00411

	contrastsfour	dunns.P
5	V vs D	0.2289
1	D vs DT	0.004673

	Comparison	P value	Direction
3	V vs D	0.1954	V < D
1	D vs DT	0.09096	D < DT

quadriceps Ct(Stk11)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	7.29 (0.302; n = 4)
Dexa	3.9 (0.948; n = 4)
Testo	7.25 (0.384; n = 4)
Dexa + Testo	3.29 (0.243; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0184

	contrastsfour	dunns.P
5	V vs D	0.5
1	D vs DT	0.008742

Kruskal-Wallis p value for the three-way comparison is 0.0571

	Comparison	P value	Direction
3	V vs D	0.3168	V < D
1	D vs DT	0.07633	D < DT

quadriceps Ct(Trim63)- Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	6.25 (0.347; n = 4)
Dexa	0.307 (0.91; n = 4)
Testo	6.08 (0.382; n = 4)
Dexa + Testo	0.795 (0.187; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.00835

	contrastsfour	dunns.P
5	V vs D	0.2762
1	D vs DT	0.002387

	Comparison	P value	Direction
3	V vs D	0.5	V < D
1	D vs DT	0.02827	D > DT