ASSIGNMENT 2

ADVANCED MACHINE LEARNING

L'assignment consiste nella predizione di immagini delle lettere P-Z in scala di grigi. Dopo una breve esplorazione dei dati e alcune operazioni di preprocessing si sviluppa una rete neurale tradizionale e se ne valutano le performances. Successivamente si analizzano le performances di un autoencoder a livello grafico ed infine si utilizza la rappresentazione encoded generata da quest'ultimo per risolvere il problema della classificazione supervisionata.

1. Dataset Overview and Preprocessing

Il dataset consiste di 14000 osservazioni di training etichettate e 8800 di test senza etichetta. Queste sono immagini a colori delle lettere P-Z scritte a mano. Le classi risultano abbastanza bilanciate.

Il training set viene a sua volta suddiviso in train set (80%) e validation set (20%).

Prima di procedere con le fase di learning, vengono eseguite delle operazioni sul dataset per renderlo più per l'algoritmo. Tutti i valori vengono normalizzati fra 0 e 1 e si esegue un *reshape* delle immagini che le appiattisce in vettori di dimensione 784.

Le immagini, ora in bianco e nero, sono pronte per essere usate come input della rete neurale.

Ai fini di valutazione dei modelli vengono definite le funzioni *plot_metrics*, *plot_loss* e *plot_roc*.

2. Neural Network Model

Con la funzione *make_model* definiamo la rete neurale che consiste in 2 Hidden Layers da 512 neuroni ciascuno e due Layers di Dropout con rate = 0.5.

Negli hidden layer la funzione di attivazione è la **ReLU** (Rectified Linear Unit), che è efficiente nella back propagation degli errori e ha la caratteristica di attivare pochi neuroni in momenti diversi rendendo la rete sparsa e di facile computazione, mentre per il layer di output si è scelta la **softmax**, molto utile nei problemi di classificazione con n classi (n > 2) anche perché continua e differenziabile (a differenza della argmax).

Per inizializzare i pesi si è scelta la funzione **TruncatedNormal** che genera una distribuzione Normale troncata e forzano la stessa varianza forward/backward tra i layers. Come ottimizzatore è stato usato un algoritmo con learning rate adattivo, **Adam** (Adaptive Moments), che è una variazione di RMSProp + Momentum.

La funzione di perdita da ottimizzare è rappresentata dalla Categorical CrossEntropy.

L'algoritmo sembra apprendere bene e le performance nel validation set sono buone. Non si manifesta particolare overfitting grazie ai layers di dropout.

L'*Early Stopping* monitora i valori dell'Auc nel validation test, che convergono presto intorno a 1 (come si vede nella figura 1b), facendo terminare l'algoritmo in anticipo rispetto alle 70 epoche precedentemente impostate.

Fig. 1 Model evaluation

3. Autoencoder

"Autoencoding" è un algoritmo di compressione dati dove la compressione e la decompressione sono dataspecific, ovvero possono comprimere solo dati simili a quelli con cui l'autoencoder è stato allenato.

La più interessante applicazione degli autoencoders consiste invece nel *data denoising*, in quanto gli autoencoders selezionano autonomamente quali aspetti preservare dell'informazione e questo può portare all'apprendimento di proprietà utili dei dati, nascoste nella loro forma originaria.

Nel nostro caso siamo interessati a valutare le performances a livello grafico dell'autoencoder nel replicare le immagini di input dopo averne ridotto la dimensione per un <u>fattore di compressione pari a 24.5</u> (si passa da dimensione 784 a 32).

Questa riduzione avviene tramite due layers, il primo con 128 neuroni ed il secondo con, appunto, 32 neuroni. I neuroni degli hidden layers hanno funzione di attivazione ReLU, mentre per il layer di output la funzione *sigmoid* si è rivelata quella con le performances migliori.

La funzione di ottimizzazione è *Adadelta*, un estensione più robusta di *Adagrad*, che adatta il learning rate sulla base di una finestra mobile degli aggiornamenti del gradiente.

La funzione di perdita è invece la Binary CrossEntropy. Di seguito il summary dell'autoencoder:

Layer (type)	Output Shape	Param #
input E (Tabutteran)	(None 794)	0
<pre>input_5 (InputLayer)</pre>	(None, 784)	U
dense_9 (Dense)	(None, 128)	100480
dense 10 (Dense)	(None, 32)	4128
dense_10 (bense)	(None, 32)	4120
dense_11 (Dense)	(None, 128)	4224
dense 12 (Dense)	(None, 784)	101136

Total params: 209,968
Trainable params: 209,968
Non-trainable params: 0

Fig. 2 Autoencoder Summary

Dopo 70 epoche, con batch size pari a 256, l'autoencoder raggiunge ottime performances facendo convergere la loss function (binary_crossentropy) intorno a 0.19 sia nel train set che nel validation set (Fig. 3).

Fig. 3 Autoencoder Loss plot

L'architettura dell'autoencoder riesce quindi a comprimere e ricostruire le immagini con una perdita minima, come si può vedere nella figura 4:

Fig. 4 Autoencoder visual investigation

4. Neural Network Model with encoded input

Si valutano le performances della rete neurale utilizzando come input le immagini compresse dall'autoencoder.

A tal proposito si modifica la funzione *make_model* in *make_model_2* con dimensione di Input pari a 32.

L'algoritmo performa in maniera molto simile a quanto osservato precedentemente con l'Input originale, a conferma del fatto che, malgrado la compressione per un fattore di 24.5, l'autoencoder ha mantenuto le caratteristiche principali delle immagini di Input.

Fig. 5 Model with encoded Input evaluation

Una volta compilato e validato il modello si procede con l'encoding delle immagini di test e con la successiva predizione delle labels ad esse associate.

Le predizioni vengono riportate in allegato nel file "Raffaele_Anselmo_846842_Score2.txt".