## Lecture 25 — Reliability: Fail-Soft Operation

Jeff Zarnett jzarnett@uwaterloo.ca

Department of Electrical and Computer Engineering University of Waterloo

March 30, 2023

ECE 350 Spring 2023 1/31

## Things Go Wrong

Except when we talked about hard drives and the Byzantine Generals Problem, we usually think that things will work as they should.



ECE 350 Spring 2023 2/31

## **Reliability Required?**

Downtime is okay for some systems: e.g., my laptop!

Reliability is important for real-time systems...

Downtime may be intolerable if it's life- or safety-critical!

Or maybe it just costs money if you have some SLA.

ECE 350 Spring 2023 3/31

## In French, Le Flat Tire

Normally, if I get a flat tire, I can't drive until I change the tire.



Run-flat tires have limitations, but the car is functional at reduced capacity.

ECE 350 Spring 2023 4/31

Two distinct goals:

1. Resiliency – carry on in the event of a failure.

2. Fail-soft - preserve as much capability as possible or terminate gracefully.

Where did RAID fall in this spectrum?

ECE 350 Spring 2023 5/31

# Resiliency



ECE 350 Spring 2023 6/31

# **Resiliency Requirements**

First question is how much resiliency you really need?

Is this "we lose money" or "people might die"?

ECE 350 Spring 2023 7/31



But no need to plan for nuclear armageddon (usually).

ECE 350 Spring 2023 8/31

This is an engineering design tradeoff: how much extra capacity should we have?

| ∠ DEPARTURES |             |        |     |
|--------------|-------------|--------|-----|
| TIME         | DESTINATION | FLIGHT | GAT |
| 12:39        | LONDON      | BA 903 | 31  |
| 12:57        | SYDNEY      | QF5723 | 27  |
| 13:08        | TORONTO     | AC5984 | 22  |
| 13:21        | TOKYO       | JL 608 | 41  |
| 13:37        | HONG KONG   | CX5471 | 29  |
| 13:48        | MADRID      | IB3941 | 30  |
| 14:19        | BERLIN      | LH5021 | 28  |
| 14:35        | NEW YORK    | AA 997 | 11  |

Too little capacity: every problem becomes global...
Too much and we wasted money!

ECE 350 Spring 2023 9/31

#### Can We Fix It? Yes We Can!

Best option for resiliency is to fix it!

Maybe not possible if this is an unrecoverable hardware failure.

Maybe deadlock detection and recovery?

ECE 350 Spring 2023 10 / 31

Continue as best we can at reduced capacity.



ECE 350 Spring 2023 11/31

# Stiff Upper Lip

Example: 4 CPU cores, all running at 50% capacity, but one dies?

Maybe running at reduced capacity until a repair comes...

What if we can't meet all deadlines?

ECE 350 Spring 2023 12/31

## **Real-Time Resiliency**

The system is considered stable if it will always meet the deadlines of its most critical tasks.

Even if lower priority tasks may not be completed at all!

Painful choices may need to be made.

ECE 350 Spring 2023 13/31

## Shut It Down!

Perhaps it's sensible to do an orderly shutdown.

Prevent data corruption, but cannot carry on.

ECE 350 Spring 2023 14/31

# Stop. Hammertime.

Cease all operation or execution immediately.

This may cause some damage, but may be the least bad choice.

ECE 350 Spring 2023 15/31

## **Faults and Fault Tolerance**

Until now, vague words about "something going wrong".

What is a fault and failure?

ECE 350 Spring 2023 16 / 31

### **Faults and Fault Tolerance**

Failure: When the response (outcome) deviates from the specification as a result of an error.

Error: A manifestation of a fault.

Fault: An erroneous hardware or software state of some variety.

ECE 350 Spring 2023 17/31

# **Types of Fault**

Permanent: dead hard drive, software bug.

Intermittent: fault hardware chip.

**Transient**: cosmic radiation?

ECE 350 Spring 2023 18 / 31

Instead of jumping right to fault tolerance, what about prevention?



What strategies would you use?

ECE 350 Spring 2023 19 / 31

#### **Not Perfect**

Following appropriate design, implementation, and testing processes will only make faults less likely.

It is also important to resist the pressure to drop or degrade these processes when user time pressure.

Still need to think about tolerance...

ECE 350 Spring 2023 20/31

## **Fault Tolerance**

We already know a few things about fault tolerance from earlier topics.



Can you think of some?

ECE 350 Spring 2023 21/31

## **Fault Tolerance Techniques**

- Process Isolation
- Dual-Mode Operation
- Preemptive, Priority-Based Scheduling
- Checkpoints, Transactions, Rollback
- RAID
- Checksums, Parity Bits, ECC...

ECE 350 Spring 2023 22/31

# Types of Redundancy

Information redundancy: checksums, parity bits, ECC...

Physical redundancy: two CPUs instead of one...

Temporal redundancy: TCP communication, resend...

ECE 350 Spring 2023 23/31

# **Space Shuttle**

The Space Shuttle had both physical and temporal redundancy.



Important thing: no single point of failure!

ECE 350 Spring 2023 24/31

#### **Now I Have Two Problems**



We covered this a little bit in the Byzantine Generals Problem.

We'll consider one in particular: clock synchronization.

ECE 350 Spring 2023 25 / 31

## **Clock Synchronization**

It is not trivial to get two independent systems to agree on what time it is.



Inevitably, all clocks except the universal reference clock are off by some amount; it's just a question of how much!

ECE 350 Spring 2023 26 / 31

## **Disagreement Means Problems**

It's easy to imagine scenarios where independent systems who don't agree on what time it is will misbehave.

Ever been in a video call with lag?

Time zones also matter!

ECE 350 Spring 2023 27/31

## **Quartz Clocks**

Clocks frequently use quartz for synchronization, but there is always drift and measurement error.

A quartz clock will typically vary by about half a second per day, so the idea of systems being off by a full second is quite reasonable.

Just imagine System A is fast by 0.5s and System B is slow by 0.5s.

ECE 350 Spring 2023 28 / 31

#### **Time Travel is Real**

In a non-real time operating system, it's often okay to just change the clock to the correct time and just jump there.

But for a real-time system, breaking the expectation of linear time can cause events to run again, so typically we do not wish to do that.

The solutions are effectively a graduated slowdown or speedup... but to when?

ECE 350 Spring 2023 29 / 31

A possible solution is something like the Network Time Protocol.

Effectively, it's difficult or impossible to get more than one system to agree on what time it is.

Better: build your system to account for these things.

ECE 350 Spring 2023 30 / 31

## **Distributed Systems Course**

All of this is just a very simple overview of some of the issues that might arise when we have multiple systems for redundancy.

This is a complicated subject and is a whole 4th year ECE technical elective that you could take!

ECE 350 Spring 2023 31/31