Modelling and Identification

Prof. Dr. Ping Zhang
Institute for Automatic Control
WS 2017/18

Organisation of this course

Chapter 1: Introduction

Chapter 2: Theoretical Modelling

Chapter 3: Experimental modelling

Chapter 4: Least-Squares methods

Chapter 5: Prediction error methods

Chapter 6: Instrumental variable methods

Chapter 7: Subspace identification methods (SS model!)

Chapter 8: Some practical aspects

Organisation of this course

Küpfmüller approach

Approximation by a first order system with time delay

$$G(s) = \frac{K}{1 + Ts}e^{-\tau s}$$

Küpfmüller approach:

Gain

$$K = \frac{\mathbf{y}_{\infty}}{a}$$

Time delay

$$\tau = T_{\rm u}$$

Time constant

$$T = T_a$$

Küpfmüller approach

Example

Step response $(u(t) = a\sigma(t), a = 0.5)$

Approximation by a n-th order system with equal time constants

$$G(s) = \frac{K}{(1+Ts)^n}$$

Read characteristic values:

- \triangleright final value y_{∞}
- \succ time T_{u}
- \succ time T_a

Identification procedure:

- 1. Calculate the gain $K = \frac{y_{\infty}}{a}$.
- 2. Draw the tangent at the inflection point
- 3. Read T_u and T_a
- 4. Based on $\frac{T_a}{T_u}$, read the order n from the following table. A rough estimate of n can also be got by $n \approx 10 \frac{T_u}{T_a} + 1$.
- 5. Based on n, get the time constant T from the table.

n	2	3	4	5	6	7	8	9	10
T_a/T_u	9.65	4.58	3.13	2.44	2.03	1.75	1.56	1.41	1.29
T_a/T	2.72	3.69	4.46	5.12	5.70	6.23	6.71	7.16	7.59
T_u/T	0.28	0.80	1.42	2.10	2.81	3.55	4.30	5.08	5.87

Step response $(u(t) = a\sigma(t), a = 0.5)$

Approximation by a n-th system with equal time constants

$$G(s) = \frac{K}{(1+Ts)^n}$$

$$y_{\infty} = 2 \implies K = \frac{y_{\infty}}{a} = 4$$

$$\begin{cases}
T_u = 7 \\
T_a = 22.4
\end{cases}$$

$$\frac{T_a}{T_u} = \frac{22.4}{7} = 3.2 \implies n = 4$$

$$\frac{T_a}{T} = 4.46 \implies T = \frac{T_a}{4.46} = 5.02$$

$$G(s) = \frac{4}{(1+5.02s)^4}$$

Approximation by a n-th system with equal time constants

$$G(s) = \frac{K}{(1+Ts)^n}$$

Schwarze approach

make use of the characteristic values:

$$y_{\infty}$$
, t_1 , t_3 , t_5 , t_7 , t_9

Key of identification:

Identification procedure:

- Get the characteristic values y_{∞} , t_1 , t_3 , t_5 , t_7 , t_9 from the step response
- The gain K is got by $K = \frac{y_{\infty}}{a}$.
- Based on $\frac{t_i}{t_i}$, determine the order of the system n.
- Based on n and one of the curves $\frac{t_l}{T}$, determine the time constant T.

Example:

Step response $(u(t) = a\sigma(t), a = 0.5)$

$$y_{\infty} = 2$$
, $t_1 = 8.6$, $t_3 = 14$, $t_5 = 18$, $t_7 = 24$, $t_9 = 34$

Example:

$$t_1 = 8.6$$
, $t_3 = 14$, $t_5 = 18$, $t_7 = 24$, $t_9 = 34$

The gain of TF

$$K = \frac{y_{\infty}}{a} = \frac{2}{0.5} = 4$$

Example:

$$t_1 = 8.6$$
, $t_3 = 14$, $t_5 = 18$, $t_7 = 24$, $t_9 = 34$

The gain of TF

$$K = \frac{y_{\infty}}{a} = \frac{2}{0.5} = 4$$

As
$$\frac{t_3}{t_7} = \frac{14}{24} = 0.5833$$

Example:

$$t_1 = 8.6$$
, $t_3 = 14$, $t_5 = 18$, $t_7 = 24$, $t_9 = 34$

The gain of TF

$$K = \frac{y_{\infty}}{a} = \frac{2}{0.5} = 4$$

As
$$\frac{t_3}{t_7} = \frac{14}{24} = 0.5833$$

From **Figure a** it can be seen that

$$n = 4$$

Example:

$$t_1 = 8.6$$
, $t_3 = 14$, $t_5 = 18$, $t_7 = 24$, $t_9 = 34$

From **Figure b** it can be seen that

$$\frac{t_7}{T} \approx 4.8$$

Example:

$$t_1 = 8.6$$
, $t_3 = 14$, $t_5 = 18$, $t_7 = 24$, $t_9 = 34$

From **Figure b** it can be seen that

$$\frac{t_7}{T} \approx 4.8$$

Hence, the time constant is

$$T = \frac{t_7}{4.8} = \frac{24}{4.8} = 5$$

$$G(s) = \frac{4}{(1+5s)^4}$$

Step response $(u(t) = a\sigma(t), a = 0.5)$

Available approaches:

Nomogram approach

Second order system with two real poles

Küpfmüller approach

First order system with time delay

Strejc approach

N-th order system with the same time constants

Schwarze approach

N-th order system with the same time constants

Available approaches:

- Nomogram approach Tangent based approach
- Küpfmüller approach Tangent based approach
- Strejc approach Tangent based approach
- Schwarze approach

Time-Percent based approach

Results of identification:

Nomogram approach

$$G(s) = \frac{2.4}{(1+5.028s)(1+8.044s)}$$

Küpfmüller approach

$$G(s) = \frac{2.4}{1 + 18.1s} e^{-1.8s}$$

- Strejc approach

$$G(s) = \frac{2.4}{(1 + 6.54s)^2}$$

Step response $(u(t) = a\sigma(t), a = 0.5)$

Results of identification:

Schwarze approach

$$G(s) = \frac{2.4}{(1+6.4s)^2}$$

Validation of model for the above example

Scenario 1:

Step-response

(amplitude of the step input: 0.5)

Scenario 2:

Response to sinusoidal input

Measured frequency response

Determine the structure of the transfer function

$$G(s) = \frac{K}{s(Ts+1)}$$

Measured frequency response

Corner frequency: ω_D

Determine the structure of the transfer function

$$G(s) = \frac{K}{s(Ts+1)}$$

Read corner frequency

$$\omega_D = 1$$

Hence, the time constant is

$$T = \frac{1}{\omega_D} = 1$$

Measured frequency response

Read $20 \log_{10} |G(j\omega)| = 60 dB$ at frequency $\omega = 0.01$.

$$20 \log_{10} |G(j\omega)|$$
= $20 \log_{10} K - 20 \log_{10} 0.01$
= 60

$$K = 10$$

$$K(s) = \frac{10}{(s+1)^{1/2}}$$

Corner frequency: ω_D

Example 2:

Determine the structure of the transfer function

$$G(s) = \frac{K(1 + T_2 s)}{(1 + T_1 s)}$$

$$20 \log_{10} K = -20$$

$$K = 0.1$$

Assume that the transfer function of the system is

$$G(s) = \frac{b_m s^m + \dots + b_1 s + b_0}{s^n + \dots + a_1 s + a_0}$$

Given the measured frequency responses at $\omega_1, \omega_2, \cdots, \omega_N$. Determine the tranfer function of the system.

Based on the frequency responses

$$G(j\omega_i) = \frac{b_m(j\omega_i)^m + \dots + b_1(j\omega_i) + b_0}{(j\omega_i)^n + \dots + a_1(j\omega_i) + a_0}, \quad i = 1, 2, \dots, N$$

A group of equations in the following form can be obtained

$$Q\begin{bmatrix} a_{n-1} \\ \vdots \\ a_0 \\ b_m \\ \vdots \\ b_0 \end{bmatrix} = P \qquad \longrightarrow \qquad \text{Least squares estimate} \begin{bmatrix} \hat{a}_{n-1} \\ \vdots \\ \hat{a}_0 \\ \hat{b}_m \\ \vdots \\ \hat{b}_0 \end{bmatrix}$$

Summary of Chapter 3

- ➤ Measurement of non-parametric models:
 - Step response
 - Impulse response
 - Frequency response
- Get parametric model from non-parametric model