Linear Independence: Suppose that V is a vector space and that x_1, x_2, \ldots, x_k belong to V.

• $\{x_1, x_2, \dots, x_k\}$ are linearly independent if

$$r_1x_1 + r_2x_2 + \dots + r_kx_k = 0$$

only for
$$r_1 = r_2 = \cdots = r_k = 0$$
.

• The vectors x_1, x_2, \ldots, x_k are linearly dependent if they are not linearly independent; that is, if there exist scalars r_1, r_2, \ldots, r_k which are not all zero such that

$$r_1x_1 + r_2x_2 + \cdots + r_kx_k = 0$$

• A basis of V is a set of linearly independent vectors which span V.

This lecture: basis and dimension §4.4

Question Why is this useful?

Example Is $\{\cos x, \sin x, 1\}$ is linearly independent? If $s \cos x + t \sin x + r \cdot 1 = 0$ then

$$\begin{array}{lll} x = 0: & s \cdot 0 + t \cdot 1 + r \cdot 1 & = 0 \\ x = \frac{\pi}{2}: & s \cdot 1 + t \cdot 0 + r \cdot 1 & = 0 \\ x = \frac{\pi}{4}: & s \cdot \frac{1}{\sqrt{2}} + t \cdot \frac{1}{\sqrt{2}} + r \cdot 1 & = 0 \end{array}$$

Therefore, $\{\cos x, \sin x, 1\}$ is linearly independent.

The order of the logic is very important here:

For any particular value x = a of x we can find $r, s, t \in \mathbb{R}$ such that

$$r \cdot 1 + s \cos a + t \sin a = 0.$$

The point is that we have to find $r, s, t \in \mathbb{R}$ such that $r \cdot 1 + s \cos x + t \sin x = 0$ for all $x \in \mathbb{R}$.

If we pick 'good' test values of x then we can show that we must have r = s = t = 0.

Basis of a Vector Space: We now combine spanning sets and linear independence.

Definition Suppose that V is a vector space. A basis of V is a set of vectors $\{x_1, x_2, \ldots, x_k\}$ in V such that

- $V = \operatorname{Span}(x_1, x_2, \dots, x_k)$ and
- $\{x_1, x_2, \dots, x_k\}$ is linearly independent.

Examples

- $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \text{ is a basis of } \mathbb{R}^2. \right.$
- $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3 .
- $\left\{ \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}, \dots, \begin{bmatrix} 0\\\vdots\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\\vdots\\0\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^m .
- $\{1, x, x^2\}$ is a basis of \mathbb{P}_2 .
- $\{1, x, x^2, \dots, x^n\}$ is a basis of \mathbb{P}_n .
- Typically, if W is a vector subspace of V then our challenge is to find a basis for W.

Another basis of \mathbb{R}^3 From the last slide, $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3 . There are many other bases of \mathbb{R}^3 .

Example Show that $X = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ is another basis of \mathbb{R}^3

We need to check two things:

- $\mathbb{R}^3 = \operatorname{Span}(X)$.
- X is linearly independent.

$$\underline{\mathbb{R}^3 = \mathrm{Span}(X)} \colon \text{ Suppose that } \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3.$$

Then $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \operatorname{Span}(X)$ if and only if

we can find $r, s, t \in \mathbb{R}$ such that

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = r \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \iff \begin{bmatrix} 1 & 1 & 0 & x \\ 2 & 1 & 0 & y \\ 3 & 1 & 1 & z \end{bmatrix}$$

We apply Gaussian elimination:

$$\begin{bmatrix} 1 & 1 & 0 & x \\ 2 & 1 & 0 & y \\ 3 & 1 & 1 & z \end{bmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{bmatrix} 1 & 1 & 0 & x \\ 0 & -1 & 0 & y - 2x \\ 0 & -2 & 1 & z - 3x \end{bmatrix}$$

$$\frac{R_1 = R_1 - R_2}{R_3 = R_3 + 2R_2} \begin{bmatrix}
1 & 0 & 0 & y - x \\
0 & 1 & 0 & 2x - y \\
0 & 0 & 1 & x - 2y + z
\end{bmatrix}$$

Therefore,

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = (y - x) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + (2x - y) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + (x - 2y + z) \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Hence, $\operatorname{Span}(X) = \mathbb{R}^3$.

We also need to check that X is linearly independent.

Taking
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 above, we see that $0 = 0 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ is the only linear combination of X giving the zero vector.

Hence, X is linearly independent.

Therefore, X is a basis of \mathbb{R}^3 .

The independence theorem

Suppose that x_1, x_2, \ldots, x_d is a basis of V and let $v \in V$. Then v can be expressed as a linear combination of $\{x_1, x_2, \ldots, x_d\}$ in exactly one way.

Proof

Suppose that
$$r_1x_1 + r_2x_2 + \cdots + r_dx_d = v$$

= $s_1x_1 + s_2x_2 + \cdots + s_dx_d$,
for some $r_1, r_2, \dots, r_d, s_1, s_2, \dots, s_d \in \mathbb{R}$.

So
$$0 = v - v = (r_1x_1 + r_2x_2 + \dots + r_dx_d)$$

 $-(s_1x_1 + s_2x_2 + \dots + s_dx_d)$
 $= (r_1 - s_1)x_1 + (r_2 - s_2)x_2 + \dots + (r_d - s_d)x_d.$

But, x_1, x_2, \ldots, x_d are linearly independent so this means that

$$r_1 - s_1 = 0, r_2 - s_2 = 0, \dots, r_d - s_d = 0.$$

That is,
$$r_1 = s_1, r_2 = s_2, \dots, r_d = s_d$$
.

Hence, we can write v as a linear combination of x_1, x_2, \ldots, x_d in a unique way as claimed!

How big can a basis be? Suppose that we could find a

basis
$$\{w, x, y, z\}$$
 of \mathbb{R}^3 with four elements.
Write $w = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ and $z = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$.

Let $a, b, c, d \in \mathbb{R}$ be scalars such that aw + bx + cy + dz = 0.

That is,
$$a \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} + b \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + c \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} + d \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
.

To solve this we use Gaussian elimination:

$$\begin{bmatrix} w_1 & x_1 & y_1 & z_1 & 0 \\ w_2 & x_2 & y_2 & z_2 & 0 \\ w_3 & x_3 & y_3 & z_3 & 0 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & * & * & * & 0 \\ 0 & 1 & * & * & 0 \\ 0 & 0 & 1 & * & 0 \end{bmatrix}$$
(at best)

We must have at least one free variable. So there is no way that $\{w, x, y, z\}$ can be linearly independent.

The dependence theorem

Suppose that $\{x_1, x_2, \dots, x_d\}$ is basis of V. Then every linearly independent subset of V has at most d elements.

Proof

Let y_1, y_2, \ldots, y_n are vectors in V, where n > d.

We have to show the vectors y_1, y_2, \ldots, y_n are linearly dependent. That is, we have to show that we can find scalars r_1, r_2, \ldots, r_n which are not all zero and $r_1y_1 + r_2y_2 + \cdots + r_ny_n = 0$.

As $\{x_1, x_2, \dots, x_d\}$ is basis of V we can certainly write:

$$y_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1d}x_{d}$$

$$y_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2d}x_{d}$$

$$y_{3} = a_{31}x_{1} + a_{32}x_{2} + \dots + a_{3d}x_{d}$$

$$\vdots$$

$$\vdots$$

$$y_{n} = a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nd}x_{d}$$

Hence,
$$r_1(a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d)$$

 $+r_2(a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d)$
 \vdots \vdots $+r_n(a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d) = 0.$

Rearranging the last equation we have:

$$(r_{1}a_{11} + r_{2}a_{21} + \dots + r_{n}a_{n1})x_{1}$$

$$+ (r_{1}a_{12} + r_{2}a_{22} + \dots + r_{n}a_{n2})x_{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$+ (r_{1}a_{1d} + r_{2}a_{2d} + \dots + r_{n}a_{nd})x_{d}$$

$$= 0.$$

However, x_1, x_2, \ldots, x_d are linearly independent, so:

$$r_{1}a_{11} + r_{2}a_{21} + \dots + r_{n}a_{n1} = 0$$

$$r_{1}a_{12} + r_{2}a_{22} + \dots + r_{n}a_{n2} = 0$$

$$\vdots$$

$$r_{1}a_{1d} + r_{2}a_{2d} + \dots + r_{n}a_{nd} = 0$$

This is a system of d equations in the n unknowns r_1, r_2, \ldots, r_n .

As n > d there are infinitely many solutions. In particular, we must have a non–zero solution to

$$r_1y_1 + r_2y_2 + \cdots + r_ny_n = 0.$$

So, $\{y_1, y_2, \dots, y_n\}$ is linearly dependent, as claimed.

Basis Theorem 2

Suppose that $\{x_1, x_2, \dots, x_d\}$ is a basis of V and that $\{y_1, y_2, \dots, y_n\}$ is a linearly independent subset of V.

By the last result we must have $n \leq d$.

The dimension theorem

Every basis of V has the same size.

That is, if $\{x_1, x_2, \dots, x_d\}$ and $\{y_1, y_2, \dots, y_n\}$ are two bases of V then n = d.

Proof

As $\{x_1, x_2, \dots, x_d\}$ is a basis of V and $\{y_1, y_2, \dots, y_n\}$ is linearly independent we have $n \leq d$.

Similarly, as $\{y_1, y_2, \dots, y_n\}$ is a basis of V and $\{x_1, x_2, \dots, x_d\}$ is linearly independent we have $d \leq n$.

Hence, $n \le d \le n$. So n = d!

Definition

Suppose that V is a vector space with basis $\{x_1, x_2, \dots, x_d\}$. Then the dimension of V is dim V = d.

Dimensions of common vector spaces **Examples**

- dim $\mathbb{R}^2 = 2$ since $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is a basis of \mathbb{R}^2 .
- dim $\mathbb{R}^3 = 3$ since $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3 .
- dim $\mathbb{R}^m = m$ since $\left\{ \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}, \dots, \begin{bmatrix} 0\\\vdots\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\\vdots\\0\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^m .
- $\dim \mathbb{P}_0 = 1$ since $\{1\}$ is a basis of \mathbb{P}_0 .
- $\dim \mathbb{P}_1 = 2$ since $\{1, x\}$ is a basis of \mathbb{P}_1 .
- dim $\mathbb{P}_2 = 3$ since $\{1, x, x^2\}$ is a basis of \mathbb{P}_2 .
- dim $\mathbb{P}_n = n + 1$ since $\{1, x, x^2, \dots, x^n\}$ is a basis of \mathbb{P}_n .
- $\dim \mathbb{P} = \infty$
- $\dim \mathbb{F} = \infty$

Example

Let
$$a(x) = 1$$
, $b(x) = x - 1$ and $c(x) = (x - 1)^2$.
Is $\{a(x), b(x), c(x)\}$ a basis of \mathbb{P}_2 ?

Let $p(x) = u + vx + wx^2$ be an arbitrary element of \mathbb{P}_2 .

Then $p(x) \in \text{Span}(a(x), b(x), c(x))$ if and only if

$$u + vx + wx^2 = ra(x) + sb(x) + tc(x),$$
 for some $r, s, t \in \mathbb{R}$.

That is,
$$u + vx + wx^2 = r + s(x - 1) + t(x^2 - 2x + 1)$$
.

Equating coefficients we require:

$$x^0:$$
 $r-s+t=u$
 $x^1:$ $s-2t=v$
 $x^2:$ $t=w$

Hence,
$$p(x) = (u+v+w)a(x) + (v+2w)b(x) + wc(x)$$
.
Check: $u+vx+wx^2$
 $= (u+v+w)\cdot 1 + (v+2w)(x-1) + w(x^2-2x+1)$.

Therefore, $\operatorname{Span}(a(x),b(x),c(x))=\mathbb{P}_2.$

Question Does this mean that $\{a(x), b(x), c(x)\}$ must be linearly independent?