Universität zu Köln

Wirtschafts- und Sozialwissenschaftliche Fakultät Institut für Soziologie und Sozialpsychologie (ISS)

Prof. Dr. Marita Jacob Dr. Judith Offerhaus

Statistik A für Sozialwissenschaftler Übung | Aufgabenblatt 6

Aufgabe 1

Angenommen, das Merkmal Alter von (Master-)Studierenden ist normalverteilt. Wir gehen von einem stetigen Merkmal aus.

Es gilt $X \sim (23, 16)$ in Jahren.

- Mit welcher Wahrscheinlichkeit tritt das Ereignis {X=25} auf?
- Mit welcher Wahrscheinlichkeit tritt das Ereignis {X ≤ 30} auf?
- Mit welcher Wahrscheinlichkeit tritt das Ereignis {X > 30} auf?

Aufgabe 2

In einer Studie werden "gestresste Personen" so definiert, dass dies diejenigen 5% sind, die in einem Test zur Messung von Stress die höchsten Werte aufweisen.

Welcher Testwert ist der Grenzwert zwischen gestressten und nicht-gestressten Personen bei einer Verteilung von N(100;225)?

Aufgabe 3

Personen mit Abitur erreichen in einem Mathematiktest durchschnittlich 76 Punkte, diejenigen ohne Abitur 70 Punkte. Die Punktzahl sei in beiden Gruppen normalverteilt mit σ = 20.

Wie viel Prozent derjenigen mit Abitur erreichen mehr Punkte als die 5%-Spitzengruppe derjenigen ohne Abitur?

Aufgabe 4

Ein Student hat in einer Statistikklausur 78 Punkte erreicht. Das Gesamtergebnis der Klausur ist N(60,64)-verteilt.

Wie groß ist der Prozentsatz der Personen, die in dem Test höchstens so gut abschneiden wie der Student?

Aufgabe 5

Welche der Aussagen sind richtig, welche sind falsch?

Geben Sie bei den falschen Aussagen die richtige Lösung an.

- Eine Normalverteilung hat stets den Erwartungswert 0 und eine Streuung von 1.
- Zwischen z_1 = -1.96 und z_2 = 1.96 liegen 99% der Fläche unter einer Normalverteilung.

Verteilungsfunktion der Standard-Normal-Verteilung

für eine standard-normal-verteilte Zufallsvariable $Z \sim \mathcal{N}(0,1)$: $\Phi(z) \stackrel{\text{def.}}{:=} P(Z \leq z)$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Die Verteilungsfunktion der Standard-Normal-Verteilung ist symmetrisch,

$$\Phi(-z) = 1 - \Phi(z) \qquad \forall z \in \mathbb{R} \,,$$

und daher gilt für die Quantile z_{α} der Ordnung $\alpha \in [0,1]$ (d. h. für z_{α} mit $\Phi(z_{\alpha})=\alpha)$

$$z_{\alpha} = -z_{1-\alpha}.$$

Tabelle einiger Quantile:

α	0	.5	.9	.95	.975	.99	.995	1	
$\overline{z_{\alpha}}$	$-\infty$	0	1.282	1.645	1.960	2.326	2.576	∞	-52