DATA*6300 : FINAL PROJECT

DISASTER RELIEF FUND ALLOCATION ANALYSIS: IDENTIFYING EXCESSIVE GRANTS TO HOMEOWNERS

By: Poojan Vadaliya (1281587)

CONTENT

01 Overview 02 **Problem Statement** 03 Data Description 04 Preprocessing Steps 05 Data before preprocessing 06 Data after preprocessing 07 Model Selection and Evaluation 08 Analysed Data Conclusion 09 Conclusion

Overview

Road Home Program was introduced to assist the home owners affected by hurricane Katrina and Rita.

O1 Aiding Louisiana homeowners

 Extensive property damage beyond insurance and FEMA assistance.

- Compensation Grants
- Additional Compensation Grants
- Elevation grants
- Mitigation grants

TYPES OF GRANTS OFFERED

02

- Compensation Grants
- Records of property owners who received grants.
- Pre-storm value, Repair cost, Insurance amounts

- Factors causing inconsistencies
 - Additional insurance payments
 - Fraud cases
- Impact on actual funds owed by property owners to the state.

DISCREPANCIES IN GRANT
AMOUNTS

<u>0</u>4

PROBLEM STATEMENT

FINDING HOMEOWNERS
OR CONTRACTORS WHO
TOOK EXCESSIVE
GRANTS.

BINARY CLASSIFICATION PROBLEM

FINDING THE NUMBERS THAT COULD HAVE BEEN SAVED.

EXPLORATORY DATA
ANALYSIS

Structure Demographics

- Structure Type
- GIS State
- GIS City
- GIS Zip
- Parish
- NOLA Planning Demographics

Grant Statistics

- Total CG Amount
- Total ACG Amount
- Total Elevation Amount
- Total IMM Amount
- Total Closing Amount
- ARS File (Yes/No)

Census Demographics

- Census Blocks
- Block Groups
- Census Tracks

Closing Options

- Closing Damage Assessment
- PSV at Closing
- Closed File Option 1
- Closed File Option 2/3
- Closed with Approved Unmet Needs

Damage Assessment

- Current Damage Assessment
- Current Damage Assessment-Type1
- Current Damage Assessment-Type 2
- Damage Type 1 or 2
- Current PSV

Samples: 130053

Columns: 36

Preprocessing Steps

Identifying Outliers

Structure Demographics

- Structure Type
- GIS State
- GIS City
- GIS Zip
- Parish
- NOLA Planning Demographics

Grant Statistics

- Total CG Amount
- Total ACG Amount
- Total Elevation Amount
- Total IMM Amount
- Total Closing Amount
- ARS File (Yes/No)

Census Demographics

- Census Blocks
- Block Groups
- Census Tracks

Closing Options

- Closing Damage Assessment
- PSV at Closing
- Closed File Option 1
- Closed File Option 2/3
- Closed with Approved Unmet Needs

Damage Assessment

- Current Damage Assessment
- Current Damage Assessment-Type1
- Current Damage Assessment-Type 2
- Damage Type 1 or 2
- Current PSV

Structure Demographics

- Structure Type
- GIS State
- GIS City
- GIS Zip
- Parish
- NOLA Planning Demographics

Grant Statistics

- Total CG Amount
- Total ACG Amount
- Total Elevation Amount
- Total IMM Amount
- Total Closing Amount
- ARS File (Yes/No)

Census Demographics

- Census Blocks
- Block Groups
- Census Tracks

Closing Options

- Closing Damage Assessment
- PSV at Closing
- Closed File Option 1
- Closed File Option 2/3
- Closed with Approved Unmet Needs
- Closing total DOB
- Difference between PSV and Current Damage Assessment

Damage Assessment

- Current Damage Assessment
- Current Damage Assessment-Type1
- Current Damage Assessment-Type 2
- Damage Type 1 or 2
- Current Pre Sale Value (PSV)

Model Name		Precision	Recall	F1-Score	Test Accuracy
Logistic Regression	0	0.76	0.52	0.62	67.89%
	1	0.64	0.83	0.72	
Random Forest	0	0.89	0.81	0.85	85.52%
	1	0.83	0.90	0.86	
Support Vector Machines	0	0.50	0.97	0.66	49.92%
	1	0.51	0.03	0.06	
		After Fine T	uning		
Forward Subset Selection	0	0.88	0.85	0.87	86.92%
	1	0.86	0.89	0.87	
Bagging	0	0.90	0.87	0.87	87.06%
	1	0.85	0.90	0.87	

MODELS

SELECTION AND EVALUATION

COUNT OF STRUCTURE TYPES THAT WERE FUNDED MORE THAN REQUIRED

HOMEOWNERS / CONTRACTORS
THAT WERE GRANTED MORE FUNDS
THAN REQUIRED CITYWISE

Distribution of Closing Options

Distribution of Owners by Damage Type

FINDING OUT THE TOTAL MONEY
DISBURSED THAT WERE CLASSIFIED
AS FRAUDULENT DISTRIBUTION

TOTAL MONEY THAT COULD HAVE BEEN SAVED

572 MILLION

CONCLUSION

- There was a **heavy class imbalance** observed in the dataset.
- Fine-tuning Random Forest helped to get the most accuracy among all other approaches with validation accuracy of 87.06%.
- New Orleans was the city, with a maximum grant allocation of around
 4.3 Billion.
- A total of 572 Million USD could have been saved if the fraudulent fund allocations had been found earlier.

