

Mesure de forme et de déformation par imagerie numérique

Stéphane Allado Caroline Pascal Alexandre Pacaud Diane Pugès Pierre Uginet

Cours d'ouverture 1A : Imagerie numérique - Application en mécanique des matériaux

Mathieu Aubry (LIGM-Imagine) Michel Bornert (Navier)

Introduction

- Objet micrométrique (plaque Al)
- Séries de photographies
- Reconstitution de l'échantillon

Vues au microscope électroniqu<mark>e à balayage de l'échantillon étudié</mark>

Démarche et répartition du travail

- Etude approfondie des données initiales
- > Poser clairement le problème
- Deux grands axes à relier

Introduction

I) Correspondances

II) Reconstruction 3D

III) Résultats et Analyse

IV) Discussions

Conclusions

1/ Principe de la recherche

• Recherche de points-clés

Patchs avec des gradients élevés

Calcul des descripteurs

Descripteur:

- > Caractérise numériquement le point
- Varie le moins possible d'une prise de vue à une autre pour un même point
 - Appariement des points

2/ Choix de l'algorithme

- MOPS:
- Simple
- Peu adapté au problème

- HOG (Descripteurs seulement):
- Plutôt pour la détection de personnes, d'objets

• SIFT:

- Plus complexe
- Plus utilisé en imagerie 3D

Exemple de repérage de points-clés sur une image contrastée

3/ Implémentation et tests

Utilisation d'OpenCV

Bibliothèque implémenté sur C++.

- -fonction Sift sur version opencv2
- -fonction orb sur version opencv3

Améliorations (fonction orb):

-points clés pertinents

-Beaucoup de correspondances exactes

Mais:

- -Image noir et blanc
- -Existence de nombreuses fausses correspondances

Améliorations (fonction orb):

- -Correspondances exactes
- -Couleur propice
- -Points clés pertinents

Introduction

I) Recherche de correspondances

II) Reconstruction 3D

III) Résultats et Analyse

IV) Discussions

Conclusions

Reconstruction 3D: principes de base

Schéma illustrant le principe de triangulation, Theia Vision Library

Modèle usuel : la projection perspective

Intrinsèque

Extrinsèque

Équation de projection pour le modèle perspectif

Schéma explicatif du modèle de projection perspective

[1] L.F. Julia, "Estimation de pose à trois vues : les mérites respectifs du tenseur trifocal et du modèle orthographique", 2016

→ Connaissance précise de la calibration intrinsèque de la caméra nécessaire pour résoudre le problème de triangulation

Modèle simplifié : la projection orthographique

Équation de projection pour le modèle orthographique

→ Équivalent à la projection perspective quand la caméra est à l'infini sur l'axe de visée

Schéma explicatif du modèle de pro<mark>jection</mark> orthographique [1]

projection orthographique avec échelle

Schéma explicatif du modèle de projection orthographique avec échelle, [1]

Equation matricielle de projection obtenue pour **M** prises de vues de **N** points d'intérêt de l'objet

Équation de projection pour le modèle orthographique

→ Modèle simplifié : la donnée de la *calibration intrins*èque précise de la caméra n'est pas nécessaire

Amélioration de l'implémentation: RANSAC

- → Sélectionne un sous ensemble de données et on les suppose pertinentes
- → On regarde les autres données, et on compte celles qui s'accordent correctement avec le modèle
- → En fonction du nombre de nouvelles données pertinentes on considère le sous ensemble et son modèle comme correcte

Illustration du principe de fonctionneme<mark>nt d'un</mark> filtre RANSAC

Exemple de reconstructions 3D

Objet tridimensionnel considéré : un demi-cube.

Reconstructions 3D du cube selon deux orientations

de Delaunay

Reconstructions 3D avec triangulation de Delaunay

Introduction

I) Correspondances

II) Reconstruction 3D

III) Résultats et Analyse

IV) Discussions

Conclusions

Analyse de la précision de la reconstruction 3D

→ Utilisation de la méthode des moindres carrés afin de trouver la transformation affine rapprochant au mieux les points reconstruits des points de référence

Trouver $A \in \mathcal{M}(3,3)$ et $B \in \mathcal{M}(3,1)$ solutions de:

$$\min_{AB} ||AX_{calc} + B - X_{ref}||_2$$

Erreur moyenne sur la position des points ramenée à la longueur du côté du cube : **2.83%**

Superposition du demi-cube de référence et du demi-cube reconstruit après post-traitement avec :

$$A = \begin{pmatrix} 0.76 & 0.61 & 0.20 \\ -0.59 & 0.79 & -0.14 \\ -0.25 & -0.15 & 0.97 \end{pmatrix} \begin{pmatrix} 6.28 & 0.01 & -0.03 \\ 0.01 & 6.19 & -0.08 \\ -0.03 & -0.08 & 6.24 \end{pmatrix} et B = \begin{pmatrix} 7.09 \\ 6.76 \\ 6.11 \end{pmatrix}$$

Résultat du calcul des correspondances

Correspondances entre deux projections différentes de l'échantillon

Résultats de la reconstruction 3D

Cartographie des zones de l'échantillon reconstituées

Reconstructions 3D de l'échantillon

Vues de la reconstruction 3D de la surface d'une des zones de l' échantill

Analyse de la robustesse de la reconstruction 3D

Evolution de la proportion d'échecs de l'algorithme en fonction de l'écart-type du bruit gaussien σ

Evolution de la proportion d'échecs de l'algorithme en fonction de l'écart-type du bruit gaussien σ

→ Algorithme *peu robuste* et *non convergent* pour une perturbation trop importante

Introduction

I) Correspondances

II) Reconstruction 3D

III) Résultats et Analyse

IV) Discussions

Conclusions

Discussions sur le calcul des correspondances

Améliorations possibles:

 Pouvoir sortir la liste des points clés correspondants entre les différentes images pour faire le lien entre reconstitution 3D et correspondances

- Tester d'autres algorithmes

Discussions sur l'algorithme de reconstruction 3D

- → Etude des limites du modèle de projection orthographique avec échelle
- → Etude des faiblesses du modèle : précision décroissante de l'algorithme face aux faibles distances focales et aux surfaces quasi-planes [2]
- ⇒ Tester la précision de l'algorithme pour différentes distances focales *¬ Distances focales faibles* et *importantes* devant le relief considéré
- ⇒ Tester la précision et la réussite de l'algorithme face à un relief faible, voir nul → Reconstruction d'un *disque*

Discussions sur l'algorithme de reconstruction 3D

→ Implémentation d'une autre méthode de reconstruction 3D basées sur d'autres modèles de projection

- → Implémentation du modèle plus général de projection perspective
 - ⇒ Évaluation précise de la calibration intrinsèque de la caméra
- → Simplification du modèle en considérant les spécificités du matériel utilisé : le **MEB**
- ⇒ Approximation par une *projection orthographique* à grossissement variable → Vérification *expérimentale*

Conclusion

- Résultats finaux encourageants malgré quelques erreurs
- Bons résultats en correspondances
- Projet très intéressant, complet et ambitieux