USO DE DEEP LEARNING PARA CLASSIFICAÇÃO DE IMAGENS DE LIXO

Sumário

1. Introdução:

Descrição do Problema

Pesquisa Bibliográfica

2. Tecnologia:

Apresentação da tecnologia

Apresentação / Visualização de Dados

3. Metodologia:

Descrição da metodologia

Descrição da solução do problema proposto

- 4. Resultados
- 5. Conclusões

1. Introdução

Descrição do Problema:

Classificação de imagens 6 classes desbalanceadas

Pesquisa Bibliográfica

BIRCANOĞLU, Cenk et al. Recyclenet: Intelligent waste sorting using deep neural networks. In: 2018 Innovations in Intelligent Systems and Applications (INISTA). IEEE, 2018. p. 1-7.

ARAL, Rahmi Arda et al. Classification of trashnet dataset based on deep learning models. In: 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. p. 2058-2062.

2. Tecnologia

Apresentação / Visualização de Dados

2527 imagens, com seis classes

vidro: 501;

papel: 594;

papelão: 403;

plástico: 482;

metal: 410 e

lixo: 137.

Papelão (Cardboard)

(Glass)

Metal (Metal)

Papel (Paper)

Plástico (Plastic)

Lixo (Trash)

Pré-processamento

Resize (150x150)

Treino/ Teste/ Validação (70/15/15)

paper 22.8% 20.0% trash 16.2% 19.6% plastic

-- CONJUNTO DE TREINAMENTO --

Codificar valores de classe como números inteiros (LabelEncoder) e converter números inteiros em variáveis dummy (One-hot-encoded)

ImageDataGenerator

Normalizar dados de treinamento: rescale=1./255

 $Image Augmentation: rotation_range = 40, width_shift_range = 0.2, height_shift_range = 0.2,$

 $shear_range = 0.2$, $zoom_range = 0.2$,

horizontal_flip = True, vertical_flip = True

Modelos CNN sequencial

- 1) CNN convencional: conv-->maxpool-->conv-->maxpool-->Densa-->predição
- 2) CNN + dropout: conv-->maxpool-->conv-->maxpool-->Densa-->Dropout-->Densa-->predição
- 3) CNN + batch normalization: conv-->BN-->ReLu-->maxpool-->conv-->BN-->ReLu-->maxpool-->Densa-->predição
- 4) CNN + Global average pooling: conv-->maxpool-->conv-->GAP-->Densa-->predição

Modelos pré-treinados

InceptionResNetV2 e Xception

output = keras.layers.Dense(6, activation="softmax")(avg)
model.compile(optimizer=optimizers.Adam(LR), loss='categorical_crossentropy', metrics=['acc'])

 ${\bf Modelos\ pr\'e-treinados} \qquad \quad {\bf Inception Res Net V2}$

Modelos pré-treinados

Xception

19x19x728 feature maps

CHOLLET, François. Xception: Deep learning with depthwise separable convolutions. In: **Proceedings of the IEEE conference on** 10 **computer vision and pattern recognition**. 2017. p. 1251-1258.

Modelos pré-treinados

Modelo	Parâmetros	Camadas
InceptionResNetV2	55,873,736	572
Xception	22,910,480	126

The class with the lowest number of samples gains more weight and is penalized accordingly during the training.

```
Matriz de confusão
Métricas: acurácia, precisão,
recall e F1-score
```

```
class_weights = []
total_samples = train_generator.samples
total_classes = len(train_generator.class_indices)
for ele in train_counts:
    result = round(total_samples / (total_classes * ele),2)
    class_weights.append(result)
print(dict(zip(labels,class_weights)))

class_weights = dict(zip(train_generator.class_indices.values(),class_weights))

{'glass': 0.83, 'metal': 1.03, 'paper': 0.73, 'cardboard': 1.03, 'plastic': 0.85, 'trash': 3.24}
```

CNN

- 1) CNN convencional: conv-->maxpool-->conv-->maxpool-->Densa-->predição
- 2) CNN + dropout: conv-->maxpool-->conv-->maxpool-->Densa-->Dropout-->Densa-->predição
- 3) CNN + batch normalization: conv-->BN-->ReLu-->maxpool-->conv-->BN-->ReLu-->maxpool-->Densa-->Densa-->predição
- 4) CNN + Global average pooling: conv-->maxpool-->conv-->GAP-->Densa-->predição

Modelo	Nº Épocas	Acurácia
1	200	0.6462
2	200	0.5830
3	200	0.6620
4	200	0.6778

CNN

1) CNN convencional: conv-->maxpool-->conv-->maxpool-->Densa-->predição

Classe	precision	recall	f1-score
cardboard	0.88	0.75	0.81
glass	0.58	0.59	0.59
metal	0.65	0.45	0.53
paper	0.61	0.94	0.74
plastic	0.66	059	0.62
trash	0.43	0.12	0.19

CNN

2) CNN + dropout: conv-->maxpool-->conv-->maxpool-->Densa-->Dropout-->Densa-->predição

Classe	precision	recall	f1-score
cardboard	0.92	0.76	0.83
glass	0.48	0.37	0.42
metal	0.66	0.45	0.53
paper	0.52	0.94	0.67
plastic	0.56	0.51	0.53
trash	0.00	0.00	0.00

CNN

3) CNN + batch normalization: conv-->BN-->ReLu-->maxpool-->conv-->BN-->ReLu-->maxpool-->Densa-->predição

Test accuracy rate: 0.6620

Classe	precision	recall	f1-score
cardboard	0.68	0.87	0.77
glass	0.67	0.36	0.47
metal	0.64	0.61	0.62
paper	0.67	0.93	0.78
plastic	0.65	0.61	0.63
trash	0.58	0.46	0.51

100 125

CNN

4) CNN + Global average pooling: conv-->maxpool-->conv-->GAP-->Densa-->predição

Classe	precision	recall	f1-score
cardboard	0.82	0.79	0.81
glass	0.65	0.62	0.63
metal	0.70	0.40	0.51
paper	0.71	0.93	0.80
plastic	0.59	0.66	0.62
trash	0.52	0.46	0.49

Modelos pré-treinados

5) Modelo InceptionResNetV2

optimizers.adam(0.0001) epochs = 50

Classe	precision	recall	f1-score
cardboard	0.95	0.90	0.93
glass	0.97	0.78	0.86
metal	0.83	0.94	0.88
paper	0.90	0.95	0.92
plastic	0.83	0.91	0.86
trash	0.88	0.79	0.84

Figura 1. Matriz de Confusão

Modelos pré-treinados

6) Modelo Xception

optimizers.adam(0.001) epochs = 50

Classe	precision	recall	f1-score
cardboard	0.81	0.96	0.88
glass	0.93	0.78	0.85
metal	0.74	0.96	0.83
paper	0.95	0.75	0.84
plastic	0.86	0.82	0.84
trash	0.80	0.97	0.88

Figura 1. Matriz de Confusão

Modelos pré-treinados

7) Modelo Xception

optimizers.Nadam(Ir=0.001, beta_1=0.9, beta_2=0.999) epochs = 30

Classe	precision	recall	f1-score
cardboard	0.94	0.97	0.96
glass	0.96	0.87	0.91
metal	0.92	0.99	0.95
paper	0.96	0.94	0.95
plastic	0.94	0.91	0.92
trash	0.80	0.97	0.88

06/01/2021

4. Resultados

Modelos pré-treinados

8) Modelo Xception

optimizers.Nadam(lr=0.001, beta_1=0.9, beta_2=0.999) epochs = 50

Classe	precision	recall	f1-score
cardboard	0.97	0.94	0.96
glass	0.93	0.90	0.91
metal	0.92	0.96	0.94
paper	0.94	0.98	0.96
plastic	0.93	0.91	0.92
trash	0.93	0.86	0.89

Figura 1. Matriz de Confusão

Modelos pré-treinados

5. Conclusões

- O pré-processamento tem papel fundamental na qualidade final dos resultados;
- Conjunto de dados desbalanceados necessitam de um treinamento que considera o peso de cada classe;
- O modelo indicado para este conjunto de dados é o Modelo Xception;
- A complexidade do modelo não necessariamente está relacionada à um melhor resultado;
- Recomenda-se um estudo mais aprofundado na busca dos parâmetros para cada modelo (*Grid Search*).

Referências

Aral, Rahmi Arda, et al. "Classification of trashnet dataset based on deep learning models." 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018.

Ozkaya, Umut, and Levent Seyfi. "Fine-tuning models comparisons on garbage classification for recyclability." *arXiv preprint arXiv:1908.04393* (2019).

G. Thung, "Trashnet," GitHub repository, 2016.

Thung, Gary and Mingxiang Yang. "Classification of Trash for Recyclability Status." (2016).

Bircanoglu, C., Atay, M., Beser, F., Genc, O., & Kizrak, M. A. (2018). RecycleNet: Intelligent Waste Sorting Using Deep Neural Networks. 2018 Innovations in Intelligent Systems and Applications (INISTA). doi:10.1109/inista.2018.8466276

USO DE DEEP LEARNING PARA CLASSIFICAÇÃO DE IMAGENS DE LIXO

Obrigado!

