Alexander Norm and Thurston Norm

Daniel Valenzuela

Geboren am 21.07.1992 in München

29. Juni 2014

Bachelorarbeit Mathematik

Betreuer: Prof. Dr. Ursula Hamenstädt

MATHEMATISCHES INSTITUT

Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Inhaltsverzeichnis

1	Einführung	2		
2	Grundlegendes 2.1 Die betrachteten Räume	3		
3	Vorbereitungen 3.1 Über endlich erzeugte Moduln eines noetherschen Rings	9		
4	Algebraische Alexander Invarianten	12		
5	5 Beweis des Theorems			
6	Folgerungen, Bemerkungen und Beispiele	24		
7	Persönliche Notizen während der Erstellung			

1 Einführung

Der wesentliche Gegenstand dieser Arbeit, ist die Veröffentlichung The Alexander Polynomial of a 3-manifold and the Thurston norm on cohomology"von McMullen [2].

In dem Fall, dass eine gegebene kompakte 3-Mannigfaltigkeit homöomorph zu einem Knotenkomplement ist — genauer gesagt, zu einer Sphäre aus der eine offene Tubenumgebung eines eingebetteten Knotens entfernt wird — ist der Rang der Fundamentalgruppe 1, also $b_1(M) = 1$. Das genauere Studium der Fundamentalgruppe erweist sich als schwierig, deswegen geht man zu der Abelianisierung der Kommutatoruntergruppe über. Diese ist nach Hurewicz isomorph zu der ersten Homologiegruppe der zyklischen Überlagerung. Da aber auch diese Gruppe im Allgemeinen nicht endlich erzeugt oder endlich präsentiert ist, betrachtet man die induzierte Wirkung der Decktransformationen auf der Homologie, weiter betrachtet man sogar die Wirkung des Gruppenrings $\mathbb{Z}[t^{\pm 1}]$, wobei t Erzeuger der Deckgruppe ist, die aus der abelschen Gruppe einen $\mathbb{Z}[t^{\pm 1}]$ -Modul macht — den Alexander Modul. Der Alexander Modul zeichnet sich durch weniger Erzeuger und Relationen aus und bietet eine fruchtbare Grundlage für algebraische Invarianten, inspieriert durch die Knotentheorie. Genau diese Inspiration liegt dem Paper von McMullen zu Grunde. Er verallgemeinert darin eine Abschätzung zweier Invarianten (auf Knotenkomplementen) aus der Knotentheorie, auf allgemeinere Klassen von 3-Mannigfaltigkeiten.

Bei der Alexander-Norm eines Homomorphismus in $\operatorname{Hom}(\pi_1(M), \mathbb{Z})$ handelt es sich um den Grad des zugehörigen Alexander Polynoms und die Thurston-Norm weist einem solchen Homomorphismus die minimale Komplexität einer Poincaré-Lefschetz dualen eingebetteten Fläche zu. Ohne die genauere Definition hier zu nennen, soll nun das Theorem vorgestellt werden, dessen Beweis in dieser Arbeit behandelt wird.

Theorem 1.1 (McMullen). Sei M eine kompakte, zusammenhängende, orientierbare Mannigfaltigkeit der Dimension 3. Falls der Rand dieser Mannigfaltigkeit nicht leer ist, so soll er aus einer Kollektion von Tori bestehen. Dann gilt folgende Abschätzung für die Alexander-Norm und die Thurston-Norm $||\cdot||_A, ||\cdot||_T : H^1(M; \mathbb{Z}) \to \mathbb{R}$ der 3-Mannigfaltigkeit:

$$||\phi||_A \le \begin{cases} ||\phi||_T + 1 + b_3(M) & \text{, falls } b_1(M) \le 1 \text{ und } \phi : \pi_1(M) \twoheadrightarrow \mathbb{Z} \\ ||\phi||_T \end{cases}$$

Ist ϕ von einer Faserung $M \to S^1$ induziert, so gilt Gleichheit.

2 Grundlegendes

Zunächst wird ein Überblick über die nötigen Definitionen gegeben. Zuvor noch eine Beschränkung der Räume die in dieser Arbeit behandelt werden:

2.1 Die betrachteten Räume

Im Folgenden sei M eine kompakte, orientierbare, zusammenhängende 3-dimensionale Mannigfaltigkeit. Falls diese einen Rand hat, ist er homöomorph zu einer disjunkten Vereinigung von Tori.

1.Hier rein über Glattheit j-¿ simpliziale approx wie in lee paul neuwirth Um die Hilfsmittel zu erweitern oder Extremfälle auszuschließen, arbeitet man häufig in der Kategorie der stückweise linearen (PL, piecewise linear) oder der differenzierbaren Mannigfaltigkeiten. Sieht man sich beispielsweise Knoten an, also Einbettungen $S^1 \hookrightarrow S^3$, so stellt man fest, dass diese besonders entartet aussehen können, allerdings nicht, falls es sich bei der Einbettung um eine PL oder differenzierbare Einbettung handelt. Ähnlich kann man in diesen Kategorien raumfüllende Kurven vermeiden. Allerdings stellte sich im Studium der 3-Mannigfaltigkeiten heraus, dass die Situation sich erheblich von höheren Dimensionen unterscheidet, beispielsweise ist nicht jede Gruppe als Fundamentalgruppe einer 3-Mannigfaltigkeit realisierbar 2.ref(später). Außerdem lässt es sich ergiebig ausnutzen, dass in Dimension 3 keine Unterscheidung der topologischen, PL und differenzierbaren Mannigfaltigkeiten übereinstimmen: nach Moise's Theorem besitzt jede 3-Mannigfaltigkeit sowohl eine eindeutige PL als auch eine eindeutige differenzierbare Struktur. Das bedeutet, um Aussagen für 3-Mannigfaltigkeiten zu zeigen, kann man sich (fast) beliebig in diesen Kategorien hin- und herbewegen um das Resultat am Ende für alle zu erhalten. Um diese beiden Beispiele hervorzuheben, lässt sich bemerken, dass für 4-Mannigfaltigkeiten überabzählbar viele unterschiedliche differenzierbare Strukturen besitzen und auch jede Gruppe, Fundamentalgruppe einer 4-Mannigfaltigkeit ist.

Diese Arbeit wird sich jedoch konsistent in der C^{∞} Kategorie bewegen. Der vorherige Abschnitt dient also lediglich der Betonung, dass dies keine Einschränkung bedeutet.

2.2 Alexander Invarianten

Ein Clou der folgenden Methoden ist es, die Struktur einer Überlagerung — genauer gesagt ihre Decktransformationen — auszunutzen, indem man den Gruppenring betrachtet. Der Gruppenring R[G] ist algebraischer Herkunft und kann für allgemeine kommutative Ringe R und Gruppen bzw. Monoide G definiert werden, jedoch soll es zunächst genügen, für den Fall das G = F eine endlich erzeugte freie abelsche Gruppe und $R = \mathbb{Z}$. Somit wird dann auch der Gruppenring $\mathbb{Z}[F]$ ein kommutativer Ring.

Definition 2.1 (Gruppenring). Sei F eine freie abelsche Gruppe. Dann ist der *Gruppenring* definiert als:

$$\mathbb{Z}[F] = \sum_{i \in I} a_i f_i, a_i \in \mathbb{Z}, f_i \in F, |I| < \infty$$

Falls also F nun eine unendlich zyklische Gruppe mit Erzeuger t ist, lässt sich der Gruppenring über F als $\mathbb{Z}[F] = \mathbb{Z}[t^{\pm 1}]$, also als Ring der formalen Laurentpolynome in der Variablen t auffassen. Grundlage für die Definitionen der Alexander Invarianten ist die zur Abelianisierung der Fundamentalgruppe gehörende Überlagerung. Allgemeiner sei M eine 3-Mannigfaltigkeit mit den obigen Beschränkungen und $\phi: G = \pi_1(M) \to F$ ein Homomorphismus in eine freie abelsche Gruppe F. Aus der Überlagerungstheorie ist bekannt, dass nun eine zusammenhängende Mannigfaltigkeit \hat{M}_{ϕ} existiert, die M überlagert und auf Level der Fundamentalgruppen $\ker \phi \cong \pi_1(\hat{M}_{\phi}) \stackrel{p_*}{\hookrightarrow} \pi_1(M)$ einbettet. Diese ist bis auf Homöomorphie eindeutig. Die Decktransformationsgruppe ist dann isomorph zum Quotienten $\pi_1(M)/p_*\pi_1(\hat{M}_{\phi}) \cong F$. Dieser operiert dann auf \hat{M}_{ϕ} durch Homöomorphismen, induziert also auch eine Operation auf $\pi_1(\hat{M}_{\phi})$ und auf $H_1(\hat{M}_{\phi})$. Da \mathbb{Z} auf jeder abelschen Gruppe wirkt, ist folgende Definition gerechtfertigt:

Definition 2.2 (Alexander Modul). Der Alexander Modul ist definiert als

$$A_{\phi}(M) = H_1(\hat{M}_{\phi})$$

aufgefasst als $\mathbb{Z}[F]$ -Modul, mit der induzierten Wirkung der Decktransformationen.

Es wird sich bei weiterer Inspektion herausstellen, dass der Alexander Modul im Fall einer kompakten 3-Mannigfaltigkeit immer endlich erzeugt ist. Da es sich bei dem Gruppenring nicht um einen Hauptidealring handelt, ist es im Allgemeinen nicht möglich eine Zerlegung des Alexander Moduls in zyklische direkte Summanden zu finden. Als algebraische Invariante, wird dem Modul stattdessen hier ein Reihe von Idealen in dem Gruppenring zugewiesen — die Elementarideale. Da der Alexander Modul endlich erzeugt über dem Gruppenring ist, existiert eine freie Auflösung, aus derer Präsentation für den Modul wir die Elementarideale gewinnen möchten. Betrachte die endliche Präsentation:

$$\mathbb{Z}[F]^k \xrightarrow{X} \mathbb{Z}[F]^n \xrightarrow{\alpha} A_{\phi}(M) \to 0$$

wobei X eine darstellende Matrix bezüglich der kanonischen Basen e_1, \dots, e_k und e'_1, \dots, e'_n ist. Diese Präsentationsmatrix ist bis auf Vertauschen von Zeilen, Hinzufügen von Einheitsblöcken oder Nullspalten und Addieren eines Vielfachen einer Spalte oder Zeile auf eine jeweils andere eindeutig. Das liefert die nächste Definition

Definition 2.3. Definiere das *i*-te Elementarideal von M bezüglich ϕ $E_i(A_{\phi}(M)) \subset \mathbb{Z}[F]$ als das von den (n-i-1)-Minoren erzeugte Ideal.

Natürlich lassen sich Elementarideale für alle endlich präsentierten Moduln über kommutativen Ringen analog definieren.

Falls ϕ die Abelianisierung ist, definiert diese Invariante des Alexander Moduls natürlich auch eine Invariante der Mannigfaltigkeit. Nun ist $\mathbb{Z}[F]$ kein Hauptidealring, jedoch ist es durchaus interessant als weitere Invariante das kleinste Hauptideal zu betrachten das ein Elementarideal enthält.

Definition 2.4. (Alexander Polynom) Definiere das Alexander Polynom Δ_{ϕ} als einen größten gemeinsamen Teiler von $E_1(A_{\phi}(M))$.

Bemerkung. In dem Gruppenring sind die Einheiten genau die Gruppenelemente. (im Allgemeinen nicht ganz). Das Alexander Polynom ist also bis auf Multiplikation mit einem Gruppenelement aus dem Gruppenring wohldefiniert.

Bleibt nur noch die Alexander Norm zu definieren, die eine Norm auf der ersten Kohomologie der 3-Mannigfaltigkeit beschreibt.

Definition 2.5. Sei $\Delta \in \mathbb{Z}[F]$ das Alexander Polynom das zu der Abelianisierung der Fundamentalgruppe gehört. So ist Δ von der Form:

$$\Delta = \sum_{k=1}^{n} a_k f_k \qquad \qquad a_k \neq 0, f_i = f_j \Rightarrow i = j$$

Sei nun $\phi \in \text{Hom}(F,\mathbb{Z}) \cong H^1(M,\mathbb{Z})$, dann definieren wir die Alexander Norm von ϕ als

$$||\phi||_A = \begin{cases} 0, & \text{wenn } \Delta = 0 \\ \sup \phi(f_i - f_j) \end{cases}$$

Wobei das Supremum über die Gruppenelemente f_i genommen wird, die in Δ auftauchen.

2.3 Thurston Invariante

Ziel ist es eine weitere Norm auf der ersten Kohomologie der kompakten 3-Mannigfaltigkeit zu definieren. Poincaré Dualität liefert in diesem Fall einen Isomorphismus $H^1(M; \mathbb{Z}) \to H_2(M; \mathbb{Z})$. Eine zu $\phi \in H^1(M, \mathbb{Z})$ duale Fläche wird später noch explizit beschrieben werden. Tatsächlich ist es sogar ein bedeutendes Zwischenresultat, das eine solche Fläche immer mit Eigenschaften gewählt werden kann die bestimmten Abschätzungen genügen. Auf der anderen Seite sollte so eine gewählte Fläche auch eine Minimalitätseigenschaft erfüllen und zwar bezüglich der folgenden Norm:

Definition 2.6 (Thurston Norm). Definiere die Thurston Norm für $\phi \in H^1(M,\mathbb{Z})$ als

 $||\phi||_T = \{\min \chi_-(S) | S \text{ ist orientierbar eingebettete Fläche dual zu } \phi \},$

wobei $\chi_{-}(S) = \sum \max(-\chi(S_i), 0)$ und $S = \sqcup S_i$ die Zusammenhangskomponenten von S sind.

Als Abschluss dieses einführenden Kapitels, soll noch folgendes essentielles — wenn auch im Folgenden nicht zwingend benötigtes — Lemma gezeigt werde:

Lemma 2.1. Die Alexander Norm und die Thurston Norm definieren Halbnormen auf der ersten Kohomologie einer kompakten 3-Mannigfaltigkeit.

blabla

Beweis. Bei der Alexander Norm ist nichts zu zeigen, die Halbnormeigenschaften ergeben sich unmittelbar aus der Definition.

Im Falle der Thurston Norm, ist das Lemma Gegenstand der ersten zwei Kapitel aus [3], dessen Beweis mit leichten Anpassungen im Folgenden kurz skizziert werden soll. Es muss die Skalarmultiplikativität und die Subadditivität gezeigt werden also:

$$||\lambda \phi||_T = \lambda ||\phi||_T, \qquad \lambda \in \mathbb{Z}$$
 (1)

$$||\phi + \psi||_T \le ||\phi||_T + ||\psi||_T, \qquad \phi, \psi \in H^1(M)$$
 (2)

Da die Thurston Norm aus den Eigenschaften der dualen Flächen hervorgeht, ist es nötig sich Gedanken zu den Homologieklassen zu machen. Dann ist für 1 offensichtlich ein gutes Indiz, falls für repräsentierende, orientierte, eingebettete Flächen, dessen Homologieklassen sich teilen, also S,T mit $[S],[T] \in H_2(M,\partial M)$ und $[S] = \lambda[T]$, das Vielfache S bereits disjunkte Vereinigung von λ zusammenhängenden Komponenten S_i ist, mit $[S_i] = [T]$.

Für $[S] = \phi \in H^1(M; \mathbb{Z})$, existiert eine glatte Abbildung $f: M \to S^1$ die ϕ repräsentiert, in obigem Sinne. Urbilder regulärer Werte ergeben nach 3.regwert duale Flächen. Nun geht aus der später Folgenden Konstruktion 5 hervor, dass ohne Einschränkung $S = f^{-1}(s)$ gewählt werden kann, also dass jede Fläche so repräsentiert werden kann. Sei deswegen auch $g: M \to S^1$ glatt mit dem regulären Wert t, sodass $g^{-1}(t) = T$. Betrachtet man die Überlagerung $p: S^1 \stackrel{z^{\lambda}}{\to} S^1$, liefert wegen $\operatorname{Im} \pi_1(f) \subset \lambda \mathbb{Z}$, die Überlagerungstheorie einen eindeutigen Lift \hat{f} :

Das Quadrat kommutiert bis auf Homotopie, also $p\hat{f} \simeq pg$, denn beide Abbildungen identifizieren sich unter der Bijektion $H^1(M;\mathbb{Z}) \cong [M,S^1]$ mit $\lambda \phi$, also impliziert die Existenz dieser Bijektion, dass $[p\hat{f}] = [pg]$. Somit folgt auch, dass Urbilder regulärer Werte aus S^1 unter \hat{f} homolog zu solchen aus g sind. Da $p^{-1}(s) = \{s_1, \dots, s_n\}$ sicher reguläre Werte von \hat{f} sind (folgt zum Beispiel aus der Kettenregel für Differentiale), sind die Urbilder S_1, \dots, S_n disjunkte, eingebettete, orientierte Flächen mit $[S_i] = [T]$. Da S auch minimal (bezüglich der Thurston-Norm) gewählt werden kann, folgt also $||[S]||_T \geq \lambda ||\frac{1}{\lambda}[S]||_T = \lambda ||T||_T$. Nun lässt sich aber aus einer minimierenden Fläche für T (sei T selbst so gewählt), zum Beispiel aus der zweiseitigen glatten Einbettung $T \times (-\epsilon, \epsilon) \to M$, λ disjunkt eingebettete Kopien von T gewinnen, die selbstverständlich auch [S] repräsentieren, also $||\lambda \phi||_T = \lambda ||\phi||_T$.

Um nun die Subbadditivität 2 zu zeigen, ist es nötig sich die Geometrie der $||\cdot||_{T}$ minimierenden Flächen S, T mit $[S] = \phi, [T] = \psi$ genauer zu betrachten. Die Differentialtopologie liefert mit dem Transversalitätstheorem diffeotope Approximationen

von T, die transversal zu S sind, deswegen seien also ohne Einschränkung $S \cap T$ transversal (Es folgt außerdem durch die Transversalität, dass $S \cap T$ eine glatte, kompakte 1-Mannigfaltigkeit ist (Pullback bleibt in Kategorie). Die Klassifikation von 1-Mannigfaltigkeiten liefert, dass diese also eine disjunkte Vereinigung von Kreisen und abgeschlossenen Intervallen ist). Des Weiteren soll ohne Einschränkung keine Komponente des Schnittes $S \cap T$ eine Scheibe beranden, die in S oder T enthalten ist. Diese Annahme kann man wie folgt einsehen:

Ohne Einschränkung sei die Scheibe D mit einer solchen Komponente $\partial D \subset S \cap T$ als Rand, auf dem Inneren disjunkt von T, da sie ohne Einschränkung in S liegt, und ein nichttrivialer Schnitt mit T eine Komponente aus $S \cap T$ liefert, deren trivialer Nullbordismus in S dank Transversalität, weniger Komponenten im Schnitt mit T hat als die ursprüngliche Scheibe. So fahre man endlich oft fort, bis der Durchschnitt trivial ist beziehungsweise die berandete Scheibe, T nicht berührt. Nun lässt sich eine hinreichend kleine offene Tubenumgebung von ∂D aus T entfernen. Diese kann

Abbildung 1: Ausschneiden einer Umgebung von $S \cap T$ und Ankleben zweier Scheiben, sodass die Homologieklasse erhalten bleibt

wie folgt gewählt werden: sei $\nu(S) \to M$ eine Tubenumgebung von S die sich aufgrund der Zweiseitigkeit wie folgt wählen lässt: $\alpha: S \times (-\epsilon, \epsilon) \to M$, sodass $\operatorname{Im} \alpha|_{S \times (-\frac{1}{2}\epsilon, \frac{1}{2}\epsilon)} \cap T$ eine Tubenumgebung von $S \cap T \subset T$ ist. Dann lässt sich diese Tubenumgebung bei ∂D aus T entfernen und mittels der Zweiseitigkeit um D, findet man zwei Kopien $D_{\frac{\epsilon}{2}}, D_{-\frac{\epsilon}{2}}$ sowieso Anklebevorschriften, mit denen diese Scheiben an die beiden durch Ausschneiden entstandenden Kreis-Randkomponenten kleben kann. Als Resultat ergeben sich Flächen S, T', deren Durchschnitt um eine Komponente reduziert wurde und offensichtlich [T] = [T'] gilt. 4.kein Weg aus dem Durchschnitt ist rel Endpunkt homotop zu einem Rand

Von nun an seien S,T transversale Flächen, deren Durchschnitt den obigen Anforderungen genügt. Ziel ist es nun, den Zykel, der die Vereinigung repräsentiert, als eingebettete Fläche zu repräsentieren. Beachtet man die Orientierungen, so kann man an jeder Komponente des Durchschnitts die Vereinigung aufschneiden (die lokal aussieht wie die Gerade an der sich zwei orientierte Ebenen im \mathbb{R}^3 schneiden), und entlang der Orientierungen in nur einer Möglichkeit wieder verkleben, so dass man eine Mannigfaltigkeit erhält (dies funktioniert offensichtlich an den Durchschnittkomponenten mit Rand, aber auch den den geschlossenen Komponenten, da die Orientierungen auf S und T global gewählt sind). Natürlich können alle diese Klebe- und Schneideprozesse glatt durchgeführt werden. Nun erhält man eine glatte, orientierte Fläche U, die (nach gegebenfalls leichter Modifikation) auch eigentlich eingebettet ist. Nun muss dieses Ergebnis und die Auswirkungen der Konstruktionen auf die Flächen diskutiert werden. Die uneinschränkenden

Konstruktionen zu Beginn, können natürlich die Euler Charakteristik verändern, jedoch resultieren daraus weiterhin Thurston-Norm minimierende Flächen. Zwei solche Flächen gegeben, erbt die letztere Konstruktion, die aus $S \cup T$ eine homologe Fläche macht, die Summe der Eulercharakteristika:

$$\chi(U) = \chi(S) + \chi(T) \implies \chi_{-}(U) = \chi_{-}(S) + \chi_{-}(T)$$

, wobei die Implikation gilt, da bei der Konstruktion von U keine Komponenten mit positiver Eulercharakterstik entstehen, unter den an S und T gestellten Annahmen. Dies liefert nun die Subbadditivität der Thurston-Norm auf den Homologieklassen. \square

Häufig stellt man Annahmen an die 3-Mannigfaltikeit, die es verbieten, dass Homologieklassen von Sphären oder Tori repräsentiert werden können. In dem Fall würde dann sogar $||\phi||_T = 0 \Leftrightarrow \phi = 0$ gelten. Dies alles motiviert natürlich, diese Norm zu einer Vektorraumnorm auf $H^1(M;\mathbb{Q})$ oder $H^1(M;\mathbb{R})$ fortzusetzen.

Bemerkung (Fortsetzung von $||\cdot||_T$). Will man $||\cdot||_T: H^1(M; \mathbb{Z}) \to \mathbb{R}$ fortsetzen, so hilft die in Lemma 2.1 gezeigte Skalarmultiplikativität. Da $H^1(M; \mathbb{Z})$ als \mathbb{Z} -Modul frei mit Rang n ist, liefert die Einbettung $\mathbb{Z}^n \hookrightarrow \mathbb{Q}^n$ zusammen mit der Linearität der Thurston-Norm eine lineare Fortsetzung auf den Strahlen (1-dimensionale Untervektorräume), die von Gitterpunkten erzeugt werden. Da aber für jedes $q \in \mathbb{Q}^n$, bereits $aq \in \mathbb{Z}^n$ gilt (für großes $a \in \mathbb{Z}$), liefert dies bereits eine Fortsetzung auf $H^1(M; \mathbb{Q})$. Nun ist aber diese Fortsetzung eine konvexe Funktion, also auf jedem Kompaktum Lipschitz-stetig und somit auf jedem Kompaktum $K \cap \mathbb{Q}^n, K \subset \mathbb{R}^n$ in eindeutiger Weise stetig auf K fortsetzbar — es folgt die Existenz von $||\cdot||_T: H^1(M; \mathbb{R}) \to \mathbb{R}$.

Nun stehen die Definitionen der Invarianten bereit, die auf den folgenden Seiten untersucht werden sollen.

3 Vorbereitungen

Wie sich im ersten Beweis herausstellen wird, ist der Gruppenring $\mathbb{Z}[F]$ für eine abelsche freie Gruppe F noethersch, da allerdings als Grundring der Ring der ganzen Zahlen dient, existieren Ideale die keine Hauptideale sind. Die Theorie der endlich erzeugten Moduln über Hauptidealringen ist sehr ergiebig — der Elementarteilersatz erlaubt die Zerlegung eines solchen Moduls in zyklische Moduln. Um Invarianten auf endlich erzeugten Moduln über noetherschen Ringen zu erhalten, lassen sich verschiedene Schritte im Beweis des Elementarteilersatzes bis zu einem bestimmten Grad nachahmen. Mit dieser Hintergrundgedanken ergeben sich die Elementarideale.

3.1 Über endlich erzeugte Moduln eines noetherschen Rings

Um die Situation für spätere Berechnungen angenehmer zu gestalten, überzeugt man sich zunächst, dass der Alexander Modul tatsächlich endlich erzeugt über dem Gruppenring ist. Dieser Satz hätte ebenso gut an das Ende diesen Abschnittes gepasst, als Ergebnis/Nutzen, jedoch soll die Zielsetzung nicht vorenthalten werden:

Proposition 3.1. $A_{\phi}(M)$ ist ein endlich erzeugter $\mathbb{Z}[F] - Modul$.

Bemerkung. Eine algebraische Variante des Beweises befindet sich im Appendix.

Beweis. Da M eine kompakte 3-Mannigfaltigkeit ist, existiert eine endliche CW Struktur. Da es für CW Komplexe gleichbedeutend ist die zelluläre Homologie zu berechnen, reicht es den zellulären Kettenkomplex zu einer endlichen CW Struktur betrachten. Da in diesem alle Kettengruppen endlich erzeugt sind, folgt dass in dem Kettenkomplex der Überlagerung alle Kettengruppen als Gruppenring-Moduln endlich erzeugt sind, denn die Decktransformationen identifizieren die Erzeuger der Kettengruppen die das gleiche Bild unter der Überlagerungsabbildung haben. Wenn jetzt nachgewiesen werden kann, dass die Quotientenbildung der Kettengruppen als Übergang zur Homologie verträglich ist mit der Quotientenbildung als Gruppenring Moduln, würde es genügen dass der Ring noethersch ist und der Alexander Modul wäre als Quotient endlich erzeugter Moduln über einem noetherschen Ring endlich erzeugt (siehe Lemma 3.3), genauso wie alle Homologiegruppen dann über dem Gruppenring endlich erzeugt wären.

Es bleibt also nur noch zu zeigen, dass es sich bei $\mathbb{Z}[F]$ um einen noetherschen Ring handelt. Da $F \cong \mathbb{Z}^n$, seien f_1, \dots, f_n Erzeuger von F. Nach dem Hilbertschen Basissatz ist der Polynomenring über \mathbb{Z} in endlich vielen Variablen noethersch. Ebenso ist die Lokalisierung eines noetherschen Ringes noethersch, da jedes Ideal in der Lokalisierung Bild eines endlich erzeugten Ideals ist. Also genügt es eine Surjektion von einem solchen in den Gruppenring zu finden, denn ein surjektiver Ringhomomorhpismus, ordnet jedem Ideal im überlagerten Ring, ein Ideal im ursprünglichen Ring zu, welches endlich erzeugt ist. Aber ein solcher ist gegeben durch:

$$\mathbb{Z}[X_1^{\pm 1}, \cdots, X_n^{\pm 1}] \to \mathbb{Z}[F]$$

 $X_i \mapsto f_i$

Sei im Folgenden nun M ein endlich erzeugter R-Modul wobei R einen noetherschen Ring bezeichnet.

Lemma 3.2. M ist über R endlich präsentiert. Desweiteren kann die Präsentationsmatrix quadratisch gewählt werden....no

Beweis. M ist endlich erzeugt über R also existiert folgende exakte Sequenz:

$$R^n \to M \to 0$$

da \mathbb{R}^n aber noethersch ist und Kerne von Homomorphismen Untermoduln sind, kann die Sequenz auf der linken Seite folgendermaßen ergänzt werden:

$$R^m \to R^n \to M \to 0$$

Lemma 3.3. Sei $N \subset M$ ein Untermodul von dem R-Modul M. Dann ist der Faktor-modul M/N endlich erzeugt über R.

Beweis. Sei $X \to Y$ ein surjektiver Homomorphismus von Moduln über einem noetherschen Ring. Dann folgt aus noetherschen Eigenschaft von X auch die von Y, da Untermoduln von Y von den Bildern der endlich vielen Erzeuger der zurückgezogenen Untermoduln erzeugt werden.

Zweifaches Anwenden dieses Argumentes liefert unmittelbar die Aussage mit surjektiven Homomorphismen $\mathbb{R}^n \to M$ und $M \to M/N$

3.2 Poincaré und Lefschetz Dualität

Bei Betrachtung der Definition der Thurston-Norm auf $H^1(M)$, fällt auf dass diese nur Eigenschaften der dualen Klasse nutzt (genaugenommen ist die Thurston-Norm auch einfach eine stetige Abbildung auf $H_2(M)$ beziehungsweise $H_2(M,\partial M)$, die via Dualität auf die Kohomologie übertragen wird). Und tatsächlich werden die folgenden Seiten teilweise in ein wildes Hin- und Herspringen zwischen Homologie und Kohomologie ausarten. Aus diesem Grund sollen hier noch einmal wichtige Grundlagen und Berechnungsmöglichkeiten, die später verwendet werden, erklärt werden.

Bemerkung (Duale 1-kodimensionale Untermannigfaltigkeiten). Sei N eine n-dimensionale orientierte glatte Mannigfaltigkeit (mit CW-Struktur). Bekanntlicherweise gilt:

$$H_2(N, \partial N; \mathbb{Z}) \cong H^1(N; \mathbb{Z}) \cong \operatorname{Hom}(H_1(N), \mathbb{Z}) \cong \operatorname{Hom}(\pi_1(N), \mathbb{Z}) \cong [N, S^1]$$

wobei der

- 1. -te Isomorphismus bei $\partial N = \emptyset$ Poincaré und sonst Lefschetz Dualität ist
- 2. -te Isomorphismus gilt, da das universelle Koeffiziententheorem eine exakte Sequenz liefert in dem diese beiden Terme auftauchen und weiter nur $\operatorname{Ext}(H_0(N), \mathbb{Z}) = 0$

- 3. -te Isomorphismus gilt, da nach Hurewicz die Abbildung $\pi_1(N) \to H_1(N)$ die Abelianisierung ist (Details später)
- 4. -te Isomorphismus gilt, indem man zeigt, dass jede Abbildung vom 1-Skelett $X^1 \subset N \to S^1$ auf N fortgesetzt werden kann. Da das 1-Skelett die Fundamentalgruppe (oder Homologie) erzeugt, also die Inklusion eine surjektive Abbildung $i_*: \pi_1(X^1) \twoheadrightarrow \pi_1(N)$ induziert, lässt sich auf diese Weise jeder Homomorphismus $\pi_1(N) \to \mathbb{Z}$ auf dem 1-Skelett definieren und fortsetzen.

Also liefert jeder Homomorphismus $\phi \in H^1(N; \mathbb{Z})$ eine Homotopieklasse von Abbildungen in $[N, S^1]$ und umgekehrt liefert jede Abbildung $N \to S^1$ einen induzierten Homomorphismus der Kohomologiegruppen. Die Differentialtopologie liefert nun, dass für jede Homotopieklasse aus $[N, S^1]$ ein glatter Repräsentant existiert und die Existenz eines regulären Wertes in S^1 . Jedes Urbild eines solchen regulären Wertes ist dann eine 1-kodimensionale orientierte Mannigfaltigkeit (mit Rand), welche als Homologieklasse dual zu ϕ ist. Genauer gilt sogar Folgendes:

Theorem 3.4. Sei $f: N^n \to K^m$ eine stetige Abbildung glatter Mannigfaltigkeiten. Dann lässt sich f beliebig nah durch glatte Abbildungen approximieren (was dies genau heißt, wird später nicht benötigt, deshalb weggelassen) welche homotop zu f sind.

Theorem 3.5 (Sard und Satz vom regulären Wert). Sei $f: N^n \to K^m$ eine glatte Abbildung. Dann liegen die regulären Werte von f dicht in K. Das Urbild eines regulären Wertes ist eine abgeschlossene glatte orientierte Untermannigfaltigkeit in K der Kodimension m. Ein regulärer Wert ist ein Punkt aus K, bei dessen Urbild f an jedem Punkt einen Epimorphismus auf den Tangentialräumen definiert.

Theorem 3.6. Sei $f: N \to S^1$ eine glatte Abbildung. Jedes Urbild eines regulären Wertes definiert nach obigem Satz ein Element in $H_{n-1}(N, \partial N; \mathbb{Z})$ als Bild der Fundamental-klasse des Urbilds unter der Inklusion. Diese ist Poincaré beziehungsweise Lefschetz dual zu $[f] \in H^1(N; \mathbb{Z})$.

Alle diese Aussagen sind bekannte elementare Aussagen der Differentialtopologie und können etwa in 5.Krec nachgelesen werden.

Dies liefert Möglichkeiten etwa zu zeigen, dass eine eingebettete Fläche in einer 3-Mannigfaltigkeit dual zu einer Abbildung Kohomologieklasse ist. Ist beispielsweise eine zweiseitige Fläche gegeben, so lässt die Zweiseitigkeit eine besonders einfache Möglichkeit einer Quotientenabbildung nach S^1 zu, die eine Darstellung der Fläche als Urbild eines regulären Wertes zulässt. Mehr dazu später.

Transversalität und

Bemerkung (Schnittzahlen). Ein weiteres

4 Algebraische Alexander Invarianten

Tatsächlich könnte man diese Bachelorarbeit fast ausschließlich algebraisch verstehen — wenigstens den Teil über die Alexanderinvarianten. Natürlich ist dieser Arbeit aus dem Bereich der Topologie, ein Geschmack oder die Illusion gegeben, man arbeite nur mit direkten Eigenschaften der Räume. Bei der Thurstonnorm ist dies tatsächlich gegeben, durch die Deftinition einar Funktion auf einem Vektorraum mittels geometrischer Eigenschaften der Mannigfaltigkeit. Jedoch handelt es sich bei den Alexanderinvarianten, insbesondere dem Alexander Polynom, lediglich um Invarianten einer abelschen Gruppe. Durch Anwendung auf die Fundamentalgruppe, erhält man also Invarianten von Räumen. Natürlich verliert das Alexander Polynom von 3-Mannigfaltigkeiten durch diese "Faktorisierung" nicht allzu viel an Reiz, da die Fundamentalgruppe eine recht starke Invariante von 3-Mannigfaltigkeiten ist, siehe z.B. Ergebnisse von 6.warum Fundamentalgruppe stark ist. Im Folgenden sollen nun kurz die Alexander Invarianten verallgemeinert von Gruppen definiert werden und ein paar Zusammenhänge zu dem obigen Fall.

Dieser Abschnitt ist ein typisches Beispiel, für Aussagen die tautologisch erscheinen und gefährlich verschwimmen. Ich bitte dies zu entschuldigen und versuche sowohl Verwirrung als auch Redundanz minimal zu halten.

Zunächst ist es nötig den Gruppenring $\mathbb{Z}[G] = \mathbb{Z}G$ für allgemeinere endlich erzeugt Gruppen zu definieren. Dadurch entsteht die Problematik, dass der entstehende Gruppenring nicht mehr kommutativ ist, man also zwischen Links- und Rechtsmoduln über dem Gruppenring unterscheiden muss. Im Folgenden soll es sich implizit immer um Linksmoduln handeln.

Definition 4.1. Gruppenring

Es lässt sich der Alexander Modul definieren als (entspricht strikt genommen nicht der obigen Definition, hier enthält er einen freien Summand(wrong!) mehr, also betrachte E_1).

Definition 4.2 (Alexander Modul, algebraisch). Für eine endlich erzeugte Gruppe G und einen Homomorphismus $\phi \in \text{Hom}(G, F) \cong \text{Hom}(H_1(G), F) \cong \text{Hom}(ab(G), F)$, wobei F eine freie abelsche Gruppe ist und ab(G) die natürliche Quotientenabbildung in den maximalen freien abelschen Quotienten von G. Dann ist der Alexander Modul definiert als

$$A_{\phi}(G) = m(G)$$

Dies mach alles interesanter denn es bedeutet dass für eine gegebene Fundamentalgruppe die Alexander Invarianten schon berechenbar sind (also eigentlich Invarianten der Fundamentalgruppe sind), jedoch lassen sich diese auch über Eigenschaften und Berechnungen von 3-Mft berechnen und so ohne Berechnung der Fundamentalgruppe möglich sind.

Herleitung der algebraischen Idee: nun stellt sich die Frage, ob die Alexander Invarianten durch die Struktur der Mannigfaltigkeit bestimmt sind, oder schon aus der Fundamentalgruppe berechenbar. Sei dazu G die Fundamentalgruppe von M und F

ab(G) der maximale freie abelsche Quotient, dessen Rang durch $b_1(G)$ eindeutig bestimmt ist. Sei außerdem $\alpha: G \to F$ die Quotientenabbildung. Dann erhält man einen Gruppenisomorphismus $p'_*: H_1(\hat{M}) \to \ker \alpha/[\ker \alpha, \ker \alpha]$ der durch die Projektion der Überlagerung zu α induziert wird. Ziel wäre es zu zeigen, dass diese Abbildung auch einen Isomorphismus von $\mathbb{Z}[F]$ Moduln liefert. Daraus würden natürlich gleiche Präsentationen folgen, die zu gleichen Elementaridealen führen und so fort. Hierfür benötigt man jedoch überhaupt eine $\mathbb{Z}[F]$ -Modul Struktur auf dem Quotienten G'/G'' für $G' = \ker \alpha, G'' = [G', G']$. Diese soll zunächst definiert werden:

Die Abbildung $G \to G/[G,G] \to F$ ist kanonisch. Also seien $g_1, \dots, g_n, n = b_1(G)$ Elemente die auf eine Basis von F abgebildet werden. Diese definieren dann innere Automorphismen von G'/G'' durch

$$\hat{t}_i(x) = \bar{g}_i \bar{x} \overline{g_i^{-1}} = \overline{g_i x g_i^{-1}}$$

Diese sind unabhängig der gewählten g_i .

Bemerkung. Das ist eine Form der expliziten Konstruktion des Falles, wenn man von einer induzierten Operation einer zerfällenden kurzen exakten Sequenz redet:

$$0 \to G'/G'' \to G/G'' \to G/G' \to 0$$

Da F = G/G' frei abelsch ist, zerfällt diese Sequenz und man erhält eine Abbildung $F \to \operatorname{Aut}(G'/G'')$ genauer gesagt, eine Gruppenwirkung auf G'/G'' durch Konjugation unter der Identifikation $G'/G'' \hookrightarrow G/G''$ mit zurückgezogenen Elementen aus F. Dies ist wohldefiniert da das Bild von G'/G'' einem Kern entspricht, also Normalteiler ist. Offensichtlich stimmt diese Operation mit der obigen überein.

Mit $\alpha(g_i) = t_i$ als ein Element der Basis von F, ist die Gruppenwirkung von F auf $H_1(\hat{M})$, die durch die Decktransformationen induzierte $t_i \gamma = t_{i*} \gamma, t_i \in F \cong D(M), \gamma \in H_1(\hat{M})$. Also ist nur zu zeigen, dass folgendes Diagramm kommutiert:

$$H_1(\hat{M}) \xrightarrow{p'_*} G'/G''$$

$$t_i \downarrow \qquad \qquad \downarrow \hat{t}_i$$

$$H_1(\hat{M}) \xrightarrow{p'_*} G'/G''$$

und somit die Operationen verträglich sind. Davon überzeugt man sich, indem man die Wirkung von t_i näher betrachtet: nach Hurewicz lässt sich ein Zykel aus $H^1(\hat{M})$ als Schleife darstellen. Die Decktransformation t_i schiebt diese Schleife nun auf eine Schleife, die homolog ist zu der Kompositionskonjugation mit einer zu einem Weg gelifteten Schleife $\tau_i, [\tau_i] \in \pi_1(M)$, welche die Decktransformation t_i erzeugt.

Also lassen sich alle Definitionen der Alexander Invarianten analog zu Abschnitt 2, auf endlich erzeugten Gruppen definieren, wobei der Alexander Modul G'/G'' als Gruppenring-Modul über G/G'=F aufgefasst wird. Fast! Die Definition der Elementarideale setzt noch voraus, dass dieser Modul endlich erzeugt ist.

Es stellt sich sogar heraus, dass in den meisten Fällen auch die Thurston Norm, aus der Fundamentalgruppe berechnet werden kann, indem man getwistete Alexander Polynome verwendet, die mit ähnlichen Methoden wie oben, allein aus der Fundamentalgruppe gewonnen werden können. Sie beinhalten meist noch mehr Daten als das gewöhnliche Alexander Polynom. Außerdem lässt sich mit dem Grad dieser Polynome, die Abschätzung aus Theorem ref verallgemeinern.

Um ohne topologische Methoden einzusehen, dass der Alexander Modul endlich erzeugt ist, ist es nötig den Gruppenring und noethersche Moduln genauer zu betrachten.

Lemma 4.1. Sei $\phi: G \to F$ eine Abbildung von Gruppen. Bezeichne $\hat{\phi}: \mathbb{Z}[G] \to \mathbb{Z}[F]$ die Fortsetzung auf die Gruppenringe. Dann gilt:

$$\ker \hat{\phi} = m(\ker \phi)$$

wobei für eine Untergruppe (Normalteiler?) $H \subset G$ das Augmentationsideal $m(H) = \langle (h-1), h \in H \rangle$.

Beweis. Um einen lästigen expliziten Beweis zu vermeiden, lässt sich einfach zeigen, dass für ein kommutativer Ring mit R mit $1 \neq 0$ einen exakten Funktor $R[\cdot]$ liefert. Dann folgt nämlich aus:

$$0 \to \ker \phi \to G \to F \to 0$$

die Einbettung von $\mathbb{Z}[\ker \phi]$ durch

$$0 \to \mathbb{Z}[\ker \phi] \to \mathbb{Z}[G] \to \mathbb{Z}[F] \to 0$$

Beispiel 1. Falls $G = \langle t \rangle \cong \mathbb{Z}$, dann ist der Gruppenring $\mathbb{Z}[G]$, der Ring der Laurentpolynome in einer Variablen $\mathbb{Z}[t^{\pm 1}]$. Dann ist $m(G) \subset \mathbb{Z}[G]$ ein freier $\mathbb{Z}[G]$ Modul mit einelementiger Basis (t-1). Allgemeiner ist für die freie Gruppe $F(S), |S| < \infty$, das Augmentationsideal $m(F(S)) \subset \mathbb{Z}[F(S)]$ ein freier $\mathbb{Z}[F(S)]$ Modul mit |S|-elementiger Basis $\{(s-1), s \in S\}$.

Lemma 4.2 (Augmentationsideale). Seien $H \subset G$ endlich erzeugte Gruppen mit Augmentationsidealen $m_H \subset \mathbb{Z}[H]$ und $m(H) \subset m(G) = m_G \subset \mathbb{Z}[G]$. Dann gilt:

- \bullet dies
- das

Der obige Isomorphismus liefert also, dass der Alexander Modul endlich erzeugt ist, genau dann wenn $m(G)/m(\ker\phi)m(G)$ als $\mathbb{Z}[F]$ Modul endlich erzeugt ist. Die $\mathbb{Z}[F]$ Modul Struktur, ist gesichert durch obiges Lemma, das $\mathbb{Z}[F] = \mathbb{Z}[G]/m(\ker\phi)$ liefert und der zu betrachtende Modul also ein Quotient von dem $\mathbb{Z}[F]$ Modul (hier sogar beidseitiges Ideal, also insbesondere endlich erzeugt, da $\mathbb{Z}[F]$ noethersch) $m(G)/m(\ker\phi) \subset \mathbb{Z}[F]$ ist. Mit den Betrachtungen über Quotienten von noetherschen Modul zu Beginn der Arbeit, stellt sich die Fragestellung als trivial heraus (man sollte natürlich den Isomorphiesatz kennen, dass $(G/N)/(H/N) \cong G/H$ für Normalteiler). Es ergibt sich also folgendes Lemma:

Lemma 4.3. Der Alexander Modul einer endlich erzeugten Gruppe ist endlich erzeugt.

Diese Maschinerie sollte nun genügen um die endliche Erzeugbarkeit der algebraischen Variante des Alexander Moduls zu zeigen. Dies und bisherige Resultate sollen in folgender Proposition festgehalten werden:

Proposition 4.4. Es sei G eine endlich erzeugte Gruppe, $F \cong \mathbb{Z}^b$ eine freie abelsche Gruppe mit $b \leq b_1(G)$ und $\phi: G \to F$ ein Epimorphismus. Außerdem bezeichne wie oben $G' = \ker \phi$ und G'' = [G', G'] die Kommutatoruntergruppe. Die folgende zerfallende Sequenz liefert eine Gruppenwirkung von F auf G':

$$0 \to G' \to G \to F \to 0$$

Weiter liefert diese Sequenz eine exakte Sequenz von $\mathbb{Z}[F]$ Moduln

$$0 \to m(\ker \phi)/m(\ker \phi)m(G) \to m(G)/m(\ker \phi)m(G) \to m(F) \to 0$$

und einen Isomorphismus von $\mathbb{Z}[F]$ Moduln $G'/G'' \cong m(\ker \phi)/m(\ker \phi)m(G)$. Insbesondere ist der Alexander Modul endlich erzeugt.

Beweis. Man betrachte folgendes Diagramm:

$$0 \longrightarrow m(\ker \phi) \longrightarrow m(G) \longrightarrow m(F) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow m(\ker \phi) \longrightarrow \mathbb{Z}[G] \longrightarrow \mathbb{Z}[F] \longrightarrow 0$$

$$(3)$$

Die zweite Reihe ist exakt, die folgt aus der exakten Funktorialität von $\mathbb{Z}[]$ und die Exaktheit nach Anwendung des Schlangenlemmas auf folgendes kommutatives Diagramm mit exakten Reihen hervor geht:

$$0 \longrightarrow m(\ker \phi) \longrightarrow \mathbb{Z}[G] \longrightarrow \mathbb{Z}[F] \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow 0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow 0$$

Sei $m = m(\ker \phi) \subset \mathbb{Z}[\ker \phi]$ (man kann leicht zeigen $\mathbb{Z}[G] \cdot m = m(\ker \phi) \subset \mathbb{Z}[G]$). Da $m \cdot m(G) \subset m \cdot \mathbb{Z}[G] = m(\ker \phi)$, faktorisieren die injektiven Abbildungen aus Diagramm 3. Die erste Zeile nimmt dann die gewünschte Form aus der Proposition an, außerdem lassen sich die Strukturen als $\mathbb{Z}[F]$ -Modul Strukturen auffassen.

Es ist also noch der Isomorphismus zu zeigen. Dieser lässt sich einfach angeben:

$$G'/G'' \to m(G')/m(G')\dot{m}(G)$$
$$[g'] \mapsto [(g'-1)]$$
$$[g'] \leftrightarrow [(g'-1)g]$$

Diese Abbildungen sind wohldefiniert und einander invers, da [(g'-1)g] = [(g'-1)g - (g'-1)(g-1)] = [(g'-1)].

Diese Proposition liefert einen Zusammehang der obigen algebraischen Definition des Alexander Moduls, mit der algebraischen Definition von Milnor. In [2] sagt er, diese sei als Gruppenring-Modul isomorph zu $H_1(\hat{M}, \hat{p}; \mathbb{Z})$, wobei dies die freie abelsche universelle Überlagerung relativ der diskreten Menge aller Urbilder von einem Basispunkt $p \in M$. Die lange exakte Homologie Sequenz des Paares (\hat{M}, \hat{p}) liefert also einen $\bigoplus_{f \in F - \{0\}} \mathbb{Z}$ Summanden, algebraisch lässt sich dies auch einsehen:

Proposition 4.5. Der Modul $m(F) \subset \mathbb{Z}[F]$ ist frei über \mathbb{Z} mit Basis $\langle (f-1), f \in F \rangle$. Also splittet die exakte Sequenz und es gilt als abelsche Gruppen:

$$m(G)/m(G)m(\ker\phi)\cong m(\ker\phi)/m(\ker\phi)m(G)\oplus m(F)\cong m(\ker\phi)/m(\ker\phi)m(G)\oplus\bigoplus_{f\in F-\{0\}}\mathbb{Z}$$

Für eine Basis f_i von F ist $\langle (f_i - 1) \rangle$ ein $\mathbb{Z}[F]$ Erzeugendensystem von m(F).

Also handelt es sich bei der 3-Mannigfaltigkeit um eine Faserung, so folgt aus dem Theorem, dass man rein algebraisch aus der Fundamentalgruppe G, eine Halbnorm auf $\text{Hom}(G,\mathbb{Z})\otimes\mathbb{R}$ definieren kann, die mit der Thurston-Norm auf $H^1(M;\mathbb{R})$ übereinstimmt.

5 Beweis des Theorems

Bevor die Wahl einer dualen Fläche spezifiziert wird, sodass die zu zeigende Abschätzung daraus folgen wird, widmet sich der folgende Teil der zu betrachtenden Überlagerung bezüglich einer Homologieklasse. Will man mit einer Überlagerung Berechnungen anstellen, so sollte man sie möglichst gut kennen. Deswegen folgt nun eine explizite Konstruktion, die sich im späteren Beweis als hilfreich herausstellen wird.

Bemerkung (Aufschneiden an einer Fläche). Aus der Überlagerungstheorie ist bekannt, dass zu jeder normalen Untergruppe der Fundamentalgruppe eines einigermaßen gut zusammenhängendem Hausdorffraum (insbesondere Mannigfaltigkeiten), auch eine normale Überlagerung existiert, die bis auf Überlagerungsisomorphie eindeutig ist. Nun definiert aber ein primitives Element $\phi \in H^1(M,\mathbb{Z})$ per Definition einen Homomorphismus auf der ersten Homologiegruppe, aber durch die universelle Eigenschaft der Abelianisierungsabbildung zusammen mit Hurewicz bedeutet das, das eine eindeutige Abbildung $\hat{\phi}$ existiert, die über ϕ faktorisiert, mit anderen Worten das folgende Diagramm kommutiert:

Dieses ϕ liefert also die eindeutige normale Untergruppe $[\pi_1(M), \pi_1(M)] \subset \ker \hat{\phi} \subset$ $\pi_1(M)$, welche wiederrum eine Überlagerung definiert, die fortan M_{ϕ} genannt wird. Da die Thurston Norm eigentlich eine Halbnorm auf der zweiten Homologie einer 3-Mannigfaltigkeit definiert und über Poincaré bzw. Lefschetz Dualität nach $H_1(M)$ übertragen wird, stellt sich die Frage nach einer Abhängigkeit der Überlagerung von einer dualen Fläche. Sei also $(S, \partial S) \subset (M \partial M)$ eine eingebettete orientierte Fläche. Da diese Kodimension 1 hat, ist sie auch zweiseitig, hat also eine Umgebung U, sodass ein Homöomorphismus $S \times (-\epsilon, \epsilon) \to U$ existiert dessen Einschränkung auf $S \times \{0\}$ die Inklusion ist. Das bedeutet, dass die 3-Mannigfaltigkeit an S "aufgeschnitten" werden kann (siehe etwa [1]), wobei das Aufschneiden bedeutet, das Komplement der Fläche zu betrachten (das Resultat ist offensichtlich eine Mannigfaltigkeit, jedoch können Eigenschaften wie Kompaktheit oder Randbedingungen entfallen). Will man nun durch Aufschneiden gewonnene Kopien $(M_i)_{i\in\mathbb{Z}}, M_i\cong M-S$ wieder verkleben, erweist sich die Zweiseitigkeit der Fläche als günstig. Eine zuvor fixierte zweiseitige Abbildung h: $S \times (-\epsilon, \epsilon) \to M$ liefert nämlich durch $h(S, (-\epsilon, 0))$ und $h(S, (0, \epsilon))$ offene Mengen $M_i^$ und M_i^+ in den M_i . Durch den strukturerhaltenden Diffeomorphismus h, können nun M_i und M_{i+1} jeweils entlang M_i^+ und M_{i+1}^- verklebt werden — genauer: h liefert eine Äquivalenzrelation auf der disjunkten Vereinigung

$$\cdots \sqcup M_{i-1} \sqcup (S \times (-\epsilon, \epsilon)) \sqcup M_i \sqcup (S \times (-\epsilon, \epsilon)) \sqcup M_{i+1} \sqcup \cdots$$

sodass der Quotient eine unendlich zyklische Überlagerung mit der offensichtlichen Projektion bildet. Ein weiterer Vorteil dieser exlpliziten Konstruktion ist es, die Decktransformationsgruppe zu sehen. Sie ist durch einen Erzeuger t über $t\mapsto 1$ zu $\mathbb Z$ isomorph

und unter diesem Isomorphismus entspricht $n \in \mathbb{Z}$ einer Translation aller M_i um n. Es bleibt nur noch zu zeigen, dass diese Überlagerung auch die zu S gehörige Überlagerung ist, die in dem obigen Sinne dem dualen ϕ entspricht. Dies sieht man ein, indem man sich (mithilfe der Zweiseitigkeit) unter dem Isomorphismus $H^1(M;\mathbb{Z}) \cong [M,S^1]$ einen glatten Repräsentanten des Bildes von ϕ aussucht (7.ein solcher existiert immer). 8.eventuelle Umstrukturierung: Konstruktionen, zuerst der Graph (und somit als Korollar, dass jede duale orientierte (somit zweiseitige) Fläche als Urbild dargestellt werden kann), dann die zyklische Überlagerung. Bekanntlicherweise finden wir eine solche Abbildung f und ein $p \in S^1$, sodass $f^{-1}(p)$ genau die orientierte Fläche ist. Durch paralleles Aufschneiden von M an S und S^1 and p erhält man folgendes kommutatives Diagramm von Überlagerungen:

Andererseits ist dies auch ein Pullback Diagramm, da aber der Pullback einer Überlagerung bezüglich [f] bis auf Homöomorphie eindeutig ist, folgt dass die unendlich zyklische Überlagerung durch Aufschneiden und Verkleben zu $\ker(f_*:\pi_1(M)\to\pi_1(S^1))=\ker\phi$ ist.

Bemerkung (Fläche als Urbild eines regulären Wertes). Sei S ein beliebiger zu $\phi \in H^1(M,\mathbb{Z})$ eingebetteter, orientierbarer Repräsentant. Dann existiert eine Abbildung $M \to S^1$, die einen Erzeuger auf ϕ zurückzieht, und ein regulärer Wert $p \in S^1$, so dass $S = f^{-1}(p)$.

Nun wollen wir uns eine besondere Art von Flächen anschauen, nämlich die Repräsentanten der zu ϕ dualen Klasse, bei denen χ_{-} minimal ist. Das immer ein Repräsentat existiert, der gewissen Eigenschaften genügt, sichert der folgende Satz:

Lemma 5.1. Sei $\phi \in \text{Hom}(\pi_1(M), \mathbb{Z})$ ein primitives Element dessen Kern endlichen Rang hat. Dann existiert eine zusammenhängende Thurstonnorm-minimierende Fläche $(S, \partial S) \subset (M, \partial M)$ mit $\phi \mapsto [S]$ unter Poincaré Dualität und $b_2(S) = b_3(M)$, so dass folgende Abschätzung erfüllt ist:

$$b_1(S) \leq b_1(ker(\phi))$$

Beweis. Wähle unter allen Thurstonnorm-minimierenden Flächen eine orientierte Fläche S mit einer geringsten Anzahl an Zusammenhangskomponenten.

Behauptung: Diese Fläche ist zusammenhängend

Bezeichne $S = S_1 \sqcup \cdots \sqcup S_n$ und $M - S = M_1 \sqcup \cdots \sqcup M_m$ die Zusammenhangskomponenten von S bzw. M - S. Betrachte nun den gerichteten Graphen G dessen Knoten bijektiv den Komponenten M_i entsprechen und dessen Kanten aus den Komponenten S_i mit ihrer Orientierung hervorgehen, also ein Graph mit M Knoten und M Kanten, wobei eine Kante von einem Knoten zu einem anderen verläuft, wenn ihre assozierten Komponenten M_i, M_j durch das entsprechende Flächenstück von S getrennt werden, wobei die Komponenten das Flächenstück in der negativen beziehungsweise positiven Umgebung

berühren je nachdem ob die Kante vom assozierten Knoten aus oder eingeht. Mit genau diesen zweiseitigen Umgebungen der Flächenkomponenten ist es möglich sich eine Abbildung $M \to G$ zu definieren, welche die Assozierungen respektiert. Sei außerdem $G \to S^1$ die Abbildung die jede Kante entsprechend ihrer Richtung einmal um die Sphäre abbildet und die Knoten auf einen ausgezeichneten Punkt. Bezüglich der Komposition der beiden Abbildungen $M \to S^1$, ist nun ϕ das Bild des Erzeugers von $H^1(S^1)$ unter der Rückziehung auf der Kohomologie, da $M \to S^1$ eine zu S duale Kohomologieklasse definiert. Genauer gesagt, kann die Abbildung offensichtlich so gewählt werden, dass das Urbild eines Punktes (verschieden dem ausgezeichneten) einer zu S homologen Fläche ist, also $M \to S^1$ unter der bekannten Bijektion $H^1(M,\mathbb{Z}) \cong [M,S^1]$ genau ϕ entspricht. Unter diesen Identifikationen, ist klar, dass G homöomorph zu einem Kreis ist. Dafür betrachte man folgendes Diagramm von Pullbacks von Überlagerungen:

Es folgt unmittelbar, dass diese Überlagerungen zyklisch sind, also unendlich zyklische Decktransformationsgruppen haben. Jedes Element in $\pi_1(G_\phi)$ ist homotop zu einem Lift einer Schleife aus $\pi_1(G)$ (G erbt den Zusammenhang von M, deswegen die Vernachlässigung des Basispunktes). Unter Annahme einer Kompatibilitätsvorraussetzung dieser Überlagerungen durch Pullbacks mit den Überlagerungen durch Aufschneiden an dualen Flächen (deswegen die suggerierende Schreibweise M_{ϕ}), entsteht G_{ϕ} durch "Aufschneiden an den Knoten", also liftet jede Schleife aus G trivial. Folglich ist G_{ϕ} einfach zusammenhängend, überlagert G also universell. Somit ist $\pi_1(G) = \mathbb{Z}$. Also ist G vom Homototyp ein Kreis. Da G aber auch die Kompaktheit von M erbt, ist nur noch die Existenz von Knoten ohne ein- oder ausgehende Kanten auszuschließen. Diese ist aber durch die Minimalitätseigenschaft im Bezug auf die Komponenten der gewählten Fläche ausgeschlossen, da solche Kanten einer nullhomologen Kette entsprechen. Dies sieht man wie folgt ein: Sei M_i ein Knoten der nur eingehende oder nur ausgehende Kanten besitzt, etwa $S_i, i \in I$. Dann ist ohne Beschränkung der Allgemeinheit $(M_i, \sqcup_{i \in I} S_i)$ eine Mannigfaltigkeit mit Rand (man betrachte sonst die umgekehrte Orientierung auf den S_i) 9.was wenn M_i Tori als Rand hat. Die Klasse $[\hat{S} = \sqcup S]$ ist das Bild der Fundamentalklassen unter der von der Inklusion $H_2(i:\hat{S}\hookrightarrow M)$ induzierten Abbildung. Doch $i:\hat{S}\hookrightarrow M=\hat{S}\stackrel{j}{\hookrightarrow} M_i\cup\hat{S}\stackrel{\hookrightarrow}{M}$ faktorisiert und mit Funktorialität faktorisiert auch $H_2(i) = H_2(k)H_2(j)$ aber $H_2(j) = 0$. Hier wurde benutzt, dass der Rand einer Mannigfaltigkeit nullhomolog (als Klasse mit Kodimension 1, die Inklusion auf anderen Homologiegruppen ist keineswegs trivial) ist, andere Möglichkeit wäre stratifolds

$$(M_i \cup \sqcup_{i \in I} S_i, \pm \sqcup_{i \in I} S_i) \implies [\sqcup_{i \in I} S_i] = 0$$

dies würde eine Fläche mit |I| weniger Komponenten liefern:

$$[S] = [\sqcup_{i \not\in I} S_i \bigsqcup \sqcup_{i \in I} S_i] = [\sqcup_{i \not\in I} S_i \bigsqcup \sqcup_{i \in I} S_i] = [\sqcup_{i \not\in I} S_i]$$

Betrachtet man nun die induzierte Abbildung auf der Homologie $(G \to S^1)_*$, so ist diese ein Isomorphismus, da ϕ primitiv ist. Also besitzt G nur eine Kante und die Fläche S ist zusammenhängend.

Die nächste Gleichheit, dass der Rang auf den Top-Homologien von S und M übereinstimmen, hängt von der Existenz eines Randes ab. Da $(S, \partial S) \subset (M, \partial M)$ folgt aus $\partial S \neq \emptyset$ direkt $b_2(S) = b_3(M) = 0$. Falls S aber leeren Rand hat, gilt $b_2(S) = 1$ und es muss $b_3(M) = 1$ gezeigt werden. Äquivalent dazu wird die Existenz eines Randes von M widerlegt: Nach Annahme existeren nur Tori als Randkomponenten. Sei $T \subset \partial M$ eine solche Randkomponente. Da S keinen Rand hat, also T nicht berührt, enthält die unendlich zyklische Überlagerung M_{ϕ} auch unendlich zyklisch viele Kopien von T als Randkomponenten. Unter Verwendung der obigen Konstruktion S, liftet S in jedes S im Folgenden soll die Notation S für die (wieder) kompakte (Unter-)Mannigfaltigkeit verwendet werden, die durch die Einschränkung auf den Quotienten von S im S im Folgenden soll S in S

$$H_2(N; \mathbb{Q}) \longrightarrow H_2(N, \partial N; \mathbb{Q}) \longrightarrow H_1(\partial N; \mathbb{Q}) \longrightarrow H_1(N; \mathbb{Q})$$

$$\uparrow \\ H^1(N; \mathbb{Q})$$

und der daraus folgenden Abschätzung

$$b_1(\partial N) = \dim(\operatorname{Im} \delta) + \dim(\operatorname{Im} i_*) \le 2b_1(N)$$

erhält man für jede kompakte zusammenhängende Untermannigfaltigkeit der Form

$$\bigcup_{i\in I} \hat{M}_i \subset M_{\phi}$$

die Abschätzung:

$$b_1(\bigcup_{i\in I} \hat{M}_i) \ge \frac{1}{2}b_1(\partial \bigcup_{i\in I} \hat{M}_i) \ge \frac{1}{2}b_1(\sqcup_{i\in I} T) = |I|$$

Nun folgt aber aus der Mayer Vietoris Sequenz (für entsprechende offene Umgebungen) die exakte Sequenz:

$$\cdots \to H_1(S \sqcup S; \mathbb{Q}) \to H_1(\bigcup_{i \in I} \hat{M}_i; \mathbb{Q}) \oplus H_1(M_{\phi} - \bigcup_{i \in I} \hat{M}_i; \mathbb{Q}) \to H_1(M_{\phi}; \mathbb{Q}) \to 0$$

und somit

$$b_1(M_\phi) = b_1(\bigcup_{i \in I} \hat{M}_i) + b_1(M_\phi - \bigcup_{i \in I} \hat{M}_i) - b_1(S \sqcup S) \ge |I| - 2b_1(S)$$

Da aber $b_1(M_{\phi})$ nach Voraussetzung endlich ist und |I| beliebig groß werden kann, folgt also dass der Rand von M_{ϕ} keine Tori enthält und somit leer ist.

Um nun noch die Abschätzung $b_1(M) \leq b_1(S)$ zu zeigen, wird erneut die Konstruktion der Überlagerung durch Aufschneiden und Verkleben zur Hilfe genommen. Da ker $\phi \otimes \mathbb{Q} \cong H_1(M_{\phi}; \mathbb{Q})$ nach Voraussetzung ein endlich erzeugter \mathbb{Q} -Vektorraum ist, wird $H_1(M_{\phi}; \mathbb{Q})$ von einem kompakten Teilraum, etwa der Untermannigfaltigkeit $\hat{M}_1 \cup \cdots \cup \hat{M}_k \hookrightarrow M_{\phi}$ und somit auch $\hat{M}_{k+1} \cup \cdots \cup \hat{M}_{2k} \hookrightarrow M_{\phi}$, erzeugt (die Inklusionen erzeugen Epimorphismen auf der ersten Homologie). Mit diesem Wissen liefert die folgende exakte Sequenz die gesuchte Abschätzung:

$$\cdots \to H_1(S;\mathbb{Q}) \to H_1(\bigcup_{i \le 0} \hat{M}_i;\mathbb{Q}) \oplus H_1(\bigcup_{i > 0} \hat{M}_i;\mathbb{Q}) \twoheadrightarrow H_1(M_{\phi};\mathbb{Q})$$

Da die erste Kohomologie der Überlagerung natürlich bessere Chancen hat, als Modul über dem Gruppenring $\mathbb{Z}[t^{\pm 1}]$ endlich erzeugt zu sein, stellt sich die Frage, ob, wie und warum es sinnvoll oder möglich wäre das eben bewiesene für diesen Fall zu verallgemeinern. Dies wird später mit Hilfe der weiteren Lemmas in diskutiert. Nun vergleicht das vorangegangene Lemma also die Thurston Norm einer Kohomologieklasse mit dem Rang ihres Kerns. Wie letzerer mit der Alexander Norm in Verbindung steht, stellt folgendes Lemma (vgl. Assertion 4) fest:

Lemma 5.2. Es sei wieder $\phi \in H^1(M; \mathbb{Z})$ eine primitive Klasse und $\ker \phi \otimes \mathbb{Q}$ ein endlich dimensionaler Vektorraum. Weiter sei t ein Erzeuger der Decktransformationsgruppe von M_{ϕ} , sodass wie in 2.2 $H^1(M_{\phi})$ als Gruppenring Modul aufgefasst werden kann, wobei der Gruppenring kanonisch mit $\mathbb{Z}[t^{\pm 1}]$ identifiziert wird. Dann ist das Elementarideal $E_0(H^1(M_{\phi})) \subset \mathbb{Q}[t^{\pm 1}]$ bezüglich einer $\mathbb{Q}[t^{\pm 1}]$ -Präsentation ein Hauptideal. Insbesondere erzeugt für $b_1(M) = 1$ das Alexander Polynom den Alexander Modul.

In dem Beweis wollen wir nutzen, dass $\mathbb{Q}[t^{\pm 1}]$ ein Hauptidealring ist. Deswegen folgendes Hilfsmittel:

Lemma 5.3. $\mathbb{Q}[t^{\pm 1}]$ ist ein Hauptidealring.

Natürlich könnte man \mathbb{Q} durch jeden beliebigen Körper \mathbb{K} ersetzen.

Beweis. Da $\mathbb Q$ ein Körper ist, ist $\mathbb Q[t]$ ein Hauptidealring. Es existiert eine kanonische Lokalisierungsabbildung:

$$\alpha: \mathbb{Q}[t] \to \mathbb{Q}[t^{\pm 1}]$$

Die Ideale in der Lokalisierung sind Bilder der Ideale aus dem ursprünglichen Ring, wegen der Erhaltung durch $I = \alpha_*(\alpha^*(I))$, wobei α_*, α^* die 11.induzierten Abbildung auf der Menge der Ideale sind. Also ist das Ideal $I \subset \mathbb{Q}[t^{\pm 1}]$ das Bild eines Hauptideals. Da aber jedes Element in $\mathbb{Q}[t^{\pm 1}]$ durch Multiplizieren mit der Einheit t im Erzeugnis eines Polynoms liegt, wird ein Erzeuger aus dem Hauptideal $\alpha^*(I)$ auf einen Haupterzeuger in I abgebildet.

Beweis. Da $H_1(M_{\phi}, \mathbb{Q})$ ein endlich dimensionaler Vektorraum ist, werden durch den Erzeuger t des Quotienten $\pi_1(M)/\ker(\phi) \cong \mathbb{Z}$ der Decktransformationen Relationen auf den Basiselementen x_1, \dots, x_n eingeführt:

$$t_*x_1 = \sum a_i^1 x_i$$

$$\vdots$$

$$t_*x_n = \sum a_i^n x_i$$

Diese Gleichungen definieren genau die Matrix des Automorphismus von Vektorräumen $t_* \in \text{Aut}(H_1(M_{\phi}; \mathbb{Q}))$, die also als Spalten die a^i hat. Durch subtrahieren der obigen Gleichungen, erhält man eine formale Matrix der Form A - tI. Diese Matrix ist aber gleichzeitig die Präsentationsmatrix der freien Auflösung:

$$\mathbb{Q}[t^{\pm 1}]^n \longrightarrow \mathbb{Q}[t^{\pm 1}]^n \longrightarrow H_1(M_{\phi}; \mathbb{Q}) \longrightarrow 0$$

$$e_r \mapsto \sum a_i^r x_i - t x_r$$

Entsprechend ist die Determinante dieser Matrix das Elementarideal bezüglich $\mathbb{Q}[t^{\pm 1}]$, $E_0(M_\phi) = det(A - tI) = \chi(A) \subset \mathbb{Q}[t^{\pm 1}]$.

Dieses Ergebnis liefert nun einen Zusammenhang zwischen den Thurston Norm-minimierenden Flächen, deren erste Bettizahl nach Lemma 5.1 immer mit oberer Schranke $b_1(\ker \phi)$ gewählt werden kann, und der Alexander Norm:

Corollary. Sei $\phi \in H^1(M; \mathbb{Z})$ eine primitive Klasse. Dann gilt:

$$\dim(\ker\phi\otimes\mathbb{O})=\operatorname{Grad}(\Delta_{\phi})$$

Beweis. Nach dem vorherigen Lemma gilt dim $\Delta_{\phi} = n + 1$ und somit eigentlich schon sowieso schon alles

Als nächsten Schritt auf dem Weg zum Beweis des Theorems, wird im Folgenden eine Aussage über die Wahl einer Thurston-minimierenden Fläche gezeigt. Solch eine Fläche kann so gewählt werden, dass sie einer Abschätzung genügt, welche genau die Herkunft der Abschätzung in dem Theorem ist. Mit anderen Worten, existiert eine Wahl einer Fläche, die das folgende Lemma sogar mit Gleichheit erfüllt, gilt die Gleichheit bereits im Bezug auf die Alexander Norm.

Da wir uns schon um die endliche Erzeugbarkeit der Homologiegruppen von der Überlagerung bzgl. dem Gruppenring bemüht haben, soll dies nochmal verwendet werden. Da die Homologie nicht endlich erzeugt über den ganzen Zahlen sein muss.

Nur hier wird $b_1 = 1$ verwendet

Für den nächsten Beweis ist es nützlich von Homologie mit getwisteten Koeffizienten zu sprechen: Sei $G=\pi_1(M)$, dann wird $\mathbb{Z}[ab(G)]$ wird durch Multiplikation mit Elementen aus G zu einem $\mathbb{Z}[G]$ -Linksmodul. Ebenso wird die zelluläre Kettengruppe $C_i(\hat{M})$ der universellen Überlagerung \hat{M} , mit den induzierten Automorphismen der Decktransformationsgruppe (identifiziert mit G) zu einem $\mathbb{Z}[G]$ -Rechtsmodul, wobei es hier natürlich

wichtig ist, dass die zelluläre Struktur auf \hat{M} von M vererbt ist, also die Zellen genau den Zusammenhangskomponenten der Urbilder von Zellen in M entsprechen — nur so erhält man eine freie Basis aus den Zellen von M. Somit erhält man zu einem gegebenen zellulären Kettenkomplex $C_3(\hat{M}, \hat{p} \to C_2(\hat{M}, \hat{p}) \to C_1(\hat{M}, \hat{p}) \to C_0(\hat{M}, \hat{p})$, wobei $\hat{p} = \pi^{-1}(p)$ das Urbild einer Nullzelle $p \in M$ ist, der universellen Überlagerung den tensorierten Kettenkomplex

$$C_{3}(\hat{M},\hat{p}) \otimes_{\mathbb{Z}[G]} \mathbb{Z}[ab(G)] \to C_{2}(\hat{M},\hat{p}) \otimes_{\mathbb{Z}[G]} \mathbb{Z}[ab(G)] \to C_{1}(\hat{M},\hat{p}) \otimes_{\mathbb{Z}[G]} \mathbb{Z}[ab(G)]$$
$$\to C_{0}(\hat{M},\hat{p}) \otimes_{\mathbb{Z}[G]} \mathbb{Z}[ab(G)] \to 0$$

Man beachte hierbei, dass es sich nun um \mathbb{Z} -Moduln handelt, da der zugrundeliegende Gruppenring nicht kommutativ sein muss. Aber aus offensichtlichen Gründen, handelt es sich um einen Kettenkomplex von $\mathbb{Z}[ab(G)]$ -Moduln. Bezeichnet man den Kettenkomplex (4) mit $C_{\bullet}(M; \mathbb{Z}[ab(G)])$, so können wir nun definieren:

Definition 5.1. Definiere die Homologie mit getwisteten Koeffizienten von M als

$$H_i(M, p; \mathbb{Z}[ab(G)]) = H_i(C_{\bullet}(M; \mathbb{Z}[ab(G)]))$$

Man sieht leicht ein, dass dies wohldefiniert ist und nicht von der Zellzerlegung von M abhängt. Weiter ergibt sich, dass $H_1(M_{ab(G)}, p_{ab(G)}) \cong H_1(M, p; \mathbb{Z}[ab(G)]$ natürlich isomorph sind. Der Beweis ergibt sich direkt aus der Bemerkung, dass die universelle Überlagerung buchstäblich universell überlagert, also insbesondere $M_{ab(G)}$ 12.cite Hatcher Kapitel 1.3

Für die Abschätzung der beiden Halbnormen, ist es essenziell, dass das Alexander Ideal eine nicht allzu komplizierte Gestalt annehmen kann. McMullen zeigt [2] sogar, dass seine Definition des Alexander Ideals ein Produkt maximal dreier Faktoren ist, von denen eines immer der größte Teiler — das Alexander Polynom — ist.

Theorem 5.4. Sei G die Fundamentalgruppe einer 3-Mannigfaltigkeit M, die den Voraussetzungen des Haupttheorems genügt und $\phi: G \to H_1(G)/T \cong ab(G) \cong \mathbb{Z}^{b_1(G)}$ die Quotientenabbildung auf den maximalen frei abelschen Quotienten. Dann gilt:

$$E_1(m(G)/m(\ker \phi)m(G)) = \begin{cases} (\Delta_{\phi}) = (\Delta), & wenn \ b_1(M) \le 1 \\ m(ab(G))^{1+b_3(M)} \cdot (\Delta) \end{cases}$$

6 Folgerungen, Bemerkungen und Beispiele

Wie oben bereits vorgeschlagen, kann man nun fragen, welche Anforderungen man an eine Thurston-minimierenden Fläche stellen darf falls $b_1(\ker\phi)=\infty$, also inwieweit lässt sich Lemma 5.1 verallgemeinern? Intuitiv würde man einer unendlich zyklischen Überlagerung schnell die Fähigkeit absprechen, endlich erzeugte Homologiegruppen (über \mathbb{Z}) zu haben, sind diese Voraussetzungen vielleicht zu restriktiv? Die gute Nachricht ist, dass obiger Beweis nahezu problemlos übertragen werden kann, wenn man nur die endliche Erzeugbarkeit von ker ϕ als $\mathbb{Q}[t^{\pm 1}]$ -Modul fordert. Ob oder wann dies sinnvoll ist soll kurz diskutiert werden, anhand Überlegungen zu nicht endlich erzeugten ker ϕ .

Die folgende Proposition kann als Verallgemeinerung der Formel $b_1(\ker \phi) = \operatorname{Grad} \Delta \phi$ aus Corollar 5 gesehen werden:

Proposition 6.1. Falls $H_1(M_{\phi})$ endlich erzeugt über dem Gruppenring $\mathbb{Z}[t^{\pm 1}]$ ist (dies ist nach Proposition 3.1 für jede kompakte 3-Mannigfaltigkeit wahr), nicht aber als abelsche Gruppe, so verschwindet die Alexander Norm. Ist umgekehrt $\Delta_{\pi_1(M)} = 0$, so folgt dass $b_1(\ker \phi) = \infty$ ist, für alle $\phi \in H^1(M; \mathbb{Z})$

Beweis. Die einzige Möglichkeit, dass $H_1(M_\phi; \mathbb{Z})$ über $\mathbb{Z}[t^{\pm 1}]$ im Unterschied zu \mathbb{Z} endlich erzeugt ist, besteht darin, dass die Familie $\{t_*^k x, k \in \mathbb{Z}\}$ in $H_1(M_\phi)$ linear unabhänig über \mathbb{Z} ist, wobei t ein Erzeuger der Decktransformationen ist. Also ist $(x) \subset H_1(M_\phi)$ ein freier Anteil des $\mathbb{Z}[t^{\pm 1}]$ -Moduls. Ohne Einschränkung sieht eine Präsentation von $H_1(M_\phi)$ über dem Gruppenring über \mathbb{Z} folgendermaßen aus:

$$\mathbb{Z}[t^{\pm 1}]^n \xrightarrow{\begin{pmatrix} 0 & 0 \\ 0 & X \end{pmatrix}} \mathbb{Z}[t^{\pm 1}]^n \longrightarrow H_1(M_\phi) \longrightarrow 0$$

Somit berechnet sich das Elementarideal zu $E_0(M_\phi) = (\det 0 \det X) = (0)$.

13.Konvention (zur Verallgemeinerung des Grades) ist $||\phi||_A = 0 wenn \Delta_{\phi} = 0$. Andererseits bedeutet gegebenes verschwindendes Alexander Polynom $\Delta_{\pi_1(M)} = 0$, dass das Alexander Ideal trivial ist. Das Alexander Ideal aber

Beispiel 2. Sei M eine Faserung $M \to S^1$ über dem Kreis ist, also es gibt einen Diffeomorphismus einer zusammenhängenden Fläche $\varphi: S \times 0 \to S \times 1$, so dass folgendes Diagramm kommutiert: **14.f** mittig

$$M \xrightarrow{f} I/\partial I = S^1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

In diesem Fall definiert die Homotopieklasse der Faserung $M \to S^1$ eine eindeutige Kohomologieklasse $\phi \in H^1(M; \mathbb{Z})$. Die Überlagerung M_{ϕ} kann wieder entweder als Rückziehung von $\mathbb{R} \to S^1$ oder durch Aufschneiden an S gewonnen werden — in beiden

Fällen ist leicht ersichtlich, dass $M_{\phi} \cong S \times \mathbb{R}$ ist (für das Aufschneiden an S, benötigt man das $[S] = \phi$, dies gilt aber da jedes Urbild von einem Punkt unter f diffeomorph zur Fläche ist, insbesondere die der regulären Werte, die nach Sard existieren). Also hat M_{ϕ} den Homotopietyp der Fläche, dementsprechend berechnen sich die Homotopieinvarianten von M_{ϕ} . 15.Erwähnen, dass ker(phi) immer den Kern als Abbildung auf der FG bedeutet Insbesondere ergibt sich $b_1(\ker \phi) = b_1(M_{\phi}) = b_1(S)$, wodurch sich mit Lemma 5.1 ergibt (da $b_0(S) = 1$), dass die duale Fläche mit Gleichheit der ersten Bettizahlen gewählt werden kann. Da dies die einzige Ungleichung ist, die in dem Theorem verwendet wird, folgt also schon Gleichheit der Normen $||\phi||_A = ||\phi||_T$, falls $b_1(M) > 1$ und $||\phi||_A = ||\phi||_T + 1 + b_3(M)$ sonst. Aufgrund der exakten Sequenz:

$$0 \to \ker \phi \to \pi_1(M) \to \mathbb{Z} \to 0$$

folgt auch das die Fundamentalgruppe von M im Falle einer Faserung endlich erzeugt ist. Falls M nun zusätzlich noch ein Knotenkomplement eines Knotens K ist, gilt ker $\phi = [\pi_1(M), \pi_1(M)]$. Also beweisen diese Überlegungen, dass die Kommutatorunteruntergruppe einer Knotengruppe isomorph zu der Fundamentalgruppe einer Seifertfläche des Knotengeschlechts ist, siehe zum Beispiel Theorem 4.6 in [1].

Es stellt sich die Frage, in wie weit eine Faserung eindeutig ist. Beispielsweise ist im Falle eines Vektorbündels über einem zusammenhängendem Raum, die Dimension eindeutig. Falls aber $b_1(M) > 1$ ist und $\phi, \psi \in H^1(M; \mathbb{Z})$ Repräsentanten in $[M, S^1]$ haben die Faserungen sind, folgt dann etwa: $||\phi||_T = ||\psi||_T$? Existieren Diffeomorphismen zwischen Abbildungstori zu Flächen verschiedenen Geschlechts? Tatsächlich sind die Faserungen nicht eindeutig siehe Beispiel 3.

Möchte man dennoch das Alexander Polynom $\Delta_f = \Delta_\phi$ einer Faserung f berechnen 16.gilt das für Betti;1?(falls $b_1(M) = 1$ ist $\Delta_f = \Delta_M$), schließlich benutzt diese Invariante ja noch Informationen über die Deckgruppe, genügt es nach Lemma 5.2, die lineare Form von Vektorräumen $t_* \in \operatorname{Aut}(H_1(M_\phi;\mathbb{Q}))$ zu berechnen. Aber da der Erzeuger t der Decktransformationen folgendem kommutativen Diagramm genügen muss:

muss in jedem Fall gelten: $t_* = \hat{t}_* = \varphi$ unter gegebenen Identifikationen mit S. Also berechnet sich das Alexander Polynom Δ_f zu dem charakteristischen Polynom der Abbildung $\varphi_* : H_1(S; \mathbb{Q}) \to H_1(S; \mathbb{Q})$, wobei die Koeffizienten entsprechend in \mathbb{Z} gewählt werden, so dass es größter gemeinsamer Teiler des entsprechend zurückgezogenen Ideals unter der Lokalisierung $\mathbb{Z} \to \mathbb{Z}^{-1}\mathbb{Z} = \mathbb{Q}$ ist. Alternativ lässt sich das Alexander Polynom einer Faserung [f] auch berechnen, indem man die Aufschneide und Verklebe Konstruktion für unendlich zyklische Überlagerungen verwendet. Dort stellt man fest, dass jede

aufgeschnittene Kopie den Homotpietyp der Fläche hat und dass bei Verkleben je zweier Kopien, die Relationen von φ_* . Dies liefert eine Präsentation als Gruppenring Modul, wobei man feststellt, dass alle diese Relationen äquivalent sind, da die Decktransformationen die Einheiten des Gruppenrings sind. Man beachte, dass dies ein Spezialfall der "Aufschneiden und Verkleben"-Konstruktion ist, da M selber durch Verkleben entsteht aus $S \times I$. So erhält man also eine n-blättrige Überlagerung von M, indem man n Kopien von $S \times I$ anhand ϕ aneinander klebt.

Dies liefert die Möglichkeit in diesem Beispiel für $b_1(M) = 1$ das Theorem zu verifizieren (nicht wie oben zu nutzen), indem man berechnet: 17.Orientierbarkeit und

$$||\phi||_A = \operatorname{Grad}(\Delta_{\phi}) = \operatorname{Grad}(\Delta_f) = \operatorname{Grad}\det(\varphi_* - tI) = g(S) = \chi_-(S) + 2 = ||\phi||_T + 2$$

Im Falle der trivialen Bündel $D^2 \times S^1$ oder $S^2 \times S^1$ stimmt die zyklische Überlagerung mit der universellen überein und man erhält jeweils $\Delta_{\phi} = 1$ für ϕ einen Erzeuger der ersten Homologie. Da die Erzeuger für $H_2(D^2 \times S^1, \partial) \cong \mathbb{Z}$ und $H_2(S^2 \times S^1) \cong \mathbb{Z}$ sich mit Poincaré Dualität als $[D^2, \partial D^2]$ beziehungsweise $[S^2]$ herausstellen, verschwindet auch die Thurston-Norm. In diesem Fall gilt also keine Gleichheit in Theorem ref.

Beispiel 3. Eine wichtige Anwendung der Thurston Norm und dieser Abschätzung besteht in den sogenannten fibered faces, die im Folgenden als gefaserte Seiten bezeichnet werden. Bisher wurden bereits Kohomologieklassen $\phi \in H^1(M;\mathbb{Z})$ betrachtet, mit einer korrespondenten Abbildung $M \to S^1$ die eine Faserung darstellt. Bei solchen herrscht Gleichheit im Theorem (siehe ref). Diese Klassen werden auch als gefasert bezeichnet. Tatsächlich stellt Thurston in [3] fest, dass Informationen über diese Eigenschaft durch die Thurston-Norm festgestellt werden. Wie in Bemerkung 4 gezeigt, lässt sich die Thurston-Norm durch Erweiterung der Skalare (tensorieren mit \mathbb{R}), fortsetzen. Thurston hat in [3] außerdem gezeigt, dass der Einheitsball dieser Norm auf $H^1(M;\mathbb{R})$ ein beschränktes konvexes Polytop ist, also die konvexe Hülle einer endlichen Anzahl an Elementen. Eine berandende Seite dieses Polytops, nennt man gefaserte Seite, falls alle Elemente $\phi \in H^1(M;\mathbb{Z})$ die auf einem vom Ursprung ausgehendem Strahl liegen der das Innere der Seite trifft, gefasert sind. Anders gesagt ist eine Seite gefasert, genau dann wenn jedes $\phi \in H^1(M;\mathbb{Z})$, das in einem Kegel mit dem Inneren der Seite als Grundfläche und dem Ursprung als Spitze, gefasert ist. Natürlich ist das Polytop symmetrisch $(||-\phi||_T = ||\phi||_T)$ und die gefaserten Seiten treten auch in Paaren auf (eine Faserung $M \to S^1$ liefert mit einer orientierungsumkehrenden Reflektion τ das Inverse $M \to S^1 \stackrel{\tau}{\to} S^1$). Man sagt, gefaserte Klassen ϕ, ψ liegen in wirklich verschiedenen gefaserten Kegeln, falls diese bis auf Symmetrie verschieden sind.

Bemerkung. Zwei Normen zu abzuschätzen ist gleichbedeutend eine Inklusionsbeziehung ihrer Einheitsbälle festzustellen.

Beispiel 4 (Verschlingungen). Thurston liefert einige Beispiele in Form von Verschlingungskomplementen, als er sein Ergebnis über die Existenz "seiner" Norm und ihren Einheitsball veröffentlicht [3]. Eine Verschlingung bezeichnet eine gemeinsame disjunkte Einbettung von mehreren Knoten, also eine glatte Einbettung $L: \bigsqcup_{i=1}^m S^1 \to S^3$. Als M_L

bezeichnen wir wieder die kompakte 3-Mannigfaltigkeit, die aus Entfernen einer offenen Tubenumgebung hervorgeht. Wählt man auf $\sqcup S^1$ die Standardorientierung, erhält man wie im Fall eines Knotenkomplements, kanonische Erzeuger von $H^1(M_L)$, nämlich durch folgende Überlegungen: eine Orientierung einer Komponente liefert (nach festgelegter Konvention) einen orientierten Meridian, das ist eine Schleife die in $M_L \stackrel{\simeq}{\hookrightarrow} M - \operatorname{Im}(L)$ homotop zu einer Einbettung einer Einheitssphäre einer Faser unter einer Tubenabbildung ist (es lässt sich in einem trivialen Bündel leicht von einer Einheitssphäre sprechen). Diese liefern kanonische Erzeuger der ersten Homologie $H_1(M_L) \cong \mathbb{Z}^m$ die kanonische Basis des Dualraums $l_1, \cdots, l_m \in H^1(M_L) \cong H_1(M_L)$ geht also kanonisch aus den Komponenten der Verschlingung L_1, \cdots, L_m hervor. Außerdem liefert dies eine kanonische Identifikation mit dem Laurentring $\mathbb{Z}[ab(G)] = \mathbb{Z}[l_1^{\pm 1}, \cdots, l_m^{\pm 1}]$ (analog wie im Knotenfall). Um also beispielsweise den Einheitsball der Thurston-Norm zu beschreiben, lassen sich ebenfalls (per Konvention) die Koordinaten $l_i = l_i \otimes 1 \in H^1(M) \otimes \mathbb{R} = H^1(M; \mathbb{R})$ verwenden (diese Konvention nutzt natürlich, dass die eben beschriebene Konstruktion kanonisch ist).

18.siehe Kommentar Thurston, dass keine Komponente Scheibe beranden oder Kreisring beranden soll Berechnung der Einheitsbälle einiger Verschlingungen Knoten Im Fall, dass der Link nur aus einer Komponente besteht — es sich also um einen Knoten handelt — ist $H^1(M;\mathbb{R})\cong\mathbb{R}$. Sei ϕ ein Erzeuger der ganzzahligen Kohomologie, dann ist ϕ dual zu der Seifertfläche und jede duale Fläche ist eine Seifertfläche. Somit ist (solange nicht vom Unknoten geredet wird) wie oben erwähnt $||\phi||_T=2g(L)+1$. Also in der ist die abgeschlossene Einheitskugel der Thurston-Norm gegeben durch:

$$\begin{array}{ccc} H^1(M;\mathbb{R}) & \cong & \mathbb{R} \\ [-\frac{1}{2g(L)+1}\phi,\frac{1}{2g(L)+1}\phi] & = \bar{B}_{||\cdot||_T} = & [-\frac{1}{2g(L)+1},\frac{1}{2g(L)+1}] \end{array}$$

wobei dann entsprechend für die duale Thurston-Norm $||\cdot||_T^*: H_1(M;\mathbb{R}) \to \mathbb{R}$ (mit Ausnutzung der Symmetrie) folgt:

$$\bar{B}_{\|\cdot\|_T^*} = \{\alpha \in H_1(M; \mathbb{R}), \frac{1}{2g(L) + 1}\phi(\alpha) \le 1\} = [-(2g(L) + 1)\hat{\alpha}, (2g(L) + 1)\hat{\alpha}]$$

Hier wird unter dem natürlichen Isomorphismus $H_1((M;\mathbb{R}) \cong H_1(M;\mathbb{R})^{**} \cong \operatorname{Hom}(H^1(M;\mathbb{R}),\mathbb{R})$ die duale Thurston-Norm über der ersten Homologie aufgefasst und $\hat{\alpha}$ als Erzeuger der ganzzahligen Homologie, genauer gesagt, der Homologieklasse — nach obiger Konvention — des Meridians (also gilt $\phi(\hat{\alpha}) = 1$).

Bemerkung. Da dies keine Arbeit über die Eulercharakteristik einer Fläche ist, möge der Leser in den folgenden Beispielen zur Berechnung der Eulercharakteristik dualer Flächen (hier: Seifertflächen) seine liebste Formel verwenden.

Hopf Verschlingung

Das trivialste nicht-triviale Beispiel einer Verschlingung mit mehreren Komponenten ist der Hopf Link. Er besteht aus zwei ineinander verschlungenen Unknoten, L_1, L_2 . Betrachtet man nun zwei Scheiben und verklebt diese mit zwei umgekehrt verdrehten Bändern, so erhält man die Hopf Verschlingung als Rand. Äquivalent möge man sich einen Kreisring $S^1 \times I$ nehmen, der zweifach verdreht ist und beobachtet, dass dieser eine Seifertfläche S darstellt. Das Geschlecht dieser Seifertfläche ist 0, da es sich um eine Sphäre handelt, aus der zwei offene Scheiben entnommen wurde. Andersherum erhält man durch Ankleben zweier

Abbildung 2: Die Hopf Verschlingung

Scheiben die Eulercharakteristik $\chi_{-}(S) = 0$. Da zu gegebener Orientierung $[S] = \epsilon_1[l_1] + \epsilon_2[l_2]$ ($\epsilon_i \in \{\pm 1\}$) verschwindet mit der Subbadditivität die Thurston-Norm auf dem Vektorraum $H^1(M;\mathbb{R})$, also ist die Einheitskugel nicht kompakt, sondern der gesamte Raum. Geht man jedoch zur dualen Norm über, erhält man wieder ein kompaktes Polytop mit ganzzahligen Eckpunkten:

$$\bar{B}_{\|\cdot\|_T^*} = \{ \alpha \in H_1(M; \mathbb{R}) | \sup_{\{\phi \in H^1(M; \mathbb{R})\}} \phi(\alpha) \le 1 \} = 0$$

Whitehead Verschlingung Die Whitehead Verschlingung ist ein Link der aus zwei Komponenten L_1, L_2 besteht. Offensichtlich berandet jede Komponente L_i in M_{L_i} eine Scheibe, die sich in M_L auf eine Kreisscheibe mit zwei entnommenen offenen Scheiben einrschänkt (an den Stellen, an dem die offene Tubenumgebung des anderen Knotens die Scheibe durchdringt). Bei diesen Repräsentanten für l_1 beziehungsweise l_2 berechnet sich die Eulercharakteristik zu -1, also gilt $||\pm l_i||_T \le 1$, offensichtlich gilt aber Gleichheit. (Nun ist aber in diesem Fall die Thurston-Norm eine tatsächliche Norm,) Genauso offensichtlich gilt $||l_1+l_2||_T>0$: die Verschlingungszahl des Whitehead Links ist offensichtlich 0 (dies sieht man indem man eine Projektion betrachtet in dem die eine Komponente der Unknoten ist), jedoch haben die Randkomponenten jeder Einbettung eines Kreisring $S^1 \times I \hookrightarrow S^3$ Verschlingungszahl $\neq 0$ oder sind trivial (durch einen Äquator zu trennen). Also folgt $2 \le ||l_1+l_2||_T \le ||l_1||_T + ||l_2||_T = 2$ für eine Seifertfläche. Diese ist sogar einfach durch die Seifert-Konstruktion zu erhalten. Folglich:

$$||l_1 + l_2||_T = ||-(l_1 + l_2)||_T \stackrel{*}{=} ||-l_1 + l_2||_T = ||l_1 - l_2||_T$$

= 2

wobei die ausgezeichnete Gleichung gilt, da $||-l_1+-l_2||_T \notin \{0,1\}$ aus obigen Gründen. Behauptung: Die Thurston-Norm Einheitskugel und ihr Duales sind die Folgenden:

Abbildung 3: Einheitskugeln der Whitehead Verschlingung in $H^1(M;\mathbb{R})$ und $H_1(M;\mathbb{R})$

Die 8 berechneten Punkte liegen auf dem Rand von $B_{\|\cdot\|_T}$ (die Norm ist stetig), einer konvexen Teilmenge. Es ist eine leichte Übung, dass jede konvexe Teilmenge zweier nächster Punkte im Rand dieser konvexen Teilmenge enthalten sein muss. Aufgrund der Monotonie folgt die Behauptung für die Einheitskugel. Für die duale Norm, berechnet man entweder 8 verschiedene Randpunkte, oder beobachtet für jedes $\alpha \in H_1(M;\mathbb{R})$ auf welchem Elementen (eine Gerade) $\phi \in H^1(M_L;\mathbb{R})$ das Supremum $\phi \alpha$ angenommen wird und sieht direkt das Ergebnis. Borromäische Ringe Seien $L = L_1 + L_2 + L_3$ die Borromäischen Ringe. Offensichtlich hat jede duale Fläche zu l_i , die Komponente L_i als Rand, (sonst wäre der Meridian aufgrund eines Schnittzahlen Argumentes im Kern von l_i). Folglich hat also jede Fläche dual zu l_i mindestens 3 Randkomponenten. Da eine Sphäre mit 3 (also eine abgeschlossene Scheibe mit 2 Durchlöcherungen) entnommenen offenen Scheiben, wobei die eine Randkomponente aufgespannt wird von der entnommenen Komponente $\nu(L_i)$, bereits dual zu l_i ist gilt wieder $||\pm l_i||_T=1$ für jedes i. Ähnlich wie beim letzten Beispiel der Whitehead Verschlingungen, möchten wir nun — in Dimension 3 — die berandenden Seiten der Einheitskugel durch Berechnung einiger Punkte feststellen und sie dadurch feststellen. Als nächstes betrachte man $l = l_1 + l_2 + l_3$, also ist eine Geschlecht-minimale Seifertfläche gesucht. Allerdings lässt sich die Thurston-Norm von l auch mit geschickter Argumentation begründen. Zunächst gilt für die Halbnorm $||l||_T \le ||l_1||_T + ||l_2||_T + ||l_3||_T = 3 \implies ||l||_T \in \{1,3\}$. Außerdem gilt für alle $\phi, \psi \in \{\pm l_1 \pm l_2 \pm l_3\} : ||\phi||_T = ||\psi||_T$, da duale Flächen unter Veränderung der Orientierung einzelner Komponenten in 1-1 Beziehung stehen, also ist das Geschlecht g(L) der Borromäischen Ringe unabhängig von der Orientierung. Durch Bestimmung der Werte an $\pm l_i$ folgt schon, dass jede konxeve Menge die konvexe Hülle der Einheitspunkte $\pm l_i$ enthalten muss — den Einheits-Oktaeder. Also ist $||l||_T \neq 1$, sonst würden zwei benachbarte der obigen Randpunkte

Beispiel 5. Eine (Halb-)Norm auf einem Vektorraum, liefert stets eine (Halb-)Norm auf

Abbildung 4: Die Einheitskugeln der Borromäischen Ringe

seinem Dualraum. Diese ist für einen Vektorraum $(V,|\cdot|)$ auf dem Dualraum $(V^*,||\cdot||)$ definiert durch:

$$||\alpha|| = \sup_{\{v \in V, |v| = 1\}} |\alpha v|$$

Entsprechend übertragen sich die Alexander und Thurston Norm auf die erste (relative) Homologie und die zweite (relative) Kohomologie der 3-Mannigfaltigkeit.

7 Persönliche Notizen während der Erstellung

Sei $m(G)/m(\ker \phi)m(G)$ die algebraische Beschreibung des Alexander Moduls als $\mathbb{Z}[F] = \mathbb{Z}[G]/m(\ker \phi)$ -Modul. Dann dieser Quotient endl erz denn

Alex und Thurston Norm sind wirklich Normen

Warum nimmt Mcmullen die Homologie relativ allen Lifts vom Basispunkt?!!

Einschränkung: Mannigfaltigkeit glatt?

Im Beweis wo $b_1(G) = 1$ gezeigt wird, ist es nicht auch möglich, die Argumentation über die Fundamentalgruppe wegzulassen und stattdessen zu zeigen:

- G ist zsh
- $\delta_{+}(M_i) = \delta_{-}(M_i) = 1 \implies G$ ist Mannigfaltigkeit
- \bullet G ist kompakt

 \implies mit Klassifikation von 1-Mft ist G ein Kreis.

Andersrum: wenn G vom Homotopietyp ein Kreis ist (also zsh und $\pi_1 = \mathbb{Z}$), dann kann nur noch $\delta_{\pm}(M_i) = 0$ passieren

Eigenschaften der Tnorm : kerx ist ein linearer Unterraum. und xx ist auf den Nebenklassen von kerx konstant! und 1-ball

zweiseitiger KRagen

noch uct erwähnen

obda fibration indivisible (flp.pdf)

vielleicht noch Knoten: duale Fläche als Urbild ist Seifertfläche bis jetzt nur: Seifertfläche =i, dual

FRAGEN???

- ϕ Faserung, benötigt man für die Gleichheit der Normen das Faser nicht positive Euler Char. haben?
- •

Strukturelles

- Algebra evtl nach vorne damit man es benutzen kann
- Examples komplett umstrukturieren mit Unterkapiteln

ToDo

		Ρ.
	Hier rein über Glattheit ¡-¿ simpliziale approx wie in lee paul neuwirth	3
	$\operatorname{ref}(\operatorname{sp\"{a}ter})$	3
	regwert	6
	kein Weg aus dem Durchschnitt ist rel Endpunkt homotop zu einem Rand	7
	Krec	11
	warum Fundamentalgruppe stark ist	12
	ein solcher existiert immer	18
8. (eventuelle Umstrukturierung: Konstruktionen, zuerst der Graph (und somit als Korollar, dass jede duale orientierte (somit zweiseitige) Fläche als Urbild dar-	4.0
0	gestellt werden kann), dann die zyklische Überlagerung	18
	was wenn M_i Tori als Rand hat	19
	komische Richtung ggf. oben ändern	20
	induzierten Abbildung auf der Menge der Ideale sind	21
	cite Hatcher Kapitel 1.3	23
	Konvention (zur Verallgemeinerung des Grades) ist $ \phi _A = 0 wenn \Delta_{\phi} = 0$	$\frac{24}{24}$
	Erwähnen, dass ker(phi) immer den Kern als Abbildung auf der FG bedeutet .	$\frac{24}{25}$
	gilt das für Betti; 1?	$\frac{25}{25}$
	Orientierbarkeit und	$\frac{25}{26}$
	siehe Kommentar Thurston, dass keine Komponente Scheibe beranden oder	20
10.	Kreisring beranden soll	27
	Tressing beranden son	41
Li	teratur	
[1]	Gerhard Burde and Heiner Zieschang. Knots, volume 5. Walter de gruyter, 2003	3.
[2]	Curtis T McMullen. The alexander polynomial of a 3-manifold and the thurston no on cohomology. In <i>Annales Scientifiques de l'École Normale Supérieure</i> , volume pages 153–171. Elsevier, 2002.	
[3]	William P. Thurston. A norm for the homology of 3-manifolds, volume 339 of Arrican Mathematical Society: Memoirs. American Mathematical Society, Provider 1986.	