Measuring Risks and Returns, volatility and Returns for some Finnish Companies in the OXM H Index. Finally, a Portfolio Allocation for these companies in relation to Returns and Volatility.

```
In [1]:
```

```
import numpy as np
import pandas as pd
import pandas_datareader.data as web
import datetime
import matplotlib.pyplot as plt
%matplotlib inline

C:\Users\chumj\Anaconda3\Ben\lib\site-packages\pandas_datareader\compat\__init__.py:7:
FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.
   from pandas.util.testing import assert_frame_equal
```

In [27]:

```
start=datetime.datetime (2013,1,1)
end=datetime.datetime (2020,9,2)
```

In [28]:

```
Cargotec=web.DataReader('CGCBV.HE','yahoo',start,end)
Kone=web.DataReader('KNEBV.HE','yahoo',start,end)
Konecrane=web.DataReader('KCR.HE','yahoo',start,end)
Metso=web.DataReader('METSO.HE','yahoo',start,end)
Wartsila=web.DataReader('WRT1V.HE','yahoo',start,end)
FORTUM=web.DataReader('FORTUM.HE','yahoo',start,end)
```

In [29]:

```
stock_comp=(Cargotec['Close'], Kone['Close'], Konecrane['Close'], Metso['Close'], Wartsila['Close'])
stocks=pd.concat(stock_comp, axis=1)
stocks.columns=['Cargotec', 'Kone', 'Konecrane', 'Metso', 'Wartsila']
```

In [30]:

```
stocks.head()
```

Out[30]:

	Cargotec	Kone	Konecrane	Metso	Wartsila
Date					
2013-01-02	21.100000	29.000000	26.780001	25.655199	11.4667
2013-01-03	21.580000	29.075001	26.900000	25.762699	11.4733
2013-01-04	21.980000	29.200001	27.030001	25.770399	11.5133
2013-01-07	21.670000	29.200001	26.820000	25.555401	11.4733
2013-01-08	21.459999	29.200001	26.629999	25.140699	11.3767

In [31]:

stocks.plot(figsize=(12,10));

	_	Cargotec				
	_	Kone				J
70	_	Konecrane				 _

In [32]:

log_ret=np.log(1+stocks.pct_change())
log_ret.head()

Out[32]:

	Cargotec	Kone	Konecrane	Metso	Wartsila
Date					
2013-01-02	NaN	NaN	NaN	NaN	NaN
2013-01-03	0.022494	0.002583	0.004471	0.004181	0.000575
2013-01-04	0.018366	0.004290	0.004821	0.000299	0.003480
2013-01-07	-0.014204	0.000000	-0.007800	-0.008378	-0.003480
2013-01-08	-0.009738	0.000000	-0.007109	-0.016361	-0.008455

In [33]:

log_ret.plot(figsize=(10,8));

In [34]:

```
log_ret.hist(bins=50,figsize=(10,8));
```


In [35]:

log_ret.plot(kind='kde', figsize=(6,5));

In [36]:

log_ret.mean()

Out[36]:

Cargotec 0.000111
Kone 0.000480
Konecrane -0.000068
Metso -0.000418

```
wartsııa
          -0.000258
dtype: float64
In [37]:
log_ret.std()
Out[37]:
Cargotec
             0.022190
            0.014277
Kone
           0.021134
Konecrane
           0.036473
0.019183
Metso
Wartsila
dtype: float64
In [38]:
log ret.corr()
Out[38]:
```

		Cargotec	Kone	Konecrane	Metso	Wartsila
Ī	Cargotec	1.000000	0.396663	0.560257	0.323892	0.523833
	Kone	0.396663	1.000000	0.412066	0.284650	0.439006
	Konecrane	0.560257	0.412066	1.000000	0.323901	0.532132
	Metso	0.323892	0.284650	0.323901	1.000000	0.342962
	Wartsila	0.523833	0.439006	0.532132	0.342962	1.000000

How much value do we put at risk by investing in a particular stock

In [39]:

In [40]:

import seaborn as sns

In [41]:

```
sns.heatmap(log_ret.corr(),annot=True)
```

Out[41]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f81ba38388>

In [42]:

```
log_ret.cov()*252
```

Out[42]:

	Cargotec	Kone	Konecrane	Metso	Wartsila
Cargotec	0.124081	0.031668	0.066209	0.066059	0.056191
Kone	0.031668	0.051368	0.031332	0.037354	0.030300
Konecrane	0.066209	0.031332	0.112551	0.062916	0.054364
Metso	0.066059	0.037354	0.062916	0.335239	0.060471
Wartsila	0.056191	0.030300	0.054364	0.060471	0.092735

In [43]:

```
np.random.seed(101)
num_ports=7000
all_weights=np.zeros((num_ports,len(stocks.columns)))
ret_arr=np.zeros(num_ports)
vol_arr=np.zeros(num_ports)
sharpe_arr=np.zeros(num_ports)
for ind in range(num_ports):
    #weights
    weights=np.array(np.random.random(5))
    weights=weights/np.sum(weights)
    #save weights
    all_weights[ind,:]=weights

#expected returns
```

```
ret_arr[ind]=np.sum((log_ret.mean() *weights) *252)
    #expected volatility
    vol arr[ind]=np.sqrt(np.dot(weights.T,np.dot(log ret.cov()*252,weights)))
    #Sharpe Ratio
    sharpe_arr[ind]=ret_arr[ind]/vol_arr[ind]
In [44]:
sharpe_arr.max()
Out[44]:
0.39045287768432957
In [45]:
sharpe_arr.argmax()
Out[45]:
2505
In [46]:
all weights[2505,:]
Out[46]:
array([0.09376358, 0.77622538, 0.02125425, 0.08300423, 0.02575255])
In [47]:
max_sr_ret=ret_arr[2505]
max sr vol=vol arr[2505]
In [48]:
plt.figure(figsize=(12,8))
plt.scatter(vol arr,ret arr,c=sharpe arr,cmap='plasma')
plt.colorbar(label='sharpe Rati')
plt.xlabel('volatility')
plt.ylabel('return')
plt.scatter(max_sr_vol, max_sr_ret, c='red', s=100, edgecolors='black');
   0.100
   0.075
                                                                                    - 0.3
   0.050
                                                                                     - 0.2
   0.025
                                                                                       sharpe Rati
                                                                                     - 0.1
   0.000
   -0.025
                                                                                     - 0.0
  -0.050
```

```
In [51]:

def get_ret_vol_sr(weights):
    weights=np.array(weights)
    ret=np.sum((log_ret.mean()*weights)*252)
    vol=np.sqrt(np.dot(weights.T,np.dot(log_ret.cov()*252,weights)))
    sr=ret/vol

In []:
```