sine basis 02

Statistics: p-values adjusted for search volume

set-level	С	luster-	eve		peak-level					mm mm mm		
рс	p _{FWE-co}	<i>g</i> prrFDR-co	orr E	$p_{ m uncorr}$	p _{FWE-c}	g orrFDR-co	T orr	$(Z_{_{\equiv}})$	p _{uncorr}	1111111		
	1.000 1.000	0.791	3 2 4	0.614 0.689 0.554	1.000 1.000 1.000	0.994 0.994 0.994	2.46 2.46 2.46	2.45 2.45 2.45	0.007 0.007 0.007	14 -38 -42	-58 -52 -34	40 -6 30
	1.000 1.000	0.791 0.791	1 2	0.791 0.689	1.000 1.000	0.994 0.994	2.46 2.46	2.45 2.45	0.007 0.007	-6 40	-50 -70	6 -46
	1.000 1.000	0.791	2 3 1	0.689 0.614 0.791	1.000 1.000 1.000	0.994 0.994 0.994	2.45 2.45 2.45	2.45 2.44 2.44	0.007 0.007 0.007	-32 -28 -16	48 2 18	16 26 52
	1.000	0.791 0.791 0.791	2 3 2	0.689 0.614 0.689	1.000 1.000 1.000	0.994 0.994 0.994	2.45 2.45 2.45	2.44 2.44 2.44	0.007 0.007 0.007	-4 -54 -28	-82 4 -54	6 22 14
	1.000	0.791 0.791 0.791	2 2 3	0.689 0.689 0.614	1.000 1.000 1.000	0.994 0.994 0.994	2.45 2.44 2.44	2.44 2.43 2.43	0.007 0.007 0.007	8 26 -36	-40 20 -58	56 30 34
	1.000	0.791 0.791 0.791	1 3 2	0.791 0.614 0.689	1.000 1.000 1.000	0.994 0.994 0.994	2.44 2.44 2.44	2.43 2.43 2.43	0.007 0.008 0.008	40 38 30	52 -34 26	0 66 26
	1.000 1.000 1.000 1.000	0.791 0.791 0.791	1 2 3 3 2	0.791 0.689 0.614 0.614 0.689	1.000 1.000 1.000 1.000	0.994 0.994 0.994 0.994 0.994	2.43 2.43 2.43 2.43 2.43	2.43 2.43 2.42 2.42 2.42	0.008 0.008 0.008 0.008	16 14 -10 -32 42	-6 -18 -56 -34 -44	52 18 32 -8 50

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Φ) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels FWHM = 6.9 6.8 6.9 mm mm mm; 3.4 3.4 3.5 {voxels}

Expected voxels per cluster, <k> = 11.721 Volume: 1655712 = 206964 voxels = 4706.2 resels

Expected number of clusters, <c> = 200.31 Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 40.73 voxels)

FWEp: 5.084, FDRp: Inf, FWEc: 221, FDRo?45€ 12