MBMT Number Theory Round — Gauss

April 7, 2018

Full Name		
	Team Number	

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This round consists of **8** questions. You will have **30** minutes to complete the round. Each question is *not* worth the same number of points. Questions answered correctly by fewer competitors will be weighted more heavily. Please write your answers in a reasonably simplified form.

	with his toy cars. He has between 20 and 30 cars, and he knows that put them into groups of 12, he has 1 left over. How many toy cars
	t numbers \overline{AB} are there so that both \overline{AB} and A are divisible by 3? = 7, then $\overline{AB} = 17$.)
3 For how many ord less than 1000?	ered pairs (a, b) , where a and b are positive integers, is the value $2^a 8^b$
	n multiple of two natural numbers is 8 times their greatest common ne value of the larger number divided by the smaller number?
a 1 to the end of h	alled says "another one" he either adds a 1 to his number or appends his number. For example, he can turn 6 into 7 or 61. If he starts with at is the minimum number of turns to get to 2018?
	the integers n less than 1000 satisfy the property that $\lfloor \sqrt[3]{n} \rfloor$ is a factor enotes the greatest integer less than or equal to x .
	lest positive integer n such that n divided by 7 has remainder 3, n remainder 5, n divided by 13 has remainder 6, and n divided by 17
8 Find	$\gcd(2^{71}-2,3^{71}-3,\ldots,100^{71}-100).$