Math 583: Geometric Group Theory

Problem Sets

1 PS1

Problem 1.1. Let $\mu(G)$ the min cardinality of a generating set of G. Show $\mu(G_1 * G_2) = \mu(G_1) + \mu(G_2)$.

Solution 1.1. Let $X = \{g_i\}$, $Y = \{h_i\}$ be generating sets of minimal size. Then, $X \cup Y$ is a generating set for $G_1 * G_2$ by definition. $|X \cup Y| = |X| + |Y|$ so we proved \leq . Now, let $F \twoheadrightarrow G_1 * G_2$ be a presentation with F the free group of rank $\mu(G_1 * G_2)$. By Gruško, this surjection decomposes as $F_i \twoheadrightarrow G_i$, so $\mu(G_i) \leq rk(F_i)$. But $F_1 * F_2 = F$, so $\mu(G_1) + \mu(G_2) \leq rk(F_1) + rk(F_2) = rk(F) = \mu(G_1 * G_2)$. This is the second inequality, so equality has been shown.

Problem 1.2. Let G a f.g. group. Show that for some n, $G = G_1 * ... * G_n$ for G_i indecomposables.

Solution 1.2. Suppose G is indecomposable. Then we are done. Suppose not, so G = A * B. Repeat the argument on A and B, and so on. The algorithm is bound to terminate since, by problem 1, the rank of the groups strictly decrease as we go down the tree.

Problem 1.3. Kuroš theorem: if $H < G_1 * G_2$, then H is the free product of free groups and conjugates of subgroups of G_i .

Solution 1.3. Let X_i presentation complexes of G_i , X the dumbell with X_i . By van Kampen, $\pi_1(X) = G$. Covering spaces of X give subregoups of G. Let $p:(Y,y) \to (X,x)$ a covering space, with $p_*(\pi(Y,y)) = H$.

Decompose $p^{-1}(X_i) = \bigcup Y_{ij}$ a disjoint union of sheets. Then, we claim there exists Z, T 1-subcomplexes of Y such that: $y \in Z, T$, T is a tree such that $\pi_1(Y, y) \cong \pi_1(Z, y) * *\pi_1(Y_{ij} \cup T, y)$. Then, Z is a graph so $\pi_1(Z, y)$ is free. Note that $p_*(\pi_1(Y_{ij} \cup T, y)) = p_*(\pi_1(Y_{ij}, y))$ are conjugate subgroup of G.

Construct T in the following way. Choose spanning trees T_{ij} of Y_{ij} , $Z = p^{-1}(bar) \cup \cup T_{ij}$. Let T a spanning tree of Z so that T contains all the T_{ij} . This can be done by quotienting Z by all T_{ij} and taking that quotient's spanning tree. The vertices are pulled back to the tree itself. Note that Y is in both Z and Y.

Apply Van Kampen to $\{Z, Y_{ij} \cup T\}$. For that we need all intersections to be trees, which is easy to check. Thus we get the free decomposition of $\pi_1(Y, y)$, and so the proof is complete.

Problem 1.4. Let $G = G_1 * G_2$. If $[g, h] \in G_1$ is nontrivial, then $g, h \in G_1$.

Solution 1.4. Consider $H = \langle g, h \rangle$, which by Kuroš is $H = (H \cap G_1) * (conjugates of subgroups and free groups)$ where the first term is nontrivial since it contains [g, h]. If H is not inside G_1 , then C is not trivial. By Gruško, the factors are both 1-generated. Then $H \cap G_1$ and C are cyclic (maybe infinite).

Consider $H \to G \cap G_1$ mapping $C \mapsto 0$. But $H \cap G_1$ is abelian, so $[g,h] \mapsto 0$. But [g,h] was a nontrivial element of $H \cap G_1$, so it should map to something non zero. We have contradicted the assumption that C was non trivial. Thus $H = H \cap G_1$, so we are done.

Problem 1.5. Show that each indecomposable subgroup of $G_1 * G_2$ is either \mathbb{Z} or contained in a conjugate of G_i .

Solution 1.5. This follows from Kuroš theorem.

Problem 1.6. Show that if $G = G_1 * G_2$ and for $w \in G$, $w^{-1}G_1w \cap G_i$ is not empty, then i = 1 and $w \in G_1$.

Solution 1.6. Let $w^{-1}gw \in G_i$, for some nontrivial $g \in G_1$. Since $w \in G_1 * G_2$, we can write $w = w_0 \widetilde{w}$ for $w_0 \in G_1$, and \widetilde{w} a reduced word starting with an element of G_2 . Then, $w^{-1}gw = \widetilde{w}^{-1}g'\widetilde{w}$ for $g' = w_0^{-1}gw_0$. In particular, g' is still in G_1 .

But $\widetilde{w}^{-1}g'\widetilde{w}$ is an already reduced word inside G_1 , so no elements of G_2 can appear in the expression. Thus, $\widetilde{w}=1$. Hence, $w=w_0\in G_1$, and so $w^{-1}G_1w=G_1$. Since $G_1\cap G_2$ is empty, $w^{-1}G_1w\cap G_i=G_1\cap G_i$ nontrivial forces i=1.

Problem 1.7. Let G be finitely generated. If $G = G_1 * ... * G_n = H_1 * ... * H_m$, then m = n and G_i is isomorphic to a conjugate of H_i up to permutation.

Solution 1.7. If all G_i are \mathbb{Z} , then G is free and so the subgroups H_j are also \mathbb{Z} . By equality of rank, we obtain the result.

Suppose, after reordering, that G_i is not \mathbb{Z} for $i \leq k$, and H_j is not \mathbb{Z} for $j \leq k'$. Then, G_1 is a (not free) subgroup of the free product of the H_i , so $G_1 < wH_1w^{-1}$ for some $w \in G$ (we choose H_1 without loss of generality). Similarly, $H_1 < vG_iv^{-1}$ for some i, so we have. Notice $wvG_i(wv)^{-1} \cap G_1$ is nontrivial, so by Q_i , we have $wv \in G_1$. Now,

$$G_1 < wvG_i(wv)^{-1} < wH_1w^{-1} < G_1$$

Hence, G_1 and H_1 are conjugate, thus isomorphic. Apply the same idea to every G_i (up to reordering the H_i) for $1 \le i \le k$, so that every G_i is isomorphic to some H_j . We need to check that no two G_i go to the same H_i . This is automatic because if it's the case, then G_i is conjugate to G_j and Q_i again, i = j.

Note now that $G_1*...*G_k\cong H_1*...H_k$. Letting G' be the normal closure of $G_1*...*G_k$ and H' similarly, we have $G/G'=G/H'=G_{k+1}*...*G_n=H_{k+1}*...*H_m$. This forces H_i to be $\mathbb Z$ for $k+1\leq i\leq m$, and by a rank argument, n-k=m-k, so n=m.