

ЭЛЕМЕНТЫ ДИСКРЕТНОЙ МАТЕМАТИКИ

Учебное пособие

Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина

ЭЛЕМЕНТЫ ДИСКРЕТНОЙ МАТЕМАТИКИ

Рекомендовано методическим советом УрФУ в качестве учебного пособия для студентов, обучающихся по направлениям подготовки 231300 — Прикладная математика 141100 — Энергетическое машиностроение 140400 — Электроэнергетика и электротехника 140100 — Теплоэнергетика и теплотехника 141403 — Атомные станции: проектирование, эксплуатация и инжиниринг 280700 — Техносферная безопасность

Екатеринбург Издательство Уральского университета 2015

Репензенты:

кафедра высшей и прикладной математики Уральского государственного университета путей сообщения (завкафедрой, д-р физ.-мат. наук проф. Г.А. Тимофеева);

д-р физ.-мат. наук, зам. директора ИММ УрО РАН В.Т. Шевалдин

Научный редактор — д-р физ.-мат. наук проф. А. Н. Сесекин

Элементы дискретной математики: учебное пособие / Д. С. Ананичев, Э45 И.Ю. Андреева, Н.В. Гредасова, К.В. Костоусов. — Екатеринбург: Изд-во Уральского университета, 2015. — 108 с.

ISBN 978-5-7996-1387-7

В учебном пособии рассматриваются элементы дискретной математики: логические исчисления, предикаты, булевы функции, комбинаторика, теория графов, автоматы и алгоритмы. Приведено решение типовых задач.

Предназначается для студентов всех форм обучения всех специальностей.

УДК 519.1(075.8) ББК 22.176я73

1. Логические исчисления

Множество, отношения, функции

Множества

Множество — совокупность объектов (элементов).

Множества А, В, ...

Элементы a, b, c, ...

 $a \in A$ a — элемент A (a принадлежит A).

 $a \notin A$ а — не элемент A (а не принадлежит A).

Основное свойство множеств

Для любых a и A выполняется ровно одно из двух условий: $a \in A$, $a \notin A$.

Способы задания множеств

1. Перечисление элементов:

 $A = \{0, 1, 2, 3, ..., 9\}.$

 $B = \{ красный, синий, зеленый \}.$

С = {борода, шляпа, очки}.

Можно задать лишь конечные множества.

2. Определяющие свойства:

 $A = \{x \mid x$ — десятичная цифра $\}$.

 $N = \{x \mid x$ — натуральное число $\}$.

 $Z = \{x \mid x$ — целое $\}$.

 $N_0 = \{x \mid x \in \mathbb{Z}, x \ge 0\}.$

$$Q = \{ \frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{N} \}.$$

 $R = \{x \mid x - \text{действительное число}\}.$

 $C = \{x \mid x - \text{комплексное число}\}.$

$$(2,3) = \{x \mid x \in R, \ x^2 - 5x + 6 < 0\}.$$

Пример

 $1 \in \{1, 2, 3\}$ — верно.

 $1 \in \{\{1\}, \{2\}, \{3\}\}$ — не верно.

Элементы множества $\{\{1\},\{2\},\{3\}\}$ — это множества (а не числа).

Пример

Рассмотрим $S = \{X \mid X \notin X\}$.

Допустим, что $S \notin S$, тогда элемент S удовлетворяет определяющему свойству множества S, следовательно, $S \in S$. Противоречие. Допустим, что $S \in S$, тогда элемент S не удовлетворяет определяющему свойству множества S, следовательно, $S \in S$. Опять противоречие. Таким образом, S не удовлетворяет основному свойству множества.

Проблема записи определяющим свойством — это чрезмерная сила.

 $\emptyset = \{x \mid x \neq x\}$ — пустое множество — множество без элементов. $\forall a$

U — универсальное множество — множество, содержащее все интересующие нас в данный момент элементы. $\forall a \ a \in U$.

 $A \subseteq B$ — А подмножество В; В надмножество А, если $\forall a$

 $A \not\subset B \exists a \ a \in A$ и $a \notin B$.

Лемма 1

 $\forall A \ 1) \varnothing \subseteq A$.

- $2) A \subseteq A$.
- 3) $A \subseteq U$.

Доказательство:

- 1) от противного (o/π).
- $\emptyset \not\subseteq A \rightarrow \exists a \ a \in \emptyset, \ a \notin A.$
- 2) очевидно.
- 3) по определению U.

A = B (A равно B), если множества A и B состоят из одних и тех же элементов.

Замечание

$$A = B \Leftrightarrow \begin{cases} A \subseteq B \\ B \subseteq A \end{cases}$$

Операции с множествами

A, B — множества.

 $A \cap B = \{x \mid x \in A, x \in B\}$ — пересечение множеств A и B.

 $A \cup B = \{x \mid x \in A \text{ или } x \in B\}$ — объединение множеств A и B.

 $x \in A$ или $x \in B$ означает, что выполняется хотя бы одно из двух.

 $A \setminus B = \{x \mid x \in A \text{ и } x \notin B\}$ — разность множеств A и B.

 $\overline{A} = U \setminus A = \{x \mid x \notin A\}$ — дополнение до A.

Свойства ∀ А, В, С

Коммутативности

1)
$$A \cup B = B \cup A$$

1')
$$A \cap B = B \cap A$$

Ассоциативности

2)
$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Дистрибутивности

3)
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$3'$$
) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

Идемпотентности

4)
$$A \cup A = A$$

$$4'$$
) $A \cap A = A$

Свойства нуля

5)
$$A \cup \emptyset = A$$

5')
$$A \cap \emptyset = A$$

Свойства единицы

6)
$$A \cup U = U$$

$$6'$$
) $A \cap U = A$

Свойства дополнения

7)
$$A \cup \overline{A} = U$$

7')
$$A \cap \overline{A} = \emptyset$$

Свойство двойного дополнения

8)
$$\bar{\bar{A}} = A$$

Тождества поглошения

9)
$$A \cup (A \cap B) = A$$

9')
$$A \cap (A \cup B) = A$$

Законы де Моргана

10)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

10')
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Доказательство 2':

Докажем \subseteq : $\forall x \ x \in (A \cap B) \cap C$

(по определению
$$\cap$$
) $\rightarrow \begin{cases} x \in A \cap B \\ x \in C \end{cases}$

(по определению
$$\cap$$
) $\rightarrow \begin{cases} x \in A \\ x \in B \\ x \in C \end{cases}$ (по определению \cap) $\rightarrow \begin{cases} x \in A \\ x \in B \cap C \end{cases}$

(по определению
$$\cap$$
) $\rightarrow \begin{cases} x \in A \\ x \in B \cap C \end{cases}$

(по определению \cap) $\rightarrow x \in A \cap (B \cap C)$.

Докажем ⊇: нужно развернуть стрелки.

Лемма 2

$$\forall A, B \bowtie A \cap B \subseteq A \subseteq A \cup B$$
.

Доказательство: непосредственно следует из определения.

Лемма 3

- 1) $A \subset B$.
- 2) $A \cap B = A$.
- 3) $A \cup B = B$.

Данные условия эквивалентны.

Доказательство:

 $1) \rightarrow 2)$:

докажем ⊆: по Лемме 2,

докажем
$$\supseteq$$
 : $\forall a \ \stackrel{a \in A}{A \subseteq B} \rightarrow a \in B \rightarrow a \in A \cap B$.

2) \rightarrow 1): $A = A \cap B$ (по Лемме 2) $\subseteq B$ (по свойству 1').

Лемма 4

$$\forall A, B, C$$
 и $A \subseteq B \Rightarrow \begin{cases} A \cap C \subseteq B \cap C \\ A \cup C \subseteq B \cup C \end{cases}$ (стабильность \subseteq относительно \cap и \cup).

Доказательство:

 $\forall x \ x \in A \cap C \ (\text{по определению} \cap)$

$$\to \begin{cases} x \in A \text{ (по определению } \subseteq \text{)} \to \begin{cases} x \in B \\ x \in C \end{cases} \to x \in B \cap C$$

 $\forall x \ x \in A \cup C \ x \in A \to A \subseteq B \to x \in B \text{ (по Лемме 2)} \subseteq B \cup C \text{ или } x \in C \text{ (по Лемме 2)} \subseteq B \cup C \text{.}$

Следствие из Леммы 4

$$\begin{cases} A \subseteq B \\ C \subseteq D \end{cases} \rightarrow \begin{cases} A \cap C \subseteq B \cap D \\ A \cup C \subseteq B \cup D \end{cases}$$

Доказательство:

 $A \cap C$ (по Лемме 4) $\subseteq B \cap C$ (по Лемме 4) $\subseteq B \cap D$.

Доказательство свойства 4:

По Лемме 1 $A \subseteq A$ вместе с Леммой 3 получаем $A \cup A = A$.

Доказательство свойства 6:

По Лемме 1 $\varnothing \subseteq A$ вместе с Леммой 3 получаем $A \cup \varnothing = A$.

Доказательство свойства 9':

По Лемме 2 $A \subseteq A \cup B$ вместе с Леммой 3 $A \cap (A \cup B) = A$.

Доказательство свойства 3:

Сначала докажем ⊇:

 $A \cap C$ (по Лемме 2) $\subseteq C$.

$$B \cap C \subseteq C$$

 $(A \cap C) \cup (B \cap C)$ (по следствию из Леммы 4) $\subset C \cup C$ (по свойству 4) = C.

 $A \cap C$ (по Лемме 2) $\subseteq A$ (по Лемме 2) $\subseteq A \cup B$.

 $B \cap C$ (по Лемме 2) $\subseteq B$ (по Лемме 2) $\subseteq A \cup B$.

 $(A \cap C) \cup (B \cap C)$ (по следствию из Леммы 4) $\subseteq (A \cup B) \cup (A \cup B)$ (по свойству 4) $= (A \cup B)$.

$$Z = (A \cap C) \cup (B \cap C)$$
.

$$Z \subseteq C$$
 $Z \subseteq (A \cup B)$ \Rightarrow Z (по свойству 4') = $Z \cap Z$

(по следствию из Леммы 4) \subseteq $(A \cup B) \cap C$.

Теперь докажем ⊆:

$$\forall x \ x \in (A \cup B) \cap C \Rightarrow \begin{cases} x \in A \cup B \\ x \in C \end{cases}$$

$$\begin{cases} x \in A \\ x \in C \end{cases} \to x \in A \cap C \subseteq Z.$$

Или

$$\begin{cases} x \in B \\ x \in C \end{cases} \rightarrow x \in B \cap C \subseteq Z.$$

Булеан В (A) множества A — это множество всех его подмножеств.

Отношения

Упорядоченная пара элементов $x, y : (x, y) = \{\{x, y\}, \{x\}\}$.

Основное свойство

$$(x,y) = (z,t) \Leftrightarrow \begin{cases} x = z \\ y = t \end{cases}$$

Доказательство

1-й случай:

$$x = y$$

$$(x,y) = (x,x) = \{\{x\}\} = \{\{z,t\},\{z\}\} \rightarrow \{z,t\}$$

одноэлементное множество $z = t = \{\{z\}\}$, значит x = z, y = t.

2-й случай:

 $x \neq v$

$$\{\{x,y\},\{x\}\} = \{\{z,t\},\{z\}\} \Rightarrow \{x,y\} = \{z,t\}$$

Отсюда $\{z,t\}$ —

2-элементное множество

$$\Rightarrow \{x\} \neq \{z,t\} \rightarrow \{x\} = \{z\} \rightarrow x = z; \ y \neq x \Rightarrow y = t.$$

Отождествим $(x_1,(x_2,x_3))$ и $((x_1,x_2),x_3)$.

Упорядоченная цепочка элементов $x_1, x_2, x_3, ..., x_n$ — это

$$(x_1, x_2, x_3, ..., x_n) = ((x_1, x_2, ..., x_{n-1}), x_n).$$

Прямое произведение А и В

$$A \times B = \{ (a,b) \mid a \in A, b \in B \}.$$

$$A_1 \times A_2 \times ... \times A_n = \{ (a_1, a_2, ..., a_n) \mid \forall i \in \{1...n\} a_i \in A_i \}.$$

Чтобы задать отношение, достаточно указать все пары объектов, которые оно связывает.

Бинарное отношение ρ на множествах A и B — это $\rho \subseteq A \times B$.

N-арное отношение ρ — это $\rho \subseteq A_1 \times A_2 \times ... \times A_n$.

Если $A_1 = A_2 = A_3 = ... = A_n = A$, то $A_1 \times A_2 \times ... \times A_n = A^n$ и $\rho \subseteq A^n$ ρ — n-местное отношение на A.

Отношение ρ на A:

рефлексивное, если $\forall x \in A \ x \rho x$;

симметричное, если $\forall x, y \in A \ x \rho y \rightarrow y \rho x$;

антисимметричное, если $\forall x, y \in A \begin{cases} x \rho y \\ y \rho x \end{cases} \rightarrow x = y$;

транзитивное, если $\forall x,y,z \in A \begin{cases} x \rho y \\ y \rho z \end{cases} \to x \rho z$.

Примеры

- 1) «=» на **Z**.
- 2) «≤» на **Z**.
- 3) « \subseteq » на \boldsymbol{B} (A).
- 4) ρ соответствует фразе «...учится в одной группе с...» на множестве всех студентов университета.
- 5) ρ соответствует фразе «...одного года рождения с...» на множестве всех людей.
- 6) «|» на **Z**.
- 7) «сравнимо по модулю n» на Z.
- 8) «<» на Z. $\rho \subseteq A^2$ эквивалентность, если ρ рефлексивно, транзитивно, симметрично.
- 9) А множество всех направленных отрезков на плоскости.

$$\overrightarrow{AB}$$
р \overrightarrow{CD} \Leftarrow
$$\begin{cases} \overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD} \\ |\overrightarrow{AB}| = |\overrightarrow{CD}| \end{cases}$$
 — это эквивалентность.

Вектор — множество всех соноправленных отрезков одинаковой длины. $\vec{a} = \lceil \overrightarrow{AB} \rceil = \{\overrightarrow{xy} \mid \overrightarrow{xy} \rho \overrightarrow{AB} \}$.

 $ho\!\subseteq\!A^2$ — порядок, если ho — рефлексивно, антисимметрично.

 $R = \{A_i \mid i \in I\}$ — разбиение множества A, если:

1)
$$\bigcup_{i \in I} A_i = A;$$

2)
$$\forall i, j, i \neq j \rightarrow A_i \cap A_j = \emptyset$$
.

 $a \in A \left[a_{\rho} \right] = \left\{ x \, | \, x \rho a \right\}$ — класс эквивалентности ρ (класс по порядку ρ элемента a).

 $A/\rho = \{a, a \in A\}$ — фактор множества A по порядку ρ .

Теорема (об отношениях эквивалентности)

- 1) ρ эквивалентность на $A \Rightarrow \{ [a], |a \in A\}$ разбиение A.
- 2) $R = \{A_i \mid i \in I\}$ разбиение $A \Rightarrow \rho : [x \rho y \Leftrightarrow \exists i \in I \ x \in A_i \ u \ y \in A_i]$ эквивалентности и $A/\rho = R$.

Доказательство

1)
$$\bigcup_{a=1} [a]_{\flat} = A$$
 очевидно $\forall a \in A [a]_{\flat} \subseteq A$.

$$\bigcup_{a\in A} [a]_{\mathfrak{p}} \subseteq \bigcup_{a\in A} A = A$$
 $x \in A$, \mathfrak{p} рефлексивно.

$$x \rho x \Rightarrow x \in [x]_{p} \Rightarrow x \in \bigcup_{a \in A} [a]_{p}$$

Разные классы не пересекаются.

$$[a] \neq [b].$$

Ο/Π.

$$\begin{bmatrix} a \end{bmatrix} \cap \begin{bmatrix} b \end{bmatrix} \neq \varnothing \Rightarrow \exists c \in \begin{bmatrix} a \end{bmatrix} \cap \begin{bmatrix} b \end{bmatrix} \rightarrow \begin{cases} c \in \begin{bmatrix} a \end{bmatrix} \rightarrow \begin{cases} c \rho a \rightarrow \begin{cases} a \rho c \\ c \rho b \rightarrow \end{cases} c \rho b \rightarrow c \rho b \end{cases} .$$

$$\forall x : x \in [a] \to \begin{cases} x \rho a \\ a \rho b \end{cases} \to x \rho b \to x \in [b], \text{ то есть } [a] \subseteq [b].$$

Симметрично $\lceil b \rceil \subseteq \lceil a \rceil \Rightarrow \lceil a \rceil = \lceil b \rceil$ — противоречие.

2)
$$\forall x \in A \bigcup_{i \in J} A_i \Rightarrow \exists i \in I \ x \in A_i \ _{\mathsf{H}} \ x \in A_i \Rightarrow x \rho x \Rightarrow \rho$$
 рефлексивно.

ρ очевидно симметрично.

$$\forall x,y,z\in A \begin{cases} x\rho y \\ y\rho z \end{cases} \rightarrow \begin{cases} \exists i\in I \ x\in A_i \ \text{if} \ y\in A_i \\ \exists j\in I \ y\in A_j \ \text{if} \ z\in A_j \end{cases} \rightarrow i\neq j \Rightarrow A_i\cap A_j=\varnothing,$$

но
$$y \in A_i \cap A_j \Rightarrow i = j \rightarrow \exists x \in A_i \text{ и } z \in A_j \rightarrow x \rho z$$
.

$$A/\rho=R$$
 $\subseteq \forall\,a\in A$ (надо показать, что $\left[a\right]\in R$) $A=\bigcup_{i\in I}A_i\Rightarrow \exists\,i\in I$ $a\in A_i$ $x\in \left\lceil a\right
ceil\to x$ р $a\to \exists j$ $x\in A_i$ и $a\in A_j\Rightarrow \left\lceil i=j
ight
ceil$.

$$\exists i egin{array}{c} x \in A_i \Rightarrow ig [a] \subseteq A_i \ x \in A_i \to x
ho a \to x \in ig [a] \Rightarrow A_i = ig [a] = A_i \ \end{array}$$
 то есть $ig [a] \in R$.

$$\supseteq \forall i \in I \pmod{A_i} \in A/\rho$$
) $a \in A_i \Rightarrow [a] = A_i$.

Структуры порядка

1)
$$\leq$$
 Ha $\{1,2,3,4\}$

Будем изображать элементы A точками на плоскости. Пусть они соответствуют элементу x, можно добраться по линиям снизу вверх до точки соответствует $y \Leftrightarrow x \rho y$, полученное изображение и есть структура порядка.

2,3 — несравнимы.

Наибольшего нет.

3) \subseteq Ha $\beta(\{1,2,3\})$:

Элемент $x \in A$ наибольший, если $\forall y \in A$ урх (х больше всех).

 $x \in A$ наименьший, если $\forall y \in A x \rho y$.

Элемент $x \in A$ максимальный, если $\forall y \in A \ x \rho y \to x = y$ (нет элемента, > чем x).

 $x \in A$ минимальный, если $\forall y \in A y \rho x \rightarrow x = y$.

Замечание 1

Наибольший — максимальный $\forall b \in P egin{array}{c} a \cap b \\ b \cap a \end{array} \rightarrow a = b$.

Замечание 2

Наибольший единственный $a_{_{\! 1}},\ a_{_{\! 2}}$ — наибольший $\left\{ egin{align*} a_{_{\! 2}}
ho a_{_{\! 1}} \\ a_{_{\! 1}}
ho a_{_{\! 2}} \end{array}
ight.
ight.
ight.$

Операции с отношениями

Пример

$$"<"\cup">="\neq"$$

2) $\rho^{-1} = \{(x, y) | y \rho x\}$ — обратное к ρ отношение.

$$\rho \subseteq A \times B \Rightarrow \rho^{-1} \subseteq B \times A$$

Пример

$$x: y \Leftrightarrow \frac{x}{y} \in Z$$

Замечание

$$(\rho^{-1})^{-1} = \rho$$

3)
$$\rho \le A \times B \ \sigma \subseteq B \times C$$

$$\rho \cdot \sigma = \{(x,y) \mid \exists \ z \in B \ x \rho z, \ z \sigma y\}$$
 — произведение отношений ρ и σ .

Пусть A — люди, B — должности, C — предприятия. Если ρ соответствует фразе «...способен быть...», σ соответствует фразе «...требуется на...», тогда ρ и σ соответствует фразе «...может наняться на...».

Теорема (о связи свойств и операций)

 $\rho \in A \times A$.

- 1) ρ рефлексивное \Leftrightarrow «=» $\subseteq \rho$.
- 2) ρ симметричное $\Leftrightarrow \rho^{-1} \subseteq \rho \Leftrightarrow \rho^{-1} = \rho$.
- 3) ρ антисимметричное $\Leftrightarrow \rho \cap \rho^{-1} \subseteq \ll \gg$.
- 4) ρ транзитивное $\Leftrightarrow \rho \cdot \rho \subseteq \rho$.

Доказательство:

2) $3 \rightarrow 2$ очевидно.

$$2 \to 1 \ \forall x, y \in A \ x \rho y$$
 (по определению ρ^{-1}) $\to y \rho^{-1} x \to y \rho x$. $1 \to 3$

докажем
$$\subseteq$$
: $(x,y) \subseteq \rho^{-1} \to (y,x) \in \rho \to (x,y) \in \rho$.

докажем
$$\supseteq$$
: $(x,y) \in \rho \rightarrow (y,x) \in \rho \rightarrow (x,y) \in \rho^{-1}$.

3)
$$\Rightarrow (x,y) \in \rho \cap \rho^{-1} \rightarrow \begin{cases} (x,y) \in \rho \\ (x,y) \in \rho^{-1} \end{cases} \rightarrow \begin{cases} x \rho y \\ y \rho x \end{cases} \rightarrow x = y \rightarrow (x,y) \in " = ".$$

$$\Leftarrow \forall x, y \begin{cases} x \rho y \\ y \rho x \end{cases} \rightarrow \begin{cases} x \rho y \\ x \rho^{-1} y \end{cases} \rightarrow (x, y) \in \rho \cap \rho^{-1} \rightarrow x = y.$$

4)
$$\Rightarrow (x,y) \subset \rho \cdot \rho \rightarrow \exists z \begin{cases} x \rho z \\ z \rho y \end{cases} \rightarrow x \rho y \rightarrow (x,y) \in \rho$$
.

$$\Leftarrow \forall x, y, z \begin{cases} x \rho y \\ y \rho z \end{cases} \rightarrow x \rho \cdot \rho z \rightarrow x \rho z .$$

Функции

$$\rho \subseteq A \times B$$
.

Область определения $\rho: D_{\circ} = \{a \in A \mid \exists b \in B, a \cap b\}$.

Область значений ρ : $E_{\rho} = \{b \in B \mid \exists b \in B \ a \rho b\}$.

 ρ — всюду определено, если D_{ρ} = A;

 ρ — сюръективно, если $E_{o} = B$;

 ρ — всюду определено $\forall a \in A \exists b \in B \ a \rho b$.

Утверждение 1

$$D_{\rho} = E^{\rho^{-1}} = D_{\rho^{-1}}$$
 .

 ρ — всюду определенно $\Rightarrow \rho^{-1}$ сюръективно.

 ρ — сюръективно \Rightarrow ρ^{-1} всюду определенно.

Доказательство очевидно.

Утверждение 2

$$\rho \subseteq A \times B$$
, $\sigma \subseteq B \times C$.

 ρ, σ — всюду определенно $\Rightarrow \rho \cdot \sigma$ — всюду определенно.

 ρ, σ — сюръективно $\Rightarrow \rho \cdot \sigma$ — сюръективно.

Доказательство:

$$\forall c \in C \xrightarrow{\sigma - \text{сюръективно}} \exists b \in B \text{ в } \sigma c \xrightarrow{\rho - \text{сюръективно}} \exists a \in A \ a\rho b \Rightarrow a\rho \sigma c$$
 $\rho \subset A \times B$.

$$ho$$
 — инъективное $\forall b \in B, \ a_1, a_2 \in A \ egin{cases} a_1
ho b \\ a_2
ho b \end{pmatrix}
ightarrow a_1 = a_2 \,.$

Утверждение 3

$$\rho$$
 — однозначно $\rightarrow \rho^{-1}$ — инъективно.

$$\rho$$
 — инъективно \rightarrow ρ^{-1} — однозначно.

Утверждение 4

$$\rho$$
, σ — однозначно $\Rightarrow \rho \cdot \sigma$ — однозначно.

$$\rho$$
, σ — инъективно $\Rightarrow \rho \cdot \sigma$ — инъективно.

Доказательство:

$$\forall a \in A, c_1, c_2 \in C$$
.

$$\begin{cases} a \rho \sigma c_1 \rightarrow \exists b_1 \begin{cases} a \rho b_1, b_1 \sigma c_1 \\ a \rho \sigma c_2 \rightarrow \exists b_2 \end{cases} \begin{cases} a \rho b_2, b_2 \sigma c_2 \end{cases} \xrightarrow{\rho - \text{однозначно}} b_1 = b_2 = b$$

и
$$\begin{cases} b \sigma c_1 & \xrightarrow{\sigma - \text{однозначно}} c_1 = c_2. \end{cases}$$

 $\rho \subseteq A \times B$ — функция, если ρ — однозначно и всюду определено.

 $\rho: A \to B \ (\rho$ — это функция, действующая из множества A в множество B).

$$(a, b) \in \rho \Leftrightarrow a \rho b \Leftrightarrow b = \rho(a)$$
.

ρ — инъективно — функция вложена.

$$\rho: A \to B$$
.

ho — сюръективно — функция « отображение на ».

$$\rho: A \to \succ B$$
.

Биекния.

$$\rho: A \rightarrow \rightarrow B$$
.

Теорема 1

$$f: A \to B$$
, $g: B \to C$.

f, g — инъективные $\Rightarrow f \cdot g$ — инъективно.

f, g — сюръективные $\Rightarrow f \cdot g$ — сюръективно.

f, g — биекция $\Rightarrow f \cdot g$ — биекция.

Это следует из утверждений 2 и 4.

Теорема 2

$$f: A \to B, f^{-1}: B \to A \Rightarrow f$$
 — биекция.

$$f$$
 — биекция \Rightarrow f^{-1} — биекция.

Это следует из утверждений 1 и 3.

Замечание

Пусть множества A и B — конечные, $\phi: A \rightarrowtail B$, тогда в множествах A и B будет одинаковое количество элементов.

Доказательство

$$\forall a \in A \exists ! \alpha \in \varphi \alpha = (a,b).$$

В А и ф одинаковое количество элементов.

$$\forall b \in B \exists ! \alpha \in \varphi \alpha = (x, b).$$

В В и ф одинаковое количество элементов.

|A| — количество элементов в A.

$$\varphi: A \rightarrow \rightarrow B \Rightarrow |A| = |B|$$
.

Пример

 $M_{m,n}$ — множество кратчайших маршрутов между противоположными концами города размером m на n кварталов. Легко проверить, что

$$|M_{1,n}| = n+1$$
 $|M_{2,2}| = 6$ $|M_{m,n}| = ?$

Анаграмма слова — это слово, полученное перестановкой букв.

$$A_{m,n} = \left\{ \omega \mid \omega - \text{анаграмма слова } \underbrace{\Pi \Pi ... \Pi}_{n} \underbrace{\mathbf{BB...B}}_{m} \right\}.$$

Легко проверить, что $\left|A_{1,n}\right|=n+1, \ \left|A_{2,2}\right|=6. \ \left|A_{m,n}\right|=?$

ф — правило:

идем вправо — пишем П;

идем вверх — пишем В.

$$\varphi: M_{m,n} \to A_{m,n}$$
.

$$\varphi^{-1}: A_{m,n} \to M_{m,n}$$
.

По Т2 ф — биекция.

$$|A_{m,n}| = |M_{m,n}|.$$

Пусть $\phi: A \rightarrowtail B$, тогда мощность A равна мощности B. (|A| = |B|).

Лемма

$$R = \{x_i \mid i \in N\}$$
 — разбиение X. $\forall i \in N \mid x_i \mid < \infty$. Тогда $|X| = |N|$.

Доказательство

Занумеруем X_i по очереди, тогда, поскольку $\left|\bigcup_{k=1}^{i-1} X_k\right| < \infty$, процесс дойдет

до X_i на конечном шаге для любого i.

Пример (Диагональ Кантора)

$$|N| = |R|$$
: $a_i \in Z$, $a_{i,j} \in \{0,1,2,...,9\}$.

Доказательство:

o/π:
$$|N| \neq |R| \Rightarrow \exists \varphi : R \succ \rightarrow \succ R$$
.

1)
$$\xrightarrow{\varphi} a_1, a_{11}, a_{12}, a_{13}...$$

2)
$$\xrightarrow{\varphi} a_2, a_{21}, a_{22}...$$

3)
$$\xrightarrow{\varphi} a_3, a_{31}, a_{32}...$$

n)
$$\xrightarrow{\varphi} a_n$$
, a_{n1} , a_{n2} , a_{n3} ...

$$Z = 0, b_1, b_2, b_3$$
.

$$b_i \in \{0,1,...,9\} \setminus \{a_{ii}\}.$$

ф — сюръективно:

 $\exists n \ Z = \varphi(n)$, но $a_{nn} \neq b_n$ — противоречие.

$$|A| \le |B| \Leftrightarrow \exists \varphi : A \rightarrowtail B \pmod{\exists B' \subseteq B} \varphi : A \rightarrowtail B'$$
).

Теорема

 $|A| \le |B|$ — порядок на множестве мощностей.

Доказательство:

$$\leqslant$$
 — рефлексивно $|A| \le |A|$ $\exists A' = A$ $\varepsilon: A \rightarrowtail A' \forall a \in A$ $\varepsilon(a) = a$.

$$\leq$$
 — транзитивно $|A| \leq |B|, |B| \leq |C|$.

$$\begin{cases} \varphi: A \rightarrowtail B \\ \exists \psi: B \rightarrowtail C \end{cases} \Rightarrow \varphi_0 \psi: A \rightarrowtail C \Rightarrow |A| \leq |C|.$$

≤ — антисимметрично.

Предложение (Теорема Кантора-Бернштейна)

$$\varphi: A \rightarrow B, \ \psi: B \rightarrow A \Rightarrow \exists \beta: A \rightarrow B.$$

Доказательство:

$$\alpha = \varphi_0 \psi : A \rightarrow A \quad E_\alpha = \alpha(A)$$

Строим цепочку множеств A_0 , A_1 , A_2 ,...

$$A_0 = A_1$$
 $A_1 = \psi(B)$, $A_2 = \alpha(A_0)$, $A_3 = \alpha(A_1)$.

$$A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \supseteq ... \supseteq D...A_k = \alpha(A_{k-2})$$
.

$$A_1 = \psi(B) \supseteq A_2 = \psi(\varphi(A)) \ B \supseteq \varphi(A)$$
.

$$A_3 = \alpha(\psi(B)) = \psi(\varphi(\varphi(B))) \quad A \supseteq \psi(B)$$
.

$$D = \bigcap_{i=0}^{\infty} A_i \alpha(A_{2i} \setminus A_{2i+1}) \subseteq A_{2i+2} \setminus A_{2i+3}.$$

Допустим: $x \leftarrow A_{2i} \setminus A_{2i+1} \ \alpha(x) \in A_{2i+3} = \alpha(A_{2i+1}) \Rightarrow \exists y \in A_{2i+1} \ \alpha(y) = \alpha(x)$

 $x \neq y$, это противоречит инъективности α .

$$y \in A_{2i+2} \setminus A_{2i+3} \Rightarrow \exists x \in A_{2i} \ \alpha(x) = y$$
.

Если
$$x \in A_{2i+1}$$
, то $y = \alpha(x) \in A_{2i+3}$.

Значит $x \notin A_{2i+1}$, то есть $x \in A_{2i} \setminus A_{2i+1}$.

Следовательно, $\alpha(A_{2i}\setminus A_{2i+1})=A_{2i+2}\setminus A_{2i+3}$ $\alpha:A_{2i}\setminus A_{2i+1}\succ\to\succ A_{2i+2}\setminus A_{2i+3}$ что $\forall\,i\in N_0$.

$$\beta(a) = \begin{cases} \alpha(a), \text{ если } \exists i \in N_0 \ a \in A_{2i} \setminus A_{2i+1}, \\ a, \text{ иначе } a \in A_{2i+1} \setminus A_{2i+2} \text{ или } a \in D. \end{cases}$$

Убедимся, что $\beta: A \rightarrow \rightarrow A_1$.

Сюръективность:
$$\forall y \in A$$
 либо $y \in D \rightarrow y = \beta(y)$.
$$y = \beta(y) \leftarrow \text{либо} \ y \in A_{2i+1} \setminus A_{2i} \setminus A_{2i} \in N_0.$$

$$\exists x \in A_{2i-2} \setminus A_{2i-1} \leftarrow \text{либо} \ y \in A_{2i} \setminus A_{2i+1} \in N \ .$$

$$\alpha(x) = y \ .$$

Иньективность:
$$x,y \in A$$
 $\beta(x) = \beta(y)$.
 Либо $\beta(x) \in D \to \beta(y) \in D \Rightarrow x = \beta(x) = \beta(y) = y$,
 либо $\exists i \in N_0 \to \beta(x) \in A_{2i+1} \setminus A_{2i} \Rightarrow x = \beta(x) = \beta(y) = y$,
 либо $\exists i \in N \to \beta(x) \in A_{2i} \setminus A_{2i+1} \Rightarrow \beta(x) = \alpha(x) = \alpha(y) = \beta(y) \xrightarrow{\alpha - \text{иньективно}} x = y$.

Итак, $\beta:A \rightarrowtail \to A_1$, но $\psi:B \rightarrowtail \to A_1 \Rightarrow \psi^{-1}:A_1 \rightarrowtail \to B$ $\beta:\psi^{-1}:A \rightarrowtail \to \beta$, что и требовалось доказать.

2. Предикаты

Операции над предикатами

Предикат — функция *P* типа: $M^n \to B$, где $B = \{0,1\}$, M — произвольное множество, то есть функция *P*, сопоставляющая вектору $(m_1, m_2, ..., m_n)$ значение 0 или 1.

При этом множество М называется предметной областью предиката P $(m_1, m_2, ..., m_n)$; $m_1, m_2, ..., m_n$ — предметными переменными, P — предикатным символом.

Используется выражение: n-местный предикат на множестве M; число n называется местностью предиката.

В общем смысле предикатом называется отображение

$$P: M_1 \times M_2 \times ... \times M_n \to B$$

где M_i есть некоторые множества. Прямое произведение $M_1 \times M_2 \times ... \times M_n$ будем называть областью определения предиката P.

Область истинности предиката P — подмножество $I_p \subseteq M^n$ предметной области предиката P, на элементах которого значения предиката равны 1.

Пример

Одноместный предикат P(X) на множестве натуральных чисел: «при делении на 3 число X даёт остаток 2». Область истинности — множество чисел вида 3n + 2(n = 0.1.2...).

Пример

Двуместный предикат Q(X, Y): «при делении на 3 число X даёт остаток Y». Предметная область для Q(X, Y) — множество пар (a, b), где a и b — натуральные числа, причём $b \in \{0,1,2\}$.

Пример

Трёхместный предикат R (X, Y, Z): «при делении на Z число X даёт остаток Y». Предметная область — множество троек (X, Y, Z), где X, Y, $Z \in N$, $Z \neq 0$, $0 \leq Y < Z$.

Пример

Четырехместный предикат P (λ , L, M, N): «плоскость λ содержит точки L, M, N». Для плоскости λ : 3X - 2Y + 4Z + 7 = 0 и точек L (-3, -5, -2), M (5, 13, 1), N (7, -4, -9) предикат P равен 1. Если же вместо точки M взять точку M (2, 6, 0), P = 0.

Любому n-арному отношению $R(m_1, m_2, ..., m_n)$ можно взаимно однозначно сопоставить n-местный предикат, который 1 для тех и только тех наборов $(m_1, m_2, ..., m_n)$, для которых выполнено $R(m_1, m_2, ..., m_n)$.

Кванторы

Над предикатами на М можно производить логические операции и получать новые предикаты. Операции над предикатами есть операции над соответствующими отношениями: конъюнкция, дизъюнкция, отрицание, импликация и другие. Состав переменных и предметная область предиката, полученного в результате операции, определяются при этом естественным образом.

Например, $P(X_1,X_2,...,X_n)$ & $Q(Y_1,Y_2,...,Y_n)=R(X_1,X_2,...,X_n,Y_1,Y_2,...,Y_n)$, где $X_1\in M_1,X_2\in M_2,...,X_n\in M_n$, $Y_1\in N_1,Y_2\in N_2,...,Y_n\in N_n$; среди переменных X_i,Y_j могут быть совпадающие переменные так же, как и среди множеств M_i , и N_j .

Примеры

- 1. $R(X,Y) = P(X) \& Q(Y), X \in M, Y \in M, X и Y$ разные предметные переменные. Область определения двухместного предиката R(X,Y) множество $S = M^2$.
- 2. R(X) = P(X) & Q(X): у предикатов P(X) & Q(Y) общая предметная область и одинаковая переменная; R(X) одноместный предикат на M.
- 3. $P(X) \to Q(X)$. Это означает: «если выполнено P(X), то выполнено Q(X)», т.е. «если (X>2), то (X<5)» или, выражая импликацию через дизьюнкцию « $(X>2) \lor X<5$ ». Можно устранить отрицание « $(X\le2) \lor (X<5)$ ». Отсюда получаем окончательно: «(X<5)».

Если P(X,Y) — двухместный предикат, то фиксирование или конкретизация одной переменной превращает его в одноместный. Пусть, например, P(X,Y) — «число X делится на число Y», определённый на множестве пар

натуральных чисел N, кроме пар (X,0). Тогда P(X,5) — одноместный предикат на N, истинный для всех чисел, кратных 5.

Для предикатов определяются две специфические операции, называемые навешиванием кванторов, которые превращают одноместный предикат P(X) в 0-местный:

Квантор всеобщности — высказывание: «для всех X выполнено P(X)», обозначение $\forall X: P(X)$.

Квантор существования — высказывание: «существует X, для которого выполнено P(X)», обозначение $\exists X: P(X)$.

Процедура навешивания кванторов на предикат применима к любым предикатам.

Рассмотрим трёхместный предикат P(X,Y,Z), который является истинным для некоторых троек (X,Y,Z). Предикату P можно сопоставить выражения с кванторами $\exists X: P(X,Y,Z)$ и $\exists X: P(X,Y,Z)$; первое означает: «для всякого X выполнено P(X,Y,Z)», второе — «существует X такой, что выполнено P(X,Y,Z)».

Пусть, например, P(X, Y, Z) = 3X - 2Y > Zс предметной областью — множеством действительных чисел R, область истинности предиката P — полупространство по одну сторону от плоскости 3X - 2Y = Z. Ему можно сопоставить выражения

$$Q_1(X,Y) = \forall X : 3X - 2Y > Z \text{ M } Q_2(X,Y) = \exists X : 3X - 2Y > Z.$$

Полученные двуместные предикаты зависят от Y и Z, но не зависят от X. Этот факт выражается так: переменная X в указанных предикатах связана квантором, а переменные Y, Z— свободные.

Связанные (свободные) переменные — это переменные, на которые навешены (соответственно — не навешены) кванторы $\forall X$ или $\exists X$.

Смысл связанных и свободных переменных в предикатных выражениях различен. Свободные переменные — это обычные переменные; они могут принимать значения из предметной области; выражение P(X) — переменное высказывание, зависящее от значения X. В то же время выражение $\forall X: P(X)$ не зависит от X и при фиксированных предикате P и предметной области имеет вполне определённое значение: 0 или 1. Это, в частности, означает, что переименование связанной переменной не меняет истинности выражения.

Переменные, являющиеся по существу связанными, встречаются не только в логике. Например, в выражениях $\sum_{X=1}^{10} f(X)$ или $\int_a^b f(X) dX$ переменная X

связана, то есть при фиксированной f первое выражение равно определённому числу f(1)+f(2)+...+f(10), а второе является функцией от a и b.

На предикат с навешенным квантором можно снова навешивать квантор, если у него есть свободные переменные. Если кванторы навешены на все переменные, предикат становится 0-местным, то есть высказыванием.

Пример

Для рассмотренного выше предиката $P(\lambda, L, M, N)$ предикат $\exists \lambda$: $P(\lambda, L, M, N)$ означает, что существует плоскость, содержащая 3 данные точки: L, M, N. Двуместный предикат $\forall L: (\exists \lambda: P(\lambda, L, M, N))$ можно записать короче: $\forall L \exists \lambda: P(\lambda, L, M, N)$, что означает: для любой точки L существует плоскость λ , содержащая эту точку и 2 данные точки: M, N. Наконец, предикат $\forall L: (\forall M: (\forall N: (\exists \lambda: P(\lambda, L, M, N))))$, или $\forall L: \forall M: \forall N: \exists \lambda: P(\lambda, L, M, N)$, выражает истинное высказывание о том, что для любых трёх точек существует содержащая их плоскость.

Область действия квантора — выражение, на которое навешивается квантор. Для устранения разночтений оно может быть заключено в скобки.

Примеры

- 1. $(\forall X : P(X,Y)) \lor Q(X)$.
- 2. $(\forall X : ((P(X,Y)) \lor Q(X))$.

Предикатные формулы. Тавтологии

Предикатная формула (формула логики предикатов) — формула, содержащая знаки булевых операций и кванторов.

Более точно, в формулах участвуют: символы предметных переменных X, Y, Z, ...; символы предикатов; логические символы $\neg, \&, \lor, \rightarrow, \sim$; символы кванторов.

Предикатной формулой (одновременно определяются понятия свободных и связных переменных) называется выражение, построенное по следующим правилам.

1. Если P — символ предиката, $X_1, X_2, ..., X_t$ — символы переменных (необязательно различных), то $P(X_1, X_2, ..., X_t)$ — предикатная формула; все её переменные свободные.

- 2. Если A формула, то A тоже формула с теми же свободными и связанными переменными.
- 3. Если A, B формулы и нет переменных, свободных в одной из них и связанных в другой, то A&B, $A\lor B$, $A\to B$, $A\sim B$ тоже формулы с теми же свободными и связанными переменными.
- 4. Если A формула, содержащая свободную переменную X (и, быть может, другие переменные свободные и связанные), то выражения $\forall X: A(X)$ и $\exists X: A(X)$ предикатные формулы; в каждой их них переменная X переходит из множества свободных в множество связанных, т.е. число свободных переменных уменьшается, а число связанных увеличивается на 1. При этом формула A называется областью действия квантора.

В формуле должны быть правильным образом расставлены скобки, определяющие области действия кванторов и порядок выполнения логических и кванторных операций. Однако для сокращения записи могут быть удалены излишние скобки (считается, что знак квантора связывает сильнее, чем знак логической операции), также можно записывать кванторные формулы без знака «:».

Пример

Пусть $P(X,Y) = X \le Y$ для действительных чисел $X,Y \in R$. Это 2-местный предикат с предметной областью на числовой плоскости. Область истинности — полуплоскость, ограниченная биссектрисой |u||| координатных углов, включающая точки границы. Формулы $\forall X: P(X,Y)$ и $\forall Y: P(X,Y)$ — одноместные предикаты со свободными переменными Y и, соответственно, X. Область истинности — пустое множество, так как не существует ни наибольшего, ни наименьшего среди действительных чисел. Предикат $\exists X: P(X,Y)$ — одноместный со свободной переменной Y. Его область истинности — вся числовая ось, так как какое бы ни было Y, существует меньшее число X.

Рассмотрим тот же предикат $P(X,Y) = X \le Y$ на предметной области натуральных чисел: $X,Y \in N = \{0,1,2,...\}$. Область истинности предиката — целочисленные точки 1-го координатного угла, включая точки оси абсцисс, расположенные над биссектрисой и на ней. Область истинности для предиката $\forall X: P(X,Y)$ — пустое множество, для $\forall Y: P(X,Y)$ область истинности состоит из одного числа 0. Отсюда можно заключить, что предикат $\exists X: (\forall Y: P(X,Y))$ есть истинное высказывание (обе переменные — связанные), поскольку существует наименьшее натуральное число — 0.

Пример

1. Для предиката $P(X,Y) = X \le Y$ формула P(X,Y) & P(Y,X) выражает предикат X = Y. Тот же предикат P(X,Y) может быть выражен через

3-местный предикат на множестве натуральных чисел Q(S,T,U) = S+T=U следующим образом: $P(X,Y) = \exists S: Q(S,X,Y)$, т.е. существует такое S, что X+S=Y, или $Y-X=S\geq 0$. Формула $\exists S: Q(S,X,Y)$ означает, что X — чётное число (X=S+S). Наконец, формула P(X,Y)&P(Y,X) выражает условие X<Y.

2. Предикат R(X, Y, Z): «при делении на Zчисло X даёт остаток Y» может быть выражен предикатной формулой $\exists k(X=kZ+Y), k\in N$.

Область истинности предиката, выраженного предикатной формулой, определяется областями истинности составляющих и применяемыми в формуле операциями:

$$I_{P \vee Q} = I_P \cup I_Q; I_{P \& Q} = I_P \cap I_Q; I_{\neg P} = \overline{I}_P; I_{P \to Q} = \overline{I}_P \cup I_Q.$$

Интерпретация — это сопоставление каждому предикатному символу в формуле определённого предиката.

Пусть две формулы F и G содержат одно и то же множество свободных переменных (может быть пустое).

Формулы F и G равносильны в данной интерпретации, если они выражают один и тот же предикат (то есть при одинаковых значениях предметных переменных они принимают одинаковые значения).

Пример

Если P(X, Y) = X > Y, Q(X, Y) = X > Y, то $\bar{P}(X, Y)$ и Q(X, Y) — равносильные формулы; при других интерпретациях P и Q эти формулы могут не быть равносильными.

Формулы F и G равносильны на множестве M, если они равносильны во всех интерпретациях на этом множестве.

Пример

 $\exists X : P(X)$ и $\forall X : P(X)$ будут равносильны на одноэлементном множестве M: если существует подходящий X, то поскольку других значений нет, истинно и второе суждение. На множестве, содержащем более одного элемента, это уже не так.

Формулы F и G равносильны в логике предикатов, если они равносильны на всех множествах.

В этом случае можно назвать эту равносильность тождеством в логике предикатов, или законом логики предикатов и обозначать $F \equiv G$.

Для предикатных формул сохраняются все равносильности логики высказываний. Кроме того, справедливы такие эквивалентности для кванторных формул.

- 1. Перенос квантора через отрицание (законы де Моргана для предикатов): $\neg \forall X : A(X) \equiv \exists X : \neg A(X); \neg \exists X : A(X) \equiv \forall X : \neg A(X)$.
 - 2. Вынесение квантора за скобки.

Если формула A(X) содержит свободную переменную X, а формула B не содержит X и в них нет переменных, свободных в одной из формул и связных в другой, то:

$$\exists X : (A(X) \& B) \equiv (\exists X : A(X)) \& B;$$

$$\forall X : (A(X) \& B) \equiv (\forall X : A(X)) \& B;$$

$$\exists X : (A(X) \lor B) \equiv (\exists X : A(X)) \lor B;$$

$$\forall X : (A(X) \lor B) \equiv (\forall X : A(X)) \lor B.$$

3. Законы коммутативности для одноимённых кванторов.

$$\forall X : (\forall Y : A(X,Y)) \equiv \forall Y : (\forall X : A(X,Y));$$

$$\exists X : (\exists Y : A(X,Y)) \equiv \exists Y : (\exists X : A(X,Y)).$$

Коммутативность даёт использовать более короткую запись: $\forall X,Y,Z: P(X,Y,Z)$ или $\exists X,Y: Q(X,Y,Z)$ и т. п.

Отметим различие между логическими интерпретациями формул в логике высказываний и логике предикатов. Простое высказывание допускает два возможных значения, а сложное, составленное из n простых — 2^n . В отличие от высказываний предикат имеет, вообще говоря, бесконечное множество интерпретаций. Во-первых, может быть бесконечной область определения предиката, и предикатному символу можно сопоставить бесконечное множество различных функций. Во-вторых, предикат $P(m_1, m_2, ..., m_n)$ можно рассматривать на различных множествах M.

Многие предикаты, например, выражающие часто встречающиеся отношения, такие как "=",">","<" и другие, имеют стандартные обозначения и вполне определенный (или оговорённый в пределах контекста) смысл. С точки зрения истинности для предикатных формул вводятся следующие понятия.

Формула F называется выполнимой (непротиворечивой), если существует интерпретация, в которой F имеет истинное значение, т.е. область истинности не пуста.

Тождественно истинная (общезначимая) формула, или тавтология, — формула, для которой при любой её интерпретации область истинности совпадает с областью определения.

Тождественно ложная (противоречивая) формула — это формула, для которой область истинности пуста.

Обозначение тавтологии: $\vdash F$, тождественно ложной $- \vdash \neg F$.

Формула F общезначима тогда и только тогда, когда формула $\neg F$ не является выполнимой; формула F выполнима тогда и только тогда, когда $\neg F$ не является общезначимой.

Некоторые общезначимые формулы:

1. Если F и G — равносильные в логике предикатов формулы, то $F \sim G$ — общезначимая формула. При этом $I_F = I_G$.

Если $F \rightarrow G$ — общезначимая формула, то $I_F \subseteq I_G$.

- 2. Если Y не входит в формулу P(X), то $\forall X : P(X) \to P(Y)$ и $P(Y) \to \exists X : P(X)$ общезначимые формулы.
 - 3. Приведённые выше тождества для кванторных формул.

Квантор всеобщности есть обобщение операции конъюнкции, а квантор существования — обобщение дизъюнкции, и тем самым законы де Моргана для предикатов характеризуют взаимную двойственность кванторов $\forall X$ и $\exists X$

- 4. $\forall X : (P(X) \& Q(X)) \equiv \forall X : P(X) \& \forall X : Q(X)$.
- 5. $\exists X : (P(X) \lor Q(X)) \equiv \exists X : P(X) \lor \exists X : Q(X)$.
- 6. Выше отмечена возможность перестановки одноимённых кванторов т.е. эти эквивалентности общезначимые формулы.
- 7. Импликация $\exists X : (\forall Y : P(X,Y)) \to \forall Y : (\exists X : P(X,Y))$ является тавтологией. Однако сложная формула $\forall X : (\exists Y : P(X,Y)) \to \exists Y : (\forall X : P(X,Y))$ уже не является тавтологией.

Теорема о подстановке

Пусть F — тождественно истинная формула логики высказываний. Тогда подстановка вместо её переменных $X_1, X_2, ..., X_n$ предикатных формул $B_1, B_2, ..., B_n$ такая, что получается правильная предикатная формула, которая даёт общезначимую формулу логики предикатов.

Вопрос о распознавании общезначимости формул логики предикатов относится к предмету теории алгоритмов. Не уточняя пока соответствующих понятий, сформулируем важный результат.

Теорема Черча

Не существует алгоритма, который для любой формулы логики предикатов установил бы, общезначима она или нет.

Однако в некоторых частных случаях такой алгоритм существует, например, для формул, содержащих только одноместные предикатные символы.

Исчисление предикатов

Метод доказательства формул, содержащих переменные, путём непосредственной подстановки в них предметных констант называется методом интерпретаций, или методом моделей. Подстановка констант позволяет интерпретировать формулу как содержательное утверждение об элементах конкретного множества. Поэтому такой метод, апеллирующий к содержательному смыслу интерпретированной формулы называют семантическим, то есть смысловым. Это удобно при доказательстве выполнимости формул или их неэквивалентности, поскольку и в том, и в другом случае достаточно найти одну подходящую подстановку (интерпретацию).

Метод интерпретации можно применять и для исследования истинности формул на конечных предметных областях, так как если область M конечна, $M=\{m_1,m_2,...,m_n\}$, то кванторы выражают конечные формулы логики высказываний:

$$X: P(X,Y) \equiv P(m_1) \& P(m_2) \& ... \& P(m_n),$$

 $X: P(X,Y) \equiv P(m_1) \lor P(m_2) \lor ... \lor P(m_n).$

В этом случае все кванторные формулы можно заменить указанным способом и получить, содержащие только символы предикатов и логических операций, после чего проверить истинность можно конечным числом подстановок констант.

Для большинства же предметных областей доказательство тождественной истинности формул методом интерпретаций связано с большими трудностями. Поэтому применяется другой приём — аксиоматизация, т. е. построение формальной системы и порождение исследуемых формул из аксиом с помощью процедур вывода.

Как и для исчисления высказываний, для предикатных формул построение исчисления проводится путём указания некоторой совокупности формул, которые называются аксиомами, и заданием правил вывода, позволяющих из общезначимых формул получать общезначимые. Часть аксиом исчисления предикатов совпадает с аксиомами исчисления высказываний.

Приведем две аксиомы исчисления предикатов:

- 1. $\forall X_{\iota}(P(X_{\iota}) \to P(X_{j}))$, где формула $P(X_{\iota})$ не содержит переменной X_{j} . 2. $P(X_{\iota}) \to \exists X_{j}(P(X_{j}))$ с тем же условием, что и в 1.

Правила вывода (при этом не должны нарушаться требования к правильности формул):

1. Правило modus ponens:

$$\frac{A, (A \to B)}{B}.$$

2а. Правило связывания квантором ∀:

$$\frac{B \to A(X_{\iota})}{B \to \forall X_{\iota} A(X_{\iota})},$$

где формула B не содержит переменной X_i .

26. Правило связывания квантором 3:

$$\frac{A(X_{\iota}) \to B}{\exists X_{\iota} A(X_{\iota}) \to B},$$

где формула B не содержит переменной X_i .

3. Переименование связанной переменной: связанную переменную формулы A можно заменить в кванторе и во всех вхождениях в области действия квантора.

Понятия вывода, теоремы, вывода из системы гипотез определяются в исчислении предикатов так же, как в любой аксиоматической теории.

Приведём без доказательства несколько утверждений об исчислений предикатов (A, B, ... — формулы в исчислении).

Теорема 1

Если $A \vdash B$ и существует вывод формулы B из формулы A, использующий только правило modus ponens, то $\Gamma \vdash (A \to B)$.

Теорема 2

Аксиомы исчисления предикатов — общезначимые формулы.

Теорема 3

Формула, получаемая из общезначимой по любому правилу выхода 1-3, является общезначимой.

Теорема 4

Любая выводимая в исчислении предикатов формула — общезначима.

Теорема 5

Исчисление предикатов непротиворечиво, так как в силу теоремы 4 невозможно вывести одновременно A и $\neg A$.

Определённое выше исчисление предикатов называют узким исчислением предикатов, в отличие от нерассматриваемого расшиненного исчисления, в котором допускаются кванторы не только по предметным переменным, но и по предикатным переменным.

Теорема (Гёделя)

В узком исчислении предикатов всякая общезначимая формула выводима.

3. Булевы функции

Определение и примеры

п-местная *булева функция* (БФ) $f:\{0,1\}^n \to \{0,1\}$.

Пример

0 — тока нет, 1 — тока нет. На каждом выходе Б Φ от входов.

Пример

Сложное предложение. Сегодня вторник, и идет дождь. О каждом предложении можно сказать истинно или ложно. Сопоставим истине -1, лжи -0. Сложное предложение $-\mathbf{\, }\mathbf{\, }\mathbf{\, }\Phi$ от простых предложений. Y= если $\Pi 1$, то $\Pi 2$

П1	0	0	1	1
П2	0	1	0	1
Y	1	1	0	1

Если x = y, то 0 = 0.

Для любой БФ $f(x_1, x_2, x_3...x_n)$ можно построить таблицу:

x_1	x_2	x_3		x_{n-1}	x_{n-1}	$f(x_1, x_2, x_3,, x_n)$
0	0	0		0	0	α_1
0	0	0		0	1	α_2
1	1	1		1	0	
1	1	1	•••	1	1	

Лемма о количестве

Количество n-местных БФ равно 2^{2^n} .

Доказательство

Всего $|B|^{|A|}$ функций из АвВ). У нас $A = \{0,1\}^n$, $B = \{0,1\}$, $|A| = 2^n$.

Пример 1

n=1

x	f_0	f_1	f_2	f_3
0	0	0	1	1
1	1	0	1	0

$$f_0(x) = 0$$
, $f_3(x) = 1$ — константы, $f_1(x) = x$; $f_2(x) = \overline{x}$ (отрицание x).

Пример 2
$$n=2, 2^{2^2}=16$$

х	у	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

$$f_0(x,y) = 0, \ f_{15}(x,y) = 1$$
 — константы; $f_3(x,y) = x$; $f_5(x,y) = y$; $f_{10}(x,y) = \overline{y}$; $f_{10}(x,y) = \overline{x}$; $f_{12}(x,y) = x \land y = xy$ (конъюнкция, умножение, «и»); $f_7(x,y) = x \land y$ (дизъюнкция, «или»); $f_{13}(x,y) = x \rightarrow y$ (импликация, «если..., то»); $f_{11}(x,y) = y \rightarrow x$; $f_9(x,y) = x \leftrightarrow y$ (« эквивалентность, «тогда и только тогда»); $x \leftrightarrow y = (x \rightarrow y) \land (y \rightarrow x)$:

$$f_6\left(x,y\right) = x \oplus y \ \, \text{(сложение по модулю 2)};$$

$$x \oplus y = \overline{x \leftrightarrow y} \ \, ;$$

$$f_{14}\left(x,y\right) = x \mid y \ \, \text{(штрих Шеффера)};$$

$$f_8\left(x,y\right) = x \uparrow y \ \, \text{(стрелка Пирса)};$$

$$f_2\left(x,y\right) = \overline{f_{13}(x,y)} = \overline{x \rightarrow y} \ \, ;$$

$$f_4\left(x,y\right) = \overline{y \rightarrow x} \ \, .$$

Суперпозиция функций

Если
$$f(x_1,x_2,x_3...x_n)$$
, $f_1(y_{11},y_{12},y_{13}...y_{1k_1})$... $f_2(y_{21},y_{22},y_{23}...y_{2k_3})$... $f_n(y_{n1},y_{n2},y_{n3}...y_{nk_n})$, то функция $h(y_{11},y_{12}...y_{nk_n})=$
$$f(f_1(y_{11},y_{12},y_{13}...y_{1k_1})...f_2(y_{21},y_{22},y_{23}...y_{2k_3})...f_n(y_{n1},y_{n2},y_{n3}...y_{nk_n}))$$
 называется суперпозицией этих функций.

Тождества

1.
$$x \lor y = y \lor x$$
.
2. $(x \lor y) \lor z = x \lor (y \lor z)$.
1'. $x \land y = y \land x$.
2'. $(x \land y) \land z = x \land (y \land z)$.

Проверить можно с помощью таблицы:

x	Y	z	$x \vee y$	$y \lor z$	$(x \lor y) \lor z$	$x \lor (y \lor z)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	0	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

3.
$$(x \lor y) \land z = (x \land z) \lor (y \land z)$$
 3'. $(x \land y) \lor z = (x \lor z) \land (y \lor z)$

4.
$$x \lor x = x$$
.

4'.
$$x \wedge x = x$$

5.
$$x \lor 1 = 1$$
.

5'.
$$x \wedge 0 = 0$$
.

6.
$$x \wedge 1 = x$$

6'.
$$x \lor 0 = 0$$
.

7.
$$x \vee \overline{x} = 1$$
.

7'.
$$x \wedge \overline{x} = 0$$
.

$$8. \quad \stackrel{=}{x} = x.$$

9.
$$(x \wedge y) \vee y = y$$
. 9'. $(x \vee y) \wedge y = y$.

9'.
$$(x \lor y) \land y = y$$
.

10.
$$\overline{x \lor y} = \overline{x} \land \overline{y}$$
. $10'. \overline{x \land y} = \overline{x} \lor \overline{y}$.

10'.
$$\overline{x \wedge y} = \overline{x} \vee \overline{y}$$
.

Замечание

Если в тождествах для операций с множествами заменить \cap на \wedge , \cup на \vee , U на 1, \emptyset на 0 и отрицание на дополнение, то получим 19 тождеств для Б Φ .

Проверим Закон де Моргана:

x	у	$x \lor y$	$\overline{x \vee y}$	\overline{x}	\overline{y}	$\overline{x} \wedge \overline{y}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Дизъюнктивная нормальная форма БФ

Обозначение
$$a^b = \begin{cases} a, b = 1; \\ \overline{a}, b = 0. \end{cases}$$

Замечание: $a^b = a \leftrightarrow b$.

Лемма 1

Для любой булевой функции $f:\{0,1\}^n \to \{0,1\}$ верно тождество $f:(x_1,x_2,...,x_n)=\vee x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n}\;f(\alpha_1,\alpha_2\cdots\alpha_n)$, где дизъюнкция берется по всем наборам $(\alpha_1, \alpha_2 \cdots \alpha_n) \in \{0,1\}^n$, для которых $f(\alpha_1, \alpha_2 \cdots \alpha_n) = 1$.

Доказательство

Пусть при $(x_1, x_2 \cdots x_n) = (b_1, b_2 \cdots b_n)$ левая часть равна 1. В правой части есть дизъюнкт $x_1^{b_1}, x_2^{b_2} \cdots x_n^{b_n} f(b_1, b_2 \cdots b_n)$. При $(x_1, x_2 \cdots x_n) = (b_1, b_2 \cdots b_n)$ он равен $b_1^{b_1}, b_2^{b_2} \cdots b_n^{b_n} f(b_1, b_2 \cdots b_n) = 1$. Значит и вся правая часть равна 1.

Пусть при $(x_1, x_2 \cdots x_n) = (b_1, b_2 \cdots b_n)$ левая часть равна 0. Рассмотрим про-извольный дизьюнкт из правой части $x_1^{\alpha_1}, x_2^{\alpha_2} \cdots x_n^{\alpha_n} f(\alpha_1, \alpha_2 \cdots \alpha_n)$. При $(x_1, x_2 \cdots x_n) = (b_1, b_2 \cdots b_n)$ он равен $b_1^{\alpha_1} b_2^{\alpha_2} \cdots b_n^{\alpha_n} f(\alpha_1, \alpha_2 \cdots \alpha_n)$.

Если $\exists i \in \{1 \cdots n\}, \ b_i \neq \alpha_i, \ \text{ то } b_i^{\alpha_i} = 0 \ , \ \text{ если } \forall i \in \{1 \cdots n\}, \ b_i = \alpha_i, \ \text{ то } f\left(\alpha_1, \alpha_2 \cdots \alpha_n\right) = f\left(b_1, b_2 \cdots b_n\right) = 0 \ .$ Т. е. дизъюнкт всегда равен 0. Все дизъюнкты в правой части равны 0, значит вся правая часть равна 0.

Теорема

 $\forall \ f: \{0,1\}^n \to \{0,1\} \ \exists !S \leq \{0,1\}^n \ f\left(x_1,x_2\cdots x_n\right) = \vee x_1^{\alpha_1}, x_2^{\alpha_2}\cdots x_n^{\alpha_n} \text{, где дизъюнк-}$ ция берется по всем наборам $(\alpha_1,\alpha_2\cdots\alpha_n)\in S$.

Доказательство

Для доказательства существования такого множества в силу леммы 1 достаточно положить $S = \left\{ \left(\alpha_1, \alpha_2 \cdots \alpha_n\right) \in \left\{0,1\right\}^n \middle| f\left(\alpha_1, \alpha_2 \cdots \alpha_n\right) = 1 \right\}.$

При этом считаем, что пустое множество S соответствует нулевой булевой функции f.

Для доказательства единственности, заметим, что выражений для правой части столько, сколько множеств $S \subseteq \{0,1\}^n$ т. е. $\left|\beta(\{0,1\}^n)\right| = 2^{\left|\{0,1\}^n\right|} = 2^{2^n}$

и n-местных БФ тоже 2^{2^n} . Каждой правой части соответствует ровно одна БФ, и каждой БФ соответствует выражение правой части. Если какой-то БФ соответствует более одного выражения правой части, то на все функции не хватит таких выражений.

Если $f(x_1,x_2\cdots x_n)=\vee x_1^{\alpha_1},x_2^{\alpha_2}\cdots x_n^{\alpha_n}$, где дизъюнкция берется по всем наборам $(\alpha_1,\alpha_2\cdots \alpha_n)\in S$, то правая часть равенства называется дизъюнктивной нормальной формой функции f.

Пример 1 Построим ДНФ для функции $x \to y : x \to y = x^{\circ}y^{\circ} \lor x^{0}y^{1} \lor x^{1}y^{1}$

x	у	$x \rightarrow y$
0	0	1
0	1	1
1	0	0
1	1	1

Проверка

x	y	\bar{x}	\bar{y}	\overline{xy}	$\bar{x}y$	xy	$\overline{xy} \lor \overline{x}y \lor xy$
0	0	1	1	1	0	0	1
0	1	1	0	0	1	0	1
1	0	0	1	0	0	0	0
1	1	0	0	0	0	1	1

Пример 2

У нас есть 3 кнопки. Требуется спроектировать устройство, которое выдает сигнал, когда нажаты хотя бы 2 кнопки.

х	у	z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

f(x,y,z) — функция голосования трех. Теперь, если мы обладаем большим запасом деталей, позволяющих вычислять \land , \lor и -, то формула f(x,y,z) = $= \overline{x}yz \lor x\overline{y}z \lor xy\overline{z} \lor xyz$ позволяет собрать требуемое устройство. При этом потребуется 8 деталей $\land \land \land$, 3 детали $\land \lor$ и 3 детали $\land \lor$.

Заметив, что $xy\overline{z} \lor xyz = xy(\overline{z} \lor z) = xy$ и $xyz = xyz \lor xyz \lor xyz$, можно сократить количество необходимых деталей:

$$f(x,y,z) = yz \lor xz \lor xy = (y \lor x)z \lor xy$$
 (теперь нужно 2«л» и 2«л»).

Полиномы Жегалкина

Теорема о ДНФ говорит о том, что любую БФ можно представить в виде суперпозиции \wedge , \vee и -.

Система БФ А — *полная*, если любая БФ является суперпозицией функций из А. Например,

из
$$x \lor y = \overline{\overline{x} \land \overline{y}}$$
 следует, что $\{\land, -\}$ — полная система;

из
$$x \wedge y = \overline{x} \vee \overline{y}$$
 следует, что $\{\vee, -\}$ — полная система.

Любая БФ может быть выражена через \wedge , \vee и —. Но $\bar{x} = 1 \oplus x$, а заменив, таким образом, все отрицания, получим выражение через $1, \oplus$ и ·.

Эти функции удовлетворяют следующим тождествам:

1.
$$x \oplus y = y \oplus x$$

2.
$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$

3.
$$x \oplus 0 = x$$

4.
$$x \oplus x = 0$$

5.
$$(x \oplus y)z = xz \oplus yz$$

6.
$$xy = yx$$

7.
$$(xy)z = x(yz)$$

8.
$$x \cdot 1 = x$$

9.
$$x \neq 0 \Rightarrow x = 1 \Rightarrow xx = 1$$

9 аксиом двухэлементного поля $\Rightarrow <\{0,1\}, \oplus, \cdot>$ поле

Раскроем в полученном ранее выражении скобки, получим многочлен. Заметим, что $x \cdot x = x \Rightarrow \forall k \geq 1$ $x^k = x$, т.е. в каждом одночлене каждая переменная стоит в степени 1 или отсутствует. Таким образом, получим тождество вида $f(x_1, x_2 \cdots x_n) = \sum_{S \subseteq \{1, 2 \dots n\}} \alpha_s \prod_{i \in S} x_i$. Его правая часть называется *поли*-

ном Жегалкина.

Теорема

Каждая n-местная Б Φ однозначно (!) представима (\exists) в виде полинома Жегалкина.

Доказательство

Существование доказано перед формулировкой теоремы. Докажем единственность. Каждому полиному соответствует ровно одна БФ. Сколько всего полиномов для *n*-местных БФ? Каждый полином определяется вектором

коэффициентов $(\alpha_\varnothing,\alpha_{\{1\}},\alpha_{\{2\}},\alpha_{\{1,2\}},\alpha_{\{3\}},\alpha_{\{1,3\}},\alpha_{\{2,3\}},\alpha_{\{1,2,3\}}...\alpha_{\{4\}}...\alpha_{\{1,2,....n\}})$. Таких векторов 2^{2^n} . Таким образом число полиномов от n переменных равно числу n-местных функций. Значит каждой булевой функции соответствует ровно один полином.

Замкнутые классы БФ

Класс БФ С — замкнутый, если каждая суперпозиция функций из С лежит в С.

Лемма

Пусть С — замкнутый класс, содержащий не все БФ, $A \subseteq C$. Тогда A неполная система.

Доказательство.

Предположим противное. А — полная, тогда есть суперпозиция функций из А, не лежащая в С, что противоречит определению С.

Примеры

- 1. Все БФ замкнутый класс.
- 2. $\{x\}$
- 3. {0,1}
- 4. $\{0,1,x\}$
- 5. $\{0,1,x,\bar{x}\}$

Замкнутые классы

Для доказательства достаточно заметить, что f(y(x)) = h(x), т.е. суперпозиция функций от одной переменной является функцией от одной переменной.

- 6. $\{\lor,-\}$ не замкнутый класс.
- 7. Все 2-местные Б Φ незамкнутый класс.

Важный пример 1

Говорят, что функция $f(x_1,...,x_n)$ сохраняет константу c, если f(c,c,...,c)=c. Пусть $T_c=\Big\{f\Big|f\big(c,c,...c\big)=c\Big\}.$

Утверждение 1

 T_0 и T_1 — замкнутые классы.

Доказательство.

Пусть
$$c \in \{0,1\}$$
. Пусть $f(x_1,...x_n) \in T_c$, $f_1(y_{11},...y_{1k_1}) \in T_c$,...

$$f(y_{n1},...y_{nk_n}) \in T_c$$
.

Если
$$h(y_{11}...y_{nk_n}) = f(f_1(y_{11},...y_{1k_1})...f_n(y_{n1},...y_{nk_n}))$$
, то

$$h(c,c,...c) = f(f_1(c,c,...c),...,f_n(c,c,...c)) = f(c,c,...c) = c.$$

Как узнать по таблице $f \in T_0$ или $f \notin T_0$?

x_1	x_2	•••	\mathcal{X}_n	f
0	0	:	0	f_1
0	0	:	1	f_2
:	:	:	:	:
1	1	:	0	:
1	1	:	1	f_n

Для этого необходимо рассмотреть f_1 и f_n .

	$\in T_0$	$ otin T_0 $
$\in T_1$	$x, xy, x \lor y$	$1, x \leftrightarrow y, x \to y$
∉ T ₁	0, x + y	\overline{x}

Важный пример 2

Функция $g = (x_1, \dots x_n)$ двойственная для $f(x_1, \dots x_n)$ (обозначение $g = f^*$),

если
$$g(x_1, \dots x_n) = \overline{f(\overline{x_1}, \dots \overline{x_n})}$$
.

Например, из $x \lor y = \overline{\overline{x} \land \overline{y}}$ следует $\lor = \land^*$.

Если
$$f(x) = 0$$
, то $f^*(x) = \overline{f(\overline{x})} = \overline{0} = 1$.

Если
$$f(x) = \overline{x}$$
, то $f^*(x) = \overline{f(\overline{x})} = \overline{\overline{\overline{x}}} = \overline{x}$.

f — самодвойственная, если f^* = f . Пусть S = $\left\{f \middle| f^* = f\right\}$.

Утверждение 2

S — замкнутый класс.

Доказательство

Пусть
$$f, f_1 \cdots f_n \in S$$
. $h = f(f_1(y_{11}, \dots y_{1k_1}) \dots f_n(y_{n1}, \dots y_{nk_n}))$.

$$\begin{split} &h^*\left(y_{11},\ldots y_{1k_1}\right) = \overline{h(\overline{y_{11}}\ldots \overline{y}_{nk_n})} = \overline{f\left(f_1\left(\overline{y_{11}},\ldots \overline{y}_{1k_1}\right)\ldots f_n\left(\overline{y_{n1}},\ldots \overline{y}_{nk_n}\right)\right)}\,.\\ &f_1\left(\overline{y_{11}},\ldots \overline{y_{1k_1}}\right) = \overline{f_1\left(y_{11},\ldots y_{1k_1}\right)} = \left[\operatorname{T.K.}\, f_1\cdots f_n\in S\right] = \\ &= \left(\overline{f_1\left(\overline{y_{11}},\ldots \overline{y_{1k_1}}\right)\ldots \overline{f_n\left(\overline{y_{n1}},\ldots \overline{y_{nk_n}}\right)}}\right) = \\ &= \left[\operatorname{T.K.}\, f\in S\right] = f\left(f_1\left(y_{11},\ldots y_{1k_1}\right)\ldots f_n\left(y_{n1},\ldots y_{nk_n}\right)\right) = h\left(y_{11},\ldots y_{nk_n}\right) \Rightarrow h\in S. \end{split}$$

Как по таблице узнать $f \in S$ или $f \notin S$?

x_1	x_2		X_n	f
0	0	:	0	α
0	0	:	1	β
γ_1	γ_2		γ_n	γ
$\bar{\gamma}_1$	$\bar{\gamma}_2$	i	$\overline{\gamma}_n$	$\bar{\gamma}$
1	1	:	0	$\overline{\beta}$
1	1	:	1	$\overline{\alpha}$

$$\forall x_1, x_2 \cdots x_n \quad f(\overline{x_1}, \overline{x_2} \cdots \overline{x_n}) = \overline{f(x_1, x_2 \cdots x_n)}$$

∈ S	∉S	
$\overline{x}, x, xy \lor xz \lor yz$	$0,1,xy,x \leftrightarrow y,x \rightarrow y,x+y,x \mid y$	

Самодвойственность этой функции можно увидеть и по таблице:

х	у	z	$xy \lor xz \lor yz$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1

х	у	z	$xy \lor xz \lor yz$
1	1	0	1
1	1	1	1

Важный пример 3

Пусть

$$\vec{\alpha} = (\alpha_1, \alpha_2 \cdots \alpha_n) \in \{0,1\}^n, \vec{\beta} = (\beta_1, \beta_2 \cdots \beta_n) \in \{0,1\}^n.$$

Положим по определению $\vec{\alpha} \le \vec{\beta} \Leftrightarrow \forall i \in \{1 \cdots n\} \alpha_i \le \beta_i$.

Тогда \leq — бинарное отношение на $\{0,1\}^n$

- ≤ рефлексивно,
- ≤ антисимметрично,
- ≤ транзитивно,

 \Rightarrow \leq — порядок на $\{0, 1\}^n$.

Отметим, что $001 \nleq 110$, $110 \nleq 001$, т. е. эти векторы несравнимы относительно введенного порядка.

Функция $f(x_1, \dots x_n)$ монотонная, если она сохраняет порядок \leq , т. е.

$$\forall \vec{\alpha}, \vec{\beta} \in \{0,1\}^n \ \vec{\alpha} \leq \vec{\beta} \Rightarrow f(\vec{\alpha}) \leq f(\vec{\beta}).$$

Пусть
$$M = \{f | f$$
 – монотонная $\}$.

Утверждение 3

M — замкнутый класс.

Доказательство

Пусть
$$f, f_1 \cdots f_n \in S$$
. $h = f(f_1(y_{11}, \dots y_{1k_1}) \dots f_n(y_{n1}, \dots y_{nk_n}))$.

Рассмотрим два произвольных вектора

$$\vec{\alpha} = (\alpha_{11}, \alpha_{12} \cdots \alpha_{1k} \alpha_{21}, \alpha_{22} \cdots \alpha_{2k_2 \cdots} \alpha_{n1} \alpha_{n2} \cdots \alpha_{nk_n})$$

$$\vec{\beta} = (\beta_{11}, \beta_{12} \cdots \beta_{1k} \beta_{21}, \beta_{22} \cdots \beta_{2k}, \dots \beta_{n1} \beta_{n2} \cdots \beta_{nk})$$
.

Обозначим «части» векторов $\vec{\alpha}$ и $\vec{\beta}$ так:

$$\vec{lpha}_i = \left(lpha_{i1}, lpha_{i2}, \cdots lpha_{ik_i}
ight), \ \vec{eta}_2 = \left(eta_{i1}, eta_{i2} \cdots eta_{2k_i}
ight)$$
. Тогда

$$h\left(\vec{\alpha}\right) = f\left(f_1\left(\vec{\alpha}_1\right)...f_n\left(\vec{\alpha}_n\right)\right), \text{ M } h(\vec{\beta}) = f\left(f_1\left(\vec{\beta}_1\right)...f_n\left(\vec{\beta}_n\right)\right).$$

Пусть $\vec{\alpha} \leq \vec{\beta}$, тогда $\vec{\alpha}_1 \leq \vec{\beta}_1, \vec{\alpha}_2 \leq \vec{\beta}_2 \cdots \vec{\alpha}_n \leq \vec{\beta}_n$. Теперь, в силу произвольности выбранных вектров $\vec{\alpha}$ и $\vec{\beta}$, и следующих очевидных импликаций

$$f_1 \in M, ..., f_n \in M \Rightarrow f_1\left(\vec{\alpha}_1\right) \leq f_1\left(\vec{\beta}_1\right) \cdots f_n\left(\vec{\alpha}_n\right) \leq f_n\left(\vec{\beta}_n\right)$$
 и $f \in M \Rightarrow h\left(\vec{\alpha}\right) = f\left(f_1\left(\vec{\alpha}_1\right) ... f_n\left(\vec{\alpha}_n\right)\right) \leq f\left(f_1\left(\vec{\beta}_1\right) ... f_n\left(\vec{\beta}_n\right)\right) = h\left(\vec{\beta}\right),$ получаем $h \in M$.

$\in M$	<i>∉ M</i>	
$0,1,xy,x,x\vee y$, $xy\vee xz\vee yz$	$\bar{x}, x \leftrightarrow y, x \rightarrow y, x + y,$	

По определению монотонности $f \in M \Leftrightarrow \forall \vec{\alpha}, \vec{\beta} \vec{\alpha} \leq \vec{\beta} \Rightarrow f(\vec{\alpha}) \leq f(\vec{\beta})$, значит $f \notin M \Leftrightarrow \exists \vec{\alpha}, \vec{\beta} \vec{\alpha} \leq \vec{\beta}$ и $f(\vec{\alpha}) > f(\vec{\beta})$. Например, функция x + y не монотонна, поскольку $\vec{\alpha} = (0,1), \vec{\beta} = (1,1), \vec{\alpha} \leq \vec{\beta}$, но 0+1>1+1. На диаграмме отношения порядка это выглядит так, что под некоторым нулем располагается единица:

Проверим функцию голосования трех:

Она — монотонная.

Важный пример 4

$$f(x_1,...,x_n) \text{ линейная, если } \exists a_0,a_1\cdots a_n \in \big\{0,1\big\} \ f\big(x_1,...x_n\big) = a_0+a_1x+\ldots + \\ + a_nx_n. \ \text{Пусть } L = \big\{f\big|f-\text{линейная}\big\}\,.$$

Утверждение 4

L — замкнутый класс.

$\in L$	∉ L	
$\bar{x}, 0, 1, x, x \leftrightarrow y, x + y$	$xy, x \to y, x \mid y, xy \lor xz \lor yz, x \lor y$	

Почему это так? Например, xy — это полином Жегалкина, а он единственный (по Теореме), значит в виде многочлена первой степени конъюнкцию представить невозможно. Аналогично, находя полиномы Жегалкина оставшихся функций, доказываем их линейность или нелинейность:

$$x \lor y = x + y + xy;$$

$$x \to y = 1 + x + xy;$$

$$x \leftrightarrow y = 1 + x + y;$$

$$x \mid y = 1 + xy;$$

$$xy \lor xz \lor yz = xy + xz + yz.$$

Теорема Поста

Теорема

Система функций A полна тогда и только тогда, когда A не содержится ни в одном из пяти классов: T_1 , T_2 , S, M, L.

Доказательство. Необходимость доказана в утверждениях 1—4. Докажем достаточность.

1. Лемма о несамодвойственной функции

Подставляя вместо аргументов несамодвойственной функции \bar{x} или x, можно получить константу.

Пусть $f\left(x_1, \cdots x_n\right)$ — несамодвойственная функция, тогда найдется вектор $(\alpha_1, \alpha_2 \cdots \alpha_n) \in \left\{0,1\right\}^n$, что $f\left(\alpha_1, \alpha_2 \cdots \alpha_n\right) = f\left(\overline{\alpha_1}, \overline{\alpha_2}, \ldots, \overline{\alpha_n}\right)$. Пусть $\phi_i\left(x\right) = x$ при $\alpha_i = 1$ и $\phi_i\left(x\right) = \overline{x}$ при $\alpha_i = 0$. Тогда функция $h(x) = f\left(\phi_1\left(x\right), \phi_2\left(x\right), \ldots, \phi_n\left(x\right)\right)$ получена подстановкой \overline{x} или x вместо аргументов f и обладает свойством

$$h(1) = f(\varphi_1(1), \varphi_2(1), \dots, \varphi_n(1)) = f(\alpha_1, \alpha_2 \cdots \alpha_n) =$$

$$= f(\overline{\alpha_1}, \overline{\alpha_2}, \dots, \overline{\alpha_n}) = f(\varphi_1(0), \varphi_2(0), \dots, \varphi_n(0)) = h(0)$$

значит — это константа.

2. Получение констант (из А)

 $A \subsetneq T_0 \Rightarrow \exists f_0 \in A \setminus T_0$. Если $f_0 (1,1,...,1) = 0$, то $f_0 (x,x,...,x) = \overline{x}$. Тогда по лемме о несамодвойственной функции из A можно получить константу. Вторая константа получается как отрицание первой.

Если
$$f_0(1,1,...,1)=1$$
, то $f_0(x,x,...,x)=1$.

 $A \subsetneq T_1 \Rightarrow \exists f_1 \in A \setminus T_1$. Повторяя для f_1 рассуждения, проведенные для f_0 , получим либо константу 0, либо обе константы.

3. Получение отрицания (из А и констант)

 $A \subsetneq M \Rightarrow \exists f_M \in A \setminus M$. Поскольку f_M немонотонная, найдутся векторы $\vec{\alpha}, \vec{\beta} \in \left\{0,1\right\}^n$, что $\vec{\alpha} \leq \vec{\beta}$, $f_M\left(\vec{\alpha}\right) = 1$ и $f_M\left(\vec{\beta}\right) = 0$. Пусть $\vec{\alpha} = \left(\alpha_1, \alpha_2, ..., \alpha_n\right)$, $\vec{\beta} = \left(\beta_1, \beta_2, ..., \beta_n\right)$. Обозначим через I множество тех индексов, для которых $\alpha_i = \beta_i$. Пусть $\phi_i\left(x\right) = \alpha_i$ при $i \in I$ и $\phi_i\left(x\right) = x$ в противном случае. Тогда

функция $h(x) = f_M(\varphi_1(x), \varphi_2(x), ..., \varphi_n(x))$ получена подстановкой x или констант вместо аргументов f_M и обладает свойствами:

$$h(0) = f_M\left(\varphi_1\left(0\right), \varphi_2\left(0\right), ..., \varphi_n\left(0\right)\right) = f_M\left(\alpha_1, \alpha_2 \cdots \alpha_n\right) = 1$$
 и $h(1) = f_M\left(\varphi_1\left(1\right), \varphi_2\left(1\right), ..., \varphi_n\left(1\right)\right) = f_M\left(\beta_1, \beta_2, ..., \beta_n\right) = 0$, т. е. является отринанием.

4. Получение умножения (из А констант и отрицания)

$$A \subsetneq L \Rightarrow \exists f_L \in A \setminus L$$
.

Получим сначала нелинейную функцию двух аргументов:

$$f_L(x_1x_2\cdots x_n) \notin L$$
;

$$f_L(x_1x_2\cdots x_n) = \sum_{S\subseteq \{1\cdots n\}} \alpha_S \prod_{i\in S} x_i.$$

Пусть T — наименьшее по мощности множество $|T| \ge 2$ такое, что $\alpha_T = 1$.

Выберем $i, j \in T, i \neq j$.

Сделаем замену:

$$X_i \to X$$
;

$$x_i \rightarrow y$$
;

$$x_k \to 1$$
, если $k \in T \setminus \{i, j\}$;

$$x_k \to 0$$
, если $k \notin T$.

После замены получим БФ от 2-х переменных x и y:

$$\psi(x,y) = A + Bx + Cy + Dxy$$
. Найдем D .

Пусть из слагаемого $\alpha_S \prod_{k \in S} x_k$ при замене получим xy. Тогда $\alpha_S = 1$,

 $i, j \in S, |S| \ge 2$. Кроме того, никакое x_k ($k \in S$) не заменилось на 0, значит $k \in S \implies k \in T$, т.е. $S \subseteq T$. В силу минимальности T, получим, S = T, т.е. xy получится при замене ровно 1 раз. Следовательно, D = 1.

$$\psi(x,y) = A + Bx + Cy + xy.$$

$$\varphi(x,y) = \psi(x+C,y+B) = A + B(x+C) + C(y+B) + (x+C)(y+B) =$$

$$= A = Bx + BC + Cy + BC + xy + Bx + Cy + BC = A + BC + xy.$$

Отсюда
$$(A + BC + \varphi(x, y)) = xy$$
.

Сложения не нужно: $x = 0 + x, x + 1 = \overline{x}$, что и требовалось доказать.

Следствие 1

В каждой полной системе есть полная подсистема, состоящая из не более, чем 4-х функций.

Доказательство.

Пусть А — полная система.

$$f_0 \in A \setminus T_0, f_1 \in A \setminus T_1, f_S \in A \setminus S, f_M \in A \setminus M, f_L \in A \setminus L \Rightarrow \{f_0, f_1, f_S, f_M, f_L\} - \{f_0, f_1, f_2, f_M\} = \{f_0, f_1, f_S, f_M\} - \{f_0, f_1, f_S\} - \{f_0, f$$

полная.

$$f_0(1,...1) = 1 \rightarrow f_1$$
 не нужна.

$$f_0(1...1) = 0 \rightarrow f_0 \notin S \rightarrow f_S$$
 не нужна.

Пример 1

$$f_0 = 0$$
;

$$f_1 = 1$$
;

$$f_2 = xy$$
;

$$f_3 = x + y + z .$$

	T_0	T_1	S	M	L
f_0	+	_	_	+	+
f_1	_	+	_	+	+
f_2	+	+	_	+	_
f_3	+	+	+	_	+

"+"-
$$\in$$
.
"-"- \notin .
 $f_3:0+0+0=0$.
$$f_3:1+1+1=1$$
.
$$\overline{\overline{x}+\overline{y}+\overline{z}}=1+(1+x)+(1+y)+(1+z)=x+y+z$$
.
$$(1,0,0)\leq (1,1,0)$$
.
$$1+0+0>1+1+0$$
.

В каждом столбике есть "—", значит по теореме Поста эта система полная $\{0,1,xy,x+y+z\}$. Любая собственная подсистема этой системы не полная.

Пример 2		
Полные системы вида	$\{f(x,y)\}$:

х	У	F		↑
0	0	1	1	1
0	1	γ	0	1
1	0	γ	0	1
1	1	0	0	0

$$x \mid y = \overline{xy} = 1 + xy \notin L.$$
 $x \uparrow y = \overline{x \lor y} = \overline{x} \cdot \overline{y} = (1+x)(1+y) = 1+x+y+xy \notin L.$
 $\{\}, \{\uparrow\} \longrightarrow \text{полные}.$

Следствие 2

 T_0, T_1, S, M, L — полный список максимальных по включению замкнутых классов, отличных от множества всех БФ.

Доказательство

Легко убедиться, что для каждой пары из описанных в условии классов найдется функция, лежащая в первом и не лежащая во втором. Например, такие «различающие» функции представлены в следующей таблице:

	<i>∉ T</i> ₀	∉ <i>T</i> ₁	∉ S	∉ M	$\notin L$
$\in T_0$		0	0	x + y	xy
$\in T_1$	1		1	$x \leftrightarrow y$	xy
∈ S	\bar{x}	$\overline{\chi}$		\bar{x}	$xy \lor yz \lor xz$
∈ M	1	0	0		xy
$\in L$	1	0	0	\bar{x}	

Рассмотрим $C \in \{T_0, T_1, S, M, L\}$. Найдется $f \notin C$, значит, $\{f\} \cup C$ не помещается ни в один из классов T_0, T_1, S, M, L , поэтому это полная система, следовательно, множество всех суперпозиций функций этой системы

 $(<\!\{f\}\cup C>\!)$ — все БФ. Таким образом, C — максимальный по включению замкнутый класс.

Пусть X — еще один максимальный замкнутый класс.

Тогда X не помещается в T_0 , T_1 , S, M, $L \implies X >$ все Б Φ .

Пример 3

Пусть у нас имеется большой запас деталей двух типов, вычисляющих следующие трехместные булевы функции:

х	у	z	f_1	f_2
0	0	0	0	1
0	0	1	1	1
0	1	0	1	0
0	1	1	0	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	1

Можно ли из этих деталей собрать схему, вычисляющую умножение, и если можно, то как?

Полнота:

	T_0	T_1	S	М	L
f_1	+	_	_	_	+
f_2	_	+	_	_	_

$$\begin{split} &f_1\big(x,y,z\big)\not\in M\,?\quad f_2(x,y,z)\not\in M\,?\\ &\big(0,0,1\big)\!\leq\!(1,1,1)\,;\quad \big(0,0,0\big)\!\leq\!\big(1,1,0\big);\\ &f_1\big(0,0,1\big)\!=\!1>0=f_1\big(1,1,1\big);\quad f_2\big(0,0,0\big)\!=\!1>0=f_2(1,1,0)\;.\\ &\Pi\mathbb{K}\,\,f_1\big(x,y,z\big)\!=y+z\;;\\ &\Pi\mathbb{K}\,\,f_2\big(x,y,z\big)\!=z+\overline{xyz}=1+x+y+xy+xz+yz+xyz\;.\\ &\Pi\mathbb{K}\,\,g_2\big(x,y,z\big)\!=z+\overline{xyz}=1+x+y+xy+xz+yz+xyz\;.\\ &\Pi\mathbb{K}\,\,g_2\big(x,y,z\big)\!=z+\overline{xyz}=1+x+y+xy+xz+yz+xyz\;.\\ &\Pi\mathbb{K}\,\,g_2(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{12}xy+a_{13}xz\;.\\ &g_2(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{12}xy+a_{13}xz\;.\\ &g_3(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{12}xy+a_{13}xz\;.\\ &g_3(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{12}xy+a_{13}xz\;.\\ &g_3(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{12}xy+a_{13}xz\;.\\ &g_3(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{13}xz\;.\\ &g_3(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{12}xy+a_{13}xz\;.\\ &g_3(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{12}xy+a_{13}xz\;.\\ &g_3(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{12}xy+a_{13}xz\;.\\ &g_3(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{12}xy+a_{13}xz\;.\\ &g_3(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{12}xy+a_{13}xz\;.\\ &g_3(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{12}xy+a_{13}xz\;.\\ &g_3(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{12}xy+a_{13}xz\;.\\ &g_3(x,y,z)=a_0+a_1x+a_2y+a_3z+a_{23}yz+a_{$$

$$a_0 + a_2 = f(0,1,0) = 0 \Rightarrow a_2 = 1,$$

 $a_0 + a_3 = f(0,0,1) = 0 \Rightarrow a_3 = 0,$

$$a_0 + a_1 + a_2 + a_3 = f(1,1,0) = 0 \Rightarrow a_{12} = 1$$
, ит.д.

Константы:

$$1 = f_2(x, x, x)$$
 и $0 = f_1(x, x, x)$.

Отрицание:

$$f_1(0,0,1) = 1$$
 M $f_1(1,1,1) = 0 \implies f_1(x,x,1) = \bar{x}$.

Умножение:

$$f_2(x,y,0) = 1 + x + y + xy.$$

$$f_2(\bar{x}, \bar{y}, 0) = 1 + \bar{x} + \bar{y} + \bar{x}\bar{y} = 1 + (1 + x) + (1 + y) + (1 + x + y + xy) = xy.$$

$$xy = f_2(f_1(x, x, f_2(x, x, x)), f_1(y, y, f_2(x, x, x)), f_1(y, y, y))$$
.

Пример 4

Всего *п*-местных БФ $2^{2n} = \left| \{0,1\}^{\{0,1\}^n} \right|$.

$$\left|T_0 \cap \left\{0,1\right\}^{\left\{0,1\right\}^n}\right| = 2^{2n-1} = \frac{1}{2}2^{2n}$$
 (по виду таблицы).

Самодвойственных $\left|S \cap \{0,1\}^{\{0,1\}^n}\right| = 2^{2n-1}$ (по виду таблицы).

Линейных $\left|L \cap \{0,1\}^{\{0,1\}^n}\right| = 2^{2n+1}$ (по определению).

Сколько монотонных?

4. Комбинаторика

Основные правила

Комбинаторика — это есть техника подсчета количества элементов в конечных множествах.

Отметим основные правила данного раздела математики:

1) Правило суммы:

Пусть
$$R = \{A_1, A_2, ..., A_n\}$$
 — разбиение А.

Тогда верно равенство $|A| = |A_1| + |A_2| + ... + |A_n|$.

2) Правило произведения:

Пусть
$$R = \{A_1, A_2, ..., A_n\}$$
 — разбиение А. Тогда $\forall i |A_i| = m |A| = mn$.

Пример

$$|A| = m$$
, $|B| = n \Rightarrow |A \times B| = mn$.

Доказательство

Пусть
$$A = \{a_1, a_2, ..., a_m\}$$
, а $R = \{\{a_1\} \times B, \{a_2\} \times B, ..., \{a_m\} \times B\}$ — разбиение

 $A \times B$, тогда $\forall i$ имеется биекция

$$\varphi: \{a_i\} \times B \rightarrow B \quad \varphi[a;b] = b \Rightarrow |\{a_i\} \times B| = |B| = n \quad |A \times B| = mn.$$

Пример

$$|A| = n \Longrightarrow |A^k| = n^k.$$

Доказательство

Применим индукцию по k:

База индукции: k = 1 |A'| = n = n'.

Шаг индукции:
$$|A^{k+1}| = |A^k \times A| = |A^k| n = n^k n = n^{k+1}$$
.

При построении шага индукции воспользовались равенством из примера, приведенного выше.

Пример

$$|A| = m$$
, $|B| = n \Rightarrow |B^A| = n^m$, $|B^A| = \{\varphi \mid \varphi : A \rightarrow B\}$.

Доказательство.

Пусть
$$A = \{a_1, a_2, ..., a_m\}$$
.

Каждой функции $\phi: A \to B$ поставим в соответствие цепочку: $|\phi(a_1), \phi(a_2), ..., \phi(a_m)| \in B^m$, вследствие чего будем иметь функцию, которая является биекцией. Тогда, учитывая пример 2, получим следующее равенство: $|B^A| = |B^m| = n^m$.

Элементарные комбинаторные функции

Число размещений из n по k — это количество упорядоченных цепочек длины k различных элементов n элементного множества. Число размещений обозначается следующим образом:

$$A_n^k = \begin{bmatrix} n \\ k \end{bmatrix}$$
.

Пример

Пусть n = 4, k = 2 для множества $\{A, B, C, D\}$.

Тогда можно составить следующие размещения из 4 по 2:

$$AB$$
, BA , CA , DA , AC , BC , CB , DB , AD , BD , CD , DC . Значит, $A_4^2 = 12$.

Если возьмем множество из 6 элементов и посчитаем аналогично число размещений из 6 по 3, то получим $A_6^3 = 120$.

Приходим к формуле

$$A_n^k = n \binom{n-1}{2} \binom{n-2}{3} \dots \binom{n-k+1}{k} = \frac{n!}{(n-k)!}.$$

Таким образом, формула для вычисления числа размещений имеет вид:

$$A_n^k = \frac{n!}{(n-k)!}$$

Перестановка на {1... n} — это биекция из X в X. Число перестановок вычисляется по формуле $P_n = A_n^n = \frac{n!}{0!} = n!$

Число сочетаний из n по k — это есть число k — элементарных подмножеств n — элементного множества. Число сочетаний обозначается следую-

щим образом:
$$C_n^k = \binom{n}{k}$$
.

Свойства числа сочетаний

1)
$$C_n^0 = 1$$
, $C_n^k = 0$, $k < 0$, $k > n$.

2)
$$C_n^k = C_n^{n-k}$$
.

Доказательство

Пусть |A| = n, $B \subseteq A$, $|B| = k \Rightarrow A \setminus B \subseteq A$, $|A \setminus B| = n - k$, то $\varphi(B) = A \setminus B$ — биекция между k-элементами и (n-k) — элементами указанных множеств.

3)
$$C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$$
.

Доказательство

 $|A| = n + 1, \ a \in A$. Разобьём все k + 1 элементные подмножества множества Aна 2 вида:

- а) с элементом а; остальные k элементов из множества $A \setminus \{a\}$. Таких подмножеств будет C_n^k :
- б) без элемента a; все k+1 элементов из множества $A \setminus \{a\}$. Таких подмножеств будет C_n^{k+1} . Свойство доказано.

Треугольник Паскаля

$$\begin{array}{cccc}
C_0^0 & & & & 1 \\
C_0^0 C_1^1 & & & & 1 & 2 & 1 \\
C_2^0 C_2^1 C_2^1 & & & & & 1 & 3 & 3 & 1 \\
C_3^0 C_3^1 C_3^2 C_3^3 & & & & 1 & 4 & 6 & 4 & 1 \\
& & & & & & & & & 1 & 5 & 10 & 10 & 5 & 1 \\
& & & & & & & & & & 1 & 6 & 15 & 20 & 15 & 6 & 1
\end{array}$$

4) Бином Ньютона.

$$(x+y)^n = \sum_{k=0}^n C_n^k x^k y^{n-k}$$
.

Доказательство

$$(x+y)^n = \underbrace{(x+y)(x+y)...(x+y)}_{n} = \sum_{n} x^n y^{n-k}$$

 $(x+y)^n = \underbrace{(x+y)(x+y)...(x+y)}_n = \sum x^k y^{n-k}.$ C_n^k — число k-элементных подмножеств некоторых скобок, из которых берется х *п*-элементного множества всех скобок.

5)
$$C_n^k = \frac{n!}{(n-k)!k!}$$

Для данного свойства приведем два доказательства.

Доказательство I

Пусть

 A_n^k — число упорядоченных цепочек длины k.

 C_n^k — число неупорядоченных цепочек длины k.

 P_k — число способов упорядочения цепочек длины k.

Тогда

$$C_n^k = \frac{A_n^k}{P_k} = \frac{n!}{(n-k)!k!}.$$

Доказательство II

Пусть $A = \{a_1, a_2, ..., a_n\}$. Каждому $x \subseteq A$ поставим в соответствие X_x следующим образом:

$$X_{x}|a| = \begin{cases} 1, & a \in X, \\ 0, & a \notin U. \end{cases}$$

Тогда

$$|x| = k \Leftrightarrow |\operatorname{supp} X_x| = k.$$

$$X_x \leftrightarrow \left| X_x \left(a_1 \right), X_x \left(a_2 \right), ..., X_x \left(a_n \right) \right| =$$
 это анаграмма слова.

Всего у такого слова $\underbrace{11...1}_{k}\underbrace{00...0}_{n-k} \frac{n!}{(n-k)!k!}$ анаграмм.

6) Треугольник Паскаля:

Сумма элементов, выделенных полужирным, равна элементу, выделенному полужирным курсивом.

$$C_n^n + C_{n+1}^n + C_{n+2}^n + \dots + C_{n+k}^n = C_{n+k+1}^{n+1}$$

Доказательство

Доказательство проведем с помощью индукции по k:

Б. И. при
$$k = 0$$
 $C_n^n = 1 = C_{n+1}^{n+1}$.

III. VI.
$$C_n^n + C_{n+1}^n + C_{n+2}^n + \dots + C_{n+k}^n + C_{n+k+1}^n = C_{n+k+1}^{n+1} + C_{n+k+1}^n = C_{n+k+2}^{n+1}$$
.

7)
$$C_{m+n}^k = \sum_{i=0}^k C_m^i \cdot C_n^{k-i}$$
.

Доказательство

 $C_m^i C_n^{k-i}$ множеств пересекающихся с A по i элементам и с B по n-i элементам.

 ε — *первообразная* — это есть корень из 1-q степени n, если $\varepsilon^n=1$.

$$\forall k \in \{1,...,n-1\}, \ \varepsilon^k \neq 1.$$

Пусть
$$\varepsilon^3 = 1$$
, $\varepsilon \neq 1$.

Тогда с использованием свойства 4 можно записать следующие равенства:

$$(1+\varepsilon)^{n} = C_{n}^{0} + C_{n}^{1}\varepsilon + C_{n}^{2}\varepsilon^{2} + C_{n}^{3}\varepsilon^{3} + C_{n}^{4}\varepsilon + C_{n}^{5}\varepsilon^{2} + C_{n}^{6} + \dots,$$

$$(1+\varepsilon^{2})^{n} = C_{n}^{0} + C_{n}^{1}\varepsilon^{2} + C_{n}^{2}\varepsilon^{4} + C_{n}^{3} + C_{n}^{4}\varepsilon^{2} + C_{n}^{5}\varepsilon + C_{n}^{6} + \dots,$$

$$(1+1)^n = C_n^0 + C_n^1 + C_n^2 + C_n^3 + C_n^4 + C_n^5 + C_n^6 + \dots$$

Заметим, что

$$1+\varepsilon+\varepsilon^2=\frac{\varepsilon^3-1}{\varepsilon-1}=\frac{0}{\varepsilon}=0.$$

А теперь, сложив первые три равенства и преобразовав полученную правую часть при помощи четвертой формулы, придем к равенству:

$$\frac{(1+\varepsilon)^n + (1+\varepsilon^2)^n + 2^n}{3} = C_n^0 + C_n^3 + C_n^6 + C_n^9 + \dots$$

Учитывая, что

$$\varepsilon^2 = \varepsilon^{-1}$$
,

получим

$$\left|\epsilon\right|=1=\left|\epsilon^{-1}\right|\Longrightarrow\epsilon^{-1}=\bar{\epsilon}.$$

$$\left(1+\varepsilon^2\right)^n = \left(1+\overline{\varepsilon}\right)^n = \left(\overline{1}+\overline{\varepsilon}\right)^n = \left(\overline{1+\varepsilon}\right)^n = \overline{\left(1+\varepsilon\right)^n}.$$

$$C_n^0 + C_n^3 + \dots = \frac{2 \operatorname{Re} (1 + \varepsilon)^n + 2^n}{3}.$$

Пусть
$$\varepsilon = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \Rightarrow \varepsilon + 1 = \frac{1}{2} + i\frac{\sqrt{3}}{2} = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$$
.

Тогда

$$(1+\varepsilon)^n = \underbrace{\cos\frac{\pi n}{3}}_{\text{Re}} + i\sin\frac{\pi n}{3},$$

$$C_n^0 + C_n^2 + \dots = \frac{2^n + 2\cos\frac{\pi n}{3}}{3}.$$

Число размещений с повторениями — это число способов разместить n одинаковых предметов по k различным большим ящикам.

Обозначение \tilde{C}_n^k .

Построим биекцию между раскладками n одинаковых предметов по k различным большим ящикам и словами, составленными из n нулей и k-1 единиц:

$$\tilde{C}_{20}^6 = C_{25}^5$$

$$\tilde{C}_n^k = C_{n+k-1}^{k-1} = C_{n+k-1}^n$$

Задача (о кроликах)

В момент t=0 родилась пара кроликов. Кролики два месяца растут, а потом каждый месяц приносят по одной новорожденной паре. Сколько пар кроликов будет через 10 месяцев, 1000 месяцев.

Пусть F_k — количество пар кроликов в момент t=k. Тогда

$$F_0=1$$
 $\forall n \geq 1 \Rightarrow F_n=\underbrace{F_{n-1}}_{\text{старые}} + \underbrace{F_{n-2}}_{\text{новорожденные}}$

$$F_1 = 1$$
,

$$F_2 = 2$$
, $F_3 = 3$, $F_4 = 5$, $F_5 = 8$, $F_6 = 13$, $F_7 = 21$, $F_8 = 34$, ...

Построенная последовательность $\{F_n\}_{n=0}^{\infty}$ — последовательность Фибоначчи.

$$\left\{a_{n}
ight\}_{n=0}^{\infty}\subseteq R^{\infty}$$
 — это рекуррентная последовательность, если

$$\exists f: R^{\infty} \to R, \ \exists n_0 \in N, \ \forall n \ge n_0 \ a_n = f(a_{n-1}, a_{n-1}, ..., a_0, 0, ..., 0).$$

 $\left\{a_n^{}\right\}_{n=0}^{\infty}\subseteq R^{\infty}$ — это рекуррентная последовательность порядка m, если

$$\exists f: R^m \to R \ \forall n \ge m \ a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-m}).$$

 $\{a_n\}_{n=0}^{\infty}\subseteq R^{\infty}$ — это линейная рекуррентная последовательность порядка m, если $\exists \ \alpha_1,\alpha_2,...,\alpha_m\in \mathbb{R}$, $\forall \ n\geq m \ a_n=\alpha_1a_{n-1}+\alpha_2a_{n-2}+...+\alpha_na_{n-m}$ — линейное рекуррентное соотношение порядка m.

Пусть $\{a_n\}_{n=0}^{\infty}\subseteq R^{\infty}$, тогда $f(x)=\sum_{n=0}^{\infty}a_nx^n$ — это есть обыкновенная произ-

водящая функция последовательности $\left\{a_{n}\right\}_{n=0}^{\infty}$.

Рассмотрим действия с рядами. Пусть $g(x) = \sum_{n=0}^{\infty} b_n x^n$.

Тогда будут справедливы следующие равенства:

1)
$$f(x)+g(x) = \sum_{n=0}^{\infty} (a_n + b_n) x^n$$
.

2)
$$f(x) \cdot g(x) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) x^n$$
.

3)
$$f(\alpha x^k) = \sum_{n=0}^{\infty} \alpha^n x^{kn}$$
.

4)
$$f'(x) = \sum_{n=0}^{\infty} ha_n x^{n-1} = \sum_{n=0}^{\infty} (n+1)a_{n+1} x^n$$
.

5)
$$\int_{0}^{x} f(t)dt = \sum_{n=0}^{\infty} \frac{a_{n}x^{n+1}}{n+1} = \sum_{n=1}^{\infty} \frac{a_{n-1}}{n}x^{n}.$$

Лемма

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
, $a_0 \neq 0$ $(\exists a_0^{-1})$ тогда $\exists f^{-1}(x) = \sum_{n=0}^{\infty} b_n x^n$.

Доказательство

$$\sum_{n=0}^{\infty} a_n x^n \cdot \sum_{n=0}^{\infty} b_n x^n = 1.$$

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_{k} b_{n-k} \right) x^{n} = 1.$$

$$a_0 b_0 = 1 \rightarrow b_0 = a_0^{-1}$$
.

$$a_0b_1 + a_1b_0 = 0 \rightarrow b_1 = a_0^{-1}(-b_0a_1).$$

$$a_0b_2 + a_1b_1 + a_2b_0 = 0 \rightarrow b_2 = a_0^{-1}(-a_1b_1 - a_2b_0).$$

$$a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0 = 0 \rightarrow b_3 = a_0^{-1} (-a_1b_2 - a_2b_1 - a_3b_0).$$

.....

$$\frac{1}{(1-x)^2} = \left(\frac{1}{1-x}\right)^n = \sum_{n=0}^{\infty} (x^n)^n = \sum_{n=0}^{\infty} nx^{n-1} = \sum_{n=0}^{\infty} (n+1)x^n.$$

Тогла

$$\left(\sum_{n=0}^{\infty} (n+1)x^{n}\right) \cdot (1-2x-x^{2}) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n} =$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=n-2}^{n} (k+1) b_{n-k}\right) x^{n} =$$

$$=1+(2x1+1(-2x))+\sum_{n=2}^{\infty}((n-1)1+n(-2)+(n+1)1)x^{n}=1.$$

5. Теория графов

Определение и задание графа

Приведем пример графа. Важно, какие точки соединены, а какие нет. Это способ изображения любого симметричного бинарного отношения.

Помеченный граф G — это есть G = (V, E), где V — конечное множество вершин, а $E = \{\{x, y\} | x \neq y; x, yV\} = V^{(2)}$ — множество ребер.

Пример

$$G = (\{1,2,3,4,5\}, \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,4\}, \{3,4\}, \{4,5\}\}).$$

Как еще можно задать граф? Матрице бинарного отношения соответствует матрица смежности графика.

Матрица смежности графа — это есть матрица $M = \left(\alpha_{ij}\right)_{n \times n}$, где n = |V|, коэффициенты которой находятся следующим образом:

$$\alpha_{ij} = \begin{cases} 1, \ \emph{i}$$
-я и $\ \emph{j}$ -я вершина — ребро, $0, \ \text{иначе}. \end{cases}$

Согласно определению, матрица смежности выше приведенного графа имеет вид

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Матрица инцидентности графа — это матрица $I = (\beta_{ij})_{n \times m}$ где n = |V|, m = |E|, а элементы β определяются следующим образом:

$$\beta = \begin{cases} 1, & \text{если } i\text{-вершина принадлежит } j\text{-му ребру,} \\ 0, & \text{иначе.} \end{cases}$$

Матрица инцидентности выше приведенного графа имеет вид

$$I = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

где m=|E|, n=|V|, причем для числа ребер справедлива оценка $0 \le m \le |V^2| = C_n^{-2}$

Мультиграф — это есть граф G = (V, E), где V — конечное множество вершин, а E — множество ребер с кратностями, т.е. $E \subseteq V^{(2)} \times N$.

Пример

 $G = (\{1,2,3,4\}, \{(\{1,2\},1), (\{1,2\},2), (\{1,3\},3), (\{1,4\},1), (\{3,4\},1), (\{3,4\},2), (\{3,4\},3)\}).$

Матрица смежности мультиграфа G есть матрица $M=(\alpha_{ij})_{n\times m}$, где n=|V|, m=|E|, α_{ij} — количество рёбер, соединяющих i-ю u j-ю вершины.

Матрицы смежности и инцидентности для графа, рассматриваемого в примере, имеют вид

$$M = \begin{pmatrix} 0 & 2 & 1 & 1 \\ 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 0 \end{pmatrix}, I = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

Степень вершины v — это есть число ребер, инцидентных данной вершине. Степень вершины v обозначается записью deg v.

Лемма о рукопожатиях

$$\sum_{v \in V} \deg v = 2|E|.$$

Доказательство

Сумма степеней всех вершин графа равна числу концов ребер данного графа, а именно:

$$\sum_{v \in V} \deg v = 2|E|.$$

Пример

В графе 100 вершин, каждая соединена с 15-ю другими. Сколько в графе ребер?

OTBET:
$$\frac{100 \cdot 15}{2} = 750$$
.

G = (V, E) — ориентированный граф (ОРГРАФ (digraph)), если V — конечное множество (вершины), а $E \subseteq V \times V$.

$$G = (V, E)$$
 — ориентированный мультиграф, если $E \subseteq V \times V \times N$.

Матрица смежности ориентированного графа — это матрица $M=(\alpha_{ij})_{n\times n},\ \alpha_{ij}=$ количество ребер с началом в i-й вершине и концом в j-й.

Матрица инцидентности ориентированного графа — это матрица

$$I = (\beta_{ij})_{n \times m}, \beta_{ij} = \begin{cases} 1, \ i\text{--}я \ вершина — начало} \ j\text{--}го \ ребра, \\ -1, \ i\text{--}я \ вершина — конец} \ j\text{--}го \ ребра, \\ a \neq \pm 1, \ i\text{--}я \ вершина — и \ начало, и конец} \ j\text{--}го \ ребра, \\ 0, \ иначе. \end{cases}$$

 $\deg_+ v$ — степень исхода вершины v — это число ребер с началом в вершине v.

 $\deg_{-}v$ — степень захода вершины v — это есть число ребер с концом v.

Лемма о рукопожатиях (для орграфов)

$$\sum_{N\in V} \deg_+ v = \big| E \big| = \sum_{v\in V} \deg_- v.$$

Доказательство

Количество начал рёбер = количеству рёбер = количеству концов рёбер.

Операции с множествами

Пусть даны два графа: $G_1 = (V_1, E_1), \ G_2 = (V_2, E_2),$ тогда можно построить следующие графы:

$$G_1 \cup G_2 = (V_1 \cup V_2, \ E_1 \cup E_2),$$
 $G_1 \cap G_2 = (V_1 \cap V_2, E_1 \cap E_2),$
 $G_1 \setminus G_2 = (V_1 \setminus V_2, \ E_1 \setminus E_2),$
 $G_1 \setminus G_2 = (V_1 \setminus V_2, \ E_1 \setminus E_2 \cap (V_1 \setminus V_2)^{(2)}).$
 $H = (U, F), \ G = (V, E) - \text{графы},$
 $H \subset G \ (H \text{полграф} \ G) - \text{если} \ U \subset V, \ F \subset E.$

Изоморфизм графов

$$\phi$$
: $V_1 \rightarrowtail V_2$ — изоморфизм графов $G_1 = (V_1, E_1)$ и $G_2 = (V_2, E_2)$, если $\forall u, v \in V_1 \ \{u, v\} \in E_1 \Leftrightarrow \{\phi(u), \phi(v)\} \in E_2$.

Замечание

Если картинки графов изображены одинаково, то такая функция есть. Если между графами G_1 и G_2 существует изоморфизм, то говорят (G_1 изоморфен G_2), пишут — $G_1 \cong G_2$.

Теорема (об изоморфизме)

Отношение изоморфизма есть эквивалентность на множестве графов. Доказательство.

- 1) \cong рефлексивно (тождественное отображение изоморфизм).
- 2) \cong симметрично:

$$G_1 \cong G_2$$
, то есть $\exists \phi : \forall V_1 \succ \rightarrow \succ V_2 \ \forall u, v \ \{u, v\} \in E_1 \leftrightarrow \{\phi^{-1}(n), \phi^{-1}(v)\} \in E_2$.

Заметим, что
$$\varphi^{-1}$$
: $V_2 \rightarrow V_1$ $\forall a, b \in V_2 \ \varphi^{-1}(a) = u, \ \varphi(u) = a,$

$$\varphi^{-1}(b) = v, \ \varphi(v) = b,$$

$${a,b} \in E_2 \leftrightarrow {\varphi^{-1}(u), \varphi^{-1}(v)} \in E_2.$$

3) ≅ транзитивно:

$$G_1 \cong G_2$$
, $G_2 \cong G_3$.

$$\begin{split} & \varphi: V_1 \succ \rightarrow \succ V_2 \ \forall u, v \ \{u, v\} \in E_1 \leftrightarrow \big\{ \varphi(u), \varphi(v) \big\} \in E_2, \\ & \psi: V_2 \succ \rightarrow \succ V_3 \ \forall x, y \ \{x, y\} \in E_2 \leftrightarrow \big\{ \psi(x), \psi(y) \big\} \in E_3, \\ & \varphi \circ \psi: V_1 \succ \rightarrow \succ V_3 \ \forall u, v \in V_1 \ \{u, v\} \in E_1 \longleftrightarrow \big\{ \varphi(u), \varphi(v) \big\} \in E_2 \longleftrightarrow \\ & \longleftrightarrow \big\{ \psi(\varphi(u)), \psi(\varphi(v)) \big\} \in E_3. \end{split}$$

Абстрактный граф — это есть класс множества помеченных графов по отношению изоморфизма \cong .

Замечание

Одинаковые изображения ⇒ один и тот же абстрактный граф.

Пример

Данные графы не являются изоморфными, так как имеют разное количество вершин.

$$G_1$$
 G_2
 G_2

Предположим, что эти графы изоморфны, и вершине 1 соответствует вершина a. Тогда вершинам b и c должны соответствовать два различных соседа вершины 1 во втором графе. Однако их не существует, и, следовательно, графы неизоморфны.

Эти соображения можно обобщить следующим образом:

Замечание

Если φ изоморфизм G_1 на G_2 то $\forall v \in V_1$ $\deg v = \deg \varphi(v)$.

В связи с этим возникает следующее понятие:

Для графа G=(V,E), |V|=n, упорядоченный набор степеней его вершин, $x_1,x_2,...,x_n,$ где $x_i\in N\cup\{0\},$ называется степенной последовательностью графа G.

Замечание

Степенные последовательности изоморфных графов одинаковы.

О сложности алгоритмов

Будем пользоваться интуитивным понятием алгоритма. Каждый алгоритм имеет ВХОД — последовательность битов. Пусть n — длина ВХОДА. Под сложностью алгоритма будем понимать такую функцию t: $N \rightarrow N$, что t(n) — это наибольшее число битовых операций, выполняемых алгоритмом при длине входа равной n. Будем интересоваться лишь скоростью роста таких функций.

$$f(x) = O(g(x))$$
, если $\exists c > 0 \forall x > 0 f(x) \le cg(x)$.

$$f(x) \approx g(x) \Leftrightarrow \begin{cases} f(x) = O(g(x)) \\ g(x) = O(f(x)) \end{cases}$$

Рассмотрим задачу о нахождении Det.

Дано:
$$A = (\alpha_{ij})_{m \times m}, \alpha_{ij} \in \{0,1\}.$$

Найти: Det(A) MOD2 (то есть найти |A| над полем $\{0,1\}$).

Алгоритм 1 состоит в рекурсивном разложении по 1-й строке:

$$|A| = a_{11} \cdot A_{11} + a_{12} \cdot A_{12} + \dots + a_{1m} \cdot A_{1m},$$

$$t(m) \ge m \cdot t(m-1), \ t(m) \ge m!, \ t(n) \ge \left(\sqrt{n}\right)!$$

 $\forall k \ t(n) > n^k \ (t(n) \ \text{растет быстрее любого многочлена}).$

Алгоритм 2 позволит решить данную задачу при помощи метода Гаусса. Проводим элементарными преобразованиями по строкам матрицу к верхнему треугольному виду:

$$t(m) \le m + 3m + (m-1)m = m^2 + 3m$$
,

$$t(m) \le m + 3m + (m-1)m + t(m-1),$$

$$t(m) \le (m+3)m+t(m-1) \le \dots$$

$$\leq t(m) \leq (m+3)m+t(m-1) = 2C_{m+1}^{2} + C_{m}^{1} + t(m-1) \leq$$

$$\leq \dots \leq \sum_{k=1}^{m+1} 2C_{k}^{2} + \sum_{k=1}^{m} 2C_{k}^{1} = 2C_{m+2}^{3} + 2C_{m+1}^{2} = \frac{(m+2)(m+1)m}{3} + (m+1)m =$$

$$= \frac{(m+1)m(m+5)}{3} = O(m^{3}).$$

В итоге получили, что наибольшее число битовых операций удовлетворяет следующему равенству:

$$t(n) = O\left(n^{\frac{3}{2}}\right).$$

Сложность задачи — это минимальная сложность алгоритма, решающего задачу.

Сложность $ADD \sim n$.

Сложность Det между n и $n^{3/2}$.

Замечание

Задача считается простой, если ее сложность есть многочлен от n ($0(n^k)$). Алгоритм эффективный, если t (n) = $0(n^k)$.

Введем следующие обозначения:

Множество P — множество всех задач, для которых есть эффективный алгоритм.

Множество NP — множество задач, для которых есть алгоритм, который проверяет решение за время $0(n^k)$.

Задача называется NP-полной задачей — если наличие алгоритма, решающего ее за время $0(n^k)$, означает, что для любой задачи из NP существует алгоритм решающий ее за время $0(n^k)$.

Теорема Кука

Задача «выполнимость» NP-полна (в нынешнее время известно около $510^3 NP$ -полных задач).

Вопрос P = NP? — это один из вопросов на миллион долларов.

Сложность задачи проверки изоморфизма графов не известна. Легко показать, что эта задача лежит в классе NP. Для нее в настоящее время нет полиномиального алгоритма и не доказано, что эта задача NP-полна.

Маршруты

Маршрут в графе G = (V, E) — это последовательность $v_0 e_1 v_1 e_2 v_2, ..., e_n v_n$, $e_i \in E, \ v_i \in V$ такая, что $\forall i \in \{1, ..., n\} \ e_i = \{v_{i-1}, v_i\}, \ v_0$ — начало маршрута, v_n — конец маршрута, n — длина маршрута.

Маршрут с началом u и концом v называется (u, v)-маршрутом.

Замечание 1

Последовательность $v_0e_1e_2...e_n$ однозначно определяет маршрут.

Замечание 2

 $e_1, e_2, ..., e_n$ может уже не определять маршрут.

Пример

Замечание 3

Пусть G — граф (без кратных ребер), тогда $v_0, v_1, v_2, ..., v_n$ однозначно определенный маршрут.

Цепь — маршрут без повторяющихся ребер.

Простой маршрут — это маршрут, в котором вершины $v_0, v_1, ..., v_{n-1}$ попарно различны и $v_n \notin \{v_1, v_2, ..., v_{n-1}\}$.

Замечание 4

Каждый простой маршрут, кроме маршрута *veuev*, является цепью.

Доказательство

Воспользуемся методом от противного. Предположим, что $e_i = e_i (i < j)$.

Если
$$j=i+1$$
, то $v_{i-1}=v_{j}=v_{i+1}\Rightarrow i=0, j=1.$
$$\underbrace{e_{i}\ e_{j}}$$

Если
$$j = i + 1$$
, то $\{v_{i-1}, v_i\} = \{v_{j-1}, v_j\}$,

$$v_i = \begin{vmatrix} v_j, \\ v_{j-1}. \end{vmatrix}$$

Маршрут называется *циклическим*, если $v_0 = v_n$.

Циклическая цепь — это цикл.

Утверждение 1

Из каждого (u, v) маршрута можно выделить простую (u, v)-цепь $(u \neq v)$.

Доказательство

Пусть дан маршрут:

$$u = v_0 e_1 v_1 e_2 v_2 ... v_{n-1} e_n v_n = v.$$

Если вершины $v_0, v_1, ..., v_{n-1}$ попарно различны и $v_n \notin \{v_1, ..., v_{n-1}\}$ (то есть $v_0, ..., v_n$ попарно различны), то это уже простой (u, v) маршрут (по замечанию 2).

Если
$$v_i = v_j$$
 $(i < j)$, $v_0 e_1 v_1 e_2 v_2 ... e_i v_i e_{j+1} ... e_n v_n$.

Получим (u, v)-маршрут меньшей длины путем удаления указанных выше ребра и вершины.

Действуя таким образом, получим конечный процесс, обрывающийся в ситуации, когда маршрут простой.

Утверждение 2

Из каждого цикла можно выделить простой цикл (положительной длины). Доказательство

Пусть дан маршрут

$$v_0 e_1 v_1 e_2 v_2 ... e_n v_n = v_0$$
, $|\{e_1, e_2, ..., e_n\}| = n$, $v_1 \neq v_0 = v_n$,

тогда
$$v_1 e_2 v_2 e_3 v_3 ... e_n v_n = v$$
, $u \neq v$ — это (u, v) -цепь.

Выделим простую (u,v)-цепь (по утверждению 1): $u=u_1f_2u_2f_3u_3...f_mu_m=v$.

Тогда $u = u_1 f_2 u_2 f_3 u_3 ... f_m u_m = v = v_n = v_0$ — цикл, в котором вершины не могут повторяться.

Все пары вершин, кроме (v_0, u_m) , — пары разных вершин.

Пример

12421→121

 $1\ I\ 2\ II\ 4\ II\ 2\ I\ 1\ вычеркиванием нельзя получить 1\ III\ 2\ II\ 2\ II\ 1.$

Утверждение 3

Объединение двух различных (u, v)-цепей содержит простой цикл.

Доказательство

Даны цепи:

$$u = v_0 e_1 v_1 e_2 v_2 ... e_n v_n = v$$
,

$$u = u_0 f_1 u_1 f_2 u_2 ... f_m u_m = v.$$

Пойдем по цепям слева направо. Поскольку они разные, то возможны два случая:

- 1) $\exists i: e_i \neq f_i$.
- 2) $\forall i \leq \min\{m,n\} e_i = f_i \Rightarrow n > m$.

В случае 2) $v_m e_{m+1} v_{m+1} ... e_n v_n = v_m$ — цикл. По утверждениям 2 и 3 можно выделить простой цикл.

Пусть реализуется случай 1). Найдем такое наименьшее i, что $e_i \neq f_i$. Тогда $v_0 = u_0, ..., v_{i-1} = u_{i-1} = x \ v_i \neq u_i$.

Найдем на 1-й цепи первую вершину, следующую после вершины x и лежащую на 2-й цепи, назовем ее y. Рассмотрим маршрут $x \xrightarrow{1} y \xrightarrow{2(\text{обратно})} x$.

Заметим, что он является циклом.

Внутри кусков $x \xrightarrow{1} y$ и $y \xrightarrow{2(\text{обратно})} x$ ребра не повторяются, так как это части цепей. Предложение о том, что некоторое ребро e куска $x \xrightarrow{1} y$ встречается на куске $y \xrightarrow{2(\text{обратно})} x$ противоречит выбору y. Рассмотрим вершину перед ребром e. По утверждению 2 можно выделить простой маршрут.

Утверждение 4

Пусть C и D есть два разных цикла с общим ребром e. Тогда $C \cup D \setminus \{e\}$ содержит цикл.

Доказательство

Рассмотрим ребро $e = \{u, v\}$.

Тогда
$$C\setminus \{e\}$$
 — это (u,v) -цепь, $D\setminus \{e\}$ — это другая (u,v) -цепь.

По утверждению 3 $(C \setminus \{e\}) \cup (D \setminus \{e\})$ содержит простой цикл

$$(C \setminus \{e\}) \cup (D \setminus \{e\}) = (C \cup D) \setminus \{e\}.$$

Связность

$$G = (V, E)$$
 — $\operatorname{rpa\phi}, u, v \in V$.

 $u \sim v$ (и связана с V) \Leftrightarrow в G есть (u, v)-маршрут. $\sim \subset V \times V$.

Утверждение

 \sim — эквивалентность на V.

Доказательство.

- ~ рефлексивно ($\forall u \in V$ есть (u,u)-маршрут нулевой длины).
- ~— симметрично (каждый маршрут, переписанный в обратном порядке, снова является маршрутом).
- \sim транзитивно (маршруты $(u,v)u(v,\omega)$ можно соединить по вершине v, в результате чего получится (u,ω) -маршрут).

Класс эквивалентности $[v]_{\sim}$ называется компонентой связности графа G. Число компонент связности графа G обозначают через k(G).

Утверждение

Следующие условия эквивалентны:

- 1) k(G)=1,
- 2) $\exists u \in V \ \forall v \ u \sim v$,
- 3) $\forall u, v \in V \ u \sim v$.

Доказательство

- $3) \to 2)$ очевидно.
- $2) \rightarrow 1)$

$$V = [u] \Rightarrow k(G) = 1.$$

 $1) \rightarrow 3)$

 $\forall u, v \exists \omega \ u \in [\omega], \ v \in [\omega],$

$$\begin{cases} u \sim \omega \\ v \sim \omega \end{cases} \rightarrow \begin{cases} u \sim \omega \\ \omega \sim v \end{cases} \rightarrow u \sim v.$$

Ребро e — мост в графе G, если $k(G \setminus e) > k(G)$.

Замечание

$$\forall e \in E \ k(G \setminus e) > k(G).$$

Доказательство

$$u \sim v \Leftrightarrow B G \text{ есть } (u, v)$$
-маршрут.

 $u \approx v \Leftrightarrow$ в графе $G \setminus e$ есть (u, v)-маршрут.

Очевидно ≈ с~.

$$V_{\approx} = \{A_1, A_2, ..., A_m\},$$

$$V_{\sim} = \{B_1, B_2, ..., B_k\},\$$

$$|A_1| + |A_2| + \dots + |A_m| = |V| = |B_1| + |B_2| + \dots + |B_k|$$

Тогда

$$\forall i, j \ i \neq j : B_i \cap B_i = \emptyset, A_i \subseteq B_i \Rightarrow A_i \subseteq B_i \ u \ \forall i \ B_i \neq \emptyset \ \exists v \in B_i.$$

 $A_i = [v]_{\!\!\!\!\downarrow} \Rightarrow A_i \subseteq B_i$. Это значит, что мы построили инъективное отобра-

жение:
$$\phi:\{1,...,k\} \rightarrow \{1,2,...,m\}$$
 $\phi(i)=(t)$.

Значит, $m \ge k$. Таким образом $\forall e \in E$:

1)
$$e - \text{moct} \Rightarrow k(G \setminus e) > k(G)$$
,

2)
$$e$$
 — He MOCT $\Rightarrow k(G \setminus e) = k(G)$.

Лемма (о мосте)

1)
$$e - \text{moct} \Rightarrow k(G \setminus e) = k(G) + 1$$
.

- 2) e мост $\Rightarrow e$ не лежит ни в каком цикле G.
- 3) e не лежит ни в каком цикле $G \Rightarrow e$ мост.

Доказательство

$$e = \{x, y\}.$$

Заметим, что
$$\lceil x \rceil = \lceil x \rceil \cup \lceil y \rceil$$
.

$$\supseteq : \left[X \right]_{\epsilon} \subseteq \left[X \right], \text{ так как } \approx \subseteq^{\sim} \left(z \in \left[X \right]_{\epsilon} \to z \approx X \to z \in \left[X \right]_{\epsilon} \right),$$

$$[y] \subseteq [x] \quad z \in [y] \rightarrow z \approx y \rightarrow \begin{cases} y \sim x \\ z \sim y \end{cases} \rightarrow z \sim x \rightarrow z \in [x]$$

$$\subseteq$$
: $z \in [x]$

To есть, в G есть (z,x)-маршрут, если на нем нет e, тогда

$$z \approx x \to z \in [x] \to z \in [x] \cup [y]$$
, но если на этом маршруте есть e , тогда

$$z = v_0 e_1 v_1 e_2 v_2 ... e_n v_n = x.$$

Найдем наименьшее i, такое что $e_i = e$.

$$v_{i-1} \in \{x,y\} \begin{cases} v_{i-1} = x \Rightarrow z \approx x \to z \in [x]_{\infty} \\ v_{i-1} = y \Rightarrow z \approx y \to z \in [y]_{\infty} \end{cases} \Rightarrow z \in [x]_{\infty} \cup [g]_{\infty}.$$

Заметим, что если $[x]_{\epsilon} \subseteq [x]$, то $[z]_{\epsilon} = [z]$.

 $z
otin [x] \Rightarrow z
otin x \to z
otin y \Rightarrow na \ \forall (z,v)$ -маршруте в графе G нет ребра e, то есть каждый (z,v)-маршрут в G является маршрутом в $G \setminus e$, отсюда $k(G \setminus e) = k(G) \Leftrightarrow \lceil x \rceil = \lceil y \rceil$.

А если
$$\lceil x \rceil \neq \lceil y \rceil$$
, то $k(G \setminus e) = k(G) + 1$.

Но если e лежит в цикле графа $G \Rightarrow$ в графе $G \setminus e$ есть (x, y)-маршрут, то есть $x \approx y \Rightarrow e$ — не мост.

e не мост $\Rightarrow x \approx y$ и в графе $G \setminus e$ есть (x, y)-маршрут, тогда выделим из него простой маршрут, добавим e и получим цикл с ребром e.

Число реберной связности графа $G\varepsilon(G)$ — это есть наименьшее число ребер, которое нужно удалить из графа, чтобы он стал несвязным.

Замечание 1

Граф G — несвязный $\Leftrightarrow \varepsilon(G) = 0$.

Граф G — связный с мостом $\Leftrightarrow \varepsilon(G) = 1$.

Замечание 2

$$\varepsilon(G) \le \min \deg v, \ v \in V.$$

Пример

 $\varepsilon(P_n) = 1$, так как каждое ребро в цепи — мост.

Если
$$\varepsilon(C_n) = 2$$
, мостов нет.

Число вершинной связности графа $G \vee (G)$ — это наименьшее число вершин, которое нужно удалить из графа, чтобы он стал несвязным или одновершинным.

Пример

$$v(k_n) = n-1$$
.

Теорема

$$v(G) \leq \varepsilon(G)$$
.

Доказательство

Пусть граф G несвязный $\Rightarrow v(G) = 0 = \varepsilon(G)$.

А теперь пусть G связный граф, тогда возможны следующие случаи.

Случай 1: в G есть мост $\Rightarrow \varepsilon(G) = 1$.

Если $V = \{x, y\}$, то удаление вершины x делает граф одновершинным $v(G) = 1 = \varepsilon(G)$.

Если
$$|v| > 2$$
 в $G \setminus e[x] > 1$ или $[y] > 1$.

удалим
$$x$$
, если $\llbracket x \rrbracket > 1$ удалим y , если $\llbracket x \rrbracket = 1$ $\Rightarrow v(G) = 1 = \varepsilon(G)$.

Случай 2 состоит в том, что в графе G нет моста $\Rightarrow \varepsilon(G) = k > 1$.

Пусть $\{x_1,y_1\}$, $\{x_2,y_2\}$,..., $\{x_k,y_k\}$ — множество рёбер, удаление которого делает граф несвязным. $\forall i \in \{1...k-1\}$ удалим из множества $\{x_i,y_i\}$ одну вершину, не принадлежащую $\{x_k,y_k\}$. Получим либо несвязный граф, либо связный граф с мостом $\{x_k,y_k\}$. Удаление одной вершины делает его несвязным или одновершинным.

$$\nu(G) \leq k = \varepsilon(G)$$
.

Эйлеровы пути

Задача о Кёнигсбергских мостах:

Можно ли так прогуляться по городу, чтобы пройти по каждому мосту ровно 1 раз?

Пройти = перейти с берега на берег. Поставим в соответствие изображенной выше карте граф, вершины которого — участки суши, а ребрами будут мосты. Полученный таким образом граф является мультиграфом:

Существует ли маршрут для прогулки, который проходит — содержит, по каждому мосту ровно 1 раз? (эквивалентно: существует ли в графе цепь, проходящая через все ребра?)

Данная задача сводится к задаче нарисовать мультиграф одним росчерком.

Эйлерова цепь — это цепь, содержащая все ребра графа.

Эйлеров цикл (ЭЦ) — это есть цикл, содержащий все ребра графа.

Теорема (Эйлера)

Дан граф G без изолированных вершин. Тогда в графе G есть ЭЦ \Leftrightarrow

- 1) G связный,
- 2) $\forall v \in V \deg v$ четная.

Доказательство

 $\Rightarrow u, v \in V$ есть (u, v) — маршрут по ЭЦ ((1) выполняется).

Пойдем по ЭЦ, $\forall v \in V$ входим в вершину v столько раз, сколько выходим. $\Rightarrow \deg v$ будет четной.

 $\Leftarrow v_0 \in V$, пойдем из вершины v_0 , стирая за собой рёбра. Допустим, что пришли в $v \neq v_0$. Зашли в v на 1 раз больше, чем вышли из $v_0 \Rightarrow$ стерли нечетное число инцидентных вершине v рёбер \Rightarrow остались нестертые инцидентные v рёбра.

То есть, если процесс блуждания остановился, то мы в v_0 (и стерли все инцидентные v_0 рёбра). Итак, пройден некоторый цикл P_0 . Если все рёбра стерты, то цикл P_0 эйлеров. Пусть остались нестёртые рёбра. Покажем, что на цикле P_0 есть вершина v_1 , у которой остались нестертые инцидентные рёбра. Воспользуемся методом от противного: пусть остались лишь рёбра, соединяющие вершины вне $P_0 \Rightarrow$ рёбер между вершинами P_0 и вершинами с нестёртыми рёбрами вообще не было (мы их не стирали). Это противоречит связности.

Замечание

Заметим, что после стирания P_0 , у всех вершин по-прежнему чётная степень (стёрли чётное число рёбер у каждой вершины).

Пойдём из вершины v_1 , стирая за собой рёбра, аналогично 1-му абзацу построим цикл C_1 .

Пусть
$$P_1 = v_0 \xrightarrow{P_0(\text{начало})} v_1 \xrightarrow{C_1} v_1 \xrightarrow{P_0(\text{конец})} v_0$$
 — цикл.

Итак, получен новый цикл из вершины v_0 длиной > длины P_0 .

Значит, получили процесс увеличения длины цикла, обрывающийся тогда и только тогда, когда цикл будет Эйлеров. Это и есть процесс построения ЭЦ.

Набор цепей покрывает граф, если каждое ребро графа — это ребро какойто цепи из набора.

Набор цепей ребер не пересекается, если у цепей нет общих рёбер.

 $\{1,2,3,4,3241\}$ — набор, покрывающий граф.

{123,241} — реберно-непересекающийся набор.

 $\{12,23,34,24,14\}$ — реберно-непересекающийся набор, покрывающий граф.

{214 324} — реберно-непересекающийся набор, покрывающий граф.

Замечание

Эйлерова цепь в одиночку образует реберно-непересекающийся набор, покрывающий граф.

Следствие из Теоремы Эйлера

Граф G — связный с k вершинами нечетной степени. Тогда в минимальном (по числу цепей) реберно-непересекающемся наборе, покрывающем граф, будет k/2 цепей.

Доказательство

По Лемме о рукопожатиях k — четно.

Пусть граф покрыт l реберно-непересекающимися цепями.

Рассмотрим вершину нечетной степени. Если концы некоторой цепи не лежат в v, то цепь покрывает четное число инцидентных v ребер. Значит, найдется конец цепи, лежащий в вершине v. Количество концов цепей \geqslant количеству вершин нечетной степени, то есть $2l \ge k \Rightarrow l \ge k / 2$: k/2 цепей всегда достаточно.

 $v_1, v_2, ..., v_k$ — вершины нечетной степени.

u — новая вершина, соединим u c v_i ($i \in \{1...k\}$) и получим связный граф с четными степенями вершин, по теореме Эйлера в нем есть ЭЦ.

Удалим все вхождения u и все ребра с u, цикл развалится на k/2 частей — цепей, они реберно-непересекающиеся (по определению цикла) и покрывают граф (по определению ЭЦ и по построению графа).

Теорема об оценке числа ребер

$$G = (V, E)$$
 — граф, $|V| = n$, $|E| = m$, k — компонента.

Тогда
$$n-k \le m \le C_{n-k+1}^2 = \frac{(n-k+1)(n-k)}{2}$$
.

Доказательство

1) Проведем индукцию по числу ребер:

База индукции:

$$m=0 \Rightarrow$$
 каждая вершина — компонента $\Rightarrow k=n \Rightarrow n-k=0 \le m$.

Шаг индукции:

m > 0 для всех графов, в которых < m ребер, неравенство $n - k \le m$ выполняется.

$$e\in E$$
, либо e — мост $\xrightarrow{\text{Лемма о мосте}} k(G\setminus e)=k(G)+1$, либо e — не мост $\xrightarrow{\text{Определение моста и замечание}} k(G\setminus e)=k(G)$.

Тогда
$$m(G \setminus e) = m(G) - 1$$
, $n(G \setminus e) = n(G)$.

По предположению индукции $n(G \setminus e) - k(G \setminus e) \le m(G \setminus e)$,

$$n(G) - \begin{bmatrix} k(G)+1 \\ k(G) \end{bmatrix} \le m(G) - 1,$$

$$n(G) - (k(G)+1) \le m(G) - 1,$$

$$n(G) - k(G) \le m(G) - 1 \le m(G).$$

2) Рассмотрим экстремальный пример, то есть граф с n вершинами, k компонентами и наибольшим (для этих n и k) числом ребер.

Покажем, что в экстремальном примере не может быть больше двух компонент. Воспользуемся методом от противного. Пусть есть две компоненты: k_1 и k_2 , $|k_1|=p$, $|k_2|=q$, $p\geq q>1$, v — вершина k_2 . Удалим все ребра, инцидентные v, соединим v ребрами со всеми вершинами k_1 . В полученном графе столько же вершин и столько же компонент, что и в исходном. Число ребер увеличилось не менее чем на величину p=q+1>0.

Получили противоречие с экстремальностью исходного графа. То есть, экстремальный пример имеет вид

$$m \leq C_{n-k+1}^2$$
.

Деревья

Дерево — связный граф без циклов. *Лес* — граф без циклов.

Теорема (об эквивалентных определениях дерева)

Для графа G эквивалентны следующие условия:

- 1) граф G дерево.
- 2) G связный и m(G) = n(G) 1.
- 3) G без циклов и m(G) = n(G) 1.
- 4) $\forall u, v \in V \exists !$ простая (u, v) цепь.
- 5) G без циклов, $\forall u, v \in V, \{u, v\} \notin E$ $G + \{u, v\}$ содержит ровно 1 цикл.

Доказательство

 $1) \rightarrow 2)$ индукция по числу ребер.

База индукции:

$$m(G) = 0 + G$$
 связный $\Rightarrow n(G) = 1$.

Шаг индукции:

m(G) > 0 (для всех деревьев с меньшим числом ребер уже доказано).

$$e \in E \xrightarrow{\text{Лемма о мосте}} e \xrightarrow{\text{Пемма о мосте}} k(G \setminus e) = k(G) + 1 = 2.$$

Пусть T_1 и T_2 — компоненты $G \setminus e$, они деревья и $m(T_1) + m(T_2) = m(G) - 1$, то есть $m(T_1) < m(G)$ и $m(T_2) < m(G)$.

По определению индукции

$$m(T_1) = n(T_1) - 1, \quad \frac{m(T_2) = n(T_2) - 1}{m(G_1) - 1 = n(G) - 2}, \quad m(G) = n(G) - 1.$$

2) \rightarrow 3) Воспользуемся методом от противного:

В графе G есть цикл C, пусть e ребро цикла G. Следовательно, e — не мост. $k(G \setminus e) = k(G) = 1$,

$$n(G \setminus e) = n(G),$$

$$m(G \setminus e) = m(G) - 1$$
,

$$m(G \setminus e) = m(G) - 1 = n(G) - 2 = n(G \setminus e) - k(G \setminus e) - 1 < n(G \setminus e) - k(G \setminus e).$$

Это противоречит теореме об оценке числа ребер.

 $3) \rightarrow 4)$ Докажем, что граф G связный.

Сначала докажем существование.

Пусть $T_1, T_2, ..., T_k$ его компоненты — деревья (так как 1) \rightarrow 2) уже доказано). Тогда

$$m(T_1) = n(T_1) - 1$$

+ $m(T_2) = n(T_2) - 1$
+ ...
+ $m(T_k) = n(T_k) - 1$
 $n(G) - 1 = m(G) = n(G) - k$ $\Rightarrow k = 1$.

Граф G будет связным, то есть $\forall u, v \in V (u, v)$ — маршрут. По утверждению 1-му про маршруты из него можно выделить простую (u, v) -цепь.

Теперь докажем единственность.

Воспользуемся методом от противного: есть 2 разные (u,v)-цепи. По утверждению 3-му про маршруты их объединение содержит цикл (противоречие).

4) \to 5) граф G без циклов? Простой цикл образует две разные цепи:

$$G + \{u, v\}$$
 содержит цикл, $\{u, v\} + (u, v)$ — цепь.

Снова применим метод от противного:

C и D — разные циклы в $G + \{u, v\}$.

$$\{u,v\}$$
 содержатся в С и D .

По утверждению 4-му про маршруты $C \cup D \setminus \{u,v\}$ содержит цикл (противоречие).

 $5) \to 1)$ Докажем связность методом от противного.

$$u \in X_1, v \in X_2$$
.

 $G + \{u, v\}$ содержит цикл с ребром $\{u, v\}$ (так как G без циклов).

Но удаление $\{u,v\}$ разделяет компоненты, то есть $\{u,v\}$ — мост в графе $G + \{u,v\}$ — $\xrightarrow{\text{Лемма о мосте}} \{u,v\}$, который не лежит ни в каком цикле (противоречие).

Если в дереве n > 1, то в нем $\forall v \deg v > 0$.

Лист — вершина степени 1 в дереве.

Следствие 1

В каждом дереве (при n > 1) не менее двух листьев.

Доказательство

Пусть l листьев $\Rightarrow n-l$ имеют степень ≥ 2 .

$$2(n-1) = 2m = \sum_{v \in V} \deg v = \sum_{v = \mathsf{JMCT}} \deg v + \sum_{v = \mathsf{HE}, \mathsf{JMCT}} \deg v \ge l + 2(n-l) = 2n-l, \ l \ge 2.$$

Остовной подграф графа G=(V,E) — это есть граф $H=(V,F), F\subseteq E,$ $k\left(H\right)=k\left(G\right).$

Остов (каркас) графа G — есть остовной подграф с минимальным числом ребер.

Замечание

Каждая компонента остова — дерево. Иначе, удалив ребро в цикле, уменьшим число ребер, не изменив числа компонент.

Обратно: Если в остовном подграфе каждая компонента — дерево, то удаление любого ребра увеличивает число компонент связности, то есть то, что остается, — уже не остовной подграф.

Следствие 2

Остовной подграф, у которого каждая компонента — дерево, является остовом.

Доказательство

Оценим число ребер в остовном подграфе снизу (по Теореме об оценке) оно $\geq n-k$.

Если в остовном подграфе каждая компонента — дерево, то в ней ребер на 1 меньше, чем вершин, то есть во всем графе ребер n-k, по определению — это остов. Для получения остова из цикла нужно удалить m-n+k ребер.

Циклический ранг графа — это сумма

$$\gamma(G) = m(G) + k(G).$$

Потоки в сетях

$$(G,S,t,c)$$
 — сеть, если $G=(V,E)$ — орграф $S,t\in V$, где S — источник, t — сток.

 $c: E \to R^{\scriptscriptstyle +}$ — функция пропускной способности.

$$\big(G,S,t,\omega\big)-\mathrm{cetb}\ S'$$
 . Поток f в сети $S-$ это есть функция $f:E\to R^{\scriptscriptstyle +}\cup\{0\}$

такая, что выполняются условия:

$$\Pi 1: \forall e \in E \ f(e) \leq c(e),$$

 $\Pi 2: \forall u \in V$.

$$\sum_{\substack{v \in V \\ (u,v) \in E}} f(u,v) - \sum_{\substack{v \in V \\ (v,u) \in E}} f(v,u) = \begin{cases} 0, \ u \neq s, t \\ p \ge 0, \ u = s \\ -p, \ u = t \end{cases}$$

Такую функцию называют потоком. Он вытекает из вершины s и втекает в вершину t.

Пример

Договоримся записывать поток на ребре и его пропускную способность через запятую, рядом с соответствующей этому ребру стрелкой.

В примере первые цифры не задают поток.

p = p(f) — величина потока, сам поток — это функция.

Сокращение записи:

$$A, B \subseteq V$$

$$h: E \to R^+ \cup \{0\},$$

$$(A,B) = \{(x,y) | x \in A, y \in B (x,y) \in E\},\$$

$$h(A,B) = \sum_{(x,y)\in(A,B)} h(x,y),$$

$$({s,a},{b,t}) = {(a,t),(s,b)},$$

$$({s,a,b},{a,b,t}) = E,$$

$$c(\{s,a\},\{b,t\})=14,$$

$$f({s,a},{b,t}) = 12.$$

П2 представляется как

$$f(\lbrace u\rbrace, v) - f(v, \lbrace u\rbrace) = \begin{cases} 0, & u \neq s, t \\ p, & u = s \\ -p, & u = t \end{cases}$$

Разрез в сети — это (X, \overline{X}) , где $X \subseteq V(\overline{X}) = V(X)$.

Лемма о разрезе

$$(G,S,t,c)$$
 — сеть.

Тогда
$$\forall x \subseteq V$$
 $s \in x$, $t \notin x$ $\forall f$ $(f - \text{поток})$ $P(f) = f(x, \overline{x}) - f(\overline{x}, x) \le c(x, \overline{x})$.

Доказательство. 1)
$$f(x,V)-f(V,x) = \sum_{x \in X} f(\{x\},V)-f(V,\{x\}) = P(f),$$

$$f(x,V)-f(V,x)=f(x,x)+f(x,\bar{x})-f(x,x)-f(\bar{x},x)=f(x,\bar{x})-f(\bar{x},x).$$

2) Из $\Pi 1 \Rightarrow f(x, \overline{x}) \le c(x, \overline{x})$ по определению потока

$$f: E \to R^+ \cup \{0\} \ \forall e \in E \ f(e) \ge 0, \ f(\bar{x}, x) \ge 0, \ -f(\bar{x}, x) \le 0.$$

Теорема (Форда-Фалкерсона)

$$\max P(f) = \min c(x, \overline{x}), f - \text{поток}, x \subseteq V, S \in x, t \notin x.$$

Доказательство

 $\max f \le \min c(x, \overline{x})$ (по лемме о разрезе).

Докажем достижимость: возьмем максимальный поток f (то есть поток с наибольшим значением P). Построим x по правилам:

- 1) $S \in x$.
- 2) $u \in x$ $f(u,v) < c(u,v) \Rightarrow v \in x$.
- 3) $u \in x$ $f(v,u) > 0 \Rightarrow v \in x$.

Заметим, что $t \notin x$.

Будем рассуждать «от противного». Если $t \in X$, то от S до t есть путь, построенный по правилам 1 и 2: $S = v_0, v_1, ..., v_k = t$.

Правило 1:

$$\overset{v_i}{\longleftarrow} \overset{v_{i+1}}{\longrightarrow} \Rightarrow f(v_i,v_{i+1}) < c(v_i,v_{i+1}).$$
 Попутное ребро

Правило 2:

$$v_i$$
 v_{i+1}
 $f(v_i, v_{i+1}) > 0.$
Встречное ребро

$$\varepsilon_1 = \min(c(e) - f(e)) > 0, e - \text{попутное.}$$

$$\varepsilon_2 = \min f(e) > 0, e$$
 — встречное.

$$\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}.$$

$$f^{'}(e) = \begin{cases} f\left(e\right) + \varepsilon, \ e - \text{попутное} \to \forall e \in E \ f^{'}\left(e\right) \leq c\left(e\right), \\ f\left(e\right) - \varepsilon, \ e - \text{встречное} \to f^{'} : E \to \mathbf{R}^{+} \cup \{0\}, \\ f\left(e\right), \ e \ \text{не входит в найденный}\left(s,t\right)$$
-маршрут.

(s, t)-путь, построенный по правилам 1 и 2,— это есть увеличивающий путь, а ϵ — увеличивающее значение.

Замечание 1

Если в сети с потоком есть увеличивающий путь, то поток можно увеличить.

Замечание 2

Если в сети с потоком нет увеличивающего пути, то поток тах (по Теореме Форда-Фалкерсона).

Доказательство

Увеличивающего пути нет \Rightarrow по правилам 1, 2, 3 построим x, $S \in x$, $t \notin x$ и $P(f) = c(x, \overline{x}) \ge \min\{c(x, \overline{x}) \mid x \subseteq V, S \in x, t \notin x\}.$

Значит, $P(f) = \max\{P(f)|f$ – поток $\}, f$ — максимальный поток.

Алгоритм поиска максимального потока

- 1. Берем какой-нибудь поток (например $\forall e \ f(e) = 0$).
- 2. Ищем увеличивающий путь. Если нашли, то увеличиваем вдоль него поток на ε (увеличив значение); переход на 2. Иначе стоп, поток максимальный.

Замечание

В полученном ориентированном графе есть ориентированный (s, t)-путь \Leftrightarrow в исходной сети с истоком есть увеличивающий путь.

Расстояние в графах

Расстояние между вершинами u и v во взвешенном графе $G((G,\omega))$ — это есть длина кратчайшей (u,v) -цепи. Обозначение: $\rho(u,v)$.

Замечание 1

 ρ — метрика на V, т. е.

- 1) $\rho(u,u) = 0$,
- 2) $\rho(u,v) = \rho(v,u)$ —функция симметрична относительно аргументов,
- 3) $\rho(u,v)+\rho(v,w) \geq \rho(u,w)$.

Доказательство. Некоторая цепь ≥ кратчайшая цепь.

Замечание 2

Расстояние не во взвешенном графе G — это расстояние во взвешенном графе (G,ω) , где $\forall e \in E \ \omega(e) = 1$.

Алгоритм Дейкстры.

Вход:
$$G = (V, E), \omega: E \to R^+, u \in V.$$

Выход: $\forall v \in V$, $\rho(u,v)$.

Требуется две функции: $d:V \to R^+$ (функция текущего расстояния)

и $e:V \to V$ (частичная функция текущего предшественника).

 $S \subseteq V$ (список найденных, но не обработанных вершин).

 $v \to S$ (вершину v поместить в список S).

 $v \leftarrow S$ (из S вынимается вершина с наименьшим значением d и помещается в переменную v).

- 0) $\forall v \in V \ d(v) = +\infty$, d(u) = 0, e(v) = NULL, $u \to S$;
- 1) Если $S = \emptyset$, то *cmon*;
- 2) $v \leftarrow S$;
- 3) $\forall x \in V \ x$ смежна с вершиной v.

если
$$d(x) > d(v) + \omega(v, x)$$
,

TO
$$d(x) = d(v) + \omega(v, x)$$
.

$$e(x) = v, x \rightarrow S.$$

4) Переход на п. 1). Пусть $M = \min d(v) \ v \in S$.

Замечание 1

M не убывает (пока $S \neq \emptyset$).

Доказательство

Очевидно, следует из п. 3) алгоритма.

Замечание 2

$$v \to S \Rightarrow d(v) \to M$$
.

Замечание 3

 $\forall v \ d(v)$ — не возрастает.

Замечание 4

Если вершина v удалена из списка S, то v не попадает больше в список. Доказательство

Очевидно, следует из описания алгоритма.

Лемма 1

Каждая вершина удаляется только один раз. Граф G — связный, шаг 2 (алгоритма) срабатывает ровно m(G) раз.

Доказательство

Из замечаний 1, 2, 3, 4 следует, что шаг 2 срабатывает $\sum m(G)$ раз $\forall v \neq u$. Вначале $d(v) = \infty$, значит, просмотрев какой-нибудь маршрут (u, v), мы поместим v в список S. В силу шага 1 вершина будет удалена.

Замечание 5

Если $d(v) < \infty$, то d(v) — это длина некоторого (v,u) маршрута (а именно, $v,e(v),e^2(v),...,u$).

Доказательство

Воспользуемся методом от противного. Допустим это не так. Найдем первое выполнение шага 3, когда это нарушается, то есть d(x) — не длина никакого (x,v) — маршрута. Но d(v) — это длина маршрута $v,e(v),e^2(v),...,u$ $d(x)=d(v)+\omega(v,x)$ и этодлина $(v,e(v),e^2(v),...,u)=x,e(x),e^2(x),...,u$ (противоречие).

Замечание 6

 $\forall v$ в любой момент выполнение алгоритма $d(v) \ge \rho(u, v)$.

Лемма 2. В конце работы алгоритма $\forall v \in V \ d(v) = \rho(u, v)$.

Доказательство. Воспользуемся методом доказательства от противного. Пусть существует такая вершина $v \in V$, что в конце работы алгоритма для этой вершины $d(v) > \rho(u,v)$ (замечание 6). Пусть v — самая близкая к вершине u вершина с таким свойством. Рассмотрим кратчайший (u,v) — маршрут u,...,y,v $d(y) = \rho(u,y) < \rho(u,v)$. Рассмотрим шаг, на котором вершина y вынута из списка и просматриваются её соседи. В этот момент уже в силу замечаний 1,2,3,4 $d(y) = \rho(u,y)$. Вершина v — сосед y, в этот момент $d(v) > \rho(u,v) = \rho(u,y) + \omega(y,v) = d(y) + \omega(y,v)$ (в силу Замечания 3), то есть выполняется равенство $d(v) = d(y) + \omega(y,v) = \rho(u,v)$. Получили противоречие.

Леммы 1, 2 дают теорему о корректности алгоритма Дейкстры.

Двудольные графы

Пример

 $A \cap B = \emptyset$, $\rho \subseteq A \times B$.

Граф G=(V, E) двудольный, если $\exists A, B \leq V \ A \cup B = V, A \cup B = \emptyset \forall \{u,v\} \in E \ u \in A, v \in B$ (или наоборот), A, B — доли графа.

Пример

Теорема Кенига (критерий двудольности) Граф G — двудольный \Leftrightarrow в G нет циклов нечетной длины.

Доказательство

⇒ Берем ЛЮБОЙ цикл:

$$v_0 v_1 v_2 v_3 \dots v_{n-1} v_n = v_0$$

Части А, В, на которые делится двудольный граф, называются долями. Доля A, где $v_0 \forall k \in N \cup \{0\}, v_{2k} \in A, v_{2k+1} \in B$, значит, число n — четное.

⇐ Заметим, что если каждая компонента двудольная, то и весь граф двудольный. Очевидно, достаточно доказать \leftarrow только для связного графа. Выберем вершину $u \in V$ так, что выполняется следующее:

$$A = \left\{ v \in V \left(\rho(u, v) - \text{четно} \right) \right\} B = \left\{ v \in V \left(\rho(u, v) - \text{нечетно} \right) \right\}.$$

Очевидно: $A \cup B = V$ (G — связный), $A \cap B = \emptyset$.

Покажем, что НЕТ ребер внутри частей.

Воспользуемся методом от противного. Вершины w, v лежат в одной части: $e = \{w, v\} \in E$, $\rho(u, v) \equiv \rho(u, w) \pmod{2}$.

Найдем кратчайшие маршруты:

x — последняя вершина на первом маршруте из тех, которые лежат и на втором маршруте, а это значит, что на первом пути нет вершин второго маршрута. Второй маршрут простой, так как кратчайший $\Rightarrow x \xrightarrow{1} v \xrightarrow{e} w \xrightarrow{2} x -$ простой цикл. Если x = v и $w \xrightarrow{2} x$ — это снова ребро e, то v — предпоследняя вершина кратчайшего (u, w)-маршрута $\Rightarrow \rho(u, v) + 1 = \rho(u, w)$. А это противоречие. То есть цикл всегда есть. Заметим, что длины u, x частей первого и второго маршрутов одинаковы (иначе можно сократить какой-то кротчайший маршрут) и равны $\rho(u,x)$.

Длина найденного цикла равна
$$\rho(u,w)-\rho(u,x)+\rho(u,v)-\rho(u,x)+1=$$
$$=\rho(u,w)+\rho(u,v)-2\rho(u,x)+1.$$

Она будет нечетной (противоречие).

Алгоритм проверки двудольности связного графа

- 1) Выберем $u \in V$.
- 2) Измерим $\rho(u,v) \forall v \in V$.

Проверим, если есть $v, w \in V, \rho(u, v) = \rho(u, w)$ и $\{v, w\} \in E$, то граф не двудольный, иначе, граф — двудольный.

Замечание

Шаг 2 можно делать в ходе выполнения шага 1. Проверим корректность шага 2.

Если ..., то ... \Rightarrow находим цикл нечетной длины \Rightarrow так как граф не двулольный.

Иначе \Rightarrow *A* и *B* из доказательства.

Действительно, v, w в одной части и соединены ребром

$$e \Rightarrow (\rho(u,v)-\rho(u,w)) = \begin{bmatrix} 0, \\ 1. \end{bmatrix}$$

(из неравенства треугольника).

Но это не равно 0, и это равно 1, так как $\rho(u,v) \equiv \rho(u,w) \pmod{2}$ (противоречие).

Паросочетание

Паросочетание — множество попарно непересекающихся ребер.

Максимальное паросочетание есть паросочетание, не лежащее ни в каком другом паросочетании.

Пример

Оба парасочетания максимальные.

Наибольшее паросочетание есть паросочетание с наибольшим числом ребер.

Замечание 1

Пусть $\forall e \in E \ f\left(e\right) = \begin{bmatrix} 0 \\ 1 \end{cases} \Rightarrow$ для любого увеличивающего пути $\, \epsilon = 1 \, . \,$

Доказательство

$$S \bullet \rightarrow \bullet \leftarrow \bullet \rightarrow \bullet \rightarrow \bullet \leftarrow \bullet \rightarrow \bullet \rightarrow \bullet t$$

На попутных $f < c \Rightarrow f = 0$.

На встречных $f > 0 \Rightarrow f = 1$.

 $\varepsilon = \min \{ \min \{ c(e) = f(e)(e - \text{попутное}), \min f(e)(e - \text{встречное}) \} = 1.$

Замечание 2

Пусть $\forall e \in E \ f(e) = \begin{bmatrix} 0 \\ 1 \Rightarrow \end{bmatrix}$ после изменения потока вдоль ПУТИ

$$\forall e \in E \ f(e) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Утверждение

При работе алгоритма поиска максимального потока будет найден поток со свойством $\forall e \in E$ $f(e) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Замечание 3

Пусть в алгоритме есть поток со свойством $\forall e \in E$ $f(e) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \Rightarrow$ величины p. Тогда множество $\{\{u,v\}/u \in A, v \in B, f(u,v) = 1\}$ — паросочетание мощности p.

Доказательство

В каждую вершину A не может втекать больше 1. Из каждой вершины B не может вытекать больше 1. Величина потока через разрез $(\{S\} \cup A, B \cup \{t\})$ равна числу ребер, на которых они не равны 1.

Замечание 4

Если в двудольном графе есть паросочетания мощности m, тогда в соответствии ему есть поток величины m со свойством $\forall e \in E$ $f(e) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Доказательство

Определим нужный поток:

$$\forall \{u,v\} \in M \ (u \in A, v \in B), \ f(s,u) = f(u,v) = f(w,t) = 1, \ P(f) = m.$$

Теорема (о корректности алгоритма)

Множество ребер двудольного графа, на которых найденный алгоритм максимального потока не равен 0, если наибольшее паросочетание.

Доказательство

Очевидно, следует из утверждения и замечаний 3 и 4.

Теорема Холла (о трансверсалях). В двудольном графе $G = (A \cup B, E)$ есть паросочетания мощности |A| тогда и только тогда, когда $\forall x \subseteq A \ |N(x)| \ge |x|$.

$$|N(x)|$$
 — окружение x , то есть $\{v \in V \mid \exists u \in x \{u,v\} \in E\}|$.

Замечание

В двудольном графе $x \subseteq A \Rightarrow N(x) \subseteq B$.

Доказательство

 \Rightarrow Воспользуемся методом от противного. Пусть $\exists x \subseteq A, \ |N(x)| < |x| \Rightarrow$ любое парасочетание не использует какую-то вершину из x, а значит, и из A.

 \leftarrow Проведем индукцию по длине |A|.

База индукции: |A|=1, $|N(A)|\ge |A|=1$, то есть ребро с началом в A. Это паросочетание мощности 1=|A|.

Шаг индукции: |A| = m. Предположим, что для всех двудольных графов, у которых доля A состоит из $\leq m$ вершин, утверждение доказано.

1-й случай:

$$\forall x \subseteq A \ |N(x)| > |x| \ a \in A, \ b \in B \ e = \{a,b\} \in E$$
 . Строим $G' : A' = A \setminus a$,

$$B' = B \setminus b, \ \forall x' \subseteq A' \subseteq A, \quad N_{G'}(x') = \begin{bmatrix} N_G(x'), \\ N_G(x') \setminus b, \end{bmatrix}$$

$$\left| N_{G'}(x') \right| = \begin{bmatrix} \left| N_G(x') \right| \\ \left| N_G(x') \right| \end{bmatrix} - 1 \ge \left| x' \right|.$$

По предложению индукции в графе G' есть паросочетания мощности |A'| = m-1. Вместе с ребром e получим в G паросочетания мощности m = |A|.

2-й случай:

$$\exists A_0 \subseteq A, |N(A_0)| = |A_0|.$$

$$G' = G(A_0 \cup N(A_0)).$$

$$G'' = G(\overline{A}_0 \cup \overline{N(A_0)}).$$

 $\forall x \subseteq A_0, N_G\left(x\right) = N_{G'}\left(x\right) \Rightarrow \left|x\right| \leq \left|N_{G'}\left(x\right)\right| \text{ по положению индукции в графе}$ $G^{'}$ есть паросочетания мощности $\left(A_0\right), \ \forall x \subseteq \overline{A}_0.$

$$|A_0| + |x| = |A_0 \cup x| \le |N_G(A_0 \cup x)| = |N_G(A_0) \cup N_{G'}(x)| = |N_G(A_0)| + |N_{G'}(x)| \Rightarrow |x| \le |N_{G'}(x)|.$$

По предположению индукции в графе G'' есть паросочетания мощности $\left| \overline{A}_0 \right|$. Объединение двух найденных паросочетаний есть паросочетание мощности |N| в графе G.

Следствие

В G есть паросочетания мощности $t \Leftrightarrow \forall x \subseteq A, \ t \leq |A| + |N(x)| - |x|$. Доказательство

Добавим в долю B еще |A|-t новых вершин, соединив каждую добавленную вершину с каждой вершиной доли A. Получим граф G' . В G есть паросочетания мощности $t \Leftrightarrow$ (очевидно) в графе G' есть паросочетание мощности |A| .

Возьмем в G паросочетания мощности t. В нем не задействованы |A|-t вершин доли A. Соединим каждую из этих незадействованных вершин со своей добавленной вершиной.

Возьмем в G' паросочетания мощности |A|. Удалим из правой доли добавленные вершины (их |A|-t). Вместе с ними удалены $\leq |A|-t$ ребер паросочетаний. Осталось паросочетание в G мощности $\geq t$.

$$\forall x \subseteq A, |x| \le |N_{G'}(x)| = |A| - t + |N_{G}(x)|.$$

Плоские и планарные графы

Пример

Не плоский планарный

Плоский планарный

Граф G — планарный граф, если он изоморфен плоскому графу, или G можно изобразить на плоскости без пересечения ребер.

Замечание 1

Любой граф можно уложить в 3 из пересечения ребер. Рассмотрим пучок из |E| плоскостей, расположим \forall на прямой пересечения пучка. Каждое ребро — полуокружность в своей плоскости.

Замечание 2

Граф можно уложить на сфере без пересечения ребер \Leftrightarrow G- планарный. Доказательство

Отрезок AB есть диаметр. Точка B есть единственная точка пересечения сферы и плоскости.

Строим проекцию Π на сферу относительно точки A, которую можно взаимно однозначно спроектировать на плоскость.

Замечание 3

Выпуклый многогранник — это плоский граф.

Грань плоского графа — это есть часть плоскости, ограниченная ребрами.

6. Автоматы и языки

Языки

 Σ — алфавит (конечный) — множество букв.

 \sum^{+} — множество всех слов.

 $<\sum^{+},\cdot>$ — свободная полугруппа.

 λ — пустое слово.

$$\sum^+ \cup \{\lambda\} = \sum^*.$$

 $<\sum^*, \cdot>$ — свободный моноид.

«Свободный»: $\forall M$ — моноид $\forall \varphi : \Sigma \to M \exists ! \hat{\varphi} : \Sigma^* \to M$ (гомоморфизм):

$$\hat{\varphi}(\lambda) = 1, \forall a \in \Sigma \hat{\varphi}(a) = \varphi(a).$$

Языком называется подмножество свободного моноида.

Примеры

- 1. Русский язык.
- 2. Язык программирования.
- 3. Геном человека язык, $\Sigma = \{A, II, T, \Gamma\}$.
- 4. Организм язык, алфавит множество аминокислот.
- 5. Множество простых чисел $(\Sigma = \{1\})$.

Операции с языками

1° Теоретико-множественные операции:

$$\cup, \cap, -, \setminus$$

$$(L \subset \Sigma^* \Rightarrow \bar{L} = \Sigma^* \setminus L)$$

2° Произведение языков:

$$L, K \subseteq \Sigma^* \Rightarrow L \cdot K = \{uv | u \in L, v \in K\}.$$

Пример

$$K = \{a^{2n} \mid n \in N\}.$$

$$K = \left\{ a^{7n} \middle| n \in N \right\}.$$

$$L \cdot K = \left\{ a^{9}, a^{11}, a^{13}, a^{15}, a^{16}, a^{17}, a^{18} \cdots \right\} = \left\{ a^{9}, a^{11}, a^{13} \right\} \cup \left\{ a^{n} \middle| n \ge 19 \right\}.$$

3° Левое (правое) частное:

$$K^{-1}L = \{ v | \exists u \in K : uv \in L \},$$

$$LK^{-1} = \{ v | \exists u \in K : vu \in L \}.$$

Пример

$$L = \{ab, ba, ab^2\},$$

$$K = \{a, a^2, b\},$$

$$K^{-1}L = \{b, a, b^2\}.$$

Упрощенные обозначения:

$$\{u\} \rightarrow u$$
.

$$\{v|uv\in L\}=u^{-1}L.$$

$$L \cup K = K + L$$
.

$$(a+ab)ba(a+b) = \{aba^2, abab, ab^2a^2, ab^2ab\}.$$

4° Итерация языка:

$$L \subseteq \Sigma^* \Rightarrow L^* = \{\lambda\} \cup L^1 \cup L^2 \cup L^3 \cup \dots = \bigcup_{n=0}^{\infty} L^n (L^0 = \{\lambda\}).$$

Примеры

$$L = \{a^5, a^8\}.$$

$$L^* = \{\lambda, a^5, a^8, a^{10}, a^{13}, a^{15}, a^{16}, a^{18}, a^{20}, a^{21}, a^{23}, a^{24}, a^{25}, a^{26}, a^{28} \cdots \}.$$

$$\sum = \{a,b\}.$$

(a + b)*ab (a + b)* — множество всех слов, содержащих ab в качестве подмножества.

u — префикс ω, если $ω = u \cdot v$;

u — суффикс ω , если $\omega = v \cdot u$;

u — фактор (подслово), если $\omega = v \cdot u$.

Рациональным выражением называется выражение из букв и λ с применением операций $+, \cdot, *$.

Автоматы. Распознаватели

Машина получает воздействие (символы конечного алфавита), меняется ее состояние.

Детерминированным конечным автоматом (ДКА) называется тройка: $A = (Q, \Sigma, \delta)$, где Σ — конечный алфавит, Q — множество состояний (конечное), $\delta: Qx\Sigma \to Q$ — функция переходов.

При этом если $\delta(q_1,a) = q_2 u \delta(q_2,b) = q_3$, то хотелосьбы, чтобы $\delta(q_1,ab) = q_3$, т. е. чтобы δ продолжалась до $\Sigma : Q \times \Sigma^* \to Q$ следующим образом:

1.
$$\forall q \in Q : \delta(q, \lambda) = q$$
;

2.
$$\forall q \in Q, a \in \sum, u \in \sum^* : \delta(q, ua) = \delta(\delta(q, u), a)$$
.

Изображение — ориентированный граф с помеченными вершинами и ребрами.

Примеры

1.
$$Q = \{1, 2, 3\}, \sum = \{a, b\}.$$

δ)	1	2	3
A	1	2	3	1
t	,	2	2	3

$$A = (Q, \sum, \delta)$$

2. Привидение:

 $Q = \{\text{молчит } (1), \text{ хохочет } (2), \text{ ухает } (3), \text{ топает } (4)\},$

 $\Sigma = \{$ хлопнуть дверью (x), включить музыку (b) $\}$.

δ	1	2	3	4
х	3	4	3	4
b	4	1	2	2

Автомат $A = (Q, \sum, \delta)$ называется синхронизируемым, если

$$\exists \omega \in \sum^* \exists q \in Q : \forall p \in Q : \delta(p, \omega) = q$$
 (т. е. ω синхронизирует автомат A).

Пусть у автомата известно начальное состояние $q_0 \in Q$ и выделено множество $T \subseteq Q$ заключительных состояний.

Слово ω принимается автоматом $A = \left(Q, \sum, \delta\right)$, если $\delta\left(q_0, \omega\right) \in T$.

L(A) — множество всех принимаемых автоматом слов $(L(A) = \{\omega \big| \delta(q_0,\omega) \in T\})$ называется языком, распознаваемым автоматом $A = (Q, \sum, \delta, q_0, T)$.

Пятерку (Q,\sum,δ,q_0,T) иногда называют конечным распознавателем.

Пример

1.

	\	↑	↑
δ	0	1	2
0	0	2	1
1	1	0	2

$$q_0 = 0,$$

$$T = \{1, 2\},$$

$$A = (Q, \sum, \delta, q_0, T),$$

Гипотеза: $\omega \in L_i \Leftrightarrow \overline{\omega_2} \equiv i \pmod{3}$, где $\overline{\omega_2}$ — значение соответствующего ω двоичного числа.

Докажем методом индукции по длине слова:

База индукции. $\delta(0,0) = 0$, $\delta(0,1) = 1$.

Шаг индукции. Если $\omega = v0 \Rightarrow \overline{\omega_2} = 2 \cdot \overline{v_2}$,

$$\overline{v_2} \equiv 0 \pmod{3} \Rightarrow \overline{\omega_2} = 0 \pmod{3}$$
.

$$\overline{v_2} \equiv 1 \pmod{3} \Rightarrow \overline{\omega_2} = 2 \pmod{3}$$
.

$$\overline{v_2} \equiv 2 \pmod{3} \Rightarrow \overline{\omega_2} = 1 \pmod{3}$$
.

При этом

$$v \in L_0 \Rightarrow \omega \in L_0$$
.

$$v \in L_1 \Rightarrow \omega \in L_2$$

$$v \in L_2 \Rightarrow \omega \in L_1$$
.

Случай $\omega = v1$ рассматривается аналогично.

2. Хочется распознавать правильно записанные десятичные числа (без знака). Правильно: 123, 0.10, 1.3, 123,0,0.0. Неверно: ..1,1.,00.1,1.1.1,01. Можно ли построить соответствующий автомат? Более общий вопрос: можно ли с помощью конечного распознавателя распознать любой язык?

Приведем пример языка, дающего отрицательный ответ на заданный вопрос:

$$\sum = \{a,b\}, L = \{a^n b^n | n \in N_0\}.$$

Докажем, что не существует автомата A: L = L(A) методом «от противного»:

Пусть
$$A = (Q, \sum, \delta, q_0, T); L = L(A)$$
.

Рассмотрим элементы $\delta(q_0,a),\delta(q_0,a^2),\delta(q_0,a^3)$ \cdots из Q.

$$|Q| < \infty \Rightarrow$$
 есть повторы, т.е. $\exists i < j : \delta(q_0, a^i) = \delta(q_0, a^j)$.

$$\delta(q_0, a^i b^j) = \delta(\delta(q_0, a^i), b^i) \in T$$
.

Для слова $a^i b^j$ имеем $\delta(q_0, a^i b^j) \in T$

и
$$\deltaig(q_0,a^ib^jig) = \deltaig(\deltaig(q_0,a^iig),b^iig) = = \deltaig(\deltaig(q_0,a^iig),b^iig) = \delta(q_0,a^ib^i) \Rightarrow a^jb^i \in L$$
.

Поскольку i < j, это противоречит определению L.

Итак, не любой язык можно распознать с помощью конечного автомата.

Язык L называется распознаваемым, если $\exists A = (Q, \sum, \delta, q_0, T) : L = L(A)$.

Моноид переходов конечного автомата

Автомат $A = (Q, \sum, \delta)$ полностью определён действиями букв.

Каждая буква $a \in \Sigma$ определяет функцию $\delta(-,a): Q \to Q$.

Функции $Q \to Q$ составляют симметрическую полугруппу $\tau(Q)$. Не только каждая буква из Σ определяет некоторую функцию $\delta(-,a) \in \tau(Q)$, но и каждое слово $\omega \in \sum^*$ дает функцию $\delta(-,\omega) \in \tau(Q)$, определенную следующим образом: $\omega = a_1, a_2 \cdots a_n \Rightarrow \delta(-,\omega) = \delta((\cdots \delta(\delta(-,a_1),a_2),\cdots),a_n)$.

Мы получили полугруппу с единицей (т. е. моноид) $\left\{\delta\left(-,\omega\right)\middle|\omega\in\sum^*\right\}$, который обозначается через M(A) и называется моноидом переходов автомата A. Отображение $\omega\to\delta\left(-,\omega\right)$ является гомоморфизмом, и, следовательно, моноид переходов автомата является гомоморфным образом свободного моноида \sum^* . Как свободный моноид порождается буквами ($\sum^*=<\sum>$), так и моноид переходов порождается действиями букв:

$$M(A) = <\delta(-,a)|a \in \pounds > .$$

Конечный автомат дает пример алгебры унарных операций.

Пример

Моноид переходов:

δ	1	2	3	4
λ	1	2	3	4
а	2	1	4	3
b	3	4	1	2
a^2	1	2	3	4
ab	4	3	2	1
ba	4	3	2	1
b^2	1	2	3	4
aba	3	4	1	2
ab^2	2	1	4	3

Таблица Кели (таблица умножения)

	λ	а	b	ab
λ	λ	а	b	ab
а	а	λ	ab	b
b	b	ab	λ	a
ab	ab	b	а	λ

Моноид в данном примере является группой, которая обычно обозначается как V_4 (четвертая группа Клейна).

Распознавание автоматом и моноидом

Пусть внутри моноида M выбрано подмножество $P\subset M$ и, кроме того, имеется гомоморфизм $\phi:\sum^*\to M$. Будем говорить, что (M,P,ϕ) распознает L, если $\forall\,\omega\in\sum^*\omega\in L\Leftrightarrow\phi(\omega)\in P$ (другими словами, если $L=\phi^{-1}(P)$).

Утверждение 1. Если L распознается автоматом, то L распознается моноидом переходов автомата.

Доказательство

Определим гомоморфизм $\phi: \sum^* \to M(A)$ и множество P следующим образом: $\phi(\omega) = \delta(-, \omega)$, $P = \phi(L)$.

"⇒" по определению

"
$$\Leftarrow$$
 ": $\omega \in \sum^* : \varphi(\omega) \in P : \exists v \in L \varphi(\omega) = \varphi(v) \Rightarrow \delta(-, \omega) = \delta(-, v),$
$$\delta(q_0, \omega) = \delta(q_0, v) \in T \Rightarrow \omega \in L.$$

Утверждение 2. Если L распознается конечным моноидом M, то существует ДКА.

$$A: L(A) = L$$
.

Доказательство

L распознается моноидом $\mathbf{M} \Leftrightarrow \exists \, P \subseteq M, \varphi : \sum^* o M : L = \varphi^{-1}(P)$.

Строим автомат, полагая Q=M, $\delta(q,a) = q \cdot \varphi(a)$, $q_0 = 1_M$, T = P.

Проверим требуемое условие. Пусть $\omega \in \sum^*$, $\omega = a_1 \cdots a_n$.

$$\begin{split} & \omega \in L \Leftrightarrow \varphi(\omega) \in P \Leftrightarrow \varphi(a_1) \cdots \varphi(a_n) \in P \Leftrightarrow (1_M \Leftrightarrow \varphi(a_1) \cdots \varphi(a_n)) \in P \Leftrightarrow \\ & \Leftrightarrow \delta\Big(\delta\Big(...\Big(\delta(q_0,a_1),a_2\Big)...\Big)a_n\Big) \in P \Leftrightarrow \delta\big(q_0,\omega\big) \in P = T \Leftrightarrow \omega \in L(A). \end{split}$$

Свойства распознаваемых языков

 $1^{\circ}\,L$ распознаваем $\Rightarrow \bar{L}\,$ распознаваем.

Если
$$L(A) = L$$
 для $A = (Q, \sum, \delta, q_0, T)$, то $\overline{L} = L(A')$ для $A' = (Q, \sum, \delta, q_0, Q \setminus T)$.

 2° Если $L\subseteq \sum^*$ распознаваем и $\varphi:A^*\to \sum^*$ — гомоморфизм (шифр простой замены), то $\varphi^{-1}(L)$ распознаваем.

Доказательство

$$L$$
 распознаваем $\Rightarrow \exists M, |M| < \infty, \infty: \sum^* \to M, P \subseteq M : \infty^{-1}(P) = L$.

Тогда гомоморфизм $\varphi^{\circ} \propto$ распознает $\varphi^{-1}L$. Действительно, проверим, что $(\varphi^{\circ} \propto)^{-1}P = \propto^{-1}L$:

$$\omega \in (\varphi^{\circ} \propto)^{-1} P \Leftrightarrow (\varphi^{\circ} \propto)(\omega) \in P \Leftrightarrow \propto (\varphi(\omega)) \in P \Leftrightarrow \varphi(\omega) \in \alpha^{-1} P \Leftrightarrow \varphi(\omega) \in L \Leftrightarrow \omega \in \varphi^{-1} L.$$

3° Пусть L — распознаваемый и $K \subseteq \sum^*$.

Тогда $K^{-1}L$, LK^{-1} распознаваемы.

Доказательство

L — распознается $\Leftrightarrow \exists M, P \subseteq M, \infty: \sum^* \to M$ — гомоморфизм, $L = \infty^{-1} P$.

Рассмотрим $R = \{m | m \in M, \exists k \in K : \infty(k) m \in P\}$.

$$\omega \in K^{-1}L \Leftrightarrow \exists k \in K : k\omega \in L \Leftrightarrow \exists k \in K \propto (k\omega) \in P \Leftrightarrow$$

$$\Leftrightarrow \exists k \in K \propto (k) \propto (\omega) \in P \Leftrightarrow \propto (\omega) \in R$$
.

Значит, (M, $R \subseteq M$, \propto : $\sum^* \to M$) распознает $K^{-1}L$.

Правое частное — аналогично.

4° Пусть L_1, L_2 — распознаваемы. Тогда $L_1 \cap L_2$ распознаваем.

Доказательство

$$L_{1} \Rightarrow M_{1}, \; P_{1} \subseteq M_{1}, \; \infty_{1} \\ \vdots \\ \sum^{*} \rightarrow M_{1}, \; \; \infty_{1}^{-1} \; P_{1} = L_{1}.$$

$$L_2 \Rightarrow M_2, P_2 \subseteq M_2, \infty_2 : \sum^* \to M_2, \infty_2^{-1} P_2 = L_2.$$

$$M = M_1 \times M_2 = \{(m_1, m_2) | m_1 \in M_1, m_2 \in M_2\}.$$

$$(a,b)(c,d)=(ac,bd).$$

Построим $\propto: \sum^* \to M$ (гомоморфизм):

$$\propto (\omega) = (\infty_1 (\omega), \infty_2 (\omega)).$$

Покажем $\propto^{-1} P = L_1 \cap L_2$, где $P = P_1 \times P_2$.

$$\boldsymbol{\omega} \in \boldsymbol{\infty}^{-1} \ \boldsymbol{P} \Longleftrightarrow \boldsymbol{\infty} \left(\boldsymbol{\omega}\right) \in \boldsymbol{P} \Leftrightarrow \left(\boldsymbol{\infty}_{1} \left(\boldsymbol{\omega}\right), \boldsymbol{\infty}_{2} \left(\boldsymbol{\omega}\right)\right) \in \boldsymbol{P}_{1} \times \boldsymbol{P}_{2} \Leftrightarrow \begin{cases} \boldsymbol{\infty}_{1} \left(\boldsymbol{\omega}\right) \in \boldsymbol{P}_{1} \\ \boldsymbol{\infty}_{2} \left(\boldsymbol{\omega}\right) \in \boldsymbol{P}_{2} \end{cases} \Leftrightarrow \boldsymbol{\Pi} \left(\boldsymbol{\omega}\right) \in \boldsymbol{P}_{2} \left(\boldsymbol{\omega}\right) \in \boldsymbol{P}_{2}$$

$$\Leftrightarrow \begin{cases} \omega \in L_1 \\ \omega \in L_2 \end{cases} \Leftrightarrow \omega \in L_1 \cap L_2.$$

Прямым произведением конечных автоматов (распознавателей) $A = \left(\left(Q, \sum, \delta \right), q_0, T \right), \ B = \left(\left(R, \sum, \tau \right), r_0, S \right) \text{ называется автомат } A \mathbf{x} B = \left(Q \mathbf{x} R \right), \sum_{s, \alpha} \left(q_0, r_0, T \mathbf{x} S \right), \\ \mathbf{x} B = \left(\left(q, r \right), \mathbf{x} B \right) = \left(\delta \left(q, a \right), \mathbf{x} \left(r, a \right) \right).$

 $5^{\circ} L_1, L_2$ распознаваемы $\Rightarrow L_1 \cap L_2$ распознаваем.

Доказательство

В силу $L_1 \cap L_2 = \overline{L_1} \cap \overline{L_2}$, доказываемое утверждение является следствием 1°, 4°.

Замкнутость множества распознаваемых языков относительно произведения и итерации

Утверждение 1. L_1 и L_2 распознаваемы $\Rightarrow L_1L_2$ распознаваем.

Доказательство

Пусть L_1 распознается автоматом $A_1=(Q_1,\sum,\delta_1,q_{01},T_1)$ и L_2 распознается автоматом $A_2=(Q_2,\sum,\delta_2,q_{02},T_2)$.

$$orall a \in \sum orall \mathbf{p} \in Q_2$$
 : $\delta_2\left(q_{02},a\right) = p \ \ orall \mathbf{t} \in T_1$ создаем тройки $\left(t,a,p\right)$,

т.е. строим НКА

$$B = (Q_1 \cup Q_2, \sum_{i}, E, q_{02}, F)$$
,

где
$$E = \{(x,a,y) | \delta_1(x,a) = y\} \cup \{(x,a,y) | \delta_2(x,a) = y\} \cup$$

$$\cup \{(t,a,p)|t \in T_1 \& \delta_2(q_{02},a) = p\},$$

$$F = \begin{cases} T_2, \lambda \notin L_2, \\ T_1 \cup T_2, \lambda \in L_2. \end{cases}$$

Проверим, что В распознает L_1L_2 .

 $\omega \in L_1L_2 \Rightarrow \exists u \in L_1, \exists v \in L_2 : \omega = uv \Rightarrow \textit{в}\ A_1$ есть путь, помеченный и от q_{01} до T_1 , в A_2 есть путь, помеченный v от q_{02} до T_2 . Если $v = \lambda$, то $T_1 \subseteq F$, и, прочитав u в B, можно попасть в T_1 . Если же $v \neq \lambda$, то $v = ax, a \in \sum$; $\delta(q_{02}, a) = p$. Делаем переход из T_1 в p по добавленной стрелке, затем читаем в A_2 слово x из p и приходим в T_2 . Таким образом, v принимается B.

 $\omega \in L(B) \Rightarrow \text{ есть путь, помеченный } \omega \text{ из } q_{01} \text{ в } F.$ Если путь приводит в T_1 , то он не выходит из $A_1 \Rightarrow \omega \in L_1$ и $T_1 \subseteq F \Rightarrow \lambda \in L_2 \Rightarrow \omega = \omega \lambda \int L_1 L_2$.

Если путь приводит в T_2 , то произошел ровно один переход из A_1 в A_2 по некоторому $a \in \sum$, при этом $\omega = u(av)$,

$$\delta_1(q_{01},u) \in T_1 \Rightarrow u \in L_1$$

$$\delta_2(q_{02}, av) \in T_2 \Rightarrow av \in L_2$$
.

Следовательно, $\omega \in L_1L_2$.

Утверждение 2. L — распознаваемый $\Rightarrow L^*$ — распознаваемый.

Доказательство

Строим $B = (Q \cup \{i\}, \sum, E, \{i\}, \{i\})$,

где
$$E = \bigcup_{a \in \Sigma} (\left\{ \left(p, a, q\right) \middle| \delta\left(p, a\right) = q \right\} \cup \left\{ \left(i, a, p\right) \middle| \delta\left(q_0, a\right) = p \right\} \cup \left\{ \left(q, a, i\right) \middle| \delta\left(q, a\right) \epsilon T \right\} \cup \left\{ \left(i, a, i\right) \middle| \delta\left(q_0, a\right) \in T \right\} \right).$$

$$\omega \epsilon L^* \Rightarrow \exists \omega_1, \cdots, \omega_k \epsilon L$$
 : $\omega = \omega_1 \cdots \omega_k$ либо $\omega = \lambda$.

В последнем случае очевидно, что $\omega \in L(B)$.

Покажем, что для каждого j в B есть путь из i в i, помеченный $\,\omega_{j}\,.$

$$\left|\omega_{j}\right|=1\Rightarrow\omega_{j}\in\Sigma\Rightarrow\delta\big(q_{0},\omega_{1}\big)\in T\Rightarrow\text{ есть петля из }i\text{ в }i\text{, помеченная }\omega_{i}\text{ .}$$

 $\left|\omega_{j}\right| \geq 2 \Rightarrow \omega_{j} = avb$. Возьмем в А путь, помеченный avb , и заменим в нем шаги: первый — на шаг из i, последний — на шаг в i.

Соединяя найденные пути в один длинный путь из i в i, помеченный ω , получаем искомый путь, т.е. $\omega \in L(B)$.

Обратно, пусть $\omega \in L(B)$, т.е. в В есть путь из i в i, помеченный ω . Разобьем этот путь на такие куски с концами в i, у которых в середине i нет. Рассмотрим некоторый кусок, пусть он помечен словом v.

$$|v|=1 \Rightarrow \delta(q_0,v) \in T$$
,

$$|v| \ge 2 \Rightarrow v = aub \Rightarrow \delta(q_0, aub) \in T$$
.

В каждом случае $v \in L \Rightarrow \omega \in L^*$.

Рациональность и распознаваемость языков

Теорема Клини

L рационален $\Leftrightarrow L$ распознаваем.

Доказательство

 (\Rightarrow)

L рационален $\Rightarrow L$ записывается рациональным выражением.

 $\{\lambda\}$ распознается следующим автоматом:

 $a \in \sum \Rightarrow \{a\}$ распознается автоматом:

 $L_{\!\scriptscriptstyle 1}, L_{\!\scriptscriptstyle 2}$ распознаваемы $\Rightarrow L_{\!\scriptscriptstyle 1} \cup L_{\!\scriptscriptstyle 2}$ распознаваем.

 L_1 и L_2 распознаваемы $\Rightarrow L_1L_2$ распознаваем.

L распознаваем $\Rightarrow L^*$ распознаваем.

Далее — индукция по числу операций в рациональном выражении.

$$(\Leftarrow) L = L(A), A = (Q, \sum, E, \delta, q_1, T), |Q| = n, Q = \{q_1 \cdots q_n\}.$$

Обозначим

$$L(i,j,k) = \left\{ \omega \in \sum^* \left| \delta(i,\omega) = j, \forall u : (\omega = uv, |u| > 0, |v| > 0) \Rightarrow (\delta(i,u) \in \{q_1 \cdots q_{k-1}\}) \right\}.$$

Имеем $L(A) = \bigcup_{j:q_j \in T} L(1,j,n+1)$. Для доказательства рациональности это-

го языка достаточно показать рациональность каждого из объединяемых языков. Индукцей по k покажем, что $\forall i, j \ L \ (i, j, k)$ рационален.

База индукции:

$$L(i,i,1) = \{\lambda\} \bigcup \{a \in \sum |\delta(i,a) = i\}$$
 — рациональный язык.

$$L(i,j,1) = \left\{ a \in \sum \left| \delta(i,a) = j \right\} \right.$$
 — рациональный язык.

Шаг индукции:

$$L(i,j,k+1) = L(i,j,k) \cup L(i,k,k) (L(k,k,k))^* L(k,j,k).$$

Следствие

- 1. $L = \{a^n b^n | n \in N_0 \}$ не является рациональным.
- 2. L_1, L_2 рациональные языки $\Rightarrow \overline{L_1}, \overline{L_2}, L_1 \cap L_2$ рациональные языки.

Пример

$$\begin{split} L_i &= \left\{ \omega \in \sum^* \left| \delta \left(q_1, \omega \right) = q_i \right. \right\} \\ \left\{ \begin{aligned} L_1 &= \lambda + L_4 a + L_3 a + L_2 b \\ L_2 &= L_1 a \\ L_3 &= L_2 a \\ L_4 &= L_3 b + L_1 a + L_4 b \end{aligned} \right. \\ \left\{ \begin{aligned} L_1 &= \lambda + L_4 a + L_1 a^3 + L_1 a b \\ L_4 &= L_1 a^2 b + L_1 b + L_4 b \end{aligned} \right. \end{split}$$

Лемма

Пусть $\lambda \neq V$, тогда $L = U + LV \Leftrightarrow L = UV^*$.

Доказательство

$$(\Leftarrow) U + LV = U + (UV^*)V = U \cdot \{\lambda\} + U \cdot V + U \cdot V^2 + \dots = UV^* = L$$

 $(\Rightarrow)\omega \in L$.

Либо $\omega \in U$, либо $\omega \in LV$.

1. $\omega \in U \Rightarrow \omega \in UV^*$. 2. $\omega \in LV$

Докажем методом «от противного». Предположим, что $\omega \notin UV^*$. Можно считать, что ω — кратчайшее из $L \setminus UV^*$.

Тогда $\omega = \omega_1 v, \omega_1 \in L, v \in V, v \neq \lambda$.

Поскольку $|\omega_1| < |\omega|$, то ω_1 короче самого короткого слова из $L \setminus UV^* \Rightarrow \omega_1 \in UV^*$. Тогда $\omega \in UV^*$.

Значит, $L \subseteq UV^*$ доказано.

Докажем обратное включение методом «от противного».

Пусть ω — кратчайшее слово из $UV^* \setminus L$.

$$\omega = uv_1 \cdots v_k, u \in U, v_j \in V(k \ge 0).$$

Если k=0, то $\omega=u\in U \Rightarrow \omega\in L$

Если k > 0, то $\omega = \omega_1 v_k$, $v_k \neq \lambda \Rightarrow |\omega_1| < |\omega| \Rightarrow \omega_1 \in L \Rightarrow$

$$\Rightarrow \omega = \omega_1 v_k \in LV \subseteq L$$

Теперь по доказанной лемме из $L_4 = L_1 a^2 b + L_1 b + L_4 b$ следует, что $L_4 = (L_1 a^2 b + L_1 b) b^* = L_1 (a^2 + \lambda) b b^*$; из $L_1 = \lambda + L_4 a + L_1 a^3 + L_1 a b = \lambda + L_1 (a^2 + \lambda) b b^* a + L_1 a^3 + L_1 a b = \lambda + L_1 (a^2 + \lambda) b b^* a + a^3 + a b$) следует, что $L_4 = ((a^2 + \lambda) b b^* a + a^3 + a b)^*$. Автомат распознает язык $L_2 + L_3 = L_1 a (\lambda + a) = ((a^2 + \lambda) b b^* a + a^3 + a b)^* a (\lambda + a)$.

Содержание

1.	Логические исчисления	3
	Множество, отношения, функции	3
	Множества	
	Основное свойство множеств	
	Способы задания множеств	3
	Операции с множествами	
	Свойства ∀ А, В, С	
	Отношения	
	Основное свойство	
	Теорема (об отношениях эквивалентности)	
	Структуры порядка	
	Операции с отношениями	
	Функции	
2.	Предикаты	. 20
	Операции над предикатами	
	Кванторы	
	Предикатные формулы. Тавтологии	
	Исчисление предикатов	
2	F	20
J.	Булевы функции	
	Определение и примеры	
	Суперпозиция функций	
	Тождества	
	Дизъюнктивная нормальная форма БФ	
	Полиномы Жегалкина	
	Замкнутые классы БФ	
	Теорема Поста	. 43
4.	Комбинаторика	. 49
	Основные правила	
	Элементарные комбинаторные функции	
	Свойства числа сочетаний	
	Задача (о кроликах)	

5.	Теория графов	57
	Определение и задание графа	57
	Операции с множествами	60
	Изоморфизм графов	60
	О сложности алгоритмов	
	Маршруты	
	Связность	
	Эйлеровы пути	
	Деревья	
	Потоки в сетях	
	Алгоритм поиска максимального потока	81
	Расстояние в графах	
	Двудольные графы	
	Алгоритм проверки двудольности связного графа	
	Паросочетание	
	Плоские и планарные графы	
6.	Автоматы и языки	92
	Языки	
	Операции с языками	
	Автоматы. Распознаватели	
	Моноид переходов конечного автомата	
	Распознавание автоматом и моноидом	
	Свойства распознаваемых языков	
	Замкнутость множества распознаваемых языков	
	относительно произведения и итерации	101
	Рациональность и распознаваемость дзыков	

Учебное издание

Ананичев Дмитрий Сергеевич Андреева Ирина Юрьевна Гредасова Надежда Викторовна Костоусов Кирилл Викторович

ЭЛЕМЕНТЫ ДИСКРЕТНОЙ МАТЕМАТИКИ

Редактор О. С. Смирнова Верстка О. П. Игнатьевой

Подписано в печать 04.12.2014. Формат $70 \times 100^{-1}/_{16}$. Бумага писчая. Плоская печать. Гарнитура Newton. Уч.-изд. л. 5,7. Усл. печ. л. 8,7. Тираж 100 экз. 3аказ 1.

Издательство Уральского университета Редакционно-издательский отдел ИПЦ УрФУ 620049, Екатеринбург, ул. С. Ковалевской, 5 Тел.: 8 (343) 375-48-25, 375-46-85, 374-19-41 E-mail: rio@urfu.ru

Отпечатано в Издательско-полиграфическом центре УрФУ 620075, Екатеринбург, ул. Тургенева, 4 Тел.: 8 (343) 350-56-64, 350-90-13 Факс: 8 (343) 358-93-06 E-mail: press-urfu@mail.ru

