Appunti analisi 1

Biagio Altruda Mastrorilli

October 17, 2024

Introduzione assiomatica dei $numeri\ reali$ Esiste un insieme \mathbb{R} , munito di due leggi di composizione interna, il + e il ·

$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$\cdot: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

e di una relazione d'ordine \leq , che verificano assiomi algebrici, assiomi di ordinamento e l'assioma di completezza.

Assiomi Algebrici di $\mathbb R$

- 1. $\forall a, b \in \mathbb{R} : a + b = b + a$. (Commutatività della somma)
- 2. $\forall a, b, c \in \mathbb{R}$: (a+b)+c=a+(b+c) (Associatività della somma)
- 3. $\exists 0 \in \mathbb{R}, \forall a \in \mathbb{R} : a + 0 = a$ (Esistenza di un elemento neutro della somma)
- 4. $\forall a \in \mathbb{R} \ \exists a' \in \mathbb{R} : \ a + a' = 0 \ (Esistenza di un opposto)$
- 5. $\forall a, b \in \mathbb{R} : a \cdot b = b \cdot a$ (Commutatività del prodotto)
- 6. $\forall a, b, c \in \mathbb{R} : (a \cdot b) \cdot c = a \cdot (b \cdot c)$ (Associatività del prodotto)
- 7. $\exists 1 \in \mathbb{R}, 1 \neq 0$ tale che $\forall a \in \mathbb{R} \ a \cdot 1 = a$ (Esistenza di un elemento neutro del prodotto)
- 8. $\forall a \in \mathbb{R}, a \neq 0, \exists a'' \in \mathbb{R} \text{ tale che } a \cdot a'' = 1 \text{ (Esistenza di un reciproco)}$
- 9. $\forall a, b, c \in \mathbb{R} : (a+b) \cdot c = a \cdot c + b \cdot c$ (Proprietà distributiva)

Osservazioni:

1. Si dimostra che esiste un unico elemento neutro per il + ed esiste un solo elemento neutro per ·. Tali elementi si chiamano rispettivamente lo zero di \mathbb{R} e l'unità di \mathbb{R} . Infatti per l'assioma 3) $\exists 0,0 \in \mathbb{R} : \forall a \in \mathbb{R}a + 0 = a$, se $\exists 0' \in \mathbb{R} : \forall a \in \mathbb{R}a + 0' = a$, allora avremmo che 0' = 0 + 0' = 0 ovvero 0 = 0'. Analogamente per l'assioma 7) $\exists 1 \in \mathbb{R}, 1 \neq 0 : \forall a \in \mathbb{R}, a \cdot 1 = a$. Se fosse che $\exists 1', 1' \neq 0$ tale che $\forall a \in \mathbb{R}, a \cdot 1' = a$, allora $1' = 1 \cdot 1' = 1$. \blacksquare Tale elemento si chiama l'uno di \mathbb{R} .

- 2. Si dimostra che se esiste un opposto di un numero reale, questo è unico. Ovvero per l'assioma 4) $\forall a \in \mathbb{R}, \exists a' \in \mathbb{R} : a + a' = 0$, tale a' è unico e si chiama l'opposto di a e si denota con -a. Dimostrarlo. Analogamente si verifica che esiste, ed è unico, il reciproco di un numero reale, ossia per l'assioma 8) $\forall a \in \mathbb{R}, a \neq 0, \exists a''$ tale che $a \cdot a'' = 1$. Tale a'' é unico e si chiama il reciproco di a, si denota con a^{-1} oppure $\frac{1}{a}$. Dimostrarlo.
- 3. In matematica si introducono le seguenti notazioni: se $a, b \in \mathbb{R}$, a b = a + (-b), se $a, b \in \mathbb{R}$, $b \neq 0$, $\frac{a}{b} = a \cdot b^{-1}$. Assiomi di ordinamento di $\mathbb{R} \leq$ é una relazione d'ordine su \mathbb{R} compatibile con la struttura algebrica, ossia \leq verifica i seguenti assiomi di ordinamento:
- 4. $\forall a \in \mathbb{R} : a \leq a \text{ (Riflessibilità)}$
- 5. $\forall a, b \in \mathbb{R}, a \leq b, b \leq a : a = b$ (Antisimmetria)
- 6. $\forall a, b, c \in \mathbb{R}, a \le b \le c : a \le c \text{ (Transitività)}$
- 7. $\forall a, b \in \mathbb{R} : a \leq b$ oppure $b \leq a$. (L'ordine è totale)
- 8. $\forall a, b, c \in \mathbb{R}, a \le b : a + c \le b + c$ (Compatibilità della \le con la +)
- 9. $\forall a, b, c \in \mathbb{R}, a \leq b, 0 \leq c : a \cdot c \leq b \cdot c$ (Compatibilità della \leq con \cdot)

Definizione: Gli elementi di \mathbb{R} si chiamano numeri reali. I numeri reali $a \in \mathbb{R}$ tali che $0 \le a$ si dicono non negativi. I numeri reali $a \in \mathbb{R}$ tali che $a \le 0$ si dicono non positivi. I numeri reali non negativi e diversi da 0 si dicono positivi. I numeri reali non positivi e diversi da 0 si dicono negativi.

Notazione: Se $a \in \mathbb{R}$, $0 \le a$, $a \ne 0$ scriveremo 0 < a. Se $a \in \mathbb{R}$, $a \le 0$, $a \ne 0$ scriveremo a < 0.

Proposizione: $\forall a \in \mathbb{R}$ si ha che $a \cdot 0 = 0$. Dimostrazione: Sia $a \in \mathbb{R}$. Risulta che $a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$, da cui $a \cdot 0 = a \cdot 0 + a \cdot 0$. Sommo ad entrambi i termini dell'uguaglianza l'opposto di $a \cdot 0$, e quindi:

$$-a \cdot 0 + a \cdot 0 = -a \cdot 0 + (a \cdot 0 + a \cdot 0) \Longrightarrow$$
$$0 = -a \cdot 0 + a \cdot 0 + a \cdot 0 = 0 + a \cdot 0 = a \cdot 0$$

Proprietà (Legge dell'annullamento del prodotto): Se $a,b \in \mathbb{R}$, tali che $a \cdot b = 0$ allora a = 0 oppure b = 0.

Dimostrazione Siano $a, b \in \mathbb{R}$ tali che $a \cdot b = 0$. Supponiamo che $a \neq 0$, allora per l'assioma algebrico 8) esiste $a^{-1} \in \mathbb{R}$, tale che $a^{-1} \cdot a = 1$. Segue allora che

$$a \cdot b = 0 \implies a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0 = 0$$

$$b = 1 \cdot b = a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0$$

Analogamente se $b \neq 0$ si procede con lo stesso argomento arrivando a a = 0.

Osservazione:

- 1. Se $a \in \mathbb{R}, a \le 0$, allora, $-a \le 0$. Infatti se $0 \le a$, sommando ad entrambi i termini della disequazione per -a, risulta che $-a+0 \le -a+a$ ovvero $-a \le 0$.
- 2. Se $a, b \in \mathbb{R}$, $a \le b$, allora $0 \le b a$.
- 3. Se $a, b \in \mathbb{R}$, $a \le b$, se $c \in \mathbb{R}$, $c \le 0$ allora $b \cdot c \le a \cdot c$.
- 4. $\forall a \in \mathbb{R} \ 0 \le a \cdot a = a^2$. Segue che $0 \le 1 \cdot 1 = 1$.

Definizione: Siano $A, B \subset \mathbb{R}$, $A \neq \emptyset$, $B \neq \emptyset$, si dice che A e B sono separati se $\forall a \in A, \forall b \in B : a \leq b$.

Assioma di Dedekind (Assioma di completezza): $\forall A, B \subset \mathbb{R}, A \neq \emptyset, B \neq \emptyset$, separati, $\exists c \in \mathbb{R}$ tale che $\forall a \in A, \forall b \in B : a \leq c \leq b$.

Definizione: c si dice elemento di separazione tra A e B.

Definizione: Se $A, B \subset \mathbb{R}, A \neq 0, B \neq 0$, separati, si dice che A e B sono contigui se esiste un unico elemento di separazione tra A e B.

Definizione: \mathbb{R} munito delle leggi di composizione, della somma e del prodotto e della relazione di totale ordine \leq , che verificano gli assiomi algebrici, di ordinamento e di completezza si chiama insieme dei numeri reali. Si dice che \mathbb{R} è un corpo commutativo totalmente ordinato, completo.

Definizione: Sia $x \in \mathbb{R}$. Poniamo

$$|x| \coloneqq \begin{cases} x \text{ se } 0 \le x \\ -x \text{ se } x \le 0 \end{cases}$$

Il numero reale |x| si chiama valore assoluto, o modulo, di x.

Proposizione: Per ogni $x, y \in \mathbb{R}$ si ha:

- 1. $|x| = 0 \Leftrightarrow x = 0$
- 2. $0 \le |x|$
- 3. |-x| = |x|
- 4. $|x| \le y \Leftrightarrow -y \le x \le y$
- 5. $|x+y| \le |x| + |y|$ (Disuguaglianza triangolare)
- 6. $||x| |y|| \le |x y|$
- 7. |xy| = |x||y|
- 8. Se $x \neq 0$, si ha $|x^{-1}| = |x|^{-1}$ Dimostrazione: 4) $x, y \in \mathbb{R}, 0 \le y$, $|x| \le y$. Se $0 \le x$, si ha che $x \le y$. E inoltre $-y \le 0 \le |x| = x \le y$ Se $x \le 0$, si ha che $-x = |x| \le y \implies -y \le x \le 0 \le y$ Risulta che $-y \le x \le y$. Analogamente si dimostra che se -y < x < y allora $|x| \le y$. 5) Siano $x, y \in \mathbb{R}$, vogliamo provare che:

$$|x+y| \le |x| + |y|$$

Infatti si ha che $-|x| \le x \le |x|$ e anche $-|y| \le y \le |y|. Sommo termine a termine, ottenendo:$

$$-|x| - |y| \le x + y \le |x| + |y|$$

Ossia

$$-(|x| + |y|) \le x + y \le |x| + |y|$$

Ma per la proprietà 4) si ha che

$$|x+y| \le |x| + |y|$$

6) Siano $x, y \in \mathbb{R}$. Vogliamo provare che

$$||x| - |y|| \le |x - y|$$

Infatti si ha che

$$|x| = |x - y + y| \le |x - y| + |y|$$

da cui

$$|x| - |y| \le |x - y|$$

Inoltre

$$|y| = |y - x + x| \le |y - x| + |x|$$

cioè $|y| \le |x - y| + |x|$. Da cui

$$|y| - |x| \le |x - y|$$
 ossia $-|x - y| \le |x| - |y|$

Segue che

$$-|x-y| \le |x| - |y| \le |x-y|$$

Concludendo con

$$||x| - |y|| \le |x - y|$$

Definizione (Distanza): Sia E un insieme non vuoto, Si chiama metrica su Eo distanza su E una funzione

$$d: E \times E \to \mathbb{R}$$

che verifica le seguenti proprietà:

- 1. $\forall x, y \in E : 0 \le d(x, y)$
- 2. $\forall x, y \in E : d(x, y) = 0 \Leftrightarrow x = y$
- 3. $\forall x, y \in E : d(x, y) = d(y, x)$
- 4. $\forall x, y, z \in E : d(x, z) \le d(x, y) + d(y, z)$ (Disuguaglianza triangolare)

Definizione: Un insieme E munito di una distanza d si dice spazio metrico Proposizione: $\forall x,y \in \mathbb{R}: d(x,y) \coloneqq |x-y|$. Allora d è una distanza su \mathbb{R} (la distanza euclidea).

Dimostrazione: Siano $x, y \in \mathbb{R}$. Risulta che $0 \le d(x, y) = |x - y|$. Se $x, y \in \mathbb{R}$, $d(x, y) = 0 \Longrightarrow |x - y| = 0 \Leftrightarrow x = y$. Se $x, y \in \mathbb{R}$, d(x, y) = |x - y| = |y - x| = d(y, x). Se $x, y, z \in \mathbb{R}$: $d(x, z) = |x - z| = |x - y + y - z| \le |x - y| + |y - z| = d(x, y) + d(y, z)$.

Definizione: La distanza d(x,y) = |x-y| si dice distanza euclidea. L'insieme \mathbb{R} si dice spazio metrico euclideo.

Osservazione (Interpretazione geometrica di $\mathbb R)$: $\mathbb R$ é in corrispondenza biunivoca con la retta euclidea.

Definizione : Sia $A \subset \mathbb{R}.$ Diremo che $b \in \mathbb{R}$ è un maggiorante per l'insieme A se:

$$\forall a \in A: a \leq b.$$

Denoteremo con il simbolo \mathcal{M}_A l'insieme dei maggioranti per A.

Definizione: Sia $A \subset \mathbb{R}$. Diremo che $b \in \mathbb{R}$ è un minorante per A se:

$$\forall a \in A: b \leq a.$$

Denoteremo con il simbolo μ_A , l'insieme dei minoranti per A

Definizione: Sia $A \subset \mathbb{R}$. Si dice A è limitato superiormente se: $\mathcal{M}_{\mathcal{A}} \neq \emptyset$. Si dice che A è limitato inferiormente se $\mu_A \neq \emptyset$. Si dice che A é limitato se è limitato sia superiormente sia inferiormente.

Definizione: Sia $A \subset \mathbb{R}$. Si dice che $M \in \mathbb{R}$ è un massimo per A se:

$$M \in A \cap \mathcal{M}_A$$
,

ossia

$$\begin{cases} M \in A \\ \forall a \in A : \ a \le M \end{cases}$$

Definizione: Sia $A \subset \mathbb{R}$. Si dice che $m \in \mathbb{R}$ è un minimo per A se:

$$m \in A \cap \mu_A$$
,

ossia

$$\begin{cases} m \in A \\ \forall a \in A : m \le a \end{cases}$$

Proposizione: Sia $A \subset \mathbb{R}$ se esiste un massimo per A, allora esso è unico. Se esiste un minimo per A, allora esso è unico. Dimostrazione: Siano $M_1, M_2 \in \mathbb{R}$ massimi per A. Allora risulta che

$$\begin{cases} M_1 \in A \\ \forall a \in A : \ a \leq M_1 \end{cases} \quad \text{e anche} \begin{cases} M_2 \in A \\ \forall a \in A : \ a \leq M_2 \end{cases}$$

Essendo $M_1 \in A$, si ha che $M_1 \leq M_2$ ma anche $M_2 \in A$ quindi $M_2 \leq M_1$. Allora essendo \leq una relazione d'ordine si ha che $M_1 = M_2$. Analogamente si mostra l'unicità del minimo.

Notazione: Sia $A \subset \mathbb{R}$ e sia $M \in A$ un massimo per A, denoteremo M con il simbolo max A. Se esiste il minimo di A, lo denoteremo con min A.

Proposizione: Sia $A \subset \mathbb{R}$, $A \neq \emptyset$, e, $B \subset \mathbb{R}$, $B \neq \emptyset$. Supponiamo che $A \subset B$ e che esistano il minimo sia di A, ξ_1 e il minimo di B, ξ_2 . Allora $\xi_2 \leq \xi_1$. Inoltre se $\exists \max A = \eta_1$ e $\exists \max B = \eta_2$, si ha che $\eta_1 \leq \eta_2$.

Dimostrazione: Per ipotesi $\exists \min A = \xi_1 \in \exists \min B = \xi_2$, ossia

$$\xi_1 \in A \cap \mu_A \ \xi_2 \in B \cap \mu_B$$

Vogliamo provare che $\xi_2 \leq \xi_1$. Poiché $A \subset B$ si ha che

$$\mu_B \subset \mu_A$$
.

Segue che, $\xi_2 \in B \cap \mu B$, ma $\mu_2 \subset \mu A$, e quindi $\xi_2 \in \mu_A$, ed essendo $\xi_1 \in A$, allora $\xi_2 \leq \xi_1$. Analogamente, se esistono il max $A = \eta_1$ ed il max $B = \eta_2$, si prova che $\eta_1 \leq \eta_2 \blacksquare$.

Teorema (Teorema di esistenza dell'estremo superiore): Sia $A \subset \mathbb{R}$, $A \neq \emptyset$. Supponiamo che $\mathcal{M}_{\mathcal{A}} \neq \emptyset$. Allora esiste il min $\mathcal{M}_{\mathcal{A}} \in \mathbb{R}$.

Dimostrazione: Per ipotesi $A \neq \emptyset$ e $\mathcal{M}_{\mathcal{A}} \neq \emptyset$, tali insiemi A e $\mathcal{M}_{\mathcal{A}}$ sono separati, ossia: $\forall a \in A, \forall b \in \mathcal{M}_{\mathcal{A}}: a \leq b$. Per l'assioma di completezza di Dedekind:

$$\exists c \in \mathbb{R} \text{ tale che } \forall a \in A, \ \forall b \in \mathcal{M}_{\mathcal{A}}: \ a \leq c \leq b.$$

Proviamo che $c = \min \mathcal{M}_{\mathcal{A}}$. Poiché $\forall a \in A, \ a \leq c$ risulta che $c \in \mathcal{M}_{\mathcal{A}}$. Inoltre $\forall b \in \mathcal{M}_{\mathcal{A}}, \ c \leq b$ risulta che $c \in \mathcal{M}_{\mathcal{M}_{\mathcal{A}}}$. Segue che $c \in \mathcal{M}_{\mathcal{A}} \cap \mu_{\mathcal{M}_{\mathcal{A}}}$ da cui $c = \min \mathcal{M}_{\mathcal{A}} \blacksquare$.

Definizione: Sia $A \subset \mathbb{R}$, $A \neq \emptyset$, $\mathcal{M}_A \neq \emptyset$. Si chiama estremo superiore di A il numero reale min \mathcal{M}_A , tale numero si denota con il simbolo sup A. Se $A \neq \emptyset$ e $\mathcal{M}_A = \emptyset$ si scrive sup $A = +\infty$.

Analogamente *Teorema* (Teorema di esistenza dell'estremo inferiore): Sia $A \subset \mathbb{R}$, $A \neq \emptyset$, supponiamo che $\mu_A \neq \emptyset$. Allora esiste $\max \mu_A \in \mathbb{R}$

Definizione: Sia $A \subset \mathbb{R}$, $A \neq \emptyset$, $\mu_A \neq \emptyset$. Si chiama estremo inferiore di A il numero reale max μ_A , tale numero si denota con il simbolo inf A. Se $A \neq \emptyset$ e $\mu_A = \emptyset$ si scrive inf $A = -\infty$.

Esempio: 1. $A = \{x \in \mathbb{R} : x \le 1\}$. $\mathcal{M}_{\mathcal{A}} = \{b \in \mathbb{R} \mid \forall x \in A : x \le b\} = \{b \in \mathbb{R} \mid 1 \le b\}$. $A \cap \mathcal{M}_{\mathcal{A}} = \{1\} = \max A$.

1.

 $B = \{x \in \mathbb{R} \mid x < 1\}$. $\mathcal{M}_{\mathcal{B}} = \{b \in \mathbb{R} \mid b \geq 1\}$ $B \cap \mathcal{M}_{\mathcal{B}} = \emptyset$. B non ammette massimo. Per il teorema dell'estremo superiore, il sup $B = \min \mathcal{M}_{\mathcal{B}}$ esiste comunque. Risulta che $\mu_{\mathcal{M}_{\mathcal{B}}} = \{y \in \mathbb{R} \mid y \leq 1\}$ da cui segue che $\mathcal{M}_{\mathcal{B}} \cap \mu_{\mathcal{M}_{\mathcal{B}}} = \{1\} = \sup B$.

Proposizione: Sia $A \subset \mathbb{R}$, $A \neq \emptyset$. Supponiamo che $\mu_A \neq \emptyset$ e $\mathcal{M}_A \neq \emptyset$. Allora risulta che inf $A \leq \sup A$. Inoltre inf $A = \sup A \Leftrightarrow A$ ha un solo elemento.

Dimostrazione: Osserviamo che $\forall a \in A$:

$$\inf A \le a \le \sup A.$$

da cui inf $A \le \sup A$. Inoltre inf $A = \sup A \Leftrightarrow A = \{a\}, a = \inf A = \sup A$.

Proposizione: Siano $A, B \subset \mathbb{R}$, $A, B \neq \emptyset$. Supponiamo che esistano inf e sup sia di A che di B. Se $A \subset B$, allora

 $\sup A \le \sup B$

 $\inf B \leq \inf A$

Dimostrazione: Vogliamo dimostrare che sup $A \leq \sup B$ ossia

 $\min \mathcal{M}_{\mathcal{A}} \leq \min \mathcal{M}_{\mathcal{B}}$

dato che $A \subset B$, si ha che $\mathcal{M}_{\mathcal{B}} \subset \mathcal{M}_{\mathcal{A}}$. Applicando la ((proposizione)) riguardante il minimo di insiemi si ha che min $\mathcal{M}_{\mathcal{A}} \leq \min \mathcal{M}_{\mathcal{B}}$ e quindi sup $A \leq \sup B$. Analogo per gli estremi inferiori: $\mathcal{M}_{\mathcal{B}} \subset \mathcal{M}_{\mathcal{A}}$, applicando la stessa proposizione si ha che $\max \mu_B \leq \max \mu_B$ cioè inf $B \leq \inf A$.

Proposizione: Sia $A \subset \mathbb{R}$, $A \neq \emptyset$. Supponiamo che $\exists \max A \in \mathbb{R}$, allora $\max A = \sup A$. Analogamente se $\exists \min A \in \mathbb{R}$, allora $\min A = \inf A$. Dimostrazione: Supponiamo che $\exists \max A = M \in \mathbb{R}$ allora $M \subset A \cap \mathcal{M}_{\mathcal{A}}$. Voglio verificare che M è il sup A. Sia $y \in \mathcal{M}_{\mathcal{A}}$. Dato che $M \in A$ si ha che $M \leq y$, segue che M è il più piccolo dei maggioranti di $A \blacksquare$. Analogo per l'estremo inferiore.

Caratterizzazioni dell'estremo superiore e inferiore *Proposizione*: Sia $A \subset \mathbb{R}$, $A \neq \emptyset$, $\mathcal{M}_{\mathcal{A}} \neq \emptyset$, Sono fatti equivalenti:

- 1. $\xi = \sup A$
- 2. i) $\forall a \in A : a \leq \xi \in \mathbb{R}$ ii) $\forall y \in \mathbb{R}, y < \xi : \exists a \in A$ tale che y < a.

Dimostrazione: Proviamo che 1) \Longrightarrow 2). Per ipotesi $\xi = \sup A \in \mathbb{R}$. Segue che $\xi = \min \mathcal{M}_{\mathcal{A}}$ per definizione di estremo superiore, ossia $\xi \in \mathcal{M}_{\mathcal{A}} \cap \mu_{\mathcal{M}_{\mathcal{A}}}$, ottenendo $\xi \in \mathcal{M}_{\mathcal{A}}$. Otteniamo così il punto i) Sia $y \in \mathbb{R}$, $y < \xi$. Essendo ξ il più piccolo dei maggioranti di A, si ha che $y \notin \mathcal{M}_{\mathcal{A}}$. Pertanto $\exists a \in A$ tale che y < a. Proviamo che 2) \Longrightarrow 1). Per ipotesi valgono i) e ii). Dalla i) segue che $\xi \in \mathcal{M}_{\mathcal{A}}$. Devo verificare che $\xi \in \mu_{\mathcal{M}_{\mathcal{A}}}$. Se $y \in \mathcal{M}_{\mathcal{A}}$ risulta che $\xi \leq y$. Se fosse $y < \xi$ per la ii) $\exists a \in A : y < a$ da cui $y \notin \mathcal{M}_{\mathcal{A}}$ che è assurdo. Segue che $\xi \in \mathcal{M}_{\mathcal{A}} \cap \mu_{\mathcal{M}_{\mathcal{A}}}$ da cui $\xi = \min \mathcal{M}_{\mathcal{A}} = \sup A$

Proposizione: Sia $A \subset \mathbb{R}$, $A \neq \emptyset$, $\mu_A \neq \emptyset$. Sono fatti equivalenti:

- 1. $\eta = \inf A$
- 2. i) $\forall a \in A, \eta \leq a, \eta \in \mathbb{R}$ ii) $\forall y \in \mathbb{R} : \eta < y : \exists a \in A$ tale che a < y.

Corollario (della caratterizzazione di sup): Sia $A \subset \mathbb{R}$, $\mathcal{M}_{\mathcal{A}} \neq \emptyset$. Sono fatti equivalenti:

- 1. $\xi = \sup A$.
- 2. i) $\forall a \in A : a \leq \xi \in \mathbb{R}$ ii) $\forall \varepsilon > 0, \exists a \in A$ tale che $\xi \varepsilon < a$. Dimostrazione: Supponiamo vera 1) e dimostriamo 2). Per la caratterizzazione dell'estremo superiore di A risulta vera la i). Sia $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.

Poniamo $y = \xi - \varepsilon$. Risulta che $y < \xi$, per la ii) della caratterizzazione dell'estremo superiore $\exists a \in A : y < a$. Da cui segue che $\xi - \varepsilon < a \blacksquare$. Supponiamo vera 2) e dimostriamo 1). Per la caratterizzazione dell'estremo superiore, basta provare che $\forall y \in \mathbb{R}, y < \xi, \exists a \in A : y < a$. Sia allora $y \in \mathbb{R}, y < \xi$. Poniamo $\varepsilon := \xi - y, \varepsilon \in \mathbb{R}, \varepsilon > 0$. Per la ii) si ha che $\exists a \in A$ tale che $\xi - \varepsilon < a$. Concludiamo che $y = \xi - \varepsilon \Longrightarrow y < a \blacksquare$.

Corollario (della caratterizzazione di estremo inferiore): Sia $A \subset \mathbb{R}, \mu_A \neq \emptyset$. Sono fatti equivalenti:

- 1. $\eta = \inf A$.
- 2. *i*) $\forall a \in A : \eta \leq a, \ \eta \in \mathbb{R}$ *ii*) $\forall \varepsilon > 0, \ \exists a \in A \text{ tale che } a < \eta + \varepsilon.$

Proposizione (La dimostrazione è sul Buttazzo): Siano $A,B \subset \mathbb{R},\,A,B \neq \emptyset,\,A,B$ separati. Sono fatti equivalenti:

- 1. A, B sono contigui, cioè $\exists! c \in \mathbb{R}$ tale che $\forall a \in A, \forall b \in B : a \leq c \leq b$.
- 2. $\sup A = \inf B$.

Osservazione: $A=\{x\in\mathbb{R}|\,x<1\},\;B=\{x\in\mathbb{R}|\,x>1\}.$ Vale che sup $A=\inf B$ e sono contigui.

Proposizione : Siano $X,Y \subset \mathbb{R}, X \neq \varnothing, Y \neq \varnothing, X,Y$ separati. Sono fatti equivalenti:

- 1. X, Y sono contigui.
- 2. $\forall \varepsilon > 0, \exists x \in X, \exists y \in Y \text{ tali che } y x < \varepsilon.$

Dimostrazione: dimostriamo che 1) \Longrightarrow 2). Si ha che sup $X = \inf Y$. Sia $\varepsilon > 0$. In corrispondenza di $\frac{\varepsilon}{2}$ per il corollario, $\exists x \in X$ tale che sup $X - \frac{\varepsilon}{2} < x$. In corrispondenza di $\frac{\varepsilon}{2}$, $\exists \in Y$ tale che $y < \inf Y + \frac{\varepsilon}{2}$. Segue che

$$y-x<\inf Y+\frac{\varepsilon}{2}-\sup X+\frac{\varepsilon}{2}=\inf Y+\frac{\varepsilon}{2}-\inf Y+\frac{\varepsilon}{2}=\varepsilon.$$

Concludiamo che $y-x<\varepsilon$. Dimostriamo che $2)\Longrightarrow 1$). Per ipotesi $\forall \varepsilon>0, \exists x\in X, \ \exists y\in Y \ \text{tale}$ che $y-x<\varepsilon$. Al fine di dimostrare che sup $X=\inf Y$ verifichiamo che $\forall \varepsilon>0: 0\leq\inf Y-\sup X<\varepsilon$. (Posso scegliere $\bar{\varepsilon}=\inf Y-\sup X, \ \bar{\varepsilon}>0: 0\leq\inf Y-\sup X, \ \bar{\varepsilon}>0: 0\leq\inf Y-\sup X<\bar{\varepsilon}=\inf Y-\sup X$.) Sia quindi $\varepsilon>0$. Per 2), $\exists x\in X, \ \exists y\in Y \ \text{tali}$ che $y-x<\varepsilon$. Segue che inf $Y-\sup X\leq y-x<\varepsilon$ da cui inf $Y-\sup X<\varepsilon$ \blacksquare .

Definizione: Sia $I \subset \mathbb{R}$. Si dice che I è un intervallo se:

$$\forall a, b \in I, \ a \le b, \ a \ne b : \ \{z \in \mathbb{R} | \ a < z < b\} \subset I$$

Notazione per intervalli di estremi $a,b \in \mathbb{R}$ e di semirette: Siano $a,b \in \mathbb{R}, \ a < b$. Denoteremo:

1. $]a,a[=\varnothing,$

- 2. [a, a] = a
- 3. $]a, b[=\{z \in \mathbb{R} | a < z < b\}]$ (Intervallo aperto di estremi a, b).
- 4. $[a,b] = \{z \in \mathbb{R} | a \le z \le b\}$ (Intervallo chiuso di estremi a,b).
- 5. $]a,b] = \{z \in \mathbb{R} | a \le z < b \}$ (Intervallo aperto a destra di estremi a,b).
- 6. $\lceil a,b \rceil = \{z \in \mathbb{R} | a < z \le b\}$ (Intervallo aperto a sinistra di estremi a,b).
- 7. $[a, +\infty[=\{z \in \mathbb{R} | , a \le z\}]$ (semiretta destra chiusa di estremo a).
- 8.], $a, \infty [= \{z \in \mathbb{R} | a < z\} \text{ (semiretta destra aperta di estremo } a)$
- 9. $]-\infty,b] = \{z \in \mathbb{R} | z \leq b\}$ (semiretta sinistra chiusa di estremo b).
- 10. $]-\infty, b[=\{z \in \mathbb{R} | z < b\}]$ (semiretta sinistra aperta di estremo b).
- 11. $]-\infty,+\infty[=\mathbb{R}$

Teorema (Caratterizzazione degli intervalli di $\mathbb R)$: Sia $I\subset \mathbb R.$ Sono fatti equivalenti:

- 1. I è un intervallo.
- 2. I è un intervallo di estremi reali, oppure I è una semiretta destra, oppure I è una semiretta sinistra, oppure $I=\varnothing$ oppure $I=\mathbb{R}$, oppure I è ridotto ad un solo elemento.

Dimostrazione: 2) \Longrightarrow 1) è ovvia. Dimostriamo 1) \Longrightarrow 2). Sia $I \subset \mathbb{R}$ un intervallo. Se I è vuoto o ridotto ad un solo elemento allora vale 2). Supponiamo I di non essere in uno di questi casi e che I sia limitato. Poniamo $a = \inf I \in \mathbb{R}$ e $b = \sup I \in \mathbb{R}$. Verifichiamo che

$$]a,b[\subset I\subset [a,b]$$

La seconda inclusione è ovvia, dimostriamo la prima. Sia $y \in]a,b[$. Allora inf $I < y < \sup I$. Per le caratterizzazioni di estremo superiore e inferiore di I, $\exists x \in I$, tale che y < x, $\exists x' \in I$ tale che x' < y. Pertanto $x, x' \in I$, $y \in \mathbb{R}$, x' < y < x. Essendo I un intervallo si ha che $y \in I$. Supponiamo poi che I sia limitato solo inferiormente. Risulta che $a = \inf I \in \mathbb{R}$, $\sup I = +\infty$. Si dimostra che $[a, +\infty[\subset I \subset [a, +\infty[$. Analogamente se I è limitato solo superiormente. Se I non è limitato, allora $I = \mathbb{R}$

Definizione: Sia $A \subseteq \mathbb{R}$. Si dice che A è induttivo se:

- 1. $0 \in A$
- $2. x \in A \implies x + 1 \in A$

Esempio: $A = [0, +\infty[$ è induttivo, dato che $0 \in A$ e $\forall x \in A : x+1 \in A$, perché se $0 \le x$ allora $0 \le 1 \le x+1$ quindi $x+1 \in A$.

Definizione: Si dice insieme dei numeri naturali e si denota con il simbolo \mathbb{N} , l'intersezione di tutti i sottoinsiemi induttivi di \mathbb{R} .

Posto $\mathcal{F} = \{A \subset \mathbb{R} | A \text{ induttivo } \}$, si ha che $\mathcal{F} \neq \emptyset$. Per definizione, poniamo $\mathbb{N} = \cap_{A \in \mathcal{F}} A$. Ogni elemento di \mathbb{N} è detto numero naturale.

 $Proposizione: \mathbb{N}$ è induttivo.

Dimostrazione: Verifichiamo che \mathbb{N} è induttivo. $\forall A \in \mathcal{F} : 0 \in A$, segue che $0 \in \cap_{A \in \mathcal{F}} A = \mathbb{N}$. Verifichiamo ora che $x \in \mathbb{N} \implies x+1 \in \mathbb{N}$. Quindi sia $n \in \mathbb{N}$. Risulta che $\forall A \in \mathcal{F} : n \in A$. Essendo A induttivo $n+1 \in A, \forall A \in \mathcal{F}$. Allora $n+1 \in \cap_{A \in \mathcal{F}} A = \mathbb{N}$. Pertanto \mathbb{N} è induttivo \blacksquare .

Osservazione: Essendo \mathbb{N} induttivo, si ha che $\mathbb{N} \subset [0, +\infty[$.

Principio d'induzione Sia $A \subset \mathbb{N}$, tale che:

- 1. $0 \in A$
- 2. $\forall n : (n \in A \implies n+1 \in A)$. Allora si ha che $A = \mathbb{N}$.

Dimostrazione: Per ipotesi $A \subset \mathbb{N}$. Inoltre essendo A induttivo, si ha che $A \in \mathcal{F}$, da cui $\mathbb{N} = \cap_{B \in \mathcal{F}} B \subset A$. Allora $A = \mathbb{N}$.

Definizione: Se $n \in \mathbb{N}$ allora n + 1 si chiama il successivo di n.

Osservazione :Essendo $\mathbb N$ induttivo, ogni successivo di un naturale è un numero naturale.

Proposizione: Risulta che:

- 1. $\forall n, m \in \mathbb{N}, n+m \in \mathbb{N}$.
- 2. $\forall n, m \in \mathbb{N}, n \cdot m \in \mathbb{N}$.

 $\begin{array}{ll} Dimostrazione: \ {\rm Dimostriamo}\ 1). \ {\rm Verifichiamo}\ {\rm che}\ \forall n,m\in\mathbb{N}:\ n+m\in\mathbb{N}. \\ {\rm Sia}\ {\rm quindi}\ m\in\mathbb{N}. \ {\rm Consideriamo}\ l'insieme\ A_m=\{n\in\mathbb{N}|n+m\in\mathbb{N}\}.\ {\rm Proviamo}\ {\rm che}\ A_m=\mathbb{N}.\ {\rm Dimostriamolo}\ {\rm per}\ {\rm induzione}.\ {\rm Infatti}\ {\rm risulta}\ {\rm che}\ A_n\subset\mathbb{N}.\ {\rm Inoltre}\ 0\in A_m\ {\rm poich\acute{e}}\ 0+m=m\in\mathbb{N}.\ {\rm Inoltre}\ {\rm sia}\ n\in A_m,\ {\rm ossia}\ n+m\in\mathbb{N}.\ {\rm Consideriamo}\ (n+1)+m=(n+m)+1.\ {\rm Essendo}\ n+m\in\mathbb{N}\ {\rm e}\ \mathbb{N}\ {\rm induttivo},\ {\rm concludiamo}\ {\rm che}\ (n+1)+m\in\mathbb{N}\ {\rm da}\ {\rm cui}\ n+1\in A_m.\ {\rm Quindi}\ A_m\ {\rm \acute{e}}\ {\rm induttivo}\ {\rm e}\ {\rm per}\ {\rm il}\ {\rm principio}\ {\rm di}\ {\rm induzione}:\ A_m=\mathbb{N}. \end{array}$

Dimostriamo 2). Verifichiamo che $\forall n, m \in \mathbb{N} : n+m \in \mathbb{N}$. Sia quindi $m \in \mathbb{N}$. Consideriamo l'insieme $B_m = \{n \in \mathbb{N} | n \cdot m \in \mathbb{N}\} \subset \mathbb{N}$. Vale che $0 \in B_m$ essendo $m \cdot 0 = 0 \in \mathbb{N}$. Verifichiamo che $n \in B_m \implies n+1 \in B_m$. Sia quindi $n \in B_m$. Valutiamo $(n+1)m = n \cdot m + m$. $n \cdot m \in \mathbb{N}$ ed essendo $m \in \mathbb{N}$ per come dimostrato sopra $n \cdot m + m \in \mathbb{N}$. Quindi $n+1 \in B_m$. Quindi $B_m \in \mathbb{N}$ induttivo e allora $B_m = \mathbb{N} \blacksquare$.

Principio di induzione generalizzato Sia $A \subset \mathbb{N}$, sia $n_0 \in \mathbb{N}$. Supponiamo che:

- 1. $n_0 \in A$,
- 2. $\forall n, n_0 \le n : n \in A \implies n+1 \in A$. Allora risulta che $\{n \in \mathbb{N} | n_0 \le n\} \subset A$.

Dimostrazione: Poniamo $C = \{n \in \mathbb{N} | n + n_0 \in A\}$. Proveremo che C è induttivo. Ovviamente $0 \in C$, inoltre se $n \in C$: $n+1 \in C$. Dato che se $n \in C$, $n+n_0 \in A$ da cui $(n+1)+n_0=(n+n_0)+1 \in A$. Concludiamo che $C=\mathbb{N}$ da cui segue che $\{n \in \mathbb{N} | n_0 \leq n\} \subset A \blacksquare$.

Osservazione: Se $A \subset \{n \in \mathbb{N} | n \ge n_0\}$ e verifica le proprietà richieste dal principio di induzione generalizzato allora $A = \{n \in \mathbb{N} | n > n_0\}$.

Notazione:]a,b[=(a,b)]

Teorema (Discretezza di \mathbb{N}): $\forall n \in \mathbb{N} : (n, n+1) \cap \mathbb{N} = \emptyset$.

Dimostrazione: Sia $C = \{n \in \mathbb{N} | (n, n+1) \cap \mathbb{N} = \emptyset\} \subset \mathbb{N}$. Proviamo che C è induttivo.

1. $0 \in C$? Sia $A = \mathbb{N} \setminus (0,1) \subset \mathbb{N}$. Proviamo che A è induttivo. $0 \in \mathbb{N}$, $0 \notin (0,1) \Rightarrow 0 \in A$. inoltre sia $n \in A$.

$$n \ge 0 \Rightarrow n+1 \ge 1 \Rightarrow n+1 \notin (0,1) \Rightarrow n+1 \in A$$

Quindi $A \in \mathbb{N}$ induttivo. Per il principio di induzione $A = \mathbb{N}$. Quindi $\mathbb{N} \setminus (0,1) = \mathbb{N} \Leftrightarrow \mathbb{N} \cap (0,1) = \emptyset$. Quindi $0 \in C$.

1. Sia $n \in \mathbb{C}$. Mostriamo che $n + 1 \in \mathbb{C}$.

$$n \in C \Leftrightarrow (n, n+1) \cap \mathbb{N} = \emptyset$$

Poniamo

$$B = \mathbb{N} \setminus (n+1, n+2) \subset \mathbb{N}$$

Proviamo che B è induttivo. $0 \in B$ poiché $\forall n \in \mathbb{N} : n+1 > 0$ e $0 \notin (n+1,n+2) \Rightarrow 0 \in B$. Sia $m \in \mathbb{N}$, suppongo $m \in B \Leftrightarrow m \in \mathbb{N} \setminus (n+1,n+2)$. Quindi $m \le n+1 \vee n \ge n+2$. $2.1 \ m < n+1$. dato che $(n,n+1) \cap \mathbb{N} = \emptyset$, si ha che $m \le n$. Segue che $m+1 < n+1 \Rightarrow m+1 \in B$. $2.2 \ m = n+1 \Rightarrow m+1 = n+2 \notin (n+1,n+2) \Rightarrow m+1 \in B$. $2.3 \ m \ge n+2 \Rightarrow m+1 \ge n+3 \Rightarrow m+1 \in B$. Segue che B è induttivo e che $B = \mathbb{N}$. Quindi $\mathbb{N} \cap (n+1,n+2) = \emptyset$, quindi C è induttivo e $C = \mathbb{N}$. Da cui $\mathbb{N} \cap (n,n+1) = \emptyset$, $\forall n \in \mathbb{N} =$.

 \mathbb{N} si dice discreto, ossia verifica la proprietà $\forall n \in \mathbb{N} : \mathbb{N} \cap (n, n+1) = \emptyset$.

Teorema: \mathbb{N} non è limitato superiormente.

Dimostrazione: Vogliamo provare che $\mathcal{M}_{\mathbb{N}} = \emptyset$. Supponiamo per assurdo che $\mathcal{M}_{\mathbb{N}} \neq \emptyset$. Per il teorema di esistenza dell'estremo superiore, $\exists M = \sup \mathbb{N} \in \mathbb{R}$. Segue che $M \in \mathcal{M}_{\mathbb{N}}$, cioè $\forall n \in \mathbb{N} : n \leq M$. Essendo \mathbb{N} induttivo, si ha che $\forall n \in \mathbb{N} : n + 1 \in \mathbb{N} \Longrightarrow \forall n \in \mathbb{N}, n + 1 \leq M$. Pertanto vale che $\forall n \in \mathbb{N} : n \leq M - 1$, ma allora M - 1 è un maggiorante di \mathbb{N} , che è assurdo in quanto avevamo supposto che sup $\mathbb{N} = M$. ■.

Proposizione (Proprietà archimedea di \mathbb{R} (I)):

 $\forall a \in \mathbb{R}, a > 0 : \exists n \in \mathbb{N} \text{ tale che } a < n.$

Dimostrazione: Per il teorema precedente, si ha che $\mathcal{M}_{\mathbb{N}} = \emptyset$. Voglio dimostrare che $\forall a \in \mathbb{R}, a > 0, \exists n \in \mathbb{N}$ tale che a < n. Sia quindi $a \in \mathbb{R}, a > 0$. Se per assurdo che la tesi sia falsa, ovvero che $\forall n \in \mathbb{N}, a \geq n$. Pertanto si ha che $a \in \mathcal{M}_{\mathbb{N}}$, assurdo \blacksquare .

Proposizione (Proprietà archimedea II):

 $\forall a, b \in \mathbb{R}, a, b > 0, \exists n \in \mathbb{N} \text{ tale che } na > b.$

Dimostrazione: Sia $a, b \in \mathbb{R}$, a, b > 0, a > b. Poiché $a \neq 0$, $\exists a^{-1} \in \mathbb{R}$. Consideriamo il numero reale $x = b \cdot a^{-1}$. Per la proprietà archimedea (I), $\exists n \in \mathbb{N}$, tale che $n > x = ba^{-1}$. Pertanto essendo a > 0, risulta che $na > xa = (ba^{-1})a = b \blacksquare$.

Corollario: Se $x \in \mathbb{R}$, $x \ge 0$, tale che $\forall n \in \mathbb{N}$, $n \ne 0$, $x \le \frac{1}{n}$, allora x = 0. Dimostrazione: Sia $x \ge 0$ tale che $\forall n \in \mathbb{N}, n \ne 0, x \le \frac{1}{n}$. Se fosse che $x \ne 0$, allora x > 0. Per la proprietà archimedea (I) applicata a $x^{-1} \in \mathbb{R}$, $\exists \bar{n} \in \mathbb{N}$, $\bar{n} \ne 0$, tale che $\bar{n} > x^{-1}$. Segue che

$$x > \frac{1}{\bar{n}}$$
.

Quindi si ha che $\frac{1}{\bar{n}} < x \le \frac{1}{\bar{n}}$, allora $\frac{1}{\bar{n}} < \frac{1}{\bar{n}}$, assurdo \blacksquare .

Corollario: Se $x \in \mathbb{R}$, x > 0, allora $\exists n \in \mathbb{N}$, $n \neq 0$ tale che $x > \frac{1}{n}$.

Dimostrazione: Sia $x \in \mathbb{R}$, x > 0. Per il corollario precedente, se $\forall n \in \mathbb{N}$, $n \neq \infty$ $0, x \le n$ allora x = 0. Essendo $x > 0, \exists n \in \mathbb{N}, n \ne 0$ tale che $x > \frac{1}{n} \blacksquare$

Definizione: \mathbb{R} si dice un corpo, commutativo, archimedeo completo e totalmente ordinato.

Proposizione (Principio del minimo): Ogni sottoinsieme $A \subset \mathbb{N}, A \neq \emptyset$, ammette minimo.

Dimostrazione: Sia $A \subset \mathbb{N}$, $A \neq \emptyset$. Risulta che $0 \in \mu_A \neq \emptyset$. Per il teorema di esistenza dell'estremo inferiore in \mathbb{R} ,

$$\exists \inf A = \max \mu_A = a \in \mathbb{R}.$$

Proveremo che $a = \min A$, cioè $a \in \mathbb{N}$. Poiché 0 < 1, risulta che a < a + 1, per la caratterizzazione dell'estremo inferiore, $\exists n \in A$ tale che $a \le n < a + 1$. Se a = n, la tesi sarebbe soddisfatta, ossia inf $A \in \mathbb{N} \implies \inf A = \min A$. Se a < n < n + 1. allora per la caratterizzazione dell'estremo inferiore $\exists m \in A$ tale che $a \leq m < n$. Segue che $m < n < a + 1 \le m + 1$ da cui $n \in]m, m + 1[$ che è assurdo in quanto $[m, m+1] = \emptyset$. (Discretezza di N). Concludiamo che $a = n \blacksquare$.

Definizione: \mathbb{N} si dice ben ordinato in quanto \mathbb{N} verifica il principio del minimo.

Definizione: Si dice che $n \in \mathbb{N}$ è pari se n = 2p, con $p \in \mathbb{N}$. Si dice che $n \in \mathbb{N}$ è dispari se n = 2m + 1, con $m \in \mathbb{N}$.

Denoteremo con P l'insieme dei naturali pari e D l'insieme dei naturali dispari. Proposizione:

- 1. $\mathbb{P} \cup \mathbb{D} = \mathbb{N}$
- 2. $\mathbb{P} \cap \mathbb{D}$.

Dimostrazione:

1. Verifichiamo che $A = \mathbb{P} \cup \mathbb{D} \subset \mathbb{N}$ soddisfa le ipotesi del principio di induzione. Osserviamo che $0 \in \mathbb{P} \subset A = \mathbb{P} \cup \mathbb{D}$. Proveremo anche che A è induttivo. Sia $n \in A = \mathbb{P} \cup \mathbb{D}$. Se n = 2p, con $p \in \mathbb{N}$, allora $n + 1 = 2p + 1 \in \mathbb{D} \subset A$. Se invece, n = 2m + 1, con $m \in \mathbb{N}$, allora n + 1 = 2m + 1 + 1 = 2(m + 1), allora $n+1\in\mathbb{P}\subset A$. Segue che $\forall n\in\mathbb{N}, n\in A$, allora $n+1\in A$. Per il principio di induzione $A = \mathbb{P} \cup \mathbb{D} = \mathbb{N} \blacksquare$.

2. Vogliamo provare che $\mathbb{P} \cap \mathbb{D} = \emptyset$. Sia per assurdo che $\exists n \in \mathbb{P} \cap \mathbb{D}$. Allora n = 2p, con $p \in \mathbb{N}$ ma anche n = 2m + 1, con $m \in \mathbb{N}$. Ovvero:

$$2p = 2m + 1 \implies 2(p - m) = 1.$$

Se $p=m, 2\cdot 0=0=1$, assurdo. Se p< m, allora 2(p-m)=1. Ma p-m<0 cioè 1=2(p-m)<0, assurdo. Se p>m, allora per la discretezza di $\mathbb N$ si ha che $p-m\geq 1$. Risulta allora che $1=2(p-m)\geq 2$, assurdo \blacksquare .

Teorema: Ogni sottoinsieme $A \subset \mathbb{N}$, $A \neq \emptyset$, $\mathcal{M}_{A} \neq \emptyset$ ammette massimo.

Dimostrazione: (Analogo al principio del minimo).

Numeri relativi (interi)

Definizione: Si dice $x \in \mathbb{R}$ è un numero relativo se $\exists n, m \in \mathbb{N} : x = m - n$. Si denotano con il simbolo \mathbb{Z} .

Proposizione: Valgono le seguenti proprietà:

- 1. $\mathbb{N} \subset \mathbb{Z}$.
- 2. $\forall x, y \in \mathbb{Z} : x + y \in \mathbb{Z}, x \cdot y \in \mathbb{Z}, -x \in \mathbb{Z}$.

Dimostrazione:

- 1. $m \in \mathbb{N}$, allora $m = m 0 \in \mathbb{Z}$.
- 2. Siano $x, y \in \mathbb{Z}$. Allora per definizione x = m n, y = p q, con $m, n, p, q \in \mathbb{N}$. Quindi $x + y = m n + p q = (m + p) (n + q) \in \mathbb{Z}$. Inoltre siano x, y come prima, $x \cdot y = (m n) \cdot (p q) = mp mq np + nq = (mp + nq) (mq + np) \in \mathbb{Z}$. Infine se $x \in \mathbb{Z}$, $x = m n, m, n \in \mathbb{Z}$, allora $-x = -(m n) = n m \in \mathbb{Z}$.

Teorema: Sia $A \subset \mathbb{Z}$, $A \neq \emptyset$, $\mu(A) \neq \emptyset$, allora A ammette minimo.

Teorema: \mathbb{Z} non è limitato superiormente, \mathbb{Z} non è limitato inferiormente.

Dimostrazione: La tesi segue osservando $\mathbb{N} \subset \mathbb{Z}$ e anche $-\mathbb{N} \subset \mathbb{Z}$.

Teorema: Ogni sottoinsieme $A \subset \mathbb{Z}$, $A \neq \emptyset$, $\mathcal{M}_A \neq \emptyset$ ammette massimo.

Numeri razionali

Definizione: Si dice che $x \in \mathbb{R}$ è un numero razionale se $\exists m \in \mathbb{Z}, n \in \mathbb{N}, n \neq 0$ tali che $x = m \cdot n^{-1} = \frac{m}{n}$. L'insieme dei numeri razionali si denota con \mathbb{Q} . Si dice che $x \in \mathbb{R}$ è un numero irrazionale se $x \in \mathbb{R} \setminus \mathbb{Q}$.

Proposizione: Valgono le seguenti proprietà:

- 1. $\mathbb{Z} \subset \mathbb{Q}$
- 2. $\forall x, y \in \mathbb{Q}, x + y \in \mathbb{Q}, xy \in \mathbb{Q}, -x \in \mathbb{Q}$
- 3. $\forall x \in \mathbb{O}, x \neq 0 : x^{-1} \in \mathbb{O}$

Dimostrazione:

- 1. Sia $x \in \mathbb{Z}$, in particolare $x = \frac{x}{1} \in \mathbb{Q}$.
- 2. Siano $x, y \in \mathbb{Q}$. Per definizione $\exists m \in \mathbb{Z}, n \in \mathbb{Z}, n \neq 0, \exists p \in \mathbb{Z}, q \in \mathbb{N}, q \neq 0$, tali che $x = mn^{-1}, y = pq^{-1}$. Segue che $x + y = mn^{-1} + pq^{-1} = \frac{mq + pn}{nq} \in \mathbb{Q}$. Inoltre $xy = (mn^{-1})(pq^{-1}) = \frac{m}{n} \cdot \frac{p}{q} = (mp)(nq)^{-1} \in \mathbb{Q}$. Infine si ha che se $x \in \mathbb{Q}$ allora $-x \in \mathbb{Q}$. Infatti se $x = mn^{-1}$, come prima, allora $-x = -m(n^{-1}) = (-m)n^{-1} \in \mathbb{Q}$.

3.

Teorema: $\mathbb Q$ è denso in $\mathbb R$. Ovvero: se $a,b\in\mathbb R,$ a< b, allora $\exists q\in\mathbb Q,$ tale che a< q< b.

Dimostrazione: Ci sono 3 casi da considerare:

1. Siano $a,b\in\mathbb{R}:0\leq a< b;$ Per l'assioma di Archimede vale che $\exists n\in\mathbb{N}:n(b-a)>1\Longrightarrow n>\frac{1}{b-a},$

Segue che nb - na > 1, da cui nb > na + 1. Consideriamo l'insieme:

$$C = \{ p \in \mathbb{N} | na$$

che è non vuoto per la proprietà archimedea. Inoltre $C \subset \mathbb{N}$. Essendo $C \subset \mathbb{N}$, non vuoto, per il principio del minimo $\exists \min C = m \in \mathbb{N}$. Segue che na < m, na+1 < nb, essendo inoltre $m = \min C$, risulta che m-1 < na da cui $m \le na+1$. Concludiamo che $na < m \le na+1 < nb$ e quindi na < m < nb. Moltiplicando per il reciproco di n si ha che $a < mn^{-1} < b$. Posto $q = mn^{-1}$, si ha che $q \in \mathbb{Q}$ e a < q < b.

- 2. Siano $a, b \in \mathbb{R}$: a < 0 < b; Il caso è banale dato che $0 \in \mathbb{Q}$.
- 1. a < b < 0. Si procede applicando il punto 1) al caso equivalente 0 < -b < -a. Otterremo così -q che è il numero razionale cercato \blacksquare .

Proposizione: $\nexists x \in \mathbb{Q} | x^2 = 2$.

Dimostrazione: Supponiamo per assurdo che $\exists x \in \mathbb{Q} | x^2 = 2$. Allora $x = \frac{m}{n}$ con $m \in \mathbb{Z}$ e $n \in \mathbb{N}^*$, e senza perdita di generalità sono primi tra di loro. Essendo $x^2 = 2 \implies \frac{m^2}{n^2} = 2$. Cioè $m^2 = 2n^2$, segue che m è pari. In particolare il quadrato di un numero pari è pari. Quindi $m^2 = 2n^2 \implies (2s)^2 = 2n^2 \implies 4s^2 = 2n^2$. Ovvero $2s^2 = n^2$. Quindi anche n^2 è pari, e conseguentemente anche n. Ma allora sia m che n sono pari che contraddice l'ipotesi di averli scelti coprimi.

Teorema (incompletezza di \mathbb{Q}): \mathbb{Q} non verifica l'assioma di Dedekind (\mathbb{Q} non è completo).

Dimostrazione: Basta trovare un insieme limitato, non vuoto, che non ammette estremo superiore (o inferiore) in \mathbb{Q} . Sia quindi $A = \{x \in \mathbb{Q} : x \geq 0, x^2 < 2\}$. 1 appartiene ad A, quindi è non vuoto, $2 \in \mathcal{M}_A$ infatti:

$$x^{2} < 2 \Rightarrow x^{2} < 4 \Rightarrow x^{2} - 4 < 0 \Rightarrow (x - 2)(x + 2) < 0 \Rightarrow x < 2.$$

Quindi A è superiormente limitato. Supponiamo che $\exists \lambda \in \mathbb{Q} : \lambda = \sup A$, in particolare vale $\lambda \geq 1$. Ci sono 3 casi distinti:

$$1. \lambda^2 < 2$$
 $2. \lambda^2 = 2$ $3. \lambda^2 > 2.$

1. Per il principio di Archimede $\exists n \in \mathbb{N} : n > \max\left\{1, \frac{2\lambda+1}{2-\lambda^2}\right\}$. Vale che $\lambda + \frac{1}{n} \in \mathbb{Q}$, vediamo se appartiene ad A. Sarebbe a dire:

$$\left(\lambda + \frac{1}{n}\right)^2 = \lambda^2 + \frac{2\lambda}{n} + \frac{1}{n^2} < \lambda^2 + \frac{2\lambda}{n} + \frac{1}{n} = \lambda^2 + \frac{2\lambda + 1}{n}.$$

Se fosse minore di 2 avremmo

$$\lambda^2 + \frac{2\lambda + 1}{n} < 2 \Rightarrow \left(\lambda + \frac{1}{n}\right)^2 < 2 \Rightarrow \left(\lambda + \frac{1}{n}\right) \in A.$$

Ma λ era l'estremo superiore di A. Otteniamo un assurdo. 2. Senza perdita di generalità posso scrivere $\lambda = \frac{m}{n}$ con $m, n \in \mathbb{Q}$ e coprimi. Se fosse che $\lambda^2 = 2$ avrei:

$$\frac{m^2}{n^2} = 2 \Rightarrow m^2 = 2n^2 \Rightarrow \exists p \in \mathbb{N} : m = 2p.$$

$$\frac{4p^2}{n^2} = 2 \Rightarrow 2p^2 = n^2.$$

Cioè sia m che n sono pari, ma li avevamo assunti coprimi, abbiamo ottenuto un assurdo. 3. Ancora per il principio di Archimede scriviamo $\exists n \in \mathbb{N} : n > \max\left\{\frac{1}{\lambda}, \frac{2\lambda}{\lambda^2 - 2}\right\}$. Vale che $\lambda - \frac{1}{n} \in \mathbb{Q}$.

$$\left(\lambda - \frac{1}{n}\right)^2 = \lambda^2 - \frac{2\lambda}{n} + \frac{1}{n^2} > \lambda^2 - \frac{2\lambda}{n} > \lambda^2 - 2\lambda \frac{\lambda^2 - 2}{2\lambda} = \lambda^2 - \lambda^2 + 2 = 2$$

Dimostriamo adesso che $\lambda - \frac{1}{n}$ è un maggiorante di A. Ricordando che $x \in A$ implica $x \ge 0$ e usando che $\lambda - \frac{1}{n}$ è positivo si ha che per ogni $x \in A$:

$$\lambda - \frac{1}{n} > x \Leftrightarrow \left(\lambda - \frac{1}{n}\right)^2 > x^2.$$

che è vero per quanto detto sopra:

$$\left(\lambda - \frac{1}{n}\right)^2 > 2 > x^2$$

Abbiamo quindi dimostrato che $\lambda - \frac{1}{n}$ è un maggiorante di A, in contraddizione al fatto che $\lambda = \sup A$. Concludendo, $\nexists \lambda \in \mathbb{Q}$ tale che $\lambda = \sup A$.

Definizione : Sia $x \in \mathbb{R}.$ Sia $n \in \mathbb{N}, \, n \neq 0.$ Si chiama potenza n-esima di x il numero reale :

$$x^{n} = \begin{cases} x^{n} & \text{se } m \in \mathbb{N}^{+} \\ 1 & \text{se } n = 0 \\ \frac{1}{x^{|n|}} & \text{se } n \in -\mathbb{N}^{+} \end{cases}$$

Propositione: $\forall x \in \mathbb{R}, x \neq 0, \forall n, m \in \mathbb{Z}$:

- 1. $(x^m)^n = x^{mn}$
- 2. $x^{n+m} = x^n \cdot x^m$
- 3. $(x \cdot y)^n = x^n \cdot y^n$.

Proposizione:

- 1. Sia $y \in \mathbb{R}, 0 < y \le 1$. Si ha che: $\forall n \in \mathbb{N}, n \ne 0 : y^n \le y$.
- 2. Sia $y \in \mathbb{R}$, $y \ge 1$. Si ha che $\forall n \in \mathbb{N}$, $n \ne 0 : y^n \ge y$.

Dimostrazione:

- 1. Sia $y \in \mathbb{R}, 0 < y \le 1 \implies \forall n \in \mathbb{N}, n \ne 0 : y^n \le y$. $P(n) = \forall n \in \mathbb{N}, n \ne 0 : y^n \le y$, il predicato che dimostreremo per induzione. Proviamo la base induttiva, sia quindi n = 1. Allora $y^1 = y$, verificata. Per il passo induttivo assumiamo che se $y^n \le y$, dobbiamo dimostrare: $y^{n+1} \le y$. Essendo $y^{n+1} = y \cdot y^n$ abbiamo che $y \cdot y^n \le y^2$, che ci permette di concludere.
- 2. Sia $y \in \mathbb{R}$, $y \ge 1$. $P(n) = \forall n \in \mathbb{N}$, $n \ne 0 : y^n \ge y$. Dimostriamo il predicato per induzione. Il passo base, P(1), è verificato in quanto $y^1 \ge y$. Dimostriamo il caso P(n+1). Per ipotesi $y^n \ge y$. Ma $y^{n+1} = y^n y \ge y \cdot y$ per ipotesi. Abbiamo verificato il passo induttivo \blacksquare .

Proposizione: Siano $x, y \in \mathbb{R}$, 0 < x < y. Allora $\forall n \in \mathbb{N}$, $n \neq 0 : x^n < y^n$.

Dimostrazione: Dimostriamolo per induzione sul predicato $P(n) = \forall n \in \mathbb{N}, n \neq 0, x < y \implies xy^n < y^n$. P(1) è banale in quanto $x^1 < y^1$ per ipotesi. Dimostriamo il caso P(n+1):

$$x^{n+1} < y^{n+1} \implies x^n \le y^n.$$

Ma x < y per ipotesi e $x^n < y^n$ per ipotesi induttiva. Quindi P(n+1) è vera \blacksquare . $Teorema(\text{della radice } n - esima): \forall y \in \mathbb{R}^*, \forall n \in \mathbb{N}, n \geq 2$, esiste una ed una sola $x \in \mathbb{R}$ positiva tale che $x^n = y$.

Definizione: Sia $y \in \mathbb{R}^*$, sia $\mathbb{N} \in \mathbb{N}$, $n \geq 2$. Si chiama radice n – esima di y l'unica x reale positiva tale che $x^n = y$. $(x = \sqrt[n]{y}$ oppure $x = y^{\frac{1}{n}})$.

Dimostrazione(Del teorema):

Fissiamo $y \in \mathbb{R}, y > 0, n \in \mathbb{N}, n \geq 2$. Proviamo che se $\exists x \in \mathbb{R}, x > 0$, tale che $x^n = y$ allora x è unica. Se per assurdo $x_1, x_2 \in \mathbb{R}, x_1, x_2 > 0$ e tali che $x_1^n = y, x_2^n = y$ allora $x_1 = x_2$. D'altra parte se $x_1 < x_2$ allora si avrebbe che $x_1^n < x_2^n \Longrightarrow y < y$, che è assurdo. Viceversa se $x_2 < x_1$, allora si avrebbe che $x_2^n < x_1^n \Longrightarrow y < y$, che è assurdo. Quindi se esiste una x come richiesta, è unica. Per quanto riguarda l'esistenza della radice ennesima, invece, consideriamo l'insieme:

$$A = \{ z \in \mathbb{R} | z > 0, z^n \le y \}.$$

Proviamo che:

- 1. $A \neq \emptyset$
- 2. A è limitato superiormente, $(\mathcal{M}_{\mathcal{A}} \neq \emptyset)$. A tal fine distinguiamo due casi: $0 < y \le 1, \ y > 1$. Supponiamo che $0 < y \le 1$. Allora si ha che $y^n \le y$. Pertanto $y \in A$, da cui $A \ne \emptyset$. Inoltre si ha che $1 \in \mathcal{M}_{\mathcal{A}}$. Se fosse che $1 \notin \mathcal{M}_{\mathcal{A}}$. Allora $\exists z \in A$ tale che z > 1, da cui $z^n > 1$, ma essendo $z \in A$, $1 \ge y \ge z^n > 1$ che è assurdo. Se invece, y > 1. Allora $1^n = 1 < y$, quindi $1 \in A$, e quindi $1 \in A$ è non vuoto. Inoltre $1 \in A$, infatti, se $1 \in A$ tale

che z > y. Ma allora $y^n < z^n$ ma $z^n \le y$ che è assurdo. Per il teorema di esistenza dell'estremo superiore esiste $x = \sup A \in \mathbb{R}$. Verifichiamo che $x^n = y$. Basta provare che $\forall \varepsilon > 0 : |x^n - y| \le \varepsilon$. Sia quindi $\varepsilon > 0$. Poniamo

$$\varepsilon' = \min\left(x, \frac{\varepsilon}{2^n n x^{n-1}}\right).$$

Proveremo che $(x - \varepsilon')^n < x^n < (x + \varepsilon')^n$. Che segue direttamente dall'osservare che $0 \le x - \varepsilon' < x < x + \varepsilon'$, e dalla proposizione precedente. Verifichiamo inoltre che $(x - \varepsilon')^n < y < (x + \varepsilon')^n$. Per provare la disuguaglianza di destra basta osservare che $(x + \varepsilon')^n \notin A$, dato che $x = \sup A$. Segue che $y < (x + \varepsilon')^n$. Per l'altra disuguaglianza, per la caratterizzazione dell'estremo superiore, essendo $x - \varepsilon' < x$, $\exists \bar{x} \in A$, tale che $0 < x - \varepsilon' < \bar{x} < x$. Segue che $(x - \varepsilon')^n < \bar{x}^n \le y$, perché $\bar{x} \in A$. Pertanto si ha che $(x - \varepsilon')^n < y < (x + \varepsilon')^n$. Concludiamo che

$$0 \le |x^n - y| \le |(x + \varepsilon')^n - (x - \varepsilon')^n| = |(x + \varepsilon') - (x - \varepsilon')| \cdot |(x + \varepsilon')^{n-1} + \dots + (x - \varepsilon')^{n-1}| \implies$$

Maggioro i termini misti con 2x.

$$|2\varepsilon'|\cdot|(x+\varepsilon')^{n-1}+\dots+(x-\varepsilon')^{n-1}|\leq 2\varepsilon'\cdot(2x)^{n-1}n=2^nx^{n-1}n\varepsilon'\leq \frac{\varepsilon}{2^nx^{n-1}n}\cdot 2^nx^{n-1}n=\varepsilon.$$

Segue che $0 \le |x^n - y| \le \varepsilon$, e per l'arbitrarietà di ε : $|x^n - y| = 0 \iff y = x^n \blacksquare$.

Osservazione: Il teorema appena dimostrato è uno strumento matematico che ci garantisce dati $y \in \mathbb{R}$ e $n \in \mathbb{N}$, $n \ge 2$ l'esistenza e unicità di una soluzione positiva dell'equazione $x^n = y$.

 $Teorema(\text{Densit\`a} \text{ di } \mathbb{R} \smallsetminus \mathbb{Q} \text{ in } \mathbb{R})$: Per ogni $a,b \in \mathbb{R}, \text{ con } a < b, \exists c \in \mathbb{R} \smallsetminus \mathbb{Q} \text{ tale che } a < c < b.$

Dimostrazione: Sia y=2. Sia n=2. Considero, l'equazione $x^2=2$. Per il teorema di esistenza e unicità della radice n-esima, $\exists!x\in\mathbb{R},\,x>0$ tale che $x^2=2$. Tale x è denotata con $\sqrt{2}$. Inoltre si ha che $z=\sqrt{2}\notin\mathbb{Q}$. Pertanto $\exists!x\in\mathbb{R}\setminus\mathbb{Q}$, tale che $x^2=2$. Siano $a,b\in\mathbb{R},\,a< b$. Per gli assiomi di \mathbb{R} si ha che $a-\sqrt{2}< b-\sqrt{2}$. Siano $a'=a-\sqrt{2}\in\mathbb{R},\,b'=b-\sqrt{2}\in\mathbb{R}$, risulta che a'< b'. Per il teorema di densità di \mathbb{Q} in \mathbb{R} , $\exists q\in\mathbb{Q}$ tale che $a'< q< b' \Longrightarrow a-\sqrt{2}< q< b-\sqrt{2}$. Concludiamo che $a-\sqrt{2}+\sqrt{2}< q+\sqrt{2}< b-\sqrt{2}+\sqrt{2} \Longrightarrow a< q+\sqrt{2}< b$. Risulta che $c=q+\sqrt{2}\in\mathbb{R}\setminus\mathbb{Q}$ e a< c< b.

Proposizione(Proprietà della radice <math>n - esima):

- 1. $\forall y_1, y_2 \in \mathbb{R}, 0 < y_1, 0 < y_2, \forall n \in \mathbb{N}, n \geq 2$ si ha che $\sqrt[n]{y_1y_2} = \sqrt[n]{y_1} \sqrt[n]{y_2}$. Dimostrazione: Siano $y_1, y_2 \in \mathbb{R}, y_1, y_2 > 0, n \in \mathbb{N}, n \geq 2$. Per il teorema di esistenza e unicità della radice n esima, $\exists ! x_1 > 0, \exists ! x_2 > 0$ tali che $x_1^n = y_1$ e $x_2^n = y_2$. Pertanto $(x_1x_2)^n = x_1^n x_2^n = y_1y_2$. Segue che $x_1x_2 = \sqrt[n]{y_1y_2}$, da cui segue che $\sqrt[n]{y_1} \sqrt[n]{y_2} = \sqrt[n]{y_1y_2}$.
- 2. $\forall y \in \mathbb{R}, y > 0, \forall n \in \mathbb{N}, n \ge 2, \forall m \in \mathbb{Z}: \sqrt[n]{y^m} = (\sqrt[n]{y})^n$.
- 3. $\forall y \in \mathbb{R}, y > 0, \ \forall h \in \mathbb{N}, h \geq 2, \ \forall k \in \mathbb{N}, k \geq 2 \colon \ \sqrt[h]{\sqrt[k]{y}} = \ \sqrt[hk]{y}.$
- 4. $\forall y \in \mathbb{R}, y > 0, \forall m_1, m_2 \in \mathbb{Z}, \forall n_1, n_2 \in \mathbb{N}, n_1, n_2 \neq 0, n_1 \geq 2, n_2 \geq 2$: $\frac{m_1}{n_1} = \frac{m_2}{2} \iff m_1 n_2 = m_2 n_1$. Allora $\sqrt[n_1]{y^{m_1}} = \sqrt[n_2]{y^{m_2}}$.

- 5. $\forall y \in \mathbb{R}, y > 0, \ \forall n \in \mathbb{N}, \ n \geq 2$: $\sqrt[n]{y^n} = y$. Dimostrazione: Sia $y \in \mathbb{R}, y > 0$, sia $n \in \mathbb{N}, n \geq 2$. Posto $x = \sqrt[n]{y^n}$, si ha che $x^n = y^n$. Segue che x = y, da cui segue che $\sqrt[n]{y^n} = y$.
- 6. $\forall y \in \mathbb{R}, \forall n \in \mathbb{N}, n \geq 2$ tali che $y^n \geq 0$: $\sqrt[n]{y^n} = |y|$.
- 7. $\forall y_1, y_2 \in \mathbb{R}, y_1 > 0, y_2 > 0, \forall n \in \mathbb{N}, n \ge 2, y_1 < y_2: \sqrt[n]{y_1} \le \sqrt[n]{y_2}.$

 $Definizione (\text{Potenza razionale}) \text{: Sia } y \in \mathbb{R}, y > 0. \text{ Sia } q \in \mathbb{Q}, q = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}, n \neq 0. \text{ Si chiama potenza razionali di } y \text{ di esponente } q \text{ il numero reale: } y^q = \sqrt[n]{y^m}.$