Chapter 1: Roots of Commutative Algebra

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 1.1. Prove that the following conditions on a module M over a commutative ring R are equivalent (the fourth is Hilbert's original formulation; the first and the third are the ones most often used). The case M = R is the case of ideals.

- (1) M is Noetherian (that is, every submodule of M is finitely generated).
- (2) Every ascending chain of submodules of M terminates ("ascending chain condition").
- (3) Every set of submodules of M contains elements maximal under inclusion.
- (4) Given any sequence of elements $f_1, f_2, \ldots \in M$, there is a number m such that for each n > m there is an expression $f_n = \sum_{i=1}^m a_i f_i$ with $a_i \in R$.

Idea. $(1) \Rightarrow (2) \Rightarrow (4) \Rightarrow (3) \Rightarrow (1)$.

Proof of (1) \Rightarrow (2). Given any ascending chain of submodules $N_1 \subseteq N_2 \subseteq \cdots$, let

$$N = \bigcup_{i=1}^{\infty} N_i.$$

- (a) N is a submodule. By the ascending chain condition, each pair of elements in N are in a common N_m .
- (b) N is finitely generated by assumption. By the ascending chain condition again, all generators of N are in a common N_m . So $N = N_m$ for some m.
- (c) Since $N_m = N \supseteq N_n$ whenever $n \ge m$, $N_m = N_{m+1} = \cdots$.

Proof of (2) \Rightarrow (4). Let N_k be generated by f_1, f_2, \ldots, f_k .

- (a) $N_1 \subseteq N_2 \subseteq \cdots$ is an ascending chain of submodules of M.
- (b) By assumption there is a number m such that $N_m = N_{m+1} = \cdots$.
- (c) Given any $n \geq m$, $f_n \in N_n = N_m$. So we can write $f_n = \sum_{i=1}^m a_i f_i$ with $a_i \in R$ since N_m is generated by f_1, f_2, \ldots, f_m .

Proof of (4) \Rightarrow (3). It suffices to show that \neg (3) \Rightarrow \neg (4). There exists a nonempty collection Σ of submodules of M containing no maximal element under inclusion.

- (a) Start with any submodule N_1 in Σ , and recursively pick submodule N_2, N_3, \ldots such that $N_1 \subsetneq N_2 \subsetneq N_3 \subsetneq \cdots$.
- (b) Pick $f_1 \in N_1$ and $f_i \in N_i N_{i-1} \neq \emptyset$ for $i \geq 2$. The sequence of elements $f_1, f_2, \ldots \in M$ is what we want.

Proof of (3) \Rightarrow (1). Show that N is finitely generated if N is any submodule of M. Let Σ be the set of all finitely generated submodules of N.

- (a) $\Sigma \neq \emptyset$ since 0 is a finitely generated submodules of N.
- (b) By assumption, there exists a maximal element N_0 of Σ . N_0 is finitely generated.
- (c) (Reductio ad absurdum) If N_0 were not equal to N, there is $x \in N N_0$. Clearly the submodule $N_0 + xR$ of N is finitely generated and $N_0 + xR \supsetneq N_0$, contrary to the maximality of N_0 .

Proof of $(2) \Rightarrow (3)$. It is the part (a) of the proof of $(4) \Rightarrow (3)$. \square

Proof of (3) \Rightarrow (2). Given any ascending chain of submodules $N_1 \subseteq N_2 \subseteq \cdots$. The set

$$\Sigma = \{N_i\}_{i>1}$$

has a maximal element, say N_m . Hence $N_m = N_{m+1} = \cdots$ by the maximality of N_m . \square

Remark. In general, let Σ be a set partially ordered by a relation \leq . Then the following conditions on Σ are equivalent:

- (1) Every increasing sequence $x_1 \leq x_2 \leq \cdots \in \Sigma$ is stationary.
- (2) Every non-empty subset of Σ has a maximal element.

Exercise 1.3. Let M' be a submodule of M. Show that M is Noetherian iff both M' and M/M' are Noetherian.

Proof.

- $(1) \iff$
 - (a) Show that M' is Noetherian if M is Noetherian. This is an immediate consequence of the definition of a Noetherian module since a submodule of a submodule is a submodule.
 - (b) Show that M/M' is Noetherian if M is Noetherian. Every submodule of M/M' has the form M''/M' where M'' is a submodule of M with $M' \subseteq M'' \subseteq M$. Since M is Noetherian, M'' is finitely generated, and the reduction of those generators mod M' will generate M''/M' as a finitely generated module.

$(2) \iff$

- (a) Given any submodule M'' of M. Then the image of M'' in M/M' is finitely generated and $M'' \cap M'$ is finitely generated too.
- (b) Say $x_1, \ldots, x_k \in M''$ generate the image of M'' in M/M' and say $y_1, \ldots, y_h \in M''$ generate $M'' \cap M'$.
- (c) Given any $x \in M''$, we have

$$x \equiv r_1 x_1 + \dots + r_k x_k \pmod{M'} \text{ for some } r_i \in R$$

$$\Longrightarrow x - \sum_{i=1}^k r_i x_k \equiv 0 \pmod{M'}$$

$$\Longrightarrow x - \sum_{i=1}^k r_i x_k \in M'$$

$$\Longrightarrow x - \sum_{i=1}^k r_i x_k \in M'' \cap M'$$

$$\Longrightarrow x - \sum_{i=1}^k r_i x_k = \sum_{j=1}^h s_j y_j \text{ for some } s_j \in R$$

$$\Longrightarrow x = \sum_{i=1}^k r_i x_k + \sum_{j=1}^h s_j y_j$$

$$\Longrightarrow x \text{ is generated by } x_1, \dots, x_k, y_1, \dots, y_h$$

Hence M'' is finitely generated for any submodule M'' of M, that is, M is Noetherian.