Devoir surveillé n°03

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1 $\star\star$ E3A PSI 2020

Soient a un réel strictement positif et f une fonction continue sur \mathbb{R} .

Pour tout réel λ , on pose $I(\lambda) = \int_{a}^{+\infty} \frac{\lambda - f(t)}{t} dt$, lorsque cela existe.

- 1. Justifier qu'il existe au plus un réel λ tel que $I(\lambda)$ converge.
- 2. Pour tout réel x, on pose $H_{\lambda}(x) = \int_{a}^{x} (\lambda f(t)) dt$.

Démontrer que, si H_{λ} est bornée sur \mathbb{R} , alors $I(\lambda)$ existe et $I(\lambda) = \int_{a}^{+\infty} \frac{H_{\lambda}(t)}{t^2} dt$.

- **3.** On suppose désormais que f est continue sur \mathbb{R} et T-périodique.
 - **a.** Montrer que pour tout réel x :

$$H_{\lambda}(x+T) - H_{\lambda}(x) = \lambda T - \int_{0}^{T} f(t) dt$$

- **b.** Montrer qu'il existe une unique valeur λ_0 du réel λ pour la quelle la suite $(H_{\lambda}(a+nT))_{n\in\mathbb{N}}$ est bornée.
- **c.** Prouver que, dans ce cas, la fonction H_{λ} est périodique et bornée sur \mathbb{R} .
- **d.** Déterminer alors toutes les valeurs du réel λ pour lesquelles $I(\lambda)$ converge.
- e. Dans le cas où $\lambda_0 \neq 0$, déterminer un équivalent de $\int_a^x \frac{f(t)}{t} dt$ lorsque x tend vers $+\infty$.
- **4.** Pour tout entier naturel non nul *n*, on pose

$$A_n = \int_0^{\frac{\pi}{2}} \frac{|\sin(nt)|}{\sin(t)} dt \qquad \text{et} \qquad B_n = \int_0^{\frac{\pi}{2}} \frac{|\sin(nt)|}{t} dt$$

- **a.** Justifier que A_n et B_n sont bien définies.
- **b.** Déterminer un équivalent au voisinage de 0 de la fonction φ : $t \mapsto \frac{1}{t} \frac{1}{\sin(t)}$.
- **c.** Démontrer que la suite $(A_n B_n)_{n \in \mathbb{N}^*}$ est bornée.
- **d.** A l'aide d'un changement de variable et de la question 3, déterminer un équivalent de B_n lorsque n tend vers $+\infty$. En déduire un équivalent de A_n lorsque n tend vers l'infini.

© Laurent Garcin MP Dumont d'Urville

Exercice 2 $\star\star\star$ Norme $\|.\|_p$

Pour $p \in \mathbb{R}_+^*$, on convient que $0^p = 0$ et on pose

$$\forall x \in \mathbb{K}^n, \ \|x\|_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$$

Pour $(x, y) \in (\mathbb{K}^n)^2$, on posera $x.y = (x_1y_1, \dots, x_ny_n)$.

1. Soit $p \in \mathbb{R}_+^*$. Montrer que $\|.\|_p$ vérifie les propriétés de séparation et d'homogénéité.

- **2.** Soit $(p,q) \in (\mathbb{R}_+^*)^2$ tel que $\frac{1}{p} + \frac{1}{q} = 1$.
 - **a.** En utilisant la concavité de ln, montrer que pour tout $(u, v) \in (\mathbb{R}_+)^2$, $uv \leq \frac{u^p}{p} + \frac{v^q}{q}$.
 - **b.** En déduire que pour $(x, y) \in (\mathbb{K}^n)^2$, $||x.y||_1 \le ||x||_p ||y||_q$. On pourra d'abord traiter le cas où $||x||_p = ||y||_q = 1$.
- 3. Soit $p \in [1, +\infty[$. Montrer que $\|.\|_p$ vérifie l'inégalité triangulaire. On pourra remarquer que pour $(x, y) \in (\mathbb{K}^n)^2$,

$$\sum_{k=1}^{n} |x_k + y_k|^p \le \sum_{k=1}^{n} |x_k| |x_k + y_k|^{p-1} + \sum_{k=1}^{n} |y_k| |x_k + y_k|^{p-1}$$

- **4.** a. Soit $p \in \mathbb{R}_+^*$. Montrer que pour tout $x \in \mathbb{K}^n$, $||x||_{\infty} \le ||x||_p$.
 - **b.** Soit $(p,q) \in (\mathbb{R}_+^*)^2$ tel que p < q. Montrer que pour tout $x \in \mathbb{K}^n$, $\|x\|_q \leq \|x\|_p$, puis déterminer $\sup_{x \in \mathbb{K}^n \setminus \{0\}} \frac{\|x\|_q}{\|x\|_p}.$
- **5.** a. Soit $(p,q,r) \in (\mathbb{R}_+^*)^2$ tel que $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. Montrer que pour $(x,y) \in (\mathbb{K}^n)^2$

$$||x.y||_r \le ||x||_p ||y||_q$$

b. Soit $(p,q) \in (\mathbb{R}_+^*)^2$ tel que p < q. Montrer que pour tout $x \in \mathbb{K}^n$,

$$||x||_p \le n^{\frac{1}{p} - \frac{1}{q}} ||x||_q$$

 $\text{puis déterminer } \sup_{x \in \mathbb{K}^n \setminus \{0\}} \frac{\|x\|_p}{\|x\|_q}.$

6. Soit $x \in \mathbb{K}^n$. Montrer que $||x||_{\infty} = \lim_{p \to +\infty} ||x||_p$.

© Laurent Garcin MP Dumont d'Urville

Exercice 3 ★★ ESTP 1982

On considère une suite réelle (a_n) strictement positive et bornée. On note $E = \mathbb{R}[X]$ l'ensemble des polynômes à coefficients réels.

- **1.** Soit $(P, Q) \in E^2$. On pose $u_n = \frac{a_n}{2^n} P(n) Q(n)$ pour $n \in \mathbb{N}$. Démontrer la convergence de la série $\sum_{n \in \mathbb{N}} u_n$.
- 2. On pose alors pour $(P, Q) \in E^2$,

$$\langle P, Q \rangle = \sum_{n=0}^{+\infty} \frac{a_n}{2^n} P(n) Q(n)$$

Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.

- **3.** On suppose maintenant la suite (a_n) positive et non strictement positive. Donner une condition necessaire et suffisante portant sur la suite (a_n) afin que $\langle \cdot, \cdot \rangle$ définisse encore un produit scalaire sur E.
- **4.** On suppose maintenant $a_n = 1$ pour tout $n \in \mathbb{N}$, et l'on désigne par N_1 la norme euclidienne associée au produit scalaire $\langle \cdot, \cdot \rangle$ correspondant à cette suite particulière (a_n) . Cette norme est-elle équivalente à la norme N_2 définie par

$$\forall P \in E, \ N_2(P) = \sup_{x \in [0,1]} |P(x)|$$

© Laurent Garcin MP Dumont d'Urville

Problème 1 – EPITA PT-TSI 2018

Dans ce problème, on étudie la convergence et la valeur d'intégrales de la forme suivante :

$$I(f) = \int_0^{+\infty} \frac{f(t) - f(2t)}{t} dt$$

où f désigne une fonction continue de $[0, +\infty[$ vers $\mathbb R$ que l'on précisera par la suite.

Partie I -

On suppose dans cette partie que f est définie par $f(t) = \frac{P(t)}{t^2 + 1}$ avec P polynomiale.

- **I.1** On suppose dans cette question que P(t) = 1 i.e. $f(t) = \frac{1}{t^2 + 1}$.
 - **I.1.a** Justifier la convergence de l'intégrale I(f).
 - **I.1.b** Calculer la valeur de I(f) à l'aide d'une décomposition en éléments simples.
- **I.2** On suppose dans cette question que P(t) = t i.e. $f(t) = \frac{t}{t^2 + 1}$. Justifier la convergence et déterminer la valeur de I(f).
- **I.3** On suppose dans cette question que $P(t) = t^2$ i.e. $f(t) = \frac{t^2}{t^2 + 1}$. Justifier la convergence et déterminer la valeur de I(f).
- **I.4** Que peut-on dire de I(f) lorsque $P(t) = t^n$ avec $n \ge 3$?

Partie II -

On suppose dans cette partie que f est définie par $f(t) = e^{-t}$.

- **II.5** Justifier la convergence de I(f).
- **II.6** Justifier que pour tout $\varepsilon > 0$,

$$\int_{\epsilon}^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt = \int_{\epsilon}^{2\epsilon} \frac{e^{-u} - 1}{u} du + \int_{\epsilon}^{2\epsilon} \frac{du}{u}$$

- II.7 Justifier que $h: u \in \mathbb{R}^* \mapsto \frac{e^{-u}-1}{u}$ est prolongeable en une fonction continue sur \mathbb{R} .
- **II.8** En déduire la valeur de I(f).
- II.9 Déterminer la convergence et la valeur de

$$J = \int_0^1 \frac{u - 1}{\ln(u)} \, \mathrm{d}u$$