Computability of Data Word Functions Defined by Transducers

Léo Exibard¹² Pierre-Alain Reynier¹ Emmanuel Filiot²

¹Laboratoire d'Informatique et des Systèmes Aix-Marseille Université

France

²Méthodes Formelles et Vérification Université libre de Bruxelles Belgium

Thursday, April 1st, 2021

Example (Nondeterministic Finite Automata)

An NFA A specifies a language, or equivalently a program that takes as input a word w and outputs 0 or 1.

Nondeterminism does not exist in practice \Rightarrow how to implement such program?

Example (Nondeterministic Finite Automata)

An NFA A specifies a language, or equivalently a program that takes as input a word w and outputs 0 or 1.

Nondeterminism does not exist in practice \Rightarrow how to implement such program?

• Enumerate all possible runs of A over w and output 1 as soon as an accepting run is found (0 otherwise).

Example (Nondeterministic Finite Automata)

An NFA A specifies a language, or equivalently a program that takes as input a word w and outputs 0 or 1.

Nondeterminism does not exist in practice \Rightarrow how to implement such program?

- Enumerate all possible runs of A over w and output 1 as soon as an accepting run is found (0 otherwise).
- ullet There can be (exponentially) many runs \Rightarrow we can do better

Example (Nondeterministic Finite Automata)

An NFA A specifies a language, or equivalently a program that takes as input a word w and outputs 0 or 1.

Nondeterminism does not exist in practice \Rightarrow how to implement such program?

- Enumerate all possible runs of A over w and output 1 as soon as an accepting run is found (0 otherwise).
- There can be (exponentially) many runs ⇒ we can do better
- NFA can always be determinised ⇒ an equivalent DFA is a program which implements A and is guaranteed to take only a finite amount of memory.

Functions from Words to Words

Definition (Nondeterministic Finite Transducers)

A transducer is an automaton with outputs.

A transducer checking that the first output letter is equal to the last input letter: $S = \{(u\sigma, \sigma w) \mid \sigma \in \Sigma, u, w \in \Sigma^*, |u| = |w|\}$

Functions from Words to Words

Definition (Nondeterministic Finite Transducers)

A transducer is an automaton with outputs.

A transducer checking that the first output letter is equal to the last input letter: $S = \{(u\sigma, \sigma w) \mid \sigma \in \Sigma, u, w \in \Sigma^*, |u| = |w|\}$

- Nondeterminism ⇒ they do not always specify functions.
- Here, we focus on functional transducers.
- Functionality can be checked in PTIME.

Computation of Functions Defined by Transducers

The above function can be computed, but:

- it cannot be implemented by a 1-way deterministic transducer
- nor by any synchronous program, which outputs a letter as soon as it reads a letter

The ω -word Setting

Transducers can be equipped with a parity condition to recognise functions over infinite words $f: \Sigma^\omega \to \Gamma^\omega$

Infinite words do not exist in practice: we are specifying the behaviour of a non-terminating program *in the limit*.

Examples

• Iterated f_{last} : input is an infinite sequence of *chunks* $\gamma_i u_i \sigma_i$, separated by #, and the program applies f_{last} on each chunk. $f_{\#last}: \gamma_1 u_1 \sigma_1 \# \gamma_2 u_2 \sigma_2 \cdots \mapsto \sigma_1 u_1 \sigma_1 \# \sigma_2 u_2 \sigma_2 \ldots$

The ω -word Setting

Transducers can be equipped with a parity condition to recognise functions over infinite words $f: \Sigma^\omega \to \Gamma^\omega$

Infinite words do not exist in practice: we are specifying the behaviour of a non-terminating program in the limit.

Examples

- Iterated f_{last} : input is an infinite sequence of *chunks* $\gamma_i u_i \sigma_i$, separated by #, and the program applies f_{last} on each chunk. $f_{\#last}: \gamma_1 u_1 \sigma_1 \# \gamma_2 u_2 \sigma_2 \cdots \mapsto \sigma_1 u_1 \sigma_1 \# \sigma_2 u_2 \sigma_2 \ldots$
- Detecting whether the first letter appears again.

$$f_{
m again}:\sigma u\mapsto \left\{egin{array}{l} a^\omega & ext{if u contains }\sigma\ b^\omega & ext{otherwise} \end{array}
ight.$$

4

In the classical reactive synthesis setting

The target implementation is a *synchronous* program, i.e. one which outputs a letter everytime it reads an input letter.

 \Rightarrow It corresponds to a strategy in the parity game induced by the transducer, so finite memory suffices.

In the classical reactive synthesis setting

The target implementation is a *synchronous* program, i.e. one which outputs a letter everytime it reads an input letter.

 \Rightarrow It corresponds to a strategy in the parity game induced by the transducer, so finite memory suffices.

Co-example

Iterated f_{last} is not synchronously computable, as f_{last} requires to wait for the last letter of the chunk.

$$f_{\#last}: \gamma_1 u_1 \sigma_1 \# \gamma_2 u_2 \sigma_2 \cdots \mapsto \sigma_1 u_1 \sigma_1 \# \sigma_2 u_2 \sigma_2 \ldots$$

In the classical reactive synthesis setting

The target implementation is a *synchronous* program, i.e. one which outputs a letter everytime it reads an input letter.

 \Rightarrow It corresponds to a strategy in the parity game induced by the transducer, so finite memory suffices.

Co-example

Iterated f_{last} is not synchronously computable, as f_{last} requires to wait for the last letter of the chunk.

$$f_{\#\mathsf{last}}: \gamma_1 u_1 \sigma_1 \# \gamma_2 u_2 \sigma_2 \cdots \mapsto \sigma_1 u_1 \sigma_1 \# \sigma_2 u_2 \sigma_2 \ldots$$

In our setting

We relax the *synchronicity* requirement.

Relax the synchronicity requirement

An implementation is a program which outputs longer and longer prefixes of an acceptable output as it reads longer and longer prefixes of the input.

Example

Iterated f_{last} is computable, as the program can wait for the end of the chunk.

```
f_{\#\mathsf{last}}: \gamma_1 u_1 \sigma_1 \# \gamma_2 u_2 \sigma_2 \cdots \mapsto \sigma_1 u_1 \sigma_1 \# \sigma_2 u_2 \sigma_2 \ldots
```

Relax the synchronicity requirement

An implementation is a program which outputs longer and longer prefixes of an acceptable output as it reads longer and longer prefixes of the input.

Example

Iterated f_{last} is computable, as the program can wait for the end of the chunk.

$$f_{\#\mathsf{last}}: \gamma_1 u_1 \sigma_1 \# \gamma_2 u_2 \sigma_2 \cdots \mapsto \sigma_1 u_1 \sigma_1 \# \sigma_2 u_2 \sigma_2 \ldots$$

Co-example

 $f_{\rm again}$ is not computable, as a program cannot know whether it will read the first letter again.

$$f_{
m again}:\sigma u\mapsto \left\{egin{array}{l} a^\omega \ {
m if} \ {
m u} \ {
m contains} \ \sigma \ \\ b^\omega \ {
m otherwise} \end{array}
ight.$$

Computability

A function $f: \Sigma^\omega \to \Sigma^\omega$ is computable if there exists a deterministic Turing machine M which outputs longer and longer prefixes of the output when reading longer and longer prefixes of the input

- Three tape deterministic Turing machine
 - Read-only one-way input tape
 - Two-way working tape
 - Write-only one-way output tape
- M(x, k): the output written after having the k first input letters of x
- Since the output is write-only, M(x, k) is nondecreasing

M computes f if for all $x \in \text{dom}(f)$, M(x, k) converges towards f(x)

Continuity

Cantor distance

For
$$u,v\in \Sigma^{\omega}$$
, $d(u,v)=\left\{egin{array}{ll} 0 \ ext{if} \ u=v \ 2^{-\|u\wedge v\|} ext{otherwise} \end{array}
ight.$

where $u \wedge v$ denotes the longest common prefix ℓ of u and v

8

Continuity

Continuous function

A function $f: \Sigma^{\omega} \to \Sigma^{\omega}$ is *continuous* at $x \in \text{dom}(f)$ if:

- (a) for all sequences of data words $(x_n)_{n\in\mathbb{N}}$ converging to x, we have that $(f(x_n))_{n\in\mathbb{N}}$ converges to f(x) (where for all $i\in\mathbb{N}$, $x_i\in \text{dom}(f)$).
 - Or, equivalently:
- (b) $\forall i \geq 0, \exists j \geq 0, \forall y \in \text{dom}(f), ||x \wedge y|| \geq j \Rightarrow ||f(x) \wedge f(y)|| \geq i$.

Computability

 $f: \Sigma^{\omega} \to \Sigma^{\omega}$ is computable if there exists a deterministic Turing machine which outputs longer and longer prefixes of the output when reading longer and longer prefixes of the input.

Continuity

$$\forall i \geq 0, \exists j \geq 0, \forall y \in \mathsf{dom}(f), \|x \wedge y\| \geq j \Rightarrow \|f(x) \wedge f(y)\| \geq i$$

Computability

 $f: \Sigma^{\omega} \to \Sigma^{\omega}$ is computable if there exists a deterministic Turing machine which outputs longer and longer prefixes of the output when reading longer and longer prefixes of the input.

Continuity

$$\forall i \geq 0, \exists j \geq 0, \forall y \in \mathsf{dom}(f), \|x \wedge y\| \geq j \Rightarrow \|f(x) \wedge f(y)\| \geq i$$

Computability ⇒ **Continuity**

If $f: \Sigma^{\omega} \to \Sigma^{\omega}$ is computable, then it is continuous.

Computability

 $f: \Sigma^{\omega} \to \Sigma^{\omega}$ is computable if there exists a deterministic Turing machine which outputs longer and longer prefixes of the output when reading longer and longer prefixes of the input.

Continuity

$$\forall i \geq 0, \exists j \geq 0, \forall y \in \mathsf{dom}(f), \|x \wedge y\| \geq j \Rightarrow \|f(x) \wedge f(y)\| \geq i$$

Computability ⇒ **Continuity**

If $f: \Sigma^{\omega} \to \Sigma^{\omega}$ is computable, then it is continuous.

Continuity ⇒ Computability [Dave et al., 2019]

Let $f: \Sigma^\omega \to \Sigma^\omega$ be a function definable by a nondeterministic transducer. Then f is continuous iff it is computable.

Computability

 $f: \Sigma^{\omega} \to \Sigma^{\omega}$ is computable if there exists a deterministic Turing machine which outputs longer and longer prefixes of the output when reading longer and longer prefixes of the input.

Continuity

$$\forall i \geq 0, \exists j \geq 0, \forall y \in \mathsf{dom}(f), \|x \wedge y\| \geq j \Rightarrow \|f(x) \wedge f(y)\| \geq i$$

Computability ⇒ **Continuity**

If $f: \Sigma^{\omega} \to \Sigma^{\omega}$ is computable, then it is continuous.

Continuity ⇒ Computability [Dave et al., 2019]

Let $f: \Sigma^\omega \to \Sigma^\omega$ be a function definable by a nondeterministic transducer. Then f is continuous iff it is computable.

Theorem ([Dave et al., 2019])

Computability of functions defined by nondeterministic transducers is decidable in PTIME.

Our Contribution: Extension to the Infinite Alphabet Case

Until now

- Behaviour specified by functional asynchronous transducers
- Computability defined with deterministic Turing machines

Extend to devices computing over infinite sets

- Behaviour is specified by register transducers
- Computability is defined by allowing Turing machines to work over an infinite alphabet

Register Transducers

- $\bullet \ \mathcal{D}$ is a countably infinite set whose elements can be compared for equality only
- Equip a transducer with a finite set of registers
- Recognise functions over data words $f: \mathcal{D}^\omega o \mathcal{D}^\omega$

A register transducer computing f_{again} over data words: taking as input dw and outputting w if d does not appear in w, d^{ω} otherwise

Indistinguishability property [Kaminski and Francez, 1994]

As register machines only have k registers, any run over some data word w can be renamed into a run over some data word w' with at most k+1 data.

Corollary

Let A be a nondeterministic register automaton with k registers. If $L(A) \neq \emptyset$, then, for any $X \subseteq \mathcal{D}$ of size $|X| \geq k+1$ $L(A) \cap X^{\omega} \neq \emptyset$.

Indistinguishability property [Kaminski and Francez, 1994]

As register machines only have k registers, any run over some data word w can be renamed into a run over some data word w' with at most k+1 data.

Corollary

Let A be a nondeterministic register automaton with k registers. If $L(A) \neq \emptyset$, then, for any $X \subseteq \mathcal{D}$ of size $|X| \geq k+1$ $L(A) \cap X^{\omega} \neq \emptyset$.

Theorem (Functionality)

Deciding whether a register transducer T is functional is PSPACE -complete

Indistinguishability property [Kaminski and Francez, 1994]

As register machines only have k registers, any run over some data word w can be renamed into a run over some data word w' with at most k+1 data.

Corollary

Let A be a nondeterministic register automaton with k registers. If $L(A) \neq \emptyset$, then, for any $X \subseteq \mathcal{D}$ of size $|X| \geq k+1$ $L(A) \cap X^{\omega} \neq \emptyset$.

Theorem (Functionality)

Deciding whether a register transducer T is functional is PSPACE -complete

 \rightarrow Thanks to the indistinguishability property, we can show that T is functional if and only if it is functional over X^{ω} , where X is a finite subset of \mathcal{D} of size 2k+3.

Continuity and computability

For functions defined by register transducers, computability and continuity again coincide.

 $\mbox{Computability} \Rightarrow \mbox{Continuity is proved as before}.$

Continuity \Rightarrow Computability: requires to decide $o\sigma \leq \hat{f}(x[:j])$

Algorithm 1: Algorithm describing the machine M_f computing f.

Continuity: Extend the Pattern of [Dave et al., 2019]

Theorem (Excluded pattern)

where: $mismatch(u', u'') \lor$ $v'' = \varepsilon \land mismatch(u', u''w'')$

Moreover, such pattern is present iff it is present for data words with at most 2k + 3 data.

Continuity: Extend the Pattern of [Dave et al., 2019]

Theorem (Excluded pattern)

where:

$$mismatch(u', u'') \lor v'' = \varepsilon \land mismatch(u', u''w'')$$

Moreover, such pattern is present iff it is present for data words with at most 2k + 3 data.

Corollary

 f_T is continuous iff it is continuous over X^{ω} with $|X| \geq 2k + 3$.

Continuity: Extend the Pattern of [Dave et al., 2019]

Theorem (Excluded pattern)

Moreover, such pattern is present iff it is present for data words with at most 2k + 3 data.

Corollary

 f_T is continuous iff it is continuous over X^{ω} with $|X| \geq 2k + 3$.

This yields a PSPACE algorithm to decide whether a function f_T defined by a register transducer is computable.

Conclusion

- For functions defined by register transducers, continuity and computability coincide, and are decidable
- Such class is moreover closed under composition, and decidable
- Those problems are decidable in polynomial time for a subclass of functions, namely those recognised by test-free register-transducers

Extended Version with Nathan Lhote

The above results still hold:

- When we allow nondeterministic reassigment of data.
- ullet Over data domain $(\mathbb{Q},<)$, and more generally for oligomorphic data domains
- Over data domain $(\mathbb{N},<)$

Bibliography i

Dave, V., Filiot, E., Krishna, S. N., and Lhote, N. (2019).
Deciding the computability of regular functions over infinite words.

CoRR, abs/1906.04199.

诸 Kaminski, M. and Francez, N. (1994).

Finite-memory automata.

Theor. Comput. Sci., 134(2):329–363.