Funktionen mehrerer Variablen

FS 2024 Prof. Dr. Bernhard Zgraggen Autoren:

Laurin Heitzer, Flurin Brechbühler

Version:

0.1.20240610

 $\underline{https://github.com/P4ntomime/funktionen-mehrerer-variablen}$

Inhaltsverzeichnis

Vektoranalysis		2	9.4 Poisson-Gleichung (Laplace-Gleichung)	2
9.1	Vektorfelder	2	9.5 Rotation eines Vektorfelds (rot(), curl())	2
9.2	Divergenz (Volumenableitung)	2	9.6 Integralsatz von Stokes	2
9.3	Integralsatz von Gauss	2	9.7 Anwendungen: Maxwell-Gleichungen	2

9 Vektoranalysis

9.1 Vektorfelder

- Jedem Punkt P im Raum ist ein Vektor \vec{V} zugeordnet
- Kann als $\vec{V}(\vec{r})$ geschrieben werden, wobei \vec{r} ein Ortsvektor mit fixem Ursprung $\vec{0}$ ist

9.2 Divergenz (Volumenableitung)

- Beschreibt, wie stark sich ein Vektorfeld in einem Punkt ausbreitet oder zusammen-
- Beispiel: Vektorfeld das die Geschwindigkeit von Wasser in eineem Fluss beschreibt
 - An Punkten mit positiver Divergenz fliesst Wasser hinaus (Quelle)
 - An Punkten mit negativer Divergenz fliesst Wasser hinein (Senke)

$$\nabla \cdot \vec{V} = \operatorname{div} \vec{V} = \lim_{\Delta V \to 0} \frac{\oint_{(s)} \vec{V} \cdot d\vec{S}}{\Delta V}$$

9.2.1 Kartesisch

$$\operatorname{div} \vec{V} = \nabla \cdot \vec{V} = \underbrace{\left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z}\right)}_{\nabla} \cdot \underbrace{\begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix}}_{z} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$

9.2.2 Zylinderkoordinaten

$$\operatorname{div} \vec{V} = \frac{1}{r} \frac{\partial}{\partial r} (rV_r) + \frac{1}{r} \frac{\partial V_{\varphi}}{\partial \varphi} + \frac{\partial V_z}{\partial z}$$

9.3 Integralsatz von Gauss

$$\int_{(V)} \operatorname{div} \vec{A} \, \mathrm{d}V = \oint_{(S) = \partial V} \vec{A} \cdot \mathrm{d}\vec{S}$$

Fluss durch eingeschlossenen Körper = Gesamter Fluss durch geschlossenen Rand des Körpers

9.4 Poisson-Gleichung (Laplace-Gleichung)

$$\Delta \phi = \operatorname{div} \left(\operatorname{grad}(\phi) \right) = \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = f(\vec{r})$$

$$\phi : f(\vec{r}) : f(\vec{r$$

Laplace-Operator

Potentialfeld

Quellfunktion

9.4.1 Laplace-Gleichung

 $\Delta \phi = f = 0$ \Rightarrow Spezialfall der Poisson-Gleichung ohne äussere Quellfunktion

9.5 Rotation eines Vektorfelds (rot(), curl())

Beschreibt, wie stark und in welche Richtung sich ein Vektorfeld an einem Punkt rotiert. Wobei der Vektor selbst die Rotationsachse beschreibt und dessen Betrag proportional zur Rotationsgeschwindigkeit ist. Beispiel: Wirbelfelder

- $|\operatorname{rot} \vec{A}| < 0$: Uhrzeigersinn
- $| \operatorname{rot} \vec{A} | = 0$: Wirbelfrei $| \operatorname{rot} \vec{A} | > 0$: Gegenuhrzeigersinn

Gauss: div $(rot(\vec{A})) \stackrel{!}{=} 0$

9.6 Integralsatz von Stokes

$$\oint_{(C)=\partial S} \vec{A} \cdot d\vec{r} = \int_{(S)} \operatorname{rot} \vec{A} \cdot d\vec{S}$$

 ∂S muss anhand Rechter-Hand-Regel orientiert sein.

Stokes sagt aus, dass die Summe der Verwirbelungen in einer Fläche, der Summe der Vektoren dessen Randes entsprechen.

9.7 Anwendungen: Maxwell-Gleichungen