

iNEMO 6 DoF inertial module with 32 g accelerometer and embedded Machine Learning Core

Features

- Power consumption: 0.55 mA in combo high-performance mode
- "Always-on" experience with low power consumption for both accelerometer and gyroscope
- Smart FIFO up to 9 kbytes
- · Android compliant
- $\pm 4/\pm 8/\pm 16/\pm 32 g$ full scale
- ±125/±250/±500/±1000/±2000 dps full scale
- Analog supply voltage: 1.71 V to 3.6 V
- Independent IO supply (1.62 V)
- Compact footprint: 2.5 mm x 3 mm x 0.83 mm
- $\bullet~$ SPI / I²C & MIPI I3C SM serial interface with main processor data synchronization
- · Advanced pedometer, step detector and step counter
- · Significant Motion Detection, tilt detection
- Standard interrupts: free-fall, wakeup, 6D/4D orientation, click and double-click
- Programmable Finite State Machine: accelerometer, gyroscope and external sensors
- · Machine Learning Core
- Embedded temperature sensor
- · ECOPACK, RoHS and "Green" compliant

Product status link

LSM6DSO32X

Product summary						
Order code	LSM6DSO32XTR					
Temperature range [°C]	-40 to +85					
Packago	LGA-14L					
Package	(2.5 x 3.0 x 0.83 mm)					
Packing	Tape & Reel					

Applications

- Wearables
- Smart watches
- · Sports equipment
- Motion tracking and gesture detection
- · Hard-fall detection
- Sensor hub
- · Navigation and asset tracking
- · IoT and connected devices
- · Smart power saving for handheld devices

SUSTAINABLE TECHNOLOGY

Description

The LSM6DSO32X is a system-in-package featuring a 3D digital accelerometer at 32 g and a 3D digital gyroscope, boosting power performance at 0.55 mA in high-performance mode and enabling always-on low-power features for an optimal motion experience in wearable, hard-fall detection, navigation and asset tracking applications.

The LSM6DSO32X supports main OS requirements, offering real, virtual and batch sensors with 9 kbytes for dynamic data batching. ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DSO32X embeds a dedicated core for Machine Learning processing (MLC) and a Finite State Machine (FSM) that provides system flexibility, allowing some algorithms run in the application processor to be moved to the MEMS sensor with the advantage of consistent reduction in power consumption.

The LSM6DSO32X has a full-scale acceleration range of $\pm 4/\pm 8/\pm 16/\pm 32~g$ and an angular rate range of $\pm 125/\pm 250/\pm 500/\pm 1000/\pm 2000$ dps.

High robustness to mechanical shock makes the LSM6DSO32X the preferred choice of system designers for the creation and manufacturing of reliable products. The LSM6DSO32X is available in a plastic land grid array (LGA) package.

DS13607 - Rev 1 page 2/162

1 Overview

The LSM6DSO32X is a system-in-package featuring a high-performance 3-axis digital accelerometer and 3-axis digital gyroscope.

The LSM6DSO32X delivers best-in-class motion sensing that can detect orientation and gestures in order to empower application developers and consumers with features and capabilities that are more sophisticated than simply orienting their devices to portrait and landscape mode.

The event-detection interrupts enable efficient and reliable motion tracking and contextual awareness, implementing hardware recognition of free-fall events, 6D orientation, click and double-click sensing, activity or inactivity, stationary/motion detection and wakeup events.

The LSM6DSO32X supports main OS requirements, offering real, virtual and batch mode sensors. In addition, the LSM6DSO32X can efficiently run the sensor-related features specified in Android, saving power and enabling faster reaction time. In particular, the LSM6DSO32X has been designed to implement hardware features such as significant motion detection, stationary/motion detection, tilt, pedometer functions, timestamping and to support the data acquisition of an external magnetometer.

The LSM6DSO32X offers hardware flexibility to connect the pins with different mode connections to external sensors to expand functionalities such as adding a sensor hub, etc.

Up to 9 kbytes of FIFO with compression and dynamic allocation of significant data (i.e. external sensors, timestamp, etc.) allows overall power saving of the system.

Like the entire portfolio of MEMS sensor modules, the LSM6DSO32X leverages the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DSO32X is available in a small plastic land grid array (LGA) package of $2.5 \times 3.0 \times 0.83$ mm to address ultra-compact solutions.

DS13607 - Rev 1 page 3/162

2 Embedded low-power features

The LSM6DSO32X has been designed to be fully compliant with Android, featuring the following on-chip functions:

- 9 kbytes data buffering, data can be compressed two or three times
 - 100% efficiency with flexible configurations and partitioning
 - Possibility to store timestamp
- Event-detection interrupts (fully configurable)
 - Free-fall
 - Wakeup
 - 6D orientation
 - Click and double-click sensing
 - Activity/Inactivity recognition
 - Stationary/Motion detection
- Specific IP blocks with negligible power consumption and high-performance
 - Pedometer functions: step detector and step counters
 - Tilt
 - Significant Motion Detection
 - Finite State Machine (FSM) for accelerometer, gyroscope, and external sensors
 - Machine Learning Core (MLC)
- Sensor hub
 - Up to 6 total sensors: 2 internal (accelerometer and gyroscope) and 4 external sensors

2.1 Tilt detection

The tilt function helps to detect activity change and has been implemented in hardware using only the accelerometer to achieve targets of both ultra-low power consumption and robustness during the short duration of dynamic accelerations.

The tilt function is based on a trigger of an event each time the device's tilt changes and can be used with different scenarios, for example:

- 1. Triggers when phone is in a front pants pocket and the user goes from sitting to standing or standing to sitting;
- 2. Doesn't trigger when phone is in a front pants pocket and the user is walking, running or going upstairs.

2.2 Significant Motion Detection

The Significant Motion Detection (SMD) function generates an interrupt when a 'significant motion', that could be due to a change in user location, is detected. In the LSM6DSO32X device this function has been implemented in hardware using only the accelerometer.

SMD functionality can be used in location-based applications in order to receive a notification indicating when the user is changing location.

2.3 Finite State Machine

The LSM6DSO32X can be configured to generate interrupt signals activated by user-defined motion patterns. To do this, up to 16 embedded finite state machines can be programmed independently for motion detection such as glance gestures, absolute wrist tilt, shake and double-shake detection.

DS13607 - Rev 1 page 4/162

Definition of Finite State Machine

A state machine is a mathematical abstraction used to design logic connections. It is a behavioral model composed of a finite number of states and transitions between states, similar to a flow chart in which one can inspect the way logic runs when certain conditions are met. The state machine begins with a start state, goes to different states through transitions dependent on the inputs, and can finally end in a specific state (called stop state). The current state is determined by the past states of the system. Figure 1. Generic state machine shows a generic state machine.

Figure 1. Generic state machine

Finite State Machine in the LSM6DSO32X

The LSM6DSO32X works as a combo accelerometer-gyroscope sensor, generating acceleration and angular rate output data. It is also possible to connect an external sensor (magnetometer) by using the Sensor Hub feature (Mode 2). These data can be used as input of up to 16 programs in the embedded Finite State Machine (Figure 2. State machine in the LSM6DSO32X).

All 16 finite state machines are independent: each one has its dedicated memory area and it is independently executed. An interrupt is generated when the end state is reached or when some specific command is performed.

Figure 2. State machine in the LSM6DSO32X

DS13607 - Rev 1 page 5/162

2.4 Machine Learning Core

The LSM6DSO32X embeds a dedicated core for machine learning processing that provides system flexibility, allowing some algorithms run in the application processor to be moved to the MEMS sensor with the advantage of consistent reduction in power consumption.

Machine Learning Core logic allows identifying if a data pattern (for example motion, pressure, temperature, magnetic data, etc.) matches a user-defined set of classes. Typical examples of applications could be activity detection like running, walking, driving, etc.

The LSM6DSO32X Machine Learning Core works on data patterns coming from the accelerometer and gyro sensors, but it is also possible to connect and process external sensor data (like magnetometer) by using the Sensor Hub feature (Mode 2).

The input data can be filtered using a dedicated configurable computation block containing filters and features computed in a fixed time window defined by the user.

Machine learning processing is based on logical processing composed of a series of configurable nodes characterized by "if-then-else" conditions where the "feature" values are evaluated against defined thresholds.

Figure 3. Machine Learning Core in the LSM6DSO32X

The LSM6DSO32X can be configured to run up to 8 flows simultaneously and independently and every flow can generate up to 16 results. The total number of nodes can be up to 256.

The results of the machine learning processing are available in dedicated output registers readable from the application processor at any time.

The LSM6DSO32X Machine Learning Core can be configured to generate an interrupt when a change in the result occurs.

DS13607 - Rev 1 page 6/162

3 Pin description

Figure 4. Pin connections

1. Leave pin electrically unconnected and soldered to PCB.

DS13607 - Rev 1 page 7/162

3.1 Pin connections

The LSM6DSO32X offers flexibility to connect the pins in order to have two different mode connections and functionalities. In detail:

- Mode 1: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface is available;
- Mode 2: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface and I²C interface master for external sensor connections are available;

Figure 5. LSM6DSO32X connection modes

In the following table each mode is described for the pin connections and function.

DS13607 - Rev 1 page 8/162

Table 1. Pin description

Pin#	Name	Mode 1 function	Mode 2 function
	SDO	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)
1	SA0	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)
	SAU	MIPI I3C SM least significant bit of the static address (SA0)	MIPI I3C SM least significant bit of the static address (SA0)
2	SDx	Connect to Vdd_IO or GND	I ² C serial data master (MSDA)
3	SCx	Connect to Vdd_IO or GND	I²C serial clock master (MSCL)
4	INT1	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.
5	Vdd_IO ⁽¹⁾	Power supp	ply for I/O pins
6	GND	0 V	supply
7	GND	0 V	supply
8	Vdd ⁽¹⁾	Powe	er supply
9	INT2	Programmable interrupt 2 (INT2) / Data enable (DEN)	Programmable interrupt 2 (INT2) / Data enable (DEN) /
	11412	Trogrammable interrupt 2 (INT2) / Data enable (DEIN)	I ² C master external synchronization signal (MDRDY)
10	NC	Connect to Vdd_IO or leave unconnected(2)	Connect to Vdd_IO or leave unconnected(2)
11	NC	Connect to Vdd_IO or leave unconnected(2)	Connect to Vdd_IO or leave unconnected(2)
		I ² C/MIPI I3C SM /SPI mode selection	I²C/MIPI I3C SM /SPI mode selection
12	CS	(1: SPI idle mode / $I^2C/MIPI\ I3C^{SM}$ communication enabled;	(1: SPI idle mode / I²C/MIPI I3C SM communication enabled;
		0: SPI communication mode / I²C/MIPI I3CSM disabled)	0: SPI communication mode / I²C/MIPI I3C SM disabled)
13	SCL	I²C/MIPI I3C SM serial clock (SCL)	I²C/MIPI I3C SM serial clock (SCL)
13	SOL	SPI serial port clock (SPC)	SPI serial port clock (SPC)
		I²C/MIPI I3C SM serial data (SDA)	I²C/MIPI I3C SM serial data (SDA)
14	SDA	SPI serial data input (SDI)	SPI serial data input (SDI)
		3-wire interface serial data output (SDO)	3-wire interface serial data output (SDO)

^{1.} Recommended 100 nF filter capacitor.

DS13607 - Rev 1 page 9/162

^{2.} Leave pin electrically unconnected and soldered to PCB.

4 Module specifications

4.1 Mechanical characteristics

0 Vdd = 1.8 V, T = 25 °C, unless otherwise noted.

Table 2. Mechanical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit	
				±4			
IA EC	Linear acceleration measurement range			±8			
LA_FS	Linear acceleration measurement range			±16		g	
				±32			
				±125			
				±250			
G_FS	Angular rate measurement range			±500		dps	
				±1000			
				±2000			
		FS = ±4 g		0.122			
LA_So	Linear acceleration sensitivity ⁽²⁾	FS = ±8 g		0.244		mg/LSB	
11.00	Zinour associatation solisating	FS = ±16 <i>g</i>		0.488		IIIg/LOD	
		FS = ±32 g		0.976			
		$FS = \pm 125 \text{ dps}$		4.375			
	Angular rate sensitivity ⁽²⁾	FS = ±250 dps		8.75			
G_So		FS = ±500 dps		17.50		mdps/LSB	
		$FS = \pm 1000 \text{ dps}$		35			
		FS = ±2000 dps		70			
LA_So%	Linear acceleration sensitivity tolerance ⁽³⁾	at component level		±0.5		%	
G_So%	Angular rate sensitivity tolerance ⁽³⁾	at component level		±0.5		%	
LA_SoDr	Linear acceleration sensitivity change vs. temperature ⁽⁴⁾	from -40° to +85°		±0.007		%/°C	
G_SoDr	Angular rate sensitivity change vs. temperature ⁽⁴⁾	from -40° to +85°		±0.005		%/°C	
LA_TyOff	Linear acceleration zero-g level offset accuracy ⁽⁵⁾			±20		m <i>g</i>	
G_TyOff	Angular rate zero-rate level ⁽⁵⁾			±0.5		dps	
LA_OffDr	Linear acceleration zero-g level change vs. temperature ⁽⁴⁾			±0.1		m <i>g</i> / °C	
G_OffDr	Angular rate typical zero-rate level change vs. temperature ⁽⁴⁾			±0.01		dps/°C	
Rn	Rate noise density in high-performance mode ⁽⁶⁾			3.8		mdps/√Hz	
RnRMS	Gyroscope RMS noise in normal/low-power mode ⁽⁷⁾			75		mdps	
		FS = ±4 g		120			
Δ	A coloration and a decided to the coloration of	FS = ±8 g		130	1	µg/√Hz	
An	Acceleration noise density in high-performance mode ⁽⁸⁾	FS = ±16 g		160	1		
		FS = ±32 <i>g</i>		220			

DS13607 - Rev 1 page 10/162

Symbol	Parameter	Test conditions	Min.	Typ.(1)	Max.	Unit
		FS = ±4 g		3.2		
RMS	A	FS = ±8 g		3.4		m m(DMC)
	Acceleration RMS noise in normal/low-power mode ⁽⁹⁾⁽¹⁰⁾	FS = ±16 g		4.0		mg(RMS)
		FS = ±32 g		5.4		
	Acceleration RMS noise in ultra-low-power mode ⁽⁹⁾⁽¹⁰⁾	FS = ±4 g		9.5		
				1.6(11)		
				12.5		
				26		
				52		
				104		
LA_ODR	Linear acceleration output data rate			208		
				416		
				833		
				1666		
				3332		
				6664		Hz
				12.5		
				26		
				52		
				104		
G_ODR	Angular rate output data rate			208		
				416		
				833		
				1666		
				3332 6664		
	Linear acceleration self-test output change ⁽¹²⁾⁽¹³⁾⁽¹⁴⁾		50	0004	1700	m <i>g</i>
Vst		FS = ±250 dps	20		80	dps
	Angular rate self-test output change ⁽¹⁵⁾⁽¹⁶⁾	FS = ±2000 dps	150		700	dps
Тор	Operating temperature range	. 5 12000 upo	-40		+85	°C
тор	Operating temperature range		-40		+00	C

- 1. Typical specifications are not guaranteed.
- 2. Sensitivity values after factory calibration test and trimming.
- 3. Subject to change.
- 4. Measurements are performed in a uniform temperature setup and they are based on characterization data in a limited number of samples. Not measured during final test for production.
- 5. Values after factory calibration test and trimming.
- 6. Gyroscope rate noise density in high-performance mode is independent of the ODR and FS setting.
- 7. Gyroscope RMS noise in normal/low-power mode is independent of the ODR and FS setting.
- 8. Accelerometer noise density in high-performance mode is independent of the ODR.
- 9. Accelerometer RMS noise in normal/low-power/ultra-low-power mode is independent of the ODR.
- 10. Noise RMS related to BW = ODR/2.
- 11. This ODR is available when the accelerometer is in low-power mode.
- 12. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in a dedicated register for all axes.

DS13607 - Rev 1 page 11/162

- 13. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 0.122 mg at ±4 g full scale.
- 14. Accelerometer self-test limits are full-scale independent.
- 15. The sign of the angular rate self-test output change is defined by the STx_G bits in a dedicated register for all axes.
- 16. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 70 mdps at ±2000 dps full scale.

DS13607 - Rev 1 page 12/162

4.2 Electrical characteristics

@ Vdd = 1.8 V, T = 25 °C, unless otherwise noted.

Table 3. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ.(1)	Max.	Unit
Vdd	Supply voltage		1.71	1.8	3.6	V
Vdd_IO	Power supply for I/O		1.62		3.6	V
IddHP	Gyroscope and accelerometer current consumption in high-performance mode			0.55		mA
LA_lddHP	Accelerometer current consumption in high-performance mode			170		μA
LA IddLP	Accelerometer current consumption in low-power mode	ODR = 52 Hz		26		
LA_IddLP	Accelerometer current consumption in low-power mode	ODR = 1.6 Hz		4.5		μA
LA IddULP	Accelerometer current consumption in ultra-low-power mode	ODR = 52 Hz		9.5		
LA_IddOLP	Accelerometer current consumption in utila-low-power mode	ODR = 1.6 Hz		4.4		μA
IddPD	Gyroscope and accelerometer current consumption during power-down			3		μA
Ton	Turn-on time			35		ms
V _{IH}	Digital high-level input voltage		0.7 * Vdd_IO			V
V _{IL}	Digital low-level input voltage				0.3 * Vdd_IO	V
V _{OH}	High-level output voltage	I _{OH} = 4 mA ⁽²⁾	Vdd_IO - 0.2			V
V _{OL}	Low-level output voltage	I _{OL} = 4 mA ⁽²⁾			0.2	V
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

4.3 Temperature sensor characteristics

0 Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 4. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
TODR ⁽²⁾	Temperature refresh rate			52		Hz
Toff	Temperature offset ⁽³⁾		-15		+15	°C
TSen	Temperature sensitivity			256		LSB/°C
TST	Temperature stabilization time ⁽⁴⁾				500	μs
T_ADC_res	Temperature ADC resolution			16		bit
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

DS13607 - Rev 1 page 13/162

^{2. 4} mA is the maximum driving capability, i.e. the maximum DC current that can be sourced/sunk by the digital pin in order to guarantee the correct digital output voltage levels V_{OH} and V_{OL} .

^{2.} When the accelerometer is in low-power mode or ultra-low-power mode and the gyroscope part is turned off, the TODR value is equal to the accelerometer ODR.

^{3.} The output of the temperature sensor is 0 LSB (typ.) at 25 °C.

^{4.} Time from power ON to valid data based on characterization data.

4.4 Communication interface characteristics

4.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Table 5. SPI slave timing values (in mode 3)

Symbol	Parameter	Value ⁽¹⁾		Unit
Syllibol	Parameter	Min	Max	Onnt
t _{c(SPC)}	SPI clock cycle	100		ns
f _{c(SPC)}	SPI clock frequency		10	MHz
t _{su(CS)}	CS setup time	5		
t _{h(CS)}	CS hold time	20		
t _{su(SI)}	SDI input setup time	5		
t _{h(SI)}	SDI input hold time	15		ns
t _{v(SO)}	SDO valid output time		50	
t _{h(SO)}	SDO output hold time	5		
t _{dis(SO)}	SDO output disable time		50	

^{1.} Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production.

Figure 6. SPI slave timing diagram (in mode 3)

Note: Measurement points are done at 0.3·Vdd_IO and 0.7·Vdd_IO for both input and output ports.

DS13607 - Rev 1 page 14/162

4.4.2 I²C - inter-IC control interface

Subject to general operating conditions for Vdd and Top.

Table 6. I²C slave timing values

O make at	P	I ² C fast	mode ⁽¹⁾⁽²⁾	I ² C fast mode +(1)(2)		Unit
Symbol	ymbol Parameter		Max	Min	Max	Unit
f _(SCL)	SCL clock frequency	0	400	0	1000	kHz
t _{w(SCLL)}	SCL clock low time	1.3		0.5		
t _{w(SCLH)}	SCL clock high time	0.6		0.26		μs
t _{su(SDA)}	SDA setup time	100		50		ns
t _{h(SDA)}	SDA data hold time	0	0.9	0		
t _{h(ST)}	START/REPEATED START condition hold time	0.6		0.26		
t _{su(SR)}	REPEATED START condition setup time	0.6		0.26		
t _{su(SP)}	STOP condition setup time	0.6		0.26		μs
t _{w(SP:SR)}	Bus free time between STOP and START condition	1.3		0.5		
	Data valid time		0.9		0.45	
	Data valid acknowledge time		0.9		0.45	
C _B	Capacitive load for each bus line		400		550	pF

- 1. Data based on standard I²C protocol requirement, not tested in production.
- 2. Data for I²C fast mode and I²C fast mode + have been validated by characterization, not tested in production.

START

START

START

START

START

START

START

START

Figure 7. I²C slave timing diagram

Note: Measurement points are done at 0.3·Vdd_IO and 0.7·Vdd_IO for both ports.

DS13607 - Rev 1 page 15/162

4.5 Absolute maximum ratings

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 7. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd / Vdd_IO	Supply voltage	-0.3 to 4.8	V
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration g for 0.2 ms	20,000	g
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	-0.3 to Vdd_IO +0.3	V

Note: Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

DS13607 - Rev 1 page 16/162

4.6 Terminology

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ± 1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors (see Table 2).

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time (see Table 2).

4.6.2 Zero-g and zero-rate level

Linear acceleration zero-*g* level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will measure 1 *g*. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-*g* offset.

Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-g level change vs. temperature" in Table 2. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time (see Table 2).

DS13607 - Rev 1 page 17/162

5 Digital interfaces

5.1 I²C/SPI interface

The registers embedded inside the LSM6DSO32X may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The device is compatible with SPI modes 0 and 3.

The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied high (i.e connected to Vdd_IO).

Pin description Pin name SPI enable I2C/SPI mode selection CS (1: SPI idle mode / I2C communication enabled; 0: SPI communication mode / I2C disabled) I2C Serial Clock (SCL) SCL/SPC SPI Serial Port Clock (SPC) I2C Serial Data (SDA) SDA/SDI/SDO SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO) SPI Serial Data Output (SDO) SDO/SA0 I²C less significant bit of the device address

Table 8. Serial interface pin description

5.1.1 I²C serial interface

The LSM6DSO32X I²C is a bus slave. The I²C is employed to write the data to the registers, whose content can also be read back.

The relevant I²C terminology is provided in the table below.

Table 9. I²C terminology

Term	Description
Transmitter	The device which sends data to the bus
Receiver	The device which receives data from the bus
Master	The device which initiates a transfer, generates clock signals and terminates a transfer
Slave	The device addressed by the master

There are two signals associated with the I²C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.

The I²C interface is implemented with fast mode (400 kHz) I²C standards as well as with the standard mode. In order to disable the I²C block, (I2C_disable) = 1 must be written in CTRL4_C (13h).

DS13607 - Rev 1 page 18/162

5.1.1.1 I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the LSM6DSO32X is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is '1' (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is '0' (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the LSM6DSO32X behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the CTRL3_C (12h) (IF_INC).

The slave address is completed with a Read/Write bit. If the bit is '1' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is '0' (Write) the master will transmit to the slave with direction unchanged. Table 10 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Table 10. SAD+Read/Write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	110101	0	1	11010101 (D5h)
Write	110101	0	0	11010100 (D4h)
Read	110101	1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

Table 11. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 12. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Table 13. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DATA		DATA		

DS13607 - Rev 1 page 19/162

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In the presented communication format MAK is Master Acknowledge and NMAK is No Master Acknowledge.

DS13607 - Rev 1 page 20/162

5.1.2 SPI bus interface

The LSM6DSO32X SPI is a bus slave. The SPI allows writing and reading the registers of the device. The serial interface communicates to the application using 4 wires: **CS**, **SPC**, **SDI** and **SDO**.

Figure 8. Read and write protocol (in mode 3)

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: $R\overline{W}$ bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive **SDO** at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is '0', the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is '1', the address used to read/write data is increased at every block.

The function and the behavior of SDI and SDO remain unchanged.

DS13607 - Rev 1 page 21/162

5.1.2.1 SPI read

Figure 9. SPI read protocol (in mode 3)

The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

Figure 10. Multiple byte SPI read protocol (2-byte example) (in mode 3)

DS13607 - Rev 1 page 22/162

5.1.2.2 SPI write

Figure 11. SPI write protocol (in mode 3)

The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1 -7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writes.

Figure 12. Multiple byte SPI write protocol (2-byte example) (in mode 3)

DS13607 - Rev 1 page 23/162

5.1.2.3 SPI read in 3-wire mode

3-wire mode is entered by setting the CTRL3_C (12h) (SIM) bit equal to '1' (SPI serial interface mode selection).

Figure 13. SPI read protocol in 3-wire mode (in mode 3)

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

A multiple read command is also available in 3-wire mode.

DS13607 - Rev 1 page 24/162

5.2 MIPI I3CSM interface

5.2.1 MIPI I3CSM slave interface

The LSM6DSO32X interface includes a MIPI I3CSMSDR only slave interface (compliant with release 1.0 of the specification) with MIPI I3CSM SDR embedded features:

- CCC command
- Direct CCC communication (SET and GET)
- Broadcast CCC communication
- Private communications
- Private read and write for single byte
- Multiple read and write
- In-Band Interrupt request

Error Detection and Recovery Methods (S0-S6)

Note:

Refer to Section 5.3 I²C/I3C coexistence in LSM6DSO32X for details concerning the choice of the interface when powering up the device.

5.2.2 MIPI I3CSM CCC supported commands

The list of MIPI I3CSM CCC commands supported by the device is detailed in the following table.

Table 15. MIPI I3CSM CCC commands

Command	Command code	Default	Description
ENTDAA	0x07		DAA procedure
SETDASA	0x87		Assign dynamic address using static address 0x6B/0x6A depending on SDO pin
ENEC	0x80 / 0x00		Slave activity control (direct and broadcast)
DISEC	0x81/ 0x01		Slave activity control (direct and broadcast)
ENTAS0	0x82 / 0x02		Enter activity state (direct and broadcast)
ENTAS1	0x83 / 0x03		Enter activity state (direct and broadcast)
ENTAS2	0x84 / 0x04		Enter activity state (direct and broadcast)
ENTAS3	0x85 / 0x05		Enter activity state (direct and broadcast)
SETXTIME	0x98 / 0x28		Timing information exchange
GETXTIME	0x99	0x07 0x00 0x05 0x92	Timing information exchange
RSTDAA	0x86 / 0x06		Reset the assigned dynamic address (direct and broadcast)
SETMWL	0x89 / 0x08		Define maximum write length during private write (direct and broadcast)
SETMRL	0x8A / 0x09		Define maximum read length during private read (direct and broadcast)
SETNEWDA	0x88		Change dynamic address
GETMWL	0x8B	0x00 0x08 (2 byte)	Get maximum write length during private write
GETMRL	0x8C	0x00 0x10 0x09	Get maximum read length during private read

DS13607 - Rev 1 page 25/162

Command	Command code	Default	Description			
		(3 byte)				
		0x02				
		0x08				
CETRID	Oven	0x00	Davisa ID register			
GETPID	0x8D	0x6C	Device ID register			
		0x10				
		0x0B				
OFTDOD	0.05	0x07	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
GETBCR	0x8E	(1 byte)	Bus characteristics register			
GETDCR	0x8F	0x44 default	MIPI I3C SM device characteristics register			
		0x00				
GETSTATUS	0x90	0x00	Status register			
		(2 byte)				
		0x00				
GETMXDS	0x94	0x20	Return max data speed			
		(2 byte)				

DS13607 - Rev 1 page 26/162

5.3 I²C/I3C coexistence in LSM6DSO32X

In the LSM6DSO32X, the SDA and SCL lines are common to both I²C and MIPI I3CSM. The I²C bus requires anti-spike filters on the SDA and SCL pins that are not compatible with MIPI I3CSM timing.

The device can be connected to both I^2C and MIPI $I3C^{SM}$ or only to the MIPI $I3C^{SM}$ bus depending on the connection of the INT1 pin when the device is powered up:

- INT1 pin floating (internal pull-down): I2C / MIPI I3CSM both active, see Figure 14;
- INT1 pin connected to Vdd IO: only MIPI I3CSM active, see Figure 15.

Figure 14. I²C and MIPI I3CSM both active (INT1 pin not connected)

1. Address assignment (DAA or ENTDA) must be performed with I²C Fast Mode Plus Timing. When the slave is addressed, the I²C slave is disabled and the timing is compatible with MIPI I3CSM specifications.

Figure 15. Only MIPI I3CSM active (INT1 pin connected to Vdd_IO)

 When the slave is I3C only, the I²C slave is always disabled. The address can be assigned using MIPI I3CSM SDR timing.

DS13607 - Rev 1 page 27/162

5.4 Master I²C interface

If the LSM6DSO32X is configured in Mode 2, a master I^2C line is available. The master serial interface is mapped to the following dedicated pins.

Table 16. Master I²C pin details

Pin name	Pin description
MSCL	I ² C serial clock master
MSDA	I ² C serial data master
MDRDY	I ² C master external synchronization signal

DS13607 - Rev 1 page 28/162

6 Functionality

6.1 Operating modes

In the LSM6DSO32X, the accelerometer and the gyroscope can be turned on/off independently of each other and are allowed to have different ODRs and power modes.

The LSM6DSO32X has three operating modes available:

- only accelerometer active and gyroscope in power-down;
- only gyroscope active and accelerometer in power-down;
- · both accelerometer and gyroscope sensors active with independent ODR.

The accelerometer is activated from power-down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo mode the ODRs are totally independent.

6.2 Accelerometer power modes

In the LSM6DSO, the accelerometer can be configured in five different operating modes: power-down, ultra-low-power, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in CTRL6_C (15h). If XL_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (1.6, 12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

6.2.1 Accelerometer ultra-low-power mode

The LSM6DSO32X can be configured in ultra-low-power (ULP) mode by setting the XL_ULP_EN bit to 1 in CTRL5_C (14h) register. This mode can be used in accelerometer-only mode (gyroscope sensor must be configured in power-down mode) and for ODR_XL values between 1.6 Hz and 208 Hz.

When ULP mode is intended to be used, the bit XL HM MODE must be set to 0.

When ULP mode is switched ON/OFF, the accelerometer must be configured in power-down condition.

The embedded functions based on accelerometer data (free-fall, 6D/4D, tap, double tap, wake-up, activity/inactivity, stationary/motion, step counter, step detection, significant motion, tilt) and the FIFO batching functionality are still supported when ULP mode is enabled.

6.3 Gyroscope power modes

In the LSM6DSO, the gyroscope can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the G_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

DS13607 - Rev 1 page 29/162

6.4 Block diagram of filters

Figure 16. Block diagram of filters

6.4.1 Block diagrams of the accelerometer filters

In the LSM6DSO32X, the filtering chain for the accelerometer part is composed of the following:

- Analog filter (anti-aliasing)
- Digital filter (LPF1)
- Composite filter

Details of the block diagram appear in the following figure.

Figure 17. Accelerometer chain

DS13607 - Rev 1 page 30/162

Figure 18. Accelerometer composite filter

1. The cutoff value of the LPF1 output is ODR/2 when the accelerometer is in high-performance mode. This value is equal to 700 Hz when the accelerometer is in low-power or normal mode.

Note: Advanced functions include pedometer, step detector and step counter, significant motion detection, tilt functions and Finite State Machine.

DS13607 - Rev 1 page 31/162

6.4.2 Block diagrams of the gyroscope filters

Figure 19. Gyroscope digital chain - Mode 1 and Mode 2

The digital LPF2 filter cannot be configured by the user and its cutoff frequency depends on the selected gyroscope ODR, as indicated in the following table.

Table 17. Gyroscope LPF2 bandwidth selection

Gyroscope ODR [Hz]	LPF2 cutoff [Hz]
12.5	4.2
26	8.3
52	16.6
104	33.0
208	66.8
417	135.9
833	295.5
1667	1108.1
3333	1320.7
6667	1441.8

Data can be acquired from the output registers and FIFO over the primary I²C/I3C/SPI interface.

DS13607 - Rev 1 page 32/162

6.5 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but It can wake up only when needed and burst the significant data out from the FIFO.

The LSM6DSO32X embeds 3 kbytes of data in FIFO (up to 9 kbytes with the compression feature enabled) to store the following data:

- Gyroscope
- Accelerometer
- External sensors (up to 4)
- Step counter
- Timestamp
- Temperature

Writing data in the FIFO can be configured to be triggered by the:

- Accelerometer / gyroscope data-ready signal
- · Sensor hub data-ready signal
- Step detection signal

The applications have maximum flexibility in choosing the rate of batching for physical sensors with FIFO-dedicated configurations: accelerometer, gyroscope and temperature sensor batch rates can be selected by the user. External sensor writing in FIFO can be triggered by the accelerometer data-ready signal or by an external sensor interrupt. The step counter can be stored in FIFO with associated timestamp each time a step is detected. It is possible to select decimation for timestamp batching in FIFO with a factor of 1, 8, or 32.

The reconstruction of a FIFO stream is a simple task thanks to the FIFO_DATA_OUT_TAG byte that allows recognizing the meaning of a word in FIFO.

FIFO allows correct reconstruction of the timestamp information for each sensor stored in FIFO. If a change in the ODR or BDR (Batch Data Rate) configuration is performed, the application can correctly reconstruct the timestamp and know exactly when the change was applied without disabling FIFO batching. FIFO stores information of the new configuration and timestamp in which the change was applied in the device.

Finally, FIFO embeds a compression algorithm that the user can enable in order to have up to 9 kbytes of data stored in FIFO and take advantage of interface communication length for FIFO flushing and communication power consumption.

The programmable FIFO watermark threshold can be set in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h) using the WTM[8:0] bits. To monitor the FIFO status, dedicated registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh)) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO watermark status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pins of these status events, the configuration can be set in INT1_CTRL (0Dh) and INT2_CTRL (0Eh).

The FIFO buffer can be configured according to six different modes:

- · Bypass mode
- FIFO mode
- · Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous mode
- · Bypass-to-FIFO mode

Each mode is selected by the FIFO_MODE_[2:0] bits in the FIFO_CTRL4 (0Ah) register.

6.5.1 Bypass mode

In Bypass mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty. Bypass mode is also used to reset the FIFO when in FIFO mode.

DS13607 - Rev 1 page 33/162

6.5.2 FIFO mode

In FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is full.

To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0]) to '000'. After this reset command, it is possible to restart FIFO mode by writing FIFO_CTRL4 (0Ah) (FIFO MODE [2:0]) to '001'.

The FIFO buffer memorizes up to 9 kbytes of data (with compression enabled) but the depth of the FIFO can be resized by setting the WTM [8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h). If the STOP_ON_WTM bit in FIFO_CTRL2 (08h) is set to '1', FIFO depth is limited up to the WTM [8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h).

6.5.3 Continuous mode

Continuous mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.

A FIFO threshold flag FIFO_STATUS2 (3Bh)(FIFO_WTM_IA) is asserted when the number of unread samples in FIFO is greater than or equal to FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h)(WTM [8:0]).

It is possible to route the FIFO_WTM_IA flag to the INT1 pin by writing in register INT1_CTRL (0Dh) (INT1_FIFO_TH) = '1' or to the INT2 pin by writing in register INT2_CTRL (0Eh)(INT2_FIFO_TH) = '1'.

A full-flag interrupt can be enabled, INT1_CTRL (0Dh)(INT1_FIFO_FULL) = '1' or INT2_CTRL (0Eh) (INT2_FIFO_FULL) = '1', in order to indicate FIFO saturation and eventually read its content all at once.

If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the FIFO_OVR_IA flag in FIFO_STATUS2 (3Bh) is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available inFIFO STATUS1 (3Ah) and FIFO STATUS2 (3Bh)(DIFF FIFO [9:0]).

6.5.4 Continuous-to-FIFO mode

In Continuous-to-FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Single tap
- Double tap
- Wake-up
- Free-fall
- D6D

When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.

When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.

6.5.5 Bypass-to-Continuous mode

In Bypass-to-Continuous mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode).

FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Single tap
- Double tap
- Wake-up
- Free-fall
- D6D

DS13607 - Rev 1 page 34/162

6.5.6 Bypass-to-FIFO mode

In Bypass-to-FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = '111'), data measurement storage inside FIFO operates in FIFO mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode). FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Single tap
- Double tap
- Wake-up
- Free-fall
- D6D

6.5.7 FIFO reading procedure

The data stored in FIFO are accessible from dedicated registers and each FIFO word is composed of 7 bytes: one tag byte (FIFO_DATA_OUT_TAG (78h), in order to identify the sensor, and 6 bytes of fixed data (FIFO_DATA_OUT registers from (79h) to (7Eh)).

The DIFF_FIFO_[9:0] field in the FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh) registers contains the number of words (1 byte TAG + 6 bytes DATA) collected in FIFO.

In addition, it is possible to configure a counter of the batch events of accelerometer or gyroscope sensors. The flag COUNTER_BDR_IA in FIFO_STATUS2 (3Bh) alerts that the counter reaches a selectable threshold (CNT_BDR_TH_[10:0] field in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch)). This allows triggering the reading of FIFO with the desired latency of one single sensor. The sensor is selectable using the TRIG_COUNTER_BDR bit in COUNTER_BDR_REG1 (0Bh). As for the other FIFO status events, the flag COUNTER_BDR_IA can be routed on the INT1 or INT2 pins by asserting the corresponding bits (INT1_CNT_BDR of INT1_CTRL (0Dh) and INT2_CNT_BDR of INT2_CTRL (0Eh)).

In order to maximize the amount of accelerometer and gyroscope data in FIFO, the user can enable the compression algorithm by setting to 1 both the FIFO_COMPR_EN bit in EMB_FUNC_EN_B (05h) (embedded functions registers bank) and the FIFO_COMPR_RT_EN bit in FIFO_CTRL2 (08h). When compression is enabled, it is also possible to force writing non-compressed data at a selectable rate using the UNCOPTR_RATE_[1:0] field in FIFO_CTRL2 (08h).

Meta information about accelerometer and gyroscope sensor configuration changes can be managed by enabling the ODR CHG EN bit in FIFO CTRL2 (08h).

DS13607 - Rev 1 page 35/162

7 Application hints

7.1 LSM6DSO32X electrical connections in Mode 1

Figure 20. LSM6DSO32X electrical connections in Mode 1

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C/MIPI I3CSM interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C/MIPI I3CSM interface.

DS13607 - Rev 1 page 36/162

7.2 LSM6DSO32X electrical connections in Mode 2

Figure 21. LSM6DSO32X electrical connections in Mode 2

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C/MIPI I3CSM primary interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C/MIPI I3CSM primary interface.

DS13607 - Rev 1 page 37/162

Table 18. Internal pin status

Pin #	Name	Mode 1 function	Mode 2 function	Pin status Mode 1	Pin status Mode 2	
	SDO	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)	Defaulti in out with out out ou	Defaulti in auturith auturulluur	
1		I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)	Default: input without pull-up. Pull-up is enabled if bit SDO_PU_EN = 1	Default: input without pull-up. Pull-up is enabled if bit SDO_PU_EN = 1	
	SA0	MIPI I3C SM least significant bit of the static address (SA0)	MIPI I3C SM least significant bit of the static address (SA0)	in reg 02h.	in reg 02h.	
				Default: input without pull-up.	Default: input without pull-up.	
2	SDx	Connect to Vdd_IO or GND	I ² C serial data master (MSDA)	Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	
				Default: input without pull-up.	Default: input without pull-up.	
3	SCx	Connect to Vdd_IO or GND	I ² C serial clock master (MSCL)	Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	
4	INT1	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.	Default: input with pull-down ⁽¹⁾	Default: input with pull-down ⁽¹⁾	
5	Vdd_IO	Power supply for I/O pins	Power supply for I/O pins			
6	GND	0 V supply	0 V supply			
7	GND	0 V supply	0 V supply			
8	Vdd	Power supply	Power supply			
9	INT2	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Programmable interrupt 2 (INT2) / Data enabled (DEN) / I ² C master external synchronization signal (MDRDY)	Default: output forced to ground.	Default: output forced to ground.	
10	NC	Leave unconnected	Leave unconnected	Default: input with pull-up.	Default: input with pull-up.	
11	NC	Connect to Vdd_IO or leave unconnected	Connect to Vdd_IO or leave unconnected	Default: input with pull-up.	Default: input with pull-up.	
		I ² C/SPI mode selection	I ² C/SPI mode selection			
12	CS	(1:SPI idle mode / I ² C communication enabled;	(1:SPI idle mode / I ² C communication enabled;	Default: input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in	Default: input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in	
		0: SPI communication mode / I ² C disabled)	0: SPI communication mode / I ² C disabled)	reg 13h and I3C_disable = 1 in reg 18h.	reg 13h and I3C_disable = 1 in reg 18h.	

LSM6DSO32X

Pin#	Name	Mode 1 function	Mode 2 function	Pin status Mode 1	Pin status Mode 2
13	SCL	I ² C/MIPI I3C SM serial clock (SCL) / SPI serial port clock (SPC)	I ² C/MIPI I3C SM serial clock (SCL) / SPI serial port clock (SPC)	Default: input without pull-up	Default: input without pull-up
14	SDA	I ² C/MIPI I3C SM serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	I ² C/MIPI I3C SM serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	Default: input without pull-up.	Default: input without pull-up.

1. INT1 must be set to '0' or left unconnected during power-on if the I²C/SPI interfaces are used.

Internal pull-up value is from 30 k Ω to 50 k Ω , depending on Vdd_IO.

Note: The procedure to enable the pull-up on pins 2 and 3 is as follows:

- 1. Write 40h in register at address 01h (enable access to the sensor hub registers).
- 2. Wite 08h in register at address 14h (enable the pull-up on pins 2 and 3).
- 3. Write 00h in register at address 01h (disable access to the sensor hub registers).

8 Register mapping

The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses.

Table 19. Registers address map

		Register address			
Name	Туре	Hex	Binary	Default	Comment
FUNC_CFG_ACCESS	RW	01	0000001	00000000	
PIN_CTRL	RW	02	0000010	00111111	
RESERVED	-	03-06			
FIFO_CTRL1	RW	07	00000111	00000000	
FIFO_CTRL2	RW	08	00001000	00000000	
FIFO_CTRL3	RW	09	00001001	00000000	
FIFO_CTRL4	RW	0A	00001010	00000000	
COUNTER_BDR_REG1	RW	0B	00001011	00000000	
COUNTER_BDR_REG2	RW	0C	00001100	00000000	
INT1_CTRL	RW	0D	00001101	00000000	
INT2_CTRL	RW	0E	00001110	00000000	
WHO_AM_I	R	0F	00001111	01101100	
CTRL1_XL	RW	10	00010000	00000000	
CTRL2_G	RW	11	00010001	00000000	
CTRL3_C	RW	12	00010010	00000100	
CTRL4_C	RW	13	00010011	00000000	
CTRL5_C	RW	14	00010100	00000000	
CTRL6_C	RW	15	00010101	00000000	
CTRL7_G	RW	16	00010110	00000000	
CTRL8_XL	RW	17	00010111	00000000	
CTRL9_XL	RW	18	00011000	11100000	
CTRL10_C	RW	19	00011001	00000000	
ALL_INT_SRC	R	1A	00011010	output	
WAKE_UP_SRC	R	1B	00011011	output	
TAP_SRC	R	1C	00011100	output	
D6D_SRC	R	1D	00011101	output	
STATUS_REG	R	1E	00011110	output	
RESERVED	-	1F	00011111		
OUT_TEMP_L	R	20	00100000	output	
OUT_TEMP_H	R	21	00100001	output	
OUTX_L_G	R	22	00100010	output	
OUTX_H_G	R	23	00100011	output	
OUTY_L_G	R	24	00100100	output	

DS13607 - Rev 1 page 40/162

Nama	T	Register address		Dofoult	Comment	
Name	Туре	Hex	Binary	Default	Comment	
OUTY_H_G	R	25	00100101	output		
OUTZ_L_G	R	26	00100110	output		
OUTZ_H_G	R	27	00100111	output		
OUTX_L_A	R	28	00101000	output		
OUTX_H_A	R	29	00101001	output		
OUTY_L_A	R	2A	00101010	output		
OUTY_H_A	R	2B	00101011	output		
OUTZ_L_A	R	2C	00101100	output		
OUTZ_H_A	R	2D	00101101	output		
RESERVED	-	2E-34				
EMB_FUNC_STATUS_MAINPAGE	R	35	00110101	output		
FSM_STATUS_A_MAINPAGE	R	36	00110110	output		
FSM_STATUS_B_MAINPAGE	R	37	00110111	output		
MLC_STATUS_MAINPAGE (38h)	R	38	00111000	output		
STATUS_MASTER_MAINPAGE	R	39	00111001	output		
FIFO_STATUS1	R	3A	00111010	output		
FIFO_STATUS2	R	3B	00111011	output		
RESERVED	-	3C-3F				
TIMESTAMP0	R	40	01000000	output		
TIMESTAMP1	R	41	01000001	output		
TIMESTAMP2	R	42	01000010	output		
TIMESTAMP3	R	43	01000011	output		
RESERVED	-	44-55				
TAP_CFG0	RW	56	01010110	00000000		
TAP_CFG1	RW	57	01010111	00000000		
TAP_CFG2	RW	58	01011000	00000000		
TAP_THS_6D	RW	59	01011001	00000000		
INT_DUR2	RW	5A	01011010	00000000		
WAKE_UP_THS	RW	5B	01011011	00000000		
WAKE_UP_DUR	RW	5C	01011100	00000000		
FREE_FALL	RW	5D	01011101	00000000		
MD1_CFG	RW	5E	01011110	00000000		
MD2_CFG	RW	5F	01011111	00000000		
RESERVED	-	60-61		00000000		
I3C_BUS_AVB	RW	62	01100010	00000000		
INTERNAL_FREQ_FINE	R	63	01100011	output		
RESERVED	-	64-72				
X_OFS_USR	RW	73	01110011	00000000		
Y_OFS_USR	RW	74	01110100	00000000		
Z_OFS_USR	RW	75	01110101	00000000		

DS13607 - Rev 1 page 41/162

Name	Type	Regis	ter address	Default	Comment
indille	Type	Hex	Binary	Delauit	
RESERVED	-	76-77			
FIFO_DATA_OUT_TAG	R	78	01111000	output	
FIFO_DATA_OUT_X_L	R	79	01111001	output	
FIFO_DATA_OUT_X_H	R	7A	01111010	output	
FIFO_DATA_OUT_Y_L	R	7B	01111011	output	
FIFO_DATA_OUT_Y_H	R	7C	01111100	output	
FIFO_DATA_OUT_Z_L	R	7D	01111101	output	
FIFO_DATA_OUT_Z_H	R	7E	01111110	output	

DS13607 - Rev 1 page 42/162

9 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

9.1 FUNC_CFG_ACCESS (01h)

Enable embedded functions register (r/w)

Table 20. FUNC_CFG_ACCESS register

FUNC_CFG_ ACCESS	SHUB_REG ACCESS	0 ⁽¹⁾					
---------------------	--------------------	------------------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 21. FUNC_CFG_ACCESS register description

FUNC_CFG_ACCESS	Enable access to the embedded functions configuration registers. ⁽¹⁾ Default value: 0
SHUB_REG_ACCESS	Enable access to the sensor hub (I ² C master) registers. (2) Default value: 0

Details concerning the embedded functions configuration registers are available in Section 10 Embedded functions register mapping and Section 11 Embedded functions register description.

9.2 PIN CTRL (02h)

SDO pin pull-up enable/disable register (r/w)

Table 22. PIN_CTRL register

0(1)	SDO_ PU_EN	1(2)	1(2)	1(2)	1(2)	1(2)	1(2)	
------	---------------	------	------	------	------	------	------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 23. PIN_CTRL register description

SDO PU EN	Enable pull-up on SDO pin
	(0: SDO pin pull-up disconnected (default); 1: SDO pin with pull-up)

DS13607 - Rev 1 page 43/162

Details concerning the sensor hub registers are available in Section 14 Sensor hub register mapping and Section 15 Sensor hub register description.

^{2.} This bit must be set to '1' for the correct operation of the device.

9.3 FIFO_CTRL1 (07h)

FIFO control register 1 (r/w)

Table 24. FIFO_CTRL1 register

WTM7 WTM6 WTM5 WTM4 WTM3 V	TM2 WTM1 WTM0
----------------------------	---------------

Table 25. FIFO_CTRL1 register description

FIFO watermark threshold, in conjunction with WTM8 in FIFO_CTRL2 (08h)

WTM[7:0] 1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO

Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the threshold level.

9.4 FIFO_CTRL2 (08h)

FIFO control register 2 (r/w)

Table 26. FIFO_CTRL2 register

STOP_ON _WTM	FIFO_COMPR _RT_EN	0	ODRCHG _EN	0	UNCOPTR_ RATE_1	UNCOPTR_ RATE_0	WTM8
-----------------	----------------------	---	---------------	---	--------------------	--------------------	------

Table 27. FIFO_CTRL2 register description

	Sensing chain FIFO stop values memorization at threshold level
STOP_ON_WTM	(0: FIFO depth is not limited (default);
	1: FIFO depth is limited to threshold level, defined in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h))
FIFO_COMPR_RT_EN ⁽¹⁾	Enables/Disables compression algorithm runtime
ODRCHG_EN	Enables ODR CHANGE virtual sensor to be batched in FIFO
	This field configures the compression algorithm to write non-compressed data at each rate.
	(0: Non-compressed data writing is not forced;
UNCOPTR_RATE_[1:0]	1: Non-compressed data every 8 batch data rate;
	2: Non-compressed data every 16 batch data rate;
	3: Non-compressed data every 32 batch data rate)
	FIFO watermark threshold, in conjunction with WTM_FIFO[7:0] in FIFO_CTRL1 (07h)
WTM8	1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO
	Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the threshold level.

1. This bit is effective if the FIFO_COMPR_EN bit of EMB_FUNC_EN_B (05h) is set to 1.

DS13607 - Rev 1 page 44/162

9.5 FIFO_CTRL3 (09h)

FIFO control register 3 (r/w)

Table 28. FIFO_CTRL3 register

BDR_GY_0 BDR_X	DR_XL_2 BDR_XL_1 BDR_XL_0
----------------	---------------------------

Table 29. FIFO_CTRL3 register description

```
Selects Batch Data Rate (write frequency in FIFO) for gyroscope data.
                      (0000: Gyro not batched in FIFO (default);
                      0001: 12.5 Hz;
                      0010: 26 Hz;
                      0011: 52 Hz;
                      0100: 104 Hz;
                      0101: 208 Hz;
BDR_GY_[3:0]
                      0110: 417 Hz;
                      0111: 833 Hz;
                      1000: 1667 Hz;
                      1001: 3333 Hz;
                      1010: 6667 Hz;
                      1011: 6.5 Hz;
                      1100-1111: not allowed)
                      Selects Batch Data Rate (write frequency in FIFO) for accelerometer data.
                      (0000: Accelerometer not batched in FIFO (default);
                      0001: 12.5 Hz;
                      0010: 26 Hz;
                      0011: 52 Hz;
                      0100: 104 Hz;
                      0101: 208 Hz;
BDR_XL_[3:0]
                      0110: 417 Hz;
                      0111: 833 Hz;
                      1000: 1667 Hz;
                      1001: 3333 Hz;
                      1010: 6667 Hz;
                      1011: 1.6 Hz;
                      1100-1111: not allowed)
```

DS13607 - Rev 1 page 45/162

9.6 FIFO_CTRL4 (0Ah)

FIFO control register 4 (r/w)

Table 30. FIFO_CTRL4 register

DEC_TS_	DEC_TS_	ODR_T_	ODR_T_	O ⁽¹⁾	FIFO_	FIFO_	FIFO_
BATCH_1	BATCH_0	BATCH_1	BATCH_0	0(1)	MODE2	MODE1	MODE0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 31. FIFO_CTRL4 register description

	Selects decimation for timestamp batching in FIFO. Write rate will be the maximum rate between XL and GYRO BDR divided by decimation decoder.
	(00: Timestamp not batched in FIFO (default);
DEC_TS_BATCH_[1:0]	01: Decimation 1: max(BDR_XL[Hz],BDR_GY[Hz]) [Hz];
	10: Decimation 8: max(BDR_XL[Hz],BDR_GY[Hz])/8 [Hz];
	11: Decimation 32: max(BDR_XL[Hz],BDR_GY[Hz])/32 [Hz])
	Selects batch data rate (write frequency in FIFO) for temperature data
	(00: Temperature not batched in FIFO (default);
ODR_T_BATCH_[1:0]	01: 1.6 Hz;
	10: 12.5 Hz;
	11: 52 Hz)
	FIFO mode selection
	(000: Bypass mode: FIFO disabled;
	001: FIFO mode: stops collecting data when FIFO is full;
	010: Reserved;
FIFO_MODE[2:0]	011: Continuous-to-FIFO mode: Continuous mode until trigger is deasserted, then FIFO mode;
	100: Bypass-to-Continuous mode: Bypass mode until trigger is deasserted, then Continuous mode;
	101: Reserved;
	110: Continuous mode: if the FIFO is full, the new sample overwrites the older one;
	111: Bypass-to-FIFO mode: Bypass mode until trigger is deasserted, then FIFO mode.)

DS13607 - Rev 1 page 46/162

9.7 COUNTER_BDR_REG1 (0Bh)

Counter batch data rate register 1 (r/w)

Table 32. COUNTER_BDR_REG1 register

dataready_ pulsed	RST_ COUNTER_BDR	TRIG_ COUNTER_BDR	0(1)	0(1)	CNT_BDR_ TH_10	CNT_BDR_ TH_9	CNT_BDR_ TH_8
----------------------	---------------------	----------------------	------	------	-------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 33. COUNTER_BDR_REG1 register description

dataready_pulsed	Enables pulsed data-ready mode (0: Data-ready latched mode (returns to 0 only after an interface reading) (default); 1: Data-ready pulsed mode (the data ready pulses are 75 µs long)
RST_COUNTER_BDR	Resets the internal counter of batch events for a single sensor. This bit is automatically reset to zero if it was set to '1'.
TRIG_COUNTER_BDR	Selects the trigger for the internal counter of batch events between XL and gyro. (0: XL batch event; 1: GYRO batch event)
CNT_BDR_TH_[10:8]	In conjunction with CNT_BDR_TH_[7:0] in COUNTER_BDR_REG2 (0Ch), sets the threshold for the internal counter of batch events. When this counter reaches the threshold, the counter is reset and the COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to '1'.

9.8 COUNTER_BDR_REG2 (0Ch)

Counter batch data rate register 2 (r/w)

Table 34. COUNTER_BDR_REG2 register

| CNT_BDR_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| TH_7 | TH_6 | TH_5 | TH_4 | TH_3 | TH_2 | TH_1 | TH_0 |

Table 35. COUNTER_BDR_REG2 register description

	In conjunction with CNT_BDR_TH_[10:8] in COUNTER_BDR_REG1 (0Bh), sets the threshold for the	
CNT_BDR_TH_[7:0]	internal counter of batch events. When this counter reaches the threshold, the counter is reset and the	
	COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to '1'.	

DS13607 - Rev 1 page 47/162

9.9 INT1_CTRL (0Dh)

INT1 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT1 when the MIPI I3CSM dynamic address is not assigned (I²C or SPI is used). Some bits can be also used to trigger an IBI (In-Band Interrupt) when the MIPI I3CSM interface is used. The output of the pin will be the OR combination of the signals selected here and in MD1_CFG (5Eh).

Table 36. INT1_CTRL register

DEN_DRDY	INT1_	INT1_	INT1_	INT1_	INT1_	INT1_	INT1_
_flag	CNT_BDR	FIFO_FULL	FIFO_OVR	FIFO_TH	BOOT	DRDY_G	DRDY_XL

Table 37. INT1_CTRL register description

DEN_DRDY_flag	Sends DEN_DRDY (DEN stamped on Sensor Data flag) to INT1 pin
INT1_CNT_BDR	Enables COUNTER_BDR_IA interrupt on INT1
INT1_FIFO_FULL	Enables FIFO full flag interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3CSM interface is used.
INT1_FIFO_OVR	Enables FIFO overrun interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3CSM interface is used.
INT1_FIFO_TH	Enables FIFO threshold interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3CSM interface is used.
INT1_BOOT	Enables boot status on INT1 pin
INT1_DRDY_G	Enables gyroscope data-ready interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.
INT1_DRDY_XL	Enables accelerometer data-ready interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.

DS13607 - Rev 1 page 48/162

9.10 INT2_CTRL (0Eh)

INT2 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT2 when the MIPI I3CSM dynamic address is not assigned (I²C or SPI is used). Some bits can be also used to trigger an IBI when the MIPI I3CSM interface is used. The output of the pin will be the OR combination of the signals selected here and in MD2_CFG (5Fh).

Table 38. INT2_CTRL register

0	1)	INT2_	INT2_	INT2_	INT2_	INT2_	INT2_	INT2_
0		CNT_BDR	FIFO_FULL	FIFO_OVR	FIFO_TH	DRDY_TEMP	DRDY_G	DRDY_XL

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 39. INT2_CTRL register description

INT2_CNT_BDR	Enables COUNTER_BDR_IA interrupt on INT2
INT2_FIFO_FULL	Enables FIFO full flag interrupt on INT2 pin
INT2_FIFO_OVR	Enables FIFO overrun interrupt on INT2 pin
INT2_FIFO_TH	Enables FIFO threshold interrupt on INT2 pin
INT2_DRDY_TEMP	Enables temperature sensor data-ready interrupt on INT2 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used and INT2_ON_INT1 = '1' in CTRL4_C (13h).
INT2_DRDY_G	Gyroscope data-ready interrupt on INT2 pin
INT2_DRDY_XL	Accelerometer data-ready interrupt on INT2 pin

9.11 WHO_AM_I (0Fh)

WHO_AM_I register (r). This is a read-only register. Its value is fixed at 6Ch.

Table 40. WhoAml register

0	1	1	0	1	1	0	0

DS13607 - Rev 1 page 49/162

9.12 CTRL1_XL (10h)

Accelerometer control register 1 (r/w)

Table 41. CTRL1_XL register

							- (4)
ODR_XI	.3 ODR_XL2	ODR_XL1	ODR_XL0	FS1_XL	FS0_XL	LPF2_XL_EN	0(1)

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 42. CTRL1_XL register description

ODR_XL[3:0]	Accelerometer ODR selection (see Table 43)
FS[1:0]_XL	Accelerometer full-scale selection (see Table 44)
	Accelerometer high-resolution selection
LPF2_XL_EN	(0: output from first stage digital filtering selected (default);
	1: output from LPF2 second filtering stage selected)

Table 43. Accelerometer ODR register setting

ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	ODR selection [Hz] when XL_HM_MODE = 1 in CTRL6_C (15h)	ODR selection [Hz] when XL_HM_MODE = 0 in CTRL6_C (15h)	
0	0	0	0	Power-down	Power-down	
1	0	1	1	1.6 Hz (low power only)	12.5 Hz (high performance)	
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)	
0	0	1	0	26 Hz (low power)	26 Hz (high performance)	
0	0	1	1	52 Hz (low power)	52 Hz (high performance)	
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)	
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)	
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)	
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)	
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)	
1	0	0	1	3.33 kHz (high performance)	3.33 kHz (high performance)	
1	0	1	0	6.66 kHz (high performance)	6.66 kHz (high performance)	
1	1	х	x	Not allowed	Not allowed	

Table 44. Accelerometer full-scale selection

FS[1:0]_XL	Accelerometer full-scale			
00 (default)	±4 g			
01	±32 g			
10	±8 g			
11	±16 g			

DS13607 - Rev 1 page 50/162

9.13 CTRL2_G (11h)

Gyroscope control register 2 (r/w)

Table 45. CTRL2_G register

ODR G3	ODR G2	ODR G1	ODR G0	FS1 G	FS0 G	FS 125	n(1)
0511_00	0511_02	051(_01	0511_00	101_0	. 00_0	1 0_120	

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 46. CTRL2_G register description

ODR_G[3:0]	Gyroscope output data rate selection. Default value: 0000 (Refer to Table 47)
FS[1:0]_G	Gyroscope chain full-scale selection (00: ±250 dps; 01: ±500 dps; 10: ±1000 dps; 11: ±2000 dps)
FS_125	Selects gyro chain full-scale ±125 dps (0: FS selected through bits FS[1:0]_G; 1: FS set to ±125 dps)

Table 47. Gyroscope ODR configuration setting

ODR_G3	ODR_G2	ODR_G1	ODR_G0	ODR [Hz] when G_HM_MODE = 1 in CTRL7_G (16h)	ODR [Hz] when G_HM_MODE = 0 in CTRL7_G (16h)
0	0	0	0	Power down	Power down
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance	6.66 kHz (high performance)
1	0	1	1	Not available	Not available

DS13607 - Rev 1 page 51/162

9.14 CTRL3_C (12h)

Control register 3 (r/w)

Table 48. CTRL3_C register

BOOT	BDU	H_LACTIVE	PP_OD	SIM	IF_INC	0 ⁽¹⁾	SW_RESET
------	-----	-----------	-------	-----	--------	------------------	----------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 49. CTRL3_C register description

	Reboots memory content. Default value: 0
BOOT	(0: normal mode; 1: reboot memory content)
	This bit is automatically cleared.
	Block Data Update. Default value: 0
BDU	(0: continuous update;
	1: output registers are not updated until MSB and LSB have been read)
II I ACTIVE	Interrupt activation level. Default value: 0
H_LACTIVE	(0: interrupt output pins active high; 1: interrupt output pins active low)
DD OD	Push-pull/open-drain selection on INT1 and INT2 pins. Default value: 0
PP_OD	(0: push-pull mode; 1: open-drain mode)
CIM	SPI Serial Interface Mode selection. Default value: 0
SIM	(0: 4-wire interface; 1: 3-wire interface)
IF_INC	Register address automatically incremented during a multiple byte access with a serial interface (I ² C or SPI). Default value: 1
	(0: disabled; 1: enabled)
	Software reset. Default value: 0
SW_RESET	(0: normal mode; 1: reset device)
	This bit is automatically cleared.

DS13607 - Rev 1 page 52/162

9.15 CTRL4_C (13h)

Control register 4 (r/w)

Table 50. CTRL4_C register

0 ⁽¹⁾	SLEEP_G	INT2_on _INT1	0 ⁽¹⁾	DRDY_MASK	I2C_disable	LPF1_ SEL_G	0 ⁽¹⁾	
------------------	---------	------------------	------------------	-----------	-------------	----------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 51. CTRL4_C register description

SLEEP_G	Enables gyroscope Sleep mode. Default value:0 (0: disabled; 1: enabled)			
INT2_on_INT1	All interrupt signals available on INT1 pin enable. Default value: 0 (0: interrupt signals divided between INT1 and INT2 pins; 1: all interrupt signals in logic or on INT1 pin)			
DRDY_MASK	Enables data available (0: disabled; 1: mask DRDY on pin (both XL & Gyro) until filter settling ends (XL and Gyro independently masked).			
I2C_disable	Disables I ² C interface. Default value: 0 (0: SPI, I ² C and MIPI I3C SM interfaces enabled (default); 1: I ² C interface disabled)			
LPF1_SEL_G Enables gyroscope digital LPF1; the bandwidth can be selected through FTYPE[2:0] in CTRL6_C (15h) (0: disabled; 1: enabled)				

DS13607 - Rev 1 page 53/162

9.16 CTRL5_C (14h)

Control register 5 (r/w)

Table 52. CTRL5_C register

XL_ULP_EN	ROUNDING1	ROUNDING0	0 ⁽¹⁾	ST1_G	ST0_G	ST1_XL	ST0_XL

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 53. CTRL5_C register description

XL_ULP_EN	Accelerometer ultra-low-power mode enable ⁽¹⁾ . Default value: 0 (0: Ultra-low-power mode disabled; 1: Ultra-low-power mode enabled)					
ROUNDING[1:0]	Circular burst-mode (rounding) read from the output registers. Default value: 00 (00: no rounding; 01: accelerometer only; 10: gyroscope only; 11: gyroscope + accelerometer)					
ST[1:0]_G	Angular rate sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to Table 54)					
ST[1:0]_XL	Linear acceleration sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to Table 55)					

Further details about the accelerometer ultra-low-power mode are provided in Section 6.2.1 Accelerometer ultra-low-power mode.

Table 54. Angular rate sensor self-test mode selection

ST1_G	ST0_G	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Not allowed
1	1	Negative sign self-test

Table 55. Linear acceleration sensor self-test mode selection

ST1_XL	ST0_XL	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Negative sign self-test
1	1	Not allowed

DS13607 - Rev 1 page 54/162

9.17 CTRL6_C (15h)

Control register 6 (r/w)

Table 56. CTRL6_C register

TRIG_EN	LVL1_EN	LVL2_EN	XL_HM _MODE	USR_ OFF_W	FTYPE_2	FTYPE_1	FTYPE_0	
---------	---------	---------	----------------	---------------	---------	---------	---------	--

Table 57. CTRL6_C register description

TRIG_EN	DEN data edge-sensitive trigger enable. Refer to Table 58.
LVL1_EN	DEN data level-sensitive trigger enable. Refer to Table 58.
LVL2_EN	DEN level-sensitive latched enable. Refer toTable 58.
	High-performance operating mode disable for accelerometer. Default value: 0
XL_HM_MODE	(0: high-performance operating mode enabled;
	1: high-performance operating mode disabled)
	Weight of XL user offset bits of registers X_OFS_USR (73h), Y_OFS_USR (74h), Z_OFS_USR (75h)
USR_OFF_W	(0: 2 ⁻¹⁰ g/LSB;
	1: 2 ⁻⁶ g/LSB)
ETVDE[2:0]	Gyroscope's low-pass filter (LPF1) bandwidth selection
FTYPE[2:0]	Table 59 shows the selectable bandwidth values.

Table 58. Trigger mode selection

TRIG_EN, LVL1_EN, LVL2_EN	Trigger mode
100	Edge-sensitive trigger mode is selected
010	Level-sensitive trigger mode is selected
011	Level-sensitive latched mode is selected
110	Level-sensitive FIFO enable mode is selected

Table 59. Gyroscope LPF1 bandwidth selection

FTYPE [2:0]	12.5 Hz	26 Hz	52 Hz	104 Hz	208 Hz	416 Hz	833 Hz	1.67 kHz	3.33 kHz	6.67 kHz
000	4.2	8.3	16.6	33.0	67.0	136.6	239.2	304.2	328.5	335.5
001	4.2	8.3	16.6	33.0	67.0	130.5	192.4	220.7	229.6	232.0
010	4.2	8.3	16.6	33.0	67.0	120.3	154.2	166.6	170.1	171.1
011	4.2	8.3	16.6	33.0	67.0	137.1	281.8	453.2	559.2	609.0
100	4.2	8.3	16.7	33.0	62.4	86.7	96.6	99.6	100.4	100.6
101	4.2	8.3	16.8	31.0	43.2	48.0	49.4	49.8	49.9	49.9
110	4.1	7.8	13.4	19.0	23.1	24.6	25.0	25.1	25.1	25.1
111	3.9	6.7	9.7	11.5	12.2	12.4	12.5	12.5	12.5	12.5

DS13607 - Rev 1 page 55/162

9.18 CTRL7_G (16h)

Control register 7 (r/w)

Table 60. CTRL7_G register

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 61. CTRL7_G register description

G_HM_MODE	Disables high-performance operating mode for gyroscope. Default value: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)
HP_EN_G	Enables gyroscope digital high-pass filter. The filter is enabled only if the gyro is in HP mode. Default value: 0 (0: HPF disabled; 1: HPF enabled)
HPM_G[1:0]	Gyroscope digital HP filter cutoff selection. Default: 00 (00: 16 mHz; 01: 65 mHz; 10: 260 mHz; 11: 1.04 Hz)
USR_OFF_ON_ OUT	Enables accelerometer user offset correction block; it's valid for the low-pass path - see Figure 18. Accelerometer composite filter. Default value: 0 (0: accelerometer user offset correction block bypassed; 1: accelerometer user offset correction block enabled)

DS13607 - Rev 1 page 56/162

9.19 CTRL8_XL (17h)

Control register 8 (r/w)

Table 62. CTRL8_XL register

HPCF_XL_2	HPCF_XL_1	HPCF_XL_0	HP_REF_ MODE_XL	FASTSETTL_ MODE_XL	HP_SLOPE_ XL_EN	0 ⁽¹⁾	LOW_PASS_ ON_6D	
-----------	-----------	-----------	--------------------	-----------------------	--------------------	------------------	--------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 63. CTRL8_XL register description

HPCF_XL_[2:0]	Accelerometer LPF2 and HP filter configuration and cutoff setting. Refer to Table 64.
HP_REF_MODE_XL	Enables accelerometer high-pass filter reference mode (valid for high-pass path - HP_SLOPE_XL_EN bit must be '1'). Default value: 0 ⁽¹⁾ (0: disabled, 1: enabled)
FASTSETTL_MODE_XL	Enables accelerometer LPF2 and HPF fast-settling mode. The filter sets the second samples after writing this bit. Active only during device exit from power- down mode. Default value: 0 (0: disabled, 1: enabled)
HP_SLOPE_XL_EN	Accelerometer slope filter / high-pass filter selection. Refer to Figure 22. Accelerometer block diagram.
LOW_PASS_ON_6D	LPF2 on 6D function selection. Refer to Figure 22. Default value: 0 (0: ODR/2 low-pass filtered data sent to 6D interrupt function; 1: LPF2 output data sent to 6D interrupt function)

^{1.} When enabled, the first output data have to be discarded.

Table 64. Accelerometer bandwidth configurations

Filter type	HP_SLOPE_XL_EN	LPF2_XL_EN	HPCF_XL_[2:0]	Bandwidth
		0	-	ODR/2
			000	ODR/4
			001	ODR/10
			010	ODR/20
Low pass	0	1	011	ODR/45
		l l	100	ODR/100
			101	ODR/200
			110	ODR/400
			111	ODR/800
			000	SLOPE (ODR/4)
			001	ODR/10
			010	ODR/20
High page			011	ODR/45
High pass	1	-	100	ODR/100
			101	ODR/200
			110	ODR/400
			111	ODR/800

DS13607 - Rev 1 page 57/162

Figure 22. Accelerometer block diagram

1. The cutoff value of the LPF1 output is ODR/2 when the accelerometer is in high-performance mode. This value is equal to 700 Hz when the accelerometer is in low-power or normal mode.

DS13607 - Rev 1 page 58/162

9.20 CTRL9_XL (18h)

Control register 9 (r/w)

Table 65. CTRL9_XL register

	DEN_X DEN_Y	DEN_Z	DEN_XL_G	DEN_XL_EN	DEN_LH	I3C_disable	0 ⁽¹⁾
--	-------------	-------	----------	-----------	--------	-------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 66. CTRL9_XL register description

DEN_X	DEN value stored in LSB of X-axis. Default value: 1
DEN_X	(0: DEN not stored in X-axis LSB; 1: DEN stored in X-axis LSB)
DEN Y	DEN value stored in LSB of Y-axis. Default value: 1
DEN_1	(0: DEN not stored in Y-axis LSB; 1: DEN stored in Y-axis LSB)
DEN Z	DEN value stored in LSB of Z-axis. Default value: 1
DEN_Z	(0: DEN not stored in Z-axis LSB; 1: DEN stored in Z-axis LSB)
	DEN stamping sensor selection. Default value: 0
DEN_XL_G	(0: DEN pin info stamped in the gyroscope axis selected by bits [7:5];
	1: DEN pin info stamped in the accelerometer axis selected by bits [7:5])
DEN XL EN	Extends DEN functionality to accelerometer sensor. Default value: 0
DEN_XE_EN	(0: disabled; 1: enabled)
DEN_LH	DEN active level configuration. Default value: 0
DEN_EIT	(0: active low; 1: active high)
	Disables MIPI I3C SM communication protocol ⁽¹⁾
I3C_disable	(0: SPI, I²C, MIPI I3C SM interfaces enabled (default);
	1: MIPI I3C SM interface disabled)

^{1.} It is recommended to set this bit to '1' during the initial device configuration phase, when the I3C interface is not used.

DS13607 - Rev 1 page 59/162

9.21 CTRL10_C (19h)

Control register 10 (r/w)

Table 67. CTRL10_C register

0 ⁽¹⁾	0 ⁽¹⁾	TIMESTAMP _EN	0 ⁽¹⁾	0 ⁽¹⁾	0(1)	0 ⁽¹⁾	0(1)
------------------	------------------	------------------	------------------	------------------	------	------------------	------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 68. CTRL10_C register description

	Enables timestamp counter. default value: 0
TIMESTAMP EN	(0: disabled; 1: enabled)
TIMESTAWF_EN	The counter is readable in TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h).

9.22 ALL_INT_SRC (1Ah)

Source register for all interrupts (r)

Table 69. ALL_INT_SRC register

	IMESTAMP ENDCOUNT	0	SLEEP_ CHANGE_IA	D6D_IA	DOUBLE_ TAP	SINGLE_ TAP	WU_IA	FF_IA
--	----------------------	---	---------------------	--------	----------------	----------------	-------	-------

Table 70. ALL_INT_SRC register description

TIMESTAMP_ENDCOUNT	Alerts timestamp overflow within 6.4 ms
SLEEP CHANGE IA	Detects change event in activity/inactivity status. Default value: 0
SEELI _CHANGE_IA	(0: change status not detected; 1: change status detected)
D6D IA	Interrupt active for change in position of portrait, landscape, face-up, face-down. Default value: 0
DOD_IA	(0: change in position not detected; 1: change in position detected)
DOUBLE TAB	Double-tap event status. Default value: 0
DOUBLE_TAP	(0:event not detected, 1: event detected)
SINGLE TAP	Single-tap event status. Default value:0
SINGLE_IAF	(0: event not detected, 1: event detected)
WU IA	Wake-up event status. Default value: 0
WO_IA	(0: event not detected, 1: event detected)
FF IA	Free-fall event status. Default value: 0
FF_IA	(0: event not detected, 1: event detected)

DS13607 - Rev 1 page 60/162

9.23 WAKE_UP_SRC (1Bh)

Wake-up interrupt source register (r)

Table 71. WAKE_UP_SRC register

	0	SLEEP_ CHANGE_IA	FF_IA	SLEEP_ STATE	WU_IA	x_wu	Y_WU	Z_WU	
--	---	---------------------	-------	-----------------	-------	------	------	------	--

Table 72. WAKE_UP_SRC register description

SLEEP CHANGE IA	Detects change event in activity/inactivity status. Default value: 0
SEELI _ OTIANOL_IA	(0: change status not detected; 1: change status detected)
FF IA	Free-fall event detection status. Default value: 0
IT _IA	(0: free-fall event not detected; 1: free-fall event detected)
SLEEP STATE	Sleep status bit. Default value: 0
SLEEP_STATE	(0: Activity status; 1: Inactivity status)
WU IA	Wakeup event detection status. Default value: 0
WO_IA	(0: wakeup event not detected; 1: wakeup event detected.)
X WU	Wakeup event detection status on X-axis. Default value: 0
X_W0	(0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)
Y WU	Wakeup event detection status on Y-axis. Default value: 0
1_00	(0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)
Z WU	Wakeup event detection status on Z-axis. Default value: 0
2_***0	(0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)

DS13607 - Rev 1 page 61/162

9.24 TAP_SRC (1Ch)

Tap source register (r)

Table 73. TAP_SRC register

0	TAP_IA	SINGLE_ TAP	DOUBLE_ TAP	TAP_SIGN	X_TAP	Y_TAP	Z_TAP
---	--------	----------------	----------------	----------	-------	-------	-------

Table 74. TAP_SRC register description

TAP IA	Tap event detection status. Default: 0
	(0: tap event not detected; 1: tap event detected)
SINGLE_TAP	Single-tap event status. Default value: 0
SINGLL_IAF	(0: single tap event not detected; 1: single tap event detected)
DOUBLE TAP	Double-tap event detection status. Default value: 0
DOUBLE_TAP	(0: double-tap event not detected; 1: double-tap event detected.)
	Sign of acceleration detected by tap event. Default: 0
TAP_SIGN	(0: positive sign of acceleration detected by tap event;
	1: negative sign of acceleration detected by tap event)
V TAD	Tap event detection status on X-axis. Default value: 0
X_TAP	(0: tap event on X-axis not detected; 1: tap event on X-axis detected)
Y TAP	Tap event detection status on Y-axis. Default value: 0
T_IAP	(0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)
7 TAD	Tap event detection status on Z-axis. Default value: 0
Z_TAP	(0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)

DS13607 - Rev 1 page 62/162

9.25 D6D_SRC (1Dh)

Portrait, landscape, face-up and face-down source register (r)

Table 75. D6D_SRC register

DEN_DRDY	D6D_IA	ZH	ZL	YH	YL	XH	XL
----------	--------	----	----	----	----	----	----

Table 76. D6D_SRC register description

DEN_DRDY	DEN data-ready signal. It is set high when data output is related to the data coming from a DEN active condition. ⁽¹⁾
D6D_IA	Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0 (0: change position not detected; 1: change position detected)
ZH	Z-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over threshold) detected)
ZL	Z-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)
YH	Y-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over-threshold) detected)
YL	Y-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)
XH	X-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over threshold) detected)
XL	X-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)

The DEN data-ready signal can be latched or pulsed depending on the value of the dataready_pulsed bit of the COUNTER_BDR_REG1 (0Bh) register.

DS13607 - Rev 1 page 63/162

9.26 STATUS_REG (1Eh)

Status register (r)

Table 77. STATUS_REG register

	_	_	_	_			V/I D 4
0	0	0	0	0	TDA	GDA	XLDA
	•	•	Ü	•	1271	ODIT	, LD/ (

Table 78. STATUS_REG register description

	Temperature new data available. Default: 0
TDA	(0: no set of data is available at temperature sensor output;
	1: a new set of data is available at temperature sensor output)
	Gyroscope new data available. Default value: 0
GDA	(0: no set of data available at gyroscope output;
	1: a new set of data is available at gyroscope output)
	Accelerometer new data available. Default value: 0
XLDA	(0: no set of data available at accelerometer output;
	1: a new set of data is available at accelerometer output)

DS13607 - Rev 1 page 64/162

9.27 OUT_TEMP_L (20h), OUT_TEMP_H (21h)

Temperature data output register (r). L and H registers together express a 16-bit word in two's complement.

Table 79. OUT_TEMP_L register

Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0
		Ta	ble 80. OUT_1	TEMP_H regis	ter		
Temp15	Temp14	Temp13	Temp12	Temp11	Temp10	Temp9	Temp8

Table 81. OUT_TEMP register description

Tomp[15:0]	Temperature sensor output data	
Temp[15:0]	The value is expressed as two's complement sign extended on the MSB.	

9.28 OUTX_L_G (22h) and OUTX_H_G (23h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 82. OUTX_L_G register

D7	D6	D5	D4	D3	D2	D1	D0
	Table 83. OUTX_H_G register						

D15	D14	D13	D12	D11	D10	DQ	D8
D 10	דוט	D10	012	D11	D10	D5	_ D0

Table 84. OUTX_H_G register description

D[15:0]	Pitch axis (X) angular rate value
D[13.0]	i itali akis (X) aliquial fate value

DS13607 - Rev 1 page 65/162

9.29 OUTY_L_G (24h) and OUTY_H_G (25h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 85. OUTY_L_G register

D7	D6	D5	D4	D3	D2	D1	D0

Table 86. OUTY_H_G register

D15	D14	D13	D12	D11	D10	D9	D8
-----	-----	-----	-----	-----	-----	----	----

Table 87. OUTY_H_G register description

	Roll axis (Y) angular rate value	D[15:0]
--	----------------------------------	---------

9.30 OUTZ_L_G (26h) and OUTZ_H_G (27h)

Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 88. OUTZ_L_G register

D7 D6 D5	D4	D3	D2	D1	D0	
----------	----	----	----	----	----	--

Table 89. OUTZ_H_G register

D15 D14 D13 D12 D	11 D10 D9 D8
-------------------	--------------

Table 90. OUTZ_H_G register description

D[15:0]	Yaw axis (Z) angular rate value
[[[[[[[[[[[[[[[[[[[Tall date (E) diligatar fato value

DS13607 - Rev 1 page 66/162

9.31 OUTX_L_A (28h) and OUTX_H_A (29h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 91. OUTX_L_A register

D7	D6	D5	D4	D3	D2	D1	D0
							,
Table 92 OUTY H. A register							

Table 92. OUTX_H_A register

D15	D14	D13	D12	D11	D10	D9	D8

Table 93. OUTX_H_A register description

D[15:0]	X-axis linear acceleration value.
---------	-----------------------------------

9.32 OUTY_L_A (2Ah) and OUTY_H_A (2Bh)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 94. OUTY_L_A register

D7	D6	D5	D4	D3	D2	D1	D0
----	----	----	----	----	----	----	----

Table 95. OUTY_H_A register

D15 D14 D13 D12	D11 D10	D9 D8
-----------------	---------	-------

Table 96. OUTY_H_A register description

D[15:0] Y-axis linear acceleration value	
--	--

DS13607 - Rev 1 page 67/162

9.33 OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 97. OUTZ_L_A register

D7	D6	D5	D4	D3	D2	D1	D0

Table 98. OUTZ_H_A register

D15	D14	D13	D12	D11	D10	D9	D8

Table 99. OUTZ_H_A register description

D[15:0]	Z-axis linear acceleration value	
---------	----------------------------------	--

9.34 EMB_FUNC_STATUS_MAINPAGE (35h)

Embedded function status register (r)

Table 100. EMB_FUNC_STATUS_MAINPAGE register

IS_FSM_LC	0	IS_SIGMOT	IS_TILT	IS_STEP_DET	0	0	0
-----------	---	-----------	---------	-------------	---	---	---

Table 101. EMB_FUNC_STATUS_MAINPAGE register description

IS FSM LC	Interrupt status bit for FSM long counter timeout interrupt event.
IO_I SIVI_LO	(1: interrupt detected; 0: no interrupt)
IS SIGMOT	Interrupt status bit for significant motion detection
13_31310101	(1: interrupt detected; 0: no interrupt)
IS TILT	Interrupt status bit for tilt detection
IS_TILI	(1: interrupt detected; 0: no interrupt)
IC CTED DET	Interrupt status bit for step detection
IS_STEP_DET	(1: interrupt detected; 0: no interrupt)

DS13607 - Rev 1 page 68/162

9.35 FSM_STATUS_A_MAINPAGE (36h)

Finite State Machine status register (r)

Table 102. FSM_STATUS_A_MAINPAGE register

IS FSM8	IS FSM7	IS FSM6	IS FSM5	IS FSM4	IS FSM3	IS FSM2	IS FSM1
_	_	_	_	_	_	_	_

Table 103. FSM_STATUS_A_MAINPAGE register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7	Interrupt status bit for FSM7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM6	Interrupt status bit for FSM6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM5	Interrupt status bit for FSM5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM4	Interrupt status bit for FSM4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM3	Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1	Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)

9.36 FSM_STATUS_B_MAINPAGE (37h)

Finite State Machine status register (r)

Table 104. FSM_STATUS_B_MAINPAGE register

IS_FSM16	IS_FSM15	IS_FSM14	IS_FSM13	IS_FSM12	IS_FSM11	IS_FSM10	IS_FSM9	
----------	----------	----------	----------	----------	----------	----------	---------	--

Table 105. FSM_STATUS_B_MAINPAGE register description

IS_FSM16	Interrupt status bit for FSM16 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM15	Interrupt status bit for FSM15 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM14	Interrupt status bit for FSM14 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM13	Interrupt status bit for FSM13 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM12	Interrupt status bit for FSM12 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM11	Interrupt status bit for FSM11 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM10	Interrupt status bit for FSM10 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM9	Interrupt status bit for FSM9 interrupt event. (1: interrupt detected; 0: no interrupt)

DS13607 - Rev 1 page 69/162

9.37 MLC_STATUS_MAINPAGE (38h)

Machine Learning Core status register (r)

Table 106. MLC_STATUS _MAINPAGE register

10_MEO1		IS MLC8	IS MLC7	IS MLC6	IS MLC5	IS MLC4	IS MLC3	IS MLC2	IS MLC1
---------	--	---------	---------	---------	---------	---------	---------	---------	---------

Table 107. MLC_STATUS_MAINPAGE register description

IS_MLC8	Interrupt status bit for MLC8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC7	Interrupt status bit for MLC7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC6	Interrupt status bit for MLC6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC5	Interrupt status bit for MLC5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC4	Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC3	Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC2	Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC1	Interrupt status bit for MLC1 interrupt event. (1: interrupt detected; 0: no interrupt)

DS13607 - Rev 1 page 70/162

9.38 STATUS_MASTER_MAINPAGE (39h)

Sensor hub source register (r)

Table 108. STATUS_MASTER_MAINPAGE register

٧	VR_ONCE_	SLAVE3_	SLAVE2_	SLAVE1_	SLAVE0_	0	0	SENS_HUB_	
	DONE	NACK	NACK	NACK	NACK	U	0	ENDOP	

Table 109. STATUS_MASTER_MAINPAGE register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
	Sensor hub communication status. Default value: 0
SENS_HUB_ENDOP	(0: sensor hub communication not concluded;
	1: sensor hub communication concluded)

9.39 FIFO_STATUS1 (3Ah)

FIFO status register 1 (r)

Table 110. FIFO_STATUS1 register

| DIFF_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FIFO_7 | FIFO_6 | FIFO_5 | FIFO_4 | FIFO_3 | FIFO_2 | FIFO_1 | FIFO_0 |

Table 111. FIFO_STATUS1 register description

	DIFF FIFO [7:0]	Number of unread sensor data (TAG + 6 bytes) stored in FIFO
		In conjunction with DIFF_FIFO[9:8] in FIFO_STATUS2 (3Bh).

DS13607 - Rev 1 page 71/162

9.40 FIFO_STATUS2 (3Bh)

FIFO status register 2 (r)

Table 112. FIFO_STATUS2 register

FIFO_	FIFO_	FIFO_	COUNTER	FIFO_OVR_	0	DIFF_	DIFF_	
WTM_IA	OVR_IA	FULL_IA	_BDR_IA	LATCHED		FIFO_9	FIFO_8	

Table 113. FIFO_STATUS2 register description

FIFO_WTM_IA	FIFO watermark status. Default value: 0 (0: FIFO filling is lower than WTM; 1: FIFO filling is equal to or greater than WTM) Watermark is set through bits WTM[8:0] in FIFO_CTRL2 (08h) and FIFO_CTRL1 (07h).
FIFO_OVR_IA	FIFO overrun status. Default value: 0 (0: FIFO is not completely filled; 1: FIFO is completely filled)
FIFO_FULL_IA	Smart FIFO full status. Default value: 0 (0: FIFO is not full; 1: FIFO will be full at the next ODR)
COUNTER_BDR_IA	Counter BDR reaches the CNT_BDR_TH_[10:0] threshold set in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch). Default value: 0 This bit is reset when these registers are read.
FIFO_OVR_LATCHED	Latched FIFO overrun status. Default value: 0 This bit is reset when this register is read.
DIFF_FIFO_[9:8]	Number of unread sensor data (TAG + 6 bytes) stored in FIFO. Default value: 00 In conjunction with DIFF_FIFO[7:0] in FIFO_STATUS1 (3Ah)

DS13607 - Rev 1 page 72/162

9.41 TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)

Timestamp first data output register (r). The value is expressed as a 32-bit word and the bit resolution is 25 μ s.

Table 114. TIMESTAMP output registers

D31	D30	D29	D28	D27	D26	D25	D24
D23	D22	D21	D20	D19	D18	D17	D16
D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 115. TIMESTAMP output register description

D[31:0] Timestamp output registers: 1LSB = 25 μs	D[31:0]
--	---------

DS13607 - Rev 1 page 73/162

9.42 TAP_CFG0 (56h)

Activity/inactivity functions, configuration of filtering, and tap recognition functions (r/w)

Table 116. TAP_CFG0 register

0 ⁽¹⁾	INT_CLR_ ON_READ	SLEEP_STATUS _ON_INT	SLOPE_FDS	TAP_X_EN	TAP_Y_EN	TAP_Z_EN	LIR
------------------	---------------------	-------------------------	-----------	----------	----------	----------	-----

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 117. TAP_CFG0 register description

INT_CLR_ON_READ	This bit allows immediately clearing the latched interrupts of an event detection upon the read of the corresponding status register. It must be set to 1 together with LIR. Default value: 0 (0: latched interrupt signal cleared at the end of the ODR period; 1: latched interrupt signal immediately cleared)
SLEEP_STATUS_ON_INT	Activity/inactivity interrupt mode configuration. If INT1_SLEEP_CHANGE or INT2_SLEEP_CHANGE bits are enabled, drives the sleep status or sleep change on the INT pins. Default value: 0 (0: sleep change notification on INT pins; 1: sleep status reported on INT pins)
SLOPE_FDS	HPF or SLOPE filter selection on wake-up and Activity/Inactivity functions. Default value: 0 (0: SLOPE filter applied; 1: HPF applied)
TAP_X_EN	Enable X direction in tap recognition. Default value: 0 (0: X direction disabled; 1: X direction enabled)
TAP_Y_EN	Enable Y direction in tap recognition. Default value: 0 (0: Y direction disabled; 1: Y direction enabled)
TAP_Z_EN	Enable Z direction in tap recognition. Default value: 0 (0: Z direction disabled; 1: Z direction enabled)
LIR	Latched Interrupt. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched)

DS13607 - Rev 1 page 74/162

9.43 TAP_CFG1 (57h)

Tap configuration register (r/w)

Table 118. TAP_CFG1 register

	TAP_ PRIORITY_2	TAP_ PRIORITY_1	TAP_ PRIORITY_0	TAP_THS_X_4	TAP_THS_X_3	TAP_THS_X_2	TAP_THS_X_1	TAP_THS_X_0	
--	--------------------	--------------------	--------------------	-------------	-------------	-------------	-------------	-------------	--

Table 119. TAP_CFG1 register description

TAP_PRIORITY_[2:0]	Selection of axis priority for TAP detection (see Table 120)
TAP_THS_X_[4:0]	X-axis tap recognition threshold. Default value: 0 1 LSB = FS_XL / (2 ⁵)

Table 120. TAP priority decoding

TAP_PRIORITY_[2:0]	Max. priority	Mid. priority	Min. priority
000	X	Y	Z
001	Y	X	Z
010	X	Z	Υ
011	Z	Υ	X
100	X	Y	Z
101	Y	Z	X
110	Z	X	Υ
111	Z	Y	X

9.44 TAP_CFG2 (58h)

Enables interrupt and inactivity functions, and tap recognition functions (r/w)

Table 121. TAP_CFG2 register

INTERRUPTS_ ENABLE	INACT_EN1	INACT_EN0	TAP_THS_Y_4	TAP_THS_Y_3	TAP_THS_Y_2	TAP_THS_Y_1	TAP_THS_Y_0
-----------------------	-----------	-----------	-------------	-------------	-------------	-------------	-------------

Table 122. TAP_CFG2 register description

INTERRUPTS_	Enable basic interrupts (6D/4D, free-fall, wake-up, tap, inactivity). Default value: 0				
ENABLE	(0: interrupt disabled; 1: interrupt enabled)				
	Enable activity/inactivity (sleep) function. Default value: 00				
	(00: stationary/motion-only interrupts generated, XL and gyro do not change;				
INACT_EN[1:0]	01: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro does not change;				
	10: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to sleep mode;				
	11: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to power-down mode)				
TAP_THS_Y_[4:0]	Y-axis tap recognition threshold. Default value: 0 1 LSB = FS_XL / (2 ⁵)				

DS13607 - Rev 1 page 75/162

9.45 TAP_THS_6D (59h)

Portrait/landscape orientation and tap function threshold register (r/w)

Table 123. TAP_THS_6D register

Table 124. TAP_THS_6D register description

D4D_EN	4D orientation detection enable. Z-axis position detection is disabled. Default value: 0 (0: disabled; 1: enabled)
SIXD_THS[1:0]	Threshold for 4D/6D function. Default value: 00 For details, refer to Table 125.
TAP_THS_Z_[4:0]	Z-axis recognition threshold. Default value: 0 1 LSB = FS_XL / (2 ⁵)

Table 125. Threshold for D4D/D6D function

SIXD_THS[1:0]	Threshold value
00	68 degrees
01	47 degrees
10	Reserved
11	Reserved

DS13607 - Rev 1 page 76/162

9.46 INT_DUR2 (5Ah)

Tap recognition function setting register (r/w)

Table 126. INT_DUR2 register

DUR3 DUR2 DUR1 DUR0 QUIET1 QUIET0 SHOCK1 SHOCK	DU	R3 DUR2	DUR1	DUR0	QUIET1	QUIET0	SHOCK1	SHOCK0
--	----	---------	------	------	--------	--------	--------	--------

Table 127. INT_DUR2 register description

	Duration of maximum time gap for double tap recognition. Default: 0000
DUR[3:0]	When double tap recognition is enabled, this register expresses the maximum time between two consecutive detected taps to determine a double tap event. The default value of these bits is 0000b which corresponds to 16/ODR_XL time. If the DUR[3:0] bits are set to a different value, 1LSB corresponds to 32/ODR_XL time.
	Expected quiet time after a tap detection. Default value: 00
QUIET[1:0]	Quiet time is the time after the first detected tap in which there must not be any overthreshold event. The default value of these bits is 00b which corresponds to 2/ODR_XL time. If the QUIET[1:0] bits are set to a different value, 1LSB corresponds to 4/ODR_XL time.
	Maximum duration of overthreshold event. Default value: 00
SHOCK[1:0]	Maximum duration is the maximum time of an overthreshold signal detection to be recognized as a tap event. The default value of these bits is 00b which corresponds to 4/ODR_XL time. If the SHOCK[1:0] bits are set to a different value, 1LSB corresponds to 8/ODR_XL time.

9.47 WAKE_UP_THS (5Bh)

Single/double-tap selection and wake-up configuration (r/w)

Table 128. WAKE_UP_THS register

SINGLE_ DOUBLE_TAP	USR_OFF_ ON_WU	WK_THS5	WK_THS4	WK_THS3	WK_THS2	WK_THS1	WK_THS0	
-----------------------	-------------------	---------	---------	---------	---------	---------	---------	--

Table 129. WAKE_UP_THS register description

SINGLE_DOUBLE_TAP	Single/double-tap event enable. Default value: 0 (0: only single-tap event enabled; 1: both single and double-tap events enabled)
USR_OFF_ON_WU	Drives the low-pass filtered data with user offset correction (instead of high-pass filtered data) to the wakeup function.
WK_THS[5:0]	Threshold for wakeup: 1 LSB weight depends on WAKE_THS_W in WAKE_UP_DUR (5Ch). Default value: 000000

DS13607 - Rev 1 page 77/162

9.48 WAKE_UP_DUR (5Ch)

Free-fall, wakeup and sleep mode functions duration setting register (r/w)

Table 130. WAKE_UP_DUR register

FF_DUR5 WAKE_DUR1 W	WAKE_DUR0 WAKE_THS_W	SLEEP_DUR3 SLEEP_DUR2	SLEEP_DUR1 SLEEP_DU	JR0
---------------------	----------------------	-------------------------	---------------------	-----

Table 131. WAKE_UP_DUR register description

	Free fall duration event. Default: 0
FF_DUR5	For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in FREE_FALL (5Dh) configuration.
	1 LSB = 1 ODR_time
WAKE DUR[1:0]	Wake up duration event. Default: 00
WARL_DUR[1.0]	1 LSB = 1 ODR_time
	Weight of 1 LSB of wakeup threshold. Default: 0
WAKE_THS_W	(0: 1 LSB = FS_XL / (2 ⁶);
	1: 1 LSB = FS_XL / (2 ⁸))
SLEEP_DUR[3:0]	Duration to go in sleep mode. Default value: 0000 (this corresponds to 16 ODR)
SELEI _DOR[3.0]	1 LSB = 512 ODR

DS13607 - Rev 1 page 78/162

9.49 FREE_FALL (5Dh)

Free-fall function duration setting register (r/w)

Table 132. FREE_FALL register

FF_DUR4 FF_DUR3 FF_DUR2 FF_DUR1 FF_DUR0 FF_THS2 FF_TI

Table 133. FREE_FALL register description

	Free-fall duration event. Default: 0
FF_DUR[4:0]	For the complete configuration of the free-fall duration, refer to FF_DUR5 in WAKE_UP_DUR (5Ch) configuration.
FF_THS[2:0]	Free-fall threshold setting. Default: 000
	For details refer to Table 134.

Table 134. Threshold for free-fall function

FF_THS[2:0]	Threshold value
000	312 mg
001	438 mg
010	500 mg
011	Reserved
100	Reserved
101	Reserved
110	Reserved
111	Reserved

DS13607 - Rev 1 page 79/162

9.50 MD1_CFG (5Eh)

Functions routing on INT1 register (r/w)

Table 135. MD1_CFG register

INT1_SLEEP_ CHANGE	INT1_ SINGLE_TAP	INT1_WU	INT1_FF	INT1_ DOUBLE_TAP	INT1_6D	INT1_ EMB_FUNC	INT1_ SHUB
-----------------------	---------------------	---------	---------	---------------------	---------	-------------------	---------------

Table 136. MD1_CFG register description

	Routing of activity/inactivity recognition event on INT1. Default: 0
INT1_SLEEP_CHANGE(1)	(0: routing of activity/inactivity event on INT1 disabled;
	1: routing of activity/inactivity event on INT1 enabled)
	Routing of single-tap recognition event on INT1. Default: 0
INT1_SINGLE_TAP	(0: routing of single-tap event on INT1 disabled;
	1: routing of single-tap event on INT1 enabled)
	Routing of wakeup event on INT1. Default value: 0
INT1_WU	(0: routing of wakeup event on INT1 disabled;
	1: routing of wakeup event on INT1 enabled)
	Routing of free-fall event on INT1. Default value: 0
INT1_FF	(0: routing of free-fall event on INT1 disabled;
	1: routing of free-fall event on INT1 enabled)
	Routing of tap event on INT1. Default value: 0
INT1_DOUBLE_TAP	(0: routing of double-tap event on INT1 disabled;
	1: routing of double-tap event on INT1 enabled)
	Routing of 6D event on INT1. Default value: 0
INT1_6D	(0: routing of 6D event on INT1 disabled;
	1: routing of 6D event on INT1 enabled)
	Routing of embedded functions event on INT1. Default value: 0
INT1_EMB_FUNC	(0: routing of embedded functions event on INT1 disabled;
	1: routing of embedded functions event on INT1 enabled)
	Routing of sensor hub communication concluded event on INT1. Default value: 0
INT1_SHUB	(0: routing of sensor hub communication concluded event on INT1 disabled;
	1: routing of sensor hub communication concluded event on INT1 enabled)

Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in TAP_CFG0
(56h) register.

DS13607 - Rev 1 page 80/162

9.51 MD2_CFG (5Fh)

Functions routing on INT2 register (r/w)

Table 137. MD2_CFG register

	INT2_SLEEP _CHANGE	INT2_ SINGLE_TAP	INT2_WU	INT2_FF	INT2_ DOUBLE_TAP	INT2_6D	INT2_EMB _FUNC	INT2_ TIMESTAMP	
--	-----------------------	---------------------	---------	---------	---------------------	---------	-------------------	--------------------	--

Table 138. MD2_CFG register description

	Routing of activity/inactivity recognition event on INT2. Default: 0
INT2_SLEEP_CHANGE(1)	(0: routing of activity/inactivity event on INT2 disabled;
	1: routing of activity/inactivity event on INT2 enabled)
	Single-tap recognition routing on INT2. Default: 0
INT2_SINGLE_TAP	(0: routing of single-tap event on INT2 disabled;
	1: routing of single-tap event on INT2 enabled)
	Routing of wakeup event on INT2. Default value: 0
INT2_WU	(0: routing of wakeup event on INT2 disabled;
	1: routing of wake-up event on INT2 enabled)
	Routing of free-fall event on INT2. Default value: 0
INT2_FF	(0: routing of free-fall event on INT2 disabled;
	1: routing of free-fall event on INT2 enabled)
	Routing of tap event on INT2. Default value: 0
INT2_DOUBLE_TAP	(0: routing of double-tap event on INT2 disabled;
	1: routing of double-tap event on INT2 enabled)
	Routing of 6D event on INT2. Default value: 0
INT2_6D	(0: routing of 6D event on INT2 disabled;
	1: routing of 6D event on INT2 enabled)
	Routing of embedded functions event on INT2. Default value: 0
INT2_EMB_FUNC	(0: routing of embedded functions event on INT2 disabled;
	1: routing of embedded functions event on INT2 enabled)
INT2_TIMESTAMP	Enables routing on INT2 pin of the alert for timestamp overflow within 6.4 ms.

Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in TAP_CFG0
(56h) register.

DS13607 - Rev 1 page 81/162

9.52 I3C_BUS_AVB (62h)

I3C_BUS_AVB register (r/w)

Table 139. I3C_BUS_AVB register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	I3C_Bus_Avb _Sel1	I3C_Bus_Avb _Sel0	0 ⁽¹⁾	0 ⁽¹⁾	PD_DIS_ INT1
------------------	------------------	------------------	----------------------	----------------------	------------------	------------------	-----------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 140. I3C_BUS_AVB register description

	This bit allows disabling the INT1 pull-down.
PU_DIS_INTT	(0: Pull-down on INT1 enabled (pull-down is effectively connected only when no interrupts are routed to the INT1 pin or when I3C dynamic address is assigned);
	1: Pull-down on INT1 disabled (pull-down not connected)
I3C_Bus_Avb_Sel[1:0]	These bits are used to select the bus available time when I3C IBI is used. Default value: 00
	(00: bus available time equal to 50 μsec (default);
	01: bus available time equal to 2 µsec;
	10: bus available time equal to 1 msec;
	11: bus available time equal to 25 msec)

9.53 INTERNAL_FREQ_FINE (63h)

Internal frequency register (r)

Table 141. INTERNAL_FREQ_FINE register

		FREQ_ FINE7	FREQ_ FINE6	FREQ_ FINE5	FREQ_ FINE4	FREQ_ FINE3	FREQ_ FINE2	FREQ_ FINE1	FREQ_ FINE0
--	--	----------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------

Table 142. INTERNAL_FREQ_FINE register description

	Difference in percentage of the effective ODR (and Timestamp Rate) with respect to the typical. Step: 0.15%. 8-bit format, 2's complement.
--	--

9.54 X_OFS_USR (73h)

Accelerometer X-axis user offset correction (r/w). The offset value set in the X_OFS_USR offset register is internally subtracted from the acceleration value measured on the X-axis.

Table 143. X_OFS_USR register

| X_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Table 144. X_OFS_USR register description

X_OFS_USR_[7:0]	Accelerometer X-axis user offset correction expressed in two's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127 127].
	USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127 127].

DS13607 - Rev 1 page 82/162

9.55 Y_OFS_USR (74h)

Accelerometer Y-axis user offset correction (r/w). The offset value set in the Y_OFS_USR offset register is internally subtracted from the acceleration value measured on the Y-axis.

Table 145. Y_OFS_USR register

| Y_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Table 146. Y_OFS_USR register description

Y_OFS_USR_[7:0] Accelerometer Y-axis user offset calibration expressed in 2's complen USR_OFF_W in CTRL6_C (15h). The value must be in the range [-12]	nent, weight depends on 17, +127].
--	------------------------------------

9.56 Z_OFS_USR (75h)

Accelerometer Z-axis user offset correction (r/w). The offset value set in the Z_OFS_USR offset register is internally subtracted from the acceleration value measured on the Z-axis.

Table 147. Z_OFS_USR register

Z_OFS_								
USR_7	USR_6	USR_5	USR_4	USR_3	USR_2	USR_1	USR_0	

Table 148. Z_OFS_USR register description

7 OES USD [7:0]	Accelerometer Z-axis user offset calibration expressed in 2's complement, weight depends on	
Z_UFS_USK_[1.0]	Accelerometer Z-axis user offset calibration expressed in 2's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].	

DS13607 - Rev 1 page 83/162

9.57 FIFO_DATA_OUT_TAG (78h)

FIFO tag register (r)

Table 149. FIFO_DATA_OUT_TAG register

TAG_ SENSOR_4	TAG_ SENSOR_3	TAG_ SENSOR_2	TAG_ SENSOR_1	TAG_ SENSOR_0	TAG_CNT_1	TAG_CNT_0	TAG_ PARITY	
------------------	------------------	------------------	------------------	------------------	-----------	-----------	----------------	--

Table 150. FIFO_DATA_OUT_TAG register description

TAG_SENSOR_[4:0]	FIFO tag: identifies the sensor in:				
	FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah), FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch), and FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh)				
	For details, refer to Table 151				
TAG_CNT_[1:0]	2-bit counter which identifies sensor time slot				
TAG_PARITY	Parity check of TAG content				

Table 151. FIFO tag

TAG_SENSOR_[4:0]	Sensor name				
0x01	Gyroscope NC				
0x02	Accelerometer NC				
0x03	Temperature				
0x04	Timestamp				
0x05	CFG_Change				
0x06	Accelerometer NC_T_2				
0x07	Accelerometer NC_T_1				
0x08	Accelerometer 2xC				
0x09	Accelerometer 3xC				
0x0A	Gyroscope NC_T_2				
0x0B	Gyroscope NC_T_1				
0x0C	Gyroscope 2xC				
0x0D	Gyroscope 3xC				
0x0E	Sensor Hub Slave 0				
0x0F	Sensor Hub Slave 1				
0x10	Sensor Hub Slave 2				
0x11	Sensor Hub Slave 3				
0x12	Step Counter				
0x19	Sensor Hub Nack				

DS13607 - Rev 1 page 84/162

9.58 FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah)

FIFO data output X (r)

Table 152. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 153. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description

D[15:0] FIFO X-axis output

9.59 FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch)

FIFO data output Y (r)

Table 154. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 155. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description

D[15:0] FIFO Y-axis output

9.60 FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh)

FIFO data output Z (r)

Table 156. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 157. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register description

D[15:0] FIFO Z-axis output

DS13607 - Rev 1 page 85/162

10 Embedded functions register mapping

The table given below provides a list of the registers for the embedded functions available in the device and the corresponding addresses. Embedded functions registers are accessible when FUNC_CFG_EN is set to '1' in FUNC_CFG_ACCESS (01h).

Table 158. Register address map - embedded functions

	_	Regi	ster address	B 6 11	
Name	Туре	Hex Binary		Default	Comment
PAGE_SEL	r/w	02	0000010	0000001	
EMB_FUNC_EN_A	r/w	04	00000100	00000000	
EMB_FUNC_EN_B	r/w	05	00000101	00000000	
PAGE_ADDRESS	r/w	08	00001000	00000000	
PAGE_VALUE	r/w	09	00001001	00000000	
EMB_FUNC_INT1	r/w	0A	00001010	00000000	
FSM_INT1_A	r/w	0B	00001011	00000000	
FSM_INT1_B	r/w	0C	00001100	00000000	
MLC_INT1	r/w	0D	00001101	00000000	
EMB_FUNC_INT2	r/w	0E	00001110	00000000	
FSM_INT2_A	r/w	0F	00001111	00000000	
FSM_INT2_B	r/w	10	00010000	00000000	
MLC_INT2	r/w	11	00010001	00000000	
EMB_FUNC_STATUS	r	12	00010010	output	
FSM_STATUS_A	r	13	00010011	output	
FSM_STATUS_B	r	14	00010100	output	
MLC_STATUS (15h)	r	15	00010101	output	
PAGE_RW	r/w	17	00010111	00000000	
RESERVED	-	18-43			
EMB_FUNC_FIFO_CFG	r/w	44	01000100	00000000	
FSM_ENABLE_A	r/w	46	01000110	00000000	
FSM_ENABLE_B	r/w	47	01000111	00000000	
FSM_LONG_COUNTER_L	r/w	48	01001000	00000000	
FSM_LONG_COUNTER_H	r/w	49	01001001	00000000	
FSM_LONG_COUNTER_CLEAR	r/w	4A	01001010	00000000	
FSM_OUTS1	r	4C	01001100	output	
FSM_OUTS2	r	4D	01001101	output	
FSM_OUTS3	r	4E	01001110	output	
FSM_OUTS4	r	4F	01001111	output	
FSM_OUTS5	r	50	01010000	output	
FSM_OUTS6	r	51	01010001	output	
FSM_OUTS7	r	52	01010010	output	
FSM_OUTS8	r	53	01010011	output	

DS13607 - Rev 1 page 86/162

Name	Type	Regi	ster address	Default	Comment	
Name	Type	Hex	Binary	Delauit	Comment	
FSM_OUTS9	r	54	01010100	output		
FSM_OUTS10	r	55	01010101	output		
FSM_OUTS11	r	56	01010110	output		
FSM_OUTS12	r	57	01010111	output		
FSM_OUTS13	r	58	01011000	output		
FSM_OUTS14	r	59	01011001	output		
FSM_OUTS15	r	5A	01011010	output		
FSM_OUTS16	r	5B	01011011	output		
RESERVED	-	5E	01011110			
EMB_FUNC_ODR_CFG_B	r/w	5F	01011111	01001011		
EMB_FUNC_ODR_CFG_C	r/w	60	01100000	00010101		
STEP_COUNTER_L	r	62	01100010	output		
STEP_COUNTER_H	r	63	01100011	output		
EMB_FUNC_SRC	r/w	64	01100100	output		
EMB_FUNC_INIT_A	r/w	66	01100110	00000000		
EMB_FUNC_INIT_B	r/w	67	01100111	00000000		
MLC0_SRC	r	70	01110000	output		
MLC1_SRC	r	71	01110001	output		
MLC2_SRC	r	72	01110010	output		
MLC3_SRC	r	73	01110011	output		
MLC4_SRC	r	74	01110100	output		
MLC5_SRC	r	75	01110101	output		
MLC6_SRC	r	76	01110110	output		
MLC7_SRC	r	77	01110111	output		

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

DS13607 - Rev 1 page 87/162

11 Embedded functions register description

11.1 PAGE_SEL (02h)

Enable advanced features dedicated page (r/w)

Table 159. PAGE_SEL register

PAGE_S	_3 PAGE_SEL2	PAGE_SEL1	PAGE_SEL0	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	1(2)
--------	--------------	-----------	-----------	------------------	------------------	------------------	------

- 1. This bit must be set to '0' for the correct operation of the device.
- 2. This bit must be set to '1' for the correct operation of the device.

Table 160. PAGE_SEL register description

PA	AGE SEL[3:0]	Select the advanced features dedicated page. Default value: 0000
		1 0

11.2 EMB_FUNC_EN_A (04h)

Embedded functions enable register (r/w)

Table 161. EMB_FUNC_EN_A register

0 ⁽¹⁾	0 ⁽¹⁾	SIGN_ MOTION_EN	TILT_EN	PEDO_EN	0(1)	0 ⁽¹⁾	0 ⁽¹⁾
------------------	------------------	--------------------	---------	---------	------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 162. EMB_FUNC_EN_A register description

	Enable significant motion detection function. Default value: 0
SIGN_MOTION_EN	(0: significant motion detection function disabled;
	1: significant motion detection function enabled)
	Enable tilt calculation. Default value: 0
TILT_EN	(0: tilt algorithm disabled;
	1: tilt algorithm enabled)
	Enable pedometer algorithm. Default value: 0
PEDO_EN	(0: pedometer algorithm disabled;
	1: pedometer algorithm enabled)

DS13607 - Rev 1 page 88/162

11.3 EMB_FUNC_EN_B (05h)

Embedded functions enable register (r/w)

Table 163. EMB_FUNC_EN_B register

	0 ⁽¹⁾	0(1)	0(1)	MLC_EN	FIFO_ COMPR_EN	0 ⁽¹⁾	0 ⁽¹⁾	FSM_EN	
--	------------------	------	------	--------	-------------------	------------------	------------------	--------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 164. EMB_FUNC_EN_B register description

	Enable Machine Learning Core feature. Default value: 0
MLC_EN	(0: Machine Learning Core feature disabled;
	1: Machine Learning Core feature enabled)
	Enable FIFO compression feature. Default value: 0
FIFO_COMPR_EN ⁽¹⁾	(0: FIFO compression feature disabled;
	1: FIFO compression feature enabled)
COM EN	Enable Finite State Machine (FSM) feature. Default value: 0
FSM_EN	(0: FSM feature disabled; 1: FSM feature enabled)

^{1.} This bit is effective if the FIFO_COMPR_RT_EN bit of FIFO_CTRL2 (08h) is set to 1.

11.4 PAGE_ADDRESS (08h)

Page address register (r/w)

Table 165. PAGE_ADDRESS register

| PAGE_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADDR7 | ADDR6 | ADDR5 | ADDR4 | ADDR3 | ADDR2 | ADDR1 | ADDR0 |

Table 166. PAGE_ADDRESS register description

	After setting the bit PAGE_WRITE / PAGE_READ in register PAGE_RW (17h), this register is used to set
PAGE_ADDR[7:0]	the address of the register to be written/read in the advanced features page selected through the bits
	PAGE_SEL[3:0] in register PAGE_SEL (02h).

DS13607 - Rev 1 page 89/162

11.5 PAGE_VALUE (09h)

Page value register (r/w)

Table 167. PAGE_VALUE register

| PAGE_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| VALUE7 | VALUE6 | VALUE5 | VALUE4 | VALUE3 | VALUE2 | VALUE1 | VALUE0 |

Table 168. PAGE_VALUE register description

	These bits are used to write (if the bit PAGE_WRITE = 1 in register PAGE_RW (17h)) or read (if the bit
PAGE_VALUE[7:0]	PAGE_READ = 1 in register PAGE_RW (17h)) the data at the address PAGE_ADDR[7:0] of the selected
	advanced features page.

11.6 EMB_FUNC_INT1 (0Ah)

INT1 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination of the selected signals.

Table 169. EMB_FUNC_INT1 register

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 170. EMB_FUNC_INT1 register description

INT1_FSM_LC ⁽¹⁾	Routing of FSM long counter timeout interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_SIG_MOT ⁽¹⁾	Routing of significant motion event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_TILT ⁽¹⁾	Routing of tilt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_STEP_DETECTOR ⁽¹⁾	Routing of pedometer step recognition event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

DS13607 - Rev 1 page 90/162

11.7 FSM_INT1_A (0Bh)

INT1 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination of the selected signals.

Table 171. FSM_INT1_A register

INT1_FSM8	INT1_FSM7	INT1_FSM6	INT1_FSM5	INT1_FSM4	INT1_FSM3	INT1_FSM2	INT1_FSM1

Table 172. FSM_INT1_A register description

INT1_FSM8 ⁽¹⁾	Routing of FSM8 interrupt event on INT1. Default value: 0
INTI_I SIMO	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM7 ⁽¹⁾	Routing of FSM7 interrupt event on INT1. Default value: 0
INTI_FSIVI/**	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM6 ⁽¹⁾	Routing of FSM6 interrupt event on INT1. Default value: 0
INTI_I SIMO	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM5 ⁽¹⁾	Routing of FSM5 interrupt event on INT1. Default value: 0
INTI_T SINIS	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM4 ⁽¹⁾	Routing of FSM4 interrupt event on INT1. Default value: 0
INTI_F3W4**	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM3 ⁽¹⁾	Routing of FSM3 interrupt event on INT1. Default value: 0
INTI_T SINIS	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM2 ⁽¹⁾	Routing of FSM2 interrupt event on INT1. Default value: 0
INTI_I SIVIZ	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM1 ⁽¹⁾	Routing of FSM1 interrupt event on INT1. Default value: 0
INTI_I SIVITY	(0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

DS13607 - Rev 1 page 91/162

11.8 FSM_INT1_B (0Ch)

INT1 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination of the selected signals.

Table 173. FSM_INT1_B register

T1_FSM16 INT1_FSM15 INT1_FSM14 INT1_FSM13 INT1_FSM12 INT1_FSM11 IN	INT1_FSM10 INT1_FSM9	
--	----------------------	--

Table 174. FSM_INT1_B register description

INT1_FSM16 ⁽¹⁾	Routing of FSM16 interrupt event on INT1. Default value: 0
INTI_I SWITE	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA FOMAE(1)	Routing of FSM15 interrupt event on INT1. Default value: 0
INT1_FSM15 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INIT4 FCN444(1)	Routing of FSM14 interrupt event on INT1. Default value: 0
INT1_FSM14 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA FOM42(1)	Routing of FSM13 interrupt event on INT1. Default value: 0
INT1_FSM13 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA FOM40(1)	Routing of FSM12 interrupt event on INT1. Default value: 0
INT1_FSM12 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INIT4 FOM44(1)	Routing of FSM11 interrupt event on INT1. Default value: 0
INT1_FSM11 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INIT4 EQM40(1)	Routing of FSM10 interrupt event on INT1. Default value: 0
INT1_FSM10 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INIT4 FOMO(1)	Routing of FSM9 interrupt event on INT1. Default value: 0
INT1_FSM9 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

DS13607 - Rev 1 page 92/162

11.9 MLC_INT1 (0Dh)

INT1 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination of the selected signals.

Table 175. MLC_INT1 register

INT1_MLC8 INT1_MLC7 INT1_MLC6 INT1_MLC5 INT1_MLC4 INT1_MLC3 INT1_ML

Table 176. MLC_INT1 register description

INIT4 MI CO	Routing of MLC8 interrupt event on INT1. Default value: 0
INT1_MLC8	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA MI CZ	Routing of MLC7 interrupt event on INT1. Default value: 0
INT1_MLC7	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA MI CC	Routing of MLC6 interrupt event on INT1. Default value: 0
INT1_MLC6	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA MI CE	Routing of MLC5 interrupt event on INT1. Default value: 0
INT1_MLC5	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA MI CA	Routing of MLC4 interrupt event on INT1. Default value: 0
INT1_MLC4	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA MI C2	Routing of MLC3 interrupt event on INT1. Default value: 0
INT1_MLC3	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INIT1 MI C2	Routing of MLC2 interrupt event on INT1. Default value: 0
INT1_MLC2	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INIT1 MI C1	Routing of MLC1 interrupt event on INT1. Default value: 0
INT1_MLC1	(0: routing on INT1 disabled; 1: routing on INT1 enabled)

DS13607 - Rev 1 page 93/162

11.10 EMB_FUNC_INT2 (0Eh)

INT2 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination of the selected signals.

Table 177. EMB_FUNC_INT2 register

INT2_ FSM_LC	0(1)	INT2_ SIG_MOT	INT2_TILT	INT2_STEP_ DETECTOR	0 ⁽¹⁾	0 ⁽¹⁾	0(1)
-----------------	------	------------------	-----------	------------------------	------------------	------------------	------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 178. EMB_FUNC_INT2 register description

INT2_FSM_LC ⁽¹⁾	Routing of FSM long counter timeout interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_SIG_MOT ⁽¹⁾	Routing of significant motion event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_TILT ⁽¹⁾	Routing of tilt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_STEP_DETECTOR ⁽¹⁾	Routing of pedometer step recognition event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

DS13607 - Rev 1 page 94/162

11.11 FSM_INT2_A (0Fh)

INT2 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination of the selected signals.

Table 179. FSM_INT2_A register

INT2_FSM8	INT2_FSM7	INT2_FSM6	INT2_FSM5	INT2_FSM4	INT2_FSM3	INT2_FSM2	INT2_FSM1

Table 180. FSM_INT2_A register description

Routing of FSM8 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM7 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM6 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM5 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM4 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM3 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM2 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM1 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

DS13607 - Rev 1 page 95/162

11.12 FSM_INT2_B (10h)

INT2 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination of the selected signals.

Table 181. FSM_INT2_B register

INT2_FSM16	INT2_FSM15	INT2_FSM14	INT2_FSM13	INT2_FSM12	INT2_FSM11	INT2_FSM10	INT2_FSM9

Table 182. FSM_INT2_B register description

INT2_FSM16 ⁽¹⁾	Routing of FSM16 interrupt event on INT2. Default value: 0
INTZ_FSWITO	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO FOMAE(1)	Routing of FSM15 interrupt event on INT2. Default value: 0
INT2_FSM15 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO FORMA 4(1)	Routing of FSM14 interrupt event on INT2. Default value: 0
INT2_FSM14 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INIT2 FCM42(1)	Routing of FSM13 interrupt event on INT2. Default value: 0
INT2_FSM13 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INTO FOM40(1)	Routing of FSM12 interrupt event on INT2. Default value: 0
INT2_FSM12 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INIT2 ESM44(1)	Routing of FSM11 interrupt event on INT2. Default value: 0
INT2_FSM11 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2 ESM40(1)	Routing of FSM10 interrupt event on INT2. Default value: 0
INT2_FSM10 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO ESMO(1)	Routing of FSM9 interrupt event on INT2. Default value: 0
INT2_FSM9 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

DS13607 - Rev 1 page 96/162

11.13 MLC_INT2 (11h)

INT2 pin control register (r/w)

Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination of the selected signals.

Table 183. MLC_INT2 register

INT2_MLC8	INT2_MLC7	INT2_MLC6	INT2_MLC5	INT2_MLC4	INT2_MLC3	INT2_MLC2	INT2_MLC1

Table 184. MLC_INT2 register description

INT2_MLC8	Routing of MLC8 interrupt event on INT2. Default value: 0
INTZ_INLOO	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_MLC7	Routing of MLC7 interrupt event on INT2. Default value: 0
INTZ_WEGT	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INTO MLC6	Routing of MLC6 interrupt event on INT2. Default value: 0
INT2_MLC6	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO MLC5	Routing of MLC5 interrupt event on INT2. Default value: 0
INT2_MLC5	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INTO MLC4	Routing of MLC4 interrupt event on INT2. Default value: 0
INT2_MLC4	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO MLC2	Routing of MLC3 interrupt event on INT2. Default value: 0
INT2_MLC3	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INIT2 MLC2	Routing of MLC2 interrupt event on INT2. Default value: 0
INT2_MLC2	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO MLC4	Routing of MLC1 interrupt event on INT2. Default value: 0
INT2_MLC1	(0: routing on INT2 disabled; 1: routing on INT2 enabled)

11.14 EMB_FUNC_STATUS (12h)

Embedded function status register (r)

Table 185. EMB_FUNC_STATUS register

FSM_LC 0 SIGMOT IS_TILT STEP_DET 0 0 0
--

Table 186. EMB_FUNC_STATUS register description

IS_FSM_LC	Interrupt status bit for FSM long counter timeout interrupt event. (1: interrupt detected; 0: no interrupt)
IS_SIGMOT	Interrupt status bit for significant motion detection. (1: interrupt detected; 0: no interrupt)
IS_TILT	Interrupt status bit for tilt detection. (1: interrupt detected; 0: no interrupt)
IS_STEP_DET	Interrupt status bit for step detection. (1: interrupt detected; 0: no interrupt)

DS13607 - Rev 1 page 97/162

11.15 FSM_STATUS_A (13h)

Finite State Machine status register (r)

Table 187. FSM_STATUS_A register

IS_FSM8 IS_FSM	IS_FSM6	IS_FSM5	IS_FSM4	IS_FSM3	IS_FSM2	IS_FSM1
----------------	---------	---------	---------	---------	---------	---------

Table 188. FSM_STATUS_A register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7	Interrupt status bit for FSM7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM6	Interrupt status bit for FSM6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM5	Interrupt status bit for FSM5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM4	Interrupt status bit for FSM4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM3	Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1	Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)

11.16 FSM_STATUS_B (14h)

Finite State Machine status register (r)

Table 189. FSM_STATUS_B register

IS_FSM16	IS_FSM15	IS_FSM14	IS_FSM13	IS_FSM12	IS_FSM11	IS_FSM10	IS_FSM9
----------	----------	----------	----------	----------	----------	----------	---------

Table 190. FSM_STATUS_B register description

IS_FSM16	Interrupt status bit for FSM16 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM15	Interrupt status bit for FSM15 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM14	Interrupt status bit for FSM14 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM13	Interrupt status bit for FSM13 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM12	Interrupt status bit for FSM12 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM11	Interrupt status bit for FSM11 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM10	Interrupt status bit for FSM10 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM9	Interrupt status bit for FSM9 interrupt event. (1: interrupt detected; 0: no interrupt)

DS13607 - Rev 1 page 98/162

11.17 MLC_STATUS (15h)

Machine Learning Core status register (r).

Table 191. MLC_STATUS register

IS MLC8	IS MLC7	IS MLC6	IS MLC5	IS MLC4	IS MLC3	IS MLC	IS MLC1
_	_	_		_		_	_

Table 192. MLC_STATUS register description

IS_MLC8	Interrupt status bit for MLC8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC7	Interrupt status bit for MLC7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC6	Interrupt status bit for MLC6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC5	Interrupt status bit for MLC5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC4	Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC3	Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC2	Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC1	Interrupt status bit for MLC1 interrupt event. (1: interrupt detected; 0: no interrupt)

11.18 PAGE_RW (17h)

Enable read and write mode of advanced features dedicated page (r/w)

Table 193. PAGE_RW register

EMB_ FUNC_LIR	PAGE_ WRITE	PAGE_ READ	0 ⁽¹⁾				
------------------	----------------	---------------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 194. PAGE_RW register description

EMB_FUNC_LIR	Latched Interrupt mode for embedded functions. Default value: 0 (0: embedded functions interrupt request not latched; 1: embedded functions interrupt request latched)
PAGE_WRITE	Enable writes to the selected advanced features dedicated page. (1) Default value: 0 (1: enable; 0: disable)
PAGE_READ	Enable reads from the selected advanced features dedicated page. (1) Default value: 0 (1: enable; 0: disable)

1. Page selected by PAGE_SEL[3:0] in PAGE_SEL (02h) register.

DS13607 - Rev 1 page 99/162

EMB_FUNC_FIFO_CFG (44h)

11.19 EMB_FUNC_FIFO_CFG (44h)

Embedded functions batching configuration register (r/w)

Table 195. EMB_FUNC_FIFO_CFG register

0(1)	PEDO_FIFO_EN	0(1)	0 ⁽¹⁾	0(1)	0(1)	0(1)	0(1)

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 196. EMB_FUNC_FIFO_CFG register description

PED	O_FIFO_EN	Enable FIFO batching of step counter values. Default value: 0
-----	-----------	---

11.20 FSM_ENABLE_A (46h)

FSM enable register (r/w)

Table 197. FSM_ENABLE_A register

FSM8_EN FSM7_EN F	FSM6_EN FSM5_EN FS	M4_EN FSM3_EN	FSM2_EN FSM1_EN
-------------------	--------------------	---------------	-----------------

Table 198. FSM_ENABLE_A register description

FSM8_EN	FSM8 enable. Default value: 0 (0: FSM8 disabled; 1: FSM8 enabled)
FSM7_EN	FSM7 enable. Default value: 0 (0: FSM7 disabled; 1: FSM7 enabled)
FSM6_EN	FSM6 enable. Default value: 0 (0: FSM6 disabled; 1: FSM6 enabled)
FSM5_EN	FSM5 enable. Default value: 0 (0: FSM5 disabled; 1: FSM5 enabled)
FSM4_EN	FSM4 enable. Default value: 0 (0: FSM4 disabled; 1: FSM4 enabled)
FSM3_EN	FSM3 enable. Default value: 0 (0: FSM3 disabled; 1: FSM3 enabled)
FSM2_EN	FSM2 enable. Default value: 0 (0: FSM2 disabled; 1: FSM2 enabled)
FSM1_EN	FSM1 enable. Default value: 0 (0: FSM1 disabled; 1: FSM1 enabled)

11.21 FSM_ENABLE_B (47h)

FSM enable register (r/w)

Table 199. FSM_ENABLE_B register

	FSM16 EN	FSM15 EN	FSM14 EN	FSM13 EN	FSM12 EN	FSM11 EN	FSM10 EN	FSM9 EN
--	----------	----------	----------	----------	----------	----------	----------	---------

Table 200. FSM_ENABLE_B register description

FSM16_EN	FSM16 enable. Default value: 0 (0: FSM16 disabled; 1: FSM16 enabled)
FSM15_EN	FSM15 enable. Default value: 0 (0: FSM15 disabled; 1: FSM15 enabled)
FSM14_EN	FSM14 enable. Default value: 0 (0: FSM14 disabled; 1: FSM14 enabled)
FSM13_EN	FSM13 enable. Default value: 0 (0: FSM13 disabled; 1: FSM13 enabled)
FSM12_EN	FSM12 enable. Default value: 0 (0: FSM12 disabled; 1: FSM12 enabled)
FSM11_EN	FSM11 enable. Default value: 0 (0: FSM11 disabled; 1: FSM11 enabled)
FSM10_EN	FSM10 enable. Default value: 0 (0: FSM10 disabled; 1: FSM10 enabled)
FSM9_EN	FSM9 enable. Default value: 0 (0: FSM9 disabled; 1: FSM9 enabled)

DS13607 - Rev 1 page 100/162

11.22 FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)

FSM long counter status register (r/w)

Long counter value is an unsigned integer value (16-bit format); this value can be reset using the LC_CLEAR bit in FSM_LONG_COUNTER_CLEAR (4Ah) register.

Table 201. FSM_LONG_COUNTER_L register

FSM_LC_7	FSM_LC_6	FSM_LC_5	FSM_LC_4	FSM_LC_3	FSM_LC_2	FSM_LC_1	FSM_LC_0
----------	----------	----------	----------	----------	----------	----------	----------

Table 202. FSM_LONG_COUNTER_L register description

FSM_LC_[7:0] Long counter current value (LSbyte). Default value: 00000000

Table 203. FSM_LONG_COUNTER_H register

FSM LC 15 FSM LC 14 FSM LC 13 FSM LC 12 FSM LC 11 FSM LC 10 FSM LC 9 F	FSN	/ LC 15	FSM LC 14	FSM LC 13	FSM LC 12	FSM LC 11	FSM LC 10	FSM LC 9	FSM LC 8	
--	-----	---------	-----------	-----------	-----------	-----------	-----------	----------	----------	--

Table 204. FSM_LONG_COUNTER_H register description

LC_[15:8] Long counter current value (MSbyte). Default value: 00000000	
--	--

11.23 FSM_LONG_COUNTER_CLEAR (4Ah)

FSM long counter reset register (r/w)

Table 205. FSM_LONG_COUNTER_CLEAR register

0 ⁽¹⁾	FSM_LC_ CLEARED	FSM_LC_ CLEAR					
------------------	------------------	------------------	------------------	------------------	------------------	--------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 206. FSM_LONG_COUNTER_CLEAR register description

FSM_LC_CLEARED	This read-only bit is automatically set to 1 when the long counter reset is done. Default value: 0
FSM_LC_CLEAR	Clear FSM long counter value. Default value: 0

DS13607 - Rev 1 page 101/162

11.24 FSM_OUTS1 (4Ch)

FSM1 output register (r)

Table 207. FSM_OUTS1 register

РΧ	N X	PΥ	NY	P 7	N 7	ΡV	N V
' _/\	11_/	· -·	' \ _'	' <u>-</u> -	11_2	*	

Table 208. FSM_OUTS1 register description

P_X	FSM1 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM1 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM1 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM1 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM1 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM1 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM1 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM1 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.25 FSM_OUTS2 (4Dh)

FSM2 output register (r)

Table 209. FSM_OUTS2 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
-----	-----	-----	-----	-----	-----	-----	-----

Table 210. FSM_OUTS2 register description

P_X	FSM2 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM2 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM2 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM2 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM2 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM2 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM2 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM2 output: negative event detected on the vector. (0: event not detected; 1: event detected)

DS13607 - Rev 1 page 102/162

11.26 FSM_OUTS3 (4Eh)

FSM3 output register (r)

Table 211. FSM_OUTS3 register

РΧ	N X	PΥ	NY	P 7	N 7	ΡV	N V
· -/\	11_/	· -·	' \ _'	'	11_2	*	

Table 212. FSM_OUTS3 register description

P_X	FSM3 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM3 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM3 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM3 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM3 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM3 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM3 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM3 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.27 FSM_OUTS4 (4Fh)

FSM4 output register (r)

Table 213. FSM_OUTS4 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V	
-----	-----	-----	-----	-----	-----	-----	-----	--

Table 214. FSM_OUTS4 register description

P_X	FSM4 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM4 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM4 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM4 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM4 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM4 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM4 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM4 output: negative event detected on the vector. (0: event not detected; 1: event detected)

DS13607 - Rev 1 page 103/162

11.28 FSM_OUTS5 (50h)

FSM5 output register (r)

Table 215. FSM_OUTS5 register

РΧ	N X	PΥ	NY	P 7	N 7	ΡV	N V
' _/\	11_/	· -·	' \ _'	' <u>-</u> -	11_2	*	

Table 216. FSM_OUTS5 register description

P_X	FSM5 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM5 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM5 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM5 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM5 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM5 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM5 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM5 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.29 FSM_OUTS6 (51h)

FSM6 output register (r)

Table 217. FSM_OUTS6 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V	
-----	-----	-----	-----	-----	-----	-----	-----	--

Table 218. FSM_OUTS6 register description

P_X	FSM6 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM6 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM6 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM6 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM6 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM6 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM6 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM6 output: negative event detected on the vector. (0: event not detected; 1: event detected)

DS13607 - Rev 1 page 104/162

11.30 FSM_OUTS7 (52h)

FSM7 output register (r)

Table 219. FSM_OUTS7 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 220. FSM_OUTS7 register description

P_X	FSM7 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM7 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM7 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM7 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM7 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM7 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM7 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM7 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.31 FSM_OUTS8 (53h)

FSM8 output register (r)

Table 221. FSM_OUTS8 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V	
-----	-----	-----	-----	-----	-----	-----	-----	--

Table 222. FSM_OUTS8 register description

P_X	FSM8 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM8 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM8 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM8 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM8 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM8 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM8 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM8 output: negative event detected on the vector. (0: event not detected; 1: event detected)

DS13607 - Rev 1 page 105/162

11.32 FSM_OUTS9 (54h)

FSM9 output register (r)

Table 223. FSM_OUTS9 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V
_	_	_	_	_	_	_	_

Table 224. FSM_OUTS9 register description

P_X	FSM9 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM9 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM9 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM9 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM9 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM9 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM9 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM9 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.33 FSM_OUTS10 (55h)

FSM10 output register (r)

Table 225. FSM_OUTS10 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V	
-----	-----	-----	-----	-----	-----	-----	-----	--

Table 226. FSM_OUTS10 register description

P_X	FSM10 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM10 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM10 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM10 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM10 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM10 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM10 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM10 output: negative event detected on the vector. (0: event not detected; 1: event detected)

DS13607 - Rev 1 page 106/162

11.34 FSM_OUTS11 (56h)

FSM11 output register (r)

Table 227. FSM_OUTS11 register

DY	N Y	DV	N V	D 7	N 7	D V	N V
'_^	IN_X	' <u>-</u> '	'N_'	'	IN_Z	' _v	14_4

Table 228. FSM_OUTS11 register description

P_X	FSM11 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM11 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM11 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM11 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM11 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM11 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM11 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM11 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.35 FSM_OUTS12 (57h)

FSM12 output register (r)

Table 229. FSM_OUTS12 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V	
-----	-----	-----	-----	-----	-----	-----	-----	--

Table 230. FSM_OUTS12 register description

P_X	FSM12 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM12 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM12 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM12 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM12 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM12 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM12 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM12 output: negative event detected on the vector. (0: event not detected; 1: event detected)

DS13607 - Rev 1 page 107/162

11.36 FSM_OUTS13 (58h)

FSM13 output register (r)

Table 231. FSM_OUTS13 register

РΧ	N X	PΥ	NY	P 7	N 7	ΡV	N V
' _^	11_/	· -·	' \ _'	' <u>-</u> -	11_2	*	

Table 232. FSM_OUTS13 register description

P_X	FSM13 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM13 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM13 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM13 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM13 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM13 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM13 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM13 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.37 FSM_OUTS14 (59h)

FSM14 output register (r)

Table 233. FSM_OUTS14 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V	
-----	-----	-----	-----	-----	-----	-----	-----	--

Table 234. FSM_OUTS14 register description

P_X	FSM14 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM14 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM14 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM14 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM14 output: negative event detected on the vector. (0: event not detected; 1: event detected)

DS13607 - Rev 1 page 108/162

11.38 FSM_OUTS15 (5Ah)

FSM15 output register (r)

Table 235. FSM_OUTS15 register

РΧ	N X	PΥ	NY	P 7	N 7	ΡV	N V
' _/\	11_/	· -·	' \ _'	' <u>-</u> -	11_2	•	

Table 236. FSM_OUTS15 register description

P_X	FSM15 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM15 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM15 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM15 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM15 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM15 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM15 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM15 output: negative event detected on the vector. (0: event not detected; 1: event detected)

11.39 FSM_OUTS16 (5Bh)

FSM16 output register (r)

Table 237. FSM_OUTS16 register

P_X	N_X	P_Y	N_Y	P_Z	N_Z	P_V	N_V	
-----	-----	-----	-----	-----	-----	-----	-----	--

Table 238. FSM_OUTS16 register description

P_X	FSM16 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X	FSM16 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y	FSM16 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y	FSM16 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z	FSM16 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z	FSM16 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V	FSM16 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V	FSM16 output: negative event detected on the vector. (0: event not detected; 1: event detected)

DS13607 - Rev 1 page 109/162

11.40 EMB_FUNC_ODR_CFG_B (5Fh)

Finite State Machine output data rate configuration register (r/w)

Table 239. EMB_FUNC_ODR_CFG_B register

	0 ⁽¹⁾	1 ⁽²⁾	0 ⁽¹⁾	FSM_ODR1	FSM_ODR0	0 ⁽¹⁾	1 ⁽²⁾	1 ⁽²⁾
--	------------------	------------------	------------------	----------	----------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 240. EMB_FUNC_ODR_CFG_B register description

	Finite State Machine ODR configuration:
	(00: 12.5 Hz;
FSM_ODR[1:0]	01: 26 Hz (default);
	10: 52 Hz;
	11: 104 Hz)

11.41 EMB_FUNC_ODR_CFG_C (60h)

Machine Learning Core output data rate configuration register (r/w)

Table 241. EMB_FUNC_ODR_CFG_C register

0 ⁽¹⁾	0 ⁽¹⁾	MLC_ODR1	MLC_ODR0	0 ⁽¹⁾	1 ⁽²⁾	0 ⁽¹⁾	1 ⁽²⁾
------------------	------------------	----------	----------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

2. This bit must be set to '1' for the correct operation of the device.

Table 242. EMB_FUNC_ODR_CFG_C register description

	Machine Learning Core ODR configuration:
	(00: 12.5 Hz;
MLC_ODR[1:0]	01: 26 Hz (default);
	10: 52 Hz;
	11: 104 Hz)

DS13607 - Rev 1 page 110/162

^{2.} This bit must be set to '1' for the correct operation of the device.

11.42 STEP_COUNTER_L (62h) and STEP_COUNTER_H (63h)

Step counter output register (r)

Table 243. STEP_COUNTER_L register

STEP 7	STEP 6	STEP 5	STEP 4	STEP 3	STEP 2	STEP 1	STEP 0
_			_		_	_	

Table 244. STEP_COUNTER_L register description

STEP_[7:0]	Step counter output (LSbyte)	
------------	------------------------------	--

Table 245. STEP_COUNTER_H register

STEP 15	STEP 14	STEP 13	STEP 12	STEP 11	STEP 10	STEP_9	STEP 8
			_ · - · <u>-</u> · -	_ · · _ · ·			

Table 246. STEP_COUNTER_H register description

STEP_[15:8]	Step counter output (MSbyte)
-------------	------------------------------

11.43 EMB_FUNC_SRC (64h)

Embedded function source register (r)

Table 247. EMB_FUNC_SRC register

PEDO_RST STEP	0	STEP_ DETECTED	STEP_COUNT DELTA IA	STEP_ OVERFLOW	STEPCOUNTER BIT SET	0	0
_SILF		DETECTED	_DLLIA_IA	OVLINI LOW	_DII_3E1		

Table 248. EMB_FUNC_SRC register description

PEDO RST STEP	Reset pedometer step counter. Read/write bit.				
FEDO_K31_31EF	(0: disabled; 1: enabled)				
STEP DETECTED	Step detector event detection status. Read-only bit.				
SIEF_DETECTED	(0: step detection event not detected; 1: step detection event detected)				
STEP COUNT DELTA IA	Pedometer step recognition on delta time status. Read-only bit.				
STEP_COONT_DELTA_IA	(0: no step recognized during delta time; 1: at least one step recognized during delta time)				
STED OVEDELOW	Step counter overflow status. Read-only bit.				
STEP_OVERFLOW	(0: step counter value < 2 ¹⁶ ; 1: step counter value reached 2 ¹⁶)				
STEPCOUNTER_BIT_SET	This bit is equal to 1 when the step count is increased. If a timer period is programmed in PEDO_SC_DELTAT_L (D0h) and PEDO_SC_DELTAT_H (D1h) embedded advanced features (page 1) registers, this bit is kept to 0. Read-only bit.				

DS13607 - Rev 1 page 111/162

11.44 EMB_FUNC_INIT_A (66h)

Embedded functions initialization register (r/w)

Table 249. EMB_FUNC_INIT_A register

0 ⁽¹⁾	0 ⁽¹⁾	SIG_MOT _INIT	TILT _INIT	STEP_DET _INIT	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
------------------	------------------	------------------	---------------	-------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 250. EMB_FUNC_INIT_A register description

SIG_MOT_INIT	Significant motion detection algorithm initialization request. Default value: 0
TILT_INIT	Tilt algorithm initialization request. Default value: 0
STEP_DET_INIT	Pedometer step counter/detector algorithm initialization request. Default value: 0

11.45 EMB_FUNC_INIT_B (67h)

Embedded functions initialization register (r/w)

Table 251. EMB_FUNC_INIT_B register

	0 ⁽¹⁾	0(1)	0(1)	MLC_INIT	FIFO_ COMPR_INIT	0 ⁽¹⁾	0 ⁽¹⁾	FSM_INIT	
--	------------------	------	------	----------	---------------------	------------------	------------------	----------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 252. EMB_FUNC_INIT_B register description

MLC_INIT	Machine Learning Core initialization request. Default value: 0		
FIFO_COMPR_INIT	FIFO compression feature initialization request. Default value: 0		
FSM_INIT	FSM initialization request. Default value: 0		

11.46 MLC0_SRC (70h)

Machine Learning Core source register (r)

Table 253. MLC0_SRC register

| MLC0_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 254. MLC0_SRC register description

MLC0_SRC_[7:0]	Output value of MLC0 decision tree

DS13607 - Rev 1 page 112/162

11.47 MLC1_SRC (71h)

Machine Learning Core source register (r)

Table 255. MLC1_SRC register

MLC1_	MLC1_	MLC1_	MLC1_	MLC1_	MLCS1_	MLC1_	MLC1_
SRC_7	SRC_6	SRC_5	SRC_4	SRC_3	SRC_2	SRC_1	SRC_0

Table 256. MLC1_SRC register description

11.48 MLC2_SRC (72h)

Machine Learning Core source register (r)

Table 257. MLC2_SRC register

| MLC2_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 258. MLC2_SRC register description

MLC2_SRC_[7:0]	Output value of MLC2 decision tree	

11.49 MLC3_SRC (73h)

Machine Learning Core source register (r)

Table 259. MLC3_SRC register

| MLC3_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 260. MLC3_SRC register description

MLC3_SRC_[7:0]	Output value of MLC3 decision tree

DS13607 - Rev 1 page 113/162

11.50 MLC4_SRC (74h)

Machine Learning Core source register (r)

Table 261. MLC4_SRC register

| MLC4_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 262. MLC4_SRC register description

/ILC4_SRC_[7:0]	Output value of MLC4 decision tree
-----------------	------------------------------------

11.51 MLC5_SRC (75h)

Machine Learning Core source register (r)

Table 263. MLC5_SRC register

| MLC5_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 264. MLC5_SRC register description

MLC5_SRC_[7:0]	Output value of MLC5 decision tree	

11.52 MLC6_SRC (76h)

Machine Learning Core source register (r)

Table 265. MLC6_SRC register

| MLC6_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 266. MLC6_SRC register description

MLC6_SRC_[7:0]	Output value of MLC6 decision tree
----------------	------------------------------------

11.53 MLC7_SRC (77h)

Machine Learning Core source register (r)

Table 267. MLC7_SRC register

| MLC7_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 268. MLC7_SRC register description

DS13607 - Rev 1 page 114/162

12 Embedded advanced features pages

The table given below provides a list of the registers for the embedded advanced features page 0. These registers are accessible when PAGE_SEL[3:0] are set to 0000 in PAGE_SEL (02h).

Table 269. Register address map - embedded advanced features page 0

Name	Toma	Reg	ister address	Defeult	G
Name	Type	Hex	Binary	Default	Comment
MAG_SENSITIVITY_L	r/w	BA	10111010	00100100	
MAG_SENSITIVITY_H	r/w	BB	10111011	00010110	
MAG_OFFX_L	r/w	C0	11000000	00000000	
MAG_OFFX_H	r/w	C1	11000001	00000000	
MAG_OFFY_L	r/w	C2	11000010	00000000	
MAG_OFFY_H	r/w	C3	11000011	00000000	
MAG_OFFZ_L	r/w	C4	11000100	00000000	
MAG_OFFZ_H	r/w	C5	11000101	00000000	
MAG_SI_XX_L	r/w	C6	11000110	00000000	
MAG_SI_XX_H	r/w	C7	11000111	00111100	
MAG_SI_XY_L	r/w	C8	11001000	00000000	
MAG_SI_XY_H	r/w	C9	11001001	00000000	
MAG_SI_XZ_L	r/w	CA	11001010	00000000	
MAG_SI_XZ_H	r/w	СВ	11001011	00000000	
MAG_SI_YY_L	r/w	CC	11001100	00000000	
MAG_SI_YY_H	r/w	CD	11001101	00111100	
MAG_SI_YZ_L	r/w	CE	11001110	00000000	
MAG_SI_YZ_H	r/w	CF	11001111	00000000	
MAG_SI_ZZ_L	r/w	D0	11010000	00000000	
MAG_SI_ZZ_H	r/w	D1	11010001	00111100	
MAG_CFG_A	r/w	D4	11010100	00000101	
MAG_CFG_B	r/w	D5	11010101	0000010	

DS13607 - Rev 1 page 115/162

The following table provides a list of the registers for the embedded advanced features page 1. These registers are accessible when PAGE_SEL[3:0] are set to 0001 in PAGE_SEL (02h).

Table 270. Register address map - embedded advanced features page 1

Name	Time	Re	gister address	Default	
Name	Туре	Hex	Binary	Delauit	Comment
FSM_LC_TIMEOUT_L	r/w	7A	01111010	00000000	
FSM_LC_TIMEOUT_H	r/w	7B	01111011	00000000	
FSM_PROGRAMS	r/w	7C	01111100	00000000	
FSM_START_ADD_L	r/w	7E	01111110	00000000	
FSM_START_ADD_H	r/w	7F	01111111	00000000	
PEDO_CMD_REG	r/w	83	10000011	00000000	
PEDO_DEB_STEPS_CONF	r/w	84	10000100	00001010	
PEDO_SC_DELTAT_L	r/w	D0	11010000	00000000	
PEDO_SC_DELTAT_H	r/w	D1	11010001	00000000	
MLC_MAG_SENSITIVITY_L	r/w	E8	11101000	0000000	
MLC_MAG_SENSITIVITY_H	r/w	E9	11101001	00111100	

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

Write procedure example:

Example: write value 06h register at address 84h (PEDO_DEB_STEPS_CONF) in Page 1

1.	Write bit FUNC_CFG_EN = 1 in FUNC_CFG_ACCESS (01h)	// Enable access to embedded functions registers
2.	Write bit PAGE_WRITE = 1 in PAGE_RW (17h) register	// Select write operation mode
3.	Write 0001 in PAGE_SEL[3:0] field of register PAGE_SEL (02h)	// Select page 1
4.	Write 84h in PAGE_ADDR register (08h)	// Set address
5.	Write 06h in PAGE_DATA register (09h)	// Set value to be written
6.	Write bit PAGE_WRITE = 0 in PAGE_RW (17h) register	// Write operation disabled
7.	Write bit FUNC_CFG_EN = 0 in FUNC_CFG_ACCESS (01h)	// Disable access to embedded functions registers

Read procedure example:

Example: read value of register at address 84h (PEDO_DEB_STEPS_CONF) in Page 1

1.	Write bit FUNC_CFG_EN = 1 in FUNC_CFG_ACCESS (01h)	// Enable access to embedded functions registers
2.	Write bit PAGE_READ = 1 in PAGE_RW (17h) register	// Select read operation mode
3.	Write 0001 in PAGE_SEL[3:0] field of register PAGE_SEL (02h)	// Select page 1
4.	Write 84h in PAGE_ADDR register (08h)	// Set address
5.	Read value of PAGE_DATA register (09h)	// Get register value
6.	Write bit PAGE_READ = 0 in PAGE_RW (17h) register	// Read operation disabled
7.	Write bit FUNC_CFG_EN = 0 in FUNC_CFG_ACCESS (01h)	// Disable access to embedded functions registers

Note:

Steps 1 and 2 of both procedures are intended to be performed at the beginning of the procedure. Steps 6 and 7 of both procedures are intended to be performed at the end of the procedure. If the procedure involves multiple operations, only steps 3, 4 and 5 must be repeated for each operation. If, in particular, the multiple operations involve consecutive registers, only step 5 can be performed.

DS13607 - Rev 1 page 116/162

13 Embedded advanced features register description

13.1 Page 0 - Embedded advanced features registers

13.1.1 MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)

External magnetometer sensitivity value register for the Finite State Machine (r/w)

This register corresponds to the LSB-to-gauss conversion value of the external magnetometer sensor. The register value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Default value of MAG_SENS[15:0] is 0x1624, corresponding to 0.0015 gauss/LSB.

Table 271. MAG_SENSITIVITY_L register

| MAG_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SENS_7 | SENS_6 | SENS_5 | SENS_4 | SENS_3 | SENS_2 | SENS_1 | SENS_0 |

Table 272. MAG_SENSITIVITY_L register description

MAG_SENS_[7:0]	External magnetometer sensitivity (LSbyte). Default value: 00100100
----------------	---

Table 273. MAG_SENSITIVITY_H register

MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	
SENS_15	SENS_14	SENS_13	SENS_12	SENS_11	SENS_10	SENS_9	SENS_8	

Table 274. MAG_SENSITIVITY_H register description

MAG SENS [15:8]	External magnetometer sensitivity (MSbyte). Default value: 00010110
W/AO_OLIVO_[10.0]	External magnetometer sensitivity (wobyte). Delault value, ood for to

DS13607 - Rev 1 page 117/162

13.1.2 MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)

Offset for X-axis hard-iron compensation register (r/w)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 275. MAG_OFFX_L register

MAG_OFFX_7 MAG_OFFX_6 MAG_OFFX_5 MAG_OFFX_4 MAG_OFFX_3 MAG_OFFX_2 MAG_OFFX
--

Table 276. MAG_OFFX_L register description

MAG_OFFX_[7:0] Offset for X-axis hard-iron compensation (LSbyte). Default value: 00000000

Table 277. MAG_OFFX_H register

MAG OFFX 15 MAG C	DEEV 14 MAG DEEV 12	MAG OFFY 12	MAC OFFY 11	MAC OFFY 10	MAC OFFY O	MAG OFFY 9
WAG_OFFX_15 WAG_C	JEFA_14 WAG_OFFA_13	WAG_OFFX_12	MAG_OFFX_TI	MAG_OFFX_10	WAG_OFFX_9	WAG_OFFX_6

Table 278. MAG_OFFX_H register description

MAG_OFFX_[15:8] Offset for X-axis hard-iron compensation (MSbyte). Default value: 00000000

13.1.3 MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)

Offset for Y-axis hard-iron compensation register (r/w)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 279. MAG_OFFY_L register

MAG_OFFY_7	MAG_OFFY_6	MAG_OFFY_5	MAG_OFFY_4	MAG_OFFY_3	MAG_OFFY_2	MAG_OFFY_1	MAG_OFFY_0

Table 280. MAG_OFFY_L register description

MAG_OFFY_[7:0] Offset for Y-axis hard-iron compensation (LSbyte). Default value: 00000000

Table 281. MAG_OFFY_H register

MAC OFFV 4F	MAAC OFFV 44	MAAC OFFV 42	MAAC OFFV 40	MAC OFFV 44	MAAC OFFV 40	MAC OFFV O	MAAC OFFV 0
IVIAG OFFY 15	I MAG OFFY 14	MAG OFFY 13	MAG OFFY 12	MAG OFFY TI	MAG OFFY 10	MAG OFFY 9	MAG OFFY 8

Table 282. MAG_OFFY_H register description

MAG_OFFY_[15:8] Offset for Y-axis hard-iron compensation (MSbyte). Default value: 00000000

DS13607 - Rev 1 page 118/162

13.1.4 MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)

Offset for Z-axis hard-iron compensation register (r/w)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 283. MAG_OFFZ_L register

Table 284. MAG_OFFZ_L register description

Offset for Z-axis hard-iron compensation (LSbyte). Default value: 00000000	MAG_OFFZ_[7:0]
--	----------------

Table 285. MAG_OFFZ_H register

1440 0557 45	1440 0557 44			1440 0557 44			
MAG OFFZ 15	MAG OFFZ 14	MAG OFFZ 13	MAG OFFZ 12	MAG OFFZ 11	MAG OFFZ 10	MAG OFFZ 9	MAG OFFZ 8

Table 286. MAG_OFFZ_H register description

MAG_OFFZ_[15:8]	Offset for Z-axis hard-iron compensation (MSbyte). Default value: 00000000
-----------------	--

13.1.5 MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)

Soft-iron (3x3 symmetric) matrix correction register (r/w)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 287. MAG_SI_XX_L register

Table 288. MAG_SI_XX_L register description

MAG SI XX [7:0]	Soft-iron correction row1 col1 coefficient (LSbyte). Default value: 00000000

Table 289. MAG_SI_XX_H register

1110 OL VVV 45	MANO OL VIV 44	144 O OL VVV 40	144 O OL VVV 40	MANO OL VIV 44	1110 OL VVV 40	MANO OL VIV O	MANO OL VIVO
IMAG SI XX 15	MAG SI XX 14	MAG SI XX 13	MAG SI XX 12	MAG SLXX 11	MAG SLXX 10	MAGSIXX 9	MAG SIXX X

Table 290. MAG_SI_XX_H register description

DS13607 - Rev 1 page 119/162

13.1.6 MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)

Soft-iron (3x3 symmetric) matrix correction register (r/w)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 291. MAG_SI_XY_L register

Table 292. MAG_SI_XY_L register description

MAG_SI_XY_[7:0] Soft-iron correction row1 col2 (and row2 col1) coefficient (LSbyte). Default value: 00000000

Table 293. MAG_SI_XY_H register

MAG SI XY 15	MAG SI XY 14	MAG SI XY 13	MAG SI XY 12	MAG SI XY 11	MAG SI XY 10	MAG SI XY 9	MAG SI XY 8
							1-1-1

Table 294. MAG_SI_XY_H register description

MAG_SI_XY_[15:8] Soft-iron correction row1 col2 (and row2 col1) coefficient (MSbyte). Default value: 00000000

13.1.7 MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)

Soft-iron (3x3 symmetric) matrix correction register (r/w)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 295. MAG_SI_XZ_L register

MAG_SI_XZ_1 MAG_SI_XZ_0	MAG_SI_XZ_2	MAG_SI_XZ_3	MAG_SI_XZ_4	MAG_SI_XZ_5	MAG_SI_XZ_6	MAG_SI_XZ_7
-------------------------	-------------	-------------	-------------	-------------	-------------	-------------

Table 296. MAG_SI_XZ_L register description

MAG_SI_XZ_[7:0] Soft-iron correction row1 col3 (and row3 col1) coefficient (LSbyte). Default value: 00000000

Table 297. MAG_SI_XZ_H register

Table 298. MAG_SI_XZ_H register description

MAG_SI_XZ_[15:8] Soft-iron correction row1 col3 (and row3 col1) coefficient (MSbyte). Default value: 00000000

DS13607 - Rev 1 page 120/162

13.1.8 MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)

Soft-iron (3x3 symmetric) matrix correction register (r/w)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 299. MAG_SI_YY_L register

Table 300. MAG_SI_YY_L register description

MAG_SI_YY_[7:0] Soft-iron correction row2 col2 coefficient (LSbyte). Default value: 00000000

Table 301. MAG_SI_YY_H register

MAG SI YY 15	MAG SI YY 14	MAG SI YY 13	MAG SI YY 12	MAG SI YY 11	MAG SI YY 10	MAG SI YY 9	MAG SI YY 8
WAG_51_1 1_15	WAG_51_11_14	WAG_SI_11_13	WAG_SI_TT_TZ	WAG_SI_TT_TT	WAG_51_1 1_10	WIAG_51_1 1_9	WAG_51_11_0

Table 302. MAG_SI_YY_H register description

MAG_SI_YY_[15:8] Soft-iron correction row2 col2 coefficient (MSbyte). Default value: 00111100

13.1.9 MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)

Soft-iron (3x3 symmetric) matrix correction register (r/w)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 303. MAG_SI_YZ_L register

MAG_SI_YZ_7 MAG_SI_YZ_6 MAG_SI_YZ_5 MAG_SI_YZ_4 MAG_SI_YZ_3 MAG_SI_YZ_2 MAG_SI_YZ_1 MAG_SI_Y
--

Table 304. MAG_SI_YZ_L register description

MAG_SI_YZ_[7:0] Soft-iron correction row2 col3 (and row3 col2) coefficient (LSbyte). Default value: 00000000

Table 305. MAG_SI_YZ_H register

MAG SI V7 15	MAG SI V7 14	MAG SI YZ 13	MAG SI V7 12	MAG SI V7 11	MAG SL V7 10	MAG SL V7 0	MAG SI V7 8
IVIAG_SI_1Z_13	WAG_51_12_14	IVIAG_SI_IZ_IS	IVIAG_GI_TZ_TZ	IVIAG_SI_TZ_TT	WAG_31_12_10	WIAG_GI_I Z_g	IVIAG_SI_1Z_0

Table 306. MAG_SI_YZ_H register description

MAG_SI_YZ_[15:8] Soft-iron correction row2 col3 (and row3 col2) coefficient (MSbyte). Default value: 00000000

DS13607 - Rev 1 page 121/162

13.1.10 MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)

Soft-iron (3x3 symmetric) matrix correction register (r/w)

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 307. MAG_SI_ZZ_L register

MAG_SI_ZZ_7	MAG_SI_ZZ_6	MAG_SI_ZZ_5	MAG_SI_ZZ_4	MAG_SI_ZZ_3	MAG_SI_ZZ_2	MAG_SI_ZZ_1	MAG_SI_ZZ_0

Table 308. MAG_SI_ZZ_L register description

MAG_SI_ZZ_[7:0] Soft-iron correction row3 col3 coefficient (LSbyte). Default value: 00000000

Table 309. MAG_SI_ZZ_H register

MAG_SI_ZZ_15 | MAG_SI_ZZ_14 | MAG_SI_ZZ_13 | MAG_SI_ZZ_12 | MAG_SI_ZZ_11 | MAG_SI_ZZ_10 | MAG_SI_ZZ_9 | MAG_SI_ZZ_8

Table 310. MAG_SI_ZZ_H register description

MAG_SI_ZZ_[15:8] Soft-iron correction row3 col3 coefficient (MSbyte). Default value: 00111100

DS13607 - Rev 1 page 122/162

13.1.11 MAG_CFG_A (D4h)

External magnetometer coordinates (Y and Z axes) rotation register (r/w)

Table 311. MAG_CFG_A register

O ⁽¹⁾	MAG_Y_	MAG_Y_	MAG_Y_	O ⁽¹⁾	MAG_Z_	MAG_Z_	MAG_Z_
	AXIS2	AXIS1	AXIS0		AXIS2	AXIS1	AXIS0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 312. MAG_CFG_A description

	Magnetometer Y-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
MAC V AVICIONI	(000: Y = Y; (default)
	001: Y = -Y;
	010: Y = X;
MAG_Y_AXIS[2:0]	011: Y = -X;
	100: Y = -Z;
	101: Y = Z;
	Others: Y = Y)
	Magnetometer Z-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
	(000: Z = Y;
	001: Z = -Y;
MAC 7 AVICTO-01	010: Z = X;
MAG_Z_AXIS[2:0]	011: Z = -X;
	100: Z = -Z;
	101: Z = Z; (default)
	Others: Z = Y)

13.1.12 MAG_CFG_B (D5h)

External magnetometer coordinates (X-axis) rotation register (r/w).

Table 313. MAG_CFG_B register

0 ⁽¹⁾	MAG_X_ AXIS2	MAG_X_ AXIS1	MAG_X_ AXIS0				
------------------	------------------	------------------	------------------	------------------	-----------------	-----------------	-----------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 314. MAG_CFG_B description

	Magnetometer X-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
	(000: X = Y;
	001: X = -Y;
MAC V AVICTO-01	010: X = X; (default)
MAG_X_AXIS[2:0]	011: X = -X;
	100: X = -Z;
	101: X = Z;
	Others: X = Y)

DS13607 - Rev 1 page 123/162

13.2 Page 1 - Embedded advanced features registers

13.2.1 FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)

FSM long counter timeout register (r/w)

The long counter timeout value is an unsigned integer value (16-bit format). When the long counter value reaches this value, the FSM generates an interrupt.

Table 315. FSM_LC_TIMEOUT_L register

FSM_LC_								
TIMEOUT7	TIMEOUT6	TIMEOUT5	TIMEOUT4	TIMEOUT3	TIMEOUT2	TIMEOUT1	TIMEOUT0	

Table 316. FSM_LC_TIMEOUT_L register description

FSM_LC_TIMEOUT[7:0]	FSM long counter timeout value (LSbyte). Default value: 00000000
---------------------	--

Table 317. FSM_LC_TIMEOUT_H register

FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_
TIMEOUT15	TIMEOUT14	TIMEOUT13	TIMEOUT12	TIMEOUT11	TIMEOUT10	TIMEOUT9	TIMEOUT8

Table 318. FSM_LC_TIMEOUT_H register description

FSM_LC_TIMEOUT[15:8]	FSM long counter timeout value (MSbyte). Default value: 00000000
----------------------	--

13.2.2 FSM_PROGRAMS (7Ch)

FSM number of programs register (r/w)

Table 319. FSM_PROGRAMS register

| FSM_N_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PROG7 | PROG6 | PROG5 | PROG4 | PROG3 | PROG2 | PROG1 | PROG0 |

Table 320. FSM_PROGRAMS register description

FSM_N_PROG[7:0]	Number of FSM programs; must be less than or equal to 16. Default value: 00000000	
-----------------	---	--

DS13607 - Rev 1 page 124/162

13.2.3 FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)

FSM start address register (r/w). First available address is 0x033C.

Table 321. FSM_START_ADD_L register

FSM_	1							
START7	START6	START5	START4	START3	START2	START1	START0	

Table 322. FSM_START_ADD_L register description

FSM START[7:0]	FSM start address value (LSbyte). Default value: 00000000
1 3 W_3 1 A X 1 [1 . 0]	1 Sivi start address value (Lobyte). Derault value. 0000000

Table 323. FSM_START_ADD_H register

FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	FSM_
START15	START14	START13	START12	START11	START10	START9	START8

Table 324. FSM_START_ADD_H register description

FSM_START[15:8]	FSM start address value (MSbyte). Default value: 00000000
-----------------	---

13.2.4 PEDO_CMD_REG (83h)

Pedometer configuration register (r/w)

Table 325. PEDO_CMD_REG register

	0 ⁽¹⁾	0(1)	0 ⁽¹⁾	0 ⁽¹⁾	CARRY_ COUNT_EN	FP_REJECTION _EN	0 ⁽¹⁾	AD_ DET_EN	
--	------------------	------	------------------	------------------	--------------------	---------------------	------------------	---------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 326. PEDO_CMD_REG register description

CARRY_COUNT_EN	Set when user wants to generate interrupt only on count overflow event.			
FP_REJECTION_EN ⁽¹⁾	Enables the false-positive rejection feature.			
AD_DET_EN ⁽²⁾	Enables the advanced detection feature.			

^{1.} This bit is effective if the MLC_EN bit of EMB_FUNC_EN_B (05h) is set to 1.

DS13607 - Rev 1 page 125/162

^{2.} This bit is effective if both the FP_REJECTION_EN bit in PEDO_CMD_REG (83h) register and the MLC_EN bit of EMB_FUNC_EN_B (05h) are set to 1.

13.2.5 PEDO_DEB_STEPS_CONF (84h)

Pedometer debounce configuration register (r/w)

Table 327. PEDO_DEB_STEPS_CONF register

DEB_STEP7	DEB_STEP6	DEB_STEP5	DEB_STEP4	DEB_STEP3	DEB_STEP2	DEB_STEP1	DEB_STEP0
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

Table 328. PEDO_DEB_STEPS_CONF register description

DEB_STEP[7:0]	Debounce threshold. Minimum number of steps to increment the step counter (debounce). Default value: 00001010

13.2.6 PEDO_SC_DELTAT_L (D0h) and PEDO_SC_DELTAT_H (D1h)

Time period register for step detection on delta time (r/w)

Table 329. PEDO_SC_DELTAT_L register

PD_S	C_7 PD_SC_	PD_SC_5	PD_SC_4	PD_SC_3	PD_SC_2	PD_SC_1	PD_SC_0
------	------------	---------	---------	---------	---------	---------	---------

Table 330. PEDO_SC_DELTAT_H register

		PD_SC_15	PD_SC_14	PD_SC_13	PD_SC_12	PD_SC_11	PD_SC_10	PD_SC_9	PD_SC_8
--	--	----------	----------	----------	----------	----------	----------	---------	---------

Table 331. PEDO_SC_DELTAT_H/L register description

PD_SC_[15:0] Time period value (1LSB = 6.4 ms)	PD_SC_[15:0]	Time period value (1LSB = 6.4 ms)	
--	--------------	-----------------------------------	--

13.2.7 MLC_MAG_SENSITIVITY_L (E8h) and MLC_MAG_SENSITIVITY_H (E9h)

External magnetometer sensitivity value register for the Machine Learning Core (r/w).

This register corresponds to the LSB-to-gauss conversion value of the external magnetometer sensor. The register value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits). Default value of MLC_MAG_S_[15:0] is 0x3C00, corresponding to 1 gauss/LSB.

Table 332. MLC_MAG_SENSITIVITY_L register

MLC_N	IAG_S_7	MLC_MAG_S_6	MLC_MAG_S_5	MLC_MAG_S_4	MLC_MAG_S_3	MLC_MAG_S_2	MLC_MAG_S_1	MLC_MAG_S_0	
-------	---------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	--

Table 333. MLC_ MAG_SENSITIVITY_L register description

MLC MAG S [7:0] External magnetometer sensitivity (LSbyte). Default value: 00000000		
		External magnetemeter consitivity (I Chyta) Default value, 0000000
	INILC MAG 5 17.01	External magnetometer sensitivity (LSDVie). Default value, 00000000

Table 334. MLC_MAG_SENSITIVITY_H register

MLC MAG S 15 ML	C MAG S 14	MIC MAG S 13	MIC MAG S 12	MIC MAG S 11	MIC MAG S 10	MIC MAG S 9	MIC MAG S 8

Table 335. MLC_ MAG_SENSITIVITY_H register description

MLC_MAG_S_[15:8]	External magnetometer sensitivity (MSbyte). Default value: 00000000
------------------	---

DS13607 - Rev 1 page 126/162

14 Sensor hub register mapping

The table given below provides a list of the registers for the sensor hub functions available in the device and the corresponding addresses. The sensor hub registers are accessible when bit SHUB_REG_ACCESS is set to '1' in FUNC_CFG_ACCESS (01h).

Table 336. Register address map - sensor hub registers

	_	R	egister address			
Name	Туре	Hex	Binary	- Default	Comment	
SENSOR_HUB_1	r	02	00000010	output		
SENSOR_HUB_2	r	03	00000011	output		
SENSOR_HUB_3	r	04	00000100	output		
SENSOR_HUB_4	r	05	00000101	output		
SENSOR_HUB_5	r	06	00000110	output		
SENSOR_HUB_6	r	07	00000111	output		
SENSOR_HUB_7	r	08	00001000	output		
SENSOR_HUB_8	r	09	00001001	output		
SENSOR_HUB_9	r	0A	00001010	output		
SENSOR_HUB_10	r	0B	00001011	output		
SENSOR_HUB_11	r	0C	00001100	output		
SENSOR_HUB_12	r	0D	00001101	output		
SENSOR_HUB_13	r	0E	00001110	output		
SENSOR_HUB_14	r	0F	00001111	output		
SENSOR_HUB_15	r	10	00010000	output		
SENSOR_HUB_16	r	11	00010001	output		
SENSOR_HUB_17	r	12	00010010	output		
SENSOR_HUB_18	r	13	00010011	output		
MASTER_CONFIG	rw	14	00010100	00000000		
SLV0_ADD	rw	15	00010101	00000000		
SLV0_SUBADD	rw	16	00010110	00000000		
SLV0_CONFIG	rw	17	0001 0111	00000000		
SLV1_ADD	rw	18	00011000	00000000		
SLV1_SUBADD	rw	19	00011001	00000000		
SLV1_CONFIG	rw	1A	00011010	00000000		
SLV2_ADD	rw	1B	00011011	00000000		
SLV2_SUBADD	rw	1C	00011100	00000000		
SLV2_CONFIG	rw	1D	00011101	00000000		
SLV3_ADD	rw	1E	00011110	00000000		
SLV3_SUBADD	rw	1F	00011111	00000000		
SLV3_CONFIG	rw	20	00100000	00000000		
DATAWRITE_SLV0	rw	21	00100001	00000000		
STATUS_MASTER	r	22	00100010	output		

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

DS13607 - Rev 1 page 127/162

15 Sensor hub register description

15.1 SENSOR_HUB_1 (02h)

Sensor hub output register (r)

First byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 337. SENSOR_HUB_1 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub1_7 | Hub1_6 | Hub1_5 | Hub1_4 | Hub1_3 | Hub1_2 | Hub1_1 | Hub1_0 |

Table 338. SENSOR_HUB_1 register description

SensorHub1_[7:0]	First byte associated to external sensors

15.2 SENSOR_HUB_2 (03h)

Sensor hub output register (r)

Second byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 339. SENSOR_HUB_2 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub2_7 | Hub2_6 | Hub2_5 | Hub2_4 | Hub2_3 | Hub2_2 | Hub2_1 | Hub2_0 |

Table 340. SENSOR_HUB_2 register description

SensorHub2_[7:0]	Second byte associated to external sensors
------------------	--

15.3 SENSOR_HUB_3 (04h)

Sensor hub output register (r)

Third byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 341. SENSOR_HUB_3 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub3_7 | Hub3_6 | Hub3_5 | Hub3_4 | Hub3_3 | Hub3_2 | Hub3_1 | Hub3_0 |

Table 342. SENSOR_HUB_3 register description

SensorHub3_[7:0] Third byte associated to external sensors	
--	--

DS13607 - Rev 1 page 128/162

15.4 SENSOR_HUB_4 (05h)

Sensor hub output register (r)

Fourth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 343. SENSOR_HUB_4 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub4_7 | Hub4_6 | Hub4_5 | Hub4_4 | Hub4_3 | Hub4_2 | Hub4_1 | Hub4_0 |

Table 344. SENSOR_HUB_4 register description

SensorHub4_[7:0]	Fourth byte associated to external sensors	
------------------	--	--

15.5 SENSOR_HUB_5 (06h)

Sensor hub output register (r)

Fifth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 345. SENSOR_HUB_5 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub5_7 | Hub5_6 | Hub5_5 | Hub5_4 | Hub5_3 | Hub5_2 | Hub5_1 | Hub5_0 |

Table 346. SENSOR_HUB_5 register description

SensorHub5_[7:0]	Fifth byte associated to external sensors
------------------	---

15.6 SENSOR_HUB_6 (07h)

Sensor hub output register (r)

Sixth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 347. SENSOR_HUB_6 register

Sensor								
Hub6_7	Hub6_6	Hub6_5	Hub6_4	Hub6_3	Hub6_2	Hub6_1	Hub6_0	

Table 348. SENSOR_HUB_6 register description

0 11 10 17 01	0: 11 1 1 1 1 1	
SensorHub6 [7:0]	Sixth byte associated to external sensors	
001100111000 [7.0]	Olkin byte abboolated to external benders	

DS13607 - Rev 1 page 129/162

15.7 SENSOR_HUB_7 (08h)

Sensor hub output register (r)

Seventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 349. SENSOR_HUB_7 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub7_7 | Hub7_6 | Hub7_5 | Hub7_4 | Hub7_3 | Hub7_2 | Hub7_1 | Hub7_0 |

Table 350. SENSOR_HUB_7 register description

SensorHub7_[7:0]	Seventh byte associated to external sensors
------------------	---

15.8 SENSOR_HUB_8 (09h)

Sensor hub output register (r)

Eighth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 351. SENSOR_HUB_8 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub8_7 | Hub8_6 | Hub8_5 | Hub8_4 | Hub8_3 | Hub8_2 | Hub8_1 | Hub8_0 |

Table 352. SENSOR_HUB_8 register description

SensorHub8_[7:0]	Eighth byte associated to external sensors
------------------	--

15.9 **SENSOR_HUB_9 (0Ah)**

Sensor hub output register (r)

Ninth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 353. SENSOR_HUB_9 register

Sensor								
Hub9_7	Hub9_6	Hub9_5	Hub9_4	Hub9_3	Hub9_2	Hub9_1	Hub9_0	

Table 354. SENSOR_HUB_9 register description

SensorHub9_[7:0]	Ninth byte associated to external sensors
------------------	---

DS13607 - Rev 1 page 130/162

15.10 SENSOR_HUB_10 (0Bh)

Sensor hub output register (r)

Tenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 355. SENSOR_HUB_10 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub10_7 | Hub10_6 | Hub10_5 | Hub10_4 | Hub10_3 | Hub10_2 | Hub10_1 | Hub10_0 |

Table 356. SENSOR_HUB_10 register description

8	SensorHub_10[7:0]	Tenth byte associated to external sensors
---	-------------------	---

15.11 SENSOR_HUB_11 (0Ch)

Sensor hub output register (r)

Eleventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 357. SENSOR_HUB_11 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub11_7 | Hub11_6 | Hub11_5 | Hub11_4 | Hub11_3 | Hub11_2 | Hub11_1 | Hub11_0 |

Table 358. SENSOR_HUB_11 register description

SensorHub11_[7:0]	Eleventh byte associated to external sensors
-------------------	--

15.12 SENSOR_HUB_12 (0Dh)

Sensor hub output register (r)

Twelfth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 359. SENSOR_HUB_12 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub12_7 | Hub12_6 | Hub12_5 | Hub12_4 | Hub12_3 | Hub12_2 | Hub12_1 | Hub12_0 |

Table 360. SENSOR_HUB_12 register description

SensorHub_12[7:0]	Twelfth byte associated to external sensors
-------------------	---

DS13607 - Rev 1 page 131/162

15.13 SENSOR_HUB_13 (0Eh)

Sensor hub output register (r)

Thirteenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 361. SENSOR_HUB_13 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub13_7 | Hub13_6 | Hub13_5 | Hub13_4 | Hub13_3 | Hub13_2 | Hub13_1 | Hub13_0 |

Table 362. SENSOR_HUB_13 register description

SensorHub13_[7:0]	Thirteenth byte associated to external sensors
-------------------	--

15.14 SENSOR_HUB_14 (0Fh)

Sensor hub output register (r)

Fourteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 363. SENSOR_HUB_14 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub14_7 | Hub14_6 | Hub14_5 | Hub14_4 | Hub14_3 | Hub14_2 | Hub14_1 | Hub14_0 |

Table 364. SENSOR_HUB_14 register description

SensorHub14_[7:0]	Fourteenth byte associated to external sensors
-------------------	--

15.15 SENSOR_HUB_15 (10h)

Sensor hub output register (r)

Fifteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 365. SENSOR_HUB_15 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub15_7 | Hub15_6 | Hub15_5 | Hub15_4 | Hub15_3 | Hub15_2 | Hub15_1 | Hub15_0 |

Table 366. SENSOR_HUB_15 register description

SensorHub15_[7:0]	Fifteenth byte associated to external sensors
-------------------	---

DS13607 - Rev 1 page 132/162

15.16 SENSOR_HUB_16 (11h)

Sensor hub output register (r)

Sixteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 367. SENSOR_HUB_16 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub16_7 | Hub16_6 | Hub16_5 | Hub16_4 | Hub16_3 | Hub16_2 | Hub16_1 | Hub16_0 |

Table 368. SENSOR_HUB_16 register description

SensorHub16_[7:0]	Sixteenth byte associated to external sensors
-------------------	---

15.17 SENSOR_HUB_17 (12h)

Sensor hub output register (r)

Seventeenth byte associated to external sensors. The content of the register is consistent with the SLAVEx CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 369. SENSOR_HUB_17 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub17_7 | Hub17_6 | Hub17_5 | Hub17_4 | Hub17_3 | Hub17_2 | Hub17_1 | Hub17_7 |

Table 370. SENSOR_HUB_17 register description

SensorHub17_[7:0]	Seventeenth byte associated to external sensors
-------------------	---

15.18 SENSOR_HUB_18 (13h)

Sensor hub output register (r)

Eighteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 371. SENSOR_HUB_17 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub18_7 | Hub18_6 | Hub18_5 | Hub18_4 | Hub18_3 | Hub18_2 | Hub18_1 | Hub18_0 |

Table 372. SENSOR_HUB_17 register description

SensorHub18_[7:0]	Eighteenth byte associated to external sensors
-------------------	--

DS13607 - Rev 1 page 133/162

15.19 MASTER_CONFIG (14h)

Master configuration register (r/w)

Table 373. MASTER_CONFIG register

RST_MASTER	_	START_	PASS_THROU	_	MASTER ON	AUX_	AUX_
_REGS	ONCE	CONFIG	GH_MODE	PU_EN	_	SENS_ON1	SENS_ON0

Table 374. MASTER_CONFIG register description

RST_MASTER_REGS	Reset Master logic and output registers. Must be set to '1' and then set it to '0'. Default value: 0
	Slave 0 write operation is performed only at the first sensor hub cycle. Default value: 0
WRITE_ONCE	(0: write operation for each sensor hub cycle;
	1: write operation only for the first sensor hub cycle)
	Sensor hub trigger signal selection. Default value: 0
START_CONFIG	(0: sensor hub trigger signal is the accelerometer/gyro data-ready;
	1: sensor hub trigger signal external from INT2 pin)
	I ² C interface pass-through. Default value: 0
PASS_THROUGH_MODE	(0: pass-through disabled;
	1: pass-through enabled, main I ² C line is short-circuited with the auxiliary line)
	Master I ² C pull-up enable. Default value: 0
SHUB_PU_EN	(0: internal pull-up on auxiliary I ² C line disabled;
	1: internal pull-up on auxiliary I ² C line enabled)
MACTED ON	Sensor hub I ² C master enable. Default: 0
MASTER_ON	(0: master I ² C of sensor hub disabled; 1: master I ² C of sensor hub enabled)
	Number of external sensors to be read by the sensor hub.
	(00: one sensor (default);
AUX_SENS_ON[1:0]	01: two sensors;
	10: three sensors;
	11: four sensors)

15.20 SLV0_ADD (15h)

I²C slave address of the first external sensor (Sensor 1) register (r/w).

Table 375. SLV0_ADD register

slave0_	rw 0							
add6	add5	add4	add3	add2	add1	add0	1W_0	

Table 376. SLV_ADD register description

slave0_add[6:0]	l²C slave address of Sensor1 that can be read by the sensor hub. Default value: 0000000
rw_0	Read/write operation on Sensor 1. Default value: 0
	(0: write operation; 1: read operation)

DS13607 - Rev 1 page 134/162

15.21 SLV0_SUBADD (16h)

Address of register on the first external sensor (Sensor 1) register (r/w)

Table 377. SLV0_SUBADD register

slave0_	1							
reg7	reg6	reg5	reg4	reg3	reg2	reg1	reg0	

Table 378. SLV0_SUBADD register description

slave0_red[7:0]	Address of register on Sensor1 that has to be read/written according to the rw_0 bit value in SLV0_ADD (15h). Default value: 00000000
siaveo_reg[7.0]	(15h). Default value: 00000000

15.22 SLAVEO_CONFIG (17h)

First external sensor (Sensor1) configuration and sensor hub settings register (r/w)

Table 379. SLAVE0_CONFIG register

	SHUB_ ODR_1	SHUB_ ODR_0	0 ⁽¹⁾	0(1)	BATCH_EXT _SENS_0_EN	Slave0_ numop2	Slave0_ numop1	Slave0_ numop0	
--	----------------	----------------	------------------	------	-------------------------	-------------------	-------------------	-------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 380. SLAVEO_CONFIG register description

	Rate at which the master communicates. Default value: 00
	(00: 104 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 104 Hz);
SHUB_ODR_[1:0]	01: 52 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 52 Hz);
	10: 26 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 26 Hz);
	11: 12.5 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 12.5 Hz)
BATCH_EXT_ SENS_0_EN	Enable FIFO data batching of first slave. Default value: 0
Slave0_numop[2:0]	Number of read operations on Sensor 1. Default value: 000

15.23 SLV1_ADD (18h)

I²C slave address of the second external sensor (Sensor 2) register (r/w)

Table 381. SLV1_ADD register

Slave1_	- 1						
add6	add5	add4	add3	add2	add1	add0	'_'

Table 382. SLV1_ADD register description

Slave1_add[6:0]	I ² C slave address of Sensor 2 that can be read by the sensor hub. Default value: 0000000
n 1	Read operation on Sensor 2 enable. Default value: 0
'-'	(0: read operation disabled; 1: read operation enabled)

DS13607 - Rev 1 page 135/162

15.24 SLV1_SUBADD (19h)

Address of register on the second external sensor (Sensor 2) register (r/w)

Table 383. SLV1_SUBADD register

Slave1_]							
reg7	reg6	reg5	reg4	reg3	reg2	reg1	reg0	

Table 384. SLV1_SUBADD register description

Slave1_reg[7:0] Address of register on Sensor 2 that has to be read/written according to the r_1 bit value in SLV1_ADD (18h).

15.25 SLAVE1_CONFIG (1Ah)

Second external sensor (Sensor 2) configuration register (r/w)

Table 385. SLAVE1_CONFIG register

O(1)	0(1)	0(1)	0(1)	BATCH_EXT_	Slave1_	Slave1_	Slave1_
0.	0.7	0.7	0.7	SENS_1_EN	numop2	numop1	numop0

1. This bit must be set to '0' for the correct operation of the device.

Table 386. SLAVE1_CONFIG register description

BATCH_EXT_SENS_1_EN	Enable FIFO data batching of second slave. Default value: 0
Slave1_numop[2:0]	Number of read operations on Sensor 2. Default value: 000

15.26 SLV2_ADD (1Bh)

I²C slave address of the third external sensor (Sensor 3) register (r/w)

Table 387. SLV2_ADD register

Slave2_ Slave2_ Slave2_ Slave2_ Slave2_ Slave2_ Slave2_ Slave2_ Slave2_ F_ add6 add5 add4 add3 add2 add1 add0 add0
--

Table 388. SLV2_ADD register description

Slave2_add[6:0]	I ² C slave address of Sensor 3 that can be read by the sensor hub.
. 0	Read operation on Sensor 3 enable. Default value: 0
1_2	(0: read operation disabled; 1: read operation enabled)

DS13607 - Rev 1 page 136/162

15.27 SLV2_SUBADD (1Ch)

Address of register on the third external sensor (Sensor 3) register (r/w)

Table 389. SLV2_SUBADD register

Slave2_	1							
reg7	reg6	reg5	reg4	reg3	reg2	reg1	reg0	

Table 390. SLV2_SUBADD register description

Slave2_reg[7:0] Address of register on Sensor 3 that has to be read/written according to the r_2 bit value in SLV2_ADD (1Bh).

15.28 SLAVE2_CONFIG (1Dh)

Third external sensor (Sensor 3) configuration register (r/w)

Table 391. SLAVE2_CONFIG register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0(1)	BATCH_EXT _SENS_2_EN	Slave2_ numop2	Slave2_ numop1	Slave2_ numop0
------------------	------------------	------------------	------	-------------------------	-------------------	-------------------	-------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 392. SLAVE2_CONFIG register description

BATCH_EXT_SENS_2_EN	Enable FIFO data batching of third slave. Default value: 0
Slave2_numop[2:0]	Number of read operations on Sensor 3. Default value: 000

15.29 SLV3_ADD (1Eh)

I²C slave address of the fourth external sensor (Sensor 4) register (r/w)

Table 393. SLV3_ADD register

Slave3_ Slave3_ Slave3_ Slave3_ Slave3_ Slave3_ add1 Slave3_ add1	Slave3_ add0	r_3
---	-----------------	-----

Table 394. SLV3_ADD register description

Slave3_add[6:0] I²C slave address of Sensor 4 that can be read by the sensor hub.		
r 2	Read operation on Sensor 4 enable. Default value: 0	
1_3	(0: read operation disabled; 1: read operation enabled)	

DS13607 - Rev 1 page 137/162

15.30 SLV3_SUBADD (1Fh)

Address of register on the fourth external sensor (Sensor 4) register (r/w)

Table 395. SLV3_SUBADD register

| Slave3_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| reg7 | reg6 | reg5 | reg4 | reg3 | reg2 | reg1 | reg0 |

Table 396. SLV3_SUBADD register description

Slave3_reg[7:0] Address of register on Sensor 4 that has to be read according to the r_3 bit value in SLV3_ADD (1Eh).

15.31 **SLAVE3_CONFIG (20h)**

Fourth external sensor (Sensor 4) configuration register (r/w)

Table 397. SLAVE3_CONFIG register

0 ⁽¹⁾	0(1)	0 ⁽¹⁾	0 ⁽¹⁾	BATCH_EXT _SENS_3_EN	Slave3_ numop2	Slave3_ numop1	Slave3_ numop0
------------------	------	------------------	------------------	-------------------------	-------------------	-------------------	-------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 398. SLAVE3_CONFIG register description

BATCH_EXT_SENS_3_EN	Enable FIFO data batching of fourth slave. Default value: 0
Slave3_numop[2:0]	Number of read operations on Sensor 4. Default value: 000

15.32 DATAWRITE_SLV0 (21h)

Data to be written in the slave device register (r/w)

Table 399. DATAWRITE_SLV0 register

| Slave0_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| dataw7 | dataw6 | dataw5 | dataw4 | dataw3 | dataw2 | dataw1 | dataw0 |

Table 400. DATAWRITE_SLV0 register description

Slave0_dataw[7:0]	Data to be written into the slave 0 device according to the rw_0 bit in register SLV0_ADD (15h).	
	Default value: 00000000	

DS13607 - Rev 1 page 138/162

15.33 STATUS_MASTER (22h)

Sensor hub source register (r)

Table 401. STATUS_MASTER register

WR_ONCE_	SLAVE3_	SLAVE2_	SLAVE1_	SLAVE0_	0	0	SENS_HUB	
DONE	NACK	NACK	NACK	NACK	U	0	_ENDOP	

Table 402. STATUS_MASTER register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
	Sensor hub communication status. Default value: 0
SENS_HUB_ENDOP	(0: sensor hub communication not concluded;
	1: sensor hub communication concluded)

DS13607 - Rev 1 page 139/162

16 Soldering information

The LGA package is compliant with the ECOPACK, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020. Land pattern and soldering recommendations are available at www.st.com/mems.

DS13607 - Rev 1 page 140/162

17 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

17.1 LGA-14L package information

Figure 23. LGA-14L 2.5 x 3.0 x 0.86 mm package outline and mechanical data

Dimensions are in millimeter unless otherwise specified General tolerance is +/-0.1mm unless otherwise specified

OUTER DIMENSIONS

ITEM	DIMENSION [mm]	TOLERANCE [mm]
Length [L]	2.50	±0.1
Width [W]	3.00	±0.1
Height [H]	0.86	MAX

DM00249496_1

DS13607 - Rev 1 page 141/162

17.2 LGA-14 packing information

Do P2 2.00<u>±</u>0.05(I) Po 4.00±0.10(||) E1 1.75<u>±</u>0.10 Ø1.50 0.00 0.30±0.05 D1 Ø1.50 MIN R0.20 TYP. SECTION Y-Y SECTION X-X Measured from centreline of sprocket hold to centreline of pocket.

Cumulative tolerance of 10 sprocket holes is ± 0.20. Measured from centreline of sprocket note to centreline of pocket.

Other material available. +/- 0.05 Ao 2.80 Во 3.30 +/- 0.05 (11) Ko 1.00 +/- 0.10 +/- 0.10 +/- 0.30 Pi 8.00 Forming format : Press form - 17-B (IV) W 12.00 Required length: 170 meter / 22B3 reel

Figure 24. Carrier tape information for LGA-14 package

Figure 25. LGA-14 package orientation in carrier tape

DS13607 - Rev 1 page 142/162

Figure 26. Reel information for carrier tape of LGA-14 package

Table 403. Reel dimensions for carrier tape of LGA-14 package

Reel dimensions (mm)					
A (max)	330				
B (min)	1.5				
С	13 ±0.25				
D (min)	20.2				
N (min)	60				
G	12.4 +2/-0				
T (max)	18.4				

DS13607 - Rev 1 page 143/162

Revision history

Table 404. Document revision history

Date	Revision	Changes
17-Mar-2021	1	Initial release

DS13607 - Rev 1 page 144/162

Contents

1	Ove	rview		3
2	Emb	edded	low-power features	4
	2.1	Tilt de	etection	4
	2.2	Signifi	icant Motion Detection	4
	2.3	Finite	State Machine	4
	2.4	Machi	ine Learning Core	6
3	Pin	descrip	otion	7
	3.1	Pin co	onnections	8
4	Mod	lule spe	ecifications	10
	4.1	Mecha	anical characteristics	10
	4.2	Electri	ical characteristics	13
	4.3	Tempe	erature sensor characteristics	13
	4.4	Comm	nunication interface characteristics	14
		4.4.1	SPI - serial peripheral interface	14
		4.4.2	I ² C - inter-IC control interface	15
	4.5	Absolu	ute maximum ratings	16
	4.6	Termir	nology	
		4.6.1	Sensitivity	17
		4.6.2	Zero-g and zero-rate level	17
5	Digi	tal inter	rfaces	18
	5.1	I ² C/SF	PI interface	18
		5.1.1	I ² C serial interface	18
		5.1.2	SPI bus interface	21
	5.2	MIPI I	3CSM interface	25
		5.2.1	MIPI I3CSM slave interface	25
		5.2.2	MIPI I3CSM CCC supported commands	25
	5.3	I ² C/I30	C coexistence in LSM6DSO	27
	5.4	Maste	er I ² C interface	28
6	Fun	ctionali	ity	29
	6.1	Opera	ating modes	29

	6.2	Accelerometer power modes	. 29
		6.2.1 Accelerometer ultra-low-power mode	. 29
	6.3	Gyroscope power modes	. 29
	6.4	Block diagram of filters	. 30
		6.4.1 Block diagrams of the accelerometer filters	. 30
		6.4.2 Block diagrams of the gyroscope filters	. 32
	6.5	FIFO	. 33
		6.5.1 Bypass mode	. 33
		6.5.2 FIFO mode	. 34
		6.5.3 Continuous mode	. 34
		6.5.4 Continuous-to-FIFO mode	. 34
		6.5.5 Bypass-to-Continuous mode	. 34
		6.5.6 Bypass-to-FIFO mode	. 35
		6.5.7 FIFO reading procedure	. 35
7	Appli	ication hints	.36
	7.1	LSM6DSO32X electrical connections in Mode 1	. 36
	7.2	LSM6DSO32X electrical connections in Mode 2	. 37
8	Regis	ster mapping	.40
9	Regis	ster description	.43
	9.1	FUNC_CFG_ACCESS (01h)	. 43
	9.2	PIN_CTRL (02h)	. 43
	9.3	FIFO_CTRL1 (07h)	. 44
	9.4	FIFO_CTRL2 (08h)	. 44
	9.5	FIFO_CTRL3 (09h)	. 45
	9.6	FIFO_CTRL4 (0Ah)	. 46
	9.7	COUNTER_BDR_REG1 (0Bh)	. 47
	9.8	COUNTER_BDR_REG2 (0Ch)	. 47
	9.9	INT1_CTRL (0Dh)	. 48
	9.10	INT2_CTRL (0Eh)	. 49
	9.11		
	9.12	CTRL1_XL (10h)	
		- · · · /	

9.13	CTRL2_G (11h)	. 51
9.14	CTRL3_C (12h)	. 52
9.15	CTRL4_C (13h)	. 53
9.16	CTRL5_C (14h)	. 54
9.17	CTRL6_C (15h)	. 55
9.18	CTRL7_G (16h)	. 56
9.19	CTRL8_XL (17h)	. 57
9.20	CTRL9_XL (18h)	. 59
9.21	CTRL10_C (19h)	. 60
9.22	ALL_INT_SRC (1Ah)	. 60
9.23	WAKE_UP_SRC (1Bh)	. 61
9.24	TAP_SRC (1Ch)	. 62
9.25	D6D_SRC (1Dh)	. 63
9.26	STATUS_REG (1Eh)	. 64
9.27	OUT_TEMP_L (20h), OUT_TEMP_H (21h)	. 65
9.28	OUTX_L_G (22h) and OUTX_H_G (23h)	. 65
9.29	OUTY_L_G (24h) and OUTY_H_G (25h)	. 66
9.30	OUTZ_L_G (26h) and OUTZ_H_G (27h)	. 66
9.31	OUTX_L_A (28h) and OUTX_H_A (29h)	. 67
9.32	OUTY_L_A (2Ah) and OUTY_H_A (2Bh)	. 67
9.33	OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)	. 68
9.34	EMB_FUNC_STATUS_MAINPAGE (35h)	. 68
9.35	FSM_STATUS_A_MAINPAGE (36h)	. 69
9.36	FSM_STATUS_B_MAINPAGE (37h)	. 69
9.37	MLC_STATUS_MAINPAGE (38h)	. 70
9.38	STATUS_MASTER_MAINPAGE (39h)	. 71
9.39	FIFO_STATUS1 (3Ah)	.71
9.40	FIFO_STATUS2 (3Bh)	. 72
9.41	TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)	73
9.42	TAP_CFG0 (56h)	. 74
9.43	TAP_CFG1 (57h)	. 75

	9.44	TAP_CFG2 (58h)	/5
	9.45	TAP_THS_6D (59h)	76
	9.46	INT_DUR2 (5Ah)	77
	9.47	WAKE_UP_THS (5Bh)	77
	9.48	WAKE_UP_DUR (5Ch)	78
	9.49	FREE_FALL (5Dh)	79
	9.50	MD1_CFG (5Eh)	80
	9.51	MD2_CFG (5Fh)	81
	9.52	I3C_BUS_AVB (62h)	82
	9.53	INTERNAL_FREQ_FINE (63h)	82
	9.54	X_OFS_USR (73h)	82
	9.55	Y_OFS_USR (74h)	83
	9.56	Z_OFS_USR (75h)	83
	9.57	FIFO_DATA_OUT_TAG (78h)	84
	9.58	FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah)	85
	9.59	FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch)	85
	9.60	FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh)	85
10	Embe	edded functions register mapping	86
11			
	Embe	edded functions register description	88
	11.1	PAGE_SEL (02h)	
		-	88
	11.1	PAGE_SEL (02h)	88
	11.1 11.2	PAGE_SEL (02h)	88
	11.1 11.2 11.3	PAGE_SEL (02h) EMB_FUNC_EN_A (04h). EMB_FUNC_EN_B (05h).	88
	11.1 11.2 11.3 11.4	PAGE_SEL (02h) EMB_FUNC_EN_A (04h). EMB_FUNC_EN_B (05h). PAGE_ADDRESS (08h).	88 89 89
	11.1 11.2 11.3 11.4 11.5	PAGE_SEL (02h) EMB_FUNC_EN_A (04h). EMB_FUNC_EN_B (05h). PAGE_ADDRESS (08h). PAGE_VALUE (09h).	88 89 89 90
	11.1 11.2 11.3 11.4 11.5 11.6	PAGE_SEL (02h) EMB_FUNC_EN_A (04h). EMB_FUNC_EN_B (05h). PAGE_ADDRESS (08h). PAGE_VALUE (09h). EMB_FUNC_INT1 (0Ah)	88 89 89 90
	11.1 11.2 11.3 11.4 11.5 11.6 11.7	PAGE_SEL (02h) EMB_FUNC_EN_A (04h). EMB_FUNC_EN_B (05h). PAGE_ADDRESS (08h). PAGE_VALUE (09h). EMB_FUNC_INT1 (0Ah) FSM_INT1_A (0Bh)	88 89 89 90 91
	11.1 11.2 11.3 11.4 11.5 11.6 11.7	PAGE_SEL (02h) EMB_FUNC_EN_A (04h). EMB_FUNC_EN_B (05h). PAGE_ADDRESS (08h). PAGE_VALUE (09h). EMB_FUNC_INT1 (0Ah) FSM_INT1_A (0Bh) FSM_INT1_B (0Ch)	88 89 89 90 91 92
	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	PAGE_SEL (02h) EMB_FUNC_EN_A (04h). EMB_FUNC_EN_B (05h). PAGE_ADDRESS (08h). PAGE_VALUE (09h). EMB_FUNC_INT1 (0Ah) FSM_INT1_A (0Bh) FSM_INT1_B (0Ch). MLC_INT1 (0Dh).	88 89 89 90 91 92 93

11.13	MLC_INT2 (11h)	97
11.14	EMB_FUNC_STATUS (12h)	97
11.15	FSM_STATUS_A (13h)	98
11.16	FSM_STATUS_B (14h)	98
11.17	MLC_STATUS (15h)	99
11.18	PAGE_RW (17h)	99
11.19	EMB_FUNC_FIFO_CFG (44h)	100
11.20	FSM_ENABLE_A (46h)	100
11.21	FSM_ENABLE_B (47h)	100
11.22	FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)	101
11.23	FSM_LONG_COUNTER_CLEAR (4Ah)	101
11.24	FSM_OUTS1 (4Ch)	102
11.25	FSM_OUTS2 (4Dh)	102
11.26	FSM_OUTS3 (4Eh)	103
11.27	FSM_OUTS4 (4Fh)	103
11.28	FSM_OUTS5 (50h)	104
11.29	FSM_OUTS6 (51h)	104
11.30	FSM_OUTS7 (52h)	105
11.31	FSM_OUTS8 (53h)	105
11.32	FSM_OUTS9 (54h)	106
11.33	FSM_OUTS10 (55h)	106
11.34	FSM_OUTS11 (56h)	107
11.35	FSM_OUTS12 (57h)	107
11.36	FSM_OUTS13 (58h)	108
11.37	FSM_OUTS14 (59h)	108
11.38	FSM_OUTS15 (5Ah)	109
11.39	FSM_OUTS16 (5Bh)	109
11.40	EMB_FUNC_ODR_CFG_B (5Fh)	110
11.41	EMB_FUNC_ODR_CFG_C (60h)	110
	STEP_COUNTER_L (62h) and STEP_COUNTER_H (63h)	
11.43	EMB_FUNC_SRC (64h)	111

	11.44	EMB_F	UNC_INIT_A (66h)	. 112
	11.45	EMB_F	UNC_INIT_B (67h)	. 112
	11.46	MLC0_S	SRC (70h)	. 112
	11.47	MLC1_S	SRC (71h)	. 113
	11.48	MLC2_S	SRC (72h)	. 113
	11.49	MLC3_S	SRC (73h)	. 113
	11.50	MLC4_S	SRC (74h)	. 114
	11.51	MLC5_S	SRC (75h)	. 114
	11.52	MLC6_S	SRC (76h)	. 114
			SRC (77h)	
12		_	dvanced features pages	
13			dvanced features register description	
	13.1		- Embedded advanced features registers	
	10.1	13.1.1	MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)	
		13.1.2	MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)	
		13.1.3	MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)	
		13.1.4	MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)	
		13.1.5	MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)	
		13.1.6	MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)	
		13.1.7	MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)	
		13.1.8	MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)	. 121
		13.1.9	MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)	. 121
		13.1.10	MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)	. 122
		13.1.11	MAG_CFG_A (D4h)	. 123
		13.1.12	MAG_CFG_B (D5h)	. 123
	13.2	Page 1	- Embedded advanced features registers	. 124
		13.2.1	FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)	. 124
		13.2.2	FSM_PROGRAMS (7Ch)	. 124
		13.2.3	FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)	. 125
		13.2.4	PEDO_CMD_REG (83h)	. 125
		13.2.5	PEDO_DEB_STEPS_CONF (84h)	. 126
		13.2.6	PEDO_SC_DELTAT_L (D0h) & PEDO_SC_DELTAT_H (D1h)	. 126

		13.2.7 MLC_MAG_SENSITIVITY_L (E8h) and MLC_MAG_SENSITIVITY_H (E9h)	. 126
14	Sens	or hub register mapping	127
15	Sens	or hub register description	128
	15.1	SENSOR_HUB_1 (02h)	.128
	15.2	SENSOR_HUB_2 (03h)	. 128
	15.3	SENSOR_HUB_3 (04h)	. 128
	15.4	SENSOR_HUB_4 (05h)	.129
	15.5	SENSOR_HUB_5 (06h)	.129
	15.6	SENSOR_HUB_6 (07h)	.129
	15.7	SENSOR_HUB_7 (08h)	.130
	15.8	SENSOR_HUB_8 (09h)	.130
	15.9	SENSOR_HUB_9 (0Ah)	.130
	15.10	SENSOR_HUB_10 (0Bh)	. 131
	15.11	SENSOR_HUB_11 (0Ch)	.131
	15.12	SENSOR_HUB_12 (0Dh)	.131
	15.13	SENSOR_HUB_13 (0Eh)	.132
	15.14	SENSOR_HUB_14 (0Fh)	.132
	15.15	SENSOR_HUB_15 (10h)	.132
	15.16	SENSOR_HUB_16 (11h)	. 133
	15.17	SENSOR_HUB_17 (12h)	. 133
	15.18	SENSOR_HUB_18 (13h)	. 133
	15.19	MASTER_CONFIG (14h)	.134
	15.20	SLV0_ADD (15h)	.134
	15.21	SLV0_SUBADD (16h)	. 135
	15.22	SLAVE0_CONFIG (17h)	. 135
	15.23	SLV1_ADD (18h)	. 135
	15.24	SLV1_SUBADD (19h)	.136
	15.25	SLAVE1_CONFIG (1Ah)	. 136
	15.26	SLV2_ADD (1Bh)	. 136
	15.27	SLV2_SUBADD (1Ch)	. 137
	15.28	SLAVE2_CONFIG (1Dh)	.137

	15.29	SLV3_ADD (1Eh)	. 137
	15.30	SLV3_SUBADD (1Fh)	.138
	15.31	SLAVE3_CONFIG (20h)	.138
	15.32	DATAWRITE_SLV0 (21h)	.138
	15.33	STATUS_MASTER (22h)	.139
16	Sold	ering information	140
17	Pack	age information	141
	17.1	LGA-14L package information	.141
	17.2	LGA-14 packing information	. 142
Rov	ision l	nistory	144

List of tables

Table 1.	Pin description	. 9
Table 2.	Mechanical characteristics	10
Table 3.	Electrical characteristics	13
Table 4.	Temperature sensor characteristics	13
Table 5.	SPI slave timing values (in mode 3)	14
Table 6.	I ² C slave timing values	15
Table 7.	Absolute maximum ratings	16
Table 8.	Serial interface pin description	18
Table 9.	I ² C terminology	18
Table 10.	SAD+Read/Write patterns	19
Table 11.	Transfer when master is writing one byte to slave	19
Table 12.	Transfer when master is writing multiple bytes to slave	19
Table 13.	Transfer when master is receiving (reading) one byte of data from slave	19
Table 14.	Transfer when master is receiving (reading) multiple bytes of data from slave	19
Table 15.	MIPI I3C SM CCC commands	
Table 16.	Master I ² C pin details	
Table 17.	Gyroscope LPF2 bandwidth selection	
Table 18.	Internal pin status	
Table 19.	Registers address map	
Table 20.	FUNC CFG ACCESS register	
Table 21.	FUNC_CFG_ACCESS register description	
Table 22.	PIN_CTRL register.	
Table 23.	PIN_CTRL register description	
Table 24.	FIFO CTRL1 register	
Table 25.	FIFO_CTRL1 register description.	
Table 26.	FIFO_CTRL2 register	
Table 27.	FIFO_CTRL2 register description.	
Table 28.	FIFO_CTRL3 register	
Table 29.	FIFO_CTRL3 register description.	
Table 30.	FIFO_CTRL4 register	
Table 31.	FIFO_CTRL4 register description.	
Table 32.	COUNTER_BDR_REG1 register	
Table 32.	COUNTER_BDR_REG1 register description	
Table 34.	COUNTER BDR REG2 register	
Table 35.	COUNTER_BDR_REG2 register description	
Table 36.	INT1 CTRL register	
Table 37.	INT1_CTRL register description	
Table 37.	INT2_CTRL register	
Table 39.	INT2_CTRL register description.	
Table 40.	WhoAml register	
Table 41.	CTRL1_XL register	
Table 42.	CTRL1_XL register description	
Table 42.	Accelerometer ODR register setting	
Table 44.	Accelerometer full-scale selection	
Table 44.		
Table 46.	CTRL2_G register	
Table 47.	Gyroscope ODR configuration setting.	
Table 48.	CTRL3_C register	
Table 49.	CTRL3_C register description	
Table 50 .	CTRL4_C register	
Table 50.	CTRL4 C register description	
	CTRL5 C register	
Table 52.	CINED CIEGISIEI	54

Table 53.	CTRL5_C register description	
Table 54.	Angular rate sensor self-test mode selection	54
Table 55.	Linear acceleration sensor self-test mode selection	54
Table 56.	CTRL6_C register	
Table 57.	CTRL6_C register description	55
Table 58.	Trigger mode selection	55
Table 59.	Gyroscope LPF1 bandwidth selection	55
Table 60.	CTRL7_G register	56
Table 61.	CTRL7_G register description	56
Table 62.	CTRL8_XL register	57
Table 63.	CTRL8_XL register description	57
Table 64.	Accelerometer bandwidth configurations	57
Table 65.	CTRL9_XL register	59
Table 66.	CTRL9_XL register description	
Table 67.	CTRL10_C register	
Table 68.	CTRL10_C register description	
Table 69.	ALL_INT_SRC register	
Table 70.	ALL INT SRC register description.	
Table 71.	WAKE_UP_SRC register	
Table 72.	WAKE UP SRC register description	
Table 73.	TAP_SRC register	
Table 74.	TAP_SRC register description	
Table 75.	D6D_SRC register	
Table 76.	D6D_SRC register description	
Table 77.	STATUS_REG register	
Table 77.	STATUS_REG register description	
Table 79.	OUT_TEMP_L register	
Table 80.	OUT_TEMP_H register	
	OUT_TEMP_n register description.	
Table 81.	OUTX_L_G register	
Table 82.		
Table 83.	OUTX_H_G register.	
Table 84.	OUTX_H_G register description.	
Table 85.	OUTY_L_G register	
Table 86.	OUTY_H_G register	
Table 87.	OUTY_H_G register description.	
Table 88.	OUTZ_L_G register	
Table 89.	OUTZ_H_G register	
Table 90.	OUTZ_H_G register description.	
Table 91.	OUTX_L_A register	
Table 92.	OUTX_H_A register	
Table 93.	OUTX_H_A register description	
Table 94.	OUTY_L_A register	
Table 95.	OUTY_H_A register	
Table 96.	OUTY_H_A register description	
Table 97.	OUTZ_L_A register	
Table 98.	OUTZ_H_A register	
Table 99.	OUTZ_H_A register description	
	EMB_FUNC_STATUS_MAINPAGE register	
	EMB_FUNC_STATUS_MAINPAGE register description	
	FSM_STATUS_A_MAINPAGE register	
	FSM_STATUS_A_MAINPAGE register description	
	FSM_STATUS_B_MAINPAGE register	
Table 105.	FSM_STATUS_B_MAINPAGE register description	69
Table 106.	MLC_STATUS _MAINPAGE register	70

	MLC_STATUS_MAINPAGE register description	
	STATUS_MASTER_MAINPAGE register	
	STATUS_MASTER_MAINPAGE register description	
	FIFO_STATUS1 register	
	FIFO_STATUS1 register description	
	FIFO_STATUS2 register	
	FIFO_STATUS2 register description	
	TIMESTAMP output registers	
	TIMESTAMP output register description	
	TAP_CFG0 register	
	TAP_CFG0 register description	
	TAP_CFG1 register	
	TAP_CFG1 register description	
	TAP priority decoding	
	TAP_CFG2 register	
	TAP_CFG2 register description	
	TAP_THS_6D register	
	TAP_THS_6D register description	
Table 125.	Threshold for D4D/D6D function	76
	INT_DUR2 register	
	INT_DUR2 register description	
	WAKE_UP_THS register	
Table 129.	WAKE_UP_THS register description	77
Table 130.	WAKE_UP_DUR register	78
Table 131.	WAKE_UP_DUR register description	78
Table 132.	FREE_FALL register	79
Table 133.	FREE_FALL register description	79
	Threshold for free-fall function	
Table 135.	MD1_CFG register	80
	MD1_CFG register description	
Table 137.	MD2_CFG register	81
	MD2_CFG register description	
Table 139.	I3C_BUS_AVB register	82
Table 140.	I3C_BUS_AVB register description	82
	INTERNAL_FREQ_FINE register	
	INTERNAL_FREQ_FINE register description	
	X_OFS_USR register	
	X_OFS_USR register description	
	Y_OFS_USR register	
Table 146.	Y_OFS_USR register description	83
	Z_OFS_USR register	
	Z_OFS_USR register description	
	FIFO_DATA_OUT_TAG register	
Table 150.	FIFO_DATA_OUT_TAG register description	84
	FIFO tag	
Table 152.	FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers	85
Table 153.	FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description	85
	FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers	
	FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description	
	FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers	
	FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register description	
	Register address map - embedded functions	
	PAGE_SEL register	
Table 160.	PAGE_SEL register description	88

Table 161.	EMB_FUNC_EN_A register	88
Table 162.	EMB_FUNC_EN_A register description	88
	EMB_FUNC_EN_B register	
Table 164.	EMB_FUNC_EN_B register description	89
Table 165.	PAGE_ADDRESS register	89
Table 166.	PAGE_ADDRESS register description	89
Table 167.	PAGE_VALUE register	90
Table 168.	PAGE_VALUE register description	90
Table 169.	EMB_FUNC_INT1 register	90
Table 170.	EMB_FUNC_INT1 register description	90
Table 171.	FSM_INT1_A register	91
Table 172.	FSM_INT1_A register description	91
Table 173.	FSM_INT1_B register	92
Table 174.	FSM_INT1_B register description	92
Table 175.	MLC_INT1 register	93
Table 176.	MLC_INT1 register description	93
Table 177.	EMB_FUNC_INT2 register	94
	EMB_FUNC_INT2 register description	
	FSM_INT2_A register	
	FSM_INT2_A register description	
	FSM_INT2_B register	
	FSM INT2 B register description	
	MLC_INT2 register	
	MLC INT2 register description	
	EMB_FUNC_STATUS register	
	EMB_FUNC_STATUS register description	
	FSM_STATUS_A register	
	FSM_STATUS_A register description	
	FSM_STATUS_B register	
	FSM_STATUS_B register description	
	MLC_STATUS register	
	MLC_STATUS register description	
	PAGE_RW register	
	PAGE_RW register description	
	EMB_FUNC_FIFO_CFG register	
	EMB_FUNC_FIFO_CFG register description.	
	FSM ENABLE A register	
	FSM_ENABLE_A register description	
	FSM ENABLE B register	
	FSM_ENABLE_B register description	
	FSM_LONG_COUNTER_L register	
	FSM_LONG_COUNTER_L register description	
	FSM_LONG_COUNTER_H register	
	FSM_LONG_COUNTER_H register description.	
	FSM_LONG_COUNTER_CLEAR register	
	FSM LONG COUNTER CLEAR register description.	
	FSM_OUTS1 register	
	FSM_OUTS1 register description.	
	FSM_OUTS2 register	
	FSM OUTS2 register description.	
	FSM OUTS3 register	
	FSM OUTS3 register description.	
	FSM OUTS4 register	
	FSM OUTS4 register description.	
. 30.0 2 14.	- CitCC TO TOGOGO GOOGIPEOTI	. 55

	FSM_OUTS5 register	
	FSM_OUTS5 register description	
	FSM_OUTS6 register	
	FSM_OUTS6 register description	
	FSM_OUTS7 register	
	FSM_OUTS7 register description	
	FSM_OUTS8 register	
	FSM_OUTS8 register description	
	FSM_OUTS9 register	
	FSM_OUTS9 register description.	
	FSM_OUTS10 register	
	FSM_OUTS10 register description	
	FSM_OUTS11 register	
	FSM_OUTS11 register description	
	FSM_OUTS12 register	
	FSM_OUTS12 register description	
	FSM_OUTS13 register	
	FSM_OUTS13 register description	
	FSM_OUTS14 register	
	FSM_OUTS14 register description	
	FSM_OUTS15 register	
	FSM_OUTS15 register description	
	FSM_OUTS16 register	
	FSM_OUTS16 register description	
	EMB_FUNC_ODR_CFG_B register	
	EMB_FUNC_ODR_CFG_B register description	
	EMB_FUNC_ODR_CFG_C register	
	EMB_FUNC_ODR_CFG_C register description	
	STEP_COUNTER_L register	
	STEP_COUNTER_L register description.	
	STEP_COUNTER_H register	
	STEP_COUNTER_H register description	
	EMB_FUNC_SRC register	
	EMB_FUNC_SRC register description	
	EMB_FUNC_INIT_A register	
	EMB_FUNC_INIT_A register description.	
		.112
	EMB_FUNC_INIT_B register description	
	MLC0_SRC register	
	MLC0_SRC register description	
	MLC1_SRC register	
	MLC1_SRC register description	
	MLC2_SRC register	
	MLC2_SRC register description	
	MLC3_SRC register	
	MLC3_SRC register description	
	MLC4_SRC register	
	MLC4_SRC register description	
	MLC5_SRC register	
	MLC5_SRC register description	
	MLC6_SRC register	
	MLC6_SRC register description	
	MLC7_SRC register	
Table 268.	MLC7_SRC register description	.114

Table 269.	Register address map - embedded advanced features page 0	.115
Table 270.	Register address map - embedded advanced features page 1	.116
Table 271.	MAG_SENSITIVITY_L register	.117
Table 272.	MAG_SENSITIVITY_L register description	.117
Table 273.	MAG_SENSITIVITY_H register	.117
Table 274.	MAG_SENSITIVITY_H register description	.117
Table 275.	MAG_OFFX_L register	.118
Table 276.	MAG_OFFX_L register description	.118
Table 277.	MAG_OFFX_H register	.118
Table 278.	MAG_OFFX_H register description	.118
Table 279.	MAG_OFFY_L register	.118
Table 280.	MAG_OFFY_L register description	.118
Table 281.	MAG_OFFY_H register	.118
	MAG_OFFY_H register description	
	MAG_OFFZ_L register	
	MAG_OFFZ_L register description	
	MAG_OFFZ_H register	
	MAG_OFFZ_H register description	
	MAG_SI_XX_L register	
	MAG_SI_XX_L register description	
	MAG_SI_XX_H register	
	MAG_SI_XX_H register description	
	MAG_SI_XY_L register	
	MAG_SI_XY_L register description	
	MAG_SI_XY_H register	
	MAG_SI_XY_H register description	
	MAG_SI_XZ_L register	
	MAG_SI_XZ_L register description	
	MAG_SI_XZ_H register	
	MAG_SI_XZ_H register description	
	MAG_SI_YY_L register	
	MAG_SI_YY_L register description	
	MAG_SI_YY_H register	
	MAG_SI_YY_H register description	
	MAG_SI_YZ_L register	
	MAG SI YZ L register description	
	MAG SI YZ H register	
	MAG SI YZ H register description	
	MAG_SI_ZZ_L register	
	MAG SI ZZ L register description.	
	MAG_SI_ZZ_H register	
	MAG_SI_ZZ_H register description	
	MAG_CFG_A register	
	MAG_CFG_A description	
	MAG_CFG_B register	
	MAG_CFG_B description	
	FSM_LC_TIMEOUT_L register	
	FSM_LC_TIMEOUT_L register description	
	FSM_LC_TIMEOUT_H register	
	FSM LC TIMEOUT H register description	
	FSM PROGRAMS register	
	FSM PROGRAMS register description.	
	FSM START ADD L register	
	FSM START ADD L register description	
		_

Table 323.	FSM_START_ADD_H register	125
Table 324.	FSM_START_ADD_H register description	125
Table 325.	PEDO_CMD_REG register	125
Table 326.	PEDO_CMD_REG register description	125
Table 327.	PEDO_DEB_STEPS_CONF register	126
Table 328.	PEDO_DEB_STEPS_CONF register description	126
Table 329.	PEDO_SC_DELTAT_L register	126
Table 330.	PEDO_SC_DELTAT_H register	126
Table 331.	PEDO_SC_DELTAT_H/L register description	126
Table 332.	MLC_MAG_SENSITIVITY_L register	126
Table 333.	MLC_ MAG_SENSITIVITY_L register description	126
Table 334.	MLC_MAG_SENSITIVITY_H register	126
Table 335.	MLC_ MAG_SENSITIVITY_H register description	126
Table 336.	Register address map - sensor hub registers	127
Table 337.	SENSOR_HUB_1 register	128
Table 338.	SENSOR_HUB_1 register description	128
Table 339.	SENSOR_HUB_2 register	128
Table 340.	SENSOR_HUB_2 register description	128
Table 341.	SENSOR_HUB_3 register	128
Table 342.	SENSOR_HUB_3 register description	128
Table 343.	SENSOR_HUB_4 register	129
Table 344.	SENSOR_HUB_4 register description	129
Table 345.	SENSOR_HUB_5 register	129
Table 346.	SENSOR_HUB_5 register description	129
	SENSOR_HUB_6 register	
	SENSOR_HUB_6 register description	
	SENSOR_HUB_7 register	
	SENSOR_HUB_7 register description	
	SENSOR_HUB_8 register	
	SENSOR_HUB_8 register description	
	SENSOR_HUB_9 register	
Table 354.	SENSOR_HUB_9 register description	130
	SENSOR_HUB_10 register	
Table 356.	SENSOR_HUB_10 register description	131
	SENSOR_HUB_11 register	
	SENSOR_HUB_11 register description	
	SENSOR_HUB_12 register	
	SENSOR_HUB_12 register description	
	SENSOR_HUB_13 register	
	SENSOR_HUB_13 register description	
	SENSOR_HUB_14 register	
	SENSOR_HUB_14 register description	
	SENSOR_HUB_15 register	
	SENSOR_HUB_15 register description	
	SENSOR_HUB_16 register	
	SENSOR_HUB_16 register description	
	SENSOR_HUB_17 register	
	SENSOR_HUB_17 register description.	
	SENSOR_HUB_17 register	
	SENSOR HUB 17 register description.	
	MASTER_CONFIG register.	
	MASTER CONFIG register description	
	SLV0_ADD register	
	SLV ADD register description	

LSM6DSO32X

List of tables

Table 377.	SLV0_SUBADD register	135
Table 378.	SLV0_SUBADD register description	135
Table 379.	SLAVE0_CONFIG register	135
Table 380.	SLAVE0_CONFIG register description	135
	SLV1_ADD register	
Table 382.	SLV1_ADD register description	135
Table 383.	SLV1_SUBADD register	136
Table 384.	SLV1_SUBADD register description	136
Table 385.	SLAVE1_CONFIG register	136
Table 386.	SLAVE1_CONFIG register description	136
Table 387.	SLV2_ADD register	136
Table 388.	SLV2_ADD register description	136
	SLV2_SUBADD register	
	SLV2_SUBADD register description	
	SLAVE2_CONFIG register	
	SLAVE2_CONFIG register description	
	SLV3_ADD register	
	SLV3_ADD register description	
	SLV3_SUBADD register	
	SLV3_SUBADD register description	
	SLAVE3_CONFIG register	
	SLAVE3_CONFIG register description	
	DATAWRITE_SLV0 register	
	DATAWRITE_SLV0 register description	
	STATUS_MASTER register	
	STATUS_MASTER register description	139
		143
Table 404.	Document revision history	144

List of figures

Figure 1.	Generic state machine	. 5
Figure 2.	State machine in the LSM6DSO32X	. 5
Figure 3.	Machine Learning Core in the LSM6DSO32X	. 6
Figure 4.	Pin connections	. 7
Figure 5.	LSM6DSO32X connection modes	. 8
Figure 6.	SPI slave timing diagram (in mode 3)	14
Figure 7.	I ² C slave timing diagram	15
Figure 8.	Read and write protocol (in mode 3)	21
Figure 9.	SPI read protocol (in mode 3)	22
Figure 10.	Multiple byte SPI read protocol (2-byte example) (in mode 3)	22
Figure 11.	SPI write protocol (in mode 3)	23
Figure 12.	Multiple byte SPI write protocol (2-byte example) (in mode 3)	23
Figure 13.	SPI read protocol in 3-wire mode (in mode 3)	24
Figure 14.	I ² C and MIPI I3C SM both active (INT1 pin not connected)	27
Figure 15.	Only MIPI I3C SM active (INT1 pin connected to Vdd_IO)	27
Figure 16.	Block diagram of filters	30
Figure 17.	Accelerometer chain	30
Figure 18.	Accelerometer composite filter	31
Figure 19.	Gyroscope digital chain - Mode 1 and Mode 2	32
Figure 20.	LSM6DSO32X electrical connections in Mode 1	36
Figure 21.	LSM6DSO32X electrical connections in Mode 2	37
Figure 22.	Accelerometer block diagram	58
Figure 23.	LGA-14L 2.5 x 3.0 x 0.86 mm package outline and mechanical data	41
Figure 24.	Carrier tape information for LGA-14 package	42
Figure 25.	LGA-14 package orientation in carrier tape	42
Figure 26.	Reel information for carrier tape of LGA-14 package	43

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS13607 - Rev 1 page 162/162

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: LSM6DSO32XTR