### MC202 - Estruturas de Dados

Guilherme P. Telles

IC

18 de abril de 2023

MC202 1 / 32

### **Avisos**

- Estes slides contêm erros.
- Estes slides são incompletos.
- Estes slides usam português anterior à reforma ortográfica de 2009.

MC202 2 / 32

Análise assintótica de algoritmos

MC202 3 / 32

# Análise de algoritmos

- Podemos analisar um algoritmo para
  - determinar se ele é correto, isto é, sempre pára com o resultado esperado.
  - determinar o desempenho em termos dos recursos que ele usa, como tempo, memória, coqmunicação etc.

MC202 4 / 32

# Desempenho de algoritmos

- Análise experimental.
- Análise assintótica.

MC202 5 / 32

### Análise experimental

- Depende da implementação dos algoritmos e é influenciada pela experiência do programador, linguagem de programação, compilador, sistema operacional e hardware.
- O projeto dos experimentos deve ser prever um número adequado de repetições, escolha adequada de parâmetros para o funcionamento dos programas e para comparações de resultados.
- A análise dos resultados deve levar a conclusões que sejam estatisticamente significativas.
- A adição de um novo algoritmo ou mudanças tecnológicas normalmente exigem que todos os experimentos sejam refeitos.

MC202 6 / 32

### Análise experimental

 Apesar das dificuldades, a análise experimental tem valor e em algumas situações a experimentação é a única forma de analisar eficiência.

MC202 7 / 32

### Análise assintótica

- Para medir tempo sem implementar um algoritmo usamos como medida uma contagem simplificada do número de operações que ele executa em função do tamanho da entrada.
- Nosso tratamento da análise assintótica será introdutório.

MC202 8 / 32

#### Tamanho da entrada

- Definimos o tamanho da entrada de acordo com o problema que estamos resolvendo, por exemplo:
  - busca e ordenação: número de elementos no conjunto
  - calcular o valor de uma função numérica: número de bits necessários para representar um número.
  - caminhos mínimos em grafos: número de vértices + número de arestas no grafo.
- Quase todo problema tem soluções triviais para entradas pequenas.
   Então sempre vamos supor que o tamanho da entrada é suficientemente grande.

MC202 9 / 32

### Sum

- O algoritmo abaixo soma os elementos de um vetor.
- ullet O tamanho da entrada é n, o número de elementos do vetor.

```
\begin{array}{ll} \mathrm{SUM}(A[1\mathinner{.\,.} n]) \\ 1 & sum = 0 \\ 2 & \textbf{for } i = 1 \textbf{ to } n \\ 3 & sum = sum + A[i] \\ \textbf{4} & \textbf{return } sum \end{array}
```

MC202 10 / 32

$$\begin{array}{ll} \mathrm{SUM}(A[1\mathinner{.\,.} n]) & \text{operações} \\ 1 & sum = 0 \\ 2 & \text{for } i = 1 \text{ to } n \\ 3 & sum = sum + A[i] \\ 4 & \text{return } sum \end{array}$$

$$\begin{array}{ll} \mathrm{Sum}(A[1\mathinner{.\,.} n]) & \text{operações} \\ 1 & sum = 0 & 1 \\ 2 & \textbf{for} \ i = 1 \ \textbf{to} \ n \\ 3 & sum = sum + A[i] \\ 4 & \textbf{return} \ sum \end{array}$$

$$\begin{array}{lll} \mathrm{Sum}(A[1\mathinner{.\,.} n]) & \text{operações} \\ 1 & sum = 0 & 1 \\ 2 & \textbf{for} \ i = 1 \ \textbf{to} \ n & n+1 \\ 3 & sum = sum + A[i] \\ 4 & \textbf{return} \ sum \end{array}$$

$$\begin{array}{lll} \mathrm{SUM}(A[1\mathinner{.\,.} n]) & \text{operações} \\ 1 & sum = 0 & 1 \\ 2 & \text{for } i = 1 \text{ to } n & n+1 \\ 3 & sum = sum + A[i] & n \\ 4 & \text{return } sum \end{array}$$

| Sum(A[1n]) |                    | operações |
|------------|--------------------|-----------|
| 1          | sum = 0            | 1         |
| 2          | for $i = 1$ to $n$ | n+1       |
| 3          | sum = sum + A[i]   | n         |
| 4          | return sum         | 1         |

$$\begin{array}{lll} \mathrm{SUM}(A[1\mathinner{.\,.} n]) & \text{operações} \\ 1 & sum = 0 & 1 \\ 2 & \textbf{for} \ i = 1 \ \textbf{to} \ n & n+1 \\ 3 & sum = sum + A[i] & n \\ 4 & \textbf{return} \ sum & 1 \end{array}$$

• Somando temos: T(n) = 1 + (n+1) + n + 1 = 2n + 3.

MC202

$$\begin{array}{lll} \mathrm{SUM}(A[1\mathinner{.\,.} n]) & \text{operações} \\ 1 & sum = 0 & 1 \\ 2 & \textbf{for} \ i = 1 \ \textbf{to} \ n & n+1 \\ 3 & sum = sum + A[i] & n \\ 4 & \textbf{return} \ sum & 1 \end{array}$$

- Somando temos: T(n) = 1 + (n+1) + n + 1 = 2n + 3.
- Descartamos os coeficientes e termos de menor grau.

MC202

$$\begin{array}{lll} \mathrm{SUM}(A[1\mathinner{.\,.} n]) & \text{operações} \\ 1 & sum = 0 & 1 \\ 2 & \textbf{for} \ i = 1 \ \textbf{to} \ n & n+1 \\ 3 & sum = sum + A[i] & n \\ 4 & \textbf{return} \ sum & 1 \end{array}$$

- Somando temos: T(n) = 1 + (n+1) + n + 1 = 2n + 3.
- Descartamos os coeficientes e termos de menor grau.
- Dizemos que o número de operações de  $\mathrm{Sum}$  é proporcional a n.

MC202 11 / 32

$$\begin{array}{lll} \mathrm{SUM}(A[1\mathinner{.\,.} n]) & \text{operações} \\ 1 & sum = 0 & 1 \\ 2 & \textbf{for} \ i = 1 \ \textbf{to} \ n & n+1 \\ 3 & sum = sum + A[i] & n \\ 4 & \textbf{return} \ sum & 1 \end{array}$$

- Somando temos: T(n) = 1 + (n+1) + n + 1 = 2n + 3.
- Descartamos os coeficientes e termos de menor grau.
- Dizemos que o número de operações de  $\mathrm{Sum}$  é proporcional a n.
- Também dizemos que o **tempo de execução** de Sum, T(n), é proporcional a n.

MC202 11 / 32

$$\begin{array}{lll} \mathrm{Sum}(A[1\mathinner{.\,.} n]) & \text{operações} \\ 1 & sum = 0 & 1 \\ 2 & \textbf{for} \ i = 1 \ \textbf{to} \ n & n+1 \\ 3 & sum = sum + A[i] & n \\ 4 & \textbf{return} \ sum & 1 \end{array}$$

- Somando temos: T(n) = 1 + (n+1) + n + 1 = 2n + 3.
- Descartamos os coeficientes e termos de menor grau.
- Dizemos que o número de operações de  $\mathrm{Sum}$  é proporcional a n.
- Também dizemos que o **tempo de execução** de Sum, T(n), é proporcional a n.
- Denotamos T(n) = O(n).

MC202 11 / 32

# Notação O

• f(n) = O(g(n)) se existem constantes positivas c e  $n_0$  tais que  $0 \le f(n) \le cg(n)$  para todo  $n \ge n_0$ .



• Intuitivamente, se f(n) = O(g(n)) então  $\triangleright g$  é um limite superior assintótico para f

MC202 12 / 32

$$\bullet$$
  $n = O(n)$ 

MC202 13 / 3

- $\bullet \ n = O(n)$
- $n = O(n \log n)$

MC202 13 / 32

- $\bullet$  n = O(n)
- $n = O(n \log n)$
- $\bullet \ n = O(n^2)$

MC202 13 / 32

- $\bullet$  n = O(n)
- $n = O(n \log n)$
- $\bullet \ n = O(n^2)$
- $n = O(n^3)$

- n = O(n)
- $n = O(n \log n)$
- $n = O(n^2)$
- $n = O(n^3)$
- $\bullet$   $n = O(n^n)$

• 
$$3n^3 + 10n^2 + 1000 = O(n^3)$$

• 
$$3n^3 + 10n^2 + 1000 = O(n^3)$$

• 
$$3n^3 + 10n^2 + 1000 = O(n^4)$$

MC202 14 / 32

$$3n^3 + 10n^2 + 1000 = O(n^3)$$

• 
$$3n^3 + 10n^2 + 1000 = O(n^4)$$

• 
$$3n^3 + 10n^2 + 1000 \neq O(n^2)$$

• 
$$3n^3 + 10n^2 + 1000 = O(n^3)$$

• 
$$3n^3 + 10n^2 + 1000 = O(n^4)$$

• 
$$3n^3 + 10n^2 + 1000 \neq O(n^2)$$

• 
$$3n^3 + 10n^2 + 1000 \neq O(n^{2.99999})$$

MC202 14 / 32

$$3n^3 + 10n^2 + 1000 = O(n^3)$$

• 
$$3n^3 + 10n^2 + 1000 = O(n^4)$$

• 
$$3n^3 + 10n^2 + 1000 \neq O(n^2)$$

• 
$$3n^3 + 10n^2 + 1000 \neq O(n^{2.99999})$$

• 
$$\frac{1}{300}n^3 - 1000n^2 - 100000n \neq O(n^{2.99999})$$

MC202 14 / 32

$$\bullet \ \pi = O(1)$$

MC202 15 / 32

- $\pi = O(1)$   $10^{80} = O(1)$

### Não são simplificações demais?

• Quando n tende ao infinito, os termos de menor grau são dominados pelo de maior grau.

MC202 16 / 32

## Não são simplificações demais?

- Quando n tende ao infinito, os termos de menor grau são dominados pelo de maior grau.
- As constantes podem fazer uma grande diferença. Mas tendem a ser similares para algoritmos que resolvem o mesmo problema.

MC202 16 / 32

## Não são simplificações demais?

- ullet Quando n tende ao infinito, os termos de menor grau são dominados pelo de maior grau.
- As constantes podem fazer uma grande diferença. Mas tendem a ser similares para algoritmos que resolvem o mesmo problema.
- São simplificações razoáveis e o método funciona bem na prática para fornecer uma **aproximação** do desempenho do algoritmo.

MC202 16 / 32

## Valores da entrada vs. número de operações

- Freqüentemente o tempo de execução de um algoritmo depende não só do tamanho da entrada, mas também dos valores dela.
- Não foi o caso de Sum: independentemente dos valores que estão em A o algoritmo faz a mesma quantidade de trabalho.

MC202 17 / 32

- O tempo de execução de INSERT depende dos valores na entrada.
- Ele recebe um vetor em que  $A[1 \dots n-1]$  está ordenado e posiciona A[n] de forma que  $A[1 \dots n]$  fique ordenado.

$$\begin{split} & \text{INSERT}(A[1 \mathinner{.\,.} n]) \\ & 1 \quad key = A[n] \\ & 2 \quad i = n-1 \\ & 3 \quad \text{while } i > 0 \text{ and } A[i] > key \\ & 4 \quad \quad A[i+1] = A[i] \\ & 5 \quad \quad i = i-1 \\ & 6 \quad A[i+1] = key \end{split}$$

• Em casos como esses há três tipos de análises: de pior caso, de caso médio e de melhor caso.

MC202 19 / 32

### Análise de pior caso

- Na análise de pior caso, o tempo de execução de um algoritmo é o número máximo de instruções que ele pode executar dentre todas as instâncias válidas, em função do tamanho da entrada.
- É boa por fornecer um limite superior para o tempo de execução do algoritmo.

• Pode ser muito pessimista.

MC202 20 / 32

$$\begin{split} &\text{INSERT}(A[1\mathinner{.\,.} n]) \\ &1 \quad key = A[n] \\ &2 \quad i = n-1 \\ &3 \quad \text{while } i > 0 \text{ and } A[i] > key \\ &4 \qquad A[i+1] = A[i] \\ &5 \qquad i = i-1 \\ &6 \quad A[i+1] = key \end{split}$$

 $\bullet$  Para Insert o pior caso é quando  $A[n] < A[1\mathinner{.\,.} n-1].$ 

 $\begin{array}{ll} \operatorname{INSERT}(A[1\mathinner{.\,.} n]) & \operatorname{operações} \\ 1 & key = A[n] \\ 2 & i = n-1 \\ 3 & \textbf{while} \ i > 0 \ \text{and} \ A[i] > key \\ 4 & A[i+1] = A[i] \\ 5 & i = i-1 \\ 6 & A[i+1] = key \end{array}$ 

 $\begin{array}{ll} \operatorname{INSERT}(A[1 \mathinner{.\,.} n]) & \operatorname{operações} \\ 1 & key = A[n] & 1 \\ 2 & i = n-1 \\ 3 & \textbf{while} \ i > 0 \ \text{and} \ A[i] > key \\ 4 & A[i+1] = A[i] \\ 5 & i = i-1 \\ 6 & A[i+1] = key \end{array}$ 

$$\begin{array}{ll} \operatorname{INSERT}(A[1 \mathinner{.\,.} n]) & \operatorname{operações} \\ 1 & key = A[n] & 1 \\ 2 & i = n-1 & 1 \\ 3 & \textbf{while} \ i > 0 \ \text{and} \ A[i] > key \\ 4 & A[i+1] = A[i] \\ 5 & i = i-1 \\ 6 & A[i+1] = key \end{array}$$

| In | SERT(A[1 n])                   | operações |
|----|--------------------------------|-----------|
| 1  | key = A[n]                     | 1         |
| 2  | i = n - 1                      | 1         |
| 3  | while $i > 0$ and $A[i] > key$ | n         |
| 4  | A[i+1] = A[i]                  |           |
| 5  | i = i - 1                      |           |
| 6  | A[i+1] - key                   |           |

| In | SERT(A[1 n])                   | operações |
|----|--------------------------------|-----------|
| 1  | key = A[n]                     | 1         |
| 2  | i = n - 1                      | 1         |
| 3  | while $i > 0$ and $A[i] > key$ | n         |
| 4  | A[i+1] = A[i]                  | n-1       |
| 5  | i = i - 1                      |           |
| 6  | A[i+1] = key                   |           |

MC202 21 / 32

| In | $\operatorname{SERT}(A[1 \dots n])$ | operações |
|----|-------------------------------------|-----------|
| 1  | key = A[n]                          | 1         |
| 2  | i = n - 1                           | 1         |
| 3  | while $i > 0$ and $A[i] > key$      | n         |
| 4  | A[i+1] = A[i]                       | n-1       |
| 5  | i = i - 1                           | n-1       |
| 6  | A[i+1] = keu                        |           |

MC202 21 / 32

| In | SERT(A[1n])                    | operações |
|----|--------------------------------|-----------|
| 1  | key = A[n]                     | 1         |
| 2  | i = n - 1                      | 1         |
| 3  | while $i > 0$ and $A[i] > key$ | n         |
| 4  | A[i+1] = A[i]                  | n-1       |
| 5  | i = i - 1                      | n-1       |
| 6  | A[i+1] = key                   | 1         |

| In | $\operatorname{SERT}(A[1 \dots n])$ | operações |
|----|-------------------------------------|-----------|
| 1  | key = A[n]                          | 1         |
| 2  | i = n - 1                           | 1         |
| 3  | while $i > 0$ and $A[i] > key$      | n         |
| 4  | A[i+1] = A[i]                       | n-1       |
| 5  | i = i - 1                           | n-1       |
| 6  | A[i+1] = key                        | 1         |

• Somando temos 3n + 1 = O(n).

MC202 21 / 32

| In | $\operatorname{SERT}(A[1 \dots n])$ | operações |
|----|-------------------------------------|-----------|
| 1  | key = A[n]                          | 1         |
| 2  | i = n - 1                           | 1         |
| 3  | while $i > 0$ and $A[i] > key$      | n         |
| 4  | A[i+1] = A[i]                       | n-1       |
| 5  | i = i - 1                           | n-1       |
| 6  | A[i+1] = key                        | 1         |

- Somando temos 3n + 1 = O(n).
- Insert é O(n) no pior caso.

#### Análise de melhor caso

- Na análise de melhor caso, o tempo de execução de um algoritmo é o número mínimo de operações que ele pode executar dentre todas as instâncias válidas, em função do tamanho da entrada.
- Costuma ser otimista demais, quase todo algoritmo tem um caso trivial que n\u00e3o representa a dificuldade t\u00edpica do problema.

MC202 22 / 32

$$\begin{split} & \text{INSERT}(A[1 \mathinner{.\,.} n]) \\ & 1 \quad key = A[n] \\ & 2 \quad i = n-1 \\ & 3 \quad \text{while } i > 0 \text{ and } A[i] > key \\ & 4 \quad \quad A[i+1] = A[i] \\ & 5 \quad \quad i = i-1 \\ & 6 \quad A[i+1] = key \end{split}$$

$$\begin{split} & \text{INSERT}(A[1\mathinner{.\,.} n]) \\ & 1 \quad key = A[n] \\ & 2 \quad i = n-1 \\ & 3 \quad \text{while } i > 0 \text{ and } A[i] > key \\ & 4 \quad \quad A[i+1] = A[i] \\ & 5 \quad \quad i = i-1 \\ & 6 \quad A[i+1] = key \end{split}$$

operações

 $\begin{array}{ll} \operatorname{INSERT}(A[1\mathinner{.\,.} n]) & \operatorname{operaç\tilde{o}es} \\ 1 & key = A[n] & 1 \\ 2 & i = n-1 \\ 3 & \textbf{while} \ i > 0 \ \text{and} \ A[i] > key \\ 4 & A[i+1] = A[i] \\ 5 & i = i-1 \\ 6 & A[i+1] = key \end{array}$ 

$$\begin{array}{ll} \operatorname{INSERT}(A[1 \mathinner{.\,.} n]) & \operatorname{operaç\~oes} \\ 1 & key = A[n] & 1 \\ 2 & i = n-1 & 1 \\ 3 & \textbf{while } i > 0 \text{ and } A[i] > key \\ 4 & A[i+1] = A[i] \\ 5 & i = i-1 \\ 6 & A[i+1] = key \end{array}$$

| In | SERT(A[1n])                    | operações |
|----|--------------------------------|-----------|
| 1  | key = A[n]                     | 1         |
| 2  | i = n - 1                      | 1         |
| 3  | while $i > 0$ and $A[i] > key$ | 1         |
| 4  | A[i+1] = A[i]                  |           |
| 5  | i = i - 1                      |           |
| 6  | A[i+1] = keu                   |           |

| In | $SERT(A[1 \dots n])$           | operações |
|----|--------------------------------|-----------|
| 1  | key = A[n]                     | 1         |
| 2  | i = n - 1                      | 1         |
| 3  | while $i > 0$ and $A[i] > key$ | 1         |
| 4  | A[i+1] = A[i]                  | 0         |
| 5  | i = i - 1                      |           |
| 6  | A[i+1] = key                   |           |

| In | $\operatorname{SERT}(A[1 \dots n])$ | operações |
|----|-------------------------------------|-----------|
| 1  | key = A[n]                          | 1         |
| 2  | i = n - 1                           | 1         |
| 3  | while $i > 0$ and $A[i] > key$      | 1         |
| 4  | A[i+1] = A[i]                       | 0         |
| 5  | i = i - 1                           | 0         |
| 6  | A[i+1] = keu                        |           |

| In | $\operatorname{SERT}(A[1 \dots n])$ | operações |
|----|-------------------------------------|-----------|
| 1  | key = A[n]                          | 1         |
| 2  | i = n - 1                           | 1         |
| 3  | while $i > 0$ and $A[i] > key$      | 1         |
| 4  | A[i+1] = A[i]                       | 0         |
| 5  | i = i - 1                           | 0         |
| 6  | A[i+1] = key                        | 1         |

| In | $\operatorname{SERT}(A[1 \dots n])$ | operações |
|----|-------------------------------------|-----------|
| 1  | key = A[n]                          | 1         |
| 2  | i = n - 1                           | 1         |
| 3  | while $i > 0$ and $A[i] > key$      | 1         |
| 4  | A[i+1] = A[i]                       | 0         |
| 5  | i = i - 1                           | 0         |
| 6  | A[i+1] = key                        | 1         |

• Somando temos 4 = O(1).

| In | $\operatorname{SERT}(A[1 \dots n])$ | operações |
|----|-------------------------------------|-----------|
| 1  | key = A[n]                          | 1         |
| 2  | i = n - 1                           | 1         |
| 3  | while $i > 0$ and $A[i] > key$      | 1         |
| 4  | A[i+1] = A[i]                       | 0         |
| 5  | i = i - 1                           | 0         |
| 6  | A[i+1] = key                        | 1         |

- Somando temos 4 = O(1).
- INSERT é O(1) no melhor caso.

#### Análise de caso médio

- Na análise de caso médio computamos a média do tempo de execução para todas as instâncias de um certo tamanho considerando a distribuição de probabilidades para as instâncias daquele tamanho.
- Fornece uma idéia do comportamento esperado de um algoritmo.
- Não costuma ser fácil formalizar a distribuição das instâncias e fazer esse tipo de análise.

MC202 24 / 32

• Se supusermos que A[n] pode ocupar qualquer posição entre 1 e n com a mesma probabilidade, então o número médio de execuções do while de INSERT é

$$\frac{2+3+\ldots+n+1}{n} = \frac{n(n+3)}{2n} = \frac{n+3}{2} = O(n)$$

• INSERT é O(n) no caso médio.

- Ordena um vetor encontrando o máximo n-1 vezes.
- ullet O tempo de execução não depende dos valores em A.

```
\begin{array}{lll} \text{SELECTION-SORT}(A[1\mathinner{.\,.} n]) \\ 1 & \textbf{for } i=n \ \textbf{downto} \ 2 \\ 2 & max=1 \\ 3 & \textbf{for } j=2 \ \textbf{to} \ i \\ 4 & \textbf{if } A[j] > A[max] \\ 5 & max=j \\ 6 & \text{exchange } A[i] \ \text{and } A[max] \end{array}
```

- Ordena um vetor encontrando o máximo n-1 vezes.
- O tempo de execução não depende dos valores em A.

```
\begin{array}{lll} \text{SELECTION-SORT}(A[1\mathinner{.\,.} n]) & \text{operações} \\ 1 & \textbf{for } i=n \ \textbf{downto} \ 2 \\ 2 & max=1 \\ 3 & \textbf{for } j=2 \ \textbf{to} \ i \\ 4 & \textbf{if } A[j] > A[max] \\ 5 & max=j \\ 6 & \text{exchange } A[i] \ \text{and } A[max] \end{array}
```

- Ordena um vetor encontrando o máximo n-1 vezes.
- O tempo de execução não depende dos valores em A.

```
\begin{array}{lll} \text{SELECTION-SORT}(A[1\mathinner{.\,.} n]) & \text{operações} \\ 1 & \textbf{for } i=n \ \textbf{downto} \ 2 & n \\ 2 & max=1 \\ 3 & \textbf{for } j=2 \ \textbf{to} \ i \\ 4 & \textbf{if } A[j] > A[max] \\ 5 & max=j \\ 6 & \text{exchange } A[i] \ \text{and } A[max] \end{array}
```

- Ordena um vetor encontrando o máximo n-1 vezes.
- O tempo de execução não depende dos valores em A.

```
\begin{array}{lll} \text{SELECTION-SORT}(A[1\mathinner{.\,.} n]) & \text{operações} \\ 1 & \textbf{for } i=n \ \textbf{downto} \ 2 & n \\ 2 & max=1 & n-1 \\ 3 & \textbf{for } j=2 \ \textbf{to} \ i \\ 4 & \textbf{if } A[j] > A[max] \\ 5 & max=j \\ 6 & \text{exchange } A[i] \ \text{and } A[max] \end{array}
```

- Ordena um vetor encontrando o máximo n-1 vezes.
- ullet O tempo de execução não depende dos valores em A.

```
\begin{array}{lll} \text{SELECTION-SORT}(A[1\mathinner{.\,.}n]) & \text{operações} \\ 1 & \textbf{for } i=n \ \textbf{downto} \ 2 & n \\ 2 & max=1 & n-1 \\ 3 & \textbf{for } j=2 \ \textbf{to} \ i & \sum_{k=2}^n k \\ 4 & \textbf{if } A[j] > A[max] \\ 5 & max=j \\ 6 & \text{exchange } A[i] \ \text{and } A[max] \end{array}
```

- Ordena um vetor encontrando o máximo n-1 vezes.
- O tempo de execução não depende dos valores em A.

```
operações
Selection-Sort(A[1..n])
   for i = n downto 2
                                          n
                                          n-1
        max = 1
3
        for j = 2 to i
                                          \sum_{k=2}^{n} k
             if A[j] > A[max]
4
                                          \sum_{k=2}^{n} k - (n-1)
5
                  max = j
6
        exchange A[i] and A[max]
```

- Ordena um vetor encontrando o máximo n-1 vezes.
- O tempo de execução não depende dos valores em A.

```
operações
Selection-Sort(A[1..n])
   for i = n downto 2
                                           n
                                           n-1
         max = 1
3
        for j = 2 to i
                                           \sum_{k=2}^{n} k
             if A[j] > A[max]
4
                                      \sum_{k=2}^{n} k - (n-1)
5
                                        \sum_{k=2}^{n} k - (n-1)
                   max = j
6
        exchange A[i] and A[max]
```

- Ordena um vetor encontrando o máximo n-1 vezes.
- O tempo de execução não depende dos valores em A.

```
operações
Selection-Sort(A[1..n])
   for i = n downto 2
                                        n
                                        n-1
        max = 1
3
        for j = 2 to i
                                        \sum_{k=2}^{n} k
            if A[j] > A[max]
4
                                 \sum_{k=2}^{n} k - (n-1)
5
                                 \sum_{k=2}^{n} k - (n-1)
                 max = j
6
        exchange A[i] and A[max] n-1
```

- Ordena um vetor encontrando o máximo n-1 vezes.
- O tempo de execução não depende dos valores em A.

$$\begin{array}{llll} \text{SELECTION-SORT}(A[1\mathinner{.\,.} n]) & \text{operações} \\ 1 & \text{for } i=n \text{ downto } 2 & n \\ 2 & max=1 & n-1 \\ 3 & \text{for } j=2 \text{ to } i & \sum_{k=2}^n k \\ 4 & \text{if } A[j] > A[max] & \sum_{k=2}^n k - (n-1) \\ 5 & max=j & \sum_{k=2}^n k - (n-1) \\ 6 & \text{exchange } A[i] \text{ and } A[max] & n-1 \end{array}$$

• Selection-Sort é  $O(n^2)$ .

•  $f(n) = \Omega(g(n))$  se existem constantes positivas c e  $n_0$  tais que  $0 \le cg(n) \le f(n)$  para todo  $n \ge n_0$ .



• Intuitivamente, se  $f(n) = \Omega(g(n))$  então  $\triangleright g$  é um limite inferior assintótico para f

MC202 27 / 32

Θ

•  $f(n)=\Theta(g(n))$  se existem constantes positivas  $c_1$ ,  $c_2$  e  $n_0$  tais que  $0\leq c_1g(n)\leq f(n)\leq c_2g(n)$  para todo  $n\geq n_0$ 



• Intuitivamente, se  $f(n) \in \Theta(g(n))$  então  $\triangleright g$  é limite inferior e superior assintótico para f.

MC202 28 / 32



MC202 29 / 32

#### Memória

- Para a memória podemos usar a mesma técnica, contando o número de posições de memória usadas pelo algoritmo.
- Não contamos a memória usada pela entrada e pela saída.

MC202 30 / 32

# Algumas funções

| $\sim$ $n$            | l        |         |                    |                        |                       |                       |
|-----------------------|----------|---------|--------------------|------------------------|-----------------------|-----------------------|
| ops                   | 10       | 20      | 50                 | 100                    | 500                   | 1000                  |
| $100000 \cdot \log n$ | 0.0003   | 0.0004  | 0.0005             | 0.0006                 | 0.0008                | 0.0009                |
| $10000 \cdot n$       | 0.0001   | 0.0002  | 0.0005             | 0.001                  | 0.005                 | 0.01                  |
| $1000 \cdot n \log n$ | 0.00003  | 0.00009 | 0.0003             | 0.0007                 | 0.004                 | 0.01                  |
| $100 \cdot n^2$       | 0.00001  | 0.00004 | 0.0003             | 0.001                  | 0.03                  | 0.1                   |
| $10 \cdot n^3$        | 0.00001  | 0.00008 | 0.001              | 0.01                   | 1.3                   | 10                    |
| $2 \cdot n^4$         | 0.00002  | 0.0003  | 0.01               | 0.2                    | 125                   | $0.5 \; { m horas}$   |
| $n^5$                 | 0.0001   | 0.00320 | 0.31250            | 10                     | $8.68~\mathrm{horas}$ | $11.57~\mathrm{dias}$ |
| $n^{\log n}$          | 0.000002 | 0.0004  | 4                  | $5.4~{ m horas}$       | $10^5 \ { m séc.}$    |                       |
| $2^n$                 | 0.000001 | 0.001   | $13~{\sf dias}$    | $10^{11} \ {\rm séc.}$ |                       |                       |
| $3^n$                 | 0.00006  | 3       | $10^5 \ { m séc.}$ |                        |                       |                       |
| n!                    | 0.004    | 77 anos |                    |                        |                       |                       |

Tempo supondo  $10^9$  operações de algoritmo por segundo.

MC202 31 / 32

• Mais exemplos ao longo do semestre.

MC202 32 / 32