Agenda

- 1. Limitation of DNN
 - 2D 데이터를 1D로 평탄화하여 DNN 적용할 수 있지만 위치에 상관없이 동일한 수준의 중요도를 갖는다(6과 9)
 - 1. 전체 글자가 조금만 이동하면 새로운 학습데이터로 처리해야 한다 Translation Invariance 특성 보장X
 - 2. 글자 크기가 변하거나, 회전, 변형하면 좋은 결과를 기대하기 어렵다 Scale / Rotation / Distortion Invariace 특성 보장X
- ① 학습 시간(training time): 크기, 회전, 이동 등 모든 데이터를 학습해야 하고 입력영상이 커지고, Layer가 깊어지면
- ② DNN 모델의 크기(network size): 모델의 크기가 커지고
- ③ 변수의 개수(number of parameters) 파라미터의 수도 많아진다
- 2. 합성곱신경망(CNN. Convolutional Neural Networks)

Kernel(filter, weight)

Receptive field

Stride

Padding

Pooling: Max / Average Pooling

합성곱신경망(CNN. Convolutional Neural Network)

변환 불변성에 기초하여 이미지를 분석에 사용하는 깊은 인공신경망의 한 종류 필터 역할을 스스로 학습하여 상대적으로 전처리를 거의 사용하지 않는다

Convolution: filter 연산에서 사용되어 영상에서 feature를 추출할 때 사용

Convolution의 과정	1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 * 1 0 1 (Filter, Kernel, Weight)						
	Image	Convolved Feature					
	1 x1 1 x0 1 x1 0 0 0 x0 1 x1 1 x0 1 0 0 x1 0 x0 1 x1 1 1 0 0 1 1 0 0	→ 4					
	1 1 x1 1 x0 0 x1 0 0 1 x0 1 x1 1 x0 0 0 0 x1 1 x0 1 x1 1 0 0 1 1 0 0 1 1 0	4 3					
	:						
	Green: 영상 이미지 Yellow: Convolution이 일어나는 영역 Red: Convolution Kernel						

Convolution + NN : Convolution을 사용하는 신경망 연산 2개 이상의 CNN layer

& 입력 영상뿐만 아니라 중간 Feature map에도 Convolution 적용

Receptive Field(수용 영역)

: 출력 layer의 뉴런 하나에 영향을 미치는 입력 뉴런들의 공간 크기 외부 자극이 일부 영역에만 영향을 미친다(전체에 영향 X) 영상에서 특정 위치에 있는 픽셀들은 주변에 있는 일부 픽셀들과만 correlation이 높다 → 거리가 멀수록 영향이 감소한다

CNN의 장점

영상을 2D에서 1D로 평탄화하지 않으므로, 형상을 유지한다

∴ 입출력 모두 3차원 데이터로 처리하기 때문에 공간적 정보를 유지할 수 있다

Stride: Filter가 움직이는 정보

stride = n : n칸씩 움직인다

Output size 구하기

$$(N - F) / stride + 1$$

ex)
$$N = 7$$
, $F = 3$

stride = 1 : (7-3)/1+1 = 5 (ok)

stride = 2 : (7-3)/2+1 = 3 (ok)

stride = 3:(7-3)/3+1=2.33(X)

stride = 4 : (7-3)/4+1 = 2 (ok)

Padding: 영상 사이즈 유지하기

ex) input 7x7 image pad with 1 pixel border(회색)

if. pad의 값 = 0 : zero pad

 \Leftarrow zero pad with 1

Kernel에 따른 Padding의 크기

= (F / 2)의 소수점 첫째 자리 <u>올</u>림

ex)

F = 3: zero pad with 1

F = 5: zero pad with 2

F = 7: zero pad with 3

Convolution 결과의 Size 구하기

	Parameter				
	Filter의 개수: K_1				
Input: $W_1 \times H_1 \times D_1$	Filter의 한 변 크기: F_1				
	Stride: F				
	Zero Pad의 개수: S				
	$W_2 = (W_1 - F + 2P)/S + 1$				
Output: $W_2 \times H_2 \times D_2$	$H_2 = (H_1 - F + 2P)/S + 1$				
Output: $W_2 \wedge H_2 \wedge D_2$	$D_2 = K$				
	→ filter 개수로 output의 depth 정할 수 있다				
with parameter sharing, $F ullet F ullet D_1$ weight per filter					
$total \Rightarrow (F \bullet F \bullet D_1) \bullet K weights and K biases$					

1. Visualization of Activation Map(Feature Map)

2. Pooling Layer(Sampling)

: resizing Conv layer

Max Pooling

Filter 내에서 가장 큰 값 선택 ⇒ 더 강한 특징만 남는다

	Single depth slice					빨강색 네모에서 가장 큰 값: 6	
x	1	1	2	4	max pool with 2x2 filters and stride 2		
	5	6	7	8		6 8	초록색 네모에서 가장 큰 값: 8
	3	2	1	0	3 4		
	1	2	3	4			' 노랑색 네모에서 가장 큰 값: 3
	y						파랑색 네모에서 가장 큰 값: 4

Average Pooling

Filter 내에서 평균값 선택

⇒ Spatial Structure만 보존하여 이미지가 smooth 해진다 빨강색 네모에서 평균값: Single depth slice (1+1+5+6)/42 4 초록색 네모에서 평균값: Average Pool with 2x2 filters 13/4 21/4 and stride 2 (2+4+7+8)/48/4 8/4 1 노랑색 네모에서 평균값: (3+2+1+2)/43 4 파랑색 네모에서 평균값: У (1+0+3+4)/4

- (2x2 filter의 경우) 전체 데이터의 75%를 버리고 25%만 선택
 - → Computatioinal Complexity 감소한다
- Depth를 줄이지 않고 Spatially하게만 줄인다(Height & Width) 32x32x3 → 16x16x3
- Q) Stride와 Pooling 모두 down-sampling인데 어느 것 사용?
 - A) 최근 CNN 아키텍쳐는 stride를 사용하는 경우가 많다(stride 추천)

3. FC layer(Fully Connected Layer) 마지막 Pooling layer를 통과한 데이터가 1x1024 feature를 갖는다면 FC layer with W=1024x5를 통과하여 1x5의 Output이 나온다

