DT Scrum cycle Exercise

Phillip Llewellyn

7/19/2021

Decision Tree Scrum Cycle 7

Step 1

• Load data and get summaries

```
data <-read.csv("BankLoan Dataset 2021 - Clean .csv") #HR.csv
#str(data)
data$lead <- as.factor(data$lead)
data$won <- as.factor(data$won)
summary(data)</pre>
```

```
##
         X.1
                                            RefNum
                                                                agerange
##
    Min.
                1.0
                      Min.
                                  1.0
                                        Min.
                                                :10023467
                                                            18-30 : 97
##
    1st Qu.: 281.5
                      1st Qu.: 281.5
                                        1st Qu.:10023748
                                                            31-40
                                                                   :430
    Median : 562.0
                      Median: 562.0
                                        Median: 10024028
                                                            41-60
                                                                   :594
##
    Mean
          : 562.0
                             : 562.0
                                        Mean
                                                :10024028
                                                            over 60: 2
                      Mean
    3rd Qu.: 842.5
                      3rd Qu.: 842.5
                                        3rd Qu.:10024308
##
    Max.
           :1123.0
                      Max.
                             :1123.0
                                        Max.
                                                :10024589
##
##
                                            marital
         age
                               job
                                                            education
##
    Min.
           :22.00
                     blue-collar:348
                                        divorced:165
                                                        primary :198
    1st Qu.:35.00
                     technician:167
##
                                        married:709
                                                        secondary:626
    Median :42.00
                                                        tertiary:201
                     admin.
                                 :153
                                        single :249
           :42.46
                                                        unknown: 98
##
    Mean
                     management:148
    3rd Qu.:50.00
##
                     services
                                 :145
##
    Max.
           :61.00
                     retired
                                 : 49
##
                     (Other)
                                 :113
##
       balance
                       housing
                                   loan
                                                  month
                                                                   date
##
    Min.
           : -932.0
                       no:129
                                 no:624
                                                     : 94
                                                            1/1/2018: 94
                                            april
    1st Qu.:
                23.0
                       yes:994
                                 yes:499
                                            february: 94
                                                            2/1/2018: 94
    Median :
              167.0
                                                            3/1/2018: 94
##
                                            january: 94
    Mean
              567.3
                                            july
                                                     : 94
                                                            4/1/2018: 94
                                                            5/1/2018: 94
##
    3rd Qu.:
              446.0
                                            june
                                                     : 94
##
    Max.
           :58544.0
                                                     : 94
                                                            6/1/2018: 94
                                            march
##
                                            (Other) :559
                                                            (Other):559
##
       duration
                         deposit
                                        lead
                                                       product
                                                                     qualified
                                                           :217
##
    Min.
          :
               2.0
                      Min.
                            : 1.80
                                        0:350
                                                                   Min.
                                                                          :0.0000
                                                 auto
    1st Qu.: 130.0
                      1st Qu.: 43.75
                                        1:773
                                                           : 25
                                                                   1st Qu.:0.0000
                                                 business
   Median : 203.0
                      Median: 52.94
                                                mortgage
                                                           :312
                                                                  Median :1.0000
```

```
Mean : 270.5
                   Mean
                          : 84.09
                                           no product:350
                                                           Mean
                                                                  :0.6073
##
   3rd Qu.: 315.5
                   3rd Qu.: 92.71
                                           unsecured :219
                                                           3rd Qu.:1.0000
##
  Max. :2177.0
                   Max. :388.68
                                                           Max.
                                                                 :1.0000
##
##
     contacted
                    won
                              loanvalue
                                               NPS
                                                           contacted_and_won
## Min. :-1.0000
                    0:626
                            Min. : 1526
                                                 : 3.000
                                                           Min.
                                                                  :0.0000
                                           Min.
  1st Qu.: 0.0000
                    1:497
                            1st Qu.: 3397
                                           1st Qu.: 7.000
                                                           1st Qu.:0.0000
## Median : 0.0000
                            Median: 6530
                                           Median : 7.000
                                                           Median :0.0000
## Mean : 0.2787
                            Mean : 5991
                                           Mean : 7.874
                                                           Mean
                                                                  :0.4426
   3rd Qu.: 1.0000
                            3rd Qu.: 7632
                                           3rd Qu.: 9.000
                                                           3rd Qu.:1.0000
##
## Max. : 1.0000
                            Max.
                                  :12353
                                           Max. :10.000
                                                           Max.
                                                                  :1.0000
##
## qualified_and_contacted lead_and_qualified
## Min.
         :-1.0000
                          Min.
                                :0.000
## 1st Qu.: 0.0000
                          1st Qu.:1.000
## Median : 0.0000
                          Median :1.000
## Mean : 0.3419
                          Mean :0.919
## 3rd Qu.: 1.0000
                          3rd Qu.:1.000
## Max. : 1.0000
                          Max. :1.000
##
```

#str(data)

Step 2

123 130

• Split data into training and testing data

```
# separate the data for an equal split
data_lead_1 = data[data$lead == 1,]
data_lead_0 = data[data$lead == 0,]
#randomize the sampling
set.seed(15)
newDataset_lead_1 <-sample.split(Y=data_lead_1$lead, SplitRatio = 0.30)</pre>
newDataset_lead_0 <-sample.split(Y=data_lead_0$lead, SplitRatio = 0.65)</pre>
trainData <-rbind(data_lead_1[newDataset_lead_1,], data_lead_0[newDataset_lead_0,])</pre>
testData <- rbind(data_lead_1[!newDataset_lead_1,][1:130,], data_lead_0[!newDataset_lead_0,])
summary(trainData$lead)
## 0
         1
## 227 231
summary(testData$lead)
   0
         1
```

Step 3

• Fit a Decision Tree using training data

```
# The . specifies all other columns ( Class ~ . )
DTmodel <- rpart(lead ~ education + age + job + marital + deposit + balance + loan + housing, method="c</pre>
```

- Target Variable = Class,
- Input Vaiables = All,
- split =gini or information gain
- \bullet control = rpart. control for prepruning DT minsplit- min records at node for split to occur, max depth - depth of the DT
- Fitting the model

```
rpart.plot(DTmodel, type=3, extra = 2, fallen.leaves = F, cex = 0.8)
```


#try extra with 2,8,4, 101

• Print out the information

```
#(DTmodel) # detailed summary of splits
DTmodel #prints the rules
```

```
## n = 458
##
## node), split, n, loss, yval, (yprob)
        * denotes terminal node
##
##
   1) root 458 227 1 (0.4956332 0.5043668)
##
     2) job=blue-collar,entrepreneur,housemaid,management,retired,self-employed,technician 307 141 0 (
##
       4) deposit>=11.635 291 128 0 (0.5601375 0.4398625)
##
##
         8) loan=no 140 51 0 (0.6357143 0.3642857) *
##
         9) loan=yes 151 74 1 (0.4900662 0.5099338)
          18) age< 43.5 43 17 0 (0.6046512 0.3953488)
##
##
            36) balance>=93.5 30
                                  9 0 (0.7000000 0.3000000) *
            37) balance< 93.5 13
                                 5 1 (0.3846154 0.6153846) *
##
##
          19) age>=43.5 108 48 1 (0.4444444 0.5555556) *
       ##
##
     3) job=admin.,services,student,unemployed,unknown 151 61 1 (0.4039735 0.5960265)
##
       6) education=primary, secondary 128 56 1 (0.4375000 0.5625000)
        12) balance < 745 111 52 1 (0.4684685 0.5315315)
##
##
          24) balance>=314.5 27 10 0 (0.6296296 0.3703704) *
          25) balance< 314.5 84 35 1 (0.4166667 0.5833333)
##
##
            50) age>=48.5 19
                             8 0 (0.5789474 0.4210526) *
            51) age< 48.5 65 24 1 (0.3692308 0.6307692) *
##
##
        13) balance>=745 17
                            4 1 (0.2352941 0.7647059) *
##
       7) education=tertiary,unknown 23 5 1 (0.2173913 0.7826087) *
```

• Run the second model

```
#DTmodel2 <- J48(as.factor(Class) ~., trainData, control = Weka_control(R = TRUE, M = round(NROW(trainData))
#DTmodel2 <- J48(as.factor(left) ~., trainData, control = Weka_control(R = TRUE, M = 50))
#IGDT5model <- J48(as.factor(eReader_Adoption)~., trainData ,control = Weka_control(R = TRUE, M = round)
#IGDT10model <- J48(as.factor(eReader_Adoption)~., trainData ,control = Weka_control(R = TRUE, M = round)</pre>
```

• Plot the model

```
#plot(DTmodel)
```

Step 4

• Use the fitted model to do predictions for the test data

```
predTest <- predict(DTmodel, testData, type="class")
probTest <- predict(DTmodel, testData, type="prob")
actualTest <- testData$lead</pre>
```

Step 5

 $\bullet\,$ Create Confusion Matrix and compute the misclassification error

```
t1 <- table(predictions=predTest, actual = actualTest)</pre>
t1 # Confusion matrix
               actual
## predictions 0 1
              0 66 47
              1 57 83
##
accuracy1 \leftarrow sum(diag(t1))/sum(t1) * 100
accuracy1
## [1] 58.89328
#calculatee sensitivity
sensitivity \leftarrow t1[2,2]/sum(t1[2,]) *100
{\tt sensitivity}
## [1] 59.28571
#calculate specificity
specificity \leftarrow t1[1,1]/sum(t1[1,]) *100
specificity
## [1] 58.40708
   • Visualization of probabilities
hist(probTest[,2], breaks = 100)
```

Histogram of probTest[, 2]

• ROC and Area Under the Curve

```
ROC <- roc(actualTest, probTest[,2])
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(ROC, col="blue")</pre>
```



```
AUC <- auc(ROC)
AUC
```

Area under the curve: 0.5976

• A new dataframe with Predicted Prob, Actual Value and Predicted Value

```
predicted_data <- data.frame(Probs = probTest, Actual_Value= actualTest ,Predicted_Value = predTest )
    #predicted_data$Probs.0 <- Class 0 Probability
    #predicted_data$Probs.1 <- Class 1 Probability
predicted_data <- predicted_data[order(predicted_data$Probs.1, decreasing=TRUE),] # Sort on Probabiliti
predicted_data$Rank <- 1:nrow(predicted_data) # Add a new variable rank</pre>
```

• plot the graph

```
ggplot(data=predicted_data, aes(x=Rank, y=Probs.1)) +
geom_point(aes(color = Actual_Value)) + xlab("Index") + ylab("Predicted Probability of getting Diabet
```


Step 6

• Use model to make predictions on newdata. Note we can specify the newData as data.frame with one or many records

```
#newData <- data.frame(Nbr_Preg = 4 , Glucose_test = 100, Triceps_SF=40,BP =95, S_insulin = 150, BMI= 3
#predProbability <-predict(DTmodel, newData, type='prob')
#predProbability

## Performnce measures -
#setseed(1), gini
# Simplicity = 15 leaves
# Accuracy = 0.734
# AUC = 0.7627

#setseed(1), information
# Simplicity = 10 leaves
# Accuracy = 0.71
# AUC = 0.7834</pre>
```

Step 7

• EXAMINING STABILITY - Creating Decile Plots for Class 1 or 0 Sort

```
#----Create empty df-----
#decileDF<- data.frame(matrix(ncol=3,nrow = 0))</pre>
#colnames(decileDF)<- c("Decile", "per_correct_preds", "No_correct_Preds", "cum_preds")</pre>
#----Initialize varables
#num_of_deciles=10
#Obs_per_decile<-nrow(predicted_data)/num_of_deciles
#decile_count=1
#start=1
#stop=(start-1) + Obs_per_decile
#prev_cum_pred<-0</pre>
\#x = 0
#----Loop through DF and create deciles
\#while (x < nrow(predicted\_data))  {
# subset<-predicted_data[c(start:stop),]</pre>
# correct_count<- ifelse(subset$Actual_Value==subset$Predicted_Value,1,0)</pre>
# no_correct_Preds<-sum(correct_count,na.rm = TRUE)</pre>
# per_correct_Preds<-(no_correct_Preds/Obs_per_decile)*100</pre>
# cum_preds<-no_correct_Preds+prev_cum_pred</pre>
\# \quad addRow < -data. frame ("Decile" = decile\_count", "per\_correct\_preds" = per\_correct\_Preds", "No\_correct\_Preds" = no\_correct\_preds" = no\_corre
# decileDF<-rbind(decileDF,addRow)</pre>
# prev_cum_pred<-prev_cum_pred+no_correct_Preds</pre>
# start<-stop+1</pre>
# stop=(start-1) + Obs_per_decile
\# x<-x+0bs\_per\_decile
# decile_count<-decile_count+1</pre>
#}
#----Stability plot (correct preds per decile)
#plot(decileDF$Decile, decileDF$per_correct_preds, type = "l", xlab = "Decile", ylab = "Percentage of corre
```