

دانشکدهی علوم ریاضی

مهلت اصلی: ۱۰ خرداد ۹۸

مقدمهای بر رمزنگاری

تمرین شماره ۲

مهلت نهایی: ۱۷ خرداد ۹۸

مدرّس: دکتر شهرام خزائی

- Upload your answers on courseware with the name: StudentNumber.pdf
- Upload a PDF file. Image and zip formats are not accepted.
- Similar answers will not be graded.
- NO answers will be accepted via e-mail.
- Deadline time is always at 23:55 and will not be extended.
- You should submit your answers before soft deadline.
- You will lose 5 percent for each day delay before hard deadline.
- You can not submit any time after hard deadline.
- All problem sets include at least 150 points which is the full score.
- Answering questions marked with (*) is mandatory.
- You can gain up to 180 points by answering unmarked questions.
- For any question contact pouria.fallahpour@gmail.com

Problem 1*

Let H be a collision resistant hash function. Which of the following is collision resistant? briefly prove your answer. (as usual, we use \parallel to denote string concatenation) (20 Points)

- 1. $H_1(m) = H(m||0)$
- 2. $H_2(m) = H(m||m)$
- 3. $H_3(m) = H(m)[0, ..., 31]$ (i.e. output the first 32 bits of the hash)

- 4. $H_4(m) = H(m) || H(0)$
- 5. $H_5(m) = H(|m|)$ (i.e. hash the length of m)
- 6. $H_6(m) = H(m) \oplus H(m \oplus 1^{|m|})$ (where $m \oplus 1^{|m|}$ is the complement of m)

Problem 2*

Let $H: \{0,1\}^* \to \{0,1\}^n$ be a good hash function. We know that finding a collision on H can be done with $O(2^{n/2})$ random samples of H. How many random samples would it take until we obtain a three way collision, namely distinct strings x,y,z such that H(x) = H(y) = H(z)? (15 Points)

Problem 3*

Let F be a pseudorandom function. Show that the following MAC for messages of length 2n is insecure: The shared key is a random $k \in \{0,1\}^n$. To authenticate a message $m_1||m_2|$ with $|m_1| = |m_2| = n$, compute the tag $\langle F_k(m_1), F_k(F_k(m_2)) \rangle$. (10 Points)

Problem 4*

An attacker intercepts the following ciphertext (hex encoded):

20814804c1767293b99f1d9cab3bc3e7 ac1e37bfb15599e5f40eef805488281d

He knows that the plaintext is the ASCII encoding of the message "Pay Bob 100 \$" (excluding the quotes). He also knows that the cipher used is CBC encryption with a random IV using AES as the underlying block cipher. Show that the attacker can change the ciphertext so that it will decrypt to "Pay Bob 500 \$". What is the resulting ciphertext (hex encoded)? This shows that CBC provides no integrity. (10 Points)

Problem 5*

Say $\Pi = (\mathsf{Gen}, \mathsf{Mac}, \mathsf{Vrfy})$ is a secure MAC, and for $k \in \{0, 1\}^n$ the tag generation algorithm Mac_k always outputs tags of length t(n). Prove that t must be supe-logarithmic or, equivalently, that if $t(n) = O(\log n)$ then Π cannot be a secure MAC. (15 Points) **Hint:** Consider the probability of randomly guessing a valid tag.

Problem 6

Provide formal definitions for second pre-image resistance and pre-image resistance. Prove that any hash function that is collision resistant is second pre-image resistant, and that any hash function that is second pre-image resistant is pre-image resistant. (30 Points)

Problem 7

Suppose H_1 and H_2 are collision resistant hash functions. Argue about the collision resistance of $G_1(m) = H_2(H_1(m))$ and $G_2(m) = H_1(m) \| H_1(m)$. Now suppose that H_1 is collision resistant but H_2 is not. How do you answer the question this time? What about $G_3(m) = H_1(H_2(m))$? (15 Points)

Problem 8

Let (Gen_1, H_1) and (Gen_2, H_2) be two hash functions. Define (Gen, H) so that Gen runs Gen_1 and Gen_2 to obtain keys s_1 and s_2 , respectively. Then define $H^{s_1,s_2}(x) = H_1^{s_1}(x)||H_2^{s_2}(x)$.

- Prove that if at least one of (Gen_1, H_1) and (Gen_2, H_2) is collision resistant, then (Gen, H) is collision resistant. (10 Points)
- Determine whether an analogous claim holds for second pre-image resistance and pre-image resistance, respectively. Prove your answer in each case. (15 Points)

Problem 9

We call the triple $\Pi=(\mathsf{Gen},\mathsf{E},\mathsf{D})$ a tweakable block cipher on message space $\mathcal M$ and tweak space $\mathcal T$

- $k \leftarrow \mathsf{Gen}(1^n)$ is the key generation algorithm that on input 1^n generates a key $k \in \mathcal{K}$
- $c \leftarrow \mathsf{E}_k(t,m)$ is deterministic permutation that maps a message $m \in \mathcal{M}$, a key $k \in \mathcal{K}$ and a tweak value $t \in \mathcal{T}$ to $c \in \mathcal{M}$
- $m \leftarrow \mathsf{D}_k(t,c)$ is the inverse permutation that maps a ciphertext $c \in \mathcal{M}$, a key $k \in \mathcal{K}$ and a tweak value $t \in \mathcal{T}$ to message $m \in \mathcal{M}$ such that $\forall m \in \mathcal{M} \ \forall k \in \mathcal{K} \ \forall t \in \mathcal{T} : \mathsf{Dec}_k(t,\mathsf{Enc}_k(t,m)) = m$.

A tweakable block cipher is said to be secure if no efficient adversary can distinguish it from random permutations even for tweak values of his choice. Give a formal definition of the security of a tweakable block cipher. (15 Points)

Let $\mathsf{E}_k(x)$ be a (normal) secure block cipher with $\mathcal{K} = \{0,1\}^n$ and $\mathcal{M} = \{0,1\}^n$ for security parameter n. Consider the following tweakable block cipher:

$$\mathsf{E}'_{k_1||k_2}(t,x) = \mathsf{E}_{k_1}(x) \oplus \mathsf{E}_{k_2}(t)$$

What is the corresponding inverse permutation. Is this tweakable block cipher secure? (15 Points)

Problem 10

Suppose we are given a block cipher (Gen, Enc, Dec) operating on domain χ . We want a block cipher (Gen', Enc', Dec') that operates on a smaller domain $\chi' \subset \chi$ and defined as follows:

```
\operatorname{Enc}'(k,x) := y \leftarrow \operatorname{Enc}(k,x)
while y \notin \chi' do: y \leftarrow \operatorname{Enc}(k,y)
output y
```

 $\mathsf{Dec'}(k,y)$ is defines analogously, applying $\mathsf{Dec}(k,.)$ until the result falls in χ' . Clearly $(\mathsf{Gen'},\mathsf{Enc'},\mathsf{Dec'})$ are defined on domain χ' .

- With $t := |\chi|/|\chi'|$, how many evaluations of Enc are needed in expectation to evaluate Enc'(k,x) as a function of t? (15 Points)
- Show that if (Gen, Enc, Dec) is a secure block cipher with domain χ then (Gen', Enc', Dec') is a secure block cipher with domain χ' . Try proving security bu induction on $|\chi| |\chi'|$ (25 Points)

Problem 11

Find real collisions for the following two compression functions:

- $f_1(x,y) = AES(y,x) \oplus y$, and
- $f_2(x,y) = AES(x,x) \oplus y$

where AES(x, y) is the AES-128 encryption of y under key x. You can use any publicly available AES source code. (15 Points)

Problem 12

- Show that DES has the property that $DES_k(x) = \overline{DES_k(\bar{x})}$ for every key k and input x (where z denotes the bitwise complement of z). This is called the complementarity property of DES. (The description of DES given in chapter 5 of Katz-Lindell is sufficient for this exercise.)(10 Points)
- Use the previous exercise to show how it is possible to find the secret key in DES (with probability 1) in time 2⁵⁵. (Hint: Use a chosen-plaintext attack with two carefully chosen plaintexts.) (15 Points)

Problem 13

Recall that the Luby-Rackoff theorem states that applying a four round Feistel network to a secure PRF gives a secure block cipher. Let's see what goes wrong if we only use a two round Feistel. Let $F: \{0,1\}^n \times \{0,1\}^{32} \to \{0,1\}^{32}$ be a secure PRF. Recall that a 2-round Feistel defines the following keyed permutation $E: \{0,1\}^{2n} \times \{0,1\}^{64} \to \{0,1\}^{64}$ where R_0 is the right 32 bits of the 64-bit input and L_0 is the left 32 bits:

- 1. Draw the inverse permutation. (5 Points)
- 2. One of the following lines is the output of E using a random key, while the other three are the output of a truly random permutation $f: \{0,1\}^{64} \to \{0,1\}^{64}$. All 64-bit outputs are encoded as 16 hex characters. Can you say which is the output of the PRP? (10 Points)
 - (a) On input 0^{64} the output is 9d1a4f78 cb28d863. On input $1^{32}0^{32}$ the output is 75e5e3ea 773ec3e6.
 - (b) On input 0^{64} the output is 7b50baab 07640c3d. On input $1^{32}0^{32}$ the output is ac343a22 cea46d60.
 - (c) On input 0^{64} the output is e86d2de2 e1387ae9. On input $1^{32}0^{32}$ the output is 1792d21d b645c008.

- (d) On input 0^{64} the output is 4af53267 1351e2e1. On input $1^{32}0^{32}$ the output is 87a40cfa 8dd39154.
- 3. Give a formal proof that why E is not a PRP by constructing an adversary \mathcal{A} and computing its advantage. (10 Points)

Problem 14

Give a formal definition of security of a symmetric cryptosystem that is able to encrypt messages of length up to l(n), for some polynomial $l(\cdot)$, and is able to hide the <u>length</u> of the message from *active* and *efficient* adversaries. (20 Points)