We have a connectione dataset $D = \{G_1, G_2, \dots, G_i, \dots, G_n\}$, each $G_i(V, E_i, W)$ has the same number of vertices (could be voxels) which associated with same sets of vertex attribute $W = \{MI, SI, dorsal hippocampus, ventral hippocampus, \dots, s^k, and <math>E_i$ describes the connection between each vertex pair $E_i \in \{0, 1\}$

Fit SBM_k (\vec{P} , \vec{B}) to \vec{D} , where k equals the number of categories in \vec{W} and the vertices are clustered accordingly. Using maximum likelihood method to find \vec{D}_i in $\vec{B}_i \sim \text{Bern}(\vec{O}_i)$ Assuming the prior distribution $\vec{O} \sim \text{Beta}(\vec{a}, \vec{b})$, where hyperposemeters \vec{a} and \vec{b} can be estimated from connectomes of people who have been identified as normal.

Descision rule S using Bayesian inference. $S(D) = p(\vec{O}|D) = Beta(\vec{O}|\vec{a}+\vec{n}, \vec{b}+\vec{n}_o)$, where \vec{n} , are the total number of occurance of edge for every pair of clusters, while \vec{n} , are that of the absence of edge.

Risk function: $E[L(\vec{o}, \vec{\hat{o}})] = r(\vec{o}, \delta(D))$