ملتها الهامة المتابعة الزمنية لتحول كيميائي في وسط مائي

I/ المدة الزمنية المستغرقة لتحول كيميائي

1. تصنيف التحولات الكيميائية حسب مدتها الزمنية:

أ/ تحولات سريعة ، أمثلة
 ب/ تحولات بطيئة ، أمثلة
 ج/ تحولات بطيئة جدا ، أمثلة

2 . تفاعلات الأكسدة ـ إرجاع :

أ/ تعريف المؤكسد و المرجع بالمؤكسد و المرجع بالمؤكسد بالمؤكسد بالمعادلة النصفية الموافقة لثنائية مرجع / مؤكسد ج/ كتابة معادلة التفاعل الكيميائي للأكسدة الإرجاعية

II/ المتابعة الزمنية لتحول كيميائي

1. بعض طرق المتابعة:

أ/ قياس الناقلية الكهربائية ب/ المعايرة اللونية

[X]=g(t) واأو X=f(t)

 $t_{1/2}$ زمن نصف التفاعل 3

<u>4. مفهوم السرعة</u>

ااا/ العوامل الحركية

- 1. تراكيز المتفاعلات
 - 2. درجة الحرارة
- 3. الوساطة: دور الوسيط
- 4. التفسير المجهري لتأثير العوامل الحركية
 - <u>5. أهمية العوامل الحركية</u>

مالاص إلهالمة

المتابعة الزمنية لتحول كيميائي في وسط مائي

I/ المدة الزمنية المستغرقة لتحول كيميائي

1. تصنيف التحولات الكيميائية حسب مدتها الزمنية:

أ/ التحويلات سريعة:

تعريف: يكون التحول الكيميائي سريعا إذا بلغ نهايته مباشرة بعد تلامس المتفاعلات.

مثال: - محلول برمنغنات البوتاسيوم مع محلول كبريتات الحديد [[المحمض.

ب/ التحولات بطيئة:

تعريف: يكون التحول الكيميائي بطيئا إذا استغرق عدة ثواني، دقائق أو عدة ساعات.

مثال : - الماء الأوكسجيني مع محلول يود البوتاسيوم.

ج/ التحولات بطيئة جدا:

تعريف: يكون التحول الكيميائي بطيئا جدا إذا استغرق أيام أو أشهر.

مثال : - إذابة بضع بلورات من برمنغنات البوتاسيوم في الماء المقطر ووضعه في قارورة.

ـ صدأ الحديد.

ـ تفاعل الأسترة ـ إماهة ، تفاعلات التخمر .

75.E

2 . تفاعلات الأكسدة ـ إرجاع :

أ/ تعريف المؤكسد و المرجع

المؤكسد : هو كل فرد كيميائي مؤهل لاكتساب إلكترون أو أكثر خلال تحول كيميائي.

 $MnO_{4(aq)}^{-} + 5\acute{e} + 8H^{+}_{(aq)} = Mn^{2+}_{(aq)} + 4H_{2}O_{(l)}$: MnO_{4}^{-} : MnO_{4}^{-}

 $Cr_2O_7^{2-}{}_{(aq)} + 6\acute{e} + 14H^+{}_{(aq)} = 2Cr^{3+}{}_{(aq)} + 7H_2O_{(l)}$: $Cr_2O_7^{2-}$ نائي الكرومات : $Cr_2O_7^{2-}{}_{(aq)} + 6\acute{e} + 14H^+{}_{(aq)} = 2Cr^{3+}{}_{(aq)} + 7H_2O_{(l)}$

 $I_{2(aq)} + 2\acute{e} = 2I^{-}{}_{(aq)}$: I_2 اليود

المرجع: هو كل فرد كيميائي مؤهل للتخلي عن إلكترون أو أكثر خلال تحول كيميائي.

 $Zn_{(S)}=Zn^{2+}$ (Zn) : نرة التوتياء (Zn) : أمثلة : - نرة التوتياء (Zn)

 Fe^{2+} (ag) = Fe^{3+} (ag) + \acute{e} : (Fe^{2+}) عارية الثنائي (Fe^{2+}) عارية الثنائي (

 $2S_2O_3^{2-}{}_{(aa)} = S_4O_6^{2-}{}_{(aa)} + 2\acute{e}$: ($S_2O_3^{2-}$) شاردة ثيوكبريتات : ($S_2O_3^{2-}{}_{(aa)} = S_4O_6^{2-}{}_{(aa)} = S_4O_6^{2-}{}_{($

ب/ كتابة المعادلة النصفية الموافقة لثنائية مرجع / مؤكسد:

بصفة عامة نكتب المعادلة النصفية الخاصة بالثنائية Ox/Red بالشكل التالي :

 $Ox + n\acute{e} = \operatorname{Re} d$

أمثلة : - المعادلة النصفية الخاصة بالثنائية :

- المعادلة النصفية الخاصة بالثنائية:

ج/ كتابة معادلة التفاعل الكيميائي للأكسدة الإرجاعية:

بصفة عامة نكتب معادلة التفاعل الكيميائي للأكسدة الإرجاعية بالطريقة التالية:

 $Ox_1 + n_1 \acute{e} = \text{Re } d_1$: المعادلة النصفية للإرجاع : المعادلة النصفية الإرجاع : المعادلة المعادلة الإرجاع : المعادلة الم

 $\operatorname{Re} d_2 = Ox_2 + n_2 \dot{e}$: المعادلة النصفية للأكسدة : المعادلة النصفية الأكسدة : المعادلة النصفية المعادلة النصفية الأكسدة : المعادلة النصفية المعادلة النصفية المعادلة النصفية المعادلة النصفية المعادلة النصفية المعادلة النصفية المعادلة المعادلة النصفية المعادلة المعا

بضرب المعادلة (1) في n_2 و المعادلة (2) في n_1 ، وجمعهما طرف لطرف نحصل على معادلة الأكسدة ـ إرجاع :

 $n_2 O x_1 + n_1 \operatorname{Re} d_2 = n_1 O x_2 + n_2 \operatorname{Re} d_1$

 $(MnO_{4(aq)}^{-} + 5\acute{e} + 8H^{+}_{(aq)} = Mn^{2+}_{(aq)} + 4H_{2}O_{(l)}) \times 2$

 $(H_2O_{2(aq)} = O_{2(g)} + 2\acute{e} + 2H^+_{(aq)}) \times 5$

 $2MnO_{4(aq)}^{-} + 6H^{+}(aq) + 5H_{2}O_{2(aq)} = 2Mn^{2+}(aq) + 5O_{2(g)} + 8H_{2}O_{(l)}$

مثال: - المعادلة النصفية للإرجاع:

ـ المعادلة النصفية للأكسدة:

ـ معادلة الأكسدة إرجاع:

II/ المتابعة الزمنية لتحول كيميائي

1. بعض طرق المتابعة:

من أجل الدراسة الكمية لتطور جملة كيميائية خلال الزمن يجب معرفة تركيبها في كل لحظة. لذلك يمكن استعمال عدة طرق:

- الطريقة الفيزيائية : تعتمد على قياس مقدار فيزيائي (الناقلية ، الضغط ، الحجم ، ألـ pH).

- الطريقة الكيميائية: تعتمد على المعايرة.

أ/ قياس الناقلية الكهربائية

إن قياس الناقلية النوعية σ لوسط تفاعلى يسمح بالمتابعة المستمرة لتقدم التفاعل خلال تطور الجملة الكيميائية.

C الناقلية النوعية C لمحلول شاردي مخفف تركيزه C

لتكن X^+ و X^- الشوارد الموجبة و السالبة المتواجدة $[X^{-}]$ في المحلول، تركيز هما $[X^{+}]$ و

$$\sigma = \sum ([X^{+}]\lambda_{X^{+}} + [X^{-}]\lambda_{X^{-}})....(2)$$

 $(mol.m^{-3})$ حيث التراكيز [X] تقدر ب

(L) الناقلية G: ناقلية جزء من محلول محصور بين لبوسين ناقلين مساحة كل منهما G و البعد بينهما Gو تعطى بالعلاقة التالية:

$$G = K.\sigma...(3)$$

$$\begin{cases}
K(m) \\
\sigma(S.m^{-1}) \\
G(S)
\end{cases}$$

(m) حيث $K=rac{S}{T}$ ثابت الخلية S) عساحة اللبوس وتقدر بـ M : البعد بين اللبوسين ويقدر بـ M $\stackrel{-}{\cdot}$ كما توجد علاقة أخرى للناقلية

$$G = rac{1}{R} = rac{I_{\it eff}}{U_{\it eff}} (4)$$
 $R(\Omega): U_{\it eff}(A): I_{\it eff}(A): الشدة المنتجة للتيار الكهربائي $U_{\it eff}(V): U_{\it eff}(V):$$

ب/ المعايرة اللونية:

عملية المعايرة تمكن من المتابعة الزمنية لتطور جملة كيميائية.

- نقطة التكافؤ: عند نقطة التكافؤ تكون كمية مادة المتفاعلات متناسبة مع الأعداد الستوكيومترية لمعادلة التفاعل.

من أجل التحول الكيميائي المنمذج بمعادلة التفاعل الكيميائية التالية:

$$\alpha A + \beta B = \gamma C + \delta D$$

$$n(A)=C_A.V_A$$
 , $n(B)=C_B.V_B$: حيث $\frac{n(A)}{lpha}=\frac{n(B)}{eta}$: عند التكافؤ يكون

[x]=g(t) واأو x=f(t) ويائات 2.

أ/ عن طريق قياس الناقلية

1- بواسطة جهاز قياس الناقلية، يمكن أن نقرا مباشرة قيمة الناقلية النوعية σ للمحلول عند كل لحظة σ . النتائج المتحصل عليها تسمح برسم البيان $\sigma=f(t)$. $\sigma=f(t)$

(2- الشكل عاد) . x = f(t) يمكن رسم المنحنى) . x = f(t) يمكن رسم المنحنى) . x = f(t) يمكن رسم المنحنى

مثال: تفاعل الإماهة للنوع الكيميائي CCl_3 (من الكتاب المقرر).

$$(CH_3)_3 CCl_{(aq)} + H_2O_{(l)} = (CH_3)_3 COH_{(aq)} + H^+_{(aq)} + Cl^-_{(aq)}$$

1. بواسطة جهاز قياس الناقلية، يمكن أن نقرا مباشرة قيم الناقلية النوعية σ للمحلول عند كل لحظة t

t()							
$\sigma()$							

ومن خلال النتائج المتحصل عليها، نرسم البيان $\sigma = f(t)$).

2. ـ بالاستعانة بجدول تقدم التفاعل:

لة التفاعل	معادا	$(CH_3)_3 CCl_{(aq)} + H_2O_{(l)} = (CH_3)_3 COH_{(aq)} + H^+_{(aq)} + Cl^{(aq)}$						
الحالة	التقدم	كمية المادة						
الحالة الابتدائية	0	n_0	بزيادة	0	0	0		
الحالة الانتقالية	x	$n_0 - x(t)$	بزيادة	x(t)	x(t)	x(t)		
الحالة النهائية	x_f	0	بزيادة	x_f	x_f	x_f		

$$\sigma(t) = \left[H^{+}\right] \lambda_{H^{+}} + \left[Cl^{-}\right] \lambda_{Cl^{-}} / \left[H^{+}\right] = \left[Cl^{-}\right] = \frac{x(t)}{9}$$

و ـ العلاقة النظرية (2)، نكتب:

$$\sigma(t) = \left(\lambda_{H^+} + \lambda_{Cl^-}\right) \frac{x(t)}{V}$$

 $\sigma_f = \left(\lambda_{H^+} + \lambda_{Cl^-}\right) \frac{n_0}{V}$

 $x(t) = x_f = n_0$ من أجل

$$x(t) = \left(\frac{n_0}{\sigma_f}\right) \cdot \sigma(t)$$

 $x(t) = \left(\frac{n_0}{\sigma_r}\right).\sigma(t)$: وبقسمة العلاقتين طرف بطرف نحصل على :

وعليه فإنه يمكن رسم المنحنى البيانى x = f(t) الشكل -2).

ب/ عن طريق المعايرة

أي :

- تعيين التقدم x: يمكن معرفة x انطلاقا من معرفة كمية المادة لأحد النواتج أو معرفة كمية المادة لأحد المتفاعلات المتبقى عند لحظة t.

(2- الشكل) . x = f(t) انظلاقا من نتائج المعايرة يمكن رسم البيان

مثال: (من الكتاب المقرر)

معايرة ثنائي اليود $(X^+_{(aq)}, I^-_{(aq)})$ مع محلول بيروكسوديكبريتات أمعايرة ثنائي اليود أي الناتج في تفاعل محلول يود البوتاسيوم . $\left(2Na^{+}_{(aq)},S_{2}O_{8}^{2-}_{(aq)}\right)$ الصوديوم ذي الصيغة

من يود البوتاسيوم و V_2 من يود البوتاسيوم و V_2 من بيروكسوديكبريتات الصوديوم).

 $2I^{-}_{(aq)} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)} + 2SO_4^{2-}_{(aq)}$: عادلة الأكسدة ـ إرجاع

ملاحظة: هذا التفاعل بطئ ، بحيث يتحول الناتج تدريجيا للون الأسمر.

في لحظة t، نأخذ في كأس حجما V من المزيج المتفاعل ونضيف له الماء المقطر البارد، من أجل توقيف التفاعل. نملأ السحاحة بمحلول ثيوكبريتات الصوديوم ذي الصيغة و هو المحلول الذي نعاير به في ، $\left(2Na^{+}_{(aq)},S_{2}O_{3}^{2-}_{(aq)}
ight)$

C هذه العملية، تركيزه

ملاحظة: يمكن إضافة التيودان بدلا من صمغ النشأ.

معادلة التفاعل المنمذج للمعايرة:

$$I_{2(aq)} + 2S_2O_{3(aq)}^{2-} = 2I^{-}(aq) + S_4O_{6(aq)}^{2-}$$

75.E

جدول تقدم تفاعل المعايرة:

المعادلة		$I_{2(aq)} + 2S_2O_3^{2-}{}_{(aq)} = 2I^{-}{}_{(aq)} + S_4O_6^{2-}{}_{(aq)}$							
الحالة	التقدم الحالة		كمية المادة						
الحالة الابتدائية	0	$n(I_2)$	$n_E \left(S_2 O_3^{2-} \right)$	0	0				
الحالة النهائية	x_E	$n(I_2)-x_{\text{max}}$	$n_E \left(S_2 O_3^{2-} \right) - x_{\text{max}}$	$2x_{\text{max}}$	x_{max}				

 $n(I_2) - x_{\text{max}} \dots (1)$ عند التكافؤ:

$$n_E(S_2O_3^{2-})-x_{\text{max}}=0.....(2)$$

$$n(I_2) = \frac{1}{2} n_E (S_2 O_3^{2-}) / n_E (S_2 O_3^{2-}) = CV_E$$

من (1) و (2) نجد:

$$n(I_2) = \frac{1}{2}CV_E$$

و هي كمية المادة لثنائي اليود المعاير في حجم V.

: هي الورد المتشكل في الوسط التفاعلي الذي حجمه $(V_T = V_1 + V_2)$ هي المادة الثنائي اليود المتشكل في الوسط التفاعلي الذي حجمه المادة الثنائي اليود المتشكل في الوسط التفاعلي الذي حجمه المادة الثنائي اليود المتشكل في الوسط التفاعلي المادة المادة

$$n(I_2) = \frac{1}{2} \frac{V_T}{V} C V_E$$

تعيين تقدم التفاعل : x

من خلال جدول تقدم التفاعل المدروس (تفاعل شوارد بيروكسوديكبريتات مع شوارد اليود):

معادلة	11	$2I^{-}(aq) + S_2O_8^{2-}(aq) = I_{2(aq)} + 2SO_4^{2-}(aq)$						
الحالة	التقدم	كمية المادة						
الحالة الابتدائية	0	$n_0(I^-)$	$n_0(S_2O_8^{2-})$	0	0			
الحالة الانتقالية	x(t)	$n_0(I^-)-2x(t)$	$n_0(S_2O_8^{2-})-x(t)$	x(t)	2x(t)			

نلاحظ أن $x(t) = n(I_2)$ عمية مادة ثنائي اليود x(t) عمية مادة ثنائي اليود المتشكل في هذه اللحظة.

$$x(t) = \frac{1}{2} \frac{V_T}{V} C V_E$$

وبالتالي :

 V_{E} وهي العبارة التي تمكننا من تعيين التقدم بدلالة الحجم

نكرر تجربة المعايرة في لحظات مختلفة بإتباع نفس الطريقة السابقة، ومن خلال النتائج المتحصل عليها نرسم البيان x = f(t).

$$x = \frac{x_f}{2}$$
 نصف تقدمه النهائي أي

المدة يمثل التفاعل تاما فإن $x_f = x_{\text{max}}$ بالتفاعل تاما فإن المدة يمثل المدة الضرورية لاستهلاك نصف كمية المتفاعل المحد.

<u>4. مفهوم السرعة</u>

نعتبر التحول الكيميائي المنمذج بمعادلة التفاعل الكيميائي التالية $\alpha A + \beta B = \gamma C + \delta D$

أ/ سرعة التفاعل

ليكن x تقدم التفاعل عند اللحظة t بالعلاقة : x بالعلاقة x

$$v = \frac{dx}{dt} \quad (mol/s)$$

حجمه V. تعرف السرعة الحجمية للتفاعل

إذا كان التفاعل يحدث في وسط مائي بالعلاقة :

$$v = \frac{1}{V} \frac{dx}{dt} \quad (mol / L.s)$$

ملاحظة: إذا كان التفاعل بطئ، السرعة الحجمية للتفاعل تقاس بـ: $(mol.L^{-1}.min^{-1})$ أو $mol.L^{-1}.min^{-1}$).

ج/ السرعة الحجمية لتشكل و اختفاء النوع الكيميائي

$$v = \frac{dn_C}{dn_C} \cdot C$$
 سرعة تشكل النوع الكيميائي

ب/ سرعة تشكل و اختفاء النوع الكيميائي

$$v = \frac{dn_C}{dt}$$
: C سرعة تشكل النوع الكيميائي

$$v = rac{dn_D}{dt}$$
: D سرعة تشكل النوع الكيميائي

$$v = -\frac{dn_A}{dt}$$
: A يسرعة اختفاء النوع الكيميائي

$$v = -\frac{dn_B}{dt}$$
: B يسرعة تشكل النوع الكيميائي

 $v = \frac{1}{V} \frac{dn_C}{dt}$: C السرعة الحجمية لتشكل النوع الكيميائي

$$v = \frac{1}{V} \frac{dn_D}{dt}$$
: السرعة الحجمية لتشكل النوع الكيميائي الحجمية المجمعة الحجمية الحجمية المح

$$v = -\frac{1}{V} \frac{dn_A}{dt}$$
: السرعة الحجمية لاختفاء النوع الكيميائي A السرعة الحجمية الختفاء

$$v = -\frac{1}{V} \frac{dn_B}{dt}$$
: السرعة الحجمية لاختفاء النوع الكيميائي

العلاقة بين هذه السرعات:

$$\frac{v_A}{\alpha} = \frac{v_B}{\beta} = \frac{v_C}{\gamma} = \frac{v_D}{\delta}$$

ملاحظة: نستفيد من هذه العلاقة في تحديد سرعة أو اختفاء كل الأنواع الكيميائية في تحول كيميائي، إذا علمنا سرعة نوع كيميائي واحد فقط.

السرعة المتوسطة

ر السرعة المتوسطة لتشكل الفرد الكيميائي C بين اللحظتين t_1 و t_2 .

$$v_m = \frac{n_2 - n_1}{t_2 - t_1} = \frac{\Delta n}{\Delta t}$$

A السرعة المتوسطة $\frac{\mathbf{Y}$ الفرد الكيميائي \mathbf{A} بين اللحظتين \mathbf{A} و \mathbf{A} .

$$v_m = -\frac{n_2 - n_1}{t_2 - t_1} = -\frac{\Delta n}{\Delta t}$$

السرعة اللحظية

C السرعة اللحظية $\frac{\mathbf{LTMD}}{\mathbf{LTMD}}$ الفرد الكيميائي في اللحظة t:

$$v = \frac{dn}{dt} \qquad / \qquad v = \frac{FG}{EG}$$

- السرعة اللحظية **لاختفاء** الفرد الكيميائي A

في اللحظة t

$$v = -\frac{EF}{FG}$$

T.F

ملاحظة

t : t السرعة الحجمية لتشكل أو اختفاء نوع كيميائي في اللحظة

ـ نحدد قيمة معامل توجيه المماس للمنحنى n=f(t) في نقطة التماس (M) التي فاصلتها t، بنفس الطريقة السابقة، ثم نقسم الناتج على حجم المزيج المتفاعل (V).

_ أما بالنسبة للمنحنى C = f(t) نتبع نفس الطريقة السابقة.

سرعة التفاعل

t التفاعل في اللحظة t

x = f(t) للمنحنى للمنحنى x = f(t) هي قيمة معامل توجيه المماس للمنحنى t التي فاصلتها t التي فاصلتها t

$$v = \frac{dx}{dt} \qquad / v = \frac{FG}{EG}$$

السرعة الحجمية للتفاعل في اللحظة t: هي قسمة الناتج (قيمة سرعة التفاعل في اللحظة t) على حجم المزيج المتفاعل (V).

III/ العوامل الحركية

N.E

نسمي عاملا حركيا لتفاعل كيميائي كل عامل يؤدي إلى تغيير سرعة التفاعل

1. تراكيز المتفاعلات

في نفس درجة الحرارة، كلما كانت تراكيز المتفاعلات أو أحدها أكبر كانت سرعة التفاعل أكبر

تركيز المتفاعل عامل حركى

 H_2O_2 في تفاعل شوارد اليود I^- مع الماء الأوكسجيني

 $[H_2O_2] = 0.1 mol/L$ من أجل حجم V من الماء الأوكسجيني تركيزه نحصل على المنحنى (1).

 $[H_2O_2]=0.3mol/L$ من أجل حجم V من الماء الأوكسجيني تركيزه Vنحصل على المنحنى (2).

حيث المتفاعل المحد هو الماء الأوكسجيني ودرجة الحرارة ثابتة.

2. درجة الحرارة

يكون تطور جملة كيميائية أسرع كلما ارتفعت درجة الحرارة

درجة الحرارة عامل حركي

في المنحنيات المبينة في الشكل المقابل، حيث:

 $\theta_3 \succ \theta_2 \succ \theta_1$

وتراكيز المتفاعلات نفسها من أجل كل حالة.

نلاحظ أنه ·

 $t_{1/2}$ كلما تزداد درجة الحرارة يقل زمن نصف التفاعل

الوساطة: دور الوسيط

الوسيط: هو نوع كيميائي يعمل على تسريع التفاعل الكيميائي دون أن يغير الحالة النهائية للجملة الكيميائية.

الوساطة: هي عملية تأثير الوسيط على التفاعل الكيميائي

الوساطة المتجانسة

Z.E

- نقول أن الوساطة أنها أنزيمية إذا كان الوسيط أنزيما.

الوساطة غير المتجانسة

- نقول أن الوساطة أنها غير متجانسة إذا كانت الحالة الفيزيائية للوسيط تختلف عن الحالة الفيزيائية للمتفاعلات الوساطة المتجانسة

- نقول أن الوساطة أنها متجانسة إذا كان الوسيط من نفس الحالة الفيزيائية للمتفاعلات.

4. التفسير المجهرى لتأثير العوامل الحركية

- تأثير درجة الحرارة: عند الاصطدامات الفعالة بين أفراد المتفاعلات في وحدة الزمن و في وحدة الحجم يتزايد مع ارتفاع درجة الحرارة وهذا يعني أن:

سرعة التفاعل تتزايد كلما ارتفعت درجة الحرارة

- تأثير التراكيز الابتدائية للمتفاعلات: كلما تزايد التركيز المولي الابتدائي لنوع متفاعل فإن عدد الأفراد في وحدة الحجم يتزايد (عدد الاصطدامات الفعالة يتزايد) فيكون:

التفاعل أسرع

ملاحظة : _ يكون الاصطدام فعالا إذا كانت طاقة الأفراد كافية و كان توجهها مناسبا (وثيقة a). _ إذا كانت هذه الطاقة غير كافية أو كان توجه الأفراد غير مناسب كان الاصطدام غير فعال (وثيقة b).

تسمح الطاقة الكافية بكسر الروابط بين A - A و B - B فيكون الاصطدام فعالا

A-A لا تسمح الطاقة بكسر الروابط بين B-B و فير فعال فالاصطدام غير فعال