Advanced Astroinformatics - Student Project

Time Series Analysis, Feature Extraction

Dr. Nina Hernitschek June 6, 2022

Motivation

Motivation

ntro: Time Series Analysis

Estimation and Model Selection

Motivation

Motivation

ntro: Time Series Analysis

Parameter Estimation and Model Selection

Detecting Periodic Signals

many astronomical sources vary - describe and classify astronomical sources by their variability

example light curves with a high **cadence** ($\Delta t = 30$ min) from TESS:

RRab (RR Lyrae type ab):

Series A

Motivation

Estimation and Model Selection

Periodic Signals

example light curves with a high **cadence** ($\Delta t = 30$ min) from TESS:

RRab (RR Lyrae type ab):

Motivation

Intro: Time Series Analysis

Parameter
Estimation
and Model
Selection

example light curves with a high **cadence** ($\Delta t = 30$ min) from TESS:

RRab (RR Lyrae type ab):

Motivation

Series Analysi

Parameter Estimation and Model Selection

example light curves with a high **cadence** ($\Delta t = 30$ min) from TESS:

Cepheid:

Motivation

Parameter Estimation

example light curves with a high **cadence** ($\Delta t = 30$ min) from TESS:

rotational variable star:

Motivation

credit: Observer's Guide to Variable Stars, M. Griffiths

example light curves with a high **cadence** ($\Delta t = 30$ min) from TESS:

eclipsing binary star:

Motivation

Primary eclipse

secondary eclipse

redit: Wikimedia, NASA

When the smaller star partially blocks the larger star, a primary eclipse occurs, and a secondary eclipse occurs when the smaller star is occulted.

Time - 2457000 [BTJD days]

Other Astronomical Time Series Data

Light curves show variability from electromagnetic sources. In addition: gravitational-wave variability as time series data

Gravitational Wave Signal:

Typical GW signal of a compact binary coalescence. The GW strain (above) and the GW frequency (below) are plotted as function of the time before merging. credit: Vallisneri et al. (2015).

Motivation

Intro: Time Series Analysi

Estimation and Model Selection

Time Series Data

A time series is a sequence of random variables $\{\mathbf{X}_t\}_{t=1,2,\cdots}$.

Thus, a time series is a **series of data points ordered in time**. The time of observations provides a source of additional information to be analyzed.

Astronomical time series are typically assumed to be generated at irregularly spaced interval of time (irregular time series).

Time series can have one or more variables that change over time. If there is only one variable varying over time, we call it **univariate time series**. If there is more than one variable it is called **multivariate time series**.

Intro: Time Series Analysis

Estimation and Model Selection

Characteristics of Astronomical Time Series Data

Astronomical time series data in general is:

- otivation irregularly sampled
 - multivariate
 - not sampled to fully characterize the variability process
 - not an independent random variable in their y values: often $y_{i+1} = f(y_i)$

example: light curve from multi-band survey

Intro: Time Series Analysis

Parameter Estimation and Model

Goals of Time Series Analysis

Motivation

Intro: Time Series Analysis

Parameter Estimation and Model Selection

Detecting Periodic Signals Time series analysis extracts meaningful statistics and other characteristics of the dataset in order to understand it.

The main tasks of time series analysis are:

 characterize the temporal correlation between different values of y, including its significance

example: classification of variable sources

forecast (predict) future values of y example: transient detection, e.g. early supernovae detection

Goals of Time Series Analysis

Intro: Time Series Analysis

Parameter Estimation and Model Selection

Detecting Periodic Signals When dealing with time series data, the first question we ask is **Does the time series vary over some timescale?** (if not, there is no point doing time series analysis)

Variability does not mean necessarily periodicity.

Stochastic processes are variable over some timescale, but are distinctly aperiodic through the inherent randomness.

Goals of Time Series Analysis

Motivation

Intro: Time Series Analysis

Parameter
Estimation
and Model
Selection

Detecting Periodic Signals When dealing with time series data, the first question we ask is **Does the time series vary over some timescale?** (if not, there is no point doing time series analysis)

Variability does not mean necessarily periodicity.

Stochastic processes are variable over some timescale, but are distinctly aperiodic through the inherent randomness.

If we find that a source is variable (almost all astronomical sources are), then time-series analysis has two main goals:

- 1. Characterize the temporal correlation between different values of y (i.e., characterize the light curve), e.g. by learning the parameters for a model.
- 2. Predict future values of y.

Motivation

Intro: Time Series Analysis

Parameter Estimation and Model Selection

Detecting Periodic Signals For known and Gaussian uncertainties, we can compute χ^2 and the corresponding p values for variation in a signal.

For a sinusoidal variable signal $A\sin(\omega t)$, with homoescedastic measurement uncertainties, the data model would be

$$y(t) = A\sin(\omega t) + \epsilon$$

where $\epsilon \sim N(0, \sigma)$. The overall data variance is then $V = \sigma^2 + A^2/2$.

Motivatio

Intro: Time Series Analysis

Parameter Estimation and Model Selection

Detecting Periodic Signals For known and Gaussian uncertainties, we can compute χ^2 and the corresponding p values for variation in a signal.

For a sinusoidal variable signal $A\sin(\omega t)$, with homoescedastic measurement uncertainties, the data model would be

$$y(t) = A\sin(\omega t) + \epsilon$$

where $\epsilon \sim N(0, \sigma)$. The overall data variance is then $V = \sigma^2 + A^2/2$.

If A = 0 (no variability, with $\overline{y} = 0$):

- $\chi^2_{
 m dof} = N^{-1} \sum_j (y_j/\sigma)^2 \sim V/\sigma^2$
- lacksquare $\chi^2_{
 m dof}$ has expectation value of 1 and std dev of $\sqrt{2/N}$

If |A| > 0 (variability):

- $\chi^2_{\rm dof}$ will be larger than 1.
- probability that $\chi^2_{\mathrm{dof}} > 1 + 3\sqrt{2/N}$ is about 1 in 1000 (i.e., $> 3\sigma$ above 1, where 3σ is 0.997).

Intro: Time Series Analysis Parameter

Estimation and Model Selection

Motivation

Intro: Time Series Analysis

Parameter Estimation and Model Selection

Detecting Periodic Signals If |A| > 0 (variability):

- $\chi^2_{\rm dof}$ will be larger than 1.
- probability that $\chi^2_{\rm dof} > 1 + 3\sqrt{2/N}$ is about 1 in 1000 (i.e., $> 3\sigma$ above 1, where 3σ is 0.997).

If this false-positive rate (1 in a 1000) is acceptable (because even without variability 1 in 1000 will be above this threshold) then the minimum detectable amplitude is $A>2.9\sigma/N^{1/4}$ (from $V/\sigma^2=1+3\sqrt{2/N}$, so that $A^2/2\sigma^2=3\sqrt{2/N}$).

Depending on how big your sample is, you may want to choose a higher threshold. E.g., for 1 million non-variable stars, this criterion would identify 100 as variable.

- 1. For N = 100 data points (not 100 objects), the minimum detectable amplitude is $A_{\rm min}=0.92\sigma$
- 2. For N = 1000, $A_{\min} = 0.52\sigma$

Intro: Time
Series Analysis

Parameter Estimation and Model Selection

Detecting Periodic Signals We do this under the assumption of the null hypothesis of no variability. If instead we have a model, we can perform a **matched filter analysis** by correlating a known template with an unknown signal to detect the presence of the template in the unknown signal

example: gravitational wave event GW150914

credit: https://www.gw-openscience.org/tutorials/

Fourier Analysis

Fourier analysis plays a major role in the analysis of time series data. In Fourier analysis, general functions are approximated by integrals or sums of trigonometric functions.

For periodic functions, such as periodic light curves in astronomy, often a relatively small number of terms (less than 10) suffices to reach an approximation precision level similar to the measurement precision.

Motivation

Parameter Estimation and Model Selection

Periodic Signals

Fourier Analysis

Motivation

Intro: Time Series Analysi

Parameter Estimation and Model Selection

Detecting Periodic Signals The **Fourier transform (FT)** H(f) of function h(t) is defined as

$$H(f) = \int_{-\infty}^{\infty} h(t) \exp(-i2\pi f t) dt$$

with inverse transformation

$$h(t) = \int_{-\infty}^{\infty} H(f) \exp(-i2\pi f t) df$$

where t is time and f is frequency (for time in seconds, the unit for frequency is hertz, or Hz).

Fourier Analysis

In other words, FT transforms a periodic function in **Time Domain** to a function in **Frequency Domain**:

ntro: Time

Parameter Estimation and Model Selection

many objects/ systems have periodic signals: e.g., pulsars, RR Lyrae, Cepheids, eclipsing binaries

For a periodic signal, if the period is known

- we can write y(t + P) = y(t), where P is the period.
- we can create a **phased light curve** that plots the data as function of phase: $\phi = \frac{t}{P} \operatorname{int}\left(\frac{t}{P}\right)$ with $\operatorname{int}(x)$ being the integer part of x.

Motivation

Intro: Time Series Analysis

Parameter Estimation and Model Selection

Detecting Periodic Signals for well-sampled, high-cadence data: easy, standard methods can be applied

for sparse, low-cadence data: harder, specialized methods like template fitting necessary

VS.

measure the period and amplitude in the face of both noisy and incomplete data

Detecting Periodic Signals A **periodogram** is a plot of the *power* in the time series at each possible period (as illustrated below):

left panel: observed light curve from LINEAR object ID 11375941 middle panel: periodogram computed from the light curve right panel: light curve folded over the detected 2.58 hr period credit: VanderPlas (2018)

The periodogram is defined as

$$P(\omega) = \frac{1}{N} \left[\left(\sum_{j=1}^{N} y_j \sin(\omega t_j) \right)^2 + \left(\sum_{j=1}^{N} y_j \cos(\omega t_j) \right)^2 \right]$$

The **best value** ω is given by

$$\chi^2(\omega) = \chi_0^2 \left[1 - \frac{2}{N V} P(\omega) \right],$$

where $P(\omega)$ is the periodogram, V the variance of the data y, and χ_0^2 is the χ^2 for the null-hypothesis model y(t) = const:

$$\chi_0^2 = \frac{1}{\sigma^2} \sum_{i=1}^{N} y_i^2 = \frac{N V}{\sigma^2}$$

Motivation

Intro: Time Series Analysis

Parameter Estimation and Model Selection

We can renormalize the periodogram, defining the **Lomb-Scargle periodogram** as

$$P_{\mathrm{LS}}(\omega) = \frac{2}{NV}P(\omega),$$

where $0 \leq P_{\mathrm{LS}}(\omega) \leq 1$.

Intro: Time

Parameter Estimation and Model Selection

How to determine if our source is variable or not:

- compute Lomb-Scargle periodogram $P_{LS}(\omega)$
- model the odds ratio for our variability model vs. a non-variability model.

If our variability model is correct, then the **peak** of $P(\omega)$ (found by grid search) gives the best period ω .

Detecting Periodic Signals

> The Lomb-Scargle periodogram (Lomb 1976; Scargle 1982) is the standard method to search for periodicity in unevenly-sampled time-series data.

Break & Questions

afterwards we continue with notebook_2.ipynb from the github repository

Motivation

Intro: Time Series Analysis

Estimation and Model Selection