

INTRODUCTION

- Follow along at ucsbhyperloop.com/dw
- 21 senior engineering undergraduates working to build and test a pod at Competition Weekend
- Emphasizing cost-effectiveness, scalability, and feasibility
- Estimated cost to complete design: \$40,000
 - Funding/resources already raised:
 - \$5,000 from Ingersoll Rand
 - \$5,000 from Raytheon
 - \$5,000 from private donors
 - Electronics donated by NXP Semiconductors
 - ~\$25,000 to be raised

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

FRAME

- 13'7" (length) x 3'4" (width) x 2'7" (height)
- Divided into front, base, and rear frame
 - Lightweight, wooden front frame reinforces shell
 - Aluminum base frame supports all major subsystems
 - Steel tube rear frame interfaces with SpaceX pusher

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

SHELL

- Tapered bullet shape
- E-Glass reinforced polyester
 - Uniformly strong in all directions

Introduction

Frame

Shell

Propulsion

I-Beam Stabilizatior

Braking

Weight

Levitation

Electronics

Controls

Power

Production

WIND TUNNEL TESTING

- 3-D printed ABS plastic pod model
- Reynolds number in evacuated tube is 8.5×10^3
- Estimated drag coefficient = 1.5
 - Drag force at 0.02 psi = 1.5 lbs

Pod model mounted in wind tunnel

Introduction

Fram

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

TRAJECTORY

- Top speed of 218 mph (320 fps)
- Total run time of 29.16 s
 - Acceleration 4.98 s
 - Coasting 3.75 s
 - Braking 20.43 s

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Flectronics

Controls

Power

Production

SERVICE WHEELS

- Powered service wheels for transport and potential pod recovery
- Wheels extend 1/8" below hover engines
- Motorized rear-left support wheel

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

I-BEAM STABILIZATION

- Benchmarked from roller coaster design and car/motorcycle suspension systems
- Spring-damper resists movement from the parallel linkage
 - Handles lateral forces

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Flectronics

Controls

Power

Production

BRAKING

- Pneumatic braking assembly with four actuated brake pads
 - Brake pads clamp onto the I-beam
 - Located at rear of pod

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

BRAKING

• Pressurized air tank provides pneumatic brake force

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

BRAKING

- Braking automatically activated by solenoid valves if power fails
- Ball valve manually disengages the brakes

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

POD WEIGHT —

Subsystem	Weight
Frame	66 lbs
Shell	83 lbs
Service Propulsion Wheels	96 lbs
I-Beam Stabilization	60 lbs
Braking	27 lbs
Magnetic Levitation Engines	60 lbs
Battery and Electronics	63 lbs
Total Weight	455 lbs

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

MAGNETIC LEVITATION

- System utilizes four Arx Pax Magnetic Field Architecture (MFA) hover engines
- Electronically adjustable hover height
 - Aiming for 0.20" (5mm) pending further testing
- Four engine payload
 - 550 lbs

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

MAGNETIC LEVITATION

- Best chance of success for competition while still adhering to the future scalability of the Hyperloop
 - Operate at high speeds and in low-pressure environments
 - Levitation + Propulsion + Braking + Control

Arx Pax HE3.0 Hover Engine

Introduction

Frame

Shel

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

MAGLEV PROTOTYPING

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

MAGLEV PROTOTYPING

Introduction

Frame

Shel

Propulsion

I-Beam Stabilizatio

Braking

Weight

Levitation

Electronics

Controls

Power

Production

MAGLEV PROTOTYPING

Introduction

Fram

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

SYSTEM CIRCUIT BOARD

- 8.1" x 8.1" printed circuit board
 - (2) LPC NXP4088 microcontrollers
 - Actuation
 - Sensor interface
 - Communication
 - Pod-stop command
 - Control systems

Already fabricated and awaiting assembly

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

SENSORS

- Photoelectric sensor:
 - Detects reflective strips on top half of tube
- Short-range ranging sensor:
 - Determines height relative to bottom of tube
- Long-range ranging sensor:
 - Gives position relative to sides of the tube
- Consolidated Board:
 - Accelerometer
 - Gyroscope
 - Barometer
 - Thermometer

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

SENSOR LOCATIONS

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Brakin

Weight

Levitation

Electronics

Controls

Power

Production

PROTOTYPING

- Currently prototyping sensors on LPC NXP4088 Developer's Kit
- Testing cabling constraints on a full-sized model

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

CONTROL SYSTEMS

Navigation

- Absolute position with photoelectric sensor
- Double integrate accelerometer between strips

Stability

- Absolute position with short range ranging sensors
- Relative position with gyroscopes
- Adjust each engine's levitation to maintain stability and correct disturbances

Braking

- Microcontroller activates/disengages brake system solenoid
- Automatically applied if connection lost for >5 secs

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

POWER SYSTEM

- Battery Bank 1
 - Onboard electronics, NAP, braking, service propulsion
- Battery Bank 2
 - Magnetic levitation system

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitatio

Electronics

Controls

Power

Production

BATTERY BANK 1

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

BATTERY BANK 2

- Independent power supply for each engine
 - 20Ahr capacity (per engine) for 26.2 min of levitation
- Protection circuit to prevent battery over-discharge
- Motor controller communicates with System PCB

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

BATTERY SELECTION

- Lithium polymer (LiPo)
 - Battery of choice for quadcopter/drone applications
 - Optimal capacity/weight ratio
 - High discharge rating
 - Easily obtainable off-shelf packs
 - Fire safety
 - Fire resistance bags encase each battery bank
 - Stainless steel LiPo charge box to prevent battery puncture in the event of a crash

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

PRODUCTION SCHEDULE

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Brakin

Weight

Levitation

Electronics

Controls

Power

Production

CONCLUSION

- Work began in October 2015
 - With school schedules—effectively 12 weeks of work
- Accomplishments
 - Raised \$15,000—need \$25,000 to reach goal of \$40,000
 - Printed Circuit Board is in assembly
 - Prototyping sensors with NXP Developer's Kit
 - 3D printed model
 - Used for extensive wind tunnel testing
 - Magnetic levitation testing & prototyping
 - Styrofoam and PVC pipe model of frame completed
 - Beginning to work with cabling
 - Established a finance/marketing team

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

CONCLUSION

- Thank you to our mentors and our sponsors.
- Please find us at Booth 64 or contact us:
 - ucsbhyperloop@gmail.com
 - ucsbhyperloop.com
 - @UCSBHyperloop

Raytheon

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

SHELL

wind tunnel testing

- Reynolds number in evacuated tube is 8.5×10³
- Drag force = 6.6 N
- Estimated drag coefficient = 1.5
 - Extrapolated from wind tunnel testing with 3D model
- If tube becomes pressurized, highest anticipated Reynolds number is 6.2×10⁶
 - Drag force = 160 N

Introduction

Overview

Subsystems

Vacuum Compatibility

Logistics

Safety Features

Scalability

Production

Finances

Conclusior

SHELL

→ material

- Selected Fiberglass: E-Glass reinforced polyester with a noncrimp laminate
 - Manufactured with a wet resin process
 - Quasi-isotropic material: evenly strong in all directions
 - Shell's curved surface experiences force in multiple directions
 - Yield and tensile strengths range from 29.2 ksi to 42 ksi
 - Pricing at \$0.95 -\$1.04 USD/Ib

Introduction

Overview

Subsystems

Vacuum Compatibility

Logistics

Safety Features

Scalability

Production

Finance

VACUUM COMPATIBILITY

- Heat dissipation
 - Low convection at 0.02 psi requires other cooling methods
 - Maglev engines
 - ESC (electrical speed controller) for maglev engines
 - Battery banks
 - Processor
 - Sensors
- Depressurizing sealed components
 - Specific components will be tested and recalibrated to ensure they work safely in a vacuum
 - Fiberglass shell
 - Battery case
 - Spring dampers
 - Air tank used for brakes

Introduction

Overview

Subsystems

Vacuum Compatibility

Logistics

Safety Features

Scalability

Production

Finances

VACUUM COMPATIBILITY

solutions for heat dissipation

- Liquid cooling (active and passive)
 - Submersion
 - Heat pipes
- Canisters of Nitrogen
- Phase change heat sinks
- Peltier tiles
- Methods of choice are contingent on future testing and budget constraints
 - Liquid cooling is currently the best option

Introduction

Overview

Subsystems

Vacuum Compatibility

Logistics

Safety Feature

Scalability

Production

Finances

THERMAL PROFILE

- Battery
 - Each LiPo battery has a nominal $30m\Omega$ internal resistance
 - Batteries are in a 2 series-3 parallel configuration, giving $20m\Omega$ total resistance
 - At peak draw the 4 engines will pull 600A total
 - Using $P = I^2 R$, the thermal output will be 7200W
 - Cooled using a single-phase pressure tight water loop around the packs
- Maglev Engines
 - Majority of the energy is transferred into the substrate
 - Mounting maglev engines on a heat sink to control thermal output

Introduction

Overview

Subsystems

Vacuum Compatibility

Logistics

Safety Features

Scalability

Production

Finances

VIBRATION ENVIRONMENTS

- The flow in the tube will be turbulent (Re = 8700)
 - Turbulent flow leads to vortex shedding
 - Von Karmann equation gives vortex shedding frequency as 8.7Hz
 - Assumes the pod is a cylinder turned sideways perpendicular into the flow
- Frequency is comparable to the natural frequency of the I-beam stabilization system (5.9 Hz minimum), however:
 - Low air density means low aerodynamic forces
 - The pod is more aerodynamic than a cylinder, so vortex shedding should be negligible
- Vibrations from the maglev engines are of little concern as their speeds will be much higher than any natural frequencies (~5000RPM = 83Hz)

Introduction

Overview

Subsystems

Vacuum Compatibility

Logistics

Safety Features

Scalability

Production

Finances

Conclusior

LAUNCH LOGISTICS

└─ loading & unloading

• 100 miles from UCSB campus to Hawthorne—rent a U-Haul

Loading procedure

- 1. Team members roll pod up to staging area using service wheels
- 2. Lift onto platform using SpaceX crane
- 3. Motorized safety wheels propel pod into tube
- 4. Manual engagement of braking system performed by team member (once pod is on I-beam, before SpaceX pusher is connected)

Unloading procedure

- 1. Motorized safety wheels drive pod onto Exit Area from its ending position in tube
- 2. Remotely power-down motors while maintaining power to brakes
- 3. Manually release brakes
- 4. Remotely power down all systems
- 5. Lift pod off of Exit Area using SpaceX crane

Introduction

Overview

Subsystems

Vacuum Compatibility

Logistics

Safety Features

Scalability

Production

Finances

LAUNCH LOGISTICS

└ failure conditions

Test Phase A-D failures:

Pod unloaded following reversed Loading Procedure steps

Launch failures:

- Pod stops far from end
 - Use service wheel system to extract
- Pod stuck with no power or no communications
 - Send rescue team to manually push out using service wheels
- Pod crash
 - Send rescue team to retrieve damaged pod

Introduction

Overview

Subsystems

Vacuum Compatibility

Logistics

Safety Features

Scalability

Production

Finances

SAFETY FEATURES

tube breach, rapid depressurization

- In the event of a large leak (assuming cross sectional area has been cut), the large pressure difference will force the air to choke to the speed of sound
- Since the atmosphere drops in pressure as it moves through the hole, the effective rate at which the atmosphere leaves is at about 60% of the speed of sound (~ 650 meters/second)
- Fiberglass shell designed to withstand pressure to a Factor of safety of $4000_{Breach\ Pressure\ Force} = A\rho V^2$

 $A = 0.65 \text{ m}^2$

 $\rho = 1.225 \text{ kg/m}^3$

V = 200 m/s

Breach Pressure Force = 31850 N

Stress on frontal area = F/A = 49 kPa

Yield strength of fiberglass = 200 MPa

Surface Force = 4000

Introduction

Overview

Subsystems

Vacuum Compatibility

Logistics

Safety Features

Scalability

Production

Finances

Introduction

Overview

Subsystems

Vacuum Compatibility

Logistics

Safety Features

Scalability

Production

Finances