$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha_{\beta}$		$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$r_1^{\#1} + \alpha \beta$	$r_1^{#2} + \alpha \beta$	$\frac{1}{1}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

	$\omega_{0^+}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\#1}\dagger$	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	$-t_1$

	$\sigma_{0^+}^{\sharp 1}$	$\tau_{0^{+}}^{\#1}$	τ ₀ ^{#2}	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$				
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0				
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0				
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$				
Source constraints							

Source constraints				
SO(3) irreps				
$\tau_{0^{+}}^{\#2} == 0$				
$\tau_{0^+}^{\#1} - 2 i k \sigma_{0^+}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 ik\sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5			
Total #:	16			

$f_{1}^{\#2}$	0	0	0	ikt_1	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}f_{1^{-}}^{\#1}{}_{\alpha}f_{1^{-}}^{\#2}$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ec{\imath} k t_1$
$f_1^{\#1}_{+\alpha\beta}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}_{\alpha\beta}\ f_{1}^{\#1}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	2 ($-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha^{\beta} k$	$\omega_{1}^{\#2} + \alpha^{eta}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$

Massive particle					
Pole residue:	$-\frac{1}{r_1} > 0$				
Polarisations:	5				
Square mass:	$-\frac{t_1}{2r_1} > 0$				
Spin:	2				
Parity:	Odd				

(No massless particles)