Kyle Chui Page 1

1 Sets and Functions

1.1 Power Sets

Definition. Power Set

If X is a set, the power set of X, denoted $\mathcal{P}(X)$, is the set of subsets of X.

Example. Power Sets

- $\mathscr{P}(\varnothing) = \{\varnothing\}$
- $\mathscr{P}(\{a,b\}) = \{\varnothing, \{a\}, \{b\}, \{a,b\}\}\$
- $\bullet \ \mathscr{P}(\left\{a,b,c\right\}) = \left\{\varnothing,\left\{a\right\},\left\{b\right\},\left\{c\right\},\left\{a,b\right\},\left\{b,c\right\},\left\{a,c\right\},\left\{a,b,c\right\}\right\}$

Definition. Cardinality of Finite Sets

If X has finitely many elements, then |X| denotes the number of elements of X.

Theorem — Cardinality of Power Sets If X is finite, then $|\mathcal{P}(X)| = 2^{|X|}$.

Proof. Let us induct on the cardinality of the set X. Suppose |X| = 0, so that $X = \emptyset$. Then $\mathscr{P}(X) = \{\emptyset\}$, so $|\mathscr{P}(X)| = 1 = 2^0$. Thus the statement is true when |X| = 0.

Suppose that the statement holds for some non-negative integer k. Let Y be a set such that |Y| = k + 1, and $y \in Y$. Observe that we may split $\mathscr{P}(Y)$ into two groups: the subsets containing y, and the subsets that do not contain y. A subset of Y that does not contain y is exactly $Y \setminus \{y\}$, which has k elements. By the inductive hypothesis, there exist 2^k such subsets. A subset of Y that does contain y is obtained by adding y to a subset of Y which does not contain y. Again, there are 2^k such subsets. Any subset of Y either does or does not contain y (but not both), so there are $2^k + 2^k = 2^{k+1}$ subsets of Y. Therefore $\mathscr{P}(X) = 2^{|X|}$ for all finite sets |X|.

1.2 Functions

Definition. Function

If X, Y are sets, a function f from X to Y, written $f: X \to Y$ is a subset of $X \times Y$ satisfying two properties:

- For all $a \in X$, there exists $b \in Y$ such that $(a, b) \in f$
 - Everything in the domain must get mapped to something in the codomain
- For all $a \in X$ and $b, b' \in Y$, if $(a, b), (a, b') \in f$, then b = b'
 - Every element in the domain can map to at most one element in the codomain

Note (Function Notation). If $(a,b) \in f$, we write f(a) = b.

Kyle Chui Page 2

Example. Functions

- $f: \mathbb{Z} \to \mathbb{N}$ such that $f(x) = x^2$
- $g: \mathbb{N} \to \mathbb{N}$ such that $g(x) = x^2$

Note that f and g are different functions.

Definition. Domain and Codomain of a Function

If $f: X \to Y$, X is the domain of f and Y is the codomain of f.

Definition. Range of a Function

For $f: X \to Y$, the range of f is:

range
$$f = \{ y \in Y \mid y = f(x) \text{ for some } x \in X \}$$

Definition. Surjectivity

A function $f: X \to Y$ is *onto* or *surjective* if range f = Y. In other words, a function is surjective if its range is equal to its codomain.

Example. Surjective Functions

- $f: \{a, b, c\} \to \{d, e, f\}$ defined by $f = \{(a, d), (b, e), (c, f)\}$
- $f: \mathbb{Z} \to \mathbb{N}$ defined by f(x) = |x|

Definition. Injectivity

A function $f: X \to Y$ is one-to-one or injective if, for all $x, y \in X$, f(x) = f(y) implies that x = y. In other words, different elements in the domain map to different elements in the codomain.

Example. Injective Functions

• $g: \mathbb{N} \to \mathbb{N}$ defined by $g(x) = x^2$

Note (Properties of Functions). Observe that the both the domain and codomain of a function matter when it comes to determining whether the function satisfies certain properties. For instance, $f: \mathbb{Z} \to \mathbb{N}$ defined by $f(x) = x^2$ is not injective, but restricting the domain to \mathbb{N} would make it injective. Similarly, a function $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = x^2$ is not surjective, but restricting the codomain to \mathbb{N} would make it surjective.

Definition. Composition of Functions

If $f: X \to Y, g: Y \to Z$ are functions, then $g \circ f: X \to Z$ is a function defined by $(g \circ f)(x) = g(f(x))$.

Kyle Chui Page 3

Theorem — Composition of Injective/Surjective Functions is Injective/Surjective Let $f: X \to Y$, $g: Y \to Z$.

- If f, g are injective, so is $g \circ f$
- If f, g are surjective, so is $g \circ f$

Proof. Suppose f, g are injective functions. Let $x, x' \in X$ such that $(g \circ f)(x) = (g \circ f)(x')$. Then

$$g(f(x)) = g(f(x'))$$
 (Because g is injective)
$$x = x'$$
 (Because f is injective)

Therefore $g \circ f$ is injective.

Proof. Suppose f, g are surjective functions. Let $z \in Z$. Because g is surjective, there exists some $y \in Y$ such that g(y) = z. Furthermore, because f is surjective, there exists some $x \in X$ such that f(x) = y. Thus, for every $z \in Z$, there exists some $x \in X$ such that $(g \circ f)(x) = g(f(x)) = g(y) = z$, so $g \circ f$ is surjective. \square

Definition. Bijectivity

If a function is both injective and surjective, then we say that it is bijective.

Note (Cardinality and Bijections). If there is a bijection between two sets, they have the same number of elements.