g.
$$\frac{2}{5}$$
 equatia planului tangent la paraboloidul eliptic $\frac{x^2}{5} + \frac{x^2}{3} = \frac{2}{5}$ parabel cu planul $\frac{x^2}{5} + \frac{y^2}{3} = \frac{2}{5}$ parabel cu planul $\frac{x^2}{5} + \frac{y^2}{3} = \frac{2}{5}$ $\frac{x^2}{5} = \frac{2y_0}{3} = -\frac{1}{2}$ $\frac{x^2}{5} = \frac{2y_0}{3} = \frac{1}{2}$ $\frac{x^2}{5} = \frac{1}{16} + \frac{2y_0}{16} = \frac{2}{16} = \frac{2}{16}$ $\frac{x^2}{5} = \frac{2}{16} = \frac{1}{16} = \frac{2}{16} =$

P₂:
$$\frac{2 \cdot (-\frac{\pi}{4})}{5} \times + \frac{2 \cdot (\frac{\pi}{4})}{3} \times - \frac{2}{2} = 0$$

P₂: $-\frac{1}{2} \times + \frac{3}{2} \times - \frac{2}{2} = 0$

P₂: $-\frac{1}{2} \times + \frac{3}{2} \times - \frac{2}{2} = 0$

P₃: $-\frac{1}{2} \times + \frac{3}{2} \times - \frac{2}{2} = 0$

P₄: $-\frac{1}{2} \times + \frac{3}{2} \times - \frac{2}{2} = 0$

P₅: $-\frac{1}{2} \times + \frac{3}{2} \times - \frac{2}{2} = 0$

P₇: $-\frac{1}{2} \times + \frac{3}{2} \times - \frac{2}{2} = 0$

P₈: $-\frac{1}{2} \times - \frac{1}{2} \times - \frac{2}{2} = 0$

P₉: $-\frac{1}{2} \times - \frac{1}{2} \times - \frac$

M
$$\in$$
 paraboloidului hiporbolic =7

1 - 9 - 2 = -35 => M(-\frac{1}{4}, -3, -\frac{35}{16})

16 - 9 - 2 = -35 => M(-\frac{1}{4}, -3, -\frac{35}{16})

$$P_2: -\frac{1}{2} \times + \frac{3}{2} \times - \frac{1}{2} \times \frac{35}{16} = 0$$
 [1.2]