

planetmath.org

Math for the people, by the people.

Noetherian and Artinian properties are inherited in short exact sequences

 ${\bf Canonical\ name} \quad {\bf Noetherian And Artinian Properties Are Inherited In Short Exact Sequences}$

Date of creation 2013-03-22 19:11:52 Last modified on 2013-03-22 19:11:52

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 5

Author rm50 (10146) Entry type Theorem Classification msc 16D10 **Theorem 1.** Let M, M', M'' be A-modules and $0 \to M' \xrightarrow{\iota} M \xrightarrow{\pi} M'' \to 0$ a short exact sequence. Then

- 1. M is Noetherian if and only if M' and M'' are Noetherian;
- 2. M is Artinian if and only if M' and M'' are Artinian.

For \Leftarrow , we will need a lemma that essentially says that a submodule of M is uniquely determined by its image in M'' and its intersection with M':

Lemma 1. In the situation of the theorem, if $N_1, N_2 \subset M$ are submodules with $N_1 \subset N_2$, $\pi(N_1) = \pi(N_2)$, and $N_1 \cap \iota(M') = N_2 \cap \iota(M')$, then $N_1 = N_2$.

Proof. The proof is essentially a diagram chase. Choose $x \in N_2$. Then $\pi(x) = \pi(x')$ for some $x' \in N_1$, and thus $\pi(x - x') = 0$, so that $x - x' \in \operatorname{im} \iota$, and $x - x' \in N_2$ since $N_1 \subset N_2$. Hence $x - x' \in N_2 \cap \iota(M') = N_1 \cap \iota(M') \subset N_1$. Since $x' \in N_1$, it follows that $x \in N_1$ so that $N_1 = N_2$.

Proof. (\Rightarrow): If M is Noetherian (Artinian), then any ascending (descending) chain of submodules of M' (or of M'') gives rise to a similar sequence in M, which must therefore terminate. So the original chain terminates as well. (\Leftarrow): Assume first that M', M'' are Noetherian, and choose any ascending chain $M_1 \subset M_2 \subset \ldots$ of submodules of M. Then the ascending chain $\pi(M_1) \subset \pi(M_2) \subset \ldots$ and the ascending chain $M_1 \cap \iota(M') \subset M_2 \cap \iota(M') \subset \ldots$ both stabilize since M' and M'' are Noetherian. We can choose n large enough so that both chains stabilize at n. Then for $N \geq n$, we have (by the lemma) that $M_N = M_n$ since $\pi(M_N) = \pi(M_n)$ and $M_N \cap \iota(M') = M_n \cap \iota(M')$. Thus M is Noetherian. For the case where M is Artinian, an identical proof applies, replacing ascending chains by descending chains.

References

[1] M.F. Atiyah, I.G. MacDonald, *Introduction to Commutative Algebra*, Addison-Wesley 1969.