Curl of Curl Michael Albrecht

Exercise 1.

Let $\mathbf{f} = (f_x, f_y, f_z)$ be a vector function in three dimensions. Compute the quantity

$$\operatorname{curl}\left(\operatorname{curl}\mathbf{f}\right)\tag{1}$$

in components.

Solution 1.

We recall the formula for the curl in Cartesian coordinates. If $\mathbf{f} = (f_x, f_y, f_z)$, then the curl of \mathbf{f} in components is given by

$$\operatorname{curl}(\mathbf{f}) = \hat{\mathbf{i}} \left(\frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} \right) + \hat{\mathbf{j}} \left(\frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x} \right) + \hat{\mathbf{k}} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right). \tag{2}$$

For convenience, let's define $\operatorname{curl} \mathbf{f} = \mathbf{A}$ as a new vector \mathbf{A} . The components of A are then

$$A_{x} = \frac{\partial f_{z}}{\partial y} - \frac{\partial f_{y}}{\partial z},$$

$$A_{y} = \frac{\partial f_{x}}{\partial z} - \frac{\partial f_{z}}{\partial x},$$

$$A_{z} = \frac{\partial f_{y}}{\partial x} - \frac{\partial f_{x}}{\partial y}.$$
(3)

Now we wish to compute $\operatorname{curl}(\operatorname{curl} \mathbf{f})$, which is just $\operatorname{curl} \mathbf{A}$. Using (2), the $\hat{\mathbf{i}}$ component of this vector is

$$(\operatorname{curl} \mathbf{A})_x = \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}.$$
 (4)

To compute each of these derivatives, we must use the components of A given in (3). The first of these

$$\frac{\partial A_z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right)
= \frac{\partial^2 f_y}{\partial x \partial y} - \frac{\partial^2 f_x}{\partial y^2}.$$
(5)