

Evanivaldo C. Silva Júnior

Evanivaldo C. Silva Júnior

CARACTERÍSTICAS

- Posicional
- Decimal (Base 10), isto é,
 considera os dígitos 0, 1, 2, 3,
 4, 5, 6, 7, 8, 9.
- Os dígitos são lidos da esquerda para a direita, aumentando-se a significância (potência), da unidade, dezena, centena, etc, para a esquerda

EXEMPLO

Evanivaldo C. Silva Júnior

SISTEMA DE NUMERAÇÃO BINÁRIO

- Posicional
- Binário (Base 2, ou seja, considera apenas os dígitos 0 e 1.
- Os dígitos são lidos da esquerda para a direita, aumentando-se a significância (potência), da unidade, dezena, centena, etc, para a esquerda.

EXEMPLO

$$110100 = 0 \times 1 + 0 \times 2 + 1 \times 4 + 0 \times 8 + 1 \times 16 + 1 \times 32$$

$$110100 = 0 \times 2^{0} + 0 \times 2^{1} + 1 \times 2^{2} + 0 \times 2^{3} + 1 \times 2^{4} + 1 \times 2^{5}$$

Que, em decimal é:

$$= 0 \times 1 + 0 \times 2 + 1 \times 4 + 0 \times 8 + 1 \times 16 + 1 \times 32$$

$$= 0 + 0 + 4 + 0 + 16 + 32 = 52$$

MÉTODO RÁPIDO DE CONVERSÃO DE BINÁRIO PARA DECIMAL

potências Número binário Número decimal

128	64	32	16	8	4	2	1
		1	1	0	1	0	0
		32	16		4		

MÉTODO DE CONVERSÃO DE DECIMAL PARA BINÁRIO

- Método das divisões sucessivas
- Dividimos o decimal pela base 2 (divisão inteira) e tomamos o resto
- O número correspondente na forma binária será "montado" do último quociente e resto de forma recursiva, ou seja, de tras para frente.

EXEMPLO: 2135

MÉTODO DE CONVERSÃO DE DECIMAL PARA BINÁRIO

$$1067 = 2 \times 533 + 1$$

$$533=2 \times 266 + 1$$

$$266=2 \times 133 + 0$$

$$133=2 \times 66 + 1$$

$$66=2 \times 33 + 0$$

$$33=2 \times 16 + 1$$

$$8=2 \times 4 + 0$$

$$4=2 \times 2 + 0$$

$$2=2 \times 1 + 0$$

Binário: 100001010111

1

CONVERTER OS BINÁRIOS ABAIXO EM DECIMAIS

- i. (10101010)2
- ii. (1111011)2
- iii. (1110101111)2

2

CONVERTER OS DECIMAIS ABAIXO EM BINÁRIOS

- i. (345)10
- ii. (7899)10
- iii. (255)10

3

CONVERTER OS OCTAIS ABAIXO EM DECIMAL

- i. (305)8
- ii. (5137)8
- iii. (255)8

Evanivaldo C. Silva Júnior

REPRESENTAÇÃO DE NÚMEROS INTEIROS

• Último bit (bit mais significativo) representa o sinal sendo 1 negativo e 0 positive.

Evanivaldo C. Silva Júnior

REPRESENTAÇÃO DE NÚMEROS INTEIROS - COMPLEMENTO DE DOIS

- Primeiramente escrevemos o número invertendo todos os bits
- Depois somamos 1 ao primeiro bit
- Exemplo: determinemos o complemento de dois do binário (1001)₂=(9)₁₀

$$0 | 1 | 1 | = (-7)_{10}$$

Evanivaldo C. Silva Júnior

REPRESENTAÇÃO DE NÚMEROS INTEIROS - COMPLEMENTO DE DOIS

 Tabela de decimais, respectitos binário e compemento de dois para números de 4 bits:

Decimal	Binário	Complemento de 2
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	-8
9	1001	-7
10	1010	-6
11	1011	-5
12	1100	-4
13	1101	-3
14	1110	-2
15	1111	-1

Evanivaldo C. Silva Júnior

REPRESENTAÇÃO DE NÚMEROS INTEIROS - COMPLEMENTO DE DOIS

• Aplicação: Operação aritmética de Adição

• Exemplo 1: Adicionemos os números $(5)_{10} = (0101)_2$ com $(2)_{10} = (0010)_2$, temos:

$$(5)_{10} + (2)_{10} = (0101)_2 + (0010)_2 = (0111)_2 = (7)_{10}$$

Evanivaldo C. Silva Júnior

REPRESENTAÇÃO DE NÚMEROS INTEIROS - COMPLEMENTO DE DOIS

Aplicação: Operação aritmética de Subtração

• Exemplo 2: Façamos a subtração dos números $(5)_{10} = (0101)_2$ por $(2)_{10} = (0010)_2$, temos:

 $(5)_{10}$ - $(2)_{10}$ = $(0101)_2$ +{comp. de 2 de $(0010)_2$ = $(1101)_2$ +1 = $(1110)_2$ }, ou seja, $(0101)_2$ + $(1110)_2$ = $(0011)_2$ = $(3)_{10}$

Obs: Na última etapa da operação anterior temos (0101)₂ +(1110)₂ =(10011)₂ porém, como o número tem somente 4 bits desprezamos o 50. Bit (em Vermelho)

Evanivaldo C. Silva Júnior

REPRESENTAÇÃO DE NÚMEROS INTEIROS - COMPLEMENTO DE DOIS

Aplicação: Operação aritmética de Subtração

• Exemplo 3: Façamos a subtração dos números $(2)_{10} = (0010)_2$, por $(5)_{10} = (0101)_2$ temos:

$$(2)_{10}$$
 - $(5)_{10}$ = $(0010)_2$ +{comp. de 2 de $(0101)_2$ = $(1010)_2$ +1 = $(1011)_2$ }, ou seja, $(0010)_2$ + $(1011)_2$ = $(1101)_2$ = $(-3)_{10}$

1

CONSIDERANDO OS NÚMEROS DECIMAIS ABAIXO COM REPRESENTAÇÃO BINÁRIA DE 4 BITS REALIZAR AS OPERAÇÕES

ii.
$$2 - 8$$

2

CONSIDERANDO OS NÚMEROS DECIMAIS ABAIXO COM REPRESENTAÇÃO BINÁRIA DE 5 BITS REALIZAR AS OPERAÇÕES

ii.
$$15-7$$

iii.
$$10 - 4$$

3

RESOLVER:

i.
$$23 + 45 - 11$$