ARITHMETIC FUNCTIONS

MUHAMMAD ATIF ZAHEER

Contents

1.	Basic examples	1
2.	Dirichlet product	4
3.	Multiplicative functions	5
Exercises		8
Solutions		9

1. Basic examples

An arithmetic function is a complex-valued function defined on \mathbb{N} , i.e., a sequence of complex numbers. While the class of arithmetic functions is broad, namely $\mathbb{C}^{\mathbb{N}}$, we will restrict our attention to only those of number-theoretic significance

Below are some commonly occurring arithmetic functions.

- The identity function e is defined as $e(n) = \lfloor 1/n \rfloor$, i.e., e(1) = 1 and e(n) = 0 for n > 1. It is called so because, as we will see later, it acts as the identity element in a group of arithmetic functions.
- For any $\alpha \in \mathbb{C}$, the power function N^{α} is defined as $N^{\alpha}(n) = n^{\alpha}$. We denote N^{0} by 1 and call it the unit function
- For $n \in \mathbb{N}$, $\Omega(n)$ is defined to be the total number of prime factors of n counted with multiplicity. We can write this in summation notation as

$$\Omega(n) = \sum_{p^k|n} 1 = \sum_{p^k||n} k.$$

It is sometimes called big omega function.

• For $n \in \mathbb{N}$, $\omega(n)$ is defined to be the number of prime factors of n. We can write it in summation notation as

$$\omega(n) = \sum_{p \mid n} 1.$$

It is usually called *small omega* function.

• The Liouville function, denoted λ , is defined as $\lambda(n) = (-1)^{\Omega(n)}$.

We now turn our attention to some more interesting arithmetic functions that occur frequently in (analytic) number theory.

The Möbius function, denoted μ , is defined as follows

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^k & \text{if } n = p_1 \dots p_k, \text{ where } p_1, \dots, p_k \text{ are distinct primes,} \\ 0 & \text{otherwise.} \end{cases}$$

Note that μ is the signed characteristic function of squarefree positive integers. The definition of μ may seem unmotivated at this point but later we will see later that μ is the inverse of the unit function 1 in some group of arithmetic functions. Given that such an inverse exists one can easily recover this definition.

The Möbius function μ has an intimate connection with one of the most important function in (analytic) number theory, namely Riemann zeta function $\zeta(s)$. For instance, the estimate $M(x) = \sum_{n \leqslant x} \mu(n) \ll x^{1/2+\epsilon}$ implies the Riemann Hypothesis (RH), one of the most notoriously difficult problem in all of mathematics. In fact, the convergence of the Dirichlet series $\sum_{n=1}^{\infty} \mu(n) n^{-s}$ for every s with Re(s) > 1/2 also implies RH. We begin a simple result about the divisor sum of μ .

Proposition 1.1. If $n \ge 1$, then

$$\sum_{d \mid n} \mu(d) = e(n).$$

Proof. If n = 1, then the formula clearly holds as $\mu(1) = 1$. Now suppose that $n = \prod_{i=1}^k p_i^{a_i}$. Because $\mu(d)$ is nonzero if and only if d is squarefree, we can restrict the sum to divisors of the form $\prod_{i \in I} p_i$, where I is a subset of $\{1, \ldots, k\}$. Hence, we get

$$\sum_{d|n} \mu(d) = \sum_{I \subset \{1,\dots,n\}} \mu\left(\prod_{i \in I} p_i\right) = \sum_{I \subset \{1,\dots,n\}} (-1)^{|I|}.$$

Since for each $0 \le r \le k$ there are precisely $\binom{k}{r}$ subsets of $\{1, \ldots, k\}$ containing r elements, we therefore deduce that

$$\sum_{d|n} \mu(d) = \sum_{r=0}^{k} {k \choose r} (-1)^r = (-1+1)^k = 0.$$

The Euler's totient function φ is defined at n to be the number of positive integers not exceeding n that are relatively prime to n, i.e.,

$$\varphi(n) = |\{1 \leqslant k \leqslant n : (k,n) = 1\}|.$$

We can rewrite $\varphi(n)$ in the summation notation as

$$\varphi(n) = \sum_{\substack{k=1\\(k,n)=1}}^{n} 1.$$

Proposition 1.2. If $n \ge 1$, then

$$\sum_{d|n} \varphi(d) = n.$$

Proof. The key idea behind the proof is to partition the set $\{1, \ldots, n\}$ into subsets $A_d = \{1 \le k \le n : (k, n) = d\}$, where d is a divisor of n, and to note that there is a one-to-one bijection between elements of A_d and integers $1 \le r \le n/d$ satisfying (r, n/d) = 1. This then implies that

$$n = \sum_{d|n} |A_d| = \sum_{d|n} \varphi(n/d) = \sum_{d|n} \varphi(d).$$

The next result provides us with a relationship between μ and φ .

Proposition 1.3. If $n \ge 1$, then we have

(1.1)
$$\varphi(n) = \sum_{d|n} \mu(d) \frac{n}{d}.$$

Proof. We use the formula for the divisor sum of μ to obtain

$$\varphi(n) = \sum_{k=1}^{n} e((k,n)) = \sum_{k=1}^{n} \sum_{\substack{d \mid (k,n)}} \mu(d) = \sum_{k=1}^{n} \sum_{\substack{d \mid n \\ d \mid k}} \mu(d)$$

Changing the order of summation we obtain

$$\varphi(n) = \sum_{d|n} \sum_{\substack{k=1\\d|k}}^{n} \mu(d) = \sum_{d|n} \mu(d) \sum_{\substack{k=1\\d|k}}^{n} 1 = \sum_{d|n} \mu(d) \frac{n}{d}.$$

Next we obtain a nice product formula for $\varphi(n)$.

Proposition 1.4. For $n \ge 1$ we have

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p} \right),\,$$

Proof. If n = 1, then the product on the right hand side is empty and so the formula trivially holds. Now let p_1, \ldots, p_k be the prime divisors of n let $[k] := \{1, \ldots, k\}$. Then expanding the product, we get

$$\prod_{i=1}^{k} \left(1 - \frac{1}{p_i} \right) = \sum_{I \subset [k]} \prod_{i \in I} \left(-\frac{1}{p_i} \right) = \sum_{I \subset [k]} \frac{(-1)^{|I|}}{\prod_{i \in I} p_i}$$

$$= \sum_{d \mid n} \frac{\mu(d)}{d} = \frac{\varphi(n)}{n}.$$

Proposition 1.5. The Euler's totient function has the following properties:

- (a) $\varphi(p^a) = p^a p^{a-1}$ for prime p and $a \ge 1$.
- (b) $\varphi(mn) = \varphi(m)\varphi(n)(d/\varphi(d))$, where d = (m, n).
- (c) $\varphi(mn) = \varphi(m)\varphi(n)$ if (m, n) = 1.
- (d) n|m implies $\varphi(n)|\varphi(m)$.
- (e) $\varphi(n)$ is even for $n \geqslant 3$. Moreover, if n has r distinct odd prime factors, then $2^r | \varphi(n)$.

Proof. Part (a) follows immediately from the product formula. As for part (b) note that

$$\begin{split} \frac{\varphi(mn)}{mn} &= \prod_{p|mn} \left(1 - \frac{1}{p}\right) = \prod_{p|m} \left(1 - \frac{1}{p}\right) \prod_{\substack{p|n \\ p \nmid m}} \left(1 - \frac{1}{p}\right) \\ &= \prod_{p|m} \left(1 - \frac{1}{p}\right) \prod_{\substack{p|n \\ p \mid n}} \left(1 - \frac{1}{p}\right) \prod_{\substack{p|n \\ p \mid m}} \left(1 - \frac{1}{p}\right)^{-1} \\ &= \frac{\varphi(m)}{m} \frac{\varphi(n)}{n} \prod_{\substack{p|(n,m)}} \left(1 - \frac{1}{p}\right)^{-1} \\ &= \frac{\varphi(m)}{m} \frac{\varphi(n)}{n} \frac{d}{\varphi(d)}, \end{split}$$

where d = (m, n).

Part (c) follows immediately from part (b).

For part (d) let $n = p_1^{a_1} \cdots p_k^{a_k}$ and $m = p_1^{b_1} \cdots p_k^{b_k}$, where a_i are nonnegative. Because $a_i \leq b_i$, we have $\varphi(p_i^{a_i})|\varphi(p_i^{b_i})$ due to part (a). This coupled with the fact that φ is multiplicative (due to part (c)) gives us the desired result.

Finally for part (e) observe that if $n \ge 3$ and $n = 2^a$ for some positive integer a then a must be at least 2 and so $\varphi(2^a) = 2^a - 2^{a-1} = 2(2^{a-1} - 2^{a-2})$ is even. Now note that

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p} \right) = \frac{n}{\prod_{p|n} p} \prod_{p|n} (p-1),$$

where the factor $n(\prod_{p|n}p)^{-1}$ is an integer. If n is not of the form 2^a , then an odd prime p divides n, and so the factor on the right must be even which implies that $\varphi(n)$ is even. Finally, if n has r distinct odd prime factors then $2^r|\prod_{p|n}(p-1)$ and hence $2^r|\varphi(n)$.

The von-Mangoldt function (usually referred to as simply Mangoldt function), denoted Λ , is defined as

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^a \text{ for some prime } p \text{ and integer } a \geqslant 1, \\ 0 & \text{otherwise.} \end{cases}$$

The von-Mangoldt function Λ plays an important role in prime number theory.

2. Dirichlet product

If f and g are two arithmetic functions we define their *Dirichlet product* (or *Dirichlet convolution*) to be the arithmetic function f * g defined as

$$(f * g)(n) = \sum_{d|n} f(d)g(n/d)$$

It is easily seen that Dirichlet multiplication is both commutative and associative, i.e., for any arithmetic functions f, g, h we have

$$f * g = g * f$$
 and $(f * g) * h = f * (g * h)$.

Moreover, we have e * f = f for any arithmetic function f. Thus the set of all arithmetic functions is a commutative monoid. The next result allows us to characterize arithmetic functions that are invertible under Dirichlet multiplication.

PROPOSITION 2.1. If f is an arithmetic function with $f(1) \neq 0$, then there is a unique arithmetic function g such that

$$g * f = f * g = e.$$

The function g is given by

$$g(1) = \frac{1}{f(1)},$$
 $g(n) = -\frac{1}{f(1)} \sum_{\substack{d \mid n \\ d < n}} g(d) f(n/d)$ for $n > 1$.

The above result show that the set of all arithmetic functions f satisfying $f(1) \neq 0$ form an abelian group under Dirichlet multiplication.

The Dirichlet multiplication provides a convenient notation to write some of our earlier results in a compact fashion;

$$\mu * 1 = e$$
, $\varphi * 1 = N$, $\varphi = \mu * N$.

Proposition 2.2 (Möbius inversion formula). Let f and g be arithmetic functions. Then

$$f(n) = \sum_{d|n} g(d)$$

for every $n \in \mathbb{N}$ if and only if

$$g(n) = \sum_{d|n} f(d)\mu(n/d)$$

for every $n \in \mathbb{N}$.

Proof. Follow immediately by noting that f = g * 1 if and only if $g = f * \mu$ which is seen by multiplying by μ (or 1) and using the identity $\mu * 1 = e$.

3. Multiplicative functions

An arithmetic function f is called *multiplicative* if f is not identically zero and

$$f(mn) = f(m)f(n)$$
 whenever $(m, n) = 1$.

A multiplicative function f is called *completely multiplicative* (or *totally multiplicative*) if f is not identically zero and

$$f(mn) = f(m)f(n)$$
 for all m, n .

Example 3.1. We note some common examples of multiplicative functions.

- (a) The power function N^{α} is completely multiplicative.
- (b) The identity function e is completely multiplicative.
- (c) The Möbius function μ is multiplicative. However, it is not completely multiplicative as $\mu(4) = 0 \neq 1 = \mu(2)^2$.
- (d) The Euler totient function φ is multiplicative. However, it is not completely multiplicative as $\varphi(4) = 2 \neq 1 = \varphi(2)^2$.

PROPOSITION 3.2. If f is multiplicative, then f(1) = 1.

From this it immediately follows that Λ is not multiplicative as $\Lambda(1) = 0$.

PROPOSITION 3.3. Let f be an arithmetic function with f(1) = 1.

(a) f is multiplicative if and only if

$$f(p_1^{a_1}\cdots p_k^{a_k}) = f(p_1^{a_1})\cdots f(p_k^{a_k}),$$

where p_1, \ldots, p_k are distinct primes.

(b) If f is multiplicative, then f is completely multiplicative if and only if

$$f(p^a) = f(p)^a$$

for all primes p and all integers $a \ge 1$.

The above result shows that a multiplicative function is uniquely determined by its values on prime powers, and a completely multiplicative function is uniquely determined by its values on primes.

PROPOSITION 3.4. If f and g are multiplicative, then so is their Dirichlet product f * g.

Proof. Let m and n be relatively prime integers. Then observe that

$$(f * g)(mn) = \sum_{d|mn} f(d)g\left(\frac{mn}{d}\right) = \sum_{\substack{a|m\\b|n}} f(ab)g\left(\frac{mn}{ab}\right)$$

as every divisor of mn can be uniquely written as ab, where a|m and b|n. Using the multiplicativity of f and g we obtain

$$(f * g)(mn) = \sum_{\substack{a|m\\b|n}} f(a)f(b)g\left(\frac{m}{a}\right)g\left(\frac{n}{b}\right) = \sum_{\substack{a|m\\b|n}} \sum_{\substack{b|n}} f(a)f(b)g\left(\frac{m}{a}\right)g\left(\frac{n}{b}\right)$$
$$= \sum_{\substack{a|m\\b|n}} f(a)g\left(\frac{m}{a}\right) \sum_{\substack{b|n\\b|n}} f(b)g\left(\frac{n}{b}\right) = (f * g)(m)(f * g)(n). \qquad \Box$$

The Dirichlet product of two completely multiplicative functions need not be completely multiplicative. For instance, the divisor function d = 1 * 1 is not completely multiplicative as $d(4) = 3 \neq 4 = d(2)^2$ whereas 1 clearly is.

PROPOSITION 3.5. If f is multiplicative, then so is it's Dirichlet inverse f^{-1} .

Proof. Suppose for the sake of contradiction that f^{-1} is not multiplicative. Then there exist positive integers m and n with (m, n) = 1 such that

$$f^{-1}(mn) \neq f^{-1}(m)f^{-1}(n)$$
.

We choose such a pair m and n for which the product mn is the smallest. Since f is multiplicative therefore $f^{-1}(1) = 1/f(1) = 1$ and hence neither m nor n can be 1. In particular, mn > 1. By the construction of the product mn, f(ab) = f(a)f(b) for all positive integers a and b with (a, b) = 1 and ab < mn. It now follows that

$$f^{-1}(mn) = -\sum_{\substack{a \mid m \\ b \mid n \\ ab < mn}} f^{-1}(ab) f\left(\frac{mn}{ab}\right) = -\sum_{\substack{a \mid m \\ b \mid n \\ ab < mn}} f^{-1}(a) f^{-1}(b) f\left(\frac{m}{a}\right) f\left(\frac{n}{b}\right)$$

Splitting the sum we obtain

$$\begin{split} f^{-1}(mn) &= -f^{-1}(n) \sum_{\substack{a \mid m \\ a < m}} f^{-1}(a) f\left(\frac{m}{a}\right) - f^{-1}(m) \sum_{\substack{b \mid n \\ b < n}} f^{-1}(b) f\left(\frac{n}{b}\right) \\ &- \sum_{\substack{a \mid m \\ a < m}} \sum_{\substack{b \mid n \\ b < n}} f^{-1}(a) f^{-1}(b) f\left(\frac{m}{a}\right) f\left(\frac{n}{b}\right) \\ &= f^{-1}(n) f^{-1}(m) + f^{-1}(m) f^{-1}(n) - f^{-1}(m) f^{-1}(n) \\ &= f^{-1}(m) f^{-1}(n). \end{split}$$

This contradiction proves the result.

Second Proof. Let g be an arithmetic function defined as

$$g(n) = \prod_{p^a||n} f^{-1}(p^a).$$

Then g is a multiplicative function by definition and so it suffices to show that $f^{-1} = g$. Note that

$$(g * f)(p^k) = \sum_{d|p^k} g(d)f(p^k/d) = \sum_{i=0}^k g(p^i)f(p^{k-i})$$

$$= \sum_{i=0}^k f^{-1}(p^i)f(p^{k-i}) = \sum_{d|p^k} f^{-1}(d)f(p^k/d) = (f^{-1} * f)(p^k) = e(p^k).$$

Because g * f and e are both multiplicative functions and agree on prime powers, it follows that g * f = e and so $g = f^{-1}$.

PROPOSITION 3.6. Let f be multiplicative. Then f is completely multiplicative if and only if $f^{-1} = \mu f$.

Proof. Suppose f is completely multiplicative. Then observe that

$$(f*\mu f)(n) = \sum_{d\mid n} \mu(d)f(d)f\left(\frac{n}{d}\right) = f(n)\sum_{d\mid n} \mu(d) = f(n)e(n) = e(n).$$

Conversely, assume that $f^{-1} = \mu f$. Then observe that

$$\sum_{d \mid n} \mu(d) f(d) f\left(\frac{n}{d}\right) = 0$$

for n > 1. Let $n = p^a$, where $a \ge 1$. Then, we get

$$\mu(1)f(1)f(p^a) + \mu(p)f(p)f(p^{a-1}) = 0.$$

It then follows that

$$f(p^a) = f(p)f(p^{a-1}).$$

This implies that $f(p^a) = f(p)^a$. Thus f is completely multiplicative.

Proposition 3.7. If f is a multiplicative arithmetic function then

$$\sum_{d \mid n} \mu(d) f(d) = \prod_{p \mid n} (1 - f(p)).$$

Proof. Let $g = 1 * \mu f$. Then g is a multiplicative function. Thus, it suffices to know the value of g at prime powers. We observe that

$$g(p^{a}) = \sum_{d \mid p^{a}} \mu(d)f(d) = \mu(1)f(1) + \mu(p)f(p) = 1 - f(p).$$

Hence, we obtain

$$g(n) = \prod_{p \mid n} g(p^a) = \prod_{p \mid n} (1 - f(p)).$$

EXERCISES

EXERCISE 1. Show that for every $k \in \mathbb{N}$ there are infinitely many n such that

$$\mu(n+1) = \cdots = \mu(n+k).$$

(Hint: Use Chinese Remainder Theorem.)

EXERCISE 2. Prove that

$$\frac{n}{\varphi(n)} = \sum_{d \mid n} \frac{\mu^2(d)}{\varphi(d)}.$$

Exercise 3. Prove that $\varphi(n) \to \infty$ as $n \to \infty$.

EXERCISE 4. Show that $d(n) \ll n^{\epsilon}$ for every $\epsilon > 0$.

EXERCISE 5. Prove that $\varphi(n) \gg n^{1-\epsilon}$ for every $\epsilon > 0$.

EXERCISE 6. Let us denote $e^{2\pi i\alpha}$ by $e(\alpha)$.

(a) Prove that

$$\frac{1}{q} \sum_{a=1}^{q} e(an/q) = \begin{cases} 1 & \text{when } q | n, \\ 0 & \text{when } q \nmid n. \end{cases}$$

(b) The Ramanujan's sum $c_q(n)$ is defined as

$$c_q(n) = \sum_{\substack{a=1\\(a,q)=1}}^{q} e(an/q).$$

Prove that

$$c_q(n) = \sum_{d \mid (q,n)} d\mu(q/d)$$

and conclude that $c_q(n) = O_n(1)$.

(c) Prove that

$$\sigma(n) = \frac{\pi^2 n}{6} \sum_{q=1}^{\infty} \frac{c_q(n)}{q^2}.$$

SOLUTIONS

Solution 1. Let p_1, \ldots, p_k be distinct primes. Then by the Chinese Remainder Theorem there exist infinitely many positive integers n such that $n \equiv -j \mod p_j^2$ for every $1 \leqslant j \leqslant k$. Thus $p_j^2 | (n+j)$ for every $1 \leqslant j \leqslant k$ and so n+j is not squarefree, i.e., $\mu(n+1) = \cdots = \mu(n+k) = 0$.

SOLUTION 2. Note that

$$\frac{n}{\varphi(n)} = \prod_{p|n} \left(1 - \frac{1}{p} \right)^{-1} = \prod_{p|n} \frac{p}{p-1} = \prod_{p|n} \left(1 + \frac{1}{p-1} \right).$$

Expanding the product we get

$$\frac{n}{\varphi(n)} = \sum_{I \subset \{p|n\}} \prod_{p \in I} \frac{1}{p-1} = \sum_{I \subset \{p|n\}} \prod_{p \in I} \frac{1}{\varphi(p)} = \sum_{I \subset \{p|n\}} \frac{1}{\varphi(\prod_{p \in I} p)}.$$

Thus we obtain

$$\frac{n}{\varphi(n)} = \sum_{\substack{d \mid n \\ d \text{ sq. free}}} \frac{1}{\varphi(d)} = \sum_{\substack{d \mid n}} \frac{\mu(d)^2}{\varphi(d)}.$$

We now present another solution. Let $f = \mu/\varphi$. Note that f is multiplicative and so we have

$$\sum_{d|n} \frac{\mu(d)^2}{\varphi(d)} = \sum_{d|n} \mu(d) f(d) = \prod_{p|n} (1 - f(p)) = \prod_{p|n} \left(1 - \frac{\mu(p)}{f(p)} \right) = \prod_{p|n} \frac{p}{p-1}$$

due to Proposition 3.7. Since $p^a/\varphi(p^a)=p/(p-1)$ we conclude that

$$\sum_{d \mid n} \frac{\mu(d)^2}{\varphi(d)} = \frac{n}{\varphi(n)}.$$

SOLUTION 3. Let M>0 and let $\varphi(n)\leqslant M$. Take $n=\prod_{i=1}^k p_i^{a_i}$. Then we have $\varphi(n)=\prod_{i=1}^k p_i^{a_i-1}(p_i-1)\leqslant M$. This shows that $p_i-1\leqslant M$ and $2^{a_i-1}\leqslant M$ for every i. Hence we have $p_i< M$ and $2^{a_i}\leqslant 2M$ for every i. Thus the exponents a_i are bounded by $\log_2(2M)$. This shows that there are only finitely many positive integers n with $\varphi(n)\leqslant M$. Hence we have $\varphi(n)\to\infty$ as $n\to\infty$.

Solution 4. Let $n = p_1^{a_1} \cdots p_k^{a_k}$. Then we have

$$\frac{d(n)}{n^{\epsilon}} = \prod_{p^a||n} \frac{a+1}{p^{a\epsilon}} \leqslant \prod_{\substack{p^a||n\\p<2^{1/\epsilon}}} \frac{a+1}{p^{a\epsilon}}$$

for if $p \ge 2^{1/\epsilon}$, then $p^{\epsilon} \ge 2$ and so $p^{a\epsilon} \ge 2^a \ge a+1$ which gives $(a+1)/p^{a\epsilon} \le 1$. Now observe that

$$\frac{d(n)}{n^{\epsilon}} \leqslant \prod_{\substack{p^a \mid | n \\ n < 2^{1/\epsilon}}} \frac{a+1}{2^{a\epsilon}} \leqslant \prod_{\substack{p^a \mid | n \\ n < 2^{1/\epsilon}}} \frac{a+1}{a\epsilon \log 2}$$

as $2^{a\epsilon} = e^{a\epsilon \log 2} \geqslant a\epsilon \log 2$. Finally we have

$$\frac{d(n)}{n^{\epsilon}} \leqslant \prod_{n < 2^{1/\epsilon}} \frac{2}{\epsilon \log 2} \leqslant \left(\frac{2}{\epsilon \log 2}\right)^{\pi(2^{1/\epsilon})}.$$

This shows that $d(n) \ll_{\epsilon} n^{\epsilon}$.

SOLUTION 5. Note that

$$\varphi(n) = n \prod_{\substack{n \mid n}} \left(1 - \frac{1}{p} \right) \geqslant \frac{n}{2^{\omega(n)}} \geqslant \frac{n}{d(n)} \gg n^{1 - \epsilon}$$

as $1 - 1/p \geqslant 1/2$ for every prime p and $d(n) \geqslant 2^{\omega(n)}$ for every $n \in \mathbb{N}$.

We present another solution which involves bounding the product $\prod_{p|n} \left(1 - \frac{1}{p}\right)$ from below. Let n be a positive integer. Then we have

$$\log \prod_{p|n} \left(1 - \frac{1}{p} \right) = \sum_{p|n} \log \left(1 - \frac{1}{p} \right) = -\sum_{p|n} \sum_{m=1}^{\infty} \frac{1}{mp^m} = -\sum_{m=1}^{\infty} \frac{1}{m} \sum_{p|n} \frac{1}{p^m}.$$

Let $p_1 < p_2 < \cdots$ be the sequence of primes. Then for K > 1 we have

$$\sum_{p|n} \frac{1}{p^m} \leqslant \sum_{k < K} \frac{1}{p_k^m} + \frac{\omega(n)}{p_K^m}.$$

This then leads to

$$\begin{split} \sum_{m=1}^{\infty} \frac{1}{m} \sum_{p \mid n} \frac{1}{p^m} \leqslant \sum_{m=1}^{\infty} \frac{1}{m} \sum_{k < K} \frac{1}{p_k^m} + \omega(n) \sum_{m=1}^{\infty} \frac{1}{m p_K^m} \\ &= -\sum_{k < K} \log\left(1 - \frac{1}{p_k}\right) - \omega(n) \log\left(1 - \frac{1}{p_K}\right). \end{split}$$

Using the inequality $\omega(n) \leq \log_2 n$ we obtain

$$\log \prod_{n \mid n} \left(1 - \frac{1}{p}\right) \geqslant \sum_{k \leqslant K} \log \left(1 - \frac{1}{p_k}\right) + \frac{\log n}{\log 2} \log \left(1 - \frac{1}{p_K}\right).$$

If we denote

$$c_K = \sum_{k < K} \log \left(1 - \frac{1}{p_k} \right) \quad \text{and} \quad \epsilon_K = -\frac{1}{\log 2} \log \left(1 - \frac{1}{p_K} \right),$$

then we have

$$\log \varphi(n) = \log n + \log \prod_{n \mid n} \left(1 - \frac{1}{p} \right) \geqslant c_K + (1 - \epsilon_K) \log n.$$

Hence we conclude that

$$\varphi(n) \geqslant e^{c_K} n^{1-\epsilon_K}$$
.

Since $\epsilon_K \to 0$ as $K \to \infty$ we get that $\varphi(n) \gg n^{1-\epsilon}$ for every $\epsilon > 0$.

Solution 6. Note that if q|n, then e(an/q) = 1 for every $1 \le a \le q$ and so we have

$$\frac{1}{q} \sum_{a=1}^{q} e(an/q) = \frac{1}{q} \sum_{a=1}^{q} 1 = 1.$$

Now suppose that $q \nmid n$. Then we have $e(n/q) \neq 1$ and so

$$\frac{1}{q} \sum_{q=1}^{q} e(an/q) = \frac{1}{q} \sum_{q=1}^{q} e(n/q)^a = \frac{1}{q} \left(\frac{e(n/q)^{q+1} - 1}{e(n/q) - 1} - 1 \right) = 0$$

as $e(n/q)^{q+1} = e(n/q)$.

Observe that

$$c_q(n) = \sum_{\substack{a=1\\(a,q)=1}}^q e(an/q) = \sum_{a=1}^q e(an/q) \sum_{\substack{d \mid (a,q)}} \mu(d) = \sum_{a=1}^q e(an/q) \sum_{\substack{d \mid a\\d \mid q}} \mu(d).$$

Changing the order of summation we get

$$c_q(n) = \sum_{d \mid q} \mu(d) \sum_{\substack{a=1 \\ \text{old}}}^q e(an/q) = \sum_{d \mid q} \mu(d) \sum_{r=1}^{q/d} e(rdn/q) = \sum_{d \mid q} \mu(d) \sum_{r=1}^{q/d} e(rn/(q/d)).$$

We can rewrite $c_q(n)$ as

$$c_q(n) = \sum_{d \mid q} \mu(q/d) \sum_{r=1}^d e(rn/d).$$

Finally, applying the identity in part (a) we obtain

$$c_q(n) = \sum_{\substack{d \mid q \\ d \mid n}} d\mu(q/d) = \sum_{\substack{d \mid (q,n)}} d\mu(q/d).$$

Using the triangle inequality, we get

$$|c_q(n)| \leqslant \sum_{d \mid (q,n)} d \leqslant \sum_{d \mid n} d = \sigma(n).$$

Hence, $c_q(n) = O(1)$ as a function of q with a fixed n.

We rewrite $\sigma(n)$ as

$$\sigma(n) = n \sum_{d \mid n} \frac{1}{d} = n \sum_{d=1}^{n} \frac{1}{d} \left(\frac{1}{d} \sum_{a=1}^{d} e(an/d) \right)$$

since $\frac{1}{d}\sum_{a=1}^{d}e(an/d)$ is the characteristic function of the divisors of n by part (a). This results in

$$\sigma(n) = n \sum_{d=1}^{n} \frac{1}{d^2} \sum_{a=1}^{d} e(an/d).$$

Since the factor $\sum_{a=1}^{d} e(an/d) = 0$ for d > n by part (a), we can extend the above finite sum to an infinite sum as

(3.1)
$$\sigma(n) = n \sum_{d=1}^{\infty} \frac{1}{d^2} \sum_{n=1}^{d} e(an/d).$$

Observe that

$$\sum_{a=1}^{d} e(an/d) = \sum_{q|d} \sum_{\substack{a=1\\(a,d)=q}}^{d} e(an/d) = \sum_{q|d} \sum_{\substack{r=1\\(r,d/q)=1}}^{d/q} e(rqn/d)$$

$$= \sum_{q|d} \sum_{\substack{r=1\\(r,d/q)=1}}^{d/q} e(rn/(d/q)) = \sum_{q|d} c_{d/q}(n) = \sum_{q|d} c_q(n).$$

Substituting this into (3.1) we obtain

$$\sigma(n) = n \sum_{d=1}^{\infty} \frac{1}{d^2} \sum_{q|d} c_q(n) = n \sum_{d=1}^{\infty} \sum_{q|d} \frac{c_q(n)}{d^2}.$$

Changing the order of summation, we get

$$\sigma(n) = n \sum_{q=1}^{\infty} \sum_{\substack{d=1\\q \mid d}}^{\infty} \frac{1}{d^2} c_q(n) = n \sum_{q=1}^{\infty} \sum_{\ell=1}^{\infty} \frac{c_q(n)}{(q\ell)^2}$$

$$= n \sum_{q=1}^{\infty} \sum_{\ell=1}^{\infty} \frac{1}{\ell^2} \frac{c_q(n)}{q^2} = n \left(\sum_{\ell=1}^{\infty} \frac{1}{\ell^2} \right) \sum_{q=1}^{\infty} \frac{c_q(n)}{q^2}$$

$$= \frac{n\pi^2}{6} \sum_{q=1}^{\infty} \frac{c_q(n)}{q^2},$$

where we use $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$ in the final equality.