SARAH FOBI MENSAH

2-214 Wilson Hall, Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717-2400 nanamafobi98@gmail.com | sfmensah.github.io | linkedin.com/in/sarahfobimensah/

SUMMARY

Dedicated graduate student in statistics with a strong passion for using advanced statistical techniques to tackle real-world problems and make meaningful contributions across fields like engineering, healthcare, and finance. My expertise lies in applying dimensionality reduction to make complex data more interpretable and easier for analysis. I have gained hands-on experience in research and consulting, working on projects that range from analyzing experimental and survey data to developing predictive models. I am also continuously expanding my knowledge through data science courses, and I am happy to apply these skills to create meaningful, data-driven solutions.

PROFESSIONAL EXPERIENCE

Graduate Researcher August 2024 – present

- Conducted advanced statistical analysis of microcalorimeter data to assess the amount of heat generated by chondrocytes over a 48-hour period.
- Applied a Generalized Least Squares (GLS) model to account for non-constant variance and assess differences in total heat generation between sample groups of cells.
- Supported the project's goal of exploring the relationship between cellular metabolism and cartilage
 degradation by applying statistical techniques to analyze experimental data and influencing the direction of
 ongoing research.

Graduate Research Assistant

December 2023 - May 2024

- Explored dimensionality reduction techniques, including sparse principal component analysis, to improve the interpretability and analysis of high-dimensional metabolomics data in the context of early osteoarthritis diagnosis.
- Investigated the potential of sparse contrastive PCA for reducing the dimensionality of metabolomics data, aiming to make the data more manageable and informative for identifying early molecular markers of osteoarthritis.
- Plan to develop predictive algorithms that could utilize reduced-dimensionality data, with the goal of enabling less invasive diagnostic methods, such as blood-based testing for the early detection of osteoarthritis.

Funded by: National Institute of Arthritis and Musculoskeletal and Skin Diseases (1R01AR081489-01A1)

Statistical Consultant

January 2024 – May 2024

- Determined the appropriate statistical methodology to assess quantitative survey responses.
- Analysed the effectiveness of storybook-based training on Alzheimer's disease education for children and adults, using a mixed-effects model.
- Provided clear communication of statistical methods to clients which ensured transparency throughout the analysis process and lead to informed decisions for program recommendations and development.

Research Assistant

October 2021 - July 2022

- Assisted in constructing predictive models using six machine learning algorithms to classify alcohol and drug abuse based on risk factors across South Africa's nine provinces.
- Supported the development and validation of machine learning models to predict alcohol and drug abuse using an imbalanced dataset.

Data Analytics Intern

KPMG, Australia

July 2020 – August 2020

- Identified data quality issues with the dataset presented by the Sprocket Central company and created visualizations to help the company better understand its customers.
- Analysed the company's dataset using RMF (Recency, Frequency and Monetary) analysis to help the company determine which customers it should target to increase its revenue and customer lifetime value.

EDUCATION

Ph.D. Statistics

Expected 2027

Montana State University, Bozeman, MT

M.S. Statistics, GPA: 3.89

May 2024

Montana State University, Bozeman, MT

B.S. Actuarial Science, GPA: 3.89

September 2021

Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

TEACHING EXPERIENCE

Graduate Teaching Assistant, Department of Mathematical Sciences, MSU

August 2022 – Present

Courses taught: STAT 216 (Introduction to Statistics), STAT 337 (Intermediate Statistics with R)

• Provide hands-on instruction with R software, teaching data wrangling, visualization, and interpretation, and guided students in performing statistical analysis and drawing data-driven conclusions.

TECHNICAL SKILLS

Programming Languages: R Studio (Markdown, Quarto), Python, SAS

Database: SQL

Project Management Tool: Git/GitHub

Machine Learning Methods: Random Forest, Naive Bayes, Support Vector Machines, Logistic Regression, Artificial Neural

Networks, Decision Tree.

Statistical Methods: Regression analysis, Bayesian data analysis, Hypothesis testing, Experimental design

PROFESSIONAL ASSOCIATIONS

Member, American Statistical Association Member, Royal Statistical Society March 2024 - present

January 2024 - present

AWARD/ LEADERSHIP EXPERIENCE

Scholarship Awardee, Ghana Scholarship Secretariat

May 2021

Judicial Committee Chair, Actuarial Science Students' Association-KNUST Chapter Deputy Finance Chair, Actuarial Science Students' Association of Ghana

September 2020 – August 2021

September 2019 – May 2020

PUBLICATIONS

Odoom, Christopher, Alexander Boateng, **Sarah Fobi Mensah**, and Daniel Maposa. "Modeling of the Daily Dynamics in Bike Rental System Using Weather and Calendar Conditions: A Semi-Parametric Approach." *Scientific African* (2024): e02211.

 Proposed a robust method using penalized splines quasi-Poisson regression to model bike rentals, revealing hidden relationships not identified by traditional parametric models which informed future transportation strategies.

Boateng, Alexander, Christopher Odoom, Eric Teye Mensah, **Sarah Mensah Fobi**, and Daniel Maposa. "Predictive Analysis of Misuse of Alcohol and Drugs using Machine Learning Algorithms: The Case of using an Imbalanced Dataset from South Africa." *Appl. Math* 17, no. 2 (2023): 261-271.

• Compared six supervised machine learning algorithms to predict alcohol and drug abuse across South Africa's nine provinces, proposing an optimal predictive model.