LECTURE: 08
ARTIFICIAL INTELLIGENCE
CSE 365
COURSE INSTRUCTOR: AMIT KUMAR DAS

LOGIC

FIRST ORDER LOGIC (FOL)

- First-order logic (FOL) models the world in terms of
 - Objects: which are things with individual identities
 - Properties: of objects that distinguish them from other objects
 - Relations: that hold among sets of objects
 - Functions: which are a subset of relations where there is only one "value" for any given "input".
- Examples:
 - Objects: Student, Professor, Car, Person...
 - Properties: blue, oval, even, large, ...
 - Relations: Brother-of, mother-of, bigger-than, Likes...
 - Functions: father(), brother(), best-friend()...

SYNTAX OF FOL

- Constant symbols, which represent individuals in the world
 - Meena
 - **3**
 - Green
- Function symbols, which map individuals to individuals
 - brother-of(Meena) = raju
 - color-of(Sky) = Blue
- Predicate symbols, which map individuals to truth values
 - greater(5,3)
 - green(Grass)
 - color(Grass, Green)

SYNTAX OF FOL CONT...

Variable symbols

x, y, a, b,...

Connectives

■ not (\neg) , and (\land) , or (\lor) , implies (\rightarrow) , if and only if (biconditional \leftrightarrow)

Quantifiers

• Universal $\forall x$: For all x

• Existential $\exists x$: For some x or at least one x

SOME DEFINITIONS IN FOL

- **Term**: a constant symbol or a variable symbol, or a function.
- Atomic sentence: predicate of n terms, predicate (term₁,...,term_n)
- Complex sentence: is formed from atomic sentences connected by the logical connectives.

Example: $\neg P$, $P \lor Q$, $P \land Q$, $P \rightarrow Q$, $P \leftrightarrow Q$, where P and Q are atomic sentences.

QUANTIFIERS

Universal quantification

- $(\forall x)P(x)$ means that P holds for **all** values of x in the domain associated with that variable
- E.g., $\forall x (dolphin(x) \rightarrow mammal(x))$

Existential quantification

- $(\exists x)P(x)$ means that P holds for **some** value of x in the domain associated with that variable
- E.g., $\exists x (mammal(x) \land lays-eggs(x))$

QUANTIFIERS (CONT...)

Universal quantifiers are often used with "implies" to form "rules":

 $(\forall x)$ student(x) \rightarrow smart(x) means "All students are smart"

Universal quantification is rarely used to make blanket statements about every individual in the world:

 $(\forall x)$ student(x) \land smart(x) means "Everyone in the world is a student and is smart"

Existential quantifiers are usually used with "and" to specify a list of properties about an individual:

 $(\exists x)$ student(x) \land smart(x) means "There is a student who is smart"

A common mistake is to represent this English sentence as the FOL sentence:

 $(\exists x)$ student $(x) \rightarrow smart(x)$

But what happens when there is a person who is not a student?

QUANTIFIER SCOPE

- Switching the order of universal quantifiers does not change the meaning:
 - $(\forall x)(\forall y)P(x,y) \leftrightarrow (\forall y)(\forall x) P(x,y)$
- Similarly, you can switch the order of existential quantifiers:
 - $(\exists x)(\exists y)P(x,y) \leftrightarrow (\exists y)(\exists x) P(x,y)$
- Switching the order of universal and existential does change meaning:
 - Everyone likes someone: $(\forall x)(\exists y)$ likes(x,y)
 - Someone is liked by everyone: $(\exists y)(\forall x)$ likes(x,y)

NEGATION OF QUANTIFIERS

We can relate sentences involving \forall and \exists using De Morgan's laws:

$$(\forall x) \neg P(x) \leftrightarrow \neg(\exists x) P(x)$$
$$\neg(\forall x) P \leftrightarrow (\exists x) \neg P(x)$$

REPRESENTING FACTS USING FOL

Lucy is a professor.

All professors are people.

$$\forall x (is-prof(x) \rightarrow is-person(x))$$

All Deans are professors.

$$\forall x (is-dean(x) \rightarrow is-prof(x))$$

All professors consider the dean a friend or don't know him.

```
\forall x (\exists y (is-prof(x) \land is-dean(y) \rightarrow is-friend-of(y,x) \lor knows(x, y))
```

Everyone is a friend of someone.

```
\forall x (\exists y ( is-friend-of(y, x) ) )
```

REPRESENTING FACTS USING FOL(CONT)

Every gardener likes the sun.

$$(\forall x)$$
 gardener(x) => likes(x, Sun)

You can fool some of the people all of the time.

$$(\exists x)(\forall t) (person(x) \land time(t)) => can-fool(x,t)$$

You can fool all of the people some of the time.

$$(\forall x)(\exists t) (person(x) \land time(t) => can-fool(x,t)$$

All purple mushrooms are poisonous.

$$(\forall x) (mushroom(x) \land purple(x)) => poisonous(x)$$

■ No purple mushroom is poisonous.

```
\sim(\exists x) purple(x) ^ mushroom(x) ^ poisonous(x)
```

or, equivalently,

$$(\forall x)$$
 (mushroom(x) ^ purple(x)) => ~poisonous(x)

SUBSTITUTION

Variables in the sentences can be substituted with terms.

```
(terms = constants, variables, functions)
```

Thus, Substitution Is a mapping from variables to terms as we have already seen in inference.

$$\{x_1/t_1, x_2/t_2,...\}$$

Example:

- $SUBST(\{x/Sam, y/Pam\}, Likes(x, y))=Likes(Sam, Pam)$
- SUBST ({x/z, y/fatherof(John)}, Likes(x, y))
 =Likes(z, fatherof(John))

INFERENCE RULES

Remember the inference rules for propositional logic:

RULE	PREMISE	CONCLUSION
Modus Ponens	$A, A \rightarrow B$	В
And Introduction	A, B	$A \wedge B$
And Elimination	$A \wedge B$	Α
Double Negation	$\neg \neg A$	Α
Unit Resolution	A ∨ B, ¬B	Α
Resolution	$A \vee B$, $\neg B \vee C$	$A \vee C$

These rules are still valid for FOL

Universal Elimination:

substitutes a variable with a constant symbol Example:

```
\forall x \ Likes(x, IceCream)
```

SUBST{x/Ben}:

Likes(Ben, IceCream)

Existential Elimination:

- substitutes a variable with a constant symbol that does not appear elsewhere in the Knowledge Base Example:

```
\exists x \ Kill(x, \ Victim)
```

SUBST{x/Murderer}:

Kill(Murderer, Victim)

Universal Generalization:

Example:

- If "byte carries 4bits of information", then any byte carries 4 bits of information.
- If "a single line passes through two points", then a single line passes through any two points.

20-Feb-19 16

Existential Generalization:

P(A)

 $\exists x P(x)$

Example:

- If you can access a UNIX system with a particular password, then a valid password exists for that UNIX machine.
- If water boils over 100°C then there exists a temperature over which water boils.

20-Feb-19 17

GENERALIZED MODUS PONENS

$$\frac{p_1',\ p_2',\ \dots,\ p_n',\ (p_1\wedge p_2\wedge\dots\wedge p_n\Rightarrow q)}{q\sigma} \qquad \text{where } p_i'\sigma=p_i\sigma \text{ for all } i$$

$$E.g.\ p_1'=\ \mathsf{Faster}(\mathsf{Bob},\mathsf{Pat})$$

$$p_2'=\ \mathsf{Faster}(\mathsf{Pat},\mathsf{Steve})$$

$$p_1\wedge p_2\Rightarrow q=\ Faster(x,y)\wedge Faster(y,z)\Rightarrow Faster(x,z)$$

$$\sigma=\ \{x/Bob,y/Pat,z/Steve\}$$

$$q\sigma=\ Faster(Bob,Steve)$$

INFERENCE

- 1. It is illegal for every students to copy music."
- 2. "Joe is a student."
- 3. "Every student copies music."

Is Joe a criminal?

- 1) $\forall x \exists y \; student(x) \land Music(y) \land Copies(x,y) \Rightarrow Criminal(x)$
- 2) student (Joe)
- 3) $\forall x \exists y \; student(x) \land Music(y) \land Copies(x,y)$
- 4) student(joe)∧ Music(somemusic) ∧ Copies(joe, somemusic)⇒Criminal(joe)

[From 1 by Universal Elimination]

5) ∃y student(Joe) ∧ Music(y) ∧ Copies(Joe,y)

[From 3 by Universal Elimination]

6) student(Joe) ∧ Music(somemusic) ∧ Copies(joe, somemusic)

[From 5 by Existential Elimination]

7) Criminal (Joe) [From 4 and 6 by Modus Ponens]

UNIFICATION

- Unification: takes two similar sentences and computes the substitution that makes them look the same.
- If there is no such substitution, then UNIFY should return fail. $UNIFY(p, q) = \theta$ such that $SUBST(\theta, p) = SUBST(\theta, q)$
- O is called unifier.

Examples:

- UNIFY (Knows (John, x), Knows (John, Jane)) = {x/Jane}
- UNIFY(Knows(John, x), Knows(y, Ann)) = $\{x/Ann, y/John\}$
- UNIFY (Knows (John , x), Knows (y, MotherOf(y))) =
 {x/MotherOf(John), y/John}

UNIFICATION

- UNIFY (Knows (John, x), Knows (x, Elizabeth)) = fail
- UNIFY (Parents (x, father(x), mother(Jane)), Parents(Bill, father(y), mother(y))) = fail.
- Same variable can not be replaced by two constants.
- A variable can never be replaced by a term containing that variable. For example, x/f(x) is illegal. This is known as "occurs check".

20-Feb-19 21

HORN CLAUSE

■ A Horn clause is a clause that has at most one positive literal. Examples:

P;
$$P \vee \neg Q$$
; $\neg P \vee \neg Q$; $\neg P \vee \neg Q \vee R$; $P \rightarrow Q$

- Conjunctive Normal Form(CNF):
 - Conjunction of disjunction of literals
- All of the following formulas are in CNF:

$$eg A \wedge (B \vee C)$$
 $(A \vee B) \wedge (\neg B \vee C \vee \neg D) \wedge (D \vee \neg E)$
 $A \wedge B$
 $A \vee B$

CNF

■ The following formulas are **not in CNF**:

$$(A \wedge B) \vee C$$
 $A \wedge (B \vee (D \wedge E)).$
 $\neg (B \vee C)$

KNOWLEDGE BASE IN INFERENCE

- Knowledge Base
 - Stores knowledge used by the system, usually represented in a formal logical manner
- Inference System
 - Defines how existing knowledge may be used to derive new knowledge

20-Feb-19 24

FORWARD & BACKWARD CHAINING

- forward chaining: We start with the sentences in the knowledge base and generate new conclusions that in turn can allow more inferences to be made.
 - data-driven
 - Automatic, unconscious processing
 - May do lots of work that is irrelevant to the goal

20-Feb-19 25

- Knowledge Base:
 - If [X croaks and eats flies] Then [X is a frog]
 - If [X chirps and sings] Then [X is a canary]
 - If [X is a frog] Then [X is colored green]
 - If [X is a canary] Then [X is colored yellow]
 - [Fritz croaks and eats flies]
- Goal:
 - [Fritz is colored Y]?

Knowledge Base

If [X croaks and eats flies]
Then [X is a frog]

If [X chirps and sings]
Then [X is a canary]

If [X is a frog]
Then [X is colored green]

If [X is a canary]
Then [X is colored yellow]

[Fritz croaks and eats flies]

Goal

[Fritz is colored Y]?

Knowledge Base

If [X croaks and eats flies]
Then [X is a frog]

If [X chirps and sings]
Then [X is a canary]

If [X is a frog]
Then [X is colored green]

If [X is a canary]
Then [X is colored yellow]

[Fritz croaks and eats flies]

Goal

[Fritz is colored Y]?

FORWARD CHAINING EXAMPLE

BACKWARD CHAINING

- Backward chaining: We start with something we want to prove, find implication sentences that would allow us to conclude it, and then attempt to establish their premises in turn.
 - goal-driven
 - Where are my keys? How do I get to my next class

20-Feb-19 38

Knowledge Base

If [X croaks and eats flies]
Then [X is a frog]

If [X chirps and sings]
Then [X is a canary]

If [X is a frog]
Then [X is colored green]

If [X is a canary]
Then [X is colored yellow]

[Fritz croaks and eats flies]

Goals

[Fritz is colored Y]?

Knowledge Base

If [X croaks and eats flies]
Then [X is a frog]

If [X chirps and sings]
Then [X is a canary]

If [X is a frog]
Then [X is colored green]

If [X is a canary]
Then [X is colored yellow]

[Fritz croaks and eats flies]

Goals

[Fritz is colored Y]?

Knowledge Base

If [X croaks and eats flies]
Then [X is a frog]

If [X chirps and sings]
Then [X is a canary]

If [X is a frog]

Then [X is colored green]

If [X is a canary]
Then [X is colored yellow]

[Fritz croaks and eats flies]

Goals

[Fritz is colored Y]?

Knowledge Base

If [X croaks and eats flies]
Then [X is a frog]

If [X chirps and sings]
Then [X is a canary]

If [X is a frog]
Then [X is colored green]

If [X is a canary]
Then [X is colored yellow]

[Fritz croaks and eats flies]

Goals

[Fritz is colored Y]?

[X is a frog]

BACKWARD CHAINING

- S₁: for each x_1, y_1 child $(x_1, y_1) \Rightarrow parent(y_1, x_1)$
- S₂: for each x_2,y_2 parent (x_2,y_2) \land female (x_2) \Rightarrow mother (x_2,y_2)
- S₃: child(Lisa, Homer)
- S₄: child(Lisa, Marge)
- S₅: female(Marge)
- Goal: $mother(x_0,Lisa)$

20-Feb-19 52

BACKWARD CHAINING

53