Solución: La disyunción de $p \vee q$, $p \vee q$, es el enunciado

«Hoy es viernes u hoy llueve».

Esta proposición es verdadera cualquier día que sea viernes o llueva (incluidos los viernes que llueve). Es sólo falsa los días que ni son viernes ni llueve.

Como se señaló previamente, el uso del conectivo lógico o en una disyunción corresponde a uno de los dos sentidos de la palabra o, a saber, el modo inclusivo. Por tanto, una disyunción es verdadera cuando al menos una de las dos proposiciones en ella es verdadera. A veces usamos el o en sentido exclusivo. Cuando se usa el o en sentido exclusivo para conectar dos proposiciones p y q, obtenemos la proposición «p o q (pero no ambos)». Esta proposición es verdadera cuando p es verdadera y q falsa y cuando p es falsa y q verdadera. Es falsa cuando tanto p como q son falsas y cuando ambas son verdaderas.

Ejemplos

DEFINICIÓN 4

Sean p y q proposiciones. El conectivo lógico o exclusivo de p y q, denotada por $p \oplus q$, es la proposición que es verdadera cuando exactamente una de las proposiciones p y q es verdadera y es falsa en cualquier otro caso.

La tabla de verdad para el o exclusivo de dos proposiciones se muestra en la Tabla 4.

Tabla 4 . Tabla de verdad para el <i>o</i> exclusivo de dos proposiciones.				
p	q	$p \oplus q$		
V	V	F		
V	F	V		
F	V	V		
F	F	F		

Tabla 5 . Tabla de verdad de la implicación $p \rightarrow q$.			
p	q	$p \rightarrow q$	
V V	V F	V F	
F F	V F	V V	

IMPLICACIONES

Vamos a discutir otras formas importantes de combinar las proposiciones.

DEFINICIÓN 5

Evaluación

Sean p y q proposiciones. La implicación $p \rightarrow q$ es la proposición que es falsa cuando p es verdadera y q es falsa y verdadera en cualquier otro caso. En esta implicación p se llama hipótesis (o antecedente o premisa) y q se llama tesis o conclusión (o consecuencia).

La tabla de verdad para la implicación $p \to q$ se muestra en la Tabla 5. La implicación a veces se denomina declaración condicional.

Debido a que las implicaciones desempeñan un papel esencial en el razonamiento matemático, existen muchas formas de expresar $p \to q$. Encontrarás muchas de ellas, si no todas, entre las siguientes expresiones:

Ejemplos adicionales

```
«si p, entonces q»
                                              «p implica q»
                                              «p sólo si q»
«si p, q»
«p es suficiente para q»
                                              «una condición suficiente para q es p»
«q si p»
                                              \langle q siempre que p \rangle
«q cuando p»
                                              «q es necesario para p»
«una condición necesaria para p es q»
                                              «q se deduce de p»
```