PARAMETERS VS HYPER PARAMETER

- Parameters: Parameters that are estimated by the model from the given data

 Ex: weights
- Hyper parameters: Parameters that cannot be estimated by the model from the given data

 Ex: learning rate

How

- ✓ Manual hyper parameter tuning
- ✓ Automated hyper parameter tuning

Hyper parameter tuning method

 Random Search: Each iteration tries a random combination of hyperparameters from this grid, records the performance, and lastly returns the combination of hyperparameters which provided the best performance

2. Grid Search:

- Each iteration tries a combination of hyperparameters in a specific order.
- It fits the model on each and every combination of hyperparameter possible and records the model performance.
- Finally, it returns the best model with the best hyperparameters

HYPOR PARAMETER TUNING MOTHOD

3. Bayesian Optimization:

- It helps us find the minimal point in the minimum number of steps.
- Bayesian optimization also uses an acquisition function that directs sampling to areas where an improvement over the current best observation is likely

4. Tree-structured Parzen estimators:

- Similar to Bayesian optimization. Instead of finding the values of p(y|x) where y is the function to be minimized (e.g., validation loss) and x is the value of hyperparameter the TPE models P(x|y) and P(y).
- Instead of finding the values of p(y|x) where y is the function to be minimized (e.g., validation loss) and x is the value of hyperparameter the TPE models P(x|y) and P(y)

Hyper parameter tuning algorithm

1. Hyperband

 Hyperband is a variation of random search, but with some explore-exploit theory to find the best time allocation for each of the configurations

2. Population-based training

- It is a hybrid of two most commonly used search techniques, Random Search and manual tuning applied to Neural Network models
- PBT starts by training many neural networks in parallel with random hyperparameters.

 But these networks aren't fully independent of each other

3. Bayesian Optimization and HyperBand

It mixes the Hyperband algorithm and Bayesian optimization

Hyper parameter optimization tools

1. Scikit-learn

Grid search & Random search

2. Hyperopt

- It allows the user to describe a search space in which the user expects the best results allowing the algorithms in hyperopt to search more efficiently
- Random Search
- Tree of Parzen Estimators (TPE)
- Adaptive TPE

3. Scikit-optimize

To find optimal solutions for hyperparameter search problems in less time

Hyper parameter optimization tools

4. Optuna

- It has the pruning feature which automatically stops the unpromising trails in the early stages of training
- Lightweight, versatile, and platform-agnostic architecture
- Pythonic search spaces
- Easy parallelization
- Quick visualization

5. Ray Tune

- Tune is a popular choice of experimentation and hyperparameter tuning at any scale
- Provided SOTA algorithms such as ASHA, BOHB, and Population-Based Training.
- Supports Tensorboard and MLflow.
- Supports a variety of frameworks such sklearn, xgboost, Tensorflow, pytorch, etc.

Hyper parameter optimization tools

Keras Tuner

- The Keras Tuner is a library that helps you pick the optimal set of hyperparameters for your TensorFlow program
- You can define a hypermodel through two approaches:
- By using a model builder function
- By subclassing the HyperModel class of the Keras Tuner API

Dense layer

- Dense layer is the regular deeply connected neural network layer. It is most common and frequently used layer.
- Dense layer does the below operation on the input and return the output.

output = activation(dot(input, kernel) + bias)

Let us consider sample input and weights as below and try to find the result -

- ✓ Input as 2 x 2 matrix [[1, 2], [3, 4]] ✓ Kernel as 2 x 2 matrix [[0.5, 0.75], [0.25, 0.5]]
- ✓ Bias value as 0
- ✓ Activation.

Deep Learning Terminology - 2

Depth

- The number of layers (including any embedding layers) in a neural network that learn weights.
- For example, a neural network with 5 hidden layers and 1 output layer has a depth of 6.

Deep Learning Terminology - 3

Early stopping

- A method for regularization that involves ending model training before training loss finishes decreasing.
- In early stopping, you end model training when the loss on a validation dataset starts to increase