Regression Introduction and Estimation Review

Dr. Frank Wood

Quick Example – Scatter Plot

Linear Regression

Want to find parameters for a function of the form

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

 Distribution of error random variable not specified

Quick Example – Scatter Plot

Formal Statement of Model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Y_i value of the response variable in the ith trial
- β_0 and β_1 are parameters
- X_i is a known constant, the value of the predictor variable in the ith trial
- ϵ_i is a random error term with mean $E(\epsilon_i)$ and variance $V(\epsilon_i) = \sigma^2$
- i = 1,...,n

Properties

- The response Y_i is the sum of two components
 - -1) Constant term $\beta_0 + \beta_1 X_i$
 - -2) Random term ϵ_i
- The expected response is

$$E(Y_i) = E(\beta_0 + \beta_1 X_i + \epsilon_i)$$

$$= \beta_0 + \beta_1 X_i + E(\epsilon_i)$$

$$= \beta_0 + \beta_1 X_i$$

Expectation Review

Definition

$$E(X) = E(X) = \int XP(X)dX, X \in \mathcal{R}$$

Linearity property

$$E(aX) = aE(X)$$

$$E(aX + bY) = aE(X) + bE(Y)$$

Obvious from definition

Example Expectation Derivation

$$P(X) = 2X, 0 \le X \le 1$$

draw distro on board

Expectation

$$E(X) = \int_0^1 XP(X)dX$$

Expectation of a Product of Random Variables

 If X,Y are random variables with joint distribution j(X,Y) then the expectation of the product is given by

$$E(XY) = \int_{X,Y} XYj(X,Y) dX dY.$$

Expectation of a product of random variables

- What if X and Y are independent?
 - If X and Y are independent with density functions f and g respectively then

$$\begin{split} \mathbf{E}(XY) &= \int_{X,Y} XY f(X) g(Y) \, dX \, dY = \int_{X} \int_{Y} XY f(X) g(Y) \, dX \, dY \\ &= \int_{X} X f(X) \left[\int Y g(Y) \, dY \right] \, dX = \int_{X} X f(X) \mathbf{E}(Y) \, dX = \mathbf{E}(X) \mathbf{E}(Y) \end{split}$$

Regression Function

 The response Y_i comes from a probability distribution with mean

$$E(Y_i) = \beta_0 + \beta_1 X_i$$

This means the regression function is

$$E(Y) = \beta_0 + \beta_1 X$$

Since the regression function relates the means of the probability distributions of Y for a given X to the level of X

Error Terms

- The response Y_i in the ith trial exceeds or falls short of the value of the regression function by the error term amount ϵ_i
- The error terms ϵ_i are assumed to have constant variance σ^2

Response Variance

Responses Y_i have the same constant variance

$$V(Y_i) = V(\beta_0 + \beta_1 X_i + \epsilon_i)$$

$$= V(\epsilon_i)$$

$$= \sigma^2$$

Variance (2nd central moment) Review

Continuous distribution

$$V(X) = E((X - E(X))^2) = \int (X - E(X))^2 P(X) dX, X \in \mathcal{R}$$

Discrete distribution

$$V(X) = E((X - E(X))^2) = \sum_{i} (X_i - E(X))^2 P(X_i), X \in \mathcal{Z}$$

Alternative Form for Variance

$$V(X) = E((X - E(X))^{2})$$

$$= E((X^{2} - 2XE(X) + E(X)^{2}))$$

$$= E(X^{2}) - 2E(X)E(X) + E(X)^{2}$$

$$= E(X^{2}) - 2E(X)^{2} + E(X)^{2}$$

$$= E(X^{2}) - E(X)^{2}.$$

Example Variance Derivation

$$P(X) = 2X, 0 \le X \le 1$$

Same as before

$$V(X) = E((X - E(X))^2) = E(X^2) - E(X)^2$$

Variance Properties

$$V(aX) = a^2V(X)$$

$$V(aX + bY) = a^2V(X) + b^2V(Y) \text{ if } X \perp Y$$

More generally

$$V(\sum X_i) = \sum_i \sum_j \operatorname{Cov}(X_i, X_j)$$

Covariance

• The covariance between two real-valued random variables X and Y, with expected values $E(X) = \mu$ and $E(Y) = \nu$ is defined as

$$Cov(X, Y) = E((X - \mu)(Y - \nu)),$$

Which can be rewritten as

$$Cov(X, Y) = E(X \cdot Y - \mu Y - \nu X + \mu \nu),$$

$$Cov(X, Y) = E(X \cdot Y) - \mu E(Y) - \nu E(X) + \mu \nu,$$

$$Cov(X, Y) = E(X \cdot Y) - \mu \nu.$$

Covariance of Independent Variables

 If X and Y are independent, then their covariance is zero. This follows because under independence

$$E(X \cdot Y) = E(X) \cdot E(Y) = \mu \nu.$$

and then

$$Cov(X, Y) = \mu\nu - \mu\nu = 0.$$

Least Squares Linear Regression

Seek to minimize

$$Q = \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_i))^2$$

• By careful choice of b_0 and b_1 where b_0 is a point estimator for β_0 and b_1 is the same for β_1

How?

Guess #1

Guess #2

Function maximization

- Important technique to remember!
 - 1. Take derivative
 - 2. Set result equal to zero and solve
 - 3. Test second derivative at that point

Question: does this always give you the maximum?

Draw some pictures

Going further: multiple variables, convex optimization

Function Maximization

Find the maximum value of x that satisfies the function

$$-x^2 + ln(x) = a, x > 0$$

do derivative on board

Least Squares Max(min)imization

• Function to minimize w.r.t. β_0 , β_1

$$Q = \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_i))^2$$

- Minimize this by maximizing –Q
- Find partials and set both equal to zero

$$\frac{dQ}{d\beta_0} = 0$$

$$\frac{dQ}{d\beta_1} = 0$$

go to board

Normal Equations

• The result of this maximization step are called the normal equations. b_0 and b_1 are called point estimators of β_0 and β_1 respectively

$$\sum Y_i = nb_0 + b_1 \sum X_i$$

$$\sum X_i Y_i = b_0 \sum X_i + b_1 \sum X_i^2$$

 This is a system of two equations and two unknowns. The solution is given by...

Solution to Normal Equations

After a lot of algebra one arrives at

$$b_{1} = \frac{\sum (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum (X_{i} - \bar{X})^{2}}$$

$$b_{0} = \bar{Y} - b_{1}\bar{X}$$

$$\bar{X} = \frac{\sum X_{i}}{n}$$

$$\bar{Y} = \frac{\sum Y_{i}}{n}$$