Madhur Jaripatke

Roll No. 52

BE A Computer

RMDSSOE, Warje, Pune

Given a bank customer, build a neural network-based classifier that can determine whether they will leave or not in the next 6 months. Dataset Description: The case study is from an open-source dataset from Kaggle. The dataset contains 10,000 sample points with 14 distinct features such as Customerld, CreditScore, Geography, Gender, Age, Tenure, Balance, etc. Link to the Kaggle project: https://www.kaggle.com/barelydedicated/bank-customer-churn-modeling

Perform following steps:

- 1. Read the dataset.
- 2. Distinguish the feature and target set and divide the data set into training and test sets.
- 3. Normalize the train and test data.
- 4. Initialize and build the model. Identify the points of improvement and implement the same.
- 5. Print the accuracy score and confusion matrix (5 points).

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.layers import Dense
from sklearn.metrics import confusion_matrix, accuracy_score, classification
```

2024-10-24 22:04:27.219031: I tensorflow/core/util/port.cc:153] oneDNN custo m operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn t hem off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2024-10-24 22:04:27.219821: I external/local xla/xla/tsl/cuda/cudart stub.c c:32] Could not find cuda drivers on your machine, GPU will not be used. 2024-10-24 22:04:27.223789: I external/local xla/xla/tsl/cuda/cudart stub.c c:32] Could not find cuda drivers on your machine, GPU will not be used. 2024-10-24 22:04:27.233450: E external/local xla/xla/stream executor/cuda/cu da fft.cc:485] Unable to register cuFFT factory: Attempting to register fact ory for plugin cuFFT when one has already been registered 2024-10-24 22:04:27.247799: E external/local xla/xla/stream executor/cuda/cu da dnn.cc:8454] Unable to register cuDNN factory: Attempting to register fac tory for plugin cuDNN when one has already been registered 2024-10-24 22:04:27.253778: E external/local xla/xla/stream executor/cuda/cu da blas.cc:1452] Unable to register cuBLAS factory: Attempting to register f actory for plugin cuBLAS when one has already been registered 2024-10-24 22:04:27.267679: I tensorflow/core/platform/cpu feature guard.cc: 210] This TensorFlow binary is optimized to use available CPU instructions i n performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512 VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. 2024-10-24 22:04:28.514490: W tensorflow/compiler/tf2tensorrt/utils/py util

In [2]: df = pd.read_csv('./Datasets/churn_modelling.csv')
 df.head()

s.cc:38] TF-TRT Warning: Could not find TensorRT

Out[2]:	RowNumber		CustomerId	Surname	CreditScore	Geography	Gender	Age
	0	1	15634602	Hargrave	619	France	Female	42
	1	2	15647311	Hill	608	Spain	Female	41
	2	3	15619304	Onio	502	France	Female	42
	3	4	15701354	Boni	699	France	Female	39
	4	5	15737888	Mitchell	850	Spain	Female	43

In [3]: df.shape

Out[3]: (10000, 14)

In [4]: df.describe

```
Out[4]: <bound method NDFrame.describe of RowNumber CustomerId Surname C
       reditScore Geography Gender Age \
                                                 619 France Female 42
608 Spain Female 41
                    1 15634602 Hargrave
                   2
                         15647311 Hill
       1
                  3 15619304 Onio
4 15701354 Boni
5 15737888 Mitchell
                                                  502 France Female
       2
                                                  699 France Female
       3
                                                                         39
                                                 850 Spain Female 43
       4
               9996 15606229 Obijiaku
9997 15569892 Johnstone
9998 15584532 Liu
9999 15682355 Sabbatini
                                                 771 France Male 39
516 France Male 35
709 France Female 36
772 Germany Male 42
        . . .
       9995
       9996
       9997
       9998
                                                 792 France Female
       9999
                10000
                         15628319 Walker
                                                                         28
             Tenure Balance NumOfProducts HasCrCard IsActiveMember \
              2
       0
                         0.00 1 1
                                                                  1
       1
                1 83807.86
                                        1
                                                  0
                                                                  1
       2
                8 159660.80
                                        3
                                                   1
                                                                  0
       3
                                        2
                                                   0
                                                                  0
                1
                         0.00
           2 125510.82
       4
                                        1
                                                   1
                                                                  1
       9995 5 0.00
9996 10 57369.61
9997 7 0.00
9998 3 75075.31
                                        2
                                                  1
                                                                 0
                                        1
                                                   1
                                                                  1
                                        1
                                                  0
                                                                  1
                                        2
                                                  1
                                                                  0
                4 130142.79
                                                1
       9999
                                        1
                                                                  0
             EstimatedSalary Exited
       0
                101348.88 1
       1
                 112542.58
                 113931.57
                                 1
       3
                  93826.63
                  79084.10
       4
                                 0
                   . . .
                  96270.64
                              0
       9995
       9996
                 101699.77
       9997
                  42085.58
                                 1
       9998
                  92888.52
                                 1
       9999 38190.78
       [10000 rows x 14 columns]>
```

In [5]: df.isnull()

df.isnull().sum()

```
Out[5]: RowNumber
                           0
        CustomerId
                           0
        Surname
                           0
        CreditScore
                           0
        Geography
                           0
        Gender
                           0
        Age
                           0
        Tenure
                           0
        Balance
                           0
        NumOfProducts
                           0
        HasCrCard
                           0
        IsActiveMember
                           0
        EstimatedSalary
                           0
                           0
        Exited
        dtype: int64
In [6]: df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 10000 entries, 0 to 9999
      Data columns (total 14 columns):
           Column
                            Non-Null Count Dtype
       - - -
           -----
                            -----
       0
           RowNumber
                            10000 non-null int64
                            10000 non-null int64
       1
           CustomerId
       2
           Surname
                            10000 non-null object
       3
           CreditScore
                            10000 non-null int64
       4
           Geography
                            10000 non-null object
       5
           Gender
                            10000 non-null object
       6
           Age
                            10000 non-null int64
       7
           Tenure
                            10000 non-null int64
           Balance
       8
                            10000 non-null float64
       9
           NumOfProducts
                            10000 non-null int64
       10 HasCrCard
                            10000 non-null int64
       11 IsActiveMember
                            10000 non-null int64
       12 EstimatedSalary 10000 non-null float64
                            10000 non-null int64
       13 Exited
       dtypes: float64(2), int64(9), object(3)
```

In [7]: df.dtypes

memory usage: 1.1+ MB

```
CustomerId
                              int64
         Surname
                             object
                              int64
         CreditScore
         Geography
                             object
         Gender
                             object
         Age
                              int64
         Tenure
                              int64
         Balance
                            float64
         NumOfProducts
                              int64
         HasCrCard
                              int64
         IsActiveMember
                              int64
         EstimatedSalary
                            float64
         Exited
                              int64
         dtype: object
 In [8]: df.columns
 Out[8]: Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',
                 'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',
                 'IsActiveMember', 'EstimatedSalary', 'Exited'],
               dtype='object')
 In [9]: df = df.drop(['RowNumber', 'Surname', 'CustomerId'], axis = 1)
         df.head()
                                                            Balance NumOfProducts
            CreditScore Geography Gender Age Tenure
 Out[9]:
         0
                    619
                             France
                                     Female
                                               42
                                                        2
                                                                0.00
                                                                                   1
         1
                    608
                              Spain
                                     Female
                                               41
                                                           83807.86
                                                                                   1
         2
                    502
                                               42
                                                                                   3
                             France
                                     Female
                                                        8 159660.80
         3
                    699
                             France
                                     Female
                                               39
                                                                0.00
                                                                                   2
                                                                                   1
         4
                    850
                                              43
                                                        2 125510.82
                              Spain
                                     Female
In [10]: def visualization(x, y, xlabel):
             plt.figure(figsize=(10,5))
             plt.hist([x, y], color=['yellow', 'blue'], label = ['exited', 'not exite
             plt.xlabel(xlabel,fontsize=20)
             plt.ylabel('No. of customers', fontsize=20)
             plt.legend()
In [11]: df churn exited = df[df['Exited']==1]['Tenure']
         df_churn_not_exited = df[df['Exited']==0]['Tenure']
In [12]: visualization(df churn exited, df churn not exited, 'Tenure')
```

int64

Out[7]: RowNumber


```
In [13]: df_churn_exited2 = df[df['Exited']==1]['Age']
    df_churn_not_exited2 = df[df['Exited']==0]['Age']
```

In [14]: visualization(df_churn_exited2, df_churn_not_exited2, 'Age')


```
Out[16]:
           CreditScore Geography Gender Age Tenure
                                                          Balance NumOfProducts
                   619
                                             42
                                                      2
                                                              0.00
                                                                                 1
         0
                             France
                                    Female
         1
                   608
                             Spain
                                    Female
                                             41
                                                          83807.86
                                                                                 1
         2
                   502
                                            42
                                                                                 3
                             France
                                    Female
                                                      8 159660.80
         3
                   699
                             France
                                    Female
                                             39
                                                              0.00
                                                                                 2
                                    Female 43
                                                                                 1
         4
                   850
                                                      2 125510.82
                             Spain
In [17]: |x = df[['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'IsActiv
         y = df['Exited']
In [18]: x train, x test, y train, y test = train test split(x, y, test size = 0.3)
In [19]: sc = StandardScaler()
In [20]: x train = sc.fit transform(x train)
         x test = sc.transform(x test)
In [21]: print('Training Data:\n',x train)
       Training Data:
          [[-0.25855342 \ -0.18536388 \ -0.33750179 \ \dots \ -1.10522259 \ 1.72416885 
         -0.56811207]
         [ 1.06208156  0.00809775  1.04894922  ... -1.10522259  1.72416885
         -0.56811207]
         [ 0.31474549 \ 0.20155938 \ -1.72395279 \ \dots \ -1.10522259 \ -0.5799896 ]
         -0.568112071
         [0.73448218 \quad 0.10482857 \quad 0.35572371 \dots -1.10522259 \quad 1.72416885]
         -0.568112071
         -0.56811207]
         [-2.10129989 -1.34613368 \ 0.35572371 \dots \ 0.90479511 -0.5799896
         -0.56811207]]
In [22]: print('Testing Data:\n',x test)
       Testing Data:
         [[-0.35069074 -0.18536388 1.39556197 ... 0.90479511 -0.5799896
         -0.568112071
         [-1.48705107 -0.37882552    1.04894922    ...    0.90479511 -0.5799896
           1.76021608]
         -0.56811207]
         [ 0.10999588 -0.47555633 -1.72395279 ... -1.10522259 -0.5799896
         -0.56811207]
         [ \ 0.30450801 \ -0.18536388 \ \ 1.74217472 \ \dots \ -1.10522259 \ -0.5799896
         -0.56811207]
         [-0.95470209 \quad 0.2982902 \quad 0.35572371 \dots \quad 0.90479511 \quad -0.5799896
         -0.56811207]]
```

In [25]: classifier.summary()

Model: "sequential"

Layer (type)	Output Shape	Par
dense (Dense)	(None, 6)	
dense_1 (Dense)	(None, 6)	
dense_2 (Dense)	(None, 1)	

Total params: 115 (460.00 B)

Trainable params: 115 (460.00 B)

Non-trainable params: 0 (0.00 B)

```
In [26]: classifier.fit(x_train, y_train, batch_size = 10, epochs = 50)
```

Epoch 1/50 700/700	26	1mc/cton	accuracy	0 7247	- 1000	A 5840
Epoch 2/50	25	IIIS/Step -	accuracy.	0.7247	- 1055.	0.3649
700/700	- 1s	1ms/step -	accuracv:	0.8061	- loss:	0.4421
Epoch 3/50			,			
700/700 —————	1 s	1ms/step -	accuracy:	0.8136	- loss:	0.4182
Epoch 4/50						
700/700 —	1 s	1ms/step -	accuracy:	0.8304	- loss:	0.3938
Epoch 5/50		1		0 0240	1	0. 2046
700/700 — Epoch 6/50	LS	ıms/step -	accuracy:	0.8349	- LOSS:	0.3846
700/700	. 1c	1ms/sten -	accuracy:	n 8385	- 1055:	0 3726
Epoch 7/50		10, 5 cop	acca. acy.	0.0505		0.3720
700/700 —————	1 s	1ms/step -	accuracy:	0.8504	- loss:	0.3520
Epoch 8/50						
700/700 —	- 1s	1ms/step -	accuracy:	0.8521	- loss:	0.3589
Epoch 9/50	1.	1		0 0501	1	0. 2400
700/700 — Epoch 10/50	15	ıms/step -	accuracy:	0.8591	- LOSS:	0.3498
700/700	- 1s	1ms/step -	accuracy:	0.8552	- loss:	0.3442
Epoch 11/50		15, 5 cop	acca. acy.	0.0002		010112
700/700 —	1 s	1ms/step -	accuracy:	0.8570	- loss:	0.3499
Epoch 12/50						
700/700 —	- 1s	1ms/step -	accuracy:	0.8606	- loss:	0.3435
Epoch 13/50 700/700	. 1c	1mc/sten	accuracy	n 8533	1000	0 3508
Epoch 14/50	12	IIIS/Step -	accuracy.	0.0333	- 1055.	0.3300
700/700	- 1s	1ms/step -	accuracy:	0.8572	- loss:	0.3427
Epoch 15/50						
700/700 —————	1 s	1ms/step -	accuracy:	0.8560	- loss:	0.3404
Epoch 16/50		1		0.0500	1	0 2204
700/700 — Epoch 17/50	LS	1ms/step -	accuracy:	0.8582	- LOSS:	0.3394
•	- 1s	967us/step	- accurac	v: 0.865	9 - los	s: 0.3279
Epoch 18/50						
700/700 —————	1 s	996us/step	- accurac	y: 0.866	4 - los:	s: 0.3179
Epoch 19/50						
700/700 —	- 1s	1ms/step -	accuracy:	0.8630	- loss:	0.3274
Epoch 20/50 700/700	. 1.	1ms/step -	accuracy	0 0603	10001	0 2/10
Epoch 21/50	13	III3/3(ep -	accuracy.	0.0003	- 1055.	0.5410
700/700	- 1s	1ms/step -	accuracy:	0.8630	- loss:	0.3286
Epoch 22/50			•			
700/700 —	1 s	1ms/step -	accuracy:	0.8563	- loss:	0.3371
Epoch 23/50		.		0 05 40	-	0 2262
700/700 — Epoch 24/50	- IS	Ims/step -	accuracy:	0.8549	- LOSS:	0.3363
700/700	- 1s	1ms/sten -	accuracy:	0.8547	- loss:	0.3454
Epoch 25/50		111137 3 CCP	accaracyr	010317	(0331	015151
700/700	1 s	1ms/step -	accuracy:	0.8482	- loss:	0.3524
Epoch 26/50						
700/700 —	- 1s	1ms/step -	accuracy:	0.8600	- loss:	0.3393
Epoch 27/50 700/700	. 1.	1mc/c+on	200112011	0 0607	1000	0 2242
Epoch 28/50	т2	Tms/sreh -	accuracy:	0.000/	- 1055:	0.3342
700/700	• 1s	1ms/step -	accuracv:	0.8637	- loss:	0.3305
•	_					

```
- 1s 1ms/step - accuracy: 0.8624 - loss: 0.3296
        700/700 -
        Epoch 30/50
                                     - 1s 1ms/step - accuracy: 0.8633 - loss: 0.3279
        700/700 -
        Epoch 31/50
                                     - 1s 1ms/step - accuracy: 0.8646 - loss: 0.3298
        700/700 -
        Epoch 32/50
        700/700 -
                                     - 1s 1ms/step - accuracy: 0.8602 - loss: 0.3331
        Epoch 33/50
                                     - 1s 1ms/step - accuracy: 0.8624 - loss: 0.3312
        700/700 -
        Epoch 34/50
                                     - 1s 1ms/step - accuracy: 0.8614 - loss: 0.3294
        700/700 -
        Epoch 35/50
        700/700 -
                                     - 1s 1ms/step - accuracy: 0.8526 - loss: 0.3440
        Epoch 36/50
                                     - 1s 1ms/step - accuracy: 0.8642 - loss: 0.3304
        700/700 -
        Epoch 37/50
        700/700 -
                                     - 1s 1ms/step - accuracy: 0.8522 - loss: 0.3449
        Epoch 38/50
        700/700 -
                                     - 1s 1ms/step - accuracy: 0.8548 - loss: 0.3444
        Epoch 39/50
                                     - 1s 1ms/step - accuracy: 0.8596 - loss: 0.3384
        700/700 -
        Epoch 40/50
                                     - 1s 1ms/step - accuracy: 0.8659 - loss: 0.3312
        700/700 -
        Epoch 41/50
                                     - 1s 1ms/step - accuracy: 0.8650 - loss: 0.3241
        700/700 -
        Epoch 42/50
        700/700 -
                                     - 1s 1ms/step - accuracy: 0.8564 - loss: 0.3475
        Epoch 43/50
                                     - 1s 1ms/step - accuracy: 0.8604 - loss: 0.3286
        700/700 -
        Epoch 44/50
        700/700 -
                                     - 1s 1ms/step - accuracy: 0.8682 - loss: 0.3208
        Epoch 45/50
                                     - 1s 1ms/step - accuracy: 0.8537 - loss: 0.3402
        700/700 -
        Epoch 46/50
        700/700 -
                                     - 1s 1ms/step - accuracy: 0.8629 - loss: 0.3341
        Epoch 47/50
                                     - 1s 1ms/step - accuracy: 0.8620 - loss: 0.3321
        700/700 —
        Epoch 48/50
                                     • 1s 1ms/step - accuracy: 0.8540 - loss: 0.3443
        700/700 -
        Epoch 49/50
                                      1s 1ms/step - accuracy: 0.8569 - loss: 0.3421
        700/700 -
        Epoch 50/50
                                     - 1s 1ms/step - accuracy: 0.8697 - loss: 0.3246
        700/700 -
Out[26]: <keras.src.callbacks.history.History at 0x7f248e49b500>
In [27]: y pred =classifier.predict(x test)
         y \text{ pred} = (y \text{ pred} > 0.5)
        94/94 -
                                  - 0s 1ms/step
In [28]: cm = confusion matrix(y test, y pred)
         print('Confusion Matrix:\n', cm)
```

Epoch 29/50

```
Confusion Matrix:
[[2280 97]
[ 320 303]]
```

```
In [29]: acc = accuracy_score(y_test, y_pred)
print('Accuracy Score:', acc)
```

Accuracy Score: 0.861

```
In [30]: plt.figure(figsize=(10,7))
    sns.heatmap(cm, annot = True)
    plt.xlabel('Predicted')
    plt.ylabel('Truth')
```

Out[30]: Text(95.72222222221, 0.5, 'Truth')

In [31]: print('Classification Report:\n',classification_report(y_test, y_pred))

Classification	Report: precision	recall	f1-score	support
0 1	0.88 0.76	0.96 0.49	0.92 0.59	2377 623
accuracy macro avg weighted avg	0.82 0.85	0.72 0.86	0.86 0.75 0.85	3000 3000 3000