MATHEMATICAL METHODS

Units 3 & 4 – Written examination 1

(TSSM's 2015 trial exam updated for the current study design)

SOLUTIONS

Question 1

a. $3 - 5x \ge 0$

$$x \leq \frac{3}{5}$$

Domain: $\left(-\infty, \frac{3}{5}\right]$

A1

1 mark

b. $f'(x) = \frac{1}{2}(3 - 5x)^{-\frac{1}{2}} \times -5$

$$f'(x) = -\frac{5}{2\sqrt{3-5x}}$$

M1+A1

2 marks

c. $f'(\frac{1}{5}) = -\frac{5}{2\sqrt{3-1}} = -\frac{5}{2\sqrt{2}} = -\frac{5\sqrt{2}}{4}$

A1 1 mark

Question 2

a. $\int \sin(3x) dx = -\frac{\cos(3x)}{3} + c$

 $0=-\frac{1}{3}+c$ which gives $c=\frac{1}{3}$

 $F(x) = -\frac{\cos(3x)}{3} + \frac{1}{3}$

M2+A1

3 marks

MATHMETH EXAM 1

b.
$$-\frac{\cos(3x)}{3} + \frac{1}{3} = \frac{1}{2}$$
$$\cos(3x) = -\frac{1}{2}$$
$$3x = \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{8\pi}{3}$$
$$x = \frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9}$$

M2+A1
3 marks

Question 3

a.
$$y = \frac{x-2}{x+2}$$

 $x = \frac{y-2}{y+2}$
 $yx + 2x = y - 2$
 $y(x-1) = -2 - 2x$
 $y = \frac{2+2x}{1-x}$
 $f^{-1}(x) = \frac{2+2x}{1-x}$

M2+A1

3 marks

b. Domain: $R \setminus \{1\}$ Range: $R \setminus \{-2\}$

A2

2 marks

c. Using long division,

$$f^{-1}(x) = -2 + \frac{4}{1-x}$$

$$\int_0^{\frac{1}{2}} \left(-2 + \frac{4}{1-x} \right) dx = \left[-2x - +4 \log_e(1-x) \right]_0^{\frac{1}{2}} = -1 - 4 \ln\left(\frac{1}{2}\right) = -1 + 4 \ln 2$$

M3+A1

4 marks

Question 4

a.
$$f'(x) = x^3 - 3x^2 + 2x$$

 $f'(x) = 0$ gives $x(x^2 - 3x + 2) = 0$
 $x(x - 2)(x - 1) = 0$ gives $x = 0, 1, 2$
 $(0, 0), (1, \frac{1}{4}), (2, 0)$

M2+A1 3 marks

©TSSM 2015

MATHMETH EXAM 1

b.

1 for shape, 1 for stationary points, 1 for end points.

3 marks

c. Area =
$$\int_0^2 \left(\frac{1}{4}x^4 - x^3 + x^2\right) dx = \left(\frac{x^5}{20} - \frac{x^4}{4} + \frac{x^3}{3}\right)_0^2$$

Area = $\frac{8}{5} - 4 + \frac{8}{3} = \frac{4}{15}$ square units

M1+A1 2 marks

Question 5

a.
$$4000 = 5(2 + 7^{3x})$$

 $800 = 2 + 7^{3x}$
 $798 = 7^{3x}$
 $3x = log_7(798)$
 $x = \frac{1}{3}log_7(798)$

M1+A1 2 marks

b.
$$2 \times 2^{2x} + 2^x - 1 = 0$$

 $2y^2 + y - 1 = 0$, where $y = 2^x$
 $(2y - 1)(y + 1) = 0$
 $y = \frac{1}{2}, -1$
 $2^x = \frac{1}{2}, 2^x = -1$
 $x = -1$ $(2^x = -1 \text{ has no solution})$

M2+A1 3 marks

©TSSM 2015 Page 3 of 4

Question 6

a.
$$\frac{1}{5} + \frac{1}{10} + \frac{1}{3} + k = 1$$

 $k = \frac{11}{30}$

A1 1 mark

b.
$$\Pr(X < 2) = \frac{1}{5} + \frac{1}{3} = \frac{8}{15}$$

A1

1 mark

c. Mean =
$$\sum x \Pr(X = x) = 0 + \frac{1}{3} + \frac{1}{5} + \frac{11}{10} = \frac{49}{30}$$

M1+A1

2 marks

Question 7

$$\frac{dy}{dx} = -\frac{3}{x^2}$$

grad of tangent = $-\frac{3}{a^2}$

$$-\frac{3}{a^2} = -9$$

$$a = \pm \frac{1}{\sqrt{3}}$$

$$a = \frac{\sqrt{3}}{3}$$

M1+A1 2 marks

Question 8

a.
$$\hat{p} = 0.9$$

A1 1 mark

b.
$$M = 1.96\sqrt{\frac{0.9 \times 0.1}{r}}$$

If you double r

$$M = 1.96 \sqrt{\frac{0.9 \times 0.1}{2r}}$$

Margin of error will decrease by a factor of $\sqrt{2}$

A1

1 mark