Feuille de TD 6: indications

Exercice 1. Vérifier que les ensembles suivants sont des \mathbb{R} -espaces vectoriels.

- (a) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}.$
- (b) L'ensemble des polynômes $P \in \mathbb{R}[X]$ tels que P'(7) = 0.
- (c) L'ensemble des fonctions en escalier sur [0, 1].

Indication: Vérifier que ce sont des sous-espaces des espaces vectoriels standards \mathbb{R}^3 , $\mathbb{R}[X]$ et $\mathbb{R}^{[0,1]}$. Cf. définition dans la section 1.2 du cours (page 75).

Exercice 2. Les ensembles suivants sont-ils des sous-espaces du C-espace vectoriel des suites complexes?

- (a) L'ensemble des suites convergentes.
- (b) L'ensemble des suites divergentes.
- (c) L'ensemble des suites bornées.
- (d) L'ensemble des suites réelles.
- (e) L'ensemble des suites (u_n) telles que $u_n \sim 1/n$.
- (f) L'ensemble des suites (u_n) telles que $u_n = o(1/n)$.
- (g) L'ensemble des suites (u_n) telles que $u_n = O(1/n)$.

Indication: Toujours commencer par vérifier si l'ensemble contient l'élément neutre (ici, la suite nulle). Et vérifier la définition de la section 1.2 du cours (page 75).

Exercice 3. Soient E un espace vectoriel et F_1 , F_2 deux sous-espaces vectoriels de E. Prouver que $F_1 \cup F_2$ est un sous-espace vectoriel si et seulement si $F_1 \subset F_2$ ou $F_2 \subset F_1$.

Indication: Sens \Leftarrow : si $F_1 \subset F_2$, $F_1 \cup F_2$ est...? Pour le sens \implies , on peut procéder par contraposée (écrire soigneusement ce qu'on veut montrer!). Utiliser l'identité x = (x + y) - y avec $x \in F_1$ et $y \in F_2$.

Exercice 4. On se place dans le \mathbb{Q} -espace vectoriel \mathbb{R} .

- (a) A-t-on $\sqrt{2} \in \text{Vect}(1)$?
- (b) A-t-on $\sqrt{3} \in \text{Vect}(1, \sqrt{2})$?

Indication: Attention, les scalaires sont ici seulement des nombres rationnels. Pour la partie (b) supposer $\sqrt{3} = a + b\sqrt{2}$ pour $a, b \in \mathbb{Q}$, mettre au carré et en déduire une contradiction.

Exercice 5. Pour tout réel a, on note $f_a: x \mapsto e^{ax}$. Soient des réels $a_1 < \cdots < a_n$. Montrer que $(f_{a_1}, \ldots, f_{a_n})$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$. **Indication :** Posons $\lambda_1 e^{a_1 x} + \cdots + \lambda_n e^{a_n x} = 0$ avec $\lambda_j \in \mathbb{R}$ pour tout j. Commencer

par multiplier par $e^{-a_n x}$ et étudier la limite quand $x \to +\infty...$

Exercice 6. Donner une base des \mathbb{R} -espaces vectoriels suivants, ainsi que leur dimension.

- (a) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}.$
- (b) $B = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z = 2x + 3y + z + 4t = 0\}.$

Indication: Cf. 1MA002?

Exercice 7. Soit $S_n = \{A \in M_n(\mathbb{R}) \mid {}^tA = A\}$. Prouver que S_n est un sous-espace vectoriel de $M_n(\mathbb{R})$. Quelle est sa dimension?

Indication : On pourra commencer par identifier une base dans le cas n = 2 (ou 3). Dans le cas général, trouver une base s'exprimant à l'aide des matrices $E_{k,l}$ du cours (avec uniquement un 1 en position (k,l) et des 0 ailleurs).

Exercice 8. Soit la subdivision $\sigma = \{0, 1, 2\}$ de [0, 2]. Démontrer que l'ensemble des fonctions en escalier associées à σ est un espace vectoriel de dimension 5.

Indication: Soient $0 \le a < b \le 2$. Considérer des fonctions $f_{a,b}$ et f_a comme suit : $f_{a,b}(x) = 1$, si $x \in]a,b[$, $f_{a,b}(x) = 0$ sinon; $f_a(x) = 1$, si x = a, $f_a(x) = 0$ sinon. Montrer que $\{f_0,f_1,f_2,f_{0,1},f_{1,2}\}$ est une base afin de conclure que la dimension est 5.

Exercice 9. Avec des polynômes...

- (a) Soient P_0, \ldots, P_n des polynômes réels tels que deg $P_k = k$ pour $k = 0, \ldots, n$. Prouver que (P_0, \ldots, P_n) est une base de $\mathbb{R}_n[X]$.
- (b) Montrer que $(X+1, X-1, X^2+2X)$ est une base de $\mathbb{R}_2[X]$ et donner les coordonnées de X^2 dans cette base.
- (c) Dans le \mathbb{C} -espace vectoriel $\mathbb{C}[X]$, on considère le sous-ensemble A des polynômes impairs (i.e. les combinaisons linéaires de puissances impaires de X), ainsi que $B = \{XP(X) \mid P \in A\}$. Vérifier que ce sont des sous-espaces. Quelle est leur somme?

Indications: (a) Utiliser la proposition 29 page 84 (1.4). Noter c_k le coefficient dominant de P_k . Une relation linéaire entre ces polynômes donne une expression polynômiale nulle, dont on commencera par évaluer le coefficient dominant en fonction des c_k . (b) Utiliser de nouveau la proposition 29 page 84 (1.4). Trouver les coordonnées de X^2 revient à écrire X^2 comme combinaison linéaire de X + 1, X - 1 et $X^2 + 2X$. (c) Ecrire précisément ce qu'est la somme d'un élément de A et d'un élément de B et dire simplement quels polynômes admettent une telle écriture.

Exercice 10. On se place dans le \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{R}}$.

- (a) Prouver que (sin, cos) est une famille libre.
- (b) Montrer que Vect(sin, cos) est l'ensemble des fonctions $f : \mathbb{R} \to \mathbb{R}$ telles qu'il existe des réels A et ϕ pour lesquels on peut écrire

$$\forall x \in \mathbb{R}, \quad f(x) = A\sin(x + \phi).$$

Indications : (a) Supposer qu'il existe une relation linéaire entre sin et cos et l'évaluer en des points biens choisis. (b) Prouver une double inclusion entre ses ensembles. Pour \supset , utiliser une formule de trigonométrie. Pour \subset , observer que $a\sin(x) + b\cos(x)$ peut être écrit sous la forme $A\cos(\phi)\sin(x) + A\sin(\phi)\cos(x)$ (représenter le vecteur (a,b) en coordonnées polaires).

Exercice 11. Soit E un espace vectoriel de dimension n. Un hyperplan de E est un sous-espace vectoriel de E de dimension n-1. Calculer la dimension de $H_1 \cap H_2$ si H_1 et H_2 sont deux hyperplans distincts de E.

Indication : Utiliser l'égalité $\dim(H_1 \cap H_2) = \dim(H_1) + \dim(H_2) - \dim(H_1 + H_2)$, qu'on trouve au paragraphe 1.5 du cours (page 85).

Exercice 12. Soit E l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} . On note F_1 l'ensemble des fonctions continues d'intégrale nulle et F_2 l'ensemble des fonctions constantes, sur [0,1].

- (a) Vérifier que F_1 et F_2 sont deux sous-espaces vectoriels de E.
- (b) Prouver que $F_1 \cap F_2 = \{0\}$.
- (c) Montrer que $F_1 \oplus F_2 = E$.
- (d) Ecrire $f: x \mapsto xe^x$ comme somme d'un élément de F_1 et d'un élément de F_2 .

Indication : (c) Si f est continue sur [0,1], la fonction g définie par $g(x) = f(x) - \int_0^1 f$ est d'intégrale nulle.

Exercice 13. Soit S le \mathbb{C} -espace vectoriel des suites complexes (u_n) vérifiant la relation de récurrence $u_{n+2} = 3u_{n+1} - 2u_n$ pour tout indice n.

- (a) Donner une base de S.
- (b) Quels sont les éléments (u_n) de S tels que $u_0 = 1$ et $u_1 = 3$?
- (c) Quelles sont les suites réelles appartenant à S?

Indication : (a) Voir le cours, paragraphe 1.7. (b) Exprimer u dans la base trouvée et calculer ses coordonnées à l'aide des données initiales. (c) Si (v, w) est une base de S et u = av + bw, évaluer Im(a) et Im(b) dans le cas où u est réelle.

Exercice 14. Déterminer les suites complexes (u_n) vérifiant les relations de récurrence suivantes, avec les conditions initiales suivantes.

- (a) $u_{n+2} = 2u_{n+1} 2u_n$, avec $u_0 = u_1 = 1$.
- (b) $u_{n+2} = (2+2i)u_{n+1} 2iu_n$, avec $u_0 = 1$ et $u_1 = 0$.

Indication : Voir le cours, paragraphe 1.7. Calculer les constantes grâce aux données initiales.