Sparsely Activated Layers for Text Classifiers

Wilker Aziz Institute for Logic, Language, and Computation

SEA @ IvI

Text classifiers

Let's consider a general text classifier these days

Text classifiers

Let's consider a general text classifier these days

$$Y|x \sim \operatorname{Cat}(f(x;\theta))$$

- x is some (high-dimensional) input text
 e.g. a sentence, short paragraph, pair of texts
- ▶ y is a K-valued label e.g. sentiment, logical entailment
- $f(\cdot;\theta)$ maps from text to a K-dimensional probability vector e.g. a NN encoder and a softmax output layer

We call this an observation model

Parameter estimation

Given N i.i.d. observations, a step in the direction

$$\nabla_{\theta} \log \operatorname{Cat}(y^{(s)}|f(x^{(s)};\theta))$$

takes us closer to a local optimum of the log-likelihood function.

Parameter estimation

Given N i.i.d. observations, a step in the direction

$$\nabla_{\theta} \log \operatorname{Cat}(y^{(s)}|f(x^{(s)};\theta))$$

takes us closer to a local optimum of the log-likelihood function.

As long as we keep everything about f fully differentiable it can be as fancy as we like!

Fancy f

```
In sentiment classification f is usually a bidirectional recurrent encoder
```

In natural language inference (aka textual entailment) f compares two sentences using attention mechanisms

Fancy f

In sentiment classification f is usually a bidirectional recurrent encoder

In natural language inference (aka textual entailment) f compares two sentences using attention mechanisms

But, make f too fancy and

- 1. it may overfit
- it may not scale
- 3. we can never tell what the classifier is doing

Fancy f

In sentiment classification f is usually a bidirectional recurrent encoder

In natural language inference (aka textual entailment) f compares two sentences using attention mechanisms

But, make f too fancy and

- 1. it may overfit
- it may not scale
- 3. we can never tell what the classifier is doing

In this talk I will focus on (3) collaboration with Joost Bastings and Ivan Titov

Outline

Text classification

Discrete Rationales

Sparse and Differentiable Rationales

Applications

Remarks

Outline

Text classification

Discrete Rationales

Sparse and Differentiable Rationales

Applications

Remarks

A step towards transparency

We give a NN lots of data to crunch and it makes decisions for us

- why certain decisions take place?
- based on what evidence?
- can we take a peek at what correlations a NN is likely exploiting?

Rationale

What if we classified based on a compact view of the input?

pours a dark amber color with decent head that does not recede much . it 's a tad too dark to see the carbonation , but fairs well . smells of roasted malts and mouthfeel is quite strong in the sense that you can get a go

Lei et al. (2016) called this view a rationale

Inducing latent rationales

I will denote this view by $x \odot z$

hink of $z = \langle z_1, \dots, z_n \rangle$ as an elementwise mask it selects what parts of the input $x = \langle x_1, \dots, x_n \rangle$ are available for classification

Inducing latent rationales

I will denote this view by $x \odot z$

▶ think of $z = \langle z_1, \dots, z_n \rangle$ as an elementwise mask it selects what parts of the input $x = \langle x_1, \dots, x_n \rangle$ are available for classification

We want to learn what to select, thus we introduce a latent model

$$Z_i|x \sim \text{Bern}(g_i(x;\phi))$$

 $Y|x, z \sim \text{Cat}(f(x \odot z;\theta))$

and have a NN $g(x;\phi)$ parameterise n Bernoulli selectors

Requires gradient estimation via REINFORCE!

Outline

Text classification

Discrete Rationales

Sparse and Differentiable Rationales

Applications

Remarks

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

▶ What is the probability of sampling **exactly** 0?

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

▶ What is the probability of sampling **exactly** 0? 0!

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

- What is the probability of sampling exactly 0? 0!
- What is the probability of sampling a negative number?

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

- ▶ What is the probability of sampling exactly 0? 0!
- What is the probability of sampling a *negative number*? 0.5 or alternatively, $\Phi(0) = \int_{-\infty}^{0} \mathcal{N}(\epsilon|0,1) d\epsilon$

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

- What is the probability of sampling exactly 0? 0!
- What is the probability of sampling a *negative number*? 0.5 or alternatively, $\Phi(0) = \int_{-\infty}^{0} \mathcal{N}(\epsilon|0,1) d\epsilon$

$$\epsilon \sim \mathcal{N}(0,1)$$

$$h = \max(0, \epsilon)$$

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

- ► What is the probability of sampling exactly 0? 0!
- What is the probability of sampling a *negative number*? 0.5 or alternatively, $\Phi(0) = \int_{-\infty}^{0} \mathcal{N}(\epsilon|0,1) d\epsilon$

Consider the variable

$$\epsilon \sim \mathcal{N}(0, 1)$$

$$h = \max(0, \epsilon)$$

▶ What's the probability of sampling ϵ exactly 0?

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

- What is the probability of sampling exactly 0? 0!
- What is the probability of sampling a *negative number*? 0.5 or alternatively, $\Phi(0) = \int_{-\infty}^{0} \mathcal{N}(\epsilon|0,1) d\epsilon$

Consider the variable

$$\epsilon \sim \mathcal{N}(0, 1)$$

$$h = \max(0, \epsilon)$$

▶ What's the probability of sampling ϵ exactly 0? 0!

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

- What is the probability of sampling exactly 0? 0!
- What is the probability of sampling a *negative number*? 0.5 or alternatively, $\Phi(0) = \int_{-\infty}^{0} \mathcal{N}(\epsilon|0,1) d\epsilon$

$$\epsilon \sim \mathcal{N}(0, 1)$$

$$h = \max(0, \epsilon)$$

- ▶ What's the probability of sampling ϵ exactly 0? 0!
- What's the probability of sampling h exactly 0?

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

- What is the probability of sampling exactly 0? 0!
- What is the probability of sampling a *negative number*? 0.5 or alternatively, $\Phi(0) = \int_{-\infty}^{0} \mathcal{N}(\epsilon|0,1) d\epsilon$

$$\epsilon \sim \mathcal{N}(0, 1)$$

$$h = \max(0, \epsilon)$$

- ▶ What's the probability of sampling ϵ exactly 0? 0!
- What's the probability of sampling h exactly 0? 0.5!

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

- What is the probability of sampling exactly 0? 0!
- What is the probability of sampling a *negative number*? 0.5 or alternatively, $\Phi(0) = \int_{-\infty}^{0} \mathcal{N}(\epsilon|0,1) d\epsilon$

$$\epsilon \sim \mathcal{N}(0, 1)$$

$$h = \max(0, \epsilon)$$

- ▶ What's the probability of sampling ϵ exactly 0? 0!
- What's the probability of sampling h exactly 0? 0.5!
- ▶ Where is the max non-differentiable?

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

- What is the probability of sampling exactly 0? 0!
- What is the probability of sampling a *negative number*? 0.5 or alternatively, $\Phi(0) = \int_{-\infty}^{0} \mathcal{N}(\epsilon|0,1) d\epsilon$

$$\epsilon \sim \mathcal{N}(0, 1)$$

$$h = \max(0, \epsilon)$$

- ▶ What's the probability of sampling ϵ exactly 0? 0!
- What's the probability of sampling h exactly 0? 0.5!
- ▶ Where is the \max non-differentiable? At $\epsilon = 0$

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

- What is the probability of sampling exactly 0? 0!
- What is the probability of sampling a *negative number*? 0.5 or alternatively, $\Phi(0) = \int_{-\infty}^{0} \mathcal{N}(\epsilon|0,1) d\epsilon$

$$\epsilon \sim \mathcal{N}(0, 1)$$

$$h = \max(0, \epsilon)$$

- ▶ What's the probability of sampling ϵ exactly 0? 0!
- What's the probability of sampling h exactly 0? 0.5!
- ▶ Where is the \max non-differentiable? At $\epsilon = 0$
- ▶ Will we ever sample $\epsilon = 0$?

Consider a Gaussian variable $\epsilon \sim \mathcal{N}(0,1)$

- What is the probability of sampling exactly 0? 0!
- What is the probability of sampling a *negative number*? 0.5 or alternatively, $\Phi(0) = \int_{-\infty}^{0} \mathcal{N}(\epsilon|0,1) d\epsilon$

$$\epsilon \sim \mathcal{N}(0, 1)$$

$$h = \max(0, \epsilon)$$

- ▶ What's the probability of sampling ϵ exactly 0? 0!
- What's the probability of sampling h exactly 0? 0.5!
- ▶ Where is the \max non-differentiable? At $\epsilon = 0$
- ▶ Will we ever sample $\epsilon = 0$? No :D

HardKumaraswamy

We propose a distribution that

- lacktriangle gives support to the **closed** interval [0,1]
- ▶ and assign non-zero probability to outcomes 0 and 1 $\mathbb{P}(z \in \{0\}) > 0$ and $\mathbb{P}(z \in \{1\}) > 1$

HardKumaraswamy

Kumaraswamy distribution (Kumaraswamy 1980) in machine learning (Nalisnick and Smyth 2016)

HardKumaraswamy

Kumaraswamy distribution (Kumaraswamy 1980) in machine learning (Nalisnick and Smyth 2016)

HardKumaraswamy

Kumaraswamy distribution (Kumaraswamy 1980) in machine learning (Nalisnick and Smyth 2016)

HardKumaraswamy

Kumaraswamy distribution (Kumaraswamy 1980) in machine learning (Nalisnick and Smyth 2016)

If $Z \sim \text{HKuma}(a, b, l, r)$

Louizos et al. (2017) proposed this *stretch-and-rectify* technique using Binary Concrete variables (Maddison et al. 2017, Jang et al. 2017) in the context of Bayesian NNs.

If $Z \sim \text{HKuma}(a, b, l, r)$

 $u \sim \mathcal{U}(0,1)$

Fixed random source

Louizos et al. (2017) proposed this *stretch-and-rectify* technique using Binary Concrete variables (Maddison et al. 2017, Jang et al. 2017) in the context of Bayesian NNs.

If
$$Z \sim \text{HKuma}(a, b, l, r)$$

$$u \sim \mathcal{U}(0,1)$$
 Fixed random source $k = \underbrace{(1-(1-u)^{1/b})^{1/a}}_{\text{inverse cdf}} \sim \operatorname{Kuma}(a,b)$

Louizos et al. (2017) proposed this *stretch-and-rectify* technique using Binary Concrete variables (Maddison et al. 2017, Jang et al. 2017) in the context of Bayesian NNs.

If
$$Z \sim \text{HKuma}(a, b, l, r)$$

$$u \sim \mathcal{U}(0,1)$$
 Fixed random source
$$k = \underbrace{(1-(1-u)^{1/b})^{1/a}}_{\text{inverse cdf}} \sim \operatorname{Kuma}(a,b)$$

$$t = \underbrace{l+(r-l)k}_{\text{stretch}} \sim \operatorname{Kuma}(a,b,l,r)$$

Louizos et al. (2017) proposed this *stretch-and-rectify* technique using Binary Concrete variables (Maddison et al. 2017, Jang et al. 2017) in the context of Bayesian NNs.

If
$$Z \sim \text{HKuma}(a, b, l, r)$$

$$\begin{aligned} u &\sim \mathcal{U}(0,1) & \text{Fixed random source} \\ k &= \underbrace{(1-(1-u)^{1/b})^{1/a}}_{\text{inverse cdf}} &\sim \text{Kuma}(a,b) \\ t &= \underbrace{l+(r-l)k}_{\text{stretch}} &\sim \text{Kuma}(a,b,l,r) \\ z &= \underbrace{\min(1,\max(0,t))}_{\text{rectify}} &\sim \text{HKuma}(a,b,l,r) \end{aligned}$$

Louizos et al. (2017) proposed this *stretch-and-rectify* technique using Binary Concrete variables (Maddison et al. 2017, Jang et al. 2017) in the context of Bayesian NNs.

If
$$Z \sim \operatorname{HKuma}(a,b,l,r)$$

$$u \sim \mathcal{U}(0,1) \qquad \text{Fixed random source}$$

$$k = \underbrace{(1-(1-u)^{1/b})^{1/a}}_{\text{inverse cdf}} \qquad \sim \operatorname{Kuma}(a,b)$$

$$\underbrace{t = \underbrace{l+(r-l)k}_{\text{stretch}}}_{\text{stretch}} \qquad \sim \operatorname{Kuma}(a,b,l,r)$$

$$\sim \operatorname{HKuma}(a,b,l,r)$$

► Is this differentiable wrt *a*, *b*?

rectify

Louizos et al. (2017) proposed this *stretch-and-rectify* technique using Binary Concrete variables (Maddison et al. 2017, Jang et al. 2017) in the context of Bayesian NNs.

If
$$Z \sim \operatorname{HKuma}(a,b,l,r)$$

$$u \sim \mathcal{U}(0,1)$$
 Fixed random source
$$k = \underbrace{(1-(1-u)^{1/b})^{1/a}}_{\text{inverse cdf}} \sim \operatorname{Kuma}(a,b)$$

$$t = \underbrace{l+(r-l)k}_{\text{order}} \sim \operatorname{Kuma}(a,b,l,r)$$

$$z = \underbrace{\min(1, \max(0, t))}_{\text{rectify}} \quad \sim \text{HKuma}(a, b, l, r)$$

▶ Is this differentiable wrt *a*, *b*?

stretch

Yes, reparameterised gradients are available!

Louizos et al. (2017) proposed this *stretch-and-rectify* technique using Binary Concrete variables (Maddison et al. 2017. Jang et al. 2017) in the context of Bayesian NNs.

Latent rationales with HardKuma selectors

Latent rationales with HardKuma selectors

Promoting sparsity

Short selections: penalise expected number of non-zero selectors

$$\mathbb{E}_{P(z|x,\phi)}\left[\sum_{i=1}^{n}\mathbb{I}[z_i\neq 0]\right]$$

Promoting sparsity

Short selections: penalise expected number of non-zero selectors

$$\mathbb{E}_{P(z|x,\phi)}\left[\sum_{i=1}^{n}\mathbb{I}[z_{i}\neq0]\right]$$

Coherent groups: penalise expected number of zero-to-nonzero and nonzero-to-zero changes

$$\boxed{ \mathbb{E}_{P(z|x,\phi)} \left[\sum_{i=1}^{n-1} \mathbb{I}[z_i = 0, z_{i+1} \neq 0] \right] + \left[\mathbb{E}_{P(z|x,\phi)} \left[\sum_{i=1}^{n-1} \mathbb{I}[z_i \neq 0, z_{i+1} = 0] \right] \right] }$$

Promoting sparsity

Short selections: penalise expected number of non-zero selectors

$$\mathbb{E}_{P(z|x,\phi)}\left[\sum_{i=1}^{n}\mathbb{I}[z_{i}\neq0]\right]$$

Coherent groups: penalise expected number of zero-to-nonzero and nonzero-to-zero changes

$$\boxed{ \mathbb{E}_{P(z|x,\phi)} \left[\sum_{i=1}^{n-1} \mathbb{I}[z_i = 0, z_{i+1} \neq 0] \right] + \left[\mathbb{E}_{P(z|x,\phi)} \left[\sum_{i=1}^{n-1} \mathbb{I}[z_i \neq 0, z_{i+1} = 0] \right] \right] }$$

Tractable and differentiable function of ϕ

Outline

Text classification

Discrete Rationales

Sparse and Differentiable Rationales

Applications

Remarks

BeerAdvocate

Regression to sentiment score [0, 1]

BeerAdvocate

Method		Look		Smell		Taste	
	Target rate	% Precision	% Selected	% Precision	% Selected	% Precision	% Selected
Attention (Lei et al.)	Threshold	80.6	13	88.4	7	65.3	7
Bernoulli (Lei et al.)	Grid	96.3	14	95.1	7	80.2	7
Bernoulli (reimpl.)	Grid	94.8	13	95.1	7	80.5	7
HardKuma	Lagrange	98.1	13	96.8	7	89.8	7

Stanford sentiment classification

Stanford natural language inference

Entailment

Stanford natural language inference

Contradiction

Stanford natural language inference

	Accuracy	
	Dev	Test
LSTM (Bowman et al. 2016) DA (Parikh et al. 2016)	_ _	80.6 86.3
DA (reimplementation) DA with HardKuma attention	86.9 86.0	86.5 85.5

1% drop with 8.6% of non-zero attention cells

Outline

Text classification

Discrete Rationales

Sparse and Differentiable Rationales

Applications

Remarks

Remarks

Distributions that mix discrete and continuous behaviour are typically used to sparsify models (i.e. parameters)

We show how to use them to construct differentiable sparse layers

- for sentiment classification (sparse rationale)
- and natural language inference (sparse attention)

Other applications we are looking into include

- adjacency in a graph
- keys/values in memory networks

Remarks

Distributions that mix discrete and continuous behaviour are typically used to sparsify models (i.e. parameters)

We show how to use them to construct differentiable sparse layers

- for sentiment classification (sparse rationale)
- and natural language inference (sparse attention)

Other applications we are looking into include

- adjacency in a graph
- keys/values in memory networks

Thanks!

References I

Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D. Manning, and Christopher Potts. A fast unified model for parsing and sentence understanding. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1466–1477. Association for Computational Linguistics, 2016. doi: 10.18653/v1/P16-1139. URL http://aclweb.org/anthology/P16-1139.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *International Conference on Learning Representations*, 2017.

Michaell. Jordan, Zoubin Ghahramani, TommiS. Jaakkola, and LawrenceK. Saul. An introduction to variational methods for graphical models. *Machine Learning*, 37(2):183–233, 1999.

References II

- Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In *International Conference on Learning Representations*, 2014.
- Ponnambalam Kumaraswamy. A generalized probability density function for double-bounded random processes. *Journal of Hydrology*, 46(1-2):79–88, 1980.
- Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pages 107–117. Association for Computational Linguistics, 2016. doi: 10.18653/v1/D16-1011. URL
 - http://aclweb.org/anthology/D16-1011.
- Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through l_-0 regularization. arXiv preprint arXiv:1712.01312, 2017.

References III

- Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continous relaxation of discrete random variables. *International Conference on Learning Representations*, 2017.
- Eric Nalisnick and Padhraic Smyth. Stick-breaking variational autoencoders. *arXiv preprint arXiv:1605.06197*, 2016.
- Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention model for natural language inference. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pages 2249–2255. Association for Computational Linguistics, 2016. doi: 10.18653/v1/D16-1244. URL http://aclweb.org/anthology/D16-1244.
- Nicholas D. Socci, Daniel D. Lee, and H. Sebastian Seung. The rectified gaussian distribution. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, *Advances in Neural Information Processing Systems 10*, pages 350–356. MIT Press, 1998.

References IV

John Winn and Christopher M Bishop. Variational message passing. *Journal of Machine Learning Research*, 6(Apr):661–694, 2005.

Controlled sparsity

We specify target values t for the sparsity-inducing penalties $R(\phi)$ and employ Langrangian relaxation

$$\min_{\lambda} \max_{\phi, \theta} \mathcal{L}(\phi, \theta) - \lambda^{\top} (R(\phi) - t)$$

where $\mathcal{L}(\theta,\phi)$ is a lowerbound on the log-likelihood function

Sentiment words

Word count per sentiment

Reparameterised gradients

$$\begin{split} \frac{\partial \mathcal{L}}{\partial u} &= \frac{\partial \mathcal{L}}{\partial h} \times \frac{\partial h}{\partial t} \times \frac{\partial t}{\partial k} \times \frac{\partial k}{\partial u} \\ k &= F_K^{-1}(u; a, b) \\ t &= l + (r - l)k \\ h &= \min(1, \max(0, t)) \end{split}$$

FI BO

We need to marginalise all possible latent assignments:

$$\log P(y|x,\theta,\phi) = \log \sum_{z} P(z|x,\phi)P(y|x\odot z,\theta)$$

but there 2^n of those!

Let's derive a lowerbound

$$\log P(y|x,\theta,\phi) \stackrel{\mathsf{JI}}{\geq} \underbrace{\sum_{z} P(z|x,\phi) \log P(y|x\odot z,\theta)}_{\mathcal{L}(\theta,\phi|x,y)}$$

and work with gradient estimates instead

$$\nabla_{\theta} \mathcal{L}(\theta, \phi | x, y) = \mathbb{E}_{P(z|x,\phi)} [\nabla_{\theta} \log P(y | x \odot z, \theta)]$$
$$\nabla_{\phi} \mathcal{L}(\theta, \phi | x, y) = \mathbb{E}_{P(z|x,\phi)} [\log P(y | x \odot z, \theta) \nabla_{\phi} \log P(z | x, \phi)]$$

Rectified Gaussian

As we know the cdf of a Gaussian variable we can collapse some of the probability mass to a single point

This variable mixes discrete and continuous behaviour.

Images from Wikipedia

Distribution function

For the rectified Gaussian

$$f_H(h) = F_{\epsilon}(0|\mu,\sigma)\delta(h) + (1 - F_{\epsilon}(0|\mu,\sigma))\mathcal{N}(h|\mu,\sigma^2)\mathbf{1}_{\mathbb{R}_{>0}}(h)$$

For the Hard Kumaraswamy

$$f_{H}(h; a, b, l, r) = \mathbb{P}(h = 0)\delta(h) + \mathbb{P}(h = 1)\delta(h - 1) + \mathbb{P}(0 < h < 1)f_{T}(h; a, b, l, r)\mathbf{1}_{(0,1)}(h)$$

$$f_{T}(t; a, b, l, r) = f_{K}\left(\frac{t-l}{r-l}; a, b\right) \frac{1}{(r-l)}$$

$$F_{T}(t; a, b, l, r) = f_{K}\left(\frac{t-l}{r-l}; a, b\right)$$

$$f_{K}(k; a, b) = abk^{a-1}(1 - k^{a})^{b-1}$$

$$F_{K}(k; a, b) = 1 - (1 - k^{a})^{b}$$

$$F_{K}^{-1}(u; a, b) = \left(1 - (1 - u)^{1/b}\right)^{1/a}$$