Basic Combinatorics

Sets

- Explicit : A={1,4,2}
- Implicit: A={i|i is an odd number}
- Intersection: $x \in A \cap B$ if $x \in A$ and $x \in B$
- Union: $x \in A \cup B$ if $x \in A$ or $x \in B$

Products of sets

Taking all possible combinations.

Size of Product Set=

Raising a set to a power

- The set of all binary sequences of length 7:
 - 0000000, 0000001, 0000010,...
 - 1111101, 1111110, 1111111
- Using product notation:
 - $\{0,1\} \times \{0,1\} = \{0,1\}^7$
- Size:
 - $-2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^7 = 128$

The Factorial Function

How many ways are there to order n different objects?

How many ways are there to order 7 different objects?

The Factorial function

 The number of possible ways to put n different objects into n different slots is

$$n * (n-1) * (n-2) * \cdots * 2 * 1 = n!$$

We say "n factorial"

Permutations

How many ways are there
To pick **k** out of **n** elements
When the order matters

How many ways are there to pick **3** out of **7** elements When the order matters

The Permutation Function

- The number of possible ways to put k<n different objects into n different slots is
- For n=7, k=3:

$$7*6*5 = \frac{7*6*5*4*3*2*1}{4*3*2*1} = \frac{7!}{(7-3)!}$$

In general:

$$P(n,k) \doteq \frac{n!}{(n-k)!}$$

combinations

How many ways are there
To pick **k** out of **n** elements
When the order does not matter

How many ways are there to pick 3 out of 7 elements When the order does not matter

The Combinatorial function

 The number of possible ways to place k identical objects into n different slots is

•
$$C(n,k) \doteq \binom{n}{k} \doteq \frac{P(n,k)}{k!} = \frac{n!}{k!(n-k)!}$$

We Say "n choose k"

How many ways are there to order 3 red and 4 blue balls?

How many different ways to arrange (all) the letters in

MISSISSIPPI

Consider all length 10 binary sequences. How many contain exactly one 1?

How many contain five 1s?

For Friday

1. Read Chapter 3

2. Do Webwork problem 1-7 in week2