C. 1. Recurrence Tree Method - Example 3

Solve the following recurrence equation:

$$t_{n} = \begin{cases} 1 & for n = 1 \\ 8T\left(\frac{n}{2}\right) & for n > 1 \end{cases}$$

Solution:

Initially the input is n. It is sub — divided into eight sub — problems. In the next level, each of these eight sub — problems is again divided into eight sub problems (so a total of $8 \times 8 = 64$ sub problems).

Here 8T represents 8 subdivision and $\frac{n}{2}$ represents $\frac{n}{2}$ increase of problem size.

This process is continued till a pattern is obtained.

Recurrence tree at levels 1 and 2 (and only one problem division is shown)

Level	No. of problems	Problem Size	Work done = No. of problems × problem size
0	1	n	$1 \times n = n$
1	8	$\frac{n}{8}$	$8 \times \frac{n}{8} = n$
2	8 ²	$\frac{n}{8^2}$	$8^2 \times \frac{n}{8^2} = n$
•		•	•
k	8 ^k	$\frac{n}{8^k}$	$8^k \times \frac{n}{8^k} = n$
$\log_2 n$	$8^{\log_2 n}$	1	$8^{\log_2 n} \times 1 = n^3$

The problem size reduces to 1 as T(n) = 1for n = 1 i. e. T(1) = 1 or $t_1 = 1$.

It can be observed that at every level a problem is divided into eight subproblems or nodes is increasing in the following pattern: $1, 8, 64, \dots \left(8^0, 8^1, 8^2, \dots, 8^i\right)$.

The problem size is decreasing in a geometric series as follows: $\left(n, \frac{n}{8}, \frac{n}{8^2}, ..., \frac{n}{8^k}, ..., 1\right)$. Based on the table, the amount of work done at the $\log_2 n$ can be calculated as follows:

$$8^{\log_2 n} \times T(1)$$

$$= (2^3)^{\log_2 n} \times 1$$

$$= (2^{\log_2 n})^3$$

$$= (n)^3 [a^{\log_a b} = b]$$

$$= n^3$$

Alternatively,

$$8^{\log_2 n} \times T(1)$$

$$= (2^3)^{\log_2 n} \times 1$$

$$= (2^{\log_2 n})^3$$

$$= (n^{\log_2 2})^3 [a^{\log_a b} = b^{\log_a a} = b]$$

$$= n^3$$

Now to calculate amount of work done at other level lets divide the above again:

Re-writing the above table as:

Level	No.of problems	Problem Size	Work done = No. of problems × problem size
0	1	n	$1 \times n = n$
1	8	$\frac{n}{2}$	$8 \times \frac{n}{2} = 4n$
2	8 ²	$\frac{n}{4}$	$8^2 \times \frac{n}{4} = 16n$
•		•	•
k	8 ^k	$\frac{n}{2^k}$	$8^k \times \frac{n}{2^k} = n \times 2^{2k}$
$\log_2 n$	$8^{\log_2 n}$	1	$8^{\log_2 n} \times 1 = n^3$

Hence at level 0 , work done is N. At the next level , the cost is 8 times $\left(\frac{N}{2}\right) = 4N$; at level 2 , the cost is 64 times $\left(\frac{N}{4}\right)$ = 16N and so on.

The work done is increasing in the following pattern: 1,4,16,... Therefore the total cost is the work done at the last level and work done at all other level $(0,1,2,3,...,(\log_2 n-1)$.

Thus, the total cost of the tree can be esitmated as follows:

$$\Rightarrow \sum_{i=0}^{\log_2 n-1} 4^i n + 8^{\log_2 n} \times T(1)$$

Where, $8^{\log_2 n} \times T(1)$ is the last level for $\log_2 n$.

and for
$$\log_2 n - 1$$
 i. e. till $\log_2 n - 1$ we have : $\sum_{i=0}^{\log_2 n - 1} 4^i n$

Hence we got :
$$\sum_{i=0}^{\log_2 n-1} 4^i n + 8^{\log_2 n} \times T(1)$$

And we know: $8^{\log_2 n} \times T(1) = n^3$, hence:

$$\Rightarrow \sum_{i=0}^{\log_2 n-1} 4^i n + n^3$$

$$\Rightarrow n \times \sum_{i=0}^{\log_2 n-1} 4^i + n^3$$

And we know the geometric series:

$$\sum_{k=1}^{n} k = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$

And hence for $\sum_{i=0}^{\log_2 n-1} 4^i$, we get

$$\Rightarrow n \times \left(\frac{4^{(\log_2 n - 1) + 1} - 1}{4 - 1}\right) + n^3$$

$$\Rightarrow n \times \left(\frac{4^{\log_2 n} - 1}{4 - 1}\right) + n^3$$

$$\Rightarrow n \times \left(\frac{(n)^2 - 1}{4 - 1}\right) + n^3 \left[\therefore 4^{\log_2 n} = \left(2^{\log_2 n}\right)^2 = n^2 \right]$$

$$\Rightarrow n \times \left(\frac{n^2-1}{3}\right) + n^3$$

$$\Rightarrow \frac{n^3-n}{3}+n^3$$

$$\Rightarrow \frac{n^3 - n + 3n^3}{3}$$

$$\Rightarrow \frac{4n^3-n}{3}$$

Hence total cost of the tree as $:\Theta\left(\frac{4n^3-n}{3}\right)$

$$\Rightarrow \Theta\left(\frac{4n^3}{3} - \frac{n}{3}\right)$$

$$\Rightarrow \Theta\left(\frac{4n^3}{3}\right)$$

$$\Rightarrow \frac{4}{3} \times \Theta(n^3)$$

$$\Rightarrow \Theta(n^3)$$

Alternative way,

Something is divisibe by 8 also are divisible by 4 or are multiples of 4.

The multiple 4 is the approach earlier, but if we keep the original table .

Level	No. of problems	Problem Size	Work done = No. of problems × problem size
0	1	n	$1 \times n = n$
1	8	$\frac{n}{8}$	$8 \times \frac{n}{8} = n$
2	8 ²	$\frac{n}{8^2}$	$8^2 \times \frac{n}{8^2} = n$
		•	
k	8 ^k	$\frac{n}{8^k}$	$8^k imes rac{n}{8^k} = n$
$\log_2 n$	$8^{\log_2 n}$	1	$8^{\log_2 n} \times 1 = n^3$

Hence,

=
$$(n + n + n + \dots + \log_2 n - 1 \text{ times}) + n^3$$

= $n \times (\log_2 n - 1) + n^3$
= $n \log_2 n - n + n^3$
= $\Theta(n \log_2 n - n + n^3)$

Now let us view the exponential rates of growth:

$$2^{2n} < n! < 4^{2n} < 2^n < n^3 < n^2 < nlogn < log(n!) < n$$
 $< 2^{logn} < log^2n < \sqrt{logn} < loglogn < 1$

And complexities from fastest to slowest:

$$\begin{split} &\Theta(1) < \Theta(\log n) < \Theta(\sqrt{n}) < \Theta(n) < \Theta(n\log n) < \Theta(n^2) < \\ &\Theta(n^3) < \Theta(2^n) < \Theta(n!) < \Theta(2^{2n}) < \Theta(2^{\log n}) < \Theta(\log \log n) \\ &< \Theta(3^n) < \Theta(n^n) \end{split}$$

We can write it oppositely:

$$\begin{split} &\Theta(n^n) > \Theta(3^n) > \Theta(loglogn) > \Theta(2^{logn}) > \Theta(2^{2n}) > \Theta(n!) \\ &> \Theta(2^n) > \Theta(n^3) > \Theta(n^2) > \Theta(nlogn) > \Theta(n) > \Theta(\sqrt{n}) > \\ &\Theta(logn) > \Theta(1) \end{split}$$

We can examine:

$$\Theta(\,n\log_2 n - n + n^3)$$

$$\Rightarrow \Theta(n^3) > \Theta(n \log_2 n) > \Theta(n)$$

 $\Rightarrow \Theta(n^3)$ is the anwer.
