IMPORT LIBRARIES

```
In [82]: import pandas as pd import numpy as np
```

took dataset from kaggle(csv file)

```
In [83]: dataset = pd.read_csv(r"C:\Users\khush\Desktop\Salary_Data.csv")
```

to display the csv file

In [84]:	: dataset.head()							
Out[84]:		Age	Gender	Education Level	Job Title	Years of Experience	Salary	
	0	32.0	Male	Bachelor's	Software Engineer	5.0	90000.0	
	1	28.0	Female	Master's	Data Analyst	3.0	65000.0	
	2	45.0	Male	PhD	Senior Manager	15.0	150000.0	
	3	36.0	Female	Bachelor's	Sales Associate	7.0	60000.0	
	4	52.0	Male	Master's	Director	20.0	200000.0	

removed columns which are not required i.e. simplified data

```
In [85]: columns to remove = ['Gender', 'Education Level', 'Job Title']
In [86]: | dataset = dataset.drop(columns=columns_to_remove)
In [87]: dataset.head()
Out[87]:
              Age Years of Experience
                                       Salary
           0 32.0
                                5.0
                                      90000.0
           1 28.0
                                      65000.0
                                3.0
           2 45.0
                                15.0 150000.0
           3 36.0
                                     60000.0
                                7.0
           4 52.0
                                20.0 200000.0
```

performed various operation on column 'Age'

```
In [88]: | dataset.Age.mean()
Out[88]: 33.62085944494181
In [89]: dataset.Age.median()
Out[89]: 32.0
In [90]: |dataset.Age.mode()
Out[90]: 0
              27.0
         Name: Age, dtype: float64
In [91]: dataset.Age.max()
Out[91]: 62.0
In [92]: dataset.Age.min()
Out[92]: 21.0
In [93]: column_name = 'Age'
         std dev = dataset[column name].std()
In [94]: print(f"Standard Deviation for {column_name}: {std_dev}")
         Standard Deviation for Age: 7.614632626251171
```

various operation on column 'salary'

```
In [98]: dataset.Salary.max()
Out[98]: 250000.0
In [99]: dataset.Salary.min()
Out[99]: 350.0
In [100]: column_name = 'Salary'
    std_dev = dataset[column_name].std()
    print(f"Standard Deviation for {column_name}: {std_dev}")
    Standard Deviation for Salary: 52786.183910682936
```

operations on entire dataset

```
In [101]: dataset.mean()
Out[101]: Age
                                       33.620859
           Years of Experience
                                        8.094687
                                   115326.964771
           Salary
           dtype: float64
In [102]: dataset.median()
Out[102]: Age
                                       32.0
           Years of Experience
                                        7.0
                                   115000.0
           Salary
           dtype: float64
In [103]: | dataset.min()
Out[103]: Age
                                    21.0
           Years of Experience
                                     0.0
           Salary
                                   350.0
           dtype: float64
In [104]: | dataset.max()
Out[104]: Age
                                       62.0
                                       34.0
           Years of Experience
           Salary
                                   250000.0
           dtype: float64
In [105]:
          dataset.Age.mode()
Out[105]: 0
                27.0
          Name: Age, dtype: float64
```

In [106]: dataset.groupby(['Age']).count()

Out[106]:

Years of	Experience	Salary
----------	------------	--------

	•	•
Age		
21.0	18	18
22.0	15	15
23.0	104	104
24.0	240	240
25.0	284	284
26.0	393	393
27.0	517	517
28.0	429	429
29.0	444	444
30.0	449	449
31.0	365	364
32.0	351	351
33.0	398	398
34.0	309	309
35.0	200	200
36.0	282	281
37.0	156	156
38.0	149	149
39.0	158	158
40.0	92	92
41.0	129	129
42.0	176	176
43.0	158	158
44.0	126	126
45.0	144	144
46.0	102	102
47.0	47	47
48.0	98	98
49.0	91	91
50.0	88	88
51.0	30	30
52.0	29	29
53.0	7	7
54.0	68	68
55.0	16	16

Years of Experience Salary

Age		
56.0	11	11
57.0	9	9
58.0	7	7
60.0	5	5
61.0	2	2
62.0	5	5

In [107]: dataset.isnull()

Out[107]:

	Age	Years of Experience	Salary
0	False	False	False
1	False	False	False
2	False	False	False
3	False	False	False
4	False	False	False
6699	False	False	False
6700	False	False	False
6701	False	False	False
6702	False	False	False
6703	False	False	False

6704 rows × 3 columns

```
In [108]: std_dev = np.std(dataset)
```

In [109]: | print("standard deviation:", std_dev)

standard deviation: Age 7.614065

Years of Experience 6.058551 Salary 52782.243908

dtype: float64

Box Plot

```
In [110]: import matplotlib.pyplot as plt
```

```
In [111]: dataset = pd.read_csv(r"C:\Users\khush\Desktop\Salary_Data.csv")
In [112]: x = dataset['Age']
y = dataset['Salary']

In [113]: plt.title('Age Salary dataset ')
plt.xlabel('Age')
plt.ylabel('Salary')
plt.bar(x , y)
plt.show()
```


interquartile range

summary stats function

```
In [120]: summary_stats = dataset.groupby('Age')['Salary'].describe()
```

In [121]: print(summary_stats)

	count	mean	std	min	25%	50%	\
Age							
21.0	18.0	25000.000000	0.000000	25000.0	25000.00	25000.0	
22.0	15.0	32910.933333	11880.865333	25000.0	25000.00	25000.0	
23.0	104.0	47192.009615	18035.442395	579.0	35000.00	50000.0	
24.0	240.0	51052.250000	26124.985328	25000.0	25000.00	48132.5	
25.0	284.0	63730.387324	28777.491135	550.0	35000.00	60000.0	
26.0	393.0	65949.106870	31167.205609	26000.0	45000.00	55000.0	
27.0	517.0	77432.729207	33012.912794	30000.0	55000.00	70000.0	
28.0	429.0	84140.368298	40685.862170	25000.0	60000.00	70000.0	
29.0	444.0	85764.750000	40882.104745	350.0	60000.00	75000.0	
30.0	449.0	100903.955457	44141.603325	25000.0	65000.00	95000.0	
31.0	364.0	114381.461538	49219.650931	500.0	70000.00	120000.0	
32.0	351.0	120500.179487	40343.238208	40000.0	90000.00	120000.0	
33.0	398.0	127425.266332	41148.195089	25000.0	100000.00	123520.5	
34.0	309.0	132065.291262	38029.021237	50000.0	100000.00	140000.0	
35.0	200.0	119365.835000	28282.573449	35000.0	95000.00	120000.0	
36.0	281.0	134071.725979	35196.096365	35000.0	100000.00	139413.0	
37.0	156.0	146939.461538	32923.368331	75000.0	115000.00	150000.0	
38.0	149.0	138185.570470	30591.206601	80000.0	119000.00	136449.0	
39.0	158.0	147282.715190	37107.978657	55000.0	120000.00	145000.0	
40.0	92.0	149862.989130	38457.087535	60000.0	122000.00	150000.0	
41.0	129.0	155235.565891	32816.117854	80000.0	131000.00	151315.0	
42.0	176.0	155952.477273	23802.443693	100000.0	139571.50	170000.0	
43.0	158.0	165409.398734	19730.539525	105000.0	150000.00	162000.0	
44.0	126.0	160518.873016	18377.397914	110000.0	150000.00	162037.5	
45.0	144.0	170334.291667	26086.731136	80000.0	150000.00	180000.0	
46.0	102.0	171242.362745	16885.301897	120000.0	160000.00	180000.0	
47.0	47.0	178750.106383	11582.239177	135000.0	170000.00	178859.0	
48.0	98.0	192723.846939	16884.955629	140000.0	180255.25	190000.0	
49.0	91.0	189013.582418	18146.688329	120177.0	182392.00	185000.0	
50.0	88.0	190849.897727	18832.132979	130000.0	180000.00	190000.0	
51.0	30.0	200356.066667	27080.013909	130000.0	190000.00	190000.0	
52.0	29.0	187629.379310	15720.313915	161568.0	185462.00	186963.0	
53.0	7.0	180806.571429	11812.715266	166109.0	173054.50	181714.0	
54.0	68.0	189816.250000	8875.741981	158254.0	190000.00	192103.5	
55.0	16.0	198482.187500	10884.112294	183020.0	190407.25	193964.0	
56.0	11.0	196577.636364	4507.360808	195000.0	195000.00	195000.0	
57.0	9.0	176993.777778	31698.597168	121450.0	188232.00	191790.0	
58.0	7.0	195715.428571	4496.983539	190004.0	192502.00	195000.0	
60.0	5.0	186132.400000	6855.522467	179180.0	179180.00	188651.0	
61.0	2.0	200000.000000	0.000000	200000.0	200000.00	200000.0	
62.0	5.0	200000.000000	0.000000	200000.0	200000.00	200000.0	
	7	5% max					
Age							
21.0	25000	.0 25000.0					
22.0	45000						
23.0	52807	.0 119836.0					
24.0	60000						
25.0	90000	.0 169159.0					

25.0 90000.0 169159.0 26.0 85000.0 135000.0 27.0 80000.0 180000.0 28.0 110000.0 175000.0 29.0 95000.0 182000.0 30.0 120000.0 190000.0 31.0 140000.0 195000.0

```
32.0
      145000.0
                 195000.0
33.0
      148000.0
                 198000.0
34.0
      160976.0
                 196000.0
35.0
      140000.0
                 190000.0
36.0
      160000.0
                 185000.0
37.0
      170000.0
                 195000.0
38.0
      155000.0
                 195000.0
39.0
      170000.0
                 210000.0
40.0
      160000.0
                 215000.0
41.0
      185000.0
                 200000.0
42.0
      180000.0
                 197000.0
43.0
      185000.0
                 198000.0
44.0
      170000.0
                 220000.0
45.0
      185000.0
                 250000.0
46.0
      180000.0
                 220000.0
47.0
      190000.0
                 200000.0
48.0
      210000.0
                 219000.0
49.0
      195000.0
                 228000.0
50.0
      200000.0
                 250000.0
51.0
      230000.0
                 240000.0
52.0
      190596.0
                 250000.0
53.0
      188357.0
                 195000.0
54.0
      195000.0
                 195270.0
55.0
      210000.0
                 210000.0
56.0
      195000.0
                 210000.0
57.0
      195000.0
                 200000.0
58.0
      200000.0
                 200000.0
60.0
      188651.0
                 195000.0
61.0
      200000.0
                 200000.0
62.0
      200000.0
                 200000.0
```

In []: