

SOURCE

on.imeodw

Quantum Office Hours

WITH DR Sarah Kaiser

H D W I G E T H E R E ?

Undergrad : learning what I liked

- ► Studied both Physics and Math
- ► Couldn't decide between theory and experiment
- ► Knew I liked LASERS
- Learned a lot about what grad school would be like

grad school, software developer

- ▶ Didn't do well on GRE exam, didn't get into any grad school programs.
- ► Needed to save up for GRE and applications the next year.
- ► Got a job as a software developer at Wolfram Research working on Mathematica

Gradschool!

- ► Found projects that incorporated lasers and quantum information!
- ► Studied Quantum Key

 Distribution and built (and broke!) commercial devices for exchanging secure keys.
- Struggled with lack of university support against harassment and discrimination issues.

Down under Postdoc

- ► Worked on NV centers in nanodiamonds for medical sensing.
- ► Natural disasters happen, was unable to replace equipment after flood.

→ Back to software dev, now with quantum in Seattle!

Quantum developer + advocate

Women in Qu

Computing an

Applications

- ▶ Open source meetup groups were amazing communities, I wanted to help build one for quantum computing.
- ► I started giving lots of conference talks, and demos of quantum programming on twitch.

How can we learn quantum development together?

The challenges of learning quantum development:

► Targeted learning materials for particular backgrounds

Cross-disciplinary concepts

► Tons of options for language and platform

We have our classical computers...?

What software tools can we use right now to help us learn about quantum computers?

Open Source: For software, knowledge, research

- ▶ Open Source Software (OSS)
 - Software that can be freely accessed, used, changed, and shared (in modified or unmodified form) by anyone.
- ► Open Source Community
 - Everything except the code
 - Licences
 - Processes and governance
 - Funding
 - Blogging and Social Media
 - Diversity
 - etc.

Our quantum environment is intentionally

open

* This is a figurative timeline and not meant to be exact or exhaustive

THE UNITHRY FUND

CREATING A QUANTUM
TECHNOLOGY ECOSYSTEM
THAT BENEFITS THE MOST
PEOPLE.

Developing the open quantum tech ecosystem

Microgrant Program

- ► \$4k grants to open quantum tech projects
- ► Compilers, simulators, educational tools, visualizers, and more!

Supporters

Unitary Labs: open source research team

- Building Mitiq, an open source error-mitigating compiler
- Supporting QuTiP, >30k annual downloads, Paper >2500 citations: widely used

Collaborators

Small microgrants => big impact

\$90k

30 projects:

14 countries, 4 continents
8 publications

1 venture funded startup
>12 open source libraries
7 new folks FT in the field

Open source metrics:

>950 stars

>150 forks

\bigcirc

Building state-of-the-art open software

QRack

an open source, comprehensive, GPU-accelerated framework for simulating universal quantum processors.

Better performance that industry options.

(Oiskit exhibited executing-halting instability before N=22 at Depth = 20, on AWS c5.4xlarge instances.

QuNetSim

To Stephen DiAdamo to develop the first full features software stack for quantum network protocols.

OLSQ

To Daniel Tan to develop and open source the Optimal Layout Synthesizer for Quantum Computing, OLSQ. This compiler beats other benchmarks on optimal layout of computational qubits onto physical qubits.

Table 4. Evaluation of QAOA-OLSQ

М	t ket⟩ Depth	SWAP	TB-OLS Depth	SWAP	Depth Reduction	SWAP Reduction	QAOA- Depth	OLSQ SWAP	Depth Reduction	SWAP Reduction
10	16	7.3	6.9	7.3	56.7%	0	6.5	5.5	59.3%	23.6%
12	17.8	11.7	8.5	9.3	52.3%	20.4%	5.6	5.8	67.3%	46.2%
14	19.0	13.2	9.0	12.3	52.6%	6.8%	6.0	6.6	68.3%	48.0%
16	21.7	20.2	9.1	13.6	58.2%	32.7%	6.4	6.9	70.2%	62.6%
18	25.5	26.7	8.9	14.5	64.9%	45.7%	6.0	8.3	75.5%	65.7%
20	30.6	37.5	9.3	16.3	68.9%	57.7%	7.2	10.8	75.7%	68.8%
22	29.8	38.4	10.3	17.8	65.4%	53.6%	7.8	14.2	73.7%	61.8%
Geometric Mean					59.5%	29.4%			70.2%	53.8%

Unitary Labs: Mitiq

- Quantum computers have errors.
- Mitiq is a cross-platform complier that makes your programs robust to those errors.

Mitigating errors with Cirq

```
from cirq import Circuit, LineQubit, X

qbit = LineQubit(0)
circ = Circuit(X(qbit) for _ in range(100))
expectation = noisy_simulation(circ)

print(f"Error is {1 - expectation:.{3}}")
```


Mitigating errors with Qiskit

```
from qiskit import QuantumCircuit

circ = QuantumCircuit(1, 1)
for __ in range(120): circ.x(0)
circ.measure(0, 0)

expectation = qskt_noisy_sim(circ)
print(f"Error is {1 - expectation:.{3}}")
```

- R. LaRose, A. Mari, P.J. Karalekas, N. Shammah, W.J. Zeng, <u>Mitiq: A software package for error mitigation on noisy quantum computers</u>, 2020.
- T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari, W.J. Zeng, <u>Digital zero-noise extrapolation for quantum error</u> mitigation, 2020.

What's next: Unitary Fund Fellows

- Fellowships: Year-long ~\$50k fellowships for open quantum science.
- Direct support for researchers and developers:
 - Focused & Flexible: Remote working, unlike postdocs. No bureaucracy, resettlement, teaching, visa.
 - Inclusive: Provides a new entry point, beyond MSc →PhD → Post Doc track.
 - Timely: Covid-19 disruption has highlighted academia's structural issues and new forms of research environment.

- Spread the word
- Become a supporter
- ► Mentor
- ► Contribute code

How can <mark>you</mark> grow the open quantum community?

- ► There are tons of resources for building both open source projects and communities from the classical software community:
 - opensourcediversity.org/
 - opensource.guide/buildingcommunity/
 - Talk: Building Open Source
 Communities Tierney Cyren

My top 055 community best practices

Codes of conduct

Ask for pronouns

Accessibility

- ► Event spaces
- **▶**Websites
- ▶Too1s

Find and support diverse members and contributions

- ▶ Financial
- ► Mentorships

2. Find (or create!) OSS communities in Quantum Computing

- ► ♥ Qworld ♥
- **▶**Unitary Fund
- ▶QOSF: Quantum Open Source Foundation
- ▶Q# Community
- ►WIQCA: Women in Quantum Computing and Applications
- ...and more!

We also need to understand how the *quantum* research and *industry* communities influence our communities.

Contribute to projects

► Find a project in a language you like, or learn a new one!

► Documentation + bug reporting is contribution

gosf.org/project_list

unitary.fund/mitiq

Communities of <mark>people</mark> make quantum technology.

Let's make it welcoming and safe for everyone to contribute 💭

Thank you!

Connect with me:

sckaiser.dev @crazy4pi314

Connect with Unitary Fund:

sarah@unitary.fund

support/mentor/contribute/announce