

Week 13, May 23th: Differential equations

Instructor: Cécile Huneau (cecile.huneau@polytechnique.edu) Tutorial Assistants:

- Allen Fang (groups?, allen.fang@sorbonne-universite.fr)
- Yuan Xu (groups?, xu.yuan@polytechnique.edu)

1 Important exercises

Exercise 1. We consider the system of differential equations

$$\begin{cases} x' = 4y + 2t \\ y' = -\frac{x}{t^2} + \frac{4y}{t} + e^t \end{cases}$$
 (1)

- 1. Show that for all $t_0 > 0$ and $(x_0, y_0) \in \mathbb{R}^2$ there exists a unique solution $\psi :]0, +\infty[\to \mathbb{R}.$
- 2. Show that $\psi_1(t) = (t^4, t^3)$ and $\psi_2(t) = (4t, 1)$ are solutions to the homogeneous equation.
- 3. Give the space of solutions to (1).

Exercise 2. Let $(y_0, z_0) \in \mathbb{R}^2$. We consider the Cauchy problem

$$\begin{cases} y' = \sqrt{1 + z^2} - \cos(t)z \\ z' = \operatorname{arctan}(yz) + 3y \end{cases}$$

with $(y(o), z(o)) = (x_o, y_o)$. Show that there exists a unique solution $\phi : \mathbb{R} \to \mathbb{R}^2$.

Exercise 3. We consider the differential equation $t^2y'' - 2y = 3t^2$.

- 1. We consider first this equation on the domain $]0, +\infty[\times \mathbb{R}]$. Can you find two independent solutions to the homogeneous equation $t^2y'' 2y = 0$? (Otherwise ask your teaching assistant).
- 2. Use the method of variation of the constant to find a particular solution, then give the space of solutions.
- 3. Solve the equation on the domain $]-\infty,o[\times \mathbb{R}.$
- 4. Do there exists C^2 solutions to the equation $t^2y'' 2y = 3t^2$ which are defined on \mathbb{R} ?

2 More involved exercises

Exercise 4. We consider the differential system on $\mathbb{C}^n: Y' = A(t)Y$, where $A: \mathbb{R} \to M_n(\mathbb{C})$ is continuous and T periodic.

- 1. Show that this system admits a non trivial solution V such that there exists $\lambda \in \mathbb{C}$ such that for all $t \in \mathbb{R}$ $V(t+T) = \lambda V(t)$.
- 2. We consider n linearly independent solutions $V_1,...,V_n$. We note M(t) the matrix whose column vectors are given by $V_1(t)...V_n(t)$. Show that there exists an invertible matrix C such that for all $t \in \mathbb{R}$ we have M(t+T) = M(t)C.

Exercise 5. Let $E = \mathbb{R}^d$, and $A : \mathbb{R} \to M_d(\mathbb{R})$ be a continuous function. For $(t_o, y_o) \in \mathbb{R} \times E$ we call $v(t, t_o, y_o)$ the solution to the Cauchy problem y' = A(t)y with $y(t_o) = y_o$. Prove the following statements

- 1. For fixed $t,s \in \mathbb{R}$, the map $E \to E$, $y \mapsto v(t,s,y)$ is an invertible linear map, that we note C(t,s).
- 2. For fixed $s \in \mathbb{R}$, the map $t \mapsto C(t,s)$ is a solution to the Cauchy problem

$$w'(t) = A(t) \circ w(t), \ w(s) = id.$$

3. For $s, t, u \in \mathbb{R}$ we have

$$C(t,s) = C(t,u)C(u,s), C(t,s) = C(s,t)^{-1}.$$

- 4. The map $(t,s) \mapsto C(t,s)$ is continuous.
- 5. Let $\psi : \mathbb{R} \to E$ be a continuous function. Show that the solution f to the Cauchy problem $y' = A(t)y + \psi$, $y(t_0) = y_0$ is given by

$$f(t) = C(t, t_{o})y_{o} + \int_{t_{o}}^{t} C(t, s)\psi(s)ds.$$