

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления
КАФЕДРА	Информационная безопасность (ИУ8)

АППАРАТНЫЕ СРЕДСТВА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Лабораторная работа №2 на тему:

«Блок микропрограммного управления (БМУ). Переходы в микропрограммах с использованием стека»

Выполнил:

Першаев Н. Н.

Проверил:

Рафиков А. Г.

Группа:

ИУ8-63

Цель работы — изучение структуры и функций БМУ К1804ВУ1, способа управления узлами БМУ с помощью микрокоманды; исследование функций перехода с использованием стека.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

В составе микрокоманды, выбираемой из памяти на регистр МК, имеются два поля AR (тетрада 7) и CA (тетрада 6), используемые для управления БИС К1804ВУ1. Четырехразрядный код функции перехода CA и сигнал с выхода мультиплексора флагов состояния поступают на адресные входы ПЗУ. На выходах ПЗУ вырабатываются сигналы управления БИС К1804ВУ1, необходимые для реализации заданной функции перехода. Структурная схема БИС представлена на рисунке:

В качестве источников адреса следующей команды могут быть использованы регистр адреса, счетчик микрокоманд, стек или Q — шина адреса, которые подключены к мультиплексору. Выбор источника производится по значению управляющих сигналов S0 и S1, поданных на адресные входы мультиплексора. Таблица 1 иллюстрирует принцип выбора источника адреса.

Таблица 1

Таблица 2

S 1	S 0	Y
0	0	СМК
0	1	РгА
1	0	Стек
1	1	D

Ē	PUP	Операция
1	X	Стек отключен
0	1	PUSH: содержимое СМК
0	0	загружается в стек
U	U	РОР: циклический сдвиг
		содержимого стека

Стек БИС КІ804ВУ1 используется для временного хранения адресов со счетчика микрокоманд. Адрес, записанный в стек последним, извлекается из него первым. Операции со стеком определяются сигналами управления, действующими на входах **Е** PUP (таблица 2). Стек БИС используется, прежде всего, для сохранения адреса основной программы при переходе к подпрограмме. Осуществить операции вызова подпрограмм с возвратом из переходов условных них, также команды позволяет запрограммированный в ПЗУ. Для осуществления этих операций служат две старших тетрады в коде микрокоманды: 7 – AR и 6 – CA. Таблица 3 поясняет работу БИС при подаче определенных кодов. Кроме управляющих кодов для БИС ПЗУ вырабатывает и сигнал управления регистром флагов – запрещает запись флагов в регистр при значении равном 1.

Таблица 3

Функция пороходо	Bxc	ДЫ	Вь	IXO	цной	і код	Операции в
Функция перехода	Код	Флаг	S 1	Ī	E	PrST	БМУ
Переход на следующий адрес (продолжить)	0010	X	0	1	X	0	СМК→Ү
Безусловный переход на адрес	0001	X	0	1	X	0	РгА→Ү
Переход на адрес из РгМК, если $F = 0*$	1100	0 1	0 0 0 1	1	X	1	СМК→Ү РгА→Ү
Переход на адрес из РгМК, если $F \neq 0$	0000	0 1	0 1 0	1	X	1	PrA→Y CMK→Y

			0				
Загрузить в стек (и продолжить)	1001	X	0	0	1	0	CMK→Y, PUSH
Вытолкнуть в стек (и продолжить)	1010	X	0	0	0	0	СМК→Ү', РОР
Переход по стеку	0111	X	1 0	1	X	0	СТЕК→Ү
Окончить цикл и вытолкнуть из стека, если $F = 0**$	1000	0	1 0 0 0	1 0	X 0	1	СТЕК→Ү СМК→Ү, РОР
Переход по адресу вектора (на переключателях адреса)	0011	X	1 1	1	X	0	$D \rightarrow Y$
Переход к подпрограмме	0101	X	0 1	0	1	0	PrA→Y,PUSH
Переход к подпрограмме, если $F \neq 0$	0100	0 1	0 1 0 0	0	1 X	1	РгА→Y, PUSH CMK→Y
Возврат из подпрограммы	0110	X	1 0	0	0	0	CTEK→Y, POP

^{*} Аналогичные операции перехода по адресу из PrMK, если F3=1 (CA=1101), OVR=1 (CA=1110), C4=1 (CA=1111).

Если $F\neq 0$, через стек происходит возврат к началу циклического участка программы, в противном случае выбирается следующий адрес из счетчика микрокоманд.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Залания:

- 1. Загрузить в память (тетрады 6, 7) программу, обеспечивающую выполнение 3 групп микрокоманд по адресам (A₀, A₁), (A₄, A₅), (A₁₄, A₁₅) с остановкой по адресу A₁₅.
- 2. Проверить работу программы 1 из табл. 1, фиксируя последовательность адресов на шине Y. Изменить программу, обеспечив выход из цикла по условию.

^{**} Аналогичная операция по условию С4=1 (СА=1011).

- 3. Загрузить и выполнить программу условного перехода по адресу A_j , в которой проверяются 2 заданных признака, вырабатываемых в результате выполнения арифметической операции (из совокупности признаков F3, C4, OVR, F=0, $F\neq 0$). Обратить внимание на значение второго признака на выходе процессорного элемента после выполнения команды условного перехода по первому признаку. Объяснить, каким значением второго признака (первоначальным или изменившимся) обусловлен второй переход, и почему.
- 4. Выполнить программы, разработанные по пп. 3,4 задания для самостоятельной подготовки, сравнивая наблюдаемые результаты с ожидаемыми:
- 4.1. Разработать программу с обращением к подпрограмме из подпрограммы.
- 4.2. Изучить программу, представленную в символической записи функций перехода на рисунке, где числами обозначены адреса ячеек. Подготовить программу для выполнения в МТ1804. Составить диаграмму состояний стека при работе программы. Подготовьте программу для выполнения в МТ1804.

выполнение:

1) Программа, обеспечивающая выполнение 3 групп микрокоманд:

	1 ' '		
Адрес	Бинарный вид		
0x000	0000 0000 0000 0010 0011 0111 0011	0000 0000 0011	POH(0)=F=3v0; M1=0; M0=0
0x001	0000 0000 0100 0001 0011 0101 0011	0000 0000 0100	POH(0)=F=4\poh(0); M1=0; M0=0
0x002	0000 0000 0000 0010 0001 0111 0011	. 0000 0000 0000	Y=F=0v0; M1=0; M0=0
0x003	0000 0000 0000 0010 0001 0111 0011	. 0000 0000 0000	Y=F=0v0; M1=0; M0=0
0x004	0000 0000 0000 0010 0011 0101 0100	0000 0000 0101	POH(0)=F=5^POH(0); M1=0; M0=0
0x005	0000 0000 1110 0001 0011 0101 0110	0000 0000 1001	POH(0)=F=9⊕POH(0); M1=0; M0=0
0x006	0000 0000 0000 0010 0001 0111 0011	. 0000 0000 0000	Y=F=0v0; M1=0; M0=0
0x007	0000 0000 0000 0010 0001 0111 0011	. 0000 0000 0000	Y=F=0v0; M1=0; M0=0
0x008	0000 0000 0000 0010 0001 0111 0011	. 0000 0000 0000	Y=F=0v0; M1=0; M0=0
0x009	0000 0000 0000 0010 0001 0111 0011	. 0000 0000 0000	Y=F=0v0; M1=0; M0=0
0x00A	0000 0000 0000 0010 0001 0111 0011	. 0000 0000 0000	Y=F=0v0; M1=0; M0=0
0x00B	0000 0000 0000 0010 0001 0111 0011	. 0000 0000 0000	Y=F=0 v0; M1=0; M0=0
0x00C	0000 0000 0000 0010 0001 0111 0011	. 0000 0000 0000	Y=F=0v0; M1=0; M0=0
0x00D	0000 0000 0000 0010 0001 0111 0011	. 0000 0000 0000	Y=F=0v0; M1=0; M0=0
0x00E	0000 0000 0000 0010 0011 0101 1001	0000 0000 1010	POH(0)=F=POH(0)-10; M1=0; M0=0
0x00F	0000 0000 0000 0011 0011 0111 0100	0000 0000 0000	POH(0)=F=0.0; M1=0; M0=0

Результаты:

Адрес	Y	C4	OVR	F3	Z
0	0001	1	1	0	0
1	0111	1	1	0	0
4	0101	1	1	0	0
5	110	1	1	1	0
11	0010	0	1	0	0
12	0000	0	0	0	1

2) Реализация выхода из цикла по условию:

Адрес	Бинарный вид	
0x000	0000 0000 0000 0010 0000 0111 0011 0000 0000 0011	PQ=F=3v0; M1=0; M0=0
0x001	0000 0000 0000 1001 0001 0111 0100 0000 0000 0000	Y=F=0∧0; M1=0; M0=0
0x002	0000 0000 0000 0010 0000 0010 0001 0000 0000 0000	PQ=F=PQ-1; M1=0; M0=0
0x003	0000 0000 0101 1100 0001 0111 0100 0000 0000 0000	Y=F=0∧0; M1=0; M0=0
0x004	0000 0000 0000 0111 0001 0111 0100 0000 0000 0000	Y=F=0∧0; M1=0; M0=0
0x005	0000 0000 0000 0011 0001 0111 0100 0000 0000 0000	Y=F=0.0; M1=0; M0=0

Результаты:

Адрес	F	Y	C4	OVR	F3	Z
0	0011	0011	1	1	0	0
1	0000	0000	0	0	0	1
2	0010	0010	1	0	0	0
3	0000	0000	1	0	0	0
4	0000	0000	0	0	0	1
2	0001	0001	1	0	0	0
3	0000	0000	1	0	0	0
4	0000	0000	0	0	0	1
2	0000	0000	1	0	0	1
3	0000	0000	1	0	0	1
5	0000	0000	0	0	0	1

3) Реализация условного перехода по адресу A_j с проверкой 2 заданных признаков:

Адрес	Бинарный вид	
0x000	0000 0000 0000 0010 0011 0111 0011 0000 0000 0001	POH(0)=F=1v0; M1=0; M0=0
0x001	0000 0000 0000 0010 0011 0111 0011 0000 0001 1111	POH(1)=F=15v0; M1=0; M0=0
0x002	0000 0000 1110 0010 0000 0001 0000 0000 0001 0000	PQ=F=POH(0)+POH(1); M1=0; M0=0
0x003	0000 0000 0101 1111 0001 0010 0011 0000 0000 0000	Y=F=0∨PQ; M1=0; M0=0
0x004	0000 0000 0000 0010 0001 0111 0100 0000 0000 0000	Y=F=0^0; M1=0; M0=0
0x005	0000 0000 0111 1100 0001 0010 0011 0000 0000 0000	Y=F=0∨PQ; M1=0; M0=0
0x006	0000 0000 0000 0010 0001 0111 0100 0000 0000 0000	Y=F=0^0; M1=0; M0=0
0x007	0000 0000 0000 0011 0001 0111 0100 0000 0000 0000	Y=F=0∧0; M1=0; M0=0

Адрес	F	Y	C4	OVR	F3	Z
0	0001	0001	1	1	0	0
1	1111	1111	0	0	1	0
2	0000	0000	1	0	0	1
3	0000	0000	1	0	0	1
5	0000	0000	1	0	0	1
7	0000	0000	0	0	0	1

4) Реализация обращения к подпрограмме из подпрограммы:

Адрес	Бинарный вид	
0x000	0000 0000 0000 0010 0000 0111 0011 0000 0000 0101	PQ=F=5v0; M1=0; M0=0
0x001	0000 0000 0011 0101 0001 0111 0100 0000 0000 0000	Y=F=0.0; M1=0; M0=0
0x002	0000 0000 0000 0011 0001 0111 0100 0000 0000 0000	Y=F=0.0; M1=0; M0=0
0x003	0000 0000 0101 0101 0001 0111 0100 0000 0000 0000	Y=F=0.0; M1=0; M0=0
0x004	0000 0000 0000 0110 0001 0111 0100 0000 0000 0000	Y=F=0.0; M1=0; M0=0
0x005	0000 0000 0000 0010 0011 0111 0011 0000 0000 0010	POH(0)=F=2v0; M1=0; M0=0
0x006	0000 0000 0000 0010 0011 0000 0000 0000 0001 0101	POH(1)=F=POH(0)+PQ; M1=0; M0=0
0x007	0000 0000 0000 0110 0001 0111 0100 0000 0000 0000	Y=F=0.0; M1=0; M0=0

Результаты:

Адрес	F	Y	C4	OVR	F3	Z
0	0101	0101	1	1	0	0
1	0000	0000	0	0	0	1
3	0000	0000	0	0	0	1
5	0010	0010	1	1	0	0
6	0111	0111	0	0	0	0
7	0000	0000	0	0	0	1
4	0000	0000	0	0	0	1
2	0000	0000	0	0	0	1

5) Реализация программы, разработанной в пункте 4 задания для самостоятельной подготовки:

Адрес	Бинарный вид
0x000	0000 0000 1100 0101 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x001	0000 0000 0110 0101 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x002	0000 0000 0110 0110 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x003	0000 0000 1100 0101 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x004	0000 0000 1001 0101 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x005	0000 0000 1001 0110 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x006	0000 0000 1100 0101 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x007	0000 0000 0011 0101 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x008	0000 0000 0011 0110 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x009	0000 0000 0011 0010 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x00A	0000 0000 0011 0110 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x00B	0000 0000 0011 0010 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x00C	0000 0000 0011 0110 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x00D	0000 0000 0011 0010 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x00E	0000 0000 0000 0101 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0
0x00F	0000 0000 1101 0001 0001 0111 0000 0000 0000 0000 Y=F=0; M1=0; M0=0

6) Дополнительное задание по вариантам (Вариант 10)

Вариант # 10

Задания к ЛР№2 Переходы условные, безусловные, по указателю стека

Адрес	Бинарный вид	
0x000	0000 0000 1101 0101 0011 0111 0011 0000 0000 0110	POH(0)=F=6v0; M1=0; M0=0
0x001	0000 0000 0111 0101 0001 0111 0000 0000 0000 0000	Y=F=0; M1=0; M0=0
0x002	0000 0000 1111 0101 0001 0111 0000 0000 0001 0000	Y=F=0; M1=0; M0=0
0x003	0000 0000 0101 0101 0011 0111 0011 0000 0001 1101	POH(1)=F=13v0; M1=0; M0=0
0x004	0000 0000 1110 1111 0001 0111 1000 0000 0000 0111	Y=F=7+1; M1=0; M0=0
0x005	0000 0000 0100 0101 0011 0011 1000 0000 0001 0000	POH(1)=F=0+POH(1)+1; M1=0; M0=0
0x006	0000 0000 0000 1101 0001 0111 1000 0000 0001 0111	Y=F=7+1; M1=0; M0=0
0x007	0000 0000 1010 0101 0001 0111 0000 0000 0000 0000	Y=F=0; M1=0; M0=0
0x008	0000 0000 1111 1100 0000 0111 0000 0000 0000 0001	PQ=F=1; M1=0; M0=0
0x009	0000 0000 1000 0001 0001 0010 0001 0000 0000 0000	Y=F=PQ-1; M1=0; M0=0
0x00A	0000 0000 1101 0101 0001 0111 0000 0000 0000 0000	Y=F=0; M1=0; M0=0
0x00B	0000 0000 1110 1110 0001 0111 0000 0000 0000 0000	Y=F=0; M1=0; M0=0
0x00C	0000 0000 1011 0001 0011 0011 1000 0000 0000 0000	POH(0)=F=0+POH(0)+1; M1=0; M0=0
0x00D	0000 0000 1111 0101 0001 0111 0000 0000 0000 0000	Y=F=0; M1=0; M0=0
0x00E	0000 0000 0000 0110 0001 0111 0000 0000 0000 1000	Y=F=8; M1=0; M0=0
0x00F	0000 0000 0000 0110 0001 0111 0000 0000 0000 0001	Y=F=1; M1=0; M0=0

Вывод: в ходе лабораторной работы было выполнено изучение структуры и функций БМУ К1804ВУ1, способа управления узлами БМУ с помощью микрокоманды, а также исследование функций перехода с использованием стека.