Finding Motifs in *Paramecium*: A Long and Hard Quest

Lab Meeting - June 19th 2014

Matthias Grenié, Jean-François Goût, Michael Lynch

What have I been doing?

Gene Expression Regulation

Core Biological Process

Mediated by Transcription Factors

Transcription Factor Binding Sites

Diversity of regulation largely unknown

Major determinant of gene retention/loss after Whole-Genome Duplication

Model: Paramecium

Compact Genome (intergenic regions ~250bp)

Closely related species complex

Experienced two WGDs

Transcription Factor Binding Sites

Small sequences (6-15nt long)

Degenerate

Conserved

Sometimes palindromic *e.g.* CACGTG

Can we build an automated pipeline to identify Transcription Factor Binding Sites in the Paramecium aurelia complex?

Pipeline Overview

Classical Motif Finding

De novo motif finding, (around since the 1990s)

TGGGTTATCCTCCAA
TAGGAAATTTTCAAA
TAGGAAATTTTCAAA
TAGGAAATCCAGAAA
TGATTAAAACTCAAA

Several tools available

Various methods (statistical, probabilistic, etc.)

Motif and Background sequences

Phylogenetic Footprinting

Compare ortholog sequences and use their phylogenetic relationships to identify motifs

Motif shared between close species

Motif rating

Motif shared between distant species

Motif rating

BigFoot, a phylogenetic footprinting software

Statistical alignment program

Model slowly and quickly evolving sequences

Takes the phylogeny into account to determine the boundary between regions

Does not output motifs directly → **scores**

Alignment Score

Higher = better alignment

Phylogenetic Score

Higher = better conservation

Example of a family

First Results

Extracted sequences from 15nt to 250nt

5781 families → 5008 included (min 4 genes, no overlap)

1614 motifs candidates found by BigFoot

6904 unique motifs found with MEME

787 unique motifs after comparison with MEME

59 unique motifs common in all 4 species

More Results!

Took motifs found in all 4 species

Number of genes having motif / Total number of genes

Perspectives/Caveats

Motif clustering (decreases redundancy)

Run pipeline with various thresholds

Motif extraction method for + and - strand

Look orthology family motifs conservation

New Learnings?

GitHub

Synchronize & Share easily

Code history

Version-Control

Online

Open Source

Modular

Acknowledgements

I would like to thank:

Michael Lynch for having me in the lab even with all the French forms to fill...

Marie Sémon (without whom I wouldn't be here)

Jean-François Goût, for his constant and kind support

All of the Lynch lab team for the welcome and the discussions

Long live to cake day!

Questions?

