#Kilaru Soma Sekhar
#21BCE7019

Data Preprocessing on TITANIC dataset.

Given Task

- # Data Preprocessing.
- # Import the Libraries.
- # Import the dataset
- # Checking for Null Values.
- # Data Visualization.
- # Outlier Detection
- # Splitting Dependent and Independent variables
- # Encoding
- # Feature Scaling.
- # Splitting Data into Train and Test.

Import the Libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Import the Dataset

df = pd.read_csv("/content/drive/MyDrive/Dataset/Titanic-Dataset (1).csv")

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embark
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs		38.0	1	0	PC 17599	71.2833	C85	

+ Code -

+ Text

df.info()

RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): # Column Non-Null Count Dtype PassengerId 891 non-null 0 int64 1 Survived 891 non-null int64 2 Pclass 891 non-null int64 891 non-null 3 object Name 4 Sex 891 non-null object Age 714 non-null float64 6 SibSp 891 non-null int64 891 non-null int64 Parch 8 Ticket 891 non-null object

<class 'pandas.core.frame.DataFrame'>

9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

df.describe()

df.corr()

<ipython-input-13-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr : df.corr()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658	ili
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307	
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500	
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067	
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651	
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225	
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000	

df.corr().Survived.sort_values(ascending = False)

<ipython-input-14-936bc0a2ea37>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versio df.corr().Survived.sort_values(ascending = False)

Survived 1.000000 Fare 0.257307 0.081629 Parch PassengerId -0.005007 SibSp -0.035322 -0.077221 Age -0.338481 Pclass Name: Survived, dtype: float64

Handling Missing/Null Values

df.isnull().any()

```
PassengerId
                    False
    Survived
                    False
    Pclass
                    False
    Name
                    False
    Sex
                    False
    Age
                     True
    SibSp
                    False
    Parch
                    False
    Ticket
                    False
    Fare
                    False
    Cabin
                     True
    Embarked
                     True
     dtype: bool
sum(df.Cabin.isnull())
     687
sum(df.Age.isnull())
    177
```

df["Age"].fillna(df["Age"].mean(),inplace=True)

sum(df.Embarked.isnull())

 $\label{lembarked} $$ df["Embarked"].fillna(df["Embarked"].mode()[0],inplace=True) $$$

df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Data Visualization

plt.scatter(df["Fare"],df["Survived"])

<matplotlib.collections.PathCollection at 0x7d47356d2b00>

sns.heatmap(df.corr(),annot=True)

<ipython-input-23-8df7bcac526d>:1: FutureWarning: The default value of numeric_only in DataFrame.corr :
 sns.heatmap(df.corr(),annot=True)

<Axes: >

sns.pairplot(df)

<ipython-input-25-8ae461271d98>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', 0)` for the same effect.

sns.barplot(x=df["Sex"],y=df["Survived"],ci=0)
<Axes: xlabel='Sex', ylabel='Survived'>

sns.barplot(x=df["Embarked"],y=df["Survived"],ci=0)

<ipython-input-26-d5b0276940a6>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', θ)` for the same effect.

sns.barplot(x=df["Embarked"],y=df["Survived"],ci=0)
<Axes: xlabel='Embarked', ylabel='Survived'>

sns.barplot(x=df["Parch"],y=df["Survived"],ci=0)

<ipython-input-27-a1496fefeaf8>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', 0)` for the same effect.

sns.barplot(x=df["Parch"],y=df["Survived"],ci=0)

<Axes: xlabel='Parch', ylabel='Survived'>

sns.boxplot(df)

<Axes: >

sns.boxplot(df.Age)


```
Q1 = df['Age'].quantile(0.25)
```

IQR = Q3 - Q1

Q3 = df['Age'].quantile(0.75)

threshold = 1.5 * IQR

df = df[(df['Age'] >= Q1 - threshold) & (df['Age'] <= Q3 + threshold)]

sns.boxplot(df.Age)

sns.boxplot(df.SibSp)

p99 = df.SibSp.quantile(0.99)

df = df[df.SibSp < p99]

sns.boxplot(df.SibSp)

sns.boxplot(df.Parch)

p99 = df.Parch.quantile(0.99)

df = df[df.Parch < p99]

sns.boxplot(df["Parch"])

sns.boxplot(df["Fare"])

Q3 = df['Fare'].quantile(0.75)

IQR = Q3 - Q1

threshold = 1.5 * IQR

df = df[(df['Fare'] >= Q1 - threshold) & (df['Fare'] <= Q3 + threshold)]

sns.boxplot(df.Fare)

Splitting Dependent and Independent Variables

x = df.drop(columns=["Survived","PassengerId","Name","Ticket","Cabin"],axis=1) # Independent variables should be in df or 2d array
x.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
0	3	male	22.000000	1	0	7.2500	S	ili
2	3	female	26.000000	0	0	7.9250	S	
3	1	female	35.000000	1	0	53.1000	S	
4	3	male	35.000000	0	0	8.0500	S	
5	3	male	29.699118	0	0	8.4583	Q	

y = pd.Series(df["Survived"])

```
y.head()

0     0
2     1
3     1
4     0
5     0
Name: Survived, dtype: int64
```

Encoding

x.head()

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
x["Sex"] = le.fit_transform(x["Sex"])
x.head()
```

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	П
0	3	1	22.000000	1	0	7.2500	S	th
2	3	0	26.000000	0	0	7.9250	S	
3	1	0	35.000000	1	0	53.1000	S	
4	3	1	35.000000	0	0	8.0500	S	
5	3	1	29.699118	0	0	8.4583	Q	

```
print(le.classes_)
     ['female' 'male']

mapping=dict(zip(le.classes_,range(len(le.classes_))))

mapping
     {'female': 0, 'male': 1}

le1 = LabelEncoder()

x["Embarked"] = le1.fit_transform(x["Embarked"])
```

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	\blacksquare
0	3	1	22.000000	1	0	7.2500	2	ıl.
2	3	0	26.000000	0	0	7.9250	2	
3	1	0	35.000000	1	0	53.1000	2	
4	3	1	35.000000	0	0	8.0500	2	
5	3	1	29.699118	0	0	8.4583	1	

```
print(le1.classes_)
    ['C' 'Q' 'S']
mapping1=dict(zip(le1.classes_,range(len(le1.classes_))))
mapping1
    {'C': 0, 'Q': 1, 'S': 2}
```

Feature Scaling

```
from sklearn.preprocessing import MinMaxScaler
ms = MinMaxScaler()

x_Scaled = pd.DataFrame(ms.fit_transform(x),columns = x.columns)

x_Scaled.head()
```

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
0	1.0	1.0	0.372549	0.25	0.0	0.122054	1.0	ılı
1	1.0	0.0	0.450980	0.00	0.0	0.133418	1.0	
2	0.0	0.0	0.627451	0.25	0.0	0.893939	1.0	
3	1.0	1.0	0.627451	0.00	0.0	0.135522	1.0	
4	1.0	1.0	0.523512	0.00	0.0	0.142396	0.5	

Splitting Training and Testing Data

```
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test = train_test_split(x_Scaled,y,test_size = 0.2,random_state =0)

print(x_train.shape,x_test.shape,y_train.shape,y_test.shape)

(562, 7) (141, 7) (562,) (141,)
```