Mathematics W4043 Algebraic Number Theory Assignment # 1

Benjamin Church Worked With Matthew Lerner-Brecher

November 16, 2017

1. Take $x, y \in \mathbb{Q}$ then write $x = p^{v_p(x)} \cdot \frac{a_1}{b_1}$ and $y = p^{v_p(x)} \cdot \frac{a_2}{b_2}$ where a_1, b_1, a_2, b_2 are all relatively prime to p and $v_p : \mathbb{Q} \to \mathbb{N}$ is the p-adic valuation. First, if x = 0 then by definition $|x|_p = 0$. Otherwise, a_1 and b_1 are well defined and thus, $|x|_p = p^{-v_p(x)} \neq 0$ because $p \neq 0$. Now, $|xy|_p = |p^{v_p(x)+v_p(y)} \cdot \frac{a_1a_2}{b_1b_2}|_p$. However, because p does not divide a_1 or a_2 we have $p \not\mid a_1a_2$ ad similarly $p \not\mid b_1b_2$. Thus, $v_p(xy) = v_p(x) + v_p(y)$ so,

$$|xy|_p = p^{-v_p(xy)} = p^{-v_p(x)} \cdot p^{-v_p(y)} = |x|_p |y|_p$$

Finally, because $v_p(x), v_p(y) \ge \min\{v_p(x), v_p(y)\}$ we can write,

$$x + y = p^{\min\{v_p(x), v_p(y)\}} \left(p^x \cdot \frac{a_1}{b_1} + p^y \cdot \frac{a_2}{b_2} \right)$$

where x and y are nonnegative. Thus, $v_p(x+y) \ge \min\{v_p(x), v_p(y)\}$ because $\left(p^x \cdot \frac{a_1}{b_1} + p^y \cdot \frac{a_2}{b_2}\right)$ can only contain positive powers of p. Therefore,

$$|x+y|_p \le p^{-\min\{v_p(x),v_p(y)\}} = \max\{p^{-v_p(x)},p^{-v_p(y)}\} = \max\{|x|_p,|y|_p\}$$

where I have used the fact that $-\min\{a,b\} = \max\{-a,-b\}$. Thus, $|\bullet|_p$ is a norm.

2. (a) Given a sequence satisfying $a_i \in \mathbb{Q}$ and $\lim_{i \to \infty} |a_i|_p = 0$ then the norm of the series is

$$\left| \sum_{i=0}^{\infty} a_i \right|_p = \lim_{n \to \infty} \left| \sum_{i=0}^n a_i \right|_p$$

Consider the mapping $f: \mathbb{Q} \to \mathbb{Q}$ given by $f(x) = |x|_p$. The norm, is the limit of a sequence of elements pf the image of f. Therefore, by Lemma 0.1, the limit must be contained in the closure of the image. Since $\operatorname{Im}(f) = \{p^r \mid r \in \mathbb{Z}\}$ we have that the norm of any series is an element of $\overline{\operatorname{Im}(f)} = \{p^r \mid r \in \mathbb{Z}\} \cup \{0\}$ because there is finite separation between powers of p but there are also arbitrarily small powers of p. It remains to show that this limit exists. Because $\lim_{i \to \infty} |a_i|_p = 0$ we have for any $\epsilon > 0$ there exists k such that $n > k \implies |a_i|_p < \epsilon$. By the ultrametric property, for n, m > k,

$$\left| \sum_{i=n}^{m} a_i \right|_{p} \le \max\{|a_n|, |a_{n+1}|, \cdots, |a_m|\} < \epsilon$$

Furthermore,

$$\left\| \left| \sum_{i=0}^{m} a_i \right|_p - \left| \sum_{i=0}^{n} a_i \right|_p \right\| = \left\| \sum_{i=0}^{n-1} a_i + \sum_{i=n}^{n} a_i \right|_p - \left| \sum_{i=0}^{m} a_i \right|_p \le \left| \sum_{i=n}^{m} a_i \right|_p < \epsilon$$

thus, the sequence of norms is Cauchy so the limit in \mathbb{R} exists.

(b) Suppose that the series $\sum_{i=0}^{n} a_i$ and $\sum_{i=0}^{n} b_i$ are equivalent. Then,

$$\lim_{n \to \infty} \left| \sum_{i=0}^{n} a_i - \sum_{i=0}^{n} b_i \right|_p = 0$$

Now suppose that $\left|\sum_{i=0}^{\infty} a_i\right|_p = L$. Therefore, for any $\epsilon > 0$ there exist $k_1, k_2 \in \mathbb{N}$ such that,

$$n > k_1 \implies \left| \sum_{i=0}^n a_i - \sum_{i=0}^n b_i \right|_p < \frac{\epsilon}{2}$$

and likewise,

$$n > k_2 \implies \left| \left| \sum_{i=0}^n a_i \right|_p - L \right| < \frac{\epsilon}{2}$$

Now, we can write, when $n > k_1$,

$$-\frac{\epsilon}{2} < \left| \sum_{i=0}^{n} b_i \right|_p - \left| \sum_{i=0}^{n} a_i \right|_p < \frac{\epsilon}{2}$$

Therefore, for $n > \max\{k_1, k_2\}$,

$$-\epsilon < \left| \sum_{i=0}^{n} b_i \right|_p - \left| \sum_{i=0}^{n} a_i \right|_p + \left| \sum_{i=0}^{n} a_i \right|_p - L < \epsilon$$

or rearranging,

$$\left| \left| \sum_{i=0}^{n} b_i \right|_p - L \right| < \epsilon$$

Thus,

$$\left| \sum_{i=0}^{\infty} b_i \right|_p = \lim_{n \to \infty} \left| \sum_{i=0}^n b_i \right|_p = L = \left| \sum_{i=0}^{\infty} a_i \right|_p$$

3. (a) Take $x = \frac{a}{b} \in \mathbb{Q}$. By the fundamental theorem of arithmetic, a and b factor into products of primes. We can write $x = \frac{a}{b} = \pm p_1^{r_1} \cdots p_k^{r_k}$ with possibly negative powers where p_i runs through the primes in both a and b. Therefore, $|x|_{p_i} = p_i^{-r_i}$ and for any prime p not in the factorization, $p \not\mid x$ so $|x|_p = p^0 = 1$. Because the factorization is finite, for all but a finite number of primes, $|x|_p = 1$.

(b) Take $a \in \mathbb{Q}$ with $a \neq 0$. Write the prime factoization, $a = \pm p_1^{r_1} \cdots p_k^{r_k}$ remembering that the powers may be negative. Consider the product, which by part (a) is finite,

$$|a| \prod_{p} |a|_{p} = |a| \prod_{i=1}^{k} |a|_{p_{i}} = |a| \prod_{i=1}^{k} p_{i}^{-r_{i}} = \frac{|a|}{p_{1}^{r_{1}} \cdots p_{r}^{r_{k}}} = \frac{|a|}{|a|} = 1$$

4. We can define the homomorphism $i: \mathbb{Q} \to \mathbf{A} = \mathbb{R} \otimes \prod_{\mathbf{p}} \mathbb{Q}_{\mathbf{p}}$ by $i: x \to (x, (x))$ where I have set $a_{\mathbb{R}} = a \in \mathbb{Q} \subset \mathbb{R}$ and for every p, set $a_p = a \in \mathbb{Q} \subset \mathbb{Q}_p$. This function is well-defined because $x \in \mathbb{Q}$ so by the previous problem, $|x|_p = 1$ for all but a finite number of p so the sequence is in the adele group. Therefore, $i(x) \in \mathbf{A}$. This map is injective because if i(x) = i(y) then (x, (x)) = (y, (y)) so x = y. Finally, this map is a homomorphism because i(x + y) = (x + y, (x + y)) = (x, (x)) + (y, (y)) = i(x) + i(y) since the sum is also a rational number and p-adic addition restricts to rational addition on \mathbb{Q} .

Next, take $x \in \mathbb{Z}$ then $x = \pm p_1^{r_1} \cdots p_k^{r_k}$ with positive r_i so $|x|_{p_i} = p_i^{-r_i}$ and for any p not in the factorization $|x|_p = 1$. Thus, $|x|_p \le 1$ for every p. Suppose that $x \in \mathbb{Q}$ satisfies $|x|_p \le 1$ for every p. We can write $x = \frac{a}{b}$ and a and b factor into products of primes so $x = \frac{a}{b} = \pm p_1^{r_1} \cdots p_k^{r_k}$ with possibly negative powers where p_i runs through the primes in both a and b. Therefore, $|x|_{p_i} = p_i^{-r_i} \le 1$ so by hypothesis $r_i \ge 0$. Using the factorization, $x = \pm p_1^{r_1} \cdots p_k^{r_k} \in \mathbb{Z}$ because no power can be negative.

Lemmas

Lemma 0.1. Let X be a metric space and a_n a sequence in $S \subset X$. If it exists, $\lim_{n \to \infty} a_n \in \overline{S}$.

Proof. Suppose that for every $\epsilon > 0$ there exists an $k \in \mathbb{N}$ such that $n > k \implies d(a_n, L) < \epsilon$. Then, $a_n \in S$ so $B_{\epsilon}(L) \cap S \neq \emptyset$ for every $\epsilon > 0$ which implies that $L \in \overline{S}$.