Types and λ -calculus

Problem Sheet 6

Questions 1 and 3(c) will be marked.

- * 1. Give a type derivation/proof tree for the judgements:
 - (a) $\vdash (\lambda x. x) 2 : \mathsf{Nat}$
 - (b) $x : Nat, y : Nat \vdash ifz y x (pred x) : Nat$
 - (c) $\vdash \lambda xy. yxx: a \rightarrow (a \rightarrow a \rightarrow b) \rightarrow b$
 - (d) $\vdash \lambda x yz. y(xz): (a \rightarrow b) \rightarrow (b \rightarrow c) \rightarrow a \rightarrow c$
- ** 2. Give terms *M* in normal form that satisfy each of the following (you are not required to justify them with a proof tree, but you may wish to so as to check your answer):
 - (a) $\vdash M : (a \rightarrow b) \rightarrow a \rightarrow b$
 - (b) $x:(a \rightarrow a) \rightarrow c \vdash M:c$
 - (c) $\vdash M : a \rightarrow b \rightarrow Nat$
- ** 3. Use inversion to prove that the following terms are not typable:
 - (a) $1(\lambda x.x)$
 - (b) pred $(\lambda x. x)$
 - (c) $\lambda xy.xy(yx)$
- ** 4. The following property is called *Weakening*:

For all Γ , Γ' and A: if $\Gamma \vdash M : A$ and $\Gamma \subseteq \Gamma'$ then $\Gamma' \vdash M : A$.

We can prove Weakening by induction on M.

Proof. The proof is by induction on M.

- When M is a variable x ... (a)
- When M is a constant c, let A be a type, Γ and Γ' be type environments such that $\Gamma \subseteq \Gamma'$ and suppose $\Gamma \vdash c : A$. By inversion, it follows that $c:A \in \mathbb{C}$. Therefore, the side condition is fulfilled to use (TCst) to also justify $\Gamma' \vdash c : A$ (this rule does not place any requirements on the environment).
- When *M* is an application *PQ*, assume the induction hypotheses:
- (IH1) For all Γ'' and Γ''' and A', if $\Gamma'' \subseteq \Gamma'''$ and $\Gamma'' \vdash P : A'$ then $\Gamma''' \vdash P : A'$.
- (IH2) For all Γ'' and Γ''' and A', if $\Gamma'' \subseteq \Gamma'''$ and $\Gamma'' \vdash Q : A'$ then $\Gamma''' \vdash Q : A'$.

Let A be a type, Γ and Γ' be environments such that $\Gamma \subseteq \Gamma'$. Then suppose $\Gamma \vdash PQ : A$. By inversion, there must be a type B such that $\Gamma \vdash P : B \to A$ and $\Gamma \vdash Q : B$. It follows from (IH1) with $\Gamma'' := \Gamma$ and $\Gamma''' := \Gamma'$ and $A' := B \to A$ that $\Gamma' \vdash P : B \to A$. It follows from (IH2) with $\Gamma'' := \Gamma$, $\Gamma'''' := \Gamma'$ and $\Lambda' := B$ that $\Gamma' \vdash Q : B$. Therefore, by (TApp), $\Gamma' \vdash PQ : A$.

• When *M* is an abstraction $\lambda x.P...$ (b)

Complete the remaining two cases.

- *** 5. Find terms *M* and *N* such that:
 - (i) *M* is not typable
 - (ii) *N* is typable
 - (iii) M > N