### STA2201H Methods of Applied Statistics II

Monica Alexander

Week 3: GLM II and Survival Analysis

### Overview

- Opioids (assignment 1)
- Binary and categorical data
- ► Survival analysis intro
- ► Lab: GLM

# Opioid mortality in the US

- ► Huge increase in deaths involving opioids since 1990s, acceleration since 2010
- ► Around 70,000 deaths in 2017, mortality rate has increased 7x since 2000
- Essentially monotonic increase, but underlying patterns have changed
  - differences by geography
  - composition of opioids involved in death

Binary data

# Binary Responses

We have n random variables  $Z_1, \ldots, Z_n$  that are binary

$$Z_i = \begin{cases} 1 \text{ if outcome is a success} \\ 0 \text{ if outcome is a failure} \end{cases}$$

with

$$Pr(Z_1=1)=\pi_i$$

so

$$Pr(Z_1=0)=1-\pi_i$$

### Logistic regression

We are interested in describing the probability of success  $\pi_i$  with a linear model

$$g(\pi_i) = \mathbf{x}^\mathsf{T} \beta$$

The canonical link is the logistic function, so

$$\operatorname{logit} \, \pi_i = \operatorname{log} \frac{\pi_i}{1 - \pi_i} = \mathbf{x}^\mathsf{T} \beta$$

#### Binomial distribution

Suppose now we are interested in groups of binary outcomes, where groups are defined in such a way that all individuals in a group have identical values of all covariates.

We are interested in the number of successes within that group  $\sum_{i=1}^{n_i} Z_i = Y_i$  with group size  $n_i$ . This outcome follows a binomial distribution

$$Y_i \sim \mathsf{Binomial}(n_i, \pi_i)$$

# Logistic-binary regression

We can model this in the same way as before

$$Y_i \sim \text{Binomial}(n_i, \pi_i)$$
  
logit  $\pi_i = \mathbf{x}^T \beta$ 

- Binary data can be thought of as a special case of the count data
- ► Count data can be thought of a special case of the binary data

$$y_i = \begin{cases} 1 \text{ if } z_i > 0 \\ 0 \text{ if } z_i < 0 \end{cases}$$

$$z_i = X_i \beta + \epsilon_i$$

$$\epsilon_i \sim f(.)$$

$$y_i = \begin{cases} 1 \text{ if } z_i > 0 \\ 0 \text{ if } z_i < 0 \end{cases}$$

$$z_i = X_i \beta + \epsilon_i$$

$$\epsilon_i \sim f(.)$$

For logistic regression, the errors  $\epsilon$  have a *logistic* probability distribution

$$p(x) = \frac{e^x}{(1+e^x)^2}$$

### The logistic pdf looks like



Write  $\eta_i = X_i \beta$ .

Note that

$$\pi_{i} = Pr(z_{i} > 0)$$

$$= Pr(\epsilon_{i} > -\eta_{i})$$

$$= 1 - F(-\eta_{i})$$

$$= F(\eta_{i})$$

For the logistic,  $F(\eta_i) = \frac{e^x}{(1+e^x)}$  so  $\eta_i = F^{-1}(\pi_i) = \frac{\pi_i}{1-\pi_i}$  as before.

# Probit regression

Any transformation that maps probabilities into the real line could be used to produce a generalized linear model, as long as the transformation is one-to-one, continuous and differentiable.

We could also make errors normal

$$\epsilon \sim N(0,1)$$

This implies

$$\pi_i = \Phi(\eta_i)$$

or

$$\Phi^{-1}(\pi_i) = \mathbf{X_i}\beta$$

where  $\Phi$  is the standard normal cdf. This form is called **probit**. What's the interpretation of the  $\beta$ 's?

### Example: contracpetive use

Data set on contraceptive use in Fiji (source)

#### What the data look like:

| age   | education | wantsMore | notUsing | using |
|-------|-----------|-----------|----------|-------|
| <25   | low       | yes       | 53       | 6     |
| <25   | low       | no        | 10       | 4     |
| <25   | high      | yes       | 212      | 52    |
| <25   | high      | no        | 50       | 10    |
| 25-29 | low       | yes       | 60       | 14    |
| 25-29 | low       | no        | 19       | 10    |

Try a simple model: Using  $\sim$  Age + Desire

# Example

#### Logit link:

```
##
## Call:
## glm(formula = cbind(using, notUsing) ~ age + wantsMore, family = binomial(link = "logit"),
      data = d
##
## Deviance Residuals:
      Min
               10 Median
                                30
                                        Max
## -2.7870 -1.3208 -0.3417 1.2346 2.4577
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8698
                           0.1571 -5.536 3.10e-08 ***
## age25-29
           0.3678 0.1754 2.097
                                            0.036 *
## age30-39 0.8078 0.1598 5.056 4.27e-07 ***
## age40-49 1.0226 0.2039 5.014 5.32e-07 ***
## wantsMoreyes -0.8241 0.1171 -7.037 1.97e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 36.888 on 11 degrees of freedom
## ATC: 118.4
##
## Number of Fisher Scoring iterations: 4
```

What's the interpretation of the wantsMore coefficient?

### Example

#### Probit link:

```
##
## Call:
## glm(formula = cbind(using, notUsing) ~ age + wantsMore, family = binomial(link = "probit"),
      data = d
##
## Deviance Residuals:
      Min
              10 Median
                              30
                                      Max
## -2.8352 -1.3411 -0.3773 1.2834 2.4893
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
                        0.09178 -5.615 1.97e-08 ***
## (Intercept) -0.51535
## age25-29 0.20861 0.10071 2.071
                                        0.0383 *
## age30-39 0.46856 0.09267 5.056 4.27e-07 ***
## age40-49 0.60487 0.12207 4.955 7.23e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 38.261 on 11 degrees of freedom
## AIC: 119.77
##
## Number of Fisher Scoring iterations: 4
```

What's the interpretation of the wantsMore coefficient?

### Comparison

- **X** $\beta$  refers to change in z-score
- Not overly intuitive, but then again what are odds ratios
- ▶ Can convert between the two: divide by  $\pi/\sqrt{3}$
- ... in both cases might be better off converting to the original (probability) scale



# Categorical data/multinomial responses

- Extension of binomial / binary outcomes.
- Now  $Y_i$  make take one of several discrete values,  $1, 2, \ldots, J$ .
- ► Now the probability is

$$\pi_{ij} = Pr(Y_i = j)$$

with

$$\sum_{j} \pi_{ij} = 1$$

- As before, for grouped data,  $n_i$  is the number of cases in the *i*th group and  $y_{ij}$  is the number of responses that fall in *j*th category, so the vector of categories  $\mathbf{y_i}$  is a of counts that add up to  $n_i$ .
- ▶ For individual data,  $n_i = 1$  and  $y_{ij}$  is 0 or 1, so the vector of categories  $\mathbf{v}_i$  is a vector of 0s or 1s.

#### Multinomial distribution

The probability distribution of the counts  $Y_{ij}$  given the total  $n_i$  is given by the multinomial distribution

$$Pr\{Y_{i1} = y_{i1}, \dots, Y_{iJ} = y_{iJ}\} = \begin{pmatrix} n_i \\ y_{i1}, \dots, y_{iJ} \end{pmatrix} \cdot \pi_{i1}^{y_{i1}} \dots \pi_{ij}^{y_{iJ}}$$

Can this be represented as exponential family?

#### Conditional distribution

- ▶ Let  $Y_1, ... Y_J$  be Poisson with rate  $\lambda_j$
- ▶ Let  $n = \sum Y_j$ , which is Poisson with rate  $\sum_j \lambda_j$
- Multinomial distribution is joint distribution of Poisson, conditional on sum.

# Multinomial regression

Easy extension to binomial model if we model with respect to a reference category J

$$\eta_{ij} = \log \frac{\pi_{ij}}{\pi_{ij}} = \mathbf{x_i^T} \boldsymbol{\beta}$$

for j = 1, ... J - 1.

- Note that if J=2 we have the usual logistic regression
- Coefficients can be interpreted as before, but OR are in relation to reference category

# Convert to probabilities

$$\pi_{ij} = \frac{\exp(\eta_{ij})}{\sum_{k} \exp(\eta_{ik})} = \operatorname{softmax}(\eta)_{i}$$

▶ Choice of reference category would affect  $\beta$ s but not probabilities

### Ordered response

What if our categories are ordered? e.g. survey responses are often on an ordinal scale. As before,

$$\pi_{ij} = Pr(Y_i = j)$$

Now consider cumulative probability

$$\gamma_{ij} = Pr(Y_i < j)$$

SO

$$\gamma_{ii} = \pi_{i1} + \pi_{i2} + \cdots + \pi_{ii}$$

Model is of the form

$$g(\gamma_{ii}) = \theta_i + \mathbf{x_i^T} \beta$$

Here  $\theta_j$  is a constant representing the baseline value of the transformed cumulative probability for category j.

Alternatively, can think of a latent variable set-up with cut-points  $\theta_1, \ldots, \theta_J$ 

$$y_{i} = \begin{cases} 1 \text{ if } z_{i} < \theta_{1} \\ 2 \text{ if } z_{i} \in (\theta_{1}, \theta_{2}) \\ \dots \\ J \text{ if } z_{i} > \theta_{J-1} \end{cases}$$

$$z_{i} = X_{i}\beta + \epsilon_{i}$$

$$\epsilon_{i} \sim f(.)$$



From the latent formulation

$$\gamma_{ij} = Pr(Y_i < j) 
= Pr(z_i < \theta_j) 
= Pr(e_i < \theta_j - X_i\beta) 
= F(\theta_j - \mathbf{x_i}^T\beta)$$

SO

$$g(\gamma_{ij}) = F^{-1}(\theta_j - \mathbf{x_i^T}\beta)$$

as before.

# Proportional odds model

Like a logistic regression, but applied to the cumulative probabilities

$$\log rac{\gamma_{ij}}{1-\gamma_{ij}} = heta_j + \mathbf{x_i^T}eta$$

or

$$\frac{\gamma_{ij}}{1 - \gamma_{ij}} = \lambda_j \exp(\mathbf{x_i^T} \beta)$$

 $\lambda_j$  is baseline odds of response being in category j.

Pretty strong assumption of proportional odds!

# Example

### Housing Conditions in Copenhagen

| housing | influence | contact | satisfaction | n  |
|---------|-----------|---------|--------------|----|
| tower   | low       | low     | low          | 21 |
| tower   | low       | low     | medium       | 21 |
| tower   | low       | low     | high         | 28 |
| tower   | low       | high    | low          | 14 |
| tower   | low       | high    | medium       | 19 |
| tower   | low       | high    | high         | 37 |

#### Example

First let's do a multinomial regression, with just housing and contact:

```
## # weights: 18 (10 variable)
## initial value 1846.767257
## iter 10 value 1793.932058
## final value 1789.600661
## converged
## Call:
## nnet::multinom(formula = Y ~ housing + contact, data = copen wide)
##
## Coefficients:
##
             (Intercept) housingapartments housingatrium housingterraced
## sat_medium -0.1091063
                                -0.407446
                                              0.1278116
                                                            -0.6738718
## sat high
               0.5586042
                                -0.642400 -0.3672630
                                                             -1.4199239
##
            contacthigh
## sat_medium 0.3005283
## sat high 0.3334568
##
## Std. Errors:
             (Intercept) housingapartments housingatrium housingterraced
##
## sat medium
               0.1524817
                                 0.1713221
                                              0.2217222
                                                              0.2051505
## sat_high
               0.1330480
                                0.1501078 0.2048673
                                                              0.1947044
##
            contacthigh
## sat medium
               0.1306991
## sat high
               0.1190333
##
## Residual Deviance: 3579.201
## ATC: 3599 201
```

### Multinomial regression

Plot the result odds ratios (cf low satisfaction, for low contact)



### Proportional odds model

Now fit the same idea but with a proportional odds model (ordinal)

```
## Call:
## MASS::polr(formula = satisfaction ~ housing + contact, data = copen,
##
      weights = n)
##
## Coefficients:
##
                      Value Std. Error t value
## housingapartments -0.5030
                              0.1169 -4.304
## housingatrium
                    -0.3341 0.1518 -2.201
## housingterraced -1.1093 0.1493 -7.428
## contacthigh
                     0.2540
                             0.0934 2.720
##
## Intercepts:
##
              Value
                      Std. Error t value
## lowlmedium -1.0053 0.1077
                                -9.3325
## medium|high 0.1202 0.1048
                                1.1465
##
## Residual Deviance: 3587.389
## AIC: 3599.389
```

#### Plot of odds ratios



Convert log-odds to probabilities:



### Summary

- ▶ Multinomial models are a natural extension to binomial models
- Looked at logistic forms, but easy to go probit (or other)
- Interpretation is often easiest when we convert to the natural scale



#### Introduction

- Interested in the waiting time to an event / outcome
- Terminology is all around survival and death, but can be used to study any sort of waiting time
  - time to first birth
  - ▶ time to leaving home
  - time to finishing PhD :)
- Increasing amount of information considered (not just looking at end outcome)

#### Goals:

- Analyse waiting times wrt covariates
- Adjust for potential censoring or truncation

Survival analysis is a suite of methods to do this including parametric, semi-parametric and non-parametric methods.

### **Definitions**

Let T be a non-negative random variable representing the waiting time to an event of interest.

- Assume T is continuous
- ▶ Define the pdf of T as f(t)
- cdf is P(T < t) = F(t)
- ▶ Survival function  $P(T \ge t) = 1 F(t) = S(t)$

### **Definitions**

The **hazard rate**  $\lambda(t)$  is the instantaneous rate of occurrence

$$\lambda(t) = \lim_{dt \to 0} \frac{Pr(t \le T < t + dt | T \ge t)}{dt}$$

which is

$$\lambda(t) = \frac{f(t)}{S(t)} = -\frac{d}{dt}\log(S(t))$$

### **Definitions**

$$\lambda(t) = \frac{f(t)}{S(t)} = -\frac{d}{dt}\log(S(t))$$

implies

$$S(t) = \exp\left(-\int_0^t \lambda(x)dx\right) = \exp\left(-\Lambda(t)\right)$$

where  $\Lambda(t)$  is the cumulative hazard = the sum of risks one faces up to time t.

Given either the hazard rate or survival function, you can get everything else.

▶ What is *E*(*T*)?







$$S(t) = \exp\left(-\int_0^t \lambda(x)dx\right) = \exp\left(-\Lambda(t)\right)$$

- ▶ The simplest case is if  $\lambda(t) = \lambda$  for all t
- Constant hazard of dying/event occurring

This implies

$$S(t) = \exp(-\lambda t)$$

and

$$f(t) = \lambda \exp(-\lambda t)$$

What is this distribution?

#### Likelihood

Individuals  $i, i = 1, \ldots, n$ 

- $\triangleright$  By any particular time  $t_i$ , i is either alive or dead
- If they are alive, they are censored
- ▶ Contribution to likelihood if died:  $f(t_i) = \lambda(t_i)S(t_i)$
- ▶ Contribution to likelihood if alive:  $S(t_i)$

Likelihood is then

$$L = \prod_i L_i = \prod_i \lambda(t_i)^{d_i} S(t_i)$$

 $d_i$  is indicator of whether or not individual died.

and LL is

$$\log L = \sum_i d_i \log(\lambda(t_i)) - \Lambda(t_i)$$

If  $\lambda(t) = \lambda$  then

$$\log L = \sum_{i} d_{i} \log \lambda - \sum_{i} t_{i} \lambda$$

So MLE for  $\lambda$  is ?

$$\hat{\lambda} = \frac{\sum d_i}{\sum t_i}$$

- if nothing is censored this is just Exponential

Instead of looking at waiting times, look at deaths  $\sum_i d_i = D$  and assume

$$D \sim \mathsf{Poisson}(\lambda T)$$

where  $T = \sum_i t_i$ .

What's the MLE?

$$\log L = \sum_{i} d_{i} \log \lambda - \sum_{i} t_{i} \lambda + \text{constant}$$

- Waiting times Exponential == deaths are Poisson
- Helps to use GLM!

Lab