- 1) Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
- 1. Data type of columns in a table

We have below table -

1. Customers

Filter Enter property name or value

Field name	Туре	Mode	Collation
customer_id	STRING	NULLABLE	
customer_unique_id	STRING	NULLABLE	
customer_zip_code_prefix	INTEGER	NULLABLE	
customer_city	STRING	NULLABLE	
customer_state	STRING	NULLABLE	

2. order_items

Filter Enter property name or value

Field name	Туре	Mode	Collation
order_id	STRING	NULLABLE	
order_item_id	INTEGER	NULLABLE	
product_id	STRING	NULLABLE	
seller_id	STRING	NULLABLE	
shipping_limit_date	TIMESTAMP	NULLABLE	
price	FLOAT	NULLABLE	
freight_value	FLOAT	NULLABLE	

3. payments

∓Fi	lter Enter property name of	or value			
	Field name	Туре	Mode	Collation	Def
	order_id	STRING	NULLABLE		
	payment_sequential	INTEGER	NULLABLE		
	payment_type	STRING	NULLABLE		
	payment_installments	INTEGER	NULLABLE		
	payment_value	FLOAT	NULLABLE		

4. orders

	ilter Enter property name or value				
	Field name	Туре	Mode	Collation	Default Value
	order_id	STRING	NULLABLE		
	customer_id	STRING	NULLABLE		
	order_status	STRING	NULLABLE		
	order_purchase_timestamp	TIMESTAMP	NULLABLE		
	order_approved_at	TIMESTAMP	NULLABLE		
	order_delivered_carrier_date	TIMESTAMP	NULLABLE		
	order_delivered_customer_date	TIMESTAMP	NULLABLE		
П	order_estimated_delivery_date	TIMESTAMP	NULLABLE		

5. Products

〒 Filter Enter property name or value					
	Field name	Туре	Mode	Collation	Default Value
	product_id	STRING	NULLABLE		
	product_category	STRING	NULLABLE		
	product_name_length	INTEGER	NULLABLE		
	product_description_length	INTEGER	NULLABLE		
	product_photos_qty	INTEGER	NULLABLE		
	product_weight_g	INTEGER	NULLABLE		
	product_length_cm	INTEGER	NULLABLE		
	product_height_cm	INTEGER	NULLABLE		
	product_width_cm	INTEGER	NULLABLE		

6. Sellers

-

Field name	Туре	Mode
seller_id	STRING	NULLABLE
seller_zip_code_prefix	INTEGER	NULLABLE
seller_city	STRING	NULLABLE
seller_state	STRING	NULLABLE

2. Time period for which the data is given - to get the time period, have use the max and min function on orders table

SELECT min(order_purchase_timestamp) AS first_date, max(order_purchase_timestamp) AS last_date FROM `target -368217.Target.orders`;

Cities and States covered in the dataset -To check the cities we have use the customer table and order table to find out the data for the particular date range

Row	customer_state	customer_city
1	AC	rio branco
2	AC	brasileia
3	AC	manoel urbano
4	AC	cruzeiro do sul
5	AC	xapuri
6	AC	senador guiomard
7	AC	porto acre
8	AC	epitaciolandia
9	AL	maceio
10	AL	pau d'arco

2)In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

As per the details checked the seasonable trend is from MAY- AUG which has the higest count. I have use the below query to check the trend

SELECT * FROM(
SELECT EXTRACT(month FROM order_purchase_timestamp) as order_month,count(*) AS order_count FROM target368217.Target.orders GROUP BY EXTRACT(month FROM order_purchase_timestamp)) as x order by x.order_month,
x.order_month;

JOB IN	FORMATION	RESULTS	JSON I
Row	order_month	order_count	
1	1	8069	
2	2	8508	
3	3	9893	
4	4	9343	
5	5	10573	
6	6	9412	
7	7	10318	
8	8	10843	
g	9	4305	

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
SELECT

COUNT(*),
period

FROM (

SELECT

order_id,

CASE

WHEN TIME(order_purchase_timestamp) BETWEEN "00:00:00" AND "05:59:59" THEN "Dawn"

WHEN TIME(order_purchase_timestamp) BETWEEN "06:00:00" AND "11:59:59" THEN "Morning"

WHEN TIME(order_purchase_timestamp) BETWEEN "12:00:00" AND "17:59:59" THEN "Morning"

WHEN TIME(order_purchase_timestamp) BETWEEN "12:00:00" AND "23:59:59" THEN "Afternoon"

WHEN TIME(order_purchase_timestamp) BETWEEN "18:00:00" AND "23:59:59" THEN "Night"

END AS period

FROM target-368217.Target.orders
) AS ord

GROUP BY period;
```

RESULTS JSON

EXEC

Row	f0_ //	period	6	
1	22240	Morning		
2	4740	Dawn		
3	38361	Afternoon		
4	34100	Night		

3. Evolution of E-commerce orders in the Brazil region:

JOB INFORMATION

1. Get month on month orders by region, states
Since we have region Brazil only have added the filter on states and month to get the month wise details -

```
SELECT count(*) AS count, c.customer_state, EXTRACT(month from o.order_purchase_timestamp) FROM target-
368217.Target.orders AS o JOIN target-368217.Target.customers c ON c.customer_id = o.customer_id
GROUP BY c.customer_state, EXTRACT (month from o.order_purchase_timestamp)
ORDER BY c.customer_state
```

Row /	count	customer_state	f0_ //
1	5	AC	11
2	9	AC	4
3	6	AC	2
4	7	AC	6
5	7	AC	8
6	10	AC	5
7	4	AC	3
8	8	AC	1
9	9	AC	7

2. How are customers distributed in Brazil -

```
SELECT count(DISTINCT(c.customer_id)) AS count_of_customer, c.customer_state, c.customer_city FROM target-
368217.Target.customers c
GROUP BY c.customer_state, c.customer_city
ORDER BY c.customer_state, c.customer_city
```

Row	count_of_customer	customer_state	customer_city
1	1	AC	brasileia
2	3	AC	cruzeiro do sul
3	1	AC	epitaciolandia
4	1	AC	manoel urbano
5	1	AC	porto acre
6	70	AC	rio branco
7	2	AC	senador guiomard
8	2	AC	xapuri
9	1	AL	agua branca
10	2	AL	anadia
44	00	**	

4.Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.

1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
with year_wise_order AS
(
SELECT oi.order_id,oi.price, EXTRACT(year from order_purchase_timestamp) as oyear FROM target-
368217.Target.orders AS o JOIN target-
368217.Target.order_items AS oi ON o.order_id=oi.order_id WHERE order_purchase_timestamp BETWEEN '2017-01-
01' AND '2018-10-31'
```

```
SELECT count(m.order_id) AS count_of_order,sum(m.price) AS sum_of_price ,avg(m.price) AS avg_price, m.oyear,
-(avg(m.price) -
   (LAG(avg(m.price)) OVER (ORDER BY m.oyear)))/avg (m.price) * 100 AS percentage_increase_avgprice,
   (count(m.order_id) -
    (LAG(count(m.order_id)) OVER (ORDER BY m.oyear)))/count (m.order_id) * 100 AS percentage_increase_orders
   FROM year_wise_order as m GROUP BY m.oyear order by m.oyear;
```


2. Mean & Sum of price and freight value by customer state

```
SELECT ceil(avg(price)) AS average_price, ceil(sum(price)) AS sum_of_price, ceil(avg(freight_value)) AS average_freight_value, ceil(sum(freight_value)) AS sum_of_freight_value, c.cust omer_state

FROM target-368217.Target.order_items AS i JOIN target-368217.Target.orders AS o ON i.order_id=o.order_id

JOIN target-368217.Target.customers AS c ON c.customer_id=o.customer_id GROUP BY c.customer_state;
```

Row	average_price	sum_of_price	average_freight_	sum_of_freight_	customer_state
1	149.0	156454.0	29.0	29716.0	MT
2	146.0	119649.0	39.0	31524.0	MA
3	181.0	80315.0	36.0	15915.0	AL
4	110.0	5202956.0	16.0	718724.0	SP
5	121.0	1585309.0	21.0	270854.0	MG
6	146.0	262789.0	33.0	59450.0	PE
7	126.0	1824093.0	21.0	305590.0	RJ
8	126.0	302604.0	22.0	50626.0	DF
9	121.0	750305.0	22.0	135523.0	RS
10	15/10	58021 N	27 N	1/1112 በ	QE.

5. Analysis on sales, freight and delivery time

1) Calculate days between purchasing, delivering and estimated delivery

```
SELECT order_purchase_timestamp,
```

DATE_DIFF(order_estimated_delivery_date,order_purchase_timestamp, day) AS purchase estimated delivery,

DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, day) AS purchase actual delivery

FROM target-368217.Target.orders WHERE order_delivered_customer_date IS NOT NULL;

ow order_purchase_timestamp purchase_estimated_delivery purchase_actual_deliver 1 2018-02-19 19:48:52 UTC 17 2 2016-10-09 15:39:56 UTC 59 3 2016-10-03 21:01:41 UTC 52 4 2017-04-15 15:37:38 UTC 32	30 30 35
2 2016-10-09 15:39:56 UTC 59 3 2016-10-03 21:01:41 UTC 52	30
3 2016-10-03 21:01:41 UTC 52	
2010 10 00 2110 1111 0110	35
4 2017 04 15 15:27:20 UTO	33
4 2017-04-15 15:37:38 01C 32	30
5 2017-04-14 22:21:54 UTC 33	32
6 2017-04-16 14:56:13 UTC 31	29
7 2017-04-08 21:20:24 UTC 39	43
8 2017-04-11 19:49:45 UTC 36	40
9 2017-04-12 12:17:08 UTC 35	37
10 2017-04-19 22:52:59 UTC 28	33

2) Create columns:

time_to_delivery = order_purchase_timestamp-order_delivered_customer_date

SELECT

DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, day) AS time_to_delivery
FROM target-368217.Target.orders WHERE order_delivered_customer_date IS NOT NULL;

1	time_to_delivery	11
		30
		30
		35
		30
		32
		29
		43
		40
		37
		33

diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

SELECT

DATE_DIFF(order_estimated_delivery_date,order_purchase_timestamp, day) AS diff_estimated_delivery
FROM target-368217.Target.orders;

11	diff_estimated_delivery	le	
1		50	
2		6	
3		44	
4		54	
5		56	
6		54	
7		56	
		41	
9		3	
0		3	
1		47	

3) Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery -

```
SELECT

ceil(avg(freight_value)) AS average_freight_value, c.customer_state,

DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, day) AS time_to_delivery,

DATE_DIFF(order_estimated_delivery_date,order_purchase_timestamp, day) AS diff_estimated_delivery

FROM target-368217.Target.order_items AS i JOIN target-368217.Target.orders AS o ON i.order_id=o.order_id

JOIN target-368217.Target.customers AS c ON c.customer_id=o.customer_id

WHERE order_delivered_customer_date IS NOT NULL

GROUP BY c.customer_state, DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, day), DATE_DIFF

F(order_estimated_delivery_date,order_purchase_timestamp, day);
```

JOB INFORMATION		RESULTS	JSON		EXECUTION DET	AILS EXECU
low /	average_freight_	customer_state		10	time_to_delivery	diff_estimated_c
1	19.0	RJ			7	52
2	21.0	MG			30	17
3	19.0	SC			30	59
4	14.0	SP			7	51
5	20.0	RJ			10	52
6	15.0	RJ			35	52
7	22.0	GO			23	33
8	11.0	SP			12	7
9	22.0	RS			12	25
10	12.0	cn			7	0

4) Sort the data to get the following:

Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Top 5 states with highest average freight value

SELECT * FROM (SELECT

```
ceil(avg(freight_value)) AS average_freight_value, c.customer_state,
DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, day) AS time_to_delivery,
DATE_DIFF(order_estimated_delivery_date,order_purchase_timestamp, day) AS diff_estimated_delivery
FROM target-368217.Target.order_items AS i JOIN target-368217.Target.orders AS o ON i.order_id=o.order_id
JOIN target-368217.Target.customers AS c ON c.customer_id=o.customer_id
WHERE order_delivered_customer_date IS NOT NULL
GROUP BY c.customer_state, DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, day), DATE_DIF
F(order_estimated_delivery_date,order_purchase_timestamp, day)) as x order by x.average_freight_value desc
limit 5;
```

w /	average_freight_	customer_state	time_to_delivery	diff_estimated_c
1	410.0	PI	11	30
2	339.0	MT	31	44
3	322.0	ES	27	28
4	318.0	PB	18	23
5	315.0	AL	27	28

Top 5 states with highest/lowest average time to delivery

Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
SELECT c.customer_state, avg(x.time_to_delivery) AS avg_time_to_delivery, avg(x.diff_estimated_delivery) AS avg_diff_estimated_delivery, avg(oi.freight_value) AS avg_freight_value
FROM (SELECT customer_id, order_id, DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, day)
AS time_to_delivery,
DATE_DIFF(order_estimated_delivery_date,order_purchase_timestamp, day) AS diff_estimated_delivery FROM targ
et-368217.Target.orders
WHERE order_estimated_delivery_date IS not null AND
order_purchase_timestamp is not null AND
order_estimated_delivery_date IS not null) as x JOIN target-
368217.Target.customers as c ON x.customer_id = c.customer_id JOIN target-
368217.Target.order_items oi ON x.order_id = oi.order_id group by c.customer_state
ORDER BY avg_time_to_delivery desc, avg_diff_estimated_delivery desc limit 5
```

Row	customer_state	avg_time_to_del	avg_diff_estimat	avg_freight_valu
1	RR	27.8260869	45.9807692	42.9844230
2	AP	27.7530864	45.4878048	34.0060975
3	AM	25.9631901	45.2060606	33.2053939
4	AL	23.9929742	32.1756756	35.8436711
5	PA	23.3017077	36.9601851	35.8326851

6. Payment type analysis:

1. Month over Month count of orders for different payment types

```
SELECT * FROM (SELECT count(*) AS Total_count,p.payment_type, EXTRACT (month FROM o.order_purchase _timestamp) AS month,EXTRACT (year FROM o.order_purchase_timestamp) AS year
FROM target-368217.Target.orders AS o JOIN target-
368217.Target.customers c ON c.customer_id = o.customer_id JOIN target-
368217.Target.payments p ON o.order_id = p.order_id WHERE o.order_purchase_timestamp BETWEEN '2017-01-
01' AND '2018-08-
31' GROUP BY p.payment_type, EXTRACT (month FROM o.order_purchase_timestamp), EXTRACT (year FROM o.order_purchase_timestamp)) AS x order by x.year, x.month;
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DI	ETAILS	EXE	CUT
Row /	Total_count	payment_type	le	month	year	11	
1	583	credit_card		1		2017	
2	197	UPI		1		2017	
3	61	voucher		1		2017	
4	9	debit_card		1		2017	
5	1356	credit_card		2		2017	
6	398	UPI		2		2017	
7	119	voucher		2		2017	
8	13	debit_card		2		2017	
9	590	UPI		3		2017	

2. Distribution of payment installments and count of orders

SELECT count(DISTINCT(order_id)) AS count, payment_installments FROM target-368217.Target.payments GROUP BY payment_installments;

Row	count	payment_installments	11	
1	2		0	
2	49060		1	
3	12389		2	
4	10443		3	
5	7088		4	
6	5234		5	
7	3916		6	
8	1623		7	
9	4253		8	
10	644		9	
44	F04 F		10	