

Acquisition: Photography

X-ray/CT/MRI
Digital Image Processing

Electron Microscope

Thermal Imaging

Remote Sensing

Other Acquisition Modalities

Some Applications: Biometric and Recognition

Digital Image Processing: Applications

Object Detection

Digital Image Processing

Digital Image Processing: Applications

Computational Photography

Computer Graphics

Computer Vision

Course Contents (Tentative)

Fundamentals

Image Enhancement

Image Segmentation

Image Restoration

Image Transforms

Image Compression (+Video)

Image Analysis:

Representation/Description

Recognition/Identification

a c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Sampling and Quantization

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from *A* to *B* in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Sampling and Quantization

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

An image is a spatial representation of an object, a 2D or 3D scene.

 Abstractly, an image is a continuous function defining a rectangular region of a plane

intensity image - proportional to radiant energy received by a

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

 An image can be thought of as a function with resulting values of the light intensity at each point over a planar region.

2D function f(x,y)

Digital Image Processing

Image Representation

FIGURE 2.18

Coordinate convention used in this book to represent digital images.

Image Resolution (Spatial)

FIGURE 2.19 A 1024 \times 1024, 8-bit image subsampled down to size 32 \times 32 pixels. The number of allowable gray levels was kept at 256.

Image Resolution (Spatial)

Image Resolution (Spatial)

Bilinear Interpolation

Digital Image Processing

a b c d

FIGURE 2.21
(a) 452 × 374,
256-level image,
(b)–(d) Image
displayed in 128,
64, and 32 gray
levels, while
keeping the
spatial resolution
constant.

Image Resolution (Intensity Levels)

Digital Image Processing

Intensity/
Luminance
and Brightness

Mach Band Effect

Simultaneous Contrast

Digital Image Processing

Other Operations

Neighborhood

 N_4 , N_D , N_8

Adjacency/Connectivity

4-connected

8-connected

Distance

Euclidian

 D_4

 D_8