Lecture 10 Multi-factor Models: Statistical Factor Models (PCA)

Lars A. Lochstoer UCLA Anderson School of Management

Winter 2019

Overview of Lecture 10

- Statistical Factor Models: Principal Components Analysis
 - Math
 - Properties
 - Stimation
 - Application: Modeling the Yield Curve
 - 6 Application: Factors in stock returns

Motivation

- use factor models to fight the curse of dimensionality
- find a couple of factors that explain most of the variation
- factor models can naturally arise from economic theory (next lecture)
- up to this slide, factors are observable.
 - market index
 - portfolios sorted on accounting variables
- statistical factor models: choice of factors determined by data.
 - principal component analysis (PCA)
 - maximum likelihood, see Chapter 6 of Campbell, Lo, and MacKinlay.

Factor Model

model returns

$$r_{it} = \alpha_i + \beta_i' \mathbf{f}_t + \varepsilon_{it}, \qquad i = 1, ..., N, \quad t = 1, ..., T$$

using matrix notation

$$\mathbf{r}_t = \alpha + \beta \mathbf{f}_t + \varepsilon_t, \qquad t = 1, \dots, T$$

- \mathbf{r}_t is a $N \times 1$ vector of returns.
- β is a $N \times K$ matrix of factor loadings.
- the covariance matrix of returns:

$$\mathsf{Cov}(\mathbf{r}_t) = \Sigma_{\mathbf{r}} = oldsymbol{eta} \Sigma_f oldsymbol{eta}' + \Sigma_{oldsymbol{arepsilon}}$$

ullet assume $\Sigma_{\mathcal{E}}$ is diagonal.

Principal Components Analysis (PCA)

- given a vector of returns $\mathbf{r}_t = (r_{1t}, r_{2t}, \dots, r_{Nt})$, PCA tries to use a few linear combinations to explain the structure of Σ_r
- a few means less than N
- let \mathbf{w}_i be a $N \times 1$ vector of weights, i = 1, 2, ..., N
- we construct linear combinations of the random vectors:

$$y_{it} = \mathbf{w}_i' \mathbf{r}_t = \sum_{j=1}^N w_{ij} r_{jt}$$

- in financial applications, we can conveniently interpret y_{it} as a portfolio return.
- ullet we normalize the weights such that ${f w}_i'{f w}_i=1$

Properties

• moments of y_{it}:

$$V\left(y_{it}\right) = \mathbf{w}_{i}^{\prime} \mathbf{\Sigma_{r}} \mathbf{w}_{i}, \qquad i = 1, 2, ..., N$$

$$Cov\left(y_{it}, y_{jt}\right) = \mathbf{w}_{i}^{\prime} \mathbf{\Sigma_{r}} \mathbf{w}_{j}, \qquad i, j = 1, 2, ..., N$$

• idea of PCA: find linear combinations (the vectors \mathbf{w}_i) that are uncorrelated and with variances of y_{it} that are as large as possible

PCA (cont'd)

- **1** 1st principal component: maximizes the variance of y_1 subject to $\mathbf{w}_1'\mathbf{w}_1=1$
- ② 2nd principal component: maximizes the variance of y_2 subject to $\mathbf{w}_2'\mathbf{w}_2 = 1$ and $Cov(y_1, y_2) = 0$
- **3** 3rd principal component: maximizes the variance of y_3 subject to $\mathbf{w}_3'\mathbf{w}_3=1$ and $Cov(y_3,y_i)=0,\ i=1,2$
- **1 b** k-th principal component: maximizes the variance of y_k subject to $\mathbf{w}_k' \mathbf{w}_k = 1$ and $\mathsf{Cov}(y_r, y_i) = 0, \ i = 1, 2, \dots, k-1$

Spectral Decomposition: Covariance Matrix

Definition

A real, symmetric $m \times m$ matrix **B** has a spectral decomposition given by

$$B = P\Lambda P'$$

where

- $oldsymbol{\Lambda}$ is a diagonal matrix with eigenvalues $oldsymbol{\lambda}$ on the diagonal that are all real and positive
- **P** is an $m \times m$ orthogonal matrix consisting of the m eigenvectors

• any **orthogonal** matrix C satisfies C'C = I and $C' = C^{-1}$

Eigenvalues and -vectors

- let \mathbf{e}_i denote the *i*-th column of \mathbf{P} . This is the eigenvector associated with the *i*-th eigenvalue λ_i .
- each eigenvector/eigenvalue pair are solutions to the equation

$$\mathbf{A}\mathbf{e}_i = \lambda_i \mathbf{e}_i$$

- ullet in general, the m eigenvalues λ may be real or complex numbers.
- if λ_i is a complex eigenvalue, then its associated eigenvector \mathbf{e}_i is also complex, but for a covariance matrix eigenvalues are always real.
- each eigenvector \mathbf{e}_i is not unique up to scale, i.e. $\gamma \mathbf{e}_i$ is also a eigenvector where γ is any real number.
- consequently, the eigenvectors are typically normalized to have unit length: ${\bf e}_i'{\bf e}_i=1.$

Principal Components Result

Let $(\lambda_i, \mathbf{e}_i)$ be the i-th (eigenvalue, eigenvector) pair for the covariance matrix Σ_r . The i-th principal component is given by:

$$y_{it} = \mathbf{e}_i' \mathbf{r}_t = \sum_{j=1}^N e_{ij} r_{jt}$$

The variance of the *i*-th principal component is given by:

$$\mathbf{e}_i'\mathbf{\Sigma}_r\mathbf{e}_i=\lambda_i, \qquad i=1,2,\ldots,N$$

because $\mathbf{e}_i'\mathbf{e}_i=1$ and $\mathbf{e}_i'\mathbf{e}_j=0$

ullet choose the vectors ${f w}_i = {f e}_i$

Variance Accounting

the total variance accounted for by the *i*-th principal component is

$$\frac{V(y_{it})}{\sum_{i=1}^{N} V(y_{it})} = \frac{\lambda_i}{\lambda_1 + \ldots + \lambda_N}$$

where
$$\sum_{i=1}^{N} V(y_{it}) = \lambda_1 + \ldots + \lambda_N$$

ullet Typically, we order eigenvalues and -vectors according to the magnitude of the λ_i

Principal Components (R and MatLab)

- **princomp()** is the R function that corresponds exactly to the Spectral Decomposition we have discussed here.
- prcomp() can also be used. It relies on the Singular Value Decomposition,
 which is numerically more stable. For the typical covariance matrix
 (symmetric positive definite) this shouldn't matter, but R on a general basis
 recommends using prcomp().
- Geoff will discuss implementation in R further in his TA session
- In MatLab, you can use the eig() function

Statistical Factor Model

Definition

Consider a N-dimensional time series of returns $\mathbf{r}_t = (r_{1t}, r_{2t}, \dots, r_{Nt})$. and assume the series is weakly stationary. For a weakly stationary time series we can define its mean

$$E\left[\mathbf{r}_{t}\right]=\mu,\qquad \mathbf{\Sigma}_{r}=E\left[\left(\mathbf{r}_{t}-\mu
ight)\left(\mathbf{r}_{t}-\mu
ight)^{\prime}
ight]$$

where Σ_r is a $N \times N$ matrix. The statistical factor model postulates that the return is linearly dependent on a few unobservable random variables:

$$\mathbf{r}_t = \mu + \beta \mathbf{f}_t + \varepsilon_t$$

where $\mathbf{f}_t = (f_{1t}, f_{2t}, \dots, f_{Kt})$ with K < N, and $\boldsymbol{\beta}$ is a $N \times K$ matrix of factor loadings

- The factors can be found using PCA
- Stock i's beta with respect to factor j is the i'th element of eigenvector j
 - See PCA_Example.xls
 - This depends on normalization of eigenvectors. In general, betas are proportional to this element.

Statistical Factor Model: Identification

• the covariance matrix of returns is

$$\Sigma_r = eta \Sigma_f eta' + \Sigma_{arepsilon}$$

- ullet assume $\Sigma_{arepsilon}$ is diagonal.
- the factors \mathbf{f}_t are latent and not directly observable. We estimate them from the data $\mathbf{r}_t = (r_{1t}, r_{2t}, \dots, r_{Nt})$.
- ullet we cannot identify both Σ_f and eta from the data. Why?
- note that for any $K \times K$ orthogonal matrix **P**

$$\mathbf{r}_t - \mu = oldsymbol{eta} \mathbf{f}_t + oldsymbol{arepsilon}_t = oldsymbol{eta}^\star \mathbf{f}_t^\star + oldsymbol{arepsilon}_t$$

where $\beta^* = \beta P$ and $\mathbf{f}_t^* = P' \mathbf{f}_t$. We can't tell if it is \mathbf{f}_t or \mathbf{f}_t^* .

- Thus: PCA-derived factors do not by themselves have economic meaning
 - ▶ However, we may derive some meaning by investigating the eigenvectors
 - more on this in a couple of slides (yield example)

Applications of PCA

There are many applications of PCA in economics and finance

- yield curves: Litterman and Scheinkman (1991), Cochrane and Piazzesi (2005)
- macroeconomic indicators: Stock and Watson (1999), Stock and Watson (2002)
- o currency returns: Lustig, Roussanov, and Verdelhan (2011)

Factor Models and the Yield Curve

There are lots of different yields and interest rates.

It would be helpful if we could summarize the variation bond yields using a couple of factors.

Litterman and Scheinkman (1991) and Knez, Litterman and Scheinkman (1994) find, using principal component analysis, that there is a level, slope and curvature factor in bond yields and bond returns.

Bond Notation

- an *n*-period zero coupon bond pays one dollar *n* periods from now
- notation:
 - $ightharpoonup P_t^{(n)}$ denotes the price of an *n*-period zero-coupon bond
 - $ightharpoonup p_t^{(n)}$ denotes the log price of an *n*-period zero-coupon bond

$$p_t^{(n)} = \log\left(P_t^{(n)}\right)$$

▶ the log yield of an *n*-period zero-coupon bond is:

$$y_t^{(n)} = -\frac{1}{n}p_t^{(n)}$$

the log holding period return:

$$hpr_{t+1}^{(n)} = p_{t+1}^{(n-1)} - p_{t}^{(n)}$$

Principal Components of Yields

Maturity	Principal component		
1	0.362	-0.569	0.620
3	0.387	-0.455	-0.139
12 24 36 48 60	0.395 0.391 0.380 0.371 0.360	-0.184 0.104 0.272 0.385 0.455	-0.581 -0.304 -0.058 0.193 0.355
% Var.	98.01	1.71	0.19

The sample period is 6/1952-12/2014. Zero coupon bonds with maturity in months. CRSP Fama-Bliss Data.

18 / 30

Factor Loadings

The sample period is 6/1952-12/2014. CRSP Fama-Bliss Data.

Factors in the Yield Curve

The sample period is 6/1952-12/2014. Yields (left) and level factor (right). CRSP Fama-Bliss Data.

Factors in the Yield Curve (cont'd)

The sample period is 6/1952-12/2014. Yields (left) and level factor (right). CRSP Fama-Bliss Data.

Replicating Yields: 1 month

Replicate log yield as linear in first 3 PCs:

$$\hat{y}_t^{(1)} = \mathbf{a}_1 + \beta_{1,1} P \mathcal{C}_{1,t} + \beta_{1,2} P \mathcal{C}_{2,t} + \beta_{1,3} P \mathcal{C}_{3,t}$$

The sample period is 6/1952-12/2014. CRSP Fama-Bliss Data.

Replicating Yields: 1 year

Replicate log yield as linear in first 3 PCs:

$$\hat{\mathbf{y}}_{t}^{(12)} = \mathbf{a}_{12} + \beta_{12,1} P \mathcal{C}_{1,t} + \beta_{12,2} P \mathcal{C}_{2,t} + \beta_{12,3} P \mathcal{C}_{3,t}$$

The sample period is 6/1952-12/2014. CRSP Fama-Bliss Data.

Replicating Yields: 5 years

Replicate log yield as linear in first 3 PCs:

$$\hat{y}_t^{(60)} = \mathbf{a}_{60} + \beta_{60,1} P C_{1,t} + \beta_{60,2} P C_{2,t} + \beta_{60,3} P C_{3,t}$$

The sample period is 6/1952-12/2014. CRSP Fama-Bliss Data.

PCs in the cross-section of stock returns

Monthly data from July 1969 through December 2016 on 138 portfolios from Kenneth French's webpage

• Industry and characteristic sorted portfolios (nearly all)

Next slides show:

- The first PC is by far the most important and it has correlation 0.985 with the market
- The next PCs decline in importance (variance) quite slowly.
- The first 20 PCs accounts for 91% of the variation in the return of these portfolios (the first 10 accounts for 86%)

PCs in the cross-section of stock returns

PCs in the cross-section of stock returns

References Lecture Note 3 and 4

- Black, F. and R. Litterman (1992). Global portfolio optimization. Financial Analysts Journal 48(5), pp. 28-43.
- Blume, M. E. (1975). Betas and their regression tendencies. The Journal of Finance 30(3), 115-143.
- Campbell, J. Y., A. W. Lo, and A. C. MacKinlay (1997). The Econometrics of Financial Markets. Princeton, NJ: Princeton University Press.
- Chen, N.-F., R. Roll, and S. A. Ross (1986). Economic forces and the stock market. The Journal of Business 59(3), pp. 383-403.
- Cochrane, J. H. and M. Piazzesi (2005). Bond risk premia. American Economic Review 95(1), 138-160.
- DeMiguel, V., L. Garlappi, and R. Uppal (2009). Optimal versus naive diversification: How ineffcient is the 1/N portfolio strategy? The Review of Financial Studies 22(5), 1915-1953.
- Fama, E. F. and K. French (1992). The cross-section of expected stock returns. The Journal of Finance 47(2), 427-465.

References (cont'd)

- Fama, E. F. and K. French (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33(1), 23-49.
- Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning (Second ed.). New York, NY: Springer Press.
- Knez, P. J., R. Litterman, and J. Scheinkman (1994). Explorations into factors explaining money market returns. The Journal of Finance 49(5), pp. 1861-1882.
- Lintner, J. (1965). The valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics 47(1), 13-37.
- Litterman, R. and J. Scheinkman (1991). Common factors affecting bond returns. The Journal of Fixed Income 1(1), 54-61.
- Lustig, H., N. Roussanov, and A. Verdelhan (2011). Common risk factors in currency markets. The Review of Financial Studies 24(11), 3731-3777.
- Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance 7(1), 77-91.

References (cont'd)

- Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibrium under conditions of risk. The Journal of Finance 19(3), 425-442.
- Stock, J. H. and M. W. Watson (1999). Forecasting inflation. Journal of Monetary Economics 44(2), 293-335.
- Stock, J. H. and M. W. Watson (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association 97, 1167-79.
- Vasicek, O. A. (1973). A note on using cross-sectional information in Bayesian estimation of security betas. The Journal of Finance 28(5), 1233-1239.