

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Batch: A2 Roll No.: 16010122041

Experiment / assignment / tutorial No: 2

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

TITLE: To study and implement Booth's Multiplication Algorithm.

AIM: Booth's Algorithm for Multiplication

Expected OUTCOME of Experiment: (Mention CO/CO's attained here)

Books/ Journals/ Websites referred:

- 1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, TataMcGraw-Hill.
- 2. William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.
- 3. Dr. M. Usha, T. S. Srikanth, "Computer System Architecture and Organization", First Edition, Wiley-India.

Pre Lab/ Prior Concepts:

It is a powerful algorithm for signed number multiplication which generates a 2n bit product and treats both positive and negative numbers uniformly. Also the efficiency of the algorithm is good due to the fact that, block of 1's and 0's are skipped over and subtraction/addition is only done if pair contains 10 or 01

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Flowchart:

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Design Steps:

- 1. Start
- 2. Get the multiplicand (M) and Multiplier (Q) from the user
- 3. Initialize $A = Q_{-1} = 0$
- 4. Convert M and Q into binar
- 5. Compare Q_0 and Q_{-1} and perform the respective operation.

Q ₀ Q ₋₁	Operation
00/11	Arithmetic right shift
01	A+M and Arithmetic right shift
10	A-M and Arithmetic right shift

- 6. Repeat steps 5 till all bits are compared
- 7. Convert the result to decimal form and display
- 8. End

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Example: (Handwritten solved problem needs be uploaded) to

M = 7 :	0111	- M	: 4001
9=-3:	1101		
A	P	9-1	opperation
0000	1101	0	britial Value
1001	1101	0	$A \leftarrow A - M$
1100	1110	1	Authoretic right
0011	1110		A ← A+M
0001	1111	0	Arithmetic right
1010	1111	0	A←A-M
1101	0111	1	Authoretic right
1110	1011	1	Aritrondic right
Evial ans			
		2's comp.	

0101 -M:	1011
0101	
Q Q-1	oppiration
0101 0	initial Value
0101 0	A ← A-M
1010	Aruthemetic shift
1010	A ← A + M
0101 0	Authoretic right sh
0101 0	A ← A - M
0010	Arithmetic right shift
0010	A ← A + M
1001 0	Aruthmetic right shift
ans: 0001 1001 = 2	5

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Code:

```
#include <bits/stdc++.h>
using namespace std;
int findbit(int m,int q){
    m=max(abs(m),abs(q));
    for(q=0;pow(2,q)<m;q++);</pre>
    return (max((q+1),4));
int* binary(int a,int num){
    int* ptr=(int*)malloc(num*sizeof(int));
    int acopy=abs(a), check=1;
    for (int i = 0;i<num; i++){</pre>
        ptr[i] = acopy % 2;
        acopy = acopy/2;
    if (a < 0){
        for (int i = 0; i <num; i++){</pre>
             if (ptr[i] == 1 && check==1)
                 check=0;
             else if(ptr[i] == 1 && check==0)
                 ptr[i]=0;
             else if(ptr[i] == 0 && check==0)
                 ptr[i]=1;
        }
    return ptr;
void printbinary(int* ans,string s,int num){
    for(int i=2*num;i>num;i--)
        cout<<ans[i]<<" ";</pre>
    cout<<"\t";</pre>
    for(int i=num;i>0;i--)
        cout<<ans[i]<<" ";</pre>
    cout<<"\t"<<ans[0]<<"\t"<<s<<endl;</pre>
void binaryadd(int* ans,int* n,int num){
    int carry=0;
```


K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**


```
for(int i=num+1;i<=2*num;i++){</pre>
         if(ans[i]+n[i-num-1]+carry==1){
             ans[i]=1;
             carry=0;
         }
        else if(ans[i]+n[i-num-1]+carry==2){
             ans[i]=0;
             carry=1;
        else if(ans[i]+n[i-num-1]+carry==3){
             ans[i]=1;
             carry=1;
         }
    }
int main()
    int m,q;
    cout<<"Enter M and Q: ";</pre>
    cin>>m>>q;
    int num=findbit(m,q);
    int ans[2*num+1]={0};
    int *arr=binary(q,num);
    for(int i=num;i>0;i--)
         ans[i]=arr[i-1];
    cout<<endl<<"A\t\tQ\t\tQ-1\t\tOperation"<<endl<<endl;</pre>
    printbinary(ans, "Initial Value", num);
    for(int i=0;i<num;i++){</pre>
         if(ans[1]==0 \&\& ans[0]==1){
             binaryadd(ans,binary(m,num),num);
             printbinary(ans, "A <- A + M", num);</pre>
         }
        else if(ans[1]==1 && ans[0]==0){
             binaryadd(ans, binary(-m, num), num);
             printbinary(ans, "A <- A - M", num);</pre>
         }
         for(int i=0;i<2*num;i++)</pre>
```


K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering


```
ans[i]=ans[i+1]; // Right Shifting
    printbinary(ans, "Arithemetic Right Shift", num);
}
printbinary(ans, "Final Answer", num);
}
```

Output:

Enter M and	d Q: 5 5		
Α	Q	Q-1	Operation
0 0 0 0	0101	0	Initial Value
1 0 1 1	0 1 0 1	0	$A \leftarrow A - M$
1 1 0 1	1010	1	Arithemetic Right Shift
0 0 1 0	1010	1	A <- A + M
0001	0 1 0 1	0	Arithemetic Right Shift
1 1 0 0	0 1 0 1	0	A <- A - M
1 1 1 0	0010	1	Arithemetic Right Shift
0 0 1 1	0010	1	A <- A + M
0001	1001	0	Arithemetic Right Shift
0001	1001	0	Final Answer

Enter M and Q: 11	-10		
A Q		Q-1	Operation
00000 1	0110	0	Initial Value
0 0 0 0 0 0	1011	0	Arithemetic Right Shift
10101 0	1011	0	$A \leftarrow A - M$
1 1 0 1 0 1	0 1 0 1	1	Arithemetic Right Shift
1 1 1 0 1 0	1010	1	Arithemetic Right Shift
0 1 0 0 0 0	1010	1	$A \leftarrow A + M$
0 0 1 0 0 0	0 1 0 1	0	Arithemetic Right Shift
1 1 0 0 1 0	0 1 0 1	0	A <- A - M
1 1 1 0 0 1	0010	1	Arithemetic Right Shift
1 1 1 0 0 1	0010	1 _	Final Answer

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Conclusion:

Learnt and implemented booths algorithm along with the understanding of computer bits and operations like arithmetic shift right.

Post Lab Descriptive Questions

1. Explain advantages and disadvantages of Booth's algorithm.

Advantages of booth's multiplication:

- Easy calculation of multiplication problem.
- Consecutive additions will be replaced.
- Less complex and ease scaling.

<u>Disadvantages of booth's multiplication:</u>

- This algorithm will not work for isolated 1's.
- It is time consuming.
- If digital gates are more, chip area would be large.

2. Is Booth's recoding better than Booth's algorithm? Justify

Advantage of Booth's recoding is that it reduces the number of 1's and increases the number of 0's in a binary number. Having more number of 0's is advantageous for easier calculation.

For Example: (01111)2 is equivalent to (+1 0 0 0 -1) in Booth Recoding. Hence it is more efficient and less time consuming in comparison to Booth's algorithm.

Date:	Signature of faculty in-charge