

Summary of Last Lecure

- Two parallel computing communities
 - Parallel numerical math (generating data) supercomputing
 - o Parallel databases (storing and serving data) data centers
- Statistical computing left batch environment to be interactive
 - Developed S and then R
 - High-level, extensible, and interactive
 - Use numerical libraries
- Supercomputing takes R back to batch
 - High-level, extensible, but batch
 - Use scalable numerical libraries
- Workflow, accounts, tools
 - RStudio, git, GitHub, ssh, unix

Parallel Hardware

A high level look at what matters ...

Three Basic Concepts in Hardware

Shared Memory
Multicore Processor

core core core core
network
memory

Distributed Memory Cluster

Three Basic Concepts in Hardware

Distributed Memory Cluster

A Cluster of Multicore nodes with GPU co-Processors

Distributed Memory Cluster

A Cluster of Multicore nodes with Manycore co-Processors

Shared Memory Co-Processor **Shared Memory Multicore Processor** core core core core network network memory memory memory Manycore **GPU** node node node node network fabric 2nd generation Manycore Intel Xeon Phi "KNL" A Cluster of Manycore Nodes **Distributed Memory Cluster** Fugaku ARM

10 / 23

Native Programming Mindset

Distributed Memory Cluster

Default is parallel: how to partition the data and what to share?

Native Programming Models and Tools

35+ Years of Parallel Computing Research

Last 15+ years of Advances

Distributed Programming Works in Shared Memory

R Interfaces to Low-Level Native Tools

R Interfaces to Low-Level Native Tools

Running Distributed on a Cluster

Typical Workflow from Laptop to Cluster

Unix Concepts and Starting your Workflow

•••

Some useful Unix concepts

- Linux is one of many descendants of original Unix. Mac OS X is another.
- Like all file systems, Unix files are organized as a tree.
- When in a terminal, you are talking to a *shell* program (*bash* is most common)
- Commands are looked up in directories listed in your PATH variable
- Spaces delimit commands and options
- > and >> redirect standard output to a file
- command1 | command2 pipes standard output1 to standard input2
- \$ means substitute variable value
- There are many resources on the web to learn Linux basics.

Some useful Linux commands

- pwd Show curent directory
- **ls** List files in current directory
 - **ls** -a Include files that start with .
 - **ls** -l Long listing with *permissions*, *owners*, and *last change time*
- **cd** *dir_name* Change directory to dir_name
 - cd without dir_name or ~ as dir_name changes to home directory
- **mkdir** *dir_name* Creates directory dir_name
- **rmdir** *dir_name* Deletes directory (must be empty)
- rm file_name Deletes file_name
- **cat** *file_name* Displays content of entire file_name
- **less** *file_name* Displays content of file_name with paging
- man command Displays the manual page for command with paging
- which command Returns location of command
- exit Quit shell and logout

Demo follows

