2016/1/11 Coursera

Homework 4

The due date for this quiz is Mon 11 Jan 2016 4:00 PM PST.

In accordance with the Coursera Honor Code, I (Juan Tzu Chuan) certify that the answers here are my own work.

Question 1

Neural Network and Deep Learning

A fully connected Neural Network has $L=2;\ d^{(0)}=5,\ d^{(1)}=3,\ d^{(2)}=1.$ If only products of the form $w_{ij}^{(\ell)}x_i^{(\ell-1)},\ w_{ij}^{(\ell+1)}\delta_j^{(\ell+1)}$, and $x_i^{(\ell-1)}\delta_j^{(\ell)}$ count as operations (even for $x_0^{(\ell-1)}=1$), without counting anything else, which of the following is the total number of operations required in a single iteration of backpropagation (using SGD on one data point)?

- **43**
- \bigcirc 53
- \bigcirc 47
- O 59
- none of the other choices

Question 2

Consider a Neural Network without any bias terms $x_0^{(\ell)}$. Assume that the network contains $d^{(0)}=10$ input units, 1 output unit, and 36 hidden units. The hidden units can be arranged in any number of layers $\ell=1,\cdots,L-1$, and each layer is fully connected to the layer above it. What is the minimum possible number of weights that such a network can have?

- **44**
- none of the other choices
- \bigcirc 46
- **43**
- **45**

Question 3

Following Question 2, what is the maximum possible number of weights that such a network can have?

- none of the other choices
- \bigcirc 500
- O 520
- O 490
- O 510

Question 4

Autoencoder

Assume an autoencoder with $\tilde{d}=1$. That is, the $d\times\tilde{d}$ weight matrix W becomes a $d\times 1$ weight vector \mathbf{w} , and the linear autoencoder tries to minimize

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2.$$

We can solve this problem with stochastic gradient descent by defining

$$\operatorname{err}_n(\mathbf{w}) = \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2$$

and calculate $\nabla_{\mathbf{w}} \operatorname{err}_n(\mathbf{w})$. What is $\nabla_{\mathbf{w}} \operatorname{err}_n(\mathbf{w})$?

- $\bigcirc 2(\mathbf{x}_n^T\mathbf{w})^2\mathbf{w} + 2(\mathbf{x}_n^T\mathbf{w})(\mathbf{w}^T\mathbf{w})\mathbf{x}_n 4(\mathbf{x}_n^T\mathbf{w})\mathbf{x}_n$
- none of the other choices
- $\bigcirc 2(\mathbf{x}_n^T \mathbf{w})^2 \mathbf{x}_n + 2(\mathbf{x}_n^T \mathbf{w})(\mathbf{w}^T \mathbf{w}) \mathbf{w} 4(\mathbf{x}_n^T \mathbf{w}) \mathbf{w}$
- $\bigcirc (4\mathbf{w} 4)(\mathbf{x}_n^T \mathbf{x}_n)$
- $\bigcirc (4\mathbf{x}_n 4)(\mathbf{w}^T\mathbf{w})$

Question 5

Following Question 4, assume that noise vectors $\boldsymbol{\epsilon}_n$ are generated i.i.d. from a zero-mean, unit variance Gaussian distribution and added to \mathbf{x}_n to make $\tilde{\mathbf{x}}_n = \mathbf{x}_n + \boldsymbol{\epsilon}_n$, a noisy version of \mathbf{x}_n . Then, the linear denoising autoencoder tries to minimize

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T(\mathbf{x}_n + \boldsymbol{\epsilon}_n)\|^2.$$

For any fixed \mathbf{w} , what is $\mathcal{E}(E_{in}(\mathbf{w}))$, where the expectation \mathcal{E} is taken over the noise generation process?

$$\bigcirc \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w} \mathbf{w}^T \mathbf{x}_n\|^2 + \mathbf{w}^T \mathbf{w}$$

none of the other choices

$$\bigcirc \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w} \mathbf{w}^T \mathbf{x}_n\|^2 + \frac{1}{d} \mathbf{w}^T \mathbf{w}$$

$$\bigcirc \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w} \mathbf{w}^T \mathbf{x}_n\|^2 + d\mathbf{w}^T \mathbf{w}$$

$$\bigcirc \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T \mathbf{x}_n\|^2 + (\mathbf{w}^T \mathbf{x}_n + \mathbf{w}^T \mathbf{x}_n)^2$$

Question 6

Nearest Neighbor and RBF Network

Consider getting the 1 Nearest Neighbor hypothesis from a data set of two examples $(\mathbf{x}_+, +1)$ and $(\mathbf{x}_-, -1)$. Which of the following linear hypothesis $g_{LIN}(\mathbf{x}) = \mathrm{sign}(\mathbf{w}^T\mathbf{x} + b)$ (where \mathbf{w} does not include $b = w_0$) is equivalent to the hypothesis?

$$\mathbf{w} = 2(\mathbf{x}_{+} - \mathbf{x}_{-}), b = -\|\mathbf{x}_{+}\|^{2} + \|\mathbf{x}_{-}\|^{2}$$

$$\mathbf{w} = 2(\mathbf{x}_{-} - \mathbf{x}_{+}), b = -\mathbf{x}_{+}^{T}\mathbf{x}_{-}$$

none of the other choices

$$\mathbf{w} = 2(\mathbf{x}_{+} - \mathbf{x}_{-}), b = +\mathbf{x}_{+}^{T}\mathbf{x}_{-}$$

$$\mathbf{w} = 2(\mathbf{x}_{-} - \mathbf{x}_{+}), b = +||\mathbf{x}_{+}||^{2} - ||\mathbf{x}_{-}||^{2}$$

Question 7

Consider an RBF Network hypothesis for binary classification

$$g_{RBFNET}(\mathbf{x}) = \text{sign}(\beta_{+} \exp(-\|\mathbf{x} - \boldsymbol{\mu}_{+}\|^{2}) + \beta_{-} \exp(-\|\mathbf{x} - \boldsymbol{\mu}_{-}\|^{2}))$$

and assume that $\beta_+>0>\beta_-$. Which of the following linear hypothesis

 $g_{LIN}(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$ (where \mathbf{w} does not include $b = w_0$) is equivalent to $g_{RBFNET}(\mathbf{x})$?

$$\mathbf{w} = 2(\boldsymbol{\mu}_{+} - \boldsymbol{\mu}_{-}), b = \ln \left| \frac{\beta_{+}}{\beta_{-}} \right| - \|\boldsymbol{\mu}_{+}\|^{2} + \|\boldsymbol{\mu}_{-}\|^{2}$$

$$\bigcirc$$
 w = 2($\mu_{-} - \mu_{+}$), b = $\ln \left| \frac{\beta_{-}}{\beta_{+}} \right| + \|\mu_{+}\|^{2} - \|\mu_{-}\|^{2}$

none of the other choices

Question 8

2016/1/11 Course.

Assume that a full RBF network (page 9 of class 214) using RBF($\mathbf{x}, \boldsymbol{\mu}$) = [[$\mathbf{x} = \boldsymbol{\mu}$]] is solved for squared error regression on a data set where all inputs \mathbf{x}_n are different. What are the optimal coefficients $\boldsymbol{\beta}_n$ for each RBF(\mathbf{x}, \mathbf{x}_n)? $\|\mathbf{x}_n\|^2 y_n^2$ $\|\mathbf{x}_n\| y_n$ none of the other choices y_n^2 y_n

Question 9

Matrix Factorization

Consider matrix factorization of $\widetilde{d}=1$ with alternating least squares. Assume that the $\widetilde{d}\times N$ user factor matrix V is initialized to a constant matrix of 1. After step 2.1 of alternating least squares (page 10 of lecture 215), what is the optimal w_m , the $\widetilde{d}\times 1$ movie 'vector' for the m-th movie?

the	average	rating	of the	m-th	movie
LIIC	avciugo	rating	OI LIIC	111 LII	1110 110

- \bigcirc the total rating of the m-th movie
- \bigcirc the maximum rating of the m-th movie
- \bigcirc the minimum rating of the m-th movie
- none of the other choices

Question 10

Assume that for a full rating matrix R, we have obtained a perfect matrix factorization $R = V^T W$. That is, $r_{nm} = \mathbf{v}_n^T \mathbf{w}_m$ for all n, m. Then, a new user (N+1) comes. Because we do not have any information for the type of the movie she likes, we initialize her feature vector \mathbf{v}_{N+1} to $\frac{1}{N} \sum_{n=1}^{N} \mathbf{v}_n$, the average user feature vector. Now, our system decides to recommend her a movie m with the maximum predicted score $\mathbf{v}_{N+1}^T \mathbf{w}_m$. What would the movie be?

none	of the	other	choices

- the movie with the largest maximum rating
- the movie with the largest average rating
- the movie with the largest minimum rating

2016/1/11 Coursera

the movie with the smallest rating variance
J

Question 11

Experiment with Backprop neural Network

Implement the backpropagation algorithm (page 16 of lecture 212) for d-M-1 neural network with tanh-type neurons, **including the output neuron**. Use the squared error measure between the output $g_{NNET}(\mathbf{x}_n)$ and the desired y_n and backprop to calculate the per-example gradient. Because of the different output neuron, your $\delta_1^{(L)}$ would be different from the course slides! Run the algorithm on the following set for training (each row represents a pair of (\mathbf{x}_n, y_n) ; the first column is $(\mathbf{x}_n)_1$; the second one is $(\mathbf{x}_n)_2$; the third one is y_n):

hw4 nnet train.dat

and the following set for testing:

hw4_nnet_test.dat

Fix T = 50000 and consider the combinations of the following parameters:

- the number of hidden neurons M
- the elements of $w_{ij}^{(\ell)}$ chosen independently and uniformly from the range (-r,r)
- the learning rate η

Fix $\eta = 0.1$ and r = 0.1. Then, consider $M \in \{1, 6, 11, 16, 21\}$ and repeat the experiment for 500 times. Which M results in the lowest average E_{out} over 500 experiments?

 \bigcirc 21

 \bigcirc 11

 \bigcirc 6

 \bigcirc 16

 \bigcirc 1

Question 12

Following Question 11, fix $\eta=0.1$ and M=3. Then, consider $r\in\{0,0.1,10,100,1000\}$ and repeat the experiment for 500 times. Which r results in the lowest average E_{out} over 500 experiments?

 \bigcirc 0

O 10

 \bigcirc 100

 \bigcirc 1000

 \bigcirc 0.1

Question 13

Following Question 11, fix r=0.1 and M=3. Then, consider $\eta \in \{0.001, 0.01, 0.1, 1, 10\}$ and repeat the experiment for 500 times. Which η results in the lowest average E_{out} over 500 experiments?

- \bigcirc 1
- 0.001
- \bigcirc 0.1
- O 10
- 0.01

Question 14

Following Question 11, deepen your algorithm by making it capable of training a d-8-3-1 neural network with tanh-type neurons. Do not use any pre-training. Let r=0.1 and $\eta=0.01$ and repeat the experiment for 500 times. Which of the following is true about E_{out} over 500 experiments?

- $0.06 \le E_{out} < 0.08$
- $0.04 \le E_{out} < 0.06$
- none of the other choices
- $0.00 \le E_{out} < 0.02$
- $0.02 \le E_{out} < 0.04$

Question 15

Experiment with 1 Nearest Neighbor

Implement any algorithm that 'returns' the \$1\$ Nearest Neighbor hypothesis discussed in page 8 of lecture 214. $g_{\rm nbor}(\mathbf{x}) = y_m$ such that \mathbf{x} closest to \mathbf{x}_m

Run the algorithm on the following set for training:

hw4 knn train.dat

and the following set for testing:

hw4_knn_test.dat

Coursera
Which of the following is closest to $E_{in}(g_{nbor})$?
O.1
\bigcirc 0.0
O 0.2
O 0.3
O.4

Question 16

Following Question	15,	which	of the	following	is	closest	to	E_{out} ($(g_{\rm nbor})$?
--------------------	-----	-------	--------	-----------	----	---------	----	-------------	------------------	---

 \bigcirc 0.34

 \bigcirc 0.26

 \bigcirc 0.30

 \bigcirc 0.32

0.28

Question 17

Now, implement any algorithm for the k Nearest Neighbor with k=5 to get $g_{5\text{-nbor}}(\mathbf{x})$. Run the algorithm on the same sets in Question 15 for training/testing.

Which of the following is closest to $E_{in}(g_{5\text{-nbor}})$?

 \bigcirc 0.3

 \bigcirc 0.0

 \bigcirc 0.1

 \bigcirc 0.4

 \bigcirc 0.2

Question 18

Following Question 17, Which of the following is closest to $E_{\it out}(g_{\it 5-nbor})$

0.32

 \bigcirc 0.26

0.28			
0.34			
0.30			

Question 19

Experiment with k-Means

Implement the \$k\$-Means algorithm (page 16 of lecture 214). Randomly select k instances from $\{\mathbf{x}_n\}$ to initialize your $\boldsymbol{\mu}_m$ Run the algorithm on the following set for training:

hw4_kmeans_train.dat

and repeat the experiment for 500 times. Calculate the clustering E_{in} by $\frac{1}{N}\sum_{n=1}^{N}\sum_{m=1}^{M}[[\mathbf{x}_n\in S_m]]\|\mathbf{x}_n-\boldsymbol{\mu}_m\|^2$

as described on page 13 of lecture 214 for M=k.

For k=2, which of the following is closest to the average E_{in} of k-Means over 500 experiments?

0.:	5
0	

Question 20

For k=10, which of the following is closest to the average E_{in} of k-Means over 500 experiments?

1.5

O 1.0

0.5

O 2.0

O 2.5

□ In accordance with the Coursera Honor Code, I (Juan Tzu Chuan) certify that the answers here are my own work.

Submit Answers

Save Answers

2016/1/11 Coursera

You cannot submit your work until you agree to the Honor Code. Thanks!