2024~2025 **学年高三** 2 **月测评(福建)**• 数学 参考答案、提示及评分细则

题号	1	2	3	4	5	6	7	8
答案	A	В	С	В	В	D	A	С
题号	9	10	11					
答案	AD	ABD	ACD					

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.【答案】A

【解析】易知 $B = \{2,3\}$,所以 $A \cap B = \{2,3\}$,故选 A.

2.【答案】B

【解析】
$$z = \frac{3-i}{1+i} = \frac{(3-i)(1-i)}{(1+i)(1-i)} = \frac{2-4i}{2} = 1-2i$$
,所以 $|z| = \sqrt{5}$,故选 B.

3.【答案】C

【解析】两边平方可得, $a^2 + 2a \cdot b + b^2 = 4a^2 - 8a \cdot b + 4b^2$,所以 $a \cdot b = \frac{3}{5}$,cos $\theta = \frac{a \cdot b}{|a| \cdot |b|} = \frac{3}{5}$,故 sin $\theta = \frac{4}{5}$,故选 C.

4.【答案】B

【解析】设椭圆长轴为 2a,焦距为 2c,易知 $a-c=1.47\times10^8$, $a+c=1.52\times10^8$,解得 $2c=5.00\times10^6$,所以椭圆的焦距约为 5.00×10^6 km,故选 B.

5.【答案】B

【解析】因为 f(x) 在 R 上单调,且当 $x \le 2$ 时, f(x) = x - 2 单调递增, f(x) 在 R 上单调递增,则需满足 a > 1,

$$2^2-2a\geqslant 0$$
, 解得 $1 < a < \frac{3}{2}$,即 a 的取值范围是 $\left(1, \frac{3}{2}\right]$,故选 B. $2-2 \leq \log_a(2^2-2a)$,

6.【答案】D

【解析】由 $\sin(\alpha+\beta)=3\sin(\alpha-\beta)$ 可知, $\sin\alpha\cos\beta+\cos\alpha\sin\beta=3\sin\alpha\cos\beta-3\cos\alpha\sin\beta$,所以 $2\cos\alpha\sin\beta=\sin\alpha$ • $\cos\beta$,可得 $\tan\alpha=2\tan\beta$,设 $\tan\beta=m$,则 $\tan\alpha=2m$, $\tan\alpha=2m$, $\tan\alpha=\frac{1}{1+\tan\alpha\tan\beta}=\frac{m}{1+2m^2}\leqslant\frac{m}{2\sqrt{2}m}=\frac{\sqrt{2}}{4}$,当且仅当 $\tan\beta=\frac{\sqrt{2}}{2}$ 时,等号成立,故选 D.

7.【答案】A

【解析】在△ABC中,由余弦定理, $b^2 = a^2 + c^2 - 2ac\cos B = (a+c)^2 - 2ac(1+\cos B)$,即 $4 = 16 - 2ac(1+\cos B)$,整理得 $1 + \cos B = \frac{6}{ac} \geqslant \frac{24}{(a+c)^2} = \frac{3}{2}$,所以 $\cos B \geqslant \frac{1}{2}$,故 $0 < \sin B \leqslant \frac{\sqrt{3}}{2}$, $\frac{b}{\sin B} = 2R \geqslant \frac{4}{\sqrt{3}}$,所以 $R \geqslant 2R \geqslant \frac{4}{\sqrt{3}}$,所以 $R \geqslant 2R \geqslant \frac{4}{\sqrt{3}}$,所以 $R \geqslant 2R \geqslant \frac{4}{\sqrt{3}}$,所以 $R \geqslant 2R \geqslant \frac{4}{\sqrt{3}}$,所以 $R \geqslant 2R \geqslant \frac{4}{\sqrt{3}}$,所以 $R \geqslant 2R \geqslant \frac{4}{\sqrt{3}}$,所以 $R \geqslant 2R \geqslant \frac{4}{\sqrt{3}}$,所以 $R \geqslant 2R \geqslant 2R \geqslant \frac{4}{\sqrt{3}}$,所以 $R \geqslant 2R \geqslant 2R$,是有 $R \geqslant 2$

$$\frac{2}{\sqrt{3}}$$
,三棱锥 $P-ABC$ 的外接球的表面积的最小值为 $4\pi \left[\left(\frac{\sqrt{6}}{3} \right)^2 + \left(\frac{2}{\sqrt{3}} \right)^2 \right] = 8\pi$,故选 A.

8.【答案】C

【解析】设
$$|MN| = |OM| = m$$
,则 $|F_2N| = |NP| = m$,所以 $|F_2P| = 2m$, $|F_1P| = 4m$,因为 $|F_1P| - |F_2P| = 4m - 2m = 2a$,所以 $m = a$,即 $|F_2P| = 2a$, $|F_1P| = 4a$,在 $\triangle F_1PF_2$ 中,由勾股定理,有 $(4a)^2 + (2a)^2 = (2c)^2$,解得 $e = \frac{c}{a} = \sqrt{5}$,故选 C.

- 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
- 9.【答案】AD(全部选对得6分,选对1个得3分,有选错的得0分)

【解析】由
$$g(x) = f\left(x + \frac{\pi}{6}\right) = \sin\left(2x + \frac{2\pi}{3}\right), g(x)$$
的最小正周期为 π , A 选项正确;

由
$$2 \times \frac{5\pi}{6} + \frac{2\pi}{3} = \frac{7\pi}{3}$$
, $g(x)$ 的图象不关于直线 $x = \frac{5\pi}{6}$ 对称, B 选项错误;

当
$$0 \le x \le \frac{\pi}{2}$$
时, $\frac{2\pi}{3} \le 2x + \frac{2\pi}{3} \le \frac{5\pi}{3}$, 可得 $g(x)_{min} = -1$, C 选项错误;

函数
$$h(x) = g\left(x - \frac{\pi}{3}\right) = \sin\left[2\left(x - \frac{\pi}{3}\right) + \frac{2\pi}{3}\right] = \sin 2x$$
, 为奇函数, D 选项正确, 故选 AD.

10.【答案】ABD(全部选对得 6 分,选对 1 个得 2 分,选对 2 个得 4 分,有选错的得 0 分)

【解析】当 a=0 时, f(x)+f(-x)=2b, A 选项正确;

 $f'(x) = 3x^2 + 2ax - 1$,因为 $\Delta = 4a^2 + 12 > 0$,所以 $f'(x) = 3x^2 + 2ax - 1 = 0$ 有两个不相等的实数根,即 f(x) 恒有两个极值点,B 选项正确;

易知
$$x_1 + x_2 = -\frac{2a}{3}$$
, $x_1 x_2 = -\frac{1}{3}$, $|x_2 - x_1| = \sqrt{(x_1 + x_2)^2 - 4x_1 x_2} = \frac{2\sqrt{a^2 + 3}}{3} \geqslant \frac{2\sqrt{3}}{3}$, C 选项错误;

由 f(m) = f(n) (其中 m < n) 可知, $m^3 - m + b = n^3 - n + b$,

即
$$(m-n)(m^2+mn+n^2-1)=0$$
,所以 $m^2+mn+n^2-1=(m-n)^2+3mn-1=0$,

所以
$$(m-n)^2-1=-3mn \leqslant \frac{3(-m+n)^2}{4}$$
,

所以 $n-m \le 2$,D 选项正确;故选 ABD.

11.【答案】ACD(全部选对得 6 分,选对 1 个得 2 分,选对 2 个得 4 分,有选错的得 0 分)

【解析】当
$$n \ge 2$$
 时,由 $a_n = \frac{t}{Q_{n-1} + 1} = \frac{t}{t - a_{n-1} + 1}$,选项 A 正确;

由
$$n=1$$
 时, $Q_1+a_1=t$,可得 $a_1=\frac{t}{2}$,可得 $a_2=\frac{t}{3}$; $n=2$ 时, $\frac{t}{2}a_2+a_2=t$,代入 $a_2=\frac{t}{3}$,有 $\frac{t^2}{6}+\frac{t}{3}=t$,可得 $t=4$,故 B 选项错误;

当
$$t=2$$
 时, $a_1=1$, $a_n=\frac{2}{3-a_{n-1}}$, 所以 $a_n-1=\frac{a_{n-1}-1}{3-a_{n-1}}$, 因为 $a_1-1=0$, 所以 $a_2-1=0$, 所以

{a_n}为常数列,故选项 C 正确;

$$\frac{1}{Q_n} - \frac{1}{Q_{n-1}} = \frac{1}{t - a_n} - \frac{1}{t - a_{n-1}} = \frac{1}{t - \frac{t}{t - a_{n-1} + 1}} - \frac{1}{t - a_{n-1}} = \frac{1 - a_{n-1}}{t^2 - t a_{n-1}} (n \ge 2), 若数列 \left\{ \frac{1}{Q_n} \right\} 为 等差数列,则$$

$$\frac{1-a_{n-1}}{t^2-ta_{n-1}}$$
为常数 d ,

①若 d=0,则 $a_{n-1}=1(n\geq 2)$ 恒成立,即 $a_n=1(n\geq 1)$ 恒成立,所以 t=2;

②若
$$d \neq 0$$
,则 $1-a_{n-1} = dt^2 - dta_{n-1} (n \geq 2)$,所以 $\begin{cases} 1 = dt^2, \\ 1 = dt, \end{cases}$ 解得 $\begin{cases} t = 1, \\ d = 1, \end{cases}$

所以 t=1 或 t=2,故选项 D 正确;故选 ACD.

三、填空题:本题共3小题,每小题5分,共15分.

12.【答案及评分细则】0.136(5分,结果正确即给分)

【解析】易知 P(X<0)=P(X>2),所以 P(2<X<3)=P(X<0)+P(X<3)-1=1.136-1=0.136.

13.【答案及评分细则】9(5分,其他结果均不得分)

【解析】设
$$a+1=x>0$$
, $2-b=y>0$, 则 $\frac{1}{x}+\frac{1}{y}=\frac{1}{3}$, $a-b=x+y-3=3(x+y)\left(\frac{1}{x}+\frac{1}{y}\right)-3=3\left(\frac{y}{x}+\frac{x}{y}\right)-3\geqslant 9$. (当且仅当 $x=y=6$ 时,即 $a=5$, $b=-4$ 取"=")

14. 【答案及评分细则】(7,11) U(13,16](5分,结果正确即给分)

【解析】设
$$g(x) = \frac{f(x)}{e^x}$$
,则当 $x \in [0,3]$ 时, $g'(x) = \frac{f'(x) - f(x)}{e^x} > 0$,所以 $g(x)$ 在[0,3]上单调递增,

因为
$$g(-x) = \frac{f(-x)}{e^{-x}} = -\frac{f(x)}{e^x} = -g(x)$$
,所以 $g(x)$ 为奇函数,又 $g(3+x) = \frac{f(3+x)}{e^{3+x}} = \frac{f(3-x)}{e^{3-x}} = g(3-x)$,

所以
$$g(x)$$
关于 $x=3$ 对称, $g(5)=\frac{f(5)}{e^5}=\frac{1}{e}$,

由|g(x)|的对称性可知,|g(5)| = |g(7)| = |g(11)| = |g(13)| = |g(17)|.

由 $|f(x)| > e^{x-1}$ 可得, $|g(x)| > e^{-1}$,所以关于 x 的不等式 $|f(x)| > e^{1}$ 在区间[6,16]内的解集为(7,11) \cup (13,16].

四、解答题:本题共5小题,共77分,解答应写出必要的文字说明、证明过程及演算步骤,

15.【答案】(1)详见解析 (2) $\frac{\sqrt{3}}{6}$

(2)如图所示建立空间直角坐标系,

设平面 PCD 的法向量为 n = (x, y, z).

则有
$$\left\{ \begin{array}{l} \boldsymbol{n} \cdot \overrightarrow{CD} = 0, \\ \boldsymbol{n} \cdot \overrightarrow{PD} = 0, \end{array} \right.$$
 即 $\left\{ \begin{array}{l} -x + y = 0, \\ 2y - z = 0, \end{array} \right.$ 可取 $\boldsymbol{n} = (1, 1, 2),$ 11 分 \boldsymbol{b}

设 PB 与平面 PCD 所成角为 θ ,

则
$$\sin \theta = \frac{|\mathbf{n} \cdot \overrightarrow{PB}|}{|\mathbf{n}| \cdot |\overrightarrow{PB}|} = \frac{1}{\sqrt{6} \cdot \sqrt{2}} = \frac{\sqrt{3}}{6}$$
, 12 分

	所以 PB 与平面 PCD 所成角的正弦值为 $\frac{\sqrt{3}}{6}$
16.	【答案】(1)2 (2)(0,2e]
J	【解析及评分细则】 (1) 由 $f'(x)=\ln x+1-rac{a}{x}$,
	又由切线 l 在坐标轴上的截距相等, l 不过原点,可得 $f'(1)=1-a=-1$,
	故 a=2; ············ 5 分
	(2)令 $g(x) = x \ln x + e$,有 $g'(x) = \ln x + 1$,令 $g'(x) > 0$,有 $x > \frac{1}{e}$,
	可得函数 $g(x)$ 的减区间为 $\left(0,\frac{1}{e}\right)$,增区间为 $\left(\frac{1}{e},+\infty\right)$,
	可得 $g(x)_{\min} = \frac{1}{e} \ln \frac{1}{e} + e = e - \frac{1}{e} > 0$,
	①当 $0 < x \le 1$ 时, $\ln x \le 0$,有 $-a \ln x \ge 0$,可得 $f(x) \ge e - \frac{1}{e} > 0$;
	②当 $x>1$ 时, $f(x)\geqslant 0$ 恒成立,可化为 $a\leqslant \frac{x\ln x+e}{\ln x}$,
d,	$ \diamondsuit h(x) = \frac{x \ln x + e}{\ln x}, $
	又由函数 $\varphi(x)=x(\ln x)^2-\mathrm{e}(x>1)$ 单调递增,且 $\varphi(\mathrm{e})=0$,可得函数 $h(x)$ 的减区间为 $(0,\mathrm{e})$,增区间为
	$(e,+\infty)$,有 $h(x)_{min} = h(e) = 2e$,故 $a \le 2e$,
	由上知实数 a 的取值范围为(0,2e]. ····································
17.	【答案】(1)详见解析 (2)($2\sqrt{2}+2$, $2\sqrt{3}+2$)
1	【解析及评分细则】 (1) 由正弦定理, $\cos A = \frac{\sin B - \sin C}{2\sin C}$,所以 $2\sin C\cos A = \sin B - \sin C$ 1 分
	又 $A+B+C=\pi$,所以 $2\sin C\cos A=\sin(A+C)-\sin C$,
	所以 sin Acos C—cos Asin C=sin C,
	所以 sin C=sin(A-C), ······· 4 分
	因 $A,C \in (0,\pi)$,所以 $C=A-C$,即 $A=2C$; ····································
	(2)因为 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$,所以 $\frac{2}{\sin 2C} = \frac{c}{\sin C}$,
	所以 $c = \frac{1}{\cos C}$. 8分
	因为 $A=2C$,所以 $B=\pi-3C$,
	$0 < 2C < \frac{\pi}{2}$
	$: \triangle ABC$ 为锐角三角形, $: \left\{ 0 < \pi - 3C < \frac{\pi}{2}, : C \in \left(\frac{\pi}{6}, \frac{\pi}{4}\right), : \cos C \in \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}\right). \right\}$
	$0 < C < \frac{\pi}{2}$
	因为 $\cos A = \frac{b-c}{2c}$, $a=2$, 由余弦定理, $a^2-c^2=bc$,
	所以 $b = \frac{4}{c} - c$,则 $b + c = \frac{4}{c}$,且 $c = \frac{1}{\cos C} \in \left(\frac{2\sqrt{3}}{3}, \sqrt{2}\right)$,

【高三数学参考答案 第4页(共6页)】

FJ

所以 $\frac{4}{c} \in (2\sqrt{2}, 2\sqrt{3})$,即 $b+c \in (2\sqrt{2}, 2\sqrt{3})$.	
所以周长的取值范围为 $(2\sqrt{2}+2,2\sqrt{3}+2)$	分
18.【答案】(1)91.7 (2)(i) $\frac{1}{3}$ (ii)100 元	
【解析及评分细则】(1)由频率分布直方图可知,	
评分为[90,95)的节目的频率为1-(0.01+0.04+0.07+0.04+0.01)×5=0.15, 2	分
$: 90+5 \times \frac{0.85-0.80}{0.95-0.80} = \frac{275}{3} \approx 91.7, \dots \qquad 4$	分
: 估计所有参赛节目评分的第 85 百分位数为 91.7; ····································	分
(2)(i)评分在[90,95)的节目的频数为 40×0.15=6,	分
$\therefore f(p) = C_6^2 p^2 (1-p)^4 - 15 p^2 (1-p)^4, \dots 7$	分
$f'(p) = 15[2p(1-p)^4 - 4p^2(1-p)^3] = 30p(1-p)^3(1-3p), \dots 8$	分
: 0 时, $f'(p) > 0$, $f(p)$ 单调递增,	
当 $\frac{1}{3}$ < p <1 时, $f'(p)$ <0, $f(p)$ 单调递减,	
当 $p = \frac{1}{3}$ 时, $f(p)$ 取得极大值, … 10	分
$f(p)$ 的极大值点 $p_0 = \frac{1}{3}$;	分
(ii)设获得一等奖的节目数为随机变量 X ,总奖金为 Y 。	
易知, $X \sim B\left(6, \frac{1}{3}\right)$, $\therefore E(X) = 6 \times \frac{1}{3} = 2$,	分
设二等奖奖金为 a 元,则 $Y = 500X + a(6-X) = 6a + (500-a)X$,	分
∴ $E(Y) = 6a + (500 - a)E(X) = 1000 + 4a \le 1400$,解得 $a \le 100$,	分
: 二等奖奖金的最大值为 100 元. ······ 17	分
19.【答案】(1) $x^2 = 4y$ (2)(i)详见解析 (ii)详见解析	
【解析及评分细则】 (1) 抛物线 C 的准线方程为 $y=-\frac{p}{2}$,	分
所以 $ MF = y_0 + \frac{p}{2}$,	
所以 $y_0 + \frac{p}{2} = 1 + y_0$,解得 $p = 2$,	分
所以 C 的方程为 $x^2 = 4y$;	分
(2)(i)设 $M_n\left(x_n,\frac{x_n^2}{4}\right)$,因为 $y'=\frac{x}{2}$	
所以点 M_n 处的切线斜率为 $\frac{x_n}{2}$,所以直线 $M_n M_{n+1}$ 斜率为 $-\frac{2}{x_n}$,	分
所以直线 $M_n M_{n+1}: y - \frac{x_n^2}{4} = -\frac{2}{x_n}(x - x_n)$,	
与 $x^2 = 4y$ 联立可得, $\frac{x^2}{4} - \frac{x_n^2}{4} = -\frac{2}{x_n}(x - x_n) = \frac{(x - x_n)(x + x_n)}{4}$,	
可得 $x_{n+1} = -\frac{8}{x_n} - x_n$,即 M_{n+1} 的横坐标为 $-\frac{8}{x_n} - x_n$,	分
【高三数学参考答案 第 5 页(共 6 页)】	FJ