POTD 538

bob the legend

November 15, 2021

1. First possible method

Relating velocity of top and bottom cylinders

$$v_2 = v_1 \tan \theta \tag{1}$$

Relative velocity $v_{2,1}$ where $v_2 - v_{2,1} = v_1$

$$v_{2,1} = v_1 \sqrt{\tan^2 \theta - 1} \tag{2}$$

So to find rate of change of θ , just let $v_{2,1} = r \frac{d\theta}{dt}$ since $v_{2,1}$ always points in the tangential direction and rate of change of θ is essentially just angular velocity of the bottom cylinders around the top one? so we get:

$$\omega = \frac{v_1 \sqrt{\tan^2 \theta - 1}}{r} \tag{3}$$

differentiating both sides to get $\frac{d^2\theta}{dt^2}$

$$\frac{d^2\theta}{dt^2} = \frac{\sqrt{\tan^2\theta - 1}}{r} \frac{dv_1}{dt} + v_1 \frac{d(\sqrt{\tan^2\theta - 1})}{dt}$$
(4)

where $\frac{d\theta}{dt} = \omega$

so how to find dv_1/dt ? (just a_1 where a refers to acceleration) Write out F = ma for both the top and bottom

$$mg - 3N\sin\theta = ma_1$$
 (5) $N\cos\theta = ma_1\tan\theta$ (6)

Solving for a_1 gives us

$$a = \frac{g}{1 + 3\tan^2\theta} \tag{7}$$

Final solution for $\frac{d^2\theta}{dt^2}$

$$\frac{d^2\theta}{dt^2} = \frac{g}{1 + 3\tan^2\theta} \frac{\sqrt{\tan^2\theta - 1}}{r} + \frac{1}{2} (\tan^2\theta - 1)^{-\frac{1}{2}} 2\sec^2\theta \tan\theta r\omega^2$$
(8)