

Project SPIDER

Spiking Perception and processing for Intelligent Detection of pEdestrians on urban Roads

Team

Ertan Halilov, Julian Main, David Weiss, Cristian Axenie

Team

Ertan Halilov

Julian Main

David Weiss

Cristian Axenie

Project demo

Project report

Project datasets

Outline

- Challenge goal
- Solution overview
- Solution development and life-cycle
- Sensing and algorithmics
- Performance evaluation
 - Accuracy
 - Deployment and power budget
 - BOM and costs
- Deliverables and datasets

Goal

"Vision Zero" as a street safety policy that strives for the elimination of traffic fatalities for all transportation modes.

McKee Road & Jackson Avenue, San Jose, California

Tully Road & La Ragione Avenue, San Jose, California

Cost effective and accurate solutions are needed to detect pedestrians during the day and especially at nighttime to implement safety measures. Solutions need to have a very good energy footprint, robustness, and a budget that allows scaling to city level.

Solution overview

End-to-end pipeline - System hardware

Thanks Brainchip Inc.!

Thanks Neurocomputing Lab, KTH Stockholm, Sweden!

Solution overview

Model life-cycle module 1. Object Detection FOMO (Faster Objects, More Objects) MobileNetV2 0.35 2. Event-based Expectation Maximization EDGE IMPULSE | Page |

Data pre-processing module

System deployment (Event-based EM)

2. Event-based Expectation Maximization

Deployment for inference/online-learning on Akida DevKit with RasPi Deployment for inference/online-learning on the DVS board MCU

System deployment (SNN)

1. Object Detection FOMO (Faster Objects, More Objects) MobileNetV2 0.35

Deployment for inference in Brainchip Akida DevKit Board with RasPi

Soiking Neural News

Debloyment based Maximitation

Solution development and life-cycle

Approach

Sensing

Neuromorphic vision sensor(eDVS - embedded Dynamic Vision Sensor)

- individual sensor pixels react independently to changes in light intensity
- individual sensor pixels spike asynchronously
- spikes (events) contains information about its position, polarity, and a timestamp

Dataset 1 sample – intersection (Nuremberg)

Dataset 2 sample – wide street (Nuremberg)

Dataset 3 sample – wide street at night (Munich)

Ωhm

Approach

Sensing

Approach

• Algorithmics – MobileNetv2 Conv Net, Spiking Neural Network (SNN)

Demo - Spiking Neural Network (SNN)

```
wxrwxrwx 6 ubuntu ubuntu 4096 Aug 6 14:43 wxrwxrwx 1 bcdev bcdev 32457606 Aug 6 14:41 neurohm-pedestrian-tracker-dag-module-code.zip*
rwxrwxrwx 1 ubuntu ubuntu 1996048 Jun 27 17:52 spider-demo-event-based-dataset-video.avi*
rwxrwxrwx 1 bcdev bcdev 4153564 Jun 27 17:52 spider-demo-event-based-dataset-video2.avi*
                              4096 Aug 4 18:38 templates/
Irwxrwxr-x 3 bcdev bcdev
lrwxr-xr-x 2 ubuntu ubuntu
                             4096 Aug 1 13:15 tflite-model/
venv akida) ubuntu@ubuntu:/home/bcdev/venv akida/bin/neurohmS vim neurohm-event-based-pedestrian-detector.py
venv akida) ubuntu@ubuntu:/home/bcdev/venv akida/bin/neurohmS
venv akida) ubuntu@ubuntu:/home/bcdev/venv akida/bin/neurohm$
venv akida) ubuntu@ubuntu:/home/bcdev/venv akida/bin/neurohm$ cd neurohm-pedestrian-tracker-dag-module-code/
venv akida) ubuntu@ubuntu:/home/bcdev/venv_akida/bin/neurohm/neurohm-pedestrian-tracker-dag-module-code$ ll
otal 208
Irwxrwxrwx 6 ubuntu ubuntu 4096 Aug 6 14:43
rwxrwxr-x 7 bcdev bcdev 4096 Aug 6 14:43 ../
rwxrwxrwx 1 ubuntu ubuntu 1614 Jun 6 09:10 CMakeLists.txt*
rwxrwxrwx 1 ubuntu ubuntu 13289 Aug 6 14:40 CMakeLists.txt.user*
rwxrwxrwx 1 ubuntu ubuntu 12258 Jun 6 09:09 CMakeLists.txt.user.7d0a13c.4.8-pre1*
rwxrwxrwx 1 ubuntu ubuntu 12347 Mar 1 2017 CMakeLists.txt.user.981edac*
rwxrwxrwx 1 ubuntu ubuntu 17226 May 2 2016 Makefile*
rwxrwxrwx 1 ubuntu ubuntu 244 Jun 29 14:23 README.md*
Irwxrwxr-x 4 ubuntu ubuntu 4096 Aug 7 15:17 build/
rwxrwxrwx 2 ubuntu ubuntu 4096 Aug 6 10:44
rwxrwxrwx 1 ubuntu ubuntu 114156 Aug 6 14:39 logo.svg*
rwxrwxrwx 2 ubuntu ubuntu 4096 Aug 2 17:38
rwxrwxrwx 3 ubuntu ubuntu 4096 Aug 7 15:17
venv akida) ubuntu@ubuntu:/home/bcdev/venv akida/bin/neurohm/neurohm-pedestrian-tracker-dag-module-codeS
venv akida) ubuntu@ubuntu:/home/bcdev/venv akida/bin/neurohm/neurohm-pedestrian-tracker-dag-module-code$
venv akida) ubuntu@ubuntu:/home/bcdev/venv akida/bin/neurohm/neurohm-pedestrian-tracker-dag-module-code$
venv akida) ubuntu@ubuntu:/home/bcdev/venv akida/bin/neurohm/neurohm-pedestrian-tracker-dag-module-code$
venv_akida) ubuntu@ubuntu:/home/bcdev/venv_akida/bin/neurohm/neurohm-pedestrian-tracker-daq-module-code$ cat README.md
Neurotracker #
Jeuromorphic vision sensor (DVS) tracking system for pedestrian detection and tracking in urban scenarios. Using the event-based vision framework for detecting and tracking pedestrians, bikers, and other traffic
venv akida) ubuntu@ubuntu:/home/bcdev/venv akida/bin/neurohm/neurohm-pedestrian-tracker-daq-module-code$
venv akida) ubuntu@ubuntu:/home/bcdev/venv akida/bin/neurohm/neurohm-pedestrian-tracker-dag-module-code$
veny akida) ubuntu@ubuntu:/home/bcdev/veny akida/bin/neurohm/neurohm-pedestrian-tracker-dag-module-codeS cd ...
venv akida) ubuntu@ubuntu:/home/bcdev/venv akida/bin/neurohmS ll
otal 37868
Irwxrwxr-x 7 bcdev bcdev
                              4096 Aug 6 14:43 ./
lrwxr-xr-x 3 bcdev bcdev
                              4096 Aug 4 15:05 ../
rw-r--r-- 1 ubuntu ubuntu
                              458 Aug 1 13:15 CMakeLists.txt
rw-r--r-- 1 ubuntu ubuntu
                              1871 Aug 1 13:15 README.txt
lrwxr-xr-x 9 ubuntu ubuntu
                              4096 Aug 1 13:15 edge-impulse-sdk/
rwxr-xr-x 2 ubuntu ubuntu
                              4096 Aug 1 13:15 model-parameters/
rw-r--r-- 1 ubuntu ubuntu 113875 Aug 1 13:15 neurohm-akida-fomo-event-based.fbz
rw-rw-r-- 1 ubuntu ubuntu
                             7828 Aug 7 15:34 neurohm-event-based-pedestrian-detector.pv
                              4096 Aug 6 14:43
rwxrwxrwx 6 ubuntu ubuntu
rwxrwxrwx 1 bcdev bcdev 32457606 Aug 6 14:41 neurohm-pedestrian-tracker-dag-module-code.zip*
rwxrwxrwx 1 ubuntu ubuntu 1996048 Jun 27 17:52 spider-demo-event-based-dataset-video.avi*
minimum a bodon bodon darrared him on any arriva desired from board district indiana boda
```

Approach

Algorithmics – Event-based Expectation Maximization (EM)

Adding a prediction model

- $\dot{\theta} = \frac{\Delta \theta}{\Delta t}$ (for each body segment) Future centers:

$$\begin{split} c_b(t+T) &= \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ c_r(t+T) &= c_r(t) + T \begin{bmatrix} -\dot{\theta}_b \sin(\theta_b) \\ \dot{\theta}_b \cos(\theta_b) \end{bmatrix} \end{split}$$

$$c_y(t+T) = c_y(t) + T \begin{bmatrix} -\dot{\theta}_b \sin(\theta_b) - \dot{\theta}_r \sin(\theta_r) \\ \dot{\theta}_b \cos(\theta_b) + \dot{\theta}_r \cos(\theta_r) \end{bmatrix}$$

· Future angles: $\theta(t+T) = \theta(t) + T\dot{\theta}$ (for each body segment)

Event membership allocation

Embedding physics in the Expectation Maximization

Demo - Event-based Expectation Maximization (EM)

```
buntu@ubuntu:/home/bcdev/venv_akida/bin/neurohm/neurohm-pedestrian-tracker-daq-module-code/build$ ll
otal 7988
rwxrwxr-x 4 ubuntu ubuntu
                            4096 Aug 7 15:48 ./
                            4096 Aug 6 14:43 1 /
rwxrwxrwx 6 ubuntu ubuntu
rw-rw-r-- 1 ubuntu ubuntu 14786 Aug 6 14:44 CMakeCache.txt
|rwxrwxr-x 6 ubuntu ubuntu 4096 Aug 7 16:02 CMakeFiles/
rw-rw-r-- 1 ubuntu ubuntu 18716 Aug 6 14:44 Makefile
rw-rw-r-- 1 ubuntu ubuntu 1611 Aug 6 14:44 cmake install.cmake
rw-rw-r-- 1 ubuntu ubuntu 20405 Aug 6 14:44 compile_commands.json
rwxrwxr-x 1 ubuntu ubuntu 8099224 Aug 7 15:48 dvstracker*
|rwxrwxr-x 4 ubuntu ubuntu 4096 Aug 7 15:46 dvstracker_autogen/
buntu@ubuntu:/home/bcdev/venv akida/bin/neurohm/neurohm-pedestrian-tracker-dag-module-code/buildS make
 6%] Automatic MOC for target dystracker
 6%] Built target dystracker autogen
100%] Built target dystracker
buntu@ubuntu:/home/bcdev/venv akida/bin/neurohm/neurohm-pedestrian-tracker-daq-module-code/build$
buntu@ubuntu:/home/bcdev/venv_akida/bin/neurohm/neurohm-pedestrian-tracker-dag-module-code/build$
buntu@ubuntu:/home/bcdev/venv_akida/bin/neurohm/neurohm-pedestrian-tracker-dag-module-code/build$
buntu@ubuntu:/home/bcdev/venv_akida/bin/neurohm/neurohm-pedestrian-tracker-dag-module-code/build$ ./dvstracker
```

Performance

Spiking Neural Network

Quantitative evaluation

Qualitative evaluation

Detection: 1 pedestrian and 1 bicyclist

Detection: 2 pedestrians

Performance

• Event-based Expectation Maximization *Quantitative evaluation*

	BACKGROUND	BICYCLIST	PEDESTRIAN
BACKGROUND	99.9%	0.0%	0.0%
BICYCLIST	15.2%	84.8%	0%
PEDESTRIAN	16.8%	0%	83.2%
F1 SCORE	1.00	0.73	0.86

Qualitative evaluation

Bicyclist detection

Pedestrian detection

Deployment evaluation

Power consumption analysis

Measurement setup

Camera pointing to a screen with recorded traffic data

Deployment

RaspberryPi Event-based Expectation Maximization

Deployment

Akida Spiking Neural Networks in Event data

Deployment evaluation

Weatherization and operational analysis

Events visualizer on edge device

Edge device: Brainchip Akida RaspberryPi board and event-based neuromorphic camera

Complete BOM and costs

Bill of Materials (BOM) Single unit & suggested price for large quantities			
Component	Price	Notes	
Raspberry PI Compute Module 4 IO Board with RPI CM4Lite	50 \$	Price pro unit sold independently from the Brainschip Akida PCIexpress board (see below). https://www.reichelt.de/de/de/raspberry-pi-compute-modul-4-io-board-rpi-c m4-io-board-p290556.html	
Brainchip Akida AKD1000 PCIexpress Board	499 \$	Price pro unit sold independently from the IO board/carried board. https://shop.brainchipinc.com/products/akida%E2%84%A2-development-kit -pcie-board	
IniVation Dynamic Vision Sensor	2500 \$	Price per unit, with up to 50 \$ if large quantities purchased. https://shop.inivation.com/collections/dvxplorer-lite-1/products/dvxplorer-lite-commercial-rate	
USB to miniUSB cable	1 \$ (1m long USB cable) – 26 \$ (5m long USB cable with signal amplifier)	Length of the cable depends on the gantry layout, we have tried with 1m long USB cable and also with signal amplification 5m long USB cable. https://www.conrad.de/de/p/delock-usb-kabel-usb-3-2-gen1-usb-3-0-usb-3-1-gen1-usb-a-stecker-usb-a-buchse-5-00-m-rot-schwarz-vergoldete-steckk ontakte-ul-zertifiziert-82755-649883.html	
Total	3076 \$	Price per unit. When more units are bought a total price of approx. 226 \$ for a price per unit 100 \$ for Akida Chip, 50 \$ for RaspberryPl boards, 50 \$ for DVS camera, and long USB cable 26 \$.	

Best price ~226\$

Worst price ~3000\$

Deliverables

• **Datasets** release

Dataset location

- · 4 lanes (4 per direction) wide street
- Location: https://goo.gl/maps/JaYGwaTaBHj5H6SL9
- · 50 kmh (urban) speed limit
- Near university campus with Pedestrians (people walking), Bicyclists (people biking, scooting, rolling, etc.)
- · Ideal Operating Environment

Dataset location 2

- 8 lanes (4 per direction) wide street
- Location: https://goo.gl/maps/jar6AjysZiM2LP5S7
- · 50 kmh (urban) speed limit
- Near main train stations of the city and a location with Pedestrians (people walking/running/jogging), Bicyclists (people biking, scooting, rolling, etc.)

Dataset location 3

- 6 lanes (3 per direction) wide street on bridge
- Location: https://goo.gl/maps/SEEsmpgmLPcD8fG7A
- . 50 kmh (urban) speed limit
- Near ring street of Munich and a location with Pedestrians (people walking/running/jogging), Bicyclists (people biking, scooting, rolling, etc.)
- Night time data acquisition

Project demo

• Code release

Model life-cycle and data analysis

Accurate TinyML algorithms

Project report

Project datasets

Solution release

Minimal energy footprint

DeploymentRaspberryPi Event-based Expectation Maximization

Feasible deployment

Wrap-up

Project SPIDER is a TinyML solution for supporting VisionZero pedestrian detection

- uses low-power neuromorphic sensing and processing
 - the Brainchip Akida system with a DVS event camera consumes between **4W** and **7W** when processing camera data onsite (with SNN or EM, respectively). Conventional real-time vision processing systems (data centers) require specialized GPUs operating at around **400W** per high-speed camera. The neuromorphic design enables at least a **100-fold power reduction**; per expected 100 million devices, this continuously saves 40GW, given 100×10^6 units $\times (400 \text{ W} 4 \text{ W}) = 39.6 \text{ GW}$.
- employs only local processing (at the edge)
 - on-site pre-processing reduces transmitted data from about **30MB/s** in conventional systems to **300B/s**, a **10,000-fold data rate reduction**, 25 bytes per object (8 for time, 16 for coordinates, 1 for class), 10-12 objects are detected per second: $25 \times 12 = 300B$.
- provides good accuracy for robust visual detection under varying conditions