

Laboratório de Sistemas Embarcados e Distribuídos

Aritmética Computacional Parte III

Revisão	Data	Responsável	Descrição
0.1	03/2016	Prof. Cesar Zeferino	Primeira versão
0.2	04/2017	Prof. Cesar Zeferino	Atualização do modelo

Observação: Este material foi produzido por pesquisadores do Laboratório de Sistemas Embarcados e Distribuídos (LEDS – Laboratory of Embedded and Distributed Systems) da Universidade do Vale do Itajaí e é destinado para uso em aulas ministradas por seus pesquisadores.

- Objetivo
 - Conhecer a representação em formato de ponto flutuante
- Conteúdo
 - Representação em ponto flutuante
 - Operações em ponto flutuante

Bibliografia

- □ PATTERSON, David A.; HENNESSY, John L. Abstrações e tecnologias computacionais. *In*: ______. **Organização e projeto de computadores**: a interface hardware/software. 4. ed. Rio de Janeiro: Campus, 2014. cap. 3. Disponível em: <<u>http://www.sciencedirect.com/science/article/pii/B9788535235852000032</u>>. Acesso em: 25 abr. 2017.
- Edições anteriores
 - Patterson & Hennessy (2000, p. 160-172)
 - □ Patterson & Hennessy (2005, p. 142-158)

Números reais

$$3,141159265_{dez}$$
 (π)
 $0,00000001_{dez} = 1,0_{dez} \times 10^{-9}$ (segundos em um nanossegundo)
 $3.155.760.000_{dez} = 3,15576_{dez} \times 10^{9}$ (segundos em um século)

Notação Científica

Notação científica normalizada

- Apenas um dígito (diferente de 0) à esquerda do ponto decimal
- Exemplos

$$1,0_{dez} \times 10^{-9}$$
 Normalizado
 $0,1_{dez} \times 10^{-8}$ Não Normalizado
 $10,0_{dez} \times 10^{-10}$ Não Normalizado

- Notação científica normalizada em binário
 - Apenas um dígito à esquerda do ponto "binário"
 - Exemplo

```
1,xxxxxxxxx_{dois} \times 2^{yyyyyy}
```

Representação em ponto flutuante

$$(-1)^s \times F \times 2^E$$

- Onde
 - s: sinal (0: positivo, 1: negativo)
 - □ F: mantissa
 - E: expoente
- Padrão IEEE 754
 - Utilizado em quase todos os computadores
 - A mantissa armazena apenas a parte fracionária
 - Assume que o dígito à esquerda da vírgula é igual a 1

$$(-1)^s \times (1 + F) \times 2^E$$

 \bigcirc O número 0 é indicado fazendo E=0

□ Precisão simples (float)

- 8 bits para o expoente
- 23 bits para a mantissa

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
S			ex	ро	er	ite												n	nai	nti	SS	a									

- Intervalo de representação: [2,0_{dez} x 10⁻³⁸ , 2,0_{dez} x 10⁺³⁸]
- Operações aritméticas podem resultar em números fora desse intervalo.
 - □ Se menor: *underflow*
 - Se maior: overflow

- □ Precisão dupla (double)
 - 11 bits para o expoente
 - 52 bits para a mantissa

□ Intervalo de representação: [2,0_{dez} x 10⁻³⁰⁸ , 2,0_{dez} x 10⁺³⁰⁸]

□ Porque o expoente é colocado antes da mantissa?

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
S			ex	ро	er	ıte												n	na	nti	SS	a									

□ Para agilizar as comparações em ordenações

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0 (0 () C	0	0	0	0	0	0	0	0	0	1

é maior que

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0 (0 () (0	0	0	0	0	0	0	0	0	1

porque o seu expoente é maior

- Mas como comparar quando os expoentes são negativos?
- Quem é maior?

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0	0	0	0	0	0	0	1

ou

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0 () C	0	0	0	0	0	0	0	0	0	1

- Solução: uso de notação com peso
- □ IEEE 754 usa o peso 127 para precisão simples
 - Expoente com peso = 127 + Expoente original, ou seja
 - Expoente –1 é representado como 126
 - Expoente 0 é representado como 127
 - Expoente +1 é representado como 128
- Representação

$$(-1)^s \times (1 + Mantissa) \times 2^{(Expoente - Peso)}$$

IEEE 754 usa o peso 1.023 para precisão dupla

Potências de 2

$$2^{3}_{(dez)} = 8_{(dez)} = 1000_{(dois)}$$

$$2^{2}_{(dez)} = 4_{(dez)} = 0100_{(dois)}$$

$$\square$$
 $2_{(dez)}^1 = 2_{(dez)}^1 = 0010_{(dois)}^1$

$$2^{0}_{(dez)} = 1_{(dez)} = 0001_{(dois)}$$

$$2^{-1}_{(dez)} = 0.5000_{(dez)} = 0.1000_{(dois)}$$

$$2^{-2}_{(dez)} = 0.2500_{(dez)} = 0.0100_{(dois)}$$

$$2^{-3}_{(dez)} = 0.1250_{(dez)} = 0.0010_{(dois)}$$

$$2^{-4}_{(dez)} = 0.0625_{(dez)} = 0.0001_{(dois)}$$

Exemplos

$$8.5_{(dez)} = 8_{(dez)} + 0.5_{(dez)} = 1000_{(dois)} + 0.1000_{(dois)} = 1000.1000_{(dois)}$$

$$10,375_{(dez)} = 10_{(dez)} + 0,25_{(dez)} + 0,125_{(dez)}$$

= $1010_{(dois)} + 0,0100_{(dois)} + 0,0010_{(dois)} = 1010,0110_{(dois)}$

■ Exercícios: Represente os números abaixo como ponto flutuante de precisão simples no padrão IEEE 754

(a) +
$$1,0_{(dez)}$$

(b) +
$$1.5_{(dez)}$$

(c)
$$+ 2.75_{(dez)}$$

(d)
$$-9,4375_{(dez)}$$

(e) +
$$14,1875_{(dez)}$$

(f)
$$-255,5_{(dez)}$$

Exercícios: Represente os números abaixo como ponto flutuante de precisão simples no padrão IEEE 754

■ Exercícios: Represente os números abaixo como ponto flutuante de precisão simples no padrão IEEE 754

- Exercícios: Obtenha o equivalente decimal dos seguintes números representados em ponto flutuante com precisão simples no padrão IEEE 754
- (a) 0 10000000 11110000...0000
- (b) 1 10000001 10101000...0000
- (c) 0 01111110 01100000...0000

Exercícios: Obtenha o equivalente decimal dos seguintes números representados em ponto flutuante com precisão simples no padrão IEEE 754

(a) 0 10000000 11110000...0000

$$(-1)^0 \times (1 + 0, 1111) \times 2^{(128-127)} = 1,1111 \times 2^1 = 11,111 = 3,875_{(dez)}$$

(b) 1 10000001 10101000...0000

$$(-1)^1 \times (1 + 0, 10101) \times 2^{(129-127)} = -1,10101 \times 2^2 = 110,101 = -6,625 (dez)$$

(c) 0 01111110 **011**00000...0000

$$(-1)^0 \times (1 + 0,011) \times 2^{(126-127)} = 1,011 \times 2^{-1} = 0,1011 = 0,6875_{(dez)}$$

- Como funciona no sistema decimal?
- \square Exemplo: $9,999_{(dez)} \times 10^{1} + 1,610_{(dez)} \times 10^{-1}$
- Restrições
 - Só pode armazenar 04 dígitos da mantissa
 - Só pode armazenar 02 dígitos do expoente

Passo 1 – Alinhar o ponto decimal

$$1,610_{(dez)} \times 10^{-1} = 0,1610_{(dez)} \times 10^{0} = 0,0161_{(dez)} \times 10^{1}$$

Como só pode armazenar 4 dígitos: 0,016_(dez)x10¹

Passo 2 – Somar as mantissas

$$10,015_{(dez)}$$

 Passo 3 – Normalizar a soma e verificar a ocorrência de overflow

$$10,015_{(dez)} \times 10^1 = 1,0015_{(dez)} \times 10^2$$

Passo 4 – Arredondar o número

$$1,0015_{(dez)} \times 10^2 = 1,002_{(dez)} \times 10^2$$

Se o resultado não estiver normalizado, retornar ao Passo 3

\$f2 = \$f4 + \$f6

\$f2 = \$f4 + \$f6

\$f2 = \$f4 - \$f6

\$f2 = \$f4 - \$f6

2 Adição e subtração em ponto flutuante

Adição de

Adição de

precisão

simples

precisão dupla

Subtração de

Subtração de

precisão dupla

precisão

simples

Aritmética

Para suportar instruções em ponto flutuante, o MIPS possui um coprocessador (CP1) com 32 registradores de ponto flutuante: \$f0 a \$f31

□ Instruç Categoria	Instrução	a e subtração Exemplo	Significado
- -	~~~~		

add.s \$f2, \$f4, \$f6

add.d \$f2, \$f4, \$f6

sub.s \$f2, \$f4, \$f6

sub.2 \$f2, \$f4, \$f6

 Instruções especiais para transferência de dados com os registradores do Coprocessador 1

Categoria	Instrução	Exemplo	Significado
Transferência	Carga	lwc1 \$f1, 100 (\$s2)	\$f1 = Mem[\$s2+100]
de dados	Armazenamento	swc1 \$f1, 100 (\$s2)	Mem[\$s2+100] = \$f1

□ Instruções especiais para desvio e comparação

Categoria	Instrução	Exemplo	Significado
	Desvio em FP verdadeiro	bclt 25	Se (cond == 1) vá para PC = PC + 4 + 100
Desvio	Desvio em FP falso	bclf 25	Se (cond == 0) vá para PC = PC + 4 + 100
condicional	Comparação FP precisão simples (eq, ne, lt, le, gt, ge)	c.lt.s \$f2, \$f4	Se (\$f2 < \$f4) cond = 1 Senão cond = 0
	Comparação FP dupla precisão (eq, ne, lt, le, gt, ge)	c.lt.d \$f2, \$f4	Se (\$f2 < \$f4) cond = 1 Senão cond = 0