MATEMÁTICA DISCRETA E ÁLGEBRA LINEAR - 1.º Ano

2014/2015

ESI Exame de Recurso

Época Contínua Semestral 1º Teste	2º Teste	⊠ Global	
Duração: 2 h 00 m	Tolerância:	minutos	☐ Com Consulta☐ Sem consulta
Docente: Teresa Abreu			Data: 2 / 2 / 2015

Notas:

- Apresente todos os cálculos e justificações convenientes.
- No final da prova deve numerar e indicar o número de folhas de exame que entregar. Deve entregar todas as folhas de rascunho que utilizou.
- 1. Considere a proposição $P: \neg[(p \Rightarrow q) \land \neg q] \lor p$.
 - a) Usando tautologias adequadas, simplifique a proposição P
 - b) Verifique se a proposição P é logicamente equivalente a $p \vee q$.
- 2. Relativamente a um argumento sabe-se que:

Premissas:
$$P_1: q \Rightarrow \neg s$$

$$P_2: m \Rightarrow p$$

$$P_3: (p \land \neg q) \Rightarrow f$$

$$P_4: m \land s$$

Conclusão: f

Mostre, justificando todos os passos, que o argumento é válido.

- 3. Os muçulmanos não se limitam aos países de etnia árabe, como muitos imaginam. Por exemplo, a maior concentração de muçulmanos do mundo encontra-se na Indonésia, que não é um país de etnia árabe. Também há muitos árabes cuja religião é o cristianismo e o judaísmo, não sendo por isso muçulmanos. Escreva em linguagem simbólica a seguinte afirmação: "nem toda pessoa que é muçulmana é árabe".
- 4. Considere os seguintes conjuntos:

$$A = \{x : x \in o \text{ presidente do Oceano Atlântico}\}$$

$$B = \{91,93,96\}$$

$$C = \{x \in \mathbb{N}: x < 96\}$$

Determine:

- a) $\# C \cap B$.
- b) $P(B)\backslash A$.
- 5. Considere o conjunto $A = \{1,2,3,4,5\}$ e seja R uma relação definida em A, tal que:

$$R = \{(1,1), (2,2), (3,3), (4,4), (5,5), (2,1), (4,5), (2,3), (4,1)\}$$

- a) Mostre que R é uma relação de ordem parcial, mas não é uma relação de ordem total.
- b) Indique os elementos maximais e minimais e diga, justificando, se são máximos ou mínimos.

ESI Exame de Recurso

6. Considere as seguintes matrizes:

$$A = \begin{bmatrix} 3 & 0 & 3 & 0 \\ 0 & 0 & 3 & 3 \end{bmatrix}; B = \begin{bmatrix} 2 & 5 & -2 & 0 \\ 5 & 4 & 1 & 2 \\ -2 & 1 & 8 & 5 \\ 0 & 2 & 5 & 0 \end{bmatrix}.$$

- a) Num referencial cartesiano, construa a figura representada pela matriz A.
- b) Indique a matriz T tal que, se adicionada à matriz A, representa uma translação da figura anterior associada ao vetor $u = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.
- c) Calcule $A \times B$.
- d) Indique duas designações possíveis a atribuir à matriz B.

7. Considere o seguinte sistema de equações lineares:

$$\begin{cases} x + 2y - z - w = 0 \\ x + 2y + w = 4 \\ -x - 2y + 2z + 4w = 5 \end{cases}$$

- a) Resolva o sistema de equações lineares pelo método de eliminação de Gauss e classifique-o.
- b) Indique a caraterística da matriz ampliada do sistema de equações lineares.
- 8. Considere a matriz $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 3 & 4 & 3 \end{bmatrix}$.
 - a) Resolva a equação $|xI_3 A| = 0$.
 - b) Recorrendo ao cálculo da matriz adjunta, determine A^{-1} .

9. Calcule a área do seguinte triângulo segundo a aplicação dos determinantes:

- 10. Considere o conjunto $H = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \colon x z = 0 \right\}.$
 - a) Mostre que o conjunto H é um subespaço vetorial de \mathbb{R}^3 .
 - b) Indique uma base de H e descreva-o geometricamente.
- 11. Considere os seguintes vetores de \mathbb{R}^4 : $u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$; $u_2 = \begin{bmatrix} 1 \\ 3 \\ 0 \\ 0 \end{bmatrix}$; $u_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$ e $u_4 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$,
 - a) Determine $\langle u_1, u_2, u_3, u_4 \rangle$.
 - b) O sistema de vetores $S = \{u_1, u_2, u_3, u_4\}$ forma uma base de \mathbb{R}^4 ? Justifique.