Pandas

- Pandas is a Python library used for working with data sets.
- It has functions for analyzing, cleaning, exploring, and manipulating data.
- The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.

```
In [1]: import pandas as pd
        mydataset = {"cars": ["BMW", "Volvo", "Ford"], "passings": [3, 7, 2]}
        mydf = pd.DataFrame(mydataset)
        print(mydf)
           cars passings
            BMW
                         3
                         7
       1 Volvo
                         2
       2
          Ford
In [2]: mydf["passings"]
Out[2]: 0
              3
              7
         1
              2
         2
         Name: passings, dtype: int64
        A Pandas Series is like a column in a table.
        It is a one-dimensional array holding data of any type.
In [3]: a = [1, 7, 2]
        myvar = pd.Series(a)
        print(myvar)
            1
       0
       1
            7
       2
            2
       dtype: int64
In [4]: # access the first element
        print(myvar[0])
       1
In [5]: # with defined index
        a = [1, 7, 2]
        myvar = pd.Series(a, index=["x", "y", "z"])
        print(myvar)
            1
            7
       У
            2
       dtype: int64
In [ ]: # access the element with index label
        print(myvar["y"])
```

```
In [6]: # create a series from a dictionary where the keys will be used as index
         calories = {\text{"day1": 420, "day2": 380, "day3": 390}}
         myvar = pd.Series(calories)
         print(myvar)
        day1
                420
        day2
                380
        day3
                390
        dtype: int64
 In [7]: # create a Series using only data from "day1" and "day2"
         calories = {\text{"day1": 420, "day2": 380, "day3": 390}}
         myvar = pd.Series(calories, index=["day1", "day2"])
         print(myvar)
        day1
                420
        day2
                380
        dtype: int64
In [10]: data = {"calories": [420, 380, 390], "duration": [50, 40, 45]}
         # df = pd.DataFrame(data)
         df = pd.DataFrame(data, index=["day1", "day2", "day3"])
         print(df)
              calories duration
                   420
                               50
        day1
                   380
        day2
                               40
        day3
                   390
                               45
In [12]: # loc uses named index
         # print(df.loc[0])
         print(df.loc["day1"])
        calories
                     420
        duration
                     50
        Name: day1, dtype: int64
In [13]: # to include multiple rows
         # print(df.loc[[0, 1]])
         print(df.loc[["day1", "day2"]])
              calories duration
                   420
                               50
        day1
        day2
                   380
                               40
In [14]: | # iloc for using indexes instead of labels
         df = pd.DataFrame(data, index=["day1", "day2", "day3"])
         print(df.iloc[0:2])
              calories duration
                   420
                               50
        day1
        day2
                    380
                               40
In [15]: import numpy as np
         data = {"calories": [420, 380, 390], "duration": [50, 40, 45]}
         df = pd.DataFrame(data)
         selected df1 = df.loc[[0, 1]]
         selected df2 = df.iloc[0:2]
         print(
             f"The df and selected dfl share memory using 'loc' method: {np.shares memory(selected)
             f"The df and selected df2 share memory using 'iloc' method: {np.shares memory(sele
```

```
print(f"The selected dfl is a view: {selected dfl. is view}")
         print(f"The selected df2 is a view: {selected df2. is view}")
        The df and selected df1 share memory using 'loc' method: False
        The df and selected df2 share memory using 'iloc' method: True
        The selected dfl is a view: False
        The selected df2 is a view: True
In [17]: # this behaviour is not guaranteed for mixed data types
         data = {
             "calories": [420, 380, 390],
             "duration": ["50", "40", "45"],
         df = pd.DataFrame(data)
         selected df1 = df.loc[[0, 1]]
         selected df2 = df.iloc[0:2]
         print(
             f"The df and selected_df1 share memory using 'loc' method: {np.shares_memory(sele
         print(
             f"The df and selected df2 share memory using 'iloc' method: {np.shares memory(sele
         print(f"The selected_df1 is a view: {selected_df1._is_view}")
         print(f"The selected_df2 is a view: {selected_df2._is_view}")
        The df and selected_df1 share memory using 'loc' method: False
        The df and selected_df2 share memory using 'iloc' method: False
        The selected dfl is a view: False
        The selected df2 is a view: False
In [18]: # sample data with nan values
         df = pd.read csv(
             "https://github.com/atsfc/jupyterlite/raw/refs/heads/main/content/CompMath/sample
         df
                  age state point other
Out[18]:
             name
         0
             Alice
                  24.0
                         NY
                             NaN
                                   NaN
         1
              NaN NaN
                                   NaN
                        NaN
                             NaN
         2 Charlie NaN
                         CA
                             NaN
                                   NaN
         3
             Dave 68.0
                         TX
                              70.0
                                   NaN
             Ellen NaN
                         CA
                             88.0
                                   NaN
             Frank 30.0
                       NaN
                             NaN
                                   NaN
         5
In [19]: # check for missing values
         print(df.isnull())
                   age state point other
           name
         False False True True
        1
          True True
                        True True True
                 True False
        2 False
                               True
                                       True
        3 False False False True
        4 False True False False
                                       True
        5 False False
                        True
                               True
                                       True
In [20]: # check for the number of missing values
         np.sum(df.isnull(), axis=0)
```

```
Out[20]: name
                   3
          age
                   2
          state
          point
                   4
          other
                   6
          dtype: int64
In [21]: df.isnull().sum(axis=0)
Out[21]: name
                   1
                   3
          age
                   2
          state
                   4
          point
          other
                   6
          dtype: int64
In [22]: print(df["point"].isnull())
        0
              True
        1
              True
        2
              True
        3
             False
        4
             False
        5
              True
        Name: point, dtype: bool
In [23]: np.sum(df["point"].isnull())
Out[23]: np.int64(4)
In [24]: new_df = df.dropna()
         new_df
Out[24]: name age state point other
In [28]: df[["name", "age", "state", "point"]].dropna()
Out[28]:
                  age state point
            name
            Dave 68.0
                              70.0
In [29]:
         df
Out[29]:
             name
                   age state point other
         0
              Alice 24.0
                          NY
                               NaN
                                     NaN
              NaN NaN
                         NaN
                               NaN
                                     NaN
          2 Charlie NaN
                           CA
                               NaN
                                     NaN
         3
                               70.0
              Dave 68.0
                           TX
                                     NaN
          4
              Ellen NaN
                           CA
                               88.0
                                     NaN
          5
              Frank 30.0
                         NaN
                               NaN
                                     NaN
In [31]: # inplace=True will change the original dataframe
         df.dropna(inplace=True)
         df
Out[31]:
          name age state point other
In [32]: df = pd.read_csv(
```

```
)
         df
                    age state point other
Out[32]:
              name
          0
              Alice 24.0
                           NY
                                NaN
                                      NaN
          1
               NaN NaN
                         NaN
                                NaN
                                      NaN
          2 Charlie NaN
                           CA
                                NaN
                                      NaN
          3
              Dave 68.0
                           TX
                                70.0
                                      NaN
                                88.0
          4
              Ellen NaN
                           CA
                                      NaN
          5
              Frank 30.0
                        NaN
                                NaN
                                      NaN
In [33]:
         # fill all missing values with 0
          df.fillna(0, inplace=True)
          df
Out[33]:
              name age state point other
          0
              Alice 24.0
                           NY
                                 0.0
                                       0.0
                     0.0
          1
                 0
                            0
                                 0.0
                                       0.0
          2 Charlie
                           CA
                     0.0
                                 0.0
                                       0.0
          3
              Dave 68.0
                           TX
                                70.0
                                       0.0
          4
              Ellen
                   0.0
                           CA
                                88.0
                                       0.0
              Frank 30.0
                            0
                                 0.0
                                       0.0
          5
In [34]: # fill missing values specifically for each column
          df = pd.read_csv(
              "https://github.com/atsfc/jupyterlite/raw/refs/heads/main/content/CompMath/sample
         df.fillna({"name": "No Name", "point": 0.0, "age": 30.0, "state": "DC"}, inplace=True
          newdf = df[["name", "point", "age", "state"]].copy()
          newdf
Out[34]:
               name point age state
          0
                Alice
                        0.0 24.0
                                   NY
          1 No Name
                       0.0 30.0
                                   DC
          2
              Charlie
                       0.0 30.0
                                   CA
          3
                       70.0 68.0
                Dave
                                   TX
          4
                Ellen
                       88.0 30.0
                                   CA
          5
               Frank
                       0.0 30.0
                                   DC
In [35]: # load data from url
          url = "https://github.com/YBI-Foundation/Dataset/raw/refs/heads/main/Diabetes%20Missin
          df = pd.read_csv(url)
```

df

"https://github.com/atsfc/jupyterlite/raw/refs/heads/main/content/CompMath/sample

Out[35]:		Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	BMI	Diabetes_Pedigree	Age	Class
	0	6	148.0	72.0	35.0	NaN	33.6	0.627	50	1
	1	1	85.0	66.0	29.0	NaN	26.6	0.351	31	0
	2	8	183.0	64.0	NaN	NaN	23.3	0.672	32	1
	3	1	89.0	66.0	23.0	94.0	28.1	0.167	21	0
	4	0	137.0	40.0	35.0	168.0	43.1	2.288	33	1
	•••		•••				•••		•••	
	763	10	101.0	76.0	48.0	180.0	32.9	0.171	63	0
	764	2	122.0	70.0	27.0	NaN	36.8	0.340	27	0
	765	5	121.0	72.0	23.0	112.0	26.2	0.245	30	0
	766	1	126.0	60.0	NaN	NaN	30.1	0.349	47	1
	767	1	93.0	70.0	31.0	NaN	30.4	0.315	23	0

```
In [36]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnant	768 non-null	int64
1	Glucose	763 non-null	float64
2	Diastolic_BP	733 non-null	float64
3	Skin_Fold	541 non-null	float64
4	Serum_Insulin	394 non-null	float64
5	BMI	757 non-null	float64
6	Diabetes_Pedigree	768 non-null	float64
7	Age	768 non-null	int64
8	Class	768 non-null	int64

dtypes: float64(6), int64(3)

memory usage: 54.1 KB

In [37]: df.isnull()

:		Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	BMI	Diabetes_Pedigree	Age	Class
	0	False	False	False	False	True	False	False	False	False
	1	False	False	False	False	True	False	False	False	False
	2	False	False	False	True	True	False	False	False	False
	3	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False	False
	•••		•••							
	763	False	False	False	False	False	False	False	False	False
	764	False	False	False	False	True	False	False	False	False
	765	False	False	False	False	False	False	False	False	False
	766	False	False	False	True	True	False	False	False	False
	767	False	False	False	False	True	False	False	False	False

```
In [38]: df.isnull().sum(axis=0)
```

Out[38]:	Pregnant	0
	Glucose	5
	Diastolic_BP	35
	Skin_Fold	227
	Serum_Insulin	374
	BMI	11
	Diabetes_Pedigree	0
	Age	0
	Class	0
	dtype: int64	

In [39]: df.dropna()

Out[37]

Out[39]:		Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	ВМІ	Diabetes_Pedigree	Age	Class
	3	1	89.0	66.0	23.0	94.0	28.1	0.167	21	0
	4	0	137.0	40.0	35.0	168.0	43.1	2.288	33	1
	6	3	78.0	50.0	32.0	88.0	31.0	0.248	26	1
	8	2	197.0	70.0	45.0	543.0	30.5	0.158	53	1
	13	1	189.0	60.0	23.0	846.0	30.1	0.398	59	1
	•••		•••							
	753	0	181.0	88.0	44.0	510.0	43.3	0.222	26	1
	755	1	128.0	88.0	39.0	110.0	36.5	1.057	37	1
	760	2	88.0	58.0	26.0	16.0	28.4	0.766	22	0
	763	10	101.0	76.0	48.0	180.0	32.9	0.171	63	0
	765	5	121.0	72.0	23.0	112.0	26.2	0.245	30	0

392 rows × 9 columns

```
In [40]: # fill missing values with mean
SI_mean = df["Serum_Insulin"].mean()
df.fillna({"Serum_Insulin": SI_mean}, inplace=True)
```

```
df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 768 entries, 0 to 767
        Data columns (total 9 columns):
                               Non-Null Count Dtype
            Column
            ----
                               -----
         0
            Pregnant
                               768 non-null int64
         1
                              763 non-null float64
            Glucose
                             733 non-null float64
541 non-null float64
         2
            Diastolic_BP
         3
            Skin Fold
         4
            Serum Insulin
                              768 non-null float64
         5
                               757 non-null float64
         6
            Diabetes Pedigree 768 non-null
                                            float64
         7
                               768 non-null int64
            Age
         8
            Class
                               768 non-null int64
        dtypes: float64(6), int64(3)
        memory usage: 54.1 KB
In [41]: # fill missing values with median
         SF_median = df["Skin_Fold"].median()
         df.fillna({"Skin Fold": SF median}, inplace=True)
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 768 entries, 0 to 767
        Data columns (total 9 columns):
         #
            Column
                               Non-Null Count Dtype
        - - -
            -----
                               -----
                                               ----
         0
            Pregnant
                               768 non-null
                                               int64
         1
                              763 non-null
                                              float64
            Glucose
         2
            Diastolic BP
                              733 non-null
                                              float64
         3
            Skin_Fold
                               768 non-null
                                              float64
         4
            Serum_Insulin
                               768 non-null float64
         5
                               757 non-null float64
                                            float64
         6
            Diabetes_Pedigree 768 non-null
         7
            Age
                               768 non-null
                                               int64
         8
            Class
                               768 non-null
                                               int64
        dtypes: float64(6), int64(3)
        memory usage: 54.1 KB
In [42]: # fill missing values with mode
         # mode is the value that appears most frequently
         BMI mode = df["BMI"].mode()[0]
         print(BMI mode)
         df.fillna({"BMI": BMI mode}, inplace=True)
         df.info()
        32.0
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 768 entries, 0 to 767
        Data columns (total 9 columns):
         #
           Column
                             Non-Null Count Dtype
        _ _ _
            -----
         0
            Pregnant
                               768 non-null
                                               int64
         1
            Glucose
                               763 non-null float64
         2
            Diastolic BP
                              733 non-null float64
         3
                               768 non-null
                                            float64
            Skin Fold
                               768 non-null float64
         4
            Serum Insulin
         5
                               768 non-null float64
         6
            Diabetes Pedigree 768 non-null float64
         7
                               768 non-null
                                               int64
            Age
            Class
                               768 non-null
                                               int64
        dtypes: float64(6), int64(3)
        memory usage: 54.1 KB
In [43]: df
```

t[43]:		Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	BMI	Diabetes_Pedigree	Age	Class
	0	6	148.0	72.0	35.0	155.548223	33.6	0.627	50	1
	1	1	85.0	66.0	29.0	155.548223	26.6	0.351	31	0
	2	8	183.0	64.0	29.0	155.548223	23.3	0.672	32	1
	3	1	89.0	66.0	23.0	94.000000	28.1	0.167	21	0
	4	0	137.0	40.0	35.0	168.000000	43.1	2.288	33	1
	•••	•••	•••	•••	•••	•••	•••		•••	
	763	10	101.0	76.0	48.0	180.000000	32.9	0.171	63	0
	764	2	122.0	70.0	27.0	155.548223	36.8	0.340	27	0
	765	5	121.0	72.0	23.0	112.000000	26.2	0.245	30	0
	766	1	126.0	60.0	29.0	155.548223	30.1	0.349	47	1
	767	1	93.0	70.0	31.0	155.548223	30.4	0.315	23	0

0ut

In [44]: # you can see all mode values
df.mode()

Pregnant Glucose Diastolic_BP Skin_Fold Serum_Insulin BMI Diabetes_Pedigree Age Class Out[44]: 99.0 70.0 29.0 0.254 22.0 0 1.0 155.548223 32.0 0.0 1 NaN 100.0 NaN NaN NaN NaN 0.258 NaN NaN

In [45]: df["Diabetes_Pedigree"].loc[df["Diabetes_Pedigree"] > 1].info()

<class 'pandas.core.series.Series'>

Index: 51 entries, 4 to 755
Series name: Diabetes_Pedigree

Non-Null Count Dtype
----51 non-null float64
dtypes: float64(1)

memory usage: 816.0 bytes

Out[46]:	Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	BMI	Diabetes_Pedigree	Age	Class
0	6	148.0	72.0	35.0	155.548223	33.6	0.627	50	1
1	1	85.0	66.0	29.0	155.548223	26.6	0.351	31	0
2	8	183.0	64.0	29.0	155.548223	23.3	0.672	32	1
3	1	89.0	66.0	23.0	94.000000	28.1	0.167	21	0
4	0	137.0	40.0	35.0	168.000000	43.1	1.000	33	1
•••	•••	•••							•••
763	10	101.0	76.0	48.0	180.000000	32.9	0.171	63	0
764	2	122.0	70.0	27.0	155.548223	36.8	0.340	27	0
765	5	121.0	72.0	23.0	112.000000	26.2	0.245	30	0
766	1	126.0	60.0	29.0	155.548223	30.1	0.349	47	1
767	1	93.0	70.0	31.0	155.548223	30.4	0.315	23	0

```
In [47]: # duplicate a row
newdf = pd.concat([df, df.iloc[0:1]], ignore_index=True)
newdf
```

Out[47]:		Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	BMI	Diabetes_Pedigree	Age	Class
_	0	6	148.0	72.0	35.0	155.548223	33.6	0.627	50	1
	1	1	85.0	66.0	29.0	155.548223	26.6	0.351	31	0
	2	8	183.0	64.0	29.0	155.548223	23.3	0.672	32	1
	3	1	89.0	66.0	23.0	94.000000	28.1	0.167	21	0
	4	0	137.0	40.0	35.0	168.000000	43.1	1.000	33	1
	•••		•••	•••	•••				•••	
:	764	2	122.0	70.0	27.0	155.548223	36.8	0.340	27	0
:	765	5	121.0	72.0	23.0	112.000000	26.2	0.245	30	0
:	766	1	126.0	60.0	29.0	155.548223	30.1	0.349	47	1
	767	1	93.0	70.0	31.0	155.548223	30.4	0.315	23	0
;	768	6	148.0	72.0	35.0	155.548223	33.6	0.627	50	1

769 rows × 9 columns

```
In [49]: # to check for duplicates
    # duplicated shows the duplicate rows only
    # newdf.duplicated()
    np.sum(newdf.duplicated())
```

```
Out[49]: np.int64(1)
```

```
In [50]: # load data from url
    url = "https://github.com/Opensourcefordatascience/Data-sets/raw/refs/heads/master/au
    df = pd.read_csv(url)
    df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 205 entries, 0 to 204
        Data columns (total 26 columns):
         #
             Column
                                 Non-Null Count
                                                 Dtype
        - - -
         0
             symboling
                                 205 non-null
                                                 int64
         1
             normalized-losses
                                205 non-null
                                                 object
         2
             make
                                 205 non-null
                                                 object
         3
             fuel-type
                                 205 non-null
                                                 object
         4
             aspiration
                                 205 non-null
                                                 object
         5
             num-of-doors
                                 205 non-null
                                                 object
         6
             body-style
                                 205 non-null
                                                 object
         7
             drive-wheels
                                 205 non-null
                                                 object
         8
             engine-location
                                 205 non-null
                                                 object
         9
             wheel-base
                                 205 non-null
                                                 float64
         10
             length
                                 205 non-null
                                                 float64
            width
         11
                                 205 non-null
                                                 float64
         12
             height
                                 205 non-null
                                                 float64
         13
             curb-weight
                                 205 non-null
                                                 int64
             engine-type
                                                 object
         14
                                 205 non-null
             num-of-cylinders
                                 205 non-null
                                                 object
         15
         16
             engine-size
                                 205 non-null
                                                 int64
         17
             fuel-system
                                 205 non-null
                                                 object
         18
            bore
                                 205 non-null
                                                 object
         19
            stroke
                                 205 non-null
                                                 object
                                                 float64
         20
             compression-ratio
                                205 non-null
         21 horsepower
                                 205 non-null
                                                 object
         22
             peak-rpm
                                 205 non-null
                                                 object
         23
             city-mpg
                                 205 non-null
                                                 int64
         24
             highway-mpg
                                 205 non-null
                                                 int64
         25
             price
                                 205 non-null
                                                 object
        dtypes: float64(5), int64(5), object(16)
        memory usage: 41.8+ KB
In [51]: np.sum(df.duplicated())
```

Out[51]: np.int64(0)

df.nunique()

number of unique values in each column

In [56]:

```
22
            fuel-type
                                          2
            aspiration
                                          2
                                          3
            num-of-doors
                                         5
            body-style
                                          3
            drive-wheels
                                         2
            engine-location
                                         53
            wheel-base
            length
                                         75
                                         44
            width
            height
                                         49
            curb-weight
                                        171
                                         7
            engine-type
                                         7
            num-of-cylinders
                                         44
            engine-size
                                         8
            fuel-system
                                         39
            bore
                                         37
            stroke
                                         32
            compression-ratio
            horsepower
                                         60
                                         24
            peak-rpm
            city-mpg
                                         29
            highway-mpg
                                         30
                                        187
            price
            dtype: int64
In [57]: # unique values in a column
            df["price"].unique()
'41315', '36880', '5151', '6295', '6575', '5572', '6377', '7957',
                     '6229', '6692', '7609', '8558', '8921', '12964', '6479', '6855', '5399', '6529', '7129', '7295', '7895', '9095', '8845', '10295',
                     '12945', '10345', '6785', '11048', '32250', '35550', '36000',
                     '5195', '6095', '6795', '6695', '7395', '10945', '11845', '13645', '15645', '8495', '10595', '10245', '10795', '11245', '18280', '18344', '25552', '28248', '28176', '31600', '34184', '35056', '40960', '45400', '16503', '5389', '6189', '6669', '7689', '9959',
                     '8499', '12629', '14869', '14489', '6989', '8189', '9279', '5499',
                     '7099', '6649', '6849', '7349', '7299', '7799', '7499', '7999', '8249', '8949', '9549', '13499', '14399', '17199', '19699',
                      '18399', '11900', '13200', '12440', '13860', '15580', '16900',
                     '16695', '17075', '16630', '17950', '18150', '12764', '22018', '32528', '34028', '37028', '9295', '9895', '11850', '12170', '15040', '15510', '18620', '5118', '7053', '7603', '7126', '7775',
                      '9960', '9233', '11259', '7463', '10198', '8013', '11694', '5348',
                     '6338', '6488', '6918', '7898', '8778', '6938', '7198', '7788', '7738', '8358', '9258', '8058', '8238', '9298', '9538', '8449',
                      '9639', '9989', '11199', '11549', '17669', '8948', '10698', '9988',
                      '10898', '11248', '16558', '15998', '15690', '15750', '7975',
                     '7995', '8195', '9495', '9995', '11595', '9980', '13295', '13845',
                     '12290', '12940', '13415', '15985', '16515', '18420', '18950',
                     '16845', '19045', '21485', '22470', '22625'], dtype=object)
In [58]: | # replace all "?" with "NaN"
            df.replace("?", np.nan, inplace=True)
            df.dropna(inplace=True)
            df.info()
```

Out[56]: symboling

normalized-losses

6

52

<class 'pandas.core.frame.DataFrame'> Index: 159 entries, 3 to 204 Data columns (total 26 columns): # Column Non-Null Count Dtype - - -----0 symboling 159 non-null int64 1 normalized-losses 159 non-null object 2 make 159 non-null object 3 fuel-type 159 non-null object 4 aspiration 159 non-null object 5 num-of-doors 159 non-null object 6 body-style 159 non-null object 7 drive-wheels 159 non-null object 8 engine-location 159 non-null object 9 wheel-base 159 non-null float64 10 length 159 non-null float64 11 width 159 non-null float64 12 height 159 non-null float64 13 curb-weight 159 non-null int64 14 engine-type 159 non-null object 15 num-of-cylinders 159 non-null object 16 engine-size 159 non-null int64 17 fuel-system 159 non-null object 18 bore 159 non-null object 19 stroke 159 non-null object 20 compression-ratio 159 non-null float64 21 horsepower 159 non-null object 22 peak-rpm 159 non-null object 23 city-mpg 159 non-null int64 24 highway-mpg 159 non-null int64 25 price 159 non-null object dtypes: float64(5), int64(5), object(16) memory usage: 33.5+ KB

In [59]: df

Out[59]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	•••	enį
3	2	164	audi	gas	std	four	sedan	fwd	front	99.8	•••	
4	2	164	audi	gas	std	four	sedan	4wd	front	99.4		
6	1	158	audi	gas	std	four	sedan	fwd	front	105.8		
8	1	158	audi	gas	turbo	four	sedan	fwd	front	105.8		
10	2	192	bmw	gas	std	two	sedan	rwd	front	101.2		
•••	•••				•••				•••			
200	-1	95	volvo	gas	std	four	sedan	rwd	front	109.1		
201	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109.1		
202	-1	95	volvo	gas	std	four	sedan	rwd	front	109.1		
203	-1	95	volvo	diesel	turbo	four	sedan	rwd	front	109.1		
204	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109.1		

159 rows × 26 columns

```
In [60]: # convert the problematic columns to numeric

df["price"] = pd.to_numeric(df["price"])

df["horsepower"] = pd.to_numeric(df["horsepower"])

df["peak-rpm"] = pd.to_numeric(df["peak-rpm"])
```

```
<class 'pandas.core.frame.DataFrame'>
        Index: 159 entries, 3 to 204
        Data columns (total 26 columns):
                                Non-Null Count Dtype
         #
             Column
        - - -
             ----
                                 -----
         0
                                159 non-null
             symboling
                                                 int64
         1
             normalized-losses 159 non-null
                                                 object
         2
                                159 non-null
             make
                                                 object
         3
             fuel-type
                                159 non-null
                                                 object
         4
             aspiration
                                159 non-null
                                                 object
         5
             num-of-doors
                                159 non-null
                                                 object
         6
             body-style
                                159 non-null
                                                 object
         7
             drive-wheels
                                159 non-null
                                                 object
         8
             engine-location
                                159 non-null
                                                 object
         9
             wheel-base
                                159 non-null
                                                 float64
         10
            length
                                159 non-null
                                                 float64
         11 width
                                159 non-null
                                                 float64
         12 height
                                159 non-null
                                                 float64
         13
            curb-weight
                                159 non-null
                                                 int64
         14 engine-type
                                159 non-null
                                                 object
         15 num-of-cylinders
                                159 non-null
                                                 object
                                                 int64
             engine-size
                                159 non-null
         17
             fuel-system
                                159 non-null
                                                 object
         18
            bore
                                159 non-null
                                                 object
         19 stroke
                                159 non-null
                                                 object
         20 compression-ratio 159 non-null
                                                 float64
         21 horsepower
                                159 non-null
                                                 int64
         22 peak-rpm
                                159 non-null
                                                 int64
         23
             city-mpg
                                159 non-null
                                                 int64
         24
             highway-mpg
                                159 non-null
                                                 int64
         25
             price
                                159 non-null
                                                 int64
        dtypes: float64(5), int64(8), object(13)
        memory usage: 33.5+ KB
In [61]:
         # if you need to discard non-numeric columns
         newdf = df._get_numeric_data()
         newdf.info()
        <class 'pandas.core.frame.DataFrame'>
        Index: 159 entries, 3 to 204
        Data columns (total 13 columns):
         #
             Column
                                Non-Null Count
                                                 Dtype
        - - -
             ----
                                 _____
                                                 _ _ _ _ _
                                                 int64
         0
             symboling
                                159 non-null
         1
             wheel-base
                                159 non-null
                                                 float64
         2
                                                 float64
             length
                                159 non-null
         3
             width
                                159 non-null
                                                 float64
         4
             height
                                159 non-null
                                                 float64
         5
                                159 non-null
                                                 int64
             curb-weight
         6
             engine-size
                                159 non-null
                                                 int64
         7
             compression-ratio 159 non-null
                                                 float64
         8
                                                 int64
             horsepower
                                159 non-null
         9
             peak-rpm
                                159 non-null
                                                 int64
         10
             city-mpg
                                159 non-null
                                                 int64
             highway-mpg
                                159 non-null
                                                 int64
         12
             price
                                 159 non-null
                                                 int64
        dtypes: float64(5), int64(8)
        memory usage: 17.4 KB
In [66]: newdf.corr().style.background gradient(cmap="coolwarm")
```

df.info()

compression- ratio	engine- size	curb- weight	height	width	length	wheel- base	symboling	
-0.138316	-0.109453	-0.251880	-0.475185	-0.219186	-0.336257	-0.520591	1.000000	symboling
0.291431	0.649206	0.810181	0.555767	0.814991	0.871534	1.000000	-0.520591	wheel-base
0.184814	0.725953	0.871291	0.499251	0.838338	1.000000	0.871534	-0.336257	length
0.258752	0.779253	0.870595	0.292706	1.000000	0.838338	0.814991	-0.219186	width
0.233308	0.111083	0.367052	1.000000	0.292706	0.499251	0.555767	-0.475185	height
0.224724	0.888626	1.000000	0.367052	0.870595	0.871291	0.810181	-0.251880	curb-weight
0.141097	1.000000	0.888626	0.111083	0.779253	0.725953	0.649206	-0.109453	engine-size
1.000000	0.141097	0.224724	0.233308	0.258752	0.184814	0.291431	-0.138316	compression- ratio
-0.162305	0.812073	0.790095	0.034317	0.681872	0.672063	0.516948	-0.003949	horsepower
-0.416769	-0.284686	-0.259988	-0.245864	-0.232216	-0.234074	-0.289234	0.199106	peak-rpm
0.278332	-0.699139	-0.762155	-0.199737	-0.666684	-0.724544	-0.580657	0.089550	city-mpg
0.221483	-0.714095	-0.789338	-0.226136	-0.693339	-0.724599	-0.611750	0.149830	highway-mpg
0.209361	0.841496	0.893639	0.244836	0.843371	0.760952	0.734419	-0.162794	price

The Result of the corr() method is a table with a lot of numbers that represents how well the relationship is between two columns.

- The number varies from -1 to 1.
- 1 means that there is a 1 to 1 relationship (a perfect correlation), and for this data set, each time a value went up in the first column, the other one went up as well.
- ullet 0.9 is also a good relationship, and if you increase one value, the other will probably increase as well.
- -0.9 would be just as good relationship as 0.9, but if you increase one value, the other will probably go down.
- ullet 0.2 means NOT a good relationship, meaning that if one value goes up does not mean that the other will.