ARTIFICIAL NEURAL NETWORKS

Exercise Set 3

Antonio Peters

April 5, 2016

1 Proof of Convergence of the Perceptron Learning Rule

Assume the matrix $P = [p_1, \ldots, p_m]$ as a set of input patterns and the matrix $T = [t_1, \ldots, t_m]$ as a set of targets in a perceptron network with s layers. Each column of P, p_i is activated and the result $a_i \in A$ is compared to the corresponding column of T, t_i . The activation can be seen as

$$a_i = \text{hardlim}(W * p_i + b)$$

Or for the entire matrix (1)
 $A = \text{hardlim}(W * P + b)$

We can reorder the activation by grouping the weighting and bias and adding a row of ones to P as in Equation 2

$$V = [Wb]$$
 and $q_i = \begin{bmatrix} p_i \\ 1 \end{bmatrix}$ or $Q = \begin{bmatrix} P \\ 1, \dots, 1 \end{bmatrix}$ (2)

This is then updated to adjust for the error between A and T, E with $e_i \in E$, $e_i = t_i - a_i$ and the matrix V is updated for each element of Q such that

$$V_{k+1} = V_k + e_i q_i' \tag{3}$$

Where V_{k+1} is the updated V to be used with V_0 being randomly set and in this particular case we prove for $V_0 \neq 0$. We assume that $\forall k, V_{k+1} \neq V_k$. Looking at any single neuron of V_k denoted by v_k .