Today! Internet of Things (IoT) Hands-on Activities

- Introduction
- Download Folders
 - Github Repository (Recommended)
 - https://github.com/muratkuzlu/ODU_BLAST2022
- WiFi Information (SSID and Password)

- Presentation (Summary)
- Hands-on Activities
- Q&A

Building Leaders for Advancing Science and Technology (BLAST) (Summary)

Internet of Things (IoT) Hands-on Activities with Arduino

Dr. Murat Kuzlu

Department of Engineering Technology

Outline

- Internet
- Internet of Things (IoT)
- Arduino
- ThingSpeak
- Hands-on Activities

https://medium.com/@otavioguastamacchia/creating-a-simple-iot-case-8102f22908a7

What is the Internet?

https://www.connexusuk.com/high-speed-internet/

http://mediatechnologyeducation.pbworks.com/w/page/2 0693030/The%20Information%20Superhighway

• If you look at a map of big cities, smaller towns, and scattered houses, each is **connected together with roads, railways, etc**. This is similar to the Internet, except with the Internet, wires connect computers.

The Internet is a superhighway.

The Internet of Things (IoT)

IoT: You can access anything (devices) from anywhere (through the INTERNET)!

- Network of physical objects
- Embedded System
- Network connectivity
- Collect and exchange data

Arduino

Mega2560 R3 ATmega2560-16AU CH340 Development Board

ESP8266 **NodeMCU** LUA CP2102 ESP-12E

NodeMCU ESP8266 ESP-12E Pinout

What is ThingSpeak?

What is ThingSpeak:

ThingSpeak is an IoT analytics platform service that lets you collect and store sensor data in the cloud and develop Internet of Things applications.

https://thingspeak.com

• ThingSpeak Channel:

'ThingSpeak Channel' is the core element of the ThingSpeak platform. This channel is used to store the real-time data, or the data transferred through various sensors and embedded systems. Data stored at the channel is further used for analysis and visualization.

- Software Requirement: Internet
- Hardware Requirement: Arduino.

ThingSpeak Features

Collect data in private channels

Alerts

Alerts

Arduino*

Arduino*

Arduino*

Particle Photon and Electron

PRESTIFUL and MOTT APIS

App integrations

ESP8266 Wiff Module

Creating A Channel

- https://thingspeak.com
- Before creating a channel, you need to sign into things speak. You can easily sign in either using your either ThingSpeak account or mathswork account, or create a new mathswork account via following link:
- https://thingspeak.com/users/sign up
- Login Page
- Email: mkuzlu@hotmail.com
- Password: ODU_Blast2000

Architecture of an IoT-based System

Hands-on Activities


```
#define LED D1 // Led in NodeMCU at pin GPIO5 (D1).

void setup()
{
pinMode(LED, OUTPUT); // set the digital pin as output.
}

void loop()
{
digitalWrite(LED, HIGH); // turn the LED off.
delay(1000); // wait for 1 second.
digitalWrite(LED, LOW); // turn the LED on.
delay(1000); // wait for 1 second.
```


Preparation!

Step 1 - Installing IDE

Installing IDE

- The Arduino Integrated Development Environment (IDE) is the software side of the Arduino platform.
- Go to https://www.arduino.cc/en/software

Downloads

Installing Arduino (Windows) - It can be different based on Windows version!

The following Icon appears on the desktop

Arduino IDE

Double-click to enter the desired development environment

```
sketch_jun16a | Arduino 1.8.9
File Edit Sketch Tools Help
  sketch_jun16a
void setup() {
  // put your setup code here, to run once:
void loop() {
  // put your main code here, to run repeatedly:
```

Step 2 - Add Libraries

Add Libraries

How to Install a Library?

Using the Library Manager
To install a new library into
your Arduino IDE you can use
the Library Manager
(available from IDE version
1.8.0).

Open the IDE and click to the "Sketch" menu and then Include Library > Manage Libraries.

Add Libraries- DHT11

Open the IDE and click to the "Sketch" menu and then Include Library > Manage Libraries > Type "DHT11" > Install "DHT sensor library" and "DHT sensor library for ESPx"

Add Libraries- Arduino

The Arduino IDE needs to have the ThingSpeak library installed in order for your devices to know how to send data to ThingSpeak. In the Arduino IDE, choose Sketch, Include Library, and Manage Libraries. Search for "thingspeak" and click Install.

20

Step 3 - NodeMCU Setup

NodeMCU Setup

- Additional Board Manager URL:
 - http://arduino.esp8266.com/stable/package_esp8266com_index.json

Installing with Boards Manager

Starting with 1.6.4, Arduino allows installation of third-party platform packages using Boards Manager. We have packages available for Windows, Mac OS, and Linux (32 and 64 bit).

- Install Arduino 1.6.8 from the Arduino website.
- Start Arduino and open Preferences window.
- Enter http://arduino.esp8266.com/stable/package_esp8266com_index.json into Additional Board Manager URLs field.
 You can add multiple URLs, separating them with commas.
- Open Boards Manager from Tools > Board menu and install esp8266 platform (and don't forget to select your ESP8266 board from Tools > Board menu after installation).

NodeMCU Setup - macOS

• Add the link to the Additional Board Manager URLs

NodeMCU Setup - Windows

Add the link to the Additional Board Manager URLs

NodeMCU Setup - macOS

- Search the board manager for esp8266
- Install the ESP8266 library

NodeMCU Setup - Windows

- Search the board manager for *esp8266*
- Install he ESP8266 library

NodeMCU Setup - macOS

- Select the NodeMCU 2.0 as your board
- Additional settings appear under the board menu
- They can be left as they are
- Higher Upload Speed reduces your upload times

Internet of Things Workshop with Arduino, http://tamberg.org

NodeMCU Setup - Windows

- Select the NodeMCU 2.0 as your board
- Additional settings appear under the board menu
- They can be left as they are
- Higher Upload Speed reduces your upload times

Step 4 - Open Serial Monitor

Open Serial Monitor

Arduino Serial Monitor (Windows, Mac, Linux) and Make a Serial Connection The Arduino Integrated Development Environment (IDE) is the software side of the Arduino platform. And, because using a terminal is such a big part of working with Arduinos and other microcontrollers, they decided to include a serial terminal with the software. Within the Arduino environment, this is called the Serial Monitor.

Check Serial Monitor and Baud Rate

Step 5 - Connect ThingSpeak

Connect ThingSpeak

https://thingspeak.com/

- Login Page
- Email: mkuzlu@hotmail.com
- Password: ODU Blast2000

Creating A Channel

See My Channels

Private View-- It displays the information about your channel that is only visible to you (Recommended)

Public View- if you have chosen to make your channel publicly visible then it will display the selected fields and information

My Channels

Step 6 - Hands on Activities and Source Code

Hands on Activities and Source Code

Copy&Paste or Download examples, from GitHub:

- Full: https://github.com/muratkuzlu/ODU_BLAST2022
- DHT11 (Recommended): https://github.com/muratkuzlu/ODU_BLAST2022/tree/main/Projects/4_DHT11

Focus on end-to-end results, not details

Start!
Hands-on!

Temperature & Humidity Sensor DHT11

The DHT11 sensor can detect temperature (C and F) & humidity.

The DHT11 detects water vapor by measuring the electrical resistance between two electrodes. The humidity sensing component is a moisture holding substrate with electrodes applied to the surface. It has everything it requires built into it, so it will work very well with the NodeMCU. This sensor is used in conjunction with the DHT11 Library.

S/Signal/Out/Data

Wiring a switch with Arduino

We will learn how to set up the DHT11 Humidity and Temperature sensor on your NodeMCU. And learn about how the Humidity sensor works, and how to check output readings from the Serial monitor.

Hardware

- NodeMCU
- DHT11 Humidity and Temperature sensor
- Breadboard
- Jumper Wires (Optional)
- Micro USB Cable

Software

- Arduino IDE(version 1.6.4+)
- https://github.com/muratkuzlu/ODU_BLAST2021/ tree/main/Projects/4 DHT11

Digital input with Arduino

Set up

Wiring the **DHT11** to the NodeMCU is really easy, but the connections are different depending on which type you have either 3-pins or 4-pins

The **wiring connections** are made as follows:

- → Pin (S or SIG or Out or Data) of the DHT11 goes into Digital Pin D4 of the NodeMCU.
- → Pin (VCC or + or VC) of the DHT11 goes into +3.3v or 3V of the NodeMCU.
- → **Pin** (**GND** or -) of the DHT11 goes into Ground Pin (**GND**) of the NodeMCU.

Without IoT

Digital input with Arduino

Code

→ Copy the following code to the IDE

Add the DHTesp.h library

Define Variables

Initialize variables. Runs once

Used to actively control the Arduino board. Run repeatedly

```
#include "DHTesp.h"
int temperature, humidity, k=0, l=0;
#define DHTPIN D4
                          //pin where the dht11 is connected
DHTesp dht;
void setup()
   Serial.begin(115200);
   delay(10);
   //dht.begin();
   dht.setup(DHTPIN, DHTesp::DHT11); // data pin 4
void loop()
static boolean data state = false;
float humidity = dht.getHumidity();
float temperature = dht.getTemperature();
temperature = CelsiusToFahrenheit(temperature);
Serial.print("Temperature Value is :");
Serial.print(temperature);
Serial.println("F");
Serial.print("Humidity Value is :");
Serial.print(humidity);
Serial.println("%");
delay(5000);
```

Functions

//Functions

```
float FahrenheitToCelsius(float fahrenheit)
  float celsius;
  celsius = (fahrenheit - 32.0) * 5.0 / 9.0;
  return celsius;
float CelsiusToFahrenheit(float celsius)
  float fahrenheit;
  fahrenheit = (celsius * 9.0) / 5.0 + 32;
  return fahrenheit;
```

NOTE:

When you check the serial monitor make sure the baud rate and the serial begin number in your code is the same.

With IoT

Digital input with Arduino and IoT - I

Now we are going to connect to IoT

→ Copy the following code to a new IDE sketch

Digital input with Arduino and IoT - II

```
void setup()
   Serial.begin(115200);
   delay(10);
   //dht.begin();
   dht.setup(DHTPIN, DHTesp::DHT11); // data pin 4
   Serial.println("Connecting to ");
   Serial.println(ssid);
   WiFi.begin(ssid, pass);
   while (WiFi.status() != WL_CONNECTED)
      delay(500);
      Serial.print(".");
   Serial.println("");
   Serial.println("WiFi connected");
   // Print the IP address
   Serial.println(WiFi.localIP());
   ThingSpeak.begin(client);
```

Digital input with Arduino and IoT - III

```
void loop()
   static boolean data_state = false;
   float humidity = dht.getHumidity();
   float temperature = dht.getTemperature();
   temperature = CelsiusToFahrenheit(temperature);
   Serial.print("Temperature Value is :");
   Serial.print(temperature);
   Serial.println("F");
   Serial.print("Humidity Value is :");
   Serial.print(humidity);
   Serial.println("%");
  // Write to ThingSpeak. There are up to 8 fields in a channel, allowing you to store up to 8 different pieces of information in a channel.
  Here, we write to field 1.
   if(temperature < 255)
     k=temperature;
   if(humidity < 255)
     l=humidity;
   if( data_state )
   ThingSpeak.writeField(myChannelNumber, 1, k, myWriteAPIKey);
   data_state = false;
                                                                                                      → Upload
   else
   ThingSpeak.writeField(myChannelNumber, 2, l, myWriteAPIKey);
   data_state = true;
<sup>47</sup> delay(30000); // ThingSpeak will only accept updates every 15 seconds.
```

Digital output with Arduino and IoT -IV

→ Check ThingSpeak

ODU_Blast2000

Changes in Temperature and Humidity

Dr. Murat Kuzlu mkuzlu@odu.edu