EAS506 - Statistical Data Mining I

Homework 1 – Question 1

Aniket Kamlender Maheshwari 09/16/21

Abstract

This report summarizes the process undertaken to clean, transform and perform Exploratory Data Analysis (EDA) on cereal dataset to get a clean data for fitting a Linear Regression Model.

Initial Data set was:

"cereal.csv"

77 rows * 16 columns

The final cleaned data set was saved as:

 $"cleaned_cereal_data.RData"$

73 rows * 14 columns

Content

1	Intr	oduction	4								
2	2 Method										
		itialization Steps									
		4									
	2.2.1	Feature Details									
	2.3 Fin										
		6									
2.4.1		Feature ~ mfr									
	2.4.2	Feature ~ type	8								
	2.4.3	Feature ~ calories									
	2.4.4	Feature ~ protein	11								
	2.4.5	Feature ~ Fat	12								
	2.4.6	Feature ~ sodium	13								
	2.4.7	Feature ~ Fiber	14								
	2.4.8	Feature ~ Carbo	15								
	2.4.9	Feature ~ sugars	17								
	2.4.10	Feature ~ potass	18								
	2.4.11	Feature ~ rating	20								
	2.5 M	ultivariate Analysis	22								
	2.5.1	Plotting scatterplots and finding relationship	22								
	2.5.2	Scatterplots finding.									
	2.6 Co	-Relation Plot	27								
3	Clea	nned Data	28								
4	Cita	tion	28								

1 Introduction

The Cereal data frame has 77 rows and 16 columns. The data come from the 1993 ASA Statistical Graphics Exposition and are taken from the mandatory F&DA food label. The data have been normalized here to a portion of one American cup.

This report summarizes the process undertaken to clean, transform and perform Exploratory Data Analysis (EDA) on cereal dataset to get a clean data for fitting a Linear Regression Model.

2 Method

2.1 Initialization Steps

- Clear the memory
- Install and load all required libraries.
- Briefly examine the data with functions like dim, str, summary.

2.2 List of all Feature Information.

• Examining and create a list of all features details.

2.2.1 Feature Details.

- 1. mfr: categorical feature, has 7 categories. One thing to note about this feature is that 'A' has only one value. This may be a possible outlier.
- 2. type: categorical feature, has 2 categories but 'H' has only 3 records, we might as well remove these records because they won't be helpful.
- 3. calories: integer feature. will plot histogram and box plot to look for potential outliers.
- 4. protein : Discrete variable. Most proportion of values are at protein level below 4. '5' and '6' protein level has only 3 points.
- 5. Fat: Discrete variable.
- 6. sodium : continuous integer variable.
- 7. fiber: Discrete variable.
- 8. Carbo: continuous numeric variable.
- 9. sugars: Discrete variable. One interesting thing to note in this is one data point has sugar value '-1'
- 10. potass : continuous integer variable.
- 11. vitamins: Discrete variable. has three output '0', '25' and '100'.
- 12 14 : shelf, weight, cups : i don't really think these feature impact our target feature ('rating') much but I will plot a correlation plot first before removing these features.
- 15 : rating : our target feature. will plot a histogram to see if there is any potential outlier in this feature.

2.3 Finding Missing Values in the Dataset

• Examined if there are any missing values in the dataset.

2.4 Univariate Analysis on each Feature.

- Plotted Bar-chart for categorical Features.
- Histograms were plotted for continuous variable features and discrete variable.
- Boxplot were plotted for continuous variable feature and possible outliers were noted.
- Noted outliers of some features and saved their indexes. Dropped Indexes that were common outliers in two or more feature

2.4.1 Feature ~ mfr (Manufacturer)

Barchart of 'mfr' feature

So, manufacturer 'A' has only 1 product to it. For now, I'll just save the index of that data point. Index was '44'.

2.4.2 Feature ~ type (Type of Cereal)

Barchart of 'type' feature

So, here type 'H' is significantly less than 'C'. So I found out the indexes and surprisingly index '44' {outlier in 'mfr' feature} also came up here. So, I created a new data frame and dropped these 3 records from it.

2.4.3 Feature ~ calories (Number of Calories in one portion)

Histogram of Feature : Calories

Boxplot of Feature : Calories

So, box plot of calories shows some outliers, but I won't remove them as of yet because we don't have much data. Instead, I'll again save those points index. Indexes were: 1 3 4 8 39 43 44 45 48 50 53 54 61 68

2.4.4 Feature ~ protein (Grams of Protein in one portion)

Barchart of 'protein' feature

Protein in Cereal

2.4.5 Feature ~ Fat (Grams of Fat in one portion)

Histogram of Feature : Fat

2.4.6 Feature ~ Sodium (Milligrams of Sodium in one portion)

Histogram of Feature : Sodium

2.4.7 Feature ~ Fiber (Grams of dietary fiber in one portion)

Histogram of Feature : Fiber

So, here one data point is way too far from other data point. Again, I saved the index of that point. Index was: '4'

2.4.8 Feature ~ Carbo (Grams of Complex Carbohydrates in one portion)

Histogram of Feature : Carbohydrate

2.4.9 Feature ~ sugars (Grams of sugar in one portion)

Histogram of Feature : Sugar

2.4.10 Feature ~ potass (Grams of potassium in one portion)

Histogram of Feature : Potassium

Here Boxplot shows some data point as outliers. I saved the indexes of all those points. Indexes were: $1\ 3\ 4\ 51$

2.4.11 Feature ~ Rating (Rating of Cereal)

Histogram of Feature: Rating

Boxplot of feature: Rating

Here, both histogram and boxplot show a clear outlier. I saved its index value. Index was: '4'

After saving indexes of all possible outcomes in each feature, I found index '4' is possible outlier for four features (rating, potass, fiber, calories). So, I removed that row from our data frame.

2.5 Multivariate Analysis ~ Scatterplot.2.5.1 Plotting Multiple scatterplots and finding each features relation with our target feature 'rating'.

Scatterplot Matrix with Features : Rating ,Sugar, Potassium & Calories

Scatterplot Matrix with Features : Rating , Fat, Sodium & Protein

Scatterplot Matrix with Features : Rating , Fiber, Carbo & Vitamins

Scatterplot Matrix with Features : Rating , Shelf, Weight & Cups

2.5.2 Scatterplot Findings:

- Scatterplot 1: Features: Rating, Sugar, Potassium & Calories
 - ~ From this scatterplot I can tell that, Sugar and calories has negative impact on the Rating Feature.
 - ~ Potassium feature has a slight positive curve that mean it is slightly positively correlated to rating.
- Scatterplot 2: Features: Rating, Fat, Sodium & Protein
 - ~ From this scatter plots I can tell that fat and sodium have negative impact on the Rating Feature.
 - ~ protein feature is positively correlated to rating.
- Scatterplot 3: Features: Rating, Fiber, Carbo & Vitamins
 - ~ Fiber feature is positively correlated to our target feature.
 - ~ Vitamin feature is slightly negatively correlated to our target feature.
- Scatterplot 4: Features: Rating, Shelf, Weight & Cups
 - ~ Features shelf, weight and cups has either a slight line or slightly negative curve. These features are not important to our target feature.
 - ~ I will plot a co-relation plot and if they are not correlated then I'll remove them from our data frame.

2.6 Co-relation Plot.

	calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	weight	sdno	rating	_ 1
calories	1.00		0.50	0.30	-0.29	0.25	0.56		0.27		0.70		-0.69	- 1
protein	0.02	1.00	0.21	-0.05	0.50	-0.13	-0.33	0.55		0.13	0.22	-0.24	0.47	- 0.8
fat	0.50	0.21	1.00	-0.01	0.02	-0.32	0.27	0.19	-0.03	0.26	0.21	-0.18	-0.41	- 0.6
sodium	0.30	-0.05		1.00	-0.07	0.36	0.10	-0.03	0.36	-0.07	0.31	0.12	-0.40	- 0.4
fiber	-0.29	0.50	0.02	-0.07	1.00	-0.36	-0.14	0.90	-0.03	0.30	0.25	-0.51	0.58	0.4
carbo	0.25	-0.13	-0.32	0.36	-0.36	1.00	-0.33	-0.35	0.26	-0.10	0.14	0.36	0.05	- 0.2
sugars	0.56	-0.33	0.27	0.10	-0.14	-0.33	1.00	0.02	0.13	0.10	0.45	-0.03	-0.76	- 0
potass	-0.07	0.55	0.19	-0.03	0.90	-0.35	0.02	1.00	0.02	0.36	0.42	-0.50	0.38	0.2
vitamins	0.27		-0.03	0.36	-0.03	0.26	0.13	0.02	1.00	0.30	0.32	0.13	-0.24	
shelf	0.10	0.13	0.26	-0.07	0.30	-0.10	0.10	0.36	0.30	1.00	0.19	-0.34	0.03	0.4
weight	0.70	0.22	0.21	0.31	0.25	0.14	0.45	0.42	0.32	0.19	1.00	-0.20	-0.30	0.6
cups	0.09	-0.24	-0.18	0.12	-0.51	0.36	-0.03	-0.50	0.13	-0.34	-0.20	1.00	-0.20	0.8
rating	-0.69	0.47	-0.41	-0.40	0.58	0.05	-0.76	0.38	-0.24	0.03	-0.30	-0.20	1.00	_
														1

2.6.1 Finding:

- Weight, Cups and Shelf is not highly co-related with rating, but weight is positively correlated to calories. So, I'll remove Cups and shelf from our data frame.
- Calories and Sugar is highly negatively correlated to rating feature.
- Fiber is positively correlated to rating feature.

3 Cleaned Data:

The final cleaned data set was saved as: dataset named "Data4" "cleaned_cereal_data.RData" 73 rows * 14 columns

4 Citations:

- a) https://datacornering.com/check-if-a-column-has-a-missing-values-na-in-r/
- b) <u>https://stackoverflow.com/questions/5863097/selecting-only-numeric-columns-from-a-data-frame</u>