5. СИНТЕЗ КОМБІНАЦІЙНИХ СХЕМ

Аналітичне представлення булевих функцій. Етапи синтезу логічних схем на логічних елементах.

Розроблені універсальні (канонічні) форми представлення булевих функцій, які дають можливість одержати аналітичну форму довільної функції безпосередньо з таблиці істинності. Ця форма надалі може бути мінімізувати або спрощена.

Оскільки між множиною аналітичних представлень і множиною схем, які реалізують цю функцію, ϵ взаємно однозначна відповідність, то пошук канонічної форми запису ϵ початковим етапом синтезу логічних схем.

Найбільше поширення одержали досконала диз'юнктивна нормальна форма (ДДНФ) і досконала кон'юнктивна нормальна форма (ДКНФ). Для одержання цих форм вводяться поняття мінтермів (конституєнта 1) і макстермів (конституєнта 0).

Мінтерм – це функція n змінних, яка дорівнює одиниці тільки на одному наборі.

Мінтерм одержують як кон'юнкцію n змінних, що входять до нього у прямому виді, якщо значення даної змінної в наборі $x_i = 1$, і із запереченням, якщо $x_i = 0$. При n змінних $\in 2^n$ мінтермів m_0 , m_1 , m_2 , де n_3 .

Всі мінтерми двох змінних наведені в таблиці 5.1.

Таблиця 5.1. Мінтерми двох змінних

x_1	x_2	F_9	f_{i}	Мінтерми	Макстерми
0	0	1	$f_0 = 1$	$m = \overline{x} \wedge \overline{x}$	$M_0 = x_1 \vee x_2$
0	1	0	$f_1 = 0$	$m = x \wedge x$	$M_{1} = x \vee \overline{x}_{2}$
1	0	0	$f_2 = 0$	$m_{2} = x \wedge x_{2}$	$M_{2} = \overline{x} \vee x_{2}$
1	1	1	$f_3 = 1$	$m_3 = x_1 \wedge x_2$	$M_{0} = \overline{x} \vee \overline{x}_{2}$

Значення функції F_9 , які відповідають, згідно з таблицею істинності, кожному і - му наборові, позначені через f_0 , f_1 , f_2 , f_3 .

Представлення функції F_9 у ДДНФ є диз'юнктивною сумою мінтермів, які відповідають наборам змінних, для яких $f_i = 1$.

$$F_9 = f_0 \land m_0 \lor f_1 \land m_1 \lor f_2 \land m_2 \lor f_3 \land m_3 = 1 \land m_0 \lor 0 \land m_1 \lor 0 \land m_2 \lor 1 \land m_3 = x_1 \land x_2 \lor x_1 \land x_2$$

Макстерм — це функція n змінних, яка дорівнює нулю тільки на одному наборі.

Макстерм одержують як диз'юнкцію усіх змінних, що входять до у прямому вигляді, коли значення $x_i = 0$, або в інвертованому вигляді, якщо значення $x_i = 1$.

Число макстермів дорівнює 2^n , для функції двох змінних вони наведені в таблиці.

Представлення функції у ДКНФ записується у вигляді:

$$\begin{split} F_9 &= \left(f_0 \vee M_0\right) \wedge \left(f_1 \vee M_1\right) \wedge \left(f_2 \vee M_2\right) \wedge \left(f_3 \vee M_3\right) = \\ &= \left(1_0 \vee M_0\right) \wedge \left(0 \vee M_1\right) \wedge \left(0_2 \vee M_2\right) \wedge \left(1_3 \vee M_3\right) = M_1 \wedge M_2 = \left(x_1 \vee \overline{x_2}\right) \wedge \left(\overline{x_1} \vee x_2\right) \end{split}.$$

Приклад. На прикладі табл.5.2 пояснимо аналітичний запис функції трьох змінних у ДДНФ і ДКНФ..

таолиця 3.2. таолиця істинності							
x_1	x_2	x_3	P				
0	0	0	0				
0	0	1	1				
0	1	0	1				
0	1	1	0				
1	0	0	1				
1	0	1	0				
1	1	0	0				
1	1	1	1				

Таблиця 5.2. Таблиця істинності

Для запису функції Р у ДДНФ потрібно диз'юнктивно скласти ті мінтерми, для яких функція дорівнює одиниці

$$P = x_1 \wedge x_2 \wedge x_3 \vee x_1 \wedge x_2 \wedge x_3.$$

Для запису функції Р у ДКНФ необхідно записати кон'юнкцію макстермів, для яких функція дорівнює нулю.

$$P = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3).$$

За даним способом виконують запис у ДДНФ і ДКНФ функцій з довільним числом змінних.

Система функцій, суперпозицією яких може бути представлена будь-яка булева функція, називається функціонально повною і вона утворює базис у логічному просторі.

Систему функцій називають мінімально повним базисом, якщо видалення з неї будь-якої функції перетворює цю систему в неповну. В теорії алгебри логіки доведено, що функціонально повні системи утворюють такі набори функцій:

- 1. НЕ, АБО, І.
- 2. НЕ, АБО.
- 3. HE, I.

- 4. I-HE.
- 5. АБО-НЕ.

Інша алгебра логіки будується на основі функції суми за модулем два і кон'юнкції (алгебра Жегалкіна).

Через операції алгебри Жегалкіна можна виразити усі інші булеві функції.

Функціональну схему логічного пристрою одержують в результаті абстрактного синтезу, який складається з наступних етапів:

- 1) текстовий опис функцій логічного пристрою;
- 2) складання таблиці істинності за текстовим описом;
- 3) запис логічного рівняння пристрою у вигляді досконалої нормальної диз'юнктивної форми (ДДНФ) або досконалої нормальної кон'юнктивної форми (ДКНФ);
- 4) мінімізація логічного рівняння;
- 5) вибір одного із логічних базисів для реалізації функціональної схеми;
- 6) перетворення логічного рівняння з використанням правил де Моргана;
- 7) побудова функціональної схеми цифрового пристрою.

<u>Приклад</u>. Синтезувати логічний пристрій з трьома вхідними змінними, який генерує сигнал "1" на виході, якщо хоча би дві підряд змінні приймають значення "1".

1. Складаємо таблицю істинності.

x_1	x_2	<i>x</i> ₃	у
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

2. Логічне рівняння в виді ДДНФ представляє собою диз'юнкцію кон'юнкцій тих вхідних наборів, для яких y=1:

$$y = x_1 \wedge x_2 \wedge x_3 \vee x_1 \wedge x_2 \wedge x_3 \vee x_1 \wedge x_2 \wedge x_3$$
.

3. Мінімізація логічного рівняння здійснюється шляхом використання законів алгебри логіки:

$$y = x_2 \wedge x_3 \wedge (\overline{x_1} \vee x_1) \vee (x_1 \wedge x_2) \wedge (\overline{x_3} \vee x_3) = x_2 \wedge x_3 \vee x_1 \wedge x_2$$
.

4. Функціональну схему реалізуємо в базисі І-НЕ, для цього мінімізоване рівняння перетворимо по правилу де

Моргана: у базисі І-НЕ

6. Функціональні схеми логічного пристрою реалізовані у базисах І-НЕ, АБО-НЕ представлені на рис. 5.1 і рис. 5.2.

Рис. 5.1 – Функціональна схема логічного пристрою у базисі І-НЕ.

Рис. 5.2 – Функціональна схема логічного пристрою в базисі АБО-НЕ.

Контрольні запитання

- 1. Дайте визначення комбінаційного цифрового пристрою.
- 2. Назвіть етапи синтезу цифрових комбінаційних пристроїв.
- 3. Як записується досконала нормальна диз'юнктивна форма?
- 4. Як записується досконала нормальна кон'юнктивна форма?
- 5. Переведіть задане рівняння в базис І-НЕ, АБО-НЕ.
- 6. Синтезуйте функціональну схему пристрою за заданим рівнянням.