STA304

Neil Montgomery 2016-02-22

stratified random sampling

recap

- Stratified sampling can be useful for:
 - getting better population parameter estimates, if the strata are (more) homogeneous
 - further investigation of strata
- SRS done within each strata to get the usual estimates with the usual properties
- Population paramaters are estimated using suitably weighted combinations of stratum estimates.

(from last time)

Going backwards: $\hat{\tau} = N\overline{y}_{st}$.

True and estimated variance (because of independence):

$$V(\overline{y}_{st}) = \sum_{i=1}^{L} W_i^2 V(\overline{y}_i)$$

$$\hat{V}(\overline{y}_{st}) = \sum_{i=1}^{L} W_i^2 \hat{V}(\overline{y}_i)$$

Confidence interval $\bar{y}_{st} \pm 2\sqrt{\hat{V}(y_{st})}$, bound on error of estimation, etc.

example(s)

We will look at the transformer "data" from the term test, by which I mean the actually simulated population's worth of data that was used for the test, contained in the file tx.csv. The story here has to be a little different. On the test knew only the locations of the transformer. For this example we'll pretend we know, say, the location and the Size (50KVA, 75KVA, or 100KVA) but not the Manufacturer or the Age.

plan: compare SRS versus stratified by Size.

We will try to estimate the average age of the population of transformers.

We'll do this in two ways. One is using a SRS of size n = 600. For the other we'll stratify by transformer "Size", which is one of 50KVA, 75KVA, or 100KVA. A summary of the population by Size is as follows, including weights to be used in the stratified formulae later on. Note that here "Size" is a property of a transormer and not anything to do with how many of them there are.

W	N	Size
0.3797994	9882	50
0.3614666	9405	75
0.2587340	6732	100

the simple random sample

We select a simple random sample of 600 transformers and get the following sample mean, standard deviation, and "bound on the error of estimation"

mean	sd	В
27.73778	17.12404	1.381957

stratify by Size

To make a fair comparison we'll keep an overall sample size of 600. We will choose to allocate the sample proportionally to the size of the strata (more on this later). Here is a summary of the results by stratum:

sds	variances	means	n	Size
19.09044	364.4449	32.85426	228	50
17.90934	320.7445	27.48206	217	75
13.22610	174.9298	21.57585	155	100

stratified estimates

The stratified estimator for the population mean is:

$$\overline{y}_{st} = \sum_{i=1}^{L} W_i \overline{y}_i$$

with estimated variance:

$$\hat{V}(\overline{y}_{st}) = \sum_{i=1}^{L} W_i^2 \hat{V}(\overline{y}_i)$$

where $\hat{V}(\overline{y}_i) = \frac{s^2}{n_i} \frac{N_i - n_i}{N_i}$.

stratified estimates

Plug in numbers and weights from previous slides ago to get:

$$\bar{y}_{st} = 27.9942797$$

$$\hat{V}(\bar{y}_{st}) = 0.4877308$$

The "usual bound on the error of estimation" is $\sqrt{\hat{V}(\overline{y}_{st})} = 1.3967546$.