KDAC Objective Challenges

ISM solution

ISM is an optimization technique that solves problems in the form of :

$$\min_{W} - \textstyle\sum_{i,j} \gamma_{i,j} e^{-\frac{Tr(W^TA_{i,j}W)}{2\sigma^2}} \qquad \text{s.t } W^TW = I$$

Advantages of ISM

- 1. The solution is guaranteed to fall on the Stiefel Manifold
- 2. The algorithm is simple to understand and easy implement
- 3. Eigen Decomposition allows for approximation speed ups
- 4. Theoretical guarantees are proven for the 1st, 2nd condition
- 5. ISM is extremely fast compare to other techniques
- 6. ISM includes an initialization point that can be easily calculated

KDAC Speed Challenges

KDAC is a very slow algorithm

Experiment	# of Samples	# of Features	Run Time
SG	40	2	1.51 sec
Flower	256	3	37 sec
LG	400	4	1688 sec
Moon	1000	4	54 min
MoonN	1000	7	60 min
Face	624	20	46 Hours
Webkb	1041	500	8.4 days

KDAC Speed Improvements

ISM greatly improves the computation time While maintaining the quality

