In [2]:

```
%pylab
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
```

Using matplotlib backend: Qt5Agg Populating the interactive namespace from numpy and matplotlib

In [50]:

```
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

import pandas as pd
import numpy as np
from sklearn import datasets, linear_model
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
from scipy import stats
```

1- Prediction of the Customer purchase quantity

Database grouped By Customers

```
In [58]:
```

```
Database_byCustomers = pd.read_csv('Database_byCustomers.csv', sep = ',',encoding="utf-8")
Database_byCustomers=pd.DataFrame(Database_byCustomers)

Database_byCustomers=Database_byCustomers.rename(columns = {'Total_Time_Taken(min)':'Time',Database_byCustomers.head(30)
#pd.read_csv('winequality-white.csv', sep = ';')
#wine.head()
```

Out[58]:

stomer ID	Time	Distance_km	Loy_points	Num_employees	Payment Method	Order Status	Latitude	L
457559	14.33	20.29	28	4	CASH	COMPLETED	-1.165012	3
553157	17.75	5.22	158	2	CASH	COMPLETED	-1.293994	3
553157	61.78	5.22	158	2	CASH	COMPLETED	-1.293994	3
554524	1990.72	8.82	58	3	CASH	COMPLETED	-1.260588	3
555286	257.32	13.67	67	1	CASH	COMPLETED	-1.186376	3
636098	14.18	6.96	115	5	CASH	COMPLETED	-1.306804	3
636098	14.78	6.96	115	5	CASH	COMPLETED	-1.306804	3
636098	15.52	6.96	115	5	CASH	COMPLETED	-1.306804	3
636098	16.05	6.96	115	5	CASH	COMPLETED	-1.306804	3
636098	19.08	4.54	115	5	CASH	COMPLETED	-1.283330	3
4)	

We work only with Kenya orders and customers because there are some inconsistencies in Nigeria data

```
In [59]:
```

```
df_mask=((Database_byCustomers['Country']=='Kenya'))
Data_byCustomers_Kenya = Database_byCustomers[df_mask]
Data_byCustomers_Kenya.head(11)
```

Out[59]:

stomer ID	Time	Distance_km	Loy_points	Num_employees	Payment Method	Order Status	Latitude	L
457559	14.33	20.29	28	4	CASH	COMPLETED	-1.165012	3
553157	17.75	5.22	158	2	CASH	COMPLETED	-1.293994	3
553157	61.78	5.22	158	2	CASH	COMPLETED	-1.293994	3
554524	1990.72	8.82	58	3	CASH	COMPLETED	-1.260588	3
555286	257.32	13.67	67	1	CASH	COMPLETED	-1.186376	3
636098	0.37	6.96	115	5	CASH	COMPLETED	-1.306804	3
636098	1.43	6.96	115	5	CASH	COMPLETED	-1.306804	3
636098	2.68	6.96	115	5	CASH	COMPLETED	-1.306804	3
636098	4.55	6.96	115	5	CASH	COMPLETED	-1.306804	3
636098	6.20	4.54	115	5	CASH	COMPLETED	-1.283330	3
4							l	

Lineal Regression with quantitative variables

In [60]:

```
target = 'Purch_quantity'
#predictors:
features=['Time','Distance_km', 'Loy_points']
x = Data_byCustomers_Kenya[features]
y = Data_byCustomers_Kenya[target]
X2 = sm.add constant(x)
est = sm.OLS(y, X2)
est2 = est.fit()
print(est2.summary())
x_train, x_test, y_train, y_test = train_test_split(x, y)
# Creación de un modelo
model = LinearRegression()
model.fit(x_train, y_train)
predit_train = model.predict(x_train)
predit_test = model.predict(x_test)
# Evaluación de R2
print('R2 en entrenamiento es: ', model.score(x_train, y_train))
print('R2 en validación es: ', model.score(x_test, y_test))
```

OLS Regression Results

===========					======	======		
==								
Dep. Variable: 91	. Variable: Purch_quantity			R-squared: 0.0				
Model:		OLS	Adj. R	-sauared:	0.0			
90			. 3	- 4				
Method:	Least Squares		F-stat	istic:	78.			
57								
Date:	Mon, 21 Feb 2022		Prob (F-statistic):	1.95e-			
48 Time:		22.42.10	Log-Li	kalihaad:	-1047			
4.		22.42.10	LUG-LI	KEIIHOOU.		-104/		
No. Observations:		2359	AIC:			2.096e+		
04								
Df Residuals:		2355	BIC:			2.098e+		
04								
Df Model:		3						
Covariance Type:		nonrobust						
===	======	========	======	=========	======	======		
	coef	std err	+	P> t	[0.025	0.9		
75]		Jea e		. , 5	[0.023	0.5		
	.4224	0.569	7.777	0.000	3.307	5.		
538	0065	0.004	1 026	0.067	0 000	0		
Time 0 013	.0065	0.004	1.836	0.067	-0.000	0.		
Distance_km -0	.0006	0.001	-0.408	0.683	-0.003	0.		

```
002
Loy_points
             0.0102
                      0.001
                               15.262
                                        0.000
                                                  0.009
                                                            0.
012
______
                       4704.090
                                Durbin-Watson:
                                                           1.5
Omnibus:
28
                                Jarque-Bera (JB):
Prob(Omnibus):
                          0.000
                                                    17917065.4
82
                         15.542
                                Prob(JB):
                                                            0.
Skew:
00
                        428.815
                                Cond. No.
Kurtosis:
                                                         1.07e +
03
______
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is corre
ctly specified.
[2] The condition number is large, 1.07e+03. This might indicate that there
strong multicollinearity or other numerical problems.
R2 en entrenamiento es: 0.0832025088921825
R2 en validación es: 0.13776487679665006
```

Lineal Regression with quantitative and dummies variables

In [61]:

```
# Separation among the objective variable and the predictors.
#Objective variable
target = 'Purch_quantity'
y = pd.DataFrame(Data_byCustomers_Kenya[target])

#predictors:
#features=['Time', 'Distance_km', 'Loy_points', 'Payment Method', 'Order Status']
x_0 = pd.DataFrame(Data_byCustomers_Kenya, columns = ['Time', 'Distance_km', 'Loy_points',
x = pd.concat([x_0['Time'], x_0['Distance_km'], x_0['Loy_points'], pd.get_dummies(x_0['Paym'], yd.get_dummies(x_0['Paym'], yd.get_dummies(x_0['Ord'], yd.get_dummies(x_0['Ord'], yd.get_dummies(x_0['Ord'], yd.get_dummies(x_0['Ord'], yd.get_dummies(x_0['Ord'], yd.get_dummies(x_0['Ord'], yd.get_dummies(x_0['Ord'], yd.get_dummies(x_0['Ord'], yd.get_dummies(x_0['Ord'], yd.get_dummies.fit(x, y)
```

Modelo dummies - R^2: 0.13224229805481458

2- Prediction of the Revenue by Store

In [62]:

```
Database_byStore = pd.read_csv('Database_byStore.csv', sep = ',',encoding="utf-8")
Database_byStore=pd.DataFrame(Database_byStore)

Database_byStore=Database_byStore.rename(columns = {'Total_Time_Taken(min)':'Time','DistancDatabase_byStore.head(30)
#pd.read_csv('winequality-white.csv', sep = ';')
#wine.head()
```

Out[62]:

	Lat	Long	Nro_Employees	Payment Method	Order Status	Rating	Country	N_Orders
0	-8.901959	13.197016	1	CASH	CANCELLED	0.0	Kenya	1
1	-1.475960	36.959040	2	CASH	COMPLETED	0.0	Kenya	2
2	-1.396854	36.758234	3	CASH	CANCELLED	0.0	Kenya	1
3	-1.396816	36.749753	4	CASH	COMPLETED	0.0	Kenya	1
4	-1.396806	36.749739	4	CASH	CANCELLED	0.0	Kenya	1
25	-1.383046	36.676590	6	Pay Later	COMPLETED	0.0	Kenya	4
26	-1.369013	36.940145	4	CASH	COMPLETED	0.0	Kenya	3
27	-1.364193	36.911635	3	CASH	CANCELLED	0.0	Kenya	1
28	-1.360832	36.655943	8	CASH	COMPLETED	0.0	Kenya	1
29	-1.360832	36.655943	8	Pay Later	COMPLETED	0.0	Kenya	3
4								•

We work only with Kenya orders and customers because there are some inconsistencies in Nigeria data

In [63]:

```
df_mask=((Database_byStore['Country']=='Kenya'))
Data_byStore_Kenya = Database_byStore[df_mask]
Data_byStore_Kenya.head(11)
```

Out[63]:

	Lat	Long	Nro_Employees	Payment Method	Order Status	Rating	Country	N_Orders
0	-8.901959	13.197016	1	CASH	CANCELLED	0.0	Kenya	1
1	-1.475960	36.959040	2	CASH	COMPLETED	0.0	Kenya	2
2	-1.396854	36.758234	3	CASH	CANCELLED	0.0	Kenya	1
3	-1.396816	36.749753	4	CASH	COMPLETED	0.0	Kenya	1
4	-1.396806	36.749739	4	CASH	CANCELLED	0.0	Kenya	1
6	-1.396545	36.765326	2	CASH	COMPLETED	0.0	Kenya	11
7	-1.396390	36.940280	1	CASH	COMPLETED	0.0	Kenya	2
8	-1.396276	36.762251	3	CASH	COMPLETED	0.0	Kenya	2
9	-1.395300	36.764000	3	CASH	COMPLETED	0.0	Kenya	3
10	-1.395300	36.764000	4	CASH	COMPLETED	0.0	Kenya	5
4								•

In [65]:

```
## Lineal Regression with quantitative variables
target = 'Revenue_byStore'
#predictors:
features=['Nro_Employees', 'N_Orders', 'Rating']
x = Data_byStore_Kenya[features]
y = Data_byStore_Kenya[target]
X2 = sm.add\_constant(x)
est = sm.OLS(y, X2)
est2 = est.fit()
print(est2.summary())
x_train, x_test, y_train, y_test = train_test_split(x, y)
# Creación de un modelo
model = LinearRegression()
model.fit(x_train, y_train)
predit_train = model.predict(x_train)
predit_test = model.predict(x_test)
# Evaluación de R2
print('R2 en entrenamiento es: ', model.score(x_train, y_train))
print('R2 en validación es: ', model.score(x_test, y_test))
```

OLS Regression Results

```
______
                                                     0.4
Dep. Variable:
                Revenue byStore
                             R-squared:
64
                         OLS
                             Adj. R-squared:
                                                     0.4
Model:
61
Method:
                 Least Squares
                             F-statistic:
                                                     13
7.0
              Mon, 21 Feb 2022
                             Prob (F-statistic):
                                                   6.25e-
Date:
64
                     23:05:54
Time:
                             Log-Likelihood:
                                                    -618
0.8
No. Observations:
                         478
                             AIC:
                                                  1.237e+
94
Df Residuals:
                         474
                             BIC:
                                                  1.239e+
94
Df Model:
                          3
Covariance Type:
                    nonrobust
______
=====
              coef std err
                                 t
                                     P>|t|
                                             [0.025
0.975
```

const	-2.252e+04	6588.336	-3.418	0.001	-3.55e+04	-957
6.067						
Nro_Employees	3890.1496	1037.554	3.749	0.000	1851.375	592
8.924						
N_Orders	1.151e+04	591.168	19.476	0.000	1.04e+04	1.2
7e+04						
Rating	5365.6012	9070.187	0.592	0.554	-1.25e+04	2.3
2e+04						
=========	========	========				
==						
Omnibus:		570.169	Durbin-Wa	atson:		1.8
44						
Prob(Omnibus):		0.000	Jarque-Be	era (JB):	49	356.2
84			•	` ,		
Skew:		5.612	Prob(JB):			0.
00			` ,			
Kurtosis:		51,499	Cond. No.			1
9.3			20	-		_
==========	========	=========	========		:========	=====
==						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

R2 en entrenamiento es: 0.4866995919031063 R2 en validación es: 0.41747895257749645