Lezione del 11 Marzo e prima parte della lezione del 12 Marzo

Teorema 0.1 (di classificazione).

Le superfici compatte e orientabili (qualsiasi cosa voglia dire) sono tutte e sole le seguenti Σ_i dove Σ_i è la superficie con i-buchi

Osservazione 1. $\Sigma_0 = S^2$ (la sfera) mentre $\Sigma_1 = S^1 \times S^1$ (il toro)

Calcoliamo il π_1 del toro usando il teorema di Van Kamper Sia Q il quadrato e sia p il centro del quadrato.

Il toro si ottiene identificando i lati opposti del quadrato, sia $\pi:Q\to\Sigma_1$ la proiezione al quoziente.

Siano $A = \pi(Q \setminus \{p\})$ e $B = \pi(Q \setminus \partial Q)$ da cui $A \cap B = \pi(Q \setminus \{p\}) \cup \partial Q$

Osserviamo che A, B e $A \cap B$ sono aperti (essendo immagine di aperti saturi) e connessi per archi.

Ora $Q \setminus \{p\}$ si retrae a ∂Q che a sua volta si proietta su $S^1 \wedge S^1$, la retrazione passa al quoziente, A si ritrae su $S^1 \wedge S^1$, abbbiamo $\pi_1(A) = \mathbb{Z} \star \mathbb{Z}$ con generatori a, b

Osserviamo che B è omeomorfo a $Q \setminus \partial Q$ ($\pi_{Q \setminus \partial Q}$ è l'omomorfismo cercato), poichè tale insieme è convesso si ha $\pi_1(B) = 1$

Ora $A \cap B$ si ritrae su S^1 percui $\pi(A \cap B) = \mathbb{Z}$

Abbiamo dunque il seguente diagramma

Ora se α è il generatore di $\pi_1(A \cup B)$ disegnato allora $\phi(\alpha) = aba^{-1}b^{-1}$ mentre ψ è banale. Dal teorema di Van Kampen si ha

$$\pi_1(\Sigma_1) = \frac{\pi_1(A) \star \pi_1(B)}{\phi(\alpha) = \psi(\alpha)} = \langle a, b \mid aba^{-1}b^{-1} \rangle = \mathbb{Z} \oplus \mathbb{Z}$$

Possiamo fare una dimostrazione analoga anche per la superficie di genere 2.

Sia P l'ottagono e p il suo centro, sia $\pi: P \to \Sigma_2$ identificando i lati con le stesse lettere (vedi disegno)

Sia
$$A = \pi(P \setminus \{p\})$$
 e $B = \pi(P \setminus \partial P)$

Come nel caso precedente $A, B \in A \cap B$ sono aperti e connessi per archi, A si ritrae su $\pi(\partial P)$ che è un boquet di A copie di A date dalle proiezioni di A, A, A, dunque A dunque A

Se α è un generatore di $\pi_1(A \cup B)$ allora $\phi(\alpha) = aba^{-1}b^{-1}cdc^{-1}d^{-1}$.

Per il teorema di Van Kamper si ha

$$\pi_1(\Sigma_2) = \langle a, b, c, d \, | \, aba^{-1}b^{-1}cdc^{-1}d^{-1} \rangle$$

Con un procedimento analogo partendo da un 4g-agono si mostra che

$$\pi_1(\Sigma_g) = \langle a_1, b_1, \dots, a_g, b_g \mid \prod_{i=1}^g [a_i, b_i] \rangle$$

Denotiamo con $\Gamma_g = \pi(\Sigma_g)$

Teorema 0.2.

$$\frac{\Gamma_g}{[\Gamma_g, \Gamma_g]} \cong \mathbb{Z}^{2g}$$

Dimostrazione. Definisco una mappa $\psi: \Gamma_g \to \mathbb{Z}^{2g}$ ponendo $\psi(a_i) = e_i$ e $\psi(b_i) = e_{2i+1}$ La buona definizione deriva dal fatto che ovviamente le relazioni vadano nell'identità di \mathbb{Z}^{2g} . Poichè \mathbb{Z}^{2g} è abeliano si ha $[\Gamma_g, \Gamma_g] \subseteq \ker \psi$ da cui ψ induce

$$\overline{\psi}: \frac{\Gamma_g}{[\Gamma_g, \Gamma_g]} \to \mathbb{Z}^{2g}$$

Per concludere esibiamo un'inversa di $\overline{\psi}$

$$\phi: \mathbb{Z}^{2g} \to \frac{\Gamma_g}{[\Gamma_g, \Gamma_g]} \text{ con } \phi(e_i) = \begin{cases} [[a_i]] \text{ so } i \leq g \\ [[b_i]] \text{ so } i > g \end{cases}$$

Dal fatto che $\frac{\Gamma_g}{[\Gamma_g,\Gamma_g]}$ è abeliano, è facile verificare che ϕ si estende ad un omo di gruppi che è l'inversa di ψ

Osservazione 2. $\mathbb{Z}^m \cong \mathbb{Z}^n \Leftrightarrow m = n$

Infatti se $\varphi: \mathbb{Z}^n \to \mathbb{Z}^m$ è un omomorfismo, viene rappresentata da una matrice A di taglia $m \times n$.

se $\psi: \mathbb{Z}^m \to \mathbb{Z}^n$ è l'inversa allora viene rappresentata da una matrice B di taglia $n \times m$ Ora $AB = I_m$ mentre $BA = I_n$, per fatti noti di algebra lineare si ha n = m

Corollario 0.3.

- $\Gamma_q \cong \Gamma_{q'} \iff g = g'$
- Σ_g è omotopicamente equivalente a $\Sigma_{g'}$ se e solo se g = g'
- $\Sigma_q \cong \Sigma_{g'} \iff g = g'$

D'ora in poi tutti gli spazi saranno localmente connessi per archi

Proposizione 0.4. Sia $p: E \to X$ un rivestimento connesso (E connesso dunque connesso per archi (E localmente connesso).

Sia $\tilde{x_0} \in F = p^{-1}(x_0)$ e sia $\psi : \pi_1(X, x_0) \to F$ dove $\psi(\alpha) = \tilde{x_0} \cdot \alpha$. Allora ψ induce una bigezione tra

$$\frac{p_{\star}(\pi_1(E, \tilde{x_0})}{\pi_i(1)(X, x_0)} \to F$$

In particolare $Stab(\tilde{x_0}) = p_{\star}(\pi_1(E, \tilde{x_0}))$ e al variare di $\tilde{x} \in F$ i gruppi $p_{\star}(\pi_1(E, \tilde{x})) = Stab(\tilde{x})$ sono tutti e soli i coniugati di $p_{\star}(\pi_1(E, \tilde{x_0}))$

Dimostrazione. Poichè E è connesso, l'azione di monodromia è transitiva, da cui segue la surgettivita di ψ

Sia $\alpha = [\gamma] \in Stab(\tilde{x_0})$ dunque per definizione di monodromia

$$\widetilde{\gamma}_{\widetilde{x_0}}(1) = \widetilde{x_0} \iff \widetilde{\gamma}_{\widetilde{x_0}} \text{ è un loop in } E \iff [\gamma] \in p_{\star}(\pi_1(E, \widetilde{x_0}))$$

da ciò segue che

$$\psi(\alpha) = \psi(\beta) \iff \tilde{x_0} \cdot \alpha = \tilde{x_0} \cdot \beta \iff \tilde{x_0} \cdot (\alpha \beta^{-1}) = \tilde{x_0} \iff \alpha \beta^{-1} \in Stab(\tilde{x_0}) \iff [\alpha] = [\beta] \text{ in } \frac{\pi_1(X, x_0)}{Stab(\tilde{x_0})}$$

dunque ψ induce la bigezione cercata.

Usando il fatto che l'azione è transitiva, è facile vedere che $Stab(\tilde{x})$ al variare di \tilde{x} sono tutti e soli i coniugati di $Stab(\tilde{x_0})$ (se $\tilde{x} \in F$ allora $\tilde{x} = \tilde{x_0} \cdot \eta \to Stab(\tilde{x})$ è il coniugato di $Stab(\tilde{x_0})$ per η

Teorema 0.5 (di sollevamento di mappe).

Sia $p: E \to X$ un rivestimento connesso, $x_0 \in X$, $\tilde{x_0} \in p^{-1}(x_0)$ e sia $f: Y \to X$ continua con Y connesso e sia $y_0 \in Y$

$$\exists \tilde{f}: Y \to E \text{ sollevamento di } f \text{ con } \tilde{f}(y) = \tilde{x_0} \iff f_{\star}(\pi_1(Y, y_0)) \subset \pi_{\star}(\pi(E, \tilde{x_0}))$$

Dimostrazione. \Rightarrow se $f = p \circ \tilde{f}$ allora $f_{\star} = p_{\star} \circ \tilde{f}_{\star}$ dunque $Im_{f_{\star}} \subseteq Im_{p_{\star}}$ \Leftarrow Definiamo \tilde{f} come segue, se $y \in Y$, scegliamo un cammino γ in Y che collega y_0 a y e poniamo $\tilde{f}(y) = \left(\widetilde{f \circ \gamma}\right)_{\widetilde{f}(y)} 1$).

Verifichiamo la buona definizione ovvero che la funzione non dipende dal cammino scelto. Se β è un altro cammino allora $\gamma \sim \gamma \star \overline{\beta} \star \beta$ come cammini dunque

$$f\circ\gamma\sim[f\circ(\gamma\star\overline{\beta}\star\beta)]=f\circ(\gamma\star\overline{\beta})\star f\circ\beta$$

Osserviamo che $\alpha = \gamma \star \overline{\beta}$ è un loop basato inn y_0 da cui $[f \circ \alpha] \in f_{\star}(\pi_1(Y, y_0)) \subseteq p_{\star}(\pi_1(E, \tilde{x_0}))$ dunque $f \circ \alpha$ si solleva ad un loop in E a partire da $\tilde{x_0}$. Si ha dunque

$$\left(\widetilde{f\circ\gamma}\right)_{\widetilde{x}_0}(1) = \left((f\circ\alpha)\star(f\circ\beta)\right)_{\widetilde{x}_0}(1) = \left(\widetilde{f\circ\alpha}\right)_{\widetilde{x}_0}\star\left(\widetilde{f\star\beta}\right)_{\left(\widetilde{f\star\alpha}\right)_{\widetilde{x}_c}(1)}(1)$$

Essendo $\left(\widetilde{f\star\alpha}\right)_{\widetilde{x}_0}$ un loop allora $\left(\widetilde{f\star\alpha}\right)_{\widetilde{x}_0}(1)=\widetilde{x}_0$ da cui

$$\left(\widetilde{f \circ \gamma}\right)_{\widetilde{x}_0}(1) = \left(\widetilde{f \star \beta}\right)_{\widetilde{x}_0}(1)$$

questo mostra la ben definizione di \tilde{f}

Mostriamo adesso la continuità.

Dato $y \in Y$. Sia U intorno aperto ben rivestito di $f(y) \in X$ dunque $p^{-1}(U) = \prod V_i$ con V_i aperto in E.

Sia i_0 tale che $\tilde{f}(y) \in V_{i_0}$ e sia $s: U \to V_{i_0}$ l'inversa continua di $p_{|V_{i_0}}$ (esiste per definizione di intorno ben rivestito).

Sia $W = f^{-1}(U)$ che è aperto di Y (a meno di prendere un suo sottoinsieme, lo assumo connesso per archi).

Per mostrare la continuità di \tilde{f} basta osservare che $\tilde{f}_{|W} = s \circ f_{|W}$

Sia $\gamma \in \Omega(y_0, y)$ e $z \in W$ tale che $\gamma_z \in \Omega(y, z)$, per definire $\tilde{f}(z)$ uso il cammino $\alpha_z = \gamma \star \gamma_z$ dunque

$$\widetilde{f}(z) = \left(\widetilde{f \circ \alpha_z}\right)_{\widetilde{x}_0} (1) = \left((f \circ \widetilde{\gamma}) \star (f \circ \gamma_z)\right)_{\widetilde{x}_0} (1) = \left(\widetilde{f \star \gamma}\right)_{\widetilde{x}_0} \star \left(\widetilde{f \circ \gamma_z}\right)_{\widetilde{f}(y)} (1)$$

in quanto $\tilde{f}(y) = \left(\widetilde{f \circ \gamma}\right)_{\tilde{x}_0}(1)$ dunque otteniamo

$$\left(\widetilde{f\circ\gamma}\right)_{\widetilde{x}_0}(1)=\left(\widetilde{f\circ\gamma_z}\right)_{\widetilde{f}(y)}=(s\circ(f\circ\gamma_z))(1)=s(f(z))$$

dove la penultima uguaglianza deriva dall'unicità del sollevamento in quanto $s\circ f\circ \gamma_z$ solleva $f\circ \gamma_z$ a partire da $\tilde{f}(y)$

Corollario 0.6. Sia $p: E \to X$ un rivestimento connesso, $x_0 \in X$ e $\tilde{x}_0 \in p^{-1}(x_0)$. Sia $f: Y \to X$ con $f(y_0) = x_0$.

Se Y è semplicemente connesso $\exists ! \ \tilde{f} : Y \to E \ con \ \tilde{f}(y_0) = \tilde{x}_0$

Dimostrazione. La condizione del teorema è banalmente vera

Teorema 0.7 (di Barsuk-Ulam). Non esistono mappe continue $f: S^2 \to S^1$ con f(-x) = -f(x)

Dimostrazione. Supponiamo, per assurdo che esista una mappa f come nelle ipotesi.

Siano $p:S^2\to \mathbb{P}^2(\mathbb{R})$ e $q:S^1\to \mathbb{P}(\mathbb{R})$ le proiezioni al quoziente. Abbiamo, dunque, un diagramma commutativo di funzioni continue

$$S^{2} \xrightarrow{f} S^{1}$$

$$\downarrow^{p} \qquad \downarrow^{q}$$

$$\mathbb{P}^{2}(\mathbb{R}) \xrightarrow{f} \mathbb{P}(\mathbb{R})$$

Ora $\pi_1(\mathbb{P}^2(\mathbb{R})) = \mathbb{Z}_2$ e $\pi_1(\mathbb{P}^1(\mathbb{R})) = \mathbb{Z}$ segue che \overline{f}_{\star} è la mappa banale (non esistono omomorfismi non banali da $\mathbb{Z}_2 \to \mathbb{Z}$)

Per il teorema di sollevamento $\exists h : \mathbb{P}^2(\mathbb{R}) \to S^1$ con $q \circ h = \overline{f}$ (non sappiamo che $h \circ p = f$) Scelgo $x_0 \in S^2$. So che $q(h(p(x_0)) = q(f(x_0))$ in quanto $q(h(p(x_0)) = \overline{f}(p(x_0)) = q(f(x_0))$.

Dunque $h \circ p$ e f sono sollevamenti di $\overline{f} \circ p$.

Sia $z_0 \in \mathbb{P}^1(\mathbb{R})$ allora $z_0 = \overline{f}(p(z_0))$.

Ora $q^{-1}(z_0) = \{y_0, -y_0\}$ dunque posso supporte $f(x_0) = y_0$ e $f(-x_0) = -y_0$.

Anche $h(p(x_0)), h(p(-x_0))$ appartengono a $\{y_0, -y_0\}$ ma $p(x_0) = p(-x_0)$ per cui $h(p(x_0)) = h(p(-x_0))$ dunque deve succedere che $f \in h \circ p$ coincidono su un punto o x_0 o $-x_0$.

Ora $f \in h \circ p$ sono sollevamenti che coincidono in un punto, per un unicità (S^2 connesso) $f = h \circ p$. Ciò è assurdo in quanto $f(x_0) \neq f(-x_0)$ mentre $h(p(x_0)) = h(p(-x_0))$

Corollario 0.8. $f: S^2 \to \mathbb{R}^2$ continua. Allora $\exists x \in S^2$ con f(x) = f(-x)

Dimostrazione. Se $f(x) \neq f(-x) \ \forall x \in S^2,$ allora la mappa $g: \, S^2 \to S^1$ definita come

$$g(x) = \frac{f(x) - f(-x)}{||f(x) - f(-x)||}$$

sarebbe ben definita e continua (il denominatore non si annullano). Tale mappa genera un assurdo perchè g(x) = -g(-x)

Corollario 0.9. In un fissato istante, sulla superficie terrestre, esistono 2 punti antipodali con la stessa temperatura e pressione (che si assumono continue)