Paper Id: 214303

MCA (SEM-III) THEORY EXAMINATION 2019-20 DESIGN & ANALYSIS OF ALGORITHMS

Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

a.	Define the concept of an algorithm.
b.	State recursion and its different types?
C.	Define Knapsack problem statement.
d.	What is Heap? Give example of Max-Heap.
e.	When we use dynamic programming approach? Define.
f.	What is Non-Comparison sort? Define with example.
g.	Describe divide and conquer paradigm.

SECTION B

2. Attempt any *three* of the following:

 $7 \times 3 = 21$

	·
a.	Show that the worst case running time of HEAPIFY on a heap of size n is O(n
	logn).
b.	Explain the red-black tree properties. Find the maximum height of a red-black
	tree with 1,000,000 values?
c.	Find the time complexity of recurrence relation $T(n) = 2T(\sqrt{n}) + 1$
d.	Apply Kruskal's algorithm to find minimum spanning tree.
	a 11
e.	Explain Boyer-Moore algorithm for string matching for text:
	"a b c a a b c c a a b b a b c a" pattern abc. Compute worst time
	complexity of this algorithm.

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

Γ	(a)	Show that the running time of Quick-Sort is $\Theta(n2)$ when the array A is sorted
L		in non-increasing order.
ſ	(b)	Using master method solve the following recurrence
1		$T(n) = 4T(n/2) + n^2 \log n$

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a)	Show that results of inserting the following items in an initially empty B-tree of
	order 5.
	25,31,38,76,05,60,38,08,30,15,35,17,23,53,27,43,65,48
(b)	What do you understand by Binomial Heap? How to merge two binomial
	heaps?

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Explain Dynamic Programming. Apply it on Matrix Chain Multiplication problem.
- (b) Discuss Travelling salesman Problem and various approaches to solve the problem with complexity analysis of each.

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Write and explain Bellman-Ford algorithm with the help of suitable example.
- (b) Solve the following instance of the single source shortest path problem with vertex 'a' as the source.

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Discuss the relationship between the class P, NP, NP-Complete and NP-hard problems with suitable example of each class.
- (b) Write short notes on any two of the following:
 - i. Knuth-Morris-Pratt algorithm for pattern matching.
 - ii. Approximation of a NP-complete problem.
 - iii. Backtracking.
 - iv. Randomized sorting algorithm.