Universidade de São Paulo

Instituto de Matemática e Estatística

MAC
0210 - Laboratório de Métodos Numéricos $2023 \label{eq:macond}$

Exercício-programa 1: Equações não lineares em uma variável

Beatriz Viana Costa

Conteúdo

1.	Método do Ponto Fixo	3
1.1.	Funções utilizadas	3
1.2.	Resultado e análise dos experimentos	3
2.	Método de Newton	5
2.1.	Resultados dos testes	5

1. Μέτορο do Ponto Fixo

Na primeira parte do exercício-programa, deveríamos fazer um programa, que ao receber um ponto inicial x0, tal que $x0 \in \mathbb{R}$, deveria devolver a raiz da função $f(x) = exp(x) - 2x^2$.

Por meio do enunciado, temos a informação de que a função apresenta 3 raízes, e por meio da ferramenta $Geogebra^1$ pudemos encontrá-las.

Dessa forma, as raízes da função apresentada são:

$$\begin{cases} x_1^* \approx -0.5398352 \\ x_2^* \approx 1.4879620 \\ x_3^* \approx 2.6178666 \end{cases}$$

1.1. Funções utilizadas.

Para encontrar a função g(x) que iríamos utilizar no programa, igualamos nossa função f(x) dada à 0, para dessa forma conseguirmos isolar o x.

$$f(x) = 0 = exp(x) - 2x^2$$

Com está técnica, foi possível encontrar 3 funções g(x), são elas:

$$(1) g(x) = \ln 2x^2$$

$$(2) g(x) = \sqrt{\frac{e^x}{2}}$$

$$g(x) = -\sqrt{\frac{e^x}{2}}$$

Assim, para analisar quais funções convergiam para certas raízes foi necessário tirar o intervalo de cada uma utilizando a relação:

$$|g(x)'| < 1$$

 $|g(x^*)'| < 1$,

Logo a função (1) converge para x < 0 ou x > 2 e as funções (2) e (3) convergem para x > -1.75. Agora analisando utilizando as raízes encontramos que a função (1) converge para a raiz x_3^* , a função (2) converge para x_2^* e a função (3) converge para a raiz x_1^* .

Cruzando as informações que obtivemos, foi possível organizar o algoritmo para que dado qualquer ponto $x \in \mathbb{R}$, o método convergisse.

1.2. Resultado e análise dos experimentos.

O código foi testado para diferentes valores de x, tanto positivos, como negativos e nulos; e em todos os testes o método convergiu para uma das três raízes encontradas.

O código além de mostrar para qual raiz o método convergiu, mostra também quantos passos foram necessários. O método de parada utilizado foi a diferença absoluta entre o x anterior e o x atual, chamamos esse valor de xtol que possui o valor de 1×10^{-8} . Para a compilação e execução do programa é necessário utilizar os seguintes comandos no terminal:

$$\ gcc$$
-ansi -Wall -pedantic ep
1P1.c -lm $\ \$./a.out

¹Pode ser acessado por meio do link https://www.geogebra.org/?lang=pt.

O programa pedirá o ponto inicial, que pode ser informado tanto como um número inteiro como por um número real utilizando um ponto (.) para separar a parte decimal da parte inteira.

2. MÉTODO DE NEWTON

Na segunda parte do exercício-programa, deveríamos aplicar o Método de Newton afim de gerar uma imagem mostrando as bacias de convergência de uma certa função, que pode ser escolhida pelo usuário. Para haver a troca da função, é necessário que o usuário abra o arquivo fonte em C, e logo nas primeiras linhas altere o valor de $\#define\ f(x)$ para a função desejada, e $\#define\ Df(X)$ para a derivada da função escolhida.

Mais uma vez o método de parada foi a diferença absoluta dos dois pontos consecutivos encontrados no método iterativo, o valor utilizado foi o mesmo utilizado na parte 1, $xatol = 1 \times 10^{-8}$.

O plano varia de 50 a -50 tanto no eixo x quanto no eixo y. A quantidade p de pixels escolhida foi 1000. O programa em C gera um arquivo chamado output.txt que é utilizado porteriormente pelo GNUplot para a geração da imagem output.png.

Para compilar, executar o programa gerado e depois gerar a imagem utilizando o GNUplot, é necessário utilizar os seguintes comandos no terminal:

\$ gcc -ansi -Wall -pedantic ep1P2.c -lm \$./a.out \$ gnuplot \$ set terminal png size (1200, 800) \$ set output "output.png" \$ plot "output.txt" with image pixel \$ q

2.1. Resultados dos testes.

Juntamos aqui alguns resultados interessantes de funções testadas no programa.

