Discrete Mathematics

Cardinality

Shin Hong

Cardinality

• The cardinality of a set A is equal to the cardinality of a set B, denoted |A| = |B|, if and only if there is a one-to-one correspondence (i.e., bijection) from A to B.

• If there is a one-to-one function from A to B but no bijection, the cardinality of A is less than or the cardinality of B and we write |A| < |B|.

Cardinality (Chapter 2)

Cardinality of Finite Sets

•A set S is finite with cardinality $n \in \mathbb{N}^0$ if there is a bijection from the subset of non-negative integers $\{0, 1, ..., n-1\}$ to S

Cardinality (Chapter 2)

Let's Think About Infinite Sets

- I. A set S is infinite if one of its subsets is an infinite set
- 2. Every subset of a finite set is finite.
- 3. If $f: S \to T$ be an injection and S is infinite, T is infinite.
- 4. If S is infinite, the power set of S is infinite.
- 5. If S and T are infinite sets, $S \cup T$ is infinite.
- 6. If S is infinite and $T \neq \emptyset$, $S \times T$ is infinite.
- 7. If S is infinite and $T\neq\emptyset$, the set of functions from T to S is infinite.

Cardinality (Chapter 2)

Cardinality of Infinte Set

- •A set is countable when
 - -the set is finite, or
 - the set has the same cardinality as the set of positive integers

•When an infinite set is countable (calling it *countably infinite*), its cardinality is denoted as \aleph_0 (i.e., aleph null)

• A set that is not countable is uncountable

Cardinality (Chapter 2)

Showing that a Set is Countable

- An infinite set is countable iff there is a way to list the elements in a sequence with indexes of positive integers
 - there must exist a function $f: N \rightarrow S = \{a_1, a_2, ...\}$ such that $a_1 = f(1)$, $a_2 = f(2), ..., a_n = f(n), ...$
- •Ex. Show that the set of positive even integers E is countable Let f(x) = 2x. Then f is a bijection from \mathbb{N} to E.

Cardinality (Chapter 2)

Showing that a Set is Countable

•Ex. Show that the set of integers $\mathbb Z$ is countable. $\mathbb Z$ can be listed as a sequence:

This sequence can be defined by a bijection f from $\mathbb N$ to $\mathbb Z$:

- When *n* is even: f(n) = n/2
- When *n* is odd: f(n) = -(n-1)/2

Cardinality (Chapter 2)

The Positive Rational Numbers are Countable

• Theorem. the set of all positive rational numbers is countable.

Constructing a sequence

List p/q with p + q = 2 first, and then list p/q with p + q = 3, and so on

 $1, \frac{1}{2}, 2, 3, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \dots$

Cardinality (Chapter 2)

Discrete Math.

Enumeration

- An enumeration of a set S is a surjective function f from an initial segment of \mathbb{N} to S.
 - f is a string where every element of S appears at least once
 - f is an enumeration without repetitions if f is bijective
 - -f is an enumeration with repetitions if it is not injective
 - Example
 - $S = \{\alpha, \beta, \gamma, \delta\}$
 - $<\alpha$, γ , β , β , δ , $\alpha>$ is an enumeration with repetition
 - $\langle \gamma, \alpha, \delta, \beta \rangle$ is an enumeration without repetition
- A set S is countable iff there is an enumeration of S

Cardinality (Chapter 2)

Strings

- The set of strings over a finite alphabet A is countably infinite.
- Proof.
 - Show that the strings can be listed in a sequence:
 - All the strings of length 0 in alphabetical order.
 - Then all the strings of length I in lexicographic (as in a dictionary) order.
 - Then all the strings of length 2 in lexicographic order.
 - And so on.
 - This implies a bijection from \mathbf{N} to S and hence it is countably infinite.

Cardinality (Chapter 2)

Every Java programs is a string, thus countable

The set of all Java programs is countable.

Proof

- Let S be the set of strings constructed from the characters which can appe ar in a Java program. Use the ordering from the previous example. Take each string in turn:
 - Feed the string into a Java compiler. (A Java compiler will determine if the input program is a syntactically correct Java program.)
 - If the compiler says YES, this is a syntactically correct Java program, we ad d the program to the list
 - We move on to the next string
- In this way we construct an implied bijection from $\mathbb N$ to the set of Java programs. Hence, the set of Java programs is countable.

Cardinality (Chapter 2)

Discrete Math.

Uncountable Set

- Theorem. \mathbb{R} is uncountable.
- Proof (proof by contradiction)
 - Suppose that \mathbb{R} is countable. Then, the set of all real numbers in [0, 1) is countable, and the elements can be listed with positive integer indexes as follow:

```
r_1 = 0.d_{11}d_{12}d_{13}d_{14} \dots d_{ij} \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
r_2 = 0.d_{21}d_{22}d_{23}d_{24} \dots
r_3 = 0.d_{31}d_{32}d_{33}d_{34} \dots
r_4 = 0.d_{41}d_{42}d_{43}d_{44} \dots
\vdots
r_i = 0.d_{i1}d_{i2} \dots d_{ii} \dots
```

- There exists a real number r'=0. d_1' d_2' d_3' ... d_i' ... such that $d_i'=4$ iff $d_{ii}\neq 4$ and $d_i'=5$ iff $d_{ii}=4$
- Thus, $\forall i \in N \ (r' \neq r_i)$. Consequently, this conclusion is a contradiction.

Cardinality (Chapter 2)

Discrete Math.

Cardinalities of the Uncountable

- A set S is of cardinality c if there is a bijection from the set of real numbers in [0, 1] to S.
 - $-\aleph_0 < c$
 - c.f. the set of real numbers in [0, 1] is called a continuum

- The continuum hypothesis claims that there exists no set A such that $\aleph_0 < |A| < c$
 - Note that, for an infinite set A, $\aleph_0 \leq |A|$
- For a set S, $|S| < |\mathcal{P}(S)|$.
 - $\aleph_0 = |\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < \cdots$

Cardinality (Chapter 2)

Uncountable Set Example

- Let S be a finite alphabet and Σ^* the set of all strings over Σ . Then $\mathcal{F}(\Sigma^*)$ is uncountable.
- Proof using the Cantor's diagonalization
 - Let $\langle s_0, s_1, s_2, ... \rangle$ be an enumeration of strings in Σ^* .
 - Suppose that $\langle A_0, A_1, ... \rangle$ is an enumeration of $\mathcal{F}(\Sigma^*)$, such that A_i represents a subset of strings Σ^* as a bit vector $\langle a_{i0}, a_{i1}, ... \rangle$
 - Think about $A' \in \mathcal{P}(\Sigma^*)$ such that $s_i \in A'$ iff $s_i \notin A_i$

	S_0	S_1	S_2	•••
A_0	a ₀₀	a ₀₁	a ₀₂	
A_1	a ₁₀	a ₁₁	a ₁₂	
A ₂ :	a ₂₀ :	a ₂₁ :	a ₂₂ :	

Cardinality (Chapter 2)

Discrete Math.