

AFOSR-TR- 81-0008

LEVEL

1

science applications, inc.

DAC FILE COPY

SELECTE FEB 3 1981

F

Approved for public release;

FINAL REPORT ON AFOSR CONTRACT F49620-78-C0050*. ATMOSPHERIC TRIATOMIC MOLECULAR STUDIES NOVEMBER 17, 1980

Report Prepared by:

- A. C. Wahl, Principal Investigator
- J. H. Detrich, Project Scientist

Submitted by

Science Applications, Inc./
1211 W. 22nd Street
Suite 901
Oak Brook, Illinois 60521

Acce	ssion For	
	GRAAI TAB	2
Unan	mourced ification_	ä
Ву		
Dist	ribution/	
Ava	ilability (odes
Dist	Avail and Special	or
A		

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is
approved for public release IAW AFR 190-12 (7b).
Distribution is unlimited.
A. D. BLOSK
Technical Information Officer

SECURITY CATALON THE SALE (Then Date Entered)	
QREPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
18 AFOSR TR-81-0008 AD-1094434	3. RECIPIENT'S CATALOG HUMBER
C. TITLE (and Sobilitie)	S. THE OF REPORTA PERIOD COVERED
Atmospheric Triatomic Molecular Studies	Final reft. [March 1978 - May 34 1988]
OH SA	T-1-230-00-4147 (31)
A. C. Wahl J. H. Detrich	F49620-78-C-0050
5. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Science Applications, Inc. 1200 Prospect Street P. 0. Box 2351, La Jolla, CA. 92038	61102F 2361/A4
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Air Force Office of Scientific Research Attn. NP. Building 410, Bolling AFB, D. C. 20332	NOV/80
IL MONITORING AGENCY NAME & ADDRESSIS different from Controlling Office)	Unclassified 15. DECLASSIFICATION DO MGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
distribution unlimited.	
17. DISTRIBUTION STATEMENT (of the abetred entered in Block 20, if different to	(rom Report)
N 4 (-)	(-) y c · ·
18_ SUPPLEMENTARY NOTES	
	•
Electron Affinities, spectra Ozone Multiconfiguration Self Consistent Field Dioxi Potential Energy Surfaces	gen Dioxide Water Carbon de and their ions
Atmospheric Processes	s/c 345 023
A systematic study at the SCF and MCSCFCI level has fifteen triatomic atmospheric molecules which have f and previous work. In addition a powerful new MCSCF and partially implemented. Also, in order to achieve and ionization potentials, a new scheme for configural developed called the differential correlation energy	been made of several of the ormed the focus on this)method has been developed accurate election affinities tion selection has been
tested on the processes, CN-CN and CO_2 + CO_2 .	UNPIASSIET

UNCLASSIFIED

TABLE OF CONTENTS

		Page
I.	Introduction and Objectives.	2
II.	Overall Status of Molecular Triatomic Project.	3
III.	The Differential Correlation Energy Method.	9
IV.	MCSCF Method Development: Multidimensional Newton-Raphson Method.	17
٧.	Molecule by Molecule Summary.	19
VI.	Publications Planned, in Preparation and Published.	29
VII.	Interactions and Attendance at Meetings.	31
III.	Project Personnel.	33
IX.	Concluding Remarks	34
Х.	References	35
Apper	dix I: Publications Resulting from Atmospheric Project. (1974-198) 36

I. Introduction and Objectives

The purpose of this report is to present work performed under this AFOSR contract. As has been repeatedly discussed elsewhere (Ref. 1-5) the thrust of this project is triple pronged: 1) to calculate on a consistent and comprehensive basis basic energy quantities for the triatomic molecules H_2O , CO_2 , NO_2 , N_2O , and O_3 and their positive and negative ions. These quantities include the vertical spectra, the ionization potentials and the electron affinities of these systems. As part of this effort portions of potential energy surfaces are computed and used to predict vibrational spectra and to interpret the mechanisms of chemical reactions of interest. 2) second the development of two new methods for treating electronic structures will be discussed. 3) the third topical area of this research involves the study of specific atmospheric problems involving these molecular systems as they are brought to our attention through the literature or directly by experimentalists. In this section a molecule by molecule summary will be given.

7.00 200

This report will follow the above structure. First, overall status will be given, then progress on two new method development projects (MCSCF and Differential Correlation Energy (DCE) will be summarized, next a molecule by molecule summary summary will be given.

II. Overall Status of Molecular Project

The overall status of the triatomic project is summarized in Table I. This is a cumulative table with results obtained during the current contract period (March 1, 1978 - May 30, 1980), given in parenthesis.

Reference to papers published covering work in Table I are given in Appendix I.

TABLE I

ELECTRONIC STATES TO WHICH ATTENTION HAS BEEN THUS FAR GIVEN IN THE THEORETICAL AIR TRIATOMICS PROJECT AND ASSOCIATED THEORETICAL PROJECTS^{a,b}

	Vertical Electronic Spectrum ^C	Spectrum ^C	Surface	Comments	Vibrational
System	SCF	Correlated	Scans	Surface-Cuts	Spectra
H ₂ 0 ⁺	² B ₁ (2),A ₁ (2),B ₂ (2),A ₂ "B ₁ ,A ₂ ,B ₂ (2)	² B ₁ ,B ₂ ,A ₁ ,A ₂ ⁴ B ₁ ,A ₁	X ² B ₁ ,B ₂	R1,R2,0	X ² B ₁ ,B ₂
H ₂ 0	1,3A1,B1,A2,B2	¹ A ₁ , ³ B ₁	X ¹ A ₁ ³ B ₁	R1,R2 R1,R2;0	ì
H ₂ 0_		·			
N ₂ 0 ⁺	² π(4), ε [±] (2), Δ(2), φ ⁴ π(3), ε [±] (2), Δ(2) ¹ A'(2), ¹ A"(2), ⁴ A'', ⁴ A"	² π(2),Σ [±] ,Δ ⁴ π,Σ [±] ,Δ	[X ² II], E ⁺ [A"] 1"E ⁻ , 2"E ⁻ , a'A"	R1, R2, 0 R1, R2, 0	1 ° 5 - X 2 II + A 2 E + a ° A "
N ₂ 0	1Σ ⁺ (3), Σ ⁻ , π(2), Δ 3Σ ⁺ (2), Σ ⁻ , π(2), Δ 5Σ ⁺ , sπ 1A'(2), 1A", 3A', 3A"	1ε ⁺ (2),ε ⁻ ,π(2), Δ 1ε ⁺ ,ε ⁻ ,π, Δ 3ε ⁺ ,ε ⁻ ,π(2), Δ 3ε ⁺ ,ε ⁻ ,π, Δ 5ε ⁺ 1Α', Α" 3Α', Α"	1ε ⁺ , ε ⁻ , π, Δ 3ε ⁺ , ε ⁻ , π, Δ 1Α ⁺ , Α ⁺ 3Α ⁺ , Α ⁺	R1,R2;0 R1,R2;0	χ¹Σ ⁺

TABLE I (con't.)

-	Vertical Electronic Spectrum ^C	Spectrum ^C	Surface	Comments	Vibrational
System	SCF	Correlated	Scans	Surface-Cuts	Spectra
N ₂ 0_	$N_20^ ^2\pi(2), r^+(3), r^-(2), \Delta(2), \Phi$	2H,E	X ² A'	R1,R2,0	X²A'
•	'π(2), r', r'(2), Δ	42,5,0		•	
	ε _Σ ⁺				
	2A'(2),2A"(2),4A"(2)				•
c0 ₂	2 $_{\rm Ig}$, $^{\rm Ig}$, $^{\rm Lg}$, $^{\rm Lg}$	² π _g ,π _u (2),ε ⁺ _g ,ε ⁺ _g			
	4 ₁₁	η, n			
	$^{2}B_{2}(2), A_{2}, B_{1}(2), A_{1}(3)$				
	481,A1				
c0 ₂	$[1_{\Sigma_{\mathbf{q}}^{+}(5)}], 3_{\Sigma_{\mathbf{q}}^{+}(4)}$		$\left[\chi^{1}\Sigma_{g}^{+}(^{1}A_{1})\right]$	R, 0	
	$, [E_{u}^{-}(2), 3_{E_{u}}^{T}]$	32±,0u			
	$[(\varepsilon), \log(3), \log(3)]$				_
	1,3¢,¢u				
	¹ A ₁ ,A ₂ (2),B ₂ (2)				
	$^{3}B_{2}(2), A_{2}(2)$				
	<u> </u>				

TABLE I (con't.)

1	Vertical Electronic Spectrum ^C	: Spectrum ^C	Surface	Comments	Vibrational
sys rem	SCF	Correlated .	Scans	Surface-Cuts	Spectra
² 00	² π _u , ε, ε, π _g , φ _g	$^{2}\Pi_{\mathbf{u}}, ^{\Sigma_{\mathbf{u}}^{+}, \Sigma_{\mathbf{u}}^{+}, \Phi_{\mathbf{g}}, \Pi_{\mathbf{g}}} \left[\mathbf{x}^{2} \mathbf{A}_{1} \right]$	$\left[x^2A_1\right]$	R, 0	
	μ ⁴ 1	μ _{πg} . [x ² A ₁]		•	
	$[^{2}A_{1}(2)], B_{1}, B_{2}(3), A_{2}(2)$				
NO ₂	¹ A ₁ ,A ₂ ,B ₂ ,B ₁	¹ A ₁ ,A ₂ ,B ₂ ,B ₁	χ ^λ Σ ⁺ , ¹ Α'	R1,R2,0	$X^{1}\Sigma_{g}^{+}(A^{i})$
	³ B ₂ ,A ₂ ,A ₁ ,B ₁	3A1, A2, B2, B1			
		$^{\prime}_{1\Sigma_{+}^{\pm},0}, ^{2}_{0}, ^{2}_{0}, ^{1}_{0}, ^{2}_{0}, ^{1}_{0}$			
	$^{3}\Sigma_{g}^{\pm},\Sigma_{u}^{\pm}(2),\Pi_{u},\Pi_{g}(2),\Delta_{u},\Delta_{g}$	${}^3\Sigma^{\pm}_{2}, \Delta_{3}, \Pi_{3}(2)$			
NO ₂	$[^{2}A_{1}(2), B_{1}, A_{2}(4), B_{2}(4)$	² A ₁ ,B ₁ ,B ₂ ,A ₂	X ² A ₁ ,B ₂ ,B ₁ ,A ₂	В, в	
	4B2,A2	4B2,A2	4A2,B2		
	1	2Σ+ g	2 r +	R1,R2	
NO_2	[1A1], B1, A2, [B2]		[X 1 A 1]	R, 0	
	381,[82],[A2], A1		[1 ¹ A']	R1,R2,0	

TABLE I (con't.)

System S 0 ⁺ 2A ₂ (2),A ₁ (2) ''A ₂ ,B ₂ ;A ₁ ,B ₁	SCF 2A ₂ (2),A,(2),B ₃ (2),B,(2)	Correlated	Scans	Curface-Cuts	
	.A,(2),8,(2),8,(2)			222	Spectra
',4A2,82		² A ₁ ,A ₂ ,B ₁ ,B ₂	X ² A ₁	в	
	,A ₁ ,B ₁	4A1,A2,B1,B2		•	
0_3 $^{1}A_1(2)$	¹ A ₁ (2),A ₂ (2),B ₂ (2),B ₁	¹ A ₁ ,A ₂ ,B ₂ ,B ₁	X ¹ A ₁	R1,R2,0	X ¹ A ₁
3B ₂ (2)	³ B ₂ (2), B ₁ (2), A ₂ (2), A ₁	³ B ₂ , B ₁ , A ₂ , A ₁	a³B ₁	R1,R2,0	a³Bı
03 2B1,A1,B2,A2	,82,A2	² B ₁ ,A ₁ ,A ₂ ,B ₂	X ² B ₁	в	
(1 +B2(2)	$^{4}B_{2}(2), A_{2}(2), B_{1}(2), A_{1}(2)$	4B1,A1,A2,B2			

^aThese calculations have been performed with a double-zeta or better quality basis set. Most of the correlated vertical excitations have now also been performed with basis sets augmented with polarization and, where needed, diffuse functions. Correlation is at the MCSCF/CI optimized valence level.

bproperties such as the dipole moment are available for most SCF and all correlated wavefunctions of each molecule-state reported in this table. The dipole moment function is available for the correlated geometry scans.

 $^{\sf C}$ Some adiabatic excitation energies have been obtained for ${
m H}_2{
m O}^{\dagger}$, ${
m H}_2{
m O}^{\dagger}$, ${
m N}_2{
m N}_2{
m O}^{\dagger}$, ${
m N}_2{
m N}_2{
m O}^{\dagger}$, ${
m N}_2{
m N}_2$

TABLE I FOOTNOTES (CONT'D)

 R_1,R_2,θ Indicates portions of the energy surface in which all three geometry parameters have been varied have been done.

R₁,R₂ Indicates only bond lengths have been varied at fixed angle.

R,0 Symmetric bond variation and angular variation.

Only angle variation explored.

III. The Differential Correlation Energy Method

a. Introduction

Although potential curves of chemical accuracy can now be computed routinely, the calculation of electron affinities and ionization potentials still presents a considerable challenge. Methods which have been used to calculate electron affinities and ionization potentials are extensive configuration interaction, equations of motion, pair energy schemes, Hess cycles, perturbation theory, Koopmans theorem and Hartree Fock methods.

The Hartree-Fock model (and Koopman's theorem) usually yield electron affinities and ionization potentials which are in error by several ev, however through fortuitous cancelation of basis set and correlation errors, good agreement with experiement is sometimes obtained. The errors in other methods are usually smaller however only extensive configuration interaction or Hess cycle calculations have yielded quantitative results.

In this section we present a configuration selection scheme designed to only include those excitations which directly contribute to the correlation energy difference between the neutral and ionic system. The orbitals for each configuration are evaluated via the MCSCF method. We call this scheme the Differential Correlation Energy (DCE) method.

b. The Differential Correlation Energy Method

We are currently developing a new method for choosing configurations in a MCSCF/CI calculation to give accurate (within 0.1 eV) electron affinities and ionization potentials using the smallest number of configurations possible. The key to this method is the determination of the configurations which contribute to the <u>differential correlation energy</u> (DCE) associated with the addition or removal of an electron. It is our aim to develop a prescription for the choice DCE configurations analogous to the OVC prescription 6 for the choice of configurations to give accurate (\pm .1 eV) bond dissociation energies. THE OVC method concentrates only on the <u>changes</u> in correlation energy associated with bond formation.

The DCE method takes advantage of some simple properties of correlation energy,

- 1) Correlation energy is very <u>sensitive</u> to electron occupations, i.e., new pairs, orbital occupations.
- 2) Correlation energy is relatively insensitive to details of orbital shapes.
- 3) Pair energy schemes work.

In light of the above.

- 1) It is reasonable to evaluate only the correlation energy <u>difference</u> between neutrals and ions or different states.
- 2) Major <u>differences</u> come from new pairs formed and cross shell correlation of extra electrons with remaining ones. (Active orbital contribution).
- 3) <u>Minor differences</u> some from pair correlation energy contribution due to availability of open orbital. (Excluded space effect.)
- c. <u>Formal Development for Electron Affinities and Ionization Potentials</u>

 Below we give specifically the formulation of ideas proposed for the calculation of electron affinities by the DCE method.

In order to discuss electron affinity or ionization potential, it is convenient to use a second-quantized treatment. Thus we introduce the usual electron annihilation and creation operators \mathbf{a}_i and \mathbf{a}_i^{\dagger} , respectively. The index i serves to distinguish among different spin-orbitals in our ordered base. The operators satisfy the anticommutation relations

$$\{a_{i}, a_{j}\} = \{a_{i}^{+}, a_{j}^{+}\} = 0$$
,
 $\{a_{j}^{+}, a_{j}\} = \delta_{ij}$.

Now if Φ denotes an electronic state function (in Fock space), a_i^{\dagger} Φ will describe the same state function with an additional electron in the i-th orbital. This assumes that the i-th orbital is unoccupied in Φ . For simplicity, we shall assume that Φ , and consequently $a_i^{\dagger}\Phi$, represent single-configuration state functions.

The Hamiltonian can be written

$$H = \Sigma_{ij} a_i^+ h_{ij} a_j^- + \Sigma_{ij} \Sigma_{k\ell} a_i^+ a_k^+ g_{ij,k\ell} a_\ell^a$$

This can be partitioned according to

$$H = H_O + H^1$$
,

where

$$H_0 = \Sigma_{ij} a_i^+ h_{ij}^0 a_j$$

$$H' = \Sigma_{ij}a_{i}^{+}(h_{ij}-h_{ij}^{0})a_{j}^{+} + \frac{1}{2}\Sigma_{ij}^{-}\Sigma_{k\ell}a_{i}^{+}a_{k}^{+}g_{ij}^{-}, k\ell^{a}\ell_{aj}^{-}.$$

We have not specified our orbital base in detail, so we are free to assume that it is chosen so that

$$h_{ij}^{0} = \delta_{ij} \epsilon_{i}$$
.

Then Φ and $a_{i}^{\dagger}\Phi$ are eigenvectors of H_{0} ; that is,

$$H_{\Omega} \Phi = E_{\Omega} \Phi$$
 ,

$$H_0 a_i^{\dagger} \Phi = (E_0 + \varepsilon_i) \Phi$$
,

Where

$$E_0 = \sum_{i \in \Phi} \epsilon_i$$
.

We have some freedom in the choice of h^0 ; for example, we can choose h^0 so as to give Hartree-Fock orbitals (for the state Φ) as its eigenfunctions. Note that in this case E_0 is not the Hartree-Fock energy for the state; the Hartree-Fock energy is given by $\langle \Phi | H | \Phi \rangle$.

No matter what the choice of h^0 we use, Φ will not be an eigenvector of H because of electron correlation effects, and the same observation applies also to $a_i^+\Phi$. We can compute these correlation effects approximately by application of Rayleigh-Schrodinger perturbation theory, with H_0 as the unperturbed Hamiltonian and H' as the perturbation.

This yields to first order,

$$\Psi \stackrel{=}{=} \Phi + R\Phi ,$$

$$\Psi_{P} = a_{i}^{\dagger}\Phi + R a_{i}^{\dagger}\Phi ,$$

where

$$\begin{split} R &= \Sigma_{ij,i\neq j} \; a_i^+ \; (h_{ij}^- h_{ij}^0) \; a_j / (\epsilon_j^- \epsilon_i^-) \\ &+ \frac{1}{2} \Sigma_{ij}^- \Sigma_{k\ell}, \; \epsilon_i^+ \epsilon_k^- \neq \epsilon_j^+ \epsilon_\ell^- \; a_i^+ a_k^+ g_{ij,k\ell}^- a_\ell^- a_j^- / (\epsilon_\ell^- + \epsilon_j^- \epsilon_i^- \epsilon_k^-) \; . \end{split}$$

To second order the energies are given by

$$E = \langle \phi | H | \phi \rangle + \langle \phi | H' R | \phi \rangle ,$$

$$E_{\rho} = \langle \phi | a_{i} H a_{i}^{\dagger} | \phi \rangle + \langle \phi | a_{i} H' R a_{i}^{\dagger} | \phi \rangle .$$

Since we have $a_i a_i^{\dagger} \Phi = \Phi$, the electron affinity is given to second order by

$$\begin{split} & E_{e} - E = \varepsilon_{i} + \langle \phi | \left[a_{i}, H' \right] a_{i}^{+} | \phi \rangle \\ & + \langle \phi | \left[a_{i}, H' \right] R a_{i}^{+} + H' \left[a_{i}, R \right] a_{i}^{+} | \phi \rangle \ . \end{split}$$

From this expression we see that the computed electron affinity remains unaltered to this order if we modify H' by adding to it any Hermitian operator that commutes with a_i . Hence we can use in place of H' the expression

$$H'' = a_1^+ H_+^+ + H_-^+ a_1^-$$

where

$$\begin{split} H'_{+} &= \Sigma_{j} \left[h_{ij} - h^{o}_{ij} + \Sigma_{k} a^{+}_{k} a_{k}^{g}_{ij,k} \ell \right] a_{j}, \\ H'_{-} &= \Sigma_{j} a^{+}_{j} \left[h_{ji} - h^{o}_{ji} + \Sigma_{k\ell} a^{+}_{k} a_{\ell}^{g}_{ji,k} \ell \right]. \end{split}$$

In other words, any part of H" that does not reference the orbital i does not contribute to the computation of the electron affinity.

It is not advisable to take the above argument too literally. For example, it does not indicate that many-body perturbation theory will give a good result for the electron affinity if carried to second order only. Higher order effects are likely to prove important. Many of these effects are automatically included in a SCF or MCSCF treatment, so we shall not pursue such questions further. What remains is a guide in attempting to answer the question: What configurations are needed to handle electron correlation effects that <u>directly</u> affect the calculation of electron affinity? From the above discussion, the configuration lists

$$\Phi$$
, $a_{i}^{\dagger}a_{j}^{\dagger}a_{k}^{\dagger}a_{\ell}^{\dagger}$ Φ , any j, k, ℓ , \neq , i,

$$a_{i}^{\dagger} \phi$$
, $a_{j}^{\dagger} a_{k}^{\dagger} a_{\ell} \phi$, any j, k, ℓ , f , i,

appear as the answer to this question. In essence, this tells us that for the state without the added electron we should include the dominant (i.e., Hartree-Fock) configuration and all single and double replacements which contain the <u>orbital of the electron to be added</u>. For double replacements, we note that in addition to the spin orbital i, the configuration may also contain another orbital from this shell. For the state <u>with</u> the added electron, we should again include the dominant configuration and any single and double replacements that are generated by <u>eliminating</u> the spin orbital of the added electron in the dominant configuration.

Some obvious refinements can be added to this scheme: single replacements from the dominant configuration are unlikely to be important, since Brillouin's theorem applies to an SCF approach, and replacements which involve excitation of a core orbital are probably negligible because a large excitation energy is involved (the core orbitals can be defined as those orbitals to which such an argument applies). We also must be concerned with the need for a multiconfiguration reference state.

A similar analysis is being performed for the calculation of vertical spectra.

d. Applications

Using the DCE configuration selection rules MCSCF calculations have been performed on CN+CN and $CO_2^-+CO_2$.

For CN⁻ we must include all correlation within the $5\sigma^2$ orbital and all cross shell correlation of $5\sigma^2$ with $3\sigma^2$, $4\sigma^2$, and 1π . Using 3 new MCSCF correlating orbitals, 6σ , 7σ , 2π this yields 25 configurations.

For CN the DCE perscription tells us to include all cross shell correlation involving the 5σ orbital and all excitations into the half filled 5σ orbital. This yields 41 configurations. Results of these calculations are presented in Table 11.

For CO_2 we must include all valence excitations into the $\mathrm{6a}_1$ orbital, this yields 67 configurations. For CO_2^- we must include all cross shell correlation of $\mathrm{6a}_1$ electron with valence shell and valence excitations into $\mathrm{6a}_1$ orbital. Results on CO_2^- + CO_2 are presented in Table III.

These results indicate that the DCE rules may provide a reasonable starting point for the MCSCF procedure which can then be followed by a larger CI for for truly quantitative results.

TABLE II

DCE METHOD APPLIED TO CN CN

State/Energy	MCSCF/CI _15/26	Single/Conf.	SCF	ΔΕ
CN R=2.117	-92.3724551	-92.321633	-92.3221717	.0508
" 2.217	-92.3812117	-92.326182	-92.3267819	.0550
" 2.317	-92.3780383	-92.318317	-92.3189866	.0597
CN(19MC)2.117	not converged		-92.2045157	
" 2.217	14 13		-92.2027169	
" 2.317	-92.2510795	-92.172356	-92.1890972	.0787
CN(fromCN ⁻) 2.117	-91.9523405	-91.905750	-92.2045157	.0466
2.217	-91.9451404	-91.897083	-92.2027169	.0491
2.317	-91.9445647	-91.895993	-92.2090972	.0486
CN (17MC)2.117	-92.2317141	-92.203380	-92.203380	.0312
2.217	-92.2402757	-92.201029	-92.2027169	.0392
2.317	-92.2358326	-92.186712	-92.1890972	.0491

TABLE III

DCE

METHOD

APPLICATION TO CO2+CO2

 $(\theta_{OCO} = 135.77^{O}, R_{CO} = 2.3734 \text{ bohrs})$

Configurations for CO_2^-

Orbitals

la₁ lb₂ 2a₁ 3a₁ 4b₂ 4a₁ 2b₂ 5a₁ 3b₂ 6a₁ 7a₁ 5b₂ lb₁ la₂ 2b₁ 2 2 2 2 2 2 2 2 2 0 0

- 1) Include all cross shell correlation of 6a1 electron with valence electrons.
- 2) Include all valence excitations into 6a1 orbital.

 $E = -187.56976 \ a.u. \ 19MCSCF/70CI$

Configurations for CO₂

2 2 2 2 2 2 2 2 2 0 0 0 2 2 0

1) Include all valence excitations <u>into</u> 6a₁ orbital

E = -187.52993 a.u. 19MCSCF/67CI

 $\Delta E = 1.08ev$

 $\Delta E = .3ev$ (basis set error in CO_2)

Vertical Ionization Potential of $CO_2^- \sim 1.4ev$

Experimental* IP of CO_2 1.4+.3ev

IV. A Multidimensional Newton-Raphson MCSCF Method

The merits of the MCSCF approach to the calculation of electronic wave functions for atoms or molecules are well documented and, in fact, the method has become the standard starting point for most researchers. The principal limitation of this approach has been the frequent difficulty in obtaining converged solutions for the MCSCF wave function. A new MCSCF method under development by J. Detrich and C.C.J. Roothaan is expected to eliminate this difficulty.

This method applies whenever the <u>spin-orbitals</u> (SO) are put forward as finite expansions in terms of a basis set. In the MCSCF approach one also constructs <u>term state functions</u> (TSF) as linear combinations of <u>configuration state functions</u> (CSF); the latter are defined as symmetry-adapted linear combinations of Slater determinants arising from a single configuration of orbital assignments. A complete set of trial SO's can be put forward, which spans the same linear space as the one-electron basis functions, and, analogously a set of trial TSF's spanning the same linear space as the set of CSF's can be developed.

The method deals in terms of the unitary transformations of the reference SO's and TSF's which will give optimized SO's and TSF's. These unitary transformations are expressed as exponentials of anti-Hermitian operators. In terms of the reference SO's and TSF's, the variational energy expression is of the form

$$E'' = E + \sum_{i} E_{i} \dot{x}_{i} + \sum_{i,j} E_{i,j} \dot{x}_{i} \dot{x}_{j} + \cdots,$$

where the x_i 's are the independent matrix elements of the anti-Hermitian operators. The quantities E, E_i and E_{ij} are evaluated by rather elaborate contractions involving integrals over basis functions, occupation numbers and coupling constants, and the expansion coefficients representing the set of reference SO's and TSF's.

Approximating this expression by dropping all terms of third and higher order, the extremum of E' with respect to all the variables x_i occurs when they satisfy

$$\Sigma_{j}E_{i,j}X_{j} = -E_{i}$$

Once the solution of this equation has been obtained, new reference SO's and TSF's are easily computed, thus completing an iterative MCSCF cycle.

This method is seen to be a multidimensional generalization of the Newton-Raphson iterative process, and it converges quadratically in the general case. The availability of such a method will substantially enhance the range of problems where the advantages of the MCSCF approach can be exploited. Even in cases where other MCSCF methods suffice, the availability of a method that virtually guarantees convergence in a few iterations is expected to significantly reduce the man-hours required to perform a given series of calculations. These advantages indicate that the new method will become the standard vehicle for molecular orbital calculations in the basis-set expansion regime.

A preliminary implementation of this method has been coded for atoms under the auspices of the National Resource for Computation in Chemistry by Prof. Roothaan. A comprehensive description of the formalism and analysis for the method is currently in preparation.

Professor C. C. J. Roothaan is a technical consultant on self consistent field techniques to SAI.

V. Molecule by Molecule Summary

${\rm CO_2}$ and its Ions

Work on CO_2 and its ions during the contract period consisted primarily of trial calculations intended to help establish and efficient and reliable approach to the calculation of electron affinities and ionization potentials. As discussed in Section III above, this goal has motivated development of the Differential Correlation Energy (DCE) method. The calculations for CO_2 and CO_2^- summarized here serve as a test for the method.

For both ${\rm CO_2}$ and ${\rm CO_2^-}$ the (3s,2p) contracted Cartesian Gaussian basis of $\operatorname{Dunning}^{\aleph}$ was adopted. This choice permits trial calculations to be economically performed, but involves some sacrifice in accuracy of the orbital description. As an aid in assessing such effects, SCF vertical spectra for ${\rm CO_2}$ were computed with the (3s, 2p) basis and compared with previous results using a more flexible basis at the experimental linear equilibrium geometry (Table IV) and a bent geometry (Table V). In general, the SCF vertical spectra for ${\rm CO_2}$ are in good agreement, the only exception being in the case of the ${}^{1}\Sigma_{ij}^{+}$ state, which is predominantly Rydberg rather than valence in character, 10 and hence not well described by a basis set which does not contain diffuse functions. This indicates that the correlation effects of interest are reasonably well described in terms of the (3s, 2p) basis. Another indication of the utility of the (3s, 2p) basis comes from the results of an SCF geometry scan for the ground state of CO. The equilibrium geometry is found to be $\Theta_{\text{oco}} = 136^{\circ}$, $R_{\text{co}} = 2.37$ bohr, in ϕ aggreement with the determination $\theta_{\rm oco}$ = 135 $^{\rm o}$, $R_{\rm co}$ = 2.35 bohr by Pacansky, Wahlgren and Bagus 11 using a considerably larger basis.

The DCE method was applied to compute the vertical ionization potential of CO_2^- at the SCF equilibrium geometry $\theta_\mathrm{OCO}=135.77^\mathrm{O}$, $\mathrm{R}_\mathrm{CO}=2.3734$ bohrs. In addition to the orbitals occupied in the dominant ground state CO_2^- configuration, three correlation orbitals, $7\mathrm{a}_1,5\mathrm{b}_2$, $2\mathrm{b}_1$, were introduced. The list of configurations developed according to the DCE method contained

70 for CO_2^- and 67 for CO_2 . The orbitals were taken from an MCSCF calculation for CO_2^- involving the 19 most significant configurations from the list of 70 DCE configurations for CO_2^- . Note that the orbitals from CO_2^- calculation were used in the CO_2 as well; this was the only obvious way to preserve the character of the Ga_1 orbital in the CO_2 calculation.

The energy computed from the 67-configuration interaction calculation for CO_2 was E = 187.52993 hartrees; from the 70-configuration interaction calculation for CO_2^- the energy E = -187.56976 was obtained. This implies a vertical ionization potential for $CO_2^ \Delta E$ = 1.08 eV.

As noted above, the basis set adopted affects the accuracy of this result. Since the effect is not expected to depend strongly on correlation, one can obtain a quantitative estimate by comparing the SCF result for the ${\rm CO}_2$ adiabatic electron affinity computed with the (3s,2p) basis, -.65 eV, with the corresponding SCF result from Pacansky, et.al., -.38 eV. This indicates a basis set error of about .3 eV. Revising our computed result accordingly gives 1.4 eV for the vertical ionization potential of ${\rm CO}_2$.

Strictly speaking, there is no corresponding experimental determination, but a close analogue can be constructed as follows. When CO_2 is distorted from its experimental equilibrium geometry to the theoretical CO_2^- equilibrium geometry adopted in these calculations, the CO_2 potential constructed by Suzuki 12 from spectroscopic data gives a distortion energy of 2.0 eV.

Adding this to the experimentally derived CO_2 electron affinity of - .6 \pm .2 eV reported by Compton, Reinhardt and Cooper ¹³ yields 1.4 \pm 0.3 eV for the CO_2^- vertical ionization potential.

This result is in good agreement with the result based on the DCE method.

More refined computations are necessary to confirm our estimate of basis set error, but our present results already establish the DCE method as a promising new approach.

TABLE IV
LINEAR CO2 VERTICAL SPECTRUM

 $r_1 = r_2 = 2.1944$ bohrs $\theta = 180^{\circ}$

<u>State</u>	Config	juratio	n(s) ^a				Energy		4s,3p Energy
	$\frac{1\pi_{ux}}{}$	^{1π} gx	2π _{ux}	^{1π} gy	1π _{uy}	2π _{gy}	a.u.	eVb	4s,3p Energy b
x ¹ ∑g ⁺	2	. 2	0	2	2	0 ·	-187.553005	0.00	0.00
							-187.292459		
35-	{ 2 2	2 1	0 1	2 2	1 2	$\left.\begin{array}{c}1\\0\end{array}\right\}$	-187.270395	7.69	7.66
∠ _u	{ 2 2	2 1	1 0	2 2	1 2	0 }	-187.270654	7.68	
$^{3}\Sigma_{u}^{-}$	{ 2 2	2 1	1 0	2	1 2	0 }	-187.249106	8.27	8.26
$^{1}\Sigma_{u}^{-}$	{2 2	2	1 0	2 2	1 2	0 }	-187.270395 -187.270654 -187.249106 -187.249361	8.26	8.26
1,	{ 2 2	2	1 0	2 2	1 2	0 }	-187.238979 -187.279319	8.54	
u ({ 2 2	2 1	0 1	2 2	1 2	$\left\{\begin{array}{c}1\\0\end{array}\right\}$	-187.279319	7.45	8.52
$^{1}\Sigma_{u}^{}$	{ 2 2	2 1	0 1	2 2	1 2	$\left.\begin{array}{c}1\\0\end{array}\right\}$	-186.901777	17.72	14.15

^aCore = $1\sigma_g^2 1\sigma_u^2 2\sigma_g^2 3\sigma_g^2 2\sigma_u^2 4\sigma_g^2 3\sigma_u^2$

b₁ a.u. = 27.21070 eV

^CFrom reference 9.

· TABLE V
BENT CO₂ VERTICAL SPECTRUM

[3s,2p] Basis, SCF

 $r_1 = r_2 = 2.1944 \text{ bohrs} \quad \theta = 130^{\circ}$

<u>State</u>		igurat					Energy		4s/3p Energy ^C
	^{5a} 1	4b ₂	6a ₁	1b ₁	^{1a} 2	^{2b} 1	a.u.	eV ^b	ey ^b
1 ¹ A ₁	2	2	0	2	2	0	-187.462871	0.00	0.00
1 ³ B ₂	2	1	1	2	2	0	-187.394377	1.86	2.00
1 ³ A ₂	2	2	1	2	1	0	-187.363691	2.70	2.76
1 ¹ A ₂	2	2	1	2	1	0	-187.352623	3.00	3.07
1 ¹ B ₂	2	1	1	2	. 2	0	-187. 316653	3.98	4.05
2 ³ B ₂	2	2	0	2	1	1	-187.239182	6.09	6.13
2 ³ A ₂	2	1	0	2	2	1	-187.220412	6.60	6.70
2 ¹ A ₂	2	1	0	2	2	1	-187.208979	6.91	7.01
2 ¹ B ₂	2	2	0	2	1	1	-187.080537	10.40	10.39

^a Core= $1a_1^2 1b_2^2 2a_1^2 3a_1^2 2b_2^2 4a_1^2 4b_2^2$

b_{1a.u.} = 27.21070

c_{Reference 9}

$N_20^+ x^2 \pi$ MCSCF/CI Calculation

A geometry scan for the equilibrium bond lengths of the linear N_20^+ $\chi^2_{\,\mathrm{II}}$ state was performed. The wave functions were constructed from orbitals expanded in terms of a basis set consisting of a 4s,3p 1d Gaussian basis on each center. The MCSCF calculations consist of 20 configurations, and the supplementary CI calculations consist of 99 configurations.

The results for the linear NNO geometry indicate equilibrium bond lengths R_{NN} = 2.126 a.u., R_{NO} = 2.367 a.u. A preliminary fit to a molecular potential function of the form

$$v = \frac{1}{2} K_{NN} (\Delta R_{NN})^2 + \frac{1}{2} K_{NO} (\Delta R_{NO})^2$$
 yields $K_{NN} = 19.563 \text{ md/A}^0$, $K_{NO} = 5.144 \text{ md/A}^0$

A more elaborate characterization of the potential surface is needed in order to extract spectroscopic characteristics such as vibrational behavior.

NO₂ Ground State Geometry Scan

A preliminary SCF-level geometry scan of the NO_2^- ground electronic state has been performed. They include the normal X^1A_1 C_{2v} state of equilibrium geometry, the peroxy well, and the energy-minimum pathway between the two geometries. As indicated in Table VI, the geometries of the C_{2v} and peroxy C_s minima are in good agreement with the earlier results of Pearson, et. al. 14 Hence the delineation of the potential surface between these two geometries is useful, although somewhat crude. It would appear that the indicated saddle point between the two geometries (Table VI) is above the molecular dissociation threshold, so that isomerization cannot be expected to take place. Evidently this consistent with the experimental observations that bear on the existance of a NO_2^- neroxy well. On the other hand, a preliminary calculation cannot be relied upon with regard to such questions, and a more elaborate set of calculations utilizing multiple configurations and a larger basis set is planned.

TABLE VI PRELIMINARY SURVEY OF THE NO $_2$ $\chi^1 A_1$ ($^1 A'$) HYPERSURFACE SCF, (9s5p)/ $\left[3s2p\right]^a$

	E _T + 203 (a.u.)		R _{NO}	R ₀₀ (A)	A _{ONO} (deg.)	A _{OON} (deg.)
c _{2V}	-1.0247 (-1.0336)					31.
S.P. Ring	-0.83 (-0.8736)					82.6
c _s	-0.9067 (-0.9161)					
D(ON-0 ⁻)		4.0				

 $^{^{}a}$ The values in parenthesis are (9s5p)/ $\left[$ 5\$3p $\right]$ results from reference 14.

The wave functions utilized in this set of calculations are based on the (3s,2p) contracted gaussian basis sets of Dunning. 8 In support of these calculations, the χ^2A_1 , 1^2A_1 , 1^2B_1 , 1^2B_2 , 1^4B_2 , and 1^4A_2 states of NO_2 were computed using the same basis set. In Table VII these results are compared with earlier results 9 using the more elaborate 4s,3p basis set.

TABLE VII

COMPUTED SCF ENERGIES FOR NO₂

a State	Configuration ^b	Excitation Energy (ev) ^c Is <u>3p</u>
x^2A_1	$4b_2^2 ba_1 1b_1^2 1a_2^2$	0.00	0.00
1 ⁴ A ₂	$4b_2^2 ba_1 1b_1^2 1a_2^2 2b_1$	2.05 2	2.13
1 ⁴ B ₂	4b ₂ 6a ₁ 1b ₁ 1a ₂ 2b ₁	2.10	2.14
1 ² B ₁	$4b_2^2$ $1b_1^2$ $1a_2^22b_1$	2.50 2	2.50
1 ² A ₂	$4b_2^2 6a_1^2 1b_1^2 1a_2$	2.80	2.83
1 ² B ₂	$4b_26a_1^2 1b_1^21a_2^2$	3.82	3.84

 $^{^{\}rm a}$ All states at bond length of 2.25 a.u. and bond angle of 134 $^{\rm o}$

The omitted orbitals $1a_1, 1b_2, 2a_1, 3a_1, 2b_2, 4a_1, 3b_2, 5a_1$ are doubly occupied in each configuration.

The SCF total energy of the X 2 A, state is -203.95597 a.u. for the 4s3p basis set and -203.94646 a.u. for the 3s2p basis set. The difference in eV is 0.26.

. TABLE VIII

EXCITATION ENERGIES FOR NO₂

State ^a	Configuration	Excitation This Work	Energy(eV) Experiment
x ¹ A ₁	$4b_2^2 6 a_1^2 1b_1^2 1a_2^2$	0.0	0.0
1 ³ B ₂	$4b_2^2 6 a_1^2 1b_1^2 1a_2 2b_1$	2:30	-
1 ¹ B ₂	$4b_2^2 6 a_1^2 1b_1^2 1a_2 2b_1$	6.08	-6 ²
1 ³ A ₁	$4b_2^2 6 a_1^2 1b_1 1a_2^2 2b_1$	7.43	-

- a) All states at bond length 2.40 bohr and bond angle of 116.8°
- b) The omitted orbitals $1a_1$ $1b_2$ $2a_1$ $3a_1$ $2b_2$ $4a_1$ $3b_2$ $5a_1$ are doubly occupied in each configuration.
- c) Vertical
- d) Adiabatic
- e) W. G. Trawick and W. H. Eberhardt, J. Chem. Phys. <u>22</u>, 1402 (1954);
 R. M. Hochstrosser and A. P. Marchetti, J. Chem. Phys. <u>50</u>, 1727 (1969);
 L. E. Harris H. S. Mar a, and S. P. McGlynn, Czech. J. Phys. <u>B20</u>, 1007 (1970).

VIA PUBLICATIONS PLANNED AND IN PREPARATION

- 1. Vertical Spectra for ${\rm CO_2}^-$ and Electron Affinity of ${\rm CO_2}$. E. Sachs.
- 2. Application of the Differential Correlation Energy Method to the Calculation of the Electron Affinity of CN and ${\rm CO_2}$. A. C. Wahl, E. Sachs, and J. Detrich.
- 3. A Review of Ab Initio Calculations on $\rm H_2O$, $\rm CO_2$, $\rm N_2O$, $\rm N_2O$, $\rm N_2O$, $\rm O_3$ and their Positive and Negative Ions. J. Detrich, E. Sachs, and A. C. Wahl.
- 4. Documentation of the Biggmoli and Pipano-Shavitt CI codes. F. Tobin, SAI-TR-80-232-03. (Internal document only).

VID RECENT PUBLICATIONS IN TECHNICAL JOURNALS FROM THIS PROJECT

- 1. Theoretical Studies of Atmospheric Molecules: SCF and Correlated Energy Levels for the NO_2 , NO_2^+ , and NO_2^- Systems P. J. Fortune, B. J. Rosenberg, W. B. England, and A. C. Wahl Theoret. Chem. Acta $\underline{46}$, 185(1977)
- 2. Ab Initio Calculations of the Minimum Energy Path in the Doublet Surface for the Reaction N(4 S) + O₂ ($^3\Sigma_g^-$) $\stackrel{>}{\sim}$ NO($^2\pi_U$) + O(3 P) P. Benioff, G. Das, and A. C. Wahl J. Chem. Phys. <u>67</u>, 2449(1977).
- Nechanisms of the Reaction of Ground State Positive Atomic Oxygen Ions with Nitrogen
 D. G. Hopper
 J. Amer. Chem. Soc. 100, 1019(1978).
- 4. Ab Initio Calculations of the Vertical Electronic Spectra of $\overline{NO_2}$, $\overline{NO_2}$ and $\overline{NO_2}$ P. A. Benioff J. Chem. Phys. 68, 3405(1978).
- 5. Ab Initio Calculations on NO_2 and NO_2 : Optimization of Diffuse Gaussian Exponents
 P. A. Benioff, Theoret. Chem. Acta 00, 000(1978).
- 6. Theoretical Studies of Atmospheric Triatomic Molecules: New Ab Initio Results for the ${}^1\Pi_q$ ${}^1\Delta_u$ Vertical State Ordering in CO₂ W. B. England and W. C. Ermler, J. Chem. Phys. 70, 1711(1979).
- An Improved MCSCF Method
 C. C. J. Roothaan, J. Detrich, and D. G. Hopper
 Int. J. Quantum Chem. 13 S(1979).
- 8. The Differential Correlation Energy Method for the Calculation of Electron Affinities, Ionization Potentials, and Electronic Spectra A. C. Wahl, E. S. Sachs, and J. H. Detrich Int. J. Quantum Chem. 14 S, 0000 (1980).
- 9. Theoretical Studies of Atmospheric Molecules J. H. Detrich, E. S. Sachs, and A. C. Wahl Int. J. Quantum Chem. 14 S, 0000 (1980).
- A Practical Guide to Application of the MCSCF Method J. H. Detrich and A. C. Wahl NRCC-MCSCF Workshop Proceedings. National Resource for Computation in Chemistry, July, 1980.
- General Quadratically Convergent MCSCF Theory in Terms of Reduced Matrix Elements C. C. J. Roothaan and J. H. Detrich Reviews of Modern Physics

VII INTERACTIONS AND ATTENDANCE AT MEETINGS

- October 1978 J. Detrich, Trip to Washington to discuss NBS contract and Wisconsin contract
- November 28 December 1, 1979 J. Detrich, APS Meeting, Division of Electron and Atomic Physics
- May 3 5, 1979 J. Detrich, Midwest Theoretical Chemistry Conference (Poster Presentation)
- July 11 15, 1979 J. Detrich, OSU Spectroscopy Conference 34th Symposium on Molecular Spectroscopy (2 talks)
- August 13 18, 1979 J. Detrich, Gordon Conference on Few Body Interactions
- Summer 1979 J. Detrich, Numerous discussions of new MCSCF method with scientists at NBS, NRCC, and the Gordon Conference
- September 17 & 18, 1979 J. Detrich, DOD Physics Review NAS Washington, D.C.
- March 9 15, 1980 J. Detrich, Sanibel Sumposium Palmcoast, Florida
- May 10 & 11, 1980 J. Detrich, Midwest Theoretical Chemistry Conference, Minneapolis Minnesota
- July 14 16, 1980 J. Detrich, NRCC MCSCF Workshop College Station, Texas
- May 3 5, 1979 A. C. Wahl, Midwest Theoretical Chemistry Conference, Chairman Session I
- June 1, 1979 A. C. Wahl, Discussion of current and future status of AFOSR contract with R. Kelley, Physics Directorate AFOSR, Washington, D.C.
- September 17 & 18, 1979 A. C. Wahl, DOD Physics Review, NAS Washington, D.C.
- November 5 & 6, 1979 A. C. Wahl, DOD Chemistry Review, NAS Washington, D.C.
- March 9 15, 1980 A. C. Wahl, Sanibel Symposium Palmcoast, Florida
- May 10 & 11, 1980 A. C. Wahl, Midwest Theoretical Chemistry Conference, Minneapolis, Minnesota
- June 20 25, 1980 A. C. Wahl, Spectroscopy Conference Columbus, Ohio
- July 14 16, 1980 A. C. Wahl, NRCC MCSCF Workshop College Station, Texas
- July 21 25, 1980 A. C. Wahl, Gordon Conference Wolfeboro, New Hamphsire

May 3 - 5, 1979 - E. Sachs, Midwest Theoretical Chemistry Conference, La Fayette, Indiana

July 25 - 27, 1979 - E. Sachs, Workshop on Software Standards and Computional Chemistry, Salt Lake City, Utah.

March 13 - 18, 1978 - D. Hopper, Sanibel Symporium - Palmcoast, Florida

March 18 - 20, 1978 - D. Hopper, Eleventh Midwest Theoretical Chemistry Conference, Columbus, Ohio

May 28 - June 2, 1978 - D. Hopper, Twenty-Sixth Annual Conference on Mass Spectrometry and Allied Topics, St. Louis, Missouri

June 12 - 16, 1978 - D. Hopper, Thirty-Third Annual Symposium on Molecular Spectrometry, Columbus, Ohio

March 11 - 17, 1979 - D. Hopper, Sanibel Symporium, Palmcoast, Florida

June 3 - 8, 1979 - D. Hopper, Twenty-Seventh Annual Conference on Mass Spectrometry and Allied Topics.

July 11 - 15, 1979 - D. Hopper, Thirty-Fourth Symporium on Molecular Spectroscopy, Columbus, Ohio.

Sept. 17 - 18, 1979 - D. Hopper, DOD Physics Review, Washington, D.C.

Oct. 29 - Nov. 3, 1979 - D. Hopper, Third International Conference of Quantum Chemistry, Kyoto, Japan.

Over the past year, A. C. Wahl has interacted by telephone and letter with a number of atmospheric scientists whose experimental work relates to this AFOSR contract (NBS, NOAA, JILA, SRI).

VIII PROJECT PERSONNEL

Below the names and durations of association with project of personnel is given:

- J. Detrich joined the project in September 1978 and is presently associated with the project as project scientist.
- D. G. Hopper joined the project in March 1978. His association with the project ended in November 1979.

Ed Sachs joined the project in June 1978 and left to accept a permanent position at Bell Labs in September 1979.

Frank Tobin joined the project in October 1978, left in June of 1979 and accepted a position at Johns Hopkins University.

Chris Wahl brought the project to SAI from Argonne beginning March of 1978, was on a leave of absence due to illness July 1978 through June 1979, and is currently principal investigator.

IX Concluding Remarks

We believe that this comprehensive systematic project has enhanced our knowledge and understanding of the atmospheric triatomic systems under study. In many cases, particularly for excited states and ions, new information has been generated which was not and continues not to be available experimentally. In addition, during the course of this work several powerful methods for investigating molecular structure were developed.

It is our hope that the Air Force will continue to support this exciting work which can form the basis for improved modelling and for new insights into our understanding of the chemistry and physics of the earth's atmosphere.

X REFERENCES

- 1. AFOSR Proposal 1974, A. C. Wahl and G. Das.
- 2. AFOSR Proposal 1975, A. C. Wahl and G. Das.
- 3. AFOSR Proposal 1976, A. C. Wahl.
- 4. AFOSR Proposal 1977, A. C. Wahl.
- 5. AFOSR Proposal. 1978, A. C. Wahl and D. Hopper.
- 6. A. C. Wahl and G. Das, <u>Methods of Electronic Structure Theory</u>, H. F. Schaefer III (ed.) (Vol. 3 of <u>Modern Theoretical Chemistry</u>, Plenum, New York, 1977), pp. 51-78.
- 7. C. C. J. Roothaan, J. Detrich, and D. G. Hopper, Int. J. Quantum Chem. S13, 93 (1979); C. C. J. Roothaan and J. Detrich, to be published in Revs. Mod. Phys.
- 8. T. H. Dunning, Jr., "Gaussian Basis Sets for Molecular Calculations," in Methods of Electronic Structure Theory, H. F. Schaefer III (ed.), (Vcl. 3 of Modern Theoretical Chemistry, Plenum, New York, 1977), pp. 1-27.
- 9. P. J. Fortune, D. G. Hopper, B. J. Rosenberg, W. B. England, G. Das, A. C. Wahl and T. O. Tiernan, "Potential Energy Surface for Air Triatomics. Volume II. Results of SCF and Preliminary OVC Calculations," Aerospace Research Laboratory, USAF (ARL TR 75-0202, Vol. II, June, 1975).
- A. C. Wahl, W. B. England, B. J. Rosenberg, D. G. Hopper, and P. J. Fortune, "Theoretical Studies of the Atmospheric Triatomic Molecules H₂O, N₂O, NO₂, CO₂, O₃, and Their Ions," Argonne National Laboratory (ANL-77-3, September 1976).
- 11. J. Pacansky, U. Wahlgren and P. S. Bagus, J. Chem. Phys. 62, (1975).
- 12. I. Suzuki, J. Mol. Spectry. 25, 479 (1968).
- R. N. Compton, P. W. Reinhardt and C. D. Cooper, J. Chem. Phys. <u>63</u>, 3821 (1975).
- 14. P. K. Pearson, H. F. Schaefer III, J. H. Richardson, L. M. Stephenson, and J. I. Brauman, J. Amer. Chem. Soc. 96, 6778 (1974).
- 15. P. A. Benioff, J. Chem. Phys. <u>68</u>, 3405 (1978).

APPENDIX I PUBLICATIONS RESULTING FROM THE ATMOSPHERIC PROJECT

These publications report atmospheric related research performed with the support of the Air Force Office of Scientific Research, the Advanced Research Projects Agency, the Aerospace Research Laboratories, the Atomic Energy Commission, the Energy Research and Development Administration and the Department of Energy over the period 1972 - 1980.

The work represented by these papers involved a number of individual contracts involving A. C. Wahl and his collaborators, P. Benioff, G. Das, J. Detrich, W. England, P. Fortune, D. Hopper, R. Hosteny, B. Rosenberg, E. Sachs, W. Stevens, and C. W. Wilson.

13

TECHNIQUE PAPERS

Application of Perturbation Theory in Large Configuration Interaction Calculations

P. J. Fortune and B. J. Rosenberg Chem. Phys. Lett. 37, 110-114 (1977)

A Modified Pseopotential Approach to the Heavy-Atomic Molecular Systems: Application to the $X^2\Sigma_{1_2}^+$, $A^2II_{1_2}$, and the $A^3II_{3/2}$ States of the HgH Molecule

- G. Das and A. C. Wahl
- J. Chem. Phys. 64, 4672-4679 (1976)

BISON-MC: A FORTRAN Computing System for MCSCF Calculation on Atoms,
Diatoms and Polyatoms. This polyatomic MCSCF-Cl capability
was developed out of this project. This has been widely
used in polyatomic MCSCF calculations by many researchers.

G. Das and A. C. Wahl, ANL-7955 (1972)

An Improved MCSCF Method

- C. C. J. Roothaan, J. Detrich, and D. G. Hopper, I.J.Q.C.<u>S13</u>,93 (1979):
- C. C. J. Roothaan and J. Detrich, To be published.

The Differential Correlation Energy Method for Electron Affinities, Ionization Potentials and Vertical Spectra

A. C. Wahl, E. Sachs, and J. H. Detrich, International Journal of Quantum Chemistry S14, 0000 (1980).

Theoretical Studies of Atmospheric Triatomic Molecules
J. H. Detrich, E. Sachs, A. C. Wahl, International Journal
of Quantum Chemistry S14, 0000 (1980).

BOOK CHAPTERS

A case History in Computer Resource Sharing: Ab Initio Calculations Via a Remote Control

D. G. Hopper, P. J. Fortune, A. C. Wahl and T. O. Tiernan COMPUTER NETWORKING AND CHEMISTRY, ACS SYMPOSIUM SERIES, Number 19, P. Lykos, Editor (American Chemical Society, Washington, 1975),

pp 153-182

The Multiconfiguration Self-Consistent Field Method

A. C. Wahl and G. Das
METHODS IN ELECTRONIC STRUCTURE THEORY, H. F. Schaefer III, Editor
(Plenum, New York, 1977), pp 51-78

WATER AND ITS IONS

MCSCF Calculations on the Lowest Triplet State of H₂O

R. P. Hosteny, A. R. Hinds, A. C. Wahl, and M. Krauss Chem Phys. Lett. 23, 9-12 (1973)

Theoretical Studies of Atmospheric Molecules: SCF and Correlated Potential Surface Results for the X^2B_1 and B^2B_2 states of H_20^+

- P. J. Fortune, B. J. Rosenberg, and A. C. Wahl
- J. Chem. Phys. <u>65</u>, 2201-2205 (1976)

OZONE AND ITS IONS

Recent applications of the Multiconfiguration Self-Consistent Field Method to Polarizabilities, Excited States, Van Der Waals Forces, and Triatomic Surfaces

A. Karo, M. Krauss, and A. C. Wahl Int. J. Quantum Chem. S7, 143-159 (1973)

Atmospheric Studies: Theoretical Study of the Ozone System (O_3)

A. C. Wahl and C. W. Wilson, Jr.
Technical Report on ARPA Order No. 2022. (1972)

Vibrational Spectrum and Transition Intensities of Ozone

A. C. Wahl, P. Benioff, G. Das, and C. W. Wilson, Jr. Technical Report on AFOSR-ISSA-74-004, (1974)

CARBON DIOXIDE AND ITS IONS

Ab Initio Vertical Spectra and Linear Bent Correlation Diagrams for the Valence States of CO_2 and its Singly Charged Ions

- W. B. England, B. J. Rosenberg, P. J. Fortune, and A. C. Wahl
- J. Chem. Phys. 65; 684-691 (1976)

Theoretical Studies of Atmospheric Triatomic Molecules: Accurate SCF Vertical Spectrum for Valence, Mixed Character, and Rydberg States of ${\rm CO}_2$

- W. B. England, W. C. Ermler, and A. C. Wahl
- J. Chem. Phys. 66, 2336-2343 (1977)

Theoretical Studies of Atmospheric Triatomic Molecules: .Ab Initio Equations-of-Motion Excitation Energies for Valence States of the Configuration $1\pi^3g\ 2\pi^1u$ in CO_2

- W. B. England, D. Yeager, and A. C. Wahl
- J. Chem. Phys. <u>66</u>, 2344-2345 (1977)

Theoretical Studies of Atmospheric Triatomic Molecules: New <u>Ab Inito</u> Results for the ${}^1\Pi_g \to {}^1\Delta_u$ Vertical Ordering in CO₂

- W. B. England and W. C. Ermler
- J. Chem. Phys. 70, 1711-1719 (1979)

NIOTROGEN DIOXIDE AND ITS IONS

The Electronic Structure of Nitrogen Dioxide. I. Multiconfiguration Self-Consisten-Field Calculation of the Low-Lying Electronic States

- G. D. Gillispie, A. U. Khan, A. C. Wahl, R. P. Hosteny, and
- M. Krauss
- J. Chem. Phys. 63, 3425-3444 (1975)

Theoretical Studies of Atmospheric Molecules: SCF and Correlated Energy Levels for the NO_2 , NO_2 ⁺ AND NO_2 ⁻ Systems

P. J. Fortune, B. J. Rosenberg, W. B. England, and A. C. Wahl Theoret. Chem. Acta 46, 185 (1977)

Ab Initio Calculations of the Minimum Energy Path in the Doublet Surface for the Reaction N(4 S) + $O_2(^3\Sigma \overline{g}) \rightarrow NO(^2\Pi) + O(^3P)$

- J. A. Benioff, G. Das, and A. C. Wahl
- J. Chem. Phys. 67, 2449-2462 (1977)

Ab Initio Calculations of the Vertical Electronic Spectra of NO_2 , NO_2 and NO_2

- P. A. Benioff
- J. Chem. Phys. 68, 3405-3412 (1978)

Ab Initio Calculations on $\mathrm{NO_2}$ and $\mathrm{NO_2}^-$: Optimization of Diffuse Gaussian Exponents

P. A. Benioff Theoret. Chem. Acta. 48, 337 (1978)

NITROUS OXIDE AND ITS IONS

Ab Initio Study of N_2O^{\dagger} . Angular Dependence of the 1"A"(" π) Potential

D. G. Hopper Chem. Phys. Lett. 31, 446-450 (1975)

Theoretical and Experimental Studies of the N_20^- and N_20 Ground States Potential Energy Surfaces. Implications for the $0^- + N_2 \rightarrow N_20 + e$ and Other Processes

- D. G. Hopper, A. C. Wahl, R. L. C. Wu, and T. O. Tiernan
- J. Chem. Phys. <u>55</u>, 5474-5494 (1976)

Mechanisms of the Reaction of Positive Atomic Oxygen Ions with Nitrogen

- D. G. Hopper
- J. Amer. Chem. Soc. 100, 1019-1029 (1978)

OTHER MOLECULES

Ab Initio Calculations of the Barrier for Internal Rotation in Nitrous Acid

- P. Benioff, G. Das, and A. C. Wahl
- J. Chem. Phys. <u>64</u>, 710-717 (1976)

Theoretical Transition Dipole Moments and Lifetimes for the $A^1\Sigma_u^+ + X^1\Sigma_g^+$ System of Na₂

- W. J. Stevens, M. M. Hessel, P. J. Bertoncini and A. C. Wahl
- J. Chem. Phys. 66, 1477-1482 (1977)

Molecular Orbital Correlation Diagrams for $\mathrm{He_2}$, $\mathrm{He_2}^+$, $\mathrm{N_2}$, $\mathrm{N_2}^+$, CO and CO^+ ,

- W. C. Ermler, R. S. Mulliken and A. C. Wahl
- J. Chem. Phys. 66, 3031 (1977)

Excited Electronic States of O₂

M. Krauss, D. Neumann, A. C. Wahl, G. Das and W. Zemke Phys. Rev. A, 7, 69 (1973)

Study of the Ground State Potential Curve and Dipole Moment of OH by the Method of Optimized Valence Configurations

- W. J. Stevens, G. Das, A. C. Wahl, M. Krauss and D. Neumann
- J. Chem. Phys. 61, 3686 (1974)

Accurate Ab Initio Potential Curves for the $X^2\Pi_g$, $A^2\Pi_u$, $a^4\Sigma_u^-$, and $^2\Sigma_u^-$ States of the O_2^- Ion

- G. Das, A. C. Wahl, W. T. Zenke, W. C. Stwalley,
- J. Chem. Phys. 68, 4252 (1978)

RELATED DOCUMENTS*

Potential Energy Surfaces for Air Triatomics. Volume I. Literature Review

M. Krauss, D. G. Hopper, P. J. Fortune, A. C. Wahl and T. O. Tiernan ARL (AFSC) TR75-0202, Vol. I, June 1975

Potential Energy Surfaces for Air Triatomics. Volume II. Results of SCF and Preliminary OVC Calculations

P. J. Fortune, D. G. Hopper, B. J. Rosenberg, W. B. England, G. Das, A. C. Wahl, and T. O. Tiernan ARL (AFSC) TR75-0202, Vol. II, June 1975

Theoretical Studies of Atmospheric Triatomic Molecules $\rm H_2O$, $\rm N_2O$, $\rm NO_2$, $\rm CO_2$, $\rm O_3$, and Their Ions

A. C. Wahl, W. B. England, B. J. Rosenberg, D. G. Hopper, and P. J. Fortune.

Argonne National Laboratory Technical Report ANL-77-3, 1977

^{*}These documents are available from National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161

DATE FILMES