

Laboratório de Programação Roteiro

• Estrutura de Decisão em C

Instrução Simples if...

Instrução Composta if...else

Exercícios de Fixação

Estrutura de Decisão

As estruturas de decisão (condicionais) são utilizadas para tomar uma decisão baseada no resultado da avaliação de uma condição de controle e seleciona uma ou mais ações possíveis (comandos) para serem executados pelo computador.

Estrutura de Decisão

ESTRUTURA DE DECISÃO SIMPLES

As estruturas de decisão (condicionais) simples tem por finalidade tomar uma decisão e efetuar um desvio no processamento do programa, dependendo da condição.

Sintaxe:

```
if ( condição ) {
     sequência de comandos;
```


Estrutura de Decisão

ESTRUTURA DE DECISÃO SIMPLES

Sendo a condição *Verdadeira*, será executada a instrução que estiver escrita após a instrução if.

Se após a condição, tiver apenas uma instrução a ser executada, não necessita criar um bloco. Caso tenha mais de uma instrução a ser executada após a condição, elas devem estar escritas dentro de um bloco { ... }.

```
if ( condição )
  instrução a ser executada;
  instrução a ser executada;
}
```


Exemplo de Estrutura de Decisão Simples

```
/*Programa que faz a leitura de dois valores numéricos, efetuar a adição e
apresentar o seu resultado, caso o valor somado seja major que 10. */
#include<stdio.h>
#include<conio.h>
int main() {
int A, B, X;
printf("\n Informe o valor para a variável A: \n");
scanf(" %d", &A);
printf("\n Informe o valor para a variável B: \n");
scanf(" %d", &B);
X = A + B:
if (X > 10)
  printf("\n O valor da variável X equivale a: %d", X);
getch();
return(0);
```


Exemplo de Estrutura de Decisão Simples

/*Programa que faz a leitura de dois valores numéricos e independentemente da ordem em que foram informados, eles devem ser impressos na ordem crescente. */

```
#include<stdio.h>
#include<conio.h>
int main() {
  int A, B, X;
  printf("\n Informe o valor para a variável A: \n");
  scanf(" %d", &A);
  printf("\n Informe o valor para a variável B: \n");
  scanf(" %d", &B);
  if (A > B)
     X = A;
     A = B:
     B = X;
   printf("\n Os valores ordenados sao: %d e %d", A, B);
getch();
return(0); }
```


Estrutura de Decisão

OPERADORES RELACIONAIS

Nos exemplos anteriores, foi utilizado o sinal de > (maior que) para verificar o estabelecido da variável quanto ao seu valor lógico.

As verificações são efetuadas com a utilização dos chamados operadores relacionais:

Operador	Relação
>	Maior-que
>=	Maior-ou-igual-a
<	Menor-que
<=	Menor-ou-igual-a
==	Igual-a
!=	Diferente de

Estrutura de Decisão

ESTRUTURA DE DECISÃO COMPOSTA

Agora vamos aprender a usar a instrução if ... else.

Sendo a condição *Verdadeira*, será executada a instrução que estiver posicionada entre as instruções if e else.

Sendo a condição *Falsa*, será executada a instrução que estiver posicionada logo após a instrução else.

Sintaxe:

if (condição)

instrução para condição verdadeira;

else

instrução para condição falsa;

Estrutura de Decisão

ESTRUTURA DE DECISÃO COMPOSTA

Caso exista mais de uma instrução verdadeira ou falsa para uma determinada condição, elas devem estar inseridas em um bloco { ... }.

```
if ( condição ) {
    instrução1 para condição verdadeira;
    instrução2 para condição verdadeira;
} else {
    instrução1 para condição falsa;
    instrução2 para condição falsa;
}
```


Exemplo de Estrutura de Decisão Composta

```
/*Programa que faça a leitura de duas variáveis, efetuar a soma, se for
maior que 10, atribuir a soma mais 5, senão atribuir menos 7. */
#include<stdio.h>
#include<conio.h>
int main() {
int A, B, X;
printf("\n Informe um valor para a variável A ..... \n"); scanf(" %d", &A);
printf("\n Informe um valor para a variável B ..... \n"); scanf(" %d", &B);
X = A + B:
printf("\n O resultado equivale a: ");
if (X >= 10)
    printf("%d", X + 5);
else
    printf("%d", X - 7);
getch();
return(0);
```


Exemplo de Estrutura de Decisão Composta

```
/*Programa que faca a leitura das notas de um aluno e calcule a media. */
#include<stdio.h>
#include<conio.h>
int main() {
float N1. N2. N3. N4. MD:
printf("\n Entre com a Nota 1 ..... \n"); scanf(" %f", &N1);
printf("\n Entre com a Nota 2 ..... \n"); scanf(" %f", &N2);
printf("\n Entre com a Nota 3 ..... \n"); scanf(" %f", &N3);
printf("\n Entre com a Nota 4 ..... \n"); scanf(" %f", &N4);
MD = (N1 + N2 + N3 + N4) / 4;
if (MD >= 5) {
     printf("\n Aluno Aprovado com Media = ");
     printf("%2.2f \n", MD);
} else {
     printf("\n Aluno Reprovado com Media = ");
     printf("%2.2f \n", MD);
getch();
return(0); }
```


Operadores Lógicos

 Operam sobre valores Verdadeiro ou Falso, e são avaliados também como Verdadeiro ou Falso.

Operador	Relação
&&	E (AND)
	OU (OR)
!	NÃO (NOT)

- E (AND) será Verdade se os dois operandos forem Verdade.
- OU (OR), se algum dos dois forem Verdade.
- NÃO (NOT), se o operando for Falso.

Exemplo:

"A && B" (Depende de A e B)
"!FALSE" (Verdade)

© 2016

Operadores Lógicos

 && (E lógico): retorna verdadeiro se ambos os operandos são verdadeiros e falso nos demais casos.

Exemplo: if(a>2 && b<3).

 || (OU lógico): retorna verdadeiro se um ou ambos os operandos são verdadeiros e falso se ambos são falsos.
 Exemplo: if(a>1 || b<2).

 !(NÃO lógico): usada com apenas um operando. Retorna verdadeiro se o operando é falso e vice-versa. Exemplo: if(!var).

Exemplo do Operador && (and)

```
/*Programa exemplo do operador &&*/
#include<stdio.h>
#include<conio.h>
int main() {
int NUMERO;
printf("\n Entre com um numero entre 0 e 9 \n");
scanf(" %d", &NUMERO);
if ( NUMERO >= 0 && NUMERO <= 9)
    printf("Valor Válido");
else
    printf("Valor Inválido");
getch();
return(0);
```


Exemplo do Operador || (or)

```
/*Programa exemplo do operador || (OU)
#include<stdio.h>
#include<conio.h>
int main() {
int CODIGO;
printf("\n Entre com o código de acesso: \n");
scanf(" %d", &CODIGO);
if ( CODIGO == 1 || CODIGO == 2 || CODIGO == 3) {
    if (CODIGO == 1)
        printf("UM \n");
     if (CODIGO == 2)
        printf("DOIS \n");
     if (CODIGO == 3)
        printf("TRÊS \n");
} else
    printf("Código Inválido \n");
getch();
return(0); }
```


Laboratório de Programação Exemplo do Operador! (NÃO)

```
/*Programa exemplo do operador ! (NOT)*/
#include<stdio.h>
#include<conio.h>
int main() {
int VALOR;
printf("\n Entre com um valor inteiro positivo: \n");
scanf(" %d", &VALOR);
if (! (VALOR >= 0))
    printf("Valor Inválido \n");
else
    printf("Valor válido, você informou %d \n", VALOR);
getch();
return(0);
```


Laboratório de Programação Arquivo de Cabeçalho ISO 646

Cabeçalho ISO 646

À medida que uma linguagem de programação evolui, ela recebe novos recursos. Assim, a linguagem C "ganhou" o arquivo de cabeçalho ISO 646 que permite usar palavras nos operadores lógicos.

No lugar de:

&& usar and

usar or

! usar not

Exemplo do Cabeçalho ISO 646

```
/*Programa exemplo do cabeçalho ISO 646*/
#include<stdio.h>
#include<conio.h>
#include<iso646.h>
int main() {
int NUMERO;
printf("\n Entre com um numero entre 0 e 9 \n");
scanf(" %d", &NUMERO);
if ( NUMERO >= 0 and NUMERO <= 9)
    printf("Valor na faixa de 0 a 9");
else
    printf("Valor fora da faixa de 0 a 9");
getch();
return(0); }
```


Exemplo do Cabeçalho ISO 646

```
/*Programa exemplo do cabeçalho ISO 646 mostrando Divisibilidade*/
#include<stdio.h>
#include<conio.h>
#include<iso646.h>
int main() {
int N, R4, R5;
printf("\n Entre com um valor inteiro natural \n");
scanf(" %d", &N);
R4 = N - 4 * (N / 4);
R5 = N - 5 * (N / 5);
if ( R4 == 0 and R5 == 0)
     printf("%d \n", N);
else
     printf("Valor nao é divisivel por 4 e 5 \n ");
getch();
return(0); }
```


Exercícios de Fixação

- 1 Faça um algoritmo para ler um número e imprimir se ele é "PAR" ou "ÍMPAR".
- 2 Faça um algoritmo para ler um número e se ele for maior do que 20, então imprimir a metade do número, senão imprimir o seu quadrado.
- 3 Faça um algoritmo para ler um número e imprimir uma das mensagens: é multiplo de 3 ou não é multiplo de 3.

Exercícios de Fixação

- 4 Faça um algoritmo que leia dois números e efetue a adição. Caso o valor somado seja maior que 20, este deverá ser apresentado somando-se a ele mais 8; caso o valor somado seja menor ou igual a 20, este deverá ser apresentado com a diferença de -5.
- 5 A prefeitura de Manaus abriu uma linha de crédito para os funcionários estatutários. O valor máximo da prestação não poderá ultrapassar 30% do salário bruto. Fazer um algoritmo que permita entrar com o salário bruto e o valor da prestação e informar se o empréstimo pode ou não ser concedido.

