DM1: Récursivité, Listes

18 septembre 2023

Ce DM est à rendre le **2 octobre 2023**. Le rendu se fera sur copie. Il est fortement conseillé de tester vos fonctions sur machine sur quelques exemples.

Le DM est composé de trois exercices et d'un problème indépendants.

Exercice 1. Fonctions de bases

1. Proposer une fonction OCaml f de signature int -> int telle que f n ait pour valeur $\frac{n(n-1)}{2}$

```
1 f 4 (* 6 *)
```

2. Proposer une fonction plus_grand à deux arguments qui renvoie le plus grand de ses deux arguments.

```
1 plus_grand 1 2 (* 2 *)
1 plus_grand 8 3 (* 8 *)
```

3. Proposer une fonction OCaml est_positif de signature int -> bool de sorte à ce que est_positif x soit égal à true si et seulement si $x \ge 0$.

```
1 est_positif (-2) (* false *)
1 est_positif 4 (* true *)
```

```
Correction:
```

```
1.1 let f n = n * (n-1) / 2
```

2. On a plusieurs possiblités, on peut utiliser un filtrage ou une structure conditionnelle :

```
let plus_grand x y = match x>y with
true -> x
let plus_grand x y = if x>y then x else y

let plus_grand x y = if x>y then x else y
```

Exercice 2. Suite récurrente et récursivité

Pour chacune des fonctions suivantes, proposer une implémentation récursive pour les fonctions suivantes :

1. Proposer une fonction OCaml u de type int -> int de sorte à ce que u n calcule le terme u_n défini par :

$$u_0 = 0$$

$$\forall n > 0, u_n = u_{n-1} + 3$$

2. Proposer une fonction OCaml v de type int -> int de sorte à ce que v n calcule le terme v_n défini par :

$$\begin{aligned} v_0 &= 1 \\ \forall n > 0, v_n &= 2v_{n-1} \end{aligned}$$

3. Proposer une fonction OCaml w
 de type int -> int de sorte à ce que w a n calcule le term
e w_n défini par :

$$w_0 = 0$$

$$\forall n > 0, w_n = w_{n-1} + a$$

4. Proposer une fonction OCaml suite_geometrique de type int -> int -> int -> int de sorte à ce que suite_geometrique a q n calcule le terme z_n défini par

$$z_0 = a$$

$$\forall n > 0, z_n = q z_{n-1}$$

Exercice 3. Listes

1. Proposer une fonction OCaml nombre_elements_positifs de signature int list -> int telle que nombre_elements_positifs l renvoie le nombre d'éléments positifs dans l.

```
nombre_elements_positifs [0; 2; -1; 4] (* 3 *)
```

2. Proposer une fonction OCaml filtrer_positifs de signature int list -> int list telle que filtrer_positifs l renvoie une liste des éléments positifs de 1.

```
filtrer_positifs [0; 2; -1; 4] (* [0; 2; 4]*)
```

3. Proposer une fonction OCaml dernier_positif de signature int list -> int telle que dernier_positif l renvoie le dernier élément positif de 1, et 0 à défaut.

```
1 dernier_positif [2; -1; 3; -2] (* 3 *)

1 dernier_positif [-1] (* 0 *)

1 dernier_positif [4; 1; 0; -2] (* 0 *)
```

Problème: Fonction d'itération

On cherche à implémenter une fonction qui permette d'itérer une autre fonction passée en argument de sorte à pouvoir émuler le comportement python suivant :

```
def iterer(f, n, x)

"""Calcule f(f(\dots,f(x),\dots)) avec n applications de f"""

for _ in range(n):
    x = f(x)

return x
```

1. Proposer une fonction OCaml iterateur de sorte à ce que, pour toute fonction f et toute variable x, iterateur f n x soit égal à f (f (.... (f x) ...)) avec f itérée n fois.

```
iterateur (fun x -> x * 2) 5 1 (*32*)
```

On pourra chercher une relation de récurrence entre iterateur f n x et iterateur f (n-1) x.

- 2. Quelle est la signature de la fonction iterateur?
- 3. En déduire une implémentation de la fonction puissance de deux qui corresponde à $f(n) = 2^n$.

4. On cherche désormais à pouvoir utiliser la valeur du compteur actuel pour pouvoir obtenir le comportement python suivant :

```
def iterer(f, n, x)

"""Calcule f(f(\dots, f(x), \dots)) avec n applications de f"""

for k in range(n):

x = f(k, x)

return x
```

Proposer une implémentation d'une fonction iterateur 2 de sorte à ce que pour toute fonction f, iterateur f n x soit égal à f (n-1) (f (n-2) (f ... (f 0 x) ...)

- 5. Quelle est la signature de la fonction iterateur2?
- 6. En déduire une implémentation permettant de calculer $f(n) = \sum_{k=0}^{n} k^2$.

Correction:

1. On a deux possibilités, soit on utilise le fait que $f^{(n)}(x) = f(f^{(n-1)}(x))$, soit on utilise le fait que $f^{(n)}(x) = f^{(n-1)}(f(x))$.

```
let rec iterateur f n x = match n with  \begin{vmatrix} 0 & -> & x \\ 3 & -> & f & (iterateur f (n-1) x) \end{vmatrix} 
let rec iterateur f n x = match n with  \begin{vmatrix} 2 & 0 & -> & x \\ 3 & -> & iterateur f (n-1) & (f x) \end{vmatrix}
```

La deuxième méthode a l'avantage d'être récursive terminale.

- 2. La signature est ('a \rightarrow 'a) \rightarrow int \rightarrow 'a \rightarrow 'a.
- 3. On réutilise la fonction iterateur :

```
let puissance 2 n = iterateur (fun x -> 2 * x) n 1
```

```
let rec iterateur2 f n x = match n with 4.2 \mid 0 \rightarrow x
\mid - \rightarrow f (n-1) (iterateur2 f (n-1) x)
```

- 5. La signature de iterateur
2 est (int -> 'a -> 'a) -> int -> 'a -> 'a.
- 6. On utilise la fonction iterateur2 :

```
let somme_carres n = iterateur2 (fun n \times -> x + n*n) (n+1) 0
```