실험 10 증가형 MOSFET의 바이어스 회로

• 이름 :

• 실험일 :

실험 10-1 | N-채널 MOSFET 전압분배 바이어스 회로의 동작점 전류, 전압 측정하기

표 10-4 N-채널 MOSFET 전압분배 바이어스 회로의 동작점 전류, 전압 측정 결과

$R_{\!D}\left[{\bf k}\varOmega ight]$	V_{GSQ} [V]	$I_{DQ} [\mathrm{mA}]$	$V_{DSQ} \; [\mathbf{V}]$	동작모드
0.075				
0.100				
0.150				
0.200				
0.270				
0.510				

실험 10-2 | N-채널 MOSFET 자기 바이어스 회로의 동작점 전류, 전압 측정하기

표 10-5 N-채널 MOSFET 자기 바이어스 회로의 동작점 전류, 전압 측정 결과 $(R_D=0.1{
m k}\Omega)$

$R_{\!\scriptscriptstyle S}\left[{\bf k}\Omega ight]$	$V_{GSQ} [\mathbf{V}]$	$I_{DQ} \ [\mathrm{mA}]$	$V_{DSQ} \; [\mathrm{V}]$	동작모드
0.047				
0.056				
0.075				
0.100				
0.120				
0.150				

실험 고찰

■ 고찰 [1]

- ullet [표 10-2]와 [표 10-4]에 나열된 저항 R_D 값에 대해 직류 부하선을 [그림 10-7]의 모눈종이에 그린다. $V_{DD}=15\,\mathrm{VZ}$ 하고, [그림 10-1(b)]를 참조한다.
- ullet [표 10-2]의 시뮬레이션 결과와 [표 10-4]의 측정 결과로 얻은 V_{DSQ} 값과 I_{DQ} 값을 R_D 값에 따른 직류 부하선 위에 표시한다.
- [그림 10-7]의 그래프로부터, 게이트 바이어스 전압 V_{GQ} 값이 고정된 상태에서 드레인 저항 R_D 가 증가함에 따라 MOSFET의 동작점 위치가 어떻게 변하는지 설명하라.

그림 10-7 N-채널 MOSFET 전압분배 바이어스 회로의 드레인 저항 R_D 에 따른 동작점 위치 변화

■ 고찰 [2]

- \bullet [표 10-3]과 [표 10-5]에 나열된 저항 R_S 값에 대해 직류 부하선을 [그림 10-8]의 모눈종이에 그린다. $V_{DD} = 15 \text{V로}$ 하고, [그림 10-2(b)]를 참조한다.
- ullet [표 10-3]의 시뮬레이션 결과와 [표 10-5]의 측정 결과로 얻은 V_{DSQ} 값과 I_{DQ} 값을 R_S 값에 따른 직류 부하 선 위에 표시한다.
- ullet[그림 10-8]의 그래프로부터, 게이트 바이어스 전압 V_{GQ} 값과 드레인 저항 R_D 값이 고정된 상태에서 소오스 저항 R_S 가 증가함에 따라 MOSFET의 동작점 위치가 어떻게 변하는지 설명하라.

그림 10-8 N-채널 MOSFET 자기 바이어스 회로의 소오스 저항 $R_{\rm S}$ 에 따른 동작점 위치 변화

실험 회로

10-1-1 회로			
)

■ 실험 10-2-1 회로				