Question 1

Recall question 1 from assignment 2 (we rename the variables): If $F(y) = P(Y \le y)$ is continuous, then X = F(Y) has a uniform distribution on [0,1].

Let C(x) be the CDF of the Cantor distribution, which is continuous and nondecreasing. Define on [0,1] the function $F(x) = \frac{x + C(x)}{2}$. Note F is continuous and strictly increasing; also, F(1) = 1, F(0) = 0. Hence it has inverse $F^{-1}: [0,1] \rightarrow$

[0, 1], which is also continuous and strictly increasing. F(x) satisfies the required properties as a CDF as stated in class. Let Y be a random variable with CDF F. Y does not have a density, since the Cantor distribution does

Finally, by the assignment question, X = F(Y) has a uniform distribution on [0, 1].

Now $Y = F^{-1}(X)$, as required.

not have a density.

Problem 2. Suppose X_1, X_2, \ldots are iid random variables with distribution

$$\Pr[X_k - 2^{2j}] = 2^{-j}$$

for j = 1, 2, ...

(i) Let N_n be the number of X_k 's such that $X_k = 2^{2n}$. Prove that for every $m_1 < \infty$ there exists $p_1 > 0$ and $n_1 < \infty$ such that for every $n \ge n_1$, $\Pr[N_n \ge m_1] \ge p_1$.

We know $N_n = \sum_{i=1}^{2^n} \mathbb{1}_{X_i = 2^{2n}} = \sum_{i=1}^{2^n} \text{Bernoulli}(2^{-n}) = \text{Binomial}(2^n, 2^{-n}).$ Thus,

$$\Pr[N_n \ge m_1] = \Pr[\operatorname{Binomial}(2^n, 2^{-n}) \ge m_1]$$

$$\ge {2^n \choose m_1} \left(\frac{1}{2^n}\right)^{m_1}$$

$$\ge {\left(\frac{2^n}{m_1}\right)}^{m_1} \left(\frac{1}{2^n}\right)^{m_1}$$

$$= m_1^{-m_1}$$

The first inequality follows from the fact that seeing $\geq m_1$ heads from 2^n coin flips implies that some subset of coins of size m_1 consists of all heads. The second inequality is that $\binom{n}{k} \geq (n/k)^k$. Thus, we can choose $p_1 = m_1^{-m_1}$ and $n_1 = 1$.

(ii) Let M_n be the number of X_k 's such that $X_k > 2^{2n}$. Prove that there exists $p_2 > 0$ and $n_2 < \infty$ such that for every $n \ge n_2$, $\Pr[M_n = 0] \ge p_2$.

We know $M_n = \sum_{i=1}^{2^n} \mathbb{1}_{X_i > 2^{2n}} = \sum_{i=1}^{2^n} \text{Bernoulli}(2^{-n-1} + 2^{-n-2} + \cdots) = \text{Binomial}(2^n, 2^{-n}).$ Thus,

$$\Pr[M_n = 0] = \Pr[\text{Binomial}(2^n, 2^{-n}) = 0]$$

= $(1 - 2^{-n})^{2^n}$
 $\to e^{-1}$

Because this probability converges to $\frac{1}{e}$, we choose n_2 sufficiently large so that $p_2 > \frac{1}{2e}$.

(iii) Let $S_n^* = \sum_{k=1}^{2^n} X_k \mathbb{1}_{X_k < 2^{2n}}$. Prove that for some $a < \infty$ there exists $p_3 < 1$ and $n_3 < \infty$ such that for every $n \ge n_3$, $\Pr[S_n^* \ge a2^{2n}] \le p_3$.

It is sufficient to show that $\mathrm{E}[S_n^*] \leq 2^{2n}$ by Markov's inequality: $\Pr[S_n^* \geq a \, 2^{2n}] \leq \Pr[S_n^* \geq a \, \mathrm{E}[S_n^*]] \leq \frac{1}{a}$.

$$E[S_n^*] = \sum_{k=1}^{2^n} E[X_k \mathbb{1}_{X_k < 2^{2^n}}]$$

$$= \sum_{k=1}^{2^n} \sum_{\ell=1}^{n-1} 2^{-\ell} 2^{2\ell}$$

$$\leq \sum_{k=1}^{2^n} 2^n = 2^{2n}$$

(iv) Let $S_n = \sum_{k=1}^{2^n} X_k$. Prove that there is no sequence of real numbers μ_n such that $S_n/\mu_n \to 1$ in distribution.

It suffices to show that, even for large n, a large range of options for S_n are still possible. The following computation holds for all n sufficiently large.

Define

$$T_n^* = \sum_{k=1}^{2^n} X_k \mathbb{1}_{X_k \le 2^{2n}}$$

So T_n^* is S_n^* where we also include X_k 's that are 2^{2n} . We can use a near-identical argument to (iii) to show that $\mathrm{E}[T_n^*] \leq 2^{2n+1}$, which means that, by Markov's inequality

$$\Pr[T_n^* < a2^{2n+1}] \ge 1 - \frac{1}{a}$$

From part (ii) we know that $M_n = 0$ with probability at least p_2 ; pick a such that $\frac{1}{a} \leq p_2$, so that $\Pr[M_n = 0 \text{ and } T_n^* < a2^{2n+1}] > 0$ by union bound. Call this probability p_4 . Since $S_n = T_n^*$ if $M_n = 0$,

$$\Pr[S_n \le (2a)2^{2n}] \ge \Pr[M_n = 0, T_n^* < (2a)2^{2n}] = p_4$$

for a constant p_4 .

Further, using (i),

$$\Pr[S_n \ge (4a)2^{2n}] \ge \Pr[N_n \ge 4a] \ge p_1$$

for some constant p_1 .

Thus, for any sequence μ_n , for n sufficiently large, $S_n/\mu_n \leq (2a)2^{2n}/\mu_n$ and $S_n/\mu_n \geq (4a)2^{2n}/\mu_n$ each occur with constant probability. Because they differ by a factor of two, $\Pr[|S_n/\mu_n - 1| \geq \frac{1}{3}]$ is always positive (since at least one of the above events satisfies this criterion for any μ_n). This implies that S_n/μ_n does not converge in distribution.

Problem 3. For a random variable X, the Laplace transform of X is

$$L_X(t) = \mathrm{E}(e^{-tX}).$$

(i) Prove that, if X and Y are independent, then $L_{X+Y}(t) = L_X(t)L_Y(t)$, provided the Laplace transforms exist.

First, we note that if X and Y are independent, so are f(X) and g(Y) for $f, g : \mathbb{R} \to \mathbb{R}$ measurable:

$$\Pr[f(X) < a, g(Y) < b] = \Pr[X \in f^{-1}(\infty, a), Y \in g^{-1}(\infty, b)]$$

$$= \Pr[X \in f^{-1}(\infty, a)] \Pr[Y \in g^{-1}(\infty, b)]$$

$$= \Pr[f(X) < a] \Pr[g(Y) < b]$$

Thus, e^{-tX} and e^{-tY} , and the statement follows:

$$L_{X+Y}(t) = E(e^{-tX}e^{-tY}) = E(e^{-tX})E(e^{-tY}) = L_X(t)L_Y(t)$$

(ii) Compute $L_{S_n}(t)$, where S_n is Binomial(n, 1/2).

We know $S_n = \sum_{i=1}^n C_i$, where the C_i 's are iid uniformly chosen from $\{0,1\}$. Using (i),

$$L_{S_n}(t) = \left(L_{C_1}(t)\right)^n = \left(\frac{1}{2} + \frac{1}{2}e^{-t}\right)^n$$

(iii) Compute $L_Z(t)$, where Z is standard normal.

Using the Radon-Nikodym derivative of Z with respect to Lebesgue measure, we get that

$$L_Z(t) = \int e^{-tx} \left(\frac{1}{\sqrt{2\pi}} e^{-x^2/2} \right) dx$$

$$= \int \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x+t)^2}{2} + \frac{t^2}{2} \right) dx$$

$$= e^{t^2/2} \int \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy \qquad (y = x+t)$$

$$= e^{t^2/2}$$

(iv) Prove that for some constant c and every real t, $L_{cR_n}(t) \to L_Z(t)$, where $R_n = (S_n - n/2)/\sqrt{n}$.

We can treat R_n as the sum of n coin flips, normalized by c/\sqrt{n} , and a constant $-c\sqrt{n}/2$. Thus,

$$L_{cR_n}(t) = \left(\frac{1}{2} + \frac{1}{2}e^{-ct/\sqrt{n}}\right)^n e^{ct\sqrt{n}/2}$$
$$= \left(\frac{\exp\left(\frac{-ct}{2\sqrt{n}}\right) + \exp\left(\frac{ct}{2\sqrt{n}}\right)}{2}\right)^n$$

We use the Taylor series approximation:

$$= \left(1 + \frac{1}{2!} \frac{c^2 t^2}{4n} + \frac{1}{4!} \frac{c^4 t^4}{16n^2} + \cdots \right)^n$$

$$\approx \exp\left(\frac{c^2 t^2}{8} + \frac{c^4 t^4}{384n} + \cdots\right)$$

$$\to \exp\left(\frac{c^2 t^2}{8}\right)$$

Where we use that $(1 + \frac{x}{n})^n$ conveges to e^x and that the lower order terms of the above expression vanish as n grows large.

When c = 2, this is $L_Z(t)$.