Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003 BEST AVAILABLE COPY

Mg Synthesis

Docket No.: 025756-00003

1. Synthesis (performed in an Ar Glove Box) $MgCl_2$ Stirring Rapid 20 hrs

Mg(nano)

2. Remove THF with dissolved by-products

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

Synthesized Mg

FIG. 3

Sample	Amount Made	XRD crystallite size (Scherrer equation)*
Mg 1-2	0.198g	23nm
Mg 1-10	0.4g	Used in Pd capping
Mg 1-13	0.4g	37nm
Mg 1-18	0.2g	34nm
Mg 1-41	0.2g	Used for Co capping
Mg 1-51	0.4g	33nm
Mg 1-57a	0.5g	25nm
Mg 1-57b	0.5g	Still in dry box
Mg 1-57c	0.5g	Almost amorphous

*t = $[(0.9)(0.154)]/[(\beta)(\cos \theta)]$

t = crystallite size in nm $\beta = full width half max$ $\theta = Bragg angle$

Klug and Alexander, 1950

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

intensity

s Synthesized Mg XRL

XRD of Mg 1-13 sample matches that of an indexed Mg pattern Material is coated with amorphous sp² carbon allowing it to be stable in air

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

intensity

Mg 1-13 sample was stable in atmospheric conditions for 3 months

Still Mg Metal

FIG. 5

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

intensity

Phase Stabi in Water

Mg 1-13 turned white with XRD giving $Mg(OH)_2$ After exposure to water for \sim 48 hours \Rightarrow

Title: HYDROGEN STORAGE MATERIAL BASED ON A MULTILAYERED CORE/SHELL STRUCTURE
Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application

Docket No : 025756-00003

BEST AVAILABLE COPY

Pd coated Mg Synthesis

Mg via Rieke method $Pd(NO_3)_2$ Igepal CO-520 Stirring Rapped

Additanal THF

STRUCTURE
Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

1) Micelle Formation

cyclohexane

2) Reduction of Pd⁺² using Hydrazine Hydrate (H₂NNH₂•xH₂O)

 $2Pd^{+2}(aq) + N_2H_4(aq) + 4OH^{-}(aq) \rightarrow 2Pd^{0}(s) + N_2(g) + 4H_2O$

Ethanol

3) Break the Micelle and collect the Pd with ethanol

Pd nano

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

Controlling The Size

of surfactant (Igapal) to water often referred to as the R value. The size of the Pd spherical particle is dependent on the mole% ratio

R = [water]/[surfactant]

The larger the R value the larger the radius of the particle

Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application
Docket No. 025756-00003

Spherical Pd Synthesized to Date

Sample	R value	Amount made	Particle size*
Pd 1-62	8	1.3mg	
Pd 1-67	6	4mg	
Pd 1-68-1	1	2mg	
Pd 1-68-2	2	4mg	
Pd 1-69-1	1	.67mg	
Pd 1-68-2	2	1.35mg	
Pd 1-69-6	6	12.3mg	
Pd 1-69-8	∞	16.32mg	
Pd 1-70-7	7	19mg	
Pd 1-70-9	9	30.5mg	~9nm
Pd 1-71	9	61mg	
Pd 1-73	S.	63.6mg	
Pd 1-74-3	3	61mg	
Pd 1-74-7	7	71mg	
Pd 1-91-6	6	81.4mg	5nm
Pd 1-91-8	8	108.5mg	4nm
Pd 1-96	7	399mg	
Pd 1-100	25	84.8mg	6nm

*By Scherrer equation

STRUCTURE

Inventor's Name: Peter C. EKLUND, et al.

Application No.: New Application

Docket No.: 025756-00003

0 14:0E

FIG. 11

STRUCTURE
Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application Docket No : 025756-00003

Synthetic Approach For

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application

Docket No.: 025756-00003

Surfactant = Octylamine + 5% Amylamine [CH₃(CH₂),NH₂] [CH₃(CH₂)₄NH₂]

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

Platelets Made

Sample	R Value	Amount Made	F*	T*
Pd 1-75	6.8	. 20.4mg		
Pd 1-77	20.4	228mg		
Pd 1-80-3.4	3.4	66mg		
Pd 1-80-1.7	1.7	33mg		
Pd 1-86	10.2	236mg		
Pd 1-91-8.5	8.5	212mg		
Pd 1-91-6.8	6.8	254mg	·	
Pd 2-5-1.7	1.7	21.2		
Pd 2-5-3.4	3.4	21.2	·	_
Pd 2-5-6.8	6.8	21.2	33nm	2nm
Pd 2-5-8.5	8.5	21.2		:
Pd 2-5-10.2	1.2	21.2	150nm	6nm
Pd 2-5-20.4	20.4	21.2	·	
Pd 2-8a	10.2	21.2	130nm ,	8nm
Pd 2-8b (AA)	10.2	21.2	80nm	1.7nm

£ 55 ...

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

Amount Made Materials Synthesized Spherical nPd

4.00	THOUSE INDUCE
Mg 1-2	0.198g
Mg 1-10	0.4g
Mg 1-13	0.4g
Mg 1-18	0.2g
Mg 1-41	0.2g
Mg 1-51	0.4g
Mg 1-57a	0.5g
Mg 1-57b	0.5g
Mg 1-57c	0.5g

P
7
at
el
P
<u>, </u>
Ħ.
P
d

Sample

Amount Made

Pd 1-77

20,4

20.4mg 228mg

Pd 1-75

				*	-					!						•		
Pd 1-100	Pd 1-96	Pd 1-91-8	Pd 1-91-6	Pd 1-74-7	Pd 1-74-3	Pd 1-73	Pd 1-71	Pd 1-70-9	Pd 1-70-7	Pd 1-69-8	Pd 1-69-6	Pd 1-68-2	Pd 1-69-1	Pd 1-68-2	Pd 1-68-1	Pd 1-67	Pd 1-62	Sample
25	7	8	6	7	3	51	9	9	7	8	6	2	1	2	1	6	∞	R Value
84.8mg	399mg	108.5mg	81.4mg	71 mg	61 mg	63.6mg	61mg .	30.5mg	19mg	16.32mg	12.3mg	1.35mg	.67mg	4mg	2mg	4mg	1.3mg	Amount Made

晋
G
•
9

Pd 2-5-1.7 Pd 2-5-3.4 Pd 2-5-6.8

3.4

Pd 1-91-6.8

6.8 8.5 10.2

Pd 1-91-8.5

Pd 1-86

Pd 1-80-1.7

Pd 1-80-3.4

Pd 2-8b (AA)

21.2

Pd 2-5-8.5 Pd 2-5-10.2 Pd 2-5-20.4

2 2 2

33mg 236mg 212mg 212mg 254mg 21.2 21.2 21.2

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

FIG. 17

Spherical particles: R = 7 (5nm) and R = 9(8nm);

Bulk sample particle size: 1.0 - 1.5 Microns

Platelets R=10.2 (8nm thick)

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

Comparison of TGA Evaluations at 100C for Nano and Bulk Samples

ŧ		X 0 X X 1 86 X	TO SHE DAY	The second second	•
	Sample	Knee for	Plateau	Estimated	Estimated
		H/Pd	Onset	Adsorption	Desorption
		Ratio	(Wt %)	Rate*	Rate*
				(H/Pd/min)	(H/Pd/min)
	Pd 1-74-7			·	
	R=7	0.70	ì))
			~ 0.4/	~1	~0.005
	(4-5 nm Spneres)				٠
		·			
	Pd 1-86				
	R = 10.2	~ 0.65)	0 007	0 000
	(8 nm thick			0.007	0.000
	Platelets)				
	,				
	Bulk	~0.6	~ 0.08	0.005	0.002
	$(1.0-1.5\mu m)$				
			* D		
-			* P	* Possibly affected by sintering	ed t

IG. 18

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	;			
Sample	Pd in	Wt.%Pd as	Wt.%	η corr.
	sample	PdO in	Carbon	factor
		sample		
Spherical				
Pd 2-35 R=2	95.34%	0%	2.37%	1.05
(4nm)				·
Pd 2-71 R=8	96.16%	0%	0.05%	1.04
Platelet		•		
Pd 2-65-10 R=10	87.26%	0%	0.08%	1.15
(327nm X 2.8nm to 109nm X 1.5nm)	·			
Pd 2-65-7 R=7	94.69%	0%	0.17%	1.06
(82nm X 1.3nm)				

Title: HYDROGEN STORAGE MATERIAL BASED ON A MULTILAYERED CORE/SHELL STRUCTURE Inventor's Name: Peter C. EKLUND, et al.

Application No.: New Application

Docket No.: 025756-00003

Inventor's Name: Terumi FURUTA, et al. Application No.: New Application Docket No.: 025756-00003

Moire fringes

FIG. 24 HRTEM of Platelet nanoPd

FIG. 25 AFM of Platelet nanoPd

0.5 1.0 1.5

(1) 327nm X 2.8nm (2) 109nm X 1.5nm

BEST AVAILABLE COPY

H Adsorption of Spherical Pd

FIG. 27 H.Adsorption of Pd Platelets

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

Hydrogen Saturation vs Pd

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

tydrogen Absor Isotherms of Pd Nanoparticles

Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application
Docket No.: 025756-00003

HRTEM of Platelet Particles

BEST AVAILABLE COPY

STRUCTURE

Inventor's Name: Peter C. EKLUND, et al.

Application No.: New Application

Docket No.: 025756-00003

Review of nanoPd Sample tested for Hydrogen Storage

3-18 3-33	Bilayer 2-65-10	2-44	2-35* 2-35*	Sample Reverse
platelet platelet	Bilayer Synthesis 2-65-10 mixed	spherical	spherical	Sample Reverse Micelle Synthesis
€ ∞	10	Cu o	0 12	R
96 94	87	96 82	95	%Pd
	S	U	4 1	q ₁
70 130	327 109	٠		22
2 2.6	2.8 1.5			75

of platelet particle in nm. * Samples washed with hydrazine R = [water]/[Surfactant], 1= diameter of spherical particle, 2 = face size of platelet particle, and 3 = thickness

FIG. 31

STRUCTURE
Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application
Docket No.: 025756-00003

Sintering of Platelet Particles

O = room temperature, \square = 50 °C, \diamondsuit = 75 °C, \triangle = 100 °C, * = 150 °C, \bullet = 200 °C. \blacksquare = 250 °C. consist of only platelets. Sample C(sample 2-65-10) is a mix of platelets and spherical particles. Heating temperatures are Surface area vs. heating time for sample synthesized by bilayers. Samples A(sample 3-18) and B(sample 3-33)

FIG. 32

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

are both of sample 2-35. Heating temperatures are O = room temperature, \Box = 50 °C, \triangle = 100 °C, and * = 150 °C. not washed with hydrazine hydrate. C(sample 2-71) and D(sample 2-35) = washed with hydrazine hydrate. Lines B and D Surface area vs. heating time for spherical particles synthesized via reverse micelles. A(sample 2-44) and B(sample 2-35) =

TIG. 33

Inventor's Name: Peter C. EKLUND, et al.
Application No.: New Application
Docket No.: 025756-00003

intensity

MgPd Alloy

Inventor's Name: Peter C. EKLUND, et al. Application No.: New Application Docket No.: 025756-00003

MgPd Alloy with Mg and Pd Metal

FIG. 35