Nama : Ragil Fadhilah Akhdan

Nim : 231011400785

Kelas : 05TPLE013

1) Perhitungan manual

Semesta & fungsi keanggotaan (sesuai grafik)

Permintaan (x, 0–5000)

- turun: $\mu \square$ urun(x)=1 (x≤1000), turun linier ke 0 (x≥3000)
- $naik: \mu \square aik(x) = 0 \ (x \le 1000), \ naik \ linier \ ke \ 1 \ (x \ge 3000)$

Persediaan (y, 0-1000)

- sedikit: $\mu \square$ edikit(y)=1 (y\le 200), turun linier ke 0 (y\ge 400)
- sedang: segitiga (0 di 200, 1 di 400, 0 di 800)
- banyak: μ_banyak(y)=0 (y≤400), naik linier ke 1 (y≥800)

Produksi (z, 0-8000)

- berkurang: μ_berkurang(z)=1 (z≤2000), turun linier ke 0 (z≥7000)
- bertambah: μ_bertambah(z)=0 (z≤2000), naik linier ke 1 (z≥7000)

Nilai input yang diminta soal

- Permintaan berada pada rentang (1000–3000) \rightarrow ambil titik di area overlap: **x = 2000** $\rightarrow \mu \Box urun(2000) = 0.5$, $\mu \Box aik(2000) = 0.5$
- Persediaan pada rentang (200–700) → juga di area overlap: y = 700
 - $\rightarrow \mu \square edikit(700)=0$
 - $\rightarrow \mu \Box edang(700) = (800-700)/(800-400) = 0.25$
 - $\rightarrow \mu_banyak(700) = (700-400)/(800-400) = 0.75$

Aturan (AND=min, agregasi=max)

- 1. TURUN \land BANYAK \Rightarrow BERKURANG \rightarrow min(0.5, 0.75) = **0.50**
- 2. TURUN \land SEDANG \Rightarrow BERKURANG \rightarrow min(0.5, 0.25) = **0.25**
- 3. TURUN \land SEDIKIT \Rightarrow BERTAMBAH \rightarrow min(0.5, 0) = **0.00**
- 4. NAIK \land BANYAK \Rightarrow BERKURANG \rightarrow min(0.5, 0.75) = **0.50**
- 5. NAIK \land SEDANG \Rightarrow BERTAMBAH \rightarrow min(0.5, 0.25) = **0.25**
- 6. NAIK \land SEDIKIT \Rightarrow BERTAMBAH \rightarrow min(0.5, 0) = **0.00**

Agregasi konsekuen:

- **BERKURANG** = max(0.50, 0.25, 0.50) = **0.50**
- **BERTAMBAH** = max(0.00, 0.25, 0.00) = **0.25**

Artinya, fungsi keanggotaan output dipotong (clipped) pada:

- μ_berkurang(z) dipotong di 0.50
- μ_bertambah(z) dipotong di **0.25**

Kemudian di-OR (max) untuk jadi satu kurva keluaran.

Defuzzifikasi (pusat massa/centroid)

 $z*=\int 08000z \cdot \mu out(z) dz \int 08000\mu out(z) dzz^* = \frac{0.000}{z \cdot \mu out(z) dz} \sqrt{2000} z \cdot \mu out(z) dz /2000$

Dengan μ out hasil agregasi di atas, diperoleh (perhitungan numerik trapezoid):

 $z \approx 3.443,65$ kemasan \rightarrow dibulatkan 3.444 kemasan.*

Jawaban: perusahaan sebaiknya memproduksi ≈ 3.444 kemasan makanan jenis ABC untuk kondisi permintaan di area 1000–3000 dan persediaan 200–700 seperti pada soal.