The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. It is very difficult to determine what are the most popular modern programming languages. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Normally the first step in debugging is to attempt to reproduce the problem. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Programming languages are essential for software development. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. One approach popular for requirements analysis is Use Case analysis. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. While these are sometimes considered programming, often the term software development is used for this larger overall process - with the terms programming, implementation, and coding reserved for the writing and editing of code per se. It is usually easier to code in "high-level" languages than in "low-level" ones. Techniques like Code refactoring can enhance readability. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging).