

Wydajność złączeń i zagnieżdżeń dla schematów znormalizowanych i zdenormalizowanych

Julia Kwaśniak

Geoinformatyka

Rok 2, grupa 2

Przedmiot: Bazy danych

Spis treści

1.	Wprowadzenie	. 3
	Tabela stratygraficzna.	
	Testy wydajności	
4.	Wyniki testów	. 5
5	Wnioski	6

1. Wprowadzenie.

Celem projektu było sprawdzenie wydajności dla tabel znormalizowanych i zdenormalizowanych. Testy opierały się na bazie danych Geo z utworzoną tabelą stratygraficzną w formie małych tabel (tabela znormalizowana) oraz w formie jednej tabeli utworzonej z innych tabel (tabela zdenormalizowana). Przeprowadzone zostały testy wydajnościowe bez indeksów, a później z indeksami, a następnie dane z owch testów zebrane zostały w formie tabeli.

2. Tabela stratygraficzna.

Tabela stratygraficzna składa się z pięciu oddzielnych tabel: GeoEon, GeoEra, GeoOkres, GeoEpoka, GeoPiętro. Każda z nich posiada klucz główny oraz klucz obcy, który nie może być wartością NULL, z uwagi na późniejsze połączenie powyższych tabel.

```
create table GeoEon(id_eon integer primary key, nazwa_eon varchar (15));
create table GeoEra(id_era integer primary key, id_eon integer not null, nazwa_era varchar(15));
create table GeoOkres(id_okres integer primary key, id_era integer not null, nazwa_okres varchar(30));
create table GeoEpoka(id_epoka integer primary key, id_okres integer not null, nazwa_epoka varchar(15));
create table GeoPietro(id_pietro integer primary key, id_epoka integer not null, nazwa_pietro varchar(30));

--2.Dodanie kluczy obcych

alter table GeoFo
add foreign key (id_eon) references GeoEon(id_eon);
alter table GeoRoka
add foreign key (id_era) references GeoEra(id_era);
alter table GeoEpoka
add foreign key (id_okres) references GeoOkres(id_okres);
alter table GeoPietro
add foreign key (id_epoka) references GeoEpoka(id_epoka);
```

Następnie do tabel zostały dodane wartości.

```
--3.Dodanie wartości do tabel
insert into GeoEon values(1, 'Farenozoik');
insert into GeoEra values(1, 1, 'Kenozoik');
insert into GeoEra values(2, 1, 'Mezozoik');
insert into GeoEra values(3, 1, 'Paleozoik');
insert into GeoOkres values(1, 1, 'Czwartorząd');
insert into GeoOkres values(2, 1, 'Trzeciorząd(Neogen)');
insert into GeoOkres values(3, 1, 'Trzeciorząd(Paleogen)');
{\color{red}\mathsf{insert\ into}\ \mathsf{GeoOkres\ values}(4,\ 2,\ \mathsf{'Kreda'})}\,;
insert into GeoOkres values(5, 2, 'Jura');
insert into GeoOkres values(6, 2, 'Trias');
insert into GeoOkres values(7, 3, 'Perm');
insert into GeoOkres values(8, 3, 'Karbon');
insert into GeoOkres values(9, 3, 'Dewon');
insert into GeoEpoka values(1, 1, 'Halocen');
insert into GeoEpoka values(2, 1, 'Plejstocen');
insert into GeoEpoka values(3, 2, 'Pliocen');
insert into GeoEpoka values(4, 2, 'Miocen');
insert into GeoEpoka values(5, 3, 'Oligocen');
insert into GeoEpoka values(6, 3, 'Eocen');
insert into GeoEpoka values(7, 3, 'Paleocen');
insert into GeoEpoka values(8, 4, 'Górna');
insert into GeoEpoka values(9, 4, 'Dolna');
insert into GeoEpoka values(10, 5, 'Górna');
insert into GeoEpoka values(11, 5, 'Środkowa');
insert into GeoEpoka values(12, 5, 'Dolna');
insert into GeoEpoka values(13, 6, 'Górna');
insert into GeoEpoka values(14, 6, 'Środkowa');
insert into GeoEpoka values(15, 6, 'Dolna');
insert into GeoEpoka values(16, 7, 'Loping');
```

Z powyższych tabel utworzona została tabela w postaci zdenormalizowanej o nazwie GeoTabela.

```
CREATE TABLE GeoTabela AS (SELECT * FROM GeoPietro
NATURAL JOIN GeoEpoka
NATURAL JOIN GeoOkres
NATURAL JOIN GeoEra
NATURAL JOIN GeoEon );
```

3. Testy wydajności.

Testy wykonane zostały w programie PostgreSQL

Utworzone zostały tabele: Dziesiec zawierająca liczby od 0 do 9, aby na jej podstawie mogła zostać utworzona tabela Milion zawierająca milion rekordów.

```
create table Dziesiec(cyfra int, bit int);
insert into Dziesiec(cyfra) values (0), (1), (2), (3), (4), (5), (6), (7), (8), (9);

CREATE TABLE Milion(liczba int,cyfra int, bit int);
INSERT INTO Milion
SELECT a1.cyfra +10* a2.cyfra +100*a3.cyfra + 1000*a4.cyfra + 10000*a5.cyfra + 10000*a6.cyfra
AS liczba , a1.cyfra AS cyfra, a1.bit AS bit
FROM Dziesiec a1, Dziesiec a2, Dziesiec a3, Dziesiec a4, Dziesiec a5, Dziesiec a6;
```

Parametry komputera i programu PostgreSQL:

CPU: AMD A12-9720P RADEON R7, 12 COMPUTE CORES 4C+8G 2.70 GHz

RAM: 8GB

System operacyjny: Windows 10

PostgreSQL: Wersja 13.3-2

Kryteria testów:

1. Zapytanie 1 (1 ZL), którego celem jest złączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci zdenormalizowanej.

```
explain SELECT COUNT(*) FROM Milion INNER JOIN GeoTabela ON
(mod(Milion.liczba,77)=(GeoTabela.id_pietro));
```

2. Zapytanie 2 (2 ZL), którego celem jest złączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci znormalizowanej, reprezentowaną przez złączenia pięciu tabel.

```
explain SELECT COUNT(*) FROM Milion INNER JOIN GeoPietro ON
(mod(Milion.liczba,68)=GeoPietro.id_pietro) NATURAL JOIN GeoEpoka NATURAL JOIN
GeoOkres NATURAL JOIN GeoEra NATURAL JOIN GeoEon;
```

- 3. Zapytanie 3 (3 ZG), którego celem jest złączenie syntetycznej tablicy miliona wyników, przy czym złączenie jest wykonywane poprzez zagnieżdżenie skorelowane. explain SELECT COUNT(*) FROM Milion WHERE mod(Milion.liczba,77) = (SELECT id_pietro FROM GeoTabela WHERE mod(Milion.liczba,77) = (id_pietro));
- 4. Zapytanie 4 (4 ZG), którego celem jest złączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci znormalizowanej.

4. Wyniki testów.

Testy zostały przeprowadzone na każdym zapytaniu 10 razy oraz kolejne 10 razy na zapytaniach z indeksami.

Tabela 1.

1zl		z indexem	2zl		z indexem	3zl		z indexem	4zl		z indexem
1	441	549	1	927	954	1	35587	42959	1	506	611
2	424	722	2	1001	978	2	38073	34119	2	730	721
3	635	655	3	1017	975	3	34332	35462	3	611	642
4	814	690	4	999	1069	4	35385	35316	4	631	709
5	818	664	5	897	1066	5	35291	37473	5	838	650
6	730	660	6	1109	990	6	35248	35471	6	714	510
7	829	658	7	944	783	7	35566	37533	7	671	532
8	696	636	8	821	1094	8	35407	35630	8	673	533
9	692	719	9	961	2765	9	35610	34878	9	650	691
10	684	628	10	965	1170	10	34369	33986	10	688	582
min:	424	549	min:	821	783	min:	34332	33986	min:	506	510
średnia:	676,3	658,1	średnia:	964,1	1184,4	średnia:	35486,8	36282,7	średnia:	671,2	618,1

Wyniki pojedynczych testów dla każdego zapytania

Tabela 2.

	1ZL		27	ZL	37	ZG	4ZG		
	MIN	ŚR	MIN	ŚR	MIN	ŚR	MIN	ŚR	
BEZ INDEKSOW	424	676,3	821	964,1	34332	35486,8	506	671,2	
Z INDEKSAMI	549	658,1	783	1184,4	33986	36282,7	510	618,1	

Wyniki minimalne i średnie wyliczone z testów z Tabeli 1.

Wykres 1.

Wykres wyników z Tabeli 2.

5. Wnioski.

Po dodaniu indeksów wydajność zapytań 2 i 3 lekko się zmniejszyła, a zapytań 1 i 4 lekko zwiększyła. Postać znormalizowana jest szybsza niż zdenormalizowana. Można zauważyć, że w przypadku zapytania trzeciego, gdzie złączenie jest wykonywane przez zagnieżdżenie skorelowane a czas wykonania był rzędu 34000-35000 ms, wydajność jest gorsza niż w pozostałych zapytaniach, gdzie czas wykonania nie przekraczał zazwyczaj 2000ms.