Issue XXI: Super Type System

${\rm M.E.}$ Сохацький 1

¹ Національний технічний університет України ім. Ігоря Сікорського 26 листопада 2025

Аннотація

Зміст

1	Introduction to Urs	2
2	Super Type System	2
3	Bosonic Modality 3.1 Bose	2 2 3 5
1	Introduction to Urs	
2	Super Type System	
3	Bosonic Modality	

The \bigcirc modality in cohesive type theory projects a type to bosonic parity (g=0). For a type $A: \mathbf{U}_{i,g}, \bigcirc A$ forces the type to be bosonic, aligning with supergeometry and quantum physics.

In Urs, \bigcirc operates on types in graded universes from **Graded**, with applications in bosonic quantum fields **qubit** and supergeometry **SmthSet**.

3.1 Bose

Definition 1 (Bosonic Modality Formation). The \bigcirc modality is a type operator on graded universes, mapping to bosonic parity:

$$\bigcirc: \prod_{i:\mathbb{N}} \prod_{g:\mathbf{Grade}} \mathbf{U}_{i,g}
ightarrow \mathbf{U}_{i,0}.$$

```
def bosonic (i : Nat) (g : Grade) (A : U i g) : U i 0
```

Definition 2 (Bosonic Modality Introduction). Applying \bigcirc to a type A produces $\bigcirc A$ with bosonic parity:

$$\Gamma \vdash A : \mathbf{U}_{i,g} \rightarrow \Gamma \vdash \bigcirc A : \mathbf{U}_{i,0}.$$

Definition 3 (Bosonic Modality Elimination). The eliminator for $\bigcirc A$ maps bosonic types to properties in $\mathbf{U_0}$:

$$\mathbf{Ind}_{\bigcirc}: \prod_{i:\mathbb{N}} \prod_{g: \mathbf{Grade}} \prod_{A: \mathbf{U}_{i,g}} \prod_{\phi: (\bigcirc A) \to \mathbf{U_0}} \left(\prod_{a: \bigcirc A} \phi \ a \right) \to \prod_{a: \bigcirc A} \phi \ a.$$

```
def bosonic_ind (i : Nat) (g : Grade) (A : U i g) (phi : (bosonic i g A) \rightarrow U_0) (h : \Pi (a : bosonic i g A), phi a) : \Pi (a : bosonic i g A), phi a
```

Theorem 1 (Idempotence of Bosonic). The \bigcirc modality is idempotent, as it always projects to bosonic parity:

$$\bigcirc\text{-idem}: \prod_{i:\mathbb{N}} \prod_{g:\mathbf{Grade}} \prod_{A:\mathbf{U}_{i,g}} (\bigcirc(\bigcirc A)) = (\bigcirc A).$$

```
def bosonic_idem (i : Nat) (g : Grade) (A : U i g)
: (bosonic i 0 (bosonic i g A)) = (bosonic i g A)
```

Theorem 2 (Bosonic Qubits). For $C, H : \mathbf{U_0}$, the type $\bigcirc \mathbf{Qubit}(C, H)$ models bosonic quantum states:

$$\bigcirc\text{-qubit}: \prod_{i:\mathbb{N}}\prod_{g:\mathbf{Grade}}\prod_{C,H:\mathbf{U_0}}(\bigcirc\mathbf{Qubit}(C,H)):\mathbf{U}_{i,0}.$$

3.2 Braid

The $\mathbf{Braid}_n(X)$ type models the braid group $B_n(X)$ on n strands over a smooth set $X : \mathbf{SmthSet}$, the fundamental group of the configuration space $\mathbf{Conf}^n(X)$, used in knot theory, quantum computing, and smooth geometry.

In Urs, $\mathbf{Braid}_n(X)$ is a type in $\mathbf{U_0}$, parameterized by $n:\mathbf{Nat}$ and $X:\mathbf{SmthSet}$, supporting braid generators σ_i and relations, with applications to anyonic quantum gates and knot invariants.

Definition 4 (Braid Formation). The type $\mathbf{Braid}_n(X)$ is formed for each $n : \mathbf{Nat}$ and $X : \mathbf{SmthSet}$:

$$\mathbf{Braid}:\prod_{n:\mathbf{Nat}}\prod_{X:\mathbf{SmthSet}}\mathbf{U_0}.$$

Definition 5 (Braid Introduction). Terms of type $\mathbf{Braid}_n(X)$ are introduced via the **braid** constructor, representing generators σ_i for $i : \mathbf{Fin} \ (n-1)$:

$$\mathbf{braid}: \prod_{n: \mathbf{Nat}} \prod_{X: \mathbf{SmthSet}} \prod_{i: \mathbf{Fin}} \mathbf{Braid}_n(X).$$

def braid (n : Nat) (X : SmthSet) (i : Fin
$$(n-1)$$
) : Braid n X (* Braid generator sigma_i *)

Definition 6 (Braid Elimination). The eliminator for $\mathbf{Braid}_n(X)$ maps braid elements to properties in $\mathbf{U_0}$:

$$\mathbf{BraidInd}: \prod_{n: \mathbf{Nat}} \prod_{X: \mathbf{SmthSet}} \prod_{\beta: \mathbf{Braid}_n(X) \to \mathbf{U_0}} \left(\prod_{b: \mathbf{Braid}_n(X)} \beta \ b \right) \to \prod_{b: \mathbf{Braid}_n(X)} \beta \ b.$$

Theorem 3 (Braid Relations). For $n : \mathbf{Nat}, X : \mathbf{SmthSet}, \mathbf{Braid}_n(X)$ satisfies the braid group relations (Commutation and Yang-Baxter):

$$\prod_{n: \mathbf{Nat}} \prod_{X: \mathbf{SmthSet}} \prod_{i,j: \mathbf{Fin} \ (n-1), \ |i-j| \ge 2} \sigma_i \cdot \sigma_j = \sigma_j \cdot \sigma_i,$$

$$\prod_{n: \mathbf{Nat}} \prod_{X: \mathbf{SmthSet}} \prod_{i: \mathbf{Fin}} \sigma_i \cdot \sigma_{i+1} \cdot \sigma_i = \sigma_{i+1} \cdot \sigma_i \cdot \sigma_{i+1}.$$

Theorem 4 (Configuration Space Link). For $n : \mathbf{Nat}, X : \mathbf{SmthSet}, \mathbf{Braid}_n(X)$ is the fundamental groupoid of $\mathbf{Conf}^n(X)$:

$$\prod_{n:\mathbf{Nat}}\prod_{X:\mathbf{SmthSet}}\mathbf{Braid}_n(X)\cong \pi_1(\mathbf{Conf}^n(X)).$$

Theorem 5 (Quantum Braiding). For $C, H : \mathbf{U_0}, \mathbf{Braid}_n(X)$ acts on $\mathbf{Qubit}(C, H)^{\otimes n}$ as braiding operators:

$$\mathbf{braid_qubit}: \prod_{n: \mathbf{Nat}} \prod_{C, H: \mathbf{U_0}} \prod_{X: \mathbf{SmthSet}} \mathbf{Braid}_n(X) \to \left(\mathbf{Qubit}(C, H)^{\otimes n} \to \mathbf{Qubit}(C, H)^{\otimes n}\right).$$

```
\begin{array}{lll} def & braid\_qubit & (n : Nat) & (C \ H : U\_0) & (X : SmthSet) \\ : & Braid & n \ X \longrightarrow (Qubit \ C \ H) \hat{\ } n \longrightarrow (Qubit \ C \ H) \hat{\ } n \end{array}
```

Theorem 6 (Braid Group Delooping). For $n : \mathbf{Nat}$, the delooping \mathbf{BB}_n of the braid group B_n is a 1-groupoid:

$$\mathbf{BB}_n : \mathbf{Grpd} \ 1 \equiv \Im(\mathbf{Conf}^n(\mathbb{R}^2)).$$

$$\label{eq:defBB_n} \text{def BB_n (n : Nat) : Grpd 1 := \Im (Conf n \mathbb{R}^2)}$$

3.3 Graded Universes

Graded Universes. The \mathbf{U}_{α} type represents a graded universe indexed by a monoid $\mathcal{G} = \mathbb{N} \times \mathbb{Z}/2\mathbb{Z}$, where $\alpha \in \mathcal{G}$ encodes a level (\mathbb{N}) and parity ($\mathbb{Z}/2\mathbb{Z}$: 0 = bosonic, 1 = fermionic). Graded universes support type hierarchies with cumulativity, graded tensor products, and coherence rules, used in supergeometry (e.g., bosonic/fermionic types), quantum systems (e.g., graded qubits), and cohesive type theory.

In Urs, \mathbf{U}_{α} is a type indexed by $\alpha : \mathcal{G}$, with operations like lifting, product formation, and graded tensor products, extending standard universe hierarchies to include parity, building on **Tensor**.

Definition 7 (Grading Monoid). The grading monoid \mathcal{G} is defined as $\mathbb{N} \times \mathbb{Z}/2\mathbb{Z}$, with operation \oplus and neutral element $\mathbf{0}$, encoding level and parity.

```
\mathcal{G}: \mathbf{Type} \equiv \mathbb{N} \times \mathbb{Z}/2\mathbb{Z},
\oplus: \mathcal{G} \to \mathcal{G} \to \mathcal{G},
(\alpha, \beta) \mapsto (\mathrm{fst} \ \alpha + \mathrm{fst} \ \beta, \ (\mathrm{snd} \ \alpha + \mathrm{snd} \ \beta) \mod 2),
\mathbf{0}: \mathcal{G} \equiv (0, 0).
\det \mathcal{G}: \mathrm{Type} := \mathbb{N} \times \mathbb{Z}/2\mathbb{Z}
\det \oplus \ (\alpha \ \beta : \mathcal{G}): \mathcal{G} := (\mathrm{fst} \ \alpha + \mathrm{fst} \ \beta, \ (\mathrm{snd} \ \alpha + \mathrm{snd} \ \beta) \mod 2)
\det \mathcal{F}: \mathcal{G}:= (0, 0)
```

Definition 8 (Graded Universe Formation). The universe \mathbf{U}_{α} is a type indexed by $\alpha : \mathcal{G}$, containing types of grade α . A shorthand notation $\mathbf{U}_{i,g}$ is used for $\mathbf{U}(i,g)$.

```
\begin{aligned} \mathbf{U}:\mathcal{G}\rightarrow\mathbf{Type},\\ \mathbf{Grade}:\mathbf{Set}&\equiv\{0,1\},\\ \mathbf{U}_{i,g}:\mathbf{Type}&\equiv\mathbf{U}(i,g):\mathbf{U}_{i+1}. \end{aligned} def U ($\alpha$: $\mathbb{G}$: Type := Universe $\alpha$ def Grade: $\mathbb{Set}$ := $\{0,1\}$ def U (i: Nat) (g: Grade): Type := U (i,g) def U_0 (g: Grade): U (1,g) := U (0,g) def U_{00}: Type := U (0,0) def U_{10}: Type := U (1,0) def U_{01}: Type := U (0,1) \end{aligned}
```

Definition 9 (Graded Universe Coherence Rules). Graded universes support coherence rules for lifting, product formation, and substitution, ensuring typetheoretic consistency.

$$\begin{aligned} & \text{lift}: \prod_{\alpha,\beta:\mathcal{G}} \prod_{\delta:\mathcal{G}} \mathbf{U} \ \alpha \to (\beta = \alpha \oplus \delta) \to \mathbf{U} \ \beta, \\ & \text{univ}: \prod_{\alpha:\mathcal{G}} \mathbf{U} \ (\alpha \oplus (1,0)), \\ & \text{cumul}: \prod_{\alpha,\beta:\mathcal{G}} \prod_{A:\mathbf{U}} \prod_{\alpha \delta:\mathcal{G}} (\beta = \alpha \oplus \delta) \to \mathbf{U} \ \beta, \\ & \text{prod}: \prod_{\alpha,\beta:\mathcal{G}} \prod_{A:\mathbf{U}} \prod_{\alpha \delta:\mathcal{G}} \mathbf{U} \ (\alpha \oplus \beta), \\ & \text{subst}: \prod_{\alpha,\beta:\mathcal{G}} \prod_{A:\mathbf{U}} \prod_{\alpha B:A\to\mathbf{U}} \prod_{\beta t:A} \mathbf{U} \ \beta, \\ & \text{shift}: \prod_{\alpha,\delta:\mathcal{G}} \prod_{A:\mathbf{U}} \mathbf{U} \ (\alpha \oplus \delta). \\ \end{aligned} \\ & \text{def lift} \ (\alpha \beta : \mathcal{G}) \ (\delta : \mathcal{G}) \ (e : \mathbf{U} \ \alpha) : \beta = \alpha \oplus \delta \to \mathbf{U} \ \beta := \lambda \ eq : \beta = \alpha \oplus \delta, \ transport \ (\lambda x : \mathcal{G}, \mathbf{U} x) \ eq \ e \end{aligned} \\ & \text{def univ-type} \ (\alpha : \mathcal{G}) : \mathbf{U} \ (\alpha \oplus (1, \ 0)) := \\ & \text{lift} \ \alpha \ (\alpha \oplus (1, \ 0)) \ (1, \ 0) \ (\mathbf{U} \ \alpha) \ refl} \\ & \text{def cumul} \ (\alpha \beta : \mathcal{G}) \ (A : \mathbf{U} \ \alpha) \ (\delta : \mathcal{G}) : \beta = \alpha \oplus \delta \to \mathbf{U} \ \beta := \\ & \text{If} \ (x : A), \ B \ x \end{aligned} \\ & \text{def subst-rule} \ (\alpha \beta : \mathcal{G}) \ (A : \mathbf{U} \ \alpha) \ (B : A \to \mathbf{U} \ \beta) : \mathbf{U} \ (\alpha \oplus \beta) := \\ & \text{lift} \ \alpha \ (\alpha \oplus \delta) \ \delta \ A \ refl} \end{aligned}$$

Definition 10 (Graded Tensor Introduction). Graded tensor products combine types with matching levels, combining parities.

$$\begin{array}{c} \textbf{tensor}: \prod_{i:\mathbb{N}} \prod_{g_1,g_2:\mathbf{Grade}} \mathbf{U}_{i,g_1} \to \mathbf{U}_{i,g_2} \to \mathbf{U}_{i,(g_1+g_2 \bmod 2)}, \\ \\ \textbf{pair-tensor}: \prod_{i:\mathbb{N}} \prod_{g_1,g_2:\mathbf{Grade}} \prod_{A:\mathbf{U}_{i,g_1}} \prod_{B:\mathbf{U}_{i,g_2}} \prod_{a:A} \prod_{b:B} \mathbf{tensor}(i,g_1,g_2,A,B). \\ \\ \text{def tensor (i : Nat) (g_1 g_2 : Grade)} \\ \quad (A : \text{U i } g_1) \ (B : \text{U i } g_2) : \text{U i (} g_1 + g_2 \text{ mod 2}) \\ := A \otimes B \\ \\ \text{def pair-tensor (i : Nat) (} g_1 \ g_2 : \text{Grade)} \ (A : \text{U i } g_1) \\ \quad (B : \text{U i } g_2) \ (a : A) \ (b : B) : \text{tensor i } g_1 \ g_2 \text{ A B} \\ := a \otimes b \end{array}$$

Definition 11 (Graded Tensor Eliminators). Eliminators for graded tensor products project to their components.

$$\otimes$$
-**prj**₁: $(A \otimes B) \to A$,
 \otimes -**prj**₂: $(A \otimes B) \to B$.

```
\begin{array}{l} \text{def } \operatorname{pr}_1 \ (i \ : \ \operatorname{Nat}) \ (g_1 \ g_2 \ : \ \operatorname{Grade}) \\ \quad (A \ : \ U \ i \ g_1) \ (B \ : \ U \ i \ g_2) \ (p \ : \ A \otimes B) \ : \ A \ := \ p.1 \end{array} \begin{array}{l} \text{def } \operatorname{pr}_2 \ (i \ : \ \operatorname{Nat}) \ (g_1 \ g_2 \ : \ \operatorname{Grade}) \\ \quad (A \ : \ U \ i \ g_1) \ (B \ : \ U \ i \ g_2) \ (p \ : \ A \otimes B) \ : \ B \ := \ p.2 \end{array}
```

Theorem 7 (Monoid Properties). The grading monoid $\mathcal G$ satisfies associativity and identity laws.

```
\begin{aligned} \mathbf{assoc} : ((\alpha \oplus \beta) \oplus \gamma) &= (\alpha \oplus (\beta \oplus \gamma)), \\ \mathbf{id\text{-left}} : (\alpha \oplus \mathbf{0}) &= \alpha, \\ \mathbf{id\text{-right}} : (\mathbf{0} \oplus \alpha) &= \alpha. \end{aligned} \mathbf{def} \ \mathbf{assoc} \ (\alpha \ \beta \ \gamma : \ \mathcal{G}) \ : \ (\alpha \oplus \beta) \oplus \gamma &= \alpha \oplus (\beta \oplus \gamma) \ := \ \mathbf{refl} \mathbf{def} \ \mathbf{ident\text{-left}} \ (\alpha : \ \mathcal{G}) \ : \ \alpha \oplus \mathcal{F} &= \alpha \ := \ \mathbf{refl} \mathbf{def} \ \mathbf{ident\text{-right}} \ (\alpha : \ \mathcal{G}) \ : \ \mathcal{F} \oplus \alpha &= \alpha \ := \ \mathbf{refl}
```