10/802/33

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Patent No.

7,411,050

Issue date

August 12, 2008

Inventors

Dirk M. Anderson

For

MONOCLONAL BLOCKING ANTIBODY TO HUMAN RANKL.

Mail Stop Hatch-Waxman PTE Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

RECEIVED

JUL 27 2010

PATENT EXTENSION OPLA

Dear Sir:

APPLICATION FOR EXTENSION OF PATENT TERM UNDER 35 U.S.C. § 156

Immunex Corporation, a Washington Corporation, and a wholly owned subsidiary of Applicant Amgen Inc., a Delaware Corporation, represents that it is the assignee of the entire interest in and to Letters Patent of the United States No. 7,411,050 granted to Dirk M. Anderson on August 12, 2008. The assignment (for parent application US Application No. 08/995,659 to which U.S. Patent No. 7,411,050 claims priority), from the inventor to Immunex Corporation was recorded on March 27, 2000, Reel 010732, Frame 0297.

Notice Regarding Multiple Applications

Multiple applications for term extension are being filed based on the regulatory review period for PROLIATM (denosumab). The patents involved are:

6,740,522

7,097,834

7,411,050

7,449,185

7,527,790.

Applicant is aware that the term of only one patent may be extended for each regulatory review period. 35 U.S.C. § 156(c)(4). An election of only one patent will be made in accordance with 37 C.F.R. § 1.785(b) upon receipt of a notice of funds determination in these 20.00 op applications from the U.S. Patent and Trademark Office. Applicant requests concurrent processing of these applications by both the U.S. Patent and Trademark Office and the Food and Drug Administration.

Information Required Under 37 C.F.R. § 1.740

Applicant hereby submits this application for an extension of patent term under 35 U.S.C. § 156 by providing the following information as required by § 1.740 of Title 37 of the code of Federal Regulations (37 C.F.R. § 1.740).

- 1. The approved product is PROLIATM, a trademark owned by Amgen Inc., for denosumab, a fully human monoclonal antibody which binds to human RANKL.
- 2. The approved product was subject to regulatory reviews under Section 505 of the Federal Food, Drug and Cosmetic Act, 21 U.S.C. § 355.
- 3. The approved product PROLIA™ (denosumab) received permission for commercial marketing or use under § 505 of the Federal Food, Drug and Cosmetic Act, 21 U.S.C. § 355, on June 1, 2010.
- 4. The active ingredient in the approved product PROLIA™ is denosumab which has not been previously approved for commercial marketing or use under the Federal Food, Drug and Cosmetic Act, the Public Health Service Act, or the Virus-Serum-Toxin Act. No other active ingredients are contained in this product.
- 5. This application for extension of patent term under 35 U.S.C. § 156 is being submitted within the sixty (60) day period permitted for submission pursuant to § 1.720(f). The last day for submitting an application for extension is July 30, 2010.
- 6. The complete identification of the patent for which an extension is being sought is as follows:

Inventors

Dirk M. Anderson

Patent No.

7,411,050

Issue date

August 12, 2008

Expiration date

December 22, 2017

- 7. A copy of the patent for which an extension is being sought is attached hereto as Attachment "A".
- 8. A terminal disclaimer is attached hereto as Attachment "B". No maintenance fees have been payable, thus no receipt is attached. No certificate of correction or reexamination certificate has been issued with respect to U.S. Patent No. 7,411,050.
- 9. The patent claims the approved product PROLIA™ (denosumab) in at least claims 1-4.

In particular, Claim 1 reads on the approved product as follows.

1. An isolated blocking antibody that binds to a human RANKL polypeptide as set forth in SEQ ID NO:13 and inhibits the binding of the human RANKL polypeptide to a human RANK polypeptide as shown in SEQ ID NO:6.

A copy of the U.S. package insert for PROLIATM is attached hereto as Attachment "C."

- 10. The relevant dates and information pursuant to 35 U.S.C. § 156(g) to enable the Secretary of Health and Human Services to determine the applicable regulatory review period are as follows:
 - (i) the effective date of the investigational new drug (IND) application was June 21, 2001;
 - (ii) the IND number was BB IND 9837;
 - (iii) the date on which a biologic license application (BLA) was initially submitted was December 19, 2008;
 - (iv) the BLA number was BL 125320; and
 - (v) the date on which the BLA was approved was June 1, 2010.

- 11. The following is a brief description of the significant activities undertaken by the marketing applicant (Amgen Inc.) during the applicable regulatory review period with respect to PROLIATM (denosumab) and the significant dates applicable to such activities:
 - (i) the effective date of the IND filing was June 21, 2001;
 - (ii) the clinical trials were performed in subjects having osteoporosis;
 - (iii) the BLA application was submitted December 19, 2008; and
 - (iv) the BLA was approved on June 1, 2010.

A chronology of the activities undertaken by Amgen Inc. with respect to PROLIA™ from the effective date of the IND to the approval of the BLA is set forth in Attachment "D".

- 12(A). It is the opinion of the Applicant that U.S. Patent No. 7,411,050 claims the approved product that has undergone a regulatory review which would be considered in determining any extension for patent under 35 U.S.C. 156 for the following reasons:
 - (i) U.S. Patent No. 7,411,050 claims the approved product (35 U.S.C. § 156(a));
 - (ii) The term of U.S. Patent No. 7,411,050 has not expired before submission of this application for an extension (35 U.S.C. § 156(a)(1));
 - (iii) The term of U.S. Patent No. 7,411,050 has never been previously extended (35 U.S.C. § 156(a)(2));
 - (iv) The application for extension is submitted by Amgen, the parent company of the owners of record of U.S. Patent No. 7,411,050 in accordance with the requirements of 35 U.S.C. § 156(d), 37 C.F.R. § 1.730, and 37 C.F.R. § 1.740 (35 U.S.C. § 156(a)(3));
 - (v) The product PROLIATM (denosumab) has been subject to a regulatory review period before its commercial marketing or use (35 U.S.C. § 156(a)(4));
 - (vi) The product, PROLIA™ (denosumab), has received permission for commercial marketing or use, and the permission for the commercial marketing or use of the product after the regulatory review period is the first permitted commercial marketing or use of the product under the provision of the Federal Food, Drug and Cosmetic Act, under which the regulatory review period occurred (35 U.S.C. § 156(a)(5)(A));
 - (vii) No other patent has been extended for the same regulatory review period for the product PROLIATM (denosumab) (35 U.S.C. § 156(c)(4)); and
 - (viii) Amgen, the parent company of the owner of record of U.S. Patent No. 7,411,050 has hereby submitted an application to the Commissioner to obtain an extension of the term of the patent within the sixty (60) day period beginning on the date the product received permission for commercial marketing or use (35 U.S.C. § 156(d)(1)).

- 12(B). The length of extension of the patent term of U.S. Patent No. 7,411,050 claimed by Applicants is 595 days. The length of extension was determined by the following:
 - (i) The U.S. Patent No. 7,411,050 issued August 12, 2008, which was after the date of enactment of 35 U.S.C. § 156. The commercial marketing or use of the product, PROLIA™ (denosumab), was approved after the date of enactment of 35 U.S.C. § 156.
 - (ii) The regulatory review period under 35 U.S.C. 156(g)(1)(B) was from June 21, 2001, until June 1, 2010, which was 3268 days.
 - (iii) The period of review under 35 U.S.C. § 156(g)(1)(B)(i) began on the date an exemption under § 505(i) became effective on June 21, 2001 and ended on the date an application was initially submitted for PROLIATM (denosumab) under § 505 which was December 19, 2008, a total of 2739 days.
 - (iv) The regulatory review period under 35 U.S.C. § 156(g)(1)(B)(ii) began on the date the application was initially submitted for PROLIATM (denosumab), under § 505(b), which was December 19, 2008 and ended on the date such application was approved under such section, which was June 1, 2010, a total of 530 days.
 - (v) The issuance of U.S. Patent No. 7,411,050 occurred on August 12, 2008, which was 2610 days after the effective date of the IND application (June 21, 2001).
 - (vi) In compliance with § 1.775(d)(1)(i), the number of days in the period set forth in item (v) of this paragraph 12(B), i.e., 2610 days, is subtracted from the period determined under 35 U.S.C. § 156(g)(1)(B)(i), which is set forth in item (iii) of this paragraph 12(B), i.e., 2739 days, to provide an adjusted regulatory period under 35 U.S.C. § 156(g)(1)(B)(i) of 129 days.
 - (vii) Under 35 U.S.C. § 156(c)(2), the period of extension includes only one-half of the period determined under 35 U.S.C. § 156(g)(1)(B)(i), which is set forth in item (vi) of this paragraph 12(B), which is 65 days, together with the number of days required for approval set forth in item (iv) of this paragraph 12(B), i.e., 530 days, for an extension of 595 days.
 - (viii) In compliance with 35 U.S.C. § 156(c)(3), the period remaining in the term of U.S. Patent No. 7,411,050 after BLA approval of PROLIA™ (denosumab) is from June 1, 2010 to December 22, 2017, or 2762 days, which when added to the

period of extension under item (vii) of this paragraph 12(B), i.e., 595 days, is a total of 3357 days, or 9 years and 71 days, which is not in excess of fourteen (14) years provided in 35 U.S.C. § 156(c)(3). Therefore, the period of extension claimed by Applicant is 595 days which would result in an expiration date of August 9, 2019.

- 13. Applicant acknowledges a duty to disclose to the Commissioner of Patents and Trademarks and the Secretary of Health and Human Services any information which is material to the determination of entitlement to the extension sought in this application.
- 14. The prescribed fee for receiving and acting upon the application for extension of \$1,120.00 is enclosed with this application. Should additional fees be necessary in connection with the filing of this paper, or if a petition for extension of time is required for timely acceptance of same, the Commissioner is hereby authorized to charge Deposit Account No. 06-0916 for any such fees. Should a refund of fee paid be necessary, the Commissioner is hereby authorized to credit any such amount to Deposit Account No. 06-0916.
- 15. Inquiries and correspondence relating to this application for patent term extension are to be directed to the correspondence address associated with Customer No. 22852:

Charles E. Van Horn Finnegan, Henderson, Farabow, Garrett & Dunner, LLP 901 New York Avenue, N.W. Washington, D.C. 20001 Telephone No. 202-408-4072

16. Two additional copies of the application papers for extension of the patent term of U.S. Patent No. 7,411,050 are enclosed with the application.

17. The undersigned is a registered practitioner of the United States Patent and Trademark Office and is authorized by the Applicant to act on behalf of the Applicant.

Respectfully submitted,

Date: _____7/27/10

Charles E. Van Horn
Reg. No. 40,266

Attachment A: Copy of USP 7,411,050

Attachment B: Terminal Disclaimer for USP 7,411,050

Attachment C: Package Insert for PROLIATM

Attachment D: Brief Description of Regulatory Activities

CERTIFICATION

The undersigned hereby certifies that this application for extension of patent term under 35 U.S.C. § 156, including its attachments and supporting papers, is being submitted with two additional copies of originals.

Charles E. Van Horn Reg. No. 40,266

hule E. Van Hor

ATTACHMENT A

In re U.S. Patent No. 7,411,050

Issued: August 12, 2008 To: Dirk M. Anderson

Assignee: Immunex Corporation

For: MONOCLONAL BLOCKING ANTIBODY TO HUMAN

RANKL

Application for Patent Term Extension

Customer No. 22852

US007411050B2

(12) United States Patent

Anderson

(10) Patent No.:

US 7,411,050 B2

(45) Date of Patent:

Aug. 12, 2008

(54) MONOCLONAL BLOCKING ANTIBODY TO HUMAN RANKL

- (75) Inventor: Dirk M. Anderson, Seattle, WA (US)
- (73) Assignee: Immunex Corporation, Thousand Oaks, CA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 314 days.

- (21) Appl. No.: 10/802,133
- (22) Filed: Mar. 16, 2004

(65) Prior Publication Data

US 2005/0003391 A1 Jan. 6, 2005

Related U.S. Application Data

- (60) Continuation of application No. 09/865,363, filed on May 25, 2001, now Pat. No. 6,740,522, which is a division of application No. 09/577,780, filed on May 24, 2000, now Pat. No. 6,419,929, which is a division of application No. 08/995,659, filed on Dec. 22, 1997, now Pat. No. 6,242,213.
- (60) Provisional application No. 60/064,671, filed on Oct. 14, 1997, provisional application No. 60/077,181, filed on Mar. 7, 1997, provisional application No. 60/059,978, filed on Dec. 23, 1996.
- (51) Int. Cl. C12P 21/08 (2006.01) C07K 16/28 (2006.01) C12N 5/12 (2006.01) G01N 33/53 (2006.01) A61K 39/395 (2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

4,179,337	Α	12/1979	Davis et al.
4,710,457	Α	12/1987	Dupont et al.
4,710,473	Α	12/1987	Morris
4,959,314	Α	9/1990	Mark et al.
5,118,667	Α	6/1992	Adams et al.
5,393,739	Α	2/1995	Bentz et al.
5,447,851	Α	9/1995	Beutler et al.
5,457,035	Α	10/1995	Baum et al.
5,578,569	Α	11/1996	Tam
5,585,479	Α	12/1996	Hoke et al.
5,599,708	Α	2/1997	Mundy et al.
5,658,756	Α	8/1997	Rodan et al.
5,670,319	Α	9/1997	Goeddel et al.
5,710,013		1/1998	Goeddel et al.
5,763,223	Α	6/1998	Wiley et al.
5,767,244		6/1998	Goeddel et al.
5,789,550		8/1998	Goeddel et al.
5,843,678		12/1998	Boyle
5,843,901	A	12/1998	Roeske
2,072,201	11	121770	IVOCORC

5,961,974	Α	10/1999	Armitage et al.
5,985,832	Α	11/1999	Roodman et al.
6,015,938	Ά	1/2000	Boyle et al.
6,017,729	Α	1/2000	Anderson et al.
6,087,555	Α	7/2000	Dunstan et al.
6,150,090	Α	11/2000	Baltimore et al.
6,242,213	ы	6/2001	Anderson
6,242,586	В1	6/2001	Gorman et al.
6,271,349	BI	8/2001	Dougall et al.
6,284,485	ВІ	9/2001	Boyle et al.
6,284,728	BI	9/2001	Boyle et al.
6,284,740	BI	9/2001	Boyle et al.
6,288,032	В1	9/2001	Boyle et al.
6,316,408	Bi	11/2001	Boyle
6,369,027	ВΙ	4/2002	Boyle et al.
6,410,516	Βl	6/2002	Baltimore et al.
6,419,929	ΒI	7/2002	Anderson
6,525,180	ВI	2/2003	Gorman et al.
6,528,482	BI	3/2003	Anderson et al.
6,537,763	B2	. 3/2003	Dougall et al.
6,562,948	B2	5/2003	Anderson
6,569,430	Bl	5/2003	Waldmann et al.
6,649,164	B2	11/2003	Maraskovsky
6,740,522	B2	5/2004	Anderson
6,838,262	BI	1/2005	Anderson
7,063,841	B2	6/2006	Gorman et al.
7,097,834	BI	8/2006	Boyle

(Continued)

FOREIGN PATENT DOCUMENTS

AU 56180/98 7/1998

(Continued)

OTHER PUBLICATIONS

Anderson et al., "A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function," *Nature* 390:175-179, 1997.

(Continued)

Primary Examiner—Lorraine Spector
Assistant Examiner—Elly-Gerald Stoica
(74) Attorney, Agent, or Firm—Scott L. Ausenhus

(57) ABSTRACT

Disclosed herein are kits for detecting RANKL protein or nucleic acids, the kits comprising isolated human RANKL polypeptides, RANKL nucleic acids and/or antibodies specific for RANKL.

4 Claims, 2 Drawing Sheets

U.S. PATENT DOCUMENTS

7,262,274	B2	8/2007	Anderson et al.
2002/0127637	A1	9/2002	Ni et al.
2002/0150989	Al	10/2002	Greene et al.
2003/0100069	Αl	5/2003	Ni et al.
2003/0100488	Al	5/2003	Boyle
2003/0103978	Αl	6/2003	Deshpande et al.
2003/0104485	Αl	6/2003	Boyle
2003/0144480	Al		Gorman et al.
2003/0166097	Αl	9/2003	Greene et al.
2004/0023313	Αl	2/2004	Boyle et al.
2004/0033535	Αl		Boyle et al.
2005/0089522	Αl		Anderson

FOREIGN PATENT DOCUMENTS

AU	68518/98		11/1998
AU	71205/98		11/1998
EP	0514130		11/1992
EP	0526905	A2	2/1993
EP	0727211	Αl	8/1996
EP	0816380	Αl	1/1998
EP	0873998	A2	10/1998
EP	0874045	Al	10/1998
EP	0911342	Al	4/1999
EP	0955372	A2	11/1999
NZ	330400		5/1999
WO	WO 86/00922		2/1986
WO	WO 90/14363	Αl	11/1990
WO	WO 93/08207		4/1993
wo	WO 93/12227		6/1993
wo	WO 93/21946	Al	11/1993
wo	WO 95/11308	Αl	
WO	WO 95/33051		12/1995
WO ·	WO 96/28546	Αl	9/1996
WO	WO 96/34095		10/1996
WO	WO 97/00317	Al	1/1997
WO	WO 97/00318	Αl	1/1997
WO	WO 97/23614		7/1997
WO	WO 98/07840	Αl	2/1998
wo	WO 98/25958		6/1998
wo	WO 98/28423		7/1998
wo	WO 98/28424	A2	7/1998
wo	WO 98/28426	A2	7/1998
wo	WO 98/46644		10/1998
wo	WO 98/46751		* 10/1998
wo	WO 98/49305	Αl	11/1998
wo	WO 98/54201		12/1998
wo	WO 99/19468	Αl	4/1999
WO	WO 99/29865		6/1999
WO	WO 99/53942	Αl	10/1999
WO	WO 99/58674	A2	11/1999
wo	WO 99/65449		12/1999
wo	WO 99/65495		12/1999
wo	WO 01/03719	A2	1/2001
wo	WO 01/17543	A2	3/2001
wo	WO 01/18203	Αl	3/2001
wo	WO 01/23549		4/2001
wo	WO 02/15846		2/2002
wo	WO 03/002713	A2	9/2003

OTHER PUBLICATIONS

Baker, Stacey J. and Reddy, E. Premkumar, "Transducers of life and death: TNF receptor superfamily and associated proteins," Oncogene, 12(1):1-9, 1996.

Boyle v. Gorman and Mattson , Board of Patent Appeals and Interferences, Interference No. 104,336, Paper No. 39.

Camerini et al., "The T cell activation antigen CD27 is a member of the nerve growth factor/tumor necrosis factor receptor gene family," *J. Immunol.* 147:3165, 1991.

Durkop et al., "Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin's Disease," *Cell* 68:421, 1992.

Embl database entry HS421358; accession No. W74421, homo sapiens cDNA clone 346544 containing alu repetitive element, Hillier et al., Jun. 1996.

Embl-est database accession No. R93478, yq16f06.rl homo sapian cDNA clone 197123 5' sequence, Hillier et al., Aug. 1995.

Galibert et al., "The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-?B, a member of the TNFR superfamily," *J. Biol. Chem.* 273(51):34120-34127, 1998.

GenEmbl database accession No. X15271, locus.HSTRGV3F, human T-cell receptor gammaV3F, Lefranc, M. P., Mar. 1991.

George et al., Current methods in sequence comparison and analysis, selected methods and applications, eds. David H. Schlesinger, Alan R. Liss, Inc., New York, pp. 124-129, 1988.

Gibbs, Jackson B. and Oliff, Allen, "Pharmaceutical research in molecular oncology," Cell, 79:193-198, 1994.

Gray et al., "P-element-induced recombination in drosophila melanogaster: hybrid element insertion," *Genetics* 144(4):1601-1610, 1996.

Guise, Theresa A. and Mundy, Gregory R., "Cancer and bone," Endocrine Reviews 19(1):18-54,1998.

Huang, Jing and Schreiber, Stuart L., "A yeast genetic system for selecting small molecule inhibitors of protein-protein interaction in nanodroplets," *Proc. Natl. Acad. Sci.* USA, 94:13396-13401, 1997. Itoh et al., "The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis," *Cell* 66:233, 1991.

Johnson et al., "Expression and structure of the human NGF receptor," Cell 47:545, 1986.

Kodaira et al., "Cloning and characterization of the gene encoding mouse osteoclast differentiation factor," *Gene* 230:121-127, 1999. Kwon et al., "cDNA sequences of two inducible T-cell genes," *Proc.*

Kwon et al., "cDNA sequences of two inducible T-cell genes," *Proc. Natl. Acad. Sci.* USA 86:1963, 1989.

Lacey et al., "Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation," *Cell*, 93:165-175, 1998. Lynch et al, "A fluorescence polarization based Src-SH2 binding assay," *Analytical Biochemistry*, 247:77-82, 1997.

Mallet et al., "Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes—a molecule related to nerve

growth factor receptor," *EMBO J.* 9:1063, 1990.

Marra et al., The WashU-HHMI Mouse EST project, Accession No. AA170348, Feb. 16, 1997.

Nakagawa et al., "RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis," *Biochem. and Biophys. Res. Comm.* 253:395-400, 1998.

Pullen et al., "CD40—tumor necrosis factor receptor-associated factor (TRAF) interactions: regulation of CD40 signaling through multiple TRAF binding site and TRAF hetero-oligomerization," *Biochemistry* 37(34):11836-11845, 1998.

Roodman, G. David, "Advances in bone biology: the osteoclast," *Endocr Rev.* 17(4):308-332, 1996.

Rossi et al., "Monitoring protein-protein interactions in intact eukaryotic cells by β-galactosidase complementation," *Proc. Natl. Acad. Sci.* USA 91:8405-8410, 1997.

Rothe, M. et al., "The TNFR2-TRAF signaling complex contains two novel proteins related tp baculoviral inhibitor of apoptosis proteins," *Cell* 83:1243-1252, 1995.

Schall et al., "Molecular cloning and expression of a receptor for human tumor necrosis factor," Cell 61:361, 1990.

Simonet et al., "Osteoprotegerin: A novel secreted protein involved in the regulation of bone density," *Cell* 89:309-319, 1997.

Smith, C. et al., "A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins," *Sci.* 248:1019-1022, 1990.

Stamenkovic et al., "A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas," *EMBO J.* 8:1403, 1989.

Suda et al., "Modulation of osteoclast differentiation by local factors," Bone 17(2):87S-91S; 1995.

Suda et al., "Modulation of osteoclast differentiation," *Endocr Rev.* 13:66-80, 1992.

Suda et al., "Modulation of osteoclast differentiation: update 1995," in Endocr Rev. Monographs, 42(1):266-270; 1995.

Takahashi N et al., "A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function," Biochem Biophys Res Commun 1999;

Tsukii K et al., "Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1\alpha,25-dihydroxyvitamin, D, prostaglandin E2, or parathyroid hormone in the microenvironment of bone," Biochem Biophys Res Commun 1998; 246:337-341. White, Michael A., "The Yeast two-hybrid system: forward and reverse," Proc. Natl. Acad. Sci. USA, 93:10001-10003, 1996.

Wiley, SR et al., "Identification and characterization of a new member of the TNF family that induces apoptosis," Immunity 1995;

Wong et al., "TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells," J. of Biological Chemistry 272(40):25190-25194, 1997

Wong et al., "TRANCE (Tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor," J. Exp. Med. 186(12):2075-2080, 1997.

Wong et al., "TheTRAF family of signal transducers mediates NF-kB activation by the TRANCE receptor," J. Biol. Chem. 273(43):2855-28359, 1998.

Xing et al., "Mechanism by which NF-κB regulates osteoclast numbers," Abstract ASBMR Meeting, U of TX Health Science Center,

Xu et al., "Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses," Immunity 5:407-415,

Yasuda et al., "Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical. to TRANCE/RANKL," Proc. Natl. Acad. Sci. 95:3597-3602, 1998. Yun et al., "OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD401," J. Immunol. 161:6113-6121, 1998.

Adams et al., "Complementary DNA sequencing: express sequence tags and human genome project," Science, 252: 1651-1656 (1991). Benjamini et al., Immunology: A Short Course, 2nd edition, Wiley-Liss, New York, p. 40 (1988).

Chambers et al., "Generation of osteoclast-inductive and osteoclastogenic cell lines from the H-2KbtsA58 transgenic mouse," Proc. Natl. Acad. Sci. USA, 90:5578-5582 (1993).

Chenu et al., "Transforming growth factor \(\beta \) inhibits formation of osteoclast-like cells in long-term human marrow cultures," Proc. Natl. Acad. Sci. USA, 85: 5683-5687 (1988).

Database GenBank, Accession No. AB008426., May 2, 1998. Database GenBank, Accession No. AF019047, Nov. 22, 1997.

Database GenBank, Accession No. AF013170, Nov. 5, 1998.

Database GenBank, Accession No. AF013171, Sep. 19, 1997.

Database GenBank, Accession No. AF019048, Nov. 15, 1997.

Fawthrop et al. "The effect of transforming growth factor β on the plasminogen activator activity of normal osteoblast-like cells and a human osteosarcoma Cell Line MG-63", J. Bone Miner. Res., 7(12):1363-1371 (1992).

Fenton et al. "Long-term culture of disaggregated rat osteclasts: inhibition of bone resorption and reduction of osteoclast-like cell number by calcitonin and PTHrP[107-139]", J. Cell. Physiol., 155:1-7 (1993).

Fuller, K., et al., "TRANCE is necessary and sufficient for osteoblastmediated activation of bone resorportion in osteoclasts." J. Exp. Med., 188:997-1001 (1998).

Gao, Y. H., et al., "Potential role of cbfal, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis; regulation of mRNA espression of osteoclast differentiation factor (ODF)." Biochem. Biophys. Res. Commun. 252:697-702 (1998).

Goodwin et al., "Molecular cloning and expression of the Type 1 and Type 2 murine receptors for tumor necrosis factor", Mol. Cell. Biol., 11(6):3020-3026 (1991).

Gowen et al., "Preferential inhibition of cytokine-stimulated bone resorption by recombinant interferon gamma", J. Bone Miner. Res., 1(5):469-474 (1986).

Hattersley et al., "Human macrophage colony-stimulating factor inhibits bone resorption by osteoclast disaggregated from rat bone", J. Cell. Physiol., 137:199-203 (1988).

International Search Report, International Application No. PCTJP98/10728, published as WO 98/46644 (1998).

Kaji et al., "Insulin-like growth factor-I mediates osteoclast-like cell formation stimulated by parathyroid hormone", J. Cell. Physiol., 172:55-62 (1997).

Kasono et al., "Inhibitory effect of interleukin-4 on osteoclast-like cell formation in mouse bone marrow culture", Bone Miner., 21(3):179-188 (1993).

Kukita et al., "Osteoinductive factor inhibits formation of human osteoclast-like cells", Proc. Natl. Acad. Sci. USA, 87:3023-3026 (1990).

Lewis et al., "Cloning and expression of cDNA for two distinct murine tumor necrosis factor receptors demonstrate one receptor in species specific", Proc. Natl. Acad. Sci. USA, 88:2830-2834 (1991). Reddi, A. H. "Bone morphogenesis and modeling: soluble signals sculpt osteosomes in the solid state", Cell, 89:159-161 (1997).

Reiger et al., Glossary of Genetics and Cytogenetics, 4th Ed., Springer-Verlag Berlin Heidelberg, New York, p. 17 (1976).

Smith et al., "The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death", Cell, 76:959-962

Takada et al., "A simple method to assess osteoclast-mediated bone resorption using unfractionated bone cells", Bone Miner., 17:347-359 (1992).

Tsuda et al., "Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis", Biochem. Biophys. Res. Commun., 234(1):137-142 (1997).

Watanabe et al., "Interlukin-4 as a protein inhibitor of bone resorption" Biochem. Biophys. Res. Commun., 172(3):1035-1041 (1990). Yoneda et al., "Suramin suppresses hypercalcemia and osteoclast bone resorption in nude mice bearing a human squamous cancer", Cancer Res., 55:1989-1993 (1995).

* cited by examiner

MONOCLONAL BLOCKING ANTIBODY TO HUMAN RANKL

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a continuation of U.S. application Ser. No. 09/865,363, filed May 25, 2001, now U.S. Pat. No. 6,740, 522, which is a divisional of U.S. application Ser. No. 09/577, 780 filed May 24, 2000, now U.S. Pat. No. 6,419,929, which is a divisional of U.S. application Ser. No. 08/995,659 filed Dec. 22, 1997, now U.S. Pat. No. 6,242,213, which claims benefit of U.S. applications Ser. No. 60/064,671, filed Oct. 14, 1997, 60/077,181 filed Mar. 7, 1997, and 60/059,978 filed Dec. 23, 1996.

TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to the field of cytokines, and more specifically to cytokine receptor/ligand pairs 20 having immunoregulatory activity.

BACKGROUND OF THE INVENTION

balance between cell proliferation and differentiation and cell death, to ensure that the immune system is capable of reacting to foreign, but not self antigens. Integral to the process of regulating the immune and inflammatory response are various members of the Tumor Necrosis Factor (TNF) Receptor/ 30 Nerve Growth Factor Receptor superfamily (Smith et al., Science 248:1019; 1990). This family of receptors includes two different TNF receptors (Type I and Type II; Smith et al., supra; and Schall et al., Cell 61:361, 1990), nerve growth factor receptor (Johnson et al., Cell 47:545, 1986), B cell 35 antigen CD40 (Stamenkovic et al., EMBO J. 8:1403, 1989), CD27 (Camerini et al., J. Immunol. 147:3165, 1991), CD30 (Durkop et al., Cell 68:421, 1992), T cell antigen OX40 (Mallett et al., EMBO J. 9:1063, 1990), human Fas antigen (Itoh et al., Cell 66:233, 1991), murine 4-1BB receptor 40 (Kwon et al., Proc. Natl. Acad. Sci. USA 86:1963, 1989) and a receptor referred to as Apoptosis-Inducing Receptor (AIR; U.S. Ser. No. 08/720,864, filed Oct. 4, 1996).

CD40 is a receptor present on B lymphocytes, epithelial cells and some carcinoma cell lines that interacts with a ligand 45 found on activated T cells, CD40L (U.S. Ser. No. 08/249,189, filed May 24, 1994). The interaction of this ligand/receptor pair is essential for both the cellular and humoral immune response. Signal transduction via CD40 is mediated through the association of the cytoplasmic domain of this molecule 50 with members of the TNF receptor-associated factors (TRAFs; Baker and Reddy, Oncogene 12:1, 1996). It has recently been found that mice that are defective in TRAF3 expression due to a targeted disruption in the gene encoding TRAF3 appear normal at birth but develop progressive 55 hypoglycemia and depletion of peripheral white cells, and die by about ten days of age (Xu et al., Immunity 5:407, 1996). The immune responses of chimeric mice reconstituted with TRAF3^{-/-} fetal liver cells resemble those of CD40-deficient mice, although TRAF3^{-/-} B cells appear to be functionally 60 normal.

The critical role of TRAF3 in signal transduction may be in its interaction with one of the other members of the TNF receptor superfamily, for example, CD30 or CD27, which are present on T cells. Alternatively, there may be other, as yet 65 unidentified members of this family of receptors that interact with TRAF3 and play an important role in postnatal develop-

2

ment as well as in the development of a competent immune system. Identifying additional members of the TNF receptor superfamily would provide an additional means of regulating the immune and inflammatory response, as well as potentially providing further insight into post-natal development in mammals.

SUMMARY OF THE INVENTION

The present invention provides a counterstructure, or ligand, for a novel receptor referred to as RANK (for receptor activator of NF-κB), that is a member of the TNF superfamily. The ligand, which is referred to as RANKL, is a Type 2 transmembrane protein with an intracellular domain of less than about 50 amino acids, a transmembrane domain and an extracellular domain of from about 240 to 250 amino acids. Similar to other members of the TNF family to which it belongs, RANKL has a 'spacer' region between the transmembrane domain and the receptor binding domain that is not necessary for receptor binding. Accordingly, soluble forms of RANKL can comprise the entire extracellular domain or fragments thereof that include the receptor binding region.

RANK is a Type I transmembrane protein having 616 amino acid residues that is a member of the TNFR superfamily, and interacts with TRAF3. Triggering of RANK by overexpression, but not self antigens. Integral to the process of gulating the immune and inflammatory response are varies members of the Tumor Necrosis Factor (TNF) Receptor/ serve Growth Factor Receptor superfamily (Smith et al.,

These and other aspects of the present invention will become evident upon reference to the following detailed description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 demonstrates the influence of RANK.Fc and hRANKL on activated T cell growth. Human peripheral blood T cells were cultured as described in Example 12; viable T cell recovery was determined by triplicate trypan blue countings.

FIG. 2 demonstrates that RANKL enhances DC allostimulatory capacity. Allogeneic T cells were incubated with varying numbers of irradiated DC cultured as described in Example 13. The cultures were pulsed with [³H]-thymidine and the cells harvested onto glass fiber sheets for counting. Values represent the mean±standard deviation (SD) of triplicate cultures.

DETAILED DESCRIPTION OF THE INVENTION

A novel partial cDNA insert with a predicted open reading frame having some similarity to CD40 was identified in a database containing sequence information from cDNAs generated from human bone marrow-derived dendritic cells (DC). The insert was used to hybridize to colony blots generated from a DC cDNA library containing full-length cDNAs. Several colony hybridizations were performed, and two clones (SEQ ID NOs:1 and 3) were isolated. SEQ ID NO:5 shows the nucleotide and amino acid sequence of a predicted full-length protein based on alignment of the overlapping sequences of SEQ ID NOs:1 and 3.

RANK is a member of the TNF receptor superfamily; it most closely resembles CD40 in the extracellular region. Similar to CD40, RANK associates with TRAF2 and TRAF3 (as determined by co-immunoprecipitation assays substan-

tially as described by Rothe et al., Cell 83:1243, 1995). TRAFs are critically important in the regulation of the immune and inflammatory response. Through their association with various members of the TNF receptor superfamily, a signal is transduced to a cell. That signal results in the 5 proliferation, differentiation or apoptosis of the cell, depending on which receptor(s) is/are triggered and which TRAF(s) associate with the receptor(s); different signals can be transduced to a cell via coordination of various signaling events. Thus, a signal transduced through one member of this family may be proliferative, differentiative or apoptotic, depending on other signals being transduced to the cell, and/or the state of differentiation of the cell. Such exquisite regulation of this proliferative/apoptotic pathway is necessary to develop and maintain protection against pathogens; imbalances can result 15 in autoimmune disease.

RANK is expressed on epithelial cells, some B cell lines, and on activated T cells. However, its expression on activated T cells is late, about four days after activation. This time course of expression coincides with the expression of Fas, a 20 known agent of apoptosis. RANK may act as an anti-apoptotic signal, rescuing cells that express RANK from apoptosis as CD40 is known to do. Alternatively, RANK may confirm an apoptotic signal under the appropriate circumstances, again similar to CD40. RANK and its ligand are likely to play 25 an integral role in regulation of the immune and inflammatory

Moreover, the post-natal lethality of mice having a targeted disruption of the TRAF3 gene demonstrates the importance of this molecule not only in the immune response but in 30 development. The isolation of RANK, as a protein that associates with TRAF3, and its ligand, RANKL, will allow further definition of this signaling pathway, and development of diagnostic and therapeutic modalities for use in the area of autoimmune and/or inflammatory disease.

DNAs, Proteins and Analogs

The present invention provides isolated RANKL polypeptides and analogs (or muteins) thereof having an activity bind specifically to a RANK expressed on cells or immobilized on a surface or to RANKL-specific antibodies; soluble forms thereof that inhibit RANK ligand-induced signaling through RANK). Such proteins are substantially free of contaminating endogenous materials and, optionally, without 45 associated native-pattern glycosylation. Derivatives of RANKL within the scope of the invention also include various structural forms of the primary proteins which retain biological activity. Due to the presence of ionizable amino and carboxyl groups, for example, a RANKL protein may be 50 in the form of acidic or basic salts, or may be in neutral form. Individual amino acid residues may also be modified by oxidation or reduction. The primary amino acid structure may be modified by forming covalent or aggregative conjugates with other chemical moieties, such as glycosyl groups, lipids, 55 phosphate, acetyl groups and the like, or by creating amino acid sequence mutants. Covalent derivatives are prepared by linking particular functional groups to amino acid side chains or at the N- or C-termini.

Derivatives of RANKL may also be obtained by the action 60 of cross-linking agents, such as M-maleimidobenzoyl succinimide ester and N-hydroxysuccinimide, at cysteine and lysine residues. The inventive proteins may also be covalently bound through reactive side groups to various insoluble substrates, such as cyanogen bromide-activated, bisoxirane-ac- 65 tivated, carbonyldiimidazole-activated or tosyl-activated agarose structures, or by adsorbing to polyolefin surfaces (with or

without glutaraldehyde cross-linking). Once bound to a substrate, the proteins may be used to selectively bind (for purposes of assay or purification) antibodies raised against the proteins or against other proteins which are similar to RANKL, as well as other proteins that bind RANKL or homologs thereof.

Soluble forms of RANKL are also within the scope of the invention. The nucleotide and predicted amino acid sequence of the RANKL is shown in SEQ ID Nos:11 and 13 (murine and human, respectively). Computer analysis indicated that the RANKL is a Type 2 transmembrane protein; murine RANKL contains a predicted 48 amino acid intracellular domain, 21 amino acid transmembrane domain and 247 amino acid extracellular domain, and human RANKL contains a predicted 47 amino acid intracellular domain, 21 amino acid transmembrane domain and 249 amino acid extracellular domain.

Soluble RANKL comprises a signal peptide and the extracellular domain or a fragment thereof. An exemplary signal peptide is that shown in SEQID NO:9; other signal (or leader) peptides are well-known in the art, and include that of murine Interleukin-7 or human growth hormone. RANKL is similar to other members of the TNF family in having a region of amino acids between the transmembrane domain and the receptor binding region that does not appear to be required for biological activity; this is referred to as a 'spacer' region. Amino acid sequence alignment indicates that the receptor binding region is from about amino acid 162 of human RANKL to about amino acid 317 (corresponding to amino acid 139 through 294 of murine RANKL, SEQ ID NO:11), beginning with an Ala residue that is conserved among many members of the family (amino acid 162 of SEQ ID NO:13).

Moreover, fragments of the extracellular domain will also provide soluble forms of RANKL. Those skilled in the art will 35 recognize that the actual receptor binding region may be different than that predicted by computer analysis. Thus, the N-terminal amino acid of a soluble RANKL is expected to be within about five amino acids on either side of the conserved Ala residue. Alternatively, all or a portion of the spacer region exhibited by the native molecule (i.e, RANKL muteins that 40 may be included at the N-terminus of a soluble RANKL, as may be all or a portion of the transmembrane and/or intracellular domains, provided that the resulting soluble RANKL is not membrane-associated. Accordingly, a soluble RANKL will have an N-terminal amino acid selected from the group consisting of amino acids 1 through 162 of SEQ ID NO:13 (1 though 139 of SEQ ID NO:11). Preferably, the amino terminal amino acid is between amino acids 69 and 162 of SEQ ID NO:13 (human RANKL; amino acids 48 and 139 of SEQ ID NO:11). Similarly, the carboxy terminal amino acid can be between amino acid 313 and 317 of SEQ ID NO:13 (human RANKL; corresponding to amino acids 290 through 294 of SEQID NO:11). Those skilled in the art can prepare these and additional soluble forms through routine experimentation.

Fragments can be prepared using known techniques to isolate a desired portion of the extracellular region, and can be prepared, for example, by comparing the extracellular region with those of other members of the TNF family (of which RANKL is a member) and selecting forms similar to those prepared for other family members. Alternatively, unique restriction sites or PCR techniques that are known in the art can be used to prepare numerous truncated forms which can be expressed and analyzed for activity.

Other derivatives of the RANKL proteins within the scope of this invention include covalent or aggregative conjugates of the proteins or their fragments with other proteins or polypeptides, such as by synthesis in recombinant culture as N-terminal or C-terminal fusions. For example, the conju-

gated peptide may be a signal (or leader) polypeptide sequence at the N-terminal region of the protein which cotranslationally or post-translationally directs transfer of the protein from its site of synthesis to its site of function inside or outside of the cell membrane or wall (e.g., the yeast α -factor leader).

Protein fusions can comprise peptides added to facilitate purification or identification of RANKL proteins and homologs (e.g., poly-His). The amino acid sequence of the inventive proteins can also be linked to an identification peptide such as that described by Hopp et al., *Bio/Technology* 6:1204 (1988). Such a highly antigenic peptide provides an epitope reversibly bound by a specific monoclonal antibody, enabling rapid assay and facile purification of expressed recombinant protein. The sequence of Hopp et al. is also 15 specifically cleaved by bovine mucosal enterokinase, allowing removal of the peptide from the purified protein. Fusion proteins capped with such peptides may also be resistant to intracellular degradation in *E. coli*.

Fusion proteins further comprise the amino acid sequence 20 of a RANKL linked to an immunoglobulin Fc region. An exemplary Fc region is a human IgG, having a nucleotide an amino acid sequence set forth in SEQ ID NO:8. Fragments of an Fc region may also be used, as can Fc muteins. For example, certain residues within the hinge region of an Fc 25 region are critical for high affinity binding to FcyRI. Canfield and Morrison (J. Exp. Med. 173:1483; 1991) reported that Leu, and Leu(235) were critical to high affinity binding of IgG3 to FcyRI present on U937 cells. Similar results were obtained by Lund et al. (J. Immunol. 147:2657, 1991; 30 Molecular Immunol. 29:53, 1991). Such mutations, alone or in combination, can be made in an IgG₁ Fc region to decrease the affinity of IgG, for FcR. Depending on the portion of the Fc region used, a fusion protein may be expressed as a dimer, through formation of interchain disulfide bonds. If the fusion 35 proteins are made with both heavy and light chains of an antibody, it is possible to form a protein oligomer with as many as four RANKL regions.

In another embodiment, RANKL proteins further comprise an oligomerizing peptide such as a leucine zipper 40 domain. Leucine zippers were originally identified in several DNA-binding proteins (Landschulz et al., Science 240:1759, 1988). Leucine zipper domain is a term used to refer to a conserved peptide domain present in these (and other) proteins, which is responsible for dimerization of the proteins. 45 The leucine zipper domain (also referred to herein as an oligomerizing, or oligomer-forming, domain) comprises a repetitive heptad repeat, with four or five leucine residues interspersed with other amino acids. Examples of leucine zipper domains are those found in the yeast transcription 50 factor GCN4 and a heat-stable DNA-binding protein found in rat liver (C/EBP; Landschulz et al., Science 243:1681, 1989). Two nuclear transforming proteins, fos and jun, also exhibit leucine zipper domains, as does the gene product of the murine proto-oncogene, c-myc (Landschulz et al., Science 55 240:1759, 1988). The products of the nuclear oncogenes fos and jun comprise leucine zipper domains preferentially form a heterodimer (O'Shea et al., Science 245:646, 1989; Turner and Tjian, Science 243:1689, 1989). The leucine zipper domain is necessary for biological activity (DNA binding) in 60 these proteins.

The fusogenic proteins of several different viruses, including paramyxovirus, coronavirus, measles virus and many retroviruses, also possess leucine zipper domains (Buckland and Wild, Nature 338:547,1989; Britton, Nature 353:394, 1991; 65 Delwart and Mosialos, AIDS Research and Human Retroviruses 6:703, 1990). The leucine zipper domains in these fuso-

genic viral proteins are near the transmembrane region of the proteins; it has been suggested that the leucine zipper domains could contribute to the oligomeric structure of the fusogenic proteins. Oligomerization of fusogenic viral proteins is involved in fusion pore formation (Spruce et al, Proc. Natl. Acad. Sci. U.S.A. 88:3523, 1991). Leucine zipper domains have also been recently reported to play a role in oligomerization of heat-shock transcription factors (Rabindran et al., Science 259:230, 1993).

Leucine zipper domains fold as short, parallel coiled coils. (O'Shea et al., Science 254:539; 1991) The general architecture of the parallel coiled coil has been well characterized, with a "knobs-into-holes" packing as proposed by Crick in 1953 (Acta Crystallogr. 6:689). The dimer formed by a leucine zipper domain is stabilized by the heptad repeat, designated (abcdefg), according to the notation of McLachlan and Stewart (J. Mol. Biol. 98:293; 1975), in which residues a and d are generally hydrophobic residues, with d being a leucine, which line up on the same face of a helix. Oppositely-charged residues commonly occur at positions g and e. Thus, in a parallel coiled coil formed from two helical leucine zipper domains, the "knobs" formed by the hydrophobic side chains of the first helix are packed into the "holes" formed between the side chains of the second helix.

The leucine residues at position d contribute large hydrophobic stabilization energies, and are important for dimer formation (Krystek et al., *Int. J. Peptide Res.* 38:229, 1991). Lovejoy. et al. recently reported the synthesis of a triple-stranded α-helical bundle in which the helices run up-up-down (*Science* 259:1288, 1993). Their studies confirmed that hydrophobic stabilization energy provides the main driving force for the formation of coiled coils from helical monomers. These studies also indicate that electrostatic interactions contribute to the stoichiometry and geometry of coiled coils.

Several studies have indicated that conservative amino acids may be substituted for individual leucine residues with minimal decrease in the ability to dimerize; multiple changes, however, usually result in loss of this ability (Landschulz et al., Science 243:1681, 1989; Turner and Tjian, Science 243: 1689, 1989; Hu et al., Science 250:1400, 1990). van Heekeren et al. reported that a number of different amino residues can be substituted for the leucine residues in the leucine zipper domain of GCN4, and further found that some GCN4 proteins containing two leucine substitutions were weakly active (Nucl. Acids Res. 20:3721, 1992). Mutation of the first and second heptadic leucines of the leucine zipper domain of the measles virus fusion protein (MVF) did not affect syncytium formation (a measure of virally-induced cell fusion); however, mutation of all four leucine residues prevented fusion completely (Buckland et al., J. Gen. Virol. 73:1703, 1992). None of the mutations affected the ability of MVF to form a tetramer.

Amino acid substitutions in the a and d residues of a synthetic peptide representing the GCN4 leucine zipper domain have been found to change the oligomerization properties of the leucine zipper domain (Alber, Sixth Symposium of the Protein Society, San Diego, Calif.). When all residues at position a are changed to isoleucine, the leucine zipper still forms a parallel dimer. When, in addition to this change, all leucine residues at position d are also changed to isoleucine, the resultant peptide spontaneously forms a trimeric parallel coiled coil in solution. Substituting all amino acids at position d with isoleucine and at position a with leucine results in a peptide that tetramerizes. Peptides containing these substitutions are still referred to as leucine zipper domains.

The present invention also includes RANKL with or without associated native-pattern glycosylation. Proteins

expressed in yeast or mammalian expression systems, e.g., COS-7 cells, may be similar or slightly different in molecular weight and glycosylation pattern than the native molecules, depending upon the expression system. Expression of DNAs encoding the inventive proteins in bacteria such as E. coli 5 provides non-glycosylated molecules. Functional mutant analogs of RANKL protein having inactivated N-glycosylation sites can be produced by oligonucleotide synthesis and ligation or by site-specific mutagenesis techniques. These analog proteins can be produced in a homogeneous, reduced- 10 carbohydrate form in good yield using yeast expression systems. N-glycosylation sites in eukaryotic proteins are characterized by the amino acid triplet Asn-A₁-Z, where A₁ is any amino acid except Pro, and Z is Ser or Thr. In this sequence, asparagine provides a side chain amino group for covalent 15 attachment of carbohydrate. Such a site can be eliminated by substituting another amino acid for Asn or for residue Z, deleting Asn or Z, or inserting a non-Z amino acid between A₁ and Z, or an amino acid other than Asn between Asn and A₁.

RANKL protein derivatives may also be obtained by mutations of the native RANKL or subunits thereof. A RANKL mutated protein, as referred to herein, is a polypeptide homologous to a native RANKL protein, but which has an amino acid sequence different from the native protein because of one or a plurality of deletions, insertions or substitutions. The effect of any mutation made in a DNA encoding a mutated peptide may be easily determined by analyzing the ability of the mutated peptide to bind its counterstructure in a specific manner. Moreover, activity of RANKL analogs, muteins or derivatives can be determined by any of the assays and the expressed mutation cativity. Mutations cativity. Mutations cativity. Mutations cativity.

Analogs of the inventive proteins may be constructed by, for example, making various substitutions of residues or sequences or deleting terminal or internal residues or 35 sequences not needed for biological activity. For example, cysteine residues can be deleted or replaced with other amino acids to prevent formation of incorrect intramolecular disulfide bridges upon renaturation. Other approaches to mutagenesis involve modification of adjacent dibasic amino acid residues to enhance expression in yeast systems in which KEX2 protease activity is present.

When a deletion or insertion strategy is adopted, the potential effect of the deletion or insertion on biological activity should be considered. Subunits of the inventive proteins may 45 be constructed by deleting terminal or internal residues or sequences. Soluble forms of RANKL can be readily prepared and tested for their ability to induce NF-kB activation. Polypeptides corresponding to the cytoplasmic regions, and fragments thereof (for example, a death domain) can be prepared by similar techniques. Additional guidance as to the types of mutations that can be made is provided by a comparison of the sequence of RANKL to proteins that have similar structures, as well as by performing structural analysis of the inventive RANKL proteins.

Generally, substitutions should be made conservatively; i.e., the most preferred substitute amino acids are those which do not affect the biological activity of RANKL (i.e., ability of the inventive proteins to bind antibodies to the corresponding native protein in substantially equivalent a manner, the ability to bind the counterstructure in substantially the same manner as the native protein, the ability to induce a RANKL signal, or ability to induce NF-kB activation). Examples of conservative substitutions include substitution of amino acids outside of the binding domain(s) (either ligand/receptor or antibody binding areas for the extracellular domain, or regions that interact with other, intracellular proteins for the cytoplasmic

8

domain), and substitution of amino acids that do not alter the secondary and/or tertiary structure of the native protein. Additional examples include substituting one aliphatic residue for another, such as Ile, Val, Leu, or Ala for one another, or substitutions of one polar residue for another, such as between Lys and Arg; Glu and Asp; or Gln and Asn. Other such conservative substitutions, for example, substitutions of entire regions having similar hydrophobicity characteristics, are well known.

Mutations in nucleotide sequences constructed for expression of analog proteins or fragments thereof must, of course, preserve the reading frame phase of the coding sequences and preferably will not create complementary regions that could hybridize to produce secondary mRNA structures such as loops or hairpins which would adversely affect translation of the mRNA.

Not all mutations in the nucleotide sequence which encodes a RANKL protein or fragments thereof will be expressed in the final product, for example, nucleotide substitutions may be made to enhance expression, primarily to avoid secondary structure loops in the transcribed mRNA (see EPA 75,444A, incorporated herein by reference), or to provide codons that are more readily translated by the selected host, e.g., the well-known *E. coli* preference codons for *E. coli* expression.

Although a mutation site may be predetermined, it is not necessary that the nature of the mutation per se be predetermined. For example, in order to select for optimum characteristics of mutants, random mutagenesis may be conducted and the expressed mutated proteins screened for the desired activity. Mutations can be introduced at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes an analog having the desired amino acid insertion, substitution, or deletion.

Alternatively, oligonucleotide-directed site-specific mutagenesis procedures can be employed to provide an altered gene having particular codons altered according to the substitution, deletion, or insertion required. Exemplary methods of making the alterations set forth above are disclosed by Walder et al. (*Gene* 42:133, 1986); Bauer et al. (*Gene* 37:73, 1985); Craik (*BioTechniques*, January 1985, 12-19); Smith et al. (*Genetic Engineering: Principles and Methods*, Plenum Press, 1981); and U.S. Pat. Nos. 4,518,584 and 4,737,462 disclose suitable techniques, and are incorporated by reference herein.

Additional embodiments of the inventive proteins include RANKL polypeptides encoded by DNAs capable of hybridizing to the DNAS of SEQ ID NO: 10 or 12 under moderately stringent conditions (prewashing solution of 5×SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0) and hybridization conditions of 50° C., 5×SSC, overnight) to the DNA sequences encoding RANKL, or more preferably under stringent conditions (for example, hybridization in 6×SSC at 63° C. overnight; washing in 3xSSC at 55° C.), and other sequences which are degenerate to those which encode the RANKL. In one embodiment, RANKL polypeptides are at least about 70% identical in amino acid sequence to the amino acid sequence of native RANKL protein as set forth in SEQ ID NOs:10 and 12. In a preferred embodiment, RANKL polypeptides are at least about 80% identical in amino acid sequence to the native form of RANKL; most preferred polypeptides are those that are at least about 90% identical to native RANKL.

Percent identity may be determined using a computer program, for example, the GAP computer program described by Devereux et al. (Nucl. Acids Res. 12:387, 1984) and available

from the University of Wisconsin Genetics Computer Group (UWGCG). For fragments derived from the RANKL protein, the identity is calculated based on that portion of the RANKL protein that is present in the fragment

The biological activity of RANKL analogs or muteins can be determined by testing the ability of the analogs or muteins to induce a signal through RANK, for example, activation of transcription as described in the Examples herein. Alternatively, suitable assays, for example, an enzyme immunoassay or a dot blot, employing an antibody that binds native RANKL, or a soluble form of RANK, can be used to assess the activity of RANKL analogs or muteins. Suitable assays also include, for example, assays that measure the ability of a RANKL peptide or mutein to bind cells expressing RANK, and/or the biological effects thereon. Such methods are well 15 known in the art.

Fragments of the RANKL nucleotide sequences are also useful. In one embodiment, such fragments comprise at least about 17 consecutive nucleotides, preferably at least about 25 nucleotides, more preferably at least 30 consecutive nucleotides, of the RANKL DNA disclosed herein. DNA and RNA complements of such fragments are provided herein, along with both single-stranded and double-stranded forms of the RANKL DNAs of SEQ ID NOs:10 and 12, and those encoding the aforementioned polypeptides. A fragment of RANKL 25 DNA generally comprises at least about 17 nucleotides, preferably from about 17 to about 30 nucleotides. Such nucleic acid fragments (for example, a probe corresponding to the extracellular domain of RANKL) are used as a probe or as primers in a polymerase chain reaction (PCR).

The probes also find use in detecting the presence of RANKL nucleic acids in in vitro assays and in such procedures as Northern and Southern blots. Cell types expressing RANKL can be identified as well. Such procedures are well known, and the skilled artisan can choose a probe of suitable length, depending on the particular intended application. For PCR, 5' and 3' primers corresponding to the termini of a desired RANKL DNA sequence are employed to amplify that sequence, using conventional techniques.

Other useful fragments of the RANKL nucleic acids are antisense or sense oligonucleotides comprising a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target RANKL mRNA (sense) or RANKL DNA (antisense) sequences. The ability to create an antisense or a sense oligonucleotide, based upon a cDNA sequence for a given protein is described in, for example, Stein and Cohen, Cancer Res. 48:2659, 1988 and van der Krol et al., BioTechniques 6:958, 1988.

Uses of DNAs, Proteins and Analogs

The RANKL DNAs, proteins and analogs described herein will have numerous uses, including the preparation of pharmaceutical compositions. For example, soluble forms of RANKL will be useful to transduce signal via RANK. RANKL compositions (both protein and DNAs) will also be useful in development of antibodies to RANKL, both those that inhibit binding to RANK and those that do not. The inventive DNAs are useful for the expression of recombinant proteins, and as probes for analysis (either quantitative or qualitative) of the presence or distribution of RANKL transcripts.

The inventive proteins will also be useful in preparing kits that are used to detect soluble RANK or RANKL, or monitor RANK-related activity, for example, in patient specimens. RANKL proteins will also find uses in monitoring RANK-related activity in other samples or compositions, as is necessary when screening for antagonists or mimetics of this

activity (for example, peptides or small molecules that inhibit or mimic, respectively, the interaction). A variety of assay formats are useful in such kits, including (but not limited to) ELISA, dot blot, solid phase binding assays (such as those using a biosensor), rapid format assays and bioassays.

The purified RANKL according to the invention will facilitate the discovery of inhibitors of RANK, and thus, inhibitors of an inflammatory response (via inhibition of NF-kB activation). The use of a purified RANKL polypeptide in the screening for potential inhibitors is important and can virtually eliminate the possibility of interfering reactions with contaminants. Such a screening assay can utilize either the extracellular domain of RANKL, or a fragment thereof. Detecting the inhibiting activity of a molecule would typically involve use of a soluble form of RANKL derived from the extracellular domain in a screening assay to detect molecules capable of binding RANK and inhibiting binding of the RANKL.

In addition, RANKL polypeptides can also be used for structure-based design of RANKL-inhibitors. Such structurebased design is also known as "rational drug design." The RANKL polypeptides can be three-dimensionally analyzed by, for example, X-ray crystallography, nuclear magnetic resonance or homology modeling, all of which are wellknown methods. The use of RANKL structural information in molecular modeling software systems to assist in inhibitor design is also encompassed by the invention. Such computerassisted modeling and drug design may utilize information such as chemical conformational analysis, electrostatic potential of the molecules, protein folding, etc. A particular method of the invention comprises analyzing the three dimensional structure of RANKL for likely binding sites of substrates, synthesizing a new molecule that incorporates a predictive reactive site, and assaying the new molecule as described above.

Moreover, as shown in the Examples herein, soluble forms of RANKL will be useful to induce maturation of dendritic cells (DC), and to enhance their allo-stimulatory capacity. Accordingly, RANKL proteins will be useful in augmenting an immune response, and can be used for these purposes either ex vivo (i.e., in obtaining cells such as DC from an individual, exposing them to antigen and cytokines ex vivo, and re-administering them to the individual) or in vivo (i.e., as a vaccine adjuvant that will augment humoral and/or cellular immunity). RANKL will also be useful promoting viability of T cells in the presence of TGFβ, which will also be helpful in regulating an immune response.

Expression of Recombinant RANKL

The proteins of the present invention are preferably produced by recombinant DNA methods by inserting a DNA sequence encoding RANKL protein or an analog thereof into a recombinant expression vector and expressing the DNA sequence in a recombinant expression system under conditions promoting expression. DNA sequences encoding the proteins provided by this invention can be assembled from cDNA fragments and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being inserted in a recombinant expression vector and expressed in a recombinant transcriptional unit.

Recombinant expression vectors include synthetic or cDNA-derived DNA fragments encoding RANKL, or homologs, muteins or bioequivalent analogs thereof, operably linked to suitable transcriptional or translational regulatory elements derived from mammalian, microbial, viral or insect genes. Such regulatory elements include a transcriptional promoter, an optional operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal

binding sites, and sequences which control the termination of transcription and translation, as described in detail below. The ability to replicate in a host, usually conferred by an origin of replication, and a selection gene to facilitate recognition of transformants may additionally be incorporated.

DNA regions are operably linked when they are functionally related to each other. For example, DNA for a signal peptide (secretory leader) is operably linked to DNA for a polypeptide if it is expressed as a precursor which participates in the secretion of the polypeptide; a promoter is operably 10 linked to a coding sequence if it controls the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation. Generally, operably linked means contiguous and, in the case of secretory leaders, contiguous and in reading frame. 15 DNA sequences encoding RANKL, or homologs or analogs thereof which are to be expressed in a microorganism will preferably contain no introns that could prematurely terminate transcription of DNA into mRNA.

Useful expression vectors for bacterial use can comprise a 20 selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) 25 and pGEM1 (Promega Biotec, Madison, Wis., USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. E. coli is typically transformed using derivatives of pBR322, a plasmid derived from an E. coli species (Bolivar et al., Gene 30 2:95, 1977). pBR322 contains genes for ampicillin and tetracycline resistance and thus provides simple means for identifying transformed cells.

Promoters commonly used in recombinant microbial expression vectors include the β-lactamase (penicillinase) 35 and lactose promoter system (Chang et al., Nature 275:615, 1978; and Goeddel et al., Nature 281:544, 1979), the tryptophan (trp) promoter system (Goeddel et al., Nucl. Acids Res. 8:4057, 1980; and EPA 36,776) and tac promoter (Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Har- 40 bor Laboratory, p. 412, 1982). A particularly useful bacterial expression system employs the phage λ P_L promoter and cl857ts thermolabile repressor. Plasmid vectors available from the American Type Culture Collection which incorporate derivatives of the λP_L promoter include plasmid pHUB2, 45 resident in E. coli strain JMB9 (ATCC 37092) and pPLc28, resident in E. coli RR1 (ATCC 53082).

Suitable promoter sequences in yeast vectors include the promoters for metallothionein, 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem. 255:2073, 1980) or other 50 glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg. 7:149, 1968; and Holland et al., Biochem. 17:4900, 1978), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, 55 pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Suitable vectors and promoters for use in yeast expression are further described in R. Hitzeman et al., EPA 73,657.

Preferred yeast vectors can be assembled using DNA 60 sequences from pBR322 for selection and replication in E. coli (Amp' gene and origin of replication) and yeast DNA sequences including a glucose-repressible ADH2 promoter and α -factor secretion leader. The ADH2 promoter has been and Beier et al. (Nature 300:724, 1982). The yeast α-factor leader, which directs secretion of heterologous proteins, can

be inserted between the promoter and the structural gene to be expressed. See, e.g., Kurjan et al., Cell 30:933, 1982; and Bitter et al., Proc. Natl. Acad. Sci. USA 81:5330, 1984. The leader sequence may be modified to contain, near its 3' end, one or more useful restriction sites to facilitate fusion of the leader sequence to foreign genes.

The transcriptional and translational control sequences in expression vectors to be used in transforming vertebrate cells may be provided by viral sources. For example, commonly used promoters and enhancers are derived from Polyoma, Adenovirus 2, Simian Virus 40 (SV40), and human cytomegalovirus. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early and late promoter, enhancer, splice, and polyadenylation sites may be used to provide the other genetic elements required for expression of a heterologous DNA sequence. The early and late promoters are particularly useful because both are obtained easily from the virus as a fragment which also contains the SV40 viral origin of replication (Fiers et al., Nature 273:113, 1978). Smaller or larger SV40 fragments may also be used, provided the approximately 250 bp sequence extending from the Hind III site toward the BgII site located in the viral origin of replication is included. Further, viral genomic promoter, control and/or signal sequences may be utilized, provided such control sequences are compatible with the host cell chosen. Exemplary vectors can be constructed as disclosed by Okayama and Berg (Mol. Cell. Biol. 3:280, 1983).

A useful system for stable high level expression of mammalian receptor cDNAs in C127 murine mammary epithelial cells can be constructed substantially as described by Cosman et al. (Mol. Immunol. 23:935, 1986). A preferred eukaryotic vector for expression of RANKL DNA is referred to as pDC406 (McMahan et al., EMBO J. 10:2821, 1991), and includes regulatory sequences derived from SV40, human immunodeficiency virus (HIV), and Epstein-Barr virus (EBV). Other preferred vectors include pDC409 and pDC410, which are derived from pDC406. pDC410 was derived from pDC406 by substituting the EBV origin of replication with sequences encoding the SV40 large T antigen. pDC409 differs from pDC406 in that a Bgl II restriction site outside of the multiple cloning site has been deleted, making the Bgl II site within the multiple cloning site unique.

A useful cell line that allows for episomal replication of expression vectors, such as pDC406 and pDC409, which contain the EBV origin of replication, is CV-1/EBNA (ATCC CRL 10478). The CV-1/EBNA cell line was derived by transfection of the CV-1 cell line with a gene encoding Epstein-Barr virus nuclear antigen-1 (EBNA-1) and constitutively express EBNA-1 driven from human CMV immediate-early enhancer/promoter.

Host Cells

Transformed host cells are cells which have been transformed or transfected with expression vectors constructed using recombinant DNA techniques and which contain sequences encoding the proteins of the present invention. Transformed host cells may express the desired protein (RANKL, or homologs or analogs thereof), but host cells transformed for purposes of cloning or amplifying the inventive DNA do not need to express the protein. Expressed proteins will preferably be secreted into the culture supernatant, depending on the DNA selected, but may be deposited in the cell membrane.

Suitable host cells for expression of proteins include described by Russell et al. (J. Biol. Chem. 258:2674, 1982) 65 prokaryotes, yeast or higher eukaryotic cells under the control of appropriate promoters. Prokaryotes include gram negative or gram positive organisms, for example E. coli or Bacillus

sequences, such as necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, and transcriptional termination sequences.

spp. Higher eukaryotic cells include established cell lines of mammalian origin as described below. Cell-free translation systems could also be employed to produce proteins using RNAs derived from the DNA constructs disclosed herein. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described by Pouwels et al. (Cloning Vectors: A Laboratory Manual, Elsevier, N.Y., 1985), the relevant disclosure of which is hereby incorporated by reference.

Prokaryotic expression hosts may be used for expression of 10 RANKL, or homologs or analogs thereof that do not require extensive proteolytic and disulfide processing. Prokaryotic expression vectors generally comprise one or more phenotypic selectable markers, for example a gene encoding proteins conferring antibiotic resistance or supplying an 15 autotrophic requirement, and an origin of replication recognized by the host to ensure amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli*, *Bacillus subtilis, Salmonella typhimurium*, and various species within the genera *Pseudomonas, Streptomyces*, and *Staphylococcus*, although others may also be employed as a matter of choice.

Recombinant RANKL may also be expressed in yeast hosts, preferably from the Saccharomyces species, such as S. cerevisiae. Yeast of other genera, such as Pichia or Kluyvero- 25 myces may also be employed. Yeast vectors will generally contain an origin of replication from the 2µ yeast plasmid or an autonomously replicating sequence (ARS), promoter, DNA encoding the protein, sequences for polyadenylation and transcription termination and a selection gene. Prefer- 30 ably, yeast vectors will include an origin of replication and selectable marker permitting transformation of both yeast and E. coli, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae trp1 gene, which provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryp- 35 tophan, and a promoter derived from a highly expressed yeast gene to induce transcription of a structural sequence downstream. The presence of the trp1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.

Suitable yeast transformation protocols are known to those of skill in the art; an exemplary technique is described by Hinnen et al., *Proc. Natl. Acad. Sci. USA* 75:1929, 1978, selecting for Trp⁺ transformants in a selective medium consisting of 0.67% yeast nitrogen base, 0.5% casamino acids, 45 2% glucose, 10 µg/ml adenine and 20 µg/ml uracil. Host strains transformed by vectors comprising the ADH2 promoter may be grown for expression in a rich medium consisting of 1% yeast extract, 2% peptone, and 1% glucose supplemented with 80 µg/ml adenine and 80 µg/ml uracil. 50 Derepression of the ADH2 promoter occurs upon exhaustion of medium glucose. Crude yeast supernatants are harvested by filtration and held at 4° C. prior to further purification.

Various mammalian or insect cell culture systems can be employed to express recombinant protein. Baculovirus systems for production of heterologous proteins in insect cells are reviewed by Luckow and Summers, *Bio/Technology* 6:47 (1988). Examples of suitable mammalian host cell lines include the COS-7 lines of monkey kidney cells, described by Gluzman (*Cell* 23:175, 1981), and other cell lines capable of expressing an appropriate vector including, for example, CV-1/EBNA (ATCC CRL 10478), L cells, C127, 3T3, Chinese hamster ovary (CHO), HeLa and BHK cell lines. Mammalian expression vectors may comprise nontranscribed elements such as an origin of replication, a suitable promoter and enhancer linked to the gene to be expressed, and other 5' or 3' flanking nontranscribed sequences, and 5' or 3' nontranslated

Purification of Recombinant RANKL

Purified RANKL, and homologs or analogs thereof are prepared by culturing suitable host/vector systems to express the recombinant translation products of the DNAs of the present invention, which are then purified from culture media or cell extracts. For example, supernatants from systems which secrete recombinant protein into culture media can be first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit.

Following the concentration step, the concentrate can be applied to a suitable purification matrix. For example, a suitable affinity matrix can comprise a counter structure protein or lectin or antibody molecule bound to a suitable support. Alternatively, an anion exchange resin can be employed, for example, a matrix or substrate having pendant diethylaminoethyl (DEAE) groups. The matrices can be acrylamide, agarose, dextran, cellulose or other types commonly employed in protein purification. Alternatively, a cation exchange step can be employed. Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl groups are preferred. Gel filtration chromatography also provides a means of purifying the inventive proteins.

Affinity chromatography is a particularly preferred method of purifying RANKL and homologs thereof. For example, a RANKL expressed as a fusion protein comprising an immunoglobulin Fc region can be purified using Protein A or Protein G affinity chromatography. Moreover, a RANKL protein comprising an oligomerizing zipper domain may be purified on a resin comprising an antibody specific to the oligomerizing zipper domain. Monoclonal antibodies against the RANKL protein may also be useful in affinity chromatography purification, by utilizing methods that are well-known in the art. A ligand may also be used to prepare an affinity matrix for affinity purification of RANKL.

Finally, one or more reversed-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify a RANKL composition. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a homogeneous recombinant protein.

Recombinant protein produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more concentration, salting-out, aqueous ion exchange or size exclusion chromatography steps. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of recombinant protein can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Fermentation of yeast which express the inventive protein as a secreted protein greatly simplifies purification. Secreted recombinant protein resulting from a large-scale fermentation can be purified by methods analogous to those disclosed by Urdal et al. (*J. Chromatog.* 296:171, 1984). This reference describes two sequential, reversed-phase HPLC steps for purification of recombinant human GM-CSF on a preparative HPLC column.

Protein synthesized in recombinant culture is characterized by the presence of cell components, including proteins, in

14

and 3.

amounts and of a character which depend upon the purification steps taken to recover the inventive protein from the culture. These components ordinarily will be of yeast, prokaryotic or non-human higher eukaryotic origin and preferably are present in innocuous contaminant quantities, on the order of less than about 1 percent by weight. Further, recombinant cell culture enables the production of the inventive proteins free of other proteins which may be normally associated with the proteins as they are found in nature in the species of origin.

Uses and Administration of RANKL Compositions

The present invention provides methods of using therapeutic compositions comprising an effective amount of a protein and a suitable diluent and carrier, and methods for regulating an immune or inflammatory response. The use of RANKL in conjunction with soluble cytokine receptors or cytokines, or other immunoregulatory molecules is also contemplated.

For therapeutic use, purified protein is administered to a 20 patient, preferably a human, for treatment in a manner appropriate to the indication. Thus, for example, RANKL protein compositions administered to regulate immune function can be given by bolus injection, continuous infusion, sustained release from implants, or other suitable technique. Typically, 25 a therapeutic agent will be administered in the form of a composition comprising purified RANKL, in conjunction with physiologically acceptable carriers, excipients or diluents. Such carriers will be nontoxic to recipients at the dosages and concentrations employed.

Ordinarily, the preparation of such protein compositions entails combining the inventive protein with buffers, antioxidants such as ascorbic acid, low molecular weight (less than about 10 residues) polypeptides, proteins, amino acids, carbohydrates including glucose, sucrose or dextrins, chelating agents such as EDTA, glutathione and other stabilizers and excipients. Neutral buffered saline or saline mixed with conspecific serum albumin are exemplary appropriate diluents. Preferably, product is formulated as a lyophilizate using appropriate excipient solutions (e.g., sucrose) as diluents. Appropriate dosages can be determined in trials. The amount and frequency of administration will depend, of course, on such factors as the nature and severity of the indication being treated, the desired response, the condition of the patient, and so forth.

As shown hrein, RANKL has beneficial effects on various cells important in the immune system. Accordingly, RANKL may be adminstered to an individual as a vaccine adjuvant, or as a therapeutic agent to upregulate an immune resposne, for example, ininfectious disease. Moreover, NF-κB has been found to play a protective role in preventing apoptotic death of cells induced by TNF-α or chemotherapy. Accordingly, agonists of RANK (i.e., RANKL and agonistic antibodies) will be useful in protecting RANK-expressing cells from the negative effects of chemotherapy or the presence of high levels of TNF-α such as occur in sepsis (see, i.e., Barinaga, *Science* 274"724, 1996, and the articles by Beg and Baltimore and Wang etal., pages 782 and 784 of that same issue of *Science*).

The following examples are offered by way of illustration, and not by way of limitation. Those skilled in the art will recognize that variations of the invention embodied in the examples can be made, especially in light of the teachings of 65 the various references cited herein, the disclosures of which are incorporated by reference.

The example describes the identification and isolation of a DNA encoding a novel member of the TNF receptor superfamily. A partial cDNA insert with a predicted open reading frame having some similarity to CD40 (a cell-surface antigen present on the surface of both normal and neoplastic human B cells that has been shown to play an important role in B-cell proliferation and differentiation; Stamenkovic et al., EMBO J. 8:1403, 1989), was identified in a database containing sequence information from cDNAs generated from human bone marrow-derived dendritic cells (DC). The insert was excised from the vector by restriction endonuclease digestion, gel purified. labeled with 32P, and used to hybridize to colony blots generated from a DC cDNA library containing larger cDNA inserts using high stringency hybridization and washing techniques (hybridization in 5xSSC, 50% formamide at 42° C. overnight, washing in 0.5×SSC at 63° C.); other suitable high stringency conditions are disclosed in Sambrook et al. in Molecular Cloning: A Laboratory Manual, 2nd ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.; 1989), 9.52-9.55. Initial experiments yielded a clone referred to as 9D-8A (SEQ ID NO:1); subsequent analysis indicated that this clone contained all but the extreme 5' end of 25 a novel cDNA, with predicted intron sequence at the extreme 5' end (nucleotides 1-92 of SEQ ID NO:1). Additional colony hybridizations were performed, and a second clone was isolated. The second clone, referred to as 9D-15C (SEQ ID NO:3), contained the 5' end without intron interruption but not the full 3'end. SEQ ID NO:5 shows the nucleotide and amino acid sequence of a predicted full-length protein based on alignment of the overlapping sequences of SEQ ID NOs:1

The encoded protein was designated RANK, for receptor activator of NF-kB. The cDNA encodes a predicted Type 1 transmembrane protein having 616 amino acid residues, with a predicted 24 amino acid signal sequence (the computer predicted cleavage site is after Leu24), a 188 amino acid extracellular domain, a 21 amino acid transmembrane domain, and a 383 amino acid cytoplasmic tail. The extracellular region of RANK displayed significant amino acid homology (38.5% identity, 52.3% similarity) to CD40. A cloning vector (pBluescriptSK-) containing human RANK sequence, designated pBluescript:huRANK (in E. coli DH10B), was deposited with the American Type Culture Collection, Rockville, Md. (ATCC) on Dec. 20, 1996, under terms of the Budapest Treaty, and given accession number 98285.

EXAMPLE 2

This example describes construction of a RANK DNA construct to express a RANK/Fc fusion protein. A soluble form of RANK fused to the Fc region of human IgG1 was constructed in the mammalian expression vector pDC409 (U.S. Ser. No. 08/571,579). This expression vector encodes the leader sequence of the Cytomegalovirus (CMV) open reading frame R27080 (SEQ ID NO:9), followed by amino acids 33-213 of RANK, followed by a mutated form of the constant domain of human IgG, that exhibits reduced affinity for Fc receptors (SEQ ID NO:8; for the fusion protein, the Fc portion of the construct consisted of Arg3 through Lys232). An alternative expression vector encompassing amino acids 1-213 of RANK (using the native leader sequence) followed by the IgG, mutein was also prepared. Both expression vectors were found to induce high levels of expression of the RANK/Fc fusion protein in transfected cells.

To obtain RANK/Fc protein, a RANK/Fc expression plasmid is transfected into CV-1/EBNA cells, and supernatants are collected for about one week. The RANK/Fc fusion protein is purified by means well-known in the art for purification of Fc fusion proteins, for example, by protein A sepharose column chromatography according to manufacturer's recommendations (i.e., Pharmacia, Uppsala, Sweden). SDS-polyacrylamide gel electrophoresis analysis indicted that the purified RANK/Fc protein migrated with a molecular weight of ~55 kDa in the presence of a reducing agent, and at a molecular weight of ~110 kDa in the absence of a reducing agent.

N-terminal amino acid sequencing of the purified protein made using the CMV R27080 leader showed 60% cleavage after Ala20, 20% cleavage after Pro22 and 20% cleavage after Arg28 (which is the Furin cleavage site; amino acid residues 15 are relative to SEQ ID NO:9); N-terminal amino acid analysis of the fusion protein expressed with the native leader showed cleavage predominantly after Gln25 (80% after Gln25 and 20% after Arg23; amino acid residues are relative to SEQ ID NO:6, full-length RANK). Both fusion proteins were able to 20 bind a ligand for RANK is a specific manner (i.e., they bound to the surface of various cell lines such as a murine thymoma cell line, EL4), indicating that the presence of additional amino acids at the N-terminus of RANK does not interfere comprising the CMV leader encoded RANK beginning at amino acid 33; thus, a RANK peptide having an N-terminus at an amino acid between Arg23 and Pro33, inclusive, is expected to be able to bind a ligand for RANK in a specific manner.

Other members of the TNF receptor superfamily have a region of amino acids between the transmembrane domain and the ligand binding domain that is referred to as a 'spacer' region, which is not necessary for ligand binding. In RANK, the amino acids between 196 and 213 are predicted to form 35 such a spacer region. Accordingly, a soluble form of RANK that terminates with an amino acid in this region is expected to retain the ability to bind a ligand for RANK in a specific manner. Preferred C-terminal amino acids for soluble RANK peptides are selected from the group consisting of amino 40 acids 213 and 196 of SEQ ID NO:6, although other amino acids in the spacer region may be utilized as a C-terminus.

EXAMPLE 3

This example illustrates the preparation of monoclonal antibodies against RANK. Preparations of purified recombinant RANK, for example, or transfected cells expressing high levels of RANK, are employed to generate monoclonal antibodies against RANK using conventional techniques, such as 50 those disclosed in U.S. Pat. No. 4,411,993. DNA encoding RANK can also be used as an immunogen, for example, as reviewed by Pardoll and Beckerleg in Immunity 3:165, 1995. Such antibodies are likely to be useful in interfering with RANK-induced signaling (antagonistic or blocking antibod- 55 ies) or in inducing a signal by cross-linking RANK (agonistic antibodies), as components of diagnostic or research assays for RANK or RANK activity, or in affinity purification of

To immunize rodents, RANK immunogen is emulsified in 60 an adjuvant (such as complete or incomplete Freund's adjuvant, alum, or another adjuvant, such as Ribi adjuvant R700 (Ribi, Hamilton, Mont.), and injected in amounts ranging from 10-100 µg subcutaneously into a selected rodent, for example, BALB/c mice or Lewis rats. DNA may be given 65 intradermally (Raz et al., Proc. Natl. Acad. Sci. USA 91:9519, 1994) or intamuscularly (Wang et al., Proc. Natl. Acad. Sci.

USA 90:4156, 1993); saline has been found to be a suitable diluent for DNA-based antigens. Ten days to three weeks days later, the immunized animals are boosted with additional immunogen and periodically boosted thereafter on a weekly, biweekly or every third week immunization schedule.

Serum samples are periodically taken by retro-orbital bleeding or tail-tip excision for testing by dot-blot assay (antibody sandwich), ELISA (enzyme-linked immunosorbent assay), immunoprecipitation, or other suitable assays, including FACS analysis. Following detection of an appropriate antibody titer, positive animals are given an intravenous injection of antigen in saline. Three to four days later, the animals are sacrificed, splenocytes harvested, and fused to a murine myeloma cell line (e.g., NS1 or preferably Ag 8.653 [ATCC CRL 1580]). Hybridoma cell lines generated by this procedure are plated in multiple microtiter plates in a selective medium (for example, one containing hypoxanthine, aminopterin, and thymidine, or HAT) to inhibit proliferation of non-fused cells, myeloma-myeloma hybrids, and splenocyte-splenocyte hybrids.

Hybridoma clones thus generated can be screened by ELISA for reactivity with RANK, for example, by adaptations of the techniques disclosed by Engvall et al., Immunochem. 8:871 (1971) and in U.S. Pat. No. 4,703,004. A with its ability to bind RANKL. Moreover, the construct 25 preferred screening technique is the antibody capture technique described by Beckman et al., J. Immunol. 144:4212 (1990). Positive clones are then injected into the peritoneal cavities of syngeneic rodents to produce ascites containing high concentrations (>1 mg/ml) of anti-RANK monoclonal antibody. The resulting monoclonal antibody can be purified by ammonium sulfate precipitation followed by gel exclusion chromatography. Alternatively, affinity chromatography based upon binding of antibody to protein A or protein G can also be used, as can affinity chromatography based upon binding to RANK protein.

> Monoclonal antibodies were generated using RANK/Fc fusion protein as the immunogen. These reagents were screened to confirm reactivity against the RANK protein. Using the methods described herein to monitor the activity of the mAbs, both blocking (i.e., antibodies that bind RANK and inhibit binding of a ligand to RANK) and non-blocking (i.e., antibodies that bind RANK and do not inhibit ligand binding) were isolated.

EXAMPLE 4

This example illustrates the induction of NF-kB activity by RANK in 293/EBNA cells (cell line was derived by transfection of the 293 cell line with a gene encoding Epstein-Barr virus nuclear antigen-1 (EBNA-1) that constitutively express EBNA-1 driven from human CMV immediate-early enhancer/promoter). Activation of NF-kB activity was measured in 293/EBNA cells essentially as described by Yao et al. (Immunity 3:811, 1995). Nuclear extracts were prepared and analyzed for NF-kB activity by a gel retardation assay using a 25 base pair oligonucleotide spanning the NF-κB binding sites. Two million cells were seeded into 10 cm dishes two days prior to DNA transfection and cultured in DMEM-F12 media containing 2.5% FBS (fetal bovine serum). DNA transfections were performed as described herein for the IL-8 promoter/reporter assays.

Nuclear extracts were prepared by solubilization of isolated nuclei with 400 mM NaCl (Yao et al., supra). Oligonucleotides containing an NF-κB binding site were annealed and endlabeled with 32P using T4 DNA polynucleotide kinase. Mobility shift reactions contained 10 µg of nuclear extract, 4 µg of poly(dI-dC) and 15,000 cpm labeled doublestranded oligonucleotide and incubated at room temperature for 20 minutes. Resulting protein-DNA complexes were resolved on a 6% native polyacrylamide gel in 0.25× Trisborate-EDTA buffer.

Overexpression of RANK resulted in induction of NF-kB activity as shown by an appropriate shift in the mobility of the radioactive probe on the gel. Similar results were observed when RANK was triggered by a ligand that binds RANK and transduces a signal to cells expressing the receptor (i.e., by co-transfecting cells with human RANK and murine RANKL DNA; see Example 7 below), and would be expected to occur when triggering is done with agonistic antibodies.

EXAMPLE 5

This example describes a gene promoter/reporter system based on the human Interleukin-8 (IL-8) promoter used to analyze the activation of gene transcription in vivo. The induction of human IL-8 gene transcription by the cytokines Interleukin-1 (IL-1) or tumor necrosis factor-alpha (TNF- α) is known to be dependent upon intact NF- κ B and NF-IL-6 transcription factor binding sites. Fusion of the cytokine-responsive IL-8 promoter with a cDNA encoding the murine IL-4 receptor (mIL-4R) allows measurement of promoter activation by detection of the heterologous reporter protein (mIL-4R) on the cell surface of transfected cells.

Human kidney epithelial cells (293/EBNA) are transfected (via the DEAE/DEXTRAN method) with plasmids encoding: 1) the reporter/promoter construct (referred to as pIL-8rep), and 2). the cDNA(s) of interest. DNA concentrations are always kept constant by the addition of empty vector DNA. The 293/EBNA cells are plated at a density of 2.5×10⁴ cells/ml (3 ml/well) in a 6 well plate and incubated for two days prior to transfection. Two days after transfection, the mIL-4 receptor is detected by a radioimmunoassay (RIA) described below.

In one such experiment, the 293/EBNA cells were cotransfected with DNA encoding RANK and with DNA encoding RANKL (see Example 7 below). Co-expression of 40 this receptor and its counterstructure by cells results in activation of the signaling process of RANK. For such co-transfection studies, the DNA concentration/well for the DEAE transfection were as follows: 40 ng of pIL-8rep [pBluescriptSK⁻ vector (Stratagene)]; 0.4 ng CD40 (DNA encoding 45 CD40, a control receptor; pCDM8 vector); 0.4 ng RANK (DNA encoding RANK; pDC409 vector), and either 1-50 ng CD40L (DNA encoding the ligand for CD40, which acts as a positive control when co-transfected with CD40 and as a negative control when co-transfected with RANK; in pDC304) or RANKL (DNA encoding a ligand for RANK; in pDC406). Similar experiments can be done using soluble RANKL or agonistic antibodies to RANK to trigger cells transfected with RANK.

For the mIL-4R-specific RIA, a monoclonal antibody reactive with mIL-4R is labeled with ¹²⁵I via a Chloramine T conjugation method; the resulting specific activity is typically 1.5×10¹⁶ cpm/nmol. After 48 hours, transfected cells are washed once with media (DMEM/F12 5% FBS). Non-specific binding sites are blocked by the addition of pre-warmed 60 binding media containing 5% non-fat dry milk and incubation at 37° C./5% CO₂ in a tissue culture incubator for one hour. The blocking media is decanted and binding buffer containing ¹²⁵I anti-mIL-4R (clone M1; rat IgG1) is added to the cells and incubated with rocking at room temperature for 1 hour. After incubation of the cells with the radio-labeled antibody, cells are washed extensively with binding buffer (2×) and

twice with phosphate-buffered saline (PBS). Cells are lysed in 1 ml of 0.5M NaOH, and total radioactivity is measured with a gamma counter.

Using this assay, 293/EBNA co-transfected with DNAs encoding RANK demonstrated transcriptional activation, as shown by detection of mulL-4R on the cell surface. Overexpression of RANK resulted in transcription of mulL-4R, as did triggering of the RANK by RANKL. Similar results are observed when RANK is triggered by agonistic antibodies.

EXAMPLE 6

This example illustrates the association of RANK with TRAF proteins. Interaction of RANK with cytoplasmic 15 TRAF proteins was demonstrated by co-immunoprecipitation assays essentially as described by Hsu et al. (Cell 84:299; 1996). Briefly, 293/EBNA cells were co-transfected with plasmids that direct the synthesis of RANK and epitopetagged (FLAG®; SEQ ID NO:7) TRAF2 or TRAF3. Two days after transfection, surface proteins were labeled with biotin-ester, and cells were lysed in a buffer containing 0.5% NP-40. RANK and proteins associated with this receptor were immunoprecipitated with anti-RANK, washed extensively, resolved by electrophoretic separation on a 6-10% 25 SDS polyacrylamide gel and electrophoretically transferred to a nitrocellulose membrane for Western blotting. The association of TRAF2 and TRAF3 proteins with RANK was visualized by probing the membrane with an antibody that specifically recognizes the FLAG® epitope. TRAFs 2 and 3 did not immunopreciptitate with anti-RANK in the absence of RANK expression.

EXAMPLE 7

This example describes isolation of a ligand for RANK, referred to as RANKL, by direct expression cloning. The ligand was cloned essentially as described in U.S. Ser. No. 08/249,189, filed May 24, 1994 (the relevant disclosure of which is incorporated by reference herein), for CD40L. Briefly, a library was prepared from a clone of a mouse thymoma cell line EL-4 (ATCC TIB 39), called EL-40.5, derived by sorting five times with biotinylated CD40/ Fc fusion protein in a FACS (fluorescence activated cell sorter). The cDNA library was made using standard methodology; the plasmid DNA was isolated and transfected into sub-confluent CV1-EBNA cells using a DEAE-dextran method. Transfectants were screened by slide autoradiography for expression of RANKL using a two-step binding method with RANK/Fc fusion protein as prepared in Example 2 followed by radioiodinated goat anti-human IgG antibody.

A clone encoding a protein that specifically bound RANK was isolated and sequenced; the clone was referred to as 11H. An expression vector containing murine RANKL sequence, designated pDC406:muRANK-L (in E. coli DH10B), was deposited with the American Type Culture Collection, Rockville, Md. (ATCC) on Dec. 20, 1996, under terms of the Budapest Treaty, and given accession number 98284. The nucleotide sequence and predicted amino acid sequence of this clone are illustrated in SEQ ID NO:10. This clone did not contain an initiator methionine; additional, full-length clones were obtained from a 7B9 library (prepared substantially as described in U.S. Pat. No. 5,599,905, issued Feb. 4, 1997); the 5' region was found to be identical to that of human RANKL as shown in SEQ ID NO:12, amino acids 1 through 22, except for substitution of a Gly for a Thr at residue 9.

This ligand is useful for assessing the ability of RANK to bind RANKL by a number of different assays. For example,

transfected cells expressing RANKL can be used in a FACS assay (or similar assay) to evaluate the ability of soluble RANK to bind RANKL. Moreover, soluble forms of RANKL can be prepared and used in assays that are known in the art (i.e., ELISA or BIAcore assays essentially as described in 5 U.S. Ser. No. 08/249,189, filed May 24, 1994). RANKL is also useful in affinity purification of RANK, and as a reagent in methods to measure the levels of RANK in a sample. Soluble RANKL is also useful in inducing NF-kB activation and thus protecting cells that express RANK from apoptosis. 10

EXAMPLE 8

This example describes the isolation of a human RANK ligand (RANKL) using a PCR-based technique. Murine 15 RANK ligand-specific oligonucleotide primers were used in PCR reactions using human cell line-derived first strand cDNAs as templates. Primers corresponded to nucleotides 478-497 and to the complement of nucleotides 858-878 of murine RANK ligand (SEQ ID NO:10). An amplified band approximately 400 bp in length from one reaction using the human epidermoid cell line KB (ATCC CCL-17) was gel purified, and its nucleotide sequence determined; the sequence was 85% identical to the corresponding region of murine RANK ligand, confirming that the fragment was from 25 human RANKL.

To obtain full-length human RANKL cDNAs, two human RANKL-specific oligonucleotides derived from the KB PCR product nucleotide sequence were radiolabeled and used as hybridization probes to screen a human PBL cDNA library prepared in lambda gt10 (Stratagene, La Jolla, Calif.), substantially as described in U.S. Pat. No. 5,599,905, issued Feb. 4,1997. Several positive hybridizing plaques were identified and purified, their inserts subcloned into pBluescript SK (Stratagene, La Jolla, Calif.), and their nucleotide sequence determined. One isolate, PBL3, was found to encode most of the predicted human RANKL, but appeared to be missing approximately 200 bp of 5' coding region. A second isolate, PBL5 was found to encode much of the predicted human RANKL, including the entire 5' end and an additional 200 bp of 5' untranslated sequence.

The 5' end of PBL5 and the 3' end of PBL3 were ligated together to form a full length cDNA encoding human RANKL. The nucleotide and predicted amino acid sequence of the full-length human RANK ligand is shown in SEQ ID 45 NO:12. Human RANK ligand shares 83% nucleotide and 84% amino acid identity with murine RANK ligand. A plasmid vector containing human RANKL sequence, designated pBluescript:huRANK-L (in *E. coli* DH10B), was deposited with the American Type Culture Collection, Rockville, Md. 50 (ATCC) on Mar. 11, 1997 under terms of the Budapest Treaty, and given accession number 98354.

Murine and human RANKL are Type 2 transmembrane proteins. Murine RANKL contains a predicted 48 amino acid intracellular domain, 21 amino acid transmembrane domain 55 and 247 amino acid extracellular domain. Human RANKL contains a predicted 47 amino acid intracellular domain, 21 amino acid transmembrane domain and 249 amino acid extracellular domain.

EXAMPLE 9

This example describes the chromosomal mapping of human RANK using PCR-based mapping strategies. Initial human chromosomal assignments were made using RANK 65 and RANKL-specific PCR primers and a BIOS Somatic Cell Hybrid PCRable DNA kit from BIOS Laboratories (New

Haven, Conn.), following the manufacturer's instructions. RANK mapped to human chromosome 18; RANK ligand mapped to human chromosome 13. More detailed mapping was performed using a radiation hybrid mapping panel Genebridge 4 Radiation Hybrid Panel (Research Genetics, Huntsville, Ala.; described in Walter, Mass. et al., *Nature Genetics* 7:22-28, 1994). Data from this analysis was then submitted electronically to the MIT Radiation Hybrid Mapper (URL: http://www-genome.wi.mit.edu/cgi-bin/contig/rhmapper.pl) following the instructions contained therein. This analysis yielded specific genetic marker names which, when submitted electronically to the NCBI Entrez browser (URL: http://www3.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=c&form=0), yielded the specific map locations.

query?db=c&form=0), yielded the specific map locations. RANK mapped to chromosome 18q22.1, and RANKL mapped to chromosome 13q14.

EXAMPLE 10

This example illustrates the preparation of monoclonal antibodies against RANKL. Preparations of purified recombinant RANKL, for example, or transfixed cells expressing high levels of RANKL, are employed to generate monoclonal antibodies against RANKL using conventional techniques, such as those disclosed in U.S. Pat. No. 4,411,993. DNA encoding RANKL can also be used as an immunogen, for example, as reviewed by Pardoll and Beckerleg in *Immunity* 3:165, 1995. Such antibodies are likely to be useful in interfering with RANKL signaling (antagonistic or blocking antibodies), as components of diagnostic or research assays for RANKL or RANKL activity, or in affinity purification of RANKL.

To immunize rodents, RANKL immunogen is emulsified in an adjuvant (such as complete or incomplete Freund's adjuvant, alum, or another adjuvant, such as Ribi adjuvant R700 (Ribi, Hamilton, Mont.), and injected in amounts ranging from 10-100 µg subcutaneously into a selected rodent, for example, BALB/c mice or Lewis rats. DNA may be given intradermally (Raz et al., *Proc. Natl. Acad. Sci. USA* 91:9519, 1994) or intamuscularly (Wang et al., *Proc. Natl. Acad. Sci. USA* 90:4156, 1993); saline has been found to be a suitable diluent for DNA-based antigens. Ten days to three weeks days later, the immunized animals are boosted with additional immunogen and periodically boosted thereafter on a weekly, biweekly or every third week immunization schedule.

Serum samples are periodically taken by retro-orbital bleeding or tail-tip excision for testing by dot-blot assay (antibody sandwich), ELISA (enzyme-linked immunosorbent assay), immunoprecipitation, or other suitable assays, including FACS analysis. Following detection of an appropriate antibody titer, positive animals are given an intravenous injection of antigen in saline. Three to four days later, the animals are sacrificed, splenocytes harvested, and fused to a murine myeloma cell line (e.g., NS1 or preferably Ag 8.653 [ATCC CRL 1580]). Hybridoma cell lines generated by this procedure are plated in multiple microtiter plates in a selective medium (for example, one containing hypoxanthine, aminopterin, and thymidine, or HAT) to inhibit proliferation of non-fused cells, myeloma-myeloma hybrids, and splenocyte-splenocyte hybrids.

Hybridoma clones thus generated can be screened by ELISA for reactivity with RANKL, for example, by adaptations of the techniques disclosed by Engvall et al., *Immunochem.* 8:871 (1971) and in U.S. Pat. No. 4,703,004. A preferred screening technique is the antibody capture technique described by Beckman et al., *J. Immunol.* 144:4212 (1990). Positive clones are then injected into the peritoneal

cavities of syngeneic rodents to produce ascites containing high concentrations (>1 mg/ml) of anti-RANK monoclonal antibody. The resulting monoclonal antibody can be purified by ammonium sulfate precipitation followed by gel exclusion chromatography. Alternatively, affinity chromatography 5 based upon binding of antibody to protein A or protein G can also be used, as can affinity chromatography based upon binding to RANKL protein. Using the methods described herein to monitor the activity of the mAbs, both blocking (i.e., antibodies that bind RANKL and inhibit binding to RANK) 10 and non-blocking (i.e., antibodies that bind RANKL and do not inhibit binding) are isolated.

EXAMPLE 11

This example demonstrates that RANK expression can be up-regulated. Human peripheral blood T cells were purified by flow cytometry sorting or by negative selection using antibody coated beads, and activated with anti-CD3 (OKT3, Dako) coated plates or phytohemagglutinin in the presence or 20 absence of various cytokines, including Interleukin-4 (IL-4), Transforming Growth Factor-β (TGF-β) and other commercially available cytokines (IL-1-α, IL-2, IL-3, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IFN- γ , TNF- α). Expression of RANK was evaluated by FACS in a time course experiment 25 for day 2 to day 8, using a mouse monoclonal antibody mAb144 (prepared as described in Example 3), as shown in the table below. Results are expressed as '+' to '++++' referring to the relative increase in intensity of staining with anti-RANK. Double labeling experiments using both anti-RANK 30 and anti-CD8 or anti-CD4 antibodies were also performed.

TABLE 1

Upregulation of RANK by Cyto	kines
Cytokine (concentration)	Results
IL-4 (50 ng/ml)	. +
TGF-β (5 ng/ml)	+ to ++
IL-4 (50 ng/ml) + TGF- β (5 ng/ml)	++++
IL1-α (10 ng/ml)	-
IL-2 (20 ng/ml)	-
IL-3 (25 ng/ml)	-
IL-7 (20 ng/ml)	-
IL-8 (10 ng/ml)	_
IL-10 (50 ng/ml)	_
IL-12 (10 ng/ml)	_
IL-15 (10 ng/ml)	_
IFN-y (100 U/ml)	_

Of the cytokines tested, IL-4 and TGF-β increased the level of RANK expression on both CD8+ cytotoxic and CD4+ 50 helper T cells from day 4 to day 8. The combination of IL-4 and TGF-β acted synergistically to upregulate expression of this receptor on activated T cells. This particular combination of cytokines is secreted by suppresser T cells, and is believed to be important in the generation of tolerance (reviewed in 55 Mitchison and Sieper, Z. Rheumatol. 54:141, 1995), implicating the interaction of RANK in regulation of an immune response towards either tolerance or induction of an active immune response.

EXAMPLE 12

This example illustrates the influence of RANK.Fc and hRANKL on activated T cell growth. The addition of TGF β to anti-CD3 activated human peripheral blood T lymphocytes 65 induces proliferation arrest and ultimately death of most lymphocytes within the first few days of culture. We tested the

effect of RANK:RANKL interactions on $TGF\beta$ -treated T cells by adding RANK.Fc or soluble human RANKL to T cell cultures.

Human peripheral blood T cells $(7\times10^5 \text{ PBT})$ were cultured for six days on anti-CD3 (OKT3, 5 µg/ml) and anti-Flag (M1, 5 µg/ml) coated 24 well plates in the presence of TGF β (1 ng/ml) and IL-4 (10 ng/ml), with or without recombinant FLAG-tagged soluble hRANKL (1 µg/ml) or RANK.Fc (10 µg/ml). Viable T cell recovery was determined by triplicate trypan blue countings.

The addition of RANK.Fc significantly reduced the number of viable T cells recovered after six days, whereas soluble RANKL greatly increased the recovery of viable T cells (FIG. 1). Thus, endogenous or exogenous RANKL enhances the number of viable T cells generated in the presence of TGF β . TGF β , along with IL-4, has been implicated in immune response regulation when secreted by the $T_H3/$ regulatory T cell subset. These T cells are believed to mediate bystander suppression of effector T cells. Accordingly, RANK and its ligand may act in an auto/paracrine fashion to influence T cell tolerance. Moreover, TGF β is known to play a role in the evasion of the immune system effected by certain pathogenic or opportunistic organisms. In addition to playing a role in the development of tolerance, RANK may also play a role in immune system evasion by pathogens.

EXAMPLE 13

This example illustrates the influence of the interaction of RANK on CD1a⁺ dendritic cells (DC). Functionally mature dendritic cells (DC) were generated in vitro from CD34+ bone marrow (BM) progenitors. Briefly, human BM cells from normal healthy volunteers were density fractionated using Ficoll medium and CD34⁺ cells immunoaffinity isolated using an anti-CD34 matrix column (Ceprate, CellPro). The CD34⁺ BM cells were then cultured in human GM-CSF (20 ng/ml), human IL-4 (20 ng/ml), human TNF-α (20 ng/ml), human CHO-derived Flt3L (FL; 100 ng/ml) in Super McCoy's medium supplemented with 10% fetal calf serum in a fully humidified 37° C. incubator (5% CO₂) for 14 days. CD1a⁺, HLA-DR⁺ DC were then sorted using a FACStar PlusTM, and used for biological evaluation of RANK

On human CD1a+ DC derived from CD34+ bone marrow 45 cells, only a subset (20-30%) of CD1a+ DC expressed RANK at the cell surface as assessed by flow cytometric analysis. However, addition of CD40L to the DC cultures resulted in RANK surface expression on the majority of CD1a+ DC. CD40L has been shown to activate DC by enhancing in vitro cluster formation, inducing DC morphological changes and upregulating HLA-DR, CD54, CD58, CD80 and CD86 expression Addition of RANKL to DC cultures significantly increased the degree of DC aggregation and cluster formation above control cultures, similar to the effects seen with CD40L. Sorted human CD1a+ DC were cultured in a cytokine cocktail (GM-CSF, IL-4, TNF-α and FL), in cocktail plus CD40L (1 µg/ml), in cocktail plus RANKL (1 µg/ml), or in cocktail plus heat inactivated (AH) RANKL (1 µg/ml) in 24-well flat bottomed culture plates in 1 ml culture media for 60 48-72 hours and then photographed using an inversion microscope. An increase in DC aggregation and cluster formation above control cultures was not evident when heat inactivated RANKL was used, indicating that this effect was dependent on biologically active protein. However, initial phenotypic analysis of adhesion molecule expression indicated that RANKL-induced clustering was not due to increased levels of CD2, CD11a, CD54 or CD58.

The addition of RANKL to CD1a+ DC enhanced their allo-stimulatory capacity in a mixed lymphocyte reaction (MLR) by at least 3- to 10-fold, comparable to CD40Lcultured DC (FIG. 2). Allogeneic T cells (1×10⁵) were incubated with varying numbers of irradiated (2000 rad) DC cultured as indicated above in 96-well round bottomed culture plates in 0.2 ml culture medium for four days. The cultures were pulsed with 0.5 mCi [3H]-thymidine for eight hours and the cells harvested onto glass fiber sheets for counting on a gas phase β counter. The background counts for 10 either T cells or DC cultured alone were <100 cpm. Values represent the mean ±SD of triplicate cultures. Heat inactivated RANKL had no effect. DC allo-stimulatory activity was not further enhanced when RANKL and CD40L were used in combination, possibly due to DC functional capacity having 15 reached a maximal level with either cytokine alone. Neither RANKL nor CD40L enhanced the in vitro growth of DC over the three day culture period. Unlike CD40L, RANKL did not significantly increase the levels of HLA-DR expression nor the expression of CD80 or CD86.

RANKL can enhance DC cluster formation and functional capacity without modulating known molecules involved in cell adhesion (CD18, CD54), antigen presentation (HLA-DR) or costimulation (CD86), all of which are regulated by CD40/ CD40L signaling. The lack of an effect on the expres- 25 sion of these molecules suggests that RANKL may regulate DC function via an alternate pathway(s) distinct from CD40/ CD40L. Given that CD40L regulates RANK surface expression on in vitro-generated DC and that CD40L is upregulated on activated T cells during DC-T cell interactions, RANK and 30 its ligand may form an important part of the activation cascade that is induced during DC-mediated T cell expansion. Furthermore, culture of DC in RANKL results in decreased levels of CD1b/c expression, and increased levels of CD83. Both of these molecules are similarly modulated during DC 35 maturation by CD40L (Caux et al. J. Exp. Med. 180:1263; 1994), indicating that RANKL induces DC maturation.

Dendritic cells are referred to as "professional" antigen presenting cells, and have a high capacity for sensitizing MHC-restricted T cells. There is growing interest in using 40 dendritic cells ex vivo as tumor or infectious disease vaccine adjuvants (see, for example, Romani, et al., J. Exp. Med., 180:83, 1994). Therefore, an agent such as RANKL that induces DC maturation and enhances the ability of dendritic cells to stimulate an immune response is likely to be useful in 45 immunotherapy of various diseases.

EXAMPLE 14

This example describes the isolation of the murine 50 homolog of RANK, referred to as muRANK. MuRANK was isolated by a combination of cross-species PCR and colony hybridization. The conservation of Cys residues in the Cysrich pseudorepeats of the extracellular domains of TNFR superfamily member proteins was exploited to design human 55 RANK-based PCR primers to be used on murine first strand cDNAs from various sources. Both the sense upstream primer and the antisense downstream primer were designed to have their 3' ends terminate within Cys residues.

The upstream sense primer encoded nucleotides 272-295 60 amino acids 3-232 of the Fc mutein (SEQ ID NO:8). of SEQ ID NO:5 (region encoding amino acids 79-86); the downstream antisense primer encoded the complement of nucleotides 409-427 (region encoding amino acids 124-130). Standard PCR reactions were set up and run, using these primers and first strand cDNAs from various murine cell line 65 or tissue sources. Thirty reaction cycles of 94° C. for 30 seconds, 50° C. for 30 seconds, and 72° C. for 20 seconds

were run. PCR products were anayzed by electrophoresis, and specific bands were seen in several samples. The band from one sample was gel purified and DNA sequencing revealed that the sequence between the primers was approximately 85% identical to the corresponding human RANK nucleotide sequence.

A plasmid based cDNA library prepared from the murine fetal liver epithelium line FLE18 (one of the cell lines identified as positive in the PCR screen) was screened for fulllength RANK cDNAs using murine RANK-specific oligonucleotide probes derived from the murine RANK sequence determined from sequencing the PCR product. Two cDNAs, one encoding the 5' end and one encoding the 3' end of full-length murine RANK (based on sequence comparison with the full-length human RANK) were recombined to generate a full-length murine RANK cDNA. The nucleotide and amino acid sequence of muRANK are shown in SEQ ID Nos:14 and 15.

The cDNA encodes a predicted Type 1 transmembrane 20 protein having 625 amino acid residues, with a predicted 30 amino acid signal sequence, a 184 amino acid extracellular domain, a 21 amino acid transmembrane domain, and a 390 amino acid cytoplasmic tail. The extracellular region of muRANK displayed significant amino acid homology (69.7% identity, 80.8% similarity) to huRANK. Those of skill in the art will recognize that the actual cleavage site can be different from that predicted by computer; accordingly, the N-terminal of RANK may be from amino acid 25 to amino acid 35.

Other members of the TNF receptor superfamily have a region of amino acids between the transmembrane domain and the ligand binding domain that is referred to as a 'spacer' region, which is not necessary for ligand binding. In muRANK, the amino acids between 197 and 214 are predicted to form such a spacer region. Accordingly, a soluble form of RANK that terminates with an amino acid in this region is expected to retain the ability to bind a ligand for RANK in a specific manner. Preferred C-terminal amino acids for soluble RANK peptides are selected from the group consisting of amino acids 214, and 197 of SEQ ID NO:14, although other amino acids in the spacer region may be utilized as a C-terminus.

EXAMPLE 15

This example illustrates the preparation of several different soluble forms of RANK and RANKL. Standard techniques of restriction enzyme cutting and ligation, in combination with PCR-based isolation of fragments for which no convenient restriction sites existed, were used. When PCR was utilized, PCR products were sequenced to ascertain whether any mutations had been introduced; no such mutations were found.

In addition to the huRANK/Fc described in Example 2, another RANK/Fc fusion protein was prepared by ligating DNA encoding amino acids 1-213 of SEQ ID NO:6, to DNA encoding amino acids 3-232 of the Fc mutein described previously (SEQ ID NO:8). A similar construct was prepared for murine RANK, ligating DNA encoding amino acids 1-213 of full-length murine RANK (SEQ ID NO:15) to DNA encoding

A soluble, tagged, poly-His version of huRANKL was prepared by ligating DNA encoding the leader peptide from the immunoglobulin kappa chain (SEQ ID NO:16) to DNA encoding a short version of the FLAGTM tag (SEQ ID NO:17), followed by codons encoding Gly Ser, then a poly-His tag (SEQ ID NO:18), followed by codons encoding Gly Thr Ser, and DNA encoding amino acids 138-317 of SEQ ID NO:13.

28
• EXAMPLE 18

A soluble, poly-His tagged version of murine RANKL was prepared by ligating DNA encoding the CMV leader (SEQ ID NO:9) to codons encoding Arg Thr Ser, followed by DNA encoding poly-His (SEQ ID NO:18) followed by DNA encoding amino acids 119-294 of SEQ ID NO:11.

A soluble, oligomeric form of huRANKL was prepared by ligating DNA encoding the CMV leader (SEQ ID NO:9) to a codon encoding Asp followed by DNA ending a trimerformer "leucine" zipper (SEQ ID NO:19), then by codons encoding Thr Arg Ser followed by amino acids 138-317 of ¹⁰ SEQ ID NO:13.

These and other constructs are prepared by routine experimentation. The various DNAs are then inserted into a suitable expression .vector, and expressed. Particularly preferred expression vectors are those which can be used in mammalian cells. For example, pDC409 and pDC304, described herein, are useful for transient expression. For stable transfection, the use of CHO cells is preferred; several useful vectors are described in U.S. Ser. No. 08/785,150, now allowed, for example, one of the 2A5-3 λ -derived expression vectors discussed therein.

EXAMPLE 16

This example demonstrates that RANKL expression can be up-regulated on murine T cells. Cells were obtained from mesenteric lymph nodes of C57BL/6 mice, and activated with anti-CD3 coated plates, Concanavalin A (ConA) or phorbol myristate acetate in combination with ionomycin (anti-CD3: 500A2; Immunex Corporation, Seattle Wash.; ConA, PMA, ionomycin, Sigma, St. Louis, Mo.) substantially as described herein, and cultured from about 2 to 5 days. Expression of RANKL was evaluated in a three color analysis by FACS, using antibodies to the T cell markers CD4, CD8 and CD45RB, and RANK/Fc, prepared as described herein.

RANKL was not expressed on unstimulated murine T cells. T cells stimulated with either anti-CD3, ConA, or PMA/ionomycin, showed differential expression of RANKL: CD4/CD45RB^{Lo} and CD4+/CD45RB^{Hi} cells were positive for RANKL, but CD8+ cells were not. RANKL was not observed on B cells, similar to results observed with human cells.

EXAMPLE 17

This example illustrates the effects of murine RANKL on cell proliferation and activation. Various cells or cell lines representative of cells that play a role in an immune response (murine spleen, thymus and lymphnode) were evaluated by culturing them under conditions promoting their viability, in the presence or absence of RANKL. RANKL did not stimulate any of the tested cells to proliferate. One cell line, a macrophage cell line referred to as RAW 264.7 (ATCC accession number TIB 71) exhibited some signs of activation.

RAW cells constitutively produce small amounts of TNF-α. Incubation with either human or murine RANKL enhanced production of TNF-α by these cells in a dose dependent manner. The results were not due to contamination of RANKL preparations with endotoxin, since boiling RANKL for 10 minutes abrogated TNF-α production, whereas a similar treatment of purified endotoxin (LPS) did not affect the ability of the LPS to stimulate TNF-α production. Despite the fact that RANKL activated the macrophage cell line RAW T64.7 for TNF-α production, neither human RANKL nor 65 murine RANKL stimulated nitric oxide production by these cells.

This example illustrates the effects of murine RANKL on growth and development of the thymus in fetal mice. Pregnant mice were injected with 1 mg of RANK/Fc or vehicle control protein (murine serum albumin; MSA) on days 13, 16 and 19 of gestation. After birth, the neonates continued to be injected with RANK/Fc intraperitoneally (IP) on a daily basis, beginning at a dose of 1 µg, and doubling the dose about every four days, for a final dosage of 4 µg. Neonates were taken at days 1,8 and 15 post birth, their thymuses and spleens harvested and examined for size, cellularity and phenotypic composition.

A slight reduction in thymic size at day 1 was observed in the neonates born to the female injected with RANK/Fc; a similar decrease in size was not observed in the control neonates. At day 8, thymic size and cellularity were reduced by about 50% in the RANK/Fc-treated animals as compared to MSA treated mice. Phenotypic analysis demonstrated that the relative proportions of different T cell populations in the thymus were the same in the RANK/Fc mice as the control mice, indicating that the decreased cellularity was due to a global depression in the number of thymic T cells as opposed to a decrease in a specific population(s). The RANK/Fctreated neonates were not significantly different from the control neonates at day 15 with respect to either size, cellularity or phenotype of thymic cells. No significant differences were observed in spleen size, cellularity or composition at any of the time points evaluated. The difference in cellularity on day 8 and not on day 15 may suggest that RANK/Fc may assert its effect early in thymic development.

EXAMPLE 19

This example demonstrates that the C-terminal region of the cytoplasmic domain of RANK is important for binding of several different TRAF proteins. RANK contains at least two recognizable PXQX(X)T motifs that are likely TRAF docking sites. Accordingly, the importance of various regions of the cytoplasmic domain of RANK for TRAF binding was evaluated. A RANK/GST fusion protein was prepared substantially as described in Smith and Johnson, *Gene* 67:31 (1988), and used in the preparation of various truncations as described below.

Comparison of the nucleotide sequence of murine and human RANK indicated that there were several conserved regions that could be important for TRAF binding. Accordingly, a PCR-based technique was developed to facilitate preparation of various C-terminal truncations that would retain the conserved regions. PCR primers were designed to introduce a stop codon and restriction enzyme site at selected points, yielding the truncations described in Table 2 below. Sequencing confirmed that no undesired mutations had been introduced in the constructs.

Radio-labeled (35S-Met, Cys) TRAF proteins were prepared by in vitro translation using a commercially available reticulocyte lysate kit according to manufacturer's instructions (Promega). Truncated GST fusion proteins were purified substantially as described in Smith and Johnson (supra). Briefly, *E. coli* were transfected with an expression vector encoding a fusion protein, and induced to express the protein. The bacteria were lysed, insoluble material removed, and the fusion protein isolated by precipitation with glutathione-coated beads (Sepahrose 4B, Pharmacia, Uppsala Sweden)

The beads were washed, and incubated with various radiolabeled TRAF proteins. After incubation and wash steps, the fusion protein/TRAF complexes were removed from the beads by boiling in 0.1% SDS+ β -mercaptoethanol, and loaded onto 12% SDS gels (Novex). The gels were subjected to autoradiography, and the presence or absence of radiolabeled material recorded. The results are shown in Table 2 below.

TABLE 2

Binding of Va	urious TRAF P	roteins to the C	ytoplasmi	ic Domain	of RANK	-
C terminal Truncations:	E206-S339	E206-Y421	E206- M476	E206- G544	Full length	_ 1
TRAF1	-	_	_	_	++	-
TRAF2	-	-	_	-	++	
TRAF3	_	-	-	-	++	
TRAF4	-	-	-	-	-	1

TABLE 2-continued

Binding of V	arious TRAF P	roteins to the C	Cytoplasm	ic Domain	of RANK
C terminal Truncations:	E206-S339	E206-Y421	E206- M476	E206- G544	Full length
TRAF5	-	_	-	-	+
TRAF6	-	+	+	+	++

These results indicate that TRAF1, TRAF2, TRAF3, TRAF 5 and TRAF6 bind to the most distal portion of the RANK cytoplasmic domain (between amino-acid G544 and A616). TRAF6 also has a binding site between S339 and Y421. In this experiment, TRAF5 also bound the cytoplasmic domain of RANK.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (iii) NUMBER OF SEQUENCES: 19
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3115 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: HOMO SAPIENS
 - (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: BONE-MARROW DERIVED DENDRITIC CELLS
 - (B) CLONE: 9D-8A
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 93..1868
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

GCTGCTGCTG CTCTGCGCGC TGCTCGCCCG GCTGCAGTTT TATCCAGAAA GAGCTGTGTG 60												
GACTCTCTGC CTGACCTCAG TGTTCTTTTC AG GTG GCT TTG CAG ATC GCT CCT Val Ala Leu Gln Ile Ala Pro 1 5	113											
CCA TGT ACC AGT GAG AAG CAT TAT GAG CAT CTG GGA CGG TGC TGT AAC Pro Cys Thr Ser Glu Lys His Tyr Glu His Leu Gly Arg Cys Cys Asn 10 15 20	161											
AAA TGT GAA CCA GGA AAG TAC ATG TCT TCT AAA TGC ACT ACT ACC TCT Lys Cys Glu Pro Gly Lys Tyr Met Ser Ser Lys Cys Thr Thr Thr Ser 25 30 35	209											
GAC AGT GTA TGT CTG CCC TGT GGC CCG GAT GAA TAC TTG GAT AGC TGG Asp Ser Val Cys Leu Pro Cys Gly Pro Asp Glu Tyr Leu Asp Ser Trp 40 45 50 55	257											
AAT GAA GAA GAT AAA TGC TTG CTG CAT AAA GTT TGT GAT ACA GGC AAG Asn Glu Glu Asp Lys Cys Leu Leu His Lys Val Cys Asp Thr Gly Lys 60 65 70	305											
GCC CTG GTG GCC GTG GTC GCC GGC AAC AGC ACC CCC CGG CGC TGC	353											

		•	-									con	tin	uea				 	
Ala	Leu	Val	Ala 75	Val	Val	Ala	Gly	Asn 80	Ser	Thr	Thr	Pro	Arg 85	Arg	Сув				
						CAC										401			
						CCG Pro 110										449			
						TGC Cys										497	•		
						GAC Asp										545			
						GAA Glu										593			
Val	Сув	Ser 170	Ser	Ser	Leu	CCA Pro	Ala 175	Arg	ГÀв	Pro	Pro	Asn 180	Glu	Pro	His	641			
Val	Tyr 185	Leu	Pro	Gly	Leu	ATA Ile 190	Ile	Leu	Leu	Leu	Phe 195	Ala	Ser	Val	Ala	689			
Leu 200	Val	Ala	Ala	Ile	11e 205	TTT	Gly	Val	Сув	Tyr 210	Arg	ГÀв	ГÀа	Gly	Lys 215	737			
Ala	Leu	Thr	Ala	Asn 220	Leu	TGG	His	Trp	Ile 225	Asn	Glu	Ala	Сув	Gly 230	Arg	785			
Leu	Ser	Gly	Asp 235	ГÀв	Glu	TCC	Ser	Gly 240	Asp	Ser	СЛв	Val	Ser 245	Thr	His	833			
Thr	Ala	Asn 250	Phe	Gly	Gln	CAG Gln	Gly 255	Ala	Сув	Glu	Gly	Val 260	Leu	Leu	Leu	881	•		
Thr	Leu 265	Glu	Glu	ГÀа	Thr	Phe 270	Pro	Glu	Aap	Met	Сув 275	Tyr	Pro	Asp	Gln	929			
Gly 280	Gly	Val	Сув	Gln	Gly 285		Сув	Val	Gly	Gly 290	Gly	Pro	Tyr	Ala	Gln 295	977			
Gly	Glu	Asp	Ala	Arg 300	Met	CTC Leu ATG	Ser	Leu	Val 305	Ser	ГÀв	Thr	Glu	Ile 310	Glu	1025			
Glu	Aap	Ser	Phe 315	Arg	Gln	Met	Pro	Thr 320	Glu	Asp	Glu	Tyr	Met 325	Asp	Arg	1073			
Pro	Ser	Gln 330	Pro	Thr	Asp	Gln	Leu 335	Leu	Phe	Leu	Thr	Glu 340	Pro	Gly	Ser	1121			
гåв	Ser 345	Thr	Pro	Pro	Phe	Ser 350	Glu	Pro	Leu	Glu	Val 355	Gly	Glu	Asn	Asp	1217			
Ser 360	Leu	Ser	Gln	Сув	Phe 365	Thr	Gly	Thr	Gln	Ser 370	Thr	Val	Gly	Ser	Glu 375	1265			
						Pro										2200			

Concinaca	
TCC TCT GAA AAC TAC TTG CAA AAA GAG GTG GAC AGT GGC CAT TGC CCG Ser Ser Glu Asn Tyr Leu Gln Lys Glu Val Asp Ser Gly His Cys Pro 395 400 405	1313
CAC TGG GCA GCC AGC CCC AGC CCC AAC TGG GCA GAT GTC TGC ACA GGC His Trp Ala Ala Ser Pro Ser Pro Asn Trp Ala Asp Val Cys Thr Gly 410 415 420	1361
TGC CGG AAC CCT CCT GGG GAG GAC TGT GAA CCC CTC GTG GGT TCC CCA Cys Arg Asn Pro Pro Gly Glu Asp Cys Glu Pro Leu Val Gly Ser Pro 425 430 435	1409
AAA CGT GGA CCC TTG CCC CAG TGC GCC TAT GGC ATG GGC CTT CCC CCT Lys Arg Gly Pro Leu Pro Gln Cys Ala Tyr Gly Met Gly Leu Pro Pro 440 445 450 450	1457
GAA GAA GCC AGC AGG ACG GAG GCC AGA GAC CAG CCC GAG GAT GGG Glu Glu Ala Ser Arg Thr Glu Ala Arg Asp Gln Pro Glu Asp Gly 460 465 470	1505
GCT GAT GGG AGG CTC CCA AGC TCA GCG AGG GCA GGT GCC GGG TCT GGA Ala Asp Gly Arg Leu Pro Ser Ser Ala Arg Ala Gly Ala Gly Ser Gly 475 480 485	1553
AGC TCC CCT GGT GGC CAG TCC CCT GCA TCT GGA AAT GTG ACT GGA AAC Ser Ser Pro Gly Gly Gln Ser Pro Ala Ser Gly Asn Val Thr Gly Asn 490 495 500	1601
AGT AAC TCC ACG TTC ATC TCC AGC GGG CAG GTG ATG AAC TTC AAG GGC Ser Asn Ser Thr Phe Ile Ser Ser Gly Gln Val Met Asn Phe Lys Gly 505 510 515	1649
GAC ATC ATC GTG GTC TAC GTC AGC CAG ACC TCG CAG GAG GGC GCG GCG Asp Ile Ile Val Val Tyr Val Ser Gln Thr Ser Gln Glu Gly Ala Ala 520 525 530 535	1697
GCG GCT GCG GAG CCC ATG GGC CGC CCG GTG CAG GAG GAG ACC CTG GCG Ala Ala Ala Glu Pro Met Gly Arg Pro Val Gln Glu Glu Thr Leu Ala 540 545 550	1745
CGC CGA GAC TCC TTC GCG GGG AAC GGC CCG CGC TTC CCG GAC CCG TGC Arg Arg Asp Ser Phe Ala Gly Asn Gly Pro Arg Phe Pro Asp Pro Cys 555 560 565	1793
GGC GGC CCC GAG GGG CTG CGG GAG CCG GAG AAG GCC TCG AGG CCG GTG Gly Gly Pro Glu Gly Leu Arg Glu Pro Glu Lys Ala Ser Arg Pro Val 570 575 580	1841
CAG GAG CAA GGC GGG GCC AAG GCT TGA GCGCCCCCCA TGGCTGGGAG Gln Glu Gln Gly Gly Ala Lys Ala 585 590	1888
CCCGAAGCTC GGAGCCAGGG CTCGCGAGGG CAGCACCGCA GCCTCTGCCC CAGCCCCGGC	1948
CACCCAGGGA TCGATCGGTA CAGTCGAGGA AGACCACCCG GCATTCTCTG CCCACTTTGC	2008
CTTCCAGGAA ATGGGCTTTT CAGGAAGTGA ATTGATGAGG ACTGTCCCCA TGCCCACGGA	2068
TGCTCAGCAG CCCGCCGCAC TGGGGCAGAT GTCTCCCCTG CCACTCCTCA AACTCGCAGC	2128
AGTAATTTGT GGCACTATGA CAGCTATTTT TATGACTATC CTGTTCTGTG GGGGGGGGT	2188
CTATGTTTTC CCCCCATATT TGTATTCCTT TTCATAACTT TTCTTGATAT CTTTCCTCCC	2248
TCTTTTTTAA TGTAAAGGTT TTCTCAAAAA TTCTCCTAAA GGTGAGGGTC TCTTTCTTTT	2308
CTCTTTTCCT TTTTTTTTC TTTTTTTGGC AACCTGGCTC TGGCCCAGGC TAGAGTGCAG	2368
TGGTGCGATT ATAGCCCGGT GCAGCCTCTA ACTCCTGGGC TCAAGCAATC CAAGTGATCC	2428
TCCCACCTCA ACCTTCGGAG TAGCTGGGAT CACAGCTGCA GGCCACGCCC AGCTTCCTCC	2488
CCCCGACTCC CCCCCCCAG AGACACGGTC CCACCATGTT ACCCAGCCTG GTCTCAAACT	2548
CCCCAGCTAA AGCAGTCCTC CAGCCTCGGC CTCCCAAAGT ACTGGGATTA CAGGCGTGAG	2608
CCCCCACGCT GGCCTGCTTT ACGTATTTTC TTTTGTGCCC CTGCTCACAG TGTTTTAGAG	2668
ATGGCTTTCC CAGTGTGTGT TCATTGTAAA CACTTTTGGG AAAGGGCTAA ACATGTGAGG	2728

CCTGGAGATA	GTTGCTAAGT	TGCTAGGAAC	ATGTGGTGGG	ACTTTCATAT	TCTGAAAAAT	2788
GTTCTATATT	CTCATTTTTC	TAAAAGAAAG	AAAAAAGGAA	ACCCGATTTA	TTTCTCCTGA	2848
atcttt tta a	GTTTGTGTCG	TTCCTTAAGC	AGAACTAAGC	TCAGTATGTG	ACCTTACCCG	2908
CTAGGTGGTT	AATTTATCCA	TGCTGGCAGA	GGCACTCAGG	TACTTGGTAA	GCAAATTTCT	2968
AAAACTCCAA	GTTGCTGCAG	CTTGGCATTC	TTCTTATTCT	AGAGGTCTCT	CTGGAAAAGA	3028
TGGAGAAAAT	GAACAGGACA	TGGGGCTCCT	GGAAAGAAAG	GGCCCGGGAA	GTTCAAGGAA	3088
GAATAAAGTT	GAAATTTTAA	АААААА				3115
/a\	AMIAN DAD CI	70 TD NO. 2				

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 591 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Val Ala Leu Gln Ile Ala Pro Pro Cys Thr Ser Glu Lys His Tyr Glu
1 5 10 15

His Leu Gly Arg Cys Cys Asn Lys Cys Glu Pro Gly Lys Tyr Met Ser 20 25 30

Ser Lys Cys Thr Thr Thr Ser Asp Ser Val Cys Leu Pro Cys Gly Pro 35 40 45

Asp Glu Tyr Leu Asp Ser Trp Asn Glu Glu Asp Lys Cys Leu Leu His 50 55 60

Lys Val Cys Asp Thr Gly Lys Ala Leu Val Ala Val Val Ala Gly Asn 65 70 75 80

Ser Thr Thr Pro Arg Arg Cys Ala Cys Thr Ala Gly Tyr His Trp Ser 85 90 95

Gln Asp Cys Glu Cys Cys Arg Arg Asn Thr Glu Cys Ala Pro Gly Leu 100 105 110

Gly Ala Gln His Pro Leu Gln Leu Asn Lys Asp Thr Val Cys Lys Pro 115 120 125

Cys Leu Ala Gly Tyr Phe Ser Asp Ala Phe Ser Ser Thr Asp Lys Cys 130 135 140

Gly Thr Glu Lys Ser Asp Ala Val Cys Ser Ser Ser Leu Pro Ala Arg 165 170 175

Lys Pro Pro Asn Glu Pro His Val Tyr Leu Pro Gly Leu Ile Ile Leu 180 185 190

Leu Leu Phe Ala Ser Val Ala Leu Val Ala Ala Ile Ile Phe Gly Val 195 200 205

Cys Tyr Arg Lys Lys Gly Lys Ala Leu Thr Ala Asn Leu Trp His Trp 210 215 220

Ile Asn Glu Ala Cys Gly Arg Leu Ser Gly Asp Lys Glu Ser Ser Gly 225 230 235 240

Asp Ser Cys Val Ser Thr His Thr Ala Asn Phe Gly Gln Gln Gly Ala

Cys Glu Gly Val Leu Leu Leu Thr Leu Glu Glu Lys Thr Phe Pro Glu 260 265 270

Asp Met Cys Tyr Pro Asp Gln Gly Gly Val Cys Gln Gly Thr Cys Val

275		280	285	
Gly Gly Gly Pr 290	o Tyr Ala Gln 295	Gly Glu Asp	Ala Arg Met 300	Leu Ser Leu
Val Ser Lys Th 305	r Glu Ile Glu 310	Glu Asp Ser	Phe Arg Gln 315	Met Pro Thr 320
Glu Asp Glu Ty	r Met Asp Arg 325	Pro Ser Gln 330	Pro Thr Asp	Gln Leu Leu 335
Phe Leu Thr Gl 34		Lys Ser Thr 345	Pro Pro Phe	Ser Glu Pro 350
Leu Glu Val Gl 355	y Glu Asn Asp	Ser Leu Ser 360	Gln Cys Phe 365	Thr Gly Thr
Gln Ser Thr Va 370	l Gly Ser Glu 375	Ser Cys Asn	Cys Thr Glu 380	Pro Leu Cys
Arg Thr Asp Tr 385	p Thr Pro Met 390	Ser Ser Glu	Asn Tyr Leu 395	Gln Lys Glu 400
Val Asp Ser Gl	y His Cys Pro 405	His Trp Ala 410	Ala Ser Pro	Ser Pro Asn 415
Trp Ala Asp Va 42		Cys Arg Asn 425	Pro Pro Gly	Glu Asp Cys 430
Glu Pro Leu Va 435	l Gly Ser Pro	Lys Arg Gly 440	Pro Leu Pro 445	Gln Cys Ala
Tyr Gly Met Gl 450	y Leu Pro Pro 455	Glu Glu Glu	Ala Ser Arg 460	Thr Glu Ala
Arg Asp Gln Pr 465	o Glu Asp Gly 470	Ala Asp Gly	Arg Leu Pro 475	Ser Ser Ala 480
Arg Ala Gly Al	a Gly Ser Gly 485	Ser Ser Pro 490	Gly Gly Gln	Ser Pro Ala 495
Ser Gly Asn Va 50	l Thr Gly Asn	Ser Asn Ser 505	Thr Phe Ile	Ser Ser Gly 510
Gln Val Met As 515	n Phe Lys Gly	Asp Ile Ile 520	Val Val Tyr 525	Val Ser Gln
Thr Ser Gln Gl 530	u Gly Ala Ala 535	Ala Ala Ala	Glu Pro Met 540	Gly Arg Pro
Val Gln Glu Gl 545	u Thr Leu Ala 550	Arg Arg Asp	Ser Phe Ala 555	Gly Asn Gly 560
Pro Arg Phe Pr	o Asp Pro Cys 565	Gly Gly Pro 570	Glu Gly Leu	Arg Glu Pro 575
Glu Lys Ala Se 58		Gln Glu Gln 585	Gly Gly Ala	Lys Ala 590

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1391 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE: (A) ORGANISM: HOMO SAPIENS
- (vii) IMMEDIATE SOURCE: (A) LIBRARY: BONE-MARROW DERIVED DENDRITIC CELLS

		(1	3) CI	LONE	: 9D	-15C			•								
	(ix)	()		ME/I	KEY:		. 139:	L									
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:																	
CCGCTGAGGC CGCGGCGCC GCCAGCCTGT CCCGCGCC ATG GCC CCG CGC GCC Met Ala Pro Arg Ala 1 5															53		
					CTG Leu												101
					GCT Ala												149
					CTG Leu												197
					Lys Lys												245
					GAA Glu 75												293
					GTT Val												341
					ACG Thr												389
					GAC Asp												437
					GCC Ala												485
					CTT Leu 155												533
					CCC Pro												581
					ACA Thr												629
Leu	Pro	Ala 200	Arg	ГÀв	CCA Pro	Pro	Asn 205	Glu	Pro	His	Val	Tyr 210	Leu	Pro	Gly		677
					CTC Leu												725
Ile 230	Phe	Gly	Val	Сув	TAT Tyr 235	Arg	ГÀв	ŗÀa	Gly	Lys 240	Ala	Leu	Thr	Ala	Asn 245		773
Leu	Trp	His	Trp	Ile 250	AAT Asn	Glu	Ala	Сув	Gly 255	Arg	Leu	Ser	Gly	Авр 260	ГÀв		821
					AGT Ser												869

				TTA Leu				917
				CCA Pro				965
				TAC Tyr				1013
				GAG Glu				1061
				ATG Met 350				1109
				CCT Pro				1157
				GAG Glu				1205
				GGT Gly				1253
				ACT Thr				1301
				CAT His 430				1349
				TGC Cys				1391

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 451 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Ala Pro Arg Ala Arg Arg Arg Pro Leu Phe Ala Leu Leu Leu 1 5 10 15

Leu Cys Ala Leu Leu Ala Arg Leu Gln Val Ala Leu Gln Ile Ala Pro

Pro Cys Thr Ser Glu Lys His Tyr Glu His Leu Gly Arg Cys Cys Asn 35 40 45

Lys Cys Glu Pro Gly Lys Tyr Met Ser Ser Lys Cys Thr Thr Thr Ser 50 55

Asp Ser Val Cys Leu Pro Cys Gly Pro Asp Glu Tyr Leu Asp Ser Trp 65 70 75 80

Asn Glu Glu Asp Lys Cys Leu Leu His Lys Val Cys Asp Thr Gly Lys

Ala Leu Val Ala Val Val Ala Gly Asn Ser Thr Thr Pro Arg Arg Cys \$100\$

Ala Cys Thr Ala Gly Tyr His Trp Ser Gln Asp Cys Glu Cys Cys Arg

		115			-		120					125			
Arg	Asn 130	Thr	Glu	Сув	Ala	Pro 135	Gly	Leu	Gly	Ala	Gln 140	His	Pro	Leu	Gln
Leu 145	Asn	ГÀв	Asp	Thr	Val 150	САв	ГÀв	Pro	Сув	Leu 155	Ala	Gly	Tyr	Phe	Ser 160
Asp	Ala	Phe	Ser	Ser 165	Thr	Asp	ГÀв	Сув	Arg 170	Pro	Trp	Thr	Asn	Cys 175	Thr
Phe	Leu	Gly	Lys 180	Arg	Val	Glu	His	His 185	Gly	Thr	Glu	ŗÀa	Ser 190	Asp	Ala
Val	Сув	Ser 195	Ser	Ser	Leu	Pro	Ala 200	Arg	rys	Pro	Pro	Asn 205	Glu	Pro	His
Val	Tyr 210	Leu	Pro	Gly	Leu	Ile 215	Ile	Leu	Leu	Leu	Phe 220	Ala	Ser	Val	Ala
Leu 225	Val	Ala	Ala	Ile	Ile 230	Phe	Gly	Val	Сув	Tyr 235	Arg	ГÀа	ГÀв	Gly	Lys 240
Ala	Leu	Thr	Ala	Asn 245	Leu	Trp	His	Trp	Ile 250	Asn	Glu	Ala	Сув	Gly 255	Arg
Leu	Ser	Gly	Asp 260	ГÀв	Glu	Ser	Ser	Gly 265	Asp	Ser	Сув	Val	Ser 270	Thr	His
Thr	Ala	Asn 275	Phe	Gly	Gln	Gln	Gly 280	Ala	Сув	Glu	Gly	Val 285	Leu	Leu	Leu
Thr	Leu 290	Glu	Glu	ГÀв	Thr	Phe 295	Pro	Glu	Asp	Met	300 Cys	Tyr	Pro	Asp	Gln
Gly 305	Gly	Val	Сув	Gln	Gly 310	Thr	Сув	Val	Gly	Gly 315	Gly	Pro	Tyr	Ala	Gln 320
Gly	Glu	Asp	Ala	Arg 325	Met	Leu	Ser	Leu	Val 330	Ser	ГÀа	Thr	Glu	Ile 335	Glu
Glu	Asp	Ser	Phe 340	Arg	Gln	Met	Pro	Thr 345	Glu	Asp	Glu	Tyr	Met 350	Asp	Arg
Pro	Ser	Gln 355	Pro	Thr	Aap	Gln	Leu 360	Leu	Phe	Leu	Thr	Glu 365	Pro	Gly	Ser
ГÀа	Ser 370	Thr	Pro	Pro	Phe	Ser 375	Glu	Pro	Leu	Glu	Val 380	Gly	Glu	Asn	Asp
Ser 385	Leu	Ser	Gln	Сув	Phe 390	Thr	Gly	Thr	Gln	Ser 395	Thr	Val	Gly	Ser	Glu 400
Ser	Сув	Asn	Сув	Thr 405	Glu	Pro	Leu	САв	Arg 410	Thr	Asp	Trp	Thr	Pro 415	Met
Ser	Ser	Glu	Asn 420	Tyr	Leu	Gln	Lys	Glu 425	Val	Авр	Ser	Gly	His 430	Сув	Pro
His	Trp	Ala 435	Ala	Ser	Pro	Ser	Pro 440	Asn	Trp	Ala	Asp	Val 445	Сув	Thr	Gly
Сув	Arg 450	Asn													

- (2) INFORMATION FOR SEQ ID NO: 5:

 - (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 3136 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: single

 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

	(vi)				OURCE		SAE	PIENS	3		•					
•	(vii)	(2	4) Pi	IBRAF		BONE-	MARF ENGTH			/ED I	DENDI	RITIC	C CEI	LLS		
	(ix)		A) NA	AME/I	ŒY: ION:		. 1886	5								
	(xi)	SEC	QUENC	CE DI	ESCR	PTIC	ON: S	EQ 1	D NO): 5	:					
CCGC	CTGAC	GC (CGCGC	3CGC(CC GO	CCAG	CCTGT	cco	CGCGC		rg go et A: 1					53
							GCG Ala									101
							CAG Gln									149
							CGG Arg 45									197
							ACT Thr									245
							TTG Leu									293
							GAT Asp									341
							CCC Pro									389
							GAG Glu 125									437 [.]
							CAC His								ACA Thr	485
							GGC Gly									533
							ACC Thr									581
							AAA Lys									629
							AAT Asn 205									677
							GCG Ala									725
							TAY TAY									773

TTG TGG CAC TGG ATC AAT GAG GCT TGT GGC CGC CTA AGT GGA GAT AAG

821

												con	CIII	uea		
Leu	Trp	His	Trp	Ile 250	Asn	Glu	Ala	Сув	Gly 255	Arg	Leu	Ser	Gly	Asp 260	Гув	
					AGT Ser											869
					GAA Glu											917
					ATG Met											965
GGC Gly 310	ACG Thr	TGT Cys	GTA Val	GGA Gly	GGT Gly 315	GGT Gly	CCC Pro	TAC Tyr	GCA Ala	CAA Gln 320	GGC Gly	GAA Glu	GAT Asp	GCC Ala	AGG Arg 325	1013
					AGC Ser											1061
					Asp											1109
					CTC Leu											1157
					GAG Glu											1205
					AGC Ser 395											1253
					ACT Thr											1301
					Aap											1349
					GCA Ala											1397
					CCC Pro											1445
					GGC Gly 475											1493
					Asp											1541
					GCA Ala											1589
					GGA Gly											1637
					GTG Val											1685
					TCG Ser 555											1733

ATG GGC CGC CCG GTG CAG GAG GAG ACC CTG GCG CGC CGA GAC TCC TTC Met Gly Arg Pro Val Glu Glu Thr Leu Ala Arg Arg Asp Ser Phe 570 575 580	1781
GCG GGG AAC GGC CCG CGC TTC CCG GAC CCG TGC GGC GGC CCC GAG GGG Ala Gly Asn Gly Pro Arg Phe Pro Asp Pro Cys Gly Gly Pro Glu Gly 585 590 595	1829
CTG CGG GAG CCG GAG AAG GCC TCG AGG CCG GTG CAG GAG CAA GGC GGG Leu Arg Glu Pro Glu Lys Ala Ser Arg Pro Val Gln Glu Gln Gly Gly 600 605 610	1877
GCC AAG GCT TGAGCGCCCC CCATGGCTGG GAGCCCGAAG CTCGGAGCCA Ala Lys Ala 615	1926
GGGCTCGCGA GGGCAGCACC GCAGCCTCTG CCCCAGCCCC GGCCACCCAG GGATCGATCG	1986
GTACAGTCGA GGAAGACCAC CCGGCATTCT CTGCCCACTT TGCCTTCCAG GAAATGGGCT	2046
TTTCAGGAAG TGAATTGATG AGGACTGTCC CCATGCCCAC GGATGCTCAG CAGCCCGCCG	2106
CACTGGGGCA GATGTCTCCC CTGCCACTCC TCAAACTCGC AGCAGTAATT TGTGGCACTA	2166
TGACAGCTAT TTTTATGACT ATCCTGTTCT GTGGGGGGGG GGTCTATGTT TTCCCCCCAT	2226
ATTTGTATTC CTTTTCATAA CTTTTCTTGA TATCTTTCCT CCCTCTTTTT TAATGTAAAG	2286
GTTTTCTCAA AAATTCTCCT AAAGGTGAGG GTCTCTTTCT TTTCTCTTTT CCTTTTTTT	2346
TTCTTTTTTT GGCAACCTGG CTCTGGCCCA GGCTAGAGTG CAGTGGTGCG ATTATAGCCC	2406
GGTGCAGCCT CTAACTCCTG GGCTCAAGCA ATCCAAGTGA TCCTCCCACC TCAACCTTCG	2466
GAGTAGCTGG GATCACAGCT GCAGGCCACG CCCAGCTTCC TCCCCCCGAC TCCCCCCCCC	2526
CAGAGACACG GTCCCACCAT GTTACCCAGC CTGGTCTCAA ACTCCCCAGC TAAAGCAGTC	2586
CTCCAGCCTC GGCCTCCCAA AGTACTGGGA TTACAGGCGT GAGCCCCCAC GCTGGCCTGC	2646
TTTACGTATT TTCTTTTGTG CCCCTGCTCA CAGTGTTTTA GAGATGGCTT TCCCAGTGTG	2706
TGTTCATTGT AAACACTTTT GGGAAAGGGC TAAACATGTG AGGCCTGGAG ATAGTTGCTA	2766
AGTTGCTAGG AACATGTGGT GGGACTTTCA TATTCTGAAA AATGTTCTAT ATTCTCATTT	2826
TTCTAAAAGA AAGAAAAAAG GAAACCCGAT TTATTTCTCC TGAATCTTTT TAAGTTTGTG	2886
TCGTTCCTTA AGCAGAACTA AGCTCAGTAT GTGACCTTAC CCGCTAGGTG GTTAATTTAT	2946
CCATGCTGGC AGAGGCACTC AGGTACTTGG TAAGCAAATT TCTAAAACTC CAAGTTGCTG	3006
CAGCTTGGCA TTCTTCTTAT TCTAGAGGTC TCTCTGGAAA AGATGGAGAA AATGAACAGG	3066
ACATGGGGCT CCTGGAAAGA AAGGGCCCGG GAAGTTCAAG GAAGAATAAA GTTGAAATTT	3126
таааааааа	3136

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 616 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met Ala Pro Arg Ala Arg Arg Arg Pro Leu Phe Ala Leu Leu Leu 1 5 10 15

Leu Cys Ala Leu Leu Ala Arg Leu Gln Val Ala Leu Gln Ile Ala Pro $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Pro Cys Thr Ser Glu Lys His Tyr Glu His Leu Gly Arg Cys Cys Asn 35 4045

					_										
Гув	Сув 50	Glu	Pro	Gly	Lys	Tyr 55	Met	Ser	Ser	ГÀв	60 60	Thr	Thr	Thr	Ser
Asp 65	Ser	Val	Сув	Leu	Pro 70	СЛв	Gly	Pro	Asp	Glu 75	Tyr	Leu	Asp	Ser	Trp 80
Asn	Glu	Glu	Asp	Г 85	САв	Leu	Leu	His	Lys	Val	Сув	Asp	Thr	Gly 95	TÀa
Ala	Leu	Val	Ala 100	Val	Val	Ala	Gly	Asn 201	Ser	Thr	Thr	Pro	Arg 110	Arg	СЛа
Ala	Сув	Thr 115	Ala	Gly	Tyr	His	Trp 120	Ser	Gln	Aap	Сув	Glu 125	Сув	Сув	,Arg
Arg	Asn 130	Thr	Glu	САв	Ala	Pro 135	Gly	Leu	Gly	Ala	Gln 140	His	Pro	Leu	Gln
Leu 145	Asn	ŗ'na	Asp	Thr	Val 150	САв	ГÀа	Pro	Сув	Leu 155	Ala	Gly	Tyr	Phe	Ser 160
Asp	Ala	Phe	Ser	Ser 165	Thr	Asp	ГÀв	Сув	Arg 170	Pro	Trp	Thr	Asn	Сув 175	Thr
Phe	Leu	Gly	180 180	Arg	Val	Glu	His	His 185	Gly	Thr	Glu	ГÀа	Ser 190	Asp	Ala
Val	Сув	Ser 195	Ser	Ser	Leu	Pro	Ala 200	Arg	ГÅа	Pro	Pro	Asn 205	Glu	Pro	His
Val	Tyr 210	Leu	Pro	Gly	Leu	Ile 215	Ile	Leu	Leu	Leu	Phe 220	Ala	Ser	Val	Ala
Leu 225	Val	Ala	Ala	Ile	Ile 230	Phe	Gly	Val	CÀa	Tyr 235	Arg	ГÀв	ГÀв	Gly	Lys 240 ,
Ala	Leu	Thr	Ala	Asn 245	Leu	Trp	His	Trp	Ile 250	Asn '	Glu	Ala	Сув	Gly 255	Arg
Leu	Ser	Gly	Asp 260	ŗàa	Glu	Ser	Ser	Gly 265	Asp	Ser	САв	Val	Ser 270	Thr	His
Thr	Ala	Asn 275	Phe	Gly	Gln	Gln	Gly 280	Ala	Сув	Glu	Gly	Val 285	Leu	Leu	Leu
Thr	Leu 290	Glu	Glu	ГÀа	Thr	Phe 295	Pro	Glu	Asp	Met	300 Cys	Tyr	Pro	Asp	Gln
Gly 305	Gly	Val	Сув	Gln	Gly 310	Thr	Сув	Val	Gly	Gly 315	Gly	Pro	Tyr	Ala	Gln 320
Gly	Glu	Asp	Ala	Arg 325	Met	Leu	Ser	Leu	Val 330	Ser	Lys	Thr	Glu	Ile 335	Glu
Glu	Asp	Ser	Phe 340	Arg	Gln	Met	Pro	Thr 345	Glu	Asp	Glu	Tyr	Met 350	Asp	Arg
Pro	Ser	Gln 355	Pro	Thr	Asp	Gln	Leu 360	Leu	Phe	Leu	Thr	Glu 365	Pro	Gly	Ser
Lys	Ser 370	Thr	Pro	Pro	Phe	Ser 375	Glu	Pro	Leu	Glu	Val 380	Gly	Glu	Asn	Asp
Ser 385	Leu	Ser	Gln	САв	Phe 390	Thr	Gly	Thr	Gln	Ser 395	Thr	Val	Gly	Ser	Glu 400
Ser	Сув	Asn	Сув	Thr 405	Glu	Pro	Leu	Сув	Arg 410	Thr	Asp	Trp	Thr	Pro 415	Met
Ser	Ser		Asn 420	Tyr	Leu	Gln	Lys	Glu 425	Val	Asp	Ser	Gly	His 430	Сув	Pro
His	Trp	Ala 435	Ala	Ser	Pro	Ser	Pro 440	Asn	Trp	Ala	Авр	Val 445	Сув	Thr	Gly
Сув	Arg 450		Pro	Pro	Gly	Glu 455	Asp	Cys	Glu	Pro	Leu 460	Val	Gly	Ser	Pro
ГÀв	Arg	Gly	Pro	Leu	Pro	Gln	САв	Ala	Tyr	Gly	Met	Gly	Leu	Pro	Pro

- (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: Not Relevant
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: FLAG_ peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Asp Tyr Lys Asp Asp Asp Asp Lys

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 232 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: Not Relevant
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 (A) ORGANISM: Human
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: IgG1 Fc mutein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Glu Pro Arg Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

Pro Glu Ala Glu Gly Ala Pro Ser Val Phe.Leu Phe Pro Pro Lys Pro

Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val . 35 40 45

Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val 50 $\,$ 60 $\,$

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 65 70 75 80

Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 85 90 95

Asp Trp Leu Asn Gly Lys Asp Tyr Lys Cys Lys Val Ser Asn Lys Ala 100 105 110

Leu Pro Ala Pro Met Gln Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 115 120 125

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr 130 135 140

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Arg 145 150 · 155 160

His Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 180 185 190

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 195 200 205

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 210 215 220

Ser Leu Ser Leu Ser Pro Gly Lys

- (2) INFORMATION FOR SEQ ID NO: 9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: Not Relevant
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (A) ORGANISM: CMV (R2780 Leader)
 - (ix) FEATURE:
 - (D) OTHER INFORMATION: Met1-Arg28 is the actual leader peptide; Arg29 strengthens the furin cleavage site; nucleotides encoding eThr30 and Ser31 add a Spel site.
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Met Ala Arg Arg Leu Trp Ile Leu Ser Leu Leu Ala Val Thr Leu Thr 1 5 10 15

Val Ala Leu Ala Ala Pro Ser Gln Lys Ser Lys Arg Arg Thr Ser 20 25 30

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1630 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

											COIL	CIII	aca			
(vi)				OURCI	Mus E:	musc	culus	9		•						
(vii)	(2	A) L:	IBRAI		<unkr< td=""><td>own:</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></unkr<>	own:	•									
(ix)	(2		AME/I	KEY:	CDS	384										
(xi)					IPTIC		SEQ 1	D NO): 10) :						
					GGT (47
					GCC Ala											95
					CAG Gln									CTG Leu		.43
					GAT Asp										1	.91
					CTG Leu 70										2	39
Ser					GAA Glu										2	87
					GGG Gly										3	35
					TCA Ser										3	83
					CGA Arg										4	31
					GCC Ala 150										4	79
Leu					CAC His										5	27
					Lys AAA										5	75
					TGC Cys										6	23
					CAG Gln										6	71
					CAT His 230										7	19
Trp					GAA Glu										7	67
					GCT Ala										8	15

60

-continued

		_				
	260		265		270	
	C CTG CTG GA r Leu Leu As 275	p Pro Asp			Gly Ala	863
	T CAG GAC AT 1 Gln Asp II 0		ACTCAT TTCG	rggaac attac	GCAȚGG .	914
ATGTCCTAGA	TGTTTGGAAA	СТТСТТАААА	AATGGATGAT	GTCTATACAT	GTGTAAGACT	974
ACTAAGAGAC	ATGGCCCACG	GTGTATGAAA	CTCACAGCCC	TCTCTCTTGA	GCCTGTACAG	1034
GTTGTGTATA	TGTAAAGTCC	ATAGGTGATG	TTAGATTCAT	GGTGATTACA	CAACGGTTTT	1094
ACAATTTTGT	AATGATTTCC	TAGAATTGAA	CCAGATTGGG	AGAGGTATTC	CGATGCTTAT	1154
GAAAAACTTA	CACGTGAGCT	ATGGAAGGGG	GTCACAGTCT	CTGGGTCTAA	CCCCTGGACA	1214
TGTGCCACTG	AGAACCTTGA	AATTAAGAGG	ATGCCATGTC	ATTGCAAAGA	AATGATAGTG	1274
TGAAGGGTTA	AGTTCTTTTG	AATTGTTACA	TTGCGCTGGG	ACCTGCAAAT	AAGTTCTTTT	1334
TTTCTAATGA	GGAGAGAAAA	ATATATGTAT	TTTTATATAA	TGTCTAAAGT	TATATTTCAG	1394
GTGTAATGTT	TTCTGTGCAA	AGTTTTGTAA	ATTATATTTG	TGCTATAGTA	TTTGATTCAA	1454
AATATTTAAA	AATGTCTCAC	TGTTGACATA	TTTAATGTTT	TAAATGTACA	GATGTATTTA	1514
ACTGGTGCAC	TTTGTAATTC	CCCTGAAGGT	ACTCGTAGCT	AAGGGGGCAG	AATACTGTTT	1574
CTGGTGACCA	CATGTAGTTT	ATTTCTTTAT	TCTTTTTAAC	TTAATAGAGT	CTTCAG	1630

(2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 294 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
- Gly Val Pro His Glu Gly Pro Leu His Pro Ala Pro Ser Ala Pro Ala
- Pro Ala Pro Pro Pro Ala Ala Ser Arg Ser Met Phe Leu Ala Leu Leu 20 25 30
- Gly Leu Gly Leu Gly Gln Val Val Cys Ser Ile Ala Leu Phe Leu Tyr $_{
 m 35}$ $_{
 m 40}$ $_{
 m 45}$
- Cys Phe Tyr Arg Ile Leu Arg Leu His Glu Asn Ala Asp Leu Gln Asp 65 70 . 75 80
- Ser Thr Leu Glu Ser Glu Asp Thr Leu Pro Asp Ser Cys Arg Arg Met 85 90 . 95
- Lys Gln Ala Phe Gln Gly Ala Val Gln Lys Glu Leu Gln His Ile Val
- Gly Pro Gln Arg Phe Ser Gly Ala Pro Ala Met Met Glu Gly Ser Trp 120
- Leu Asp Val Ala Gln Arg Gly Lys Pro Glu Ala Gln Pro Phe Ala His 130 135 140
- Leu Thr Ile Asn Ala Ala Ser Ile Pro Ser Gly Ser His Lys Val Thr
- Leu Ser Ser Trp Tyr His Asp Arg Gly Trp Ala Lys Ile Ser Asn Met 165 $$ 170 $$ 175

										-	con	tin	ued		
Thr Le	u Ser	Asn 180	Gly	ŗàs	Leu	Arg	Val 185	Asn	Gln	Asp	Gly	Phe 190	Tyr	Tyr	
Leu Ty	r Ala 195		Ile	Сув	Phe	Arg 200	His	His	Glu	Thr	Ser 205	Gly	Ser	Val	
Pro Th	_	Tyr	Leu	Gln	Leu 215	Met	Val	Tyr	Val	Val 220	ГÀв	Thr	Ser	Ile	
Lys Il 225	e Pro	Ser	Ser	His 230	Asn	Leu	Met	Гуs	Gly 235	Gly	Ser	Thr	ГÀв	Asn 240	
Trp Se	r Gly	Asn	Ser 245	Glu	Phe	His	Phe	Tyr 250	Ser	Ile	Asn	Val	Gly 255	Gly	
Phe Ph	e Lys	Leu 260		Ala	Gly	Glu	Glu 265	Ile	Ser	Ile	Gln	Val 270	Ser	Asn	
Pro Se	r Leu 275		Aap	Pro	Aap	Gln 280	Aap	Ala	Thr	Tyr	Phe 285	Gly	Ala	Phe	
Lув Va 29		Aap	Ile	Aap											
(2) IN	FORMA	TION	FOR	SEQ	ID	NO: :	12:								
((A) Li B) T C) S'	ENGTI YPE : IRANI	H: 9 nuc DEDN	CTER: 54 ba leic ESS: line	ase p acid	pair:	9							
(i	i) MO														•
	i) HY														
(i	v) AN	TI-S	ense	: NO											
(v	i) OR				E: Home	o saj	piens	9							
(vi		A) L	IBRAJ	RY:	<unki< td=""><td></td><td></td><td>lengi</td><td>:h)</td><td></td><td></td><td></td><td></td><td></td><td></td></unki<>			lengi	:h)						
(i		A) N.	AME/												
(x	i) SE				1! TPTI		SEO '	א מז) · 1:	2.					
ATG CG											CGT	GGC	TCG	GAG	48
Met Ar															
GAG AT Glu Me															96
CCG CC Pro Pr															144
TTC GT Phe Va															192
GCC CT Ala Le 65															240
GAA GA Glu As															288

GCA GAT TTT CAA GAC ACA ACT CTG GAG AGT CAA GAT ACA AAA TTA ATA Ala Asp Phe Gln Asp Thr Thr Leu Glu Ser Gln Asp Thr Lys Leu Ile . 100 105 110

336

			_	_												
сст	GAT	TCA	TGT	AGG	AGA	ATT	AAA	CAG	GCC	TTT	CAA	GGA	GCT	GTG	CAA	384
Pro	Aap	Ser 115	Сув	Arg	Arg	Ile	120	Gln	Ala	Phe	Gln	Gly 125	Ala	Val	Gln	
								TCA Ser								432
	130					135					140					
								GAT Asp								480
145			-		150	Ī		·		155					160	
								ACT Thr								528
				165					170				·	175		
								TCC Ser								576
	•		180	•				185		-	•		190	_		
								TTT Phe								624
110	, iii	195	110	501	A		200		501	7.0	017	205	204			
								TAT Tyr								672
	210	•	•		•	215		•			220	•		•		
								ACA Thr								720
225					230					235					240	
								ATC Ile								768
			•	245			-		250					255		
								TCA Ser								816
-	-	-	260		•	-	•	265	Ī				270			
								TTT Phe								864
-7-		275			,	,	280		-, -		J	285				
								TCC Ser								912
	290					295					300		-	,		
			-					GTT Val					TGA			954
305		-1-		,	310		-10		9	315						

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 317 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

Met Arg Arg Ala Ser Arg Asp Tyr Thr Lys Tyr Leu Arg Gly Ser Glu 1 5 10 15

Glu Met Gly Gly Gly Pro Gly Ala Pro His Glu Gly Pro Leu His Ala $20 \\ 25 \\ 30$

Pro Pro Pro Pro Ala Pro His Gln Pro Pro Ala Ala Ser Arg Ser Met

Phe Val Ala Leu Leu Gly Leu Gly Leu Gly Gln Val Val Cys Ser Val

Ala Leu Phe Phe Tyr Phe Arg Ala Gln Met Asp Pro Asn Arg Ile Ser 65 70 75 80

Glu Asp Gly Thr His Cys Ile Tyr Arg Ile Leu Arg Leu His Glu Asn 85 90 95

Ala Asp Phe Gln Asp Thr Thr Leu Glu Ser Gln Asp Thr Lys Leu Ile 100 $$105\,.$$

Pro Amp Ser Cym Arg Arg Ile Lym Gln Ala Phe Gln Gly Ala Val Gln

Lys Glu Leu Gln His Ile Val Gly Ser Gln His Ile Arg Ala Glu Lys 130 135 140

Ala Met Val Asp Gly Ser Trp Leu Asp Leu Ala Lys Arg Ser Lys Leu 145 150 155 160

Glu Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Thr Asp Ile Pro 165 170 · 175

Ser Gly Ser His Lys Val Ser Leu Ser Ser Trp Tyr His Asp Arg Gly 180 185 190 .

Trp Ala Lys Ile Ser Asn Met Thr Phe Ser Asn Gly Lys Leu Ile Val

Asn Gln Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Cys Phe Arg His

His Glu Thr Ser Gly Asp Leu Ala Thr Glu Tyr Leu Gln Leu Met Val 225 230 235 240

Tyr Val Thr Lys Thr Ser Ile Lys Ile Pro Ser Ser His Thr Leu Met 245 250 255

Lys Gly Gly Ser Thr Lys Tyr Trp Ser Gly Asn Ser Glu Phe His Phe 260 265 270

Tyr Ser Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ser Gly Glu Glu 275 280 285

Ile Ser Ile Glu Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp 290 295 300

Ala Thr Tyr Phe Gly Ala Phe Lys Val Arg Asp Ile Asp 305 310 315

- (2) INFORMATION FOR SEQ ID NO: 14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1878 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (A) ORGANISM: Murine
 - (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: Murine Fetal Liver Epithelium
 - (B) CLONE: muRANK
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1875
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

ATG GCC CCG CGC GCC CGG CGG CGC CGC CAG CTG CCC GCG CCG CTG CTG
Met Ala Pro Arg Ala Arg Arg Arg Arg Gln Leu Pro Ala Pro Leu Leu

1 5 10 15

48

96

GCG CTC TGC GTG CTC GTT CCA CTG CAG GTG ACT CTC CAG GTC ACT

												con	tin	ued		
Ala	Leu	Сув	Val 20	Leu	Leu	Val	Pro	Leu 25	Gln	Val	Thr	Leu	Gln 30	Val	Thr	,
						AGG Arg										144
						AAG Lys 55										192
						CCC Pro										240
						TGC Cya										288
						GAT										336
						TAC Tyr										384
						GCA Ala 135										432
						GTG Val										480
						ACA Thr										528
						GAA Glu										576
						ATG Met										624
						CTC Leu 215										672
						ATC Ile										720
						TTG Leu									AGT Ser	768
						GAG Glu										816
						CAG Gln										864
						ATG Met 295										912
						GGT Gly										960
						AGC Ser										1008

69

-continued

							GAG Glu							1056
							ATC Ile 360							1104
							GTG Val							1152
							ACG Thr							1200
							GAC Asp							1248
							GGT Gly							1296
							TAC Tyr 440							1344
							GGG Gly							1392
							TTT Phe							1440
							CAG Gln							1488
							AGT Ser							1536
							ACG Thr 520							1584
							GTG Val							1632
	Gly	Pro	Gly	Ser	Ala	Glu	CCC Pro	Glu	Ser	Glu	Pro			1680
							CAC His							1728
							GCC Ala							1776
							GGG Gly 600							1824
							CAT His							1872
GAA Glu 625	TGA													1878

													_		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 625 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear															
	(ii)					pro									
	(xi)	SEC	QUEN	CE DI	ESCR	PTIC	ON: 5	EQ I	D NO): 19	5:				
Met 1	Ala	Pro	Arg	Ala 5	Arg	Arg	Arg	Arg	Gln 10	Leu	Pro	Ala	Pro	Leu 15	Leu
Ala	Leu	Сув	Val 20	Leu	Leu	Val	Pro	Leu 25	Gln	Val	Thr	Leu	Gln 30	Val	Thr
Pro	Pro	Сув 35	Thr	Gln	Glu	Arg	His 40	Tyr	Glu	His	Leu	Gly 45	Arg	Сув	Cys
Ser	Arg 50	Сув	Glu	Pro	Gly	Lys 55	Tyr	Leu	Ser	Ser	60 Fys	Сув	Thr	Pro	Thr
Ser 65	Asp	Ser	Val	САв	Leu 70	Pro	Сув	Gly	Pro	Авр 75	Glu	Tyr	Leu	Aap	Thr 80
Trp	Asn	Glu	Glu	Авр 85	ГÀв	САв	Leu	Leu	His 90	ГÀв	Val	Cys	Asp	Ala 95	Gly
Lys	Ala	Leu	Val 100	Ala	Val	Aap	Pro	Gly 105	Asn	His	Thr	Ala	Pro 110	Arg	Arg
САв	Ala	Сув 115	Thr	Ala	Gly	Tyr	His 120	Trp	Asn	Ser	Asp	Сув 125	Glu	Сув	Сув
Arg	Arg 130	Asn	Thr	Glu	Сув	Ala 135	Pro	Gly	Phe	Gly	Ala 140	Gln	His	Pro	Leu
Gln 145	Leu	Asn	ГÀв	Asp	Thr 150	Val	Cys	Thr	Pro	Сув 155	Leu	Leu	Gly	Phe	Phe 160
Ser	Asp	Val	Phe	Ser 165	Ser	Thr	Asp	ГÀв	Сув 170	ГÀв	Pro	Trp	Thr	Asn 175	Сув
Thr	Leu	Leu	Gly 180	ГÀв	Leu	Glu	Ala	His 185	Gln	Gly	Thr	Thr	Glu 190	Ser	Asp
Val	Val	Сув 195	Ser	Ser	Ser	Met	Thr 200	Leu	Arg	Arg	Pro	Pro 205	ГÀв	Glu 1	Ala
Gln	Ala 210	Tyr	Leu	Pro	Ser	Leu 215	Ile	Val	Leu	Leu	Leu 220	Phe	Ile	Ser	Val
Val 225	Val	Val	Ala	Ala	11e 230	Ile	Phe	Gly	Val	Tyr 235	Tyr	Arg	ГÀв	Gly	Gly 240
ГÀв	Ala	Leu	Thr	Ala 245	Asn	Leu	Trp	Asn	Trp 250	Val	Aen	Авр	Ala	Сув 255	Ser
Ser	Leu	Ser	Gly 260	Asn	ŗÀa	Glu	Ser	Ser 265	Gly	Asp	Arg	Сув	Ala 270	Gly	Ser
His	Ser	Ala 275	Thr	Ser	Ser	Gln	Gln 280	Glu	Val	Сув	Glu	Gly 285	Ile	Leu	Leu
Met	Thr 290	Arg	Glu	Glu	Lys	Met 295	Val	Pro	Glu	Asp	Gly 300	Ala	Gly	Val	Сув
Gly 305	Pro	Val	Сув	Ala	Ala 310	Gly	Gly	Pro	Trp	Ala 315	Glu	Val	Arg	Asp	Ser 320
Arg	Thr	Phe	Thr	Leu 325	Val	Ser	Glu	Val	Glu 330	Thr	Gln	Gly	Авр	Leu 335	Ser
Arg	Lys	Ile	Pro	Thr	Glu	Asp	Glu	Tyr	Thr	qaA	Arg	Pro	Ser	Gln	Pro

Ser Thr Gly Ser Leu Leu Leu Ile Gln Gln Gly Ser Lys Ser Ile Pro 355 360 365

Pro Phe Gln Glu Pro Leu Glu Val Gly Glu Asn Asp Ser Leu Ser Gln

	370		•			375					380				
Cys 385	Phe	Thr	Gly	Thr	Glu 390	Ser	Thr	Val	Asp	Ser 395	Glu	Gly	Сув	Asp	Phe 400
Thr	Glu	Pro	Pro	Ser 405	Arg	Thr	Asp	Ser	Met 410	Pro	Val	Ser	Pro	Glu 415	ГÀв
His	Leu	Thr	Lys 420	Glu	Ile	Glu	Gly	Asp 425	Ser	Сув	Leu	Pro	Trp 430	Val	Val
Ser	Ser	Asn 435	Ser	Thr	qeA	Gly	Tyr 440	Thr	Gly	Ser	Gly	Asn 445	Thr	Pro	Gly
Glu	Asp 450	His	Glu	Pro	Phe	Pro 455	Gly	Ser	Leu	ГÀв	Сув 460	Gly	Pro	Leu	Pro
Gln 465	Сув	Ala	Tyr	Ser	Met 470	Gly	Phe	Pro	Ser	Glu 475	Ala	Ala	Ala	Ser	Met 480
Ala	Glu	Ala	Gly	Val 485	Arg	Pro	Gln	Asp	Arg 490	Ala	Aap	Glu	Arg	Gly 495	Ala
Ser	Gly	Ser	Gly 500	Ser	Ser	Pro	Ser	Asp 505	Gln	Pro	Pro	Ala	Ser 510	Gly	Asn
Val	Thr	Gly 515	Asn	Ser	Asn	Ser	Thr 520	Phe	Ile	Ser	Ser	Gly 525	Gln	Val	Met
Asn	Phe 530	ŗÀe	Gly	Asp	Ile	Ile 535	Val	Val	Tyr	Val	Ser 540	Gln	Thr	Ser	Gln
Glu 545	Gly	Pro	Gly	Ser	Ala 550	Glu	Pro	Glu	Ser	Glu 555	Pro	Val	Gly	Arg	Pro 560
Val	Gln	Glu	Glu	Thr 565	Leu	Ala	His	Arg	Asp 570	Ser	Phe	Ala	Gly	Thr 575	Ala
Pro	Arg	Phe	Pro 580	Asp	Val	Сув	Ala	Thr 585	Gly	Ala	Gly	Leu	Gln 590	Glu	Gln
Gly	Ala	Pro 595	Arg	Gln	ГÀа	Asp	Gly 600	Thr	Ser	Arg	Pro	Val 605	Gln	Glu	Gln
Gly	Gly 610	Ala	Gln	Thr	Ser	Leu 615	His	Thr	Gln	Gly	Ser 620	Gly	Gln	Сув	Ala
Glu 625															

- (2) INFORMATION FOR SEQ ID NO: 16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro 15 5. 10

Gly Ser Thr Gly

- (2) INFORMATION FOR SEQ ID NO: 17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

35

Asp Tyr Lys Asp Glu

- (2) INFORMATION FOR SEQ ID NO: 18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

His His His His His

- (2) INFORMATION FOR SEQ ID NO: 19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

Arg Met Lys Gln Ile Glu Asp Lys Ile Glu Glu Ile Leu Ser Lys Ile

Tyr His Ile Glu Asn Glu Ile Ala Arg Ile Lys Lys Leu Ile Gly Glu

Arq

We claim:

- 1. An isolated blocking antibody that binds to a human RANKL polypeptide as set forth in SEQ ID NO:13 and inhibits the binding of the human RANKL polypeptide to a human RANK polypeptide as shown in SEQ ID NO:6.
- 2. The blocking antibody of claim 1 that is a monoclonal antibody.
- 3. An isolated blocking antibody that binds to a fragment of a human RANKL polypeptide as shown in SEQ ID NO:13 and inhibits the binding of the human RANKL polypeptide to
- a human RANK polypeptide as shown in SEQ ID NO:6, wherein the fragment is selected from the group consisting of
 - a) an extracellular domain comprising amino acids 69-317 of SEQ ID NO:13, and
 - b) a receptor binding domain comprising amino acids 162-317 of SEQ ID NO:13.
- 4. The blocking antibody of claim 3 that is a monoclonal antibody.

ATTACHMENT B

In re U.S. Patent No. 7,411,050

Issued: August 12, 2008
To: Dirk M. Anderson

Assignee: Immunex Corporation

For: MONOCLONAL BLOCKING ANTIBODY TO HUMAN

RANKL

Application for Patent Term Extension

Customer No. 22852

DEC 27 2007 W

PTO/SB/26 (12-07)
Approved for use through 12/31/2007. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

he Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PERMINAL DISCLAIMER TO OBVIATE A DOUBLE PATENTING REJECTION OVER A "PRIOR" PATENT

Docket Number (Optional)

REJECTION OVER A "PRIOR" PATENT	2851-US-CN1
In re Application of: Dirk M. ANDERSON	
Application No.: 10/802,133	
Filed: March 16, 2004	
For: ANTIBODIES AGAINST RANK LIGAND	
except as provided below, the terminal part of the statutory term of any patent granted on the instant	I prior patent is defined in 35 U.S.C. 154 owner hereby agrees that any patent so prior patent are commonly owned. This
In making the above disclaimer, the owner does not disclaim the terminal part of the term of any pater would extend to the expiration date of the full statutory term as defined in 35 U.S.C. 154 and 173 of the patent is presently shortened by any terminal disclaimer," in the event that said prior patent later: expires for failure to pay a maintenance fee; is held unenforceable; is found invalid by a court of competent jurisdiction; is statutorily disclaimed in whole or terminally disclaimed under 37 CFR 1.321; has all claims canceled by a reexamination certificate; is reissued; or is in any manner terminated prior to the expiration of its full statutory term as presently shortened	e prior patent, "as the term of said prior
Check either box 1 or 2 below, if appropriate.	
For submissions on behalf of a business/organization (e.g., corporation, partnership, universit etc.), the undersigned is empowered to act on behalf of the business/organization.	y, government agency,
Ithereby declare that all statements made herein of my own knowledge are true and that a belief are believed to be true; and further that these statements were made with the knowledge that made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United statements may jeopardize the validity of the application or any patent issued thereon.	t willful false statements and the like so
2. The undersigned is an attorney or agent of record. Reg. No. 42,271	•
Signature	December 19, 2007 Date
Signature	Date
Scott L. Ausenhus	
Typed or printed name	•
•	206-265-7858 Telephone Number
Terminal disclaimer fee under 37 CFR 1.20(d) included.	
WARNING: Information on this form may become public. Credit card inform	nation should not
be included on this form. Provide credit card information and authorization	

*Statement under 37 CFR 3.73(b) is required if terminal disclaimer is signed by the assignee (owner). Form PTO/SB/96 may be used for making this certification. See MPEP § 324.

This collection of information is required by 37 CFR 1.321. The information is required to obtain or retain a benefit by the public which is to fite (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

ATTACHMENT C

In re U.S. Patent No. 7,411,050

Issued: August 12, 2008 To: Dirk M. Anderson

Assignee: Immunex Corporation

For: MONOCLONAL BLOCKING ANTIBODY TO HUMAN

RANKL

Application for Patent Term Extension

Customer No. 22852

HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use Prolia safely and effectively. See full prescribing information for Prolia.

Prolia TM (denosumab) Injection, for subcutaneous use

Initial US	S Approva	l:	20	10
------------	-----------	----	----	----

-- INDICATIONS AND USAGE-

Prolia is a RANK ligand (RANKL) inhibitor indicated for:

Treatment of postmenopausal women with osteoporosis at high risk for fracture (1.1)

-DOSAGE AND ADMINISTRATION-

- Prolia should be administered by a healthcare professional (2.1)
- Administer 60 mg every 6 months as a subcutaneous injection in the upper arm, upper thigh, or abdomen (2.1)
- Instruct patients to take calcium 1000 mg daily and at least 400 IU vitamin D daily (2.1)

DOSAGE FORMS AND STRENGTHS-

- Single-use prefilled syringe containing 60 mg in a 1 mL solution (3)
- Single-use vial containing 60 mg in a 1 mL solution (3)

---CONTRAINDICATIONS--

Hypocalcemia (4.1, 5.1)

WARNINGS AND PRECAUTIONS-

- Hypocalcemia: Must be corrected before initiating Prolia. May worsen especially in patients with renal impairment. Adequately supplement patients with calcium and vitamin D (5.1)
- Serious infections including skin infections: May occur, including those leading to hospitalization. Advise patients to seek prompt medical

- attention if they develop signs or symptoms of infection, including
- Dermatologic reactions: Dermatitis, rashes, and eczema have been reported. Consider discontinuing Prolia if severe symptoms develop
- Osteonecrosis of the jaw: Has been reported with Prolia. Monitor for symptoms (5.4)
- Suppression of bone turnover: Significant suppression has been demonstrated. Monitor for consequences of bone oversuppression (5.5)

-ADVERSE REACTIONS-

Most common adverse reactions (> 5% and more common than placebo): back pain, pain in extremity, hypercholesterolemia, musculoskeletal pain, and cystitis. Pancreatitis has been reported in clinical trials (6.1).

To report SUSPECTED ADVERSE REACTIONS, contact Amgen Inc. at 1-800-77-AMGEN (1-800-772-6436) or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

-USE IN SPECIFIC POPULATIONS-

- Pregnancy: Based on animal data, may cause fetal harm. Pregnancy Surveillance Program available (8.1)
- Nursing mothers: May impair mammary gland development and lactation. Discontinue drug or nursing (8.3)
- Pediatric patients: Safety and efficacy not established (8.4)
- Renal impairment: No dose adjustment is necessary in patients with renal impairment. Patients with creatinine clearance < 30 mL/min or receiving dialysis are at risk for hypocalcemia. Supplement with calcium and vitamin D and consider monitoring serum calcium (8.6)

See 17 for PATIENT COUNSELING INFORMATION and Medication Guide.

Revised: 06/2010

FULL PRESCRIBING INFORMATION: CONTENTS*

- INDICATIONS AND USAGE
 - Treatment of Postmenopausal Women with Osteoporosis at High Risk for Fracture
- DOSAGE AND ADMINISTRATION
 - Recommended Dosage
 - 2.2 Preparation and Administration
- DOSAGE FORMS AND STRENGTHS
- CONTRAINDICATIONS
 - 4.1 Hypocalcemia
- WARNINGS AND PRECAUTIONS
 - 5.1 Hypocalcemia and Mineral Metabolism
 - Serious Infections
 - 53 Dermatologic Adverse Reactions
 - Osteonecrosis of the Jaw
 - Suppression of Bone Turnover
- ADVERSE REACTIONS 6.1 Clinical Trials Experience
- DRUG INTERACTIONS
- USE IN SPECIFIC POPULATIONS
 - 8.1 Pregnancy 8.3
 - **Nursing Mothers** Pediatric Use 8.4
 - 8.5 Geriatric Use
 - 8.6 Renal Impairment
 - Hepatic Impairment

- **OVERDOSAGE**
- DESCRIPTION
- CLINICAL PHARMACOLOGY
 - 12.1 Mechanism of Action
 - 12.2 Pharmacodynamics
 - 12.3 Pharmacokinetics
 - NONCLINICAL TOXICOLOGY
 - 13:1 Carcinogenesis, Mutagenesis, Impairment of Fertility
 - 13.2 Animal Toxicology and/or Pharmacology
- **CLINICAL STUDIES**
 - 14.1 Postmenopausal Women with Osteoporosis
- HOW SUPPLIED/STORAGE AND HANDLING
- PATIENT COUNSELING INFORMATION
 - 17.1 Hypocalcemia
 - 17.2 Serious Infections
 - 17.3 Dermatologic Reactions
 - 17.4 Osteonecrosis of the Jaw
 - 17.5 Schedule of Administration

^{*}Sections or subsections omitted from the full prescribing information are not listed.

FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE

1.1 Treatment of Postmenopausal Women with Osteoporosis at High Risk for Fracture

Prolia is indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture, defined as a history of osteoporotic fracture, or multiple risk factors for fracture; or patients who have failed or are intolerant to other available osteoporosis therapy. In postmenopausal women with osteoporosis, Prolia reduces the incidence of vertebral, nonvertebral, and hip fractures [see Clinical Studies (14.1)].

2 DOSAGE AND ADMINISTRATION

2.1 Recommended Dosage

Prolia should be administered by a healthcare professional.

The recommended dose of Prolia is 60 mg administered as a single subcutaneous injection once every 6 months. Administer Prolia via subcutaneous injection in the upper arm, the upper thigh, or the abdomen. All patients should receive calcium 1000 mg daily and at least 400 IU vitamin D daily [see Warnings and Precautions (5.1)].

If a dose of Prolia is missed, administer the injection as soon as the patient is available. Thereafter, schedule injections every 6 months from the date of the last injection.

2.2 Preparation and Administration

Visually inspect Prolia for particulate matter and discoloration prior to administration whenever solution and container permit. Prolia is a clear, colorless to pale yellow solution that may contain trace amounts of translucent to white proteinaceous particles. Do not use if the solution is discolored or cloudy or if the solution contains many particles or foreign particulate matter.

<u>Latex Allergy</u>: People sensitive to latex should not handle the grey needle cap on the single-use prefilled syringe, which contains dry natural rubber (a derivative of latex).

Prior to administration, Prolia may be removed from the refrigerator and brought to room temperature (up to 25°C/77°F) by standing in the original container. This generally takes 15 to 30 minutes. Do not warm Prolia in any other way [see How Supplied/Storage and Handling (16)].

Instructions for Prefilled Syringe with Needle Safety Guard

IMPORTANT: In order to minimize accidental needlesticks, the Prolia single-use prefilled syringe will have a green safety guard; manually activate the safety guard <u>after</u> the injection is given.

DO NOT slide the green safety guard forward over the needle before administering the injection; it will lock in place and prevent injection.

Activate the green safety guard (slide over the needle) after the injection.

The grey needle cap on the single use prefilled syringe contains dry natural rubber (a derivative of latex); people sensitive to latex should not handle the cap.

Step 1: Remove Grey Needle Cap

Step 2: Administer Injection

DO NOT put grey needle cap back on needle.

Step 3: Immediately Slide Green Safety Guard Over Needle

With the needle pointing away from you...

Hold the prefilled syringe by the clear plastic finger grip with one hand. Then, with the other hand, grasp the green safety guard by its base and gently slide it towards the needle until the green safety guard locks securely in place and/or you hear a "click." DO NOT grip the green safety guard too firmly - it will move easily if you hold and slide it gently.

Immediately dispose of the syringe and needle cap in the nearest sharps container. DO NOT put the needle cap back on the used syringe.

Instructions for Single-use Vial

For administration of Prolia from the single-use vial, use a 27-gauge needle to withdraw and inject the 1 mL dose. Do not re-enter the vial. Discard vial and any liquid remaining in the vial.

3 DOSAGE FORMS AND STRENGTHS

- 1 mL of a 60 mg/mL solution in a single-use prefilled syringe
- 1 mL of a 60 mg/mL solution in a single-use vial

4 CONTRAINDICATIONS

4.1 Hypocalcemia

Pre-existing hypocalcemia must be corrected prior to initiating therapy with Prolia [see Warnings and Precautions (5.1)].

5 WARNINGS AND PRECAUTIONS

5.1 Hypocalcemia and Mineral Metabolism

Hypocalcemia may be exacerbated by the use of Prolia. Pre-existing hypocalcemia must be corrected prior to initiating therapy with Prolia. In patients predisposed to hypocalcemia and disturbances of mineral metabolism (e.g. history of hypoparathyroidism, thyroid surgery, parathyroid surgery, malabsorption syndromes, excision of small intestine, severe renal impairment [creatinine clearance < 30 mL/min] or receiving dialysis), clinical monitoring of calcium and mineral levels (phosphorus and magnesium) is highly recommended.

Hypocalcemia following Prolia administration is a significant risk in patients with severe renal impairment [creatinine clearance < 30 mL/min], or receiving dialysis. Instruct all patients with severe renal impairment, including those receiving dialysis, about the symptoms of hypocalcemia and the importance of maintaining calcium levels with adequate calcium and vitamin D supplementation.

Adequately supplement all patients with calcium and vitamin D [see Dosage and Administration (2.1), Contraindications (4.1), Adverse Reactions (6.1), and Patient Counseling Information (17.1)].

5.2 Serious Infections

In a clinical trial of over 7800 women with postmenopausal osteoporosis, serious infections leading to hospitalization were reported more frequently in the Prolia group than in the placebo group [see Adverse Reactions (6.1)]. Serious skin infections, as well as infections of the abdomen, urinary tract, and ear, were more frequent in patients treated with Prolia. Endocarditis was also reported more frequently in Prolia-treated subjects. The incidence of opportunistic infections was balanced between placebo and Prolia groups, and the overall incidence of infections was similar between the treatment groups. Advise patients to seek prompt medical attention if they develop signs or symptoms of severe infection, including cellulitis.

Patients on concomitant immunosuppressant agents or with impaired immune systems may be at increased risk for serious infections. Consider the benefit-risk profile in such patients before treating with Prolia. In patients who develop serious infections while on Prolia, prescribers should assess the need for continued Prolia therapy.

5.3 Dermatologic Adverse Reactions

In a large clinical trial of over 7800 women with postmenopausal osteoporosis, epidermal and dermal adverse events such as dermatitis, eczema, and rashes occurred at a significantly higher rate in the Prolia group compared to the placebo group. Most of these events were not specific to the injection site [see Adverse Reactions (6.1)]. Consider discontinuing Prolia if severe symptoms develop.

5.4 Osteonecrosis of the Jaw

Osteonecrosis of the jaw (ONJ), which can occur spontaneously, is generally associated with tooth extraction and/or local infection with delayed healing. ONJ has been reported in patients receiving denosumab [see Adverse Reactions (6.1)]. A routine oral exam should be performed by the prescriber prior to initiation of Prolia treatment. A dental examination with appropriate preventive dentistry should be considered prior to treatment with Prolia in patients with risk factors for ONJ such as invasive dental procedures (e.g., tooth extraction, dental implants, oral surgery), diagnosis of cancer, concomitant therapies (e.g., chemotherapy, corticosteroids), poor oral hygiene, and co-morbid disorders (e.g., periodontal and/or other pre-existing dental disease, anemia, coagulopathy, infection, ill-fitting dentures). Good oral hygiene practices should be maintained during treatment with Prolia.

For patients requiring invasive dental procedures, clinical judgment of the treating physician and/or oral surgeon should guide the management plan of each patient based on individual benefit-risk assessment.

Patients who are suspected of having or who develop ONJ while on Prolia should receive care by a dentist or an oral surgeon. In these patients, extensive dental surgery to treat ONJ may exacerbate the condition. Discontinuation of Prolia therapy should be considered based on individual benefit-risk assessment.

5.5 Suppression of Bone Turnover

In clinical trials in women with postmenopausal osteoporosis, treatment with Prolia resulted in significant suppression of bone remodeling as evidenced by markers of bone turnover and bone histomorphometry [see Clinical Pharmacology (12.2), Clinical Studies (14.1)]. The significance of these findings and the effect of long-term treatment with Prolia are unknown. The long-term consequences of the degree of suppression of bone remodeling observed with Prolia may contribute to adverse outcomes such as osteonecrosis of the jaw, atypical fractures, and delayed fracture healing. Monitor patients for these consequences.

6 ADVERSE REACTIONS

The following serious adverse reactions are discussed below and also elsewhere in the labeling:

- Hypocalcemia [see Warnings and Precautions (5.1)]
- Serious Infections [see Warnings and Precautions (5.2)]
- Dermatologic Adverse Reactions [see Warnings and Precautions (5.3)]
- Osteonecrosis of the Jaw [see Warnings and Precautions (5.4)]

The most common adverse reactions reported with Prolia are back pain, pain in extremity, musculoskeletal pain, hypercholesterolemia, and cystitis.

The most common adverse reactions leading to discontinuation of Prolia are breast cancer, back pain, and constipation.

The Prolia Postmarketing Active Safety Surveillance Program is available to collect information from prescribers on specific adverse events. Please see www.proliasafety.com or call 1-800-772-6436 for more information about this program.

6.1 Clinical Trials Experience

Because clinical studies are conducted under widely varying conditions, adverse reaction rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical studies of another drug and may not reflect the rates observed in clinical practice.

Treatment of postmenopausal women with osteoporosis

The safety of Prolia in the treatment of postmenopausal osteoporosis was assessed in a 3-year, randomized, double-blind, placebo-controlled, multinational study of 7808 postmenopausal women aged 60 to 91 years. A total of 3876 women were exposed to placebo and 3886 women were exposed to Prolia administered subcutaneously once every 6 months as a single 60 mg dose. All women were instructed to take at least 1000 mg of calcium and 400 IU of vitamin D supplementation per day.

The incidence of all-cause mortality was 2.3% (n = 90) in the placebo group and 1.8% (n = 70) in the Prolia group. The incidence of nonfatal serious adverse events was 24.2% in the placebo group and 25.0% in the Prolia group. The percentage of patients who withdrew from the study due to adverse events was 2.1% and 2.4% for the placebo and Prolia groups, respectively.

Adverse reactions reported in \geq 2% of postmenopausal women with osteoporosis and more frequently in the Prolia-treated women than in the placebo-treated women are shown in the table below.

Table 1. Adverse Reactions Occurring in ≥ 2% of Patients with Osteoporosis and More Frequently than in Placebo-treated Patients

SYSTEM ORGAN CLASS Preferred Term	Prolia (N = 3886) n (%)	Placebo (N = 3876) n (%)
BLOOD AND LYMPHATIC SYSTEM DISORDERS	100 (2.2)	107 (2.0)
Anemia	129 (3.3)	107 (2.8)
CARDIAC DISORDERS		
Angina pectoris	101 (2.6)	87 (2.2)
Atrial fibrillation	79 (2.0)	. 77 (2.0)
EAR AND LABYRINTH DISORDERS		
Vertigo	195 (5.0)	187 (4.8)
:		•
GASTROINTESTINAL DISORDERS	100 (2.2)	
Abdominal pain upper	129 (3.3)	111 (2.9)
Flatulence	84 (2.2)	53 (1.4)
Gastroesophageal reflux disease	80 (2.1)	66 (1.7)
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS		
Edema peripheral	189 (4.9)	155 (4.0)
Asthenia	90 (2.3)	73 (1.9)
INFECTIONS AND INFESTATIONS		
Cystitis	228 (5.9)	225 (5.8)
Upper respiratory tract infection	190 (4.9)	167 (4.3)
Pneumonia	152 (3.9)	150 (3.9)
Pharyngitis	91 (2.3)	78 (2.0)
Herpes zoster	79 (2.0)	72 (1.9)
METADOLISM AND NUTDITION DISORDEDS		•
METABOLISM AND NUTRITION DISORDERS Hypercholesterolemia	280 (7.2)	236 (6.1)
	()	
MUSCULOSKELETAL AND CONNECTIVE TISSUE DISORDERS		
Back pain	1347 (34.7)	1340 (34.6)
Pain in extremity	453 (11.7)	430 (11.1)
Musculoskeletal pain	297 (7.6)	291 (7.5)
Bone pain	142 (3.7)	117 (3.0)
Myalgia ·	114 (2.9)	94 (2.4)
Spinal osteoarthritis	82 (2.1)	64 (1.7)

SYSTEM ORGAN CLASS Preferred Term	Prolia (N = 3886) n (%)	Placebo (N = 3876) n (%)
NERVOUS SYSTEM DISORDERS		
Sciatica	178 (4.6)	149 (3.8)
PSYCHIATRIC DISORDERS		
Insomnia	126 (3.2)	122 (3.1)
SKIN AND SUBCUTANEOUS TISSUE DISORDERS	•	
Rash	96 (2.5)	79 (2.0)
Pruritus	87 (2.2)	82 (2.1)

Hypocalcemia

Decreases in serum calcium levels to less than 8.5 mg/dL were reported in 0.4% women in the placebo group and 1.7% women in the Prolia group at the month 1 visit. The nadir in serum calcium level occurs at approximately day 10 after Prolia dosing in subjects with normal renal function.

In clinical studies, subjects with impaired renal function were more likely to have greater reductions in serum calcium levels compared to subjects with normal renal function. In a study of 55 patients with varying degrees of renal function, serum calcium levels < 7.5 mg/dL or symptomatic hypocalcemia were observed in 5 subjects. These included no subjects in the normal renal function group, 10% of subjects in the CrCL 50 to 80 mL/min group, 29% of subjects in the CrCL < 30 mL/min group, and 29% of subjects in the hemodialysis group. These subjects did not receive calcium and vitamin D supplementation. In a study of 4,550 postmenopausal women with osteoporosis, the mean change from baseline in serum calcium level 10 days after Prolia dosing was -5.5% in subjects with creatinine clearance < 30 mL/min vs. -3.1% in subjects with CrCL \geq 30 mL/min.

Serious Infections

Receptor activator of nuclear factor kappa-B ligand (RANKL) is expressed on activated T and B lymphocytes and in lymph nodes. Therefore, a RANKL inhibitor such as Prolia may increase the risk of infection.

In the clinical study of 7808 postmenopausal women with osteoporosis, the incidence of infections resulting in death was 0.2% in both placebo and Prolia treatment groups. However, the incidence of nonfatal serious infections was 3.3% in the placebo group and 4.0% in the Prolia group. Hospitalizations due to serious infections in the abdomen (0.7% placebo vs. 0.9% Prolia), urinary tract (0.5% placebo vs. 0.7% Prolia), and ear (0.0% placebo vs. 0.1% Prolia) were reported. Endocarditis was reported in no placebo patients and 3 patients receiving Prolia.

Skin infections, including erysipelas and cellulitis, leading to hospitalization were reported more frequently in patients treated with Prolia (< 0.1% placebo vs. 0.4% Prolia).

There was no imbalance in the reporting of opportunistic infections.

Dermatologic Reactions

A significantly higher number of patients treated with Prolia developed epidermal and dermal adverse events (such as dermatitis, eczema, and rashes), with these events reported in 8.2% of placebo and 10.8%

of Prolia group (p < 0.0001). Most of these events were not specific to the injection site [see Warnings and Precautions (5.3)].

Osteonecrosis of the Jaw

ONJ has been reported in the osteoporosis clinical trial program in patients treated with Prolia [see Warnings and Precautions (5.4)].

Pancreatitis

Pancreatitis was reported in 4 patients (0.1%) in the placebo and 8 patients (0.2%) in the Prolia groups. Of these reports, one subject in the placebo group and all 8 subjects in the Prolia group had serious events including one death in the Prolia group. Several patients had a prior history of pancreatitis. The time from product administration to event occurrence was variable.

New Malignancies

The overall incidence of new malignancies was 4.3% in the placebo and 4.8% in the Prolia groups. New malignancies related to breast (0.7% placebo vs. 0.9% Prolia), reproductive (0.2% placebo vs. 0.5% Prolia), and gastrointestinal systems (0.6% placebo vs. 0.9% Prolia) were reported. A causal relationship to drug exposure has not been established.

Immunogenicity

Denosumab is a human monoclonal antibody. As with all therapeutic proteins, there is potential for immunogenicity. Using an electrochemiluminescent bridging immunoassay, less than 1% (55 out of 8113) of patients treated with Prolia for up to 5 years tested positive for binding antibodies (including pre-existing, transient, and developing antibodies). None of the patients tested positive for neutralizing antibodies, as was assessed using a chemiluminescent cell-based in vitro biological assay. No evidence of altered pharmacokinetic profile, toxicity profile, or clinical response was associated with binding antibody development.

The incidence of antibody formation is highly dependent on the sensitivity and specificity of the assay. Additionally, the observed incidence of a positive antibody (including neutralizing antibody) test result may be influenced by several factors, including assay methodology, sample handling, timing of sample collection, concomitant medications, and underlying disease. For these reasons, comparison of antibodies to denosumab with the incidence of antibodies to other products may be misleading.

7 DRUG INTERACTIONS

No drug-drug interaction studies have been conducted with Prolia.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Category C

There are no adequate and well-controlled studies of Prolia in pregnant women. In genetically engineered mice in which RANK ligand (RANKL) was turned off by gene removal (a "knockout mouse"), absence of RANKL (the target of denosumab) caused fetal lymph node agenesis and led to postnatal impairment of dentition and bone growth. Pregnant RANKL knockout mice also showed altered maturation of the maternal mammary gland, leading to impaired lactation postpartum [see Use in Specific Populations (8.3)].

Prolia is approved only for use in postmenopausal women. Prolia should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Women who become pregnant during Prolia treatment are encouraged to enroll in Amgen's Pregnancy Surveillance Program. Patients or their physicians should call 1-800-77-AMGEN (1-800-772-6436) to enroll.

In an embryofetal developmental study, cynomolgus monkeys received subcutaneous denosumab weekly during organogenesis at doses up to 13-fold higher than the recommended human dose of 60 mg administered once every 6 months based on body weight (mg/kg). No evidence of maternal toxicity or fetal harm was observed. However, this study only assessed fetal toxicity during a period equivalent to the first trimester and fetal lymph nodes were not examined. Monoclonal antibodies are transported across the placenta in a linear fashion as pregnancy progresses, with the largest amount transferred during the third trimester. Potential adverse developmental effects resulting from exposures during the second and third trimesters have not been assessed in animals [see Nonclinical Toxicology (13.2)].

8.3 Nursing Mothers

It is not known whether Prolia is excreted into human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from Prolia, a decision should be made whether to discontinue nursing or discontinue the drug, taking into account the importance of the drug to the mother.

Maternal exposure to Prolia during pregnancy may impair mammary gland development and lactation based on animal studies in pregnant mice lacking the RANK/RANKL signaling pathway that have shown altered maturation of the maternal mammary gland, leading to impaired lactation postpartum [see Nonclinical Toxicology (13.2)].

8.4 Pediatric Use

Prolia is not recommended in pediatric patients. The safety and effectiveness of Prolia in pediatric patients have not been established.

Treatment with Prolia may impair bone growth in children with open growth plates and may inhibit eruption of dentition. In neonatal rats, inhibition of RANKL (the target of Prolia therapy) with a construct of osteoprotegerin bound to Fc (OPG-Fc) at doses ≤ 10 mg/kg was associated with inhibition of bone growth and tooth eruption. Adolescent primates dosed with denosumab at 10 and 50 times (10 and 50 mg/kg dose) higher than the recommended human dose of 60 mg administered once every 6 months, based on body weight (mg/kg), had abnormal growth plates [see Nonclinical Toxicology (13.2)].

8.5 Geriatric Use

Of the total number of patients in clinical studies of Prolia, 9943 patients (76%) were \geq 65 years old, while 3576 (27%) were \geq 75 years old. No overall differences in safety or efficacy were observed between these patients and younger patients and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out.

8.6 Renal Impairment

No dose adjustment is necessary in patients with renal impairment.

In clinical studies, patients with severe renal impairment (creatinine clearance < 30 mL/min) or receiving dialysis were at greater risk of developing hypocalcemia. Consider the benefit-risk profile when administering Prolia to patients with severe renal impairment or receiving dialysis. Clinical monitoring of calcium and mineral levels (phosphorus and magnesium) is highly recommended. Adequate intake of calcium and vitamin D is important in patients with severe renal impairment or receiving dialysis [see Warnings and Precautions (5.1), Adverse Reactions (6.1), and Clinical Pharmacology (12.3)].

8.7 Hepatic Impairment

No clinical studies have been conducted to evaluate the effect of hepatic impairment on the pharmacokinetics of Prolia.

10 OVERDOSAGE

There is no experience with overdosage with Prolia.

11 DESCRIPTION

Prolia (denosumab) is a human IgG2 monoclonal antibody with affinity and specificity for human RANKL (receptor activator of nuclear factor kappa-B ligand). Denosumab has an approximate molecular weight of 147 kDa and is produced in genetically engineered mammalian (Chinese hamster ovary) cells.

Prolia is a sterile, preservative-free, clear, colorless to pale yellow solution.

Each 1 mL single-use prefilled syringe of Prolia contains 60 mg denosumab (60mg/mL solution), 4.7% sorbitol, 17 mM acetate, 0.01% polysorbate 20, Water for Injection (USP), and sodium hydroxide to a pH of 5.2.

Each 1 mL single-use vial of Prolia contains 60 mg denosumab (60 mg/mL solution), 4.7% sorbitol, 17 mM acetate, Water for Injection (USP), and sodium hydroxide to a pH of 5.2.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Prolia binds to RANKL, a transmembrane or soluble protein essential for the formation, function, and survival of osteoclasts, the cells responsible for bone resorption. Prolia prevents RANKL from activating its receptor, RANK, on the surface of osteoclasts and their precursors. Prevention of the RANKL/RANK interaction inhibits osteoclast formation, function, and survival, thereby decreasing bone resorption and increasing bone mass and strength in both cortical and trabecular bone.

12.2 Pharmacodynamics

In clinical studies, treatment with 60 mg of Prolia resulted in reduction in the bone resorption marker serum type 1 C-telopeptide (CTX) by approximately 85% by 3 days, with maximal reductions occurring by 1 month. CTX levels were below the limit of assay quantitation (0.049 ng/mL) in 39-68% of subjects 1-3 months after dosing of Prolia. At the end of each dosing interval, CTX reductions were partially attenuated from a maximal reduction of \geq 87% to \geq 45% (range: 45% to 80%), as serum denosumab levels diminished, reflecting the reversibility of the effects of Prolia on bone remodeling. These effects were sustained with continued treatment. Upon reinitiation, the degree of inhibition of CTX by Prolia was similar to that observed in patients initiating Prolia treatment.

Consistent with the physiological coupling of bone formation and resorption in skeletal remodeling, subsequent reductions in bone formation markers (i.e., osteocalcin and procollagen type 1 N-terminal peptide [PINP]) were observed starting 1 month after the first dose of Prolia. After discontinuation of Prolia therapy, markers of bone resorption increased to levels 40-60% above pretreatment values but returned to baseline levels within 12 months.

12.3 Pharmacokinetics

In a study conducted in healthy male and female volunteers (n = 73, age range: 18 to 64 years) following a single subcutaneously administered Prolia dose of 60 mg after fasting (at least for 12 hours), the mean maximum denosumab concentration (C_{max}) was 6.75 mcg/mL (standard deviation [SD] = 1.89 mcg/mL). The median time to maximum denosumab concentration (T_{max}) was 10 days (range: 3 to 21 days). After C_{max} , serum denosumab concentrations declined over a period of 4 to 5 months with a mean half-life of 25.4 days (SD = 8.5 days; n = 46). The mean area-under-the-concentration-time curve up to 16 weeks (AUC_{0-16 weeks}) of denosumab was 316 mcg day/mL (SD = 101 mcg day/mL).

No accumulation or change in denosumab pharmacokinetics with time was observed upon multiple dosing of 60 mg subcutaneously administered once every 6 months.

Prolia pharmacokinetics were not affected by the formation of binding antibodies.

A population pharmacokinetic analysis was performed to evaluate the effects of demographic characteristics. This analysis showed no notable differences in pharmacokinetics with age (in postmenopausal women), race, or body weight (36 to 140 kg).

Drug Interactions

No drug-drug interaction studies have been conducted with Prolia.

Specific Populations

<u>Gender:</u> Mean serum denosumab concentration-time profiles observed in a study conducted in healthy $men \ge 50$ years were similar to those observed in a study conducted in postmenopausal women using the same dose regimen.

Age: The pharmacokinetics of denosumab was not affected by age across all populations studied whose ages ranged from 28-87 years.

Race: The pharmacokinetics of denosumab was not affected by race.

<u>Renal Impairment:</u> In a study of 55 patients with varying degrees of renal function, including patients on dialysis, the degree of renal impairment had no effect on the pharmacokinetics of denosumab; thus, dose adjustment for renal impairment is not necessary.

<u>Hepatic Impairment:</u> No clinical studies have been conducted to evaluate the effect of hepatic impairment on the pharmacokinetics of denosumab.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenicity

The carcinogenic potential of denosumab has not been evaluated in long-term animal studies.

Mutagenicity

The genotoxic potential of denosumab has not been evaluated.

Impairment of Fertility

Denosumab had no effect on female fertility or male reproductive organs in monkeys at doses that were 13- to 50-fold higher than the recommended human dose of 60 mg administered once every 6 months, based on body weight (mg/kg).

13.2 Animal Toxicology and/or Pharmacology

Prolia is an inhibitor of osteoclastic bone resorption via inhibition of RANKL.

In ovariectomized monkeys, once-monthly treatment with denosumab suppressed bone turnover and increased bone mineral density (BMD) and strength of cancellous and cortical bone at doses 50-fold higher than the recommended human dose of 60 mg administered once every 6 months, based on body weight (mg/kg). Bone tissue was normal with no evidence of mineralization defects, accumulation of osteoid, or woven bone.

Adolescent primates treated with denosumab at doses > 10 times (10 and 50 mg/kg dose) higher than the recommended human dose of 60 mg administered once every 6 months, based on mg/kg, had abnormal growth plates, considered to be consistent with the pharmacological activity of denosumab [see Use in Specific Populations (8.4)].

Because the biological activity of denosumab in animals is specific to nonhuman primates, evaluation of genetically engineered ("knockout") mice or use of other biological inhibitors of the RANK/RANKL pathway, namely OPG-Fc, provided additional information on the pharmacodynamic properties of denosumab. RANK/RANKL knockout mice exhibited absence of lymph node formation, as well as an absence of lactation due to inhibition of mammary gland maturation (lobulo-alveolar gland development during pregnancy). Neonatal RANK/RANKL knockout mice exhibited reduced bone growth and lack of tooth eruption. A corroborative study in 2-week-old rats given the RANKL inhibitor OPG-Fc also showed reduced bone growth, altered growth plates, and impaired tooth eruption. These changes were partially reversible in this model when dosing with the RANKL inhibitors was discontinued [see Use in Specific Populations (8.1, 8.4)].

14 CLINICAL STUDIES

14.1 Postmenopausal Women with Osteoporosis

The efficacy and safety of Prolia in the treatment of postmenopausal osteoporosis was demonstrated in a 3-year, randomized, double-blind, placebo-controlled trial. Enrolled women had a baseline BMD T-score between -2.5 and -4.0 at either the lumbar spine or total hip. Women with other diseases (such as rheumatoid arthritis, osteogenesis imperfecta, and Paget's disease) or on therapies that affect bone were excluded from this study. The 7808 enrolled women were aged 60 to 91 years with a mean age of 72 years. Overall, the mean baseline lumbar spine BMD T-score was -2.8 and 23% of women had a

vertebral fracture at baseline. Women were randomized to receive SC injections of either placebo (N = 3906) or Prolia 60 mg (N = 3902) once every 6 months. All women received at least 1000 mg calcium and 400 IU vitamin D supplementation daily.

The primary efficacy variable was the incidence of new morphometric (radiologically-diagnosed) vertebral fractures at 3 years. Vertebral fractures were diagnosed based on lateral spine radiographs (T4-L4) using a semiquantitative scoring method. Secondary efficacy variables included the incidence of hip fracture and nonvertebral fracture, assessed at 3 years.

Effect on Vertebral Fractures

Prolia significantly reduced the incidence of new morphometric vertebral fractures at 1, 2, and 3 years (p < 0.0001), as shown in Table 2. The incidence of new vertebral fractures at year 3 was 7.2% in the placebo-treated women compared to 2.3% for the Prolia-treated women. The absolute risk reduction was 4.8% and relative risk reduction was 68% for new morphometric vertebral fractures at year 3.

Table 2. The Effect of Prolia on the Incidence of New Vertebral Fractures

		ion of Women racture (%) ⁺	Absolute Risk Reduction	Relative Risk Reduction		
	Placebo N = 3691 (%)	Prolia N = 3702 (%)	(%)* (95% CI)	(%)* (95% CI)		
0-1 Year	2.2	0.9	1.4 (0.8, 1.9)	61 (42, 74)		
0-2 Years	5.0	1.4	3.5 (2.7, 4.3)	71 (61, 79)		
0-3 Years	7.2	2.3	4.8 (3.9, 5.8)	68 (59, 74)		

Absolute risk reduction and relative risk reduction based on Mantel-Haenszel method adjusting for age group variable.

Prolia was effective in reducing the risk for new morphometric vertebral fractures regardless of age, baseline rate of bone turnover, baseline BMD, baseline history of fracture, or prior use of a drug for osteoporosis.

Effect on Hip Fractures

The incidence of hip fracture was 1.2% for placebo-treated women compared to 0.7% for Prolia-treated women at year 3. The age-adjusted absolute risk reduction of hip fractures was 0.3% with a relative risk reduction of 40% at 3 years (p = 0.04) (Figure 1).

Event rates based on crude rates in each interval.

Figure 1. Cumulative Incidence of Hip Fractures Over 3 Years

N = number of subjects randomized

Effect on Nonvertebral Fractures

Treatment with Prolia resulted in a significant reduction in the incidence of nonvertebral fractures (Table 3).

Table 3. The Effect of Prolia on the Incidence of Nonvertebral Fractures at Year 3

		of Women With ture (%) ⁺	Absolute Risk	Relative Risk
	Placebo N = 3906 (%)	Prolia N = 3902 (%)	Reduction (%) (95% CI)	Reduction (%) (95% CI)
Nonvertebral fracture ¹	8.0	6.5	1.5 (0.3, 2.7)	20 (5, 33)*

p-value = 0.01.

* Event rates based on Kaplan-Meier estimates at 3 years.

Effect on Bone Mineral Density (BMD)

Treatment with Prolia significantly increased BMD at all anatomic sites measured at 3 years. The treatment differences in BMD at 3 years were 8.8% at the lumbar spine, 6.4% at the total hip, and 5.2% at the femoral neck. Consistent effects on BMD were observed at the lumbar spine, regardless of baseline age, race, weight/body mass index (BMI), baseline BMD, and level of bone turnover.

Excluding those of the vertebrae (cervical, thoracic, and lumbar), skull, facial, mandible, metacarpus, and finger and toe phalanges.

After Prolia discontinuation, BMD returned to approximately baseline levels within 12 months.

Bone Histology and Histomorphometry

A total of 115 transiliac crest bone biopsy specimens were obtained from 92 postmenopausal women with osteoporosis at either month 24 and/or month 36 (53 specimens in Prolia group, 62 specimens in placebo group). Of the biopsies obtained, 115 (100%) were adequate for qualitative histology and 7 (6%) were adequate for full quantitative histomorphometry assessment.

Qualitative histology assessments showed normal architecture and quality with no evidence of mineralization defects, woven bone, or marrow fibrosis in patients treated with Prolia.

The presence of double tetracycline labeling in a biopsy specimen provides an indication of active bone remodeling, while the absence of tetracycline label suggests suppressed bone formation. In subjects treated with Prolia, 35% had no tetracycline label present at the month 24 biopsy and 38% had no tetracycline label present at the month 36 biopsy, while 100% of placebo-treated patients had double label present at both time points. When compared to placebo, treatment with Prolia resulted in virtually absent activation frequency and markedly reduced bone formation rates. However, the long-term consequences of this degree of suppression of bone remodeling are unknown.

16 HOW SUPPLIED/STORAGE AND HANDLING

Prolia is supplied in a single-use prefilled syringe with a safety guard or in a single-use vial. The grey needle cap on the single-use prefilled syringe contains dry natural rubber (a derivative of latex).

60 mg/1 mL in a single-use prefilled syringe	1 per carton	NDC 55513-710-01
60 mg/1 mL in a single-use vial	1 per carton	NDC 55513-720-01

Store Prolia in a refrigerator at 2°C to 8°C (36°F to 46°F) in the original carton. Do not freeze. Prior to administration, Prolia may be allowed to reach room temperature (up to 25°C/77°F) in the original container. Once removed from the refrigerator, Prolia must not be exposed to temperatures above 25°C/77°F and must be used within 14 days. If not used within the 14 days, Prolia should be discarded. Do not use Prolia after the expiry date printed on the label.

Protect Prolia from direct light and heat.

Avoid vigorous shaking of Prolia.

17 PATIENT COUNSELING INFORMATION

See Medication Guide.

17.1 Hypocalcemia

Adequately supplement patients with calcium and vitamin D and instruct them on the importance of maintaining serum calcium levels while receiving Prolia [see Warnings and Precautions (5.1) and Use in Specific Populations (8.6)]. Advise patients to seek prompt medical attention if they develop signs or symptoms of hypocalcemia.

17.2 Serious Infections

Advise patients to seek prompt medical attention if they develop signs or symptoms of infections, including cellulitis [see Warnings and Precautions (5.2)].

17.3 Dermatologic Reactions

Advise patients to seek prompt medical attention if they develop signs or symptoms of dermatological reactions (dermatitis, rashes, and eczema) [see Warnings and Precautions (5.3)].

17.4 Osteonecrosis of the Jaw

Advise patients to maintain good oral hygiene during treatment with Prolia and to inform their dentist prior to dental procedures that they are receiving Prolia. Patients should inform their physician or dentist if they experience persistent pain and/or slow healing of the mouth or jaw after dental surgery [see Warnings and Precautions (5.4)].

17.5 Schedule of Administration

If a dose of Prolia is missed, administer the injection as soon as convenient. Thereafter, schedule injections every 6 months from the date of the last injection.

AMGEN

Manufactured by:

Amgen Manufacturing Limited, a subsidiary of Amgen Inc. One Amgen Center Drive Thousand Oaks, California 91320-1799

This product, its production, and/or its use may be covered by one or more US Patents, including US Patent Nos. 6,740,522; 7,097,834; 7,364,736; and 7,411,050, as well as other patents or patents pending.

© 2010 Amgen Inc. All rights reserved.

1xxxxxx - v1

ATTACHMENT D

In re U.S. Patent No. 7,411,050

Issued: August 12, 2008 To: Dirk M. Anderson

Assignee: Immunex Corporation

For: MONOCLONAL BLOCKING ANTIBODY TO HUMAN

RANKL

Application for Patent Term Extension

Customer No. 22852

DESCRIPTION OF REGULATORY ACTIVITIES

<u>Date</u>	<u>Description</u>
22-May-2001	Initial IND Application: POSTMENOPAUSAL OSTEOPOROSIS
20-Jun-2001	Amgen teleconference
26-Jul-2001	Amgen phone contact
10-Sep-2001	Amgen fax preparation for teleconference 24 September 2001
24-Sep-2001	Amgen teleconference
8-Nov-2001	Review commitment, nonclinical study report
8-Nov-2001	Information Amendment
27-Nov-2001	Information Amendment
18-Dec-2001	Amgen teleconference
20-Dec-2001	Information Amendment
9-Jan-2002	Amgen teleconference phase 2 studies
15-Jan-2002	Response To Questions Proposal for Phase II Study
16-Jan-2002	Amgen teleconference
6-Feb-2002	Protocol Amendment
14-Feb-2002	Response To Questions
14-Feb-2002	Manufacturing change
5-Mar-2002	Protocol Amendment 2
5-Mar-2002	Information Amendment
11-Mar-2002	Response To Questions
2-Apr-2002	Protocol Amendment 1
5-Apr-2002	Response To Questions IND Review Jul 17, 2001
23-Sep-2002	Protocol Amendment 2
28-Oct-2002	Protocol Amendment 3
6-Nov-2002	Manufacturing change
27-Dec-2002	Information Amendment
6-Jan-2003	2002 Annual Report
24-Jan-2003	Protocol Amendment 4
3-Feb-2003	Safety Report
23-Jun-2003	Protocol Amendment
30-Jul-2003	Protocol Amendment 1
25-Aug-2003	2003 Annual Report
25-Aug-2003	Safety Report
26-Aug-2003	Safety Report
26-Aug-2003	Safety Report
5-Sep-2003	Safety Report
18-Sep-2003	2003 Annual Report Addendum
25-Sep-2003	Safety Report
3-Nov-2003	Protocol Amendment 1
11-Dec-2003	Protocol Amendment 5
19-Feb-2004	Meeting Request - End of Phase 2 Type B Meeting
20-Feb-2004	Meeting Request

12-Mar-2004	Briefing Document
19-Mar-2004	Briefing materials
27-Apr-2004	Manufacturing change
27-Apr-2004	Protocol Amendment 3
30-Apr-2004	Meeting Minutes
11-May-2004	Safety Report
20-May-2004	Agency meeting summary letter
2-Jun-2004	Protocol Amendment
4-Jun-2004	Response To Questions of 20 May 2004
14-Jun-2004	Amgen teleconference
15-Jun-2004	Safety Report
17-Jun-2004	Protocol Amendment 6
17-Jun-2004	Amgen teleconference
21-Jun-2004	Response To Questions
23-Jun-2004	Meeting Minutes
12-Jul-2004	Safety Report ·
13-Jul-2004	Amendment to Type C Meeting - CP2 Product characterization data
20-Jul-2004	Protocol Amendment
21-Jul-2004	Information Amendment 4
26-Jul-2004	Safety Report
3-Aug-2004	Information Amendment
5-Aug-2004 5-Aug-2004	Protocol Amendment 2
5-Aug-2004 5-Aug-2004	
23-Aug-2004	Safety Report Safety Report
	· · · · · · · · · · · · · · · · · · ·
23-Aug-2004	Amgen teleconference
21-Sep-2004 28-Sep-2004	Amgen phone contact Information Amendment
12-Oct-2004	Meeting Minutes from 29 September 2004
29-Oct-2004	Meeting Minutes from 09/21/2004 Telecon
3-Nov-2004	
	Annual Report 2004
21-Dec-2004	Information Amendment
28-Jan-2005	Amgen phone contact
31-Jan-2005	Response To Questions
31-Jan-2005	Amgen phone contact
8-Feb-2005	Amgen phone contact
14-Feb-2005	Amgen phone contact
9-Mar-2005	Protocol Amendment 1
14-Mar-2005	Type C Meeting Request
21-Mar-2005	Safety Report
23-Mar-2005	Safety Report
28-Mar-2005	Safety Report
8-Apr-2005	Safety Report
14-Apr-2005	Manufacturing change
15-Apr-2005	Safety Report
25-Apr-2005	Amgen phone contact
28-Apr-2005	Safety Report
28-Apr-2005	Safety Report
	•

4-May-2005	Safety Report
5-May-2005	Amgen phone contact
6-May-2005	Response to Questions of 21 APR 2005
12-May-2005	Briefing Document Phase III Study Design
12-May-2005	Safety Report
19-May-2005	Safety Report
24-May-2005	Agency Clinical & Statistical comments
7-Jun-2005	Safety Report
9-Jun-2005	Response To Questions of 21 APR
15-Jun-2005	Safety Report
18-Jun-2005	Type C Clinical Meeting 18 June 2005
28-Jun-2005	Protocol Amendment 1
30-Jun-2005	Information Amendment
8-Jul-2005	Safety Report
22-Jul-2005	Protocol Amendment 2
18-Aug-2005	Information Amendment 5
2-Sep-2005	Information Amendment
27-Sep-2005	Safety Report
5-Oct-2005	Response To Questions 24 May 2005
12-Oct-2005	Safety Report
17-Oct-2005	Safety Report
18-Oct-2005	Safety Report
19-Oct-2005	Information Amendment
19-Oct-2005	Safety Report
20-Oct-2005	Safety Report
25-Oct-2005	Information Amendment
26-Oct-2005	Safety Report
3-Nov-2005	Safety Report
11-Nov-2005	Safety Report
15-Nov-2005	Safety Report
16-Nov-2005	Safety Report
17-Nov-2005	Safety Report
18-Nov-2005	Safety Report
21-Nov-2005	Safety Report
30-Nov-2005	Safety Report
6-Dec-2005	Safety Report
9-Dec-2005	Safety Report
12-Dec-2005	Annual Report 24 June 2004 - 23 June 2005
15-Dec-2005	Protocol Amendment
20-Dec-2005	Switch to eCTD Format
23-Dec-2005	Safety Report
23-Dec-2005	Safety Report
4-Jan-2006	Safety Report
6-Jan-2006	Protocol Amendment 1
17-Jan-2006	Safety Report
20-Jan-2006	Safety Report
25-Jan-2006	Protocol Amendment

30-Jan-2006	Type C Meeting Request
31-Jan-2006	Safety Report
2-Feb-2006	Safety Report
3-Feb-2006	Meeting Request
3-Feb-2006	Safety Report
9-Feb-2006	Safety Report
14-Feb-2006	Safety Report
15-Feb-2006	Protocol Amendment
17-Feb-2006	Safety Report
22-Feb-2006	Safety Report
23-Feb-2006	Safety Report
24-Feb-2006	Safety Report
28-Feb-2006	Protocol Amendment
3-Mar-2006	Safety Report
6-Mar-2006	Safety Report
13-Mar-2006	Information Amendment
15-Mar-2006	Safety Report
17-Mar-2006	Safety Report
21-Mar-2006	Information Amendment
24-Mar-2006	Briefing Document for Meeting scheduled 24 April 2006
24-Mar-2006	Safety Report
29-Mar-2006	Safety Report
31-Mar-2006	Safety Report
3-Apr-2006	Withdrawal of Type C CMC Meeting Request
6-Apr-2006	Re-submission of non-clinical documents
7-Apr-2006	Safety Report
12-Apr-2006	Safety Report
14-Apr-2006	Information Amendment .
18-Apr-2006	Safety Report
20-Apr-2006	Response To Questions
21-Apr-2006	Information Amendment
28-Apr-2006	Protocol Amendment
2-May-2006	Safety Report
5-May-2006	Information Amendment
8-May-2006	Safety Report
12-May-2006	Protocol Amendment
15-May-2006	Safety Report
18-May-2006	Protocol Amendment
22-May-2006	Safety Report
24-May-2006	Response To Questions
25-May-2006	Tox reports Studies
25-May-2006	Safety Report
2-Jun-2006	Safety Report
8-Jun-2006	Information Amendment
8-Jun-2006	Safety Report
21-Jun-2006	Annual Report 2006 06-24-2005 thru 03-24-2006
	1

29-Jun-2006	Safety Report
11-Jul-2006	Safety Report
17-Jul-2006	Safety Report
19-Jul-2006	Safety Report
27-Jul-2006	Safety Reports
28-Jul-2006	Protocol Amendment
28-Jul-2006	General Correspondence
	Protocol Amendment
9-Aug-2006 10-Aug-2006	Safety Report
11-Aug-2006	General Correspondence
23-Aug-2006	Safety Report
25-Aug-2006	Amgen fax Type C Meeting Request Draft
31-Aug-2006	Safety Report
1-Sep-2006	Protocol Amendment
8-Sep-2006	Safety Report
12-Sep-2006	Safety Report
15-Sep-2006	General Correspondence - Type C Meeting Request
21-Sep-2006	Information Amendment
5-Oct-2006	Safety Report
11-Oct-2006	Safety Report
11-Oct-2006	Protocol Amendment
8-Nov-2006	Briefing Document for Type C Meeting
10-Nov-2006	Protocol Amendment
13-Nov-2006	Protocol Amendment
17-Nov-2006	Safety Report
22-Nov-2006	Safety Report
28-Nov-2006	Amgen email premeeting comments
1-Dec-2006	Amgen email request for information
7-Dec-2006	Safety Report
7-Dec-2006	Safety Report
8-Dec-2006	Amgen email
8-Dec-2006	Type C CMC Meeting
11-Dec-2006	Safety Report
15-Dec-2006	General Correspondence
20-Dec-2006	Response to Questions pre-clinical study reports - 16 November 2006
21-Dec-2006	Amgen email regarding 08 December 2006 Meeting Minutes
22-Dec-2006	Safety Report
3-Jan-2007	Safety Report
4-Jan-2007	Safety Reports
8-Jan-2007	Amgen email regarding Informed Consent submitted
9-Jan-2007	General Correspondence Meeting Minutes 8 Dec. 2006
16-Jan-2007	Safety Report
18-Jan-2007	Safety Report
23-Jan-2007	Safety Report
30-Jan-2007	Amgen email
31-Jan-2007	Amgen phone
31-Jan-2007	Safety Report

31-Jan-2007	General Correspondence
13-Feb-2007	Safety Report
15-Feb-2007	Safety Report
21-Feb-2007	Protocol Amendment
27-Feb-2007	Safety Report
1-Mar-2007	Safety Report
2-Mar-2007	Information Amendment Plan
16-Mar-2007	Amgen email
19-Mar-2007	Information Amendment Plan
20-Mar-2007	Safety Report
22-Mar-2007	General Correspondence
22-Mar-2007	Safety Report
22-Mar-2007	Amgen email and phone conversation
30-Mar-2007	Safety Report
3-Apr-2007	Protocol Amendment Data
4-Apr-2007	Safety Report
3-Apr-2007	Amgen contact
4-Apr-2007	General Correspondence
11-Apr-2007	Safety Report
17-Apr-2007	Safety Report
18-Apr-2007	Protocol Amendment
18-Apr-2007	Safety Report
20-Apr-2007	General Correspondence
24-Apr-2007	Safety Report
25-Apr-2007	Safety Report
30-Apr-2007	Safety Report .
1-May-2007	Safety Report
4-May-2007	Amgen Record of Contact Preliminary Questions regarding 6 June 2007 Meeting
4-May-2007	Safety Report
8-May-2007	Safety Report
8-May-2007	Briefing Document Type C Meeting 6 June 2007
10-May-2007	Safety Report
1-Jun-1007	Information Amendment
22-May-2007	Safety Report
23-May-2007	Safety Report
24-May-2007	Information Amendment
29-May-2007	Information Amendment
29-May-2007	Safety Report
6-Jun-2007	Type C Meeting Teleconference
6-Jun-2007	Safety Report
6-Jun-2007	Safety Report
14-Jun-2007	Response To Questions from Agency
13-Jun-2007	Safety Report
20-Jun-2007	Annual Report 2006 03-25-2006 thru 03-23-2007 & stability data

21-Jun-2007	Protocol Amendment
21-Jun-2007	Safety Report
22-Jun-2007	Protocol Amendment
25-Jun-2007	Safety Report
3-Jul-2007	Safety Report
10-Jul-2007	Safety Report
11-Jul-2007	Safety Report
12-Jul-2007	Protocol Amendment
12-Jul-2007	Safety Report
13-Jul-2007	Safety Report
16-Jul-2007	Safety Report
24-Jul-2007	Information Amendment
23-Jul-2007	Safety Report
24-Jul-2007	Safety Report
27-Jul-2007	Protocol Amendment
26-Jul-2007	Safety Report
3-Aug-2007	Safety Report
7-Aug-2007	Safety Report
17-Aug-2007	Protocol Amendment
21-Aug-2007	Safety Report
28-Aug-2007	Information Amendment
28-Aug-2007	General Correspondence
24-Aug-2007	Safety Report
28-Aug-2007	Safety Report
30-Aug-2007	Safety Report
5-Sep-2007	Information Amendment
6-Sep-2007	Safety Report
12-Sep-2007	Safety Report
21-Sep-2007 13-Sep-2007	Safety Report Safety Report
14-Sep-2007	Response to Questions .
14-Sep-2007	Safety Report
18-Sep-2007 20-Sep-2007	Safety Report Safety Report
25-Sep-2007	Safety Report
28-Sep-2007	Safety Report
1-Oct-2007	Safety Report
2-Oct-2007	Protocol Amendment
2-Oct-2007	Safety Report
3-Oct-2007	Safety Report
4-Oct-2007	Safety Report
10-Oct-2007	Safety Report
11-Oct-2007	Safety Report
12-Oct-2007	Safety Report
15-Oct-2007	General Correspondence
15-Oct-2007	Safety Report
16-Oct-2007	Safety Report

17-Oct-2007	Safety Report
18-Oct-2007	Safety Report
18-Oct-2007	Safety Report
22-Oct-2007	Safety Report
26-Oct-2007	Safety Report
23-Oct-2007	Safety Report
24-Oct-2007	Safety Report
1-Nov-2007	Safety Report
5-Nov-2007	Information Amendment
7-Nov-2007	Safety Report
8-Nov-2007	Safety Report
9-Nov-2007	Protocol Amendment
13-Nov-2007	Safety Report
19-Nov-2007	General Correspondence - Type C Meeting Request
14-Nov-2007	Safety Report
19-Nov-2007	Safety Report
20-Nov-2007	Safety Report
27-Nov-2007	Safety Report
28-Nov-2007	Safety Report
29-Nov-2007	Safety Report
30-Nov-2007	Safety Report
7-Dec-2007	Information Amendment
7-Dec-2007	Protocol Amendment
5-Dec-2007 6-Dec-2007	Safety Report
19-Dec-2007	Safety Report General Correspondence Briefing Document
11-Dec-2007	Safety Report
13-Dec-2007	Protocol Amendment
13-Dec-2007	Safety Report
18-Dec-2007	Safety Report
19-Dec-2007	Safety Report
20-Dec-2007	Safety Report
21-Dec-2007	Safety Report
2-Jan-2008	Safety Report
3-Jan-2008	Safety Report
8-Jan-2008	Information Amendment
8-Jan-2008	Information Amendment
8-Jan-2008	Safety Report
11-Jan-2008	Information Amendment
10-Jan-2008	Safety Report
15-Jan-2008	Safety Report
18-Jan-2008	Safety Report
25-Jan-2008	General Correspondence
23-Jan-2008	Safety Report
24-Jan-2008	Safety Report
25-Jan-2008	Safety Report
29-Jan-2008	Safety Report

30-Jan-2008	Safety Report
31-Jan-2008	Safety Report
4-Feb-2008	Safety Report
5-Feb-2008	Type C Meeting Teleconference
5-Feb-2008	Safety Report
12-Feb-2008	Protocol Amendment
6-Feb-2008	Safety Report
7-Feb-2008	Safety Report
11-Feb-2008	Safety Report
13-Feb-2008	General Correspondence Meeting Minutes 5 February 2008
12-Feb-2008	Safety Report
13-Feb-2008	Safety Report
14-Feb-2008	Safety Report
18-Feb-2008	Safety Report
20-Feb-2008	Safety Report
26-Feb-2008	Protocol Amendment .
26-Feb-2008	Safety Report
27-Feb-2008	Safety Report
28-Feb-2008	Safety Report
29-Feb-2008	Safety Report
12-Mar-2008	Information Amendment
11-Mar-2008	Safety Report .
13-Mar-2008	Safety Report
17-Mar-2008	Safety Report
19-Mar-2008	Information Amendment
21-Mar-2008	Safety Report
25-Mar-2008	Safety Report
25-Mar-2008	Information Amendment
26-Mar-2008	Safety Report
27-Mar-2008	Safety Report
31-Mar-2008	Safety Report
2-Apr-2008	Safety Report
22-Apr-2008	General Correspondence Type B CMC Meeting Request
9-Apr-2008	Safety Report
11-Apr-2008	Protocol Amendment
11-Apr-2008	General Correspondence
17-Apr-2008	Information Amendment .
16-Apr-2008	Safety Report
17-Apr-2008	Safety Report
24-Apr-2008	Safety Report
1-May-2008	Protocol Amendment
29-Apr-2008	Safety Report
4 14	Safety Report
1-May-2008	
1-May-2008 5-May-2008	General Correspondence-Cross Reference to IND 9838 Safety Response to Questions
	Safety Report
5-May-2008	

16-May-2008	General Correspondence
23-May-2008	Safety Report
27-May-2008	Safety Report
29-May-2008	Information Amendment
29-May-2008	Information Amendment
30-May-2008	Safety Report
3-Jun-2008	General Correspondence
4-Jun-2008	Safety Report
13-Jun-2008	General Correspondence Pre-BLA Meeting Request
11-Jun-2008 ⁶	Safety Report
17-Jun-2008	Safety Report
19-Jun-2008	Safety Report
20-Jun-2008	Annual Report 2008 03-24-2007 thru 03-24-2008
19-Jun-2008	Safety Report
27-Jun-2008	General Correspondence
9-Jul-2008	Safety Report
16-Jul-2008	Information Amendment
16-Jul-2008	General Correspondence
18-Jul-2008	General Correspondence
21-Jul-2008	Safety Report Information Amendment
22-Jul-2008	
30-Jul-2008	General Correspondence
25-Jul-2008 29-Jul-2008	General Correspondence
29-Jul-2008	Safety Report Type B Pre BLA CMC Meeting Follow-up Teleconference
1-Aug-2008	General Correspondence
4-Aug-2008	Information Amendment
3-Aug-2008	Safety Report
25-Aug-2008	Information Amendment
26-Aug-2008	Safety Report
3-Sep-2008	Protocol Amendment
3-Sep-2008	Safety Report
4-Sep-2008	General Correspondence
5-Sep-2008	Safety Report .
11-Sep-2008	General Correspondence Type B Pre-BLA Briefing Document
15-Sep-2008	Safety Report
19-Sep-2008	Safety Report
22-Sep-2008	Protocol Amendment
22-Sep-2008	Safety Report
29-Sep-2008	Information Amendment
16-Oct-2008	Safety Report
21-Oct-2008	Type B Pre-BLA Meeting
24-Oct-2008	General Correspondence Type B Pre-BLA Meeting Minutes 21 October 2008
27-Oct-2008	General Correspondence
30-Oct-2008	Information Amendment
6-Nov-2008	Safety Report
18-Nov-2008	General Correspondence

19-Nov-2008	General Correspondence
3-Dec-2008	Safety Report
11-Dec-2008	General Correspondence
12-Dec-2008	Information Amendment
19-Dec-2008	BLA 125320/0/0
16-Dec-2008	Safety Report
30-Dec-2008	Safety Report
7-Jan-2009	General Correspondence
15-Jan-2009	General Correspondence
16-Jan-2009	Safety Report
22-Jan-2009	General Correspondence
29-Jan-2009	General Correspondence
5-Feb-2009	Safety Report
9-Feb-2009	General Correspondence
20-Feb-2009	General Correspondence
23-Feb-2009	Information: Clinical safety report notifications
26-Feb-2009	Information Amendment
3-Mar-2009	General Correspondence
3-Mar-2009	Safety Report
10-Mar-2009	Information Amendment
18-Mar-2009	Protocol Amendment
20-Mar-2009	Protocol Amendment
3-Apr-2009	Type C Meeting Briefing Document
24-Mar-2009	Safety Report
6-Apr-2009	Protocol Amendment
2-Apr-2009	Safety Report
8-Apr-2009	Safety Report
14-Apr-2009	Safety Report
16-Apr-2009	Safety Report
20-Apr-2009	Safety Report
24-Apr-2009	Safety Report
28-Apr-2009	Protocol Amendment
5-May-2009	Safety Report
13-May-2009	Quarterly Safety Update Report
19-May-2009	Information Amendment
19-May-2009	Safety Report
29-May-2009	General Correspondence
3-Jun-2009	Type C Meeting -MOP
3-Jun-2009	General Correspondence
2-Jun-2009	Safety Report
11-Jun-2009	Safety Report
22-Jun-2009	Annual Report 2009 03-24-2008 thru 03-24-2009
18-Jun-2009	Safety Report
22-Jun-2009	General Correspondence
23-Jun-2009	Safety Report
7-Jul-2009	General Correspondence
	Safety Report
29-Jun-2009	Salety Nepolt

7 1.1 0000	Coffee Dancet
7-Jul-2009	Safety Report
13-Jul-2009	General Correspondence
13-Jul-2009	Safety Report
22-Jul-2009	Protocol Amendment
30-Jul-2009.	Information Amendment
4-Aug-2009	General Correspondence
23-Jul-2009	Safety Report
23-Jul-2009	General Correspondence
4-Aug-2009	Safety Report
2-Sep-2009	Safety Report
7-Aug-2009	Safety Report
12-Aug-2009	Quarterly Safety Update Report
20-Aug-2009	Safety Report
25-Aug-2009	Safety Report
1-Sep-2009	Safety Report
4-Sep-2009	Safety Report
21-Sep-2009	Information Amendment
10-Sep-2009	Safety Report
16-Sep-2009	Safety Report
17-Sep-2009	Safety Report
18-Sep-2009	General Correspondence
22-Sep-2009	Safety Report
25-Sep-2009	Safety Report
	Safety Report
29-Sep-2009 1-Oct-2009	Safety Report
8-Oct-2009	Safety Report
	Safety Report
13-Oct-2009 14-Oct-2009	Safety Report
20-Oct-2009	Safety Report
21-Oct-2009	Safety Report
21-Oct-2009 22-Oct-2009	
29-Oct-2009	Safety Report
	Safety Report
4-Nov-2009	Quarterly Safety Update Report
3-Nov-2009	Safety Report
5-Nov-2009	Safety Report
6-Nov-2009	Safety Report
13-Nov-2009	Safety Report
18-Nov-2009	Safety Report
19-Nov-2009	Safety Report
24-Nov-2009	Information Amendment
23-Nov-2009	Safety Report
25-Nov-2009	Safety Report
4-Dec-2009	Safety Report
7-Dec-2009	Safety Report
16-Dec-2009	Safety Report
18-Dec-2009	Safety Report
22-Dec-2009	Safety Report

	•
23-Dec-2009	Safety Report
5-Jan-2010	Safety Report
11-Jan-2010	Safety Report ·
15-Jan-2010	Safety Report
20-Jan-2010	Safety Report
22-Jan-2010	Safety Report
26-Jan-2010	Safety Report
2-Feb-2010	Safety Report
11-Feb-20010	Quarterly Safety Update Report
9-Feb-2010	General Correspondence
8-Feb-2010	Safety Report
9-Feb-2010	Safety Report
11-Feb-2010	Information Amendment
15-Feb-2010	Safety Report
16-Feb-2010	General Correspondence
16-Feb-2010	Safety Report
19-Feb-2010	Safety Report
25-Feb-2010	Safety Report
2-Mar-2010	General Correspondence
5-Mar-2010	Response to Questions: Statistical Analysis Plan
10-Mar-2010	Safety Report
24-Mar-2010	Safety Report
1-Apr-2010	Safety Report
5-Apr-2010	Information Amendment CMC .
6-Apr-2010	Safety Report
8-Apr-2010	Safety Report
12-Apr-2010	Safety Report
14-Apr-2010	Safety Report
20-Apr-2010	Safety Report
29-Apr-2010	General Correspondence
27-Apr-2010	Safety Report
5-May-2010	Quarterly Safety Update Report
30-Apr-2010	Information Amendment
4-May-2010	Safety Report
21-May-2010	Safety Report
28-May-2010	Safety Report
1-Jun-2010	BLA Approved