INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL

CAP. 3 AGENTES PARA RESOLUÇÃO DE PROBLEMAS

Carlos Pereiro

Índice

- □ Índice
 - □ Agentes de Resolução de Problemas
 - □ Formulação de Problemas

- □ Agentes de Resolução de Problemas
 - □ São do tipo Guiado por Objectivos (goal-oriented).
 - Definido um "problema", e no que consiste a sua "solução", define-se um processo de pesquisa que procure essa solução
 - Problema
 - Diferença entre o "Estado Actual" e o "Objectivo" a atingir
 - Resolução
 - Especificação de uma sucessão de estados: (estado inicial,...,estado Final)

Agentes de Resolução de Problemas

- ...
 - Algoritmo Geral de Pesquisa AGP (General Problem Solving - GPS)
 - Existem diversas variantes, mais ou menos complexas, que proporcionam melhores ou piores soluções.
 - Consideram-se três fases na construção destes agentes:
 - Formulação:
 - Formulação do objectivo (goal) e do problema
 - Pesquisa da solução
 - Execução

...

- □ Muitos dos problemas são difíceis de resolver, porque:
 - O número de soluções possíveis é extremamente elevado, impossibilitando uma análise exaustiva a todas elas;
 - Dificuldade de obtenção de soluções válidas devido a um elevado número de restrições associadas ao problema;
 - Em ambientes dinâmicos, o problema modifica-se ao longo do tempo;
 - **...**

Agentes de Resolução de Problemas

□ Formulação do Objectivo

- Objectivo
 - é um estado ou um conjunto de estados do ambiente tais que, quando nesse(s) estado(s), o fim pretendido foi alcançado.
 - Implica a necessidade de definição de "estado"
 - Cada acção do agente determina uma mudança de estado
 - Quando o objectivo for atingido, o conjunto de estados que as acções do agente determinou que fossem percorridos, constitui a solução do problema.

_

...

- Exemplo: Pretendemos viajar de Lisboa para Porto.
 - Estados são as diversas cidades que constam num mapa conhecido do agente;
 - Objectivo Porto;
 - Estado inicial Lisboa;
 - Solução Qualquer sequência de cidades a percorrer partindo de Lisboa até chegarmos ao Porto, é uma solução do problema (podem existir diversas soluções!).

Agentes de Resolução de Problemas

- □ Formulação do Problema
 - Consiste em decidir <u>quais os estados e acções</u> a considerar na implementação do agente:
 - Os estados têm de ser tais que um deles ou um conjunto deles possa constituir o objectivo pretendido;
 - As acções têm de ser tais que possibilitem a passagem de um estado para outro ou um conjunto de outros seus vizinhos. Exemplo:
 - No caso das cidades, considera-se que a solução é uma sequência de estados compostos por nomes de cidades e as acções correspondem "ir da cidade x para a cidade y"

Pesquisa da Solução

- No exemplo das cidades, quando a cidade actual coincidir com a cidade objectivo, foi encontrada uma solução.
- Existem várias soluções possíveis, porque vários caminhos conduzem ao mesmo objectivo.
- A <u>Pesquisa</u> corresponde à procura de um caminho que conduz à solução, ou à procura do melhor caminho de entre todos os possíveis.

Agentes de Resolução de Problemas

10

- ...
 - Um algoritmo de pesquisa:
 - Tem como entrada a descrição de um problema: Estado Inicial; Estado Final; Acções Possíveis; Teste de Objectivo Atinaido.
 - <u>Devolve</u> uma sequência de acções que conduzem:
 - Do Estado Inicial ao Objectivo através de uma série de Estados Intermédios.
 - A Solução do Problema é esta sequência de acções.

■ Execução

- Conhecida uma solução, as acções podem ser executadas
 - Por exemplo, um humano iniciaria a marcha até ao objectivo

Formulação de Problemas

11

- □ Componentes de um Problema
 - □ Um Problema é composto por:
 - **Estado Inicial**: descreve o estado de que o agente parte;
 - Estado Final: descreve o objectivo;
 - Operadores: determinam consequências das possíveis acções, informando o estado atingido após cada acção
 - Função Sucessores: devolve o conjunto de estados S(x) que podem ser alcançados a partir do estado x.
 - Teste de Satisfação do Objectivo: testa se o estado actual coincide com o Estado Final.
 - Custo do Caminho (opcional): calcula o custo de uma dada solução (em horas, em Km, em nº de movimentos, etc.).

Formulação de Problemas

12

...

- Espaço de Estados
 - Conjunto de todos os estados que podem ser atingidos a partir do Estado Inicial por aplicação dos operadores (i.e., através de qualquer caminho possível).
- A resolução de um problema pode ser vista como uma Pesquisa num Espaço de Estados.

Formulação de Problemas

- □ ...
 - Avaliação da Pesquisa
 - Uma pesquisa pode ser avaliada segundo 3 critérios:
 - Alguma solução foi encontrada ?
 - O Custo do Caminho/Solução é baixo ?
 - Qual o Custo da Pesquisa em termos de tempo e memória necessários ?
 - Custo Total = Custo do Caminho + Custo da Pesquisa
 - Normalmente, um custo do caminho mais baixo implica custos de pesquisa mais altos

Exemplos de problemas

14

- Problema do Caixeiro-Viajante (TSP)
 - Visitar todas as localidades de um mapa, partindo de uma delas e retornando a ela.
 - Visitar cada localidade uma só vez.
 - Minimizar distância total
 - Conhecida a distância entre cada par de cidades, como deve ser planeado o itinerário?

15

□ ...

1962

http://www.tsp.gatech.edu/gallery/igraphics/car54.html

Exemplos de problemas

16

□ ...

- □ 2006:
 - World TSP Contest
 - 1.904.711 localidades

http://www.tsp.gatech.edu/world/

□ Puzzle-8

- Estados: A localização das 8 peças (A localização do quadrado vazio simplifica a implementação).
- Operadores: O quadrado vazio move-se para a direita, esquerda, cima ou baixo (excepto nos limites)
- Teste de Objectivo: As 8 peças ocupam as posições "Goal State"
- Custo do Caminho: Soma de todos os movimentos.

Exemplos de problemas

□ Missionários e Canibais (Amarel, 1968)

- □ Analisa a questão da formulação de um problema.
 - https://www.youtube.com/watch?v=DlvTFkx0xwA

"3 missionários e 3 canibais encontram-se na margem de um rio e querem atravessar para a outra margem num barco que só leva 2 pessoas. Como conseguir esta travessia de modo a que nunca fiquem mais canibais que missionários, juntos, na mesma margem ?"

11

19

- □ ...
 - Estados: Um terno (a,b,c) representando o número de missionários, canibais e barcos na margem origem do rio.
 - Estado Inicial = (3,3,1) : 3 missionários, 3 canibais e 1 barco na margem origem.
 - Operadores:
 - Existem 5 possíveis operadores
 - Transportar 2 missionários, Transportar 2 canibais, Transportar 1 missionário, Transportar 1 canibal, Transportar 1 missionário e 1 canibal

Exemplos de problemas

20

- ...
 - □ Teste de Objectivo:
 - Foi atingido o estado (0,0,0) ?
 - □ Custo do Caminho:
 - Número de travessias.
 - Solução?

21

□ Homework: Terminar exercício...