BASIC PHD WRITTEN EXAMINATION IN BIOSTATISTICS

THEORY, SECTION 1

(9:00 AM- 1:00 PM Tuesday, August 10, 2010)

INSTRUCTIONS:

- a) This is a CLOSED-BOOK examination.
- b) The time limit for this Examination is four hours.
- c) Answer any TWO (2) (BUT ONLY TWO) of the THREE (3) questions that follow.
- d) Put the answers to different questions on separate sets of paper.
- e) Put your code letter, **NOT YOUR NAME**, on each page. The same code will be used for Section 1 and Section 2 of the PhD Theory Exam. Please keep the code confidential and do not share this information with any students or faculty.
- f) Return the examination with a signed statement of the UNC honor pledge, separately from your answers. The pledge statement is given on the last page of the exam handout.
- g) In the questions to follow, you are required to answer only what is asked, and not to tell all you know about the topics involved.

1. Suppose that $(X_1, Y_1), \ldots, (X_n, Y_n)$ are i.i.d., where

$$\begin{pmatrix} X_i \\ Y_i \end{pmatrix} \sim N_2(\mu, \Sigma),$$

i = 1, ..., n, where $\mu = (\mu_1, \mu_2)'$ and

$$\Sigma = \left(\begin{array}{cc} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{array} \right).$$

- (a) Suppose that $\sigma_{12} = 0$ and all other parameters are *unknown*. Consider the hypothesis $H_0: \frac{\sigma_2^2}{\sigma_1^2} = \Delta_0$ versus $H_1: \frac{\sigma_2^2}{\sigma_1^2} \neq \Delta_0$, where $\Delta_0 > 0$ is a specified constant. Derive the UMPU size α test for this hypothesis and find the simplest possible form of the test statistic and critical value for the test.
- (b) Derive the simplest possible form of the size α likelihood ratio test corresponding to part (a), and compare it to the UMPU test.
- (c) Now suppose that σ_{12} is unknown and all other parameters are also unknown. Let $\rho = \frac{\sigma_{12}}{\sqrt{\sigma_1^2 \sigma_2^2}}$ denote the population correlation coefficient. Suppose we wish to test $H_0: \rho = 0$ versus $H_1: \rho \neq 0$.
 - (i) Show that the size α likelihood ratio test rejects H_0 when |R| > c, where R denotes the sample correlation coefficient and c is chosen to make the test size α .
 - (ii) Derive the exact distribution of R under the null hypothesis and hence find an explicit expression of c for (i) above.
 - (iii) Derive the (appropriately normalized) asymptotic distribution of R assuming $\rho = 0$.

- 2. Suppose that X_1, \ldots, X_n are i.i.d. from the uniform distribution $U(\theta, \theta + 1)$, where θ is an unknown, finite, real-valued, scalar parameter.
 - (a) Derive the maximum likelihood estimator (MLE) of θ .
 - (b) Consider estimating θ under absolute error loss, that is, assume the loss function is given by $L(\theta, a) = |\theta a|$. Suppose that the prior for θ is given by $\theta \sim N(\mu_0, \sigma_0^2)$, where (μ_0, σ_0^2) are specified hyperparameters. Derive the Bayes estimator for θ .
 - (c) Under squared error loss, consider the class of estimators given by $d(X) = aX_{(1)} + bX_{(n)} + c$, where (a, b, c) are constants, $X = (X_1, \ldots, X_n)$, and $X_{(j)}$ is the jth order statistic. Within this class of estimators, derive an admissible estimator of θ .
 - (d) Under squared error loss, obtain a minimax estimator for θ .
 - (e) Derive the (appropriately normalized) asymptotic distribution of $R_n = X_{(n)} X_{(1)}$.

- 3. Let X_1, \ldots, X_n be an i.i.d. sample of real random variables with $EX_1 = 0$ and $0 < var(X_1) = \sigma^2 < \infty$. Define $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$ and $S_n^2 = (n-1)^{-1} \sum_{i=1}^n \left(X_i \overline{X}_n\right)^2$. Do the following:
 - (a) Show that for x close to zero, $e^x 1 x = x^2/2 + o(x^2)$.
 - (b) Show that $e^{\overline{X}_n} 1 \overline{X}_n \to 0$,

$$\frac{e^{\overline{X}_n} - \overline{X}_n - 1}{\overline{X}_n} \to 0 \text{ and } \frac{e^{\overline{X}_n} - \overline{X}_n - 1}{\overline{X}_n^2} \to \frac{1}{2}$$

in probability.

(c) Show that

$$\frac{2n}{S_n^2} \left(e^{\overline{X}_n} - 1 - \overline{X}_n \right)$$

converges in distribution to a χ^2 random variable with 1 degree of freedom.

(d) Show that

$$\frac{2\sqrt{n}}{S_n} \left(\frac{e^{\overline{X}_n} - 1 - \overline{X}_n}{\overline{X}_n} \right)$$

converges in distribution to a N(0,1) random variable.

(e) Show that

$$\frac{2n}{S_n^2} \left(e^{\overline{X}_n} - 1 - \overline{X}_n \right) \tan \overline{X}_n \to 0$$

in probability, where tan denotes the tangent function.

(f) Show that

$$\frac{2\sqrt{n}\left(e^{\overline{X}_n} - 1 - \overline{X}_n\right)\tan\overline{X}_n}{S_n\overline{X}_n^2}$$

converges in distribution to a N(0,1) random variable.

2010 PhD Theory Exam, Section 1

	_	t of the honor code, I certify that I have nd that I will report all Honor Code viol	
me. "			
	(Signed)		
		NAME	
	(Printed)		
		NAME	

Statement of the UNC honor pledge: