

FIG. 1

TITLE: OPTICAL CROSS-CONNECT
APPARATUS
INVENTORS: Yoichi OIKAWA et al.
SERIAL NO.:
DOCKET NO.: 1095.1298

FIG. 2(A)

FIG. 2(B)

FIG. 3

TITLE: OPTICAL CROSS-CONNECT
APPARATUS
INVENTORS: Yoichi OIKAWA et al.
SERIAL NO.:
DOCKET NO.: 1095.1298

FIG. 4

TITLE: OPTICAL CROSS-CONNECT
APPARATUS
INVENTORS: Yoichi OIKAWA et al.
SERIAL NO.:
DOCKET NO.: 1095.1298

FIG. 5

TITLE: OPTICAL CROSS-CONNECT
APPARATUS
INVENTORS: Yoichi OIKAWA et al.
SERIAL NO.:
DOCKET NO.: 1095.1298

BAND NAME	MEANING	WAVELENGTH RANGE
O BAND	Original	1260 nm to 1360 nm
E BAND	Extended	1360 nm to 1460 nm
S BAND	Short wavelength	1460 nm to 1530 nm
C BAND	Conventional	1530 nm to 1565 nm
L BAND	Long wavelength	1565 nm to 1625 nm
U BAND	Ultralong wavelength	1625 nm to 1675 nm

FIG. 6

FIG. 7

FIG. 8

(THROUGHPUT OF INTRA-APPARATUS OPTICAL FIBER TRANSMISSION)

THROUGHPUT = NUMBER OF COMPRESSED PULSES \times BIT RATE OF ONE COMPRESSED PULSE

$$= \frac{50 \text{ THz}}{2 \times \left(\frac{1}{\Delta \tau} \right)} \times \underbrace{\frac{100 \text{ ps}}{\Delta \tau}}_{\text{TIME DIVISION NUMBER}} \cdot 1.0 \text{ Gb/s} = \frac{25 \text{ Tb/s}}{\frac{\text{Bwfiber}}{2}}$$

THE THROUGHPUT OF THE INTRA-APPARATUS OPTICAL FIBER TRANSMISSION MAY BE CALCULATED BY MULTIPLYING (OPTICAL FIBER BAND) AND (1/2) TOGETHER. UNLIKE THE OPTICAL FIBER TRANSMISSION BETWEEN STATIONS, THE INTRA-APPARATUS OPTICAL FIBER TRANSMISSION IS SHORT DISTANCE TRANSMISSION, SO THE NONLINEAR EFFECTS HAVE NO INFLUENCE. THEREFORE, A THROUGHPUT OF 25 TBITS/S, BEING A THEORETICAL UPPER LIMIT, CAN BE ACHIEVED.

FIG. 9
PRIOR ART

TITLE: OPTICAL CROSS-CONNECT
APPARATUS
INVENTORS: Yoichi OIKAWA et al.
SERIAL NO.:
DOCKET NO.: 1095.1298

FIG. 10(A)

FIG. 10(B)

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

TITLE: OPTICAL CROSS-CONNECT
APPARATUS
INVENTORS: Yoichi OIKAWA et al.
SERIAL NO.:
DOCKET NO.: 1095.1298

FIG. 18

TITLE: OPTICAL CROSS-CONNECT
APPARATUS
INVENTORS: Yoichi OIKAWA et al.
SERIAL NO.:
DOCKET NO.: 1095.1298

FIG. 19

FIG. 20

TITLE: OPTICAL CROSS-CONNECT
 APPARATUS
 INVENTORS: Yoichi OIKAWA et al.
 SERIAL NO.:
 DOCKET NO.: 1095.1298

FIG. 21

FIG. 22

FIG. 23

WHEN OUTGOING LINES CORRESPONDING TO $(m-1)$
 INCOMING LINES HAVE BEEN ESTABLISHED IN AN
 $m \times m$ SWITCH, THE DESTINATION OF THE
 REMAINING PATH IN A SWITCH WILL BE DETERMINED.

FIG. 24

FIG. 25

TITLE: OPTICAL CROSS-CONNECT
APPARATUS
INVENTORS: Yoichi OIKAWA et al.
SERIAL NO.:
DOCKET NO.: 1095.1298

FIG. 26

NON-BLOCKING TYPE

FIG. 27

FIG. 28

FIG. 29

FIG. 30

TITLE: OPTICAL CROSS-CONNECT APPARATUS
 INVENTORS: Yoichi OIKAWA et al.
 SERIAL NO.:
 DOCKET NO.: 1095.1298

3 λ-XC APPARATUS

FIG. 31

FIG. 32

FIG. 33

FIG. 34

TITLE: OPTICAL CROSS-CONNECT
 APPARATUS
 INVENTORS: Yoichi OIKAWA et al.
 SERIAL NO.:
 DOCKET NO.: 1095.1298

FIG. 35

FIG. 36

TITLE: OPTICAL CROSS-CONNECT
APPARATUS
INVENTORS: Yoichi OIKAWA et al.
SERIAL NO.:
DOCKET NO.: 1095.1298

FIG. 37

TITLE: OPTICAL CROSS-CONNECT
APPARATUS
INVENTORS: Yoichi OIKAWA et al.
SERIAL NO.:
DOCKET NO.: 1095.1298

FIG. 38