Séance du 28.11. - DS - Congruences Prochain cours de Maths approfondies: 11 décembre DS - Arithmétique SIO1 **DEVOIR** Nom: _ Prénom: Exercice 1 1. Effectuer les divisions euclidiennes suivantes et écrire l'égalité obtenue. Donner le quotient et le reste. a. 185 par 13 b. 600 par 24 c. 12345 par 678 12345 = 678 × 18 + 141 9=18 r=141 2. Si a divise b, que peut-on dire : a. du reste de la division euclidienne de b par a? reste o la = b a. du reste de la division euclidienne de a par b? Si a= b des r=0 b > a Exercice 2 1. 2719 est-il premier ? Justifier votre réponse. V2719 ≈ 52 2719 m'et pas divisible pas un nombre premier in férieur à 52. Donc 2713 et un nombre premier.

2. Décomposer 22440 en produits de facteurs premiers.

2	24	40	2.
11	1 2 5 6	20 10	2
	28	05	3
	9		11
		17	17
		Λ	

3. Donner tous les diviseurs de 234 en justifiant par une méthode bien choisie.

234 e 117 3 39 3 13 13	234 = 2×32×13 12 driseurs.	
2° -3	13° 1 13° 3 1 < 13° 3	
2 1 3 3 3	° < 13° 26 13° 6 13° 48 13° 18° 18° 18° 18° 18° 18° 18° 18° 18° 18	
$\mathcal{D}_{q_{n,l}} = \langle \Lambda_{i} \rangle$	2;3;6;5;13;182	6, 39, 78; 117;

4. Déterminer le PGCD de 2442 et de 1295 en utilisant l'algorithme d'Euclide.

R	\ b-	7
2442	1295	1147
1295	1147	148
1147	148	111

n > 0	>	oui	ou	ovi .	ori	
r	>	7	4	5	2	
n	2547	254	25	2	0	

Que retourne l'algorithme?

Afficiage: 7 4 5 2

Invanian des chiffres

Exercice 4

Un texte saisi avec un logiciel comporte 5070 lignes. L'éditeur étudie quelques possibilités de mise en page du texte :

a. Si l'éditeur décide de mettre 64 lignes par page, combien de lignes comporte la dernière page sachant que toutes les autres sont complètes ?

5070 = 64 x 79 + 14 14 lignes sur la dernière jage.

22: Gôte des carrés.		
net un dition de 210 = 2100		
et de 297 et conne Alise vout les plus grands carres		
possibles: $\kappa = 1600(2\omega; 297) = 3$		
a b r Taille de, caux : 3 mm		
210 87 36		
87- 36 NS 36 NS 6		
6 3 0		
4 Congruences		
Définition		
Soit n un entier naturel non nul et a et b deux entiers naturels. On dit que a et b sont congrus modulo n si les divisions euclidiennes de a et b par n donnent le même reste. On écrit cela $a \equiv b [n]$		
Excepts: $12 \equiv 2l \equiv 2 [10]$ $47 \neq 9 (5)$		
47 = 12 = 2 = 2 = 2		
Exemple		
a. Prenons deux multiples de 5, ils sont tous congrus modulo 5 puisque lorsqu'on les divise par 5 le reste est nul.		
15 ≡ 20 [5]		
 b. Ajoutons leur 2 à tous les deux, ils sont encore congrus modulo 5 puisque lorsqu'on les divise par 5 le reste est 2. 17 ≡ 22 [5] 		
c. Dans la vie courante, on raisonne parfois modulo 12 : $16 = 1 \times 12 + 4$		
$16 \equiv 4 \boxed{12}$ Et de même 17 \equiv 5 [12] et 18 \equiv 6 [12] : «5 heures de l'après-midi, c'est 17 :00 » et cætera.		
$E_{xamples}$: $53 = 9 (7) can 53 = 7 x 7 + 9$		
Examples: $53 = 9$ (7) can $53 = 7 \times 7 + 9$ $142 = 10$ [M] can $14l = 10 \times 12 + 10$ $18 = 0$ (13) can $18 = 13 \times 6 + 0$		
78 = 0 (13) can 78 = 13x6 + 0		