QUANTUM ANNEALING AND TENSOR NETWORKS: A POWERFUL COMBINATION TO SOLVE OPTIMIZATION PROBLEMS

Author: Miquel Albertí Binimelis

Bachelor's final thesis

Under the Guidance of Dr. Nahuel Norbeto Statuto Dr. Luis Víctor Dieulefait

Facultat de Matemàtiques i Informàtica

Dept. of Mathematics and Computer Science, UB

Table of Contents

- Introduction
- 2 Mathematical framework of quantum mechanics and quantum computing
 - Hilbert space
 - QUBO formulation
 - Adiabatic quantum computing
- 3 Connection between tensor networks and quantum mechanics
 - Introduction to tensor networks
 - Matrix product states and operators (MPS and MPO)
 - The DMRG algorithm
- 4 Tool for constructing MPOs using finite automata
- 5 Application: quadratic knapsack problem (QKP)
 - Imposing inequality constraints
 - Dynamic programming approach

Project scope

Figure: D-Wave's Quantum Annealer.

Figure: Tensor network.

Project scope

Adiabatic quantum computing (AQC)

• Algorithm: Quantum annealing (QA).

Tensor networks (TN)

- Algorithm: The Density matrix renormalization group (DMRG).
- Creation of the Matrix Product Operator (MPO) using finite automata.

Application: quadratic knapsack problem (QKP)

- Quadratic Unconstraint Binary Optimization (QUBO) formulation of the problem.
- Additional solvers: dynamic programming (DP), brute force.

Organization

	Summer	//	Feb H1	Feb H2	Mar H1	Mar H2	Apr H1	Apr H2	May H1	May H2	Jun H1
Study on AQC, QA, and QUBO		//									
Study on TN, MPS, and MPO		//									
Study on the DMRG		//									
Research on MPO and finite automata		//									
Research on the QKP and DP		//									
Problem formulation and implementation		//									
Run experiments		//									
Write the memory		//									

Table of Contents

- Introduction
- 2 Mathematical framework of quantum mechanics and quantum computing
 - Hilbert space
 - QUBO formulation
 - Adiabatic quantum computing
- Connection between tensor networks and quantum mechanics
 - Introduction to tensor networks
 - Matrix product states and operators (MPS and MPO)
 - The DMRG algorithm
- 4 Tool for constructing MPOs using finite automata
- 5 Application: quadratic knapsack problem (QKP)
 - Imposing inequality constraints
 - Dynamic programming approach

Hilbert space

Ket notation: states

$$|0\rangle := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|1\rangle := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle = \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}; \ \alpha_0, \alpha_1 \in \mathbb{C}, \ |\alpha_0|^2 + |\alpha_1|^2 = 1$$

$$\mathbb{P}(|0\rangle) = |\alpha_0|^2$$

$$\mathbb{P}(|1\rangle) = |\alpha_1|^2$$

Hilbert space

System with N qubits

$$\{|i_1,\ldots,i_N\rangle:=|i_1\rangle\otimes\ldots\otimes|i_N\rangle\mid i_1,\ldots i_N\in\{0,1\}\}$$

$$|00\rangle := |0\rangle \otimes |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
$$|01\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Dimension: 2^N , where N is the numbe of particles

Hilbert space

Bra notation: Dual vector

Complex conjugate of the elements in the transpose vector (row vector).

Ket:
$$|\psi\rangle = \sum_{i}^{n} \alpha_{i} |\psi_{i}\rangle$$

Bra:
$$\langle \psi | = \sum_{i}^{n} \alpha_{i}^{*} \langle \psi_{i} |$$

- Inner product: $\langle \psi | \phi \rangle$
- Norm: $\||\phi\rangle\| := \sqrt{\langle \phi | \phi \rangle}$

Operators: Hamiltonians

2nd postulate of quantum mechanics

The time evolution of the state of a closed quantum system is described by the time-dependent Schrödinger equation

$$i\hbar \frac{d|\phi(t)\rangle}{dt} = H(t)|\phi(t)\rangle$$

If H does NOT depend on time, we can solve the differential equation to obtain the time-independent Schrödinger equation

$$H|\psi_i\rangle = E_i|\psi_i\rangle$$
,

where H is a Hermitian operator.

Operators: Hamiltonians

if $|\phi\rangle$ is not an eigenstate

$$H|\phi\rangle = H(\alpha_1|\psi_1\rangle + \ldots + \alpha_N|\psi_N\rangle)$$

= $\alpha_1H|\psi_1\rangle + \ldots + \alpha_NH|\psi_N\rangle$
= $\alpha_1E_1|\psi_1\rangle + \ldots + \alpha_NE_N|\psi_N\rangle$.

Expected energy:

$$\begin{split} \langle \phi | H | \phi \rangle &= \left(\sum_{i}^{n} \alpha_{i}^{*} \langle \psi_{i} | \right) \left(\sum_{i}^{n} \alpha_{i} E_{i} | \psi_{i} \rangle \right) \\ &= \alpha_{1}^{*} \alpha_{1} E_{1} \langle \psi_{1} | \psi_{1} \rangle + \ldots + \alpha_{N}^{*} \alpha_{N} E_{N} \langle \psi_{N} | \psi_{N} \rangle \quad \text{(orthogonality)} \\ &= |\alpha_{1}|^{2} E_{1} + \ldots + |\alpha_{N}|^{2} E_{N} \; . \quad \text{(orthonormality)} \end{split}$$

Operators: Pauli matrices

The Pauli group:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

The 7-basis:

$$Z|0\rangle = |0\rangle$$
 $Z|1\rangle = -|1\rangle$

QUBO formulation

Quadratic Unconstrained Binary Optimization (QUBO)

Combinatorial optimization problem that can be formulated as

$$\min_{x} x^{T} Qx$$

where $x = (x_1, \dots, x_N)^T \in \{0, 1\}^N$ is a vector containing the N binary variables of the problem and $Q = \{q_{ij}\}_{i,j \in \{1,\dots,N\}}$ is a constant square matrix that depends on the problem formulation.

- $x \rightarrow \text{decision variables (binary)}$.
- $x^T Qx \rightarrow cost function$.

Ising model

Through a change of variables

$$x_i = \frac{1 - s_i}{2}$$

we obtain the Hamiltonian of an Ising model

$$H = -\sum_{i,j} J_{ij}Z_iZ_j - \sum_j h_iZ_i \;,\;\; J_{ij},h_i \in \mathbb{R}$$

where

$$Z_i := I \otimes \ldots \otimes Z_i \otimes \ldots \otimes I$$

$$Z_i Z_j := I \otimes \ldots \otimes Z_i \otimes \ldots \otimes Z_j \otimes \ldots \otimes I$$

Adiabatic quantum computing

$$g_{min} = \min_{s \in [0,1]} (E_1(s) - E_0(s))$$

Time-dependent Hamiltonian

$$H(t) = (1 - s(t))H_0 + s(t)H_p$$

$$t \in [0, T], T \in \mathbb{R}_{>0}$$

$$s(0) = 0, \ s(T) = 1$$

Quantum annealing

$$H(t) = (1-s(t))H_0 + s(t)H_p$$
 $t \in [0,T], \ T \in \mathbb{R}_{>0}$ $s(0) = 0, \ s(T) = 1$

$$H_0 = -\sum_{i=1}^N X_i$$
 $H_p = -\sum_{i,j} J_{ij} Z_i Z_j - \sum_i h_i Z_i, \ J_{ij}, h_i \in \mathbb{R}$

Annealing Hamiltonian

$$egin{align} H(t) &= (1-s(t))\left[-\sum_{i=1}^N X_i
ight] + s(t)\left[-\sum_{i,j} J_{ij}Z_iZ_j - \sum_j h_iZ_i
ight] \ &\quad t \in [0,T], \ T \in \mathbb{R}_{>0} \qquad \qquad s(0) = 0, \ s(T) = 1 \end{split}$$

Table of Contents

- Introduction
- 2 Mathematical framework of quantum mechanics and quantum computing
 - Hilbert space
 - QUBO formulation
 - Adiabatic quantum computing
- Connection between tensor networks and quantum mechanics
 - Introduction to tensor networks
 - Matrix product states and operators (MPS and MPO)
 - The DMRG algorithm
- 4 Tool for constructing MPOs using finite automata
- 5 Application: quadratic knapsack problem (QKP)
 - Imposing inequality constraints
 - Dynamic programming approach

Introduction to TN

Contractions

Cost: $O(d^4)$

Matrix Product States (MPS)

Each particle k can be in d_k possible states ($d_k = 2$ if it is a qubit)

$$|\psi\rangle = \sum_{i_1i_2...i_N} C_{i_1i_2...i_N} |i_1...i_N\rangle , \qquad i_k = 0,...,d_k - 1, \quad k = 1,...,N$$

has $d_1 d_2 \dots d_N$ parameters.

$$|\psi\rangle = \sum_{i_1i_2...i_N} M_{i_1} \dots M_{i_N} |i_1 \dots i_N\rangle , \qquad i_k = 0, ..., d_k - 1, \quad k = 1, ..., N$$

has $d_1m_1 + m_1d_2m_2 + \ldots + m_{N-2}d_{N-2}m_{N-1} + m_{N-1}d_N$ parameters.

Conversion from a general tensor to its MPS form

$$C_{i_1,(i_2,...,i_N)} = \sum_{a_1} U_{i_1,a_1} S_{a_1,a_1} V^{\dagger}_{a_1,(i_2...i_N)}$$
.

Then, we define

$$M_{i_1} := U_{i_1,a_1} \qquad \qquad C_{a_1,(i_2,\ldots,i_N)} := S_{a_1,a_1} V_{a_1,i_2\ldots i_N}^{\dagger} \ .$$

2nd iteration

$$C_{(a_1,i_2),(i_3...,i_N)} = \sum_{a_2} U_{(a_1,i_2),a_2} S_{a_2,a_2} V^{\dagger}_{a_2,(i_3...i_N)}$$

$$M_{i_2} := U_{a_1,i_2,a_2} \qquad \qquad C_{a_2,(i_3,\ldots,i_N)} := S_{a_2,a_2} V^{\dagger}_{a_2,i_3\ldots i_N} \ .$$

Matrix Product Operators (MPO)

$$H = \sum_{\{i\}} \sum_{\{i'\}} C^{i'_1 \dots i'_L}_{i_1, \dots i_L} |i_1 \dots i_L\rangle\langle i'_1 \dots i'_L|$$

 $H = \left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle$

Figure: Initial tensor.

Figure: MPO.

$$H = \sum_{\{i\}} \sum_{\{i'\}} M_{i_1}^{i'_1} \dots M_{i_N}^{i'_N} |i_1 \dots i_L\rangle\langle i'_1 \dots i'_L|$$

Density Matrix Renormalization Group (DMRG)

Goal: Find the state with minimum energy (ground state).

Remember the 2nd postulate of quantum mechanics:

$$H|\psi\rangle = E_0|\psi\rangle.$$

The equivalent TN would be:

$$\langle \psi | H | \psi \rangle / \langle \psi | \psi \rangle = E_0$$

1st iteration:

$$\begin{array}{cccc}
\stackrel{i_1}{\longleftarrow} \stackrel{i_2}{\longrightarrow} & a_2 & = & \stackrel{i_1}{\longleftarrow} \stackrel{i_2}{\longrightarrow} & a_2
\end{array}$$

Figure: Two sites to be optimized.

Figure: The remaining structure is fixed during the optimization.

1st iteration:

$$R_{j} = R_{j-1}$$

$$R_{j-1}$$

Figure: Ordering for efficient contraction.

1st iteration:

$$\bigcup_{B_{12}} \bigcap_{R_3} = \bigcup_{H \cdot B_{12}}$$

Figure: Optimization step: Find the lowest eigenvalue of *H*. Algorithm employed: **Lanczos method**.

$$B'_{12} \approx U_1 S_{12} V_2$$

Figure: Restore the MPS form.

2nd iteration:

$$=$$
 L_1

Figure: Fix the first tensor.

$$\bigcup_{L_1} \bigcup_{B_{23}} \bigcup_{R_4} = \bigcup_{H \cdot B_{23}} \bigcup_{H$$

Figure: Optimization step for the 2nd and 3rd tensors.

Convergence criterion:

$$var(E) = \langle \psi | H^2 | \psi \rangle - (\langle \psi | H | \psi \rangle)^2$$

Estimation of the minimum gap

Modified DMRG: Finds the second lowest energy of the system.

$$g_{min} = \min_{s \in [0,1]} (E_1(s) - E_0(s))$$

Minimum gap estimate using DMRG

$$ilde{g}_{min} = \min_{i \in \{0,...,n\}} (ilde{E}_1(t_i) - ilde{E}_0(t_i))$$
 .

Table of Contents

- Introduction
- 2 Mathematical framework of quantum mechanics and quantum computing
 - Hilbert space
 - QUBO formulation
 - Adiabatic quantum computing
- 3 Connection between tensor networks and quantum mechanics
 - Introduction to tensor networks
 - Matrix product states and operators (MPS and MPO)
 - The DMRG algorithm
- 4 Tool for constructing MPOs using finite automata
- 5 Application: quadratic knapsack problem (QKP)
 - Imposing inequality constraints
 - Dynamic programming approach

Construction of MPSs and MPOs

Let's say we want the MPS for the state

$$|11000\ldots\rangle + |01100\ldots\rangle + |00110\ldots\rangle + \ldots$$

The summands form the language of the automaton

Which can be translated into an MPS diagram

Construction of MPSs and MPOs

$$\begin{bmatrix} \downarrow & \uparrow & 0 \\ 0 & 0 & \uparrow \\ 0 & 0 & \downarrow \end{bmatrix}$$

Final MPS (for 4 qubits):

$$\begin{bmatrix} \downarrow & \uparrow & 0 \end{bmatrix} \cdot \begin{bmatrix} \downarrow & \uparrow & 0 \\ 0 & 0 & \uparrow \\ 0 & 0 & \downarrow \end{bmatrix} \cdot \begin{bmatrix} \downarrow & \uparrow & 0 \\ 0 & 0 & \uparrow \\ 0 & 0 & \downarrow \end{bmatrix} \cdot \begin{bmatrix} 0 \\ \uparrow \\ \downarrow \end{bmatrix} = \downarrow \downarrow \uparrow \uparrow \uparrow + \downarrow \uparrow \uparrow \downarrow \downarrow + \uparrow \uparrow \uparrow \downarrow \downarrow$$

To build an MPO, just use operators instead of states \uparrow , \downarrow .

Our contribution: construction of the MPO for our use case

Annealing Hamiltonian

$$H(t) = (1 - s(t)) \left[-\sum_{i=1}^{N} X_i \right] + s(t) \left[-\sum_{i,j} J_{ij} Z_i Z_j - \sum_{j} h_i Z_i \right]$$
$$t \in [0, T], \ T \in \mathbb{R}_{>0} \qquad s(0) = 0, \ s(T) = 1$$

We found in the literature an explicit construction of an MPO for the Hamiltonian

$$H = \sum_{k=1}^{N} X'_k + \sum_{k < l} c_{kl} Z_k \otimes Z_l$$

and applied this change of variables:

$$X_i' = -(1 - s(t)) \cdot X_i - s(t) \cdot h_i Z_i$$

 $c_{kl} = -s(t) \cdot J_{kl} \quad , J_{kl} \in \mathbb{R}$

Our contribution: construction of the MPO for our use case

Furthermore.

• Our implementation does not rely on N-1 auxiliary matrices they used to encode the coefficients.

$$c_{i_1,\dots,i_N}^{j_1,\dots,j_N} = A_{i_1j_1}^{[1]} T^{[1]} A_{i_2j_2}^{[2]} T^{[2]} \dots T^{[N-1]} A_{i_Nj_N}^{[N]}$$

- We corrected two errors in their implementation.
- We extended the code to handle any given N.

Table of Contents

- Introduction
- 2 Mathematical framework of quantum mechanics and quantum computing
 - Hilbert space
 - QUBO formulation
 - Adiabatic quantum computing
- Connection between tensor networks and quantum mechanics
 - Introduction to tensor networks
 - Matrix product states and operators (MPS and MPO)
 - The DMRG algorithm
- 4 Tool for constructing MPOs using finite automata
- 5 Application: quadratic knapsack problem (QKP)
 - Imposing inequality constraints
 - Dynamic programming approach

Simplified UML diagram of the project

General formulation

- W: weight capacity of our knapsack.
- N: number of available items to put in the bag.
- Each item i = 1, ..., N has a weight w_i and a value v_{ii} .
- v_{ij} : extra profit obtained if items i, j are both in the solution.
- x_i : binary decision variables.

Total weight:

 $W = \sum_{i=1}^{N} w_i x_i$

Total value:

$$\mathcal{V} = \sum_{i=1}^{N} \sum_{j=1}^{i} v_{ij} x_i x_j$$

Goal: maximize V subject to the constraint that $W \leq W$.

Imposing inequality constraints: unbalanced penalization

Given the constraint

$$h(x) = W - \sum_{i} w_{i}x_{i} \geq 0.$$

Idea: minimize $-V + e^{-h(x)}$. In a QUBO formulation

$$e^{-h(x)} \approx 1 - h(x) + \frac{1}{2}h(x)^2.$$

Instead, minimize $-V + \lambda g(h(x))$, where

$$g(h(x)) := -0.9603 \cdot h(x) + 0.0371 \cdot h(x)^{2}.$$

Imposing inequality constraints: unbalanced penalization

Dynamic programming approach

Algorithm 2 DP approach for QKP

```
Require: v_{ij} to be a triangular matrix
  Initialize V(k) \leftarrow 0 for k = 1, ... W
                                                   > stores optimal profit for each weight
  Initialize S(k) \leftarrow \emptyset for k = 1, ... W
                                                   > stores solution items for each weight
  for k = 1, \dots, N do
      for r = W, \dots, 1 do
          if w_k < r then
              v \leftarrow V(r - w_k) + v_{ii}
              for i \in S(r-w_k) do
                  v \leftarrow v + v_{max(i,k),min(i,k)}
              end for
              if V(r) < v then
                                          \triangleright if item k improves solution, update V and S
                  V(r) \leftarrow v
                  S(r) \leftarrow S(r) \cup \{k\}
              end if
          end if
      end for
  end for
  Output V(W) and S(W)
```

Dynamic programming approach

Knapsack problem

- \circ $O(N \cdot W)$.
- Returns optimal solution.

Quadratic knapsack problem

- $O(W \cdot N^2)$.
- It does not obey Bellman's principle of optimality.

$$V_k(x_k) = \max_{d_k} \{g(x_k, d_k) + V_{k+1}(x_{k+1})\}, \quad k = 1, \dots, N$$

Overview

QA results

Figure: Plot of the simulated adiabatic evolution performed with the ${\bf Qibo}$ library for a QKP instance with ${\bf 10}$ items. The solution obtained matches the one derived using brute force.

Computing the minimum gap with DMRG

Exploration of the annealing energy evolution.

Enhace QA with DMRG estimation

Performance on large-scale problem instances

Figure: Random instances of the QKP involving **20 items** and a maximum capacity of 100.

Performance on large-scale problem instances

Figure: Random instances of the QKP involving **1000 items** and a maximum capacity of 1000.

Conclusions

Our technical contributions are:

- The QUBO formulation of the QKP without slack variables.
- The creation of an MPO that describes the annealing Hamiltonian of an Ising model.
- A proposal of an annealing scheduling time evolution for QA based on the study of the minimum gap with the DMRG.

Other relevant achievements:

- A mathematical explanation for people without a physics background covering quantum computing, quantum annealing, tensor networks, the DMRG algorithm, and how to create MPOs using finite automata.
- A Python implementation of all these algorithms, along with notebooks demonstrating their use.

Future work

- Further hyperparameter tuning of the QKP formulation and the DMRG algorithm parameters on a cluster is needed.
- Run quantum annealing on a real quantum annealer.
- Continue working on the custom annealing schedule timing.

Thank you for your attention

Table of Contents for the Appendix

- Appendix A: Entanglement
- Appendix B: Operators
- Appendix C: Contractions, the order matters
- Appendix D: Gauge freedom and MPS orthogonality
- Appendix E: Truncation with SVD
- Appendix F: Entanglement in MPS representation
- Appendix G: The power method
- Appendix H: Estimation of the minimum gap
- Appendix I: Construction of MPOs
- Appendix J: Tables of the MPO built
- Appendix K: Custom scheduling time for QA

Appendix A: Entanglement

$$|\psi\rangle = \left(\frac{1}{\sqrt{2}}, 0, 0, \frac{1}{\sqrt{2}}\right)^{T} = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

$$\mathbb{P}(|00\rangle) = 1/2 \qquad \qquad \mathbb{P}(|11\rangle) = 1/2$$

$$\mathbb{P}(|01\rangle) = 0 \qquad \qquad \mathbb{P}(|10\rangle) = 0$$

$$|\psi\rangle = (\alpha_{0}|0\rangle + \alpha_{1}|1\rangle) \otimes (\beta_{0}|0\rangle + \beta_{1}|1\rangle)$$

Appendix B: Operators

Postulate (unitary operator)

The time evolution of a closed quantum system is described by a unitary transformation. That is, the state $|\psi\rangle$ of the system at time t_1 is related to the state $|\psi'\rangle$ of the system at time t_2 by a **unitary operator** U which depends only on the times t_1 and t_2 ,

$$|\psi'\rangle = U|\psi\rangle$$

Unitary operators are the ones described by unitary matrices:

- Invertible, complex, and square.
- Satisfy $U^{-1} = U^{\dagger}$, where U^{\dagger} is its conjugate transpose (Hermitian adjoint).

Hermitian adjoint satisfies: $U|\psi\rangle = |\phi\rangle \implies \langle\psi|U^{\dagger} = \langle\phi|$ Furthermore, if $U = U^{\dagger}$ they are known as Hermitian operators.

Appendix B: Operators

2nd postulate of quantum mechanics

The time evolution of the state of a closed quantum system is described by the time-dependent Schrödinger equation

$$i\hbar \frac{d|\phi(t)\rangle}{dt} = H(t)|\phi(t)\rangle$$

If H does NOT depend on time, we can solve the differential equation to obtain the time-independent Schrödinger equation

$$H|\psi_i\rangle = E_i|\psi_i\rangle$$
,

where

- $|\psi_i\rangle$ is an eigenstate. Since H is a Hermitian operator, an orthonormal basis of the Hilbert space composed of the eigenvectors of H exists.
- E_i is the energy of the state $|\psi_i\rangle$.

Appendix C: Contractions, the order matters

Appendix D: Gauge freedom and MPS orthogonality

Figure: Right-orthogonal tensor in an MPS

Figure: Right-orthogonal MPS

Appendix D: Gauge freedom and MPS orthogonality

Appendix E: Truncation with SVD

Any matrix $M \in \mathbb{C}^{m \times n}$ can be decomposed as

$$M = USV^{\dagger}$$

where

- $U \in \mathbb{C}^{m \times \min(m,n)}$ has orthonormal column vectors.
- $S = diag(s_1, s_2, ..., s_r, 0, ..., 0) \in \mathbb{R}^{\min(m,n) \times \min(m,n)}_{\geq 0}$, $r \leq \min(m,n)$ where $s_1 \geq s_2 \geq ... \geq s_r$ are called *singular values of M*.
- ullet $V^{\dagger}\in\mathbb{C}^{\min(m,n) imes n}$ has orthonormal row vectors.

Appendix E: Truncation with SVD

Given

$$M = USV^{\dagger}$$
 where $S = diag(s_1, s_2, ..., s_r, 0, ..., 0), r = rank M$

we can define

$$M_k = US_kV^{\dagger}$$
 where $S_k = diag(s_1, s_2, ..., s_k, 0, ..., 0)$, $k < rank M$.

It has the property that

$$||M - M_k||_F \le ||M - A||_F \quad \forall A \mid \operatorname{rank}(A) = k$$

Appendix F: Entanglement in MPS representation

Theorem (Schmidt decomposition)

Given a bipartition of a Hilbert space $\mathcal{H}=\mathcal{H}_A\otimes\mathcal{H}_B$, any state $|\psi\rangle\in\mathcal{H}$ can be written as a *Schmidt decomposition* into orthonormal vectors $|\alpha_1\rangle,\ldots,|\alpha_n\rangle\in\mathcal{H}_A$ and $|\beta_1\rangle,\ldots,|\beta_m\rangle\in\mathcal{H}_B$ as

$$|\psi\rangle = \sum_{i} s_{i} |\alpha_{i}\rangle \otimes |\beta_{i}\rangle.$$

Definition (entanglement entropy)

Given a bipartition of a Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$, and a state $|\psi\rangle \in \mathcal{H}$, the *entanglement entropy* of one part with the other is given by

$$S(A) = S(B) = -\sum_{i} |s_i|^2 \log |s_i|^2$$

where s_i are the Schmidt coefficients of $|\psi\rangle$.

Appendix G: The power method

Let $H \in \mathbb{C}^{n \times n}$ be a diagonalizable matrix. Let's suppose its eigenvalues satisfy

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \ldots \ge |\lambda_n|$$
.

We build a series of vectors

$$z^{(k+1)} = Hz^{(k)}, \quad k = 0, 1, 2, \dots$$

Let's consider a basis of eigenvectors $\{v_1, \ldots, v_n\}$. The series satisfies

$$z^{(k)} = H^k z^{(0)} = H^k \sum_{i=1}^n \alpha_i v_i = \sum_{i=1}^n \lambda_i^k \alpha_i v_i = \lambda_1^k \left[\alpha_1 v_1 + \sum_{i=2}^n \left(\frac{\lambda_i}{\lambda_1} \right)^k \alpha_i v_i \right].$$

As $(\lambda_i/\lambda_1)^k \to 0$ for i > 1 when $k \to \infty$ then the direction of $z^{(k)}$ tends towards the direction of v_1 (if $\alpha_1 \neq 0$)

Appendix H: Estimation of the minimum gap

Goal: Find the second lowest energy of the system (first excited state's energy).

Given the ground state ψ , run again DMRG on the modified Hamiltonian:

$$H' = H + w |\psi\rangle\langle\psi|$$
,

DMRG will then minimize

$$\langle \phi | \mathcal{H} | \phi \rangle + \mathbf{w} \langle \phi | \psi \rangle \langle \psi | \phi \rangle$$
.

Appendix I: Construction of MPOs

Let's say we want the MPO for an operator of the form

$$O = \sum_{i} \left(\hat{A}_i \hat{B}_{i+1} + \hat{B}_i \hat{A}_{i+1} \right)$$
.

The respective diagram and MPO matrix are

Appendix J: Tables of the MPO built

Rules for M_k , $\forall k$.

rule-number	(left, right)- input		output
1	(1,1)	\rightarrow	I
2	(-1,-1)	\rightarrow	1
3	(-2, -1)	\rightarrow	Ζ
4	(1, -1)	\rightarrow	$-(1-s)X+s\cdot h_k Z$

Additional rules for M_k , $k < \lfloor N/2 \rfloor$. The matrix dimension is $k+2 \times k+3$. $m=2,\ldots,k$.

rule-number	(left, right)- input		output
5	(1,2)	\rightarrow	Z
6	(1, k+2)	\rightarrow	$s \cdot J_{k,k+1} Z$
7	(m, m+1)	\rightarrow	1
8	(m, k+2)	\rightarrow	$s \cdot J_{k-m+1,k+1} I$

Appendix J: Tables of the MPO built

Additional rules for $M_{\lfloor N/2 \rfloor}$. The matrix dimension is $\lfloor N/2 \rfloor + 2 \times \lfloor N/2 \rfloor + a$. $m = 2, \ldots, k$; $n = 2, \ldots, \lfloor N/2 \rfloor + a - 1$

rule-number	(left, right)- input		output
5	(1, n)	\rightarrow	$s \cdot J_{\lfloor N/2 \rfloor, N-n+2} Z$
6	(m, n)	\rightarrow	$s \cdot J_{\lfloor N/2 \rfloor - m + 1, N - n + 2} I$

Additional rules for M_k , $k > \lfloor N/2 \rfloor$. The matrix dimension is $N - k + 3 \times N - k + 2$. m = 2, ..., N - k + 1.

rule-number	(left, right)- input		output
5	(1, m)	\rightarrow	$s \cdot J_{k,N-m+2} Z$
6	(m, m)	\rightarrow	1

Appendix K: Custom scheduling time for QA

Annealing "velocity":

$$v(\tilde{t}) = \frac{g_{\tilde{t}} - g_{min} + \epsilon}{g_{max} - g_{min}}$$
 $\tilde{t} = 0, \dots, N$.

Integrate to get the desired shape:

$$ilde{s}(t) = \int p(t) \, dt$$
 where $p(t)$ is the polynomial that best fits $v(ilde{t})$.

Shift and scale to ensure that s(0) = 0 and s(1) = 1:

$$s(t) = rac{ ilde{s}(t) - ilde{s}(0)}{ ilde{s}(1) - ilde{s}(0)}$$
.