1 Exercício 1

Considere o banco houses_to_rent_v2 que contém o valor (em reais) do aluguel de imóveis no Brasil. Você pode trabalhar apenas com os imóveis localizados em São Paulo, Rio de Janeiro e Belo Horizonte.

```
library(readr)
library(dplyr)
library(tidyverse)
library(magrittr)
library(ggplot2)
library(glmnet)
library(xtable)
colnames <- c("city", "area", "rooms", "bathroom", "park_spaces", "floor", "animal",
"furniture", "rent_am")
data <- read_csv("D:/__Mestrado/Lista 1/houses_to_rent_v2.csv",</pre>
                 na = "-", skip=1,
                 col_types = "cdddddffd",
                 col_names = colnames)
#Filtrar as cidades de São Paulo, Rio de Janeiro e Belo Horizonte
data %<>% filter(city %in% c("São Paulo", "Rio de Janeiro", "Belo Horizonte"))
data$city <- as.factor(data$city)</pre>
```

(a) Divida o conjunto de dados em treinamento e teste. Explique como decidiu qual porcentagem deixar para cada um.

A princípio, foi escolhida a divisão de 80% e 20%. Entretanto, posteriormente, foi feita uma análise com os intervalos de confiança a fim de entender se essa porcentagem escolhida está coerente com o intervalo almejado.

A Tabela 1 apresenta os intervalos de confiança para três divisões quando aplicadas sobre o banco todo, pode-se concluir que a divisão escolhida é adequada ao banco de dados. Isso porque por mais que a amplitude seja menor na divisão 70% - 30%, obtemo um risco estimado maior. Decidimos então por continuar com a escolha da divisão entre treino e teste de 80% - 20%.

Tabela 1: IC risco para diferentes porcentagens

Divisão	EQM	Erro padrão	IC	Amplitude do IC
70% - 30%	8.555.619	57,61	7.823.215 - 9.288.023	1.464.809
80% - 20%	6.607.061	61,06	5.679.209 - 7.534.912	1.855.703
90% - 10%	5.863.003	82,76	4.937.471 - 6.788.536	1.851.065

```
table(data_split)
# Teste Treino
# 1772
         6874
data_split70_30 <- sample(c("Treino", "Teste"),</pre>
                     size = nrow(data),
                     prob = c(0.7, 0.3),
                     replace = TRUE)
table(data_split70_30)
# Teste Treino
# 2578
         6068
data_split90_10 <- sample(c("Treino", "Teste"),</pre>
                           size = nrow(data),
                          prob = c(0.9, 0.1),
                           replace = TRUE)
table(data_split90_10)
# Teste Treino
# 856
        7790
#) Ajustando o LASSO - 70%-30%
fitLinear.cv70_30 <- cv.glmnet(x = X[data_split70_30 == "Treino",],</pre>
                           y = y[data_split70_30 == "Treino"],
                           alpha = 1)
#Ajustando o lasso com o lambda obtido pelo CV
lasso70_30 = glmnet(x = X[data_split70_30 == "Treino",],
               y = y[data_split70_30 == "Treino"],
               alpha = 1, lambda = fitLinear.cv70_30$lambda.min)
pred70_30 <- predict(lasso70_30, newx = X[data_split70_30 == "Teste", ])</pre>
mse_lasso70_30 = mean((y[data_split70_30=="Teste"]-pred70_30)^2)
erro_padrao_lasso70_30 = sqrt(mse_lasso70_30/length(y[data_split70_30=="Teste"]))
#) Ajustando o LASSO - 90%-10%
fitLinear.cv90_10 <- cv.glmnet(x = X[data_split90_10 == "Treino",],
                               y = y[data_split90_10 == "Treino"],
                                alpha = 1)
#Ajustando o lasso com o lambda obtido pelo CV
lasso90_10 = glmnet(x = X[data_split90_10 == "Treino",],
                    y = y[data_split90_10 == "Treino"],
                    alpha = 1, lambda = fitLinear.cv90_10$lambda.min)
pred90_10 <- predict(lasso90_10, newx = X[data_split90_10 == "Teste", ])</pre>
mse_lasso90_10 = mean((y[data_split90_10=="Teste"]-pred90_10)^2)
erro_padrao_lasso90_10 = sqrt(mse_lasso90_10/length(y[data_split90_10=="Teste"]))
####IC
IC_Risco_70_30 = IC_risco(m = 2578,yteste = y[data_split70_30=="Teste"], ypredito = pred70
IC_Risco_80_20 = IC_risco(yteste = y[data_split=="Teste"], ypredito = pred)
IC_Risco_90_10 = IC_risco(m = 856,yteste = y[data_split90_10=="Teste"], ypredito = pred90_
rbind(unlist(IC_Risco_70_30), unlist(IC_Risco_80_20), unlist(IC_Risco_90_10))
```

(b) Utilizando o conjunto de treinamento, ajuste uma regressão (i) via mínimos quadrados, (ii) via lasso (usando validação-cruzada no treinamento para escolher λ) e (iii) Regressão ridge. Qual o melhor valor de λ encontrado para o lasso?

Tendo em vista que a variável *floor* apresentava o caracter - para indicar se o imóvel era uma casa, plotou-se o histograma dessa variável, a fim de entender sua distribuição, e este é apresentado pela figura 1.

Figura 1: Histograma da variável floor

```
data$floor %>% hist(., breaks = 50)
data$floor %>% as.factor() %>% summary()
#Temos 2063 casas (NA)
#aptos com até 4 andares (não necessita de elevador por lei)
#aptos com 5 ou mais andares (necessita de elevador por lei)
#Criando nova coluna para essa nova divisão
data %<>% mutate(floor2 = data$floor)
data$floor2[data$floor < 5] <- "apto_4"</pre>
data$floor2[data$floor >= 5] <- "apto_5+"</pre>
data$floor2[data$floor %in% NA] <- "casa"
data$floor2 %<>% as.factor()
summary(data$floor2)
# apto_4
           apto_5+
                       casa
# 2765
           3818
                       2063
```

Uma vez que a maior parte das observações ou eram apartamentos cujos prédios apresentavam menos do que 6 andares ou eram casas, criou-se uma nova variável categórica floor2, com os valores casa, quando o imóvel fosse uma casa; $apto_4$, para os apartamentos em prédios com menos de cinco andares; $apto_5+$, para os apartamentos em prédio com cinco ou mais andares, optou-se por essa divisão pelo fato de que é obrigatório, por lei, que prédios com 5 ou mais andares tenham elevador. Ademais, as variáveis animal e furniture foram transformadas em fator.

Feitas essas mudanças, foram estimadas as três regressões, sendo que, para o lasso, o melhor valor de λ , encontrado pela validação-cruzada no conjunto de treinamento, foi o de 24,41898. A figura 2 apresenta o processo de escolha desse tuning parameter.

Figura 2: Processo de escolha de λ via validação cruzada

```
#Criando a matriz de planejamento X
X \leftarrow data[,c(2:5,7,8,10,1)]
X = model.matrix(~.,data = X)
X \leftarrow X[,-1]
#Criando o vetor da variável resposta
y = data %>% dplyr::select(rent_am) %>% as.matrix()
#i) Via mínimos quadrados
mq = glmnet(x = X[data_split == "Treino",],
            y = y[data_split == "Treino"],
            alpha =0, lambda = 0)
y_pred_mq = predict(mq, newx = X[data_split == "Teste", ])
mse_mq = mean((y[data_split=="Teste"]-y_pred_mq)^2)
erro_padrao_mq = sqrt(mse_mq/length(y[data_split=="Teste"]))
#ii) Ajustando o LASSO
fitLinear.cv <- cv.glmnet(x = X[data_split == "Treino",],</pre>
                        y = y[data_split == "Treino"],
                        alpha = 1)
#Lambda mínimo pelo CV
lambda = fitLinear.cv$lambda.min
lambda #Melhor valor encontrado para lambda
```

```
plot(fitLinear.cv)
#Ajustando o lasso com o lambda obtido pelo CV
lasso = glmnet(x = X[data_split == "Treino",],
               y = y[data_split == "Treino"],
               alpha = 1, lambda = lambda)
coefficients(lasso)
pred <- predict(lasso, newx = X[data_split == "Teste", ])</pre>
mse_lasso = mean((y[data_split=="Teste"]-pred)^2)
erro_padrao_lasso = sqrt(mse_lasso/length(y[data_split=="Teste"]))
#iii) Via regressão Ridge
cv_ridge <- cv.glmnet(x = X[data_split == "Treino",],</pre>
                      y = y[data_split == "Treino"],
                      alpha = 0)
ajuste_ridge <- glmnet(x = X[data_split == "Treino",],</pre>
                        y = y[data_split == "Treino"],
                        alpha = 0
round(coefficients(ajuste_ridge, s = cv_ridge$lambda.min), 4)
predito_ridge <- predict(ajuste_ridge,</pre>
                          s = cv_ridge$lambda.min,
                          newx = X[data_split == "Teste", ])
mse_ridge = mean((y[data_split=="Teste"]-predito_ridge)^2)
erro_padrao_ridge = sqrt(mse_ridge/length(y[data_split=="Teste"]))
```

c) Qual dos métodos acima apresentou melhores resultados? Responda essa pergunta utilizando o conjunto de teste e o melhor valor de λ encontrado. Inclua os intervalos de confiança para o risco preditivo nos seus resultados.

A tabela 2 apresenta os valores de algumas métricas a fim de comparar o desempenho preditivo dos três tipos de métodos.

Tabela 2: Desempenho Preditivo

Tabela 2. Description Treative					
Modelo	EQM	Erro padrão	IC	Amplitude do IC	
Mínimos quadrados	6.592.061	60,99282	5.667.292 - 7.516.829	1.849.537	
Lasso	6.607.061	61,06218	5.679.209 - 7.534.912	1.855.703	
Ridge	6.576.622	60,92136	5.648.370 - 7.504.875	1.856.504	

É possível perceber que os erros padrão dos três tipos de modelo foram muito próximos, nesse sentido, é difícil afirmar qual dos modelos teve desempenho preditivo melhor, até porque tanto o EQM quanto a amplitude dos intervalos de confiança foram altos para todos os três tipos de regressão. Uma das possíveis razões para que o EQM de todos os modelos estimados tenha sido alto é a pequena quantidade de covariáveis disponívies, isso porque um dos componentes do risco esperado é a variância intrínseca da variável resposta, e esta só pode ser reduzida se aumentada a quantidade de covariáveis observadas. Embora a regressão ridge tenha apresentado o menor valor para o EQM e para o erro padrão, entende-se que o lasso seja preferível, uma vez que este apresenta a vantagem de não utilizar uma das covariáveis.

A tabela 3 apresenta os coeficientes estimados por cada um dos modelos.

Variável	Mínimos Quadrados	Lasso	Ridge
Intercepto	162.1321	419.3566	343.3912
area	0.0818	0.0506	0.1024
rooms	406.9624	377.3532	444.6198
bathroom	1005.7621	1016.1796	909.2152
park_spaces	430.5769	421.3117	433.2273
animalnot acept	77.1648	-	51.8355
furniturenot furnished	-1365.2272	-1318.1696	-1296.1311
floor2apto 5+	420.7835	346.7505	413.6254

137.2758

529.1204

738.1093

231.7944

580.1689

787.9075

238.1823

756.4777

892.7128

floor2casa

cityRio de Janeiro

citySão Paulo

Tabela 3: Coeficientes estimados

```
### IC para o Risco ###
IC_risco <- function(m = 1772, yteste, ypredito){</pre>
  R_hat = mean((yteste - ypredito)^2)
  W_k = (yteste - ypredito)^2
  W_{medio} = mean(W_k)
  sigma2_hat = mean((W_k - W_medio)^2)
  l = 1.96 * sqrt(sigma2_hat/m)
  LI = R_hat - 1
  LS = R_hat + 1
  return(list(R_hat = R_hat, sigma2_hat = sigma2_hat,
  amplitude = 2*1, LI = LI, LS = LS))
}
IC_Risco_MQ = IC_risco(yteste = y[data_split=="Teste"], ypredito = y_pred_mq)
IC_Risco_Lasso = IC_risco(yteste = y[data_split=="Teste"], ypredito = pred)
IC_Risco_Ridge = IC_risco(yteste = y[data_split=="Teste"], ypredito = predito_ridge)
rbind(unlist(IC_Risco_MQ), unlist(IC_Risco_Lasso), unlist(IC_Risco_Ridge))
coef <- cbind(round(coefficients(mq), 4),</pre>
      round(coefficients(lasso),4),
      round(coefficients(ajuste_ridge, s = cv_ridge$lambda.min), 4))
```

- d) Interprete os resultados do melhor modelo encontrado (via coeficientes). Ele faz sentido? Analisando os coeficientes do lasso, temos que:
- Intercepto: Estima-se que o valor esperado do aluguel assumindo que todas as covariáveis sejam iguais a zero é de R\$ 419,36, o que neste estudo não faz sentido para algumas covariáveis como a área do imóvel.
- area: Estima-se que o valor esperado para o aluguel aumente em R\$ 0,05 quando se aumenta em uma unidade a área do imóvel, mantidas constantes na média as demais cováriaveis.
- rooms: Estima-se que o valor esperado para o aluguel aumente em R\$ 377,35 quando se aumenta em uma unidade o número de quartos do imóvel, mantidas constantes na média as demais cováriaveis.

- bathroom: Estima-se que o valor esperado para o aluguel aumente em R\$ 1.016,18 quando se aumenta em uma unidade o número de banheiros do imóvel, mantidas constantes na média as demais cováriaveis.
- park_spaces: Estima-se que o valor esperado para o aluguel aumente em R\$ 421,31 quando se aumenta em uma unidade o número de vagas de estacionamento do imóvel, mantidas constantes na média as demais cováriaveis.
- furniture (not furnished): Estima-se que o valor esperado para o aluguel em um imóvel não mobiliado seja, em média, R\$ 1.318,17 menor do que o valor de um imóvel mobiliado.
- floor2apto_5+ : Estima-se que o valor esperado para o aluguel em um imóvel de um prédio com 5 andares ou mais seja, em média, R\$ 346,75 maior do que o valor de um imóvel em um prédio com menos de 5 andares.
- floor2casa : Estima-se que o valor esperado para o aluguel de uma casa seja, em média, R\$ 137,28 maior do que o valor de um imóvel em um prédio com menos de 5 andares.
- cityRio de Janeiro: Estima-se que o valor esperado para o aluguel em um imóvel no Rio de Janeiro seja, em média, R\$ 529,12 maior do que o valor de um imóvel em Belo Horizonte.
- citySão Paulo: Estima-se que o valor esperado para o aluguel em um imóvel em São Paulo seja, em média, R\$ 738,11 maior do que o valor de um imóvel em Belo Horizonte.

Podemos perceber que a interpretação dos coeficientes faz sentido para o ajuste em foco. Espera-se que imóveis maiores, com mais cômodos, banheiros, vagas na garagem ou mobiliados tenham um valor de aluguel mais alto. Percebemos, ainda, que o aluguel de apartamentos em prédios com 5 andares ou mais é maior em média do que aqueles com até 4 andares. Geralmente isso se dá porque prédios residenciais maiores costumam também ter uma maior estrutura nas áreas comuns, como áreas de lazer e outras benfeitorias, além da obrigatoriedade de elevadores. Com relação às cidades, como já era esperado, o aluguel é em média mais caro na cidade de são Paulo, seguido de Rio de Janeiro e Belo Horizonte.

e) Inclua todas as iterações entre as variáveis observadas e repita o ajuste do método de mínimos quadrados e do lasso. Como esses ajustes se comparam em relação aos anteriores? Qual foi o melhor modelo encontrado? Esses resultados são esperados?

A tabela 4 apresenta as métricas do desempenho preditivo de cada um dos modelos (mínimos quadrados e lasso) quando incluídas todas as iterações duas a duas entre as variáveis. Nesse novo ajuste, o melhor valor de λ , encontrado pela validação-cruzada no conjunto de treinamento, foi o de 763,268.

Tabela 4: Desempenho Preditivo dos modelos com as iterações duas a duas

Modelo	EQM	Erro padrão	IC	Amplitude do IC
Mínimos quadrados	5.781.091	57,11801	4.963.005 - 6.599.178	1.636.172
Lasso	7.503.856	65,07443	6.510.600 - 8.497.113	1.986.513

É possível perceber que enquanto a adição de mais covariáveis, para o modelo de mínimos quadrados, possibilita uma redução tanto do EQM quanto do erro padrão, o que já era esperado

uma vez que o viés no MQO é reduzido pelo aumento de covariáveis, uma situação oposta ocorre ao lasso.

Nesse caso, talvez o aumento da complexidade do modelo não tenha significado um aumento de covariáveis que de fato contribuam para reduzir a variância intrínseca da variável resposta (que é componente do risco esperado) e isso, se por um lado possibilitou que o EQM e o erro padrão do lasso tenham aumentado, por outro não contribuiu para que uma redução ainda maior dessas mesmas métricas para o MQO tivesse sido verificada. Além disso, no caso do lasso, a adição das iterações também fez com que apenas dois coeficientes estimados fossem diferentes de zero (os coeficientes associados às variáveis bathroom e park_spaces).

Haja vista esses aspectos, entende-se que o melhor modelo considerando todas as iterações duas é o modelo MQO.

```
#Criando a matriz de planejamento X2 com interações
X2 \leftarrow data[,c(2:5,7,8,10,1)]
X2 = model.matrix(^{((())}2 -1, data = X2)
#Criando o vetor da variável resposta
y = data %>% dplyr::select(rent_am) %>% as.matrix()
#i) Via mínimos quadrados - com interação
mq2 = glmnet(x = X2[data_split == "Treino",],
            y = y[data_split == "Treino"],
            alpha = 0, lambda = 0)
round(coefficients(mq2), 4)
v_pred_mq2 = predict(mq2, newx = X2[data_split == "Teste", ])
mse_mq2 = mean((y[data_split=="Teste"]-y_pred_mq2)^2)
erro_padrao_mq2 = sqrt(mse_mq2/length(y[data_split=="Teste"]))
#ii) Ajustando o LASSO - com interação
fitLinear.cv2 <- cv.glmnet(x = X2[data_split == "Treino",],
                          y = y[data_split == "Treino"],
                          alpha = 1)
#Lambda mínimo pelo CV
lambda2 = fitLinear.cv2$lambda.min
lambda2 #Melhor valor encontrado para lambda
plot(fitLinear.cv2)
#Ajustando o lasso com o lambda obtido pelo CV
lasso2 = glmnet(x = X2[data_split == "Treino",],
               y = y[data_split == "Treino"],
               alpha = 1, lambda = lambda2)
coefficients(lasso2)
pred2 <- predict(lasso2, newx = X2[data_split == "Teste", ])</pre>
mse_lasso2 = mean((y[data_split=="Teste"]-pred2)^2)
erro_padrao_lasso2 = sqrt(mse_lasso2/length(y[data_split=="Teste"]))
IC_Risco_MQ2 = IC_risco(yteste = y[data_split=="Teste"], ypredito = y_pred_mq2)
IC_Risco_Lasso2 = IC_risco(yteste = y[data_split=="Teste"], ypredito = pred2)
rbind(unlist(IC_Risco_MQ2), unlist(IC_Risco_Lasso2))
```

2 Exercício 2

Mostre que

$$\mathbb{E}[(Y - g(\mathbf{X}))^2 | \mathbf{X} = \mathbf{x}] = \mathbb{V}[Y | \mathbf{X} = \mathbf{x}] + (r(\mathbf{x}) - \mathbb{E}[g(\mathbf{x})])^2 + \mathbb{V}[g(\mathbf{x})]$$

Tendo em vista que $r(\mathbf{x}) = \mathbb{E}[Y|\mathbf{X}]$ e assumindo a independência entre Y e $g(\mathbf{X})$, dado que obtemos função g a partir do conjunto de treinamento, temos que

$$\mathbb{E}[(Y - g(\mathbf{X}))^2 | \mathbf{X} = \mathbf{x}] =$$

$$= \mathbb{E}[(Y - r(\mathbf{x}) + r(\mathbf{x}) - g(\mathbf{X}))^2 | \mathbf{X} = \mathbf{x}] =$$

$$= \mathbb{E}[(((Y - r(\mathbf{x})) - (g(\mathbf{X}) - r(\mathbf{x})))^2 | \mathbf{X} = \mathbf{x}] =$$

$$= \mathbb{E}[((Y - r(\mathbf{x}))^2 - 2(Y - r(\mathbf{x}))(g(\mathbf{X}) - r(\mathbf{x})) + (g(\mathbf{X}) - r(\mathbf{x}))^2 | \mathbf{X} = \mathbf{x}] =$$

$$= \mathbb{E}[(Y - r(\mathbf{x}))^2 | \mathbf{X} = \mathbf{x}] - 2\mathbb{E}[(Y - r(\mathbf{x}))(g(\mathbf{X}) - r(\mathbf{x})) | \mathbf{X} = \mathbf{x}] + \mathbb{E}[(g(\mathbf{X}) - r(\mathbf{x}))^2 | \mathbf{X} = \mathbf{x}] =$$

$$= \mathbb{E}[(Y - r(\mathbf{x}))^2 | \mathbf{X} = \mathbf{x}] + 0 + \mathbb{E}[(g(\mathbf{X}) - r(\mathbf{x}))^2 | \mathbf{X} = \mathbf{x}] =$$

$$= \mathbb{E}[(Y^2 - 2Yr(\mathbf{x}) + r(\mathbf{x})^2 | \mathbf{X} = \mathbf{x}] + \mathbb{E}[(g(\mathbf{X})^2 - 2g(\mathbf{X})r(\mathbf{x}) + r(\mathbf{x})^2 | \mathbf{X} = \mathbf{x}] =$$

$$= \mathbb{E}[Y^2 | \mathbf{X} = \mathbf{x}] - 2(\mathbb{E}[Y | \mathbf{X} = \mathbf{x}])^2 + (\mathbb{E}[Y | \mathbf{X} = \mathbf{x}])^2 + \mathbb{E}[g(\mathbf{X})^2 - 2g(\mathbf{X})r(\mathbf{x}) + r(\mathbf{x})^2 | \mathbf{X} = \mathbf{x}] =$$

$$= \mathbb{V}[Y | \mathbf{X} = \mathbf{x}] + \mathbb{E}[g(\mathbf{X})^2 | \mathbf{X} = \mathbf{x}] - 2\mathbb{E}[g(\mathbf{X})r(\mathbf{x}) | \mathbf{X} = \mathbf{x}] + \mathbb{E}[r(\mathbf{x})^2 | \mathbf{X} = \mathbf{x}] =$$

$$= \mathbb{V}[Y | \mathbf{X} = \mathbf{x}] + \mathbb{E}[g(\mathbf{x})^2] - 2r(\mathbf{x})\mathbb{E}[g(\mathbf{x})] + r(\mathbf{x})^2 + \mathbb{E}[g(\mathbf{x})]^2 - \mathbb{E}[g(\mathbf{x})]^2 =$$

$$= \mathbb{V}[Y | \mathbf{X} = \mathbf{x}] + \mathbb{E}[g(\mathbf{x})] - \mathbb{E}[g(\mathbf{x})]^2 + r(\mathbf{x})^2 - 2r(\mathbf{x})\mathbb{E}[g(\mathbf{x})] + \mathbb{E}[g(\mathbf{x})]^2 =$$

$$= \mathbb{V}[Y | \mathbf{X} = \mathbf{x}] + \mathbb{V}[g(\mathbf{x})] + r(\mathbf{x})^2 - 2r(\mathbf{x})\mathbb{E}[g(\mathbf{x})] + \mathbb{E}[g(\mathbf{x})]^2 =$$

$$= \mathbb{V}[Y | \mathbf{X} = \mathbf{x}] + \mathbb{V}[g(\mathbf{x})] + (r(\mathbf{x}) - \mathbb{E}[g(\mathbf{x})])^2 + \mathbb{V}[g(\mathbf{x})]$$

Obs:

$$\mathbb{E}[(Y - r(\mathbf{x}))(g(\mathbf{X}) - r(\mathbf{x}))|\mathbf{X} = \mathbf{x}] =$$

$$= \mathbb{E}[Yg(\mathbf{X}) - Yr(\mathbf{x}) - r(\mathbf{x})g(\mathbf{X}) + r(\mathbf{x})^{2}|\mathbf{X} = \mathbf{x}]$$

$$= \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]\mathbb{E}[g(\mathbf{x})] - r(\mathbf{x})\mathbb{E}[Y|\mathbf{X} = \mathbf{x}] - r(\mathbf{x})\mathbb{E}[g(\mathbf{x})] + r(\mathbf{x})^{2}$$

$$= r(\mathbf{x})\mathbb{E}[g(\mathbf{x})] - r(\mathbf{x})^{2} - r(\mathbf{x})\mathbb{E}[g(\mathbf{x})] + r(\mathbf{x})^{2}$$

$$= 0$$

3 Exercício 3

Seja $0 < \alpha < 1$ fixo e considere a função de perda

$$L(g; (\mathbf{X}, Y)) = (g(\mathbf{X}) - Y)(\mathbb{I}(Y \le g(\mathbf{X})) - \alpha)$$

Qual a função g
 que minimiza a função de risco (aleatório apenas em (\mathbf{X},Y)) correspondente?
 Interprete e justifique.

Sabemos que a função de risco é a esperança da função de perda. Portanto, temos que

$$R_{pred}(g) = \mathbb{E}[(g(\mathbf{X}) - Y)(\mathbb{I}(Y \le g(\mathbf{X})) - \alpha)|\mathbf{X} = \mathbf{x}]$$

Logo, podemos reescrever a função de risco como

$$\begin{split} R_{pred}(g) &= \int_{-\infty}^{g(\mathbf{x})} (g(\mathbf{x}) - Y)(1 - \alpha) f(Y | \mathbf{X} = \mathbf{x}) \, dy + \int_{g(\mathbf{x})}^{+\infty} (Y - g(\mathbf{x}))(\alpha) f(Y | \mathbf{X} = \mathbf{x}) \, dy = \\ &= \int_{-\infty}^{g(\mathbf{x})} g(\mathbf{x})(1 - \alpha) f(Y | \mathbf{X} = \mathbf{x}) \, dy - \int_{-\infty}^{g(\mathbf{x})} Y(1 - \alpha) f(Y | \mathbf{X} = \mathbf{x}) \, dy \\ &+ \int_{g(\mathbf{x})}^{+\infty} Y(\alpha) f(Y | \mathbf{X} = \mathbf{x}) \, dy - \int_{g(\mathbf{x})}^{+\infty} g(\mathbf{x})(\alpha) f(Y | \mathbf{X} = \mathbf{x}) \, dy = \\ &= g(\mathbf{x})(1 - \alpha) F(g(\mathbf{x}) | \mathbf{X} = \mathbf{x}) - (1 - \alpha) \int_{-\infty}^{g(\mathbf{x})} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy \\ &+ \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha(1 - F(g(\mathbf{x}) | \mathbf{X} = \mathbf{x})) = \\ &= g(\mathbf{x}) F(g(\mathbf{x}) | \mathbf{X} = \mathbf{x}) - g(\mathbf{x})\alpha F(g(\mathbf{x}) | \mathbf{X} = \mathbf{x}) - (1 - \alpha) \int_{-\infty}^{g(\mathbf{x})} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy \\ &+ \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy + g(\mathbf{x})\alpha F(g(\mathbf{x}) | \mathbf{X} = \mathbf{x}) - g(\mathbf{x})\alpha = \\ &= g(\mathbf{x}) F(g(\mathbf{x}) | \mathbf{X} = \mathbf{x}) - (1 - \alpha) \int_{-\infty}^{g(\mathbf{x})} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}^{+\infty} Y f(Y | \mathbf{X} = \mathbf{x}) \, dy - g(\mathbf{x})\alpha + \alpha \int_{g(\mathbf{x})}$$

Assim,

$$R_{pred}(g) = g(\mathbf{x})F(g(\mathbf{x})|\mathbf{X} = \mathbf{x}) - (1-\alpha)\int_{-\infty}^{g(\mathbf{x})} Yf(Y|\mathbf{X} = \mathbf{x})\,dy + \alpha\int_{g(\mathbf{x})}^{+\infty} Yf(Y|\mathbf{X} = \mathbf{x})\,dy - g(\mathbf{x})\alpha$$

Como queremos encontrar a função g
 que minimiza essa função de risco, precisamos derivar $R_{pred}(g)$ em relação a $g(\mathbf{x})$, que é o nosso estimador de interesse, e igualar esse resultado a zero para encontrar qual o valor de g
 que faz com que

$$\frac{\partial R_{pred}(g)}{\partial q(\mathbf{x})} = 0$$

$$F(g(\mathbf{x})|\mathbf{X} = \mathbf{x}) + g(\mathbf{x})f(g(\mathbf{x})|\mathbf{X} = \mathbf{x}) - (1 - \alpha)g(\mathbf{x})f(g(\mathbf{x})|\mathbf{X} = \mathbf{x})$$
$$+ \alpha(-1)g(\mathbf{x})f(g(\mathbf{x})|\mathbf{X} = \mathbf{x}) - \alpha = 0$$

$$F(g(\mathbf{x})|\mathbf{X} = \mathbf{x}) + g(\mathbf{x})f(g(\mathbf{x})|\mathbf{X} = \mathbf{x}) - g(\mathbf{x})f(g(\mathbf{x})|\mathbf{X} = \mathbf{x}) + \alpha g(\mathbf{x})f(g(\mathbf{x})|\mathbf{X} = \mathbf{x}) - \alpha g(\mathbf{x})f(g(\mathbf{x}$$

$$F(g(\mathbf{x})|\mathbf{X} = \mathbf{x}) - \alpha = 0$$

$$F(g(\mathbf{x})|\mathbf{X} = \mathbf{x}) = \alpha$$

$$g(\mathbf{x}) = F^{-1}(\alpha | \mathbf{X} = \mathbf{x})$$

Dessa forma, o α -ésimo quantil é o estimador que minimiza a função de risco com função de perda dada por $L(g; (\mathbf{X}, Y)) = (g(\mathbf{X}) - Y)(\mathbb{I}(Y \leq g(\mathbf{X})) - \alpha)$.