T: V -> V

- · N & F is an eigenvalue if 30 + v & V & L. Tv = N v · v is called as the eigenvector. · N is an eigenvalue (=> N is a nort of the polynomial t(x) = det (xI-A) · The polynomial det (xI-A) is called as the characteristic polynomial
- · Cayley Hamilton theorem. Every square matrix satisfies its over the polynomial
- $P(x) = \sum_{i=0}^{\infty} a_i x^i$ is the holynomial, then $P(A) = \sum_{i=0}^{\infty} a_i A^i$, where A = I is the identity matrix.

Observation. Consider the characteristic polynomial

$$p(x) = det(xI - A)$$
.
Thus, A is invertible (=) $p(0) \neq 0$.

An application. Let A be an invertible matrix Let P(x) be the chopynomial of A. By Cayley- Gamilton theorem.

$$0 = A^{1} P(A) = A^{1} \sum_{i=0}^{\infty} a_{i} A^{i} = A^{1} a_{0} + \sum_{i=1}^{\infty} a_{i} A^{i-1}$$

Note that as \$0 as \$(0) = as,

A ⁻¹ =	/ \	0	0 \	
	-1	0	1	
	1	١	-1	

· I dentily matix · Scalar matix on Diogonal matix

Question Given T: V -> V, Does I a bais B wort which

[T]
$$\otimes$$
 is a diagonal matrix.
Act [T] \otimes = $\begin{pmatrix} a_1 & 0 \\ 0^2 & a_n \end{pmatrix}$

[T] = [aij]

T (v1) = 9, v1

Definition. A LT T: V -> V is said to be diagonalizable if V has a bacis w.v.t. which the matrix of T is diagonal.

Example, I: V -> V 0: V -> V an diagonalizable.

Example T: $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $T(x_1 y) = (x + y, y)$ Ex. Show that T is not diagonalizable.

Diagonalizability Criteria. An operator T: V -> V is diagonalizable (over F) (=> olm V is equal to the sum of the dimensions of the eigenspaces of T.

· Subject that Mi, My, ..., Mm are enterfaces of a vector space V. They are called independent if w, + w2 + ... + wm = 0 for wie Kl; => w;=0 +i.

Lemma. Suppose that H., H., ..., Hom are subspaces, then they are independent dim (Mi) = \frac{\mathbb{T}}{2} \dim (Mi).

Poroof. Out of scope.

Lemma. The Eigenspaces corresponding to different eigenvalues of T are independent

Proof. Let N_1 , N_2 ,..., N_m be distinct eigenvalue of T. Let $E_N:=\{v\in V: Tv=N; v\}=ken(N; Iv-T), 1\leq i\leq m$.

Claim: E_N , E_{N_2} ..., E_{N_m} are independent.

When m=1, then there is nothing to prove.

Let m=2. Let $\omega_1 \in E_{N_1}$, $E_{N_2} = E_{N_2}$. Then $\omega_1 + \omega_2 = 0$ $\omega_1 = -\omega_2$ $\omega_1 = -\omega_2$ $\omega_1, \omega_2 \in E_{N_1} \cap E_{N_2}$ Thus $N_1 \omega_1 = T(\omega_1) = N_2 \omega_1$ $\sum_{i=1}^{N_1} (N_1 - N_2) \omega_1 = 0$ $\sum_{i=1}^{N_1} (N_1 - N_2) \omega_1 = 0$

Induction hypothesis. The statement is true for m-1.

Let $\omega_i \in E_{\lambda_i}$, $1 \le i \le m$, such that $\omega_i + \omega_2 + \cdots + \omega_m = 0$. $\longrightarrow 0$ $\Rightarrow T(\omega_1 + \omega_2 + \cdots + \omega_m) = 0$ $\Rightarrow N_1 \omega_1 + N_2 \omega_2 + \cdots + N_m \omega_m = 0 \longrightarrow 0$ From 0, $N_m \omega_1 + N_m \omega_2 + \cdots + N_m \omega_m = 0 \longrightarrow 0$ $0 - 0 \Rightarrow (N_1 - N_m)\omega_1 + (N_2 - N_m)\omega_2 + \cdots + (N_{m-1} - N_m)\omega_{m-1} = 0$ By induction hypothesis, $(N_i - N_m)\omega_i = 0$ $0 \ge 0$ $0 \ge$

: From O, wm =0

Ex. Find the eigenvalues and the eigenvectors of

 $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ $T(x_1y, y) = (5x - by - by, -x + 4y + 2y, 3x - by - 4y)$. See whether T is diagonalizedle on not

