- Μια συναρτησιακή εξάρτηση (Functional Dependency) είναι ένας περιορισμός μεταξύ δύο συνόλων γνωρισμάτων.
 - Σεστω A_1, A_2, \ldots, A_n όλα τα γνωρίσματα μιας σχέσης R. Αν X και Y είναι υποσύνολα του $\{A_1, A_2, \ldots, A_n\}$, τότε η συναρτησιακή εξάρτηση $X \to Y$ καθορίζει ότι για οποιεσδήποτε δύο πλειάδες t_1, t_2 της R, αν $t_1[X] = t_2[X]$, τότε πρέπει επίσης να ισχύει ότι $t_1[Y] = t_2[Y]$.
- > Δεδομένης μιας συναρτησιακής εξάρτησης $X \to Y$, λέμε ότι το σύνολο X προσδιορίζει συναρτησιακά το σύνολο Y ή ότι το σύνολο Y εξαρτάται συναρτησιακά από το σύνολο X

- \blacktriangleright Αν η συναρτησιακή εξάρτηση $X \to Y$ ισχύει σε μια σχέση R, τότε δεν είναι δυνατόν να υπάρχουν πλειάδες οι οποίες συμφωνούν στις τιμές όλων των γνωρισμάτων στο X και συγχρόνως δε συμφωνούν στην τιμή κάποιου από τα γνωρίσματα του Y.
- ightharpoonup Αν το X είναι κλειδί της R, τότε η εξάρτηση $X \to Y$ ισχύει για κάθε υποσύνολο Y των γνωρισμάτων της R.
- ightharpoonup Η εξάρτηση $X \to Y$ δε συνεπάγεται την εξάρτηση $Y \to X$

Παράδειγμα: Έστω ότι οι παρακάτω σχέσεις έχουν το περιεχόμενο που φαίνεται στους αντίστοιχους πίνακες. Προσδιορίστε τις συναρτησιακές εξαρτήσεις οι οποίες ισχύουν.

T1	Α	В
-	x_1	y_1
	x_2	y_2
	x_3	y_1
	x_4	y_1
	x_5	y_2
	x_6	y_2

2	A	В
_	x_1	y_1
	x_2	y_4
	x_1	y_1
	x_3	y_2
	x_2	y_4
	x_4	y_3

⁻ 3	A	В
	x_1	y_1
	x_2	y_4
	x_1	y_1
	x_3	y_2
	x_2	y_4
	x_4	y_4

T1:
$$A \rightarrow B$$
 $B \nrightarrow A$

T2:
$$A \to B$$

$$B \to A$$

T3:
$$A \rightarrow B$$
 $B \nrightarrow A$

Παράδειγμα: Έστω το σχήμα EMPLOYEE (emp_id, emp_name, emp_phone, dept_name) DEPARTMENT (dept_id, dept_name, dept_phone, dept_mgrname) SKILL (skill_id, skill_name) EMP_HAS_SKILL (emp_id, skill_id, skill_date, skill_level)

- Οι συναρτησιακές εξαρτήσεις που ισχύουν είναι:
- 1. $emp_id \rightarrow emp_name, emp_phone, dept_name$
- 2. $dept_name \rightarrow dept_phone, dept_mgrname$
- 3. $skill_id \rightarrow skill_name$
- 4. emp_id , $skill_id \rightarrow skill_date$, $skill_level$

Λογικές Συνέπειες Συναρτησιακών Εξαρτήσεων

- > Κανόνας Εγκλεισμού (Inclusion Rule): Αν X, Y είναι σύνολα γνωρισμάτων από τη σχήμα της σχέσης R και $Y \subseteq X$, τότε $X \to Y$.
- ightharpoonup Μια συναρτησιακή εξάρτηση $X \to Y$ λέγεται **τετριμμένη** αν ισχύει για κάθε σχέση R της οποίας το σχήμα περιέχει X και Y
- Τετριμμένες εξαρτήσεις εμφανίζονται σαν αποτέλεσμα της εφαρμογής του κανόνα εγκλεισμού
- ightharpoonup Θεώρημα: Αν X o Y είναι τετριμμένη συναρτησιακή εξάρτηση, πρέπει να ισχύει ότι $Y \subseteq X$

Λογικές Συνέπειες Συναρτησιακών Εξαρτήσεων

- ightharpoonup Θεώρημα: Αν $X \to Y$ είναι τετριμμένη συναρτησιακή εξάρτηση, πρέπει να ισχύει ότι $Y \subseteq X$
- Απόδειξη: Υποθέστε ότι Υ ⊃ Χ. Δημιουργήστε μια σχέση με όλα τα γνωρίσματα των Χ και Υ και θεωρήστε ένα γνώρισμα Α του Υ − Χ. Εφόσον A ∈ Y και A ∉ X, είναι δυνατόν να κατασκευάσουμε δύο πλειάδες υ και ν, οι οποίες έχουν κοινές τιμές σε όλα τα γνωρίσματα στο X αλλά έχουν διαφορετικές τιμές στο A. Τότε όμως η τετριμμένη εξάρτηση δεν ισχύει. Άρα, δε μπορεί να υπάρχει τέτοιο γνώρισμα A στο Y X. Επομένως, Y ⊆ X.
- Από ένα μικρό αριθμό κανόνων συνεπαγωγής και ένα αρχικό σύνολο συναρτησιακών εξαρτήσεων μπορεί να εξαχθεί ένας αριθμός πρόσθετων συναρτησιακών εξαρτήσεων.

- Έστω ότι τα σύνολα γνωρισμάτων Χ, Υ, Ζ περιέχονται στο σχήμα της σχέσης R. Τότε ισχύουν οι παρακάτω κανόνες:
- 1. Κανόνας Εγκλεισμού (Inclusion Rule)

Av
$$Y \subseteq X$$
 tóte $X \rightarrow Y$

2. Κανόνας Μεταβατικότητας (Transitivity Rule)

$$Av X \rightarrow Y$$
 και $Y \rightarrow Z$ τότε $X \rightarrow Z$

3. Κανόνας Επαύξησης (Augmentation Rule)

Av
$$X \rightarrow Y$$
 τότε $XZ \rightarrow YZ$

Συνέπειες των Αξιωμάτων

- Θεώρημα: Αν W, X, Y, Z, Β περιέχονται στο σχήμα της R, τότε:
- 1. Κανόνας Ένωσης (Union Rule)

$$Av X \rightarrow Y$$
 και $X \rightarrow Z$ τότε $X \rightarrow YZ$

2. Κανόνας Αποσύνθεσης (Decomposition Rule)

$$Av X \rightarrow YZ$$
 τότε $X \rightarrow Y$ και $X \rightarrow Z$

3. Κανόνας Ψευδομεταβατικότητας (Pseudotransitivity Rule)

$$Av X \rightarrow Y$$
 και $WY \rightarrow Z$ τότε $XW \rightarrow Z$

4. Κανόνας Συσσώρευσης (Accumulation Rule)

$$Av X \rightarrow YZ$$
 και $Z \rightarrow B$ τότε $X \rightarrow YZB$

Παράδειγμα: Βρείτε ένα ελάχιστο σύνολο συναρτησιακών εξαρτήσεων οι οποίες ικανοποιούνται στον ακόλουθο πίνακα:

	A	В	С	D
T	a_1	b_1	c_1	d_1
	a_1	b_1	c_2	d_2
	a_2	b_1	c_1	d_3
	a_2	b_1	c_3	d_4

- 1. Σ.Ε. με ένα γνώρισμα στο αριστερό μέλος
 - ightharpoonup Οι τετριμμένες εξαρτήσεις A o A, B o B, C o C, D o D δεν περιλαμβάνονται στο ελάχιστο σύνολο.
 - ightharpoonup Οι εξαρτήσεις A o B, C o B, D o B προκύπτουν από τον πίνακα καθώς όλες οι τιμές του Β είναι ίδιες.

Παράδειγμα: Βρείτε ένα ελάχιστο σύνολο συναρτησιακών εξαρτήσεων οι οποίες ικανοποιούνται στον ακόλουθο πίνακα:

	Α	В	С	D
T	a_1	b_1	c_1	d_1
	a_1	b_1	c_2	d_2
	a_2	b_1	c_1	d_3
	a_2	b_1	c_3	d_4

- 1. Σ.Ε. με ένα γνώρισμα στο αριστερό μέλος
 - ightharpoonup Τα γνωρίσματα A, C, D έχουν τουλάχιστον δύο διακεκριμένες τιμές. Άρα, $B \nrightarrow A, B \nrightarrow C, B \nrightarrow D$.
 - ightharpoonup Όλες οι τιμές του D είναι διαφορετικές Άρα, $D \to A$, $D \to B$, $D \to C$.

 Παράδειγμα: Βρείτε ένα ελάχιστο σύνολο συναρτησιακών εξαρτήσεων οι οποίες ικανοποιούνται στον ακόλουθο πίνακα:

	A	В	С	D
T	a_1	b_1	c_1	d_1
	a_1	b_1	c_2	d_2
	a_2	b_1	c_1	d_3
	a_2	b_1	c_3	d_4

- 1. Σ.Ε. με ένα γνώρισμα στο αριστερό μέλος
 - ightharpoonup Τα γνωρίσματα A, B, C έχουν τουλάχιστον δύο επαναλαμβανόμενες τιμές. Άρα, $A \nrightarrow D$, $B \nrightarrow D$, C $\nrightarrow D$.
 - ightharpoonup A
 eg C και C
 eg A, εξαιτίας των πλειάδων 1,2 και 1,3 αντίστοιχα.

Παράδειγμα: Βρείτε ένα ελάχιστο σύνολο συναρτησιακών εξαρτήσεων οι οποίες ικανοποιούνται στον ακόλουθο πίνακα:

	Α	В	С	D
T	a_1	b_1	c_1	d_1
	a_1	b_1	c_2	d_2
	a_2	b_1	c_1	d_3
	a_2	b_1	c_3	d_4

- 1. Σ.Ε. με ένα γνώρισμα στο αριστερό μέλος
 - Άρα ισχύουν οι ακόλουθες Σ.Ε.:

$$A \rightarrow B$$
, $C \rightarrow B$, $D \rightarrow A$, $D \rightarrow B$, $D \rightarrow C$

ightharpoonup Από τον κανόνα ένωσης: $A \rightarrow B$, $C \rightarrow B$, $D \rightarrow ABC$.

 Παράδειγμα: Βρείτε ένα ελάχιστο σύνολο συναρτησιακών εξαρτήσεων οι οποίες ικανοποιούνται στον ακόλουθο πίνακα:

	Α	В	C	D
T	a_1	b_1	c_1	d_1
	a_1	b_1	c_2	d_2
	a_2	b_1	c_1	d_3
	a_2	b_1	c_3	d_4

- 2. Σ.Ε. με ζεύγος γνωρισμάτων στο αριστερό μέλος
 - ► Εξαιτίας της $D \to ABC$, κάθε ζεύγος που περιέχει το D προσδιορίζει συναρτησιακά όλα τα υπόλοιπα γνωρίσματα (κανόνας επαύξησης). Αυτές οι εξαρτήσεις είναι συνεπαγωγές εξαρτήσεων που ήδη ανήκουν στο ζητούμενο σύνολο.

13

 Παράδειγμα: Βρείτε ένα ελάχιστο σύνολο συναρτησιακών εξαρτήσεων οι οποίες ικανοποιούνται στον ακόλουθο πίνακα:

	A	В	C	D
T	a_1	b_1	c_1	d_1
	a_1	b_1	c_2	d_2
	a_2	b_1	c_1	d_3
	a_2	b_1	c_3	d_4

- 2. Σ.Ε. με ζεύγος γνωρισμάτων στο αριστερό μέλος
 - Ζεύγη γνωρισμάτων που περιλαμβάνουν το Β στο αριστερό μέλος δίνουν είτε τετριμμένες εξαρτήσεις, είτε συνεπαγωγές εξαρτήσεων.

 Παράδειγμα: Βρείτε ένα ελάχιστο σύνολο συναρτησιακών εξαρτήσεων οι οποίες ικανοποιούνται στον ακόλουθο πίνακα:

	A	В	С	D
T	a_1	b_1	c_1	d_1
	a_1	b_1	c_2	d_2
	a_2	b_1	c_1	d_3
	a_2	b_1	c_3	d_4

- 2. Σ.Ε. με ζεύγος γνωρισμάτων στο αριστερό μέλος
 - ightharpoonup AC o ABCD καθώς το ζεύγος AC έχει διακεκριμένες τιμές σε κάθε πλειάδα. Η μόνη νέα εξάρτηση είναι η AC o D. Οι εξαρτήσεις AC o A, AC o C, AC o B ήδη εξάγονται από άλλες εξαρτήσεις.

 Παράδειγμα: Βρείτε ένα ελάχιστο σύνολο συναρτησιακών εξαρτήσεων οι οποίες ικανοποιούνται στον ακόλουθο πίνακα:

	Α	В	С	D
Т	a_1	b_1	c_1	d_1
	a_1	b_1	c_2	d_2
	a_2	b_1	c_1	d_3
	a_2	b_1	c_3	d_4

3. Δεν υπάρχουν εξαρτήσεις με 3 ή 4 γνωρίσματα στο αριστερό μέλος οι οποίες ανήκουν σε αυτό το σύνολο.

Το ελάχιστο σύνολο εξαρτήσεων είναι $\{A \to B, C \to B, D \to ABC, AC \to D\}$

Κλείσιμο (Closure)

- Τα αξιώματα Armstrong και οι συνέπειές τους παράγουν ένα σύνολο το οποίο είναι πολύ μεγαλύτερο από το αρχικό σύνολο των ΣΕ.
- > Δεδομένου ενός συνόλου F από ΣΕ, το κλείσιμο (closure) F^+ του F ορίζεται σαν το σύνολο των ΣΕ οι οποίες συνεπάγονται από το F.
- Παράδειγμα: Θεωρείστε το σύνολο των ΣΕ:

$$F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow E, E \rightarrow F, F \rightarrow G, G \rightarrow H\}$$

- \checkmark Από A → B και B → C, συνεπάγεται λόγω μεταβατικότητας η A → C.
- \checkmark Επίσης: $A \rightarrow D$, $A \rightarrow E$, $A \rightarrow F$, $A \rightarrow G$, $A \rightarrow BC$, $A \rightarrow EF$ κ.ο.κ.
- ✓ Παρόμοια για εξαρτήσεις με B στο αριστερό μέλος κ.ο.κ.

HY360 – Lecture 12

- Το μέγεθος του κλεισίματος ενός συνόλου ΣΕ μεγαλώνει εκθετικά με αυτό του αρχικού συνόλου.
- Χρειαζόμαστε έναν τρόπο για να αναφερόμαστε στο σύνολο των εξαρτήσεων που συνεπάγονται από ένα αρχικό σύνολο χωρίς να πρέπει να υπολογίσουμε το κλείσιμο του συνόλου αυτού.
- Για κάθε σύνολο ΣΕ μπορούμε να βρούμε ένα «ισοδύναμο» σύνολο το οποίο είναι ελάχιστο.
- \blacktriangleright Ένα σύνολο F από ΣΕ για μια σχέση R καλύπτει ένα άλλο σύνολο G από ΣΕ για την R, αν το σύνολο G μπορεί να εξαχθεί με την εφαρμογή των κανόνων συνεπαγωγής στις ΣΕ του F, δηλαδή αν $G \subseteq F^+$.

18

- ightharpoonup Αν το F καλύπτει το G καλύπτει το F τότε τα F και G λέγονται ισοδύναμα ($F \equiv G$).
- ightharpoonup Av $F \equiv G$, τότε $F^+ = G^+$
- Παράδειγμα: Θεωρείστε τα σύνολα ΣΕ

$$F = \{B \to CD, AD \to E, B \to A\}$$

$$G = \{B \to CDE, B \to ABC, AD \to E\}$$

Δείξτε ότι το F καλύπτει το G.

Πρέπει να δείξουμε ότι κάθε ΣΕ του G μπορεί να εξαχθεί από το F με χρήση των κανόνων συνεπαγωγής.

- H ΣΕ $AD \rightarrow E$ είναι ήδη στο F.
- Από την $B \to CD$ και την $B \to A$, εξάγουμε την $B \to ACD$ (κανόνας ένωσης)

HY360 – Lecture 12

19

Παράδειγμα: Θεωρείστε τα σύνολα ΣΕ

$$F = \{B \to CD, AD \to E, B \to A\}$$
 $G = \{B \to CDE, B \to ABC, AD \to E\}$
Δείξτε ότι το F καλύπτει το G.

Πρέπει να δείξουμε ότι κάθε ΣΕ του G μπορεί να εξαχθεί από το F με χρήση των κανόνων συνεπαγωγής.

- Από $B \to ACD$ και $B \to B$, εξάγουμε την $B \to ABCD$ (κανόνας ένωσης)
- Από $B \to ABCD$ εξάγουμε την $B \to AD$ (κανόνας αποσύνθεσης)
- Από $B \to AD$ και $AD \to E$ εξάγουμε την $B \to E$ (κανόνας μεταβατικότητας)

Παράδειγμα: Θεωρείστε τα σύνολα ΣΕ

$$F = \{B \to CD, AD \to E, B \to A\}$$
 $G = \{B \to CDE, B \to ABC, AD \to E\}$
Δείξτε ότι το F καλύπτει το G.

Πρέπει να δείξουμε ότι κάθε ΣΕ του G μπορεί να εξαχθεί από το F με χρήση των κανόνων συνεπαγωγής.

- Από $B \to ABCD$ και $B \to E$ εξάγουμε την $B \to ABCDE$ (κανόνας ένωσης)
- Από $B \to ABCDE$ εξάγουμε την $B \to CDE$ και την $B \to ABC$ (κανόνας αποσύνθεσης)