COURSE PLAN

V Trimester (2024-25)

SECTION I

Class	5MCA	Semester	V
Course title	Neural Networks and Deep Learning	Course Code	MCA572
Hours	60	Hours per week	6 (4+2)
Credits	4	Course Type	Theory & Practical
Faculty name	Dr. NISHA VARGHESE	Contact details	nisha.varghese@christuniversity.in 9497796443
Class policies and guidelines	University/Departments://christuniversite Students must adher classrooms. Attendance will be to not be permitted for a control of the posted in Google of the Active and voluntary. All the information of the posted in Google of the posted in Google of the programs of	ent as outlined ty.in/general-regular to the timetable at taken within the first attendance. To participation is expected will be communicated to be associated with MP3 players should use disruptions duratived to bring their ould only be used with the students will employed.	5

	evaluate their progress. Any instances of plagiarism, copying, or cheating will result in automatic zeros.
Teaching methodologies	 Peer Learning Promotes collaborative knowledge exchange and critical thinking by enabling students to teach and learn from one another Experiential Learning Assessment components are designed to work in a team to ensure experiential learning with a real-world scenario. Students are allowed to form a team based on the concepts of their interest. Problem Solving The students are also asked to solve some real time problems on ANN's, CNN's, RNN's etc Concept Visualization The simulation tools and play are used to visualise CNN/ANN working to have better understanding. Expert Interaction The students will be given extra training on the trends in industry with Deep learning.
Course Description	Understand the concepts and models of the neural networks and deep learning and its applications.
Course Objectives	The main aim of this course is to provide fundamental knowledge of neural networks and deep learning. On successful completion of the course, students will acquire fundamental knowledge of neural networks and deep learning, such as Basics of neural networks, shallow neural networks, deep neural networks, forward & backward propagation process and build various research projects.
Course Outcomes	CO1: Understand the major technology trends in neural networks and deep learning CO2: Build, train and apply neural networks and fully connected deep neural networks CO3: Implement efficient (vectorized) neural networks for real time application

SECTION II

Unit	Unit details	Week	Hours per week	Pedagogy (teaching learning methods used)/ activities and or class trips/ dates for assessment	Resource/ Reference details
UNIT - 1 Introduction to Artificial Neural Networks	Neural Networks - Application Scope of Neural Networks - Fundamental Concept of ANN. The Artificial Neural Network - Biological Neural Network - Comparison between Biological Neuron and Artificial Neuron Evolution of Neural Networks.	Week 01 Sept 9-14	6	Diagnostic assessment - Mentimeter, Lecture, Demo, Discussion, Problem Solving	
	Basic models of ANN - Learning Methods - Activation Functions - Importance - Terminologies of ANN Lab Exercises: 1. Create Single Layer Perceptron for Binary Classification using binary and bipolar sigmoid activation functions.	Week 02 Sep 16 – 20	6	Lecture, Demo, Discussion, PPT, Problem Solving	Textbook / Online Resources
UNIT - 2 Supervised Learning Network	Shallow neural networks- Perceptron Networks - Theory - Perceptron Learning Rule - Architecture - Flowchart for training Process - Perceptron Training Algorithm for Single and Multiple Output Classes. Lab Exercises: 2. Implementation of logical gates AND, OR, NAND and XOR using perceptron network.	Week 03 Sep 23 – 28	6	Lecture, Demo, Discussion, Problem Solving, Participatory learning (Flippity Quizzes)	

	Back Propagation Network-Theory-Architecture-Flowchart for training process - Training Algorithm-Learning Factors for Back-Propagation Network. Lab Exercises: 3. Demonstrate Activation Functions in Artificial Neural Networks	Week 04 Sept 30 - Oct -05	6	Problem Solving, Lecture, Demo, Discussion CIA I – Lab Test	Textbook / Online Resources
	Radial Basis Function Network RBFN: Theory, Architecture, Flowchart and Algorithm. Lab Exercises: 4. Develop Backpropagation Network for Handwritten Digit Recognition	Week 05 Oct 7 -12	6	Problem Solving, Lecture, Demo,Peer learning, Discussion ETE I - MCQ	Resources
UNIT - 3 Convolutional Neural Network	Introduction to CNN, Components of CNN Architecture - Rectified Linear Unit (ReLU) Layer Lab Exercises: 5.Demonstrate Radial Basis Function Network for Function Approximation	Week 06 Oct 14 -18	6	Problem Solving, Lecture, Demo, Discussion. Powerpoint presentation	Textbook / Online Resources
	Exponential Linear Unit (ELU, or SELU), Unique Properties of CNN	Week 07 Oct 21 -26	4	Problem Solving, Lecture, Demo, Discussion ETE II – Theory Test	

	Architecture of CNN, Applications of CNN. Lab Exercises: 6. Create Convolutional Neural Network for Image Classification and Demonstrate Convolution Operation in CNN	Week 08 Oct 28 – Nov 2	4	Problem Solving, Lecture, Demo, Discussion Experiential learning (play with CNN's)		
UNIT 4 - Recurrent Neural Networks	Introduction - The Architecture of Recurrent Neural Networks. The Challenges of Training Recurrent Networks- Echo -State Networks Lab Exercises: 7. Implementation of Recurrent Neural Networks	Week 09 Nov 04 - 09	6	Problem Solving, Lecture, powerpoint presentation, Demo, Discussion	Textbook / Online Resources	
	Long Short - Term Memory (LSTM) - Applications of RNN. Lab Exercises: 8. Demonstrate Echo State Networks for Time Series Prediction	Week 10 Nov 11 – 15	6	Problem Solving, Lecture, Demo, powerpoint presentation, Discussion	Resources	
UNIT - 5 Auto Encoder and Restricted Boltzmann Machine	Introduction - Features of Auto encoder, Types of Autoencoder. Restricted Boltzmann Machine-Boltzmann Machine Lab Exercises: 9. Develop LSTM for Sentiment Analysis	Week 11 Nov 18 – 23	6	Problem Solving, Lecture, Demo, Discussion ETE III – Lab Test	Textbook / Online Resources	

Restricted Boltzmann Machine Architecture -Example - Types of Restricted Boltzmann Machine Lab Exercise: 10. Create Denoising Autoencoder for Image Reconstruction	Week 12 Nov 25 – 30	6	Problem Solving, Lecture, Demo, Discussion
Revision and Retest	Week 13 Dec 2 – Dec 7	6	Problem Solving, Lecture, Demo, Discussion, powerpoint presentation
Revision	Week 14 Dec 9 – Dec 14	6	Problem Solving, Lecture, Demo, Discussion

Essential Reading:

- [1] Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, Alanna Maldonado, 2023.
- [2] Charu C. Aggarwal, Neural Networks and Deep Learning, Springer, September 2018.
- [3] Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016.

Recommended Reading:

- [1] S Lovelyn Rose, L Ashok Kumar, D Karthika Renuka, Deep Learning Using Python, Wiley India, 1st Edition, 2019.
- [2] Francois Chollet, Deep Learning with Python, Manning Publications; 1st edition, 2017.
- [3] John D. Kelleher, Deep Learning (MIT Press Essential Knowledge series), The MIT Press, 2019.

Web Resources:

- [1] http://neuralnetworksanddeeplearning.com
- [2] https://www.deeplearningbook.org/
- [3] https://infvspringboard.onwingspan.com/

Lab Exercises

Each program carries 10 marks and the Evaluation Rubrics for each program would be:

Evaluation Criteria				
5 marks	C1-Implementation, Correctness and Complexity			
2 marks	C2-Documentation and Visualization			
3 marks	C3-Concept Clarity and Explanation			

SECTION III
CO-PO (Course Outcomes and Programme Outcome) MAPPING

PO/]	PO					
CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	-	-	2	-	-	-	-	-	2	-
CO2	3	3	2	2	2	-	-	_	_	1	_	-
CO3	3	3	3	2	2	1	-	-	-	1	2	1

Level of mapping 1 indicates low, 2 indicates medium and 3 indicates high.

Assessment outline:

Weightage	Component	Marks	Description of the CIA component	Schedule
CIA	Component – I	50	Lab Test – I	Week 4
50 marks			Duration:2 hour	
			Total Marks: 50 marks	
			No of questions: 1 / 2 Scenario based questions	
	Component – II	45	Regular Lab exercises evaluations	
	Attendance	5	Regularity and Punctuality	
	Total	100	The total mark will be converted to 50	
ETE	Component – III	20	MCQ	Week 5
50 marks	Component-IV	30	Theory Written Test would be conducted in a common schedule proposed by the department.	Week 7
			Duration:2 hours	
			No of questions: 5 with internal choices	
			Each question is for 10 Marks	
			Total Marks: 50 marks and reduced to 30 Marks	
	Component – V (Comprehensive	50	Lab Test / Project Presentation / Statistical Inference report submission for the given scenario	Week 11
	Examination)		Duration:2 hours	
			Total Marks: 50 marks	
	Total	100	The total mark will be converted to 50	
	Total	100	The total mark will be converted to 50	

A template to map the Course Outcomes with the components of assessment is given below.

Course Outcomes	Componer	Components of assessment (with the break-up of marks)						
	CIA	CIA			ETE			
	CIA C1 (Lab Test1) 50 Marks	CIA C2 (Regular Program) 45 Marks	Attenda nce 5 Marks	ETE - I (MCQ) 20 Marks	ETE - II (Theory Test) 30 Marks	ETE - III (Project & Presentation) 50 Marks		
CO1: Understand the major technology trends in neural networks and deep learning	25	10		15	10	10		
CO2: Build, train and apply neural networks and fully connected deep neural networks	25	10		5	10	15		
CO3: Implement efficient (vectorized) neural networks for real time application		25			10	25		

SECTION IV ASSESSMENT: CIA I

Assessment description:

Assessment Component	Lab Test			
Assignment Topic	Fundamentals of Neural Network			
Nature of the assignment	Individual submission in Google Classroom			
Submission mode	Softcopy submission – Google Classroom			
Deadline for submission	Week 4			
Maximum marks	50			
General Instruction	Late submission will not be entertained			

•	The lab should be completed in the stipulated time and only
	that submission will be considered for evaluation.

• It's mandatory to submit the screenshot/screen recording of output along with the program .

Learning outcomes:

LO1: Build basic neural network models using perception rule

LO2: Able to use learning factors and differentiate the NN architecture

Evaluation Rubrics:

Evaluation Rubrics	Max marks	CRITERIA		
	50	0-18	19- 32	33-50
R1: Defining Problem and R2: Data Collection	15	Unclear problem objective; Unplanned data collection (0-5)	Moderately defined problem objectives; Partially relevant data collection (6-10)	Well defined problem objectives; Highly relevant data collection (11-15)
R3: Model Building	25	Improper implementation; Complete inappropriate model construction (0-8)	Partial implementation; Inadequate model construction (9-16)	Complete implementation; Well defined model construction (17-25)
R4: Report Design and formatted document	10	No inference of results; Unformatted document (0-3)	Partial inference of results; Formatted document (4-7)	Good inference of results; Well formatted document (7-10)

Assessment Description: ETE Component-1

Nature of Assignment	MCQ
Submission Mode	Online (Moodle Platform)

Learning outcomes:

LO1: Analyze the use of foundation models and its applications in various domains.

LO2: Understand the basic concepts of Large Language Models.

Evaluation Rubric/s:

Score	Impression	Description
16-20	Proficient	Excellent understanding and comprehensive knowledge in the area of Artificial Neural Networks. Demonstrates a clear understanding of the topics and provides accurate answers to the MCQs.
11-15	Good	Good understanding of Artificial Neural Networks. Provides correct answers to most of the MCQs, with a few minor errors or omissions.

6-10	Satisfactory	Fair understanding of Artificial Neural Networks. Provides partially correct answers to some of the MCQs but lacks clarity or makes significant errors in understanding.
1-5	Need to Improve	Limited understanding of Artificial Neural Networks. Provides incorrect or incomplete answers to the MCQs, demonstrating a lack of knowledge in the topics covered.

ASSESSMENT: ETE Component II

Assessment Component	Written Test
Portion for the Test	Unit 1, 2 and 3
Date	17/11/2024
Type of Questions	Problems and Brief Questions
Duration	2 Hours
Maximum marks	50 Marks - (Scale down to 30 marks)
General Instruction	Absenteeism is not entertained

Learning Outcomes

LO1: Able to understand various types of neural network

LO2: Able to apply Back Propagation algorithm and RBF

LO3: Able to understand and apply CNN

Evaluation Rubrics

Score (Marks)	Impression
>=27	Proficient
22-26	Very Good
18-25	Good
15-17	Satisfactory

12-14	Needs to Improve
<12	Poor

Mapping the Learning Outcomes of the assignment with components of the evaluation rubrics:

Learning Outcomes of the assignment	Method of assessment	Component of the evaluation rubrics
LO1: Able to understand various types of neural network	✓ Review of	
LO2: Able to apply Back Propagation algorithm and RBF	written document	Clarity in Concepts
LO3: Able to understand and apply CNN		

ASSESSMENT: ETE Component III

Assessment description:

Assessment Component	Programming Assignment	
Assignment Topic	Applications and Implementation of Deep Learning Models	
	1. Identify the problem and collect the dataset(s)	
	2. Explore any two of the deep learning models and give your	
	observation.	
Nature of the assignment	Individual	
Submission mode	Need to submit in Google Classroom	
	1. Code (Github) and	
	2. PDF document with problem, results and inference	
Deadline for submission	Week 11	
Page limit	Code (As per the logic); PDF document (minimum 5 pages with	
	results and visualization)	
Maximum marks	50	
Assignment Description	 Choose any domain of your interest and define the problem objectives. Data acquisition / Data collection Model(s) Building Result interpretation and report designing 	
General Instruction	Format the report using IEEE standards	

- Plagiarised assignment will not be considered for evaluation
- Late submission will not be entertained
- Expected to submit a well formatted copy of assignment

Learning outcomes:

LO1: Able to collect data with relevance to the problem domain.

LO2: Able to choose relevant activation functions and tune hyperparameters of CNN, RNN and Autoencoder.

LO3: Able to infer beneficial solutions from the chosen NN model

Evaluation Rubrics

- 1. Data Collection and EDA 5 Marks
- 2. Implementation Program 15 Marks
- 3. Visualization of results 8 Marks
- 4. Accuracy & Interpretation 7 Marks
- 5. Concept Clarity (VIVA)— 5 Marks
- 6. Report Submission 10 Marks

Score	Impression
>=32	Proficient
31-23	Good
22-15	Satisfactory
<=14	Needs to improve