

Informationssicherheit

4. Verschlüsselung

Prof. Dr. Christoph Skornia christoph.skornia@oth-regensburg.de

- □ Ziele von Verschlüsselung:
 - Vertraulichkeit
 - Integrität
 - Authentizität
 - Verbindlichkeit
- Begriffe:
 - KryptographieLehre von Methoden zur Ver- und Entschlüsselung
 - Kryptoanalyse
 Wissenschaft von Methoden zur Entschlüsselung
 - KryptologieLehre von Ver- und Entschlüsselung

Definition: Ein kryptographisches Verfahren ist gegeben durch ein Tupel (M, C, EK, DK, K_E, K_D) mit:

- ${
 m I\hspace{-.1em}I}$ M: Menge von Klartextnachrichten über dem Alphabet A_1
- ${\Bbb Z}$ C: Menge von Kryptonachrichten C über dem Aphabet A_2
- ${\bf 3}$ EK: Menge von Verschlüsselungs-Schlüsseln
- 4 DK: Menge von Entschlüsselungsschlüsseln und der Abbildung $f:EK\longrightarrow DK$ mit $K_D=f(K_E)$
- **5** dem injektiven Verschlüsselungsverfahren: $E: A_1^* \times EK \longrightarrow A_2^*$
- 6 dem Entschlüsselungsverfahren: $D: A_2^* \times DK \longrightarrow A_1^*$ mit $\forall M \in A_1^*: D\left(E\left(M, K_E\right), K_D\right) = M$

Generell gibt es zwei Klassen von kryptographischen Verfahren:

- II Symmetrische Verfahren: $K_e = K_d$, f = id
- 2 Asymmetrische Verfahren: $K_e \neq K_d$

Anforderungen an kryptographische Verfahren:

- Sicherheit darf nicht von Geheimhaltung der Ver- und Entschlüsselungsfunktionen abhängen! Häufiger Verstoß dagegen: Security by Obscurity
- Geheimer Schlüssel darf mit der Kenntnis über die verwendeten Verfahren nicht praktikabel berechenbar sein!
- Stärke des Verfahren darf nur von der Güte des geheimen Schlüssels abhängen!
 Kerckhoffs-Prinzip

Kryptographie

Anforderungen ar	kryntographische	Vorfahron
Anioraerunaen ar	i krybiodiabnische	venamen:

- Sicherheit darf nicht von Geheimhaltung der Ver- und Entschlüsselungsfunktionen abhängen! Häufiger Verstoß dagegen: Security by Obscurity
- Geheimer Schlüssel darf mit der Kenntnis über die verwendeten Verfahren nicht praktikabel berechenbar sein!
- Stärke des Verfahren darf nur von der Güte des geheimen Schlüssels abhängen!
 Kerckhoffs-Prinzip

Bemerkung: Berechnungsaufwand zum Schlüsselknacken ist abhängig von

- der aktuellen Rechner-Technologie (CPU),
- Möglichkeiten zur dezentralen Berechnung (Internet, etc.)
- neuen Rechner-Architekturen, z.B. Quantencomputer?

Konsequenzen:

- ullet Verfahren muss gut konzipiert werden, EK muss sehr groß sein
- Ausprobieren aller Schlüssel (brute force) soll nicht mit praktikablem Aufwand möglich sein (exhaustive Search)
- $lue{}$ Beispiel: 56-Bit Schlüssel (u.a. DES): Schlüsselraum $|EK|=2^{56}$
 - 1998 Deep-Crack-Supercomputer: Kosten ca. 250.000\$ Knacken eines DES-Schlüssels in 56 Stunden!
 - 2006: COPACOBANA (http://www.copacobana.org/):Kosten < 10.000 \$, durchschnitt. 7 Tage zum Knacken von DES
- Anforderung: (u.a. von Bundesnetzagentur)
 - \blacksquare symmetrische Verfahren: Schlüssel ≥ 128 Bit
 - lacktriangle asymmetrische Verfahren: Schlüssel ≥ 2048 Bit

Symmetrische Verfahren:

- lacktriangledown Ver- und Entschlüsselungs-Schlüssel sind gleich, oder leicht auseinander ableitbar, $K_d=f(K_e),f$ einfach berechenbar
- Nutzung eines gemeinsamen, geheimen Schlüssels (Secret-Key)
- ☐ Bekannte Repräsentanten:
 - ROT (oder auch Cäsar-Code) (Substitutionschiffre)
 - Skytale (Transpositionschiffre)
 - DES (Data Encryption Standard)(unsicher): noch immer weit verbreitet
 - AES (Krypto-Standard),
 - RC4(unsicher), A5, IDEA

Symmetrische Verfahren:

- lacktriangledown Ver- und Entschlüsselungs-Schlüssel sind gleich, oder leicht auseinander ableitbar, $K_d=f(K_e),f$ einfach berechenbar
- Nutzung eines gemeinsamen, geheimen Schlüssels (Secret-Key)
- Bekannte Repräsentanten:
 - ROT (oder auch Cäsar-Code) (Substitutionschiffre)
 - Skytale (Transpositionschiffre)
 - DES (Data Encryption Standard)(unsicher): noch immer weit verbreitet
 - AES (Krypto-Standard),
 - RC4(unsicher), A5, IDEA
- $lue{}$ Problem: Sicherer Austausch des gemeinsamen Schlüssels K!

Asymmetrische Verfahren:

Ein Schlüsselpaar (K_e, K_d) pro Kommunikationspartner A

Basis: Einweg-Funktion $f: X \longrightarrow Y$

- ☐ Eigenschaften von Einweg-Funktionen:
 - $\forall x \in X \text{ gilt: } f(x) \text{ ist effizient berechenbar; und}$
 - 2 für fast alle $y \in Y$ gilt, dass es nicht effizient möglich ist, $f^{-1}(y)$ zu berechnen
- Existenz von Einwegfunktionen bis heute aber unbewiesen
- Bewiesen ist: Falls eine Einwegfunktion existiert, dann gilt $P \neq NP$.

Gute Kandidaten:

- Multiplikation von Primzahlen \longleftrightarrow Primfaktorisierung gegeben $n = p \cdot q$ mit p und q prim, gesucht p und q
- Potenzierung im $\mathbb{Z}/n\mathbb{Z} \longleftrightarrow \mathsf{Diskreter}$ Logarithmus gegeben p prim und $g,y \le p$, gesucht k mit $y = g^k \bmod p$

Gute Kandidaten:

- Multiplikation von Primzahlen \longleftrightarrow Primfaktorisierung gegeben $n = p \cdot q$ mit p und q prim, gesucht p und q
- Potenzierung im $\mathbb{Z}/n\mathbb{Z} \longleftrightarrow \mathsf{Diskreter}$ Logarithmus gegeben p prim und $g,y \le p$, gesucht k mit $y = g^k \bmod p$

Für Verschlüsselung nötig: Einweg-Funktion mit Falltür (engl. trapdoor function)

- d.h. mit Zusatzinformation (Schlüssel) sind Urbilder effizient berechenbar
- **Bsp.:** gegeben $n = p \cdot q$, und Funktion f mit $f(x) = x^2 \mod n$
 - lacktriangle Invertierung von f schwierig ohne Kenntnis von p und q
 - lacktriangle Kenntnis von p und q ist "Falltür", mit p,q ist Invertierung effizient berechenbar

Kryptographie

Allgemeine Eigenschaften asymmetrischer Verfahren

- lacktriangled Die Schlüsselpaare (K_E,K_D) müssen folgende Eigenschaft erfüllen:
 - $\forall M \in A_1^* : D(E(M, K_E), K_D) = M$
- □ Schlüsselpaare müssen leicht erzeugbar sein
- Ver- und Entschlüsselungen sind effizient durchführbar
- \square K_D ist aus K_E nicht mit vertretbarem Aufwand berechenbar

- Beispiele für asymmetrische Verfahren:
 - RSA ("Quasi-Standard")
 - ElGamal-Verfahren

Asymmetrische Verschlüsselung

Alice verschlüsselt

Klartextnachricht
öffentlicher Schlüssel
von Bob

Übertragung

Bob entschlüsselt

Vergleich:

	symmetrisch	asymmetrisch
Rechenzeit:	schnell	ca. Faktor 1000 langsamer
Schlüsselverteilung:	sicherer Kanal nötig	kein sicherer Kanal nötig
Schlüsselsicherheit:	jeder muss den Schlüssel kennen	private Key braucht nur der Eigentümer kennen
Schlüsselanzahl:	quadratisch mit der Anzahl der Partner	linear mit der Anzahl der Partner
Sicherheit	kann gesichert werden	beruht auf mathematisch unbewiesenen An-
		nahmen

Lösungsansatz: Hybride Verschlüsselung:

- Nutzdaten werden symmetrisch verschlüsselt
- dafür nötige Schlüssel werden asymmetrisch verschlüsselt und ausgetauscht

Schlüsselaustausch:

- Hybride Verfahren funktionieren nur, wenn die Kommunikationspartner beide öffentliche und private Schlüssel besitzen (z.B. bei Onlinebanking nicht gegeben)
- ideal wäre es einen geheimen Schlüssel vereinbaren zu können ohne diesen austauschen zu müssen
- Idee (diskreter Logarithmus):
 - lacktriangle wähle eine große Primzahl q (jedem bekannt)
 - lacktriangle wähle einen Wert g, der eine primitive Wurzel von q in der zyklischen Gruppe $\mathbb{Z}/q\mathbb{Z}$ ist

Sei p prim und g eine Primitivwurzel von p

Allice				Bob		
Geheim	Öffentlich	berechnet	sendet	berechnet	Öffentlich	Geheim
$a \in \{1p-1\}$	p, g		$p,g \rightarrow$			$b \in \{1p-1\}$
a	p, g, A	$g^a \bmod p = A$	$A \rightarrow$		p, g	b
a	p, g, A		$\leftarrow B$	$g^b \bmod p = B$	p, g, A, B	b
a, s	p,g,A,B	$B^a \bmod p = s$		$A^b \operatorname{mod} p = s$	p,g,A,B	b,s

$$s = A^b \bmod p = \left(g^a \bmod p\right)^b \bmod p = g^{a \cdot b} \bmod p = g^{b \cdot a} \bmod p = \left(g^b \bmod p\right)^a \bmod p = B^a \bmod p = s$$

Sei p prim und g eine Primitivwurzel von p

Allice				Bob		
Geheim	Öffentlich	berechnet	sendet	berechnet	Öffentlich	Geheim
$a \in \{1p-1\}$	p, g		$p,g \rightarrow$			$b \in \{1p-1\}$
a	p, g, A	$g^a \operatorname{mod} p = A$	$A \rightarrow$		p, g	b
a	p, g, A		$\leftarrow B$	$g^b \bmod p = B$	p, g, A, B	b
a, s	p, g, A, B	$B^a \bmod p = s$		$A^b \bmod p = s$	p, g, A, B	b,s

$$s = A^b \bmod p = \left(g^a \bmod p\right)^b \bmod p = g^{a \cdot b} \bmod p = g^{b \cdot a} \bmod p = \left(g^b \bmod p\right)^a \bmod p = B^a \bmod p = s$$

Beispiel: 1 Alice und Bob einigen sich auf p = 13 und g = 2

Sei p prim und g eine Primitivwurzel von p

Allice				Bob		
Geheim	Öffentlich	berechnet	sendet	berechnet	Öffentlich	Geheim
$a \in \{1p-1\}$	p, g		$p,g \rightarrow$			$b \in \{1p-1\}$
a	p, g, A	$g^a \bmod p = A$	$A \rightarrow$		p, g	b
a	p, g, A		$\leftarrow B$	$g^b \bmod p = B$	p, g, A, B	b
a, s	p,g,A,B	$B^a \bmod p = s$		$A^b \operatorname{mod} p = s$	p,g,A,B	b,s

$$s = A^b \bmod p = \left(g^a \bmod p\right)^b \bmod p = g^{a \cdot b} \bmod p = g^{b \cdot a} \bmod p = \left(g^b \bmod p\right)^a \bmod p = B^a \bmod p = s$$

2 Alice wählt a=5 und Bob wählt b=7

Sei p prim und g eine Primitivwurzel von p

Allice				Bob		
Geheim	Öffentlich	berechnet	sendet	berechnet	Öffentlich	Geheim
$a \in \{1p-1\}$	p, g		$p,g \rightarrow$			$b \in \{1p-1\}$
a	p, g, A	$g^a \bmod p = A$	$A \rightarrow$		p, g	b
a	p, g, A		$\leftarrow B$	$g^b \bmod p = B$	p, g, A, B	b
a, s	p,g,A,B	$B^a \bmod p = s$		$A^b \operatorname{mod} p = s$	p,g,A,B	b,s

$$s = A^b \bmod p = \left(g^a \bmod p\right)^b \bmod p = g^{a \cdot b} \bmod p = g^{b \cdot a} \bmod p = \left(g^b \bmod p\right)^a \bmod p = B^a \bmod p = s$$

Beispiel: 1 Alice und Bob einigen sich auf p=13 und g=2

- 2 Alice wählt a=5 und Bob wählt b=7
- 3 Alice berechnet A=6 und Bob B=11

Sei p prim und g eine Primitivwurzel von p

Allice				Bob		
Geheim	Öffentlich	berechnet	sendet	berechnet	Öffentlich	Geheim
$a \in \{1p-1\}$	p, g		$p,g \rightarrow$			$b \in \{1p-1\}$
a	p, g, A	$g^a \bmod p = A$	$A \rightarrow$		p, g	b
a	p, g, A		$\leftarrow B$	$g^b \mod p = B$	p, g, A, B	b
a, s	p,g,A,B	$B^a \bmod p = s$		$A^b \operatorname{mod} p = s$	p,g,A,B	b,s

$$s = A^b \bmod p = \left(g^a \bmod p\right)^b \bmod p = g^{a \cdot b} \bmod p = g^{b \cdot a} \bmod p = \left(g^b \bmod p\right)^a \bmod p = B^a \bmod p = s$$

Beispiel: 1 Alice und Bob einigen sich auf p=13 und g=2

- 2 Alice wählt a=5 und Bob wählt b=7
- 3 Alice berechnet A=6 und Bob B=11
- Alice und Bob berechnen s=7

Problem von Diffie-Hellman:

Kein Schutz vor "Man-in-the-Middle" - Angriffen (MitM)

Allice	\longleftrightarrow	Mallory	\longleftrightarrow	Bob
\rightarrow	$A = g^a \bmod p$			
		\rightarrow	$Z = g^z \bmod p$	
			$B = g^b \operatorname{mod} p$	\leftarrow
	$Z = g^z \bmod p$	←		

 \implies Authentizität der ausgetauschten Information muss sichergestellt werden

Eine Hashfunktion ist eine Abbildung: $H: X^* \longrightarrow X^n$

klar ist: *H* kann nicht injektiv sein.

Ziel: Integrität von Daten überprüfen

□ Idee: ■ Austausch von Dokument und Hashwert über unterschiedliche Kanäle

■ Bei Veränderung von Daten muss sich auch ein anderer Hashwert ergeben

mögliches Problem: Kollisionen

(d.h. zwei unterschiedliche Werte ergeben den gleichen Hash-Wert).

■ Beispiele:

■ DES-CBC: 64-Bit Hashwert, der letzte Block dient als Hash

■ MD4, MD5 mit 128-Bit Hash

SHA-1 (Secure Hash-Algorithm) 160-Bit Hash

■ besser: SHA-2 (SHA-224, SHA-256, SHA-384 und SHA-512) SHA-3 (ebenso 224 - 512 Bit)

Anforderungen an eine Hashfunktion:

- \square $\operatorname{H}(M) = h$ muss einfach zu berechnen sein
- lacksquare Für ein gegebenes h ist es nicht effizient möglich M mit der Eigenschaft $\mathrm{H}(M)=h$ zu bestimmen
- lacksquare Für eine gegebenes M ist es nicht effizient möglich ein $M' \neq M$ mit der Eigenschaft $\mathrm{H}(M) = \mathrm{H}(M')$ zu bestimmen
- Sind diese Eigenschaften gegeben, so spricht man von einer kryptographischen Hashfunktion

Verschlüsselung und Authentizität

- □ Verschlüsselung ist ohne Überprüfung der Authentizität in vielen Fällen nicht viel wert (siehe DH)
- ☐ Gesucht: Schutz vor *Known-Ciphertext-Attacks*
- Idee: Hashfunktionen mit Schlüssel (Message Authentication Code,
 - MAC): MAC : $A^* \times EK \rightarrow A^n$:

B-mal

- II Sender A berechnet $h = MAC(M, K_{AB})$ und sendet h an B
- \square Einfachste Variante: $MAC(M, K_{AB}) = H(K_{AB}||M)$ unsicher!!!
- $\begin{tabular}{ll} \square Seit 1997 "ublich: $\operatorname{HMAC}_K(M) = \operatorname{H}\Big((K \oplus opad) \mid\mid \operatorname{H}\big((K \oplus ipad) \mid\mid M\Big)\Big)$ \\ & \operatorname{mit} opad = \underbrace{0 \times 5 \times \dots 0 \times 5 \times \mathbb{C}}_{} \text{ und } ipad = \underbrace{0 \times 36 \dots 0 \times 36}_{} \end{tabular}$

B-mal

- □ Eine MAC erlaubt eine verschlüsselte Nachricht sicher dem Besitzer eines Schlüssels zuzuordnen, wenn man diesen Schlüssel selbst besitzt.
- Passt gut für symmetrische Verschlüsselungsverfahren, wo beide Partner den Schlüsse besitzen.

Zusätzlich nötig:

Einem Besitzer eines privaten Schlüssels eine Nachricht sicher zuzuordnen, wenn man selbst nur den öffentlichen Schlüssel besitzt.

- □ Eine MAC erlaubt eine verschlüsselte Nachricht sicher dem Besitzer eines Schlüssels zuzuordnen, wenn man diesen Schlüssel selbst besitzt.
- Passt gut für symmetrische Verschlüsselungsverfahren, wo beide Partner den Schlüsse besitzen.

Zusätzlich nötig:

Einem Besitzer eines privaten Schlüssels eine Nachricht sicher zuzuordnen, wenn man selbst nur den öffentlichen Schlüssel besitzt.

Idee: Verschlüssele den Hash einer Nachricht mit dem privaten Schlüssel eines asymmetrischen Verfahrens

Jeder kann überprüfen, dass der Sender der Nachricht einen bestimmten privaten Schlüssel besitzt.

Sei H eine kryptographische Hashfunktion sowie E und D die Ver- bzw.

Entschlüsselungsfunktion eines asymmetrischen Kryptosystems. M sei eine Nachricht und (K_E^A, K_D^A) das Schlüsselpaar eines Benutzers A bzgl. des o.g. Systems.

Dann heisst:

$$S = \mathrm{E}\left(\mathrm{H}(M), K_D^A\right)$$

eine Digitale Signatur von M des Users A

Sei H eine kryptographische Hashfunktion sowie E und D die Ver- bzw.

Entschlüsselungsfunktion eines asymmetrischen Kryptosystems. M sei eine Nachricht und (K_E^A, K_D^A) das Schlüsselpaar eines Benutzers A bzgl. des o.g. Systems.

Dann heisst:

$$S = \mathrm{E}\left(\mathrm{H}(M), K_D^A\right)$$

eine ${\it Digitale Signatur}$ von ${\it M}$ des Users ${\it A}$

Anmerkungen: \Box D $(S, K_E^A) = H(M)$

Nicht jede digitale Signatur beruht auf diesem Prinzip, aber die grundsätzliche Idee ist überall ähnlich.

Was fehlt noch?

- ☐ Zuordnung von öffentlichen Schlüsseln zu Personen
- Validierung dieser Zuordnung auf Anfrage

Was fehlt noch?

- ☐ Zuordnung von öffentlichen Schlüsseln zu Personen
- □ Validierung dieser Zuordnung auf Anfrage
- Also eine Public-Key-Infrastruktur (PKI)

Was fehlt noch?

- ☐ Zuordnung von öffentlichen Schlüsseln zu Personen
- □ Validierung dieser Zuordnung auf Anfrage
- ☐ Also eine Public-Key-Infrastruktur (PKI)

Komponenten einer PKI:

- ☐ Certification Authority (CA):
 - Stellt Zertifikate aus, signiert und veröffentlicht sie
 - Erstellt und veröffentlicht Listen von ungültigen Zertifikaten (CRLs), Certificate Revocation List
- Registration Authority (RA):

bürgt für die Verbindung zw. öffentlichem Schlüssel und Identitäten/Attributen der Zertifikatsinhaber

Prof. Skornia IS 04: Verschlüsselung 21

Was fehlt noch?

- ☐ Zuordnung von öffentlichen Schlüsseln zu Personen
- Validierung dieser Zuordnung auf Anfrage
- ☐ Also eine Public-Key-Infrastruktur (PKI)

Komponenten einer PKI:

- □ Certification Authority (CA):
 - Stellt Zertifikate aus, signiert und veröffentlicht sie
 - Erstellt und veröffentlicht Listen von ungültigen Zertifikaten (CRLs), Certificate Revocation List
- Registration Authority (RA):

bürgt für die Verbindung zw. öffentlichem Schlüssel und Identitäten/Attributen der Zertifikatsinhaber

- Quelle: Wikipedia Validation Authority (VA):
 - ermöglicht die Validierung der Zertifikate in Echtzeit (z.B. über CRL-Download oder Online Certificate Status Protocol (OCSP))
- optionaler Verzeichnisdienst:
 Verteilung der Zertifikate und CRLs

Prof. Skornia IS 04: Verschlüsselung

Signing Hash 101100110101 function Hash Data Encrypt hash using signer's private key 111101101110 Certificate Signature Attach to data Digitally signed data

Verification

If the hashes are equal, the signature is valid.

Problem: Viele separate unabhängige PKIs

Lösung:

- 11 Hierarchien
 - untergeordnete CAs vertrauen den übergeordneten
 - alle Vertrauen der top-level CA (z.B.
 Bundesnetzagentur)
- Cross-Zertifikate: CAs zertifizieren sich gegenseitig.

Rechtlicher Rahmen: Deutsches Signaturgesetz (2001)

Drei Arten der digitalen Signatur:

- einfache Signatur:
 - keine speziellen Anforderungen an Zertifikate, Erzeugung etc.
 - nicht der Schriftform gleichgestellt
 - d.h. potentiell Geschädigter muss den Schaden selber nachweisen
- fortgeschrittene Signatur
 - Anforderungen an Zertifikatsaussteller, Signierumgebung und die Verknüpfung von Signatur mit Dateien
 - Signaturanbieter haftet für die Richtigkeit und Vollständigkeit der Zertifikatsangaben
- qualifizierte Signatur
 - fortgescrhrittene Signatur mit qualifiziertem Zertifikat
 - sicherer Signaturerstellungseinheit (CC EAL4)
 - rechtliche Gleichstellung mit eigenhändiger Unterschrift

Hybride Verfahren

Und jetzt alle zusammen:

Hybride Verfahren:

- kombinieren die Vorteile der Einzelverfahren
 - So schnell wie symmetrische Verfahren
 - Kein sicherer Kanal für den Schlüsselaustausch nötig
 - Perfect Forward Secrecy
- stellen den aktuellen
 De-facto-Standard für
 Verschlüsselung im Internet dar

Anmerkung:

Die hier vorgestellten Verfahren sind schematisch korrekt in der konkreten Implementierung gibt jedoch eine Reihe von Anpassungen.

Einsatzbereiche der Kryptographie:

- Vertraulichkeit
 - Schlüsselaustausch
 - Verschlüsselung

- Verbindlichkeit
 - Digitale Signatur
 - Zertifikate
 - PKI

- Integrität
 - Hashfunktionen
 - MAC

- Authentizität
 - MAC
 - Signaturen

Fortsetzung folgt

