

CÉSAR VALLEJO

SEMANA 6

CÉSAR VALLEJO

GEOMETRÍA

TEMA:
PROPORCIONALIDAD
DE SEGMENTOS

SEMANA 6

PROPORCIONALIDAD DE SEGMENTOS.

Definimos, como razón de dos segmentos, a la comparación entre sus longitudes.

Los \overline{PQ} y \overline{MN} están en una razón de m a n

$$\frac{a}{b} = \frac{m}{n}$$

→ Los \overline{AB} y \overline{CD} son proporcionales a \overline{PQ} y \overline{MN} por que tienen la misma razón.

TEOREMA DE THALES

Si dos rectas son intersecadas por tres o más rectas paralelas entonces estas últimas determinan segmentos proporcionales sobre las dos rectas dadas respectivamente.

COROLARIO 1

COROLARIO 2

UNI

2018-II

En la figura, determine PO (en cm), tal que \overline{PC} es la bisectriz interior en el triángulo BPN; m∢BNO = m∢ROP;

AP=4cm y ON=3cm.

A) 2*cm*

B) 4*cm*

- **C**) 6cm
- E) 10cm

Resolución

ΔCPN : Por corolario

$$\frac{m}{n} = \frac{x}{3}$$

- Trazamos $\overline{RH} \perp \overline{PO}$
- Por teorema de la bisectriz de un ángulo:

$$PA = PH = 4$$

 Δ CPO : Por corolario

$$\frac{m}{n} = \frac{4}{x-4}$$

• Luego:
$$\frac{x}{3} = \frac{4}{x-4}$$

$$x = 6cm$$

ALGUNAS CONSECUENCIAS DEL COROLARIO

Si T es punto de tangencia Se cumple:

$$\frac{a}{b} = \frac{x}{y}$$

Si T es punto de tangencia

Se cumple:

$$\frac{a}{b} = \frac{x}{y}$$

DIVISIÓN DE UN SEGMENTO RESPECTO A UN PUNTO.

Si sobre un segmento dado, o en su prolongación, ubicamos un punto, decimos que este punto determina una razón en dicho segmento.

DIVISIÓN INTERNA.

 $\frac{a}{b}$

Es la razón interna determinada por P en el segmento AB

DIVISIÓN EXTERNA.

 $\frac{m}{n}$

es la razón externa determinada por Q en el segmento AB

DIVISIÓN ARMÓNICA.

P y Q dividen armónicamente a un segmento si lo dividen interna y externamente en una misma razón :

Si:
$$\frac{a}{b} = \frac{m}{n}$$
 \rightarrow P y Q dividen armónicamente a \overline{AB}

NOTA

- Nota: A,P,B y Q son puntos armónicos.
- Se dice también que A,P,B y Q forman una cuaterna armónica.

PROPORCIÓN DETERMINADA POR BISECTRICES.

TEOREMA DE LA BISECTRIZ INTERIOR.

TEOREMA DE LA BISECTRIZ EXTERIOR.

TEOREMA DEL INCENTRO.

OBSERVACION:

TEOREMA DEL EXCENTRO.

UNI

2008-I

En un triángulo rectángulo ABC recto en B se traza la bisectriz interior BD. Por D se levanta una perpendicular al segmento AC que interseca a \overline{BC} en M. Si AD=30cm y DC=40cm, entonces la medida del perímetro del triángulo BMD en centímetros es:

A)
$$30 + 24\sqrt{2}$$

B)32 +
$$24\sqrt{2}$$

C)34 +
$$24\sqrt{2}$$

D)35 +
$$24\sqrt{2}$$

$$(2)$$
36 + 24 $\sqrt{2}$

Resolución

Piden: 2 $p_{\Delta BMD}$

 Por teorema de la bisectriz interior:

$$\frac{AB}{BC} = \frac{3}{4}$$

• Trazamos $\overline{DH} \perp \overline{BC}$

 Ahora aprovecharemos los triángulos notables: \checkmark En el \triangle DHC: DH=24

✓ En el \triangle BHD: BD= $24\sqrt{2}$

✓ En el ΔDMH: MH=18 ; luego: BM=6

✓ En el Δ MHD: MD=30

• Luego: $2 p_{\Delta BMD} = 30 + 6 + 24\sqrt{2}$

$$\therefore 2 p_{\Delta BMD} = 36 + 24\sqrt{2}$$

TEOREMAS.

TEOREMA DE MENELAO.

Si se traza una recta secantes a los lados.

TEOREMA DE CEVA.

Si se trazan cevianas concurrentes. se cumple:

a.b.c = x.y.z

TEOREMA DE VAN AUBEL

Si PQ // AC

se cumple:

OBSERVACIÓN:

Demostración

Por teorema de Menelao

$$\triangle ABR: b.x.(RC) = a.y.(AC)$$

$$\frac{\mathbf{x}.(RC)}{\mathbf{y}.(AC)} \stackrel{a}{=} \mathbf{b} \qquad \dots \qquad (\mathbf{I})$$

$$\Delta CBR: n. x.(AR) = m. y.(AC)$$

$$\frac{\mathbf{x}.(AR)}{\mathbf{y}.(AC)} = \frac{m}{n} \dots (II)$$

$$\therefore \frac{\mathbf{x}}{\mathbf{y}} = \frac{a}{b} + \frac{m}{n}$$

ACADEMIA CÉSAR UALLEJO

Según el gráfico, las rectas \mathcal{L}_1 , \mathcal{L}_2 y \mathcal{L}_3 son paralelas. Si 5(AB) = 4(BC) y 3(MN) = 4(NP), calcule la m \widehat{PQ} .

- A) 60°
- D) 32°
- B) 74°

ELNPQ: NOTable de 37° y 53°

$$\sim \times = 100$$

Los segmentos \mathcal{L}_1 y \mathcal{L}_2 son paralelos entre sí, y los segmentos \mathcal{L}_3 y \mathcal{L}_4 también son paralelos entre sí. Halle el valor de x+y.

- A) 12
- B) 14
- C) 16

D) 18

• EN ABC:
$$\frac{1}{3} = \frac{2}{x}$$

$$\chi = 6$$

En un triángulo ABC, AB=6, BC=8 y AC=9; se traza la bisectriz interior \overline{BD} . Calcule AD.

B) 4

C) 3

D) 7

E) $\frac{25}{4}$

Del gráfico, $AB = \frac{3}{2}(BC)$ y AC = 8. Calcule CD.

- A) 11
- B) 13
- C) 8

D) 16

E) 14

SEOBS: h=8

De acuerdo al gráfico, calcule BC si AB=2 y CD=3.

- A) 1
- B) 1,5
- C) 2
- E) 3

$$\chi = 1$$

Si B y C son puntos de tangencia, AD=2(CD)=6yAB=4, halle *DE*.

- A) 12
- B) 14
- C) 16
- E) 24

PIDEN:X

ARD: Tes. Menelas

$$4x = 18 + 3x$$
 $3.(6+x)$
 $4x = 18 + 3x$ $3.(6+x)$

En un triángulo ABC, se sabe que AB=5, Q es un punto de \overline{BC} , de modo que BQ=8 y QC=2. Además P es un punto en la prolongación de \overline{BA} , de modo que la recta PQ resulta ser perpendicular a la bisectriz interior \overline{BH} del triángulo ABC, considere que H en \overline{PQ} . Si dicha recta PQ interseca a \overline{AC} en L, calcule HL/LQ.

A) 1 D) 0,3 B) 2

- C) 3
- E) 2,3
- · APBQ: IsoscELES (BQ=BP)

$$\rightarrow AP=3$$

· APBQ: TEO MENELAO

$$5.k.2 = 3.t.10$$

$$K=3t$$

A) 83°

D) 90°

PREGUNTA 8

En el gráfico mostrado, $\overline{CQ}//\overline{PM}$. Calcule x.

B) 120°

C) 45° E) 60°

En el gráfico mostrado, P y Q son puntos de tangencia. Si PM = QN, y AB = 2AQ, calcule PC/CD.

A) 3/5

D) 2/3

B) 3/2

C) 3

E) 5/3

En un triángulo ABC, Q es un punto de \overline{BC} y P un punto de \overline{AB} , de modo que \overline{AQ} , \overline{CP} y \overline{BL} concurren y \overline{PQ} es paralelo a \overline{AC} , L en \overline{AC} . Además \overline{LQ} interseca a \overline{CP} en H y la recta BH interseca a \overline{AC} en T, de modo que \overline{QT} es paralelo a \overline{BL} . Calcule QC/BQ.

A) 2

B) 1

C) 3

D) 7

Según el gráfico, BP = CQ, AB = AD y PH = 3(HE). Calcule x. $(E \in \overline{HD})$.

B) 60°

- A) 37° D) 74°

C) 45° 53°

PIDEN: X CORDLARID:

$$\frac{3m}{m} = \frac{PC}{e}$$

$$\Rightarrow PC = 31$$

· A PCD: Notable de 37 y 53

En un triángulo ABC, Q es un punto de \overline{BC} , de modo que BQ=2QC, además S es un punto de \overline{BA} , de modo que la recta SQ interseca a la recta CP en H donde P está en el segmento \overline{SB} . Si BP=PS=2, además se sabe que AC=8 y que la perpendicular a \overline{PC} en H pasa por A, calcule AS.

A) 4

B) 8

C) 5

D) 6

En un triángulo ABC se traza una recta secante a \overline{AB} , \overline{BC} y a la prolongación de \overline{AC} , en M, N y L, respectivamente. Si AM=6, BM=3, BN=NC y AC=8, calcule CL.

A) 6 D) 9

B) 7

C) 8

En un triángulo cuyos lados miden 5; 6 y 7, halle la longitud del segmento cuyos extremos son el incentro y baricentro de dicho triángulo inicial.

- A) 1D) 1/4
- B) 1/2
- C) 1/3

· teg. del incentro.

$$\frac{BI}{LP} = \frac{5+7}{6}$$

• Pero:
$$\frac{BG}{GM} = \frac{2}{1}$$

Por el incentro de un triángulo ABC se traza la recta \mathscr{L} , que interseca a \overline{BC} y \overline{AB} , de modo que las distancias de A y C hacia $\overrightarrow{\mathscr{L}}$ son 2 y 8, respectivamente. Si $\frac{AB}{5} = \frac{AC}{6} = \frac{BC}{7}$, calcule la distancia de B hacia $\overrightarrow{\mathscr{L}}$.

- A) 10
- B) 12
- C) 14

D) 9

Se sabe que P es un punto de la semicircunferencia de diámetro \overline{AB} ; Q un punto en la prolongación de \overline{BA} . Si AP es bisectriz del ángulo QPL ($L \in \overline{AB}$) y AQ = 6, AL = 2, calcule el radio de la semicircunferencia.

- A) 12
- B) 10
- C) 8
- D) 6
- E) 3

ACADEMIA

53AM

Se tienen dos triángulos: ACB y CDE $(E \in \overline{CB})$. $\overline{DE}/\overline{AC}$ y $\overline{EC}/\overline{DA}$; además, $\overline{AB} \cap \overline{DC} = M$ y $\overline{MB} \cap \overline{DE} = \{N\}$. Si AM=a y MN=b, calcule MB.

- B) $\frac{b^2}{a}$
- C) $\frac{a}{b}$

D) $\frac{b}{a}$

E) √*ab*

COROLARIOS

En un triángulo ABC, \overline{BD} y \overline{BE} son bisectrices interior y exterior, respectivamente. Si AD=3 y CD=2, halle $(BD)^2+(BE)^2$.

A) 25

B) 50

C) 100 EM

D) 144

Se muestran dos rectas numércias que tienen diferentes escalas y han sido dispuestas en paralelo. Determine qué fracción corresponde al punto marcado con un signo de interrogación.

A) $\frac{29}{3}$

- B) $\frac{31}{3}$
- C) $\frac{49}{5}$

D) $\frac{19}{2}$

E) $\frac{20}{3}$

En el gráfico, ABCD es un paralelogramo y CD=3(PB). Calcule $\frac{OD}{BQ}$.

A) 2

B) 3

D) 5

C) 4 E) 6

En un $\triangle ABC$, se traza la bisectriz interior \overline{AD} , tal que AD = CD = 3 y BD = 2. Halle AC.

- A) $\sqrt{6}$
- B) √5
- C) $\sqrt{10}$

 $D) \frac{2\sqrt{10}}{3}$

E) $\frac{3\sqrt{10}}{2}$

En un triángulo acutángulo ABC, la medida del ángulo $ABC = 60^{\circ}$, además se sabe que BC > AB si la distancia del ortocentro al vértice B es 20. CUal será la distancia del ortocentro al lado \overline{AC} si se sabe que este toma su mayor valor entero?

A) 10

B) 9

C) 8

D) 7

En un triángulo ABC, el perímetro es 25 cm. Se traza la bisectriz interior \overline{AD} que mide 10 cm. Si BC=5 cm, entonces la distancia del incentro al vértice A es

A) 7D) 9

B) 8

C) 8,5

E) 9,5

DATO:

o Teo. del mcentro:

$$Lvego: \frac{x}{10-x} = 2$$

En un triángulo ABC se trazan las cevianas AD, BE y CF concurrentes en el punto T. Si BF = 6, FA = 3, BD = 2 y DC = 3, entonces BT/TE es

A) 5/2D) 10/7

C) 8/5

· Por teg. Van Aubel

$$\frac{\chi}{y} = \frac{6}{3} + \frac{2}{3}$$

$$\times = 8$$

o Otra forma:

· tes Monelas

$$\therefore \frac{X}{3} = \frac{8}{3}$$

GRACIAS

academiacesarvallejo.edu.pe