EXEMPLO 2-13 Condução de calor em uma parede exposta ao Sol

Considere uma extensa parede plana de espessura L=0.06 m e condutividade térmica k=1.2 W/m·K no espaço. A parede está coberta por azulejos de porcelana branca de emissividade $\varepsilon=0.85$ e absortividade solar $\alpha=0.26$, como mostrado na Fig. 2–47. A superfície interna da parede é mantida a $T_1=300$ K o tempo todo, enquanto a superfície externa é exposta à radiação solar com taxa de incidência de \dot{q} solar = 800 W/m². A superfície externa também perde calor por radiação para o espaço ao redor a 0 K. Determine a temperatura da superfície externa da parede e a taxa de transferência de calor através dela quando alcança condições permanentes de operação. Qual seria sua resposta se não houvesse radiação solar incidindo na superfície?

SOLUÇÃO Uma parede plana no espaço é submetida a uma temperatura específica de um lado e à radiação solar do outro. Determinar a temperatura da superfície externa e a taxa de transferência de calor.

Suposições 1 A transferência de calor é permanente, não varia com o tempo. 2 A transferência de calor é unidimensional, a parede é extensa em relação à sua espessura e as condições térmicas em ambos os lados são uniformes. 3 A condutividade térmica é constante. 4 Não há geração de calor.

Propriedades A condutividade térmica é $k = 1,2 \text{ W/m} \cdot \text{K}$.

Análise Tomando a direção normal à superfície da parede como eixo x com origem na superfície interna, a equação diferencial para esse problema pode ser expressa como

$$\frac{d^2T}{dx^2} = 0$$

com as seguintes condições de contorno

$$T(0) = T_1 = 300 \text{ K}$$
$$-k \frac{dT(L)}{dx} = \varepsilon \sigma [T(L)^4 - T_{\text{espaço}}^4] - \alpha \dot{q}_{\text{solar}}$$

onde $T_{\rm espaço}=0$. A solução geral da equação diferencial é obtida por meio de duas integrações sucessivas

$$T(x) = C_1 x + C_2 \tag{a}$$

onde C_1 e C_2 são constantes arbitrárias. Aplicando a primeira condição de contorno, obtemos

$$T(0) = C_1 \times 0 + C_2 \rightarrow C_2 = T_1$$

Observando que $dT/dx = C_1$ e $T(L) = C_1L + C_2 = C_1L + T_1$, a aplicação da segunda condição de contorno resulta em

$$-k\frac{dT(L)}{dx} = \varepsilon\sigma T(L)^4 - \alpha \dot{q}_{\text{solar}} \rightarrow -kC_1 = \varepsilon\sigma (C_1 L + T_1)^4 - \alpha \dot{q}_{\text{solar}}$$

Embora C_1 seja a única incógnita nessa equação, não podemos obter uma expressão explícita para ela. A equação não é linear, portanto não podemos obter uma expressão explícita para a distribuição de temperatura. Por esse motivo, evitamos análises de comportamentos não lineares como aqueles associados à radiação.

Voltando um pouco, representaremos a temperatura da superfície externa por $T(L) = T_L \text{ em vez de } T(L) = C_1 L + T_1$. A aplicação da segunda condição de contorno resulta em

$$-k\frac{dT(L)}{dx} = \varepsilon\sigma T(L)^4 - \alpha \dot{q}_{\rm solar} \rightarrow -kC_1 = \varepsilon\sigma T_L^4 - \alpha \dot{q}_{\rm solar}$$

Resolvendo para C_1 , obtemos

$$C_1 = \frac{\alpha \dot{q}_{\text{solar}} - \varepsilon \sigma T_L^4}{k} \tag{b}$$

Substituindo C_1 e C_2 na solução geral (a), obtemos

$$T(x) = \frac{\alpha \dot{q}_{\text{solar}} - \varepsilon \sigma T_L^4}{k} x + T_1$$
 (c)

que é a solução para a variação de temperatura desconhecida da superfície externa da parede T_L . Em x = L, temos

$$T_L = \frac{\alpha \dot{q}_{\text{solar}} - \varepsilon \sigma T_L^4}{k} L + T_1 \tag{a}$$

que é a relação implícita para a temperatura da superfície externa T_L . Substituindo os valores, obtemos

$$T_L = \frac{0.26 \times (800 \text{ W/m}^2) - 0.85 \times (5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4) T_L^4}{1.2 \text{ W/m} \cdot \text{K}} (0.06 \text{ m}) + 300 \text{ K}$$

que pode ser simplificada para

$$T_L = 310,4 - 0,240975 \left(\frac{T_L}{100}\right)^4$$

Essa equação pode ser resolvida por um dos diversos métodos existentes para a solução de equações não lineares (ou por tentativa e erro), resultando em (Fig. 2-48)

$$T_L = 292,7 \text{ K}$$

Conhecendo a temperatura da superfície externa e sabendo que ela deve permanecer constante sob condições permanentes, a distribuição de temperatura na parede pode ser determinada substituindo o valor de T_L acima na Eq. (c):

$$T(x) = \frac{0.26 \times (800 \text{ W/m}^2) - 0.85 \times (5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4)(292.7 \text{ K})^4}{1.2 \text{ W/m} \cdot \text{K}} + 300 \text{ K}$$

que pode ser simplificada para

$$T(x) = (-121.5 \text{ K/m})x + 300 \text{ K}$$

Observe que a temperatura da superfície externa resultou em um valor menor que a temperatura da superfície interna, e, portanto, a transferência de calor através da parede está em direção externa, apesar da absorção de radiação solar pela superfície externa. Conhecendo as temperaturas de ambas as superfícies (interna e externa) da parede, a taxa de condução de calor através da parede pode ser determinada a partir de

$$\dot{q} = k \frac{T_1 - T_L}{L} = (1.2 \text{ W/m·K}) \frac{(300 - 292.7) \text{ K}}{0.06 \text{ m}} = 146 \text{ W/m}^2$$

(continua)

(1) Reordene a equação a ser resolvida:

$$T_L = 310.4 - 0.240975 \left(\frac{T_L}{100}\right)^4$$

A equação está na forma adequada, pois o lado esquerdo contém apenas T_L .

(2) Suponha um valor para T_L , (por exemplo, 300 K) e substitua no lado direito da equação

$$T_L = 290,2 \text{ K}$$

(3) Agora substitua o valor encontrado de T_L no lado direito da equação e obtenha

$$T_L = 293,1 \text{ K}$$

(4) Repita a etapa (3) até conseguir a convergência para a precisão desejada. As próximas iterações resultam em

$$T_L = 292,6 \text{ K}$$

 $T_L = 292,7 \text{ K}$
 $T_L = 292,7 \text{ K}$

$$T_{i} = 292,7 \text{ K}$$

Portanto, a solução é $T_L = 292,7 \text{ K}.$ O resultado independe do valor inicial.

FIGURA 2-48 Um método simples de resolver a equação não linear é reordená-la de modo a manter a incógnita isolada do lado esquerdo, enquanto todo o resto fica do lado direito, e realizar várias iterações, começando com uma estimativa inicial, de modo a fazer o resultado convergir para o valor.

(continuação)

Discussão No caso da ausência de incidência de radiação solar, a temperatura da superfície externa, determinada a partir da Eq. (d) com $\dot{q}_{\rm solar}=0$, é $T_L=284,3$ K. É interessante observar que a incidência de energia solar na superfície causa aumento da temperatura em cerca de 8 K apenas quando a superfície interna da parede é mantida a 300 K.