Wiskundige Structuren Huiswerk

Jasper Vos Huiswerkset 3 28 september 2025

Studentnr: s2911159

Opgave 1

Bewijs. Ik bewijs voor zowel n=0 en n=1, omdat er vaak dubbelzinnigheid is over $0\in\mathbb{N}$ of $0\notin\mathbb{N}$.

1. Basisstap: n = 0, n = 1

Neem $|A| = |\emptyset| = 0$, dan en slechts dan als $|\mathcal{P}(A)||\{\emptyset\}| = 2^0 = 1$. Dus de uitspraak geldt voor n = 0.

Neem $|A| = |\{a\}| = 1$ dan en slechts dan als $|\mathcal{P}(A)| = |\{\emptyset, \{a\}\}\}| = 2^1 = 2$. Dus de uistpraak geldt voor n = 1.

2. Inductiehypothese:

Neem aan dat de stelling geldt voor $0 \le k < n$, dan geldt dus: |A| = k en $|\mathcal{P}(A)| = 2^k$.

Laat k = n - 1, en $B = A \cup \{b\}$, Dan kunnen we de machtsverzameling opstellen voor $\mathcal{P}(B)$ waarbij:

$$C = \{V \in \mathcal{P}(B) : \{b\} \notin V\} = \mathcal{P}(A)$$

en:

$$D = \{V \in \mathcal{P}(B) : \{b\} \in V\}$$

Hieruit volgt $C \cup D = \mathcal{P}(B)$. Merk op dat $D = \{V \cup \{b\} : V \in \mathcal{P}(A)\}$, en dus:

$$|D| = |\mathcal{P}(A)|$$

Als we nu alles optellen krijgen we:

$$|\mathcal{P}(B)| = |C| + |D|$$

$$= |\mathcal{P}(A)| + |\mathcal{P}(A)|$$

$$= 2^{k} + 2^{k}$$

$$= 2(2^{k})$$

$$= 2^{k+1}$$

3. *Uitspraak waar voor alle n:*

We stellen dat de uitspraak waar is voor alle n en gaan dit bewijzen door te stellen dat dit niet zo is door vervolgens een tegenspraak te vinden.

Vanuit de welordening van \mathbb{N} is er een kleinste element $n_0 \in \mathbb{N}$. We zeggen dat er een kleinste n_0 moet bestaan waarvoor de uispraak niet waar is, maar we hebben al bewezen dat voor $0 \le k \le n$ de uitspraak waar is. Dit is dus een tegenspraak en daarom geldt voor alle $n \in \mathbb{N}$ dat de uitspraak waar is.

Opgave 2

Bewijs. Als f een inverse heeft geldt:

$$f^{-1}(a) = b \Leftrightarrow f(b) = a$$

Neem $a \in A$ en laat $f^{-1}(a) = b$, en f(b) = a. Vervolgens stellen we op dat $f(b) = f(f^{-1}(a)) = a$, echter hebben we per definitie van f dat f(f(a)) = a, en dus moet $f = f^{-1}$, omdat f injectief is kan $f(f(a)) = f(f^{-1}(a))$ alleen als $f(a) = f^{-1}(a)$.

Opgave 3

Bewijs. Volledige inductie laten we eerst beginnen met n=0 aangezien de formule impliceert dat $0 \in \mathbb{N}$.

1. Basisstap: n = 0 Voor de linkerkant:

$$\sum_{i=0}^{0} 3i(i+1) = 3(0)(0+1) = \boxed{0}$$

en de rechterkant:

$$0(0+1)(0+2) = \boxed{0}$$

Dus de stelling klopt als n = 0.

2. Inductiehypothese: Neem aan dat de stelling klopt voor $0 \le k \le n$ dus:

$$\sum_{i=0}^{k} 3i(i+1) = k(k+1)(n+2)$$

Laat nu k = n - 1 dan, en bewijs voor k + 1 = n:

$$\sum_{i=0}^{k} 3i(i+1) + 3(k+1)(k+2) = k(k+1)(k+2) + 3(k+1)(k+2)$$
 (Substitutie)
= $(k+3)(k+1)(k+2)$ (Distributie)
= $(k+1)(k+2)(k+3)$ (Commutativiteit)
= $(k+1)((k+1)+1)((k+1)+2)$

3. Stel dat de stelling niet geldt voor alle $n \in \mathbb{N}$ dan bestaat er een kleinste n_0 waarbij de stelling niet waar moet zijn, echter geldt voor $0 \le k \le n$ dat de stelling klopt, en dus is dit een tegenspraak.

De stelling is dus waar voor alle $n \in \mathbb{N}$.