

Prompt Engineering: Leveraging LLMs Day 3: RAG & Multimodal LLMs

Max Moundas

July 17, 2025

Agenda

- Retrieval-Augmented Generation (RAG)
- Assistants
- Deep Research
- Multimodal Capabilities
- Voice, Image and Video Generation

Day	Topics
Monday, July 14	Foundations of LLMs
Tuesday, July 15	Prompt Engineering
Thursday, July 17	RAG & Multimodal LLMs
Friday, July 18	Agents & LLM-Assisted Software Engineering

Recent Research

- December 18, 2024
 - Alignment faking in large language models & Al Sandbagging
- June 21, 2025
 - Agentic Misalignment: How LLMs could be insider threats
- July 15, 2025
 - Chain of Thought Monitorability: A New and Fragile Opportunity for Al Safety

Limitations Of LLMs

- Can't access real-time or private data without retrieval or APIs
- Struggle with long context, memory, or document traversal
- Tend to hallucinate facts, citation and math
- No built-in source grounding
- Outputs vary based on phrasing, temperature and recency of training

Retrieval-Augmented Generation (RAG)

- Augments LLMs with external information retrieval
- Retrieves relevant text chunks from documents before generation
- Keeps outputs grounded in actual source material
- Useful for research questions, internal corpora, and long documents

RAG Architecture

- User Query → Embedding → Vector Search → Contextual Prompt → LLM Output
- Key Components:
 - Embedder: Converts query into vector space
 - Retriever: Finds relevant chunks from vector DB
 - LLM: Generates based on retrieved context

Basic RAG Implementation

- 1. Convert document to embeddings
- 2. Store embeddings in vector DB
- 3. Convert user query into embedding
- 4. Retrieve top relevant chunks
- 5. Inject relevant chunks into prompt for LLM

RAG Fusion

- Improves RAG results using multiple queries similar to the original
- Fuses results from different perspectives: original query, rephrased queries, related follow ups
- Aggregates top results before generation
- RAG fusion output tends to be more comprehensive than traditional RAG

RAG Citations

- RAG enables LLMs to cite retrieved sources for transparency
- Citations help verify outputs, reduce hallucinations
- Supports trust in legal, academic, and scientific domains
- Format varies by platform (e.g., Claude vs. OpenAI)

Large Document Processing

- RAG is especially useful for large corpora (manuals, research papers)
- Enables chunked retrieval: splits long docs into indexed segments
- LLM only sees relevant slices of content
 - Keeps context window lean
 - Reduces unnecessary token usage (cost)
- Use cases:
 - Summarization
 - Semantic Search

Assistants

- Go by many names: assistants, GPTs, copilots
- Combine LLM chat with:
 - Custom system instructions
 - Domain-specific knowledge bases
- Abstracts prompting logic from end user
- Streamlines prompting process

Deep Research

• For multi-faceted, domain-specific inquiries where depth and detail are critical, deep research's ability to conduct extensive exploration and cite each claim is the difference between a quick summary and a well-documented, verified answer that can be usable as a work product

Prompt examples:

- Conduct a comprehensive literature review on retrieval-augmented generation (RAG), including recent papers (2023–2025), taxonomy of methods, and open research challenges.
 Cite all sources.
- Summarize current legal and ethical frameworks for regulating LLMs in the US and EU. Highlight open policy debates and cite relevant regulations, working groups, or whitepapers.
- Survey modern LLM-based software engineering tools (e.g., Cursor, Claude Code, Gemini Code Assist). For each, summarize core features, architecture, and developer feedback based on published benchmarks or testimonials.

Multimodal Capabilities

- Some LLMs support text, image, audio, and video inputs and outputs
- Combines vision, hearing and language for versatile usage

Input:

Visual Understanding

- LLMs can interpret and reason over almost any image
- Enables structured data extraction from unstructured visuals
- Use Cases:
 - Classify, describe or understand the content of images
 - Copy text in a screenshot
 - Turn app design on a whiteboard into documentation or code
 - Transcribe and summarize handwritten notes
 - Extract info from images of complex tables or forms
 - Translate menu from foreign language to English

Voice & Video Interfaces

- Voice input enables real-time, hands-free interaction
- Useful for accessibility, field work, and mobile agents
- Hypothetical use cases:
 - Real-time navigation assistance for visually impaired users, combining audio questions with visual scene understanding
 - Communication aids for individuals with speech impairments, interpreting partial vocalizations alongside lip movements and gestures
 - Language tutoring
 - Medical training simulations where the AI observes surgical techniques and provides immediate feedback on hand positioning and procedural accuracy

Image Generation

- GPT-40 includes native image generation, tightly integrated with chat context
- Generates photorealistic, diagrammatic, or surreal imagery with high fidelity
- Supports multi-turn refinement—images evolve through natural conversation
- Use Cases:
 - Edit images
 - Generate professional headshot from one image

Voice Generation

- Text-to-Speech (TTS) synthesis using neural vocoders and diffusion models
- Voice cloning from minimal audio samples (few-shot learning)
- Real-time voice conversion with preservation of prosody and emotional tone
- Multilingual synthesis with cross-lingual voice transfer capabilities
- Use Cases:
 - Personalized voice assistants and accessibility tools
 - Content localization and dubbing
 - Interactive storytelling and gaming
 - Therapeutic applications

Video Generation

- Veo 3 (Google DeepMind) is the current state-of-the-art in AI video generation
- Generates high-resolution video with synchronized audio from text or images
- Trained on large, annotated multimodal corpora (e.g., YouTube-scale)
- Capable of:
 - Cinematic CGI scenes with in-world sound
 - Photorealistic and artistic styles
 - Realistic HUDs, camera work, and ambient audio
- Far exceeds open-source alternatives in visual quality, prompt adherence, and audio alignment

Feedback & Project Requests

