강화학습

머신러닝의 분류

❖ 문제 상황(Task) 혹은 목적에 따라 크게 3가지로 분류

강화학습

Reinforcement Learning + Deep Learning

연속적인 의사결정

❖ 현실에는 다양한 종류의 연속적 의사결정 문제가 있음

비디오 게임[1]

바둑[2]

로봇 제어[3]

자율주행[4]

강화학습

- ❖ 에이전트가 환경과 상호작용 하면서 연속적인 의사결정을 학습
- ❖ 누적 보상을 최대화 하는 행동을 학습하는 것이 목표
- ❖ Policy $\pi(a \mid s; \theta)$ 는 State를 바탕으로 Action을 결정하는 함수

강화학습 용어

S: state

e.g. (19, 19) 바둑판

❖ A: action

e.g. 돌을 놓는 위치 (19, 19)

R: reward

e.g. 승/패

Policy

- \bullet In Deep RL, policy is parametrized by neural networks (θ)
- Deterministic policy

$$a=\pi(S)$$

Stochastic Policy

$$a \sim \pi(S)$$

Value Functions

State-value functions

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

Action-value functions

$$q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right]$$

강화학습의 유형

❖ 학습 방식에 따른 분류

환경을 모델링

- Step 1) Environment Model 학습
- Step 2) 시뮬레이션 및 최적화를 통해 Policy 도출

실제환경

모델

시행착오 기반 학습

- ▶ 온라인 학습 방식으로 Policy 도출
- 학습하기 위해 환경과 많은 상호작용이 필요

실제환경

실제 환경에서 주행

Model-Based & Model-Free 기법의 장단점

Renaudo, E., Girard, B., Chatila, R., & Khamassi, M. (2015). Respective advantages and disadvantages of model-based and model-free reinforcement learning in a robotics neuro-inspired cognitive architecture. *Procedia Computer Science*, 71, 178-184.

Model-Free 기법의 분류

- ❖ 딥러닝의 발전으로 Model-Free 기법이 활발히 연구
- ❖ 최근 Value-Based 기법과 Policy-Based 기법을 결합한 Actor-Critic 기법이 주로 사용

강화학습과 지도학습의 차이

- ❖ 공통점
 - 무언가 예측한다 (action / 레이블)
- ❖ 차이점
 - 강화학습은 환경과 상호작용

	Reinforcement Learning	Supervised Learning
Training Data	S, A, R, S, A,	(X,Y)
Model	$\pi(a s)$	$\widehat{\mathbf{Y}} = F(\mathbf{X})$
Objective	$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$	$(Y - \widehat{Y})^2$

강화학습의 학습 데이터

❖ 에피소드 (S, A, R 시퀀스)

Episode	Sequence
1	S, A, R, S, A, R, S, A, R
2	S, A, R
3	S, A, R, S, A, R
4	S, A, R, S, A, R, S, A, R

강화학습과 비지도학습의 차이

- ❖ 공통점
 - 레이블이 없음 (No supervision)
- ❖ 차이점
 - 강화학습은 누적 보상의 합을 최적화 (연속적인 의사결정문제)

	Reinforcement Learning	Unsupervised Learning
Training Data	S, A, R, S, A,	X
Model	$\pi(a s)$	F(X)
Objective	$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$	X - F(X)

간단한 강화학습 문제

- ❖ Multi-Armed Bandits 문제
 - K개의 슬롯 머신
 - S: [0, 0, ..., 0], 단일 state
 - A: 머신 선택
 - R: 획득한 돈

문제를 푸는 방식

- ❖ Action-Value 기법 Value-Based RL
- ❖ 그래디언트 기반 기법Policy-Based RL

Action-Value Function

 $Q_t(a)$ 은 행동(a) 가 얼마나 좋은지 평가

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_i = a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_i = a}}$$

Bandit	Episode1	Episode2	Episode3	Episode4	Q
1				2	2
2		3			3
3	5				5
4			1		1

Action-Value Function

 $Q_t(a)$ 은 행동(a) 가 얼마나 좋은지 평가

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbbm{1}_{A_i = a}}{\sum_{i=1}^{t-1} \mathbbm{1}_{A_i = a}}$$

Bandit	Episode1	Episode2	Episode3	Episode4	Episode5	Q
1				2	3	2.5
2		3				3
3	5					5
4			1			1

Q로 행동 도출하기

- $Q_t(a)$ 은 행동(a) 가 얼마나 좋은지 평가
- ❖ 평가를 잘 할 수 있다면 좋은 행동을 찾을 수 있지 않을까?

$$a_t = \operatorname*{argmax}_{a} Q_t(a)$$

Bandit	Episode1	Episode2	Episode3	Episode4	Episode5	Q
1				2	3	2.5
2		3				3
3	5					5
4			1			1

Estimate Q function → **Play (run policy)**

- 19 -

Estimation of Action-Value

 \diamond Incremental update of $Q_t(a)$

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_{i}$$

$$= \frac{1}{n} \left(R_{n} + \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1)Q_{n} \right) \qquad Q_{n} \stackrel{!}{=} \frac{R_{1} + R_{2} + \dots + R_{n-1}}{n-1}.$$

$$= \frac{1}{n} \left(R_{n} + nQ_{n} - Q_{n} \right)$$

$$= Q_{n} + \frac{1}{n} \left[R_{n} - Q_{n} \right],$$

NewEstimate ← OldEstimate + StepSize (Target - OldEstimate)

Exploitation vs Exploration

\bullet Adding ϵ -greedy policy

Action Trajectory

Bandit	Episode1	Episode2	Episode3	Episode4	Episode5	Episode6
1					5	
2		2				
3	3					
4			1	1		

Q Trajectory

Bandit	Q_1	Q_2	Q_3	Q_4	$oldsymbol{Q}_5$	Q_6
1	0	0	0	0	0	5
2	0	0	(2)	2	2	2
3	0	3	3	3	3	3
4	0	0	0	1	1	1

ϵ-greedy policy

- ❖ Exploration을 위해 사용
- ❖ 더 좋은 행동을 학습 하기 위해 탐색 하는 과정

Playing the machine that (currently) pays out the most.

EXPLORATION

Playing the other machines to see if any pay out more.

Effect of ϵ -greedy Policy

\bullet ϵ -greedy policy

$$\begin{aligned} &\text{Initialize, for } a = 1 \text{ to } k \text{:} \\ &Q(a) \leftarrow 0 \\ &N(a) \leftarrow 0 \end{aligned}$$

$$\begin{aligned} &\text{Loop forever:} \\ &A \leftarrow \left\{ \begin{array}{ll} \arg \max_a Q(a) & \text{with probability } 1 - \varepsilon \\ &\text{a random action} & \text{with probability } \varepsilon \end{array} \right. \\ &R \leftarrow bandit(A) \\ &N(A) \leftarrow N(A) + 1 \\ &Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[R - Q(A) \right] \end{aligned}$$

더 복잡한 문제를 풀기 위한 확장

- ❖ Value function
- ❖ Bellman Equation

더 복잡한 문제를 풀기 위한 확장

- ❖ Value function
- ❖ Bellman Equation

Actions

States

	A1	A2	А3	A4	A5	A6	A7
S1							
S2							
S3	10	2	56	47	999	5	11
S7056							

Q Table

Value Functions

State-value functions

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

Action-value functions

$$q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right]$$

Bellman Equations

lacktriangle Bellman Eq. for v_{π}

$$\begin{split} v_{\pi}(s) &\doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s] \\ &= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \Big[r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s'] \Big] \\ &= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \Big[r + \gamma v_{\pi}(s') \Big], \quad \text{for all } s \in \mathcal{S}, \end{split}$$

❖ Bellman **Optimality** Eq.

$$v_{*}(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s',r} p(s', r \mid s, a) \Big[r + \gamma v_{*}(s') \Big]$$

$$q_{*}(s, a) = \mathbb{E}\Big[R_{t+1} + \gamma \max_{a'} q_{*}(S_{t+1}, a') \mid S_{t} = s, A_{t} = a \Big]$$

$$= \sum_{s',r} p(s', r \mid s, a) \Big[r + \gamma \max_{a'} q_{*}(s', a') \Big],$$

Dynamic Programming

Model-Based Method

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

```
\Delta \leftarrow 0
Loop for each s \in S:
     v \leftarrow V(s)
```

$$V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$

Output a deterministic policy, $\pi \approx \pi_*$, such that

$$\pi(s) = \operatorname{arg\,max}_a \sum_{s',r'} p(s',r|s,a) [r + \gamma V(s')]$$

Model-Free Methods

- ❖ Monte Carlo (MC) Methods
 - S, A, R, S, A, R, S, A, R, Terminate → *Update*
 - S, A, R, S, A, R, Terminate → Update

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[G_t - V(S_t) \Big]$$

- Temporal Difference (TD) Learning
 - S, A, R, S, A, R, *Update*, S, A, R, *Update*, S, A, R, Terminate, *Update*
 - S, A, R, S, A, R, Terminate, *Update*

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

NewEstimate ← OldEstimate + StepSize (Target - OldEstimate)

MC vs TD

Estimation Method: n-step TD

Bias-variance tradeoff

High variance Low bias

https://www.quora.com/Intuitively-why-is-there-a-bias-variance-tradeoff-between-TD-k-0-and-TD-k-%E2%88%9E-10-bias-variance-tradeoff-between-TD-k-0-and-TD-k-%E2%88%9E-10-bias-variance-tradeoff-between-TD-k-0-and-TD-k-%E2%88%9E-10-bias-variance-tradeoff-between-TD-k-0-and-TD-k-%E2%88%9E-10-bias-variance-tradeoff-between-TD-k-0-and-TD-k-%E2%88%9E-10-bias-variance-tradeoff-between-TD-k-0-and-TD-k-%E2%88%9E-10-bias-variance-tradeoff-between-TD-k-0-and-TD-k-%E2%88%9E-10-bias-variance-tradeoff-between-TD-k-0-and-TD-k-%E2%88%9E-10-bias-variance-tradeoff-between-TD-k-0-and-TD-k-%E2%88%9E-10-bias-variance-tradeoff-between-TD-k-0-and-TD-k-%E2%88%9E-10-bias-variance-tradeoff-between-TD-k-0-and-

Estimation Method: n-step TD

n-step TD example

Average 0.45 RMS error over 19 states 0.4 and first 10 0.35 episodes n=16 0.3 n=2 n=8 n=4 0.2 0.4 0.8 0.6

 α

On-Policy vs Off-policy

- ❖ To enhance exploration, use off-policy methods
 - One policy (target policy) learn (exploitation)
 - Another policy generate behavior (exploration)
- ❖ SARSA (on-policy TD)

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

Q-learning (off-policy TD)

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

SARSA

❖ 내가 선택한 행동으로 학습

until S is terminal

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

```
Initialize Q(s,a), for all s \in \mathbb{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \epsilon\text{-}greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \epsilon\text{-}greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
```

Q-Learning

- ❖ 내가 선택한 행동은 학습 데이터를 모으기 위한 과정
- ❖ 학습할 때는 다시 행동을 선택

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Initialize Q(s, a), for all $s \in S$, $a \in A(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ϵ -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

 $S \leftarrow S'$

until S is terminal

On-Policy vs Off-policy

Deep Q Network (DQN)

- ❖ DQN = Q-Learning + Deep Neural Network
 - 신경망 모델로 Q Table을 대신 (Q-learning)
 - Off-policy, Value-based method
 - Replay Memory, Target Network

Deep Q Network (DQN)

❖ Q Network 어떻게 만들어야 하나

$$Q(s, a) = E[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots | s_0 = s, a_0 = a]$$

Q-Learning

- S, A, R, S, A, R, *Update*, S, A, R, *Update*, S, A, R, Terminate, *Update*
- S, A, R, S, A, R, Terminate, *Update*

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

❖ DQN

• Q 네트워크 학습: Temporal Difference (TD) Learning

$$\left(\left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)\right] - Q(S_t, A_t)\right)^2; MSE$$

❖ Target Network

● Target Network는 고정하고 Q-network만 학습

❖ Target Network

• Target Network는 고정하고 Q-network만 학습

$$\left(\left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)\right] - Q(S_{t}, A_{t})\right)^{2}$$
Target Q-Network

Q-Network

Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
    Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
    for t = 1, T do
         With probability \epsilon select a random action a_t
         otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
         Execute action a_t in emulator and observe reward r_t and image x_{t+1}
         Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
         Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
         Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
         Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
         Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
    end for
end for
```

DQN 성능

❖ 비디오게임 (Atari)

DQN 성능

❖ 비디오 게임 (Atari)

DQN 성능

강화학습 문제를 푸는 방식

- ❖ Action-Value 기법 Value-Based RL
- ❖ 그래디언트 기반 기법Policy-Based RL

Policy Gradient & Q-Learning

Policy gradient

Q-learning

$$Q(s, a) = E[r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots | s_0 = s, a_0 = a]$$
: Q-function

Policy Gradient for Continuous Action

- DQN cannot solve continuous action tasks
- Policy gradient can simply solve the tasks (Gaussian policy parameterization)

$$\pi(s) = N(\mu(s), \sigma(s))$$
$$a \sim N(\mu(s), \sigma(s))$$

Training Policy Gradient

❖ Episodic update: REINFORCE

$$\max E[G|\pi_{\theta}] \qquad \text{where } G = \sum_{t=0}^{l-1} r_t$$

Gradient Estimator (optional)

$$\nabla_{\theta} E_{x}[f(x)] = \nabla_{\theta} \int p(x|\theta) f(x) dx$$

$$= \int \nabla_{\theta} p(x|\theta) f(x) dx$$

$$= \int \frac{\nabla_{\theta} p(x|\theta)}{p(x|\theta)} p(x|\theta) f(x) dx$$

$$= \int \nabla_{\theta} \log p(x|\theta) p(x|\theta) f(x) dx$$

$$= E_{x}[f(x)\nabla_{\theta} \log p(x|\theta)]$$

Sample $x_i \sim p(x|\theta)$, and compute $\hat{g}_i = f(x_i)\nabla_{\theta} \log p(x_i|\theta)$

Policy Gradient Estimator

Now random variable x is a whole trajectory

$$\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$$

$$\nabla_{\theta} E_{\tau}[G(\tau)] = E_{\tau}[G(\tau)\nabla_{\theta} \log p(\tau|\theta)]$$

 \clubsuit Just need to write out $p(\tau|\theta)$

$$p(\tau|\theta) = \mu(s_o) \prod_{t=0}^{T-1} [\pi(a_t|s_t, \theta)P(s_{t+1}, r_t|s_t, a_t)]$$

$$\log p(\tau|\theta) = \log \mu(s_o) + \sum_{t=0}^{T-1} [\log \pi(a_t|s_t, \theta) + \log P(s_{t+1}, r_t|s_t, a_t)]$$

$$\nabla_{\theta} \log p(\tau|\theta) = \nabla_{\theta} \sum_{t=0}^{T-1} \log \pi(a_t|s_t, \theta)$$

$$\nabla_{\theta} E_{\tau}[G] = E_{\tau} \left[G \nabla_{\theta} \sum_{t=0}^{T-1} \log \pi(a_t|s_t, \theta) \right]$$

Policy Gradient Methods

REINFORCE (MC policy gradient)

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \log \pi_{\theta}(s) \, \mathbf{G_t}$$

Actor Critic Policy Gradient (mix)

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \log \pi_{\theta}(s) Q(s, a)$$

Advantage Actor-Critic Policy Gradient (mix)

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \log \pi_{\theta}(s) \left[Q(s, a) - V(s) \right]$$

Policy Gradient Algorithm (REINFORCE)

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*

```
Input: a differentiable policy parameterization \pi(a|s,\theta)
Algorithm parameter: step size \alpha > 0
Initialize policy parameter \theta \in \mathbb{R}^{d'} (e.g., to 0)
Loop forever (for each episode):
    Generate an episode S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T, following \pi(\cdot|\cdot, \theta)
    Loop for each step of the episode t = 0, 1, ..., T - 1:
        G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k
\theta \leftarrow \theta + \alpha \gamma^t G \nabla \ln \pi (A_t | S_t, \theta)
```


Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step size, the total reward per episode approaches the optimal value of the start state.

 (G_t)

Connection Between Reinforcement Learning

Action-value methods

- Value-based RL
- DQN

Gradient-based methods

- Policy-based RL
- Policy Gradient

❖ Action-value methods & Gradient-based methods

- Actor-Critic methods (actor: policy-based / critic: value-based)
- A2C, A3C,...

REINFORCE vs DQN

Comparison between policy gradient and DQN

	REINFORCE	DQN
Estimation	Monte Carlo method	Bootstrapping (temporal difference)
Pros.	Continuous actionStochastic policies	Low varianceLong episode
Cons.	High varianceLocal optimal	No continuous actionOnly deterministic policy

Actor-Critic Algorithms

- ❖ Actor-critic is hybrid of DQN & policy gradient
- ❖ Variants: A3C, DDPG, TRPO...

- Network architectures
- ❖ Actor: policy network / Critic: value network

$$\theta \leftarrow \theta + \alpha G \nabla_{\theta} \log \pi(a_t | s_t, \theta)$$

- Network architectures
- ❖ Actor: policy network / Critic: value network

$$V(s) = E[r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots | s_0 = s]$$
: V-function

- Network architectures
- ❖ Actor: policy network / Critic: value network

$$V(s) = E[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots | s_0 = s]$$
: V-function

- Network architectures
- ❖ Actor: policy network / Critic: value network
- Update actor

$$\theta_a \leftarrow \theta_a + \alpha Score \nabla_{\theta_a} \log \pi(a_t | s_t, \theta_a)$$

* Score

• G

REINFORCE

• Q(s,a)

Q Actor-Critic

 $\bullet \quad A(s,a) = Q(s,a) - V(s)$

Advantage Actor-Critic

• $\delta = r + \gamma V(s_{t+1}) - V(s_{t+1})$ TD Actor-Critic

A3C

- Asynchronous Advantage Actor-Critic (A3C)
 - Use CPU thread
 - Multiple Actor-Critic
 - Advantage
 - Episodic update

A₃C

No replay memory, On policy

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

```
// Assume global shared parameter vectors \theta and \theta_v and global shared counter T=0
// Assume thread-specific parameter vectors \theta' and \theta'_v
Initialize thread step counter t \leftarrow 1
repeat
     Reset gradients: d\theta \leftarrow 0 and d\theta_v \leftarrow 0.
     Synchronize thread-specific parameters \theta' = \theta and \theta'_v = \theta_v
     t_{start} = t
     Get state s_t
     repeat
          Perform a_t according to policy \pi(a_t|s_t;\theta')
          Receive reward r_t and new state s_{t+1}
          t \leftarrow t + 1
          T \leftarrow T + 1
     until terminal s_t or t - t_{start} == t_{max}
    R = \begin{cases} 0 & \text{for terminal } s_t \\ V(s_t, \theta'_v) & \text{for non-terminal } s_t \text{// Bootstrap from last state} \end{cases}
     for i \in \{t - 1, ..., t_{start}\} do
          R \leftarrow r_i + \gamma R
          Accumulate gradients wrt \theta': d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i;\theta')(R - V(s_i;\theta'_v))
          Accumulate gradients wrt \theta'_v: d\theta_v \leftarrow d\theta_v + \partial (R - V(s_i; \theta'_v))^2 / \partial \theta'_v
     end for
     Perform asynchronous update of \theta using d\theta and of \theta_v using d\theta_v.
until T > T_{max}
```

Asynchronous Update

Uncorrelated experience

Asynchronous Update

❖ Fast communication speed between CPU & memory

A3C Performance

5 Atari games

Figure 1. Learning speed comparison for DQN and the new asynchronous algorithms on five Atari 2600 games. DQN was trained on a single Nvidia K40 GPU while the asynchronous methods were trained using 16 CPU cores. The plots are averaged over 5 runs. In the case of DQN the runs were for different seeds with fixed hyperparameters. For asynchronous methods we average over the best 5 models from 50 experiments with learning rates sampled from $LogUniform(10^{-4}, 10^{-2})$ and all other hyperparameters fixed.

- 65 -

Deterministic Policy for Continuous Action

- \clubsuit In Deep RL, policy is parametrized by neural networks (θ)
- Deterministic policy

$$a=\pi(S)$$

Stochastic Policy

$$a \sim \pi(S)$$

❖ REINFORCE

$$\nabla_{\theta} E_{\tau}[G] = E_{\tau} \left[G \nabla_{\theta} \sum_{t=0}^{T-1} \log \pi(a_t | s_t, \theta) \right]$$

Actor-Critic 기법

- **⋄** Actor는 action을 결정 $a = \pi(s; \theta_a)$
- � Critic은 actor를 평가 $Q(s, a; \theta_c) \approx \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a \right]$,
- ❖ A3C^[1], DDPG^[2], ACER^[3] 등 다양한 알고리즘이 있음

Deep Deterministic Policy Gradient (DDPG)

- ❖ Actor-Critic 기법
- ❖ Actor와 Critic 신경망이 순차적으로 배치
- **◇** Critic Network의 아웃풋 Q를 최대화 하는 policy $\pi(s; \theta_a)$ 학습

$$\nabla_{\theta_a} E_{\tau}[Q(s, a)] = E_{\tau} \left[\nabla_{\theta_a} Q(s, \pi(s; \theta_a); \theta_c) \right]$$
$$= \frac{\partial Q}{\partial \sigma} \frac{\partial \pi}{\partial \rho}$$

DDPG

- Deep deterministic policy gradient (DDPG)
 - Deterministic policy gradient + DQN (replay memory)
- Continuous action (categorical action)
- Continuous update (not episodic update)

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971. † Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014, June). Deterministic policy gradient algorithms. In ICML.

DDPG

Incorporate replay memory and target network ideas from DQN for increased stability

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^{Q}$, $\theta^{\mu'} \leftarrow \theta^{\mu}$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process \mathcal{N} for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$

$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau) \theta^{\mu'}$$

end for end for

DDPG Performance

Continuous control examples

Figure 2: Performance curves for a selection of domains using variants of DPG: original DPG algorithm (minibatch NFQCA) with batch normalization (light grey), with target network (dark grey), with target networks and batch normalization (green), with target networks from pixel-only inputs (blue). Target networks are crucial.

DDPG Performance

Continuous control examples

DDPG vs A3C

Continuous control examples

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. D. L., ... & Lillicrap, T. (2018). DeepMind Control Suite. arXiv preprint arXiv:1801.00690.

Future of RL Algorithms

Efficient Learning

Robust Training

- Complex problem
 - Hierarchical RL
 - Multi-agent RL

