Practica 5(2021)

Problema 2:

Enunciado: Considere la variable aleatoria $X \in \mathcal{A}_X = \{a_1, a_2, \dots, a_n\}$, para la cual conoce todas las probabilidades condicionales con $p(x_i \mid x_1, x_2, \dots, x_{i-1})$. Escriba el algoritmo que le permite encontrar los valores u y v que definen el intervalo [u, v] que representa la serie x_1, x_2, \dots, x_i cada vez que se muestrea un nuevo valor de x_i .

Resolución: Dadas estas condiciones, si $x_i = a_N$ (i y N pueden no ser iguales):

$$Q_k = \sum_{j=1}^k p(x_j \mid x_1, x_2, \dots, x_{j-1})$$

$$u = (v - u)Q_N + u$$

$$v = (v - u)Q_{N+1} + u$$

Problema 3:

Enunciado: Particularice el algoritmo encontrado en el punto 2 para el caso en que $\mathcal{A}_X = \{a,b\}$, y las X_i son estacionarias, independientes e idénticamente distribuidas. Es decir, $p(X_i = a \mid x_1, \dots, x_{i-1}) = p_a$ y $p(X_i = b \mid x_1, \dots, x_{i-1}) = p_b = 1 - p_a$

Resolución: Dadas estas condiciones, si $x_i = a_N$ (i y N pueden no ser iguales):

$$Q_1 = 0, Q_2 = p_a, Q_3 = 1$$

 $u = (v - u)Q_N + u$
 $v = (v - u)Q_{N+1} + u$