課題 No.2 の解答例

高水準 I/O を使用した場合、バッファサイズの異なる低水準 I/O を使用した場合について、ファイルをコピーする時間を比較した。

実行条件

実行したコンピュータ : MacBook Pro M1 2020 実行コンピュータの OS : macOS 11.3 (Big Sur)

ファイルサイズ : 12MiB(bs=1024, count=12288)

実行結果

実行時間は遅い方から以下の順であった.

1. 1バイトの write システムコール (mycp2_1)

	1回目	2回目	3回目	平均
real	20.37	19.77	19.55	19.90
user	1.61	1.61	1.63	1.62
sys	18.67	18.04	17.85	18.19

2. 高水準 I/O(mycp)

	1回目	2回目	3回目	平均
real	0.44	0.44	0.44	0.44
user	0.42	0.42	0.42	0.42
sys	0.01	0.01	0.01	0.01

3. 1,024 バイトの write システムコール (mycp2_1024)

	1回目	2回目	3回目	平均
real	0.05	0.05	0.05	0.05
user	0.00	0.00	0.00	0.00
sys	0.04	0.04	0.04	0.04

考察

1. mycp2_1 は mycp2_1024 よりシステム時間が約 400 倍になっている. システムコールの呼び出し回数は約 1000 倍になっているはずなので,システムコール1回当たりの処理時間は 0.4 倍程度と考えられる. システムコール1回当たり読み書きするデータの量が 1000 倍になっても,システムコール1回当たりの処理時間は 2.5 倍 (1/0.4 倍) 程度で済んでいる.

- 2. mycp は mycp2_1024 と比較してシステム時間が短くなっている。このことから高水準 I/O が用いるバッファは 1024 バイトより大きく, mycp のシステムコール呼び出し回数は mycp2_1024 より少なくなっていると考えられる。
- 3. mycp は mycp2_1 と比較してユーザ時間が 4 分の 1 倍に短くなっている。高水準 I/O の関数 (getc(), putc()) は、システムコールを呼び出すための前処理より軽い。(これには驚いた。) オンラインマニュアル (man getc) で調べてみると「getc() はマクロでありインラインに展開される」と書いてある。高速化するための工夫が凝らされている。