Лабораторная работа №2.4.1 Определение теплоты испарения жидкости

Гёлецян А.Г.

22 июля 2022 г.

Цель работы: 1) измерение давления насыщенного пара жидкости при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса.

В работе используются: термостат, герметический сосуд, заполненный водой, отсчётный микроскоп.

1 Теоретическая часть

1.1 Уравнение Клапейрона-Клаузиуса

Если считать что насыщенные пары подчиняются закона Менделеева-Клапейрона, и пренебречь удельным объемом жидкости относительно удельного объема паров то из уравнения Клапейрона-Клаузиуса получаем формулу для удельной теплоты испарения

$$L = \frac{RT^2}{\mu P} \frac{dP}{dT} = -\frac{R}{\mu} \frac{d(\ln P)}{d(1/T)} \tag{1}$$

Как видим, если измерить зависимость давления насыщенных паров от температуры по формуле (1) можно получить удельную теплоту испарения.

1.2 Экспериментальная установка

Рис. 1: Установка для определения давления насыщенных паров.

Измерения проводятся на установке, изображенной на рис. 1. С помощью термостата А выставляется желаемя температура, и с помощью микроскопа С измеряется положение менисков ртути в U-образном монометре 15. Давление насыщенных паров считается как разность высот менисков ртути.

Измерения проводятся в 2 этапа. В начале жидкость нагревается, а потом остужается. Это делается для того, чтобы посмотреть зависит ли давление насыщенных паров только от состояния жидкости или нет.

2 Измерения

Измеряем давление по вышеописанной схеме в диапазоне температур от 22 до $37~^{\circ}C$. Получаем следующие данные

Nº	$T, \circ C$	h_1, c_M	h_2 , cm	Н	Nº	$T, ^{\circ}C$	h_1, c_M	h_2 , cm	Н
0	24.09	7.900	5.950	1	12	36.06	9.045	4.930	1
1	25.08	7.990	5.895	1	13	37.05	9.175	4.720	1
2	26.06	8.050	5.840	1	14	38.00	9.290	4.720	1
3	27.05	8.125	5.765	1	15	35.86	9.090	4.895	0
4	28.07	8.195	5.695	1	16	33.94	8.880	5.085	0
5	29.08	8.305	5.595	1	17	32.00	8.680	5.280	0
6	30.06	8.390	5.520	1	18	29.97	8.455	5.475	0
7	31.04	8.500	5.445	1	19	28.00	8.290	5.610	0
8	32.07	8.610	5.340	1	20	26.00	8.130	5.770	0
9	33.04	8.700	5.250	1	21	24.01	7.970	5.890	0
10	34.06	8.815	5.150	1	22	21.88	7.770	6.085	0
11	35.04	8.910	5.040	1					

Таблица 1: Измеренные положения менисков в зависимости от температуры.

В таблице (1) h_1 и h_2 это координаты правого и левого мениска соответственно относительно некоторой точки. Для ошибок измерения имеем следующее

$$\Delta h = 0.005 \text{cm}$$
$$\Delta T = 0.01 \text{K}$$

Заметим, что ошибка температуры ΔT это ошибка в значениях термометра, который измеряет температуру воды в термостате. Температура воды в балоне может отличатся от температуры воды в ванне. Столбец H равен 1 если измерение проводились в цикле нагрева и 0 если в цикле охлаждения.

Если посмотреть на данные внимательно, можно заметить что h_1+h_2 не остается константой, что на первый взгляд может показатся странным, и может намекнуть на недостатучную точность в эксперименте. Для исследования этого вопроса построим график зависимости h_1+h_2 от h_1 .

Рис. 2: Зависимость $(h_1 + h_2)(h_1)$.

Как видим, при нагреве и охлаждении при близких значениях h_1 h_1+h_2 почти равны. Это свидетеьствует о том, что все таки точности в эксперименте хватает, и изменение h_1+h_2 скорее является следствием других факторов, а не результатом неточных измерении. Единственная странная точка это точка N_2 13, но во всем остальном все хорошо.

Теперь, когда разобрались с этим вопросом, считаем давление паров при разных температурах.

$N_{\overline{0}}$	$T,^{\circ}C$	P, $Topp$	Н	№	$T, ^{\circ}C$	P, $Topp$	Н
0	24.09	19.50	1	12	36.06	41.15	1
1	25.08	20.95	1	13	37.05	44.55	1
2	26.06	22.10	1	14	38.00	45.70	1
3	27.05	23.60	1	15	35.86	41.95	0
4	28.07	25.00	1	16	33.94	37.95	0
5	29.08	27.10	1	17	32.00	34.00	0
6	30.06	28.70	1	18	29.97	29.80	0
7	31.04	30.55	1	19	28.00	26.80	0
8	32.07	32.70	1	20	26.00	23.60	0
9	33.04	34.50	1	21	24.01	20.80	0
10	34.06	36.65	1	22	21.88	16.85	0
11	35.04	38.70	1				

Таблица 2: Измеренные давления в зависимости от температуры.

Из графика видно, что синие точки смещены влево, что свидетеьствует о том, что во время цикла охлаждения на релаксацию системы не было уделено достаточно времени. Действительно, во время опыта температура жидкости поднималсь на $1^{\circ}C$ примерно каждые 7-10 минут, в то время как жидкость охлаждался на $2^{\circ}C$ примерно каждые 2-4 минут.

Теперь, для нахождения теплоты испарения построим график зависимости ln(P)(1/T). В предположении что теплота испарения не зависит от температуры эта зависимость имеет вид прямой, а теплота испарения считается по формуле (1). Как видим на рис. 4, для оранжевых точек линейная зависимость довольно хорошая, в отличии от синих точек. Объяснение этому дано выше. Аппроксимируя оранжевые, синие и зеленые точки методом МНК имеем следующее

$$\left(\frac{d(\ln P)}{d(1/t)}\right)_{\text{OXJL}} = (-5780 \pm 360)\text{K}$$
 (2)

$$\left(\frac{d(\ln P)}{d(1/t)}\right)_{\text{охл.}} = (-5780 \pm 360) \text{K}$$

$$\left(\frac{d(\ln P)}{d(1/t)}\right)_{\text{нагр.}} = (-5750 \pm 90) \text{K}$$

$$\left(\frac{d(\ln P)}{d(1/t)}\right)_{\text{реал.}} = (-5279 \pm 6) \text{K}$$
(4)

$$\left(\frac{d(\ln P)}{d(1/t)}\right)_{\text{peal}} = (-5279 \pm 6)\text{K} \tag{4}$$

Рис. 3: Зависимость давления насыщенных паров от температуры.

Как видим, в цикле охлаждения ошибки большие, поэтому теплоту испарения будем считать для цикла нагревания. Получаем

$$L = (2650 \pm 40) \text{кДж/кг} \tag{5}$$

$$L_{\text{реал.}} = (2437 \pm 3) \text{кДж/кг}$$
 (6)

3 Выводы

Сравним наши данные с табличными. При $100^{\circ}C$ теплота испарения $L_{100^{\circ}C}=2256$ кДж/кг. Как видим, различия большие. Теперь сравним с теплотой испарения при $30^{\circ}C$ - $L_{30^{\circ}C}=2430$ кДж/кг. Как видим, довоьго близко к $L_{\rm pean}$, что свидетельствует о том что на нашем диапазоне температур формулой (1) можно пользоваться. Несмотря на это, мы получили значение L, которое отличается от действительного на $\varepsilon_L=9\%$, что не входит в диапазон погрешности L. Причиной всему этому скорее всего является недостаточное время отведенное для релаксации системы, изи за чего действительная температура в балоне ниже регистрируемого. Именно в следствии этих искажении мы и получаем ошибочное значение L.

Рис. 4: Зависимость ln(P)(1/T).