Mathématique - Devoir Maison n°13

Exercice 1

E désigne l'espace vectoriel des fonctions indéfiniment dérivables sur \mathbb{R} , c'est à dire dérivables autant de fois que l'on veut. On note F l'ensemble des fonctions f indéfiniment dérivables sur \mathbb{R} vérifiant l'équation différentielle

$$y'' + 2xy' + x^2y = 0 (1)$$

- 1. Montrer que F est un sous-espace vectoriel de E.
- 2. Soit $f \in F$. On définit une fonction \widetilde{f} par $\forall x \in \mathbb{R}$, $\widetilde{f}(x) = f'(x) + xf(x)$. Montrer que \widetilde{f} appartient également à F, puis que l'application $s : f \mapsto \widetilde{f}$ est une symétrie de F.
- 3. On note F_1 l'ensemble des fonctions appartenant à F solutions de l'équation différentielle :

$$(H_1)$$
 $y' + (x-1)y = 0$,

et on note également F_2 l'ensemble des fonctions appartenant à F qui sont solutions de l'équation différentielle :

$$(H_2)$$
 $y' + (x+1)y = 0$.

Montrer à l'aide de la question précédente que $F=F_1\oplus F_2$.

4. Résoudre les équations différentielles (H_1) et (H_2) ; en déduire l'ensemble F.

Exercice 2

On définit les fonctions f et g par $f(x) = \frac{1}{e^{-2x} - 1} + \frac{1}{\sin(2x)}$ et $g(x) = (x^2 + 1)\ln\left(\frac{x+1}{x}\right) + \frac{x^2 + x - 1}{x+1}$

- 1. (a) Préciser les $DL_5(0)$ de $x \mapsto e^{-2x}$ et $x \mapsto \sin(2x)$.
 - (b) Montrer que f admet un $DL_3(0)$.
 - (c) En déduire que f se prolonge par continuité en 0, et, qu'ainsi prolongée, f est dérivable en 0. Préciser une équation de la tangente Δ en ce point et la position relative de \mathscr{C}_f par rapport à Δ .
- 2. (a) Quel est l'ensemble de définition de g?
 - (b) Chercher un équivalent simple de g en x = 0, puis calculer la limite de g(x) quand x tend vers 0. Même question lorsque x tend vers -1.
 - (c) Calculer les $DL_3(h \to 0)$ de $h \mapsto (1+h^2)\ln(1+h)$ et $h \mapsto \frac{1+h-h^2}{1+h}$
 - (d) Montrer qu'il existe des constantes a, b et c, telles que, pour x au voisinage de $\pm \infty$:

$$g(x) = ax + b + \frac{c}{x} + o\left(\frac{1}{x}\right)$$

Quelles sont les conséquence graphique pour la courbe représentative \mathcal{C}_g de g?