	Основные типы логических	вентилей.
Название	Схемное обозначение	Пример реализуемой
вентиля Инвертор НЕ	$X - \frac{1}{\sqrt{Y = \tilde{X}}}$	функции $ X $
Дизъюнктор ИЛИ	$X_{1} \longrightarrow X_{2} \longrightarrow X_{2} \longrightarrow X_{1} \vee X_{2} \vee \vee X_{n}$ \vdots $X_{n} \longrightarrow X_{n} \longrightarrow X_{n} \longrightarrow X_{n}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Конъюнктор И	$X_{1} \longrightarrow X_{2} \longrightarrow X_{1} \wedge X_{2} \wedge \dots \wedge X_{n}$ \vdots $X_{n} \longrightarrow X_{n} \longrightarrow X_{n} \wedge X_{n$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Дизъюнктор с отрицанием ИЛИ- НЕ	$X_{1} \longrightarrow X_{2} \longrightarrow X_{2} \longrightarrow X_{1} \vee X_{2} \vee \vee X_{n}$ \vdots $X_{n} \longrightarrow X_{n} \longrightarrow X_{n}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Конъюнктор с отрицанием И- НЕ	$X_{1} = \underbrace{X_{1} \times X_{2} \times \dots \times X_{n}}_{X_{n}}$ \vdots $X_{n} = \underbrace{X_{1} \times X_{2} \times \dots \times X_{n}}_{X_{n}}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Сумматор по модулю 2	$X_{1} \longrightarrow X_{2} \longrightarrow X_{2} \oplus X_{2} \oplus \dots \oplus X_{n}$ \vdots $X_{n} \longrightarrow X_{n} \oplus X_{2} \oplus \dots \oplus X_{n}$	$\frac{X_1}{Y_2}$ M_2 Y

Scanned by CamScanner

Aвухместные булевы функции Число булевых функций двух переменных равно $2^2=16$.

-	_	0	0	<u>.</u> 24
-	0	-	0	25
0	1 0 0	0	0	f_0
-	0	0	0	f_1
0	-	0	0	f_2
-	-	0	0	53
1 0 1 0 1 0	0		0	<i>f</i> ₄
-	0	-	0	55
0	-	-	0	56
-	-	_	0	57
0	0	0	1	f_8
-	0	0	1	f_9
0	1	0	1	f_{10}
1	1	0	1	f_{11}
0	0	-	-	f_{12}
1	0		_	Tat f_{13}
0	-	-	-	x_1 x_2 f_0 f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8 f_9 f_{10} f_{11} f_{12} f_{13} f_{14} f_{14}
			\neg	<u> </u>

Haraman Haraman A	Двоичный набор	3
Таблица 3.6.		

логическое сложение)	$=x_1+x_2$	2/(~1,~2) (~)	
Дизьюнкция (функция «ИЛИ»,	$f_7(x_1,x_2) = x_1 \lor x_2 =$	$f_{2}(x_{1},x_{2})=(0)$	×
Сумма по модулю 2 (неравнозначность)	$f_6(x_1, x_2) = x_1 \oplus x_2$	$f_6(x_1,x_2) = (0110)$	7.
	переменная)		
ϕ ункция x_2	$(x_{l} - \phi$ иктивная	$f_5(x_1.x_2) = (0101)$	6.
Тождественная	$f_5\left(x_1, x_2\right) = x_2$		
следует х ₁ »	14 A		
импликации «из x_2	$f_1(x_1, x_2) = x_2 \to x_1$	$f_4(x_1,x_2) = (0100)$	S.
Отрицание			
10	переменная)		
функция х,	$(x_2 - \phi$ иктивная	$f_3(x_1,x_2)=(0011)$	4
Тождественная	$f_3(x_1,x_2)=x_1$		
следует X ₂ »			
импликации «из x_1	$f_2(x_1,x_2) = \overline{x_1 \rightarrow x_2}$	$f_2(x_1,x_2)=(0010)$	ω.
Отрицание			
умножение)	21 22 21 22.7		
логическое	$= x_1 \cdot x_2 = x_1 & x_2$	$J(x_1,x_2) = (0001)$	
(функция «И»,	$f_1(x_1,x_2) = x_1 \wedge x_2 =$	$f(x, x_{-}) = (0001)$	 د
Конъюнкимя	nepentalinate)		
	пепеменице)		
Константа 0	$(x_1, x_2 - \phi$ иктивные	$f_0(x_1,x_2)=(0000)$	
	$f_0(x_1,x_2)=0$	2 (222)	
Название функции	Формула	функции	Νğ
		חממווווווווווווווווווווווווווווווווווו	

$f_8(x_1,x_2) = (1000)$ $f_8(x_1,x_2) = \overline{x_1 \vee x_2} = \begin{cases} \text{Стрелка Пирс} \\ $	16.	15.	14.	13.	12.	Ε.	10.	9.
	$f_{15}(x_1,x_2) = (11111)$	$f_{14}(x_1,x_2) = (1110)$	$f_{13}(x_1, x_2) = (1101)$	$f_{12}(x_1, x_2) = (1100)$	$f_{11}(x_1, x_2) = (1011)$	$f_{10}(x_1, x_2) = (1010)$	$f_9(x_1,x_2) = (1001)$	$f_8(x_1,x_2) = (1000)$
Стрелка Пиро (логическая фун «ИЛИ-НЕ») Эквивалентно (равнозначнос (равнозначнос илимкация «и следует х ₁ » Отрицание з Отрицание з Отрицание з Следует х ₂ » Штрих Шефф (логическая фун «И-НЕ») Константа 1	$f_{15}(x_1, x_2) = 1$ ($x_1, x_2 - \phi$ иктивные переменные)	$f_{14}(x_1, x_2) = \overline{x_1 \cdot x_2} = x_1 \mid x_2$	$f_{13}(x_1,x_2) = x_1 \to x_2$	$f_{12}(x_1.x_2) = \overline{x_1} = \neg x_1$ (x_2 -фиктивная переменная)	$f_{11}(x_1, x_2) = x_2 \to x_1$	$f_{10}(x_1, x_2) = \overline{x_2} = \neg x_2$ (x_1 -фиктивная переменная)	$f_9(x_1, x_2) = x_1 \leftrightarrow x_2 =$ $= x_1 \sim x_2 = x_1 \oplus x_2$	$f_8(x_1, x_2) = x_1 \lor x_2 = x_1 \downarrow x_2$
ж кция кция ть) ть) ть) з х ₁ з х ₂ з х ₂ з х ₄ кция	Константа І	Штрих Шеффера (логическая функция «И-НЕ»)	Импликация «из x_1 следует x_2 »	Отрицание $x_{\rm l}$	Импликация «из x_2 следует x_1 »	Отрицание x_2	Эквивалентность (равнозначность)	Стрелка Пирса (логическая функция «ИЛИ-НЕ»)

Scanned by CamScanner

x_{1}	x_2	$x_1 \cdot x_2$	$x_1 \vee x_2$	$x_1 \rightarrow x_2$	$x_1 \leftrightarrow x_2$	$x_1 x_2$	$x_1 \downarrow x_2$	$x_1 \oplus x_2$
0	0	0	0	1	1	1	1	0
0	1	0	1	-1	0	1	0	1
1	0	0	1	0	0	1	0	1
1	1	1	1	1	1	0	0	0

Законы и теоремы булевой алгебры

Формулы, представляющие одну и ту же функцию, называются эквивалентными или равносильными (обозначаются =).

Основные законы булевой алгебры.

1. Коммутативность:

a)
$$x_1 \cdot x_2 = x_2 \cdot x_1$$
, 6) $x_1 \vee x_2 = x_2 \vee x_1$ B) $x_1 \oplus x_2 = x_2 \oplus x_1$, $x_1 \leftrightarrow x_2 = x_2 \leftrightarrow x_1$.

2. Ассоциативность:

a)
$$x_1 \cdot (x_2 \cdot x_3) = (x_1 \cdot x_2) \cdot x_3 = x_1 \cdot x_2 \cdot x_3$$
,

6)
$$x_1 \lor (x_2 \lor x_3) = (x_1 \lor x_2) \lor x_3 = x_1 \lor x_2 \lor x_3$$
,

B)
$$x_1 \oplus (x_2 \oplus x_3) = (x_1 \oplus x_2) \oplus x_3 = x_1 \oplus x_2 \oplus x_3$$
.

3. Дистрибутивность:

a)
$$x_1 \cdot (x_2 \vee x_3) = x_1 \cdot x_2 \vee x_1 \cdot x_3$$
,

6)
$$x_1 \lor (x_2 \cdot x_3) = (x_1 \lor x_2) \cdot (x_1 \lor x_3),$$

B)
$$x_1 \cdot (x_2 \oplus x_3) = x_1 \cdot x_2 \oplus x_1 \cdot x_3$$
.

4. Закон двойного отрицания: $\overline{x} = x$

Теорема двойственности (правила де Моргана): a) $\overline{x_1 \cdot x_2} = \overline{x_1} \vee \overline{x_2}$, б) $\overline{x_1 \vee x_2} = \overline{x_1} \vee \overline{x_2}$.

5. Законы поглощения:

a)
$$x \cdot x = x \cdot 1 = x \lor x = x \lor 0 = x \oplus 0 = x$$
,

6)
$$x \vee \overline{x} = x \vee 1 = x \leftrightarrow x = x \rightarrow x = 1$$
,

B)
$$x \cdot x = x \cdot 0 = x \oplus x = 0$$
,

r)
$$x \oplus 1 = x \rightarrow 0 = x \leftrightarrow 0 = x | x = x \downarrow x = \overline{x}$$
.

Свойства констант 0 и 1: $\overline{0} = 1$, $\overline{1} = 0$.

6.

a)
$$x_1 | x_2 = \overline{x_1 \cdot x_2} = \overline{x_1} \vee \overline{x_2}$$
,

$$6) x_1 \downarrow x_2 = \overline{x_1 \lor x_2} = \overline{x_1} \cdot \overline{x_2},$$

B)
$$x_1 \to x_2 = x_1 \lor x_2 = ((x_1 \cdot x_2) \oplus x_1) \oplus 1$$
,

$$\Gamma) \ x_1 \oplus x_2 = \left(x_1 \cdot \overline{x_2}\right) \vee \left(\overline{x_1} \cdot x_2\right) = \left(x_1 \vee x_2\right) \cdot \left(\overline{x_1} \vee \overline{x_2}\right),$$

$$\text{II)} \ x_1 \leftrightarrow x_2 = (x_1 \cdot x_2) \vee (\overline{x_1} \cdot \overline{x_2}) = \overline{x_1 \oplus x_2} = (x_1 \vee \overline{x_2}) \cdot (\overline{x_1} \vee x_2).$$

Все эти равенства остаются справедливыми при подстановке вместо переменных любых логических функций и, следовательно, любых формул, представляющих эти функции. Наряду с основными соотношениями для упрощения формул часто используются следующие правила:

1. Правила поглощения:

a)
$$x_1 \lor x_1 \cdot x_2 = x_1$$
, 6) $x_1 \cdot (x_1 \lor x_2) = x_1$.

2. Правила склеивания:

a)
$$x_1 \cdot x_2 \vee x_1 \cdot \overline{x_2} = x_1$$
 6) $(x_1 \vee x_2) \cdot (x_1 \vee \overline{x_2}) = x_1$.

- 3. Правило обобщенного склеивания: $x_1 \cdot x_3 \lor x_2 \cdot \overline{x_3} \lor x_1 \cdot x_2 = x_1 \cdot x_3 \lor x_2 \cdot \overline{x_3}$.
- 4. Правило вычеркивания $x_1 \vee \overline{x_1} \cdot x_2 = x_1 \vee x_2$.