Introduction

White Rabbit: an accurate time and frequency transfer over Ethernet networks

Maciej Lipiński

CERN CEM-EDL Electronics Design & Low-Level Software section

Open Compute Forum 5 May 2021

Outline

- Introduction
- 2 Technology
- 3 Equipment
- 4 Applications
- Standardisation
- Summary

Outline

Introduction

- Introduction
- 2 Technology
- 3 Equipment
- Applications
- Standardisation
- 6 Summary

Summary

Introduction

•0

CERN and GSI initiative for control & timing

- CERN and GSI initiative for control & timing
- Based on well-established standards

Introduction

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)

Introduction

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)

Introduction

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)

Introduction

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation
 - Deterministic data transfer

Introduction

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation
 - Deterministic data transfer
- Initial specs: links ≤10 km & ≤2000 nodes

Introduction

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation
 - Deterministic data transfer
- Initial specs: links ≤10 km & ≤2000 nodes
- Open Source and commercially available

CERN and GSI

CERN and GSI

Introduction

The Large High Altitude Air Shower Observatory

Summary

CERN and GSI

- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope

CFRN and GSI

- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange

CFRN and GSI

- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab

CFRN and GSI

Introduction

- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab
- National Time Labs in Netherlands (VSL), France (LNE-SYRTE), USA (NIST), UK (NPL) and Italy (INRIM)

White Rabbit

CFRN and GSI

- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab
- National Time Labs in Netherlands (VSL), France (LNE-SYRTE), USA (NIST), UK (NPL) and Italy (INRIM)
- ESA: European Space Agency for Galileo

CFRN and GSI

Introduction

- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab
- National Time Labs in Netherlands (VSL), France (LNE-SYRTE), USA (NIST), UK (NPL) and Italy (INRIM)
- ESA: European Space Agency for Galileo

See user page: http://www.ohwr.org/projects/white-rabbit/wiki/WRUsers

White Rabbit

Outline

Introduction

- Introduction
- 2 Technology
- 3 Equipment
- Applications
- Standardisation
- 6 Summary

Summary

White Rabbit technology - sub-ns synchronisation

Based on

- Gigabit Ethernet over fibre
- IEEE 1588 Precision Time Protocol

White Rabbit technology - sub-ns synchronisation

Based on

Introduction

- Gigabit Ethernet over fibre
- IEEE 1588 Precision Time Protocol

Enhanced with

- Layer 1 syntonisation
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model

Standardisation

Summary

Introduction

Gigabit Ethernet Local Area Network over fibre

Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$

Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$
- Hierarchical network

Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OF\overline{M} = t_2 (t_1 + \delta_{ms})$
- Hierarchical network
- Shortcomings:
 - devices have free-running oscillators
 - frequency drift compensation vs. message exchange traffic
 - assumes symmetry of medium
 - timestamps resolution

Layer 1 Syntonisation

- Clock is encoded in the Ethernet carrier and recovered by the receiver chip
- All network devices use the same physical layer clock
- Clock loopback allows phase detection to enhance precision of timestamps

Digital Dual Mixer Time Difference (DDMTD)

- Precise phase measurements in FPGA
- WR parameters:

- clk_{in} $= 62.5 \, MHz$
- clk_{DDMTD} = 62.496185 MHz (N=14)
- \circ clk_{out} = 3.814 kHz
- Theoretical resolution of 0.977 ps

Introduction

Correction of RTT for asymmetries

- Correction of RTT for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion

- Correction of RTT for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion
- Link delay model:
 - Fixed delays FPGA, PCB, SFP
 - Variable delays fiber:

$$\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} - 1 = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$$

 Calibration procedure to find fixed delays and α

- Correction of RTT for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion
- Link delay model:
 - Fixed delays FPGA, PCB, SFP
 - Variable delays fiber:

$$lpha = rac{
u_g(\lambda_s)}{
u_g(\lambda_m)} - 1 = rac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$$

- Calibration procedure to find fixed delays and α
- Accurate offset from master (OFM):

$$\delta_{ms} = \frac{1+\alpha}{2+\alpha} \left(RTT - \sum \Delta - \sum \epsilon \right)$$

$$OFM = t_2 - \left(t_1 + \delta_{ms} + \Delta_{txm} + \Delta_{txs} + \epsilon_S \right)$$

Out-of-the-box performance

Out-of-the-box performance

Introduction

"White Rabbit: a PTP Application for Robust Sub-nanosecond Synchronization", M.Lipinski et al, ISPCS 2011

State of the art performance

- Accuracy: <10 ps</p>
- **Jitter:** <100 fs RMS 10 Hz-10 MHz

Outline

- Equipment

Typical WR network

WR Switch v3 - current

- Central element of WR network
- 18 port gigabit Ethernet switch with WR features
- Default optical transceivers: up to 10km, single-mode fiber
- Fully open, commercially available from 4 companies

WR Switch v4 - under development

- Up to 24 port, 1 and 10 Gbps, with WR features
- Redundant & hot-swappable power supply and fans
- Expansion board
- Fully open design

Introduction

WR Node: carriers + mezzanines

- All carrier cards are equipped with a White Rabbit port
- All carrier cards instantiate WR PTP Core
- Mezzanines can use the accurate clock signal and timecode (synchronous sampling clock, trigger time tag, ...)

WR PTP Core

Open and commercially available off-the-shelf

Introduction

www.ohwr.org/projects/white-rabbit/wiki/wrcompanies

Summary

Outline

Introduction

- Introduction
- Technology
- 3 Equipment
- 4 Applications
- Standardisation
- 6 Summary

Summary

Introduction

WR applications in science and beyond

- Time & frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

Time & frequency transfer

Introduction

Widely used/evaluated by National Time Labs (5 countries)

Time & frequency transfer

Introduction

- Widely used/evaluated by National Time Labs (5 countries)
- Evaluated by Deutsche Telecom

High Accuracy Time Dissemination

4. Application of Time Transfer Methods and Network Sync Level

ISPCS keynote Highly Accurate Time Dissemination & Network Synchronisation, Helmut Imlau, Deutsche Telekom

Time-based control

Time-based control

Time-based control

Time-based control

Time-based control - example application

 GSI Helmholtz Centre for Heavy Ion Research in Germany

Introduction

Time-based control - example application

- GSI Helmholtz Centre for Heavy Ion Research in Germany
- 1-5 ns accuracy and 10 ps precision

Introduction

Time-based control - example application

- GSI Helmholtz Centre for Heavy Ion Research in Germany
- 1-5 ns accuracy and 10 ps precision
- WR network at GSI:
 - Operational since June 2018: 134 nodes & 32 switches
 - Final: 2000 WR nodes & 300 switches. in 5 layers

- Association of time with
 - an event

Introduction

a sample (measured value)

Time-to-digital converter (TDC)

- Association of time with
 - an event

- a sample (measured value)
- The most widely used WR application

- Association of time with
 - an event

- a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement

- Association of time with
 - an event

- a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos CNGS

- Association of time with
 - an event

- a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE

- Association of time with
 - an event

Introduction

- a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
 - Cosmic ray and neutrino detection

Summary

- Association of time with
 - an event

- a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
 - Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory

- Association of time with
 - an event

Introduction

- a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
 - Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope

Summary

- Association of time with
 - an event

- a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
 - Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope
 - Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy

- Association of time with
 - an event

- a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
 - Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope
 - Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy
 - High Frequency Trade monitoring
 - German Stock Exchange

Trigger distribution

Trigger distribution - example applications

Introduction

LHC trigger distribution to measure beam instabilities - since 2016

OB Observation instrument (OB)

Trigger distribution - example applications

Introduction

LHC trigger distribution to measure beam instabilities - since 2016

OB Observation instrument (OB)

WRTD - White Rabbit Trigger Distribution- to be used for CERN's Open Analog Signals Information System (OASIS)

Fixed-latency data transfer

Introduction

Fixed-latency data transfer- example application

Distribution of magnetic field in CERN accelerators

Radio-frequency transfer

Radio-frequency transfer

Introduction

Radio-frequency transfer - example application

- RF over WR at European Synchrotron Radiation Facility (ESRF)
 - A prototype tested in operation: <10 ps jitter</p>
- RF over WR at CERN
 - A prototype: <100 fs jitter and <10 ps reproducibility over reboots

Outline

Introduction

- Introduction
- 2 Technology
- 3 Equipment
- Applications
- Standardisation
- Summary

Summary

•0

WR standardisation in IEEE 1588 (1)

IEEE standards are revised periodically

- IEEE standards are revised periodically
- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"

- IEEE standards are revised periodically
- IEEE 1588 revision started in 2013 & targeted
 "...support for synchronisation to better than 1 nanosecond"
- Working Group with 5 sub-committees

- IEEE standards are revised periodically
- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"
- Working Group with 5 sub-committees
- High Accuracy sub-committee
 - Focus on White Rabbit
 - Experts from industry and academia
 - Division of WR into self-contained parts

 - Definition of Optional Features and PTP Profile that allow WR-like implementation and WR performance

- IEEE standards are revised periodically
- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"
- Working Group with 5 sub-committees
- High Accuracy sub-committee
 - Focus on White Rabbit
 - Experts from industry and academia
 - Division of WR into self-contained parts
 - Definition of Optional Features and PTP Profile that allow WR-like implementation and WR performance

- IEEE standards are revised periodically
- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"
- Working Group with 5 sub-committees
- High Accuracy sub-committee
 - Focus on White Rabbit
 - Experts from industry and academia
 - Division of WR into self-contained parts
 - Definition of Optional Features and PTP Profile that allow WR-like implementation and WR performance
- Revised IEEE 1588 approved on 7 Nov 2019

WR standardisation in IEEE 1588 (2)

White Rabbit integration into IEEE 1588 as High Accuracy:

https://www.ohwr.org/projects/wr-std/wiki/wrin1588

White Rabbit integration into IEEE 1588 as High Accuracy:

https://www.ohwr.org/projects/wr-std/wiki/wrin1588

White Rabbit

WR standardisation in IEEE 1588 (2)

White Rabbit integration into IEEE 1588 as High Accuracy:

https://www.ohwr.org/projects/wr-std/wiki/wrin1588

Introduction

White Rabbit integration into IEEE 1588 as High Accuracy:

https://www.ohwr.org/projects/wr-std/wiki/wrin1588

Introduction

White Rabbit integration into IEEE 1588 as High Accuracy:

https://www.ohwr.org/projects/wr-std/wiki/wrin1588

Summary

White Rabbit integration into IEEE 1588 as High Accuracy:

https://www.ohwr.org/projects/wr-std/wiki/wrin1588

Outline

- Introduction
- 2 Technology
- 3 Equipment
- Applications
- Standardisation
- Summary

Introduction

Ethernet-based synchronization

- Ethernet-based synchronization
- <1 ns accuracy and <10 ps precision out-of-the-box</p>

- Ethernet-based synchronization
- <1 ns accuracy and <10 ps precision out-of-the-box</p>
- Sub-10 ps accuracy and sub-100 fs precision achievable

- Ethernet-based synchronization
- <1 ns accuracy and <10 ps precision out-of-the-box
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open with commercial support

- Ethernet-based synchronization
- <1 ns accuracy and <10 ps precision out-of-the-box</p>
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open with commercial support
- Standard-based and standard-extending

- Ethernet-based synchronization
- <1 ns accuracy and <10 ps precision out-of-the-box</p>
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open with commercial support
- Standard-based and standard-extending
- Included in the revised IEEE 1588

- Ethernet-based synchronization
- <1 ns accuracy and <10 ps precision out-of-the-box</p>
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open with commercial support
- Standard-based and standard-extending
- Included in the revised IEEE 1588
- A versatile solution for general control and data acquisition

- Ethernet-based synchronization
- <1 ns accuracy and <10 ps precision out-of-the-box</p>
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open with commercial support
- Standard-based and standard-extending
- Included in the revised IEEE 1588
- A versatile solution for general control and data acquisition
- Showcase of technology transfer

Q&A

Introduction

Questions?

WR Project page: http://www.ohwr.org/projects/white-rabbit/wiki

Backup slides

Backup slides

Outline

- Management
- WR Performance in Long Chair
- WR Performance Improvements
- **WR** networks at CERN
- Determinism in WR

Management of WR networks: monitoring & config

White Rabbit is an extension of Ethernet

Management of WR networks: monitoring & config

- White Rabbit is an extension of Ethernet
- It can be managed using standard protocols and tools:
 - Simple Network Management Protocol (SNMP)
 - Syslog
 - Link Layer Discovery Protocol (LLDP)
 - Kerberos-based authentication

- White Rabbit is an extension of Ethernet
- It can be managed using standard protocols and tools:
 - Simple Network Management Protocol (SNMP)
 - Syslog
 - Link Layer Discovery Protocol (LLDP)
 - Kerberos-based authentication
- It can be debugged using standard tools:
 - Wireshark
 - Tcpdump
 - Professional Ethernet testers

Outline

- Management
- WR Performance in Long Chain
- WR Performance Improvements
- WR networks at CERN
- 11 Determinism in WR

WR performance in a long chain

Outline

- Management
- WR Performance in Long Chair
- WR Performance Improvements
- WR networks at CERN
- 11 Determinism in WR

Time transfer: out-of-the-box

Reported in 2011

Frequency transfer: out-of-the-box and improved

Management

Measurement device: Microsemi/Microchip 3120A Phase Noise Test Probe

Frequency transfer: out-of-the-box and improved

Out-of-the-box performance:

- GM-in to GM-out: jitter of 9 ps RMS 1 Hz-100 kHz and MDEV of 2E-12 τ =1 s ENBW 50 Hz
 - **GM-in to Slave-out**: jitter of **11 ps** RMS 1 Hz–100 kHz and MDEV of **4E-12** τ =1 s ENBW 50 Hz

Frequency transfer: out-of-the-box and improved

- Out-of-the-box performance:
 - GM-in to GM-out: jitter of 9 ps RMS 1 Hz-100 kHz and MDEV of 2E-12 τ=1 s ENBW 50 Hz
 - GM-in to Slave-out: jitter of 11 ps RMS 1 Hz-100 kHz and MDEV of 4E-12 τ=1 s ENBW 50 Hz
- WR Switches improved with Low Jitter Daughterboard (LJD):
 - GM-in to GM-out: jitter of 1 ps RMS 1 Hz-100 kHz and MDEV of < 5E-13 τ =1 s ENBW 50 Hz
 - **GM-in to Slave-out**: jitter of <2 ps RMS 1 Hz-100 kHz and MDEV of <7E-13 τ =1 s ENBW 50 Hz

WR time & frequency tranfser: state of the art

- GM-out to end-node-out: accuracy of <10 ps</p>
- GM-out to end-node-out: jitter of <100 fs RMS 10 Hz-10 MHz

Outline

- Management
- WR Performance in Long Chair
- WR Performance Improvements
- WR networks at CERN
- 11 Determinism in WR

Global WR network at CERN

Management

WRS WRS WR Switch

Active fiber Ethernet link

Backup fiber Ethernet link

Copper Ethernet link

Outline

- Management
- WR Performance in Long Chair
- WR Performance Improvements
- 10 WR networks at CERN
- 11 Determinism in WR

Determinism and Network Latency

Determinism

Management

A deterministic system is predictable: it provides calculable and consistent characteristics of operation that are required by the application, e.g. **network latency** of data transmission.

Deterministic network is a network in which we can calculate the maximum latency

Determinism in WR

Network Latency Contributors

Determinism in WR

- "White Box" design of WR switch allows thorough analysis
- Backward-compatible extension of the IEEE 802.1Q std

Priorities

Priorities

Priorities

High Priority

High Priority

WR Switch Latency

Intervening traffic	Latency [us]			
	One switch		Two switches	
	Max	Pk-pk	Max	Pk-pk
No	3.1	0.3	5.8	0.5
WR-PTP	5.6	2.8	8.7	3.9
Non-HP traffic	3.1	0.2	N/A	N/A

