Manual ARIMA(1,1,1) Calculation for Forecasting

fire ARIMA(1,1,1) Example

We'll calculate an ARIMA(1,1,1) forecast step by step using the following data:

Month	Actual	Forecast	Error (Actual - Forecast)
Jan	100	_	_
Feb	120	110	+10
Mar	150	130	+20
Apr	?	181	?

Table 1: Passenger Data with Forecasts

Given Parameters:

- Using ARIMA(1,1,1):
- p = 1 (use 1 previous actual value $\square AR(1)$)
- d = 1 (data already differenced \square working on differences)
- q = 1 (use 1 previous error \square MA(1))

memo General Formula

For ARIMA(1,1,1), the differenced forecast is:

$$y_t' = c + \phi_1 y_{t-1}' + \theta_1 e_{t-1} + \epsilon_t$$

Where:

- y'_t : Forecasted difference for time t
- c: Constant (intercept)
- ϕ_1 : Weight of AR(1) term
- y'_{t-1} : Previous differenced actual value
- θ_1 : Weight of MA(1) term
- e_{t-1} : Previous forecast error
- ϵ_t : Random error (assumed 0 when forecasting)

numbers Assumed Parameters

Assume:

- c = 5
- $\phi_1 = 0.6$
- $\theta_1 = 0.4$

ruler Step 1: Find Differenced Data (y_t)

Since d = 1:

$$y_t' = y_t - y_{t-1}$$

Month	Actual (y_t)	Difference (y'_t)
Jan Feb Mar	100 120 150	$ \begin{array}{c} - \\ 120 - 100 = 20 \\ 150 - 120 = 30 \end{array} $

Table 2: Differenced Data

ruler Step 2: Previous Values for AR & MA

For April:

- Previous differenced actual (y'_{t-1}) : 30 (from Mar)
- Previous error (e_{t-1}): +20 (from Mar)

ruler Step 3: Forecast Differenced Value (y_t)

Apply the formula:

$$y_t' = c + \phi_1 y_{t-1}' + \theta_1 e_{t-1}$$

Substitute:

$$y'_t = 5 + (0.6)(30) + (0.4)(20)$$

 $y'_t = 5 + 18 + 8 = 31$

This is the forecasted difference.

ruler Step 4: Convert Back to Original Scale

For April's actual value (y_t):

$$y_t = y_{t-1} + y'_t$$

 $y_{Apr} = 150 + 31 = 181$

check-mark-button Final Result

The forecast for April is 181 passengers.

light-bulb Intuition Recap

The forecast is built from:

- AR(1): Previous differenced actual value (trend)
- MA(1): Previous forecast error (residual correction)
- **c**: Intercept (baseline value)