Understanding Two-Dimensional Diffusion with Numerical Modelling

Danish Ali & Owen Dupuy

Master MER

Professor Jean-Marie BECKERS

Numerical Methods in Geophysics (OCEA0081-A-a)

Problem Statement

- in a domain $x \in [0,L]$, $y \in [0,L]$; L=1000 m, κ =1 m²/s
- Initial condition: patch of pollution

• C (x,y,t=0) =
$$\begin{cases} 10, & \text{if } (x-L/4)^2 + (y-L/4)^2 < (L/4)^2 \\ 0, & \text{elsewhere} \end{cases}$$

- Boundary condition in $y : \partial C/\partial y = 0$ in y = 0, L
- Boundary condition in $x : \partial C/\partial x = 0$ in x = 0, L

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(\kappa \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(\kappa \frac{\partial C}{\partial y} \right)$$

What is Diffusion?

- A physical process where substances spread from high to low concentration.
- Governed by the diffusion equation: $\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(\kappa \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(\kappa \frac{\partial C}{\partial y} \right)$, where κ is a diffusion coefficient

- We used—explicit and implicit schemes—to model the diffusion of a pollutant patch in a closed system.
- Julia programming efficient simulations & Neumann boundary conditions— mass conservation.
- Model provides insights—pollutant dynamics & numerical scheme trade-offs.

Numerical Techniques Utilized

Numerical method used was a *Finite Difference Method (FDM)*

- Uses an implicit & explicit scheme.
- Explicit scheme depends on Courier-Friedrich-Lewy condition (CFL) for stability ————
- Implicit scheme is unconditionally stable but computationally extensive.

$$\Delta t \leq rac{\min(\Delta x^2, \Delta y^2)}{4D}$$

Neumann Boundary condition: Represents a closed system.

• Mass-conserving simulations.

Procedure

2- Total simulation time

Results

Accuracy

Stability

Efficiency

Explicit method is accurate but computationally demanding Implicit method is stable but less accurate.

Optimal Parameters for both Schemes

	Values	Explicit Scheme - Error (%)	Implicit Scheme - Error (%)
Time Step (dt)	10	1,65E+27	6,26
	5	1,15	6,26
	1	1,23	6,27
	0,1	1,25	6,27
Grid Size (Nx, Ny)	301, 301	1,93E+74	7
	201, 201	1,15	6,26
	101, 101	2,52	5,09
	11, 11	56,19	0,23
Total Simulation Time (s)	10000	1,79	33,18
	1000	1,15	6,26
	100	0,67	0,73

Conclusion

• Importance of Numerical Modeling:

- Model of diffusion processes in 2D geophysical systems (pollutant transport & heat transfer).
- Insights— Evolution of physical properties over time & space.

• Comparison of Schemes:

- Explicit Scheme High accuracy, requires small time steps, conditionally stable.
- Implicit Scheme Stable for large time steps, less accurate, computationally intensive.

• Critical Factors:

- Neumann boundary conditions mass conservation in closed systems.
- Optimal grid resolution and time step balance stability, accuracy, and efficiency.

Importance in Oceanography

• Dynamic Systems:

- Simulates pollutant transport (spread of oil spills, plastic debris), ocean heat uptake, and nutrient dispersal (impact on plankton, fish, etc.).
- Supports resource management and disaster mitigation.

• Benefits:

- Provides detailed predictions.
- Tests scenarios under varying conditions.
- Integrates with climate and hydrodynamic models.

Thank you!

By Danish Ali & Owen Dupuy

Numerical Methods in Geophysics (OCEA0081-A-a)