Calibrated cameras: essential matrix 1/2

- Calibration matrix K is known, rotation R and translation t between coordinate systems are unknown.
- Lines C_1u_1 , C_2u_2 , C_1C_2 lay within the same plane:

$$\boldsymbol{C}_2\boldsymbol{u}_2\cdot[\boldsymbol{C}_1\boldsymbol{C}_2\times\boldsymbol{C}_1\boldsymbol{u}_1]=0$$

Calibrated cameras: essential matrix 2/2

 In the second camera system, the following equation holds if homogeneous coordinates are used:

$$\textbf{u}_2\cdot[\textbf{t}\times\textbf{R}\textbf{u}_1]=0$$

Using the essential matrix E (Longuet-Higgins, 1981):

$$\mathbf{u}_2^\mathsf{T}\mathbf{E}\mathbf{u}_1=0, \tag{1}$$

where essential matrix is defined as

$$\mathbf{E} \doteq [\mathbf{t}]_{\times} R \tag{2}$$

[a]_x is the cross-product matrix:

$$\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_{\times} \mathbf{b} \doteq \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Properties of an essential matrix

- The equation u₂^TEu₁ = 0 is valid if the 2D coorinates are normalized by K.
 - Normalized camera matrix: $\mathbf{P} \longrightarrow \mathbf{K}^{-1}\mathbf{P} = [\mathbf{R}|-\mathbf{t}]$
 - \rightarrow Normalized coordinates: $\mathbf{u} \longrightarrow \mathbf{K}^{-1}\mathbf{u}$
- Matrix E = [t]_xR has 5 degree of freedom (DoF).
 - $3(\mathbf{R}) + 3(\mathbf{t}) 1(\lambda)$
 - λ: (scalar unambigity)
- Rank of essential matrix is 2.
 - E has two equal, non-zero singular value.
- Matrix E can be decomposed to translation and rotation by SVD.
 - translation is up to an unknown scale
 - sign of t is also ambiguous

Uncalibrated case: fundamental matrix

Longuet-Higgins formula in case of uncalibrated cameras

$$\mathbf{u}_2^\mathsf{T} F \mathbf{u}_1 = 0, \tag{3}$$

where the **fundamental matrix** is defined as

$$\mathbf{F} \doteq \mathbf{K}_2^{-\mathsf{T}} \mathbf{E} \mathbf{K}_1^{-\mathsf{1}} \tag{4}$$

- u₁ and u₂ are unnormalized coordinates.
- Matrix F has 7 DoF.
- Rank of F is 2
 - Epipolar lines intersect each other in the same points
 - $\det \mathbf{F} = \mathbf{0} \longrightarrow \mathbf{F}$ cannot be inverted, it is non-singular.
- Epipolar lines: $I_1 = \mathbf{F}^T \mathbf{u}_2$, $I_2 = \mathbf{F} \mathbf{u}_1$
- Epipoles: $\mathbf{Fe}_1 = \mathbf{0}, \, \mathbf{F}^T \mathbf{e}_2 = \mathbf{0}^T$

Overview

- Image-based 3D reconstruction
- @ Geometry of stereo vision
 - Epipolar geometry
 - Essential and fundamental matrices
 - Estimation of the fundamental matrix
- Standard stereo and rectification
 - Triangulation for standard stereo
 - Retification of stereo images
- 4 3D reconstruction from stereo images
 - Triangulation and metric reconstruction
 - Projective reconstruction
 - Planar Motion
- Summary

Estimation of fundamental matrix

• We are given N point correspondences:

$$\{\mathbf{u}_{1i}\leftrightarrow\mathbf{u}_{2i}\},i=1,2,\ldots,N$$

- Degree of freedom for **F** is 7 : $\longrightarrow N \ge 7$ required
- Usually, $N \ge 8$. (Eight-point method)
- In case of outliers: N ≫ 7
- Basic equation: $\mathbf{u}_{2i}^{\mathsf{T}}\mathbf{F}\mathbf{u}_{1i}=0$
- Goal is to find the singular matrix closest to F.

Eight-point method

Input: N point correspondences $\{\mathbf{u}_{1i} \leftrightarrow \mathbf{u}_{2i}\}, N \geq 8$

Output: fundamental matrix F

Algoritmus: Normalized 8-point method

- Data-normalization is separately carried out for the two point set:
 - translation
 - scale
- 2 Estimating $\hat{\mathbf{F}}'$ for normalized data
 - (a) Linear solution by SVD $\longrightarrow \hat{\mathbf{F}}'$
 - (b) Then singularity constraint det $\hat{\mathbf{F}}' = 0$ is forced $\longrightarrow \hat{\mathbf{F}}'$
- Denormalization
 - $\bullet \hat{\mathsf{F}}' \longrightarrow \mathsf{F}$

Data normalization and denormalization

- Goal of data normalization: numerical stability
 - Obligatory step: non-normalized method is not reliable.
 - Components of coefficient matrix should be in the same order of magnitude.
- Two point-sets are normalized by affine transformations \mathbf{T}_1 and \mathbf{T}_2 .
 - Offset: origin is moved to the center(s) of gravity
 - Scale: average of point distances are scaled to be $\sqrt{2}$.
- Denormalization: correction by affine tranformations:

$$\hat{\mathbf{F}} = \mathbf{T}_2^T \hat{\mathbf{F}}' \mathbf{T}_1 \tag{5}$$

Homogeneous linear system to estimate F

- For each point correspondence: $\mathbf{u}_2^\mathsf{T} \mathbf{F} \mathbf{u}_1 = 0$, where $\mathbf{u}_k = [u_k, v_k, 1]^\mathsf{T}, k = 1, 2$
- $\rightarrow\,$ For element of the fundamental matrix, the following equation is valid:

$$u_2u_1f_{11} + u_2v_1f_{12} + u_2f_{13} + v_2u_1f_{21} + v_2v_1f_{22} + v_2f_{23} + u_1f_{31} + v_1f_{32} + f_{33} = 0$$

• If notation $\mathbf{f} = [f_{11}, f_{12}, \dots, f_{33}]^T$ is introduced, the equation can be written as a dot product:

$$[u_2u_1, u_2v_1, u_2, v_2u_1, v_2v_1, v_2, u_1, v_1, 1]\mathbf{f} = 0$$

• For all i: $\{\mathbf{u}_{1i} \leftrightarrow \mathbf{u}_{2i}\}$

$$\mathbf{Af} \doteq \begin{bmatrix} u_{21}u_{11} & u_{21}v_{11} & u_{21} & v_{21}u_{11} & v_{21}v_{11} & v_{21} & u_{11} & v_{11} & 1 \\ \vdots & \vdots \\ u_{2N}u_{1N} & u_{2N}v_{1N} & u_{2N} & v_{2N}u_{1N} & v_{2N}v_{1N} & v_{2N} & u_{1N} & v_{1N} & 1 \end{bmatrix} \mathbf{f} = \mathbf{0}$$

Sulution as homogeneous linear system of equations

- Estimation is similar to that of homography.
- Trivial solution f = 0 has to be excluded.
 - vector f can be computed up to a scale
 - \rightarrow vector norm is fixed as $\|\mathbf{f}\| = 1$
- If rank A ≤ 8
 - rank A = 8 → exact solution: nullvector
 - rank A < 8 → solution is linear combination of nullvectors
- For noisy correspondences, rank $\mathbf{A} = 9$.
 - optimal solution for algebraic error ||Af||
 - $\|\mathbf{f}\| = 1 \longrightarrow \text{minimization of } \|\mathbf{Af}\|/\|\mathbf{f}\|$
 - ightarrow optimal solution is the eigenvector of $\mathbf{A}^T\mathbf{A}$ corresponding to the smallest eigenvalue
- Solution can also be obtained from SVD of A:
 - $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T} \longrightarrow \text{last column (vector) of } \mathbf{V}.$

Singular constraint

- If det $\mathbf{F} \neq \mathbf{0}$
 - epipolar lines do not intersect each other in epipole.
 - ightarrow less accurate epipolar geometry ightarrow less accurate reconstruction
- Solution of homogeneous linear system does not guarantee singularity: $\det \hat{\mathbf{F}} \neq 0$.
- Task is to find matrix $\hat{\mathbf{F}}'$, for which
 - \bullet Frobenius norm $\|\widehat{\textbf{F}}-\widehat{\textbf{F}}'\|$ is minimal, and
 - $\det \widehat{F}' = 0$
- SVD of A: $A = UDV^T$
 - $\mathbf{D} = \operatorname{diag}(\delta_1, \delta_2, \delta_3)$ is the diagonal matrix containing singular values, and $\delta_1 \geq \delta_2 \geq \delta_3$
 - The estimation for closest matrix, fulfilling singularity constraint:

$$\widehat{F}' = \mathbf{U} \operatorname{diag}(\delta_1, \delta_2, 0) \mathbf{V}^{\mathsf{T}}$$
 (6)

Epipoles from fudamental matrix F

- The epipoles are the null-vectors of ${\bf F}$ and ${\bf F}^T$: ${\bf Fe_1}={\bf 0},$ and ${\bf F}^T{\bf e_2}={\bf 0}.$
- Nullvector can be calculated by e.g. SVD.
- Singularity constraint guarantees that F has a null-vector
- Singular Value Decomposition: $\mathbf{F} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$, and then
 - e₁: last column of V.
 - e₂: last column of U.

Limits of eight-point method

- Similar to homography/projective matrix estimation
 - Significant difference: singularity constraint introduces
 - → Similar benefits/weak points to homography/proj. matrix estimation
- Method is not robust
 - RANSAC-like robustification can be applied.
- There are another solution
 - Seven-point method: determinant constraint is forced to linear combination of null-spaces.

Non-linear methods to estimate F

- Algebraic error
 - It yields initial value(s) for numerical optimization.
- Geometric error
 - line-point distance

$$\epsilon = \frac{\mathbf{x'}^T \mathbf{F} \mathbf{x}}{|\mathbf{F} \mathbf{x}|_{1:2}}$$

Symmetric version

$$\epsilon = \frac{{\mathbf{x}'}^T \mathbf{F} \mathbf{x}}{|\mathbf{F} \mathbf{x}|_{1:2}} + \frac{{\mathbf{x}}^T \mathbf{F}^T \mathbf{x}'}{\left|\mathbf{F}^T \mathbf{x}'\right|_{1:2}}$$

- where operator $(\mathbf{x})_{1:2}$ denotes the first two coordinates of vector \mathbf{x} .
- Geometric error minimized by numerical techniques.

Estimation of epipolar geometry: 1st example

KLT feature points #1

KLT feature points #2

epipolar lines #1

epipolar lines #2

Estimation of epipolar geometry: 2nd example

