Artificial Intelligence & Machine Learning and Pattern Recognition — Foundation of Mathematics

Yanghui Rao Assistant Prof., Ph.D School of Mobile Information Engineering, Sun Yat-sen University raoyangh@mail.sysu.edu.cn

Estimation of π

- Frequentist (频率派)
 - 事件的概率是当我们无限次重复试验时, 事件发生次数的比值。
 - 。掷骰子、投掷硬币、纸牌游戏等。

- Frequentist (频率派)
 - · 事件的概率是当我们无限次重复试验时, 事件发生次数的比值。
 - 。掷骰子、投掷硬币、纸牌游戏等。
- 概率视为一种主观置信度
 - 。明天下雨的概率是50%
 - 。你愿意押1赔3(赢+1元,输-3元),在你的观念中,明天下雨的概率是多少?

- P(A,B)=P(A)P(B)?
 - 。A: 第一枚硬币正面朝上; B: 第二枚硬币正面朝上
 - 。A: 今天下雨; B: 明天下雨

Product rule:

$$P(A,B)=P(A)P(B|A)=P(B)P(A|B)$$

 $P(A,B_1,B_2,B_3)=P(A)P(B_1|A)P(B_2|A,B_1)P(B_3|A,B_1,B_2)$

Product rule:

$$P(A,B)=P(A)P(B|A)=P(B)P(A|B)$$

 $P(A,B_1,B_2,B_3)=P(A)P(B_1|A)P(B_2|A,B_1)P(B_3|A,B_1,B_2)$

P(两只大眼睛,四条腿,白肚皮,绿衣服)

鸭妈妈说:两只大眼睛 -> 大金鱼

大金鱼说:四条腿->大乌龟

大乌龟说: 白肚皮 -> 大白鹅

大白鹅说:绿衣服 -> 青蛙

http://story.beva.com/21/content/xiao-ke-dou-zhao-ma-ma-3/

Product rule:

$$P(A,B)=P(A)P(B|A)=P(B)P(A|B)$$

 $P(A,B_1,B_2,B_3)=P(A)P(B_1|A)P(B_2|A,B_1)P(B_3|A,B_1,B_2)$

P(两只大眼睛,四条腿,白肚皮,绿衣服)

鸭妈妈说:两只大眼睛 -> 大金鱼

大金鱼说: 白肚皮 -> 大白鹅

大白鹅说:四条腿->大乌龟

大乌龟说:绿衣服 -> 青蛙

Product rule:

$$P(A,B)=P(A)P(B|A)=P(B)P(A|B)$$

 $P(A,B_1,B_2,B_3)=P(A)P(B_1|A)P(B_2|A,B_1)P(B_3|A,B_1,B_2)$

• Sum rule: $P(A)=P(A,B)+P(A,B^c)$

$$P(A) = \sum_{i=1}^{n} P(A, B_i)$$
$$= \sum_{i=1}^{n} P(A \mid B_i) P(B_i)$$

- What's the value of $\sum_{G} P(G|L)$
 - 0 1
 - $\circ P(L)$
 - $\circ P(G)$
 - None of the above

- What's the value of $\sum_{G} P(G|L)$
 - 0 1
 - $\circ P(L)$
 - $\circ P(G)$
 - None of the above

$$\sum_{D,I,G,S,L} P(D)P(I)P(G|I,D)P(S|I)P(L|G)$$
$$=\sum_{D,I} P(D)P(I)?$$

• Exercise: Suppose there are *k* types of fruits, and that each new one collected is, independent of previous ones, a type j fruit with probability p_i , $\sum_{j=1}^{k} p_j = 1$ Find the probability that the *n*-th fruit collected is a different type than any of the preceding *n*-1.

• Exercise: Suppose there are *k* types of fruits, and that each new one collected is, independent of previous ones, a type *j* fruit with probability p_i , $\sum_{j=1}^{k} p_j = 1$ Find the probability that the *n*-th fruit collected is a different type than any of the preceding *n*-1. $P(N) = \sum_{i=1}^{n} P(N \mid T_{i}) P(T_{i})$

Solution:

$$= \sum_{j=1}^{k} (1 - p_j)^{n-1} p_j$$

Different types of variables

Discrete

- A discrete (离散) variable has a finite or countably infinite set of values.
- Such variables can be categorical, such as gender, or numeric, such as counts.
- Discrete variables are often represented using integer values.
- of discrete variables and assume only two values, e.g. true/false, yes/no, or 0/1.

Different types of variables

Continuous

- A continuous (连续) variable is one whose values are real numbers.
- Examples include temperature, height or weight.
- Continuous attributes are represented as floating point variables typically.

Expectation (期望)

• If *X* is a discrete random variable

$$E[X] = \sum_{i} x_{i} P\{X = x_{i}\}$$

• If *X* is a continuous random variable having probability density function *f*

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

$$E[\sum_{i=1}^{n} X_{i}] = \sum_{i=1}^{n} E[X_{i}]$$

Expectation

• If rolling one die (6-sided) and *X* is the value on its face, then: *E*[*X*]?

Expectation

• If rolling one die (6-sided) and *X* is the value on its face, then: *E*[*X*]?

$$E[X] = \sum_{x=1}^{6} xp(x) = \frac{1}{6} \sum_{x=1}^{6} x = \frac{21}{6}$$

Median (中位数)

- Sort *n* variables
 - $\circ X(1) \le X(2) \le ... \le X(n)$
- If *n* is odd number
 - $\circ X((n+1)/2)$
- If *n* is even number
 - (X(n/2)+X(1+n/2))/2

Mode (众数)

- 10 5 9 12
- 6 5 9 8 5
- 25 28 28 36 25 42

Variance (方差)

• $Var(X) = E[(X-E[X])^2] = E[X^2]-(E[X])^2$

X	E(X)	$(X-E(X))^2$	X^2
1	2	1	1
2	2	0	4
3	2	1	9

Covariance (协方差)

- $Cov(X,Y)=E[(X-\mu_x)(Y-\mu_y)]$
- $= E[XY \mu_x Y X\mu_y + \mu_x \mu_y]$
- $= E[XY] \mu_x E[Y] E[X]\mu_y + \mu_x \mu_y$
- = E[XY] E[X]E[Y]

Correlation (相关系数)

 If X and Y are independent random variables, then Cov(X,Y)=0

性别	年龄
1	18
1	50
1	33

 The *correlation* between two random variables *X* and *Y* is:

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

Correlation (相关系数)

身高(cm)	体重(kg)
165	46
177	59
170	55
180	65
173	63
165	55
167	57
182	66
173	62
175	68

10位同学身高与体重的相关系数: 0.80

Continuous random variables

• Uniformly distributed (均匀分布) random variables

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & otherwise \end{cases}$$

$$E(x) = \frac{1}{b-a} \int_{a}^{b} x dx = \frac{b^{2} - a^{2}}{2(b-a)} = \frac{b+a}{2}$$

$$E(x^{2}) = \frac{1}{b-a} \int_{a}^{b} x^{2} dx = \frac{b^{3} - a^{3}}{3(b-a)} = \frac{a^{2} + b^{2} + ab}{2}$$

$$Var(x) = \frac{1}{12}(b-a)^2$$

Continuous random variables

• Normal (正态/高斯) random variables

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

$$E[X] = \mu$$

$$Var(X) = \sigma^2$$

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-x^2/2} dx$$

The distribution function of a standard normal random variable

 The Euclidean distance d between two vectors x and y is given by

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where

- *n* is the number of dimensions
- x_k and y_k are the k-th item of **x** and **y**

• The Euclidean distance measure is generalized by the *Minkowski* distance metric as follows:

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{\frac{1}{r}}$$

- Three common examples of *Minkowski* distances:
 - *r*=1: City block distance (L₁ norm)
 - *r*=2: Euclidean distance (L₂ norm)
 - $r=\infty$: Supremum distance (L_{max} or L_{∞} norm), which is the maximum difference between any item of the vectors.

 Suppose x and y coordinates of four vectors:

$$p1 = <0, 2>$$

$$p2 = <2, 0>$$

$$p3 = <3, 1>$$

$$p4 = <5, 1>$$

L_1	p1	p2	р3	p4
p1	0.0	4.0	4.0	6.0
p2	4.0	0.0	2.0	4.0
p3	4.0	2.0	0.0	2.0
p4	6.0	4.0	2.0	0.0

L ₂	p1	p2	р3	p4	
p1	0.0	2.8	3.2	5.1	
p2	2.8	0.0	1.4	3.2	
р3	3.2	1.4	0.0	2.0	
p4	5.1	3.2	2.0	0.0	

L _{max}	p1	p2	р3	p4
p1	0.0	2.0	3.0	5.0
p2	2.0	0.0	1.0	3.0
р3	3.0	1.0	0.0	2.0
p4	5.0	3.0	2.0	0.0

新闻标题	公众"感动"的概率
少年 救出 溺水 男童	0.9
老人 参加 高考	0.5
男童 救出 溺水 老人	?

少年	救出	溺水	男童	老人	参加	高考	公众"感动"的概率
0.25	0.25	0.25	0.25	0	0	0	0.9
0	0	0	0	0.33	0.33	0.33	0.5
0	0.25	0.25	0.25	0.25	0	0	?