Лабораторная работа № 2.2.3 Измерение тепловпроводности воздуха при атмосферном давлении.

Никита Москвитин, Б04-204

2023

1 Аннотация

В данной работе исследовалось явление тпелопроводности. Были произведены измерения коэффицента теплопроводности от температуры. Провизвели проверку теоретической модели.

2 Введение

Теплопроводность - это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотическогодвижения частиц среды (мо-лекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непо-средственной передачи кинетической энергии от быстрых молекул к медлен-ным при их столкновениях. Перенос тепла описывается законом Фурье, утвер-ждающим, что плотность потока энергии $\vec{q}_{\text{м}^2}^{\text{B}_{\text{T}}}$ (количество теплоты, перено-симое через единичную площадку в единицу времени) пропорциональна гра-диенту температуры:

$$\vec{q} = -\kappa \cdot \nabla T,\tag{1}$$

где κ — коэффициент теплопроводности.

$$\kappa \sim \lambda \vec{\nu} \cdot nc_v$$
 (2)

где λ — длина свободного пробега молекул газа, \vec{v} — средняя скорость их теплового движения, \mathbf{n} — концентрация (объёмная плотность) газа.

Решая дифференциальное уравнение для цилиндического случая получаем:

$$Q = \frac{2\pi L}{\ln \frac{r_0}{r_1}} \kappa \cdot \Delta T \tag{3}$$

3 Экспериментальная установка

На оси полой цилиндрической трубки с внутреннимдиаметром $2r_0=(7.0\pm0.1)$ размещена металличе-ская нитьдиаметром $2r_1=(0,050\pm0.003)$ и длиной $L=(400\pm2)$ (материал нити и точные геометриче-ские размеры указаныв техническом описании установки). Полость трубки заполнена воздухом (полость через небольшое отверстие сооб-щается с атмосферой). Стенки трубкипомещены в кожух, через которых пропускается водаиз термостата, так что их температура поддерживается постоянной. Для предотвращения конвекции трубка расположена вертикально. Схема приведена на Рис. 1.

Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). По пропускаемому через нить постоянному току I и напряжению U на ней вычисляется мощность нагрева по закону Джоуля–Ленца:

$$Q = UI (4)$$

и сопротивление по закону Ома:

$$R = \frac{U}{I} \tag{5}$$

Сопротивление нити является однозначной функцией её температуры R(t). Для большинства металлов относительное изменение сопротивления из-за нагрева невелико: приизменении температуры на 1 градус относительное изменение сопротивления нити может составлять приблизительно от 0.2% до 0.6% (в зависимости от её материала). Следовательно, измерение R важно провести с высокой точностью.

Рис. 1: Схема установка

исследуемом интервале температур (20–70 °C)зависимость сопротивления от температуры можно с хорошей точностью аппроксимировать линейной функцией:

$$R(t) = R_{273}(1 + \alpha t) \tag{6}$$

где t — температурав °C, R_{273} — сопротивление нити при температуре 20С и $\alpha = \frac{1}{R_{273}} \frac{dR}{dT}$ — температурный коэффициент сопротивления материала.

4 Измерения

Сразу пересчитаем значения коэффицентов наклона и сопротивления нити графика при разных температурах. Данные привведены в Таблице 1.

Таблица 1: Коэффиценты наклона графика и сопротивления нити при разных температуах

1 1 1					
$k, \frac{O_{\mathrm{M}}}{B_{\mathrm{T}}}$	$\Delta k, rac{\mathrm{O}_{\mathrm{M}}}{\mathrm{Br}}$	T, K	$\Delta T, K$	R, Om	ΔR , Ом
5,257	0,005	297,0	0,1	20,443	0,001
5,142	0,005	305,0	0,1	21,000	0,001
5,032	0,005	313,0	0,1	21,572	0,001
4,887	0,005	323,0	0,1	22,284	0,001
4,79	0,13	333,0	0,1	23,000	0,003
4,656	0,015	343,0	0,1	23,711	0,003
4,48	0,05	353,0	0,1	24,442	0,009

5 Обработка результатов

Построим графики R(Q) по которым были определены значения из Таблицы 1.Они приведены на $Puc.\ 2$.

Построим график R(T),он приведен на Рис. 3. Коэффицента наклона графика $k=0,07104\pm0,00005\frac{\rm O_M}{\rm K}$. Сопротивление при T=273K $R_{273}=18,734{\rm Om}$. Тогда $\alpha=3,792*10^{-3}\frac{1}{\rm K}$.

Построим графики $\kappa(T)$ и $ln(\kappa)(ln(T))$ соответсвенно на Рис. 4 и Рис. 5. $\beta=0,0758\pm0,0013$.

Рис. 2: Графики R(Q) при разных температруах

Таблица 2: Коэффиценты теплопроводности при разных температурах эксперименталь-

ные и табличные

T, K	$\kappa \frac{MBT}{M^2}$	$\Delta \kappa \frac{MBT}{M^2}$	$\kappa_{\mathrm{табл}} \frac{\mathrm{_{M}B_{T}}}{\mathrm{_{M}}^{2}}$
297	26,57	0,03	26,2
305	27,17	0,03	26,9
313	27,76	0,03	27,6
323	28,58	0,03	28,3
333	29,19	0,08	29
343	30	0,1	29,6
353	31,18	0,03	30,5

6 Вывод

Мы измерили коэффиценты теплопроводности воздуха при разных температурах и сравнили с табличными(источник: http://thermalinfo.ru/). Данные приведены в Таблице 2. Так же измерили зависимость коэффицента теплопроводности от температуры. Было замечено, что нельзя считать эффективную площадь константой, она получилась обратнопопроциональна корню четвертой степени от температуры. Так как с помощью двойного логарфимического масштаба мы получили $\beta=0,0758\pm0,0013$, вместо 0,5 ожидаемых, если бы не было зависимости эффективной площади от температуры. Так же был найде, температурный коэффицент сопротивлния нити (платина) $\alpha=3,792*10^{-3}\frac{1}{\rm K},~\alpha_{\rm табл}=3,9*10^{-3}\frac{1}{\rm K}.$

Рис. 3: График сопротивления нити от разных температур термостата

Рис. 4: График коэффицента теплопроводности от температуры

Рис. 5: График коэффицента теплопроводности от температуры в двойном логарфмическом масштабе