

Neural network Classification

Step 1. Randomly initialize weights

Initialize parameters $\Theta^{(1)}, \Theta^{(2)}, \dots, \Theta^{(L-1)}$ $[-\epsilon, \epsilon]$ (i.e. $-\epsilon \leq \Theta^{(l)}_{ii} \leq \epsilon$)

$$\begin{split} &\frac{\text{Step 2. Forward propagation}}{h_{\Theta}\big(x^{(i)}\big) \in \mathbb{R}^K \ \left(h_{\Theta}(X)\right)_i = i^{th} \ output} \\ &a^{(1)} = x \\ &z^{(2)} = \Theta^{(1)}a^{(1)} \\ &a^{(2)} = g\big(z^{(2)}\big) \ \left(add \ a_0^{(2)}\right) \\ &z^{(3)} = \Theta^{(2)}a^{(2)} \\ &a^{(3)} = g\big(z^{(3)}\big) \ \left(add \ a_0^{(3)}\right) \\ &z^{(4)} = \Theta^{(3)}a^{(3)} \end{split}$$

Step 3. Cost function *I*(Θ)

 $a^{(4)} = h_{\Theta}(x) = g(z^{(4)})$

$$J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[y_k^{(i)} \log \left(h_{\Theta}(x^{(i)}) \right)_k + \left(1 - y_k^{(i)} \right) \log \left(1 - \left(h_{\Theta}(x^{(i)}) \right)_k \right) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} \left(\Theta_{ji}^{(l)} \right)^2$$

Step 4. Backpropagation to compute partial derivatives $\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta)$

$$\delta_j^{(l)}$$
 = "error" of node j in layer l .

$$\delta^{(2)} = (\Theta^{(2)})^T \delta^{(3)} * g'(z^{(2)})$$

$$g'(z^{(2)}) = a^{(2)} * (1 - a^{(2)})$$

$$\delta^{(3)} = (\Theta^{(3)})^T \delta^{(4)} * g'(z^{(3)})$$

$$g'(z^{(3)}) = a^{(3)} * (1 - a^{(3)})$$

$$\delta^{(4)} = a^{(4)} - y$$

$$\Delta^{(l)} := \Delta^{(l)} + \delta^{(l+1)} (a^{(l)})^T$$

$$\Delta^{(l)} := \Delta^{(l)} + \delta^{(l+1)} (a^{(l)})^{l}$$

$$D_{ij}^{(l)} := \frac{1}{m} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)}, if j \neq 0$$

$$D_{ij}^{(l)} := \frac{1}{m} \Delta_{ij}^{(l)} \qquad , if j = 0$$

$$D_{ij}^{(l)} := \frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = \frac{\partial J(\Theta)}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial \Theta}$$

Step 5. Use gradient checking to compare $\frac{\partial}{\partial \Theta_{ib}^{(1)}} J(\Theta)$ computed using

backpropagation vs. using numerical estimate of gradient of $I(\Theta)$.

Step 6. Use gradient descent or advanced optimization method with backpropagation to try to minimize $I(\Theta)$ as a function of parameters Θ . result = minimize(cost func, initial nn params, method='CG', jac=grad func,

nn params = result.x

Jcost = result.fun

Layer 1 Layer 2 Layer 3 Layer 4

Unsupervised Learning K-means Step 1. Centroids $c^{(i)} = index \ of \ min ||x^{(i)} - \mu_i||^2$ $c^{(i)} \in \mathbb{R}^K$, i = 1, 2, ..., m denotes the index of cluster centroids Step 2. Means $\mu_k = \frac{\sum_{i=1, \{c^{(i)}=k\}}^m x^{(i)}}{\sum_{i=1, \{c^{(i)}=k\}}^m 1}$ $\mu_k \in \mathbb{R}^K$, k = 1, 2, ..., K denotes the average(mean) of points assigned to cluster k Step 3. Cost function $J_{(c,\mu)} = \sum_{i}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^{2}$ Step1. Feature scaling (Mean normalization) Mean: $\bar{X} = \mu_j = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$ Principal $2D \rightarrow 1D$ Component Analysis Standard deviation: $s = \sigma = \sqrt{\frac{1}{m-1} \sum_{i=1}^{m} (x^{(i)} - \mu)^2}$ (PCA) Dimensionality Mean normalize: $x^{(i)} = \frac{x^{(i)} - \mu}{\sigma}$ Reduction Data compression Step 2. Calculate U, S, V. $\overline{sigma} = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)}) (x^{(i)})^{T} = \frac{1}{m} X^{T} X$ U, S, V = numpy.linalg.svd(sigma) Ureduce = U[:, 0:K].T $Z = Ureduce^*X = X \text{ norm } *U[:, 0:K]$ $X_{approximate} = X_{recovered} = Z * U[:, 0:K].T$ Step 3. Pick the smallest value of $\frac{\frac{1}{m}\sum_{i=1}^{m} \left\| x^{(i)} - x_{approx}^{(i)} \right\|^{2}}{\frac{1}{m}\sum_{i=1}^{m} \left\| x^{(i)} - x_{approx}^{(i)} \right\|^{2}} \le 0.01?$ $S = \begin{pmatrix} S_{11} & \cdots & 0 \\ & S_{22} & \cdots & 0 \\ & \vdots & \vdots & S_{33} & \vdots & \vdots \\ & 0 & \cdots & \ddots & S_{nn} \end{pmatrix}$

 $1 - \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{n} S_{ii}} \le 0.01 \rightarrow \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{n} S_{ii}} \ge 0.99$

99% of variance retained

Anomaly	Gaussian (Normal) distribution	
Detection	$X \sim N(\mu, \sigma^2)$	<u> </u>
Fraud detection,	Mean: $\mu_i = \frac{1}{m} \sum_{i=1}^{m} x_i^{(i)}$	68.27% 95.45%
Manufacturing,	Variance: $\sigma_i^2 = \frac{1}{m} \sum_{i=1}^m (x_i^{(i)} - \mu_i)^2$	95.45%
Monitoring	<i>m</i> ,	ig page 1
computers in a data center	Probability: $p(x, \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}$	99.73%
data center	$\sqrt{2\pi\sigma}$	
Original model	Step 1. Choose feature	μ – 3 σ μ – 2 σ μ – σ μ μ + σ μ + 2 σ μ + 3 σ
Original model	Training set: $\{x^{(1)}, x^{(2)},, x^{(m)}\}, x^{(i)} \in \mathbb{R}^n$	
	Density estimation: $x_i \sim N(\mu_i, \sigma_i^2)$, $j = 1, 2,, n$	25
	Choose features x_i that might be indicative of anomalous	
	examples.	20
	Step 2. Fit parameters	15 - (((x******************************
	$u = \frac{1}{2} \sum_{i=1}^{m} r^{(i)}$	
	$\mu_j - \overline{m} \sum_{i=1}^{n} x_i$	10
	$\mu_{j} = \frac{1}{m} \sum_{i=1}^{m} x_{j}^{(i)}$ $\sigma_{j}^{2} = \frac{1}{m} \sum_{i=1}^{m} (x_{j}^{(i)} - \mu_{j})^{2}$	
	$\sigma_j^2 = \frac{1}{m} \sum_{i} (x_j^{(i)} - \mu_j)^2$	5-
	i=1	
	Step 3. Given new example $x \in \mathbb{R}^n$, compute $p(x)$	0 5 10 15 20 25
	Probability	
	$\frac{n}{n}$ $\frac{1}{n}$ $\left(\frac{-(x_j-\mu_j)^2}{n}\right)$	
	$p(x) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} e^{\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right)}$ $y = \begin{cases} 1, & \text{if } p(x) < \epsilon (anomaly) \\ 0, & \text{if } p(x) \ge \epsilon (normal) \end{cases}$	
	1, if $p(x) < \epsilon(anomaly)$	
	$y - \{0, if p(x) \ge \epsilon(normal)\}$	
Multivariate	Step 1. Choose feature	
Gaussian	Training set: $\{x^{(1)}, x^{(2)},, x^{(m)}\}, x^{(i)} \in \mathbb{R}^n$	Multivariate Gaussian (Normal) examples
	Density estimation: $x_j \sim N(\mu_j, \sigma_j^2), j = 1, 2,, n$	$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.5 & 1 \end{bmatrix}$
	Step 2. Fit parameters	u u u u
	Parameters: $\mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n \times n}$ (covariance matrix)	0 0
	Mean: $\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$	
	Variance: $\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^T$	x_2 x_1 x_2 x_1
	m.	70 To 70
	Step 3. Given new example x, compute $p(x)$	
	$\sum_{i=1}^{n} \cdots 0$	\dot{x}_1
	Diagonal Sigma: $\Sigma = \begin{pmatrix} \Sigma_1 & \cdots & 0 \\ & \Sigma_2 & \cdots & 0 \\ \vdots & \vdots & \Sigma_3 & \vdots & \vdots \\ & 0 & \cdots & \ddots & \vdots \\ 0 & \cdots & & \Sigma_n \end{pmatrix}$	
	$\setminus 0 \qquad \cdots \qquad \Sigma_n /$	
	Probability:	
	$n(x \cdot u, \Sigma) = \frac{1}{2} \left(\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - u) \right)$	
	$p(x_j, \mu_j, \Delta) = \frac{1}{\sqrt{2\pi} \Sigma ^{\frac{1}{2}}} e^{-\frac{1}{2}}$	
	$p(x_j; \mu_j, \Sigma) = \frac{1}{\sqrt{2\pi} \Sigma ^{\frac{1}{2}}} e^{\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-u)\right)}$ $y = \begin{cases} 1, & \text{if } p(x) < \epsilon (anomaly) \\ 0, & \text{if } p(x) \ge \epsilon (normal) \end{cases}$	
	$y = \{ 0, if p(x) \ge \epsilon(normal) \}$	