Day02_ExercisesANOVA

February 28, 2018

0.0.1 Example

```
Read in the file "Rhizobium.csv"
   For each column (i), we need to compute 1. Sum: \sum_{i} Y_{ij} = Y_{i}. 2. Sum of squares: \sum_{i} Y_{i,j}^{2}
3. Squared sum divided by r (replicates): \frac{(Y_{i\cdot})^2}{r} 4. Sum of squared deviants: \sum_{j} (Y_{ij} - \bar{Y}_{i\cdot})^2
5. Mean: \bar{Y}_i.
In [2]: import pandas as pd
         import numpy as np
         from scipy.stats import f
         aovData = pd.read_csv('static/Data/Rhizobium.csv')
In [3]: # Create a container for the results
         aovRes=pd.DataFrame(np.zeros(shape=(5,6)))
         aovRes.columns = aovData.columns
         aovRes.index = ['Sum', 'SS', 'SqSums', 'SqDev', 'Mean']
         aovRes
Out[3]:
                 3D0k1 3D0k5 3D0k4 3D0k7
                                                 3D0k13 Composite
                                                    0.0
         Sum
                    0.0
                           0.0
                                   0.0
                                           0.0
                                                                0.0
         SS
                   0.0
                           0.0
                                   0.0
                                           0.0
                                                    0.0
                                                                0.0
         SqSums
                   0.0
                           0.0
                                   0.0
                                           0.0
                                                    0.0
                                                                0.0
                           0.0
         SqDev
                    0.0
                                   0.0
                                           0.0
                                                    0.0
                                                                0.0
                                           0.0
         Mean
                    0.0
                           0.0
                                   0.0
                                                    0.0
                                                                0.0
In [4]: # Compute the row statistics
         ########
         # We need the row count, no need to recompute
         nrow = aovData.shape[0]
         ncol = aovData.shape[1]
         for column in aovData.columns:
             print(column)
             aovRes.loc[['Sum'],[column]] = aovData[column].sum()
             aovRes.loc[['SS'],[column]] = sum(aovData[column]**2)
```

aovRes.loc[['SqSums'],[column]] = aovData[column].sum()**2/nrow

```
aovRes.loc[['SqDev'],[column]] = sum((aovData[column]-aovData[column].mean())**2)
aovRes.loc[['Mean'],[column]] = aovData[column].mean()
```

aovRes

3D0k1

3D0k5

3D0k4

3D0k7

3D0k13

Composite

/usr/local/lib/python3.5/dist-packages/pandas/core/computation/check.py:17: UserWarning: The in The minimum supported version is 2.4.6

ver=ver, min_ver=_MIN_NUMEXPR_VERSION), UserWarning)

In [5]: # Compute the row totals in aovRes

add a column titled 'Total'
aovRes['Total']=0

aovRes['Total']=aovRes.sum(axis=1)

aovRes

Out[5]:		3D0k1	3D0k5	3D0k4	3D0k7	3D0k13	Composite	Total
	Sum	144.100	119.900	73.200	99.600	66.300	93.50	596.600
	SS	4287.530	2932.270	1139.420	1989.140	887.290	1758.71	12994.360
	SqSums	4152.962	2875.202	1071.648	1984.032	879.138	1748.45	12711.432
	SqDev	134.568	57.068	67.772	5.108	8.152	10.26	282.928
	Mean	28 820	23 980	14 640	19 920	13 260	18 70	119 320

0.0.2 Compute the different SS statistics

First: CF (C)

$$CF = \frac{Y_{\cdot \cdot \cdot}^2}{rt} = \frac{(\sum_{i,j} Y_{i,j})^2}{rt}$$

In [12]: # The term above the line contains the row total of 'Sum'

```
CF = (aovRes.loc[['Sum'],['Total']]**2/ (nrow*ncol)).iloc[0]
```

Next SStot

$$SS(total) = \sum_{i,j} Y_{i,j}^2 - CF$$

In [7]: SStot = (aovRes.loc[['SS'],['Total']]).iloc[0] - CF

Next SStreat

$$SS(treatment) = \frac{\sum\limits_{i=1}^{t} Y_{i,\cdot}^2}{r} - CF$$

$$= \frac{Y_{1.}^2 + Y_{2.}^2 + \dots + Y_{t.}^2}{r} - CF$$

Last, SSerror

$$SS(error) = \sum_{i} (\sum_{i} Y_{ij}^2 - \frac{Y_{i\cdot}^2}{r})$$

This is aovResult['SqDev']['Total']

In [9]: SSerr = (aovRes.loc[['SqDev'],['Total']]).iloc[0]

Summarize what we have

CF is: 11864.39 SStot is: 1129.97 SStreat is: 847.05 SSerr is: 282.93

Compute the F and interpret

- df among is $N_{treat} 1 = t 1$
- df between is $(N_{treat}(N_{rep}-1)=t(r-1)$
- df total is $N_{treat} * Nrep 1 = rt 1$

Mean square is SS/df for the row

F is the ratio of mean square among α mean square within - $F = \frac{SS_{between}}{SS_{within}}$