CS3388B, Winter 2023

Problem Set 1

Due: January 13, 2023

Exercise 1. Show that the basis vector \hat{k} is orthogonal to both \hat{i} and \hat{j} .

Exercise 2. Compute the matrix product of A and B given :

$$A = \begin{bmatrix} 1 & -4 & 8 \\ 11 & 2 & 24 \\ 12 & 4 & 1 \end{bmatrix} \quad B = \begin{bmatrix} -9 & 8 & 6 \\ 0 & 15 & 2 \\ 3 & 14 & 0 \end{bmatrix}$$

Exercise 3. Consider the vector $\vec{v} = (2,3)$ and the vector $\vec{n} = (-1,2)$. Find a vector that is in the same direction as the *reflection* of \vec{v} across \vec{n} ? You don't have to exactly find the reflection, just one in the same direction. Consider the below image.

Then, find the angle between \vec{v} and \vec{n} and show that it is the same angle as between \vec{n} and your computed reflection.

Exercise 4. Let p = (3, 2, 4), q = (1, -3, 4), r = (1, 3, -1) be three points. Find the normalized normal vector to the plane containing these three points. Remember there are two such normals. Find one.

1