

Theory of Machines and Languages

Fatemeh Deldar

1403-1404

Undecidability

■ A language is *co-Turing-recognizable* if it is the complement of a Turing-recognizable language

■ Theorem

- ➤ A language is decidable iff it is Turing-recognizable and co-Turing-recognizable
- > Proof
 - o let M_1 be the recognizer for A and M_2 be the recognizer for \overline{A}
 - The following Turing machine M is a decider for A
 - M = "On input w:
 - 1. Run both M_1 and M_2 on input w in parallel.
 - 2. If M_1 accepts, accept; if M_2 accepts, reject."
- \triangleright We show that M decides A

Undecidability

- $ightharpoonup \overline{A_{TM}}$ is not Turing-recognizable
- > Proof
 - \circ We know that A_{TM} is Turing-recognizable
 - \circ If $\overline{A_{TM}}$ also were Turing-recognizable, A_{TM} would be decidable

Reducibility

- □ A reduction is a way of converting one problem to another problem in such a way that a solution to the second problem can be used to solve the first problem
- \square if A is reducible to B and B is decidable, A also is decidable
- \square if A is undecidable and reducible to B, B is undecidable

The Turing Machine Halting Problem

☐ The halting problem:

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

- \square *HALT*_{TM} is undecidable
 - \triangleright Assume that TM R decides HALT_{TM}
 - \triangleright We construct TM S to decide A_{TM} , with S operating as follows:
 - **1.** Run TM R on input $\langle M, w \rangle$.
 - 2. If R rejects, reject.
 - 3. If R accepts, simulate M on w until it halts.
 - **4.** If M has accepted, accept; if M has rejected, reject.
 - \triangleright If R decides $HALT_{TM}$, then S decides A_{TM}

Unrestricted Grammars

A grammar G = (V, T, S, P) is called **unrestricted** if all the productions are of the form

$$u \rightarrow v$$
,

where u is in $(V \cup T)^+$ and v is in $(V \cup T)^*$.

There is only one restriction: λ is not allowed as the left side of a production

Unrestricted Grammars

- □ Any language generated by an unrestricted grammar is recursively enumerable
- \square For every recursively enumerable language L, there exists an unrestricted grammar G, such that L = L(G)

The family of languages associated with unrestricted grammars is identical with the family of recursively enumerable languages

Unrestricted Grammars

Example

$$S \rightarrow TaU$$
 $U \rightarrow \lambda \mid AU$
 $aA \rightarrow Aaa$
 $TA \rightarrow T$
 $T \rightarrow \lambda$

Context-Sensitive Grammars and Languages

A grammar G = (V, T, S, P) is said to be **context sensitive** if all productions are of the form

$$x \to y$$

where $x, y \in (V \cup T)^+$ and

$$|x| \leq |y|$$
.

The length of successive sentential forms can never decrease

Context-Sensitive Grammars and Languages

A language L is said to be context sensitive if there exists a context-sensitive grammar G, such that L = L(G) or $L = L(G) \cup \{\lambda\}$.

Example

$$S \to abc|aAbc$$
,

$$Ab \rightarrow bA$$
,

$$Ac \rightarrow Bbcc$$
,

$$bB \to Bb$$
,

$$aB \rightarrow aa|aaA$$
.

$$L = \{a^n b^n c^n : n \ge 1\}$$

$$S \Rightarrow aAbc \Rightarrow abAc \Rightarrow abBbcc$$

$$\Rightarrow aBbbcc \Rightarrow aaAbbcc \Rightarrow aabAbcc$$

$$\Rightarrow aabbAcc \Rightarrow aabbBbccc$$

$$\Rightarrow aabBbbccc \Rightarrow aaBbbbccc$$

$$\Rightarrow aaabbbccc.$$

Context-Sensitive Grammars and Languages

Context-Sensitive Languages and Linear Bounded Automata

For every context-sensitive language L not including λ , there exists some linear bounded automaton M such that L = L(M).

If a language L is accepted by some linear bounded automaton M, then there exists a context-sensitive grammar that generates L.

Context-Sensitive Languages and Recursive Languages

Every context-sensitive language L is recursive.

There exists a recursive language that is not context sensitive.

The Chomsky Hierarchy

- Noam Chomsky provided an initial classification into four language types
 - \succ Type 0
 - O Languages generated by unrestricted grammars, that is, the recursively enumerable languages (L_{RE})
 - **Type 1**
 - \circ Context-sensitive languages (L_{CS})
 - **Type 2**
 - \circ Context-free languages (L_{CF})
 - > Type 3
 - \circ Regular languages (L_{REG})

A More Complete Hierarchy

- Deterministic context-free languages (L_{DCF})
- Recursive languages (L_{REC})

A More Complete Hierarchy

□ Linear languages (L_{LIN})

□ Construct an npda that accept the following language:

 $L = \{ab(ab)^n b(ab)^n : n \ge 0\}$

با استفاده از لم تزریق نشان دهید که زبان زیر مستقل از متن نیست. $L = \{a^{n!} : n \geq 0\}$

- $\exists m \in N: \ w = a^{m!} \in L$
- $u = a^{t1}$, $v = a^{t2}$, $x = a^{t3}$, $y = a^{t4}$, $z = a^{m!-(t1+t2+t3+t4)}$

$$|vy| = t2 + t4 \ge 1$$
 و $|vxy| = t2 + t3 + t4 \le m$ که در آن: \Box

- $t2 + t4 \le m \Rightarrow m! (t2 + t4) \ge m! m$
- $\Rightarrow (m-1)! \le m((m-1)!-1) \le m! (t2+t4)$

```
با استفاده از لم تزریق نشان دهید که زبان زیر مستقل از متن نیست.L = \{a^n b^j c^k \colon k > n, k > j\}
```

- را در نظر می گیریم. $w=a^mb^mc^{m+1}\in L$ رشته \square
- در تفکیک رشته به α بخش v ،v ،v و v حالتهای زیر قابل بررسی هستند:
- اگر v و v فقط شامل a باشند با انتخاب i=2 تعداد aها بزرگتر یا مساوی تعداد cها شده و شرط v نقض می شود.
- اگر v و v فقط شامل b باشند با انتخاب i=2 تعداد bها بزرگتر یا مساوی تعداد cها شده و شرط i=2 نقض می شود.
- اگر v و v شامل a و b باشند با انتخاب i=2 تعداد aها و تعداد bها بزرگتر یا مساوی تعداد aها شده و شرطهای k> و k> نقض می شود.
 - اگر v و v فقط شامل c باشند با انتخاب i=0 تعداد cها کمتر یا مساوی تعداد aها و bها شده و هر دو شرط i=0 نقض می شود.
 - اگر v و v شامل d و c باشند با انتخاب i=0 تعداد cها کمتر یا مساوی تعداد aها شده و شرط c نقض می شود.
- با توجه به اینکه در همه حالتهای تفکیک رشته w میتوانیم با تزریق i رشته ای را به دست آوریم که عضو زبان نیست پس طبق لم تزریق زبان مستقل از متن نیست.

□ Design Turing machines to compute the following function

$$f(x) = \begin{cases} \frac{x}{2}, & \text{if } x \text{ is even} \\ \frac{x+1}{2}, & \text{if } x \text{ is odd} \end{cases}$$

