		NOTES				
1)	Vector $V_{1:} a_1 i + b_1 j + c_1 k$					
	Vector V_2 : $a_2i+b_2j+c_2k$					
	Vector V _{3:} a ₃ i+b ₃ j+c ₃ k					
2)	Expr=Expression	No equality or inequality sign				
	Name	Function	Example	M	len	u
	1 st Derivative	de(Expr,Var)	Find derivative of x^3 $de(x^3,x)$			
	2 nd Derivative	dd(Expr,Var)	Find 2^{nd} derivative of x^3 $dd(x^3,x)$			
	1 nd Derivative at a Point	nde(Expr,Var,Point)	Find 1 st derivative of x^3 at $x=2$ $nde(x^3,x,2)$			
	2 nd Derivative at a Point	ndd(Expr,Var,Point)	Find 2^{nd} derivative of x^3 at $x=2$ $ndd(x^3,x,2)$			
	Absolute Area	aa(Expr,Lower.B,Upper.B)	Find Area of $\sin(x)$, from 0 to 2π $aa(\sin(x), 0, 2 \cdot \pi)$			
Α	All points of a function	all(Expr)	Find all stationary points. $all(x^3-1)$			
	Angle (Vector)	ang $(a_1,b_1,c_1,a_2,b_2,c_2)$ *Only for vectors, not for Complex Number.	Find angle between $\sqrt{3}$ i+4j-k and 1i-4j+ $\sqrt{3}$ k $ang(\sqrt{2}\sqrt{3},4,-1,1,-4,\sqrt{3})$			
	Approximate To Fraction	▶approxFraction	0.565 papproxFraction(5.E-14)	1	2	
С	Cartesian to Polar	ctp(Real component,Imaginery comp.)	Convert 2+V3i to Polar form $ c_{\mathcal{D}}(2, \sqrt[2]{3}) $			
	Cisroot	cr (radius,angle,root power)	Find roots of z^5 =-26 $cr(26,\pi,5)$			
	Complete Square (Circle & Ellipse)	cs(5 Coefficients) See Example	Find the circle graphed by $x^2-6x+y^2+4y=b$ $cs(1,-6,1,4,-b)$			
	Complex Factor	cFactor(Expr,Var)	Factorize z^2+zi $cFactor(z^2+z\cdot ii,z)$	3	С	2

	Complex Roots of Polynomial	cPolyroots(Polynomial,Var) cPolyroots({List all coefficients})	Find roots of $z^4+3z^3+5z^2-z-8$ $cPolyRoots(z^4+3\cdot z^3+5\cdot z^2-z-8,z)$ $cPolyRoots(\{1,3,5,-1,-8\})$	3	8	3
	CompleteSquare	completeSquare(Expr,Var,DepVar)	completeSquare $\left(4 \cdot x^2 + 8 \cdot x + y^2 - 6 \cdot y + 12, x, y\right)$]3	5	1
	Complex Solve	<pre>cSolve(Equation,Var) *Avoid using z as it is already defined as x+yi</pre>	Find roots of $x^3=-1$ $CSolve(x^3=-1,x)$	3	С	1
	Derivative at a Point	nde(Expr,Var,Point)	Find derivative of x^2 at $x=2$ $nde(x^2,x,2)$			
D	Differential Equation Solver	Desolve (1 st /2 nd DE equation,Var,DepVar) or Desolve (DE equation and other conditions,Var,DepVar)	deSolve $(2 \cdot x^{i} - x^{2} - 4 = 0, t, x)$ teSolve $(y^{i} - 2 \cdot e^{x} \cdot \sin(x) \text{ and } y^{i}(0) = 0 \text{ and } y^{i}(0) = 0, x, y)$ *Use Prime Symbol	4	D	
	Domain	Domain(Expr, Var)	Find vertical Asymptote of $\frac{x-4}{x(x-4)}$ $\frac{x-4}{x(x-4)}$			
E	Euler's Method	eu(Expr,x ₀ ,y ₀ ,Step)	$eu\left(\frac{1}{3+3\cdot x+x^2},0,1,0.1\right)$			
ı	Implicit Differentiation	impDif(Equation,Var,DepVar)	Find 1 st derivative of $x^2+y=8$ $[impDif(x^2+y=8,x,y)]$	4	Ε	
	Initial differential Eq. Solver	<pre>ids(Expr,Var,DepVar,Var_iValue,Depvar iValue)</pre>	$ids\left(\frac{x^2+4}{2},t,x,0,2\right)$			
	Linear Dependency	$dep(a_1,b_1,c_1,a_2,b_2,c_2,a_3,b_3,c_3)$	Find m if mi+j+k, i+mj+k and i+jmk are independent dep(m,1,1,1,m,1,1,1,m)			
L	Linear Solution	ls(6 Coefficients, Var) See Example.	Find a for ax-3y=5 and -ax+(8-a)y=a to have no solution. $(s(a,-3,5,3,-a,8-a,a))$			
М	Magnitude (Vector)	$mag(a_1,b_1,c_1)$	Find magnitude of $2\mathbf{i}+6\mathbf{j}-(\sqrt{3}-2)\mathbf{k}$ $mag(2,6,2-\sqrt[2]{3})$			
N	Normal Line	NormalLine(Expr,Var,Point)	Find equation for the normal, for x^2 at $x=1$.	4	Α	

	Perpendicular	$pd(a_1,b_1,c_1,a_2,b_2,c_2,Var)$	Find m if mi+5j+6k and 7i+2j+mk are perpendicular			
			pd(m,5,6,7,2,m,m)			
P	Polar to Cartesian	ptc(Radius,Angle)	Convert $2 \operatorname{cis}(\frac{7\pi}{2})$ to cartesian form.			
			$ptc\left(2,\frac{7\cdot\pi}{2}\right)$			
	Proper Fraction	pf(Expr)	Find asymptotes of $\frac{2x^3+x^2-1}{2}$			
			$\frac{x^2 - x - 2}{p \left(\frac{2 \cdot x^3 + x^2 - 1}{x^2 - x - 2} \right)}$			
	Tangent Line	TangentLine(Expr, Var, Point)	Find the tangent of x ² at x=1	4	9	
	Test Function	tf(Equation,var1,var2,var1_value,var2_	$\frac{\left[\operatorname{tangentLine}(x^{2},x,1)\right]}{\operatorname{If} f(x)=2f(x), a possible}$			
	rest runction	value)	rule for f is?			
			$tf(x)=2\cdot f(x),x,3,y,6)$			
Т			*Since there isn't a 2 nd variable, just type a			
			random variable and			
			assign a random value.			
	Trigonometry Collect	tExpand(Expr)	$tExpand(cos(2 \cdot x))$	3	В	2
	Trigonometry Expand	tCollect(Expr)	$tCollect(2 \cdot (cos(x))^2 - 1)$	3	В	1
	Unit Vector	Unit Vector of V_1 $\mathbf{uv}(a_1,b_1,c_1)$	Unit Vector of 2i+4j+7k			
U		uv (<i>a</i> ₁ , <i>b</i> ₁ , <i>c</i> ₁)	uv(2,4,7)			
	Vector Resolute Parallel	Vector Resolute of V_1 in the direction of V_2	Vector resolute of 5i+3j+7k in the			
		$\mathbf{vpl}(a_1,b_1,c_1,a_2,b_2,c_2)$	direction of 6i+2j+6k			
V	Vector Resolute	Vector Resolute of V ₁ perpendicular to				
	Perpendicular Perpendicular	V_2	2 j1k perpendicular to			
		$vpd(a_1,b_1,c_1,a_2,b_2,c_2)$	2i-3j vpd(1,-2,1,2,-3,0)			