On Polarization Properties of Light, Gaussian Beams and Spin-Orbit Interaction of Light

Pritish Karmakar

July 23, 2023

Topics of discussion

Polarization properties of light

Gaussian Beam

Polarization properties of light

- ▶ Jones Formalism
- ► Stokes-Muller formalism

Jones Vector

Electric field of *fully polarized* EM wave propagating along z-axis is given by

$$\boldsymbol{E}(\boldsymbol{r},t) = \begin{bmatrix} A_x(\boldsymbol{r})e^{i\delta_x} \\ A_y(\boldsymbol{r})e^{i\delta_y} \\ 0 \end{bmatrix} e^{-i(kz-\omega t)}$$

Define normalized **Jones vector** s.t. $J^*J = 1$ as

$$\boldsymbol{J}(\boldsymbol{r},t) = \frac{1}{\sqrt{A_x^2 + A_y^2}} \begin{bmatrix} A_x(\boldsymbol{r})e^{i\delta_x} \\ A_y(\boldsymbol{r})e^{i\delta_y} \end{bmatrix}$$

Note that intensity, $I = A_x^2 + A_y^2 = \mathbf{J}^* \mathbf{J}$

Jones Vector

Electric field of *fully polarized* EM wave propagating along z-axis is given by

$$\boldsymbol{E}(\boldsymbol{r},t) = \begin{bmatrix} A_x(\boldsymbol{r})e^{i\delta_x} \\ A_y(\boldsymbol{r})e^{i\delta_y} \\ 0 \end{bmatrix} e^{-i(kz-\omega t)}$$

Define normalized **Jones vector** s.t. $J^* J = 1$ as

$$\boldsymbol{J}(\boldsymbol{r},t) = \frac{1}{\sqrt{A_x^2 + A_y^2}} \begin{bmatrix} A_x(\boldsymbol{r})e^{i\delta_x} \\ A_y(\boldsymbol{r})e^{i\delta_y} \end{bmatrix}$$

Note that intensity, $I = A_x^2 + A_y^2 = \mathbf{J}^* \mathbf{J}$

Jones Vector

Electric field of *fully polarized* EM wave propagating along z-axis is given by

$$\boldsymbol{E}(\boldsymbol{r},t) = \begin{bmatrix} A_x(\boldsymbol{r})e^{i\delta_x} \\ A_y(\boldsymbol{r})e^{i\delta_y} \\ 0 \end{bmatrix} e^{-i(kz-\omega t)}$$

Define normalized **Jones vector** s.t. $J^* J = 1$ as

$$\boldsymbol{J}(\boldsymbol{r},t) = \frac{1}{\sqrt{A_x^2 + A_y^2}} \begin{bmatrix} A_x(\boldsymbol{r})e^{i\delta_x} \\ A_y(\boldsymbol{r})e^{i\delta_y} \end{bmatrix}$$

Note that intensity, $I = A_x^2 + A_y^2 = J^*J$

Jones vector of usual polarization state

Polarization state	\boldsymbol{J}
H angle	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
$ V\rangle$	0
$ P\rangle$	$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$
M angle	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
$ L\rangle$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix}$
$ R\rangle$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix}$

Jones Matrix & evolution of Jones vector

Jones matrix for an optical element be M s.t.

$$\boldsymbol{M} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$

If a polarized light of Jones vector J_{in} passes through that optical element then the Jones vector of output light is given by

$$oldsymbol{J}_{out} = oldsymbol{M} oldsymbol{J}_{in}$$

- ightharpoonup Composition rule: $M = M_1 M_2 \dots M_n$
- Frame rotation by θ : $\mathbf{M}_{\theta} = R(-\theta) \mathbf{M} R(\theta)$ where $R(\theta)$ is passive rotation matrix.

Jones Matrix & evolution of Jones vector

Jones matrix for an optical element be M s.t.

$$\boldsymbol{M} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$

If a polarized light of Jones vector J_{in} passes through that optical element then the Jones vector of output light is given by

$$oldsymbol{J}_{out} = oldsymbol{M} oldsymbol{J}_{in}$$

- ightharpoonup Composition rule: $M = M_1 M_2 \dots M_n$
- Frame rotation by θ : $M_{\theta} = R(-\theta) M R(\theta)$ where $R(\theta)$ is passive rotation matrix.

Jones Matrix & evolution of Jones vector

Jones matrix for an optical element be M s.t.

$$\boldsymbol{M} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$

If a polarized light of Jones vector J_{in} passes through that optical element then the Jones vector of output light is given by

$$oldsymbol{J}_{out} = oldsymbol{M} oldsymbol{J}_{in}$$

- ► Composition rule: $M = M_1 M_2 ... M_n$
- Frame rotation by θ : $\mathbf{M}_{\theta} = R(-\theta) \mathbf{M} R(\theta)$ where $R(\theta)$ is passive rotation matrix.

Jones matrix of usual optical element

Optical element

M

1	
Free space	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
x-Polariser	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Right circular polariser	$\frac{1}{2} \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$
Linear di-attenuator	$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$
Half-wave plate	$\begin{bmatrix} 1 & 0 \end{bmatrix}$
with fast axis horizontal	0 - 1
Quarter-wave plate	$\begin{bmatrix} 1 & 0 \end{bmatrix}$
with fast axis horizontal	$\begin{bmatrix} 0 & i \end{bmatrix}$
General phase retarder	$ \begin{bmatrix} e^{i\phi_x} & 0 \\ 0 & e^{i\phi_y} \end{bmatrix} $

Polarization properties of light

- ▶ Jones Formalism
- ➤ Stokes-Muller formalism

Coherency matrix

Coherency matrix, C defined as

$$\boldsymbol{C} = \left\langle \boldsymbol{E} \otimes \boldsymbol{E}^{\dagger} \right\rangle = \left\langle \boldsymbol{E} \boldsymbol{E}^{\dagger} \right\rangle = \begin{bmatrix} \left\langle E_{x} E_{x}^{*} \right\rangle & \left\langle E_{x} E_{y}^{*} \right\rangle \\ \left\langle E_{y} E_{x}^{*} \right\rangle & \left\langle E_{y} E_{y}^{*} \right\rangle \end{bmatrix} = \begin{bmatrix} c_{xx} & c_{xy} \\ c_{yx} & c_{yy} \end{bmatrix}$$

only for fully polarized light

- $ightharpoonup C = C^{\dagger}$ (Hermitian).
- ightharpoonup Time averaged intensity, I = Tr(C)

Let basis set,

$$\left\{ \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{V_0}, \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}}_{V_1}, \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{V_2}, \underbrace{\begin{bmatrix} 0 & i \\ -i & 1 \end{bmatrix}}_{V_3} \right\} s.t. \quad C = \frac{1}{2} \sum_{i=0}^{3} S_i V_i$$

Coherency matrix

Coherency matrix, C defined as

$$oldsymbol{C} = \left\langle oldsymbol{E} oldsymbol{E} oldsymbol{\dagger}^\dagger
ight
angle = \left\langle oldsymbol{E} oldsymbol{E}^\dagger
ight
angle = \left[egin{matrix} \langle E_x E_x^*
angle & \langle E_x E_y^*
angle \ \langle E_y E_x^*
angle & \langle E_y E_y^*
angle \ \end{pmatrix}
ight] = \left[egin{matrix} c_{xx} & c_{xy} \ c_{yx} & c_{yy} \ \end{pmatrix}
ight]$$

- $ightharpoonup C = C^{\dagger}$ (Hermitian).
- ightharpoonup Time averaged intensity, I = Tr(C)
- ightharpoonup Evolution of coherency matrix as $oldsymbol{C}_{out} = oldsymbol{M} \, oldsymbol{C}_{in} \, oldsymbol{M}^\dagger$

Let basis set,

$$\left\{ \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\boldsymbol{V_0}}, \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}}_{\boldsymbol{V_1}}, \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{\boldsymbol{V_2}}, \underbrace{\begin{bmatrix} 0 & i \\ -i & 1 \end{bmatrix}}_{\boldsymbol{V_3}} \right\} s.t. \; \boldsymbol{C} = \frac{1}{2} \sum_{i=0}^{3} S_i \boldsymbol{V_i}$$

Coherency matrix

Coherency matrix, C defined as

$$oldsymbol{C} = \left\langle oldsymbol{E} oldsymbol{E}^\dagger
ight
angle = \left\langle oldsymbol{E} oldsymbol{E}^\dagger
ight
angle = \left[egin{array}{c} \langle E_x E_x^*
angle & \left\langle E_x E_y^*
ight
angle \\ \langle E_y E_x^*
angle & \left\langle E_y E_y^*
ight
angle
ight] = \left[egin{array}{c} c_{xx} & c_{xy} \\ c_{yx} & c_{yy} \end{array}
ight]$$

- $ightharpoonup C = C^{\dagger}$ (Hermitian).
- ightharpoonup Time averaged intensity, I = Tr(C)
- ▶ Evolution of coherency matrix as $C_{out} = M C_{in} M^{\dagger}$ Let basis set.

$$\left\{ \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\boldsymbol{V_0}}, \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}}_{\boldsymbol{V_1}}, \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{\boldsymbol{V_2}}, \underbrace{\begin{bmatrix} 0 & i \\ -i & 1 \end{bmatrix}}_{\boldsymbol{V_3}} \right\} s.t. \; \boldsymbol{C} = \frac{1}{2} \sum_{i=0}^{3} S_i \boldsymbol{V_i}$$

Stokes vector

$$m{C} = rac{1}{2} \sum_{i=0}^{3} S_i m{V_i} \longrightarrow egin{bmatrix} S_0 \ S_1 \ S_2 \ S_3 \end{bmatrix} = m{S} \; (Stokes \; vector)$$

Measurement of Stokes parameters by passing the light through

- 1. isotropic medium, $I_0 = S_0$
- 2. x-polariser, $I_1 = \frac{1}{2}(S_0 + S_1)$
- 3. 45°-polariser, $I_2 = \frac{1}{2}(S_0 + S_2)$
- 4. circular polariser, $I_3 = \frac{1}{2}(S_0 + S_3)$

Stokes vector

$$oldsymbol{C} = rac{1}{2} \sum_{i=0}^{3} S_i oldsymbol{V_i} \longrightarrow egin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = oldsymbol{S} \ (Stokes \ vector)$$

Measurement of Stokes parameters by passing the light through

- 1. isotropic medium, $I_0 = S_0$
- 2. x-polariser, $I_1 = \frac{1}{2}(S_0 + S_1)$
- 3. 45°-polariser, $I_2 = \frac{1}{2}(S_0 + S_2)$
- 4. circular polariser, $I_3 = \frac{1}{2}(S_0 + S_3)$

Stokes vector

Measurement of Stokes parameters by passing the light through

- 1. isotropic medium, $I_0 = S_0$
- 2. x-polariser, $I_1 = \frac{1}{2}(S_0 + S_1)$
- 3. 45°-polariser, $I_2 = \frac{1}{2}(S_0 + S_2)$
- 4. circular polariser, $I_3 = \frac{1}{2}(S_0 + S_3)$

Stokes vector of usual polarization state

C

Delemination state

Polarization state	\boldsymbol{C}	\boldsymbol{S}
H angle	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T$
$ V\rangle$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}^T$
$ P\rangle$	$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^T$
M angle	$\frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}^T$
$ L\rangle$	$\frac{1}{2} \begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix}$	$\begin{bmatrix}1 & 0 & 0 & 1\end{bmatrix}^T$
$ R\rangle$	$\frac{1}{2} \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix}^T$
Un-polarized	$\begin{array}{c c} 1 & 0 \\ \hline & 0 & 1 \end{array}$	$\boxed{\begin{bmatrix}1 & 0 & 0 & 0\end{bmatrix}^T}$

Muller Matrix & evolution of Stokes vector

Muller matrix for an optical element \mathfrak{M} s.t.

$$\mathfrak{M} = \begin{bmatrix} \mu_{11} & \cdots & \mu_{14} \\ \vdots & \ddots & \vdots \\ \mu_{41} & \cdots & \mu_{44} \end{bmatrix}$$

Evolution of Stokes vector as, $\boldsymbol{S}_{out} = \mathfrak{M} \boldsymbol{S}_{in}$

- ightharpoonup Composition rule: $\mathfrak{M} = \mathfrak{M}_1 \, \mathfrak{M}_2 \dots \mathfrak{M}_n$
- Frame rotation by θ : $\mathfrak{M}_{\theta} = T^{-1}(\theta) \mathfrak{M} T(\theta)$ where

$$T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 2\theta & \sin 2\theta & 0 \\ 0 & -\sin 2\theta & \cos 2\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Muller Matrix & evolution of Stokes vector

Muller matrix for an optical element \mathfrak{M} s.t.

$$\mathfrak{M} = \begin{bmatrix} \mu_{11} & \cdots & \mu_{14} \\ \vdots & \ddots & \vdots \\ \mu_{41} & \cdots & \mu_{44} \end{bmatrix}$$

Evolution of Stokes vector as, $S_{out} = \mathfrak{M} S_{in}$

- ightharpoonup Composition rule: $\mathfrak{M} = \mathfrak{M}_1 \, \mathfrak{M}_2 \dots \mathfrak{M}_n$
- Frame rotation by θ : $\mathfrak{M}_{\theta} = T^{-1}(\theta) \mathfrak{M} T(\theta)$ where

$$T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 2\theta & \sin 2\theta & 0 \\ 0 & -\sin 2\theta & \cos 2\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Muller Matrix & evolution of Stokes vector

Muller matrix for an optical element \mathfrak{M} s.t.

$$\mathfrak{M} = \begin{bmatrix} \mu_{11} & \cdots & \mu_{14} \\ \vdots & \ddots & \vdots \\ \mu_{41} & \cdots & \mu_{44} \end{bmatrix}$$

Evolution of Stokes vector as, $S_{out} = \mathfrak{M} S_{in}$

- ightharpoonup Composition rule: $\mathfrak{M} = \mathfrak{M}_1 \, \mathfrak{M}_2 \dots \mathfrak{M}_n$
- Frame rotation by θ : $\mathfrak{M}_{\theta} = T^{-1}(\theta) \mathfrak{M} T(\theta)$ where

$$T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 2\theta & \sin 2\theta & 0 \\ 0 & -\sin 2\theta & \cos 2\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

For elliptically polarized light, Stokes vector

$$S = S_0 \begin{bmatrix} 1 \\ \cos 2\chi \cos 2\psi \\ \cos 2\chi \sin 2\psi \end{bmatrix} \longrightarrow \underbrace{S_0(\cos 2\chi \cos 2\psi, \cos 2\chi \sin 2\psi, \sin 2\psi)}_{\text{On Poincare sphere of radius } S_0}$$

where azimuth (ψ) and ellipticity (χ) is defined.

For elliptically polarized light, Stokes vector

$$S = S_0 \begin{bmatrix} 1 \\ \cos 2\chi \cos 2\psi \\ \cos 2\chi \sin 2\psi \\ \sin 2\chi \end{bmatrix} \longrightarrow \underbrace{S_0(\cos 2\chi \cos 2\psi, \cos 2\chi \sin 2\psi, \sin 2\psi)}_{\text{On Poincare sphere of radius } S_0}$$

where azimuth (ψ) and ellipticity (χ) is defined.

For un-polarized light,

$$oldsymbol{S} = S_0 egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} \longrightarrow \underbrace{(0,0,0)}_{ ext{At Origin}}$$

For partially polarized light,

$$\mathbf{S} = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} \longrightarrow \underbrace{(S_1, S_2, S_3)}_{\text{Inside sphere } s.t.} \\ 0 < S_1^2 + S_2^2 + S_3^2 < S_0^2$$

For un-polarized light,

$$m{S} = S_0 egin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \underbrace{(0,0,0)}_{ ext{At Origin}}$$

For partially polarized light,

$$\mathbf{S} = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} \longrightarrow \underbrace{(S_1, S_2, S_3)}_{\text{Inside sphere } s.t.}$$
$$0 < S_1^2 + S_2^2 + S_3^2 < S_0^2$$

Gaussian Beam and properties

- ► Paraxial wave
- ► Gaussian beam solution and properties
- ► Modes of Gaussian beam

Maxwell's wave equation:

$$\nabla^2 \mathbf{E}(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r}, t) = 0$$

Paraxial beam propagating predominantly in z-direction,

$$\boldsymbol{E}(x,y,z,t) = \boldsymbol{\psi}(x,y,z)e^{i(\omega t - kz)}$$

and taking slowly varying amplitude approx. i.e.

$$\left| \frac{\partial^2 \psi}{\partial z^2} \right| \ll k \left| \frac{\partial \psi}{\partial z} \right| \ll k^2 \left| \psi \right|$$

Paraxial wave equation

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - 2ik \frac{\partial \psi}{\partial r} = 0$$

Maxwell's wave equation:

$$\nabla^2 \mathbf{E}(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r}, t) = 0$$

Paraxial beam propagating predominantly in z-direction,

$$\mathbf{E}(x, y, z, t) = \mathbf{\psi}(x, y, z)e^{i(\omega t - kz)}$$

and taking slowly varying amplitude approx. i.e.

$$\left| \frac{\partial^2 \psi}{\partial z^2} \right| \ll k \left| \frac{\partial \psi}{\partial z} \right| \ll k^2 \left| \psi \right|$$

Paraxial wave equation

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - 2ik \frac{\partial \psi}{\partial r} = 0$$

Maxwell's wave equation:

$$\nabla^{2} \boldsymbol{E}(\boldsymbol{r}, t) - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \boldsymbol{E}(\boldsymbol{r}, t) = 0$$

Paraxial beam propagating predominantly in z-direction,

$$\mathbf{E}(x, y, z, t) = \mathbf{\psi}(x, y, z)e^{i(\omega t - kz)}$$

and taking slowly varying amplitude approx. i.e.

$$\left| \frac{\partial^2 \psi}{\partial z^2} \right| \ll k \left| \frac{\partial \psi}{\partial z} \right| \ll k^2 \left| \psi \right|$$

Paraxial wave equation

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - 2ik \frac{\partial \psi}{\partial r} = 0$$

Maxwell's wave equation:

$$\nabla^{2} \boldsymbol{E}(\boldsymbol{r}, t) - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \boldsymbol{E}(\boldsymbol{r}, t) = 0$$

Paraxial beam propagating predominantly in z-direction,

$$\mathbf{E}(x, y, z, t) = \mathbf{\psi}(x, y, z)e^{i(\omega t - kz)}$$

and taking slowly varying amplitude approx. i.e.

$$\left| \frac{\partial^2 \psi}{\partial z^2} \right| \ll k \left| \frac{\partial \psi}{\partial z} \right| \ll k^2 \left| \psi \right|$$

Paraxial wave equation:

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - 2ik \frac{\partial \psi}{\partial r} = 0$$

Maxwell's wave equation:

$$\nabla^{2} \boldsymbol{E}(\boldsymbol{r}, t) - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \boldsymbol{E}(\boldsymbol{r}, t) = 0$$

Paraxial beam propagating predominantly in z-direction,

$$\mathbf{E}(x, y, z, t) = \mathbf{\psi}(x, y, z)e^{i(\omega t - kz)}$$

and taking slowly varying amplitude approx. i.e.

$$\left| \frac{\partial^2 \boldsymbol{\psi}}{\partial z^2} \right| \ll k \left| \frac{\partial \boldsymbol{\psi}}{\partial z} \right| \ll k^2 \left| \boldsymbol{\psi} \right|$$

Paraxial wave equation:

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - 2ik \frac{\partial \psi}{\partial r} = 0$$

Gaussian Beam

- ► Paraxial wave
- ► Gaussian beam solution and properties
- ► Modes of Gaussian beam

Gaussian beam solution

Ansatz:
$$\psi(\mathbf{r}, z) = A \exp \left[-i \left(p(z) + \frac{kr^2}{2q(z)} \right) \right]$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Gaussian beam solution

Ansatz:
$$\psi(\mathbf{r}, z) = A \exp \left[-i \left(p(z) + \frac{kr^2}{2q(z)} \right) \right]$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Gaussian beam solution

Ansatz:
$$\psi(\mathbf{r}, z) = A \exp\left[-i\left(p(z) + \frac{kr^2}{2q(z)}\right)\right]$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

$$\psi(\boldsymbol{r},z) = A \underbrace{\left(\frac{\boldsymbol{w}_0}{w(z)}\right)}_{\text{term I}} \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term I related to **spreading of beam**.

 $w \to \text{Physical radius}$ $w_0 \to \text{Beam waist}$

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

$$z_0 = \frac{\pi w_0^2}{\lambda}$$

$$\psi(\boldsymbol{r},z) = A \underbrace{\left(\frac{\boldsymbol{w}_0}{w(z)}\right)}_{\text{term I}} \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term I related to **spreading of beam**.

 $w \to \text{Physical radius}$

 $w_0 \to \text{Beam waist}$

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

$$z_0 = \frac{\pi w_0^2}{\lambda}$$

$$\psi(\boldsymbol{r},z) = A \underbrace{\left(\frac{\boldsymbol{w}_0}{w(z)}\right)}_{\text{term I}} \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term I related to **spreading of beam**.

 $w \to \text{Physical radius}$

 $w_0 \to \text{Beam waist}$

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

$$z_0 = \frac{\pi w_0^2}{\lambda}$$

$$\psi(\boldsymbol{r},z) = A \underbrace{\left(\frac{\boldsymbol{w}_0}{w(z)}\right)}_{\text{term I}} \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term I related to **spreading of beam**.

 $w \to \text{Physical radius}$

 $w_0 \to \text{Beam waist}$

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

$$z_0 = \frac{\pi w_0^2}{\lambda}$$

$$\psi(\boldsymbol{r},z) = A \underbrace{\left(\frac{\boldsymbol{w}_0}{w(z)}\right)}_{\text{term I}} \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term I related to **spreading of beam**.

 $w \to \text{Physical radius}$

 $w_0 \to \text{Beam waist}$

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

$$z_0 = \frac{\pi w_0^2}{\lambda}$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(\underbrace{i \tan^{-1}\left(\frac{z}{z_0}\right)}_{\text{term II}} - i\frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term II related to Gouy phase (ϕ_G) .

$$\phi_G = \tan^{-1} \left(\frac{z}{z_0} \right)$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(\underbrace{i \tan^{-1}\left(\frac{z}{z_0}\right)}_{\text{term II}} - i\frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term II related to Gouy phase (ϕ_G) .

$$\phi_G = \tan^{-1} \left(\frac{z}{z_0} \right)$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(\underbrace{i \tan^{-1}\left(\frac{z}{z_0}\right)}_{\text{term II}} - i\frac{kr^2}{2R(z)} - \frac{r^2}{w^2(z)}\right)$$

Term II related to Gouy phase (ϕ_G) .

$$\phi_G = \tan^{-1} \left(\frac{z}{z_0} \right)$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) \underbrace{-i\frac{kr^2}{2R(z)}}_{\text{term III}} - \frac{r^2}{w^2(z)}\right)$$

Term III related to radius of curvature (R) of beam wave-front.

$$R(z) = z \left[1 + \left(\frac{z_0}{z} \right)^2 \right]$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) \underbrace{-i\frac{kr^2}{2R(z)}}_{\text{term III}} - \frac{r^2}{w^2(z)}\right)$$

Term III related to radius of curvature (R) of beam wave-front.

$$R(z) = z \left[1 + \left(\frac{z_0}{z} \right)^2 \right]$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) \underbrace{-i\frac{kr^2}{2R(z)}}_{\text{term III}} - \frac{r^2}{w^2(z)}\right)$$

Term III related to radius of curvature (R) of beam wave-front.

$$R(z) = z \left[1 + \left(\frac{z_0}{z} \right)^2 \right]$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} \underbrace{-\frac{\mathbf{r}^2}{\mathbf{w}^2(z)}}_{\text{term IV}}\right)$$

Term IV related to Gaussian intensity profile.

$$I(r,z) \sim \exp\left(-\frac{2r^2}{w^2(z)}\right)$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} \underbrace{\frac{\mathbf{r}^2}{w^2(z)}}_{\text{term IV}}\right)$$

Term IV related to Gaussian intensity profile.

$$I(r,z) \sim \exp\left(-\frac{2r^2}{w^2(z)}\right)$$

$$\psi(\mathbf{r}, z) = A\left(\frac{w_0}{w(z)}\right) \exp\left(i \tan^{-1}\left(\frac{z}{z_0}\right) - i \frac{kr^2}{2R(z)} \underbrace{-\frac{\mathbf{r}^2}{w^2(z)}}_{\text{term IV}}\right)$$

Term IV related to Gaussian intensity profile.

$$I(r,z) \sim \exp\left(-\frac{2r^2}{w^2(z)}\right)$$

$$\psi(\mathbf{r}, z) = A \exp \left[-i \left(p(z) + \frac{kr^2}{2 \mathbf{q}(z)} \right) \right]$$

 $q(z) \longrightarrow \text{characteristic of a beam if } \lambda \text{ known.}$

$$q(z) = z + i z_0$$

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda}{\pi w^2(z)}$$

$$q_{in} \rightarrow \underbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}_{\text{Optical}} \rightarrow q_{out} = \frac{Aq_{in} + E}{Cq_{in} + L}$$

$$\psi(\mathbf{r}, z) = A \exp \left[-i \left(p(z) + \frac{kr^2}{2 \mathbf{q}(z)} \right) \right]$$

 $q(z) \longrightarrow \text{characteristic of a beam if } \lambda \text{ known.}$

$$q(z) = z + i z_0$$

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda}{\pi w^2(z)}$$

$$\lim \longrightarrow \underbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}_{\text{Optical}} \longrightarrow q_{out} = \frac{Aq_{in} + E}{Cq_{in} + L}$$

$$\psi(\mathbf{r}, z) = A \exp \left[-i \left(p(z) + \frac{kr^2}{2 \mathbf{q}(z)} \right) \right]$$

 $q(z) \longrightarrow$ characteristic of a beam if λ known.

$$q(z) = z + i z_0$$

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda}{\pi w^2(z)}$$

$$\underbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}_{\text{Optical}} \longrightarrow q_{out} = \frac{Aq_{in} + E}{Cq_{in} + E}$$

$$\psi(\mathbf{r}, z) = A \exp \left[-i \left(p(z) + \frac{kr^2}{2 \mathbf{q}(z)} \right) \right]$$

 $q(z) \longrightarrow$ characteristic of a beam if λ known.

$$q(z) = z + i z_0$$

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda}{\pi w^2(z)}$$

$$\frac{q_{in}}{Q_{in}} \longrightarrow \underbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}_{Optical} \longrightarrow q_{out} = \frac{Aq_{in} + B}{Cq_{in} + D}$$
Optical element

$$\psi(\mathbf{r}, z) = A \exp \left[-i \left(p(z) + \frac{kr^2}{2 \, \mathbf{q}(z)} \right) \right]$$

 $q(z) \longrightarrow$ characteristic of a beam if λ known.

$$q(z) = z + i z_0$$

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda}{\pi w^2(z)}$$

$$q_{in} \longrightarrow \underbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}_{\text{Optical}} \longrightarrow q_{out} = \frac{Aq_{in} + B}{Cq_{in} + D}$$
Optical element

Gaussian Beam and properties

- ► Paraxial wave
- ► Gaussian beam solution and properties
- ► Modes of Gaussian beam

Hermite-Gaussian mode

$$\psi_{m,n}(\mathbf{r},z) = A\left(\frac{w_0}{w(z)}\right) H_m\left(\frac{\sqrt{2}x}{w(z)}\right) H_n\left(\frac{\sqrt{2}y}{w(z)}\right) \exp\left(-\frac{r^2}{w^2(z)}\right) \cdot \exp\left(i\left(m+n+1\right)\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)}\right)$$

 $m, n = 0 \Rightarrow \psi = \text{Gaussian}$

Hermite-Gaussian mode

 $m, n = 0 \Rightarrow \psi = \text{Gaussian}$

$$\psi_{m,n}(\mathbf{r},z) = A\left(\frac{w_0}{w(z)}\right) H_m\left(\frac{\sqrt{2}x}{w(z)}\right) H_n\left(\frac{\sqrt{2}y}{w(z)}\right) \exp\left(-\frac{r^2}{w^2(z)}\right) \cdot \exp\left(i\left(m+n+1\right)\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)}\right)$$

Hermite-Gaussian Intensity profile

Laguerre-Gaussian mode

$$\psi_{p,l}(r,\phi,z) = A \frac{w_0}{w(z)} \left[\frac{r\sqrt{2}}{w(z)} \right]^{|l|} L_p^{|l|} \left(\frac{2r^2}{w^2(z)} \right) \exp\left(-\frac{r^2}{w^2(z)} \right) \cdot \exp\left(-il\phi + i(2p+l+1) \tan^{-1} \left(\frac{z}{z_0} \right) - i \frac{kr^2}{2R(z)} \right)$$

$$l, p = 0 \Rightarrow \psi = \text{Gaussian}$$

$$\exp(-il\phi) \longrightarrow \text{Helical phase}$$
(carries OAM)

Laguerre-Gaussian mode

$$\psi_{p,l}(r,\phi,z) = A \frac{w_0}{w(z)} \left[\frac{r\sqrt{2}}{w(z)} \right]^{|l|} L_p^{|l|} \left(\frac{2r^2}{w^2(z)} \right) \exp\left(-\frac{r^2}{w^2(z)} \right) \cdot \exp\left(-il\phi + i(2p+l+1)\tan^{-1}\left(\frac{z}{z_0}\right) - i\frac{kr^2}{2R(z)} \right)$$

$$l, p = 0 \implies \psi = \text{Gaussian}$$

$$\exp(-il\phi) \longrightarrow \text{Helical phase}$$
(carries OAM)

Laguerre-Gaussian mode

$$\psi_{p,l}(r,\phi,z) = A \frac{w_0}{w(z)} \left[\frac{r\sqrt{2}}{w(z)} \right]^{|l|} L_p^{|l|} \left(\frac{2r^2}{w^2(z)} \right) \exp\left(-\frac{r^2}{w^2(z)} \right) \cdot \exp\left(-\frac{il\phi}{v^2(z)} + i(2p+l+1) \tan^{-1} \left(\frac{z}{z_0} \right) - i \frac{kr^2}{2R(z)} \right)$$

Helical phase front

$$\exp(-il\phi) \longrightarrow \text{Helical phase}$$
 (carries OAM)

Laguerre-Gaussian Intensity profile

Laguerre-Gaussian Phase profile

