

A Level · OCR · Physics

7 mins

? 7 questions

Multiple Choice Questions

Charging & Discharging Capacitors

Capacitor Charge & Discharge / Capacitor Charge & Discharge Equations / Modelling Capacitor Discharge

Medium (6 questions) /6 Hard (1 question) /1 **Total Marks /7**

Scan here to return to the course

or visit savemyexams.com

Medium Questions

1 The diagram below shows a circuit used to charge a capacitor.

The power supply has electromotive force (e.m.f.) 10 V and negligible internal resistance. The capacitor has capacitance C and the resistor has resistance R. The switch is closed at time t = 0. The table below shows potential difference V across the resistor at various values of time *t*.

V/V	10	6.3	5.0	3.7
t/s	0	2.8	4.2	6.0

What is the product $C \times R$ for this circuit?

- **A.** 0 s
- **B.** 2.8 s
- **C.** 4.2 s
- **D.** 6.0 s

(1 mark)

2 A capacitor discharges through a resistor. At time t = 0 the potential difference V across the capacitor is V_0 . At time t = 2.0 s, V = 0.90 V_0 .

Which statement is **not** correct?

- **A.** At t = 4.0 s, V = 0.81 V_0 .
- **B.** The capacitor is fully discharged after t = 10 s.
- **C.** The potential difference across the resistor is the same as that for the capacitor when the capacitor has potential difference $0.5V_0$.
- **D.** The potential difference *V* decreases exponentially with time *t*.

(1 mark)

3 A student is modelling the decay of charge for a capacitor discharging through a resistor using the equation $\frac{\Delta Q}{\Delta t} = -0.2Q$.

The student decides to use $\Delta t = 0.5$ s. The initial charge on the capacitor is 1000 μ C.

Part of the modelling spreadsheet from the student is shown below.

t/ s	Charge <i>Q</i> left on capacitor at time <i>t</i> / µC	Charge ΔQ decaying in the next 0.5 s / μC
0	1000	100
0.5	900	
1.0		
1.5		

What is the value of Q in μC at t = 1.5 s?

A. 700

- **B.** 720
- **C.** 729
- **D.** 800

(1 mark)

4 A capacitor discharges through a resistor. At time t = 0, the charge stored by the capacitor is $600 \mu C$. The capacitor loses 5.0% of its charge every second.

What is the charge **left** on the capacitor at time t = 4.0 s?

- **A.** 111 μC
- **B.** 120 μC
- **C.** 480 μC
- **D.** 489 μC

(1 mark)

5 A capacitor is discharged through a resistor.

The capacitor is fully charged at time t = 0. The time constant of the circuit is 10 s. The switch is closed at time t = 0. The current in the resistor is I.

Which row is correct?

	Current I at t = 0	Current I at t = 10 s
A	maximum	0
В	maximum	37% of the current at <i>t</i> = 0
С	0	63% of the current at <i>t</i> = ∞
D	0	37% of the current at <i>t</i> = ∞

(1 mark)

6 A capacitor is charged through a resistor.

The cell has e.m.f. 1.50 V and negligible internal resistance. The capacitor is initially uncharged. The time constant of the circuit is 100 s. The switch is closed at time t = 0. What is the potential difference across the capacitor at time t = 200 s?

- **A.** 0.20 V
- **B.** 0.55 V
- **C.** 0.95 V
- **D.** 1.30 V

(1 mark)

Hard Questions

1 A capacitor is charged through a resistor.

The cell has electromotive force (e.m.f.) 1.50 V and negligible internal resistance. The time constant of the circuit is 10 s. The switch is closed at time t = 0. At time t, the potential difference across the resistor is 0.60 V.

Which expression is correct?

A.
$$0.60 = 1.50e^{-0.10t}$$

B.
$$0.90 = 1.50(e^{-10t} - 1)$$

C.
$$0.60 = 1.50e^{-10t}$$

D.
$$0.60 = 1.50(1 - e^{-0.10t})$$

(1 mark)