AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

In the Claims:

- 1. A doped leucite glass ceramic powder, comprising
- (a) a leucite glass ceramic powder; and
- (b) a nanoscale metal oxide powder with a d₅₀ value of 1 nm to 200 nm.
- 2. A doped leucite glass ceramic, comprising
- (a) a leucite glass ceramic; and
- (b) a nanoscale metal oxide with a d_{50} value of 1 nm to 200 nm.
- 3. The doped leucite glass ceramic according to Claim 2, wherein the leucite glass ceramic has the following composition:

SiO_2	70% by weight (relative to the total weight of	the leucite
	glass ceramic (a));	
Al_2O_3	10% by weight;	
K ₂ O	10% by weight;	
Na ₂ O	5% by weight;	٠,
CaO	2% by weight;	
BaO	1% by weight;	
CeO ₂	1% by weight;	
B ₂ O ₃ and TiO ₂	1% by weight.	

4. The doped leucite glass ceramic according to Claim 2, wherein the nanoscale metal oxide (b) is present in an amount of 1% to 80% by weight (relative to the total weight of the doped leucite glass ceramic).

- 5. The doped leucite glass ceramic according to Claim 2, wherein the nanoscale metal oxide (b) is present in an amount of 30% to 70% by weight (relative to the total weight of the doped leucite glass ceramic).
- 6. The doped leucite glass ceramic according to Claim 2, wherein the nanoscale metal oxide (b) is about 60% by weight (relative to the total weight of the doped leucite glass ceramic).
- 7. The doped leucite glass ceramic according to Claim 2, wherein the particle size of the nanoscale metal oxide (b) lies between 10 nm and 200 nm.
- 8. The doped leucite glass ceramic according to Claim 2, wherein the particle size of the nanoscale metal oxide (b) lies between 20 nm and 100 nm.
- 9. The doped leucite glass ceramic according to Claim 2, wherein the particle size of the nanoscale metal oxide (b) lies between 30 nm and 60 nm.
- 10. The doped leucite glass ceramic according to Claim 2, wherein the nanoscale metal oxide (b) is ZrO₂.
- 11. The doped leucite glass ceramic according to Claim 2, wherein the nanoscale metal oxide (b) is ZrO₂ that has been stabilized with 0.5 mole % to 12 mole % (relative to the total amount of nanoscale metal oxide) of another metal oxide.
- 12. The doped leucite glass ceramic according to Claim 11, wherein the other metal oxide is 7 mole-% to 12 mole-% of MgO or CaO or 1 mole-% to 5 mole-% of Y₂O₃.

- 13. The doped leucite glass ceramic according to Claim 11, wherein the other metal oxide is about 9 mole-% of MgO or CaO or about 3 mole-% of Y₂O₃.
- 14. The doped leucite glass ceramic according to Claim 2, wherein the nanoscale metal oxide (b) is made by means of a plasma synthesis method.

15 -26 (Cancelled)

- 27. (Currently Amended) The doped glass ceramic according to Claim 15 14, wherein the nanoscale metal oxide powder (b) is made by means of a plasma synthesis method and has an above-average fraction of extremely small nano-particles < 60 nm and accordingly a large active surface area.
- 28. The doped leucite glass ceramic according to Claim 2, wherein the ceramic has been subjected to chemical curing after its production.
- 29. (Currently Amended) The doped leucite glass ceramic according to Claim 28 2, wherein the chemical curing is carried out with a salt that is selected from the group consisting of NaCl, NaNO₃, KCl, and KNO₃.

30 - 31. (Cancelled)

32. A method for producing a doped leucite glass ceramic comprising a leucite glass ceramic and a nanoscale metal oxide with a d_{50} value of 1 nm to 200 nm, comprising sintering the doped leucite glass ceramic powder according to Claim 1.

- 33. The method according to Claim 32, comprising chemically curing the leucite glass ceramic after sintering.
- 34. A dental material or a dental product comprising the doped leucite glass ceramic of Claim 2.
- 35. A shaped dental product, comprising a leucite glass ceramic according to Claim 2.
- 36. (New) The doped leucite glass ceramic according to Claim 2, wherein the leucite glass ceramic powder has the following composition:

SiO_2	63% to 71% by weight (relative to the total weight of the	
	leucite glass ceramic (a));	
Al ₂ O ₃	10% to 15% by weight;	
K ₂ O	8% to 10% by weight;	
Na ₂ O	3% to 8% by weight;	
CaO	1% to 3% by weight;	
BaO	0.2%to 2%by weight;	
CeO ₂	0.5 to 2% by weight;	
B ₂ O ₃ and TiO ₂	0% to 1% by weight.	
TiO ₂	0% to 1% by weight.	