

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

PEA 3306 - 2020

PRIMEIRO EXERCÍCIO COMPUTACIONAL TRANSFORMADORES

Professor: Luiz Lebensztajn Turma: 02

Guilherme Akira Alves dos Santos	11027484

1.	Dados do problema e Parâmetros do Circuito Equivalente	2
2.	Circuito Equivalente do Transformador (Completo e a Fluxo Constante)	3
3.	Gráficos de Rendimento e Regulação	4
4.	Análise de Resultados, Comentários e Conclusões	5
5.	Listagem do programa	6

1. Dados do problema e Parâmetros do Circuito Equivalente

1.1. Valores nominais

Valores Nominais do Transformador						
Potência [VA]	Relação d	e Conve	rsão [V/V]	Babaix	aaument	Frequência [Hz]
250000	11000	1	220	50	0,02	60

Impe	edância do	s Enrolame	entos	
Alta Tensão		Baixa Tensão		
Ra [Ω]	Xa [Ω]	Rь [Ω]	Хь [Ω]	
1,3	4,5	0,005	0,015	
1,3+4,5i		0,005+	-0,015i	

Ensaio em Vazio			
Corrente Absorvida [A]	Potência Dissipada [W]	Tensão Aplicada [V]	
29	2017	220	

Características da Carga		
Tipo de Carga	cos(φ)	
Capacitiva	0,85	

1.2. Parâmetros do circuito equivalente

Parâmetro	Valor (Ω)		
	Alta Tensão	Baixa Tensão	
R ₁	12,5	0,005	
X ₁	37,5	0,015	
R ₂	1,3	0,52*10 ⁻³	
X ₂	4,5	1,8*10 ⁻³	
R _p	59,9775*10 ³	23,991	
X _m	19,9525*10 ³	7,981	

2. Circuito Equivalente do Transformador

2.1. Completo

Fig. 1 - Circuito Equivalente completo do transformador refletido ao lado da alta tensão

2.2. A Fluxo Constante

Fig. 2 - Circuito Equivalente a fluxo constante do transformador refletido ao lado da alta tensão

3. Gráficos de Rendimento e Regulação

Nota-se que nos gráficos a seguir, os pontos de plena carga estão destacados por um ponto em vermelho.

Fig. 3 - Regulação do transformador pela potência consumida pela carga (30% a 130% da potência nominal).

Fig. 4 - Rendimento do transformador pela potência consumida pela carga (30% a 130% da potência nominal).

4. Análise de Resultados, Comentários e Conclusões

Os gráficos de regulação e rendimento para os modelos de circuito completo e circuito com fluxo contínuo apresentaram um leve desvio:

- O gráfico de regulação apresentou comportamento próximo ao linear, iniciando-se nos arredores de -0.5% de regulação em 30% da potência nominal do transformador, até -2% em 130% da potência nominal. Para este gráfico, o desvio entre os modelos aumentou proporcionalmente à potência da carga imposta ao transformador. O desvio variou de cerca de 0.1% (fluxo cte.→completo), quando a potência da carga representava 30% da potência nominal do transformador, até cerca de 0.3% (fluxo cte.→completo), em 130% da potência nominal. Quando em plena carga, o desvio foi em torno de 2.5%.
- O gráfico de rendimento apresentou comportamento próximo a um arco de hipérbole com concavidade para baixo, iniciando-se próximo de 96.2% (30% da potência), alcançou um pico em 96.7% (cerca de 53% da potência) e decaindo até 95.8% (130% da potência). Para este gráfico, o desvio entre os modelos permaneceu praticamente constante, em torno de 0.4% de offset (completo→fluxo cte.).

Com os dados apresentados, pode-se inferir que a simplificação do circuito pelo método de fluxo constante é uma aproximação que traz poucos desvios do valor efetivo (representado no modelo do circuito completo). Assim, para a maioria dos casos usuais, a simplificação do circuito por fluxo constante é uma alternativa aceitável a ser adotada. Obviamente, para situações em que seja necessária maior grau de precisão nos dados estudos, deve-se aplicar o modelo completo.

5. Listagem do Programa

Fig. 5 - Valores nominais dados pelo enunciado do Exercício Computacional 1.

Fig. 6 - Cálculo das impedâncias do ramo paralelo do circuito em ambos modelos (completo e fluxo constante)..

EC1 - PEA 3306 - 2020 (Turma 02)

Fig. 7 - Cálculos das tensões e correntes necessárias para obtenção dos valores de regulação e rendimento em cada caso de potência consumida pela carga.

Fig. 8 - Gráficos de regulação e rendimento plotados a partir dos valores obtidos na planilha anterior.

Todo o programa com seus devidos cálculos pode ser conferido <u>aqui</u> neste <u>link</u>. <u>https://docs.google.com/spreadsheets/d/1gVCdegiBcKfOgtV5hWXKfBh3eq_HN2079sErUPgTPS4/edit?usp=sharing</u>

https://github.com/gAkira/PEA3306/tree/master/EC1

Obs: É possível alterar os valores nominais e o NUSP[5] para obter outros gráficos de regulação e rendimento!