AD/A-002 865

A STRUCTURAL WEIGHT ESTIMATION PROGRAM (SWEEP) FOR AIRCRAFT. VOLUME VI - WING AND EMPENNAGE MODULE. BOOK 2: TECHNICAL DISCUSSION, SECTIONS III AND IV

G. Hayase

Rockwell International Corporation

Prepared for:

Aeronautical Systems Division

June 1974

DISTRIBUTED BY:

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
ASD/XR 74-10	2. GOVT ACCESSION NO.	POLA-602865
A Structural Weight Estimation Program (SWEEP) for Aircraft - Volume VI - Wing and Empennage		5. TYPE OF REPORT & PERIOD COVERED
Module	ining with minpersituge	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(a)
G. Hayase		F33615-71-C-1922
Performing organization name and Rickwell International Corp		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Los Angeles International Airport Los Angeles, California 90009		FX2326-71-01876/C093
1. CONTROLLING OFFICE NAME AND ADDR Deputy for Development Plan		12. REPORT DATE June 1974
Air Force Systems Command	Dean Ohio	13. NUMBER OF PAGES
Wright-Patterson Air Force Monitoring agency name a address	(il different from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

JAM 6 1975

18. SUPPLEMENTARY NOTES

weight estimation, structural weights, integrated computer programs, preliminary weight estimation, first-order weight estimations, aircraft structure weights, aircraft structural weight optimization, flutter optimization program, structural synthesis

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Three computer programs were written with the objective of predicting the structural weight of aircraft through analytical methods. The first program, the structural weight estimation program (SWEEP), is a completely integrated program including routines for airloads, loads spectra, skin temperatures, material properties, flutter stiffness requirements, fatigue life, structural sizing, and for weight estimation of each of the major

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

20. ABSTRACT (CONTINUED)

estimates and indicates trends when parameters are varied. Fighters, bombers, and cargo aircraft can be analyzed by the program. The program operates within 100,000 octal units on the Control Data Corporation 6600 computer. Two stand-alone programs operating within 100,000 octal units were also developed to provide optional data sources for SWEEP. These include (1) the flexible airloads program to assess the effects of flexibility on lifting surface airloads, and (2) the flutter optimization program to optimize the stiffness distribution required for lifting surface flutter prevention.

The final report is composed of 11 volumes. This volume (volume VI) contains the methods and program description for the wing and empennage module of SWEEP. Program listings and flow charts are included in the appendix to this volume.

TABLE OF CONTENTS

Section		Page
	INTRODUCTION TO VOLUME VI	27
	BOOK 1 - TECHNICAL DISCUSSION, SECTIONS I AND II	29
I	MODULE DESCRIPTION	31
•	General Description	31
	And the Description	40
	Analysis Description Analysis Options	49
	Surface Types	49
	General Data Processing Option	49
	Torque-box Design Option	52
	Design Data Generation Option for the	
	Flutter Optimization and Flexible Loads	
	Analysis Programs	52
	Design Features	54
	Surface Geometry	54
	Nonlinear Planforms	54
	Cross-Sections	54
	Torque-Box Description	56
	Surface Configuration	57
	Vanishing Committee That was	57
	Variable-Sweep Wing Designs	57
	T-Tail Empennage Designs Leading and Trailing Edge Structures	58
	Miscellaneous Structure and Deadweight Mass Items	59
	Secondary Structure	59
	Tip Structure	59
	Internal Fuel	59
	External Concentrated Mass Items	60
	Miscellaneous Internal Contents	60
	Structural Design Data	61
	Deadweight	61
	Torsional Flutter Requirements	61
	Design Loads	62

Section		Page
	Torque-box Design Synthesis	63
	Construction Concepts	63
	Torque-box Analysis Constants	64
	Ultimate Allowable Stresses	64
	Weight Calibration Factors	65
	Torque-box Structure	65
	Pivot Structure	65
	Center-Section Structure	65
	Leading Edge Structure	65
	Trailing Edge Structure	66
	Tip Structure	66
	Secondary Structure	66
	Module Structure	67
	Module Execution	67
	Execution of Metallic Torque-box Design Overlays	67
	Module Storage Arrangement	81
	Blank Common	81
	Module/Overlay Fata Requirements	81
	Blank Common Initialization	81
	Input Data	83
	Output Data	83
	Mass Storage File Records	83
	Module Core Maps	97
	Labeled Common Arrays	97
	Blank Common Arrays	97

TABLE OF CONTENTS

Section		Page
II	METHODOLOGY	257
	Introduction	257
	Lifting Surface Geometry	263
	Planform Geometry	263
	Cross-Sectional Geometry	268
	Lifting Surface Design Data	274
	Leading and Trailing Edge Structures	274
	Nonstructural Wing Deadweight	280
	Flutter Stiffness Requirements	284
	Design Airloads	291
	Material Properties	293
	Initial Inertia Loads and Couple	
	Arm Estimation	294
	Structural Synthesis	297
	Cover Design Loads	297
	Torque-Box Synthesis	299
	Metallic Torque-Box Analysis	300
	Cover Synthesis	307
	Intermediate Support Structure	315
	Bending and Torsional Stiffness	321
	Advanced Composite Torque-Box Analysis	322
	General Behavior of Composite	
	Laminates	322
	Governing Relationships	324
	Temperature Dependence of	
•	Properties	330
	Stability	331
	Stringer Columns	337
	Full-Depth Honeycomb	
_	Sandwich	340
•		

Section		Page
	General Procedures	343
	Multispar Analysis	349
	Multirib Analysis	351
	Bending and Torsional Stiffness	356
	Pivot Structure Synthesis	357
	Weight Analysis	358
	Torque-Box Weight Analysis	358
	Leading and Trailing Edge Weight Analysis	361
	Estimation Equation Form	362
	Fixed Leading Edge Structure	365
	Leading Edge Control Devices	366
	Fixed Trailing Edge Structure	368
	Trailing Edge Control Devices	369
	Basic Module Output	373
	Design Data Generation Option	378
	General Description	378
	Program Description	378
	Mass Properties and Design Data	
	Processing Requirements	380
	Structural Synthesis/Weight Analysis	
	Reference 'ystem	383
	Data for Flexible Loads Analysis Program	385
	Data for Flutter Optimization Program	397
	BOOK 2 - TECHNICAL DISCUSSION, SECTIONS III AND IV	415
III	INPUT DATA PROCESSING AND GEOMETRY ANALYSIS	417
	General Description	417
	Overlay (8,0) Input Data	417
	Overlay (8,0) Output Data	422
	Overlay Core Maps	424
	Variable Data Subarrays DLE, DTE, and DTC	434
	TXY Array	454
	YC and YTC Arrays, Overlay (8,0)	486
	Output Data Arrays TD and TS	492

Section		1	Page
	Subroutine Descriptions		503
	Program ØLAY8	,	503
	Subroutine CCNTL		503
	Subroutine CASE		510
	Subroutine GEØMW		513
	Subroutine GEØMC		521
,	Subroutine VSGEØM		524
	Subroutine TBWDC		527
	Subroutine ABØXC		534
	Subroutine DMAX		537
	Subroutine CAERØ		540
	Subroutine SWPXYP		542
	Subroutine PRTG		545
	Subroutine GCAP		550
IV	SUBROUTINE REFERENCE TABLES FOR OVERLAYS (9.0).	(10.0).	
	(14,0), $(15,0)$, $(16,0)$, $(17,0)$, and $(18,0)$		552
	BOOK 3 - TECHNICAL DISCUSSION, SECTION V		767
v	CORE MAPS FOR OVERLAYS (9,0), (10,0), (14,0), (15,0), and (18,0)	5,0), (16,0),	769
			100=
	REFERENCES	t	1097

Section	Page
APPENDIX A - GENERAL INFORMATION FOR MODULE FLOW CHARTS AND LISTINGS	1123
General Description Autoflow Description	1123 1123
Cross Reference List Table of Diagnostics Flow Charts	1128 1128 1129
APPENDIX B - PROGRAM FLOW CHARTS, OVERLAYS (8,0), (14,0), (15,0), (16,0) AND (17,0)	1132
Overlay (8,0) - Input Data Processing and Geometry Analysis	1138
Program Table of Contents and References, and Table of Diagnostics Program Flow Charts Program ØLAY8 Subroutine CCNTL Subroutine CASE Subroutine GEØMW	1139 1153 1154 1157 1166 1170
Subroutine GEØMC Subroutine VSGEØM Subroutine TBWDC Subroutine ABØXC Subroutine DMAX Subroutine CAERØ Subroutine SWPXYP Subroutine PRTG	1180 1187 1193 1199 1203 1208 1211
Subroutine (COMP Overlay (14,0) - Leading and Trailing Edge Structures, Weight and Mass Properties Analysis	1219 1223
Program Table of Contents and Reférences, and Table of Diagnostics Program Flow Charts	1225 1239
Program ØLAY14 Subroutine WLETE Subroutine GCNTL	1240 1243 1253

Subroutine LEWT 1264	Section	Page
Subroutine TEMT 1274 Subroutine TEDEV 1279 Subroutine TEDEV 1279 Subroutine TEDET 1286 Subroutine LETEI 1295 Subroutine CTØTI 1309	Subroutine LEWT	1264
Subroutine TEDEV 1279 Subroutine TEWTI 1286 Subroutine LETEI 1295 Subroutine LETEI 1295 Subroutine CTØT1 1309	Subroutine TEWT	
Subroutine LETEI 1295 Subroutine CTØT1 1309	Subroutine TEDEV	
Subroutine CTØT1 1309	Subroutine TEWTI	1286
Overlay (15,0) - Fuel, Contents and Concentrated Masses, Weight and Mass Properties Analysis Program Table of Contents and References, and Table of Diagnostics 1317 Program Flow Charts 1331 Program ØLAY15 Subroutine WCØNT 1335 Subroutine MISCNT 1349 Subroutine MISCIT Subroutine FDIS Subroutine FDIS Subroutine TBFWI1 1382 Subroutine TBFWI1 1382 Subroutine CTØT2 Subroutine PRTM 1397 Overlay (16,0) - Design Data for Torque-Box Analysis Program Table of Contents and References, and Table of Diagnostics Program Flow Charts 1405 Program Flow Charts 1419 Program ØLAY16 Subroutine MTLFW 1420 Subroutine MTLFW 1431 Subroutine MTLFW 1432 Subroutine MTLFW 1433 Subroutine MTLFW 1434 Subroutine GJGI Subroutine GJGAL Subroutine GJGAL Subroutine GJGI Subroutine GJSI Subroutine CNSTC Subroutine CNSTC Subroutine CNSTC Subroutine SS2 1488	Subroutine LETEI	1295
Masses	Subroutine CTØT1	1309
Program Table of Contents and References, and Table of Diagnostics 1317 Program Flow Charts 1331 Program ØLAY15 1332 Subroutine WCMNT 1338 Subroutine MISCNT 1338 Subroutine MISCNT 1349 Subroutine CDL 1361 Subroutine FDEW 1361 Subroutine TBEWI1 1382 Subroutine TBEWI1 1382 Subroutine TBEWI1 1392 Subroutine PRIM 1397 Overlay (16,0) - Design Data for Torque-Box Analysis 1403 Program Table of Contents and References, and Table of Diagnostics 1405 Program Flow Charts 1419 Program Flow Charts 1428 Subroutine MTLCW 1428 Subroutine MTLCW 1428 Subroutine MTLFW 1437 Subroutine MTLFW 1437 Subroutine MTLFW 1437 Subroutine GJCAL 1448 Subroutine GJSI 1457 Subroutine GJSI 1457 Subroutine GJST 1460 Subroutine ABDW 1476 Subroutine ABDW 1476 Subroutine ABDW 1476 Subroutine ABDW 1476 Subroutine YBSET 1481 Subroutine YBSET 1481		
and Table of Diagnostics Program Flow Charts Program @LAY15 Subroutine WC@NT Subroutine MISCNT Subroutine MISCNT Subroutine MISCNT Subroutine FDIS Subroutine FDIS Subroutine FDIS Subroutine TBFWI1 Subroutine CT@T2 Subroutine PRTM Subroutine MICW Analysis Program Table of Contents and References, and Table of Diagnostics Program Flow Charts Subroutine WDDATA Subroutine WDDATA Subroutine MTLCW Subroutine MTLFW Subroutine MTLFW Subroutine MTLFW Subroutine AL@AD Subroutine GJCAL Subroutine GJCAL Subroutine GJTT Subroutine CNSTC Subroutine ABDW Subroutine YBSET Subroutine YBSET Subroutine YBSET Subroutine SS2 Subroutine SS2	Masses, Weight and Mass Properties Analysis	1315
Program Flow Charts 1331		
Program ØLAY15 1332 Subroutine WCØNT 1335 Subroutine MISCNT 1338 Subroutine MISCNT 1349 Subroutine CDL 1361 Subroutine FDIS 1370 Subroutine TBFWI1 1382 Subroutine CTØT2 1392 Subroutine PRIM 1397 Overlay (16,0) - Design Data for Torque-Box Analysis 1403 Program Table of Contents and References, and Table of Diagnostics 1405 Program Flow Charts 1419 Program ØLAY16 1420 Subroutine WDDATA 1423 Subroutine WDDATA 1423 Subroutine MTLFW 1432 Subroutine MTLFW 1432 Subroutine MTLFW 1432 Subroutine ALØAD 1440 Subroutine GJCAL 1448 Subroutine GJSI 1457 Subroutine GJSI 1457 Subroutine GJTT 1460 Subroutine ALBOW 1476 Subroutine ABDW 1476 Subroutine ABDW 1476 Subroutine SS2 1488 Subroutine SS2 SUBROUTINE		
Subroutine WCØNT 1335	Program Flow Charts	1331
Subroutine WC@NT 1335 1338 1338 1338 1338 1338 1338 1338 1338 1339 1349 1349 1361 1361 1361 1361 1361 1361 1361 1362 1361 1362 1361 1362 13	Program ØLAY15	1332
Subroutine MISCIT 1349 Subroutine CDL 1561 Subroutine FDIS 1370 Subroutine TBFWI1 1382 Subroutine CTØT2 1392 Subroutine PRTM 1397 Overlay (16,0) - Design Data for Torque-Box Analysis 1403 Program Table of Contents and References, and Table of Diagnostics 1405 Program Flow Charts 1419 Program ØLAY16 1420 Subroutine WDDATA 1423 Subroutine MTLCW 1428 Subroutine MTLFW 1432 Subroutine MTLFW 1437 Subroutine MTLFW 1437 Subroutine ALØAD 1440 Subroutine GJCAL 1448 Subroutine GJCAL 1448 Subroutine GJCT 1460 Subroutine CNSTC 1465 Subroutine ABDW 1476 Subroutine SS2 1488	Subroutine WCØNT	
Subroutine CDL 1361 Subroutine FDIS 1370 Subroutine TBFWI1 1382 Subroutine CTØT2 1392 Subroutine PRTM 1397 Overlay (16,0) - Design Data for Torque-Box Analysis 1403 Program Table of Contents and References, and Table of Diagnostics 1405 Program Flow Charts 1419 Program ØLAY16 1420 Subroutine WDDATA 1423 Subroutine MTLCW 1428 Subroutine MTLFW 1437 Subroutine MTLFW 1437 Subroutine AIØAD 1440 Subroutine GJSI 1457 Subroutine GJSI 1457 Subroutine GJSI 1466 Subroutine CNSTC 1465 Subroutine ABDW 1476 Subroutine SS2 1488	Subroutine MISCNT	1338
Subroutine FDIS Subroutine TBFWI1 Subroutine CTØT2 Subroutine PRTM Overlay (16,0) - Design Data for Torque-Box Analysis Program Table of Contents and References, and Table of Diagnostics Program Flow Charts 1405 Program Flow Charts Program ØLAY16 Subroutine WDDATA Subroutine WTLCW Subroutine MTLCW Subroutine MTLFW Subroutine MTLFW Subroutine GJCAL Subroutine GJSI Subroutine GJSI Subroutine GJSI Subroutine GJTT Subroutine GJST Subroutine CNSTC Subroutine ABDW Subroutine ABDW Subroutine SS2 1488	Subroutine MISCIT	1349
Subroutine TBFWII 1382 Subroutine CTØT2 1392 Subroutine PRTM 1397 Overlay (16,0) - Design Data for Torque-Box Analysis 1403 Program Table of Contents and References, and Table of Diagnostics 1405 Program Flow Charts 1419 Program ØLAY16 1420 Subroutine WDDATA 1423 Subroutine MTLCW 1428 Subroutine MTLFW 1432 Subroutine MTLFW 1437 Subroutine MTLPW 1437 Subroutine GJCAL 1448 Subroutine GJSI 1457 Subroutine GJSI 1457 Subroutine CNSTC 1465 Subroutine YBSET 1481 Subroutine SS2 1488		1361
Subroutine CTØT2 Subroutine PRTM Overlay (16,0) - Design Data for Torque-Box Analysis Program Table of Contents and References, and Table of Diagnostics Program Flow Charts 1405 Program Flow Charts 1405 Program ØLAY16 Subroutine WDDATA Subroutine MTLCW Subroutine MTLFW Subroutine MTLFW Subroutine MTLFW Subroutine GJCAL Subr		1370
Subroutine PRTM Overlay (16,0) - Design Data for Torque-Box Analysis Program Table of Contents and References, and Table of Diagnostics Program Flow Charts 1405 Program Flow Charts 1419 Program ØLAY16 Subroutine WDDATA Subroutine MTLCW Subroutine MTLCW Subroutine MTLFW Subroutine MTLFW Subroutine MTLPW Subroutine GJCAL		1382
Overlay (16,0) - Design Data for Torque-Box Analysis 1403 Program Table of Contents and References, and Table of Diagnostics 1405 Program Flow Charts 1419 Program ØLAY16 1420 Subroutine WDDATA 1423 Subroutine MTLCW 1428 Subroutine MTLFW 1432 Subroutine MTLFW 1437 Subroutine ALØAD 1440 Subroutine GJCAL 1448 Subroutine GJSI 1457 Subroutine GJTT 1460 Subroutine CNSTC 1465 Subroutine YBSET 1481 Subroutine SS2 1488		1392
Program Table of Contents and References, and Table of Diagnostics 1405 Program Flow Charts 1419 Program ØLAY16 1420 Subroutine WDDATA 1423 Subroutine MTLCW 1428 Subroutine MTLFW 1432 Subroutine MTLPW 1437 Subroutine ALØAD 1440 Subroutine GJCAL 1448 Subroutine GJSI 1457 Subroutine GJTT 1460 Subroutine CNSTC 1465 Subroutine ABDW 1476 Subroutine SS2 1488	Subroutine PRTM	1397
Program Table of Contents and References, and Table of Diagnostics 1405 Program Flow Charts 1419 Program ØLAY16 1420 Subroutine WDDATA 1423 Subroutine MTLCW 1428 Subroutine MTLFW 1432 Subroutine MTLFW 1437 Subroutine ALØAD 1440 Subroutine GJCAL 1448 Subroutine GJSI 1457 Subroutine GJTT 1460 Subroutine CNSTC 1465 Subroutine ABDW 1476 Subroutine SS2 1488	Overlay (16,0) - Design Data for Torque-Box	
Table of Diagnostics Program Flow Charts 1405 Program Flow Charts 1420 Subroutine WDDATA Subroutine MTLCW Subroutine MTLFW Subroutine MTLPW Subroutine ALØAD Subroutine GJCAL Subroutine GJSI Subroutine GJTT Subroutine GJTT Subroutine CNSTC Subroutine ABDW Subroutine SS2 Subroutine SS2 Subroutine SS2	Analysis	1403
Program Flow Charts Program ØLAY16 Subroutine WDDATA Subroutine MTLCW Subroutine MTLFW Subroutine MTLPW Subroutine ALØAD Subroutine GJCAL Subroutine GJSI Subroutine GJSI Subroutine GJTT Subroutine GJTT Subroutine CNSTC Subroutine ABDW Subroutine YBSET Subroutine SS2 1488		
Program ØLAY16 Subroutine WDDATA Subroutine MTLCW Subroutine MTLFW Subroutine MTLPW Subroutine ALØAD Subroutine GJCAL Subroutine GJCAL Subroutine GJSI Subroutine GJTT Subroutine CNSTC Subroutine ABDW Subroutine ABDW Subroutine SS2 1488		1405
Subroutine WDDATA Subroutine MTLCW Subroutine MTLFW Subroutine MTLPW Subroutine ALDAD Subroutine GJCAL Subroutine GJSI Subroutine GJTT Subroutine GJTT Subroutine CNSTC Subroutine ABDW Subroutine YBSET Subroutine SS2 1488	Program Flow Charts	1419
Subroutine MTLCW Subroutine MTLFW Subroutine MTLPW Subroutine ALØAD Subroutine GJCAL Subroutine GJSI Subroutine GJTT Subroutine GJTT Subroutine CNSTC Subroutine ABDW Subroutine YBSET Subroutine SS2 1488		1420
Subroutine MTLFW Subroutine MTLPW Subroutine ALØAD Subroutine GJCAL Subroutine GJSI Subroutine GJTT Subroutine GJTT Subroutine CNSTC Subroutine ABDW Subroutine YBSET Subroutine SS2 1488		
Subroutine MTLPW Subroutine ALØAD Subroutine GJCAL Subroutine GJSI Subroutine GJTT Subroutine CNSTC Subroutine ABDW Subroutine YBSET Subroutine SS2 1437 1440 1448 1448 1448 1457 1460 1465 1465 1465 1476 1476 1481 1481		
Subroutine ALØAD Subroutine GJCAL Subroutine GJSI Subroutine GJTT Subroutine CNSTC Subroutine CNSTC Subroutine ABDW Subroutine YBSET Subroutine SS2 1488		
Subroutine GJCAL 1448 Subroutine GJSI 1457 Subroutine GJTT 1460 Subroutine CNSTC 1465 Subroutine ABDW 1476 Subroutine YBSET 1481 Subroutine SS2 1488		
Subroutine GJSI 1457 Subroutine GJTT 1460 Subroutine CNSTC 1465 Subroutine ABDW 1476 Subroutine YBSET 1481 Subroutine SS2 1488	<u>'</u>	
Subroutine GJTT 1460 Subroutine CNSTC 1465 Subroutine ABDW 1476 Subroutine YBSET 1481 Subroutine SS2 1488		
Subroutine CNSTC 1465 Subroutine ABDW 1476 Subroutine YBSET 1481 Subroutine SS2 1488		
Subroutine ABDW 1476 Subroutine YBSET 1481 Subroutine SS2 1488		
Subroutine YBSET 1481 Subroutine SS2 1488		
Subroutine SS2 1488		
		1491

Section	Page
Overlay (17,0) - Data Generation and Output	it
Data Processing	1495
Program Table of Contents and Referen	nces, and
Table of Diagnostics	1497
Program Flow Charts	1509
Program ØLAY17	1510
Subroutine WDDATA	1513
Subroutine PRTD	1525
Subroutine TBFWI	1537
Subroutine WFLDD	1547
Subroutine W/FDD	1552
Subroutine TPINT	1563
Subroutine CTØT	1568
Subroutine Cipi	1573
Subtouchie Finip	15/3
APPENDIX C - PROGRAM FLOW CHARTS, OVERLAYS (9,0) AND (10,0)	1603
Overlay (9,0) - Torque-Box Structural Synt	chesis/
Weight Analysis for Metallic Designs - N	lo. 1 1607
Program Table of Contents and Referen	ices, and
Table of Diagnostics	1609
Program Flow Charts	1621
Program ØLAY9	1622
Subroutine PRØG	1625
Subroutine DWYBA	1633
Subroutine DEADW	1638
Subroutine VLØAD	1642
Subroutine TBØPT	1646
Subroutine PIVØT	1660
Subroutine TEE	1672
Subroutine TEL	1676
Subroutine CSECW	1680
Subroutine DLPVT	1684
Subroutine PRTA	1693
Subroutine PRTH	1703
Overlay (10,0) - Torque-Box Structural Syn	nthesis/
Weight Analysis for Metallic Designs - N	· ·
Program Table of Contents and Referen	nces, and
Table of Diagnostics	1710

Section	Page
Program Flow Charts s	1733
Program ØLAY10	1734
Subroutine CNSTR	1737
Subroutine SECTD	1748
Subroutine SFSCH	1761
Subroutine BØT	1780
Subroutine BØTC	1791
Subroutine TSCH	1795
Subroutine STBAR	1811
Subroutine STRG	1817
Subroutine STRCØ	1833
Subroutine STRIL	1837
Subroutine STRIB	1842
Subroutine SRRIB	1848
Subroutine STWEB	1851
Subroutine SKWEB	1857
Subroutine EIGJC	1860
Subroutine VFCAL	1865
Subroutine WTCAL	1871
Subroutine BHDJT	1878
Subroutine RTRIB	1887
Subroutine WTPIN	1890
Subroutine CG3P	1894
Subroutine SS	1899
Subroutine PRTB	1902
Subroutine PRTC	1907
Subroutine PRTBK	1911
ADDENDIY D - DEOCRAM CLOW CHARTS OWEDLAY (19 0)	1070
APPENDIX D - PROGRAM FLOW CHARTS, OVERLAY (18,0)	1939
Overlay (18,0) - Torque-Box Structural Synthesis/	1941
Weight Analysis for Advanced Composite Designs	
Program Table of Contents and References, and	
Table of Diagnostics	1943
Program Flow Charts	1969
Program ØLAY18	1970
Subroutine ATBØPT	1973
Subroutine ACLØAD	1982
Subroutine TEMPC	1990
Subroutine AVLOAD	1996
Subroutine ACPRØG	2000
Subroutine CKSTAB	2006

Section			Page
	Subroutine ACWMS		2012
	Subroutine ACWFDH		2027
	Subroutine CKSFDH		2034
	Subroutine WEIGH1		2038
	Subroutine ACWRBS		2044
	Subroutine ACWSTR		2057
	Subroutine ACMRSK		2074
	Subroutine ACSTRG		2079
· ,	Subroutine WEIGH2		2086
·	Subroutine ASTIFF		2090
	Subroutine ACEIGJ		2096
	Subroutine ACNSTR		2100
	Subroutine ACPRTA		2111
	Function XN		2123
	Subroutine WTCAL		2126
	Subroutine BHDJT		2128
	Subroutine RTRIB		2130
	Subroutine WTPIN		2132
	Subroutine DWYBA		2134
	Subroutine DEADW		2136
	Subroutine CSECW		2138
	Subroutine PIVØT		2140
	Subroutine TEE		2142
	Subroutine TEL		2144
	Subroutine DLPVT		2146
	Subroutine PRTB		2148
	Subroutine PRTC		2150
	Subroutine PRTH		2152
APPENDIX E - PROGRAM	LISTINGS, OVERLAYS (8,0), (14.0), (15.0), (16.0)	
AND (1	7,0)		2179
	rlay (8,0) - Input Data Pro	cessing and Geometry	
A	nalysis		2185
	Program ØLAY8		2106
	Subroutine CCNTL		2186
	Subroutine CASE		2186
	Subroutine GEØMW		2193 2195
	Subroutine GEØMC		2195
	Subroutine VSGE@M		2203
	Subroutine TBWDC		2212
	Subroutine ABØXC		2216
¥.	Subroutine DMAY		2218
			10

	Page
Subroutine CAERØ	2220
Subroutine SWPXYP	2220
Subroutine PRTG	2221
Subroutine GCOMP	2224
Overlay (14,0) - Leading and Trailing Edge Structures,	
Weight and Mass Properties Analysis	2229
Program ØLAY14	2230
Subroutine WLETE	2230
Subroutine GCNTL	2234
Subroutine LEWT	2240
Subroutine TEWT	2246
Subroutine TEDEV	2249
Subroutine TEWTI	2253
Subroutine LETEI	
	2259
Subroutine CTØT1	2266
Overlay (15,0) - Fuel, Contents and Concentrated	
Masses, Weight and Mass Properties Analysis	2269
Program ØLAY15	2270
Subroutine WOØNT	2270
Subroutine MISCNT	2271
Subroutine MISCIT	2278
Subroutine CDL	2286
Subroutine FDIS	2291
Subroutine TBFWI1	2299
Subroutine C1ØT2	2305
Subroutine PRTM	
	2307
Overlay (16,0) - Design Data for Torque-Box	
Analysis	2309
Program ØLAY16	0550
C. I	2310
C. 1. A. 1. A CONT. COLU.	2310
C 1	2313
0.1 1000 000	2315
	2318
	2319
	2324
	2330
	2331
Subroutine CNSTC	2333
Conference to a ADDM	2339

Section

Section	Maria de la companya	Page
	Subroutine YBSET	
	Subroutine SS2	2341
	Subroutine VLØAD1	2344
	Subtout the Vipabi	2345
	Overlay (17,0) - Data Generation and Output Data	
	Processing	2349
	Program ØLAY17	
,	Subroutine WØDATA	2350
	Subroutine PRTD	2350
	Subroutine TBFWI	2359
	Subroutine WFLDD	2367
	Subroutine WVFDD	2373
	Subroutine TPINT	2376
	Subroutine CTØT	2385
	Subroutine PINTO	2387
	Subtouctive Pinty	2389
APPENDIX F -	PROGRAM LISTINGS, OVERLAYS (9,0), (10,0) AND (18,0)	2417
	Overlay (9,0) - Torque-Rox Structural Synthesis/	
9,	Weight Analysis for Metallic Designs - No. 1	2423
	Program ØLAY9	
	Subroutine PRØG	2424
	Subroutine DWYBA	2424
	Subroutine DEADW	2429
	Subroutine VLØAD	2432
	Subroutine TBØPT	2434
	Subroutine PIVØT	2436
	Subroutine TEE	2443
	Subroutine TEL	2450
	Subroutine CSECW	2452
	Subroutine DLPVT	2453
	Subroutine PRTA	2455
	Subroutine PRTH	2461
	Subjudine PRIII	2466
	Overlay (10,0) - Torque-Box Structural Synthesis/	
	Weight Analysis for Metallic Designs - No. 2	2469
	Due sweet ALANIA	= 1 7 7
	Program ØLAY10	2470
	Subroutine CNSTR	2470
	Subroutine SECTU	2477
	Subroutine SFSCH	2485
	Subroutine BØT	2494
	Subroutine BØTC	2497

Section	Page
Subroutine TSCH	2498
Subroutine STBAR	2507
Subroutine STRG	2509
Subroutine STRG®	2514
Subroutine STRIL	2516
Subroutine STRIB	2518
Subroutine SRRIB	2520
Subroutine STWEB	2521
Subroutine SKWEB	2523
Subroutine EIGJC	2524
Subroutine VFCAL	2528
Subroutine WTCAL	2531
Subroutine BHDJT	2537
Subroutine RTRIB	2541
Subroutine WTPIN	2542
Subroutine CG3P	2544
Subroutine SS	2545
Subroutine PRTB	2546
Subroutine PRTC	2548
Subroutine PRTBK	2550
Overlay (18,0) - Torque-Box Structural Synthesis/	
.Weight Analysis for Advanced Composite Designs	2553
Program ØLAY18	2554
Subroutine ATBØPT	2554
Subroutine ACLØAD	2561
Subroutine TEMPC	2566
Subroutine AVI/DAD	2569
Subroutine ACPRØG	2572
Subroutine CKSTAB	2577
Subroutine ACWMS	2580
Subroutine ACWFDH	2590
Subroutine CKSFDH	2594
Subroutine WEIGH1	2595
Subroutine ACWRBS	2598
Subroutine ACWSTR Subroutine ACMRSK	2606
Subroutine ACSTRG	2615
Subroutine WEIGH2	2619
Subroutine ASTIFF	2622
Subroutine ACEIGJ	2624
Subroutine ACNSTR	2629
Subroutine ACPRTA	2632
Function XN	2642
	2650

Section		Page
	Subroutine WTCAL	2650
	Subroutine BHDJT	2650
	Subroutine RTRIB	2651
	Subroutine WTPIN	2651
	Subroutine DWYBA	2651
	Subroutine DFADW	2651
	Subroutine CSECW	2651
	Subroutine PIVØT	2651
,	Subroutine TEE	2652
	Subroutine TEL	2652
	Subroutine DLPVT	2652
	Subroutine PRTB	2652
	Subroutine PRTC	2652
	Subroutine PRTH	2653

LIST OF ILLUSTRATIONS

Figure	Title	Page
1	Wing and Empennage Module, Overlay Execution Flow Diagram.	33
2	Overlay (8,0) - Input Data Processing and Geometry Analysis	68
3	Overlay (14,0) - Leading and Trailing Edge Structures, Weight and Mass Properties Analysis	69
4 ′	Overlay (15,0) - Fuel, Contents and Concentrated Masses, Weight and Mass Properties Analysis	70
5	Overlay (16.0) - Design Data for Torque-box Analysis	71
6	Overlay (9,0) - Torque-box Structural Synthesis/Weight	71
U	Analysis for Metallic Designs - No. 1	72
7	Overlay (10.0) - Torque-box Structural Synthesis/Weight	, -
•	Analysis for Metallic Designs - No. 2	73
8	Overlay (18,0) - Torque-box Structural Synthesis/Weight	. 5
J	Analysis for Advanced Composite Designs	74
9	Overlay (17,0) - Data Generation and Output Data	
•	Processing	75
10	Weight Summary, Wing Group	84
11	Weight Summary, Horizontal Tail Group	86
12	Weight Summary, Vertical Tail Group	88
13	General Program Functional Flow Diagram	259
14	Logic and Execution Subroutine Flow Diagram for	
•	Lifting Surface Structural Weight Estimation Module	260
15	Structural Synthesis/Weight Analysis Reference System	
	and Weight Integration	261
16	Idealized Lifting Surface Planform	264
17	Blended Wing Planform	267
18	Idealized Box Section	269
19	Blended Wing Torque-Box Geometry	270
20	Blended Wing Normalized Geometry	271
21	Variable-Sweep Wing Geometry Idealization	273
22	Mass Properties Integration Grid System	275
23	Leading Edge Structure Weight Distribution	278
24	Leading Edge Structure Chordwise Weight Distribution	279
25	Trailing Edge Structure Chordwise Weight Distribution	281
26	Wing Fuel Distribution	282
27	Contents Weight Distribution	285
28	Externally Mounted Component Description	286
29	Loads Rotation and Translation	292
30	Typical Material Stress-Strain Curve and Evaluation	205
71	Data	295
31	Effective Structural Width Idealization	298

Figure	•	Page
32	Multirib Stringer Design Options	301
33	Multispar Design Options	302
34	First Search Level, Multirib or Multispar Construction	305
35	Second Search Level, Multirib	305
36	Interpolation Scheme for Stress Level	309
37	Stringer-Column Geometry	313
38	Composite-Ply Orientations	323
39	Laminate Configuration	324
40	Advanced Composite Structures Checked for Stability	332
41	Torque-Box Cross Section	344
42	Logic and Computational Flow Diagram for Total Multirib	
	Torque-Box Optimization, Subroutine ACWRBS	352
43	Logic and Computational Flow Diagram for Synthesis of	
	Stringer Stiffened Covers, Subroutine ACWSTR	353
44	Logic and Computational Flow Diagram for Skin/Stringer	
	Load and Skin Stability, Subroutine ACMRSK	354
45	Stringer Types for Multirib Torque-Box Covers	353
46	Leading and Trailing Edge Control Geometry	363
47	Geometry Description for Trailing Edge Device	
	No. 3, 4, and 5 - Trailing Edge Flaps	370
48	Lifting Surface Component Weight Summary	374
49	Torque-Box Weight Summary, Page 1	375
50	Torque-Box Weight Summary, Page 2, Pivot Type	376
51	Flutter, Flexible Airloads, Weight Optimization Design	
	Loop (Stand-Alone Programs)	379
52	Flexible Loads Analysis Mass Distribution and	
7221	Integration Reference System	381
53	Flutter Optimization Analysis Mass Distribution and	
1 = 41	Integration Reference System	382
54	Structural Synthesis/Weight Analysis Reference	11.
	System and Weight Integration	384
55	Mass Properties Integration Grid System	386
56	Overlay (8,0), Input Data Processing and Geometry	400
	Analysis	420
57	Overlay (8,0), Logic Flow Diagram	421
58	Geometry Summary Data - Page 1	546
59	Geometry Summary Data - Page 2	547
60	Geometry Summary Data - Swent Platform Position	548

LIST OF TABLES

Subprogram List, Wing and Empennage Module 34	Table	Title		Page
Number Storage File Records, Wing and Empennage Module 98	1	Subprogram List, Wing and Empennage Module	•	34
Mass Storage File 1 Records, Wing and Empennage Module 90	2	Wing and Empennage Module Overlay Subprogram List		76
5 FDAT Array, Final Output Data. 98 6 XMISC Array. 100 7 IP Array, Print Control Data 104 8 D Array, Input Variable Data 109 9 ND Array 191 10 DC Array, Miscellaneous Constants. 202 11 Array References, Array D. 202 12 D Array Variables Cross-Reference List 231 13 Array References, Array DD. 243 14 Array References, Array DD. 245 15 Torque-Box Elements, Section Stiffness Calculations. 356 16 Sample Wing Torque-Box Program Calibration and Weight 106 16 Sample Wing Torque-Box Program Calibration and Weight 107 17 Flap-Type Indicator and Correlation Coefficients 372 18 Torque-Box Summary Page Line Item Definitions. 377 19 External References, Overlay (8,0) Routines. 418 20 WD Array, Wing and Empennage Variable Data, 423 21 SPAL Array, Wing and Empennage Flutter Analysis Data, 423 </td <td>3</td> <td>Overlay Blank Common Requirements</td> <td>•</td> <td>82</td>	3	Overlay Blank Common Requirements	•	82
6 / XMISC Array. 100 7 IP Array, Print Control Data 104 8 D Array, Input Variable Data 104 9 MD Array 191 10 DC Array, Miscellaneous Constants 202 11 Array References, Array D. 209 12 D Array Variables Cross-Reference List 231 13 Array References, Array ND 243 14 Array References, Array ND 243 14 Array References, Array ND 255 15 Torque-Box Elements, Section Stiffness Calculations 356 16 Sample Wing Torque-Box Program Calibration and Weight Index Coefficients 359 17 Flap-Type Indicator and Correlation Coefficients 372 18 Torque-Box Summary Page Line Item Definitions 377 19 External References, Overlay (8,0) Routines 418 20 WD Array, Wing and Empennage Variable Data,	4	Mass Storage File 1 Records, Wing and Empennage Module	•	90
104	5	FDAT Array, Final Output Data	•	98
8 D Array, Input Variable Data 109 9 ND Array 191 10 DC Array, Miscellaneous Constants 202 11 Array References, Array D. 209 12 D Array Variables Cross-Reference List 231 13 Array References, Array DC 243 14 Array References, Array DC 255 15 Torque-Box Elements, Section Stiffness Calculations 356 16 Sample Wing Torque-Box Program Calibration and Weight Index Coefficients 359 17 Flap-Type Indicator and Correlation Coefficients 372 18 Torque-Box Summary Page Line Item Definitions 377 19 External References, Overlay (8,0) Routines 418 20 WD Array, Wing and Empennage Variable Data 425 21 SPAL Array, Wing and Empennage Flutter Analysis Data, Mass Storage File 1, Record 21 425 21 SPAL Array, Variable Data Subarray for Nonlinear Leading Edges 436 22 DLE Array, Variable Data Subarray for Nonlinear Trailing Edges 438 23 DTE Array, Airfoil Cross-Section Data 440	6 /	XMISC Array		100
9 ND Array 191 10 DC Array, Miscellaneous Constants. 202 11 Array References, Array D. 209 12 D Array Variables Cross-Reference List 231 13 Array References, Array ND 243 14 Array References, Array DC 255 15 Torque-Box Elements, Section Stiffness Calculations. 356 16 Sample Wing Torque-Box Program Calibration and Weight Index Coefficients 359 17 Flap-Type Indicator and Correlation Coefficients 372 18 Torque-Box Summary Page Line Item Definitions. 377 19 External References, Overlay (8,0) Routines. 418 20 WD Array, Wing and Empennage Variable Data, Mass Storage File 1, Record 21 423 21 SPAL Array, Wing and Empennage Flutter Analysis Data, Mass Storage File 1, Record 38 430 22 DLE Array, Variable Data Subarray for Nonlinear Leading Edges 436 23 DTE Array, Variable Data Subarray for Nonlinear Trailing Edges 438 24 DTC Array, Variable Data Subarray for Nonlinear Thickness Ratios 440 25	7	IP Array, Print Control Data	•	104
DC Array, Miscellaneous Constants. 202	8	D Array, Input Variable Data	•	109
11 Array References, Array D. 209 12 D Array Variables Cross-Reference List 231 13 Array References, Array ND 243 14 Array References, Array DC 255 15 Torque-Box Elements, Section Stiffness Calculations. 356 16 Sample Wing Torque-Box Program Calibration and Weight Index Coefficients 359 17 Flap-Type Indicator and Correlation Coefficients 372 18 Torque-Box Summary Page Line Item Definitions 377 19 External References, Overlay (8,0) Routines 418 20 WD Array, Wing and Empennage Variable Data, Mass Storage File 1, Record 21 425 21 SPAL Array, Wing and Empennage Flutter Analysis Data, 430 430 22 DLE Array, Variable Data Subarray for Nonlinear Leading Edges 436 23 DIE Array, Variable Data Subarray for Nonlinear Trailing Edges 438 24 DITC Array, Variable Data Subarray for Nonlinear Thickness Ratios 440 25 DAF Array, Airfoil Cross-Section Data 442 26 Polynomial Coefficients of Properties of Normalized Airfoils <	9	ND Array	•	191
D Array Variables Cross-Reference List	10	DC Array, Miscellaneous Constants		202
D Array Variables Cross-Reference List	11	Array References, Array D		209
13 Array References, Array ND 243 14 Array References, Array DC 255 15 Torque-Box Elements, Section Stiffness Calculations 356 16 Sample Wing Torque-Box Program Calibration and Weight Index Coefficients 359 17 Flap-Type Indicator and Correlation Coefficients 372 18 Torque-Box Summary Page Line Item Definitions 377 19 External References, Overlay (8,0) Routines 418 20 WD Array, Wing and Empennage Variable Data,	12	D Array Variables Cross-Reference List	•	
14 Array References, Array DC 255 15 Torque-Box Elements, Section Stiffness Calculations 356 16 Sample Wing Torque-Box Program Calibration and Weight Index Coefficients 359 17 Flap-Type Indicator and Correlation Coefficients 372 18 Torque-Box Summary Page Line Item Definitions 377 19 External References, Overlay (8,0) Routines 418 20 WD Array, Wing and Empennage Variable Data,	13	Array References, Array ND		
15 Torque-Box Elements, Section Stiffness Calculations. 356 16 Sample Wing Torque-Box Program Calibration and Weight Index Coefficients 359 17 Flap-Type Indicator and Correlation Coefficients 372 18 Torque-Box Summary Page Line Item Definitions 377 19 External References, Overlay (8,0) Routines 418 20 WD Array, Wing and Empennage Variable Data,	14	Array References, Array DC		The state of
Sample Wing Torque-Box Program Calibration and Weight Index Coefficients	15			
17		Sample Wing Torque-Box Program Calibration and Weight		
Torque-Box Summary Page Line Item Definitions. 377 External References, Overlay (8,0) Routines. 418 WD Array, Wing and Empennage Variable Data, Mass Storage File 1, Record 21	17			
External References, Overlay (8,0) Routines. 418	_			
WD Array, Wing and Empennage Variable Data, Mass Storage File 1, Record 21				
SPAL Array, Wing and Empennage Flutter Analysis Data, Mass Storage File 1, Record 38		WD Array, Wing and Empennage Variable Data,		
Mass Storage File 1, Record 38	21		•	425
DLE Array, Variable Data Subarray for Nonlinear Leading Edges	21		•	430
DTE Array, Variable Data Subarray for Nonlinear Trailing Edges	22	DLE Array, Variable Data Subarray for Nonlinear		
Trailing Edges		Leading Edges	•	436
DTC Array, Variable Data Subarray for Nonlinear Thickness Ratios	23			438
Thickness Ratios	24			
DAF Array, Airfoil Cross-Section Data. 442 Polynomial Coefficients of Properties of Normalized Airfoils. 448 Airfoil Ordinates. 449 AFD Array. 450 TAF Array, Airfoil Depth Data. 451 TXY Array, Geometry Data 455 TXY Array, Torque-Box Geometry Data. 460 TLE Array, Leading Edge Geometry Data 463 TARRAY, Trailing Edge Geometry Data 463 T Array, Locations 1-200, 489-553. 464				440
Polynomial Coefficients of Properties of Normalized Airfoils	25			442
27 Airfoil Ordinates. 449 28 AFD Array. 450 29 TAF Array, Airfoil Depth Data. 451 30 TXY Array, Geometry Data. 455 31 YTB Array, Torque-Box Geometry Data. 460 32 YLE Array, Leading Edge Geometry Data. 462 33 YTE Array, Trailing Edge Geometry Data. 463 34 T Array, Locations 1-200, 489-553. 464	26	Polynomial Coefficients of Properties of	-	
28 AFD Array. 450 29 TAF Array, Airfoil Depth Data. 451 30 TXY Array, Geometry Data. 455 31 YTB Array, Torque-Box Geometry Data. 460 32 YLE Array, Leading Edge Geometry Data. 462 33 YTE Array, Trailing Edge Geometry Data 463 34 T Array, Locations 1-200, 489-553. 464	27		•	
29 TAF Array, Airfoil Depth Data. 450 30 TXY Array, Geometry Data. 455 31 YTB Array, Torque-Box Geometry Data. 460 32 YLE Array, Leading Edge Geometry Data. 462 33 YTE Array, Trailing Edge Geometry Data. 463 34 T Array, Locations 1-200, 489-553. 464				
30 TXY Array, Geometry Data 455 31 YTB Array, Torque-Box Geometry Data 460 32 YLE Array, Leading Edge Geometry Data 462 33 YTE Array, Trailing Edge Geometry Data 463 34 T Array, Locations 1-200, 489-553 464				
31 YTB Array, Torque-Box Geometry Data				
32 YLE Array, Leading Edge Geometry Data				
33 YTE Array, Trailing Edge Geometry Data				
34 T Array, Locations 1-200, 489-553		YTE Array Trailing Edge Geometry Data	•	
7.				
	35			

TGJ Array, Flutter Analysis Data 482	Table	Title	Page
TFRUK Array, Geometry Array for Mass Properties	36	TGJ Array, Flutter Analysis Data	482
Calculations	37		
YTC Array. 490			485
YTC Array. 490 40	38	YC Array, Overlay (8,0)	487
40 TD Array, Printed Output Geometry Data	39		490
TS Array South Data Source Matrix for Adjustment of Variable Data, Array D	40		493
Data, Array D. 505	41		500
43 Variable References, Subroutine CCNTL. 509 44 Variable References, Subroutine CASE 512 45 TT Array, GEMAW. 516 46 Variable References, Subroutine GEMMC. 523 47 Variable References, Subroutine VSCEMM. 526 48 Variable References, Subroutine VSCEMM. 526 49 Variable References, Subroutine TBMDC. 531 50 TR Array, TBMDC and ABMXC. 531 51 TT Array, TBMDC and ABMXC. 532 53 Variable References, Subroutine DMAX 536 54 Variable References, Subroutine DMAX 539 54 Variable References, Subroutine DMAX 539 55 Variable References, Subroutine DMAX 539 56 Variable References, Subroutine PRTG 541 57 Variable References, Subroutine PRTG 542 57 Variable References, Subroutine Variable 551 60 External References, Øverlay (14,0) Routines 556 61 External References, Øverlay (18,0) Routines 556	42 ,	Data Source Matrix for Adjustment of Variable	505
44 Variable References, Subroutine CASE 512 45 TT Array, GEMW. 516 46 Variable References, Subroutine GEMMC. 523 47 Variable References, Subroutine VSGEM. 523 48 Variable References, Subroutine VSGEM. 526 49 Variable References, Subroutine TBMDC. 530 50 TR Array, TBMDC and ABØXC. 531 51 TT Array, TBMDC and ABØXC. 532 52 Variable References, Subroutine DMAX 539 53 Variable References, Subroutine DMAX 539 54 Variable References, Subroutine SMPXYP 544 55 Variable References, Subroutine PXTG 549 57 Variable References, Subroutine COMP. 551 58 Cross-Reference List for Subroutine Variable Reference Tables 552 59 External References, Øverlay (14,0) Routines 553 60 External References, Øverlay (15,0) Routines 556 61 External References, Øverlay (10,0) Routines 562 62 External References, Øverlay	43		
TT Array, GEMNW. S16		· · · · · · · · · · · · · · · · · · ·	
46 Variable References, Subroutine GEØMW. 518 47 Variable References, Subroutine GEØMC. 523 48 Variable References, Subroutine VSGEØM 526 49 Variable References, Subroutine TBMDC. 530 50 TR Array, TBMDC. 531 51 TT Array, TBMDC and ABØXC. 532 52 Variable References, Subroutine DMAX. 539 53 Variable References, Subroutine SMPXYP. 541 55 Variable References, Subroutine SMPXYP. 544 56 Variable References, Subroutine PRTG. 549 57 Variable References, Subroutine COØMP. 551 58 Cross-Reference List for Subroutine Variable Reference Tables 553 59 External References, Øverlay (14,0) Routines 556 60 External References, Øverlay (15,0) Routines 557 61 External References, Øverlay (10,0) Routines 560 62 External References, Øverlay (10,0) Routines 560 63 External References, Øverlay (10,0) Routines 565 65 External Ref	•		
47 Variable References, Subroutine GIØMC. 523 48 Variable References, Subroutine VSCEØM 526 49 Variable References, Subroutine VSCEØM 526 50 TR Array, TBMDC. 530 51 TT Array, TBMDC and ABØXC. 532 52 Variable References, Subroutine ABØXC. 536 53 Variable References, Subroutine DMAX 539 54 Variable References, Subroutine SWPXYP 541 55 Variable References, Subroutine PRTG 549 57 Variable References, Subroutine Variable Reference Tables 551 60 External References, Øverlay (14,0) Routines 556 60 External References, Øverlay (15,0) Routines 557 61 External References, Øverlay (16,0) Routines 558 62 External References, Øverlay (10,0) Routines 560 63 External References, Øverlay (17,0) Routines 560 64 External References, Øverlay (18,0) Routines 562 65 External References, Subroutine WLETE. 570 67 Variable Refer		· ·	
48 Variable References, Subroutine VSGEM 526 49 Variable References, Subroutine TBMDC 530 50 TR Array, TBMDC 531 51 TT Array, TBMDC 532 52 Variable References, Subroutine AMOXC 536 53 Variable References, Subroutine DMAX 539 54 Variable References, Subroutine SMPXYP 544 56 Variable References, Subroutine PRTG 549 57 Variable References, Subroutine COMP. 551 58 Cross-Reference List for Subroutine Variable 551 60 External References, Øverlay (14,0) Routines 556 60 External References, Øverlay (14,0) Routines 556 61 External References, Øverlay (16,0) Routines 557 61 External References, Øverlay (10,0) Routines 560 62 External References, Øverlay (18,0) Routines 562 63 External References, Øverlay (18,0) Routines 562 64 External References, Øverlay (17,0) Routines 562 65 External References, Subroutine WLETE			
Variable References, Subroutine TBWDC			
TR Array, TBMDC	-	•	
TT Array, TBMDC and ABDXC. 532 Variable References, Subroutine ABDXC. 536 Variable References, Subroutine DMAX 539 Variable References, Subroutine CAERD. 541 Variable References, Subroutine SWPXYP 544 Variable References, Subroutine GCOMP. 549 Variable References, Subroutine GCOMP. 551 Reference Tables 553 External References, Øverlay (14,0) Routines 556 External References, Øverlay (15,0) Routines 557 External References, Øverlay (16,0) Routines 558 External References, Øverlay (10,0) Routines 558 External References, Øverlay (10,0) Routines 560 External References, Øverlay (10,0) Routines 560 External References, Øverlay (17,0) Routines 560 External References, Øverlay (17,0) Routines 560 External References, Subroutine WLETE. 570 Variable References, Subroutine TEWT 571 Variable References, Subroutine TEWT 572 Variable References, Subroutine TEWT 573 Variable References, Subroutine WCNT 574 Variable References, Subroutine WCNT 577 Variable References, Subroutine WCNT 577 Variable References, Subroutine WCNT 579 Variable References, Subroutine MISCNT 580			
Variable References, Subroutine ABOXC. 536 Variable References, Subroutine DMAX 539 Variable References, Subroutine DMAX 539 Variable References, Subroutine CAERØ. 541 S5 Variable References, Subroutine SWPXYP 544 S6 Variable References, Subroutine PRTG 549 S7 Variable References, Subroutine OCØMP 551 S8 Cross-Reference List for Subroutine Variable Reference Tables 551 S9 External References, Øverlay (14,0) Routines 556 External References, Øverlay (15,0) Routines 557 61 External References, Øverlay (16,0) Routines 558 62 External References, Øverlay (10,0) Routines 558 63 External References, Øverlay (10,0) Routines 560 64 External References, Øverlay (10,0) Routines 560 65 External References, Øverlay (17,0) Routines 560 66 Variable References, Øverlay (17,0) Routines 560 67 Variable References, Subroutine WLETE 570 Variable References, Subroutine WLETE 571 Variable References, Subroutine TEWT 572 Variable References, Subroutine TEWT 574 Variable References, Subroutine TEWT 575 Variable References, Subroutine MCØNT 577 Variable References, Subroutine MISCNT 580		TT Array TRATC and ADAYC	
Variable References, Subroutine DMAX			
Variable References, Subroutine CAERØ. Variable References, Subroutine SWPXYP Variable References, Subroutine PRTG. Variable References, Subroutine OCOMP. Cross-Reference List for Subroutine Variable Reference Tables Reference Tables Syverlay (14,0) Routines External References, Øverlay (15,0) Routines External References, Øverlay (16,0) Routines External References, Øverlay (16,0) Routines External References, Øverlay (10,0) Routines External References, Øverlay (10,0) Routines External References, Øverlay (10,0) Routines External References, Øverlay (17,0) Routines External References, Øverlay (17,0) Routines Variable References, Subroutine WLETE. Variable References, Subroutine GCNTL. Variable References, Subroutine TEWT. Variable References, Subroutine MCONT. Variable References, Subroutine MCONT. Variable References, Subroutine MCONT. Variable References, Subroutine MISCNT. Synapside References, Subroutine MISCNT. Synapside References, Subroutine MISCNT. Synapside References, Subroutine MISCNT. Synapside References, Subroutine CDL. Variable References, Subroutine CDL. Synapside References, Subroutine CDL. Synapside References, Subroutine CDL.			
Variable References, Subroutine SWPXYP		Variable References Submutine CAFRA	
Variable References, Subroutine PRTG		L'ariable References Subroutine SWPYVP	
Variable References, Subroutine GCOMP. 551 Cross-Reference List for Subroutine Variable Reference Tables		Variable References Subroutine DPTC	
S8 Cross-Reference List Reference Tables 553 59 External References, Øverlay (14,0) Routines 556 60 External References, Øverlay (15,0) Routines 557 61 External References, Øverlay (16,0) Routines 558 62 External References, Øverlay (9,0) Routines 560 63 External References, Øverlay (10,0) Routines 562 64 External References, Øverlay (18,0) Routines 565 65 External References, Øverlay (17,0) Routines 569 66 Variable References, Subroutine WLETE. 570 67 Variable References, Subroutine GCNTL 571 68 Variable References, Subroutine TEWT 572 69 Variable References, Subroutine TEWT 574 70 Variable References, Subroutine TEWT 575 71 Variable References, Subroutine WCØNT 579 72 Variable References, Subroutine MISCNT 580 75 Variable References, Subroutine MISCNT 580 76 Variable References, Subroutine FDIS 584 77		Variable References Subroutine COMP	
Reference Tables		Cross-Reference list for Subroutine Variable	
External References, Øverlay (14,0) Routines	30		553
External References, Øverlay (15,0) Routines	59		
External References, Øverlay (16,0) Routines			
External References, Øverlay (9,0) Routines 560 External References, Øverlay (10,0) Routines 562 External References, Øverlay (18,0) Routines 565 External References, Øverlay (17,0) Routines 569 Wariable References, Subroutine WLETE. 570 Variable References, Subroutine GCNTL. 571 Variable References, Subroutine LEWT 572 Variable References, Subroutine TEWT 574 Variable References, Subroutine TEWTI 575 Variable References, Subroutine TEWTI 576 Variable References, Subroutine TEDEV. 576 Variable References, Subroutine LETEI 577 Variable References, Subroutine WCØNT. 579 Variable References, Subroutine MISCNT 580 Variable References, Subroutine MISCNT 582 Variable References, Subroutine CDL 584 Variable References, Subroutine FDIS 586			
External References, Øverlay (10,0) Routines			560
External References, Øverlay (18,0) Routines			562
External References, Øverlay (17,0) Routines			565
Variable References, Subroutine WLETE			569
Variable References, Subroutine GCNTL. 571 Variable References, Subroutine LEWT 572 Variable References, Subroutine TEWT 574 Variable References, Subroutine TEWTI 575 Variable References, Subroutine TEDEV. 576 Variable References, Subroutine LETEI 577 Variable References, Subroutine WCØNT 579 Variable References, Subroutine MISCNT 580 Variable References, Subroutine MISCIT 582 Variable References, Subroutine CDL 584 Variable References, Subroutine FDIS 586			570
Variable References, Subroutine LEWT	67		571
Variable References, Subroutine TEWT	68		572
Variable References, Subroutine TEWTI	69	The state of the s	574
Variable References, Subroutine TEDEV			575
Variable References, Subroutine LETEI	71		576
Variable References, Subroutine WCØNT	72		577
Variable References, Subroutine MISCNT			579
75 Variable References, Subroutine MISCIT			580
76 Variable References, Subroutine CDL			582
77 Variable References, Subroutine FDIS			584
			586
	78		588

Table			Title													Page
79	Variable R	References.	Subroutine	WDDATA.						٠	•	•		•		589
80			Subroutine													592
81			Subroutine													593
82			Subroutine													594
83			Subroutine													595
84	Variable R	References,	Subroutine	GJCAL .	•	•	•	•	•	•	•	•	•	•	•	598
85	Variable R	References,	Subroutine	GJSI	•	•		•	•	•	•	•	•	•	•	601
86	Variable R	References,	Subroutine	GJTT	•	•	•	•	•	•	•	•	•	•	•	602
87 /	Variable R	References,	Subroutine	CNSTC .	•	•	•		•	•	•		•	•		605
88	Variable R	References,	Subroutine	ABDW .	•	•	•	•	•	•	•	•	•	•	•	608
89	Variable R	References,	Subroutine	YBSET .	•	•	•	•	•	•	•	•	•	•	•	611
90	Variable R	References,	Subroutine	PRØG .	•	•	•	•	•	•	•	•	•	•	•	613
91	Variable R	References,	Subroutine	DEADW .	•	•	•	•	•	•	•	•	•	•	•	617
92	Variable R	References,	Subroutine	DWYBA .		•	•		•	•	•	•	•	•	•	619
93	Variable R	References,	Subroutine	VLØAD .	•	•	•	•	•	•	•	٠	•	•	•	621
94			Subroutine													624
95	Variable R	References,	Subroutine	CSECW .	•	•		•	•	•	•	•	•	•	•	626
96	Variable R	References,	Subroutine	PIVØT .	•	•	•	•	•	•	•	•	•	•	•	627
97	Variable R	References,	Subroutine	TEE	•	•			•	•	•	•	•	•	•	631
98	Variable R	References,	Subroutine	TEL	•	•		•	•	•	•	•	•	•	•	632
99	Variable R	References,	Subroutine	DLPVT .		•			•		•	•	•		•	633
100	Variable R	References,	Subroutine	PRTA	•	•	•	•	•	•	•	•	•	•	•	635
101	Variable R	References,	Subroutine	PRTH	•		•	•	•	•	٠	•	•	•	•	637
102	Variable R	References,	Subroutine	CNSTR .	•	•	•	•	•	•	•	•	•		•	638
103			Subroutine													641
104			Subroutine													644
105	Variable R	References,	Subroutine	BØT	•	•	•	•	•	•	•	•	•	•	•	646
106	Variable R	References,	Subroutine	BØTC	•	•	•	•	•	•	•	•	•	•	•	647
107	Variable R	References,	Subroutine	TSCH	•	•	٠	•	•	•	•	•	•	•	•	648
108	Variable R	References,	Subroutine	STBAR.	•	•	•	•	•	•	•	•	•	•	•	650
109			Subroutine													651
110			Subroutine													652
111			Subroutine													653
112	Variable R	References,	Subroutine	STRIB.	• •	•	•	•	•	٠	•	•	•	•	•	654
113			Subroutine													655
114			Subroutine													656
115			Subroutine													657
116			Subroutine													658
117			Subroutine													659
118			Subroutine													660
119			Subroutine													662
120			Subroutine													663
121	Variable R	References,	Subroutine	WIPIN .	•	•	•	•	•	•	•	•	•	•	•	664
122			Subroutine													665
123			Subroutine													666
124	Variable R	References,	Subroutine	PRTB	•	•	•	•	•	•	•	•	•	•	•	667

Table	Title	Page
125	Variable References, Subroutine PRTBK	668
126	Variable References, Subroutine PRTC	669
127	Variable References, Subroutine ACPRØG	670
128	Variable References, Subroutine ACLØAD	674
129	Variable References, Subroutine TEMPC	676
130	Variable References, Subroutine AVLØAD	678
131	Variable References, Subroutine ATBØPT	681
132	Variable References, Subroutine ACNSTR	. 685
133	Variable References, Subroutine ACWMS	689
134	Variable References, Subroutine CKSTAB	693
135	Variable References, Subroutine WEIGHl	696
136	Variable References, Subroutine ACWFDH	698
137	Variable References, Subroutine CKSFDH	700
138	Variable References, Subroutine ACWRBS	702
139	Variable References, Subroutine ACWSTR	706
140	Variable References, Subroutine ACMRSK	712
141	Variable References, Subroutine ACSTRG	716
142	Variable References, Subroutine WEIGH2	718
143	Variable References, Subroutine ASTIFF	720
144	Variable References, Subroutine ACEIGJ	723
145	Variable References, Function XN	724
146	Variable References, Subroutine ACPRTA	725
147	Variable References, Subroutine WØDATA	729
148	Variable References, Subroutine PRTD	732
149	Variable References, Subroutine TBFWI	734
150	Variable References, Subroutine WFLDD	735
151	Variable References, Subroutine WVFDD	737
152	Variable References, Subroutine TPINT	740
153	Variable References, Subroutine PINTØ	741
154	Variable References, Subroutine CTØT	742
155	Cross-Reference List for Array Core Maps	770
156	DLE Array, Variable Data Subarray for Fixed Leading Edge Structures	774
157	DTE Array, Variable Data Subarray for Fixed Trailing Edge Structures	776
158	DLED1 Array, Variable Data Subarray for Leading Edge Control	//0
	Surfaces	778
159	DLEDK Array, Variable Data Subarray, Leading Edge Control	
146	Surface Analysis Constants	781
160	DTED1 Array, Variable Data Subarray for Trailing Edge Control	
	Surfaces, Spoilers,	783

Table	Title	Page
161	DTED2 Array, Variable Data Subarray for Trailing Edge Flap-Type Control Surfaces	786
162	DSPDK Array, Variable Data Subarray, Spoiler Control Surface Analysis	
163	DFLPK Array, Variable Data Subarray, Trailing Edge Flap Control Surface Analysis	
164	DAILK Array, Variable Data Subarray, Aileron, Elevator, and Rudder Control Surface Analysis	
165 ′	DFSP Array, Variable Data Subarray, TE Flap-Type Control Surface Support Structure Distribution Constants	
166	TG Array	
KT	TGA Array	
¥.	YC Array, Overlays (14,0), (15,0), and (17,0)	804
	TWG Array	
1,	CCW Array	
173	CCI, CCL, and CCT Arrays, Overlay (14,0)	
172	TCS Array, Overlay (14,0)	
173	CID Array, Subroutine LETEI	
174	CLEI and CTEI Arrays	
175	CIØY Array	
176	TGR Array, Subroutine LEWT	
177	TST Array, Subroutine LEWT	834
178	TTED Array	
179	TST Array, Subroutine TEWTI and TEDEV	
180	TGR Array, Subroutine TEWT and TEWTI	
181	TGR Array, Subroutine LETEI	
182	TST Array, Subroutine LETEI	
183	TE Array	
184	TST Array, Subroutine WLETE	
185		
186	OMII Array	862
187	CFL11 and CFL21 Arrays	
188		
189	CKD Array, Overlay (15,0)	
190	TVMT Array	
190	T Array, Locations 201-900	
192		
	TVF Array	
193	CTBI Amou	
194	CTBI Array	
195	WCG Array	
196	ACL Array	
197	ACLT Array	
198	ACVMT and V Arrays	
199	TEIGJ Array	
200	INQ Array	912

Table	Title	Page
201	ENQC Array	• 914
202	CNT Array	
203	STRESS Array	• 920
204	ENX Array	• 922
205	EL Array	
206	IEL Array	• 927
207	SPB Array	• 929
208	SPN Array	• 931
2 09 [°]	TF Array	• 932
210	W Array, Subroutine WEIGHl	• 935
211	TX Array	• 937
212	TXS Array	. 943
213	STRING Array	• 946
214	W Array, Subroutine WEIGH2	949
215	TSF Array	• 951
216	TA Array	• 955
217	CD Array, Locations 1-400, Stiffness Data Arrays	• 957
218	TLC Array, Overlay (18,0)	• 961
219	DDUC and DDLC Arrays	• 968
220	DDIS Array	• 970
221	DDFS and DDRS Arrays	• 972
222	DDSTR Array	
223	DSPLØ Array, Analysis Constants	• 977
224	TDC Array, Overlays (9,0) and (10,0)	• 978
225	TSC Array	• 990
226	TSEC Array	
227	TSS Array, Subroutines SFSCH and TSCH	
228	TSS Array, Subroutine STRIB	
229	TSS Array, Subroutine STWEB	· 1017
230	TWT Array, Locations 1-330, Weight Analysis Data and Constants	. 1020
231	TWT Array, Locations 331-400, Section Weight Per	1020
	Inch Data, Subroutine WTPIN	. 1047
232	TWT Array, Locations 331-400, Center-Section Weight	1047
	Data, Subroutine CSECW	. 1057
233	TWT Array, Locations 1 Through 50 and 331 Through	. 1022
	400, Torque-Box Weight Increment Data for Pivot	
	Designs, Subroutine DLPVT	. 1057
234	PT Array, Subroutine PIVØT	103/
235	S Array, Subroutine PIVØT	. 1075
236	TSS Array, Total Weight Summary Data, Subroutines	
225	TBØPI' and ATBØPT	· 1083
237	TØ Array, Subroutines TBØPT and ATBØPT	. 1004

LIST OF TABLES

Table		•		Tit	:le										Page
A-1	Appendix	References	for	Wing and	1 Emper	nage Modu	le	R	out	tir	ne:	5.	•		1124
B-1	Appendix	References	for	Overlay	(8,0)	Routines.	•	•	•	•	•	•	•	•	1133
B-2	Appendix	References	for	Overlay	(14,0)	Routines	•	•	•	•	•	•	•	•	1134
B-3	Appendix	References	for	Overlay	(15,0)	Routines	•	•	•	•	•	•	•	•	1135
B-4	Appendix	References	for	Overlay	(16,0)	Routines	•	•	•	•	•	•	•	•	1136
B-5 '	Appendix	References	for	Overlay	(17,0)	Routines	•	•	•		•	•	•	•	1137
C-1	Appendix	References	for	Overlay	(9,0)	Routines.	•	•	•	•	•	•	•		1604
C-2	Appendix	References	for	Overlay	(10,0)	Routines	٠	•	•		•		٠	•	1605
D-1	Appendix	References	for	Overlay	(18,0)	Routines						•		•	1940
E-1	Appendix	References	for	Overlay	(9,0)	Routines.		•			•	•			2180
E-2	Appendix	References	for	Overlay	(14,0)	Routines	•		•			•			2181
E-3	Appendix	References	for	Overlay	(15,0)	Routines		•		•					2182
E-4	Appendix	References	ior	Overlay	(16,0)	Routines									2183
E-5		References													2184
F-1		References													
F-2		References													
F-3		References													

BOOK 2

TECHNICAL DISCUSSION, SECTIONS III AND IV

Section III

INPUT DATA PROCESSING AND GEOMETRY ANALYSIS

GENERAL DESCRIPTION

The input data processing and geometry calculation for wing, horizontal tail, or vertical tail surfaces are performed by overlay (8, 0) subroutines. Overlay (8, 0) is the first of eight wing and empennage module overlays to be executed by the SWEEP master control program, ØLAY00. Overlay (8, 0) is identified by program ØLAY8.

Overlay (8, 0) consists of program ØLAY8 and 12 subroutines. The subroutines and pertinent general information for each are presented in Table 19. Figure 56 shows the subroutine structure of overlay (8, 0). The logic and computational flow is shown in Figure 57. Source deck listings and detail flow diagrams for each of the 13 overlay (8, 0) routines can be found in the appendix of this volume.

The input data processing function of overlay (8, 0) is performed first by the subroutine CCNTL. The case input data set for the surface to be analyzed is ordered into blank common array D. Pertinent design information from three other sources, arrays XMISC, WD, and SPAL, are then processed into appropriate D array locations. The transfer of data is governed by predetermined tests by subroutine CCNTL.

The second computational function of overlay (8, 0) is performed by geometry subroutines executed under control of subroutine GEØMW. Geometry information is computed to describe the surface characteristics in three dimensions in terms of actual dimensions. Overlay (8, 0) geometry subroutines create the general analysis control data which are used in the detail analysis performed by the seven other module overlays.

OVERLAY (8, 0) INPUT DATA

Input data for overlay (8, 0) are stored in labeled common blocks MISC and IPRINT and on mass storage file 1. The case variable data inputed through input data decks WING, HØRIZØNTAL, and VERTICAL are stored in records 23, 26, and 27 of mass storage file 1. The surface type to be evaluated by the module is specified by program ØLAY00 by code in location 2, array XMISC. Code value 1.0 denotes wing, 2.0 horizontal tail, and 3.0 vertical tail.

Mass storage file 1 also contains three other blocks of data used by overlay (8, 0). Design information created during execution of the data management and the flutter and temperature modules of SWEEP are stored in

TABLE 19. EXTERNAL REFERENCES, OVERLAY (8,0) ROUTINES

Name	Туре	Called By	External Reference	Inline Function	File Names
ØLAY8	Program	ØLAY00	CCNTL UNIT	•	TAPE24
ABØXC	Subroutine	GEØMW TBWDC	DMAX	-	TAPE6
CAERØ	Subroutine	DMAX GEØMC GEØMW	-	-	-
CASE	Subroutine	CCNTL	GEOMW WRITMS	ABS	-
CCNTL	Subroutine	ØLAY8	CASE READMS	-	TAPE6
DMAX	SUBROUTINE	ABØXC GEØMW TBWDC	CAERØ SQRT	-	TAPE6
GCØMP	Subroutine	PRTG	ATAN SQRT	-	-
GEØMC	Subroutine	GEØMW	CAERØ	-	TAPE6
GEØMW	Subroutine	CASE	ABØXC CAERØ CØS DMAX GEØMC PRTG READMS SIN SØRT TBWDC VSGEØM WRITMS	- -	TAPE6
PRTG	Subroutine	GEØM!	GCØMP	-	TAPE6

TABLE 19. EXTERNAL REFERENCES, OVERLAY (8,0) ROUTINES (CONCL)

Name	Туре	Called By	External Reference	Inline Function	File Names
SWPXYP	Subroutine	VSGEØM	SQRT	•••	-
TBWDC	Subroutine	GEØMW	ABØXC DMAX SQRT	ABS	TAPE6
VSGEØM	Subroutine	GEØMW	ATAN CØS SIN SQRT SWPXYP	ABS	TAPE6

Figure 56. Overlay (8,0) - input data processing and geometry analysis.

Figure 57. Overlay (8,0) logic flow diagram.

records 21 and 38. These records are ordered into blank common arrays WD and SPAL by subroutine CCNTL for processing into the module variable-data array D.

Design and analysis control information is also transmitted to overlay (8, 0) through array XMISC, labeled common block MISC. Labeled common block IPRINT contains array IP, which contains the code values specified in case control card 1. The information on each column of this card is stored in corresponding IP array locations. IP array data are used by overlay (8, 0) subroutines to determine if computed data are to output as printed data.

OVERLAY (8, 0) OUTPUT DATA

Output from overlay (8, 0) computations is transmitted to the seven other module overlays as blank common data and data blocks on mass storage file 1. Overlay (8, 0) output includes the following:

- 1. Variable data for the surface to be analyzed, transmitted through blank common, array D.
- 2. Integer constants contained in array ND, transmitted through blank common.
- 3. Analysis control codes and case integer constants:
 - a. Variable LID, ND(54)
 - b. Variable NMATL, ND(59)
 - c. Variable NCASE, ND(60)
 - d. Variable NCSEC, ND(68)
 - e. Variable NPAGE, ND(85)
 - f. Variable WHVID, T(57)
- 4. Computed geometry and design data:
 - a. Data in T array locations 1 to 200, transmitted through blank common
 - b. Array TXY data, transmitted through blank common
 - c. Array TGJ data, transmitted through record 10, mass storage file 1

- d. Data in arrays YC and YTC, transmitted through blank common and record 144, mass storage file 1
- e. Array TFRDK data, transmitted through blank common
- 5. Printed output, printed under control of print codes, array IP. Samples of pritned output can be found in Appendix A, Volume IX, User's Manual.

OVERLAY CORE MAPS

Storage and retrieval of computed data by overlay (8,0) subroutines are made on the basis of data name references to core locations in blank common. The major arrays into which blank common is divided (Table 3) are used as the reference blank common blocks to which the primary storage arrays are equivalenced. Tables 20 through 41 contain the pertinent information for the arrays used in this overlay.

The overlay (8,0) storage arrays are as follows. Table numbers refer to core maps found in this section.

- AFD, Table 28
- DAF, Table 25
- DLE, Table 22
- DTC, Table 24
- DTE, Table 23
- SPAL, Table 21
- T, Table 34
- TAF, Table 29
- TD, Table 40
- TFRDK, Table 37
- TGJ, Table 36
- TS, Table 41

- TR. Table 50
- TT (GEØMW), Table 45
- TT (TBWDC, ABØXC), Table 51
- TVS, Table 35
 - TXY, Table 30
- WD, Table 20
- YC, Table 38
- YLE, Table 32
- YTB, Table 31
- YTC, Table 39
 - YTE. Table 33

Core maps for labeled common arrays XMISC and IP can be found in Tables 5 and 6. Mass storage file 1 records used by overlay (8,0) routines are identified in the subroutine descriptions. Table 7 contains pertinent information for all mass storage file 1 records used.

Variable data for the problem case are initialized into the D array by subroutine CCNTL. All information contained in this array remains as initialized by CCNTL during execution of all overlays of the wing and empennage module. Table 8 contains definitions for all data locations of the D array. References to array D by all routines in the wing and empennage module are defined in Tables 11 and 12.

Definitions for data locations of arrays DC and ND can be found in Tables 9 and 10. Subroutine reference information for these arrays are listed in Tables 13 and 14.

TABLE 20. WD ARRAY, WING AND EMPENNAGE VARIABLE DATA, MASS STORAGE FILE 1, RECORD 21

General information for array WD:

Blank common reference location = T(1)

Array size = 200 cells

Array contains the wing and empennage design data to be processed into the wing and empennage variable data D array by subroutine CCNTL. Array data are stored on record 21, mass storage file 1, created by subroutine DCCNTL, overlay (2,0).

Array Location	Description					
1	Not used					
2	Maximum design weight, 1b					
3	Basic flight design weight, 1b					
4	Maximum positive maneuver load factor, subsonic, at BFDW					
5	Maximum negative maneuver load factor at BFDW					
6	Maximum dynamic pressure, 1b/ft ²					
Loc	cations 7-110 contain wing design data.					
7	(X/C) _{FA} , equivalent chord element line, structural reference line					
8	(X/C) Λ , reference chord element line, planform sweep angle					
9	Wing weight per side, fraction of BFDW					
10	Y-coordinate of pivot					
11	X distance of pivot from leading edge					
12	A fwd, movable panel forward sweep position for pivot analysis, degrees					
13	A aft, movable panel aft sweep position for pivot analysis, degrees					
14	Wing apex station, location reference station for wing relative to fuselage, fuselage station					
15	S, planform area, sq ft					
16	AR, planform aspect ratio					
17	Λ , planform sweep, degrees					
18	λ, planform taper ratio					
19	b1, body width, distance between shear-tie locations					
20	Fuel system weight factor, ratio of fuel system plus trapped fuel to total wing fuel					
21	Weight of surface controls in exposed wing panel, 1b/side					
22	Weight of miscellaneous items in exposed wing panel, 1b/side					
23	Number of sweep positions for pivot analysis, set to 1.0					
24	Code word for Torque-box geometry, same as D(864), set to 2.0					

TABLE 20. WD ARRAY, WING AND EMPENNAGE VARIABLE DATA, MASS STORAGE FILE 1, RECORD 21 (CONT)

Array Location	Description				
25-35	Analyses control stations, Y ₁₋₁₁ , buttock plane values, root to				
Loc	ations 36-47 contain wing fuel cell data.				
36	Wing fuel tank 1 capacity, 1b/side				
37	Fuel in wing tank 1 at BFDW, 1b/side				
38	X-CG fuel, wing tank 1, in.				
39	Y-station wing fuel tank 1, inboard rib, buttock plane value				
40	Y-station wing fuel tank 1, outboard rib, buttock plane value				
41	Wing fuel tank 2 capacity, 1b/side				
42	Fuel in wing tank 2 at BFDW, 1b/side				
43	X-CG fuel, wing tank 2, in.				
44	Y-station wing fuel tank 2, inboard rib, buttock plane value				
45	Y-station wing fuel tank 2, outboard rib, buttock plane value				
Loc	ations 46-101 contain data for concentrated mass items on the wing.				
7	masses, 8 items per mass.				
•	Location 46-53, inboard nacelle, to be located as wing mass No. 5				
•	Location 54-61, outboard nacelle, to be located as wing mass No. 6				
•	Location 62-69, wing mounted landing gear, to be located as wing				
	mass No. 7				
•	Location 70-77, inboard store, to be located as wing mass No. 1				
•	Location 78-85, outboard store, to be located as wing mass No. 2				
•	Location 86-93, inboard pylon, to be located as wing mass No. 3				
•	Location 94-101, outboard pylon, to be located as wing mass No. 4				
46	Inboard nacelle package weight, 1b/side				
47	Y-station inboard nacelle package, buttock plane station value				
48	X-CG inboard nacelle package, fuselage station value				
49	Vertical distance from inboard nacelle package Z-CG to wing				
	reference plane, in.				
50	Inertia data code word for inboard nacelle package, set to 1.0				
51	Pitch inertia inboard nacelle package, 1b-in. 2/side				
52	Not used (saved for roll inertia)				
53	Yaw inertia inboard nacelle package, lb-in.2/side				
54	Outboard nacelle package weight, lb/side				
55	Y-station outboard nacelle package, buttock plane station value				
56	X-CG outboard nacelle package, fuselage station value				
57	Vertical distance from outboard nacelle package to wing reference plane, in.				

TABLE 20. WD ARRAY, WING AND EMPENNACE VARIABLE DATA, MASS STORAGE FILE 1, RECORD 21 (CONT)

Array Location	Description				
58	Inertia data type code word for outboard nacelle package, set to 1.0				
59	Pitch inertia outboard nacelle package, 1b-in.2/side				
60	Not used (saved for roll inertia)				
61	Yaw inertia outboard nacelle package, lb-in. 2/side				
62	Main landing gear weight, lb/side				
63	Y-station main landing gear, buttock plane station value				
64	X-CG main landing gear, fuselage station value				
65-69	Not used				
70	Wing inboard payload weight, 1b/side				
71	Y-station inboard payload, buttock station value				
72	X-CG inboard payload, fuselage station value				
73-77	Not used				
78	Wing outboard payload weight, 1b/side				
79	Y-station outboard payload, buttock plane station value				
80	X-13 outboard payload, fuselage station value				
81-85	Not used				
86	Wing inboard pylons weight, 1b/side				
87	Y-station inboard pylons, buttock station value				
88	X-CG inboard pylons, fuselage station value				
89-93	Not used				
94	Wing outboard pylons weight, 1b/side				
95	Y-station outboard pylons, buttock plane value				
96	X-CG outboard pylons, fuselage station value				
97-101	Not used				
102	Wing fuel density, 1b/in. ³				
103	Fuel weight at MDW per vehicle, 1b				
104	Fuel expended from MDW to BFDW, 1b				
105	Payload and ammunition expended from MDW to BFDW, 1b				
106	Maximum positive maneuver load factor, limit load value				
107-110	Not used				
Loc	cations 111-113 contain horizontal tail design data.				
111	(X/C) _{EA} , equivalent chord, element line, structural reference line				
112	(X/C) A, reference chord element line, planform sweep angle				
113	Horizontal tail weight per side, fraction of BFDW				
114	Horizontal tail apex station, location reference station for horizontal tail relative to fuselage, fuselage station				
115	S, planform area, sq ft				

TABLE 20. WD ARRAY, WING AND EMPENNAGE VARIABLE DATA, MASS STORAGE FILE 1, RECORD 21 (CONT)

Array Location	Description				
116	AR, planform aspect ratio				
117	A, planform sweep, degrees				
118	λ, planform taper ratio				
119	b ₁ , body width, distance between shear tie locations				
120	Weight of surface controls in horizontal tail, 1b/side				
121	Not used (saved for weight of miscellaneous items in horizontal tail)				
122 123-133	Code word for torque-box geometry, same as $D(864)$, set to 2.0 Analysis control stations, Y_{1-11} , buttock station values, root to tip				
Loc	cations 134-158 contain vertical tail design data.				
134	(X/C)EA, equivalent chord element line, structural reference line				
135	$(X/C) \land$, reference chord element line, planform sweep angle				
136	Vertical tail weight per panel, fraction of BFDW				
137	Vertical tail apex station, location reference station for vertical tail relative to fuselage, fuselage station				
138	S, planform area for two panels, sq ft				
139	AR, planform aspect ratio for two panels				
140	Λ, planform sweep, degrees				
141	λ, planform taper ratio				
142	b ₁ , body width at fuselage - vertical tail interface, set to 0.0				
143	Weight of surface controls in vertical tail, lb/panel				
144	Not used (saved for weight of miscellaneous items in vertical tail)				
145	Code word for torque-box geometry, same as D(864), set to 2.0				
146-156	Analysis control stations, Y ₁₋₁₁ , Z-distance from root chord station				
157	Code words for vertical tail type:				
	0.0 = conventional				
	1.0 = T-tail, tip-mounted horizontal tail configuration				
158	Total number of vertical tail panels				
Loc	cations 159-170 contain wing and empennage design data.				
159	Wing dihedral angle, degrees				
160	Wing reference plane station at centerline, water plane station				
161	Wing thickness ratio at root chord				
162	Wing thickness ratio taper				
163	Horizontal tail dihedral angle, degrees				

TABLE 20. WD ARRAY. WING AND EMPENNAGE VARIABLE DATA, MASS STORAGE FILE 1, RECORD 21 (CONCL)

Array Location	Description				
164	Horizontal tail reference plane station at centerline, water plane station				
165	Horizontal tail thickness ratio at root chord				
166	Horizontal tail thickness ratio taper				
167	Vertical tail dihedral angle, degrees				
168	Vertical tail Z-station at root chord				
169	Vertical tail thickness ratio at root chord				
170	Vertical tail thickness ratio taper				
171-200	Not used				

TABLE 21. SPAL ARRAY, WING AND EMPENNAGE FLUTTER ANALYSIS DATA, MASS STORAGE FILE 1. RECORD 38

General information for array SPAL:

Blank common reference location = T(1001)

Array size = 50 cells

Array contains wing and empennage flutter analysis data to be processed into wing and empennage variable data D array by subroutine CCNTL. Array data are stored on record 38, mass storage file 1, created by subroutine DWHVQQ, overlay (2,0); subroutine WHVQQ, overlay (3,0); and subroutine WDDATA, overlay (17,0).

All array locations are referenced as T(xxxx) locations in subroutine CCNTL. T array locations identified by an asterisk (*) are array items used by CCNTL.

1	T Array	
Location	Location	Description

Locations 1-16 contain design data for T-tail vertical tail flutter requirement analysis. Horizontal tail mass properties values in locations 1-7 may be revised by wing and empennage module with calculated data. Data management module, overlay (2,0), provides initial values from estimated data. These values are replaced with calculated horizontal tail data by subroutine WDDATA, overlay (17,0), at the conclusion of any horizontal tail analysis. This option is executed when a code value of 1.0 is specified in variable data location D(204) for horizontal tail analysis, and included in input data deck HORIZONTAL.

1	1001	W _{HT} , weight of exposed horizontal tail structure and contents, initial value lb/side, replaced with total weight per air vehicle
2	1002	Y _{HT} , Y-coordinate of one exposed horizontal tail panel, compatible with weight in location 1, buttock plane station
3	1003	X _{HT} , X-coordinate of exposed horizontal tail and contents weight in location 1, fuselage station
4	1004	Z _{HT} , Z-coordinate, reference location for horizontal tail mass, initially estimated Z _{CG} , changed to Z-coordinate of horizontal tail reference plane at centerline by WØDATA
5	*1005	I _{YY!IT} , pitch inertia of total exposed horizontal tail mass at total mass centroid, lb-in. ² /air vehicle

TABLE 21. SPAL ARRAY, WING AND EMPENNAGE FLUTTER ANALYSIS DATA, MASS STORAGE FILE 1, RECORD 38 (CONT)

Array Location	T Array Location	Description
6	*1006	IXXII, roll inertia of total exposed horizontal tail mass at total mass centroid, lb-in.2/air vehicle
7	*1007	I _{ZZHT} , yaw inertia of total horizontal tail mass at mass centroid, lb-in. ² /air vehicle
8	1008	Mrt, mach number at critical flutter design point for T-tail vertical tail flutter analysis
9	*1009	QTT, effective dynamic pressure at critical flutter design point for T-tail vertical tail flutter analysis, psf
10	*1010	GTT, at temperature material shear modulus for T-tail vertical tail flutter analysis at critical flutter design point
11	*1011	Composite factor for T-tail vertical tail flutter requirement, product of specified factor K times derived factor C _{TT} . K = input flutter requirement calibration factor C _{TT} = empirical coefficient for T-tail vertical tail flutter requirement equation, f (M, horizontal tail dihedral)
12	*1012	Horizontal tail dihedral, degrees
13	1013	Not used
14	1014	Not used
15	1015	Not used
16	1016	Flutter speed margin

Locations 17-34 contain altitudes and mach numbers defining M_L speed profile with nine points for analysis of fixed wing configurations or wings in aft position for variable sweep designs.

17	1017	Altitude for point 1 on M _I diagram (fixed or aft), ft
18	1018	Altitude, point 2
19	1019	Altitude, point 3
20	1020	Altitude, point 4
21	1021	Altitude, point 5
22	1022	Altitude, point 6
23	1023	Altitude, point 7
24	1024	Altitude, point 8
25	1025	Altitude, point 9
26	1026	Mach number for point 1 on Mr diagram (fixed or aft), M

TABLE 21. SPAL ARRAY, WING AND EMPENNAGE FLUTTER ANALYSIS DATA, MASS STORAGE FILE 1, RECORD 38 (CONT)

Array Location	T Array Location	Description
27	1027	Mach number, point 2
28	1028	Mach number, point 3
29	1029	Mach number, point 4
30	1030	Mach number, point 5
31	1031	Mach number, point 6
32	1032	Mach number, point 7
33	1033	Mach number, point 8
34	1034	Mach number, point 9
M _L spee		ain altitudes and mach numbers defining three points on wings forward, for analysis of variable sweep
35	1035	Altitude for point 1 on ML diagram (fwd), ft
36	1036	Altitude, point 2
37	1037	Altitude, point 3
38	1038	Mach number for point 1 on My diagram (fwd), M
39	1039	Mach number, point 2
40	1040	Mach number, point 3
Locations ment an 41 42		Altitude at critical flutter design point for wing flutter analysis, variable sweep configurations, forward wing sweep position, ft Mach number at critical flutter design point for wing flutter analysis, variable sweep configurations,
43	*1043	forward wing sweep position. Design temperature at critical flutter design point for wing flutter analysis, variable sweep configurations, forward wing sweep position, °F
44	*1044	Effective dynamic pressure (corrected for compressibility effects) at critical flutter design point for wing flutter analysis, variable sweep configurations, forward wing sweep position, psf
	3	

TABLE 21. SPAL ARRAY, WING AND EMPENNAGE FLUTTER ANALYSIS DATA, MASS STORAGE FILE 1, RECORD 38 (CONCL)

Array Location	T Array Location	Description
45	*1045	At temperature material shear modulus for wing flutter analysis at critical flutter design point, variable sweep configurations, forward wing sweep position, psi
46	*1046	Design temperature at critical wing flutter design point, fixed wing configurations or aft wing sweep position for variable sweep configurations, °F
47	*1047	Design temperature at critical horizontal tail flutter design point, °F
48	*1048	Design temperature at critical vertical tail flutter design point. °F
49	*1049	Design temperature at critical T-tail vertical tail flutter design point, °F
50	1050	Not used

VARIABLE DATA SUBARRAYS DLE, DTE, AND DTC

Optimal variable data sets used to define nonlinear planform and cross-section tapers are located in D array locations 1985 through 2052.

- The leading edge data set is assigned sub-array name DLE, locations D(1985) through D(2007), Table 22.
- The trailing edge data set is assigned subarray name DTE, locations D(2008) through D(2030), Table 23.
- Airfoil thickness ratios are specified in D(2031) through D(2052), subarray name DTC, Table 24.

These data sets are processed by subroutine GEØMC to create the required numerical information in arrays YC and YTC. True locations of the leading and trailing edges are defined with 11 control points in terms of either actual Y- and X-coordinates, position relative to the theoretical trapezoidal planform, or combinations of both. The DLE and DTE data sets consist of 23 data items each, 11 spanwise and chordwise points plus a code word to identify the type of input chordwise data. Spanwise control stations can be specified in terms of either actual Y-coordinate values (input value greater than 1.0) or as fractions of the semispan (input values of 1.0 or less). Chordwise locations can be specified in terms of

- 1. $\pm \Delta X$ from the planform trapezoidal leading or trailing edge element line at the control station (code value = 0.0).
- 2. Fuselage stations (code value = 1.0).
- 3. $\pm X/C$, fraction of local chord from the leading or trailing edge element line at the control station (code value = 2.0).

Thickness ratios are specified in similar manner; the DTC array consisting of spanwise control station data and local thickness ratios. Maximum airfoil depths are calculated as the product of the thickness ratio times the true local chord.

DLE, DTE, and DTC array data are always processed; zero to 11 control points data may be specified. In the zero condition, linear leading or trailing edges, array items 1, 2, and 13, must be specified as 0.0. The control code value, array item 12, must be specified as either 0.0 or 2.0. The first 0.0 value encountered for items 2-11 will terminate processing of array information and an addition point created, semispan station with 0.0 offset from the trapezoidal planform. If 11 control points are specified, the semispan station will be created as point 12, thus point 11 should always be specified inboard of the tip station.

Item 12 of the DTC array (t/c) serves as the processing control code. A zero value indicates no processing. Any value specified will be located at the centerline station. Processing procedure for items 2-11 and 13-22 are similar to that for the DLE and DTC arrays.

TABLE 22. DLE ARRAY, VARIABLE DATA SUBARRAY FOR NONLINEAR LEADING EDGES

General information for array DLE:

Blank common reference location = D(1985)

Array size = 23 cells

Array used by subroutine GEØMC to create YC array data

Array Location	D Array Ref Location	Description
1	1985	Y ₁ , specify 0.0 for Y-coordinate of point 1 at centerline.
2	1986	Y ₂ , Y-coordinate of control point 2, specify as fraction of semispan or buttock plane station. Must be 0.0 if linear variation, root to tip is desired.
3	1987	Y ₃ , Y-coordinate of control point 3. Specify 0.0 if only points 1 and 2 are to be used.
4	1988	Y ₄ , Y-coordinate of control point 4. Specify 0.0 if only points 1-3 are to be used.
5	1989	Y ₅ , Y-coordinate of control point 5. Specify 0.0 if only points 1-4 are to be used.
6	1990	Y ₆ , Y-coordinate of control point 6. Specify 0.0 if only points 1-5 are to be used.
7	1991	Y ₇ , Y-ccordinate of control point 7. Specify 0.0 if only points 1-6 are to be used.
8	1992	Y ₈ , Y-coordinate of control point 8. Specify 0.0 if only points 1-7 are to be used.
9	1993	Y ₉ , Y-coordinate of control point 9. Specify 0.0 if only points 1-8 are to be used.
10	1994	Y ₁₀ , Y-coordinate of control point 10. Specify 0.0 if only points 1-9 are to be used.
11	1995	Y ₁₁ , Y-coordinate of control point 11. Specify 0.0 if only points 1-10 are to be used. If used, locate Y ₁₁ inboard of tip station.
12	1996	Code word, chordwise data in locations 13-23: 0.0 = + \Delta X from leading edge element line 1.0 = fuselage station 2.0 = distance from leading edge element line expressed as fraction of local chord, X/C.
13	1997	X ₁ , reference value for X-coordinate of leading at Y ₁ . Must be 0.0 if leading edge element line is to be used.
14	1998	X ₂ , reference value for X-coordinate of point 2.
15	1999	X_3 , reference value for X-coordinate of point 3.

TABLE 22. DLE ARRAY, VARIABLE DATA SUBARRAY FOR NONLINEAR LEADING EDGES (CONCL)

Array Location	D Array Ref Location	Description
16	2000	X_4 , reference value for X-coordinate of point 4.
17	2001	X ₅ , reference value for X-coordinate of point 5.
18	2002	X6, reference value for X-coordinate of point 6.
19	2003	X ₇ , reference value for X-coordinate of point 7.
20	2004	Xg, reference value for X-coordinate of point 8.
21	2005	X _Q , reference value for X-coordinate of point 9.
22	2006	X ₁₀ , reference value for X-coordinate of point 10.
23	2007	X_{11}^{10} , reference value for X-coordinate of point 11.

TABLE 23. DTE ARRAY, VARIABLE DATA SUBARRAY FOR NONLINEAR TRAILING EDGES

General information for array DTE:

Blank common reference location = D(2008)

Array size - 23 cells

Array used by subroutine GEØMC to create YC array data

Array Location	D Array Ref Location	Description
1	2008	Y ₁ , specify 0.0 for Y-coordinate of point 1 at centerline.
2	2009	Y ₂ , Y-coordinate of control point 2, specify as fraction of semispan or buttock plane station. Must be 0.0 if linear variation, root to tip is desired.
3	2010	Y ₃ , Y-coordinate of control point 3. Specify 0.0 if only points 1 and 2 are to be used.
4	2011	Y ₄ , Y-coordinate of control point 4. Specify 0.0 if only points 1-3 are to be used.
5	2012	Y ₅ , Y-coordinate of control point 5. Specify 0.0 if only points 1-4 are to be used.
6	2013	Y ₆ , Y-coordinate of control point 6. Specify 0.0 if only points 1-5 are to be used.
7	2014	Y ₇ , Y-coordinate of control point 7. Specify 0.0 if only points 1-6 are to be used.
8	2015	Y ₈ , Y-coordinate of control point 8. Specify 0.0 if only points 1-7 are to be used.
9	2016	Y ₉ , Y-coordinate of control point 9. Specify 0.0 if only points 1-8 are to be used.
10	2017	Y ₁₀ , Y-coordinate of control point 10. Specify 0.0 if only points 1-9 are to be used.
11	2018	Y ₁₁ , Y-coordinate of control point 11. Specify 0.0 if only points 1-10 are to be used. If used, locate Y ₁₁ inboard of tip station.
12	2019	Code word, chordwise data in locations 13-23: 0.0 = + X from leading edge element line 1.0 = fuselage station 2.0 = distance from trailing edge element line expressed as fraction of local chord, X/C.
13	2020	X₁, reference value for X-coordinate of trailing edge atY₁. Must be 0.0 if trailing edge element line is to be used.
14	2021	X ₂ , reference value for X-coordinate of point 2.
15	2022	X ₃ , reference value for X-coordinate of point 3.
16	2023	X ₄ , reference value for X-coordinate of point 4.

TABLE 23. DTE ARRAY, VARIABLE DATA SUBARRAY FOR NONLINEAR TRAILING EDGES (CONCL)

Array Location	D Array Ref Location	Description
17	2024	X ₅ , reference value for X-coordinate of point 5.
18	2025	X ₆ , reference value for X-coordinate of point 6.
19	2026	X_7 , reference value for X-coordinate of point 7.
20	2027	X ₈ , reference value for X-coordinate of point 8.
21	2028	X ₉ , reference value for X-coordinate of point 9.
22	2029	X_{10} , reference value for X-coordinate of point 10.
23	2030	X_{11} , reference value for X-coordinate of point 11.

TABLE 24. DTC ARRAY, VARIABLE DATA SUBARRAY FOR NONLINEAR THICKNESS RATIOS

General information for array DTC:

Blank common reference location = D(2031)

Array size = 22 cells

Array used by subroutine GEOMC to create YTC array data

Array Location	D Array Ref Location	Description
1	2031	Y ₁ , specify 0.0 for Y-coordinate of point 1 at centerline.
2	2032	Y ₂ , Y-coordinate of control point 2, specify as fraction of semispan or butteck plane station. Must be 0.0 if linear variation, root to tip is desired.
3	2033	Y ₃ , Y-coordinate of control point 3. Specify 0.0 if only points 1 and 2 are to be used.
4	2034	Y ₄ , Y-coordinate of control point 4. Specify 0.0 if only points 1-3 are to be used.
5	2035	Y ₅ , Y-coordinate of control point 5. Specify 0.0 if only points 1-4 are to be used.
6	2036	Y ₆ , Y-coordinate of control point 6. Specify 0.0 if only points 1-5 are to be used.
7	2037	Y ₇ , Y-coordinate of control point 7. Specify 0.0 if only points 1-6 are to be used.
8	2038	Y ₈ , Y-coordinate of control point 8. Specify 0.0 if only points 1-7 are to be used.
9	2039	Y ₉ , Y-coordinate of control point 9. Specify 0.0 if only points 1-8 are to be used.
10	2040	Y ₁₀ , Y-coordinate of control point 10. Specify 0.0 if only points 1-9 are to be used.
11	2041	Y_{11} , Y-coordinate of control point 11. Specify 0.0 if only points 1-10 are to be used. If used, locate Y_{11} inboard of tip station.
12	2042	(t/c) ₁ , thickness ratio at Y ₁ , (maximum airfoil depth)/ (true aerodynamic chord at Y ₁). Specify 0.0 if thickness ratio data in D(243), D(245), D(141), and D(142) are to be used for cross-section analysis. If 0.0, data set is not processed.
13	2043	$(t/c)_2$, thickness ratio at Y_2 .
14	2044	$(t/c)_3$, thickness ratio at Y_3 .
15	2045	(t/c)4, thickness ratio at Y ₄ .
16	2046	(t/c) ₅ , thickness ratio at Y ₅ .
17 18	2047 2048	$(t/c)_6$, thickness ratio at Y_6 . $(t/c)_7$, thickness ratio at Y_7 .
10	2040	(c/c)/, differiess facto at 17.

TABLE 24. DTC ARRAY, VARIABLE DATA SUBARRAY FOR NONLINEAR THICKNESS RATIOS (CONCL

Array Location	D Array Ref Location	Description
19	2049	(t/c) ₈ , thickness ratio at Y ₈ .
20	2050	(t/c) ₀ , thickness ratio at Y ₀ .
21	2051	(t/c) ₁₀ , thickness ratio at Y ₁₀ .
22	2052	$(t/c)_{11}$, thickness ratio at Y_{11} .

TABLE 25. DAF ARRAY, AIRFOIL CROSS-SECTION DATA

General information for array DAF:

Blank common reference location = T(1401)

Array size = 500 cells

Array contains SWEEP permanent data bank airfoil cross-section data, record 36, mass storage file 1. This array is initialized by GEOMW. Array data are processed by GEOMC into array TAF based on input data specifications in locations D(143-152).

Array values can be changed only through revision of the SWEEP permanent data bank deck.

Locations 1-99 contain airfoil equation constants, used under a code value of 1.0 through 8.0 is specified for airfoil type code word in location D(143).

Locations 100-500 are used to specify numerical airfoil depths in table format to be used when a code value of 9.0 is specified in D(143) and appropriate control information is included in locations D(145-152).

Refer to Table 26 for equation constants and Table 27 for airfoil ordinate data.

Array Location	Data Bank Value	Airfoil Code D(143)	Airfoil Code D(147-152)	Description
1	0.0	1.0	N/A	NACA 6300 type, depth coeffi- cient A
2	-9.34463232	1.0	N/A	NACA 6300 type, depth coeffi- cient B
3	27.17720836	1.0	N/A	NACA 6300 type, depth coefficient C
4	-21.38163376	1.0	N/A	NACA 6300 type, depth coeffi- cient D
5	-1.38982828	1.0	N/A	NACA 6300 type, depth coeffi- cient E
6	4.93888600	1.0	N/A	NACA 6300 type, depth coeffi- cient F
7	0.0	1.0	N/A	Not used
8	0.0	1.0	N/A	Not used
9	0.0	1.0	N/A	Not used
10	0.0	1.0	N/A	Not used
11	0.0	1.0	N/A	Not used

TABLE 25. DAF ARRAY, AIRFOIL CROSS-SECTION DATA (CONT)

Array Location	Data Bank Value	Airfoil Code D(143)	Airfoil Code D(147-152)	Pescription
12	0.0	1.0	N/A	Not used
13	0.0	1.0	N/A	Not used
14	0.0	2.0	N/A	NACA 6400 type, depth coefficient A
15	-13.07250548	2.0	N/A	NACA 6400 type, depth coefficient B
16	40.14816048	2.0	N/A	NACA 6400 type, depth coefficient C
17	-37.6663926	2.0	N/A	NACA 6400 type, depth coefficient D
18	7.17832560	2.0	N/A	NACA 6400 type, depth coefficient E
19	3.41241196	2.0	N/A	NACA 6400 type, depth coefficient F
20	0.0	2.0	N/A	Not used
21	0.0	2.0	N/A	Not used
22	0.0	2.0	N/A	Not used
23	0.0	2.0	N/A	Not used
24	0.0	2.0	N/A	Not used
25	0.0	2.0	N/A	Not used
26	0.0	2.0	N/A	Not used
27	0.0	3.0	N/A	NACA 6500 type, depth coefficient A
28	-15.74362648	3.0	N/A	NACA 6500 type, depth coefficient B
29	51.05901844	3.0	N/A	NACA 6500 type, depth coefficient C
30	-53.25840044	3.0	N/A	NACA 6500 type, depth coefficient D
31	16.31425148	3.0	N/A	NACA 6500 type, depth coefficient E
32	1.62875700	3.0	N/A	NACA 6500 type, depth coefficient F
33	0.0	3.0	N/A	Not used
		I		

TABLE 25. DAF ARRAY, AIRFOIL CROSS-SECTION DATA (CONT)

			·	
		Airfoil		,
Array	Data Bank	Code	Airfoil Code	
Location	Value	D(143)	D(149-152)	Description
34	0.0	3.0	N/A	Not used
35	0.0	3.0	N/A	Not used
36	0.0	3.0	N/A	Not used
37	0.0	3.0	N/A	Not used
38	0.0	3.0	N/A	Not used
39	0.0	3.0	N/A	Not used
40	-29.9051344	4.0	N/A	NACA 6600 type, depth coefficient A
41	92.8413041	4.0	N/A	NACA 6600 type, depth coefficient B
42	-95.9672048	4.0	N/A	NACA 6600 type, depth coefficient C
43	36.4076344	4.0	N/A	NACA 6600 type, depth coefficient D
44	-6.7531984	4.0	N/A	NACA 6600 type, depth coefficient E
45	3.37659920	4.0	N/A	NACA 6600 type, depth coefficient F
46	0.0	4.0	N/A	Not used
47	0.0	4.0	N/A	Not used
48	0.0	4.0	N/A	Not used
49	0.0	4.0	N/A	Not used
50	0.0	4.0	N/A	Not used
51	0.0	4.0	N/A	Not used
52	0.0	4.0	N/A	Not used
53	0.0	5.0	N/A	Wedge type, depth coeffi- cient A
54	0.0	5.0	N/A	Wedge type, depth coeffi-
55	0.0	5.0	N/A	cient B Wedge type, depth coeffi-
				cient C
				_

TABLE 25. DAF ARRAY, AIRFOIL CROSS-SECTION DATA (CONT)

	Array Location	Data Bank Value	Airfoil Code D(143)	Airfoil Code D(147-152)	Description
	56	0.0	5.0	N/A	Wedge type, depth coeffi- cient D
	57	1.0	5.0	N/A	Wedge type, depth coefficient E
	58	0.0	5.0	N/A	Wedge type, depth coeffi- cient F
	59	0.0	5.0	N/A	Not used
	60	0.0	5.0	N/A	Not used
1	61	0.0	5.0	N/A	Not used
	62	0.0	5.0	N/A	Not used
	63	0.0	5.0	N/A	Not used
	64	0.0	5.0	N/A	Not used
ŀ	65	0.0	5.0	N/A	Not used
	66	0.0	6.0	N/A	Arc type, depth coeffi- cient A
	67	0.0	6.0	N/A	Arc type, depth coeffi- cient B
	68	16.0	6.0	N/A	Arc type, depth coeffi- cient C
	69	-32.0	6.0	N/A	Arc type, depth coeffi- cient D
	70	16.0	6.0	N/A	Arc type, depth coeffi- cient E
	71	0.0	6.0	N/A	Arc type, depth coefficient F
	72	0.0	6.0	N/A	Not used
	73	0.0	6.0	N/A	Not used
	74	0.0	6.0	N/A	Not used
	75	0.0	6.0	N/A	Not used
	76	0.0	6.0	N/A	Not used
	77	0.0	6.0	N/A	Not used
	78	0.0	6.0	N/A	Not used
	79-100	0.0	7.0,8.0	N/A	Not used. Locations 79-91 may
			, , , ,		be used for airfoil 7 if
					data is created.
		•			

TABLE 25. DAF ARRAY, AIRFOIL CROSS-SECTION DATA (CONT)

		Airfoil		
Array	Data Bank	Code	Airfoil Code	
Location	Value	D(143)	D(147-152)	Description

Locations 100 to 499 are divided into eight 50-cell blocks for airfoil depth table data. Block 1, locations 100-149, contain the airfoil X/C values, points at which depth data for different airfoils are specified in blocks 2-7. (Block 8 is currently not used.) X/C and depths must be compatible; 3 to 48 points may be specified in items 2-49 of each block. The number of X/C points are specified in item 1, block 1 (location 100). Item 1 of blocks 2-7 may be used by the user as a numerical identification code for the airfoil. Item 50 of blocks 2-7 is used to specify the normalizing factor for each airfoil - the ordinate value of the maximum airfoil depth. Individual airfoil depths may be specified in terms of actual mold line depth values or fractions of the maximum depth. The SWEEP permanent data bank contains no data in locations 100-500.

100	0.0	9.0	N/A	Number of X/C points in depth table
101-148	0.0	9.0	N/A	<pre>X/C values, fraction of chord leading edge to trailing edge.</pre>
149	0.0	9.0	N/A	Not used
150	0.0	9.0	1.0	User code number airfoil No. 1
151-198	0.0	9.0	1.0	Depth values for airfoil No. 1 at X/C points specified in 101-148.
199	0.0	9.0	1.0	Maximum depth, airfoil No. 1
200	0.0	9.0	2.0	User code number, airfoil No. 2
201-248	0.0	9.0	2.0	Depth values for airfoil No. 2 at X/C points specified in 101-148
249	0.0	9.0	2.0	Maximum depth, airfoil No. 2
250	0.0	9.0	3.0	User code number, airfoil No. 3
251-298	0.0	9.0	3.0	Depth values for airfoil No. 3 at X/C points specified in 101-148
299	0.0	9.0	3.0	Maximum depth, airfoil No. 3
300	0.0	9.0	4.0	User code number, airfoil No. 4

TABLE 25. DAF ARRAY, AIRPOIL CROSS-SECTION DATA (CONCL)

Array Location	Data Bank Value	Airfoil Code D(143)	Airfoil Code D(147-152)	Description
301-348	0.0	9.0	4.0	Depth values for airfoil No. 4 at X/C points specified in 101-148
349	0.0	9.0	4.0	Maximum depth, airfoil No. 4
350	0.0	9.0	5.0	User code number, airfoil No. 5
351-398	0.0	9.0	5.0	Depth values for airfoil No. 5 at X/C points specified in 101-148
3 99	0.0	9.0	5.0	Maximum depth, airfoil No. 5
400	0.0	9.0	6.0	User code number, airfoil No. 6
401-448	0.0	9.0	6.0	Depth values for airfoil No. 6 at X/C points specified in 101-148
449	0.0	9.0	6.0	Maximum depth, airfoil No. 6
450-500	0.0	9.0	7.0	Not used. Airfoil 7 may be added, but require revision in subroutine GEOMC.

TABLE 26. POLYNOMIAL COEFFICIENT OF PROPERTIES OF NORMALIZED AIRPOILS

		Coefficien	Coefficients for Airfoil Ordinates	Ordinates		
Airfoi1			Polynon	Polynomial Coefficients	ţs	
Type	ત	q	υ	P	v	£
63	0.	- 9.34463232	+27.17720836	-21.38163376	- 1.38982828	+4.93888600
3	•	-13.07250548	+40.14816048	-37.66639256	+ 7.17832560	+3.41241196
9	0.	-15.74362648	+51.05901844	-53.25840044	+16.31425148	+1.62875700
99	-29:9051344	+92.8413041	-95.9672048	+36.4076344	- 6.7531984	+3.3765992
Arc	0.	0.	+16.0000000	-32.0000000	+16.000000000	•
Medge	0.	0.	•	0.	1.00000000	0.
	M	$Z = (ax^6 + bx^5 + cx^4)$	$bx^5 + cx^4 + dx^3 + ex^2 + fx)^{1/2}$	fx)1/2		
. E3	I is a fraction of the		max depth or, $D_X = C \left(\frac{C}{C}\right) Z = D_{\text{max}} Z$	- Dasax Z		
χi	X is a fraction of the					

TABLE 27. AIRPOIL ORDINATES

					_																						
30-70 lex	0000	.0167	.0150	.0417	.0834	.1667	.2500	.3333	.5000	.6667	.8333	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	.8333	.6667	.5000	.3333	.1667	0000	
Arc	0000	.0198	.0298	.0494	9260.	.1900	.2676	.3600	.5100	.6400	.7500	.8400	.9100	0096.	0066.	1.0000	0066.	0096.	.9100	.8400	.7500	.6400	.5100	.3600	.1900	0000	
66A010	0000	.1536	.1848	.2308	.3060	.4192	.5080	.5840	. 7032	.8000	.8712	.9280	.9664	0066.	1.0000	0966.	0926.	.9368	.8700	.7720	.6520	.5152	. 3940	. 2636	.1328	.0042	
65A010	0000	.1530	.1856	.2366	.3240	. 4364	.5300	0809.	.7616	.8254	9968.	.9484	.9824	0666.	9966	.9726	.9264	8098	.7798	.6864	. 5824	.4704	.3542	.2376	.1208	.0042	
644010	0000	.1608	.1938	.2450	.3376	.4654	.5610	.6398	.7626	.8544	.9212	.9674	.9936	0666.	.9788	.9378	.8776	.8040	.7194	.6254	.5246	.4206	.3164	.2124	.1082	.0042	
63A010	0000.	.1632	.1966	.2500	.3464	. 4824	. 5834	.6648	.7900	.8800	.9428	9886	0666.	.9936	.9674	.9226	.8622	. 7886	. 7034	8809.	.5090	.4080	.3070	. 2060	.1050	.0042	
X/C	0000.	.0050	.0075	.0125	.0250	.0500	.0750	.1000	.1500	. 2000	. 2500	.3000	.3500	.4000	.4500	.5000	.5500	0009.	. 6500	. 7000	.7500	. 8000	.8500	0006.	.9500	1.0000	

TABLE 28. AFD ARRAY

General information for array AFD:

Blank common reference location = T(411)

Array sign = 6 cells

Array data set up by subroutine GE/MW from data in array DAF based on airfoil-type code value in input data location D(143). Array data used by subroutine DMAX only if the code value in D(143) is 1.0-8.0.

Array Location	Description	
1	Coefficient A for airfoil depth equation	
2	Coefficient B for airfoil depth equation	
3	Coefficient C for airfoil depth equation	
4	Coefficient D for airfoil depth equation	
5	Coefficient E for airfoil depth equation	
6	Coefficient F for airfoil depth equation	

TABLE 29. TAF ARRAY, AIRPOIL DEPTH DATA

General information for array TAF:

Blank common reference location = T(431)

Array size = 350 cells

Array data created by subroutine GEOMC for use by subroutine DMAX only if code value of 9.0 is specified in input data location D(143).

	Ty II code value of 9.0 is specified in input data location b(145).
Array Location	Description
1	0.0, inboard airfoil control station. Reference airfoil depth data in location 51-98, same as values in 101-148.
2	Y ₁ , airfoil control station 1. Reference airfoil depth data in locations 101-148. Station value as specified in input data location D(145). If 0.0, station value is set to 2.0. Airfoil code for this station is specified in input data location D(149).
3	Y ₂ , airfoil control station 2. Reference airfoil depth data in locations 151-198. Station value as specified in input data location D(146), airfoil code in D(150). If D(146) is 0.0, station value is set to b/2 and the airfoil depth data in location 101-148 is moved to 151-198.
4	Y airfoil control station 3. Reference airfoil depth data in locations 201-248. Station value as specified in input data location D(147), airfoil code in D(151). If D(147) is 0.0, station value is set to b/2, and airfoil depth data in locations 151-198 is moved to 201-248.
5	Y ₄ , airfoil control station 4. Reference airfoil depth data in locations 251-298. Station value as specified in input data location D(148), airfoil code in D(152). If D(148) is 0.0, station value is set to b/2, and airfoil depth data in locations 201-248 is moved to 251-298.
6	b/2, outboard airfoil control station if data is specified in input data locations D(145-148). Reference airfoil depth data in locations 301-348, same as values in 251-298.
7	ΔY ₁ , distance between inboard airfoil control station and station 1
8	ΔY ₂ , distance between airfoil control stations 1 and 2
9	ΔΥ3, distance between airfoil control stations 2 and 3
10	ΔY ₄ , distance between airfoil control stations 3 and 4
11	ΔY ₅ , distance between airfoil control station 4 and the outboard station
12	Maximum airfoil depth for each data set, GEØMC

TABLE 29. TAF ARRAY, AIRFOIL DEPTH DATA (CONT)

Array Location	Description
	12-23 used to save intermediate calculation data by DMAX during terpolation for local depths.
12	X/C distance from local depth analysis point to forward X/C point of the two points in X/C table that bracket analysis point.
13	Y-distance between analysis point and airfoil control station immediately inboard.
14	Δ X/C, X/C distance between the two adjacent X/C points that bracke bracket X/C point at which local depth is to be calculated.
15	ΔY, Y-distance between the two airfoil control stations that bracket analysis point
16	Rx, ratio of values in location 12 and 14
17	Ry, ratio of values in locations 13 and 15
18	Depth at aft X/C point from outboard airfoil control station reference airfoil depth table.
19	Depth at aft X/C point from inboard airfoil control station reference airfoil depth table.
20	Depth at forward X/C point from outboard airfoil control station reference airfoil depth table.
21	Depth at forward X/C point from inboard airfoil control station reference airfoil depth table.
22	Depth at X/C analysis value for airfoil at outboard airfoil control station
23	Depth at X/C analysis value for airfoil at inboard airfoil control station
24-50	Not used
51-98	Airfoil depth table from array DAF based on airfoil code in location D(149), positioned on plan form at spanwise station in location 1.
99-100	Not used
101-148	Airfoil depth table from array DAF based on airfoil code in location D(149), positioned on plan form at spanwise station in location 2.
149-150	Not used
151-198	Airfoil depth table from array DAF based on airfoil code in location D(150), positioned on plan form at spanwise station in location 3. If D(146) is 0.0, data in location 101-148 is moved to this block.

TABLE 29. TAF ARRAY, AIRFOIL DEPTH DATA (CONCL)

Array Location	Description
199-200	Not used
201-248	Airfoil depth table from array DAF based on airfoil code in location D(151), positioned on planform as spanwise station in location 4. If D(147) is 0.0, data in location 151-198 are moved to this block.
249-250	Not used
251-298	Airfoil depth table from array DAF based on airfoil code in location D(152), positioned on planform as spanwise station in location 5. If D(148) is 0.0, data in location 201-248 are moved to this block.
299-300	Not used
301-348	Airfoil depth table from array DAF based on airfoil code in location D(152), positioned on planform at spanwise station in location 6. Same data as in 251-298. Not used if location D(148) is 0.0.
NOTE	If values are specified in input data locations D(145-148) but corresponding airfoil code values in D(149-152) are negative, 0.0 or larger than 6.0, the program will use the airfoil No. 1 table data in DAF (151-198).

TXY ARRAY

The TXY array is the general storage array used by the geometry sub-routines for storage and/or access of computed geometry data. The contents of this array are defined in Table 30. Subarrays YTB, YLE, YTE, and YS are part of array TXY. Subarrays YTB, YLE, and YTE are defined in Tables 31, 32, and 33. YS is defined in Table 30.

Overall control for computations of values stored in the array is centered in subroutine GEMW. This subroutine computes values for the general geometry parameters and governs data computations for the subarrays. The contents of array TXY are processed by subroutine GEMW into T array and geometry subarray locations for later use by other module subroutines. The output geometry summary data printed under control of IP (6) by subroutine PRTG are processed from the TXY array into the output data array TD by subroutine GCMMP.

General information for array TXY:

Blank common reference location = T(801) Array size = 500 cells

Subarrays:

- 1. YTB, 124 cells, TXY (55-17%), torque-box data
- 2. YLE, 109 cells, TXY (179-287), leading edge data
- 3. YTE, 109 cells, TXY (288-396), trailing edge data
- 4. YS, 11 cells, TXY (490-500), analysis control stations

All dimensions are in inches or as noted.

Array Location	Description
1	S', exposed area, sq ft
2	AR', exposed aspect ratio
3	λ', exposed taper ratio
4	t/c', thickness ratio at exposed root chord
5	σ ', exposed thickness ratio taper
6	b'/2, exposed semispan
7	b ₁ /2, side of body station
8	b/2, semispan
9	C _R ', exposed root chord
10	C _T , theoretical tip chord
11	ARS', exposed aspect ratio, structural reference system
12	λ_{S} ', exposed taper ratio, structural reference system
13	(t/c)'S, exposed thickness ratio, structural reference system
14	$\sigma_{ extsf{S}}$ ', exposed thickness ratio taper, structural reference system
15	b _S '/2, exposed structural semispan
16	b _{1S} '/2, side of body structural station
17	b _S /2, structural semispan
18	C _{RS} ', exposed structural root chord
19	C _{TS} ', tip chord, structural reference system

TABLE 30. TXY ARRAY, GEOMETRY DATA (CONT)

Array Location	Description
20	C _{LE} , X-axis intercept for leading edge element line, fuselage station
21	C _{FS} , X-axis intercept for front spar reference line, fuselage station
22	C _{EA} , X-axis intercept for structural reference line Y, fuselage station
23	C _{RS} , X-axis intercept for rear spar reference line, fuselage station
24	C _{TE} , X-axis intercept for trailing edge element line, fuselage station
25	C _R , aerodynamic root chord, X-axis intercept for aerodynamic chord variation equation
26	C _{RS} , structural root chord, X-axis intercept for structural chord variation equation
27	Tan Λ_{E} , slope of leading edge element line
28	Tan A _{FS} , slope of front span reference line
29	Tan Λ_{FA} , slope of structural reverence line
30	Tan A RS, slope of rear spar reference line
31	Tan Λ_{TE} , slope of trailing edge element line
32	Tan AC, slope for aerodynamic chord variation equation
33	Tan AC _S , slope for structural chord variation equation
34	Sin A LE, sine of sweep angle for leading edge element line
35	Sin Λ_{FS} , sine of sweep angle for front spar reference line
36	Sin Λ_{EA} , sine of sweep angle for structural reference line
37	Sin A RS, sine of sweep angle for rear spar reference line
38	$Sin \Lambda_{TE}$, sine of sweep angle for trailing edge element line
39	Cos A LE, cosine of sweep angle for leading edge element line
40	$\cos \Lambda_{FS}$, cosine of sweep angle for front spar reference line

TABLE 30. TXY ARRAY, GEOMETRY DATA (CONT)

Array Location	Description
41	$\cos \Lambda_{iA}$, cosine of sweep angle for structural reference line
42	$\cos \Lambda_{RS}$, cosine of sweep angle for rear spar reference line
43	$\cos \Lambda_{TE}$, cosine of sweep angle for trailing edge element line
44	Tan (t/c), slope for thickness ratio variation equation
45	Tan A .5c, slope of 50% chord element line
46	C 5c, X-axis intercept for 50% chord element line, fuselage station
47	$^{-1}/(\operatorname{Tan}\Lambda_{\mathrm{EA}})$, slope of line normal to structural reference line
48	C _{SCi} , X-axis intercept for line normal to structural reference line, fuselage station
49	Tan W _{sc} , slope for torque-box structural width variation equation
50	$C_{\mbox{WSC}}$, X-axis intercept for torque-box structural width variation equation
51	Tan Λ_0 , tangent of planform reference sweep angle
52	$Sin \Lambda_O$, sine of planform reference sweep angle
53	$\cos \Lambda_0$, cosine of planform reference sweep angle
54	C Λ_{0} , X-axis intercept for planform reference sweep element line, fuselage station
55-178	Subarray YTB, refer to Table 31
179-287	Subarray YLE, Table 32
288-396	Subarray YTE, Table 33
397-420	Not used
421	X _{LE} , X-coordinate of leading edge element line at side of body
422	X _{FS} , X-coordinate of front spar line at side of body
423	X _{EA} , X-coordinate of structural reference line at side of body
424	X _{RS} , X-coordinate of rear spar line at side of body
425	X _{TE} , X-coordinate of trailing edge element line at side of body
426	X _{LE} , X-coordinate of leading edge element line at pivot station

TABLE 30. TXY ARRAY, GEOMETRY DATA (CONT)

Array Location	Description
427	X _{FS} , X-coordinate of front spar line at pivot station
428	X _{EA} , X-coordinate of structural reference line at pivot station
429	X _{RS} . X-coordinate of rear spar line at pivot station
430	X_{TE} , X-coordinate of trailing edge element line at pivot station
431	X _{LE} , X-coordinate of leading edge element line at tip station
432	X _{FS} , X-coordinate of front spar line at tip station
433	X _{EA} , X-coordinate of structural reference line at tip station
434	X _{RS} , X-coordinate of rear spar at tip station
435	X _{TE} , X-coordinate of trailing edge lement line at tip station
436	X.25c, X-coordinate of 25% chord element line at tip station
437-450	Not used
451	t/c _{RT} , thickness ratio at centerline station
452	t/c _{TIP} , thickness ratio at tip station
453	${ t Y}_{{ t IB}}$, inboard thickness ratio control station, from input data
	location 141
454	Y _{OB} , outboard thickness ratio control station, from input data location 142
455	D _{IB} , maximum airfoil depth at inboard thickness ratio control
	station from product of t/c in input data location 243 and trapazoidal chord at inboard control station
456	DOR, maximum airfoil depth at outboard thickness ratio control
	station, from product of t/c data in input locations 243 and 245, and trapezoidal chord at outboard control station
457	D _{RT} , maximum airfoil depth at center-line station Z-axis inter-
	cept for depth variation equation
458	D _{TIP} , maximum airfoil depth at tip station
459	TAN D, slope for spanwise depth equation, linear variation, root to tip
460-464	Not used

TABLE 30. TXY ARRAY, GEOMETRY DATA (CONCL)

Array Location	Description
465	S, gross planform area, sq in.
466	b, total planform span
467	Λ _O , planform reference sweep angle, radians
468	(1 + λ), planform taper ratio plus 1.0
469	Element line for planform reference sweep angle, fraction of chord
470	C _{.25c} , X-axis intercept for 25% element line, fuselage station
471	Tan A 25c, slope of 25% element line
472	Sin $\Lambda_{.25c}$, sine of sweep angle for 25% element line
473	$\cos \Lambda$ cosine of sweep angle for 25% element line
474	X _{.25c} , X-coordinate of 25% element line at tip station
475-489	Not used
490-500	Subarray Ys. Structural reference stations for the 11 analysis control stations, stored root to tip. Array size = 11 cells.

TABLE 31. YTB ARRAY, TORQUE-BOX GEOMETRY DATA

General information for subarray YTB:

Blank common reference location = TXY(55)
Array size = 124 cells

Array si:	ze = 124 cells
Array Location	Description
1-11	Y _{EA} (1-11), Y-coordinate of 11 analysis control stations on
	the structural reference line, root to tip
12-22	$X_{\rm EA}(1-11)$, X-coordinate of 11 analysis control stations on
	the structural reference line, root to tip
23	W _{c-s} , center-section width at outer panel analysis control
	station Y _{EA} (1)
24-34	W (1-11), structural width of torque-box for the 11 analysis control stations, root to tip
35	Not used
36-46	Dave (1-11), average torque-box depth for the 11 analysis control stations, root to tip
47	Not used
48-58	XA(1-11), cross-sectional area of torque-box for the 11 analysis control stations, root to tip, sq in.
59-69	C(1-11), true aerodynamic chord at the Y-coordinate station for the 11 analysis control stations, root to tip
70-80	D _{max} (1-11), maximum airfoil depth at the Y-coordinate station for the 11 analysis control stations, root to tip
81	Not used
82-91	$S_{TR}(1-10)$, planform area for the 10 torque-box segments defined by the 11 structural chords, root to tip, sq in.
92	Not used
93-102	VOLTB (1-10), volume for the 10 torque-box segments defined by the 11 structural chords, root to tip, cu in.
103	Not used
104-113	Y _{CG} (1-10), Y-coordinate for the geometrical centroid of the 10 trapezoidal panels defined by the 11 structural chords, root to tip

TABLE 31. YTB ARRAY, TORQUE-BOX GEOMETRY DATA (CONCL)

Array Location	Description
114	X _{CGC-S} , X-coordinate for center-section centroid, average of center-section front and rear spar stations
115-124	$X_{CG}(1-10)$, X-coordinate for the geometrical centroid of the 10° trapezoidal panels, defined by the 11 structural chords, root to tip

TABLE 32. YLE ARRAY, LEADING EDGE GEOMETRY DATA

General information for subarray YLE:

Blank common reference location = TXY(179) Array size = 109 cells

Array Location	Description
1-11	Y _{FS} (1-11), Y-coordinate at intersection of the structural chord at each analysis control station and the front spar, root to tip
12	X_{FSC_1S} , X-coordinate of center-section front spar at outer panel analysis control station $Y_{FA}(1)$
13-23	X _{FS} (1-11), X-coordinate at intersection of the structural chord at each analysis control station and the front spar, root to tip
24	D_{FSC-S} , depth of center-section front spar at point defined by values in $Y_{TB}(1)$ and $Y_{LE}(12)$
25-35	D _{FS} (1-11), depth at the front spar plane for the 11 analysis control stations, root to tip
36-46	$K_{\rm Sec}(1-11)$, structural box average to maximum depth factor at each analysis control station, root to tip
47-58	Not used
59-69	J $_{10}(1\text{-}11)$, structural box section J for an assumed web gage value of 0.10 at each analysis control station, root to tip, in. ⁴
70-79	S _{LE} (1-10), planform area of leading edge panels bounded by the Y-coordinates of the 11 analysis control stations, the front spar and panel leading edge defined by a straight line joining the intersection points of the true leading edge and the Y-coordinates of the analysis control stations, root to tip
80-89	Not used
90-99	Y _{CPLE} (1-10), Y-coordinate for centroid of panel surface area defined in location 70-79, each panel treated as trapezoidal sections, root to tip
100-109	$X_{\rm CPLE}(1-10)$, X-coordinate for centroid corresponding to $Y_{\rm CPLE}(1-10)$ above, assumed to be along the mid-chord element of each panel, root to tip

TABLE 33. YTE ARRAY, TRAILING LUGE GEOMETRY DATA

Array Location	Description
1-11	Y _{RS} (1-11), Y-coordinate of intersection of the structural chord at each analysis control station and the rear spar, root to tip
12	X_{RSC-S} , X-coordinate of center-section rear spar at outer panel analysis control station $Y_{EA}(1)$
13-23	X _{ps} (1-11), X-coordinate of intersection of the structural chord of each analysis control station and the rear spar, root to tip
24	D_{RSC-S} , depth of center-section rear spar at point defined by values in $Y_{TB}(1)$ and $Y_{TE}(12)$
25-35	${\rm D}_{\rm PS}(1\text{-}11)$, depth at the rear spar plane for the 11 analysis control stations, root to tip
36-46	D (1-11), maximum depth of structural cross-section of the torque-box at each analysis control station, from YTC(60) values, root to tip
47-58	Not used
59-69	J $_{20}$ (1-11), structural box section J for an assumed web gage value of 0.20 at each analysis control station, root to tip
70-79	S _{TE} (1-10), planform area of trailing edge panels bounded by the Y-coordinates of the 11 analysis control stations, the rear spar and the panel trailing edge defined by a straight line joining the intersection points of the true trailing edge and the Y-coordinates of the analysis control stations, root to tip
80-89	Not used
90-99	Y _{CPTE} (1-10), Y-coordinate for centroid of panel surface area defined in locations 70-79, each panel treated as trapezoidal sections, root to tip
100-109	$X_{\mbox{CPTE}}(1-10)$, X-coordinate for centroid corresponding to $Y_{\mbox{CPTE}}(1-10)$ above, assumed to be along the mid-chord element of each panel, root to tip

TABLE 34. ARRAY, LOCATIONS 1-200, 489-553

General information for array T:

Blank common reference location = 1

Array size = 2060 cells

Locations 1-195 contain general geometry and other miscellaneous data for use by all overlays of wing and empennage module. Data are created by subroutines CASE, GEOMW, and VSGEOMW of overlay (8,0). Data created by subroutines other than GEOMW are identified by name of that subroutine. Data in locations 489-553 are initially created by GEOMW and reinitialized by overlay (16,0) subroutine WDDATA with data from array TG.

Array Location	Original Array Location	Variable Name	Description
1 2	-	STØT SEXP	Total surface area per vehicle, sq ft Total exposed surface area per vehicle, sq ft
3	-	-	R, element line tangent factor, $R = 4(1+\lambda)/AR(1-\lambda)$
4	-		D are at b1/2
5	YTB(23)	WCSEC	Center section box width
6	TXY (53)	-	$\cos \Lambda_0$, cosine of planform reference sweep angle
7	TXY (52)	-	$\sin \Lambda_0$, sine of planform reference sweep angle
8	TXY(51)	-	Tan Λ_0 , tangent of planform reference sweep angle
9	TXY (54)	-	CA _O , X-axis intercept for planform reference sweep element line
10	YC(116)	TCCL	(t/c) _R , thickness ratio at center-line station
11	YC(117)	TCTP	(t/c) _{TIP} , thickness ratio at tip station
12	TXY(8)	BØ2	b/2, semispan
13		AC	Arc centroid of torque-box section, average factor
14	•	TAU	τ, structural chord factor
15	TXY(7)	BS1Ø2	$b_1/2$, side of body station
16	TXY(16)	B1SØ2	$b_{1s}/2$, side of body structural station
17	-	SPTIP	STIP, sq ft/vehicle
18	-	GPNZ(1)	Positive gust load factor, 0.0, not used, CASE
19	-	(2)	Negative gust load factor, 0.0, not used, CASE
20	D(85)	DPNZ(1)	Positive design load factor, limit, CASE
21	D(86)	(2)	Negative design load factor, limit, CASE

TABLE 34. T ARRAY, LOCATIONS 1-200, 489-553 (CONT)

Array Location	Original Array Location	Variable Name	Description
22	-	DGWI	Design gross weight for current analysis PRØG, ACPRØG
23	-	-	$R : Sin \Lambda_{EA} : Cos \Lambda_{EA}$, constant
24	- 2	SPBØX	ΣS' _{BOX} , total exposed torque-box plan- form area, sq ft/vehicle
25	-	SPLE	\(\S'_{\text{LE}}\), total exposed leading edge planform area, sq ft/vehicle, GCNTL
26	-	SPTE	\(\mathbb{E}\)S'_{TE}, total exposed trading edge planform area, sq ft/vehicle, GCNTL
27-36	YTB(82-91)	SPNL(1-10)	STE(1-10), torque-box panel areas, tip to root, sq ft/side
37	TXY(10)	CTIP	C _{TIP} , theoretical tip chord
38	TXY (32)	TANAC	Tan AC, slope for aerodynamic chord
	()		variation equation
39	-	YPVT	Yp, Y-coordinate of pivot, VSGE@M
40	-	XPVT	Xp, X-coordinate of pivot, VSGE@M
41	- .	YSPVT	Y p, structural reference line station for pivot, VSGE@M
42	-	-	(X/C)FS, equivalent chord element line, front spar
43	-	-	(X/C)RS, equivalent chord element line, rear spar
44	-	-	(X/C) _{EA} , equivalent chord element line, structural reference line
45	-	CPVT	Cp, aerodynamic chord at pivot station, VSGEØM
46	-	-	ΔCp, chordwise distance between the pivot and leading edge, VSGE@M
47	- .	-	XLEP, X-coordinate of leading edge at pivot station, VSGEØM
48	-	-	YEAP, Y-coordinate of intersection point of structural reference line and line from pivot normal to structural reference line, VSGEØM
49	-	-	XEAP, X-coordinate for point previously defined, VSGEØM
50	-	-	C _{SCP} , X-axis intercept for line from pivot normal to structural reference line, VSGEØM
51	-	XSPVT	X p, X-coordinate of pivot point, structural reference system, VSGEØM
52 53	TXY(25)	CR YMACP	CR, aerodynamic root chord YMAC, Y-coordinate for exposed panel MAC

TABLE 34. T ARRAY, LOCATIONS 1-200, 489-553 (CONT)

Array Location	Original Array Location	Variable Name	Description
54	-	XMACP	XMAC, X-coordinate of structural reference line for exposed panel MAC
55	-	CMACP	CMAC, mean aerodynamic chord, MAC, exposed panel
56 57	-	DMACP WHVID	DMAC, maximum airfoil depth at YMAC Factor to calculate totals/vehicle for wing, horizontal tail, and vertical tail, based on number of panels. 1.0 for wing and horizontal tail. 1.0 for 2 vertical tail panels, 2.0 for 1 vertical tail panel, CASE
58	CCI(114)	YIBFL	Inboard Y-coordinate for fuel cell 1, fuel cell 2 if used, FDIS
59	CCI (115)	YØBFL	Outboard Y-coordinate for fuel cell 1, fuel cell 2 if used, FDIS
60	-	-	S _G , gross planform area, sq in.
61	TXY (2)	-	AR', aspect ratio for exposed panel
62	YTB(114)	XCSEC	XCG CSEC, X-coordinate for centroid of center-section panel
63	TXY(4)	TCP	t/c', thickness ratio at exposed root chord
64	TXY (3)	TRP	λ', exposed panel taper ratio
65	TXY(5)	SIGP	σ , exposed panel thickness ratio taper
66	YC(122)	DMCL	DRT, maximum airfoil depth at center- line station
67	YC(123)	DMTP	D _{TIP} , maximum airfoil depth at tip station
68	TXY (29)	TANEA	Tan A _{EA} , slope of structural reference
69	-	-	$[1.0 + (Tan \Lambda_{EA})^2]^{1/2}$
70	-	-	$(1.0 + \lambda)$
71	-	-	(RS-FS), torque box width factor
72	-	-	Not used
73	-	-	Not used
74	-	-	Not used
75	TXY (36)	SINEA	Sin A _{EA} , sine of sweep angle of structural reference line
76	TXY (41)	CØSEA	Cos A _{EA} , cosine of sweep angle of structural reference line
77	-		$(1.0-\lambda)$
78		-	$(1.0-\lambda]\sigma$
79	-	-	$(1.0-\lambda')$
80	•	-	$(1.0-\lambda'\sigma')$
81 82	TXY (17)	BSØ2 -	b _s /2, structural semispan b', total exposed span
	MI		

TABLE 34. T ARRAY, LOCATIONS 1-200, 489-553 (CONT)

Array Location	Original Array Location	Variable Name	Description
83	TXY (15)	BPSØ2	b's/2, exposed semispan
84	-	-	$(1.0+\lambda')$
85	TXY(18)	-	CRS', exposed structural root chord
86	`-′	TSIG	σ, thickness ratio taper
87	-	TANDX	Tan ΔX _A , slope of line defining X distance between the structural reference line and 50% element line
88	-	CCLDX	CAXA, X-axis intercept for structural reference line offset
89	TXY (9)	CRP	CR', exposed aerodynamic root chord
90	-	TANDH	Tan A DIH, slope of wing reference plane dihedral
91	-	CCLDH	CDIH, Z-axis intercept for dihedral
92	TXY (45)	TAN5	Tan A 5C, slope of 50% element line
93	TXY (46)	CCL5	CA _{5C} , X-axis intercept for 50% element line
94	-	-	λ' σ'
95	-	SCSEC	Sc-SEC, 1.0 or center-section panel area, sq ft/vehicle
96	TXY (6)	BEXP	b'/2, exposed semi-span
97	-	WFL(1)	YCP fuel, Y-coordinate for centroid of design fuel, ABDW
98	-	WFL(2)	Wfuel design, design fuel weight, lb/vehicle, ABDW
99	-	WFL(3)	Wfuel total, total fuel weight, lb/vehicle, ABDW
100-110	YTB(59-69)	TBCA(1-11)	C ₁₋₁₁ , aerodynamic chord at analysis control stations
111-121	-	YRT(1-11)	[b _S /2-Y (1-11)], distance along structural reference line from tip station to each analysis control station, root to tip
122	TXY(27)	TANØ(1)	Tan A _{LE}
123	TXY (28)	TANØ(2)	Tan A ES
124	TXY (29)	TANØ(3)	Tan A FA
125	TXY (30)	TANØ(4)	Tan A RS
126	TXY (31)	TANØ(5)	Tan ATE
127	TXY (471)	TANØ(6)	Tan Λ.25C
128	TXY (32)	TANØ(7)	Tan AC
129	TXY (33)	TANØ(8)	Tan ACs
130	TXY (49)	TANØ(9)	Tan W _{SC}
131	TXY (20)	CCLØ(1)	CLE
132	TXY (21)	$CCL\emptyset(2)$	CFS
133	TXY (22)	CCLØ(3)	CEA
134	TXY (23)	CCLØ(4)	CRS

TABLE 34. T ARRAY, LOCATIONS 1-200, 489-553 (CONT)

Array Location	Original Array Location	Variable Name	Description
135	TXY(24)	CCLØ(5)	$c_{ ext{TE}}$
136	TXY (470)	CCLØ(6)	
137	TXY (25)	CCLØ(7)	C.25C
138			CAC
1	TXY (27)	CCLØ(8)	CACS
139	TXY (50)	CCLØ(9)	CWSC
140	TXY (34)	SINØ(1)	SinALE
141 142	TXY(35)	SINØ(2)	Sin AFS
	TXY (36)	SINØ(3)	Sin AEA
143	TXY (37)	SINØ(4)	Sin ARS
144	TXY (38)	SINØ(5)	Sin ATE
145	TXY (472)	SINØ(6)	Sin A. 25C
146	TXY (39)	CØSØ(1)	Cos ALE
147	TXY (40)	CØSØ(2)	Cos AFS
148	TXY (41)	OØSØ(3)	Cos AEA
149	TXY (42)	CØSØ(4)	Cos ARS
150	TXY (43)	CØSØ(5)	Cos ATE
151	TXY (473)	CØSØ(6)	Cos A , 25C
152	TXY(47)	OØTEA	(-1.0/Tan A FA)
153-163	YLE(25-35)	TBFS(1-11)	DFS(1-11), depth at front spar, root to tip
164	YLE(24)	TBFS(12)	DFS C-SEC, center-section front spar depth
165-175	YTE(25-35)	TBFS(1-11)	D _{RS(1-11)} , depth at rear spar, root to
176	YTE(24)	TBFS(12)	D _{RS} C-SEC, center-section rear spar depth
177-186	D(1088-1097)	DLPNL(1-10)	<pre>factors, root to tip, CASE</pre>
187	D(250)	DELWG	δw, total panel weight factor, CASE
188	D(600)	DLTBX	δ _{TB} , total torque-box weight factor, CASE
189	D(601)	DELLE	čLE, total leading edge weight factor, CASE
190	D(602)	DELTE	<pre>ôTE, total trailing edge weight factor, CASE</pre>
191	D(603)	DMISC	<pre></pre>
192	-	DWGTB	δW · δTB, CASE
193	-	DWGLE	δw · δLE, CASE
194	-	DWGTE	δW · δTE, CASE
195	-	DWGM	ow . omisc, case
196	TW(74)	VFDTMP	TVF, design temperature at critical flutter condition, GJCAL
197	TGS(73)	VFDG	GyF, material shear modulus at critical flutter condition, GJCAL

TABLE 34. T ARRAY, LOCATIONS 1-200, 489-553 (CONCL)

Array Location	Original Array Location	Variable Name	Description		
198	-	-	Not used		
199	TMD(6)	CCSHM	K _{CCT} , plate crippling coefficient,		
200	TMD(7)	CCSFM	K _{CCT} , flange crippling coefficient,		
Refer to	Refer to Section 6.0 for locations 201-488 and 522-529.				
489-499	YTB(12-22)	XBP(1-11)	X _{EA(1-11)} , X-coordinate for analysis control stations, root to tip		
500-510	YTB(1-11)	YBP(1-11)	YEA(1-11), Y-coordinate for analysis control stations, root to tip		
511-521	YS(1-11)	YEA(1-11)	YA(1-11), analysis control stations, structural reference system, root to tip		
530-540	YTB(36-46)	TBD(1-11)	Dave(1-11), average torque-box depth, root to tip		
541	YTB(35)	TBD(12)	D _{C-SEC} , center-section average depth W(1-11), torque-box width, root to tip		
542-552 553	YTB(24-34) YTB(23)	TBW(1-11) TBW(12)	W(1-11), torque-box width, root to tip WC-SEC, center-section width		

TABLE 35. TVS ARRAY

General information for array TVS: Blank common reference location = CD(601) Array size = 400 cells			
Array Location	Description		
t .) are for wing in the reference sweep position, exposed geometry d of pivot location.		
1	$\delta_{p}^{'}$, exposed area outboard of pivot, sq ft		
2	ARp, exposed aspect ratio		
3	λ_{p}^{\prime} , exposed taper ratio		
4	(t/c), thickness ratio at pivot station		
5	(t/c) _{TIP} , thickness ratio at tip station		
6	Thickness ratio taper		
. 7	C _{RP} , aerodynamic chord at pivot station		
8	C _{TIP} , aerodynamic chord at tip station		
9	b _{P/2} , exposed semi-span for movable panel		
10	b _{1P/2} , pivot semi-span		
11	S _{PS} , exposed area outboard of pivot, structural system, sq ft		
12	AR _{PS} , exposed aspect ratio; structural system		
13	λ _{PS} , exposed taper ratio; structural system		
14	(t/c) _{RS} , thickness ratio at pivot station, structural system		
15	(t/c) _{TIPS} , thickness ratio at tip station, structural system		
16	Thickness ratio taper, structural system		

TABLE 35. TVS ARRAY (CCNT)

Array Location	Description
17	C _{RPS} , structural chord at pivot station
18	C _{TIPS} , structural chord at tip station
19	b _{PS/2} , exposed structural semispan for movable panel
20	blps/2, pivot semi-span, structural system
Locations	TVS(21-33) same as T(39-51)
21	Y _p , Y-coordinate at pivot, name = YPO in subroutine SWPXYP
22	X _P , X-coordinate at pivot, name = XPO in subroutine SWPXYP
23	YAP, structural reference line station for pivot
24	(X/C) _{FS} , equivalent chord element line, front spar, recalculated with swept position data
2.	(X/C) _{RS} , equivalent chord element line, rear spar, recalculated with swept position data
26	(X/C) _{EA} , equivalent chord element line, structural reference line, recalculated with swept position data
27	C _p , aerodynamic chord at pivot station
28	ΔC _p , chordwise distance between the pivot and leading edge
29	X _{LEP} , X-coordinate of leading edge at pivot station
30	Y _{EAP} , Y-coordinate of intersection point of structural reference line and line from pivot normal to structural reference line
31	X _{EAP} , X-coordinate of point previously defined
32	C _{SCP} , X-axis intercept for line from pivot normal to structural reference line
L	

TABLE 35. TVS ARRAY (CONT)

Array Location	Description
33	XAp, X-coordinate of pivot point in structural reference system
34	±ΔΛ, delta angle of movable panel between the nominal and swep: position, degrees
35	±ΔΛ, value of location 34 in radians
36	Tan △ ∧, tangent of delta angle
37	$Sin \Delta \Lambda$, sine of delta angle, name = SINDL in subroutine SWPXYP
38	Cos 🛆 A, cosin i of delta angle, name = CØSDL in subroutine SWPXYP
39-40	Not used
Locations	s 41-292 contain calculated data for swept wing geometry.
	s 41-60 are Y- and X-coordinates for indicated nominal chord points ated wing position.
41	Y _{LEP} , Y-coordinate for pivot chord leading edge point
42	Y _{FSP} , Y-coordinate for pivot chord front spar point
43	Y _{EAP} , Y-coordinate for pivot chord structural reference line point
44	Y _{RSP} , Y-coordinate for pivot chord rear spar point
45	Y _{TEP} , Y-coordinate for pivot chord trailing edge point
46	X _{LEP} , X-coordinate for pivot chord leading edge point
47	X _{FSP} , X-coordinate for pivot chord front spar point
48	X _{EAP} , X-coordinate for pivot chord structural reference line point
49	X _{RSP} , X-coordinate for pivot chord rear spar point

TABLE 35. TVS ARRAY (CONT)

Array Location	Description
50	X _{TEP} , X-coordinate for pivot chord trailing edge point
51	Y _{LETIP} , Y-coordinate for tip chord leading edge point
52	Y _{FSTIP} , Y-coordinate for tip chord front spar point
53	YEATIP, Y-coordinate for tip chord structural reference line point
54	Y _{RSTIP} , Y-coordinate for tip chord rear spar point
55	Y _{TETIP} , Y-coordinate for tip chord trailing edge point
56	X _{LETIP} , X-coordinate for tip chord leading edge point
57	X _{FSTIP} , X-coordinate for tip chord front spar point
58	X _{EATIP} , X-coordinate for tip chord structural reference line point
59	X _{RSTIP} , X-coordinate for tip chord rear spar point
60	X _{TETIP} , X-coordinate for tip chord trailing edge point
61-71	Y ₁₋₁₁ , Y-coordinate for the 11 analysis control stations
72-82	X ₁₋₁₁ , X-coordinate for the 11 analysis control stations
83	C _{LE} , X-axis intercept for leading edge element line
84	C _{FS} , X-axis intercept for front spar reference line
85	C _{EA} , X-axis intercept for structural reference line
86	C _{RS} , X-axis intercept for rear spar reference line
87	C _{TE} , X-axis intercept for trailing edge reference line
88	C _R , aerodynamic root chord, X-axis intercept for aerodynamic chord variation equation
89	CRSC, structural root chord, X-axis intercept for structural chord variation equation

TABLE 35. TVS ARRAY (CONT)

Array Location	Description
90	Tan A LE, slope of leading edge element line
91	Tan A FS, slope of front spar reference line
92	Tan A EA, slope of structural reference line
93	Tan A RS, slope of rear spar reference line
94	Tan $\Lambda_{\overline{TE}}$, slope of trailing edge element line
95	Tan AC, slope for aerodynamic chord variation equation
96	Tan AC _S , slope for structural chord variation equation
97	Sin A LE sine of sweep angle for leading edge element line
98	Sin A FS, sine of sweep angle for front spar reference line
99	Sin A EA, sine of sweep angle for structural reference line
100	Sin A RS, sine of sweep angle for rear spar reference line
101	Sin A TE, sine of sweep angle for trailing edge element line
102	Cos A LE, cosine of sweep angle for leading edge element line
103	Cos A FS, cosine of sweep angle for front spar reference line
104	Cos A EA, cosine of sweep angle for structural reference line
105	Cos A RS, cosine of sweep angle for rear spar reference line
106	$\cos \Lambda_{TE}$, cosine of sweep angle for trailing edge element line
107	b/2, semispan
108	C _{TIP} , aerodynamic tip chord

TABLE 35. TVS ARRAY (CONT)

Array						
Location	Description					
109	X _{LET} , X-coordinate of leading edge at tip station					
110	X _{FST} , X-coordinate of front spar at tip station					
111	X _{EAT} , X-coordinate of structural reference line at tip station					
112	X _{RST} , X-coordinate of rear spar at tip station					
113	X _{TET} , X-coordinate of trailing edge at tip station					
114	S _G , planform area, swept position, sq ft					
115	AR, aspect ratio					
116	λ, taper ratio					
117	(t/c) _R , thickness ratio at centerline					
118	(t/c) _{TIP} , thickness ratio at tip station					
119	Thickness ratio taper					
120	C _R , aerodynamic chord at centerline					
121	C _{TIP} , aerodynamic chord at tip station					
122	b/2, semispan					
123	b _{S/2} , structural semispan					
124	S, exposed area outboard of side of body station, sq ft					
1.25	AR', exposed aspect ratio					
126	λ', exposed taper ratio					
127	(t/c) _R , thickness ratio at side of body station					
128	(t/c) _{TIP} , thickness ratio at tip station					

TABLE 35. TVS ARRAY (CONT)

Array Location	Description				
129	Exposed thickness ratio taper				
130	C _R , aerodynamic chord at side of body station				
131	C _{TIP} , aerody.amic chord at tip station				
132	b'/2, exposed semispan				
133	$b_1/2$, side of body station				
134	δ_{S} , exposed area outboard of side of body station, sq ft				
135	AR's, exposed aspect ratio, structural system				
136	$\lambda_{S}^{'}$, exposed taper ratio, structural system				
137	(t/c) _{RS} , thickness ratio at side of body station structural system				
138	(t/c) _{TIPS} , thickness ratio at tip station, structural system				
139	Exposed thickness ratio taper, structural system				
140	C _{RS} , structural chord at side of body station				
141	C _{TIPS} , structural chord at tip station				
142	b _{S/2} , exposed semispan, structural system				
143	b _{1S/2} , side of body station, structural system				
144	Λ _{LE} , sweep of leading edge element line, degrees				
145	Λ _{FS} , sweep of front spar reference line, degrees				
146	Λ _{EA} , sweep of structural reference line, degrees				
147	A _{RS} , sweep of rear spar reference line, degrees				
148	Λ _{TE} , sweep of trailing edge element line, degrees				
149	0.0, not used				

TABLE 35. TVS ARRAY (CONT)

Array						
Location	Description					
150	A _{0.25C} , sweep of quarter chord element line, degrees					
151	C _{0.25C} , X-axis intercept for quarter chord element line					
152	Tan A 0.25C, slope of quarter chord element line					
153	Sin A 0.25C, sine of quarter chord sweep angle					
154	Cos A 0.25C, cosine of quarter chord sweep angle					
155	X _{LE1} , X-coordinate of loading edge at side of body					
156	X _{FS1} , X-coordinate of front spar at side of body					
157	X _{EAl} , X-coordinate of structural reference line at side of body					
158	X _{RS1} , X-coordinate of rear spar at side of body					
159	X _{TE1} , X-coordinate of trailing edge at side of body					
160	X _{LEP} , X-coordinate of leading edge at pivot station					
161	X _{FSP} , X-coordinate of front spar at pivot station					
162	X _{EAP} , X-coordinate of structural reference line at pivot station					
163	X _{RSP} , X-coordinate of rear spar at pivot station					
164	X _{TEP} , X-coordinate of trailing edge at pivot station					
165	X _{LET} , X-coordinate of leading edge at tip station					
166	X _{FST} , X-coordinate of front spar at tip station					
167	X _{EAT} , X-coordinate of structural reference line or tip station					
168	X _{RST} , X-coordinate of rear spar at tip station					
169	X _{TET} , X-coordinate of trailing edge at tip station					

TABLE 35. TVS ARRAY (CONT)

Array Location	Description				
170-180	$Y_{\Lambda(1-11)}$, structural reference station for 11 analysis control station, root to tip				
181-191	$(\Delta Y_{\Lambda}/Y_{\Lambda}')_{1-11}$, analysis control stations expressed in terms of fraction of exposed span, root to tip				
192-202	$C_{(1-11)}$, aerodynamic chord at the analysis control stations, root to tip				
203-213	$D_{MAX(1-11)}$, maximum airfoil depth at the analysis control stations, sime as YTB(70-80), root to tip				
214-224	$(t/c)_{1-11}$, thickness ratio of the analysis control station, root to tip				
225-235	YFS(1-11), Y-coordinate at intersection of the structural chord at each analysis control station and front spar, root to tip				
236-246	XFS(1-11), X-coordinate at intersection of structural chord at each analysis				
247-257	Y _{RS(1-11)} , Y-coordinate at intersection of structural chord at each analysis control station and rear spar, root to tip				
258-268	X _{RS(1-11)} , X-coordinate at intersection of structural chord at each analysis control station and rear spar, root to tip				
269	D _{MAX} , maximum airfoil depth at centerline				
270	D _{MAX TIP} , maximum airfoil depth at tip station				
271	$D_{MAX \ b_1/2}$, maximum airfoil depth at side of body station				
272	D _{MAX P} , maximum airfoil depth at pivot station				
. Daniel and 100 C					

Locations 273-292 contain planform geometry parameters for wing panel outboard of pivot, aerodynamic for first set and structural for second set.

TABLE 35. TVS ARRAY (CONT)

Array Location	Description
200011011)
273	S _p , exposed area outboard of pivot station, sq ft
274	ARp, exposed aspect ratio
275	λ _p , exposed taper ratio
276	(t/c) _p , thickness ratio at pivot station
277	(t/c) _{TIP} , thickness ratio at tip station
278	Exposed thickness ratio taper
279	C _p , aerodynamic chord at pivot station
280	C _{TIP} , aerodynamic chord at tip station
281	b _{p/2} , exposed semispan
282	b _{1P/2} , pivot semispan
283	S _{pS} , exposed area outboard of pivot station, structural system sq ft
284	AR _{pS} , exposed aspect ratio, structural system
285	$\lambda_{pS}^{'}$, exposed taper ratio, structural system
286	(t/c) _{PS} , thickness ratio at pivot station, structural system
287	(t/c) _{TIPS} , thickness ratio at tip station, structural system
288	Exposed thickness ratio taper, structural system
289	C _{pS} , structural chord at pivot station
290	C _{TIPS} , structural chord at tip station
291	b' _{PS/2} , exposed structural semispan

TABLE 35. TVS ARRAY (CONT)

A					
Array Location	Description				
292	B _{1PS/2} , pivot semispan, structural system				
293	Not used				
mediate	294-312 contain general geometry parameters, factors, and inter- calculation data computed and saved during calculations for the ng data items.				
294	-1/(Tan A EA)				
295	$^{\mathrm{C}}_{\mathrm{SC_i}}$, X-axis intercept for line normal to structural reference line				
296	$[-1/(Tan \Lambda_{EA}) - Tan \Lambda_{FS}]$				
297	[-1/(Tan A _{EA}) - Tan A _{RS}]				
298	7, geometric factor, structural to aerodynamic chord ratio				
299	(RS-FS)1, ratio of front to rear spar distance along the structural chord to the structural chord, based on equivalent chord data for front spar, rear spar, and structural reference line				
300	R, geometric factor to compute tangent of an element line sweep angle from tangent of sweep angle of reference line				
301	$[1 + (Tan \Lambda_{EA})^2]^{1/2}$				
302	R Sin A _{EA} Cos A _{EA}				
303	C _{SC} , X-axis intercept for line normal to structural reference line at the side of body station.				
304	C _{SC TIP} , X-axis intercept for line normal to structural reference line at tip station				
305	Y _{LE} , intermediate calculation data				

TABLE 35. TVS ARRAY (CONCL)

Array Location	Description			
306	$Y_{ ext{TE}_{ extbf{i}}}$, intermediate calculation data			
307	Y _{IBGJ} , inboard flutter factor control station, nominal span data required for calculation of corresponding point on swept plan planform			
308	YOBGJ, outboard flutter factor control station same as above			
309	Y _{IBGJ} , inboard flutter factor control station on structural reference line for swept planform			
310	Young Page 1 outboard flutter factor control station on structural reference line for swept planform			
311-312	Intermediate calculation data			
313	$x_{0.25C\ b_1/2}$, X-coordinate of quarter chord at side of body station			
314	X _{0.25CP} , X-coordinate of quarter chord at pivot station			
315	X _{0.25C TIP} , X-coordinate of quarter chord at tip station			
316-400	Not used			

TABLE 36. TGJ ARRAY, FLUTTER ANALYSIS DATA

General information for array TGJ:

Blank common reference location = T(1761)

Array Size = 200 cells

Array data calculated by subroutines GEØMW and VSGEØM for use by flutter requirement calculation subroutines GJCAL and GJTT in overlay (16,0). Data based on geometry and flutter analysis specifications. Two 100-cell blocks are created as required. 1-100 for fixed panel, wing in nominal position, 101-200 for wing in swept position. Array data stored in record 10, mass storage file 1 by GEØMW and read by GJCAL. Array data printed by GEØMW under control of IP(7).

of IP(7).				
Original Array Location	Name, Subroutine GJCAL	Description		
		alues. The second D array locations are set for flutter analysis.		
D(240,340) D(241,341) D(244,342) D(242) D(243,344)	- ARG - -	S, area, sq ft AR, aspect ratio λ, taper ratio Λ, sweep t/c, thickness ratio		
	Original Array Location 1-7 contain e optional geo D(240,340) D(241,341) D(244,342)	Original Name, Array Subroutine GJCAL 1-7 contain input data value optional geometry data s D(240,340) - D(241,341) ARG D(244,342) - D(242) -		

1	D(240,340)	-	S, area, sq ft
2	D(241,341)	ARG	AR, aspect ratio
3	D(244,342)	-	λ, taper ratio
4	D(242)	-	Λ, sweep
1 2 3 4 5 6	D(243,344)	-	t/c, thickness ratio
6 .	D(245,345)	-	σ, thickness ratio taper
7	D(246,343)	-	b ₁ , center-section span
8 9	T(81)	BSØ2	b _{S/2} , structure semispan
1	T(96)	BEXP	b ₁ /2, exposed semispan
10	T(83)	BPSØ2	b _s /2, exposed structural semispan
11	T(15)	BSIØ2	b _{1/2} , side of body station
12	T(89)	CBI	Cg', exposed root chord
13	-	DBI	D_{R}^{T} , average depth at $b_{1}/2$
14	T(64)	TRP	λ', exposed taper ratio
15	T(63)	TCP	(t/c), thickness ratio at exposed
			root chord
16	T(65)	SIGP	σ' , exposed thickness ratio taper
17	T(14)	TAU	τ, structural chord factor
18	T(71)	RSFS	(RS-FS), structural box width factor
19	SINØ(3)	SINEA	Sin A _{EA}
20	CØSØ(3)	CØSEA	Cos A EA
21	T(42)	-	(X/C)FS, equivalent chord
22	T(43)	-	(X/C) _{RS} , equivalent chord
23	T(44)	-	(X/C) _{EA} , equivalent chord

TABLE 36. TGJ ARRAY, FLUTTER ANALYSIS DATA (CONT)

Array Location	Original Array Location	Name, Subroutine GJCAL	Description
24	T(13)	AC	Arc centroid of torque box sections
25	SINØ(6)	SINCØ4	Sin A . 25C
26	CØSØ(6)	CØSCØ4	Cos A . 25C
27-37	T(111-121)	YS(1-11)	Structural reference line distance from tip, root to tip
38-48	T(542-552)	TBW(1-11)	Torque-box width, root to tip
49-59	T(530-540)	TBD(1-11)	Torque-box average depth, root to tip
60-70	T(100-110)	TBCA(1-11)	Aerodynamic chord, trapezoidal planform, roct to tip
71	D(252)	VFK	Flutter speed margin
72	D(253)	VFQ	Critical flutter dynamic pressure
73	D(254)	VFG	Material modulus of rigidity at critical flutter condition
74	D(249,259)	VFT	Material temperature at critical flutter condition
75	D(312)	GJFAC	Flutter requirement calibration factor
76	D(31.3)	GJYI	Inboard control station, flutter factor
77	D(315)	GJYØ	Outboard control station, flutter factor
78-88	T(511-521)	-	YA(1-11), structural station values, analysis control stations
89-99	T(500-510)	-	YEA(1-11), Y-coordinates, analysis control station
100	-	-	Not used
	ocations 101-2 and D(320) are		by VSGEØM only if input data locations
101	TVS(114)	-	S, area, sq ft
102	TVS(115)	-	AR, aspect ratio
103	TVS(116)	-	λ, taper ratio
104	TVS(144)	-	Λ, sweep
105	TVS(117)	-	t/c, thickness ratio
106	TVS (119)	-	σ , thickness ratio taper
107	-	-	b1, center-section span
108	TVS(123)	-	$b_{\rm S}/2$, structural semispan
109	TVS (132)	-	$b_1/2$, exposed semispan
110	TVS(142)	-	b _s /2, exposed structural semispan
111	TVS (133)	-	b ₁ /2, side of body station
112	TVS (130)	-	C _R , exposed root chord
	<u> </u>		

TABLE 36. TGJ ARRAY, FLUTTER ANALYSIS DATA (CONCL)

Array Location	Original Array Location	Name, Subroutine GJCAL	Description
113	TGJ(13)	•	D_{R}' , average depth at $b_1/2$
114	TVS(126)	•	λ', exposed taper ratio
115	TVS(127)	-	(t/c)R, thickness ratio at exposed root chord
116	TVS(129)	-	σ', exposed thickness ratio taper
117	TVS(298)	•	τ, structural chord factor
118	TVS(299)	-	(RS-FS), , structural box width factor
119	TVS (99)	-	Sin A _{EA}
120	TVS(104)	-	Cos AEA
121	TVS(24)	-	(X/C)FS, equivalent chord
122	TVS(25)	-	(X/C)RS, equivalent chord
123	1VS(26)	-	(X/C)EA, equivalent chord
124	TGJ(24)	-	Arc centroid of torque-box sections
125	TVS (153)	-	Sin A.25C
126	TVS(154)	-	Cos A.25C
127-137	-	-	Structural reference line distance from tip, root to tip
138-148	YTB(24-34)	-	Torque-box width, root to tip
149-159	YTS(36-46)	-	Torque-box average depth, root to tip
160-170	TVS (192-202)	-	Aerodynamic chord, trapezoidal planform, root to tip
171	D(324)	-	Flutter speed margin
172	D(321)	1-	Critical flutter dynamic pressure
173	D(322)	-	Material modulus of rigidity at critical flutter condition
174	D(323,259)	-	Material temperature at critical flutter condition
175	D(312)	-	Flutter requirement calibration factor
176	TVS(309)	-	Inboard control station, flutter factor
177	TVS(310)	-	Outboard control station, flutter factor
178-188	TVS (170-180)	-	Structural station values, analysis control stations
189-199	TVS(61-71)	-	Y-coordinates, analysis control stations
200	-	-	Not used

TABLE 37. TFRDK ARRAY, GEOMETRY ARRAY FOR MASS PROPERTIES CALCULATIONS

General information for array TFRDK:

Blank common reference location = T(1986)

Array size = 60 cells

Array contains front and rear spar depth data for use by overlay (14,0) subroutine LETEI.

Array data is created by subroutine GEØMW, overlay (8,0).

Array Location	Description
1-10	Tan KD _{LE} (1-10), slopes of straight lines passed through adjacent depth values evaluated at a point 0.025 times true aerodynamic chord, aft of true leading edge, on chord at each analysis control station.
11-20	CKDLE (1-10), Z-axis intercepts for corresponding depth variation lines defined by aforemention slopes.
21-30	Tan KDFS (1-10), slopes of straight lines passed through adjacent depth values for airfoil point defined by intersection of front spar reference line and Y-coordinates for analysis control stations.
31-40	CKDFS (1-10), Z-axis intercepts for corresponding depth variation lines defined by aforementioned slopes.
41-50	Tan KDRS(1-10, slopes of stright lines passed through adjacent depth values for airfoil point defined by intersection of rear spar reference line and Y-coordinates for analysis control sections.
51-60	CKDRS (1-10), Z-axis intercepts for corresponding depth variation lines defined by aforementioned slopes.

YC AND YTC ARRAYS, OVERLAY (8,0)

The YC and YTC arrays, Tables 38 and 39, contain computed surface leading edge, trailing edge, airfoil and spanwise depth variation data. True leading and trailing edge position data are derived from input specifications by subroutine GEØMC, organized and stored in array YC for use by subroutine CAERO. Required spanwise depth variation data are computed from thickness ratio specifications and derived true aerodynamic chord data, by subroutine GEØMC, organized and stored in array YTC for use by subroutine DMAX.

YC array locations 1 through 92 and YTC array locations 47 through 60 are used to store data computed by subroutines CAERØ, DMAX, ABØXC, and TBWDC so that pertinent informations commonly available to all subroutines. Data from these arrays are also used by subroutine GCØMP during data processing for printed geometry summary output.

Data contained in arrays YC and YTC are required for geometry computations by subroutine CTØT in overlay (14,0), (15,0), and (17,0). In these overlays subroutine CTØT requires the original information contained in locations 1 through 92 of the overlay (8,0) YC array to be located in locations 41 through 132; YC array locations 1 through 40 are used to store calculated data by subroutine CTØT. Information in locations 1 through 46 of array YTC are used by subroutine CTØT as originally created; locations 47 through 60 are not used.

Overlay (8,0) YC and YTC information is transmitted to overlays (14,0) and (15,0) by the operating system. System features allow for blank common save and initialization when program execution is transferred from one overlay to another. This is accomplished by the BUFFER OUT instruction in the exiting program to save blank common and the BUFFER OUT instruction in the incoming program to reset blank common. Subroutine WLETE in overlay (14,0) rearranges the YC array data for use by subroutine CTØT of overlays (14,0) and (15,0).

Subroutine CASE, overlay (8,0) saves YC array data as originally calculated and YTC array data in locations 1 through 50 on record 144, mass storage file 1, as a 200-cell block. This information is created in overlay (17,0) by subroutine WØDATA for use by subroutine CTØT of that overlay.

TABLE 38. YC ARRAY, OVERLAY (8,0)

General information for array YC:

Blank common reference location = T(201)

Array size = 150 cells

Array data in locations 1 through 92 are created by GEØMC when either linear or non-linear leading edge options are used. Created data sub-set size = number of input control stations plus 1.

Data in locations 1 through 92 are used in overlays (14,0), (15,0) and (17,0) for true aerodynamic and structural chord calculations. The arrangement of data used from this array along with the storage of and data items calculated are different from that of overlay (8,0). Descriptions for array YC used in overlays (14,0), (15,0) and (17,0) can be found in Section V.

	ob zoule zi beetzel vy		
Array Location	Description		
1-12	$Y_{LE(1-12)}$, Y-coordinates for the up to 11 input control stations used for defining locations of the true planform leading edge. The tip station value is added to the data set.		
13-24	$X_{LE(1-12)}$, X-coordinates corresponding to the stations defined in locations 1 through 12. The tip station coordinate is assumed to be for the leading edge element line of the theoretical trapezoidal planform.		
25-35	Tan LE(1-11), slope of the straight lines passed through adjacent points defined by the X-, Y-coordinates above.		
36-46	$C_{LE(1-11)}$, X-axis intercepts for the straight lines defined by the slopes and X-, Y-coordinates above.		
47-58	$Y_{TE(1-12)}$, Y-coordinates for trailing edge, similar to locations 1 through 12 above.		
59-70	$X_{TE(1-12)}$, X-coordinate for trailing edge, similar to locations 25 through 24 above.		
71-81	Tan $TE(1-11)$, slope of trailing edge lines similar to locations 25 through 35 above.		
82-92	$C_{\mathrm{TE}(1\text{-}11)}$, X-axis intercept for trailing edge lines similar to locations 36 through 46 above.		
	Locations 93 through 150 are used to store the data items indicated, calculated during the section geometry analysis at each analysis control station:		
93	$X_{\mathrm{LE_{i}}}$, X-coordinate at the true leading edge for Y_{i} defined in location 100, CAERØ.		

TABLE 38. YC ARRAY, OVERLAY (8,0) (CONT)

Array Location	Description			
94	$X_{\mathrm{LEO_{i}}}$, X-coordinate at the leading edge of the trapezoidal planform for Y_{i} defined in location 100, CAERØ			
95	${\rm X_{FS}}_{i}$, X-coordinate at the front spar for ${\rm Y_{i}}$ defined in location 100, CAERØ			
96	X_{EA_i} , X-coordinate at the structural reference line for Y_i defined in location 100, CAERØ			
97	X_{RS_1} , X-coordinate at the rear spar for Y_1 defined in location 100, CAERØ			
98	$X_{\text{TEO}_{\mbox{i}}}$, X-coordinate at the trailing edge of the trapezoidal planform for $Y_{\mbox{i}}$ defined in location 100, CAERØ			
99	XTEi, X-coordinate at the true trailing edge for Yi defined in location 100, CAERØ			
100	Y_i , Y-coordinate value to be used by subroutine CAERØ to calculate aerodynamic chord data found in locations 93 through 99 and 102 through 106. Set up by ABØXC, GEØMW, GEØMC.			
101	X_i , X-coordinate for the analysis point on the plane defined by Y_i above. Set up by ABØXC, GEØMW, GEØMC.			
102	C _i , true aerodynamic chord at Y _i , X _{TEi} -X _{LEi} , CAERØ			
103	$(x/c)_i$, fraction of chord above for point defined by Y_i and X_i , $(X_i-X_{LE_i})/C_i$, CAERØ			
104	C_{o} , aerodynamic chord for trapezoidal planform at Y_{i} , $X_{TEO_{i}}$ - $X_{LEO_{i}}$, CAER 6			
105	$(X/C_0)_i$, fraction of trapezoidal chord above for point defined by Y_i and X_i , $(Xi-X_{LEOi})/C_{O_i}$, CAERO			
106	Intermediate calculation data, CAERØ			
107	Intermediate calculation data, GEØMC			
108	Intermediate calculation data, GEØMC			
109	Intermediate calculation data, GEØMC			

TABLE 38. YC ARRAY, OVERLAY (8,0) (CONCL)

Array Location	Description			
110	${}^{Y}_{FS_{i}}$, Y-coordinate at intersection of the structural chord			
	at each analysis control station and the front spar, ABØXC			
111	${ m X_{FS_i}}$, X-coordinate at intersection of the structural chord at each analysis control station and the front spar, ABØXC			
112	DFS _i , airfoil depth at the front spar-structural chord inter- section point defined in locations 110 and 111, ABØXC			
113	Y_{RS_i} , Y-coordinate at intersection of the structural chord at each analysis control station and the rear spar, ABØXC			
114	X _{RSi} , X-coordinate at intersection at the structural chord at each analysis control station and the rear spar, ABØXC			
115	D _{RSi} , airfoil depth at the rear spar-structural chord inter- section point defined in locations 113 and 114, ABØXC			
116	t/c _{RT} , same value as in TXY(451), GEØMC			
117	t/c _{TIP} , same value as in TXY(452), GEØMC			
118	Y_{IB} , same value as in TXY(453), GEØMC			
119	Y _{ØB} , same value as in TXY(454), G应 ØM C			
120	D _{IB} , same value as in TXY(455), GE ØM C			
121	DøB, same value as in TXY(456), GEØMC			
122	D _{RT} , same value as in TXY(457), GEØMC			
123	D _{TIP} , same value as in TXY(458), GEØMC			
124	Tan D, same value as in TXY(459), GEØMC			
125-139	Not used			
140	Set to 0.10 by TBWDC to be used by ABØXC to calculate the Section J for an assumed web gage value as indicated.			
141	Set to 0.20 by TBWDC to be used by ABØXC to calculate the Section J for an assumed web gage value as indicated.			
142	K _{sec} , section average to maximum depth factor, TBWDC			
143-150	Not used			

TABLE 39. YTC ARRAY

General information for array YTC:	
Blank common reference location = T(351)	
Array size = 60 cells	

Array data locations 1 through 46 are created by GEØMC when either linear or nonlinear depth variation options are used. Created data subset size = number of input control points plus 1.

This array is used in overlays (8,0), (14,0), (15,0), and (17,0). Locations 47 through 60 are used only in overlay (8,0). Subroutine CTØT of overlays (14,0), (15,0), and (17,0) uses array locations 1 through 46 only for maximum airfoil depth calculations.

Array Location	Description			
1-12	$Y_{t/c}$ (1-12), Y-coordinates for the up to 11 input control stations used for defining spanwise thickness ratio variation. The tip station value is added to the data set.			
13-24	D _{max} (1-12), maximum airfoil depth at the control stations defined in locations 1 through 12. The depths are calculated from the input (t/c) specifications and true aerodynamic chords calculated from the leading and trailing edge data sets in array YC. The added tip station depth value is be on data derived from the basic input specifications for the ness ratio distributions, locations 141, 142, 243, and 24 the variable data block, array D.			
25-35	Tan $D_{max}(1-11)$, slope of the straight lines passed throug adjacent maximum depth values of the corresponding Y-coor ates of the data sub-sets in locations 1 through 24.			
36-46	$C_{\mbox{\scriptsize D}_{\mbox{\scriptsize max}}}(1\text{-}11),$ Z-axis intercepts for corresponding linear depth variation lines defined by the slopes, $D_{\mbox{\scriptsize max}}$ and Y-coordinates above.			
•	Locations 47 through 60 are used to store the data items indicated, calculated during the section geometry analysis at each analysis control station.			
47	Y _i , Y-coordinate of local airfoil depth calculation point by subroutine DMAX, setup by ABØXC, GEØMW, TBWDC			
48	X _i , X-coordinate of local airfoil depth calculation point by subroutine DMAX, setup by ABØXC, GEØMW, TBWDC			
49	$D_{\hat{\mathbf{I}}}$, calculated local depth at coordinates defined by $Y_{\hat{\mathbf{I}}}$ and $X_{\hat{\mathbf{I}}}$ above, calculated by DMAX			
50	$D_{\text{max}_{i}}$, maximum depth of airfoil at Y_{i} above, calculated by DMAX			

TABLE 39. YTC ARRAY (CONCL)

Array Location	Description		
51	Intermediate calculation data, polynomial airfoil depth equation calculation by DMAX		
52	Tan D, same value as in YC(124) and TXY(459), GEØMC		
53	$D_{ extsf{RT}}$, same value as in YC(122) and TXY(457), GE $m{\emptyset}$ MC		
54	D_{tip} , same value as in YC(123) and TXY(458), GEØMC		
55	Intermediate calculation data, delta Y, GEØMC. Changed by DMAX to ratio of average torque-box depth to the maximum depth along the structural width of the torque-box section at each analysis control station. Used by ABØXC.		
56	Not used		
57	C_{i} , true aerodynamic chord at coordinates defined by Y_{i} and X_{i} above, DMAX.		
58	ΔC_i , distance between the coordinate point X_i and the true leading edge point X_{LE_i} on the local airfoil defined by Y_i , X_i - X_{LE_i} , DMAX		
59	$(X/C)_i$, fraction of chord above for calculation of local depth, Δ C/C $_i$, DMAX		
60	D _{max} , maximum depth of structural cross-section of the		
	torque-box at each analysis control station, numerically selected by ABØXC based on calculated values of local depths along the structural width.		

OUTPUT DATA ARRAYS TO AND TS

Arrange TD and TS are used by print subroutine PRTG as the data array for printed output of geometry summary data. Array TG data are organized by subroutine GCOMP primarily from data previously computed and stored in arrays TXY, T, and TVS. Table 40 describes the contents of array TD. The original array locations for transferred information are included. Items without original array locations indicated are computed by subroutine GCOMP.

Array TS (Table 41) consists primarily of data processed by subroutine. PRTG from the contents of array TD.

TABLE 40. TD ARRAY, PRINTED OUTPUT GEOMETRY DATA

General information for array TD:
Blank common reference location = CD (1101)

Array size = 600 cells

Array	/ S1Ze = 000 Cells	
Array Location	Original Array Location	- Description
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32	D(242) D(138) D(240) D(241) D(244) TXY(451) TXY(452) - TXY(25) TXY(10) TXY(8) TXY(17) TXY(1) TXY(2) TXY(3) TXY(4) - TXY(5) TXY(9) TXY(10) TXY(6) TXY(7) TD(13) TXY(11) TXY(12) TXY(13) - TXY(14) TXY(18) TXY(19) TXY(15) TXY(16)	Input planform sweep, degrees Input planform sweep reference chord Input planform area, sq ft Input planform aspect ratio Input planform taper ratio t/cRT t/cTIP Thickness ratio taper, TXY(452)/TXY(451) CR CTIP b/2 b _s /2 S' AR' \(\lambda'\) (t/c)' t/cTIP Exposed thickness ratio tapes CR' CTIP b'/2 b ₁ /2 S' AR's, structural system \(\lambda'\)s, structural system t/cTIP, structural system t/cTIP, structural system Thickness ratio taper, structural system CR'S, structural system CTIPS, structural system b _s /2 b _{1s} /2

TABLE 40. TD ARRAY, PRINTED OUTPUT GEOMETRY DATA (CONT)

Array Location	Original Array Location	Description
	sweep wing configura	t wing planform geometry data only if ations are analysed. This set is initialize
33	TVS(1)	S'p
34	TVS(2)	AR'p
35	TVS(3)	λ'p
3 6	TVS(4)	(t/c)'p
37	TVS(5)	(t/c) _{TIP}
38	TVS(6)	Thickness ratio taper
39	TVS(7)	C'p
40	TVS(8)	C _{TIP}
41	TVS(9)	b p/2
42	TVS(10)	b ₁ p/2
43	TVS(11)	S'ps, structural system
44	TVS(12)	AR'ps, structural system
45	TVS(13)	λ'ps, structural system
46	TVS(14)	(t/c)'ps, structural system
47	TVS(15)	(t/c) _{TIPS} , stru:tural system
48	TVS(16)	Thickness ratio taper, structural system
49	TVS(17)	C'ps, structural system
50	TVS(18)	CTIPS, structural system
51	TVS(19)	b'ps/2, structural system
52	TVS(20)	b ₁ p ₅ /2, structural system
53	TXY(27)	Tan A LE
54	TXY (28)	Tan A FS
55	TXY(29)	Tan A EA
56	TXY(30)	Tan ARS
57	TXY(31)	Tan A TE
58	-	0.0, not used
59		$Tan \land .25C = (TD(105) - TD(68))/TD(11)$
60	TXY(32)	Tan AC
61	TXY (33)	Tan ACS
62	TXY(20)	CLE
63	TXY(21)	CFS
64	TXY (22)	CEA
65	TXY(23)	CRS
66	TXY (24)	CTE
67	-	0.0, not used
68	-	$C_{0.25C} = 0.25 \cdot TD(9) + TD(62)$
69	TXY(25)	$C_{\rm R}$
	` '	, r

TABLE 40. TD ARRAY, PRINTED OUTPUT GEOMETRY DATA (CONT)

70	Array Location	Original Array Location	Description
100 TXY (431) 101 TXY (432) 102 TXY (433) 103 TXY (434) 104 - 105 - 106-134 - TX (431)	71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	TXY(34) TXY(35) TXY(36) TXY(37) TXY(38) TXY(39) TXY(40) TXY(41) TXY(42) TXY(42) TXY(42) TXY(423) TXY(424) TXY(425) TXY(426) TXY(427) TXY(428) TXY(429) TXY(430) TXY(430) TXY(431) TXY(432) TXY(433)	Sin A FS Sin A FS Sin A FS Sin A RS Sin A TE 0.0, not used Sin A .25c = F (TD(59)) Cos A LE Cos A FS Cos A FS Cos A TE 0.0, not used Cos A .25c = F (TD(59)) XLE at b1/2 XFS at b1/2 XTE at b1/2 0.0, not used X .25c at b1/2 = TD (98) XLE at YP XFS at YP XTE AT

TABLE 40. TD ARRAY, PRINTED OUTPUT GEOMETRY DATA (CONT)

Array Location	Original Array Location	Description
		anform geometry data for the surface segmented analysis control station 1.
135		Area, sq ft
136	•	Aspect ratio
137	-	l'aper ratio
138	TD(6)	Inboard thickness ratio
139	TD(263)	Outboard thickness ratio
140	•	Thickness ratio taper
141	TD(9)	Inboard aerodynamic chord
142	TD(161)	Outboard aerodynamic chord
143	TD(208)	Semispan
144	-	Structured semi-span
145		d analysis control station 11. Area, sq ft
146		Aspect ratio
146	- - TD(6)	Aspect ratio
146 147	- TD(6) TD(273)	Aspect ratio Taper ratio
146 147 148 149 150		Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper
146 147 148 149 150	TD(273) - TD(9)	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord
146 147 148 149 150 151	TD(273) - TD(9) TD(171)	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic chord
146 147 148 149 150 151 152	TD(273) - TD(9)	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic chord Semispan
146 147 148 149 150 151	TD(273) - TD(9) TD(171)	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic chord
146 147 148 149 150 151 152 153 154	TD(273) - TD(9) TD(171) TD(218) -	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic chord Semispan Structural semi-span anform geometry data for the surface segment
146 147 148 149 150 151 152 153 154 Locations between	TD(273) - TD(9) TD(171) TD(218) - 155-164 contain pl	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic chord Semispan Structural semi-span anform geometry data for the surface segmentations 1 and 11. Area, sq ft
146 147 148 149 150 151 152 153 154 Locations between	TD(273) - TD(9) TD(171) TD(218) - 155-164 contain pl	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic chord Semispan Structural semi-span anform geometry data for the surface segmentations 1 and 11. Area, sq ft Aspect ratio
146 147 148 149 150 151 152 153 154 Locations between	TD(273) - TD(9) TD(171) TD(218) - 155-164 contain pl analysis control s	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic chord Semispan Structural semi-span anform geometry data for the surface segmentations 1 and 11. Area, sq ft Aspect ratio Taper ratio
146 147 148 149 150 151 152 153 154 Locations between 155 156 157 158	TD(273) - TD(9) TD(171) TD(218) - 155-164 contain planalysis control s TD(263)	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic chord Semispan Structural semi-span anform geometry data for the surface segmentations 1 and 11. Area, sq ft Aspect ratio Taper ratio Inboard thickness ratio
146 147 148 149 150 151 152 153 154 Locations between 155 156 157 158 159	TD(273) - TD(9) TD(171) TD(218) - 155-164 contain pl analysis control s	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic chord Semispan Structural semi-span anform geometry data for the surface segmentations 1 and 11. Area, sq ft Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio
146 147 148 149 150 151 152 153 154 Locations between 155 156 157 158 159 160	TD(273) - TD(9) TD(171) TD(218) - 155-164 contain planalysis control s TD(263)	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic chord Semispan Structural semi-span anform geometry data for the surface segmentations 1 and 11. Area, sq ft Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper
146 147 148 149 150 151 152 153 154 Locations between 155 156 157 158 159 160 161	TD(273) - TD(9) TD(171) TD(218) - 155-164 contain planalysis control s TD(263) TD(273)	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic chord Semispan Structural semi-span anform geometry data for the surface segmentations 1 and 11. Area, sq ft Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord
146 147 148 149 150 151 152 153 154 Locations between 155 156 157 158 159 160 161 162	TD(273) - TD(9) TD(171) TD(218) - 155-164 contain planalysis control s TD(263)	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic chord Semispan Structural semi-span anform geometry data for the surface segmentations 1 and 11. Area, sq ft Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic thord
146 147 148 149 150 151 152 153 154 Locations between 155 156 157 158 159 160 161	TD(273) - TD(9) TD(171) TD(218) - 155-164 contain planalysis control s TD(263) TD(273)	Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord Outboard aerodynamic chord Semispan Structural semi-span anform geometry data for the surface segmentations 1 and 11. Area, sq ft Aspect ratio Taper ratio Inboard thickness ratio Outboard thickness ratio Thickness ratio taper Inboard aerodynamic chord

TABLE 40. TD ARRAY, PRINTED OUTPUT GEOMETRY DATA (CONT)

Array Location	Original Array Location	Description
		lanform geometry data for the surface segment station 1 and the tip station.
165	-	Area, sq ft
166	•	Aspect ratio
167	-	Taper ratio
168	TD(273)	Inboard thickness ratio
169	TD(7)	Outboard thickness ratio
170	•	Thickness ratio taper
171	-	Inboard aerodynamic chord
172	TD(10)	Outboard aerodynamic chord
173	•	Semispan
174	-	Structural semispan
175	YC(140)	0.10
176	YC(141)	0.20
177	YC(142)	K _{sec} , average section depth factor
178	YC(143)	0.0, not used
179	YC(144)	0.0, not used
180	YC(145)	0.0, not used
181	YC(146)	0.0, not used
182	YC(147)	0.0, not used
183	YC(148)	0.0, not used
184	YC(149)	0.0, not used
185	YC(150)	0.0, not used
186-207	-	Not used
208-218	TXY(55-65)	Y-coordinates for analysis control stations
219-229	TXY(66-76)	X-coordinates for analysis control stations
230-240	-	Analysis control station locations, fraction of exposed span
241-251	TXY (113-123)	True aerodyanmic chords at analysis control stations
252-262	TXY (124-134)	Maximum depth at analysis control stations
263-273	•	Thickness ratio at analysis control station
274-284	TXY(490-500)	Structural station values for analysis control stations
285-295	TXY(78-88)	Torque-box width for analysis control stations
296 - 30 6	TXY (90-100)	Torque-box average depth for analysis control stations
307-317	TXY(203-213)	Front spar depth for analysis control stations

TABLE 40. TD ARRAY, PRINTED OUTPUT GEOMETRY DATA (CONT)

Array Location	Original Array Location	Description
318-328	TXY(311-321)	Rear spar depth for analysis control stations
329-339	TXY(102-112)	Torque-box cross-sectional area for analysis control stations, sq in.
340-350	-	Torque-box perimeter for analysis control stations
351-361	TXY(178-188)	Y-coordinate at front spar for analysis control stations
362-372	TXY(191-201)	X-coordinate at front spar for analysis control stations
373-383	TXY(214-224)	Average section depth factor for analysis control stations
384 - 394	TXY(237-247)	Section J for tweb = 0.10 for analysis control stations
395-405	TXY(288-298)	Y-coordinate at rear spar for analysis con- trol stations
406-416	TXY(300-310)	X-coordinate at rear spar for analysis control stations
417-427	TXY(323-333)	Torque-box section maximum depth for analysis control stations
428-438	TXY(346-356)	Section J for tweb = 0.20 for analysis control stations
439-448	-	Spanwise distance between analysis control stations
449-458	-	Distance between analysis control stations structural system
459-468	-	Spanwise distance between front spar coordinates for analysis control stations
469-478	-	Spanwise distance between rear spar coordinates for analysis control stations
479-488	-	Cumulative sums for torque box panel areas, root to tip, sq ft
489-498	-	Cumulative sums for torque box panel volumes, root to tip, cu ft
499	-	Cumulative sums for total panel access, sq ft
500 -509	_	Total area for each structural panel, sq ft
510	-	Cumulative sum for torque-box panel areas, sq ft
511-520	-	Panel area for 10 torque box segments, sq ft
521	-	Cumulative sum for leading edge panel areas, sq ft

TABLE 40. TD ARRAY, PRINTED OUTPUT GEOMETRY DATA (CONCL)

Array Location	Original Array Location	Description
522-531	-	Panel area for 10 leading edge segments, sq ft
532	-	Cumulative sum for trailing edge panel areas, sq ft
533-542	-	Panel area for 10 trailing edge segments, sq ft
543		Cumulative sum for torque-box panel vol- umes, cu ft
544-553	•	Panel volume for 10 torque-box segments, cu ft
554	-	Cumulative sum for leading edge panel vol- umes, cu ft, not calculated
555-564	-	Panel volume for 10 leading edge segments, cu ft, not calculated
565	-	Cumulative sum for trailing edge panel vol- umes, cu ft, not calculated
566-575	-	Panel volume for 10 trailing edge segments, cu ft, not calculated
576	1	Not used
577	-	ALE, leading edge sweep angle, degrees
578	•	AFS, front spar sweep angle, degrees
579	-	Λ _{EA} , structural reference line sweep angle, degrees
580	¥1	ARS, rear spar sweep angle, degrees
581	1.53	Λ _{TE} , trailing edge sweep angle, degrees
582	•	0.0, not used
583	-	Λ _{.25c} , quarter chord sweep angle, degrees
584	T(42)	(X/C) _{FS} , equivalent chord element line for front spar
585	T(44)	(X/C) _{EA} , equivalent chord element line for structural reference line
586	T(43)	(X/C) _{RS} , equivalent chord element line for rear spar
587-600	-	Not used

TABLE 41. TS ARRAY

General information for array TS:

Blank common reference location = CD(1)

Array size = 600 cells

Locations 1-88 initially set up by GCOMP, printed by PRTG and subsequently changed by PRTG with data from array TD for printing of torque-box summing data.

Torque-box summary data stored in 11-cell elements for each item in array TD. PRTG records these 11-cell subarray data into 11-station or 16-panel subarrays, each containing appropriate TD array data items.

Array Location	Original Array Location	Description
Locations	1-88 as set up by (GCØMP.
1-11	YTC(1-11)	Y-coordinates for t/c control stations
12-22	DTC(12-22)	Input t/c data, D(2042-2052)
23-33	YTC(13-23)	Maximum airfoil depth at t/c control stations
34-44	YC(1-11)	Y-coordinates for leading edge position control stations
45-55	YC(13-23)	X-coordinates for true position of leading edge
56-66	YC(47-57)	Y-coordinates for trailing edge position control stations
67-77	YC(59-69)	X-coordinates for true position of trailing edge
78-88	YC(140-150)	Miscellaneous data, see YC array map
Location 1	1-121 as set up by 1	PRTG
1	TD(208)	Y(1)
2	TD(274)	Y _{EA} (1)
3	TD(230)	ΔY/b'/2(1)
4	TD(241)	C(1)
5	TD(252)	$D_{\text{max}}(1)$
6	TD(263)	t/c(1)
7	TD(219)	XEA(1)
8	TD(351)	YES(1)
9	TD(362)	XFS(1)
10	TD(395)	YRS(1)
11	TD(406)	$X_{RS}(1)$

TABLE 41. TS ARRAY (CONT)

The foregoing data items Location 121 is set at 2 print of location 1-121 location 121 is set at 2 print of location 121 is set at 3 print of location 121 is set at 3 location 121 is set to 6 location 2, YEA(1)	
Location 121 is set at 2 print of location 1-121 location 121 is set to 1 location 1, YEA(1)	or stations 2-11.
print of location 1-121 location 121 is set to 1 location 2, YEA(1) TD(274) TD(285) TD(285) TD(296) TD(318) TD(318) TD(373) TD(373) TD(373) TD(373) TD(340) TD(384) TD(394) TD(384) TD(428) TD(329) TD(384) TD(428) TD(5510) TD(384) TD(521) TD(551) Sum for torque-box panel areas Sum for trailing edge panel areas Calculated 248 TD(565) Sum for trailing edge panel areas Calculated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
10cation 121 is set to 1	
TD(274) TD(285) W(1)	
TD(285) TD(296) Dave(1) Dave(1)	
TD(296) Dave(1) DFS(1)	
TD(307)	
TD(318)	·
TD(329) Torque-box section area (1)	
TD(373) Section depth factor (1)	
TD(417) Section maximum depth (1))
TD(340) Section parameter (1)	
TD(384) Section J, tweb = 0.10	
TD(428) Section J, tweb = 0.20	
The foregoing data items of Sum for total panel areas Sum for torque-box panel of Sum for torque-box panel of Sum for trailing edge panel of Sum for trailing edge panel of Sum for torque box panel of Sum for torque box panel of Sum for torque box panel of Sum for trailing edge panel of Sum for trailing edg	
242 TD(499) Sum for total panel areas 243 TD(510) Sum for torque-box panel areas 244 TD(521) Sum for loading edge panel 245 TD(532) Sum for trailing edge panel 246 TD(543) Sum for torque box panel 247 TD(554) Sum for leading edge panel calculated calculated 249 - 250 - 251 - 252 - 253 TD(500) 254 TD(511) 255 TD(522) 256 TD(533)	
243 TD(510) Sum for torque-box panel and sum for loading edge panel and sum for trailing edge panel and sum for trailing edge panel and sum for torque box panel and sum for torque box panel and sum for leading edge panel and sum for leading edge panel and sum for trailing edge panel and	or station 2-11.
244 TD(521) Sum for loading edge pane. 245 TD(532) Sum for trailing edge pane. 246 TD(543) Sum for torque box panel of trailing edge panel of calculated. 248 TD(565) Sum for trailing edge panel of calculated. 249 - 0.0 250 - 0.0 251 - 0.0 252 - 0.0 253 TD(500) ΣS(1) 254 TD(511) STB(1) 255 TD(522) SLE(1) 256 TD(533) STE(1)	
245 TD(532) Sum for trailing edge paner 246 TD(543) Sum for torque box panel of trailing edge paner 247 TD(554) Sum for leading edge paner 248 TD(565) Sum for trailing edge paner 249 - 0.0 250 - 0.0 251 - 0.0 252 - 0.0 253 TD(500) ΣS(1) 254 TD(511) STB(1) 255 TD(522) SLE(1) 256 TD(533) STE(1)	
TD(543) Sum for torque box panel Sum for leading edge panel Calculated	
247 TD(554) Sum for leading edge panel calculated 248 TD(565) Sum for trailing edge panel calculated 249 - 0.0 250 - 0.0 251 - 0.0 252 - 0.0 253 TD(500) ΣS(1) 254 TD(511) STB(1) 255 TD(522) SLE(1) 256 TD(533) STE(1)	
248 TD(565) calculated Sum for trailing edge paneral calculated 0.0 250 - 0.0 251 - 0.0 252 - 0.0 253 TD(500) ΣS(1) 254 TD(511) STB(1) 255 TD(522) SLE(1) 256 TD(533) STE(1)	
248 TD(565) Sum for trailing edge paner calculated 249 - 0.0 250 - 0.0 251 - 0.0 252 - 0.0 253 TD(500) ΣS(1) 254 TD(511) STB(1) 255 TD(522) SLE(1) 256 TD(533) STE(1)	volumes, not
calculated 249 - 0.0 250 - 0.0 251 - 0.0 252 - 0.0 253 TD(500) ΣS(1) 254 TD(511) STB(1) 255 TD(522) SLE(1) 256 TD(533) STE(1)	
249 - 0.0 250 - 0.0 251 - 0.0 252 - 0.0 253 TD(500) ΣS(1) 254 TD(511) S _{TB} (1) 255 TD(522) S _{LE} (1) 256 TD(533) S _{TE} (1)	1 volumes, not
250 - 0.0 251 - 0.0 252 - 0.0 253 TD(500) ΣS(1) 254 TD(511) S _{TB} (1) 255 TD(522) SLE(1) 256 TD(533) STE(1)	
251 - 0.0 252 - 0.0 253 TD(500) ΣS(1) 254 TD(511) S _{TB} (1) 255 TD(522) S _{LE} (1) 256 TD(533) S _{TE} (1)	
252 - 0.0 253 TD(500) ΣS(1) 254 TD(511) S _{TB} (1) 255 TD(522) S _{LE} (1) 256 TD(533) S _{TE} (1)	
253	
254 TD(511) S _{TB} (1) 255 TD(522) S _{LE} (1) 256 TD(533) S _{TE} (1)	
255 TD(522) SLE(1) 256 TD(533) STE(1)	
256 TD(533) S _{TE} (1)	
258 TD(555) VOLLE(1), not calculated	
259 TD(566) VOLTE(1), not calculated	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c} 261 & TD(449) & \Delta Y_{\Lambda}(1) \end{array}$	

TABLE 41. TS ARRAY (CONCL)

Array Location	Original Array Location	Description
262	TD(479)	Cumulative sum for torque-box area, outboard to inboard(1)
263	TD(489)	Cumulative sum for torque-box volume, out- board to inboard(1)
264-362	•	Data items in locations 253-263 for panels 2-10.
363-600	-	Not used

SUBROUTINE DESCRIPTIONS

PROGRAM ØLAY8

Deck name:

ØLAY8

Entry name:

ØVERLAY (5HALPHA, 8,0)

Called by:

Program ØLAY00

Subroutines called: CCNTL

Program ØLAY8 is the main overlay (8,0) program. The only function of this routine is to initialize blank common, to execute the overlay subroutines, and to save blank common before the next overlay, (14,0), is loaded into core.

SUBROUTINE CCNTL

Deck name:

CCNTL

Entry name:

CCNTL

Called by:

Program ØLAY8

Subroutine called: CASE, READMS

Subroutine CCNTL is the first wing and empennage module subroutine to be executed. The primary function of this subroutine is to process module input data, variable data array D, for the surface type to be evaluated. Array D is initialized from the appropriate mass storage record for the problem-records 23, 26, and 27 for the wing horizontal tail and vertical tail, respectively. These records, 2060 data cells, contain the initial SWEEP permanent data bank values for the surface plus the contents of the input variable data blocks for each surface, input data decks WING, HORIZONTAL, and VERTICAL.

Subroutine CCNTL then revises the contents of array D with data from the following sources:

- 1. Array WD, mass storage file 1, record 21, Table 20
- 2. Array SPAL, mass storage file 1, record 38, Table 21
- 3. Array XMISC, label common block MISC, Table 5

Data transfer into array D is governed by the original contents of Array D status resulting from the merging of variable data block values into the initial SWEEP permanent data bank values. Specific data items and array D location that may be adjusted by subroutine CCNTL are presented in Table 42. The data source and specific control locations are also listed. Actual transfer of information is made only if the value in the tested cells have been initialized to zero.

Subroutine CCNTL prints the following blocks as printed output data if column 3; case control card 1 is specified with a zero value -- array IP(3):

- 1. Contents of the D array region affected by the data transfer options, values before the processing operations are executed
- 2. Contents of array WD
- 3. Contents of array SPAL
- 4. Contents of all locations of array D after the data transfer operations have been executed

Subroutine CCNTL initially sets blank common to 0.0 before the foregoing operations are performed. It also initializes locations 1-20, 59, 60, and 85 of array ND with required integer values.

Subroutine CCNTL executes subroutine CASE before returning control to program ØLAY8. Subroutine CASE is executed for processing of general vehicle design data and for computations of surface geometry information.

Subroutine Variables

Table 43 contains the variable referenced by subroutine CCNTL.

References to arrays D and T are made by actual location references by this subroutine. References to array SPAL are made as T array references, T(xxxx); T array locations 1001-1050 contains the values found in array SPAL.

Labeled Common Variables

Array IP, labeled common block IPRINT. Array XMISC, labeled common block MISC. Array R, XMISC array locations 85-100.

Mass Storage File Records

Reads record 21, array WD Reads record 23, variable data, wing Reads record 26, variable data, horizontal tail Reads record 27, variable data, vertical tail Reads record 38, array SPAL

Error Messages

TABLE 42. DATA SOURCE MATRIX FOR ADJUSTMENT OF VARIABLE DATA, ARRAY D

		Source		Test	
	Vertical	Horizontal		Control	Array
Comments	Tail	Tail	Wing	Word	Location
	WD(2)	WD(2)	WD(2)	D(88)	81
	WD(4)	WD(4)	WD(4)	D(88)	85
	WD(5)	WD(5)	WD(5)	D(88)	86
	WD(6)	WD(6)	WD(6)	D(88)	87
	WD(103)	WD(103)	WD(103)	D(88)	89
	WD(103)	WD(103)	WD(103)	D(88)	91
Set to value if $D(88) = 0$ D(88) = 0.0.	1.0	1.0	1.0	D(88)	93
	WD(104)	WD(104)	WD(104)	D(88)	94
	WD(104)	WD(104)	WD(104)	D(88)	96
	WD(105)	WD(105)	WD(105)	D(88)	98
	WD(105)	WD(105)	WD(105)	D(88)	100
No move for horizontal tail.	0.0	-	1.0	•	110
Only if $D(242) = 0.0$.	WD(135)	WD(112)	WD(8)	D(240)	138
,	WD(136)	WD(113)	WD(9)	_	144
	0.0	0.0	0.0	-	175
	WD(137)	WD(114)	WD(14)	-	176
	0.0	0.0	0.0	-	177
	0.0	0.0	0.0	•	178
D(196)-D(203), wing only.	-	_	D(258)	-	196
	-	-	D(259)	-	197
	-	l -	WD(23)	•	199
	-	-	WD(10)	-	200
	-	-	WD(11)	-	201
	-	-	WD(12)	-	202
	-	-	WD(13)	-	203
	0.0	WD(157)	0.0	-	204
D(206)-D(219), wing only.	-	- ` ′	WD(39)	D(208)	206
	-	-	WD(40)	D(208)	207
	-	-	WD(102)	D(208)	208
	-1	-	WD(37)	D(208)	209
	-	-	WD(36)	D(208)	210
	-	-	WD(20)	D(208)	211
	-	-	WD(38)	D(208)	212
	-	-	WD(44)	D(215)	213
	-	-	WD(45)	D(215)	214
	-	-	WD(102)	D(215)	215
			WD(42)	D(215)	216

TABLE 42. DATA SOURCE MATRIX FOR ADJUSTMENT OF VARIABLE DATA, ARRAY D (CONT)

	Test		Source		
Array	Control		Horizontal	Vertical	
Location	Word	Wing	Tail	Tail	Comments
217	D(215)	WD(41)	•	-	
218	D(215)	WD(20)	-	-	
219	D(215)	WD(43)	-	-	
239	- :	WD(7)	WD(111)	WD(134)	
240	D(240)	WD(15)	WD(115)	WD(138)	
241	D(240)	WD(16)	WD(116)	WD(139)	
242	D(240)	WD(17)	WD(117)	WD(140)	
243	D(240)	WD(161)	WD(165)	WD(169)	
244	D(240)	WD(18)	WD(118)	WD(141)	
245	D(240)	WD(162)	WD(168)	WD(170)	Ŷ.
246	D(240)	WD(19)	WD(119)	WD(142)	1
247	D(240)	WD(159)	WD(163)	WD(167)	
248	D(240)	WD(160)	WD(164)	WD(168)	
253	-	XMISC(5)	XMISC(6)	XMISC(7)	For wing, fixed wing
				_	configurations only.
253	D(200),	SPAL(44)	N/A	N/A	For wing only variable
	WD(10)				sweep configurations only,
					and if pivot design
					specified. Double test,
					D(200) or WD(10) not 0.0.
254	-	XMISC(28)	XMISC(29)	XMISC(30)	For wing, fixed wing
					configurations only.
254	D(200),	SPAL(45)	N/A	N/A	In wing only variable
	WD(10)				sweep configurations only
					and if pivot design
					specified. Double test
1					D(200) or WD(10) not 0.0.
259	-	XMISC(8)	XMISC(9)	XMISC(10)	
282	_	SPAL(46)	SPAL(47)	SPAL(48)	For wing, fixed wing
			` ′		configurations only.
282	D(200),	SPAL(43)	N/A	N/A	For wing only, variable
	WD(10)	` ′	·	·	sweep configurations only
					and if pivot design
					specified. Double test,
					D(200) or WD(10) not 0.0.
289	-	0.0	-	WD(158)	No move for horizontal
					tail
310	D(357)	0.0	0.0	SPAL (12)	T-tail vertical tail only,
	. ,				no test for conven-
	1				tional vertical

TABLE 42. DATA SOURCE MATRIX FOR ADJUSTMENT OF VARIABLE DATA, ARRAY D (CONT)

	Test		Source		
Array Location	Control	Wing	Horizontal Tail	Vertical Tail	Comments
320	D(200), WD(10)	XMISC(13) -XMISC(26)	-	-	For wing only, variable sweep configurations only and if pivot design specified. Double test, D(200) or WD(10) not 0.0.
321	D(200), WD(10)	XMISC(5)	-	-	Same as D(320).
322	WD(10)	XMISC(28)	-	-	Same as D(320).
323	WD(10)	SPAL(46)	-	-	Same as D(320).
335	D(357)	-	-	SPAL (49)	T-tail vertical tail only. No test for conventive vertical.
337	D(357)	0.0	0.0	SPAL(9)	Same as D(335).
338	D(357)	0.0	0.0	SPAL(10)	Same as D(335).
339	D(357)	0.0	0.0	SPAL(11)	Same as D(335).
357	-	0.0	0.0	-	No test for vertical tail.
358	D(357)	0.0	0.0	SPAL(5)	Same as D(335).
359	D(357)	0.0	0.0	SPAL(6)	Same as D(335).
360	D(357)	-	-	SPAL(7)	Same as D(335).
864	D(865)	2.0	2.0	2.0	
865	D(865)	WD(25)	WD(123)	WD(146)	
-866		-WD(35)	-WD(133)	-WD(156)	1
1280	D(88)	WD(106)	WD(106)	WD(106)	
1820	-	WD(22)	WD(121)	WD(144)	
1821	-	WD(21)	WD(120)	WD(143)	
1822			D(246)/2.0		Always if $D(1823) = 0.0$.
1823	D(1823)		1.0	1.0	Always if $D(1823) = 0.0$.
1824	D(1823)		D(127)	D(127)	Always if $D(1823) = 0.0$.
1825	D(1823)	D(127)	D(127)	D(127)	Always if $D(1823) = 0.0$.
1826	D(1823)		0.0	0.0	Always if $D(1823) = 0.0$.
1827	D(1823)		0.50	0.50	Always if $D(1823) = 0.0$.
1855		WD(70)	0.0	0.0	Positive if D(1860)-D(1865) not 0.0; negative if 0.0.
1856	-	-WD(71)	0.0	0.0	
1857	D(1856)	WD(72)	0.0	0.0	
			L	l	

TABLE 42. DATA SOURCE MATRIX FOR ADJUSTMENT OF VARIABLE DATA, ARRAY D (CONCL)

	Test		Source		
Array Location	Control	Wing	Horizontal Tail	Vertical Tail	Comments
1867	D(1868)	WD(78)	0.0	0.0	Positive if $D(1872)-D(1877)$ not 0.0; negative if 0.0.
1868	D(1868)	-WD(79)	0.0	0.0	
1869	D(1868)	WD(80)	0.0	0.0	
1879	D(1880)	WD(86)	0.0	0.0	Positive if D(1884)-1889) not 0.0; negative if 0.0.
1880	D(1880)	-WD(87)	0.0	0.0	
1881	D(1880)	WD(88)	0.0	0.0	
1891	D(1892)	WD(94)	0.0	0.0	Positive if D(1896)-D(1901) not 0.0; negative if 0.0.
1892	D(1892)	-WD(95)	0.0	0.0	<u>-</u>
1893	D(1892)	WD(96)	0.0	0.0	
1903	D(1904)	WD(46)	0.0	0.0	
1904	D(1904)	-WD(47)	0.0	0.0	
1905	D(1904)	WD(48)	0.0	0.0	
1906	D(1904)	WD(49)	0.0	0.0	
1907	D(1904)	0.0	0.0	0.0	
1908	D(1904)	WD(51)	0.0	0.0	
1909	D(1904)	WD(52)	0.0	0.0	
1910	D(1904)	WD(53)	0.0	0.0	
1915	D(1916)	WD(54)	0.0	0.0	
1916	D(1916)	-WD(55)	0.0	0.0	
1917	D(1916)	WD(56)	0.0	0.0	
1918	D(1916)	WD(57)	0.0	0.0	
1919	D(1916)	WD(58)	0.0	0.0	
1920	D(1916)	WD(59)	0.0	0.0	
1921	D(1916)	, , ,	0.0	0.0	
1922	D(1916)		0.0	0.0	
1927	D(1928)	WD(62)	0.0	0.0	Positive if D(1932)-D(1937) not 0.0; negative if 0.0.
1928	D(1928)	WD(63)	0.0	0.0	
1929	D(1928)	WD(63)	0.0	0.0	
-	=				

TABLE 43. VARIABLE REFERENCES, SUBROUTINE CONTL

Variable	Size	Common	Varia	Variable Description		
Name	(Cells) Ref Loc		Туре	Used	Calc	Table Ref
D	2,060	2061	R	U	С	3,8,11,12
IP	80	/IPRINT/	I	υ	-	7
NCASE	1	ND(60)	I		С	9,13
ND	100	6121	I	U	С	3,9,13
NMATL	1	ND(59)	I	-	C	9,13
NPAGE	1	ND(85)	I	-	С	9,13
R	16	XMISC(85)	Α	ט	-	6
T	2,060	1	R	U	С	3
WD	200	T(1)	R	U	С	20
XMISC	100	/MISC/	R,A	U	-	6

SUBROUTINE CASE

Deck name:

CASE

Entry name:

CASE

Called by:

Subroutine CCNTL

Subroutine called: GEMW, WRITMS

Subroutine CASE is the first analysis subroutine of the wing and empennage module to be executed. This subroutine performs the following computations:

- 1. Processes total vehicle and design fuel data.
- 2. Computes values for the four basic flight design weights located in array D locations 102-105, array DGWI, and variable DGWØ.
- 3. Determines proper code values for control codes LID and WHVID.
- 4. Processes design load factor and dynamic pressure data.
- 5. Executes the geometry calculation subroutine through subroutine GEØMW.
- 6. Saves the contents of array YC on record 144, mass storage file 1 for later use by overlay (17,0).
- 7. Processes general weight factors into array T, locations 177-195.

Subroutine CASE tests the input values of the general surface and component weight factors. This test is for zero values; any zero value are set to 1.0 so that valid calculated weight information will result from downstream computations.

Subroutine Variables

Named variables referenced by subroutine CASE are identified in Table 44. The calculated variables from this subroutine are all necessary for downstream computations. Computed values are not revised by other subroutines.

Labeled Common Variables

Mass Storage File Records

Writes record 144, array YC.

Error Messages

TABLE 44. VARIABLE REFERENCES, SUBROUTINE CASE

Variable	Size	Common	Varia	able Descri	ption	Table
Name	(Cells)	Ref Loc	Туре	Used	Calc	Ref
D	2,060	2061	R	U	С	3,8,11,12
DC	100	D(1401)	R	U	-	10,14
DELLE	1	T(189)	R	U	C	34
DELTE	1	T(190)	R	Ū	С	34
DELWG	1	T(187)	R	U	C	34
DFUEL	1	D(93)	R	ט	-	8,11,12
DGWI	. 4	D(102)	R	-	C	8,11,12
DGWØ	1	D(105)	R	-	C	8,11,12
DHVID	1	D(289)	R	U	-	8,11,12
DLDID	1	D(686)	R	U	-	8,11,12
DLFL	4	D(94)	R	บ	C	8,11,12
DLLG	1	D(601)	R	U	i -	8,11,12
DLMS	1	D(603)	R	U	-	8,11,12
DLPNL	10	T(195)	R	-	C	34
DLTB	30	D(600)	R	U	-	8,11,12
DLTBX	1	T(188)	R	U	C	34
DLTE	1	D(602)	R	ן ט	-	8,11,12
DLUL	4	D(98)	R	U	-	8,11,12
DLWG	1	D(250)	R	U	-	8,11,12
DMISC	1	T(191)	R	U	С	34
DPNZ	2	T(20)	R	-	C	34
DQVL	1	D(287)	- R		C	8,11,12
DTBX	32	D(1088)	R	U	_	8,11,12
DWGLE	1	T(193)	R	-	С	34
DWGM	1	T(195)	R	U	С	34
DWGTB	1	T(192)	R	-	С	34
DWGTE	1	T(194)	R	-	C C	34
GPNZ	2	T(18)	R	-	С	34
I	1	ND(26)	I	ע	С	9,13
LID	1	ND(54)	I	U	C	9,13
ND	100	6121	I	U	•	3,9,13
QVL	1	D(87)	R	ប	-	8,11,12
Ť	2,060	1	R	U	C C	3,34
TØFL	4	D(89)	R	ឋ	C	8,11,12
TØGW	3 1	D(80)	R	U	•	8,11,12
TØGWØ	1	D(88)	R	U	-	8,11,12
ULTLF	1 2	D(122)	R	U	-	8,11,12
UPNZ		D(285)	R	-	C C	8,11,12
WIVID	1	T(57)	R	-	C	34
YC	150	T(201)	R	ן ט	- .	38
ZPNZ	2	D(85)	R	U	-	8,11,12

SUBROUTINE GEØMIN

Deck name:

GEØMIV

Entry name:

GEØMW

Called by:

Subroutine CASE

Subroutines called: ABØXC, CAERØ, DMAX, GEØMC, PRTG, TBWDC, VSGEØM

Subroutine GEMMW is the basic geometry calculation and analysis control routine. This subroutine governs the execution of all geometry analysis routines of overlay (8,0). Data computed by subroutine GEØMW are stored in the overlay (8,0) output arrays TXY, T, TGJ, TFRDK, YC, and YTC. Input data for subroutine analysis are all contained in array D. Mass storage file 1, record 36, is used to initialize the contents of array DAF, airfoil cross-section data array.

Data contained in arrays TXY, T, TFRDK, YC, and YTC are used by overlays (14,0), (15,0), and (16,0). These array data are transmitted to the downstream array as blank common data. Array TGJ information is used by subroutine GJCAL, overlay (16,0). TGJ data are transmitted to overlay (16,0) through record 10, mass storage file 1.

The sequential order of computations by GEOMW is as follows:

- 1. Initialize array DAF from record 36, mass storage file 1. Create array AFD data from DAF, based on the input value of airfoil type code AFID, D(143).
- 2. Compute surface planform geometry data stored in array TXY.
- 3. Execute subroutine GEMMC to create data required in arrays YC, YTC, and TAF.
- 4. Execute subroutine TBWDC to create detail geometry parameters associated with the 11 analysis control stations.
- 5. Create array TFRDK data (Table 37) for use in overlay (14.0).
- 6. Execute subroutine VSCEOM to create data for arrays TVS and TGJ, as required.
- 7. Execute subroutine PRTG for output print of geometry summary data. This execution is governed by the code value specified in column 6, case control card 1, IP(6).
- 8. Create required array T data (Table 34).

- 9. Create required design data for array TGJ, locations 1-100 (Table 36). Save TGJ data on record 10, mass storage file 1.
- 10. Print contents of arrays TGJ and TT, based on code value of column 7, case control card 1, IP(7).

Subroutine GEØMW uses array TT for storage and retrieval of data during computations for the preceding items 2, 5, 8, and 9. Table 45 contains the definitions for TT array locations used in these calculations.

The data items stored in T(42), T(43), and T(44), equivalent chord element line values for the front spar, rear spar, and structural reference line locations, are computed for use by the flutter requirements analysis subroutines. The empirical equations used for flutter requirement estimation are based on the assumption that the spar and bending/torsional reference line for the structural box are located on constant element lines. Input specifications allow the user to locate these reference lines off element lines. The values in T(42), T(43), and T(44) are derived based on the following assumptions:

- 1. Front spar location; T(42). The equivalent element line is the chord position that will result in a leading edge area forward of the front spar between structural reference stations 1 and 11 and equal to the leading edge area defined by the true front spar reference line.
- 2. Rear spar location; T(43). Similar to the assumptions for the front spar, except that the area is that part aft of the rear spar.
- 3. Structural reference line location; T(44). The equivalent structural reference position is the element line with the same sweep angle as the true structural reference line.

The flutter requirement equations also assume constant taper planforms and structural torque-box cross sections. Thus, for surface designs with blended leading edges, cranked trailing edges, or nonlinear spanwise depth variations, flutter analysis geometry parameters must be recomputed based on linear approximations for aerodynamic chords and torque-box depths. Variable-data item GJS, D(340), is used at the control code to initiate these computations. The aerodynamic chord values, TGJ(60) through TGJ(70), are based on theoretical planform chords. Depth variations are based on input data values for thickness ratio, (t/c), and taper, σ . Input data values in D(344), GJTC, and D(345), GJSIG, are used if nonzero values are input. If zero values are specified for these items, the data in D(243), TCIB, and D(245), WSIG, are used.

Subroutine Variables

Table 46 contains the variables referenced by subroutine GEMMW.

Labeled Common Variables

Array IP, labeled common block IPRINT.

Mass Storage File Records

Reads record 36, array DAF, airfoil cross-section data.

Writes record 10, array TGJ, flutter requirement analysis data.

Error Messages

TABLE 45. TT ARRAY, GEOMIN

General information for array TT:

Blank common reference location = T(1317)

Array size = 20 cells

Array contains miscellaneous intermediate calculation data. Definitions found in the following are for the following computations:

- Column 1. Equation constants for front spar, structural and rear spar reference lines, TXY(21) TXY(23) and TXY(28) TXY(30).
- Column 2. Structural chord values in TXY(18), TXY(19), and TXY(26).
- Column 3. TFRDK array data.
- Column 4. Revised theoretical trapezoidal geometry data for flutter analysis, TGJ array data, when analysis control code GJS, D(340), is specified as a nonzero positive value (theoretical Planform area for flutter analysis).
- Column 5. Equivalent chord element line values in T(42) T(44).

		•			
Array Location	1	2	3	4	5
1	YIB	$Tan \Lambda_{LE} - \frac{1}{Tan \Lambda_{EA}}$	Ci	b/2	Y ₁
2	Y _{ØB}	$Tan \Lambda_{TE} - \frac{-1}{Tan \Lambda_{EA}}$	x _{LE} + 0.025C _i	C _R	Y ₁₁
3	CIB	C _{SC_i} - C _{LE}	x _{FS}	C _{TIP}	X _{LE1}
4	СОВ	C _{SC_i} - C _{TE}	X _{RS}	Tan AC	X _{LE11}
5	X _{LEIB}	Y _{LEi}	d _{LEi}	$\frac{4 (1 - \lambda)}{AR(1 + \lambda)}$	X _{FS1}

TABLE 45. TT ARRAY, GEØMW (CONCL)

Array Location	1	2	3	4	5
6	X _{LEOB}	Y _{TEi}	d _{FSi}	R(Sin A EA)*	X _{FS11}
				(Cos A _{EA})	
7	X _{FSIB}	X _{LEi}	d _{RSi}	DMAX C-L	X _{RS1}
8	X _{EAIB}	X _{TEi}	d _{LEi-1}	D _{MAX} TIP	X _{RS11}
9	X _{RSIB}	C _{SCi}	d _{FSi-1}	D _{MAX}	c ₁ + c ₁₁
10	X _{FSOB}	-	d _{RSi-1}	Dave C-L	c ₁
11	X _{EAOB}	•	$Y_i - Y_{i-1}$	Dave TIP	c ₁₁
12	X _{RSOB}	-	-	Tan D	-
13	ΔΥ	-	•	-	-
14-20	-	-	-	_	•

TABLE 46. VARIABLE REFERENCES, SUBROUTINE GEOMW

Variable	Size	Common	Varia	ble Descri	ption	Table
Name	(Cells)	Ref Loc	Туре	Used	Calc	Ref
AC	1	T(13)	R	ט	С	34
AFD	6	T(411)	R	U	C	28
AFID	1	D(143)	R	ប	-	8,11,12
BØ2	1	T(12)	R	_	С	34
BSØ2	1	T(81)	R	U	l c	34
BS1Ø2	1	T(15)	R	ט	l c	34
CCLDH	1	T(91)	R	_	C C C C	34
CCLDX	1	T(88)	R	-	С	34
CCLØ	9	T(131)	R	U	С	34
CCL5	1	T(90)	R	ט		34
CMACP	1	T(55)	R	-	С	34
CØSØ	6	T(146)	R	_	C C C	34
CØTEA	1	T(152)	R	ט	C	34
D	2,060	2060	R	Ū		3,8,11,12
DAF	500	T(1401)	R	Ü	C	25
DC	100	D(1401)	R	บ		10,14
DLLMDA	1	D(320)	R	U	-	8,11,12
DMACP	ī	T(56)	R	-	С	34
DMTI	ī	D(259)	R	U		8,11,12
DSFUS	ī	D(246)	R	Ū	_	8,11,12
DIMPGJ	ī	D(282)	R	υ		8,11,12
GJAR	1	D(341)	R	Ū	-	8,11,12
GJBI	1	D(343)	R	บ		8,11,12
GJFAC	1	D(312)	R	Ü		8,11,12
GJS	1	D(340)	R	Ü	_	8,11,12
GJSIG	ī	D(345)	R	ΰ	_	8,11,12
GJTC	1	D(344)	R	Ü	_	8,11,12
GJTR	i	D(342)	R	Ü	_	8,11,12
GJYI	ī	D(313)	R	ΰ	_	8,11,12
GJYØ	1	D(315)		υ	_	8,11,12
I	i	-	R I	Ū	С	-
IP	80	/IFRINT/	Ī	Ü		7
J	1	-	Ī	Ü	С	' -
M	1	-	Î	Ü	C C C	
N	i	ND(30)	1	υ	c	9,13
ND	100	6121	Ī	Ü		3,9,13
SINØ	6	T(140)	R	Ü	- C	34
SWPPC	i	D(138)	R	ϋ		8,11,12
T	2,060	1	R	บั	С	3,34
TANDH	1	T(90)	R	-	C C	34
	_		••			1

TABLE 46. VARIABLE REFERENCES, SUBROUTINE GEØMW (CONT)

Variable	Si ₂ e	Common	Varia	Variable Description		Table
Name	(Cells)	Ref Loc	Туре	Used	Calc	Ref
TANDX	1	T(87)	R	-	С	34
TANO	9	T(122)	R	ט	C	34
TAN5	1	T(92)	R	ט	C	34
TBCA	11	T(100)	R	-	С	34
TBD	11	T(530)	R	-	C C C	34
TBFS	12	T(153)	R	-	C	34
TBIBX	3	D(125)	R	ט	-	8,11,12
TBØBX	3	D(135)	R	U	-	8,11,12
TBRS	12	T(165)	R	-	C	34
TBW	11	T(542)	R	-	C	34
TBYIB	1	D(128)	R	U	-	8,11,12
TBYØB	1	D(129)	R	U	-	8,11,12
TCIB	1	D(243)	R	U	C	8,11,12
TFRDK	60	T(1986)	R	υ	C	37
TGJ	200	T(1761)	R	υ	С	36
TT	20	T(1317)	R	υ	C C C	45
TXY	500	T(801)	R	บ	С	30
VFG	1	D(253)	R	ט	-	8,11,12
VFK	1	D(252)	R	บ	-	8,11,12
VPQ	i	D(254)	R	บ	_	8,11,12
WAR	1	D(241)	R	ט	_	8,11,12
WAREA	ī	D(240)	R	บ	-	8,11,12
WCREF	1	D(177)	R	บ	_	8,11,12
WDIH	ī	D(247)	R	Ü	-	8,11,12
WEREF	l ī	D(178)	R	บ	_	8,11,12
WHVID	ī	T(57)	R	U	-	34
WSIG	ī	D(245)	R	U	-	8,11,12
WSWP	ī	D(242)	R	U	_	8,11,12
WTR	ī	D(243)	R	Ū	-	8,11,12
WXREF	i	D(176)	R	Ü	_	8,11,12
WYREF	1 1	D(175)	R	บั	_	8,11,12
XBP	11	T(489)	R	บ	С	34
XMACP	1	T(54)	R	Ü	C C C C	34
YBP	11	T(500)	R	Ü	C	34
YC	150	T(201)	R	Ü	Ċ	38
YEA	11	T(511)	R	Ü	c	34
YIBTC	1	D(141)	R	ΰ	_	8,11,12
YLE	109	TXY(179)	R	บ็	_	32,30
YMACP	1	T(53)	R	บั	C	34
YØBTC	i	D(142)	R	ϋ		8,11,12
	•		-,			-,,

TABLE 46. VARIABLE REFERENCES, SUBROUTINE GEOMW (CONCL)

Variable Name	Size	Common	Varia	Table		
	(Cells)	Ref Loc	Туре	Used	Calc	Ref
YRT	11	T(111)	R	-	С	34
YS	11	TXY (490)	R	ប	-	30
YTB	124	TXY(55)	R	บ	-	31,30
YTC	60	T(351)	R	บ	С	39
YTE	109	TXY (288)	R	บ	-	33,30
ZDIH	1	D(248)	R	U	-	8,11,12

SUBROUTINE GEØMC

Deck name:

GEØMC

Entry name:

GEØMC

Called by:

Subroutine GEØMW

Subroutines called:

CAERØ

Subroutine GEOMC processes input variable date defining (1) the true positions of the surface leading and trailing edges, (2) the spanwise variations of airfoil maximum depths, and (3) the reference airfoil cross sections and locations, if required.

This subroutine is used to process data contained in arrays DLE, DTE, and DTC, (Tables 22 through 24) to create the required information for arrays YC and YTC (Tables 38 and 39). Array YC and YTC are used by subroutines CAER® and DMAX to compute local chord and maximum thickness values at any spanwise station Y...

Airfoil cross section and location information contained in arrays AFN and YAF are processed only if the airfoil type control code AFID, location D(143), is specified as 9.0. Data in array TAF (Table 29) is created based on these input array specifications. Airfoil cross-sectional data stored in array DAF (Table 25) are used to create normalized airfoil ordinate table data in array TAF. Array TAF is used by subroutine DMAX during the linear interpolation computations for airfoil depths at any point on the surface planform, defined by coordinates (Y_i, X_i) . The reference (x/c) values for the ordinate table data are moved to locations 1-48 of array DAF for use by subroutine DMAX. The code word containing the number of airfoil ordinate points, NAF, is created from the value in DAF (100).

Subroutine GEØMC prints the contents of array TAF under control of column 4, case control card 1, IP(4), only if data for this array is processed. Arrays YC and YTC are always printed under control of IP(4).

Subroutine Variables

Variables referenced by subroutine GEØMC are listed in Table 47. The primary output of this subroutine is the contents of arrays TAF, YC, and YTC and the value in code word NAF.

Labeled Common Variables

Array IP, labeled common block IPRINT.

Mass Storage File Records

None.

Error Messages

TABLE 47. VARIABLE REFERENCES, SUBROUTINE GEØMC

Variable	Size	Common	Varia	ble Descri	ption	Table Ref
Name	(Cells)	Ref Loc	Туре	Used	Calc	
AFID	1	D(143)	R	U	-	8,11,12
AFN	4	D(149)	R	U	_	8,11,12
D	2,060	2061	R	U	_	3,8,11,1
DAF	500	T(1401)	R	U	С	25
DC	100	D(1401)	R	U	-	10,14
DLE	23	D(1985)	R	U	_	22,11,12
DTC	22	D(2031)	R	บ	-	24,11,12
DTE	23	D(2008)	R	U	_	23,11,12
I	1	-	I	U	С	-
IP	80	/IPRINT/	I	U	-	7
I 1	1	-	I	U	C	-
12	1	-	I	ט	C	-
13	1	-	I	U	С	-
J	1	-	I	U	C	-
K	1	-	I	υ	C	-
L	1	-	I	U	C	-
M	1	-	I	υ	C	-
N	1	-	I	ט	C	-
NAF	1	ND(67)	I	-	С	9,13
ND	100	6121	I	U	-	3,9,13
T	2,060	1	R	บ	-	3
TAF	350	T(431)	R	U	C	29
TXY	500	T(801)	R	ט	-	30
YAF	4	D(145)	R	บ	-	8,11,12
YC	150	T(201)	R	υ	С	38
YTC	60	T(351)	R	υ	С	39

SUBROUTINE VSGEIM

Deck Name:

VSGEMI

Entry Name:

VSGERM

Called by:

Subroutine GEMMW

Subroutines called: SWPXYP.

Subroutine VSGERM is the geometry analysis routine that computes swept wing planform data. This subroutine is always executed by subroutine GEMW. However, VSCEPM calculations are only made if two input control data are specified as nonzero numbers; i.e., DYPVT, location D(200), and DLLMDA, location D(320). Subroutine VSGBØM creates array TVS data (Table 35), the pivot information stored in T(39) through T(51) (Table 34), and the flutter requirement analysis data in locations 101 through 200 of array TGJ (Table 36).

The swept planform for which VSGEPM computations are made is for the movable wing position that is critical for flutter. The position is specified in location D(320), DLIMDA. DLLMDA is treated as the angular sweep increment (negative or positive, but not zero) from the reference theoretical position. Values for the general planform geometry parameters found in array TXY are computed and stored in array TVS. Pertinent swept position coordinates are computed by subroutine SNPXYP. The theoretical planform parameters, S, AR, and λ , are based on the computed theoretical root chord, tip chord, and semispan. The semispan for the swept station, TVS(107), is assumed to be the swept position Y-coordinate of the intersection point of the structural reference line and the tip chord, TXY(8), TXY(433). The theoretical root and tip chords are determined as the chordwise distance between the 0- and 100-percent chord element lines in the swept position.

The flutter analysis data in array TGJ are based on information stored in arrays TVS, YTB, and the variable input data array D. Initial clear for array TGJ is made by subroutine VSGEMM.

The contents of array TVS is printed by subroutine VSCEØM under control of column 7, case control card 1, IP(7).

Subroutine Variables

Variables referenced by subroutine VSGEMM are listed in Table 48. The primary input variables are stored in arrays TXY and D.

Labeled Common Variables

Array IP, labeled common block IPRINT.

Mass Storage File Records

None.

Error Messages

TABLE 48. VARIABLE REFERENCES, SUBROUTINE VSGEOM

Variable	Size	Common	Varia	ble Descri	iption	Table
Name	(Cells)	Ref Loc	Туре	Used	Calc	Ref
CD	2,000	4121	R	U	-	3
D	2,060	2061	R	ט	-	3,8,11,12
DC	100	D(1401)	R	ប	-	10,14
DKLMDA	1	D(324)	R	U	-	8,11,12
DLLMDA	1	D(320)	R	υ	-	8,11,12
DMTI	1	D(259)	R	บ	-	8,11,12
DXPVT	1	D(201)	R	ט	-	8,11,12
DYPVT	1	D(200)	R	บ	-	8,11,12
GJB1	1	D(343)	R	ប	-	8,11,12
GJFAC	1	D(312)	R	U	-	8,11,12
GJS	1	D(340)	R	U	-	8,11,12
GJYI	1	D(313)	R	บ	-	8,11,12
GJYØ	1	D(315)	R	ט	_	8,11,12
GLMDA	1	D(322)	R	ט	-	8,11,12
I	1	-	I	ט	С	-
IP	80	/IPRINT/	I	ט	-	7
J	1	-	I	U	С	-
N	1	-	I	ט	С	-
ND	100	6121	I	บ	-	3,9,13
QLMDA	1	D(321)	R	บ	-	8,11,12
Ť	2,060	1	R	ט	С	3
TGJ	200	T(1761)	R	บ	С	36
TLMDA	1	D(323)	R	ט	-	8,11,12
TVS	400	CD(601)	R	บ	С	35
TXY	500	T(801)	R	ซ	C C	30
XEA	' 11	YTB(12)	R	U	-	31,30
YEA	11	YTB(1)	R	U	-	31,30
YTB	124	TXY(55)	R	U	-	31,30
					<u> </u>	

SUBROUTINE TBWDC

Deck name:

TBWDC

Entry name:

TBWDC

Called by:

Subroutine GEØMW

Subroutines called:

ABØXC, DMAX

Subroutine TBWDC is the geometry analysis routine used to compute the structural station and panel data contained in subarrays YTB, YLE and YTE of array TXY (Tables 31 through 33). Required torque-box data used by other analysis routines are as follows:

- 1. Structural analysis control station coordinates, $Y_{\Lambda 1-11}, Y_{1-11}$, and X_{1-11} .
- 2. Structural chord of torque-box at each control station, W_{1-11}
- 3. Average section depth at each control station, D ave 1-11
- 4. True aerodynamic chord at each control station, C₁₋₁₁
- 5. Front spar depth at each control station, $D_{\mbox{FS1-11}}$
- 6. Rear spar depth at each control station, $D_{\mbox{RS1-11}}$
- 7. Structural distance from tip chord to each analysis control station, measured along structural reference line, $Y_{\Lambda l-11}$

Values for these items are computed and stored in TXY array locations. Calling subroutine GEØMW processes the information into the appropriate storage locations of array T (Table 34). Subroutine GCNTL, overlay (14, 0) uses data stored in subarray YTB to create the control station geometry data stored in array TG. Array TG is used by overlays (14, 0), (15, 0), (16, 0), and (17, 0).

Two options are available for locating the spanwise positions of the 11 analysis control stations. The option to be used is determined by the code value specified in control word DYID, location 864, array D. A zero value results in location of the 11 equally spaced stations between the station values defined by input data locations D(246) and D(139), variable YØBD. A

nonzero value for DYID results in processing of control station data in input data locations D(865) - D(876), variable data subarray DYS. Processing of input station values are dependant upon the nonzero value of DYID and the magnitude of the values specified in DYS.

DYID code values of 1.0, 2.0, and 3.0 direct subroutine TBWDC to use the following processing options:

- Code value 1.0 = computed input station values to be referenced to the side of fuselage station, Y_1 = (value in D(246))/2.0. If input station values in DYS are 1.0 or less, the fractional values are applied to the span segment between the stations defined by D(246) and D(139).
- Code value 2.0 = computed input station values to be referenced to the planform centerline, Y_{1-11} = input Y coordinates 1-11. If the input station values in DYS are 1.0 or less, the fractional values are applied to the span segment between the center-line and the station defined by D(139).
- Code value 3.0 = input control stations along the structural reference line, actual station values.

The code value of 3.0 for DYID is also interpreted to mean that 11-station geometry data for the structural box included in data locations D(876) - D(919), subarrays DTBW, DTBD, DFS, and DRS, are to be used in lieu of computed data. However, if only the station values in DYS are to be used, the W_1 location, D(876) or DTBW (1), must be set to 0.0. Input data in subarrays DTBW, DTBD, DFS, and DRS are not processed when the DYID code value is 0.0, 1.0 or 2.0.

Subroutine ABØXC is used to compute required geometry data at each control station. These computations are always executed, even if the desired data is inputed. ABØXC calculation results are used by subroutine TBWDC to develop necessary station data not included as input.

Subroutine TBWDC also computes center-section geometry data that are stored in array YTB, YLE, and YTE. Width, average depth, depth at the front and rear spars, and the planform geometric centroid station are computed for the center-section.

The code value for NCSEC, torque-box analysis type is created based on code word DYID and the input torque-box data sets. This code is a special code used to evaluate constant-section, constant load structures (center-section type). The code value is used by subroutine SECTD, overlay (10,0) to bypass evaluation for stations 1-10 and to use design values computed for station 11 for all stations. The code value for NCSEC is set to 1 for all normal outer panel type geometries. DYID code value of 3.0 directs subroutine TBWDC to examine W_1 , as previously explained. If W_1 contains a positive value, the value for W_2 is examined. If W_2 is nonzero, TBWDC assumes a complete set of torque-box geometry is input; it continues processing of data for outer panel type analysis. If W_2 is specified as 0.0, the value for NCSEC is set to 2. This code condition directs TBWDC to set all station 2-11 values for W_1 , Dave, W_2 , and W_3 equal to the values specified for station 1.

Subroutine TBWDC prints heading data for the output from subroutine DMAX under control of IP(5). This DMAX output set is computed data for center-section geometry.

Subroutine Variables

Variables referenced by subroutine TBWDC are listed in Table 49. Computed data stored in arrays TR and TT are defined in Tables 50 and 51.

Labeled Common Variables

Array IP, labeled common block IPRINT.

Mass Storage File Records

None.

Error Messages

TABLE 49. VARIABLE REFERENCES, SUBROUTINE TBWDC

Variable	Size	Common	Varia	ble Descri	ption	Table	
Name	(Cells)	Ref Loc	Type	Used	Calc	Ref	
AFID	1	D(143)	R	U	-	8,11,12	
CSFS	1	D(506)	R	U	•	8,11,12	
CSWD	1	D(480)	R	บ	-	8,11,12	
D	2,060	2061	R	ט	-	3,8,11,12	
DC	100	D(1401)	R	U	-	10,14	
DFS	11	D(898)	R	บ	-	8,11,12	
DRS	11	D(909)	R	บ	-	8,11,12	
DTBD	11	D(887)	R	U	-	8,11,12	
DTBW	11	D(876)	R	ប	-	8,11,12	
DYID	1	D(864)	R	ប	-	8,11,12	
DYS	11	D(865)	R	บ	-	8,11,12	
I	1	-	I	U	С	-	
IP	80	/IPRINT/	I	U	•	7	
ISEC	1	ND(55)	I	บ	С	9,13	
IWD	1	ND(31)	I	U	С	9,13	
N	1	-	I	U	C C	-	
NCSEC	1	ND(81)	I	บ	С	9,13	
ND	100	6121	I	บ	-	3,9,13	
T	2,060	1	R	U	_	3	
TR	16	T(1301)	R	บ	С	50	
TT	20	T(1317)	R	บ	С	51	
TXY	500	T(801)	R	U	C C	30	
YC	150	T(201)	R	บ	С	38	
YLE	109	TXY(179)	R	บ	С	32,30	
YØBD	1	D(139)	R	ט	-	8,11,12	
YTB	124	TXY (55)	R	บ	С	31,30	
YTC	60	T(351)	R	υ	C C	39	
YTE	109	TXY (288)	R	υ	С	33,30	

TABLE 50. TR ARRAY, TBWDC

General information for array TR:

Blank common reference location = T(1301)

Array size = 16 cells

Array locations used for storage and retrieval of intermediate calculation data by subroutine TBWDC during calculations for torque-box, leading and trailing edge planform area parameters.

Array Location	Description
1-4	Values calculated data in locations 5, 6, 7, and 8 for loop index i value = 1-11, used as i-1 data when index value = 2-11
5	Δ $C_{\mbox{LE}_{\mbox{\scriptsize i}}},$ leading edge panel delta chord between front spar and true trailing edge at each analysis control station Y-coordinate, YC(95)-YC(93)
6	Δ $C_{\mbox{TE}_{\mbox{\scriptsize i}}},$ trailing edge panel delta chord between rear spar and true trailing edge at each analysis control station Y-coordinate, YC(99)-YC(97)
7	Delta chord parameter used to compute X-coordinate of leading edge panel i centroid
8	Delta chord parameter used to compute X-coordinate of trailing edge panel i centroid
9	Δ Y Λ_i , length of torque-box panel i, Y Λ_i -Y Λ_{i-1}
10	Δ Y _i , length of leading and trailing edge panel i, Y _{EA_i} -Y _{EA_{i-1}}
11	Factor for leading and trailing edge area calculation, 0.5 $\Delta Y_i/144.0$
12	$\lambda_{\dot{1}}$, panel tapes ratio for torque-box, leading edge, and trailing edge panel centroid calculations, $C_{\dot{1}}/C_{\dot{1}-1}$
13	y_{cpi} , centroid distances from the inboard end of the panels defined by the parameters in locations 9 or 10 and 12, each panel treated as trapezoidal sections, $y_{cp} = f(\Delta Y, \lambda)$
14-20	Not used

TABLE 51. TT ARRAY, TBWDC AND ABOXC

General information for array TT:

Blank common reference location = T(1317)

Array size = 20

Array locations used for storage and retrieval of geometry data by subroutines TBWDC and ABØXC.

Array Location	Description
1	Y_{IB} for analysis control station calculations by TBWDC, 0.0 or $b_1/2$. Also $\Delta Y \Lambda_i$. Y_i , storage for data save by ABØXC
2	Y_{OB} for analysis control station calculation by TBWDC, span control factor times b/2. Also exposed structural span. X_1 , storage for data save by ABØXC
3	Structural station value factor, 1.0 or cos AEA for input swept or unswept station values, TBWDC Ci, true aerodynamic chord at the analysis control station Y-coordinate in TT(11), calculated by ABØXC for use by TBWDC
4	${\tt Dmax_i}$, maximum depth of airfoil corresponding to ${\tt C_i}$ above, calculated by ABØXC for use by TBWDC
5	Not used
6	DFSi, airfoil depth at front spar, ABOXC
7	D, intermediate local airfoil depth value calculated by DMAX, same as YTC(49), ABØXC
8-10	Not used
11	$Y_{\mbox{EA}_{\mbox{\scriptsize i}}}$, Y-coordinate of analysis control station, setup by TBWDC
12	$X_{\mathrm{EA}_{1}}$, X-coordinate of analysis control station, setup by
13	A_i , calculated cross-sectional area of structural torque-box section at analysis control station i, calculated by ABØXC for TBWDC
14	W_{SC_i} , structural width of torque-box section at analysis control station i, calculated by ABØXC for TBWDC
15	D_{ave_i} , average depth of structural torque-box section of analysis control station i, A_i/W_{SC_i} , calculated by ABØXC for TBWDC. Also storage for intermediate data calculated by ABØXC.

TABLE 51. TT ARRAY, TBWDC AND ABOXC (CONCL)

Array Location	Description
16	Storage for intermediate data calculated by ABØXC and for D_{i-1} value during area integration loop
17	Y-coordinate for front spar at analysis control station i during initial calculations by ABØXC and during area integration, Y-coordinate of point (Y_1, X_1) on structural chord
18	X-coordinate for front spar at analysis control station i during initial calculations by ABØXC and during area integration, X-coordinate of point (Y_i, X_i) on structural chord
19	Y-coordinate for rear spar at analysis control station i during initial calculations by ABØXC and during area integration, ΔY
20	X-coordinate for rear spar at analysis control station i during initial calculations by ABØXC and during area integration, ΔX

SUBROUTINE ABOXC

Deck name: ABØXC Entry name: ABØXC

Called by: Subroutines GEØMW, TBWDC

Subroutines called: DMAX

Subroutine ABØXC is the analysis routine used to compute geometry parameters for the torque-box at specified analysis control stations. Torque-box data are evaluated for section cuts normal to the structural reference line at each station $Y\Lambda_i$.

The location of the analysis control station at which structural section information is to be computed is specified by the coordinates (Yi, Xi). The calling subroutines must store these values in TT array locations 11 and 12. Computed data to be used by the calling subroutines are stored in the following locations:

- Array TT, locations 3, 4, 13, 14 and 15, torque-box cross-section data (Table 51)
- Array YC, locations 110-115, front and rear spar data (Table 38)
- Array YTC locations 55 and 60, torque-box depth data (Table 39)
- Array YC, locations 93, 95, 97 and 99, aerodynamic chord data at the structural reference Y-coordinate, Y_i, output from subroutine CAERØ (Table 38). These values are created by the call to CAERØ from subroutine DMAX during the last execution of DMAX by subroutine ABØXC.

Structural cross-section area is determined by numerical integration of finite trapizoidal sections computed along the structural chord. The number of chordwise sections is specified by the value in AFCC, location 153, array D. The airfoil depths at each point are determined by subroutine DMAX; the coodinates of DMAX depth evaluation points are specified in locations 47 and 48 of array YTC.

Subroutine ABØXC prints local station evaluation data based on the cord value in column 5, case control card 1, IP(5). The output is printed in conjunction with printed output from subroutine DMAX.

Subroutine Variables

Table 52 contains the variables referenced by subroutine ABØXC. Array TT is also used by subroutine TBWDC for storage and retrieval of calculated data (Table 51.) Data required by the ABØXC calls from subroutine GEØMW are items stored in TT(14), TT(15), YTC(60), and YC(104).

Labeled Common Variables

Array IP, labeled common block IPRINT.

Mass Storage File Records

None.

Error Messages

TABLE 52. VARIABLE REFERENCES, SUBROUTINE ABOXC

Variable		Common	Varial	ole Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
AFCC	11	D(153)	R	U	-	8,11,12
AFID	1	D(143)	R	U	-	8,11,12
D	2060	2061	R	U	-	3,8,11,12
DC	100	D(1401)	R	U	-	10,14
I	1	-	I	U	C	
IP	80	/IPRINT/	I	U	-	7
ISEC	1	ND(55)	I	U	-	9,13
N	1	ND(30)	I	U	С	9,13
ND	100	6121	I	U	-	3,9,13
T	2060	1	R	U	-	3
TBIBX	3	D(125)	R	บ	-	8,11,12
TT	20	T(1317)	R	U	C	51
TXY	500	T(801)	R	U	-	30
YC	150	T(201)	R	U	C	38
YTC	60	T(351)	R	U	C	39

SUBROUTINE DMAX

Deck name: DMAX Entry name: DMAX

Called by: Subroutines ABØXC, GEØMW, TBWDC

Subroutines called: CAERØ

Subroutine DMAX is used to compute local airfoil depths at specified coordinates Y_i , X_i . One of two evaluation procedures are used to compute local depths, d_i :

1. Evaluation of a polynomial equation of the form

$$Z_{i} = \left[ax_{i}^{6} + bx_{i}^{5} + cx_{i}^{4} + dx_{i}^{3} + ex_{i}^{2} + fx_{i}\right]^{1/2}$$

to obtain the ordinate value as a fraction of the maximum airfoil depth D_{max_i} , where a, b, c, d, e, and f are polynomial coefficients for one of six types of standard airfoils. These values are stored in the airfoil data block of the SWEEP permanent data bank, mass storage file 1, record 6. The appropriate coefficient sets are moved into array AFD (Table 28) from array DAF by subroutine GEMAW (array DAF is initialized from record 36). Control code AFID values of 1-8 results in execution of this option. Currently polynomial coefficients for six types of airfoils are available. Thus, values for variable input data code for airfoil type, AFID, array D location 143, is restricted to 1.0 to 6.0 for polynomial type evaluation.

2. Interpolation of numerical values of normalized airfoil ordinates. A linear interpolation method is used to determine depths as the specified chordwise location (X/C)_i from a table of depths at known (X/C) locations. This option allows for specifying different airfoil shapes at up to four spanwise control stations. Values for stations between these control stations are based on linear interpolation of the airfoil ordinates at the control stations. Depth information and control station data are stored in array TAF (Table 29). Values for (X/C) control points are stored in locations 1-48 of array DAF. This option is executed when the evaluation type code AFID is specified as 9.0. Use of this option requires reference airfoil type and location data in variable data array D locations 145-152, subarrays YAF and AFN.

The two procedures described herein result in airfoil depth values expressed as a fraction of the maximum depth at any spanwise station Y_i . The actual depth is determined by the product of this depth value Z_i and the maximum depth value D_{max_i} . The value of D_{max_i} is determined by subroutine INAX from the appropriate spanwise linear D_{max} variation data stored in array YTC, locations 1-46. Subroutine CAERØ is used to evaluate the properties of the local chord at the specified station Y_i .

Printed output of calculated data from subroutine DMAX is controlled by column 5 of case control card 1, IP(5). Two types of data are printed. The standard output consists of the pertinent data evaluated at the specified station, the coordinates, chordwise parameters, and calculated depth values. The second output block is printed when option 2 is executed. This block consists of the TAF array data used for during the linear interpolation calculations.

Subroutine Variables

Table 53 contains the variables referenced by subroutine DMAX. The input coordinate values are located in YTC(47) for Y_i and YTC(48) for X_i. The primary output is stored in array YTC, locations 49, 50 and 57-60 (Table 39). Arrays AFD, DAF, TAF, and TXY contain data used by DMAX, Array YC contains the values for the local chord, as evaluated by subroutine CAER® (Table 38).

Labeled Common Variables

Array IP, labeled common block IPRINT.

Mass Storage File Records

None.

Error Messages

TABLE 53. VARIABLE REFERENCES, SUBROUTINE DMAX

Variable	Size	Common	Varia	able Descri	ption	Table
Name	(Cells)	Ref Loc	Туре	Used	Calc	Ref
AFD	6	T(411)	R	U	_	8,11,12
AFID	1	D(143)	R	บ	_	8,11,12
D	2,060	2061	R	U	-	3,8,11,12
DAF	500	T(1401)	R	U	-	25
DC	100	D(1401)	R	U	-	10,14
I	1	-	I	U	С	-
II	1	-	I	U	С	-
IP	80	/IPRINT/	I	U	-	7
J	1	-	I	U	С	21
K	1	-	I	U	C C	-
KK	1	ND(29)	I	U	-	9,13
L	1	-	I	U	С	-
M	1	-	I	U	C C	-
NAF	1	ND(67)	I	บ	-	9,13
ND	100	6121	I	U	-	3,9,13
T	2,060	1	R	U	-	3
TAF	350	T(431)	R	U	С	29
TXY	500	T(801)	R	υ	-	30
YC	150	T(201)	R	υ	C C	38
YTC	60	T(351)	R	U	С	39

SUBROUTINE CAER®

Deck name:

CAERØ

Entry name: CAERØ Subroutines DMAX, GEØMC, GEØMW

Subroutines called: None

Subroutine CAER® is used to compute aerodynamic chord information at any spanwise station Y_i. It computes X-coordinates at the five basic spanwise control lines:

- Leading edge reference line, trapezoidal planform
- Front spar reference line
- Structural reference line
- Rear spar reference line
- Trailing edge reference line, trapezoidal planform

If nonlinear leading or trailing edge planform is specified, this subroutine performs the necessary interpolation of blended leading edge or cranked trailing edge geometry data to compute the actual location of the true leading and trailing edges.

Local chordwise distances and chord fraction information are also computed. Computed data are used primarily by subroutine DMAX.

Subroutine Variables

A summary of variables used and calculated is presented in Table 54. Input constants are contained in arrays TXY and YC. Station coordinates for the chordwise computations are specified in locations YC(100) for Y; and YC(101) for X_i. Primary output is stored in YC array locations 93-99 and 102-106.

Labeled Common Variables

None.

Mass Storage File Records

None.

Error Messages

TABLE 54. VARIABLE REFERENCES, SUBROUTINE CAERØ

Variable	Size	C	Varia	able Descr	iption	m-1-1-
Name	(Cells)	Common Ref Loc	Туре	Used	Calc	Table Ref
I ND T TXY YC	1 100 2,060 500 150	- 6121 1 T(801) T(201)	I I R R R	ט ט ט ט	C - - - C	3,9,13 3 30 38

SUBROUTINE SWPXYP

Deck name:

SWPXYP

Entry name:

SWPXYP (Y_i, X_i, YP_i, XP_i)

Called by:

Subroutine VSGEØM

Subroutines called:

Subroutine SWPXYP is used by subroutine VSGEØM to determine the swept planform coordinates YP; and XP; of the point (Y;, X;) on the reference planform. The coordinates (YP_i, XP_i) are computed for the specified angular rotation of the planform about the pivot axis in D(320), variable DLIMDA. The pivot coordinates (Y_p, X_p) are stored in array TVS, locations 21 and 22, named YPØ and XPØ in subroutine SWPXYP. Values for (YP; XPi) are based on the geometric relationships of a line of given length, \hat{L} , rotated $\pm \Delta \Lambda$ degrees, where L is the distance between the pivot point (Y_p, X_p) and the known point $(Y_i, X_i).$

Subroutine Variables

Table 55 contains the variables referenced in subroutine SWPXYP. Variables CØSDL and SINDL are the values for the cosine and sine of the angle of rotation. The primary input and output from subroutine SWPXYP are through the specified arguments. Array TT, locations 1-7, is used to store necessary computed values. Definitions for the array TT variables are as follows:

 $TT(1) = \Delta Y_i, Y_i - Y_p$ $TT(2) = \Delta X_i, X_i - X_p$

TT(3) = L, distance between pivot point and analysis point

TT(4) = sine of sweep angle for line L before rotation

TT(5) = cosine of sweep angle for line L before rotation

TT(6) = sine of sweep angle of line L in rotated position

TT(7) = cosine of sweep angle of line L in rotated position

Specifications for point (Y_i, X_i) must not be the same as the pivot point (Y_p, X_p) ; i.e., L = 0. This condition will result in program error resulting from division by zero. Subroutine SWPXYP does not test for this condition.

Labeled Common Variables

Mass Storage File Records

None.

Error Messages

TABLE 55. VARIABLE REFERENCES, SUBROUTINE SWPXYP

Variable	Size	Common	Varia	able Descri	iption	Table
Name	(Cells)	Ref Loc	Туре	Used	Calc	Ref
CD	2,000	4161	R	บ	_	3
CØSDL	1	TVS (38)	R	บ	-	35
SINDL	1	TVS(37)	R	บ	-	35
T	2,060	1	R	υ	-	3
TT	24	T(1317)	R	υ	C	-
TVS	400	CD(601)	R	บ	-	35
X	1	ARG	R	บ	-	-
XР	1	ARG	R	-	C	-
XPØ	1	TVS(22)	R	υ	-	35
Y	1	ARG	R	ט	-	-
YP	1	ARG	R	-	С	-
ΥΡØ	1	TVS(21)	R	U	-	35

SUBROUTINE PRTG

Deck name:

PRTG

Entry name:

PRTG

Called by:

Subroutine GEØMW

Subroutines called: None

None

Subroutine PRTG is the routine that organizes and prints the geometry summary data for the surface being evaluated. The printed output data (Figures 58 and 59) are printed under control of column 6, case control card 1. This code word, stored in location 6, array IP, is tested by subroutine GEOMW; subroutine PRTG is executed if the code value is zero, print geometry summary data. An additional page of summary data is printed for variable sweep wing designs if location D(320) variable DLIMDA, is specified as a non-zero number. The data on this page (Figure 60) consist of geometry parameters for the wing in the sweet position.

Subroutine PRTG uses subroutine GCOMP to organize the contents of array TD. Array TS data are created from the data set stored in array TD before output. Swept planform data are retrieved from array TVS during outprint printing.

Subroutine PRTG prints the contents of array TXY before exit under control of column 7 of case control card 1.

Subroutine Variables

Table 56 contains the variables referenced by subroutine PRTG. Array R contains the contents of the two case title cards. These titles are printed on each summary page.

Labeled Common Variables

Array IP, labeled common block IPRINT Array R, XMISC array locations 85-100 Array XMISC, labeled common block MISC

Mass Storage File Records

None

Error Messages

None

** GEOMETRY PARAMETERS---SWEEP= 15.00 DEGREES AT 0.0 C.

85/81	835.658	162.500	165.586	145.000	147.754	162.502	765.008	622.505	20.650
SPAN/2	820.084	657.584	670.072	675.084	687.905	159.474	170.377	610.904	49.706
C(T1P)	88.589	88.589	87.900	88.589	87.900	221.119	98.561	98.561	98.589
C(R)	253.112	220.512	219.790	224.023	222.821	253.112	253.112	221.119	98.561
SIGHA	0.76145	0.77619	0.77620	0.77437	0.77625	0.98142	0.79858	0.41371	0.95350
1/0(1)	0.09185	0.09185	0.09257	0.03185	0.09257	0.11638	0.09633	0.09633	0.09185
1/C(R)	0.12062	0.11833	0.11926	0.11961	0.11925	0.12062	0.12062	0.11838	0.09633
T.P.	0.35000	0.40174	0.40174	0.39545	69406.0	0.87360	0.38940	0.44574	0.89AB2
AP	6009-6	8.5094	8.7391	8.6280	8.8556	1.3451	8.7624	7.6439	1.0624
AREA	1946.000	1411.528	1411.528	1465.550	1484.347	525.190	1881.398	1356.207	64.601
PANEL	SROSS	FXPUSED	STRUCT.	P (AERC)	· DISTRC)	CL -Y1	CL-711	Y1-Y11	Y11-9/2

** PLANFORM EQUATIONS AND COORDINATES. **

LE	FS	EA	RS S	TE	FS(0)	.25 C	AERO C	STRUC. C
0.267349	0.237856	0.195816	0.140228	0.067331	0.0	0.217794	-0.200617	-0.195351
649.600	887,567	940.606	666.866	1102.712	0.0	912.878	253.112	251-147
0.258919	0.231400	0.192167	0.138869	0.067179	0.0	0.212805		
0.965926	0.972859	0.981362	C.990311	0.997741	0.0	0.977095		
15.000	13.380	11.079	7.982	3.852	0.0	12.287		
	0.149999	0.359554	0.563179					
893.141	926.218	972.427	1021.786	1113.653	0.0	948.269		
888.452	922.056	969.000	1019.332	1112.475	0.0	948.269		
1069.340	1082.628	1101.192	1113.998	1157.929	0.0	1091.487		
C. LE. TE	** T/C. LE. TE CONTPOL POINTS. **	DINTS. **						i
	(5)		197 . 177	17)				

(111)	820.08
820.08	1069.34
0.0	820.08
8.137	1157.93
(10)	820.08
820.08	1069.34
0.0	820.08
8.137	1157.93
(9)	820.08
820.08	1069.34
0.0	820.08
8.137	1157.93
820.08 0.0 9.137	820.08 1069.34 820.08 1157.93
820.08 0.0 9.137	820.08 1069.34 820.08 1157.93
(6) 820.08 0.0 8.137	820.08 1069.34 820.09
(5)	820.08
820.08	1069.34
0.0	820.08
6.137	1157.93
64)	820.CF
920.08	1069.34
0.0	820.09
8.137	1157.93
(3)	920.08
920.08	1069.34
0.0	920.08
8.137	1157.93
(2)	920.08
820.08	1069.34
0.0	820.08
8.137	1157.93
(1) 0.0 30.532	3.0 849.60 3.0 1102.71
POINT V(R.P.) 1/C 5MAX	Y X CLE) X X X CLE) X X CLE) X X CLE) X X CLE) X X X CLE) X X X X X X X X X X X X X X X X X X X

Figure 58. Geometry summary data - page 1.

	X(RS)	020	054.90	032.06	038.88	41-640	028.04	068.99	078.65	088.22	1097.502	199.901	12(19499.	17504	14822.	12539.	9561.	7175.	5214.	3686.	2500.	1623.	989.		SVOL (TB)		36.41	89.45	26.31	72.53	36.	46.09	99.8498	3.78	5.76	5.02
	(RS	50.03	84.74	35.81	84.42	57.60	28.22	99.13	68.06	36.29	702.448	67.41	J117	9749.8	9752	7411.2	6269.5	4780.9	3587.5	2607.2	1843.0	1250.1	611.9	494.8	0.20	118	•	80.52	58.02	26.37	97.86	7.90	22.71	90.731	2.84	8.35	7.57
:	FS	27.56	35.66	47.59	58.94	76.03	92.52	80.600	025.17	041.10	1056.555	071.72	08 (0 236.	3 228	5 216.	4 204.	0 187.	4 170.	1 153.	4 136.	8 120.	2 104.	9 89.	J1=0-100	ELY(S)	•	4.999	1.499	90006	3.792	1.205	1.504	69.500		•	•
0.0	(FS	68.14	02.21	52.36	10.00	71.92	11.25	10.86	78.53	45.52	710.466	74.24	MAX	26-12	91	23.80	22.49	20.52	19.61	16.70	14.84	13.00	11.22	9.46	ĭ	Y(A)	0.0	4.34	0.53	8.09	2.41	9.87	0.17	68.205	7.51	5.45	4.28
DEGREES AT	EAIA	71.83	78.56	88.45	97.87	012.05	025.73	039.47	052.83	066.05	078.872	091.45	K (SEC	0.981	0.982	0.982	0.983	0.983	486.0	0.995	0.986	0.986	0.988	0.989	•	_		•						0.0			
15.30		.1183	.1178	.1169	.1159	.11432	.11246	-11029	.10773	.10464	093	.0963	ALTB	402.09	•	001.57	790.82	435.51	235.66	1.56	3.95	3.61	3.82	1.93	96.0	VOLCLE			•	•			•	0.0			•
PEF SWEEP=	1	6-177	5.239	3.859	2.545	0.568	099-9	6.743	4.891	3.037	11.250	9.404	D(RS)	-	22.626	_	0	•	•			N	0	9.962	ž	L(TB)	•	•			•	•		36.0679	•		
DATA	CAERO	1.11	14.22	60.40	94.46	19.91	65.99	51.91	38.13	24.58	11.45	9.5	Su.	4.82	23.935	2.62	1.37	9.50	7.68	5.86	4.10	2.34	0.65	.99		TE	6.20	1.66	0.79	8.10	0.10	6.18	3.84	30.512	7.88	4.93	2.27
GEOVETRY	41/10	.004	.047	.124	.197	.307	+14.	. 520	. 624	.727		.924	_	5.49	24.585	3.25	1.96	0.07	8.22	6.37	4.56	2.78	1.04	9.33		(LE	.71	.78	10.	96.6	4.11	2.58	1.61	10.300	9.23	40.	•03
AL SYSTEM	STRU	162.5	97.5	49.0	99.0	71.7	43.0	14.5	84.0	52.8		45.0	101	4-23	90.935	6.03	1.46	4.50	7.79	1.05	4.49	8.01	1.72	5.55		(TB	0.52	2.50	1.65	8.50	9.96	5.13	1.98	27.884	4.48	0.78	7.57
* STRUCTURAL	EACA	47	93.82	44.35	92.45	64.86	34.74	10.40	73.12	40.64	0.90	0.37	TRU	62.5		49.0	96.0	71.7	43.0	14.5	84.0	52.8	19.5	85.0		170	8.4	1.9	3.4	6.5	4.1	3.9	7.4		1.6	3.6	6.8
•	PUINT	-	~	M	4		٠	^	•	0	01	11	POINT	-	~	m	•	ī	•	_	•	0		11		PANEL	SUM	-	7	6	•	r	•	7	•	•	01

Geometry summary data - page 2. Figure 59.

CASE MO. 1 NI FLIANCE MING

PANEL GRANSE STRUCT STRUCT	APEA 2455-656 2-2317 0-30 1255-129 1-7570 0-4C 1357-734 1-8188 0-36 1441-735 9-8700 0-36 1441-735 9-8700 0-36 1441-735 9-8700 0-36 C-900415 C-875598 0-8 C-372447 0-398542 0-6 68-133 66-513 6-613 PO3-709 864-679 100 760-103 954-677 154	2.2317 1.7570 1.7570 1.81888 1.81000 1.310000 1.310000 1.310000 1.310000 1.310000 1.310000 1.310000 1.	7 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.4445 0.44445 2.44465	C(TTP) 11 146-505 17 196-505 19 186-505 19 186-505 19 186-505 19 186-505 19 186-505 19 186-505 19 186-505 19 186-505 19 18 18 18 18 18 18 18 18 18 18 18 18 18	AFP7 C -0.952767	00000000000000000000000000000000000000	65/81 1021-214 162-500 373-536 145-600 333-209 578UC. C
× + + + + + + + + + + + + + + + + + + +	455.556 255.129 357.734 441.735 401.735 401.735 900.415 900.415 68.133 58.133 505.792	1.7570 9.5493 1.8188 9.8493 7.331264 520,774 6.820,774 0.398559 0.398559	00000000000000000000000000000000000000			81111 10014 10014 10014 1000	6444V	.00.0040	4 0 9	NO NO	162.500 173.536 145.600 133.309 1400.6 17.395
× + + + + + + + + + + + + + + + + + + +	255.129 357.734 441.735 ANFCRM EDM -903415 -903415 -372447 68.133 58.133	1.7570 9.5593 1.8188 9.8703 7.37175 A' 520.7756 520.7766 0.875598 0.898559 0.196952	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2117 1417 1417	2,00,00,00	4 6 6	NO.	162.500 173.536 145.000 133.309 101. C 149046
× + + + + + + + + + + + + + + + + + + +	367.736 241.735 ANFCRW EDM .401775 .903415 .372447 68.133 503.709	9.5493 1.8188 8.8703 7.331264 520.774 6.875598 3.398542 66.513 0.196952	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.00 m m m m m m m m m m m m m m m m m m		644 644 644 644	**************************************	2.00.00.00	4 6 9	W 0 N	17.395
2 F 2 F 2 F 2 F 2 F 2 F 2 F 2 F 2 F 2 F	367.734 441.745 ANFCRW EDM -401775 -900415 -372447 68.133 58.103	1.elag e.a703 C.a710f S.a. 7.301264 5.20.774 C.e75598 0.398542 66.513 0.196952	55 T T T T T T T T T T T T T T T T T T	105 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22.22	6.5.6.4.9.4	4 60	00°	145.000 133.309 100.0000 17.395
×	441.745 ANFORM EDI 401775 372447 68.133 503.709	9.8703 0.871015 A' 7.331264 5.20.774 0.875598 3.398542 66.513 0.190952	745 00124 60124 60332 740332 740332 740332	1135 1236	3	0 00	22.22	2.00.00.00	4 6 9	200	133.209 100. C 14.395
2 L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ANFCOM EJL LE .401775 .903415 .372447 68.133 503.709	FS 7-331264 520-774 6-875598 3-398542 66-513 0-126952 864-679	D 4 C C F . M . 4 F . V	ES. ** 1. #12681 1. #12681 C. *472444 C. *472444		0 00		.25 C .043676 551.241 .898234 .439419	AFB7 C -0.952767 609.761	· 7	.49046 17.395
ST S	LE .401774 .903415 .372447 68.133 .703.709	FS 7.331264 520.774 6.675598 3.396542 66.513 0.196952		1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.		0 00		.25 C .043676 551.241 .898234 .439519 63.927	AFP7 C -0.952767 609.761	- T	.uC. C .49046 17.395
2	.401775 3CR.736 .903415 .372447 68.133 68.133 763.709	7.331264 520.734 6.875598 3.398542 66.513 0.196952	/ 30 0 L	1.812681 F00-3661 C.472647 C.6483060		000		.043676 .043676 .898234 .439419 63.927	-0.952767 609.761	7	17.395
21.28 21.28 21.28 21.28	168.736 .372447 .8372447 .831.709 .705.103	520-134 C-875-38 J-3985-42 66-513 O-196952		601-11-0 0-420-6-1 0-430-6-1 0-430-6-1 0-430-6-1 0-430-6-1 0-430-6-1				551.241 898234 .439419 63.927	600,761		308
S	.903415 .372447 .8372447 .831.709 .763.103	0.875598 3.398542 66.513 0.196952 864.679	00 0	C. + # 26 + 4		00		.898234 .439519 63.927			
21 51 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	68.133 68.133 760.103 505.792	3.398542 66.513 0.196952 864.679	0.4	C.483050 61.110 C.42925		0	. •	63.927			
7 × × × × × × × × × × × × × × × × × × ×	68.133 763.709 505.792	66.513 0.190952 804.479	0.63	61.110		0	,	63.927			
ST S	#33,709 760,103 505,792	0.196952	100								
ST S	403,709 760,103 505,792	804.679	1,006	10 501							
STR 151	760.103 505.792	,		* C - C - T				843.338			
ST S	505.792	954.437	360	C72.18				947.574			
* >		1543.343	1548.400	1614-652	1092.297		0.0	1459.165			
	STRUCTURAL SY	SYSTEM GEC	CHETRY NATA -	- REE SWEEP=	68.13	DESPEES AT	0.0	C. ***			
	A) Y(STR	IA CON	IVO CIAEPII		1/2	XEA(A)	Y(FS)	XIFS	_	51	XIRSI
		1	ě	26.177		982.280	192.03	_		_	003.648
		0.0	•	25.279		1013.793	205.99				034-338
		0.0	7 29	23.959		1060.163	226.53	_			079-496
	364 433.562	0.1	699 409.353	22.545	.05503	1104.295	246.089	5 1067-031	31 172.73		1122.468
		1 0.2	9.40	20.548		1170.732	275.51				187-174
		0.3	750	19.640		1234.846	303.91			_	249.613
		0.5	_	16.743		1299.229	332.43			_	312-312
		9.0	115	14.641		1361.P08	362.16	_		_	373.256
		0.7	177	13.037		1423.757	367.60	٠.		_	433.585
		0.8	207	11.250		1483.614	414.20				492.073
1		0.0	21ª 207.	404.6		1542.793	440.33	EU.		_	549.510

Figure 60. Geometry summary data - swept planform position.

TABLE 56. VARIABLE REFERENCES, SUBROUTINE PRTG

Variable	Size	Common	Varia	ble Descri	ption	Table
Name	(Cells)	Ref Loc	Туре	Used	Calc	Ref
CD	2,000	4121	R	U	•	3
D	2,060	2061	R	U	-	3,8,11,12
DC	100	D(1401)	R	U	-	10,14
DLLMDA	1	D(320)	R	U	-	8,11,12
DYPVT	1	D(200)	R	U	-	8,11,12
I	1	-	I	U	С	-
IP	80	/IPRINT/	I	ับ	-	7
J	1	-	I	U	С	-
K	1	-	I	ប	C C	•
N	1	120	Ī	บ	C	-
NCASE	1	ND(60)	I	U	-	9,13
ND	100	6121	I	ប	-	3,9,13
NPAGE	1	ND(85)	I	U	-	9,13
R	16	XMISC(85)	Α	U	-	6
T	2,060	1	R	υ	-	3
TD	600	CD(1101)	R	บ	C	40
TS	600	CD(1)	R	U	C	41
TVS	400	CD(601)	R	บ	-	35
TXY	500	T(801)	R	บ	-	30
XMISC	100	/MISC/	R,A	υ	•	6

SUBROUTINE GCOMP

Deck name:

GCØMP

Entry name:

GCØMP

Called by:

Subroutine PRTG

Subroutines called: None

Subroutine GCMMP is used to process computed geometry data into array TD for output as printed summary data by subroutine PRTG. This subroutine is executed by subroutine PRTG only when a code value of zero is specified in column 6 of case control case card 1, IP(6), printed geometry summary data required. Data for the TD array (Table 40) are retrieved primarily from arrays D and TXY. Much of the data values are transferred directly; minor recalculations are made, only to conform to output block requirements.

Subroutine GC/MP calculations and the contents of array TD do not affect any downstream subroutine computations except that of subroutine PRTG.

Subroutine Variables

Variables referenced by subroutine GCØMP are presented in Table 57. Data in array TS, locations 1-88 are initially set up by GCØMP, but are not used. Subroutine PRTG subsequently uses these locations for storage of geometry parameters for control stations 1-11 (Table 41).

Labeled Common Variables

None.

Mass Storage File Records

None.

Error Messages

TABLE 57. VARIABLE REFERENCES, SUBROUTINE GOOMP

Variable	Size	Common	Varia	ble Descri	ption	Table
Name	(Cells)	Ref Loc	Туре	Used	Calc	Ref
CD	2,000	4121	R	U	_	3
D	2,060	2061	R	U	-	3,8,11,12
DC	100	D(1401)	R	U	-	10,14
DIC	22	D(2031)	R	υ	-	24,8,11,12
DYPVT	1	D(200)	R	U	-	8,11,12
I	1	-	1	ט	C	' '-
N	1	-	I	U	C	-
ND	100	6121	I	U	-	3,9,13
SWPPC	1	D(138)	R	U	-	8,11,12
T	2,060	1	R	บ	_	3
TD	600	CD(1101)	R	U	C	40
TS	600	CD(1)	R	U	С	41
TVS	400	CD(601)	R	U	-	34
WAR	1	D(241)	R	U	-	8,11,12
WAREA	1	D(240)	R	υ	-	8,11,12
WSWP	1	D(242)	R	U	-	8,11,12
WTR	1	D(244)	R	U	-	8,11,12
YC	150	T(201)	R	U	-	38
YTC	60	T(351)	R	U	-	39

Section IV

SUBROUTINE REFERENCE TABLES FOR OVERLAYS (9,0), (10,0), (14,0), (15,0), (16,0), (17,0), AND (18,0)

Subroutine reference tables for wing and empennage module overlays other than overlay (8,0) are found in this section. Table 58 lists all module routines in alphabetical order with references to corresponding external reference or subroutine variable reference tables. Tables 59 through 154 includes the general overlay and individual subroutine variable data reference information for overlays (9,0), (10,0), (14,0), (15,0), (16,0), (17,0) and (18,0).

TABLE 58. CROSS-REFERENCE LIST FOR SUBROUTINE VARIABLE REFERENCE TABLES

Routine	Overlay	Table	Routine	Overlay	Table
			BHDJT	18	119
ØLAY8	8	19	BØT	10	105
ØLAY9	9	62	вØтс	10	106
ØLAY10	10	63	CAERØ	8	54
ØLAY14	14	59	CASE	8	44
ØLAY15	15	60	CCNTL	8	43
ØLAY16	16	61	CDL	15	76
ØLAY17	17	65	CG3P	10	123
ØLAY18	18	64	CKSFDH	18	137
ABDW	16	88	CKSTAB	18	134
ABØXC	8	52	CNSTC	16	87
ACEIGJ	18	144	CNSTR	10	102
ACLØAD	18	128	CSECW	9	95
ACMRSK	18	140	CSECW	18	95
ACNSTR	18	132	CIØT	17	154
ACPRØG	18	127	CTØT1	14	154
ACPRTA	18	146	CTØT2	15	154
ACSTRG	18	141	DEADW	9	91
ACWFDH	18	136	DEADW	18	91
ACWMS	18	133	DLPVT	9	99
ACWRBS	18	138	DLPVT	18	99
ACWSTR	18	139	DMAX	8	53
ALØAD	16	83	DWYBA	9	92
ASTIFF	18	143	DWYBA	18	92
ATBØPT	18	131	EIGJC	10	117
AVLØAD	18	130	FDIS	15	77
BHDJT	10	119	GCNTL	14	67
			:		

TABLE 58. CROSS-REFERENCE LIST FOR SUBROUTINE VARIABLE REFERENCE TABLES (CONT)

Routine	Overlay	Table	Routine	Overlay	Table
GCØMP	8	57	PRTH	18	101
GEØMC	8	47	PRTM	15	78
GEØMW	8	46	RTRIB	10	120
GJCAL	16	84	RTRIB	18	120
GJSI	16	85	SECTO	10	103
GJTT	16	86	SFSCH	10	104
LETEI	14	72	SKWEB	10	115
LEWT	14	68	SRRIB	10	113
MISCIT	15	75	SS	10	122
MISCNT	15	74	SS2	10	122
MTLCW	16	80	STBAR	10	108
MTLFW	16	81	STRG	10	109
MTLPW	16	82	STRGØ	10	110
PINTØ	17	153	STRIB	10	112
PΙVØΤ	9	96	STRIL	10	111
PIVØT	18	96	STWEB	10	114
PRØG	9	90	SWPXYP	8	55
PRTA	9	100	TBFWI	17	149
PRTB	10	124	TBFWI1	15	149
PRTB	18	124	TBØPT	9	94
PRTBK	10	125	TBWDC	8	49
PRTC	10	126	TEDEV	14	71
PRTC	18	126	TEE	9	97
PRTD	17	148	TEE	18	97
PRTG	8	56	TEL	9	98
PRTH	9	101	TEL	18	98
l I			Ref	1	

TABLE 58. CROSS-REFERENCE LIST FOR SUBROUTINE VARIABLE REFERENCE TABLES (CONCL)

Routine	Overlay	Table	Routine	Overlay	Table
TEMPC	18	129			
TEWT	14	69		!	1
TEWT1	14	70			
TPINT	17	152			
TSCH	10	107			
VFCAL	10	116			
VLØAD	9	93			
VLØAD1	16	93			
VSCEØM	8	48			
WCØNI	15	73			
WDDATA	16	79			:
WEIGH1	18 .	135			
WEIGH2	18	142	ļ	:	
WFLDD	17	150			
WLETE	14	66			
WØDATA	17	147		; !	
WTCAL	10	118			
WTCAL	18	118	 	;	
WTPIN	10	121			
WIPIN	18	121			
WVFDD	17	151			
XN	18	145		1	
YBSET	16	8 9			

TABLE 59. EXTERNAL REFERENCES, OVERLAY (14,0) ROUTINES

	Name	Туре	Called By	External Reference	Inline Function	File Names
	ØLAY14	Program	ØLAY00	UNIT	-	TAPE24
				WLETE		
	CTØT1	Subroutine	GCNTL	-	-	TAPE6
			LEWT'			
			TEWT			
			TEDEV			
	GCNTL	Subroutine	TEWT I WLETE	СТØТ1	-	TAPE6
	LETEI	Subroutine	WLETE	-	INT	TAPE6
	LEWT	Subroutine	WLETE	СТØТ 1	<u>.</u>	TAPE6
İ				TEWTI		
	TEDEV	Subroutine	TEWT	CTØT1	-	TAPE6
	TEWT	Subroutine	WLETE	CTØT1		
	TEWTI	Subroutine	TEWT	TEWTI CTØT1	-	TAPE6
		<u> </u>		SQRT		
				TEDEV		
	WLETE	Subroutine	ØLAY14	GCNTL	-	TAPE6
		1	:	LETEI		
				LEWT		
				TEWT		
				WRITMS		
			,			
					1	

TABLE 60. EXTERNAL REFERENCES, OVERLAY (15,0) ROUTINES

NAME	Туре	Called By	External Reference	Inline Function	File Names
ØLAY15	Program	ØLAY00	UNIT	-	TAPE24
			WCØNT		
CDI.	Subrout ine	MISCNI	СТØТ2	ABS	TAPE6
CTØT2	Subrout ine	MISCNI	-	-	TAPE6
		MISCIT	1		
		CDI.			
		FDIS			
FDIS	Subrout inc	WCØNT	CTØT2	-	TAPE6
			TBFW11		
MISCIT	Subrout ine	MISCNT	СТØТ2	-	TAPE6
			PRTM		
MISCNT	Subroutine	WCØNT	CDL	ABS	TAPE6
			CTØT2		
			MISCIT		
PRTM	Subroutine	MISCIT	-	-	TAPE6
TBFWI1	Subrout ine	FDIS	_	INT	TAPE6
WCØNT	Subroutine	ØLAY15	FDIS	-	-
			MISCNI		
			WRITMS		
	7.0				
			l I		
			l		
			ı		

TABLE 61. EXTERNAL REFERENCES, OVERLAY (16,0) ROUTINES

Name	Туре	Called By	External Reference	Inline Function	File Names
ØLAY16	Program	ØLAY00	UNIT	-	TAPE24
			WDDATA		
ABDW	Subroutine	WDDATA	VLØAD1	-	TAPE6
ALØAD	Subroutine	WDDATA	READMS	ABS	TAPE6
			SQRT		
CNSTC	Subroutine	WDDATA	SQRT	IFIX	-
			SS2		
GJCAL	Subroutine	WDDATA	ALØG	-	TAPE6
			GJSI		
}			GJTT		
			READMS		
GJSI	Subroutine	GJCAL	ALØG	-	-
GJTT	Subroutine	GJCAL	READMS	-	TAPE6
MTLCW	Subroutine	WDDATA	MTLFW	-	TAPE6
			MTLPW		
			READMS		
MILEN	Subroutine	MTLCW	ALØG	-	TAPE6
			EXP		
MILPW	Subroutine	MTLCW	-	-	TAPE6
SS2	Subroutine	CNSTC	EXP	_	-
			SQRT		
VI.ØAD1	Subroutine	ABDW	-	ABS	TAPE6
WDDATA	Subroutine	ØLAY16	ABDW	-	TAPE6
			ALØAD		
			CNSTC		
			GJCAL		
			MTLCW		

TABLE 61. EXTERNAL REFERENCES, OVERLAY (16,0) ROUTINES (CONCL)

Name	Туре	Called By	External Reference	Inline Function	File Names
			READMS		
			WRITMS		
VDCCT	Colonia i	IATO DA CUA	YBSET	ADC	
YBSET	Subrout inc	WDDATA	SQRT	ABS	=

TABLE 62. EXTERNAL REFERENCES, OVERLAY (9,0) ROUTINES

Name	Туре	Called By	External Reference	Inline Function	File Names
ØLAY9	Program	ØLAY00	PRØG	-	TAPE24
			UNIT		
CSECW	Subroutine	TBØPT	SQRT	-	-
DEADW	Subroutine	DWYBA	-	-	-
		PRØG			
DLPVT	Subroutine	TBØPT	SQRT	-	TAPE6
DWYBA	Subroutine	PRØG	DEADW	ABS	TAPE6
			SQRT		
PIVØT	Subroutine	TBØPT	ATAN2	ABS	TAPE6
			CØS		
			SIN		1
			SQRT		
			TEE		
			TEL		
PRØG	Subroutine	ØIAY9	DEADW	IFIX	-
	1		DWYBA	:	
			READMS		
			TBØPT		
			VI.ØAD		
			WRITMS		
PRTA	Subrout inc	ТВØРТ	-	-	TAPE6
PRTH	Subroutine	ТВФРТ	-	-	TAPE6
ТВØРТ	Subroutine	PRØG	CSECW	-	-
			DLPVT		
			PΙVØΤ		
			PRTA		
			PRTH		
			READMS		

TABLE 62. EXTERNAL REFERENCES, OVERLAY (9,0) ROUTINES (CONCL)

TEE Subroutine PIVØT CØS ABS SIN SQRT TEL Subroutine PIVØT CØS ABS SIN SQRT VIØAD Subroutine PRØG - ABS 1	File Names
TEL Subroutine PIVØT CØS ABS SIN SQRT SIN SQRT	
TEL Subroutine PIVØT CØS ABS SIN SQRT	-
TEL Subroutine PIVØT CØS ABS SIN SQRT	
SIN SQRT	
SQRT	-
VIØAD Subroutine PRØG - ABS 7	
	TAPE6
	174130

TABLE 63. EXTERNAL REFERENCES, OVERLAY (10,0) ROUTINES (CONT)

Name	Туре	Called By	External Reference	Inline Function	File Names
ØLAY10	Program	ØLAY00	CNSTR	-	TAPE24
# ·			UNIT		
BHDJT	Subroutine	WTCAL	-	ABS	-
BØT.	Subroutine	SECTD	ВØТС	ABS	-
		SFSCH	CG3P		
1			SQRT		
			SS		
BOTC	Subroutine	ВØТ	SQRT	-	-
ľ			SS		
CG3P	Subroutine	BØT.	SQRT	AMIN1	TAPE6
		STWEB			
1		STRIB			
		TSCH			
4 5 -		SFSCH			
CNSTR	Subroutine	ØLAY10	EIGJC	ABS	-
			PRTB		
			PRTC		
i			SECTD		
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			SS		
			VFCAL		
1			WRITMS		
			WTCAL		·1
EIGJC	Subroutine	CNSTR	SQRT	-	-
PRTB	Subroutine	CNSTR	-		TAPE6
PRTBK	Subroutine	TSCH	-	-	TAPE6
		STRG			
PRTC	Subroutine	CNSTR	-	-	TAPE6
RTRIB	Subroutine	WTCAL	-	ABS	-

TABLE 63. EXTERNAL REFERENCES, OVERLAY (10,0) ROUTINES (CONT)

Name	Туре	Called By	External Reference	Inline Function	File Names
SECTD	Subroutine	CNSTR	ВØТ	INT	-
			SFSCH		
]		SQRT		
			SS		
			STWEB		
SFSCH	Subroutine	SECTD	ВØТ	-	-
			CG3P		
			TSCH		
SKWEB	Subroutine	STWEB	SQRT	-	-
SRRIB	Subrout ine	STRIB	SS	-	-
SS	Subroutine	ВØТ	ЕХР	-	-
		B Ø TC	SQRT		
		TSCH	1		
		STRIB		·	
		SRRIB			
		SECTD			
STBAR	Subroutine	TSCH	STRG	-	-
			STRIB		
			STRIL		
STRG	Subroutine	STBAR	PRTBK	-	-
			SQRT		
			STRGØ		
STRGØ	Subroutine	STRG	-	-	-
		TSCH			
STRIB	Subroutine	STBAR	CG3P	ABS	-
			SRRIB		1
			SS	1	

TABLE 63. EXTERNAL REFERENCES, OVERLAY (10,0) ROUTINES (CONCL)

Name	Туре	Called By	External Reference	Inline Function	File Names
STRIL	Subroutine	STBAR	SQRT	-	-
STWEB	Subroutine	SECTD	CG3P	ABS	-
I			SKWEB		
TSCH	Subroutine	SFSCH	CG3P	-	-
	ı		PRTBK		
-	1		SS		
			STBAR		
			STRGØ		1
VFCAL	Subroutine	CNSTR	-	- 1	-
WTCAL	Subroutine	CNSTR	BHDJT	ABS	-
			RTRIB		
			WTPIN		
WTPIN	Subroutine	WTCAL	-	-	-
					1
			1		

TABLE 64. EXTERNAL REFERENCES, OVERLAY (18,0) ROUTINES

Name	Туре	Called By	External Reference	Inline Function	File Names
ØLAY18	Program	ØLAY00	ACPRØG	-	TAPE24
			UNIT		
ACEIGJ	Subroutine	ASTIFF		-	TAPE6
ACLØAD	Subroutine	ACPRØG	READMS	-	TAPE6
	_		WRITMS		
ACMRSK	Subrout ine	ACWSTR	SQRT	ABS	TAPE6
				INI.	
ACNSTR	Subroutine	ATBØPT	PRTB	ABS	TAPE6
			PRTC		
			WRI1MS		
			WTCAL		
ACPRØG	Subroutine	ØLAY18	ACLØAD	IFIX	-
			ATBØPT		
			AVILØAD		
	:		DEADW		
			DWYBA		
			READMS		
			TEMPC		
			WRITMS	i	
ACPRTA	Subroutine	АТВØРТ	READMS	-	TAPE6
ACSTRG	Subroutine	ACWSTR	-	-	TAPE6
ACWFDH	Subroutine	ACWMS	CKSFDH	INT	-
ACWMS	Subrout inc	ATBØPT	ACWFDH	ABS	TAPE6
			ASTIFF	INT	
			CKSTAB		
			WEIGHI		
			XN		
			-2.		

TABLE 64. EXTERNAL REFERENCES, OVERLAY (18,0) ROUTINES (CONT)

Name .	Туре	Called By	External Reference	Inline Function	File Names
ACWRBS	Subroutine	АТВФРТ	ACWSTR	ABS	TAPE6
			ASTI FF	INT	
			CKSTAB		
			WEIGH2		
			XN		
ACWSTR	Subroutine	ACWRBS	ACMRSK	INT	TAPE6
1			ACSTRG	,	
			CKSTAB		
1			SQRT		
1			XN		
ASTIFF	Subroutine	ACWMS	ACEIGJ	-	TAPE6
Ī		ACWRBS			
ATBØPT	Subroutine	ACP RØ G	ACNSTR	INT	-
			ACPRTA		
			ACWMS		
			ACWRBS		
			CSECW		
			DLPVT		
			PI VØ T		
			PRTH		
			READMS		
			WRITMS		
(IAQLEVA	Subrout ine	ACPRØG	READMS	-	TAPE6
BHDJT	Subrout ine	WTCAL	-	ABS	-
CKSFDH	Subroutine	ACWFDH	SQRT	1-	TAPE6
CKSTAB	Subrout ine	ACWMS	SQRT	ABS	TAPE6
		ACWRBS			ı
		ACWSTR		<u></u>	

TABLE 64. EXTERNAL REFERENCES, OVERLAY (18,0) ROUTINES (CONT)

Name	Туре	Called By	External Reference	Inline Function	File Names
CSECW	Subrout ine	ТВØРТ	SQRT	-	_
DFADW	Subroutine	DWYBA	-	-	TAPE6
		ACPRØG			
DLPVT	Subroutine	АТВФРТ	SQRT	-	TAPE6
DWYBA	Subroutine	ACPRØG	DEADW	ABS	TAPE6
			SQRT		l
PIVØT	Subroutine	ATBØPT	ATAN2	ABS	TAPE6
		9	CØS		
			SIN		
			SQRT		
			TEE		
			TEL		
TRTB	Subroutine	ACNSTR	-1	-	TAPE6
PRTC	Subroutine	ACNSTR	-	-	TAPE6
PRTH	Subroutine	ATBØPT	-	-	TAPE6
RTRIB	Subroutine	WTCAL	-	ABS	-
TEE	Subroutine	PIVØT	CØS	ABS	-
			SIN		
			SQRT		
TEL	Subrout ine	PIVØT	CØS	ABS	-
			SIN		
			SQRT		
TEMPC	Subroutine	ACPRØG	SQRT	FLØAT	TAPE6
				INT	
WEIGHT	Subroutine	ACWMS	-	-	TAPE6
WEIGH2	Subroutine	ACWRBS	-	-	TAPE6

TABLE 64. EXTERNAL REFERENCES, OVERLAY (18,0) ROUTINES (CONCL)

Name	Туре	Called By	External Reference	Inline Function	File Names
WTCAL	Subroutine	ACNSTR	BHDJT	ABS	_
			RTRIB		
			WTPIN		
WTPIN	Subroutine	WTCAL	_	-	-
XX	Function	ACWMS	-	INT	-
		ACWRBS			
		ACWSTR		i	
				•	
		:			
1					
1					
				İ	Ì
1					
1					

TABLE 65. EXTERNAL REFERENCES, OVERLAY (17,0) ROUTINES

Name	Туре	Called By	External Reference	Inline Function	File Names
ØLAY17	Program	ØLAY00	UNIT	-	TAPE24
СТФТ	Colombia	INT TOTAL	₩ØDATA	ı	TIA DILA
CIØI	Subroutine	WVFDD	-	-	TAPE6
DIARIVA	Culturantina	WVFDD		ADC	DIRICH
PINTØ	Subroutine	WVFDD	-	ABS	PUNCH
DOTO	6.1	LICATO ACTOR			TAPE6
PRTD	Subroutine	WØDATA	-	-	TAPE6
TBFWI	Subroutine	WØDATA	-	INΓ	TAPE6
'TPINT	Subroutine	WFLDD	-	-	-
		WVFDD			
WFLDD	Subroutine	WØDATA	ATAN	-	PUNCH
			CTØT		TAPE6
			READMS	*	
			TPINT		
WØDATA	Subroutine	ØLAY17	PRTD	-	TAPE6
			READMS		
1			ТВFWI		
			WFLDD		
			WRITMS		
			WVFDD		
WVFDD	Subroutine	WØDATA	AI.ØG	ABS	TAPE6
			ATAN		
		L	СТØТ		
			EXP		
ı			PINTØ		
			READMS		
			ТРІМГ		

TABLE 66. VARIABLE REFERENCES, SUBROUTINE WLETE

Variable		Common	Vari	iable Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CCL	300	CD(51)	R	U	-	171
CCLØ	9	T(131)	R	U	-	34
CCT	300	CD(351)	R	U	-	171
CCW	50	CD(1)	R	U	С	170
CD	2000	4121	R	-	-	3
CIMA	150	T(501)	R	-	С	175
CLEI	150	CD(651)	R	С	-	174
CØSØ	6	T(146)	R	υ	•	34
CTEI	150	CD(801)	R	υ	-	174
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	U	-	10
I	1	-	I	U	С	-
1 P	80	/IPRINT/	I	υ	-	7
N	1	-	1	U	С	-
NCASE	1	ND(60)	I	U	-	9
ND	100	6121	I	υ	-	3,9
R	16	XMISC(85)	R	U	-	6
SINØ	6	T(140)	R	U	-	34
T	6220	1	R	-	-	3,34
TANØ	9	T(122)	R	U	_	34
TE	150	CD(1251)	R	ប	С	183
TST	50	T(1701)	R	υ	С	184
TWG	300	T(1301)	R	υ	С	169
TXY	500	T(801)	R	υ	-	30
TXYØ	500	T(501)	R	-	С	30
WHVID	1	T(57)	R	U	-	34
XMISC	8 5	/MISC/	R	-	-	6
YC	150	T(201)	R	บ	С	168

TABLE 67. VARIABLE REFERENCES, SUBROUTINE GCNTL

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ВØ2	1	T(12)	R	U	•	34
BS1Ø2	1	T(15)	R	υ	-	34
CCLØ	9	T(131)	R	U	-	34
CØSØ	6	T(146)	R	U	-	34
CØTEA	1	T(152)	R	υ	-	34
D	2060	2061	R	υ	-	3,8
DC	100	D(1401)	R	U	-	10
I	1	ND(26)	I	U	С	9
IP	80	/IPRINT/	I	U	-	7
K	1	ND(28)	I	U	С	9
N	1	ND(27)	I	ប	С	9
ND	100	6121	I	U	-	3,9
SPLE	1	T(25)	R	-		34
SPTE	1	T(26)	R	-	C	34
T	6220	1	R	-	-	3,34
TANØ	9	T(122)	R	U	-	34
TG	300	T(1001)	R	U	С	166
TGA	135	T(1851)	R	U	С	167
TGT	400	T(1301)	R	U	С	-
ТТ	24	T(411)	R	ប	C	-
TXYØ	500	T(501)	R	-	-	30
WHVID	1	T(57)	R	U	1 - 1	34
YC	150	T(201)	R	U	-	168
YS	11	TXYØ(490)	R	U	-	30
YTB	124	TXYØ(55)	R	บ	-	31,30

TABLE 68. VARIABLE REFERENCES, SUBROUTINE LEWT

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
BØ2	1	T(12)	R	U	-	34
CC1	300	CD(1651)	R	υ	С	171
CCL	300	CD(51)	R	U	С	171
CCW	50	CD(1)	R	υ	С	170
CD	2000	4121	R		-	3
D	2060	2061	R	υ	-	3,8
DGWØ	1	D(105)	R	U	-	8
DHVID	1	D(289)	R	U	-	8
DINTI	12	D(1143)	R	U	-	8
DLE	30	D(1205)	R	U	-	156,8
DLEDK	50	D(1530)	R	υ	-	159,8
DLED1	30	D(1500)	R	ับ	-	158,8
-1	1	ND(26)	I	υ	С	9
IP	80	/IPRINT/	I	U	-	7
К	1	ND(30)	I	U	С	9
КК	1	-	I	U	С	-
1.	1	ND(28)	I	U	С	9
М	1	ND(31)	I	U	С	9
N	1	ND(27)	I	U	С	9
ZD	100	6121	I	U	-	319
NN	1	<u>.</u>	I	U	С	-
QVL	1	D(87)	R	U	-	8
Т	6220	1	R	-	-	3,34
TG	300	T(1001)	R	ប	-	166
TGR	100	T(1751)	R	υ	С	176
TLED	15	TGR(51)	R	υ	С	176
TST	50	T(1701)	R	U	С	177

TABLE 68. VARIABLE REFERENCES, SUBROUTINE LEWT (CONCL)

Variable Name		Common	Varia	Table		
	Size	Ref Loc	Туре	Used	Calc	Ref
TT	24	T(411)	R	U	С	-
TWG	400	T(1301)	R	-	C	169
ULTNZ	1	D(285)	R	U	-	8
WAREA	1	D(240)	R	U	-	8
YC	150	T(201)	R	U	-	168

TABLE 69. VARIABLE REFERENCES, SUBROUTINE TEWT

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CC1	300	CD(1651)	R	U	С	171
CCT	300	CD(351)	R	U	С	171
CCW	50	CD(1)	R	U	С	170
CD.	2000	4121	R	U	-	3
CØSØ	6	T(146)	R	ប	-	34
D	2060	2061	R	U	-	3,8
DC	100.	D(1401)	R	U	-	10
DHVID	1	D(289)	R	บ	-	8
DINTI	12	D(1143)	R	ប	-	8
DTE	45	D(1235)	R	υ	-	157,8
1	1	ND(26)	I	υ	С	9
IP	80	/IPRINT/	I	บ	-	7
К	1	ND(30)	I	บ	С	9
L	1	ND(28)	I	ប	С	9
N	1	ND(27)	I	ប	С	9
ND	100	6121	I	U	-	3,9
QVL	1	D(87)	R	υ	ı -	8
Т	6220	1	R	-	-	3,34
TE	150	CD(1251)	R	U	-	183
TG	300	T(1001)	R	U	-	166
TGR	100	T(1751)	R	ប	_	180
TST	50	T(1701)	R	-	С	179
TT	24	T(411)	R	υ	С	-
TTED	40	TGR(51)	R	υ	С	178
YC	150	T(201)	R	U	-	168

TABLE 70. VARIABLE REFERENCES, SUBROUTINE TEWT1

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CCI	300	CD(1651)	R	U	С	171
ccrø	9	T(131)	R	U	-	34
CCW	50	CD(1)	R	U	С	170
CD	2000	4121	R	-	-	3
CØSØ	6	T(146)	R	U	-	34
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	υ	-	10
DESP	25	D(1795)	R	υ	-	165,8
1	1	ND(26)	Ī	υ	С	9
I FD	1	ND(32)	1	U	-	9
IP	80	/IPRINT/	I	υ	-	7
К	1	ND(30)	I	U	С	9
KK	1	-	1	U	С	-
М	1	ND(31)	1	υ	С	9
N	1	ND(27)	1	U	С	9
ND	100	6121	11	U	-	3,9
NN	1	-	1	U	C	-
QVI.	1	D(87)	R	U	-	8
SINØ	6	T(140)	R	U	-	34
Т	6220	1	R	-	-	3,34
TANØ	9	T(122)	R	υ	-	34
TE	150	CD(1251)	R	บ	С	183
TGR	100	T(1751)	R	U	С	180
TST	50	T(1701)	R	U	С	179
ŢT	24	T(411)	R	U	С	-
TTED	40	TGR (51)	R	υ	_	178
MIVID	1	T (57)	R	U	-	34
YC	150	T(201)	R	U		168

TABLE 71. VARIABLE REFERENCES, SUBROUTINE TEDEV

Name Size Ref Loc Type Used Calc Ref BØ2 1 T(12) R U - 34 CCI 500 CD(1651) R U - 171 CD 2000 4121 R - - 5 D 2060 2061 R U - 3,8 DALLK 50 D(1765) R U - 164,3 DC 100 D(1401) R U - 8 DEPN 20 D(1745) R U - 165,8 DEPDR 25 D(1795) R U - 165,8 DEPUB 1 D(289) R U - 8 DEPUB 1 D(289) R U - 162,8 DTED1 30 D(1580) R U - 160,8 DTED2 120 D(1610	Variable		Common	Vari	able Descr	ription	Table
CCI 300 CD(1651) R U - 171 CD 2000 4121 R - - 5 D 2060 2061 R U - 3,8 DALLK 30 D(1765) R U - 164,3 DC 100 D(1401) R U - 8 DEDC 100 D(1401) R U - 164,3 DEDR 20 D(1745) R U - 163,8 DESP 25 D(1795) R U - 165,8 DEVID 1 D(289) R U - 165,8 DEVID 1 D(289) R U - 162,8 DEDDR 15 D(1730) R U - 160,8 DTED1 30 D(1610) R U - 161,8 I ND(26) I <th></th> <th>Size</th> <th></th> <th>Туре</th> <th>Used</th> <th>Calc</th> <th></th>		Size		Туре	Used	Calc	
CD 2000 4121 R - - 3 D 2060 2061 R U - 3,8 DAHLK 30 D(1765) R U - 164,3 DC 100 D(1401) R U - 8 DEPR 20 D(1745) R U - 163,8 DESP 25 D(1795) R U - 165,8 DIVID 1 D(289) R U - 162,8 DEPDK 15 D(1750) R U - 162,8 DTED1 30 D(1610) R U C 9 HFD 1 ND(352)	BØ2	1	T(12)	R	U	•	34
D 2060 2061 R U - 3,8 DAILK 30 D(1765) R U - 164,3 DC 100 D(1401) R U - 8 DFP 100 D(1745) R U - 163,8 DFSP 25 D(1795) R U - 165,8 DFVID 1 D(289) R U - 165,8 DFVID 1 D(289) R U - 165,8 DFVID 1 D(289) R U - 162,8 DFDK 15 D(1730) R U - 162,8 DTED1 30 D(1580) R U - 162,8 DTED2 120 D(1610) R U - 161,8 TFD 1 ND(26) I U C 9 1FE 1 ND(33) </td <td>CCI</td> <td>300</td> <td>CD(1651)</td> <td>R</td> <td>U</td> <td>-</td> <td>171</td>	CCI	300	CD(1651)	R	U	-	171
DATECO D	CD	2000	4121	R	-	-	3
DC 100 D(1401) R U - 8 DELPK 20 D(1745) R U - 163,8 DESP 25 D(1795) R U - 165,8 DIVID 1 D(289) R U - 8 DSPDK 15 D(1730) R U - 162,8 DTED1 30 D(1580) R U - 160,8 DTED2 120 D(1610) R U - 160,8 DTED2 120 D(1610) R U - 161,8 I ND(26) I U C 9 HFK 1 ND(32) I U C 9 IFK 1 ND(33) I U C 9 L 1 ND(28) I U C 9 M 1 ND(27) I U <td>b</td> <td>2060</td> <td>2061</td> <td>R</td> <td>U</td> <td>-</td> <td>3,8</td>	b	2060	2061	R	U	-	3,8
DFLPK 20 D(1745) R U - 163,8 DFSP 25 D(1795) R U - 165,8 DFDFD 1 D(289) R U - 8 DSPDK 15 D(1730) R U - 162,8 DTED1 30 D(1580) R U - 160,8 DTED2 120 D(1610) R U - 160,8 DTED2 120 D(1610) R U - 161,8 I ND(26) I U C 9 IFW 1 ND(32) I U C 9 IFK 1 ND(35) I U C 9 IP 80 /IPRINT/ I U C 9 L 1 ND(30) I U C 9 M 1 ND(28) I U <td>DATLK</td> <td>30</td> <td>D(1765)</td> <td>R</td> <td>U</td> <td>-</td> <td>164,3</td>	DATLK	30	D(1765)	R	U	-	164,3
DESP 25 D(1795) R U - 165,8 DRVID 1 D(289) R U - 8 DSPDK 15 D(1730) R U - 162,8 DTED1 30 D(1580) R U - 160,8 DTED2 120 D(1610) R U - 161,8 I 1 ND(26) I U - 161,8 I 1 ND(26) I U - 161,8 I ND(26) I U C 9 IFD 1 ND(32) I U C 9 IFK 1 ND(53) I U C 9 IP 80 /IPRINT/ I U C 9 L 1 ND(50) I U C 9 M 1 ND(28) I U <t< td=""><td>DC</td><td>100</td><td>D(1401)</td><td>R</td><td>U</td><td>-</td><td>8</td></t<>	DC	100	D(1401)	R	U	-	8
DIN ID 1 D(289) R U - 8 DSPDK 15 D(1730) R U - 162,8 DTED1 30 D(1580) R U - 160,8 DTED2 120 D(1610) R U - 161,8 I 1 ND(26) I U C 9 HFD 1 ND(32) I U C 9 HFK 1 ND(33) I U C 9 IP 80 /IPRINT/ I U C 9 IP ND(30) I U C 9 M 1 ND(28) I U C	DELPK	20	D(1745)	R	U	-	163,8
DSPDK 15 D(1730)	DESP	25	D(1795)	R	U	-	165,8
DTED1 30 D(1580) R U - 160,8 DTED2 120 D(1610) R U - 161,8 I I ND(26) I U C 9 IFD I ND(32) I U C 9 IFK I ND(33) I U C 9 IP 80 /IPRINT/ I U C 9 L 1 ND(30) I U C 9 M 1 ND(28) I U C 9 ND 1 ND(27) I U	DHV1D	1	D(289)	R	U	-	8
DTED2 120 D(1610) R U - 161,8 I 1 ND(26) I U C 9 HFD 1 ND(32) I U C 9 HFK 1 ND(35) I U C 9 IP 80 /IPRINT/ I U C 9 IL 1 ND(30) I U C 9 M 1 ND(28) I U C 9 ND 1 ND(27) I U <t< td=""><td>DSPDK</td><td>15</td><td>D(1730)</td><td>R</td><td>υ</td><td>-</td><td>162,8</td></t<>	DSPDK	15	D(1730)	R	υ	-	162,8
I I I I I I I I I I I I I I I I I I I	pred1	30	D(1580)	R	U	-	160,8
1FD 1 ND(32) I U C 9 1FK 1 ND(33) I U C 9 1P 80 /1PRINT/ I U - 7 K 1 ND(30) I U C 9 L 1 ND(28) I U C 9 M 1 ND(31) I U C 9 N 1 ND(27) I U - 9 ND 100 6121 I U - 3,9 T 6220 1 R - - 3,34 TGR 100 T(1751) R - - 180 TST 50 T(1701) R U C - - TTED 40 TGR(51) R U C 178	DTED2	120	D(1610)	R	υ	-	161,8
1FK 1 ND(35) I U C 9 1P 80 /IPRINT/ I U - 7 K 1 ND(30) I U C 9 L 1 ND(28) I U C 9 M 1 ND(31) I U C 9 N 1 ND(27) I U - 9 ND 100 6121 I U - 3,9 T 6220 1 R - - 3,34 TGR 100 T(1751) R - - 180 TST 50 T(1701) R U C 179 TT 24 T(411) R U C - TTED 40 TGR(51) R U C 178	1	1	ND(26)	I	U	С	9
IP 80 /IPRINT/ I U - 7 K 1 ND(30) I U C 9 L 1 ND(28) I U C 9 M 1 ND(31) I U C 9 N 1 ND(27) I U - 9 ND 100 6121 I U - 3,9 T 6220 1 R - - 3,34 TGR 100 T(1751) R - - 180 TST 50 T(1701) R U C 179 TT 24 T(411) R U C - TTED 40 TGR(51) R U C 178	IFD	1	ND(32)	I	U	С	9
K 1 ND(30) I U C 9 L 1 ND(28) I U C 9 M 1 ND(31) I U C 9 N 1 ND(27) I U - 9 ND 100 6121 I U - 3,9 T 6220 1 R - - 3,34 TGR 100 T(1751) R - - 180 TST 50 T(1701) R U C 179 TT 24 T(411) R U C - TTED 40 TGR(51) R U C 178	TFK	1	ND(33)	I	U	С	9
L 1 ND(28) I U C 9 M 1 ND(31) I U C 9 N 1 ND(27) I U - 9 ND 100 6121 I U - 3,9 T 6220 1 R - - 3,34 TGR 100 T(1751) R - - 180 TST 50 T(1701) R U C 179 TT 24 T(411) R U C - TTED 40 TGR(51) R U C 178	1P	80	/IPRINT/	I	U	-	7
M 1 ND(31) I U C 9 N 1 ND(27) I U - 9 ND 100 6121 I U - 3,9 T 6220 1 R - 3,34 TGR 100 T(1751) R - 180 TST 50 T(1701) R U C 179 TT 24 T(411) R U C - TTED 40 TGR(51) R U C 178	К	1	ND(30)	I	U	С	9
N 1 ND(27) I U - 9 ND 100 6121 I U - 3,9 T 6220 1 R - - 3,34 TGR 100 T(1751) R - - 180 TST 50 T(1701) R U C 179 TT 24 T(411) R U C - TTED 40 TGR(51) R U C 178	L	1	ND(28)	I	U	С	9
ND 100 6121 I U - 3,9 T 6220 1 R - - 3,34 TGR 100 T(1751) R - - 180 TST 50 T(1701) R U C 179 TT 24 T(411) R U C - TTED 40 TGR(51) R U C 178	М	1	ND(31)	I	U	С	9
T 6220 1 R - - 3,34 TGR 100 T(1751) R - - 180 TST 50 T(1701) R U C 179 TT 24 T(411) R U C - TTED 40 TGR(51) R U C 178	N	1	ND(27)	I	ប	-	9
TGR 100 T(1751) R - - 180 TST 50 T(1701) R U C 179 TT 24 T(411) R U C - TTED 40 TGR(51) R U C 178	ND	100	6121	1	U	-	3, 9
TST 50 T(1701) R U C 179 TT 24 T(411) R U C - TTED 40 TGR(51) R U C 178	Т	6220	1	R	-	-	3,34
TT 24 T(411) R U C - TTED 40 TGR(51) R U C 178	TGR	100	T(1751)	R	-	-	180
TTED 40 TGR(51) R U C 178	TST	50	T(1701)	R	U	С	179
	.1.1.	24	T(411)	R	U	С	-
YC 150 T(201) R U - 168	TTED	40	TGR(51)	R	U	С	178
	YC	150	T(201)	R	U	-	168

TABLE 72. VARIABLE REFERENCES, SUBROUTINE LETEI

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CCI	300	CD(1651)	R	U	С	171
CCL	300	CD(51)	R	υ	-	171
CCLØ	9	T(131)	R	U	-	34
CCT	300	CD(351)	R	U	-	171
CCW	50	CD(1)	R	ប	-	170
CD	2000	4121	R	-	-	3
CIØY	150	T(501)	R	-	С	175
CKD	50	CD(1951)	R	U	r	173
CLEI	150	CD(651)	R	U	С	174
CØSØ	6	T(146)	R	U	-	34
CTEI	150	CD(801)	R	U	С	174
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	U	-	10
DKDIN	15	D(1970)	R	υ	-	8
I	1	ND(26)	1	υ	С	9
IK	1	ND(31)	I	U	С	9
IP	80	/IPRINT/	I	υ	-	7
11	1	-	I	U	С	-
K	1	-	Ī	U	С	-
KD	1	ND(30)	I	U	С	9
K2	1	-	I	υ	С	-
N	1	ND(27)	I	υ	С	9
NA	1	-	I	U	С	-
ND.	100	6121	I	U	-	3,9
NS	1	ND(29)	I	ប	С	9
N1	1	-	I	ប	С	-
SINØ	6	T(140)	R	υ	-	34

TABLE 72. VARIABLE REFERENCES, SUBROUTINE LETEI (CONCL)

Variable		Common	Varia	able Descri	ption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
T	6220	1	R	-	•	3,34
TANØ	9	T(122)	R	υ	-	34
TCS	250	CD(1401)	R	υ	С	172
TERDK	60	T(1986)	R	υ	-	37
TG	300	T(1001)	R	υ	-	166
TGA	135	T(1851)	R	υ	-	167
TGR	100	T(1751)	R	U	С	181
TSI	50	T(1701)	R	U	С	182
TWG	400	T(1301)	R	υ	С	169

TABLE 73. VARIABLE REFERENCES, SUBROUTINE WOONT

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CCDLI	150	CD(501)	R	U	С	186
CCI	300	CD(1651)	R	U	-	-
CCW	50	CD(1)	R	U	-	170
CD	2000	4121	R	-	5 -	3
CFL11	150	CD(951)	R	υ	-	187
CFL21	150	CD(1101)	R	υ	-	187
CMI I	150	CD(1251)	R	υ	_	185
D	2060	2061	R	-	-	3,8
I	1	-	1	U	С	-
ND	100	6121	I	U	С	3,9
T	6220	1	R	-	-	3,34
TCS	250	CD(1401)	R	บ	-	-
TG	300	T(1001)	R	U	-	166
TGA	135	T(1851)	R	Ü	-	167
TWG	400	T(1301)	R	U	С	169
	•					

TABLE 74. VARIABLE REFERENCES, SUBROUTINE MISCNT

Variable		Common	Vari	able Descr	ription	Table
Name Name	Size	Ref Loc	Туре	Used	Calc	Ref
BØ2	1	T(12)	R	U	•	34
CC1	300	CD(1651)	R	U	C	
cció	9	T(131)	R	υ	-	34
CD	2000	4121	R	-	-	3
CKD	50	CD(1951)	R	U	С	188
CMH	150	CD(1251)	R	U	С	185
CMSM	6	T(146)	R	U	-	34
Ð	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	บ	-	10
DKDIN	15	D(1970)	R	U	-	8
DANT	35	D(1820)	R	U	_	8
DTIP	15	D(1955)	R	ប	-	8
1	1	ND(26)	I	U	С	9
1ND	1	-	I	บ	С	-
IP	80	/IPRINT/	I	U	-	7
11	1	-	I	บ	С	-
K	1	ND(30)	I	U	С	9
K2	1	-	1	U	С	-
L	1	ND(28)	Ī	U	С	9
N	1	ND(27)	I	U	С	9
ND	100	6121	1	บ	-	3,9
N_1	1	-	I	U	С	-
.FZQ	1	D(87)	R	U	- 1	8
SBAX	1	TG(93)	R	U	-	166
SINØ	6	T(140)	R	υ	J	34
T	6220	1	R	-	-	3,34
TANØ	9	T(122)	R	U	-	34

TABLE 74. VARIABLE REFERENCES, SUBROUTINE MISCNT (CONCL)

Variable Name		Common	Varia	Variable Description			
	Size Ref Loc		Туре	Used	Calc	Table Ref	
TCS	250	CD(1401)	R	U	С	-	
TG	300	T(1001)	R	บ	-	166	
TGR	100	T(1751)	R	υ	С	-	
TST	50	T(1701)	R	U	С	-	
TT	24	T(411)	R	บ	С	-	
TVMT	250	CD(51)	R	U	С	189	
TWG	400	T(1301)	R	-	С	169	
YC	150	T(201)	R	υ	-	168	

TABLE 75. VARIABLE REFERENCES, SUBROUTINE MISCIT

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
AC	1	T(13)	R	U		34
CCI	300	CD(1651)	R	υ	С	-
CCLØ	9	T(131)	R	U	-	34
CCL5	1	T(93)	R	U	-	34
CD	2000	4121	R	-	-	3
CIØY	150	T(501)	R	-	С	175
СКО	50	CD(1951)	R	U	С	174
CØSØ	6	T(146)	R	υ	-	34
СФТЕА	1	T(152)	R	υ	-	34
D	2060	2061	R	บ	-	3,8
DC	100	D(1401)	R	U	-	10
DELWG	1	T(187)	R	U	-	34
DKDIN	15	D(1970)	R	U	-	8
Ī	1	ND(26)	Ī	υ	С	9
ΙP	80	/IPRINT/	I	บ	-	7
IP2	1	ND(33)	I	-	C	9
J	1	ND(29)	I	ប	С	9
К	1	ND(30)	I	U	С	9
L.	1	ND(28)	I	U	C	9
M	1	ND(31)	I	υ	С	9
N	1	ND(27)	I	U	С	9
ND	100	6121	Ī	ប	-	3,9
SINØ	6	T(140)	R	บ	-	34
Т	6220	1	R	-	-	3,34
TANØ	9	T(122)	R	U	-	34
TAN5	1	T(92)	R	U	-	34
TBD	11	TG(277)	R	U	-	166
TCS	250	T(1401)	R	υ	С	•

TABLE 75. VARIABLE REFERENCES, SUBROUTINE MISCIT (CONCL)

Variable Name	Size Comm	Common	Varia	Table		
		Ref Loc	Туре	Used	Calc	Ref
TG	300	T(1001)	R	U	-	166
TGA	135	T(1851)	R	U	-	167
TGR	100	T(1751)	R	U	С	-
TST	50	T(1701)	R	υ	С	-
TT	24	T(411)	R	-	С	-
YC	150	T(201)	R	υ	-	168

TABLE 76. VARIABLE REFERENCES, SUBROUTINE CDL

Voni skla		C	Vari	able Descr	iption	Table
Variable Name	Size	Common Ref Loc	Туре	Used	Calc	Table Ref
BØ2	1	T(12)	R	U	-	34
CC1	300	CD(1651)	R	υ	C .	-
CCLDI	1	T(91)	R	U	-	34
CCLØ	9	T(131)	R	υ	-	34
CD	2000	4121	R	<u> </u>	-	3
CIØY	150	T(501)	R	υ	С	175
CKD	50	CD(1951)	R	บ	С	174
CØSØ	6	T(146)	R	ប	-	34
D	2060	2061	R	ប	-	3,8
DC	100	D(1401)	R	υ	-	10
DCDL	100	D(1855)	R	ប	_	8
DCDL2	15	D(1280)	R	∵ Ծ	-	8
DFXC	2	D(274)	R	ប	-	8
I	1	ND(26)	1	ឋ	С	9
IND	1	-	I	ប	С	-
IP	80	/IPRINT/	1	บ		7
11	1	-	I	บ	С	-
J	1	ND(29)	I	ប	С	9
К	1	ND(30)	I	ប	С	9
К2	1	-	1	ប	С	-
L	1	ND (28)	I	υ	С	9
М	1	ND(31)	I	υ	С	9
N	1	ND(27)	I	บ	С	9
NI)	100	6121	I	ט	_	3,9
N1	1	-	I	ប	С	-
SINØ	6	T(140)	R	บ	-	34
Т	6220	1	R	-	-	3,34

TABLE 76. VARIABLE REFERENCES, SUBROUTINE CDL (CONCL)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
TANDH	1	T(90)	R	U	-	34
TANÓ	9	T(122)	R	U	-	34
TCS	250	T(1401)	R	U	С	-
TG	300	T(1001)	R	บ	-	166
TGA	135	T(1851)	R	บ	-	167
TGR	100	T(1751)	R	ប	С	-
TT	24	T(411)	R	-	С	-
TWG	400	T(1301)	R	ប	С	169
ULTLF	1	D(122)	R	ប	-	8
UPN2	1	D(285)	R	U	-	8
YC	150	T(201)	R	ប	-	168

TABLE 77. VARIABLE REFERENCES, SUBROUTINE FDIS

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
BØ2	1	T(12)	R	U	•	34
CCDLI	150	CD(501)	R	บ	-	186
CCF	200	CD(651)	R	U	С	-
CCI	300	CD(1651)	R	U	С	-
CCLØ	9	T(131)	R	ប	-	34
CCL5	1	T(93)	R	บ	-	34
CD	2000	4121	R	-	-	3
CFL11	150	CD(951)	R	-	С	187
CFL21	150	CD(1101)	R	- 1	С	187
CIØY	150	T(501)	R	-	С	175
CØSØ	6	T(146)	R	υ	-	34
CØTEA	1	T(152)	R	· ប	-	34
D	2060	2061	R	U	-	3,8
1XC	100	D(1401)	R	υ	-	10
DFL	14	D(206)	R	ប	-	8
DGWØ	1	D(105)	R	U	-	8
DINTI	12	D(1143)	R	υ	-	8
DKDIN	15	D(1970)	R	ប	-	8
DKDW()	1	D(144)	R	U	_	8
DLFLD	1	D(79)	R	ប	-	8
DLTBX	1	T(188)	R	ប	-	34
DTBZ	22	D(1121)	R	บ	-	8
DTBZ I	1	D(1120)	R	U		8
HSTMN	1	D(377)	R	U	-	8
1	1	ND(26)	I	υ	С	9
IP	80	/IPRINT/	I	υ	-	7
11	1	-	I	U	С	-

TABLE 77. VARIABLE REFERENCES, SUBROUTINE FDIS (CONCL)

Variable		Common	Vari	Variable Description			
Name	Size	Ref Loc	Туре	Used	Calc	Table Ref	
K	1 .	ND(30)	I	U	С	9	
K2	1	-	I	U	С	-	
L	1	ND(28)	I	U	С	9	
М	1	ND(31)	1	U	С	9	
N	1	ND(27)	1	U	С	9	
NCASE	1	ND(60)	I	ប	-	9	
ND	100	6121	I	U	-	3,9	
N1	1	-	I	U	С	-	
SINØ	6	T(140)	R	υ	•	34	
Т	6220	1	R	U	С	3,34	
TANØ	9	T(122)	R	บ	-	34	
TAN5	1	T(92)	R	U	-	34	
TBD	11	TG(277)	R	U	· -	166	
TCS	250	CD(1401)	R	บ	С	-	
TG	300	T(1001)	R	บ	-	166	
TGA	135	T(1851)	R	-	С	167	
TST	50	T(1701)	R	U	С	-	
TT	24	T(411)	R	υ	С	-	
TVMT	250	CD(51)	R	บ	С	189	
TWG	400	T(1301)	R	υ	С	169	
YC	150	T(201)	R	U	-	168	

TABLE 78. VARIABLE REFERENCES, SUBROUTINE PRTM

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CCI	300	CD(1651)	R	บ	-	-
CD	2000	4121	R	-	-	3
D	2060	2061	R	-	-	3,8
IP2	1	ND(33)	ī	υ	-	9
11	1	-	I	บ	С	-
К2	1	-	I	U	С	-
L	1	ND(28)	I	บ	-	9
N	1	ND(27)	I	บ	-	9
ND	100	6121	I	U	-	3,9
N1	1	-	I	U	С	-
Т	6220	1	R	-	-	3,34
TCS	250	CD(1401)	R	ט	-	-
TGR	100	T(1751)	R	บ	<u>.</u>	-
TST	50	T(1701)	R	υ	-	-
		<u> </u>	<u> </u>			

TABLE 79 . VARIABLE REFERENCES, SUBROUTINE WDDATA

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CCDLI	150	CD(501)	R	U	-	186
CCI	300	CD(1651)	R	U	-	-
CD	2000	4121	R	U	С	3
CDLM1	11	T(320)	R	-	С	190
CDLM2	11	T(353)	R	-	С	190
CDLM3	11	T(38£)	R	-	С	190
CDLT1	11	T(331)	R	•	С	190
CDLT2	11	T(364)	R		С	190
CDLT3	LL	T(397)	R	-	С	190
CDLV1	11	T(309)	R	-	С	190
CDLV2	11	T(342)	R	-	С	190
CDLV3	11	T(375)	R	-	С	190
CIØY	150	T(501)	R	U	-	175
CLEI	150	CD(651)	R	υ	-	174
CMI I	150	CD(1251)	R	U	-	185
CTEI	150	CD(801)	R	U	-	174
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	บ	-	10
DCDLM	11	T(241)	R	-	С	190
DCDLT	11	T(252)	R	- 1	С	190
DCDLV	11	T(230)	R	- i	С	190
DELWG	1	T(187)	R	υ	-	34
DPCDL	10	T(220)	R	-	С	190
DTTRB	2	T(666)	R	-	С	190
DVFSRS	11	CD(1924)	R	-	С	-
DWGLE	1	T(193)	R	U	-	34
DWGTE	1	Т(194)	R	ប	-	34

TABLE 79. VARIABLE REFERENCES, SUBROUTINE WODATA (CONT)

Nonial 1		C	Vari	able Desci	ription	Table
Variable Name	Size	Common Ref Loc	Туре	Used	Calc	Ref
DWM	11	T(609)	R		С	190
DWT	11	T(620)	R	-	С	190
DWV	11	T(598)	R	-	С	190
FLMI	11	T(456)	R	-	С	190
FLM2	11	T(408)	R	-	С	190
FLT1	11	T(467)	R	-	С	190
FLT2	11	T(419)	R	-	С	190
FLV1	11	T(445)	R	-	С	190
1	1	-	I	ប	С	-
IP	80	/IPRINT/	I	υ	-	7
K	1	-	I	U	С	-
N	1	-	I	ប	С	-
ND	100	6121	I	U	-	3,9
STMM	11	T(822)	R	-	С	190
SIMI	11	T(833)	R	-	С	190
STMV	11	T(811)	R	-	С	190
T	6220	1	R	υ	C	3,34,190
TBCWT	11	T(789)	R	-	С	190
TBD	11	T(530)	R	ប	С	190
TBFS	11	T(153)	R	υ	-	34
TBRS	11	T(165)	R	U	-	34
TBW	11	T(542)	R	U	С	190
TBWPI	11	T(745)	R	-	С	190
TFLD	10	T(631)	R	-	С	190
TG	300	T(1001)	R	ប	-	166
TPNLW	10	T(656)	R	-	С	190
TSEC	300	CD(1501)	R	-	С	226

TABLE 79. VARIABLE REFERENCES, SUBROUTINE WDDATA (CONCL)

Variable		Common	Variable Descri			Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
TVMT	250	CD(51)	R	U	-	189
TWG	400	T(1301)	R	U	С	169
WPILE	11	T(263)	R	-	C	190
WPITE	11	T(274)	R	-	С	190
WPLLE	12	T(285)	R	-	С	190
WPLTE	12	T(297)	R	-]	С	190
WPNLS	10	T(645)	R	υ	С	190
WTIP	4	T(641)	R	-	C.	190
ХВР	11	T(489)	R	-	С	190
YBP	11	T(500)	R	-	С	190
YST	11	T(511)	R	U	С	190
YSTRC	11	TSEC (166)	R		С	226

TABLE 80. VARIABLE REFERENCES, SUBROUTINE MILOW

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CCSFM	1	T(200)	R	-	С	34
CCSIM	1	T(199)	R	-	С	34
CD	2000	4121	R	-	-	3
D	2060	2061	R	υ	-	3,8
DWN	1	D(258)	R	υ	-	8
DMTI	1	D(259)	R	υ	-	8
DMTLB	19	T(201)	R	-	С	190
DMTLP	19	CD(1905)	R	-	С	-
DP\MN	1	D(196)	R	U	-	8
DPVMT	1	D(197)	R	U	-	8
DYPAT	1	D(200)	R	U	-	8
I	1	ND(31)	I	ប	С	9
IF3	1	ND(92)	I	บ	С	9
IP	80	/IPRINT/	I	บ	-	7
MATLI	1	ND(21)	I	ប	С	9
ND	100	6121	Ī	υ	-	3,9
NMATL	1	ND(59)	1	บ	-	9
NN	1	ND(26)	1	υ	С	9
SDTMX	1	D(386)	R	υ	С	8
T	6220	1	R	-	-	3,34,190
TM	160	T(1641)	R	υ	С	-
TMD	300	T(1341)	R	υ	-	-
TT	24	T(1317)	R	บ	С	-
ULTLD	1	D(122)	R	U	-	8
VIID	1	D(289)	R	υ	-	8

TABLE 81. VARIABLE REFERENCES, SUBROUTINE MILIFW

Variable		Common	Varia	able Descri	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
D	2060	2061	R	U	-	3,8
DC .	100	D(1401)	R	U	-	10
I	1	ND(31)	I	U	C	9
K	1 !	ND(29)	I	U	С	9
L	1	ND(28)	I	U	С	9
MATLI	1	ND(21)	I	υ	-	9
N	1	ND(30)	I	U	С	9
ND	100	6121	1	υ	-	3,9
T	2060	1	R	-	=	3,34,190
TM	160	T(1641)	R	U	С	-
TMD	300	T(1341)	R	U	-	-
TT	24	T(1317)	R	υ	С	-

TABLE 82. VARIABLE REFERENCES, SUBROUTINE MTLPW

Variable		Common	Vari	ription	Table	
Name	Size	Ref Loc	Туре	Used	Calc	Ref
D	2060	2061	R	-	-	3,8
1	1	ND(31)	I	υ	С	9
MATLI	· 1	ND(21)	I	ט	-	9
NCASE	1	ND(60)	I	ט	_	9
ND	100	6121	I	บ	-	3,9
NN	1	ND(26)	I	υ	-	9
RM	16	TMD(285)	R	บ	-	-
T	2060	1	R	-	-	3,34,190
TM	200	T(1641)	R	ប	-	-
TMD	300	T(1341)	R	ប	n -	-
VTID	1	D(289)	R	บ	-	8

TABLE 83. VARIABLE REFERENCES, SUBROUTINE ALOAD

Variable	-	C	Vari	able Descr	iption	Table
Name	Size	Common Ref Loc	Туре	Used	Calc	Ref
ALGAR	1	D(236)	R	U	-	8
ALGB1	1	D(238)	R	บ	-	8
ALGS	1	D(235)	R	ט	-	8
ALGTR	1	D(237)	R	ט	-	8
ALNM	11	T(587)	R	υ	С	190
ALNT	11	T(888)	R	บ	С	190
ALNV	11	T(576)	R	U	С	190
ALPM	11	T(565)	R	υ	С	190
ALPT	11	T(877)	R	υ	С	190
ALPV	11	T(554)	R	บ	С	190
ALREF	1	D(239)	R	U	-	8
BØ2	1	T(12)	R	บ	-	34
BS1	1	T(15)	R	U	-	34
CAL1	12	D(220)	R	U	-	8
CCLØ	9	T(131)	R	U	-	34
CD	2000	4121	R	-	-	3
CKNXL	1	D(392)	R	υ	-	8
CØSØ	6	T(146)	R	U	-	34
OØTEA	1	T(152)	R	υ	-	34
CR	1	T(52)	R	U	•	34
CTIP	1	T(37)	R	U	-	34
D	2060	2061	R	ប	-	3,8
DALCP	1	D(256)	R	ט	-	8
DALV	1	D(255)	R	υ	-	8
DC	100	6121	R	U	-	10
DCPCD	1	D(257)	R	บ	-	8
DCPKL	1	D(233)	R	U	• •	8

TABLE 83. VARIABLE REFERENCES, SUBROUTINE ALOAD (CONT)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
DEXPV	1	D(232)	R	U	-	8
DGWØ	1	D(105)	R	บ	-	8
I	1	ND(29)	I	บ	С	9
IP	80	/IPRINT/	I	บ	-	7
K	1	ND(30)	I	υ	С	9
L	1	-	I	ប	С	-
LID	1	ND (54)	I	U	С	9
LL	1	-	I	บ	С	-
N	1	ND(31)	1	U	С	9
NCASE	1	ND(60)	I	ប	-	9
NCSEC	1	ND(68)	I	ប	С	9
ND	100	6121	I	υ	-	3,9
NN	1	-	1	U	С	•
PNZ	1	D(85)	R	υ	-	8
PNZM	11	D(260)	R	ប	-	8
PNZT	11	D(1019)	R	บ	-	8
RATIØ	264	CD(532)	R	ប	С	1.
RLDS	132	CD(400)	R	U	С	-
SINØ	6	T(140)	R	U	-	34
SLD	198	CD(796)	R	υ	-	-
SLDID	1	D(205)	R	U	-	8
Т	2060	1	R	บ	-	3,54,190
TANAC	1	T(38)	R	ប	-	34
TANØ	9	T(122)	R	υ	-	34
TDGW	11	T(430)	R	υ	С	190
TG	300	T(1001)	R	U	-	166
TR	17	T(1300)	R	U	С	-

TABLE 83. VARIABLE REFERENCES, SUBROUTINE ALOAD (CONCL)

Variable	:	Common	Vari	able Descr	iption	Table
Name	Size Ref Loc	Туре	Used	Calc	Ref	
TSEC	300	CD(1501)	R	-	-	226
TT	24	T(1317)	R	υ.	С	-
VNNZ	11	D(698)	R	บ	-	8
VPNZ	11	D(687)	R	บ	-	8
WAREA	1	D(240)	R	ט	-	8
XMISC	100	/MISC/	R	บ	-	6
YSTRC	11	TSEC (166)	R	U	-	226
ZNNM	11	D(709)	R	บ	-	8
ZNNT	11	D(1030)	R	U	, -	8
ZNZ	1	D(86)	R	υ	-	8

TABLE 84. VARIABLE REFERENCES, SUBROUTINE GJCAL

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
AC	1	TGJ (24)	R	ט	•	36
ARG	1	TGJ (2)	R	υ	-	36
ART	1	D(317)	R	υ	-	8
ATIP	1	D(318)	R	บ	-	8
ВЕХР	1	TGJ (9)	R	υ	-	3 6
BPSØ2	1	TGJ(10)	R	ប	-	36
BSØ2	1	TGJ(8)	R	บ	-	36
BS1Ø2	1	TGJ(11)	R	บ	-	36
CBI	1	TGJ (12)	R	บ	-	36
CD	2000	4121	R	υ	-	3
CØSE4	1	TGJ (20)	R	ប	-	36
D	2060	2061	R	υ	-	3,8
DBI	1	TGJ (13)	R	ប	-	36
DC	100	D(1401)	R	U	-	10
DGJI	11	D(346)	R	υ	-	8
DMTLB	19	T(201)	R	υ	-	190
DYPVT	1	D(200)	R	υ	-	8
GJFAC	1	TGJ(75)	R	υ	-	36
GJKI	1	D(314)	R	υ	-	8
GJKØ	1	D(316)	R	U	_	8
GJR	11	TSEC(67)	R	U	С	226
GJRQD	11	T(668)	R	υ	С	190
GJRTT	11	T(668)	R	υ	-	190
GJYI	1	TGJ (76)	R	υ	-	36
GJYØ	1	TGJ (77)	R	บ	-	36
GRT	1	DMTLB(15)	R	บ	-	190
I	1	-	I	U	С	-

TABLE 84. VARIABLE REFERENCES, SUBROUTINE GJCAL (CONT)

Variable		Comme	Vari	able Desci	ription	Table
Name	Size	Common Ref Loc	Туре	Used	Calc	Ref
ID	1	-	I	U	С	-
IP	80	/IPRINT/	I	υ	-	7
J	1	-	I	υ	С	-
JJ	1	-	I	υ	С	-
К	1	-	I	U	С	-
N	1	-	I	บ	С	-
ND	100	6121	I	υ	-	3,9
RSFS	1	TGJ(18)	R	υ	-	36
SIGP	1	TGJ (16)	R	U	-	36
SINEA	1	TGJ (19)	R	υ	1-	36
T	2060	1	R	บ	-	3,34,190
TAU	1	TGJ(17)	R	υ	-	36
TBC	11	TGJ (60)	R	บ	-	36
TBD	11	TGJ (49)	R	ប	-	36
TBW	11	TGJ (38)	R	υ	121	36
TOØM	6220	1	R	-	-	3
TCP	1	TGJ(15)	R	บ	-	36
TGJ	200	T(1761)	R	U	С	3 6
TRP	1	TGJ(14)	R	υ	-	36
TSEC	300	CD(1501)	R	-	-	226
TT	24	T(1317)	R	ប	С	-
TTID	1	D(357)	R	บ	-	8
TTVFG	1	D(338)	R	U	-	8
TIVFI	1	D(335)	R	ប	-	8
TVF	100	T(1961)	R	υ	С	192
VFDG	1	T(197)	R	υ	С	34
VFDTMP	1	T(196)	R	U	С	34

TABLE 84. VARIABLE REFERENCES, SUBROUTINE GJCAL (CONCL)

Variable	Common Size Ref Loc	Common	Varia	able Descri	iption	Table
Name		Туре	Used	Calc	Ref	
VFG	1	TGJ (73)	R	บ	С	36
VFID	1	D(251)	R	υ	-	8
VFK	1	TGJ (71)	R	υ	-	36
VPQ	1	TGJ (72)	R	υ	-	36
VFT	1	TGJ(74)	R	ប	-	36
VTID	1	D(289)	R	U	-	8
YS	11	TGJ (27)	R	U	a	36

TABLE 85. VARIABLE REFERENCES, SUBROUTINE GJSI

Variable		Common	Vari	Variable Description			
Name	Size	Ref Loc	Туре	Used	Calc	Table Ref	
D	2060	2061	R	U	-	3,8	
ī	1	-	I	ប	ys C	-	
Т	2060	1	R	-	-	3,34	
TVF	100	T(1961)	R	Ū	С	192	

TABLE 86. VARIABLE REFERENCES, SUBROUTINE GJTT

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
AMACH	1	D(336)	R	U	-	8
AR	1	TGJ(2)	R	U	-	36
ARVT	1	GJT(28)	R	บ	С	-
BSØ2	1	TGJ(8)	R	บ	-	36
BS1Ø2	1	TGJ(11)	R	บ	-	36
CAVV	1	GJT (27)	R	υ	С	-
CBI	1	TGJ(12)	R	υ	-	36
CØSCØ4	1	TGJ (26)	R	υ	-	36
CØSEA	1	TGJ(20)	R	υ	-	36
CØS10	1	DC(38)	R	υ	-	10
CTT	1	GJT (23)	R	ប	С	-
CTTD1	1	GJDAT (19)	R	U	-	-
CTID2	1	GJDAT (20)	R	υ	-	-
CTTL	1	GJT(24)	R	บ	С	-
CTTM	20	GJDAT (21)	R	υ	-	-
CTTU	1	GJT(25)	R	υ	C	-
CTT1	20	GJDAT(41)	R	υ	-	•
CIT 2	20	GJDAT (61)	R	U	-	-
C144	1	D(17)	R	ט	-	8
D	2060	2061	R	υ	-	3,8
DAVE	1	-	R	ט	С	-
DBI	1	TGJ(13)	R	ט	-	36
DC	100	D(1401)	R	U	-	10
DIT	1	D(310)	R	υ	-	8
DX	11	GJT(1)	R	υ	С	-
ESUBE	1	GJT (29)	R	ט	С	-
GJDAT	100	T(1661)	R	บ	-	-

TABLE 86. VARIABLE REFERENCES, SUBROUTINE GJTT (CONT)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
GJRTT	11	T(668)	R	U	С	190
GJT	40	T(1621)	R	-	-	-
G0	1	GJT (26)	R	υ	С	-
GOFPS	1	DC(43)	R	บ	-	10
I	1	-	I	U	С	-
IC	1	-	I	บ	С	-
IFEXT	1	-	I	U	С	-
IP	80	/IPRINT/	I	U	-	7
J	i	-	I	υ	С	-
K	1	-	I	บ	С	-
N	1	-	I	U	С	-
NCASE	1	ND(60)	I	υ	-	9
ND	100	6121	I	ប	-	3,9
NP	1	-	I	บ	С	-
N1	1	ND(1)	I	U		9
N11	1	ND(11)	I	U	-	9
N12	1	ND(12)	I	υ	-	9
N2	1.	ND(2)	I	υ	-	9
PC	1	GJDAT(18)	R	U	-	-
PT4	1	DC(36)	R	U	¥ .	10
PT7	1	DC(37)	R	υ	-	10
PT8	1	DC(35)	R	υ	-	10
Q	1	D(337)	R	U	-	8
RSFS	1	TGJ (18)	R	U	•	36
SINEA	1	TGJ (19)	R	บ	-	36
SIN10	1	DC(39)	R	υ	-	10
SØA	11	GJT (12)	R	υ	С	-

TABLE 86. VARIABLE REFERENCES, SUBROUTINE GUTT (CONCL)

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
Т	2060	TCØM(1)	R	-	-	3,34,190
TBD	11	TGJ (49)	R	υ	-	36
TBW	11	TGJ (38)	R	υ	-	3 6
TOØM	6220	1	R	-	-	3
TEMP	1	GJT(30)	R	υ	С	-
TEMP2	1	GJT(31)	R	υ	С	-
TGJ	200	T(1761)	R	-	-	36
TRP	1	TGJ(14)	R	U	-	36
TTJFC	1	D(339)	R	บ	<u>-</u>	8
VTK	1	DC(44)	R	U	-	10
WAVE	1	-	R	υ	С	-
YIHT	1	D(360)	R	U	-	8
YST	11	TGJ (78)	R	U	•	36

TABLE 87. VARIABLE REFERENCES, SUBROUTINE CNSTC

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
BMAX	1	D(381)	R	บ	С	8
BMIN	1	D(380)	R	U	С	8
CCRSF	1	TSEC(253)	R	U	С	226
CCRSH	1	TSEC(252)	R	บ	С	226
CCSFM	1	T(200)	R	υ	-	34
CCSHM	1	T(199)	R	IJ	•	34
CD	2000	4121	R	-	-	3
CKGR	1	D(402)	R	บ	-	8
CKLR	1	D(401)	R	U	-	8
CKNXL	1	D(392)	R	υ	С	8
CKSK	1	D(362)	R	υ	-	8
CKSTI	1	D(363)	R	ប	-	8
CKSTZ	1	D(364)	R	บ	-	8
CNSID	1	D(461)	R	U	-	8
CONTC	1	D(367)	R	U	-	8
oøsø	6	T(146)	R	υ	-	34
D	2060	2061	R	บ	-	3,8
DBRHØ	1	D(464)	R	ប	-	8
DC	100	D(1401)	R	U	-	10
DCCSF	1	D(409)	R	บ	-	8
DCCSH	1	D(408)	R	บ	-	8
DCRHØ	1	D(463)	R	υ	-	8
DEL	30	TWT (251)	R	υ	С	230
DINS	1	D(465)	R	บ	-	8
DINSL	1	D(467)	R	υ	-	8
DLTB	30	D(600)	R	υ	-	8
DMTLB	17	T(201)	R	บ	-	190

TABLE 87. VARIABLE REFERENCES, SUBROUTINE COSTC (CONT)

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Common Ref Loc	Туре	Used	Calc	Ref
DSPLI	8	D(1490)	R	U	-	8
DSTIE	8	D(521)	R	บ		8
DTC	1	D(462)	R	U	-	8
DTCL	1	D(466)	R	υ	-	8
DVFID	1	D(368)	R	υ	-	8
EBASC	1	D(450)	R	υ	-	8
EFLWR	1	D(391)	R	ប	-	8
ELWR	1	D(389)	R	υ	-	8
ERT	1	DMTLB(14)	R	ប	-	190
GBASC	1	D(451)	R	υ	-	8
GFSRT	2	D(453)	R	υ	-	8
GLWRT	1	D(452)	R	ប	-	8
GRT	1	DMTLB(15)	R	ប	· •	190
HSTMN	1	D(377)	R	υ	-	8
I	1	ND(31)	I	บ	С	9
ICD	1	ND(49)	I	-	С	9
ISC	1	ND(22)	I	υ	С	9
IVFJT	1	ND(53)	ı	-	С	9
J	1	ND(30)	I	υ	С	9
ND	100	6121	I	บ	-	3,9
PI	1	D(15)	R	U	-	8
RIBL	1	D(390)	R	υ	•	8
SDBRU	1	DMTLB(17)	R	บ	-	190
SDOMX	1	D(385)	R	υ	-	8
SDFCL	1	D(388)	R	ប	-	8
SDFP	1	DMTLB(13)	R	บ	-	190
SDFSU	1	DMTLB(16)	R	υ	-	190

TABLE 87. VARIABLE REFERENCES, SUBROUTINE CNSTC (CONCL)

Venichle		Common	Vari	able Desci	ription	Table
Variable Name	Size	Common Ref Loc	Туре	Used	Calc	Ref
SDFTU	1	D(398)	R	บ	_	8
SDFY	1	DMTLB(6)	R	U	-	190
SDMU	1	DMTLB(2)	R	บ	-	190
SDRHØ	1	TWT (175)	R	U	С	230
SDSMX	1	D(387)	R	υ	_	8
SDTMX	1	D(386)	R	บ	-	8
SDTU	1	DMTLB(12)	R	บ	-	190
SDTY	1	DMTLB(10)	R	บ	-	190
SFSRS	2	D(412)	R	บ	-	8
SINØ	6	T(140)	R	บ	-	34
SKKMN	1	D(365)	R	υ	-	8
SKKMX	1	D(366)	R	บ	-	8
SKMN	1	D(370)	R	บ	-	8
SKMNJ.	1	D(394)	R	υ	С	8
SNMIN	1	D(382)	R	บ	С	8
STEMN	1	D(384)	R	υ	-	8
STRCN	1	D(383)	R	υ	-	8
STRFN	1	D(361)	R	υ	-	8
SWBE	2	D(416)	R	υ	-	8
SWRHØ	2	D(414)	R	υ	-	8
T	2060	1	R	-	-	3,34
TDC	200	T(1341)	R	υ	С	224
TKKMN	1	TDC (64)	R	υ	С	224
TKKMX	1	TDC (65)	R	-	С	224
TKMNL	1	D(395)	R	υ	С	8
TSEC	300	CD(1501)	R	ប	. C	226
TWT	400	CD(1101)	R	ប	С	230

TABLE 88. VARIABLE REFERENCES, SUBROUTINE ABOW

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
BS1Ø2	1	T(15)	R	U	-	34
CD	2000	4121	R	-	-	3
CDLK1	1	TDGW(13)	R	υ	С	190
CDLK2	1	TDGW(14)	R	บ	С	190
CDLK3	1	TDGW(15)	R	υ	C	190
CDLM1	11	T(320)	R	บ	• -	190
CDLM2	11	T(353)	R	บ	-	190
CDLM3	11	T(386)	R	บ	-	190
CDLT1	11	T(331)	R	บ	-	190
CDLT2	11	T(364)	R	ប	-	190
CDLT3	11 .	T(397)	R	บ	-	190
CDLV1	11	T(309)	R	υ	-	190
CDLV2	11	T(342)	R	บ	-	190
CDLV3	11	T(375)	R	ប	-	190
cøsø	6	T(146)	Ŕ	υ	-	34
D ·	2060	2061	R	บ	-	3,8
DC	100	D(1401)	R	ט	-	10
DCDL1	8	D(167)	R	ט	-	8
DDWK	1	TDGW(3)	R	-	С	190
DFLD1	8	D(159)	R	บ	-	8
DGWI	1	T(22)	R	-	С	34
DGWØ	1	D(105)	R	บ	l = 1	8
DGWR	1	TDGW(2)	R	-	С	190
DLFL	4	D(94)	R	บ	-	8
DWID	1 .	D(110)	R	บ	-	8
DWM	111	T(609)	R	U	-	190
DWT	11	T(620)	R	υ	<u>-</u>	190

TABLE 88. VARIABLE REFERENCES, SUBROUTINE ABOW (CONT)

Warri al 1 a		0	Vari	able Desci	ription	Table
Variable Name	Size	Common Ref Loc	Туре	Used	Calc	Ref
DWV	11	T(598)	R	U	-	190
FLM1	11	T(456)	R	υ	_	190
FLM2	11	T(408)	R	ប	-	190
FLT1	11	T(467)	R	υ	-	190
FLT2	11	T(419)	R	υ	-	190
FLV1	11	T(445)	R	U	-	190
FLV2	11	T(478)	R	υ	-	190
I	1	ND(30)	I	υ	С	9
IP	80	/IPRINT/	I	υ	-	7
LID	1	ND(54)	I	υ	-	9
N	1	ND(31)	I	υ	С	9
NCASE	1	ND(60)	I	υ	-	9
ND	100	6121	I	-	-	3,9
RFDGW	8	T(522)	R	υ	С	190
RFL1	1	TDGW(11)	R	ט	С	190
RFL2	1	TDGW(12)	R	υ	С	190
SDWM	11	T(855)	R	บ	С	190
SDWT	11	T(866)	R	υ	С	19 0
SDWV	11	T(844)	R	υ	С	190
SINØ	6	T(140)	R	บ	-	34
STMM	11	T(822)	R	υ	-	190
STMT	11	T(833)	R	υ	-	190
STMV	11	T(811)	R	υ	-	190
Т	6220	1	R	-	-	3,34,190
TBXK	1	TDGW(4)	R	-	С	190
TDGW	16	T(430)	R	-	-	190
TFLD	10	T(631)	R	บ	-	190

TABLE 88. VARIABLE REFERENCES, SUBROUTINE ABOW (CONCL)

Common		Varia	Table		
Size Ref Loc	Туре	Used	Calc	Ref	
300	CD(1501)	R	-	•	226
100	T(1961)	R	υ	С	-
24	T(1317)	R	ט	С	1-
1	D(289)	R	ַ ט	-1	8
3	T(97)	R	-	С	34
	300 100 24 1	300 CD(1501) 100 T(1961) 24 T(1317) 1 D(289)	Size Ref Loc Type 300 CD(1501) R 100 T(1961) R 24 T(1317) R 1 D(289) R	Size Ref Loc Type Used 300 CD(1501) R - 100 T(1961) R U 24 T(1317) R U 1 D(289) R U	Size Ref Loc Type Used Calc 300 CD(1501) R - - 100 T(1961) R U C 24 T(1317) R U C 1 D(289) R U -

TABLE 89. VARIABLE REFERENCES, SUBROUTINE YBSET

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
BMAX	1	D(381)	R	U	•	8
BMIN	1	D(380)		U	-	8
CD	2060	4121		-	-	3
CNSID	1	D(461)		บ	-	8
D	2060	2061		U	-	3,8
DBMII	11	T(712)		U	С	190
DC	100	C(1401)		U	-	10
DEFFI	11	T(800)		U	C .	190
DINS	1	D(465)		ប		8
DINSL	1	D(467)		บ	-	8
DNXII	11	T(723)		บ	С	190
DNXU	11	D(931)		υ	-	8
DTC	1	D(462)		บ	, -	8
DTCL	1	D(466)		บ	-	8
DWM	11	T(609)		บ	-	190
DWMII	11	T(701)		-	· C	190
DYBDP	1	D(117)		υ	-	8
DYBKP	1	D(116)		υ	-	8
DYBKS	1	D(115)		ប	-	8
DYBL	11	D(1041)		ប	-	8
DYBU	11	D(997)	1	บ	-	8
FCMAX	1	TDC (46)		υ	-	224
FTMAX	1	TDC(60)		υ	-	224
HSTMN	1	D(377)	R	บ	-	8
I	1	ND(28)	I	U	С	9
J	1	ND(27)	I	υ	С	9
K	1	ND(29)	I	υ	С	9

TABLE 89. VARIABLE REFERENCES, SUBROUTINE YBSET (CONCL)

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
N	1	ND(30)	I	υ	С	9
ND	100	6121	I	υ	-	3,9
SKMN	1	D(370)	R	υ	· -	8
SKMNL	1	D(394)	R	υ	-	8
SLCFS	5	D(1470)	R	υ	-	8
SNMIN	1	D(382)	R	υ	<u>-</u>	8
STFMN	1	D(384)	R	υ	-	8
STFMX	1	D(379)	R	บ	-	8
STRMN	1	D(371)	R	U	-	8
T	2060	1	R	-	-	3,34,190
TBD	11	T(530)	R	υ	-	190
TBW	11	T(542)	R	บ	-	190
TDC	200	T(1341)	R	-	-	224
TKKMX	1	TDC(65)	R	υ	1-1	224
TSEC	300	CD(1501)	R	-	-	224
TT	24	Т(1317)	R	U	С	· -
ULTPM	11	TSEC(1)	R	U	-	226
VTID	1	D(289)	R	ប	_	ક
YBLD	11	T(690)	R	-	С	190
YBLI	11	TSEC(188)	R	υ	С	226
YBUD	11	T(679)	R	-	С	190
YBUI	11	TSEC(133)	R	υ	С	226

TABLE 90. VARIABLE REFERENCES, SUBROUTINE PROG

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ACVFDE	11	CD(1938)	R	U	С	-
ACVFDG	11	CD(1949)	R	U	С	-
CD	2000	4121	R	U	-	3
CDLK1	1	TDGW(13)	R	บ	С	190
CDLK2	1	TDGW(14)	R	U	С	190
CDLK3	1	TDGW(15)	R	บ	С	190
CDIVI	11	T(320)	R	ប	-	190
CDLM2	11	T(353)	R	บ	•	190
CDLM3	11	T(386)	R	ប	-	190
CDLT1	11	T(331)	R	υ	-	190
CDLT2	11	T(364)	R	U	-	190
CDLT3	11	T(397)	R	ប	-	190
CDLV1	11	T(309)	R	υ	•	190
CDLV2	11	T(342)	R	τι	-	190
CDLV3	11	T(375)	R	υ	-	190
CTBW	150	T(1541)	R	U	С	193
D	2060	2061	R	υ	С	3,8
DBMI I	11	T(712)	R	υ	С	190
DC	100	D(1401)	R	υ	· · •	10
DCBST	11	D(765)	R	υ	С	8
DCDL1	8	D(167)	R	U	•	8
DCNØS	11	D(776)	R	ប	С	8
DCNST3	22	D(1301)	R	υ	-	8
DEFFI	11	T(800)	R	υ	С	190
DEVF	1	CD(1935)	R	ប	С	-
DGVF	1	CD(1936)	R	υ	С	-
DGW	3	D(102)	R	ប	-	8

TABLE 90. VARIABLE REFERENCES, SUBROUTINE PROG (CONT)

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
DGWI	1	T(22)	R	U	С	34
DGWØ	1	D(105)	R	U	-	8
DGWR	1	TDGW(2)	R	บ	С	190
DGWRI	1	TDGW(1)	R	-	С	190
DKVL	1	D(234)	R	U	•	8
DNXI I	11	T(723)	R	บ	С	190
DØPT	1	D(1365)	R	ប	-	8
DPCDL	10	T(220)	R	ប	-	190
DRHØØ	1	CD(1937)	R	บ	С	
DWM	11	T(609)	R	ប	С	190
DWMI I	11	T(701)	R	U	С	190
DWNØ	1	D(369)	R	ប	•	8
DWV	11	T(598)	R	U	С	190
FLM1	11	T(456)	R	บ	•	190
FLM2	11	T(408)	R	บ	-	190
FLT1	11	T(467)	R	บ	-	190
FLT2	11	T(419)	R	บ	•	190
FLV1	11	T(445)	R	U	-	190
FLV2	11	T(478)	R	U	-	190
I	1	ND(28)	I	บ	С	9
ICD	1	ND(49)	I	U	С	9
IF4	1	ND(93)	I	ប	С	9
IF8	1	ND(97)	I	ប	С	9
IGT	1	ND(57)	I	-	С	9
IGW	1	ND(61)	1	U	С	9
IØPC	1	ND(84)	I	บ	С	9
IØPI	1	ND(74)	τ	U	1 -	9

TABLE 90. VARIABLE REFERENCES, SUBROUTINE PROG (CONT)

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Common Ref Loc	Туре	Used	Calc	Ref
IØPS	1	ND(83)	I	U	С	9
IØP1	1	ND(82)	ī	บ	c	9
ISC	1	ND(22)	I	บ	. C	9
K	1	ND(29)	Ī		С	9
N	1	ND(27)	Ī	U	С	9
ND	100	6121	Ī	U		3,9
NDWP	1	ND(25)	Ī	U	С	9
NØDW	1	ND(56	Ī	บ	C	9
RFDGW	8	T(522)	R	บ		190
RFL1	1	TDGW(11)	R	บ	С	190
RFL2	1	TDGW(12)	R	บ	С	190
SDRHØ	1	TWT (175)	R	บ		230
SDWM	11	T(855)	R		С	190
SDWT	11	T(866)	R		С	190
SDWV	11	T(844)	R R		С	190
STMM	11	T(822)	R	ט	-	190
STMT	11	T(833)	R	บ	-	190
STMV	11	T(811)	R	บ	_	190
SWT	11	T(734)	R	บ	_	190
T	2060	1	R		-	3,34,190
TBCWT	11	T(789)	R	U	С	190
TBWPI	11	T(745)	R	บ	C	190
TCNST	8	CD(1960)	R	บ	C	-
TDGW	15	T(430)	R		-	190
TMWPI	11	T(778)	R	υ	С	190
TØGW	3	D(80)	R	บ	-	8
TPNLW	11	T(656)	R	บ	С	190

TABLE 90. VARIABLE REFERENCES, SUBROUTINE PROG (CONCL)

Variable		Common		Variable Description			
Name	Size Ref Loc	Туре	Used	Calc	Table Ref		
TSC	420	T(1541)	R	บ	С	-	
TSEC	300	CD(1501)	R	-	-	226	
TWT	400	CD(1101)	R	-	С	230	
ULTPM	11	TSEC((1)	R	υ	-	226	
VFWPI	11	T(756)	R	υ	С	190	
WPNLS	11	T(645)	R	บ	С	190	
XMISC	100	/MISC/	R	υ	. С	6	
YBLD	11	T(690)	R	บ	С	190	
YBLI	11	TSEC(188)	R	υ	С	226	
YBUD	11	T(679)	R	υ	С	190	
YBUI	11	TSEC (133)	R	บ	С	226	

TABLE 91. VARIABLE REFERENCES, SUBROUTINE DEADW

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CCLDX	1	T(88)	R	U	_	34
CD)	2000	4121	R	_	-	3
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	υ	-	10
DCDLM	11	T(241)	R	υ	-	190
DCDLT	11	T(252)	R	υ	_	190
DCDLV	11	T(230)	R	บ	-	190
DELWG	1	T(187)	R	U	-	34
DGWI	1	T(22)	R	υ	1-1	34
DWM	11	T(609)	R	ប	С	190
DWT	11	T(620)	R	U	С	190
DWV	11	T(598)	R	υ	С	190
I	1	ND(30)	I	υ	С	9
IGW	1	ND(61)	I	υ		9
IP	80	/IPRINT/	I	υ	-	7
K	1	ND(29)	I	υ	-	9
N	1	ND(31)	I	ប	-	9
NCASE	1	ND(60)	I	ប	-	9
ND	100	6121	I	υ	-	3,9
NØDW	1	ND(56)	I	ប	-	9
T	2060	1	R	υ	-	3,34,190
TANDX	1	T(87)	R	υ	-	34
TBCWT	11	T(789)	R	บ	-	190
TBWPI	11	T(745)	R	บ	-	190
TDWPI	11	T(767)	R	υ	-	190
TMWPI	11	T(778)	R	υ	-	190
TPNLW	11	T(656)	R	U	-	190

TABLE 91. VARIABLE REFERENCES, SUBROUTINE DEADW (CONCL)

Variable Name Size		Common	Varia	Table		
	Ref Loc	Туре	Used	Calc	Ref	
TSEC	300	CD(1501)	R	-	-	226
Tſ	24	T(1317)	R	υ	C	-
VFWPI	11	T(756)	R	υ	-	190
WPNLS	11	T(645)	R	υ	-	190
YSTRC	11 .	TSEC(166)	R	U	-	226

TABLE 92. VARIABLE REFERENCES, SUBROUTINE DWYBA

Variable		Common	Vari	iable Desc	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ALPM	11	T(565)	R	υ	_	190
CD	2000	4121	R	_	-	3
D	2060	2061	R	U	-	318
DBMI I	11	T(712)	R	U	С	190
DC	100	D(1401)	R	-	_	10
DEFFI	11	T(800)	R	บ	С	190
DGWI	1	T(22)	R	บ	-	34
DGWRI	1	TDGW(1)	R	บ	-	190
DKDW3	1	D(113)	R	บ		8
DKYB1	1	D(114)	R	บ	-	8
DLTBX	1	T(188)	R	ប	-	34
DMISC	1	T(191)	R	U	-	34
DNXII	11	T(723)	R	U	-	190
DWM	11	T(609)	R	U	-	190
DWMII	11	T(701)	R	บ	-	190
IGW	1	ND(61)	I	ប	-	9
IP	80	/IPRINT/	I	บ	-	7
J	1	ND(26)	Ī	ប	С	9
К	1	ND(29)	I	-	С	9
L	1	ND(27)	I.	ប	С	9
М	1	ND(28)	1	ប	С	9
NCASE	1	ND(60)	ī	บ	-	9
ND	100	6121	1	ប	-	3,9
NØD₩	1	ND(56)	I	ប	-	9
RLDS	132	CD(400)	R	ប	-	-
T	2060	1	R	-	-	3,34,190
TBCWT	11	T(789)	R	U	С	190

TABLE 92. VARIABLE REFERENCES, SUBROUTINE DWYBA (CONCL)

Variable		Common	Vari	able Descr	iption	Table
Name Size	Size	Ref Loc	Туре	Used	Calc	Ref
TBD	11	T(530)	R	ŭ	•	190
TBWPI	11	T(745)	R	U	•	190
TDGk!	11	T(430)	R		•	190
TDWPI	11	T(767)	R	บ	С	190
TR	17	T(1300)	R	υ	С	-
TSEC	300	CD(1501)	R	-		226
ULTLF	1	D(122)	R	ប	-	8
UPNZ	1	D(285)	R	υ	-	8
VAR	1	_	R	υ	С	-
VFWPI	11	T(756)	R	υ	-	190
YBLD	11	T(690)	R	υ	-	190
YBLI	11	TSEC(188)	R	U	С	226
YBUD	11	T(679)	R	υ	-	190
YBUI	11	TSEC(133)	R	υ	С	226

TABLE 93. VARIABLE REFERENCES, SUBROUTINE VLOAD

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ALNM	11	T(587)	R	U	•	190
ALNT	11	T(888)	R	ប	-	190
ALNV	11	T(576)	R	บ		190
ALPM	11	T(565)	R	υ	-	190
ALPT	11	T(877)	R	บ	•	190
ALPV	11	T(554)	R	บ	i. 1	190
AUNNZ	1	_	R	บ	С	-
AUPNZ	1	-	R	ប	С	-
CD	2000	4121	R	-	-	3
D	2060	2061	R	υ	-	3,8
DC	100	D(1401)	R	U	•	10
DDWK	1	TDGW(3)	R	ับ	-	190
DGWI	1	T(22)	R	ับ	-	34
DGWR	1	TDGW(2)	R	υ	-	190
DVFS	11	D(842)	R	ប	•	8
DVFSRS	11	CD(1924)	R	υ	-	•
DVRS	11	D(853)	R	ប	•	8
DWM	11	T(609)	R	ប	-	190
DWT	11	T(620)	R	ប	-	190
DWV	11	T(598)	R	ប	-	190
GJRQD	11	T(668)	R	ប	-	190
I	1	-	I	-	С	-
IGW	1	ND(61)	I	บ	-	9
IØP1	1	ND(82)	π	υ	-	9
ΙP	80	/IPRINT/	r	U	-	7
K	1	ND(31)	Ī	ប	С	9
LID	1	ND(54)	I	บ	-	9

TABLE 93. VARIABLE REFERENCES, SUBROUTINE VLOAD (CONT)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
N	1	ND(30)	I	U	С	9
NCASE	1	ND(60)	ī	U	_	9
ND	100	6121	I	U	· -	3,9
NØDW	1	ND(56)	I	υ	-	9
RLDS	132	CD(400)	R	U	-	-
SAVE	1	_	R	บ	С	-
SDWM	11	T(855)	R	บ	- ,	190
SDWT	11	T(866)	R	U	_	190
SDWV	11	T(844)	R	ប	187	190
STMM	11	T(822)	R	U	-	190
STMT	11	T(833)	R	ប	-	190
STMV	11	T(811)	R	U ·	-	190
T	2060	1	R	-	-	3,34,190
TBXK	1	TDGW(4)	R	บ	-	190
TDGW	11	T(430)	R	-	-	190
TDWM	11	CD(1979)	R	-	С	-
TDWT	11	CD(1990)	R	-	С	-
TDWV	11	CD(1968)	R	-	С	-
TSEC .	300	CD(1501)	R	-	-	226
TT	24	T(1317)	R	ប	С	-
TT1	1	_	R	U	C	-
TT2	1	_	R	ប	C	-
TT7	1	-	R	บ	С	-
ULTLF	1	D(122)	R	υ	-	8
ULTNM	11	TSEC(122)	Ř	U	С	226
ULTNT	11	TSEC(155)	R	บ	С	226
ULTNV	11 ·	TSEC(111)	R	υ	С	226

TABLE 93. VARIABLE REFERENCES, SUBROUTINE VLOAD (CONCL)

Variable		Common	Vari	Variable Description		
Name	Size	Ref Loc	Туре	Used	Calc	Table Ref
JLTPM	11	TSEC(1)	R	บ	С	226
ULTPT	11	TSEC(144)	R	ប	С	226
ULTPV	11	TSEC(12)	R	U	С	226
UNNZ	1	D(286)	R	U	С	8
UPNZ	1	D(285)	R	ប	С	8
UVFS	11	TSEC(23)	R	· -	С	226
UVRS	11	TSEC (34)	R	-	С	226
XMISC	100	/MISC/	R	ប	-	6

TABLE 94. VARIABLE REFERENCES, SUBROUTINE TBOPT

Variable		Common	Vari	able Desc	ription	Table
Name	Size	Common Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	U	С	3
CNSID	1	D(461)	R	U	-	8
D	2060	2061	R	υ	С	3,8
DC	100	D(1401)	R	υ	-	10
DCBST	11	D(765)	R	-	С	8
DONØS	11	D(776)	R	-	С	8
DEFFI	11	T(800)	R	-	С	190
DELWG	1	T(187)	R	บ	-	34
DLCS	24	D(482)	R	υ	-	8
DNXII	11	T(723)	R	-	С	190
DØPTJ	1	D(1366)	R	บ	•	8
DØP2	3	D(1367)	R	U	-	8
DØP3	3	D(1371)	R	U	-	8
DYPVT	1	D(200)	R	U	-	8
I	1	ND(29)	I	ប	С	9
ICD	1	ND(49)	I	-	С	9
IF4	1	ND(93)	I	บ	С	9
IGT	1	ND(57)	I	U	-	9
IGW	1	ND(61)	I	ប	С	9
IØPD	1	ND(75)	r	ប	С	9
IØPI	1	ND(74)	I	บ	С	9
IØPJ	1	ND(80)	I	U	С	9
IØPP	1	ND(81)	I	ប	С	9
IØPT	1	ND(73)	I	U	С	9
IØP1	1	ND(82)	Ī	บ	С	9
IP	80	/IPRINT/	I	บ	-	9
IPA	1	ND(23)	I	U	С	9

TABLE 94. VARIABLE REFERENCES, SUBROUTINE TROPT (CONCL)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
IPB	1	ND(24)	I	•	С	9
ISC	1	ND(22)	I	-	С	9
N	1	ND(31)	I	บ	С	9
ND	100	6121	ı	บ	С	3,9
NØDW	1	ND(56)	I	บ	-	9
SWT	11	T(734)	R	-	С	190
T	2060	1	R	-	•	3,34,190
TBOVT	11	T(789)	R	-	С	190
TBW	11	T(541)	R	υ	-	190
TBWPI	11	T(745)	R	-	С	190
TC	400	T(960)	R	ប	С	-
TMWPI	11	T(778)	R	-	С	190
TØ	40	T(920)	R	ប	С	237
TPNLW	11	T(656)	R	-	С	190
TSC	420	T(1541)	R	ប	С	225
TSEC	300	CD(1501)	R		-	226
TSS	100	T(1961)	R	ប	С	236
TT	24	T(1317)	R	ប	С	-
TW	900	6221	R	ប	С	3
TWT	400	CD(1101)	R	U	С	230,23
VFWPI	11	T(756)	R	-	С	190
WHVID	1	T(57)	R	υ	•	34
WPNLS	11	T(645)	R	-	С	190
XMISC	100	/MISC/	R	U	С	6
YBLD	11	T(690)	R	-	С	190
YBUD	11	T(679)	R	-	С	190
YSTRC	11	TSEC(166)	R	บ	-	226

TABLE 95. VARIABLE REFERENCES, SUBROUTINE CSECW

Variable	2.1	Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	-	-	3
CSDEL	1	D(481)	R	ប	-	8
CSSPN	1	D(246)	R	ប	-	8
CSWD	1	D(480)	R	U	-	8
D	2060	2061	R	บ	-	3,8
DC	100	D(1401)	R	บ	-	10
DELCS	28	D(482)	R	U	-	8
DELTB	30	TWT (251)	R	ប	-	230
DLCLR	4	D(502)	R	U	-	8
DLRRC	1	DELTB(22)	R	ប	-	230
DLRRW	1	DELTB(23)	R	ប	-	230
DMISC	1	T(191)	R	U	-	34
I	1	ND(31)	I	υ	С	9
J	1	ND(30)	I	υ	С	9
K	1	ND(29)	I	บ	С	9
L	1	ND(28)	I	ប	С	9
NID	100	6121	I	บ	-	3,9
SDRHØ	1	TWT (175)	R	U	-	230
T	2060	1	R	บ	-	3,34
TOPM	7137	1	R	-	•	3
TDC	200	T(1341)	R	U	-	224
TSS	100	T(1961)	R	U	С	232
TW	900	6221	R	U	С	3
TWT	400	CD(1101)	R	บ	С	230
WCSEC	1	T(5)	R	บ	-	34

TABLE 96. VARIABLE REFERENCES, SUBROUTINE PIVOT

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
AC	1	D(124)	R	υ	-	8
ANS	5	S(95)	R	-	С	235
ARM	1	PT(3)	R	ប	С	234
BLEA	1	T(81)	R	υ	•	34
BØ2	1	T(12)	R	υ	-	34
CD	2000	4121	R	-	-	3
CKA	1	D(192)	R	บ	_	8
СКВ	1	D(193)	R	บ	-	8
СКС	1	D(194)	R	บ	-	8
CKEC	1	PT(2)	R	υ	С	234
COSDTH	1	PT(40)	R	U	С	234
CØSEA	1	COSO(3)	R	ប	-	34
CØSØ	6	T(146)	R	υ	-	34
CPVT	1	T(45)	R	υ	-	34
CR	1	T(52)	R	บ	-	34
D	2060	2061	R	U	-	3,8
DEPTH	1 ·	D(186)	R	บ	-	8
DGW	3	D(102)	R	U	-	8
DMTLP	19	CD(1905)	R	-	-	-
DN	1	D(199)	R	U	-	8
DNNZ	1	T(21)	R	บ	-	34
DØT	1	PT(55)	R	U	С	234
DPNZ	1	T(20)	R	บ	-	34
DP1	1	D(156)	R	U	-	8
DP2	1	D(157)	R	บ	-	8
DSAVE	1		R	บ	С	-
DTH	1	PT(38)	R	υ	С	234

TABLE 96. VARIABLE REFERENCES, SUBROUTINE PIVOT (CONT)

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
DXPVT	1	PT(5)	R	บ	С	234
DYPVT	1	D(200)	R	บ	-	8
D1	1	D(1)	R	υ	-	8
D2	1	D(2)	R	บ	-	8
D3	1	D(4)	R	บ	-	8
EC	1	DMTLP(5)	R	บ	-	-
EDIST	1	PT(69)	R	υ	-	234
EØD	1	PT(54)	R	U	-	234
FBR	1	D(195)	R	ប	-	8
FSLØC	1	D(125)	R	บ	-	8
FSU	1	DMTLP(16)	R	บ	-	-
FIU	1	DMTLP(12)	R	ប	-	-
F1MTR	1	T(77)	R	ប	-	34
F1MTRS	1	T(78)	R	บ	-	34
I	1	-	I	บ	С	-
I GW	1	ND(57)	I	U	-	9
IP	80	/IPRINT/	I	ប		7
NCASE	1	ND(60)	ı	ប	-	9
ND	100	6121	I	-	-	3,9
NK	1	_	I	υ	С	-
ØD	1	PT(66)	R	ប	С	234
ØDPVT	1	D(198)	R	υ	· -	8
PERFTU	1	D(189)	R	υ	-	8
PI	1	D(15)	R	υ	-	8
PT	100	T(901)	R	ប	С	234
PVTD	1	PT(10)	R	υ	С	234
PVTM	1	PT(9)	R	U	С	234

TABLE 96. VARIABLE REFERENCES, SUBROUTINE PIVOT (CONT)

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
PVTV	1	PT(8)	R	U	С	234
RATFSU	1	D(190)	R	บ	-	8
RHØ	1 ,	DMTLP(11)	R	U	-	-
RHØPIN	1	D(191)	R	U	-	8
RSLØC	1	D(126)	R	U	· -	8
S	200	T(1001)	R	U	С	235
SINDTH	1	PT(39)	R	U	С	234
SINØ	6	T(140)	R	U	•	34
SØD	1	PT(56)	R	U	С	234
SPAN	1	PT(100)	R	U	С	234
T	2060	1	R	U	. 1	3,34
TANØ	9	T(122)	R	U	_	34
TOØM	7137	1	R	U	-	3
THPAFT	1	D(203)	R	U	-	8
THPFWD	1	D(202)	R	υ	-	8
TØGW	3	D(80)	R	ប	-	8
TSEC	300	CD(1501)	R	-	_	226
TW	900	6221	R	-	-	3
ULTPM	11	TSEC(1)	R	ប	-	226
ULTPV	11	TSEC(12)	R	U	-	226
WINB	1	_	R	υ	С	-
WOUT	1	_	R	U	С	-
WSIG	1	D(245)	R	บ	-	8
WTØC	1	D(243)	R	ប	-	8
WTR	1	D(244)	R	ប	-	8
			. 1			

TABLE 96. VARIABLE REFERENCES, SUBROUTINE PIVOT (CONCL)

Variable Name Size		Common	Vari	Variable Description			
	Size	Ref Loc	Туре	Used	Calc	Table Ref	
XPVT	1	D(201)	R	U	-	8	
YPVT	1	T(900)	R	υ	С	3	
YSTRC	11	TSEC(166)	R	บ	-	226	
YSTRP	1	T(41)	R	υ	-	34	
	<u></u>				,		

TABLE 97. VARIABLE REFERENCES, SUBROUTINE TEE

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	•	-	3
CKA	1	D(192)	R	บ	-	8
CKB	1	D(193)	R	บ	-	8
CKC	1	D(194)	R	ប	-	8
D	2060	2061	R	U	-	3,8
DMTLP	19	CD(1905)	R	-	-	-
DMU	1	DMTLP(2)	R	ប	-	ı -
DN	1	D(199)	R	υ	-	8
EC	1	DMTLP(5)	R	υ	-	-
ND	100	6121	I	-	1.	3,9
PT	100	T(901)	R	υ	-	234
S	200	T(1001)	R	υ	С	235
T	2060	1	R	-	1*	3
TOØM	6220	1	R	-	-	. 3
TTT	1	ARG	R	-	С	-
TTX	1	ARG	R	-	С	-
						1

TABLE 98. VARIABLE REFERENCES, SUBROUTINE TEL

Variable		Common	Varia	ption	Table	
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R		-	3
CKA	1	D(192)	R	ט	-	8
CKB	1	D(193)	R	υ	-	8
CKC	1	D(194)	R	υ	-	8
D	2060	2061	R	U	-	3,8
DMTLP	19	CD(1905)	R	-	-	-
EC	1	DMTLP(5)	R	υ	-	-
FTU	1	DMTLP(12)	R	U	-	-
ND	100	6121	ı	-	-	3,9
PERFTU	1	D(189)	R	υ	-	8
PT	100	T(901)	R	U	-	234
S	200	T(1001)	R	บ	С	235
T	2060	1	R	-	-	3
TOØM	6220	1	R	- 1	-	3
THPFWD	1	D(202)	R	บ	-	8
TL	1	ARG	R	-	С	-
TX	1	ARG	R	-	С	-

TABLE 99. VARIABLE REFERENCES, SUBROUTINE DLPVT

Variable		Commen	Vari	able Desci	ription	Table
Name	Size	Common Ref Loc	Туре	Used	Calc	Ref *
B1Ø2	1	T(15)	R	U		34
СО	2000	4121	R	ប	-	3
OØSEA	1	T(76)	R	ប	-	34
CSDEL	1	D(481)	R	ប	-	8
ם	2060	2061	R	บ	-	3,8
DC	100	D(1401)	R	-	-	10
DEL	30	TWT (251)	R	U	-	230
DELPV	7	D(530)	R	ប	-	8
DLCS	28	D(482)	R	บ	-	8
DLTBX	1	T(188)	R	ប	-	34
D1	1	D(1)	R	ប	-	8
D2	1	D(2)	R	บ	-	8
I	1	-	I	บ	С	-
IC	1	ND(47)	I	ប	С	9
IGW	1	ND(57)	I	บ	-	9
IP	80	/IPRINT/	I	ប	-	7
J	1	ND(30)	I	บ	С	9
K	1	ND(29)	I	ប	С	9
L1	1	-	I	บ	С	-
L2	1	-	I	υ	С	-
М	1	ND(28)	Ī	υ	С	9
N	1	ND(31)	I	υ	С	9
ND	100	6121	I	-	-	3,9
ND1	1	ND(1)	I	ប	-	9
ND10	1	ND(10)	I	U	-	9
ND2	1	ND(2)	I	U	-	9
ND3	1	ND(3)	I	ប	-	9

TABLE 99. VARIABLE REFERENCES, SUBROUTINE DLPVT (CONCL)

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
NID4	1	ND(4)	I	U	-	9
ND9	1	ND(9)	ı	ט	1-1	9
PT	100	T(901)	R	ប	-	234
S	200	T(1001)	R	υ	-	235
T	2060	1	R	-	-	3,34
TOØM	7137	1	R	-	-	3
TSEC	300	CD(1501)	R	υ	-	226
TSS	100	T(1961)	R	ប	С	
TW	900	6221	R	υ	-	3
TWT	400	CD(1101)	R	υ	С	233,230
WCSEC	1	T(5)	R	บ	-	34
WIVID	1	T(57)	R	υ	-	34
YSTR	11	TSEC (166)	R	U	·	226
zerø	1	DC(3)	R	υ	-	10

TABLE 100. VARIABLE REFERENCES, SUBROUTINE PRTA

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Common Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	U	-	3
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	U	-	10
DGW	3	D(102)	R	U	-	8
DNNZ	·1	T(21)	R	U	-	34
DPNZ	1	T(20)	R	υ	•	34
GJRQD	11	T(668)	R	ប	-	190
I .	1	ND(27)	1	บ	С	9
IGW	1	ND(61)	Ī	บ	-	9
IND	1	_	I	U	С	-
IØPI	1	ND(74)	I	IJ	-	9
IØPJ	1	ND(80)	I	U	-	9
IØPP	1	ND(81)	I	υ	•	9
IØP1	1	ND(82)	I	U	-	9
J	1	_	T	-	С	-
J2	1	ND(28)	I	บ	С	9
K	1	ND(30)	I	ប	С	9
Ĺ	1	ND(29)	ī	υ	С	9
N	1	ND(31)	1	ប	С	9
NCASE	1	ND(60)	1	บ	-	9
ND	100 .	6121	I	υ	-	3,9
NØDW	1	ND(56)	r	υ	-	9
NPAGE	1	ND(85)	I	ប	С	9
R	16	XMISC(85)	R	บ	-	6
T	2060	1	R	υ	-	3,34,190
TBWPI	11	T(745)	R	υ	-	190
TC	400	T(960)	R	บ	С	

TABLE 100. VARIABLE REFERENCES, SUBROUTINE PRTA (CONCL)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
TDC	200	T(1341)	R	U	-	224
TDWM	11	CD(1979)	R	บ	-	-
TDWT	11	CD(1990)	R	บ	-	-
TDWV	11	CD(1968)	R	υ	-	-
TØ	40	T(920)	R	บ	Ţ	237
TR	40	T(1300)	R	ឋ	С	-
TSEC	300	CD(1501)	R	บ	-	226
TSS	100	T(1961)	R	บ	-	-
TWT	400	CD(1101)	R	υ	С	230
ULTNM	11	TSEC(122)	R	υ	-	226
ULTNT	11	TSEC(155)	R	U	-	226
ULTNV	11	TSEC(111)	R	υ	-	226
ULTPM	11	TSEC(1)	R	U	-	226
ULTPT	11	TSEC(144)	R	U	-	226
WHVID	1	T(57)	R	υ	-	34
XMISC	100	/MISC/	R	-	r - 1	6
YBLD	11	T(690)	R	U	-	190
YBLI	11	TSEC(188)	R	U	-	226
YBUD	11	Т(679)	R	υ	-	190
YBUI	11	TSEC(133)	R	บ	-	226
YSTRC	11	TSEC(166)	R	U	•	226

TABLE 101. VARIABLE REFERENCES, SUBROUTINE PRIH

Variable		Common	Vari	able Descr	iption	Table Ref
Name	Size	Ref Loc	Туре	Used	Calc	
CD	2000	. 4121	R	-	-	3
D	2060	2061	R		-	3,8
DGW	3	D(102)	R	บ		8
DNNZ	1	T(21)	R	υ	-	34
DPNZ	1	T(20)	R	บ	-	34
I	1	-	ı	U	С	-
IGW	1	ND(57)	I	บ	-	9
IND	1	-	I	υ	С	-
IØP1	1	ND(82)	I	U	-	9
K	1	-	I	υ	С	-
N	1	ND(31)	I	บ	С	9
NCASE	1	ND(60)	I	U	-	9
ND	100	6121	I	บ	-	3,9
NØDW	1	ND(56)	I	บ	• :	9
R		XMISC(85)	R	บ	-	6
T	2060	1	R	-	- ,	3,34
TØGW	3	D(80)	R	υ	-	8
TSS	100	T(1961)	R	υ	-	236
TW	900	6221	R	-	-	3
TWT	400	CD(1101)	R	บ	-	233
XMISC	100	/MTSC/	R	-	-	6

TABLE 102. VARIABLE REFERENCES, SUBROUTINE CNSTR

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
BMIN	1	D(380)	R	-	С	8
СВЦНД	1	TWT (200)	R	บ	С	230
CD	2000	4121	R	U	С	3
CJØNT	1	TWT (201)	R	U	С	230
CKNXI	1	D(74)	R	ប	-	8
CKNXL	1	D(392)	R	ប	-	8
D	2060	2061	R	υ	С	3,8
DBTHD	11	D(650)	R	ប	-	8
DC	100	D(1401)	R	ប	-	10
DCBST	11	D(765)	R	υ	С	8
DCHST	11	D(798)	R	บ	-	8
DCLST	11	D(787)	R	U	-	8
DCNØS	11	D(776)	R	ប	С	8
DCSKL	11	D(732)	R	ប	-	8
DCSKU	11	D(721)	R	υ	-	8
DEFFI	11	T(800)	R	ប	-	190
DEL	30	TWT (251)	R	ប	-	230
DELFS	1	DEL(13)	R	υ		230
DELRS	1	DEL(17)	R	υ		230
DJØNT	11	D(661)	R	ប	-	8
DKFCU	11	D(639)	R	บ	-	8
DKFTL	11	D(1008)	R	υ	-	8
DKNXL	11	D(831)	R	บ		8
DLCFS	11	D(809)	R	υ	-	8
DLCRS	11	D(820)	R	ប	-	8
DLCVL	1	DEL(4)	R	υ	-	230
DLCVU	1	DEL(1)	R	U	-	230

TABLE 102. VARIABLE REFERENCES, SUBROUTINE CNSTR (CONT)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
DNXII	11	T(723)	R	U	•	190
DNXL	11	D(942)	R	บ	-	8
DNXU	11	D(931)	R	ប	-	8
DTSKL	11	D(754)	R	ប	-	8
DTSKU	11	D(743)	R	ប	-	8
DITRB	2	T(666)	R	ប	-	190
HSTMN	1	D(377)	R	บ	С	8
HSTMX	1	D(378)	R	-	С	8
I	1	ND(29)	I	ប	С	9
IC	1	ND(48)	I	-	С	9
ICD	1	ND(49)	I	υ	-	9
IF4	1	ND(93)	I	บ	С	9
IØPI	1	ND(74)	I	υ	-	9
IØPJ	1	ND(80)	I	บ	-	9
IØP1	1	ND(82)	I,	บ	-	9
IPB	1	ND(24)	I	υ	-	9
ISEC	1	ND(55)	I	ប	С	9
IVF -	1	ND(51)	Ī	ប	С	9
K	1	ND(30)	I	บ	С	9
N	1	ND(31)	I	ប	С	9
NCSEC	1	ND(68)	Ĩ.	ប	-	9
ND	100	6121	I	บ	-	3,9
NØDW	1	ND(56)	I	U	-	9
SKMN	1	D(370)	R	บ	С	8
SKMNL	1	D(394)	R	-	С	8
SLCFS	5	D(1470)	R	υ	-	8
STLMN	1	D(375)	R	U	С	8

TABLE 102. VARIABLE REFERENCES, SUBROUTINE CNSTR (CONCL)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Common Ref Loc	Туре	Used	Calc	Ref
STLMX	1	D(376)	R		С	8
SWBCP	2	D(423)	R	υ	. · C	8
T	2060	1	R	-	-	3,190
TBCWT	11	T(789)	R	บ	•	190
TBWPI	11	T(745)	R	ប	•	190
TC	340	T(960)	R	υ	С	-
TDC	200	T(1341)	R	υ	С	224
TKKMN	1	TDC(64)	R	υ	С	224
TKKMX	1	TDC (65)	R	-	С	224
TKMNL	1	D(395)	R	-	С	8
TMWPI	11	T(778)	R	U	-	190
ΤØ	40	T(920)	R	υ	С	237
TPNLW	11	T(656)	R	U	-	190
TSC	420	T(1541)	R	U	С	225
TSEC	300	CD(1501)	R	บ	С	226
TSS	100	T(1961)	R	U	С	-
TT	24	T(1317)	R	ប	С	-
TW	900	6221	R	U	С	3
TWT	400	CD(1101)	R	ប	С	230
VFWPI	11	T(756)	R	ប	-	190
WPNLS	11	T(645)	R	υ	-	190
YBLD	11	1 (690)	R	υ	-	190
YBLI	11	TSEC(188)	R	บ	_	226
YBUD	11	T(679)	R	บ	-	190
YBUI	11	TSEC(133)	R	υ	-	226
YSTRC	11	TSEC(166)	R	ប	-	226

TABLE 103. VARIABLE REFERENCES, SUBROUTINE SECTO

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
BMAX	1	D(381)	R	U	-	8
BMIN	1	D(380)	R	บ	-	8
CBLHD	1	TWT (200)	R	-	С	230
CD	2000	4121	R	-		3
CJØNT	1	TWT (201)	R	ប	С	230
CNSID	1	D(461)	R	บ	-	8
CØNTC	1	D(367)	R	ប	-	8
D	2060	2061	R	υ		3,8
DBLHD	11	D(650)	R	U	-	8
DC	100	D(1401)	R	ט	-	10
DCBST	11	D(765)	R	ប		8
DEL	30	TWT (251)	R	บ		230
DJØNT	11	D(661)	R	υ	-	8
DLFSW	1	DEL(15)	R	บ	-	230
DLRSW	1	DEL(19)	R	บ	-	230
DLSKL	1	DEL(5)	R	υ	-	230
DLSKU	1	DEL(2)	R	υ		230
DNXL	11	D(942)	R	บ	-	8
DNXU	11	D(931)	R	υ	-	8
DRIS	4	D(1475)	R	U	ы.	8
DTC	1.	D(462)	R	υ	С	8
DTCL	1	D(466)	R	U	-	8
HSTMN	1	D(377)	R	U	-	8
HSTMX	1	D(378)	R	U	-	8
I	1	ND(29)	I	U	-	9
IB	1	ND(52)	I	-	С	9
IBT	1	ND(72)	I	-	С	9

TABLE 103. VARIABLE REFERENCES, SUBROUTINE SECTD (CONT)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ICD	1	ND(49)	I	บ	•	9
IDVF	1	ND(50)	I	U	С	9
IKI	1	ND(32)	I	-	С	9
ILWRC	1	ND(66)	r	υ	С	9 .
IMX	1	ND(71)	I	-	С	9
ISC	1	ND(22)	I	U	•	9
ISEC	1	ND(55)	I	U	-	9
IVF	1	ND(51)	I	บ	С	9
IWEB	1	ND(37)	I	-	С	9
ND	100	6121	I	ប	-	3,9
PI	1	D(15)	R	U	-	8
SKMN	1	D(370)	R	บ	•	8
SKMNL	1	D(394)	R	υ	•	8
SNMIN	1	D(382)	R	บ	-	8
STEMN	1	D(384)	R	บ		8
STFMX	1	D(379)	R	υ	-	8
STRFN	1	D(361)	R	υ	١.	8
STRMN	1	D(371)	R	บ	-	8
T	2060	1	R	บ	-	3,190
TDC	200	T(1341)	R	บ	С	224
TKKMN	1	TDC(64)	R	υ	-	224
TKMNL	1	D(395)	R	บ	-	8
TSC	420	T(1541)	R	บ	C	225
TSEC	300	CD(1501)	R	U	С	226
TSS	100	Т(1961)	R	U	С	229
TWT	400	CD(1101)	R	บ	C	226

TABLE 103. VARIABLE REFERENCES, SUBROUTINE SECTD (CONCL)

Variable Name Size	Common	Common	Varia	Table		
	Ref Loc	Туре	Used	Calc	Ref	
VTID	1	D(289)	R	บ	-	8
YBLD	11	T(690)	R	U	C ·	190
YBUD	11	T(679)	R	υ	С	190

TABLE 104. VARIABLE REFERENCES, SUBRØUTINE SFSCH

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
BSTR	1	ARG	R	υ	С	-
CD	2000	4121	R	-	12	3
CNSID	1	D(461)	R	υ	-	8
D	2060	2061	R	υ	-	=
DC	100	D(1401)	R	υ	-	•
DNXL	11	D(942)	R	บ	-	
DNXU	11	D(931)	R	U	-	٤
DRIS	4	D(1475)	R	ט	-	8
Ī	1	ND(29)	1	υ	С	9
1B	1	ND(52)	1	Ü	-	9
I K	1	ND(39)	1	-	С	9
IKI	1	ND(32)	I	-	С	9
IL	1	ND(40)	Ī	υ	-	9
IMX	1	ND(47)	I	U	С	9
IN	1	ND(30)	I	υ	С	9
IØ1	1	ND(45)	I	บ	-	9
IØ2	1	ND(46)	I	U	-	9
ISEC	1	ND(55)	I	υ	-	9
ISG	1	ND(86)	I	-	С	9
IVF	1	ND(51)	I	U	-1	9
KFC	1	ND(41)	I	U	С	9
LF1	1	ND (42	I	U	С	9
LF2	1	ND(43)	I	U	С	9
LF3	1	ND(44)	I	U	С	9
N	1	ND(31)	I	บ	C	9
ND	100	6121	I	U	-	3,9
SKMN	1	D(370)	R	บ	-	8

TABLE 104. VARIABLE REFERENCES, SUBROUTINE SFSCH (CONCL)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref *
STRFN	1	D(361)	R	U	-	8
STRRØ	1	υ(456)	R	υ	-	8
STRSK	1	D(455)	R	U	-	8
T	2060	1	R	υ	-	3
TDC	200	T(1341)	R	υ	С	224
TKKMN	1	TDC(64)	R	υ	С	224
TKKMX	1	TDC(65)	R	U	С	224
TSC	420	T(1541)	R	ប	С	225
TSEC	300	CD(1501)	R	U	С	226
TSS	100	T(1961)	R	U	С	227,228
TWT	400	CD(1101)	R	U	-	226

TABLE 105. VARIABLE REFERENCES, SUBROUTINE BOT

Variable	•	Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	-	_	3
CNSID	1	D(461)	R	บ	-	8
D	2060	2061	R	υ	-	3,8
DC	100	D(1401)	R	บ	-	10
DTC	1	D(462)	R	ប	-	8
I	1	ND(30)	I	บ	С	9
1 K	1	ND(39)	I	=	С	9
IKI	1	ND(32)	I	U	-	9
KK	1	ND(31)	I	υ	С	9
ND	100 -	6121	1	υ		3,9
Т	2060	1	R	-	-	3
ТВТ	4	T(1317)	R	ប	С	-
TDC	200	T(1341)	R	υ	С	224
TSC	420	T(1541)	R	U	С	225

TABLE 106. VARIABLE REFERENCES, SUBRØUTINE BØTC

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ALPHA	1	•	R	U	С	-
APNL	1	-	R	υ	С	-
ATSK	1	-	R	U	С	-
ввøт	1	T(1385)	R	U	С	224
CD	2000	4121	R	_ }	-	3
CNSID	1	D(461)	R	U	-	8
D	2060	2061	R	U	2	3,8
DC	100	D(1401)	R	U	-	10
RBTI	1	ARG	R	υ	С	<u>-</u>
SFC	1	Т(1387)	R	U	С	224
SFCI	1	ARG	R	บ	С	-
STRRØ	1	D(456)	R	U	-	8
STRSK	1	D(455)	R	บ	-	8
Т	2060	1	R	-	-	3
ТВТ	4	T(1317)	R	U	С	-
TSC	420	T(1541)	R	U	-	225
TWT	400	CD(1101)	R	υ	-	226
	.1 					

TABLE 107. VARIABLE REFERENCES, SUBROUTINE TSCH

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
BØTFC	1	TSEC(251)	R	U	С	226
BØTFR	1	TSEC(249)	R	υ	С	226
вøтнс	1	TSEC(250)	R	υ	С	226
BØTHR	1	TSEC(248)	R	υ	С	226
CCRSF	1	TSEC(253)	R	U	-	226
CCRSII	1	TSEC(252)	R	υ	-	226
CD	2000	4121	R	υ	-	3
CNSID	1	D(461)	R	U	-	8
D	2060	2061	R	υ	-	3,8
DBKP	4	D(574)	R	U	-	8
DC	100	D(1401)	R	ט	-	10
HSTMN	1	D(377)	R	บ	-	8
Ī	1	ND(29)	I	υ	С	9
IBT	1	ND(72)	I	υ	С	9
I BTØ	1	· _	I	บ	С	-
IDSK	1	ND(51)	I	U	-	9
IK	1	ND(39)	I	-	С	9
IL	1	ND(40)	I	U	-	9
1L1	1	ND(34)	I		С	9
IL2	1	ND(33)	I	υ	-	9
IL3	1	ND(32)	I	U	С	9
IMX	1	ND(71)	I	U	С	9
IMXØ	1	-	I	บ	С	•
IN	1	ND(30)	I	υ	С	9
I P	80	/IPRINT/	I	U	-	7
IRGØ1	1	-	I	υ	С	-
ISK1	1	ND(45)	I	U	С	9

TABLE 107. VARIABLE REFERENCES, SUBRØUTINE TSCH (CONCL)

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ISK2	1	ND(46)	I	-	С	9
ISTB	1	ND(87)	I	-	С	9
LT1	1	ND(26)	1	υ	С	9
LT2	1	ND(27)	I	U	С	9
LT3	1 n	ND(28)	1	บ	С	9
N	1	ND(31)	ī	U	С	9
ND	100	6121	I	υ	-	3,9
SFCI	1	ARG	R	U	С	-
SKMN	1	D(370)	R	υ	-	8
STFMN	1	D(384)	R	υ	-	8
STLMN	1	D(375)	R	U	-	8
STLMX	1	D(376)	R	U	-	8
STRFN	1 .	D(361)	R	U	-	8
STRMN	1	D(371)	R	U	С	8
STRSK	1	D(455)	R	υ	-	8
Т	2060	1	R	-	-	3
TDC	200	T(1341)	R	ប	С	224
TKKMN	1	TDC (64)	R	υ	-	224
TKKMX	1	TDC(65)	R	υ	-	224
TSC	420	T(1541)	R	U	C ·	225
TSEC	300	CD(1501)	R	U	С	226
TSS	100	T(1961)	R	υ	С	227,228
TWT	400	CD(1101)	R	U	С	230
	1					

TABLE 108. VARIABLE REFERENCES, SUBROUTINE STBAR

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
BØTFC	1	TSEC(251)	R	U		226
ВФТНС	1	TSEC(250)	R	U	-	226
CD	2000	4121	R	ı -	-	3
CNSID	1	D(461)	R	U	-	8
D	2060	2061	R	U .	-	3,8
DC	100	D(1401)	R	U	-	10
DRVT	1	D(396)	R	υ	-	8
IL	1	ND(34)	I	U	-	9
I MN	1	ND(35)	I	ប	-	9
IMØ	1	ND(33)	I	-	С	9
ND	100	6121	I	ប	-	3,9
STI	1	ARG	R	U	С	-
STLMN	1	D(375)	R	U	-	8
STLMX	1	D(376)	R	ט	-	8
STRFN	1	D(361)	R	U	-	8
T	2060	1	R	-	-	3
TDC	200	T(1341)	R	บ	-	224
TRVT	1	D(397)	R	บ	-	8
TSC	420	T(1541)	R	υ	· c	225
TSEC	300	CD(1501)	R	บ	-	226

TABLE 109. VARIABLE REFERENCES, SUBROUTINE STRG

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	-	-	3
CNSID	1 .	D(461)	R	U	-	8
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	U	-	10
HSTMN	1	D(377)	R	U	-	8
HSTMX	1	D(378)	R	U	-	8
I	1	-	I	U	С	-
IK	1	ND(39)	ī	-	С	9
IM	1	ND(35)	I	•	С	9
IMX	1	ND(71)	ī	υ	-	9
IP	80	/XPRINT/	I	U	-	7
IRG	1	ND(70)	I	υ	-	9
IRGØ	1 .	-	I	Ŭ	С	-
ISTRG	1 .	ND(88)	I	-	С	9
ND	100	6121	I	υ	-	3,9
STFMN	1	D(384)	R	U	-	8
STFMX	1	D(379)	R	U	-	8
STRFN	1	D(361)	R	υ	-	8
STRMN	1	D(371)	R	U	С	8
STRRØ	1	D(456)	R	Ü	-	8
STRSK	1	D(455)	R	ប	-	8
Т	2060	1	R	-	· _	3
TSC	420	T(1541)	R	U	С	225
TSEC	300	CD(1501)	R	U	-	226
TSS	100	T(1961)	R	U	С	227,228
TWT	400	CD(1101)	R	U	С	230

TABLE 110. VARIABLE REFERENCES, SUBROUTINE STRGO

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	-	-	3
D	2060	2061	R	-	-	3,8
HSTMX	1	D(378)	R	U	-	8
IMX	1	ND(71)	1	υ	-	9
IRG	1	ND(70)	I	-	С	9
ND	100	6121	I	U	-	3,9
STFMN	1	D(384)	R	U	-	8
STFMX	1	D(379)	R	υ	-	8
STRFN	1	D(361)	R	U	-	8
STRMN	1	D(371)	R	U	=	8
Т	2060	1	R	-	-	3
TSC	420	T(1541)	R	U	С	225
TSEC	300	CD(1501)	R	U	-	226
TSS	100	T(1961)	R	U	С	227,228
TWT	400	CD(1101)	R	U	С	230

TABLE 111. VARIABLE REFERENCES, SUBROUTINE STRIL

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	-		3
CFIX	1	D(407)	R	U	-	8
CKSTZ	1	D(364)	R	U	-	8
CNSID	1	D(461)	R	บ	-	8
CØLID	1	D(393)	R	ט	-	8
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	ប	-	10
DMTLB	19	T(201)	R	-	-	190
DTC	1	D(462)	R	ប	-	8
I	1	-	I	ប	С	-
ND	100	6121	1	-	-	3,9
PI	1	D(15)	R	υ	-	8
SDMU	1	DMTLB(2)	R	U	-	190
STRFN	1	D(361)	R	U	-	8
T	2060	1	R	-	-	3,190
TDC	200	T(1341)	R	U	. <u>-</u>	224
TSC	420	T(1541)	R	U	С	225
TSEC	300	CD(1501)	R	U	-	226
						_

TABLE 112. VARIABLE REFERENCES, SUBROUTINE STRIB

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	-	-	3
CFRIB	1	D(400)	R	U	-	8
CNSID	1	D(461)	R	U	-	8
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	บ	-	8
DELTW	1	D(406)	R	U	-	8
I	1	-	I	U	С	-
ΚΙ	1	ND(39)	I	-	С	9
N	1	ND(31)	I	U	С	9
ND	100	6121	I	U	ı -	3,9
ND1	1	ND(1)	I	U	-	9
NI	1	ND(38)	I	U	-	9
PΙ	1	D(15)	R	υ	-	8
RBLCP	1	D(405)	R	บ	1-	8
RBMG	1	D(372)	R	υ	ı -	8
T	2060	1	R	-	-	3
TDC	200	T(1341)	R	U	-	224
TRVT	1	D(397)	R	U	-	8
TSC	420	T(1541)	R	U	С	225
TSS	100	T(1961)	R	υ	С	228

TABLE 113. VARIABLE REFERENCES, SUBROUTINE SRRIB

Variable		Common	Vari	Variable Description			
Name	Size		Туре	Used	Calc	Table Ref	
CD	2000	4121	R	-	-	3	
CØRMN	1	D(403)	R	υ	-	8	
CØRMX	1	D(404)	R	U	-	8	
D	2060	2061	R	U	-	3,8	
ND	100	D(1401)	1	U	-	3,9	
NI	1	ND(38)	I	-	С	9	
Т	2060	1	R	-	-	3	
TDC	200	T(1341)	R	U	-	224	
TRBI	1	ARG	R	U	С	-	
TSS	100	T(1961)	R	U	С	228	

TABLE 114. VARIABLE REFERENCES, SUBRØUTINE STWEB

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	-	-	3
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	U	-	10
DELTW	1	D(422)	R	U	•	8
DEPTH	1	ARG	R	U	С	-
DKS	24	D(550)	R	U	-	8
I	1	-	1	U	С	-
I K	1	ND(39)	1	1-	С	9
ISEC	1	ND(55)	1	U	-	9
IWEB	1	ND(37)	Ī	ប	-	9
N	1	ND(30)	I	U	С	9
ND	100	6121	I	U	-	3,9
SLCFS	5	D(1470)	R	U	-	8
SWBCP	2	D(423)	R	U	-	8
SWBMG	2	D(373)	R	U	-	8
SWBST	2	D(420)	R	บ	-	8
SWKMS	2	D(410)	R	U	<u>-</u>	8
SWKST	2	D(425)	R	U	-	8
SWWST	2	D(418)	R	U	_	8
Т	2060	1	R	U	_	3
TDC	200	T(1341)	R	Ü	-	224
TSS	100	T(1961)	R	U	С	229
TWT	400	CD(1101)	R	ប	-	230
VQ	1	ARG	R	U	С	<u>.</u>

TABLE 115. VARIABLE REFERENCES, SUBRØUTINE SKWEB

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	-	•	3
D	2060	2061	R	U	•	3,8
DKS	23	D(550)	R	υ	-	8
ND	100	6121	I	-	-	3,9
RI	1	TSS(22)	R	-	С	229
Т	2060	1	R	-	-	3
TI	1	TSS(23)	R	υ	· C	229
TSS	100	T(1961)	R	U	С	229
TX	1	ARG	R	U	С	-1

TABLE 116. VARIABLE REFERENCES, SUBROUTINE VFCAL

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	-	_	3
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	υ	_	10
1	1	- 1	1	Ü	С	
IVF	1	ND(51)	1	<u>.</u>	С	9
IVFJT	1	ND(53)	1	U	•	9
J	1	ND(30)	I	υ	С	9
N	1	ND(31)	I	υ	С	9
ND	100	6121	I	U	-	3,9
ND1	1	ND(1)	I	U	.=	9
N1	1	ND(41)	I	U	С	9
N2	1	ND(42)	I	U	С	9
N3	1	ND(43)	I	U	С	9
N4	1	ND(44)	I	ប	С	9
T	2060	1	R	-	-	3
TDC	200	T(1341)	R	U	С	224
TSS	100	T(1961)	R	U	С	-
TWT	400	CD(1101)	R	ប	С	230

TABLE 117. VARIABLE REFERENCES, SUBROUTINE EIGJC

Variable		Common	Vari	able Descr	ription	Tab1e
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	-	С	3
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	U	-	10
DEL	30	TWT(251)	R	U	-	230
DLFSC	1	DEL(14)	R	U	-	230
DLRSC	1	DEL (18)	R	υ	-	230
DLSTL	1	DEL(6)	R	υ	-	230
DLSTU	1	DEL(3)	R	U	-	230
DNXL	11	D(942)	R	U	-	8
DNXU	11	D(931)	R	U	-	8
GJRQD	11	T(668)	R	U	-	190
1	1	ND(30)	I	U	С	9
ISEC	1	ND(55)	I	บ	-	9
IVF	1	ND(51)	I	U	-	9 .
J ·	1	-	I	บ	С	-
N	1	-	I	U	С	1-1
ND	100	6121	I	U	-	3,9
T	2060	1	R	-	_	3,190
TC	340	T(960)	R	υ	С	-
TDC	200	T(1341)	R	U	-	224
TSC	420	T(1541)	R	υ	-	225
TSEC	300	CD(1501)	R	υ	-	226
TSS	100	T(1961)	R	U	С	-
TWT	400	CD(1101)	R	U	С	230
YBLD	11	T(690)	R	υ	-	190
YBUD	11	T(679)	R	υ	-	190
YSTRC	11	TSEC(166)	R	U	+	226

TABLE 118. VARIABLE REFERENCES, SUBROUTINE WTCAL

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	-	-	3
CNSID	1	D(461)	R	U	-	8
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	U	-	10
DEFFI	11	T(800)	R	U	С	190
DEL	30	TWT(251)	R	U	-	230
DELFS	1	DEL(13)	R	U	-	230
DELLE	1	T(189)	R	U	_	34
DELRS	1	DEL(17)	R	υ	-	230
DELTE	1	T(190)	R	υ	-	34
DELWG	1	T(187)	R	υ	L	34
DLATT	1	DEL(8)	R	Ü	-	230
DLCVL	1	DEL(4)	R	υ	-	230
DLCVU	1	DEL(1)	R	U	-	230
DLFSC	1	DEL(14)	R	บ	-	230
DLFSM	1	DEL(16)	R	υ	-	230
DLIRB	1	DEL(9)	R	υ	-	230
DLIRM	1	DEL(11)	R	υ	-	230
DLIRW	1	DEL(10)	R	υ	-	230
DLPNL	10	Т(177)	R	υ	-	34
DLRSC	1	DEL(18)	R	υ	-	230
DLRSM	1	DEL(20)	R	υ	-	230
DLSKM	1	DEL(7)	R	ប	-	230
DLSTL	1	DEL(6)	R	U	-	230
DLSTU	1	DEL(3)	R	υ	-	230
DLTBX	1	T(188)	R	ប	-	34
DMISC	1	T(191)	R	υ	-	34

TABLE 118. VARIABLE REFERENCES, SUBROUTINE WTCAL (CONCL)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
DNXII	11	T(723)	R	U	С	190
DPCDL	10	T(220)	R	υ	-	190
DTBX	32	D(1088)	R	ប	-	8
DTTRB	2	T(666)	R	υ	-	190
Ī	1	ND(29)	I	υ	С	9
IC	1	ND(48)	I	υ	-	9
ISEC	1	ND(55)	I	U	-	9
N	1	ND(28)	Ī	υ	С	9
ND	100	6121	I	υ	-	3,9
SDRHØ	1	TWT(175)	R	υ	-	230
SWKMS	2	D(410)	R	U	-	8
Т	2060	1	R	-	-	3,34,190
TBCWT	11	T(789)	R	υ	С	190
TBWPI	11	T(745)	R	υ	. c	190
TDC	200	T(1341)	R	U	С	224
TMWPI	11	T(778)	R	-	С	190
TPNLW	11	T(656)	R	-	С	190
TSC	420	T(1541)	R	U		225
TSEC	300	CD(1501)	R	U	-	226
TWT	400	CD(1101)	R	U	С	230
VFWPI	11	T(756)	R	-	С	190
WPLLE	12	T(285)	R	U	-	190
WPLTE	12	T(297)	R	U	-	190
WPNLS	11	T(645)	R	υ	C	190
WTIP	4	T(641)	R	U	-	190
YSTRC	11	TSEC(166)	R	U	-	226

TABLE 119. VARIABLE REFERENCES, SUBROUTINE BHDJT

Variable		Common	Vari	able Desc	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CBLHD	1	TWT(200)	R	บ	_	230
CD	2000	4121	R	_	-	3
CJØNT	1	TWT(201)	R	υ	-	230
CNSID	1	D(461)	R	υ	_03	8
D	2060	2061	R	υ	-	3,8
DBLAT	1	DEL(12)	R	υ		230
DBLØ	11	D(1479)	R	U	-	8
DC	100	D(1401)	R	υ	-	10
DEL	30	TWT(251)	R	υ	-	230
DLIRB	1	DEL(9)	R	U	-	230
DLIRW	1	DEL(10)	R	U	-	230
DLRRC	1.	DEL (22)	R	U	-	230
DLSKM	1	DEL(7)	R	U	-	230
DSPLI	8	D(1490)	R	υ		8 .
DSPLØ	7	D(58)	R	U	÷	8
DSPR	9	D(462)	R	U	-	8
I	1	-	I	U	С	1
ICB	1	ND(47)	I	J	С	9
ISEC	1	ND(55)	I	U	-	9
ND	100	6121	I	U	С	3,9
SDRHØ	1	TWT(175)	R	U	•	230
SKMN	1	D(370)	R	υ	-	8
SLCFS	4	D(1470)	R	υ	_	8
T	2060	1	R	-	-	3
TDC	200	T(1341)	R	U	-	224
TSEC	300	CD(1501)	R	U	-	226
TT	24	T(1317)	R	U	С	-
TWT	400	CD(1101)	R	U	С	230

TABLE 120. VARIABLE REFERENCES, SUBROUTINE RTRIB

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Ca1c	Ref
CD	2000	4121	R	_	-	3
CNSID	1	D(461)	R	บ	-	8
CØSEA	1	T(76)	R	υ	-	34
D	2060	2061	R	υ	-	3,8
DBLØ	11	D(1479)	R	ប	·	8
DC	100	D(1401)	R	U	-	10
DEL	30	TWT(251)	R	υ	-	230
DELRR	1	DEL(21)	R	υ	-	230
DELST	1	D(520)	R	U	-	8
DKMRR	1	D(69)	R	υ	-	8
DLRRC	1	DEL(22)	R	U	-	230
DLRRM	1	DEL(24)	R	บ	-	230
DLRRW	1	DEL(23)	R	U	-	230
DSPR	9	D(462)	R	υ		8
DSTIE	8	D(521)	R	υ	-	8
ND	· 100	6121	1	-	-	3,9
SDRHØ	1	TWT(175)	R	U	-	230
SINEA	1	T(75)	R	U	-	34
Т	2060	1	R	- ;	-	3,34
TDC	200	T(1341)	R	ប	-	224
TSEC	300	CD(1501)	R	U	_	226
ТТ	24	T(1317)	R	บ	С	-
TWT	400	CD(1101	R	U	С	230

TABLE 121. VARIABLE REFERENCES, SUBROUTINE WTPIN

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	-	-	3
CNSID	1	D(461)	R	υ	-	8
D	2060	2061	R	_	-	3,8
DC	100	D(1401)	R	υ	-	10
DEL	30.	TWT(251)	R	U	-	230
DELLE	1	T(189)	R	U	-	34
DELTE	1	T(190)	R	ប	-	34
DELWG	1	T(187)	R	U	-	34
DLTBX	1	T(188)	R	บ	-	34
DMISC	1	T(191)	R	υ	-	34
I	1	-	I	U	С	-
ISEC	1	ND(55)	1	U	-	9
J	1	ND(30)	I	U	С	9
N	1	ND(31)	I	U	Ċ	9
ND	100	6121	I	U	-	3,9
SDRHØ	1	TWT(175)	R	ប	_	230
SWKMS	2	D(410)	R	υ	-	8
T	2060	1	R	υ	-	3,34,190
TCØM	7120	1	R	ប	_	3
TDC	200	T(1341)	R	υ	_	224
TW	900	6221	R	-	С	3
TWT	400	CD(1101)	R	U	С	230
WPILE	11	T(263)	R	U	-	190
WPITE	11	T(274)	R	U	-	190

TABLE 122. VARIABLE REFERENCES, SUBROUTINE SS

Variable Name	Common Size Ref Loc	Common	Varia	Variable Description			
		Туре	Used	Calc	Table Ref		
CD	2000	4121	R	•	-	3	
D	2060	2061	R	υ	-	3,8	
ND	100	6121	I	-	-	3,9	
SA	14	T(1377)	R	U	С	224	
SC1	1	T(1321)	R	υ	С	-	
SC2	1	T(1322)	R	U	С	-	
SD	7	T(1392)	R	U	-	224	
SFC	1	T(1391)	R	υ	С	224	
SFCI	1	ARG	R	U	С	-	
Т	2060	1	R	-	-	3	

TABLE 123. VARIABLE REFERENCES, SUBRØUTINE CG3P

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
СС	3	T(1329)	R	U	С	-
CD	2000	4121	R	-	-	3
CF	9	T(1332)	R	บ	С	-
CX	3	T(1323)	R	U	С	-
CXI	1	T(1387)	R	U	С	224
CZ	3	T(1326)	R	U	С	-
D	2060	2061	R	U	-	3,8
I	1	-	I	U	С	-
I K	1	ND(39)	I	บ	-	9
IL	1	ND(40)	I	-	С	9
ND	100	6121	I	U	_	3,9
ND1	1	ND(1)	I	U	-	9
Т	2060	1	R	-	-	3
VAR	1	-	R	U	С	-
XX	3	ARG	R	U	С	-
22	3	ARG	R	U	С	-

TABLE 124. VARIABLE REFERENCES, SUBROUTINE PRTB

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ACID	1	D(430)	R	U	-	8
CD	2000	4121	R	U	-	3
D	2060	2061	R	-	-	3,8
DGW	3	D(102)	R	υ	-	8
I	1	ND(28)	I	υ	С	9
IGW	1	ND(57)	I	ប	-	9
IØP1	1 ·	ND(82)	I	U	-	9
ISEC	1	ND(55)	I	U	-	9
IVF	1	ND(51)	I	υ	-	9
IVFJT	1	ND(53)	I	υ	-	9
J	1	ND(29)	Ī	υ	С	9
K	1	ND(30)	I	ប	С	9
N	1	ND(31)	I	υ	С	9
NCASE	1	ND(60)	I	ប	-	9
ND	100	6121	I	บ	-	3,9
NØDW	1	ND(56)	I	υ	-	9
R	16	XMISC(85)	R	υ	-	6
T	2060	1	R	- ,	-	3
TDC	200	T(1341)	R	U	-	224
TØGW	3	D(80)	R	U	-	8
TSC	420	T(1541)	R	υ	-	225
TWT	400	CD(1101)	R	ប	-	230
XMISC	100	/MISC/	R	-	•	6

TABLE 125. VARIABLE REFERENCES, SUBRØUTINE PRTBK

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CD	2000	4121	R	-	-	3
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	-	-	10
I	1	ND(31)	I	U	С	9
I K	1	ND(39)	I			9
Ib	80	/IPRINT/	Ī	-	-	7
IRGØ	1	ND(28)	I	U	-	9
ISEC	1	ND(55)	I	U	-	9
К	1	ND(29)	I	U	С	9
N	1	ND(30)	I	υ	С	9
ND	100	6121	I	บ	-	3,9
NØDW	1	ND(56)	I	U	-	9
Т	2060	1	R	U	-	3
TDC	200	T(1341)	R	U	-	224
TSC	420	T(1541)	R	U	-	225
TSEC	300	CD(1501)	R	υ	-	226
TSS	100	T(1961)	R	U	-	227,228
ТWТ	400	CD(1101)	R	U	-	230

TABLE 126. VARIABLE REFERENCES, SUBROUTINE PRTC

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ACID	1	D(430)	R	U	-	8
CD	2000	4121	R	-	-	3
D	2060	2061	R	-	-	3,8
DGW	3	D(102)	R	U	-	8
I	1	ND(29)	I	U	С	9
IGW	1	ND(57)	I	υ	-	9
IØP1	1	ND(82)	I	บ	-	9
ISEC	1	ND(55)	I	υ	-	9
IVF	1	ND(51)	I	υ	-	9
К	1	ND(30)	I	υ	С	9
N	1	ND(31)	1	U	С	9
NCASE	1	ND(60)	I	Ū	-	9
ND	100	6121	1	U	-	3,9
R	16	XMISC(85)	R	U	-	6
T	2060	1	R	-	-	3
TØGW	3	D(80)	R	U	-	8
TSS	100	T(1961)	R	Ü	-	-
тт	24	T(1317)	R	บ	-	-
TWT	400	CD(1101)	R	U	-	230
XM1SC	100	/MISC/	R	-	-	6

TABLE 127. VARIABLE REFERENCES, SUBROUTINE ACPRØG

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ACVFDE	11	CD(1938)	R	ช	С	_
ACVFDG	11	CD(i949)	R	U	С	-
CD	2000	4121	R	U	_	3
CDLK1	1	TDGW(13)	R	U	С	190
CDLK2	1	TDGW(14)	R	U	С	190
CDLK3	1	TDGW(15)	R	U	С	190
CDLM1	11	T(320)	R	υ	-	190
CDLM2	111	T(353)	R	U	-	190
CDLM3	11	T(386)	R	U	_	190
CDLT1	11	T(331)	R	บ	-	190
CDLT2	11	T(364)	R	U	_	190
CDLT3	11	T(397)	R	U	-	190
CDI.V1	11	T(309)	R	υ		190
CDLV2	- 11	T(342)	R	υ	_	190
CDLV3	11	T(375)	R	U	_	190
CT.	2048	7121	R	-	С	3
CTBW	150	T(1541)	R	υ	С	193
D	2060	2061	R	บ	С	3,8
DBMII	11	T(712)	R	-	С	190
DC	100	D(1401)	R	υ	_	10
DCDL1	8	D(167)	R	บ	_	8
DCNST3	22	D(1301)	R	υ	_	8
DEVF	1	CD(1935)	R	U	С	-
DGVF	1	CD(1936)	R	บ	С	-
DGW	3	D(102)	R	U	-	8
DGWI	1	T(22)	R	U	С	34
DGWØ	1	D(105)	R	U	-	8

31-100

TABLE 127. VARIABLE REFERENCES, SUBROUTINE ACPRØG (CONT)

Variable		Common	Vari	able Desci	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
DGWR	1	TDGW(2)	R	U	С	190
DGWRI	1	TDGW(1)	R	_	С	190
DINID	1	D(271)	R	υ	-	8
DKVL	1	D(234)	R	U	1 <u>-</u>	8
DMTLB	19	T(201)	R	υ	-	190
DPCDL	10	T(220)	R	U		190
DRHØØ	1	CD(1937)	R	υ	С	-
DTMPB	1	D(281)	R	บ	_	8
DTMPFL	1	D(283)	R	U		8
DTMPFØ	1	D(284)	R	บ	-	8
DWM	11	T(609)	R	υ	-	190
DWMI I	11	T(701)	R	-	С	190
DWNØ	1	D(369)	R	U	-	8
ENP	9	D(1155)	R	υ	-	8
FLM1	11	T(456)	R	ซ	_	190
FLM2	11	T(408)	R	บ	-	190
FLT1	11	T(467)	R	υ	_	190
FLT2	11	T(419)	R	บ	_	190
FLV1	11	T(445)	R	υ	-	190
FLV2	.11	T(478)	R	U		190
Ī	1	ND(28)	1	U	С	9
IF4	1	ND(93)	I	U	С	9
IF8	1	ND(97)	I	υ.	С	9
IGT	1	ND(57)	I	ប	_	9
IGW	1	ND(61)	I	ប	С	9
ILCASE	1	ND(41)	I	_	C	9
K	1	ND(29)	I	_	С	9

TABLE 127. VARIABLE REFERENCES, SUBROUTINE ACPRØG (CONT)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Common Ref Loc	Туре	Used	Calc	Ref
N	1	ND(27)	I	U	С	9
ND	100	6121	I	บ	_	3,9
NDWP	1	ND(25)	I	บ	С	i,
NØDW	1	ND(56)	1	บ	С	9
RFDGW	8	T(522)	R	U	_	190
RFL1	1	TDGW(11)	R	υ	С	190
RFL2	1	TDGW(12)	R	U	С	190
RLDS	132	CD(400)	R	U	-	_
SDRHØ	1	TWT (175)	R	Ū	С	230
SDWM	11	T(855)	R	-	С	190
SDWT	11	T(866)	R	-	С	190
SDWV	11	T(844)	R	_	C	190
STMM	11	T(822)	R	U	-	190
STMT	11	T(833)	R	υ	_	190
STMV	11	T(811)	R	υ	-	190
SWT	11	T(734)	R	υ	-	190
T	2060	1	R	_	С	3,34,190
TBCWT	11	T(789)	R	U	_	190
TBD .	11	T(530)	R	υ		190
TBW	11	T(542)	R	υ	-	190
TBWPI	11	T(745)	R	บ	-	190
TCNST	8	CD(1960)	R	U	С	_
TDGV	15	T(430)	R			190
TEIGJ	4	TW(783)	R	U	С	199
TEMP	20	CT (2003)	R		С	-
TMWPI	11	T(778)	R	U	-	190
TØGV	3	D(80)	R	U		8

TABLE 127. VARIABLE REFERENCES, SUBROUTINE ACPRØG (CONCL)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
TPNLW	11	T(656)	R	U	_	190
TSEC	300	CD(1501)	R	-	-	226
TW	900	6221	R	_	= -	3
TWT	400	CD(1101)	R	U	С	230
ULTPM	11	TSEC(1)	R	U	-	226
VFDTMP	1	T(196)	R	U	-	34
VFID	1	D(251)	R	υ	-	8
VFWPI	11	T(756)	R	U	_	190
W	22	CT(1981)	R	_	С	_
WPNLS	11	T(645)	R	U	_ '	190
XLCASE	1	CT(2046)	R	-	С	_
XMISC	100	/MISC/	R	-		6

001-18-9

TABLE 128. VARIABLE REFERENCES, SUBROUTINE ACLØAD

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ACI.	900	CF(1)	R	U	С	196
ALNM	11	T(587)	R	U	-	190
ALNT'	11	T(888)	R	U	_	190
AL.NV	11	T(576)	R	υ	_	190
ALPM	11 🕏	T(565)	R	U	-	190
ALPT	11	T(877)	R	υ	_	190
ALPV	11	T(554)	R	U		190
CD	2000	4121	R	_		3
CI	2048	7121	R			3
D	2060	2061	R	U	_	3,8
DC	100	D(1401)	R	ט	_	10
DCD1.1	8	D(167)	R	υ	-	8
DFLD1	8	D(159)	R	U	-	8
DGWØ	1	D(105)	R	υ -	-	8
DMTI	1	D(259)	R	υ	_	8
DNNZ	1	T(21)	R	υ	-	34
DPN2	1	T(20)	R	υ		34
1	1	ND (29)	I	U	С	9
IFL	1		I	U	С	-
H.CASE	1	ND(41)	I	U	С	9
IP	80	/IPRINT/	I	U	_	7
J	1	_	I	U	С	
K	1	ND(30)	I	U	С	9
L	1	_	I	U	С	_
N	1	ND(31)	I	U	С	9
NCASE	1	ND(60)	I	U	-	9
ND	100	6121	I	U	_	3,9

TABLE 128. VARIABLE REFERENCES, SUBROUTINE ACLOAD (CONCL)

Vanial I.	1		Vari	able Descr	ription	7-11-
Variable Name	Size	Common Ref Loc	Туре	Used	Calc	Table Ref
SLDID	1	D(205)	R	U	-	8
T	2060	1	R	-	-	3,190
TEMP	20	CT (2003)	R	U	С	-
TFLD	10	T(631)	R	บ	-	190
TOGNO	1	D(88)	R	U	-	8
TT ·	24	T(1317)	R	ប	С	_
VTID	1	D(289)	R	U	_	8
WBØ	200	CD(556)	R	U	С	-
WHVLID	24	CD(532)	R	U	С	-
	=	·			•	

TABLE 129. VARIABLE REFERENCES, SUBROUTINE TEMPC

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ACCV1D	1	D(431)	R	U	-	8
CD:	2000	4121	R	-	_	3
CFBCY	1	D(596)	R	U	-	8
CFBE	1	ENH(2)	R	υ	-	_
CFBMU	1	D(595)	R	U	-	8
CEMITL	15	D(580)	R	υ	-	8
CT	2048	7121	R	-	_	3
D	2060	2061	R			3,8
EBØT	20	TW(819)	R	U	С	-
ENC	3	CT(2043)	R	U	С	-
ENH	6	D(1164)	R	υ	_	8
ENP	9	D(1155)	R	υ	С	8
ENQ	100	TW(601)	R	U	С	200
ENQC	24	TW(787)	R	υ	С	201
ENX	60	TW(701)	R	ឋ	С	204
F	1		R	U	С	-
FDHCV	20	TW(841)	R	U	_	-
FDHFE	20	TW(861)	R	U	_	-
FDHFG	20	TW(881)	R	U		-
G	20	CT(2023)	R	υ	_	-
I	1	_	ī	U	С	-
LCASE	1	ND(41)	I	υ	_	9
IP	80	/IPRINT/	I	υ	_	7
LCASE	1	-	I	υ	С	-
N	1	_	I	U	С	
NCASE	1	ND(60)	I	υ	C	9
ND	100	6121	1	-	-	3,9

TABLE 129. VARIABLE REFERENCES, SUBROUTINE TEMPC (CONCL)

Vanish 1		C		able Desci	ription	Table
Variable Name	Size	Common Ref Loc	Туре	Used	Calc	Ref
NI.	1	_	I	U	С	_
NU	1	_	I	U	С	-
PI	1	D(15)	R	U		8
PRØP	7	T(1300)	R	U	С	-
REFSTE	4	TW (811)	R	U	С	-
REFSTG	4	TW(815)	R	U	С	-
T	2060	1	R	-	-	3
TC	35	D(1170)	R	U	_	8
TEIGJ	4	TW(783)	R	U	-	199
TEMP	20	CT (2003)	R	U		-
TW	900	6221	R	_	_	. 3
XX	1	4_	R	บ	С	_
			1			
	4					1
					ı	
					ii	
				1		
			1		\	
	. I					
			I			
	-					

TABLE 130. VARIABLE REFERENCES, SUBROUTINE AVLOAD

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ACI.	900	CT(1)	R	บ		196
ACLT	66	CD(532)	R	ប	С	197
ACVMT	660	CT(1321)	R	ប	С	198
ALNM	11	T(587)	R	U	_	190
ALNI'	11	T(888)	R	บ	-	190
ALNV	11	T(576)	R	U	-	190
ALPM	11	T(565)	R	U	=	190
ALPT	11	T(877)	R	U	_	190
ALPV	11	T(554)	R	บ	_	190
CD	2000	4121	R	_	-	3,217
CDLK3	1	TDGW(15)	R	U	-	190
CDLM1	11	T(320)	R	บ	-	190
CDLM2	11	T(353)	R	ប	_	190
CDLM3	11	T(386)	R	บ	· _	190
CDLT1	11	T(331)	R	U	-	190
CDLT2	11	T(364)	R	υ	ı –	190
CDLT3	11 .	T(397)	R ·	U	-	190
CDLV1	11	T(309)	R	บ	_	190
CDLV2	11	T(342)	R	U		190
CDLV3	11	T(375)	R	ប	_	190
CT	2048	7121	R	-	_	3
D	2060	2061	R	ับ	_	3,8
DC	100	D(1401)	R	U	_	10
DDWK	1	TDGW(3)	R	บ	_	190
DGWI	1	T(22)	R	U		34
DGWR	1	TDGW(2)	R	U	-	190
DVFS	11	D(842)	R	U	_	8

TABLE 130. VARIABLE REFERENCES, SUBROUTINE AVLOAD (CONT)

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
DVFSRS	11	CD(1924)	R	U	_	-
DVRS	11	D(853)	R	บ	-	8
DWM	11	T(609)	R	υ	-	190
DWL	11	T(620)	R	υ	-	190
DWV	11	T(598)	R	υ	_	190
FLM1	11	T(456)	R	υ	-	190
FLM2	11	T(408)	R	U	_	190
FLT1	11	T(467)	R	U		190
FLT2	11	T(419)	R	υ	-	190
FLV1	11	(T445)	R	υ	_	190
FLV2	11	T(478)	R	υ	-	190
GJRQD	11	T(668)	R	U	_	190
I	1	_	I	บ	С	-
IGW	1	ND(61)	I	υ	-	9
ILCASE	1	ND(41)	I	υ	ª -	9
IØP1	1	ND(82)	I	U	-	9
IP	80	/IPRINT/	I	บ	_	7
K	1	ND(31)	1	U	С	9
L .	1	_	I	U	С	_
LID	1	ND(54)	I	ប	_	9
N	1	ND(30)	I	υ	С	9
NCASE	1	ND(60)	Ī	U	-	9
ND	100	6121	I	U	_	9
NØDW	1	ND(56)	R	U	_	3,9
RLDS	132	CD(400)	R	ប	· _	-
SDWM	11	T(855)	R	ប	_	190
SDWT	11	T(866)	R	Ŭ	-	190

TABLE 130. VARIABLE REFERENCES, SUBROUTINE AVLOAD (CONCL)

Variable		Common	Vari	iable Descr	ription	Tal.1a
Name	Size	Ref Loc	Туре	Used	Calc	Table Ref
SDWV	11	T(844)	R	U	_	190
STMM	11	T(822)	R	U	=	190
STMT	11	T(833)	R	υ	· –	190
STMV	11	T(811)	R	U	-	190
T	2060	1	R	-	_	3,34,190
TBXK	3	TDGW(4)	R	υ	-	190
TDGW	16	T(430)	R	-		190
TDWM	11	CD(1979)	R	-	С	_
TDWT	11	CD(1990)	R	-	С	_
TDWV	11	CD(1968)	R	-	С	_
TSEC	300	CD(1501)	R	_	_	226
TT	24	T(1317)	R	υ	С	-
ULTLF	1	D(122)	R	U	-	8
ULTNM	11	TSEC(122)	R	U	С	226
ULTNI	11	TSEC (155)	R	U	С	226
ULTNV	11	TSEC(111)	R	υ	С	226
ULTPM	11	TSEC(1)	R	U	С	226
ULTPT	11	TSEC(144)	R	υ	С	226
ULTPV	11	TSEC(12)	R	บ	С	226
UNNZ	1	D(286)	R	υ	_	8
UNPZ	1	D(285)	R	บ	-	8
UVFS	11	TSEC(23)	R	-	С	226
UVRS	11 =	TSEC(24)	R	-	С	226
	······································					

TABLE 131. VARIABLE REFERENCES, SUBROUTINE ATBOPT

Variable	·	Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ACCVID	1	D(431)	R	U	_	8
ACFSID	1	D(436)	R	U	-	8
ACID	1	D(430)	R	U	-	8
ACKIC	1	D(457)	R	υ	-	8
ACKNP	1	D(429)	R	υ	-	8
ACPNLF	1	D(459)	R	U	_	8
ACPNLI	1	D(458)	R	U	-	8
ACPNLR	1	D(460)	R	บ	-	8
ACRSID	1	D(437)	R	ប	_	8
ACSPID	1	D(435)	R	U		8
ACSSID	1	D(438)	R	U		8
ACVSTL	1	D(433)	R	υ	_	8
ACVSTU	1	D(432)	R	U	-	8
APRTID	12	T(1070)	R		С	-
BFMAX	1	CNT (42)	R	-	С	202
BFMIN	1	CNT (41)	R	-	С	202
BMAX	1	D(381)	R	U	-	8
BMIN	1	D(380)	R	υ	_	8
BRMAX	1	CNT(4)	R	-	С	202
BRMIN	1	CNT (3)	R	_	С	202
BSMAX	1	CNT(6)	R	U	С	202
BSMIN	1	CNT(5)	R	υ	С	202
BWMAX	1	CNT(7)	R	_	С	202
BWMIN	1	CNT (40)	R	-	С	202
CD	2000	4121	R	υ	_	3,217
CNI	91	T(1541)	R	-	С	202
СТ	2048	7121	R	υ	С	3

TABLE 131. VARIABLE REFERENCES, SUBROUTINE ATROPT (CONT)

Variable		Common	Vari	able Desc	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
C10	1	CNT(35)	R	_	С	202
C3	1	CNT(13)	R	-	С	202
C 7	1	CNT(22)	R	_	С	202
C8	1	CNT (23)	R	-	С	202
C9	1	CNT (34)	R	_	С	202
D	2060	2061	R	υ	_	3,8
DBKP	5	D(574)	R	U	-	8
DC	100	D(1401)	R	บ	_	10
DEL	30.	TWI (251)	R	-	-	230
DELFS	1	DEL(13)	R	υ	-	230
DELRS	1	DEL(17)	R	U	-	230
DELWG	1	T(187)	R	U	-	34
DFSRHØ	1	D(597)	R	U	-	8
DINRHØ	1	D(469)	R	U		8
DINS	1 -	D(465)	R	υ	_	8
DINSL	1	D(467)	R	υ	-	8
DKMPLI	1	D(479)	R	บ	-	8
DICS	24	D(482)	R ·	บ	-	8
DLCVL	1	DEL(4)	R	บ	_	23 0
DLCVU	1	DEL(1)	R	υ	_	230
DPFRHØ	1	D(470)	R	U.	-	8
DSKLML	1	D(441)	R	U	_	8
DSKLMU	1	D(440)	R	U	_	8
DSTLML	1	D(443)	R	U	-	8
DSTLMU	1	D(442)	R	Ū	-	8
DLC	1	D(462)	R	U		8
DICI.	1	D(466)	R	U	·. =	8

TABLE 131. VARIABLE REFERENCES, SUBROUTINE ATBOPT (CONT)

Variable		Common	Varia	ble Descri	ption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
DTTRB	2	T(666)	R	U	_	190
DYPVT	1 .	D(200)	R	U	- 8	8
ENH	6	D(1164)	R	υ	- 1	8
ENP	9	D(1155)	R	υ	-	8
HSTMN	1	D(377)	R	U	-	8
HSTMX	1	D(378)	R	U	-	8
I	1	-	I	υ	С	_
IF4	1	ND(93)	I	υ	С	9
IGT	1	ND(57)	I	U	-	9
IGW	1	ND(61)	I	υ	С	9
IP	80	/IPRINT/	I	υ	_	7
IPA	1	ND(23)	I	ឋ	С	9
IPB	1	ND(24)	I	-	С	9
N	1	ND(30)	I	υ	С	9
ND	100	6121	I	U	-	3,9
NØDW	1	ND(56)	I	U	-	9
NSPMAX	1	CNT(18)	R	U	С	202
NSPMIN	1 .	CNT(17)	R	υ	С	202
PFFSCV	1	CT(2047)	R	-	С	202
PFFSSP	1	CT(2048)	R	-	C	202
SLLMIN	1	CNT(19)	R	-	С	202
SLUMIN	1	CNT(8)	R	-	С	202
SNMAX	1	D(399)	R	υ	-	8
SNMIN	1	D(382)	R	υ	-	8
STEMN	1	D(384)	R	υ	_	8
STFMX	1	D(379)	R	υ	_	8
STLMIN	1	CNT (16)	R	_	С	202

TABLE 131. VARIABLE REFERENCES, SUBROUTINE ATBOPT (CONCL)

Variable	MANAGE	Common	Varia	Variable Description			
Name	Size	Ref Loc	Туре	Used	Calc	Table Ref	
STLMN	1	D(375)	R	U		8	
STLMX	1	D(376)	R	U		8	
STRCN	1	D(383)	R	U	4.1	8	
STUMIN	1	CNT (15)	R		С	202	
SWT	11	T(734)	R	-	С	190	
T	2060	1	R	-	- 1	3,34,190	
TBW	11	T(542)	R	U		190	
TC	400	T(960)	R	U	С		
TCPNLF	1	CNT (32)	R	12.0	С	202	
TCPNLI	1	CNT (31)	R	-	С	202	
TCPNLL	1	CNT (30)	R	υ	С	202	
TCPNLR	1	CNT (33)	R	-	С	202	
TCPNLU	1	CNT (29)	R	U	С	202	
TSC	420	T(1541)	R	υ	С	225	
TSS	100	T(1961)	R	U	С	236	
TT	24	T(1317)	R	U	С		
TWT	400	CD(1101)	R	U	С	230	
WHVID	1	T(57)	R	บ	- 1	34	
XFCØDE	1	CNT (27)	R	-	С	202	
XKCØDE	1	CNT (19)	R	-	С	202	
XPCØDE	1	CNT (20)	R	-	С	202	
XRCØDE	1	CNT (28)	R	-	С	202	
XSTRL	1	CNT(2)	R	U	С	202	
XSTRU	1	CNT(1)	R	U	С	202	
XTYPE	1	CNT (10)	R	บ	С	202	

TABLE 132. VARIABLE REFERENCES, SUBROUTINE ACNSTR

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ACID	1	D(430)	R	บ	_	8
BRRL	11	TW(265)	R	U	-	-
BRRU	11	TW(254)	R	U	_	_
CBLHD	1	TWT (200)	R	-	С	230
CD	2000	4121	R	U	С	3,217
CFRIB	1	D(400)	R	υ		8
CJØNT	1	TWT (201)	R	-	<u>.</u> C	230
CNT	38	T(1541)	R	υ	-	202
CRLC	77	T(960)	R	υ	_	
CT	2048	7121	R	-	-	3
C10	1	CNT(35)	R	U	-	202
C7	1	CNT(22)	R	U		202
C9	1	CNT (34)	R	U		202
D	2060	2061	R	U		3,8
DBLHD	11	D(650)	R	υ	-	8
DBRHØ	1	D(464)	R	υ	_	8
DC	100	D(1401)	R	υ	_	10
DDFS	220	CD(661)	R	υ	С	221
DDIS	220	CD(441)	R	υ	С	220
DDLC	220	CD(221)	R	U	С	219
DDRS	220	CD(881)	R	U	С	221
DDSTR	330	CT(1321)	R	บ	С	222
DDUC	220	CD(1)	R	U	С	219
DEL	30	TWT (251)	R	-	_	230
DJØNT	11	D(661)	R	υ	_	8
DKMIR	1	D(24)	R	U		8
DĽFSW	1	DEL(15)	R	υ	-	-

'TABLE 132. VARIABLE REFERENCES, SUBROUTINE ACNSTR (CONT)

Variable		Common	Varia	ble Descri	ption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
DLRGJM	44	CD(309)	R	U	-	217
DLRSW	1	DEL(19)	R	U	- 1	230
DLSKL	1	DEL(5)	R	υ	- "	230
DLSKU	1	DEL(2)	R	υ	-	230
EL	15	T(1300)	R	υ	С	205
ENC	3	CT(2043)	R	U	-	_
ENH	4	D(1164)	R	บ	-	8
ENP	9	D(1155)	R	U	-	8
FCR	110	T(1100)	R	บ	-	-
FSKJ.	11	TW(232)	R	υ	-	_
FSKU	11	TW(188)	R	U	- 1	-
FSTL	11	TW(243)	R	U	-	I
FSTU	11	TW(199)	R	U	- -	_
I	1	_	1	U	С	
IC	1	ND(48)	1	-	С	9
IEL	165	TW(1)	R	υ	-	206
IP	80	/IPRINT/	I	U	-	7
IPB	1	ND(24)	I	U	. -	9
ISEC	1	ND(55)	I	U	С	9
K	1	-	I	υ	С	-
N	1	_	I	U	С	-
ND	100	6121	I	U	-	3,9
PFFSCV	1	CT(2047)	R	υ	-	_
PFFSSP	1	CT(2048)	R	υ	_	_
SKNXL	11	TW(210)	R	U	· -	_
SKNXU	11	TW(166)	R	υ	-	_
SLCFS	5	D(1470)	R	U	_	8

TABLE 132. VARIABLE REFERENCES, SUBROUTINE ACNSTR (CONT)

Variable	WE TO	Common	Variable Description			Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
SPB	33	T(1232)	R	υ.	-	207
SPCRUH	11	T(1632)	R	U	4 - (1)	<u> </u>
SPN	33	T(1265)	R	υ	- [[-]	208
STNXL	11	TW(221)	R	บ	- 1	=
STNXU	11	TW(177)	R	U	_	_
STRESS	1320	CT(1)	R	U		203
STRING	220	T(1676)	R	U	-	213
SWBCF	2	D(427)	R	U	= 11	8
SWBCP	2	D(423)	R	U	-	8
SWKMS	2	D(410)	R	U	-	8
T	2060	1	R	-	-	3
TC	340	T(960)	R	-	С	-
TCPNLF	1	CNT (32)	R	U	-	202
TCPNLI	1	CNT (31)	R	υ	-	202
TCPNLL	1	CNT (30)	R	υ	-	202
TCPNLL	1	CNT (30)	R	U	_	202
TCPNLR	1	CNT (33)	R	U	- '	202
TCPNLU	1	CNT (29)	R	U	-	202
TDC	200	T(1341)	R	U	С	224
TSC	420	T(1541)	R	-	С	225
TSEC	300	CD(1501)	R	ָ ט	С	226
TSS	100	T(1961)	R	บ	С	
TT	24	T(1317)	R	υ	. С	_
TW	900	6220	R	- .	-	3
TWT	400	CD(1101)	R	υ	С	230
XFOØDE	1	CNT(27)	R	υ	· _	202

TABLE 132. VARIABLE REFERENCES, SUBROUTINE ACNSTR (CONCL)

Variable		Children and	Varia	Variable Description			
Name	Size	Common Ref Loc	Туре	Used	Calc	Table Ref	
XKCØDE	1	CNT(19)	R	U		202	
XPCØDE	1	CNT(20)	R	U		202	
XRCØDE	1	CNT(28)	R	U	-	202	
YBLD	11	T(690)	R	j - 11	С	190	
YBUD	11	T(679)	R	-	С	190	
Ü	·				١,	la ven-	
		L				10.00	
						THEFT	
				10		1	
						35	
	10		1 4		- 1	124	
				13		1,-00	
		Tr.					
		1		ı		Marile 1	
			1, 11	- \		77.0	
				10			
•						911	
		!					
					ji.		
						100	

TABLE 133. VARIABLE REFERENCES, SUBROUTINE ACWMS

Variable	b Couls	Common	Varia	t le Descri	ption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ACDLB1	1	DØP3(3)	R	υ	•	8
ACDLB2	1	DØP3(4)	R	U		8
ACDLN1	1	DØP2(3)	R	U		8
ACDLN2	1	DØP2(4)	R	U		8
ACSSJD	1	D(438)	R	U		8
APRTID	12	T(1070)	R	U		
В	1	h. 1	R	U	С	
BSMAX	1	CNT(6)	R	U	- 6	202
BSMIN	1	CNT(5)	R	U		202
CD	2000	4121	R	- 5		3
CNT	91	T(1541)	R	U		202
CINTC	77	T(960)	R	U	С	
CT	2048	7121	R			3
C1	1 .	CNT(1)	R	U	С	202
C2	1	CNT(12)	R	U	С	202
C3	1	CNT (13)	R	Ü	- 1	202
C4	1	CNT(14)	R	U	С	202
C7	1	CNT (22)	R	U		202
D	2060	2061	R	U	-	3,8
DCBST	11	D(765)	R	บ		8
DCNØS	11	D(776)	R	U	- 6	8
DELOØV	1	. " "	R	บ	С	gust.
DNXL	11	D(942)	R	U	18	8
DNXÚ	11	D(931)	R	υ	-	8
DØP2	4	D(1367)	R	-	-	8
DØP3	4	D(1371)	R	-	419	8
DVFS	11	D(842)	R	U	- 1	8

TABLE 133. VARIABLE REFERENCES, SUBROUTINE ACWMS (CONT)

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
DVFSRS	11	CD(1924)	R	บ		i i X
DVRS	11	D(853)	R	U	-	8
EL	15	T(1300)	R	υ	С	205
ELW	12	T(1643)	R	υ	С	-
ENC	3	CT(2043)	R	υ	-	-
ENH	6	D(1164)	R	บ	-	8
ENP	9	D(1155)	R	ij	-	8
ENQ	100	TW(601)	R	υ	-	200
ENX	60	TW(701)	R	U	-	204
E11 `	2	-	R	υ	С	-
FACT	1	-	R	U	С	-
FCR	110	T(1100)	R	U	С	
FCRC	1	-	R	U	-	-
FCRS	1	-	R	U	-	-
FLAG	1	- ,	I	ប	С	-
HF	1	CNT (25)	R	υ	С	202
HI	1	-	R	U	С	-
HR	1	CNT (26)	R	U	С	202
HS	1	CNT (24)	R	υ	С	202
I	1 .	-	I	U	С	-
IEL	165	TW(1)	R	υ	C	206
ILCASE	1	ND(41)	I	U	Ē	9
ISEC	1	ND(62)	I	U	" C	9
J	1	-	ı	บ	С	-
K	1	-	I	υ	С	-
KK	1	-	I	U	С	-

TABLE 133. VARIABLE REFERENCES, SUBROUTINE ACWMS (CONT)

Variable	Common		Varie	Table		
Name	Size	Ref Luc	Туре	Used	Calc	Ref
LCASE	1	•	I	U	С	
N	1	-	I	U	С	(· ,
NB	1	-	I	U	С	
ND	100	6121	I	U	-	3,9
NMAX	1	ND(31)	I	U	С	9
NSPAR	1	CNT(21)	E	U	С	202
NSPMAX	1	CNT (18)	R	U	-	202
NSPMIN	1 -	CNT(17)	R	U	- 1	202
NSTAT	1	ND(55)	I	บ	C	9
P	20	T(1896)	R	U	С	-
PM	1	-	R	U	С	
PP	1	-	R	U	С	-
R	1	-	R	U	-	-
RMAX	1	-	R	U	C	-
SFO/DE	1	ND(45)	I	U	С	9
SKODDE	1	ND(42)	1	ប	С	9
SKLLØ	33	CD(294)	R	U	С	-
SKLUØ	33	CD(261)	R	U	С	-
SLCFS	5	D(1470)	R	U	-	8
SLLMIN	1	CNT (9)	R	U	С	202
SLUMIN	1	CNT(8)	R	U	С	202
SPB	33	T(1232)	R	ប	С	207
SPCØDE	1	ND(43)	I	U	С	9
SPCRUH	11	T(1632)	R	U	С	-
SPN	33	T(1265)	R	υ	С	208
SRCØDE	1	ND(46)	I	ט	С	9

TABLE 133. VARIABLE REFERENCES, SUBROUTINE ACMMS (CONCL)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
STRESS	1320	CT(1)	R	บ	С	203
SWBCP	2	D(423)	R	υ	- 1	8
T	2060	1	R	-	- 1	3,34,190
TBFS	11	T(153)	R	ប	-	34
TBRS	11	T(165)	R	ប	- 1	34
TCPNLF	1	CNT (32)	R	υ	_	202
TCPNLI	1	CNT (31)	R	ប	-	202
TCPNLL	1	CNT(30)	R	ប	-	202
TCPNLR	1	CNT (33)	R	υ	. =	202
TCPNLU	1	CNT (29)	R	υ	-	202
TSEC	300	CP(1591)	R	บ	-	226
THICK	2	T(1916)	R	บ	С	-
TW	900	6221	R	U	-	3
TYPE	1	ND(44)	I	บ	С	9
v	660	CT(1321)	R	บ	-	198
W	22	CT(1981)	R	υ	-	_
WEIGH	11	T(1665)	R	υ	-	-
WEIGP	10	T(1655)	R	ប	С	-
WIDE	1	-	R	υ	С	-
WS	8	T(1315)	R	υ	C	-
XEL	18	T(1323)	R	ប	С	-
XFO#DE	1	CNT(27)	R	υ	-	202
XKOØDE	1	CNT (19)	R	υ	-	202
XPQØDE	1	CNT(20)	R	บ	-	202
XROØDE	1	CNT (28)	R	ប	-	202
XTYPE	1	CNT(10)	R	บ	-	202
YBLI	11	TSEC(188)	R	ប	-	226
YBUI	11	TSEC(133)	R	υ	-	226
YST	11	T(511)	R	U	-	190

TABLE 134. VARIABLE REFERENCES, SUBROUTINE CKSTAB

Variable		Common	Vari	able Desci	ription	Table Ref
Name	Size	Ref Loc	Туре	Used	Calc	
A	1	-	R	U	С	_
ADD	1	_	R	U	С	-
APRTID	12	T(1070)	R	บ	-	
В	1	ARG	R	บ	С	-
B1	1	-	R	บ	С	-
B2	1	-	R	ប	С	_
В3	1	_	R	ប	С	_
OØMP	1	_	R	U	С	-
CT	2048	7121	R	=	-	3
C1	1	_	R	ប	С	_
D	2060	2061	R	-	_	3,8
DELTA	1	_	R	υ	С	=
D11	1	,	R	ប	С	-
D1 2	1	_	R	บ	С	-
D22	1	_	R	บ	C	_
D66	1	_	R	ប	С	-
ENH	6	D(1164)	R	U	_	8
ENP	9	D(1155)	R	ប	-	8
ENQ	100	TW(601)	R	ប	-)	200
FACT	1	ARG	R	บ	С	_
FCRC	1	ARG	R	_	С	_
FCRS	1	ARG	R	_	С	_
FS	1	-	R	บ	С	_
G	20	CT (2023)	R	U	-	_
KT	1	_	R	U	С	_
KV	1	_	R	ប	С	-
L	1	ARG	R	U	С	-

TABLE 134. VARIABLE REFERENCES, SUBROUTINE CKSTAB (CONT)

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
LCASE	1	ARG	I	U	С	_
М	1	ARG	R	U	С	_
N	1	ARG	R	U	С	_
NBR	1	-	I	U	С	_
ND	100	6121	I	_	_	3,9
NMAX	1	ND(31)	I	บ	С	9
NSTAT	1	ND(55)	I	ប	-	9
NUXY	1	-	R	U	С	-
NX	1	_	R	U	С	-
NXCR	1	-	R	U	С	_
NXP	1	ARG	R	บ	С	_
NXY	1	ARG	R	บ	С	-
NXYCR	1	_ ,	R	ប	С	_
ØLD	1	_	R	U	С	
R	1	ARG	R	บ	С	
RC	1	_	R	υ	С	÷
RS	1	-	R	U	С	-
RSSQ	1	_	R	U	С	-
T	2060	2061	R	_	-	3
TCHPNL	1	ARG	R	บ	С	-
TF	1	-	R	ប	С	-
THETA	1	-	R	บ	С	-
THICK	1	-	R	บ	С	_
TW	900	6221	R	_	-	3
U	1	_	R	ប	С	_
X	1		R	ប	C	-
XX	1	_	R	U	. C	

TABLE 134. VARIABLE REFERENCES, SUBROUTINE CKSTAB (CONCL)

Variable		Cormon	Vari	iption	Table	
Name	Siże ·	Common Ref Loc	Туре	Used	Calc	Ref
Y	1	-	R	บ	С	_
YY	1	_	R	U	С	-
Z	1	-	R	บ	. C	_
					21	li
•						
	4					
						ı
			1			
						,
					1	

TABLE 135. VARIABLE REFERENCES, SUBROUTINE WEIGHI

	-		,			
Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Üsed	Calc	Ref
APRTID	12	T(1070)	R	U	-	_
CFRIB	1	D(400)	R	U	-	8
CNT	38	T(1541)	R	-	_	202
СТ	2048	7121	R	-	_	3
C10	1	CNT (35)	R	U	_	202
C4	1	CNT (14)	R	U	-	202
C 7	1	CNT (22)	R	U	_	202
C9	1	CNT (34)	R	ប	-	202
D	2060	2061	R	υ	=	3,8
DBRHØ	1	D(464)	R	υ	_	8
DKMIR	1	D(24)	R	U		8
EL	15	T(1300)	R	U	_	205
ENC	3	CT(2043)	R	U	_	_
ENP	9	D(1155)	R	บ	_	8
HF	1	CNT (25)	R	υ	-	202
HR	1	CNT (26)	R	U	-	202
HS	1	CNT (24)	R	υ	_	202
I	1	_	I	ប	С	
IW	1	-	I	บ	. С	-
K	1	_	I	บ	С	_
N	1	-	I	U	С	-
ND	100	6121	I	บ	-	3,9
NSPAR	1	CNT(21)	R	U	-	202
NSTAT	1	ARG	I	ប	С	_
PFFSCV	1	CI (2047)	R	U	-	-
PFFSSP	1	CT(2048)	R	ប	-	-
SFCØDE	1	ND(45)	Ī	υ	_	9

TABLE 135. VARIABLE REFERENCES, SUBROUTINE WEIGH1 (CONCL)

Variable		Common	Vari	able Descr	ription	Table .
Name	Size	Ref Loc	Туре	Used	Calc	Ref
SKCØDE	1	ND(42)	I	U	_	9
SLCFS	5	D(1470)	R	ឋ	-	8
SPB	33	T(1232)	R	บ	_	207
SPCØDE	1	ND(43)	I	υ		9
SPN	33	7'(1265)	R	บ	.947	208
SRCØDE	1	ND(46)	I	บ		9
SWBCF	2	D(427)	R	บ	_	8
SWBCP	2	D(423)	R	υ	_	8
SWKMS	2	D(410)	R	U	_	8
T	2060	1	R	-	-	3
TCPNLF	1	CNT (32)	R	บ	-	202
TCPNLI	1	CNT (31)	R	υ	_	202
TCPNLL	1	CNT(30)	R	U	_	202
TCPNLR	1	CNT (33)	R	บ	-	202
TCPNLU	1	CNT (29)	R	บ	_	202
W	30	-	R	ប	С	210
WEI	1	ARG	R	ប	С	
W1	22	CT(1981)	R	U	-	-
	J					

TABLE 136. VARIABLE REFERENCES, SUBROUTINE ACWEDH

		T	7			
Variable		Common	Vari	iable Descr		Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ACFDHC	1	D(434)	R	υ	-	8
CNT	91	T(1541)	R	-	•	202
CNX	1	TF(7)	R	-	С	209
CRHØ	1	TF(8)	R	υ	· C	209
CRLC	77	T(960)	R	ט	С	-
CRNXCP	1	TF(28)	R	U	-	209
CRPCCP	1	TF(29)	R	ט	-	209
CRWNX	1	TF(18)	R	U	-	209
CT	2048	7121	R	-	.=	3
C3	1	CNT (13)	R	υ	-	202
C8	1	CNT (23)	R	U	-	202
D	2060	2061	R	-	-	3,8
EL	15	T(1300)	R	υ	С	205
ENH	6	D(1164)	R	υ	-	8
ENP	9	D(1155)	R	υ	-	8
FCR	110	T(1100)	R	υ	С	-
HC	1	TF(25)	R	U	-	209
HML	1	TF(9)	R	υ	С	209
I	1	-	I	υ	С	-
IC	1	-	1	U	- C	-
ILCASE	1	ND(41)	1	υ	-	9
IS	1	-	1	υ	С	J.
L	1	-	I	υ	С	-
N	1	-	ı	υ	С	7_
ND	100	6121	I	-	-	3,9
NMAX	1	ND(31)	1	υ	•	9
				_		

TABLE 136. VARIABLE REFERENCES, SUBROUTINE ACWEDH (CONCL)

Variable		Common	Vari	iable Desc	ription	Tell
Name	Size	Ref Loc	Туре	Used	Calc	Table Ref
NS	1	-	I	U	С	-
NS2	1	-	I	U	С	-
P	20	T(1896)	R	-	С] -
PCRUA	1	TF(20)	R	U	-	209
PCRUSH	1	TF(19)	R	U	-	209
RCC	1	TF(22)	R	υ	-	209
RCW	1	TF(21)	R	υ	-	209
RHØCC	1	TF(24)	R	υ	-	209
RHØCW	1	TF(23)	R	υ	-	209
RHØMAX	1	TF(30)	R	U	-	209
SPB	33	T(1232)	R	ָ ט	С	207
SPCRUH	11	T(1632)	R		С	-
SPN	33	T(1265)	R	-	С	208
STRESS	1320	CT(1)	R	U		203
T	2060	1	R	-	-	3
TF	40 ·	T(2021)	R	U	С	209
TFOØV	2	TF (10)	R	υ	-	209
W	22	CT(1981)	R	U	-	-

TABLE 137. VARIABLE REFERENCES, SUBROUTINE CKSFDH

Variable		Common	Common Varia	able Descr	Table	
Name	Size	Ref Loc	Туре	Used	Calc	Ref
APRT ID	12	T(1070)	R	U	•	-
CEP	1	TF(15)	R	υ	С	209
CGP	1	TF(16)	R	U	С	209
CNX	1	TF(17)	R	· ʊ	-	209
CRHØ	1	TF(8)	R	υ	-	209
CRNXCP	1	TF(28)	R	-	С	209
CRPCCP	1	TF(29)	R	-	С	209
CRIVINX	1	TF(18)	R	U	C	209
D	2060	2061	R	U	-	3,8
EB	1	TF(14)	R	U	С	209
ENH	6	D(1164)	R	U	-	8
ENP	9	D(1155)	R	บ	-	8
ENQ	100	TW(601)	R	υ	-	200
E11	1	TF(12)	R	บ	С	209
E22	1	TF(13)	R	บ	С	209
FOW	1	TF(17)	R	U	С	209
FDHCY	20	TW(841)	R	บ	-	-
FDHFE	20	TW(861)	R	U	-	-
FDHFG	20	TW(881)	R	U	-	-
HC	1	TF(25)	R	U	С	209
HML	1	TF(9)	R	υ	-	209
I	1	-	I	U	С	-
J	1	-	I	U	С	-
K	1	-	I	υ	С	-
KK	1	-	I	. บ	С	-
	1		I	บ	С	-

TABLE 137. VARIABLE REFERENCES, SUBROUTINE CKSFDH (CONCL)

Variable	1 .	Common	Varia	ble Descri	Table	
Name	Size	Ref Loc	Туре	Used	Calc	Ref
LCASE	1	ARG	I	U	С	•
N	1	-	I	U	С	, .
ND	100	6121	1	-	-	3,9
NMAX	1	ND(31)	I	U	С	9
NSTAT	1	ND (55)	I	บ	-	9
PCRUA	1	TF(20)	R	υ	С	209
PCRUSH	1	TF(19)	R	U	С	209
RCC	1	TF(22)	R	-	С	209
ROW	1	TF(21)	R	-	С	209
RHØCC	1	TF(24)	R	ט	C	209
RHØCW	1	TF(23)	R	υ	С	209
RHOMAX	1	TF(30)	R	U	С	209
T	2060	1	R	- 1	-	3
TF	40	T(2021)	R	υ	С	209
TFOØV	2	TF(10)	R	บ	С	209
TW	900	6221	R	-	-	3
	1 2					
	i J					

TABLE 138. VARIABLE REFERENCES, SUBROUTINE ACWRBS

Variable	Common	Common	Varia	Table		
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ACDLB1	1	DØP3(3)	R	U	-	8
ACDLB2	1	DØP3(4)	R	υ		8
ACDLN1	1	DØP2(3)	R	U	-	8
ACDLN2	1	DØP2(4)	R	บ	-	8
ACSSID	1	D(438)	R	υ	-	8
APRTID	12	T(1070)	R	υ	-	-
В	1	TX (30)	R	บ	· c	211
BSMAX	1	CNT(6)	R	U	-	202
BSMIN	1	CNT(5)	R	U	-	202
C D	2000	4121	R	- 1	-	3
CNT	91	T(1541)	R	υ	•	202
CRLC	77	T (960)	R	υ	С	-
СТ	2048	7121	R	-	-	3
C1	1	CNT(1)	R	ט	С	202
C2	1	CNT (12)	R	U	С	202
C3	1	CNT(13)	R	บ	-	202
C4	1	CNT (14)	R	υ	С	202
D	2060	2061	R	υ	-1	3,8
DCBST	11	D(765)	R	υ	-	8
DCNØS	11	D(776)	R	U	-	8
DELCØV	1	-	R	u	С	-
DNXL	11	D(942)	R	U	-	. 8
DNXU	11	D(931)	R	U	T	8
DØP2	4	D(1367)	R	-	-	8
DØP3	4	D(1371)	R	-	-	8
DVFS	11	D(842)	R	υ	-	8

TABLE 138. VARIABLE REFERENCES, SUBROUTINE ACWRBS (CONT)

Variable	and the second	Common	Varis	Table		
Name	Size	Ref Loc	Туре	Used	Calc	Ref
DVFSRS	11	CD (1924)	R	U		
DVRS	11	D(853)	R	บ	T	. 8
EL	15	T(1300)	R	U	С	205
ELW	12	T(1643)	R	U	С	2.4
ENP	9	D(1155)	R	U	•	8
ENX	60	TW(701)	R	U	-	204
FACT	1	1-	R	U	С	
FCR	110	T(1100)	R	υ	С	7.00
FCRC	1	-	R	U	A -1-11	1
FCRS	1	-	R	U	- 1	
FLAG	1	-	I	ប	С	-
HF	1	CNT (25)	R	U	C	202
ні	1	-	R	U	С	, arath
HR .	1	CNT (26)	R	U	С	202
HS	1	CNT (24)	R	U	С	202
Ι .	1	-	I	U	С	jul-si
IEL	165	TW(1)	R	υ	С	206
ILCASE	1	ND(41)	ı	U	- 4	9
ISEC	1	ND(62)	I	U	С	9
J	1	-	ı	U	С	i initial
K	1		I	υ	С	
KK	1	-	I	U	С	18.0
LCASE	1	-	I	U	С	81749
NB	1	-	I	υ	С	5.0
ND	100	6121	I	-	-	3,9
NMAX	1	ND(31)	I	-	С	9

TABLE 138. VARIABLE REFERENCES, SUBROLLINE ACWRBS (CONT)

Variable	30	Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
NSTAT	1	ND(55)	I	U	С	9
NSTR	1	CNT (21)	R	U	С	202
NSTRMN	1	CNT (17)	R	U		202
NSTRMX	1	CNT (18)	R	υ.	-	202
P	20	T(1896)	R	υ	-	-
R	1	-	R	ប	-	-
SFCØDE	1	ND(45)	I	บ	С	9
SKOØDE	1	ND(42)	I	υ	-	9
SKLLØ	33	CD(294)	R	υ	С	-
SKLUØ	33	CD(261)	R	υ	C	-
SLCFS	5	D(1470)	R	ប	-	8
SLLMIN	1	CNT (9)	R	U	•	202
SLUMIN	1	CNT (8)	R	บ	-	202
SPB	33	T(1232)	R	ប	С	207
SPCØDE	1	ND(43)	I	บ	С	9
SPN	33	T(1265)	R	บ	С	208
SRCØDF.	1 0	ND(46)	I	บ	С	9
STLLØ	33	CD (360)	R	บ	С	
STLMIN	1	CNT (16)	R	บ		202
STLUØ	33	CD(327)	R	บ	С	-
STRESS	1320	CT(1)	R	ับ	С	203
STRING	220	T(1676)	R	บ	-	213
STUMIN	1	CNT (15)	R	ប	-	202
SWBCP	2	D(423)	R	บ	-	8
T	2060	2061	R	-	-,	3,34,19
TBFS	11	T(153)	R	ប	-	34
	277					2

TABLE 138. VARIABLE REFERENCES, SUBROUTINE ACWRBS (CONCL)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
TBRS	11	T(165)	R	บ	-	34
TCPNLF	1	CNT (32)	R	บ	-	202
TCPNLR	1	CNT (33)	R	υ	-	202
TSEC	300	CD(1501)	R	U	-	226
TW	900	6221	R	U	· <u>-</u>	3
TX	160	CD(1)	R	-	С	211
TXS	100	CD(161)	R	-	С	212
TYPE	1	ND(44)	I	υ	C	9
v	660	CT (1321)	R	υ	-	-
w	22	CT (1981)	R	บ	-	-
WEIGH	11	T(1665)	R	U	-	-
WEIGP	10	T(1655)	R	υ	С	1-
WIDE	1	TX(31)	R	บ	С	211
WS	8	T(1315)	R	บ	С	-
XEL	18	T(1323)	R	บ '	С	-
XFCØDE	1	CNT (27)	R	υ	-	202
XPOØDE	1	CNT (20)	R	U	-	202
XRCØDE	1	CNT (28)	R	ប	-	202
ХТҮРЕ	1	CNT (10)	R	U _.	-	202
YBLI	11	TSEC(188)	R	ប	-	226
YBUI	11	TSEC (133)	R	U	-	226
YST	11	T(511)	R	ប	-	190

TABLE 139. VARIABLE REFERENCES, SUBROUTINE ACWSTR

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
AESTI	1	-	R	U	С	-
AESTR	1	TX (58)	R	-	С	211
APRTID	12	T(1070)	R	υ .	-	-
ASKT	1	TX(5)	R	U	-	211
ASTR	1	TX(55)	R	บ	С	211
ASTRA	1 .	TX (40)	R	บ	C	211
ASTRØ	1	TX(49)	R	บ	С	211
BF	1	TX (63)	R	บ	-	211
BFMIN	1	CNT (42)	R	υ	-	202
ВØТА	ı	TX (78)	R	ប	-1	211
BR	1	-	R	บ	C	- =
BRIB	1	TX (54)	R	ប	С	211
BRIPMN	1	TX (52)	R	ប	С	211
BRIEMX	1	TX (53)	R	บ	С	211
BRIBR	1	TX(47)	R	υ	С	211
BRMAX	1	CNT(4)	R	บ	<u>-</u>	202
BRMIN	1	CNT (3)	R	ប	-	202
BRRL	11	TX (265)	R	_	С	211
BRRU	11	TX (254)	R	_	С	211
BS	1	TX (30)	R	ប	-	211
BW	1	TX (62)	R	υ	-	211
BWI.	1	TXS(30)	R	υ	-	212
BWLT	1	TXS(32)	R	บ	-	212
BWMIN	1	CNT (40)	R	ט	-	202
BWØTS	1	TX (76)	R	υ	-	211
BWT.	1	TXS(31)	R	บ	-	212
CID	2000	4121	R	-	-	3

TABLE 139. VARIABLE REFERENCES, SUBROUTINE ACWSTR (CONT)

Variable	9 4 6	Common	Vari	Table		
Name .	Size	Ref Loc	Туре	Used	Calc	Ref
CF	1	-	R	U	С	•
CFR1B	1	D(400)	R	-	-	8
CNT	91	T(1541)	R	-	-	202
CRLC	77.	T(960)	R	U	С	-
CT	2048	7121	R	-	-	3
C3	1	CNT (13)	R	บ	-	202
C8	1	CNT (23)	R	υ	-	202
D	2060	2061	R	-	-	3,8
DBRHØ	1	D(464)	R	U	-	8
DC	100	D(1401)	R	บ	-	10
DELL	1	TX (39)	R	ប	С	211
DLEMI	1	TX(11)	R	. บ	С	211
DLENI	1	TX (12)	R	υ	С	211
DLSKI	1	TX(42)	R	U	C	211
DLSTRL	1	TX (48)	R	U	C	211
D11	1	-	R	U	С	-
EIREQD	1	TX (68)	R	U	С	211
EIRIB	1	TX (69)	R	U	C	211
EL	15	T(1300)	R	ប	С	205
ELL	1	TX (32)	R	U	С	211
ELØ	1	TX(33)	R	บ	С	211
ELSK	1	TX(36)	R	U	С	211
EMØ	1	TX(34)	R	υ	С	211
BMSK	1	TX (37)	R	υ	-	211
ENC	3	CT(2043)	R	ប	-	-
ENØ	1	TX (35)	R	U	С	211

TABLE 139. VARIABLE REFERENCES, SUBROUTINE ACWSTR (CONT)

Variable Name ENP ENQ ENSK ENX	9 100 1 60	Common Ref Loc D(1155) TW(601)	Type R	Used U	Calc	Table Ref
ENQ ENSK	100 1	TW(601)	= ,	บ		
ENSK	1				-	8
		TV (70)	R	U	_	200
ENX	40	TX (38)	R	υ	С	211
	OU	TW(701)	R	ប	-	204
ERIB	1	TX (70)	R	U	С	211
ESK	20 ·	TX (81)	R	ប	-	211
FACT	1		R	บ	С	-
FCR	110	T(1100)	R	-	С	-
FCRC	1	-	R	U	-	-
FCRS	1	-	R	บ	-	-
FSKL	11	TW(232)	R	-	С	-
FSKU	11	TW(188)	R	-	С	-
FSTL	11	TW (243)	R	-	С	-
FSTR	1	TX (60)	R	บ	-	211
FSTU	11	TX (199)	R	-	С	211
HS	1	CNT (24)	R	ប	<u>-</u>	202
I	1	-	I	บ	С	-
IEL	165	TW(1)	R	ប	-	206
ILCASE	1	ND(41)	I	ប	-	9
ILS	1	ND (34)	I	U	С	9
ILS2	1	-	I	υ	С	-
ISKIN	1	ND(32)	I	U	С	9
ISTR	1	TX (64)	R	υ	-	211
K	1	-	I	υ	С	-
L	1	-	I	บ	С	_
LCASE	1	-	I	υ	С	-

TABLE 139. VARIABLE REFERENCES, SUBROUTINE ACWSTR (CONT)

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
LCCR	1	ND(29)	I	บ	-	9
LSTID	1	-	I	υ	-	-
N	1	-	I	U	С	-
ND	100	6121	I	-	•	3,9
NLR	1	ND(36)	I	U	С	9
NLS	1	ND(35)	I	U	С	9
NMAX	1	ND(31)	1	บ	<u> </u>	9
NN	1	-	I	υ	С	-
NSTAT	1	ND(55)	I	U	-	9
NSTIFF	1	ND(33)	I	U	С	9
NSTR	1	CNT (21)	R	บ	-	202
P	20	T(1896)	R	U	С	
PCCRI	1	TX (18)	R	U	-	211
PFFSCV	1	CT(2047)	R	U	-	-
PFFSSP	1	CT (2048)	R	U	-	-
PL	1	-	R	U	С	-
PM	1	-	R	υ	С	•
PP	1	-	R	ប	С	-
PSCRI	1	TX(19)	R	υ	-	211
PSKCRL	1 :	TX(14)	R	υ	<u> </u>	211
PSTCRL	1	TX(15)	R	ប	-	211
R	1	-	R	ប	-	-
RSKPØ A	1	TX(8)	R	ប	-	211
RSTPØA	1	TX(9)	R	ប	-	211
SKLLMN	1	TX (44)	R	ប	С	211
SKLLØ	33	CD(294)	R	บ	-	-

TABLE 139. VARIABLE REFERENCES, SUBROUTINE ACWSTR (CONT)

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
SKLUMN	1	TX (43)	R	U	С	211
SKLUØ	33	CD(261)	R	บ	-	-
SKMNL	1	TX(41)	R	υ	С	211
SKNXL	11	TX(210)	R	-	С	211
SKNXU	11	TX(166)	R	-	С	211
SLDØ	1	-	R	บ	С	-
SLKO	1	-	R	ប	С	
SLTØ	1	-	R	U	С	-
SPODE	1	ND(43)	I	ប	-	9
SPCRUH	11	T(1632)	R	-	С	-
STFNF	5	D(1353)	R	ប	-	8
STFNH	5	D(1348)	R	U	-	8
STFNT	1	TX(79)	R	บ	С	211
STLLØ	33	CD(360)	R	U	-	-
STLUØ	33	CD(327)	R	ប	-	-
STNXL	11	TW(221)	R	-	С	-
STNXU	11	TW(177)	R	-	С	Į.
STRESS	1320	CT(1)	R	υ	-	203
STRING	220	T(1676)	R	-	С	213
STRL	1	TX (56)	R	บ	С	211
STRLLM	1	TX (46)	R	บ	С	211
STRLØ	1	TX (50)	R	υ	С	211
STRLT	1	TX(57)	R	ប	С	211
STRLTØ	1	TX (51)	R	υ	С	211
STRLUM	1	TX (45)	R	ប	С	211
T	2060	1	R	-	-	3

TABLE 139. VARIABLE REFERENCES, SUBROUTINE ACWSTR (CONCL)

Variable		Common	Vari	able Descr	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
TBATT	1	TX (75)	R	υ	С	211
TBOØV	1	TX (72)	R	ט	С	211
TBFIL	1	TX(74)	R	U	С	211
TBRIB	1	TX (73)	R	U	С	211
TBSTR	1	TX (59)	R	ប	С	211
TBTOT	1	TX(71)	R	ប	С	211
TCPNLI	1	CNT (31)	R	υ	-	202
TRIB	1	TX (67)	R	υ	С	211
TSK	1	TX (4)	R	U	-	211
TSTR	1	TX (60)	R	ប	С	211
TSTRØ	1	TX (80)	R	υ	С	211
TW	900	6221	R	-	<u> </u>	3
TX	160	CD(1)	R	υ	-	211
TXS	100	CD(161)	R	ט	С	212
TYPE	1	ND (44)	I	U	-	9
WIDE	1	TX (31)	R	บ	•	211
XSTIFF	1	CNT (48)	R	บ	С	202
XSTRL	1	CNT(2)	R	ប	-	202
XSTRU	1	CNT(1)	R	U	-	202
YBAR	1	TX (65)	R	บ	-	211
YPLATE	1	TX (66)	R	บ	С	211
YPLATI	1	-	R	ប	С	-
		l) I				

TABLE 140. VARIABLE REFERENCES, SUBROUTINE ACMRSK

Variable	Common	Common	Varia	Table		
Name	Size	Ref Loc	Туре	Used	Calc	Ref
APRTID	12	T(1070)	R	บ	•	•
ASKL	1	TX(6)	R	U	С	211
ASKT	1	TX (5)	R	υ	С	211
ASTR	1	ARG	R	U	С	-
ASTRL	1	TX (7)	R	ប	С	211
BFØTS	1	TX (77)	R	-	С	211
BØTI	1	-	R	U	С	-
BØTK	1	÷	R	U	С	
BS	1	TX(30)	R	U	-	211
BWØTS	1	TX(76)	R	บ	С	211
CD	2000	4121	R	-	-	3
CNT	91	T(1541)	R		-	202
CT	2048	7121	R	(7)	-	3
C3	1	CNT (13)	R	U	-	202
C8	1	CNT (23)	R	U	-	202
D	2060	2061	R	-	-	3,8
DLEMI	1	TX (11)	R	U	С	211
DLENI	1	TX(12)	R	υ	С	211
DPØAEP	1	D(445)	R	U	- 1	8
DSTRC5	1	D(598)	R	U	- "	8
DSTRC6	1	D(599)	R	U	-	8
D11	1	-	R	ប	c	-
D12	1		R	U	С	_
D22	1	-	R	U	С	-
EBØT	20	TW(819)	R	บ	-	-
ELØ	1	TX (33)	R	υ	-	211

TABLE 140. VARIABLE REFERENCES, SUBROUTINE ACMRSK (CONT)

Variable		Common	Vari	Variable Description		
Name	Size	Ref Loc	Туре	Used	Calc	Table Ref
BMI	1	TX(1)	R	บ	С	211
BMØ	1	TX (34)	R	บ		211
ENI	1	TX (2)	R	บ	С	211
ENØ	1	TX(35)	R	บ	-	211
ENP	9	D(1155)	R	ប	-	8
ENQ	100	TW(601)	R	U	-	200
ENX	60	TW(701)	R	บ	-	204
BØØ	1	TX(29)	R	บ	С	211
ESK	20	TX(81)	R	บ	С	211
ESKCRL	1	TX(13)	R	ָּט.	С	211
E11	1	-	R	U	С	-
E12	1	1 -	R	U	С	-
E22	1	-	R	U	С	-
FSTR	1	TX (61)	R	ប	С	211
G	20	CT (2023)	R	ប	-	-
Ĭ	1		I	ប	С	-
ILCASE	1	ND(41)	I	υ	-	9
ISKIN	1	ND(32)	I	บ	-	9
LCCR	1	ND(29)	I	ប	С	9
LSTRCR	1	ND (37)	I	-	С	9
N	1	-	I	υ	С	-
NCR	1	-	I	ប	С	-
ND	100	6121	I	-	-	3,9
NL	1	-	ī	ប	С	-
NMAX	1	ND(31)	I	U	С	9
NMAX1	.1	ND(30)	I	บ	С	9

TABLE 140. VARIABLE REFERENCES, SUBROUTINE ACMRSK (CONT)

Variable	-151	Common	Varia	Table		
Name	Size	Ref Loc	Туре	Used	Calc	Ref
NSTAT	1	ND(55)	I	U	•	9
PCCRI	1	TX (18)	R	U	С	211
PCI	1	TX (24)	R	U	С	211
PNXCRL	1	TX (16)	R	U	C	211
PNXI	1	TX (25)	R	U	С	211
PNXYI	1	TX(26)	R	υ	С	211
PSCRI	1	TX (19)	R	υ	С	211
PSK	20	TX(101)	R	U	С	211
PSKCCR	1	-	R	U	С	-
PSKCRL	1	TX(14)	R	U	С	211
PSKSCR	1	-	R	U	С	-
PSTCRL	1	TX(15)	R	U	С	211
PSTR	20	TX (121)	R	U	С	211
QSKCRL	1	TX(17)	R	ט	С	211
RAE	1	TX (10)	R	U	С	211
RASKI	1	TX(27)	R	U	С	211
RASTI	1	TX (28)	R	U	С	211
RCI	1	TX (22)	R	U	С	211
RI	1	TX (21)	R	U	С	211
RMAX	1	TX (20)	k	υ	С	211
RSI	1	TX(23)	R	U	С	211
rskpøa	1	TX (8)	R	U	С	211
RSTPØA	1	TX (9)	R	υ	С	211
SKALL	1	-	R	ט	С	-
SKAPL	1	-	R	י ט	С	-
SKR	20	TX(141)	R	υ	C	211

TABLE 140. VARIABLE REFERENCES, SUBROUTINE ACMRSK (CONCL)

Variable	Common		Varia	Table		
Name	Size	Ref Loc	Туре	Used	Calc	Ref
SKRMX	1	TX(3)	R	U	С	211
STALL	1		R	ប	С	-
STAPL	1	-	R	U	С	-
STRESS	1320	CT(1)	R	υ	-	203
STRL	1	ARG	R	υ	С	•
T	2060	1	R	-	-	3
THETA	1	-	R	บ	С	-
TSK	1	TX(4)	R	U	С	211
'IW	900	6221	R	-	-	3
TX	160	CD(1)	R	- 1	-	211
ХХ	1	-	R	υ	С	Ŧ

1-11-100

TABLE 141. VARIABLE REFERENCES, SUBROUTINE ACSTRG

Variable		Common	Varia	Variable Description			
Name	Size	Ref Loc	Туре	Used	Calc	Table Ref	
AF	1		R	U	С	-	
APRTID	12	T(1070)	R	U	-	-	
ASTR	1	TX (55)	R	U	-	211	
AW	1	-	R	บ	С	-	
BF	1	TX (63)	R	U	C	211	
BFI	1	TXS(39)	R	U	С	212	
BFMAX	1	CNT (41)	R	υ	-	202	
BFMIN	1	CNT (42)	R	υ	-	202	
BFØTS	1	TX (77)	R	U	С	211	
ВØГА	1	TX (78)	R	U	С	211	
BØTF	1	TX (40)	R	U	С	211	
BW	1	TX (62)	R	U	С	211	
BWA	1	-	R	U	С	-	
BWI	1	TXS (38)	R	υ	С	212	
BWL	1	TXS(30)	R	U	С	212	
BWLI	1	TXS (35)	R	ט	С	212	
BWLT	1	TXS(32)	R	U	С	212	
BWLTI	1	TXS(37)	R	บ	С	212	
BWMAX	1	CNT(7)	R	U	=	202	
BWMIN	1	CNT (40)	R	U	-	202	
BWOTS	1	TX (76)	R	υ	c	211	
BWT	1	TXS(31)	R	υ	С	212	
BWTI	1	TXS(36)	R	U	С	212	
CD	2000	4121	R	-	-	3	
CNT	91	T(1541)	R	- 1	-	202	
D	2060	2061	R	-	-	3,8	
DBØTEP	1	D(444)	R	υ	- 1	8	

TABLE 141. VARIABLE REFERENCES, SUBROUTINE ACSTRG (CONCL)

Variable		Common	Varia	Variable Description			
Name	Size	Ref Loc	Туре	Used	Calc	Table Ref	
ENP	9	D(1155)	R	U	•	8	
ID	1	ARG	I	ប	С	-	
ISTR	1	TX(64)	R	U	C	211	
ND	100	6121	I	- 1	-	3,9	
NSTAT	1	ND(55)	I	U	-	9	
NSTIFF	1	ND(33)	I	υ	-	9	
STFNF	5	D(1353)	R	υ	-	8	
STFNH	5	D(1348)	R	ប	-	8	
STFNT	1	TXS(79)	R	U	-	212	
STRL	1	TX (56)	R	U	-	211	
STRLØ	1	TX(50)	R	U	-	211	
STRLT	1	TX (57)	R	U	-	211	
T	2060	1	R	-	-	3	
TSTR	1	TX (60)	R	U	-	211	
TX	160	CD(1)	R	-	-	211	
TXS	100	CD(161)	R	-	-	212	
YBAR	1	TX (65)	R	U	С	211	

TABLE 142. VARIABLE REFERENCES, SUBROUTINE WEIGH2

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
APRTID	12	T(1070)	R	บ	-	-
CFRIB	1	D(400)	R	บ	-	8
CNT	38	T(1541)	R	-	-	202
CT	2048	7121	R	-	-	3
C4	1	CNT (14)	R	บ	-	202
D	2060	2061	R	บ		3,8
DBRHØ	1	D(464)	R	ប	-	8
DKMIR	1	D(24)	R	บ	-	8
EL	15	T(1300)	R	บ	-	205
ENC	3	CT (2043)	R	υ	-	-
ENP	9	D(1155)	R	ט	-	8
HF	1	CNT (25)	R	ប	-	202
HR	1	CNT (26)	R	บ	-	202
HS	1	CNT (24)	R	U	-	202
I	1	-	I	ប	С	-
IW	1	-	I	ប	С	-
K	1	-	I	U	С	-
N	1	-	1	บ	С	-
ND	100	6121	I	-	-	3,9
NSTAT	1	ARG	1	บ	С	-
PFFSCV	1	CT (2047)	R	υ	-	-
PFFSSP	1	CT (2048)	R	บ	-	-
SFCØDE	1	ND (45)	I	υ	-	9
SLCFS	5	D(1470)	R	υ	-	8
SPCØDE	1	ND(43)	ı	U	-	9
SPN	33	T(1265)	R	บ	-	208

S-am-nac

TABLE 142. VARIABLE REFERENCES, SUBROUTINE WEIGH2 (CONCL)

Variable	Common		Vari	Table		
Name	Size	Ref Loc	Туре	Used	Calc	Ref
SROØDE	1	ND(46)	I	U	-	9
STRING	220	T(1676)	R	υ	-	213
SWBCF	2	D(427)	R	ប	-	8
SWBCP	2	D(423)	R	υ	-	8
SWKMS	2	D(410)	R	υ	-	8
T	2060	1	R	-	-	3
TCPNLF	1	CNT (32)	R	υ	-	202
TCPNLI	1	CNT(31)	P.	υ	-	202
TCPNLR	1	CNT(33)	R	U	-	202
W	35	-	R	υ	С	214
WEI	1	ARG	R	U	С	-
W1	22	CT(1981)	R	บ	-	-
		i				
	·					

TABLE 143. VARIABLE REFERENCES, SUBROUTINE ASTIFF

Used U	Calc	Table Ref
U		Kei
	-,	8
U	С	3,217
-	_	202
υ	-	202
U	-	3,8
U	С	217
U	С	217
ប	С	217
υ	С	217
ប	С	217
υ	С	217
U	С	217
υ	-	217
บ	-	217
υ	-	217
U	С	217
υ	-	217
υ	С	205
บ	-	8
ប	-	217
υ	-	217
ប	-	217
υ	С	217
υ	-	217
U	С	217
υ	С	217
	U U	บ - บ C

TABLE 143. VARIABLE REFERENCES, SUBROUTINE ASTIFF (CONT)

			Vari	able Desci	ription	m-1.1
Variable Name	Size	Common Ref Loc	Туре	Used	Calc	Table Ref
GCMD	11	CD(67)	R	U	С	217
GJCD	11	CD(45)	R	บ	С	217
GJCFL	11	CD(265)	R	บ	С	217
GJCFØ	11	CD(177)	R	U	С	217
GJRQD	11	T(668)	R	ប	-	190
GJSFL	11	CD(221)	R	ប	-	217
GJSFØ	11	CD(133)	R	บ	-	217
GJSTD	11	CD(1)	. R	ប	-	217
GJVFD	11	CD(89)	R	ប	C	217
GJVFS	11	CD(353)	R	บ	141	217
GSFL	11	CD(243)	R	บ	-	217
GSFØ	11	CD(155)	R	ប	-	217
GSTD	11	CD(23)	R	บ		217
GVFD	11	CD(111)	R	บ	С	217
GVFS	11	CD(375)	R	บ	-	217
Ī	1	-	I	ប	С	-
IDT	1	-	I	U	С	-
IEL	165	TW(1)	R	U	-	206
IP	80	/IPRINT/	I	ប	-	7
IWI	4	-	I	บ	-	-
IW1	1	IWI(1)	I	บ	С	-
IW2	1	IWI(2)	I	U	С	-
IW3	1	IWI(3)	I	U	С	-
IW4	1	IWI(4)	I	U	С	-
IX	1	-	I	υ	С	-
К	1	-	I	บ	С	-
N	1	-	I	U	С	•

TABLE 143. VARIABLE REFERENCES, SUBROUTINE ASTIFF (CONCL)

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Common Ref Loc	Туре	Used	Calc	Ref
ND	100	6121	. I	U	- "	3,9
NEL	1	-	I	บ	С	-
NSTAT	1	-	I	ប	С	-
SLCFS	5	D(1470)	R	U	-	8
SPB	33	T(1232)	R	U	•	207
SPN	33	T(1265)	R	U	-	208
STRING	220	T(1676)	R	บ	-	213
SWBCP	2	D(423)	R	U	-	8
T	2060	1	R	-	-	3,34,190
TA	40	CD(401)	R	-	С	216
TBD	11	T(530)	R	ប	-	190
TBFS	11	T(153)	R	υ	-	34
TBRS	11	T(165)	R	U	-	34
TBW	11	T(542)	R	U	-	190
TCPNLF	1	CNT(32)	R	U	-	202
TCPNLL	1	CNT (30)	R	U	-	202
TCPNLR	1	CNT (33)	R	บ	-	202
TCPNLU	1	CNT (29)	R	ប	-	202
TEIGJ	4	TW(783)	R	ប	-	199
TSF	60	CD(441)	R	ប	С	215
TW	900	6221	R	-	-	3
VFID	1	D(251)	R	ט	-	8
	·					
				1		

TABLE 144. VARIABLE REFERENCES, SUBROUTINE ACEIGJ

toc Type		Variable Description			
R	Used	Calc	Table Ref		
	U	С			
R	U	С	-		
R	U	С	-		
R	บ	С	-		
) R	U	-	-		
R	-	-	3,217		
R	υ	-	3,8		
) R	υ	<u>-</u>	10		
R	U	-	10		
) R	υ		205		
) R	U	-	8		
) R	U	-	201		
I	U	С	-		
· I	U	С	-		
I	U	С	-		
I	U	С	-		
1	υ	-	3,9		
I	U	С	-		
) R	U	-	-		
) R	U	-	} -		
R	-	-	3,190		
) R	U	С	216		
	U	-	190		
) R	υ	-	215		
, R	-	-	3		
	R	R U	R U -		

TABLE 145. VARIABLE REFERENCES, FUNCTION XN

Variable	Common		Vari	Table		
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CNT	38	T(1541)	R	•	•	202
C3	1	CNT (13)	R	U	-	202
C8	1	CNT (23)	R	υ	-	202
EL	15	T(1300)	R	ប	-	205
IL	1	ARG	I	บ	С	-
IM	1	ARG	I	U	С	-
T	2060	1	R	-	-	3
XN	1	-	R	-	С	-

TABLE 146. VARIABLE REFERENCES, SUBROUTINE ACPRTA

Variable		Common	Varia	ble Descri	ption	Table
Name	Size	Ref Loc	Туре	Used	Calc	. Ref
ACCVID	1	D(431)	R	U	-	8
ACID	1	D(430)	R	υ	-	8
CD	2000	4121	R	υ	-	3,217
CT	2048	7121	R	- 1	•	3
D	2060	2061	R	υ	-	3,8
DC	100	D(1401)	R	υ	-	10
DDFS	220	CD(661)	R	υ	-	221
DDIS	220	CD(441)	R	υ	-	220
DDLC	220	CD(221)	R	U	-	219
DDRS	220	CD(881)	R	υ	-	221
DDSTR	330	CT(1321)	R	U	-	222
DDUC	220	CD(1)	R	U	-	219
DGW	3	D(102)	R	U	-	8
DINID	1	D(271)	R	U	-	8
DNNZ	1	T(21)	R	υ		34
DPNZ	1 .	T(20)	R	U	-	34
ECFL	11	CD(298)	R	U	-	217
ECFØ	11	CD(210)	R	U	- 1	217
BOMD	11	CD(78)	R	υ	-	217
EICD	11	CD (56)	R	υ	Ė	217
EICFL	11	CD(276)	R	U	-	217
EICFØ	11	CD(188)	R	U	=	217
EISFL	11	CD(232)	R	U	-	217
EISFØ	11	CD(144)	R	U	-	217
EISTD	11	CD(12)	R	U	С	217
EIVFD	11	CD(100)	R	ט	-	217
EIVFS	11	CD(364)	R	U	С	217

TABLE 146. VARIABLE REFERENCES, SUBROUTINE ACPRTA (CONT)

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ENH	6	D(1164)	R	U	-	8
ESFL	11	CD(254)	R	U	-	217
ESFØ	11	CD(166)	R	บ	-	217
ESTD	11	CD(34)	R	U	С	217
EVFD	11	CD(122)	R	Ü	-	217
EVFS	11	CD(386)	R	U	С	217
GCFL	11	CD(287)	R	U	-	217
GCFØ	11	CD(199)	R	U	-	217
GOMD	11	CD(67)	R	ប	-	217
GJCD	11	CD(45)	R	บ	-	217
GJCFL	11	CD(265)	R	ប	-	217
GJCFØ	11	CD(177)	R	U	-	217
GJRQD	11	T(668)	R	บ	=	190
GJSFL	11	CD(221)	R	υ	-	217
GJSFØ	11	CD(133)	R	บ	-	217
GJSTD	11	CD(1)	R	บ	С	217
GJVFD	11	CD (89)	R	ប	-	217
GJVFS	11	CD(353)	R	υ	С	217
GSFL	11	CD(243)	R	υ	-	217
GSFØ	11	CD(155)	R	υ	-	217
GSTD	11	CD(23)	R	U	С	217
GVFD	11	CD(111)	R	U	-	217
GVFS	11	CD(375)	R	U	С	217
I	1	-	I	ט	С	1 =
IGW	1	ND(61)	I	υ	-	9
IND	1	-	I	บ	С	-
К	1	-	I	U	С	-

TABLE 146. VARIABLE REFERENCES, SUBROUTINE ACPRTA (CONT)

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
L	1	-	I	บ	С	•
N	1	-	1	υ	C	-
NCASE	1	ND(60)	I	υ	-	9
ND	100	6121	I	υ	-	3,9
NØDW	1	ND(56)	I	U	-	9
NPAGE	1	ND(85)	I	ប	С	9
R	16	XMISC(85)	R	υ	-	6
T	2060	1	R	บ	-	3,34,190
TBWPI	11	T(745)	R	บ	-	190
TC	340	T(960)	R	บ	-	
TDWM	11	CD(1979)	R	บ	-	-
TDWT	11	CD(1990)	R	บ	-	-
TDWV	11	CD(1968)	R	υ	-	-
TEIGJ	4	TW(783)	R	ប	-	199
TR	40	T(1300)	R	U	С	-
TSEC	300	CD(1501)	R	U	- 1	226
TSS	100	T(1961)	R	บ	С	-
TW	900	6220	R	-	-	3
TWT	400	CD(1101)	R	ប	-	230
ULTNM	11	TSEC (122)	R	υ	-	226
ULTNT	11	TSBC (155)	R	บ	-	226
ULTNV	11	TSEC(111)	R	U	•	226
ULTPM	11	TSEC(1)	R	ប	-	226
ULTPT	11	TSEC(144)	R	U	-	226
ULTPV	11	TSEC(12)	R	υ	-	226

TABLE 146. VARIABLE REFERENCES, SUBROUTINE ACPRTA (CONCL)

Variable	Common	Varia	Table			
Name	Size	Ref Loc	Туре	Used	Calc	Ref
VFID	1	D(251)	R	U	•	8
WHVID	1	T(57)	R	บ	-	34
XMISC	100	/MISC/	R	-	-	6
YBLD	11	T(690)	R	υ	•	190
YBLI	11	TSEC (188)	R	บ	-	226
YBUD	11	T(679)	R	์ บ	-	190
YBUI	11	TSEC(133)	R	U	-	226
	-	- + 1			- 10	

TABLE 147. VARIABLE REFERENCES, SUBROUTINE WODATA

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
BS1Ø2	1	T(15)	R	U	-	34
CCDLI	150	CD(501)	R	บ	-	186
CCI	300	CD(1651)	R	υ	С	-
CCLDH	1	T(91)	R	บ	-	34
CCLØ	9	T(131)	R	บ	-	34
CCW	50	CD(1)	R	บ	-	170
CD	2000	4121	R	บ	-	3
CFL11	150	CD(951)	R	ប	-	187
CFL2I	150	CD(1101)	R	U	-	187
CIØY	150	CD(1401)	R	บ	С	175
CLEI	150	CD(651)	R	บ	С	174
CMII	150	CD(1251)	R	บ	-	185
cøsø	6	T(146)	R	υ	-	34
CSWD	1	D(480)	R	บ	i - i	8
СТВІ	150	CD(351)	R	υ	С	194
CTBW	150	CD(351)	R	บ	-	193
CTEI	150	CD(801)	R	υ	С	174
D	2060	2061	R	υ	-	3,8
DC	100	D(1401)	R	υ	-	10
DELWG	1	T(187)	R	บ	-	34
DINID	1	D(271)	R	υ	-	8
DKDIN	15	D(1970)	R	บ	-	8
DLTBX	1	T(188)	R	υ	•	34
DUMMY	50	-	R	U	С	-
DWGLE	1	T(193)	R	U	-	34
DWGTE	1	T(194)	R	υ	-	34
I	1	ND(29)	I	υ	С	9

TABLE 147. VARIABLE REFERENCES, SUBROUTINE WODATA (CONT)

Variable	0.81	Common	Varia	ble Descri	ption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
IF8	1	ND(97)	I	υ	С	9
IGW	1	ND(61)	ı	U	С	9
II	1	-	I	υ	С	
IP	80	/IPRINT/	I	υ	С	7
KK	1		I	ט	С	-
N	1	-	I	υ	С	-
NCASE	1	ND(60)	I	υ	-	9
ND	100	6121	ı	υ	-	3,9
SINØ	6	T(140)	R	υ	-	34
T	2060	1	R	υ	-	3,34,190
TANØ	9	T(122)	R	ប	-	34
TBCWT	11	CTBW(12)	R	υ		193
TBWPI	11	CTBW(1)	R	υ	-	193
TCS	250	CD(1401)	R	υ	С	-
TG	300	T(1001)	R	U	-	166
TGA	135	T(1851)	R	U		167
TMWPI	11	CTBW(78)	R	ט	-	193
TØGW	3	D(80)	R	U	-	8
TPNLW	10	CTBW(58)	R	บ		193
TST	50	T(1001)	R	U	C	-
TTIDH	1	D(204)	R	υ		8
TW	900	T(6221)	R	υ	С	3
TWG	400	T(1301)	R	ប	•	169
TWT	400	CD(1101)	R	υ	-	230
VFWPI	11	CTBW(89)	R	บ	-	193
VTID	1	D(289)	R	บ	-	8
WCG	126	TW(701)	R	U	С	195

TABLE 147. VARIABLE REFERENCES, SUBROUTINE WODATA (CONCL)

Variable Name Size	Common		Varia	Table		
	Size	Ref Loc	Туре	Used	Calc	Ref
WHVID	1	T(57)	R	U	-	34
WPNLS	10	CTEW(48)	R	Ü	<u>.</u>	193
WTIP	4	T(641)	R	U	- 1 -	190
WILT	8	TW(879)	R	- 1	С	-
XCSEC	1	T(62)	R	υ	-	34
XPVT	1	T(40)	R	υ	-	34
XSPVT	1	T(51)	R	υ		34
YC	150	T(201)	R	. 1	С	168
YPVT	1	T(39)	R	U		34
YSPVT	1	T(41)	R	U		34
YTC	60	T(351)	R		С	39

TABLE 148. VARIABLE REFERENCES, SUBROUTINE PRID

Variable		Common	Vari	able Desc	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CCW	2	CD(1)	R	บ	-	170
CD	2000	4121	R	บ	-	3
CNSID	1	D(461)	R	บ	-	8
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	บ	-)	10
DEL	30	TW(827)	R	υ	-	226
DELC	5	T(187)	R	U	-	34
DELCS	30	D(481)	R	ប	-	8
DELLE	1	T(189)	R	U	-	34
DELPV	7	D(530)	R	บ	-	8
DELTE	1	T(190)	R	U	-	34
DELWG	1	T(187)	R	Ŭ	-	34
DGW	3	D(102)	R	บ	-	8
DLTBX	1	T(188)	R	บ	-	34
DNNZ	1	T(21)	R	U		34
DPNZ	1	T(20)	R	ប	-	34
DWGLE	1	T(193)	R	υ	- }	34
DWGTB	1	T(192)	R	U	-	34
DWGTE	1	T(194)	R	บ	•	34
DYPVT	1	D(200)	R	บ	-	8
FDAT	60	/FDATT/	R	บ	С	5
GNNZ	1	T(21)	R	บ	-	34
GPNZ	1 =	T(18)	R	U	-	34
I	1	ND(27)	I	ซ	С	9
IP	80	/IPRINT/	I	υ	-	7
J	1	ND(28)	I	υ	С	9
K	1	ND (29)	İ	บ	С	9

TABLE 148. VARIABLE REFERENCES, SUBROUTINE PRTD (CONCL)

Variable		Common	Vari	able Descr	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
L	1	ND(30)	I	U	C	9
MATLI	1	ND(21)	I	บ	-	9
N	1	ND(31)	I	บ	С	9
NCASE	1	ND(60)	I	บ	-	9
ND	100	6121	I	ט	-	3,9
R	16	XMISC(85)	R	ប	-	6
SCSEC	1	T(95)	R	υ	-	34
SEXP	1	T(2)	R	ប	-	34
SPBØX	1	T(24)	R	υ	-	34
SPLE	1	T(25)	R	บ	-	34
SPTE	1	T(26)	R	ซ	r . 1	34
STIP	1	T(17)	R	υ	-	34
STØT	1	T(1)	R	υ	-	34
T	2060	1	R	-	r-	3,34
TØGW	4	D(80)	R	υ	•	8
TS	520	TW(1)	R	ប	С	-
TW	900	6221	R	-	-	3
VTID	1	D(289)	R	บ	-	8
WCG	126	TW(701)	R	U	-	195
WFL	3	T(97)	R	υ	•	34
WTLT	8	TW(879)	R	υ	-	-
XMISC	100	/MISC/	R	-	•	6

TABLE 149. VARIABLE REFERENCES, SUBROUTINE TBFWI

Variable		Common	Varia	able Descri	iption	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
CCI	300	CD(1651)	R	U.	-	-
CD	2000	4121	R	-	1-1	3
OØSØ	6	T(146)	R	บ	-	34
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	U	-	10
I	1	ND(26)	I	U	С	9
IP	80	/IPRINT/	I	U	-	7
K	1	ND (29)	I	U	С	9
KD	1	ND (32)	I	υ	С	9
N	1	ND (27)	I	U	С	9
NA	1	ND(31)	I	U	С	9
ND	100	6121	I	υ	-	3,9
NS	1	ND(30)	ı	Uq	С	9
SINØ	6	T(140)	R	υ	•	34
T	6220	1	R	υ	-	3,34
TCS	250	CD(1401)	R	υ	С	-
TG	300	T(1001)	R	υ	-	166
TGA	135	T(1851)	R	υ	-	167
TGR	100	T(1751)	R	ָ ט	-	_

TABLE 150. VARIABLE REFERENCES, SUBROUTINE WFLDD

Variable		Common	Vari	able Desci	ription	Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ВС	170	CD(1401)	R	U	С	-
B1SØ2	1	T(15)	R	U	-	34
αı	300	CD(1651)	R	υ	-	-
CCLØ	9	T(131)	R	υ	-	34
CD	2000	4121	R	บ	-	3
CFL11	150	CD(951)	R	บ	-	187
CFL2I	150	CD(1101)	R	ט	-	187
CLEI	150	CD(651)	R	บ		174
CMII	150	CD(1251)	R	บ	-	185
СТВІ	150	CD(351)	R	บ	-	194
CTEI	150	CD(801)	R	υ	-	174
D	2060	2061	R	บ	-	3,8
DC	100	D(1401)	R	υ	-	10
DEFL	1	D(292)	R	U	-	8
DFXF	2	D(272)	R	บ	-	8
DGFL	1	D(293)	R	บ	•	8
DINTP	1	D(280)	R	υ	-	8
I	1	ND(29)	I	ប	С	9
IP	80	/IPRINT/	I	ប		7
K	1	ND(31)	I	υ	С	9
L	1	ND(28)	I	U	С	9
N	1	ND(30)	I	U	С	9
NCASE	1	ND(60)	I	U	-	9
ND	100	6121	I	U	-	3,9
T	6220	1	R		-	3,34
TANØ	9	T(122)	R	U	-	34
TCS	250	CD(1401)	R	U	С	-

TABLE 150. VARIABLE REFERENCES, SUBROUTINE WFLDD (CONCL)

Variable Name Size		Common	Varia	ble Descri	Table	
	Size	Ref Loc	Туре	Used	Calc	Ref
TG	300	T(1001)	R	U	•	166
TGA	135	T(1851)	R	ט	-	167
TGR	100	T(1751)	R	U	С	-
TT	24	T(411)	R	U	С	-
TWG	400	T(1301)	R	υ	-	169
VHJ	1	D(290)	R	U	-	8
VH2	1	D(291)	R	υ	_	8
YC	150	T(201)	R	υ	-	168

TABLE 151. VARIABLE REFERENCES, SUBROUTINE WVFDD

Variable	Common		Varia	Table		
Name	Size	Ref Loc	Туре	Used	Calc	Ref
ACID	1	D(430)	R	υ	•	8
BSØ2	1	T(81)	R	υ	-	34
BS1Ø2	1	T(15)	R	U	-	34
CCDLI	150	CD(501)	R	υ	С	186
CCI	300	CD(1651)	R	υ	С	-
CCLØ	9	T(131)	R	υ	. 4	34
CD	2000	4121	R	U	С	3
CFL11	150	CD(951)	R	υ	-	187
CFL21	150	CD(1101)	R	υ	-	187
CGFS	1	D(296)	R	U		8
CLEI	150	CD(651)	R	บ	•	174
CMII	150	CD(1251)	R	U	-	185
OØSØ	6	T(146)	R	U	- 1	34
СТВІ	150	CD(351)	R	U	• " j	194
CTEI	150	CD(801)	R	U	-	174
D	2060	2061	R	U	-	3,8
DC	100	D(1401)	R	U	-	10
DCDL	100	D(1855)	R	υ	_	. 8
DGWIX	1	D(298)	R	U		8
DGWIY	1	D(297)	R	υ	-	8
DGWVF	1	D(295)	R	υ	-	8
DVPC	2	D(278)	R	U	-	8
DVFF	2	D(276)	R	υ	_ =	8
I	1	ND(29)	ı	U	С	9
IND	1	•	I	υ	С	-
IP	80	/IPRINT/	ı	U	-	7
11	1	_	I	U	С	

TABLE 151. VARIABLE REFERENCES, SUBROUTINE WVFDD (CONT)

Variable		Common	Variable Description			Table
Name	Size	Ref Loc	Туре	Used	Calc	Ref
K	1	ND(31)	I	U	С	9
K2	1	-	I	υ	С	i -
L	1	ND(28)	I	υ	С	9
L1	1	-	I	υ	С	
L2	1	-	1	บ	С	
м	1	ND(27)	1	บ	С	9
N	1	ND(30)	I	υ	С	9
ND	100	6121	1	ซ	-	3,9
N1	1	-	I	υ	С	
SINØ	6	T(140)	R	υ	-	34
Т	7120	1	R	υ	-	3,34
TANØ	9	T(122)	R	υ	-	34
TCS	250	CD(1401)	R	υ	С	-
TG	300	T(1001)	R	υ	-	166
TGR	100	T(1751)	R	υ	С	
TST	50	T(1701)	R	บ	С	
TT	24	T(411)	R	บ	С	-
TW	900	6221	R	U	С	3
TWG	400	T(1301)	R	υ	_	169
VFALT	1	D(305)	R	υ	· -	8
VFDE	1	D(307)	R	บ	-	8
VFDG	1	D(308)	R	บ	-	8
VFKSP	1	D(309)	R	U	-	8
VIMN	1	D(304)	R	υ	-	8
VFRHØ	1	D(306)	R	υ	-	8
WWCIX	1	D(303)	R	υ	-	8
WWCIY	1	D(302)	R	υ	-	8

TABLE 151. VARIABLE REFERENCES, SUBROUTINE WVFDD (CONCL)

Size	Common Ref Loc	Variable Description			Table
		Туре	Used	Calc	Ref
1	D(301)	R	υ	•	8
1	D(300)	R	υ	. •	8
1	D(299)	R	U	-	8
150	T(201)	R	ט	-	168
	1 1 1	Size Ref Loc 1 D(301) 1 D(300) 1 D(299)	Size Ref Loc Type 1 D(301) R 1 D(300) R 1 D(299) R	Size Ref Loc Type Used 1 D(301) R U 1 D(300) R U 1 D(299) R U	Size Ref Loc Type Used Calc 1 D(301) R U - 1 D(300) R U - 1 D(299) R U -

TABLE 152. VARIABLE REFERENCES, SUBROUTINE TPINT

Variable Name	Size	Common	Variable Description			Table
		Rof Loc	Туре	Used	Calc	Ref
I	1	ND(32)	I	บ	С	9
ND	100	6121	I	N-	-	3,9
T	6220	1	R	11-		3
TT	24	T(411)	R	U	С	-
X1	3	ARG	R	u	С	-
YØ	1	ARG	R	U	С	-
Y1	3	ARG	R	υ	С	-

TABLE 153. VARIABLE REFERENCES, SUBROUTINE PINTO

Variable Name		Common	Variable Description			Table
		Ref Loc	Туре	Used	Calc	Ref
CCDLI	150	CD(501)	R	υ	•	186
CΩΙ	300	CD(1651)	R	υ	-	• (1)
CD	2000	4121	R	-	- <u>-</u>	3
D	2060	2061	R	-	. !	3,8
DINIP	1	D(280)	R	υ	= 1	8
I	1	ND(29)	I	U	С	9
J	1	-	I	υ	С	-
J1	1	-	I	υ	С	-
J2	1		I	U	С	-
K	1	ND(31)	I	U	С	9
L	1		1	U	С	-
М	1	-	1	υ	С	-
M1	1	-	I	U	С	
N	1	ND(30)	I	U	С	9
NC	1	-	1	υ	С	•
NCASE	1	ND(60)	1	บ	-	9
ND	100	6121	I	U	С	3,8
T	6220	1	R	÷	-	3
TCS	250	CD(1401)	R	υ	-	-
TGR	100	T(1751)	R	υ	-	-

TABLE 154. VARIABLE REFERENCES, SUBROUTINE CTOT

Variable Name	Common Size Ref Loc	Common	Variable Description			Table
		Ref Loc	Туре	Used	Calc	Ref
CCLØ	9	T(131)	R	'U	•	34
OØSØ	6	T(146)	R	U	= -	34
OØTEA	1	T(152)	R	U	•	34
D	2060	2061	R	12.	-	3,8
I	1	-	I	U	С	-
IP	80	/IPRINT/	1	υ	-	7
11	1	-	I	U	С	=
K2	1	-	I	υ	С	-
ND	100	6121	I	บ	-	3,9
N1	1	-	I	บ	С	-
T	6220	1	R	-	-	3,34
TAND	9	T(122)	R	υ	-	34
TT	24	T(411)	R	U	-	-
YC	150	T(201)	R	U	С	168
YTC	60	T(351)	R	U	-	39