

J.R. Esteban

ÁLGEBRA LINEAL Y GEOMETRÍA

Doble Grado en CC. Matemáticas e Ingeniería Informática 2019-2020

Ejercicios 38 a 42

38. Sea E un espacio vectorial con producto interior $\langle\cdot\,,\cdot\rangle$ y norma asociada $\|\cdot\|=+\sqrt{\langle\cdot\,,\cdot\rangle}$.

A. Demostrar que, cuando $\|\mathbf{x}\| = \|\mathbf{y}\|\,,$ se verifica :

 $\mathbf{x} + \mathbf{y}$ es ortogonal a $\mathbf{x} - \mathbf{y}$ si y sólo si $\operatorname{Im} \langle \mathbf{x}, \mathbf{y} \rangle = 0$.

B. Supongamos que Im $\langle {\bf x}\,, {\bf y}\rangle \neq 0$. Demostrar que existe $\theta \in [-\pi/2\,,\pi/2)$ tal que

 $\operatorname{Im} \langle e^{-i\theta} \mathbf{x}, e^{i\theta} \mathbf{y} \rangle = 0.$

C. Sean $T: E \longrightarrow E$ aplicación lineal y $\mathbf{u} \in E$, $\mathbf{u} \neq \mathbf{0}$, un vector propio de T con autovalor λ . Aplicar los apartados anteriores a $T(\mathbf{u})$ y \mathbf{u} cuando $|\lambda| = 1$ para obtener una relación entre el autovalor y θ .

39. Sea E un \mathbb{K} -espacio vectorial de dimensión finita, con producto interior $\langle\cdot\,,\cdot\rangle$. Supongamos que la aplicación lineal

$$H: E \longrightarrow E$$

satisface

- Existe $\mathbf{u} \in E$, $\mathbf{u} \neq \mathbf{0}$, tal que $\begin{cases} H(\mathbf{u}) = -\mathbf{u}, \\ \\ H(\boldsymbol{\xi}) = \boldsymbol{\xi}, \text{ cuando } \boldsymbol{\xi} \perp \mathbf{u} \end{cases}$
- A. Demostrar que H es unitaria y autoadjunta.
- B. Comprobar que:
 - 1. Dado $\mathbf{u} \in E$, $\mathbf{u} \neq \mathbf{0}$, no puede existir más de una aplicación lineal $H: E \longrightarrow E$ que cumpla (17) para ese mismo \mathbf{u} .
 - 2. H es de la forma $H=H_{\mathbf{u}}$, donde

$$H_{\mathbf{u}}(\mathbf{x}) = \mathbf{x} - 2 \frac{\langle \mathbf{x}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}.$$

Obsérvese que $H_{\lambda \mathbf{u}} = H_{\mathbf{u}}$ para todo $\lambda \in \mathbb{K}$.

- 3. Dada H, dos vectores ${\bf x}$ e ${\bf y}$ satisfacen (17) para H si y sólo si son linealmente dependientes.
- C. Sean $\mathbf{u}, \mathbf{v} \in E$ dos vectores tales que $\mathbf{v} + \mathbf{u}$ y $\mathbf{v} \mathbf{u}$ son ortogonales y ambos $\neq \mathbf{0}$. Demostrar que $H_{\mathbf{v}-\mathbf{u}}$ es la única transformación lineal que, además de cumplir (17), intercambia \mathbf{u} con \mathbf{v} .
- **40.** Sean E un espacio vectorial sobre el cuerpo de los números reales y $T:E\longrightarrow E$ una aplicación lineal. En el espacio vectorial $E^{\mathbb{C}}$ consideramos

$$T^{\mathbb{C}} : E^{\mathbb{C}} \longrightarrow E^{\mathbb{C}}$$

definida

$$T^{\mathbb{C}}(\mathbf{u} + \mathrm{i}\,\mathbf{v}) = T(\mathbf{u}) + \mathrm{i}\,T(\mathbf{v})$$

donde utilizamos la notación del ejercicio 36.

A. Comprobar que $T^{\mathbb{C}}$ es una aplicación \mathbb{C} -lineal y que

$$(\alpha T)^{\mathbb{C}} = \alpha T^{\mathbb{C}}$$
 para todo $\alpha \in \mathbb{R}$

B. Demostrar las identidades

$$(T_1 + T_2)^{\mathbb{C}} = T_1^{\mathbb{C}} + T_2^{\mathbb{C}}, \qquad (T_1 \circ T_2)^{\mathbb{C}} = T_1^{\mathbb{C}} \circ T_2^{\mathbb{C}}.$$

C. Siendo $\mathcal{B} = \{ \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n \}$ es una base del \mathbb{R} -espacio vectorial E y $\mathcal{B}^{\mathbb{C}} = \{ \mathbf{u}_1 + \mathrm{i} \mathbf{0}, \mathbf{u}_2 + \mathrm{i} \mathbf{0}, \dots, \mathbf{u}_n + \mathrm{i} \mathbf{0}) \}$ la correspondiente base de $E^{\mathbb{C}}$, hallar la relación entre

$$[T^{\mathbb{C}}]_{\mathcal{B}^{\mathbb{C}},\mathcal{B}^{\mathbb{C}}}$$
 y $[T]_{\mathcal{B},\mathcal{B}}$.

41. Sean E un espacio vectorial sobre el cuerpo de los números reales dotado de un producto escalar $\langle \cdot, \cdot \rangle$. En el espacio vectorial $E^{\mathbb{C}}$ definimos

$$\left\langle \mathbf{u}_{1}+\mathrm{i}\,\mathbf{v}_{1}\,,\,\mathbf{u}_{2}+\mathrm{i}\,\mathbf{v}_{2}\right\rangle _{_{E^{\mathbb{C}}}}=\left\langle \mathbf{u}_{1}\,,\,\mathbf{u}_{2}\right\rangle +\left\langle \mathbf{v}_{1}\,,\,\mathbf{v}_{2}\right\rangle +\mathrm{i}\left(\left\langle \mathbf{v}_{1}\,,\,\mathbf{u}_{2}\right\rangle -\left\langle \mathbf{u}_{1}\,,\,\mathbf{v}_{2}\right\rangle \right).$$

- A. Demostrar que $\langle \cdot \, , \, \cdot \rangle_{\!_{E^{\mathbb{C}}}}$ es un producto interior en $E^{\mathbb{C}}$.
- B. Comprobar la identidad

$$\|\mathbf{u} + i \mathbf{v}\|_{\mathbb{R}^{\mathbb{C}}}^{2} = \|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2}.$$

C. Dada $T:E\longrightarrow E$ aplicación lineal, hallar la aplicación lineal adjunta de $T^\mathbb{C}$ respecto de $\langle\cdot\,,\,\cdot\rangle_{_{E}^\mathbb{C}}$.

42. Sea E un espacio vectorial sobre $\mathbb R$, dotado de un producto escalar $\langle \cdot \, , \, \cdot \rangle$ y sea $T:E\longrightarrow E$ una aplicación lineal ortogonal.

Dada una base ortonormal $\mathcal{B}=\left\{\,\mathbf{u}_1\,,\mathbf{u}_2\,,\ldots\,,\mathbf{u}_n\,\right\}$ de $E\,,$ considérense el vector

$$\mathbf{x}_1 = T(\mathbf{u}_1) - \mathbf{u}_1$$

y la aplicación lineal $H_{\mathbf{x}_1}$ construida en el ejercicio 39.

Pongamos, para cada $j = 1, 2, \ldots, n$,

 E_j , el subsespacio generado por los vectores $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_j$

Se pide:

- A. Comprobar que $H_{\mathbf{x}_1} \circ T$ es la identidad en E_1 .
- B. Supongamos que $H_{\mathbf{x}_1}\,,H_{\mathbf{x}_2}\,,\ldots\,,H_{\mathbf{x}_{k-1}}\,,$ con $k\geq 2\,,$ satisfacen

$$T_{k-1} = H_{\mathbf{x}_{k-1}} \circ \cdots \circ H_{\mathbf{x}_2} \circ H_{\mathbf{x}_1} \circ T$$
 es la identidad en E_{k-1} .

Sea

$$\mathbf{x}_k = T_{k-1}(\mathbf{u}_k) - \mathbf{u}_k \,.$$

- 1. Comprobar que $H_{\mathbf{x}_k} \circ T_{k-1}$ es la identidad en el subespacio generado por \mathbf{u}_k .
- 2. \mathbf{x}_k es ortogonal a todos los \mathbf{u}_j , con $j = 1, 2, \dots, k-1$.
- 3. $T_k = H_{\mathbf{x}_k} \circ T_{k-1}$ es la identidad en E_k .
- C. Concluir que toda $T: E \longrightarrow E$ ortogonal es de la forma

$$T = H_{\mathbf{x}_1} \circ H_{\mathbf{x}_2} \circ \cdots \circ H_{\mathbf{x}_n}$$

