目 录

第	1	章	绪	论	J
	1.	1	空间	分析的概念	1
	1.	2		分析的研究内容	
	1.	3	空间	分析的研究进展	3
	1.	4	空间	分析与地理信息系统	6
		1.	4. 1	空间分析是 GIS 的核心 ···································	
		1.	4. 2	空间分析是 GIS 的核心功能	
		1.	4.3	空间分析的理论性和技术性	
		5	空间	分析与应用模型	9
				· ····································	
	参	考	文献		0
筙	2	章		空间分析的基本理论	
	2.	1		分析的理论基础	
	2.	. 2	空间	关系理论······· 1	
		2.	2. 1	空间关系的类型	
		2.	2. 2	空间关系描述	
		2.	2. 3	时空空间关系	36
		2.	2.4	空间关系理论的应用 3	37
	2.	. 3	地理	空间认知	37
		2.	. 3. 1	地理空间认知的概念	37
		2.	. 3. 2	地理空间认知的研究内容	38
	2	. 4	地理	空间推理	
			. 4. 1	地理空间推理的概念	43
		2.	. 4. 2	地理空间推理的特点	44
		2	. 4. 3	地理空间推理的研究内容	45
	2	., 5	空间	数据的不确定性分析	46
			. 5. 1	不确定性	40
		2.	. 5. 2	空间分析的不确定性	47

	空间分析方法的不确定性	
	空间数据不确定性分析的数学基础	
参考文献		56
	S 空间分析的数据模型 ······	
	数据	
	数据的表示	
	栅格数据模型表示	
	矢量数据模型表示	
3.3 空间	数据模型数据模型	65
	数据模型与数据结构	
	空间数据模型的概念	
	空间数据模型的类型	
	型	
3. 4. 1	场模型的数学表示	
3.4.2	场模型的特征	
	模型	
	欧氏空间的地物要素	
	要素模型的基本概念	
	基于要素模型的空间对象	
	基于要素的空间关系	
	结构模型	
3. 6. 1	网络空间	75
	网络模型概述	
	网络的组成要素	
	常用的网络模型	
	数据模型	
	概述	
	TGIS 的研究思路	
	时空数据模型设计的原则 ······	
	时空概念模型设计	
	时空数据模型的主要类型	
	空间数据模型	
	三维 GIS 的功能	
3. 8. 2	三维空间数据模型的类型	85

	三维空间数据的显示	
3.9 常见	GIS 软件的空间数据模型 ·······	91
	ARC/INFO 的数据模型	
3. 9. 2	ArcGIS 的数据模型	91
3. 9. 3	ArcView 的数据模型	92
3, 9, 4	GeoMedia 的数据模型 ·······	92
3. 9. 5	GeoStar 的数据模型 ······	93
3. 9. 6	MapInfo 的数据模型	93
∤ 思考题 …		93
参考文献		94
	各数据的空间分析方法 ······	
	数据	
4. 1. 1	栅格数据集的组成	
4. 1. 2	单元(cell)	
4. 1. 3	行(rows)与列(columns)	
4. 1. 4	值(value)	
4.1.5	空值(no data) ······	
4, 1, 6	分类区(zones)	
4.1.7	关联表	
4. 1. 8	坐标空间和栅格数据集	
4, 1, 9	在栅格数据集上表示要素	
4.2 栅格	·数据的聚类、聚合分析	
4. 2. 1	聚类分析	
	聚合分析	
4.3 棚格	·数据的信息复合分析 ····································	106
4.3.1	视觉信息复合	106
4. 3. 2	叠加分类模型	107
4.4 栅枠	\$数据的追踪分析	110
4.5 栅棹	验据的窗口分析	111
4. 5. 1	分析窗口的类型	111
4.5.2	窗口内统计分析的类型	112
4.6 栅格	S数据的量算分析 ····································	112
4.7 Are	GIS 的栅格数据空间分析工具	112
4, 7. 1	密度制图分析(density) ······	112
	距离制图分析(distance)	

4.	7. 3	栅格插值分析(interpolate to raster)	114
4.	7. 4	栅格数据的统计分析(statistics)····································	115
4.	7. 5	重分类分析(reclassify) ····································	116
4.	7. 6	表面分析(surface analysis) ······	117
思考	题		117
参考	油文		117
		■数据的空间分析方法····································	
5. 1	矢量	数据	119
5.	1. 1	矢量数据模型	
5.	1. 2	几何对象	119
5.	1.3	拓扑关系	120
5.	1. 4	拓扑数据结构	
5.	1.5	简单对象的组合	122
5. 2		数据的包含分析	
5. 3	矢量	t数据的缓冲区分析 ·······	125
5.	3. 1	点状要素的缓冲区	127
5.	3. 2	线状要素的缓冲区	127
5.	3. 3	面状要素的缓冲区	128
5.	3. 4	特殊缓冲区情况	
	3. 5	动态目标缓冲区	
5. 4	矢量	数据的叠置分析	
5.	4. 1	点与点的叠置	
5.	4. 2	点与线的叠置	132
		点与多边形的叠置	
		线与线的叠置	
		线与多边形的叠置	
		多边形与多边形的叠置	
5. 5	矢量	数据的网络分析	
5.	5. 1	网络分析的基本方法	
5.	5. 2	最短路径基本概念	
5.	5. 3	最短路径求解方法	
5.	5. 4	次最短路径求解算法	
	5. 5	最佳路径算法	
5. 6	ArcC	GIS 的矢量数据空间分析工具	146
5.	6. 1	ArcGIS 的缓冲区分析	146

5. 6. 2 AreGIS 的叠置分析 ····································	147
5.6.3 ArcGIS 的网络分析 ····································	148
思考题	149
参考文献	149
第 6 章 三维数据的空间分析方法······	151
6.1 三维地形模型	151
6.1.1 数字地面模型(DTM)	151
6.1.2 数字高程模型(DEM) ····································	152
6.1,3 DEM 的表示方法	152
6.1.4 DEM 在地图制图学与地学分析中的应用 ······	155
6.2 三维可视化	157
6.3 三维空间查询	158
6.4 三维空间特征量算	160
6.4.1 表面积计算	160
6.4.2 体积计算	161
6.5 地形分析	163
6.5.1 坡度和坡向计算	163
6.5.2 剖面分析	166
6.5.3 谷脊特征分析	167
6.5.4 水文分析	168
6.5.5 可视性分析	169
6.6 三维缓冲区分析	173
6.7 三维叠置分析	174
6.8 阴影分析	175
6.9 水淹分析	177
6.9.1 给定洪水水位的淹没分析	
6.9.2 给定洪量的淹没分析	179
6.9.3 洪水淹没的三维显示	
6. 10 AreGIS 的三维数据空间分析工具	180
6.10.1 表面模型的创建	181
6.10.2 数据转换	184
6.10.3 表面分析	185
思考题	187
参考文献	188

第7章 空间数据的统计分析方法	90
7.1 GIS 属性数据 19	90
7.2 一般统计分析	90
7.3 地统计分析概述 19) 3
7.4 空间点模式分析方法) 4
7.4.1 空间点模式的概念与空间分析方法) 4
7.4.2 基于密度的分析方法	94
7.4.3 基于距离的方法	
7.5 格网或面状数据空间统计分析方法 20	33
7.5.1 空间接近性与空间权重矩阵	
7.5.2 面状数据的趋势分析	
7.5.3 空间自相关分析	
7.6 空间变异函数 20	08
7.6.1 区域化变量的定义和平稳性假设 20	08
7.6.2 变异函数的定义和非负定性条件2	10
7.6.3 变异函数模型拟合及其评价	
7, 6.4 理论变异函数模型2	14
7.7 克里金估计方法 2	15
7.7.1 普通克里金估计 2	16
7.7.2 泛克里金估计 2	18
7.7.3 协同克里金估计 2	.20
7.7.4 指示克里金估计 2	.22
7.7.5 估计评价和采样设计 2	:24
7.7.6 克里金估计的优缺点 2	
7.8 探索性空间数据分析方法 2	
7.8.1 探索性数据分析概述	125
7.8.2 探索性数据分析的基本方法	120
7.8.3 探索性空间数据分析	220
7.9 地统计分析研究展望	222
7. 10 AreGIS 的地统计分析工具	232
思考题	234
参考文献	6JT
第 8 章 空间决策支持····································	236
8.1 空间分析与空间决策支持	236
8.1.1 一般空间分析	237
6	

	8. 1. 2	空间决策支持	240
	8.1.3	智能空间决策支持	241
	8.2 空间	J决策支持系统 ····································	243
	8. 2. 1	空间决策过程的复杂性	243
	8. 2. 2	空间决策支持系统的分类	246
	8. 2. 3	空间决策支持系统的一般构建方法	247
	8. 2, 4	空间决策支持系统的功能	250
	8.3 空间	决策支持的相关技术	252
	8. 3. 1	决策支持系统技术	252
	8. 3. 2	专家系统技术	252
	8, 3, 3	空间知识的表达与处理	254
	8. 3. 4	空间数据仓库	267
	8. 3. 5	空间数据挖掘与知识发现	270
	思考题…		279
	参考文献:		279
第	9章 空(间分析的应用······	284
1	9.1 空间	分析与空间建模	284
	9. 1. 1	从空间分析到空间建模	284
	9. 1. 2	空间建模的方法	284
	9. 1. 3	空间建模的步骤	285
I	9.2 空间	分析在洪水灾害评估中的应用 ······	286
	9. 2. 1	数据库和评估模型的建立	287
	9. 2. 2	洪灾评估系统中空间分析的特点	288
	9. 2. 3	空间分析在荆江分滞洪区洪水计算中的应用	288
		空间分析在黄河东平湖蓄滞洪区洪水计算中的应用	
ı		分析在水污染监测中的应用	
I		分析在地震灾害和损失估计中的应用	
		分析在城市规划与管理中的应用	
		城市规划空间分析的意义	
	9. 5. 2	城市规划的空间分析方法	296
1	9.6 空间	分析在矿产资源评价中的应用	297
	9.7 空间	分析在输电网 GIS 中的应用	298
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	参考文献 ·		200

第 10 章	ī 空间分析软件与二次开发 ····································	303
10. 1	ArcGIS 的空间分析功能	303
10. 2	Geoda 的空间分析功能	306
10. 3	R 语言的空间分析功能 ····································	308
10. 4	空间分析功能的二次开发	309
思考	题	319
参考	文献	319

•