Network Coding on the Physical-Layer

Presenter: Hongxing LI

October 8, 2010

- 1 Introduction
 - What is Network Coding?
 - Categorization of Network Coding
 - By Linear Random Codes
 - By Mixing
- 2 Physical/Analog Network Coding
 - Physical Network Coding
 - Analog Network Coding
- 3 Our work
 - Cooperative Analog Network Coding (*CANC*)
 - Performance Comparison

What is Network Coding?

- First proposed by Ahlswede et al.
- One of the most popular topic in networking.
- Can be used to attain the maximum possible information flow in a network.

- First proposed by Ahlswede et al.
- One of the most popular topic in networking.
- Can be used to attain the maximum possible information flow in a network.

Definition

Network coding is a technique where, instead of simply relaying the packets of information they receive, the nodes of a network will take several packets and combine them together for transmission.

Categorization of Network Coding

By Linear Random Codes

Categorization of Network Coding

- By Linear Random Codes
- By Mixing

Introduction

Categorization of Network Coding

Linear Random Codes: Mechanism

1 Encode the source packets into multiple code blocks with random linear coefficients.

Linear Random Codes: Mechanism

- 1 Encode the source packets into multiple code blocks with random linear coefficients.
- 2 Decode the source packets if enough linear-independent code blocks are received.

Linear Random Codes: Mechanism

- Encode the source packets into multiple code blocks with random linear coefficients.
- 2 Decode the source packets if enough linear-independent code blocks are received.

Figure: Network coding by linear random codes.

Linear Random Codes: Mechanism

- Encode the source packets into multiple code blocks with random linear coefficients.
- 2 Decode the source packets if enough linear-independent code blocks are received.

Figure: Network coding by linear random codes.

Linear Network Coding: Merits

To recover source packets, instead of receiving the complete copies, we only need enough linear-independent code blocks. Each code block flows in the network as an equation of source packets.

- Delivery efficiency.
- Ease of management.
- Resilience to network dynamics: packet loss, node arrival and departure.

Linear Network Coding: Applications

- Live media broadcast.
- Media on demand.
- Stock quotes distribution.
- File sharing.
- Gaming.
- Conferencing.
- Distance learning.

- Introduction
 - Categorization of Network Coding

Mixing

Instead of forwarding the data packets, we mix the packets, *i.e.* XOR operation, and send out the mixed packet.

Figure: Butterfly topology.

Mixing

Figure: Two-way transmission.

Physical/Analog Network Coding

- Mixing at the signal level.
- Instead of decode-and-forward, the intermediate node only forwards the mixed signal.

Physical Network Coding

- Proposed by Zhang et al. (CUHK)
- Demodulate-and-forward.
- Bit-level synchronization.
- Power control.

Figure: A three-node linear network.

Modulation mapping at N_1 and N_3 ,				Demodulation		
				mapping at N_2		
				Input	Output	
Input		Output			Modulation mapping	
					at N_2	
					Input	Output
$S_1^{(I)}$	$S_3^{(I)}$	a_1	a_3	$a_1 + a_3$	$S_2^{(I)}$	a_2
1	1	1	1	2	0	-1
0	1	-1	1	0	1	1
1	0	1	-1	0	1	1
0	0	-1	-1	-2	0	-1

Figure: PNC Mapping (QPSK): modulation mapping at 1, 2; demodulation and modulation mappings at 3.

Analog Network Coding

- Proposed by Katabi et al. (MIT)
- Amplify-and-forward.
- No synchronization.
- No Power control.

Modulation scheme: MSK. So received signal is in the form of $y[n]=Ae^{i\theta[n]}+Be^{i\delta[n]}.$

Figure: Geometric representation of the phase computation. the received complex sample y[n] is the sum of two complex numbers u and v. The length of the first complex number is A and the length of second is B. There are exactly two pairs of such complex numbers (u,v) that sum up to y[n]. Thus, two solutions exist for the pair $(\theta[n], \delta[n])$.

Figure: Butterfly topology.

Figure: Two-way transmission.

Our work

Cooperative Analog Network Coding (CANC)

Cooperative Analog Network Coding (CANC)

 Explore the application of physical/analog network coding for multi-hop scenarios other than two-way Alice-Bob topology or its simple derivatives.

Cooperative Analog Network Coding (CANC)

- Explore the application of physical/analog network coding for multi-hop scenarios other than two-way Alice-Bob topology or its simple derivatives.
- Cooperation among relay nodes.

Cooperative Analog Network Coding (CANC)

- Explore the application of physical/analog network coding for multi-hop scenarios other than two-way Alice-Bob topology or its simple derivatives.
- Cooperation among relay nodes.
- Combination of linear random codes and physical/analog network coding.
 - Use the channel state, i.e. amplitude attenuation and phase drift, as the random codes.
 - Each path constitutes a linear equation of source packets.

- Our work
 - Cooperative Analog Network Coding (CANC)

 $\begin{tabular}{ll} Figure: Step 1: Time slot 1 to M. \end{tabular}$

- Our work
 - Cooperative Analog Network Coding (CANC)

Figure: Step 1: Time slot 1 to M.

Figure: Step 2: Time slot M+1.

- Our work
 - Cooperative Analog Network Coding (CANC)

Figure: Step 1: Time slot 1 to M.

Figure: Step 2: Time slot M+1.

Figure: Step 3: Time slot M+2 to 2M+1.

Figure: Scheduling of multi-hop unicast flow with traditional routing.

Performance Comparison

Figure: Scheduling of multi-hop unicast flow with traditional routing.

Figure: Scheduling of multi-hop unicast flow with physical/analog network coding.

Figure: Scheduling of multi-hop unicast flow with traditional routing.

Figure: Scheduling of multi-hop unicast flow with physical/analog network coding.

Figure: Scheduling of multi-hop unicast flow with CANC.

Our work

☐ Performance Comparison

Figure: Unicast flow capacity: a comparison among three schemes.

Thank You!