NUMÉRO DE PLACE :

DEUG SCIENCES M.I.A.S. première année

Informatique - S.I.M.E. Devoir surveillé du 4 juin 2002

durée : 1 heure Sans document ni calculatrice

portables (micro, messagerie et téléphone) interdits

 ${f AVERTISSEMENT}$: Tous les exercices sont totalement indépendants.

Toutes les réponses doivent être faites sur cette feuille d'énoncé et exclusivement sur celle-ci.

N'oubliez d'inscrire votre numéro de place, par contre pas de nom ni de numéro de groupe.

L'preuve est volontairement longue mais le barême (sur 26) en tient compte.

Sur les fractions continues

Exercice 1: Cochez la case correcte (attention : une réponse fausse compte -1) $ [1,1,1,2] + [1,1,1,1,2,2,2,\ldots] = [2,2,2,3,2,2,2,\ldots] $ $ e\sqrt{11} = [7,5,1,2,1,0,2,1,0,0,2,1,0,0,0,2,1,0,0,0,0,2,\ldots] $ $ [2,8,\ldots] \times [3,7,1,\ldots] < 7 $	VRAI	FAUX
le développement en fractions continues de $(1+\sqrt{3})^2$ est fini le développement en fractions continues permet de trouver un encadrement par des entiers		
Exercice 2 : Connaissant le développement en fractions continues d'un réel, peut-on avoir celui de son inverse ? Et si oui comment ?	facileme	nt
Exercice 3: Si $r_1 = [a_1, a_2, a_3, \dots, a_{i-1}, a_i, \dots]$ et $r_2 = [a_1, a_2, a_3, \dots, a_{i-1}, b_i, \dots]$ avec $a_i <$ facilement comparer r_1 et r_2 ? Et si oui comment?	b_i peut-o	on

Exercice 4: À quel nombre correspond le développement en fractions continues périodique $[1, 2, 3, 3, 3, \ldots]$

