Rappels d'Analyse.

Commençons ces rappels par deux lemmes sur les séries numériques.

Soient $(b_n)_{n\geq 1}$ une suite croissante de réels strictement positifs – on pose $b_0=0$ – vérifiant $\lim_{n\to+\infty}b_n=+\infty$ et $(x_n)_{n\geq 1}$ une suite de réels.

Lemme de Césaro. Si $\lim_{n\to+\infty} x_n = x \in \mathbf{R}$, alors $\lim_{n\to+\infty} b_n^{-1} \sum_{i=1}^n (b_i - b_{i-1}) x_i = x$.

Lemme de Kronecker. Si la série $\sum b_n^{-1} x_n$ converge dans **R**, alors $\lim_{n \to +\infty} b_n^{-1} \sum_{i=1}^n x_i = 0$.

Démonstration. Établissons le lemme de Césaro. Notons $u_n = b_n^{-1} \sum_{i \leq n} (b_i - b_{i-1}) x_i - x$ et observons que

$$|u_n| = \left| b_n^{-1} \sum_{i \le n} (b_i - b_{i-1})(x_i - x) \right| \le b_n^{-1} \sum_{i \le n} (b_i - b_{i-1})|x_i - x|.$$

La suite $(x_n)_{n \in \mathbb{N}^*}$ est convergente dans \mathbb{R} donc bornée disons par x^* . On a alors pour tous $n \geq 1, k \geq 1$,

$$|u_{n+k}| \le 2x^* b_{n+k}^{-1} b_k + b_{n+k}^{-1} (b_{n+k} - b_k) \sup_{i \ge k+1} |x_i - x| \le 2x^* b_{n+k}^{-1} b_k + \sup_{i \ge k+1} |x_i - x|.$$

Par conséquent, pour tout $k \geq 1$,

$$\limsup_{n \to +\infty} |u_n| = \limsup_{n \to +\infty} |u_{n+k}| \le \sup_{i > k+1} |x_i - x|.$$

Il reste à prendre la limite lorsque k tend vers $+\infty$ pour conclure.

Passons à la démonstration du lemme de Kronecker. Notons $R_i = \sum_{k \geq i} b_k^{-1} x_k$; par hypothèse $\lim_{i \to +\infty} R_i = 0$. On a $b_i(R_i - R_{i+1}) = x_i$ de sorte que, comme $b_0 = 0$,

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} b_i (R_i - R_{i+1}) = \sum_{i=1}^{n} b_i R_i - \sum_{i=1}^{n+1} b_{i-1} R_i = \sum_{i=1}^{n} (b_i - b_{i-1}) R_i - b_n R_{n+1}.$$

Il reste à diviser par b_n et appliquer le lemme de Césaro pour conclure.

Poursuivons par un résultat élémentaire.

Lemme 1. Soit $(z_n)_{n \in \mathbb{N}^*}$ une suite de complexes. Si $\lim_{n \to +\infty} nz_n = z$, alors $\lim_{n \to +\infty} (1 + z_n)^n = e^z$.

Démonstration. Notons $w_n = e^{\frac{z}{n}}$. On a

$$(1+z_n)^n - e^z = (1+z_n)^n - w_n^n = (1+z_n - w_n) \sum_{k=0}^{n-1} (1+z_n)^{n-1-k} w_n^k ;$$

par conséquent,

$$|(1+z_n)^n - e^z| \le n |1+z_n - w_n| \sup_{k \le n-1} \left\{ |1+z_n|^{n-1-k} |w_n|^k \right\} \le n |1+z_n - w_n| (1+|z_n|)^n e^{|z|},$$

et, comme $ln(1+x) \le x$ pour tout x > -1,

$$|(1+z_n)^n - e^z| \le n |1+z_n - w_n| e^{n|z_n|+|z|}$$

On a d'autre part, pour tout $|z| \leq 1$,

$$|e^z - 1 - z| = \left| \sum_{n \ge 2} \frac{z^n}{n!} \right| \le |z|^2 \sum_{n \ge 2} \frac{1}{n!} \le |z|^2 \sum_{n \ge 2} 2^{-(n-1)} = |z|^2.$$

Il vient alors, pour tout $n \ge |z|$, $|1+z_n-w_n| \le |z_n-z/n| + |z|^2/n^2$, et par suite

$$|(1+z_n)^n - e^z| \le (|nz_n - z| + n^{-1}|z|^2) e^{n|z_n| + |z|}.$$

Le résultat s'en suit immédiatement.

Terminons ces rappels par une version probabiliste du lemme de Dini.

Proposition 2. Soient $(F_n)_{n\geq 1}$ et F des fonctions de répartition avec F continue sur \mathbf{R} . Si $(F_n)_{n\in \mathbb{N}}$ converge simplement vers F sur \mathbf{R} , alors la convergence est uniforme sur \mathbf{R} .

Démonstration. Fixons a > 0. Notons, pour $i = 1, \ldots, p + 1$, $t_i = -a + (i - 1)2a/p$ et, pour r > 0, $\omega_F(r) = \sup_{|t-s| < r} |F(t) - F(s)|$.

Puisque, F et F_n sont des fonctions de répartition,

- si $t < t_1, F(t) - F_n(t) \le F(t_1)$ et

$$F_n(t) - F(t) \le F_n(t_1) \le |F_n(t_1) - F(t_1)| + F(t_1).$$

- Si $t \in [t_{i-1}, t_i], i = 2, \dots, p,$

$$F(t) - F_n(t) \le F(t_i) - F_n(t_{i-1}) \le |F(t_i) - F(t_{i-1})| + |F(t_{i-1}) - F_n(t_{i-1})|,$$

$$F_n(t) - F(t) \le F_n(t_i) - F(t_{i-1}) \le |F_n(t_i) - F(t_i)| + |F(t_i) - F(t_{i-1})|.$$

- Finalement, si $t \geq t_{p+1}$, $F_n(t) - F(t) \leq 1 - F(t_{p+1})$ et

$$F(t) - F_n(t) \le 1 - F_n(t_{p+1}) \le 1 - F(t_{p+1}) + |F(t_{p+1}) - F_n(t_{p+1})|.$$

Par conséquent,

$$||F - F_n||_{\infty} \le \max\{1 - F(a), \omega_F(2a/p), F(-a)\} + \max\{|F_n(t_i) - F(t_i)| : i = 1, \dots, p + 1\}$$

et donc, puisque F_n converge simplement vers F,

$$\lim \sup_{n \to +\infty} ||F - F_n||_{\infty} \le \max\{1 - F(a), \omega_F(2a/p), F(-a)\}.$$

F est uniformément continue sur \mathbf{R} puisque c'est une fonction continue possédant des limites finies en $+\infty$ et $-\infty$; donc $\lim_{r\to 0^+} \omega_F(r) = 0$.

Il reste à faire tendre p puis a vers $+\infty$.

Remarque. Sous les hypothèses de la proposition précédente, $F_n(t-)$ converge uniformément sur \mathbf{R} vers F(t). En effet, pour tous s < t,

$$|F_n(s) - F(t)| \le 2 ||F - F_n||_{\infty} + |F(s) - F(t)|$$

et donc si $s \uparrow t$,

$$|F_n(t-) - F(t)| \le 2 ||F - F_n||_{\infty}$$
.