Trabalho 2 - Encaminhamento Dinâmico

Miguel Ferreira
miguelferreira108@gmail.com
Vanessa Silva
up201305731@fc.up.pt

Administração de Redes, Departamento de Ciências de Computadores, Faculdade de Ciências da Universidade do Porto

18 de Abril de 2016

Introdução

No âmbito da unidade curricular de Administração de Redes, implementamos a rede emulada descrita na figura 1.

Figura 1: Rede emulada implementada na aula.

Na rede emulada os routers utilizados na simulação são da série 7200, o terminal 2 é um router que funciona como se fosse um terminal. Os terminais 1 e 2, usam como default gateway o router da rede à qual estão ligados, router R1 e R7, respetivamente.

O router R3 corre RIP em duas interfaces, (192.168.1.225 e 192.168.1.162), e OSPF numa outra, (192.168.100.1). Este router redistribui no OSPF as rotas aprendidas pelo RIP e vice-versa.

Questões

1. traceroute antes do corte da ligação entre R6 e R7:

R10#traceroute 172.16.1.2

Type escape sequence to abort. Tracing the route to 172.16.1.2

- 1 192.168.1.1 64 msec 60 msec 60 msec
- 2 192.168.1.130 64 msec 60 msec 60 msec
- 3 192.168.1.162 88 msec 96 msec 100 msec
- 4 192.168.100.2 92 msec 88 msec 92 msec
- 5 172.20.1.2 120 msec 120 msec 128 msec
- 6 172.16.1.2 120 msec * 148 msec

traceroute após o corte da ligação entre R6 e R7:

R10#traceroute 172.16.1.2

Type escape sequence to abort. Tracing the route to 172.16.1.2

- 1 192.168.1.1 36 msec 32 msec 36 msec
- 2 192.168.1.130 72 msec 60 msec 64 msec
- 3 192.168.1.162 88 msec 92 msec 64 msec
- 4 192.168.100.2 92 msec 88 msec 100 msec
- 5 * * *
- 6 * * *
- 7 *

192.168.1.162 !H *

a.

Router#show ip ospf database

OSPF Router with ID (0.0.0.6) (Process ID 6)

Router Link States (Area 0)

Link ID	ADV Router	Age	Seq#	Checksum	Link	count
0.0.0.3	0.0.0.3	1670	0x80000003	0x00DDA3	1	
0.0.0.4	0.0.0.4	1653	0x80000003	0x009DE6	1	
0.0.0.5	0.0.0.5	1643	0x80000003	0x009BE5	1	
0.0.0.6	0.0.0.6	1665	0x80000003	0x00B8C2	1	

Net Link States (Area 0)

Link ID	ADV Router	Age	Seq#	Checksum
192.168.100.2	0.0.0.6	1665	0x80000003	0x008EB9

Summary Net Link States (Area 0)

Link ID 172.16.2.0 172.17.0.0 172.20.1.0 172.20.1.8 172.20.1.12	ADV Router 0.0.0.6 0.0.0.6 0.0.0.6 0.0.0.6	Age 1665 1665 485 1665	Seq# 0x80000002 0x8000000A 0x80000002 0x80000004	0x00FE5B 0x00E480 0x000952	
Router Link St	ates (Area 1)				
Link ID 0.0.0.6 0.0.0.7 0.0.0.9	ADV Router 0.0.0.6 0.0.0.7 0.0.0.9	Age 496 800 1599	0x80000006	Checksum Link count 0x006EE9 1 0x007F90 3 0x005630 1	5
Net Link State	s (Area 1)				
Link ID 172.20.1.2 172.20.1.6	ADV Router 0.0.0.7 0.0.0.9	Age 796 1599	Seq# 0x80000004 0x80000002		
Summary Net LI.	nk States (Area	1)			
Link ID 172.16.2.0 172.17.0.0 172.20.1.8 172.20.1.12 192.168.100.0	0.0.0.6	Age 1666 1666 1666 1666	Seq# 0x80000002 0x80000002 0x80000002 0x80000004 0x80000004	0x0090D2 0x00FE5B 0x000952 0x0078E6	
·	nk States (Area				
Link ID 0.0.0.3	ADV Router 0.0.0.6	Age 1666	Seq# 0x80000002	Checksum Ox009B8C	
Router Link St	ates (Area 2)				
Link ID 0.0.0.6 0.0.0.8 0.0.0.9	ADV Router 0.0.0.6 0.0.0.8 0.0.0.9	Age 1668 1603 1600	0x80000004	Checksum Link count 0x00403C 1 0x000BE5 3 0x006147 2	5
Net Link State	s (Area 2)				
Link ID 172.20.1.9 172.20.1.13	ADV Router 0.0.0.9 0.0.0.8 nk States (Area :	Age 1600 1603	Seq# 0x80000002 0x80000002		
·					
Link ID 172.20.1.0	ADV Router 0.0.0.6	Age 487	Seq# 0x8000000A	Checksum 0x00E480	

192.168.100.0	0.0.0.6	1668	0x80000004 0x00C19A

Summary ASB Link States (Area 2)

Link ID	ADV Router	Age	Seq#	Checksum
0.0.0.3	0.0.0.6	1668	0x80000002	0x009B8C

Type-5 AS External Link States

Link ID	ADV Router	Age	Seq#	${\tt Checksum}$	Tag
192.168.1.0	0.0.0.3	1673	0x80000002	0x003D24	0
192.168.1.128	0.0.0.3	1673	0x80000002	0x007A06	0
192.168.1.160	0.0.0.3	1673	0x80000002	0x003927	0
192.168.1.192	0.0.0.3	1673	0x80000002	0x00F748	0
192.168.1.224	0.0.0.3	1673	0x80000002	0x00B669	0

b. O corte da ligação entre R6 e R7 não fez com que o percurso dos pacotes fosse desviado de modo a atravessar R8 e R9, uma vez que, como podemos verificar no show ip ospf database obtido na alínea anterior, o router R6 "conhece"todos os routers envolvidos e em especial o R7, (Router Link States (Area 1)), para a qual tem uma rota intra-área que é sempre preferida pelo OSPF.

2.

FastEthernet1/1

a. Como podemos verificar a baixo, no router R8, o estado do vizinho R9 fica DOWN, (state DOWN). O evento que ocorreu nesse instante e despoletou essa mudança foi o IE2 (ver lista dos eventos de transição na tabela 8-1 do livro Routing TCP/IP, vol.1, 2^a ed).

```
Router#debug ip ospf adj
OSPF adjacency events debugging is on
*Apr 14 15:58:38.411: OSPF: 0.0.0.9 address 172.20.1.9 on FastEthernet1/1 is dead
*Apr 14 15:58:38.411: OSPF: 0.0.0.9 address 172.20.1.9 on FastEthernet1/1 is dead,
 state DOWN
*Apr 14 15:58:38.411: %OSPF-5-ADJCHG: Process 8, Nbr 0.0.0.9 on FastEthernet1/1
from FULL to DOWN, Neighbor Down: Dead timer expired
*Apr 14 15:58:38.415: OSPF: Neighbor change Event on interface FastEthernet1/1
*Apr 14 15:58:38.415: OSPF: DR/BDR election on FastEthernet1/1
*Apr 14 15:58:38.415: OSPF: Elect BDR 0.0.0.8
*Apr 14 15:58:38.415: OSPF: Elect DR 0.0.0.8
*Apr 14 15:58:38.415: OSPF: Elect BDR 0.0.0.0
*Apr 14 15:58:38.415: OSPF: Elect DR 0.0.0.8
*Apr 14 15:58:38.419:
                             DR: 0.0.0.8 (Id)
*Apr 14 15:58:38.419: OSPF: Remember old DR 0.0.0.9 (id)
*Apr 14 15:58:38.915: OSPF: Build router LSA for area 2, router ID 0.0.0.8,
 seq 0x80000005
*Apr 14 15:58:38.919: OSPF: No full nbrs to build Net Lsa for interface
```

b. R8 envia um *LS Update* para a rede *multicast* 224.0.0.5 no instante em que deteta que R9 "morreu", nesta mensagem é enviado um LSA (Router-LSA). O objetivo dos LAS's é permitir construir um grafo dirigido da rede para posteriormente se calcular o caminho mais curto para cada destino.

O Router LSA, enviado por R8, serve para este se anunciar e identificar as suas ligações na área a que pertence juntamente com as respetivas métricas, de forma a se poder cumprir com o objetivos dos LSA's. Uma vez que R8 deteta que um vizinho, R9, "morreu"este envia um Router LSA para se poder "construir"um novo grafo dirigido com a atualização das suas ligações. R8 informa então que tem 3 ligações disponíveis "Number of Links=3, em que uma é de trânsito, Type: Transit, (informando que o endereço IP do Designated Router é 172.20.1.13, o próprio R8, e a métrica é 10), e as duas ligações restantes são stub (ponta), Type: stub, em que uma tem número de IP da rede/subrede 172.20.1.8 com métrica 10 e a outra tem número de IP da rede/subrede 172.16.2.0 com métrica 10 .

Figura 2: Captura de pacotes na ligação entre R6 e R8.

c. A mensagem que permite ao router R9 saber que tem comunicação bidirecional (two-way) com R8 apresenta-se na figura 3, devidamente sinalizada. Escolhemos esta mensagem, Hello Packet, uma vez que é o sub-protocolo Hello que verifica conexões bidirecionais entre os vizinhos. Quando um router, R8, deteta o seu Router ID num Hello recebido, sabe que existe comunicação bidirecional com o vizinho que o enviou, R9, como se pode analisar na figura.

Figura 3: Captura de pacotes na ligação entre R8 e R9.

- d. No ficheiro que contem a captura de R8-R9 (Capturas Wireshark/2g.pcapng) encontramos vários tipos de anúncios em cada mensagem *LS Update*:
 - Tipo 1 Router LSA no pacote 25, servindo para o *router* R8 identificar e partilhar as suas ligações.
 - Tipo 2 Network LSA servindo para o router designado informar sobre os routers ligado ao nó virtual correspondente à rede do DR.
 - Tipo 3 Network Summary informa sobre os destinos sumarizados com custos a partir do Area Border Router, neste caso o R3.
 - Tipo 4 ASBR Summary Rota para o router Autonomous System Boundary Router que gerou os LSAs de tipo 5.
 - Tipo 5 AS External LSA servindo para o *router* informar sobre os destinos externos ao OSPF. Neste caso em particular, as rotas externas são todas do Tipo 2 pois são importadas de uma métrica incompatível com OSPF.
 - e. Campos Link State ID:
 - Tipo 1 ID do router que gerou o LSA.
 - Tipo 2 Endereço IP da interface do DR nessa rede.
 - Tipo 3 Endereço IP da rede de destino.

- Tipo 4 Router ID do ASBR que gerou o AS External LSA.
- Tipo 5 Endereço IP da rede de destino do External LSA.

Advertising Router - ID do *router* que gera o LSA. Nos LSA do tipo 1, dentro de cada entrada LSA (LinkID, LinkData, LinkType, Metric), podemos construir um grafo com adjacência entre destinos e o *router* que emite o LSA. Exemplo (pacote 25, *advertising router* 0.0.0.8):

```
Type: Stub ID: 172.20.1.8 Data: 255.255.255.252 Metric: 10
Link ID: 172.20.1.8 - IP network/subnet number
Link Data: 255.255.255.252
Link Type: 3 - Connection to a stub network
Number of Metrics: 0 - TOS
0 Metric: 10
```

Nos LSA do tipo 2, a informação em "Attached router" permite separar o grafo nas suas componentes fortemente conexas, separando-o em "áreas":

```
LSA-type 2 (Network-LSA), len 32
.000 0000 1101 1101 = LS Age (seconds): 221
0... ... = Do Not Age Flag: 0
Options: 0x22 ((DC) Demand Circuits, (E) External Routing)
LS Type: Network-LSA (2)
Link State ID: 172.20.1.13
Advertising Router: 0.0.0.8
Sequence Number: 0x80000003
Checksum: 0xba9b
Length: 32
Netmask: 255.255.255.252
Attached Router: 0.0.0.8
Attached Router: 0.0.0.6
```

Nos LSA do tipo 5, podemos acrescentar ao grafo informação sobre os destinos externos ao OSPF e a sua adjacência ao ASBR:

```
LSA-type 5 (AS-External-LSA (ASBR)), len 36
    .000 0000 1111 0101 = LS Age (seconds): 245
    O... .... = Do Not Age Flag: O
    Options: 0x20 ((DC) Demand Circuits)
    LS Type: AS-External-LSA (ASBR) (5)
    Link State ID: 192.168.1.224
    Advertising Router: 0.0.0.3
    Sequence Number: 0x80000003
    Checksum: Oxb46a
    Length: 36
    Netmask: 255.255.255.224
    1... = External Type: Type 2 (metric is larger than any other link state path)
    .000\ 0000 = TOS: 0
    Metric: 100
    Forwarding Address: 0.0.0.0
    External Route Tag: 0
```

f. O último anúncio do tipo *Router LSA* originado pelo *router* R8 é o pacote 1761, do ficheiro Capturas Wireshark/2g.pcapng, que se apresenta a seguir e onde podemos ver, para cada uma das ligações, o respetivo tipo, campos ID e Data e os seus significados:

```
LSA-type 1 (Router-LSA), len 60
    .000 0000 0000 0101 = LS Age (seconds): 5
    O... .... = Do Not Age Flag: O
    Options: 0x22 ((DC) Demand Circuits, (E) External Routing)
    LS Type: Router-LSA (1)
    Link State ID: 0.0.0.8
    Advertising Router: 0.0.0.8
    Sequence Number: 0x80000003
    Checksum: 0x0de4
    Length: 60
    Flags: 0x00
    Number of Links: 3
    Type: Transit ID: 172.20.1.9 Data: 172.20.1.10
        Link ID: 172.20.1.9 - IP address of Designated Router
        Link Data: 172.20.1.10 - endereço IP do router nessa rede
        Link Type: 2 - Connection to a transit network
        Number of Metrics: 0 - TOS
        0 Metric: 10
    Type: Transit ID: 172.20.1.13
                                      Data: 172.20.1.13
        Link ID: 172.20.1.13 - IP address of Designated Router
        Link Data: 172.20.1.13 - endereço IP do router nessa rede
        Link Type: 2 - Connection to a transit network
        Number of Metrics: 0 - TOS
        0 Metric: 10
    Type: Stub
                  ID: 172.16.2.0
                                       Data: 255.255.255.0
                                                            Metric: 10
        Link ID: 172.16.2.0 - IP network/subnet number (prefixo)
        Link Data: 255.255.255.0 - máscara da rede
        Link Type: 3 - Connection to a stub network
        Number of Metrics: 0 - TOS
        0 Metric: 10
   g. Pacote 1737: R8 a R9.
LSA-type 1 (Router-LSA), len 60
    .000 0000 0010 1011 = LS Age (seconds): 43
    O... .... = Do Not Age Flag: O
    Options: 0x22 ((DC) Demand Circuits, (E) External Routing)
    LS Type: Router-LSA (1)
    Link State ID: 0.0.0.8
    Advertising Router: 0.0.0.8
    Sequence Number: 0x8000001
    Checksum: 0xdab9
    Length: 60
    Flags: 0x00
    Number of Links: 3
                                       Data: 255.255.255.252 Metric: 10
    Type: Stub
                  ID: 172.20.1.8
        Link ID: 172.20.1.8 - IP network/subnet number
        Link Data: 255.255.255.252
        Link Type: 3 - Connection to a stub network
        Number of Metrics: 0 - TOS
        0 Metric: 10
    Type: Stub
                 ID: 172.20.1.12 Data: 255.255.255.252 Metric: 10
```

Link ID: 172.20.1.12 - IP network/subnet number

Link Data: 255.255.255.252

Link Type: 3 - Connection to a stub network

Number of Metrics: 0 - TOS

O Metric: 10

Type: Stub ID: 172.16.2.0 Data: 255.255.255.0 Metric: 10

Link ID: 172.16.2.0 - IP network/subnet number

Link Data: 255.255.255.0

Link Type: 3 - Connection to a stub network

Number of Metrics: 0 - TOS

O Metric: 10

Após um Hello Packet (cujo propósito é estabelecer conexões bidirecionais) de R9, o router R8 responde com uma BD Description cujo propósito é descrever as ligações entre cada router com os seus parceiros adjacentes. Seguidamente há um LS Request de R9 para R10, terminal 1, pedindo informação desta forma. Como resposta a este pedido o R10 envia um LS Update. Cada LSA é finalmente confirmado com um LS Acknowledge por cada recetor.

3. *Router* R3:

```
Router#show ip ospf interface FastEthernet 1/1
%OSPF: OSPF not enabled on FastEthernet1/1
Router#show ip ospf interface FastEthernet 1/0
%OSPF: OSPF not enabled on FastEthernet1/0
Router#show ip ospf interface FastEthernet 2/0
FastEthernet2/0 is up, line protocol is up
  Internet Address 192.168.100.1/24, Area 0
  Process ID 3, Router ID 0.0.0.3, Network Type BROADCAST, Cost: 10
  Transmit Delay is 1 sec, State DROTHER, Priority 1
  Designated Router (ID) 0.0.0.6, Interface address 192.168.100.2
  Backup Designated router (ID) 0.0.0.5, Interface address 192.168.100.254
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:00
  Supports Link-local Signaling (LLS)
  Index 1/1, flood queue length 0
  Next 0x0(0)/0x0(0)
  Last flood scan length is 0, maximum is 5
  Last flood scan time is 0 msec, maximum is 4 msec
  Neighbor Count is 3, Adjacent neighbor count is 2
    Adjacent with neighbor 0.0.0.5 (Backup Designated Router)
    Adjacent with neighbor 0.0.0.6 (Designated Router)
  Suppress hello for O neighbor(s)
   Router R4:
Router#show ip ospf interface FastEthernet 1/0
FastEthernet1/0 is up, line protocol is up
  Internet Address 192.168.100.253/24, Area 0
  Process ID 4, Router ID 0.0.0.4, Network Type BROADCAST, Cost: 10
```

Backup Designated router (ID) 0.0.0.5, Interface address 192.168.100.254

Transmit Delay is 1 sec, State DROTHER, Priority 1

Designated Router (ID) 0.0.0.6, Interface address 192.168.100.2

```
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:08
  Supports Link-local Signaling (LLS)
  Index 1/1, flood queue length 0
  Next 0x0(0)/0x0(0)
  Last flood scan length is 0, maximum is 1
  Last flood scan time is 0 msec, maximum is 4 msec
  Neighbor Count is 3, Adjacent neighbor count is 2
    Adjacent with neighbor 0.0.0.5 (Backup Designated Router)
    Adjacent with neighbor 0.0.0.6 (Designated Router)
  Suppress hello for O neighbor(s)
   Router R5:
Router#show ip ospf interface FastEthernet 1/0
FastEthernet1/0 is up, line protocol is up
  Internet Address 192.168.100.254/24, Area 0
  Process ID 5, Router ID 0.0.0.5, Network Type BROADCAST, Cost: 10
  Transmit Delay is 1 sec, State BDR, Priority 1
  Designated Router (ID) 0.0.0.6, Interface address 192.168.100.2
  Backup Designated router (ID) 0.0.0.5, Interface address 192.168.100.254
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:01
  Supports Link-local Signaling (LLS)
  Index 1/1, flood queue length 0
  Next 0x0(0)/0x0(0)
  Last flood scan length is 0, maximum is 1
  Last flood scan time is 0 msec, maximum is 4 msec
  Neighbor Count is 3, Adjacent neighbor count is 3
    Adjacent with neighbor 0.0.0.3
    Adjacent with neighbor 0.0.0.4
    Adjacent with neighbor 0.0.0.6 (Designated Router)
  Suppress hello for O neighbor(s)
   Router R6:
Router#show ip ospf interface FastEthernet 1/0
FastEthernet1/0 is up, line protocol is up
  Internet Address 172.20.1.14/30, Area 2
  Process ID 6, Router ID 0.0.0.6, Network Type BROADCAST, Cost: 10
  Transmit Delay is 1 sec, State BDR, Priority 1
  Designated Router (ID) 0.0.0.8, Interface address 172.20.1.13
  Backup Designated router (ID) 0.0.0.6, Interface address 172.20.1.14
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:04
  Supports Link-local Signaling (LLS)
  Index 1/2, flood queue length 0
  Next 0x0(0)/0x0(0)
  Last flood scan length is 1, maximum is 6
  Last flood scan time is 0 msec, maximum is 4 msec
```

```
Neighbor Count is 1, Adjacent neighbor count is 1
    Adjacent with neighbor 0.0.0.8 (Designated Router)
  Suppress hello for O neighbor(s)
Router#show ip ospf interface FastEthernet 1/1
FastEthernet1/1 is up, line protocol is up
  Internet Address 172.20.1.1/30, Area 1
  Process ID 6, Router ID 0.0.0.6, Network Type BROADCAST, Cost: 10
  Transmit Delay is 1 sec, State DR, Priority 1
  Designated Router (ID) 0.0.0.6, Interface address 172.20.1.1
  Backup Designated router (ID) 0.0.0.7, Interface address 172.20.1.2
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:02
  Supports Link-local Signaling (LLS)
  Index 1/1, flood queue length 0
  Next 0x0(0)/0x0(0)
  Last flood scan length is 1, maximum is 6
  Last flood scan time is 0 msec, maximum is 4 msec
  Neighbor Count is 1, Adjacent neighbor count is 1
    Adjacent with neighbor 0.0.0.7 (Backup Designated Router)
  Suppress hello for O neighbor(s)
Router#show ip ospf interface FastEthernet 2/0
FastEthernet2/0 is up, line protocol is up
  Internet Address 192.168.100.2/24, Area 0
  Process ID 6, Router ID 0.0.0.6, Network Type BROADCAST, Cost: 10
  Transmit Delay is 1 sec, State DR, Priority 1
  Designated Router (ID) 0.0.0.6, Interface address 192.168.100.2
  Backup Designated router (ID) 0.0.0.5, Interface address 192.168.100.254
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:00
  Supports Link-local Signaling (LLS)
  Index 1/3, flood queue length 0
  Next 0x0(0)/0x0(0)
  Last flood scan length is 1, maximum is 8
  Last flood scan time is 0 msec, maximum is 4 msec
  Neighbor Count is 3, Adjacent neighbor count is 3
    Adjacent with neighbor 0.0.0.3
    Adjacent with neighbor 0.0.0.4
    Adjacent with neighbor 0.0.0.5 (Backup Designated Router)
  Suppress hello for O neighbor(s)
   a. O router R3 contêm 2 adjacências, na interface FastEthernet 2/0.
O router R4 contêm 2 adjacências, na interface FastEthernet 1/0.
O router R5 contêm 3 adjacências, na interface FastEthernet 1/0.
O router R6 contêm 1 adjacências, na interface FastEthernet 1/0, 1 adjacências, na interface
```

R6 é o Designated Router e por isso, não é de estranhar que seja o router com maior número de adjacências, isto implicaria um grande volume de troca de informações de encaminhamento.

R5 é o segundo router com maior número de adjacências e por isso é o Backup Designated Router,

FastEthernet 1/1 e 3 adjacências, na interface FastEthernet 2/0, tendo assim um total de

5 adjacências.

que tem o papel de toma o lugar do *Designated Router* caso ele falhe. Já R3 e R4 são *DROthers* que estabelecem adjacências apenas com o *Designated Router*, R6, e com o *Backup Designated Router*, R5.

b. No OSPF o *Designated Router* serve para gerir o processo de inundação na rede de acesso múltiplo e gerar informação topológica sobre um nó virtual que representa a rede de acesso múltiplo.

4.

a. O caminho seguido pelos pacotes ICMP echo request é do IP 172.16.1.2, Terminal 2, passando por R7, de seguida por R6 e por R8 chegando ao destino, interface 172.17.0.1 de R9. O caminho seguido pelos pacotes ICMP echo reply é da interface 172.17.0.1 de R9 passando por R7 e por último chega ao destino, Terminal 2.

Os pacotes ICMP seguem caminhos diferentes por causa das rotas especificadas pelo protocolo OSPF para cada router. O router R7 tem rota definida para R9 através de R6, (O IA 172.17.0.0/16 [110/40] via 172.20.1.1, 00:16:38, FastEthernet1/0), enquanto que o router R9 tem a rota para Terminal 2 através de R7, (O 172.16.1.0 [110/20] via 172.20.1.5, 00:17:29, FastEthernet1/0).

Figura 4: Captura de pacotes na ligação entre as interfaces 172.20.1.2 e 172.20.1.5 de R7.

b. Nós tentamos alterar o custo da interface 172.20.1.6 para um valor elevado, (ip ospf cost 65000), para tentar que a ligação se corrompa, de modo a que o percurso do echo reply seja o inverso do do echo request. Tentamos ainda para o valor máxima, (ip ospf cost 65535), mas não obtemos sucesso.

O percurso não foi alterado pois os *routers* internos de cada área têm penas uma base de dados topológica dessa área. O *router* R6 é um *Area Border Router* logo, conhece a topologia das áreas às quais está ligado, área 1 e 2. Deste modo, uma vez que o Terminal 2 só pertence à área 1, o melhor caminho continua a ser por essa área, e não passando por outra área, área 2.

Figura 5: Alteração do custo da interface 172.20.1.6 de R9.

Figura 6: Captura de pacotes na ligação entre as interfaces 172.20.1.2 e 172.20.1.5 de R7.

5. Como podemos verificar na figura 7, as mensagens RIP trocadas entre R1 e R2 são inicialmente enviadas para o IP 255.255.255.255, uma vez que o broadcast estava ativado. Uma vez desativado as mensagens RIP são enviadas para o IP 224.0.0.9.

Os routers RIP foram configurados de modo a correrem a versão 2 do protocolo, e por isso as mensagens são enviadas para o IP 224.0.0.9, que é um endereço multicast "todos os routers RIPv2". Isto evita que os terminais recebam os anúncios, que não lhes interessam.

Figura 7: Capture de mensagens RIP trocadas entre R1 e R2.

6.

```
*Apr 14 17:00:31.055: RIP: sending v2 update to 224.0.0.9 via
FastEthernet1/1 (192.168.1.130)
*Apr 14 17:00:31.055: RIP: build update entries
*Apr 14 17:00:31.055: 172.16.1.0/24 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:31.059: 172.16.2.0/24 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:31.059: 172.17.0.0/16 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:31.059: 172.20.1.0/30 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:31.059: 172.20.1.4/30 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:31.063: 172.20.1.8/30 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:31.063: 172.20.1.12/30 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:31.063: 192.168.1.160/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:00:31.067: 192.168.1.192/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:00:31.067: 192.168.1.224/27 via 0.0.0.0, metric 2, tag 0
*Apr 14 17:00:31.067: 192.168.100.0/24 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:35.871: RIP: received v2 update from 192.168.1.129 on
FastEthernet1/1
*Apr 14 17:00:35.875:
                          192.168.1.0/25 via 0.0.0.0 in 1 hops
*Apr 14 17:00:43.175: RIP: sending v2 update to 255.255.255.255 via
FastEthernet2/0 (192.168.1.161)
*Apr 14 17:00:43.175: RIP: build update entries
*Apr 14 17:00:43.175: 192.168.1.0/25 via 0.0.0.0, metric 2, tag 0
*Apr 14 17:00:43.179: 192.168.1.128/27 via 0.0.0.0, metric 1, tag 0
```

```
*Apr 14 17:00:43.179: 192.168.1.192/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:00:48.691: RIP: received v2 update from 192.168.1.162 on
FastEthernet2/0
*Apr 14 17:00:48.695:
                           172.16.1.0/24 via 0.0.0.0 in 5 hops
*Apr 14 17:00:48.695:
                           172.16.2.0/24 via 0.0.0.0 in 5 hops
*Apr 14 17:00:48.695:
                           172.17.0.0/16 via 0.0.0.0 in 5 hops
*Apr 14 17:00:48.699:
                           172.20.1.0/30 via 0.0.0.0 in 5 hops
*Apr 14 17:00:48.699:
                           172.20.1.4/30 via 0.0.0.0 in 5 hops
*Apr 14 17:00:48.699:
                           172.20.1.8/30 via 0.0.0.0 in 5 hops
*Apr 14 17:00:48.699:
                           172.20.1.12/30 via 0.0.0.0 in 5 hops
*Apr 14 17:00:48.703:
                           192.168.1.224/27 via 0.0.0.0 in 1 hops
                           192.168.100.0/24 via 0.0.0.0 in 5 hops
*Apr 14 17:00:48.703:
*Apr 14 17:00:57.695: RIP: sending v2 update to 224.0.0.9 via
FastEthernet1/1 (192.168.1.130)
*Apr 14 17:00:57.695: RIP: build update entries
*Apr 14 17:00:57.695: 172.16.1.0/24 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:57.699: 172.16.2.0/24 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:57.699: 172.17.0.0/16 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:57.699: 172.20.1.0/30 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:57.699: 172.20.1.4/30 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:57.703: 172.20.1.8/30 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:57.703: 172.20.1.12/30 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:00:57.707: 192.168.1.160/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:00:57.707: 192.168.1.192/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:00:57.711: 192.168.1.224/27 via 0.0.0.0, metric 2, tag 0
*Apr 14 17:00:57.711: 192.168.100.0/24 via 0.0.0.0, metric 6, tag 0
*Apr 14 17:01:06.039: RIP: received v2 update from 192.168.1.129 on
FastEthernet1/1
*Apr 14 17:01:06.039:
                           192.168.1.0/25 via 0.0.0.0 in 1 hops
```

a. As mensagens enviadas na interface FastEthernet1/1 dizem respeito às redes do lado direito de R2, enquanto que as mensagens enviadas na interface FastEthernet2/0 dizem respeito às redes do lado esquerdo de R2.

Podemos ainda verificar que as mensagens que dizem respeito aos routers que correm RIP têm métrica=1 e os que correm OSPF têm métrica=6.

Cada interface apenas envia informação sobre os destinos e redes atingíveis por outras interfaces. A FastEthernet 2/0 envia informações sobre a rede 192.168.1.0/25, com métrica 2 (pois é calculada pelo RIP). A FastEthernet1/1 envia informações sobre os destinos alcançáveis pela interface FastEthernet2/0, por exemplo 172.16.2.0 com métrica 6 (importada por OSPF).

b. Este mecanismo chama-se "split horizon", e a sua função é não anunciar numa interface as rotas que aprendeu por ela.

```
7.
```

```
Router#no ip split-horizon
Router#no redistribute rip
```

a.

```
Router#debug ip rip
*Apr 14 17:09:14.219: RIP: received v2 update from 192.168.1.129 on
```

```
FastEthernet1/1
*Apr 14 17:09:14.219:
                          192.168.1.0/25 via 0.0.0.0 in 1 hops
*Apr 14 17:09:14.223:
                          192.168.100.0/24 via 0.0.0.0 in 16 hops
 (inaccessible)
*Apr 14 17:09:19.119: RIP: sending v2 update to 255.255.255.255 via
FastEthernet2/0 (192.168.1.161)
*Apr 14 17:09:19.119: RIP: build update entries
*Apr 14 17:09:19.119: 192.168.1.0/25 via 0.0.0.0, metric 2, tag 0
*Apr 14 17:09:19.119: 192.168.1.128/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:09:19.123: 192.168.1.192/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:09:19.123: 192.168.100.0/24 via 0.0.0.0, metric 16, tag 0
*Apr 14 17:09:24.187: RIP: received v2 update from 192.168.1.162 on
FastEthernet2/0
*Apr 14 17:09:24.187:
                          192.168.1.224/27 via 0.0.0.0 in 1 hops
                          192.168.100.0/24 via 0.0.0.0 in 16 hops
*Apr 14 17:09:24.191:
(inaccessible)
*Apr 14 17:09:25.543: RIP: sending v2 update to 255.255.255.255 via
FastEthernet1/1 (192.168.1.130)
*Apr 14 17:09:25.543: RIP: build update entries
*Apr 14 17:09:25.547: 192.168.1.160/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:09:25.547: 192.168.1.192/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:09:25.547: 192.168.1.224/27 via 0.0.0.0, metric 2, tag 0
*Apr 14 17:09:25.547: 192.168.100.0/24 via 0.0.0.0, metric 16, tag 0
*Apr 14 17:09:40.339: RIP: received v2 update from 192.168.1.129 on
FastEthernet1/1
*Apr 14 17:09:40.339:
                          192.168.1.0/25 via 0.0.0.0 in 1 hops
*Apr 14 17:09:46.243: RIP: sending v2 update to 255.255.255.255 via
FastEthernet2/0 (192.168.1.161)
*Apr 14 17:09:46.243: RIP: build update entries
*Apr 14 17:09:46.243: 192.168.1.0/25 via 0.0.0.0, metric 2, tag 0
*Apr 14 17:09:46.247: 192.168.1.128/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:09:46.247: 192.168.1.192/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:09:53.971: RIP: sending v2 update to 255.255.255.255 via
FastEthernet1/1 (192.168.1.130)
*Apr 14 17:09:53.971: RIP: build update entries
*Apr 14 17:09:53.971: 192.168.1.160/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:09:53.975: 192.168.1.192/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:09:53.975: 192.168.1.224/27 via 0.0.0.0, metric 2, tag 0
*Apr 14 17:10:07.383: RIP: received v2 update from 192.168.1.129 on
FastEthernet1/1
                          192.168.1.0/25 via 0.0.0.0 in 1 hops
*Apr 14 17:10:07.383:
*Apr 14 17:10:13.087: RIP: sending v2 update to 255.255.255.255 via
FastEthernet2/0 (192.168.1.161)
*Apr 14 17:10:13.087: RIP: build update entries
*Apr 14 17:10:13.087: 192.168.1.0/25 via 0.0.0.0, metric 2, tag 0
*Apr 14 17:10:13.087: 192.168.1.128/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:10:13.091: 192.168.1.192/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:10:22.991: RIP: sending v2 update to 255.255.255.255 via
FastEthernet1/1 (192.168.1.130)
*Apr 14 17:10:22.991: RIP: build update entries
*Apr 14 17:10:22.991: 192.168.1.160/27 via 0.0.0.0, metric 1, tag 0
```

```
*Apr 14 17:10:22.995: 192.168.1.192/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:10:22.995: 192.168.1.224/27 via 0.0.0.0, metric 2, tag 0
*Apr 14 17:10:32.907: RIP: received v2 update from 192.168.1.129 on
FastEthernet1/1
*Apr 14 17:10:32.907:
                          192.168.1.0/25 via 0.0.0.0 in 1 hops
*Apr 14 17:10:42.323: RIP: sending v2 update to 255.255.255.255 via
FastEthernet2/0 (192.168.1.161)
*Apr 14 17:10:42.323: RIP: build update entries
*Apr 14 17:10:42.323: 192.168.1.0/25 via 0.0.0.0, metric 2, tag 0
*Apr 14 17:10:42.327: 192.168.1.128/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:10:42.327: 192.168.1.192/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:10:48.643: RIP: sending v2 update to 255.255.255.255 via
FastEthernet1/1 (192.168.1.130)
*Apr 14 17:10:48.643: RIP: build update entries
*Apr 14 17:10:48.643: 192.168.1.160/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:10:48.647: 192.168.1.192/27 via 0.0.0.0, metric 1, tag 0
*Apr 14 17:10:48.647: 192.168.1.224/27 via 0.0.0.0, metric 2, tag 0
```

Antes do router R3 ser suspenso, o router R2 enviou informação pela FastEthernet1/1 (ao R0) das rotas à esquerda de R2 inclusive a rota da interface que está situada na OSPF área 0 de R3. Depois deste ser suspenso essa rota deixou de ser informada pela interface FastEthernet1/1 como podemos ver no debug do router R2.

b. O mecanismo de route poisoning serve para prevenir loops de encaminhamento causados por atualizações inconsistentes. Este consiste em não usar caminhos cujo hop count (contagem de saltos até ao destino) aumenta, o que pode acontecer quando se forma um loop. Se isto acontecer, a rota deixa de ser usada até que uma posterior atualização confirme um novo hop count. Basicamente, se uma rede falha,o router mais próximo insere na sua tabela o valor de hop count de 16 (valor máximo permitido), ficando a rota inatingível. Assim, o protocolo de encaminhamento informa todos os routers ligados na rede que uma determinada rota é inválida. Este mecanismo acelera, assim, o processo de convergências.

c.

- *invalid timer* especifica quanto tempo uma rota pode estar na tabela de encaminhamento sem ser atualizada. O valor típico é de 180 segundos.
- holddown timer quando um destino é dado como inatingível, o router deixa de "acreditar"em anúncios desse destino durante um certo tempo. Ou seja, controla o tempo entre que uma rota é considerada invalidada ou marcado como inacessível e a sua remoção da tabela de encaminhamento. O valor típico é de 180 segundos.
- flush timer conta o tempo desde que foi recebida o último anúncio válido para uma rota até ela ser removida da tabela de encaminhamento. O valor típico é de 240 segundos.

```
8.
```

R10#ping 192.168.1.162

```
Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.1.162, timeout is 2 seconds:
!!!!!
```

Success rate is 100 percent (5/5), round-trip min/avg/max = 60/68/92 ms

Em cada *router*, R1, R2 e R3, altera-se a configuração do RIP para usar a versão 1 do protocolo:

version 1

```
R10#ping 192.168.1.162
PING 192.168.1.162 (192.168.1.162) 56(84) bytes of data.
^C
--- 192.168.1.162 ping statistics ---
29 packets transmitted, 0 received, 100% packet loss, time
```

Das principais diferenças entre a versão 1 e 2 do protocolo RIP é que a primeira versão é classfull, ou seja, suporta apenas classes A, B ou C ou subredes com a mesma máscara e troca atualizações de encaminhamento via broadcast. Já a segunda versão suporta classless e VLSM (divisão de subredes com várias máscaras de subrede) e troca informações através de multicast. Vamos focar-nos na segunda característica de cada versão, o primeiro ping, RIP com versão 2, é bem sucedido pois suporta divisão de subredes com máscaras diferentes (na rota que queremos percorrer temos duas máscaras diferentes 255.255.255.128 e 255.255.255.224) o que não é suportado pela versão 1 do protocolo e por essa razão o segundo ping, RIP com versão 1, não é bem sucedido.

Figura 8: Captura na interface F1/1 de R3.