Gaussian Mixture Models

Prepared by: Joseph Bakarji

Modeling data as a Mixture of Gaussians

Dataset

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

How to find $\mu_1, \mu_2, \Sigma_1, \Sigma_2$?

Modeling data as a Mixture of Gaussians

Assume:

- Data is modeled by mixture of gaussians: $\mathcal{N}\left(\mu_i, \sigma_i^2\right)$
- We know how many gaussians we need

Find μ_1, μ_2

Modeling data as a Mixture of Gaussians

Probability that point i belongs to cluster j

 $z^{(i)}$ is not directly observed: Latent variable

Gaussian Mixture Model

Dataset

 χ

1.2

3.2

4.3

3.2

Observations: $x^{(i)} \in \mathbb{R}$

Num. of Clusters: k > 0 clusters

Soft assignments: $z^{(i)}$

$$P\left(x^{(i)}, z^{(i)}\right) = P\left(x^{(i)} \mid z^{(i)}\right) P\left(z^{(i)}\right)$$

$$P(z^{(i)}) = Multinomial (\phi)$$

$$P\left(x^{(i)} \mid z^{(i)} = j\right) = \mathcal{N}(\mu_j, \sigma_j^2)$$

X

i=1

Dataset

 $\frac{\mathcal{X}}{}$

3.2

1.2

4.3

3.2

Intuition: if one were to 'create' the data

Sample

$$\phi_1 = 0.3$$
 \longrightarrow Sample $\mathcal{N}(\mu_1, \sigma_1^2)$ \longrightarrow $x^{(i)}$

$$\phi_2 = 0.7$$
 — Sample $\mathcal{N}(\mu_2, \sigma_2^2)$ — $\chi^{(i)}$

Expectation-Maximization (EM) Algorithm

E-Step: Guess $z^{(i)}$ given ϕ, μ, σ . Compute $P\left(z^{(i)} | x^{(i)}; \phi, \mu, \sigma\right)$

M-Step: Estimate ϕ, μ, σ using Maximum Likelihood Estimation

Expectation Step

E-Step: Guess $z^{(i)}$ given ϕ, μ, σ

$$w_j^{(i)} = P(z^{(i)} = j | x^{(i)}; \phi, \mu, \sigma) = \frac{P(z^{(i)} = j, x^{(i)})}{P(x^{(i)})}$$

$$= \frac{P\left(x^{(i)} \mid z^{(i)} = j\right) P\left(z^{(i)} = j\right)}{P\left(x^{(i)}\right)}$$

$$= \frac{P(x^{(i)}|z^{(i)} = j) P(z^{(i)} = j)}{\sum_{s=1}^{k} P(x^{(i)}|z^{(i)} = s) P(z^{(i)} = s)}$$

Expectation Step

E-Step: Guess $z^{(i)}$ given ϕ, μ, σ

$$w_{j}^{(i)} = P\left(z^{(i)} = j \mid x^{(i)}; \phi, \mu, \sigma\right)$$

$$= \frac{\mathcal{N}(\mu_{j}, \sigma_{j}^{2})}{P\left(x^{(i)} \mid z^{(i)} = j\right) P\left(z^{(i)} = j\right)} \phi_{j}$$

$$= \frac{P\left(x^{(i)} \mid z^{(i)} = j\right) P\left(z^{(i)} = j\right)}{\sum_{s=1}^{k} P\left(x^{(i)} \mid z^{(i)} = s\right) P\left(z^{(i)} = s\right)} \phi_{s}$$

$$\mathcal{N}\left(\mu_{s}, \sigma_{s}^{2}\right)$$

Maximization Step

M-Step: Given
$$P\left(z^{(i)}=j\right)\equiv w_{j}^{(i)}$$
 estimate ϕ,μ,σ

Maximum Likelihood Estimation

$$\mathcal{E}(\phi, \mu, \Sigma) = \sum_{i=1}^{n} \log P(x^{(i)}; \phi, \mu, \sigma)$$

$$= \sum_{i=1}^{n} \log \sum_{z^{(i)}=1}^{k} P(x^{(i)} | z^{(i)}; \mu, \sigma) P(z^{(i)}; \phi).$$

$$= \sum_{i=1}^{n} \log p(x^{(i)} | z^{(i)}; \mu, \sigma) + \log p(z^{(i)}; \phi)$$

if $z^{(i)}$ is known

Maximization Step

M-Step: Given
$$P\left(z^{(i)}=j\right)\equiv w_{j}^{(i)}$$
 estimate ϕ,μ,σ

If $z^{(i)}$ were known o Gaussian Discriminant Analysis

$$\phi_j = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \{ z^{(i)} = j \}$$

$$\mu_{j} = \frac{\sum_{i=1}^{n} \mathbf{1}\{z^{(i)} = j\}x^{(i)}}{\sum_{i=1}^{n} \mathbf{1}\{z^{(i)} = j\}}$$

$$\Sigma_{j} = \frac{\sum_{i=1}^{n} \mathbf{1} \{z^{(i)} = j\} (x^{(i)} - \mu_{j}) (x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{n} \mathbf{1} \{z^{(i)} = j\}}$$

Maximization Step

M-Step: Given
$$P\left(z^{(i)}=j\right)\equiv w_{j}^{(i)}$$
 estimate ϕ,μ,σ

Since $z^{(i)}$ is not known, we use soft assignments instead:

$$\phi_j = \frac{1}{n} \sum_{i=1}^n w_j^{(i)}$$

$$\mu_{j} = \frac{\sum_{i=1}^{n} w_{j}^{(i)} x^{(i)}}{\sum_{i=1}^{n} w_{j}^{(i)}}$$

$$\Sigma_{j} = \frac{\sum_{i=1}^{n} w_{j}^{(i)} (x^{(i)} - \mu_{j}) (x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{n} w_{j}^{(i)}}$$

EM Algorithm Summary

E-Step: Estimate $w_i^{(i)}$

$$w_{j}^{(i)} = \frac{P\left(x^{(i)} | z^{(i)} = j\right) P\left(z^{(i)} = j\right)}{\sum_{s=1}^{k} P\left(x^{(i)} | z^{(i)} = s\right) P\left(z^{(i)} = s\right)}$$

$$\mathcal{N}\left(\mu_{s}, \Sigma_{s}\right) \qquad \phi_{s}$$

Iterate

M-Step: Estimate ϕ, μ, Σ

$$\phi_{j} = \frac{1}{n} \sum_{i=1}^{n} w_{j}^{(i)}$$

$$\mu_{j} = \frac{\sum_{i=1}^{n} w_{j}^{(i)} x^{(i)}}{\sum_{i=1}^{n} w_{j}^{(i)}}$$

$$\Sigma_{j} = \frac{\sum_{i=1}^{n} w_{j}^{(i)} (x^{(i)} - \mu_{j}) (x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{n} w_{j}^{(i)} (x^{(i)} - \mu_{j})^{T}}$$