Python для задач химической технологии

Лабораторная работа №6

Введение в объектно-ориентированное программирование

Задание

Рассчитать химико-технологическую систему (определить составы и свойства всех потоков):

Для решения поставленной задачи необходимо реализовать объектную модель: каждый элемент химико-технологической системы должен быть описан как отдельный класс.

Состав, расход и температуру потоков можно задать произвольно.

Описание класса Flow

Рекомендуемые атрибуты:

Атрибут	Описание
mass_flow_rate: float	Массовый расход, кг / ч
mole_flow_rate: float	Мольный расход, кмоль / ч
<pre>volume_flow_rate: float</pre>	Объемный расход, м³ / ч
mass_fractions: np.ndarray	Массовые доли
<pre>mole_fractions: np.ndarray</pre>	Мольные доли
volume_fractions: np.ndarray	Объемные доли
temperature: float	Температура потока, К
density: float	Плотность потока, г / см ³

Атрибут	Описание
average_mol_mass: float	Средняя молекулярная масса потока, г / моль
cp: float	Массовая теплоемкость потока, кДж / кг
<pre>definit(self, mass_flow_rate: float, mass_fractions: np.ndarray, temperature: float) -> None</pre>	Создает новый экземпляр класса Flow, заполняя все поля

Функции для пересчета составов

1. Пересчет массовых долей в объемные:

$$arphi_i = rac{\dfrac{\omega_i}{
ho_i}}{\sum\limits_{i=1}^n \dfrac{\omega_i}{
ho_i}}$$

где φ_i - объемная доля i-го компонента; ω_i - массовая доля i-го компонента; ρ_i - плотность i -го компонента; n - число компонентов в системе; i - индекс компонента в системе.

2. Пересчет массовых долей в мольные:

$$\chi_i = rac{\dfrac{\omega_i}{M_i}}{\sum\limits_{i=1}^n \dfrac{\omega_i}{M_i}}$$

где χ_i - мольная доля i-го компонента; ω_i - массовая доля i-го компонента; M_i - молярная масса i-го компонента; n - число компонентов в системе; i - индекс компонента в системе.

Функции для расчета плотности и средней молекулярной массы

1. Расчет плотности:

$$\rho = \frac{1}{\sum_{i=1}^{n} \frac{\omega_i}{\rho_i}}$$

где ρ - плотность потока; ω_i - массовая доля i-го компонента; ρ_i - плотность i-го компонента; n - число компонентов в системе; i - индекс компонента в системе.

2. Расчет средней молекулярной массы потока:

$$m = rac{1}{\sum\limits_{i=1}^{n}rac{\omega_{i}}{M_{i}}}$$

где m - средняя молекулярная масса потока; ω_i - массовая доля i-го компонента; M_i - молярная масса i-го компонента; n - число компонентов в системе; i - индекс компонента в системе.

Функции для расчета теплоемкости потока

Расчет теплоемкости потока в зависимости от состава потока и температуры среды осуществляется следующим образом:

1. Определяется теплоемкость компонентов потока при температуре среды:

$$Cp_{i} = \sum_{i=1}^{5} j \cdot k\left[i,j
ight] \cdot T^{j-1}$$

где Cp_i - теплоемкость i-го компонента, кДж / кг; $k\left[i,j\right]$ - коэффициенты аппроксимации температурной зависимости энтальпии для i-го компонента; T - температура потока, К.

2. Определяется общая теплоемкость потока:

$$Cp = \sum_{i=1}^n \omega_i \cdot Cp_i$$

где ω_i - массовая доля i-го компонента; Cp_i - теплоемкость i-го компонента, кДж / кг; n - число компонентов в системе.

Коэффициенты для температурной зависимости теплоемкости представлены в таблице:

Номер компонента	k_1	k_2	k_3	k_4	k_5
1	0.071254	0.002979	-0.0000007	0	0
2	13.83761	0.0003	0.00000346	-0.000000000097	0.00000000000000773
3	-0.09689	0.003473	-0.0000013	0.000000000256	-0.00000000000014
4	0.9985	-0.00018	0.000000557	-0.0000000032	0.0000000000000637

Плотность компонентов:

Номер компонента	Плотность, г/см 3
1	0.821537454674234
2	8.57E-05
3	0.634118153548788
4	0.0138331933625558

Молярная масса компонентов:

Номер компонента	Молярная масса, г/моль
1	128.1332
2	2.02
3	131.82935
4	34.01

Описание класса Міхег

Рекомендуемые атрибуты

Атрибут	Описание
<pre>def mix(self, *flows: Flow) -> Flow</pre>	Реализация метода смешения потоков. Возвращает результирующий поток в виде объекта класса Flow
<pre>defcalculate_temperature(self) - > float</pre>	Закрытый метод, необходимый для расчета температуры смесевого потока

Материальный и тепловой балансы смешения

Состав смесевого потока (в массовых долях) можно найти следующим образом:

$$\omega_i = rac{\sum\limits_{j=1}^n G_j \cdot \omega_{i,j}}{\sum\limits_{j=1}^n G_j}$$

где ω_i - массовая доля i-го компонента; G_j - массовый расход j-го потока, кг/ч; $\omega_{i,j}$ - массовая доля i-го компонента в j-ом потоке; n - количество смешиваемых потоков.

Теплоемкость смесевого потока можно найти следующим образом:

$$Cp = rac{\sum\limits_{i=1}^{n}G_{i}\cdot Cp_{i}}{\sum\limits_{i=1}^{n}G_{i}}$$

где Cp - теплоемкость смесевого потока, кДж/кг · K; G_i - массовый расход i-го потока, кГ/ч; Cp_i - теплоемкость i-го потока, кДж/кг · K; n - количество смешиваемых потоков.

Температура смесевого потока определяется следующим образом:

$$T = rac{\sum\limits_{i=1}^{n}G_{i}\cdot Cp_{i}\cdot T_{i}}{G\cdot Cp\left(T
ight)}$$

где T - температура смесевого потока, K; G_i - массовый расход i-го потока, кг/ч; Cp_i - теплоемкость i-го потока, кДж/кг \cdot K; n - количество смешиваемых потоков; G - массовый расход смесевого потока, кг/ч; $Cp\left(T\right)$ - теплоемкость смесевого потока, кДж/кг \cdot K, являющаяся функцией от температуры.

В итоге получаем нелинейное уравнение, корнем которого является искомое значение температуры смесевого потока.

Описание класса HeatExchanger

Будем рассматривать теплообменник типа "труба в трубе".

Рекомендуемые атрибуты

Атрибут	Описание
<pre>definit(self, d_in: float = .1, d_out: float = .25, length: float = 3.0, k: float = 4900) -> None</pre>	Конструктор класса HeatExchanger

Атрибут	Описание
	Расчет теплообменного аппарата. В качестве
<pre>def calculate(self, hot: Flow, cold:</pre>	результата возвращается кортеж, состоящий из двух
<pre>Flow) -> tuple[Flow]:</pre>	элементов: горячего и холодного потоков (объекты
	класса Flow)

Расчет теплообменного аппарата в стационарном режиме

В стационарном режиме уравнения теплового баланса теплообменного аппарата примут следующий вид:

$$egin{cases} rac{dT_h}{dl} = -rac{k \cdot \pi \cdot d}{v_h \cdot
ho_h \cdot Cp_h} \cdot (T_h - T_c) \ rac{dT_c}{dl} = rac{k \cdot \pi \cdot d}{v_c \cdot
ho_c \cdot Cp_c} \cdot (T_h - T_c) \end{cases}$$

где T_h и T_c - температуры горячего и холодного потоков, соответственно, K; k - коэффициент теплопередачи; d - диаметр трубы, м; v_h и v_c - объемные скорости горячего и холодного теплоносителей, \mathbf{c}^{-1} ; ρ_h и ρ_c - плотности горячего и холодного потоков, кг/м³; Cp_h и Cp_c - теплоемкости горячего и холодного потоков, кДж/кг · K.

Описание класса Splitter

Атрибут	Описание
<pre>def calculate(self, flow: Flow, *ratio:</pre>	Расчет делителя потока; возвращает в качестве
<pre>float) -> list[Flow]:</pre>	результата список объектов Flow