CS663 Assignment-5

Saksham Rathi, Kavya Gupta, Shravan Srinivasa Raghavan

Department of Computer Science,
Indian Institute of Technology Bombay

Question 5

Part (a)

We prove this via a contradiction. Consider an example where N=2 and both P_1 and P_2 are square matrices.

Let
$$P_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $P_1 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

The least square solution gives

$$R = P_1 P_2^T (P_2 P_2^T)^{-1}$$

= $P_1 I^T (II^T)^{-1}$
= P_1

It was given that R is an orthonormal matrix. Clearly P_1 is not orthonormal and hence $R = P_1$ is not a valid solution. Therefore using the least squares method does not give the right answer as it does not always give a solution which is orthonormal.

Part (b)

The objective is to find the orthonormal matrix R that minimises the square of the Frobenius norm of the error matrix E which equals $P_1 - RP_2$.

$$\begin{split} E(R) &= ||P_1 - RP_2||_F^2 \\ \Rightarrow E(R) &= \operatorname{Trace}((P_1 - RP_2)^T(P_1 - RP_2)) \\ &= \operatorname{Trace}(P_1^T P_1 - (RP_2)^T P_1 - P_1^T (RP_2) + (RP_2)^T (RP_2)) \\ &= \operatorname{Trace}(P_1^T P_1 - P_2^T R^T P_1 - P_1^T R P_2 + P_2^T R^T (RP_2)) \\ &= \operatorname{Trace}(P_1^T P_1 + P_2^T R^T R P_2 - P_2^T R^T P_1 - P_1^T R P_2) \\ &= \operatorname{Trace}(P_1^T P_1 + P_2^T R^T R P_2 - P_2^T R^T P_1 - P_1^T R P_2) \\ &= \operatorname{Trace}(P_1^T P_1 + P_2^T P_2 - P_2^T R_T P_1 - P_1^T R P_2) \ (R^T R = R R^T = I \text{ because } R \text{ is orthonormal}) \\ &= \operatorname{Trace}(P_1^T P_1 + P_2^T P_2) - \operatorname{Trace}(P_2^T R^T P_1) - \operatorname{Trace}(P_1^T R P_2) \ (\text{Because Trace is a linear operator}) \\ &= \operatorname{Trace}(P_1^T P_1 + P_2^T P_2) - \operatorname{Trace}((P_2^T R^T P_1)^T) - \operatorname{Trace}(P_1^T R P_2) \ (\operatorname{Trace}(A) = \operatorname{Trace}(A^T) \text{ for any square matrix } A) \\ &= \operatorname{Trace}(P_1^T P_1 + P_2^T P_2) - \operatorname{Trace}(P_1^T R P_2) - \operatorname{Trace}(P_1^T R P_2) \\ &= \operatorname{Trace}(P_1^T P_1 + P_2^T P_2) - \operatorname{Trace}(P_1^T R P_2) \end{aligned}$$

Part (c)

As shown in the previous part $E(R) = \text{Trace}(P_1^T P_1 + P_2^T P_2) - 2\text{Trace}(P_1^T R P_2)$. Clearly for given P_1 and P_2 , the first term is fixed. Therefore to minimise E(R) wrt R, the term $-2\text{Trace}(P_1^T R P_2)$ should be minimised ie, $\text{Trace}(P_1^T R P_2)$ should be maximised wrt R.

Part (d)

Now the goal is to maximise $\operatorname{Trace}(P_1^T R P_2)$ wrt R. We will first show that for any two matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times m}$,

$$\operatorname{Trace}(AB) = \sum_{i=1}^{m} C_{ii} \text{ (where } C = AB)$$

$$\Rightarrow \operatorname{Trace}(AB) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} B_{ji} \right)$$
(1)

Similarly,

$$\operatorname{Trace}(BA) = \sum_{j=1}^{n} D_{jj} \text{ (where } D = BA)$$

$$\Rightarrow \operatorname{Trace}(BA) = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} B_{ji} A_{ij} \right)$$
(2)

Clearly, the two double summations in the RHS of equation 1 and equaion 2 are equal and can be obtained by simply reordering the summations. Therefore we have

$$Trace(AB) = Trace(BA) \tag{3}$$

We will also use the fact that the SVD of a square matrix $M = USV^T$ exists with U, V being orthonormal matrices and S being a diagonal matrix.

$$\begin{aligned} \operatorname{Trace}(P_1^T R P_2) &= \operatorname{Trace}(R P_2 P_1^T) \text{ (from equation 3)} \\ &= \operatorname{Trace}(R U' S' V'^T) \text{ (where } P_2 P_1^T = U' S' V'^T \text{ is the SVD of } P_2 P_1^T) \\ &= \operatorname{Trace}(S' V'^T R U') \text{ (again using the result from equation 3)} \\ &= \operatorname{Trace}(S' X) \text{ (where } X = V'^T R U' \text{ and } S' \text{ is a diagonal matrix)} \end{aligned}$$

Part (e)

Since maximising Trace($P_1^T R P_2$) is the same as maximising Trace(S'X) where S' is a diagonal matrix and $X = V'^T R U'$, we only need to determine the matrix X such that $S'_{11} X_{11} + S'_{22} X_{22}$ is maximised where S'_{11} and S'_{22} are the singular values of $P_2 P_1^T$.

We will now show that *X* is also orthonormal.

$$XX^{T} = (V'^{T}RU') \cdot (V'^{T}RU')^{T}$$

$$= (V'^{T}RU') \cdot (U'^{T}R^{T}V')$$

$$= V'^{T}R(U' \cdot U'^{T})R^{T}V'$$

$$= V'^{T}RIR^{T}V', \text{ (since } U, V \text{ are orthonormal)}$$

$$= V'^{T}RR^{T}V'$$

$$= V'^{T}IV' \text{ (since } R \text{ is orthonormal)}$$

$$= V'^{T}V'$$

$$= I$$

$$\Rightarrow XX^{T} = X^{T}X = I$$

$$\Rightarrow X_{11}X_{11} + X_{12}X_{12} = 1 & X_{11}X_{21} + X_{12}X_{22} = 0$$

$$\Rightarrow X_{21}X_{11} + X_{22}X_{12} = 0 & X_{21}X_{21} + X_{22}X_{22} = 1$$

$$\Rightarrow X_{21}^{2} + X_{12}^{2} = 1$$

$$\Rightarrow X_{21}^{2} + X_{22}^{2} = 1$$

$$\Rightarrow X_{11}X_{21} + X_{12}X_{22} = 0$$

Since all entries of X are real numbers, $0 \le X_{ij} \le 1 \ \forall i, j \in [1,2]$. We need to maximise $S_{11}'X_{11} + S_{22}'X_{22}$ and since S_{11}' and S_{22}' are positive values, we only need to maximise the values of X_{11} and X_{22} . Since $X_{11} \le 1$ and $X_{22} \le 1$ the maximum values X_{11} and X_{22} can take are 1. Hence,

$$\operatorname{Trace}(S'X) = X_{11}S'_{11} + X_{22}S'_{22} \leqslant ((1)S'_{11} + (1)S'_{22}) = S'_{11} + S'_{22}$$

Therefore the matrix *X* is,

$$X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

since $x_{11}^2 + X_{12}^2 = 1$ and $X_{11} = 1 \Rightarrow X_{12} = 0$, similarly $X_{21} = 0$. Hence we get $X = I_2$ for maximum value of Trace S'X

Part (f)

Since $X = I_2$ and $X = V^{'T}RU'$, we get

$$V^{'T}RU^{'} = I$$

$$\Rightarrow V^{'}V^{'T}RU^{'}U^{'T} = V^{'}IU^{'T}$$

$$\Rightarrow IRI = V^{'}U^{'T} \text{ (since } V^{'} \text{ and } U^{'} \text{ are orthogonal matrices)}$$

$$\Rightarrow R = V^{'}U^{'T}$$

If *X* is the identity matrix $R = V'U'^T$.

Part (g)

If *R* is also a rotation matrix then $R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ for some $\theta \in \mathbb{R}$. This gives $\det(R) = \cos^2 \theta + \sin^2 \theta = 1$. However if *R* is not a rotation matrix then $\det(R) = 1, -1$. So the additional constraint imposed is $\det(R) = 1$.