Relating Proof Systems for Recursive Types

Clemens Grabmayer
Department of Computer Science
Vrije Universiteit Amsterdam

3rd December 2004

Recursive Types (with only type-constructor \rightarrow)

Definition 1. The set μTp of recursive types is generated by

$$\tau ::= \alpha \mid \bot \mid \top \mid (\tau \to \tau) \mid (\mu \alpha. \tau) \qquad (\alpha \in TVar).$$

where TVar is a set of type variables; the leading symbol $\mathcal{L}(\tau)$ of a recursive type τ appears coloured.

Examples:
$$\mu\beta.(\beta \to \bot)$$
, $\mu\alpha.((\alpha \to \alpha) \to \alpha)$, $\mathcal{L}(\mu\gamma.\gamma) =_{\mathsf{def}} \bot$.

Important operations on recursive types are unfolding and folding:

$$\mu\alpha. \tau \rightarrow_{\mathsf{unfold}} \tau[\mu\alpha. \tau/\alpha] \quad \text{ and } \quad \tau[\mu\alpha. \tau/\alpha] \rightarrow_{\mathsf{fold}} \mu\alpha. \tau \ .$$

Definition 2. Recursive type equality $=_{\mu}$ is a binary relation on μTp :

$$\tau =_{\mu} \sigma \iff_{\mathsf{def}} \mathsf{Tree}(\tau) = \mathsf{Tree}(\sigma)$$
.

Tree Unfolding, Recursive Type Equality

Example 3. The recursive types

$$\tau \equiv \mu \alpha. (\alpha \to \bot)$$
 and $\sigma \equiv \mu \beta. ((\beta \to \bot) \to \bot)$

correspond respectively to the different cyclic term graphs

but possess the same tree unfolding

Hence $\tau =_{\mu} \sigma$ holds.

Proof Systems for Recursive Type Equality

- Sound and complete axiom systems w.r.t. $=_{\mu}$:
 - AC⁼ by Amadio and Cardelli (1993) is of "traditional form".
 - **HB**⁼ by Henglein and Brandt (1998) is *coinductively motivated*.

$$au =_{\mu} \sigma \iff \vdash_{\mathsf{AC}} \tau = \sigma \quad (\iff \vdash_{\mathsf{HB}} \tau = \sigma).$$

- A system on which "consistency-checking" w.r.t. $=_{\mu}$ can be based:
 - **AK**⁼, a "syntactic-matching" system à la Ariola and Klop (1995).

 $\tau =_{\mu} \sigma \iff$ no "contradiction" is derivable in $\mathbf{AK}^{=}$ from assumption $\tau = \sigma$.

 $\chi_1 = \chi_2$ is a *contradiction* iff $\mathcal{L}(\chi_1) \neq \mathcal{L}(\chi_2)$; such as: $\bot = \top$, $\tau_1 \to \tau_2 = \alpha$, $\gamma = \bot$, $\mu\alpha$. $\alpha = \top$, and $\alpha = \beta$ (for $\alpha \not\equiv \beta$).

Specific Rules in AC⁼, HB⁼, and AK⁼

• in
$$\mathbf{AC}^{=}$$
: $\frac{\sigma_{1} = \tau[\sigma_{1}/\alpha]}{\sigma_{1} = \sigma_{2}}$ $\frac{\sigma_{2} = \tau[\sigma_{2}/\alpha]}{\sigma_{1} = \sigma_{2}}$ UFP (if α "guarded" in τ by " \rightarrow ")

• in
$$\mathbf{AK}^=$$
: $\frac{\tau_1 \to \tau_2 = \sigma_1 \to \sigma_2}{\tau_i = \sigma_i} \mathsf{DECOMP} \ (\mathsf{for} \ i \in \{1,2\})$

Present in all systems: REFL, SYMM, TRANS, (FOLD/UNFOLD).

Derivations in HB⁼ and AK⁼

Example 4. Derivations in (slight variants) of **HB**⁼ and **AK**⁼:

FOLD_{$$l/r$$} $\frac{(\tau \to \bot = (\sigma \to \bot) \to \bot)^{\boldsymbol{u}}}{\underline{\tau} = \sigma}$ $\frac{(\text{REFL})}{\underline{\bot} = \bot}$ ARROW/FIX $\underline{\tau \to \bot = \sigma \to \bot}$ FOLD _{l} $\underline{\tau} = \sigma \to \bot$ $\underline{\bot} = \bot$ ARROW/FIX, $\underline{\boldsymbol{u}}$ $\underline{\tau \to \bot = (\sigma \to \bot) \to \bot}$ FOLD _{l/r} FOLD _{l/r} $\underline{\mu}\alpha. (\alpha \to \bot) = \underline{\mu}\beta. ((\beta \to \bot) \to \bot)$ $\underline{\equiv}\sigma$

Derivations in HB⁼ and AK⁼

Example 4. Derivations in (slight variants) of **HB**⁼ and **AK**⁼:

FOLD_{$$l/r$$} $\frac{(\tau \to \bot = (\sigma \to \bot) \to \bot)^{\boldsymbol{u}}}{\underline{\tau} = \sigma}$ $\frac{(\text{REFL})}{\underline{\bot} = \bot}$ ARROW/FIX $\underline{\tau} \to \underline{\bot} = \sigma \to \bot$ FOLD _{l} $\underline{\tau} = \sigma \to \bot$ FOLD _{l/r} FOLD _{l/r} FOLD _{l/r} $\underline{\mu}\alpha. (\alpha \to \bot) = \underline{\mu}\beta. ((\beta \to \bot) \to \bot)$ $\underline{\equiv}\sigma$

$$\begin{array}{c} \text{UNFOLD}_{l/r} \frac{\mu\alpha.\left(\alpha \to \bot\right) = \mu\beta.\left(\left(\beta \to \bot\right) \to \bot\right)}{\tau \to \bot = \left(\sigma \to \bot\right) \to \bot} \\ \text{DECOMP} \frac{\tau \to \bot = \left(\sigma \to \bot\right) \to \bot}{\tau = \sigma \to \bot} \\ \text{DECOMP} \frac{\tau \to \bot = \sigma \to \bot}{\tau = \sigma} \\ \text{UNFOLD}_{l/r} \frac{\tau = \sigma}{\tau \to \bot} \end{array}$$

Questions investigated in my thesis

- What kind of proof-theoretic relationships do exist between AC⁼,
 HB⁼, and AK⁼?
 - How can a connection between HB⁼ and AK⁼ (as suggested by Example 4) be made precise?
 - Can "coinductive" proofs in HB⁼ be effectively transformed into "traditional" proofs in AC⁼? And . . . , vice versa?
- More generally concerning proof-transformations and interpretational proof-theory:
 - What is the relevance of the notions "derivability" and "admissibility" of rules for finding proof-transformations?
 - How to define rule "derivability" and "admissibility" in naturaldeduction systems properly?

A duality between $HB_0^=$ and $AK_0^=$

Example 5. A duality between a derivation in $HB_0^=$ and a *consistency-unfolding* in $AK_0^=$:

FOLD_{$$l/r$$} $\underbrace{\frac{\left(\tau \to \bot = (\sigma \to \bot) \to \bot\right)^{\boldsymbol{u}}}{\tau = \sigma}}_{\underline{\tau} = \sigma \to \bot} \underbrace{\frac{(\text{REFL})}{\bot = \bot}}_{\text{ARROW}} \underbrace{\frac{(\text{REFL})}{\bot = \bot}}_{\underline{\tau} = \sigma \to \bot} \underbrace{\frac{(\text{REFL})}{\bot = \bot}}_{\text{FOLD}_{l}} \underbrace{\frac{(\text{REFL})}{\bot = \bot}}_{\text{FOLD}_{l/r}} \underbrace{\frac{(\text{REFL})}{\bot}}_{\text{FOLD}_{l/r}} \underbrace{\frac{(\text{REFL})}{\bot}}_{\underline{\tau} \to \bot} \underbrace{\frac{(\text{REFL})}{\bot}}_{$

$$\frac{\mu\alpha.\left(\alpha\rightarrow\bot\right)=\mu\beta.\left(\left(\beta\rightarrow\bot\right)\rightarrow\bot\right)}{\left(\tau\rightarrow\bot=\left(\sigma\rightarrow\bot\right)\rightarrow\bot\right)\boldsymbol{u}} \text{ DECOMP}$$

$$\frac{\tau=\sigma\rightarrow\bot}{\tau\rightarrow\bot=\sigma\rightarrow\bot} \text{ Unfold}_{l} \qquad \bot=\bot$$

$$\frac{\tau=\sigma\rightarrow\bot}{\left(\tau\rightarrow\bot=\left(\sigma\rightarrow\bot\right)\rightarrow\bot\right)\boldsymbol{u}}$$

Answers offered

- Introduction of "analytic" variant systems $HB_0^=$ and $AK_0^=$ of the systems $HB^=$ and $AK^=$.
- A "network" of proof-transformations is given:
 - A *duality* between derivations in $HB_0^=$ and "consistency-unfoldings" in $AK_0^=$ (is formally proved to exist).
 - A proof-transformation from AC⁼ to HB⁼.
 - A proof-transformation from $HB^{=}$ via $HB_{0}^{=}$ to $AC^{=}$. (In the first step: *effective SYMM- and TRANS-elimination*.)
- A study of rule derivability and rule admissibility in (abstract versions of) pure Hilbert systems and of natural-deduction systems. Results that help clarify the relationship of these notions to the possibility of "rule elimination".

Found network of proof-transformations

Amadio-Cardelli systems

Defense of my thesis

22nd of March 2005, 13:45 Aula of the Vrije Universiteit De Boelelaan 1105, Amsterdam

Everybody is kindly welcome!

References

- [AmCa93] Amadio, R.M., Cardelli, L.: "Subtyping Recursive Types", ACM Transactions on Programming Languages and Systems **15**:4 (1993) 575–631.
- [ArKl95] Ariola, Z.H., Klop, J.W.: "Equational Term Graph Rewriting", Fundamenta Informaticae **26**:(3,4) (1996) 207–240.
- [BrHe98] Brandt, M., Henglein, F.: "Coinductive Axiomatization of Recursive Type Equality and Subtyping", *Fundamenta Informaticae* **33** (1998) 1–30.
- [CG] Grabmayer, C.: "Relating Proof Systems for Recursive Types", http://www.cs.vu.nl/~clemens/proefschrift.ps.

- [CG02] Grabmayer, C.: "A Duality in Proof Systems for Recursive Type Equality and Bisimulation Equivalence on Cyclic Term Graphs", Proceedings of the Workshop TERMGRAPH 2002, Barcelona, October 2002; and VU Amsterdam Report (2002), http://www.cs.vu.nl/~clemens/duality_report.ps.gz.
- [CG03] Grabmayer, C.: "Derivability and Admissibility of Inference Rules in Abstract Hilbert systems", VU Amsterdam Report (2003), http://www.cs.vu.nl/~clemens/dairahs.ps.
- [Gra04] Grabmayer, C.: "Derivability and Admissibility of Inference Rules in Abstract Hilbert Systems", Collegium Logicum, Kurt Gödel Society, Vienna (2004), http://www.cs.vu.nl/~clemens/collegiumlogicum.ps.