Avaliação 1 – Laboratório de Banco de Dados Engenharia de Computação / CEFET-MG

Rhuan Lucas Barbosa Fernandes

A avaliação foi feita levando o tamanho do lado dos quadrados como atributo principal, ou seja, para a lista ordenada, que não insere no fim, o tamanho do lado foi usado para definir o local onde o quadrado deve ser inserido, já nas buscas o lado foi utilizado para encontrar o quadrado correspondente.

1- Inserção:

Atribuições e comparações para a inserção de 1000 quadrados em ordem crescente (2), decrescente (4) e aleatória (5), respectivamente, nas listas sequencial, ordenada e encadeada:

- a) Inserção na Lista Sequencial;
- b) Inserção na Lista Ordenada;
- c) Inserção na Lista Encadeada.

	2-a	2-b	2-c	4-a	4-b	4-c	5-a	5-b	5-c
Compa - rações	3.000	1.003.000	501.501	3.000	1.003.000	501.501	3.000	757.351	501.501
Atribui - ções	4.000	1.503.500	1.504.502	4.000	1.503.500	1.504.502	4.000	1.758.113	1.504.502

2- Busca:

Atribuições e comparações para buscar 100 vezes o mesmo quadrado nas listas Sequencial, Ordenada e Encadeada:

3- Listas em ordem Crescente:

3- a) Busca Quadrados com lado 1:

	Sequencial	Ordenada	Encadeada
Comparações	404	4.646	303
Atribuições	303	5.959	303

3- b) Busca Quadrado com lado 1001:

	Sequencial	Ordenada	Encadeada
Comparações	505	9.797	202.505
Atribuições	505	12.524	303.606

3- c) Busca Quadrado com lado 500:

	Sequencial	Ordenada	Encadeada
Comparações	152.106	14.948	303.606
Atribuições	152.005	19.089	455.106

3- d) Busca Quadrado com lado 1000:

	Sequencial	Ordenada	Encadeada
Comparações	455.207	19.594	505.707
Atribuições	455.005	25.048	758.106

4- Listas em ordem Decrescente:

4- a) Busca Quadrados com lado 1:

	Sequencial	Ordenada	Encadeada
Comparações	455.611	24.240	506.010
Atribuições	455.308	31.007	758.409

4- b) Busca Quadrado com lado 1001:

	Sequencial	Ordenada	Encadeada
Comparações	455.712	29.391	708.212
Atribuições	455.510	37.572	1.061.712

4- c) Busca Quadrado com lado 500:

	Sequencial	Ordenada	Encadeada
Comparações	607.313	34.542	809.313
Atribuições	607.010	44.137	1.213.212

4- d) Busca Quadrado com lado 1000:

	Sequencial	Ordenada	Encadeada
Comparações	910.414	39.188	1.011.414
Atribuições	910.010	50.096	1.516.212

5- Listas em ordem Aleatória:

5- a) Busca Quadrados com lado 1:

	Sequencial	Ordenada	Encadeada
Comparações	272.498	4.646	181.699
Atribuições	272.397	5.959	263.307

5- b) Busca Quadrado com lado 1001:

	Sequencial	Ordenada	Encadeada
Comparações	272.599	9.797	202.505
Atribuições	272.599	12.524	575.700

5- c) Busca Quadrado com lado 500:

	Sequencial	Ordenada	Encadeada
Comparações	370.266	14.948	449.046
Atribuições	370.165	19.089	673.266

5- d) Busca Quadrado com lado 1000:

	Sequencial	Ordenada	Encadeada
Comparações	415.211	19.594	479.043
Atribuições	415.009	25.048	718.110

Total de atribuições e comparações contabilizados nas buscas

	Sequencial	Ordenada	Encadeada
Comparações	4.367.846	225.331	5.359.363
Atribuições	4.365.826	288.052	8.297.049

Para a inserção temos, através dos dados obtidos, que a lista sequencial tem um melhor desempenho para os três tipos de ordenação, utilizando muito menos comparações e atribuições. Isso acontece porque a lista sequencial utilizou a inserção no fim, ela simplesmente verifica se a lista está cheia e, caso não esteja, adiciona o quadrado após o último elemento. Enquanto isso a lista ordenada insere todos os quadrados em ordem crescente e a inserção na encadeada percorre todo a lista até encontrar seu último elemento e inserir o novo referenciando os ponteiros, nestes dois casos o gasto computacional é maior.

O total de comparações e atribuições nas buscas nos mostra a expressiva diferença da lista ordenada para as outras. Isso ocorre porque a busca binária diminui a lista pela metade a cada iteração, fazendo assim, que sua complexidade seja O(log(n)) no pior caso, enquanto as buscas nas listas sequencial e encadeada percorrem toda a lista comparando elemento por elemento e gerando um custo computacional muito superior a busca binária, suas complexidades são lineares O(n) no pior caso.

Qual o tipo de lista é mais adequado para determinada situação

Através dos dados obtidos temos que a lista sequencial é melhor para casos em que os elementos buscados estejam no início da lista, pois sua inserção é melhor que de outras listas e a busca tem um baixo custo quando o elemento é encontrado no início.

Já a lista ordenada é melhor para situações em que o elemento buscado se encontra no meio, porque a sua inserção tem um custo alto, mas como a busca divide a lista ao meio, o quadrado será encontrado na primeira iteração, com baixo custo.

A lista encadeada não possui um desempenho superior as outras duas neste caso, mas é melhor em relação a inserção e remoção de elementos no meio da lista, por ser uma lista dinâmica estas funções não geram um custo constante.