

QUIZ – 15 minutes – open notes

- Prove that every simple planar graph with fewer than
 12 vertices has a vertex of degree at most four.
- Give an example of the following or expalin why no such example exists: a nonplanar graph with chromatic number 3.

Each question worth 5 marks.

Saturday, April 12, 2021

QUIZ. THURSDAY 20150409

SOLUTION

A plener graph of G of order $N \le 11 A - 1$.

a plener graph of G of order $N \le 11 A - 1$. $S(G) \ge 5.$ $2|E(G)| = \sum_{v \in V(G)} d(v) \ge 5m \qquad (9)$ Putting |E(G)| = m, we also have $m \le 3n - b \quad \text{Arice} \quad G \text{ is plener}$ $m \le 3n - b \quad \text{Arice} \quad G \text{ is plener}$ $5n \le 2m \le 2(3n - b) = 6n - 12$ $5n \le 2m \le 2(3n - b) = 6n - 12$

Q2. There can be non-planar graphs with someth chromatic number 3.

Escample I: G consists of a K3,3 and an additional vertexe of which is joined to precisely one vertex of the partite sets of the K3,3

Since G contains a K3,3, it is nonplanar by Runctowskia Theorem.

Since G is not hipartite, $\chi(q) > 2$.

DTOH, we can be properly golde G with 3 colors by giving re a color different from thate wied to color the K3,3 rowtgraph:

2 < $\chi(q) \leq 3 = 7 \chi(q) = 3$

as required

Example 2: The Peterson Graph, P Snice P is a 3-regular, $\chi(G) \leq 3$ by Brooks' Theorem, OTOH, P contains a 5- wycle so it is not bipartite.

: x(4) > 2.

Hence, again $\chi(4) = 3$.

Since P contains a subdivision of K5, it is nonplanar by Kuratowski's Theorem.