2022-2023 MP2I

31. Espaces préhilbertiens réels

Exercice 1. © Montrer que $\langle P, Q \rangle = \sum_{k=0}^{n} P(k)Q(k)$ est un produit scalaire sur $\mathbb{R}_n[X]$.

Exercice 2. © Soit $E = \mathcal{C}^1([0,1], \mathbb{R})$. Montrer que $\varphi(f,g) = f(0)g(0) + \int_0^1 f'(t)g'(t)dt$ est un produit scalaire sur E.

Exercice 3. (i) Soient $a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, \ldots, c_n$ des réels positifs. Montrer que :

$$\sum_{k=1}^{n} a_k b_k c_k \le \sqrt{\sum_{k=1}^{n} a_k^2 c_k} \sqrt{\sum_{k=1}^{n} b_k^2 c_k}.$$

Exercice 4. (i) Soit $f:[a,b] \to \mathbb{R}_+^*$ continue. Montrer que $\int_a^b f(t)dt \times \int_a^b \frac{1}{f(t)}dt \ge (b-a)^2$ et étudier le cas d'égalité.

Exercice 5. (m) Soient $x, y \in E$. Montrer que $x \perp y \Leftrightarrow \forall \lambda \in \mathbb{R}, ||x + \lambda y|| \geq ||x||$.

Exercice 6. (m) Soit E un espace euclidien et $f \in L(E)$ tel que $\forall x, y \in E, \langle f(x), y \rangle = \langle x, f(y) \rangle$.

- 1) Montrer que $\operatorname{Im}(f) = \ker(f)^{\perp}$.
- 2) Montrer que si $e = (e_1, \dots, e_n)$ est une base orthonormée de E, alors $\mathrm{Mat}_e(f)$ est symétrique.

Exercice 7. (m) Soient (e_1, \ldots, e_n) des vecteurs unitaires d'un espace préhilbertien réel E. On suppose que pour tout x de E, $||x||^2 = \sum_{i=1}^n \langle x, e_i \rangle^2$.

- 1) Montrer que (e_1, \ldots, e_n) est une famille orthonormée.
- 2) Montrer que $(e_1, \ldots e_n)$ est une base orthonormée de E.

Exercice 8. (m) Soit E un espace euclidien de dimension n et (x_1, \ldots, x_n) une famille de vecteurs unitaires de E tels que $\forall i \neq j$, $||x_i - x_j|| = 1$. Déterminer $\langle x_i, x_j \rangle$ puis montrer que (x_1, \ldots, x_n) est une base de E.

Exercice 9. © Déterminer la matrice dans la base canonique des projections orthogonales de \mathbb{R}^3 sur les sous-espaces vectoriels suivants :

- 1) La droite D: 2x = y = z et la droite D': x y = y z = x + z.
- 2) Le plan P: 2x + y + z = 0 et le plan P': x y + z = 0.

Exercice 10. © Déterminer la matrice dans la base canonique de \mathbb{R}^3 de la symétrie orthogonale par rapport au plan P: ax + by + cz = 0 où $a, b, c \in \mathbb{R}$ vérifient $a^2 + b^2 + c^2 = 1$.

Exercice 11. * Soient E un espace euclidien et p un endomorphisme de E. Montrer que p est une projection orthogonale si et seulement si $p \circ p = p$ et $\forall x \in E, ||p(x)|| \leq ||x||$.

Exercice 12. © Dans \mathbb{R}^3 muni du produit scalaire canonique, orthonormaliser en suivant le procédé de Schmidt les familles suivantes :

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ w_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \text{ et } u_2 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, \ v_2 = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}, \ w_2 = \begin{pmatrix} 5 \\ -3 \\ 7 \end{pmatrix}.$$

Exercice 13. (m) Déterminer une base orthonormée de $\mathbb{R}_2[X]$ muni du produit scalaire $\langle P,Q\rangle = \int_0^1 P(t)Q(t)dt$. En déduire $\min_{a,b\in\mathbb{R}}\int_0^1 (x^2-(a+bx))^2dx$.

Exercice 14. (m)/ (i) Soit
$$E = \mathbb{R}_n[X]$$
, $a \in \mathbb{R}$ et $\langle P, Q \rangle = \sum_{k=0}^n \frac{P^{(k)}(a)Q^{(k)}(a)}{(k!)^2}$ pour $P, Q \in E$.

- 1) Montrer que E est un espace euclidien.
- 2) Déterminer la bon obtenue à partir de la base canonique de E par le procédé de Gram-Schmidt.

Exercice 15. (m) Polynômes de Legendre. On pose $E = \mathbb{R}_n[X]$ et $\langle P, Q \rangle = \int_{-1}^1 P(t)Q(t)dt$.

- 1) Vérifier que l'on définit un produit scalaire sur E.
- 2) Pour $k \in [0, n]$, on pose $L_k = \left(\frac{(X^2 1)^{2k}}{2^k k!}\right)^{(k)}$. Justifier que $\deg(L_k) = k$, déterminer $\dim(L_k)$ et que la famille $(L_k)_{0 \le k \le n}$ est orthonormée. On pourra effectuer des IPPs.
- 3) Justifier sans calculer d'intégrale que $\langle L_k, X^k \rangle > 0$ et en déduire que $(L_k)_{0 \le k \le n}$ est la base orthonormée obtenue en appliquant le procédé d'orthonormalisation de Schmidt à la famille $(1, X, \dots, X^n)$.

Exercice 16. $\boxed{\mathbf{m}}$ On se place sur $\mathcal{M}_n(\mathbb{R})$ muni du produit scalaire $\langle A, B \rangle = \operatorname{Tr}(A^T B)$. On pourra remontrer, si ce n'est pas clair, qu'il s'agit d'un produit scalaire.

- 1) Montrer que $S_n(\mathbb{R})$ et $A_n(R)$ sont des supplémentaires orthogonaux. Déterminer la distance de $M = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$ à $S_3(\mathbb{R})$.
- 2) Montrer que l'ensemble H des matrices de trace nulle est un sev de $\mathcal{M}_n(\mathbb{R})$ et déterminer sa dimension. Donner la distance à H de la matrice J dont tous les coefficients valent 1.

Exercice 17. (i) Déterminants de Gram. On considère une famille (x_1, \ldots, x_p) d'un espace euclidien E. On pose alors $A = (\langle x_i, x_j \rangle)_{1 \leq i,j \leq p}$ et $G(x_1, \ldots, x_p) = \det(A)$.

- 1) Montrer que $G(x_1, \ldots, x_p) \neq 0 \Leftrightarrow (x_1, \ldots, x_p)$ libre.
- 2) On considère x orthogonal à tous les x_i . Exprimer $G(x_1, \ldots, x_p, x)$ en fonction de $G(x_1, \ldots, x_p)$.
- 3) On prend (x_1, \ldots, x_p) libre. Calculer la distance de x à $Vect(x_1, \ldots, x_p)$ en fonction des déterminants G.

Exercice 18. (m) Déterminer la distance du point $M = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ à la droite D d'équation $\begin{cases} x+y-2z=1 \\ 2x-y+z=-1 \end{cases}$.

Exercice 19. (m) Déterminer $\alpha \in \mathbb{R}$ pour que le point $A = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ soit situé à une distance égale à 1 du plan d'équation $\alpha x + 2y + z + 1 = 0$.