

PrivDPI: Privacy-Preserving Encrypted Traffic Inspection with Reusable Obfuscated Rules

Jianting Ning, Geong Sen Poh, <u>Jia-Ch'ng Loh</u>, Jason Chia, Ee-Chien Chang

Outline

- Introduction
- Motivation
- BlindBox by Sherry et al. in Sigcomm 2015
- PrivDPI
- Performance Evaluation
- Prototype (Screenshots)
- Conclusion

Introduction

Introduction

Popularity of TLS

- More than 80% web traffic would be encrypted by TLS in 2019. [1]
- Major browser implementations like Firefox, Chrome only support HTTP/2 over TLS. [2]

Easy cover for attackers

- Firewall, IDS, IPS, and any Middlebox (MB) in an organization might not function well at this point.
- Almost 50% of the cyber attacks use encryption as cover to sneak into organization network. [3]

^[3]https://www.computerweekly.com/news/450303346/Encryption-hiding-malware-in-half-of-cyber-attacks

Solution: Man in the Middle (MitM)

How can MB inspect?

- Current industry practice: MitM
- Performs man-in-the-middle to decrypt the traffic to perform DPI.
- Client/server is aware to be inspected.

Motivation

Motivation

- MitM approach is working fine in on-premises MB
 - Data is still within an organization

- Main issue: Cloud-based (Third party) MB
 - Security:
 - Endpoints need to trust the middlebox (MB). Violates end-to-end security guarantee of TLS.
 - Middlebox may weaken the security of TLS by using obsolete security parameters.
 - The various security issues prompted the US-Cert to issue an alert (TA17-075A) on interception of encrypted traffic [4].

[4]https://www.us-cert.gov/ncas/alerts/TA17-075A

7

BlindBox

BlindBox: Deep Packet Inspection over Encrypted Traffic

- Proposed by Sherry et al. (UC Berkeley), Sigcomm 2015
- Match encrypted tokens of network traffic with encrypted rules

Advantages :

- Privacy-preserving
 - MB inspects over client's encrypted traffics without decryption
 - Client and server do not learn the rules

Use cases:

- Data exfiltration
- Parental filtering
- Ensure privacy of employees' encrypted traffic

Issues:

 Every session requires setup of encrypted rules which requires the communication overhead: 97s and 50GB for 3000 rules

BlindBox: Deep Packet Inspection over Encrypted Traffic

Two phases:

Setup:

- To generate encrypted rules (encrypted using session key).
- Requirement: MB does not learn the session key and client/server does not learn the rules
- Using circuit garbling hence it is compute intensive.

Token encryption & detection:

- Client/server tokenizes and encrypts the payload.
- MB performs matching based on the encrypted tokens and the encrypted rules.

BlindBox: Deep Packet Inspection over Encrypted Traffic

BlindBox: Setup RG provides rule tuples to MB (Fully-trusted) Tuples of rules and Rules Generator signatures RG C and S establish TLS C, MB & S compute encrypted Setup rules using secure multi-party computation Encrypted TLS TLS traffic Validate Detect tokens Encrypted Tokenize Encrypt tokens Server S Client C Middlebox MB (Honest/malicious) (Malicious/honest) (Semi-honest)

- 1. Must be performed for every session.
- 2. The operations are carried out after the session key has been established under the TLS handshake protocol.

BlindBox: Encrypted traffic inspection

- 1. After setup, the client tokenizes (windows-based) and encrypts the payload using a key derived from the session key.
- 2. MB inspects encrypted tokens, and only tokens that match rules are revealed.

PrivDPI

- Same setting like BlindBox but different approaches on encrypting the rules and tokens. New technique: obfuscated rule encryption.
- 2. Session Reusable: Does not need to perform the setup operation for every session.
- 3. Reusable token encryption: Reuse session token generated in previous sessions.

Computation is much more efficient and the bandwidth required is very low as compared to BlindBox.

PrivDPI: Setup

- 1. Client and server both forward the session token to MB:
 - MB can perform validation using both session tokens.
 - To prevent client being malicious, e.g. client uses random key in 2nd phase.
- 2. MB performs pre-processing with client to generate reusable encrypted rules table.
 - MB can use this table to detect encrypted tokens later.

PrivDPI: Token Encryption & Detection

MB checks if any encrypted token matches in the encrypted rules table.

PrivDPI: Session Reusable

Primary TLS

Server

Client

 sk_c (computed in first session)

 $sk_{c2} = hash(k_{TLS}) \in Z_r$ (new session)

1

$$pk_{c2} = g^{sk_{c2}},$$

$$salt_{c2}$$

Check:

$$pk_{c2} = ?pk_{s2}$$

 $salt_{c2} = ?salt_{s2}$

$$pk_{s2} = g^{sk_{s2}},$$

$$salt_{s2}$$

2

MB re-computes for every rule r_i :

$$g^{sk_cr_i\alpha+sk_c^2+sk_{c2}}$$

Performance Evaluation

Comparison Table (Setup Time in second)

- Computer Specifications:
 - 6 Core PC
 - Intel(R) Core(TM) i7-8750H CPU @ 2.20Ghz
- For 3,000 rules:
 - Blindbox takes around 3 minutes.
 - PrivDPI requires only 570 ms.

No. of Rules (8 bytes)	Setup Time	
	Blindbox	PrivDPI
300	17.8501	0.1041
600	35.7093	0.1107
900	52.6958	0.1669
1200	70.1994	0.2176
1500	90.7262	0.2717
1800	112.0800	0.3413
2100	132.9253	0.3978
2400	144.6417	0.4756
2700	165.1693	0.5253
3000	183.8260	0.5683

Comparison Table (Bandwidth required for each rule)

- In order to complete the setup phase, communications between Client (Server) and MB bandwidth is required.
- For 3,000 rules during the setup:
 - Blindbox takes 50.1 GB.
 - PrivDPI takes only 324 KB.

Bandwidth required during Setup (for each rule)		
BlindBox	PrivDPI	
16.7 MB	108 B	

Tradeoff: Setup Time against Token Encryption Time

- Token encryption is traded-off for the setup time.
- Blindbox is more efficient after sending 3.6 million encrypted tokens.
- PrivDPI is more suitable for short-flowed communications due to the savings in the setup.
- E.g. sending e-mail or surfing bank details.

Reusable Token Encryption

- Optimization to increase the performance of token encryption.
- Assuming tokens reappear in a session or across different sessions.
- E.g. bloggers, documents, or webpages that are surfed frequently.

Prototype (Screenshots)

Privacy-preserving Secure Email Gateway

- Preserving privacy of employees
- Scan outbound emails and attachments
- Prevent sensitive data to go out of an organization

Middlebox – Rules generations (Done by RuleGenerator)

Connection Setup View	
Connection Port (Incoming) 8888 Setup Middlebox Rule Preparation	Status Message Obfuscated rules has been prepared. Total rules:38
Middlebox View	
SSL/TLS Traffic	Tokenized Encrypted Traffic
No traffic yet.	No traffic yet.
Ruleset	Matched Tokens
a43t3685 confidential sensitive account number balance forward invoice summary summary invoice 482-130501-130630 outstanding fees earned	No connection.

Middlebox – Connection is up

Connection Setup View	
Connection Port (Incoming) 8888 Setup Middlebox Rule Preparation	Status Message Middlebox is up. Waiting for connection. Total rules: 38
Middlebox View	
SSL/TLS Traffic	Tokenized Encrypted Traffic
No traffic yet.	No traffic yet.
Ruleset	Matched Tokens
a43t3685 confidential sensitive account number balance forward invoice summary summary invoice 482-130501-130630 outstanding fees earned employee number.	No connection.

Client – Logging to email account

Client – Connection is established with Middlebox to Google

Connection Setup View		
Status Message Connection Established		
Email Address jasonlohjc@gmail.com Password	Setup Connection	
Client		
Receiver Email		
Subject		A.
Message		
Input		
Talesiand annual	Choose file No file chosen	Send

Middlebox – Connection is establish with Client and Google. Note that TLS traffics is forwarded.

Connection Setup View		
Connection Port (Incoming) 8888 Setup Middlebox Rule Preparation	Status Message Setup done. Connection is established.	
Middlebox View		
SSL/TLS Traffic	Tokenized Encrypted Traffic	
b"\x17\x03\x03\x00\$3\x97\x18\xdd]\f\x13\r\xc7\xc6\r\xd6\xf7\x16\f\x14O\x1a\x15\x81\x8d\x b6\x02\xcb\xf2?\xdc\xb5\x96\xf7\xc7\f\xf3"	No traffic yet.	
Ruleset	Matched Tokens	
a43t3685 confidential sensitive account number balance forward invoice summary summary invoice 482-130501-130630 outstanding fees earned	No connection.	

Client – Sends a clean email

Middlebox – Email is clean. Forward the Google

Google - Receive the email

Client – Sends a sensitive email

Middlebox – Detected! Blocked!

Connection Port (Incoming) 8888 Setup Middlebox Rule Preparation	Status Message Keyword detected
Middlebox View	
SSL/TLS Traffic Keyword detected	Tokenized Encrypted Traffic T90QdoYOX7N/0tB+Gd6hL7YnmT5R1sg3GRf0/smpR9Vqy1Z/k2od1kjnMeQOju6e0MStlhH CfwYQxDmUJzwlYw== HIWio61D97fzRp4+hNXXXtTHugNY40gwNe4/q3WS0Uw/Z9ut8ybJITWcaa5Zv4ihYUh7riMM 8MNhc2+trxWdEw== NvpFOlbSFMdptqWAnlgmGN2B/0peVrJCHsU+XH6NB8vLZlxJ5k1jnOFQ+kltrUZaH1eSJejed Jz7F+i9lyjlrQ== VOY/VDKP8tjv680jc7zajdaATb3XFNRbNwpsiB8iFuBWUGqzxlgosNBQJI+ddzPw0Dy66ECdy 4N7cHMwAA6KgA== qX2QTvTjhnlcng9P4xr8Rl8dqPR/gQt7Kq57TiNsQMX8Xl4HXDW+g96YQHfRJuHaAno50Tujg TqvZMUJ0Xehmw==
Ruleset outstanding fees earned employee number inv20027 inv20025 inv20025 inv20029 inv2014 due upon receipt service fee new client discount	Matched Tokens VOY/VDkP8tjv680jc7zajdaATb3XFNRbNwpsiB8iFuBWUGqzxlgosNBQJI+ddzPw0Dy66ECdy 4N7cHMwAA6KgA==

Conclusion

Conclusion

- We proposed a new technique called obfuscated rule encryption to minimize the computation and communication overhead during the setup phase while preserving the same properties and privacy requirements as in BlindBox.
- We introduced the idea of session reusable that allows MB to reuse the encrypted rules.
- However, token encryption is roughly 6x slower than BlindBox, so we introduced reusable token encryption to achieve only 3.5x slower in the ideal case.

Q&A

Concrete Scheme

NUS PrivDPI: Setup

 s_i , (R_i, σ_{r_i})

RG

$$pk_{rg} = g^{sk_{rg}},$$
 $A = g^{lpha},$ $R_i = g^{r_i lpha + s_i}$ $\sigma_{r_i} = Sign(sk_{rg}, R_i)$ $i \in \{1, ..., N\}$

- 1. Rule generator (RG) generates obfuscated rules R_i by blinding all the rules r_i where α and s_i are randomly chosen.
- 2. RG signs R_i with sk_{rq} , so one can verify under pk_{rq} later.

NUS PrivDPI: Setup (v1)

Primary TLS

Server

$$sk_c = hash(k_{TLS}) \in Z_r$$

$$pk_c = g^{sk_c},$$

$$salt_c$$

Check:

$$pk_c = ?pk_s$$

 $salt_c = ?salt_s$

$$pk_s = g^{sk_s},$$

$$salt_s$$

$$\left(R_i,\sigma_{r_i}\right)_{i\in\{1,\dots,N\}}$$

Verify $(pk_{rg}, R_i, \sigma_{r_i})$

For every R_i ,

$$K_i = (R_i \cdot pk_c)^{sk_c}$$

= $g^{sk_c r_i \alpha + sk_c s_i + sk_c^2}$

 K_i

Check: $e(K_i, g) = ?e(R_i \cdot pk_c, pk_s)$

By using bilinear pairings:

- The involvement of S is highly reduced.
- However, it slows down the setup time.

NUS PrivDPI: Setup (v2)

Primary TLS

Check:

$$K_i = ? K_i'$$

Server

Client

$$sk_c = hash(k_{TLS}) \in Z_r$$

$$pk_c = g^{sk_c},$$

$$salt_c$$

Check:

$$pk_c = ?pk_s$$

 $salt_c = ?salt_s$

 $pk_{S}=g^{Sk_{S}},$ $salt_s$

 $(R_i, \sigma_{r_i})_{i \in \{1,\dots,N\}}$

Verify $(pk_{rg}, R_i, \sigma_{r_i})$

For every R_i ,

$$K_i = (R_i \cdot pk_c)^{sk_c}$$

= $g^{sk_c r_i \alpha + sk_c s_i + sk_c^2}$

 K_i

Check:

$$K_i = ? K_i'$$

 $(R_i, \sigma_{r_i})_{i \in \{1,\dots,N\}}$ Verify $(pk_{rg}, R_i, \sigma_{r_i})$ For every R_i , $K_i' = (R_i \cdot pk_c)^{sk_s}$ $= g^{sk_Sr_i\alpha + sk_Ss_i + sk_S^2}$ K'_i

NUS PrivDPI: Setup (cont.)

National University of Singapore

Client

Primary TLS

MB

Server

Compute encrypted rule:

$$I_i = \frac{K_i}{(pk_c)^{s_i}} = g^{sk_s r_i \alpha + sk_s^2}$$

For every I_i , $C_i = AES_{I_i}(salt_c + ct_{I_i})$

Insert C_i into SearchTree:

A counter table is generated for detection later:

I_i	ct_{I_i}
I_1	0
:	0
I_N	0

PrivDPI: Token Encryption & Detection

Primary TLS

Server

Client

For any message m, C tokenizes $m \to \{t_0, \dots, t_i\}$

$$P_i = A^{sk_c t_i} \cdot g^{sk_c^2}$$

$$T_i = AES_{P_i}(salt_c + ct_{T_i})$$

Note that for every repeated token, $ct_{T_i} + 1$

$$T_i \ll=\gg$$

For every T_i matches in SearchTree, Recompute: $C_i = AES_{I_i}(salt_c + ct_{I_i} + 1)$ Update the table and SearchTree

I_i	ct_{I_i}
I_1	0
:	-0 -1
I_N	0

NUS PrivDPI: Token Validation National University of Singapore

Client

Primary TLS

MB

Server

 T_i

Receive message m' from TLS, S tokenizes $m' \rightarrow \{t'_0, \dots, t'_i\}$ $P_i' = A^{sk_St_i'} \cdot g^{sk_S^2}$ $T_i' = AES_{P_i'}(salt_c + ct_{T_i'})$

Note that for every repeated token, $ct_{T_i'} + 1$

$$T_i = ? T_i'$$

PrivDPI: Setup (Session Reusable)

Primary TLS

MB

Server

Client

 sk_c (computed in first session)

 $sk_{c2} = hash(k_{TLS}) \in Z_r$ (new session)

$$pk_{c2} = g^{sk_{c2}},$$

$$salt_{c2}$$

$$pk_{c2} = ?pk_{s2}$$

 $salt_{c2} = ?salt_{s2}$

$$pk_{s2} = g^{sk_{s2}},$$

$$salt_{s2}$$

MB re-computes every
$$I_i$$
:

$$I'_{i} = I_{i} \cdot pk_{c2} = g^{sk_{c}r_{i}\alpha + sk_{c}^{2} + sk_{c2}}$$

$$C_{i} = AES_{I'_{i}}(salt_{c2} + ct_{I'_{i}})$$

PrivDPI: Token Encryption & Detection

(Session Reusable)

Primary TLS

Server

For any message m,

C tokenizes $m \to \{t_0, \dots, t_i\}$

$$P_i = A^{sk_ct_i} \cdot g^{sk_c^2} \cdot g^{sk_{c2}}$$

$$T_i = AES_{P_i}(salt_c + ct_{T_i})$$

Note that for every repeated token, $ct_{T_i} + 1$

$$T_i \ll=\gg$$

For every T_i matches in SearchTree, Recompute: $C_i = AES_{I_i}(salt_c + ct_{I_i} + 1)$ Update the table and SearchTree

I_i	ct_{I_i}
I_1	0
:	-0 -1
I_N	0

PrivDPI: Token Validation (Session Reusable)

Client

Primary TLS

MB

Server

 T_i

Receive message m' from TLS, S tokenizes $m' \rightarrow \{t'_0, \dots, t'_i\}$ $P_i' = A^{sk_St_i'} \cdot g^{sk_S^2} \cdot g^{sk_{S2}}$ $T_i' = AES_{P_i'}(salt_c + ct_{T_i'})$

Note that for every repeated token, $ct_{T_i'} + 1$

$$T_i = ? T_i'$$

Reusable Token Encryption (TE)

The encryption in PrivDPI is more expensive than BlindBox, such that:

BlindBox	PrivDPI
$2 \times AES AES_{\alpha}(salt + ct)$	1 x Exponentiation $(A)^t \to \alpha$ 1 x Multiplication $\alpha \cdot B \to \beta$ 1 x AES $AES_{\beta}(salt+ct)$

Pre-compute:

$$A = g^{\alpha \cdot sk_s}$$
$$B = g^{sk_s^2}$$

To improve the performance for C and S, we propose token reuse technique.

Specially for S, those frequently tokens can be reused, e.g. webpage that is surfed frequently.

Reusable TE (Cont.)

For the first connection (1st session), C or S computes each token into such table:

Token	Element
t_A	$TE = g^{\alpha \cdot sk_S \cdot t_A + sk_S^2}$
	Seed = $g^{\alpha \cdot sk_S \cdot t_A + sk_S^2}$
	Counter = 1
	Session = 1
t_B	$TE = g^{\alpha \cdot sk_S \cdot t_B + sk_S^2}$
	Seed = $g^{\alpha \cdot sk_S \cdot t_B + sk_S^2}$
	Counter = 1
	Session = 1

$$AES_{TE}(salt + Counter)$$

Suppose that C or S wants to encrypt t_A again.

As t_A was computed, C or S can retrieve $TE=g^{\alpha \cdot sk_S \cdot t_A + sk_S^2}$ and perform 1 x AES only.

Then C or S updates the table, such that Counter increases by 1.

Token	Element
t_A	$TE = g^{\alpha \cdot sk_S \cdot t_A + sk_S^2}$
	Seed = $g^{\alpha \cdot sk_S \cdot t_A + sk_S^2}$
	Counter = 2
	Session = 1