

Chap 2 Structure and Representation

Yih-Lang Li (李毅郎)

Computer Science Department

National Chiao Tung University, Taiwan

The sources of most figure images are from the course slides (Graph Theory) of Prof. Gross

Outline

- Graphs Isomorphism
- Automorphisms and Symmetry
- Subgraphs
- Some Graph Operations
- Tests for Non-Isomorphism
- Matrix Representation
- More Graph Operations

2.1 Graph Isomorphism – Structurally Equivalent Graphs

■ EXAMPLE 2.1.1.

- ✓ The same vertex sets
- ✓ The same adjacency table

0.	1	2	4
1.	0	3	5
2.	0	4	6
3.	1	2	7
4.	0	5	6
5.	1	4	6
5. 6.	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	4	6 7

Two different drawings of the same graph.

EXAMPLE 2.1.2.

- ✓ Different vertex sets
- \checkmark A bijection function f maps V_G to V_H
- Neighborhood also bijectively maps to neighborhood
- ✓ $N(1) \mapsto N(f(1)) = N(s)$ {2, 3, 5} \mapsto {t, u, w}

Formalizing Structural Equivalence for Simple Graphs

DEFINITION: Let G and H be two <u>simple graphs</u>. A vertex bijection $f: V_G \to V_H$ preserves adjacency if

for every pair of adjacent vertices u and v in graph G, the vertices f(u) and f(v) are adjacent in graph H.

Similarly, fpreserves non-adjacency if

f(u) and f(v) are non-adjacent whenever u and v are non-adjacent.

DEFINITION: A vertex bijection $f: V_G \to V_H$ between (the vertex-sets of) two simple graphs G and H is *structure-preserving* if

it preserves adjacency and non-adjacency.

That is, for every pair of vertices in G,

u and v are adjacent in $G \Leftrightarrow f(u)$ and f(v) are adjacent in H.

DEFINITION: Two simple graphs G and H are isomorphic, denoted $G \cong H$, if

 \exists a <u>structure-preserving bijection $f: V_{\underline{G}} \to V_{\underline{H}}$ </u>. Such a function f between (the vertex-sets of) G and H is called an *isomorphism* from G to H.

NOTATION: When we think of a vertex function $f: V_G \to V_H$ as a mapping from one graph to another, we may write $f: G \to H$.

Formalizing Structural Equivalence for Simple Graphs

Two ways to depict an isomorphism

- □ Linear graph mapping not required to preserve non-adjacency & not necessarily bijection
- Two non-isomorphism examples

Bijective and adj-preserving, but not an isom.

Preserves adj and non-adj, but not bijective.

Extending the Definition of Isomorphism to General Graphs

- **DEFINITION**: A vertex bijection $f: V_G \to V_H$ between two graphs G and H, simple or general, is structure-preserving if
 - (1) the # of edges (even if 0) between every pair of distinct vertices u and v in graph G equals the # of edges between their images f(u) and f(v) in graph H, and
 - (2) the # of self-loops at each vertex x in G equals the # of self-loops at the vertex f(x) in H.
- **DEFINITION**: Two graphs G and H (simple or general) are isomorphic graphs if \exists structure-preserving vertex bijection $f: V_G \to V_H$. This relationship is denoted $G \cong H$.
- **DEFINITION**: For isomorphic graphs G and H, a pair of bijections $f_V: V_G \to V_H$ and $f_E: E_G \to E_H$ is *consistent*

if for every edge $e \in E_G$, the function f_V maps the endpoints of e to the endpoints of the edge $f_E(e)$.

 $(f_V: V_G \to V_H, f_E: E_G \to E_H)$ is often written as $f: G \to H$

Isomorphism for Graphs with Multi-Edges

- **Proposition 2.1.1.** Let G and H be any two graphs. Then $G \cong H$ if and only if there is a vertex bijection $f_V: V_G \to V_H$ and an edge bijection $f_E: E_G \to E_H$ that are consistent.
- **Remark.** If G and H are isomorphic simple graphs, then every structure-preserving vertex bijection $f: V_G \to V_H$ induces a unique consistent edge bijection, implicitly given by the rule: $uv \mapsto f(u)f(v)$.
- **DEFINITION**: If G and H are graphs with multi-edges, then an *isomorphism* from G to H is specified by giving a vertex bijection $f_V: V_G \to V_H$ and an edge bijection $f_E: E_G \to E_H$ that are consistent.

- **Example.**
 - **✓** What are 12 distinct isomorphisms?

There are 12 distinct isoms from G to H.

Isomorphic Graph Pairs

- **Theorem 2.1.2.** *Let G and H be isomorphic graphs. Then they must have the same number of vertices and the same number of edges.*
- **Theorem 2.1.3.** Let $f: G \to H$ be a graph isomorphism and let $v \in V_G$. Then deg(f(v)) = deg(v).
- □ Corollary 2.1.4. Let G and H be isomorphic graphs. Then they have the same degree sequence.
- Corollary 2.1.5. Let $f: G \to H$ be a graph isomorphism and let $e \in E_G$. Then the endpoints of edge f(e) have the same degrees of the endpoints of e.
- **DEFINITION**: The Möbius ladder ML_n is a graph obtained from the circular ladder CL_n by deleting from the circular ladder two of its parallel curved edges and replacing them with two edges that cross-match their endpoints.

Isomorphism Type of a graph & Isomorphism Digraphs

- If $f = (f_V, f_E)$ is an isomorphism from G to H, then $f^{-1} = (f_V^{-1}, f_E^{-1})$ is an isomorphism from H to G.
 - ✓ the relation "isomorphic to" is an equivalence relation. (*symmetric*, *reflexive*, *transitive*)
- **DEFINITION**: Each equivalent class under \cong is called an *isomorphism type*.

The 4 isom types for a simple 3-vertex graph.

DEFINITION: Two digraphs are isomorphic if there is an isomorphism f between their underlying graphs that preserves the direction of each edge. That is, e is directed from u to v if and only if f(e) is directed from f(u) to f(v).

Four non-isomorphic digraphs.

The *graph-isomorphism problem* is to devise a practical general algorithm to decide graph isomorphism, or, alternatively, to prove that no such algorithm exists.

VLSI Design Flow

■ The application of graph isomorphism to VLSI design (chip design)
 Very Large Scaled Integrated Circuit

VLSI Circuit Design Flow

Chip Layout Views

NCTU CS-EDA Lab Router

Layout vs. Schematic

Verification between Two Design Levels

■ Layout versus Schematic (LVS) checking – backward verify the correctness of synthesis from schematic to layout

Is schematic 1 equivalent to schematic 2? Graph isomorphism problem

2.2 Automorphisms and Symmetry

- **DEFINITION**: An isomorphism from a graph G to itself is called an *automorphism*.
- **Remark:** Any structure-preserving vertex-permutaion is associated with one (if simple) or more (if there are any multi-edges) automorphism of G. The proportion of vertexpermutation of V_G that are structure-preserving is a measure of the *symmetry* of G.
- The most convenient representation of a permutation is as a *product of disjoint cycles*.
- **NOTATION**: (x), $(x_i x_j)$, $(x_0 x_1 ... x_{n-1})$ (123456789) (741852963) Has the *disjoint cycle form* $\pi = (1793)(2486)(5)$

- **Geometric symmetry** A geometric symmetry on a graph drawing can be used to represent an automorphism on the graph.
- **Example.** $K_{1,3}$ has six automorphisms u

✓ Why not 4!=24?

	Vertex	Edge
Symmetry	permutation	permutation
identity	(u) (v) (w) (x)	(a) (b) (c)
120° rotation	$(x) (u \ v \ w)$	$(a\ b\ c)$
240° rotation	(x) (u w v)	$(a \ c \ b)$
refl. thru a	(x)(u)(v w)	(a) (b c)
refl. thru b	(x) (v) (u w)	(b) (a c)
refl. thru c	(x) (w) (u v)	(c) $(a b)$

Limitations of Geometric Symmetry

When a graph is highly symmetric, automorphisms can be obtained by reflecting and rotating graph.

A graph with four automorphisms.

Limitations of Geometric Symmetric

Three drawings of the Petersen graph. Symmetry property : (a) (5-fold) > (b) and (c) (2-fold)

✓ (0 1 2 3 4) (5 6 7 8 9) for (a), (0 5) (1 8) (4 7) (2 3) (6) (9) for (b), similar mapping for (c)

Vertex- and Edge-Transitive Graphs

- **DEFINITION**: A graph G is vertex-transitive if for every vertex pair $u, v \in V_G$, there is an automorphism that maps u to v.
- **DEFINITION**: A graph G is edge-transitive if for every edge pair $d, e \in E_G$, there is an automorphism that maps d to e.
- **Example.** $K_{1,3}$ is edge-transitive, but not vertex-transitive, since every automorphism must map the 3-valent vertex to itself.
- **Example.** The complete graph K_n is edge-transitive and vertex-transitive for every n.
- **Example.** The hypercube graph Q_n is vertex-transitive and edge-transitive for every n.
- **Example.** The Petersen graph is vertex-transitive and edge-transitive.
- **Example.** Every circulant graph circ(n; S) is vertex-transitive.
 - ✓ vertex function $i \mapsto i + k \mod n$ is an automorphism.
 - \checkmark map i to j: k=abs(j-i).

The circulant graph circ(13:1,5).

Vertex Orbits and Edge Orbits

DEFINITION: The equivalence classes of the vertices of a graph under the action of the automorphisms are called *vertex orbits*. The equivalence classes of the edges are called *edge orbits*.

vertex orbits:
$$\{1,8\}$$
, $\{4,6\}$, $\{2,7\}$, $\{3,5\}$ edge orbits: $\{12,78\}$, $\{34,56\}$, $\{23,25,37,57\}$, $\{35\}$

Automorphisms

$$\lambda_0 = (1)(2)(3)(4)(5)(6)(7)(8)$$

$$\lambda_1 = (1 \ 8)(2 \ 7)(3)(4)(5)(6)$$

$$\lambda_2 = (1)(2)(3 \ 5)(4 \ 6)(7)(8)$$

$$\lambda_3 = (1 \ 8)(2 \ 7)(3 \ 5)(4 \ 6)$$

Graph of Example 2.3.

- □ **Theorem 2.2.1.** All vertices in the same orbit have the same degree.
- **Theorem 2.2.2.** All edges in the same orbit have the same pair of degrees at their endpoints.
- **Remark:** A vertex-transitive graph is a graph with only one vertex orbit, and an edge-transitive graph is a graph with only one edge orbit.
- **Example.** Complete graph K_n has only one vertex orbit and one edge orbit.
- **Example.** Each of the two partite sets of the complete bipartite graph $K_{m,n}$ is a vertex orbit. The graph is vertex-transitive only if m=n. However, $K_{m,n}$ is always edge-transitive.

How to Find an Orbit

- □ It is not known whether there exists a polynomial-time algorithm for finding orbits.
- We can use Theorems 2.2.1. & 2.2.2. plus the following observation if an automorphism maps vertex u to vertex v, then it maps the neighbors of u to the neighbors of v.
- Middle figure: We can simply see (0 5) (1 4) (2) (3) (6) is an automorphism from the symmetry.
 - ✓ **Further observation** vertices 0, 2, 3 and 5 have common three neighbors (1, 4, 6) that are independent, which means vertices 0, 2, 3, and 5 are in an orbit.
 - ✓ **Further observation** vertices 1, 4, and 6 each have two pairs of adjacent vertices (2, 3) and (0, 5), which means we can redraw the middle figure as the right one.
 - \checkmark Final vertex orbit: $\{0, 2, 3, 5\}$ and $\{1, 4, 6\}$. Edge orbit: $\{05, 23\}$, $\{$ the other edges $\}$.

vertex orbits $\{0\}$, $\{1,4\}$, and $\{2,3\}$ edge orbits $\{23\}$, $\{01,04\}$, and $\{12,13,24,34\}$

2.3 Subgraphs

- Properties of a given graph are often determined by the existence or non-existence of certain types of smaller graphs inside it.
 - ✓ Theorem 1.5.3 asserts that a graph is bipartite if and only if it contains no odd cycle.
- **DEFINITION**: A *subgraph* of a graph G is a graph H whose vertices and edges are all in G. If H is subgraph of G, we may also say that G is a *supergraph* of H.
- **DEFINITION**: A *subdigraph* of a digraph G is a digraph H whose vertices and arcs are all in G.
- The incident table for a subgraph H can be obtained simply by deleting from the incident table of G each column that does not correspond to an edge in H.
- **DEFINITION**: A *proper* subgraph H of G is a subgraph such that V_H is a proper subset of V_G or E_H is a proper subset of E_G .
 - ✓ "proper" means non-empty as well as not total set.

A Broader Use of the Term "Subgraph"

- The usual meaning of the phrase "H is a subgraph of G" is that H is merely isomorphic to a subgraph of G.
- **Example.** The graph G of Figure 2.3.1 contains as subgraphs exactly one copy each of C_3 , C_4 , and C_5 .
- **Example.** A graph with *n* vertices is hamiltonian if and only if it contains a graph isomorphic to the *n*-cycle C_n .
- **Example.** The graph G shown in the left has among its subgraphs a B_2 (bouquet), a D_3 (dipole), and three copies of K_3 .

- **DEFINITION**: A subgraph H is said to span a graph G if $V_H = V_G$.
- **DEFINITION**: A *spanning tree* is a spanning subgraph that is a tree.

Spanning Subgraph, Cliques

- **Proposition 2.3.1.** A graph is connected if and only if it contains a spanning tree.
- **Proposition 2.3.2.** Every acyclic subgraph of a connected graph G is contained in at least one spanning tree of *G*.

Independent Sets

- **DEFINITION:** A subset S of V_G is called a clique if every pair of vertices in S is joined by at least one edge, and no proper superset of S has this property.
 - \checkmark A clique of a graph G is a maximal subset of mutually adjacent vertices in G.
 - ✓ In other books, clique may not be required to be a maximal subset.
- **DEFINITION**: The *clique number* of a graph G is the number $\omega(G)$ of vertices in a largest clique in G.
- **Example.** $\{u, v, y\}, \{u, x, y\}, \{y, z\}$ but not $\{u, y\}$

- **DEFINITION**: A subset S of V_G is said to be an *independent set* if no pair of vertices in S is joined by an edge.
- **DEFINITION**: The *independence number* of a graph G is the number $\alpha(G)$ of vertices in a largest independent set in G.
- **Remark:** the concepts of clique and independent set is complementary.

Induced Subgraphs

DEFINITION: For a given graph G, the *subgraph induced on a vertex subset* U of V_G , denoted G(U), is the subgraph of G, whose vertex-set is U and whose edge-set consists of all edges in G that have both endpoints in U. That is,

$$V_{G(U)} = U$$
 and $E_{G(U)} = \{e \in E_G \mid endpts(e) \subseteq U\}$

- **Example 2.3.9.** The subgraph induced on a vertex set U of a clique is a complete graph.
- **■** Example 2.3.10.
- **DEFINITION**: For a given graph G, the *subgraph induced on an edge subset* D of E_G , denoted G(D) is $V_{G(D)} = \{v \in V_G \mid v \in endpts(e), for some e \in D\}$ and $E_{G(D)} = D$
- **DEFINITION:** The center of a graph G, denoted Z(G), is the subgraph induced on the set of central vertices of G (see Sec.1.4).
- **Example.** The right figure with minimum eccentricity of 3

A subgraph induced on a subset of vertices and edges

A graph whose center is a 7-cycle.

Local Subgraphs

- **DEFINITION**: The *(open) local subgraph* (or *(open) neighborhood subgraph*) of a vertex v is the subgraph L(v) induced on the neighbors of v.
- **Theorem 2.3.3.** Let $f: G \to H$ be a graph isom and $u \in V_G$. Then f maps the local subgraph L(u) of G isomorphically to the local subgraph L(f(u)) of H.
- \blacksquare **Example.** Thus G and H are not isomorphic.
 - ✓ All local subgraphs of G are all isomorphic to $4K_1$. All local subgraphs of H are isomorphic to P_4 .
 - \checkmark $\alpha(G) = 4$ but $\alpha(H) = 2$, $\omega(G) = 2$ but $\omega(H) = 3$.

A graph G and three of its local subgraphs.

Two 4-regular 8-vertex graphs.

Components

- **DEFINITION**: A *component* of a graph G is a maximal connected subgraph of G.
 - ✓ The only component of a connected graph is the entire graph.
 - ✓ Membership in the same component is an *equivalence relation* on V_G , called the *reachability relation*.
- **Review** §1.4. A vertex v is said to be reachable from vertex u if there is a walk from u to v.
- **DEFINITION**: In a graph G, the *component of a vertex* v, denoted C(v), is the subgraph induced by the subset of all vertices reachable from v.
- **ALTERNATIVE DEFINITION:** A *component* of a graph G is a subgraph induced by an equivalence class of the reachability relation on V_G .
- **Notation**: The # of components of a graph G is denoted c(G).
- **COMPUTATIONAL NOTE:** Partitioning a small graph into components is trivial. But larger graphs that are specified by some computer representation require a computer algorithm. These "component-finding" algorithms are developed in Chapter 4 as straightforward applications of our graph-traversal procedures.

A graph with four components.

2.4 Some Graph Operations

- **DEFINITION**: The *vertex-deletion subgraph* G v is the subgraph induced by the vertex-set $V_G \{v\}$. That is, $V_{G-v} = V_G \{v\}$ and $E_{G-v} = \{e \in E_G \mid v \notin endpts(e)\}$
- **DEFINITION**: The *edge-deletion subgraph* G e is similar to the subgraph induced by the edge-set $E_G \{e\}$ except that V_{G-e} is the same as V_G . That is,

$$V_{G-e} = V_G$$
 and $E_{G-e} = E_G - \{e\}$

The result of deleting vertex w from graph G.

The result of deleting edge f from graph G.

Network Vulnerability

- **DEFINITION**: A *vertex-cut* in a graph G is a vertex-set U such that G U has more components than G.
- **DEFINITION**: A *cut-vertex* (or *cutpoint*) is a vertex-cut consisting of a single vertex.
- **DEFINITION**: An *edge-cut* in a graph G is a set of edges D such that G D has more components than G.
- **DEFINITION**: A *cut-edge* (or *bridge*) is an edge-cut consisting of a single edge.
- **DEFINITION**: An edge e of a graph is called a *cycle-edge* if e lies in some cycle of that graph.
- **Proposition 2.4.1.** Let e be an edge of a connected graph G. Then G e is connected if and only if e is a cycle-edge of G.
- □ Corollary 2.4.2. An edge of a graph is a cut-edge if and only if it is not a cycle-edge.
- Corollary 2.4.3. Let e be any edge of a graph G. Then

$$c(G-e) = \begin{cases} c(G), & \text{if } e \text{ is a cycle-edge} \\ c(G)+1, & \text{otherwise} \end{cases}$$

A graph with three cut-edges.

The Graph-Reconstruction Problem

- **DEFINITION**: Let G be a graph with $V_G = \{v_1, v_2, \dots, v_n\}$. Then the *vertex-deletion* subgraph list of G is the list of the subgraphs $G v_1, \dots, G v_n$
- **DEFINITION**: The *reconstruction deck* of *G* is its vertex-deletion subgraph list, with no labels on the vertices. We regard each individual vertex-deletion subgraph as being a *card* in the deck.
- **DEFINITION**: The *graph-reconstruction problem* is to decide whether two non-isomorphic simple graphs with three or more vertices can have the same reconstruction deck.
- **Remark:** The graph-reconstruction problem would be easy to solve if the vertex-deletion subgraphs included the vertex and edge names.
- **Reconstruction Conjecture:** Let G and H be two graphs with $V_G = \{v_1, v_2, \ldots, v_n\}$ and $V_H = \{w_1, w_2, \ldots, w_n\}$ with $n \geq 3$, and with the same reconstruction deck, i.e., such that $G v_i \cong H w_i$, for each $i = 1 \ldots$, n. Then $G \cong H$.

Is G the only graph with this reconstruction deck?

A graph and its vertex-deletion subgraph list.

The Graph-Reconstruction Problem

- **Theorem 2.4.4.** The number of vertices and the number of edges of a graph G can be calculated from its vertex-deletion subgraph list.
 - One edge connects two vertices, so each edge is deleted twice and appears in n-2subgraphs, so $|E_G| = \frac{1}{n-2} \sum |E_{G-v}|$
- Corollary 2.4.5. The degree sequence of a graph G can be calculated from its reconstruction deck.
 - \checkmark First compute $|E_G|$

$$\frac{1}{3}(5+6+5+5+6) = \frac{27}{3} = 9$$

- Corollary 2.4.6. Any regular graph can be reconstructed from its reconstruction deck.
 - \checkmark For k-regular graph, each subgraph contains n-1 vertices of degree (k-1).
- **Remark:** B. McKay [Mc77] and A. Nijenhuis [Ni77] have shown, with the aid of computers, that a counterexample to the reconstruction conjecture would have to have at least 10 vertices.

Adding Edges or Vertices

- **DEFINITION**: *Adding an edge* between two vertices u and w of a graph G means creating a supergraph, denoted $G \cup \{e\}$, with vertex-set V_G and edge-set $E_G \cup \{e\}$, where e is a new edge with endpoints u and w.
- **DEFINITION**: *Adding a vertex* v to a graph G, where v is a new vertex not already in V_G , means creating a supergraph, denoted $G \cup \{v\}$, with vertex-set $V_G \cup \{v\}$ and edge-set E_G .
- **DEFINITION**: Any one of the operations of adding or deleting a vertex or adding or deleting an edge is called a *primary maintenance operation*.
- **Remark:** *Secondary operations* on a graph are those that are realizable by a combination and/or repetition of one or more of the primary graph operations.

Adding an edge e with endpoints u and w.

Graph Union

- **DEFINITION**: The (*graph*) *union* of two graphs G = (V, E) and G' = (V', E') is the graph $G \cup G'$, whose vertex-set and edge-set are the disjoint unions, respectively, of the vertex-sets and edge-sets of G and G'.
 - ✓ Union is a secondary graph operation and is not the set-theoretic union operation.
- **Example 2.4.7.** Graph union of two K_3 is not a single K_3 (set union will yield a K_3).
- **DEFINITION**: The *n*-fold self-union nG is the iterated disjoint union $G \cup \cdots \cup G$ of n copies of the graph G. (e.g. example is 2-fold self-union $2K_3$.)

The graph union $K_3 \cup K_3$ of two copies of K_3 .

Joining a Vertex to a Graph

- **DEFINITION**: If a new vertex v is joined to each vertex of a graph G, then the resulting graph is called the *join of* v to G or the *suspension of* G *from* v, and is denoted G + v.
 - ✓ Joining a vertex to a graph is a secondary operation using primary operations.
- **DEFINITION**: The *n*-wheel W_n is the join $K_1 + C_n$ of a single vertex and an *n*-cycle. (The *n*-cycle forms the rim of the wheel, and the additional vertex is its hub.) If *n* is even, then W_n is called an *even wheel*; if odd, then W_n is called an *odd wheel*.
- **Proposition 2.4.7.** *Let H be a graph of diameter d*. *Then there is a graph G of radius d of which H is the center.*
 - \checkmark ecc(w) = 2 for every $w \in H$, $ecc(u_1) = 4$.

Edge-Complementation

- **DEFINITION**: Let G be a simple graph. Its *edge-complement* (or *complement*) \overline{G} has the same vertex-set, but two vertices are adjacent in \overline{G} if and only if they are not adjacent in G.
- **Remark:** The edge-complement of the edge-complement is the original graph, i.e., $\overline{\overline{G}} = G$.
- **Theorem 2.4.8.** Let G be a simple graph. Then $\omega(G) = \alpha(\overline{G})$ and $\alpha(G) = \omega(\overline{G})$
- **Remark:** Other graph operations are defined in §2.7.

2.5 Tests for Non-Isomorphism

- Although there is no method that can be easily applied to decide whether two graphs are isomorphic or not, we can simplify this problem by some invariant factors.
- **DEFINITION**: A *graph invariant* (or *digraph invariant*) is a property of graphs (digraphs) that is preserved by isomorphisms.
- **Example:** the number of vertices/edges and the degree sequence.

Local Invariant

- **Theorem 2.5.1.** Let $f: G \to H$ be a graph isomorphism, and let $v \in V_G$. Then the multiset of degrees of the neighbors of v equals the multiset of degrees of the neighbors of f(v).
 - ✓ Corollary 2.1.5. Let $f: G \to H$ be a graph isomorphism and let $e \in E_G$. Then the endpoints of edge f(e) have the same degrees of the endpoints of e.
- **Example:** (a). Same degree sequence: <1,1,1,2,2,3>; (b) one 3-degree vertex; (c). different multiset of degrees of two 3-degree vertices' neighbors. <1,1,2> and <1,2,2>
- **Example:** (a) v maps to x; (b) u must map to y

Distance Invariants

- **DEFINITION**: Let $W = \langle v_0, e_1, v_1, \dots, e_n, v_n \rangle$ be a walk in the domain G of a graph isomorphism $f: G \to H$. Then the *image of walk* W is the walk $f(W) = \langle f(v_0), f(e_1), f(v_1), \dots, f(e_n), f(v_n) \rangle$ in graph H.
- **Theorem 2.5.2.** The isomorphic image of a graph walk W is a walk of the same length.
 - ✓ Isomorphism perserves edge-multiplicity
- **Corollary 2.5.3.** The isomorphic image of a trail, path, or cycle is a trail, path, or cycle, respectively, of the same length.
 - ✓ By Theorem 2.5.2. & the bijectivity of the isomorphism.
- Corollary 2.5.4. For each integer l, two isomorphic graphs must have the same number of trails (paths) (cycles) of length l.
- □ Corollary 2.5.5. The diameter, the radius, and the girth are graph invariants.
 - ✓ By Corollary 2.5.3. & the bijectivity of iso

Distance Invariants & Subgraph Presence

- **Example:** CL_4 : (a) rotational symmetry; (b) isomorphism to swap inner and outer cycles. $ML_4: j \mapsto j+1 \mod 8$ is an automorphism. CL_4 and ML_4 are vertex-transitive.
 - \checkmark $\alpha(CL_4) = 4$ but $\alpha(ML_4) = 3$

Subgraph Presence

Theorem 2.5.6. For each graph-isomorphism type, the number of distinct subgraphs in a graph having that isomorphism type is a graph invariant.

✓ Bijectivity of isomorphism establishes this invariant.

Example: A and C have no K_3 subgraphs, B has two, D has four, and E has one. Thus, Thm 2.5.6 implies that the only possible isomorphic pair is A and C. However, graph C has a 5-cycle, but graph A (bipartite) does not. Alternatively, we see that A and C are the only pair with the same multiset of local subgraphs. We could distinguish this pair by observing that $\alpha(A) = 4$ and $\alpha(C) = 3$.

A B C
D E

Five mutually non-isom, 8-vertex, 3-reg graphs.

Edge Complementation

- **Theorem 2.5.7.** *Let G and H both be simple graphs. They are isomorphic if and only if their edge-complements are isomorphic.*
 - ✓ Graph isomorphism necessarily preserves non-adjacency as well as adjacency.
- Example:
- **Remark.** Edge complementation is useful for simple dense graph.

Summary

Some graph invariants for graph isomorphism − (1) & (2) the number of vertices and edges; (3) degree sequence; (4) multiset of local graphs; (5) degrees of neighbors of a forced match; (6) diameter, radius, girth; (7) independence number, clique number; (8) For any possible subgraph, the number of distinct copies; (9) For a simple graph, the edge-complement.

Two relatively dense, non-isomorphic 5-regular graphs and their edge-complements.

Using Invariants to Construct an Isomorphism

Example: Two graphs have one P_9 (1,2,3,4,5,6,7,8,9,10). According to Corollary 2.5.3., vertices along these two paths can have a isomorphism mapping.

Two copies of the Petersen graph.

2.6 Matrix Representations

DEFINITION: The *adjacency matrix of a simple graph* G, denoted A_G , is the symmetric matrix whose rows and columns are both indexed by identical orderings of V_G , such that

$$A_G[u,v] = \begin{cases} 1 & \text{if } u \text{ and } v \text{ are adjacent} \\ 0 & \text{otherwise} \end{cases}$$

$$uu \times uv + uv \times vv + uw \times wv + ux \times xv$$

$$uv \times uv \times vv + uw \times vv + uw \times vv + uv \times vv + uv$$

Example 2.6.1.

W X
$$A_{G} = \begin{array}{c} u & v & w & x \\ \hline 0 & 1 & 1 & 0 \\ v & w & 1 & 0 & 1 \\ x & 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{array}$$

- **Proposition 2.6.1.** Let G be a graph with adjacency matrix A_G . Then the value of element $A_G^r[u,v]$ of the r^{th} power of matrix A_G equals the number of u-v walks of length r.
 - \checkmark **Proof:** The assertion holds for r = 1. The inductive step follows from the definition of matrix multiplication.

$$A_G^2 = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 3 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \qquad A_G^3 = \begin{pmatrix} 2 & 3 & 4 & 1 \\ 3 & 2 & 4 & 1 \\ 4 & 4 & 2 & 3 \\ 1 & 1 & 3 & 0 \end{pmatrix} \qquad A_G^3 [u, w] = 4 \qquad \begin{cases} u - w - u - w \\ u - w - x - w \\ u - w - v - w \\ u - v - u - w \end{cases}$$

Adjacency Matrices

DEFINITION: The *adjacency matrix of a simple digraph* D, denoted A_D , is the matrix whose rows and columns are both indexed by identical orderings of V_G , such that

$$A_{D}[u,v] = \begin{cases} 1 & \text{if there is a edge from } u \text{ to } v \\ 0 & \text{otherwise} \end{cases}$$

- **Proposition 2.6.2.** Let D be a digraph with $V_D = v_1, v_2, \dots, v_n$. Then the sum of the elements of row i of the adjacency matrix A_D equals the outdegree of vertex v_i , and the sum of the element of column j equals the indegree of vertex v_i .
- **Example 2.6.2.**

$$A_{D} = \begin{array}{c} u \\ v \\ w \\ x \end{array} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- **Proposition 2.6.3.** Let D be a digraph with adjacency matrix A_D . Then the value of the entry $A_D^r[u,v]$ of the r^{th} power of matrix A_D equals the number of directed u-v walks of length r.
- **Remark:** To extend the definition of adjacent matrix to a general graph (or digraph), one lets $A_G[u,v]$ equals the number of edges between vertex u and vertex v (or from vertex u to vertex *v*).

Brute-Force Graph-Isomorphism Testing

- Isomorphism checking can be realized by finding two vertex orderings such that their adjacency matrices are the same.
- **Example 2.6.3.**

$$A_G = \begin{array}{c} u \\ v \\ w \\ x \end{array} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

$$A_{H} = \begin{pmatrix} a & d & c & b \\ a & 0 & 1 & 1 & 1 \\ d & 0 & 1 & 0 & 1 \\ c & c & 1 & 1 & 0 & 1 \\ b & 0 & 1 & 0 & 0 \end{pmatrix}$$

COMPUTATIONAL NOTE: For all but the smallest graphs, exhaustive method is hopelessly inefficient.

Incidence Matrices for Undirected Graphs

DEFINITION: The *incidence matrix* of a graph G is the matrix I_G whose rows and columns are indexed by some orderings of V_G and E_G , respectively, such that

$$I_G[v,e] = \begin{cases} 0 & \text{if } v \text{ is not an endpoint of } e \\ 1 & \text{if } v \text{ is an endpoint of } e \\ 2 & \text{if } e \text{ is a self - loop at } v \end{cases}$$

Example 2.6.4.

- **Proposition 2.6.4.** The sum of the entries in any row of an incidence matrix is the degree of the corresponding vertex.
- **Proposition 2.6.5.** The sum of the entries in any column of an incidence matrix is equal to 2.

Incidence Matrices for Digraphs

DEFINITION: The *incidence matrix* of a digraph D is the matrix whose rows and columns are indexed by some orderings of V_D and E_D , respectively, such that

$$I_{D}[v,e] = \begin{cases} 0 & \text{if } v \text{ is not an endpoint of } e \\ 1 & \text{if } v \text{ is the head of } e \\ -1 & \text{if } v \text{ is the tail of } e \\ 2 & \text{if } e \text{ is a self -loop at } v \end{cases}$$

Example 2.6.5.

$$I_{D} = \begin{array}{c} u \\ v \\ w \end{array} \begin{array}{c} a & b & c & d & e & f & g & h \\ 2 & 2 & 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 1 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 & -1 & 1 & -1 & 0 \end{array}$$

Using Incidence Tables to Save Space

- **DEFINITION**: The *table of incident edges* for a graph G is an incidence table that lists, for each vertex v, all the edges incident on v. This table is denoted $I_{V:E}(G)$.
- **Example 2.6.6.**

$$I_{V:E}(G) = \begin{array}{c} \underline{u} : a \ b \ c \ h \\ \\ \underline{v} : c \ d \ e \ f \\ \\ \underline{w} : g \ h \\ \\ \underline{x} : d \ e \ f \ g \end{array}$$

- **DEFINITION**: For a digraph D, the *table of outgoing arcs*, denoted $out_{V:E}(D)$, lists, for each vertex v, all arcs that are directed form v. The *table of incoming arcs*, denoted $in_{V ilde{-}E}(D)$, is defined similarly.
- **Example 2.6.7.**

$$in_{V:E}(G) = \begin{array}{c} \underline{u}: a \ b \ c \\ \underline{v}: d \ e \\ \underline{w}: g \ h \end{array} \quad out_{V:E}(G) = \begin{array}{c} \underline{v}: c \ f \\ \underline{w}: \\ \underline{x}: f \end{array} \quad \underline{x}: d \ e \end{array}$$

$$\underline{u}: a \ b \ c$$

$$\underline{v}: d \ e$$

$$\underline{w}: g \ h$$

$$\underline{x}$$
: f

$$\underline{u}$$
: a b h

$$ut_{v\cdot E}(G) = \overset{\underline{v}}{:} c f$$

$$\underline{w}$$
:

$$\underline{x}$$
: d e g

2.7 More Graph Operations

DEFINITION: The (*cartesian*) *product* $G \times H$ of the graphs G and H has as its vertex-set the cartesian product

$$V_{G \times H} = V_G \times V_H$$

and as its edges a union of two products:

$$E_{G\times H} = (V_G \times E_H) \cup (E_G \times V_H)$$

- **Example 2.7.1.** Cartesian product $C_4 \times K_2$
- **Example 2.7.2.** Cartesian product $K_3 \times P_3$

Two alternative views of $K_3 \times P_3$

Cartesian Product

DEFINITION: The product $K_2 \times C_n$ is called a *circular ladder with n rungs* and often denoted CL_n .

- **DEFINITION**: The iterated product $K_2 \times ... \times K_2$ of n copies of K_2 is called either the *hypercube graph of dimension* n or the *n-hypercube graph*. It is denoted Q_n .
- **DEFINITION**: The $m_1 \times m_2 \times ... \times m_n$ -mesh is the iterated product $P_{m_1} \times P_{m_2} \times \cdots \times P_{m_n}$ of paths.

DEFINITION: The *wraparound* $m_1 \times m_2 \times ... \times m_n$ -mesh is the iterated product $C_{m_1} \times C_{m_2} \times \cdots \times C_{m_n}$ of cycles.

Join

- **Remark:** The product operation is both commutative and associative.
- **DEFINITION**: The *join* G + H of the graphs G and H is obtained from the graph union $G \cup H$ by adding an edge between each vertex of G and each vertex of H.

- **Example 2.7.3.** The join $K_m + K_n$ is isomorphic to the complete graph K_{m+n} .
- **Example 2.7.4.** The join $mK_1 + nK_1$ is isomorphic to the complete bipartite graph $K_{m,n}$.
- **DEFINITION**: The *n*-dimensional octahedral graph O_n , is defined recursively, using the join operation. (2K, if n = 1

 $O_n = \begin{cases} 2K_1 & \text{if } n = 1\\ 2K_1 + O_{n-1} & \text{if } n > 1 \end{cases}$

It is also called the *n*-octahedral graph or, when n = 3, the octahedral graph, because it is

the 1-skeleton of the octahedron, a platonic solid.

Join & Amalgamations

Example 2.7.6. The edge complement of the graph nK_2 (in K_{2n}) is isomorphic to O_n .

<u>Amalgamation</u>

- **DEFINITION**: Let G and H be disjoint graphs, with $u \in V_G$ and $v \in V_H$. The *vertex* amalgamation $(G \cup H) / \{u = v\}$ is the graph obtained from the union $G \cup H$ by merging (or amalgamating) vertex u of graph G and vertex v of graph H into a single vertex, called uv. The vertex-set of this new graph is $(V_G \{u\}) \cup (V_H \{v\}) \cup \{uv\}$, and the edge-set is $E_G \cup E_H$, except that any edge that had u or v as an endpoint now has the amalgamated vertex uv as an endpoint instead.
- **Example 2.7.7.**
- **Example 2.7.8.**

Four different vertex amalgamations of P_3 and P_4

Amalgamations

- **DEFINITION**: Let G and H be disjoint graphs, with X a subgraph of G and Y a subgraph of H. Let $f: X \to Y$ be an isomorphism between these subgraphs. The *amalgamation of* G *and* H *modulo the isomorphism* $f: X \to Y$ is the graph obtained from the union $G \cup H$ by merging each vertex u and each edge e of subgraph X with their images f(u) and f(e) in subgraph Y. The amalgamated vertex is generically denoted uf(u), and the amalgamated edge is generically denoted ef(e). The vertex-set of this new graph is $(V_G V_X) \cup (V_H V_Y) \cup \{uf(u) \mid u \in V_X\}$, and the edge-set is $(E_G E_X) \cup (E_H E_Y) \cup \{ef(e) \mid e \in E_X\}$, except that any edge that had $u \in V_X$ or $f(u) \in V_Y$ as an endpoint now has the amalgamated vertex uf(u) as an endpoint instead. This general amalgamation is denoted $(G \cup H) / f: X \to Y$.
- **DEFINITION**: In an amalgamated graph $(G \cup H) / f: X \rightarrow Y$, the image of the pasted subgraphs X and Y is called the *subgraph of amalgamation*.
- **Example 2.7.9.**

six different possible amalgamated graphs.