

DIRECTED PATHS

Why

1

Definition

Let (V, E) be a directed graph. A directed path between vertex v and vertex $w \neq v$ is a finite sequence of distinct vertices, whose first coordinate is v and whose last coordinate is w, and whose consecutive coordinates (as ordered pairs) are edges in the graph. We say that a path between v and w is from v to w. The length of the path is one less than the number of vertices: namely, the number of edges.

Two vertices are *connected* in a graph if there exists at least one path between them. A directed graphis *connected* if there is a path between every pair of vertices. A graph is *acyclic* if none of its paths cycle.

Other Terminology

Some authors allow paths to contain repeated vertices, and call a path with distinct vertices a *simple path*. Similarly, some authors allow a cycle to contain repeated vertices, and call a path with distinct vertices a *simeple cycle* or *circuit*. Some authors use the term *loop* instead of *cycle*.

¹Future editions will include.

Directed Acyclic Graph

Directed and acyclic graphs (sometimes DAGs) have some useful properties. Clearly, every subgraph induced on a directed acyclic graph is a directed acyclic graph.

Proposition 1. Let (V, E) be a directed acyclic graph. Then there exists a vertex $v \in V$ which is a source and a vertex $w \in V$ which is a sink.

Proof. There exists a directed path of maximum length. It must start at a source and end at a sink.² \Box

A topological numbering, topological sort or topological order of a directed graph (V, E) is a numbering $\sigma : \{1, \dots, |V|\} \to V$ satisfying

$$(v, w) \in E \longrightarrow \sigma^{-1}(v) < \sigma^{-1}(w).^3$$

Proposition 2. There exists a topological sort for every acyclic graph.

Proof. Let (V, F) be a directed acyclic graph. There exists a source vertex, v_1 . Set $\sigma(1) = v_1$. Take the subgraph induced by $V - \{v_1\}$. It is directed acyclic, and so has a source vertex, v_2 . Set $\sigma(2) = v_2$. Continue in this way.⁴

²Future editions will expand.

 $^{^3}$ Future editions will further explain this concept.

⁴Future editions will clarify and expand.

