Simulación de Terrenos con Redes Neuronales Multicapa

Grupo 2

Barruffaldi, Carla Bianchi, Luciano Cerdá, Tomás Lynch, Marcelo

Objetivo

- Crear y entrenar una red que simula la topología de un terreno de un videojuego
- Analizar cómo influyen distintas configuraciones en el funcionamiento y en el entrenamiento

Implementación

Función de Activación

Escalón

Lineal

Tangente hiperbólica

Se aplica a toda la red

Logística

Inicialización de Pesos

xavier: $W \sim N(\mu = 0, \sigma = 2/(ni + no))$

xavier_uniform: $W \sim U(-4\sqrt{6}/\sqrt{ni+no}, 4\sqrt{6}/\sqrt{ni+no})$

normal: $W \sim N(\mu = 0, \sigma = \sqrt{ni})$

uniform: $W \sim U(-1/\sqrt{ni}, 1/\sqrt{ni})$

uniform_one: $W \sim U(-1, 1)$

Entrenamiento

- Backpropagation tradicional
- Adaptativo
- Momentum

Tamaño de batch configurable en cualquiera de ellos.

Normalización

- De la entrada para evitar saturación
- De la salida para entrar en la imagen de la función de activación

Feature scaling:
$$c = a + \frac{z-x}{y-x} * (b - a)$$

Análisis

Consideraciones

Enorme cantidad de parámetros y de combinaciones de ellos

Se puede encontrar la configuración de red más adecuada sin importar el método de entrenamiento

Prioridades:

- Generalización. Cantidad de aciertos elevado en el conjunto de prueba a pesar de un costo alto en el conjunto de entrenamiento
- Red eficiente "en producción" (= pocas neuronas)

Criterios de corte

- Error de testeo menor a 3%
- Saturación de la red
 - Costo de entrenamiento no disminuye cierto valor reiteradas iteraciones
 - ¡Cuidado con los plateaus!

Selección de configuración

Elección de la arquitectura de la red y la función de activación

Una capa oculta

# Caso	Función	Neuronas	Error	Costo	Épocas	Tiempo (seg)
1	tanh	30	10.4%	17.519x10 ⁻⁴	2618	338
2	logistic	30	10.4%	13.804x10 ⁻⁴	2606	363
6	logistic	90	98%	1389.72x10 ⁻⁴	1000	18

- Tendencia en tanh de mayor costo pero misma tasa de error
- Mayor generalización

Dos capas ocultas

# Caso	Función	Neuronas	Error	Costo	Épocas	Tiempo (seg)
1	tanh	[90 60]	<3%	12.198x10 ⁻⁴	321	59
2	logistic	[90 60]	3.2%	5.2397x10 ⁻⁴	1498	415
3	tanh	[60 30]	<3%	4.3811x10 ⁻⁴	2492	544
5	tanh	[40 20]	<3%	6.5412x10 ⁻⁴	1093	135

- Función logistic nunca alcanza el objetivo propuesto
- Se prioriza configuración con menor cantidad de neuronas

Entrenamiento

Elección del mejor método de entrenamiento junto con sus parámetros de funcionamiento

Tradicional

# Caso	learning rate	batch_size	Error	Costo	Épocas	Tiempo (seg)
1	0.1	1	27%	38.175x10 ⁻⁴	210	212
2	0.1	5	<3%	8.1321x10 ⁻⁴	386	71
3	0.1	batch	<3%	7.6641x10 ⁻⁴	17935	135
4	0.01	1	<3%	8.3187x10 ⁻⁴	459	450

- Casi mayor generalización
- Tiempo considerablemente menor

Inicialización normal

$$W \sim N(\mu = 0, \ \sigma = \sqrt{ni})$$

- Fracaso
- Estancamiento luego de ~800 épocas

Análisis de capas ocultas (800 épocas)

Saturación temprana

- Muchas neuronas saturadas en las capas ocultas pero con el error (53%) y el costo aún muy altos
- Coincide con que la red deja de aprender luego de 800 épocas
- Similar a las otras inicializaciones salvo uniform_one: U ~ (-1, 1)

Momentum

Se buscó la mejor configuración en tres principales pasos:

- 1. Selección del alfa
- 2. Selección del learning rate
- 3. Selección del algoritmo

Paso 1: Se eligió alfa = 0.9

# Caso	alfa	batch_size	Error	Costo	Épocas	Tiempo (seg)
1	0.9	5	<3%	13.588x10 ⁻⁴	362	48.6138
2	0.8	5	<3%	13.626x10 ⁻⁴	384	49.7352
3	0.4	5	<3%	13.227x10 ⁻⁴	521	67.4471

Paso 2: Se eligió learning rate = 0.05

# Caso	learning rate	batch_size	Error	Costo	Épocas	Tiempo (seg)
1	0.01	5	<3%	13.588x10 ⁻⁴	521	48
2	0.05	5	<3%	13.342x10 ⁻⁴	93	12
3	0.09	5	<3%	8.8311x10 ⁻⁴	689	67
4	0.1	5	3.9%	8.5387x10 ⁻⁴	1588	324

Paso 3: El mejor algoritmo fue batch

Incremental

Costo	Épocas	Tiempo (seg)	
10.827x10 ⁻⁴	625	368	

Mini-batch

Costo	Épocas	Tiempo (seg)	
13.342x10 ⁻⁴	93	12	

Batch

Costo	Épocas	Tiempo (seg)
10.086x10 ⁻⁴	10436	95

Adaptive

Caso	batch_size	cost_interval	inc_steps	Ir_increase	Ir_decrease	Costo	Épocas	Tiempo (seg)
1	5	5	3	0.1	0.1	8.2649e-04	234	31
3	5	10	4	0.01	0.001	8.5815e-04	249	31
5	1	10	4	0.01	0.001	8.0584e-04	173	100
7 In	1 crement	al ⁵	10	0.001	0.0001	12.726e-04	178	108

- Pequeños incrementos
- Pequeños decrementos
- Se compara el costo cada 5 iteraciones

Resultados

Configuración elegida

- 2 capas ocultas de 40 y 20 neuronas
- Función de activación: tangente hiperbólica

Entrenamiento

- Momentum
- alfa: 0.9
- learning rate: 0.05
- Mini-batch (size:5)

Neural net terrain

Conclusión

Conclusiones

- Se puede desacoplar la selección de la configuración de la red del entrenamiento sin afectar la calidad del análisis
- Las técnicas de inicialización de pesos no fueron efectivas para este problema
- La configuración de la red neuronal depende completamente del problema en cuestión
- Se debe tener en cuenta con qué criterios evaluar la correcta funcionalidad de la red en función de lo que se desea obtener

iGracias!