Manajemen Waktu Proyek (lanj.)

Gantt Chart

- Gant chart menyediakan format standar utk menampilkan informasi jadwal proyek dgn menampilkan aktivitas proyek beserta tanggal mulai dan selesainya dlm format kalender
- Simbol-simbol yg digunakan:
 - Black diamond : milestone
 - Thick black bars : rangkuman tugas
 - Lighter horizontal bars : durasi tugas
 - Arrows : ketergantungan antar tugas

Contoh Gantt Chart

Contoh Gantt Chart

Menambahkan Milestone ke Gantt Chart

- Jika diinginkan utk fokus pada tercapainya milestones terutama utk proyek-proyek besar
- Milestones menekankan pd kejadian-kejadian penting atau pencapaian-pencapaian dlm proyek
- Milestone dpt dibuat dgn memasukkan tugas yg mpy durasi nol, atau dgn cara menandai suatu tugas tertentu sbg sebuah milestone

Kriteria SMART

- Sebuah milestone harus:
 - Specific (spesifik)
 - Measureable (terukur)
 - Assignable (dpt ditugaskan)
 - Realistic (realistis)
 - Time-framed

Contoh Gantt Chart

Critical Path Method (CPM)

- CPM adl teknik membuat diagram jaringan yg digunakan utk memperkirakan durasi proyek total
- Critical path utk sebuah proyek adl serangkaian aktivitas yg menentukan waktu tersingkat utk penyelesaian proyek
- Critical path adl jalur terpanjang mll diagram jaringan dgn jumlah slack atau float plg sedikit
- Slack atau float adl jumlah waktu sebuah aktivitas dpt ditunda tanpa menunda aktivitas berikutnya atau tanpa menunda tanggal penyelesaian proyek

Menghitung Critical Path

- Buatlah diagram jaringan yg baik
- Tambahkan estimasi durasi utk semua aktivitas pd setiap jalur mll diagram jaringan
- Jalur terpanjang mrpk critical path
- Jk satu atau lebih aktivitas pd critical path ternyata membutuhkan waktu yg lbh panjang drpd yg direncanakan, mk jadwal proyek akan mjd meleset kecuali manajer proyek mengambil tindakan koreksi

Menentukan Critical Path Proyek X

Note: Assume all durations are in days.

Path 1: A-D-H-J Length = 1+4+6+3 = 14 days

Path 2: B-E-H-J Length = 2+5+6+3 = 16 days

Path 3: B-F-J Length = 2+4+3 = 9 days

Path 4: C-G-I-J Length = 3+6+2+3 = 14 days

Since the critical path is the longest path through the network diagram, Path 2, B-E-H-J, is the critical path for Project X.

Lebih Lanjut Ttg Critical Path

- Critical path tidak harus terdiri atas aktivitas yg paling penting, krn critical path hanya memperhitungkan waktu
- Dimungkinkan ada lebih dari satu critical path jika ada dua atau lebih jalur dgn panjang waktu yg sama
- Critical path dpt berubah sejalan dgn perkembangan proyek

Membuat Trade Off Jadwal

- Free slack atau free float adl jumlah waktu sebuah aktivitas dpt ditunda tanpa mengakibatkan penundaan aktivitas berikutnya
- Total slack atau total float adl jumlah waktu sebuah aktivitas dpt ditunda tanpa mengakibatkan penundaan tanggal penyelesaian proyek
- Arah maju pd diagram proyek menentukan tanggal early start (ES) dan early finish (EF)
- Arah mundur pd diagram proyek menentukan tanggal late start (LS) dan late finish (LF)

Menghitung ES, EF, LS, LF

Free and Total Slack Utk Proyek X

TASK	START	FINISH	LATE START	LATE FINISH	FREE SLACK	TOTAL SLACK
NAME	1 (1)	1100000000			1 2000	1 5555
A	6/1/05	6/1/05	6/3/05	6/3/05	0d	2d
В	6/1/05	6/2/05	6/1/05	6/2/05	0d	0d
C	6/1/05	6/3/05	6/3/05	6/7/05	0d	2d
D	6/2/05	6/7/05	6/6/05	6/9/05	2d	2d
Е	6/3/05	6/9/05	6/3/05	6/9/05	0d	0d
F	6/3/05	6/8/05	6/14/05	6/17/05	7d	7d
G	6/6/05	6/13/05	6/8/05	6/15/05	0d	2d
Н	6/10/05	6/17/05	6/10/05	6/17/05	0d	0d
I	6/14/05	6/15/05	6/16/05	6/17/05	2d	2d
J	6/20/05	6/22/05	6/20/05	6/22/05	0d	0d

Memperpendek Jadwal Proyek

- Ada tiga cara:
 - Memperpendek durasi aktivitas yang paling penting dgn menambah sumberdaya atau mengubah lingkup
 - Melakukan kompresi jadwal
 - Fast tracking aktivitas dgn melaksanakan aktivitas-aktivitas scr paralel atau overlapping

Penjadwalan Critical Chain

- Penjadwalan critical Chain adl metode penjadwalan yg terkait dgn sumberdaya yg terbatas dlm membuat jadwal dan mencakup buffer utk menjamin tanggal penyelesaian proyek → teori TOC (Theory of Contrains)
- Mengusahakan utk meminimalisasi multitasking dimana satu sumberdaya digunakan pada lebih dari satu tugas pada waktu yg sama

Contoh Multitasking

Figure 6-10a. Three Tasks Without Multitasking

Figure 6-10b. Three Tasks With Multitasking

Buffer dan Critical Chain

- Buffer adl waktu tambahan utk menyelesaikan proyek
- Orang seringkali menambah buffer pd tiap tugas dan menggunakannya baik itu dibutuhkan atau tidak
 - Murphy's Law: if something can go wrong, it will
 - Parkinson's Law: work will expands to fill the time allowed
- Penjadwalan critical chain menghilangkan buffer dr tugas individual dan membuat:
 - Buffer proyek atau waktu tambahan yg ditambahkan sblm waktu penyelesaian proyek
 - Feeding buffer atau waktu tambahan yg ditambahkan sblm aktivitas pada critical path

Contoh Penjadwalan Critical Chain

PERT (Program Evaluation and Review Technique)

- PERT adl teknik analisis jaringan utk estimasi durasi proyek dimana terdapat ketidakpastian yg tinggi pada estimasi durasi aktivitas individual
- PERT menggunakan estimasi waktu probabilistik
 - Estimasi durasi berdasar estimasi durasi aktivitas optimistik, kebiasaan (rata-rata), dan pesimistik, atau estimasi tiga-titik

Rumus PERT

PERT weighted average =
 optimistic time + 4X most likely time + pessimistic time
 6
 Example:
 PERT weighted average =
 8 workdays + 4 X 10 workdays + 24 workdays = 12 days

where:

optimistic time= 8 days most likely time = 10 days pessimistic time = 24 days

Therefore, you'd use 12 days on the network diagram instead of 10 when using PERT for the above example.

