2023 春《数学分析 B2》期末试题

2023年7月16日上午

一 (本题共30分):

(1) (本题 10 分) 计算 $I = \int_L \frac{1}{2} y^2 dx + xy dy$, 其中L为 $y = \sqrt{2x - x^2}$, $(0 \le x \le 1)$ 方向为 x 增加的方向

解: $\diamondsuit P = \frac{1}{2}y^2$; Q = xy; 则 P,Q 在 R^2 上有一阶连续偏导数;

且: $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0$; 设 L 与有向直线段 \overline{AB} , \overline{BO} 所围成的区域为 D

其中 A(1,1),B(1,0),0(0,0)

由格林公式: $I = \int_{L} \frac{1}{2} y^{2} dx + xy dy = 0 + \int_{0}^{1} y dy = \frac{1}{2}$

(2) (本题 10 分): 求曲面积分: $I = \iint_{\Sigma} 4xz dy dz - 2yz dz dx + (1-z^2) dx dy$, 其中 Σ 是由曲线 $z = x^2 + y^2$, $(0 \le z \le 2)$,方向取下侧.

解析: 补平面 $z=2,(x^2+y^2 \le 2)$ 取上侧, 由高斯公式

得: $I = \iint_{\Sigma + \Sigma_1} - \iint_{\Sigma_1} 4xz dy dz - 2yz dz dx + (1-z^2) dx dy$

: = $\iiint_{\Omega} 0 dxdydz + \iint_{D} 3dxdy$

 $:=3\iint_{D} dxdy$

 $= 6\pi$.

(3) (本题 10 分) 求极限: $\lim_{n\to\infty} \int_0^{+\infty} e^{-x^n} dx$

 $\mathbf{iE} : \int_0^{+\infty} e^{-x^n} dx = \frac{1}{n} \int_0^{+\infty} t^{\frac{1}{n} - 1} e^{-t} dt$

$$: = \frac{1}{n} \Gamma \left(\frac{1}{n} \right) = \Gamma \left(\frac{1}{n} + 1 \right)$$

故: $\lim_{n\to\infty}\int_0^{+\infty}e^{-x^n}dx=\lim_{n\to\infty}\Gamma(\frac{1}{n}+1)=\Gamma(1)=1$

二 (本题 10 分):求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}2^{2n}}{2n-1} x^{2n}$ 的收敛域及和函数.

解:
$$\Rightarrow u_n = \frac{(-1)^{n-1}2^{2n}}{2n-1}x^{2n} = \frac{(-1)^{n-1}}{2n-1}(2x)^{2n} = \frac{(-1)^{n-1}}{2n-1}t^{2n}, (t=2x)$$

即:
$$\lim_{n \to \infty} \frac{|u_{n+1}|}{|u_n|} = \lim_{n \to \infty} \frac{2n-1}{2n+1} t^2 = (2x)^2 < 1$$

收敛区间为 $\left(-\frac{1}{2},\frac{1}{2}\right)$; 当 x = $\pm \frac{1}{2}$ 时,由莱布尼兹判别法知,

级数都收敛故收敛域为 $\left[-\frac{1}{2},\frac{1}{2}\right]$

$$\diamondsuit : S(t) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} t^{2n} = t \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} t^{2n-1} = t S_1(t)$$

所以:
$$S_1(t) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} t^{2n-1}$$

:
$$\Rightarrow S_1'(t) = \sum_{n=1}^{\infty} (-1)^{n-1} t^{2n-2}$$

$$: = \sum_{n=1}^{\infty} (-t^2)^{n-1} = \frac{1}{1+t^2}, t \in (-1,1)$$

所以当 t \in (-1,1)时,有 $S_1(t) = \int_0^t \frac{dx}{1+x^2} = \text{arctant}$

由幂级数和函数的连续性可知, $S_1(t)$ 在 t=-1,1 处右左连续

所以: $S(t) = tarctant, t \in [-1,1]$

故: 原级数为 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}2^{2n}}{2n-1} x^{2n} = 2x \arctan 2x, x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$

三 (本题 20 分): 设 f(x)是以 2π 为周期的函数,且 $f(x) = \begin{cases} \pi - x & 0 \le x \le \pi \\ \pi + x & -\pi \le x < 0 \end{cases}$ 求 f(x)的傅里叶级数,并计算 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3}$ 和 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4}$ 的值.

解析 (1): f(x)为偶函数,所以 $b_n = 0$, (n = 1,2,...)

$$\overline{\text{m}}a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx$$

$$: = \frac{2}{\pi} \int_0^{\pi} (\pi - x) \cos nx \, dx$$

$$:=\frac{2}{n\pi}\int_0^\pi (\pi-x)d(\sin nx)$$

$$: = \frac{2}{n\pi} (\pi - x) \sin nx \Big|_0^{\pi} + \frac{2}{n\pi} \int_0^{\pi} \sin nx \, dx$$

$$: = -\frac{2}{n^2\pi}\cos nx \mid_0^{\pi}$$

$$:=-\frac{2}{n^2\pi}((-1)^n-1)$$

$$: = \frac{2}{n^2 \pi} (1 - (-1)^n)$$

:
$$=$$
 $\begin{cases} \frac{4}{(2n-1)^2\pi}, k = 2n - 1\\ 0, k = 2n \end{cases}$

$$\overline{\mathbb{m}}: \ a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi} (\pi - x) dx = \frac{2}{\pi} (\pi^2 - \frac{1}{2} \pi^2) = \pi.$$

由于函数 f(x)是连续函数

所以:
$$f(x) = \frac{\pi}{2} + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos(2n-1)x$$
, $x \in (-\infty, +\infty)$

在[0,^π/₂]上积分

$$\int_0^{\pi/2} (\pi - x) dx = \frac{\pi^2}{4} + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^3} \sin(2n-1)x \Big|_0^{\pi/2}$$

$$\therefore \frac{3\pi^2}{8} - \frac{\pi^2}{4} = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3}.$$

所以:
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3} = \frac{\pi^3}{32}$$

再由巴塞瓦尔等式:

有:
$$\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx = \frac{\pi^2}{2} + \frac{16}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^4}$$

得:
$$\frac{16}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^4} = \frac{2}{\pi} \int_0^{\pi} (\pi - x)^2 dx - \frac{\pi^2}{2}$$

其中:
$$\int_0^{\pi} (\pi - x)^2 dx = \int_0^{\pi} (\pi^2 - 2\pi x + x^2) dx = \frac{1}{3}\pi^3$$

故:
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4} = \frac{\pi^4}{96}$$
.

四 (本题 10分): 利用 Dirichlet 积分 $\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$ 来计算 $\int_0^{+\infty} \frac{\sin(ax)\sin(bx)}{x^2} dx$,其中 0 < a < b.

则:
$$f'(t) = \int_0^{+\infty} \frac{\cos(tx)\sin(bx)}{x} dx$$
, $(0 \le t < b)$

$$\boxed{\mathbb{DJ}}: \frac{\partial}{\partial t} \left(\frac{\sin(tx)\sin(bx)}{x^2} \right) = \frac{\cos(tx)\sin(bx)}{x} = \frac{1}{2} \left(\frac{\sin(t+b)x}{x} + \frac{\sin(b-t)x}{x} \right)$$

由 Dirichlet 判别法

有:
$$\left| \int_0^y \sin(t+b)x dx \right| \le \frac{2}{t+b} \le \frac{2}{b}$$

和:
$$\left| \int_0^y \sin(b-t)x dx \right| \le \frac{2}{b-t} \le \frac{2}{b-\tau}$$

且: $\frac{1}{x}$ 单调趋于 0

故推出: $\int_0^{+\infty} \frac{1}{2} \left(\frac{\sin(t+b)x}{x} + \frac{\sin(b-t)x}{x} \right) dx$ 在 $t \in [0,\tau]$ 一致收敛

积分求导可换顺序

$$\mathbb{P}f'(t) = \frac{1}{2} \int_0^{+\infty} \left(\frac{\sin(t+b)x}{x} + \frac{\sin(b-t)x}{x} \right) dx$$

$$: = \frac{1}{2}(\frac{\pi}{2} + \frac{\pi}{2}) = \frac{\pi}{2}$$

且:
$$f(0) = \int_0^{+\infty} 0 dx = 0$$

得:
$$f(a) = \frac{\pi a}{2}$$
.

五 (本题 10 分): 已知函数级数 $f(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^x}$;

- (1) 证明: 函数 f(x)在(0, + ∞)非一致收敛;
- (2) 证明:函数 f(x)在(0, +∞)连续

证明(1):
$$\lim_{n\to\infty} n^{\frac{1}{n}} = 1 \Longrightarrow \exists \varepsilon_0 = \frac{\sin 1}{2} > 0, \exists \forall n \geq N, \exists x_0 = \frac{1}{n}$$

有:
$$\left|\sum_{k=n}^{n} u_k(x_0)\right| = u_n(x_0) = \frac{\sin 1}{\frac{1}{n^n}} \ge \frac{\sin 1}{2}$$

由柯西准则可知函数 f(x)在(0, +∞)非一致收敛

证明 (2): 当
$$x \ge \pi$$
时,由 $\left| \frac{\sin(nx)}{n^x} \right| \le \frac{1}{n^x} \le \frac{1}{n^\pi}$

由 M 判别法可知,函数 f(x)在 $[\pi, +\infty)$ 一致收敛,故连续

对 $0 < \delta < \pi$ 时,当 $\delta < x < \pi$;由和差化积

可知:
$$\left|\sum_{k=1}^{n} \sin(kx)\right| \le \frac{2}{\sin\frac{x}{2}} \le \frac{2}{\sin\frac{\delta}{2}}$$

$$\exists : \frac{1}{n^x} \leq \frac{1}{n^\delta} \to 0, n \to \infty$$

由狄利克雷判别法,函数 f(x)在 $[\delta,\pi]$ 上一致收敛,在 $[\delta,\pi]$ 上连续,

由于 $\delta > 0$ 的任意性可知,函数 f(x)在 $(0,\pi]$ 上连续,

综上所述, 函数 f(x)在(0, +∞) 上连续

六 (本题 10 分): 设
$$\phi(t) = \int_0^{+\infty} \frac{\ln{(1+tx)}}{x(x+1)} dx$$
, $(t \ge 0)$.

- (1) 证明: φ(t)在(0, +∞)上有连续的导函数;
- (2) 计算φ(1)的值.

证明 (1):
$$\frac{\partial f}{\partial t} = \frac{1}{(x+1)(1+tx)}$$
, $(t>0)$ 对于 $[\alpha, \beta] \subset (0, +\infty)$

有:
$$0 < \frac{\partial f}{\partial t} = \frac{1}{(x+1)(1+\alpha x)}, (t \in [\alpha, \beta])$$

因为
$$\int_{\alpha}^{+\infty} \frac{dx}{(x+1)(1+\alpha x)}$$
收敛

所以
$$\int_0^{+\infty} \frac{\partial f}{\partial t} dx$$
关于 t 在[α , β]上一致收敛,

于是ψ(t)在(0, + ∞)上可导, 且ψ'(t) =
$$\int_0^{+\infty} \frac{dx}{(x+1)(1+tx)}$$

当 t>0,t ≠ 1 时,
$$\int_0^A \frac{dx}{(x+1)(1+tx)} = \frac{\ln t}{t-1}$$
 (*)

即:
$$\psi'(t) = \frac{\ln t}{t-1}$$

当 t=1 时,
$$\psi'(1) = \int_0^{+\infty} \frac{dx}{(1+x)^2} = 1$$

注意到 $\lim_{t\to 1} \frac{\ln t}{t-1} = 1$; 故 $\psi'(t)$ 在 $(0, +\infty)$ 上连续

证明 (2): 由 (*) 式:
$$\psi(1) = \int_0^1 \frac{\ln t}{t-1} dt$$

$$: = -\int_0^1 \frac{\ln{(1-x)}}{x} dx$$

$$=\int_0^1 (\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}) dx$$

:
$$=\int_0^1 (\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}) dx$$

$$:=\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$$

七 (本题 10 分): 设 D 是由简单光滑闭曲线 L 围成的区域,f(x,y)在 D 上连续的偏导数。记: $d = \max_{(x,y) \in D} \sqrt{x^2 + y^2}$.

(1) 证明: $\iint_D f(x,y)dxdy = \int_L xf(x,y)dy - \iint_D x\frac{\partial f}{\partial x}dxdy$

(2) $\forall (x,y) \in L, f(x,y) = 0, \forall E: \iint_D f^2(x,y) d\sigma \leq d^2 \iint_D \left(\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right) d\sigma.$

证明 (1): 由格林公式可知 $\int_L x f dy = \iint_D (x \frac{\partial f}{\partial x} + f) dx dy$

即证出: $\iint_D f(x,y)dxdy = \int_L xfdy - \iint_D x\frac{\partial f}{\partial x}dxdy$

证明 (2): 由 (1) 的思路

可得: $\int_{L} xf^{2}dy = \iint_{D} (2xf\frac{\partial f}{\partial x} + f^{2})dxdy$

以及: $\int_{L} yf^{2}dx = -\iint_{D} (2yf\frac{\partial f}{\partial y} + f^{2})dxdy$

又由于: $\forall (x,y) \in L, f(x,y) = 0 \Longrightarrow \int_L xf^2 dy = \int_L yf^2 dx = 0$

可得: $\iint_D (2xf\frac{\partial f}{\partial x} + f^2)dxdy = -\iint_D (2yf\frac{\partial f}{\partial y} + f^2)dxdy$

由柯西不等式: $\iint_D f^2 d\sigma \leq \iint_D |xff_x^{'} + yff_y^{'}|d\sigma$

即: = $\iint_D |(x,y)||(f_x^{'}+f_y^{'})||f|d\sigma$

即: = $\iint_D \sqrt{x^2 + y^2} \sqrt{f_x'^2 + f_y'^2} |f| d\sigma$

即: $\leq d \iint_D \sqrt{f_x^{'2} + f_y^{'2}} |f| d\sigma$

即: $\leq d(\iint_D f^2 dxdy \iint_D (f_x'^2 + f_y'^2) dxdy)^{\frac{1}{2}}$

即: $(\iint_D f^2 dx dy)^{\frac{1}{2}} \le d(\iint_D (f_x'^2 + f_y'^2) dx dy)^{\frac{1}{2}}$

即: $\iint_D f^2(x,y)d\sigma \le d^2 \iint_D ((\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2)d\sigma$