

Exploring Dual-task correlation for Pose Guided Person Image Generation

CVPR 19-24 2022 NEW ORLEANS - LOUISIANA

Pengze Zhang, Lingxiao Yang, Jianhuang Lai and Xiaohua Xie*

Pose Guided Person Image Generation

Transform a person image from the source pose to a given target pose.

Analysis of Existing Methods

- 1. Solely focus on the **Source-to-Target Task**, which is an **ill-posed problem**, making it arduous to train a robust generator.
- 2. Cannot well capture the reasonable **texture mapping** between the source and target, especially when the person undergoes **large pose changes**.

Motivation

Task	Function	Difficulty	Feature		
Source-to-Target Task	$G(x_s, p_s, p_t) = \widetilde{x}_t$	Hard	Aligned w p_t		
Source-to-Source Task	$G(x_s, p_s, p_s) = \widetilde{x}_s$	Easy	Aligned w p_s		

- 1. Introduce an auxiliary task, i.e. Source-to-Source Task, by Siamese structure.
- 2. Design a transformer-based module to explore texture correlation between dual-task features.

Code is available at: https://github.com/PangzeCheung/Dual-task-Pose-Transformer-Network

Dual-task Pose Transformer Network (DPTN)

Overview of our model. It contains a self-reconstruction branch for auxiliary source-to-source task, and a transformation branch for source-to-target task. These two branches share partial weights and are communicated by a pose transformer module.

Pose Transformer Module (PTM)

Structure of the **Pose Transformer Module (PTM)**. It contains two types of blocks: **Context Augment Block (CAB)** and **Texture Transfer Block (TTB)**. The CABs integrate the information of the feature $F_{s\to s}$, while the TTBs transfer the real source image textures from F_s to optimize $F_{s\to t}$ by capturing the correlation between features from the dual tasks.

Quantitative comparisons

Model	DeepFashion			Market1501				Number of	
	SSIM ↑	PSNR ↑	FID↓	LPIPS ↓	SSIM ↑	PSNR ↑	FID↓	LPIPS ↓	Parameters ↓
PG2 [22] (NeurIPS'17)	0.7730	17.5324	49.5674	0.2928	0.2704	14.1749	86.0288	0.3619	437.09 M
VU-net [4] (CVPR'18)	0.7639	17.6582	15.5747	0.2415	0.2665	14.4220	44.2743	0.3285	139.36 M
DSC [27] (CVPR'18)	0.7682	18.0990	21.2686	0.2440	0.3054	14.3081	27.0118	0.3029	82.08 M
PATN [45] (CVPR'19)	0.7717	18.2543	20.7500	0.2536	0.2818	14.2622	22.6814	0.3194	41.36 M
DIAF [18] (CVPR'19)	0.7738	16.9004	14.8825	0.2388	0.3052	14.2011	32.8787	0.3059	49.58 M
DIST [24] (CVPR'20)	0.7677	18.5737	10.8429	0.2258	0.2808	14.3368	<u>19.7403</u>	0.2815	<u>14.04 M</u>
XingGAN [30] (ECCV'20)	0.7706	17.9226	39.3194	0.2928	0.3044	14.4458	22.5198	0.3058	42.77 M
PISE* [39] (CVPR'21)	0.7682	18.5208	11.5144	0.2080	_	_	_	_	64.01 M
SPIG* [21] (CVPR'21)	0.7758	18.5867	12.7027	0.2102	0.3139	<u>14.4894</u>	23.0573	0.2777	117.13 M
Ours	0.7782	19.1492	11.4664	0.1957	0.2854	14.5207	18.9946	0.2711	9.79 M

Qualitative comparison

Visualization of PTM

