STAT460 – Solution 2 Due: Feb. 4 at the start of class.

1. These data record the level of atmospheric ozone concentration from eight daily meteorological measurements made in the Los Angeles basin in 1976. We have the 330 complete cases¹. We want to find climate/weather factors that impact ozone readings. Ozone is a hazardous byproduct of burning fossil fuels and can harm lung function. The data set for this problem is:

Variable Name	Definition
ozone	Log Maximum Ozone
${ m vh}$	Vandenberg 500 mb Height
wind	Wind Speed (mph)
humidity	Humidity (%)
temp	Sandburg AFB Temperature
ibh	Inversion Base Height
dpg	Daggot Pressure Gradient
ibt	Inversion Base Temperature
vis	Visibility (miles)
doy	Day of the Year

#enter data and define variables
ozone = read.table('/Users/darrenho/Dropbox/teaching/STAT460/data/LAozone.txt',sep=",",hea

```
Y = ozone$ozone
X = ozone[,names(ozone)!=c('ozone')]
```

(a) Report the full linear regression of ozone on the other variables. Comment.

> summary(lm(Y~.,data=X))
Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	18.3792938	29.5045242	0.623	0.53377	
vh	-0.0051340	0.0053950	-0.952	0.34200	
wind	-0.0198304	0.1238829	-0.160	0.87292	
humidity	0.0804923	0.0188345	4.274	2.54e-05	***
temp	0.2743349	0.0497361	5.516	7.17e-08	***
ibh	-0.0002497	0.0002950	-0.846	0.39798	
dpg	-0.0036968	0.0112925	-0.327	0.74360	
ibt	0.0292640	0.0136115	2.150	0.03231	*
vis	-0.0080742	0.0037565	-2.149	0.03235	*
doy	-0.0088490	0.0027199	-3.253	0.00126	**

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

¹Note that this dataset violates some assumptions of linear regression. Do you know which one(s)? For this assignment, ignore this fact.

```
Residual standard error: 4.441 on 320 degrees of freedom Multiple R-squared: 0.7011, Adjusted R-squared: 0.6927 F-statistic: 83.4 on 9 and 320 DF, p-value: < 2.2e-16
```

- (b) Report the selected variables using the following model selection techniques (use: either BIC, AIC, or Mallow's Cp)
 - i. All subsets (plot this using regsubsets, plot)
 - ii. Forward stepwise...
 - A. ... using the step approach

Step: AIC=988.83

Y ~ temp + ibh + humidity + doy + ibt + vis

Call:

lm(formula = Y ~ temp + ibh + humidity + doy + ibt + vis, data = X)

Coefficients:

- B. ... using the regsubsets approach
 - > regfit.for = regsubsets (x = X,y = Y, nvmax =19 ,method ="forward")
 - > regfit.for.sum = summary(regfit.for)
 - > regfit.for.sum\$which[which.min(regfit.for.sum\$cp),]

(Intercept)	vh	wind	humidity	temp
TRUE	FALSE	FALSE	TRUE	TRUE
ibh	dpg	ibt	vis	doy
TRUE	FALSE	TRUE	TRUE	TRUE

- iii. Backwards stepwise (choose any method)
 - > regfit.bac = regsubsets (x = X,y = Y, nvmax =19 ,method ="backward")
 - > regfit.bac.sum = summary(regfit.bac)
 - > regfit.bac.sum\$which[which.min(regfit.bac.sum\$cp),]

(Intercept)	vh	wind	humidity	temp
TRUE	FALSE	FALSE	TRUE	TRUE
ibh	dpg	ibt	vis	doy
FALSE	FALSE	TRUE	TRUE	TRUE

iv. Both stepwise (choose any method)

Step: AIC=988.24

Y ~ temp + humidity + doy + ibt + vis

Df Sum of Sq RSS AIC <none> 6357.4 988.24

```
28.64 6328.8
                                 988.74
+ vh
            1
+ ibh
                   26.93 6330.5
                                 988.83
            1
                   0.70 6356.7
                                 990.20
+ wind
            1
+ dpg
            1
                   0.06 6357.4
                                 990.23
            1
                   96.89 6454.3
                                 991.23
- vis
- doy
            1
                  343.58 6701.0 1003.60
- ibt
                  532.30 6889.7 1012.77
            1
- humidity
            1
                  690.44 7047.9 1020.26
- temp
                  816.90 7174.3 1026.13
Call:
lm(formula = Y ~ temp + humidity + doy + ibt + vis, data = X)
Coefficients:
(Intercept)
                              humidity
                                                 doy
                                                               ibt
                     temp
                              0.085091
 -10.318950
                 0.232690
                                           -0.010065
                                                          0.034929
  -0.008202
```

- (c) Compare the outcome of these methods with the significant variables found in the full linear regression in part (a)
- (d) Potentially, other transformations of covariates might be important. What happens if you attempt to do all subsets with the original covariates and their square? That is, for all covariates, put both

X and X^2

as possible terms.

TRUE

FALSE

```
X.poly = cbind(X,X**2)
main.effects = names(X)
sq.effects
             = paste(main.effects,'.Sq',sep='')
names(X.poly) = c(main.effects,sq.effects)
> regfit.exh = regsubsets ( x = X.poly,y = Y, nvmax =19 ,method ="exhaustive")
> regfit.exh.sum = summary(regfit.exh)
> regfit.exh.sum$which[which.min(regfit.exh.sum$bic),]
(Intercept)
                                wind
                                        humidity
                     vh
                                                         temp
       TRUE
                  FALSE
                                TRUE
                                           FALSE
                                                         TRUE
        ibh
                                 ibt
                    dpg
                                             vis
                                                          doy
      FALSE
                  FALSE
                                TRUE
                                            TRUE
                                                         TRUE
      vh.Sq
                wind.Sq humidity.Sq
                                         temp.Sq
                                                       ibh.Sq
      FALSE
                  FALSE
                                TRUE
                                            TRUE
                                                        FALSE
     dpg.Sq
                 ibt.Sq
                              vis.Sq
                                          doy.Sq
```

TRUE

TRUE