

Carbon Topography Representation: Improving Impacts of Data Center Lifecycle

Olivier Weppe, Thibaut Marty, Jean-Christophe Prévotet, Maxime Pelcat: INSA Rennes

Louise Aubet: Resilio

David Bekri, Loïc Guibert, Sebastien Rumley: HES-SO

HotCarbon, 2025-07-11, Cambridge, MA

Context

Who is right?

believe this pollution is caused by Scotty's server manufacturing.

No, it is running Spock's **programs** that drains humongous amounts of electricity!

Quick answer: It depends...

How to decide: experiment

Setup: hardware platforms

QuantaGrid S74G-2U (QCT) 2024 ARM64 800 req/s

PowerEdge T430 (Dell) 2015 x86_64 200 req/s

ProLiant DL360 Gen9 (HPE) 2015 x86_64 120 req/s

Raspberry Pi 4B 2019 ARM64 2 req/s

Embodied carbon: Life Cycle Analysis methodology

Simplified carbon footprint estimation = Streamlined methodology*

* Except for Raspberry Pi, found in litterature
Philippe Loubet et al.. 2023. Life cycle assessment of ICT in higher education: a comparison between desktop and single-board computers.

Embodied carbon: results

QuantaGrid S74G-2U (QCT) 2024 ARM64 500 req/s 1023 kgCO₂e

PowerEdge T430 (Dell) 2015 x86_64 200 req/s 514 kgCO₂e

ProLiant DL360 Gen9 (HPE) 2015 x86_64 130 req/s 345 kgCO₂e

Raspberry Pi 4B 2019 ARM64 10 req/s 14 kgCO₂e

15/07/2025

Results (5 years lifetime)

QuantaGrid S74G-2U (QCT) ARM64 2024

PowerEdge T430 (Dell) x86_64 2015

ProLiant DL360 Gen9 (HPE) x86_64 2015

Raspberry Pi 4B ARM64 2019

Results (5 years lifetime)

QuantaGrid S74G-2U (QCT) ARM64 2024

PowerEdge T430 (Dell) x86_64 2015

ProLiant DL360 Gen9 (HPE) x86_64 2015

Raspberry Pi 4B

Results: Interpretation

Blue is scarce: Fabrication only dominates when electricity is very low carbon

Red dominance: High Idle power consumption

Take away: Carbon accounting

- High carbon electricity:
 @500gCO₂e/kWh, during 5 years
 - → Usage between 83.4% and 91.1% > impact driven by power usage

- Low carbon electricity:
 @40gCO₂e/kWh, during 5 years
- → Fabrication between 54.8% and 70.7%
 - > impact mainly driven by the number of servers

Take away: Optimization strategies

- High Carbon electricity: use low carbon energy Ex: $500 gCO_2e/kWh \rightarrow 50 gCO_2e/kWh$
 - ➤ At 20% load:
 - $-121 \,\mu gCO_2 e / \text{req} (-78\%)$
 - ➤ At 70% load:
 - $-56 \,\mu g C O_2 e / \text{req} (-80\%)$

Take away: Optimization strategies

1. High Carbon electricity: <u>use low carbon energy</u>

Ex: $500 gCO_2e/kWh \rightarrow 50 gCO_2e/kWh$

- ➤ At 20% load:
 - $-121 \,\mu gCO_2 e / \text{req} (-78\%)$
- ➤ At 70% load:
 - $-56 \,\mu g C O_2 e / \text{req} (-80\%)$
- If not feasible: <u>maximize server load</u>
 - > 30% load to 80% load:
 - $-62 \mu g C O_2 e / \text{req. (-50\%)}$

Take away: Optimization strategies

1. High Carbon electricity: <u>use low carbon energy</u>

Ex: $500 gCO_2e/kWh \rightarrow 50 gCO_2e/kWh$

- ➤ At 20% load:
 - $-121 \,\mu g C O_2 e / \text{req (-78\%)}$
- > At 70% load:
 - $-56 \,\mu g C O_2 e / \text{reg} (-80\%)$
- 2. If not feasible: maximize server load
 - ≥ 30% load to 80% load:
 - $-62 \mu g C O_2 e / \text{req. (-50\%)}$
- Low carbon & high load: increase server lifetime Ex: from 4 years lifetime to 10 years lifetime
 - \triangleright At 80% load with $50gCO_2e/kWh$:
 - $-5.5 \,\mu gCO_2e$ /req. (-35%)
 - \triangleright At 80% load with $500gCO_2e/kWh$:
 - $-4.6 \,\mu g C O_2 e / \text{req. (-7\%)}$

Final thoughts: What is obsolete?

- Hardware efficiency gains seems to have stopped
 - ➤ Is hardware systematic replacement required?
 - Newer hardware is more capable
 - But no longer more efficient
 - > Device lifetime can be extended
 - ➤ Need long time support (repair, software updates)

Thanks

Chat with authors:

urlr.me/T6MsZS

Olivier Weppe, Thibaut Marty, Jean-Christophe

Prévotet, Maxime Pelcat: INSA Rennes

Louise Aubet: Resilio

David Bekri, Loïc Guibert, Sebastien Rumley: HES-SO

