EM-DAT Documentation

Documentation EM-DAT Project Public Data HDX GitHub About

Tutorials

Handle, Describe, and Plot the EM-DAT Data

- 1: Python Tutorial 1: Basic Operations and Plotting
- 2: Python Tutorial 2: Making Maps

1 - Python Tutorial 1: Basic Operations and Plotting

This tutorial shows basic examples on how to load, handle, and plot the EM-DAT data using the pandas Python data analysis package and the matplotlib charting library.

Note: The Jupyter Notebook version of this tutorial is available on the EM-DAT Python Tutorials GitHub Repository.

Import Modules

Let us import the necessary modules and print their versions. For this tutorial, we used pandas v.2.1.1 and matplotlib v.3.8.3. If your package versions are different, you may have to adapt this tutorial by checking the corresponding package documentation.


```
import pandas as pd #data analysis package
import matplotlib as mpl
import matplotlib.pyplot as plt #plotting library
for i in [pd, mpl]:
    print(i.__name__, i.__version__)
```

```
pandas 2.1.1 matplotlib 3.8.3
```

Load EM-DAT

To load EM-DAT:

- Download the EM-DAT data at https://public.emdat.be/ (registration is required, see the EM-DAT Documentation page on Data Accessibility);
- Use the pd.read_excel method to load and parse the data into a pd.DataFrame object;
- Check if the data has been successfully parsed with the pd.DataFrame.info method.

Notes:

- 1. You may need to install the openpyxl package or another engine to make it possible to read the data.
- Another option is to export the .xlsx file into a .csv , and use the pd.read_csv method;
- 3. If not in the same folder as the Python code, replace the filename with the relative path or the full path, e.g., E:/MyDATa/public_emdat_2024-01-08.xlsx


```
#!pip install openpyxl
df = pd.read_excel('public_emdat_2024-01-08.xlsx') # <-- modify fil
df.info()</pre>
```

```
<class 'pandas.core.frame.DataFrame'>
```

Rand	eIndex: 15560 entries O to 15550		•
Data	columns (total 46 columns):		,
#	Column	Non-Null Count	Dty
0	DisNo.	15560 non-null	obj
1	Historic	15560 non-null	obj
2	Classification Key	15560 non-null	obj
3	Disaster Group	15560 non-null	obj
4	Disaster Subgroup	15560 non-null	obj
5	Disaster Type	15560 non-null	obj
6	Disaster Subtype	15560 non-null	obj
7	External IDs	2371 non-null	obj
8	Event Name	4904 non-null	obj
9	ISO	15560 non-null	obj
10	Country	15560 non-null	obj
11	Subregion	15560 non-null	obj
12	Region	15560 non-null	obj
13	Location	14932 non-null	obj
14	Origin	3864 non-null	obj
15	Associated Types	3192 non-null	obj
16	OFDA Response	15560 non-null	obj
17	Appeal	15560 non-null	obj
18	Declaration	15560 non-null	obj
19	AID Contribution ('000 US\$)	490 non-null	flo
20	Magnitude	3356 non-null	flo
21	Magnitude Scale	9723 non-null	obj
22	Latitude	1809 non-null	flo
23	Longitude	1809 non-null	flo
24	River Basin	1197 non-null	obj
25	Start Year	15560 non-null	int
26	Start Month	15491 non-null	flo
27	Start Day	14068 non-null	flo
28	End Year	15560 non-null	int
29	End Month	15401 non-null	flo

```
flo
 30
    End Day
                                                14132 non-null
    Total Deaths
                                                12485 non-null
                                                                 flo
 31
                                                5694 non-null
                                                                 flo
 32
    No. Injured
    No. Affected
                                                7046 non-null
                                                                 flo
 33
    No. Homeless
 34
                                                1312 non-null
                                                                 flo
    Total Affected
                                                                 flo
 35
                                                11508 non-null
    Reconstruction Costs ('000 US$)
                                                                 flo
 36
                                                33 non-null
    Reconstruction Costs, Adjusted ('000 US$)
 37
                                                29 non-null
                                                                 flo
     Insured Damage ('000 US$)
                                                                 flo
 38
                                                691 non-null
     Insured Damage, Adjusted ('000 US$)
 39
                                                683 non-null
                                                                 flo
    Total Damage ('000 US$)
                                                3070 non-null
 40
                                                                 flo
    Total Damage, Adjusted ('000 US$)
 41
                                                3020 non-null
                                                                 flo
 42
    CPI
                                                15056 non-null
                                                                flo
    Admin Units
 43
                                                8336 non-null
                                                                 obj
                                                15560 non-null
 44
   Entry Date
                                                                 obj
 45
   Last Update
                                                15560 non-null
                                                                 obj
dtypes: float64(20), int64(2), object(24)
memory usage: 5.5+ MB
```

Example 1: Japan Earthquake Data

Filtering

Let us focus on the EM-DAT earthquakes in Japan from the years 2000 to 2003 and create a suitable filter utilizing the EM-DAT columns Disaster Type, ISO and Start Year.

For simplicity, let's retain only the columns Start Year, Magnitude, and Total Deaths and display the first five entries using the pd.DataFrame.head method.

Note: For further details about the columns, we refer to the EM-DAT Documentation page EM-DAT Public Table.

```
eq_jpn = df[
   (df['Disaster Type'] == 'Earthquake') &
   (df['ISO'] == 'JPN') &
```

```
(df['Start Year'] < 2024)
][['Start Year', 'Magnitude', 'Total Deaths', 'Total Affected']]
eq_jpn.head(5)</pre>
```

	Start Year	Magnitude	Total Deaths	Total Affected
392	2000	6.1	1.0	100.0
610	2000	6.7	NaN	7132.0
1013	2001	6.8	2.0	11261.0
2791	2003	7.0	NaN	2303.0
2884	2003	5.5	NaN	18191.0

Grouping

Let us group the data to calculate the number of earthquake events by year and plot the results.

- Use the groupby method to group based on one or more columns in a DataFrame, e.g., Start Year;
- Use the size method as an aggregation method (or count).
- Plot the results using the pd.DataFrame.plot method.

Note: The count method provides the total number of non-missing values, while size gives the total number of elements (including missing values). Since the field Start Year is always defined, both methods should return the same results.

```
eq_jpn.groupby(['Start Year']).size().plot(kind='bar', ylabel='coun
```

<Axes: xlabel='Start Year', ylabel='Count'>

Customize Chart

The pandas library relies on the matplotlib package to draw charts. To have more flexibility on the rendered chart, let us create the figure using the imported plt submodule.

```
# Group earthquake data by 'Start Year' and count occurrences
eq_cnt = eq_jpn.groupby(['Start Year']).size()

# Initialize plot with specified figure size
fig, ax = plt.subplots(figsize=(7, 2))

# Plot number of earthquakes per year
ax.bar(eq_cnt.index, eq_cnt)
```

```
# Set axis labels and title
ax.set_xlabel('Year')
ax.set_ylabel('N° of Earthquakes')
ax.set_yticks([0, 1, 2, 3]) # Define y-axis tick marks
ax.set_title('EM-DAT Earthquakes in Japan (2000-2023)')
```

Text(0.5, 1.0, 'EM-DAT Earthquake in Japan (2000-2023)')

Example 2: Comparing Regions

Let us compare earthquake death toll by continents. As before, we filter the original dataframe df according to our specific needs, including the Region column.

```
eq_all = df[
    (df['Disaster Type'] == 'Earthquake') &
    (df['Start Year'] < 2024)
][['Start Year', 'Magnitude', 'Region', 'Total Deaths', 'Total Affe eq_all.head(5)</pre>
```

	Start Year	Magnitude	Region	Total Deaths	Total Affected
23	2000	4.3	Asia	NaN	1000.0
33	2000	5.9	Asia	7.0	1855007.0
36	2000	4.9	Asia	1.0	10302.0
41	2000	5.1	Asia	NaN	62030.0
50	2000	5.3	Asia	1.0	2015.0

In this case,

- Use the groupby method to group based on the Region column;
- Use the sum method for the Total Deaths field as aggregation method;
- Plot the results easily using the pd.DataFrame.plot method.

```
eq_sum = eq_all.groupby(['Region'])['Total Deaths'].sum()
eq_sum
```

Region

Africa 5863.0 Americas 229069.0 Asia 548766.0 Europe 783.0 Oceania 641.0

Name: Total Deaths, dtype: float64

Finally, let us make an horizontal bar chart of it using matplotlib. In particular,

- use the ax.ticklabel_format method to set the x axis label as scientific (in thousands of deaths);
- use the ax.invert_yaxis to display the regions in alphabetical order from top to bottom.

```
fig, ax = plt.subplots(figsize=(4,3))
ax.barh(eq_sum.index, eq_sum)
ax.set_xlabel('Total Earthquake Deaths')
ax.ticklabel_format(style='sci', scilimits=(3,3), axis='x')
ax.invert_yaxis()
ax.set_title('EM-DAT Earthquake Deaths by Regions')
```

Text(0.5, 1.0, 'EM-DAT Earthquake Deaths by Regions')

Example 3: Multiple Grouping

At last, let us report the earthquake time series by continents. To avoid the creation of a ['Region', 'Start Year'] multiindex for future processing, we

set the argument as_index to False. As such, Region and Start Year remain columns.

```
eq_reg_ts = eq_all.groupby(
    ['Region', 'Start Year'], as_index=False
)['Total Deaths'].sum()
eq_reg_ts
```

	Region	Start Year	Total Deaths
0	Africa	2000	1.0
1	Africa	2001	0.0
2	Africa	2002	47.0
3	Africa	2003	2275.0
4	Africa	2004	943.0
•••			
92	Oceania	2016	2.0
93	Oceania	2018	181.0
94	Oceania	2019	0.0
95	Oceania	2022	7.0
96	Oceania	2023	8.0

97 rows × 3 columns

Next, we apply the pivot method to restructure the table in a way it could be plot easilly.

```
eq_pivot_ts = eq_reg_ts.pivot(
   index='Start Year', columns='Region', values='Total Deaths'
```

```
)
eq_pivot_ts.head()
```

Region	Africa	Americas	Asia	Europe	Oceania
Start Year					
2000	1.0	9.0	205.0	0.0	2.0
2001	0.0	1317.0	20031.0	0.0	0.0
2002	47.0	0.0	1554.0	33.0	5.0
2003	2275.0	38.0	27301.0	3.0	NaN
2004	943.0	10.0	226336.0	1.0	NaN

```
ax = eq_pivot_ts.plot(kind='bar', width=1, figsize=(6,3))
ax.set_ylabel('Total Deaths')
ax.set_title('EM-DAT Earthquake Deaths by Regions')
```

Text(0.5, 1.0, 'EM-DAT Earthquake Deaths by Regions')

In order to be able to visualize the data in more details, let us make a subplot instead by setting the subplot argument to True within the plot method.

```
ax = eq_pivot_ts.plot(kind='bar', subplots=True, legend=False, rigs
plt.tight_layout() # <-- adjust plot layout</pre>
```


We have just covered the most common manipulations applied to a pandas DataFrame containing the EM-DAT data. To delve further into your analyses, we encourage you to continue your learning of pandas and matplotlib with the many resources available online, starting with the official documentation.

If you are interested in learning the basics of making maps based on EM-DAT data, you can also follow the second EM-DAT Python Tutorial.

2 - Python Tutorial 2: Making Maps

If you have followed the first EM-DAT Python Tutorial 1 or are already familiar with pandas and matplotlib, this second tutorial will show you basic examples on how to make maps with the EM-DAT data using the geopandas Python package.

Note: The Jupyter Notebook version of this tutorial is available on the EM-DAT Python Tutorials GitHub Repository.

Import Modules

Let us import the necessary modules and print their versions. For this tutorial, we used pandas v.2.1.1, geopandas v.0.14.3, and matplotlib v.3.8.3. If your package versions are different, you may have to adapt this tutorial by checking the corresponding package documentation.

```
import pandas as pd #data analysis package
import geopandas as gpd
import matplotlib as mpl
import matplotlib.pyplot as plt #plotting library
for i in [pd, gpd, mpl]:
    print(i.__name__, i.__version__)
```

```
pandas 2.2.1
geopandas 0.14.3
matplotlib 3.8.3
```

Creating a World Map

To create a world map, we need the EM-DAT data and a shapefile containing the country geometries.

EM-DAT: We download and load the EM-DAT data using pandas.

Country Shapefile: We download a country shapefile from Natural Earth Data. For a world map, we download the low resolution 1:110m Adimin 0 - Countries (last accessed: March 10, 2024) and unzip it.

Load and Filter EM-DAT

Let us load EM-DAT and filter it to make a global map of Earthquake disasters between 2000 and 2023. We calculate the number of unique identifiers (DisNo.) per country (ISO) We refer to the standard ISO column instead of the Country column of the EM-DAT Public Table to be able to make a join with the country shapefile.

```
df = pd.read_excel('public_emdat_2024-01-08.xlsx')
earthquake_counts = df[
    (df['Disaster Type'] == 'Earthquake') &
    (df['Start Year'] < 2024)
].groupby('ISO')["DisNo."].count().reset_index(name='EarthquakeCounearthquake_counts</pre>
```

ISO EarthquakeCount

0	AFG	21
1	ALB	4
2	ARG	2
3	ASM	1
4	AZE	3
•••		
86	USA	10
87	UZB	1

ISO EarthquakeCount

88	VUT	2
89	WSM	1
90	ZAF	2

91 rows x 2 columns

Load the Country Shapefile

We use the gpd.read_file method to load the country shapefile and parse it into a geodataframe. A geodataframe is similar to a pandas dataframe, extept that has a geometry column.

We provide the filename argument, which is either a file name if located in the same directory than the running script, or a relative or absolute path, if not. In our case the shapefile with the .shp extension is located in the ne 110m admin 0 countries folder.

Since the geodataframe contains 169 columns, we only keep the two column that we are interrested in, i.e., ISO_A3 and geometry.

```
gdf = gpd.read_file ('ne_110m_admin_0_countries/ne_110m_admin_0_cou
gdf = gdf[['ISO_A3', 'geometry']]
gdf
```

Cannot find header.dxf (GDAL_DATA is not defined)

	ISO_A3	geometry
0	FJI	MULTIPOLYGON (((180.00000 -16.06713, 180.00000
1	TZA	POLYGON ((33.90371 -0.95000, 34.07262 -1.05982

	ISO_A3	geometry
2	ESH	POLYGON ((-8.66559 27.65643, -8.66512 27.58948
3	CAN	MULTIPOLYGON (((-122.84000 49.00000, -122.9742
4	USA	MULTIPOLYGON (((-122.84000 49.00000, -120.0000
•••		
172	SRB	POLYGON ((18.82982 45.90887, 18.82984 45.90888
173	MNE	POLYGON ((20.07070 42.58863, 19.80161 42.50009
174	-99	POLYGON ((20.59025 41.85541, 20.52295 42.21787
175	ТТО	POLYGON ((-61.68000 10.76000, -61.10500 10.890
176	SSD	POLYGON ((30.83385 3.50917, 29.95350 4.17370,

177 rows × 2 columns

Important Notice: Above, some geometries do not have a ISO code, such as the one at row 174. Below, you will see that some ISO in EM-DAT are not matched with a geometries. Beyond this basic tutorial, we advice to carefully evaluate these correspondance and non-correspondance between ISO codes and to read the EM-DAT Documentation about ISO codes.

Join the Two Datasets

Let us merge the two dataset with an outer join, using the merge method. We prefer an outer join to keep the geometries of countries for which EM-DAT has no records.

```
earthquake_counts_with_geom = gdf.merge(
    earthquake_counts, left_on='ISO_A3', right_on='ISO', how='outer
earthquake_counts_with_geom
```

	ISO_A3	geometry	ISO	EarthquakeCount
0	-99	MULTIPOLYGON (((15.14282 79.67431, 15.52255 80	NaN	NaN
1	-99	MULTIPOLYGON (((-51.65780 4.15623, -52.24934 3	NaN	NaN
2	-99	POLYGON ((32.73178 35.14003, 32.80247 35.14550	NaN	NaN
3	-99	POLYGON ((48.94820 11.41062, 48.94820 11.41062	NaN	NaN
4	-99	POLYGON ((20.59025 41.85541, 20.52295 42.21787	NaN	NaN
•••	•••	•••	•••	
185	NaN	None	WSM	1.0
186	YEM	POLYGON ((52.00001 19.00000, 52.78218 17.34974	NaN	NaN
187	ZAF	POLYGON ((16.34498 -28.57671, 16.82402 -28.082	ZAF	2.0
188	ZMB	POLYGON ((30.74001 -8.34001, 31.15775 -8.59458	NaN	NaN
189	ZWE	POLYGON ((31.19141 -22.25151, 30.65987 -22.151	NaN	NaN

190 rows × 4 columns

Make the Map

To make the map, we use the geopandas built-in API, through the plot method built on the top of matplotlib. Below, we show an hybrid plotting approach and first create an empty figure fig and ax object with matplotlib before passing the ax object as an argument within the plot method. This approach gives more control to users familiar with matplotlib to further customize the chart.

```
fig, ax = plt.subplots(figsize=(8,3))
earthquake_counts_with_geom.plot(
    column='EarthquakeCount',
    ax=ax,
    cmap='Reds',
```

```
vmin=1,
  legend=True,
  legend_kwds={"label": "Nb of EM-DAT Earthquake"},
  missing_kwds= dict(color = "lightgrey",)
)
_ = ax.set_xlabel('Lon.')
_ = ax.set_ylabel('Lat.')
```


Creating a Map at Admin Level 1

We can create a more detailed map using the Admin Units column in the EM-DAT Public Table. This column contains the identifiers of administrative units of level 1or 2 as defined by the Global Administrative Unit Layer (GAUL) for country impacted by non-biological natural hazards.

Similarly to the country map, we need to download a file containing GAUL geometries. The file corresponds to the last version of GAUL published in 2015. In this tutorial, we will focus on Japanese earthquake occurrence in EM-DAT.

Note: the file size is above 1.3Go and requires a performant computer to process in Python. Using a Geographical Information Software (GIS) for the preprocessing is another option.

Load the Admin Units Geopackage

The file is a geopackage .gpkg that contains multiple layers. Let us first describe these layers with the fiona package, which is a geopandas dependency.

```
import fiona
print(fiona.__name__, fiona.__version__)
for layername in fiona.listlayers('gaul2014_2015.gpkg'):
    with fiona.open('gaul2014_2015.gpkg', layer=layername) as src:
        print(layername, len(src))
```

```
fiona 1.9.5
level2 38258
level1 3422
level0 277
```

- The level0 layer contains the country geometries defined in GAUL.
- Here, we make a map at the level1.
- Still, we need to load the administrative level2 because the Admin Units column may refer to Admin 2 levels without mentionning the corresponding Admin 1 level.
- Given the high size the admin 2 layer, we filter the data about Japan and overwrite our geodataframe variable to save memory.

```
gaul_adm2 = gpd.read_file ('gaul2014_2015.gpkg', layer='level2')
gaul_adm2 = gaul_adm2[gaul_adm2['ADM0_NAME'] == 'Japan']
gaul_adm2.info()
```

```
<class 'geopandas.geodataframe.GeoDataFrame'>
Index: 3348 entries, 23205 to 26552
Data columns (total 13 columns):
    # Column Non-Null Count Dtype
```

```
3348 non-null
                                int64
0
    ADM2_CODE
    ADM2_NAME 3348 non-null
1
                               object
2
                                int64
    STR2_YEAR 3348 non-null
3
    EXP2_YEAR
                3348 non-null
                                int64
4
    ADM1_CODE
               3348 non-null
                                int64
5
                               object
    ADM1_NAME
                3348 non-null
                3348 non-null
                               object
6
    STATUS
7
   DISP_AREA 3348 non-null
                               object
                               int64
8
    ADMO_CODE 3348 non-null
9
                               object
    ADMO_NAME
                3348 non-null
10 Shape_Leng 3348 non-null
                               float64
11
   Shape_Area 3348 non-null
                               float64
12
    geometry
                3348 non-null
                               geometry
dtypes: float64(2), geometry(1), int64(5), object(5)
memory usage: 366.2+ KB
```

The Admin 2 geodataframe has 12 columns describing the 3348 level 2 administrative units in Japan.

Filter EM-DAT Data

DisNo

```
df_jpn = df[
    (df['ISO'] == 'JPN') &
    (df['Disaster Type'] == 'Earthquake') &
    (df['Start Year'] < 2024)
][['DisNo.', 'Admin Units']]
df_jpn</pre>
```

Admin Units

	DISINO.	Admin onits
392	2000-0428-JPN	[{"adm2_code":36308,"adm2_name":"Koodusimamura
610	2000-0656-JPN	[{"adm1_code":1680,"adm1_name":"Okayama"},{"ad
1013	2001-0123-JPN	[{"adm1_code":1654,"adm1_name":"Ehime"},{"adm1
2791	2003-0249-JPN	[{"adm1_code":1652,"adm1_name":"Akita"},{"adm1

DisNo. Admin Units

2884	2003-0354-JPN	[{"adm2_code":35135,"adm2_name":"Hurukawasi"},
3014	2003-0476-JPN	[{"adm1_code":1661,"adm1_name":"Hokkaidoo"}]
3824	2004-0532-JPN	[{"adm1_code":1690,"adm1_name":"Tookyoo"},{"ad
4182	2005-0129-JPN	[{"adm1_code":1656,"adm1_name":"Hukuoka"}]
4253	2005-0211-JPN	[{"adm1_code":1656,"adm1_name":"Hukuoka"},{"ad
5769	2007-0101-JPN	[{"adm1_code":1678,"adm1_name":"Niigata"},{"ad
5912	2007-0258-JPN	[{"adm1_code":1675,"adm1_name":"Nagano"},{"adm
6311	2007-0654-JPN	[{"adm1_code":1672,"adm1_name":"Mie"},{"adm1_c
6606	2008-0242-JPN	[{"adm1_code":1652,"adm1_name":"Akita"},{"adm2
6637	2008-0275-JPN	[{"adm2_code":33543,"adm2_name":"Hatinohesi"}]
7335	2009-0320-JPN	[{"adm1_code":1690,"adm1_name":"Tookyoo"},{"ad
8403	2011-0082-JPN	[{"adm1_code":1652,"adm1_name":"Akita"},{"adm1
8447	2011-0130-JPN	[{"adm1_code":1695,"adm1_name":"Yamagata"},{"a
9596	2013-0127-JPN	[{"adm1_code":1662,"adm1_name":"Hyoogo"}]
10468	2014-0465-JPN	[{"adm2_code":35261,"adm2_name":"Hakubamura"}]
11276	2016-0107-JPN	[{"adm1_code":1670,"adm1_name":"Kumamoto"}]
11291	2016-0121-JPN	[{"adm1_code":1670,"adm1_name":"Kumamoto"},{"a
11631	2016-0492-JPN	[{"adm2_code":36364,"adm2_name":"Kurayosisi"}]
12449	2018-0183-JPN	[{"adm1_code":1662,"adm1_name":"Hyoogo"},{"adm
12589	2018-0330-JPN	[{"adm2_code":34179,"adm2_name":"Atumatyoo"},{
13030	2019-0322-JPN	[{"adm1_code":1664,"adm1_name":"Isikawa"},{"ad
13949	2021-0105-JPN	[{"adm2_code":33868,"adm2_name":"Namiemati"}]
14005	2021-0194-JPN	[{"adm1_code":1651,"adm1_name":"Aiti"},{"adm1

DisNo. Admin Units

14584	2022-0153-JPN	NaN
15236	2023-0279-JPN	NaN

Note: The last two events were not geolocated at a higher administrative levels.

Convert Admin 2 units to Admin 1 units

We create a python function, json_to_amdmin1, to extract the administrative level 1 codes from the Admin Units column of EM-DAT, based on the ADM1_CODE and ADM2_CODE of the Japan geodataframe.

```
import json
def json_to_admin1(json_str, gdf):
    Convert a JSON string to a set of administrative level 1 codes.
    Parameters
    _____
    json_str
        A JSON string representing administrative areas, or None.
    adf
        A GeoDataFrame containing administrative codes and their co
        levels.
    Returns
    A set of administrative level 1 (ADM1) codes extracted from the
    Raises
    _ _ _ _ _ _
    ValueError
        If the administrative code is missing from the input data o
        not found in the provided GeoDataFrame.
    \Pi \Pi \Pi
```

```
adm_list = json.loads(json_str) if isinstance(json_str, str) el
adm1_list = []
if adm_list is not None:
    for entry in adm_list:
        if 'adm1_code' in entry.keys():
            adm1_code = entry['adm1_code']
        elif 'adm2_code' in entry.keys():
            gdf_sel = gdf[gdf['ADM2_CODE'] == entry['adm2_code'
            if not gdf_sel.empty:
                adm1_code = gdf_sel.iloc[0]['ADM1_CODE']
            else:
                raise ValueError(
                    'ADM2_CODE not found in the provided GeoDat
                )
        else:
            raise ValueError(
                'Administrative code is missing from the provid
        adm1_list.append(adm1_code)
return set(adm1_list)
```

We apply the function to all elements of the Admin Units column.

```
df_jpn.loc[:, 'Admin_1'] = df_jpn['Admin Units'].apply(
    lambda x: json_to_admin1(x, gaul_adm2))

df_jpn[['Admin Units', 'Admin_1']]
```

392	[{"adm2_code":36308,"adm2_name":"Koodusimamura	{1690}
610	[{"adm1_code":1680,"adm1_name":"Okayama"},{"ad	{1680, 1691, 1686}
1013	[{"adm1_code":1654,"adm1_name":"Ehime"},{"adm1	{1660, 1654}
2791	[{"adm1_code":1652,"adm1_name":"Akita"},{"adm1	{1665, 1673, 1652, 1653, 1695}

Admin Units

Admin_1

2884	[{"adm2_code":35135,"adm2_name":"Hurukawasi"},	{1673}
3014	[{"adm1_code":1661,"adm1_name":"Hokkaidoo"}]	{1661}
3824	[{"adm1_code":1690,"adm1_name":"Tookyoo"},{"ad	{1690, 1678}
4182	[{"adm1_code":1656,"adm1_name":"Hukuoka"}]	{1656}
4253	[{"adm1_code":1656,"adm1_name":"Hukuoka"},{"ad	{1656, 1683}
5769	[{"adm1_code":1678,"adm1_name":"Niigata"},{"ad	{1664, 1692, 1678}
5912	[{"adm1_code":1675,"adm1_name":"Nagano"},{"adm	{1675, 1692, 1678}
6311	[{"adm1_code":1672,"adm1_name":"Mie"},{"adm1_c	{1672, 1677, 1685}
6606	[{"adm1_code":1652,"adm1_name":"Akita"},{"adm2	{1665, 1673, 1652}
6637	[{"adm2_code":33543,"adm2_name":"Hatinohesi"}]	{1653}
7335	[{"adm1_code":1690,"adm1_name":"Tookyoo"},{"ad	{1690, 1687}
8403	[{"adm1_code":1652,"adm1_name":"Akita"},{"adm1	{1665, 1668, 1693, 1673, 1675, 1695, 1652, 165
8447	[{"adm1_code":1695,"adm1_name":"Yamagata"},{"a	{1673, 1695}
9596	[{"adm1_code":1662,"adm1_name":"Hyoogo"}]	{1662}
10468	[{"adm2_code":35261,"adm2_name":"Hakubamura"}]	{1675}
11276	[{"adm1_code":1670,"adm1_name":"Kumamoto"}]	{1670}
11291	[{"adm1_code":1670,"adm1_name":"Kumamoto"},{"a	{1674, 1683, 1670}
11631	[{"adm2_code":36364,"adm2_name":"Kurayosisi"}]	{1691}
12449	[{"adm1_code":1662,"adm1_name":"Hyoogo"},{"adm	{1682, 1677, 1662, 1671}
12589	[{"adm2_code":34179,"adm2_name":"Atumatyoo"},{	{1661}
13030	[{"adm1_code":1664,"adm1_name":"Isikawa"},{"ad	{1664, 1673, 1678, 1695}
13949	[{"adm2_code":33868,"adm2_name":"Namiemati"}]	{1657}

Admin Units Admin_1

14005	[{"adm1_code":1651,"adm1_name":"Aiti"},{"adm1	{1664, 1665, 1668, 1671, 1672, 1673, 1675, 167
14584	NaN	0
15236	NaN	0

Count Earthquakes per Admin 1 Units

The can be done applying the explode method on the new Admin_1 column. The method will add rows based on the number of Admin 1 we have in each set inside the Admin_1 column. Then the counting can be performed using the former groupby approach.

```
count_per_adm1 = df_jpn.explode('Admin_1').groupby(
    'Admin_1')['DisNo.'].count().rename('EQ Count')
count_per_adm1.head()
```

Recreate the Admin 1 Layer

Since the Japan geodataframe contains the admin2 geometries, we could load the Admin 1 layer or simply dissolve the geometries based on the ADM1_CODE column. The geopandas package is equipped with the dissolve method.

```
gdf_jpn_adm1 = gaul_adm2.dissolve(by='ADM1_CODE')
gdf_jpn_adm1.plot()
```

<Axes: >

Join the Two Datasets

Again, we can use the merge method to join the datasets together, here, based on their index.

```
left_index=True,
right_index=True,
how='outer')
```

Make the Map

```
fig, ax = plt.subplots()

gdf_jpn_adm1_merged.plot(
    column='EQ Count', cmap='YlOrRd',
    linewidth=0.8, ax=ax,edgecolor='0.8',
    legend=True,
    legend_kwds={'label': "Earthquake Count in EM-DAT"}
)
_ = ax.set_xlabel('Longitude')
_ = ax.set_ylabel('Latitude')
```


We have just covered the basics on how to join the EM-DAT pandas DataFrame with a geopandas GeoDataFrame to make maps. To delve further into your analyses, we encourage you to continue your learning of geopandas, matplotlib, or, in particular, cartopy for more advanced map customization, with the many resources available online.