Программа и задачи курса "Случайные процессы"

лектор — профессор Д. А. Шабанов ${\rm осень} - 2015$

ПРОГРАММА

- 1. Понятие случайного процесса (случайной функции). Примеры: случайное блуждание, процессы восстановления, эмпирические меры, модель страхования Крамера Лундберга.
- 2. Ветвящиеся процессы Гальтона Ватсона. Теорема о вероятности вырождения ветвящегося процесса.
- 3. Пространство $L^2(\Omega, \mathcal{F}, \mathsf{P})$ случайных величин, его основные свойства. Лемма о непрерывности скалярного произведения.
- 4. Ветвящиеся процессы Гальтона Ватсона. Предельная теорема для надкритического случая.
- 5. Пространство траекторий случайного процесса, цилиндрическая сигма-алгебра на нем. Эквивалентное определение случайного процесса, как одного измеримого отображения в пространство траекторий.
- 6. Конечномерные распределения случайного процесса. Теорема Колмогорова о согласованных распределениях (док-во необходимости). Условия согласованности вероятностных мер на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ в терминах характеристических функций.
- 7. Процессы с независимыми приращениями: критерий существования в терминах характеристических функций приращений.
- 8. Пуассоновский процесс постоянной интенсивности как процесс с независимыми приращениями. Явная конструкция пуассоновского процесса: процесс восстановления для экспоненциальных случайных величин.
- 9. Ковариационная и корреляционная функции случайного процесса, их неотрицательная определенность.
- 10. Гауссовские случайные процессы. Доказательство существования гауссовского процесса с заданными функцией среднего и ковариационной функцией.
- 11. Винеровский процесс (процесс броуновского движения). Теорема о двух эквивалентных определениях винеровского процесса.

- 12. Модификация случайного процесса. Теорема Колмогорова о существовании непрерывной модификации (6/д). Непрерывность с вероятностью 1 траекторий винеровского процесса.
- 13. Функции Хаара и Шаудера. Явная конструкция винеровского процесса.
- 14. Дополнительные свойства траекторий винеровского процесса: недифференцируемость с вероятностью 1 (б/д), неограниченность вариации на любом конечном отрезке, закон повторного логарифма (б/д) и его локальное следствие.
- 15. Понятие фильтрации на вероятностном пространстве, естественная фильтрация случайного процесса. Марковские моменты и моменты остановки.
- 16. Строго марковское свойство и принцип отражения для винеровского процесса. Теорема Башелье.
- 17. Мартингалы, субмартингалы и супермартингалы. Критерий мартингальности для процессов с независимыми приращениями и для марковских процессов. Разложение Дуба для согласованных процессов с дискретным временем.
- 18. Мартингалы. Теорема Дуба об остановке и следствие из нее. Теорема об остановке в непрерывном случае (6/д), ее применение: оценка вероятности разорения в модели страхования Крамера Лундберга.
- 19. Марковские цепи с дискретным временем. Теорема о независимости "будущего" и "прошлого" при фиксированном "настоящем". Примеры марковских цепей: простейшее случайное блуждание на прямой и ветвящиеся процессы Гальтона-Ватсона.
- 20. Фазовое пространство, матрицы переходных вероятностей и начальное распределение для марковской цепи с дискретным временем. Понятие однородной марковской цепи. Уравнения Колмогорова Чепмена и следствия из них. Стационарное и предельное распределения однородной марковской цепи. Свойства цепи с начальным стационарным распределением.
- 21. Эргодическая теорема для марковских цепей с дискретным временем. Стационарность и предельность эргодического распределения марковской цепи.
- 22. Классификация состояний однородных марковских цепей. Неразложимые классы и циклические подклассы. Возвратные и невозвратные состояния, критерий возвратности и пример его применения к случайному блуждания на целочисленной решетке \mathbb{Z}^d .
- 23. Стохастическая непрерывность и непрерывность в среднем квадратичном случайного процесса. Критерий непрерывности в среднем квадратичном L^2 -процесса в терминах корреляционной функции. Критерий стохастической непрерывности в терминах сходимостей двумерных конечномерных распределений.
- 24. Дифференцирование случайных процессов по вероятности и в среднем квадратичном. Критерий дифференцируемости в среднем квадратичном случайного процесса

- на отрезке (б/д). Вычисление математического ожидания, корреляционной и ковариационной функций L^2 -производной от случайного процесса.
- 25. Интегрирование случайных процессов в среднем квадратичном. Доказательство того, что из непрерывности в среднем квадратичном следует интегрируемость. Вычисление математического ожидания, корреляционной и ковариационной функций L^2 -интеграла от случайного процесса.
- 26. Стационарные случайные процессы: стационарность в узком и широком смыслах. Доказательство эквивалентности этих понятий для гауссовских процессов. Стационарность в узком смысле марковской цепи с начальным стационарным распределением.
- 27. Ортогональные случайные меры на измеримых пространствах. Взаимная однозначность ортогональных случайных мер на полукольце полуинтервалов и L^2 -процессами с ортогональными приращениями.
- 28. Стохастический интеграл по ортогональной случайной мере. Продолжение с полукольца ортогональной случайной меры и ее структурной меры. Определение и свойства стохастического интеграла от простых функций. Построение стохастического интеграла для произвольной функции из $L^2(\Lambda, \mathcal{A}, \mu)$. Теорема об его основных свойствах (б/д).
- 29. Теорема Карунена (б/д). Спектральное представление. Теорема Герглотца (б/д). Теорема о спектральном представлении стационарной в широком смысле последовательности. Спектральная плотность стационарной в широком смысле последовательности, ее вычисление с помощью ряда Фурье.
- 30. Теорема Бохнера Хинчина (б/д). Спектральная плотность стационарного в широком смысле процесса, ее вычисление с помощью формулы обращения. Спектральное представление стационарного в широком смысле случайного процесса на прямой.
- 31. Начала стохастического исчисления. Стохастический интеграл Ито, построение и основные свойства. Формула Ито (б/д), примеры ее использования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ширяев А. Н. Вероятность. В 2-х кн. 3-е изд. М.: МЦНМО, 2004.
- 2. Булинский А. В., Ширяев А. Н. Теория случайных процессов. М.: Физматлит, 2005.
- 3. Боровков A. A. Теория вероятностей. 4-е изд. М.: Едиториал УРСС, 2003.
- 4. Ceвастьянов Б. А. Курс теории вероятностей и математической статистики. 2-е изд. М.-Ижевск: Институт компьютерных исследований, 2004.
- 5. Φ еллер B. Введение в теорию вероятностей и ее приложения. В 2-х т. М.: Мир, 1984.

6. Венти
ель А. Д. Курс теории случайных процессов. — 2-е изд. — М.: Наука. Физматлит, 1996.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Ветвящиеся процессы

1. Найдите производящую функцию числа частиц в n-м поколении, если производящая функция числа потомков одной частицы равна

a)
$$pz + 1 - p$$
, 6) $(1 - p)/(1 - pz)$, B) $1 - p(1 - z)^{\alpha}$, $\alpha \in (0, 1)$.

2. Найдите вероятности вырождения для ветвящихся процессов с производящей функцией числа потомков одной частицы

a)
$$(1-p)/(1-pz)$$
, 6) $1-p(1-z)^{\alpha}$, $\alpha \in (0,1)$, B) $(1+z+z^2+z^3)/4$.

3. Найдите распределение момента вырождения N для ветвящихся процессов с производящей функцией числа потомков одной частицы

a)
$$pz + 1 - p$$
, 6) $1 - p(1 - z)^{\alpha}$, $\alpha \in (0, 1)$.

- 4. Пусть ξ число потомков частицы в ветвящемся процессе Гальтона-Ватсона $(X_n, n \in \mathbb{Z}_+)$. Обозначим $\mathsf{E}\xi = \mu$, $\mathsf{D}\xi = \sigma^2$. Найдите $\mathsf{E}X_n$ и $\mathsf{D}X_n$.
- 5. Пусть $(X_n, n \in \mathbb{Z}_+)$ ветвящийся процесс с законом размножения частиц ξ . Обозначим через $Y_n = X_n + \ldots + X_0$ общее число частиц в процессе за время n, а через $\varphi_{Y_n}(s)$ его производящую функцию. Докажите, что

$$\varphi_{Y_n}(s) = s\varphi_{\xi}(\varphi_{Y_{n-1}}(s)).$$

6. Случайная величина ξ имеет геометрическое распределение с параметром $p \in (0,1)$, а $(X_n, n \in \mathbb{Z}_+)$ — ветвящийся процесс с законом размножения частиц ξ . Вычислите производящую функцию общего числа частиц в процессе, а также найдите вероятность того, что всего в процессе было ровно k частиц.

2. Процессы с независимыми приращениями. Пуассоновский процесс

- 1. Пусть $(X_t, t \in \mathbb{R}_+)$ процесс с независимыми приращениями. Докажите, что для любых t>s случайная величина X_t-X_s не зависит от $\sigma(X_u, u\leqslant s)$.
- 2. Задан процесс $\{Y_t = \sum_{j=1}^{N_t} \xi_j, t \ge 0\}$, где $(\xi_n, n \in \mathbb{N})$ независимые одинаково распределенные случайные величины, не зависящие также от пуассоновского процесса $N = \{N_t, t \ge 0\}$ интенсивности λ . Докажите, что процесс Y_t имеет независимые приращения.

- 3. Пусть $(\xi_n, n \in \mathbb{N})$ независимые экспоненциальные случайные величины с параметром λ , $S_n = \xi_1 + \ldots + \xi_n$, а $N = \{N_t, t \ge 0\}$ процесс восстановления, построенный по ним (пуассоновский процесс интенсивности λ). Для каждого t > 0 обозначим $V_t = S_{N_t+1} t$ ("перескок") и $U_t = t S_{N_t}$ ("недоскок").
 - а) Вычислите вероятность $P(V_t > v, U_t > u) = ?$
 - б) Докажите, что V_t и U_t независимы, и что $V_t \sim Exp(\lambda)$.
 - в) Вычислите функцию распределения U_t и $\mathsf{E} U_t.$
- 4. Пусть $N = \{N_t, t \ge 0\}$ пуассоновский процесс интенсивности λ . Найдите математическое ожидание числа таких его скачков на отрезке [0, T], что а) в их правой a-окрестности нет других скачков (эта окрестность может выходить и за пределы отрезка), б) в их левой a-окрестности нет других скачков, в) в их a-окрестности нет других скачков (эта окрестность может выходить и за пределы отрезка).
- 5. Пусть $(N_t, t \geqslant 0)$ пуассоновский процесс интенсивности λ . Найдите предел п.н. N_t/t при $t \to +\infty$.
- 6. Пусть $(X_t, t \ge 0)$ процесс восстановления для независимых одинаково распределенных неотрицательных случайных величин $\{\xi_n, n \in \mathbb{N}\}$. Верно ли, что процесс X_t всегда имеет независимые приращения?

3. Гауссовские процессы. Винеровский процесс

- 1. Пусть $(W_t, t \geqslant 0)$ винеровский процесс. Докажите, что следующие процессы тоже винеровские
 - a) $X_t = t \ W_{1/t} I\{t>0\}$, б) $X_t = \sqrt{c} \ W_{t/c}$, c>0, в) $X_t = W_{t+a} W_a$, a>0, г) $X_t = W_t I\{t< T\} + (2W_T W_t) I\{t\geqslant T\}$.
- 2. Пусть $(Y_t, t \in [0,1])$ гауссовский процесс с нулевой функцией среднего и ковариационной функцией $r(s,t) = \min(s,t) st$. Докажите, что такой процесс существует и что процесс $X_t = (t+1)Y_{t/(t+1)}, t \geqslant 0$ является винеровским.
- 3. Пусть W_t^1, \ldots, W_t^d независимые винеровские процессы. Докажите, что с вероятностью 1 процесс $W_t = (W_t^1, \ldots, W_t^d)$ (многомерный винеровский процесс) выйдет из шара произвольного фиксированного радиуса r с центром в нуле пространства \mathbb{R}^d .
- 4. Докажите, что существует гауссовский процесс $X=(X_t,t\in\mathbb{R}^d_+)$ с нулевой функцией среднего и ковариационной функцией

$$R(s,t) = \prod_{k=1}^{d} \min(s_k, t_k),$$

где
$$s = (s_1, \ldots, s_d) \in \mathbb{R}^d_+, t = (t_1, \ldots, t_d) \in \mathbb{R}^d_+.$$

5. Пусть $(W_t, t \ge 0)$ — винеровский процесс. Докажите, что с вероятностью 1 его траектория имеет неограниченную вариацию на произвольном отрезке $[a, b] \subset \mathbb{R}_+$, т.е. что

$$\sup_{T} \sum_{i=1}^{n} |W_{t_{i+1}} - W_{t_i}| = +\infty \text{ п.н.},$$

где $T = \{a = t_0 < \ldots < t_n = b\}$ — разбиение отрезка [a, b].

6. Пусть $\{\xi_n, n \in \mathbb{Z}_+\}$ — независимые $\mathcal{N}(0,1)$ случайные величины. Докажите, что процесс

$$X_t = \frac{\xi_0 t}{\sqrt{\pi}} + \sqrt{\frac{2}{\pi}} \sum_{k=1}^{\infty} \frac{\sin(kt)}{k} \, \xi_k$$

является винеровским на отрезке $[0,\pi]$ (ряд понимается, как предел частичных сумм в L^2).

Указание: надо разложить функцию $I_{[0,t]}(x)$ в ряд Фурье по ортонормированной системе на $[0,\pi]$, составленной из $\sqrt{\frac{2}{\pi}}\cos(kx)$.

4. Марковские моменты. Принцип отражения для винеровского процесса

1. Пусть задана фильтрация $\mathbb{F} = (\mathcal{F}_n, n \in \mathbb{N})$, а τ_1, τ_2, \ldots марковские моменты относительно \mathbb{F} . Докажите, что случайные величины

$$\sum_{k=1}^{m} \tau_k, \quad \prod_{k=1}^{m} \tau_k, \quad \sup_{k} \tau_k, \quad \inf_{k} \tau_k$$

тоже являются марковскими моментами относительно $\mathbb{F}.$

2. Пусть τ — марковский момент относительно фильтрации ($\mathcal{F}_t, t \geqslant 0$). Докажите, что тогда марковским моментом будет и величина

$$\tau_n := \sum_{k=1}^{\infty} k 2^{-n} I_{A_{n,k}},$$

где $A_{n,1}=\{0\leqslant \tau\leqslant 2^{-n}\},\, A_{n,k}=\{(k-1)2^{-n}<\tau\leqslant k2^{-n}\}$ при $k\geqslant 2.$

3. Пусть τ — марковский момент относительно фильтрации $\mathbb{F}=(\mathcal{F}_t,t\in T)$, где $T=\mathbb{N}$ или \mathbb{R}_+ . Положим

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : \forall t \in T \ A \cap \{ \tau \leqslant t \} \in \mathcal{F}_t \}$$

Докажите, что \mathcal{F}_{τ} является сигма-алгеброй и что τ является \mathcal{F}_{τ} -измеримой случайной величиной.

- 4. Пусть τ марковский момент относительно фильтрации $\mathbb{F} = (\mathcal{F}_n, n \in \mathbb{N})$, а случайный процесс $(X_n, n \in \mathbb{N})$ согласован с \mathbb{F} . Докажите, что X_{τ} является \mathcal{F}_{τ} -измеримыми (считаем, что $X_{\tau} = +\infty$, если $\tau = +\infty$).
- 5. Пусть $(W_t, t \ge 0)$ винеровский процесс. Положим $\tau_y = \min\{t : W_t = y\}$ для y > 0. С помощью теоремы Башелье найдите плотность случайной величины τ_y , а также $\mathsf{E}\tau_y$.
- 6. Пусть $(W_t, t \ge 0)$ винеровский процесс. Положим $\tau = \min\{t: W_t = y\}$ для некоторого y>0. Найдите плотность случайной величины $Y_a=\sup_{t\in[\tau,\tau+a]}W_t$.
- 7. Используя задачу 3 найдите

 $\mathsf{P}\left(W_{t}\right)$ не имеет нулей на отрезке [s,u],

где W_t — винеровский процесс, а u > s > 0.

5. Мартингалы

- 1. Пусть $(W_t, t \ge 0)$ винеровский процесс. Докажите, что процесс $Y_t = W_t^2 t$ является мартингалом относительно естественной фильтрации процесса W_t .
- 2. Пусть $(W_t, t \ge 0)$ винеровский процесс. Найдите все такие пары $(\alpha, \beta) \in \mathbb{R}^2$, что процесс

$$X_t = \exp\left\{\alpha W_t + \beta t\right\}, \ t \ge 0$$

является мартингалом (субмартингалом, супермартингалом) относительно естественной фильтрации процесса W_t .

3. Пусть $\xi_1, \ldots, \xi_n, \ldots$ — такая последовательность случайных величин, что для любого n существует плотность $f_n(x_1, \ldots, x_n)$ случайного вектора (ξ_1, \ldots, ξ_n) . Пусть $\eta_1, \ldots, \eta_n, \ldots$ — другая последовательность случайных величин, причем также для любого n существует плотность $g_n(x_1, \ldots, x_n)$ случайного вектора (η_1, \ldots, η_n) . Докажите, что процесс

$$X_n = \frac{g_n(\xi_1, \dots, \xi_n)}{f_n(\xi_1, \dots, \xi_n)}$$

является мартингалом относительно фильтрации ($\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n), \ n \in \mathbb{N}$).

4. Пусть $(W_t, t \ge 0)$ — винеровский процесс, а τ — момент остановки относительно его естественной фильтрации. Докажите, что процесс

$$X_t = W_{t \wedge \tau}, \ t \geqslant 0$$

является мартингалом относительно естественной фильтрации процесса W_t .

Указание: надо аппроксимировать τ марковскими моментами c конечным числом значений.

- 5. Пусть $(W_t, t \ge 0)$ винеровский процесс, а $\tau = \min\{t : |W_t| = 1\}$. Вычислите $\mathsf{E}\tau$.
- 6. Пусть $(S_n, n \in \mathbb{N})$ простейшее случайное блуждание с вероятностью шага вправо p. Пусть a < x < b целые числа, а $X_n = x + S_n$, $n \geqslant 1$. Обозначим $\tau = \min\{n : S_n \in \{a,b\}\}$ момент выхода процесса X_n из полосы. Докажите, что $\mathsf{E}\tau < +\infty$

Указание: надо использовать решение задачи 4.

6. Марковские цепи

1. Пусть ξ_n — цепь Маркова с фазовым пространством $S=\{1,2,3\}$, начальным состоянием $\xi_0=1$ п.н. и матрицей переходных вероятностей

$$\begin{pmatrix} 3/7 & 3/7 & 1/7 \\ 1/11 & 2/11 & 8/11 \\ 1/11 & 4/11 & 6/11 \end{pmatrix}.$$

Положим $\eta_n=I\{\xi_n=1\}+2I\{\xi_n\neq 1\}$. Докажите, что η_n — тоже марковская цепь и найдите ее матрицу переходов.

- 2. Цепь Маркова $(\xi_n, n \in \mathbb{Z}_+)$ имеет начальное состояние $\xi_0 = 0$ и переходные вероятности $\mathsf{P}(\xi_{n+1} = k+1 | \xi_n = k) = p, \, \mathsf{P}(\xi_{n+1} = k | \xi_n = k) = 1-p, \, k, n \in \mathbb{N}, \, p \in [0,1].$ Найдите распределение ξ_n . Докажите, что последовательность $\tau_0 = 0, \, \tau_k = \min\{n: \, \xi_n = k\}$ также является цепью Маркова и найдите ее переходные вероятности.
- 3. Цепь Маркова $(\xi_n, n \in \mathbb{Z}_+)$ имеет начальное состояние $\xi_0 = 0$ и переходные вероятности $\mathsf{P}(\xi_{n+1} = k+1 | \xi_n = k) = a^{-k}, \, \mathsf{P}(\xi_{n+1} = k | \xi_n = k) = 1-a^{-k}, \, k,n \in \mathbb{N}, \, a > 1.$ Найдите $\mathsf{E} a^{\xi_n}$ и $\mathsf{D} a^{\xi_n}$.
- 4. Приведите пример такой однородной марковской цепи с дискретным временем, что
 - а) у нее есть стационарное распределение, но нет предельного;
 - б) у нее есть ровно одно стационарное распределение, но нет предельного;
 - в) у нее нет стационарного распределения, но есть пределы переходных вероятностей при $n \to \infty$.
- 5. Пусть $(S_n, n \in \mathbb{Z}_+)$ простейшее случайное блуждание на прямой с вероятностью шага вправо $p \in (0,1)$. Рассматривая S_n как однородную марковскую цепь, найдите
 - а) неразложимые классов этой цепи;
 - б) все циклические подклассы;
 - в) все существенные состояния;
 - г) периоды состояний;
 - д) все возвратные состояния.
- 6. Докажите, что если i и j сообщающиеся состояния однородной марковской цепи и состояние i возвратно, то состояние j тоже возвратно.

- 7. Пусть $(X_n, n \in \mathbb{Z}_+)$ ветвящийся процесс Гальтона—Ватсона, имеющий пуассоновское Pois(1) распределение в качестве закона размножения частиц. Рассматривая X_n как однородную марковскую цепь, найдите
 - а) неразложимые классов этой цепи;
 - б) все циклические подклассы;
 - в) все существенные состояния;
 - г) периоды состояний;
 - д) все возвратные состояния.

7. Интегрирование и дифференцирование в L^2

- 1. Являются ли пуассоновский процесс $(N_t, t \ge 0)$ и винеровский процесс $(W_t, t \ge 0)$ дифференцируемыми а) по вероятности, б) в среднем квадратичном?
- 2. Пусть $(\xi_n, n \in \mathbb{N})$ гауссовские случайные векторы размерности m. Докажите, что если $\xi_n \xrightarrow{L^2} \xi$, то ξ тоже гауссовский вектор.
- 3. Пусть $(W_t, t \geqslant 0)$ винеровский процесс. Найдите распределение случайной величины $X_t = \int_0^t W_s ds$. Докажите, что процесс $(X_t, t \geqslant 0)$ является гауссовским. Найдите его ковариационную функцию.
- 4. Задан случайный процесс $X_t = \int\limits_0^t e^{-W_s} ds$, где W_s винеровский процесс. Найдите математическое ожидание и ковариационную функцию процесса X_t .
- 5. Пусть $(W_t, t \geqslant 0)$ винеровский процесс. Вычислите для t > 0 предел в L^2 при $n \to \infty$ у выражения

$$\sum_{i=1}^{n} W_{t(i-1)/n} \left(W_{ti/n} - W_{t(i-1)/n} \right).$$

8. Стационарные процессы

- 1. Пусть $N = \{N(t), t \ge 0\}$ пуассоновский процесс интенсивности λ , а случайная величина η не зависит от N, причем $\mathsf{P}(\eta = 1) = \mathsf{P}(\eta = -1) = 1/2$. Является ли процесс $X_t = \eta(-1)^{N_t}$ стационарным, и в каком смысле?
- 2. Пусть f периодическая функция на \mathbb{R} с периодом T > 0. Случайная величина ξ равномерно распределена на [0,T]. Случайный вектор (ζ,η) не зависит от ξ . Докажите, что процесс $X_t = \zeta \cdot f(\eta t + \xi)$ стационарен в узком смысле.

- 3. Пусть $W_t^{(1)}$ и $W_t^{(2)}$ независимые винеровские процессы. Для любого $t \in \mathbb{R}$ положим $X_t = W_t^{(1)} I\{t \ge 0\} + W_{-t}^{(2)} I\{t < 0\}$. Докажите, что процесс $Y_t = \frac{1}{h} \left(X_t X_{t-h} \right)$ является стационарным в широком смысле. Найдите его ковариационную функцию и спектральную плотность.
- 4. Пусть $(X_t, t \in \mathbb{R})$ гауссовский процесс с нулевой функцией среднего и ковариационной функцией $r(s,t) = a e^{-b|s-t|}, a,b > 0$. Докажите, что такой процесс существует и найдите его спектральную плотность.

9. Спектральное представление

1. Пусть Λ — множество, \mathcal{A} — алгебра его подмножеств, а μ — мера на \mathcal{A} . Пусть отображение $Z:\mathcal{A}\to L^2(\Omega,\mathcal{F},\mathsf{P})$ удовлетворяет равенству

$$\mathsf{E} Z(B) Z(C) = \mu(B \cap C)$$
 для любых $B, C \in \mathcal{A}$.

Докажите, что Z есть ортогональная мера на \mathcal{A} .

2. Пусть $\lambda_1, \ldots, \lambda_k$ — числа из отрезка $[-\pi, \pi]$, а Φ_1, \ldots, Φ_k — центрированные попарно некоррелированные случайные величины. Докажите, что процесс $(X_n, n \in \mathbb{Z})$, где

$$X_n = \sum_{j=1}^k e^{i\lambda_j n} \Phi_j,$$

является стационарным в широком смысле и найдите его спектральное представление.

3. Пусть $\{\varepsilon_n, n \in \mathbb{Z}\}$ — белый шум. Положим

$$X_n = \frac{1}{2} \varepsilon_{n-1} + \frac{1}{4} \varepsilon_{n-2}, \ n \in \mathbb{Z}.$$

Вычислите спектральную плотность процесса X_n .

4. Пусть $\{X_n, n \in \mathbb{Z}\}$ — стационарная в широком смысле последовательность со средним a и ковариационной функцией R(n). Докажите, что

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{L^2} a$$

тогда и только тогда, когда

$$\frac{1}{n}\sum_{k=1}^{n}R(k)\longrightarrow 0.$$

5. Пусть $P(x) = a_0 + a_1 x + \ldots + a_n x^n$ — многочлен, а $P\left(\frac{d}{dt}\right)$ — соответствующий оператор дифференцирования в L^2 . Пусть $(\xi_t, t \in \mathbb{R})$ — стационарный в широком смысле процесс с известным спектральным представлением. Стационарный в широком смысле процесс $(X_t, t \in \mathbb{R})$ имеет спектральное представление и, кроме того, удовлетворяет уравнению

$$P\left(\frac{d}{dt}\right)X_t = \xi_t.$$

Найдите спектральное представление для X_t . При каких условиях на многочлен P решение уравнения единственно?

- 6. Стационарный процесс $(Y_t, t \in \mathbb{R})$ удовлетворяет равенству $dY_t/dt = X_t$, где стационарный процесс $(X_t, t \in \mathbb{R})$ имеет спектральную плотность $f(\lambda) = \lambda^2 I\{|\lambda| < 1\}$. Найдите $cov(Y_1, Y_0)$.
- 7. Случайный процесс $(X_t, t \in \mathbb{R})$ является центрированным и стационарным в широком смысле. Его спектральная плотность равна $f(\lambda) = |\lambda| I_{[-2,2]}(\lambda)$. Используя спектральное представление, найдите спектральную плотность процесса Y_t , удовлетворяющего уравнению $\frac{d^2}{dt^2}Y_t + 5Y_t = X_t$. Вычислите DY_1 .
- 8. Пусть $(X_t, t \in \mathbb{R})$ стационарный в широком смысле процесс, а

$$X_t = m + \int\limits_{\mathbb{R}} e^{it\lambda} Z(d\lambda),$$

— его спектральное представление. Докажите, что

$$(L^2) \lim_{b-a \to +\infty} \frac{1}{b-a} \left(\int_a^b X_t dt \right) = m + Z(\{0\}).$$

10. Начала стохастического исчисления

1. Пусть $(X_t, t \ge 0)$ — предсказуемый процесс, непрерывный в с/к на отрезке [a,b]. Докажите, что тогда интеграл Ито

$$\int_{0}^{b} X_t dW_t := \int_{0}^{+\infty} I\{a < t \le b\} X_t dW_t$$

может быть получен как предел в с/к сумм $\sum_{k=1}^n X_{t_k}(W_{t_{k+1}}-W_{t_k})$ при стремлении к нулю разбиения $T=\{t_0=a< t_1<\ldots< t_n=b\}$ отрезка [a,b].

- 2. Пусть τ момент остановки относительно естественной фильтрации винеровского процесса $(W_t, t \ge 0)$, причем $\mathsf{E} \tau < +\infty$. Докажите, что
 - а) $\int_0^{+\infty} I\{t \leq \tau\} dW_t = W_{\tau}$, если τ принимает лишь конечное число значений;
 - б) $\int_0^{+\infty} I\{t \leq \tau\} dW_t = W_{\tau}$, если τ произвольный;
 - в) $\mathsf{E}W_{ au}^2 = \mathsf{E} au$.

- 3. Решите стохастические дифференциальные уравнения:
 - a)

$$dX_t = X_t dW_t, \ X_0 = 1.$$

б)

$$dX_t = \frac{1}{2}X_t dt + X_t dW_t, \ X_0 = 1.$$

4. Пусть $X_t = (X_t^1, X_t^2)$ — двумерный процесс, задающийся стохастическим дифференциальным уравнением

$$dX_t = -\frac{1}{2}X_t dt + \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} X_t dW_t,$$

где $(W_t, t \ge 0)$ – одномерный винеровский процесс.

- а) Докажите, что $(X_t^1)^2 + (X_t^2)^2 = const$ п.н.
- б) Решите уравнение в предположении, что $X_0^1=1,\,X_0^2=0.$