

Asymptotic Analysis

The Gist

Design and Analysis of Algorithms I

Motivation

Importance: Vocabulary for the design and analysis of algorithms (e.g. "big-Oh" notation).

- "Sweet spot" for high-level reasoning about algorithms.
- Coarse enough to suppress architecture/language/compilerdependent details.
- Sharp enough to make useful comparisons between different algorithms, especially on large inputs (e.g. sorting or integer multiplication).

Asymptotic Analysis

```
High-level idea: Suppress constant factors and lower-order terms too system-dependent irrelevant for large inputs
```

Example: Equate $6n \log_2 n + 6$ with just $n \log n$.

```
Terminology: Running time is O(n \log n)

["big-Oh" of n \log n]

where n = \text{input size (e.g. length of input array)}.
```

Example: One Loop

Problem: Does array A contain the integer t? Given A (array of length n) and t (an integer).

Algorithm 1

- 1: **for** i = 1 to n **do**
- 2: if A[i] == t then
- Return TRUE 3.
- 4: Return FALSE

- A) O(1) C) O(n)
- B) $O(\log n)$ D) $O(n^2)$

Example: Two Loops

Given A, B (arrays of length n) and t (an integer). [Does A or B contain t?

Algorithm 2

- 1: **for** i = 1 to n **do**
- 2: if A[i] == t then
- Return TRUE
- 4: **for** i = 1 to n **do**
- 5: **if** B[i] == t **then**
- Return TRUE
- 7: Return FALSE

- A) O(1) C) O(n)
- B) $O(\log n)$ D) $O(n^2)$

Example: Two Nested Loops

Problem: Do arrays A, B have a number in common? Given arrays A, B of length n.

Algorithm 3

- 1. for i = 1 to n do
- **for** j = 1 to n **do**
- 3: **if** A[i] == B[j] **then**
- 4. Return TRUE
- 5: Return FALSE

- A) O(1) C) O(n)
- B) $O(\log n)$ D) $O(n^2)$

Example: Two Nested Loops (II)

Problem: Does array A have duplicate entries? Given arrays A of length n.

Algorithm 4

- 1: **for** i = 1 to n **do**
- 2: **for** j = i+1 to n **do**
- 3: **if** A[i] == A[j] **then**
- Return TRUE
- 5: Return FALSE

- A) O(1) C) O(n)
- B) $O(\log n)$ D) $O(n^2)$

Design and Analysis of Algorithms I

Asymptotic Analysis

Big-Oh: Definition

Big-Oh: English Definition

Let T(n) = function on n = 1,2,3,... [usually, the worst-case running time of an algorithm]

Q: When is T(n) = O(f(n))?

A: if eventually (for all sufficiently large n), T(n) is bounded above by a constant multiple of f(n)

Big-Oh: Formal Definition

 $Picture \ T(n) = O(f(n))$

Formal Definition: T(n) = O(f(n)) if and only if there exist constants $c, n_0 > 0$ such that

$$T(n) \leq c \cdot f(n)$$

For all $n \geq n_0$

Warning: c, n_0 cannot depend on n

Design and Analysis of Algorithms I

Asymptotic Analysis

Big-Oh: Basic Examples

<u>Claim</u>: if $T(n) = a_k n^k + ... + a_1 n + a_0$ then

$$T(n) = O(n^k)$$

Proof: Choose $n_0 = 1$ and $c = |a_k| + |a_{k-1}| + ... + |a_1| + |a_0|$

Need to show that $\forall n \geq 1, T(n) \leq c \cdot n^k$

We have, for every $n \geq 1$,

$$T(n) \le |a_k| n^k + \dots + |a_1| n + |a_0|$$

 $\le |a_k| n^k + \dots + |a_1| n^k + |a_0| n^k$
 $= c \cdot n^k$

Tim Roughgarden

<u>Claim</u>: for every $k \ge 1$, n^k is not $O(n^{k-1})$

<u>Proof</u>: by contradiction. Suppose $n^k = O(n^{k-1})$ Then there exist constants c, n_0 such that

$$n^k \le c \cdot n^{k-1} \quad \forall n \ge n_0$$

But then [cancelling n^{k-1} from both sides]:

$$n \leq c \quad \forall n \geq n_0$$

Which is clearly False [contradiction].

Design and Analysis of Algorithms I

Asymptotic Analysis

Big-Oh: Relatives (Omega & Theta)

Omega Notation

<u>Definition</u>: $T(n) = \Omega(f(n))$ If and only if there exist

constants c, n_0 such that

$$T(n) \ge c \cdot f(n) \quad \forall n \ge n_0$$
.

Picture

$$T(n) = \Omega(f(n))$$

Tim Roughgarden

Theta Notation

<u>Definition</u>: $T(n) = \theta(f(n))$ if and only if

$$T(n) = O(f(n))$$
 and $T(n) = \Omega(f(n))$

Equivalent: there exist constants c_1, c_2, n_0 such that

$$c_1 f(n) \le T(n) \le c_2 f(n)$$

$$\forall n \geq n_0$$

Let $T(n)=\frac{1}{2}n^2+3n$. Which of the following statements are true ? (Check all that apply.)

$$T(n) = O(n).$$

$$T(n) = \Theta(n^2).$$
 $[n_0 = 1, c_1 = 1/2, c_2 = 4]$

$$T(n) = O(n^3).$$
 $[n_0 = 1, c = 4]$

Little-Oh Notation

<u>Definition</u>: T(n) = o(f(n)) if and only if for all constants c>0, there exists a constant n_0 such that

$$T(n) \le c \cdot f(n) \quad \forall n \ge n_0$$

Exercise: $\forall k \geq 1, n^{k-1} = o(n^k)$

Where Does Notation Come From?

"On the basis of the issues discussed here, I propose that members of SIGACT, and editors of compter science and mathematics journals, adopt the O, Ω , and Θ notations as defined above, unless a better alternative can be found reasonably soon".

-D. E. Knuth, "Big Omicron and Big Omega and Big Theta", SIGACT News, 1976. Reprinted in "Selected Papers on Analysis of Algorithms."

Design and Analysis of Algorithms I

Asymptotic Analysis

Additional Examples

Claim:
$$2^{n+10} = O(2^n)$$

Proof: need to pick constants c, n_0 such that

$$(*) \quad 2^{n+10} \le c \cdot 2^n \quad n \ge n_0$$

Note:
$$2^{n+10} = 2^{10} \times 2^n = (1024) \times 2^n$$

So if we choose $c = 1024, n_0 = 1$ then (*) holds.

Q.E.D

<u>Claim</u>: $2^{10n} \neq O(2^n)$

<u>Proof</u>: by contradiction. If $2^{10n} = O(2^n)$ then there exist constants $c, n_0 > 0$ such that

$$2^{10n} \le c \cdot 2^n \quad n \ge n_0$$

But then [cancelling 2^n]

$$2^{9n} \le c \quad \forall n \ge n_0$$

Which is certainly false.

Q.E.D

Claim: for every pair of (positive) functions f(n), g(n),

$$max\{f,g\} = \theta(f(n) + g(n))$$

Example #3 (continued)

 $\underline{\mathsf{Proof}}:\ max\{f,g\} = \theta(f(n) + g(n))$

For every n, we have

$$\max\{f(n), g(n)\} \le f(n) + g(n)$$

And

$$2 * max\{f(n), g(n)\} \ge f(n) + g(n)$$

Thus
$$\frac{1}{2}*(f(n)+g(n)) \leq max\{f(n),g(n)\} \leq f(n)+g(n) \ \forall n \geq 1$$

=> $max\{f,g\} = \theta(f(n)+g(n))$ [where $n_0 = 1, c_1 = 1/2, c_2 = 1$]

Tim Roughgarden