《微积分A2》第1周第2课

教师 杨利军

清华大学数学科学系

2020年02月17-21日

IRⁿ 的完备性 (completeness)

回忆实数集 IR 具有完备性, 是指 IR 中的每个 Cauchy 序列均收敛. 实数序列 $\{x_k\}\subset IR$ 称为 Cauchy 序列, 如果这个序列满足条件: 对任意 $\varepsilon>0$, 存在自然数 N, 使得对任意正整数 i, j \geq N, 均有 $|x_i-x_j|<\varepsilon$. 欧氏空间 IR^n 继承了实数集 IR 的完备性.

$\mathsf{Theorem}$

欧氏空间 IRⁿ 是完备的,即 IRⁿ 中的每个 Cauchy 序列均收敛.

定理证明

Proof.

<u>证明</u>: 为简洁计, 只证明情形 n=2 时的结论. 设 $\{(x_k,y_k)\}$ 是 \mathbb{R}^2 中的 Cauchy 点列, 则显然两个数列 $\{x_k\}$ 和 $\{y_k\}$ 都是 \mathbb{R} 中的 Cauchy 序列. 根据 \mathbb{R} 的完备性可知数列 $\{x_k\}$ 和 $\{y_k\}$ 均收敛. 设 $x_k \to x^*$, $y_k \to y^*$, 则 $(x_k,y_k) \to (x^*,y^*)$. 故 Cauchy 序列 $\{(x_k,y_k)\}$ 收敛, 且收敛于点 (x^*,y^*) . 证毕.

有界集和无界集, Bolzano-Weierstrass 定理

Definition

<u>定义:</u> 欧氏空间 \mathbb{R}^n 中的点集 $\Omega \subset \mathbb{R}^n$ 称为有界的 (bounded),

如果存在正数 M>0, 使得 $||z||\leq M$, $\forall z\in\Omega$; 点集 Ω 称为无界的 (unbounded), 如果它不是有界的.

 \underline{i} : 不难证明, 点集 Ω 无界, 当且仅当存在点列 $\{z_k\}\subset\Omega$, 使 得 $\|z_k\|\to+\infty$, 当 $k\to+\infty$.

Theorem (B-W定理)

欧氏空间 IRⁿ 中的每个有界点列均有收敛子列.

定理证明

Proof.

证明: 只证n=2 的情形. 一般情形的证明类似. 设 $\{(x_k,y_k)\}$ 是平面 \mathbb{R}^2 的有界点列, 则数列 $\{x_k\}$ 必有界. 根据实数集 \mathbb{R} 的 B-W 定理, 可知数列 $\{x_k\}$ 含有收敛子列 $x_{k_i} \to x^*$, $j \to +\infty$. 考虑数列 $\{y_k\}$ 的子列 $\{y_{k_i}\}$. 显然它是有界数列. 再次利用 IR的 B-W 定理知, 数列 $\{y_{k_i}\}$ 有收敛子列 $y_{p_i} \rightarrow y^*$, $j \rightarrow +\infty$. 这 里 $\{p_i\} \subset \{k_i\}$. 由此得到平面有界点列 $\{(x_k, y_k)\}$ 的一个收敛 子列 $\{(x_{p_i},y_{p_i})\}$, 且 $(x_{p_i},y_{p_i}) \to (x^*,y^*)$, $j \to +\infty$. 证毕.

闭集套定理

Definition

定义: 欧氏空间 \mathbb{R}^n 中的点集 D 的直径, 常记作 $\operatorname{diam}(D)$, 定义为 $\operatorname{diam}(D) \stackrel{\triangle}{=} \sup\{\|\mathbf{p} - \mathbf{q}\|, \mathbf{p}, \mathbf{q} \in \mathbf{D}\}$. 例如, 平面矩形的直径依定义就是矩形对角线的长度.

Theorem

设 F_k 为 \mathbb{R}^n 的一列闭子集, $k = 1, 2, \cdots$ 若

- (i) diam(F_k) \rightarrow 0, $k \rightarrow +\infty$,
- (ii) $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_k \supseteq F_{k+1} \supseteq \cdots$,

则存在唯一一个点 z^* 属于每个闭集 F_k , 即 $z^* \in F_k$, $\forall k \geq 1$. 换 言之, 无穷交集 $\bigcap_{k=1}^{+\infty} F_k$ 含且仅含一个点.

闭集的一个性质

Lemma

设 $D \subset \mathbb{R}^n$ 为一个子集,则 D 为闭集,当且仅当 D 包含它的每个收敛点列的极限,即若点列 $\{x_k\} \subset D$ 收敛,且 $x_k \to x^*$,则 $x^* \in D$.

证明留作补充习题.

定理证明

Proof.

证: 由于每个 F_{i} 均非空, 故对每个k 可取 $x_{i} \in F_{i}$. 于是得到一 个点列 $\{x_k\}$. 由集合 F_k 的包含关系知, $\{x_k, x_{k+1}, \dots, \} \subset F_k$. 于是对任意两个正整数 p,q > k, $||x_p - x_q|| < diam(F_k) \rightarrow 0$, $k \to +\infty$. 这表明点列 $\{x_k\}$ 是 Cauchy 序列. 根据 \mathbb{R}^n 的完备 性知 $\{x_k\}$ 收敛. 设 $x_k \to x^*$. 根据上述引理 (闭集的性质)可知 $x^* \in F_k$, $\forall k > 1$. 存在性得证. 设还存在 $x^{**} \in F_k$, $\forall k > 1$, 则 $\|x^{**} - x^*\| < \text{diam}(F_k) \to 0. \ \ \text{if} \ \|x^{**} - x^*\| = 0, \ \ \text{if} \ \ x^{**} = x^*.$ 唯一性得证.

多元函数

Definition

定义: 每个映射 $f: D \subset \mathbb{R}^n \to \mathbb{R}$ 均称作一个n 元函数, 其中 D 称为函数 f 的定义域. 通常 D 是开区域或闭区域. 如图为二元函数的示意图.

二元函数例子

Example

设 $f(x,y) \stackrel{\triangle}{=} \frac{\sqrt{x+y+1}}{x-1}$,则 f 为二元函数,其定义域 D 如图, D 可写作 $D = \{(x,y), x+y+1 \geq 0, x \neq 1\}$.

向量值函数

Definition

定义: 每个映射 $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ 均称作一个 n 元 m 维的向量值函数, 其中 D 也称为向量值函数 f 的定义域. 向量值函数通常以分量形式给出, 即 $f = (f_1, \dots, f_m)$, 或写作

$$\left\{ \begin{array}{l} y_1 = f_1(x_1, \cdot \cdot \cdot, x_n), \\ y_2 = f_2(x_1, \cdot \cdot \cdot, x_n), \\ \vdots \\ y_m = f_m(x_1, \cdot \cdot \cdot, x_n), \end{array} \right. \label{eq:spectrum}$$

我们特别关注情形 n = 1, 2 且 m = 1, 2, 3.

例:空间螺线

Example

例: 定义向量值函数如下 $x = \cos t$, $y = \sin t$, z = t, $t \in IR$. 这个向量值函数的象集合 $\{(\cos t, \sin t, t), t \in IR^1\}$ 称为一条空间螺线(helix). 如图.

二元函数的图像, 空间曲面的一种表示

Definition

设 f 为二元函数, 其定义域为 D, 则称集合 $S = \{(x,y,f(x,y)), (x,y) \in D\}$ 为函数 f 图像. 如图.

例一

Example

例一: 设 $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) \stackrel{\triangle}{=} 6 - 3x - 2y$, 即函数 f 为二元 线性函数. 其图像如下.

例二

Example

例二: 二元函数 $g(x,y) = \sqrt{9-x^2-y^2}$ 的图像 (半个球面), $x^2+y^2 < 9$.

例三

Example

<u>例三</u>: 二元函数 $h(x,y) = \frac{\sin x \sin y}{xy}$ 的图像.

二元函数极限

Definition

定义: 设二元函数 z = f(x,y) 在某点 c = (a,b) 的一个去心邻域 $B^{\circ}(c,r)$ 上定义, r > 0. 若存在数 L, 使得对任意正数 $\varepsilon > 0$, 存在 $\delta > 0$ (不妨设 $\delta \le r$), 使得 $|f(x,y) - L| < \varepsilon$, $\forall (x,y) \in$ $B^{\circ}(c,\delta)$, 则称 f 在点 (a,b) 处有极限值 L, 记作 $f(x,y) \to L$, 当 $(x,y) \to (a,b)$, 或 $\lim_{(x,y) \to (a,b)} f(x,y) = L$.

二元函数极限的几何意义

极限例子

例: 考虑函数

$$f(x,y) = \frac{x^2y^2}{x^2 + y^2}$$

在原点(0,0)处是否存在极限. 极限存在时, 求这个极限.

解: 显然函数 f(x,y) 在去心邻域 $\mathbb{R}^2\setminus\{(0,0)\}$ 上定义. 以下由定义来说明极限存在, 且极限为零. 考虑 $|f(x,y)-0|=\frac{x^2y^2}{x^2+y^2}$. 由于 $0\leq x^2y^2\leq \frac{1}{2}(x^4+y^4)$, 故

$$\begin{split} 0 & \leq \frac{x^2y^2}{x^2+y^2} \leq \frac{1}{2}\frac{x^4+y^4}{x^2+y^2} = \frac{1}{2}\bigg[\frac{x^2}{x^2+y^2}x^2 + \frac{y^2}{x^2+y^2}y^2\bigg] \\ & \leq \frac{1}{2}(x^2+y^2) = \frac{1}{2}\|z\|^2. \end{split}$$

例子续

对任意正数 $\varepsilon>0$,要使 $|f(x,y)-0|<\varepsilon$,只需 $\frac{1}{2}\|z\|^2<\varepsilon$,此即 $\|z\|<\sqrt{2\varepsilon}$. 故对任意 $\varepsilon>0$,取 $\delta=\sqrt{2\varepsilon}$,当 $0<\|z\|<\delta$ 时, $|f(x,y)-0|<\varepsilon$. 这就证明了函数 f(x,y) 在原点 (0,0) 处存在极限,且极限值为零,即

$$\lim_{(x,y)\to(0,0)}\frac{x^2y^2}{x^2+y^2}=0.$$

解答完毕.

例二

例二: 极限

$$\lim_{(x,y)\to(0,0)}\frac{x^2-y^2}{x^2+y^2}$$

不存在. 理由如下. 如果上述极限存在, 那么动点 (x,y) 以任何方式 (路径) 趋向原点 (0,0) 时, 得到同一个极限值. 现考虑两个不同的路径, 动点沿着 x 轴和 y 轴趋向原点 (0,0). 当动点 (x,y) 沿着 x 轴 (Py=0) 趋向原点 (0,0) 时,

$$\frac{x^2-y^2}{x^2+y^2} = \frac{x^2}{x^2} = 1 \to 1, \quad (x,0) \to (0,0).$$

例二续

而当动点 (x,y) 沿着 y 轴 (px=0) 趋向原点 (0,0) 时,

$$\frac{x^2-y^2}{x^2+y^2} = \frac{-y^2}{y^2} = -1 \to -1, \quad (0,y) \to (0,0).$$

这说明所考虑的极限不存在.

例三

例三: 判断极限

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2}$$

是否存在. 极限存在时求这个极限值.

解: 由于

$$\left|\frac{3x^2y}{x^2+y^2}-0\right|=3|y|\frac{x^2}{x^2+y^2}\leq 3|y|,$$

故所考虑的极限存在, 且极限值为零. 解答完毕.

思考题: 判断极限 $\lim_{(x,y)\to(0,0)} \frac{y^2}{x}$ 是否存在.

