

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

```
Dijkstras Algorithmus(G, w, s)
```

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Single Source Shortest Path (SSSP)

- Eingabe: Gewichteter Graph G = (V, E) und Startknoten s
- Ausgabe: Für jeden Knoten $u \in V$ seine Distanz zu s sowie einen kürzesten Weg

Heute

Negative Kantengewichte

Single Source Shortest Path (SSSP)

- Eingabe: Gewichteter Graph G = (V, E) und Startknoten s
- Ausgabe: Für jeden Knoten $u \in V$ seine Distanz zu s sowie einen kürzesten Weg

Heute

Negative Kantengewichte

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- $2. \quad Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$

9.

- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
 - $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Dijkstras Algorithmus(G, w, s)

- 1. Initialisiere SSSP
- 2. $Q \leftarrow V[G]$
- 3. while $Q \neq \emptyset$ do
- 4. $u \leftarrow \text{ExtractMin}(Q)$
- 5. **if** color[u] = weiß **then**
- 6. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$
- 7. **for each** $v \in Adj[u]$ **do**
- 8. **if** d[u] + w(u, v) < d[v] **then**
- 9. $d[v] \leftarrow d[u] + w(u, v)$
- 10. DecreaseKey(v, d[v])

Problem: Die Veränderung durch die negative Kante wird nicht mehr durch den Graphen propagiert.

Negative Zyklen

Problem

- Kann Weg mit beliebig kleinen Kosten finden
- Hier z.B. von s nach t

Unser Ansatz

- Betrachte zunächst nur Eingaben ohne negative Zyklen
- Dynamische Programmierung
- Frage: Wie formuliert man das Problem rekursiv?

Lemma 53

Wenn G keine negativen Zyklen hat und t von S aus erreichbar ist, dann gibt es einen kürzesten S-t-Weg in G, in dem kein Knoten doppelt vorkommt.

Beweis

 Annahme: Es gibt keinen kürzesten s-t-Weg in G, in dem kein Knoten doppelt vorkommt.

Lemma 53

Wenn G keine negativen Zyklen hat und t von S aus erreichbar ist, dann gibt es einen kürzesten S-t-Weg in G, in dem kein Knoten doppelt vorkommt.

- Annahme: Es gibt keinen kürzesten s-t-Weg in G, in dem kein Knoten doppelt vorkommt.
- Dann kommt in jedem kürzesten s-t-Weg ein Knoten zweimal vor.

Lemma 53

Wenn G keine negativen Zyklen hat und t von S aus erreichbar ist, dann gibt es einen kürzesten S-t-Weg in G, in dem kein Knoten doppelt vorkommt.

- Annahme: Es gibt keinen kürzesten s-t-Weg in G, in dem kein Knoten doppelt vorkommt.
- Dann kommt in jedem kürzesten s-t-Weg ein Knoten zweimal vor.
- Betrachte den kürzesten s-t-Weg P mit der geringsten Kantenanzahl.

Lemma 53

Wenn G keine negativen Zyklen hat und t von S aus erreichbar ist, dann gibt es einen kürzesten S-t-Weg in G, in dem kein Knoten doppelt vorkommt.

- Annahme: Es gibt keinen kürzesten s-t-Weg in G, in dem kein Knoten doppelt vorkommt.
- Dann kommt in jedem kürzesten s-t-Weg ein Knoten zweimal vor.
- Betrachte den kürzesten s-t-Weg P mit der geringsten Kantenanzahl.
- In P kommt mindestens ein Knoten zweimal vor. Sei dies Knoten v.

Lemma 53

Wenn G keine negativen Zyklen hat und t von S aus erreichbar ist, dann gibt es einen kürzesten S-t-Weg in G, in dem kein Knoten doppelt vorkommt.

- Annahme: Es gibt keinen kürzesten s-t-Weg in G, in dem kein Knoten doppelt vorkommt.
- Dann kommt in jedem kürzesten s-t-Weg ein Knoten zweimal vor.
- Betrachte den kürzesten s-t-Weg P mit der geringsten Kantenanzahl.
- In P kommt mindestens ein Knoten zweimal vor. Sei dies Knoten v.
- Wir können den Teil von v nach v entfernen, da jeder Kreis nichtnegative Länge hat und erhalten einen kürzesten s-t-Weg mit weniger Kanten.

Lemma 53

Wenn G keine negativen Zyklen hat und t von S aus erreichbar ist, dann gibt es einen kürzesten S-t-Weg in G, in dem kein Knoten doppelt vorkommt.

- Annahme: Es gibt keinen kürzesten s-t-Weg in G, in dem kein Knoten doppelt vorkommt.
- Dann kommt in jedem kürzesten s-t-Weg ein Knoten zweimal vor.
- Betrachte den kürzesten s-t-Weg P mit der geringsten Kantenanzahl.
- In P kommt mindestens ein Knoten zweimal vor. Sei dies Knoten v.
- Wir können den Teil von v nach v entfernen, da jeder Kreis nichtnegative Länge hat und erhalten einen kürzesten s-t-Weg mit weniger Kanten.
- Widerspruch zur Wahl von P!

Lemma 53

Wenn G keine negativen Zyklen hat und t von S aus erreichbar ist, dann gibt es einen kürzesten S-t-Weg in G, in dem kein Knoten doppelt vorkommt.

- Annahme: Es gibt keinen kürzesten s-t-Weg in G, in dem kein Knoten doppelt vorkommt.
- Dann kommt in jedem kürzesten s-t-Weg ein Knoten zweimal vor.
- Betrachte den kürzesten s-t-Weg P mit der geringsten Kantenanzahl.
- In P kommt mindestens ein Knoten zweimal vor. Sei dies Knoten v.
- Wir können den Teil von v nach v entfernen, da jeder Kreis nichtnegative Länge hat und erhalten einen kürzesten s-t-Weg mit weniger Kanten.
- Widerspruch zur Wahl von P!

Eine rekursive Problemformulierung

- Opt(i, v) sei Länge eines optimalen s-v-Wegs, der maximal i Kanten benutzt
- Sei P ein optimaler s-v-Weg mit max. i Kanten

$$\mathrm{Opt}(i,v) = \begin{cases} \mathrm{Opt}(i-1,v) & \text{, falls } P \text{ weniger als } i \text{ Kanten benutzt} \\ \mathrm{Opt}(i-1,u) + w(u,v) & \text{, falls } P \text{ genau } i \text{ Kanten benutzt und} \\ (u,v) \text{ die letzte Kante bezeichnet} \end{cases}$$

Die Rekursion

• Für i > 0 gilt

$$\operatorname{Opt}(i, v) = \min \left\{ \operatorname{Opt}(i - 1, v), \min_{(u, v) \in E} \left(\operatorname{Opt}(i - 1, u) + w(u, v) \right) \right\}$$

• Für i = 0 gilt

$$\operatorname{Opt}(0, s) = 0 \text{ und } \operatorname{Opt}(0, v) = \infty \text{ für } v \neq s$$

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	С	d
0					
1					
2					
3					
4					

- 1. **for each** $v \in V$ **do** $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	С	d
0	8	8	8	8	8
1					
2					
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- $2. \ M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	С	d
0	0	8	8	8	8
1					
2					
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- $2. \ M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	С	d
0	0	∞	∞	8	8
1					
2					
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. **for each** $v \in V$ **do**
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return *M*

	S	a	b	С	d
0	0	8	8	8	8
~					
2					
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	C	d
0	0	8	8	8	8
1		2			
2					
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return *M*

	S	a	b	С	d
0	0	∞	8	8	8
1		2			
2					
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	C	d
0	0	∞	8	8	8
1		2	8		
2					
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. **for each** $v \in V$ **do**
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return *M*

	S	a	b	C	d
0	0	8	8	8	8
1		2	8		
2					
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

		S	a	b	C	d
()	0	∞	∞	8	8
1			2	∞	5	
2	2					
3	3					
4	1					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return *M*

	S	a	b	С	d
0	0	8	8	8	8
1		2	8	5	
2					
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	С	d
0	0	8	8	8	8
1		2	8	5	8
2					
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. **for each** $v \in V$ **do**
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return *M*

		S	a	b	С	d
	0	0	8	8	8	8
	1		2	8	5	8
Ī	2					
Ī	3					
	4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- $2. \ M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	C	d
0	0	∞	∞	8	8
1	0	2	∞	5	8
2					
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- $2. \ M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return *M*

	S	a	b	С	d
0	0	8	8	8	8
1	0	2	8	5	8
2					
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	С	d
0	0	∞	8	8	8
1	0	2	∞	5	8
2		1			
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. **for each** $v \in V$ **do**
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	С	d
0	0	8	8	8	8
1	0	2	∞	5	8
2		1	6		
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	С	d
0	0	8	8	8	8
1	0	2	∞	5	8
2		1	6	5	
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	C	d
0	0	∞	8	8	8
1	0	2	∞	5	8
2		1	6	5	7
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	C	d
0	0	8	∞	∞	8
1	0	2	∞	5	8
2	0	1	6	5	7
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	C	d
0	0	8	∞	∞	8
1	0	2	∞	5	8
2	0	1	6	5	7
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- $2. \ M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return *M*

	S	a	b	C	d
0	0	8	8	8	8
1	0	2	8	5	8
2	0	1	6	5	7
3					
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	С	d
0	0	∞	∞	8	8
1	0	2	∞	5	∞
2	0	1	6	5	7
3		1			
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	С	d
0	0	8	8	8	8
1	0	2	8	5	8
2	0	1	6	5	7
3		1	5		
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. **for each** $v \in V$ **do**
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	С	d
0	0	8	8	8	8
1	0	2	8	5	8
2	0	1	6	5	7
3		1	5	5	
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. | for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	C	d
0	0	8	∞	8	8
1	0	2	∞	5	8
2	0	1	6	5	7
3		1	5	5	7
4					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. **for each** $v \in V$ **do**
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

		S	a	b	C	d
0)	0	∞	8	8	8
1		0	2	∞	5	8
2		0	1	6	5	7
3		0	1	5	5	7
4	•					

- 1. for each $v \in V$ do $M[0][v] = \infty$
- $2. \ M[0][s] \leftarrow 0$
- 3. for $i \leftarrow 1$ to |V| 1 do
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	С	d
0	0	8	∞	8	8
1	0	2	∞	5	8
2	0	1	6	5	7
3	0	1	5	5	7
4	0	1	5	5	7

- 1. for each $v \in V$ do $M[0][v] = \infty$
- $2. \ M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

	S	a	b	С	d
0	0	8	8	8	8
1	0	2	8	5	8
2	0	1	6	5	7
3	0	1	5	5	7
4	0	1	5	5	7

- 1. for each $v \in V$ do $M[0][v] = \infty$
- $2. \ M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- for each $v \in V$ do
- Berechne M[i, v] nach Rekursionsgleichung
- 6. return *M*

	S	a	b	C	d
0	0	8	8	8	8
1	0	2	8	5	8
2	0	1	6	5	7
3	0	1	5	5	7
4	0	1	5	5	7

Bellman-Ford(G, s)

1. for each
$$v \in V$$
 do $M[0][v] = \infty$

2.
$$M[0][s] \leftarrow 0$$

3. **for**
$$i \leftarrow 1$$
 to $|V| - 1$ **do**

- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

Laufzeit: $\mathbf{O}(|V|^2)$ für Init. von M $\mathbf{O}(|V|)$ $\mathbf{O}(1)$ $\mathbf{O}(|V|)$ $\mathbf{O}(|V|^2)$ $\mathbf{O}(|V|^2|E|)$ $\mathbf{O}(1)$

 $\mathbf{O}(|V|^2(|V|+|E|))$

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

Beweis

Korrektheit per Induktion. Sei Opt(i, v) die Länge eines kürzesten Weges mit i Kanten von s nach v. Wir zeigen: M(i, v) = Opt(i, v).

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- Korrektheit per Induktion. Sei Opt(i, v) die Länge eines kürzesten Weges mit i Kanten von s nach v. Wir zeigen: M(i, v) = Opt(i, v).
- (I.A.) M(0, v) = Opt(0, v), da M(0, s) = 0 = Opt(0, s) und $M(0, v) = \infty = \text{Opt}(0, v)$ für $v \neq s$.

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- Korrektheit per Induktion. Sei Opt(i, v) die Länge eines kürzesten Weges mit i Kanten von s nach v. Wir zeigen: M(i, v) = Opt(i, v).
- (I.A.) M(0, v) = Opt(0, v), da M(0, s) = 0 = Opt(0, s) und $M(0, v) = \infty = \text{Opt}(0, v)$ für $v \neq s$.
- (I.V.) Die Aussage gilt für i-1.

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- Korrektheit per Induktion. Sei Opt(i, v) die Länge eines kürzesten Weges mit i Kanten von s nach v. Wir zeigen: M(i, v) = Opt(i, v).
- (I.A.) M(0, v) = Opt(0, v), da M(0, s) = 0 = Opt(0, s) und $M(0, v) = \infty = \text{Opt}(0, v)$ für $v \neq s$.
- (I.V.) Die Aussage gilt für i-1.

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

Beweis

• (I.S.) Wir zeigen $\mathrm{Opt}(i,v) \leq M(i,v)$ und $\mathrm{Opt}(i,v) \geq M(i,v)$. Damit folgt die Gleichheit.

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- (I.S.) Wir zeigen $\mathrm{Opt}(i,v) \leq M(i,v)$ und $\mathrm{Opt}(i,v) \geq M(i,v)$. Damit folgt die Gleichheit.
- (1) $Opt(i, v) \le M(i, v)$: Nach (I.V.) enthält M(i 1, v) die Länge eines kürzesten Weges mit maximal i 1 Kanten von s nach v.

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- (I.S.) Wir zeigen $\mathrm{Opt}(i,v) \leq M(i,v)$ und $\mathrm{Opt}(i,v) \geq M(i,v)$. Damit folgt die Gleichheit.
- (1) $Opt(i, v) \le M(i, v)$: Nach (I.V.) enthält M(i-1, v) die Länge eines kürzesten Weges mit maximal i-1 Kanten von s nach v. M(i-1, u) + w(u, v) gibt nach (I.V.) die Länge eines Weges mit maximal i-1 Kanten von s nach u gefolgt von der Kante (u, v) an.

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- (I.S.) Wir zeigen $\mathrm{Opt}(i,v) \leq M(i,v)$ und $\mathrm{Opt}(i,v) \geq M(i,v)$. Damit folgt die Gleichheit.
- (1) $Opt(i, v) \le M(i, v)$: Nach (I.V.) enthält M(i 1, v) die Länge eines kürzesten Weges mit maximal i 1 Kanten von s nach v. M(i 1, u) + w(u, v) gibt nach (I.V.) die Länge eines Weges mit maximal i 1 Kanten von s nach u gefolgt von der Kante u0, u1 an. Damit handelt es sich um die Länge eines Weges mit maximal u1 Kanten von u2 nach u3.

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- (I.S.) Wir zeigen $\mathrm{Opt}(i,v) \leq M(i,v)$ und $\mathrm{Opt}(i,v) \geq M(i,v)$. Damit folgt die Gleichheit.
- (1) $\operatorname{Opt}(i,v) \leq M(i,v)$: Nach (I.V.) enthält M(i-1,v) die Länge eines kürzesten Weges mit maximal i-1 Kanten von s nach v. M(i-1,u)+w(u,v) gibt nach (I.V.) die Länge eines Weges mit maximal i-1 Kanten von s nach u gefolgt von der Kante (u,v) an. Damit handelt es sich um die Länge eines Weges mit maximal i Kanten von s nach v. Da M(i,v) als die Länge eines kürzesten Weges aus einer Menge von Wegen mit maximal i Kanten gewählt wird, gilt (1).

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- (I.S.) Wir zeigen $\mathrm{Opt}(i,v) \leq M(i,v)$ und $\mathrm{Opt}(i,v) \geq M(i,v)$. Damit folgt die Gleichheit.
- (1) $Opt(i, v) \le M(i, v)$: Nach (I.V.) enthält M(i-1, v) die Länge eines kürzesten Weges mit maximal i-1 Kanten von s nach v. M(i-1, u) + w(u, v) gibt nach (I.V.) die Länge eines Weges mit maximal i-1 Kanten von s nach u gefolgt von der Kante (u, v) an. Damit handelt es sich um die Länge eines Weges mit maximal i Kanten von s nach v. Da M(i, v) als die Länge eines kürzesten Weges aus einer Menge von Wegen mit maximal i Kanten gewählt wird, gilt (1).

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

Beweis

• (2) $Opt(i, v) \ge M(i, v)$:

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- (2) $Opt(i, v) \ge M(i, v)$:
- Betrachte den kürzesten Weg mit i Kanten von s nach v. Hat dieser weniger als i Kanten, so folgt nach (I.V.) $M(i,v) \le M(i-1,v) = \text{Opt}(i-1,v) = \text{Opt}(i,v)$.

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- (2) $Opt(i, v) \ge M(i, v)$:
- Betrachte den kürzesten Weg mit i Kanten von s nach v. Hat dieser weniger als i Kanten, so folgt nach (I.V.) $M(i,v) \le M(i-1,v) = \mathrm{Opt}(i-1,v) = \mathrm{Opt}(i,v)$.
- Hat der Weg genau i Kanten, so betrachte die letzte Kante des Weges, sagen wir (u, v). Wegen $M(i, v) \le M(i 1, u) + w(u, v)$ gilt (2) auch in diesem Fall.

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- (2) $Opt(i, v) \ge M(i, v)$:
- Betrachte den kürzesten Weg mit i Kanten von s nach v. Hat dieser weniger als i Kanten, so folgt nach (I.V.) $M(i,v) \le M(i-1,v) = \mathrm{Opt}(i-1,v) = \mathrm{Opt}(i,v)$.
- Hat der Weg genau i Kanten, so betrachte die letzte Kante des Weges, sagen wir (u, v). Wegen $M(i, v) \le M(i 1, u) + w(u, v)$ gilt (2) auch in diesem Fall.
- Es folgt: Opt(i, v) = M(i, v).

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- (2) $\operatorname{Opt}(i, v) \ge M(i, v)$:
- Betrachte den kürzesten Weg mit i Kanten von s nach v. Hat dieser weniger als i Kanten, so folgt nach (I.V.) $M(i,v) \le M(i-1,v) = \mathrm{Opt}(i-1,v) = \mathrm{Opt}(i,v)$.
- Hat der Weg genau i Kanten, so betrachte die letzte Kante des Weges, sagen wir (u, v). Wegen $M(i, v) \le M(i 1, u) + w(u, v)$ gilt (2) auch in diesem Fall.
- Es folgt: Opt(i, v) = M(i, v).

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

Beweis

■ Da es nach Lemma 53 in einem Graph ohne negativen Zyklen immer einen kürzesten Weg mit maximal n-1 Kanten gibt, ist 0pt(n-1,v) die Länge eines kürzesten Weges von s nach v.

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- Da es nach Lemma 53 in einem Graph ohne negativen Zyklen immer einen kürzesten Weg mit maximal n-1 Kanten gibt, ist $\mathrm{Opt}(n-1,v)$ die Länge eines kürzesten Weges von s nach v.
- Wie bereits gezeigt, ist die Laufzeit $\mathbf{O}(|V|^2(|V|+|E|))$. Der Speicherbedarf für das $|V| \times |V|$ Feld ist $\mathbf{O}(|V|^2)$.

Satz 54

Sei G ein Graph ohne negative Zyklen. Algorithmus Bellman-Ford berechnet für jeden Knoten v aus G die Kosten eines kürzesten s-v-Pfads. Laufzeit der ersten Version des Algorithmus ist $\mathbf{O}(|V|^2|E|)$ und Speicherbedarf ist $\mathbf{O}(|V|^2)$.

- Da es nach Lemma 53 in einem Graph ohne negativen Zyklen immer einen kürzesten Weg mit maximal n-1 Kanten gibt, ist $\mathrm{Opt}(n-1,v)$ die Länge eines kürzesten Weges von s nach v.
- Wie bereits gezeigt, ist die Laufzeit O(|V|²(|V| + |E|)). Der Speicherbedarf für das |V| × |V| Feld ist O(|V|²).

Lemma 55

M(n, v) = M(n - 1, v) gilt für alle Knoten $v \in V$ eines Graphen G = (V, E) genau dann, wenn G keinen negativen Zyklus enthält.

Beweis

■ "⇒" Gilt M(n, v) = M(n - 1, v) so folgt wegen der Rekursion auch M(m, v) = M(n, v) für jedes m > n. Außerdem gilt nach dem Beweis von Satz 54: M(m, v) = Opt(m, v).

Lemma 55

M(n, v) = M(n - 1, v) gilt für alle Knoten $v \in V$ eines Graphen G = (V, E) genaudann, wenn G keinen negativen Zyklus enthält.

- "⇒" Gilt M(n,v) = M(n-1,v) so folgt wegen der Rekursion auch M(m,v) = M(n,v) für jedes m > n. Außerdem gilt nach dem Beweis von Satz 54: M(m,v) = Opt(m,v).
- Annahme: Es gibt negativen Zyklus C und M(m, v) = M(n, v) für alle m > n. Sei c die Anzahl Kanten in C. Dann ist sicher, dass für jeden Knoten v aus C gilt: Opt(n, v) > Opt(n + c, v).

Lemma 55

M(n, v) = M(n - 1, v) gilt für alle Knoten $v \in V$ eines Graphen G = (V, E) genaudann, wenn G keinen negativen Zyklus enthält.

- "⇒" Gilt M(n,v) = M(n-1,v) so folgt wegen der Rekursion auch M(m,v) = M(n,v) für jedes m > n. Außerdem gilt nach dem Beweis von Satz 54: M(m,v) = Opt(m,v).
- Annahme: Es gibt negativen Zyklus C und M(m,v) = M(n,v) für alle m > n. Sei c die Anzahl Kanten in C. Dann ist sicher, dass für jeden Knoten v aus C gilt: $\operatorname{Opt}(n,v) > \operatorname{Opt}(n+c,v)$. Dies ist richtig, da man zunächst einmal um C laufen kann und dann den Weg mit maximal n Kanten und Kosten $\operatorname{Opt}(n,v)$ nimmt.

Lemma 55

M(n, v) = M(n - 1, v) gilt für alle Knoten $v \in V$ eines Graphen G = (V, E) genaudann, wenn G keinen negativen Zyklus enthält.

- "⇒" Gilt M(n, v) = M(n 1, v) so folgt wegen der Rekursion auch M(m, v) = M(n, v) für jedes m > n. Außerdem gilt nach dem Beweis von Satz 54: M(m, v) = Opt(m, v).
- Annahme: Es gibt negativen Zyklus \mathcal{C} und M(m,v)=M(n,v) für alle m>n. Sei c die Anzahl Kanten in \mathcal{C} . Dann ist sicher, dass für jeden Knoten v aus \mathcal{C} gilt: $\mathrm{Opt}(n,v)>\mathrm{Opt}(n+c,v)$. Dies ist richtig, da man zunächst einmal um \mathcal{C} laufen kann und dann den Weg mit maximal n Kanten und Kosten $\mathrm{Opt}(n,v)$ nimmt.
- Widerspruch, denn M(n+c,v) = Opt(n+c,v) < Opt(n,v) = M(n,v).

Lemma 55

M(n, v) = M(n - 1, v) gilt für alle Knoten $v \in V$ eines Graphen G = (V, E) genaudann, wenn G keinen negativen Zyklus enthält.

- "⇒" Gilt M(n,v) = M(n-1,v) so folgt wegen der Rekursion auch M(m,v) = M(n,v) für jedes m > n. Außerdem gilt nach dem Beweis von Satz 54: M(m,v) = Opt(m,v).
- Annahme: Es gibt negativen Zyklus \mathcal{C} und M(m,v)=M(n,v) für alle m>n. Sei c die Anzahl Kanten in \mathcal{C} . Dann ist sicher, dass für jeden Knoten v aus \mathcal{C} gilt: $\mathrm{Opt}(n,v)>\mathrm{Opt}(n+c,v)$. Dies ist richtig, da man zunächst einmal um \mathcal{C} laufen kann und dann den Weg mit maximal n Kanten und Kosten $\mathrm{Opt}(n,v)$ nimmt.
- Widerspruch, denn M(n+c,v) = Opt(n+c,v) < Opt(n,v) = M(n,v).

Lemma 55

M(n, v) = M(n - 1, v) gilt für alle Knoten $v \in V$ eines Graphen G = (V, E) genau dann, wenn G keinen negativen Zyklus enthält.

Beweis

• " \Leftarrow " Hat G keinen negativen Zyklus so gibt es nach Lemma 53 für jeden Knoten v einen kürzesten s-v-Weg mit maximal n-1 Kanten.

Lemma 55

M(n, v) = M(n - 1, v) gilt für alle Knoten $v \in V$ eines Graphen G = (V, E) genaudann, wenn G keinen negativen Zyklus enthält.

Beweis

• " \Leftarrow " Hat G keinen negativen Zyklus so gibt es nach Lemma 53 für jeden Knoten v einen kürzesten s-v-Weg mit maximal n-1 Kanten. Daher enthält $\operatorname{Opt}(n-1,v)$ bereits die Längen der kürzesten Wege und somit dieselben Werte wie $\operatorname{Opt}(n,v)$.

Lemma 55

M(n, v) = M(n - 1, v) gilt für alle Knoten $v \in V$ eines Graphen G = (V, E) genaudann, wenn G keinen negativen Zyklus enthält.

Beweis

■ " \Leftarrow " Hat G keinen negativen Zyklus so gibt es nach Lemma 53 für jeden Knoten v einen kürzesten s-v-Weg mit maximal n-1 Kanten. Daher enthält $\operatorname{Opt}(n-1,v)$ bereits die Längen der kürzesten Wege und somit dieselben Werte wie $\operatorname{Opt}(n,v)$. Es folgt nach dem Beweis von Satz 54: $M(n,v) = \operatorname{Opt}(n,v) = \operatorname{Opt}(n-1,v) = M(n-1,v)$.

Lemma 55

M(n, v) = M(n - 1, v) gilt für alle Knoten $v \in V$ eines Graphen G = (V, E) genaudann, wenn G keinen negativen Zyklus enthält.

Beweis

■ " \Leftarrow " Hat G keinen negativen Zyklus so gibt es nach Lemma 53 für jeden Knoten v einen kürzesten s-v-Weg mit maximal n-1 Kanten. Daher enthält $\operatorname{Opt}(n-1,v)$ bereits die Längen der kürzesten Wege und somit dieselben Werte wie $\operatorname{Opt}(n,v)$. Es folgt nach dem Beweis von Satz 54: $M(n,v) = \operatorname{Opt}(n,v) = \operatorname{Opt}(n-1,v) = M(n-1,v)$.

Verbesserung der Laufzeit

- Vor Beginn des Algorithmus berechne in O(|V| + |E|) Zeit eine "umgedrehte Adjazenzliste"
- Jeder Knoten v hat eine Liste In[v] der eingehenden Kanten

Bellman-Ford(G, s)

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. Berechne M[i, v] nach Rekursionsgleichung
- 6. return M

```
Bellman-Ford(G, s)
```

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. for $i \leftarrow 1$ to |V| 1 do
- 4. for each $v \in V$ do
- 5. $\min \leftarrow M[i-1][v]$
- 6. **for each** $(u, v) \in \text{In}[v]$ **do**
- 7. **if** $M[i-1][u] + w(u,v) < \min$ **then** $\min \leftarrow M[i-1][u] + w(u,v)$
- 8. $M[i][v] \leftarrow \min$
- 9. return *M*

Bellman-Ford(G, s)

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[0][s] \leftarrow 0$
- 3. for $i \leftarrow 1$ to |V| 1 do
- 4. for each $v \in V$ do
- 5. min $\leftarrow M[i-1][v]$
- 6. **for each** $(u, v) \in \text{In}[v]$ **do**
- 7. **if** $M[i-1][u] + w(u,v) < \min$ **then** $\min \leftarrow M[i-1][u] + w(u,v)$
- 8. $M[i][v] \leftarrow \min$
- 9. return M

Laufzeit $\mathbf{O}(|V|^2 + |V| \cdot |E|)$, da in Zeile 6 und 7 jede Kante einmal durchlaufen wird.

Verbesserung des Speicherbedarfs

- Wir speichern nur einen Wert M[v] ab
- Dieser speichert die Länge des kürzesten Wegs nach v, den wir bisher gefunden haben
- Wir führen jetzt nur das Update $M[v] = \min(M[v], \min(M[u] + w(u, v)))$ durch

Beobachtung 56

- (1) M[v] ist immer die Länge irgendeines Wegs von s nach v und
- (2) nach i Runden ist M[v] höchstens so groß wie die Länge des kürzesten Wegs mit i Kanten.

Speicherbedarf: O(|V|)

Bellman-Ford(G, s)

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. $\min \leftarrow M[v]$
- 6. **for each** $(u, v) \in \text{In}[v]$ **do**
- 7. **if** $M[u] + w(u, v) < \min$ **then** $\min \leftarrow M[u] + w(u, v)$
- 8. $M[v] \leftarrow \min$
- 9. return *M*

Speicherbedarf: O(|V|)

Bellman-Ford(G, s)

- 1. for each $v \in V$ do $M[0][v] = \infty$
- 2. $M[s] \leftarrow 0$
- 3. **for** $i \leftarrow 1$ **to** |V| 1 **do**
- 4. for each $v \in V$ do
- 5. **for each** $(u, v) \in \text{In}[v]$ **do**
- 6. if M[u] + w(u, v) < M[v] then $M[v] \leftarrow M[u] + w(u, v)$
- 7. return M

Satz 57

Sei G ein Graph ohne negative Zyklen. Die verbesserte Implementierung des Algorithmus Bellman-Ford berechnet für jeden Knoten v die Kosten eines kürzesten s-v-Pfads. Laufzeit der verbesserten Implementierung des Algorithmus ist $\mathbf{O}(|V|^2 + |V| \cdot |E|)$ und Speicherbedarf ist $\mathbf{O}(|V|)$.

- Die Korrektheit folgt aus Satz 54 zusammen mit Beobachtung 56.
- Die Laufzeit haben wir im Wesentlichen analysiert.
- Hinweis: Wenn der Graph mind. |V| Kanten hat, so ist die Laufzeit $\mathbf{O}(|V| \cdot |E|)$.

Negative Zyklen

- Wir können negative Zyklen daran erkennen, dass sich für mindestens einen Knoten v der Wert M[v] noch nach n Iterationen ändert
- Wir können uns die Wege über ein Feld π merken, ähnlich wie bei der Breitensuche

Zusammenfassung

- Bellman-Ford für allgemeine Kantengewichte; Laufzeit $O(|V|^2 + |V| \cdot |E|)$
- Negative Zyklen können erkannt werden