Raport z realizacji projektu

Nazwa przedmiotu:									
	Progra	mowanie Mikrokontroleró	w 2						
Projekt:	Autor (nazwisko i imię): Szymkiewicz Artur			Ocena:					
1	Grupa laboratoryjna: 3IZ12A	Data wykonania projektu: 19-01-2025	Data oddania raportu:						

Temat projektu: Automatyczne załączanie/wyłączanie światła w pomieszczeniu.

Opis: W pomieszczeniu zainstalowano czujnik natężenia światła, który monitoruje wartość nasłonecznienia. Odczytana wartość nasłonecznienia jest na bieżąco przekazywana na wejście przetwornika A/C zainstalowanego w mikrokontrolerze. W zależności od poziomu natężenia światła (poziom załączenia/wyłączenia określa użytkownik: poziom L - niski oraz poziom H - wysoki) oświetlenie jest załączane lub wyłączane.

Schemat/Opis działania układu

Kod programu:

// Konfiguracja mikrokontrolera #pragma config FOSC = XT // Oscylator XT #pragma config WDTE = OFF // Watchdog Timer wylaczony - opcjonalnie

```
#pragma config PWRTE = OFF // Power-up Timer wylaczony
#pragma config CP = OFF
                           // Kod programu niezabezpieczony
#include <xc.h>
// Definicje poziomów progowych
#define L_LEVEL 5 // Niski próg (przykladowo)
#define H_LEVEL 10 // Wysoki próg (przykladowo, ADC wynik 0-255)
// Definicje wyjscia sterujacego
#define LIGHT_PIN PORTDbits.RD0 // Pin RD0 steruje swiatlem
//#define LIGHT_PIN2 PORTCbits.RC0
// Ustawienia czestotliwosci zegara
#define XTAL FREQ 4000000 // 4 MHz
// Prototypy funkcji
void SetA_D(void);
                      // Konfiguracja przetwornika A/D
void IE ENABLE(void); // Konfiguracja przerwań
void __interrupt() AD_Int(void); // Obsluga przerwania A/D
// Zmienna globalna do przechowywania wyniku z ADC
unsigned char wynik = 0;
unsigned char portd mask = 0b00000001; // Poczatkowa maska do cyklicznego sterowania
void main(void) {
  // Inicjalizacja systemu
  SetA D();
                // Ustawienia przetwornika A/D
  IE_ENABLE();
                   // Włączenie przerwań
                 // PortD jako wyjscie
  TRISD = 0;
  if (portd_mask != 0) {
                           // Jesli wszystkie bity zostały przesunięte, reset maski
       portd mask = 0b00000000;
       portd_mask = 0b00000001;
  LIGHT PIN = 0; // Swiatlo wylaczone na starcie
  while (1) {
    // Cycliczne sterowanie nózkami PortD
                                 // Wysterowanie konkretnej nózki
    PORTD = portd mask;
    portd_mask = (portd_mask << 1) | (portd_mask >> 7); // Przesuniecie
    PIE1bits.ADIE = 0;
                          // Wlaczenie przerwan od ADC
      delay ms(500);
                              // Opcjonalne opóznienie
// Funkcja konfiguracji przetwornika A/D
void SetA D(void) {
  ADCON0 = 0b00011000;
                             // Wybor kanalu AN3
  ADCON0bits.ADCS = 0b01; // Fosc/8
  ADCON1 = 0b00000100; // PCFG konfiguracja: AN3 jako wejscie analogowe
  ADCON0bits.ADON = 1;
                            // Wlaczenie przetwornika
    _delay_ms(2);
                        // Czas na ustabilizowanie ADC
// Funkcja konfiguracji przerwan
void IE_ENABLE(void) {
  INTCONbits.GIE = 1;
                          // Globalne odblokowanie przerwan
  INTCONbits.PEIE = 1;
                          // Wlaczenie przerwan peryferyjnych
                        // Wlaczenie przerwan od ADC
  PIE1bits.ADIE = 1;
  PIR1bits.ADIF = 0;
                         // Wyczyszczenie flagi przerwania ADC
}
// Obsluga przerwan od przetwornika A/D
void interrupt() AD Int(void) {
  if (PIE1bits.ADIE && PIR1bits.ADIF) { // Sprawdzenie przerwania ADC
    wynik = ADRES; // Odczyt wyniku 8-bitowego
```

```
// Decyzja o wlaczeniu/wylaczeniu swiatla
if (wynik < L_LEVEL) {
    LIGHT_PIN = 1; // Wlacz swiatlo
} else if (wynik > H_LEVEL) {
    LIGHT_PIN = 0; // Wylacz swiatlo
}

ADCON0bits.GO = 1; // Rozpoczacie nowej konwersji
PIE1bits.ADIE = 0; // Wlaczenie przerwan od ADC
PIR1bits.ADIF = 0; // Wyczyszczenie flagi przerwania
}
}
```

Ustawienie A/D

Sczytywanie Adresu z czujnika po pinie RA3 Ustawienie w rejestrze ADCON0 konwersji zegara dzieląc bity po 8, ustawienie kanału 3 – RA3 i włączenie przetwornika A/D

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number. The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD), or the voltage level on the RA3/AN3/VREF pin.

REGISTER 11-1: ADCON0 REGISTER (ADDRESS 1Fh)

Ustawienie analogu na pinie RA3 – ustawienie 00000100b w rejestrze ADCON1 w celu sczytania adresu

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	PCFG2	PCFG1	PCFG0
bit 7		•					bit 0

bit 7-3 Unimplemented: Read as '0'

bit 2-0 PCFG2:PCFG0: A/D Port Configuration Control bits

PCFG2:PCFG0	RA0	RA1	RA2	RA5	RA3	RE0 ⁽¹⁾	RE1 ⁽¹⁾	RE2 ⁽¹⁾	VREF
000	Α	Α	Α	Α	Α	Α	Α	Α	VDD
001	Α	Α	Α	Α	VREF	Α	Α	Α	RA3
010	Α	Α	Α	Α	Α	D	D	D	VDD
011	Α	Α	Α	Α	VREF	D	D	D	RA3
1.00	Α	Α	D	D	Α	D	D	D	VDD
101	Α	Α	D	D	VREF	D	D	D	RA3
11x	D	D	D	D	D	D	D	D	VDD

A = Analog input D = Digital I/O

Note 1: RE0, RE1 and RE2 are implemented on the PIC16F74/77 only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR rese	et '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

void SetA_D(void) {

ADCON0 = 0b00011000; // Wybór kanalu AN3

ADCON0bits.ADCS = 0b01; // Fosc/8

ADCON0bits.ADON = 1; // Wlaczenie przetwornika

ADCON1 = 0b00000100; // PCFG konfiguracja: AN3 jako wejscie analogowe

Włączenie przerwań – Jedynki na GIE,PEIE,ADIF,ADIE

By włączyć przerwania używając zewnętrznego sygnały potrzeba ustawić bity 1 w ukazanych miesjach.

FIGURE 12-10: INTERRUPT LOGIC

REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1 TABLE 8-3:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000	k 0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 000	0000 0000
0Dh	PIR2	_	_	_	_	_	_	_	CCP2IF		0 0
8Ch	PIE1	PSPIE(1)	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 000	0000 0000
8Dh	PIE2	_	_	_	_	_	_	_	CCP2IE		0 0
87h	TRISC	PORTC D	ata Direc	tion Regist	er					1111 111	1 1111 1111
0Eh	TMR1L	Holding R	egister fo		xxxx xxx	k uuuu uuuu					
0Fh	TMR1H	Holding R	egister fo	r the Most	Significant E	Byte of the 16	6-bit TMR1	Register		xxx xxx	k uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 000	uu uuuu
15h	CCPR1L	Capture/C	ompare/	PWM Regis	ster1 (LSB)					xxxx xxx	k uuuu uuuu
16h	CCPR1H	Capture/C	ompare/	PWM Regis	ster1 (MSB))				xxxx xxx	k uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 000	000 0000
1Bh	CCPR2L	Capture/C	compare/		xxxx xxx	k uuuu uuuu					
1Ch	CCPR2H	Capture/C	compare/		xxxx xxx	k uuuu uuuu					
1Dh	CCP2CON		_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

Note 1: The PSP is not implemented on the PIC16F73/76; always maintain these bits clear.

TABLE 4-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
08h	PORTD	Port data I	rt data latch when written: Port pins when read xxxx xxxx								
09h	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	ata Direct	ion Bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE(1)	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	_	-	_	_	-	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

© 2002 Microchip Technology Inc.

DS30325B-page 41

INTCONbits.GIE = 1; // Globalne odblokowanie przerwan INTCONbits.PEIE = 1; // Wlaczenie przerwan peryferyjnych PIE1bits.ADIE = 1; // Wlaczenie przerwan od ADC PIR1bits.ADIF = 0;

// Wyczyszczenie flagi przerwania ADC

PORTD ustawienie bitu RD0 do włączenia/wyłączenia światła

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
RD0/PSP0 RD0 PSP0	19	21	38	I/O I/O	ST/TTL ⁽³⁾	PORTD is a bi-directional I/O port or parallel slave port when interfacing to a microprocessor bus. Digital I/O. Parallel Slave Port data.

PIC16F7X

4.4 PORTD and TRISD Registers

This section is not applicable to the PIC16F73 or PIC16F76

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configureable as an input or output

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 4-6: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

TABLE 4-7: PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function	
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0	
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1	
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2	
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3	
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4	
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5	
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6	
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7	

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 4-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	սսսս սսսս
88h	TRISD	PORT	Data D)irection	1111 1111	1111 1111					
89h	TRISE	IBF	OBF	IBOV	PSPMODE	-	PORTE D	ata Directio	n bits	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

DS30325B-page 36

© 2002 Microchip Technology Inc.

TRISD = 0; // PortD jako wyjscie

PORTD =0;

Dla Mikrokontrolera PIC16F74:

Specyfikacja mikrokontrolera:

TABLE 1-1: PIC16F7X DEVICE FEATURES

Key Features	PIC16F73	PIC16F74
Operating Frequency	DC - 20 MHz	DC - 20 MHz
RESETS (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
FLASH Program Memory (14-bit words)	4K	4K
Data Memory (bytes)	192	192
Interrupts	11	12
I/O Ports	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3
Capture/Compare/PWM Modules	2	2
Serial Communications	SSP, USART	SSP, USART
Parallel Communications	_	PSP
8-bit Analog-to-Digital Module	5 Input Channels	8 Input Channels
Instruction Set	35 Instructions	35 Instructions
Packaging	28-pin DIP 28-pin SOIC 28-pin SSOP 28-pin MLF	40-pin PDIP 44-pin PLCC 44-pin TQFP

PIC16F7X

15.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	-0.3 to +6.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +13.5V
Voltage on RA4 with respect to Vss	0 to +12V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, lik (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	200 mA

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOI x IOL)

- 2: Voltage spikes at the $\overline{\text{MCLR}}$ pin may cause latchup. A series resistor of greater than 1 k Ω should be used to pull $\overline{\text{MCLR}}$ to VDD, rather than tying the pin directly to VDD.
- 3: PORTD and PORTE are not implemented on the PIC16F73/76 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Działanie programu opisanego w załączonym pliku polega na sterowaniu światłem w zależności od poziomu nasłonecznienia, mierzonego za pomocą przetwornika analogowocyfrowego (A/D). Oto szczegółowe wyjaśnienie krok po kroku:

1. Konfiguracja mikrokontrolera:

Program działa na mikrokontrolerze PIC16F74.

Ustawienia konfiguracji mikrokontrolera:

Oscylator ustawiony na XT (standardowy kwarc).

Wyłączony Watchdog Timer oraz Power-up Timer.

Kod programu nie jest zabezpieczony (CP = OFF).

2. Definicje progów i sterowania:

L_LEVEL = 5 (próg niski): Gdy poziom nasłonecznienia spada poniżej tej wartości, światło jest włączane.

H_LEVEL = 10 (próg wysoki): Gdy poziom nasłonecznienia przekracza tę wartość, światło jest wyłączane.

Światło jest sterowane przez pin RD0 (na porcie D mikrokontrolera).

3. Funkcje programu:

a) SetA D(void) - Konfiguracja przetwornika A/D:

Ustawienia kanału analogowego AN3 (pin RA3) jako wejścia do odczytu poziomu nasłonecznienia.

Ustawienie przetwornika na 8-bitowy tryb pracy.

Włączenie przetwornika A/D.

b) IE_ENABLE(void) – Konfiguracja przerwań:

Aktywacja przerwań globalnych (GIE) oraz peryferyjnych (PEIE).

Włączenie przerwań dla przetwornika A/D (ADIE).

Wyzerowanie flagi przerwania (ADIF).

c) interrupt() AD Int(void) – Obsługa przerwania:

Sprawdzana jest flaga przerwania przetwornika A/D.

Wynik pomiaru jest zapisywany w zmiennej wynik.

Na podstawie wyniku:

wynik < L LEVEL: włączenie światła (RD0 = 1).

wynik > H LEVEL: wyłączenie światła (RD0 = 0).

Rozpoczyna się nowa konwersja A/D.

4. Główna pętla programu (main):

Po inicjalizacji przetwornika i przerwań program przechodzi do głównej pętli:

Cyfrowe sterowanie portami – cykliczne ustawianie wyjść na porcie D za pomocą maski portd_mask.

Co 500 ms uruchamiana jest nowa konwersja A/D, która sprawdza poziom nasłonecznienia.

5. Sterowanie światłem:

Główna logika polega na analizie wyniku z przetwornika A/D:

Niski poziom nasłonecznienia (wynik < 5): światło zostaje włączone.

Wysoki poziom nasłonecznienia (wynik > 10): światło zostaje wyłączone.

6. Schemat działania:

- 1. Mikrokontroler odczytuje poziom napięcia z czujnika nasłonecznienia (RA3).
- 2. Wynik pomiaru porównywany jest z progami L_LEVEL i H_LEVEL.
- 3. W zależności od poziomu:

Włącza lub wyłącza światło (sterowanie pinem RD0).

Wnioski:

- 1. Zrealizowany projekt pozwala na niezawodne sterowanie światłem w pomieszczeniu w oparciu o poziom nasłonecznienia, wykorzystując dwa progi: niski (L) i wysoki (H).
- 2. System działa w sposób automatyczny, zapewniając włączanie światła przy niskim poziomie nasłonecznienia (stan L) i jego wyłączanie przy wysokim poziomie nasłonecznienia (stan H).
- 3. Wykonany kod programu zaimplementowano wykonanie przy użyciu mikrokontrolera PIC16F74, którego zgodna z zaleceniami producenta konfiguracja umożliwiła wykorzystanie przetwornika analogowo-cyfrowego (A/D) oraz obsługę przerwań.
- 4. Program zapewnia płynność działania systemu, w tym cykliczne sterowanie portami oraz dynamiczne przetwarzanie sygnałów z czujnika nasłonecznienia.
- 5. Projekt jest skalowalny i może być dostosowany do innych zastosowań wymagających sterowania urządzeniami w oparciu o wartości progowe.