Architettura degli Elaboratori

Lezione 12 – Logica sequenziale asincrona

Giuseppe Cota

Dipartimento di Scienze Matematiche Fisiche e Informatiche Università degli Studi di Parma

Reti combinatorie e sequenziali

Due categorie fondamentali di reti logiche:

- Reti combinatorie: l'uscita della rete è esclusivamente funzione dell'ingresso, ossia l'output dipende solo dall'input.
 - Formalmente: O = f(I)
- Reti sequenziali: l'uscita della rete è funzione, oltre che dell'ingresso (input), anche dallo stato.
 - Se indichiamo con $S = \{y_1, ..., y_l\}$ lo stato corrente della rete allora l'output O = f(I, S)
 - Oltre alla funzione di uscita è necessario aggiungere la funzione di stato $S_f = g(I, S)$ che lega lo stato futuro allo stato presente e all'input.
 - Le reti sequenziali hanno una memoria (limitata) della sequenza di ingresso.

Reti sequenziali

- Come avviene la "memorizzazione":
 - Attraverso la retroazione (feedback)
 - Sfruttando il tempo di commutazione (ritardo) delle porte logiche.

Esempio

In questa rete sequenziale una volta che viene dato ad *I* il valore 1 esso viene *memorizzato* per sempre.

Latch NOR

- La rete sequenziale in basso è chiamata latch di NOR oppure flipflop <u>asincrono</u> SR.
- Ingressi

- S: Set

- R: Reset

 S=R=1 porta a delle condizioni di instabilità

Output e stato del latch NOR

- lo stato futuro Q_{i+1} (che in questo caso è anche un output) può essere espresso in funzione degli ingressi S ed R, e dello stato presente Q_i .
- Dalla tabella di verità e la mappa di Karnaugh possiamo dedurre l'equazione di stato del flip-flop SR:

S	R	Q _i	Q_{i+1}	$\overline{\mathbb{Q}_{i+1}}$
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	-	-	-

Mappa di Karnaugh dello stato Q_{i+1}

$$Q_{i+1} = S + \overline{R}Q_i$$
 con il vincolo $SR = 0$

Domande?

Riferimenti principali

Appendice A di Calcolatori elettronici. Architettura e
 Organizzazione, Giacomo Bucci. McGraw-Hill Education, 2017.
 http://highered.mheducation.com/sites/dl/free/8838675465/1098336/
 AppA.pdf (download gratuito)