Numerical Analysis Test 2:

Name:
1. [Orthogonal Projections] (a) Suppose that you have a subset of orthonormal vectors $\mathcal{O} = \{o_1, o_2, o_3, o_k\}$. How would you construct the projection of a vector f which lives in the same space onto \mathcal{O} , or $Proj_{\mathcal{O}}f$?
(b) Suppose you have a bunch of vectors $V = \{v_1, v_2, v_3,, v_k\}$. How would you construct an orthonormal set of vectors which span the same space? What is this process called?

. [Least ange Inte	Squares] rpolation.	(a) Explair	n the least s	squares me	thod and	the basic	difference	between	Least	Squares	and
o) Derive	the Norma	d Equations	s for solving	g the least s	squares pr	oblem.					
	ange Inte	ange Interpolation.	• [Least Squares] (a) Explain the least squares method and the basic ange Interpolation. • Derive the Normal Equations for solving the least squares problem.	ange Interpolation.	ange Interpolation.	ange Interpolation.					

3. [Numerical Integration] Assume that you are given $\{f(x_k)\}$ where	where $\{x_k\} = a + hk$, with $k = 0N$ and
$h=(b-a)/N$. The goal is to estimate $\int_a^b f(x)dx$.	
(a) State the Left and Right Riemann Integration formulas.	

(b) Show how to combine the left and right Riemann Integration formulas to get the Trapezoid rule.

(c) Show that the local error formula for the Trapezoid rule is $O(h^3)$.

4. [Simpson's Rule] (a) Explain the method behind Simpson's Rule and state the rule for a single 3 point segment.
(b) Show that Simpson's Rule is exact for third order (cubic) polynomials.
(c) Given that Simpson's Rule is exact for cubics, derive an local error estimate which is $O(h^5)$.

(c) Use Taylor's Formula to Derive the Symmetric Difference and it's error formula, which is $O(h^2)$.

6. [Second Difference] (a) Use Taylor's formula to derive a formula for the 2nd derivative $f''(x_k)$.
(b) Use Taylor's Formula to show the Second Difference formula is exact for cubics, and derive its error formula