

Projekt: "Autonomes Modellfahrzeug" an der Fakultät Elektrotechnik

Inhalt

1. Präsentation der Herstellungskosten und der Energiebilanz

- Allgemein
- Herstellungskosten
- Leistungsbilanz

2. Präsentation des Einparkkonzeptes

- Lückenerkennung
- Einparken

3. Präsentation des Spurführungskonzeptes mit Ausweichmanövern

- Hardware der Bildbearbeitung
- Filterung zur Linienerkennung
- Umrechnung zur Linienerkennung
- Fahrspurerkennung
- Hinderniserkennung
- Ausweichkonzept
- Kreuzungskonzept

Allgemein

Team

- an der Fakultät Elektrotechnik
- seit 2008 durchgängig beim Carolo-Cup vertreten
- Gegliedert in die Bereiche Modellbau / Konstruktion, Elektronik, Programmierung und Marketing

Fahrzeugkonzept

- Basiert auf einem modifiziertem Chassis der Firma X-RAY
- Modularisierter Aufbau (Hauptplatine, Kameraplatine)
- Komplette Eigenentwicklung aller Module (Schaltung, Layout, Bestückung)
- Basis jedes Moduls ist ein DSP (Texas Instruments)
- Kommunikation der Module über CAN

Module

Team S.A.D.I. Students' Autonomous Drive Initiative

<u>Herstellungskosten</u>

•	Modell	lbau

_	Chassis	300€
_	Fernsteuerung	50€
_	Motor und Servo	60€
_	Karosserie	25€
_	Lipo-Akkus	40€

Konstruktion

Leiterplattenträger,Sensorenträger,40€

Elektronik

_	Hauptplatine	255€
_	Kameraplatine	200€
_	Displayboard	35 €
_	5 x Ultraschallsensor	150€
_	Drehwertgeberplatine	15€

Leistungsbilanz

Elektronik:

Verbraucher	Leistungsaufnahme (Mittelwerte)
Hauptplatine	1,2 W
Kameraplatine	1,0 W
Gesamt	2,2 W

Aktoren:

Verbraucher	Leistungsaufnahme (Mittelwerte)
Motor	14 W
Lenk-Servo	3,5 W
Gesamt	17,5 W

- Möglichkeiten für die Lückenerkennung
 - Infrarot Sensoren
 - · Geringe Stromaufnahme
 - · Beeinflussung der Messung durch andere IR Quellen, bspw. Sonnenlicht
 - Laser
 - Berücksichtigung von direkter, indirekter und Streustrahlung → Gefährdung der Gesundheit
 - Bildverarbeitung
 - Lückeninformation in Stereo-Bild enthalten → hoher Rechenaufwand
 - Ultraschallsensoren
 - · Geringe Stromaufnahme
 - Keine Beeinflussung der Messung durch Streuechos auf Grund programmierbarer Verstärkung und Messdauer

- Ermittlung der Parklückengröße Sensorperformance
 - Ultraschallsensor
 - Verstärkung und Messdauer über I2C parametrierbar
 - Messbereich, 40mm bis 6m
 - · Auflösung, 10mm
 - Stromaufnahme, ca. 15mA während einer Messung
 - ca. 3mA im Standby

- Drehwertgeber
 - Hall IC
 - Schrittweite, 1024 Impulse pro Umdrehung der Motorwelle
 - Auflösung Gesamtsystem ca. 0,01mm/Impuls
 - Genauigkeit ca. 2,5mm

- Ermittlung der Parklückengröße Ablauf
 - Tiefeninformation des seitlichen
 Ultraschallsensors alle 10ms
 - Vergleich Messwert mit Schwellwert
 - Schwellwertüberschreitung → Lückenanfang
 → Speicherung des Zählerstandes
 - Schwellwertunterschreitung → Lückenende
 → Differenzbildung → Parkvorgang ja/nein
 - Keine Schwellwertunterschreitung innerhalb einer Strecke > der Mindestlücke

- Ermittlung der Parklückengröße Ablauf
 - PD Spurregler
 - Abtastzeit 16ms
 - Empirische Parameterermittlung
 - Lageregler
 - Kaskadierte Regelung bestehend aus Lageregelkreis und Drehzahlregelkreis.
 - Abtastzeit 1ms
 - Parameterentwicklung durch Systemidentifikation

Hardware der Bildbearbeitung

Kamera-Modul

- Eigenentwicklung bestehend aus
 - Sensorplatine: Kodak KAC-9818
 - Zwischenspeicher: Averlogic AL440B
 - Steuerplatine: TI F28335
- Bildrate: 40 Bilder/s
- Weitwinkelobjektiv (120°)
- Prozessorauslastung: 60 80%
- Bildformat: 320 x 110 Pixel

Filterungen zur Linienerkennung

- 16 Bildzeilen werden auf Kanten untersucht
- Kantenerkennung unter Verwendung eines Schwellwert-Filters
- Filterung der Linien durch selbst entwickelten Linienfilter
- Kriterien für Linienfilter:
 - Breite der Linien (rechter/linker Punkt)
 - Linie besteht immer aus 2 Punkten.

16 Bildzeilen vom Minimalen Bildausschnitt aus 320 x 110 Pixeln

Schwellwertbild zur Kantenerkennung

Bild mach Linienfilter

Umrechnungen zur Linienerkennung

Grundgedanke:

- Bildumrechnung von 3D Streckenbild in 2D Vogelperspektive
- Umrechnung durch Entzerrung von x und y-Ebene.

Bild in 2D Vogelperspektive vor Filterung

Bild in 2D Vogelperspektive nach Filterung

Fahrspurerkennung

- Durchsucht das Bild nach allen Arten von Linien
- Suche nach Mittellinie durch Erkennung der Charakteristik.
 - Länge der Linie
 - Abstand der Linie
 - Abweichung in X-Richtung
- Bestimmung der rechten und linken Linie in Abhängigkeit der Mittelline oder der letzten Positionen von rechter und linker Linie
- Die Punkt-Ermittlung für die Steuerung des Fahrzeugs erfolgt durch Auslesen der X-Positionen aus den erkannten Linien.

Hinderniserkennung

- Erkennung von Hindernissen mit Hilfe von 3 Ultraschallsensoren an der Fahrzeugfront
- Hindernis je nach Fahrbahnverlauf (Rechtskurve / Linkskurve / Gerade) durch entsprechendem US – Sensor detektiert
- Ausweichvorgang verwendet bei Vorbeifahrt zusätzlich Ultraschallsensor an rechter Seite

Ausweichkonzept

- Vollkommen dynamisches Ausweichen durch Spurwechsel
 - Prinzip: Entfernung zur rechten Linie vergrößern und zur linken Linie verkleinern
 - Objekterfassung erfolgt durch rechten Ultraschallsensor
 - Erneuter Wechsel nach Objektende und Zeitablauf

Kreuzungskonzept

- Erkennung mit Hilfe einer dyn. vertikalen Linie zwischen den Fahrbahnmarkierungen
- Erkennung vorfahrtsberechtigter Fahrzeuge mit Hilfe von 3 Ultraschallsensoren an der Fahrzeugfront
- Erhöhung der Empfindlichkeit der US- Sensoren bei Halt an Stopplinie

