CS-226 Course Project

2020-Spring Semester

Department of Computer Science Indian Institute of Technology, Bombay - Powai

Date : 21st May, 2021

Team:

Akash Reddy G 190050038

D Chandrasekhar 190050031

M Satwik 190050107

K Vishwanth 190050131

FSM States

States:-

S1:
$$IR_{II-q} \longrightarrow RF_A1$$
 $IR_{8-6} \longrightarrow RF_A2$
 $t_2 \cdot \omega r$
 $RF_D1 \longrightarrow t_1$
 $RF_D2 \longrightarrow t_2$
 $t_3 \cdot \omega v$

$$52$$
:
 $t_1 \rightarrow ALUQ$ $t_3.Wr$
 $t_2 \rightarrow ALUb$
 $ALUC \rightarrow t_3$

$$52^{1}$$
:
 $t_{1} \rightarrow ALUA$ $t_{3} \cdot WY$
 $t_{2} \rightarrow ALUB$ $ALU_{0} \cdot nand$
 $ALUC \rightarrow t_{3}$

$$\frac{S_3}{t_3}$$
 $\rightarrow RF_D_3$ RF_wr $IR_{5-3} \rightarrow RF_A_3$

$$SE:$$
 $Imm9e16(IR_{8-0}) \rightarrow RF_D3$
 $RF.WY$
 $IR_{11-9} \rightarrow RF_A3$

Se:
$$t_2 \rightarrow \text{mem_addr}$$

$$\text{mem_D} \rightarrow t_3$$

$$t_3 \cdot \text{wr}$$

S12:

$$t_2 \longrightarrow RF-D_3$$
 $t_3 \longrightarrow RF-A_3$
 $t_3 \longrightarrow ALUa$
 $t_4 \longrightarrow ALUb$
 $t_4 \longrightarrow ALUb$

519:

S13:

$$t_1 \rightarrow \text{mem-ddol}r$$
 $t_2 \cdot \omega r$ $t_3 \rightarrow \text{ALUa}$ $t_3 \cdot \omega r$ $t_1 \rightarrow \text{ALUb}$ $t_2 \cdot \omega r$ $t_3 \rightarrow \text{RF-A1}$ $t_3 \rightarrow \text{RF-A1}$

S14:

$$t1 \longrightarrow ALUA$$
 $+1 \longrightarrow ALUb$
 $ALUC \longrightarrow t1$
 $t1 \longrightarrow mem-addr$
 $t2 \longrightarrow mem-in$

Sis:

S16:

$$\begin{array}{c} IR \longrightarrow RF-A3 \\ PC \longrightarrow RF-D3 \\ IR \longrightarrow 6 \longrightarrow RF-A2 \\ RF-D2 \longrightarrow t_2 \end{array}$$

S17:

S18:

Instruction-State Transition

Instructions: State transitions:

50 —
$$S_1 - S_2 - S_3 - S_4 - S_0$$

2) ADC:-
$$S_0 \longrightarrow S_1 \xrightarrow{C=1} S_2 \longrightarrow S_3 \longrightarrow S_{\times} --- S_0$$

$$S_0 - S_1 - S_{11}$$

$$S_{12} - S_{11}$$

$$S_{13} - S_{11}$$

$$S_{14} - S_{11}$$

$$S_{15} - S_{11}$$

$$S_{17} - S_{11}$$

12)
$$SA:-$$

$$So -S_1 - S_1 \xrightarrow{23+"000"} S_1 \xrightarrow{3="000"} S_2 --- S_0$$

FSM Diagram

Total 21 States

Sa, S1-519,52

State diagram:

These states have been implemented via one-not encoding.

RTL circuit

