Particle spectrograph

Wave operator and propagator

Source constraints						
SO(3) irreps	Fund	Fundamental fields	elds			Multiplicities
$\tau_{0}^{#2} == 0$	$\partial_{eta}\partial_{lpha}$	$\theta_{\beta}\partial_{\alpha}t^{\alpha\beta}=0$			• •	1
$\tau_{1}^{\#2\alpha} + 2ik\sigma_{1}^{\#2\alpha} = 0 \partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	$\partial_{\chi}\partial_{\beta}\hat{c}$	$\alpha_{I^{\beta \chi}} == \partial_{\chi} \partial^{\beta}$	$^{\zeta}\partial_{\beta}\tau^{\alpha\beta} + 2\partial$	$^{(2)}$		3
$\tau_{1}^{\#_{1}\alpha} == 0$	$\partial_\chi\partial_\beta$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	$^{\zeta}\partial_{eta} \iota^{eta lpha}$,	8
$\tau_{1}^{\#1}{}^{\alpha\beta} + i k \sigma_{1}^{\#2}{}^{\alpha\beta} == 0 \left[\partial_{\chi} \partial^{\alpha} \tau^{\beta\chi} + \partial_{\chi} \partial^{\beta} \tau^{\chi\alpha} + \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + \partial_{\chi} \partial^{\gamma} \partial^{\gamma} \tau^{\alpha\beta} + \partial_{\chi} \partial^{\gamma} \tau^$	$0 \frac{\partial_{\chi}\partial^{\alpha} \iota}{\partial \chi}$	$-\beta X + \partial_{\chi} \partial^{\beta} \tau^{\chi}$	$\alpha + \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta}$	+	(1)	3
		$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{eta\chi}$	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	$\langle \sigma^{\alpha\beta\chi} ==$		
	$\partial_\chi \hat{c}$	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	$+\chi_{\chi\chi}$			
		$_{\chi}\partial^{\chi}\tau^{\beta\alpha}+2$	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\sigma}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$			
Total constraints/gauge generators:	ange ge	enerators:				10
$\sigma_{1}^{\#1}{}_{lphaeta}$ $\sigma_{1}^{\#}$	$\sigma_{1}^{\#2}$	$\tau_{1}^{\#1}_{\alpha\beta}$	$\sigma_{1^{^{-}}\alpha}^{\#1}$	$\sigma_{1^-}^{\#2}{}_{\alpha}$	$\tau_{1^{-}}^{\#1}{}_{\alpha}$	${\mathfrak r}_{1}^{\#2}{}_{\alpha}$
0.50	<u>7√</u> 7	1 5 1 1 C				

ı							
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4ik}{\alpha_0+2\alpha_0k^2}$	$-\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$	0	$-\frac{4k^2}{\alpha_0(1+2k^2)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$	$-\frac{2}{\alpha_0 (1+2 k^2)^2}$	0	$\frac{2 i \sqrt{2} k}{\alpha_0 (1 + 2 k^2)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$	0	$\frac{4ik}{\alpha_0 + 2\alpha_0 k^2}$
$\tau_1^{\#1}_+ \alpha \beta$	$\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$	$-\frac{2ik}{\alpha_0(1+k^2)^2}$	$-\frac{2k^2}{\alpha_0(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$-\frac{2}{\alpha_0 (1+k^2)^2} \left -\frac{2ik}{\alpha_0 (1+k^2)^2} \right $	$\frac{2ik}{\alpha_0 (1+k^2)^2} - \frac{2k^2}{\alpha_0 (1+k^2)^2}$	0 0	0 0	0 0	0 0
	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	1	I	0 0 0	0 0 0	0 0 0	0 0 0

($\mathcal{A}_{2}^{\#1}$	$_{\alpha\beta}f_{2}^{\#;}$	1 - αβ	\mathcal{F}	$\binom{\#1}{2} \alpha \beta$	χ		_
$\alpha_0 (1+2k^-)^-$	$\mathcal{A}_2^{\#}$	$^{1}_{+}$ † $^{\alpha\beta}$	$-\frac{\alpha_0}{4}$		<u>0 k</u> √2		0	_	$\sigma_{2}^{\#1} + \sigma_{2}^{\#1}$	ιβ
α ($f_{2+}^{#1}\dagger^{\alpha\beta}$		<u>k</u> ()		0		$\tau_{2}^{\#1} + \alpha$	
/	${\mathcal F}\!\!\!/_2^{\#1}$	$\dagger^{\alpha\beta\chi}$	0	()		$-\frac{\alpha_0}{4}$	σ	#1 † ^{αβ}	β χ
$\alpha_0 (1+2k^-)$	$f_{1^{-}}^{\#2}$	0	0	0	$-\frac{1}{\bar{l}} \bar{l} \alpha_0 k$	20	0	0	0	
α0+7 α0 κ	$f_{1^{ ext{-}}}^{\#1}$	0	0	0	C)	0	0	0	
α0	${\mathscr A}_{1^-}^{\#^2}{}_{lpha}$	0	0	0	σ ₀	2 1/2	0	0	0	
	$\mathcal{A}_{1^{\text{-}}}^{\#1}{}_{\alpha}$	0	0	0	α ₀	4	$-\frac{\alpha_0}{2\sqrt{2}}$	0	$\frac{i\alpha_0k}{2}$	
	$f_1^{\#1}_{\alpha\beta}$	$\frac{i\alpha_0k}{2\sqrt{2}}$	0	0	c)	0	0	0	
	${\mathscr A}_1^{\#_2^2}$	$\frac{\alpha_0}{2\sqrt{2}}$	0	0	C	0	0	0	0	
	${\mathscr A}_1^{\#1}{}_{lphaeta}$,	$\frac{\alpha_0}{4}$	$\frac{\alpha_0}{2\sqrt{2}}$	$-\frac{i\alpha_0 k}{2\sqrt{2}}$	c)	0	0	0	
1	'	$\left\{ q_{1}^{\#1} + \alpha \beta \right\}$	$4_1^{#2} + \alpha \beta$	$f_1^{\#1} + \alpha \beta$	$\mathcal{A}^{\#1}$ + α	- 1	$\mathcal{A}_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} \dagger^{\alpha}$	

ı	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$	Ī	$\sigma_{0}^{\#1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\alpha \beta$	0	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0	$\sigma_{0}^{\#1}$ †	0	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
$\Gamma^{\alpha\beta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0	$ au_{0}^{\#1}$ †	$\frac{i\sqrt{2}}{\alpha_0 k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
αβχ	0	0	$-\frac{4}{\alpha_0}$	$ au_{0}^{\#2}$ †	0	0	0	0
				$\sigma_{0}^{\sharp 1}$ †	0	0	0	$\frac{2}{\alpha_0 + 12 \alpha_1 k^2}$

	$\mathcal{A}_{0}^{#1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	${\mathcal R}_0^{\sharp 1}$
${\cal A}_{0}^{\#1}\dagger$	<u>α</u> 0 2	$-\frac{i\alpha_0 k}{\sqrt{2}}$	0	0
$f_{0}^{#1}$ †	$\frac{i \alpha_0 k}{\sqrt{2}}$	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\mathcal{A}_0^{\#1}$ †	0	0	0	$\frac{\alpha_0}{2} + 6 \alpha_1 k^2$

Quadratic (free) action
$\mathcal{S} == \iiint (f^{\alpha\beta} \ \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} -$
$\frac{1}{2} \alpha_0 \left(\mathcal{A}_{\alpha\chi\beta} \mathcal{A}^{\alpha\beta\chi} + \mathcal{A}_{\alpha}^{\alpha\beta} \mathcal{A}_{\beta}^{\chi} + 2 f^{\alpha\beta} \partial_{\beta} \mathcal{A}_{\alpha}^{\chi} \right)$
$2\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha}$ $-2f^{\alpha\beta}\partial_{\chi}\mathcal{A}_{\alpha\beta}^{\chi} + 2f^{\alpha}_{\alpha}\partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta}) +$
$2\alpha_{1}\left(4\partial_{\beta}\mathcal{A}_{\alpha\chi\delta}-2\partial_{\beta}\mathcal{A}_{\alpha\delta\chi}+2\partial_{\beta}\mathcal{A}_{\chi\delta\alpha}-\partial_{\chi}\mathcal{A}_{\alpha\beta\delta}+\right.$
$\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}$ -2 $\partial_{\delta}\mathcal{A}_{\alpha\chi\beta}$) $\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}$)[t , x , y , z] dz dy dx dt

Massive and massless spectra

Unitarity conditions

 $\alpha_0 > 0 \&\& \alpha_1 < 0$