

Multinomial Processing Tree (MPT) Modeling: MPT Modeling with multiTree

Daniel W. Heck Philipps-Universität Marburg

(slides adapted from Edgar Erdfelder)

2) Applications

- 2.1) Model definition
- 2.2) Identifiability checks
- 2.3) Practical exercises

2) Introduction to multiTree

2.1) Application: Define Model

1.) Open multiTree and provide the model equations of the Two-High-Threshold Model:

Two-High-Threshold Model (2HTM)

Application: Provide Data

2.) Provide the following observed frequencies:

	"old"	"new"	
Target	65	35	
Lure	13	87	

Data

Application: Model Definition

3.) Is the model identifiable?

2.2) Application: Identifiability

4.) Check identifiability via repeated analysis

2.2) Application: Identifiability

5.) Obtaining an identifiable model:

2.2) Identifiability Checks in multiTree

Repeated analysis

 Check stability of parameters estimates for a specific vector of observed frequencies

Simulated identifiability

- Check recovery of simulated parameters:
- Repeated data generation for random parameter vectors θ in Ω followed by estimation

Get Jacobian

- a) Check rank of the Jacobian for a random parameter θ
- b) Use specific parameter values θ from parameter tab

Model Fitting: Output

2.3) Practical Exercises

1. Extend the 2HTM to two base rate conditions:

		"old"	"new"
30% Targets	Target	65	35
	Lure	13	87
70% Targets	Target	83	17
	Lure	43	57

- 2. Estimate the model for both conditions jointly.
- 3. Does *g* differ significantly between conditions?