27^a Olimpiada Mexicana de Matemáticas Concurso Nacional

Huasca, Hidalgo, 2013 Primer día

1. Se escriben los números primos en orden, $p_1 = 2$, $p_2 = 3$, $p_3 = 5$,

Encuentra todas las parejas de números enteros positivos a y b con $a-b \ge 2$, tales que $p_a - p_b$ divide al número entero 2(a-b).

- 2. Sea ABCD un paralelogramo con ángulo obtuso en A. Sea P un punto sobre el segmento BD de manera que la circunferencia con centro en P y que pasa por A, corte a la recta AD en A y Y, y corte a la recta AB en A y X. La recta AP intersecta a BC en Q y a CD en R, respectivamente. Muestra que $\angle XPY = \angle XQY + \angle XRY$.
- 3. ¿Cuál es la mayor cantidad de elementos que puedes tomar del conjunto de números enteros $\{1, 2, \dots, 2013\}$, de tal manera que entre ellos no haya tres distintos, digamos a, b, c, tales que a sea divisor o múltiplo de b-c?

Segundo día

4. Un cubo de $n \times n \times n$ está construido con cubitos de $1 \times 1 \times 1$, algunos negros y otros blancos, de manera que en cada uno de los subprismas de $n \times 1 \times 1$, de $1 \times n \times 1$ y de $1 \times 1 \times n$ hay exactamente dos cubitos negros y entre ellos hay un número par (posiblemente 0) de cubitos blancos intermedios. Por ejemplo, en la siguiente ilustración, se muestra una posible rebanada del cubo de $6 \times 6 \times 6$ (formada por 6 subprismas de $1 \times 6 \times 1$).

Muestra que es posible sustituir la mitad de los cubitos negros por cubitos blancos para que en cada subprisma de $n \times 1 \times 1$, de $1 \times n \times 1$ y de $1 \times 1 \times n$ haya exactamente un cubito negro.

- 5. Una pareja de enteros es especial si es de la forma (n, n-1) o de la forma (n-1, n) con n un entero positivo. Muestra que una pareja (n, m) de enteros positivos que no es especial, se puede representar como suma de dos o más parejas especiales diferentes si y sólo si los enteros n y m satisfacen la desigualdad $n + m \ge (n m)^2$.
- 6. Sea $A_1A_2...A_8$ un octágono convexo, es decir, un octágono donde todos sus ángulos internos son menores que 180°. Además los lados del octágono tienen la misma longitud y cada par de lados opuestos son paralelos. Para cada $i=1,\ldots,8$, definamos el punto B_i como la intersección del segmento A_iA_{i+4} con el segmento $A_{i-1}A_{i+1}$, donde $A_{j+8}=A_j$ y $B_{j+8}=B_j$, para todo número entero j.

Muestra que para algún número i, de entre los números 1, 2, 3 y 4, se cumple que

$$\frac{|A_i A_{i+4}|}{|B_i B_{i+4}|} \le \frac{3}{2}.$$