Cow Relays

https://vjudge.csgrandeur.cn/problem/POJ-3613

For their physical fitness program, N ($2 \le N \le 1,000,000$) cows have decided to run a relay race using the T ($2 \le T \le 100$) cow trails throughout the pasture.

Each trail connects two different intersections ($1 \le I_{1i} \le 1,000$; $1 \le I_{2i} \le 1,000$), each of which is the termination for at least two trails. The cows know the $length_i$ of each trail ($1 \le length_i \le 1,000$), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.

To run the relay, the *N* cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.

Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.

Input

- * Line 1: Four space-separated integers: N, T, S, and E
- * Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: length $_i$, I_{1i}, and I_{2i}

Output

* Line 1: A single integer that is the shortest distance from intersection *S* to intersection *E* that traverses exactly *N* cow trails.

Sample

Input	Output
2 6 6 4	10
11 4 6	
4 4 8	
8 4 9	
6 6 8	
8 4 9 6 6 8 2 6 9	
3 8 9	