KADI SARVA VISHWAVIDYALAYA

B.E SEMESTER VI EXAMINATION (APRIL-MAY / 2015)

SUBJECT CODE : CE 604 / IT 604 SUBJECT NAME : THEORY OF COMPUTATION

DATE: 4th November,2015 TIME: 10:30 A.M. to 1:30 P.M.

TOTAL MARKS: 70

01

05

05

05

05

Instructions:

- 1. Answer each section in separate Answer Sheet.
- 2. Use of scientific Calculator is permitted.
- 3. All questions are compulsory.
- 4. Indicate clearly, the options you attempted along with its respective question number.
- 5. Use the last page of main supplementary for rough work.

Section - 1

- Q:1 (All Compulsory)
- (A) 1. Suppose A and B are finite sets. A has n elements, and $f: A \rightarrow B$.
 - i. If f is one-to-one, what can you say about the numbers of elements of B?
 - ii. If f is onto, what can you say about the number of elements of B?
 - 2. Define equivalence relation with its properties and give one example of it.
 - 3. Prove that for every $n \ge 0$,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

- (B) Define the Strong Principal of Mathematical Induction and using it prove that "For $n \ge 2$, n is either a prime or a product of two or more primes."
- (C) Find Regular Expression corresponding to following subsets of {0,1}*
 - i. The language of even length strings.
 - ii. The language of all strings which ends with 01.

OR

- (C) Let M1 and M2 be the two FAs given in figure (1). Draw FA corresponding to L1 L2 where L1 and L2 are the languages corresponding to M1 and M2 respectively.
- (A) Draw FA for following

Q:2

- (0+1)*0
- (1+01)*
- (B) Convert NFA-^ as shown in Figure (2) to an equivalent NFA

OR

Q:2		
(A)	Give the proof for Kleen's theorem Part-1 "Any regular language can be accepted by a finite automaton"	05
(B)	Draw an NFA-Λ for following (00+1)*(10)*	05
Q:3		
(A)	Use the Pumping lemma to show that the following language is not regular: "The set of strings over $\{a,b\}$ in the form a^nb^n , where $n>0$ "	05
(B)	Convert the NFA shown in figure – (3) into an equivalent DFA	05
	OR	
Q:3		
(A)	Minimize the finite automata shown in figure – (4) into equivalent machine accepting the same language.	05
(B)	Define following : i. Recursive and Nonrecursive definition of δ^* for NFA ii. Recursive and Nonrecursive definition of δ^* for NFA- Λ	05
	Section - 2	
Q:4	(All Compulsory)	
(A)	i. Let $L = \{x \in \{0,1\}^* \mid x \text{ ends with } 10\}$. Find the three equivalence classes of strings for L.	02
	ii. Define Regular Grammar and an ambiguous CFG	03
(B)	Find CFG for the following languages. 1. $L = \{ a^i b^j i < 2j \}$ 2. $L = \{ a^i b^j c^k j = i + k \}$	05
(C)	 Fill in the blanks i. Both regular and nonregular grammars are included in Grammar. ii. A context-free grammar (CFG) is 4-tuple G=(_,_,_,_) iii is the method of deciding whether the string belongs to a grammar or not. iv. A compound proposition is called a if it is true in every case. v. The regular expression corresponding to language {Λ} is 	05
(0)	OR	
(C)	In each of the following cases, write down which language is generated by CFG i. S-> aSa bSb Λ ii. S->aS bS a	05
Q:5		
(A)	Give transition table for deterministic PDA recognizing the following language. $L=\{x\in\{a,b\}^*\mid n_a(x)=n_b(x)\}$ (Explanation :Strings with equal number of a's and b's)	05

(B)	Find a CFG G' with no Λ -productions and no unit productions generating language L(G)- $\{\Lambda\}$ S \rightarrow ABA	05
	$A \rightarrow aA \mid \Lambda$ $B \rightarrow bB \mid \Lambda$	
	OR	
Q:5		
(A)	Develop a non-deterministic bottom-up parser for following CFG. $S \rightarrow S_1$ \$ $S_1 \rightarrow S_1 + T \mid T$	05
(B)	T → T * a a Define Top-down PDA corresponding to a CFG.	05
Q:6	Beline Top-down TB/N corresponding to a Cr C.	
(A)	Draw Transition Diagram for a TM which reverses a string constructed from alphabet {a,b}.	05
(B)	i. Define the languages accepted by Turing Machineii. What are Turing-acceptable and Turing-decidable languages?	02 03
	OR	
Q:6		
(A)	Design a TM for copying a string build from {a,b}*	05
(B)	i. Explain Multitape TMs.ii. When we can say that a Turing machine enumerates a language L.	02 03

----All the Best -----

Figure -1

Figure - 4

KADI SARVA VISHWAVIDYALAYA

B.E SEMESTER VI EXAMINATION (APRIL-MAY / 2015)

SUBJECT CODE: IT 604 SUBJECT NAME: THEORY OF COMPUTATION

DATE: 4th MAY, 2015 TIME: 10:30 A.M. to 1:30 P.M. TOTAL MARKS: 70

1	ns	tr	u	C	ti	0	n	S	

- 1. Answer each section in separate Answer Sheet.
- 2. Use of scientific Calculator is permitted.
- 3. All questions are compulsory.
- 4. Indicate clearly, the options you attempted along with its respective question number.
- 5. Use the last page of main supplementary for rough work.

Section - 1

- Q:1 (All Compulsory)
 (A)

 1. List the elements of $2^{2^{\{0,1\}}}$
 - 2. Following relations are given on the set of all nonempty subsets of N. In each case, say whether the relation is reflexive, whether it is symmetric, and whether it is transitive.

01

02

05

- i. R is defined by A R B if and only if $A \subseteq B$
- ii. R is defined by A R B if and only if $A \cap B \neq \phi$
- 3. The numbers a_n , for $n \ge 0$ are defined recursively as follows: $a_0 = -2; \ a_1 = -2; \ \text{for } n \ge 2, \ a_n = 5a_{n-1} 6a_{n-2}$ Prove that for every $n \ge 0$, $a_n = 2*3^n 4*2^n$
- (B) List and explain the categories and subcategories of Proof methods.
- (C) Find Regular Expression corresponding to following subsets of {0,1}*

 i. The language of all strings containing both 11 and 010 as substrings
 - ii. The language of all strings in which both the number of 0's and the number of 1's are even

OR (C) Let M1 and M2 be the two FAs given in figure - (1). Draw FA corresponding to L1 U L2 where

- L1 and L2 are the languages corresponding to M1 and M2 respectively.
- Q:2
 (A) Draw FA for following

 (0+1)*(1+00)(0+1)*
- 0+10*+01*0

 (B) Convert NFA-^ as shown in Figure (2) to an equivalent NFA

 05

Q:2	AVAIAYHIVAWHSIVAVIAZIMAX	
(A)	Prove that "For any NFA M= $(Q, \sum, q_0, A, \delta)$ accepting a language $L \subseteq \sum^*$, there is an FA $M_1 = (Q_1, \sum, q_1, A_1, \delta_1)$ that also accepts L."	05
(B)	Using Kleen's theorem Part-1 draw an NFA-Λ for (0+1)*(01)*(011)*	05
Q:3		
(A)	Use the Pumping lemma to show that the following language is not regular: "The set of odd length strings over {0,1} with middle symbol 0"	05
(B)	Convert the NFA shown in figure – (3) into an equivalent DFA	05
	OR	
Q:3	Substitute and early of the control	
(A)	Minimize the finite automata shown in figure – (4) into equivalent machine accepting the same language	05
(B)	Define following:	05
(D)	 i. Recursive and Nonrecursive definition of δ* for NFA ii. Recursive and Nonrecursive definition of δ* for NFA-Λ 	
	Section - 2	
Q:4	(All Compulsory)	
(A)	i. Let L be the language {0 ⁿ 1 ⁿ ,n>=0}. Find the two distinct strings x and y that are indistinguishable w.r.t. L.	02
	ii. Define a CFG (Context-Free Grammar) and languages generated from CFG	03
(B)	Find CFG for the following languages. 1. $L = \{ a^i b^j a^k j > i + k \}$ 2. $L = \{ a^i b^j c^k i = j \text{ or } j = k \}$	05
(C)	State True or False	05
	 i. Every regular grammar is CFG ii. A push-down automata (PDA) is 6-tuple iii. Parsing is the method of deciding whether the string belongs to a grammar or not. iv. If no two elements of domain have the same image in the range then it is called "onto" 	$\hat{}$
	function.	
	v. Statement $(a^*+b^*)^* = a^* + b^*$ is correct.	
(C)	Prove that the following CFG is Ambiguous. S -> S + S S * S (S) a Write the unambiguous CFG for the above grammar.	05
	With the anamong data of the second s	
Q:5	Additional index study we of (2) is study for periods as 2 is 4 is 4 is 2 in a full part of the second study we	0.5
(A)	Give transition table for deterministic PDA recognizing the following language. $\{a^nb^{n+m}a^m \mid n,m>=0\}$	05

(B)	Find a CFG G' in Chomsky Normal Form generating L(G)-{Λ} S→ XYZ	05
	$X \rightarrow aX bY \Lambda$	
	$Y \rightarrow aY bY \Lambda$	1
	$Z \rightarrow aZ \mid \Lambda$	
	OR	
Q:5		
(A)	Design and draw a deterministic PDA accepting "Balanced strings of	05
	Brackets" which are accepted by following CFG.	
	$S \rightarrow SS \mid [S] \mid \{S\} \mid \Lambda$	
(B)	Give difference between Top-down parsing and Bottom-up parsing	05
Q:6		
(A)	Draw Transition Diagram for a TM which accepts following language	05
	$L = \{x \in \{a, b, c\} * n_a(x) = n_b(x) = n_c(x)\}$. 00
(B)	i. Define Turing Machine	02
	ii. Write a short note on Unrestricted Grammar.	03
	OR	
Q:6		
(A)	Design a TM for copying a string build from {a,b}*	05
(B)	i. State the Church Turing thesis statement.	02
	ii. Write a short note on Recursively Enumerable Language.	03

----All the Best -----

Figure – (1)

(A) - Street

<u>Figure – (2)</u>

2 Figure – (3)

Figure – (4)