

Chapitre XV – Matrices et graphes (Maths expertes)

 ${\sf Bacomathiques-https://bacomathiqu.es}$

TABLE DES MATIÈRES
I - Matrices 1
1. Définition
2. Types de matrices carrées
II - Opérations sur les matrices 3
1. Somme
2. Produit
3. Inverse et déterminant
4. Puissance
5. Transposition
III - Applications 8
1. Écriture matricielle d'un système d'équations linéaires
2. Suites de matrices colonnes
3. Transformations géométriques du plan
IV - Graphes 12
1. Graphes non-orientés et orientés
2. Chaînes et chemins
3. Matrices d'adjacence

I - Matrices

1. Définition

À RETENIR : DÉFINITION 🕴

Soient m et n deux entiers non nuls. Une **matrice réelle** A de taille $m \times n$ est un tableau de réels tel que :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix}$$

Où $a_{1,1}$, $a_{1,2}$, $a_{2,1}$, ..., $a_{m,n}$ sont les **coefficients** de la matrice. L'ensemble des matrices à coefficients réels est noté $\mathcal{M}_{m,n}(\mathbb{R})$.

Il serait également possible de prendre des matrices à coefficients entiers ou même complexes, mais nous limiterons ici au cas des matrices réelles.

À RETENIR : TYPES DE MATRICES 📍

Selon leur taille, on peut avoir différents types de matrices :

- Une matrice $1 \times n$ est une **matrice ligne de taille** n.
 - Une matrice $m \times 1$ est une matrice colonne de taille m.
 - Une matrice $n \times n$ est une **matrice carrée d'ordre** n. L'ensemble de ces matrices est noté $\mathcal{M}_n(\mathbb{R})$.
 - Une matrice 1×1 est un **réel**.
 - La matrice $m \times n$ dont tous les termes sont nuls est la **matrice nulle** et est notée $0_{\mathcal{M}_{m,n}(\mathbb{R})}$ (ou plus simplement $0_{m,n}$).

2. Types de matrices carrées

À RETENIR : TYPES DE MATRICES CARRÉES •

Il existe différentes matrices carrées remarquables :

- Une matrice carrée dont tous les coefficients en dessous de la diagonale principale sont nuls est une **matrice triangulaire supérieure**.
- Une matrice triangulaire supérieure dont les coefficients sur la diagonale sont nuls est une matrice triangulaire supérieure stricte.
- Une matrice carrée dont tous les coefficients au-dessus de la diagonale principale sont nuls est une **matrice triangulaire inférieure**.
- Une matrice triangulaire inférieure dont les coefficients sur la diagonale sont nuls est une matrice triangulaire inférieure stricte.
- Une matrice carrée dont tous les coefficients qui ne sont pas sur la diagonale sont nuls est une **matrice diagonale**.
- Une matrice diagonale dont les coefficients sont égaux à 1 est une **matrice identité**. Si la taille d'une telle matrice est n, alors on la note I_n .

À LIRE : DIAGONALE D'UNE MATRICE CARRÉE 59

La diagonale d'une matrice carrée d'ordre n représente l'ensemble des coefficients $a_{i,i}$ où i varie de 1 à n.

II - Opérations sur les matrices

1. Somme

À RETENIR : SOMME DE DEUX MATRICES •

Pour additionner deux matrices de même taille, il suffit d'additionner leurs coefficients deux-à-deux. Plus spécifiquement :

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix} + \begin{pmatrix} b_{1,1} & b_{1,2} & \dots & b_{1,n} \\ b_{2,1} & b_{2,2} & \dots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m,1} & b_{m,2} & \dots & b_{m,n} \end{pmatrix}$$

$$= \begin{pmatrix} a_{1,1} + b_{1,1} & a_{1,2} + b_{1,2} & \dots & a_{1,n} + b_{1,n} \\ a_{2,1} + b_{2,1} & a_{2,2} + b_{2,2} & \dots & a_{2,n} + b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} + b_{m,1} & a_{m,2} + b_{m,2} & \dots & a_{m,n} + b_{m,n} \end{pmatrix}$$

À LIRE: ATTENTION! 99

Il n'est possible d'additionner que deux matrices de même taille.

2. Produit

À RETENIR : MULTIPLICATION D'UNE MATRICE PAR UN RÉEL 📍

Soit λ un réel. Le produit d'une matrice par λ est la matrice de même taille dont les coefficients sont tous multipliés par λ . Plus spécifiquement :

$$\lambda \times \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix} = \begin{pmatrix} \lambda \times a_{1,1} & \lambda \times a_{1,2} & \dots & \lambda \times a_{1,n} \\ \lambda \times a_{2,1} & \lambda \times a_{2,2} & \dots & \lambda \times a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda \times a_{m,1} & \lambda \times a_{m,2} & \dots & \lambda \times a_{m,n} \end{pmatrix}$$

Si A est la matrice de gauche, on note λA la matrice de droite.

À LIRE : SOUSTRACTION DE DEUX MATRICES **

Pour soustraire deux matrices A et B, on additionne A et (-1)B i.e. A-B=A+(-1)B.

À RETENIR : PRODUIT D'UNE MATRICE LIGNE ET D'UNE MATRICE COLONNE

Soient $L = \begin{pmatrix} I_1 & \dots & I_n \end{pmatrix}$ une matrice ligne de taille n et $C = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$ une matrice colonne de taille n

Le produit de ces deux matrices (noté LC) est le réel $LC = l_1 \times c_1 + ... + l_n \times c_n$.

Plus généralement, le produit matriciel ne se limite pas qu'à la multiplication d'une matrice ligne avec une matrice colonne.

À RETENIR : PRODUIT DE DEUX MATRICES *

Soient A une matrice de taille $m \times n$ et B une matrice de taille $n \times p$ deux matrices. Le produit de ces deux matrices (notée $A \times B$ ou AB) est la matrice de taille $m \times p$ dont le coefficient à la position (i;j) est égal au produit de la i-ième ligne de A par la j-ième colonne de B. Plus spécifiquement, en notant L_i la i-ème ligne de A et C_j la j-ième colonne de B:

$$AB = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,p} \\ c_{2,1} & c_{2,2} & \dots & c_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m,1} & c_{m,2} & \dots & c_{m,p} \end{pmatrix} \text{ où } c_{i,j} = L_i \times C_j.$$

À LIRE : ATTENTION ! 99

Le produit matriciel n'est pas commutatif! Donc en général, $AB \neq BA$.

De plus, il faut bien s'assurer que le nombre de lignes de A est égal au nombre de colonnes de B.

À LIRE 00

Si A et B sont deux matrices diagonales de taille n. Leur produit est la matrice diagonale de même taille dont le coefficient à la position (i;i) est le produit du coefficient de A à la position (i;i) par celui du coefficient de B à la position (i;i). Plus spécifiquement, en notant $A = (a_{i,j})$ et $B = (b_{i,j})$:

$$\begin{pmatrix} a_{1,1} & 0 & \dots & 0 \\ 0 & a_{2,2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{n,n} \end{pmatrix} \times \begin{pmatrix} b_{1,1} & 0 & \dots & 0 \\ 0 & b_{2,2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_{n,n} \end{pmatrix}$$

$$= \begin{pmatrix} a_{1,1} \times b_{1,1} & 0 & \dots & 0 \\ 0 & a_{2,2} \times b_{2,2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{n,n} \times b_{n,n} \end{pmatrix}$$

De plus, on a AB = BA.

À RETENIR : PROPRIÉTÉS DU PRODUIT MATRICIEL 📍

Soient A, B et C trois matrices carrées d'ordre n. Alors :

- Le produit matriciel est **associatif** : A(BC) = (AB)C.
- Le produit matriciel est **distributif** : A(B + C) = AB + AC.
- I_n est l'**unité** de $\mathbb{M}_n(\mathbb{R})$: $AI_n = I_nA = A$.
- 0_n est le **zéro** de $\mathbb{M}_n(\mathbb{R})$: $A0_n = 0_n A = 0_n$ et $A + 0_n = A$.
- Pour tout $\lambda \in \mathbb{R}$, $\lambda(AB) = (\lambda A)B = A(\lambda B)$.

À LIRE : ATTENTION ! 00

Si on a une égalité du type $A \times B = 0$, cela n'implique pas forcément que A = 0 ou B = 0!

De plus, si on a AB = AC, on n'a pas forcément B = C.

Cela peut sembler logique, mais on signale tout de même que les priorités les opératoires sont "les mêmes" que dans les ensembles de nombres comme $\mathbb R$ ou $\mathbb C$ (la multiplication prime sur l'addition, etc...).

3. Inverse et déterminant

À RETENIR : INVERSE D'UNE MATRICE •

Soit A une matrice carrée d'ordre n. A est dite inversible s'il existe une matrice A^{-1} telle que $A \times A^{-1} = I_n$.

Si cette matrice existe, elle est unique et s'appelle **inverse** de A. De plus, A et A^{-1} commutent.

Le **déterminant** permet, entre autres, de calculer l'inverse d'une matrice (s'il existe). Nous nous limiterons ici au cas des matrices carrées d'ordre 2, mais il est possible de le généraliser encore plus.

À RETENIR : DÉTERMINANT D'UNE MATRICE 2 × 2

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice carrée d'ordre 2.

Alors le déterminant de A (noté det(A)) est le réel det(A) = ac - bd. De plus, A est inversible si et seulement si $det(A) \neq 0$.

À RETENIR : INVERSE D'UNE MATRICE 2 \times 2 \P

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice carrée d'ordre 2 dont le déterminant ne s'annule pas.

Alors
$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
.

À LIRE : EXEMPLE 99

Calculons le produit de $A = \begin{pmatrix} 2 & 1 \\ 6 & 4 \end{pmatrix}$ par $B = \begin{pmatrix} 4 & -1 \\ -6 & 2 \end{pmatrix}$, et déduisons-en que A est inversible sans utiliser la formule donnée précédemment.

Le produit nous donnera une matrice carrée d'ordre 2 car on multiplie deux matrices carrées d'ordre 2 :

$$\begin{pmatrix} 2 & 1 \\ 6 & 4 \end{pmatrix} \times \begin{pmatrix} 4 & -1 \\ -6 & 2 \end{pmatrix} = \begin{pmatrix} 8 - 6 & -2 + 2 \\ 24 - 24 & -6 + 8 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Donc $A \times B = 2I_2$. Ainsi, A est inversible et $A^{-1} = \frac{1}{2}B$.

4. Puissance

À RETENIR : PUISSANCE D'UNE MATRICE CARRÉE 🕈

Soient A une matrice carrée d'ordre n et i un entier naturel :

- Si
$$i > 0$$
, $A^{i} = \underbrace{A \times ... \times A}_{i \text{ fois}} = A^{i-1} \times A$.
- Si $i = 0$, $A^{i} = A^{0} = I_{n}$.
- Si $i < 0$, $A^{i} = \underbrace{A^{-1} \times ... \times A^{-1}}_{i \text{ fois}} = A^{i-1} \times A^{-1}$.

De plus, pour tout entier naturel j, on a $A^i \times A^j = A^{i+j}$.

À LIRE : PUISSANCE D'UNE MATRICE DIAGONALE 99

Si A est une matrice diagonale, alors A^i est la matrice de même taille où tous les termes de la diagonale sont mis à la puissance i (cela vaut aussi si i est négatif et que la diagonale ne comporte pas de 0).

5. Transposition

À RETENIR : DÉFINITION 🕴

Soit A une matrice. La **matrice transposée** de A (notée tA) est la matrice dont la i-ième ligne correspond à la i-ième colonne de A.

À LIRE : EXEMPLE 99

Soient
$$A = \begin{pmatrix} 2 & 5 & 9 \\ 3 & 6 & 10 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 3 & 5 \\ 8 & 13 & 21 \end{pmatrix}$. Calculons tA et tB .

On a ${}^tA = \begin{pmatrix} 2 & 3 \\ 5 & 6 \\ 9 & 10 \end{pmatrix}$ et ${}^tB = \begin{pmatrix} 0 & 2 & 8 \\ 1 & 3 & 13 \\ 1 & 5 & 21 \end{pmatrix}$.

On a
$${}^{t}A = \begin{pmatrix} 2 & 3 \\ 5 & 6 \\ 9 & 10 \end{pmatrix}$$
 et ${}^{t}B = \begin{pmatrix} 0 & 2 & 8 \\ 1 & 3 & 13 \\ 1 & 5 & 21 \end{pmatrix}$

III - Applications

1. Écriture matricielle d'un système d'équations linéaires

À RETENIR : LIEN ENTRE SYSTÈME D'ÉQUATIONS LINÉAIRES ET MATRICES 📍

Soient quatre réels a, b, c et d et soient deux réels α et β . Le système d'équations linéaires à deux inconnues (S): $\begin{cases} ax + by = \alpha \\ cx + dy = \beta \end{cases}$ (d'inconnues x et y) peut s'écrire matriciellement :

$$(S) \iff \underbrace{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}_{=A} \underbrace{\begin{pmatrix} x \\ y \end{pmatrix}}_{=X} = \underbrace{\begin{pmatrix} \alpha \\ \beta \end{pmatrix}}_{=B}$$

À RETENIR : RÉSOLUTION DU SYSTÈME (S) 📍

Avec les notations ci-dessus, si A est inversible (voir les paragraphes suivants) alors le système (S) admet une unique solution $X = A^{-1}B$.

À LIRE : EXEMPLE 00

Cela peut sembler compliqué à appliquer, mais il n'en est rien!

Par exemple, transformons le système (S) : $\begin{cases} x + 2y = 1 \\ 2x + 5y = 4 \end{cases}$ en une égalité de matrices :

$$(S) \iff \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

Or l'inverse de
$$\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$
 est $\begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix}$. D'où $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$.

Or deux matrices sont égales si et seulement si leurs coefficients sont tous égaux. Donc on a x=-3 et y=2.

Nous avons travaillé ici avec un système de deux équations, mais il est tout-à-fait possible de généraliser cette méthode à plus de deux équations!

2. Suites de matrices colonnes

À RETENIR 💡

Soit (U_n) une suite de matrices colonnes de taille m vérifiant une relation du type $U_{n+1} = AU_n$ pour tout $n \in \mathbb{N}$ et où $A \in \mathcal{M}_m(\mathbb{R})$.

Alors, pour tout $n \in \mathbb{N}$, $U_n = A^n U_0$.

À LIRE 99

Il peut sembler étrange de manipuler des suites de matrices, mais c'est en réalité très intuitif. Par exemple, définissions la suite (U_n) par $U_0=\binom{1}{2}$ et pour tout $n\geq 1$ par

$$U_{n+1} = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}}_{\bullet} U_n$$
 et cherchons son terme général.

Par la formule précédente, pour tout $n \in \mathbb{N}$, $U_n = A^n U_0$. Or, A est une matrice diagonale, donc $A^n = \begin{pmatrix} 1^n & 0 \\ 0 & 2^n \end{pmatrix}$, et ainsi :

$$U_n = \begin{pmatrix} 1 & 0 \\ 0 & 2^n \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2^{n+1} \end{pmatrix}$$

On remarque en particulier que la suite (U_n) est divergente (à cause de sa deuxième coordonnée qui tend vers $+\infty$).

À RETENIR 💡

Soit (V_n) une suite de matrices colonnes de taille m vérifiant une relation du type $V_{n+1} = AV_n + B$ pour tout $n \in \mathbb{N}$ et où A, $B \in \mathcal{M}_m(\mathbb{R})$. Supposons qu'il existe une matrice $X \in \mathcal{M}_m(\mathbb{R})$ telle que AX + B = X.

Alors, pour tout $n \in \mathbb{N}$, $U_n = A^n(U_0 - X) + X$.

3. Transformations géométriques du plan

Il est possible de faire le lien entre les matrices et certains types de transformations géométriques du plan.

À RETENIR 💡

On se place dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$. Soient $A = (x_A; y_A)$ et $B = (x_B; y_B)$ deux points du plan.

On pose A=(1;1). Calculons les coordonnées de B qui est l'image de A par la translation de vecteur $\overrightarrow{u}=\begin{pmatrix} -1\\-2 \end{pmatrix}$, et de C qui est l'image de A par la rotation de centre O et d'angle $\frac{\pi}{4}$.

On a:

$$\begin{pmatrix} x_B \\ y_B \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ et } \begin{pmatrix} x_C \\ y_C \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Donc B = (-1, 1) et $C = (0, \sqrt{2})$.

IV - Graphes

1. Graphes non-orientés et orientés

À RETENIR : GRAPHE NON-ORIENTÉ 📍

Un graphe G non-orienté est un couple (S; A) où :

- S est l'ensemble des **sommets** de G.
- A est un ensemble contenant les éléments de la forme $\{s_i; s_j\}$ où $s_i, s_j \in S$, et correspond aux **arêtes** de G.

À LIRE : EXEMPLE 00

Par exemple, $G = (\{A; B; C; D; E\}, \{\{A; B\}; \{B; C\}; \{C; D\}; \{D; A\}; \{D; E\}; \{E; A\}\})$ est un graphe non-orienté que l'on peut représenter comme tel :

Signalons tout de même que l'ordre dans lequel on relie les sommets n'a pas d'importance.

À RETENIR : GRAPHE ORIENTÉ 📍

Un graphe G orienté est un couple (S; A) où :

- -- S est l'ensemble des **sommets** de G.
- A est un sous-ensemble de $S \times S$, et correspond aux **arêtes orientées** de G.

Par exemple, $G = (\{A; B; C; D; E\}, \{(A; B); (B; C); (C; D); (D; E); (A; E)\}$ est un graphe orienté que l'on peut représenter comme tel :

À LIRE 00

À noter que dans les deux cas, il est possible de relier un sommet à lui-même (en faisant une boucle).

À RETENIR : DÉFINITION 📍

Soit G = (S; A) un graphe. Donnons quelques définitions nécessaires pour la suite :

- L'ordre de G est le nombre de sommets que possède G (i.e. le cardinal de S).
- Le degré d'un sommet est le nombre d'arêtes qui passent par ce sommet (quelquesoit le sens de l'arête dans le cas où G est orienté). Les boucles comptent pour 2.
- Un sommet A est **adjacent** à un autre sommet B s'il existe une arête reliant A à B (i.e. si $(A; B) \in A$ dans le cas où G est orienté / si (A; B) ou $(B; A) \in A$ si G n'est pas orienté). Si A n'est adjacent à aucun autre sommet, alors A est un sommet **isolé**.
- G est dit **complet** si tout sommet de A est adjacent à chacun des autres.

À RETENIR 💡

Soit G un graphe. On note par a son nombre d'arêtes, et par d la somme des degrés de ses sommets. Alors d=2a.

On considère le graphe orienté G suivant :

Alors:

- *G* n'est pas complet.
- L'ordre de G est égal à 5.
- G a 4 arêtes (donc la somme des degrés des sommets de G vaut $2 \times 4 = 8$).
- Le degré des sommets A et B est égal à 1.
- Le degré des sommets C, D et E est égal à 2.
- Le sommet A est adjacent au sommet E (mais E n'est pas adjacent à A).
- *C* est un sommet isolé.
- L'arête orientée qui va de C à C est une boucle.

2. Chaînes et chemins

À RETENIR : DÉFINITION 🕴

Soit G un graphe non-orienté. On appelle **chaîne de taille** n, toute succession de n arêtes de G telle que l'extrémité de chacune est l'origine de la suivante.

Si G est un graphe orienté, on parle de **chemin** plutôt que de chaîne.

À RETENIR : DÉFINITION 🕴

Dans un graphe G non-orienté :

- Si l'origine d'une chaîne coïncide avec sa fin, on parle de **chaîne fermé** (ou de **chemin fermée** si *G* est orienté).
- Si la chaîne est composée d'arêtes toutes distinctes, on parle de **cycle** (ou de **circuit** si *G* est orienté).

On considère le graphe non-orienté suivant :

Alors:

- A B C D A est un chemin fermé de longueur 4 (c'est même un cycle).
- A-C-B-D est un chemin de longueur 3 reliant $A \ni D$ (mais il y en a beaucoup d'autres).

3. Matrices d'adjacence

Le but de cette section est d'étudier le lien étroit qui relie les matrices et les graphes.

À RETENIR : DÉFINITION 📍

Soit G = (S; A) un graphe d'ordre n. On note $S = \{s_1, ..., s_n\}$ l'ensemble des sommets de G.

On fait correspondre à G la matrice carrée d'ordre n dont le coefficient à la ligne i et la colonne j est égal au nombre d'arêtes reliant le sommet s_i au sommet s_j . Cette matrice est appelée **matrice d'adjacence** du graphe G.

On notera qu'une telle matrice est **symétrique** (par rapport à sa diagonale) si le graphe en question est non-orienté.

À LIRE : EXEMPLE 99

On considère le graphe orienté G_1 suivant :

Sa matrice d'adjacence est la matrice $M_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$.

On considère le graphe non-orienté G_2 suivant (i.e. le même que le G_1 mais sans les orientations) :

Sa matrice d'adjacence est la matrice $M_2=egin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Remarquons sur ces deux exemples que le caractère orienté ou non d'un graphe change sa matrice d'adjacence!

À RETENIR : NOMBRE DE CHEMINS DE LONGUEUR K

Soient G = (S; A) un graphe orienté d'ordre n et M sa matrice d'adjacence. On note $S = \{s_1, \ldots, s_n\}$ l'ensemble des sommets de G.

Alors le coefficient à la ligne i et à la colonne j de M^k est le nombre de chemins de longueur k reliant le sommet s_i au sommet s_i .

DÉMONSTRATION : NOMBRE DE CHEMINS DE LONGUEUR K

On pose $m_{i,j}^{(k)}$ le coefficient à la ligne i et à la colonne j de M^k et on note \mathcal{P}_k la propriété définie pour tout $k \geq 1$ par \mathcal{P}_k : " $m_{i,j}^{(k)}$ est le nombre de chemins de longueur k reliant le sommet s_i au sommet s_j ". Montrons \mathcal{P}_n par récurrence.

Initialisation : On teste la propriété au rang 1 :

 \mathcal{P}_1 est vraie car $m_{i,j}^{(1)}$ est égal au nombre d'arêtes (i.e. de chemins de longueur 1) reliant le sommet s_i au sommet s_j .

Hérédité: Supposons la propriété vraie jusqu'à un rang $k \ge 1$ et vérifions qu'elle est vraie au rang k + 1.

On a
$$M^{n+1} = M^n \times M$$
. Donc $m_{i,j}^{(k+1)} = m_{i,1}^{(k)} m_{1,j}^{(1)} + m_{i,2}^{(k)} m_{2,j}^{(1)} + \dots + m_{i,n}^{(k)} m_{n,j}^{(1)}$.

Or, par hypothèse, pour tout $l \in \{1; ...; n\}$, $m_{i,l}^{(n)}$ est le nombre de chemins de longueur n reliant s_i à s_l et $m_{l,j}$ est le nombre d'arêtes reliant le sommet s_l au sommet s_j .

Ainsi, $m_{i,l}^{(k)}m_{l,j}^{(1)}$ est le nombre de chemins de longueur n+1 passant par s_l et reliant s_i à s_i .

Donc en sommant pour tous les sommets s_l , on obtient le nombre de chemins de longueur n+1 reliant s_i à s_i . Donc \mathcal{P}_{n+1} est vraie.

Conclusion:

La propriété est initialisée au rang 1 et est héréditaire. Ainsi, \mathcal{P}_n est vraie pour tout $n \geq 1$.