Package 'rainette'

March 28, 2023

```
Type Package
Title The Reinert Method for Textual Data Clustering
Version 0.3.1.1
Date 2023-03-27
Maintainer Julien Barnier < julien.barnier@cnrs.fr>
Description An R implementation of the Reinert text clustering method. For more
     details about the algorithm see the included vignettes or Reinert (1990)
     <doi:10.1177/075910639002600103>.
License GPL (>= 3)
VignetteBuilder knitr
URL https://juba.github.io/rainette/
BugReports https://github.com/juba/rainette/issues
Encoding UTF-8
Depends R (>= 3.6.0)
Imports dplyr (>= 1.1.0), tidyr, purrr, ggplot2, stringr, quanteda (>=
     2.1), quanteda.textstats, RSpectra, dendextend, ggwordcloud,
     gridExtra, rlang, shiny, miniUI, highr, progressr, Rcpp (>=
     1.0.3)
Suggests testthat, knitr, rmarkdown, tm, FNN, vdiffr,
     quanteda.textmodels
RoxygenNote 7.1.2
LinkingTo Rcpp
NeedsCompilation yes
Author Julien Barnier [aut, cre],
     Florian Privé [ctb]
Repository CRAN
```

Date/Publication 2023-03-28 16:50:02 UTC

2 clusters_by_doc_table

R topics documented:

	clusters_by_doc_table
	cluster_tab
	cutree
	cutree_rainette
	cutree_rainette2
	docs_by_cluster_table
	import_corpus_iramuteq
	merge_segments
	order_docs
	rainette
	rainette2
	rainette2_complete_groups
	rainette2_explor
	rainette2_plot
	rainette_explor
	rainette_plot
	rainette_stats
	select_features
	split_segments
	switch_docs
Index	2

 ${\tt clusters_by_doc_table} \quad \textit{Returns the number of segment of each cluster for each source document}$

Description

Returns the number of segment of each cluster for each source document

Usage

```
clusters_by_doc_table(obj, clust_var = NULL, doc_id = NULL, prop = FALSE)
```

Arguments

obj a corpus, tokens or dtm object
clust_var name of the docvar with the clusters
doc_id docvar identifying the source document

prop if TRUE, returns the percentage of each cluster by document

Details

This function is only useful for previously segmented corpus. If doc_id is NULL and there is a sement_source docvar, it will be used instead.

cluster_tab 3

See Also

```
docs_by_cluster_table()
```

Examples

```
require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 2)
res <- rainette(dtm, k = 3, min_segment_size = 15)
corpus$cluster <- cutree(res, k = 3)
clusters_by_doc_table(corpus, clust_var = "cluster", prop = TRUE)</pre>
```

cluster_tab

Split a dtm into two clusters with reinert algorithm

Description

Split a dtm into two clusters with reinert algorithm

Usage

```
cluster_tab(dtm, cc_test = 0.3, tsj = 3)
```

Arguments

dtm to be split, passed by rainette

cc_test maximum contingency coefficient value for the feature to be kept in both groups.

tsj minimum feature frequency in the dtm

Details

Internal function, not to be used directly

Value

An object of class helust and rainette

4 cutree_rainette

cutree

Cut a tree into groups

Description

Cut a tree into groups

Usage

```
cutree(tree, ...)
```

Arguments

tree the hclust tree object to be cut
... arguments passed to other methods

Details

If tree is of class rainette, invokes cutree_rainette(). Otherwise, just run stats::cutree().

Value

A vector with group membership.

cutree_rainette

Cut a rainette result tree into groups of documents

Description

Cut a rainette result tree into groups of documents

Usage

```
cutree\_rainette(hres, k = NULL, h = NULL, ...)
```

Arguments

hres the rainette result object to be cut k the desired number of clusters

h unsupported

... arguments passed to other methods

Value

A vector with group membership.

cutree_rainette2 5

cutree_rainette2

Cut a rainette2 result object into groups of documents

Description

Cut a rainette2 result object into groups of documents

Usage

```
cutree_rainette2(res, k, criterion = c("chi2", "n"), ...)
```

Arguments

res the rainette2 result object to be cut

k the desired number of clusters

criterion criterion to use to choose the best partition. chi2 means the partition with the

maximum sum of chi2, n the partition with the maximum size.

... arguments passed to other methods

Value

A vector with group membership.

See Also

```
rainette2_complete_groups()
```

docs_by_cluster_table Returns, for each cluster, the number of source documents with at least n segments of this cluster

Description

Returns, for each cluster, the number of source documents with at least n segments of this cluster

Usage

```
docs_by_cluster_table(obj, clust_var = NULL, doc_id = NULL, threshold = 1)
```

Arguments

obj a corpus, tokens or dtm object
clust_var name of the docvar with the clusters
doc_id docvar identifying the source document

threshold the minimal number of segments of a given cluster that a document must include

to be counted

Details

This function is only useful for previously segmented corpus. If doc_id is NULL and there is a sement_source docvar, it will be used instead.

See Also

```
clusters_by_doc_table()
```

Examples

```
require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 2)
res <- rainette(dtm, k = 3, min_segment_size = 15)
corpus$cluster <- cutree(res, k = 3)
docs_by_cluster_table(corpus, clust_var = "cluster")</pre>
```

```
import_corpus_iramuteq
```

Import a corpus in Iramuteq format

Description

Import a corpus in Iramuteq format

Usage

```
import_corpus_iramuteq(f, id_var = NULL, thematics = c("remove", "split"), ...)
```

Arguments

```
f a file name or a connection

id_var name of metadata variable to be used as documents id

thematics if "remove", thematics lines are removed. If "split", texts as splitted at each thematic, and metadata duplicated accordingly

... arguments passed to file if f is a file name.
```

Details

A description of the Iramuteq corpus format can be found here: http://www.iramuteq.org/documentation/html/2-2-2-les-regles-de-formatages

merge_segments 7

Value

A quanteda corpus object. Note that metadata variables in docvars are all imported as characters.

merge_segments

Merges segments according to minimum segment size

Description

```
rainette_uc_index docvar
```

Usage

```
merge_segments(dtm, min_segment_size = 10, doc_id = NULL)
```

Arguments

dtm of segments

min_segment_size

minimum number of forms by segment

doc_id character name of a dtm docvar which identifies source documents.

Details

If min_segment_size == 0, no segments are merged together. If min_segment_size > 0 then doc_id must be provided unless the corpus comes from split_segments, in this case segment_source is used by default.

Value

the original dtm with a new rainette_uc_id docvar.

order_docs

return documents indices ordered by CA first axis coordinates

Description

return documents indices ordered by CA first axis coordinates

Usage

```
order_docs(m)
```

Arguments

m

dtm on which to compute the CA and order documents, converted to an integer matrix.

Details

Internal function, not to be used directly

Value

ordered list of document indices

rainette

Corpus clustering based on the Reinert method - Simple clustering

Description

Corpus clustering based on the Reinert method - Simple clustering

Usage

```
rainette(
  dtm,
  k = 10,
  min_segment_size = 0,
  doc_id = NULL,
  min_split_members = 5,
  cc_test = 0.3,
  tsj = 3,
  min_members,
  min_uc_size
)
```

Arguments

```
quanteda dfm object of documents to cluster, usually the result of split_segments()
dtm
                  maximum number of clusters to compute
min_segment_size
                  minimum number of forms by document
                  character name of a dtm docvar which identifies source documents.
doc_id
min_split_members
                  don't try to split groups with fewer members
cc_test
                  contingency coefficient value for feature selection
                  minimum frequency value for feature selection
tsj
min_members
                  deprecated, use min_split_members instead
                  deprecated, use min_segment_size instead
min_uc_size
```

Details

See the references for original articles on the method. Computations and results may differ quite a bit, see the package vignettes for more details.

The dtm object is automatically converted to boolean.

If min_segment_size > 0 then doc_id must be provided unless the corpus comes from split_segments, in this case segment_source is used by default.

Value

The result is a list of both class helust and rainette. Besides the elements of an helust object, two more results are available:

- uce_groups give the group of each document for each k
- group give the group of each document for the maximum value of k available

References

- Reinert M, Une méthode de classification descendante hiérarchique: application à l'analyse lexicale par contexte, Cahiers de l'analyse des données, Volume 8, Numéro 2, 1983. http://www.numdam.org/item/?id=CAD_1983__8_2_187_0
- Reinert M., Alceste une méthodologie d'analyse des données textuelles et une application: Aurelia De Gerard De Nerval, Bulletin de Méthodologie Sociologique, Volume 26, Numéro 1, 1990. doi:10.1177/075910639002600103

See Also

```
split_segments(), rainette2(), cutree_rainette(), rainette_plot(), rainette_explor()
```

Examples

```
require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 3)
res <- rainette(dtm, k = 3, min_segment_size = 15)</pre>
```

rainette2

Corpus clustering based on the Reinert method - Double clustering

Description

Corpus clustering based on the Reinert method - Double clustering

Usage

```
rainette2(
   x,
   y = NULL,
   max_k = 5,
   min_segment_size1 = 10,
   min_segment_size2 = 15,
   doc_id = NULL,
   min_members = 10,
   min_chi2 = 3.84,
   parallel = FALSE,
   full = TRUE,
   uc_size1,
   uc_size2,
   ...
)
```

Arguments

```
either a quanteda dfm object or the result of rainette()
Х
                  if x is a rainette() result, this must be another rainette() result from same
У
                  dfm but with different uc size.
                  maximum number of clusters to compute
max_k
min_segment_size1
                  if x is a dfm, minimum uc size for first clustering
min_segment_size2
                  if x is a dfm, minimum uc size for second clustering
doc_id
                  character name of a dtm docvar which identifies source documents.
min_members
                  minimum members of each cluster
min_chi2
                  minimum chi2 for each cluster
parallel
                  if TRUE, use parallel::mclapply to compute partitions (won't work on Win-
                  dows, uses more RAM)
full
                  if TRUE, all crossed groups are kept to compute optimal partitions, otherwise
                  only the most mutually associated groups are kept.
uc_size1
                  deprecated, use min_segment_size1 instead
uc_size2
                  deprecated, use min_segment_size2 instead
                  if x is a dfm object, parameters passed to rainette() for both simple clusterings
```

Details

You can pass a quanteda dfm as x object, the function then performs two simple clustering with varying minimum uc size, and then proceed to find optimal partitions based on the results of both clusterings.

If both clusterings have already been computed, you can pass them as x and y arguments and the function will only look for optimal partitions.

doc_id must be provided unless the corpus comes from split_segments, in this case segment_source is used by default.

If full = FALSE, computation may be much faster, but the chi2 criterion will be the only one available for best partition detection, and the result may not be optimal.

For more details on optimal partitions search algorithm, please see package vignettes.

Value

A tibble with optimal partitions found for each available value of k as rows, and the following columns:

- clusters list of the crossed original clusters used in the partition
- k the number of clusters
- chi2 sum of the chi2 value of each cluster
- n sum of the size of each cluster
- groups group membership of each document for this partition (NA if not assigned)

References

- Reinert M, Une méthode de classification descendante hiérarchique : application à l'analyse lexicale par contexte, Cahiers de l'analyse des données, Volume 8, Numéro 2, 1983. http://www.numdam.org/item/?id=CAD_1983__8_2_187_0
- Reinert M., Alceste une méthodologie d'analyse des données textuelles et une application: Aurelia De Gerard De Nerval, Bulletin de Méthodologie Sociologique, Volume 26, Numéro 1, 1990, doi:10.1177/075910639002600103

See Also

```
rainette(), cutree_rainette2(), rainette2_plot(), rainette2_explor()
```

Examples

```
require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 3)</pre>
```

```
res1 <- rainette(dtm, k = 5, min_segment_size = 10)
res2 <- rainette(dtm, k = 5, min_segment_size = 15)
res <- rainette2(res1, res2, max_k = 4)</pre>
```

rainette2_complete_groups

Complete groups membership with knn classification

Description

Starting with groups membership computed from a rainette2 clustering, every document not assigned to a cluster is reassigned using a k-nearest neighbour classification.

Usage

```
rainette2_complete_groups(dfm, groups, k = 1, ...)
```

Arguments

dfm object used for rainette2 clustering.

groups group membership computed by cutree on rainette2 result.

k number of neighbours considered.

... other arguments passed to FNN::knn.

Value

Completed group membership vector.

See Also

```
cutree_rainette2(), FNN::knn()
```

rainette2_explor

rainette2_explor

Shiny gadget for rainette2 clustering exploration

Description

Shiny gadget for rainette2 clustering exploration

Usage

```
rainette2_explor(res, dtm = NULL, corpus_src = NULL)
```

Arguments

res result object of a rainette2 clustering
dtm the dfm object used to compute the clustering
corpus_src the quanteda corpus object used to compute the dtm

Value

No return value, called for side effects.

See Also

```
rainette2_plot()
```

rainette2_plot

Generate a clustering description plot from a rainette2 result

Description

Generate a clustering description plot from a rainette2 result

Usage

```
rainette2_plot(
  res,
  dtm,
  k = NULL,
  criterion = c("chi2", "n"),
  complete_groups = FALSE,
  type = c("bar", "cloud"),
  n_terms = 15,
  free_scales = FALSE,
  measure = c("chi2", "lr", "frequency", "docprop"),
  show_negative = FALSE,
  text_size = 10
)
```

14 rainette_explor

Arguments

res result object of a rainette2 clustering

dtm the dfm object used to compute the clustering

k number of groups. If NULL, use the biggest number possible

criterion criterion to use to choose the best partition. chi2 means the partition with the

maximum sum of chi2, n the partition with the maximum size.

complete_groups

if TRUE, documents with NA cluster are reaffected by k-means clustering ini-

tialised with current groups centers.

type type of term plots: barplot or wordcloudn_terms number of terms to display in keyness plots

free_scales if TRUE, all the keyness plots will have the same scale

measure statistics to compute

show_negative if TRUE, show negative keyness features

text_size font size for barplots, max word size for wordclouds

Value

A gtable object.

See Also

```
quanteda.textstats::textstat_keyness(), rainette2_explor(), rainette2_complete_groups()
```

rainette_explor

Shiny gadget for rainette clustering exploration

Description

Shiny gadget for rainette clustering exploration

Usage

```
rainette_explor(res, dtm = NULL, corpus_src = NULL)
```

Arguments

res result object of a rainette clustering

dtm the dfm object used to compute the clustering

corpus_src the quanteda corpus object used to compute the dtm

Value

No return value, called for side effects.

rainette_plot 15

See Also

```
rainette_plot
```

Examples

```
## Not run:
require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 3)
res <- rainette(dtm, k = 3, min_segment_size = 15)
rainette_explor(res, dtm, corpus)
## End(Not run)</pre>
```

rainette_plot

Generate a clustering description plot from a rainette result

Description

Generate a clustering description plot from a rainette result

Usage

```
rainette_plot(
    res,
    dtm,
    k = NULL,
    type = c("bar", "cloud"),
    n_terms = 15,
    free_scales = FALSE,
    measure = c("chi2", "lr", "frequency", "docprop"),
    show_negative = FALSE,
    text_size = NULL,
    show_na_title = TRUE,
    cluster_label = NULL,
    keyness_plot_xlab = NULL
)
```

rainette_plot

Arguments

res result object of a rainette clustering

dtm the dfm object used to compute the clustering

k number of groups. If NULL, use the biggest number possible

type type of term plots: barplot or wordcloud

n_terms number of terms to display in keyness plots

free_scales if TRUE, all the keyness plots will have the same scale

measure statistics to compute

show_negative if TRUE, show negative keyness features

text_size font size for barplots, max word size for wordclouds

show_na_title if TRUE, show number of NA as plot title

cluster_label define a specific term for clusters identification in keyness plots. Default is

"Cluster" or "Cl." depending on the number of groups.

keyness_plot_xlab

define a specific x label for keyness plots.

Value

A gtable object.

See Also

```
quanteda.textstats::textstat_keyness(), rainette_explor(), rainette_stats()
```

Examples

```
require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 3)
res <- rainette(dtm, k = 3, min_segment_size = 15)
rainette_plot(res, dtm)</pre>
```

rainette_stats 17

rainette_stats

Generate cluster keyness statistics from a rainette result

Description

Generate cluster keyness statistics from a rainette result

Usage

```
rainette_stats(
  groups,
  dtm,
  measure = c("chi2", "lr", "frequency", "docprop"),
  n_terms = 15,
  show_negative = TRUE,
  max_p = 0.05
)
```

Arguments

```
groups groups membership computed by cutree_rainette or cutree_rainette2

dtm the dfm object used to compute the clustering

measure statistics to compute

n_terms number of terms to display in keyness plots

show_negative if TRUE, show negative keyness features

max_p maximum keyness statistic p-value
```

Value

A list with, for each group, a data frame of keyness statistics for the most specific n_terms features.

See Also

```
quanteda.textstats::textstat_keyness(), rainette_explor(), rainette_plot()
```

Examples

```
require(quanteda)
corpus <- data_corpus_inaugural
corpus <- head(corpus, n = 10)
corpus <- split_segments(corpus)
tok <- tokens(corpus, remove_punct = TRUE)
tok <- tokens_remove(tok, stopwords("en"))
dtm <- dfm(tok, tolower = TRUE)
dtm <- dfm_trim(dtm, min_docfreq = 3)
res <- rainette(dtm, k = 3, min_segment_size = 15)</pre>
```

split_segments

```
groups <- cutree_rainette(res, k = 3)
rainette_stats(groups, dtm)</pre>
```

select_features

Remove features from dtm of each group base don cc_test and tsj

Description

Remove features from dtm of each group base don cc_test and tsj

Usage

```
select_features(m, indices1, indices2, cc_test = 0.3, tsj = 3)
```

Arguments

m	global dtm
indices1	indices of documents of group 1
indices2	indices of documents of group 2
cc_test	maximum contingency coefficient value for the feature to be kept in both groups.
tsj	minimum feature frequency in the dtm

Details

Internal function, not to be used directly

Value

a list of two character vectors : cols1 is the name of features to keep in group 1, cols2 the name of features to keep in group 2

split_segments Split a character string or corpus into segments

Description

Split a character string or corpus into segments, taking into account punctuation where possible

switch_docs 19

Usage

```
split_segments(obj, segment_size = 40, segment_size_window = NULL)
## S3 method for class 'character'
split_segments(obj, segment_size = 40, segment_size_window = NULL)
## S3 method for class 'Corpus'
split_segments(obj, segment_size = 40, segment_size_window = NULL)
## S3 method for class 'corpus'
split_segments(obj, segment_size = 40, segment_size_window = NULL)
## S3 method for class 'tokens'
split_segments(obj, segment_size = 40, segment_size_window = NULL)
```

Arguments

```
obj character string, quanteda or tm corpus object
segment_size segment size (in words)
segment_size_window
window around segment size to look for best splitting point
```

Value

If obj is a tm or quanteda corpus object, the result is a quanteda corpus.

Examples

```
require(quanteda)
split_segments(data_corpus_inaugural)
```

switch_docs

Switch documents between two groups to maximize chi-square value

Description

Switch documents between two groups to maximize chi-square value

Usage

```
switch_docs(m, indices, max_index, max_chisq)
```

20 switch_docs

Arguments

m original dtm

indices documents indices orderes by first CA axis coordinates

max_index document index where the split is maximum

max_chisq maximum chi-square value

Details

Internal function, not to be used directly

Value

a list of two vectors indices1 and indices2, which contain the documents indices of each group after documents switching, and a chisq value, the new corresponding chi-square value after switching

Index

```
cluster_tab, 3
                                                select_features, 18
clusters_by_doc_table, 2
                                                split_segments, 18
clusters_by_doc_table(), 6
                                                split_segments(), 8, 9
cutree, 4
                                                stats::cutree(), 4
                                                switch_docs, 19
cutree_rainette, 4
cutree_rainette(), 4, 9
cutree_rainette2, 5
cutree_rainette2(), 11, 12
docs_by_cluster_table, 5
docs_by_cluster_table(), 3
file, 6
FNN::knn(), 12
import_corpus_iramuteq, 6
merge_segments, 7
order_docs, 7
quanteda.textstats::textstat_keyness(),
        14, 16, 17
rainette, 8
rainette(), 10, 11
rainette2, 10
rainette2(),9
rainette2_complete_groups, 12
rainette2_complete_groups(), 5, 14
rainette2_explor, 13
rainette2_explor(), 11, 14
rainette2_plot, 13
rainette2_plot(), 11, 13
rainette_explor, 14
rainette_explor(), 9, 16, 17
rainette_plot, 15
rainette_plot(), 9, 17
rainette_stats, 17
rainette_stats(), 16
```