Aligning 3d orthonormal bases

Vassillen Chizhov University of Saarland Saarbücken, Germany

1 PROBLEM FORMULATION

Let $\{x,y,z\}$ be an orthonormal basis. Given a unit length vector z' we want to find the orthonormal basis $\{x',y',z'\}$ such that we can get from $\{x,y,z\}$ to $\{x',y',z'\}$ with the shortest rotation around $z \times z'$.

2 SOLUTION

We will first derive a solution for x, and the solution for y would be analogous. Let us decompose x into a sum of two orthogonal vectors, one lying in the plane S spanned by z and z' (as long as z and z' are not parallel) and a vector orthogonal to it. We will denote by x_{\parallel} the projection of x onto S, and by x_{\perp} the orthogonal vector to S, i.e. $x = x_{\parallel} + x_{\perp}$. We can further decompose x_{\parallel} into a sum of a vector parallel to z and a vector parallel to \hat{z}_{\perp} , where \hat{z}_{\perp} is unit length, parallel to S, and orthogonal to S. Then we have $x_{\parallel} = \langle x, z \rangle z + \langle x, \hat{z}_{\perp} \rangle \hat{z}_{\perp}$, where $\langle \cdot, \cdot \rangle$ is the scalar product. Note that $\{x, y, z\}$ is an orthonormal basis, so $\langle x, z \rangle = 0$ and we can write $x_{\parallel} = \langle x, \hat{z}_{\perp} \rangle \hat{z}_{\perp}$. The vector x' which we are trying to find can also be decomposed in a similar fashion: $x' = x'_{\parallel} + x'_{\perp}$, such that $x'_{\parallel} = \langle x', z' \rangle z' + \langle x', \hat{z}'_{\perp} \rangle \hat{z}'_{\perp} = \langle x', \hat{z}'_{\perp} \rangle \hat{z}'_{\perp}$. Since we can get from $\{x, y, z\}$ to $\{x', y', z'\}$ with a rotation around $z \times z'$, then $x'_{\perp} = x_{\perp}$, and also $\langle x', \hat{z}'_{\perp} \rangle = \langle x, \hat{z}_{\perp} \rangle$. Then we have:

$$\begin{aligned} x' &= x'_{\parallel} + x'_{\perp} \\ &= \langle x, \hat{z}_{\perp} \rangle \hat{z}'_{\perp} + x_{\perp} \\ &= \langle x, \hat{z}_{\perp} \rangle \hat{z}'_{\perp} + x - x_{\parallel} \\ &= x + \langle x, \hat{z}_{\perp} \rangle \hat{z}'_{\perp} - \langle x, \hat{z}_{\perp} \rangle \hat{z}_{\perp} \\ &= x + \langle x, \hat{z}_{\perp} \rangle (\hat{z}'_{\perp} - \hat{z}_{\perp}) \end{aligned}$$

However, as long as z and z' are not parallel, we can compute \hat{z}_{\perp} and \hat{z}'_{\perp} in the following manner: $\hat{z}_{\perp} = (z' - \langle z, z' \rangle z)/\sqrt{1 - \langle z, z' \rangle^2}$, $\hat{z}'_{\perp} = (\langle z, z' \rangle z' - z)/\sqrt{1 - \langle z, z' \rangle^2}$. Plugging this in, yields:

$$x' = x + \langle x, \hat{z}_{\perp} \rangle (\hat{z}'_{\perp} - \hat{z}_{\perp})$$

$$= x + \frac{\langle x, z' - \langle z, z' \rangle z \rangle}{\sqrt{1 - \langle z, z' \rangle^2}} \frac{(\langle z, z' \rangle z' - z - z' + \langle z, z' \rangle z)}{\sqrt{1 - \langle z, z' \rangle^2}}$$

$$= x + \frac{\langle x, z' - \langle z, z' \rangle z \rangle}{1 - \langle z, z' \rangle^2} (\langle z, z' \rangle - 1)(z' + z)$$

$$= x - \frac{\langle x, z' - \langle z, z' \rangle z \rangle}{1 + \langle z, z' \rangle} (z' + z)$$

$$= x - \frac{\langle x, z' \rangle}{1 + \langle z, z' \rangle} (z' + z)$$

Where the last equality holds due to x and z being orthonormal. Note that this fails when z and z' point in opposite directions (since then there are infinitely many solutions to the problem). The solution for y is similar: $y' = y - \frac{\langle y, z' \rangle}{1 + \langle z, z' \rangle} (z' + z)$.