MOT-based Lifetime Measurements of Potassium-39 $5p_{1/2}$ and $5p_{3/2}$ states

Huan Q. Bui

Advisor: Professor Charles Conover

CLAS, April 28, 2021

Why lifetime measurements?

$$rac{1}{ au_{fi}} = rac{4lpha\omega_0^3}{3c^2} |\langle f| \operatorname{er}|i
angle|^2$$

- Provide empirical data/constants
- Confidence in matrix element calculations for understanding fundamental physics (e.g. parity violation)

Idea

Excite the MOT by a (short) 405 nm pulse, and observe fluorescence.

Pulse 405 nm source at 250 kHz. Cloud diameter ~ 1 mm. T ~ 1 mK. N $\sim 10^6$ atoms.

Idea

Fluorescence should be an exponential decay.

Data fitted with $N = Bkg + A \exp[-(t - t_0)/\tau]$. Residual is normalized.

Idea

Fluorescence should be an exponential decay. Or should it?

Need some understanding of the fluorescence from 5p in K-39

CLAS, April 28, 2021

Theory: Hyperfine Structure

- Fine structure \sim Special relativity + **S**, **L** coupling (+ Darwin)
 - \implies New quantum number: $\mathbf{J} = \mathbf{S} + \mathbf{L}$
- ullet Hyperfine structure \sim Fine structure + Nuclear spin
 - \implies New quantum number: $\mathbf{F} = \mathbf{J} + \mathbf{I}$

Theory: Hyperfine Structure

Theory: Zeeman effect

External magnetic fields make hyperfine sublevels nondegenerate.

$$H_B = \frac{\mu_B g_J}{\hbar} (\mathbf{J} + \mathbf{I}) \cdot \mathbf{B},$$

In the electric quadrupole approximation,

$$H_{\mathsf{hfs}} = A_{\mathsf{hfs}} \mathbf{I} \cdot \mathbf{J} + B_{\mathsf{hfs}} \frac{3(\mathbf{I} \cdot \mathbf{J})^2 + \frac{3}{2}\mathbf{I} \cdot \mathbf{J} - \mathbf{I}^2 \cdot \mathbf{J}^2}{2I(2I - 1)J(J - 1)} + \frac{\mu_B}{\hbar} (g_J m_J + g_I m_I) B$$

Theory: Zeeman effect

Theory: Quantum beats

"Interference" in fluorescence due to hyperfine sublevels

$$|\psi(t)\rangle = c_i |i\rangle e^{-i\omega_i t} + c_f |f\rangle e^{-i\omega_f t} + c_e |e\rangle e^{-i\omega_e t}$$

The detector sees

$$|E|^2 = (A + B \exp[i(\omega_e - \omega_f)t] + c.c)e^{-t/\tau}.$$

⇒ Difficult to extract lifetimes when quantum beats are present

Theory: Quantum beats

Quantum beats don't always occur.

From angular momentum algebra:

- Quantum beats in the $P_{1/2}$ decay: NO $\implies au_{5p_{1/2}}$ is easier to measure
- Quantum beats in the $P_{3/2}$ decay: **YES** $\Rightarrow \tau_{5p_{3/2}}$ is difficult to measure

Theory: Quantum beats

In some cases, quantum beats can be eliminated.

 \implies The **magic angle** solution: $\theta_m = \arccos(1/\sqrt{3}) \approx 54.7^{\circ}$

(b) \mathbf{e}_d : detector polarization \mathbf{e}_e : excitation polarization

(a) Young et al. PRA 1994

Experiment

The cloud is imaged onto an optical fiber tip. The detector has QE \sim 30% at 405 nm.

Data: $5P_{1/2}$

Nice, beatless, exponential decay since J = 1/2

Data: $5P_{1/2}$: Error budget

Source of error	Value (ns)
Timing uncertainty & Nonlinearity	\pm 0.1%
Truncation uncertainty + pulse pile-up	\pm 0.4%
Radiation trapping/rescattering	\pm 0.2%
Other statistical errors	± 0.2%
Result	$\textbf{138.9}\pm\textbf{1.6}$
Prior result (Mills et al. (2005))	$\textbf{137.6} \pm \textbf{1.3}$

 \implies Agreement to within $\pm \sigma$.

Data: $5P_{1/2}$: Radiation trapping test

Changing the getter current changes the density of the MOT.

Data: $5P_{3/2}$

The MOT requires a magnetic field gradient $(dB/dr \approx 1 \text{ G/mm})$ \implies Zeeman effects present & vary across the cloud

Data: $\overline{5P}_{3/2}$

Quantum beats observed.

Data: 5P_{3/2}

The **magic angle** trick does not eliminate beats due to Zeeman effects must null magnetic fields. This is easier said than done!

Data: $5P_{3/2}$

Exciting different parts of the MOT cloud gives different beat amplitudes.

5P_{3/2}: Alternative approaches

Using a long pulse \implies removes coherence.

5P_{3/2}: Alternative approaches

- Hanle effect (fairly involved)
- Level-crossing (sweeping the magnetic field)
- Work with a vapor cell (many pros and cons)
 - Pros: no B gradient & nulling B is possible
 - Cons: large Doppler width, atomic motion, large radiation trapping