SpaceSaving Algorithm

STORM IMPLEMENTATION

Overview

- Frequent Elements in Data Streams
- SpaceSaving approach
- Storm Topology
- Experimental results

The Frequent Elements Problem

- In a stream S of N size, find all frequent elements
- Frequency must be greater than $\lceil \phi N \rceil$, where ϕ in [0,1]
- φ is a proportion, e.g elements that occur more than 50% times in N stream
- Need: Solve the problem with one pass over the data

SpaceSaving

- Counter-Based Technique
- Use m counters to monitor m elements
- If element has already a counter, increment its counter by 1
- If not, replace the element with minimum counter (min)
- Set the frequency of the new element to min+1, remember overestimation min

SpaceSaving

- Given an error rate ε , use at least $m = \frac{1}{\varepsilon}$ counters
- Then all elements with $f > \lceil \phi N \rceil$, with $\phi \ge \epsilon$, are guaranteed to be reported
- We set $\varphi = \varepsilon$ and $m = \frac{1}{\varepsilon}$, and report as frequent elements those with $f > \lceil \varepsilon N \rceil$
- **Approximate** frequency f of a stored element derives of "count-overestimation"

Item	Count	Overestimation

	Item	Count	Overestimation
	X	1	0
X			

X

Item	Count	Overestimation
X	1	0
Y	1	0

X,Y

Item	Count	Overestimation
X	1	0
Y	2	0

X,Y,Y

Z

Item	Count	Overestimation
Z	2	1
Y	2	0

X,Y,Y,Z

Item	Count	Overestimation
Z	2	1
Y	3	0

X,Y,Y,Z,Y

Item	Count	Overestimation
Z	2	1
Y	4	0

Storm Topology

Experiments

- Used Zipfian Synthetic DataSet with parameter $\alpha = \{0.5, 1.5, 2.5\}$
- Length Of Alphabet: |A|=10⁵
- Number Of Items: $N=5 * 10^5$
- Parallelism in Bolts : 4
- Metrics Of "Success": Precision, Recall

Experiments

Metrics Used

$$precision = \frac{number\ of\ retrieved\ frequent\ elements}{number\ of\ retrieved\ elements}$$

$$recall = \frac{number\ of\ retrieved\ frequent\ elements}{total\ number\ of\ frequent\ elements\ in\ the\ dataset}$$

• The method has found all frequent items with no false alarms if both are equal to '1.0'

Experimental Results

• Zipfian Data with α =1.5 and N=5 * 10⁵

Experimental Results

• Zipfian Data with α =2.5 and N=5 * 10⁵

Thank, Jou