- 1. Consider a spinning wheel with 6 equal parts, one part labeled R, two parts labeled B, and three parts labeled W so that P(R) = 1/6, P(B) = 2/6, and P(W) = 3/6. Let our experiment consist of 3 turns of the wheel. Thus, the sample space has 27 points of the form $c_1c_2c_3$, where c_i is the color (R, B, or W) observed in the i^{th} turn. Let $X = \#(R \text{ or } B)^{\#}$ and $Y = \#(B \text{ or } W)^{\#}$; clearly, $0 \le X$, $Y \le 3$.
 - (a) The table below shows the elementary events for some combinations of values for *X* and *Y* ("-" indicates this combinations not possible). Fill in the entries marked '?'. (Each elementary event should appear exactly once.)

Elementary events for different coomation of values of A and I.								
	Y=0 Y=1		Y=2	Y=3	#(elem. events in row)			
X=0	-	_	_	WWW	1			
X=1	_	_	?	?	?			
X=2	_	RRW, RWR, WRR	?	?	?			
X=3	RRR	RRB, RBR , BRR	?	?	?			
#(elem. events)	1	6	?	?				
in column)								

Elementary events for different cobination of values of *X* and *Y*.

- (b) Compute E(X); show the details. Do the same for E(Y) and E(XY).
- (c) Verify whether E(XY) = E(X)E(Y) or not.
- 2. Is there any thing wrong in the following calculations; give the correct form. (Here, *X* and *Y* have nothing to do with those in Prpblem 1.)

$$\begin{split} E((X+Y)^2) &= E(X^2 + 2XY + Y^2) = E(X^2) + 2E(XY) + E(Y^2) \\ E^2(X+Y) &= [E(X) + E(Y)]^2 = E^2(X) + 2E(X)E(Y) + E^2(Y) \\ Var(X+Y) &= E((X+Y)^2) - E^2(X+Y) = E(X^2) - E^2(X) + E(Y^2) - E^2(Y) + 2[E(XY) - E(X)E(Y)] \\ &= Var(X) + Var(Y) + 2[E(XY) - E(X)E(Y)] \end{split}$$

3. Consider the pair of integers (x, y), $0 \le x$, $y \le 4$, as inputs to the following three codes to compute maximum of x and y.

(i)
$$\max = x$$
; (ii) $\max = x$; (iii) if $(x < y)$ if $(\max < y)$ if $(\max < y)$ max = y; else $\max = x$;

Assume that each point (x, y) has the probability 1/25. Complete the two tables below, where X = #Comparisons) and Y = #(Assignments). (We group the points (x, y) into the categories "x < y", "x = y", and x > y" because X and Y depend only on the latter for each code.)

Event	Probability	Code (i)		Code (ii)		Code (iii)	
		X	Y	X	Y	X	Y
$\overline{x < y}$							
x = y							
x > y							

Code	Expected Values					Variances			
	X	Y	X + Y	X^2	Y^2	$(X+Y)^2$	X	Y	X + Y
(i) (ii)									
(iii)									

4. Describe the experiment, its outcomes (Sample Spaces), and their probabilities in relation to E(X) and Var(X) in Problem 3.