NP-Complete Problems

Polynomial time vs exponential time

- –Polynomial $O(n^k)$,
 - –where *n* is the input size
 - -e.g., number of nodes in a graph, the length of strings, etc
 - -k is a constant
 - -e.g., k=2 in LCS, k=1 in KMP, etc.
- -Exponential time: 2ⁿ or nⁿ

-If a computer solves a problem of size n in one hour, now you have a computer 1,000,000 faster, what size of the problem can you solve in one hour?

- $-n+20 (2^{n+20} \approx 1,000,0002^n)$
- -The improvement is small.
- -Hardware improves little on problems of exponential running time
- -Exponential running time is considered as "not efficient".

Story

- All algorithms we have studied so far are polynomial time algorithms (unless specified).
- Facts: people have not yet found any polynomial time algorithms for some famous problems, (e.g., Hamilton Circuit, longest simple path, Steiner trees).
- Question: Do there exist polynomial time algorithms for those famous problems?
- **Answer:** No body knows.

Story

- •Research topic: Prove that polynomial time algorithms do not exist for those famous problems, e.g., Hamilton circuit problem.
 - Turing award
 - •Vinay Deolalikar attempted 2010, but failed.
- •To answer the question, people define two classes
 - •P class
 - •NP class.
- •To answer if $P \neq NP$, a rich area, NP-completeness theory is developed.

	3			7	7	5		
8)		8	86	5	2	30		4
6							9	
	2		167			-		
1	9			8			2	3
							7	
	8							7
4			8	3		6		
		5		4			8	

	3			7		5		
8 7		8		5	2	30		4
6						ì	9	
	2		iii			100		
1	9			8			2	3
							7	
	8							7
4			8	3		6		
		5	8	4	0 V	8	8	

2	3	1	9	7	4	5	6	8
9	7	8	6	5	2	1	3	4
6	5	4	3	1	8	7	9	2
5	2	7	4	9	3	8	1	6
1	9	6	7	8	5	4	2	3
8	4	3	1	2	6	တ	7	5
3	8	9	5	6	1	2	4	7
4	1	2	8	3	7	6	5	9
7	6	5	2	4	9	3	8	1

Class P and Class NP

- •Class P contains problems which are solvable in polynomial time.
 - The problems have algorithms in $O(n^k)$ time, where n is the input size and k is a constant.
- •Class NP consists of those problem that are *verifiable* in polynomial time.
 - •we can verify that the solution is correct in time polynomial in the input size to the problem.
 - •algorithms produce an answer by a series of "correct guesses"
- •Example: Hamilton Circuit: given an order of the n distinct vertices $(v_1, v_2, ..., v_n)$, we can test if (v_i, v_{i+1}) is an edge in G for i=1, 2, ..., n-1 and (v_n, v_1) is an edge in G in time O(n) (polynomial in the input size).

Class P and Class NP

- P⊆NP
 - by definition,
- If we can design a polynomial time algorithm for problem A, then A is in P.
- However, if we have not been able to design a polynomial time algorithm for A, then two possibilities:
 - 1. No polynomial time algorithm for A or
 - 2. We are not smart.

Open problem: P≠NP?

Polynomial-Time Reductions

Suppose a black box (an algorithm) can solve instances of problem X. If we give an instance of X as input the black box will return the correct answer in a single step.

Question: Can we "transform" problem Y into X. Can an arbitrary instance of problem Y be solved by the black box?

- We can use the black box polynomial number of times.
- We can use polynomial number of standard computational steps
- If yes, then Y is polynomial-time reducible to X.

$$Y \leq_p X$$

NP-Complete

- A problem X is NP-complete if
 - it is in NP, and
 - •any problem Y in NP has a polynomial time reduction to X.
 - •it is the hardest problem in NP.
 - •If ONE NP-complete problem can be solved in polynomial time, then any problem in class NP can be solved in polynomial time.
- •The first NPC problem is *Satisfiability* problem
 - -Proved by Cook in 1971 and obtains the Turing Award for this work

Boolean formula

- A boolean formula $f(x_1, x_2, ...x_n)$, where x_i are boolean variables (either 0 or 1), contains boolean variables and boolean operations AND, OR and NOT.
- Clause: variables and their negations are connected with OR operation, e.g., $(x_1 \text{ OR NOT} x_2 \text{ OR } x_5)$
- Conjunctive normal form of boolean formula: contains *m* clauses connected with AND operation.

Example:

 $(x_1 \text{ OR NOT } x_2) \text{ AND } (x_1 \text{ OR NOT } x_3 \text{ OR } x_6) \text{ AND } (x_2 \text{ OR } x_6) \text{ AND } (\text{NOT } x_3 \text{ OR } x_5).$

-Here we have four clauses.

Satisfiability problem

- Input: conjunctive normal form with n variables, x_1 , x_2 , ..., x_n .
- **Problem:** find an assignment of $x_1, x_2, ..., x_n$ (setting each x_i to be 0 or 1) such that the formula is true (satisfied).
- Example: conjunctive normal form is

$$(x_1 \text{ OR NOT} x_2) \text{ AND (NOT } x_1 \text{ OR } x_3).$$

• The formula is true for assignment

$$x_1=1, x_2=0, x_3=1.$$

Note: for *n* Boolean variables, there are 2^n assignments.

- •Testing if formula=1 can be done in polynomial time for any given assignment.
- •Given an assignment that satisfies formula=1 is hard.

The First NP-complete Problem

- Theorem: Satisfiability problem is NP-complete.
 - -It is the first NP-complete problem.
 - -S. A. Cook in 1971 http://en.wikipedia.org/wiki/Stephen_Cook
 - -Won Turing prize for his work.

• Significance:

- -If Satisfiability problem is in P, then ALL problems in class NP are in P.
- -To solve P≠NP, you should work on NPC problems such as satisfiability problem.
- -We can use the first NPC problem, Satisfiability problem, to show other NP-complete problems.

How to show that a problem is NPC?

- •To show that problem A is NP-complete, we can
 - -First, find a NP-complete problem B.
 - -Then, show that
 - -IF problem A is P, then B is in P.
 - -that is, to give a polynomial time reduction from B to A.

Remarks: Since a NPC problem, problem B, is the hardest in class NP, problem A is also the hardest

Hamilton circuit and Longest Simple Path

- Hamilton circuit: a circuit uses every vertex of the graph exactly once except for the last vertex, which duplicates the first vertex.
 - It was shown to be NP-complete.
- Longest Simple Path:
 - Input: $V = \{v_1, v_2, ..., v_n\}$ be a set of nodes in a graph G and $d(v_i, v_j)$ the distance between v_i and v_j ,
 - Output: a longest simple path from u to v .
- Theorem: The longest simple path problem is NP-complete.

Theorem: The longest simple path (LSP) problem is NP-complete.

Proof:

Hamilton Circuit Problem (HC): Given a graph G=(V, E), find a Hamilton Circuit.

We want to show that if the longest simple path problem is in P, then the Hamilton circuit problem is in P.

Design a polynomial time algorithm to solve HC by using an algorithm for LSP.

Step 0: Set the length of each edge in G to be 1

Step 1: for each edge (u, v)∈E do find the longest simple path P from u to v in G.

Step 2: if the length of P is n-1 then by adding edge (u, v) we obtain a Hamilton circuit in G.

Step 3: if no Hamilton circuit is found for every (u, v) then print "no Hamilton circuit exists"

Conclusion:

- if LSP is in P, then HC is also in P.
- Since HC was proved to be NP-complete, LSP is also NP-complete.

Some basic NP-complete problems

- 3-Satisfiability: Each clause contains at most three variables or their negations.
- Vertex Cover: Given a graph G=(V, E), find a subset V' of V such that for each edge (u, v) in E, at least one of u and v is in V' and the size of V' is minimized.
- Hamilton Circuit: (definition was given before)
- History: Satisfiability→3-Satisfiability→vertex cover→Hamilton circuit.
- Those proofs are very hard.

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, because no such algorithm is possible!"

"I can't find an efficient algorithm, but neither can all these famous people."