Binary Classification of Graphene Flakes

Samuel Rager and Alvin Wang

Main References

- VII. Krizhevsky, Sutskever, & Hinton. "ImageNet classification with deep convolutional neural networks." *Commun. ACM 60.* 2017, accessed 29 October 2024, https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
- VIII. Kingma, Diederik P. "Adam: A method for stochastic optimization." *arXiv preprint arXiv:1412.6980* (2014),
- VIII. Kingma, Diederik P. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014), accessed 29 October 2024, https://arxiv.org/pdf/1412.6980>.
- XI. He, Kaiming, et al. "Deep residual learning for image recognition." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016, accessed 29 October 2024, https://arxiv.org/pdf/1512.03385v1>.

Data Cleaning Methodology

Timeline

2010	2012	2014	2015	2016	2017	2018	2019	2023
•First ImageNet challenge	•AlexNet	•Adam •VGG •GoogleNet	•ResNet •Batch Norm. •GoogleNet renamed Inception •Yolo V1	·Inception v3	•AdamW •Transformer •Last Imagenet Challenge	•Mobile Net v2 (Inverted Residual)	•Efficient Net	·Yolo V8

AlexNet

Convolution

Max Pooling

Rectified Linear Function

Softmax- Reduces to Sigmoid in Binary Case

Local Response Normalization

$$b_{x,y}^i = a_{x,y}^i / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^j)^2\right)^{\beta}$$

For AlexNet, k=2, n=5, alpha=10^-4, beta=0.75

Data Structure for Colab Models

```
Data Structure

Dataset-|

|_>train---|_> graphene

|_> non_graphene

|_>test---|_> graphene

|_> non_graphene
```

Adam (Adaptive Moment Estimation/ Gradient Descent with Momentum)

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0,1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
       t \leftarrow t + 1
       q_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
       m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate) v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
       \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
       \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
       \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```


Backpropagation

Algorithm 1 Backpropagation

```
1: procedure Backpropagation(X, \theta)
         a^0 \leftarrow x
 2:

    Set Input

         for l \leftarrow [1, L] do
                                                                    ▶ Forward Pass: Compute weighted inputs and activations
 3:
          z^l \leftarrow W^l a^{l-1} + b^l
          a^l \leftarrow \sigma(z^l)
         end for
 6:
 7:
         \delta_L \leftarrow (a^L - y) \odot \sigma'(z^L)
                                                                                                         ▷ Compute Error in Final Layer
         for l \leftarrow [L-1,1] do \delta^l \leftarrow (W^{l+1})^T \delta^{l+1} \odot \sigma'(z^l)
                                                                                                                      ▷ Backpropagate Error
 9:
10:
         end for
11:
12:
         for l \leftarrow [1, L] do

    Compute gradients w.r.t. network parameters

13:
           \nabla_{b^l} = \delta^l
14:
             \nabla_{W^l} = \delta^l (a^{l-1})^T
15:
         end for
16:
         return \nabla_{\theta} = (\nabla_{W^l}, \nabla_{b^l})
17:
18: end procedure
```

Binary Cross Entropy Loss

$$L = -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \log(p_i) + (1 - y_i) \log(1 - p_i) \right]$$

> *N is the number of samples*

 $> y_i i$ is the true label for the i^{th} sample (0 or 1)

 $> p_i$ is the predicted probability that the i^{th} sample belongs to Positive class

Binary Cross Entropy with Logits Loss

$$ext{Loss} = rac{1}{N} \sum_{i=1}^N \left[\max(z_i, 0) - z_i y_i + \log \left(1 + e^{-|z_i|}
ight)
ight]$$

AlexNet

Contribution Mnemonic: Programming working backwards from desired output

Visual Geometry Group (VGG) 16

ResNet Architecture

ResNet 50 Architecture

-									
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer			
conv1	112×112	7×7, 64, stride 2							
		3×3 max pool, stride 2							
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$			
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$			
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$			
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\left[\begin{array}{c} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$			
	1×1	average pool, 1000-d fc, softmax							
FLOPs		1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10 ⁹			

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Input: Network N with trainable parameters Θ ; subset of activations $\{x^{(k)}\}_{k=1}^{K}$

Output: Batch-normalized network for inference, $N_{\mathrm{BN}}^{\mathrm{inf}}$

- 1: $N_{\rm BN}^{\rm tr} \leftarrow N$ // Training BN network
- 2: **for** k = 1 ... K **do**
- 3: Add transformation $y^{(k)} = \text{BN}_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to $N_{\text{BN}}^{\text{tr}}$ (Alg. 1)
- 4: Modify each layer in $N_{\rm BN}^{\rm tr}$ with input $x^{(k)}$ to take $y^{(k)}$ instead
- 5: end for
- 6: Train $N_{\mathrm{BN}}^{\mathrm{tr}}$ to optimize the parameters $\Theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^K$
- 7: $N_{\rm BN}^{\rm inf} \leftarrow N_{\rm BN}^{\rm tr}$ // Inference BN network with frozen // parameters
- 8: **for** k = 1 ... K **do**
- 9: // For clarity, $x \equiv x^{(k)}, \gamma \equiv \gamma^{(k)}, \mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc.
- 10: Process multiple training mini-batches \mathcal{B} , each of size m, and average over them:

$$\begin{aligned} \mathbf{E}[x] \leftarrow \mathbf{E}_{\mathcal{B}}[\mu_{\mathcal{B}}] \\ \mathbf{Var}[x] \leftarrow \frac{m}{m-1} \mathbf{E}_{\mathcal{B}}[\sigma_{\mathcal{B}}^2] \end{aligned}$$

- 11: In $N_{\mathrm{BN}}^{\mathrm{inf}}$, replace the transform $y = \mathrm{BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{\mathrm{Var}[x] + \epsilon}} \cdot x + \left(\beta \frac{\gamma \, \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}}\right)$
- 12: end for

Algorithm 2: Training a Batch-Normalized Network

EfficientNet B0

Grid Search

EfficientNet B0 Architecture

Stage	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7 × 7	1280	1

Inverted Residual Block

(a) Regular

(b) Separable

(c) Separable with linear bottleneck

(d) Bottleneck with expansion layer

Inverted Residual Block

ReLU6

Compound Scaling

Baseline ResNet-50 (He et al., 2016)	4.1B	76.0%
Scale ResNet-50 by depth (d=4)	16.2B	78.1%
Scale ResNet-50 by width $(w=2)$	14.7B	77.7%
Scale ResNet-50 by resolution $(r=2)$	16.4B	77.5%
ResNet-50 compound scale	16.7B	78.8%

Inception (GoogleNet)

XVIII.

Inception v3 Architecture

type	patch size/stride or remarks	input size	
conv	$3\times3/2$	299×299×3	
conv	$3\times3/1$	$149 \times 149 \times 32$	
conv padded	$3\times3/1$	147×147×32	
pool	$3\times3/2$	147×147×64	
conv	$3\times3/1$	73×73×64	
conv	$3\times3/2$	$71 \times 71 \times 80$	
conv	3×3/1	$35 \times 35 \times 192$	
3×Inception	As in figure 5	$35 \times 35 \times 288$	
5×Inception	As in figure 6	$17 \times 17 \times 768$	
2×Inception	As in figure 7	8×8×1280	
pool	8 × 8	$8 \times 8 \times 2048$	
linear	logits	$1 \times 1 \times 2048$	
softmax	classifier	$1 \times 1 \times 1000$	

Figure 5

Figure 6

XIX.

Figure 7

Loss Per Epoch w/ Curve Fit for All Models

Pre-Trained Models Used & Metrics

	Metric	AlexNet	VGG16	ResNet50	EfficientNet b0	Inception v3
0	Accuracy	0.98	0.98	0.98	0.99	0.99
1	Precision	0.98	0.98	1.00	0.99	0.99
2	F1	0.99	0.99	0.99	1.00	1.00
3	ROC AUC	0.50	0.40	0.96	1.00	0.97
4	Runtime (sec)	173.46	676.63	484.59	301.84	662.06

Metric	AlexNet	VGG16	ResNet50	EfficeintNet b0	Inception v3
Accuracy	1	0.93	0.89	0.83	0.93
Precision	1	0.89	0.83	0.75	0.88
F1	1	0.93	0.9	0.85	0.93
AUC of ROC	1	0.94	0.94	1	1
Runtime(sec)	118.23	244.61	596.17	358.95	724.81
Parameter #	61,100,840	138,357,544	25,557,032	5.3M	27,161,264

AlexNet Confusion Matrix

AlexNet ROC/ AUC Plot

$$TPR = rac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

ResNet50 Confusion Matrix

ResNet50 ROC/ AUC Plot

VGG16 Confusion Matrix

VGG16 ROC/ AUC Plot

EfficientNet b0 Confusion Matrix

EfficientNet b0 ROC/ AUC Plot

Inception v2 Confusion Matrix

Inception v2 ROC/ AUC Plot

YOLO Colab Implementation

```
!pip install ultralytics
from ultralytics import YOLO
model = YOLO("yolov8n.pt")
# Train the model
model.train(data='graphene.y
aml', epochs=10, imgsz=640)
```

```
Data Structure
|__>train
|__>images
|__>labels (.txt)
|__>val
|__>images
|__>labels (.txt)
```


XXI.

Model variant	d (depth_multiple)	w (width_multiple)	mc (max_channels)
n	0.33	0.25	1024
s	0.33	0.50	1024
m	0.67	0.75	768
1	1.00	1.00	512
xi	1.00	1.25	512

Backbone

Neck

20 x 20 x (min(1024, mc) x w)

SPPF

k = 5

Head

XXII.

AdamW Optimizer Psuedocode (Algo. 1 is

Algorithm 2 Adam with L₂ regularization and Adam with decoupled weight decay (AdamW)

```
1: given \alpha = 0.001, \beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}, \lambda \in \mathbb{R}
  2: initialize time step t \leftarrow 0, parameter vector \theta_{t=0} \in \mathbb{R}^n, first moment vector m_{t=0} \leftarrow 0, second moment
       vector \mathbf{v}_{t=0} \leftarrow \mathbf{0}, schedule multiplier \eta_{t=0} \in \mathbb{R}
 3: repeat
          t \leftarrow t + 1
 4:
        \nabla f_t(\boldsymbol{\theta}_{t-1}) \leftarrow \text{SelectBatch}(\boldsymbol{\theta}_{t-1})

    ▶ select batch and return the corresponding gradient

        \mathbf{g}_t \leftarrow \nabla f_t(\boldsymbol{\theta}_{t-1}) + \lambda \boldsymbol{\theta}_{t-1}
           \boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1 - \beta_1) \boldsymbol{g}_t
                                                                                                          ▶ here and below all operations are element-wise
         v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2
          \hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t/(1-\beta_1^t)
                                                                                                                                           \triangleright \beta_1 is taken to the power of t
10: \hat{\mathbf{v}}_t \leftarrow \mathbf{v}_t/(1-\beta_2^t)
                                                                                                                                           \triangleright \beta_2 is taken to the power of t
           \eta_t \leftarrow \text{SetScheduleMultiplier}(t)
11:
                                                                                               > can be fixed, decay, or also be used for warm restarts
           \boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} - \eta_t \left( \alpha \hat{\boldsymbol{m}}_t / (\sqrt{\hat{\boldsymbol{v}}_t} + \epsilon) + \lambda \boldsymbol{\theta}_{t-1} \right)
13: until stopping criterion is met
14: return optimized parameters \theta_t
```

Acknowledgements

- Abhay Narayan Pasupathy Research Group https://anp-lab.physics.columbia.edu/
- Reproducibility: https://drive.google.com/drive/folders/1CJKs_0wGzySyGWV78xK-VB7FZPO_-qDO
- Johannes Geurs https://www.nature.com/articles/s41598-018-23922-1 (paper develops a program for identifying graphene flake from microscope images like originally desired)
- "PYTORCH Documentation." *PyTorch Documentation PyTorch 2.5 Documentation*, pytorch.org/docs/stable/index.html. Accessed 30 Oct. 2024.

- I. Askari, Syed Sajjad. "Alex-Net Explanation and Implementation in Tensorflow and Keras." *Medium*, Medium, 14 Jan. 2023, medium.com/@syedsajjad62/alex-net-explanation-and-implementation-in-tensorflow-and-keras-8047 efeb7a0f.
- II. Sanderson, Grant. "But What is a Convolution?" *Youtube*, 3blue1brown, 29 Dec. 2023, https://www.youtube.com/shorts/kpG712MOcnl.
- III. Ave Coders. "101 Concepts of Data Science and Machine Learning" *Youtube*, AveCoders, 28 May. 2024, https://www.youtube.com/shorts/ykt5PUxs3z8.
- IV. Chima, Precious. "Activation Functions: ReLU & Softmax." *Medium*, Medium, 5 Apr. 2020, https://medium.com/@preshchima/activation-functions-relu-softmax-87145bf39288.
- V. Alexander, Giffah. "Softmax Activation function explained" *Youtube*, Giffah_Alexander, 22 Oct. 2024, https://www.youtube.com/shorts/SrJN_hpiuAs.
- VI. Sigmoid function. "Sigmoid function." *Wikipedia*, Wikipedia, 14 Nov. 2024, https://en.wikipedia.org/wiki/Sigmoid_function.
- VII. Krizhevsky, Sutskever, & Hinton. "ImageNet classification with deep convolutional neural networks." Commun. ACM 60. 2017, accessed 29 October 2024, https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

- VIII. Kingma, Diederik P. "Adam: A method for stochastic optimization." *arXiv preprint arXiv:1412.6980* (2014), accessed 29 October 2024, https://arxiv.org/pdf/1412.6980.
- IX. Gabbard & Miller. "Machine Learning from Scratch: Stochastic Gradient Descent and Adam Optimizer." 18.0851 Project, accessed 17 November 2024,
 https://www.mit.edu/~jgabbard/assets/18085_Project_final.pdf>.
- X. Bangar, Siddhesh. "VGG-Net Architecture Explained." *Medium*, Medium, 28 Jun. 2022, https://medium.com/@siddheshb008/vgg-net-architecture-explained-71179310050f.
- XI. He, Kaiming, et al. "Deep residual learning for image recognition." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016, accessed 29 October 2024, https://arxiv.org/pdf/1512.03385v1.
- XII. loffe, Sergey. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." *arXiv preprint arXiv:1502.03167* (2015). https://arxiv.org/pdf/1502.03167.
- XIII. Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." *arXiv preprint arXiv:1409.1556* (2014). https://arxiv.org/pdf/1409.1556>.
- XIV. Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." *International conference on machine learning*. PMLR, 2019, accessed 29 October 2024, https://arxiv.org/pdf/1905.11946>.

- XV. Hien, Ngo Le Huy. "Grid Search space Illustration" *ResearchGate*, ResearchGate, https://www.researchgate.net/figure/Grid-Search-space-illustration_fig9_346571789.
- XVI. Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018, https://arxiv.org/pdf/1801.04381>.
- XVII. Neural Computing and Applications. "Graph for ReLU6 activation function" ResearchGate,
 ResearchGate, https://www.researchgate.net/figure/Grid-Search-space-illustration_fig9_346571789.
- XVIII. Derevianko, Ivan. "BLAZOR IT'S TIME TO FORGET JAVASCRIPT" *Ivan Derevianko*, Ivan Derevianko, 16 July 2019, https://ivanderevianko.com/2019/07/blazor-its-time-to-forget-javascript.
- XIX. Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016, https://arxiv.org/pdf/1512.00567.
- XX. "Ultralytics." *Ultralytics YOLO Docs*, https://docs.ultralytics.com/. Accessed 30 Oct. 2024.
- XXI. Pandey, Abhishek Kumar. "SiLU (Sigmoid Linear Unit) activation function." *Medium*, Medium, 6 Apr. 2023, https://medium.com/@akp83540/silu-sigmoid-linear-unit-activation-function-d9b6845f0c81.
- XXII. Hidayatullah, Priyanto. "YOLOv8 Architecture Detailed Explanation- A Complete Breakdown" *Youtube*, Dr. Priyanto Hidayatullah, 28 Oct. 2023, https://www.youtube.com/watch?v=HQXhDO7COj8&t=74s&ab_channel=Dr.PriyantoHidayatullah.

- XXIII. Terven, Juan, Diana-Margarita Córdova-Esparza, and Julio-Alejandro Romero-González. "A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas." Machine Learning and Knowledge Extraction 5.4 (2023): 1680-1716, accessed 29 October 2024, https://arxiv.org/pdf/2304.00501v6.
- XXIV. Loshchilov, I. "Decoupled weight decay regularization." *arXiv preprint arXiv:1711.05101* (2017), accessed 29 October 2024, <<u>https://arxiv.org/pdf/1711.05101</u>>.
- XXV. Pytorch. "Vision/Torchvision/Models/Alexnet.Py at Main · Pytorch/Vision." *GitHub*, github.com/pytorch/vision/blob/main/torchvision/models/alexnet.py. Accessed 20 Nov. 2024.
- XXVI. Pytorch. "Vision/Torchvision/Models/ResNet.Py at Main · Pytorch/Vision." *GitHub*, https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py. Accessed 20 Nov. 2024.
- XXVII. Pytorch. "Vision/Torchvision/Models/VGG.Py at Main · Pytorch/Vision." *GitHub*, https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py. Accessed 20 Nov. 2024.
- XXVIII. Nvidia. "DeepLearningExamples/Pytorch/Classification/Convnets/Efficientnet at Master ·
 Nvidia/Deeplearningexamples." GitHub,
 github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/efficientnet.
 Accessed 20 Nov. 2024.
- XXIX. Pytorch. "Vision/Torchvision/Models/Inception.Py at Main · Pytorch/Vision." *GitHub*, https://github.com/pytorch/vision/blob/main/torchvision/models/inception.py. Accessed 20 Nov. 2024.