a)
$$F = GBH$$
 $G = (1)(\frac{5}{3})(\frac{4}{3})(\frac{6}{3}) = 4.44$
 $G = (2)(1)(3)(1) = 6$
 $H = (\frac{4}{3})(\frac{2}{3})(\frac{2}{3})(\frac{2}{300}) = 300$
 $F = 3000$
 $(F)^{1/N} = (8000)^{1/4} = 9.457$

Durin = N(f) 1/4 2 Pi = (4) (8000) 41+2+2+4 Drain = 46.83

 $g_{4}b_{4}b_{4} = {6 \choose 3}{(1) \choose 300} = 9.457; 2 = 63.44$ $g_{5}b_{5}b_{3} = {4 \choose 3}{(3) \choose 2} = 9.457; 2 = 26.83$ $g_{2}b_{2}b_{2} = {5 \choose 3}{(1) \choose 2} = 9.457; y = 4.728$

b) 2-input NAND.

PMOS:
$$26.83 \times 2 = 13.415$$

Width = $13.415 \times 3C = 40.245C$
NMOS: $2683 \times 2 = 13.415$
Width = $13.415 \times 3C = 40.245C$

() Optimum patu delay $(F)^{1/N} = (8000)^{1/N} = 3.59$ $\log 8000 = 7.03 \% T$ $\log 3.59$ $0 = (7)(8000)^{1/2} + 1+2+2+4+1+1+1$ 0 = 37.27

MIDTERM F2020 - ECE734 VATSAL SHREEKANT, 500771363

d) Since N=7 in part (c), hence 3 more stages/ inverters are to be added after the 4-input NAND.

$$[a \circ -1b \circ -1c] \circ -1c] \circ (8000)''^{2} = 300$$

$$\frac{c}{b} = 3.61$$

$$\left(\frac{6}{3}\right)\left(\frac{9}{2}\right) = 3.61$$

$$(\frac{4}{3})(3) = 3.61$$

$$\left(\frac{5}{3}\right)\left(\frac{\chi}{y}\right) = 3.61$$