Math 122B Homework 1

Rad Mallari

April 13, 2022

1 Problem 1

Prove that for any positive integer n,

$$Res_0(1 - e^{-z})^{-n} = 1$$

Proof. Letting $f(z) = \frac{1}{(1-e^{-z})^n}$, we have singularities at

$$e^{-z} = 1 \implies z = 2\pi i k, \quad k \in \mathbb{Z}$$

By using the using the Residue Theorem, we can compute the integral:

$$\frac{1}{2\pi i} \int_C \frac{dz}{(1 - e^{-z})^n} = \text{Res}_0 \left(\frac{1}{(1 - e^{-z})^n} \right)$$

By way of substitution, we can let $w = (1 - e^{-z})$ which implies $dw = e^{-z}$, and our equation becomes

$$\frac{1}{2\pi i} \int_C \frac{dz}{(1 - e^{-z})^n} = \frac{1}{2\pi i} \int_C \frac{dw}{w^n (1 - w)} = \text{Res}_0 \left(\frac{dw}{w^n (1 - w)} \right)$$

Here it's clear that we have a pole of order n at w = 0. Solving for the right hand side, we have that:

$$\operatorname{Res}_0\left(\frac{dw}{w^n(1-w)}\right) = 1$$

So we can conclude:

$$\frac{1}{2\pi i} \int_C \frac{dz}{(1 - e^{-z})^n} = \text{Res}_0\left(\frac{1}{(1 - e^{-z})^n}\right) = \text{Res}_0\left(\frac{dw}{w^n(1 - w)}\right) = 1$$

2 Problem 2

Show that Rouche's Theorem remains valid if the condition: |f| > |g| on γ is replaced by: $|f| \ge |g|$ and f + g does not vanish on γ . **Proof.** Restating Rouche's Theorem as:

$$|f(z) - g(z)| < |g(z)|$$

Would tell us that there are no zeros in γ . Furthermore, if $|f(z)| \leq |g(z)|$, then we know that the number of zeros in $f = \alpha \cdot g$ where α is some constant. Replacing |f| > |g| with $|f| \geq |g|$ tell us |f| > |g| or |f| = |g|. Since f + g does not vanish on γ , f, g have an equal number of zeros in γ . Therefore Rouche's Theorem is valid with the condition $|f| \geq |g|$

3 Problem 3

Show that the function $\sqrt{z^2-1}$ can be defined, and it is analytic, on the complex plane minus the closed interval [-1,1].

Proof. Letting $f(z) = e^{\frac{1}{2}\log(z^2-1)}$, we must prove that f is continuous in $\mathbb{C}\setminus (-\infty,1)$. To do this, we use Morera's Theorem which states that if f is continuous on an open set D, and $\int_{\Gamma} f(z)dz = 0$ where Γ is the boundary of a closed rectangle in D, then f is continuous on D. Since f have singularities along ± 1 , then f(z) is continuous along $\mathbb{C}\setminus (-\infty,1)$. Furthermore, f is analytic in the domain since