

Parul University

Faculty of Engineering & Technology

Department of Applied Sciences and Humanities

1st Year B.Tech Programme (All Branches)

Mathematics – 1 (203191102)

Unit – 4 Sequence and Series (Lecture Note)

Sequence:

- ➤ Limit of a sequence
- ➤ Convergence & Divergence of a sequence
- ➤ Oscillatory sequence
- > Sandwich/Squeezing theorem for sequences
- > Convergence properties of sequence
- ➤ Monotonic sequence(Monotonic increasing & Monotonic decreasing)
- > Alternating sequence
- ➤ Bounded & Unbounded sequence.

Series:

- ➤ Convergence, Divergence & Oscillatory series
- > Some properties of infinite series
- > Telescoping series
- Geometric series
- > p-series, Integral test
- Comparison test
 - (i)Direct
 - (ii)Limit Comparison
- ➤ D'Alembert ratio test
- > Cauchy's root test
- ➤ Alternating series
- ➤ Leibnitz test
- ➤ Absolute and conditionally convergent
- > Power series

Interval of convergence

Radius of convergence

Sequence:

A sequence is a function whose domain is the set of positive integers.

It is generally written as $a_1, a_2, a_3, \dots, a_n, \dots$

➤ If the number of terms in a sequence is infinite, it is called infinite sequence otherwise it is said to be finite sequence

$$e. g. 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$
 ; $1, -1, 2, -2, \dots$

Limit of a sequence:

Let $\{a_n\}$ be a sequence.

A real number l is said to be the limit of the sequence $\{a_n\}$; if for every $\varepsilon >$

0, there exist an integer N such that $n \ge N \Rightarrow |a_n - l| < \varepsilon$

If such a number exists then we write

$$\lim_{n\to\infty}a_n=l.$$

Convergence, Divergence & oscillations of a sequence:

 \triangleright A sequence $\{a_n\}$ is said to be convergent if the sequence has finite limit.

i.e. if
$$\lim_{n\to\infty} a_n = finite$$
.

 \triangleright A sequence $\{a_n\}$ is said to be divergent if the sequence has infinite limit.

i.e.
$$if \lim_{n\to\infty} a_n = \pm \infty.$$

For example, $\lim_{n\to\infty}\frac{1}{n}=0$, $\lim_{n\to\infty}\frac{n+1}{n}=1$, $\lim_{n\to\infty}2n=\infty$,

A sequence $\{a_n\}$ is said to be oscillatory if the sequence is neither convergent nor divergent. For example, let

$$\{u_n\} = \left\{ (-1)^n + \frac{1}{\frac{1}{2n}} \right\}$$

$$n \xrightarrow{\lim} \infty u_n = 2 \text{ if } n \text{ is even}$$

$$= 0 \text{ if } n \text{ is odd}$$

Since the limit is not unique, the sequence is oscillatory.

Convergence properties of sequences:

 \triangleright Let $\{a_n\}$ and $\{b_n\}$ be two convergent sequences and k be any real number, then the following sequences will also converge.

1)
$$\{a_n + b_n\}$$
 With $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} (a_n) + \lim_{n \to \infty} (b_n)$

2)
$$\{ka_n\}$$
 With $\lim_{n\to\infty} (ka_n) = k \lim_{n\to\infty} (a_n)$

3)
$$\{a_n b_n\}$$
 With $\lim_{n \to \infty} (a_n b_n) = \left(\lim_{n \to \infty} (a_n)\right) \left(\lim_{n \to \infty} (b_n)\right)$

4)
$$\left\{\frac{a_n}{b_n}\right\} \qquad \text{With} \quad \lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n \to \infty} (a_n)}{\lim_{n \to \infty} (b_n)} \; ; \quad \left(if \lim_{n \to \infty} (b_n) \neq 0\right)$$

Some Important Formula:

$$\lim_{n \to \infty} \frac{\ln(n)}{n} = 0$$

$$\lim_{n \to \infty} x^{\frac{1}{n}} = 1(x > 0)$$

$$\lim_{n \to \infty} x^{\frac{1}{n}} = 1(x > 0)$$

$$\lim_{n \to \infty} (1 + \frac{x}{n})^n$$

$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$

$$\lim_{n \to \infty} \left(\frac{x^n}{n!}\right) = 0 \quad (anyx)$$

$$= e^x \quad (anyx)$$

Que. Applying the definition, show that $\left\{\frac{1}{n}\right\}$ converges 0 as $n \to \infty$.

To prove: Let $\epsilon > 0$, we must show that there exists an integer N such that for all n,

$$n > N \Longrightarrow \left| \frac{1}{n} - 0 \right| < \epsilon$$

Solution: Let $\epsilon > 0$ be given.

Let *N* be an integer such that $N > \frac{1}{\epsilon}$.

$$n \ge N \implies n \ge N > \frac{1}{\epsilon}$$

$$\implies n > \frac{1}{\epsilon}$$

$$\implies \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \epsilon$$

$$\implies \left| \frac{1}{n} - 0 \right| < \epsilon$$

$$\therefore \lim_{n\to\infty}\frac{1}{n}=0$$

Que. Test the Convergence of the following sequences:

$$1) \quad \left\{ \frac{n^2 + n}{2n^2 - n} \right\}$$

Solution:

Let
$$n \xrightarrow{lin} \infty a_n = n \xrightarrow{\lim} \infty \frac{n^2 + n}{2n^2 - n}$$

$$= n \xrightarrow{\lim} \infty \frac{n^2 (1 + \frac{1}{n})}{n^2 (2 - \frac{1}{n})}$$

$$= \frac{1}{2}$$

As the value of limit is finite the sequence is convergent.

2)
$$\{2^n\}$$

Solution:

Let
$$n \xrightarrow{lin} \infty a_n = n \xrightarrow{\lim} \infty 2^n$$

= 2^{∞}

As the value of the sequence is infinite the sequence is divergent.

3)
$$\left\{2 - (-1)^n\right\}$$

Solution:
Let $a_n = 2 - (-1)^n$

Let
$$a_n = 2 - (-1)^n$$

 $n \xrightarrow{lin} \infty 2 - (-1)^n$
 $= 2 + 1 = 3$ if n is odd
 $0r = 2 - 1 = 1$ if n is even

As the value of limit is not unique the sequence is oscillating sequence.

$$4) \left\{ \sqrt{n+1} - \sqrt{n} \right\}_{n=1}^{\infty}$$

Solution:

$$n \xrightarrow{lin} \infty \sqrt{n+1} - \sqrt{n}$$

$$= n \xrightarrow{lin} \infty \sqrt{n+1} - \sqrt{n} \quad X \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$

$$= n \xrightarrow{lin} \infty \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}}$$

$$= n \xrightarrow{lin} \infty \frac{1}{\infty} = 0$$

As the value of limit is finite the sequence is convergent.

Monotonic sequence:

A sequence $\{a_n\}$ is said to be <u>monotonically increasing</u> if $a_n \le a_{n+1}$ for each value of n.

$$a_n - a_{n+1} \le 0$$

- A sequence $\{a_n\}$ is said to be <u>monotonically decreasing</u> if $a_n \ge a_{n+1}$ for each value of n.
- A sequence $\{a_n\}$ is said to be <u>strictly increasing</u> if $a_n < a_{n+1}$ for each value of n.
- A sequence $\{a_n\}$ is said to be <u>strictly decreasing</u> if $a_n > a_{n+1}$ for each value of n.
- \triangleright A sequence $\{a_n\}$ is said to be <u>monotonic</u> if it is either increasing or decreasing.

***** Bounded & unbounded sequence:

- A sequence $\{a_n\}$ is said to be <u>bounded above</u> if there is a real number M such that $a_n \leq M$, for all $n \in \mathbb{N}$. M is said to be an <u>upper bound</u> of the sequence.
- A sequence $\{a_n\}$ is said to be <u>bounded below</u> if there is a real number m such that
 - $a_n \ge m$, for all $n \in \mathbb{N}$.m is said to be a <u>lower bound</u> of the sequence.
- \triangleright A sequence $\{a_n\}$ is said to be <u>bounded</u> if it is both bounded above and bounded below.
- \triangleright A sequence $\{a_n\}$ is said to be <u>unbounded</u> if it is not bounded.

1)
$$a_n = n$$

$$a_n = 1,2,3,4, \dots \dots$$

 $a_n \ge 1$

 a_n is bounded below.

$$2) \ a_n = \frac{n}{n+1}$$

$$=\frac{1}{2},\frac{2}{3},\frac{3}{4},\dots\dots$$

$$a_n \ge \frac{1}{2}$$
, bounded below $a_n < 1$, bounded above

$$\frac{1}{2} \le a_n < 1$$

 a_n is bounded.

3)
$$a_n = \frac{1}{n}$$

$$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots$$

 $a_n \leq 1$, bounede above

 $a_n > 0$, bounded below

It is bounded.

4)
$$a_n = (-1)^n$$

5)
$$a_n = (-1)^n . n$$

unbounded.

❖ Note that

- \triangleright If $\{a_n\}$ is bounded above and increasing then it is convergent.
- \triangleright If $\{a_n\}$ is unbounded above and increasing then it is divergent to ∞ .
- \triangleright If $\{a_n\}$ is bounded below and decreasing then it is convergent.
- \triangleright If $\{a_n\}$ is unbounded below and decreasing then it is divergent to $-\infty$.
 - 1) The sequence n^2

Increasing sequence

2)
$$\frac{1}{2^n}$$

Decreasing sequence

Sandwich theorem:

Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ be sequences of real numbers such that

$$(i)c_n \leq a_n \leq b_n$$
; $\forall n \geq n_0$, for some n_0 and
$$(ii) \lim_{n \to \infty} c_n = l = \lim_{n \to \infty} b_n$$
 then $\lim_{n \to \infty} a_n = l$

Que. Show that the sequence $\left\{\frac{\sin n}{n}\right\}_{n=1}^{\infty}$ converges to 0.

Solution:

We know that
$$-1 \le sinn \le 1 \Longrightarrow -\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$$

Further,
$$\lim_{n\to\infty} \left(-\frac{1}{n}\right) = 0$$
 and $\lim_{n\to\infty} \frac{1}{n} = 0$.

$$\therefore$$
 By sandwich theorem, $\lim_{n\to\infty} \frac{\sin n}{n} = 0$

Example: Check the sequence

$$a_n = \frac{n}{n^2+1}$$
 is decreasing and bounded. Is cgt?

Solution:

$$a_n = \frac{n}{n^2 + 1}$$

$$a_{n+1} = \frac{n+1}{(n+1)^2 + 1}$$

$$a_n - a_{n+1} = \frac{n}{n^2 + 1} - \frac{n+1}{(n+1)^2 + 1} > 0$$

$$a_n - a_{n+1} > 0$$

It is decreasing squence.

$$a_n = \frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \dots$$

 $a_n \le \frac{1}{2}, \quad a_n > 0$

$$0 < a_n \le \frac{1}{2}$$
.

It is bounded.

Every monotonically bounded sequence is cgt.

***** Infinite Series:

The sum of an infinite sequence of numbers is called **infinite Series**

e.g.
$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

- \triangleright $S_n = a_1 + a_2 + a_3 + \cdots + a_n$ is called nth partial sum of the series.
- ➤ The convergence of infinite series depends on the convergence of the corresponding infinite sequence of partial sums.
- > The infinite series is

Convergent if
$$\lim_{n \to \infty} S_n$$
$$= S (finite)$$

Divergent if
$$\lim_{n \to \infty} S_n = \infty$$
 or $-\infty$

Oscillatory if $\lim_{n \to \infty} S_n = niether finite nor$

Use $\lim_{n \to \infty} S_n = niether finite nor$
 $\lim_{n \to \infty} S_n = \infty$

Value fluctuates within finite range

Value fluctuates within ∞ and $-\infty$

ightharpoonup If a series $\sum_{n=1}^{\infty} a_n$ converges to S then we say that the sum of the series is S

and we write
$$\sum_{n=1}^{\infty} a_n = S$$

***** Convergence properties of series:

Let $\sum a_n$ and $\sum b_n$ be two convergent series and k be any real number, then the following series will also converge.

1)
$$\sum (a_n \pm b_n)$$
 with $\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n$

2)
$$\sum ka_n$$
 With $\sum ka_n = k \sum a_n$

Telescoping series:

A series is said to be telescoping if while writing the nth partial sum all terms except first and last vanish.

Que Check the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

Solution: Here,
$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$
.
$$\frac{1}{1} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

Therefore the partial sum is given by,

$$\begin{split} s_n &= a_1 + a_2 + \dots + a_{n-1} + a_n \\ &= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) \\ &+ \left(\frac{1}{n} - \frac{1}{n+1}\right) \\ &= 1 - \frac{1}{n+1} \\ \therefore S &= \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 \end{split}$$

$$\therefore \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

It is cgt.

For example:
$$\frac{1}{n(n+3)} = \frac{1}{3} \left(\frac{1}{n} - \frac{1}{n+3} \right)$$

Que. Find the Sum of the series $\log 2 + \log \frac{3}{2} + \log \frac{4}{3} + \dots + \infty$

Solution:

$$S_n = \log 2 + \log \frac{3}{2} + \log \frac{4}{3} + \dots + \log \frac{n+1}{n}$$

$$= \log(2 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \dots \cdot \frac{n+1}{n})$$

$$S_n = \log(n+1)$$

$$n \xrightarrow{\lim} \infty S_n = n \xrightarrow{\lim} \infty \log(n+1)$$

$$= \log \infty$$

As it is infinite therefore the series is divergent.

Que. Find the Sum of the series $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \infty$

Solution:
$$a_n = \frac{n}{(n+1)!} = \frac{(n+1)-1}{(n+1)!} = \frac{1}{n!} - \frac{1}{(n+1)!}$$

Therefore the partial sum is given by,

$$s_{n} = a_{1} + a_{2} + \dots + a_{n-1} + a_{n}$$

$$= \left(\frac{1}{1!} - \frac{1}{2!}\right) + \left(\frac{1}{2!} - \frac{1}{3!}\right) + \dots + \left(\frac{1}{(n-1)!} - \frac{1}{n!}\right)$$

$$+ \left(\frac{1}{n!} - \frac{1}{(n+1)!}\right)$$

$$= 1 - \frac{1}{(n+1)!}$$

$$\therefore S = \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \left(1 - \frac{1}{(n+1)!}\right) = 1$$

$$\therefore \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots = \sum_{n=1}^{\infty} \frac{n}{(n+1)!} = 1$$

***** Geometric Series:

An infinite series in the form $a + ar + ar^2 + \dots + ar^{n-1} + \dots + ar^{n-1} + \dots$ is said to be a geometric series.

It converges to
$$\frac{a}{1-r}$$
 if $|r| < 1$ i.e. $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$, $|r| < 1$.

If $|r| \ge 1$ then the series diverges.

If r = -1 then series is oscillatory.

Que. Discuss the convergence of $\sum_{n=0}^{\infty} 2^n$

Solution:

Given series, $\sum_{n=0}^{\infty} 2^n = 2^0 + 2^1 + 2^2 + \cdots$ is a geometric series with a = 1 and r = 2

$$r = \frac{2}{1} = 2$$
, $r = \frac{4}{2} = 2$

Since r = 2 > 1, the series is divergent.

Que. Check the convergence of a series $\frac{1}{3^0} - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + \cdots$ Also find sum

Solution:

$$S_n = 1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \cdots$$

$$r = \frac{a_2}{a_1} = -\frac{\frac{1}{3}}{1} = -\frac{1}{3}$$

$$r = \frac{a_3}{a_2} = \frac{\frac{1}{9}}{-\frac{1}{3}} = -\frac{1}{3}$$

$$r = -\frac{1}{3}$$

Here the series is geometric series with a = 1 and and $|r| = \frac{1}{3}$

Since $|r| = \frac{1}{3} < 1$, the series is convergent.

$$Sum = \frac{a}{1-r} = \frac{1}{1 - \left(-\frac{1}{3}\right)} = \frac{1}{\frac{4}{3}} = \frac{3}{4}.$$

Que. Discuss the convergence of $\sum_{n=1}^{\infty} \frac{3^{2n}}{4^{2n}}$

Solution: Since,

$$\sum_{n=1}^{\infty} \frac{3^{2n}}{4^{2n}} = \sum_{n=1}^{\infty} \frac{(3^2)^n}{(4^2)^n} = \sum_{n=1}^{\infty} \frac{(9)^n}{(16)^n} = \sum_{n=1}^{\infty} \left(\frac{9}{16}\right)^n$$

is a geometric series with $a = \frac{9}{16}$ and $r = \frac{9}{16}$.

Since $r = \frac{9}{16} < 1$, it is convergent. Further it converges to $\frac{a}{1-r} = \frac{\left(\frac{9}{16}\right)}{\left(1-\left(\frac{9}{16}\right)\right)} = \frac{9}{7}$

Que. Check the convergence of $\sum_{n=1}^{\infty} \frac{4^n + 5^n}{6^n}$

Solution:

$$\sum_{n=1}^{\infty} C_n = \sum_{n=1}^{\infty} \left[\left(\frac{4}{6} \right)^n + \left(\frac{5}{6} \right)^n \right] = \sum_{n=1}^{\infty} \left(\frac{4}{6} \right)^n + \sum_{n=1}^{\infty} \left(\frac{5}{6} \right)^n = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$
where $a_n = \left(\frac{4}{6} \right)^n$ and $b_n = \left(\frac{5}{6} \right)^n$

For
$$\sum a_n$$
, $r = \left(\frac{4}{6}\right) < 1$, hence $\sum a_n$ is convergent. And $\sum a_n = \frac{\left(\frac{4}{6}\right)}{\left(1 - \frac{4}{6}\right)} = \frac{4}{2} = 2$.

Similarly, for $\sum b_n$, $r = \left(\frac{5}{6}\right) < 1$ so $\sum b_n$ is also convergent.

And
$$\sum b_n = \frac{\binom{5}{6}}{\left(1 - \frac{5}{6}\right)} = 5$$

Thus, the sum of $\sum a_n + \sum b_n$ is also convergent. i. e. $\sum c_n$ is convergent.

Further,
$$\sum c_n = \sum a_n + \sum b_n = 2 + 5 = 7$$

Exercise:

- 1) Find the sum of $\sum_{n\to 1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}$
- 2) Find the sum of $\sum_{n\to 1}^{\infty} \frac{4^n+1}{6^n}$
 - 3) prove that $1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \frac{16}{81} + \cdots$ converges and find its sum.
 - 4) prove that $5 \frac{10}{3} + \frac{20}{9} \frac{40}{27} + \cdots$ converges and find its sum.

P-Series Test

The Series $\sum_{n=0}^{\infty} \frac{1}{n^{P}}$ converges if P > 1, and diverges if $P \le 1$

$$1.\sum \frac{1}{x^3}$$
 is cgt or dgt?

2.
$$\sum \frac{1}{x^{-3}}$$
 is cgt or dgt?

3.
$$\sum \frac{1}{x}$$
 is cgt or dgt?

4.
$$\sum \frac{1}{x^{\frac{3}{4}}}$$
 is cgt or dgt?

Zero test of Divergence (Divergence test):

If $\lim_{n\to\infty} a_n \neq 0$ then $\sum_{n=1}^{\infty} a_n$ must be divergent

Note: If $\lim_{n\to\infty} a_n = 0$ then nothing can be said about convergence of the series

 $\sum_{n=1}^{\infty} a_n$. We have to apply another test for convergence

Que. Test the convergence of following series

$$1) \sum_{n=1}^{\infty} n \sin \frac{1}{n}$$

Solution:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} n \sin \frac{1}{n} = \lim_{n \to \infty} \frac{\sin \left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)} = 1 \neq 0$$

Hence, by zero test, the series is divergent.

$$2)\sqrt{\frac{1}{2}}+\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{4}}+\cdots\infty$$

Solution:

Here,
$$a_n = \sqrt{\frac{n}{n+1}}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt{\frac{n}{n+1}} = \lim_{n \to \infty} \sqrt{\frac{n}{n\left(1+\frac{1}{n}\right)}} = \lim_{n \to \infty} \sqrt{\frac{1}{\left(1+\frac{1}{n}\right)}} = \sqrt{\frac{1}{(1+0)}}$$

$$= 1 \neq 0$$

Hence, by zero test, the series is divergent.

Que. Prove that $\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^2 + 1}$ is divergent.

Solution:

Hence, by zero test, the series is divergent.

❖ The Integral Test:

Let $\{a_n\}$ be a sequence of positive terms.

Suppose that $a_n = f(n)$, where f is a continuous, positive, decreasing function of x for all $x \ge N$ (N is a positive integer).

Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_{N}^{\infty} f(x) dx$ both converge or both diverge.

If $\int_{1}^{\infty} f(x) dx =$ finite than it is convergent. and if it is infinite than it is divergent.

Que. Test the convergence of $\sum \frac{1}{n \log n}$; $n \ge 2$

Solution:

Let $f(x) = \frac{1}{x \log x}$; $x \ge 2$. Then f(x) is a continuous, positive, decreasing function of x for all $x \ge 2$.

Also,
$$a_n = \frac{1}{n \log n} = f(n)$$
; $n \ge 2$.

$$\int_{2}^{\infty} f(x) dx = \int_{2}^{\infty} \frac{1}{x \log x} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x \log x} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{\left(\frac{1}{x}\right)}{\log x} dx$$
$$= \lim_{b \to \infty} \log (\log x)$$
$$= \lim_{b \to \infty} [\log(\log b) - \log(\log 2)]$$
$$= \infty - 2 = \infty$$

i. e. $\int_{2}^{\infty} f(x) dx$ is divergent.

Hence, by integral test, the given series also diverges.

Que.. Test the convergence of

$$\sum_{n=1}^{\infty} ne^{-n^2}$$

Solution:

Let $f(x) = xe^{-x^2}$; $x \ge 1$. Then f(x) is a continuous, positive, decreasing function of x for all $x \ge 1$.

Also,
$$a_n = ne^{-n^2} = f(n)$$
; $n \ge 1$.

$$\int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} xe^{-x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} xe^{-x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b^{2}} e^{-t} \left(\frac{dt}{2}\right)$$

$$\left[\text{taking } x^{2} = t \text{ we get } xdx = \frac{dt}{2} \text{ and } x = 1 \Rightarrow t = 1 \text{ and } x = b \Rightarrow t = b^{2} \right]$$

$$= \frac{1}{2} \lim_{b \to \infty} \left[\frac{e^{-t}}{(-1)} \right]_{1}^{b^{2}}$$
$$= \frac{-1}{2} \lim_{b \to \infty} \left[e^{-b^{2}} - e^{-1} \right]$$

$$= \frac{-1}{2} \left[0 - \frac{1}{e} \right] = \frac{1}{2e} = \text{finite}$$

i. e. $\int_2^\infty f(x) dx$ is convergent.

Hence, by integral test, the given series also converges.

Que. Test the convergence of the series

$$\sum_{n=1}^{\infty} \frac{1}{n[1+\log^2 n]}$$

Solution:

Let $f(x) = \frac{1}{x[1+\log^2 x]}$; $x \ge 1$. Then f(x) is a continuous, positive, decreasing function of x for all $x \ge 1$.

Also,
$$a_n = \frac{1}{n[1 + \log^2 n]} = f(n)$$
; $n \ge 1$

$$\int_{1}^{\infty} f(x) \, dx = \int_{1}^{\infty} \frac{1}{x[1 + \log^2 x]} \, dx$$

$$= \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x[1 + \log^2 x]} \, dx$$

Taking $\log x = t$ then $\frac{1}{x} dx = dt$ and $x = 1 \Longrightarrow t = \log 1 = 0$ and $x = b \Longrightarrow t = \log b$

$$\therefore \int_{1}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x[1 + \log^{2} x]} dx = \lim_{b \to \infty} \int_{0}^{\log b} \frac{1}{1 + t^{2}} dt$$

$$= \lim_{b \to \infty} [\tan^{-1} t]_{0}^{\log b} = \lim_{b \to \infty} [\tan^{-1} (\log b) - \tan^{-1} 0]$$

$$= [\tan^{-1} \infty - \tan^{-1} 0] = \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

i. e. $\int_{2}^{\infty} f(x) dx$ is convergent.

Hence, by integral test, the given series also converges.

Que. Test the convergence of the series $\sum_{n=1}^{\infty} n^2 e^{-n^3}$ Sol: $\int_1^{\infty} x^2 e^{-x^3} dx = \lim_{b \to \infty} \int_1^b x^2 e^{-x^3} dx = \lim_{b \to \infty} -\frac{1}{3} \int_1^b -3x^2 e^{-x^3} dx = \lim_{b \to \infty} -\frac{1}{3} [e^{-x^3}]_1^b$

$$=-\frac{1}{3}\left[e^{-\infty}-e^{-1}\right]$$
$$=-\frac{1}{3}\left[0-\frac{1}{e}\right]$$
$$=\frac{1}{3e}=\text{finite}$$

By Integral test, it is convergent.

Example: Test the convergence of $\sum_{n\to 1}^{\infty} \frac{1}{\sqrt{n}}$

Sol:
$$\int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} \frac{1}{\sqrt{x}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{\sqrt{x}} dx = [2\sqrt{x}]_{1}^{\infty} = \infty - 2 = \infty$$

By Integral test, it is divergent.

Direct Comparison Test

Let $\sum a_n$ be a series with no negative terms.

- (a) $\sum a_n$ converges if there is a convergent series $\sum c_n$ with $a_n \le c_n$ for all n > N, for some integer N.
- (b) $\sum a_n$ diverges if there is a divergent series of nonnegative terms $\sum d_n$ with $a_n \ge d_n$ for all n > N, for some integer N.

❖ Limit Comparison Test

Suppose that $a_n > 0$ and $b_n > 0$ for all forall $n \ge N$ (N an integer).

- (a) If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
- (b) If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- (c) If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Note:
$$b_n = \frac{\textit{Highest power term in numerator}}{\textit{Highest power term in denomerator}}$$

Que. for what value of p does the series $\frac{2}{1^p} + \frac{3}{2^p} + \frac{4}{3^p} + \cdots$ is convergent? **Solution:**

Here,
$$a_n = \frac{n+1}{n^p} = \frac{n\left(1+\frac{1}{n}\right)}{n^p} = \frac{\left(1+\frac{1}{n}\right)}{n^{(p-1)}} = \frac{1}{n^{(p-1)}} \left(1+\frac{1}{n}\right).$$

Let $b_n = \frac{1}{n^{(p-1)}}$. Then $\frac{a_n}{b_n} = \left(1+\frac{1}{n}\right)$

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left(1+\frac{1}{n}\right) = 1+0 = 1 \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

 $\sum b_n = \sum \frac{1}{n^{(p-1)}}$ converges for p-1>1 , i.e. for p>2 and it diverge otherwise.

 $\therefore \sum a_n = \sum \frac{n+1}{n^p}$ converges for $p \ge 2$ and it diverge otherwise.

Que. Test the convergence of

$$\sum_{n=1}^{\infty} \frac{2n^2 + 2n}{5 + n^5}$$

Solution:

Here,
$$a_n = \frac{2n^2 + 2n}{5 + n^5} = \frac{n^2 \left(2 + \frac{2}{n}\right)}{n^5 \left(\frac{5}{n^5} + 1\right)} = \frac{1}{n^3} \frac{\left(2 + \frac{2}{n}\right)}{\left(\frac{5}{n^5} + 1\right)}.$$

Let
$$b_n = \frac{n^2}{n^5} = \frac{1}{n^3}$$
. Then $\frac{a_n}{b_n} = \frac{\left(2 + \frac{2}{n}\right)}{\left(\frac{5}{n^5} + 1\right)}$

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\left(2 + \frac{2}{n}\right)}{\left(\frac{5}{n^5} + 1\right)} = \frac{(2+0)}{(0+1)} = 2 \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

Now, $\sum b_n = \sum \frac{1}{n^3}$ is a p-series with p=3>1. Hence, it is convergent.

$$\therefore \sum a_n = \sum \frac{2n^2 + 2n}{5 + n^5}$$
 converges. [by comparison test]

Que: Test the convergence of $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2+1}$

Sol:
$$a_n = \frac{\sqrt{n}}{n^2 + 1}$$

$$b_n = \frac{\sqrt{n}}{n^2} = \frac{1}{n^{2-\frac{1}{2}}} = \frac{1}{n^{\frac{3}{2}}}$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{\sqrt{n}}{n^2+1}}{\frac{1}{n^2}} = \lim_{n \to \infty} n^{\frac{3}{2}} \frac{\sqrt{n}}{n^2+1} = \lim_{n \to \infty} \frac{n^2}{n^2+1} = \lim_{n \to \infty} \frac{n^2}{n^2 \left(1 + \frac{1}{n^2}\right)} = 1 \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

$$b_n = \frac{1}{n^{\frac{3}{2}}}$$
, By p – series, $p = \frac{3}{2} > 1$, it is convergent.

By Limit comparision Test, $\sum a_n$ is convergent.

Que. Test the convergence of the series

$$\sum_{n=1}^{\infty} \frac{n^p}{\sqrt{n+1} + \sqrt{n}}$$

Here,
$$a_n = \frac{n^p}{\sqrt{n+1} + \sqrt{n}} = \frac{n^p}{n^{\frac{1}{2}} \left(\sqrt{1 + \frac{1}{n}} + 1\right)} = \frac{1}{n^{\frac{1}{2} - p}} \frac{1}{\left(1 + \sqrt{1 + \frac{1}{n}}\right)}$$
.

Let $b_n = \frac{n^p}{n^{\frac{1}{2}}} = \frac{1}{n^{\frac{1}{2} - p}}$. Then $\frac{a_n}{b_n} = \frac{1}{\left(1 + \sqrt{1 + \frac{1}{n}}\right)}$

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{\left(1 + \sqrt{1 + \frac{1}{n}}\right)} = \frac{1}{\left(1 + \sqrt{1 + 0}\right)} = \frac{1}{2} \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

Now, $\sum b_n = \sum \frac{1}{n^{\frac{1}{2}-p}}$ is a p-series which converges for $\frac{1}{2}-p>1$, i.e. for $p<-\frac{1}{2}$ and diverges otherwise.

 $\therefore \sum a_n = \sum \frac{n^p}{\sqrt{n+1} + \sqrt{n}}$ also converges for $p < -\frac{1}{2}$ and diverges otherwise.[by comparison test]

Que. Test the convergence of the series

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots$$

Solution:

Here,
$$a_n = \frac{1}{n \cdot (n+1)} = \frac{1}{n^2} \frac{1}{\left(1 + \frac{1}{n}\right)}$$
.
Let $b_n = \frac{1}{n^2}$. Then $\frac{a_n}{b_n} = \frac{1}{\left(1 + \frac{1}{n}\right)}$

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)} = \frac{1}{(1+0)} = 1 \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

Now, $\sum b_n = \sum \frac{1}{n^2}$ is a p – series with p = 2 > 1. Hence, it is convergent.

$$\therefore \sum a_n = \sum \frac{1}{n(n+1)}$$
 converges. [by comparison test]

Que. Test the convergence of

$$\sum_{n=1}^{\infty} \frac{1}{1^2 + 2^2 + 3^2 + \dots + n^2}$$

$$a_n = \frac{1}{1^2 + 2^2 + 3^2 + \dots + n^2} = \frac{1}{\sum n^2} = \frac{1}{\left(\frac{n(n+1)(2n+1)}{6}\right)}$$

$$= \frac{1}{n^3} \frac{6}{1\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)}$$

$$= \frac{6}{n \cdot n \cdot n\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)}$$

$$(n^2 + n)(2n + 1) = (2n^3 + n^2 + 2n^2 + n) = 2n^3 + 3n^2 + n$$

$$= n^3(2 + \frac{3}{n} + \frac{1}{n^2})$$

$$\text{Let } b_n = \frac{1}{n^3}. \text{ Then } \frac{a_n}{b_n} = \frac{6}{\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)}$$

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{6}{\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)} = \frac{6}{(1 + 0)(2 + 0)} = 3 \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

Now, $\sum b_n = \sum \frac{1}{n^3}$ is a p-series with p=3>1. Hence, it is convergent.

$$\therefore \sum a_n = \sum_{1^2+2^2+3^2+\cdots+n^2}^{1} \text{ converges. [by comparison test]}$$

* Ratio Test(D' Alembert Ratio Test)

Let $\sum a_n$ be a series with positive terms and suppose that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$

Then (a) the series converges if L < 1

(b)the series diverges if L > 1,

(c) the test is fail if L = 1

Que. Test the convergence of a series $\sum \frac{1}{n!}$

Solution:

Here
$$a_n = \frac{1}{n!} \Longrightarrow a_{n+1} = \frac{1}{(n+1)!}$$
 and
$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+1)!} = \frac{1}{n+1}$$

$$\therefore L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1$$

Hence, by ratio test, given series is convergent.

Que. Test the convergence of the series $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots$

Here
$$a_n = \frac{n}{(n+1)!}$$

$$\Rightarrow a_{n+1} = \frac{n+1}{(n+2)!} and \frac{a_{n+1}}{a_n} = \frac{n+1}{(n+2)!} \frac{(n+1)!}{n} = \frac{(n+1)!}{(n+2)(n+1)!} \frac{n+1}{n}$$

$$= \frac{1}{n+2} \left(1 + \frac{1}{n}\right)$$

$$\therefore L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{n+2} \left(1 + \frac{1}{n}\right) = 0(1+0) = 0 < 1$$

Hence, by ratio test, given series is convergent.

Que. Test the convergence of the series $\sum_{n=0}^{\infty} \frac{4^n - 1}{3^n}$

Solution:

Here
$$a_n = \frac{4^{n-1}}{3^n}$$

$$\Rightarrow a_{n+1} = \frac{4^{n+1} - 1}{3^{n+1}} and$$

$$\frac{a_{n+1}}{a_n} = \frac{4^{n+1} - 1}{3^{n+1}} \frac{3^n}{4^n - 1} = \frac{3^n}{3^{n+1}} \frac{4^n \left(4 - \frac{1}{4^n}\right)}{4^n \left(1 - \frac{1}{4^n}\right)} = \frac{1}{3} \left(\frac{4 - \frac{1}{4^n}}{1 - \frac{1}{4^n}}\right)$$

$$\therefore L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{3} \left(\frac{4 - \frac{1}{4^n}}{1 - \frac{1}{4^n}} \right) = \frac{1}{3} \left(\frac{4 - 0}{1 - 0} \right) = \frac{4}{3} > 1$$

Hence, by ratio test, given series is divergent.

Que. Example: Test the convergence of the series $\sum_{n=0}^{\infty} \frac{n3^n(n+1)!}{2^n n!}$

Solution:

$$a_{n} = \frac{n3^{n}(n+1)!}{2^{n}n!}$$

$$= n(n+1)\left(\frac{3}{2}\right)^{n}$$

$$\Rightarrow a_{n+1} = (n+1)(n+2)\left(\frac{3}{2}\right)^{n+1} and$$

$$\frac{a_{n+1}}{a_{n}} = \frac{(n+1)(n+2)\left(\frac{3}{2}\right)^{n+1}}{n(n+1)\left(\frac{3}{2}\right)^{n}} = \frac{(n+2)}{n}\left(\frac{3}{2}\right)$$

$$= \left(1 + \frac{2}{n}\right)\left(\frac{3}{2}\right)$$

$$\therefore L = \lim_{n \to \infty} \frac{a_{n+1}}{a_{n}} = \lim_{n \to \infty} \left(1 + \frac{2}{n}\right)\left(\frac{3}{2}\right) = (1+0)\left(\frac{3}{2}\right) = \frac{3}{2} > 1$$

Hence, by ratio test, given series is divergent.

Que. Test the convergence of

$$\sum_{n=1}^{\infty} \frac{1}{1^2 + 2^2 + 3^2 + \dots + n^2}$$

Solution:

$$a_{n} = \frac{1}{1^{2} + 2^{2} + 3^{2} + \dots + n^{2}} = \frac{1}{\sum n^{2}} = \frac{1}{\frac{n(n+1)(2n+1)}{6}}$$

$$= \frac{6}{n(n+1)(2n+1)}$$

$$\Rightarrow a_{n+1} = \frac{6}{(n+1)(n+2)(2(n+1)+1)} = \frac{6}{(n+1)(n+2)(2n+3)}$$
 and
$$\frac{a_{n+1}}{a_{n}} = \frac{6}{(n+1)(n+2)(2n+3)} = \frac{n(2n+1)}{(n+1)(n+2)(2n+3)}$$

$$= \frac{\left(2 + \frac{1}{n}\right)}{\left(1 + \frac{2}{n}\right)\left(2 + \frac{3}{n}\right)}$$

$$\therefore L = \lim_{n \to \infty} \frac{a_{n+1}}{a_{n}} = \lim_{n \to \infty} \frac{\left(2 + \frac{1}{n}\right)}{\left(1 + \frac{2}{n}\right)\left(2 + \frac{3}{n}\right)}$$

$$= \frac{(2+0)}{(1+0)(2+0)} = 1$$

Hence, by ratio test fails.

We need to use some other test to check the convergence of the series.

Using comparison test as follows:

$$a_n = \frac{1}{1^2 + 2^2 + 3^2 + \dots + n^2} = \frac{1}{\sum n^2} = \frac{1}{\frac{n(n+1)(2n+1)}{6}} = \frac{1}{n^3} \frac{6}{1\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)}$$
Let $b_n = \frac{1}{n^3}$. Then $\frac{a_n}{b_n} = \frac{6}{\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)}$

$$\therefore \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{6}{\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)} = \frac{6}{(1+0)(2+0)} = 3 \neq 0$$

 $\therefore \sum a_n$ and $\sum b_n$ both converges or diverges together.

Now, $\sum b_n = \sum \frac{1}{n^3}$ is a p-series with p=3>1. Hence, it is convergent.

$$\therefore \sum a_n = \sum_{1^2+2^2+3^2+\cdots+n^2}^{1}$$
 converges. [by comparison test]

Que. Test the convergence of the series $2 + \frac{3}{2}x + \frac{4}{3}x^2 + \frac{5}{4}x^3 + \cdots$

Solution: Here
$$a_n = \frac{n+1}{n} x^{n-1}$$

$$\Rightarrow a_{n+1} = \frac{n+2}{n+1} x^n \text{ and } \frac{a_{n+1}}{a_n} = \frac{(n+2)x^n}{n+1} \frac{n}{(n+1)x^{n-1}} = \frac{n^2 \left(1 + \frac{2}{n}\right)}{n^2 \left(1 + \frac{1}{n}\right)^2} x$$

$$= \frac{\left(1 + \frac{2}{n}\right)}{\left(1 + \frac{1}{n}\right)^2} x$$

$$\therefore L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\left(1 + \frac{2}{n}\right)}{\left(1 + \frac{1}{n}\right)^2} x$$

$$= \frac{(1+0)}{(1+0)^2} x = x$$

Hence, by ratio test, given series is (i) convergent if x < 1

(ii) divergent if x > 1

For x = 1.

$$a_n = \frac{n+1}{n} = 1 + \frac{1}{n}$$

$$\Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) = (1+0)$$

$$= 1 \neq 0$$

 \therefore By zero test, given series diverges for x = 1.

Hence, by ratio test, given series is (i) convergent if x < 1

(ii) divergent if $x \ge 1$

* Root Test (Cauchy Root Test)

Let $\sum a_n$ be a series with $a_n \ge 0$ for $n \ge N$ for some N and suppose that

$$\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = L$$

Then

- (a) the series converges if L < 1
- (b) the series diverges if L > 1,
- (c) the test fails if L = 1

Que. Test the convergence of series $\sum_{n=1}^{\infty} \frac{3^n}{2^{n+3}}$

$$a_n = \frac{3^n}{2^{n+3}} = \frac{1}{8} \left(\frac{3}{2}\right)^n$$

$$\Rightarrow |a_n|^{\frac{1}{n}} = \left| \frac{1}{8} \left(\frac{3}{2} \right)^n \right|^{\frac{1}{n}} = \frac{1}{8^{\frac{1}{n}}} \left(\frac{3}{2} \right)$$

$$\Rightarrow L = \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{8^{\frac{1}{n}}} \left(\frac{3}{2} \right)$$

$$= \frac{1}{8^0} \left(\frac{3}{2} \right) = \frac{3}{2} > 1$$

Hence, by root test, given series is divergent.

Que. Test the convergence of series $\sum_{n=1}^{\infty} \left(\frac{n}{2n+5}\right)^n$

Solution:

$$a_n = \left(\frac{n}{2n+5}\right)^n = \left(\frac{1}{2+\frac{5}{n}}\right)^n$$

$$\Rightarrow |a_n|^{\frac{1}{n}} = \left|\left(\frac{1}{2+\frac{5}{n}}\right)^n\right|^{\frac{1}{n}} = \left(\frac{1}{2+\frac{5}{n}}\right)$$

$$\Rightarrow L = \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{1}{2+\frac{5}{n}}\right) = \left(\frac{1}{2+0}\right)$$

$$= \frac{1}{2} < 1$$

Hence, by root test, given series is convergent.

Que:
$$\left(\frac{2^2}{1^2} - \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} - \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} - \frac{4}{3}\right)^{-3} + \cdots$$
..

Sol:
$$a_n = \left[\left(\frac{n+1}{n} \right)^{n+1} - \frac{n+1}{n} \right]^{-n}$$

$$L = \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \left[\left(\frac{n+1}{n} \right)^n \left(\frac{n+1}{n} \right) - \frac{n+1}{n} \right]^{-1}$$

$$= \left[\left(\frac{1+\frac{1}{n}}{1} \right)^n \left(\frac{1+\frac{1}{n}}{1} \right) - \frac{1+\frac{1}{n}}{1} \right]^{-1}$$

$$= [e. 1-1]^{-1}$$

$$=\frac{1}{e-1}<1$$

Hence, by root test, given series is convergent.

Que. Test the convergence of series $\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{1}{2}}}$

Solution:

$$a_{n} = \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}}$$

$$\Rightarrow |a_{n}|^{\frac{1}{n}} = \left|\left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}}\right|^{\frac{1}{n}} = \left(1 + \frac{1}{\sqrt{n}}\right)^{-\left(n^{\frac{3}{2}}\right)(n^{-1})} = \left(1 + \frac{1}{\sqrt{n}}\right)^{-\sqrt{n}} = \left(\left(1 + \frac{1}{\sqrt{n}}\right)^{\sqrt{n}}\right)^{-1}$$

$$\left(\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n} = e^{x} \quad (anyx)\right)$$

$$\Rightarrow L = \lim_{n \to \infty} |a_{n}|^{\frac{1}{n}} = \lim_{n \to \infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{-\sqrt{n}} = \lim_{n \to \infty} \left(\left(1 + \frac{1}{\sqrt{n}}\right)^{\sqrt{n}}\right)^{-1} = (e^{1})^{-1} = \frac{1}{e} < 1$$

Hence, by root test, given series is convergent.

Que. Test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{n+2}{n+3} \right)^n x^n$

Solution:

$$a_n = \left(\frac{n+2}{n+3}\right)^n x^n$$

$$\Rightarrow |a_n|^{\frac{1}{n}} = \left|\left(\frac{n+2}{n+3}\right)^n x^n\right|^{\frac{1}{n}} = \left(\frac{n+2}{n+3}\right) x$$

$$\Rightarrow L = \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{n+2}{n+3}\right) x = \lim_{n \to \infty} \left(\frac{1+\frac{2}{n}}{1+\frac{3}{n}}\right) x$$

$$= \left(\frac{1+0}{1+0}\right) x = x$$

Hence, by root test, given series is (i) convergent if x < 1 (ii) divergent if x > 1.

For x = 1.

$$a_{n} = \left(\frac{n+2}{n+3}\right)^{n} = \left(\frac{1+\frac{2}{n}}{1+\frac{3}{n}}\right)^{n} = \frac{\left(1+\frac{2}{n}\right)^{n}}{\left(1+\frac{3}{n}\right)^{n}}$$

$$\Rightarrow \lim_{n \to \infty} a_{n}$$

$$= \lim_{n \to \infty} \frac{\left(1+\frac{2}{n}\right)^{n}}{\left(1+\frac{3}{n}\right)^{n}} = \frac{\lim_{n \to \infty} \left(1+\frac{2}{n}\right)^{n}}{\lim_{n \to \infty} \left(1+\frac{3}{n}\right)^{n}} = \frac{(e)^{2}}{(e)^{3}} = \frac{1}{e}$$

$$\neq 0$$

∴ By zero test, given series diverges for x = 1. Hence, by root test, given series is (i) convergent if x < 1 (ii) divergent if $x \ge 1$.

Alternative series

A series in which the terms are alternatively positive and negative is called an alternating Series. $e. g. 1 - 4 + 9 - 16 + \cdots$

Leibnitz Test

The infinite Series $a_1 - a_2 + a_3 - ...$ in which the terms are alternatively positive and negative is convergent if (i) $a_n \ge a_{n+1}$ i.e. series is decreasing (ii) $\lim_{n\to\infty} a_n = 0$

Note: If $\lim_{n\to\infty} a_n \neq 0$ then $\sum_{n=1}^{\infty} a_n$ is oscillatory.

The series is Alternative

if $|a_n|$ is convergent & a_n is convergent then series is **absolutely** convergent

if $|a_n|$ is divergent but a_n is convergent then series is **Conditionally convergent**

Que. Test the convergence of the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$

Here
$$u_n = \frac{(-1)^{n+1}}{n}$$
 $u_{n+1} = \frac{(-1)^{n+2}}{n+1}$
 $|u_n| = \frac{1}{n}$ $|u_{n+1}| = \frac{1}{n+1}$

1)
$$|u_n| - |u_{n+1}| = \frac{1}{n} - \frac{1}{n+1}$$

$$= \frac{n+1-n}{n(n+1)}$$

$$= \frac{1}{n(n+1)} > 0$$

$$|u_n| - |u_{n+1}| > 0 \Longrightarrow |u_n| > |u_{n+1}|$$

Thus each term is less than its preceding term.

Now

2)

$$n \xrightarrow{\lim} \infty |u_n| = n \xrightarrow{\lim} \infty \frac{1}{n} = 0$$

Thus by Leibnitz's test the alternating series is convergent.

Que. Test the convergence of the series $2 - \frac{3}{2} + \frac{4}{3} - \frac{5}{4} + \cdots$

Solution:

Here
$$u_n = \frac{(-1)^{n+1}(n+1)}{n}$$
 $u_{n+1} = \frac{(-1)^{n+2}(n+2)}{n+1}$
 $|u_n| = \frac{(n+1)}{n}$ $|u_{n+1}| = \frac{n+2}{n+1}$

1)

$$|u_n| - |u_{n+1}| = \frac{n+1}{n} - \frac{n+2}{n+1}$$

$$= \frac{(n+1)^2 - n(n+2)}{n(n+1)}$$

$$= \frac{1}{n(n+1)} > 0$$

$$|u_n| - |u_{n+1}| > 0 \Longrightarrow |u_n| > |u_{n+1}|$$

Thus each term is less than its preceding term.

Now

2)

$$n \xrightarrow{\lim} \infty |u_n| = n \xrightarrow{\lim} \infty \frac{n+1}{n}$$
$$= n \xrightarrow{\lim} \infty \frac{n\left(1 + \frac{1}{n}\right)}{n}$$
$$= 1 \neq 0$$

Thus by Leibnitz's test the alternating series is oscillating.

Que. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^n x^{n+1}}{2n-1}$

$$u_n = \frac{(-1)^{n+1} x^{n+1}}{2n-1} \quad u_{n+1} = \frac{(-1)^{n+2} x^{n+2}}{2n+1}$$
$$|u_n| = \frac{x^{n+1}}{2n-1} \quad |u_{n+1}| = \frac{x^{n+2}}{2n+1}$$

$$\begin{split} \left|u_{n}\right|-\left|u_{n+1}\right|&=\frac{x^{n+1}}{2n-1}-\frac{x^{n+2}}{2n+1}\\ &=\frac{(2n+1)x^{n+1}-x^{n+2}(2n-1)}{(2n-1)(2n+1)}\\ &=\frac{x^{n+1}[(2n+1)-(2n-1)x]}{(4n^{2}-1)}\succ0\\ \left|u_{n}\right|-\left|u_{n+1}\right|\succ0\Rightarrow\left|u_{n}\right|\succ\left|u_{n+1}\right| \end{split}$$

Now

2)

$$n \xrightarrow{\lim} \infty |u_n| = n \xrightarrow{\lim} \infty \frac{x^{n+1}}{2n-1}$$
$$= 0 \qquad if \quad x < 1$$

Thus by Leibnitz's test the alternating series is convergent.

Que: Determine absolute or conditional convergence of the series

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n^2}{n^3 + 1}$$

Solution:

Let
$$u_n = (-1)^n \cdot \frac{n^2}{n^3 + 1}$$

$$|u_n| = \frac{n^2}{n^3 + 1}$$

$$= \frac{1}{n\left(1 + \frac{1}{n^3}\right)}$$

Let
$$v_n = \frac{1}{n}$$

$$\lim_{n \to \infty} \frac{|u_n|}{v_n} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n^3}} = 1 \text{ [finite and nonzero]}$$

And $\sum v_n = \sum \frac{1}{n}$ is divergent as p = 1.

By comparison test $\sum |u_n|$ is also divergent.

Hence, $\sum u_n$ is not absolutely convergent. To check conditional convergence applying Leibnitz's test.

(i)

$$|u_n| - |u_{n+1}| = \frac{n^2}{n^3 + 1} - \frac{(n+1)^2}{(n+1)^3 + 1}$$

$$= \frac{n^2(n^3 + 3n^2 + 3n + 2) - (n^3 + 1)(n^2 + 2n + 1)}{(n^3 + 1)[(n+1)^3 + 1]}$$

$$= \frac{n^4 + 2n^3 + n^2 - 2n - 1}{(n^3 + 1)[(n+1)^3 + 1]}$$

$$= \frac{n^4 + n^2(2n+1) - 1(2n+1)}{(n^3+1)[(n+1)^3+1]}$$

$$= \frac{n^4 + (2n+1)(n^2-1)}{(n^3+1)[(n+1)^3+1]} > 0 \text{ for all } n \in \mathbb{N}.$$

$$|u_n| > |u_{n+1}|$$
(ii)
$$\lim |u_n| = \lim \frac{n^2}{n^3 + 1}$$

$$\lim_{n \to \infty} |u_n| = \lim_{n \to \infty} \frac{n^2}{n^3 + 1}$$
$$= \lim_{n \to \infty} \frac{1}{n\left(1 + \frac{1}{n^3}\right)} = 0.$$

By Leibnitz's test, $\sum u_n$ is convergent. The series $\sum u_n$ is convergent and test $\sum |u_n|$ is divergent. Hence, the series is conditionally convergent.

Que.. Test the convergence of the series $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$...

Sol:
$$a_n = \frac{(-1)^{n-1}}{\sqrt{n}}$$
, $a_{n+1} = \frac{(-1)^n}{\sqrt{n+1}}$,
$$|a_n| = \frac{1}{\sqrt{n}}, |a_{n+1}| = \frac{1}{\sqrt{n+1}}$$
i)
$$|a_n| - |a_{n+1}| = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} > 0$$
$$|a_n| > |a_{n+1}|$$

By Leibnitz's test, $\sum u_n$ is convergent. The series $\sum u_n$ is convergent

$$|a_n| = \frac{1}{\sqrt{n}}$$

By p-series $p=\frac{1}{2} < 1$, $\sum |a_n|$ is divergent.

Hence, the series is conditionally convergent.

***** Power Series:

A power series aboutx = a is given as

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \cdots$$

If a = 0, then the power series in powers of x is given by

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \cdots$$

where $c_0, c_1, c_2, ...$ are real numbers.

Note: For a power series in powers of (x - a)

(1) Apply D'Alembert Ratio Test or Cauchy's nth root test

i.e.
$$\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = l$$
, then $R = \frac{1}{l}i$ s called radius of convergence and $|x - a| < R$ gives interval of convergence.

i.e.
$$\lim_{n \to \infty} (|c_n|)^{\frac{1}{n}} = l$$
, then $R = \frac{1}{l}$ is called radius of convergence and $|x - a| < R$ gives interval of convergence.

- $(2) l = \infty \implies R = 0 \implies$ series converges only at x = a.
- $(3) l = 0 \Longrightarrow R = \infty \Longrightarrow$ series converges for all x.
- (4) l is finite and non-zero $\Rightarrow r = \frac{1}{l}$ and the interval of convergence is (a R, a + r).

Que. Find the radius of convergence of $\sum_{n=0}^{\infty} n! x^n$

$$a_{n=n}! x^n$$
 $a_{n+1} = (n+1)! x^{(n+1)}$

By Ratio Test,

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{(n+1)! \, x^{(n+1)}}{n! \, x^n}$$

$$= \lim_{n\to\infty} (n+1)x = \infty$$

$$Hence, \ l = \infty \to R = 0$$

Radius of convegence is 0 series converges at x = 0

Que. Determine the interval of convergence for the following series and also their behaviour at each end points.

$$\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n!}$$

$$u_{n} = \frac{2^{n+1} x^{n+1}}{n!}$$

$$u_{n+1} = \frac{2^{n+1} x^{n+1}}{(n+1)!}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{n!}{(n+1)!} \frac{2^{n+1} x^{n+1}}{2^{n} x^{n}}$$

$$= \frac{2x}{n+1}$$

$$\lim_{n \to \infty} \left| \frac{u_{n}}{u_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{2x}{n+1} \right| = 0$$

Page 28 of 33

Hence, the series is convergent for all values of x i.e., $-\infty < x < \infty$ and interval of convergence is $(-\infty, \infty)$

Que. Obtain the range of convergence of $\sum_{n=1}^{\infty} \frac{x^n}{2^n}$, x > 0.

Sol:
$$u_n = \frac{x^n}{2^n}$$

$$u_{n+1} = \frac{x^{n+1}}{2^{n+1}}$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{x^{n+1}}{2^{n+1}} \frac{2^n}{x^n} = \frac{x}{2}$$
By D'Alembert's ratio test,the series is convergent if $\frac{x}{2} < 1$ or $x < 2$.
$$\text{divergent if } \frac{x}{2} > 1 \text{ or } x > 2.$$
The test fails if $\frac{x}{2} = 1$ or $x = 2$

$$\text{Then } u_n = \frac{x^n}{2^n} = 1$$

$$\sum_{n=1}^{\infty} u_n = 1 + 1 + 1 + \cdots \infty$$

Which is a divergent series.

Hence, series is convergent for 0 < x < 2 and the range of convergence is 0 < x < 2.

Que. Obtain the range of convergence of $\sum_{n=1}^{\infty} \frac{(x+1)^n}{3^n \cdot n}$. SOLUTION:

Let
$$u_n = \frac{(x+1)^n}{3^{n} \cdot n}$$

$$u_{n+1} = \frac{(x+1)^{n+1}}{3^{n+1} \cdot (n+1)}$$

$$= \frac{\frac{u_{n+1}}{u_n}}{3^{n+1} \cdot (n+1)} \cdot \frac{3^n(n)}{3^{n+1}(n+1)} \cdot \frac{3^n(n)}{(x+1)^n}$$

$$= \frac{x+1}{3(1+\frac{1}{n})}$$

$$= \left| \frac{x+1}{3(1+\frac{1}{n})} \right| = \left| \frac{x+1}{3} \right|$$

The series is convergence if

$$\left|\frac{x+1}{3}\right| < 1$$

$$|x+1| < 3$$

$$-3 < (x+1) < 3$$

$$-4 < x < 2$$

Page 29 of 33

At x=2
$$u_n = \frac{1}{n}$$

$$\therefore \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{1}{n} \text{ is divergent as p=1.}$$
At x=-4 $u_n = \frac{(-1)^n}{n}$

$$|u_n| = \frac{1}{n}$$

The given series is an alternating series.

$$|u_n| - |u_{n+1}| = \frac{1}{n} - \frac{1}{n+1} > 0$$

$$|u_n| > |u_{n+1}|$$

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{n} = 0$$

Thus, By Leibnitz test, the series is convergent at x = -4Hence, the series is convergent for -4 < x < 2 and the range of convergence is [-4,2).

Taylor's Series: If f(x+a) is a differential function of x up to nth order and a is a constant, then f(x) can be expanded into a power series of x as follows

$$f(x+a) = f(a) + xf'(a) + \frac{x^2}{2!}f''(a) + \frac{x^3}{3!}f'''(0) \dots$$
 (1)

Maclaurin's Series: If the function f(x) is differentiable n times at x=0, then it can be expanded into finite series in ascending power of x as follows

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$
(2)

Case 1: Put a=0 in (1), we get Macluarin's series

Case2: Take a=x and x=h in (1)

$$f(x+h) = f(x) + hf'(h) + \frac{h^2}{2!}f''(x) + \cdots$$
(3)

Case3: take a for x and x - a for h in (3)

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!}f''(a) + \frac{(x - a)^3}{3!}f'''(a) + \cdots$$

$$(4)$$

Some special series:

Some special series:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

$$a^{x} = 1 + x \log a + \frac{x^{2}}{2!} (\log a)^{2} + \frac{x^{3}}{3!} (\log a)^{2}$$

$$+ \cdots$$

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots \quad \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots \quad \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \quad \log(1-x) = -\left[x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots\right]$$
$$+ \dots \quad \tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \dots$$

Que. Find the Maclaurin's series for the function $f(x) = \frac{1}{\sqrt{4-x}}$ Solution:

$$f(x) = \frac{1}{\sqrt{4-x}} = (4-x)^{-1/2} \qquad \Rightarrow f(0) = 1/2$$

$$f'(x) = \frac{1}{2}(4-x)^{-3/2} \qquad \Rightarrow f'(0) = \frac{1}{2^4}$$

$$f''(x) = \frac{1}{2} \times \frac{3}{2}(4-x)^{-5/2} \qquad \Rightarrow f'(0) = \frac{1}{2^5} \times \frac{3}{4}$$

$$f'''(x) = \frac{1}{2} \times \frac{3}{2} \times \frac{5}{2}(4-x)^{-7/2} \qquad \Rightarrow f'(0) = \frac{1}{2^7} \times \frac{15}{8}$$

$$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \frac{x^3}{3!} f'''(0) + \dots + \frac{x^n}{n!} f^n(0) + \dots + \frac{x^n}{$$

Que. find the Taylor series expansion of $f(x) = x^3 - 2x + 4$ about a=2. Solution:

$$f(x) = x^{3} - 2x + 4 \qquad \Rightarrow f(2) = 8$$

$$f'(x) = 3x^{2} - 2 \qquad \Rightarrow f'(2) = 10$$

$$f''(x) = 6x \qquad \Rightarrow f'(2) = 12$$

$$f'''(x) = 6 \qquad \Rightarrow f'(2) = 6$$

$$f(x) = f(2) + (x-2)f'(2) + \frac{(x-2)^2}{2!}f''(2) + \frac{(x-2)^3}{3!}f'''(2) + \dots$$

$$= 8 + 10(x-2) + \frac{1}{2}(x-2)^2 \times 12 + \frac{1}{6}(x-2)^3 \times 6$$

$$= 8 + 10(x-2) + 6(x-2)^2 + (x-2)^3$$

Que. Expand $\sin\left(\frac{\pi}{4} + x\right)$ in power of x, hence find the value of $\sin 44^{\circ}$.

Solution: Suppose $f(x) = \sin x$, $h = \frac{\pi}{4}$

Now by Taylor series expansion

$$f(x+h) = f(h) + x f'(h) + \frac{x^2}{2!} f''(h) + \frac{x^3}{3!} f'''(h) + \dots + \frac{x^n}{n!} f^n(h) + \dots$$

$$now f(x) = \sin x \qquad \Rightarrow f\left(\frac{\pi}{4}\right) = \sin \frac{\pi}{4} \cdot = \frac{1}{\sqrt{2}}$$

$$f'(x) = \cos x \qquad \Rightarrow f'\left(\frac{\pi}{4}\right) = \cos \frac{\pi}{4} \cdot = \frac{1}{\sqrt{2}}$$

$$f'''(x) = -\sin x \qquad \Rightarrow f''\left(\frac{\pi}{4}\right) = -\sin \frac{\pi}{4} \cdot = \frac{-1}{\sqrt{2}}$$

$$f''''(x) = -\cos x \qquad \Rightarrow f'''\left(\frac{\pi}{4}\right) = -\cos \frac{\pi}{4} \cdot = \frac{-1}{\sqrt{2}}$$

$$f\left(x + \frac{\pi}{4}\right) = \sin\left(x + \frac{\pi}{4}\right) = f\left(\frac{\pi}{4}\right) + x f'\left(\frac{\pi}{4}\right) + \frac{x^2}{2!} f''\left(\frac{\pi}{4}\right) + \dots$$

$$= \frac{1}{\sqrt{2}} + x \frac{1}{\sqrt{2}} + \frac{x^2}{2!} \left(\frac{-1}{\sqrt{2}}\right) + \frac{x^3}{3!} \left(\frac{-1}{\sqrt{2}}\right) + \dots$$

$$= \frac{1}{\sqrt{2}} \left[1 + x - \frac{x^2}{2} + \frac{x^3}{6} + \dots\right]$$

$$now \qquad x = -1^\circ = \frac{-\pi}{180} = \frac{-3.14}{180} = -0.0175$$

$$\therefore \sin(45^\circ - 1) = \frac{1}{\sqrt{2}} \left[1 - 0.0175 - \frac{1}{2} (0.0175)^2 + \dots\right] \approx 0.6946$$

Que. Prove that $\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$ Solution

Let y = tanx

$$\frac{dy}{dx} = \frac{1}{1+x^2} = (1+x^2)^{-1} = 1 - x^2 + x^4 - x^6 + \dots$$
 (1)

Integrating equation (1),

$$y = c + x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$
$$\tan^{-1} x = c + x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

Putting
$$x = 0$$

$$\tan^{-1} 0 = c$$

$$c = 0$$
Hence $\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$

Que. Prove that $\sin^{-1}(\frac{2x}{1+x^2}) = 2(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots)$. Solution:

let
$$y = \sin^{-1} \left(\frac{2x}{1+x^2}\right)$$

putting $x = \tan\theta$
 $y = \sin^{-1} \left(\frac{2\tan\theta}{1+\tan^2\theta}\right)$
 $=\sin^{-1}(\sin 2\theta) = 2\theta = 2\tan^{-1} x = 2\left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right)$
Hence $\sin^{-1} \left(\frac{2x}{1+x^2}\right) = 2\left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right)$

Que.Expand the function

$$f(x) = x^4 - 11x^3 + 43x^2 - 60x + 14$$
 in power of $(x-3)$

Que..Find the Taylor series for $f(x) = \frac{1}{x}$ at a = 2.

Que. Find the Taylor series expansion of $f(x) = \tan x$ in power of $\left(x - \frac{\pi}{4}\right)$, showing at least four non zero terms. Hence find the value of $f(x) = \tan 46^\circ$.

Que. $5 + 4(x-1)^2 - 3(x-1)^3 + (x-1)^4$ in ascending powers of x.

Que. Prove that
$$\tan^{-1} \left(\frac{\sqrt{1+x^2-1}}{x} \right) = \frac{1}{2} \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \right)$$

Que. $\log(1+e^x)$ in ascending power of x s far as term containing x^4 .

Que. Obtain Maclaurin's series of $1)f(x) = \sin^{-1} x$ 2) $y = e^{-x}$