## Natural Language Processing & Word Embeddings

10/10 points (100.00%)

Quiz, 10 questions

| ✓ Congratulations! You passed!                                                                                                                                              | Next Item |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1/1 points                                                                                                                                                                  |           |
| 1. Suppose you learn a word embedding for a vocabulary of 10000 wo embedding vectors should be 10000 dimensional, so as to capture of variation and meaning in those words. |           |
| True False                                                                                                                                                                  |           |
| Correct  The dimension of word vectors is usually smaller than the size of vocabulary. Most common sizes for word vectors ranges between 400.                               |           |
| 1/1 points                                                                                                                                                                  |           |
| 2. What is t-SNE?                                                                                                                                                           |           |
| A linear transformation that allows us to solve analogies on vectors                                                                                                        | word      |
| A non-linear dimensionality reduction technique                                                                                                                             |           |
| <b>Correct</b><br>Yes                                                                                                                                                       |           |

A supervised learning algorithm for learning word embeddings

An open-source sequence modeling library

## Natural Language Processing & Word Embeddings

10/10 points (100.00%)

Quiz, 10 questions



1/1 points

3.

Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

| x (input text)               | y (happy?) |
|------------------------------|------------|
| I'm feeling wonderful today! | 1          |
| I'm bummed my cat is ill.    | 0          |
| Really enjoying this!        | 1          |

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.



True

### Correct

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence as a "1".





points

4

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

 $e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$ 

## Natural Language Processing & Word Embeddings

10/10 points (100.00%)

Quiz, 10 questions



**Un-selected is correct** 



Correct

Yes!



**Un-selected is correct** 



1/1 points

5.

Let E be an embedding matrix, and let  $o_{1234}$  be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call  $E*o_{1234}$  in Python?



It is computationally wasteful.

#### Correct

Yes, the element-wise multiplication will be extremely inefficient.

- $igcap ext{The correct formula is } E^T * o_{1234}.$
- This doesn't handle unknown words (<UNK>).
- None of the above: calling the Python snippet as described above is fine.

1/1



# Natural Language Processing & Word Embeddings When learning word embeddings, we create an artificial task of estimating

10/10 points (100.00%)

Quiz, 10 questions

 $P(target \mid context)$ . It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.

|          | -                                                                                                                                                                   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | True                                                                                                                                                                |
| Corr     | ect                                                                                                                                                                 |
|          | False                                                                                                                                                               |
| <b>~</b> | 1 / 1<br>points                                                                                                                                                     |
|          | word2vec algorithm, you estimate $P(t\mid c)$ , where $t$ is the target word and $c$ ntext word. How are $t$ and $c$ chosen from the training set? Pick the best r. |
|          | c is the sequence of all the words in the sentence before $t.$                                                                                                      |
|          | $\emph{c}$ is a sequence of several words immediately before $\emph{t}$ .                                                                                           |
| 0        | c and $t$ are chosen to be nearby words.                                                                                                                            |
| Corr     | ect                                                                                                                                                                 |
|          | c is the one word that comes immediately before $t.$                                                                                                                |
| <b>~</b> | 1 / 1 points                                                                                                                                                        |

8.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

## Natural Language Processing & Word Embeddings

10/10 points (100.00%)

Quiz, 10 questions 
$$P(t \mid c) = rac{e^{ heta_t^T e_c}}{\sum_{t'=1}^{1000} e^{ heta_t^T e_c}}$$

Which of these statements are correct? Check all that apply.

 $\theta_t$  and  $e_c$  are both 500 dimensional vectors.

Correct

 $heta_t$  and  $e_c$  are both 10000 dimensional vectors.

**Un-selected is correct** 

 $heta_t$  and  $e_c$  are both trained with an optimization algorithm such as Adam or gradient descent.

Correct

After training, we should expect  $\theta_t$  to be very close to  $e_c$  when t and care the same word.

**Un-selected** is correct



1/1 points

9.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) ( heta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

 $\theta_i$  and  $e_j$  should be initialized to 0 at the beginning of training.

**Un-selected is correct** 

| Natural Lan<br>Quiz, 10 questions | $\theta_i$ and $e_j$ should be initialized randomly at the beginning of training. guage Processing & Word Embeddings Correct                                                                                                                                                                                                                                                                                 | 10/10 points (100.00%) |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                                   | $X_{ij}$ is the number of times word i appears in the context of word j.                                                                                                                                                                                                                                                                                                                                     |                        |
|                                   | Correct                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
|                                   | The weighting function $f(.)$ must satisfy $f(0)=0$ .                                                                                                                                                                                                                                                                                                                                                        |                        |
|                                   | The weighting function helps prevent learning only from extremely                                                                                                                                                                                                                                                                                                                                            |                        |
|                                   | common word pairs. It is not necessary that it satisfies this function.                                                                                                                                                                                                                                                                                                                                      |                        |
|                                   | 1/1 points  10. You have trained word embeddings using a text dataset of $m_1$ words. You at considering using these word embeddings for a language task, for which you a separate labeled dataset of $m_2$ words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstant would you expect the word embeddings to be helpful? $m_1 >> m_2$ $m_1 << m_2$ | ı have                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                              |                        |