ATNLP: Multilinguality

Anders Søgaard

What are language models for?

	4	4-6	4-6-6	4-6-6-3
good	0.2	0.2	0.2	0.1
image	0.1	0.1		
home	0.1	0.1	0.1	0.1
hope	0.2	0.2	0.2	

He ____ walks, talks, ...
{Legal} He ____ appeals, adjudicates, ...
{9th century}, He ____ sayeth, hath, ...
{Translation, English-German}, He ____ Er
Translate 'He' into German... Er

2017 2018 2019 2021

Transformers

Good scaling properties, exploiting GPUs, ability to model long-range dependencies.

Conditional language models

Language prefixes in machine translation, transfer learning, style transfer.

Seeing everything as question answering

What is the German translation (or the grammatical analysis) of 'Mary bought a house'?

In-context learning

Moving away from training one model for each task, toward training models that can learn on the fly.

The Digital Language Divide

Area	# papers	English	Accuracy / F1	Multilinguality	Fairness and bias	Efficiency	Interpretability	>1 dimension	
ACL 2021 oral papers	461	69.4%	38.8%	13.9%	6.3%	17.8%	11.7%	6.1%	
MT and Multilinguality	58	0.0%	15.5%	56.9%	5.2%	19.0%	6.9%	13.8%	
Interpretability and Analysis	18	88.9%	27.8%	5.6%	0.0%	5.6%	66.7%	5.6%	
Ethics in NLP	6	83.3%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	
Dialog and Interactive Systems	42	90.5%	21.4%	0.0%	9.5%	23.8%	2.4%	2.4%	
Machine Learning for NLP	42	66.7%	40.5%	19.0%	4.8%	50.0%	4.8%	9.5%	
Information Extraction	36	80.6%	91.7%	8.3%	0.0%	25.0%	5.6%	8.3%	
Resources and Evaluation	35	77.1%	42.9%	5.7%	8.6%	5.7%	14.3%	5.7%	
NLP Applications	30	73.3%	43.3%	0.0%	10.0%	20.0%	10.0%	0.0%	
Sentiment Analysis	18	100.0%	72.2%	0.0%	0.0%	11.1%	11.1%	0.0%	
Summarization	12	91.7%	0.0%	0.0%	8.3%	0.0%	8.3%	0.0%	

A Brief History of Machine Translation

VAUQUOIS TRIANGLE

A BRIEF HISTORY OF MACHINE TRANSLATION

I | CRAVE | 40 | KG | KAKI

ICH MÖCHTE KEINE PERSIMONEN ESSEN WANT NOT PERSIMMON EAT NOT WANT EAT PERSIMMON

NOT ENOUGH EXAMPLES ABOUT PERSIMMONS

UNIGRAMS:

I. NOT 2. ENOUGH

3. EXAMPLES

4. ABOUT 5. PERSIMMONS

NOT ENOUGH EXAMPLES ABOUT PERSIMMONS

BIGRAMS:

I. NOT ENOUGH 2. ENOUGH EXAMPLES

3. EXAMPLES ABOUS

4. ABOUT PERSIMMONS

NOT ENOUGH EXAMPLES ABOUT PERSIMMONS

TRIGRAMS:

I. NOT ENOUGH EXAMPLES

2. ENOUGH EXAMPLES ABOUT

EXAMPLES ABOUS PERSIMMONS

Why translation ends up ugly

Standard Challenges in Machine Translation

- 1. Correspondences are not 1:1.
- The units of translation are not words, but concepts.
- 3. Words-to-concepts is not 1:1, because
 - a. Synonymy
 - b. Ambiguity
 - c. Rich morphology and word order

Supervised Encoder-Decoder Machine Translation

Encoder

Decoder

Unsupervised Machine Translation?

Multilingual language models

Observation: Because relations are encoded systematically, in the limit language-specific embedding spaces will be isomorphic. This means we can learn linear mappings to align them.

Cross-Lingual Word-Embedding Alignment

Train dictionary:

car coche

truck camión

bike bicicleta

day día

...

Z'

-2.3

-1.1

3.1

2.1

		X'		
car	-3.2	1.2	coche	1.2
truck	-3.4	-1.1	camión	1.7
bike	-2.9	0.5	bicicleta	1.4
day	2.3	1.3	día	4.2

X'										Z'	
car	-3.2	1.2						coche	1.2	-2.3	
truck	-3.4	-1.1						camión	1.7	-1.1	
bike	-2.9	0.5	W			. =	=	bicicleta	1.4	3.1	
day	2.3	1.3		?	3			día	4.2	2.1	
				?	3			•••			

Bilingual Dictionary Induction (BDI)

car coche bike bicicleta truck camión day día

table mesa toy juguete hour hora

Unsupervised machine translation

Unsupervised machine translation begins with vocabulary alignment, using point set registration algorithms. Once you know that 'line' and 'linea' are co-referential, we can begin to translate.

Key idea: If LM and CV models were aligned in the same way, we could translate and do VQA.

Unsupervised machine translation

Unsupervised machine translation begins with vocabulary alignment, using point set registration algorithms. Once you know that 'line' and 'linea' are co-referential, we can begin to translate.

Key idea: If LM and CV models were aligned in the same way, we could translate and do VQA.

Learned lesson: Unsupervised alignment (e.g., using GANs) only work when spaces are *very* similar.

	Unsupervised (Adversarial)	Supervised (Identical)		
EN-ES	81.89	82.62		
EN-ET	00.00	31.45		
EN-FI	00.09	28.01		
EN-EL	00.07	42.96		
EN-HU	45.06	46.56		
EN-PL	46.83	52.63		
EN-TR	32.71	39.22		
ET-FI	29.62	24.35		

* BERT models, ▲ GPT2 models, • OPT models; Dotted line: P@100, dashed line: P@10, solid line: P@1.

fMRI obtained while participants read or listen to language.

fMRI vectorized and aligned at word level, through Gaussian smoothing.

 $f_{letter} = \langle 0.88373, 0.75805, 0.00328, \ldots \rangle$

Decontextualized word embeddings obtained from LLMs.

 $\mathbf{v}_{letter} = \langle 0.14723, 0.16827, 0.00328, \ldots \rangle$

Alignment with Procrustes Analysis or ridge regression.

Results, retrieval precision at 50% (see plots →).

Analogy training multilingual language models

Idea: Use knowledge bases to ground language models, thereby debiasing them.

Collaboration with Deepmind and Cambridge University.

		Base	elines		Analogy Training							
Language	nguage Fasttext		mBERT		Fasttext		mBERT-WiQueen		${\bf mBERT\text{-}WiQueen}^+$			
	P@1	ρ	P@1	ρ	P@1	ρ	P@1	ρ	P@1	ρ		
Danish	0.1511	0.3001	0.2835	0.3221	0.1688	0.2909	0.3863	0.3010	0.3935	0.2461		
German	0.0997	0.3604	0.2658	0.3548	0.1104	0.3702	0.3894	0.3257	0.4538	0.2868		
English	0.1255	0.2854	0.2897	0.3107	0.1513	0.2550	0.4091	0.2960	0.4787	0.2821		
Spanish	0.0899	0.3383	0.2596	0.3441	0.1194	0.3573	0.3832	0.3198	0.3936	0.3012		
Finnish	0.1258	0.3908	0.2679	0.3535	0.1682	0.3731	0.3728	0.3192	0.4019	0.2703		
French	0.0943	0.3659	0.2617	0.3545	0.1146	0.3459	0.3707	0.3375	0.4195	0.2991		
Italian	0.0731	0.3979	0.2773	0.3711	0.0949	0.3883	0.3821	0.3338	0.4372	0.3722		
Dutch	0.1291	0.3520	0.2669	0.3443	0.1497	0.3384	0.3811	0.3202	0.4424	0.3609		
Polish	0.1165	0.3397	0.2648	0.3656	0.1456	0.3287	0.3853	0.3468	0.3894	0.2718		
Portuguese	0.0898	0.3614	0.2523	0.3536	0.1072	0.3640	0.3697	0.3409	0.3718	0.2653		
Swedish	0.1071	0.3449	0.2856	0.3378	0.1415	0.3270	0.3832	0.3128	0.4071	0.2672		
Averages	0.1093	0.3488	0.2704	0.3435	0.1338	0.3399	0.3830	0.3231	0.4171	0.2930		

?

