KRY: Wahlfach Kryptologie Serie 12: Modulare Wurzeln, Addition auf elliptischen Kurven

Aufgabe 1 (P)

Erstellen Sie für die Klasse BigInteger der Package mybiginteger eine Methode BigInteger myModSqrt(BigInteger p),

welche entscheidet, ob Quadratwurzeln von this in \mathbb{Z}_p^* existieren, und falls ja nach dem Algorithmus von Tonelli eine davon berechnet und zurückgibt. Falls keine Lösung existiert, soll die Methode den Wert -1 (vom Typ BigInteger) zurückgeben. Überprüfen Sie den Algorithmus in der Testumgebung "Prakt. 12.1".

Tests

- (1) **Eingabe:** n = 10, p = 31. **Ausgabe:** 14 oder 17.
- (2) **Eingabe:** n = 37, p = 41. **Ausgabe:** 23 oder 18.

Aufgabe 2 (P)

Schreiben Sie für die Klasse BigInteger der Package mybiginteger eine Methode

BigInteger[] elliptAdd (BigInteger P_y, BigInteger Q_x, BigInteger Q_y, BigInteger p, BigInteger a, BigInteger b),

die falls möglich über dem Körper $K = \mathrm{G} F(p)$ für die elliptische Kurve $E : y^2 = x^3 + ax + b$ den Punkt R = P + Q berechnet und zurückgibt. Falls $P = (\mathtt{this}, P_-y)$ oder $Q = (Q_-x, Q_-y)$ nicht zu E gehören, so soll eine NumberFormatException mit der Nachricht Punkt liegt nicht auf der Kurve! ausgegeben werden. Der unendlich ferne Punkt O soll in der Form (p,*) entgegengenommen bzw. zurückgegeben werden, wobei * ein beliebiger Wert sein darf (weil er nirgends weiter beachtet wird). Überprüfen Sie den Algorithmus in der Testumgebung "Prakt. 12.2".

Tests

- (1) **Eingabe:** p = 13, a = 2, b = 7, P = (3, 12), Q = (6, 1). **Ausgabe:** (3, 1)
- (2) **Eingabe:** p = 13, a = 2, b = 7, P = (3, 12), Q = (3, 1). **Ausgabe:** O
- (3) **Eingabe:** p = 13, a = 2, b = 7, P = (13, 4), Q = (6, 12). **Ausgabe:** (6, 12)