WHAT IS CLAIMED IS:

1

1

2

3

4

1

2

1	1. An integrated circuit incorporating an Electrostatic Discharge (ESD)
2	protection device comprising:
3	a semiconductor substrate;
4	an electrical contact pad;
5	an ESD switch coupled to the pad and having an active device region
6	formed in the semiconductor substrate; and
7	a thermal energy absorbing region formed in the semiconductor
8	substrate in thermal contact with said active device region made from a
9	material substantially more resistant to thermo-mechanical expansion than
0	said active device region.

- 2. The integrated circuit incorporating an Electrostatic Discharge
 (ESD) protection device according to claim 1, wherein said material
 substantially more resistant to thermo-mechanical expansion has a thermal
 expansion coefficient lower than approximately 5 x 10⁻⁶ °K⁻¹.
 - 3. The integrated circuit incorporating an Electrostatic Discharge (ESD) protection device according to claim 1, wherein said material substantially more resistant to thermo-mechanical expansion has a melting temperature higher than approximately 2000 °K.
- 4. The integrated circuit incorporating an Electrostatic Discharge
 (ESD) protection device according to claim 1, wherein said material
 substantially more resistant to thermo-mechanical expansion has a tensile
 strength higher than approximately 300 MPa (Mega Pascals).
 - The integrated circuit incorporating an Electrostatic Discharge
 (ESD) protection device according to claim 1, wherein said material

- 3 substantially more resistant to thermo-mechanical expansion has a fracture
- 4 toughness approximately higher than about 1.0 MPa $m^{1/2}$.
- 1 6. The integrated circuit incorporating an Electrostatic Discharge
- 2 (ESD) protection device according to claim 1, wherein the ESD switch is a
- 3 transistor.
- 7. The integrated circuit incorporating an Electrostatic Discharge
- 2 (ESD) protection device according to claim 1, wherein said thermo-
- 3 mechanical absorbing region is in direct contact with said active device
- 4 region.
- 1 8. The integrated circuit incorporating an Electrostatic Discharge
- 2 (ESD) protection device according to claim 6, wherein the transistor is a
- 3 MOSFET structure and wherein the active device region comprises:
- 4 a source region;
- 5 a drain region; and
- a channel region between the source region and the drain region.
- The integrated circuit incorporating an Electrostatic Discharge
- 2 (ESD) protection device according to claim 1, wherein the ESD switch is a
- 3 diode.
- 1 10. The integrated circuit incorporating an Electrostatic Discharge
- 2 (ESD) protection device according to claim 1, wherein said material
- 3 substantially more resistant to thermo-mechanical expansion than the active
- 4 device region is selected from the group consisting of diamond, boron nitride,
- 5 silicon carbide or carbon.

•	The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 1, wherein the ESD switch
3	includes a resistor or a capacitor.
1	12. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device comprising:
3	a semiconductor substrate;
4	an electrical contact pad;
5	a plurality of active devices formed on the substrate;
6	a first connector formed of a first electrically conductive material
7	connecting the plurality of active devices; and
8	an ESD switch coupled to the pad, at least in part via a second
9	connector, said ESD switch having an active device region in the
10	semiconductor substrate, and wherein said active device region has a length,
11	said second connector electrically connected to the ESD switch comprising
12	material more resistant to thermo-mechanical expansion than said first
13	connector formed of said first electrical conductive material wherein the
14	second connector extends away from the substrate a distance at least equal
15	to one-half of the length of the active device region.
1	12. The integrated circuit in comparation as El. (1.10. D. (1.10.
2	13. The integrated circuit incorporating an Electrostatic Discharge
3	(ESD) protection device according to claim 12, wherein said material
4	substantially more resistant to thermo-mechanical expansion has a thermal
4	expansion coefficient lower than approximately $10 \times 10^{-6} ^{\circ}\text{K}^{-1}$.
1	14. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 12, wherein said material
3	substantially more resistant to thermo-mechanical expansion has a melting
4	temperature higher than approximately 1500 °K.

7	15. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 12, wherein said material
3	substantially more resistant to thermo-mechanical expansion has a tensile
4	strength higher than approximately 200 MPa (Mega Pascals).
1	16. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 12, wherein said material
3	substantially more resistant to thermo-mechanical expansion has a fracture
4	toughness approximately higher than 1.0 MPa $m^{\frac{1}{2}}$.
1	17. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 12, wherein the ESD switch is a
3	MOSFET transistor and the active device region comprises:
4	a source region;
5	a drain region; and
6	a channel region between the source region and the drain region.
1	18. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 12, wherein said material resistant
3	to thermo-mechanical expansion is composed primarily of titanium nitride
4	(TiN).
1	19. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 12, wherein said material resistant
3	to thermo-mechanical expansion is composed primarily of carbon (C).
1	20. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 12, wherein said material resistant
3	to thermo-mechanical expansion is composed primarily of an alloy of
4	aluminum (Al) and TiN.

1	21. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 17, wherein the first connector is
3	composed of AI, Cu or an alloy of AI and Cu.
1	22. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device comprising:
3	a semiconductor substrate;
4	an electrical contact pad;
-5	a connector electrically connected to the electrical contact pad; and
6	an ESD switch coupled to the pad, at least in part via the connector,
7	said ESD switch having an active device region in the semiconductor
8	substrate, and wherein said semiconductor substrate comprises a thermo-
9	mechanical energy sink fabricated from material resistant to thermo-
10	mechanical expansion, the material having physical properties including a low
11	thermal expansion coefficient lower than approximately 5 x 10 ⁻⁶ °K ⁻¹ .
1	23. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 22, wherein the material resistant
3	to thermo-mechanical expansion has physical properties further including a
4	high melting temperature approximately higher than 2000 °K.
1	24. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 22, wherein the material resistant
3	to thermo-mechanical expansion has physical properties further including a
4	high fracture toughness higher than about 1.0 MPa $m^{\frac{1}{2}}$.
1	25. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 22, wherein the material resistant
3	to thermo-mechanical expansion has physical properties further including a

high tensile strength approximately higher than 300 MPa.

•	26. The integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 22, further comprising a grounded
3	back contact electrically coupled to the semiconductor substrate, so that when
4	an ESD event occurs producing an ESD current, the current is shunted from
5	the ESD protection device through thermo-mechanical energy sink and
6	through the grounded back contact.
1	27. An integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 22, wherein said active device
3	region comprises said thermo-mechanical energy sink.
1	29. An integrated sirewit incomparation on Electroptetic Dischar
	28. An integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 22, wherein said semiconductor
3	substrate is fabricated from said material resistant to thermo-mechanical
4	stress.
1	29. An integrated circuit incorporating an Electrostatic Discharge
2	(ESD) protection device according to claim 22, wherein said material resistant
3	to thermo-mechanical expansion is selected from a group consisting of
4	diamond, hard carbon or boron nitride.
1	30. An integrated circuit, comprising:
2	a semiconductor substrate;
3	a core circuit comprising a plurality of devices having electrical
4	connectors and active device regions formed in the semiconductor substrate
5	and one or more electrical insulator regions; and
6	an ESD circuit comprising an active device having an active device
7	region formed in a substrate material, one or more electrical connectors, and
В	one or more electrical insulator regions, and one or more passive components
9	wherein at least one of said, substrate material, electrical connectors, active

10	device region, passive circuit components or electrical insulator is composed
11	in whole or in part of a material substantially more resistant to thermo-
12	mechanical damage than the corresponding structure in said core circuit
13	devices.
1	•
1	21. The integrated singuit of plains 20 automais the second of
2	31. The integrated circuit of claim 30, wherein the passive component
_	comprises a resistor or a capacitor.
1	32. The integrated circuit of claim 30, wherein the ESD switch is
2	spaced apart from the core circuitry by at least 10 microns.
1	33. The integrated circuit of claim 30, wherein said material
2	substantially more resistant to the thermo-mechanical damage comprises a
3	material having a substantially lower coefficient of thermal expansion.
1	34. The integrated circuit of claim 30, wherein at least one of the said
2	electrical connectors of the ESD circuit comprises carbon.
1	35. An integrated circuit, comprising:
2	a semiconductor substrate;
3	a core circuit comprising a plurality of devices having electrical
4	connectors and active device regions formed in the semiconductor substrate
5	and one or more electrical insulator regions; and
6	an ESD switch having means, integrated with the switch structure, for
7	preventing thermo-mechanical damage due to an ESD event.
1	36. A method of fabricating an ESD device on a semiconductor
2	substrate, the method comprising:
3	fabricating an ESD switch from one or more connectors and one or
4	more active device regions formed in the semiconductor substrate;

5	providing a region composed of a material resistant to thermo-
3	mechanical expansion, the region in thermal contact with said switch, wherein
7	the material has physical properties including a low thermal expansion
3	coefficient lower than approximately 5 x 10 ⁻⁶ °K ⁻¹ .

- 37. The method of claim 36, wherein the material has physical
 properties further including a high melting temperature higher than
 approximately 2000 °K.
- 38. The method of claim 36, wherein the material has physical
 properties further including a high tensile strength higher than approximately
 300 MPa (Mega Pascals).
- 39. The method of claim 36, wherein the material has physical properties further including a high fracture toughness higher than approximately 1.0 MPa m^{1/2}.