VE475 Introduction to Cryptography Homework 2

Jiang, Sifan jasperrice@sjtu.edu.cn 515370910040

May 26, 2019

Ex. 1 - Simple questions

1. The inverse of 17 modulo 101 can be found by the extended Euclidean algorithm. Initially, $s_0 = 0$, $s_1 = 1$, $t_0 = 1$, and $t_1 = 0$.

So, we can see that gcd(17, 101) = 1 and the multiplicative inverse of 17 modulo 101 is $s_1 = 6$.

2. Simplify the condition given, we would have

$$12x \equiv 28 \mod 236$$
$$3x \equiv 7 \mod 59$$

So, we would have

$$3x = \begin{cases} 59 \cdot (3k+0) + 7 \\ 59 \cdot (3k+1) + 7 \\ 59 \cdot (3k+2) + 7 \end{cases}, \text{ where } k \in \mathbb{Z}$$
$$x = \begin{cases} 59k + 2 + \frac{1}{3} \\ 59k + 22 \\ 59k + 41 + \frac{2}{3} \end{cases}$$

Since $x \in Z$, x = 59k + 22, where $k \in Z$.

3.

4. Since $4883 < 70^2$ and $4369 < 67^2$, the smallest prime factor should be found from: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,, 37, 41, 43, 47, 53, 59, 61, and 67. So, we would have $4883 = 19 \times 257$. Since 19 is the smallest factor of 4883 and $257 < 17^2$, we can conclude that 257 is also a prime. Similarly, we would also have $4369 = 17 \times 257$, where 257 is also a prime. In conclusion, we have

$$4883 = 19 \times 257$$

 $4369 = 17 \times 257$

5.

6.

7.

$$2^{2017} \equiv 2 \times 4^{1008} \equiv 2 \times (-1)^{1008} \equiv 2 \mod 5$$

 $2^{2017} \equiv 2 \times 64^{336} \equiv 2 \times (-1)^{336} \equiv 2 \mod 13$
 $2^{2017} \equiv 4 \times 32^{403} \equiv 4 \times 1^{403} \equiv 4 \mod 31$

Since $2015 = 5 \times 13 \times 31$, we would have

a

Ex. 2 - Rabin cryptosystem

1.

Ex. 3 - CRT