Северсталь

Лаборатория измерительных систем

Кейс 11 Создание алгоритма для высокоточных измерений геометрии объектов на основе фотографий

Александр Никитин +7 (927) 707-69-12 av.nikitin3@severstal.com

Описание кейса

Участникам предстоит разработать программный алгоритм, способный выполнять высокоточные измерения геометрии объектов с использованием технологий компьютерного зрения

Пример этапов работ:

- 1. Создание синтетического дата-сета парных фотографий из предоставленных 3D моделей для обучения алгоритмов.
- 2. Разработка алгоритма для измерения геометрии объектов, отображенных на парных фотографиях.
- 3. Создание простейшего интерфейса для получения результатов сканирования.
- 4. Тестирование алгоритма и программного обеспечения на реальных фотографиях для оценки точности измерений.

Планируется привлечение лучших участников хакатона для участия в разработке и развитии системы

Критерии оценки результата

Nº	Критерии готовности продукта	Базовый результат	Амбициозный результат
1	Алгоритм должен показывать повторяемость результатов измерений в рамках погрешности при проведении тестов на предоставленных фотографиях	+	+
2	Интерфейс программного обеспечения должен отображать результаты измерений (допустимо в цифровом виде)	+	+
3	Алгоритм измерения геометрии должен обеспечивать погрешность измерений не более 0,1 мм	+	+
4	Алгоритм измерения геометрии должен выполнять измерение не более, чем за 1 секунду	+	+
5	Алгоритм измерения геометрии должен иметь возможность повышения точности измерений 3D геометрии объекта при интеграции со структурированным подсветом	-	+
6	Программное обеспечение должно иметь возможность реконструкции и визуализации моделей на основе результатов сканирования	-	+
7	Алгоритм измерения геометрии должен иметь возможность интеграции с различными оптическими схемами и параметрами оборудования (разрешение, быстродействие камер, плотность точек подсвета и т.д.)	-	+

Примеры изображений для обучения алгоритма

Калибровочные сетки

5 мм

2,5 мм

Маркерные фигуры

Примеры парных фотографий объектов для тестирования алгоритма

Калибровочная сетка

Что нужно измерять для тестирования?

- Расстояние между центрами черных окружностей
- Диаметр белых окружностей

Маркерная башня

1) Расстояние между центрами клеевых точек на объекте

Пример фотографии реального производственного объекта для тестирования алгоритма

Металлический лист в цеху проката

Что нужно измерять для тестирования?

- 1) Длина листа
- 2) Ширина листа

Принцип выполнения фотографий для тестирования алгоритмов

Принцип триангуляции: https://www.hikrobotics.com/en/machinevision/productdetail/?id=6249

Ссылка на объектив:

Оптическая схема использованная при выполнении тестовых пар фотографий

- 412 мм между камерами
- 639 мм от центра между камерами до объекта измерения
- 660 мм от камеры 1 до объекта измерения
- 641 мм от камеры 2 до объекта измерения

Примеры стереоскопических 3D сканеров

Range vision

- RangeVision PRIME от 2 790 000 руб.
- RangeVision Pro от 1 690 000 руб.
- RangeVision Pro Base от 1 690 000 руб.
- RangeVision Pro II от 1 890 000 руб.
- RangeVision Spectrum от 365 000 руб.
- RangeVision Neo от 195 000 руб.

Zeiss/GOM

- GOM ATOS 5/5х от 70 000 000 руб.
- GOM ATOS Q от 50 000 000 руб.

9

Hexagon/Aicon

• Aicon PrimeScan от 7 000 000 руб.