Homework Assignment 2

Matthieu Boyer

11 novembre 2023

Table des matières

1	$\mathbf{E}\mathbf{x}\mathbf{e}$	rcise 1
	1.1	Question 1
		Question 2
	1.3	Question 3
	1.4	Question 4

1 Exercise 1

1.1 Question 1

For i, j in $|1, n|^2$, we have $AB_{i,j} = A_{i*}B_{*j} = \sum_{k=1}^n A_{i,k}B_{k,j}$, thus AB is computed by computed, for all i, j the product $A_{i,k}B_{k,j}$ and thus uses at most $\sum_{k=1}^n a_k b_k$ multiplications.

1.2 Question 2

The number of multiplications and additions is two times the number of multiplications. We just need to get a majoration of the number of multiplications. Yet, since $a_k \leq n$ for all k, $\sum_{k=1}^n a_k b_k \leq n \sum_{k=1}^n b_k = mn$. Then the number of multiplications and additions required is $\mathcal{O}(mn)$.

1.3 Question 3

Multiplying a matrix in $\mathcal{M}_{ap,bp}$ by a matrix $\mathcal{M}_{bp,cp}$ can, by seeing the matrices as block matrices, be seen as multiplying two matrices in \mathcal{M}_p the number of times we need to compute the product of matrix in $\mathcal{M}_{a,b}$ by a matrix in $\mathcal{M}_{b,c}$:

$$\begin{pmatrix} \alpha_{1,1} & \dots & \alpha_{1,bp} \\ \vdots & & \vdots \\ \alpha_{ap,1} & \dots & \alpha_{ap,bp} \end{pmatrix} = \begin{pmatrix} A_{1,1} & \dots & A_{1,b} \\ \vdots & & \vdots \\ A_{a,1} & \dots & A_{a,b} \end{pmatrix} \text{ where } A_{i,j} = \begin{pmatrix} \alpha_{ip+1,jp+1} & \dots & \alpha_{ip+1,j(p+1)} \\ \vdots & & \vdots \\ \alpha_{i(p+1),jp+1} & \dots & \alpha_{i(p+1),j(p+1)} \end{pmatrix} \in \mathcal{M}_p$$

Thus, we can multiply a matrix in $\mathcal{M}_{ap,bp}$ by a matrix $\mathcal{M}_{bp,cp}$ in M(a,b,c)M(p,p,p) multiplications. Thus:

$$M(ap,bp,cp) \leq M(a,b,c)M(p,p,p)$$

1.4 Question 4

If $0 \le r \le \alpha$: w(1, r, 1) is the smallest number k such that $M(n, n^r, n) = \mathcal{O}(n^{k+o(1)})$. But, again by seeing A an n, n^{α} matrix as a n, n^r matrix next to a $n, n^{\alpha} - n^r$ matrix and same for B, we get $M(1, r, 1) \le M(1, \alpha, 1)$ and thus $w(1, r, 1) \le w(1, \alpha, 1) = 2$. If $\alpha \le r \le 1$: by seeing a n, n^r matrix A as $n^{r-\alpha}$ n, n^{α} matrices next to each other, and same for B (transposing the process), we get:

$$M(1, r, 1) \le M(1, r - \alpha, 1)M(1, \alpha, 1)$$

Thus:

$$w(1, r, 1) \le w(1, r - \alpha, 1) + 2$$