Arquitetura e Organização de Computadores Memória Virtual

Prof. Alexandre Tannus

Introdução

- Memória virtual é a utilização de parte da memória secundária como memória principal
- Princípios semelhantes ao das memórias cache
 - Localidade espacial e temporal
 - ► Função de mapeamento
 - Transparência para o programador
- ➤ Caches são utilizadas para aumentar o desempenho com relação ao tempo de acesso. Memória virtual aumenta o desempenho com enfoque em capacidade de armazenamento

Espaço de Endereçamento

	Endereço real 0
	Endereço real 1
	Endereço real 2
J	Endereço real 3
]	
	Endereço real R
_	

Espaço de Endereçamento

Vantagens

- Espaço virtual pode ser muito maior que o espaço de endereçamento físico
- Suporte para coexistência de vários programas, em primeiro ou em segundo plano
- Compartilhamento de memória física ou periféricos entre processos

Desvantagens

 Possibilidade de causar lentidão no sistema por excesso de leitura/escrita no HD

Tradução de endereços

- ▶ Realizada via hardware com auxílio do sistema operacional
- Hardware responsável Memory Management Unit (MMU)
- Mecanismo de tradução mantém tabelas de mapeamento exclusivas para cada processo

Tradução de endereços

- Tabelas mapeiam blocos de dados
- Blocos pode ter
 - ► Tamanho fixo técnica de paginação
 - ► Tamanho variável técnica de segmentação

Espaço virtual x tamanho do bloco

Espaço de endereçamento virtual	Tamanho do Bloco	Número de Blocos	Entradas na tabela de mapeamento
2 ³² endereços	512 endereços	2^{23}	2^{23}
2 ³² endereços	4k endereços	2^{20}	2^{20}
2 ⁶⁴ endereços	4k endereços	2^{52}	2^{52}
2 ⁶⁴ endereços	64k endereços	2 ⁴⁸	2^{48}

Política de demanda de páginas

- Determina quando uma página deve ser carregada
- Dois tipos
 - ▶ Por demanda
 - Antecipada

Política de alocação de páginas

- ▶ Determina quantos frames cada processo pode manter na memória principal
- Dois tipos
 - ► Fixa
 - Variável

Política de substituição de páginas

- Define qual página será retirada da memória quando outra precisar ser alocada
- Deve ser considerada a ocorrência de modificações na página
- Local ou global

Algoritmos de substituição de páginas

- Ótimo
- Aleatório
- ► FIFO (First In First Out)
- ► LFU (*Least Frequently Used*)
- ► LRU (*Least-Recently-Used*)
- NRU (Not-Recently-Used)
- ► FIFO com *buffer* de páginas
- ► FIFO circular