

APPLIED ALGORITHMS

DIVIDE-AND-CONQUER

ONE LOVE. ONE FUTURE.

CONTENT

- Basis of Divide-And-Conquer
- Karatsuba algorithm
- Closest pair points
- Decrease and Conquer
- Inversion

Basis of Divide and Conquer

- Generic schema
 - Divide the original problem into smaller independent subproblems
 - Solve subproblems (recursion)
 - Combine solutions of subproblems

Basis of Divide and Conquer

- Complexity analysis
 - *T*(*n*): running time of input size n

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq n_c \\ aT(n/b) + D(n) + C(n) & \text{if } n \geq n_c, \end{cases}$$

• Consider: $T(n) = aT(n/b) + n^k$ với a, b, c, k are positive constants and $a \ge 1, b \ge 2$:

→
$$T(n) = \begin{cases} O(n^{\log_b a}), & \text{n\'eu } a > b^k \\ O(n^k \log n), & \text{n\'eu } a = b^k \\ O(n^k), & \text{n\'eu } a < b^k \end{cases}$$

Multiplication of 2 big numbers: Karatsuba algorithm

- Multiplication of 2 big numbers A and B (containing n digits)
- $A = A_1 \times 10^{n/2} + A_2$
- $B = B_1 \times 10^{n/2} + B_2$
- A x B = $(A_1 \times 10^{n/2} + A_2) \times (B_1 \times 10^{n/2} + B_2) = A_1 \times B_1 \times 10^n + (A_1 \times B_2 + A_2 \times B_1) \times 10^{n/2} + A_2 \times B_2$
- $A_1 \times B_2 + A_2 \times B_1 = (A_1 + A_2) \times (B_1 + B_2) A_1 \times B_1 A_2 \times B_2$
- $A \times B = A_1 \times B_1 \times 10^n + ((A_1 + A_2) \times (B_1 + B_2) A_1 \times B_1 A_2 \times B_2) \times 10^{n/2} + A_2 \times B_2$

Multiplication of 2 big numbers: Karatsuba algorithm

- Multiplication of 2 big numbers A and B (containing n digits)
- $A = A_1 \times 10^{n/2} + A_2$
- $B = B_1 \times 10^{n/2} + B_2$
- A x B = $(A_1 \times 10^{n/2} + A_2) \times (B_1 \times 10^{n/2} + B_2) = A_1 \times B_1 \times 10^n + (A_1 \times B_2 + A_2 \times B_1) \times 10^{n/2} + A_2 \times B_2$
- $A_1 \times B_2 + A_2 \times B_1 = (A_1 + A_2) \times (B_1 + B_2) A_1 \times B_1 A_2 \times B_2$
- $A \times B = A_1 \times B_1 \times 10^n + ((A_1 + A_2) \times (B_1 + B_2) A_1 \times B_1 A_2 \times B_2) \times 10^{n/2} + A_2 \times B_2$
- Complexity:
 - T(n) = 3T(n/2) + O(n)
 - $T(n) = O(n^{\log_2 3})$

- Given n points P = 0, 1, . . ., n-1 on the plane, find the pair of 2 points such that the distance between these points is the smallest.
- Denote A.x and A.y the x-coordinate and ycoordinate of point A.
- Denote dist(A, B): the distance between points A and B
- Denote d(P): the smallest distance among the distances between 2 points of P.

- X_SORT(P): return the list of points of P sorted in a non-decreasing order of x-coordinates (two points with the same x-coordinate, the point having smaller y-coordinate will be located before the other)
- Y_SORT(P): return the list of points of P sorted in a non-decreasing order of y-coordinates (two points with the same y-coordinate, the point having smaller x-coordinate will be located before the other)
- Example
 - X_SORT(P) = 3, 11, 0, 4, 5, 1, 8, 6, 10, 9, 2, 7
 - Y_SORT(P) = 6, 5, 0, 2, 1, 10, 4, 11, 8, 7, 3, 9

- Let Px = X_SORT(P)
- Let O the point in the middle of Px.
- Let LEFT(Px, O) be the sub-list of points of Px before O (O inclusive)
- Let RIGHT(Px, O) be the sub-list of points of Px after O
- Example
 - Px = 3, 11, 0, 4, 5, 1, 8, 6, 10, 9, 2, 7
 - O = point 1
 - LEFT(Px, O) = 3, 11, 0, 4, 5, 1
 - RIGHT(Px, O) = 8, 6, 10, 9, 2, 7

- Divide and Conquer
 - Let $Px = X_SORT(P)$
 - Let O the point in the middle of Px.
 - PL = LEFT(Px, O)
 - PR = RIGHT(Px, O)
 - Let $\Delta = \min(d(PL), d(PR))$
 - Let S be the set of points A of Px such that $|O.x A.x| < \Delta$ (S is called Strip).
 - Combination: find the closest points of S


```
ClosestPair(P) {
  Px = X_SORT(P);
  n = length(P); O = middle point of Px;
  PL = LEFT(Px, 0); PR = RIGHT(Px, 0);
  dL = ClosestPair(PL); dR = ClosestPair(PR);
  \Delta = \min(dL, dR);
  S = \{A \in Px \mid \Delta > |0.x - A.x|\};
  dm = ClosestPairStrip(S, length(S), \Delta);
  return dm;
```


Find the closest points in the strip

```
1. ClosestPairStrip(S, n, \Delta) {
2. S = Y_SORT(S);
   dm = \Delta;
   for i = 0 to n-1 do {
5. for j = i+1 to n-1 do {
   if S[j].y - S[i].y \ge \Delta then break;
   dm = min(dm, dist(S[i], S[j]);
8.
10. return dm;
11.}
```


• Lines 5–8 run at most 8 iterations as each square ABCD and BCEF contains at most 4 points (distance between 2 points within each square is greater or equal to Δ)

```
1. ClosestPairStrip(S, n, \Delta) {
2. S = Y_SORT(S);
   dm = \Delta;
4. for i = 0 to n-1 do {
  for j = i+1 to n-1 do {
       if S[j].y - S[i].y \ge \Delta then break;
   dm = min(dm, dist(S[i], S[j]);
8.
10. return dm;
11.}
```


Closest pair of Points - O(nlogn) implementation

- Px = X_SORT(P) and Py = Y_SORT(P)
- O is the middle point of Px
- PxL = LEFT(Px, O) and PxR = RIGHT(Px, O)
- PyL = Y_SORT(PxL) and PyR = Y_SORT(PxR)
- Example:
 - Px = 3, 11, 0, 4, 5, 1, 8, 6, 10, 9, 2, 7
 - Py = 6, 5, 0, 2, 1, 10, 4, 11, 8, 7, 3, 9
- Left part
 - PxL = 3, 11, 0, 4, 5, 1
 - PyL = 5, 0, 1, 4, 11, 3
- Right part
 - PxR = 8, 6, 10, 9, 2, 7
 - PyR = 6, 2, 10, 8, 7, 9

Closest pair of Points – O(nlogn) implementation

```
ClosestPair(P, n)\{// points of the list P are indexed 0, 1, . . ., n-1
 Px = X_SORT(P);
 Py = Y_SORT(P);
  dm = ClosestPair(Px, Py, n);
 return dm;
```

Closest pair of Points - O(nlogn) implementation

```
ClosestPair(Px, Py, n) {
  if n <= 3 then return BruteforceClosestPair(Px,n);
  PxL, PyL, PxR, PyR = []; mid = n/2; O = Px[mid];
  for i = 0 to mid - 1 do PxL.push(Px[i]);
 for i = mid to n-1 do PxR.push(Px[i]);
  for i = 0 to n-1 do {
   if ((Py[i].x < 0.x) or Py[i].x = 0.x and Py[i].y < 0.y) and length(PyL) < mid then
      PyL.push(Py[i]);
    else PyR.push(Py[i]);
  dL = ClosestPair(PxL, PyL, mid); dR = ClosestPair(PxR, PyR, n-mid); <math>\Delta = min(dL, dR);
  S = []; for i = 0 to n-1 do if |Py[i].x - 0.x| < \Delta then S.push(Py[i]);
  dm = ClosestPairStrip(S, length(S), \Delta);
  return dm;
```


Closest pair of Points - O(nlogn) implementation

```
ClosestPairStrip(S, n, \Delta) {
  dm = \Delta;
  for i = 0 to n-1 do {
    for j = i+1 to n-1 do {
      if S[j].y - S[i].y \ge \Delta then break;
      dm = min(dm, dist(S[i], S[j]);
  return dm;
```

- Given a sequence $a[1], a[2], \ldots, a[n]$. Count the number of pairs (i, j) such that $1 \le i < j \le n$ and a[i] > a[j]
- Example: 5, 2, 7, 9, 4, 1
 - Inversions: (1, 2), (1, 5), (1, 6), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)

- Divide and conquer: Apply merge sort algorithms
 - Divide the given sequence into 2 equal size parts
 - Count the number of inversions of the left subsequence (after counting, the left sub-sequence is sorted in a non-decreasing order)
 - Count the number of inversions of the right subsequence (after counting, the right sub-sequence is sorted in a non-decreasing order)
 - Count the number of pairs (i, j) in which a[i] > a[j] (i is an index of the left sub-sequence and j is an index of the right sub-sequence)

```
countInversions(L, R) {
  if L >= R then return 0;
  M = (L+R)/2;
  cntL = countInversions(L, M);
  cntR = countInversions(M+1, R);
  cnt = countMerge(L, M, R);
  return cntL + cntR + cnt;
}
```

- Divide and conquer: Apply merge sort algorithms
- Merge operation:
 - Run an index *i* on the left sub-sequence and an index *j* on the right sub-sequence
 - If a[i] > a[j] then a[q] > a[j] for all q = i,..., M: number of inversions is augmented by M i + 1

```
countMerge(L, M, R) {
 i = L; j = M+1; cnt = 0;
 for k = L to R do \{
 if(i > M) then { ta[k] = a[j]; j++; }
  else if(j > R) then { ta[k] = a[i]; i++; }
 else{
   if(a[i] \le a[j]) then { ta[k] = a[i]; i++; }
  else{
   ta[k] = a[j]; j++; cnt = cnt + M - i + 1;
 for(int k = L; k <= R; k++) a[k] = ta[k];
 return cnt;
```

- Divide and conquer: Apply merge sort algorithms
- Merge operation:
 - Run an index *i* on the left sub-sequence and an index *j* on the right sub-sequence
 - If a[i] > a[j] then a[q] > a[j] for all q = i,..., M: number of inversions is augmented by M i + 1
- Time complexity: O(nlogn)

```
countMerge(L, M, R) {
 i = L; j = M+1; cnt = 0;
 for k = L to R do \{
 if(i > M) then { ta[k] = a[j]; j++; }
  else if(j > R) then { ta[k] = a[i]; i++; }
 else{
   if(a[i] \le a[j]) then { ta[k] = a[i]; i++; }
  else{
   ta[k] = a[j]; j++; cnt = cnt + M - i + 1;
 for(int k = L; k <= R; k++) a[k] = ta[k];
 return cnt;
```

- Given a binary sequence X of length n which can be divided into 2 parts: the prefix contains only 0 and the suffix contains only 1.
 - Example: 000000011111111111111111
- Goal: Find the index of the first 1-bit (from left to right)

- Given a binary sequence X of length n which can be divided into 2 parts: the prefix contains only 0
 and the suffix contains only 1.
 - Example: 000000011111111111111111
- Goal: Find the index of the first 1-bit (from left to right)
 - Example

- Given a binary sequence X of length n which can be divided into 2 parts: the prefix contains only 0
 and the suffix contains only 1.
 - Example: 000000011111111111111111
- Goal: Find the index of the first 1-bit (from left to right)
- Decrease and conquer
 - Let m the middle position of X
 - Consider the bit X[m] in the middle of X
 - If X[m] = 0 then find in the result in the right sub-sequence
 - If X[m] = 1
 - If X[m-1] = 0 then return m
 - Otherwise, find the result in the left sub-sequence

- Given a binary sequence X of length n which can be divided into 2 parts: the prefix contains only 0
 and the suffix contains only 1.
 - Example: 000000011111111111111111
- Goal: Find the index of the first 1-bit (from left to right)
- Decrease and conquer
 - Let m the middle position of X
 - Consider the bit X[m] in the middle of X
 - If X[m] = 0 then find in the result in the right sub-sequence
 - If X[m] = 1
 - If X[m-1] = 0 then return m
 - Otherwise, find the result in the left sub-sequence
 - Time complexity: O(logn)

m

HUST hust.edu.vn f fb.com/dhbkhn

THANK YOU!