Contents

1	Solution Development	3
2	Application Development	7
3	Application Evaluation and Governance	9
4	Application Deployment and Monitoring	10

Fundamentals

- LLM: Model trained on massive datasets to achieve advanced language processing capabilities
- Foundation Models: Large ML model trained on vast amount of data & fine-tuned for more specific language understanding and generation tasks

Components

- Encoder: Converts text input into tokens (embeddings)
- Decoder: Converts generated output tokens back into meaningful words
- Transformer: Train the token embeddings

Databricks AI

- GenAI (Custom models, model serving, RAG)
- End-to-end AI (MLOps with MLFlow, AutoML, Monitoring, Governance)
- Databricks + MosaicML:
 - Rapid democratization of model capabilities
 - Making GenAI models work for enterprises
 - Unifying AI and data stack
 - Advantages: Customize models, secure environment, competitive

Legal and Ethical Considerations

- Prompt Injection: Inserting a specific instruction or prompt within the input text to manipulate the normal behavior of LLMs
- Prompt Engineering: Designing and crafting effective prompts or instructions for generating desired outputs from an LLM

1 Solution Development

From Prompt Engineering to RAG

- Prompt: Input or query given to a LLM to elicit a specific response
- Prompt engineering: Practice of designing and refining prompts to optimize the responses generated by an AI model
- Prompt components: Instruction, context, input/question, output type/format
- Prompt techniques:
 - Zero-shot: Prompt that generates text or performs a task without providing any examples or additional training specified to that task
 - Few-shot: Prompt provides with a few input-output examples to guide the model for generating the desired output
- \bullet Prompt chaining: Multiple tasks are linked together, with the output of one prompt serving as the input for the next \to allows for more complex tasks to be broken down into manageable steps
- Chain-of-thought (CoT) prompting: Enhances the reasoning capabilities of LLMs by guiding them to articulate their though processes step-by-step

Tips and tricks

- Different models may require different prompts
- Provide examples and clues to guide model's response generation
- Different use cases may require different prompts
- Use delimiters to distinguish between instruction and context
- Ask the model to return structured output
- Ask the model not to hallucinate, not to assume, not to rush

RAG

- Passing context as model inputs improves factual recall
- Retrieve data/documents relevant to a question/task, provide them as context to augment the prompts to an LLM to improve generation
- Components:
 - Index & embed: Embedding model creates vector representations of the documents and the user query
 - Vector store: Specialized to store unstructured data indexed by vectors
 - Retrieval: Search stored vectors using similarity search to retrieve relevant information
 - Filtering & Reranking: Process of selecting or ranking retrieved documents before passing as context
 - Prompt augmentation: Prompt engineering workflow to enhance context via injection of data retrieved from the vector store
 - Generation

• Flow:

- Documents are embedded
- User asks question and LLM converts query to embeddings
- Similarity search for embedded documents and embedded user query
- Similar documents are passed as context to LLM generation model

- Model augments and generates completion
- Databricks:
 - DLT
 - Mosaic AI Model Serving (embeddings, foundation models, custom models)
 - Mosaic AI Vector Search
 - Unity Catalog's Model registry
- Benefits:
 - Up-to-date and accurate responses,
 - Reducing inaccurate responses or hallucinations
 - Domain-specific contextualization
 - Efficiency and cost-effectiveness

Preparing Data for RAG Solution

- Issues:
 - Poor quality model output
 - Lost in the middle paradigm
 - Inefficient retrieval
 - Wring embedding model
- Data prep process:
 - Ingestion \rightarrow Data storage \rightarrow Chunking \rightarrow Persist in vector store
 - Delta Lake for storing data and tables in the Databricks DI Platform
 - Unity Catalog for governance, discovery, access control for RAG applications
 - Document extraction: Split documents into chunks, embed chunks with a model, store them in a vector store
- Chunking data:
 - Context-aware chunking: By sentence/paragraph/section, leverage special punctuation, include metadata/tags/titles
 - Fixed-size chunking: Divide by a specific number of tokens, simple and computationally cheap method
 - Chunking overlap defines the amount of overlap between consecutive chunks ensuring that no contextual information is lost
 - Window summarization: Each chunk includes a windowed summary of previous chunks
- Data preparation in Databricks:
 - Ingestion: Tables and Volumes \rightarrow Files & metadata
 - Document processing (parsing, cleaning, chunking, featurization): Workflows, DLT,
 Notebooks → Chunks & features
 - Embedding: Workflows, DLT, Notebooks \rightarrow Chunks, vectors & features
 - Storage: Delta Tables \rightarrow Automatic Sync
 - Vector DB: Vector Search

Vector Search

- Vector DB:
 - Store and retrieve high dimensional vectors such as embeddings
 - In RAG architecture, contextual information is stored in vectors
 - Specialized and fully-fledged DB for unstructured data

- Speed up query search for closest vector
- Use cases: RAG, recommendation engines, similarity search
- Vector similarity:
 - Distance metrics: L2 (Euclidian), Manhattan distance (L1)
 - Similarity metrics: Cosine similarity
- Vector search strategies: KNN, Approximate NN (ANN), Hierarchical Navigable Small Words (HNSW)
- Libraries create vector indices, plugins provide architectural enhancements
- Reranking:
 - Prioritize documents most relevant to user's query
 - Initial retrieval \rightarrow Not all documents are equally important
 - Reranker: Reorder documents based on the relevance scores \rightarrow Place most relevant documents at the top of the list
 - Adjusts initial ranking of retrieved documents to enhance precision and relevance
 - Supports deeper semantic understanding
 - Benefits: Improve accuracy, reduce hallucinations
 - Challenges: LLM must be called repeatedly, increasing cost and latency, adds complexity to RAG pipeline
- Mosaic AI Vector Search:
 - Stores vectors and metadata, Integrated with Lakehouse, supports Access Control Level (ACL) using Unity Catalog
 - Methods:
 - * Delta Sync API with managed embeddings: automatic sync, fully managed embeddings
 - * Delta Sync API with self-managed embeddings: automatic sync, self-managed embeddings
 - * Direct access CRUD API: manual sync via API, self-managed embeddings
- Set up:
 - Create a Vector Search Endpoint: Compute resource
 - Create a Model Serving Endpoint: Foundation Models APIs, external or custom models
 - Create a Vector Search Index: Created and auto-synced from Delta Table, indexes appear in and are governed by Unity Catalog

Assembling and Evaluating a RAG Application

- RAG Application Workflow: Development → Expert/User testing → Offline evaluation → Production
- MLFlow
- Evaluating RAG Pipeline:
 - Components to evaluate: Chunking, embedding model, vector store (retrieval, reranker), generator
 - Context precision: Signal-to-noise ratio for retrieved context, based on query and context
 - Context relevancy: Measure relevancy of retrieved context, based on both the query and the context
 - Context recall: Measures the extent to which all relevant entities and information are

- retrieved and mentioned in the context provided, based on ground truth and context
- Faithfulness: Measures the factual accuracy of generated answer in relation to provided context, based on responses and retrieved context
- Answer relevancy: Assess how applicable the generated response is to the user's query, based on the alignment of the response with the user's intent or query specifics
- Answer correctness: Measures accuracy of generated answer when compared to the ground truth, based on ground truth and response, encompasses both semantic and factual similarity with ground truth

• MLFlow evaluation:

- Batch comparisons
- Rapid and scalable experimentation
- Cost effective

2 Application Development

Foundations of Compound AI Systems

- Compound AI System: AI System that has multiple interacting components
- Systems: Prompt engineering, RAG, Agent-based chain, orchestration chain etc.
- Prompts have multiple intents → Consists of one to many tasks, e.g., translate, summarize, analyze sentiment, and classify
- Designing Compound AI Systems:
 - Approach: Analysis, design, development, production, monitoring
 - Identify intents, tools, build the chain

Building Multi-Stage Reasoning Chains

- Map concepts with technical terms
- Composition frameworks help to manage multi-stage reasoning systems
- LangChain main components:
 - Prompt: Structured text to communicate a specific task/query to an LLM
 - Chain: Sequence of automated actions or components
 - Retriever: Interface returning relevant documents
 - Tool: Functionality/resource that an agent can activate to perform a specific task
- LlamaIndex: Framework that enhances capabilities of LLMs by structuring and indexing data
- Haystack: Python framework for building applications with LLMs, focusing on document retrieval, text generation, and summarization
- Databricks products for Building Multi-stage Reasoning Systems:
 - Foundation Model API \rightarrow Access and query open GenAI models
 - DBRX:
 - * DBRX Base: pre-trained model, functions like smart auto-complete, useful for further fine-tuning
 - * DBRX Instruct: fine-tuned model, answers questions and follows instructions
 - Vector Search:
 - * Stores vector representation of data and metadata
 - * Integrated with Lakehouse
 - * API for real-time similarity search

Agents and Cognitive Architectures

- Agent:
 - Application that can execute complex tasks by using a LM to define a sequence of actions to take
 - Compound AI systems: Hard-coded calls to external tools and services
 - Agents replace hard-coded sequence of actions with a query-dependent sequences chosen dynamically by LLMs
- Non-agentic workflow: LLM generates an answer based on actions defined
- Agentic workflow: Agent does research, writes first draft, another model checks the draft (less determined)
- Workflow:

- Process tasks
- Collect data
- Data analysis
- Output generation
- Agent Reasoning: Cognitive process by which AI agents analyze information, draw logical conclusions, and make decisions autonomously
- Design patterns:
 - ReAct (Reason + Act):
 - * Enables models to verbal reasoning traces and actions
 - * Main states:
 - · Thought: Reflect on the problem given and previous actions taken
 - · Act: Choose correct tool and input format to use
 - · Observe: Evaluate the result of the action and generate next thought
 - Tool use / function calling: Research tools, document retrieval, coding, image
 - Planning: Agents must be able to dynamically adjust their goals and plans based on changing conditions
 - Multi-agent collaboration
- Multi-Modal AI: Models with inputs/outputs that include data types beyond text (image, audio, video)

3 Application Evaluation and Governance

Securing and Governing GenAl Applications

- Data and AI Security Framework (DASF) Databricks as Security:
 - Algorithm: Model Serving, Lakehouse Monitoring
 - Evaluation: MLflow, Lakehouse Monitoring
 - Model Management: MLflow, Unity Catalog
 - Catalog: Unity Catalog
 - Operations: Asset Bundles, CLI, Secrets
 - Platform: Cloud architecture, Serverless
- Key Security Tooling: Unity Catalog, Mosaic AI

Evaluation Techniques

- Metrics:
 - Human feedback, LLM-as-a-judge
 - Perplexity \rightarrow Low Perplexity = High confidence
 - Toxicity \rightarrow How harmful is the model?
- Benchmarking: Compare models against standard evaluation datasets
- LLM-as-a-judge

End-to-End Application Evaluation

4 Application Deployment and Monitoring