Lógica Matemática e Computacional

Lógica Matemática e Computacional

Tautologia, Contradição e Contingência

Rubens Rodrigues

Tautologias ou Proposições Tautológicas ou Proposições Logicamente Verdadeiras

 É toda proposição composta cuja a última coluna da sua tabela-verdade encerra somente a letra V (verdade).

Em outros termos, é toda proposição composta P(p, q, r, ...) cujo valor lógico é sempre V (verdade), quaisquer que sejam os valores lógicos das proposições simples componentes p, q, r, ...

 É imediato que as proposições p → p e p ↔ p são tautológicas (Princípio de Identidade para as proposições).

1. A proposição "~(p ^ ~p)" (Princípio da não contradição) é tautologia, conforme mostra a sua tabela-verdade:

Portanto, dizer que uma proposição não pode ser simultaneamente verdadeira e falsa é sempre verdadeiro.

р	~p	p ^ ~p	~(p ^ ~p)
V	F	F	V
F	V	F	V

2. A proposição "p v ~p" (Princípio do terceiro excluído) é tautologia, conforme se vê pela sua tabela-verdade:

Portanto, dizer que uma proposição ou é verdadeira ou é falsa é sempre verdadeiro.

р	~p	p v ~p
V	F	V
F	V	V

3. A proposição "p v ~(p ^ q)" é tautologia, conforme mostra a sua tabela-verdade:

р	q	p ^ q	~(p ^ q)	p v ~(p ^ q)
V	V	V	F	V
V	F	F	V	V
F	V	F	V	V
F	F	F	V	V

4. A proposição "p ^ q → (p ↔ q)" é tautologia, conforme mostra a sua tabela-verdade:

р	q	p ^ q	$p \leftrightarrow q$	$p \land q \rightarrow (p \leftrightarrow q)$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	F	V	V

5. A proposição "p v (q ^ ~q) ↔ p" é tautologia, conforme mostra a sua tabela-verdade:

р	q	~q	q ^ ~q	p v (q ^ ~q)	p v (q ^ ~q) ↔ p
V	V	F	F	V	V
V	F	V	F	V	V
F	V	F	F	F	V
F	F	V	F	F	V

6. A proposição "p ^ r → ~q v r" é tautologia, conforme mostra a sua tabela-verdade:

p	q	r	~q	p ^ r	~qvr	$p \wedge r \rightarrow \sim q \vee r$
V	V	V	F	V	V	V
V	V	F	F	F	F	V
V	F	V	V	V	V	V
V	F	F	V	F	V	V
F	V	V	F	F	V	V
F	V	F	F	F	F	V
F	F	V	V	F	V	V
F	F	F	V	F	V	V

7. A proposição "((p → q) → r) → (p → (q → r))" é tautologia, conforme mostra a sua tabela-verdade:

р	q	r	$p \rightarrow q$	$(q \rightarrow r)$	$(p \rightarrow q) \rightarrow r$	$p \rightarrow (q \rightarrow r)$	Prop
V	V	V	V	V	V	V	V
V	V	F	V	F	F	F	V
V	F	V	F	V	V	V	V
V	F	F	F	V	V	V	V
F	V	V	V	V	V	V	V
F	V	F	V	F	F	V	V
F	F	V	V	V	V	V	V
F	F	F	V	V	F	V	V

Exercício:

Um exemplo de tautologia é:

- a) Se Pedro é bonito, então Pedro é bonito e o céu é azul.
- b) Se Pedro é bonito, então Pedro é bonito ou o céu é azul.
- c) Se Pedro é bonito ou o céu é azul, então o céu é azul.
- d) Se Pedro é bonito ou o céu é azul, então Pedro é bonito e o céu é azul.

Contradições ou Proposições Contraválidas ou Proposições Logicamente Falsas

 É toda proposição composta cuja a última coluna da sua tabela-verdade encerra somente a letra F (falsidade).

Em outros termos, é toda proposição composta P (p, q, r,...) cujo valor lógico é sempre F (falsidade), quaisquer que sejam os valores lógicos das proposições simples componentes p, q, r, ...

 Como a tautologia é sempre verdadeira (V), a negação de uma tautologia é sempre falsa (F), ou seja, é uma contradição, e vice-versa.

Contradições - Exemplos

 A proposição "p ^ ~p" é uma contradição, conforme mostra a sua tabela-verdade:

Portanto, dizer que uma proposição pode ser simultaneamente verdadeira e falsa é sempre falso.

р	~p	p ^ ~p
V	F	F
F	V	F

2. A proposição "p ↔ ~p" é uma contradição, conforme se vê pela sua tabela-verdade:

p ~p p ↔ ~pV F FF V F

Contradições - Exemplos

3. A proposição "(p ^ q) ^ ~(p v q)" é uma contradição, conforme mostra a sua tabela-verdade:

р	q	p ^ q	pvq	~(p v q)	(p ^ q) ^ ~(p v q)
V	V	V	V	F	F
V	F	F	V	F	F
F	V	F	V	F	F
F	F	F	F	V	F

Contradições - Exemplos

4. A proposição "~p ^ (p ^ ~q)" é uma contradição, conforme mostra a sua tabela-verdade:

р	q	~p	~q	p ^ ~q	~p ^ (p ^ ~q)
V	V	F	F	F	F
V	F	F	V	V	F
F	V	V	F	F	EN F
F	F	V	V	F	F

Contingências ou Proposições Contigentes ou Proposições Indeterminadas

 É toda proposição composta cuja a última coluna da sua tabela-verdade figuram as letras
V e F cada uma pelo menos uma vez.

Em outros termos, é toda proposição composta P (p, q, r,...) que não é tautologia e nem contradição.

Contigências - Exemplos

 A proposição "p → ~p" é uma contigência, conforme mostra a sua tabela-verdade:

р	~p	p → ~p
V	F	F
F	V	V

Contingências - Exemplos

2. A proposição "p v q → p" é uma contingência, conforme mostra a sua tabela-verdade:

p	q	pvq	$p v q \rightarrow p$
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	V

Contingências - Exemplos

3. A proposição "x = 3 ^ (x ≠ y → x ≠ 3)" é uma contingência, conforme mostra a sua tabela-verdade:

x = 3	x = y	x ≠ 3	x ≠ y	$x \neq y \rightarrow x \neq 3$	$x = 3 \land (x \neq y \rightarrow x \neq 3)$
V	V	F	F	V	V
V	F	F	V	F	F
F	V	V	F	V	
F	F	V	V	V	HAPPER LES