Kuldeep Singh:

SOLID STATE PHYSICS

CONTENTS

SOLID STATE PHYSICS

Assignment & Previous Years' Question

Leve-1

	PAGES
Assignment-01	01-07
Assignment-02	08-12
Assignment-03	13-25
Assignment-04	26-36
Assignment-05	37-46
Leve-2	•
Assignment	47-50

LEVEL-1

) k.

9.

CSIR-UGC-NET/JRF|GATE-PHYSICS

SOLID STATE PHYSICS

Assignment-1

The state	C C C	200	Late to a	
The packing	traction of a	simple cubic	lattice is ap	proximately:

(a) 0.74

(b)0.68

(c)0.52

(d) 0.34

Given that r is the radius of the atoms and a is the lattice constant of a solid having a cubic structure, which one of the following relations is true for a body centred cubic structure?

 $(a)_{.}a = 2r$

(b) $a = 2r \sqrt{2}$

(c) $a = 2r \cdot \sqrt{3}$

• (d) $a = 4r/\sqrt{3}$

What is the second nearest-neighbour distance in a face centred cubic lattice whose conventional unit cell parameter is a?

(a) $a/\sqrt{2}$

(b) a/2

(c) a

(d) $\sqrt{2}/a$

The C/a ratio for an ideal hexagonal closed packed structure is:

(a) $\frac{2}{\sqrt{3}}$

(b) √8

(c) $\sqrt{5}$ (d) $\sqrt{\frac{8}{3}}$

For a closed packed BCC structure of hard spheres, the lattice constant a is related to the sphere radius R as:

(a) $a = 4 R/\sqrt{3}$

(b) $a = 4R\sqrt{3}$

(c) $a = 4R\sqrt{2}$

(d) $a = 2R\sqrt{2}$

In crystallographic notation the vector \overline{OP} in the cubic cell shown in the figure is:

(a) [2 € 1]

(b)[122]

(c)[121]

(d)[112]

The de-Broglie wavelength λ for an electron of energy 150 eV is:

(a) 10^{-s} m

(b) 10⁻¹⁰m

(c) 10⁻¹² m

(d) 10-14 m

Which is loose packed structure? (a) Body centred cubic structure

(b) I-lexagonal close-packed structure

(c) Face-centred cubic structure

(d) None of these

The value of a primitive unit cell defined by axes $(\hat{k} + \hat{j}) \hat{A}$, $(\hat{i} + \hat{j}) \hat{A}$, $(\hat{j} + \hat{k}) \hat{A}$, is

(a) 1Å³

(b) $3Å^{3}$

(c) 2Å3

(d) 4Å³

- The Miller indices of a plane passing through the points $3\hat{a}$, $4\hat{b}$ and $5\hat{c}$, where \hat{a} , \hat{b} and \hat{c} , are lattice vectors
 - (a) (12, 15, 20)
- (b) (20, 15, 12)
- (c)(5,4,3)
- (d)(3,4,5)
- A simple cubic crystal with lattice parameter a undergoes transition into a tetragonal structure with lattice parameter $a_t = b_t = \sqrt{2} a_c$ and $c_t = 2a_c$, below a certain temperature. The ratio of the interplanar spacings of (101) planes for the cubic and the tetragonal structure is
- (b) $\frac{1}{6}$
- (c) $\sqrt{\frac{3}{6}}$
- (d) $\frac{3}{6}$
- The inter-planar spacing for (110) plane of a monoatomic FCC crystal of lattice constant 2Å is
 - (a) $.1/\sqrt{2} \text{ Å}$

- (d) √3 Å
- Which one of the following diffraction techniques has most surface sensitivity?
 - (a) X-ray
- (b) Neutron
- (d) Optical

- By using X-ray diffraction one cannot obtain
 - (a) crystal structure
- (b) type of bonding
- (c) residual stress
- (d) grain size 178.
- A flat surface is covered with non-overlapping disks of same size. What is the largest fraction of the area that can be covered?
 - (a)

- (b) $\frac{5\pi}{6}$ (c) $\frac{6}{7}$ (d) $\frac{\pi}{2\sqrt{3}}$
- 16.7 A metal suffers a structural phase transition from face-centred cubic (FCC) to the simple cubic (SC) structure. It is observed that this phase transition does not involve any change of volume. The nearest neighbour distances d_{fc} and d_{sc} for the FCC and the SC structures respectively are in the ratio (d_{fc}/d_{sc}) [Given $2^{1/3} = 1.26$]
 - (a) 1.029
- (b) 1.122
- (d) 1.130
- 17. Consider the crystal structure of sodium chloride which is modeled as a set of touching spheres. Each sodium atom has a radius r_1 and each chlorine atom has a radius r_2 . The centres of the spheres form a simple cubic lattice. The packing fraction of this system is
 - (a) $\pi \left[\left(\frac{r_1}{r_1 + r_2} \right)^3 + \left(\frac{r_2}{r_1 + r_2} \right)^3 \right]$ (b) $\frac{2\pi}{3} \frac{r_1^3 + r_2^3}{(r_1 + r_2)^3}$ (c) $\frac{r_1^3 + r_2^3}{(r_1 + r_2)^3}$ (d) $\pi \frac{r_1^3 + r_2^3}{2(r_1 + r_2)^3}$

- 18. What is the area of the irreducible Brillouin zone of the crystal structure as given in the figure?

|A| = |B| = A

[JEST 2015]

For a 2-dimensional honeycomb lattice as shown in the figure, the first Bragg spot occurrs for the grazing angle θ_i , while sweeping the angle from 0°. The next Bragg spot is obtained at θ_i given by,

- (a) $\sin^{-1}(3\sin\theta_1)$
- (b) $\sin^{-1}\left(\frac{3}{2}\sin\theta_1\right)$ (c) $\sin^{-1}\left(\frac{\sqrt{3}}{2}\sin\theta_1\right)$ (d) $\sin^{-1}\left(\sqrt{3}\sin\theta_1\right)$
- In a simple cubic lattice of lattice constant 0.287 nm, the number of atoms per mm² along the 111 plane is [TIFR 2016]
 - (a) 2.11×10^{13}
- (b) 1.73×10^{13}
- (c) 1.29×10^{13}
- (d) 1.21×10^{13} (d) none of these

- The crystal structure of diamond is:
 - (a) fcc with two atom basis of (000) and $\frac{a}{4}(\hat{i}+\hat{j}+\hat{k})$.
 - (b) simple cubic with two atom basis of (000) and $\frac{a}{2}(\hat{i}+\hat{j}+\hat{k})$
 - (c) fcc with two atoms basis of (000) and $\frac{a}{2}(\hat{i} + \hat{j} + \hat{k})$
 - (d) bcc with one atom basis
- Which of the following crystals cannot be represented by interpenetrating lattices:
 - (a) Sodium

(b) Sodium chloride

(c) Cesium chloride

- (d) Diamond
- For an NaCl crystal, the cell-edge a = 0.542 nm. The smallest angle at which Bragg reflection can occur corresponds to a set of planes whose indices are
 - (a) 100
- (b) 110

- Consider the atomic packing factor (APF) of the following crystal structures:
 - P. Simple Cubic

- Q. Body Centred Cubic
- R. Face Centred Cubic S. Diamond
- T. Hexagonal Close Packed
- Which two of the above structures have equal APF?
- (a) P and O
- (b) S and T
- (c) R and S
- (d) R and T
- A metal with body centered cubic (bcc) structure shows the first (i.e. smallest angle) diffraction peak at Bragg angle of $\theta = 30^{\circ}$. The wavelength of X-ray used is 2.1 Å. The volume of the PRIMITIVE unit cell of the metal is:
 - $(a) 26.2 (Å)^3$
- (b) $13.1 (\text{Å})^3$
- (c) $9.3 (Å)^3$
- (d) $4.6 (\text{Å})^3$.
- Consider X-ray diffraction from a crystal with a face-centered-cubic (fcc) lattice. The lattice. The lattice plane for which there is NO diffraction peak is:
 - (a)(2,1,2)
- (b)(1,1,1)
- (c)(2,0,0)
- (d)(3,1,1)

- 27. The $\theta = 2\theta$ X-ray powder diffraction pattern of ionic crystals KCI and KBr both of which form fcc structure will have:
 - (a) same number of diffraction lines with equal intensities
 - (b) pattern of KBr will have more lines
 - (c) Pattern of KCl will have more lines
 - (d) number of lines will be same but their intensities will be different

Statement for Linked Answer Q.28 and Q.29.

- The powder diffraction pattern of a body centred cubic crystal is recorded by using Cuk, X-rays of wavelength
- 28. If the (002) planes diffract at 60°, then lattice parameter is:
 - (a) 2.67 Å
- (b) 3.08 Å
- (c) 3.56 Å
- (d) 5.34 Å
- 29. Assuming the atomic mass of the constituent atoms to be 50.94 amu, then density of the crystal in units of kg m⁻³ is:
 - (a) 3.75×10^3
- (b) 4.45×10^3
- (c) 5.79×10^3
- (d) 8.89×10^3
- 30. In a powder differaction pattern recorded from a face-centred cubic sample using x-rays, the first peak appears at 30°. The second peak will appear at:
 - (a) 32.8°
- (c) 34.8°
- (d) 35.3°

Statement for Linked Answer Q. 31 and Q. 32.

Lead has atomic weight of 207.2 amu and density of 11.35 gm cm⁻³.

- Number of atoms per cm³ for lead is:
 - (a) 1.1×10^{25}
- (b) 3.3×10^{22}
- (c) 1.1×10^{22}
- (d) 3.3×10^{25}
- If the energy of vacancy formation in lead is 0.55 eV/atom, the number of vacancies cm³ at 500K is:
 - (a) 3.2×10^{16}
- (b) 3.2×10^{19}
- (c) 9.5×10^{19}
- (d) 9.5×10^{16}

Statement for Linked Answer O. 33 and O. 34:

The primitive translatin vectors of the face centered cubic (fcc) lattice are

$$\hat{a}_1 = \frac{a}{2}(\hat{j} + \hat{k}); \hat{a}_2 = \frac{a}{2}(\hat{i} + \hat{k}); a_3 = \frac{a}{2}(\hat{i} + \hat{j})$$

The primitive translation vectos of the fee reciprocal lattice are

(a)
$$\hat{b}_1 = \left(\frac{2\pi}{a}\right) \left(-\hat{i} + \hat{j} + \hat{k}\right); \hat{b}_2 = \left(\frac{2\pi}{a}\right) \left(\hat{i} + \hat{j} + \hat{k}\right); \hat{b}_3 = \left(\frac{2\pi}{a}\right) \left(\hat{i} + \hat{j} - \hat{k}\right)$$

(b)
$$\hat{b}_1 = \left(\frac{\pi}{a}\right) \left(-\hat{i} + \hat{j} + \hat{k}\right); \hat{b}_2 = \left(\frac{\pi}{a}\right) \left(\hat{i} - \hat{j} + \hat{k}\right); \hat{b}_3 = \left(\frac{\pi}{a}\right) \left(\hat{i} + \hat{j} - \hat{k}\right)$$

(c)
$$\hat{b}_1 = \left(\frac{\pi}{2a}\right) \left(-\hat{i} + \hat{j} + \hat{k}\right); \hat{b}_2 = \left(\frac{\pi}{2a}\right) \left(\hat{i} - \hat{j} + \hat{k}\right); \hat{b}_3 = \left(\frac{\pi}{2a}\right) \left(\hat{i} + \hat{j} - \hat{k}\right)$$

(d)
$$\hat{b}_1 = \left(\frac{3\pi}{a}\right) \left(-\hat{i} + \hat{j} + \hat{k}\right); \hat{b}_2 = \left(\frac{3\pi}{a}\right) \left(\hat{i} - \hat{j} + \hat{k}\right); \hat{b}_3 = \left(\frac{3\pi}{a}\right) \left(\hat{i} + \hat{j} - \hat{k}\right)^3$$

- The volume of the primitive cell of the fcc reciprocal lattice is:
- (a) $4\left(\frac{2\pi}{a}\right)$ (b) $4\left(\frac{\pi}{a}\right)^3$ (c) $4\left(\frac{\pi}{2a}\right)^3$

35. A narrow beam of X-rays with wavelength 1.5Å is reflected from an ionic crystal with an fcc lattice structure with a density of 3.32 g cm⁻³. The molecular weight is 108 AMU (1 AMU= 1.66×10⁻²⁴ g).

A. The lattice constant is:

- (a) 6.00Å
- (b) 4.56Å
- (c)4.00Å
- (d) 2.56Å

B. The sine of the angle corresponding to (111) reflection is:

- (a) $\sqrt{3}/4$
- (b) $\sqrt{3}/8$
- (c) 1/4
- (d) 1/8
- 36. The two dimensional lattice of graphene is an arrangement of Carbon atoms forming a honeycomb lattice of lattice spacing a, as shown below. The carbon atoms occupy the vertices.

A. The Wigner-Seitz cell has an area of

(a) 2a²

- (b) $\frac{\sqrt{3}}{2}$ a^2
- (c) $6\sqrt{3} a^2$
- (d) $\frac{3\sqrt{3}}{2}$ a^2

- B. The Bravais lattice for this array is a
- (a) Rectangular lattice with basis vectors $\overline{\mathbf{d}}_1$ and $\overline{\mathbf{d}}_2$
- (b) Rectangular lattice with basis vectors \overline{c}_1 and \overline{c}_2
- (c) Hexagonal lattice with basis vectors \overline{a}_1 and \overline{a}_2
- (d) Hexagonal lattice with basis vectors \overline{b}_1 and \overline{b}_2 .
- 37 The co-ordination number of Na+ and Cl- in the rock salt structure is respectively
 - (a) 8 and 6
- (b) 6 and 8
- (c) 6 and 6
- (d) 4 and 4
- 38. A monochromatic beam of X-ray with wavelength λ is incident at an angle θ on a crystal with lattice spacing a and b as sketched in the figure below:

A condition for there to a maximum in the diffracted X-ray intensity is

- (a) $2\sqrt{a^2 + b^2} \sin \theta = \lambda$ (b) $2b \cos \theta = \lambda$ (c) $2a \cos \theta = \lambda$
- (d) $(a+b)\sin\theta = \lambda$
- 39. Metallic Copper is known to from cubic crystals and the lattice constant is measured from X-ray diffraction studies to be about 0.36nm. If the specific gravity of Copper is 8.96 and its atomic weight is 63.5, one can conclude that
 - (a) the crystals are of simple cubic type
- (b) the crystals are of b.c.c. type
- (c) the crystals are of f.c.c. type
- (d) the crystals are a mixture of f.c.c. and b.c.c. types.
- 40/ The experimental method used most frequently for detecting magnetic structure of solids is
 - (a) electron diffraction

(b) neutron diffraction

(c) x-ray diffraction

(d) photo-emission spectroscopy

- 41. The most suitable experimental method for studying the dispersion relation of phonons is
 - (a) X-ray diffraction

(b) elastic scattering of neutorns

- (c) inelastic scattering of thermal neutrons
- (d) photo-electron emission.
- A beam of x-rays is incident on a BCC crystal. If the difference between the incident and the scattered wave vectors is $\vec{K} = h\hat{x} + k\hat{y} + \ell\hat{z}$ where $\hat{x}, \hat{y}, \hat{z}$ are the unit vectors of the associate cubic lattice, the necessary condition for the scattered beam to given a Laue maximum is
 - (a) h +k + i= even
- (b) h = k = 1
- (c) h; k, l are all distinct (d) h + k + l = odd
- the second order maximum in the diffraction of X-rays of 0.20 nanometer wavelength from a simple cubic crystal is found to occur at an angle of thirty degrees with respect to the crystal plane. The distance between the lattice planes is
 - (a) | Angstrom
- (b)2Angstroms
- (c) 4 Angstroms
- (d) 8 Angstroms
- A parallel beam of light of wavelength λ is incident on a transmission grating with groove spacing d, at an angle 44. 0, as shown in the figure on the left. The plane of incidence is normal to the grooves. After diffraction, the transmitted beam is seen to be at an angle α relative to the normal. Which of the following conditions must be satisfied for this to happen?

- (a) $d(\sin \theta_i \sin \alpha) = n\lambda$
- $(b) 2d \sin(\theta_i \alpha) = n\lambda$
- (c) $d(\sin \theta_i + \sin \alpha) = n\lambda$
- (d) $2d(\alpha + \theta_i) = n\lambda$
- KCl has the NaCl type structure which is fcc with two-atom basis, one at (0, 0, 0) and the other at
 - $\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$. Assume that the atomic form factors of K⁺ and Cl⁻ are identical. In an x-ray diffraction
 - experiment on KCl, which of the following (h k l) peaks will be observed?
 - (a) (1 0 0)

46.

- (b) (1 1 0)
- (c) (1 1-1)
- (d) (2 0 0)
- For the given unit cells of a two dimensional square lattice, which option lists all the primitive cells?

- (a) I and 2
- (b) 1, 2 and 3
- (c) 1, 2, 3 and 4
- (d) 1, 2, 3, 4 and 5
- Which of the combinations of crystal structure and their coordination number is (are) correct?
 - (a) body centered cubic 8
- (b) tape centered cubic 6

(c) diamond – 4

- (d) hexagonal closed packed 12
- 48. The lattice consatant of unit cell of NaCl crystal is 0.563 nm. X-rays of wavelengt 0.141 nm are diffracted by this crystal. The angle at which the first order maximum occurs is (Specify your answer in degrees upto two digits after the decimal point)
- A crystal of MnO has NaCl structure. It has a paramagnetic to anti-ferromagnetic transition at 120 K. Below 120 K, the spins within a single [111] plane are parallel but the spins in adjacent [111] planes are anti-parallel. If neutron scattering is used to determine the lattice constants, respectively, d and d', below and above the transition temperature of MnO then |NET Dec. 2017|
 - (a) $d = \frac{d'}{2}$ (b) $d = \frac{d'}{\sqrt{2}}$ (c) d = 2d'
- (d) $d = \sqrt{2}d'$

- *\$*0. Sodium Chloride (NaCl) crystal is a face centred cubic lattice, with a basis consisting of Na+ and Cl- ions separated by half the body diagonal of a unit cube. Which of the planes corresponding to the Miller indices given below will not give rise to Bragg reflection of X-rays? [NET June 2018]
 - (a) (220)
- (b) (242)
- (e) (221)
- (d) (3 1 1)
- Hard discs of radius R are arranged in a two-dimensional triangular lattice. What is the fractional area occupied by the discs in the closests possible packing? [NET June 2018]
 - (a) $\frac{\pi\sqrt{3}}{6}$
- (b) $\frac{\pi}{3\sqrt{2}}$ (c) $\frac{\pi\sqrt{2}}{5}$
- (d) $\frac{2\pi}{7}$

CSIR-UGC-NET/JRF|GATE-PHYSICS

SOLID STATE PHYSICS

Assignment-2

	<u> </u>	<u> </u>			
1.	a, such that each a	e assumed to be hard sphe from touches its nearest nadius <i>r</i> (assumed to be ha the lattice. The maximum	eighbours. Take the co ard sphere) is to be acc	enter of one of the commodated at	ne atoms as the origin. a position $(0, a/2, 0)$
<i>3.</i>	of the respective sp	urangement of identical sp theres are located at each of each cubic unit cell occ (b) 0.62	of the eight corners an	d the centres of t	ne six surfaces of a unit
3	The number of diffe	erent Bravais lattices possi (B) 3	ble in two dimension is: (c) 5	(d) 6	[JEST 2016]
4	Which of the follow (a) It is a simple cul (b) It is a face-cent (c) It is a simple cul	ving statements is correct pic lattice with one atom be ered cubic lattice with one pic lattice with two atom be ered cubic lattice with two	for NaCl crystal structu asis: atom basis basis		
5.	The value of θ at w	hich the first-order peak i	n X-ray $(\lambda = 1.53 \mathring{A})$ di	ffraction corresp	onding to (111) plane of
	a simple cubic stru (a) 15°	cture with the lattice const	tant, a = 2.65 Å, is appr (c) 45°	oximately (d) 60°	
6/	The number of sec	ond-nearest neighbor ion	s to a Na ⁺ ion in NaCl	rystal is	·
7.	The ratio of the sectance in an fcc lattice	cond-neighbour distance	to the nearest-neighbo	ur distance to the	nearest-neighbour dis
	(a) $2\sqrt{2}$	(b) 2	(c) $\sqrt{3}$	(d) $\sqrt{2}$	
8.	-	wavelength 1.54Å is diffra ne first-order Bragg diffra		nes of a solid wit	h a cubic lattice of lattice
	(a) $\sin^{-1}\left(\frac{1}{4}\right)$	(b) $\sin^{-1}\left(\frac{1}{2\sqrt{2}}\right)$	(c) $\sin^{-1}\left(\frac{1}{2}\right)$	(d) $\sin^{-1}\left(-\frac{1}{2}\right)$	$\left(\frac{1}{\sqrt{2}}\right)$
9/		ume unoccupied in the un		red cubic lattice i	
	(a) $\frac{8-\sqrt{3}\pi}{8}$	(b) $\frac{\sqrt{3}\pi}{8}$	(c) $\frac{6-\sqrt{2}\pi}{6}$	(d) $\frac{\pi}{3\sqrt{2}}$	
10.		n be considered as a com ength. There are eight ator (b) 0.74		cking fraction of	the diamond structure is

In a single layer of graphite, called graphene, the carbon atoms from a hexagonal lattice (see figure). How many carbon atoms are there in a unit cell of the lattice?

(a) one

(b) two

(c) three

(d) six

An X-ray machine operates at a potential of 5000 V. What is the minimum possible value of wavelength present in the radiations?

(a) 0.0124 nm

(b) 0.0245 nm

(c) 0.124 nm

(d) 0.248 nm

Helium atoms at low temperatures make a perfect closed pack structure of hexagonal lattice with parameters a = 0.36 nm and c = 0.59 nm. The density of the crystal is approximately

(a) 2000 kg/m^3

(b) 100 kg/m³

(c) 123 kg/m³

· (d) 200 kg/m³

Monochromatic X rays of wavelength I A are incident on a simple cubic crystal. The first order Brag reflection IA. from (311) plane occurs at an angle of 30° from the plane. The lattice parameter of the crystal in Å is:

(a) 1

(b) $\sqrt{3}$

The second order maximum in the diffraction of X-rays of 0.20 nanometer wavelength from a simple cubic crystal is found to occur at an angle of thirty degrees with respect to the crystal plane. The distance between the lattice planes is

(a) l Angstrom

(b) 2 Angstroms

(c) 4 Angstroms (d) 8 Angstroms

A lattice is characterized by the following primitive vectors (in angstroms): 16.

 $\bar{a} = 2(\hat{i} + \hat{j}), \ \bar{b} = 2(\hat{j} + \hat{k}). \ \bar{c} = 2(\hat{k} + \hat{i})$. The reciprocal lattice corresponding to the above is:

(a) body centered cubic lattice with cube edge $\pi \text{Å}^{-1}$

(b) body centered cubic lattice with cube edge $2\pi \text{\AA}^{-1}$

(c) face centered cubic lattice with cube edge $\pi \mathring{A}^{-1}$

(d) face centered cubic lattice with cube edge $2\pi A$

Neutrons moving with speed 103 m/s are used for the determination of crystal structure. If the Bragg angle for the first order diffraction is 30°, the interplanarspacing of the crystal is _____

(Given: $m_n = 1.675 \times 10^{-27} kg$, $h = 6.626 \times 10^{-34} J.s$)

If \vec{k} is the wavefactor of incident light ($|\vec{k}| = 2\pi/\lambda$, λ is the wavelength of light) and \vec{G} is a reciprocal lattice vector, then the Bragg's law can be written as: [JEST 2016]

(a) $\vec{k} + \vec{G} = 0$

(b) $2\vec{k} \cdot \vec{G} + G^2 = 0$ (c) $2\vec{k} \cdot \vec{G} + k^2 = 0$ $\vec{k} \cdot \vec{G} = 0$

The structure factor of a single cell of identical atoms of form factor f is given by

 $Shkl = f \sum_{j} \exp(-i2\pi(x_jh + y_jk + z_jl))$ where (x_j, y_j, z_jl) is the coordinate of an atom, and hkl are the Miller

indices. Which one of the following statement is correct for the diffraction peaks of body centered cubic (BCC) and face centered cubic (FCC) lattices?

(a) BCC: (200; (110); (222) FCC:(111); (311); (400)

(b) BCC: (210); (110); (222) FCC:(111);(311);(400)

(c) BCC: (200); (110); (222)

(d) BCC: (200); (210); (222)

FCC:(111);(211);(400)

FCC: (111); (211); (400)

20.

Which one of the following axes of rotational symmetry is NOT permissible in single crystals?

- (a) two fold axis
- (b) three-fold axis (d) four-fold axis
- (d) five-fold axis

Common Data for Q. 21 and Q. 22.

Acrystal belongs to a face centered cubic lattice with four atoms in the unit cell. The size of the crystal is 1 cm and its unit cell dimension is 1 nm. f is the scattering factor of the atom.

- 21. The number of atoms in the crystal is:
 - (a) 2×10^{21}
- (b) 4×10^{21}
- (c) 2×10^{23}
- (d) 4×10^{24}
- 22. The structure factors for (0 | 0) and (2 | 0 | 0) reflections respectively are:
 - (a) 2 f and zero
- (b) zero and 4 f
- (c) 2 f and 2 f
- (d) zero and zero

The total number of Na⁺ and Cl⁻ ions per unit cell of NaCl is,

[JEST 2015]

- (a) 2
- (b)4 .
- (c)6
- (d)8

Which of the following bonds has more directional:

- (a) Ionic bonds
- (b) Covalent
- (c) Metalic
- (d) Vander Waals
- 25. If there are n-atoms in the primitive cell, the phonon dispersion relation had optical branches:-
 - (a) 3n 3:
- (b) 3n-2
- (c) 3n 1
- (d) none
- 26. In a cubic crystal, atoms of mass M₁ lie on one set of planes and atoms of mass M₂ lie on planes interleaved between those of the first set. If C is the force constant between nearest neighbour planes, the frequency of lattice vibrations for the optical phonon branch with wavevector k = 0 is:

(a)
$$\sqrt{2C\left(\frac{1}{M_1} + \frac{1}{M_2}\right)}$$
 (b) $\sqrt{C\left(\frac{1}{M_1} + \frac{1}{M_2}\right)}$ (c) $\sqrt{C\left(\frac{1}{M_1} + \frac{1}{2M_2}\right)}$ (d)

- At low temperature the specific heat of insulating crystals varies as:
 - (a) AT3

(b) $BT + CT^3$

(c) $D \exp(E/T)$

- (d) will not change with temperature
- 28. A cubic cell consists of two atoms of masses m_1 and m_2 ($m_1 > m_2$) with m_1 and m_2 atoms situated on alternate planes. Assuming only nearest neighbour interactions, the center of mass of the two atoms:
 - (a) moves with the atoms in the optical mode and remains fixed in the acoustic mode
 - (b) remains fixed in the optical mode and moves will the atoms in the acoustic mode
 - (c) remains fixed in both optical and acoustic modes
 - (d) moves with the atoms in both optical and acoustic modes
- 29. A linear diatomic lattice of lattice constant a with masses M and m (M > m) are coupled by a force constant C. The dispersion relation is given by:

$$\omega_{\pm}^2 = C \left(\frac{M+m}{Mm} \right) \pm \left[C^2 \left(\frac{M+m}{M} \right)^2 - \frac{4C^2}{Mm} \sin^2 \frac{ka}{2} \right]^{1/2}$$

Which one of the following statements is incorrect?

- (a) The atoms vibrating in transverse modecorrespond to the optical branch
- (b) The maximum frequency of the acoustic branch depends on the mass of the lighter atom.
- (c) The dispersion of frequency in the optical branch is smaller than that in the acoustic branch.
- (d)No normal modes exist in the acoustic branch for any frequency greater than the maximum

frequency at
$$k = \frac{\pi}{a}$$
.

<i>3</i> 0.	The solid phase of	an element follows van	der Waals bonding with i	ner-atomic potenti	al $V(r) = -\frac{P}{6} + \frac{Q}{12}$,
			ngth can be expressed as		r r
	(a) $\left(\frac{2Q}{P}\right)^{1.6}$	(b) $\left(\frac{Q}{P}\right)^{-6}$	(c) $\left(\frac{P}{2Q}\right)^{-6}$	$(d) \left(\frac{P}{Q}\right)^{-6}$	
31/	Atthe equilibrium (a) zero	spacing of a diatomic m (b) minimum	olecule, the resultant forc (c) maximum	e is (d) unity	
32.	The potential ener (a) zero	gy in the above said spac (b) minimum	cing is (c) maximum	(d) unity	
23.	Which of the inter (a) covalent	atomic bonds are directi (b) metallic	onal? (c) ionic	(d) van der W	aals Imp
34.35.	(a) 8, out of which (b) 9, out of which (c) 12, out of which (d) 12, out of which	n two are acoustic, the r h three are acoustic, the ch three are acoustic, the ch two are acoustic, the	rest optical e rest optical	·	າງ and wave-number k
	specific heat of th	∝ k² in the large wavel e system at low tempera	ength limit. If the chemi- ature is proportional to	cal potential is zero	o, the behaviour of the
	(a) T ¹²	(b) T	(c) T ^{3/2}	(d) T ³	
36.	The nature of the (a) dipolar	interaction that gives ri	se to the van der Waals fo (c) magnetic	orce in a molecular (d) quadrupo	crystal is . Iar
37.		of a normal metal at low ectrons	temperatures is dominat (b) acoustic phono (d) optical phonon	ed by the contributions	
39.	as (a) T ² In the continuum (a) is constant in a (b) is proportion (c) is a constant i	(b) T ⁴ model of an elastic solid some directions and pro al to the square of the wave	e-vector	(d)T waves	
40. 41.	, , , ,	al to the wave-vector in a coustic phonon branche (b) 9	s in a three-dimensional o (c) 3	crystal with 3 atoms (d) 12	per primitive cell is
41.			ne-dimensional chain of a ne speed of the phonons,		
	(a) 2 <i>πcn</i>	(b) $\sqrt{2}\pi cn$	(c) $\sqrt{3}\pi cn$	(d) $\frac{\pi cn}{2}$	[NET June 2016]
42.		difference between the	e superconducting and t	he normal states o	f a material is given by
	$\Delta F = F_S - F_N = 0$	$\propto \psi ^2 + \frac{\beta}{2} \psi ^4$, where ψ	is an order parameter a	nd $α$ and $β$ are co	instants such that $\alpha > 0$
	-	1 lpha < 0 in the supercon	ducting state, while $\beta > 0$		
	(a) $-\alpha^2/\beta$	(b) $-\alpha^2 / 2\beta$	(c) $-3\alpha^2/2\beta$	(d) $-5\alpha^2/2$	β

43. Consider a hexagonal lattice with basis vectors as shown in the figure below.

[NET Dec. 2016]

If the lattice spacing is a = 1, the reciprocal lattice vectors are

(a)
$$\left(\frac{4\pi}{3}, 0\right), \left(-\frac{2\pi}{3}, \frac{2\pi}{\sqrt{3}}\right)$$

(b)
$$\left(\frac{4\pi}{3},0\right), \left(\frac{2\pi}{3},\frac{2\pi}{\sqrt{3}}\right)$$

(c)
$$\left(0, \frac{4\pi}{\sqrt{3}}\right), \left(\pi, \frac{2\pi}{\sqrt{3}}\right)$$

(d)
$$\left(\frac{2\pi}{3}, \frac{2\pi}{\sqrt{3}}\right), \left(-2\pi, \frac{2\pi}{\sqrt{3}}\right)$$

CSIR-UGC-NET/JRF|GATE-PHYSICS

SOLID STATE PHYSICS

Assignment-3

1.	Which one of the for vibrations in solids		explained by considering	a harmonic approximation	n for the lattice
	(a) Debye's T3 lav	V	(b) Dulong petit's la	W	
	(c) Optical barancl	nes in lattices	(d) Thermal expans	ion	
	Common data fo	r Q. 2 and Q. 3		•	
	The dispersion rel	ation for a one dimensi	onal monatomic crystal v	with lattice spacing a, which	ch interacts vi
	nearest neighbour	harmonic potential is gi	ven by $\omega = A \left \sin \frac{Ka}{2} \right $, v	vhere A is a constant of a ap	propriate uni
2.	The group velocity	at the boundary of the f	irst Brillouin zone is		• •
	(a) 0	(b) l	(c) $\sqrt{\frac{Aa^2}{2}}$	$(d) \frac{1}{2} \sqrt{\frac{Aa^2}{2}}$	
3.	The force constan	t between the nearest ne	ighbour of the lattice is (M is the mass of the atom)
	(a) $\frac{MA^2}{4}$	(b) $\frac{MA^2}{2}$	(c) MA ² .	(d) 2MA ²	
4.		law fails near room temp r Debye temperature is	perature (300 K) for man	y light elements (such as b	oron and bery
	(a) $\gg 300 \text{ K}$	(b) ~300 K	(c) ≪ 300 K	(d) 0 K	
5.	The dispersion re	lation of phonons in a so	lid is given by $\omega^2(k) =$	$\omega_0^2 (3 - \cos k_x a - \cos k_y a)$	-cosk _z a)
	The velocity of the	e phonons at large wave			
	$(a)\omega_0 a/\sqrt{3}$	$(b)\omega_0a$	$(c)\sqrt{3}\omega_0 a$	$(d)\omega_0 a / \sqrt{2}$	
6.	The phonon dispering the figure)	ersion for the following o	one-dimensional diatomic	clattice with masses M ₁ an	d M ₂ (as show
			Κ .	.,	

is given by

$$\omega^{2}(q) = K \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right) \left[1 \pm \sqrt{1 - \frac{4M_{1}M_{2}}{(M_{1} + M_{2})^{2}} \sin^{2}\left(\frac{qa}{2}\right)} \right]$$

where a is the lattice parameter and K is spring constant. The velocity of sound is

(a)
$$\sqrt{\frac{K(M_1 + M_2)}{2M_1M_2}}a$$
 (b) $\sqrt{\frac{K}{2(M_1 + M_2)}}a$ (c) $\sqrt{\frac{K(M_1 + M_2)}{M_1M_2}}a$ (d) $\sqrt{\frac{KM_1M_1}{2(M_1 + M_2)^3}}a$

- 7. Using the frequency-dependent Drude formula, what is the effective kinetic inductance of a metallic wire that is to be used as a transmission line? [In the following, the electron mass is m, density of electrons is n, and the length and cross-sectional area of the wire are f and A respectively
 - (a) mA/(ne² ℓ)
- (b) zero
- (c) $m\ell/(ne^2A)$ (d) $m\sqrt{A}/(ne^2\ell^2)$
- 8. A typical semiconductor such as Ge is formed by what kind of bonds?
 - (a) Covalent
- (b) Ionic
- (c) van der Waals (d) Metallic
- 9. The lattice specific heat C of a crystalline solid can be obtained using the Dulong Petit model, Einstein model and Debye model. At low temperature $\hbar\omega >> K_BT$, which one of the following statements is true (a and A are constants)
 - (a) Dulong Petit: $C \propto \exp\left(\frac{-a}{T}\right)$; Einstein: C=.constant, Debye: $C \propto \left(\frac{T}{A}\right)^{3}$
 - (b) Dulong Petit: C = .constant; Einstein: $C \propto \left(\frac{T}{A}\right)^3$; Debye: $C \propto \exp\left(\frac{-a}{T}\right)$
 - (c) Dulong Petit: C = constant; Einstem: $C \propto \frac{e^{-a/T}}{T^2}$; Debye: $C \propto \left(\frac{T}{\Delta}\right)^3$
 - (d) Dulong Petit: $C \propto \left(\frac{T}{A}\right)^3$; Einstein: $C \propto \frac{e^{-a/T}}{T^2}$; Debye: C = .constant
- 10. A uniform linear monoatomic chain is modeled by a spring-mass system of masses in separated by nearest neighbor distance a and spring constant $m\omega_0^2$. The dispersion relation for this system is
 - (a) $\omega(k) = 2\omega_0 \left(1 \cos\left(\frac{ka}{2}\right)\right)$ (b) $\omega(k) = 2\omega_0 \sin^2\left(\frac{ka}{2}\right)$

- (c) $\omega(k) = 2\omega_0 \sin\left(\frac{ka}{2}\right)$
- (d) $\omega(k) = 2\omega_0 \tan\left(\frac{ka}{2}\right)$
- 11. At low temperature the specific heat of insulating crystals varies as
 - (a) AT3

(b) BT + CT³

(c) $D \exp(E/T)$

- (d) will not change with temperature.
- Consider two crystalline solids, one of which has a simple cubic structure, and the other has a tetragonal 12. structure. The effective spring constant between atoms in the c-direction is half the effective spring constant between atoms in the a and b directions. At low temperatures, the behaviour of the lattice contribution to the specific heat will depend as a function of temperature T as
 - (a) T^2 for the tetragonal solid, but as T^3 for the simple cubic solid
 - (b) T for the tetragonal solid and as T^3 for the simple cubic solid
 - (c) T for both solids
- \cdot (d) T^3 for both solids
- 13. A one-dimensional linear chain of atoms contains two types of atoms of masses m_1 and m_2 (where $m_2 > m_1$), arranged alternately. The distance between successive atoms is the same. Assume that the harmonic approximation is valid. At the first Brillouin zone-boundary, which of the following statements is correct?
 - (a) The atoms of mass m_2 are at rest in the optical mode, while they vibrate in the acoustical mode.
 - (b) The atoms of mass m_1 are at rest in the optical mode, while they vibrate in the acoustical mode.
 - (c) Both types of atoms vibrate with equal amplitudes in the optical as well as in the acoustical modes.
 - (d) Both types of atoms vibrate, but with unequal, non-zero amplitudes in the optical as well as in the acoustical modes. [GATE 2016]

14. The dispersion relation for phonons in a one dimensional monatomic Bravais lattice with lattice spacing a and consisting of ions of masses M is given by, $\omega(k) = \sqrt{\frac{2C}{M}} [1 - \cos(ka)]$, where ω is the frequency

of oscillation, k is the wavevector and C is the spring constant. For the long wavelength modes $(\lambda >> a)$, the ratio of the phase velocity to the group velocity is [GATE 2015]

The ratio of the specific heat capacity and temperature, C, /T, of Cu is plotted as a function of T2, the 15. square of the absolute temperature, in the graph below:

The values of γ and β (the coefficients corresponding to the electronic and the vibrational components of the specific heat) are, approximately

- (a) $\gamma = 7.0 \times 10^{-1} \text{ Jmol}^{-1} \text{ K}^{-2} \text{ and } \beta = 5.0 \times 10^{-5} \text{ Jmol}^{-1} \text{ k}^{-4}$
- (b) $\gamma = 5.0 \times 10^{-5} \,\text{J mol}^{-1} \,\text{k}^{-2} \text{and } \beta = 7.0 \times 10^{-4} \,\text{J mol}^{-1} \text{k}^{-4}$
- (c) $y = 1.4 \times 10^{-3} \text{ J mol}^{-1} \text{ k}^{-2} \text{ and } \beta = 7.0 \times 10^{-4} \text{ J mol}^{-1} \text{ k}^{-4}$
- (d) $\gamma = 5.0 \times 10^{-4} \text{ J mol}^{-1} \cdot \text{k}^{-2} \text{ and } \beta = 7.0 \times 10^{-5} \text{ J mol}^{-1} \text{k}^{-4}$
- The Fermi energies of two metals X and Y are 5eV and 7eV and their Debye temperatures are 170 K 16. and 340 K, respectively. The molar specific heats of these metals at constant volume at low temperatures can be written as $(C_T)_X = \gamma_X T + A_X T^3$ and $(C_T)_Y = \gamma_Y T + A_Y T^3$, where γ and A are constants. Assuming that the thermal effective mass of the electrons in the two metals are same, which of the following is correct?
 - (a) $\frac{\gamma_v}{\gamma_v} = \frac{7}{5}, \frac{A_x}{A_y} = 8$

(b) $\frac{\gamma_x}{\gamma_y} = \frac{7}{5}, \frac{A_x}{A_y} = \frac{1}{8}$ [GATE 2016]

(c) $\frac{\gamma_{x}}{\gamma_{x}} = \frac{5}{7}, \frac{A_{x}}{A} = \frac{1}{8}$

- (d) $\frac{Y_X}{Y_Y} = \frac{5}{7}, \frac{A_X}{A_Y} = 8$
- The binding energy per molecule of NaCl (lattice parameter is 0.563 nm) is 7.95 eV. The repulsive term of the potential is of the form $\frac{K}{9}$, where K is a constant. The value of Madelung constant is (upto three decimal places).

[GATE 2015]

(Electron charge $e = -1.6 \times 10^{-19} C$; $\varepsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$)

- 18. The origin of van der Waals interaction of molecular crystals is:
 - (a) nuclear
- (b) magnetic
- (c) ionic
- (d) fluctuating dipolar

				16
19.	is the Fermi energy, v (a) f(E) is a step func (b) f(EF) has a value (c) States with E <e<sub>F</e<sub>	vhich of the following is tion of 1/2 are filled completely		ire (300 K) where E-refers to energy. If E _F
20.	of lattice constant a. (a) the slope of E version (b) the slope of E version (c) the plot of E version (c)	Then rsus k is proportional to rsus k has its maximun sus k will be parabolic i	o the group velocity	· · · · · · · · · · · · · · · · · · ·
	Statement for Link	ced Answer Q. 21 and	l Q. 22.	
	conduction is describelectron.	oed by the Drude mode	el (classical theory), and t	ty is 1.6×10 ⁻⁸ Ω m. Assume that electrical hat each atom contributes one conduction
21.	(a) 6.67 × 10 ⁻³	nm² V ⁻¹ s ⁻¹) of the cond (b) 6.67 × 10 ⁻⁶	(c) 7.63×10^{-3}	(d) 7.63×10^{-6}
22.	The relaxation time (a) 3.98×10^{-15}		conds, of the conduction (c) 2.84×10^{-12}	
23.	× 10 ⁻⁸ cm, the cond	entration of conduction	on electrons in metallic	structure. If the length of the unit cell is 4 sodium is: $m^{-3} (d) 1.250 \times 10^{20} \text{ cm}^{-3}$
24.				zone of a two dimensional square lattice is by a factor b. The value of b is:
•	(a) $b = \sqrt{2}$	(b) $b = 2$	(c) $b = 4$	(d) b = 8
25.	(a) Electrical conduction (c) Shear modulus	ctivity	mine the following prop (b) Thennal condu (d) metallic lustre.	ctivity
26.	For a two-dimension	nal free electron gas, t	he electronic density n, a	ind the Permi energy E _r , are related by
	(a) $n = \frac{(2mE_F)^{3/2}}{3\pi^2\hbar^3}$	(b) $n = \frac{mE_F}{\pi\hbar^2}$	(c) $n = \frac{mE_r}{2\pi\hbar^2}$	(d) $n = \frac{2^{\frac{3}{2}} (mE_F)^{\frac{1}{2}}}{\pi \hbar}$
27.	The resistivity of me (a) Always varies a	s T ⁵		
) k		ly with temperature at a	oom temperature and ab tends to absolute zero	oove
28.	For a Fermi gas of	N particles in three dir	mensions at $T = 0 K$, the	Fermi energy, E _{F.} .
	(a) $N^{\frac{2}{73}}$	(b) N ³ / ₂	(c) N ³	(d) N^2
29.	For an energy state	E of a photon gas, the	density of states is prop	ortional to:
	(a) \sqrt{E}	(b) E	(c) E ^{3/2}	(d) E ²

- 30. Density of states of free electrons in a solid moving with an energy 0.1 eV is given by 2.15 × 10²¹ eV⁻¹ cm⁻³. The density of states in eV⁻¹ cm⁻³) for electrons moving with an energy of 0.4 eV will
 - (a) 1.07×10^{21}
- (b) 1.52×10^{21}
- (c) 3.04×10^{21}
- (d) 4.30×10^{21}
- 31. Which one of the following statements is NOT correct about the Brillouin zones (BZ) of a square lattices with constant a?
 - (a) The first BZ is a square of size 2p/a in k_-k_ plane
 - (b) The areas of the first BZ and third BZ are the same
 - (c) The k-points are equidistant in k, as well as in k, directions
 - (d) The area of the second BZ is twice that of the first BZ
- 32. An electron confined within a thin layer of semiconductor may be treated as a free particle inside an infinitely deep one-dimensional potential well. If the difference in energies between the first and the second energy levels is δE , then the thickness of the layer is: [JEST 2016]

- Temperature dependence of resistivity of a metal can be described by 33.

- 34. A copper wire is 1 metre long and has a uniform cross-section of 0.1 mm². The resistance of the wire at room temperature is 0.171 ohm. What is the resistivity of the material?
 - (a) 1.71×10⁻⁶ Ω.m
- (b) $1.71 \times 10^{-7} \Omega \text{ m}$
- (c) $1.71 \times 10^{-8} \Omega m$ (d) $1.71 \times 10^{-9} \Omega m$
- As the Fermi energy of silver is 8.8×10⁻¹⁹ joule, the velocity of the fastest electron in the silver at 0 K. (Given: 35. Rest mass of electron = 9.1×10^{-31} kg) is:
 - (a) 3.33×10^5 m/s
- (b) 4.40×10^7 m/s (c) 1.39×10^6 m/s (d) 3×10^8 m/s

- The temperature dependence of the electrical resistivity ρ of a material is shown in the plot below. This 36. material is a

- (a) insulator
- (b) semiconductor
- (c) normal metal
- (d) superconductor
- For Li metal, the resistivity at 77K is 1.01 $\mu\Omega$ cm and that at 273K is 8.57 $\mu\Omega$ cm. The ratio of the mean 37.
 - collision times, $\frac{\tau_{77}}{\tau_{273}}$ is approximately,
 - (a)3
- (b) 1/9
- (c) 9
- (d) 1/3
- 38. The real part of the ac conductivity of a metal at a large frequency $\omega(\omega \tau >> 1, \tau = \text{mean collision time})$.
 - (a) increases as ω

- (b) decreases
- (c) becomes independent of ω
- (d) varies as $\sqrt{\omega}$

- 39. For an ideal Fermi gas in three dimensions, the electron velocity V_E at he Fermi surface is related to electron concentration n as,
 - (a) $V_E \propto n^{2/3}$
- (b) V_e ∝ n
- (c) $V_{\rm c} \propto n^{1/2}$
- (d) $V_{ii} \propto n^{1/3}$
- 40. The radius of the Fermi sphere of free electrons in a monovalent metal with an fcc structure, in which the volume of the unit cell is a3, is
 - (a) $\left(\frac{12\pi^2}{a^3}\right)^{\frac{1}{3}}$ (b) $\left(\frac{3\pi^2}{a^3}\right)^{\frac{1}{3}}$ (c) $\left(\frac{\pi^2}{a^3}\right)^{\frac{1}{3}}$

- The fraction of electrons excited across the energy gap of 0.7 eV in Ge, at room temperature is 41.
 - (a) 0

- (b) 1.4×10^{-6}
- (c) 1.6×10^{-8}
- (d) 1.03×10^{-12}
- What is the value of potential energy V, in a free electron gas theory of metals? 42.
 - (a) A constant

(b) Infinite

(c) It varies with the distance

- (d) zero
- Which of the following statement best explains why the specific heat of electrons in metals is much smaller 43. than that expected in a non-interacting (free) electron gas model?
 - (a) The mass of electron is much smaller than that of the ions in the crystal.
 - (b) The Pauli exclusion principle restricts the number of electrons which can absorb thermal energy
 - (c) Electron spin can take only two different values.
 - (d) Electrons in a metal cannot be modelled as non-interacting.
- 44. For a free electron gas in two dimensions, the variation of the density of states, N(E) as a function of energy E, is the best represented by

- The energy dependence of the density of states for a two dimensional non-relativistic electron gas is given by, 45.
 - $g(E) = CE^n$, where C is constant. The value of n is ____

[GATE 2015]

Given that the Fermi energy of gold is 5.54 cV, the number density of electrons is 46. ×10²⁸ m⁻³ (upto one decimal places)

(Mass of electron = 9.11×10^{-31} kg; h = 6.626×10^{-34} J.s; 1 eV = 1.6×10^{-19} J)

- A thin metal film of dimension 2 mm \times 2 mm contains 4 \times 10¹² electrons. The magnitude of the Fermi 47. wavevector of the system, in the free electron approximation, is [NET Dec. 2015]
 - (a) $2\sqrt{\pi} \times 10^7 \text{ cm}^{-1}$
- (b) $\sqrt{2\pi} \times 10^7 \text{ cm}^{-1}$ (c) $\sqrt{\pi} \times 10^7 \text{ cm}^{-1}$ (d) $2\pi \times 10^7 \text{ cm}^{-1}$

- The potential in a divalent solid at a particular temperature is represented by a one-dimensional periodic 48. model. The solid should behave electrically as:
 - (a) semiconductor

(b) a conductor

(c) an insulator

- (d) a superconductor
- A metal has free-electron density $n = 10^{29} \,\mathrm{m}^{-3}$. Which of the following wavelengths will excite plasma oscillations? 49. (a) 0.033 µm (b) 0.330 µm (c) 3.300 µm (d) 33.000 µm

- 50. In a one-dimensional Kroning Penny model, the total number of possible wave functions is equal to:
 - (a) twice the number of unit cells
 - (b) number of unit cells
 - (c) half the number of unit cells
 - (d) independent of the number of unit cells.
- In a crystal of N primitive cells, each cell contains two monovalent atoms. The highest occupied energy band of 51. the crystal is:
 - (a) one-fourth filled
- (b) one-third filled
- (c) half filled
- (d) completely filled
- 52. The Bloch theore states that within a crystal, the wavefunction, $\psi(\bar{r})$, of an electron has the form
 - (a) $\psi(\vec{r}) = u(\vec{r})e^{i\vec{k}\cdot\vec{r}}$ where $u(\vec{r})$ is an arbitrary function and \vec{k} is an arbitrary vector.
 - (b) $\psi(\vec{r}) = u(\vec{r})e^{i\vec{G}\cdot\vec{r}}$ where $u(\vec{r})$ is an arbitrary function and \vec{G} is a reciprocal lattice vector.
 - (c) $\psi(\vec{r}) = u(\vec{r})e^{i\vec{G}\cdot\vec{r}}$ where $u(\vec{r}) = u(\vec{r} + \vec{\Lambda}), \vec{\Lambda}$ is a lattice vector and \vec{G} is a reciprocal lattice vector.
 - (d) $\psi(\bar{r}) = u(\bar{r})e^{ik.\bar{r}}$ where $u(\bar{r}) = u(\bar{r} + \bar{\Lambda}), \bar{\Lambda}$ is a lattice vector and \bar{k} is an arbitrary vector.
- 53. The lattice specific heat C of a crystalline solid can be obtained using the Dulong Petit model. Einstein modle and Debye model. At low tesmperature hw >> k, T, which one of the following statements is true (a and A are constants)
 - (a) Dulong Petit: $C \propto \exp\left(\frac{-a}{T}\right)$; Einstein: C = constant; Debye: $C \propto \left(\frac{T}{A}\right)$
 - (b) Dulong Petit: C = constant; Einstein: $C \propto \left(\frac{T}{A}\right)^3$ Debye: $C \propto \left(\frac{-a}{T}\right)$
 - (c) Dulong Petit: C = constant; Einstein: $C \propto \frac{e^{-a/t}}{\tau^2}$ Debye: $C \propto \left(\frac{T}{\Lambda}\right)$
 - (d) Dulong Petit: $C \propto \left(\frac{T}{A}\right)^2$. Einstein $C \propto \frac{e^{-a/T}}{T^2}$ Debye: C = constant

Common data Q. 54 and Q.55:

The tight binding energy dispersion (E-k) relation for electrons in a one-dimensional array of atoms having lattice constant a and total length L is:

$$E = E_0 - \beta - 2\gamma \cos(ka)$$

Where E_0 , β and γ are constants and k is the wave-vector.

- The density of states of electrons (including spin degeneracy) in the band is given by
 - (a) $\frac{L}{\pi ya\sin(ka)}$ (b) $\frac{L}{2\pi ya\sin(ka)}$ (c) $\frac{L}{2\pi ya\cos(ka)}$ (d) $\frac{L}{\pi ya\cos(ka)}$

- 55. The effective mass of electrons in the band is given by

- (a) $\frac{\hbar^2}{\gamma \hat{d}^2 \cos(ka)}$ (b) $\frac{\hbar^2}{2\gamma a^2 \cos(ka)}$ (c) $\frac{\hbar^2}{\gamma a^2 \sin(ka)}$ (d) $\frac{\hbar^2}{2\gamma a^2 \cos(ka)}$

Suppose the energy band of a certain pure crystalline solid is as shown in the figure below, where the energy (E) varies with crystal momentum (k) as $E \propto k^2$

At finte temperatures the bottom of the conduction band (CB) is partially filled with electrons (e) and the top of the valence band (VB) is partially filled holes (h). If an electric fields is applied to this solid, both e and h will start moving. If the time between collisions is the same for bothe and h, then

- (a) e and h will move with the same speed in opposite directions
- (b) h will on an average achieve higher speed than e
- (c) e will on an average achieve higher speed than h
- (d) e and h will recombine and after a while there will be no flow of charges.
- 57. In a period potential given by $V(\bar{r}) = V(\bar{r} + \bar{R})$, where \bar{R} is the lattice vector, the eigenstates of the Hamil-

tonian H = $\frac{-\hbar^2}{2nr}\nabla^2 + V(\bar{r})$ are $\psi_k(\bar{r}) = e^{ik\bar{r}}u_{\bar{k}}(\bar{r})$, where

(a)
$$u_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{k}}(\vec{k} \neq \vec{k}')$$

(b)
$$u_{k}(\vec{r}) = e^{i\vec{k}\cdot\vec{R}} u_{\vec{k}}(\vec{r} + \frac{\vec{R}}{3})$$

(c)
$$u_k(\bar{r}) = u_k(\bar{r} + \frac{\bar{R}}{2})$$

(d)
$$u_{\bar{k}}(\bar{r}) = u_{\bar{k}}(\bar{r} + \bar{R})$$

- 58. The Fermi level in an intrinsic semiconductor at zero temperature lies was a second control of the semiconductor at zero temperature lies was a second control of the semiconductor at zero temperature lies was a second control of the semiconductor at zero temperature lies was a second control of the semiconductor at zero temperature lies was a semiconductor.
 - (a) in the conduction band
 - (b) at the top of the valence band
 - (c) at the bottom of the conduction band
 - (d) in the energy gap between the valence and the conduction bands
- 59. In a band structure calculation, the dispersion relation for electrons is found to be

$$\varepsilon_{k_1} = \frac{\alpha}{\sqrt{2}} \left(\cos k_x a + \cos k_y a + \cos k_z a \right)$$

where β is a constant and a is the lattice constant. The effective mass at the boundary of the first Brilliouin zene is

(a)
$$\frac{2\hbar^2}{5\beta a^2}$$

(b)
$$\frac{4\hbar^2}{58a^2}$$

(c)
$$\frac{\hbar^2}{2\beta a^2}$$

(d)
$$\frac{\hbar^2}{3\beta a^2}$$

- 60. Which one of the following diffraction peaks will be absent in a powder diffraction pattern for BCC-crystalline powder such as Fe
 - (a) (110)
- (b) (III)
- (c) (200)
- (d) (211)

The energy, ε_k for band electrons as a function of the wave vector, k in the first Brillouin zone $\left(-\frac{\pi}{a} \le k \le \frac{\pi}{a}\right)$ of a one dimensional monatomic lattice is shown as (a is latticec constant)

62. Consider an electron in a b.c.c. lattice with lattice constant a. A single particle wavefunction that satisfies the Bloch theorem will have the form $f(\vec{r}) \exp(i\vec{k} \cdot \vec{r})$, with $f(\vec{r})$ being

(a)
$$1 + \cos\left[\frac{2\pi}{a}(x+y-z)\right] + \cos\left[\frac{2\pi}{a}(-x+y+z)\right] + \cos\left[\frac{2\pi}{a}(x-y+z)\right]$$

(b)
$$1+\cos\left[\frac{2\pi}{a}(x+y)\right]+\cos\left[\frac{2\pi}{a}(y+z)\right]+\cos\left[\frac{2\pi}{a}(z+x)\right]$$

(c)
$$1 + \cos\left[\frac{\pi}{a}(x+y)\right] + \cos\left[\frac{\pi}{a}(y+z)\right] + \cos\left[\frac{\pi}{a}(z+x)\right]$$

(d)
$$1 + \cos\left[\frac{\pi}{a}(x+y-z)\right] + \cos\left[\frac{\pi}{a}(-x+y+z)\right] + \cos\left[\frac{\pi}{a}(x-y+z)\right]$$

63. The dispersion relation for electrons in an f.c.c. crystal is given, in the tight binding approximation by

$$\varepsilon(k) = -4\varepsilon_0 \left[\cos \frac{k_x a}{2} \cos \frac{k_y a}{2} + \cos \frac{k_y a}{2} \cos \frac{k_z a}{2} + \cos \frac{k_z a}{2} \cos \frac{k_z a}{2} \right]$$

where 'a' is the lattice constant and ε_0 is a constant with the dimension of energy. The x-component of the velocity of the electrons at $\left(\frac{\pi}{a},0,0\right)$ is

(a)
$$-\frac{2\varepsilon_0 a}{h}$$

(b)
$$\frac{2\varepsilon_0 a}{h}$$
.

(c)
$$-\frac{4\varepsilon_0 a}{\hbar}$$

(d)
$$\frac{4\varepsilon_0 a}{\hbar}$$

- 64. Which of the following is the best technique for measuring the effective mass of an electron in a semiconductor?
 - (a) Resistivity measurements
- (b) X-rays diffraction experiment

(b) Cyclotron resonance

- (d) Millikan's oil drop experiment
- In the basic band structure theory of crystalline solids, which of the following leads to energy gaps in the 65. allowed electronic energy values?
 - (a) Electron spin

- (b) Bragg reflection
- (c) Electron-electron interacion
- (d) Electron-phonon interaction
- 66. The material inside a box is either a metal or a semiconductor. If $R = 1 \Omega$ is the resistance of the material, which of the following experiments CANNOT distinguish whether it is a metal or a semiconductor?
 - (a) Measurement of R using power supplies of different frequencies.
 - (b) Measurement of absorption spectrum in the energy range 0.1 2 eV.
 - (c) Measurement of R at different temperatures.
 - (d) Measurement of R in the presence of different magnetic fields.
- Given that tight binding dispersion relation $E(k) = E_0 + A \sin^2\left(\frac{ka}{2}\right)$, where E_0 and A are constant and a is 67.

the lattice parameter. What is the group velocity of an electron at the second Brillouin zone boundary?

- (a)0
- (b) $\frac{a}{h}$ (c) $\frac{2a}{h}$ (d) $\frac{a}{2h}$
- [JEST 2015]
- 68. The dispersion relation for electrons in the conduction band of a *n*-type semiconductor has the form E(k) $= ak^2 + b$ where a and b are constant. It was observed that the cyclotron resonance frequency of such electrons is $\omega_0 = 1.8 \times 10^{11} \text{ rad s}^{-1}$, when placed in a magnetic field $B = 0.1 \text{ W m}^{-2}$. It follows that the [TIFR 2016] (d) 10⁻³⁸ constant a must be about
 - (a) 10^{-36}

- 69. The dispersion relation of electrons in a 3-dimensional lattice in the tight binding approximation is given by,

 $\varepsilon_k = \alpha \cos k_x a + \beta \cos k_x a + \gamma \cos k_z a$ where a is the lattice constant and α , β , γ are constants with dimension

of energy. The effective mass tensor at the corner of the first Brillouin zone $\left(\frac{\pi}{a}, \frac{\pi}{a}, \frac{\pi}{a}\right)$ is

(a)
$$\frac{\hbar^2}{a^2} \begin{pmatrix} -\frac{1}{\alpha} & 0 & 0 \\ 0 & -\frac{1}{\beta} & 0 \\ 0 & 0 & \frac{1}{\gamma} \end{pmatrix}$$

(a)
$$\frac{\hbar^2}{a^2} \begin{pmatrix} -\frac{1}{\alpha} & 0 & 0 \\ 0 & -\frac{1}{\beta} & 0 \\ 0 & 0 & \frac{1}{\gamma} \end{pmatrix}$$

$$(b) \frac{\hbar^2}{a^2} \begin{pmatrix} -\frac{1}{\alpha} & 0 & 0 \\ 0 & 0 & \frac{1}{\beta} & 0 \\ 0 & 0 & -\frac{1}{\gamma} \end{pmatrix}$$

[NET Dec. 2015]

(c)
$$\frac{\hbar^2}{a^2} \begin{pmatrix} \frac{1}{\alpha} & 0 & 0 \\ 0 & \frac{1}{\beta} & 0 \\ 0 & 0 & \frac{1}{\gamma} \end{pmatrix}$$

(d)
$$\frac{\hbar^2}{a^2} \begin{pmatrix} \frac{1}{a} & 0 & 0 \\ 0 & \frac{1}{b} & 0 \\ 0 & 0 & -\frac{1}{7} \end{pmatrix}$$

- 70. For an electron moving through a one-dimensional periodic lattice of periodicity a, which of the following corresponds to an energy eigenfunction consistent with Bloch's theorem? [NET Dec. 2015]
 - (a) $\psi(x) = A \exp\left[i\left[\frac{\pi x}{a} + \cos\left(\frac{\pi x}{2a}\right)\right]\right]$

(b)
$$\psi(x) = A \exp\left(i\left[\frac{\pi x}{a} + \cos\left(\frac{2\pi x}{a}\right)\right]\right)$$

(c)
$$\psi(x) = A \exp\left(i\left[\frac{2\pi x}{a} + i \cosh\left(\frac{2\pi x}{a}\right)\right]\right)$$

(d)
$$\psi(x) = A \exp\left(i\left[\frac{\pi x}{2a} + i\left|\frac{\pi x}{2a}\right|\right]\right)$$

					. 23
71 _.			is a planar monatomic lay $(k) = ck \text{ (where } c \text{ is const}$	•	•
	Fermi energy $arepsilon_F$ d	epends on the number	er density of electrons $ ho$	as	[NET June 2016]
	(a) $\varepsilon_F \propto \rho^{1/2}$	(b) $\varepsilon_F \propto \rho$	(c) $\varepsilon_F \propto \rho^{2/3}$	(d) $\varepsilon_F \propto \rho^{1/2}$	73
72.	The band energy of	an electron in a cryst	al for a particular k-direct	ion has the form	$\varepsilon(k) = A - B\cos 2ka,$
	where A and B are ping range of k :	ositive constants and	$0 < k\alpha < \pi$. The electron h	as a hole-like bel	naviour over the follow- [NET June 2016]
	(a) $\frac{\pi}{4} < ka < \frac{3\pi}{4}$	(b) $\frac{\pi}{2} < k\alpha < \pi$	(c) $0 < ka < \frac{\pi}{4}$	(d) $\frac{\pi}{2} < ka$	$<\frac{3\pi}{4}$
73.			two-dimensional sheet of nsity of states is proportion (c) $E^{1/2}$		nby $E(\bar{k}) = \hbar v k$, where [NET June 2015]
74.			merfeld model exactly. I h of the following stateme		i energy of the metal at [GATE 2016]
	(a) $R_H \propto E_F^{3/2}$	• ,	(b) $R_{H} \propto$	$E_{I}^{2/3}$	
	(c) $R_H \propto E_F^{-3/2}$		(d) R_H is i	ndependent of I	\mathfrak{T}_{F}
75.	Consider a one-din	nensional chain of ato	oms with lattice constant		•
	positive x-direction (in the following B i	n, the time dependent s the constant)	e μ and γ are constants. velocity of an electron is		[NET Dec. 2016]
•	(a) proportional to	$\cos\left(B-\frac{\partial L}{\hbar}at\right)$	(b) proportional to		
	(c) independent of	E :	(d) proportional to	$\sin\left(B-\frac{eE}{\hbar}at\right)$	
76.			of as a two-dimensional ga		
			constant. If p is the num	ber of electrons	
	per unit area is proj		. 1/3	4 B 2	[NET Dec. 2016]
	(a) $\rho^{3/2}$	(b) p	(c) ρ ^{1/3}	(d) ρ^2	
<i>7</i> 7.		•	of the kinetic energy of a fr		
	zone (E_c) to that C_c		idpoint of a side face of the	ne sanne zone (E	E_m) is $E_c/E_m =$
	(a) 1/2 h.	(b) 2	(c) $\sqrt{2}$	(d) 1	[TIFR 2017]
78.	In two dimensions	two metals A and B, 1	nave the number density o	f free electrons i	the ratio $n_A : n_B = 1:2$.
	The ratio of their Fo	ermi energies is (b) 1:2	(c) 1:4	(d) 1:8	[TIFR 2017]
79.	and the phonon so	attering time is 2×1	h impurities and phonons. 10^{-12} s. Taking the density 1 m 1 . [Assume that the ef	y of electrons to	be 3×10^{14} m ⁻³ , find the

that of a free electron].

[TIFR 2017]

- 80. The atomic mass and mass density of Sodium are 23 and 0.968 g cm⁻³, respectively. The number density of valence electrons is $____{\times 10^{22}}$ cm⁻³. (Up to two decimal places.) [GATE 2017] (Avogadro number, $N_A = 6.022 \times 10^{23}$).
- 81. Consider a one-dimensional lattice with a weak periodic potential $U(x) = U_0 \cos\left(\frac{2\pi x}{a}\right)$. The gap at the edge

of the Brillouin zone $\left(k = \frac{\pi}{a}\right)$ is:

[GATE 2017]

- (a) U₀
- (b) $\frac{U_0}{2}$
- (c) $2U_{0}$
- (d) $\frac{U_0}{4}$
- 82. The energy gap and lattice constant of an indirect band gap semiconductor are $1.875 \, \text{eV}$; $0.52 \, \text{nm}$, respectively. For simplicity take the dielectric constant of the material to be unity. When it is excited by broadband radiation, an electron initially in the valence band at k=0 makes a transition to the conduction band. The wavevector of the electron in the conduction band, in terms of the wavevector k_{max} at the edge of the Brillouin zone, after the transition is closest to [NET June 2017]
 - (a) $k_{max}/10$
- (b) $k_{\rm ps}/100$
- (c) $k_{m}/1000$
- (d) 0
- 83. The electrical conductivity of copper is approximately 95% of the electrical conductivity of silver, while the electron density in silver is approximately 70% of the electron density in copper. In Drude's model, the approximate ratio τ_{Cu}/τ_{Ag} of the mean collision time in copper (τ_{Cu}) to the mean collision time in silver (τ_{Ag}) is
 - (a) 0.44
- (b) 1.50
- (c) 0.33
- (d) 0.66
- [NET June 2017]
- 84. Which one of the following schematic curves best represents the variation of conductivity σ of a metal with temperature T?

- 85. A white dwarf star has volume V and contains N electrons so that the density of electrons is $n = \frac{N}{V}$.

 Taking the temperature of the star to be 0 K, the average energy per electron in the star is $\epsilon_0 = \frac{3\hbar^2}{10m} (3\pi^2 n)^{2/3}$, where m is the mass of the electron. The electronic pressure in the star is
 - (a) n ∈₀
- (b) $2\pi \in_{o}$
- (c) $\frac{1}{3}n \in 0$
- (d) $\frac{2}{3}n \in_{0}$

86. If X is the dimensionality of a free electron gas, the energy (E) dependence of density of states is given by

 $E^{\frac{1}{2}Y-Y}$, where Y is _____. [GATE 2018]

87. The energy dispersion for electron in one dimensional lattice with lattice parameter a is given by

 $E(k) = E_0 - \frac{1}{2}W\cos ka,$

where W and E_0 are constants. The effective mass of the electron near the bottom of the band is

- (a) $\frac{2\hbar^2}{Wa^2}$
- (b) $\frac{\hbar^2}{Wa^2}$
- (c) $\frac{\hbar^2}{2Wa^2}$
- (d) $\frac{\hbar^2}{4Wa^2}$ [GATE 2018]
- 88. For a metal, the electron density is 6.4×10²⁸ m⁻³. The Fermi energy is _____eV.

 $(h = 6.626 \times 10^{-34} \text{ Js}, m_e = 9.11 \times 10^{-31} \text{ kg}, \text{leV} = 1.6 \times 10^{-19} \text{ J})$

(Specify your answer in electron volts (eV) upto one digit after the decimal point)

89. A metallic nanowire of length l is approximated as a one-dimensional lattice of N atoms with lattice spacing a. If the dispersion of electrons in the lattice is given as $E(k) = E_0 - 2t \cos ka$, where E_0 and t are constants, then the density of states inside the nanowire depends on E as [NET Dec. 2017]

(a) $N^3 \sqrt{\frac{t^2}{E - E_0}}$ (b) $\sqrt{\left(\frac{E - E_0}{2t}\right)^2 - 1}$ (c) $N^3 \sqrt{\frac{E - E_0}{t^2}}$ (d) $\frac{N}{\sqrt{(2t)^2 - (E - E_0)^2}}$

- 90. The dispersion relation for the electrons in the conduction band of a semiconductor is given by $E = E_0 + \alpha k^2$, where α and E_0 are constants. If ω_c is the cyclotron resonance frequency of the conduction band electrons in a magnetic field B, the value of α is [NET June 2018]
 - (a) $\frac{\hbar^2 \omega_c}{4eB}$
- (b) $\frac{2\hbar^2\omega_c}{cB}$
- (c) $\frac{\hbar^2 \omega_c}{eB}$
- (d) $\frac{\hbar^2 \omega_c}{2cB}$

CSIR-UGC-NET/JRF|GATE-PHYSICS

SOLID STATE PHYSICS Assignment-4

1.	The effective mass of an electron in a semiconductor can be: (a) negative near the bottom of the band (b) a scalar quantity with a small magnitude (c) zero at the center of the band (d) negative near the top of the band					
2.	The effective mass o (a) can never be positive or		conductor (b) can never be n (d) depends on its	-	·	
3.		uctor has an electron of f 200 Vm ⁻¹ , the condu (b) 36		m ⁻³ . If the electron drift v is material is: (d) 96	elocity is 100 ms	
4.	(a) The electrons and (b) In an n-type semi	lowing is NOT a corre I holes have different re conductor, the Fermi I band gap semiconduc and structure	nobilities in a semicond level lies closer to the co	uctor	.: .	
5.	Compared to a p-n ju	unction with $N_1 = N_D$	$=10^{14} / cm^3$, which on	ne of the following statem	ent is TRUE for a	
	(a) Reverse breakdo (b) Reverse breakdo (c) Reverse breakdo	$N_D = 10^{20} / cm^3$? wn voltage is lower and wn voltage is higher and wn voltage is lower and wn voltage is higher an	nd depletion capacitand d depletion capacitanc	ce is lower. e is higher.	*1.4	
6.	of silicon to be 1.5×1	010/cm³ and the value silicon:	of kT/g to be 25 in V at	.13 eV		
7.	The electron and ho	le concentrations in an uced with a concentrat	intrinsic semiconducto	or are n_i per cm ³ at 300 K. ere $N_A >> n_i$), the electron	Now, if acceptor concentration per	
	(a) n _i	(b) n _i + N _A	(c) $N_A - n_i$	(d) $\frac{n_i^2}{N_A^3} \mathbf{k}_i^3 = \hat{\mathbf{k}}$	•	
-8.	In a p ⁺ n junction dio	de under reverse bias,	the magnitude of electr	ric field is maximum at:	· ·,	
	(a) The edge of the c (c) The p ⁺ n junction		,	of the depletion region or of the depletion region o		
9.		a built-in potential of (7.2 V, the depletion la		er width at a reverse bias	of 1.2 V is 2 μm.	
	(a) 4 μm	(b) 4.9 μm	(c) 8 μm	(d) 12 μm		

		•		
10.	of Silicon, $\varepsilon_r = 11$. the diode per square	7 and the permitivity of remetter is:	free space $\varepsilon_{u} = 8.85 \times 1$	of width 10 μm . The relative permittivity 0^{-12} F/m . The depletion capacitance of
	(a) 100 μF	(b) 10 μF	(c) 1 μF	(d) 20 μF
11.		ectively. The p-n junction		and n-side are $N_A = 9 \times 10^{16} / \text{cm}^3$ and $N_D = 1$ the total depletion width is 3 μm . The
	(a) 2.7 μm	(b) 0.3 μm	(c) 2.25 μm	(d) 0.75 μm
12.	$5 \times 10^{20} / cm^3$ and		s 0.13 m ² /V-s at 300	ea has a majority carrier concentration of OK. If the charge of an electron is
	(a) 10 ⁶ ohm	(b) 10 ⁴ ohm	(c) 10 ⁻¹ ohm	(d) 10 ⁻⁴ ohm
13.	A long specimen o (a) Is positively ch	f p-type semiconductor m arged field directed along its ler	aterial:	(b) is electrically neutral (d) Acts as a dipole
14.	In a P-type silicon	sample, the hole concent	ration is 2.25×10 ¹⁵ / cr	m^3 . If the intrinsic carrier concentration is
	$1.5 \times 10^{10} / cm^3$, th	ne electron concentartion	is:	
	(a) Zero	(b) $10^{10} / cm^3$	(c) $10^5 / cm^3$	(d) $1.5 \times 10^{25} / cm^3$
15.	An infra-red LED (a) Ge	is usually fabricated from (b) Si	: (c) Ga As	(d) Ga As P
16.	 Its conductivity Number of free Its conductivity 	wing statements is/are tru decreases with increasing electrons is around 10 ²⁸ decreases with addition of ductor of heat also. (b) I only	g temperature. m ⁻³	of electricity? (d) 3 and 4 only
17.	1. The electron co 2. The electron m 3. The electron-la Which of the abo (a) 1 only Consider the follo 1. Si Which of the abo	wing statements: of a metal has negative ten oncentration increases with obility decreases with terr ttice scattering rate increa ve statements is/are corre (b) 1 and 2 wing: 2. Ge ve semiconductors should	nperature coefficient sintemperature. ses with temperature. ct? (c) 2 and 3 3. GaAs	(d) 3 only 4. In P ghly efficient photodiodes?
	(a) I and 4 only		(c) 1, 3 and 4	
19.	In a materials, the Then what is that (a) A p-type semi (c) An intrinsic ser	material?	tween the centre of the (b) An n-type sem (d) An insulator.	forbidden band and the conduction band.
20.	An intrinsic semi Another intrinsic	conductor with energy ga	p l eV has a carrier come value of carrier com	centration N at temperature 200 K. scentration N at temperature 600K. What

21.	Consider the following statements: n-type of silicon can be 1. Formed by adding impurity of phospl 2. Formed by adding impurity of arsenic 3. Formed by adding impurity of boron. 4. Formed by adding impurity of alumini Which of the statements given above ar (a) I and 3 only (b) 3 and 4 only	um. e correct?	conly (d)	, 2, 3 and 4.	
22.	In a step-graded p-n junction diode, whe regions (if the ratio of acceptor to donor			netration depths into	pand n
	(a) 2:1 (b) 4:1	(c) 1:2	(d) !	:4	
23.	Match List-I with List-II and select the List-I(Item) A. Donor energy band B. Fermi level of p-type semiconductor at room temperature C. Acceptor energy band	List-II(Po 1. At the n 2. Close to 3. Very clo	osition) iddle of the forbio the conduction b ose to the valance	dden energy gap. and band.	
····. :·	D, Fermi level in intrinsic semiconductor A B C D	4. Close to	the valence band	i.	
•	(a) 4 3 2 1 (b) 2 1 4 3 (c) 4 1 2 3 (d) 2 3 4 1	·			
24.	The depletion layer in a p-n junction is r (a) Ionized donors in p-side and ionized (b) Ionized acceptors in p-side and ioni (c) Accumulated holes in p-side and acc (d) Accumulated electrons in p-side and	l acceptors in n-sic zed donors in n-sic umulated electror	e. le. s in n-side.	· · · · · · · · · · · · · · · · · · ·	
25.	Match the List-I(Current) with List-II the lists: List-I (Current) A. Hole deffusion current B. Electron drift current C. Hole drift current D. Electron diffusion current (a) A-2, B-1, C-3, D-4	List-II (V 1. n.E 2. p.E 3dp/dy	ariation)	swer using the code	given below
	(c) A-2, B-4, C-3, D-1	(d) A-3, B-1, C-2	2, D-4		
26.	A thin resistive film having length (I), wi in the direction of I. If the film is conner w, then what is the value of R ₁ /R ₂ .	cted to serve as a re	sistor (R ₂) for con	ducting current in th	
27.	(a) 1/w (b) w/l Match List-I (Type of Material) wit the codes given below the lists: List-I (Typed of Material) A. Elemental semiconductor B. Hydrogen molecule C. Copper D. Agl		Bonding) and the Type of Bonding) ont rewals		answer using
	(a) A-3 B-2 C-1 D-4 (c) A-2 B-3 C-4 D-1	(d) A	-2 B-3 C-1 -3 B-4 C-1	2 D-1	
	🚄 South Delhi : 28-A/11, Jia Sarai, N	ear-HT Metro Sta	tion, New Delhi-16	i, Ph : 011-26851008	3, 26861009

	\	= :
28.	Depletion capacitance in a diode depends on: 1. Applied junction voltage. 3. Current through junction Select the correct answer using the codes given (a) 1 and 2 (b) 1 and 3	2. Junction built-in potential 4. Doping profile across the junction a below: (c) 1, 2 and 4 (d) 2, 3 and 4
29.	The depletion layer across a p^+ -n junction lies	
30.	(a) mostly in the p region (c) equally in both p ⁺ and n regions Match List-I (Crystal type) with List-II (Na	(b) mostly in the n region (d) Entirely in the p ⁺ region. me of the solid) and select the correct answer using the codes
	given below the Lists: List-I A. lonic B. Covalent C. Metallic D. Van der Waal's Codes: (a) A-3 B-4 C-2 D-1	List-II 1. Solid argon 2. Copper 3. Silicon 4. Sodium chloride (b) A-4 B-3 C-1 D-2
	(c) A-3 B-4 C-1 D-2	(d) A-4 B-3 C-2 D-1
31.	At very high temperatures, the extrinsic semical (a) Of drive-in diffusion of dopants and carrie (b) Band to band transition dominates over im (c) Impurity ionization dominates over band to (d) Band to band transition is balanced by imp	s purity ionization. o band transition.
32.	The increasing temperature, the electrical cond (a) Increase in metals as well as in intrinsic ser (b) Increase in metals but decrease in intrinsic (c) Decrease in metals but increase in intrinsic (d) Decrease in metals as well as in intrinsic ser	niconductor semiconductor semiconductor
33.	The minority carrier life-time and diffusion cons and 100 cm²/s. The diffusion length of the car (a) 0.1 cm (b) 0.01 cm	
34.	Identify the crystal which will have the highes	stals of C, Si, Ge and Sn is 5.5, 1.2, 0.67 and 0.1 eV respectively. telectrical condictivity at 300 K
35.	The effective density of states at the conduction K). Ge has an optical bandgap of 0.66 eV. The (300 K) is approximately:	on band edge of Ge is 1.04×10^{19} cm ⁻³ at room temeprature 300 intrinsic carrier concentration (in cm ⁻³) in Ge at room temperature
	(a) 3×10^{10} (b) 3×10^{13}	(c) 3×10^{16} (d) 6×10^{16}
36.		s-section A and length L is doped in such a way that the doping
	concentration varies as $N_D(x) = N_0 \exp \left(-\frac{1}{2}\right)$	$(\frac{x}{L})$, where N_0 is a constant. Assume that the mobility m of the
	majority carriers remains constant. The resis	tance R of the sample is given by:
•	(a) $R = \frac{L}{A\mu e N_0} [\exp(1.0) - 1]$	(b) $R = \frac{L}{\mu e N_0} \left[\exp(1.0) - 1 \right]$
	(c) $R = \frac{L}{A\mu e N_0} \left[\exp(-1.0) - 1 \right]$	(d) $R = \frac{L}{A\mu e N_0}$

37. The temperature dependence of the electrical conductivity σ of two intrinsic semi-conductors A and B is shown in the figure. If E_A and E_B are the band gaps of A and B respectively, which one of the following is TRUE?

(c)
$$E_A = E_B$$

38. An intrinsic semiconductor with mass of a hole m, and mass of an electron m is at a finite temperature T. If the top of the valence band enegy is E_{ν} and the bottom of the conduction band energy is E_{c} , the Fermi energy of the semiconductor is:

(a)
$$E_F = \left(\frac{E_V + E_C}{2}\right) - \frac{3}{4}k_B T \ln\left(\frac{m_h}{m_e}\right)$$

(a)
$$E_F = \left(\frac{E_V + E_C}{2}\right) - \frac{3}{4}k_B T \ln\left(\frac{m_h}{m_e}\right)$$
 (b) $E_F = \left(\frac{k_B T}{2}\right) + \frac{3}{4}(E_V + E_C) \ln\left(\frac{m_h}{m_e}\right)$

(c)
$$E_F = \left(\frac{E_v + E_c}{2}\right) + \frac{3}{4}k_B T \ln\left(\frac{m_h}{m_e}\right)$$

(c)
$$E_F = \left(\frac{E_V + E_C}{2}\right) + \frac{3}{4}k_BT \ln\left(\frac{m_h}{m_e}\right)$$
 (d) $E_F = \left(\frac{k_BT}{2}\right) - \frac{3}{4}(E_V + E_C) \ln\left(\frac{m_h}{m_e}\right)$

39. A silicon sample A is doped with 10¹⁸ atoms/cm³ of Boron. Another sample B of identical dimensions is doped with 1018 atoms/cm3 of Phosphorus. The ratio of electron to hole mobility is 3. The ratio of conductivity of the sample A to B is:

$$(a)$$
 3

The intrinsic carrier density at 300 K is 1.5×10¹⁰ /cm³, in silicon. For n-type silicon doped to 40. 2.25×10^{15} atoms / cm³, the equilibrium electron and hole densities are:

(a)
$$n = 1.5 \times 10^{15} / cm^3$$
, $p = 1.5 \times 10^{10} / cm$

(a)
$$n = 1.5 \times 10^{15} / cm^3$$
, $p = 1.5 \times 10^{10} / cm^3$ (b) $n = 1.5 \times 10^{10} / cm^3$, $p = 2.25 \times 10^{15} / cm^3$

(c)
$$n = 2.25 \times 10^{15} / cm^3$$
, $p = 1.0 \times 10^5 / cm$

(c)
$$n = 2.25 \times 10^{15} / cm^3$$
, $p = 1.0 \times 10^5 / cm^3$ (d) $n = 1.5 \times 10^{10} / cm^3$, $p = 1.5 \times 10^{10} / cm^3$

- A silicon sample is uniformly doped with 10% phosphorous atoms/cm³ and 2×10% boron atoms/cm³. If all the 41. dopants are fully ionized, the material is:
 - (a) n-type with carrier concentration of 1016 / cm3
 - (b) p-type with carrier concentration of 1016 cm
 - (c) p-type with carrier concentration of 2×10^{16} / cm³
 - (d) T₂-will get damaged and T₁ will be safe.
- 42. In a uniformly doped abrupt p-n junction, the doping level of n-side is four (4) times the doping level of the pside. The ratio of the depletion layer widths is:
 - (a) 0.25
- (b) 0.5
- (c) 1.0
- (d) 2.0
- 43. The doping concentration on the n-side of a p-n junction diode is enhanced. Which one of the following will get affected?
 - (a) Width of the depletion region on n-side.
 - (b) Width of the depletion region on p-side.
 - (c) Width of the depletion region on both sides.
 - (d) No change in width of depletion regions
- Which one of the following expressions may be used to correctly describe the temperature(T) variation of the intrinsic carrier density (n.) of a semiconductor?

(a)
$$n_i(T) = (A/T) \exp(-E_g/kT^2)$$

(b)
$$n_{i}(T) = A(E_{i}/kT)^{10}$$

(c)
$$n_i(T) = A \exp(-E_i / 2kT)$$

(c)
$$n_i(T) = A \exp(-E_e/2kT)$$
 (d) $n_i(T) = AT^{3/2} \exp(-E_e/2kT)$

- 45. An intrinsic semiconductor (intrinsic electron density = 10^{16} m⁻³) is doped with donors to a level of 10^{22} m What is the hole density assuming all donors to the ionized? (a) $10^7 \,\mathrm{m}^{-3}$ (b) $10^8 \,\mathrm{m}^{-3}$ (c) 10¹⁰ m ³ (d) 10⁶ m⁻³. 46. Consider the following statements in respect of graphite: 1. It has the three coplanar covalent bonds. 2. It has good electrical and thermal conductivity. 3. Sheets of graphite are held together by van der waals interaction. Which of the statements given above are correct? (a) 1, 2 and 3 (c) 2 and 3 (d) I and 3 (b) I and 2 47. A conductor carries a current of 4A and if magnitude of charge of an electron $e = 1.6 \times 10^{-19}$ coulomb, then th number of electrons which flow past the cross section per second is: (a) 2.5×10¹⁹ (b) 1.6×10¹⁹ (c) 6.04×10^{19} (d) 0.4×10^{19} 48. Which of the following elements act as donor impurities? 2. Phosphorus 1. Gold 3. Boron 4. Antiomony 5. Arsenic 6. Indium. Select the corrent answer using the codes given below: (a) 1, 2 and 3 (b) 1,, 4 and 5 (c) 3, 4, 5 and 649. The conductivity of an intrinsic semicoductor is (symbols have the usual meanings) where e is electron charge (a) Generally less than that of a doped semiconductor. (b) Given by $\sigma_i = \operatorname{en}_i \left(\mu_n - \mu_n^* \right)^2$ (c) Given by $\sigma_i = en_i (\mu_n + \mu_p)$ (d) Given by $\sigma_i = n_i (\mu_n + \mu_p)$ 50. In an intrinsic semiconductor, as the temperature increases the conductivity σ, electron concentration n, and mobility μ vary as follows: (a) σ decreases, n increases and μ decreases (b) σ decreases, n is unaffected and μ decreases (c) σ increases, n increases and μ decreases (d) σ increases, n increases and μ is unaffected A Ge semiconductor is doped with acceptor impurity concentration of 10¹⁵ atoms /cm³. For the given hole mobility of $1800 \text{ cm}^2 / \text{V} - \text{s}$, the resistivity of this material is: (a) $0.288\,\Omega$ cm (b) $0.694\,\Omega$ cm (c) $3.472\,\Omega$ cm (d) $6.944\,\Omega$ cm Identify the CORRECT energy band diagram for silicon doped with Arsenic. Here CB, VB, $E_{_D}$ and $E_{_F}$ 52. conduction band, valence band, impurity level and Fermi level, respectively.
- For a intrinsic semiconductor, m_e^* and m_h^* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature, the position of his Fermi level
 - (a) Depends on m_e^* but not on m_h^*
- (b) Depends on m_h^* but not on m_e^*
- (c) Depends on m_e^* and m_h^*
- (d) depends neither on m_e^* nor on m_h^*

					ريد
54.	An n-type semiconduct (a) positively charged (c) electrically neutral		(b) negatively ((d) positively (charged or negatively charge	ed .
55.		ping densities of 1.5 ×	tes of 0.13 and 0.05 m ² / 10^{21} /m ³ and 2.5 × 10^{21} /m		
	(a) $8\Omega^{-1}m^{-1}$	(b) $32\Omega^{-1}m^{-1}$	(c) $20.8\Omega^{-1}m^{-1}$	-i (d) 83.2Ω ⁻ⁱ	m ⁻¹ .
56.			ype silicon is increased ng the sample to be non		
	$(k_BT = 25meV \text{ at } 300$	0K)			
57.	ductor. Which of the fo	ollowing is NOT true? electron increases	(b) A phonon is involved	ed in the process	
	(c) A photon is absort	•	(d) There is no momen	,	
58.			mally on a metal sheet of absorption coefficien al places)	it of the metal sl	
59.	The band gap of an int	trinsic semiconductor is	$E_{g} = 0.72 \text{ eV} \text{ and } m_{h}^{*} = 0.72 \text{ eV}$	= 6m*. At 300K, the	Fermi level with
			(in eV) is at	-	
	$k_B = 1.38 \times 10^{-23} JK^{-1}$	·	· · · · · · · · · · · · · · · · · · ·	[GATE 20)15]
60.	The concentration of	electrons, n and holes, j	o for an intrinsic semicon	ductor.at a temper	ature T can be ex-
			ere $E_{_{oldsymbol{\mathcal{R}}}}$ is the band gap and		
	types of carries is prop	portional to $T^{-3/2}$, then the	ne log of the conductivity	is a linear function	of T^{-1} with slope
	(a) $\frac{E_g}{(2k_B)}$	(b) $\frac{E_{\rm g}}{k_{\rm B}}$	(c) $\frac{-E_g}{(2k_B)}$	$ (d) \frac{-E_g}{k_H} $	ET June 2015]
61.	The majority carriers i	n n-type semiconductor	have an average drift vel E induced due to Hall effe (c) along V	ocity_V in a directio	
62.	The longest waveleng	th that can be absorbed	by silicon, which has the	band-gap of 1.12 e	V, is 1.1 μm . If the
	longest wavelength tha (a) 1.416 eV	at can be absorbed by ar (b) 0.886 eV	nother material is 0.87 μm (c) 0.854 eV	n , then the bandgap (d) 0.706 eV	of this material is:
63.		D emits light of waveler s constant = 6.626×10 ⁻ (b) 1.98 eV	gth 5490Å. The energy b ³⁴ J-s): (c) 1.17 eV	andgap of the semio	
64.	An infra-red LED is us (a) Ge		(c) Ga As	(d) Ga As P	ar Amali T
65.		statements for a photo	conducting material:		
	Its dark conductivity With the absorption Which of the statement		nbers of electrons and of l	holes are produced	
	(a) I only	(b) 2 only	(c) Both 1 and 2	(d) Neither I nor	2.

66. Photovoltaic devices may be made from various semiconductors as optical materials for which the transmission coefficient (T) is shown in the figure given below as a function of photon wavelength.

Which one of the following is the correct sequence of A, B and C pertaining to Ge, Ga, As and Si, respectively?

- (a) A-B-C
- (b) B--A--C
- (c) C-A-B
- (d)C-B-A
- Photons of energy 1.53×10⁻¹⁹ Joule are incident on a photodiode which has a responsivity of 0.65 A/W. If the 67. optical power level is 10 μW. What is the photo current generated?
- (b) 1.5 μA
- (c) 2.1 μA
- (d) $6.5 \mu A$

- 68. An LED made usig GaAs emits radiation in:
 - (a) Visile region

(b) Ultraviolet region

(c) Infra red region-

- (d) Microwave frequency region.
- The light emitting diode (LED) emits light of a particular colour because
 - (a) It is fabricated from a fluorescent material.
 - (b) Transition between energy levels of the carriers takes place while crossing the p-n junction.
 - (c) Heat generated in the diode is converted into light.
 - (d) The band gap of the semi-conductor material used in fabrication of the diode is equal to the energy hof the light photon.
- 70. Hall effect is observed in a specimen when it (metal or a semiconductor) is carrying current and is placed in a magnetic field. The resultant electric field inside the specimen will be in
 - (a) A direction normal to both current and magnetic field.
 - (b) The direction of current
 - (c) A direction antiparallel to magnetic field
 - (d) An arbitrary direction depending upon the conductivity of the specimen.
- 71. The wavelength of light emitted by a GaAs laser s 8670×10^{-10} m. Given Planck's constant = 6.626×10^{-34} Js. velocity of light = 2.998×10^8 m/s and 1 eV = 1.602×10^{-19} J, the energy gap in GaAs is
 - (a) 0.18 eV
- (c) 1.43 eV
- (d) 2.39 eV
- A doped Germanium crystal of length? cin, breadth 1 cin and width 1 cin, carries a current of 1 mA along its 72. length parallel to +x axis. A magnetic field of 0.5 T is applied along +z axis. Hall voltage of 6 mV is measured with negative polarity at y = 0 plane. The sign and concentration of the majority charge carrier are, respectively [Given: $e = 1.6 \times 10^{-19}$ C]
 - (a) Positive and $5.2 \times 10^{19} \text{ m}^{-3}$
 - (b) Negative and $5.2 \times 10^{19} \text{ m}^{-3}$
 - (c) Positive and 10.4×10¹⁹ m⁻³
 - (d) Negative and 10.4×10¹⁹ m⁻³

- An electron of wavevector \vec{k}_e , velocity \vec{v}_e and effective mass m_e is removed from a filled energy band. The resulting hole has wavevevtor \vec{k}_b , velocity \vec{v}_b , and effective mass m_b . Which one of the following statements is correct?
 - (a) $\vec{k}_h = -\vec{k}_e$; $\vec{v}_h = \vec{v}_e$; $m_h = -m_e$
- (b) $\vec{k}_h = \vec{k}_e$; $\vec{v}_h = \vec{v}_e$; $\vec{m}_h = \vec{m}_e$
- (c) $\vec{k}_h = \vec{k}_e; \vec{v}_h = -\vec{v}_e; m_h = -m_e$ (d) $\vec{k}_h = -\vec{k}_e; \vec{v}_h = \vec{v}_e; m_h = m_e$

				_	
74.	(a) Increases with inc	onductor the Hall coefficion rease of temperature the change of temperatur	(b) Decreaes with in	•	
75.	1. A potential different ransverse magnetic for 2. The Hall effect is volume 4. It is applied in the r	ng statements related to the ence is developed acrosticld. The ery weak in metals but is very weak in semiconductive assurement of the magistic wer using the code given	ss a current-carrying of large in semiconductor tors but is large in met netic field intensity. In below:	ors als.	ne strip is placed in a
	(a) 1, 2 and 3	(b) 2 and 4	(c) 1, 3 and 4	(d) 1, 2 and 4	-
76.	Germanium and silic (a) Infrared region	on photo-sensors have th (b) Ultraviolet region	•	response in the (d) X-ray region	on -
7 7. -	Measurement of Hall	effect coefficient in a ser	miconductor provides	information on the	
	(a) Sign and mass of (c) Sign of charge.ca	_	(b) Mass and conce (d) Sign and conce	_	
78.	layer of thickness of	coefficient at this wave		d if 1% power is le	
	, , ,				
-	B. The generated ph(a) 360 μA	oto-current for a quantur (b) 400 μΑ	n efficiency of unity w (c) 133 μA	iii be (d) 120 μA	
79.	m ⁻³ . Upon lightly dop	of electrons in the condu ping this semiconductor v ture becomes 4×10 ²⁰ m ⁻¹	with donor impurities, t	he number density	of conduction electrons
80.		ormed with a heavily doping statement(s) is(are) or		on and lightly doped	1(10 ¹⁴ cm ⁻³) <i>n</i> -region.
	(b) the width of the (c) the width of the	depletion layer will be depletion layer will be depletion layer will be in is reverse biased, the	more in the <i>p</i> -side or same on both sides or	f the function of the junction.	eases.
81.	Consider a 20 µm	diameter p-n junction	fabricated in silicon.	the donor density	y is 10 ¹⁶ per cm ³ . The
		on the n-side is 1.6×10			
82.	The active medium	in a blue LED (Light En	nitting Diode) is a Ga	In Nalloy The	band gaps of GaN and
		1.5 eV respectively. If th			-
		ed for the emission of bl			
	(a) 0.95	(b) 0.75	(c) 0.50	(d) 0.33	[NET Dec. 2016]
				-	

83. Let I_0 be the saturation current, η the ideality factor and v_F and v_R the forward and reverse potentials, respectively, for a diode. The ratio R_R/R_F of its reverse and forward resistances R_R and R_F respectively, varies as (in the following k_R is the Boltzmann constant, T is the absolute temperature and q is the charge).

(a)
$$\frac{v_R}{v_F} \exp\left(\frac{qv_F}{\eta k_B T}\right)$$
 (b) $\frac{v_F}{v_R} \exp\left(\frac{qv_F}{\eta k_B T}\right)$ (c) $\frac{v_R}{v_F} \exp\left(-\frac{qv_F}{\eta k_B T}\right)$ (d) $\frac{v_F}{v_R} \exp\left(-\frac{qv_F}{\eta k_B T}\right)$

84. A thin rectangular conducting plate of length a and width b is placed in the xy-plane in two different orientations, as shown in the figures below. In both cases a magnetic field B is applied in the z-direction and a current flows in the x-direction due to the applied voltage V. [NET Dec. 2016]

If the Hall voltage across the y-direction in the two cases satisfy $V_2 = 2V_1$, the ratio a:b must be

(d)
$$\sqrt{2}$$
:1

85. An intrinsic semiconductor of band gap 1.25 eV has an electron concentration 10¹⁰ cm⁻³ at 300K. Assume that its band gap is independent of the temperature and that the electron concentration depends only exponentially on the temperature. If the electron concentration at 200K is

$$Y \times 10^{N}$$
 cm⁻¹ (1 < Y < 10, N = integer), then the value of N is

86. A p-doped semiconductor slab carries a current I = 100 mA in a magnetic field B = 0.2 T as shown. One measures $V_p = 0.25$ mV and $V_x = 2$ mV. The mobility of holes in the semiconductor is $m^2V^{-1}s^{-1}$ (up to two decimal places). [GATE 2018]

- 87. A Germanium diode is operated at a temperature of 27 degree C. The diode terminal voltage is 0.3V when the forward current is 10 mA. What is the forward current (in mA) if the terminal voltage is 0.4V?
 - (a) 477.3
- (b) 577.3
- (c) 47.7
- (d) 57.73

[JEST 2018]

- 88. In a pn junction, dopant concentration on the p-side is higher than that on the n-side. Which of the following statement(s) is(are) correct, when the junction is unbiased?
 - (a) The width of the depletion layer is larger on the n-side
 - (b) At thermal equilibrium the Fermi energy is higher on the p-side
 - (c) In the depletion region, number of negative charges per unit area on the p-side is equal to number of positive charges per unit area on the n-side
 - (d) The value of the built-in potential barrier depends on the dopant concentration
- 89. Consider a two-dimensional material of length *l* and width *w* subjected to a constant magnetic field *B* applied perpendicular to it. The number of charge carriers per unit area may be expressed as

$$n = \frac{k|q|B}{(2\pi\hbar)},$$

where k is a positive real number and q is the carrier charge. Then the Hall resistivity ρ_{xy} is

- (a) $\frac{2\pi\hbar k}{q^2}\sqrt{\frac{l}{w}}$
- (b) $\frac{2\pi h}{kq^2} \sqrt{\frac{w}{l}}$
- (c) $\frac{2\pi\hbar}{kq^2}$
- (d) $\frac{2\pi hk}{q^2}$ [NET Dec. 2017]

CSIR-UGC-NET/JRF|GATE-PHYSICS

SOLID STATE PHYSICS

Assignment-5

Monochromatic light of wavelength 660 nm and intensity 100 mW/cm² falls on a solar cell of area 30 cm². The conversion efficiency of the solar cell is 10%. If each coverted photon results in an electron-hole pair, what is the maximum circuit current supplied by the solar cell? (Take $h = 6.6 \times 10^{-34} \text{ J} - \text{s}$, $c = 3 \times 10^8 \text{ m/s}$ and $e = 1.6 \times 10^{-19} C$).

(a) 160 mA

(b) $320 \, \text{mA}$

(c) 1600 mA

(d) 3200 mA

In the Hall effect the sign of the Hall voltage depends upon the carrier concentration (n,p) and mobility (μ_n,μ_n) of electrons and holes, respectively. The Hall voltage in intrinsic and n-type semiconductors is negative because

(a) $n\mu_n > p\mu_n$

(b) n > p, $\mu_n < \mu_n$

(c) n > p, $\mu_n = \mu_n$

(d) $n = p, \mu_n > \mu_n$

The I-V characteristics of a solar cell of dimension 1 cm ×1 cm illuminated with light of intensity 600 Wm⁻² 3. are shown in the figure. If the cell is used to drive a load R (see the load line in the figure) the efficiency of the solar cell is:

(a) !%

(c)20%

(d) 10%

In an experiment to measure the Hall co-efficient of a particular sample, the generated Hall voltage was found. 4. to be too small to measure. To improve the measurement, you would

(a) Increase the magnetic field

(b) Increase the temperature of the sample

(c) Use a longer and thinner sample 1996

- (d) Use a shorter and thicker sample.
- An LED operates at 1.5 V and 5 mA in forward bias. Assuming an 80% external efficiency of the LED, how 5. many photons are emitted per second?

(a) 5.0×10^{16}

(b) 1.5×10¹⁶

(c) 0.8×10^{16}

(d) 2.5×10^{10}

6. The experimentally measured transmission spectra of metal, insulator and semiconductor thin films are shown in the figure. It can be inferred that I, II and III correspond respectively, to

(a) insulator, semiconductor and metal

(c) metal, semiconductor and insulator

(b) semiconductor, metal and insulator

(d) insulator, metal and semiconductor

- 7. A magnetic field sensor based on the Hall effect is to be fabricated by implanting. As into a Si film of thickness I μm. The specifications require a magnetic field sensitivity of 500 mV/Tesla at an excitation current of I mA. The implanation dose is to be adjusted such that the average carrier density, after activation, is
 - (a) $1.25 \times 10^{26} \text{ m}^{-3}$
- (b) $1.25 \times 10^{22} \text{ m}^{-3}$ (c) $4.1 \times 10^{21} \text{ m}^{-3}$ (d) $4.1 \times 10^{20} \text{ m}^{-3}$
- 8. The output characteristics of a solar panel at a certain level of irradiance is shown in the figure below.

If the solar cell is to power a load of 5 Ω , the power drawn by the load is:

- (a) 97 W
- (b) 73 W
- (c) 50 W
- (d) 45 W
- 9. If the gap between ground state and excited state energy levels of electrons in an atom is 1eV. Estimate the wavelength of the light the atom will absorb? The value of the Planck's constant is 6.6×10⁻³⁴ Js.
 - (a) 1 mm
- (b) 1.24 µm
- (c) 1.24 angstrom (d) 1cm
- 10. The difference between the electron and hole of a semiconductor laser is 1.5 eV and the band gap of the semiconductor is 1.43 eV. The upper and lower frequency limits of the laser will be respectively
 - (a) 3.3×10^{14} and 9.9×10^{13} Hz
- (b) 3.7×10^{14} and 3.5×10^{14} Hz
- (c) 6.28×10^{14} and 3.1×10^{14} Hz
- (d) 1.16×10¹⁵ and 8.97×10¹⁴ Hz
- 11. The power density of sunlight incident on a solar cell is 100 m W/cm². Its short circuit current density is 30 mA/ cm² and the open circuit voltage is 0.7V. If the fill factor of the solar cell decreases from 0.8 to 0.5 then the percentage efficiency will decrease from
 - (a) 42.0 to 26.2
- (b) 24.0 to 16.8
- (c) 21.0 to 10.5 (d) 16.8 to 10.5
- 12. In a Hall effect experiment, the Hall voltage for an intrinsic semiconductor is negative. This is because (symbols carry usual meaning).
 - (A) $n \approx p$
- C) $\mu_a \gg \mu_h$ (D) $m_e > m_h$

(a) A

- (b) B

- 13. Two dielectric materials A and B exhibit both ionic and orientational polarizabilities. The variation of the dielectric constant c(=e_-1) with temperature T is shown in the figure, where e, is the relative dielectric constant. It can be inferred from the figure that:

					י
	(a) A is more polar and it has a smaller value of ionic p (b) A is more polar and it has a higher value of ionic po (c) B is more polar and it has a higher value of ionic po (d) B is more polar and it has a smaller value of ionic p	olarizability tha olarizability tha	n that of B n that of A		
14.	If the static dielectric constant of NaCl crystal is 5.6 ampolarizability to its total polarizability is: (a) 0.5 (b) 0.7 (c) 0.	·	active index is 1.5	, the ratio of its electr	ic
1.6			, ,		
15.		icies is mainly d lectronic polari: onic and dipolai	zability		
16.		lkali metals ansition metals	·		
17.	Which one of the following is TRUE for a semicondu (a) The total charge in the junction is not conserved (b) The p side of the junction is positively charged (c) The p side of the junction is negatively charged (d) No charge develops anywhere in the junction	ictor p—n juncti	on with no externa	al bias?	 :
18.	Which one of the following is the first order phase tra (a) Vaporization of a liquid at its boiling point (b) Ferromagnetic to paramagnetic (c) Normal liquid He to superfluid He (d) Superconducting to normal state	nsition?			
19.	(a) A liquid to gas transition at its critical temperature (b) A liquid to gas transition close to its triple point. (c) A paramagnetic to ferromagnetic transition in the	absence of a m			
20.	 (d) A metal to superconductor transition in the absent A second order phase transition is one in which: (a) the plot of entropy as a function of temeprature s (b) the plot of specific heat as a function of temperature show (c) the plot of volume as a function of pressure show (d) the plot of comprehensibility as a function of tem 	hows a discont ure shows a dis s a discontinui	inuity continuity y		
21.	A ferromagnetic material has a Curie temperature 10 (a) its succeptibility is double when it is cooled from (b) all the atomic magnets in it get oriented in the sa (c) the plot of inverse susceptibility versus temperature) (d) the plot if its succeptibility versus temperature is	n 300 K to 200 me direction al ure is linear wit	oove 100 K h a slope T _c		
22.	The energy of a ferromagnet as a function of magnet $F(M) = F_0 + 2(T - T_c) M^2$ The number of minima in the function $F(M)$ for $T > (a) 0$ (b) I (c)	$+ M^4, F_0 > 0$	ven by:		
23.	When liquid oxygen is poured down close to a stror (a) replied towards the lower field because it is dia (b) attracted towards the higher field because it is di	magnetic	the oxygen stream	is: .	

(c) repelled towards the lower field becaue it is paramagnetic (d) attracted towards the higher field because it is paramagnetic

- 24. A ferromagnetic mixture of iron and copper having 75% atoms of Fe exhibits a saturation magnetization of 1.3 × 10⁶ A m⁻¹. Assume that the total number of atoms per unit volume is 8 × 10²⁸ m⁻³. The magnetic moment of an iron atom, in terms of the Bohr Magneton, is:
 - (a) 1.7
- (b) 2.3
- (c)2.9
- (d)3.8
- 25. The plot of inverse magnetic susceptibility $\frac{1}{\chi}$ versus temperature T of an antiferromagnetic sample corresponds

lo:

26. In an experiment involving a ferromagnetic medium, the following observations were made. Which one of the plots does NOT correctly represented the property of the medium? (T_C is the Curie temperature)

27. The dependence of the magnetic susceptibility (χ) of a material with temperature (T) can be represented by $\chi \propto \frac{1}{T-\theta}$, where θ is the Curie-Weiss temperature. The plot of magnetic susceptibility versus temperature is sketched in the figure, as curves P, Q and R with curve Q having $\theta = 0$. Which one of the following statements is correct?

- (a) Curve R represents a paramagnet and Q a ferromagnet.
- (b) Curve Q'represents a ferromagnet and P an anterromagnet.
- (c) Curve R represents an antiferromagnet and Q a paramagnet.
- (d) Curve R represents an antiferromagnet and Q a ferromanget.
- 28. The temperature (T) dependence of magnetic susceptibility (χ) of a ferromagnetic substance with a Curie temperature (T) is given by

(a)
$$\frac{C}{T - T_c}$$
, for $T < T_c$

(b)
$$\frac{C}{T-T_c}$$
, for $T > T_c$

(c)
$$\frac{C}{T+T_c}$$
, for $T > T_c$

(d)
$$\frac{C}{T+T_c}$$
, for all temperature.

29. Assume that the free energy of a magnetic system has an expansion in the order parameter M of the form $F(M,T) = a(T-T_c)M^2 + bM^4 + cM^6$, with a, b and c > 0. As the temperature is lowered below T_c , the system undergoes a phase transition. The behaviour of the order parameter just below the transition, where (T-T_c) is very small, is best described by

(a)
$$M \propto (T_c - T)^{-1/2}$$
 (b) $M \propto (T_c - T)^{1/2}$ (c) $M \propto (T_c - T)$ (d) $M \propto (T_c - T)^3$

(b)
$$M \propto (T_c - T)^{1/2}$$

(d)
$$M \propto (T_C - T)^3$$

- The magnetization M of a system in equilibrium at temperature T is given by the equation $M = \tanh \left(\frac{M}{T} \right)$, 30. where all quantities are in dimensionless units. This system will show
 - (a) a first order phase transition at T = 1
- (b) a second order phase transition at T=1
- (c) no phase transition at any T
- (d) a second order phase transition at $T = \frac{1}{2}$:
- The (Pauli) paramagnetic susceptibility of a metal at a low temperature T is
 - (a) proportional to T

(b) independent of T

(c) proportional T²

- (d) proportional to T
- 32. Inverse susceptibility $(1/\chi)$ as a function of temperature, T for a material undergoing paramagnetic to ferromagnetic transition is given in the figure, where O is the origin, the values of the Curie constant, C and the Weiss molecular field constant, λ, in CGS units, are

- (a) $C = 5 \times 10^{-5}$, $\lambda = 3 \times 10^{-2}$
- (b) $C = 3 \times 10^{-2}$, $\lambda = 5 \times 10^{-5}$
- (c) $C = 3 \times 10^{-2}$, $\lambda = 2 \times 10^{-4}$
- (d) $C = 2 \times 10^4$, $\lambda = 3 \times 10^{-2}$
- The magnetization Mofa ferromagnet, as a function of the temperature T and the magnetic field H, is described 33. by the equaltion $M = \tanh\left(\frac{T_c}{T}M + \frac{H}{T}\right)$. In these units, the zero-field magnetic susceptibility in terms of M(0) = M(H = 0) is given by

(a)
$$\frac{1-M^2(0)}{T-T_c(1-M^2(0))}$$
 (b) $\frac{1-M^2(0)}{T-T_c}$ (c) $\frac{1-M^2(0)}{T+T_c}$ (d) $\frac{1-M^2(0)}{T}$

(c)
$$\frac{1-M^2(0)}{T+T}$$

(d)
$$\frac{1-M^2(0)}{T}$$

The Curie temperature of a single crystal of PrGe is known to be 41 K. The magnetization data of this sample 34. is measured at 1.8K for the magnetic field applied parallel to the [001] direction is shown in the figure on the left. At a temperature of 38 K, the hysteresis loop in the figure will

- (a) Have the same width.
- (c) increase in width

- (b) decrease in width.
- (d) shrink to a line.
- The magnetic susceptibility χ of three samples A, B and C, is measured as a function of their absolute 35. temperature T, leading to teh graphs shown below.

From these graphs, the magnetic nature of the samples can be inferred to be

- (a) A:anti-ferromagnet B: paramagnet C: ferromagnet

- (b) A:diamagnet
- B: paramagnet
- C: anti-ferromagnet

- (c) A:paramagnet -
- B: anti-ferromagnet
- C: ferromagnet

- (d) A:anti-ferromagnet B: diamagnet
- C: paramagnet.
- The physical phenomenon that cannot be used for memory storage applications is 36.
 - (a) large variation in magnetoresistance as a function of applied magnetic field
 - (b) variation in magnetization of a ferromagnet as a function of applied magnetic field
 - (c) variation in polarization of a 12 rocketric as a function of applied electric field
 - (d) variation in resistance of a metal as a function of applied electric field
- For Nickel, the number density is 8×10²³ atoms/cm³ and electronic configuration is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$. The value of the saturation magnetization of Nickel in its ferromagnetic states is _____ $\times 10^9$ A/m.

(Given the value of Bohr magneton $\mu_B = 9.21 \times 10^{-21} Am^2$)

- A solid material is found to have a temperature independent magnetic susceptibility, $\chi = C$. Which of the following statements is correct? [GATE 2016]
 - (a) If C is positive, the material is a diamagnet
 - (b) If C is positive, the material is a ferromagnet
 - (c) If C is negative, the material could be a type I superconductor
 - (d) If C is positive, the material could be a type I superconductor
- 39. In the Meissner state the magnetic susceptibility of a super conductor in S.I. units is:
 - (a) $-\frac{1}{4\pi}$
- (b) $\frac{1}{4\pi}$
- (c)-
- (d) $-\frac{1}{\mu_a}$
- 40. Which one of the following statements about superconductors is NOT true?
 - (a) Atype I superconductor is completely diamagnetic
 - (b) All type II superconductor exhibits Meissner effect upto second critical magnetic field (H_{c_1}) .
 - (c) A type II superconductor exhibits zero reistance upto the second critical magnetic field
 - (d) Both type I and type II superconductors exhibit sharp fall in resistance at the superconducting transition temperature.
- 41. A solid superconductor is placed in an external magnetic field and then cooled below its criticalk temperature. The superconductor.
 - (a) retains its magnetic flux because the surface current supports it.
 - (b) expels out its magnetic flux because it behaves like a paramagnetic material.
 - (c) expels out its magnetic flux because it behaves like an anti-ferromagnetic material
 - (d)expels out its magnetic flux because the surface current induces a field in the direction opposite to the applied magnetic field.
- 42. Variation of electrical resistivity r with temperature T of three solids is sketched (on different scales) in the figure, as curves P, Q and R.

Which of the following statements describes the variations most appropriately?

- (a) P is for a superconductor and R for a semiconductor
- (b) Q is for a superconductor and P for a conductor
- (c) Q is for a superconductor and R for a conductor
- (d) E is for a superconductor, and P for a conductor
- 43. The critical magnetic field for a solid in superconducting state
 - (a) Does not depend upon temperature(c) Increases if the temperature decreases
- (b) Increases if the temperature
- (d) Does not depend on the transition temperature.
- 44. Which one of the following statements is NOT TRUE?
 - (a) Entropy decreases markedly on cooling a superconductor below the critical temperature, T_c.
 - (b) The electronic contribution to the heat capacity in the superconducting state has an exponential form with an argument proportional to T-1, suggestive of an energy gap
 - (c) A type I superconductor is a perfect diamagnet.
 - (d) Critical temperature of superconductors does not vary with the isotopic mass.

					44)			
45.		ing ring is cooled in the pr .ix that passes through the i		eld below itscritical temperatu	re(T _c). The			
	(a) zero	(b) n h/2e	(c) $\frac{\text{nh}}{4\pi\text{e}}$	(d) $\frac{ne^2}{hc}$				
46.	statements is inc (a) The gap sepa (b) The tempera (c) The existence	orrect? rrates the lowest excited si ture dependence of electri e of an energy gap is acco	tate in a superconducto onic specific heat indic unted for in the BCS th	ates the existence of an energy g	gap.			
47.	transition ponit. (a) the sample is (b) it magnetizat (c) the lines of m	Then which one of the fol	lowing statements is Noted out from the sample	superconductor at a temperatu OT true for H less than the ciriti				
48		ductivity of a given materi g state. The reason is:	al reduces when it unde	ergoes a transition from its norm	alstate to the			
	(b) Upon the for (c) The electron pairs.		ne lattice becomes less their ability to transfer	efficient in heat transfer. heat because of their coupling t cting state leading to a reductio	.,			
	conductivity.			<u></u>	, in the indi			
49.		·		-cm ² . A type II superconductor ld starts penetrating the superco	•			
	strength of tl	he field at this point is $\frac{2}{\pi}$	10 ⁵ gauss					
	(a) 100Å		(c) 1000Å	(d) 314 Å ompletely destroyed. The streng	th of the field			
	is now $\frac{8}{7} \times 10^5$ gauss. The correlation length of the superconductor is:							
	(a) 20Å	(b) 200Å	(c) 628 Å	(d) 2000Å				
50.	Let ξ and λ do superconductor		th and the penetration	n depth of a superconductor.	For a type-I,			
	(a) $\xi < \lambda$	(b) $\xi > \lambda$	(c) $\xi = \lambda$	(d) $\lambda = 0$	ing.			
51.	The magnetic su	sceptibility of a type I sup	erconductor at a temp	erature T below the transition ter	mperature T _c			
:	(a) increases lin	early from a negative valu	ie to zero as temperati	re increases from 0 to T	: -:			
		nearly from a positive valued on the constant at all T	=	ure increases from 0 to $T_{\rm e}$ and constant at all T				

- 52. The isotope effect in superconductors says that the critical temperature
 - (a) increases as the isotopic mass increases
- (b) decreases as the isotopic mass increases
- (c) increases linearly with the isotopic mass
- (d) decreases linearly with the isotopic mass.
- 53. Considering the BCS theory of superconductors, which one of the following statements is NOT CORRECT? (h is the Planck's constant and e is the electronic charge)
 - (a) Presence of energy gap at temperatures below the critical temperature
 - (b) Different critical temperatures or isotopes
 - (c) Quantization of magnetic flux in superconducting ring in the unit of (h/e)
 - (d) Presence of Meissner effect
- 54. **Group-F**contains elementary excitations in solids. **Group-II** gives the associated fields with these excitations. MATCH the excitations with their associated field and select your answer as per codes given below.

Group-I

Group-II

- (P) phonon
- (i) photon + lattice vibration
- (Q) plasmon
- (ii) electron + elastic deformation
- (R) polaron
- (iii) collective electron oscillations
- (S) polariton ·
- (iv) elastic wave

Codes:

- (a) (P-iv), (Q-iii), (R-i), (S-ii) ...
- (b) (P-iv), (Q-iii), (R-ii), (S-i)

(c) (P-i), (Q-iii), (R-ii), (S-iv)

- (d) (P-iii), (Q-iv), (R-ii), (S-i)
- 55. The order of magnitude of the energy gap of a typical superconductor is:
 - (a) I MeV
- (b) 1 KeV
- (c) 1·eV
- d) I meV
- 56. The voltage required to produce 483.6 MHz through a Josephson junction is
 - (a) ln
- (b) 1 µ V
- (c) ImV
- V1.(b)
- 57. The transition temperature of a BCS superconductor with an average atomic mass of 199.5 is 4.185K. What is the transition temperature for an average atomic mass of 203.4?
 - (a) 4.185
- (b) 4.145
- (c) 4.226
- (d) 4.105
- 58. A solid sample has the property that, when cooled below a certain temperature, it expels any small applied magnetic field from within the material. Which of the following best describes this sample in the cooled state?
 - (a) Paramagnet
- (b) Diamagnet
- (c) Ferromagnet
- (d) Anti-ferromagnet
- 59. The plot of specific heat versus temperature across the superconducting transition temperature (T_C) is most appropriately represented by

- 60. A superconducting ring carries a steady current in the presence of a magnetic field \vec{B} normal to the plane of the ring. Identify the *incorrect* statement.
 - (a) The flux passing through the superconductor is quantized in units of hc/e
 - (b) The current and the magnetic field in the superconductor are time independent
 - (c) The current density \vec{J} and \vec{B} are related by the equation $\vec{\nabla} \times \vec{J} + \Lambda^2 \vec{B} = 0$, where Λ is a constant
 - (d) The superconductor shows an energy gap which is proportional to the transition temperature of the superconductor

61. Which one of the following represents the electron occupancy for a superconductor in its normal and superconducting states? [GATE 2015]

- The critical magnetic fields of a super-conductor at temperatures 4 K and 8 K are 11 mA/m and 5.5 mA/ 62. NET June 2015 m respectively. The transition temperature is approximately. (d) 15.0 K (a) 8.4 K (b) 10.6 K
- A DC voltage V is applied across a Josephson junction between two superconductors with a phase difference 63, ϕ_0 . If I_0 and k are constants that depend on the properties of the junction, the current flowing through it has the

(a)
$$I_0 \sin\left(\frac{2eVt}{\hbar} + \phi_0\right)$$

(a)
$$I_0 \sin\left(\frac{2eVt}{\hbar} + \phi_0\right)$$
 (b) $kV \sin\left(\frac{2eVt}{\hbar} + \phi_0\right)$ (c) $kV \sin\phi_0$ (d) $I_0 \sin\phi_0 + kV$

(d)
$$I_0 \sin \phi_0 + kV$$

The high temperature magnetic susceptibility of solids having ions with magnetic moments can be described by 64.

$$\chi \propto \frac{1}{T+\theta}$$

where T as absolute temperature and θ as constant. The three behaviors i.e., paramagnetic, ferromagnetic and anti-ferromagnetic are described, respectively, by [GATE 2018]

(a)
$$\theta < 0, \theta > 0, \theta = 0$$

(b)
$$\theta > 0$$
, $\theta < 0$, $\theta = 0$

(c)
$$\theta = 0$$
, $\theta < 0$, $\theta > 0$

(d)
$$\theta = 0$$
, $\theta > 0$, $\theta < 0$

LEVEL-2

Solve Yourself

CSIR-UGC-NET/JRF|GATE-PHYSICS

SOLID STATE PHYSICS LEVEL-2

1 .	The lattice parameters separation between the			d by $a = 2b = 3c$. In units of a three decimal places) [GA	
2	The target of an X-ra rays is proportional t	•	an excitation volt	age V. The wavelength of the	ne emitted X-
•	(a) $\frac{1}{\sqrt{V}}$	(b) √ <i>V</i>	(c) $\frac{1}{\nu}$. (d) V	
3.	Silicon has diamond s (a) 0.122 nm	structure with unit-cell- (b) 0.234 nm	edge a = 0.542 nm (c) 0.383 nm	The interatomic separation is (d) 0.542 nm.	3:
4.	The total number of (a) 4	Claions in a unit cell of I (b) 2	NaCl crystal is (c) 8	(d) 10	
5	The basis vectors of	a lattice are 2î, î + 2ĵ a	nd \hat{k} . The basis ve	ctors of the reciprocal lattice	аге
	(a) $\frac{2}{\pi}(\hat{i}+\hat{j}), \frac{2}{\pi}\hat{j}$ an	$d \frac{2}{\pi} \hat{k}$.	(b) $\pi(2\hat{i}-\hat{j})$,	πj and 4πk	
	(c) $\frac{\pi}{2}(2\hat{i}-\hat{j})$, $\pi\hat{j}$ are	nd 2πk	(d) $2\pi \hat{i}$, $\pi (\hat{i} +$	$(2\hat{j})$, and $\pi\hat{k}$	
6.		iller indices for this pla		(d) (1 2 3)	lographic axes
7.	the (110) plane. Th	cubic crystal gives an le lattice parameter of gth of X-ray = 0.15 n	f the crystal is	ım for Bragg angle of 20° co	orresponding to
8.		owing primitive vectors g to the above lattice i		$-\hat{k}), \vec{b} = 2(\hat{k} + \hat{i}), \vec{c} = 2(\hat{i} + \hat{j})$). The reciproca
• .	(a) BCC lattice with	th cube edge of $\left(\frac{\pi}{2}\right)^2$	(b) B	CC lattice with cube edge o	of $(2\pi)A^{-1}$
·.	(c) FCC lattice wit	th cube edge of $\left(\frac{\pi}{2}\right)^{2}$	f ⁻¹ (d) F	CC lattice with cube edge of	of $(2\pi)A^{-1}$
	(e) none of these				·

The primitive translation vectors of the body centered cubic lattice are $\vec{a} = \frac{a}{2}(\hat{x} + \hat{y} - \hat{z}), \ \vec{b} = \frac{a}{2}(\hat{x} + \hat{y} + \hat{z}),$

and $\vec{c} = \frac{a}{2}(\hat{x} - \hat{y} + \hat{z})$. The primitive translation vectors \vec{A} , \vec{B} and \vec{C} of the reciprocal lattice are:

(a)
$$\vec{A} = \frac{2\pi}{a} (\hat{x} - \hat{y}); \ \vec{B} = \frac{2\pi}{a} (\hat{y} + \hat{z}); \vec{C} = \frac{2\pi}{a} (\hat{x} + \hat{z})$$

(b)
$$\vec{A} = \frac{2\pi}{a}(\hat{x} + \hat{y}); \ \vec{B} = \frac{2\pi}{a}(\hat{y} - \hat{z}); \vec{C} = \frac{2\pi}{a}(\hat{x} + \hat{z})$$

(c)
$$\vec{A} = \frac{2\pi}{a}(\hat{x} + \hat{y}); \ \vec{B} = \frac{2\pi}{a}(\hat{y} + \hat{z}); \vec{C} = \frac{2\pi}{a}(\hat{x} - \hat{z})$$

(d)
$$\vec{A} = \frac{2\pi}{a} (\hat{x} + \hat{y}); \ \vec{B} = \frac{2\pi}{a} (\hat{y} + \hat{z}); \vec{C} = \frac{2\pi}{a} (\hat{x} + \hat{z})$$

- 10. The total number of Cl ions in a unit cell of NaCl crystal is

- The potencial of a diatomic molecule as a function of the distance r between the atoms is given by 11. $V(r) = -\frac{a}{r^6} + \frac{b}{r^{12}}$. The value of the potential at equilibrium separation between the atoms is:
- (b) $-2a^2/b$ (c) $-a^2/2b$
- The real space primitive lattice vectors are $\vec{a}_1 = a\hat{x}$ and $\vec{a}_1 = \frac{a}{2}(\hat{x} + \sqrt{3}\hat{y})$. The reciprocal space unit vectors 12.
 - \vec{b}_1 and \vec{b}_2 for this lattice are, respectively

[GATE 2017]

- (a) $\frac{2\pi}{a} \left(\hat{x} \frac{\hat{y}}{\sqrt{3}} \right)$ and $\frac{4\pi}{a\sqrt{3}} \hat{y}$ (b) $\frac{2\pi}{a} \left(\hat{x} + \frac{\hat{y}}{\sqrt{3}} \right)$ and $\frac{4\pi}{a\sqrt{3}} \hat{y}$
- (c) $\frac{2\pi}{\alpha\sqrt{3}}\hat{x}$ and $\frac{4\pi}{\alpha}\left(\frac{\hat{x}}{\sqrt{3}}+\hat{y}\right)$ (d) $\frac{2\pi}{\alpha\sqrt{3}}\hat{x}$ and $\frac{4\pi}{\alpha}\left(\frac{\hat{x}}{\sqrt{3}}-\hat{y}\right)$
- The total energy of an inert-gas crystal is given by $E(R) = \frac{0.5}{R^{12}} + \frac{1}{R^6}$ (in eV), where R is the inter-atomic 13. spacing in Angstroms. The equilibrium separation between the atoms is ______ Angstrons. (up to two decimal places).
- The total energy of an ionic solid is given by an expression $E = -\frac{\alpha e^2}{4\pi\epsilon \alpha r} + \frac{B}{r^9}$ where α is Madelung constant, 14.
 - $r = 10^{-3}$ is the distance between the nearest neighbours in the crystal and B is a constant. If r_0 is the equilibrium separation between the nearest neighbours then the value of B is
- (b) $\frac{\alpha e^2 r_0^8}{4\pi \epsilon_0}$ (c) $\frac{2\alpha e^2 r_0^{10}}{9\pi \epsilon_0}$ (d) $\frac{\alpha e^2 r_0^{10}}{36\pi \epsilon_0}$
- For a perfect free-electron gas in a metal, the magnitudes of phase velocity (v_a) and group velocity (v_a) are such 15. that:
 - (a) v = v
- (b) $v_p = \frac{1}{2}v_g$ (c) $v_p = \sqrt{2}v_g$ (d) $v_p = 2v_g$

16. In simple metals the phonon contribution to the electrical resistivity at temperature T is: (a) directly proportional to T above Debye temperature and to T³ below it. (b) inversely proportional to T for all temperatures (c) independent of T for all temperatures (d) directly proportional to T above Debye temperature and to T³ below it 17. Which one of the statements about density of states is not true? (a) Variation in the energy dependence of density of states is dimension independent. (b) Variation in the energy dependence of density of states in 3D follows $E^{1/2}$ (c) Variation in the energy dependence of density of states in 2D follows E⁰ (d) Variation in the energy dependence of density of states in 1D follows $E^{-1/2}$ 18. The energy of an electron in a band as a function of its wave vector k is given by $E(k) = E_0 - B(\cos k_x a + \cos k_y a + \cos k_z a)$, where E_0 , B and a are constants. The effective mass of the electron near the bottom of the band is (a) $\frac{2\hbar^2}{3Ra^2}$ (b) $\frac{\hbar^2}{3Ra^2}$ (c) $\frac{\hbar^2}{2Ra^2}$ (d) $\frac{\hbar^2}{Ra^2}$ 19. The energy vs. wave vector (E-k) relationship near the bottom of a band for a solid can be approximated as $E = A(ka)^2 + B(ka)^4$, where the lattice constant a = 2.1Å. The values of A and B are 6.3×10^{-19} J and 3.2×10^{-20} J, respectively. At the bottom of the conduction band, the ratio of the effective mass of the electron to the mass of free electron is . (Give your answer upto two decimal places) [GATE 2016] (Take $h = 1.05 \times 10^{-34}$ J-s, mass of free electron = 9.1×10^{-31} kg). Assume that the crystal structure of metallic copper (Cu) results in a density of atoms $\rho_{Cu} = 8.46 \times 10^{28} \, \mathrm{m}^{-3}$. Each Cu aioni in the crystal donates one electron to the conduction band, which leads, for the 3-D Fermi gas, to a density of states - [TIFR 2017] $g(\varepsilon) = \frac{1}{2\pi^2} \left(\frac{2m^*}{\hbar^2}\right)^{3/2} \varepsilon^{1/2}$ where m^* is the effective mass of the conduction electrons. In the low temperature limit (i.e. T=0 K), find the Fermi energy E_F , in units of eV. You may assume m^* to be equal to the free electron mass m_e . Consider a 2-dimensional electron gas with a density of $10^{19}~\text{m}^{-2}$. The Fermi energy of the system is 21. [GATE 2017] (up to two decimal places). $(m_e = 9.31 \times 10^{-31} \text{kg}, h = 6.626 \times 10^{-34} \text{Js}, e = 1.602 \times 10^{-19} \text{C})$ The ratio of the mobility to the diffusion coefficient in a semiconductor has the units: 22. (a) v-1 (c) V.cm⁻¹ (d) V.s 23. The bandgap of silicon at room temperature is: (c) 1.1 eV (a) 1.3 eV (b) 0.7 eV (d) 1.4 eV 24. The probability that an electron in a metal occupies the Fermi-level at any temperature (> 0 K): (d) 1.0(b) I (c) 0.525. Which one of the following is a trivalent material? (d) Boron (a) Antimony (b) Phosphorus (c) Arsenic South Delhi : 28-A/11, Jia Sarai, Near-HT Metro Station, New Delhi-16, Ph : 011-26851008, 26861009

26.	The materials not havin (a) Metals	ng negative temperature (b) Semiconductors	coefficient of resistivity (c) Insulators	are (d) None of the above.
27.	The Ohm's law for con		(c) J = E/σ	(d) J ∝ E / σ
	(a) $J = \sigma E$	(b) J∝σE		(d) 1 & E/6
28.	(a) Germanium	ed by doping silicon wit (b)Aluminium	n: (c) Boron	(d) Phosphorus
29.	The band-gap of silico (a) 1.36 eV	on at 300 K is: (b) 1.10 eV	(c) 0.80 eV	(d) 6.67 eV
31.	(b) Is independent of the control of	ne electric field for all va the electric field. Alues of electric field and ce. Vith electric field at low v Tity in a conductor is (1/1	d decreases at high valu alues of electric field an	ues of electric field exhibiting negative ad gradually saturates at higher values of etron mobility is 10 cm²/V s. What is the
	value of its resistivi	-	(a) 10-4 O	(4) 10-4 0
	(a) 10 ⁻⁴ Wm	(b) 1.6×10^{-2} Wm	(c).10 ⁻⁴ Ωcm	(d) $10^{-4} \Omega \text{ cm}^{-1}$
32.	The net charge of an n (a) positive	-type semiconductor is (b) zero	(c) negative	(d) dependent on the dopant density
33.	When a pentavalent in (a) an insulator (c) an intrinsic semic	npurity is added to Si, it onductor	(b) a conduc	ctor e semiconductor
34	When a pure semicon (a) increases (c) decreases expone	ductor is heated. its residentially	stance (b) decrease (d) remains	
35. ·	Given that the band gair generation will b		e is 2.5 eV, the maximum	m photon wavelength, for electron-hole
36.	(a) 5400 μm LED is a	(b) 540 μm	(c) 5400Å	(d) 540 Å
30.	(a) p-n diode	(b) Thermistor	(c) Gale	(d) Transistor
37.		ced in the specimen in th		
38.		owing is the correct relati gy of the incident photor		and gap of a material used in a photo
7.	(a) E _a ≥ hc / λ _b	. (b) hυ > E	(c) ho≥E	(d) hυ ≤ E

CSIR-UGC-NET/JRF | GATE PHYSICS

	WORK I		SOLID STATE I	PHYSICS (LEV	/EL-1)	A PART	
	THE WHILE	AND AND THE	Assignmen	t-1: ANSWER I	KEY		
	1. (c)	2. (d)	3. (c)	4. (d)	5. (a)	6. (a)	7. (b)
	8. (a)	9. (c)	10. (b)	11. (c)	12. (c)	13. (b)	14. (b)
	15. (d)	16. (b)	17. (b)	18. (a)	19. (d)	20. ()	21. (a)
	22. (a)	23. (c)	24. (d)	25. (b)	26. (a)	27. (b)	28. (b)
	29. ()	30. ()	31. (b)	32. (d)	33. (a)	34. (a)	35_A(a)
	35_B(b)	36_A (d)	36_B (d)	37. (c)	38. (c)	39. (c)	40. (b)
	41. (c)		43. (c)	44. (ċ)	45. (d)	46. (c)	(0.(0)
	47. (a), (c),		48. (14.50)		50. (c)	51. (a)	
				nt-2: ANSWER			
	1 (0.41)	2 (a)					
	1. (0.41)	2. (c)	3. (c)	4. (d)	5. (b)	6. (12)	7. (d)
	8. (b)	9. (b)	10. (c)	11. (d)	12. (d)	13. (d)	14. (d)
	15. (c)	16. (a)	17. (3.96)	18. (b)	19. (a)	20. (d)	21. (b)
	22. (b)	23. (d)	24. (b)	25. (a)	26. (a)	27. (a)	28. (b)
	29. (b)	30. (a)	31. (a)	32. (b)	33. (a)	34. (a)	35. (c)
	36. (a)	37. (a)	38. (b)	39. (d)	40. (a)	41. (a)	42. (b)
	43. (a)						
print	Astronomy apprecia	SHOP SHOW	Assignmen	nt-3: ANSWER	KEY		
	1. (d)	2. (a)	3. (a)	4. (a)	5. (d)	6. (b)	7. (c)
	8. (a)	9. (c)	10. (c)	11. (a)	12. (d)	13. (d)	14. (1)
	15. (a)	16. (a)	17. (1.7)	18. (d)	19. (b)	20. (d)	21. (a)
	22. (b)	23. (b)	24. (b)	25. (c)	26. (b)	27. (c)	28. (a)
	29. (d)	30. (d)	31. (d)	32. (a)	33. (a)	34. (c)	35. (c)
	36. (c)	37. (c)	38. (b)	39. (d)	40. (a)	41. ()	42. (d)
	43. (b)	44. (d)	45. (0)	46. (5.9)	47. (a)	48. (c)	49. (a)
	50. (b)	51. (d)	52. (d)	53. (c)	54. (b)	55. (b)	56. (b)
	57. (d)	58. (d)	59. (c)	60. (b)	61. (b)	62. (b)	63. (d)
	64. (b)	65. (b)	66. ()	67. (a)	68. (d)	69. (c)	70. (c)
	71. (a)	72. (a & d)	73. (a)	74. (c)	75. (d)	76. (a)	77. (b)
				00 (0 50)	0111	00 ()	

78. (b)

84. (b)

South Delhi: 28-A/11, Jia Sarai, Near-IIT Metro Station, New Delhi-16, Ph: 011-26851008, 268610

87. (a)

79. (13.5×10^{-6})

85. (d)

86. (1)

North Delhi: 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 276544

80. (2.53)

81. (a)

88. (5.8)

82. (c)

89. (d)

83. (d)

90. (d)

Assignment-4: ANSWER KEY								
1. (d)	2. (c)	3. (a)	4. (c)	5. (c)	6. (c)	7. (d)		
8. (c)	9. (a)	10. (b)	11. (b)	12. (a)	13. (b)	14. (c)		
15. (c)	16. (a)	17. (c)	18. (b)	19. (b)	20. (c)	21. (c)		
22. (a)	23. (d)	24. (b)	25. (d)	26. (c)	27. (c)	28. (c)		
29. (b)	30. (d)	31. (d)	32. (c)	33. (d)	34. (b)	35. (b)		
36. (a)	37. (a)	38. (c)	39. (b)	40. (c)	41. (b)	42. (a)		
43. (a)	44. (d)	45. (c)	46. (d)	47. (a)	48. (d)	49. (c)		
50. (c)	51. (c)	52. (b) -	53. (c)	54. (c)	55. (a)			
56. (115.15)	57. (d)	58. (1844.4)	59. (0.394)	60. (c)	61. (b)	62. (a)		
63. (a)	64. (c)	65. (c)	66. (c)	67. (d)	68. (c)	69. (d)		
70. (a)	71. (c)	72. (b)	73. (a)	74. (c)	75. (c)	76. (a)		
77. (d)	78_A(a)	78_B(b)	79. (400)	80. (a)	81. (0.318)	82. (d)		
83. (b)		85. (4)	86. (1.562)	87. ()	88. (a,c,d)	89. (c)		
A Charles and	and problems	Assignment	-5: ANSWER	KEY				

ALCH HELLS	Hamily English	Assignme	ent-5: ANSWE	R KEY	Man District	
1. (a)	2. (a)	3. (d)	4. (c)	5. (d)	6. (a)	7. (b)
8. (d)	9. (b)	10. (b)	11. (d)	12. (c)	13. (d)	14. (a)
15. (b)	16. (d)	17. (c)	18. (a)	19. (b)	20. (b)	21. (a)
22. (b)	23. (d)	24. (b)	25. (b)	26. (b)	27. (c)	28. (b)
29. (b)	30. (b)	31. (b)	32. (c)	33. (a)	34. (b)	35. (a)
36. (d)	37. (3.97)	38. (c)	39. (c)	40. (b)	41. (d)	42. (b)
43. (c)	44. (d)	45. (b)	46. (d)	47. (d)	48. (d)	49_A(a)
49_B(a)	50. (b)	51. (c)	52. (b)	53. (c)	54. (b)	55. (d)
56. (d)	57. (b)	58. (b)	59. (a)	60. (a)	61. (b)	62. (b)
63. (a)	64. (c)					52. (5)

ile P	all the little called		SOLID STAT	TE PHYSICS (L	EVEL-2)		
	1. (0.447) 8. (a) 15. (b)	2. (c) 9. (d) 16. (a)	3. (b) 10. (a) 17. (a)	4. (a) 11. (d) 18. (d)	5. (c) 12. () 19. (0.21)	6. (*) 13. () 20. (6.87)	7. (0.31) 14. (a) 21.()
	22. (a) 29. (b) 36. (a)	23. (c) 30. (d) 37. (d)	24. (c) 31. (c) 38. (c)	25. (d) 32. (b)	26. (a) 33. (d)	27. (a) 34. (c)	28. (d) 35. (d)

South Delhi: 28-A/11, Jia Sarai, Near-HT Metro Station, New Delhi-16, Ph: 011-26851008, 26861009