Uppgift 1 1

Subnät, antal bitar som krävs:

- 1. 63 interfaces $2^6 = 64$
- 2. 95 interfaces $2^7 = 128$
- 3. 16 interfaces $2^4 = 16$

Nätmasker:

- 1. 32 6 = 26
- 2. 32 7 = 25
- 3. 32 4 = 28

Subnät 1 får adressen 223.1.17.0/26.

Subnät 2 får adressen 223.1.17.128/25.

Subnät 3 får adressen 223.1.17.142/28.

Uppgift 2

Name	Length [bytes]
IP-header	20
MTU	1024
Packet	3500

Packet length - IP-header = 3500 - 20 = 3480

1024 - 20 = 1004

då 1004 ej delbart med 8 så delas upp payloaden i 1000 bytes delar istället.

offset nummer $\frac{1000}{8} = 125$ 3480 - 3 * 1000 = 480

Length[bytes]	ID	fragflag	offset
1020	X	1	0
1020	x	1	125
1020	x	1	250
500	x	0	375
		'	

3 Uppgift 3

Med 5 kollisioner väljes K-värdet utifrån 2^5-1 vilket ger 31 olika värden. Det blir då en 3.2% chans att 4 blir K-värdet. Fördröjningen kan sedan räknas ut som $\frac{4*512}{100*10^6}$ vilket blir 2048 nanosekunder.

4 Uppgift 4

 $R_1 = \text{routern n\"{a}rmast A}$

 $R_2 = \text{routern n\"{a}rmast F}$

Alla ARP-tabeller uppdaterade:

- 1. A skapar ett IP datagram med IP källa A, och destination F.
- 2. A skapar ett länk lager 'frame' med R_1 MAC-adress som destinations adressen.
- 3. 'Frame:et' skickas till R_1 , det mottags och datagrammet borttags.
- 4. R_1 framför datagrammet med IP-källa A, destination F, samt skapar länklagret 'frame' med R_2 MAC-adress som destinations address och sänder det vidare.
- 5. R_2 mottager frame:en, kollar upp MAC-adressen i sin tabell och vidarebefodrar paketet till F.
- 6. F mottager 'frame:et' med IP-paketet.

A's ARP-tabell är tom:

- 1. A skickar ett ARP-query packet med F's IP-adress, samt med destinations MAC-adressen FF-FF-FF-FF-FF.
- 2. R_1 broadcastar ARP-query packetet med F's IP.
- 3. R_2 broadcastar ARP-query packetet med F's IP.
- 4. F
 mottager ARP packetet, därefter sänder tillbaks ARP-packetet med dess
egna MAC adress (unicast) till R_2 .
- 5. R_2 lägger till F's Mac adress, dess IP-adress samt TTL i ARP-tabellen, därefter unicastar den ARP packetet med dess R_2 MAC adress till R_1
- 6. R_1 lägger till R_2 som interface, med F's IP-adress, F's MAC adres samt TTL i ARP-tabellen, därefter unicastar den ARP packetet med dess R_2 MAC adress till A

- 7. A mottager ARP-packetet, uppdaterar dess ARP-tabell med R_1 som interface, med F's IP-adress och MAC adress samt TTL i ARP-tabellen.
- 8. Nu när ARP-tabellen är uppdaterad med F's information så utspelas det första scenariot.