

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

ЛАБОРАТОРНАЯ РАБОТА №6 ПРЕДМЕТ «ЛИНЕЙНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ» ТЕМА «АНАЛИЗ ВЛИЯНИЯ НУЛЕЙ И ПОЛЮСОВ ПЕРЕДАТОЧНОЙ ФУНКЦИИ НА ДИНАМИЧЕСКИЕ СВОЙСТВА»

Вариант 4

Преподаватель: Золотаревич В. П.

Студент: Румянцев А. А. Поток: ЛСАУ R22 бак 4.1.1

Факультет: СУиР Группа: R3341

Содержание

1 Цель работы		2	
2	Задание 1		
	2.1	Условие	2
	2.2	Выполнение	2
3			
	3.1	Условие	6
	3.2	Выполнение	6
4	Задание 3		
	4.1	Условие	7
	4.2	Выполнение	
5	б Вывод		8
6 Приложения		9	

1 Цель работы

Изучить связь характера переходной характеристики, динамических свойств системы с размещением на комплексной плоскости нулей и полюсов.

2 Задание 1

2.1 Условие

По заданным значениям постоянных

$$n = 4$$
, $t_{\Pi} = 1.5$, $k = 2.5$,

определите параметры системы

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y^{(1)} + a_0y = bg$$

с характеристическим полиномом Баттерворта и биномиальным полиномом. Для каждого случая рассчитайте корни характеристического полинома

$$a(s) = s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0}$$

и оцените время переходного процесса по формуле

$$t_{\Pi} \approx \frac{1}{\eta} \ln \frac{1}{0.05}$$

Составьте схему моделирования системы и постройте переходные характеристики, соответствующие двум типам распределения корней характеристического уравнения.

2.2 Выполнение

Синтез системы с использованием полинома Баттерворта. Полином Баттерворта в общем виде записывается как

$$a(s) = \prod_{i=1}^{n} \left(s - \omega e^{j\left(\frac{\pi}{2} + \frac{2i-1}{2n}\pi\right)} \right) = s^{n} + \alpha_{n-1}\omega s^{n-1} + \dots + \alpha_{1}\omega^{n-1}s + \omega^{n}$$

По графику нормированных переходных функций определим значение $t_\Pi^* \Rightarrow t_\Pi^* \approx 6.8$

Рис. 1: Нормированные переходные характеристики системы с характеристическим полиномом Баттерворта

Найдем среднегеометрический корень ω_0

$$\omega_0 = \sqrt[n]{|s_1 s_2 ... s_n|} = \sqrt[n]{a_0} = \frac{t_{\Pi}^*}{t_{\Pi}} = \frac{6.8}{1.5} \approx 4.53$$

Коэффициенты полинома выражаются как

$$a_j = \alpha_j \cdot \omega^{n-j}$$

Для случая с n = 4 (см. методическое пособие)

$$\alpha_1 = 2.613$$
 $\alpha_2 = 3.414$
 $\alpha_3 = 2.613$

Полином Баттерворта для системы порядка n=4 имеет вид (α_3 самый левый не единичный коэффициент, α_1 самый правый)

$$s^4 + 2.613\omega s^3 + 3.414\omega^2 s^2 + 2.613\omega^3 s + \omega^4$$

Подставим найденный ω_0 , чтобы получить коэффициенты a_i . Полином Баттерворта для нашего случая будет иметь вид

$$s^4 + 11.83689s^3 + 70.0583526s^2 + 242.903636s + 421.1073368$$

Найдем коэффициент b. Из полинома Баттерворта имеем коэффициент

$$a_0 = 421.1073368,$$

тогда

$$b = k \cdot \omega^4 = k \cdot a_0 = 2.5 \cdot 421.1073368 = 1052.768342$$

Модель вход-выход системы будет иметь вид

$$y^{(4)} + 11.83689y^{(3)} + 70.0583526y^{(2)} + 242.903636y^{(1)} + 421.1073368 = 1052.768342g^{(2)} + 242.903636y^{(3)} + 421.1073368 = 1052.768342g^{(3)} + 11.83689y^{(3)} + 11.8369y^{(3)} + 11.8369$$

Рассчитаем корни полинома по формуле

$$s = \omega e^{j\left(\frac{\pi}{2} + \frac{2i-1}{2n}\pi\right)}, \ i \in [1, 2n]$$

C учетом ω_0 получим

$$s_{1,4} = -1.7336 \pm 4.1852i$$

 $s_{5,8} = 1.7336 \mp 4.1852i$
 $s_{2,3} = -4.1852 \pm 1.7336i$
 $s_{6,7} = 4.1852 \mp 1.7336i$

Рассчитаем время переходного процесса. В качестве η берется абсолютное значение вещественной части ближайшего к мнимой оси корня, то есть

$$\eta = |\Re(s_{1,4})| = 1.7336$$

$$t_{\Pi} \approx \frac{1}{\eta} \ln \frac{1}{0.05} \approx \frac{3}{\eta} = \frac{3}{1.7336} \approx 1.7305029995$$

Синтез системы с использованием полинома Ньютона. Биномиальный полином в общем виде записывается как

$$\alpha(s) = (s+\omega)^n = s^n + \alpha_{n-1}\omega s^{n-1} + \dots + \alpha_1\omega^{n-1}s + \omega^n$$

По графику нормированных переходных функций определим значение $t_\Pi^* \Rightarrow t_\Pi^* \approx 7.8$

Рис. 2: Нормированные переходные характеристики системы с биноминальным характеристическим полиномом

Найдем среднегеометрический корень ω_0

$$\omega_0 = \frac{t_\Pi^*}{t_\Pi} = \frac{7.8}{1.5} = 5.2$$

Коэффициенты полинома выражаются как

$$a_j = \alpha_j \cdot \omega^{n-j}$$

Для случая с n = 4 (см. методическое пособие)

$$\alpha_1 = 4$$

 $\alpha_2 = 6$

$$\alpha_3 = 4$$

Биномиальный полином для системы порядка n=4 имеет вид (α_3 самый левый не единичный коэффициент, α_1 самый правый)

$$s^4 + 4\omega s^3 + 6\omega^2 s^2 + 4\omega^3 s + \omega^4$$

Подставим найденный ω_0 , чтобы получить коэффициенты a_j . Биномиальный полином для нашего случая будет иметь вид

$$s^4 + 20.8s^3 + 162.24s^2 + 562.432s + 731.1616$$

Найдем коэффициент в. Из биномиального полинома имеем коэффициент

$$a_0 = 731.1616,$$

тогда

$$b = k \cdot \omega^4 = k \cdot a_0 = 2.5 \cdot 731.1616 = 1827.904$$

Модель вход-выход системы будет иметь вид

$$y^{(4)} + 20.8y^{(3)} + 162.24y^{(2)} + 562.432y^{(1)} + 731.1616 = 1827.904g$$

При биномиальном распределении Ньютона n комплексных чисел s_i принимаются равными и вещественными, т.е. $s_i = -\omega$. Таким образом,

$$s_i = -\omega_0 = -5.2$$

Рассчитаем время переходного процесса

$$t_{\Pi} \approx \frac{1}{\eta} \ln \frac{1}{0.05} \approx \frac{3}{\eta} = \frac{3}{5.2} \approx 0.5769230769$$

Схема моделирования двух полиномов представлена на рисунке 3.

Рис. 3: Схема эксперимента

Параметры блоков "Transfer Fcn" в SIMULINK представлены на рисунке 12 под заголовком «Приложения». Построим графики.

Рис. 4: График переходной характеристики системы: полином Баттерворта

Рис. 5: График переходной характеристики системы: полином Ньютона

3 Задание 2

3.1 Условие

Для каждого набора параметров

A:
$$b_0 = b$$
, $b_1 = 2.5$

B:
$$b_0 = b$$
, $b_1 = 0.5$, $b_2 = 0.25$, $b_3 = 1.25$, $b_4 = 2$

постройте переходные характеристики системы

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y^{(1)} + a_0y = b_mg^{(m)} + \dots + b_0g$$

с коэффициентамиа $a_0, ..., a_{n-1}$ и коэффициентом b, рассчитанными в первом задании для биномиального распределения корней характеристического уравнения.

3.2 Выполнение

Пункт А. Модель вход-выход системы будет иметь вид

$$y^{(4)} + 20.8y^{(3)} + 162.24y^{(2)} + 562.432y^{(1)} + 731.1616 = 2.5g^{(1)} + 1827.904g$$

Схема моделирования представлена на рисунке 6.

Рис. 6: Схема эксперимента

Параметры блока "Transfer Fcn" в SIMULINK представлены на рисунке 13а под заголовком «Приложения». Построим графики.

Рис. 7: График переходной характеристики системы

Пункт В. Модель вход-выход системы будет иметь вид

Схема моделирования аналогична пункту A и представлена на рисунке 6. Параметры блока "Transfer Fcn" в SIMULINK представлены на рисунке 13b под заголовком «Приложения». Построим графики.

Рис. 8: График переходной характеристики системы

4 Задание 3

4.1 Условие

Для набора параметров

$$b_0 = 2.25, b_1 = 0, b_2 = 2$$

и внешнего воздействия

$$g(t) = \sin(1.5t)$$

постройте реакцию системы

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y^{(1)} + a_0y = b_mg^{(m)} + \dots + b_0g$$

с нулевыми начальными условиями и коэффициентами $a_0,...,a_{n-1}$, рассчитанными в первом задании для биномиального распределения корней характеристического уравнения. На экран монитора выводить графики y(t),g(t).

4.2 Выполнение

Модель вход-выход системы будет иметь вид

$$y^{(4)} + 20.8y^{(3)} + 162.24y^{(2)} + 562.432y^{(1)} + 731.1616 = 2g^{(2)} + 2.25$$

Схема моделирования представлена на рисунке 9.

Рис. 9: Схема эксперимента

Параметры блока "Transfer Fcn" в SIMULINK представлены на рисунке 14 под заголовком «Приложения». Построим графики.

Рис. 10: График входного воздействия g(t)

Рис. 11: График реакции системы y(t)

5 Вывод

Я изучил связь характера переходной характеристики, динамических свойств системы с размещением на комплексной плоскости нулей и полюсов.

На основе заданных параметров качества системы возможно выполнить её синтез, применяя стандартные переходные функции. Динамические характеристики системы находятся в прямой зависимости от полюсов и нулей её передаточной функции.

6 Приложения

(a) Параметры SIMULINK (b) Параметры SIMULINK для полинома Баттерворта для полинома Ньютона

Рис. 12: Параметры SIMULINK для "Transfer Fcn" для задания 1

(a) Параметры SIMULINK (b) Параметры SIMULINK переходной хар-ки системы переходной характеристики A системы B

Рис. 13: Параметры SIMULINK для "Transfer Fcn" для задания 2

(a) Параметры SIMULINK (b) Параметры SIMULINK для входного сигнала g(t) для реакции системы y(t)

Рис. 14: Параметры SIMULINK для "Transfer Fcn" для задания 3