A robust optimization approach for dynamic input allocation

22nd World Congress of the International Federation of Automatic
Control

A. Tenaglia, F. Oliva, M. Sassano, S. Galeani, D. Carnevale alessandro.tenaglia@uniroma2.it

University of Rome Tor Vergata
Department of Civil Engineering and Computer Science Engineering

July 14, 2023

Roadmap

- Input allocation
- 2 Robust input allocation
- 3 Numerical simulations
- 4 Conclusions

Roadmap

- Input allocation
- 2 Robust input allocation
- 3 Numerical simulations

4 Conclusions

Figure 1: The closed-loop system Σ_0 .

• Consider a nominal LTI plant P_0 , where $u \in \mathbb{R}^m$ is the plant input, $y \in \mathbb{R}^p$ is the plant output and m > p.

Figure 1: The closed-loop system Σ_0 .

- Consider a nominal LTI plant P_0 , where $u \in \mathbb{R}^m$ is the plant input, $y \in \mathbb{R}^p$ is the plant output and m > p.
- Consider a controller C, where $r \in \mathbb{R}^p$ is a constant reference signal and $y_c \in \mathbb{R}^m$ is the controller output.

Figure 1: The closed-loop system Σ_0 .

- Consider a nominal LTI plant P_0 , where $u \in \mathbb{R}^m$ is the plant input, $y \in \mathbb{R}^p$ is the plant output and m > p.
- Consider a controller C, where $r \in \mathbb{R}^p$ is a constant reference signal and $y_c \in \mathbb{R}^m$ is the controller output.

Assumption

The closed-loop system Σ_0 is well-posed and asymptotically stable.

Figure 2: The allocated closed-loop system $\Sigma_{0,all}$.

Figure 2: The allocated closed-loop system $\Sigma_{0,all}$.

• Consider an **Allocator** All, described by

$$\dot{x}_a = f_a(x_a, y_c),\tag{1a}$$

$$y_a = g_a(x_a, y_c), \tag{1b}$$

where $y_a \in \mathbb{R}^m$ is the allocator output and

$$u = y_c + y_a. (2)$$

Input allocation problem

Consider the nominal closed-loop system Σ_0 and design an input allocator such that the allocated closed-loop system $\Sigma_{0,all}$:

- (AS) is well-posed and asymptotically stable.
 - (I) ensures output invisibility.
 - (O) ensures steady-state optimality, namely, the steady-state plant input $u_{\infty} = y_{c,\infty} + y_{a,\infty}$ solves

$$J(u_{\infty}) = \min_{v \in U_{\Sigma_0}} J(v). \tag{3}$$

Figure 3: The internal structure of the Allocator

The allocator can be designed as the cascade of an optimizer and an annihilator.

Figure 3: The internal structure of the Allocator

The allocator can be designed as the cascade of an optimizer and an annihilator.

The optimizer ensures steady-state optimality.

Figure 3: The internal structure of the Allocator

The allocator can be designed as the cascade of an optimizer and an annihilator.

- The optimizer ensures steady-state optimality.
- The annihilator ensures output invisibility.

Figure 3: The internal structure of the *Allocator*

The allocator can be designed as the cascade of an optimizer and an annihilator.

- The optimizer ensures steady-state optimality.
- The annihilator ensures output invisibility.

We introduce a novel design based on polynomial factorization.

Annihilator

• Compute a left factorization of the plant transfer function

$$W_0(s) = C_0(sI - A_0)^{-1}B_0 + D_0 = D^{-1}(s)N(s).$$
 (4)

Annihilator

• Compute a left factorization of the plant transfer function

$$W_0(s) = C_0(sI - A_0)^{-1}B_0 + D_0 = D^{-1}(s)N(s).$$
(4)

• By using the adjoin method to compute $(sI - A_0)^{-1}$, with

$$\det(sI - A_0) \triangleq s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0,$$
 (5a)

$$adj(sI - A_0) \triangleq E_{n-1}s^{n-1} + \dots + E_1s + E_0,$$
 (5b)

the following relationships are obtained

$$D(s) = \sum_{k=0}^{n} a_k s^k I, \quad N(s) = \sum_{k=0}^{n} (C_0 E_k B_0 + a_k D_0) s^k.$$
 (6)

Annihilator

• Compute a left factorization of the plant transfer function

$$W_0(s) = C_0(sI - A_0)^{-1}B_0 + D_0 = D^{-1}(s)N(s).$$
 (4)

• By using the adjoin method to compute $(sI - A_0)^{-1}$, with

$$\det(sI - A_0) \triangleq s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0,$$
 (5a)

$$adj(sI - A_0) \triangleq E_{n-1}s^{n-1} + \dots + E_1s + E_0,$$
 (5b)

the following relationships are obtained

$$D(s) = \sum_{k=0}^{n} a_k s^k I, \quad N(s) = \sum_{k=0}^{n} (C_0 E_k B_0 + a_k D_0) s^k.$$
 (6)

The Souriau-Leverrier-Faddeev algorithm yields

$$E_{n-k} = a_{n-k+1}I_n + A_0E_{n-k+1}, \qquad k = 1, \dots n+1,$$
 (7a)

$$a_{n-k} = -\frac{1}{k} \operatorname{tr}(A_0 E_{n-k}),$$
 $k = 1, \dots n.$ (7b)

Annihilator

• Define the annihilator transfer function $W_{an}(s) = N^{\perp}(s)\Psi^{-1}(s)$:

$$W_0(s) W_{an}(s) = 0 \rightarrow D^{-1}(s) N(s) N^{\perp}(s) \Psi^{-1}(s) = 0.$$
 (8)

Annihilator

• Define the annihilator transfer function $W_{an}(s) = N^{\perp}(s)\Psi^{-1}(s)$:

$$W_0(s) W_{an}(s) = 0 \rightarrow D^{-1}(s) N(s) N^{\perp}(s) \Psi^{-1}(s) = 0.$$
 (8)

The following necessary and sufficient condition must hold true

$$N(s)N^{\perp}(s) = (N_n s^n + \dots + N_0)(N_{\eta}^{\perp} s^{\eta} + \dots + N_0^{\perp}) = 0.$$
 (9)

Annihilator

• Define the annihilator transfer function $W_{an}(s) = N^{\perp}(s)\Psi^{-1}(s)$:

$$W_0(s) W_{an}(s) = 0 \rightarrow D^{-1}(s) N(s) N^{\perp}(s) \Psi^{-1}(s) = 0.$$
 (8)

The following necessary and sufficient condition must hold true

$$N(s)N^{\perp}(s) = (N_n s^n + \dots + N_0)(N_{\eta}^{\perp} s^{\eta} + \dots + N_0^{\perp}) = 0.$$
 (9)

By expanding and rearranging the terms in a matrix form, one has that

$$\begin{bmatrix} N_{0} & 0 & \dots & 0 \\ N_{1} & N_{0} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ N_{n} & N_{n-1} & \dots & N_{0} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & N_{n} & N_{n-1} \\ 0 & \dots & 0 & N_{n} \end{bmatrix} \begin{bmatrix} N_{0}^{\perp} \\ N_{1}^{\perp} \\ \vdots \\ N_{\eta-1}^{\perp} \\ N_{\eta}^{\perp} \end{bmatrix} = \bar{N}\bar{N}^{\perp} = 0.$$
 (10)

• The annihilator numerator $N^{\perp}(s)$ is obtained by computing the null space of the band matrix \bar{N} .

Annihilator

- The annihilator numerator $N^{\perp}(s)$ is obtained by computing the null space of the band matrix \bar{N} .
- The annihilator denominator $\Psi(s)$ is chosen as $\Psi(s) = \psi(s)I$, where $\psi(s)$ is any Hurwitz polynomial with $\deg(\psi(s)) \geq \eta$, in order to have a stable and realizable $W_{an}(s)$.

Annihilator

- The annihilator numerator $N^{\perp}(s)$ is obtained by computing the null space of the band matrix \bar{N} .
- The annihilator denominator $\Psi(s)$ is chosen as $\Psi(s) = \psi(s)I$, where $\psi(s)$ is any Hurwitz polynomial with $\deg(\psi(s)) \geq \eta$, in order to have a stable and realizable $W_{an}(s)$.

 $\Psi(s)$ is a degree of freedom that can be exploited to build the ${\bf allocator}.$

Allocator Design Optimizer

• Choose the cost function to be minimized at steady-state $J(u_{\infty})$.

- Choose the cost function to be minimized at steady-state $J(u_{\infty})$.
- The optimizer is defined by

$$\dot{x}_{op} = -\Gamma \nabla J(y_c + \Omega_{an} x_{op}), \tag{11a}$$

$$v = x_{op}, (11b)$$

where $\Omega_{an} = W_{an}(0)$ and $\Gamma > 0$ regulates the convergence rate.

Optimizer

- Choose the cost function to be minimized at steady-state $J(u_{\infty})$.
- The optimizer is defined by

$$\dot{x}_{op} = -\Gamma \nabla J(y_c + \Omega_{an} x_{op}), \tag{11a}$$

$$v = x_{op}, (11b)$$

where $\Omega_{an} = W_{an}(0)$ and $\Gamma > 0$ regulates the convergence rate.

 Γ is a degree of freedom that can be exploited to build the allocator.

Roadmap

- 1 Input allocation
- 2 Robust input allocation
- 3 Numerical simulations

4 Conclusions

Robust input allocation Problem

An allocator designed on the nominal plant P_0 successfully solve the nominal allocation problem.

An allocator designed on the nominal plant P_0 successfully solve the nominal allocation problem.

Problem

In the case of plant uncertainties, $P \neq P_0$, the output invisibility and steady-state optimality properties are lost.

An allocator designed on the nominal plant P_0 successfully solve the nominal allocation problem.

Problem

In the case of plant uncertainties, $P \neq P_0$, the output invisibility and steady-state optimality properties are lost.

Approach

Exploit the allocator's degrees of freedom to robustify the allocator with respect to plant uncertainties.

Figure 4: The closed-loop system Σ .

• Consider a finite set of LTI systems \mathcal{P} , with cardinality $|\mathcal{P}| = N$, one of which is considered to be the nominal plant P_0 .

Figure 4: The closed-loop system Σ .

- Consider a finite set of LTI systems \mathcal{P} , with cardinality $|\mathcal{P}| = N$, one of which is considered to be the nominal plant P_0 .
- Consider a robust controller C for the set \mathcal{P} .

Figure 4: The closed-loop system Σ .

- Consider a finite set of LTI systems \mathcal{P} , with cardinality $|\mathcal{P}| = N$, one of which is considered to be the nominal plant P_0 .
- Consider a robust controller C for the set \mathcal{P} .

Assumption

The closed-loop system Σ is well-posed and asymptotically stable for each $P \in \mathcal{P}$.

Robust input allocation problem

Consider the closed-loop system Σ and design an input allocator such that for each $P \in \mathcal{P}$ the allocated closed-loop system Σ_{all} :

- (AS) is well-posed and asymptotically stable.
- (NI) ensures output invisibility in the nominal case.
- (NO) ensures steady-state optimality in the nominal case.
- (RIO) minimizes the cost function

$$\tilde{J}(\Theta) = \sum_{i=1}^{N} \left(\int_{0}^{T} \|\delta y_i(t)\|^2 + \alpha J(u_{all,i}(t)) dt \right), \tag{12}$$

where Θ is the set of the allocator's design parameters and the subscript i refers to the trajectories yield by the i-th plant in \mathcal{P} .

Robust allocator design Optimization

① Design the annihilator following the previous algorithm.

Robust allocator design

Optimization

- Design the annihilator following the previous algorithm.
- Design the steady-state optimizer according to the cost function to be minimized.

Robust allocator design

Optimization

- Design the annihilator following the previous algorithm.
- ② Design the steady-state optimizer according to the cost function to be minimized.
- $\textbf{ Solve the following optimization problem, using } \Theta = (\Gamma, \psi(s))$ previously chosen as the initial condition of the numerical solver.

$$\begin{split} & \underset{\Gamma,\psi}{\min} & \sum_{i=1}^{N} \left(\int_{0}^{T} \|\delta y_{i}(t)\|^{2} + \alpha J(u_{i}(t)) \mathrm{d}t \right) \\ & \text{s.t.} & \Gamma = \mathsf{diag}(\gamma_{1}, \ldots \gamma_{m-p}) > 0, \\ & \psi(s) \text{ is Hurwitz with } \mathsf{deg}(\psi(s)) = n+1. \end{split} \tag{13}$$

Roadmap

- Input allocation
- 2 Robust input allocation
- 3 Numerical simulations

4 Conclusions

Problem definition

• The nominal plant P_0 is described by the matrices

$$A_0 = \begin{bmatrix} -0.157 & 0.094 \\ -0.416 & 0.45 \end{bmatrix}, \quad B_0 = \begin{bmatrix} 0.87 & 0.253 & 0.743 \\ 0.39 & 0.354 & 0.65 \end{bmatrix}, \quad \text{(14a)}$$

$$C_0 = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad D_0 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}. \quad \text{(14b)}$$

Problem definition

 \bullet The nominal plant P_0 is described by the matrices

$$A_0 = \begin{bmatrix} -0.157 & 0.094 \\ -0.416 & 0.45 \end{bmatrix}, \quad B_0 = \begin{bmatrix} 0.87 & 0.253 & 0.743 \\ 0.39 & 0.354 & 0.65 \end{bmatrix}, \quad \text{(14a)}$$

$$C_0 = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad D_0 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}. \quad \text{(14b)}$$

The controller C is described by the matrices

$$A_{c} = \begin{bmatrix} -1.57 & 0.5767 & 0.822 & -0.65 \\ -0.9 & -0.501 & -0.94 & 0.802 \\ 0 & 1 & -1.61 & 1.614 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad B_{r} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 (15a)

$$C_{c} = \begin{bmatrix} 1.81 & -1.2 & -0.46 & 0 \\ -0.62 & 1.47 & 0.89 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad D_{r} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$
 (15b)

Problem definition

• The annihilator is calculated on the nominal plant P_0 by choosing for the denominator an initial Hurwitz polynomial

$$\psi(s) = (s+1)(s+2)(s+3).$$

Problem definition

- The annihilator is calculated on the nominal plant P_0 by choosing for the denominator an initial Hurwitz polynomial $\psi(s) = (s+1)(s+2)(s+3)$.
- The optimizer is defined according to the cost function to be minimized, with an initial gain matrix $\Gamma = I$.

Problem definition

- The annihilator is calculated on the nominal plant P_0 by choosing for the denominator an initial Hurwitz polynomial $\psi(s) = (s+1)(s+2)(s+3)$.
- The optimizer is defined according to the cost function to be minimized, with an initial gain matrix $\Gamma = I$.
- Set of plants \mathcal{P} , with $|\mathcal{P}|=N=10$, where each $P\in\mathcal{P}, P\neq P_0$ is obtained by perturbing all elements of P_0 by 10% randomly.

Problem definition

- The annihilator is calculated on the nominal plant P_0 by choosing for the denominator an initial Hurwitz polynomial $\psi(s) = (s+1)(s+2)(s+3)$.
- The optimizer is defined according to the cost function to be minimized, with an initial gain matrix $\Gamma = I$.
- Set of plants \mathcal{P} , with $|\mathcal{P}|=N=10$, where each $P\in\mathcal{P}, P\neq P_0$ is obtained by perturbing all elements of P_0 by 10% randomly.
- The robustification process is carried out by solving the optimization problem on the set of plants \mathcal{P} .

Linear allocation

Goal

Minimize the Euclidean norm of the steady-state plant input.

Linear allocation

Goal

Minimize the Euclidean norm of the steady-state plant input.

Cost function to be minimized

$$J(u_{\infty}) = \frac{1}{2} \|u_{\infty}\|^2.$$
 (16)

Goal

Minimize the Euclidean norm of the steady-state plant input.

Cost function to be minimized

$$J(u_{\infty}) = \frac{1}{2} \|u_{\infty}\|^2.$$
 (16)

A quadratic cost function yields a linear steady-state optimizer

$$\dot{x}_{op} = -\Gamma \Omega_{an}^{\mathrm{T}} \Omega_{an} x_{op} - \Gamma \Omega_{an}^{\mathrm{T}} y_{c}, \tag{17a}$$

$$v = x_{op}. (17b)$$

Figure 5: Output variation with a non-optimized *Allocator* (dashed), and with the optimized *Allocator* (solid); blue signals refer to the nominal plant and red ones to a perturbed plant.

Results

Figure 6: Plant inputs without the *Allocator* (dotted), with a non-optimized *Allocator* (dashed), and with the optimized *Allocator* (solid); blue signals refer to the nominal plant, red ones to a perturbed plant.

Nonlinear allocation

Goal

Keeping the steady-state plant input away from a saturation region.

Nonlinear allocation

Goal

Keeping the steady-state plant input away from a saturation region.

Cost function to be minimized

$$J(u_{\infty}) = \frac{1}{2} \| \mathsf{dz}(u_{\infty}) \|^2, \tag{18}$$

where
$$dz(u_{\infty}) = sign(u_{\infty}) max\{0, |u_{\infty}| - \bar{u}\}.$$

Goal

Keeping the steady-state plant input away from a saturation region.

Cost function to be minimized

$$J(u_{\infty}) = \frac{1}{2} \| \mathsf{dz}(u_{\infty}) \|^2, \tag{18}$$

where
$$dz(u_{\infty}) = sign(u_{\infty}) max\{0, |u_{\infty}| - \bar{u}\}.$$

A nonlinear cost function yields a nonlinear steady-state optimizer

$$\dot{x}_{op} = -\Gamma \Omega_{an}^{\mathrm{T}} \mathsf{dz}(y_c + \Omega_{an} x_{op}), \tag{19a}$$

$$v = x_{op}. (19b)$$

Figure 7: Output variation with a non-optimized *Allocator* (dashed), and with the optimized *Allocator* (solid); blue signals refer to the nominal plant and red ones to a perturbed plant.

Results

Figure 8: Plant inputs without the *Allocator* (dotted), with a non-optimized *Allocator* (dashed), and with the optimized *Allocator* (solid); blue signals refer to the nominal plant, red ones to a perturbed plant, and in yellow the region bounds.

Roadmap

- 1 Input allocation
- 2 Robust input allocation
- 3 Numerical simulations
- 4 Conclusions

Conclusions

Topic

The dynamic input allocation problem has been addressed in the context of plant uncertainties.

Conclusions

Topic

The dynamic input allocation problem has been addressed in the context of plant uncertainties.

Novel contributions

- Provide an algorithm to design an allocator.
- Provide an algorithm for robustify and allocator in the presence of uncertainties in the plant.

Conclusions

Topic

The dynamic input allocation problem has been addressed in the context of plant uncertainties.

Novel contributions

- Provide an algorithm to design an allocator.
- Provide an algorithm for robustify and allocator in the presence of uncertainties in the plant.

Future directions

- Specific approaches for structured plant uncertainties.
- Design for nonlinear plants.