

# UNITED STATES AIR FORCE ARMSTRONG LABORATORY

# QUANTITATION OF TCE-INDUCED RADICALS IN LIVER OF B6C3F1 MICE IN VIVO: AN EPR STUDY

Linda Steel-Goodwin
William Hurtle
William Schmidt
OCCUPATIONAL AND ENVIRONMENTAL
HEALTH DIRECTORATE TOXICOLOGY DIVISION
ARMSTRONG LABORATORY
WRIGHT-PATTERSON AFB, OH 45433-7400

Sara Berty
Joanne Drerup
Linda Graeter
Marcia Ketcha
John Lane
MANTECH GEO-CENTERS JOINT VENTURE
P.O. BOX 31009
DAYTON, OH 45437

Alasdair Carmichael
ARMED FORCES RADIOBIOLOGY RESEARCH INSTITUTE
BETHESDA, MD 20991

February 1996

Occupational and Environmental Health Directorate Toxicology Division 2856 G Street Wright-Patterson AFB OH 45433-7400

Approved for public release; distribution is unlimited.

#### **NOTICES**

When US Government drawings, specifications or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from the Air Force Armstrong Laboratory. Additional copies may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical Information Center should direct requests for copies of this report to:

Defense Technical Information Service 8725 John J. Kingman Rd., Ste 0944 Ft. Belvoir, Virginia 22060-6218

#### **DISCLAIMER**

This Technical Report is published as received and has not been edited by the Technical Editing Staff of the Air Force Armstrong Laboratory.

#### TECHNICAL REVIEW AND APPROVAL

#### AL/OE-TR-1996-0084

The animal use described in this study was conducted in accordance with the principles stated in the "Guide for the Care and Use of Laboratory Animals", National Research Council, 1996, and the Animal Welfare Act of 1966, as amended.

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE DIRECTOR

STEPHEN R. CHANNEL, Maj, USAF, BSC Branch Chief, Operational Toxicology Branch Air Force Armstrong Laboratory

#### **REPORT DOCUMENTATION PAGE**

Form Approved OMB No. 0704-0188

| the collection of information. Send comments regarding this but Operations and Reports, 1215 Jefferson Davis Highway, Suite 12                                                                                                            | rden estimate or any other aspect of this collection of inform<br>(04, Arlington, VA 22202-4302, and to the Office of Manageme                                                                                                                                                                         | ation, including suggestions for reducing this burden, t<br>ent and Budget, Paperwork Reduction Project (0704-01)                                                                                                                                 | to Washington Headquarters Services, Directorate for Information 88), Washington, DC 20503.                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. AGENCY USE ONLY (Leave blank)                                                                                                                                                                                                          | 2. REPORT DATE                                                                                                                                                                                                                                                                                         | 3. REPORT TYPE AND DATES CO                                                                                                                                                                                                                       | OVERED                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                           | February 1996                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                   | - June 1994-August 1995                                                                                                                                                                                         |
| 4. TITLE AND SUBTITLE Quantitation of TCE-Induced Radicals in Liver of B6C3F1 Mice In Vivo: An EPR Study                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   | UNDING NUMBERS<br>ntract F41624-96-C-9010<br>61102F<br>2312                                                                                                                                                     |
| 6. AUTHOR(S)                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                        | TA                                                                                                                                                                                                                                                | 2312A2                                                                                                                                                                                                          |
| L. Steel-Goodwin, W. Hurtle, V<br>Ketcha, J. Lane, and A.J. Carm                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                      | ıp, L. Graeter, M. WI                                                                                                                                                                                                                             | J 2312A202                                                                                                                                                                                                      |
| 7. PERFORMING ORGANIZATION NAME(S) A<br>Man Tech Geo-Centers Joint Ve<br>P.O. Box 31009<br>Dayton, OH 45437-0009                                                                                                                          |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   | ERFORMING ORGANIZATION<br>EPORT NUMBER                                                                                                                                                                          |
| 9. SPONSORING/MONITORING AGENCY NA<br>Armstrong Laboratory, Occupat                                                                                                                                                                       | ional and Environmental Health                                                                                                                                                                                                                                                                         | I .                                                                                                                                                                                                                                               | SPONSORING/MONITORING<br>GENCY REPORT NUMBER                                                                                                                                                                    |
| Toxicology Division, Human Sy<br>Air Force Materiel Command<br>Wright-Patterson AFB, OH 4543                                                                                                                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   | AL/OE-TR-1996-0084                                                                                                                                                                                              |
| 13. SUPPLEMENTARY NOTES                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |
| 12a. DISTRIBUTION AVAILABILITY STATEM                                                                                                                                                                                                     | ENT                                                                                                                                                                                                                                                                                                    | 12b.                                                                                                                                                                                                                                              | DISTRIBUTION CODE                                                                                                                                                                                               |
| Approved for public release; dis                                                                                                                                                                                                          | tribution is unlimited.                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |
| corn oil, or corn oil supplemente concentration of the TCE added material every day at 0900 and on N-tert-butyl-a-nitrone/kg BW the frozen in liquid nitrogen. Sample were measured in the frozen live 2,3,5,5,-tetramethyl-1-pyrroliding | ed with trichloroethylene (TCE) to the corn oil was 400, 800 or on the day of harvest at 1300 the cirty minutes before euthanization es of liver were collected on day or tissue or lyophilized liver. Ranyloxyl-3-carboxyamide as a starce/kg BW group. The dose re-15, b[1] 2.01, b[2] -4.2 -3, b[3] | was determined by EPR/sp 1200 mg/kg body weight. Me mice were injected with sp n by CO2 inhalation. The lives, 2, 4, 6, 10, 14, 21, 35, adicals were quantitated using the modern of the cosponse on day 6 in the froz 2.33e -6, r 2 0.99. Detect | Mice were gavaged with test oin trap 50 mg ver was immediately removed and 42, 45 and 56. Total free radicals ag a 309% increase inradicals in en liver gave a polynomial curve ion of the ascorbate radical in |
| 14. SUBJECT TERMS B6C3F1 mice in vivo                                                                                                                                                                                                     | TCE                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   | 15. NUMBER OF PAGES<br>108                                                                                                                                                                                      |
| liver free radi                                                                                                                                                                                                                           | cals                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                   | 16. PRICE CODE                                                                                                                                                                                                  |
| 17. SECURITY CLASSIFICATION OF REPORT                                                                                                                                                                                                     | 18. SECURITY CLASSIFICATION OF THIS PAGE                                                                                                                                                                                                                                                               | 19. SECURITY CLASSIFICATION OF ABSTRACT                                                                                                                                                                                                           | 20. LIMITATION OF ABSTRACT                                                                                                                                                                                      |
| TINICI ACCIDIED                                                                                                                                                                                                                           | LINICI ACCIETED                                                                                                                                                                                                                                                                                        | LINICI ACCIDIED                                                                                                                                                                                                                                   | · I III                                                                                                                                                                                                         |

THIS PAGE INTENTIONALLY LEFT BLANK.

#### **PREFACE**

This is one of a series of technical reports describing the results of the electron paramagnetic resonance laboratory data conducted at the Occupational and Environmental Health Directorate, Toxicology Division and at the Armed Forces Radiobiology Research Institute, Bethesda MD. This document serves as the final report on the Quantitation of Radicals in the Trichloroethylene 60-Day Gavage Study conducted in male B6C3F1 mice. The research described in this report began in June 1994 and was completed in August 1995. Lt Col Terry A. Childress served as Contract Technical Monitor for the U.S. Air Force, Armstrong Laboratory, Toxicology Division. This study was sponsored by the U.S. Air Force Office of Scientific Research Environmental Initiative Program WORK UNIT 2312A202 under the direction of Maj Steven. R. Channel, USAF, BSC and by Scientific Environmental , Research and Development Program WORK UNIT 4223OT01 under the direction of LtCol Jay Kidney, USAF, BSC.

The animals used in this study were handled in accordance with the principles stated in the *Guide for the Care and Use of Laboratory Animals*, prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council, Department of Health and Human Services, National Institute of Health Publication #86-23, 1985, and the Animal Welfare Act of 1966, as amended.

# TABLE OF CONTENTS

| SE  | ECTION                                  | PAGE |
|-----|-----------------------------------------|------|
| PR  | REFACE                                  | iii  |
| TA  | ABLE OF CONTENTS                        | iv   |
| LIS | IST OF TABLES                           | vi   |
| LIS | IST OF FIGURES                          | vii  |
| AB  | BBREVIATIONS                            | viii |
| 1   | INTRODUCTION                            | 1    |
| 2   | MATERIALS AND METHODS                   | 4    |
|     | Chemicals                               | 4    |
|     | Animals                                 | 4    |
|     | General Experimental Design             | 5    |
|     | Quality Control                         | 5    |
|     | a. Spin Trap                            | 5    |
|     | b. EPR QC                               | 6    |
|     | c. Sample QC                            | 6    |
|     | Data Normalization                      | 7    |
|     | Statistical Analysis                    | 7    |
| 3   | RESULTS                                 | 8    |
| 4   | DISCUSSION                              | 20   |
| 5   | CONCLUSION                              | 27   |
| 6   | REFERENCES                              | 28   |
| ΛĐ  | PPENDIX A Radical interaction equations | 32   |

| APPENDIX B | Biological Antioxidants           | 33 |
|------------|-----------------------------------|----|
| APPENDIX C | Raw data and statistical analysis | 34 |
|            |                                   |    |

# LIST OF TABLES

| TABLE |                                                                                                                                                            | PAGE |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| I     | Total number of radicals X 10 <sup>19</sup> /mg protein detected in liver from mice gavaged with water, corn oil and 1200 mg TCE/kg BW in corn oil vehicle | 14   |
| II    | Radicals measured in non-lyophilized liver of B6C3F1 mice on Day 6 of study after background correction                                                    | 17   |

# LIST OF FIGURES

| FIGURE |                                                                                                                                                                  | PAGE |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | First derivative EPR spectrum of B6C3F1 mouse liver (a) after and (b) before lyophilization                                                                      | 8    |
| 2      | GC/MS of PBN extract (a) Total ion current chromatogram (b) Mass spectrum                                                                                        | 9    |
| 3      | A: Regression plot of lyophilized liver standards supplemented with 3-CAR standards used in study B: Typical X-ray analysis of lyophilized liver                 | 10   |
| 4      | The radicals measured in lyophilized liver from mice gavaged with water over for 60 days                                                                         | 11   |
| 5      | Radicals quantitated in lyophilized liver from mice gavaged corn oil vehicle for 60 days                                                                         | 12   |
| 6      | Radicals quantitated in lyophilized liver of mice gavaged with 1200 mg TCE/kg BW in corn oil vehicle for 60 days                                                 | 13   |
| 7      | The radicals quantitated in lyophilized liver from mice on administration of 1200 mg/kg BW TCE after correction for corn oil vehicle and water background levels | 15   |
| 8      | Percentage change in radicals quantitated in lyophilized liver on Days 6, 21, 42, 56 above the radicals quantitated on Day 2                                     | 16   |
| 9      | Radicals in mouse liver after exposure to 0-1200 mg TCE/kg BW in corn oil vehicle on Day 6 of study A Plot of data B Polynomial curve fit                        | 18   |
| 10     | A. Ascorbate radical in aqueous liver homogenate mouse B Ascorbate radical produced by superoxide C Decay rate B                                                 | 19   |
|        |                                                                                                                                                                  |      |

## **ABBREVIATIONS**

3-CAR 2,2,5,5- Tetramethyl-1-pyrrolidinyloxyl-3-carboxyamide

d Day

EM Electron microscopy

EPR Electron Paramagnetic Resonance spectrometer

g Gram

h Hour

kg Kilogram

L Liter

mg Milligram

ml Milliliter

mm Millimeter

N Number

p Probability

PBN N-tert-butyl-α-nitrone

SD Standard deviation

SEM Standard error of the mean

TCE Trichloroethylene

#### SECTION 1

#### INTRODUCTION

Trichloroethylene (TCE) is frequently detected by the Environmental Protection Agency in ground water. It is a chlorinated hydrocarbon widely used by industry as a solvent. TCE can be broken down chemically by aqueous peroxides, or biologically by monoxygenase enzymes, such as those found in soil microrganisms (von Sonntag and Schuchmann 1991, Atlas 1995). Both these methods to break down TCE involve free radical pathways.

The term, free radical, is used to describe any atom, molecule or compound with one or more unpaired electrons (Rice Evans et al., 1991). In general free radicals are considered very reactive to organic substrates. Recent reports using liver *in vitro* techniques, suggest that free radicals are involved directly or indirectly in liver metabolism of TCE (Gronthier & Barrett 1989, Ni et al., 1994, and Steel-Goodwin et al., 1994). However, the role these free radicals may play in the pathogenesis of TCE-induced cancer in a number of animal species remains to be elucidated.

The biological effects of TCE are of special interest to us because TCE is a solvent commonly used by the United States Air Force as a degreasing agent. TCE levels on USAF bases are often used by the USAF to estimate costs for mandatory environmental remediation outlined in the Installation Restoration Program, 1985. These mandatory cleanup requirements are based on estimated human health risks.

Human health risks, following occupational and environmental exposure to TCE from ground water and municipal water supplies, center around its controversial mutagenic and

carcinogenic potential (Elcombe 1985, Dekant et al., 1986, Berman 1983, Fisher et al., 1991, Daniel et al., 1992, Fisher & Allen 1993). Elucidation of the way TCE induces cancer in the liver may provide a better understanding of the possible human health risks following TCE exposure.

In the liver, free radicals have been detected *in vivo* after exposure to halogenated chemicals such as carbon tetrachloride and halothane (Sentjurc & Mason 1992, Knecht et al., 1992). When TCE is metabolized *in vivo* by the liver, we hypothesized it would react with oxygen to form peroxyl radicals in the aqueous phase of the cell and these radicals could potentially cause damage to liver cells.

To test this hypothesis, we studied TCE metabolism in liver of B6C3F1 mice. This is a strain of mice sensitive to TCE exposure. When B6C3F1 mice are exposed to TCE by the oral route, the liver is the major target organ for toxicity (NCI 1976). This hepatotoxicity is believed to involve induction of cytochrome P450 metabolic enzymes (Costa et al., 1980).

Evidence to support our hypothesis that free radicals are involved in TCE hepatotoxicity was obtained in Phase I of this project. In phase I, free radicals generated *in vitro* in liver slices of B6C3F1 mice were detected following exposure to TCE (Steel-Goodwin et al., 1994). In addition, unpublished data by Stevens 1994, working on a USAF sponsored project, indicated that TCE will induce free radicals *in vivo* in mice. The TCE-induced radicals generated *in vitro* and *in vivo* were detected by electron paramagnetic resonance (EPR).

EPR is a selective technique to measure radicals because the only materials which exhibit EPR contain unpaired electrons. EPR is normally used to identify free radicals in biological tissues. Our literature search found that EPR had only been used in insects to quantitate free radicals generated by carcinogens *in vivo* (Trapp et al., 1983).

Phase II of the project involved analysis of liver of B6C3F1 mice exposed to TCE over 60 days. The oral gavage route of exposure (NTP cancer bioassay 1982) was used to study free radical and pathological changes. Free radical damage was determined by both direct and indirect techniques. Free radicals were directly measured by EPR. The indirect techniques used for free radical assessment were high performance liquid chromatographic analysis for 8-hydroxy-deoxyguanosine using standard protocols (Kasai et al., 1986; Richter et al., 1988) and lipid peroxidation measured by analysis of thiobarbituric acid reactive substance (Fraga et al., 1988).

For this report our aim was to quantitate, by EPR, free radicals generated in liver of B6C3F1 mice, after subacute trichloroethylene (TCE) exposure. The mice in this study were exposed to 0, 400, 800, and 1200 mgTCE/kg/day in corn oil vehicle.

#### **SECTION 2**

#### MATERIALS AND METHODS

## Chemicals

Trichloroethylene (TCE), N-tert-butyl-α-nitrone (PBN) and 2,2,5,5,-Tetramethyl-1-pyrrolidinyloxyl-3-carboxyamide (3-CAR) were purchased from Aldrich Chemical Co. Dimethyl sulfoxide (DMSO) was purchased from Sigma Chemical Co, St Louis MO. The corn oil vehicle was Mazola<sup>TM</sup>, Best Foods, Somerset, NJ.

# **Animals**

Male B6C3F1 mice 12 weeks old weighing 25-30 g were purchased from Charles River, Portage Laboratories, MI. While in quarantine they were housed one to a cage immediately following implantation of a microchip used for animal identification and electronic recording of daily body weights. The mice were housed in an animal room equipped with laminar air flow maintained at a temperature of 22 ± 1 °C, 489 lux, and 50 ± 10% relative humidity. Cages were changed biweekly and the room was cleaned daily. The mice were fed Certified Rodent Chow 5002 (Purina Mills, St. Louis, MO) and given UV treated reverse osmosis filtered water to drink *ad libitum*. Seven days after implantation they were gavaged 5 days a week with corn oil or corn oil supplemented with TCE. The mice received final doses of 0, 400, 800, or 1200 mgTCE/kg BW/day. Control mice were gavaged with 0.25 ml water. The gavage took from 0815 to 1015 Monday to Friday. Surgery and gavage were performed only by American Association of Animal Laboratory Science Certified personnel. On days 2, 4, 6, 10, 14, 21, 28, 35, 42,

45 and 56 mice were divided into groups of seven mice. At 1330 on the day of harvest, all but four mice in the water treated control group were injected with 50 mg PBN/kg BW dissolved in saline. All mice were euthanized 30 min. later by carbon dioxide asphyxiation and necropsied. The liver was immediately excised, samples taken for pathology and the rest flash frozen with liquid nitrogen and stored at -80 °C until analyzed.

#### General Experimental Design

The total radicals in the liver samples from gavaged mice were measured using a Bruker EMS 104 EPR analyzer for initial quantitation and screening and a Bruker EMS 300E spectrometer for measurement of radicals at each TCE dose tested. A Varian 109 was used to measure radicals in aqueous samples. The machine parameters for the EPR analyzer were: microwave power, 25 mW; sweep width, 100 G; modulation amplitude, 4.02 G; sweep time, 10.49 s; filter time constant, 20.48 ms; receiver gain, 60. The parameters of the EMS 300E and the Varian109 have been previously described (Steel-Goodwin et al., 1994).

#### **Ouality Control**

#### a. Spin Trap

The PBN was dissolved in 300 ul DMSO and added with stirring to 15 ml saline. The purity of the trap was checked by GC/MS using an adaptation of the method of Janzen et al., (1990). This was important as this study relied on the reproducibility of adding the same amount of PBN spin trap to the mice and that the nitrone was not degrading spontaneously and was not contaminated. Mice were weighed prior to euthanization and

the amount of spin trap administered was based on the mean weights of the mice at each time point. The final concentration of PBN injected ip 30 min. before sacrifice was 50 mg/kg BW. The selection of trap concentration is based on communication with Dr. R Mason, National Institute of Environmental Health, NC.

# b. EPR Quality Control

The procedures for quantitation of lyophilized liver was followed for this project (Steel-Goodwin et al., 1995). Briefly, the reference material was lyophilized liver obtained from B6C3F1 mice which were not gavaged with water or corn oil. This reference material was supplemented with known amounts of 3-CAR. The manufacturer's procedures for the set up and instrument calibration were followed with appropriate electromechanical adjustments. The parameters for each spectrometer are described elsewhere. The proper operation of the instruments were verified by comparing the measurements of pitch. For screening, EPR first derivative spectra analyzed by peakpeak measurements were used to make a calibration curve. The mean EPR signal and standard deviation for each set of standards were measured. Linear regression (Sigma Plot, Jandel Scientific) was used to determine the goodness of fit of the calibration curves. Liver samples from gavaged mice were measured with the same parameters used to establish the standard curve. For dose response analysis all samples, both reference and treated liver, were analyzed by double integration.

# c. Sample Quality Control

Samples of liver were lyophilized for 18 h and the samples stored in a dessicator at ambient temperature protected from light until analyzed. The constituency of selected

lyophilized samples was determined by electron microscopy. Briefly, the samples were embedded in graphite paste, carbon coated adhesive. X-ray analysis was used to determine elemental content.

# **Data Normalization**

All data was normalized for sample weight and mg protein concentration. Liver protein was measured using the bicinchoninic acid assay (Pierce reagents) as described previously (Steel-Goodwin et al., 1994).

#### Statistical Analysis

Analysis of Variance was performed using the Design Ease ® Experimental Design program (Stat-Ease Inc., Minneapolis, MN).

#### **SECTION 3**

#### RESULTS

Free radicals were quantitated from the *in vivo* metabolism of TCE (mouse liver microsomes) by the PBN spin trapping method. The samples were harvested at eleven time points over a 60 day period.



Figure 1 First derivative EPR spectrum of B6C3F1 mouse liver (A) after and (B) before lyophilization

Figure 1A and 1B are the typical spectra of liver samples (10 ug) before and after lyophilization. These spectra are from a TCE gavaged B6C3F1 mouse. The animal was dosed with TCE in corn oil vehicle. On the day of harvest, approximately 4 h after

dosing the mouse was injected ip with saline containing the spin trap PBN. Thirty minutes after PBN injection the mouse was killed and the liver was harvested.

Figure 2A shows the total ion current gas chromatogram of the GC/MS analysis of a non polar solvent extract of the PBN used for injection. The mass spectrum of the peak (8.82 min) shows the PBN-DMSO adduct, Figure 1B.



Figure 2 GC/MS of PBN extract. A Total ion current chromatogram B. Mass spectrum

For the initial radical quantitation, liver was homogenized in saline, frozen in liquid nitrogen and freeze dried. The paramagnetic/free radical species of this lyophilized liver was quantitated using the calibration curve of liver spiked with the spin label, 3-CAR, Figure 3A. The 3-CAR standards gave reproducible results over the study period. The regression coefficients were b[0] 1.14, b[1] 0.95, r<sup>2</sup> 0.99. The result of a typical X-ray analysis of lyophilized liver is shown in Figure 3B. Randomly sampled lyophilized liver from this study showed no statistical differences in metals such as iron, chromium, manganese, selenium, zinc or lead.



Figure 3 A. Regression plot of lyophilized liver standards supplemented with 3-CAR
B. Typical result of X-ray analysis of lyophilized liver.

Figures 4-6 show the mean  $\pm$  SEM of the concentration of free radicals in the lyophilized liver equivalent to 3-CAR. All data was analyzed by peak-peak measurements. The data of each animal is expressed as the number of radicals X  $10^{19}$ /mg liver protein. Analysis of variance of each treatment group indicated the data was normally distributed and there were statistically significant differences, p < 0.001, with time in each treatment group.



Figure 4 The radicals measured in lyophilized liver from mice gavaged with water over 60 days.

Figure 4 shows the radicals quantitated in the water treated group over the 60-day period. On the first 21 days of the study there was statistically more radicals in the water treated group than the last 35 days of the study (F value= 24.23, p<0.001, r<sup>2</sup>0.91). For example,

Day 2 had significantly higher levels of detectable radical adducts than Days 3, 28, 35, 42, 49 and 56, p < 0.0001 and a lower level than Day 21, p < 0.0001.



Figure 5 Radicals quantitated in lyophilized liver from mice gavaged with corn oil vehicle for 60 days.

Figure 5 shows the radicals quantitated in liver of mice given corn oil alone. The analysis of variance gave an F value=32.7,  $r^20.86$ ; p < 0.0001. There was significantly more radical adducts measured on Day 6 to Day 21 compared to Day 2, p < 0.0001 and on Day 45, p < 0.011 compared to Day 2.



Figure 6 Radicals quantitated in lyophilized liver from mice gavaged with 1200 mg TCE/kg BW in corn oil vehicle for 60 days.

The radicals quantitated in the liver of mice administered 1200 mg TCE/kg BW over 60 days is shown pictorially in Figure 6. Analysis of variance gave an F value of 36.28,  $r^2$  0.85 and p < 0.0001. Administration of 1200 mg TCE/kg BW in corn oil vehicle had

significantly elevated radicals on Day 6 to Day 21 , p < 0.0001 and on Day 42, p < 0.030, when compared to Day 2 of the study.

| Day | Water Control    | Corn Oil Vehicle | 1200 mg/kg BW TCE |
|-----|------------------|------------------|-------------------|
| 2   | 25.18 ± 2.30     | 1.19 ± 2.45      | 1.35 ± 3.34       |
| 3   | 9.82 ± 1.99      | 1.61 ± 2.45      | 1.61 ± 2.73       |
| 6   | 25.07 ± 1.99     | 28.17 ± 2.27     | 38.52 ± 2.53      |
| 10  | 25.32 ± 2.30     | 33.33 ± 2.27     | 33.46 ± 2.53      |
| 14  | 22.59 ± 2.30     | 28.38 ± 2.45     | 27.10 ± 2.99      |
| 21  | $33.53 \pm 2.82$ | 32.90± 2.27      | $35.59 \pm 2.53$  |
| 28  | 6.44 ± 2.82      | 4.97 ± 2.69      | 5.83 ± 2.53       |
| 35  | $1.27 \pm 2.30$  | 1.19 ± 2.69      | 1.13 ± 2.73       |
| 42  | 11.52 ± 1.99     | 9.64 ± 4.25      | 10.67 ± 2.53      |
| 45  | 7.96 ± 1.99      | 10.03 ± 2.27     | 6.83 ± 2.53       |
| 56  | 0 ± 1.99         | 0 ± 0            | 0.58 ± 2.11       |

Table I Total number of radicals  $X\,10^{19}/mg$  protein detected on each day in liver from mice gavaged with water, corn oil, and 1200 mgTCE/kg BW in corn oil vehicle.

Analysis of variance of the three treatment groups: water, corn oil and TCE, on each day showed no significant difference (p > 0.05), Table I.

The water treated mice in this study are the background control animals. In the experimental protocol it is assumed the measurements of the TCE and corn oil effects

include the additive radicals of the water controls. Using the assumption the radicals in the water group are independent of other effects, the water values were subtracted from the corn oil and the TCE and corn oil groups.



Figure 7 The radicals quantitated in lyophilized liver from mice on administration of 1200 mg/Kg BW TCE after correction for corn oil vehicle and water background levels.

Figure 7 shows the radicals measured when the TCE treated mice are subtracted from the corn oil treated mice after correction for the radicals present in the water treated mice.

There appears to be four peaks of radicals during the 60 day study period. The greatest

increase in radicals occurred on Day 6 of the study. On this day there was a 309% increase in radicals in the TCE treated mice, p < 0.0001 compared to the radicals in Day 2 of the study. Increases in radical adducts of 77%, 30%, and 11% occurred on Days 21, 42, and 56 respectively, p < 0.001, compared to Day 2. The data points marked with the \* in Figure 7 were plotted in Figure 8. Figure 8 strongly suggests that the greatest peak of radicals occurred early in the study. As time of TCE exposure increased there was a decrease in detectable radical adducts above controls, Figure 8.



Figure 8 Percentage change in radicals measured in lyophilized liver on Days 6, 21, 42 and 56 above the radicals quantitated on Day 2.

Lyophilized liver was used in the initial screen for radicals. There was a 309% increase in radicals on Day 6 compared to Day 2. Samples of non-lyophilized liver from Day 6 were chosen to determine if radical adducts detected in the liver were related to the concentration of TCE administered to the mice. The first derivative spectra were

obtained and analyzed by double integration. Analysis of variance was performed on the double integration of the first derivative spectra of the liver samples after normalization of the data for liver weight and protein concentration. There was no significant differences between groups (P > 0.05) by analysis of variance.

| Treatment                  | Difference Radicals X 10 <sup>10</sup> /mg protein |
|----------------------------|----------------------------------------------------|
| Water                      | 0 ± 0                                              |
| Corn Oil 0 TCE             | 0 ± 0                                              |
| Corn Oil 400 mg TCE/kg BW  | 281 ± 0.01                                         |
| Corn Oil 800 mg TCE/kg BW  | 113 ± 0.01                                         |
| Corn Oil 1200 mg TCE/kg BW | 392 ± 0.01                                         |

Table II Radicals measured in non-lyophilized liver of B6C3F1 mice on Day 6 of study after background correction.

Following subtraction of the background radicals quantitated in the livers from control mice, there was a significant difference by analysis of variance in the radicals measured at each TCE concentration, F value = $1.2^{10}$ ;  $r^2=1.0$ ; P < 0.0001. Table II shows the mean  $\pm$  SD of the data following background subtraction. The dose response curve for radicals generated in the liver of B6C3F1 mice after 0, 400, 800, or 1200 mg/kg BW TCE by corn oil gavage for 6 days is also shown in Figure 9. The actual plot of the data is shown in Figure 9A and a standard polynomial curve fit is shown in Figure 9B. Using the curve fit program (Jandel Scientific) the best fit was not a linear response but a polynomial curve

with coefficients of b[0] -3.13638 e<sup>-15</sup>, b[1] 2.0104, b [2] -4.2031e<sup>-3</sup>, b [3] 2.3333 e<sup>-6</sup>, r<sup>2</sup> 0.9999. Standard families of curves, such as the polynomial, may not have captured the true shape of the TCE dose response. As the aim of generating this data is for use by other scientists to create a predictive computer model, curve fitting was not pursued for this report.





Figure 9 Radicals in mouse liver after exposure to 0-1200 mg TCE/kg BW in corn oil vehicle on Day 6 of study. A Plot of data B. Polynomial curve fit.

On Day 6, the spin adducts of liver homogenized in saline showed the typical pattern of the ascorbate radical, Figure 10A. This radical was also detected in liver homogenate from mice harvested on Days 2 and Day 3. The ascorbate radical is an indication of oxidative stress in the liver of the mice. It has a very short half life. The ascorbate radical was generated experimentally by reaction of sodium ascorbate with superoxide, Figure 10B. As this radical decays there is a decrease in the intensity of the EPR signal. Figure 10C is the plot of the decay of the ascorbate radical per minute. The coefficients of the plot are b[0] 0.12328, b[1] -0.0702, r<sup>2</sup> 0.9884.



Figure 10 A Ascorbate radical in aqueous liver homogenate. B Ascorbate radical produced by superoxide. C Decay rate of B.

#### **SECTION 4**

#### DISCUSSION

There is strong evidence that free radicals are involved in the promotion of cancer induced by chemicals (Ames et al., 1993, Reilly et al., 1991, Taffe et al., 1987). TCE is known to induce liver tumors in B6C3F1 mice but the mechanism remains unclear (NCI 1976). This report is part of Phase II of the project entitled "Trichloroethylene: Free Radical production, oxidant damage and cell proliferation in B6C3F1 mouse liver" (Channel 1994). Free radical production was measured by EPR. EPR provides the most powerful evidence for the presence of free radicals because this technique is specific for detection of unpaired electrons. Reviews of the technique have been written by Mason 1982, Kalyaraman & Sivarajah 1984 and Cavalieri & Rogen 1994.

In Phase I of the project we were able to detect TCE-induced radicals in B6C3F1 liver

In Phase I of the project we were able to detect ICE-induced radicals in BoC3F1 liver slices (Steel-Goodwin et al., 1994). At the same time, Stevens (1994) working independently detected TCE-induced radicals produced *in vivo* in hexane extracts of rodent liver. With this background we set out to quantitate radicals in mouse liver *in vivo*.

In 1983 Trapp et al., showed the EPR signal intensity will decrease in simple organisms like fruit flies with age and on addition of carcinogens to their diet. Literature searches indicate our present study is the first attempt to use EPR signal intensity as a quantitative tool for toxicity assessment in mammals. Initial studies, performed to standardize the EPR quantitation procedure are described elsewhere. First, we established a calibration

CAR (Steel-Goodwin et al., 1994). In addition, we determined the trapping efficiency of PBN for 3-CAR (Steel-Goodwin & Hutchens 1995) and TCE (Carmichael & Steel-Goodwin 1995). Through these initial experiments we established a reproducible and reliable method to analyze the radicals generated in liver in this study. Based on the results we now offer an interpretation of the radical results generated in this study. Table I lists the radicals quantitated in lyophilized liver in this study. The unit of quantity of the radicals measured are based on the assumption that one radical in lyophilized liver is equivalent to one radical of 3-CAR or one radical of TCE. However, determinations of trap efficiency (Steel-Goodwin & Hutchens 1995, Carmichael & Steel-Goodwin 1995) suggest that one radical detected in lyophilized liver represents approximately three radicals of 3-CAR and five radicals of TCE. Thus the radicals reported here underestimate the true quantity of radicals present in the mice in vivo. To interpret the radicals measured in this study we need to understand the possible origins of the free radicals produced in liver of B6C3F1 mice in vivo free radicals can be produced in liver by three distinctly different processes. Equations representing these processes are shown in Appendix A. First, all aerobic organisms continually produce a high flux of superoxide radicals (Equation 1) and these radicals form other radicals through chemical reactions (Equations

curve to quantitate radicals in lyophilized liver. This was done using a stable radical, 3-

2-10). The interaction of these radicals have been previously addressed (Carmichael et

al., 1993). Figure 3 represents the radicals in B6C3F1 mice during normal metabolism

over the 60 d study. This information was obtained by measuring the radicals in

lyophilized livers of the water-treated group. During normal metabolism in aerobic cells there are continuous reactions with superoxide radicals and nitrogen-centered radicals (Equations 1-10) so that the overall interactions are balanced, Appendix A. It is currently believed that any action which causes this balance to tip in favor of the oxygen- or the nitrogen-centered radicals results in free radical mediated cell injury (Carmichael et al., 1993).

The second mechanism of radical production in this study is from the corn oil vehicle used to administer the TCE. Corn oil can be autoxidized in air or metabolized in vivo to produce lipid hydroperoxides. The corn oil used in this study was suitable for cooking and came sealed from the manufacturer. However, the time the corn oil was exposed to fluorescent lights on the shelf in the store, the date when a bottle of corn oil was opened and the amount of lipid hydroperoxides present in the corn oil itself, were not recorded in this study. Superoxide is the simplest peroxyl radical but hydroperoxides from the corn oil can be another potent source of free radicals. Hydroperoxides could potentially react with vitamins, cell membrane lipids, enzymes or other proteins (Gardner 1983, Taffe et al., 1987). The general reaction of peroxides is shown in Equation 12 and the reaction with a-tocopherol is shown in Equation 13, Appendix A. Figure 4 shows the levels of radicals detected in the liver of the corn oil dosed mice during the 60-day study. The highest levels of radicals were measured on Days 6 through 21 of the study. The third source of free radical production in this study is the TCE itself. Mice were gavaged with 0, 400, 800 or 1200mg TCE/kg BW. TCE can decompose by reaction with peroxyl radicals. Equation 14, Appendix A shows the initial TCE radical generated in

water which was identified *in vitro* (Steel-Goodwin & Carmichael 1995). This can rearrange and form other carbon-centered radicals. Formation of these carbon-centered radicals ultimately upset the balance between the oxygen- and nitrogen-centered radicals (Equations 1-11).

Further experiments are required to identify the carbon-centered radical(s) of TCE metabolism which upset the free radical balance in liver cells. TCE is a peroxisome proliferator (Elcombe 1985). Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is involved in a number of reactions with both oxygen and nitrogen-centered radicals (Equation 1-10). H2O2 has been postulated to cause TCE-induced injury but it is also probable that it is a means the liver cell uses to re-establish the balance between the oxygen- and the nitrogen-centered radicals. Much is known about the oxygen centered radicals but only recently has there been scientific interest on the physiological role of the nitrogen-centered radicals. Nitric oxide can be synthesised by constitutive and inducible forms of the enzyme nitric oxide synthase (NOS) and can produce peroxynitrite. The inducible form is believed to remain active many hours after stimulation of its synthesis. Transcription of the iNOS gene is controlled by cytokines. The most important positive inducers are all linked to changes in cell cycle progression: interferon-y-human necrosis factor, interleukin-1, and interleukin-2. Induction of NOS can be detected immunohistologically although EPR studies of the chemistry of peroxynitrite formation have been performed (Carmichael and Steel-Goodwin 1994).

Mice were administered TCE at doses of 400, 800 or 1200 mg/kg BW in corn oil vehicle. The number of radicals detected in lyophilized liver from mice given

1200mgTCE/kg BW by corn oil gavage are shown in Figure 6. Over the 60-day period the highest radicals were measured on Days 6 through 21. This follows the same trend as the corn oil treated mice, Figure 5.

TCE radicals have been detected in vitro and in vivo in mouse liver (Steel-Goodwin et al., 1994, Stevens 1994). Trichloroethanol and chloral hydrate, metabolites of TCE, also produce radicals (Gronthier & Barriett 1991, Ni et al., 1994). Because we are detecting unpaired electrons spinning in the magnetic field, we have been able to estimate the TCEinduced radicals. The data suggests there are four peaks or bursts of radicals induced by TCE over the period of this study. Figure 7 shows the effect of 1200 mgTCE/kg BW administered daily. The data was obtained by subtracting background radicals generated by normal metabolism and corn oil administration. The greatest radical burst was Day 6 followed by diminishing peaks on Days 21, 42, and 56, Figure 7. The rate of decrease of radicals above control levels is plotted in Figure 8. Mice killed on Day 6 were used to generate an estimated dose response effect of TCE. This response is shown pictorially in, Figure 9. In this situation it was desirable to fit a standard family of curves. In Figure 9B a polynomial curve was chosen. However, because we only had 4 doses of TCE (0, 400, 800 & 1200 mg/kg BW), this may not capture the true shape of the underlying structure. Therefore we choose not to make any clear conclusions from these dose response results but strongly suggest that nonparamagnetic curve fitting of this data be investigated. Nonparamagnetic curve fitting is suggested because it is a data adaptive approach in which an infinitely flexible family of curves is available (Cleveland et al., 1992, Hastie

and Loader 1993). For nonparamagnetic curve fitting, all the raw data and statistical analysis for the radicals in this study are given in Appendix C.

Our study showed that on each day of tissue harvest over 1019 radicals were detected even in untreated B6C3F1 mouse lyophilized liver. In lyophilized tissue the radicals are immobilised in the solid matrix, Figure 1A. A large fraction of the total mass of liver is water. Water serves as the solvent in which essentially all biochemical reactions take place. The unique enthalpic and entropic characteristics of water are responsible for the most interesting radical reactions involving biological macromolecules. In hydrated liver only 10<sup>10</sup> radicals were quantitated, as radicals are in cells will readily react with lipids, enzymes, proteins and amino acids to gain an electron and become EPR silent. Liver cells have a number of chemicals which act as antioxidants to control injurious effects of radical production. An antioxidant can be defined "as any substance that when present at low concentrations compared to those of an oxidizable substrate, significantly delays or prevents oxidation of that substance" (Halliwell & Gutteridge 1989, Halliwell 1990). Antioxidants can be enzymatic or nonenzymatic and some are listed in Appendix B. We detected the ascorbate radicals on Day 6, Figure 10A and also on Days 2 and 3 in this study (results not shown). We also demonstrated that it is possible to generate the ascorbate radical by reaction of ascorbate ions with superoxide, Equation 11 and Figure 10B, but that the ascorbate radical produced by this chemical reaction is very short lived, Figure 10C. Lefebvre and Pezarat (1994) have deduced that ascorbate acts as a biological reductant. The presence or absence of ascorbate on antioxidant defenses may play a role in oxidant carcinogenesis. The oxidant ability of food nutrients such as ascorbate is being investigated to address its actual biological significance (Littlefield et al., 1995)

Determination of antioxidant effects were not a goal of this project. It is possible, daily gavage of corn oil supplemented with 0-1200 mgTCE/kg BW, altered the levels of antioxidants (Appendix B) in the B6C3F1 mice.

Free radical reactions give information of the events occurring in the liver at the molecular level. The radicals measured in this study do suggest a mechanism was evoked in the liver which decreased the levels of radicals in liver in B6C3F1 mice over the 60-day period.

The role these TCE-induced free radicals play in alteration of cell cycle progression and ultimately induction of tumors in B6C3F1 mice requires access and review of all the data gathered in this study. As a minimum the free radical data should definitely be compared to lipid peroxidation estimates and 8-hydroxy-deoxyguanosine determinations as well as the deposition of lipofusion, a pigment believed to be associated with free radicals and lipid peroxidation.

### **SECTION 5**

#### CONCLUSION

- Using EPR, we have quantitated the radicals in liver of B6C3F1 mice given water, or 0, 400, 800 or 1200 mg/kg BW TCE by corn oil gavage in a 60 day study.
- There was a 309% increase in radicals above control levels in lyophilized liver of B6C3F1 mice on Day 6.
- There was a dose-response of radicals induced by TCE in liver of B6C3F1 mice on Day 6.
- Ascorbate radicals were detected in the aqueous homogenate of liver on Days 2, 3,
   and 6 of this study.
- Possible free radical reactions occurring at the molecular level have been suggested.
- This data should be compared with results of the lipid peroxidation (MDA), 8hydroxy-deoxyguanosine determinations and pathology data of this study.
- When all the results are available, it may be possible to assess the relevance of free radical data to the biological effects of TCE in B6C3F1 mice.

### **SECTION 6**

#### REFERENCES

Ames, B.N., M.K. Shigenaga, T.M. Hagen 1993 Oxidants, antioxidants and the degenerative diseases of aging. Proc. Natl Acad Sci 90: 7915-22.

Atlas, R.M. 1995 Bioremediation, Chemical & Engineering News 73 (14): 32-42.

Berman, K. 1983 Interactions of trichloroethylene with DNA in vitro and with RNA and DNA of various mouse tissues in vivo. Arch Toxicol 54: 181

Carmichael, A.J., L. Steel-Goodwin, B. Gray., and C.M. Arroyo 1993 Reactions of active oxygen and nitrogen species studied by EPR and spin trapping. Free Rad Res Comms 19 (1) S1-S16.

Carmichael, A.J. and L. Steel-Goodwin 1994 Decomposition of peroxynitrite studied by EPR/spin trapping. J. Free Radicals in Biology & Medicine 2 (3) Q5.

Cavaleri, E.L. and E.G. Rosen 1984 In Free Radical in Biology Vol VI Chapter 5 (WA Pryor Ed) Academic Press, NY.

Channel, S.R. 1994 Trichloroethylene: Free Radical production, oxidant damage and cell proliferation in B6C3F1 mouse liver. OL/AL Work Unit 2312A202-Basic Environmental Initiative and 4223OT01-TCE Project.

Cleveland W, E. Grosse and W. Shyu 1992 Local regression models. In Statistical models in S. Pacific Grove: Wadsworth & Brooks/Cole pp 309-376.

Costa A.K., I.D. Katz, and K.M. Ivanetich 1980 Trichloroethylene: its interactions with hepatic microsomal cytochrome P-450 in vitro.

Daniel, F.B., A.B. DeAngelo, J.A. Stober, G.R. Olsen and N.P. Page 1992 Hepatocarcinogenicity of chloral hydrate, 2-chloroacetaldehyde and dichloroacetic acid in the male B6C3F1 mouse. Fund & Appl Toxicol 19 159-168.

**Dekant, W., A. Schultz, M. Metzler., and D. Henschler.** 1986 Absorption, elimination and metabolism of trichloroethylene: a quantitative comparison between rats and mice. Xenobiotic 16 (2) 143-152

**Elcombe, C.R.** 1985 Species differences in carcinogenicity and peroxisome proliferation due to trichloroethylene: A biochemical human hazard assessment. Receptors & Other Targets for Toxic Substances Arch Toxicol Suppl 8, 6-17.

- Fisher, J.W. and B.C. Allen 1993 Evaluating the risk of liver cancer in humans exposed to trichloroethylene using physiological models. Risk Analysis 13 (1) 87-95
- Fisher, J.W., M.L. Gargas, B.C. Allen and M.E. Anderson 1991 Physiologically based pharmacokinetic modeling with trichloethylene and its metabolite, trichloroacetic acid in the rat and mouse. Toxicol & Appl Pharmacol 109 183-195
- Fraga, C.G., B.E. Leibovitz and A.L. Tappel 1988 Lipid peroxidation measured as thiobarbituric acid reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Rad. Biol & Med 4: 155-161
- Gardner, H.W. 1983 Effects of lipid hydroperoxides on food components In: Xenobiotics in Foods and Feeds (J.W. Finley & DE Schwass Ed.) ACS Symposium Series 234, American Chemical Society, Washington D.C.
- Gonthier, B.P. and L.G. Barret 1989 In vitro spin trapping of free radicals produced during trichloroethylene and diethyl ether metabolism Tox Lett 47: 225-234
- Halliwell, B. 1990 How to characterize a biological antioxidant. Free Rad Res Comm 9 (1) 1-2
- Halliwell, B., and J.M.C. Gutteridge 1989 Free Radicals in Biology and Medicine 2nd Edition, Clarendon Press, Oxford UK
- Hastie W., and C. Loader 1993 Local regression: automatic kernel carpentry. Statist Sci 8: 120-128.
- **Installation Restoration Program**, Toxicology Guide 1985 Vol 1, sec 16 Arthur D. Little, Inc., Acorn Park, Cambridge, MA.
- Janzen, E.G., R.A. Towner, P.H. Krygsman, D.L. Haire and J.L. Poyer 1990 Structure identification of free radicals by ESR and GC/MS of PBN spin adducts from the *in vitro* and *in vivo* rat liver metabolism of halothane. Free Rad Res. Comms 9 (3-6): 343-351.
- Kasai, H., P.F. Crain, Y. Duchino, S. Nishimuri, A. Ootsuyama and H. Tanooka 1986 Formation of 8-hydroxiguanine moiety in cellular DNA by agents producing oxygen radicals and evidence of its repair. Carcinogenesis 7 (11): 1849-1851
- Kalyanaraman, B., and K. Sivarajah 1984 In Free Radicals in Biology Vol VI Chapter 5 (WA Pryor Ed) Academic Press

Knecht, K.T., and R.P. Mason 1992 Inhibition of radical adduct reduction and reoxidation of the corresponding hydroxylamines in *in vivo* spin trapping and carbon tetrachloride-derived radicals Free Rad Biol & Med 13: 151-160

Littlefield, N.A., and B.S. Hass 1995 Damage to DNA by cadmium or nickel in the presence of ascorbate. Ann Clin Lab Sci 25 6: 485-492

Lefrebvre, Y., and H. Pezerat 1994 Reactive oxygen species produced from chromate pigments and ascorbate. Envir Hlth Perspect 102: 243-245

Mason, R.P. 1982 In: Free Radicals in Biology Vol V pp 161-196 (WA Pryor Ed); Academic Press, NY

Mason, R.P. 1984 Spin trapping free radical metabolites of toxic chemicals. In Spin Labeling in Pharmacology Chapter 2 pp 87-129

National Cancer Institute. 1976 Carcinogenesis bioassay of trichloroethylene CAS No 79-01-6 DHEW Publication No (NIH) 76-802

NTP (National Toxicology Program) 1982 Carcinogenesis bioassay of Trichloroethylene (CAS No 79-01-6) in F344/N rats and B6C3F1 mice (Gavage Studies). Tech rep No 243.

Ni, Y-C., T.Y. Wong, F.F. Kadlubar, and P.P Fu 1994 Hepatic metabolism of chloral hydrate to free radical(s) and induction of lipid peroxidation Biochem & Biophys Res Comm 204 (2): 937-943

Reilly, P.M., H.J. Schiller, abd G.B. Buckley 1991 Pharmacological approach to tissue injury mediated by free radical(s) and induction of lipid peroxidation. Biochem & Biophy Res Comm 204 (2): 93-943.

Richter C., J.W. Part and B.N. Ames 1988 Normal oxidative damage to mitochondrial and nuclear DNA is extensive. PNAC 85: 6465-6467

Rice -Evans., C.A., A. T. Diplock and M.C.R. Symons 1991 Techniques in free radical research In Laboratory Techniques in Biochemistry and Molecular Biology (RH Burdon & PH van Knippenberg Ed) Elsevier, NY

Sentjuri, M., and R.P. Mason 1992 Inhibition of radical adduct reduction and reoxidation of the corresponding hydoxylamines in *in vivo* spin trapping of carbon tetrachloride derived radicals. Free Rad Biol & Med 13: 151-160

von Sonntag, C., and H-P. Schuchmann 1991 The elucidation of peroxyl radical reactions in aqueous solution with the help of radiation-chemical methods. Angew Chem Int Ed Engl 30: 1229-1283

Steel-Goodwin, L., T.L. Pravecek and A.J. Carmichael 1994 Trichlorethylene: An EPR Study J Free Rad in Biol & Med 2: (3) Q10

Steel-Goodwin, L and A.J. Carmichael 1995 Free radicals of TCE: An EPR spin trapping study OL/AL Submitted technical report.

Steel-Goodwin, L., and B. Hutchens 1995 Efficiency of PBN to trap 3-CAR in B6C3F1 mouse liver: An EPR study. OL/AL Submitted technical report

Stevens, D.K. 1994 Origin, role and fate of dichloroacetic acid in the metabolism of trichloroethylene Status report OL/AL Contract # F33615-91--0539 Mar 94.

Taffe, B.G., N. Takahashi, J.W. Kensler and R.P Mason 1987 Generation of free radicals from organic hydroperoxide tumor promoters in isolated mouse keratinocytes. J Biol Chem 12143-12149

Trapp, C., B. Waters, G. Lebendiger, and M. Perkins 1983 Biochem Biophysics Res Comm 112 (2) 602-605

### APPENDIX A

### RADICAL INTERACTION EQUATIONS

(1) 
$$2H^+ + O_2^{-\bullet} + O_2^{-\bullet} \rightarrow H_2O_2 + O_2$$

$$(2) 2NO^{\bullet} + O_2 \rightarrow 2NO_2^{\bullet}$$

(3) 
$$H_2O_2 + NO_2 + H^+ \rightarrow ONOOH + H_2O$$

(4) 
$$O_2^{\bullet} + NO^{\bullet} + H^{+} \rightarrow ONOOH$$

(5) ONOOH 
$$\rightarrow$$
 OH + NO<sub>2</sub>

(6) 
$$^{\circ}OH + NO_{2}^{\circ} \rightarrow NO_{3}^{-} + H^{+}$$

$$O_2^{-\bullet} + Fe^{3+} \rightarrow O_2 + Fe^{2+}$$

(8) 
$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + {}^{\bullet}OH + OH^{-}$$

(9) 
$$NO_3^- + 3Fe^{2+} + 4H^+ \rightarrow NO^+ + 3Fe^{3+} + 2H_2O$$

(10) 
$$H_2O_2 + O_2^{-\bullet} \rightarrow O_2 + OH^- + {}^{\bullet}OH$$

(11) 
$$2O_2^{\bullet} + 2C_6H_7O_6^{\bullet} \rightarrow H_2O_2 + O_2 + 2C_6H_6O_6^{\bullet}$$

(12) ROOH + 
$$O_2^{-\bullet}$$
  $\rightarrow$  ROO + HOO•

(13)

a-tocopherol

(14) 
$$CIHC=CCl_2 + e^- \rightarrow CH=CCl_2 + CI^-$$

# APPENDIX B

# **BIOLOGICAL ANTIOXIDANTS**



# APPENDIX C

# RAW DATA and STATISTICAL ANALYSIS

| Table 1 Radical quantitation on Day 2                   | 40 |
|---------------------------------------------------------|----|
| Table 2 Radical quantitation on Day 4                   | 40 |
| Table 3 Radical quantitation on Day 6                   | 41 |
| Table 4 Radical quantitation on Day 10                  | 41 |
| Table 5 Radical quantitation on Day 14                  | 42 |
| Table 6 Radical quantitation on Day 21                  | 42 |
| Table 7 Radical quantitation on Day 28                  | 43 |
| Table 8 Radical quantitation on Day 35                  | 43 |
| Table 9 Radical quantitation on Day 42                  | 44 |
| Table 10 Radical quantitation on Day 45                 | 44 |
| Table 11 Radical quantitation on Day 56                 | 45 |
| Table 12 Radical confirmation on Day 6                  | 46 |
| Water treated mice statistical analysis                 | 47 |
| Corn oil treated mice statistical analysis              | 59 |
| TCE Treated mice statistical analysis                   | 71 |
| AOV of TCE effects on correction of background radicals |    |
| in lyophilized liver                                    | 86 |
| AOV of TCE response on Day 6 in non-lyophilized liver   | 92 |

Table 1. Radical quantitation on Day 2

| Sample ID | Treatment | Concentration nM               | Radicals X 10 <sup>19</sup> /mg protein |
|-----------|-----------|--------------------------------|-----------------------------------------|
| A1        | Water     | 49.92 ± 0.42                   | 27.24                                   |
| A2        | Water     | $54.87 \pm 2.98$               | 30.83                                   |
| A3        | Water     | $47.18 \pm 0.17$               | 17.48                                   |
| A10       | 1200 TCE  | $22.18 \pm 0.55$               | 1.19                                    |
| A11       | 1200 TCE  | 22.66 ± 1.59                   | 1.19                                    |
| A12       | 1200 TCE  | 30.46 ± 1.59                   | 2.06                                    |
| A13       | 1200 TCE  | $30.30 \pm 4.88$               | 1.1                                     |
| A14       | 1200 TCE  | $36.89 \pm 6.06$               | 1.05                                    |
| A29       | Corn Oil  | $20.46 \pm 3.8$                | 1.09                                    |
| A31       | Corn Oil  | 40.60 ± 5.12                   | 1.4                                     |
| A32       | Corn Oil  | $23.40 \pm 1.67$               | 1.23                                    |
| A33       | Com Oil   | 21.26 ± 3.47                   | 1.02                                    |
| A34       | Com Oil   | 38.88 ± 5.32                   | 1.22                                    |
| A35       | Corn Oil  | $37.33 \pm 1.01$ mean $\pm$ SD | 1.15                                    |

Table 2. Radical quantitation on Day 4

| Sample     | ID Treatment | Concentration nM | Radicals X 10E <sup>19</sup> /mg protein |
|------------|--------------|------------------|------------------------------------------|
| B4         | Water        | 46.77 ± 0.55     | 19.13                                    |
| <b>B</b> 5 | Water        | $40.27 \pm 2.48$ | 10.97                                    |
| <b>B</b> 6 | Water        | $39.03 \pm 0.19$ | 5.29                                     |
| <b>B</b> 8 | 1200 TCE     | $61.52 \pm 4.20$ | 1.72                                     |
| <b>B</b> 9 | 1200 TCE     | 57.41 ± 1.22     | 1.07                                     |
| B10        | 1200 TCE     | 74 ± 13.31       | 1.95                                     |
| B11        | 1200 TCE     | 68.12 ± 2.29     | 2.33                                     |
| B12        | 1200 TCE     | $58.82 \pm 3.43$ | 1.08                                     |
| B13        | 1200 TCE     | $53.02 \pm 0.98$ | 1.53                                     |
| B29        | Corn Oil     | 49.51 ± 1.37     | 1.37                                     |
| B30        | Corn Oil     | 63.61 ± 1.90     | 2.25                                     |
| B31        | Corn Oil     | $70.77 \pm 8.49$ | 1.85                                     |
| B32        | Corn Oil     | $60.69 \pm 3.48$ | 1.15                                     |
| B33        | Corn Oil     | $70.08 \pm 2.54$ | 2.06                                     |
| B34        | Corn Oil     | 66.71 ± 3.48     | 1.62                                     |
| B35        | Corn Oil     | 64.99 ± 3.2      | 0.98                                     |
|            |              | mean ± SD        |                                          |

Table 3. Radical quantitation on Day 6

| Sample I | D Treatment | Concentration nM          | Radicals X 10 <sup>19</sup> /mg protein |
|----------|-------------|---------------------------|-----------------------------------------|
| C4       | Water       | 57.13 ± 1.63              | 24.54                                   |
| C5       | Water       | $51.81 \pm 2.73$          | 30.62                                   |
| C6       | Water       | $52.44 \pm 0.40$          | 21.12                                   |
| C8       | 1200 TCE    | 59.62 ± 1.97              | 34.50                                   |
| C9       | 1200 TCE    | 64.74 ± 1.66              | 26.07                                   |
| C10      | 1200 TCE    | $60.06 \pm 3.34$          | 27.52                                   |
| C11      | 1200 TCE    | 59.71 ± 1.08              | 64.34                                   |
| C12      | 1200 TCE    | $56.73 \pm 4.31$          | <b>45.17</b>                            |
| C13      | 1200 TCE    | $65.47 \pm 0.53$          | 43.42                                   |
| C14      | 1200 TCE    | 62.43 ± 3.27              | 28.60                                   |
| C29      | Corn Oil    | 59.55 ± 3.97              | 20.16                                   |
| C30      | Com Oil     | $60.24 \pm 0.68$          | 28.03                                   |
| C31      | Com Oil     | $60.52 \pm 0.59$          | 25.54                                   |
| C32      | Com Oil     | $57.28 \pm 0.92$          | 20.31                                   |
| C33      | Corn Oil    | $60.80 \pm 0.04$          | 28.91                                   |
| C34      | Com Oil     | $58.03 \pm 0.21$          | 31.31                                   |
| C35      | Com Oil     | 59.36 ± 0.83<br>mean ± SD | 42.97                                   |

Table 4. Radical quantitation on Day 10

| Sample ID | Treatment | Concentration nM | Radicals X 10 <sup>19</sup> /mg protein |
|-----------|-----------|------------------|-----------------------------------------|
| D4        | Water     | 70.72± 1.08      | 24.02                                   |
| D5        | Water     | $73.18 \pm 2.00$ | 20.27                                   |
| D6        | Water     | 95.11 ± 1.51     | 23.7                                    |
| D7        | 1200 TCE  | $92.83 \pm 0.23$ | 31.99                                   |
| D8        | 1200 TCE  | 77.92 ± 1.61     | 55.37                                   |
| D9        | 1200 TCE  | $97.87 \pm 4.02$ | 40.50                                   |
| D10       | 1200 TCE  | $76.80 \pm 0.28$ | 20.83                                   |
| D11       | 1200 TCE  | $97.15 \pm 3.30$ | 34.75                                   |
| D12       | 1200 TCE  | $73.77 \pm 1.42$ | 25.35                                   |
| D13       | 1200 TCE  | $95.79 \pm 6.86$ | 33.37                                   |
| D14       | 1200 TCE  | $75.40 \pm 3.30$ | 24.07                                   |
| D29       | Com Oil   | 84.09 ± 1.57     | 24.20                                   |
| D30       | Com Oil   | 85.31 ± 2.00     | 43.25                                   |
| D31       | Corn Oil  | 69.88 ± 0.39     | 27.76                                   |
| D32       | Corn Oil  | 91.26 ± 0.64     | 46.00                                   |
| D33       | Com Oil   | $71.13 \pm 1.72$ | 24.40                                   |
| D34       | Corn Oil  | $96.39 \pm 0.99$ | 26.50                                   |
| D35       | Corn Oil  | $77.93 \pm 1.26$ | 39.18                                   |
|           |           | mean ± SD        |                                         |

Table 5. Radical quantitation on Day 14

| Sample ID  | Treatment | Concentration nM          | Radicals X 10 <sup>19</sup> /mg protein |
|------------|-----------|---------------------------|-----------------------------------------|
| E4         | Water     | 59.15 ± 0.10              | 22.10                                   |
| <b>E</b> 5 | Water     | 48.56 ± 2.48              | 23.51                                   |
| <b>E</b> 6 | Water     | $51.53 \pm 0.29$          | 22.16                                   |
| E7         | 1200 TCE  | 68.29 ± 3.65              | 20.22                                   |
| E8         | 1200 TCE  | 49.61 ± 2.55              | 19.55                                   |
| E9         | 1200 TCE  | 51.88 ± 4.94              | 23.43                                   |
| E10        | 1200 TCE  | $58.64 \pm 5.64$          | 25.21                                   |
| E11        | 1200 TCE  | 59.19 ± 1.59              | 47.1                                    |
| E18        | Com Oil   | $60.67 \pm 2.12$          | 26.50                                   |
| E22        | Corn Oil  | 55.78 ± 1.08              | 31.20                                   |
| E24        | Com Oil   | 59.59 ± 2.56              | 24.41                                   |
| E25        | Com Oil   | $62.19 \pm 0.34$          | 27.85                                   |
| E26        | Corn Oil  | 68.05 ± 2.80              | 34.97                                   |
| E28        | Corn Oil  | 67.76 ± 2.94<br>mean ± SD | 25.33                                   |

Table 6. Radical quantitation on Day 21

| Sample ID  | Treatment | Concentration nM          | Radicals X 10 <sup>19</sup> /mg protein |
|------------|-----------|---------------------------|-----------------------------------------|
| F4         | Water     | 58.25 ± 0.39              | 33.55                                   |
| <b>F</b> 5 | Water     | $54.54 \pm 1.15$          | 33.50                                   |
| F6         | Water     | $53.14 \pm 2.93$          | 34.48                                   |
| F7         | 1200 TCE  | $51.09 \pm 6.45$          | 36.70                                   |
| F8         | 1200 TCE  | $55.42 \pm 4.47$          | 30.00                                   |
| F9         | 1200 TCE  | 60.97 ± 2.24              | 44.50                                   |
| F10        | 1200 TCE  | 59.09 ± 1.61              | 28.87                                   |
| F11        | 1200 TCE  | $58.36 \pm 0.87$          | 40.28                                   |
| F12        | 1200 TCE  | 48.96 ± 2.70              | 34.27                                   |
| F25        | Com Oil   | 69.91 ± 1.32              | 30.74                                   |
| F26        | Com Oil   | 50.49 ± 1.73              | 27.82                                   |
| F27        | Corn Oil  | 51.79 ± 3.19              | 22.88                                   |
| F28        | Corn Oil  | $51.73 \pm 1.54$          | 53.20                                   |
| F29        | Com Oil   | 56.16 ± 3.51              | 24.87                                   |
| F30        | Com Oil   | 49.63 ± 3.02              | 30.83                                   |
| F31        | Corn Oil  | 59.21 ± 1.67<br>mean ± SD | 39.93                                   |

Table 7. Radical quantitation on Day 28

| Sample ID | Treatment | Concentration nM               | Radicals X 10 <sup>19</sup> /mg protein |
|-----------|-----------|--------------------------------|-----------------------------------------|
| G4        | Water     | 90.21 ± 5.80                   | 7.11                                    |
| G5        | Water     | $86.22 \pm 7.80$               | 5.77                                    |
| G6        | Water     | $79.00 \pm 1.89$               | 5.43                                    |
| G7        | Water     | $92.25 \pm 0.60$               | 6.57                                    |
| G8        | 1200 TCE  | $88.39 \pm 5.00$               | 5.69                                    |
| G9        | 1200 TCE  | $84.10 \pm 9.00$               | 4.83                                    |
| G10       | 1200 TCE  | $77.00 \pm 2.28$               | 5.41                                    |
| G11       | 1200 TCE  | $72.00 \pm 1.13$               | 5.14                                    |
| G12       | 1200 TCE  | $61.40 \pm 2.40$               | 6.73                                    |
| G13       | 1200 TCE  | $58.94 \pm 9.83$               | 6.45                                    |
| G26       | Corn Oil  | $66.71 \pm 2.06$               | 5.13                                    |
| G27       | Com Oil   | 58.94 ± 1.23                   | 4.99                                    |
| G28       | Com Oil   | $75.45 \pm 0.42$               | 5.08                                    |
| G29       | Com Oil   | $85.32 \pm 3.12$               | 4.98                                    |
| G31       | Corn Oil  | $67.17 \pm 2.80$ mean $\pm$ SD | 4.67                                    |

Table 8. Radical quantitation on Day 35

| Sample ID | Treatment | Concentration nM   | Radicals X 10 <sup>19</sup> /mg protein |
|-----------|-----------|--------------------|-----------------------------------------|
| H4        | Water     | 498.17 ± 2.02      | 0.96                                    |
| H5        | Water     | 491.08 ± 1.43      | 1.26                                    |
| H7        | Water     | $506.72 \pm 2.82$  | 1.58                                    |
| H8        | 1200 TCE  | $534.55 \pm 2.25$  | 0.94                                    |
| H9        | 1200 TCE  | 518.68 ± 2.33      | 1.32                                    |
| H10       | 1200 TCE  | 520.65 ± 10.25     | 1.29                                    |
| H11       | 1200 TCE  | $521.72 \pm 2.99$  | 1.14                                    |
| H12       | 1200 TCE  | $542.75 \pm 20.85$ | 1.13                                    |
| H14       | 1200 TCE  | $527.05 \pm 2.65$  | 0.99                                    |
| H30       | Corn Oil  | 494.47 ± 2.07      | 1.27                                    |
| H31       | Corn Oil  | 514.51 ± 4.74      | 0.76                                    |
| H33       | Corn Oil  | $422.00 \pm 0.17$  | 1.44                                    |
| H34       | Corn Oil  | 422.35 ± 0.17      | 1.57                                    |
| H35       | Corn Oil  | $421.77 \pm 0.10$  | 0.88                                    |
|           | -         | mean ± SD          | •                                       |

Table 9. Radical Quantitation on Day 42

| Sample ID      | Treatment | Concentration nM  | Radicals X 10 <sup>19</sup> /mg protein |
|----------------|-----------|-------------------|-----------------------------------------|
| <u>.</u><br>[4 | Water     | 77.33 ± 1.77      | 14.8                                    |
| 15             | Water     | $122.78 \pm 2.70$ | 12.61                                   |
| I6             | Water     | $79.81 \pm 4.40$  | 9.71                                    |
| 17             | Water     | $95.58 \pm 2.06$  | 8.96                                    |
| I8             | 1200 TCE  | $89.52 \pm 10.54$ | 11.44                                   |
| 19             | 1200 TCE  | $94.47 \pm 0.33$  | 9.99                                    |
| I10            | 1200 TCE  | $104.23 \pm 1.82$ | 9.66                                    |
| I11            | 1200 TCE  | $109.93 \pm 2.15$ | 7.15                                    |
| I12            | 1200 TCE  | $89.18 \pm 3.40$  | 15.54                                   |
| I13            | 1200 TCE  | 131.53 ± 10.65    | 10.63                                   |
| I14            | 1200 TCE  | $108.34 \pm 2.04$ | 10.28                                   |
| 129            | Corn Oil  | 93.84 ± 5.57      | 9.74                                    |
| I34            | Corn Oil  | $100.46 \pm 3.20$ | 9.53                                    |
|                |           | mean ± SD         |                                         |

Table 10. Radical quantitation on Day 45

| Sample ID  | Treatment   | Concentration nM   | Radicals X 10 <sup>19</sup> /mg protein |
|------------|-------------|--------------------|-----------------------------------------|
| J4         | Water       | $111.64 \pm 11.30$ | 6.72                                    |
| J5         | Water       | $82.43 \pm 0.98$   | 10.15                                   |
| J6         | Water       | $78.70 \pm 7.77$   | 8.04                                    |
| J <b>7</b> | Water       | $89.89 \pm 1.80$   | 6.13                                    |
| J8         | 1200 TCE    | $137.13 \pm 6.35$  | 20.01                                   |
| <b>J</b> 9 | 1200 TCE    | $77.20 \pm 0.27$   | 7.21                                    |
| J10        | 1200 TCE    | $125.18 \pm 1.70$  | 9.94                                    |
| J11        | 1200 TCE    | $73.02 \pm 0.80$   | 9.44                                    |
| J12        | 1200 TCE    | $75.75 \pm 1.81$   | 8.37                                    |
| J13        | 1200 TCE    | $87.77 \pm 0.005$  | 8.71                                    |
| J14        | 1200 TCE    | $88.16 \pm 0.47$   | 6.5                                     |
| J22        | Com Oil     | $121.38 \pm 11.1$  | 7.52                                    |
| J23        | Com Oil     | $116.03 \pm 6.65$  | 8.87                                    |
| J24        | Corn Oil    | $90.70 \pm 1.73$   | 7.75                                    |
| J25        | Corn Oil    | $122.33 \pm 2.45$  | 2.32                                    |
| J26        | Corn Oil    | 88.78 ± 2.93       | 5.12                                    |
| J27        | Corn Oil    | $114.17 \pm 8.81$  | 8.84                                    |
| J28        | Corn Oil    | $102.93 \pm 0.17$  | 7.39                                    |
|            | <del></del> | $mean \pm SD$      |                                         |

Table 11 Radical quantitation on Day 56

| Sample ID   | Treatment | Concentration nM | Radicals X 10 <sup>19</sup> /mg protein |
|-------------|-----------|------------------|-----------------------------------------|
| K17         | Water     | 0± 0             | 0                                       |
| K15         | Water     | 0± 0             | 0                                       |
| K18         | Water     | 0± 0             | 0                                       |
| <b>K</b> 16 | Water     | 0± 0             | 0                                       |
| <b>K</b> 5  | 1200 TCE  | $0 \pm 0$        | 0                                       |
| <b>K</b> 6  | 1200 TCE  | 14.46± 0         | 4.24                                    |
| <b>K</b> 7  | 1200 TCE  | $0 \pm 0$        | 0                                       |
| K8          | 1200 TCE  | $0 \pm 0$        | 0                                       |
| <b>K</b> 9  | 1200 TCE  | 0± 0             | 0                                       |
| K10         | 1200 TCE  | 0± 0             | 0                                       |
| <b>K</b> 11 | 1200 TCE  | $0 \pm 0$        | 0                                       |
| K12         | 1200 TCE  | $0\pm0$          | 0                                       |
| K13         | 1200 TCE  | $12 \pm 0$       | 1.56                                    |
| K14         | 1200 TCE  | 0± 0             | 0                                       |
| K31         | Com Oil   | $0 \pm 0$        | 0                                       |
| K33         | Corn Oil  | $0 \pm 0$        | 0                                       |
|             |           | mean ± SD        |                                         |

Table 12. Radical confirmation on Day 6

| Sample<br>ID | Treatment | Double Integration | Radicals X 10 <sup>10</sup> / mg protein | x 10 <sup>10</sup> / mg protein |
|--------------|-----------|--------------------|------------------------------------------|---------------------------------|
| C1           | Water     | 0.2299             | 1049.9                                   | $0 \pm 0$                       |
| C2           |           | 0.1063             | 479.28                                   |                                 |
| C3           |           | 0.01723            | 87.99                                    |                                 |
| C4           |           | 0.002813           | 18.75                                    |                                 |
| C5           |           | 0.1489             | 1158.14                                  |                                 |
| C6           |           | 0.1451             | 507.04                                   |                                 |
| <b>C</b> 7   |           | 0.04728            | 290.64                                   |                                 |
| C8           | 1200 TCE  | 0.07996            | 358.04                                   | $392 \pm 0.01$                  |
| C9           |           | 0.1691             | 1195.66                                  |                                 |
| C10          |           | 0.6893             | 3240.71                                  |                                 |
| C11          |           | 0.07708            | 265.48                                   |                                 |
| C12          |           | 0.3597             | 2253.25                                  |                                 |
| C13          |           | 0.1531             | 973.53                                   |                                 |
| C14          |           | 0.2098             | 1549.95                                  |                                 |
| C15          | 800 TCE   | 0.03732            | 198.12                                   | $113 \pm 0.01$                  |
| C16          |           | 0.2322             | 1275.18                                  |                                 |
| C17          |           | 0.2153             | 1001.14                                  |                                 |
| C18          |           | 0.5008             | 2153.13                                  |                                 |
| C19          |           | 0.003388           | 1040.44                                  |                                 |
| C20          |           | 0.311              | 1753.42                                  |                                 |
| C21          | 400 TCE   | 0.2807             | 1495.17                                  | $281 \pm 0.01$                  |
| C22          |           | 0.3717             | 3671.5                                   |                                 |
| C23          |           | 0.005133           | 15.04                                    |                                 |
| C24          |           | 0.3712             | 2457.22                                  |                                 |
| C25          |           | 0.1032             | 411.62                                   |                                 |
| C27          |           | 0.01272            | 52.53                                    |                                 |
| C28          |           | 0.3795             | 1160.95                                  |                                 |
| C29          | 0 TCE     | 0.2315             | 940.02                                   | $0 \pm 0$                       |
| C30          |           | 0.2094             | 690.47                                   |                                 |
| C31          |           | 0.2288             | 113.5                                    |                                 |
| C32          |           | 0.1653             | 112.77                                   |                                 |
| C33          | 4         | 0.05348            | 281.27                                   |                                 |
| C34          |           | 0.1271             | 1258.67                                  |                                 |
| C35          |           | 0.2793             | 1660.84                                  |                                 |

### APPENDIX A

### RADICAL INTERACTION EQUATIONS

(1) 
$$2H^+ + O_2^{-\bullet} + O_2^{-\bullet} \rightarrow H_2O_2 + O_2$$

$$(2) 2NO^{\circ} + O_2 \rightarrow 2NO_2^{\circ}$$

(3) 
$$H_2O_2 + NO_2^- + H^+ \rightarrow ONOOH + H_2O$$

$$(4) O_2^{-\bullet} + NO^{\bullet} + H^{+} \rightarrow ONOOH$$

(5) ONOOH 
$$\rightarrow$$
 'OH + NO<sub>2</sub>'

(6) 
$${}^{\bullet}OH + NO_2 {}^{\bullet} \rightarrow NO_3 {}^{-} + H^{+}$$

$$(7) O2-• + Fe3+ \rightarrow O2 + Fe2+$$

(8) 
$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + {}^{\bullet}OH + OH^{-}$$

(9) 
$$NO_3^- + 3Fe^{2+} + 4H^+ \rightarrow NO^+ + 3Fe^{3+} + 2H_2O$$

(11) 
$$2O_2^{-\bullet} + 2C_6H_7O_6^{-} \rightarrow H_2O_2 + O_2 + 2C_6H_6O_6^{\bullet}$$

(12) ROOH + 
$$O_2^{-\bullet}$$
  $\rightarrow$  ROO' + HOO•

HO ROO ROOH ROOH

α-tocopherol

OOR

(14) 
$$CIHC=CCl_2 + e^- \rightarrow CH=CCl_2 + CT$$

# APPENDIX B

# **BIOLOGICAL ANTIOXIDANTS**



## WATER TREATED MICE STATISTICAL ANALYSIS

# Statistical data: (1) Analysis of Variance, (2). Diagnostic validation of data and (3) Interpretation Graph

## 1. Analysis of Radicals from water gavaged mice

| SOURCE                         | SUM OF<br>SQUARES                  | MEAN<br>DF                               | f<br>SQUARE     | VALUE  | PROB > F |
|--------------------------------|------------------------------------|------------------------------------------|-----------------|--------|----------|
| MODEL<br>RESIDUAL<br>COR TOTAL | 3851.6506<br>397.3940<br>4249.0446 | 10<br>25<br>35                           | 385.17<br>15.90 | 24.23  | < 0.0001 |
| ROOT MSE<br>DEP MEAN<br>C.V. % | 14.4588A                           | -squared<br>DJ R-squarei<br>RED R-squari |                 |        |          |
| Predicted                      | Residual Sum of Squ                | uares (PRESS                             | 5) =            | 788.53 |          |

MEANS (ADJUSTED, IF NECESSARY)

| Group                                          | ESTIMATED MEAN                                                                                                    | STANDARD ERROR                                                                                   |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J | 25.1833<br>9.8225<br>25.0750<br>25.3200<br>22.5900<br>33.5250<br>6.4400<br>1.2653<br>11.5200<br>7.9600<br>-0.0000 | 2.3019<br>1.9935<br>1.9935<br>2.3019<br>2.3019<br>2.8192<br>2.8192<br>2.3019<br>1.9935<br>1.9935 |

| 1 vs 10 17.22 1 3.045 5.656 < 0.0001 1 vs 11 2 vs 3 -15.25 1 2.819 -5.410 < 0.0001 2 vs 4 -15.50 1 3.045 -5.089 < 0.0001 2 vs 5 -12.77 1 3.045 -4.193 0.0003 | Treatm<br>1 vs<br>1 vs<br>1 vs<br>1 vs<br>1 vs<br>1 vs | 2<br>3<br>4<br>5<br>6<br>7<br>8 | MEAN<br>DIFFERENCE<br>15.36<br>0.11<br>-0.14<br>2.59<br>-8.34<br>18.74<br>23.92 | STANDARI<br>DF<br>1<br>1<br>1<br>1<br>1 | ERROR 3.045 3.045 3.255 3.255 3.640 3.640 3.255 | COEFFICIENT=0 5.044 0.036 -0.042 0.797 -2.292 5.150 7.347 4.487 | PROB >  t <br>< 0.0001<br>0.9719<br>0.9668<br>0.4332<br>0.0306<br>< 0.0001<br>< 0.0001 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1 vs 11                                                                                                                                                      | 1 vs                                                   | 9                               | 13.66                                                                           | 1                                       | 3.045<br>3.045                                  | 4.487<br>5.656                                                  |                                                                                        |
| 2 vs 4 -15.50 1 3.045 -5.089 < 0.0001<br>2 vs 5 -12.77 1 3.045 -4.193 0.0003                                                                                 | 1 vs                                                   | 11                              | 25.18                                                                           | 1                                       |                                                 |                                                                 | < 0.0001                                                                               |
| 2 vs 6 -23.70 1 3.453 -6.865 < 0.0001                                                                                                                        | 2 vs                                                   | 4 5                             | -12.77                                                                          | 1                                       |                                                 | • • • • •                                                       |                                                                                        |

| 2 vs 7 2 vs 8 2 vs 9 2 vs 10 2 vs 11 3 vs 5 3 vs 6 3 vs 6 3 vs 10 3 vs 11 4 vs 6 4 vs 10 4 vs 11 5 vs 6 5 vs 9 5 vs 10 5 vs 11 6 vs 9 6 vs 10 7 vs 9 7 vs 10 7 vs 9 7 vs 10 9 vs 11 9 vs 11 9 vs 11 10 9 vs 11 |                                                                                                                 | 3.38<br>8.56<br>-1.70<br>1.86<br>9.82<br>-0.25<br>2.48<br>-8.45<br>18.63<br>23.81<br>13.55<br>17.12<br>25.07<br>2.73<br>-8.20<br>18.88<br>24.05<br>13.80<br>17.36<br>25.32<br>-10.93<br>16.15<br>21.32<br>11.07<br>14.63<br>22.59<br>27.09<br>32.26<br>22.00<br>25.56<br>33.52<br>-1.52<br>6.44<br>-10.25<br>7.96 | 1<br>1<br>1                                                                                                     | 3.453<br>3.045<br>9.819<br>9.3.045<br>3.453<br>3.453<br>3.453<br>3.453<br>3.640<br>3.255<br>3.640<br>3.255<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.05<br>3.05<br>3.05<br>3.05<br>3.05<br>3.05<br>3.05<br>3.0 | 20030025746802574583476867911-0132014                                                                                     | 9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810<br>9810 | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.                                                                                    | 0001<br>0001<br>0001                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| OBS<br>ORD                                                                                                                                                                                                     | ACTUAL<br>VALUE                                                                                                 | PREDICTED<br>VALUE                                                                                                                                                                                                                                                                                                | STUDENT<br>RESIDUAL                                                                                             | COOK'S<br>LEVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OUTLIER<br>RESID                                                                                                          | RUN<br>DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T VALUE                                                                                                                   | ORD                                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                                                                                              | 27.24<br>30.83<br>17.48<br>19.13<br>10.97<br>5.29<br>3.90<br>24.54<br>30.62<br>21.12<br>24.02<br>20.27<br>23.70 | 25.18<br>25.18<br>25.18<br>9.82<br>9.82<br>9.82<br>25.07<br>25.07<br>25.08<br>25.08<br>25.32                                                                                                                                                                                                                      | 2.057<br>5.647<br>-7.703<br>9.308<br>1.148<br>-4.533<br>-5.923<br>-0.535<br>5.545<br>-3.955<br>-1.055<br>-1.620 | 0.333<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.632<br>1.735<br>-2.366<br>2.696<br>0.332<br>-1.313<br>-1.715<br>-0.155<br>1.606<br>-1.145<br>-0.306<br>-1.551<br>-0.498 | 0.018<br>0.137<br>0.255<br>0.220<br>0.003<br>0.052<br>0.089<br>0.001<br>0.078<br>0.040<br>0.003<br>0.109<br>0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.624<br>1.812<br>-2.632<br>3.136<br>0.326<br>-1.333<br>-1.789<br>-0.152<br>1.662<br>-1.153<br>-0.300<br>-1.599<br>-0.490 | 24<br>15<br>20<br>33<br>34<br>30<br>27<br>16<br>21<br>36<br>5 |

| 14 | 31.99        | 25.32 | 6.670  | 0.333 | 2.049  | 0.191 | 2.201  | 10 |
|----|--------------|-------|--------|-------|--------|-------|--------|----|
| 15 | 22.10        | 22.59 | -0.490 | 0.333 | -0.151 | 0.001 | -0.148 | 11 |
|    | 23.51        | 22.59 | 0.920  | 0.333 | 0.283  | 0.004 | 0.277  | 28 |
| 16 | <del>-</del> | 22.59 | -0.430 | 0.333 | -0.132 | 0.001 | -0.129 | 4  |
| 17 | 22.16        |       | 0.025  | 0.500 | 0.009  | 0.000 | 0.009  | 17 |
| 18 | 33.55        | 33.52 |        |       |        | 0.000 | -0.009 | 31 |
| 19 | 33.50        | 33.52 | -0.025 | 0.500 | -0.009 |       | •      | 8  |
| 20 | 7.11         | 6.44  | 0.670  | 0.500 | 0.238  | 0.005 | 0.233  |    |
| 21 | 5.77         | 6.44  | -0.670 | 0.500 | -0.238 | 0.005 | -0.233 | 6  |
| 22 | 1.58         | 1.27  | 0.310  | 0.333 | 0.095  | 0.000 | 0.093  | 29 |
| 23 | 1.26         | 1.27  | -0.007 | 0.333 | -0.002 | 0.000 | -0.002 | 19 |
|    | 0.96         | 1.27  | -0.303 | 0.333 | -0.093 | 0.000 | -0.091 | 14 |
| 24 |              | 11.52 | 3.280  | 0.250 | 0.950  | 0.027 | 0.948  | 2  |
| 25 | 14.80        |       | 1.090  | 0.250 | 0.316  | 0.003 | 0.310  | 25 |
| 26 | 12.61        | 11.52 |        |       |        | 0.008 | -0.516 | 18 |
| 27 | 9.71         | 11.52 | -1.810 | 0.250 | -0.524 |       |        |    |
| 28 | 8.96         | 11.52 | -2.560 | 0.250 | -0.741 | 0.017 | -0.735 | 13 |
| 29 | 6.72         | 7.96  | -1.240 | 0.250 | -0.359 | 0.004 | -0.353 | 12 |
| 30 | 10.95        | 7.96  | 2.990  | 0.250 | 0.866  | 0.023 | 0.861  | 26 |
| 31 | 8.04         | 7.96  | 0.080  | 0.250 | 0.023  | 0.000 | 0.023  | 23 |
|    | 6.13         | 7.96  | -1.830 | 0.250 | -0.530 | 0.009 | -0.522 | 1  |
| 32 |              | 0.00  | 0.000  | 0.250 | 0.000  | 0.000 | 0.000  | 22 |
| 33 | 0.00         | •     | =      |       | 0.000  | 0.000 | 0.000  | 32 |
| 34 | 0.00         | 0.00  | 0.000  | 0.250 |        |       | 0.000  | 35 |
| 35 | 0.00         | 0.00  | 0.000  | 0.250 | 0.000  | 0.000 | -      |    |
| 36 | 0.00         | 0.00  | 0.000  | 0.250 | 0.000  | 0.000 | 0.000  | 9  |
|    |              |       |        |       |        |       |        |    |

## 2 Diagnostic curves

The diagnostic curves of the water plot shown below suggest the analysis should be repeated using a natural log transform.

| 2 vs 8 2 vs 9 2 vs 10 2 vs 11 3 vs 4 3 vs 5 3 vs 6 3 vs 7 3 vs 8 3 vs 9 3 vs 10 3 vs 11 4 vs 6 4 vs 7 4 vs 8 4 vs 10 4 vs 11 5 vs 6 5 vs 8 5 vs 10 5 vs 10 5 vs 10 6 vs 11 7 vs 8 6 vs 9 7 vs 10 7 vs 10 9 vs 11 10 vs 11 |                                                                                                                          | 8.56<br>-1.86<br>9.82<br>-0.25<br>8.45<br>18.63<br>23.81<br>13.55<br>17.12<br>25.07<br>-8.20<br>18.88<br>24.05<br>13.80<br>17.36<br>25.32<br>-10.93<br>16.15<br>21.32<br>11.63<br>227.09<br>32.20<br>25.52<br>-1.52<br>11.52<br>7.96 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                | 3.045<br>2.819<br>2.819<br>2.819<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3.045<br>3. | -030025746802574583476867911320134                                                                                                 | .810<br>.661<br>.480<br>.8147<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819<br>.819 | 00000000000000000000000000000000000000                                                                                             | .0095<br>.5149<br>.0018<br>.9365<br>.4222<br>.0218<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0001<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009<br>.0009 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OBS<br>ORD                                                                                                                                                                                                                | ACTUAL<br>VALUE                                                                                                          | PREDICTED<br>VALUE                                                                                                                                                                                                                   | STUDENT<br>RESIDUAL                                                                                                                | COOK'S<br>LEVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OUTLIER<br>RESID                                                                                                                   | RUN<br>DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T VALUE                                                                                                                            | ORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                                                                                   | 27.24<br>30.83<br>17.48<br>19.13<br>10.97<br>5.29<br>3.90<br>24.54<br>30.62<br>21.12<br>24.02<br>20.27<br>23.70<br>31.99 | 25.18<br>25.18<br>25.18<br>9.82<br>9.82<br>9.82<br>9.82<br>25.07<br>25.07<br>25.08<br>25.32<br>25.32                                                                                                                                 | 2.057<br>5.647<br>-7.703<br>9.308<br>1.148<br>-4.533<br>-5.923<br>-0.535<br>5.545<br>-3.955<br>-1.055<br>-5.050<br>-1.620<br>6.670 | 0.333<br>0.333<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.333<br>0.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.632<br>1.735<br>-2.366<br>2.696<br>0.332<br>-1.313<br>-1.715<br>-0.155<br>1.606<br>-1.145<br>-0.306<br>-1.551<br>-0.498<br>2.049 | 0.018<br>0.137<br>0.255<br>0.220<br>0.003<br>0.052<br>0.089<br>0.001<br>0.078<br>0.040<br>0.003<br>0.109<br>0.011<br>0.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.624<br>1.812<br>-2.632<br>3.136<br>0.326<br>-1.333<br>-1.789<br>-0.152<br>1.662<br>-1.153<br>-0.300<br>-1.599<br>-0.490<br>2.201 | 24<br>15<br>20<br>33<br>34<br>30<br>27<br>16<br>21<br>36<br>5<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 22.10<br>23.51<br>22.16<br>33.55<br>33.50<br>7.11<br>5.77<br>1.58<br>1.26<br>0.96<br>14.80<br>12.61<br>9.71<br>8.96<br>6.72 | 22.59 22.59 22.59 33.52 33.52 6.44 6.44 1.27 1.27 1.52 11.52 11.52 11.52 7.96 7.96 | -0.490<br>0.920<br>-0.430<br>0.025<br>-0.025<br>0.670<br>-0.670<br>-0.310<br>-0.007<br>-0.303<br>3.280<br>1.090<br>-1.810<br>-2.560<br>-1.240<br>2.990 | 0.333<br>0.333<br>0.500<br>0.500<br>0.500<br>0.500<br>0.333<br>0.333<br>0.250<br>0.250<br>0.250<br>0.250 | -0.151<br>0.283<br>-0.132<br>0.009<br>-0.009<br>0.238<br>-0.238<br>0.095<br>-0.002<br>-0.093<br>0.950<br>0.316<br>-0.524<br>-0.741<br>-0.359<br>0.866 | 0.001<br>0.004<br>0.001<br>0.000<br>0.005<br>0.005<br>0.005<br>0.000<br>0.000<br>0.027<br>0.003<br>0.008<br>0.017<br>0.004<br>0.023 | -0.148<br>0.277<br>-0.129<br>0.009<br>-0.009<br>0.233<br>-0.233<br>0.093<br>-0.002<br>-0.091<br>0.948<br>0.310<br>-0.516<br>-0.735<br>-0.353<br>0.861 | 11<br>28<br>4<br>17<br>31<br>8<br>6<br>29<br>19<br>14<br>2<br>25<br>18<br>13<br>12<br>26 |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                                                                              | <del>-</del> :                                                                                                              |                                                                                    |                                                                                                                                                        |                                                                                                          | -0.002                                                                                                                                                | 0.000                                                                                                                               | -0.002                                                                                                                                                | 19                                                                                       |
| 22                                                                                           | <del>-</del> :                                                                                                              |                                                                                    |                                                                                                                                                        |                                                                                                          |                                                                                                                                                       |                                                                                                                                     | -0.002                                                                                                                                                | 19                                                                                       |
| 23                                                                                           | _                                                                                                                           |                                                                                    |                                                                                                                                                        |                                                                                                          |                                                                                                                                                       | •                                                                                                                                   | -0.091                                                                                                                                                | 14                                                                                       |
| 24                                                                                           | 0.96                                                                                                                        |                                                                                    |                                                                                                                                                        |                                                                                                          |                                                                                                                                                       |                                                                                                                                     | •                                                                                                                                                     |                                                                                          |
|                                                                                              | 14.80                                                                                                                       | 11.52                                                                              | 3.280                                                                                                                                                  | 0.250                                                                                                    |                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                       |                                                                                          |
|                                                                                              |                                                                                                                             | 11.52                                                                              | 1.090                                                                                                                                                  | 0.250                                                                                                    | 0.316                                                                                                                                                 | 0.003                                                                                                                               |                                                                                                                                                       |                                                                                          |
|                                                                                              | <del>-</del>                                                                                                                |                                                                                    |                                                                                                                                                        | 0.250                                                                                                    | -0.524                                                                                                                                                | 0.008                                                                                                                               | -0.516                                                                                                                                                |                                                                                          |
|                                                                                              | •                                                                                                                           |                                                                                    |                                                                                                                                                        |                                                                                                          | -0.741                                                                                                                                                | 0.017                                                                                                                               | -0.735                                                                                                                                                | 13                                                                                       |
|                                                                                              |                                                                                                                             |                                                                                    |                                                                                                                                                        |                                                                                                          |                                                                                                                                                       |                                                                                                                                     | -0.353                                                                                                                                                | 12                                                                                       |
| 29                                                                                           |                                                                                                                             |                                                                                    |                                                                                                                                                        |                                                                                                          |                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                       |                                                                                          |
| 30                                                                                           | 10.95                                                                                                                       | 7.96                                                                               | 2.990                                                                                                                                                  |                                                                                                          | -                                                                                                                                                     |                                                                                                                                     |                                                                                                                                                       | 23                                                                                       |
| 31                                                                                           | 8.04                                                                                                                        | 7.96                                                                               | 0.080                                                                                                                                                  | 0.250                                                                                                    | 0.023                                                                                                                                                 | 0.000                                                                                                                               | 0.023                                                                                                                                                 |                                                                                          |
|                                                                                              | 6.13                                                                                                                        | 7.96                                                                               | -1.830                                                                                                                                                 | 0.250                                                                                                    | -0.530                                                                                                                                                | 0.009                                                                                                                               | -0.522                                                                                                                                                | 1                                                                                        |
| 32                                                                                           |                                                                                                                             | 0.00                                                                               | 0.000                                                                                                                                                  | 0.250                                                                                                    | 0.000                                                                                                                                                 | 0.000                                                                                                                               | 0.000                                                                                                                                                 | 22                                                                                       |
| 33                                                                                           | 0.00                                                                                                                        |                                                                                    |                                                                                                                                                        | 0.250                                                                                                    | 0.000                                                                                                                                                 | 0.000                                                                                                                               | 0.000                                                                                                                                                 | 32                                                                                       |
| 34                                                                                           | 0.00                                                                                                                        | 0.00                                                                               | 0.000                                                                                                                                                  |                                                                                                          | <del>-</del>                                                                                                                                          | 0.000                                                                                                                               | 0.000                                                                                                                                                 | 35                                                                                       |
| 35                                                                                           | 0.00                                                                                                                        | 0.00                                                                               | 0.000                                                                                                                                                  | 0.250                                                                                                    | 0.000                                                                                                                                                 |                                                                                                                                     | 0.000                                                                                                                                                 | 9                                                                                        |
| 36                                                                                           | 0.00                                                                                                                        | 0.00                                                                               | 0.000                                                                                                                                                  | 0.250                                                                                                    | 0.000                                                                                                                                                 | 0.000                                                                                                                               | 0.000                                                                                                                                                 | 3                                                                                        |
|                                                                                              |                                                                                                                             |                                                                                    |                                                                                                                                                        |                                                                                                          |                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                       |                                                                                          |

## 2 Diagnostic curves

The diagnostic curves of the water plot shown below suggest the analysis should be repeated using a natural log transform.











## 3. Interpretation graph of water data.





## Analysis of Radicals

| SOURCE                         | SUM OF<br>SQUARES             | MEAN<br>DF                                | F<br>SQUARE          | VALUE | PROB > F |
|--------------------------------|-------------------------------|-------------------------------------------|----------------------|-------|----------|
| MODEL<br>RESIDUAL<br>COR TOTAL | 7.78073<br>0.60817<br>8.38890 | 10<br>25<br>35                            | 0.77807<br>0.02433   | 31.98 | < 0.0001 |
| ROOT MSE<br>DEP MEAN<br>C.V. % |                               | -SQUARED<br>DJ R-SQUARED<br>RED R-SQUARED | 0.93<br>0.90<br>0.86 |       |          |

Predicted Residual Sum of Squares (PRESS) = 1.15669

### MEANS (ADJUSTED, IF NECESSARY)

|                       | ESTIMATED MEAN                                                                           | STANDARD ERROR                                                                                  |
|-----------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| A B C D E F G H I J K | 3.54675 2.94349 3.555279 3.55503 3.48381 3.77334 2.79889 2.42148 3.06317 2.88300 2.30259 | 0.09005<br>0.07799<br>0.07799<br>0.09005<br>0.09005<br>0.11029<br>0.11029<br>0.09005<br>0.07799 |

| Treatment 1 vs 2 1 vs 3 1 vs 4 1 vs 5 1 vs 6 1 vs 7 1 vs 8 1 vs 9 1 vs 10 1 vs 11 | MEAN DIFFERENCE 0.60 -0.01 -0.01 0.06 -0.23 0.75 1.13 0.48 0.66 1.24 | STANDARD DF 1 1 1 1 1 1 1 1 1 1 | ERROR<br>0.119<br>0.119<br>0.127<br>0.127<br>0.142<br>0.142<br>0.127<br>0.119<br>0.119 | COEFFICIENT=0<br>5.064<br>-0.051<br>-0.065<br>0.494<br>-1.591<br>5.253<br>8.836<br>4.059<br>5.572<br>10.444 | PROB >  t  < 0.0001          |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------|
| 1 vs 10                                                                           | 0.66                                                                 | 1                               | 0.119<br>0.119                                                                         | 10.444                                                                                                      | < 0.0001                     |
| 1 vs 11<br>2 vs 3<br>2 vs 4                                                       | 1.24<br>-0.61<br>-0.61                                               | 1<br>1<br>1                     | 0.119<br>0.110<br>0.119                                                                | -5.525<br>-5.134                                                                                            | < 0.0001<br>< 0.0001         |
| 2 vs 5<br>2 vs 6                                                                  | -0.54<br>-0.83                                                       | 1                               | 0.119<br>0.135<br>0.135                                                                | -4.536<br>-6.144<br>1.071                                                                                   | 0.0001<br>< 0.0001<br>0.2946 |
| 2 vs 7<br>2 vs 8<br>2 vs 9<br>2 vs 10                                             | 0.14<br>0.52<br>-0.12<br>0.06                                        | 1 1 1                           | 0.119<br>0.110<br>0.110                                                                | 4.382<br>-1.085<br>0.548                                                                                    | 0.0002<br>0.2882<br>0.5883   |

| 2 vs 11<br>3 vs 5<br>3 vs 6<br>3 vs 6<br>3 vs 7<br>3 vs 8<br>3 vs 9<br>3 vs 10<br>3 vs 11<br>4 vs 6<br>4 vs 7<br>4 vs 8<br>4 vs 10<br>4 vs 11<br>5 vs 5<br>5 vs 10<br>5 vs 10<br>5 vs 10<br>6 vs 11<br>7 vs 8<br>6 vs 9<br>6 vs 10<br>7 vs 8<br>8 vs 10<br>8 vs 10<br>9 vs 11<br>7 vs 8<br>9 vs 10<br>9 vs 11<br>8 vs 9<br>8 vs 10<br>9 vs 10<br>9 vs 11<br>9 vs 11<br>10 vs 11 |                                                                                                                                      | 0.64<br>-0.00<br>0.07<br>-0.22<br>0.75<br>1.13<br>0.49<br>0.67<br>1.25<br>0.76<br>1.13<br>0.49<br>0.67<br>1.25<br>-0.29<br>0.68<br>1.06<br>0.42<br>0.60<br>1.18<br>0.71<br>0.38<br>-0.38<br>-0.38<br>-0.58<br>0.50<br>-0.58 |                                                                                                                                                                 | .110<br>.119<br>.119<br>.135<br>.135<br>.119<br>.110<br>.110<br>.110<br>.127<br>.142<br>.127<br>.119<br>.119<br>.142<br>.127<br>.119<br>.142<br>.127<br>.119<br>.142<br>.127<br>.119<br>.142<br>.127<br>.119<br>.142<br>.127<br>.119<br>.119<br>.119<br>.119<br>.119<br>.119<br>.119<br>.11 | -0.<br>-1.<br>594.<br>61.<br>-1.<br>-1.<br>-1.<br>-1.<br>-1.<br>-1.<br>-1.<br>-1.<br>-1.<br>-                                                                   | 811<br>019<br>579<br>633<br>581<br>497<br>439<br>.533<br>.311<br>.901<br>.514<br>.033<br>.810<br>.342<br>.531<br>.043<br>.916<br>.248<br>.495<br>.888<br>.957<br>.674<br>.888<br>.957<br>.674<br>.888<br>.957<br>.674<br>.888<br>.957<br>.888<br>.957<br>.674<br>.888<br>.957<br>.888<br>.957<br>.888<br>.957<br>.888<br>.957<br>.888<br>.957<br>.888<br>.957<br>.888<br>.957<br>.888<br>.957<br>.888<br>.957<br>.888<br>.957<br>.888<br>.957<br>.888<br>.888<br>.957<br>.888<br>.957<br>.888<br>.888<br>.957<br>.888<br>.888<br>.957<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888<br>.888 |                                                                                                                               | 0.0001<br>0.9852<br>0.5677<br>0.1151<br>0.0001<br>0.0001<br>0.0001<br>0.5810<br>0.1378<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OBS<br>ORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACTUAL<br>VALUE                                                                                                                      | PREDICTED<br>VALUE                                                                                                                                                                                                          | TUDENT<br>SIDUAL                                                                                                                                                | COOK'S<br>LEVER                                                                                                                                                                                                                                                                             | OUTLIER<br>RESID                                                                                                                                                | RUN<br>DIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T VALU                                                                                                                        | E ORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.62<br>3.71<br>3.31<br>3.37<br>3.04<br>2.73<br>2.63<br>3.54<br>3.70<br>3.44<br>3.53<br>3.41<br>3.52<br>3.74<br>3.47<br>3.51<br>3.47 | 3.55<br>3.55<br>3.55<br>2.94<br>2.94<br>2.94<br>3.55<br>3.55<br>3.55<br>3.56<br>3.56<br>3.48<br>3.48                                                                                                                        | 0.071<br>0.163<br>-0.233<br>0.428<br>0.100<br>-0.216<br>-0.312<br>-0.011<br>0.151<br>-0.115<br>-0.026<br>-0.145<br>-0.038<br>0.182<br>-0.015<br>0.028<br>-0.013 | 0.333<br>0.333<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.333<br>0.333<br>0.333<br>0.333                                                                                                                                                                  | 0.555<br>1.277<br>-1.832<br>3.171<br>0.737<br>-1.601<br>-2.307<br>-0.079<br>1.121<br>-0.851<br>-0.191<br>-1.138<br>-0.295<br>1.432<br>-0.117<br>0.220<br>-0.103 | 0.014<br>0.074<br>0.153<br>0.305<br>0.016<br>0.078<br>0.161<br>0.000<br>0.038<br>0.022<br>0.001<br>0.059<br>0.004<br>0.093<br>0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.54<br>1.29<br>-1.92<br>4.01<br>0.73<br>-1.65<br>-2.54<br>-0.07<br>1.12<br>-0.84<br>-0.18<br>-1.14<br>-0.28<br>1.46<br>-0.11 | 4 15<br>9 20<br>8 33<br>0 34<br>6 3<br>8 30<br>7 27<br>7 16<br>6 21<br>8 36<br>5 9 7<br>15 10<br>15 28                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|    |       | 2 22 | 0 001  | 0.500 | 0.005  | 0.000 | 0.005  | 17 |
|----|-------|------|--------|-------|--------|-------|--------|----|
| 18 | 3.77  | 3.77 | 0.001  |       | -0.005 | 0.000 | -0.005 | 31 |
| 19 | 3.77  | 3.77 | -0.001 | 0.500 |        | 0.012 | 0.363  | 8  |
| 20 | 2.84  | 2.80 | 0.041  | 0.500 | 0.370  |       | -0.363 | 6  |
| 21 | 2.76  | 2.80 | -0.041 | 0.500 | -0.370 | 0.012 |        |    |
| 22 | 2.45  | 2.42 | 0.027  | 0.333 | 0.215  | 0.002 | 0.211  | 29 |
| 23 | 2.42  | 2.42 | -0.000 | 0.333 | -0.003 | 0.000 | -0.003 | 19 |
|    | 2.39  | 2.42 | -0.027 | 0.333 | -0.212 | 0.002 | -0.208 | 14 |
| 24 | _ : : | 3.06 | 0.148  | 0.250 | 1.093  | 0.036 | 1.098  | 2  |
| 25 | 3.21  | 3.06 | 0.055  | 0.250 | 0.409  | 0.005 | 0.402  | 25 |
| 26 | 3.12  |      | -0.082 | 0.250 | -0.607 | 0.011 | -0.600 | 18 |
| 27 | 2.98  | 3.06 |        |       | -0.895 | 0.024 | -0.891 | 13 |
| 28 | 2.94  | 3.06 | -0.121 | 0.250 | • •    | 0.007 | -0.484 | 12 |
| 29 | 2.82  | 2.88 | -0.066 | 0.250 | -0.492 |       |        | 26 |
| 30 | 3.04  | 2.88 | 0.159  | 0.250 | 1.178  | 0.042 | 1.188  |    |
| 31 | 2.89  | 2.88 | 0.010  | 0.250 | 0.071  | 0.000 | 0.070  | 23 |
| 32 | 2.78  | 2.88 | -0.102 | 0.250 | -0.758 | 0.017 | -0.751 | 1  |
|    | 2.30  | 2.30 | 0.000  | 0.250 | 0.000  | 0.000 | 0.000  | 22 |
| 33 |       | 2.30 | 0.000  | 0.250 | 0.000  | 0.000 | 0.000  | 32 |
| 34 | 2.30  |      |        | 0.250 | 0.000  | 0.000 | 0.000  | 35 |
| 35 | 2.30  | 2.30 | 0.000  | •     | 0.000  | 0.000 | 0.000  | 9  |
| 36 | 2.30  | 2.30 | 0.000  | 0.250 | 0.000  | 0.000 | 5.000  | _  |

















## CORN OIL TREATED MICE STATISTICAL ANALYSIS

Statistical data: (1) Analysis of Variance (2) Diagnostic Validation of Data and (3) Interpretation Graph. Repeat with log transform equation.

Analysis of RADICALS of Coin Oil Group of Mice

| SOURCE                         | SUM OF<br>SQUARES                                             | MEAN<br>DF     | F<br>SQUARE          | VALUE | PROB > F |
|--------------------------------|---------------------------------------------------------------|----------------|----------------------|-------|----------|
| MODEL<br>RESIDUAL<br>COR TOTAL | 11140.736<br>1755.575<br>12896.311                            | 10<br>49<br>59 | 1114.1<br>35.8       | 31.10 | < 0.0001 |
| ROOT MSE<br>DEP MEAN<br>C.V. % | 5.986R-SQUARED<br>16.133ADJ R-SQUARED<br>37.102PRED R-SQUARED |                | 0.86<br>0.84<br>0.81 |       |          |

2396.3 Predicted Residual Sum of Squares (PRESS) =

### MEANS (ADJUSTED, IF NECESSARY)

| Groups                                              | ESTIMATED MEAN                                                                                        | STANDARD ERROR                                                                                  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J<br>K | 1.337<br>1.482<br>28.171<br>33.327<br>28.377<br>32.896<br>3.837<br>1.297<br>9.635<br>10.026<br>-0.000 | 2.262<br>2.677<br>2.262<br>2.262<br>2.444<br>2.262<br>2.262<br>3.456<br>4.232<br>2.262<br>4.232 |
|                                                     |                                                                                                       |                                                                                                 |

| Treatm<br>1 vs<br>1 vs<br>1 vs<br>1 vs<br>1 vs<br>1 vs<br>1 vs | 2<br>3<br>4<br>5<br>6<br>7<br>8 | DIFFERENCE<br>-0.14<br>-26.83<br>-31.99<br>-27.04<br>-31.56<br>-2.50<br>0.04 | STANDARD DF 1 1 1 1 1 1 | ERROR<br>3.505<br>3.199<br>3.199<br>3.330<br>3.199<br>3.199<br>4.130 | COEFFICIENT=0 -0.041 -8.387 -9.999 -8.120 -9.864 -0.781 0.010 -1.729 | PROB >  t <br>0.9672<br>< 0.0001<br>< 0.0001<br>< 0.0001<br>< 0.0001<br>0.4383<br>0.9922<br>0.0901 |
|----------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 1 vs<br>1 vs<br>1 vs<br>1 vs<br>2 vs<br>2 vs<br>2 vs           | 9<br>10                         | -8.30<br>-8.69<br>1.34<br>-26.69<br>-31.85                                   | 1<br>1<br>1<br>1<br>1   | 4.799<br>3.199<br>4.799<br>3.505<br>3.505                            | -1.729<br>-2.716<br>0.279<br>-7.615<br>-9.086<br>-7.420              | 0.0901<br>0.0091<br>0.7817<br>< 0.0001<br>< 0.0001<br>< 0.0001                                     |

| 2 vs 6             |            | -31.41    | 1             | 3.505  |            | .963  |         | .0001  |
|--------------------|------------|-----------|---------------|--------|------------|-------|---------|--------|
| 2 vs 7             |            | -2.36     | 1             | 3.505  |            | . 672 |         | .5048  |
| 2 vs 8             |            | 0.19      | 1             | 4.371  |            | .042  |         | .9664  |
| 2 vs 9             |            | -8.15     | 1             | 5.008  |            | .628  |         | .1099  |
| 2 vs 10            |            | -8.54     | 1             | 3.505  |            | .438  |         | .0185  |
| 2 vs 11            |            | 1.48      | 1             | 5.008  |            | .296  |         | .7685  |
| 3 vs 4             |            | -5.16     | 1             | 3.199  |            | .611  |         | .1135  |
| 3 vs 5             |            | -0.21     | 1             | 3.330  |            | .062  |         | .9511  |
| 3 vs 6             |            | -4.72     | 1             | 3.199  |            | .477  |         | .1462  |
| 3 vs 7             |            | 24.33     | 1             | 3.199  |            | .606  |         | .0001  |
| 3 vs 8             |            | 26.87     | 1             | 4.130  |            | .506  |         | .0001  |
| 3 vs 9             |            | 18.54     | 1             | 4.799  |            | .862  |         | .0003  |
| 3 vs 10            |            | 18.15     | 1             | 3.199  |            | .671  |         | .0001  |
| 3 vs 10            |            | 28.17     | 1             | 4.799  | . 5        | .870  |         | .0001  |
| 4 vs 5             |            | 4.95      | 1             | 3.330  | 1          | .487  |         | .1435  |
| 4 vs 6             |            | 0.43      | 1             | 3.199  |            | .135  |         | .8933  |
| 4 vs 7             |            | 29.49     | ī             | 3.199  | 9          | .217  |         | .0001  |
| 4 vs 8             |            | 32.03     | ī             | 4.130  | 7          | .755  |         | .0001  |
| 4 vs 9             |            | 23.69     | ī             | 4.799  | 4          | .937  |         | .0001  |
| 4 vs 10            |            | 23.30     | ī             | 3.199  | 7          | .283  |         | .0001  |
| 4 vs 11            |            | 33.33     | ī             | 4.799  | 6          | .944  |         | .0001  |
| 5 vs 6             |            | -4.52     | ī             | 3.330  | -1         | 357   |         | .1810  |
| 5 vs 7             |            | 24.54     | ī             | 3.330  | 7          | .369  |         | .0001  |
|                    |            | 27.08     | 1             | 4.232  | €          | 3.398 |         | .0001  |
|                    |            | 18.74     | 1             | 4.887  | 3          | 3.835 |         | .0004  |
| 5 vs 9<br>5 vs 10  |            | 18.35     | ī             | 3.330  | 5          | 5.511 |         | .0001  |
|                    |            | 28.38     | ī             | 4.887  | 5          | 3.806 |         | .0001  |
| 5 vs 11<br>6 vs 7  |            | 29.06     | _<br>1        | 3.199  | . 9        | 0.082 |         | .0001  |
| _                  |            | 31.60     | ī             | 4.130  | 7          | 7.650 |         | .0001  |
| 6 vs 8<br>6 vs 9   |            | 23.26     | ī             | 4.799  | . 4        | 1.847 |         | .0001  |
|                    |            | 22.87     | ī             | 3.199  | 7          | 7.148 |         | 0.0001 |
|                    |            | 32.90     | ī             | 4.799  | •          | 5.854 |         | 0.0001 |
|                    | •          | 2.54      | ī             | 4.130  | (          | 0.615 |         | ).5414 |
| 7 vs 8<br>7 vs 9   |            | -5.80     | ī             | 4.799  |            | 1.208 |         | .2328  |
|                    |            | -6.19     | ī             | 3.199  | <b>-</b> : | 1.934 |         | 0.0589 |
| 7 vs 10<br>7 vs 11 |            | 3.84      | ī             | 4.799  | (          | 0.800 |         | .4278  |
| _                  |            | -8.34     | ī             | 5.464  | -:         | 1.526 |         | 1.1334 |
|                    |            | -8.73     | ī             | 4.130  | -:         | 2.113 |         | 0.0397 |
|                    |            | 1.30      | ī             | 5.464  |            | 0.237 |         | 0.8134 |
|                    |            | -0.39     | ī             | 4.799  |            | 0.081 |         | 0.9354 |
| 9 vs 10<br>9 vs 11 |            | 9.63      | ī             | 5.986  |            | 1.610 |         | 0.1139 |
| 10 vs 11           |            | 10.03     | ī             | 4.799  |            | 2.089 | 4       | 0.0419 |
| 10 VS 11           |            | 20.00     | _             |        |            |       |         |        |
| <b>an</b> -        | a comera e | PREDICTED | STUDENT       | cook's | OUTLIER    | RUN   |         |        |
| OBS                | ACTUAL     | VALUE     | RESIDUAL      |        | RESID      | DIST  | T VALUE | ORD    |
| ORD                | VALUE      | AWTOE     | ***** T1 0511 |        |            |       |         |        |
| •                  | 1.09       | 1.34      | -0.247        | 0.143  | -0.045     | 0.000 | -0.044  |        |
| 1                  | 1.40       | 1.34      | 0.063         |        | 0.011      | 0.000 | 0.011   |        |
| 2                  | 1.40       | 1.34      | -0.107        |        | -0.019     | 0.000 | -0.019  | 36     |

| 13 | 20.16 | 28.17 | -8.011  | 0.143 | -1.446           | 0.032          | -1.462          | 29       |
|----|-------|-------|---------|-------|------------------|----------------|-----------------|----------|
| 14 | 28.00 | 28.17 | -0.171  | 0.143 | -0.031           | 0.000          | -0.031          | 48       |
| 15 | 25.54 | 28.17 | -2.631  | 0.143 | -0.475           | 0.003          | -0.471          | 37       |
| 16 | 20.31 | 28.17 | -7.861  | 0.143 | -1.419           | 0.030          | -1.434          | 41       |
| 17 | 28.91 | 28.17 | 0.739   | 0.143 | 0.133            | 0.000          | 0.132           | 25       |
| 18 | 31.31 | 28.17 | 3.139   | 0.143 | 0.566            | 0.005          | 0.562           | 23       |
| 19 | 42.97 | 28.17 | 14.799  | 0.143 | 2.670            | 0.108          | 2.859           | 45       |
| 20 | 24.20 | 33.33 | -9.127  | 0.143 | -1.647           | 0.041          | -1.677          | 10       |
| 21 | 43.25 | 33.33 | 9.923   | 0.143 | 1.791            | 0.049          | 1.833           | 39       |
| 22 | 27.76 | 33.33 | -5.567  | 0.143 | -1.005           | 0.015          | -1.005          | 40<br>44 |
| 23 | 46.00 | 33.33 | 12.673  | 0.143 | 2.287            | 0.079          | 2.395<br>-1.257 | 4        |
| 24 | 26.40 | 33.33 | -6.927  | 0.143 | -1.250           | 0.024          | -1.237          | 55       |
| 25 | 26.50 | 33.33 | -6.827  | 0.143 | -1.232           | 0.023          | 1.057           | 18       |
| 26 | 39.18 | 33.33 | 5.853   | 0.143 | 1.056            | 0.017          | -0.340          | 53       |
| 27 | 26.50 | 28.38 | -1.877  | 0.167 | -0.343           | 0.002          | 0.513           | 38       |
| 28 | 31.20 | 28.38 | 2.823   | 0.167 | 0.517            | 0.005          | -0.722          | 52       |
| 29 | 24.41 | 28.38 | -3.967  | 0.167 | -0.726           | 0.010          | -0.722          | 47       |
| 30 | 27.85 | 28.38 | -0.527  | 0.167 | -0.096           | 0.000          |                 | 19       |
| 31 | 34.97 | 28.38 | 6.593   | 0.167 | 1.207            | 0.026          | 1.212           |          |
| 32 | 25.33 | 28.38 | -3.047  | 0.167 | -0.558           | 0.006          | -0.554          | 49       |
| 33 | 30.74 | 32.90 | -2.156  | 0.143 | -0.389           | 0.002          | -0.386          | 1<br>42  |
| 34 | 27.82 | 32.90 | -5.076  | 0.143 | -0.916           | 0.013          | -0.914          |          |
| 35 | 22.88 | 32.90 | -10.016 | 0.143 | -1.807           | 0.049          | -1.852<br>4.256 | 58       |
| 36 | 53.20 | 32.90 | 20.304  | 0.143 | 3.664            | 0.203          | 4.236<br>-1.465 | 20<br>2  |
| 37 | 24.87 | 32.90 | -8.026  | 0.143 | -1.448           | 0.032          | -0.369          | 6        |
| 38 | 30.83 | 32.90 | -2.066  | 0.143 | -0.373           | 0.002          | 1.278           | 51       |
| 39 | 39.93 | 32.90 | 7.034   | 0.143 | 1.269            | 0.024          | 0.231           | 57       |
| 40 | 5.13  | 3.84  | 1.293   | 0.143 | 0.233            | 0.001          | 0.231           | 7        |
| 41 | 4.99  | 3.84  | 1.153   | 0.143 | 0.208            | 0.001          | 0.222           | 21       |
| 42 | 5.08  | 3.84  | 1.243   | 0.143 | 0.224            | 0.001          | 0.222           | 11       |
| 43 | 4.96  | 3.84  | 1.123   | 0.143 | 0.203            | 0.001<br>0.000 | 0.149           | 34       |
| 44 | 4.67  | 3.84  | 0.833   | 0.143 | 0.150            | 0.000          | -0.460          | 27       |
| 45 | 1.27  | 3.84  | -2.567  | 0.143 | -0.463           | 0.005          | -0.551          | 9        |
| 46 | 0.76  | 3.84  | -3.077  | 0.143 | -0.555           | 0.003          | 0.055           | 14       |
| 47 | 1.57  | 1.30  | 0.273   | 0.333 | 0.056            | 0.000          | -0.084          | 28       |
| 48 | 0.88  | 1.30  | -0.417  | 0.333 | -0.085           | 0.000          | 0.029           | 15       |
| 49 | 1.44  | 1.30  | 0.143   | 0.333 | 0.029            | 0.000          | 0.025           | 5        |
| 50 | 9.74  | 9.63  | 0.105   | 0.500 | 0.025            | 0.000          | -0.025          | 33       |
| 51 | 9.53  | 9.63  | -0.105  | 0.500 | -0.025           | 0.049          | 1.845           | 16       |
| 52 | 20.01 | 10.03 | 9.984   | 0.143 | 1.802<br>-0.508  | 0.043          | -0.504          | 30       |
| 53 | 7.21  | 10.03 | -2.816  | 0.143 |                  | 0.004          | -0.015          | 59       |
| 54 | 9.94  | 10.03 | -0.086  | 0.143 | -0.015<br>-0.106 | 0.000          | -0.105          | 24       |
| 55 | 9.44  | 10.03 | -0.586  | 0.143 | -0.299           | 0.001          | -0.296          | 50       |
| 56 | 8.37  | 10.03 | -1.656  | 0.143 | -0.237           | 0.001          | -0.235          | 22       |
| 57 | 8.71  | 10.03 | -1.316  | 0.143 | -0.237           | 0.001          | -0.632          | 56       |
| 58 | 6.50  | 10.03 | -3.526  | 0.143 | 0.000            | 0.000          | 0.000           | 3        |
| 59 | 0.00  | -0.00 | 0.000   | 0.500 | 0.000            | 0.000          | 0.000           | 35       |
| 60 | 0.00  | -0.00 | 0.000   | 0.500 | 0.000            | 0.000          | •               |          |

## 2. Diagnostic curves

The diagnostic curves below suggest use of a log transform for mathematical predictions.













## Analysis of RADICALS of Corn Oil using Log Transform

| SOURCE                         | SUM OF<br>SQUARES               | MEAN<br>DF                                | F<br>SQUARE          | VALUE  | PROB > F |
|--------------------------------|---------------------------------|-------------------------------------------|----------------------|--------|----------|
| MODEL<br>RESIDUAL<br>COR TOTAL | 19.23484<br>1.22517<br>20.46001 | 10<br>49<br>59                            | 1.9235<br>0.0250     | 76.93  | < 0.0001 |
| ROOT MSE<br>DEP MEAN<br>C.V. % |                                 | -SQUARED<br>DJ R-SQUARED<br>RED R-SQUARED | 0.94<br>0.93<br>0.92 |        |          |
| m dised Besiden]               | Sum of Son                      | ares (PRESS)                              | =                    | 1.6750 |          |

Predicted Residual Sum of Squares (PRESS) = 1.6/5

| Groups                | ESTIMATED MEAN                                                                                                        | STANDARD ERROR                                                                                             |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| A B C D E F G H I J K | 2.42752<br>2.44014<br>3.62547<br>3.75017<br>3.64308<br>3.73584<br>2.61809<br>2.42415<br>2.97730<br>2.97860<br>2.30259 | 0.05977<br>0.07072<br>0.05977<br>0.05977<br>0.06455<br>0.05977<br>0.09129<br>0.11181<br>0.05977<br>0.11181 |

|        |     |            |    | RD t FOR HO |               |           |
|--------|-----|------------|----|-------------|---------------|-----------|
|        |     | MEAN       |    |             | COEFFICIENT=0 | PROB >  t |
| Treatm | ent | DIFFERENCE | DF | ERROR       |               | 0.8921    |
| 1 vs   | 2   | -0.01      | 1  | 0.093       | -0.136        | • •       |
|        | 3   | -1.20      | 1  | 0.085       | -14.173       | < 0.0001  |
| 1 vs   | -   | -1.32      | ī  | 0.085       | -15.649       | < 0.0001  |
| 1 vs   | 4   |            | •  | 0.088       | -13.817       | < 0.0001  |
| l vs   | 5   | -1.22      | 1  |             | -15.479       | < 0.0001  |
| 1 vs   | 6   | -1.31      | 1  | 0.085       |               | 0.0287    |
| 1 vs   | 7   | -0.19      | 1  | 0.085       | -2.255        |           |
| 1 vs   | 8   | 0.00       | 1  | 0.109       | 0.031         | 0.9755    |
| _      | _   | -0.55      | 1  | 0.127       | -4.336        | < 0.0001  |
| 1 vs   | 9   |            | î  | 0.085       | -6.520        | < 0.0001  |
| l vs   | 10  | -0.55      |    |             | 0.985         | 0.3293    |
| 1 vs   | 11  | 0.12       | 1  | 0.127       |               | < 0.0001  |
| 2 vs   | 3   | -1.19      | 1  | 0.093       | -12.802       |           |
| 2 vs   | 4   | -1.31      | 1  | 0.093       | -14.149       | < 0.0001  |
|        |     | -1.20      | _  | 0.096       | -12.563       | < 0.0001  |
| 2 vs   | 5   |            |    | 0.093       | -13.994       | < 0.0001  |
| 2 vs   | 6   | -1.30      |    | 7           | -1.922        | 0.0604    |
| 2 vs   | 7   | -0.18      |    | 0.093       |               | 0.8904    |
| 2 vs   | 8   | 0.02       | 1  | 0.115       | 0.138         |           |
| 2 vs   | 9   | -0.54      | 1  | 0.132       | -4.060        | 0.0002    |
|        | _   | -0.54      |    | 0.093       | -5.816        | < 0.0001  |
| 2 vs   | 10  | -0.54      | •  | ••••        |               |           |

| 2 vs 11<br>3 vs 5<br>3 vs 6<br>3 vs 6<br>3 vs 9<br>3 vs 10<br>3 vs 10<br>3 vs 11<br>4 vs 6<br>4 vs 6<br>4 vs 9<br>4 vs 10<br>4 vs 11<br>5 vs 7<br>5 vs 9<br>5 vs 9<br>5 vs 10<br>6 vs 11<br>6 vs 9<br>6 vs 10<br>7 vs 10<br>7 vs 10<br>8 vs 10<br>8 vs 10<br>9 vs |                                                                                                                              | 0.14<br>-0.12<br>-0.02<br>-0.11<br>1.01<br>1.20<br>0.65<br>0.65<br>1.32<br>0.11<br>0.01<br>1.13<br>1.33<br>0.77<br>0.77<br>1.45<br>-0.09<br>1.02<br>1.22<br>0.67<br>0.66<br>1.34<br>1.12<br>1.31<br>0.76<br>0.76<br>1.43<br>0.19<br>-0.36<br>-0.36<br>-0.36<br>-0.36<br>-0.36<br>-0.55<br>-0.55<br>-0.68 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                          | 0.132<br>0.085<br>0.085<br>0.085<br>0.109<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.088<br>0.127<br>0.088<br>0.127<br>0.088<br>0.127<br>0.088<br>0.127<br>0.088<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.085<br>0.127<br>0.127<br>0.085<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127<br>0.127 | -1.<br>-0<br>-1<br>11<br>15<br>7<br>10<br>13<br>12<br>6<br>9<br>11<br>-1<br>10<br>5<br>7<br>10<br>13<br>12<br>5<br>8<br>11<br>-2<br>-4<br>2<br>-4<br>2<br>-4<br>2<br>-4<br>2<br>-4<br>2<br>-4<br>2<br>-4 | .040<br>.475<br>.200<br>.306<br>.919<br>.010<br>.113<br>.653<br>.4317<br>.170<br>.394<br>.152<br>.096<br>.129<br>.418<br>.051<br>.9057<br>.553<br>.221<br>.983<br>.955<br>.955<br>.955<br>.955<br>.955<br>.955<br>.955<br>.95 | 0.0.0000000000000000000000000000000000                                                                                                                           | 3036<br>1465<br>8422<br>1977<br>0001<br>0001<br>0001<br>0001<br>0001<br>0001<br>0001        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| OBS<br>ORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACTUAL<br>VALUE                                                                                                              | PREDICTED VALUE                                                                                                                                                                                                                                                                                          | STUDENT<br>RESIDUAL                                                                                                                                     | COOK'S<br>LEVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OUTLIER<br>RESID                                                                                                                                                                                         | RUN<br>DIST                                                                                                                                                                                                                   | T VALUE                                                                                                                                                          | ORD                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.41<br>2.43<br>2.42<br>2.40<br>2.42<br>2.41<br>2.51<br>2.47<br>2.41<br>2.49<br>2.40<br>2.43<br>3.64<br>3.57<br>3.64<br>3.66 | 2.43<br>2.43<br>2.43<br>2.43<br>2.43<br>2.43<br>2.44<br>2.44                                                                                                                                                                                                                                             | -0.021<br>0.006<br>-0.009<br>-0.028<br>-0.010<br>-0.016<br>0.032<br>-0.029<br>0.050<br>-0.044<br>-0.009<br>-0.219<br>0.012<br>-0.055<br>-0.214<br>0.036 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.147<br>0.042<br>-0.061<br>-0.190<br>-0.067<br>-0.110<br>0.533<br>0.228<br>-0.203<br>0.352<br>-0.312<br>-0.065<br>-1.496<br>0.083<br>-0.374<br>-1.462<br>0.244                                         | 0.000<br>0.000<br>0.001<br>0.000<br>0.004<br>0.001<br>0.003<br>0.002<br>0.000<br>0.034<br>0.000<br>0.002<br>0.002                                                                                                             | -0.145<br>0.041<br>-0.060<br>-0.188<br>-0.066<br>-0.109<br>0.529<br>0.225<br>-0.201<br>0.349<br>-0.309<br>-0.064<br>-1.515<br>0.082<br>-0.371<br>-1.479<br>0.242 | 31<br>26<br>36<br>60<br>54<br>8<br>17<br>32<br>43<br>12<br>46<br>29<br>48<br>37<br>41<br>25 |

| 10 | 3.72         | 3.63         | 0.096            | 0.143 | 0.653  | 0.006 | 0.649  | 23 |
|----|--------------|--------------|------------------|-------|--------|-------|--------|----|
| 18 | 3.72         | 3.63         | 0.344            | 0.143 | 2.352  | 0.084 | 2.471  | 45 |
| 19 | 3.53         | 3.75         | -0.218           | 0.143 | -1.489 | 0.034 | -1.508 | 10 |
| 20 | 3.97         | 3.75         | 0.225            | 0.143 | 1.536  | 0.036 | 1.558  | 39 |
| 21 |              | 3.75         | -0.119           | 0.143 | -0.812 | 0.010 | -0.809 | 40 |
| 22 | 3.63<br>4.03 | 3.75         | 0.275            | 0.143 | 1.880  | 0.054 | 1.931  | 44 |
| 23 | 3.59         | 3.75         | -0.156           | 0.143 | -1.063 | 0.017 | -1.064 | 4  |
| 24 |              | 3.75         | -0.153           | 0.143 | -1.044 | 0.017 | -1.045 | 55 |
| 25 | 3.60<br>3.90 | 3.75         | 0.145            | 0.143 | 0.993  | 0.015 | 0.992  | 18 |
| 26 |              | 3.64         | -0.046           | 0.167 | -0.317 | 0.002 | -0.314 | 53 |
| 27 | 3.60         | 3.64         | 0.075            | 0.167 | 0.522  | 0.005 | 0.518  | 38 |
| 28 | 3.72         | 3.64         | -0.105           | 0.167 | -0.726 | 0.010 | -0.722 | 52 |
| 29 | 3.54         | 3.64         | -0.009           | 0.167 | -0.065 | 0.000 | -0.065 | 47 |
| 30 | 3.63         | 3.64         | 0.163            | 0.167 | 1.129  | 0.023 | 1.132  | 19 |
| 31 | 3.81         | 3.64         | -0.078           | 0.167 | -0.543 | 0.005 | -0.539 | 49 |
| 32 | 3.56         | 3.74         | -0.029           | 0.143 | -0.196 | 0.001 | -0.194 | 1  |
| 33 | 3.71         |              | -0.103           | 0.143 | -0.704 | 0.008 | -0.700 | 42 |
| 34 | 3.63         | 3.74         | -0.243           | 0.143 | -1.660 | 0.042 | -1.691 | 58 |
| 35 | 3.49         | 3.74         | 0.410            | 0.143 | 2.804  | 0.119 | 3.029  | 20 |
| 36 | 4.15         | 3.74         | -0.184           | 0.143 | -1.258 | 0.024 | -1.266 | 2  |
| 37 | 3.55         | 3.74         | -0.184           | 0.143 | -0.180 | 0.000 | -0.179 | 6  |
| 38 | 3.71         | 3.74         |                  | 0.143 | 1.194  | 0.022 | 1.199  | 51 |
| 39 | 3.91         | 3.74         | 0.175            | 0.143 | 0.673  | 0.007 | 0.670  | 57 |
| 40 | 2.72         | 2.62         | 0.099            | 0.143 | 0.610  | 0.006 | 0.606  | 7  |
| 41 | 2.71         | 2.62         | 0.089            | 0.143 | 0.651  | 0.006 | 0.647  | 21 |
| 42 | 2.71         | 2.62         | 0.095            | 0.143 | 0.596  | 0.005 | 0.592  | 11 |
| 43 | 2.71         | 2.62         | 0.087            | 0.143 | 0.463  | 0.003 | 0.459  | 34 |
| 44 | 2.69         | 2.62         | 0.068            | 0.143 | -1.338 | 0.027 | -1.350 | 27 |
| 45 | 2.42         | 2.62         | -0.196<br>-0.242 | 0.143 | -1.655 | 0.041 | -1.686 | 9  |
| 46 | 2.38         | 2.62         | 0.024            | 0.143 | 0.188  | 0.002 | 0.186  | 14 |
| 47 | 2.45         | 2.42         | -0.037           | 0.333 | -0.288 | 0.004 | -0.286 | 28 |
| 48 | 2.39         | 2.42         | 0.013            | 0.333 | 0.100  | 0.000 | 0.099  | 15 |
| 49 | 2.44         | 2.42<br>2.98 | 0.013            | 0.500 | 0.048  | 0.000 | 0.047  | 5  |
| 50 | 2.98         | 2.98         | -0.005           | 0.500 | -0.048 | 0.000 | -0.047 | 33 |
| 51 | 2.97         | 2.98         | 0.423            | 0.143 | 2.889  | 0.126 |        | 16 |
| 52 | 3.40         | 2.98         | -0.133           | 0.143 | -0.909 | 0.013 | -0.908 | 30 |
| 53 | 2.85         | 2.98         | 0.014            | 0.143 | 0.096  | 0.000 | 0.096  | 59 |
| 54 | 2.99         | 2.98         | -0.011           | 0.143 | -0.077 | 0.000 | -0.076 | 24 |
| 55 | 2.97         | 2.98         | -0.068           | 0.143 | -0.464 | 0.003 | -0.460 | 50 |
| 56 | 2.91         | 2.98         | -0.050           | 0.143 | -0.338 | 0.002 | -0.335 | 22 |
| 57 | 2.93         | 2.98         | -0.175           | 0.143 | -1.197 | 0.022 | -1.202 | 56 |
| 58 | 2.80         | 2.30         | 0.000            | 0.500 | 0.000  | 0.000 | 0.000  | 3  |
| 59 | 2.30         |              | 0.000            | 0.500 | 0.000  | 0.000 | 0.000  | 35 |
| 60 | 2.30         | 2.30         | 0.000            | 0.500 | 0.000  |       |        |    |

2. Diagnostic curves using the log transform.

















# DESIGN-EASE Analysis Ln(RADICALS + 10.00)



TCE TREATED MICE STATISTICAL ANALYSIS Statistical data: (1) Analysis of Variance (2) Diagnostic validation of data and (3) Interpretation graph. Then repeat with best transform as required.

| Analysis o | f | Radicals | of | TCE | treated | mice |
|------------|---|----------|----|-----|---------|------|
|------------|---|----------|----|-----|---------|------|

| SOURCE                         | SUM OF<br>SQUARES                  | MEAN<br>DF                                | f<br>Square          | VALUE  | PROB > F |
|--------------------------------|------------------------------------|-------------------------------------------|----------------------|--------|----------|
| MODEL<br>RESIDUAL<br>COR TOTAL | 16193.246<br>2767.517<br>18960.763 | 10<br>62<br>72                            | 1619.3<br>44.6       | 36.28  | < 0.0001 |
| ROOT MSE<br>DEP MEAN<br>C.V. % | 14.787A                            | -SQUARED<br>DJ R-SQUARED<br>RED R-SQUARED | 0.85<br>0.83<br>0.80 |        | ·        |
| Tradistad Desidua              | Sum of Son                         | ares (PRESS) =                            | :                    | 3870.1 |          |

Predicted Residual Sum of Squares (PRESS)

| Group                                          | ESTIMATED MEAN                                                                                       | STANDARD ERROR                                                                         |
|------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J | 1.350<br>1.614<br>38.517<br>33.463<br>27.102<br>35.586<br>5.831<br>1.134<br>10.670<br>6.830<br>0.580 | 3.341<br>2.728<br>2.525<br>2.525<br>2.988<br>2.525<br>2.728<br>2.525<br>2.525<br>2.525 |

| Treatm 1 vs | 2<br>3<br>4<br>5<br>6<br>7<br>8 | DIFFERENCE<br>-0.26<br>-37.17<br>-32.11<br>-25.75<br>-34.24<br>-4.48<br>0.22<br>-9.32 | STANDARI<br>DF<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | ERROR<br>4.313<br>4.188<br>4.188<br>4.482<br>4.188<br>4.188<br>4.313<br>4.188 | COEFFICIENT=0 -0.061 -8.875 -7.669 -5.746 -8.175 -1.070 0.050 -2.226 -1.309 | PROB >  t <br>0.9514<br>< 0.0001<br>< 0.0001<br>< 0.0001<br>< 0.0001<br>0.2887<br>0.9602<br>0.0297<br>0.1955 |
|-------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 1 vs                                      |                                 | -5.48                                                                                 | 1                                                 | 4.188                                                                         | -1.309                                                                      | 0.1935                                                                                                       |
| 1 vs                                      |                                 | 0.77                                                                                  | 1                                                 | 3.953                                                                         | 0.195                                                                       | 0.8462                                                                                                       |
| 2 vs                                      |                                 | -36.90                                                                                | 1                                                 | 3.717                                                                         | -9.928                                                                      | < 0.0001                                                                                                     |

| 2 vs 4             |              | -31.85           | 1      |                 | .717<br>.046   |                 | 568<br>300   | < 0.0<br>< 0.0 |      |
|--------------------|--------------|------------------|--------|-----------------|----------------|-----------------|--------------|----------------|------|
| 2 vs 5             |              | -25.49<br>-33.97 | 1      |                 | .717           |                 | 139          | < 0.0          | 001  |
| 2 vs 6<br>2 vs 7   |              | -4.22            | ī      |                 | .717           |                 | 135          |                | 609  |
| 2 vs 7<br>2 vs 8   |              | 0.48             | ī      |                 | .857           |                 | 124          |                | 014  |
| 2 vs 9             |              | -9.06            | 1      | 3               | .717           |                 | 436          |                | 177  |
|                    |              | -5.22            | 1      | 3               | .717           |                 | 403          |                | .655 |
| 2 vs 10<br>2 vs 11 |              | 1.03             | 1      | 3               | .450           |                 | .300         |                | 654  |
| 3 vs 4             |              | 5.05             | 1      |                 | .571           |                 | 415          |                | .620 |
| 3 vs 5             |              | 11.42            | 1      |                 | .912           |                 | 918          |                | 049  |
| 3 vs 6             |              | 2.93             | 1      |                 | .571           |                 | .821         | < 0.0          | 149  |
| 3 vs 7             |              | 32.69            | 1      |                 | .571           |                 | . 153        | < 0.0          |      |
| 3 vs 8             |              | 37.38            | 1      |                 | .717           |                 | .057         | < 0.0          |      |
| 3 vs 9             |              | 27.85            | 1      |                 | .571           |                 | .798         | < 0.0          |      |
| 3 vs 10            |              | 31.69            | 1      |                 | .571           |                 | .873         | < 0.0          |      |
| 3 vs 11            |              | 37.94            | 1      |                 | .292           |                 | .522<br>.626 |                | 1090 |
| 4 vs 5             |              | 6.36             | 1      |                 | .912           |                 | .594         |                | 5544 |
| 4 vs 6             |              | -2.12            | 1      |                 | .571<br>.571   |                 | .737         | < 0.0          |      |
| 4 vs 7             |              | 27.63            | 1      |                 | 3.717          |                 | .698         | < 0.0          |      |
| 4 vs 8             |              | 32.33            | 1      |                 | 3.717<br>3.571 |                 | .382         | < 0.0          |      |
| 4 vs 9             |              | 22.79            | 1      |                 | 3.571          |                 | .458         | < 0.0          |      |
| 4 vs 10            |              | 26.63            | 1      |                 | 3.292          |                 | .987         | < 0.0          |      |
| 4 vs 11            |              | 32.88            | 1      |                 | 3.912          |                 | .169         |                | 0340 |
| 5. vs 6            |              | -8.48<br>21.27   | 1<br>1 |                 | 3.912          |                 | .437         | < 0.0          | 0001 |
| 5 vs 7             |              | 25.97            | 1      |                 | 1.046          |                 | .419         | < 0.0          | 0001 |
| 5 vs 8             |              | 16.43            | ī      |                 | 3.912          |                 | .200         | < 0.           |      |
| 5 vs 9             |              | 20.27            | ī      |                 | 3.912          |                 | .182         | < 0.           |      |
| 5 vs 10<br>5 vs 11 |              | 26.52            | ī      |                 | 3.659          | . 7             | .248         | < 0.           |      |
| 5 vs 11<br>6 vs 7  |              | 29.75            | ī      |                 | 3.571          |                 | .332         | < 0.           |      |
| 6 vs 8             |              | 34.45            | 1      | :               | 3.717          |                 | .269         | < 0.           |      |
| 6 vs 9             |              | 24.92            | 1      |                 | 3.571          |                 | .977         | < 0.           |      |
| 6 vs 10            |              | 28.76            | 1      |                 | 3.571          |                 | .052         | < 0.           |      |
| 6 vs 11            |              | 35.01            | 1      |                 | 3.292          |                 | .632         | < 0.           | 2110 |
| 7 vs 8             |              | 4.70             | 1      |                 | 3.717          |                 | 264          |                | 1804 |
| 7 vs 9             |              | -4.84            | 1      |                 | 3.571          |                 | 355          |                | 7807 |
| 7 vs 10            |              | -1.00            | 1      |                 | 3.571          |                 | 280          |                | 1158 |
| 7 vs 11            |              | 5.25             | 1      |                 | 3.292          |                 | 595<br>2.566 |                | 0127 |
| 8 vs 9             |              | -9.54            | 1      |                 | 3.717          |                 | L.532        |                | 1305 |
| 8 vs 10            |              | -5.70            | 1      |                 | 3.717<br>3.450 |                 | ).161        |                | 8730 |
| 8 vs 11            |              | 0.55             | 1      |                 | 3.430          |                 | L.075        |                | 2864 |
| 9 vs 10            |              | 3.84             | 1      |                 | 3.292          |                 | 3.065        |                | 0032 |
| 9 vs 11            |              | 10.09<br>6.25    | 1      |                 | 3.292          |                 | L.898        | 0.             | 0623 |
| 10 vs 11           |              | 0.23             | -      |                 | 3.270          |                 |              |                |      |
|                    |              |                  |        |                 |                |                 |              |                |      |
|                    |              |                  |        |                 |                |                 |              |                |      |
| OBS                | ACTUAL       | PREDICTED        |        | TUDENT          | COOK'S         | OUTLIER         | RUN          |                | 000  |
| ORD                | VALUE        | VALUE            | RE     | ESIDUAL         | LEVER          | RESID           | DIST         | T VALUE        | ORD  |
| <del>-</del>       |              |                  |        |                 |                | 0.000           | 0.000        | -0.027         | 9    |
| 1                  | 1.19         | 1.35             |        | -0.160          | 0.250          | -0.028          | 0.000        | 0.122          | 66   |
| 2                  | 2.06         | 1.35             |        | 0.710           | 0.250          | 0.123<br>-0.043 | 0.000        | -0.043         | 13   |
| 3                  | 1.10         | 1.35             |        | -0.250          | 0.250          | -0.043          | 0.000        | -0.051         | 61   |
| 4                  | 1.05         | 1.35             |        | -0.300<br>0.109 | 0.250          | 0.018           | 0.000        | 0.018          | 5    |
| 5<br>6             | 1.72         | 1.61             |        | -0.542          | 0.167          | -0.089          | 0.000        | -0.088         | 59   |
| б<br>-             | 1.07         | 1.61<br>1.61     |        | 0.338           | 0.167          | 0.055           | 0.000        | 0.055          | 48   |
| 7                  | 1.95         | 1.61             |        | 0.336           | 0.167          | 0.117           | 0.000        | 0.116          | 52   |
| 8                  | 2.33<br>1.08 | 1.61             |        | -0.535          | 0.167          | -0.088          | 0.000        | -0.087         | 3    |
| 9                  | 1.53         | 1.61             |        | -0.085          | 0.167          | -0.014          | 0.000        | -0.014         | 56   |
| 10                 | 1.00         | 1.01             |        |                 |                |                 |              |                |      |

|      | 24 50 | 38.52 | -4.017  | 0.143 | -0.649 | 0.006 | -0.646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4  |
|------|-------|-------|---------|-------|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 11   | 34.50 |       |         | 0.143 | -2.012 | 0.061 | -2.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33 |
| 12   | 26.07 | 38.52 | -12.447 |       |        | 0.048 | -1.810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 |
| 13   | 27.52 | 38.52 | -10.997 | 0.143 | -1.778 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -6 |
| 14   | 64.34 | 38.52 | 25.823  | 0.143 | 4.175  | 0.264 | 4.884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 15   | 45.17 | 38.52 | 6.653   | 0.143 | 1.076  | 0.018 | 1.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34 |
| 16   | 43.42 | 38.52 | 4.903   | 0.143 | 0.793  | 0.010 | 0.790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 |
| 17   | 28.60 | 38.52 | -9.917  | 0.143 | -1.603 | 0.039 | -1.624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14 |
|      |       | 33.46 | 21.907  | 0.143 | 3.542  | 0.190 | 3.933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42 |
| 18   | 55.37 |       |         | 0.143 | 1.138  | 0.020 | 1.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31 |
| 19   | 40.50 | 33.46 | 7.037   |       |        | 0.063 | -2.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46 |
| 20   | 20.83 | 33.46 | -12.633 | 0.143 | -2.042 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 21   | 34.75 | 33.46 | 1.287   | 0.143 | 0.208  | 0.001 | 0.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 |
| 22   | 25.35 | 33.46 | -8.113  | 0.143 | -1.312 | 0.026 | -1.319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2  |
| 23   | 33.37 | 33.46 | -0.093  | 0.143 | -0.015 | 0.000 | -0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54 |
| 24   | 24.07 | 33.46 | -9.393  | 0.143 | -1.519 | 0.035 | -1.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22 |
| 25   | 20.22 | 27.10 | -6.882  | 0.200 | -1.152 | 0.030 | -1.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7  |
|      |       | 27.10 | -7.552  | 0.200 | -1.264 | 0.036 | -1.270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1  |
| 26   | 19.55 |       |         |       | -0.614 | 0.009 | -0.611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43 |
| 27   | 23.43 | 27.10 | -3.672  | 0.200 |        |       | 3.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51 |
| 28   | 47.10 | 27.10 | 19.998  | 0.200 | 3.347  | 0.255 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 29   | 25.21 | 27.10 | -1.892  | 0.200 | -0.317 | 0.002 | -0.314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69 |
| 30   | 34.48 | 35.59 | -1.106  | 0.143 | -0.179 | 0.000 | -0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 |
| 31   | 36.70 | 35.59 | 1.114   | 0.143 | 0.180  | 0.000 | 0.179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8  |
| 32   | 30.00 | 35.59 | -5.586  | 0.143 | -0.903 | 0.012 | -0.902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24 |
|      | 44.50 | 35.59 | 8.914   | 0.143 | 1.441  | 0.031 | 1.454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60 |
| 33   |       | 35.59 | -6.716  | 0.143 | -1.086 | 0.018 | -1.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 |
| 34   | 28.87 |       |         | 0.143 | 0.759  | 0.009 | 0.756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44 |
| 35   | 40.28 | 35.59 | 4.694   |       | -0.213 | 0.001 | -0.211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38 |
| 36   | 34.27 | 35.59 | -1.316  | 0.143 |        | 0.000 | 0.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58 |
| 37   | 6.57  | 5.83  | 0.739   | 0.143 | 0.119  |       | -0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73 |
| 38   | 5.69  | 5.83  | -0.141  | 0.143 | 0.023  | 0.000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 39   | 4.83  | 5.93  | -1.001  | 0.143 | -0.162 | 0.000 | -0.161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62 |
| 40   | 5.41  | 5.83  | -0.421  | 0.143 | -0.068 | 0.000 | -0.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29 |
| 41   | 5.14  | 5.83  | -0.691  | 0.143 | -0.112 | 0.000 | -0.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 |
| 42   | 6.73  | 5.83  | 0.899   | 0.143 | 0.145  | 0.000 | 0.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32 |
| 43   | 6.45  | 5.83  | 0.619   | 0.143 | 0.100  | 0.000 | 0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72 |
| 44   | 1.32  | 1.13  | 0.188   | 0.167 | 0.031  | 0.000 | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16 |
| 45   | 0.94  | 1.13  | -0.197  | 0.167 | -0.032 | 0.000 | -0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47 |
|      | 1.29  | 1.13  | 0.154   | 0.167 | 0.025  | 0.000 | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63 |
| 46   |       | 1.13  | 0.005   | 0.167 | 0.001  | 0.000 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37 |
| 47   | 1.14  |       |         | 0.167 | -0.001 | 0.000 | -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26 |
| 48   | 1.13  | 1.13  | -0.007  |       |        | 0.000 | -0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39 |
| 49   | 0.99  | 1.13  | -0.144  | 0.167 | -0.024 | 0.000 | 0.123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68 |
| 50   | 11.44 | 10.67 | 0.770   | 0.143 | 0.124  |       | -0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70 |
| 51   | 9.99  | 10.67 | -0.680  | 0.143 | -0.110 | 0.000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 |
| 52   | 9.66  | 10.67 | -1.010  | 0.143 | -0.163 | 0.000 | -0.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 53   | 7.15  | 10.67 | -3.520  | 0.143 | -0.569 | 0.005 | -0.566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28 |
| 54   | 15.54 | 10.67 | 4.870   | 0.143 | 0.787  | 0.009 | 0.785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 |
| 55   | 10.63 | 10.67 | -0.040  | 0.143 | -0.006 | 0.000 | -0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41 |
| 56   | 10.28 | 10.67 | -0.390  | 0.143 | -0.063 | 0.000 | -0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45 |
| 57   | 7.52  | 6.83  | 0.690   | 0.143 | 0.112  | 0.000 | 0.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57 |
| 58   | 8.87  | 6.83  | 2.040   | 0.143 | 0.330  | 0.002 | 0.327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21 |
|      | 7.75  | 6.83  | 0.920   | 0.143 | 0.149  | 0.000 | 0.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49 |
| 59 . |       | 6.83  | -4.510  | 0.143 | -0.729 | 0.008 | -0.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53 |
| 60   | 2.32  |       |         |       | -0.276 | 0.001 | -0.274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19 |
| 61   | 5.12  | 6.83  | -1.710  | 0.143 |        | 0.002 | 0.323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65 |
| 62   | 8.84  | 6.83  | 2.010   | 0.143 | 0.325  |       | 0.323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23 |
| 63   | 7.39  | 6.83  | 0.560   | 0.143 | 0.091  | 0.000 | The second secon |    |
| 64   | 0.00  | 0.58  | -0.580  | 0.100 | -0.092 | 0.000 | -0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67 |
| 65   | 4.24  | 0.58  | 3.660   | 0.100 | 0.577  | 0.003 | 0.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27 |
| 66   | 0.00  | 0.58  | -0.580  | 0.100 | -0.092 | 0.000 | -0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36 |
| 67   | 0.00  | 0.58  | -0.580  | 0.100 | -0.092 | 0.000 | -0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64 |
| 68   | 0.00  | 0.58  | -0.580  | 0.100 | -0.092 | 0.000 | -0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 |
| 69   | 0.00  | 0.58  | -0.580  | 0.100 | -0.092 | 0.000 | -0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71 |
| 70   | 0.00  | 0.58  | -0.580  | 0.100 | -0.092 | 0.000 | -0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25 |
| , 0  | 3.00  |       |         |       | _      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

|    | 0.00 | 0.58 | -0 580 | 0.100 | -0.092 | 0.000 | -0.091 | 35 |
|----|------|------|--------|-------|--------|-------|--------|----|
|    | 0.00 |      | 0.300  | 0.100 | 0.155  | 0.000 | 0.153  | 20 |
| 72 | 1.56 | 0.58 | -0.580 | 0.100 | -0.092 | 0.000 | -0.091 | 55 |

# 2. Diagnostic curves below suggest a log transform for predictive interpretations of data.





















Analysis of Radicals from TCE treated mice using log transform

| SOURCE                         | SUM OF<br>SQUARES               | MEAN<br>DF                                | f<br>Square          | VALUE  | PROB > F |
|--------------------------------|---------------------------------|-------------------------------------------|----------------------|--------|----------|
| MODEL<br>RESIDUAL<br>COR TOTAL | 25.26498<br>1.56673<br>26.83170 | 10<br>62<br>72                            | 2.5265<br>0.0253     | 99.98  | < 0.0001 |
| ROOT MSE<br>DEP MEAN<br>C.V. % |                                 | -SQUARED<br>DJ R-SQUARED<br>RED R-SQUARED | 0.94<br>0.93<br>0.92 |        |          |
| Predicted Residual             | Sum of Sq                       | uares (PRESS) =                           | •                    | 2.1781 |          |

|                       | ESTIMATED MEAN                                                                          | STANDARD ERROR                                                                  |
|-----------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| A B C D E F G H I J K | 2.42857 2.45145 3.85090 3.74216 3.58204 3.81343 2.76102 2.40991 3.02253 2.81377 2.35243 | 0.07948 0.06490 0.06008 0.06008 0.07109 0.06008 0.06490 0.06008 0.06008 0.06008 |

| 2 vs 3 2 vs 4 -1.29 1 0.088 -14.594 < 0.6 2 vs 5 -1.13 1 0.096 -11.745 < 0.6 2 vs 6 -1.36 1 0.088 -15.400 < 0.6 2 vs 7 -0.31 1 0.088 -3.500 0.6 2 vs 7 0.04 1 0.092 0.453 0.6 2 vs 8 -0.57 1 0.088 -6.457 < 0.6 2 vs 9 2 vs 10 -0.36 1 0.088 -4.097 0.6 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# AFRL/HEST 2856 G STREET WRIGHT-PATTERSON AFB OH 45433-7400

OFFICIAL BUSINESS

).2323 ).2054 ).0053 ).6607 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001 ).0001

ORD

| 18 | 4.18 | 3.74 | 0.438  | 0.143 | 2.975  | 0.134 | 3.188  | 42         |
|----|------|------|--------|-------|--------|-------|--------|------------|
| 19 | 3.92 | 3.74 | 0.180  | 0.143 | 1.222  | 0.023 | 1.227  | 31         |
| 20 | 3.43 | 3.74 | -0.314 | 0.143 | -2.131 | 0.069 | -2.196 | 46         |
| 21 | 3.80 | 3.74 | 0.059  | 0.143 | 0.400  | 0.002 | 0.398  | 40         |
| 22 | 3.57 | 3.74 | -0.177 | 0.143 | -1.202 | 0.022 | -1.206 | 2          |
| 23 | 3.77 | 3.74 | 0.028  | 0.143 | 0.188  | 0.001 | 0.186  | 54         |
| 24 | 3.53 | 3.74 | -0.214 | 0.143 | -1.452 | 0.032 | -1.466 | 22         |
| 25 | 3.41 | 3.58 | -0.174 | 0.200 | -1.220 | 0.034 | -1.225 | 7          |
| 26 | 3.39 | 3.58 | -0.196 | 0.200 | -1.378 | 0.043 | -1.388 | 1          |
| 27 | 3.51 | 3.58 | -0.073 | 0.200 | -0.510 | 0.006 | -0.507 | 43         |
| 28 | 4.04 | 3.58 | 0.463  | 0.200 | 3.255  | 0.241 | 3.545  | 51         |
| 29 | 3.56 | 3.58 | -0.021 | 0.200 | -0.146 | 0.000 | -0.144 | 69         |
| 30 | 3.80 | 3.81 | -0.018 | 0.143 | -0.125 | 0.000 | -0.124 | 17         |
| 31 | 3.84 | 3.81 | 0.030  | 0.143 | 0.206  | 0.001 | 0.204  | 8          |
| 32 | 3.69 | 3.81 | -0.125 | 0.143 | -0.846 | 0.011 | -0.844 | 24         |
| 33 | 4.00 | 3.81 | 0.185  | 0.143 | 1.255  | 0.024 | 1.261  | 60         |
| 34 | 3.66 | 3.81 | -0.153 | 0.143 | -1.041 | 0.016 | -1.042 | 30         |
| 35 | 3.92 | 3.81 | 0.104  | 0.143 | 0.708  | 0.008 | 0.705  | 44         |
| 36 | 3.79 | 3.81 | -0.023 | 0.143 | -0.157 | 0.000 | -0.156 | 38         |
| 37 | 2.81 | 2.76 | 0.047  | 0.143 | 0.316  | 0.002 | 0.314  | 58         |
| 38 | 2.75 | 2.76 | -0.008 | 0.143 | -0.054 | 0.000 | -0.054 | 73         |
| 39 | 2.70 | 2.76 | -0.064 | 0.143 | -0.437 | 0.003 | -0.435 | 62         |
| 40 | 2.74 | 2.76 | -0.026 | 0.143 | -0.177 | 0.000 | -0.175 | 29         |
| 41 | 2.72 | 2.76 | -0.044 | 0.143 | -0.297 | 0.001 | -0.295 | 10         |
| 42 | 2.82 | 2.76 | 0.056  | 0.143 | 0.382  | 0.002 | 0.379  | 32         |
| 43 | 2.80 | 2.76 | 0.039  | 0.143 | 0.267  | 0.001 | 0.265  | 72         |
| 44 | 2.43 | 2.41 | 0.017  | 0.167 | 0.116  | 0.000 | 0.115  | 16         |
| 45 | 2.39 | 2.41 | -0.018 | 0.167 | -0.122 | 0.000 | -0.121 | 47         |
| 46 | 2.42 | 2.41 | 0.014  | 0.167 | 0.095  | 0.000 | 0.095  | 63         |
| 47 | 2.41 | 2.41 | 0.001  | 0.167 | 0.003  | 0.000 | 0.003  | 37         |
| 48 | 2.41 | 2.41 | -0.001 | 0.167 | -0.004 | 0.000 | -0.004 | 26         |
| 49 | 2.40 | 2.41 | -0.013 | 0.167 | -0.089 | 0.000 | -0.088 | 39         |
| 50 | 3.07 | 3.02 | 0.043  | 0.143 | 0.290  | 0.001 | 0.288  | <b>6</b> 8 |
| 51 | 3.00 | 3.02 | -0.027 | 0.143 | -0.185 | 0.001 | -0.184 | 70         |
| 52 | 2.98 | 3.02 | -0.044 | 0.143 | -0.299 | 0.001 | -0.296 | 12         |
| 53 | 2.84 | 3.02 | -0.181 | 0.143 | -1.227 | 0.023 | -1.232 | 28         |
| 54 | 3.24 | 3.02 | 0.218  | 0.143 | 1.479  | 0.033 | 1.494  | 15         |
| 55 | 3.03 | 3.02 | 0.004  | 0.143 | 0.029  | 0.000 | 0.028  | 41.        |
| 56 | 3.01 | 3.02 | -0.013 | 0.143 | -0.088 | 0.000 | -0.087 | 45         |
| 57 | 2.86 | 2.81 | 0.050  | 0.143 | 0.337  | 0.002 | 0.334  | 57         |
| 58 | 2.94 | 2.81 | 0.124  | 0.143 | 0.841  | 0.011 | 0.839  | 21         |
| 59 | 2.88 | 2.81 | 0.063  | 0.143 | 0.425  | 0.003 | 0.423  | 49         |
| 60 | 2.51 | 2.81 | -0.303 | 0.143 | -2.056 | 0.064 | -2.112 | <b>5</b> 3 |
| 61 | 2.72 | 2.81 | -0.098 | 0.143 | -0.664 | 0.007 | -0.661 | 19         |
| 62 | 2.94 | 2.81 | 0.122  | 0.143 | 0.830  | 0.010 | 0.828  | 65         |
| 63 | 2.86 | 2.81 | 0.042  | 0.143 | 0.286  | 0.001 | 0.284  | 23         |
| 64 | 2.30 | 2.35 | -0.050 | 0.100 | -0.331 | 0.001 | -0.328 | 67         |
| 65 | 2.66 | 2.35 | 0.304  | 0.100 | 2.013  | 0.041 | 2.066  | 27         |
| 66 | 2.30 | 2.35 | -0.050 | 0.100 | -0.331 | 0.001 | -0.328 | 36         |
| 67 | 2.30 | 2.35 | -0.050 | 0.100 | -0.331 | 0.001 | -0.328 | 64         |
| 68 | 2.30 | 2.35 | -0.050 | 0.100 | -0.331 | 0.001 | -0.328 | <b>5</b> 0 |
| 69 | 2.30 | 2.35 | -0.050 | 0.100 | -0.331 | 0.001 | -0.328 | 71         |
| 70 | 2.30 | 2.35 | -0.050 | 0.100 | -0.331 | 0.001 | -0.328 | 25         |
| 71 | 2.30 | 2.35 | -0.050 | 0.100 | -0.331 | 0.001 | -0.328 | 35         |
| 72 | 2.45 | 2.35 | 0.095  | 0.100 | 0.631  | 0.004 | 0.628  | 20         |
| 73 | 2.30 | 2.35 | -0.050 | 0.100 | -0.331 | 0.001 | -0.328 | <b>5</b> 5 |

















# DESIGN-EASE Analysis Ln(Radicals + 10.00)



















# DESIGN-EASE Analysis Ln(Radicals + 10.00)



## ANALYSIS OF VARIANCE OF TCE EFFECTS ON CORRECTION FOR BACKGROUND RADICALS IN LYOPHILIZED LIVER.

| Design ID | Run# | Block | Rad Factor                                       | Response<br>x10 <sup>19</sup> |
|-----------|------|-------|--------------------------------------------------|-------------------------------|
| 1         | 15   | 1     | Α                                                | 3.37                          |
| 1         | 20   | 1     | Α                                                | 3.36                          |
| 1         | 7    | 1     | Α                                                | 3.19                          |
| 2         | 18   | 1     | В                                                | 3.21                          |
| 2         | 22   | 1     | В                                                | 3.2                           |
| 2         | 16   | 1     | В                                                | 3.14                          |
| 3         | 27   | 1     | С                                                | 13.54                         |
| 3         | 11   | 1     | С                                                | 13.54                         |
| 3         | 24   | 1     | С                                                | 13.47                         |
| 4         | 12   | 1     | D                                                | 3.33                          |
| 4         | 26   | 1     | D                                                | 3.32                          |
| 4         | 23   | 1     | D                                                | 2.99                          |
| 5         | 25   | 1     | E                                                | 1.92                          |
| 5         | 29   | 1     | E                                                | 1.91                          |
| 6         | 30   | 1     | F                                                | 5.89                          |
| 6         | 8    | 1     | F                                                | 5.88                          |
| 0         | 4    | 1     | F                                                | 5.81                          |
| 7         | 21   | 1     | G                                                | 4.01                          |
| 7         | 1    | 1     | G                                                | 4                             |
| 7         | 31   | 1     | G                                                | 3.93                          |
| 8         | 3    | 1     | Н                                                | 3.2                           |
| 8         | 13   | 1     | Н                                                | 3.19                          |
| 8         | 14   | 1     | Н                                                | 3.12                          |
| 9         | 5    | 1     | I                                                | 4.23                          |
| 9         | 9    | 1     | 1                                                | 4.22                          |
| 9         | 17   | 1     | 1                                                | 4.44                          |
| 10        | 2    | 1     | <del>                                     </del> | 0                             |
| 10        | 10   | 1     | J                                                | 0                             |
| 10        | 28   | 1     | J                                                | 0                             |
| 11        | 6    | 1     | К                                                | 3.77                          |
| 11        | 19   | 1     | К                                                | 3.7                           |

Analysis of RADICALS of TCE radical effect

| SOURCE                         | SUM OF<br>SQUARES              | MEAN<br>DF                                | F<br>SQUARE          | VALUE   | PROB > F |
|--------------------------------|--------------------------------|-------------------------------------------|----------------------|---------|----------|
| MODEL<br>RESIDUAL<br>COR TOTAL | 344.0023<br>0.1462<br>344.1485 | 10<br>20<br>30                            | 34.400<br>0.007      | 4704.84 | < 0.0001 |
| ROOT MSE<br>DEP MEAN<br>C.V. % | 4.2865A                        | -squared<br>DJ R-squared<br>RED R-squared | 1.00<br>1.00<br>1.00 |         |          |

|                            | ESTIMATED MEAN                                                      | STANDARD ERROR                                                     |
|----------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|
| A<br>B<br>C<br>D<br>E<br>F | 3.3067<br>3.1833<br>13.5167<br>3.2133<br>1.9150<br>5.8600<br>3.9800 | 0.0494<br>0.0494<br>0.0494<br>0.0494<br>0.0605<br>0.0494<br>0.0494 |
| G<br>H<br>I<br>J<br>K      | 3.1700<br>4.2967<br>-0.0000<br>3.7350                               | 0.0494<br>0.0494<br>0.0494<br>0.0605                               |

|         | MEAN     | STANDARD 1 | FOR HO |               | •         |
|---------|----------|------------|--------|---------------|-----------|
| Treatme |          | DF         | ERROR  | COEFFICIENT=0 | PROB >  t |
|         | 2 0.12   | 1          | 0.070  | • 1.767       | 0.0926    |
| 1 vs    | 3 -10.21 | ī          | 0.070  | -146.239      | < 0.0001  |
| 1 vs    | 4 . 0.09 | ī          | 0.070  | 1.337         | 0.1963    |
| 1 vs    | 5 1.39   | ī          | 0.078  | 17.829        | < 0.0001  |
| l vs    | 6 -2.55  | ī          | 0.070  | -36.572       | < 0.0001  |
| 1 vs    | 7 -0.67  | ī          | 0.070  | -9.644        | < 0.0001  |
| 1 vs    | 8 0.14   | 1          | 0.070  | 1.957         | 0.0644    |
| 1 vs    | 9 -0.99  | ī          | 0.070  | -14.180       | < 0.0001  |
|         | .0 3.31  | 1          | 0.070  | 47.362        | < 0.0001  |
|         | 1 -0.43  | 1          | 0.078  | -5.487        | < 0.0001  |
| 2 vs    | 3 -10.33 | 1          | 0.070  | -148.006      | < 0.0001  |
| 2 vs    | 4 -0.03  | 1          | 0.070  | -0.430        | 0.6720    |
| 2 vs    | 5 1.27   | 1          | 0.078  | • 16.249      | < 0.0001  |
| 2 vs    | 6 -2.68  | 1          | 0.070  | -38.338       | < 0.0001  |
| 2 vs    | 7 -0.80  | 1          | 0.070  | -11.411       | < 0.0001  |
| 2 vs    | 8 0.01   | 1          | 0.070  | 0.191         | 0.8505    |
| 2 vs    | 9 -1.11  | 1          | 0.070  | -15.946       | < 0.0001  |
|         | 3.18     | 1          | 0.070  | 45.595        | < 0.0001  |
|         | -0.55    | 1          | 0.078  | -7.067        | < 0.0001  |
| 3 vs    | 10.30    | 1          | 0.070  | 147.576       | < 0.0001  |
| 3 vs    | 5 11.60  | 1          | 0.078  | 148.629       | < 0.0001  |
| 3 vs    | 6 7.66   | 1          | 0.070  | 109.667       | < 0.0001  |
| 3 vs    | 7 9.54   | 1          | 0.070  | 136.595       | < 0.0001  |
| 3 vs    | 8 10.35  | 1          | 0.070  | 148.196       | < 0.0001  |
| 3 vs    | 9 9.22   | . 1        | 0.070  | 132.059       | < 0.0001  |
| -       | 10 13.52 | . 1        | 0.070  | 193.601       | < 0.0001  |
|         | 11 9.78  | 1          | 0.078  | 125.313       | < 0.0001  |
| 4 vs    | 5 1.30   |            | 0.078  | 16.633        | < 0.0001  |
| 4 vs    | 6 -2.65  | 1          | 0.070  | -37.909       | < 0.0001  |
| 4 vs    | 7 -0.77  |            | 0.070  | -10.981       | < 0.0001  |
| 4 vs    | 8 0.04   |            | 0.070  | 0.621         | 0.5418    |
| 4 vs    | 9 -1.08  | 1          | 0.070  | -15.517       | < 0.0001  |

|    |    |    |       |   | 0 070 | 46.025  | < 0.0001 |
|----|----|----|-------|---|-------|---------|----------|
| 4  | VS | 10 | 3.21  | 1 | 0.070 | -       |          |
| 4  | VS | 11 | -0.52 | 1 | 0.078 | -6.683  | < 0.0001 |
| _  |    |    | -3.95 | 1 | 0.078 | -50.539 | < 0.0001 |
| _  | VS | 6  |       | ī | 0.078 | -26.455 | < 0.0001 |
| 5  | V3 | 7  | -2.07 | - |       | -16.078 | < 0.0001 |
| 5  | VS | 8  | -1.26 | 1 | 0.078 |         |          |
| 5  | VS | 9  | -2.38 | 1 | 0.078 | -30.511 | < 0.0001 |
| _  |    | 10 | 1.92  | 1 | 0.078 | 24.533  | < 0.0001 |
| -  |    |    | -1.82 | ī | 0.086 | -21.284 | < 0.0001 |
| 5  | VS | 11 |       |   |       | 26.927  | < 0.0001 |
| 6  | VS | 7  | 1.88  | 1 | 0.070 |         | < 0.0001 |
| 6  | VS | 8  | 2.69  | 1 | 0.070 | 38.529  |          |
| 6  | VS | 9  | 1.56  | 1 | 0.070 | 22.392  | < 0.0001 |
|    | _  | -  | 5.86  | 1 | 0.070 | 83.933  | < 0.0001 |
| 6  | ٧S | 10 |       | - |       | 27.223  | < 0.0001 |
| 6  | ٧S | 11 | 2.13  | 1 | 0.078 |         | < 0.0001 |
| 7  | VS | 8  | 0.81  | 1 | 0.070 | 11.602  |          |
| 7  | VS | 9  | -0.32 | 1 | 0.070 | -4.536  | 0.0002   |
|    |    |    | 3.98  | 1 | 0.070 | 57.006  | < 0.0001 |
| 7  |    | 10 |       |   | 0.078 | 3.139   | 0.0052   |
| 7  | VS | 11 | 0.25  | 1 |       |         | < 0.0001 |
| 8  | VS | 9  | -1.13 | 1 | 0.070 | -16.137 |          |
| 8  | VS | 10 | 3.17  | 1 | 0.070 | 45.404  | < 0.0001 |
| _  |    |    | -0.56 | 1 | 0.078 | -7.238  | < 0.0001 |
| 8  |    | 11 |       | ī | 0.070 | 61.542  | < 0.0001 |
| 9  | VS | 10 | 4.30  |   |       |         | < 0.0001 |
| 9  | vs | 11 | 0.56  | 1 | 0.078 | 7.196   |          |
| -  | vs |    | -3.74 | 1 | 0.078 | -47.849 | < 0.0001 |
| -0 | 43 |    |       |   |       |         |          |

| OBS    | ACTUAL | PREDICTED | STUDENT  | COOK'S | OUTLIER | RUN   |         |        |
|--------|--------|-----------|----------|--------|---------|-------|---------|--------|
| ORD    | VALUE  | VALUE     | RESIDUAL | LEVER  | RESID   | DIST  | T VALUE | ORD    |
| O.C.   |        |           |          |        |         |       |         |        |
| 1      | 3.37   | 3.31      | 0.063    | 0.333  | 0.907   | 0.037 | 0.903   | 15     |
| 2      | 3.36   | 3.31      | 0.053    | 0.333  | 0.764   | 0.027 | 0.756   | 20     |
| 3      | 3.19   | 3.31      | -0.117   | 0.333  | -1.671  | 0.127 | -1.756  | 7      |
| 4      | 3.21   | 3.18      | 0.027    | 0.333  | 0.382   | 0.007 | 0.374   | 18     |
| 5      | 3.20   | 3.18      | 0.017    | 0.333  | 0.239   | 0.003 | 0.233   | 22     |
| 5<br>6 | 3.14   | 3.18      | -0.043   | 0.333  | -0.621  | 0.018 | -0.611  | 16     |
| . 7    | 13.54  | 13.52     | 0.023    | 0.333  | 0.334   | 0.005 | 0.327   | 27     |
| 8      | 13.54  | 13.52     | 0.023    | 0.333  | 0.334   | 0.005 | 0.327   | 11     |
| 9      | 13.47  | 13.52     | -0.047   | 0.333  | -0.668  | 0.020 | -0.659  | 24     |
| 10     | 3.33   | 3.21      | 0.117    | 0.333  | 1.671   | 0.127 | 1.756   | 12     |
| 11     | 3.32   | 3.21      | 0.107    | 0.333  | 1.528   | 0.106 | 1.584   | 26     |
| 12     | 2.99   | 3.21      | -0.223   | 0.333  | -3.199  | 0.465 | -4.461  | 23     |
| 13     | 1.92   | 1.92      | 0.005    | 0.500  | 0.083   | 0.001 | 0.081   | 25     |
| 14     | 1.91   | 1.92      | -0.005   | 0.500  | -0.083  | 0.001 | -0.081  | 29     |
| 15     | 5.89   | 5.86      | 0.030    | 0.333  | 0.430   | 0.008 | 0.421   | 30     |
| 16     | 5.88   | 5.86      | 0.020    | 0.333  | 0.286   | 0.004 | 0.280   | 8      |
| 17     | 5.81   | 5.86      | -0.050   | 0.333  | -0.716  | 0.023 | -0.707  | 4      |
| 18     | 4.01   | 3.98      | 0.030    | 0.333  | 0.430   | 0.008 | 0.421   | 21     |
| 19     | 4.00   | 3.98      | 0.020    | 0.333  | 0.286   | 0.004 | 0.280   | 1      |
| 20     | 3.93   | 3.98      | -0.050   | 0.333  | -0.716  | 0.023 | -0.707  | 31     |
| 21     | 3.20   | 3.17      | 0.030    | 0.333  | 0.430   | 0.008 | 0.421   | 3      |
| 22     | 3.19   | 3.17      | 0.020    | 0.333  | 0.286   | 0.004 | 0.280   | 13     |
| 23     | 3.12   | 3.17      | -0.050   | 0.333  | -0.716  | 0.023 | -0.707  | 14     |
| 24     | 4.23   | 4.30      | -0.067   | 0.333  | -0.955  | 0.041 | -0.953  | 5<br>9 |
| 25     | 4.22   | 4.30      | -0.077   | 0.333  |         | 0.055 | -1.104  | 9      |
| 26     | 4.44   | 4.30      | 0.143    | 0.333  |         | 0.192 | 2.252   | 17     |
| 27     | 0.00   | -0.00     | 0.000    | 0.333  | 0.000   | 0.000 |         | 2      |
| 28     | 0.00   | -0.00     | 0.000    | 0.333  |         | 0.000 |         | 10     |
| 29     | 0.00   | -0.00     | 0.000    | 0.333  |         | 0.000 |         | 28     |
| 30     | 3.77   | 3.74      | 0.035    | 0.500  |         | 0.030 |         | 6      |
| 31     | 3.70   | 3.74      | -0.035   | 0.500  | -0.579  | 0.030 | -0.569  | 19     |
|        |        | = / · · · |          |        |         |       |         |        |

#### Predictive curves





## i DESIGN-EASE Analysis RADICALS



INTEPRETATION GRAPH

## ANALYSIS OF VARIANCE OF TCE RESPONSE ON DAY 6 in NON-LYOPHILIZED LIVER

| Design ID | Run# | Block | [TCE] | Radicals<br>x 10 <sup>10</sup> |
|-----------|------|-------|-------|--------------------------------|
| 1         | 9    | 1     | 1200  | 391.8                          |
| 1         | 3    | 1     | 1200  | 391.8                          |
| 1         | 2    | 1     | 1200  | 391.79                         |
| 2         | 7    | 1     | 800   | 113.22                         |
| 2         | 11   | 1     | 800   | 113.22                         |
| 2         | 4    | 1     | 800   | 113.21                         |
| 3         | 1    | 1     | 400   | 281.38                         |
| 3         | 10   | 1     | 400   | 281.37                         |
| 3         | 6    | 1     | 400   | 281.37                         |
| 4         | 5    | 1     | 0     | 0                              |
| 4         | 8    | 1     | 0     | 0                              |
| 4         | 12   | 1     | 0     | 0                              |

Analysis of RADICALS of response to 0-1200 mg TCE/kg BW on Day 6

| SOURCE                         | SUM OF<br>SQUARES                 | MEAN<br>DF                                | F<br>SQUARE          | VALUE    | PROB > F |
|--------------------------------|-----------------------------------|-------------------------------------------|----------------------|----------|----------|
| MODEL<br>RESIDUAL<br>COR TOTAL | 272677.791<br>0.000<br>272677.791 | 3<br>8<br>11                              | 90892.6<br>0.0       | 3.64E+09 | < 0.0001 |
| ROOT MSE<br>DEP MEAN<br>C.V. % | 196.597A                          | -squared<br>DJ R-squared<br>RED R-squarei | 1.00<br>1.00<br>1.00 |          |          |
| Predicted                      | Residual Sum of Squ               | uares (PRESS)                             | =                    | 0.0      |          |

|      | ESTIMATED MEAN | STANDARD ERROR |
|------|----------------|----------------|
| 1200 | 391.797        | 0.003          |
| 800  | 113.217        | 0.003          |
| 400  | 281.373        | 0.003          |
| 0    | -0.000         | 0.003          |

|           |            | STANDARD |       |               | PROB >  t  |
|-----------|------------|----------|-------|---------------|------------|
| Treatment | DIFFERENCE | DF       | ERROR | COEFFICIENT=0 | FROD > [C] |
| 1 vs 2    | 278.58     | 1        | 0.004 | 68237.885     | < 0.0001   |
| 1 vs 3    | 110.42     | 1        | 0.004 | 27048.082     | < 0.0001   |

| 1 vs 4<br>2 vs 3<br>2 vs 4<br>3 vs 4                                                                                                                     | 391.80<br>-168.16<br>113.22<br>281.37                                                                     | 1 1 1                                                                                           | 0.004<br>0.004<br>0.004<br>0.004                                     | -4118<br>2773                                                                              | 0.192<br>9.803<br>2.306<br>2.109                                              | < 0.<br>< 0.                                                                               | 0001<br>0001<br>0001<br>0001                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------|
| OBS ACTUAL ORD VALUE                                                                                                                                     | PREDICTED<br>VALUE                                                                                        | STUDENT<br>RESIDUAL                                                                             | COOK'S<br>LEVER                                                      | OUTLIER<br>RESID                                                                           | RUN<br>DIST                                                                   | T VALUE                                                                                    | ORD                                                   |
| 1 3.92E+02<br>2 3.92E+02<br>3 3.92E+02<br>4 1.13E+02<br>5 1.13E+02<br>6 1.13E+02<br>7 2.81E+02<br>8 2.81E+02<br>9 2.81E+02<br>10 0.00E+00<br>11 0.00E+00 | 3.92E+02<br>3.92E+02<br>3.92E+02<br>1.13E+02<br>1.13E+02<br>2.81E+02<br>2.81E+02<br>2.81E+02<br>-4.41E-19 | 3.33E-03<br>3.33E-03<br>-6.67E-03<br>3.33E-03<br>-6.67E-03<br>6.67E-03<br>-3.33E-03<br>4.41E-19 | 0.333<br>0.333<br>0.333<br>0.333<br>0.333<br>0.333<br>0.333<br>0.333 | 0.816<br>-1.633<br>0.816<br>0.816<br>-1.633<br>1.633<br>-0.816<br>-0.816<br>0.000<br>0.000 | 0.083<br>0.083<br>0.083<br>0.083<br>0.083<br>0.333<br>0.083<br>0.083<br>0.000 | 0.798<br>0.798<br>-1.871<br>0.798<br>0.798<br>-1.871<br>1.871<br>-0.798<br>-0.798<br>0.000 | 9<br>3<br>2<br>7<br>11<br>4<br>1<br>10<br>6<br>5<br>8 |

Below is the diagnostic curves a-h and interpretive graph i.





