Санкт-Петербургский Государственный Университет

Программная инженерия Кафедра системного программирования

Орачев Егор Станиславович

Реализация алгоритма поиска путей в графовых базах данных через тензорное произведение на GPGPU

Бакалаврская работа

Научный руководитель: к.ф.-м. н., доцент С. В. Григорьев

Рецензент:

Оглавление

Введение		3	
1.	Пос	тановка задачи	5
2.	Обзор предметной области		6
	2.1.	Предварительные знания	6
	2.2.	Поиск путей с регулярными и КС ограничениями	6
	2.3.	Существующие решения	7
	2.4.	Поиск путей через произведение Кронекера	7
Cı	писо	к литературы	9

Введение

Все чаще современные системы аналитики и рекомендаций строятся на основе анализа данных, структурированных с использованием графовой модели. В данной модели основные сущности представляются вершинами графа, а отношения между сущностями — ориентированными ребрами с различными метками. Подобная модель позволяет относительно легко и практически в явном виде моделировать сложные иерархические структуры, которые не так просто представить, например, в классической реляционной модели. В качестве основных областей применения графовой модели можно выделить следующие: графовые базы данных [4], анализ RDF данных [5], биоинформатика [14] и статический анализ кода [9].

Поскольку графовая модель используется для моделирования отношений между объектами, при решении прикладных задач возникает необходимость выявления более сложных взаимоотношений между объектам и. Для этого чаще всего формируются запросы в специализированных программных средствах для управления графовыми базами данных. В качестве запроса можно использовать некоторый шаблон на путь в графе, который будет связывать объекты, т.е. выражать взаимосвязь между ними. В качестве такого шаблона можно использовать формальные грамматики, например, регулярные или контекстно-свободные (КС). Используя вычислительно более выразительные грамматики, можно формировать более сложные запросы и выявлять нестандартные и скрытые ранее взаимоотношения между объектами. Например, same-generation queries [1], сходные с сбалансированными скобочными последовательностями Дика, могут быть выражены КС грамматиками, в отличие от регулярных.

Результатом запроса может быть множество пар объектов, между которыми существует путь в графе, удовлетворяющий заданным ограничениям. Также может возвращаться один экземпляр такого пути для каждой пары объектов или итератор всех путей, что зависит от семантики запроса. Поскольку один и тот же запрос может иметь разную се-

мантику, требуются различные программные и алгоритмические средства для его выполнения.

Запросы с регулярными ограничениями изучены достаточно хорошо, языковая и программная поддержка выполнения подобных запросов присутствует в некоторых в современных графовых базах данных. Однако, полноценная поддержка запросов с КС ограничениями до сих пор не представлена. Существуют алгоритмы [5, 10, 3, 6, 12] для вычисления запросов с КС ограничениями, но потребуется еще время, прежде чем появиться полноценная высокпроизводительная реализация одного из алгоритмов, способная обрабатывать реальные графовые данные.

Работы [8, 7] в качестве реализации алгоритма [3] показывают, что возможно использовать GPGPU для выполнения наиболее вычислительно сложных частей алгоритма, что дает существенный прирост в производительности. Недавно представленный алгоритм [6] для вычисления запросов с КС ограничениями полагается на операции линейной алгебры: произведение Кронекера (частный случай тензорного произведения), умножение и сложение матриц в полукольце булевой алгебры. Данный алгоритм в сравнении с [3] позволяет выполнять запросы для всех ранее упомянутых семантик, потенциально поддерживает большие по размеру КС запросы, с незначительными накладными расходами позволяет выполнять запросы с регулярными ограничениями, а также хорошо реализуется с помощью программных средств для вычисления на GPGPU.

Таким образом, важной задачей является реализация и апробация перспективного алгоритма [6] для выполнения запросов с КС и регулярными ограничениям, а также разработка программной библиотеки для работы с примитивами линейной булевой алгебры, которая позволила бы упростить прототипирование и реализацию подобного и будущих алгоритмов на GPGPU, в частности, на платформе NVIDIA CUDA [13].

1. Постановка задачи

Цель данной работы — реализация алгоритма поиска путей в графовых базах данных через тензорное произведение на платформе NVIDIA CUDA в качестве GPGPU технологии. Для ее достижения были поставлены следующие задачи:

- Реализация библиотеки для работы с примитивами булевой алгебры на GPGPU
- Реализация интерфейса для работы с примитивами библиотеки в тестовой инфраструктуре
- Реализация алгоритма поиска путей с КС ограничениями
- Апробация алгоритма с использованием синтетических и реальных данных

2. Обзор предметной области

2.1. Предварительные знания

В этой секции изложены основные определения и факты из теории графов и формальных языков, необходимые для понимания предметной области.

Ориентированный граф с метками $\mathcal{G} = (V, E, L)$ это тройка объектов, где V конечное непустое множество вершин графа, $E \subseteq V \times L \times V$ конечное множество ребер графа, L конечное множество меток графа. Здесь и далее будем считать, что вершины графа индексируются целыми числами, т.е. $V = \{0 \dots |V| - 1\}$.

Граф $\mathcal{G} = (V, E, L)$ можно представить в виде матрицы смежности M размером $|V| \times |V|$, где $M[i,j] = \{l \mid (i,l,j) \in E\}$. Используя булеву матричную декомпозицию, можно представить матрицу смежности в виде набора матриц $\mathcal{M} = \{M^l \mid l \in L, M^l[i,j] = 1 \iff l \in M[i,l]\}$

Путь π в графе $\mathcal{G} = (V, E, L)$ это последовательность ребер $e_0, e_1, e_{n-1},$ где $e_i = (v_i, l_i, u_i) \in E$ и для любых $e_i, e_{i+1} : u_i = v_{i+1}$. Путь между вершинами v и u будем обозначать как $v\pi u$. Слово, которое формирует путь $\pi = (v_0, l_0, v_1), ..., (v_{n-1}, l_{n-1}, v_n)$ будем обозначать как $\omega(\pi) = l_0...l_{n-1},$ что является конкатенацией меток вдоль этого пути π .

Язык L над конечным алфавитом символов Σ это множество всевозможных слов, составленных из символов этого алфавита, т.е. $L = \{\omega \mid w \in \Sigma^*\}$

Контекстно-свободная грамматика $G=(\Sigma,N,P,S)$ это четверка объектов, где Σ конечное множестве терминалов или алфавит, N конечное множество нетерминалов, P конечное множество правил вывода вида $A\to\gamma,\gamma\in(N\cup\Sigma)^*,\,S\in N$ стартовый нетерминал.

2.2. Поиск путей с регулярными и KC ограничениями

При вычислении запроса p на поиск путей в графе $\mathcal{G} = (V, E, L)$ в качестве ограничения выступает некоторое множество слов L, которому

должны удовлетворять результирующие пути. Если множество слов L задается регулярным выражением, то считаем, что запрос p имеет регулярные ограничения, если L задается KC грамматикой, тогда p имеет KC ограничения.

Поиск путей в графе с семантикой достижимости, это поиск всех таких пар вершин (v,u), что между ними существует путь $v\pi u$, такой что $\omega(\pi)\in L$. Результат запроса обозначается как $R=\{(v,u)\mid \exists v\pi u: \omega(\pi)\in L\}$.

Поиск путей в графе с семантикой всех путей, это поиск всех таких путей $v\pi u$, что $\omega(\pi)\in L$. Результат запроса обозначается как $\Pi=\{v\pi u\mid v\pi u: \omega(\pi)\in L\}.$

Необходимо отметить, что множество Π может быть бесконечным, поэтому предполагается в качестве результата запроса не множества Pi в явном виде, а некоторый umepamop или алгоритм, который позволит последовательно извлекать все пути.

2.3. Существующие решения

2.4. Поиск путей через произведение Кронекера

Прежде чем рассмотреть алгоритм поиска путей через произведение Кронекера, еще раз обратимся к теории формальных языков и некоторым элементам линейной алгебры, чтобы выработать на интуитивном уровне понимание идеи алгоритма.

Детерминированный конечный автомат (ДКА) $F = (\Sigma, Q, Q_s, Q_f, \delta)$ это пятерка объектов, где Σ конечное множество входных символов или алфавит, Q конечное множество состояний, $Q_s \subseteq Q$ множество стартовых состояний, $Q_f \subseteq Q$ множество конечных состояний, $\delta : \Sigma \times Q \to Q$ функция переходов автомата.

Рекурсивный автомат (РА) $R=(M,m,\{C_i\}_{i\in M})$ это тройка объектов, где M конечное множество меток компонентных ДКА, называемых далее модули, m метка стартового модуля, $\{C_i\}$ множество модулей, где модуль $C_i=(\Sigma\cup M,Q_i,q_i^0,F_i,\delta_i)$: состоит из:

- $\Sigma \cup M$ множество символов модуля, $\Sigma \cap M = \emptyset$
- Q_i конечное множество состояний модуля, $Q_i \cap Q_j = \emptyset, \forall i \neq j$
- ullet q_i^0 стартовое состояние модуля
- $F_i \subseteq Q_i$ множество конечных состояний модуля
- $\delta_i:Q_i\times(\Sigma\cup M)\to Q_i$ функция переходов

Рекурсивный автомат ведет себя как набор ДКА или модулей [2]. Эти модули очень сходны с ДКА при обработке входных последовательностей символов, однако модули РА способны обрабатывать дополнительные рекурсивные вызовы за счет неявного стека вызовов, который присутствует во время работы РА. С точки зрения прикладного программиста это похоже на рекурсивные вызовы одних функций из других с той разницей, что вместо функций здесь выступают модули РА.

Любое регулярное выражение может быть преобразовано в соответствующий ДКА без ε -переходов [11].

Согласно [2] рекурсивные автоматы по своей вычислительной мощности эквивалентны автоматам на основе стека. А поскольку подобный стековый автомат способен распознавать КС грамматику [11], рекурсивные автоматы эквивалентны КС грамматикам.

Список литературы

- [1] Abiteboul Serge, Hull Richard, Vianu Victor. Foundations of Databases. $-1995.-01.-\mathrm{ISBN}$: 0-201-53771-0.
- [2] Analysis of Recursive State Machines / Rajeev Alur, Michael Benedikt, Kousha Etessami et al. // ACM Trans. Program. Lang. Syst. 2005. Jul. Vol. 27, no. 4. P. 786–818. Access mode: https://doi.org/10.1145/1075382.1075387.
- [3] Azimov Rustam, Grigorev Semyon. Context-free path querying by matrix multiplication. -2018.-06.-P. 1–10.
- [4] Barceló Baeza Pablo. Querying Graph Databases // Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.—PODS '13.—New York, NY, USA: Association for Computing Machinery, 2013.—P. 175–188.—Access mode: https://doi.org/10.1145/2463664.2465216.
- [5] Context-Free Path Queries on RDF Graphs / Xiaowang Zhang, Zhiyong Feng, Xin Wang et al. // CoRR. 2015. Vol. abs/1506.00743. 1506.00743.
- [6] Context-Free Path Querying by Kronecker Product / Egor Orachev, Ilya Epelbaum, Rustam Azimov, Semyon Grigorev. — 2020. — 08. — P. 49–59. — ISBN: 978-3-030-54831-5.
- [7] Context-Free Path Querying with Single-Path Semantics by Matrix Multiplication / Arseniy Terekhov, Artyom Khoroshev, Rustam Azimov, Semyon Grigorev. 2020.-06.-P. 1–12.
- [8] Evaluation of the Context-Free Path Querying Algorithm Based on Matrix Multiplication / Nikita Mishin, Iaroslav Sokolov, Egor Spirin et al. -2019.-06.-P. 1–5.
- [9] Fast Algorithms for Dyck-CFL-Reachability with Applications to Alias Analysis / Qirun Zhang, Michael R. Lyu, Hao Yuan, Zhendong Su //

- SIGPLAN Not. 2013. Jun. Vol. 48, no. 6. P. 435–446. Access mode: https://doi.org/10.1145/2499370.2462159.
- [10] Hellings Jelle. Path Results for Context-free Grammar Queries on Graphs. -2015.-02.
- [11] Hopcroft John E., Motwani Rajeev, Ullman Jeffrey D. Introduction to Automata Theory, Languages, and Computation (3rd Edition). — USA: Addison-Wesley Longman Publishing Co., Inc., 2006. — ISBN: 0321455363.
- [12] Medeiros Ciro, Musicante Martin, Costa Umberto. An Algorithm for Context-Free Path Queries over Graph Databases. -2020.-04.
- [13] NVIDIA. CUDA Toolkit Documentation // NVIDIA Developer Zone. 2020. Access mode: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html (online; accessed: 01.12.2020).
- [14] Quantifying variances in comparative RNA secondary structure prediction / James Anderson, Adám Novák, Zsuzsanna Sükösd et al. // BMC bioinformatics. 2013. 05. Vol. 14. P. 149.