Stacking

Ensemble models: recap

- Bagging: train models in parallel on bootstrapped data and aggregate
- Boosting: train models sequentially taking the residuals of the last model into account

Ensemble models: recap

- Bagging: train models in parallel on bootstrapped data and aggregate
- Boosting: train models sequentially taking the residuals of the last model into account

Both usually work on a fixed family of model (e.g.: fixed depth DT)

→ random forest, extra trees, gradient boosting etc.

The idea behind stacking

Take the output of a model as a new feature.

Train a few different models h₁,..., h_K

The idea behind stacking

Take the output of a model as a new feature.

- Train a few different models h₁,..., h_K
- Take the outputs $\hat{y}_1, \dots \hat{y}_K$ and form a new feature matrix Z of size n × K

The idea behind stacking

Take the output of a model as a new feature.

- Train a few different models h₁,..., h_K
- Take the outputs $\hat{y}_1, \dots \hat{y}_K$ and form a new feature matrix Z of size n × K
- Train a model with Z as feature matrix and y as response

Learn the aggregation rule for an arbitrary set of base models

Definitions for stacking

- **level-0 data**: the original feature matrix X_{train} for training
- **level-0 learners**: the set of K models fitted on (X_{train}, y_{train})
- level-1 data: the derived feature matrix Z
- level-1 model or metalearner: the model fitted on (Z, y_{train})

Stacking, visually

Applying the stacked model

For a point x in the test set:

- Form the vector z with $z_k = h_k(x)$ for k = 1, ..., K
- Predicted response to return: $\mathcal{M}(z)$

Stacking in practice

- **Complete flexibility** for level-0 classifiers
 - Models trained on subsets of the feature (e.g.: only numerical features)
 - Ensemble models, . . .

Stacking in practice

- Complete flexibility for level-0 classifiers
 - Models trained on subsets of the feature (e.g.: only numerical features)
 - Ensemble models, . . .
- Complete flexibility for the metalearner
 - Linear or logistic regression
 - Tree classifier or regressor
 - Ensemble models or even a small neural network. . .

Meanwhile on Kaggle. . .

Description of a 2nd place model for a 2015 contest:

What preprocessing and supervised learning methods did you use?

- L0 = our feature engineering (tf-idf is a technique for text)
- L1 = our level 0 and L2 = our level 1
- Level 2 not specified (aggregation of NN and XGB)

Usually, an extra step is involved to avoid overfitting:

partition X_{train} in *T folds*, let X_{train} - ℓ the data without fold ℓ

Usually, an extra step is involved to avoid overfitting:

- partition X_{train} in *T folds*, let $X_{train}^{-\ell}$ the data without fold ℓ
- for each model h_k with k = 1, ..., K:
 - \circ train the model on $X_{train}^{-\ell}$ and predict on fold $\ell : \hat{y}_k^{\ell}$
 - o aggregate $\hat{y}_k^1, ..., y_k^T$ to form \hat{y}_k

Usually, an extra step is involved to avoid overfitting:

- partition X_{train} in *T folds*, let $X_{train}^{-\ell}$ the data without fold ℓ
- for each model h_k with k = 1, ..., K:
 - \circ train the model on $X_{train}^{-\ell}$ and predict on fold $\ell : \hat{y}_k^{\ell}$
 - \circ aggregate $\hat{y}_k^1, ... y_k^T$ to form \hat{y}_k
- build Z with the $\hat{y}_1, \dots, \hat{y}_{\kappa}$ and proceed as before

Stacking in SkLearn

- There is no tool to directly do stacking in SkLearn
- Another library called mlxtend can be used for this

from mlxtend.classifier import StackingCVClassifier

Hands-on session

stacking.ipynb

