Steps for OO-plot: samples x1, x2, ..., xn

Step1: Find sample quantiles $\chi_{(1)}$, $\chi_{(2)}$, ..., $\chi_{(n)}$, such that $\chi_{(n)} \leq \chi_{(2)} \leq ... \leq \chi_{(n)}$

Step 2: Find theoretical quantiles $z_1, z_2, ..., z_n$ such that $P(Z < z_i) = \frac{i}{n+1}, i=1, 2, ..., n$ (or $\frac{i-o.5}{n}$)

Step 3: Plot $(2i, \chi_{(i)})$, $i=1,2,\dots,n$

Step 4: Evaluate the linearity.

Case I: if

 $X_{(i)} \doteq Z_i$

then $X \sim N(0, 1)$

Case I: if

 $X_{(i)} \doteq \mu + 62_i$

then $X \sim N(\mu, 6^2)$.

Normal Probability Plot

EXAMPLE 2-13

Observations on the road octane number of ten gasoline blends are as follows: 88.9, 87.0, 90.0, 88.2, 87.2, 87.4, 87.8, 89.7, 86.0, and 89.6. We hypothesize that octane number is adequately modeled by a normal distribution. To use probability plotting to investigate this hypothesis, first arrange the observations in ascending order and calculate their cumulative frequencies (I - 0.5)/10 as shown in the accompanying table.

Figure 2-26 Normal probability plot of the road octane number data.

Figure 2-27 Normal probability plot of the road octane number data with standardized scores.

Normal Q-Q Plot

$$A = Vnorm(500)$$

$$b = dnorm(a)$$

$$plot(a,b)$$

$$a = x unif(1:50, 0, 1)$$
 $b = dunif(a, 0, 1)$
 $plot(a, b)$

Normal Q-Q Plot

$$a = rexp(1:50, 1.5)$$

$$b = dexp(a, 1.5)$$

$$plot(a, b)$$

$$Q = r \exp(1:50, 1.5)$$
 $qq norm(a)$

Normal Q-Q Plot

