CMSC 426: Homework 1 Due: February 11, 2020

Homework reminders:

- Please show your work, don't just write an answer. Explain what you're doing.
- Please write the paper and pencil part of the homework neatly, in pencil.
- 1. Warm up. Find the equation of the plane that contains the following points $p_1 = (-1, 2, 2)$, $p_2 = (0, 1, 3)$ and $p_3 = (-1, 1, 2)$. 10 points.
- 2. If two planes are not parallel then they will intersect in a line. Find the line defined by the intersection of the following two planes:
 - (a) 3x + y + 4z 4 = 0
 - (b) 2x + 2y z + 2 = 0

20 points.

- 3. Find the distance of the point $p_0 = (1, 4, 14)$ to the plane 3x + 4y + 5z 4 = 0. 20 points.
- 4. This problem has three parts. Please solve it in Python and hand in three programs: part_a.py, part_b.py and part_c.py.
 - (a) Write a Python program to find the similarity transformation T that maps the points $p_1 = (1,1)$, $p_2 = (1,7)$ and $p_3 = (3,3)$ to $p'_1 = (11.5,6.5)$, $p'_2 = (17.5,9.5)$ and $p'_3 = (14.5,5.5)$ respectively. 10 points.
 - (b) Write a Python program using Pillow to draw the triangle defined by p_1 , p_2 and p_3 above in white on a black background. Call the output: triangle1.png. 10 points.
 - (c) Write a Python program to draw the same triangle in part (b) and compute T as in part (a) and apply T to the triangle using Pillow. Call the output: triangle2.png. 10 points.
- 5. This problem has two parts. The second part is more complicated and is extra credit. Szelizki's book defines a line as $\tilde{x} \cdot \tilde{l} = ax + by + c$ where $\tilde{x} = (x, y, 1)$ and $\tilde{l} = (a, b, c)$.
 - (a) Szeliski's book claims that the line joining two points can be computed as $\tilde{l} = \tilde{x_1} \times \tilde{x_2}$. Prove this fact. 20 points.
 - (b) Szeliski's book claims that the intersection of two lines can be computed as $\tilde{x} = \tilde{l}_1 \times \tilde{l}_2$. Prove this fact. Extra credit. 20 points.