```
In [38]: #importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

```
In [50]: #importing dataset
    iris = pd.DataFrame(iris)
    iris
```

Out[50]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2
	•••				
14	15	6.7	3.0	5.2	2.3
14	16	6.3	2.5	5.0	1.9
14	17	6.5	3.0	5.2	2.0
14	18	6.2	3.4	5.4	2.3
14	19	5.9	3.0	5.1	1.8

150 rows × 4 columns

```
[5., 3.4, 1.6, 0.4],
[5.2, 3.5, 1.5, 0.2],
[5.2, 3.4, 1.4, 0.2],
[4.7, 3.2, 1.6, 0.2],
[4.8, 3.1, 1.6, 0.2],
[5.4, 3.4, 1.5, 0.4],
[5.2, 4.1, 1.5, 0.1],
[5.5, 4.2, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.2],
[5., 3.2, 1.2, 0.2],
[5.5, 3.5, 1.3, 0.2],
[4.9, 3.6, 1.4, 0.1],
[4.4, 3., 1.3, 0.2],
[5.1, 3.4, 1.5, 0.2],
[5., 3.5, 1.3, 0.3],
[4.5, 2.3, 1.3, 0.3],
[4.4, 3.2, 1.3, 0.2],
[5., 3.5, 1.6, 0.6],
[5.1, 3.8, 1.9, 0.4],
[4.8, 3., 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
[4.6, 3.2, 1.4, 0.2],
[5.3, 3.7, 1.5, 0.2],
[5., 3.3, 1.4, 0.2],
[7., 3.2, 4.7, 1.4],
[6.4, 3.2, 4.5, 1.5],
[6.9, 3.1, 4.9, 1.5],
[5.5, 2.3, 4., 1.3],
[6.5, 2.8, 4.6, 1.5],
[5.7, 2.8, 4.5, 1.3],
[6.3, 3.3, 4.7, 1.6],
[4.9, 2.4, 3.3, 1.],
[6.6, 2.9, 4.6, 1.3],
[5.2, 2.7, 3.9, 1.4],
[5., 2., 3.5, 1.],
[5.9, 3., 4.2, 1.5],
[6., 2.2, 4., 1.],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3., 4.5, 1.5],
[5.8, 2.7, 4.1, 1.],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4., 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3., 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3., 5., 1.7],
[6., 2.9, 4.5, 1.5]
[5.7, 2.6, 3.5, 1.],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1.],
[5.8, 2.7, 3.9, 1.2],
[6., 2.7, 5.1, 1.6],
[5.4, 3., 4.5, 1.5],
[6., 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3., 4.1, 1.3],
[5.5, 2.5, 4., 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3., 4.6, 1.4],
[5.8, 2.6, 4., 1.2],
[5., 2.3, 3.3, 1.],
[5.6, 2.7, 4.2, 1.3],
```

[5.7, 3., 4.2, 1.2],[5.7, 2.9, 4.2, 1.3], [6.2, 2.9, 4.3, 1.3],[5.1, 2.5, 3., 1.1],[5.7, 2.8, 4.1, 1.3], [6.3, 3.3, 6., 2.5],

```
[5.8, 2.7, 5.1, 1.9],
      [7.1, 3., 5.9, 2.1],
      [6.3, 2.9, 5.6, 1.8],
      [6.5, 3., 5.8, 2.2],
      [7.6, 3., 6.6, 2.1],
      [4.9, 2.5, 4.5, 1.7],
      [7.3, 2.9, 6.3, 1.8],
      [6.7, 2.5, 5.8, 1.8],
      [7.2, 3.6, 6.1, 2.5],
      [6.5, 3.2, 5.1, 2.],
      [6.4, 2.7, 5.3, 1.9],
      [6.8, 3., 5.5, 2.1],
      [5.7, 2.5, 5., 2.],
      [5.8, 2.8, 5.1, 2.4],
      [6.4, 3.2, 5.3, 2.3],
      [6.5, 3., 5.5, 1.8],
      [7.7, 3.8, 6.7, 2.2],
      [7.7, 2.6, 6.9, 2.3],
      [6., 2.2, 5., 1.5],
      [6.9, 3.2, 5.7, 2.3],
      [5.6, 2.8, 4.9, 2.],
      [7.7, 2.8, 6.7, 2.],
      [6.3, 2.7, 4.9, 1.8],
      [6.7, 3.3, 5.7, 2.1],
      [7.2, 3.2, 6., 1.8],
      [6.2, 2.8, 4.8, 1.8],
      [6.1, 3., 4.9, 1.8],
      [6.4, 2.8, 5.6, 2.1],
      [7.2, 3., 5.8, 1.6],
      [7.4, 2.8, 6.1, 1.9],
      [7.9, 3.8, 6.4, 2.],
      [6.4, 2.8, 5.6, 2.2],
      [6.3, 2.8, 5.1, 1.5],
      [6.1, 2.6, 5.6, 1.4],
      [7.7, 3., 6.1, 2.3],
      [6.3, 3.4, 5.6, 2.4],
      [6.4, 3.1, 5.5, 1.8],
      [6., 3., 4.8, 1.8],
      [6.9, 3.1, 5.4, 2.1],
      [6.7, 3.1, 5.6, 2.4],
      [6.9, 3.1, 5.1, 2.3],
      [5.8, 2.7, 5.1, 1.9],
      [6.8, 3.2, 5.9, 2.3],
      [6.7, 3.3, 5.7, 2.5],
      [6.7, 3., 5.2, 2.3],
      [6.3, 2.5, 5., 1.9],
      [6.5, 3., 5.2, 2.],
      [6.2, 3.4, 5.4, 2.3],
      [5.9, 3., 5.1, 1.8]])
#impoting Kmeans
from sklearn.cluster import KMeans
#creating cluster object
kmeans= KMeans(n_clusters=4)
#creating cluster object
kmeans= KMeans(n_clusters=4)
#fitting the kmeans into dataset
kmeans.fit(x)
```

In [159...

In [160...

In [161...

In [162...

```
unsupervised Task 2
         y_kmeans = kmeans.predict(x)
In [163...
         plt.scatter(x[:,0],x[:,1])
        <matplotlib.collections.PathCollection at 0x4956d18>
Out[163...
         4.5
         4.0
         3.5
         3.0
         2.5
         2.0
                                           7.0
                                                7.5
               4.5
                     5.0
                          5.5
                                6.0
                                     6.5
                                                      8.0
         clusters=kmeans.cluster_centers_
In [164...
         #print out the clusters
In [165...
         print(clusters)
                     3.428
                               1.462
                                         0.246
         [[5.006
         [6.2525
                     2.855
                               4.815
                                         1.625
                                                   ]
         [6.9125
                               5.846875
                                         2.13125
                     3.1
         [5.53214286 2.63571429 3.96071429 1.22857143]]
In [166...
         y_kmeans
1, 1, 3, 1, 3, 1, 3, 1, 3, 3, 3, 3, 1, 3, 1,
                 0, 0, 0, 0, 0, 1,
                                  1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 3, 1, 1, 1,
                       3,
                          1,
                             3, 1,
               3, 3, 3,
                             3, 3, 3, 3, 1, 3, 3, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2,
                       1,
                          3,
                             2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2,
                    2,
                       1, 1,
                       2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1])
         plt.scatter(x[y\_kmeans == 0, 0], x[y\_kmeans == 0, 1], s = 50, c = 'red')
In [167...
         plt.scatter(x[y_kmeans == 1, 0], x[y_kmeans == 1, 1], s = 50, c = 'yellow')
         plt.scatter(x[y_kmeans == 2, 0], x[y_kmeans == 2, 1], s = 50, c = 'green')
         plt.scatter(x[y\_kmeans == 3, 0], x[y\_kmeans == 3, 1], s = 50, c = 'cyan')
         plt.scatter(clusters[0][0], clusters[0][1], marker='*',s=200, c = 'black' )
         plt.scatter(clusters[1][0], clusters[1][1], marker='*',s=200, c = 'black')
         plt.scatter(clusters[2][0], clusters[2][1], marker='*',s=200, c = 'black'
```

plt.scatter(clusters[3][0], clusters[3][1], marker='*',s=200, c = 'black')

plt.show()

Plotting the results onto a line graph, 'allowing us to observe 'The elbow'

The Elbow method, which is designed to help find the optimal number of clusters in a dataset. So let's use this method to calculate the optimum value of k.

As you can see, the optimal value of k is between 2 and 4, as the elbow-like shape is formed at k=3 in the above graph.

T	Ή	Е	EN	۱D	
				_	

In []	:	
In []	:	