LINEAR PROGRAMMING IN MATLAB OPTIMIZATION TOOLBOX

(may now be a little outdated!)

Basic function: **linprog**

Solves the general LP-problem

$$\min_{x} f'x,$$

$$Ax \le b$$

$$A_{eq} = b_{eq}$$

$$lb \le x \le ub$$

where f, x, b, b_{eq} , lb, and ub are vectors and A, A_{eq} are matrices (may be entered as *sparse* matrices)

Syntax:

```
linprog(f, A, b, Aeg, beg)
Χ
            linprog(f, A, b, Aeq, beq, lb, ub)
Χ
            linprog(f, A, b, Aeq, beq, lb, ub, x0)
Χ
            linprog(f, A, b, Aeq, beq, lb, ub, x0, options)
X
      =
                                     = linprog(...)
[x,fval]
[x,fval,exitflag]
                                     = linprog(...)
[x,fval,exitflag,output]
                                     = linprog(...)
[x,fval,exitflag,output,lambda]
                                     = linprog(...)
```

Example: The Standard Form:

$$\min c'x,$$

$$Ax = b,$$

$$x \ge 0.$$

x = linprog(c,[],[],A,b,zeros(size(c)),[])

Note the Matlab convention with placeholders, "[]"

INPUT:

xo: Starting point. Used only for medium problems (*Nelder-Mead amoeba*).

Options:

Structure of parameters:

LargeScale: 'on'/'off'

Display: 'off'/'iter'/'final' (large scale problems)

MaxIter: Max number of iterations

Simplex: 'on'/'off' ('on' ignores x0)

TolFun: Objective tolerance (large scale

problems)

OUTPUT:

x,fval: Solution and objective

exitflag:

- 1 Iteration terminated OK
- 0 Number of iterations exceeded MaxIter
- No feasible point found
- -3 Problem is unbounded
- -4 NaN value encountered
- -5 Both primal and dual are infeasible
- -7 Search direction became too small

output: Structure of iteration information

iterations: Number of iterations

algorithm: Algorithm used

cgiterations: The number of PCG iterations (large-scale

algorithm only)

message: Output message

lambda: Structure of Lagrange multipliers

ineqlin: for linear inequalities $Ax \le b$, eqlin for linear equalities $A_{eq}x = b_{eq}$,

lower for lb, upper for ub.

ALGORITHMS:

Small/Medium scale: SIMPLEX-like including Phase 1

Large scale: Primal-dual inner method

EXAMPLES FROM THE DOCUMENTATION

A. Small Problem

Find x that minimizes

subject to
$$f(x) = -5x_1 - 4x_2 - 6x_3$$

$$x_1 - x_2 + x_3 \le 20$$

$$3x_1 + 2x_2 + 4x_3 \le 42$$

$$3x_1 + 2x_2 \le 30$$

$$0 \le x_1, 0 \le x_2, 0 \le x_3$$

First, enter the coefficients, then call LINPROG:

```
f = [-5 -4 -6]';

A = [1-1 1

3 2 4

3 2 0];

b = [20 42 30]';

lb = zeros(3,1);

[x,fval,exitflag,output,lambda] = ... linprog(f,A,b,[],[],lb);
```

 $x = [0 \ 15 \ 3]$ fval = -78.0
output:

iterations: 6

algorithm: 'large-scale: interior point' (!)

cgiterations: 0

message: 'Optimization terminated.'

 $\begin{array}{lll} lambda.ineqlin & = & [0 \ 1.5 \ 0.5] \\ lambda.lower & = & [1 \ 0 \ 0] \end{array}$

For solution by the Simplex method:

(NB! If you forget enough placeholders, [], you get the error message "LINPROG only accepts inputs of data type double")

Now **output** gives:

iterations: 3

algorithm: 'medium scale: simplex'

cgiterations: []

message: 'Optimization terminated.'

(same solution!)

B Medium Problem

This problem is stored as a Matlab MAT-file.

- 48 unknowns
- 30 inequality constraints
- 20 equality constraints
- x ≥ 0

Entered into Matlab simply by

load sc50b

Α	30x48	(sparse)
Aeq	20x48	(sparse)
b	30x1	
beq	20x1	
f	48x1	
lb	48x1	

Sparsity patterns:

A (inequalitites)

A_{eq} (equalities)

```
load sc50b
options = optimset('LargeScale','off','Simplex','on');
[x,fval,exitflag,output,lambda] = ...
    linprog(f,A,b,Aeq,beq,lb,[],[],options);
x = [30 \ 28 \ 42 \dots 102.4870]
In this particular case, only lambda.ineqlin(2) and
lambda.ineqlin(3) were equal to 0, that is only inequality 2
and 3 where non-active.
max(lambda.lower)= 8.2808e-015 \implies x_i > 0 for i = 1, ..., 48.
output =
    iterations:
                   43
                   'medium scale: simplex'
    algorithm:
    cgiterations:
                   'Optimization terminated.'
    message:
Problem run with large scale option:
options = optimset('LargeScale','on');
[x,fval,exitflag,output,lambda] = ...
                         linprog(f,A,b,Aeq,beq,lb,[],[],options);
output =
    iterations:
                   'large-scale: interior point'
    algorithm:
    cgiterations:
                   'Optimization terminated.'
    message:
```

(Same solution!)

With display of results for each iteration:

options = optimset('LargeScale','on','Display','iter');

Residua	als:	Primal Infeas A*x-b	Dual Infeas A'*y+z-f	Duality Gap x'*z	Total Rel Error
Iter Iter Iter Iter Iter Iter Iter Iter	0: 1: 2: 3: 4: 5: 6: 7:	1.50e+03 1.15e+02 8.32e-13 3.51e-12 1.81e-11 2.63e-10 5.88e-11 2.61e-12 7.97e-14	2.19e+01 3.18e-15 1.96e-15 1.87e-15 3.50e-16 1.23e-15 2.72e-16 2.59e-16 5.67e-13	1.91e+04 3.62e+03 4.32e+02 7.78e+01 2.38e+01 5.05e+00 1.64e-01 1.09e-05 1.09e-11	1.00e+02 9.90e-01 9.48e-01 6.88e-01 2.69e-01 6.89e-02 2.34e-03 1.55e-07 3.82e-12
Optimizat	tion	terminated	.•		

FOR MORE INFO: Read documentation of linprog!