# black hat ASIA 2025

APRIL 3-4, 2025
BRIEFINGS

# Sweeping the Blockchain: Unmasking Illicit Accounts in Web3 Scams

Speaker: Wenkai Li

Hainan University, China

Collaborators: Zhijie Liu (ShanghaiTech University),

Xiaoqi Li\* (Hainan University)



#### The Team



#### Li Wenkai

- PhD Student, Hainan University, China
- cswkli@hainanu.edu.cn
- https://cswkli.github.io/



#### Liu Zhijie

- Msc Student, ShanghaiTech University, China
- liuzhj2022@shanghaitech.edu.cn
- https://rroscha.github.io/



#### Li Xiaoqi

- Associate Professor, Hainan University, China
- csxqli@ieee.org
- https://csxqli.github.io/

#### **About Us**

#### Security Research

- 9 year-experience (since 2016) of Ethereum (Born in 2015) Blockchain Security.
- Blockchain/Software/System Security and Privacy, Ethereum/Smart Contract, Malware Detection, and etc.
- 40+ papers including ASE、INFOCOM、ICSE、 WWW、AAAI、TSE, etc. within 5 years
- 30+ CVE/CNVD Vulnerabilities identified within 5 years
- 3700+ citations within 5 years
- Best Paper from INFOCOM、ISPEC、CCF, etc.
- SV Insight Annual Global Top-50 Blockchain Research Paper
- ESI Hot (Top 0.1%) Highly Cited Paper (Top 1%)

# Agenda











Introduction

**Motivation** 

**ScamSweeper** 

**Experiments** 

**Case Study** 



# Introduction



# black hat The 3rd Generation Internet – Web 3.0

Many ways for crypto users to engage with Web3.0:









DECENTRALAND

HORIZON WORLDS

META

The most used Web3.0 Services:

















CEX











**CryptoKitties** 





CRYPTO GAMING

**DEX** 



### The 3<sup>rd</sup> Generation Internet – Web 3.0

- What is the scale of Web3.0 tech market?
  - > A growing trend.
  - > The accelerating growth rate.
  - ➤ USD 3.17 billion in 2024.



- > DApp, DeFi protocol, DID, and etc. based on blockchain.
- > The blockchain node network follows a power-law distribution.
- > A minority of accounts appear at majority of Txs.



The Web3 environment comes with scam risks ...







# Motivation



#### Motivation: Web3 Scams

- The situation of Web3 scams:
  - > Phishing, Rug Pulls, Harmful Airdrops, Giveaway Scams...
  - > Crypto Drainer, Pig Butchering, Address Poisoning Scams...

NEWS 6JAN 2025 <u>www.infosecurity-magazine.com</u>
Scammers Drain \$500m from Crypto Wallets in a Year

• The scams on Web3 ecosystem can be catastrophic



**NEWS** 22 DEC 2023

Crypto Drainer Steals \$59m Via Google and X Ads

NEWS 12 MAR 2024

Victims Lose \$47m to Crypto Phishing Scams in February

NEWS 16 JAN 2024

Inferno Drainer Spoofs Over 100 Crypto Brands to Steal \$80m+

**NEWS** 8 JAN 2024

Security Firm Certik's Account Hijacked to Spread Crypto Drainer

**NEWS** 3 JAN 2025

Web3 Attacks Result in \$2.3Bn in Cryptocurrency Losses



### Motivation: Web3 Scams

What do the Web3 Scams on blockchain look like?

➤ e.g., crypto drainers often masquerade as web3 projects, enticing victims into the drainer and getting the control access.







Phishing Scams on Blockchain





**Crypto Drainer Scams** 







## Motivation: previous research

#### Graph Learning Methods

> Intuitive to represent interactions of the topology structure.

> Account as node, transaction as edge.

➤ Top-k algorithm.

> Power-law distribution leads lots of noise.



Random Walk

- [1] Li, Shucheng and et al. "SIEGE: Self-Supervised Incremental Deep Graph Learning for Ethereum Phishing Scam Detection." in *Proc. of MM*. 2023.
- [2] Wu, Zhiying and et al. "TRacer: Scalable graph-based transaction tracing for account-based blockchain trading systems." TIFS. 2023.
- [3] Li, Sijia and et al. "TTAGN: Temporal transaction aggregation graph network for Ethereum phishing scams detection." in Proc. of WWW. 2022.



# Motivation: previous research

#### Sequence Learning Methods

- > Transductive to learn the logic of account behavior feature.
- > Analyzing an account is related to its length.
- > Large-scale transactions, e.g., 2.7 billion txs on Ethereum.





**Tab.1** – The statistical information of some accounts on Ethereum.

| No. | Account Address                            | Tx Cnt     |
|-----|--------------------------------------------|------------|
| 1   | 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2 | 16,514,200 |
| 2   | 0x28C6c06298d514Db089934071355E5743bf21d60 | 18,921,592 |
| 3   | 0x267be1C1D684F78cb4F6a176C4911b741E4Ffdc0 | 3,832,284  |
| 4   | 0x32400084C286CF3E17e7B677ea9583e60a000324 | 3,094,481  |
| 5   | 0xf7858Da8a6617f7C6d0fF2bcAFDb6D2eeDF64840 | 1,588,678  |
| 6   | 0xA7EFAe728D2936e78BDA97dc267687568dD593f3 | 3,482,451  |
| 7   | 0xBf94F0AC752C739F623C463b5210a7fb2cbb420B | 1,611,882  |
| 8   | 0xae0Ee0A63A2cE6BaeEFFE56e7714FB4EFE48D419 | 1,798,762  |
| 9   | 0x0D0707963952f2fBA59dD06f2b425ace40b492Fe | 7,527,833  |
| 10  | 0x6262998Ced04146fA42253a5C0AF90CA02dfd2A3 | 1,183,120  |



### Motivation: previous research

#### Graph Learning Methods

- Not suitable to capture dynamic information.
  Merging multiple edges into one for graph computation e.g., graph convolution or random walk
- Not suitable for power law distribution.

  Introducing noise when multi-hop convolution,

  In GRU, Model capability is limited (# of GNN layers = # of hop)



➤ Not suitable to large-scale transactions.

Analyzing an account is related to the length of its transaction sequence.







# ScamSweeper



## ScamSweeper

- Learning the dynamic evolution of transaction graph, and applying to account detection
  - > Sequence learning from the graph structure.





# ScamSweeper (1)

- (a) Graph Construction
  - > Most previous works used the **random walk** to sample the transaction network.
  - > Random walk is like a dice game!



#### **Motivation:**

To lower the computing consumption, and learn features from temporal sequence and topology structure.

We designed a new walk-sampling method:

Struct-Temporal Random walk (STRWalk)

# ScamSweeper (1

#### (a) Graph Construction

- $\triangleright$  current node is  $v_i$ , next node is  $v_{i+1}$ ,
- $\triangleright$  the edge is  $e_i$
- $\rightarrow \mu(T(e_i))=T(e_i)-minTime,$

With  $P_i$  and  $p_m$ , Struct-Temporal Random walk (STRWalk)

With  $P_i$ , Temporal Random Walk (TRWalk)

 $\succ \delta(v)$  represents the number of nodes that are in the same interval with v



- 1st sampled account

- transaction

2nd sampled account T - time

p - probability

The 1st sampled node selected by the alias sample algorithm with the **probability**  $p_i$ .

The 2nd sampled node selected by the alias sample algorithm with the **probability**  $p_m$ .

## ScamSweeper (1)

#### • (a) Graph Construction

- ➤ Walk length: 20, the window size: 4, and the embedding dimension: 128
- ➤ Phishing dataset, 1165 malicious nodes and 636 normal nodes.
- > T-SNE Visualization





### ScamSweeper (2)

- (b) Directed Graph Encoder
  - > Split the whole graph according to the interval, generating several sub-graphs
  - > Learning the feature of each subgraph in time sequence



# ScamSweeper (2)

#### • (b) Directed Graph Encoder



v - node feature e - edge feature  $\phi$  - linear transformation  $\oplus$  - concatenation  $\Sigma$  - GAT

$$V = \{X_f; X_t | (X_f^1; X_t^1, X_f^2; X_t^2, \dots, X_f^n; X_t^n)\}$$
  
$$E = \{X_f \to X_t | (e_1, e_2, \dots, e_n)\}$$

 $\Theta$  - linear transformation layer

*h* - hidden feature of nodes

$$\hat{v} = LeakyRelu(\Theta_v \cdot [v \mid e]) \tag{1}$$

$$e_{ij} = LeakyRelu(\Theta_n \cdot [h_i | h_j])$$
 (2)

$$\alpha_{ij} = \frac{exp(e_{ij})}{\sum_{x \in N(i)} exp(e_{ix})}$$
 (3)

$$h_g = Elu(\alpha_{ij} \cdot \Theta \cdot h_i + \sum_{x \in N(i)} \alpha_{ix} \cdot \Theta \cdot h_x)$$
 (4)

# ScamSweeper (3)

- (c) Temporal Feature Learning
  - Leveraging the ability of Transformer

$$H^{(l+1)} = Attention(H^{(l)}{}^T\Theta_Q, H^{(l)}{}^T\Theta_K, H^{(l)}{}^T\Theta_V)$$
 (5)

$$h = Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_{k}}}V)$$
 (6)

$$H^{(l+1)} = FFN(h) \tag{7}$$

$$FFN(x) = Sigmiod\left(xW_1^{(l)} + b_1^{(l)}\right)W_2^{(l)} + b_2^{(l)}$$
 (8)





# Experiments



### Experiments: large-scale data

#### Data & distribution

- ➤ Crawling the first 18 million block height on Ethereum
- Phishing labels from Etherscan
- Web3 scams from [5]
- ➤ Normal nodes contains 4 types: exchange, mining, ICO wallet, and gambling.

**Tab.2** – The statistical information of dataset.

| Datasets   | #Nodes     | #Labeled | #Edges      | #Std Degree |
|------------|------------|----------|-------------|-------------|
| Normal     | 12,042,066 | 636      | 142,750,370 | 3555.35     |
| Phishing   | 10,159,847 | 4,905    | 62,011,219  | 1285.25     |
| Web3 Scams | 8,736,430  | 3,125    | 64,265,586  | 541.10      |





#### **Experiments: Ablation**

- How well do the components work?
  - > the importance of graph encoder and T-Transformer



ScamSweeper with all components,

ScamSweeper-t without the T-Transformer,

ScamSweeper-g without the graph encoder.

ScamSweeper > Graph encoder > T-Transformer



### Experiments: Comparison

- How well do the ScamSweeper work?
  - Compared with Graph methods and Transformer
  - $\triangleright$  Structure window: {5,10,15}, Adam weight decay rate: 5e 4.

14

> Training: 70%, Validation: 20%, Test:10%









# Case Study

# Case Study: Web3 Scam

#### Dynamic Evolution

 $\succ \tau$  is a time interval.





### Takeaways

#### Summary & key takeaways

- ➤ Web3 Scams Proliferation: Web3 applications are increasingly targeted by scammers who mimic legitimate transactions to deceive users, highlighting a critical gap in current detection methods.
- ➤ **Research Gap:** Prior studies focus on de-anonymization and phishing nodes, neglecting the unique temporal and structural patterns of web3 scams, while existing detection tools struggle with power-law distributed transaction networks.
- > ScamSweeper Framework: A novel approach that combines structure-temporal random walks for efficient transaction network sampling and variational transformers for dynamic pattern analysis, capturing both temporal and structural evolution of scams.
- ➤ **Practical Insights:** Large-scale dataset collection, cost-effective data sampling, and dynamic evolution analysis, enabling real-world application in Ethereum transaction monitoring.