PRÁCTICO 4: Números primos, Teorema fundamental de la Aritmética.

I. Ejercicios de práctica:

Ejercicio 1. Se consideran los siguientes números:

$$a = 1485000;$$
 $b = 15^4 \cdot 42^3 \cdot 56^5;$ $c = 15!;$ $d = 1485000^3;$ $e = 15!^5$

- a. Halllar la descomposición factorial de esos números.
- **b**. ¿Cuántos divisores tienen?
- c. ¿Es alguno de ellos cuadrado perfecto?

Ejercicio 2. Hallar el menor número natural n tal que $6552 \times n$ sea un cuadrado y el menor número natural m para el cual $1260 \times m$ sea un cubo perfecto.

Ejercicio 3. Decidir si existen enteros positivos a y b que satisfagan

a.
$$a^2 = 8b^2$$
.

b.
$$a^2 = 3b^3$$
.

c.
$$7a^2 = 11b^2$$
.

Ejercicio 4. Determinar el menor cuadrado perfecto que es divisible entre 7!.

Ejercicio 5. Hallar los números naturales $n \le 1000$ que verifican $\# \operatorname{Div}_+(n) = 3$.

Ejercicio 6.

- i) Hallar los números naturales a y b sabiendo que mcd(a,b)=18, que a tiene 21 divisores positivos y que b tiene 10.
- ii) Hallar los números naturales a tales que a^2 tiene 77 divisores positivos y $80 \mid a$.
- iii) Hallar todos los números naturales a tales que a divide a alguna potencia de 6, es divisible entre 6 y además satisface $\#\operatorname{Div}_+(a^2) = 2\#\operatorname{Div}_+(a) 1$.

Ejercicio 7. Demostrar que $mcd(a^n, b^n) = mcd(a, b)^n$ para todo $a, b, n \in \mathbb{Z}^+$.

Ejercicio 8. Demostrar que $\sqrt{n} \in \mathbb{Z}$ si y solamente si n tiene un número impar de divisores positivos.

Ejercicio 9. Demostrar que \sqrt{pq} y $\log_{30}(pq)$ son irracionales para cualquier par de primos distintos p,q.

II. Ejercicios para pensar un poco más...

Ejercicio 10. Sea (p_n) la sucesión de los números primos, $p_1=2$, $p_2=3$, etc. Probar que para todo $n \in \mathbb{N}$ se tiene que $p_1p_2 \dots p_n+1 \geq p_{n+1}$. ¿Es cierto que $p_1p_2 \dots p_n+1$ es primo para todo $n \in \mathbb{N}$?

Ejercicio 11. ¿Existen dos cuadrados perfectos cuya diferencia sea 311? ¿Y dos cubos cuya suma sea 311? (Sug. Observar que $f(x) = x^3 + y^3$ tiene raíz x = -y y usar esto para factorizar $x^3 + y^3$).

Ejercicio 12. En un manicomio hay 2021 habitaciones numeradas con los números $1, 2, 3, \ldots, 2021$. En un principio están todas las puertas cerradas. Cuando pasa el primer paciente abre la puerta de cada habitación, luego pasa el segundo paciente y cierra las puertas $2, 4, 6, 8, \ldots$ Pasa el tercer paciente y cambia de estado las puertas $3, 6, 9, 12, \ldots$ (es decir, la cierra si estaba abierta y la abre si estaba cerrada) y así hasta que pasa el paciente 2021 que cambia de estado la puerta 2021. ¿Cuántas puertas abiertas quedan luego de pasar los 2021 pacientes?

Ejercicio 13.

- **a**. Probar que si p > 2 es primo, entonces es de la forma $4k \pm 1$, para algún $k \in \mathbb{Z}$.
- **b**. Probar que si p>3 es primo, entonces es de la forma $6k\pm 1$, para algún $k\in \mathbb{Z}.$
- **c**. Probar que existen infinitos primos de la forma 4k-1. Sugerencia: imitar la prueba de Euclides sobre la infinitud de primos.