Lezione del 24 ottobre del prof. Frigerio

Lemma 0.1. Un'unione di chiusi localmente finiti è un chiuso

Dimostrazione. Sia $\{C_i\}_{i\in I}$ una famiglia localmente finita di chiusi.

 $\forall x \in X \quad \exists U_x \subseteq X$ aperto che contiene $x \quad U_x$ interseca solo un numero finito di C_i Sia $\mathfrak U$ il ricoprimento aperto così definito

$$\mathfrak{U} = \{U_x\}_{x \in X}$$

Essendo $\mathfrak U$ un ricoprimento aperto, è fondamentale quindi

$$\bigcup_{i \in I} C_i \text{ chiuso } \Leftrightarrow \left(\bigcup_{i \in I} C_i\right) \cap U_x \text{ chiuso in } U_x \quad \forall x \in X$$

Poichè la famiglia è localmente finita allora fissato x

$$\exists i_1, \dots, i_n \quad U_x \cap \left(\bigcup_{i \in I} C_i\right) = U_x \cap \left(C_{i_1} \cup \dots \cup C_{i_n}\right)$$

Tale insieme è chiuso in U_x poichè unione finita di chiusi è chiusa

Corollario 0.2. Se $\{Y_i\}_{i\in I}$ è una famiglia localmente finita

$$\overline{\bigcup_{i\in I} Y_i} = \bigcup_{i\in I} \overline{Y_i}$$

Dimostrazione. In ogni caso vale \supseteq infatti

$$\forall j \in I \quad Y_j \subseteq \bigcup_{i \in I} Y_i \quad \Rightarrow \quad \overline{Y_j} \subseteq \overline{\bigcup_{i \in I} Y_i} \quad \forall j \in I \quad \Rightarrow \quad \bigcup_{i \in I} \overline{Y_i} \subseteq \overline{\bigcup_{i \in I} Y_i}$$

Se la famiglia degli Y_i è localmente finito allora anche la famiglia degli $\overline{Y_i}$ lo è. Sia V un aperto che contiene x allora essendo la famiglia degli Y_i localmente finita

$$\exists A \subseteq N \text{ finito} \quad V \cap Y_a \neq \emptyset \quad \Leftrightarrow \quad a \in A$$

Proviamo che se $a \not \in A$ allora $\overline{Y_a} \cap V = \emptyset$ infatti poichè

$$\overline{Y_a} = \{ x \in X \, | \, U \cap Y_a \neq \emptyset \quad \forall U \in I(x) \}$$

se $y \in V$ allora $V \in I(y)$ e $V \cap Y_a = \emptyset$ dunque $y \notin \overline{Y_a}$. Ora $\bigcup_{i \in I} \overline{Y_i}$ è un chiuso che contiene $\bigcup_{i \in I} Y_i$ quindi

$$\overline{\bigcup_{i\in I} Y_i} \subseteq \bigcup_{i\in I} \overline{Y_i}$$

Teorema 0.3.

 $\mathfrak U$ ricoprimento chiuso e localmente finito \Rightarrow $\mathfrak U$ ricoprimento fondamentale

Dimostrazione. Sia $\{C_i\}_{i\in I}$ un ricoprimento chiuso localmente finito.

Sia $Z \subseteq X$ tale che $Z \cap C_i$ è chiuso in $C_i \ \forall i \in I$.

Però C_i è un chiuso di un chiuso di X è chiuso in X, quindi $Z \cap C_i$ è chiuso in $X \forall i$. La famiglia $\{X \cap C_i\}_{i \in I}$ è una famiglia localmente finita di chiusi quindi per il lemma 0.1

$$Z = \bigcup_{i \in I} (Z \cap C_i)$$

è chiuso in X quindi la tesi

1

1 Connessione e connessione per archi

Definizione 1.1 (Sconnessione).

Uno spazio topologico X si dice sconnesso se vale uno delle seguenti condizioni equivalenti

- (i) $X = A \coprod B \operatorname{con} A, B$ aperti non vuoti
- (ii) $X = A \coprod B \operatorname{con} A, B \operatorname{chiusi} \operatorname{non} \operatorname{vuoti}$
- (iii) $\exists A \subseteq X$ con $A \neq \emptyset, X$ sia aperto che chiuso

Osservazione 1. Mostriamo le equivalenze.

- (i) \Rightarrow (ii) $X = (X \setminus A) \coprod (X \setminus B)$. A, B aperti \Rightarrow i loro complementari sono chiusi
- (ii) \Rightarrow (i) si dimostra come nel caso precedente
- (i) \Rightarrow (iii) Se A è aperto allora $X \setminus A = B$ è chiuso, ma B per ipotesi è aperto
- (iii) \Rightarrow (i) $X \setminus A$ è aperto essendo A chiuso inoltre $X = A \coprod (X \setminus A)$ con entrambi aperti

Definizione 1.2 (Connesso).

X spazio topologico è connesso se non è connesso.

$$\forall A \subseteq X \quad A \neq \emptyset \quad A$$
 aperto e chiuso si ha $A = X$

Esemplo 1.1. $\mathbb{R}\setminus\{0\}$ è sconnesso in quanto unione degli aperti $(-\infty,0)$ e $(0,+\infty)$

Teorema 1.2. [0,1] è connesso.

Dimostrazione. Siano A, B aperti non vuoti di [0, 1] tali che

$$[0,1] = A \coprod B$$

Posso supporre $0 \in A$ e poichè A è aperto

$$\exists \varepsilon > 0 \quad [0, \varepsilon) \subseteq A$$

Sia $t_0 = \inf B$ (esiste essendo B non vuoto e limitato inferiormente) inoltre $t_0 \ge \varepsilon >$.

Essendo B chiuso allora $t_0 \in B$ infatti esiste una successione di B convergente all'estremo inferiore.

Essendo B aperto e poichè $t_0 > 0$ si ha $(t_0 - \delta, t_0] \subseteq B$ ma ciò contraddice il fatto che t_0 è l'estremo inferiore

Definizione 1.3 (Connessione per archi).

X si dice connesso per archi se

$$\forall x_0, x_1 \in X \quad \exists \alpha : [0, 1] \to X \text{ continua} \quad \alpha(0) = x_0 \quad \alpha(1) = x_1$$

Proposizione 1.3.

 $X \ connesso \ per \ archi \Rightarrow X \ connesso$

Dimostrazione. Se X fosse sconnesso allora $X = A \coprod B \operatorname{con} A, B$ aperti non vuoti.

Sia $x_0 \in A$ e $x_1 \in B$ Se il cammino $\alpha : [0,1] \to X$ con $\alpha(0) = x_0$ e $\alpha(1) = x_1$ fosse continua allora avrai una partizione

$$[0,1] = \alpha^{-1}(A) \coprod \alpha^{-1}(B)$$
 in aperti non vuoti

Ma ciò è assurdo essendo [0, 1] connesso, non si puó partizionare in aperti disgiunti non vuoti.

Proposizione 1.4. Sia $f: X \to Y$ continua

- 1. $X \ connesso \Rightarrow f(X) \ connesso$
- 2. X connesso per archi $\Rightarrow f(X)$ connesso per archi

Dimostrazione. 1. La funzione $f: X \to f(X)$ è continua per la propietà universale della topologia di sottospazio.

Supponiamo che $f(X) = A \coprod B$ con A, B aperti non vuoti allora $X = f^{-1}(A) \coprod f^{-1}(B)$ ovvero X è sconnesso

2. Essendo X connesso per archi $\exists \alpha : [0,1] \to X$ continuo, se considero il cammino

$$(f \circ \alpha :) [0,1] \rightarrow f(X)$$

è continuo

Lemma 1.5. Sia X uno spazio topologico, $Y \subseteq X$ connesso

$$\forall Z \subset Y \subset Z \subset \overline{Y} \Rightarrow Z \ connesso$$

Dimostrazione. Osserviamo che Y è denso in Z infatti la chiusura di Y in Z è $\overline{Y} \cap Z = Z$. Sia $\emptyset \neq A \subset Z$ un aperto e chiuso, allora $A \cap Y$ è sia aperto che chiuso in Y.

Ora essendo Y denso in Z ne segue che $A\cap Y\neq\emptyset$ dunque, per connessione di Y, deve essere $A\cap Y=Y$ cioè $Y\subseteq A$.

Ora essendo Y denso in Z anche A lo è dunque $\overline{A}=Z$ ma A è anche chiuso dunque A=Z \square

Corollario 1.6. Y connesso $\Rightarrow \overline{Y}$ connesso

Dimostrazione. Valgono le seguenti inclusioni $Y\subseteq \overline{Y}\subseteq \overline{Y}$ dunque concludo usando il lemma precedente

Lemma 1.7. Sia $\{Y_i\}_{i\in I}$ una famiglia di sottospazi connessi di X tali che $\bigcap_{i\in I}Y_i\neq\emptyset$ allora

$$Y = \bigcup_{i \in I} Y_i \ \dot{e} \ connesso$$

Dimostrazione. Sia $x_0 \in \bigcap_{i \in I} Y_i$ e $A \neq \emptyset$ aperto e chiuso di Y.

A meno di sostituire A con $Y \setminus A$ posso supporre $x_0 \in A$

 $\forall i \in I \quad A \cap Y_i$ è non vuoto (contiene x_0), aperto e chiuso di Y_i

Dalla connessione di Y_i segue che $A \cap Y_i = Y_i$ cioè $Y_i \subseteq A$

$$Y = \bigcup_{i \in I} Y_i \subseteq A \quad \Rightarrow \quad Y = A$$

Definizione 1.4 (Componente connessa).

Sia X spazio topologico e $x_0 \in X$ allora indichiamo con $C(x_0)$ e lo chiamiamo componente connessa di x_0 : il più grande sottospazio connesso di X che contiene x_0

Proposizione 1.8. Sia $x_0 \in X$ allora esiste la componente connessa

Dimostrazione. Sia

$$C(x_0) = \bigcup \{Y \mid Y \subseteq X \text{ connessp che contiene } x_0\}$$

Osserviamo che tale unione non è vuota infatti $\{x_0\}$ è connesso.

Per il lemma 1.7 $C(x_0)$ è connesso (tutti i sottospazi che unisco contengono x_0) ed inoltre contiene qualsiasi connesso che contiene x_0

Proposizione 1.9. Le componenti connesse realizzano una partizione di X in chiusi

Dimostrazione. Le componenti connesse ricoprono infatti $\forall x \in X$ allora $x \in C(x)$.

Vediamo che le componenti connesse non disgiunte sono uguali.

Sia $x_0, x_1 \in X$ tali che $C(x_0) \cap C(x_1) \neq \emptyset$ dunque per il lemma 1.7 $C(x_0) \cap C(x_1)$ è connesso. Ora

$$\begin{cases} C(x_0) \cap C(x_1) \subseteq C(x_0) \\ C(x_0) \cap C(x_1) \subseteq C(x_1) \end{cases} \Rightarrow C(x_0) = C(x_1) \text{ per massimalità}$$

Mostriamo, infine che le componenti connesse sono chiuse.

Per il corollario 1.6 $\overline{C(x)}$ è un connesso che contiene x_0 quindi

$$\overline{C(x)} \subseteq C(x) \quad \Rightarrow \quad \overline{C(x)} = C(x)$$

Osservazione 2. Se $\emptyset \neq A$ è aperto e chiuso. A è una componente connessa.

Sia $A \supseteq B$ è connesso allora A è un aperto e chiuso non vuoto di B allora A = B per cui A è un connesso massimale da cui è una componente massimale

Osservazione 3. Le componenti connesse di \mathbb{Q} sono i punti ovvero $C(x) = \{x\} \ \forall x \in \mathbb{Q}$. In questo caso si dice che \mathbb{Q} è totalmente sconnesso.

Per assurdo supponiamo che esista una componente connessa C che contiene x_0 e x_1 . Sia $y \in \mathbb{R} \setminus \mathbb{Q}$ tale che $x_0 < y < x_1$ allora

$$C=(C\cap (-\infty,y))\amalg (C\cap (y,+\infty))$$

dunque C si partiziona in modo non banale in aperti, ovvero è sconnesso (assurdo)

Osservazione 4. Le componenti connesse, in generale, non sono aperte.

I punti di \mathbb{Q} non sono aperti)