PROJECT PART-2 REPORT

(rsanikom@asu.edu)

Introduction: SVM

Using supervised machine learning, the support vector machine (SVM) technique may be applied to both classification and regression tasks. By increasing the margin between classes, the algorithm, which is a discriminative classifier, determines a decision border between them. In large dimensional spaces, SVMs perform better and may be used to invert nonlinear-functions.

Problem Statement:

We must use multi-Class SVM (libSVM) to categorize these 50 Categories.

Input:

The 50 categories/classes, 3 Features, train data of 4786 samples, test data of 1833 samples.

Output:

Accuracy measured when training the data.

Method:

In this project we use libSVM library for implementation in python. **svmtrain** trains the svm based on the parameters given and gives an output. **svmpredict** returns the output by taking the inputs, outputs and some parameters.

Step 0:

Part-1: Calculated the accuracy of 3 features.

Used the symprob, symparameter APIs and testdata to test the model and obtain accuracies.

Accuracy of X1	Accuracy of X2	Accuracy of X3
10.7807%	16.6755%	8.92193%

Part-2: Calculated the accuracies using the posterior probability, and after training the data with parameters tested the data for accuracies.

Accuracy of X1	Accuracy of X2	Accuracy of X3
27.881%	27.5093%	28.7839%

Step-1:

Posterior Probability = (posterior Probability X1+ posterior Probability X2+ posterior Probability X3)/3

Calculated the average of all probabilities obtained at step-0 for all features and chose the class that has largest posterior probability as the class of the training sample.

Accuracy: 44.71587%

Step-2:

Calculated the accuracy by all the values of X1, X2, X3 and trained the SVM using the parameter "-c 10 -t 0"

Accuracy: 37.0685%

Conclusion: The average of the posterior probability for each feature produces the results with the maximum accuracy.