Coxeter and Tits Systems

Swayam Chube

Last Updated: March 15, 2025

§1 Coxeter Systems

Let W denote a group and $S \subseteq W$ a generating set such that $1 \in S$ and $S = S^{-1}$. Fix this pair throughout this section, and we refer to such a pair as a *generating pair*.

Definition 1.1. Let $w \in W$. The length of w with respect to S, denoted by $\ell_S(w)$ (often abbreviated to $\ell(w)$) is the smallest integer $q \ge 0$ such that w is the product of a sequence of q elements of S. A reduced representation of W with respect to S is any sequence $\mathbf{s} = (s_1, \dots, s_q)$ of elements of S such that $w = s_1 \cdots s_q$ and $q = \ell_S(w)$.

Clearly, if $w, w' \in W$, then

$$\ell(ww') \leqslant \ell(w) + \ell(w'),$$

$$\ell(w^{-1}) = \ell(w),$$

$$|\ell(w) - \ell(w')| \leqslant \ell(ww'^{-1}).$$

Definition 1.2. (W, S) is said to be a *Coxeter system* if every element in S has order at most 2, and it satisfies the following condition:

(Cox) For $s, s' \in S$, let $1 \leq m(s, s') \leq \infty$ be the order of $ss' \in W$ and let

$$I = \{(s, s') : m(s, s') < \infty\}.$$

Then

$$W = \left\langle s \in S : (ss')^{m(s,s')} = 1, \ (s,s') \in I \right
angle$$

is a presentation for the group W.

Remark 1.3. Consider the function $f: S \to \{-1, 1\}$ given by f(s) = -1 for each $s \in S$. If $s, s' \in S$ such that $m = m(s, s') < \infty$, then $(f(s)f(s'))^m = 1$ almost tautologically. Hence, this function induces a map $sgn: W \to \{-1, 1\}$ known as the *signature* of W. It is clear that $sgn(w) = (-1)^{\ell(w)}$.

Proposition 1.4. Assume that (W, S) is a Coxeter system. Then, two elements $s, s' \in S$ are conjugate in W if and only if the following condition is satisfied:

(Con) There exists a finite sequence $(s_1, ..., s_q)$ of elements of S such that $s_1 = s$, $s_q = s'$ and $s_j s_{j+1}$ is of *finite* odd order for $1 \le j < q$.

Proof. First, if $s, s' \in S$ such that p = ss' is of finite order 2n + 1, then

$$sps^{-1} = p^{-1} \implies sp^n s^{-1} = p^{-n}$$

so that

$$p^n s p^{-n} = p^n p^n s = p^{-1} s = s'.$$

and s' is conjugate to s. In particular, this shows that if (Con) is satisfied, then (s,s') is a pair of conjugates in W. For each $s \in S$, let A_s be the set of $s' \in S$ satisfying (Con); clearly, every $s' \in A_s$ is conjugate of s. Let $f: S \to \{-1,1\}$ that is equal to 1 on A_s and to -1 in $S \setminus A_s$. We shall show that this map can be extend to a group homomorphism $W \to \{-1,1\}$. Indeed, let $s', s'' \in S$ with $m = m(s,s') < \infty$. If m is odd, then s' and s'' are conjugate so either both in

 $W \to \{-1,1\}$. Indeed, let $s', s'' \in S$ with $m = m(s,s') < \infty$. If m is odd, then s' and s'' are conjugate so either both in A_s or both in $S \setminus A_s$, and hence f(s')f(s'') = 1, in particular, $(f(s')f(s''))^m = 1$. On the other hand, if m is even, then clearly $(f(s')f(s''))^m = 1$. Consequently, to (Cox), the map f extends to a group homomorphism $W \to \{-1,1\}$.

Finally, let s' be a conjugate of s in W. Since $s \in \ker f$, so does s', hence $s' \in A_s$.

Definition 1.5. Let (W, S) be a Coxeter system and let T be the set of conjugates in W of elements of S. For any sequence $\mathbf{s} = (s_1, \dots, s_q)$ of elements of S, denote by $\Phi(\mathbf{s})$ the sequence (t_1, \dots, t_q) of elements of T defined by

$$t_j = (s_1 \cdots s_{j-1}) s_j (s_1 \cdots s_{j-1})^{-1} = (s_1 \cdots s_{j-1}) s_j (s_{j-1} \cdots s_1).$$

Then $t_1 = s_1$ and $s_1 \cdots s_q = t_q \cdots t_1$. For $t \in T$, denote by $n(\mathbf{s}, t)$ the number of indices $1 \leqslant j \leqslant q$ for which $t_j = t$. Finally, set

$$R = \{-1, 1\} \times T$$
.

Lemma 1.6. (1) Let $w \in W$ and $t \in T$. The number $(-1)^{n(s,t)}$ has the same value $\eta(w,t)$ for all sequences $\mathbf{s} = (s_1, \dots, s_a)$ in S such that $w = s_1 \cdots s_a$.

(2) For $w \in W$, let $U_w : R \to R$ be given by

$$U_w(\varepsilon, t) = (\varepsilon \eta(w^{-1}, t), wtw^{-1}).$$

The map $w \mapsto U_w$ is a homomorphism from W to the group of permutations of R, $\mathfrak{Sym}(R)$.

Proof. For $s \in S$, define a map $U_s : R \to R$ by

$$U_{s}(\varepsilon,t)=\left(\varepsilon(-1)^{\delta_{s,t}},sts^{-1}
ight)$$
 ,

where $\delta_{s,t}$ is the Kronecker symbol. Clearly, $U_s^2 = \mathbf{id}_R$, and hence U_s is a permutation of R.

For a sequence $\mathbf{s}=(s_1,\ldots,s_q)$ in S, put $w=s_q\cdots s_1$ and $U_{\mathbf{s}}=U_{s_q}\cdots U_1$. We shall show by induction that

$$U_{\mathbf{s}}(\varepsilon,t) = \left(\varepsilon(-1)^{n(\mathbf{s},t)}, wtw^{-1}\right).$$
 (1)

This is clear if q=0,1. For q>1, put $\mathbf{s}'=(s_1,\ldots,s_{q-1})$ and

$$w'=s_{a-1}\cdots s_1.$$

Using the induction hypothesis, we can write

$$U_{\mathbf{s}}(\varepsilon,t) = U_{s_q}\left(\varepsilon(-1)^{n(\mathbf{s}',t)}, w'tw'^{-1}\right) = \left(\varepsilon(-1)^{n(\mathbf{s}',t)+\delta_{s_q,w'tw'^{-1}}}, wtw^{-1}\right).$$

But since $\Phi(\mathbf{s}) = (\Phi(\mathbf{s}'), w'tw'^{-1})$, the formula (1) follows.

Now let $s, s' \in S$ be such that p = ss' has finite order m. Let $\mathbf{s} = (s_1, \dots, s_{2m})$ where

$$s_j = \begin{cases} s & j \text{ is odd} \\ s' & j \text{ is even.} \end{cases}$$

Then $s_{2m} \cdots s_1 = p^{-m} = 1$ and

$$t_i = (s_1 \cdots s_{i-1}) s_i (s_{i-1} \cdots s_1) = p^{j-1} s$$
 for $1 \le i \le 2m$.

Sinc p is of order m, the elements t_1, \ldots, t_m are distinct and $t_{j+m} = t_j$ for $1 \le j \le m$. The integer $n(\mathbf{s}, t)$ is equal to either 0 or 2 and due to (1), we have that $U_{\mathbf{s}} = \mathbf{id}_R$, i.e., $(U_s U_{s'})^m = \mathbf{id}_R$. Thus, by (Cox), there is a group homomorphism $W \to \mathfrak{Sym}(R)$ given by $w \mapsto U_w$, extending the mapping $s \mapsto U_s$. It follows that $U_w = U_s$ for every sequence $\mathbf{s} = (s_1, \ldots, s_q)$ such that $w = s_q \cdots s_1$. Both conclusions of the lemma follow hence.

Lemma 1.7. Let $\mathbf{s}=(s_1,\ldots,s_q)$, $\Phi(\mathbf{s})=(t_1,\ldots,t_q)$ and $w=s_1\cdots s_q$. Let T_w be the set of elements of T such that $\eta(w,t)=-1$. Then \mathbf{s} is a reduced representation of w if and only if the t_i are distinct, and in that case, $T_w=\{t_1,\ldots,t_q\}$ and $\#T_w=\ell(w)$.

Proof. Clearly $T_w \subseteq \{t_1, \dots, t_q\}$. Taking **s** to be a reduced representation, it follows that $\#T_w \leqslant \ell(w)$. Further, if the t_i 's are distinct, then $\eta(w, t) = -1$ if and only if $t \in \{t_1, \dots, t_q\}$, so that $T_w = \{t_1, \dots, t_q\}$ and $q = \#T_w \leqslant \ell(w)$. Hence, **s** is a reduced representation.

On the other hand, suppose $t_i = t_i$ for some i < j. Then

$$s_i = (s_i \cdots s_{j-1}) s_j (s_i \cdots s_{j-1})^{-1};$$

consequently,

$$w = s_1 \cdots s_{i-1} s_{i+1} \cdots s_{i-1} \cdots s_{i+1} \cdots s_q,$$

whence \mathbf{s} is not a reduced representation of w, as desired.

Lemma 1.8. Let $w \in W$ and $s \in S$ be such that $\ell(sw) \leq \ell(w)$. For any sequence $\mathbf{s} = (s_1, ..., s_q)$ of elements of S with $w = s_1 \cdots s_q$, there exists an index $1 \leq j \leq q$ such that

$$ss_1 \cdots s_{i-1} = s_1 \cdots s_i$$
.

Proof. Let p be the length of w and w' = sw. Due to Remark 1.3, $\ell(w') \equiv \ell(w) + 1 \pmod 2$. The hypothesis $\ell(w') \leq \ell(w)$ and the relation

$$|\ell(w) - \ell(w')| \le \ell(ww'^{-1}) = \ell(s) = 1,$$

and hence, $\ell(w') = p-1$. Let $w' = s'_1 \cdots s'_{p-1}$ be a reduced representation of w' and put $\mathbf{s} = (s, s'_1, \dots, s'_{p-1})$ and $\Phi(\mathbf{s}') = (t'_1, \dots, t'_p)$. Since \mathbf{s}' is a reduced representation of w, due to Lemma 1.7, the t_j 's must be distinct and $n(\mathbf{s}', s) = 1$ since $t_1 = s$. Further, since both \mathbf{s} and \mathbf{s}' represent w, due to Lemma 1.6, we must have $n(\mathbf{s}, s) \equiv n(\mathbf{s}', s) \pmod{2}$, whence $n(\mathbf{s}, s) \neq 0$. Consequently, s is equal to one of the t_i 's. The lemma then follows immediately.

§§ The Exchange Condition

Definition 1.9. Let W be a group and $S \subseteq W$ a generating set such that $S^{-1} = S$ and every element in S has order at most 2. The *exchange condition* is the following assertion about (W, S):

(Exc) Let $w \in W$ and $s \in S$ be such that $\ell(sw) \leq \ell(w)$. For any reduced representation $w = s_1 \cdots s_q$, there exists an index $1 \leq j \leq q$ such that

$$ss_1 \cdots s_{i-1} = s_1 \cdots s_i$$
.

Proposition 1.10. Let (W, S) be a pair as in Definition 1.9 and satisfying (Exc). Let $s \in S$, $w \in W$ and $w = s_1 \cdots s_q$ be a reduced representation of w. Then one of the following must hold:

- (i) $\ell(sw) = \ell(w) + 1$ and $sw = ss_1 \cdots s_q$ is a reduced representation of sw, or
- (ii) $\ell(sw) = \ell(w) 1$ and there exists an index $1 \le j \le q$ such that $sw = s_1 \cdots s_{j-1} s_{j+1} \cdots s_q$ is a reduced representation of sw and $w = ss_1 \cdots s_{j-1} s_{j+1} \cdots s_q$ is a reduced representation of w.

Proof. Let w' = sw. We know that

$$|\ell(w) - \ell(w')| \leqslant \ell(s) = 1.$$

Suppose first that $\ell(w') > \ell(w)$. Then $\ell(w') = q+1$ and $w' = ss_1 \cdots s_q$ whence this is also a reduced representation. Next, suppose $\ell(w') \leqslant \ell(w)$. Due to (Exc), there exists an index $1 \leqslant j \leqslant q$ such that

$$ss_1 \cdots s_{j-1} = s_1 \cdots s_j$$
.

Then $w = ss_1 \cdots s_{j-1}s_{j+1} \cdots s_q$. Since $\ell(w') \geqslant q-1$, we must have $\ell(w') = q-1$ and that the above representation is reduced.

Lemma 1.11. Let (W, S) be a pair as in Definition 1.9 and satisfying (Exc). Let $w \in W$ have length $q \geqslant 1$, let D be the set of all reduced representations of w, and let $F: D \rightarrow E$.

Assume that $F(\mathbf{s}) = F(\mathbf{s}')$ if the elements $\mathbf{s} = (s_1, \dots, s_q)$ and $\mathbf{s}' = (s_1', \dots, s_q')$ of D satisfy one of the following:

- (i) $s_1 = s'_1 \text{ or } s_q = s'_q$; or
- (ii) there exist s and s' in S such that $s_j = s'_k = s$ and $s_k = s'_j = s'$ for j odd and k even.

Then F is constant.

Proof. The proof proceeds in two steps:

Step 1. Let $\mathbf{s}, \mathbf{s}' \in D$ and put $\mathbf{t} = (s'_1, s_1, \dots, s_{q-1})$. We shall show that if $F(\mathbf{s}) \neq F(\mathbf{s}')$ then $\mathbf{t} \in D$ and $F(\mathbf{t}) \neq F(\mathbf{s})$. Indeed, $w = s'_1 \cdots s'_q$ and $s'_1 w = s'_2 \cdots s'_q$, so that $\ell(s'_1 w) < q = \ell(w)$. Due to Proposition 1.10 (ii), there is an index $1 \le j \le q$ such that $\mathbf{u} = (s'_1, s_1, \dots, s_{j-1}, s_{j+1}, \dots, s_q)$ belongs to D. Due to condition (i), we have $F(\mathbf{u}) = F(\mathbf{s}')$. If $j \ne q$, then we would also have $F(\mathbf{u}) = F(\mathbf{s})$ due to condition (i), contrary to our hypothesis that $F(\mathbf{s}) \ne F(\mathbf{s}')$. Thus j = q and hence $\mathbf{t} = \mathbf{u} \in D$ and $F(\mathbf{t}) = F(\mathbf{s}') \ne F(\mathbf{s})$, as desired.

Step 2. Let $\mathbf{s}, \mathbf{s}' \in D$. For $0 \le j \le q+1$, define a sequence \mathbf{s}_j of q-elements of S as:

$$\begin{aligned} \mathbf{s}_0 &= (s_1', \dots, s_q') \\ \mathbf{s}_1 &= (s_1, \dots, s_q) \\ \mathbf{s}_{q+1-k} &= \begin{cases} (s_1, s_1', \dots, s_1, s_1', s_1, s_2, \dots, s_k) & q-k \text{ even and } 0 \leqslant k \leqslant q \\ (s_1', s_1, \dots, s_1, s_1', s_1, s_2, \dots, s_k) & q-k \text{ odd and } 0 \leqslant k \leqslant q \end{cases} \end{aligned}$$

Let (H_i) denote the assertion:

(ii)

"
$$\mathbf{s}_i \in D$$
, $\mathbf{s}_{i+1} \in D$ and $F(\mathbf{s}_i) \neq F(\mathbf{s}_{i+1})$ ".

Due to **Step 1**, $(H_j) \implies (H_{j+1})$ for $0 \le j \le q$, and due to condition (ii), (H_q) is false. Hence (H_0) is false, so that $F(\mathbf{s}) = F(\mathbf{s}')$, thereby completing the proof.

Proposition 1.12. Let M be a monoid and $f: S \to M$. Set

$$a(s,s') = \begin{cases} (f(s)f(s'))^l & m(s,s') = 2l\\ (f(s)f(s'))^l f(s) & m(s,s') = 2l+1\\ 1 & m(s,s') = \infty. \end{cases}$$

If a(s,s')=a(s',s) whenever $s\neq s'$ in S, then there exists a map $g:W\to M$ such that

$$g(w) = f(s_1) \cdots f(s_n)$$

for every reduced representation $w = s_1 \cdots s_q$ of $w \in W$.

Proof. For $w \in W$, let D_w be the set of all reduced representations of w and $F_w : D_w \to M$ given by

$$F_w(s_1,\ldots,s_q)=f(s_1)\cdots f(s_q).$$

We shall argue by induction on $\ell(w)$ that F_w is a constant function. The base cases $\ell(w) = 0, 1$ are trivial. Suppose now that $q = \ell(w) \geqslant 2$ and the inductive hypothesis has been proven for all lengths < q. In light of Lemma 1.11, it suffices to show that $F_w(\mathbf{s}) = F_w(\mathbf{s}')$ in both conditions of the aforementioned lemma.

(i) This is quite straightforward using the inductive hypothesis and the equality

$$F_w(s_1, ..., s_q) = f(s_1)F_{w'}(s_2, ..., s_q) = F_{w''}(s_1, ..., s_{q-1})f(s_q).$$

Dihedral

groups

 $(31)^{n}$ $(31)^{n}$ $(32)^{n}$ $(31)^{n}$ $(31)^{n}$ $(31)^{n}$ $(31)^{n}$ $(31)^{n}$ $(31)^{n}$

Theorem 1.13. Let (W, S) be a pair such that S generates W, $1 \in S$, $S^{-1} = S$ and every element in S has order at most 2. Then (W, S) is a Coxeter system if and only if it satisfies (Exc).

Proof. We have already seen that a Coxeter system satisfies (Exc). Conversely, suppose (W, S) is a pair as in 1.9 and satisfies (Exc). To show that (W, S) is a Coxeter system, it suffices to show that it has the desired *universal property* of its presentation.

Indeed, let G be a group and $f: S \to G$ be a map such that $(f(s)f(s'))^{m(s,s')} = 1$ whenever $m(s,s') < \infty$. Due to Proposition 1.12, there exists a map $g: W \to G$ such that

$$g(w) = f(s_1) \cdots f(s_q)$$

whenever $w = s_1 \cdots s_q$ is a reduced representation of w. It suffices to show that g is a group homomorphism. To this end, since S generates W, it suffices to show that

$$g(sw) = f(s)g(w) \quad \forall s \in S, \forall w \in W.$$

Due to Proposition 1.10, there are two possible cases:

(i) If $\ell(sw) = \ell(w) + 1$ then choosing a reduced representation $w = s_1 \cdots s_q$, it follows that $sw = ss_1 \cdots s_q$ is a reduced representation of sw. Hence

$$g(sw) = f(s)f(s_1)\cdots f(s_n) = f(s)g(w).$$

(ii) If $\ell(sw) = \ell(w) - 1$ put w' = sw. Then w = sw' and $\ell(sw') = \ell(w') + 1$. Due to case (i), g(sw') = f(s)g(w'), i.e., f(s)g(w) = g(sw) since $f(s)^2 = 1$.

§§ Families of Partitions and Subgroups of Coxeter Groups

Proposition 1.14. Let (W, S) be a Coxeter system. For $s \in S$, set

$$P_s = \{ w \in W : \ell(sw) > \ell(w) \}.$$

- (I) $\bigcap_{s\in S} P_s = \{1\}.$
- (II) For any $s \in S$, the sets P_s and sP_s form a partition of W.
- (III) Let $s, s' \in S$ and let $w \in W$. If $w \in P_s$ and $ws' \notin P_s$ then sw = ws'.

Proof. (I) Let $1 \neq w \in W$ and let $w = s_1 \cdots s_q$ be a reduced representation of w with $q \geqslant 1$. Clearly $s_1 w = s_2 \cdot s_q$ is a reduced representation of $s_1 w$, so that $w \notin P_{s_1}$.

- (II) Let $w \in W$ and $s \in S$. Due to Proposition 1.10, there are two cases to handle:
 - (i) $\ell(sw) = \ell(w) + 1$: then $w \in P_s$.
 - (ii) $\ell(sw) = \ell(w) 1$: then setting w' = sw, we see that $\ell(sw') = \ell(w') + 1$, so that $w' \in P_s$ and $w \in sP_s$.

To see that $P_s \cap sP_s = \emptyset$, suppose $w \in P_s \cap sP_s$. Then w = sw' where $w' \in P_s$, so that $\ell(w) = \ell(sw') > \ell(w')$. But since w' = sw and $w \in P_s$, we must have $\ell(w') = \ell(sw) > \ell(w)$, a contradiction.

(III) Let $q = \ell(w)$. Since $w \in P_s$, it follows that $\ell(sw) = q + 1$ and from $ws' \notin P_s$ it follows that $sws' \in P_s$, so that $q + 1 \geqslant \ell(ws') = \ell(sws') + 1$ and hence $\ell(sws') \leqslant q$. Further, since $\ell(sws') = \ell(sw) \pm 1$, we must have $\ell(sws') = q$ and $\ell(ws') = q + 1$.

Let $w=s_1\cdots s_q$ be a reduced representation of w and set $s_{q+1}=s'$. Then $ws'=s_1\cdots s_{q+1}$ is a reduced decomposition of ws'. Due to (Exc) and the fact that $\ell(sws')\leqslant\ell(ws')$, there is an index $1\leqslant j\leqslant q+1$ such that

$$ss_1\cdots s_{j-1}=s_1\cdots s_j$$
.

If $1 \le j \le q$, we would have $sw = s_1 \cdots s_{j-1} s_{j+1} \cdot s_q$, contradicting the fact that $\ell(sw) = q+1$. Thus j = q+1, i.e., sw = ws', as desired.

Proposition 1.15. Let (W, S) be a generating pair such that every element in S has order at most 2. Let $(P_s)_{s \in S}$ be a family of subsets of W satisfying (III) and the following additional conditions:

- (I') $1 \in P_s$ for all $s \in S$.
- (II') The sets P_s and sP_s are disjoint for all $s \in S$.

Then (W, S) is a Coxeter system and

$$P_s = \{s \in S : \ell(sw) > \ell(w)\}.$$

Proof.