TEORÍA DE LA COMPUTACIÓN

Grado en Ingeniería Informática

Soluciones del Boletín de Ejercicios nº 2

Autómatas finitos deterministas y no deterministas

24. Encuentre un AFN que acepte el lenguaje de todas las cadenas sobre $\{a, b\}$ que terminan con la subcadena abba. Conviértalo en AFD.

Solución:

El AFN podría ser el siguiente:

Y su correspondiente AFD es:

25. Sobre el alfabeto $\{a,b\}$, construya un AFN que acepte cadenas cuyo último símbolo haya aparecido antes en la misma entrada. Conviértalo en AFD.

Solución:

El AFN podría ser el siguiente:

Y su correspondiente AFD es:

Autómatas finitos no deterministas con ϵ -transiciones

26. Sobre el alfabeto $\{a,b\}$, construya un AFN- ϵ que acepte todas las cadenas que empiezan o terminan con ab, o ambas cosas. Conviértalo primero en AFN y después en AFD. Solución:

El AFN- ϵ podría ser el siguiente:

Su correspondiente AFN es:

Y su correspondiente AFD es:

- 27. Para todo autómata finito M (con uno o más estados de aceptación), ¿existe un autómata finito M' con un solo estado de aceptación tal que L(M) = L(M')?
 - a) Sí, para todo M.
 - b) Si y sólo si los estados de aceptación de M no son origen de ninguna transición.
 - c) Depende del alfabeto considerado.

Solución:

- a) Cierta. Se añade un nuevo estado que será el único estado final, y los antiguos estados finales se unen a él mediante arcos ϵ . Eso sí, obtendremos un AFN- ϵ y si lo convertimos en AFN volverán a aparecer varios estados finales.
- b) También puede ser cierta. Si los estados finales no tienen arcos salientes, se pueden colapsar en uno solo.
- c) No es cierta.

Autómatas finitos y expresiones regulares

28. Obtenga la expresión regular del lenguaje aceptado por el siguiente autómata finito:

Solución:

$$\begin{array}{lll} A_1 & = & b\,A_1 = b^*\,\emptyset = \emptyset \\ \\ A_2 & = & a\,A_1 \cup b\,A_0 \ \cup \epsilon = a\,\emptyset \cup b\,A_0 \cup \epsilon = \emptyset \cup b\,A_0 \cup \epsilon = b\,A_0 \cup \epsilon \\ \\ A_0 & = & a\,A_2 \cup b\,A_0 \cup \epsilon = a\,(b\,A_0 \cup \epsilon) \cup b\,A_0 \cup \epsilon = a\,b\,A_0 \cup a \cup b\,A_0 \cup \epsilon \\ \\ & = & (b\cup ab)\,A_0 \cup a \cup \epsilon = (b\cup ab)^*\,(a\cup \epsilon) \end{array}$$

Propiedades de bombeo de los lenguajes regulares

- 29. El lema del bombeo para lenguajes regulares puede utilizarse para demostrar que un determinado lenguaje L no es regular. Uno de los pasos de la aplicación de dicho lema consiste en suponer que el lenguaje L es regular, y que por tanto existe una cierta constante k asociada a L. ¿Qué representa realmente esa constante k?
 - a) Es el número de símbolos del alfabeto sobre el que está definido L.
 - b) Es el número de estados del AFD que aceptaría L, en el caso de que L fuese regular.
 - c) Es la longitud máxima de cualquiera de las cadenas de L.

Solución:

La respuesta correcta es la b).

30. El siguiente razonamiento intenta demostrar mediante el lema del bombeo que el lenguaje $L=0^*1^*$ no es regular:

4

Supongamos que L es regular. Entonces existe una constante k asociada a L tal que cualquier cadena $z \in L$, $|z| \ge k$, puede descomponerse en z = uvx, donde $|v| \ge 1$ y $|uv| \le k$, y de forma que $uv^ix \in L$, $\forall i \ge 0$. Consideremos la cadena $z = 0^k 1^k$ y todas sus posibles descomposiciones:

- Si v está formada sólo por ceros, cualquier bombe
o $i \geq 2$ produce más ceros que unos.
- Si v está formada sólo por unos, cualquier bombe
o $i \geq 2$ produce más unos que ceros.
- Si v está formada por ceros y por unos, cualquier bombeo $i \geq 2$ mezcla los ceros y los unos produciendo cadenas que tampoco pertenecen a L.

De todo esto se concluye que L no es regular.

Indique de forma clara si este razonamiento es correcto o no.

Solución:

Este razonamiento no es correcto por las siguientes razones:

- Si v está formada sólo por ceros, cualquier bombeo produce cadenas pertenecientes al lenguaje L.
- El caso de que v esté formada sólo por unos no es posible.
- El caso de que v esté formada sólo por ceros y unos tampoco es posible.
- 31. Demuestre mediante el lema del bombeo que el lenguaje $L = \{wcw^I \mid w \in \{a, b\}^*\}$ no es regular.

Solución:

Suponemos que L es regular y sea k su constante asociada según el lema del bombeo. Elegimos la cadena $w = a^k b^k c \, b^k a^k$. Dado que $w \in L$ y $|w| = 4k + 1 \ge k$, w está en las condiciones del lema.

Por tanto, w debería poder descomponerse de la forma w = uvx, donde $|v| \ge 1$ y $|uv| \le k$, y cualquier bombeo uv^ix debería estar en L, $\forall i \ge 0$.

Si $|uv| \le k$, entonces las subcadenas u y v están formadas sólo por aes, es decir:

$$u = a^r$$
 $v = a^s \ (s \ge 1)$ $x = a^{k-(r+s)}b^k c b^k a^k$

Y si elegimos, por ejemplo, el bombeo i = 2, obtenemos lo siguiente:

$$uv^2x = a^r a^{2s} a^{k-(r+s)} b^k c b^k a^k = a^{k+s} b^k c b^k a^k$$

Pero, dado que $s \ge 1$, la cadena $a^{k+s}b^kc\,b^ka^k$ no tiene el mismo número de aes al principio que al final. Es decir, el bombeo i=2 produce una cadena que no está en L. Por lo tanto, L no es regular.

32. Demuestre mediante el lema del bombeo que el lenguaje $L=\{a^nb^m|n\geq m\}$ no es regular. Solución:

Suponemos que lo es y tomamos $w = a^k b^k$, donde k es la constante asociada a L. Dado que $w \in L$ y $|w| = 2k \ge k$, w está en las condiciones del lema.

Por tanto, w debería poder descomponerse de la forma w = uvx, donde $|v| \ge 1$ y $|uv| \le k$, y cualquier bombeo uv^ix debería estar en L, $\forall i \ge 0$.

Si $|uv| \le k$, entonces las subcadenas u y v están formadas sólo por aes, es decir:

$$u = a^r$$
 $v = a^s \ (s \ge 1)$ $x = a^{k-(r+s)}b^k$

En este caso, cualquier bombeo $i \geq 2$ producirá cadenas con más aes que bes. Pero todas esas cadenas estarían dentro del lenguaje L.

Así pues, esta vez el único bombeo que va a producir cadenas fuera de L va a ser el bombeo i=0, tal y como vemos a continuación:

$$uv^{0}x = a^{r}a^{k-(r+s)}b^{k} = a^{k-s}b^{k}$$

Dado que $s \ge 1$, la cadena $a^{k-s}b^k$ tiene menos aes que bes. Es decir, el bombeo i=0 produce una cadena no perteneciente a L. Por lo tanto, L no es regular.

Otras propiedades de cierre de los lenguajes regulares

33. Sea L un lenguaje regular sobre el alfabeto $\Sigma = \{a, b\}$, y sea M un autómata finito determinista tal que L(M) = L. Indique cómo, a partir de M, se puede construir otro autómata finito M' tal que $L(M') = \overline{L}$.

Solución:

F' = Q - F. Es decir, los estados finales de M' son los estados que antes no eran finales en M. Y viceversa, es decir, los estados no finales de M' son los estados que antes eran finales en M. De esta forma, M' acepta las cadenas que M rechaza, y rechaza las que M acepta. Por tanto, $L(M') = \overline{L}$.

34. Demuestre que si L es un lenguaje regular, su inverso L^I también lo es. Sugerencia: considere un autómata finito M tal que L(M) = L, y explique detalladamente cómo a partir de M se puede construir otro autómata finito M' tal que $L(M') = L^I$.

Solución:

A partir de un autómata finito M tal que L(M) = L, se construye un nuevo autómata finito M' como sigue:

- Se cambia el sentido de todos los arcos.
- Los estados finales dejan de serlo, y el estado inicial pasa a ser el único final.
- Se crea un nuevo estado inicial y se conecta mediante arcos ϵ con los antiguos estados finales.

De esta forma, $L(M') = L^I$ y por tanto L^I es un lenguaje regular.

35. Encuentre un algoritmo que determine si dos lenguajes regulares L_1 y L_2 tienen por lo menos una cadena en común. Sugerencia: indique cómo se podría demostrar que $L = L_1 \cap L_2$ es regular, y cómo se podría comprobar si $L = \emptyset$ o no.

Solución:

Dados dos autómatas finitos M_1 y M_2 , tales que $L(M_1) = L_1$ y $L(M_2) = L_2$, construimos el "autómata producto cartesianso" $M_1 \times M_2$, que aceptará las cadenas que cumplen las propiedades de L_1 y de L_2 al mismo tiempo. Es decir, $L(M_1 \times M_2) = L_1 \cap L_2$. Si en dicho autómata existe algún estado final conectado con el inicial, entonces $L_1 \cap L_2 \neq \emptyset$. Es decir, L_1 y L_2 tendrán alguna cadena en común.

36. Sean L_1 y L_2 dos lenguajes regulares. Mediante el uso de operaciones sobre lenguajes (unión, intersección, complementario, etc.), demuestre que $L_1 - L_2$ es regular.

Solución:

$$L_1 - L_2 = L_1 \cap \overline{L_2}$$

37. Sea L un lenguaje regular. Demuestre que el conjunto $P = \{u | uv \in L\}$ de los prefijos de L es también un lenguaje regular.

Solución:

A partir de un autómata finito M tal que L(M) = L, se construye un nuevo autómata finito M' poniendo todos los estados como estados finales. De esta forma, L(M') = P y por tanto P es un lenguaje regular.

38. Sea L un lenguaje regular. Demuestre que el conjunto $S = \{v | uv \in L\}$ de los sufijos de L es también un lenguaje regular.

Solución:

A partir de un autómata finito M tal que L(M) = L, se construye un nuevo autómata finito M' añadiendo arcos ϵ desde el estado inicial a todos los demás estados. De esta forma, L(M') = S y por tanto S es un lenguaje regular.

39. Sea L un lenguaje regular. Demuestre que la colección de cadenas cuyas inversas pertenecen a L es también un lenguaje regular.

Solución:

Esa colección de cadenas es un lenguaje que puede denotarse como $L \cap L^I$ y por tanto es un lenguaje regular.

Por ejemplo:

- Supongamos que $L = \{\underline{a}, \underline{aba}, \underline{bca}, \underline{acb}, ab, accb, ca, \ldots\}.$
- Entonces $L^I = \{\underline{a}, \underline{aba}, \underline{acb}, \underline{bca}, \underline{ba}, \underline{bcca}, \underline{ac}, \ldots\}.$
- Y efectivamente las cadenas que nos interesan para nuestro lenguaje (las que aparecen subrayadas) son las que están en L y en L^I a la vez. Y como los lenguajes regulares son cerrados para las operaciones de intersección e inverso, $L \cap L^I$ es también un lenguaje regular.

Aplicaciones prácticas de expresiones regulares y AF,s

40. Sobre el alfabeto $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, ., e, E\}$, escriba una expresión regular que denote el lenguaje de todos los números reales escritos en notación científica.

Solución:

A continuación mostramos el formato de los números reales en notación científica, donde, como suele ser habitual, < y > indican componentes obligatorias, [y] indican componentes opcionales, y | indica componentes alternativas:

[signo] <parte-entera> [<punto-decimal> [decimales]] [<E|e> [signo] <exponente>]

Si denotamos entonces con $c=0\cup 1\cup 2\cup\ldots\cup 9$ las cifras, y con p=. el punto decimal, la expresión regular que se pide sería:

$$(+ \cup - \cup \epsilon) \cdot c^+ \cdot (p \cdot c^* \cup \epsilon) \cdot ((E \cup e) \cdot (+ \cup - \cup \epsilon) \cdot c^+ \cup \epsilon)$$