NOTAS DE ESTUDO EM ANÁLISE I (ANÁLISE REAL) UM GUIA DE TEOREMAS, RESULTADOS IMPORTANTES E EXERCÍCIOS

Gil S. M. Neto

Graduando em Matemática Aplicada - UFRJ gilsmneto@gmail.com, gil.neto@ufrj.br http://mirandagil.github.io

Criado em 07 de Agosto de 2019

Atualizado em August 23, 2019

Contents

1 Teoria Ingênua dos Conjuntos		ria Ingênua dos Conjuntos	2
	A construção dos números		
	2.1	Números Naturais №	2
		2.1.1 Axiomas de Peano	2

1 Teoria Ingênua dos Conjuntos

Definição 1.1 (Informal de conjuntos). *Um conjunto é uma coleção não ordenada de objetos. Se x é um objeto do conjunto A, dizemos x \in A, caso contrário dizemos x \notin A.*

Exemplo: $3 \in \{1, 2, 3, 4, 5\}; 7 \notin \{1, 2, 3, 4, 5\}$

Axioma 1.1 (Conjuntos são objetos). Se A é um conjunto, então A também é um objeto, ou seja, se existe outro conjunto B, então faz sentido inferir $A \in B$ ou $A \notin B$

Exemplo. Seja $B = \{1, 3, \{4, 5\}, 8\}; A = \{4, 5\},$ então $A \in B$

Seja $C = \{1, 3, 4, 5, 8\}; \ D = \{4, 5\},$ então $C \subset D$

é importante notar que apesar de $4 \in A, 5 \in A$, é verdade que $4 \not\in B, 5 \not\in B$ (verificar)

Definição 1.2 (Subconjuntos). $A \subset B \iff x \in A \implies x \in B, \forall x \in A$

Definição 1.3 (Igualdade de Conjuntos). *Definimos dois conjuntos* $A=B\iff A\subset B\wedge B\subset A$

Ou seja, $x \in A \implies x \in B$, $\forall x \in A \land y \in B \implies y \in A$, $\forall y \in B$

Axioma 1.2 (Conjunto Vazio). *Existe um conjunto ao qual nenhum objeto pertence. A este grupo denominamos* \emptyset . *Para qualquer objeto* x, temos $x \notin \emptyset$.

Lema 1.1 (O Conjunto vazio é subconjunto de todo conjunto). Seja A um conjunto qualquer, então $\emptyset \subset A$

Proof. Suponha que $\emptyset \not\subset A$, para qualquer conjunto A. Para negar a Definição 1.2 teremos: $A \not\subset B \iff \exists \, x \in A; x \not\in B$

Logo, para termos $\emptyset \not\subset A$, deve existir um objeto em \emptyset que não está contido em A, mas não há nenhum objeto em \emptyset , logo uma contradição, e temos $\emptyset \subset A$, $\forall A$

Lema 1.2 (O conjunto vazio é único). *Proof.* Seja \emptyset , \emptyset' conjuntos vazios, então do Lema 1.1 temos $\emptyset \subset \emptyset'$ e $\emptyset' \subset \emptyset$, e pela Definição 1.3 $\emptyset = \emptyset'$.

Lema 1.3 (Escolha única). Seja A um conjunto não vazio, então existe ao menos um x tal que $x \in A$

Proof. Suponha que não exista nenhum objeto x pertencente a A, então: $x \notin A$, $\forall x$, mas isso implicaria que A é um conjunto vazio, o que contraria a hipótese.

Este lema nos permite escolher algum elemento de A. Ainda mais, dado uma família finita de Conjuntos A_1, A_2, \ldots, A_n , podemos escolher um elemento de cada conjunto x_1, x_2, \ldots, x_n . Para o caso infinito cairá no Axioma da Escolha, assunto a ser desenvolvido em outro momento.

Axioma 1.3 (Singleton). Dado um objeto a, então existe um conjunto de apenas um elemento $\{a\}$. Ou seja, para todo objeto $x, x \in \{a\} \iff y = a$. Ainda mais, para todo objeto a, b existe um conjunto $\{a, b\}$ onde $\forall y, y \in \{a, b\} \iff y = a \lor y = b$

2 A construção dos números

2.1 Números Naturais N

2.1.1 Axiomas de Peano

Axioma 2.1. 0 é um número natural

Axioma 2.2. Se n é natural, então n + + também é natural

Proposição 1. 3 é um número natural

((0++)++)++=3, como 0 é natural pelo axioma 2.1, então pelo axioma 2.2, 0++=1 também é natural. Como 1 é natural, 1++=2 também o é, como 2 é natural, 2++=3 também o é.

Axioma 2.3. *0 não é sucessor de nenhum natural. Ou seja,* $n + 1 \neq 0$, $\forall n \in \mathbb{N}$

Proposição 2. $4 \neq 0$

Sem o axioma 2.3 poderíamos ter 4=0 caso os naturais se restringissem ao conjunto 0,1,2,3, mas com a introdução deste axioma previnimos este comportamento.

3++=4, como pelo axioma 2.3, $3++\neq 0 \implies 4\neq 0$

Axioma 2.4. $n++=m++\iff m=n$, ou seja, naturais diferentes possuem sucessores diferentes.

Este axioma previne comportamentos bizarros como o conjunto dos naturais se limitar a 0, 1, 2, 3, pois sem ele poderíamos ter $3++=4=4++=5=5++=\dots$ In this section, we list some analytic statements regarding the convergence of Dirichlet series. We omit the proof of most theorems in this section; they generally reduce to extensive computation. Still, they make good exercises for the reader.

Proposição 3. Let

$$f(n) = \sum_{n>1} \frac{a(n)}{n^s}$$

be a Dirichlet series and let $S(x) = \sum_{n \leq x} a(n)$, and suppose there exist constants a and b such that $|S(x)| \leq ax^b$ for all large x. Then, f(s) converges uniformly for s in

$$D(b, \delta, \epsilon) = \{\Re(s) \ge b + \delta, \arg(s - b) \le \pi/2 - \epsilon\}$$

for all $\delta, \epsilon \geq 0$, and it converges to an analytic function on the half plane $\Re(s) > b$. (Note that $\Re(s)$ denotes the real part of s.)

Lema 2.1. The Riemann zeta function $\zeta(s)$ has a meromorphic continuation to the half plane $\Re(s) > 0$ with a simple pole at s = 1.

Lema 2.2. For s real and s > 1,

$$\frac{1}{s-1} \le \zeta(s) \le 1 + \frac{1}{s-1}$$

Hence, $\zeta(s)$ has a simple pole at s=1 and

$$\zeta(s) = \frac{1}{s-1} + function holomorphic near 1$$

Proof. This is left as an exercise to the reader. (Hint: Look at the graph of $y = x^{-s}$ and relate $\zeta(s)$ to the area under the curve.)

Armed with this fact, we can look at other interesting Dirichlet series.

Proposição 4. Let f(n) be a Dirichlet series for which there exists constants C, a, and b < 1 such that $|S(n) - an| \le Cx^b$. Then, f extends to a meromorphic function on $\Re(s) > b$ with a simple pole at s = 1 with residue a.

Proof. For the Dirichlet series $f(s) - a\zeta(s)$, $|S(n)| \le Cx^b$, so by Proposition 3, this series converges for $\Re(s) > b$. The result readily follows.

Before we move on, we encounter one last lemma that will prove to be useful soon.

Lema 2.3. Let u_1, u_2, \cdots be a sequence of real numbers ≥ 2 for which

$$f(s) = \prod_{i=1}^{\infty} \frac{1}{1 - u_i^{-s}}$$

is uniformly convergent on each region $D(1, \delta, \epsilon)$ (with $\delta, \epsilon > 0$). Then,

$$\log f(s) \sim \sum \frac{1}{u_i^s}$$

as $s \to 1^+$ (i.e., from the right side of the plane).

Proof. This is a simple exercise in manipulating sums. (Hint: use the Maclaurin series for $\log(1-x)$ and then break the double sum apart.)

Bibliografia

References

[1] Tao, T.: Analysis I. 1st ed. Hindustan Book Agency (2006)