Chapitre 4

Développements limités

☐ Manipulation des fonctions polynomiales
$\hfill \square$ Calcul des dérivées successives des fonctions usuelles et des fonctions composées
□ Calcul des limites
☐ Division euclidienne de polynômes
☐ Utilisation du symbole somme
Ø Objectifs
\Box Approximer une fonction par un polynôme au voisinage de 0
☐ Lever une indétermination de limite à l'aide d'un développement limité

Sommaire

Séquence 1 : Définitions et opérations sur les développements limités 3 La notation petit o - Définition des développements limités - Opérations sur les développements limités.

Séquence 2 : Dérivation, intégration et développements limités généralisés 19 Dérivation et intégration de développement limité - Calcul de limites via les développements limités - Développements limités au voisinage de x_0 et de ∞ - Développements limités usuels .

Chapitre 4 - Séquence 1

Définitions et opérations sur les développements limités

1 La notation petit o

Définition: Voisinage d'un point

Soit $x_0 \in \mathbb{R}$. On appelle **voisinage** (ouvert) de x_0 toute intervalle de la forme

$$]x_0 - \eta; x_0 + \eta[,$$

avec $\eta \in \mathbb{R}_+^*$.

Remarque

Dans ce chapitre, η sera considéré « petit ».

La lettre η , tout comme ε ou δ , est souvent utilisée dans le cas de petites quantités.

Notations

Dans la suite,

 $\triangleright I$ est un intervalle de \mathbb{R} contenant 0,

 $\triangleright f: I \to \mathbb{R} \text{ et } g: I \to \mathbb{R} \text{ sont deux fonctions,}$

 $\triangleright n \in \mathbb{N}.$

Définition : Fonctions négligeables

Soit $x_0 \in I$. On suppose que g ne s'annule pas sur un voisinage de x_0 . La fonction f est dite **négligeable** par rapport à g en x_0 si

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0.$$

Notation: Petit o

Si la fonction f est négligeable par rapport à la fonction g en x_0 , on note

$$f(x) = o(g(x))$$
 au voisinage de x_0 ,

et on lit « f est un petit o de g » au voisinage de x_0 .

L'expression f(x) = o(g(x)) au voisinage de x_0 , se note aussi

$$f(x) = o(g(x)),$$

Exemples

ightharpoonup On considère les deux fonctions définies sur \mathbb{R}_+^* par $f:x\mapsto x^4$ et $g:x\mapsto x^2$. On a :

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x^4}{x^2} = \lim_{x \to 0} x^2 = 0.$$

La fonction f est donc négligeable par rapport à g au voisinage de 0 et on note

$$x^4 = o(x^2).$$

ightharpoonup La fonction $f: x \mapsto \sin x$ est négligeable par rapport à la fonction $g: x \mapsto \tan x$ au voisinage de $x_0 = \frac{\pi}{2}$.

En effet

$$\lim_{x \to \frac{\pi}{2}} \frac{f(x)}{g(x)} = \lim_{x \to \frac{\pi}{2}} \frac{\sin x}{\tan x} = \lim_{x \to \frac{\pi}{2}} \cos x = 0.$$

Ains, on a $\sin x = o(\tan x)$ au voisinage de $\frac{\pi}{2}$.

Remarques

- ightharpoonup La notation f(x) = o(g(x)) ne veut rien dire si l'on ne précise pas au voisinage de quel point on se trouve.
- ightharpoonup Écrire f(x) = o(1) au voisinage de x_0 signifie que $\lim_{x \to x_0} f(x) = 0$.

S Exercice 1.

Montrer que $\ln x = o\left(\frac{1}{x}\right)$ au voisinage de 0.

2 Définition des développements limités

Définition: Développement limité au voisinage de 0

On dit que f admet un **développement limité d'ordre** n de f au voisinage de 0, s'il existe des réels a_0, \ldots, a_n tels que :

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n).$$

- ightharpoonup L'application P_n de I dans \mathbb{R} qui à x associe $P_n(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ est appelée la **partie polynomiale** ou la **partie regulière** du développement limité.
- ightharpoonup La quantité $o(x^n)$, lorsqu'elle est explicitement connue, est appelée le **reste** du développement limité.

On pourra ainsi écrire :

$$f(x) = P_n(x) + o(x^n).$$

4

🐧 Remarque

Un développement limité d'une fonction au voisinage d'un point x_0 donne une approximation de la fonction, au voisinage de ce point, par une fonction polynomiale.

Notation : $Dl_n(0)$

Nous utiliserons indépendamment les notations :

- ⊳ développement limité d'ordre n au voisinage de zéro,
- $\triangleright \mathbf{DL}_n(0).$

Exemples

Soit $n \in \mathbb{N}$ tel que $n \geq 2$.

 \triangleright Soient $a, b \in \mathbb{R}$ avec $b \neq 0$. Alors, la fonction polynomiale $f: x \mapsto a + bx$ admet un $\mathrm{DL}_1(0)$ de la forme

$$f(x) = a + bx.$$

En effet, dans ce cas, la partie polynomiale du $DL_1(0)$ de f coïncide avec la fonction elle même et il n'y a pas donc de reste.

 \triangleright Plus généralement, soit f une fonction polynomiale de la forme $f: x \mapsto a_0 + a_1x + \dots + a_nx^n$. Alors le $DL_1(0)$ de f est

$$f(x) = a_0 + a_1 x + x(a_2 x + \dots + a_n x^{n-1}) = a_0 + a_1 x + o(x).$$

Ici, la partie polynomiale du $DL_1(0)$ de f est a_0+a_1x et son reste est $x(a_2x+\ldots+a_nx^{n-1})$ qui est bien un o(x). De même, le $DL_2(0)$ de f est

$$f(x) = a_0 + a_1 x + a_2 x^2 + x^2 (a_3 x + \dots + a_n x^{n-2}) = a_0 + a_1 x + a_2 x^2 + o(x).$$

▷ Un exemple très important de développement limité est donné par la somme de la suite géométrique :

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x} - x^{n} \frac{x}{1 - x}.$$

Ce qui donne

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + x^n \frac{x}{1-x}.$$

Or on a $\lim_{x\to 0} \frac{x}{1-x} = 0$ donc

$$x^n \frac{x}{1-x} = o(x^n).$$

Ainsi, on obtient le développement limité

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + o(x^n)$$
$$= 1 + x + x^2 + \dots + x^n + o(x^n)$$

On a vu dans les exemples précédents qu'il est très simple de déterminer le développement

5

limité de fonctions polynomiales et, de plus, on a déterminé le développement limité la fonction particulière $x\mapsto \frac{1}{1-x}$. Pour déterminer le développement limité de fonctions plus générales, on fera appel au résultat fondamental donné ci-dessous.

Théorème: Formule de Taylor-Young

Soit f une fonction n fois dérivable sur I.

Alors f admet un DL d'ordre n au voisinage de 0 donné par la formule suivante :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n})$$
$$= f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^{2} + \dots + \frac{f^{(n)}(0)}{n!} x^{n} + o(x^{n}).$$

Exemples

 \triangleright On s'intéresse au $\mathrm{DL}_n(0)$ de $f: x \mapsto \mathrm{e}^x$.

La fonction exponentielle est de classe \mathcal{C}^{∞} sur son domaine de définition, donc sur tout intervalle I contenant 0.

De plus, toutes ses dérivées successives sont égales à elle même :

$$\forall k \in \mathbb{N}, \quad f^{(k)}(0) = f(0) = e^0 = 1.$$

Ainsi, d'après la formule de Taylor-Young, on a le développement limité suivant

$$e^x = \sum_{k=0}^n \frac{1}{k!} x^k + o(x^n) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} + o(x^n).$$

ightharpoonup Soit $f: x \mapsto (1+x)^{\frac{3}{2}}$. La fonction f est deux fois dérivable au voisinage de 0 et on a

$$f': x \mapsto \frac{3}{2} (1+x)^{\frac{1}{2}}$$
 et $f'': x \mapsto \frac{3}{4} (1+x)^{-\frac{1}{2}}$.

On en déduit que f admet un $DL_2(0)$ donné par

$$(1+x)^{\frac{3}{2}} = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + o(x^2) = 1 + \frac{3}{2}x + \frac{3}{8}x^2 + o(x^2).$$

Exercice 2.

En appliquant la formule de Taylor-Young, déterminer les DL à l'ordre 4 au voisinage de 0 des fonctions suivantes :

1)
$$f: x \mapsto \sin(x)$$
, 2) $g: x \mapsto \ln(1+x)$.

3 Opérations sur les développements limités

Proposition: Somme et produit par un réel

Soit $\lambda \in \mathbb{R}$. On suppose que f et g admettent au voisinage de 0 les DL d'ordre n

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n),$$

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n + o(x^n).$$

On a alors

$$(f+g)(x) = (a_0+b_0) + (a_1+b_1)x + (a_2+b_2)x^2 + \dots + (a_n+b_n)x^n + o(x^n),$$

et

$$(\lambda f)(x) = (\lambda a_0) + (\lambda a_1)x + (\lambda a_2)x^2 + \dots + (\lambda a_n)x^n + o(x^n).$$

 $\mathbf{M\acute{e}thode} - \mathit{DL}_n(0)$ d'une somme de deux fonctions

Pour déterminer le $\mathrm{DL}_n(0)$ de la somme de deux fonctions :

- \triangleright on écrit le $\mathrm{DL}_n(0)$ de chacune des deux fonctions;
- \triangleright on additionne les parties polynomiales des deux $\mathrm{DL}_n(0)$, on simplifie les termes de même degré et on ordonne les termes en degré croissant;
- \triangleright on ajoute à la fin le reste $o(x^n)$.

🌘 Exemple

On souhaite déterminer le développement limité à l'ordre 3 de $f: x \mapsto e^x - \frac{1}{1-x}$

A l'ordre 3, on a

$$ightharpoonup e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3),$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + o(x^3).$$

Alors, pour déterminer le DL de f, il suffit de faire la différence des deux DL précédents :

$$e^{x} - \frac{1}{1-x} = \left(1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + o(x^{3})\right) - \left(1 + x + x^{2} + x^{3} + o(x^{3})\right)$$
$$= -\frac{x^{2}}{2} - \frac{x^{3}}{6} + o(x^{3})$$

🕏 Exercice 3.

Déterminer le DL à l'ordre 4 au voisinage de 0 de $x \mapsto \sin x + 2\cos x$.

Proposition: Produit de développements limités

On suppose que f et g admettent au voisinage de 0 les DL d'ordre n :

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n).$$

7

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n + o(x^n).$$

Le produit (fg)(x) = f(x)g(x) admet alors un DL d'ordre n au voisinage de 0 dont la partie polynomiale s'obtient :

 \triangleright en effectuant le produit des parties polynomiales des $DL_n(0)$ de f et g :

$$(a_0 + a_1x + a_2x^2 + \dots + a_nx^n)(b_0 + b_1x + b_2x^2 + \dots + b_nx^n)$$

⊳ et en ne conservant que les termes de degrés inférieurs ou égaux à n.

$ightharpoonup \mathbf{M\acute{e}thode} - \mathit{DL}_n(0)$ d'un produit de deux fonctions

Pour déterminer le $\mathrm{DL}_n(0)$ du produit de deux fonctions fg :

- \triangleright on écrit le $\mathrm{DL}_n(0)$ de chacune des deux fonctions;
- \triangleright on multiplie les parties polynomiales des deux $\mathrm{DL}_n(0)$, en ne gardant que les termes de degré inférieur à n, on simplifie et on ordonne les termes en degré croissant;
- \triangleright on ajoute le reste $o(x^n)$.

Exemples

ightharpoonup On souhaite déterminer le développement limité à l'ordre 3 de $f: x \mapsto \frac{e^x}{1+x}$ Comme on a vu précédemment, à l'ordre 3 on a

•
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3),$$

•
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + o(x^3)$$
.

Donc

$$\frac{e^x}{1+x} = e^x \times \frac{1}{1+x} = \left(1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^3)\right)\left(1+x+x^2+x^3+o(x^3)\right)$$
$$= 1+x+x^2+x^3+x+x^2+x^3+\frac{x^2}{2}+\frac{x^3}{2}+\frac{x^3}{6}+o(x^3)$$
$$= 1+2x+\frac{5x^2}{2}+\frac{5x^3}{3}+o(x^3).$$

Dans le produit on n'a pas gardé tous les termes de degré supérieur à 3 car l'ordre du DL est n=3.

ightharpoonup Calculons le $\mathrm{DL}_4(0)$ de $x\mapsto\cos^2(x)$. Le $\mathrm{DL}_4(0)$ de $x\mapsto\cos x$ est

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4).$$

On a

$$\left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right)^2 = 1 - x^2 + \frac{x^4}{12} + \frac{x^4}{4} - \frac{x^6}{24} + \frac{x^8}{24^2}$$
$$= 1 - x^2 + \frac{x^4}{3} - \frac{x^6}{24} + \frac{x^8}{24^2}$$
$$= 1 - x^2 + \frac{x^4}{3} + o(x^4).$$

On en déduit que le $DL_4(0)$ de $x \mapsto \cos^2(x)$ est

$$\cos^2(x) = 1 - x^2 + \frac{x^4}{3} + o(x^4).$$

Exercice 4.

Déterminer le DL à l'ordre 4 au voisinage de 0 de $x \mapsto (\sin x)(\ln(1+x))$.

Proposition: Quotient de développements limités

Supposons que f et g admettent au voisinage de 0 les DL d'ordre n:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n),$$

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n + o(x^n),$$

avec $b_0 \neq 0$.

Notons P et Q les parties polynomiales des $DL_n(0)$ de f et g:

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

et

$$Q(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n$$

Le quotient $\frac{f(x)}{g(x)}$ admet alors un DL d'ordre n au voisinage de 0 dont la partie polynomiale est le quotient à l'ordre n de la division euclidienne de P(x) par Q(x) suivant les puissances croissantes.

Exemples

Déterminons le $DL_2(0)$ de $x \mapsto \frac{1}{1-x-x^2}$. Puisque les fonctions $x \mapsto 1$ et $x \mapsto 1-x-x^2$ sont des fonctions polynomiales d'ordre inférieur ou égal à 2, elles sont égales à leur $DL_2(0)$. Pour obtenir le $DL_2(0)$ de $x \mapsto \frac{1}{1-x-x^2}$, il suffit de faire la division euclidienne de ces deux fonctions polynomiales. On a

D'où 1 = $(1 - x - x^2)(1 + x + 2x^2) + 3x^3$ et ainsi

$$\frac{1}{1 - x - x^2} = 1 + x + 2x^2 + \frac{3x^3}{1 - x - x^2} = 1 + x + 2x^2 + o(x^2).$$

 \triangleright Nous voulons déterminer le DL d'ordre 5 au voisinage de 0 de tan $x = \frac{\sin x}{\cos x}$. On a

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5).$$

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5).$$

Afin de déterminer le $\mathrm{DL}_5(0)$ de $\tan x = \frac{\sin x}{\cos x}$ on fait la division du DL de $\sin x$ par celui de $\cos x$, selon les puissances croissantes de x, jusqu'à l'ordre 5:

$$\begin{array}{c|ccccc}
x & -\frac{x^3}{6} & +\frac{x^5}{120} & 1 - \frac{x^2}{2} + \frac{x^4}{24} \\
- & \left(x & -\frac{x^3}{2} & +\frac{x^5}{24}\right) & x + \frac{x^3}{3} + \frac{2x^5}{15} \\
\hline
& \frac{x^3}{3} & -\frac{x^5}{30} \\
- & \left(\frac{x^3}{3} & -\frac{x^5}{6}\right) & \\
\hline
& \frac{2x^5}{15} \\
-\frac{2x^5}{15} \\
\hline
& 0
\end{array}$$

Donc

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^5).$$

S Exercice 5.

Déterminer le DL d'ordre 4 au voisinage de 0 de $x\mapsto \frac{\mathrm{e}^x}{\cos x}$

Proposition: Composition de développements limités

Soient

- $\triangleright n \in \mathbb{N}^*$
- $\triangleright I$, J des intervalles de \mathbb{R} contenant 0,
- $ightharpoonup f_1: J \to \mathbb{R}$ une application admettant un $DL_n(0)$,
- $ho f_2: I \to \mathbb{R}$ une application telle que $f_2(I) \subset J$ et telle que $f_2(0) = 0$, admettant un $DL_n(0)$.

La composée $f_1 \circ f_2$ admet un DL à l'ordre n, obtenu en remplaçant le DL de f_2 dans celui de f_1 et en ne gardant que les monômes de degré inférieurs ou égaux à n.

${m f ^{m eta}}$ ${f M\acute{e}thode}$ - Composition de développements limités

- \triangleright Soit $h = f_1 \circ f_2$. On vérifie que $f_2(0) = 0$.
- \triangleright On écrit les développements limités de f_1 et f_2 :

$$f_1(y) = a_0 + a_1 y + a_2 y^2 + \dots + a_n y^n + o(y^n).$$

$$f_2(x) = d_1x + d_2x^2 + \dots + d_nx^n + o(x^n).$$

 \triangleright On obtient la partie polynomiale du $\mathrm{DL}_n(0)$ de $h=f_1\circ f_2$ en remplaçant tous les y de la partie polynomiale du $\mathrm{DL}_n(0)$ de f_1 par celle du $\mathrm{DL}_n(0)$ de f_2 .

$$h(x) = a_0 + a_1 (f_2(x)) + a_2 (f_2(x))^2 + \dots + a_n (f_2(x))^n$$
.

 \triangleright On ajoute à la partie polynomiale le reste $o(x^n)$.

Exemples

ightharpoonup Reprenons l'exemple précédent du $\mathrm{DL}_2(0)$ de la fonction $h: x \mapsto \frac{1}{1-x-x^2}$. On remarque que $h = f_1 \circ f_2$, ou $f_1: x \mapsto \frac{1}{1-x}$ et $f_2: x \mapsto x + x^2$. De plus $f_2(0) = 0$. A l'ordre 2 on a

•
$$\frac{1}{1-y} = 1 + y + y^2 + o(x^2)$$
.

La fonction f_2 est une fonction polynomiale, donc afin de déterminer le DL de h il suffit de remplacer tous les y du DL de f_1 par $x + x^2$:

$$h(x) = \frac{1}{1 - x - x^2} = \frac{1}{1 - (x + x^2)} = 1 + (x + x^2) + (x + x^2)^2 + o(x^2)$$
$$= 1 + x + x^2 + x^2 + o(x^2) = 1 + x + 2x^2 + o(x^2).$$

On retrouve d'une façon différente le résultat précédent.

 \triangleright On souhaite déterminer le développement limité à l'ordre 4 de $h: x \mapsto \cos(1 - e^x)$. On remarque que $h = f_1 \circ f_2$, ou $f_1: x \mapsto \cos(x)$ et $f_2: x \mapsto 1 - e^x$. De plus $f_2(0) = 0$. A l'ordre 4 on a

•
$$\cos(y) = 1 - \frac{y^2}{2} + \frac{y^4}{24} + o(y^4)$$

•
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^3}{24} + o(x^4),$$

On a donc
$$1 - e^x = -x - \frac{x^2}{2} - \frac{x^3}{6} - \frac{x^3}{24} + o(x^4)$$
.

Afin de déterminer le DL de h il suffit de remplacer tous les y du DL de f_1 par la partie polynomiale du DL de f_2 et ne en gardant que les termes de degré inférieur ou égal à 4. On a

•
$$y^2 = \left(-x - \frac{x^2}{2} - \frac{x^3}{6} - \frac{x^3}{24} + o(x^4)\right)^2$$

$$= x^2 + x^3 + \frac{x^4}{4} + \frac{x^4}{3} + o(x^4) = x^2 + x^3 + \frac{7x^4}{12} + o(x^4)$$
• $y^4 = \left(-x - \frac{x^2}{2} - \frac{x^3}{6} - \frac{x^3}{24} + o(x^4)\right)^4 = x^4 + o(x^4)$,

donc

$$h(x) = \cos(1 - e^x) = 1 - \frac{x^2 + x^3 + \frac{7x^4}{12}}{2!} + \frac{x^4}{4!} + o(x^4)$$
$$= 1 - \frac{x^2}{2} - \frac{x^3}{2} - \frac{x^4}{4} + o(x^4).$$

 \triangleright Calculons le $DL_6(0)$ de $x \mapsto \operatorname{ch} x$. Pour tout $x \in \mathbb{R}$, on a

$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2}. (1)$$

Le $DL_6(0)$ de $x \mapsto e^x$ est

$$e^x = \sum_{k=0}^{6} \frac{x^k}{k!} + o(x^6) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + o(x^6).$$

Par composition, on en déduit que celui de $x \mapsto e^{-x}$ est

$$e^{-x} = \sum_{k=0}^{6} \frac{(-x)^k}{k!} + o(x^6) = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{x^5}{5!} + \frac{x^6}{6!} + o(x^6).$$

D'après (1), on obtient

$$ch x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + o(x^6).$$

En particulier, on remarquera que le développement limité de $x \mapsto \operatorname{ch} x$ ne contient que des termes pairs. Pour un développement limité d'un ordre plus élevé on considère un ordre pair. Dans le cas du $\operatorname{DL}_{2n}(0)$, on obtient

$$\operatorname{ch} x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots + \frac{x^{2n}}{(2n)!} + o(x^{2n}).$$

\$ Exercice 6.

Déterminer le DL d'ordre 4 au voisinage de 0 de la fonction $h: x \mapsto \ln(1+\sin x)$.

Correction des exercices

Correction de l'Exercice 1.

$$\lim_{x \to 0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0} x \ln x = 0.$$

Ainsi, $\ln x = o\left(\frac{1}{x}\right)$ au voisinage de 0

S Correction de l'Exercice 2.

1) On a:

$$f': x \mapsto \cos x,$$
 $f'': x \mapsto -\sin x,$ $f''': x \mapsto -\cos x,$ $f^{(iv)}: x \mapsto \sin x.$

Donc f(0) = 1, f'(0) = 1, f''(0) = 0, f'''(0) = -1 et $f^{(iv)}(0) = 0$, respectivement. Le DL à l'ordre 4 au voisinage de 0 de la fonction sin a donc la forme suivante :

$$\sin x = x - \frac{x^3}{3!} + o(x^4).$$

2) On a:

$$g': x \mapsto \frac{1}{1+x}, \quad g'': x \mapsto -\frac{1}{(1+x)^2}, \quad g''': x \mapsto \frac{2}{(1+x)^3}, \quad g^{(iv)}: x \mapsto -\frac{6}{(1+x)^4}.$$

Donc g(0) = 0, g'(0) = 1, g''(0) = -1, g'''(0) = 2 et $g^{(iv)}(0) = -6$, respectivement. Le DL à l'ordre 4 au voisinage de 0 de la fonction g a donc la forme suivante :

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{2}{3!}x^3 - \frac{6}{4!}x^4 + o(x^4)$$
$$= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + o(x^4).$$

S Correction de l'Exercice 3.

Les $DL_4(0)$ des fonctions sin et cos sont le suivants :

$$\Rightarrow \sin(x) = x - \frac{x^3}{3!} + o(x^4)$$

$$> \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$

On a donc: $2\cos(x) = 2 - x^2 + \frac{x^4}{12} + o(x^4)$, et le DL à l'ordre 4 au voisinage de 0 de $\sin x + 2\cos x$ est le suivant :

$$\sin x + 2\cos x = x - \frac{x^3}{6} + 2 - x^2 + \frac{x^4}{12} + o(x^4)$$
$$= 2 + x - x^2 - \frac{x^3}{6} + \frac{x^4}{12} + o(x^4)$$

Scorrection de l'Exercice 4.

A l'ordre 4 on a les DL au voisinage de 0 suivants :

Donc

$$(\sin x)(\ln(1+x)) = \left(x - \frac{x^3}{3!} + o(x^4)\right) \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)\right)$$
$$= x^2 - \frac{x^3}{2} + \frac{x^4}{3} - \frac{x^4}{6} + o(x^4)$$
$$= x^2 - \frac{x^3}{2} + \frac{x^4}{6} + o(x^4)$$

Correction de l'Exercice 5.

A l'ordre 4 on a les DL au voisinage de 0 suivants :

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + o(x^4),$$

$$cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$

Afin de déterminer le $DL_4(0)$ de $\frac{e^x}{\cos x}$ on fait la division du DL de e^x par celui de $\cos x$, selon les puissances croissantes de x, jusqu'à l'ordre 4:

Donc

$$\frac{e^x}{\cos x} = 1 + x + x^2 + \frac{2x^3}{3} + \frac{x^4}{2} + o(x^4).$$

Scorrection de l'Exercice 6.

On remarque que $h = f_1 \circ f_2$, ou $f_1 : x \mapsto \ln(1+x)$ et $f_2 : x \mapsto \sin(x)$. De plus $f_2(0) = 0$. A l'ordre 4 on a

$$> \ln(1+y) = y - \frac{y^2}{2} + \frac{y^3}{3} - \frac{y^4}{4} + o(y^4)$$

$$\Rightarrow \sin(x) = x - \frac{x^3}{6} + o(x^4)$$

On pose $y = \sin(x) = x - \frac{x^3}{6} + o(x^4)$. On a alors :

$$\Rightarrow y^2 = \left(x - \frac{x^3}{6} + o(x^4)\right)^2 = x^2 - \frac{x^4}{6} + o(x^4)$$

$$\Rightarrow y^3 = \left(x - \frac{x^3}{6} + o(x^4)\right)^3 = x^3 + o(x^4),$$

$$\Rightarrow y^3 = \left(x - \frac{x^3}{6} + o(x^4)\right)^4 = x^4 + o(x^4).$$

Donc

$$h(x) = \ln(1 + \sin x) = x - \frac{x^3}{6} - \frac{1}{2} \left(x^2 - \frac{x^4}{6} \right) + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)$$
$$= x - \frac{x^2}{2} + \frac{x^3}{6} - \frac{x^4}{12} + o(x^4).$$

Chapitre 4

Feuille d'exercices de la séquence 1

SExercice 1.

Soit $f(x) = (1+x)^4$ pour tout $x \in \mathbb{R}$.

- 1) Déterminer le DL d'ordre 2 de f au voisinage de 0.
- 2) Déterminer le DL d'ordre 5 de f au voisinage de 0.

Exercice 2.

En utilisant la formule de Taylor-Young, calculer les développements limités suivants :

1) Le
$$DL_4(0)$$
 de $x \mapsto \sqrt{1+x}$.

2) Le
$$DL_{2n}(0)$$
 de $x \mapsto \cos x$.

3) Le
$$DL_{2n+1}(0)$$
 de $x \mapsto \sin x$.

4) Le
$$DL_4(0)$$
 de $x \mapsto \arctan x$.

Exercice 3. – Somme de DL

Calculer les développements limités suivants :

1) le
$$DL_4(0)$$
 de $x \mapsto \sin x - \cos x$

2) le
$$DL_4(0)$$
 de $x \mapsto 2e^x - \ln(1+x)$.

≴ Exercice 4. − Produit de DL

Sachant que :

$$ightharpoonup \operatorname{ch}(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{2n!} + o(x^{2n})$$

$$ightharpoonup \operatorname{sh}(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1}),$$

donner le DL d'ordre 7 au voisinage de 0 de :

1)
$$x \mapsto (\sin x)(\operatorname{ch} x)$$
.

2)
$$x \mapsto (\cos x - 1)(\sin x - x) - (\cot x - 1)(\sin x - x)$$
.

≸ Exercice 5. − Quotient de DL

Déterminer les développements limités suivants :

1) Le
$$\mathrm{DL}_5(0)$$
 de $x \mapsto \frac{\cos x}{\mathrm{e}^x}$.

2) Le
$$\mathrm{DL}_5(0)$$
 de $x \mapsto \mathrm{th} x$.

3) Le
$$DL_2(0)$$
 de $x \mapsto \frac{e^x}{3 + 2\ln(1+x)}$.

4) Le DL₄(0) de
$$x \mapsto \frac{x^3 + 1}{x^2 + x - 2}$$
.

S Exercice 6. – Composition de DL

Donner le DL d'ordre 4 au voisinage de 0 des fonctions suivantes :

1)
$$x \mapsto \sqrt{1+x} + \sqrt{1-x}$$

2)
$$x \mapsto e^{\sin x}$$

3)
$$x \mapsto e^{\cos x}$$
.

4)
$$x \mapsto \ln\left(\frac{\sin x}{x}\right)$$
.

Exercice 7. Déterminer le $DL_{2n+1}(0)$ de $x \mapsto \operatorname{sh} x$.

Chapitre 4 - Séquence 2

Dérivation, intégration et développements limités généralisés

Dérivation et intégration de développement limité 4

Proposition: Dérivation

Soient

 $\triangleright n \in \mathbb{N}^*$.

 $ightharpoonup f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n)$ le DL d'ordre n au voisinage de 0 de la

Alors la dérivée de f, notée f', admet pour DL d'ordre n-1 au voisinage de 0

$$f'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1} + o(x^{n-1}).$$

🔥 Remarque

On voit donc que si f est indéfiniment dérivable, la partie polynomiale du DL d'ordre n-1 de f' au voisinage de 0 s'obtient en dérivant terme à terme la partie polynomiale du DL d'ordre n de f au voisinage de 0.

• Exemple

Le $\mathrm{DL}_4(0)$ de $f: x \mapsto \cos x$ est

$$\cos x=1+\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4).$$
 Puisque $f'=\sin x,$ on obtient que le $\mathrm{DL}_3(0)$ de $x\mapsto\sin x$ est

$$\sin x = x + \frac{x^3}{3!} + o(x^3).$$

S Exercice 1.

On rappelle que, pour tout $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right[$, on a $\tan'(x) = \frac{1}{\cos^2 x}$ et que

$$\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^5).$$

19

Déterminer le DL d'ordre 4 au voisinage de 0 de $f: x \mapsto \frac{1}{\cos^2 x}$ définie sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.

Proposition: Intégration

Soient

 $\triangleright n \in \mathbb{N}^*$

 $ho f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n)$ le DL d'ordre n au voisinage de 0 de la fonction f.

Alors toute primitive F de f admet un DL d'ordre n+1 au voisinage de 0 de la forme :

$$F(x) = F(0) + a_0 x + a_1 \frac{x^2}{2} + a_2 \frac{x^3}{3} + \dots + a_n \frac{x^{n+1}}{n+1} + o(x^{n+1}).$$

Exemple

On a vu que le $\mathrm{DL}_n(0)$ de $x\mapsto \frac{1}{1-x}$ est donné par

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + o(x^n).$$

On en déduit que l'on a

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-x)^k + o(x^n).$$

Ainsi, par intégration, on en déduit le $\mathrm{DL}_{n+1}(0)$ de $x\mapsto \ln(1+x)$:

$$\ln(1+x) = \sum_{k=0}^{n} -\frac{(-x)^{k+1}}{k+1} + o(x^n) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots - \frac{(-x)^{n+1}}{n+1} + o(x^{n+1}).$$

S Exercice 2.

- 1) À partir du $\mathrm{DL}_3(0)$ de $x\mapsto \frac{1}{1-x}$, déterminer le $\mathrm{DL}_3(0)$ de $f:x\mapsto \frac{1}{1+x^2}$.
- 2) En déduire le $DL_4(0)$ de $g: x \mapsto \arctan(x)$.

5 Calcul de limites via les développements limités

Le développement limité d'une fonction au voisinage de 0 donne une approximation de cette fonction. Il peut donc être utilisé pour lever des indéterminations dans des calculs de limites.

© Exemples

 $\,\rhd\,$ Considérons la limite suivante :

$$\lim_{x \to 0} \frac{\sin x - x}{x}.$$

Il s'agit d'une forme indéterminée car la numérateur et le dénominateur tendent vers 0. Considérons le $DL_3(0)$ de $x\mapsto \sin x$

$$\sin x = x - \frac{x^3}{3!} + o(x^3)$$

20

Alors, on en déduit que l'on a

$$\frac{\sin x - x}{x} = -\frac{x^2}{3!} + o(x^2).$$

On obtient alors la limite recherchée :

$$\lim_{x \to 0} \frac{\sin x - x}{x} = \lim_{x \to 0} \left(-\frac{x^2}{3!} + o(x^2) \right) = 0.$$

▷ On souhaite calculer

$$\lim_{x \to 0} \frac{1}{x} \ln \left(\frac{e^x - 1}{x} \right).$$

Afin d'enlever l'indétermination, on effectue le DL d'ordre 2 de $x \mapsto e^x$

$$e^x = 1 + x + \frac{x^2}{2} + o(x^2),$$

ce qui donne

$$\frac{e^x - 1}{x} = 1 + \frac{x}{2} + o(x).$$

A l'ordre 1, ln(1+y) = y + o(y), donc

$$\ln\left(\frac{e^{x}-1}{x}\right) = \ln\left(1 + \frac{x}{2} + o(x)\right) = \frac{x}{2} + o(x).$$

On peut donc conclure que

$$\lim_{x \to 0} \frac{1}{x} \ln \left(\frac{e^x - 1}{x} \right) = \lim_{x \to 0} \frac{1}{x} \left(\frac{x}{2} + o(x) \right)$$
$$= \lim_{x \to 0} \left(\frac{1}{2} + o(1) \right) = \frac{1}{2}$$

Remarque

On utilise les DLs afin d'enlever l'indétermination dans une limite. Si, en remplaçant les DLs, l'indétermination persiste, il faut augmenter l'ordre des DLs.

S Exercice 3.

Calculer la limite suivante : $\lim_{x\to 0} \frac{1+\cos(2x)-2\cos x}{\sin^2 x}$,

6 Développements limités au voisinage de x_0 et de ∞

Il est possible de déterminer le développement limité au voisinage d'un point $x_0 \in \mathbb{R}$ ou de l'infini.

Définition : Développement limité au voisinage de x_0

On dit que f admet un **développement limité d'ordre** n de f au voisinage de x_0 , s'il existe des réels a_0, \ldots, a_n tels que :

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + o((x - x_0)^n).$$

 $\mathbf{M\acute{e}thode} - \mathit{DL}\ a\ voisinage\ de\ x_0$

Pour déterminer le développement limité au voisinage d'un point $x_0 \neq 0$,

 \triangleright on pose $t = x - x_0$,

⊳ on se ramène à un développement limité au voisinage de 0.

🍎 Exemple

On souhaite déterminer le DL d'ordre 5 de la fonction $f: x \mapsto \sin(x)$ au voisinage de $x = \frac{\pi}{2}$.

On pose $t = x - \frac{\pi}{2}$. On a alors $x = t + \frac{\pi}{2}$. De plus, si x tend vers $\frac{\pi}{2}$, alors t tend vers 0.

On a

$$\sin(x) = \sin\left(t + \frac{\pi}{2}\right) = \cos(t),$$

d'après les propriétés de trigonométrie.

Au voisinage de 0, on a $\cos(t) = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + o(t^5)$.

Ainsi, en utilisant le fait que $t = x - \frac{\pi}{2}$, on obtient que le DL d'ordre 5 de la fonction

 $f: x \mapsto \sin(x)$ au voisinage de $x = \frac{\pi}{2}$ est le suivant :

$$\sin(x) = 1 - \frac{\left(x - \frac{\pi}{2}\right)^2}{2!} + \frac{\left(x - \frac{\pi}{2}\right)^4}{4!} + o\left(\left(x - \frac{\pi}{2}\right)^5\right).$$

Définition : Développement limité au voisinage de l' ∞

On dit que f admet un **développement limité d'ordre** n de f au voisinage de l' ∞ , s'il existe des réels a_0, \ldots, a_n tels que :

$$f(x) = a_0 + a_1 \frac{1}{x} + a_2 \left(\frac{1}{x}\right)^2 + \dots + a_n \left(\frac{1}{x}\right)^n + o\left(\left(\frac{1}{x}\right)^n\right).$$

ىر

 ${f M\acute{e}thode}-{\it DL}$ a voisinage de ∞

Pour déterminer le développement limité au voisinage de l' ∞ ,

 \triangleright on pose $t = \frac{1}{x}$,

 \triangleright on se ramène à un développement limité au voisinage de 0.

Exemple

On souhaite déterminer le DL d'ordre 4 au voisinage de $+\infty$ de $f: x \mapsto \frac{x^2-2}{x^2+2x}$.

Faisons le changement de variable $t = \frac{1}{x}$ et définissons g par $g(t) = f\left(\frac{1}{x}\right)$.

Nous avons donc:

$$g(t) = \frac{\frac{1}{t^2} - 2}{\frac{1}{t^2} + 2\frac{1}{t}}$$
$$= \frac{1 - 2t^2}{1 + 2t}$$
$$= (1 - 2t^2) \frac{1}{1 + 2t}.$$

A l'ordre 4, d'après le DL de la fonction $\frac{1}{1-x}$, on a

$$\frac{1}{1+2t} = 1 - (2t) + (2t)^2 - (2t)^3 + (2t)^4 + o(t^4) = 1 - 2t + 4t^2 - 8t^3 + 16t^4 + o(t^4).$$

Par multiplication, on obtient:

$$g(t) = (1 - 2t^{2})(1 - 2t + 4t^{2} - 8t^{3} + 16t^{4} + o(t^{4}))$$

= 1 - 2t + 4t² - 8t³ + 16t⁴ - 2t² + 4t³ - 8t⁴ + o(t⁴)
= 1 - 2t + 2t² - 4t³ + 8t⁴ + o(t⁴).

Au final, en révenant à la variable de départ x, on en déduit que le DL d'ordre 4 de f au voisinage de l'infini est :

$$f(x) = 1 - \frac{2}{x} + \frac{2}{x^2} - \frac{4}{x^3} + \frac{8}{x^4} + o\left(\frac{1}{x^4}\right).$$

7 Développements limités usuels

En appliquant la formule de Taylor-Young aux fonctions usuelles, on obtient les DL_n au voisinage de 0 suivants $(n \in \mathbb{N}^*)$:

Proposition

$$ightharpoonup e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \varepsilon(x)$$

$$ightharpoonup \frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \alpha(\alpha-1)\dots(\alpha-n+1)\frac{x^{n}}{n!} + o(x^{n})$$

$$> \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{2n!} + o(x^{2n+1})$$

$$\Rightarrow \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$ightharpoonup \operatorname{ch}(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{2n!} + o(x^{2n})$$

$$ightharpoonup \operatorname{sh}(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

Remarque

Il est nécessaire de connaître ces développements limités usuels par coeur.

Remarque

Le DL écrit pour cos est bien à l'ordre 2n+1: le coefficient de x^{2n+1} est nul. De même pour les développements des fonctions sin, ch et sh : le dernier terme du DL est nul d'après les propriétés de parité de ces fonctions.

Correction des exercices

Correction de l'Exercice 1.

Puisque $\tan'(x) = \frac{1}{\cos^2 x}$, en dérivant le DL de la fonction tan, on en déduit :

$$\frac{1}{\cos^2 x} = 1 + x^2 + \frac{2x^4}{3} + o(x^4).$$

S Correction de l'Exercice 2.

1) Le DL à l'ordre 3 au voisinage de 0 de $\frac{1}{1-x}$ est

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + o(x^3),$$

donc

$$\frac{1}{1+x^2} = 1 - x^2 + o(x^3),$$

2) Puisque g est une primitive de f, alors g admet le DL à l'ordre 4 au voisinage de 0 suivant :

$$g(x) = g(0) + x - \frac{x^3}{3} + o(x^4)$$
$$= x - \frac{x^3}{3} + o(x^4),$$

$$car q(0) = \arctan(0) = 0.$$

S Correction de l'Exercice 3.

On a une forme indéterminée du type " $\frac{0}{0}$ ". D'après les DLs des fonctions usuelles on a :

$$\Rightarrow \sin x = x - \frac{x^3}{3!} + o(x^3)$$

$$> \cos x = 1 - \frac{x^2}{2!} + o(x^3)$$

Donc

$$\sin^2 x = x^2 + o(x^3)$$
$$\cos(2x) = 1 - \frac{4x^2}{2!} + o(x^3) = 1 - 2x^2 + o(x^3).$$

Alors le numérateur devient :

$$1 + \cos(2x) - 2\cos x = 1 + (1 - 2x^2) - 2 + x^2 + o(x^3) = -x^2 + o(x^3)$$

et on obtient

$$\frac{1 + \cos(2x) - 2\cos x}{\sin^2 x} = \frac{-x^2 + o(x^3)}{x^2 + o(x^3)} = \frac{-1 + o(x)}{1 + o(x)}.$$

Donc

$$\lim_{\substack{x \to 0 \\ \neq}} \frac{1 + \cos(2x) - 2\cos x}{\sin^2 x} = \lim_{\substack{x \to 0 \\ \neq}} \frac{-1 + o(x)}{1 + o(x)} = -1.$$

Chapitre 4

Feuille d'exercices de la séquence 2

S Exercice 1.

Donner le DL d'ordre 3 au voisinage de 0 des fonctions suivantes en commençant par déterminer le DL de leur dérivée à l'ordre 2 :

1)
$$x \mapsto \arctan(2+x)$$

2)
$$x \mapsto \ln(2+x)$$
.

S Exercice 2.

Cet exercice présente une méthode alternative pour déterminer le DL en 0 de la fonction tan.

- 1) Soit $f: x \mapsto -\ln(\cos(x))$. Montrer que $f': x \mapsto \tan(x)$.
- 2) Déterminer le $DL_6(0)$ de $x \mapsto \ln(\cos(x))$. En déduire le $DL_6(0)$ de la fonction tan.

Exercice 3.

Étudier les limites suivantes :

$$1) \lim_{x \to 0} \frac{e^x - \cos x}{2\sin x},$$

2)
$$\lim_{x\to 0} \frac{\ln(1-\sin x)+x}{x^2}$$
,

3)
$$\lim_{x\to 0} \frac{\ln(1+x) - \tan x + \frac{1}{2}\sin^2 x}{3x^2\sin^2 x}$$
,

4)
$$\lim_{x\to 0} \frac{e^{\cos(x)} - e^{\cosh(x)}}{\cos(x) - \cosh(x)}$$
.

Exercice 4.

Soit l'application :

$$f:]-1, +\infty[\longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} 1 & \text{si } x = 0 \\ \frac{\ln(1+x)}{x} & \text{si } x \in]-1, +\infty[\setminus \{0\} \end{cases}$$

27

Montrer que f est continûment dérivable.

Exercice 5.

Déterminer les développements limités suivants :

1) le
$$DL_4(3)$$
 de $x \mapsto \ln x$

2) le
$$\mathrm{DL}_3(2)$$
 de $x \mapsto \frac{1}{x}$

Exercice 6.

Déterminer les DL_3 au voisinage de $+\infty$ des fonctions suivantes :

1)
$$x \mapsto \frac{x}{x^2 - 1}$$
,

$$2) x \mapsto \frac{\sqrt{x+2}}{\sqrt{x}}.$$

S Exercice 7.

Soit $f:]1, +\infty[\to \mathbb{R}$ l'application définie par $f(x) = \frac{\sqrt{x^3(x+2)}}{x-1}$ pour tout $x \in]1, +\infty[$.

- 1) Ecrire un développement limité de $\frac{f(x)}{x}$ à l'ordre 2 au voisinage de $+\infty$.
- 2) Montrer que l'application f admet au voisinage de $+\infty$ une asymptote oblique que l'on déterminera et préciser la position de la courbe représentative de f par rapport à cette asymptote au voisinage de $+\infty$.

Exercice 8.

Étudier les limites suivantes :

1)
$$\lim_{x \to 1} \frac{\ln(x)}{x^2 - 1}$$
,

2)
$$\lim_{x \to +\infty} \sqrt{x^2 + 3x + 2} - x$$
.