ATP 2000-2017

Seminarski rad u okviru kursa Istraživanje podataka Matematički fakultet

Marija Mijailović mi14199@alas.matf.bg.ac.rs Miroslav Mišljenović mr12260@alas.matf.bg.ac.rs

jun 2018.

Sažetak

U ovom radu analizirali smo skup podataka "ATP - rezultati turnira od 2000-2017". Obradili smo pravila pridruživanja, klasterovanje, klasifikaciju i predstavili sve navedene metode odgovarajućom vizualizacijom. Skup podataka je preuzet sa https://www.kaggle.com/gmadevs/atp-matches-dataset.

Sadržaj

1	Uvod	1
2	Analiza podataka	2
3	Pravila pridruživanja	3
4	Klasterovanje	5
	4.1 SPSS	6
	4.2 KNIME	9
5		11
	5.1 SPSS	13
	5.2 KNIME	16
	5.2.1 Drveta odlučivanja	17
	· ·	18

1 Uvod

Skup podataka ATP mečeva podeljen je u 17 zasebnih .csv fajlova i svaki od njih prikazuje individualne statistike za svaki turnir u toku te godine.

Ime kolone	Objašnjenje		
tourney_id	id turnira		
tourney_name	ime turnira		
surface	podloga(Grass, Clay, Hard)		
tourney_level	nivo turnira(Grand Slam, Finals, Masters, Tour Series, Challenger)		
round	runda(Round of 16, Quarterfinal)		
minutes	trajanje meča u minutima		

Tabela 1: Podaci o turnirima

Ime kolone	Objašnjenje
winner_seed	nosilac na turniru
$winner_entry$	ulaznica(WildCard, Qualified, LuckyLoser, ProtectedRanking)
winner_name	ime pobednika
$winner_ht$	visina pobednika
winner_ioc	zemlja porekla pobednika
winner_age	godine pobednika
winner_rank	ATP rang pobednika
winner_rank_points	ATP poeni pobednika
w_ace	broj asova pobednika
w_df	broj duplih grešaka pobednika
w_svpt}	broj poena dobijenih na servis pobednika
w_1stIn	broj ubačenih prvih servisa pobednika
w_1stWon	broj poena dobijenih nakon ubačenog prvog servisa pobednika
w_2 ndWon	broj poena dobijenih nakon ubačenog drugog servisa pobednika
w_SvGms	broj gemova u kojima je servirao pobednik
$w_bpSaved$	broj spašenih brejk šansi pobednika
$w_bpFaced$	broj brejk šansi na servis pobednika

Tabela 2: Podaci o pobednicima

2 Analiza podataka

U ovom poglavlju sledi kratak pregled najistaknutijih atributa ovog skupa podataka. Svaki red u skupu, označava jedan meč i sve informacije o tom meču.

U tabeli 1 prikazani su podaci o turniru.

U tabeli 2 prikazani su podaci o pobedniku meča.

U tabeli 3 prikazani su podaci o gubitniku meča.

S obzirom na veliki broj raspoloživih godina, prvo smo se detaljno upoznali sa podacima, šta nam koja godina pruža i koji su najzanimljiviji atributi za svaku godinu. U zavisnosti od toga smo, po potrebama metoda, koristili različite godine, ali svuda smo se ograničili na četiri maksimalno.

Ime kolone	Objašnjenje			
loser_seed	nosilac na turniru			
loser_entry	ulaznica(WildCard, Qualified, LuckyLoser, ProtectedRanking)			
loser_name	ime gubitnika			
loser_ht	visina gubitnika			
loser_ioc	zemlja porekla gubitnika			
loser_age	godine gubitnika			
loser_rank	ATP rang gubitnika			
loser_rank_points	ATP poeni gubitnika			
l_ace	broj asova gubitnika			
l_df	broj duplih grešaka gubitnika			
l_svpt	broj poena dobijenih na servis gubitnika			
l_1stIn	broj ubačenih prvih servisa gubitnika			
l_1stWon	broj poena dobijenih nakon ubačenog prvog servisa gubitnika			
l_2ndWon	broj poena dobijenih nakon ubačenog drugog servisa gubitnika			
l_SvGms	broj gemova u kojima je servirao gubitnik			
$l_bpSaved$	broj spašenih brejk šansi gubitnika			
l_bpFaced	broj brejk šansi na servis gubitnika			

Tabela 3: Podaci o gubitnicima

3 Pravila pridruživanja

Pravila pridruživanja smo obradili u programskom alatu KNIME (slika 1). Odlučili smo se za 2009. godinu, jer su rezultati reprezentativniji u odnosu na ostale godine.

Slika 1: KNIME implementacija

Na slikama 2 i 3 grafički su prikazani rezultati za sedam tenisera koji su imali prosečno najviše asova po meču na kome su pobedili. Izabrali smo četiri parametra za svakog igrača: broj asova pobednika, broj dobijenih poena na servis pobednika, broj ubačenih prvih servisa pobednika i broj osvojenih poena nakon ubačenog prvog servisa pobednika. Na histogramu i grafiku paralelnih koordinata mogu se videti i uporediti rezultati.

Slika 2: Histogram

Slika 3: Paralelne koordinate

Iznenađenje je pojavljivanje Amera Delića u prvih sedam, jer je to autorima nepoznat igrač. Uvidom u podatke, utvrđeno je da je on te godine odigrao samo osam mečeva, a pobedio je samo tri puta, u mečevima u kojima je imao mnogo asova (što je kriterijum po kome je birano najboljih sedam).

U tri kategorije smo podelili sledeća četiri atributa: broj asova pobednika, broj duplih servis grešaka pobednika, broj osvojenih poena nakon ubačenog prvog servisa pobednika, broj spašenih brejk lopti pobednika. Na slici 4 se mogu videti pravila pridruživanja dobijena na osnovu te kategorizacije, sortirani po Lift meri. Za pouzdanost smo uzeli vrednost 0.4, a za minimalnu podršku vrednost 0.15. Analizirali smo podatke za sve godine i rezultati su prilično uniformni. Za 2009. godinu je dobijena druga najveća Lift mera (1.36) i odnosi se na pravilo [ACE 2, WON 2,

DF 1] -> [BPS 1]. U 2004. godini smo dobili najveću vrednost Lift mere (1.441) za pravilo [BPS 1, ACE 1, DF 1] -> [WON 1].

e Hilite Navigation View							
able "default" - Rows: 26 Spec - Columns: 6 Properties Flow Variables							
Row ID	D Support	D Confide	D ▼ Lift	S Conseq	S implies	() Items	
ule2	0.177	0.837	1.36	BPS 1	<	[ACE 2,WON 2,DF 1]	
ule4	0.197	0.816	1.326	BPS 1	<	[ACE 2,DF 1]	
ule6	0.207	0.857	1.279	ACE 1	<	[BPS 2,WON 2,DF 1]	
ule 10	0.217	0.83	1.239	ACE 1	<	[BPS 2,DF 1]	
ule7	0.207	0.955	1.174	WON 2	<	[BPS 2,ACE 1,DF 1]	
ule 13	0.241	0.925	1.137	WON 2	<	[BPS 2,DF 1]	
ule 14	0.246	0.909	1.118	WON 2	<	[BPS 2,ACE 1]	
ule0	0.177	0.9	1.107	WON 2	<	[BPS 1,ACE 2,DF 1]	
ule 1	0.177	0.878	1.1	DF 1	<	[BPS 1,ACE 2,WON 2]	
ule 17	0.325	0.868	1.088	DF 1	<	[BPS 1,ACE 1]	
ule 18	0.419	0.867	1.087	DF 1	<	[BPS 1,WON 2]	
ule21	0.532	0.864	1.083	DF 1	<	[BPS 1]	
ule9	0.212	0.878	1.08	WON 2	<	[ACE 2,DF 1]	
ule 16	0.31	0.875	1.077	WON 2	<	[BPS 2]	
ule 12	0.236	0.857	1.074	DF 1	<	[BPS 1,ACE 1,WON 2]	
ule5	0.202	0.872	1.073	WON 2	<	[BPS 1,ACE 2]	
ule3	0.197	0.851	1.066	DF 1	<	[BPS 1,ACE 2]	
ule8	0.207	0.84	1.053	DF 1	<	[BPS 2,ACE 1,WON 2]	
ule20	0.448	0.827	1.037	DF 1	<	[ACE 1,WON 2]	
ule24	0.665	0.833	1.025	WON 2	<	[DF 1]	
ule25	0.665	0.818	1.025	DF 1	<	[WON 2]	
ule23	0.547	0.816	1.023	DF 1	<	[ACE 1]	
ule 15	0.266	0.831	1.022	WON 2	<	[ACE 2]	
ule 19	0.448	0.82	1.009	WON 2	<	[ACE 1,DF 1]	
ule 11	0.217	0.8	1.002	DF 1	<	[BPS 2,ACE 1]	
ule22	0.542	0.809	0.995	WON 2	<	[ACE 1]	

Slika 4: Pravila pridruživanja

4 Klasterovanje

Što se tiče klasterovanja, s obzirom da podaci po godinama dosta osciliraju, odlučili smo da klasterovanje izvršimo za više godina. Izabrali smo 2003., 2011. i 2017. godinu. Pre svega, zanimala nas je zavisnost broja godina pobednika i broj asova pobednika. Prvo smo obradili nedostajuće vrednosti. Klasterovanje smo obradili u alatima SPSS i KNIME (slike 5 i 8).

4.1 SPSS

Slika 5: SPSS klasterovanje

U alatu SPSS smo pomoću siluete pratili kako nam se kvalitet klasterovanja razlikuje u zavisnosti od broja klastera. Kohonen algoritam nam je za broj klastera između 3 i 5 davao "osrednji" kvalitet klasterovanja, pa ga nismo detaljno razmatrali. (Podseti me da probam sa nekim drugim ulaznim argumentima za Kohonena i da napisem ovde za koje smo probali.) S druge strane, K-Means algoritam nam je davao dosta raznolike ocene klastera po godinama. 2003. godina nam je za 4 i 5 klastera pokazala kvalitet klasterovanja "dobar", uz važnost atributa w age = 1 i $w_\mathit{ace} = 1.~\mathrm{U}$ 2011. godini nam je za 5 klastera silueta pokazivala kvalitet "osrednji", promenivši broj klastera na 4 silueta je prešla u "dobar". Takođe, i sa 4 klastera i sa 5 klastera važnost atributa $w_{\ age\ =\ 1}$ i $w_{\it ace} = {\it 1}.$ Rezultati za 2017. godinu za 4 klastera pokazuju kvalitet "osrednji"; promenivši broj klastera na 5, silueta je na granici "osrednji"-"dobar", međutim, važnost atributa sa 4 klastera je w age = 1, w ace =0.77, dok je sa 5 klastera w ace opao na 0.46. Ipak smo odlučili da 2017. godinu odbradimo sa 5 klastera. Konačno, odlučili smo se za broj i kvalitet klastera koji su prikazani na slici 6.

(c) 2017. godina Slika 6: Kvalitet klasterovanja

Kao što se vidi na slici 7, u sve tri godine su dobijeni interesantni podaci. Na primer, u 2003. godini najstariji igrači imaju slabiji prosek asova, dok u 2011. i 2017. godini imamo dva klastera sa prosekom godina oko 30; u jednom klasteru nam je broj asova mali, dok je u drugom najveći. Ovo nam je govorilo da možda imamo neki element van granica, koji je uticao na kreiranje dodatnog klastera. Odlučili smo da proverimo šta ćemo dobiti u KNIME-u.

(a) 2003. godina

(b) 2011. godina

(c) 2017. godina

Slika 7: Modeli klastera

4.2 KNIME

Slika 8: KNIME klasterovanje

U fazi pretprocesiranja podataka, otkrili smo jednog igrača sa nepoznatim brojem godina i taj red smo obrisali. U situaciji kada je broj asova bio nepoznat, stavljali smo vrednost nula. Nakon toga smo grupisali podatke po igračima, kako bi za svakog igrača dobili prosek koliko je imao asova tokom godine. Da bi iskoristili *K-Means* algoritam, normalizovali smo podatke kako bi broj godina i broj asova imali isti uticaj na računanje rastojanja među instancama.

U KNIME-u smo se opredelili da klasterovanje vršimo sa istim brojem klastera kao što smo činili u SPSS-u. Dobijeni klasteri su prikazani na slici 9.

(a) 2003. godina

(b) 2011. godina

(c) 2017. godina

Slika 9: Klasteri po godinama

Možemo primetiti da stvarno postoje elementi van granica koji su uticali na to da se formiraju novi klasteri. Igrači koji predstavljaju elemente van granica su dati na slici 10.

Slika 10: Elementi van granica

Najinteresantiji je definitivno Ivo Karlović, koji je na meču protiv Orasia Zebaljosa na Australian Open-u postigao 75 asova. Treba imati na umu da je Karlović odigrao četiri meča na ovom turniru. Moramo napomenuti, da je skup podataka o 2017. godini nepotpun, jer je u toku te godine napravljen skup i da dosta turnira još uvek nije upisano. Trenutni skup ima samo podatke sa turnira odigranih u januaru i februaru.

5 Klasifikacija

Za klasifikaciju smo odlučili da nam klase budu podloge terena, a pripadnost svakoj klasi se određuje na osnovu karakteristika četiri gubitnikova atributa (broj asova gubitnika, broj duplih servis grešaka gubitnika, broj ubačenih prvih servisa gubitnika, broj brejk šansi na servis gubitnika). Kao i kod klasterovanja i ovde smo želeli da vidimo šta se dešava u više godina. S obzirom na to da su neke podloge prisutnije u odnosu na ostale. Nakon detaljne analize raspodele podloga, odlučili smo se za 2005., 2008. i 2015. godinu. Razlog što smo odabrali baš ove godine jeste polako gubljenje "tepiha" kao podloge (slika 11), pa nas je zanimalo kako će ova činjenica uticati na sam proces klasifikacije.

(a) 2005. godina

(b) 2008. godina

(c) 2015. godina

Slika 11: Podloge terena

Klasifikaciju smo, takođe, obradili u SPSS-u i u KNIME-u. (slike $12\,\,\mathrm{i}$ 21).

5.1 SPSS

Slika 12: SPSS klastifikacija

Primenili smo C5.0 algoritam sa podelom na trening i test skup u odnosu 70-30. Na slici 13 možemo videti analizu najvažnijjih atributa. Najvažniji atribut je u sve tri godine broj asova, ono što je interesantno jeste da je u 2008. godini važnost "broja duplih grešaka" nešto malo iznad nule Nadi tačan broj, a u 2015. godini uopšte nije ni uzet u razmatranje.

(a) 2005. godina

(b) 2008. godina

(c) 2015. godina

Slika 13: Model klasifikacije

Drveta odlučivanja smo delom mogli da vidimo i na prethodnoj slici, a detaljniji prikaz se može pogledati: 2005, 2008, 2015.

Intuitivan prikaz drveta odlučivanja za 2005. i 2008. godinu, i kompletan prikaz 2015.godine može se videti na slici 14.

(a) 2005. godina

(b) 2008. godina

(c) 2015. godina

Slika 14: Drveta odlučivanja C-5.0

Kao što možemo da vidimo da su drveta iz 2005 i 2008 ogromna, dok je Ovo iz 2015 bi mogli da izanaliziramo...

Dobijena preciznost, a i matrica konfuzije su prikazane na slici 15.

(c) 2015. godina

Slika 15: Matrice konfuzije - C5.0

Možemo da primetimo da se "tepih" klasifikuje kao "beton", što je i očekivano s obzirom na odnos turinara odigranih na ova dva turnira. Takođe treba primetiti da se i "trava" u 2015. godini gotovo uvek klasifikuje kao "beton", a nikad kao "trava". Možemo da primetimo i da nam je preciznost zajedno sa godinama postepeno rasla, ali nismo baš zadovoljni dobijenim rezultatima pa smo odlučili da ispitamo metodu Drveta odlučivanja i u KNIME-u.

Sveobuhvatni prikaz rada algoritma C5.0 dat je u fajlovima: 2005, 2008, 2015.

S obzirom da su nam dobijeni rezultati algoritma C-5.0 dosta šarenoliki, i dobijena preciznost i veličina drveta odlučivanja nam deluju kao da se desilo preprilagođavanje odlučili smo da na godine 2005 i 2015 izvršimo istu analizu u alatu KNIME.

5.2 KNIME

 ${\bf U}$ alatu KNIME smo za klasifikaciju koristili Drveta odlučivanja, K najbližih suseda i metod potpornih vektora (SVM)

5.2.1 Drveta odlučivanja

Slika 16: KNIME implementacija tehnike Drvo odlučivanja

Pre same klasifikacije na slici 17 je prikazan je odnos između atributa klasterovanja.

(a) 2005. godina

(b) 2008. godina

Slika 17: Korelacija atributa

Dobijena preciznost, a i matrica konfuzije su prikazane na slikama 18 i 19.

Row ID	- Hard	Carpet	- Clay	- Grass
Hard	789	0	158	0
Carpet	141	2	30	0
Clay	368	0	337	0
Grass	184	0	29	0

Row ID	- Hard	- Clay	→ Carpet	Grass
Hard	320	86	0	0
Clay	172	130	0	0
Carpet	54	20	0	0
Grass	72	20	0	0

Slika 18: Matrice konfuzije - 2005

Row ID	- Hard	- Clay	- I Grass
Hard	895	150	5
Clay	324	234	4
Grass	182	29	14

Row ID	- Hard	- Clay	Grass
Hard	373	75	3
Clay	157	83	1
Grass	79	13	4

Slika 19: Matrice konfuzije - 2015

5.2.2 SVM

Vršili smo klasifikaciju tehnikom SVM. Normalizovane podatke smo podelili na trening i test skup u odnosu 70-30. Primenili smo sva tri raspoloživa kernela (polinomijalni trećeg stepena, sigmoid, Gausov(RBF)). Na slici 22 se mogu videti preciznosti za sva tri kernela, i za trening i za test skup.

Koristeći polinomijalni kernel trećeg stepena, dobili smo izuzetno loše rezultate. Naime, skoro 50% redova (1501 od 3257) odgovaraju mečevima koji su odigrani na tvrdoj podlozi. Na slikama 23 i 24 vidimo da su podaci pogrešno klasifikovani u mečeve koji su odigrani na šljaci.

Koristeći sigmoid kernel, situacija se promenila utoliko što su podaci vezani za tvrdu podlogu vrlo dobro klasifikovani, što se može videti na slikama 25 i 26. Primetimo da su podaci uglavnom raspoređeni u klase koje se odnose na beton i šljaku.

Koristeći Gausov kernel, dobili smo lošiju klasifikaciju za tvrdu podlogu, dosta bolju klasifikaciju za šljaku i malo bolju klasifikaciju za travu (slike 27 i 28).

Prikazani rezultati su za 2005. godinu i, kako je u svim slučajevima klasifikacija koja se odnosila na tepih davala nulu, slični rezultati su očekivani i za 2008. godinu. Stoga nismo obrađivali ostale godine SVM metodom, već smo pokušali da obradimo podatke algoritmom C5.0 u SPSS-u.

Row ID	D Accur	D Accur	D minLoop	Iteration
Overall_Ov	0.553	0.515	5	0
Overall_Ov	0.553	0.515	10	1
Overall_Ov	0.553	0.515	15	2
Overall_Ov	0.553	0.515	20	3
Overall_Ov	0.553	0.515	25	4
Overall_Ov	0.553	0.515	30	5
Overall_Ov	0.553	0.515	35	6
Overall_Ov	0.553	0.515	40	7
Overall_Ov	0.553	0.515	45	8
Overall_Ov	0.553	0.515	50	9
Overall_Ov	0.553	0.515	55	10
Overall_Ov	0.553	0.515	60	11
Overall_Ov	0.553	0.515	65	12
Overall_Ov	0.553	0.515	70	13
Overall_Ov	0.553	0.515	75	14
Overall_Ov	0.553	0.515	80	15
Overall_Ov	0.553	0.515	85	16
Overall_Ov	0.553	0.515	90	17
Overall_Ov	0.553	0.515	95	18
Overall_Ov	0.553	0.515	100	19

(a) 2005. godina

Row ID	D Accur	D Accur	D minLoop	Iteration
Overall_Ov	0.622	0.584	5	0
Overall_Ov	0.622	0.584	10	1
Overall_Ov	0.622	0.584	15	2
Overall_Ov	0.622	0.584	20	3
Overall_Ov	0.622	0.584	25	4
Overall_Ov	0.622	0.584	30	5
Overall_Ov	0.622	0.584	35	6
Overall_Ov	0.622	0.584	40	7
Overall_Ov	0.622	0.584	45	8
Overall_Ov	0.622	0.584	50	9
Overall_Ov	0.622	0.584	55	10
Overall_Ov	0.622	0.584	60	11
Overall_Ov	0.622	0.584	65	12
Overall_Ov	0.622	0.584	70	13
Overall_Ov	0.622	0.584	75	14
Overall_Ov	0.622	0.584	80	15
Overall_Ov	0.622	0.584	85	16
Overall_Ov	0.622	0.584	90	17
Overall_Ov	0.622	0.584	95	18
Overall_Ov	0.622	0.584	100	19

(b) 2015. godina

Slika 20: Preciznost

Slika 21: KNIME implementacija SVM tehnike

Acc_Training_Poly	Acc_Test_Poly	Acc_Training_Sigmoid	Acc_Test_Sigmoid	Acc_Training_RBF	Acc_Test_RBF
0.355419043	0.351738241	0.492321194	0.5	0.482229048	0.460122699

Slika 22: Preciznost za različite kernele

Row ID	Hard	Clay	Carpet	Grass
Hard	11	1039	0	0
Clay	1	799	0	0
Carpet	1	195	0	0
Grass	6	227	0	0

Slika 23: Trening podaci za polinomijalni kernel

Row ID	Hard	Clay	Carpet	Grass
Hard	2	449	0	0
Clay	1	342	0	0
Carpet	0	84	0	0
Grass	3	97	0	0

Slika 24: Test podaci za polinomijalni kernel

Row ID	→ Hard	Carpet	Clay	Grass
Hard	974	2	74	0
Carpet	183	0	13	0
Clay	647	5	148	0
Grass	217	1	15	0

Slika 25: Trening podaci za sigmoid kernel

Row ID	Hard	Carpet	Clay	Grass
Hard	425	0	26	0
Carpet	81	0	3	0
Clay	276	3	64	0
Grass	93	0	7	0

Slika 26: Test podaci za sigmoid kernel

Row ID	Hard	Clay	Grass	Carpet
Hard	743	210	97	0
Clay	376	335	89	0
Grass	182	30	21	0
Carpet	133	39	24	0

Slika 27: Trening podaci za Gausov kernel

Row ID	Hard	Clay	Grass	Carpet
Hard	304	96	51	0
Clay	157	139	47	0
Grass	74	19	7	0
Carpet	59	16	9	0

Slika 28: Test podaci za Gausov kernel