Claims:

1. A compound of the formula I in the form of a racemate, a mixture of diastereomers or an essentially pure diastereomer,

where

R₁ is a hydrogen atom or C₁-C₄-alkyl and at least one sec-phosphine group is an unsubstituted or substituted cyclic phosphino group, or a phosphonium salt thereof having one or two monovalent anions or one divalent anion.

2. The compound as claimed in claim 1, wherein the cyclic sec-phosphino corresponds to the formula II, IIa, IIb or IIc,

which are unsubstituted or substituted by one or more -OH, C_1 - C_8 -alkyl, C_4 - C_8 -cycloalkyl, C_1 - C_6 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, phenyl, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxybenzyl, benzyloxy, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxybenzyloxy or C_1 - C_4 -alkylidenedioxyl groups.

- 3. The compound as claimed in claim 2, wherein substituents are present in one or both α positions relative to the P atom.
- 4. The compound as claimed in claim 1, wherein the compound of the formula I corresponds to the formula III or IV,

THIS PAGE BLANK (USPTU)

$$R_2R_3P$$
 Fe
 R_9
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_9
 R_8
 R_8

where

 R_2 and R_3 are each, independently of one another, a hydrocarbon radical which has from 1 to 20 carbon atoms and is unsubstituted or substituted by halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, di- C_1 - C_4 -alkylamino, $(C_6H_5)_3Si$, $(C_1$ - C_{12} -alkyl) $_3Si$, or $-CO_2$ - C_1 - C_6 -alkyl,

Y is $-CH_2$ -, $-CH_2CH_2$ -, $-CH_2CH_2CH_2$ -, -CH(OH)CH(OH)-, $-CH(OC_1-C_4-alkyl)$ - or a radical of the formula

 R_6 , R_7 , R_8 and R_9 are each, independently of one another, H, C_1 - C_4 -alkyl or benzyl, and at least one of the radicals R_6 , R_7 , R_8 and R_9 is C_1 - C_4 -alkyl, benzyl or -CH₂-O- C_1 - C_4 -alkyl or -CH₂-O- C_6 - C_{10} -aryl,

R₁₀ is H or C₁-C₄-alkyl and

R₁₁ is C₁-C₄-alkyl.

5. A process for preparing compounds of the formula I in the form of racemates, mixtures of diastereomers or essentially pure diastereomers,

where

R₁ is a hydrogen atom or C₁-C₄-alkyl and at least one sec-phosphino is an unsubstituted or substituted cyclic phosphino group, which comprises the steps

a) reaction of a compound of the formula V

where

 X_1 and X_2 are each, independently of one another, O or N and C-bonded hydrocarbon or heterohydrocarbon radicals are bound to the free bonds of the O and N atoms, with at least equivalent amounts of a lithium alkyl, a magnesium Grignard compound or an aliphatic Li sec-amide or X_3 Mg sec-amide to form a compound of the formula VI,

where

M is -Li or -MgX₃ and X₃ is Cl, Br or I,

b) reaction of the compound of the formula VI with at least equivalent amounts of a di-secaminophosphine halide, a dialkoxyphosphine halide, di-sec-amino-P(O) halide, dialkoxy-P(O) halide or PCI₃ or PBr₃ to form a compound of the formula VII

where

 R_{12} is -PCl₂, -PBr₂, di(sec-amino)P-, dialkoxyP-, di-sec-amino-P(O)-, dialkoxy-P(O)-, and b1) removing any borane group present from a compound of the formula VII, then splitting off the radicals (hetero)hydrocarbon- X_1 , (hetero)hydrocarbon- X_2 or X_1 -(hetero)hydrocarbon- X_2 or di-sec-amino or dialkoxy by means of HCl or HBr to form a -PCl₂ group or -PBr₂ group and then hydrogenating the -(O)PCl₂ groups, -(O)PBr₂ groups, -PCl₂ groups or -PBr₂ groups

to form a compound of the formula VIII or

b2) splitting off the radicals (hetero)hydrocarbon- X_1 , (hetero)hydrocarbon- X_2 or X_1 -(hetero)hydrocarbon- X_2 or di-sec-amino or dialkoxy from a compound of the formula VII by means of HCl or HBr to form a -PCl₂ group or -PBr₂ group and then hydrogenating the -(O)PCl₂ groups, -(O)PBr₂ groups, -PCl₂ groups or -PBr₂ groups and then removing the borane group to form a compound of the formula VIII,

or

c) reaction of a compound of the formula VI with a sec-phosphine halide to form a compound of the formula IX,

c1) removing any borane group present from a compound of the formula IX, then splitting off the radicals (hetero)hydrocarbon- X_1 , (hetero)hydrocarbon- X_2 or X_1 -(hetero)hydrocarbon- X_2 by means of HCl or HBr to form a -PCl₂ group or -PBr₂ group and then hydrogenating the -PCl₂ groups or -PBr₂ groups to form a compound of the formula X or c2) splitting off the radicals (hetero)hydrocarbon- X_1 , (hetero)hydrocarbon- X_2 or X_1 -(hetero)hydrocarbon- X_2 from a compound of the formula IX by means of HCl or HBr to form a -PCl₂ group or -PBr₂ group and then hydrogenating the -PCl₂ groups or -PBr₂ groups and then

removing the borane group to form a compound of the formula X

(X)

or

d) reaction of a compound of the formula VI with a halogenating reagent to form a compound of the formula XI

where X₄ is CI, Br or I,

d1) removing any borane group present from a compound of the formula XI, then splitting off the radicals (hetero)hydrocarbon-X₁, (hetero)hydrocarbon-X₂ or X₁-(hetero)hydrocarbon-X₂ by means of HCl or HBr to form a -PCl₂ group or -PBr₂ group and then hydrogenating the -PCl₂ group or -PBr₂ group to form a compound of the formula XII or d2) splitting off the radicals (hetero)hydrocarbon-X₁, (hetero)hydrocarbon-X₂ or X₁-(hetero)-hydrocarbon-X₂ from a compound of the formula XI by means of HCl or HBr to form a -PCl₂ group or -PBr₂ group and then hydrogenating the -PCl₂ groups or -PBr₂ groups and then removing the borane group to form a compound of the formula XII

and

- d3) reacting the compound of the formula XII with a metalated sec-phosphide to form a compound of the formula X,
- e) reaction of the compound of the formula VII with at least 2 equivalents and of the compound of the formula X with at least 1 equivalent of a cyclic sulfate or an open-chain disulfonate to produce compounds of the formula I in which one or both sec-phosphino groups are cyclic sec-phosphino or
- f) reaction of a compound of the formula XII with at least 1 equivalent of a cyclic sulfate or an open-chain disulfonate to produce compounds of the formula XIII,

where sec-phosphino is cyclic sec-phosphino which may, if appropriate, be protected by BH_3 , and then reaction of a compound of the formula XIII with at least 1 equivalent of a lithium alkyl and then with at least 1 equivalent of a sec-phosphine halide to form a compound of the formula I.

6. A compound of the formula VII, IX and XI,

where

 X_1 and X_2 are each, independently of one another, O or N and C-bonded hydrocarbon or heterohydrocarbon radicals are bound to the free bonds of the O and N atoms and R_1 , R_{12} and X_4 are as defined in claim 5.

7. A compound of the formula VIII, X or XII,

where R'_{12} is -PCl₂, -PBr₂ or -PH₂ and R_1 and X_4 are as defined in claim 5.

8. A compound of the formula XIII

where R₁ and X₄ are as defined in claim 5 and sec-phosphino is cyclic sec-phosphino.

- 9. A complex of a metal selected from the group consisting of the group 8 transition metals with compounds of the formula I as ligands.
- 10. The metal complex as claimed in claim 9, wherein the group 8 transition metal is ruthenium, rhodium or iridium.
- 11. The metal complex as claimed in claim 9, characterized in that it corresponds to the formula XIV or XV,

$$A_1 MeL_n \qquad \qquad (XIV), \qquad \qquad (A_1 MeL_n)^{(z+)}(E^-)_z \qquad (XV),$$

where A_1 is a compound of the formula I,

L represents identical or different monodentate, anionic or nonionic ligands, or L2 represents

identical or different bidentate, anionic or nonionic ligands;

n is 2, 3 or 4 when L is a monodentate ligand or n is 1 or 2 when L is a bidentate ligand; z is 1, 2 or 3;

Me is a metal selected from the group consisting of Rh, Ir and Ru; with the metal having the oxidation state 0, 1, 2, 3 or 4;

E' is the anion of an oxo acid or complex acid; and

the anionic ligands balance the charge of the oxidation state 1, 2, 3 or 4 of the metal.

12. The metal complex as claimed in claim 9, characterized in that it corresponds to the formula XIII or XIV,

 $[A_1Me_2YZ]$ (XVI), $[A_1Me_2Y]^{\dagger}E_1^{-}$ (XVII),

where

A₁ is a compound of the formula I;

Me2 is rhodium or iridium;

Y represents two olefins or diene;

Z is CI, Br or I; and

E₁ is the anion of an oxo acid or complex acid.

- 13. The use of metal complexes as claimed in claim 9 as homogeneous catalysts for preparing chiral organic compounds by asymmetric addition of hydrogen, boron hydrides or silanes onto a carbon-carbon or carbon-heteroatom multiple bond in prochiral organic compounds or asymmetric addition of carbon nucleophiles or amines onto allyl compounds.
- 14. A process for preparing chiral organic compounds by asymmetric addition of hydrogen, boron hydrides or silanes onto a carbon-carbon or carbon-heteroatom multiple bond in prochiral organic compounds or asymmetric addition of carbon nucleophiles or amines onto allyl compounds in the presence of a catalyst, characterized in that the addition reaction is carried out in the presence of catalytic amounts of at least one metal complex as claimed in claim 9.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.