

Organisation und Inhalt

Manfred Hauswirth | Open Distributed Systems | Einführung in die Programmierung, WS 25/26

Wer sind wir?

- Fachgebiet "Open Distributed Systems" (ODS)
 - Leitung: Prof. Manfred Hauswirth
- Veranstalter der Vorlesung "Einführung in die Programmierung"
- Sie begegnen uns vor allem als:
 - Prof. Manfred Hauswirth (Vorlesungen)
 - Wissenschaftliche Mitarbeiter (ISIS)
 - TutorInnen (Lehraufgaben)
- Wenn Sie Fragen oder Probleme haben:
 - Zur Immatrikulation? → Campus Center
 - Zum TUB-Account? → ZECM
 - Zum Kurs? \rightarrow ISIS

Prof. Manfred Hauswirth

Fachgebietsleiter "Open Distributed Systems" – https://www.tu-berlin.de/ods

Institutsleiter

Fraunhofer − https://www.fokus.fraunhofer.de

- Skalierbare verteilte Informationssysteme
- Linked Data-Stromdatenverarbeitung
- Quantencomputing
- Semantische Sensor-Netzwerke
- Semantic Web
- Peer-to-Peer-Systeme

Melanie Lahrkamp

Fachgebietsassistenz

Kontakt: sekretariat@ods.tu-berlin.de

Damien Foucard

- Hauptthema: Heavy Hitter Monitoring
 - "Viele Daten, wenig Zeit. Was ist wichtig?"
- Subthemen:
 - Trend Analysis on Texts
 - Network Monitoring
 - Recommendations on Graphs
- Stärken:
 - Statistik
 - Algorithmik

Aljoscha Meyer

- Peer-to-peer Systeme
- Datensynchronisation
- Kommuniationsprotokolle
- Theoretische Informatik

Uwe A. Kuehn

Technische Universität Berlin

- Verteilte und hybride DBMS
- Anwendungen auf begrenzten Ressourcen z.B. Raspberry Pi
- Blockchain, Smart Contracts
- Distributed Quantum Computing

Saman Akbari

- Serverless Computing
- Cloud Computing
- Performance Engineering
- Benchmarking

Jan Schöder

- Computer Security
- Intrusion Detection f
 ür IoT Botnetze
- Adversarial Machine Learning
- Internet of Things

Wo sind wir?

HFT, 4. Stock, Raum 411

Informationen und Kontakte

Infos über ISIS

Forum (ISIS)

E-Mail: <u>introprog@ods.tu-berlin.de</u>

 Kontakt <u>nur über die obige E-Mail-Adresse, nicht</u> individuell (damit Sie <u>sicher</u> eine Antwort bekommen)

Studiengänge

- Informatik B.Sc.
- Technische Informatik B.Sc.
- Medieninformatik B.Sc.
- Medientechnik B.Sc.

• ...

Kenntnisse

- elementarer Datenstrukturen
- elementarer Such- und Sortierverfahren

Fähigkeiten

- Probleme und Strukturen (wieder) zu erkennen
- für ein gegebenes Anwendungsproblem die geeignete Datenstruktur zu wählen

- Verständnis des Paradigmas der imperativen Programmierung
- Fähigkeiten
 - einfache Programme schreiben
 - lesbare und verständliche Programme schreiben
 - den Aufwand (Komplexität) eines Algorithmus bzw. eines Programms abschätzen

- Einführung in eine Programmiersprache
 - Elementare Datentypen und Operatoren
 - Kontrollstrukturen: Verzweigungen, Schleifen
 - Funktionen
 - Dynamische Datenstrukturen
- Datenstrukturen
 - Listen
 - Queue (Warteschlange), Stack (Stapel) und Heap (Haufen)
 - Bäume

- Elementare Algorithmen
 - Suchen
 - Sortieren

- Algorithmen
 - Aufwandsabschätzung (Komplexität)
 - Korrektheit

- 2 Schwerpunkte entsprechend der "Werkzeugklassen"
 - Erlernen einer Programmiersprache (hier die Sprache C)
 - Umgang mit Datenstrukturen und algorithmischen Aspekten
- Entsprechend 2 Vorlesungsteile
 - Programmierkurs (täglich in den ersten 2 Vorlesungswochen)
 - Einführung in die Programmierung (IntroProg) im Semester wöchentliche Vorlesung
- betreutes Arbeiten

- Beispiel-Programmiersprache C
 - weit verbreitet, etabliert Z.B. sind in C programmiert

Windows, Linux, MacOS, Android, iOS, Oracle, MySQL, MS SQL Server, Web Server, Embedded Systems, Internet of Things, etc., etc., etc.

- auf allen Plattformen verfügbar
- Grundlage f
 ür viele weitere Vorlesungen, u.a. Rechnerorganisation
- Hier:
 - Programmierung "im Kleinen"
 - Algorithmisches "Handwerkszeug"
- Programmbeispiele auf Deutsch und/oder Englisch

Ablauf

Ablauf im Detail

Diese Veranstaltung besteht aus 2 Teilen:

1. Programmierkurs

- Vorstellung der Konzepte
- Blockveranstaltung (täglich), 13.10. 24.10.2025, 12:15 13:45 Uhr
- Folgende Vorlesungen finden in diesen zwei Wochen nicht statt:
 - Rechnerorganisation
 - Informatik Propädeutikum

2. Einführung in die Programmierung (IntroProg)

- Grundlegende Datenstrukturen
- Algorithmen am Beispiel von Listen, Bäumen, und Sortieren
- Dauer: Rest des Semesters

Lehr- und Lernkonzept

Veranstaltungen

- Vorlesung
 - Vorstellung der Konzepte
 - Beispielprogramme
- Tutorien
 - (Vor-)Besprechung der Hausaufgaben
 - Codebeispiele
- Betreute Arbeitszeiten
 - Hilfestellung beim Programmieren inkl. Fehlersuche

Lehr- und Lernkonzept

Leistungen der Portfolioprüfung

- Hausaufgaben im Programmierkurs (Programmierung)
 - eigenständige Auseinandersetzung mit den Konzepten
 - 15% der Gesamtnote
- Hausaufgaben während des Semesters (Theorie)
 - eigenständige Auseinandersetzung mit den Konzepten
 - 20% der Gesamtnote
- praktischer Test am Semesterende (60min)
 - 30% der Gesamtnote
- schriftlicher Test am Semesterende (60min)
 - 35% der Gesamtnote

Vorlesungstermine Programmierkurs

Wochentag	Datum	Uhrzeit	Raum
Montag	13.10.2025	12:15-13:45	H 0105 (Audimax)
Dienstag	14.10.2025	12:15-13:45	H 0105 (Audimax)
Mittwoch	15.10.2025	12:15-13:45	H 0105 (Audimax)
Donnerstag	16.10.2025	12:15-13:45	H 0105 (Audimax)
Freitag	17.10.2025	12:15-13:45	H 0105 (Audimax)
Montag	20.10.2025	12:15-13:45	H 0105 (Audimax)
Dienstag	21.10.2025	12:15-13:45	H 0105 (Audimax)
Mittwoch	22.10.2025	12:15-13:45	H 0105 (Audimax)
Donnerstag	23.10.2025	12:15-13:45	H 0105 (Audimax)
Freitag	24.10.2025	12:15-13:45	H 0105 (Audimax)

Zoom-URL für den Programmierkurs: https://s.fhg.de/2025-Programmierkurs-Introprog

Vorlesungstermine IntroProg

- Ab Donnerstag, 30.10.2025 regulärer Vorlesungsbetrieb
 - Vorlesung, Tutorien und Rechnerübungen (wöchentlich)
 - Eingabe Ihrer Prioritäten für die Tutoriumauswahl in MOSES bis zum 15.10.2025 notwendig!
 - Weitere Informationen am 30.10.2025
- Vorlesung: Do, jeweils 14:15 15:45 Uhr, H0105 (Audimax)
 - Zoom-URL für die Vorlesung: https://s.fhg.de/2025-VL-Introprog
- Diese Vorlesungen starten in der KW44:
 - Rechnerorganisation
 - Informatik Propädeutikum

Einschreibung

- ISIS für Vorlesungsmaterial am besten sofort einschreiben!
 - Wenn TUB-Account vorhanden über "Selbsteinschreibung"
 - Wenn noch kein TUB-Account vorhanden über "Gastzugang", hier sind keine Abgaben möglich. Nach Erhalt eines TUB-Accounts bitte sofort einschreiben.

Prüfungsmodalitäten

- Portfolioprüfung
 - Programmierkurs (15%)
 - + Theoriehausaufgaben (20%)
 - + praktischer Test (30%)
 - + schriftlicher Test (35%)

praktischer Test

- 1. Termin (empfohlen) Sa. 17.01.26, 09:00 - 18:00
- 2. Termin (Wiederholungsmöglichkeit) Fr. 27.03.26, 10:00 - 19:00

schriftlicher Test

- 1. Termin (empfohlen)
 - Mo. 23.02.26, 15:00 18:00
- 2. Termin (Wiederholungsmöglichkeit)

Mi. 25.03.26, 12:30 - 17:30

Anmeldefristen

- ISIS für Vorlesungsmaterial am besten sofort
- Modulanmeldung via MOSES oder Prüfungsamt
- Fristen:
 - Anmeldung ab 14.10.2025 bis 09.11.2025
 - Rücktritt bis 09.11.2025 möglich
 - Bei der Anmeldung Termin auswählen.

Empfehlung: Wählen Sie den ersten Termin.

- eigenständiger Terminwechel möglich
 - praktischer Test bis 11.01.2025
 - schriftlicher Test bis 15.02.2025
- Beachten Sie die Ankündigungen in ISIS

Programmierkurs – Organisation

Programmierkurs: Tagesablauf

- Vorlesung
 - Vorstellung der Konzepte
- Tutorien
 - (Vor-)Besprechung der Hausaufgaben
 - Codebeispiele
- Betreutes Arbeiten
 - Hilfestellung beim Programmieren inkl. Fehlersuche
- Abgaben
 - Selbstständig zu bearbeitende Programmieraufgaben
 - Einzelabgaben (keine Gruppenarbeit)
 - Die verbindliche Abgabe zur Bewertung findet im Semester statt

Programmierkurs: Tagesablauf

Zusätzlich:

- ISIS-Ankündigungen
 - Bitte informieren Sie sich <u>unbedingt</u> über den genauen Ablauf in ISIS!
 - Aktuelle Informationen werden <u>immer</u> angekündigt (und über E-Mail verteilt).
- Unterstützung per ISIS-Forum
 - Hilfestellung bei (fast) allem
 - "Live"-Betreuung: während der Woche, ca. 10:00 20:00 Uhr
- Gegenseitige Hilfestellung im ISIS-Forum
 - Hilfestellung unter Studierenden ohne Lösungen zu tauschen
 - Wir beantworten Fragen immer wieder, wenn wir gerade freie Kapazität haben

Programmierkurs: Tutorien

- Hilfestellung bei Problemen
 - sehr hohe Zahl an Studierenden ⇒ bitte um Verständnis
 - Dauer: 1h30.
 - Täglich (heute ausschließlich online Tutorien nach der VL)
- Thema: Aufgabenblatt des Tages, in der Regel zur Vorlesung am Tag davor
 - pro Thema gibt es mehrere Angebote

Tip: Wählen Sie in den ersten beiden Wochen immer vor oder nach der Vorlesung (Tutoriumsthema wechselt mit der Vorlesung)

- Teilnahme an jedem Thema ist sinnvoll, aber nicht verpflichtend
- Ziel: ca. 60 Teilnehmer pro Tutorium (es gibt Räume mit größerer Kapazität)

Programmierkurs: Tutorien-Einteilung

Verteilung der Teilnehmenden auf die Tutorien:

- Verfahren:
 - Ausgabe der Tutorienplätze nach Zeit
 - Es gibt begrenzte Plätze und Zeitfenster!
 - Nur belegte Tutorien finden statt!
 - Überblick über die Angebote gibt es in ISIS
- Melden Sie sich bitte über ISIS an.

Bei Problemen:

- ISIS-Forum
- Nur bei persönlichen Problemen:

E-Mail von <u>TU-E-Mail-Account</u> an <u>introprog@ods.tu-berlin.de</u> unter Angabe von Namen, Matrikelnummer und gitlab-Account senden.

Asking for help ...

Bei Problemen: ISIS-Forum, nur bei persönlichen Problemen: introprog@ods.tu-berlin.de

HOW TO WRITE AN E-MAIL TO YOUR INSTRUCTOR OR T.A.

WWW.PHDCOMICS.COM

Bewertung der Abgaben

- Fristen für die Abgaben:
 - Unser dringender Rat:
 So früh als möglich beginnen.
- Programmierkursblock 10 Aufgaben
 - Ausgabe nach jeder Vorlesung (ISIS)
- Semester 4 Aufgabenblöcke
 - Theorieaufgaben als ISIS-Aktivitäten
 - Ausgabe themenabhängig nach jeder Vorlesung auf ISIS
 - weitere Details sind auf ISIS veröffentlicht

Portfolioeilleistung	Frist	Punkte
Programmierkurs	14.11.2025	15
Abgabe Block A	21.11.2025	4,5
Abgabe Block B	12.12.2025	4,5
praktischer Test	17.01.2025	30
Abgabe Block C	23.01.2026	6,5
Abgabe Block D	07.02.2026	4,5
schriftlicher Test	23.02.2026	35

Abgaben – Wie?

- Alle Abgaben sind beliebig oft möglich.
- Eine Aufgabe ist bestanden, wenn alle Teilaufgaben bestanden sind (keine Teilpunkte).
- Es zählt <u>ohne Ausnahme</u> immer die letzte Abgabe, auch "versehentliche" oder "technisch problembehaftete" Abgaben.
- Erfolgreiche Provisionierung des TU-Accounts erforderlich.
- ISIS-Aktivitäten (Theorie)
 - werden nach der relevanten Vorlesung geöffnet
 - schließen und sind automatisch abgegeben mit Ablauf der Abgabefrist, Vorsicht beim Wiederöffnen von bereits abgegebenen ISIS-Aktivitäten.
- Programmieraufgaben
 - Werden nach der relevanten Vorlesung als zip / pdf in ISIS bereitgestellt.
 - Lösung kann in gitlab erst nach erfolgreichem "Check-In" (s. Blatt 10) an das Testsystem übergeben werden.
 - je Aufgabe ein separater Abgabebranch (dazu mehr auf Blatt 10)

Einzelabgabe – wichtige Hinweise

Einzelabgabe

- Jede/r Studierende erarbeitet eine eigene Lösung und gibt diese ab!
- Diskussionen von Lösungswegen, Herangehensweisen, Hilfestellung sind erlaubt und sogar erwünscht!
- Aber Weitergabe von Lösungsteilen ist keine Hilfestellung, da das nicht dazu führt, ein eigenes Verständnis der Herangehensweise zu entwickeln!

Regeln

- Zwei identische Abgabeteile
 - ⇒ Eine Abgabe ist ein Plagiat!
 - ⇒ Das ist ein **Täuschungsversuch**
 - ⇒ Beide Abgaben gelten als nicht bearbeitet, da generell der/die Originalautor/in nicht ermittelbar ist.
- Wiederholungsfall ⇒ Nichtbestehen wegen Täuschung
- ChatGPT ⇒ Nichtbestehen wegen Täuschung

Identische Abgabeteile

- Abgaben werden als identisch betrachtet, wenn sie sich, u.a., nur in den
 - Variablennamen
 - Kommentaren
 - Einrückungen

unterscheiden.

Hinweis: Wir benutzen Plagiatcheckertools! Zusammen mit manueller Überprüfung

Acknowledgements

- Vielen Dank an:
 - Tutor*innen des Programmierkurses aus den Fachgebieten MSC und ODS

Literaturempfehlung

- Modern C, J. Gustedt
 - <u>https://gustedt.gitlabpages.inria.fr/modern-c/</u>

- Beej's Guide to C Programming, Brian "Beej" Hall
 - <u>http://beej.us/guide/bgc/</u>

Weitere Literatur

- C
- Kernighan, Programmieren in C, 1990

Algorithmen und Datenstrukturen

- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C.: Introduction to Algorithms, 3. Aufl. MIT Press Cambridge, 2009
- Sedgewick, R.: Algorithms in C, Addison-Wesley, 2005
- Goodrich, M. Tamassia, R.: Data Structures and Algorithms in C++, John Wiley

Systemsoftware

Randal E. Bryant, David R. O'Hallaron "Computer Systems:
 A Programmer's Perspective", Prentice Hall

Ausblick

- VL 0 "Organisation und Inhalt": Ablauf der Vorlesung, Termine
- VL 1 "Hello World": "Lebenswichtiges", Programablauf, Programmierablauf, Kompilierung und Ausführung von Programmen
- VL 2 "Die ersten Schritte": Erstes C-Programm, Elementare C-Strukturen, Datentypen, Operatoren, Schleifen
- VL 3 "Kontrollstrukturen & Funktionen": Syntax, Semantik, bedingte Anweisungen, Blöcke, Sichtbarkeit
- VL 4 "Rekursive Funktionen & Bibliotheken": rekursive Funktionsaufrufe, Modularisierung
- VL 5 "Typen": Einfache und strukturierte Datentypen, Wertebereiche, Typendefinition
- VL 6 "Speicher und Adressen": Speicher, Pointer, Funktionsaufrufe "call by value" vs. "call by reference"
- VL 7 "Speicher und Arrays": Speicher, Arrays, mehrdimensionale Arrays, Arrays und Pointer
- VL 8 "Dynamische Speicherverwaltung": Speicherallokation, Fehlerbehandlung, Rückgabewerte, Arrays/Pointer/Adressen
- VL 9 "Strings, Kanäle, Git": Strings und Arrays, Zeichensätze, Stringlänge, Ein- und Ausgabe, Arbeiten mit git
- VL 10 "Debugging und Stack": Fehlverhalten/Bugs, Fehlersuche Strategien und Werkzeuge

Good luck and have a lot of fun!

