# Applications of Satellite Remote Sensing Products for Monitoring and Conservation

July 13, 2022

Ocean Data Bootcamp

WORKSHOP
OCEAN DATA BOOTCAMP

GESTÃO DE DADOS DE MONITORAMENTO COSTEIRO

Willem Klajbor
Senior Research Associate
CIMAS/AOML, NOAA





### Overview

- Introduction
- What do we mean by Remote Sensing?
- Why Satellite Remote Sensing?
  - For Monitoring
  - For Conservation
- Examples/Case Studies
- Questions



# What is it about the ocean that makes monitoring difficult?

## Ocean vs. Land

Land

Sea

Primary Producers (macro v. micro)





<u>Time</u> (persistent v. ephemeral)





**Boundaries** 

(static, strong v. dynamic, diffuse)





## What is Remote Sensing?

Remote sensing is the **science of obtaining information** about objects or areas from a distance, typically from aircraft or satellites.

#### Known Applications in:

- Coastal Environments
- Ocean Environments
- Hazard/Risk Assessments
- Natural Resource/Use Management





## In Oceanography

#### Sea Surface Temperature

#### Ocean Color

- Algal Blooms
- Chl-A
- Submerged Aquatic Vegetation



A unique opportunity to observe changes at multiple spatial and temporal scales!

Sea Surface Height

## Remote Sensing: Monitoring



Landsat 5, Salt Lake City, Utah, August 31, 1985.



Landsat 8, Salt Lake City, Utah, September 19, 2015.

## Remote Sensing: Conservation



#### Inputs:

Abiotic Data
Biotic Data
Species Occurrences
Plants
Animals

#### **Outputs:**

a 'best-fit mathematical relationship' between a response (dependent) variable — typically species occurrence — and a vector of predictor (independent) variables — typically environmental data (climatic, biophysical, geophysical, etc.)

## Considerations/Limitations

Scale mismatch

#### Resolution availability

- Spatial
- Temporal
- Processing effort



Ask yourself: "what information do we need to track the processes that affect our goals?"



High Spatial Resolution



Medium Spatial Resolution



Low Spatial Resolution

## Case Study: Dynamic Seascapes



## Case Study: Animal Telemetry Network





## Case Study: Mapping of Foundation Species



## Application: Indicator Development

Quantitative and/or qualitative measures of key components of the ecosystem

Remote sensing technology allows for:

- Long term monitoring
  - At multiple scales
- Can be directly in line with conservation and management goals

SST, Chl-a, Sea Level, Marine Heatwaves, algal blooms, species movement, submerged aquatic vegetation, etc

## Example: Remotely Sensed Indicators







## Questions?

Thank you

Willem.klajbor@noaa.gov

@willemklaj

























