$11a_{340} (K11a_{340})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{16} + 2u^{15} + \dots + b - 1, \ u^{17} - u^{16} + \dots + 2a + 6u, \ u^{18} - 3u^{17} + \dots - 4u + 2 \rangle$$

$$I_2^u = \langle u^{12}a + u^{11}a + \dots + b + a, \ u^{12} + u^{11} + \dots + a^2 - a,$$

$$u^{14} + u^{13} + 7u^{12} + 6u^{11} + 18u^{10} + 13u^9 + 19u^8 + 10u^7 + 4u^6 - 2u^5 - 4u^4 - 4u^3 + u + 1 \rangle$$

$$I_3^u = \langle b - 1, \ 2a + u, \ u^2 + 2 \rangle$$

$$I_1^v = \langle a, \ b + 1, \ v + 1 \rangle$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 49 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{16} + 2u^{15} + \dots + b - 1, \ u^{17} - u^{16} + \dots + 2a + 6u, \ u^{18} - 3u^{17} + \dots - 4u + 2 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{6} - 3u^{4} - 2u^{2} + 1 \\ u^{8} + 4u^{6} + 4u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{17} + \frac{1}{2}u^{16} + \dots + u^{2} - 3u \\ u^{16} - 2u^{15} + \dots - 3u^{2} + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{17} - \frac{3}{2}u^{16} + \dots + 2u - 2 \\ u^{14} - u^{13} + \dots + u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{3}{2}u^{17} - \frac{9}{2}u^{16} + \dots + 6u - 6 \\ -u^{15} + 3u^{14} + \dots - 12u^{2} + 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{17} + \frac{1}{2}u^{16} + \dots - u + 1 \\ u^{17} - 2u^{16} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{17} + \frac{1}{2}u^{16} + \dots - u + 1 \\ u^{17} - 2u^{16} + \dots + 2u - 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$2u^{17} - 6u^{16} + 26u^{15} - 50u^{14} + 118u^{13} - 156u^{12} + 242u^{11} - 212u^{10} + 202u^9 - 66u^8 - 28u^7 + 128u^6 - 124u^5 + 98u^4 - 14u^3 - 16u^2 + 22u - 12$$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7	$u^{18} - 3u^{17} + \dots - 4u + 2$
c_3	$u^{18} - 3u^{17} + \dots - 144u^2 + 16$
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11}$	$u^{18} + u^{17} + \dots - u - 1$
c ₈	$u^{18} + 3u^{17} + \dots + 24u + 34$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_7	$y^{18} + 17y^{17} + \dots - 32y + 4$
c_3	$y^{18} + 5y^{17} + \dots - 4608y + 256$
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11}$	$y^{18} - 19y^{17} + \dots - 13y + 1$
c ₈	$y^{18} + 5y^{17} + \dots - 4384y + 1156$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.536324 + 0.718976I		
a = -0.69596 + 1.40617I	-6.73513 + 4.54783I	-15.8301 - 1.8142I
b = 0.807347 + 0.538462I		
u = 0.536324 - 0.718976I		
a = -0.69596 - 1.40617I	-6.73513 - 4.54783I	-15.8301 + 1.8142I
b = 0.807347 - 0.538462I		
u = 0.775406 + 0.334408I		
a = 1.67997 - 0.31282I	-8.01786 - 9.07750I	-17.1458 + 6.7523I
b = -2.01461 + 0.21828I		
u = 0.775406 - 0.334408I		
a = 1.67997 + 0.31282I	-8.01786 + 9.07750I	-17.1458 - 6.7523I
b = -2.01461 - 0.21828I		
u = -0.809273		
a = -1.82368	-12.4435	-20.5970
b = 2.15054		
u = -0.363479 + 1.186890I		
a = 0.413807 + 1.111040I	-8.78390 + 4.21996I	-16.6895 - 3.5646I
b = -1.61785 + 1.19506I		
u = -0.363479 - 1.186890I		
a = 0.413807 - 1.111040I	-8.78390 - 4.21996I	-16.6895 + 3.5646I
b = -1.61785 - 1.19506I		
u = -0.042738 + 1.319350I		
a = -0.240648 - 0.315054I	3.51645 + 1.27379I	-7.18490 - 5.17198I
b = 0.458014 - 0.563844I		
u = -0.042738 - 1.319350I		
a = -0.240648 + 0.315054I	3.51645 - 1.27379I	-7.18490 + 5.17198I
b = 0.458014 + 0.563844I		
u = 0.550592 + 0.360230I		
a = -0.671067 - 0.760810I	1.75017 - 1.69601I	-7.17935 + 4.88688I
b = 0.463787 + 0.211202I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.550592 - 0.360230I		
a = -0.671067 + 0.760810I	1.75017 + 1.69601I	-7.17935 - 4.88688I
b = 0.463787 - 0.211202I		
u = 0.21362 + 1.42778I		
a = 0.548707 - 0.014230I	7.46429 - 4.53021I	-4.17935 + 4.22610I
b = -1.26192 - 0.75164I		
u = 0.21362 - 1.42778I		
a = 0.548707 + 0.014230I	7.46429 + 4.53021I	-4.17935 - 4.22610I
b = -1.26192 + 0.75164I		
u = 0.30373 + 1.44463I		
a = -0.438796 + 0.877410I	-2.32354 - 12.99620I	-12.9688 + 7.3705I
b = 2.64593 + 0.70371I		
u = 0.30373 - 1.44463I		
a = -0.438796 - 0.877410I	-2.32354 + 12.99620I	-12.9688 - 7.3705I
b = 2.64593 - 0.70371I		
u = 0.10546 + 1.52636I		
a = -0.085263 - 0.844947I	0.70132 + 2.48793I	-13.16040 - 3.49031I
b = 0.103194 + 0.177421I		
u = 0.10546 - 1.52636I		
a = -0.085263 + 0.844947I	0.70132 - 2.48793I	-13.16040 + 3.49031I
b = 0.103194 - 0.177421I		
u = -0.348560		
a = 0.802182	-0.533570	-18.7260
b = -0.318335		

$$I_2^u = \langle u^{12}a + u^{11}a + \dots + b + a, \ u^{12} + u^{11} + \dots + a^2 - a, \ u^{14} + u^{13} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{6} - 3u^{4} - 2u^{2} + 1 \\ u^{8} + 4u^{6} + 4u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{12}a - u^{11}a + \dots - au - a \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{13} - u^{12} + \dots + au + 2u^{2} \\ u^{12}a + u^{13} + \dots - 2u^{3} - u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{13} - u^{12} + \dots + au + 2u^{2} \\ u^{12}a + u^{13} + \dots + u^{2}a - u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{10} + 5u^{8} + \dots + a + 1 \\ -u^{12}a - u^{11}a + \dots - a + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{10} + 5u^{8} + \dots + a + 1 \\ -u^{12}a - u^{11}a + \dots - a + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= 4u^{12} + 4u^{11} + 24u^{10} + 20u^9 + 52u^8 + 32u^7 + 44u^6 + 8u^5 + 4u^4 - 16u^3 - 8u^2 - 4u - 10$$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7	$(u^{14} + u^{13} + \dots + u + 1)^2$
c_3	$(u^{14} - 3u^{13} + \dots - 7u + 3)^2$
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11}$	$u^{28} + u^{27} + \dots - 4u + 3$
c ₈	$(u^{14} - u^{13} + \dots + 3u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_7	$(y^{14} + 13y^{13} + \dots - y + 1)^2$
c_3	$(y^{14} + 5y^{13} + \dots + 23y + 9)^2$
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11}$	$y^{28} - 21y^{27} + \dots + 32y + 9$
c ₈	$(y^{14} + y^{13} + \dots - y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.135360 + 1.128160I		
a = -0.171103 + 1.160650I	-1.84948 - 2.19128I	-13.23919 + 3.85718I
b = 0.93567 + 2.14908I		
u = 0.135360 + 1.128160I		
a = 0.584560 - 0.465439I	-1.84948 - 2.19128I	-13.23919 + 3.85718I
b = -0.888411 - 0.124832I		
u = 0.135360 - 1.128160I		
a = -0.171103 - 1.160650I	-1.84948 + 2.19128I	-13.23919 - 3.85718I
b = 0.93567 - 2.14908I		
u = 0.135360 - 1.128160I		
a = 0.584560 + 0.465439I	-1.84948 + 2.19128I	-13.23919 - 3.85718I
b = -0.888411 + 0.124832I		
u = -0.681829 + 0.299736I		
a = 0.743891 - 0.831039I	-2.72606 + 5.07185I	-13.6715 - 6.3313I
b = -0.514590 + 0.182971I		
u = -0.681829 + 0.299736I		
a = -1.77480 - 0.38840I	-2.72606 + 5.07185I	-13.6715 - 6.3313I
b = 2.07865 + 0.29445I		
u = -0.681829 - 0.299736I		
a = 0.743891 + 0.831039I	-2.72606 - 5.07185I	-13.6715 + 6.3313I
b = -0.514590 - 0.182971I		
u = -0.681829 - 0.299736I		
a = -1.77480 + 0.38840I	-2.72606 - 5.07185I	-13.6715 + 6.3313I
b = 2.07865 - 0.29445I		
u = -0.373222 + 0.543854I		
a = 0.528563 - 0.787767I	-1.59516 - 1.40484I	-10.49073 + 0.52948I
b = -0.451286 + 0.309528I		
u = -0.373222 + 0.543854I		
a = 0.79795 + 1.69739I	-1.59516 - 1.40484I	-10.49073 + 0.52948I
b = -0.503932 + 0.498617I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.373222 - 0.543854I		
a = 0.528563 + 0.787767I	-1.59516 + 1.40484I	-10.49073 - 0.52948I
b = -0.451286 - 0.309528I		
u = -0.373222 - 0.543854I		
a = 0.79795 - 1.69739I	-1.59516 + 1.40484I	-10.49073 - 0.52948I
b = -0.503932 - 0.498617I		
u = 0.600586 + 0.155632I		
a = -1.18251 + 1.06646I	-4.65252 - 0.62859I	-18.3165 + 1.4225I
b = 0.532477 + 0.072927I		
u = 0.600586 + 0.155632I		
a = 2.04796 - 0.31700I	-4.65252 - 0.62859I	-18.3165 + 1.4225I
b = -2.31445 + 0.26373I		
u = 0.600586 - 0.155632I		
a = -1.18251 - 1.06646I	-4.65252 + 0.62859I	-18.3165 - 1.4225I
b = 0.532477 - 0.072927I		
u = 0.600586 - 0.155632I		
a = 2.04796 + 0.31700I	-4.65252 + 0.62859I	-18.3165 - 1.4225I
b = -2.31445 - 0.26373I		
u = 0.228017 + 1.369790I		
a = -0.332944 + 0.904226I	0.22261 - 3.62879I	-12.33383 + 2.63226I
b = 2.89859 + 1.41256I		
u = 0.228017 + 1.369790I		
a = -0.237127 - 0.803442I	0.22261 - 3.62879I	-12.33383 + 2.63226I
b = 0.288686 + 0.146900I		
u = 0.228017 - 1.369790I		
a = -0.332944 - 0.904226I	0.22261 + 3.62879I	-12.33383 - 2.63226I
b = 2.89859 - 1.41256I		
u = 0.228017 - 1.369790I		
a = -0.237127 + 0.803442I	0.22261 + 3.62879I	-12.33383 - 2.63226I
b = 0.288686 - 0.146900I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.14277 + 1.43183I		
a = 0.150261 - 0.788188I	4.53640 + 0.47055I	-6.67171 + 0.18349I
b = -0.187283 + 0.114420I		
u = -0.14277 + 1.43183I		
a = -0.428432 + 0.007713I	4.53640 + 0.47055I	-6.67171 + 0.18349I
b = 1.12407 - 0.96410I		
u = -0.14277 - 1.43183I		
a = 0.150261 + 0.788188I	4.53640 - 0.47055I	-6.67171 - 0.18349I
b = -0.187283 - 0.114420I		
u = -0.14277 - 1.43183I		
a = -0.428432 - 0.007713I	4.53640 - 0.47055I	-6.67171 - 0.18349I
b = 1.12407 + 0.96410I		
u = -0.26614 + 1.42034I		
a = 0.395255 + 0.876622I	2.77434 + 8.53123I	-9.27652 - 6.18031I
b = -2.82299 + 0.90423I		
u = -0.26614 + 1.42034I		
a = -0.621525 - 0.029773I	2.77434 + 8.53123I	-9.27652 - 6.18031I
b = 1.32479 - 0.63685I		
u = -0.26614 - 1.42034I		
a = 0.395255 - 0.876622I	2.77434 - 8.53123I	-9.27652 + 6.18031I
b = -2.82299 - 0.90423I		
u = -0.26614 - 1.42034I		
a = -0.621525 + 0.029773I	2.77434 - 8.53123I	-9.27652 + 6.18031I
b = 1.32479 + 0.63685I		

III. $I_3^u=\langle b-1,\; 2a+u,\; u^2+2\rangle$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u\\1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -\frac{1}{2}u\\ u+1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -\frac{1}{2}u\\1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u - 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u - 1\\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u - 1\\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_7 c_8	$u^2 + 2$		
c_3	u^2		
c_4, c_9	$(u-1)^2$		
c_5, c_6, c_{10} c_{11}	$(u+1)^2$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_7 c_8	$(y+2)^2$		
c_3	y^2		
c_4, c_5, c_6 c_9, c_{10}, c_{11}	$(y-1)^2$		

	Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.414210I		
a =	-0.707107I	1.64493	-12.0000
b =	1.00000		
u =	-1.414210I		
a =	0.707107I	1.64493	-12.0000
b =	1.00000		

IV.
$$I_1^v = \langle a, b+1, v+1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_7, c_8	u
c_4, c_9	u+1
c_5, c_6, c_{10} c_{11}	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_7, c_8	y
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11}$	y-1

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = -1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7	$u(u^{2}+2)(u^{14}+u^{13}+\cdots+u+1)^{2}(u^{18}-3u^{17}+\cdots-4u+2)$
c_3	$u^{3}(u^{14} - 3u^{13} + \dots - 7u + 3)^{2}(u^{18} - 3u^{17} + \dots - 144u^{2} + 16)$
c_4, c_9	$((u-1)^2)(u+1)(u^{18}+u^{17}+\cdots-u-1)(u^{28}+u^{27}+\cdots-4u+3)$
c_5, c_6, c_{10} c_{11}	$(u-1)(u+1)^{2}(u^{18}+u^{17}+\cdots-u-1)(u^{28}+u^{27}+\cdots-4u+3)$
c_8	$u(u^{2}+2)(u^{14}-u^{13}+\cdots+3u+1)^{2}(u^{18}+3u^{17}+\cdots+24u+34)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_7	$y(y+2)^{2}(y^{14}+13y^{13}+\cdots-y+1)^{2}(y^{18}+17y^{17}+\cdots-32y+4)$
c_3	$y^{3}(y^{14} + 5y^{13} + \dots + 23y + 9)^{2}(y^{18} + 5y^{17} + \dots - 4608y + 256)$
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11}$	$((y-1)^3)(y^{18} - 19y^{17} + \dots - 13y + 1)(y^{28} - 21y^{27} + \dots + 32y + 9)$
c_8	$y(y+2)^{2}(y^{14} + y^{13} + \dots - y + 1)^{2}$ $\cdot (y^{18} + 5y^{17} + \dots - 4384y + 1156)$