Revisiting Nearest Neighbors

k-Nearest Neighbour

- Given training data $\mathcal{D} = \{(x_1, y_1), ..., (x_N, y_N)\}$ and a test point
- Prediction: Look at the k most similar training examples

Class(P): Majority label among kNN

The k-NN Algorithm

- Amongst the simplest of all machine learning algorithms. No explicit training required to learn mapping function
- Compute the test point's distance from each training point
- Sort the distances in ascending (or descending) order
- Use the sorted distances to select the k nearest neighbors
- Use the majority rule (for classification) or averaging (for regression)

(a) 1-nearest neighbor

(b) 2-nearest neighbor

Components of a k-NN Classifier

The k hyperparameter

- ✓ Determines how large a neighbourhood should we consider?
- ✓ Decides the complexity of the hypothesis space
 - If k =1, every training example has its own neighbourhood
 - If k = N, the entire feature space is one neighbourhood

Distance Metric

- ✓ How do we measure distance between instances?
- ✓ Determines the layout of the example space

Decision Boundary of the Classifier

- The decision boundary is the line that separates the classes in the feature space
- It helps to visualize how examples will be classified for the entire feature space
- It helps to see the complexity of the learned model
- The more examples that are stored, the more complex the decision boundaries can become

K-NN – Smoother more continuous decision boundaries

Choice of k – Neighbourhood Size

Small k

- Creates many small regions for each class
- May lead to non-smooth decision boundaries and overfit

Large k

- Creates fewer larger regions
- Usually leads to smoother decision boundaries (caution: too smooth decision boundary can underfit)

Choosing k

- Often data dependent and heuristic based
- Use cross-validation (More on next class)
- Remember in general, a k too small or too big is bad!

Example results for k-NN

[Figures from Hastie and Tibshirani, Chapter 13]

7-Nearest Neighbors

K-NN: Computing the distances

- The k-NN algorithm requires computing distances of the test example each of the training examples
- Several ways to compute distances
- The choice depends on the type of the features in the data
- Euclidean distance commonly used in case of real-valued features

Euclidean Distance [L2]

$$d(P,Q)^{2} = \sum_{i=1}^{d} (p_{i} - q_{i})^{2}$$
$$d(P,Q)^{2} = (P - Q)^{T} (P - Q)$$

Iso-surfaces

Manhattan Distance [L1]

$$d(P,Q) = \sum_{i=1}^{d} |(p_i - q_i)|$$

Minkowski Distance

$$d(P,Q)^r = \sum_{i=1}^{d} |p_i - q_i|^r$$

Fig. by Lu et al., "The Minkowski Approach for Choosing the Distance Metric in Geographically Weighted Regression"

Mahalanobis Distance

$$d(P,Q)^2 = (P-Q)^T \mathbf{S}^{-1} (P-Q)$$

Hamming Distance

Cosine Distance

$$s(P,Q) = \cos \theta = \frac{\mathbf{P.Q}}{\|\mathbf{P}\| \|\mathbf{Q}\|}$$

$$d(P,Q) = 1 - s(P,Q)$$

Iso-surfaces

What is the inductive bias of k-NN?

- Nearby instances should have the same label
- All features are equally important
- Complexity is tuned by the k parameter

Weighted k-NN

- If there is a tie in majority labels, one can do weighted voting
 - Samples are weighted by inverse of distance to the point p

• e.g.,
$$w_i = \frac{1}{1 + d(p, x_i)}$$

- Example:
 - Blue:
 - Distance: 1
 - Weight: 0.5
 - Green:
 - Distances: 1.5, 1.6
 - Weight: 0.4 + 0.38 = 0.78
 - Red:
 - Distances: 1.1, 1.3
 - Weight: 0.48 + 0.43 = 0.91
- Class(p) = Red

k-Nearest Neighbour: Properties

- What's nice:
 - Simple and intuitive; easily implementable
 - Asymptotically consistent (a theoretical property)
 - With infinite training data and large enough k, k-NN approaches the best possible classifier
- What's not so nice:
 - Stores all the training data in memory even at test time
 - Can be memory intensive for large training datasets
 - An example if non-parametric, or memory/instance-based methods
 - Expensive at test time: O(ND) computations for each test point
 - Have to search through all training data to find nearest neighbours
 - \circ Distance computations with \mathcal{N} training points (D features each)
 - Sensitive to noisy features (Not 1-NN)
 - May perform badly in high dimensions (curse of dimensionality)

Data Reduction: Condensed NN

- Given a training set X, and the condensed set U ={},
 - 1. Choose an x whose nearest prototype in U has a different label than x.
 - 2. Move x from X to U
 - 3. Repeat until no more prototypes are added to U.
- Use U instead of X for classification.

Nearest Mean Classifier

• Represent each class by a single prototype; Its Mean

Fast / Approximate Nearest Neighbor

- Quick search for NN with possible errors
- KD Tree
 - Binary space-partitioning trees with axis-parallel splits.
 Each node is a hyperplane
- Ball Tree
 - Samples are grouped by spheres. Each node has a specific center and radius

Example: Digit Classification

Decent performance with lots of data

- Yann Le Cunn MNIST Digit Recognition
 - Handwritten Digits of 28 X 28-pixel, d = 784
 - 60,000 training samples and 10,000 test samples
- Nearest neighbour is competitive

lest Error Rate (%)	
Linear classifier (1-layer NN)	12.0
K-nearest-neighbors, Euclidean	5.0
K-nearest-neighbors, Euclidean, d	eskewed 2.4
K-NN, Tangent Distance, 16x16	1.1
K-NN, shape context matching	0.67
1000 RBF + linear classifier	3.6
SVM deg 4 polynomial	1.1
2-layer NN, 300 hidden units	4.7
2-layer NN, 300 HU, [deskewing]	1.6
LeNet-5, [distortions]	0.8
Boosted LeNet-4, [distortions]	0.7

Where on Earth is this Photo From?

Problem: Where was this picture taken?

Link to the original paper: http://graphics.cs.cmu.edu/projects/im2gps/im2gps.pdf

Where on Earth is this Photo From?

- Problem: Where was this picture taken?
 - Get 6M images from Flickr with GPS info
 - ➤ Represent each image with meaningful features
 - ➤ Do kNN!

Link to the original paper: http://graphics.cs.cmu.edu/projects/im2gps/im2gps.pdf