## Lic. em Ciências da Computação e Lic. em Matemática 2023/2024 Teste de Álgebra Universal e Categorias 3 Abril 2024

| AT AT       |  |  |  |
|-------------|--|--|--|
| Nome e No.: |  |  |  |

Este teste é constituído por 3 grupos. O grupo I é para responder neste enunciado. Os grupos II e III devem ser respondidos na folha de teste providenciada. Duração: 1h45m minutos.

Em todo este teste,  $\mathcal{N}$  denota a álgebra  $(\mathbb{N}_0,+,0)$  de tipo 2,0;  $M_4$  denota o conjunto  $\{0,a,b,c,d,1\}$ ,  $N_5$  denota o conjunto  $\{0,a,b,c,1\}$ ; e  $\mathcal{M}_4=(M_4,\leq)$  e  $\mathcal{N}_5=(N_5,\leq')$  são os reticulados dados respectivamente pelos dois diagramas seguintes.





Ι

- 1. Diga se cada uma das seguintes 6 afirmação é verdadeira ou falsa. Cada resposta correcta vale 1 valor, cada resposta errada vale -0.25 valores, a ausência de resposta vale 0 valores.
  - a) Para toda a álgebra  $\mathcal{A}, \emptyset$  é subuniverso de  $\mathcal{A}.$   $\square$   $\square$
  - b)  $Sg^{\mathcal{N}_5}(\{a,c\}) = N_5.$
  - c) As cadeias são reticulados distributivos.  $\square$   $\square$
  - d)  $\mathcal{M}_4$  é um reticulado distributivo.  $\square$   $\square$
  - e) O conjunto  $\{2n|n\in\mathbb{N}_0\}$  é um subuniverso de  $\mathcal{N}$ .  $\square$
  - f)  $\mathcal{N}_5$  é um reticulado completo.  $\square$   $\square$

Para cada uma das seguintes afirmações, escreva <u>duas linhas</u> para justificar a veracidade ou falsidade das mesmas. (2 valores cada).

- 2. A ordem induzida por  $\mathcal{M}_4$  em  $\{a,b,c,d\}$  é uma cadeia.
- 3. Existe um mergulho  $\alpha: \mathcal{M}_4 \to \mathcal{N}_5$ .
- 4. Existe  $X \subseteq \mathbb{N}_0$  tal que  $Sg^{\mathcal{N}}(X) = \mathbb{N}_0$ .
- 5. b é um elemento compacto de  $\mathcal{N}_5$ .

## III

Demonstre as seguintes afirmações (2 valores cada).

- 6. Seja  $\mathcal Q$  um c. p. o.  $(Q,\leq)$  admitindo máximo  $1=\max Q$ , e seja  $\alpha:Q\to Q$  a aplicação constante  $\alpha(x)=1$ . A aplicação  $\alpha$  é um operador de fecho em  $\mathcal Q$ .
- 7. Sejam  $\mathcal{R}=(R;\wedge,\vee)$  e  $\mathcal{R}'=(R;\wedge',\vee')$  reticulados, S um sub-universo de  $\mathcal{R}$  e  $h:R\to R'$  um homomorfismo. Mostre que  $h(S)=\{h(x)|x\in S\}$  é um sub-universo de  $\mathcal{R}'$ .
- 8. Seja  $\mathcal{R}=(R;\wedge,\vee)$  um reticulado. Mostre que  $\mathcal{R}$  é modular sse, para todo  $x,y,z\in R,\,(x\wedge y)\vee(y\wedge z)=y\wedge((x\wedge y)\vee z).$