1. Să se determine abscisele punctelor de inflexiune ale funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \ln(x^2 + 1)$. (4 pct.) a) $\{-1\}$; b) $\{-1,1\}$; c) $\{0\}$; d) nu există; e) $\{0,1\}$; f) $\{1\}$.

Soluție.
$$f'(x) = \frac{2x}{x^2 + 1}$$
; $f''(x) = \frac{2(x^2 + 1) - 2x \cdot 2x}{(x^2 + 1)^2} = \frac{2(1 - x^2)}{(x^2 + 1)^2}$, deci $f''(x) = 0 \Leftrightarrow x \in \{-1, 1\}$.

2. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \arccos \frac{1-x^2}{1+x^2} + 2 \arctan x$. Dacă A este imaginea funcției f, iar F este primitiva lui f care se anulează în x = 0, atunci: (4 pct.)

a)
$$A = [-\pi, \pi), F(1) = \pi + \ln 2$$
; b) $A = [-\pi, 2\pi), F(1) = \pi - \ln \sqrt{2}$; c) $A = [0, \pi], F(1) = \pi + \ln 4$;

d)
$$A = [0, \pi), F(1) = \pi - \ln 2$$
; e) $A = (-\pi, \pi], F(1) = \pi + \ln \sqrt{2}$; f) $A = [0, 2\pi), F(1) = \pi - 2 \ln 2$.

Soluție. Pentru a afla A = Im f, observăm că

$$f'(x) = \frac{2x}{(1+x^2)|x|} + \frac{2}{1+x^2} = \begin{cases} \frac{4}{1+x^2}, & x > 0\\ 0, & x < 0. \end{cases}$$

Deci pe intervalul $(-\infty,0)$ funcția f este constantă, $f(x)=f(-1)=0, \ \forall x<0$, iar pe intervalul $(0,\infty)$, f este strict crescătoare. De asemenea, f(0)=0 și $\lim_{x\to\infty}f(x)=\pi+\pi=2\pi$, deci $\mathrm{Im}\, f=[0,2\pi)$.

Se observă că se cere F(1), deci vom studia forma primitivelor lui f pentru $x \in (0, +\infty)$. În acest caz integrând prin părți obținem:

$$F(x) = \int f(x)dx = \int \arccos \frac{1 - x^2}{1 + x^2} dx + 2 \int \arctan x dx =$$

$$= x \arccos \frac{1 - x^2}{1 + x^2} - \underbrace{\int x \left(\arccos \frac{1 - x^2}{1 + x^2}\right)' dx}_{I} + 2x \arctan x - \underbrace{\int 2x \cdot \frac{1}{1 + x^2} dx}_{\ln(x^2 + 1)},$$

unde

$$I = \int x \left(\arccos\frac{1-x^2}{1+x^2}\right)' dx = \int x \cdot \frac{2x}{(1+x^2)|x|} = \int \frac{2x}{1+x^2} = \ln(x^2+1),$$

deci

$$F(x) = x \arccos \frac{1 - x^2}{1 + x^2} - 2\ln(x^2 + 1) + 2x \arctan x + C, \ \forall x > 0.$$

Însă F este continuă pe \mathbb{R} , deci în x=0 avem $F(0)=\lim_{x\searrow 0}F(x)=C$, iar condiția din enunț conduce la egalitatea C=0. Deci primitiva căutată are pentru x>0 forma

$$F(x) = x \arccos \frac{1 - x^2}{1 + x^2} - 2\ln(x^2 + 1) + 2x \arctan x, \ \forall x > 0,$$

şi prin urmare $F(1) = \frac{\pi}{2} - 2 \ln 2 + \frac{2\pi}{4} = \pi - 2 \ln 2$.

3. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{2}{x^2 + 1}$. Să se determine primitiva funcției f care se anulează în x = 0. (4 pct.)

a)
$$\frac{x}{x^2+1}$$
; b) $\frac{1}{x^3+x}$; c) 2 arctg x; d) 2 arcsin x; e) x^2 ; f) $\ln(x^2+1)$.

Soluție.
$$F(x) = \int \frac{2}{x^2 + 1} dx = 2 \arctan x + C$$
; $F(0) = C = 0$, deci $F(x) = 2 \arctan x$.

- 4. Fie legea de compoziție definită pe \mathbb{R} prin $x \star y = x(1-y) + y(1-x)$. Să se determine elemetul neutru. (4 pct.)
 - a) 2; b) -2e; c) 0; d) 1; e) nu există; f) -1.

Soluție. Se verifică ușor că legea este comutativă. Atunci

$$x * e = x \Leftrightarrow x (1 - e) + e (1 - x) = x \Leftrightarrow e (1 - 2x) = 0, \forall x \in \mathbb{R}.$$

Rezultă e = 0.

5. Fie funcția $f: \mathbb{C} \to \mathbb{C}$, $f(z) = 1 + z + z^2 + z^3 + z^4$. Să se calculeze f(i). (4 pct.) a) 1 + i; b) 0; c) i; d) 1 - i; e) -i; f) 1.

Solutie. f(i) = 1 + i - 1 - i + 1.

6. Fie $A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$. Să se determine matricea $B = \frac{1}{2} (3I_2 - A)$, unde I_2 este matricea unitate de ordinul al doilea. (4 pct.)

$$a) \left(\begin{array}{cc} 3 & 0 \\ 0 & 1 \end{array} \right); \, b) \left(\begin{array}{cc} 1 & 2 \\ 1 & 0 \end{array} \right); \, c) \left(\begin{array}{cc} 3 & 3 \\ 0 & -1/2 \end{array} \right); \, d) \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right); \, e) \left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array} \right); \, f) \left(\begin{array}{cc} 1 & 0 \\ -1/2 & 1/2 \end{array} \right).$$

Soluţie. Obţtinem succesiv $B=\left(\begin{array}{cc} 3/2 & 0 \\ 0 & 3/2 \end{array}\right)-\left(\begin{array}{cc} 1/2 & 0 \\ 1/2 & 1 \end{array}\right)=\frac{1}{2}\left(\begin{array}{cc} 2 & 0 \\ -1 & 1 \end{array}\right)=\left(\begin{array}{cc} 1 & 0 \\ -1/2 & 1/2 \end{array}\right).$

7. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} \min \left\{ \ln |x|, e^{x+1} - 1 \right\}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Dacă n este numărul punctelor de maxim local ale lui f și k numărul asimptotelor graficului lui f, atunci: (4 pct.)

a) n + k = 2; b) k - n = 2; c) n + k = 4; d) toate celelalte afirmații sunt false; e) n + k = 3; f) k - n = 1.

Soluţie. Studiind graficele funcţiilor $\ln |x|$ şi $e^{x+1} - 1$, obţinem $f(x) = \begin{cases} e^{x+1} - 1, & x \le -1 \\ \ln(-x), & -1 < x < 0 \\ 0, & x = 0 \\ \ln x, & x > 0. \end{cases}$

Funcția f admite asimptota orizontală y=-1 la $-\infty$ asimptotă verticală bilaterală x=0, deci k=2. Pe de altă parte, punctele (-1,0) și (0,0) sunt maxime locale, deci n=2; rezultă n+k=2+2=4.

- 8. Să se rezolve ecuația $3^{x^2} = 9^x$. (4 pct.)
 - a) $\{2\}$; b) $\{1\}$; c) $\{0\}$; d) \emptyset ; e) $\{0,1\}$; f) $\{0,2\}$.

Soluţie. $3^{x^2} = 9^x \Leftrightarrow x^2 = 2x \Leftrightarrow x(x-2) = 0 \Leftrightarrow x \in \{0, 2\}.$

- 9. Să se rezolve inecuația $\frac{x+1}{2} \leq \frac{2x}{3}$. (4 pct.)
 - a) \emptyset ; b) \mathbb{R} ; c) $(-\infty, 3]$; d) $(-\infty, 3)$; e) $[3, \infty)$; f) $(3, \infty)$.

Soluție. Inecuația se rescrie $\frac{3x+3-4x}{6} \le 0 \Leftrightarrow -x \le -3 \Leftrightarrow x \ge 3$. Rezulta $x \in [3,\infty)$.

- 10. Să se determine mulțimea valorilor parametrului real λ pentru care sistemul $\begin{cases} x+y=1 \\ x+\lambda y=2 \end{cases}$ este compatibil determinat. (4 pct.)
 - a) $(-\infty, 1)$; b) $(1, \infty)$; c) $\mathbb{R} \setminus \{1\}$; d) $\{1\}$; e) \mathbb{R} ; f) \emptyset .

Soluție. Condiția $\begin{vmatrix} 1 & 1 \\ 1 & \lambda \end{vmatrix} \neq 0$ se rescrie $\lambda \neq 1$, deci $\lambda \in \mathbb{R} \setminus \{1\}$.

11. Fie şirul $a_n = \sum_{k=3}^n \frac{k}{2^{k-3}}$. Să se determine $\lim_{n \to \infty} a_n$. (4 pct.)

a) 9; b) 10; c)
$$8\sqrt{2}$$
; d) $\frac{15}{2}$; e) 7; f) 8.

Soluţie. Avem
$$a_n = \sum_{k=3}^n \frac{k}{2^{k-3}} = 4\sum_{k=3}^n k\left(\frac{1}{2}\right)^{k-1} = 4S'\left(\frac{1}{2}\right)$$
, unde $S(x) = \sum_{k=3}^n x^k = x^3 \frac{x^{n-2}-1}{x-1} = \frac{x^{n+1}-x^3}{x-1}$. Obţinem

$$S'(x) = \frac{nx^{n+1} - (n+1)x^n - 2x^3 + 3x^2}{(x-1)^2} \implies S'\left(\frac{1}{2}\right) = \frac{\frac{n}{2^{n+1}} - \frac{n+1}{2^n} - \frac{1}{4} + \frac{3}{4}}{\frac{1}{4}} = 4\left(\frac{n}{2^{n+1}} - \frac{n+1}{2^n} + \frac{1}{2}\right).$$

Prin urmare $S'\left(\frac{1}{2}\right) = 2 - \frac{n+2}{2^{n-1}}$, deci $a_n = 4S'\left(\frac{1}{2}\right) = 8 - \frac{n+2}{2^{n-3}}$ și deci $\lim a_n = 8$.

12. Să se determine mulțimea soluțiilor ecuației $\begin{vmatrix} 3 & 3 & x \\ 1 & x & 1 \\ 1 & 0 & x \end{vmatrix} = 2. \ (\textbf{4 pct.})$

$$a) \ \left\{1,\frac{1}{2}\right\}; \ b) \ \{1,-1\}; \ c) \ \{3\}; \ d) \ \{1,2\}; \ e) \ \varnothing \ ; \ f) \ \{1,3\}.$$

Soluţie. Calculăm determinantul,
$$\begin{vmatrix} 3 & 3 & x \\ 1 & x & 1 \\ 1 & 0 & x \end{vmatrix} = \begin{vmatrix} 0 & 3 & -2x \\ 0 & x & 1-x \\ 1 & 0 & x \end{vmatrix} = 2x^2 - 3x + 3 = 2.$$

Ecuația se rescrie $2x^2 - 3x + 1 = 0$, deci $x \in \{1, \frac{1}{2}\}$.

13. Să se calculeze $\lim_{x\to 1} \frac{x^2-1}{x^4-1}$. (6 pct.)

a)
$$\infty$$
; b) $\frac{1}{4}$; c) 1; d) 0; e) 2; f) $\frac{1}{2}$.

Soluție. Simplificând fracția prin $x^2 - 1$, limita se rescrie $\lim_{x \to 1} \frac{1}{x^2 + 1} = \frac{1}{2}$.

14. Să se determine numărul real m pentru care polinomul $f = X^2 - 4X + m$ are rădăcină dublă. (6 pct.) a) -4; b) 0; c) 2; d) 1; e) -2; f) 4.

Soluție. Anularea discriminantului ecuațtiei de gradul doi asociate f=0 conduce la $\Delta\equiv 16-4m=0 \Leftrightarrow m=4.$

15. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^3 + x, & \text{dacă } x \leq 1 \\ mxe^{x-1}, & \text{dacă } x > 1 \end{cases}$ să fie continuă pe \mathbb{R} . (6 pct.)

a)
$$e^{-1}$$
; b) 4; c) 2; d) 1; e) e ; f) nu există.

Soluţie.
$$\lim_{\substack{x \to 1 \\ x < 1}} x^3 + x = f(1) = \lim_{\substack{x \to 1 \\ x > 1}} mxe^{x-1} \Leftrightarrow m = 2.$$

16. Să se calculeze
$$\int_0^1 (x^3 + x^2) dx$$
. (6 pct.)

a)
$$\frac{5}{6}$$
; b) 5; c) $\frac{7}{12}$; d) 2; e) 6; f) $\frac{1}{5}$.

Soluție.
$$\int_0^1 (x^3 + x^2) dx = \left(\frac{x^4}{4} + \frac{x^3}{3} \right) \Big|_0^1 = \frac{1}{4} + \frac{1}{3} = \frac{3+4}{12} = \frac{7}{12}.$$

- 17. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x$. Să se calculeze f'(0). (8 pct.)
 - a) nu există; b) 0; c) 2; d) 3; e) 1; f) e.

Soluţie.
$$f'(x) = xe^x + e^x$$
, deci $f'(0) = 1$.

- 18. Să se rezolve ecuația $x^2 5x + 4 = 0$. (8 pct.)
 - a) $\{1\}$; b) $\{-1, -4\}$; c) $\{4, 5\}$; d) \emptyset ; e) $\{0\}$; f) $\{1, 4\}$.

Soluţie.
$$x^2 - 5x + 4 = 0 \Leftrightarrow x \in \left\{ \frac{5 \pm \sqrt{25 - 16}}{2} \right\} = \{1, 4\}.$$