Lógica

Mauro Polenta Mora

Ejercicio 1

Consigna

Considere el conjunto \mathbb{R} de los números reales; la lista de subconjuntos de \mathbb{R} de la columna izquierda; y los conjuntos de reglas de la columna derecha.

- 1. Indique cuales subconjuntos satisfacen cuales conjuntos de reglas.
- 2. Para cada conjunto de reglas, indicar que conjunto definen.

Resolución (parte 1)

Conjunto A: N

Conjunto de reglas 1: 1. $2 \in S$: Cumple con este punto porque $2 \in \mathbb{N}$ 2. Si $n \in S$, entonces $n+2 \in S$: Cumple con este punto, porque la suma entre naturales es cerrada; es decir que si a cualquier natural le sumo 2 en particular, voy a obtener otro natural

Conjunto de reglas 2: 1. $3 \in S$: Cumple con este punto porque $3 \in \mathbb{N}$ 2. Si $n \in S$, entonces $n+1 \in S$: Cumple con este punto por el mismo razonamiento anterior. 3. Si $n \in S$, entonces $n-1 \in S$: No cumple: n=0 es un contraejemplo

Conjunto de reglas 3:

Se ignorará de aquí en adelante porque tiene una regla sola que ya probamos en el conjunto 3.

Conjunto B: \mathbb{Z}

Conjunto de reglas 1: 1. $2 \in S$: Cumple con este punto porque $2 \in \mathbb{Z}$ 2. Si $n \in S$, entonces $n+2 \in S$: Cumple con este punto, porque la suma entre enteros es cerrada; es decir que si a cualquier entero le sumo 2 en particular, voy a obtener otro entero

Conjunto de reglas 2: 1. $3 \in S$: Cumple con este punto porque $3 \in \mathbb{Z}$ 2. Si $n \in S$, entonces $n+1 \in S$: Cumple con este punto por el mismo razonamiento anterior. 3. Si

conjuntos y reglas

Figure 1: conjuntos y reglas

 $n \in S$, entonces $n-1 \in S$: Cumple con este punto por el mismo razonamiento anterior, -1 es un entero, entonces la suma con otro entero será un entero.

Conjunto C: $\{2n+1:n\in\mathbb{N}\}$

Conjunto de reglas 1: 1. $2 \in S$: No cumple con este punto, porque el conjunto C es el conjunto de los impares, y 2 es par 2. Si $n \in S$, entonces $n+2 \in S$: Cumple con este punto, porque la suma entre un par e impar, siempre me da un impar, en particular, 2 es par; mientras que $n \in C$ tiene que ser de la forma 2k+1 para algún $k \in N$, es decir: impar

Conjunto de reglas 2: 1. $3 \in S$: Cumple con este punto porque 3 es impar 2. Si $n \in S$, entonces $n+1 \in S$: No cumple con este punto; pues $3 \in C$ pero $4 \notin C$ 3. Si $n \in S$, entonces $n-1 \in S$: No cumple con este punto; pues $3 \in C$ pero $2 \notin C$

Conjunto D: $\{\pi + k : k \in \mathbb{Z}\}$

Conjunto de reglas 1: 1. $2 \in S$: No cumple con este punto, porque al sumar o restar un entero a π , no puedo obtener 2 2. Si $n \in S$, entonces $n+2 \in S$: Cumple con este punto, porque si $n \in D$ entonces $n = \pi + k$ para algún $k \in \mathbb{Z}$; sumando 2 a este número, puedo llamar k' = k+2, obteniendo entonces que $n+2 = \pi + k'$. Como k' es entero por construcción, entonces podemos decir que $n+2 \in D$

Conjunto de reglas 2: 1. $3 \in S$: No cumple con este punto por el mismo razonamiento anterior (regla 1) 2. Si $n \in S$, entonces $n+1 \in S$: Cumple con este punto por el mismo razonamiento anterior (regla 2) 3. Si $n \in S$, entonces $n-1 \in S$: Cumple con este punto por el mismo razonamiento anterior (regla 2)

Observación: Varios de estos razonamientos son verdaderos porque la suma de enteros es cerrada, y para obtener el siguiente elemento (o anterior) sumamos (o restamos) una cantidad entera

Resolución (parte 2)

Conjunto de reglas 1

El conjunto construido por estas reglas es:

$$A: \{2n: n \in \mathbb{N} - \{0\}\}$$

Conjunto de reglas 2

El conjunto construido por estas reglas es: \mathbb{Z}

Conjunto de reglas 3

Este conjunto de reglas no construye ningún conjunto de forma inductiva, porque no tenemos elementos base.