Криволинейни интеграли

1. Криволинейни интеграли от първи род

 $\mathbf{B} \mathbb{R}^2$

Нека е дадена кривата $\Gamma : \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$, $\alpha \le t \le \beta$, където $\varphi(t)$ и $\psi(t)$ са диференцуеми функции и нека f(x,y) е непрекъсната функция, дефинирана върху Γ .

В сила е равенството

$$\int_{\Gamma} f(x,y)ds = \int_{\alpha}^{\beta} f(\varphi(t),\psi(t))\sqrt{(\varphi'(t))^2 + (\psi'(t))^2} dt$$

Нека е дадена кривата $\Gamma : \begin{cases} x = \varphi(t) \\ y = \psi(t), & \alpha \leq t \leq \beta, \text{ където } \varphi(t), & \psi(t) \text{ и } \theta(t) \text{ са } z = \theta(t) \end{cases}$

диференцуеми функции и нека f(x, y, z) е непрекъсната функция, дефинирана върху Γ .

В сила е равенството

$$\int_{\Gamma} f(x, y, z) ds = \int_{0}^{\beta} f(\varphi(t), \psi(t), \theta(t)) \sqrt{(\varphi'(t))^{2} + (\psi'(t))^{2} + (\theta'(t))^{2}} dt$$

Криволинейните интеграли от първи род не зависят от посоката, по която се обхожда кривата.

Приложения.

Дължина на крива. Дължината на кривата Γ е равна на $\int\limits_{\Gamma} ds$.

Маса на линия. Ако $\, \rho(x,y) \,$ е плътността във всяка точка на кривата $\, \Gamma \,$, то масата на кривата е $\, \int\limits_{\Gamma} \rho(x,y) ds \, .$

Криволинейни интеграли от втори род

 $\mathbf{B} \mathbb{R}^2$

Нека е дадена кривата $\Gamma : \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$, $\alpha \le t \le \beta$, където $\varphi(t)$ и $\psi(t)$ са диференцуеми функции и нека P(x,y) и Q(x,y) са непрекъснати функции, дефинирани върху Γ .

В сила е равенството

$$\int_{\Gamma} P(x,y)dx + Q(x,y)dy = \int_{\alpha}^{\beta} [P(\varphi(t),\psi(t))\varphi'(t) + Q(\varphi(t),\psi(t))\psi'(t)]dt.$$
B \mathbb{R}^3

Нека е дадена кривата $\Gamma : \begin{cases} x = \varphi(t) \\ y = \psi(t), & \alpha \leq t \leq \beta, \text{ където } \varphi(t), & \psi(t) \text{ и } \theta(t) \text{ са } z = \theta(t) \end{cases}$

диференцуеми функции и нека P(x,y,z) , Q(x,y,z) и R(x,y,z) са непрекъснати функции, дефинирани върху Γ .

В сила е равенството

$$\int_{\Gamma} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =$$

$$= \int_{\Gamma}^{\beta} [P(\varphi(t), \psi(t), \theta(t)) \varphi'(t) + Q(\varphi(t), \psi(t), \theta(t)) \psi'(t) + R(\varphi(t), \psi(t), \theta(t)) \psi'(t)] dt$$

Криволинейните интеграли от втори род зависят от посоката, по която се обхожда кривата .

2. Независимост от пътя на криволинейни интеграли от втори вид.

Всяка затворена крива $\Gamma : \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$, $\alpha \le t \le \beta$, където $\varphi(t)$ и $\psi(t)$ са непрекъснати, разделя равнината на две части –едната ограничена, а другата неограничена. Ограничената част се нарича вътрешна част

Една област F се нарича **едносвързана**, ако всяка подобласт U вътрешна относно произволна крива $\Gamma \subset F$, се съдържа в F .

С други думи една област е едносвързана ако в нея няма "дупки".

Точката $A(\varphi(\alpha), \psi(\alpha))$ се нарича **начало**, а точката $B(\varphi(\beta), \psi(\beta))$ – край на кривата $\Gamma: \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$, $\alpha \leq t \leq \beta$.

Казваме, че $\int_{\Gamma} P(x,y) dx + Q(x,y) dy$ не зависи от пътя, а ако стойността не интеграла е един същ за всяка крива с начало $A(\varphi(\alpha), \psi(\alpha))$ и $B(\varphi(\beta), \psi(\beta))$, независимо от функциите $x = \varphi(t)$ и $y = \psi(t)$.

Теорема. Необходимо и достатъчно условие за независимост на криволинейния интеграл $\int_{\Gamma} P(x,y) dx + Q(x,y) dy$ в едносвързана област е $P_y^{\ \prime} = Q_x^{\ \prime}$.

В този случай съществува функция F(x,y), такава че $F_x^{\ \prime}(x,y) = P(x,y)$ и $F_y^{\ \prime}(x,y) = Q(x,y)$ и $\int_\Gamma P(x,y) dx + Q(x,y) dy = F(B) - F(A)$.

Ако кривата $\Gamma: \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$, $\alpha \le t \le \beta$ е затворена (т.е. началото и края и съвпадат) и върху кривата няма точки на самопресичане (т.е. точки, които се получават за различни

стойности на t) и кривата се описва в посока обратна на часовниковата стрелка обикновено криволинейния интеграл се означава с

$$\oint_{\Gamma} P(x,y)dx + Q(x,y)dy.$$

Задача 1. Да се пресметне интегралът $\int\limits_{\Gamma} \sqrt{y} ds$, където

$$\Gamma : \begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}, \quad 0 \le t \le 2\pi, a > 0$$
 (циклоида).

Решение. Съгласно формулата $\int_{\Gamma} f(x,y) ds = \int_{\alpha}^{\beta} f(\varphi(t), \psi(t)) \sqrt{(\varphi'(t))^2 + (\psi'(t))^2} dt$

имаме

$$\int_{\Gamma} \sqrt{y} ds = \int_{0}^{2\pi} \sqrt{a(1-\cos t)} \sqrt{[a(t-\sin t)']^{2} + [a(1-\cos t)']^{2}} dt =$$

$$= \sqrt{a^{3}} \int_{0}^{2\pi} \sqrt{(1-\cos t)} \sqrt{[(1-\cos t)]^{2} + [(\sin t)]^{2}} dt =$$

$$= \sqrt{a^{3}} \int_{0}^{2\pi} \sqrt{(1-\cos t)} \sqrt{2-2\cos t} dt = \sqrt{2a^{3}} \int_{0}^{2\pi} (1-\cos t) dt = 2\pi \sqrt{2a^{3}}.$$

Задача 2. Да се пресметне интегралът $\int_{\Gamma} \frac{z^2 ds}{x^2 + y^2}$, където

$$\Gamma$$
: $\begin{cases} x = a \cos t \\ y = a \sin t & 0 \le t \le 2\pi, a > 0 \text{ (витлова линия)}. \\ z = at \end{cases}$

Решение. Съгласно формулата

$$\int_{\Gamma} \frac{z^2 ds}{x^2 + y^2} = \int_{0}^{2\pi} \frac{(at)^2}{(a\cos t)^2 + (a\sin t)^2} \sqrt{[(a\cos t)']^2 + [(a\sin t)']^2 + [(at)']^2} dt =$$

$$= \int_{0}^{2\pi} t^{2} \cdot a\sqrt{1+1} dt = a \frac{(2\pi)^{3} \sqrt{2}}{3} = \frac{8\sqrt{2}a\pi^{3}}{3}.$$

Задача 3. Намерете масата на частта от окръжност, разположена в първи квадрант, ако плътността във всяка точка е равна на ординатата на точката.

Решение. Параметричното представяне на частта от окръжността в първи квадрант е $\Gamma : \begin{cases} x = a \cos t \\ y = a \sin t \end{cases}$, $0 \le t \le \frac{\pi}{2}$. Съгласно условието плътността е $\rho(x, y) = y$.

Тогава

$$m = \int_{\Gamma} \rho(x, y) ds = \int_{\Gamma} y ds = \int_{0}^{\frac{\pi}{2}} a \sin t \sqrt{[(a \cos t)']^{2} + [(a \sin t)']^{2}} dt =$$

$$= a^{2} \int_{0}^{\frac{\pi}{2}} \sin t dt = a^{2}.$$

Задача 4. Дадени са точките A(1,1), B(2,3) и C(2,1) Ла са пресметне интеграца $\int xydx + (y-x)dy$

Да са пресметне интеграла $\int_{\Gamma} xydx + (y-x)dy$

б) където Γ е начупената линия ACB.

Решение. а) Уравнението на правата AB е

$$\frac{y-1}{3-1} = \frac{x-1}{2-1} \Leftrightarrow y-1 = 2x-2 \Leftrightarrow y = 2x-1$$
.

Тогава параметричното представяне на отсечката AB е $AB: \begin{cases} x=t \\ y=2t-1 \end{cases}$, $1 \le t \le 2$ и съгласно формулата

$$\int_{\Gamma} xydx + (y-x)dy = \int_{1}^{2} [t(2t-1)t' + (2t-1-t)(2t)']dt =$$

$$= \int_{1}^{2} [t(2t-1) + 2(t-1)]dt = \int_{1}^{2} (2t^{2} + t - 2)dt = (\frac{2t^{3}}{3} + \frac{t^{2}}{2} - 2t)|_{1}^{2} = \frac{25}{6}.$$

б) Ще разгледаме двете отсечки $AC: \begin{cases} x=t \\ y=1 \end{cases}$, $1 \le t \le 2$ и $CB: \begin{cases} x=2 \\ y=t \end{cases}$, $1 \le t \le 3$

Тогава
$$\int_{\Gamma} xydx + (y-x)dy = \int_{AC} xydx + (y-x)dy + \int_{CB} xydx + (y-x)dy =$$

$$= \int_{1}^{2} (t.1t' + (1-t).0')dt + \int_{1}^{3} (2t.2' + (t-2)t')dt =$$

$$= = \int_{1}^{2} tdt + \int_{1}^{3} (t-2)dt = \frac{t^{2}}{2} \Big|_{1}^{2} + \frac{(t-2)^{2}}{2} \Big|_{1}^{3} = \frac{3}{2}.$$

Задача 5. Проверете, че криволинейният интеграл

$$\int_{\mathbb{R}} (\sin y + y \sin x + 2x) dx + (x \cos y - \cos x - 3y^2) dy$$

не зависи от пътя и пресметнете стойността му по частично гладка крива с начало $A(0,\pi)$ и край $B(\frac{\pi}{2},3\pi)$.

Решение. Тъй като функцията е дефинирана в цялата равнина ,то дефинирана в едносвързано множество и за да не зависи от пътя трябва да проверим, че $P_y^{\;\prime} = Q_x^{\;\prime}$:

$$P_y' = (\sin y + y \sin x + 2x)_y' = \cos y + \sin x$$

$$Q_{x}' = (x\cos y - \cos x - 3y^{2})_{x}' = \cos y + \sin x$$
.

Условието е изпълнено и следователно интегралът не зависи от пътя

Да го пресметнем може по два начина.

Първи начин. Тъй като интегралът не зависи от пътя ще изберем произволна линия – например начупената линия ACB (фиг. 3):

$$AC: \begin{cases} x=t \\ y=\pi \end{cases}, \quad 0 \le t \le \frac{\pi}{2} \quad \text{if} \quad CB: \begin{cases} x=\frac{\pi}{2}, & \pi \le t \le 3\pi \\ y=t \end{cases}$$

Тогава
$$\int_{\Gamma} (\sin y + y \sin x + 2x) dx + (x \cos y - \cos x - 3y^2) dy =$$

$$= \int_{AC} (\sin y + y \sin x + 2x) dx + (x \cos y - \cos x - 3y^2) dy +$$

$$+ \int_{CB} (\sin y + y \sin x + 2x) dx + (x \cos y - \cos x - 3y^2) dy =$$

$$= \int_{0}^{\frac{\pi}{2}} (\sin \pi + \pi \sin t + 2t) .1 . dt + \int_{\pi}^{3\pi} (\frac{\pi}{2} \cos t - 3t^2) dt =$$
(в първия интеграл използвахме, че по $AC - y' = 0$, а във втория $-x' = 0$)
$$= \frac{\pi}{2} \sin \pi + \pi \int_{0}^{\frac{\pi}{2}} \sin t dt + t^2 \Big|_{0}^{\frac{\pi}{2}} + \frac{\pi}{2} \int_{\pi}^{3\pi} \cos t dt - t^3 \Big|_{\pi}^{3\pi} =$$

$$= \pi + \frac{\pi^2}{4} - 27\pi^3 + \pi^3 = \pi + \frac{\pi^2}{4} - 26\pi^3.$$

Втори начин. Ще търсим функция F(x,y), такава че $F_x'(x,y) = P(x,y)$ и $F_{y}^{\ \prime}(x,y) = Q(x,y)$. Интегрираме равенство $F_{x}^{\ \prime}(x,y) = P(x,y)$ при фиксирано у:

$$F'_{x}(x,y) = \sin y + y \sin x + 2x \quad \Rightarrow$$
$$\Rightarrow \quad F(x,y) = \int (\sin y + y \sin x + 2x) dx = x \sin y - y \cos x + x^{2} + C(y).$$

Полученото равенство диференцираме по y (x е константа):

$$F_{y}'(x,y) = x\cos y - \cos x + C'(y) = Q(x,y) = x\cos y - \cos x - 3y^{2},$$

откъдето $C'(y) = -3y^{2} \Rightarrow C(y) = -y^{3} + C.$

Така функцията е $F(x, y) = x \sin y - y \cos x + x^2 - y^3 + C$ и стойността на интеграла

$$\int_{\Gamma} (\sin y + y \sin x + 2x) dx + (x \cos y - \cos x - 3y^{2}) dy =$$

$$= F(\frac{\pi}{2}, 3\pi) - F(0, \pi) = (\frac{\pi^{2}}{4} - 27\pi^{3}) - (-\pi - \pi^{3}) = \pi + \frac{\pi^{2}}{4} - 26\pi^{3}.$$

Задача 5. Дадени са точките A(0,0), B(1,0) и C(1,1)

Да са пресметне интеграла $\oint x\cos(y^2)dx + xydy$, където Γ е контура на триъгълника АВС описван в положителна посока.

Решение. Кривата Γ се състои от трите отсечки

$$AB : \begin{cases} x = t \\ y = 0 \end{cases}, \quad 0 \le t \le 1, \ BC : \begin{cases} x = 1 \\ y = t \end{cases}, \quad 0 \le t \le 1 \ \text{if } CA : \begin{cases} x = 1 - t \\ y = 1 - t \end{cases}, \quad 0 \le t \le 1.$$

(Ако отсечката *CA* представим параметрично *CA*: $\begin{cases} x=t \\ v=t \end{cases}$, $0 \le t \le 1$, то тя

Фиг. 4

ще има начало A и край C).

Тогава

$$\oint_{\Gamma} x\cos(y^2)dx + xydy = \int_{AB} x\cos(y^2)dx + xydy + \int_{BC} x\cos(y^2)dx + xydy + \int_{CA} x\cos(y^2)dx + xydy = \int_{CA} x\cos(y^2)dx$$

$$= \int_{0}^{1} t \cos 0 dt + \int_{0}^{1} t dt + \int_{0}^{1} (1-t) \cos(1-t)^{2} (-1) + (1-t)(1-t)(-1) dt =$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \int_{0}^{1} \cos(1-t)^{2} d(1-t)^{2} + \int_{0}^{1} (1-t)^{2} d(1-t) =$$

$$= 1 + \frac{1}{2} \sin(1-t)^{2} \Big|_{0}^{1} + \frac{1}{3} (1-t)^{3} \Big|_{0}^{1} = 1 - \frac{1}{2} \sin 1 - \frac{1}{3} = \frac{2}{3} - \frac{1}{2} \sin 1.$$

Забележка. Този резултат показва, че интегралът зависи от пътя. в противен случай той трябва да е равен на 0.

За домашна работа

Задача 6. Проверете, че криволинейният интеграл

$$\int_{\Gamma} (e^{y} + ye^{-x} + 2xy)dx + (xe^{y} - e^{-x} + x^{2})dy$$

не зависи от пътя и пресметнете стойността му по частично гладка крива с начало A(0,-1) и край B(3,0) .