Динамические топологии ВПВС

Организация внутренних коммуникаций вычислительной системы называется - *топологией*.

Коммуникационная система ВС представляет собой сеть, узлы которой связаны трактами передачи данных каналами.

В роли узлов могут выступать процессоры, модули памяти, устройства ввода/вывода, коммутаторы либо несколько перечисленных элементов, объединенных в группу.

Связь между узлами обычно реализуется по *двухточечной схеме* (point-to-point).

В зависимости от того, остается ли конфигурация взаимосвязей неизменной, по крайней мере пока выполняется определенное задание, различают сети со статической и динамической топологиями.

В статических сетях структура взаимосвязей фиксирована. В сетях с динамической топологией в процессе вычислений конфигурация взаимосвязей с помощью программных средств может быть оперативно изменена.

Различают два вида элементов ВС:

- •основные (процессорные модули и модули памяти)
- •Переключательные

Самый простой *переключателя* — это элемент с двумя входами (xl,x2), и двумя выходами (yl,y2). Такой элемент может иметь не более 16 состояний: каждый вход может находиться в четырех состояниях (отсутствие соединения, соединение с выходами yl и y2 одновременно).

В таблице 1, *П*-элементы, имеющие только два состояния (S5 и S10), называются *П*-элементами 1-го типа (селекторами); имеющие четыре состояния (S3,S5,S10,S12) — *П*-элементами 2-го типа и имеющие шесть состояний (S1,S2,S4,S5,S8,S10) — *П*-элементами 3-го типа (banyan). Более общий тип *П*-элемента — это элемент а х b, с а входами и b выходами, причем из а входов независимо от остальных входов может быть соединен с любым (но только одним) выходом. Это *П*-элемент 4-го типа (cross-bar), *П*-элементы 1-го типа удобно представлять графовой моделью.

Таблица состояний элемента с двумя входами и двумя выходами

Топологии

вычислительных систем

В таблице 1

- -элементы, имеющие только два состояния (S5 и S10), называются П-элементами 1-го типа (селекторами);
- имеющие четыре состояния (S3,S5,S10,S12) П-элементами 2-го типа;
- -имеющие шесть состояний (S1,S2,S4,S5,S8,S10) П-элементами 3-го типа (banyan).

Более общий тип *П*-элемента — это элемент а х b, с а входами и b выходами, причем каждый из а входов, независимо от остальных входов, может быть соединен с любым (но только одним) выходом.

Это Π -элемент 4-го типа (cross-bar)

П-элементы 1-го типа удобно представлять графовой моделью.

В классе структур межсоединений модулей ВС (им соответствуют *сосредоточенные* КС) рассматриваются сети, образованные П-элементами.

Задача такой сети — осуществить заданное соединение одних основных элементов (например, процессорных модулей) с другими основными (например, модулями памяти).

В классе процессорных структур (им соответствуют распределенные КС) рассматриваются сети, образованные группой основных элементов (обычно, процессоров) Задача такой сети — реализация некоторого класса алгоритмов обработки информации при заданных ограничениях на время обработки.

Класс структур, объединяющий упомянутые выше структуры, называется классом *перестраиваемых* процессорных структур (ППС).

Основные задачи класса ППС:

- 1. Реализация заданных алгоритмов обработки информации при неисправностях основных элементов за счет функционального исключения неисправных элементов из процесса обработки информации в сети
- 2. Реализация в одно сети различных графов обработки информации за счет изменения топологии.

Метрики сетевых соединений

При описании СМС их обычно характеризуют с помощью следующих параметров:

```
размера сети N);
числа связей (I);
диаметра (D);
порядка узла (d);
пропускной способности (W);
задержки (T);
```

- ширины бисекции (В);
- полосы бисекции (b).

• связности (*Q*);

Функции маршрутизации данных

Кардинальным вопросом при выборе топологии СМС является способ маршрутизации данных, то есть правило выбора очередного узла, которому пересылается сообщение.

Основой маршрутизации служат адреса узлов.

Каждому узлу в сети присваивается уникальный адрес.

Исходя из этих адресов, а точнее, их двоичных представлений, производится соединение узлов в статических топологиях или их коммутация в топологиях динамических.

Функции маршрутизации данных

Основные функции маршрутизации данных:

- 1. Перестановка
- 2. Тасование
 - идеальное тасование,
 - отсутствие тасования,
 - субтасование по *i*-му биту,
 - супертасование по *i*-му биту;
- 3. Баттерфляй
- 4. Реверсирование битов
- 5. Сдвиг
- 6. Циклический сдвиг

Статические топологии

К статическим топологиям СМС относят такие, где между двумя узлами возможен только один прямой фиксированный путь, то есть статические топологии не предполагают наличия в сети коммутирующих устройств. Если же такие устройства имеются, то используются они только перед выполнением конкретной задачи, а в процессе всего времени вычислений топология СМС остается неизменной.

Из возможных критериев классификации статических сетей чаще всего выбирают их размерность.

С этих позиций различают:

- одномерные топологии (линейный массив);
- двумерные топологии (кольцо, звезда, дерево, решетка, систолический массив);
- трехмерные топологии (полносвязная топология, хордальное кольцо);
- гиперкубическую топологию.

Динамические топологии

В динамической топологии сети соединение узлов обеспечивается электронными ключами, варьируя установки которых можно менять топологию сети.

В отличие от статических топологий, где роль узлов играют сами объекты информационного обмена, в узлах динамических сетей располагаются коммутирующие элементы, а устройства, обменивающиеся сообщениями (терминалы), подключаются к входам и выходам этой сети.

В роли терминалов могут выступать процессоры или процессоры и модули памяти.

Динамические топологии

Обычно ключи в динамических СМС группируются в так называемые *ступени коммутации*.

В зависимости от того, сколько ступеней коммутации содержит сеть, она может быть одноступенчатой или многоступенчатой.

Наличие более чем одной ступени коммутации позволяет обеспечить множественность путей между любыми парами входов и выходов.

Блокирующие и неблокирующие многоуровневые сети

Минимальным требованием к сети с коммутацией является поддержка соединения любого входа с любым выходом.

Для этого в сети с n входами и n выходами система ключей обязана предоставить n! вариантов коммутации входов и выходов (перестановок — permutations).

Проблема усложняется, когда сеть должна обеспечивать одновременную передачу данных между многими парами терминальных узлов (multicast).

При этом не должны возникать конфликты (блокировки) изза передачи данных через одни и те же коммутирующие элементы в одно и то же время.

Блокирующие и неблокирующие многоуровневые сети

Все топологии СМС с коммутацией разделяются на три типа:

- 1. Неблокирующие (матричная сеть и сеть Клоша)
- 2. Неблокирующие с реконфигурацией (Бенеша, Бэтчера, «Мемфис»)
- 1. Блокирующие («Баньян», «Омега», n-куб)

Одноступенчатые динамические топологии

Шинная топология

Сети с шинной архитектурой — наиболее простой и дешевый вид динамических сетей. При *одношинной топологии*, все узлы имеют по-рядок 1 (*d* = 1) и подключены к одной совместно используемой шине. В каждый момент времени обмен сообщениями может вести только одна пара узлов.

Шинная топология: а — с одной шиной; б — со многими шинами

Одноступенчатые динамические топологии

Топология перекрестной коммутации («кроссбар»)

Топология перекрестной коммутации мультипроцессорной системы (crossbar switch system) на основе матричного (координатного) коммутатора представляет собой классический пример одноступенчатой динамической сети.

Рис. 2. Матричный коммутатор п х m узлов с уровнем параллелизма, равным min (п, т).

Многоступенчатые динамические топологии

По этому признаку различают:

- сети на основе перекрестной коммутации;
- •сети на основе базового коммутирующего элемента

В сетях, относящихся к первой группе, в качестве базового коммутирующего элемента используется кроссбар *п*х*т*.

Для второй категории роль коммутирую-щего элемента играет «полный кроссбар» 2х2. Подобный кроссбар называют базовым коммутирующим элементом (БКЭ) или β-элементом.

Многоступенчатые динамические топологии

Первые два состояния БКЭ являются основными - в них входная информация может транслироваться на выходы прямо либо перекрестно.

Два следующих состояния предназначены для широковещательного режима, когда сообщение от одного узла одновременно транслируется на все подключенные к нему прочие узлы. Широковещательный режим используется редко.

Топология "Баньян"

Рис. 4. Топология типа «Баньян»

Топология "Омега"

Сеть с топологией «Омега»

Топология "Дельта"

Рис. 6. Структура сети «Дельта»: а — по базе 4; б — с дополнительной ступенью

Топология Бенеша

Топология Бенеша: а — 4х4; 6 — 8х8

Топология Клоша

Трехступенчатая сеть с топологией Клоша

Топология n-кубической сети с косвенными связями

Рис. 9. Топология двоичной п-кубической сети

Топология базовой линии

Топология базовой линии