Machine Learning

RAJESH SHARMA
Walt Disney Animation Studios

Thank you to ACM SIGGRAPH!

Pol Jeremias-Vila: SIGGRAPH 2021 Chair

Tomasz Bednarz: Frontiers Program Chair

Alex Bryant: Student Volunteers Chair

Tim Hendrickson: Digital Marketing Manager

Student Volunteers:

Rogelio, Trinity, Aurora, Emily, Hunter & Kendra

Machine Learning

Rajesh Sharma ————

Ashish Vaswani

Research Scientist

Research Scientist Google

Ashish Vaswani is a Senior Research Scientist in the Brain group within GoogleAl, where he works on machine learning with neural networks. His research has focussed on developing pure attention based models, such as the Transformer for generation and classification. Before joining Google, he was a PhD student, and later Research Scientist, in natural language processing at the University of Southern California Information Sciences Institute.

Today

- Quick Recap: GAN, Facial Detection
- HW: CNN, GAN
- Variational Autoencoder
- Face Detection
- RNN, Transformers

Hands-on

- ★ Log in to your google drive
- ★ Make a shortcut to: https://bit.ly/3oKCVCh
- ★ Make a copy of:
 - Autoencoder.ipynb
 - dataPipeline.ipynb
 - denoiserCNN.ipynb
 - styleTransfer.ipynb
 - facialRecognition02.ipynb
 - TextRNN.ipynb

Artistic Style Transfer

$$L_{total}(\dot{c}, \dot{s}, \dot{x}) = \alpha L_{content}(\dot{c}, \dot{x}) + \beta L_{style}(\dot{s}, \dot{x})$$

Artistic Style Transfer

styleTransfer.ipynb

$$L_{total}(\dot{c}, \dot{s}, \dot{x}) = \alpha L_{content}(\dot{c}, \dot{x}) + \beta L_{style}(\dot{s}, \dot{x})$$

Transfer Learning

Build a Facial Recognition System

Delta News Hub / CC BY (https://creativecommons.org/licenses/by/2.0)

Transfer Learning

Build a Facial Recognition System

Extracting Faces -- MT-CNN

End to End System - Transfer Learning

- 1. Get faces from ground-truth images (MTCNN)
- 2. Encode ground-truth images (FACENET)
- 3. Read Camera Input Stream
- 4. Isolate Faces (MTCNN)
- 5. Encode input face (FACENET)
- 6. Compare encoding with stored ground-truth
- 7. Identify person

Facenet - triplet loss: Paper

$$x = \begin{bmatrix} 128-d \\ 0.931 \\ 0.433 \\ 0.331 \\ \vdots \\ 0.942 \\ 0.158 \\ 0.039 \end{bmatrix}$$

$$Loss = \sum_{i=1}^{N} \left[\|f_i^a - f_i^p\|_2^2 - \|f_i^a - f_i^n\|_2^2 + \alpha \right]_+$$

Hands-on

★ facialRecognition02.ipynb

Homework:

```
Colorization: tf.image.adjust_saturation
```

Up-resing:

```
tf.image.resize(image, size=[256,256], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
```

In-Painting:

```
mask = np.ones((PATCH_WIDTH, PATCH_HEIGHT), dtype=np.float32)
scale = 0.25
low, upper = int(PATCH_WIDTH * scale), int(PATCH_HEIGHT * (1.0 - scale))
mask[:, low:upper, low:upper] = 0.
tf.multiply(patch, mask)
```

Frame interpolation:

```
stacked = tf.concat([frame1, frame3], axis=-1)
```

Autoencoder

Autoencoder - break it up after training

Autoencoder - A variation

You don't because...

The latent space and the input distributions are *different*!

But there is a way:

Treat encoder output as μ and σ of a distribution

Variational Autoencoder

Latent Spaces and Embeddings

https://projector.tensorflow.org

You get nice continuous distribution for each input

What are RNNs?

Information from previous timestep is passed forward

GRU - RNN with memory/state

Hands on...Text Generation

Given string of characters, what is the most probable next character?

Example:

Input: Machin

Output: achine

- Pick a sequence length
- Divide text into sequences
- Train on (sequence, sequence+1) pairs over the entire text
- Important: Convert all text to numbers first!

Hands on...

Find and open: TextRNN.ipynb

Next Class

- Guest: Andrew Glassner
- Reinforcement Learning
- Wrap up and where to go from here
- Homework:
- RNN: auto generated tweets
- Facial Recog: Closest match to a celebrity
- @xarmalarma, #siggraph2021