

#### § 2.5 命题演算形式系统(PC)

#### [本节主要内容]

- 1) 命题演算形式系统PC的组成:包括 字符集及形成规则、公理、推理规则;
- 2) PC的基本定理;
- 3)PC的系统性质定理。



### § 2.5.1命题演算形式系统PC的组成

命题演算形式系统的组成通常包括语言部分和推理部分。命题演算形式系统的语言部分主要包括字符集、命题公式的形成规则。推理部分包括公理、推理规则及定理推导。

#### 1. 字符集

- 1) 原子变元符:  $p_1, p_2, \dots, p_n, \dots$
- 2) 联结词完备集: { ─¬, →→}
- 3)辅助符号:圆括号()

通常将字符集部分用符号表表示为:

$$\Sigma = \{(,), \neg, \rightarrow, p_1, p_2, \cdots, p_n, \cdots\}$$

2. 形成规则:由原子变元符及联结词形成命题公式的的规则,即命题公式的定义

3. 公理: 挑选最基本的重言式作为公理, 使得它们能作为推导其他所有重言式的 依据。在PC系统中包括如下三个公理模式:

 $A1: A \rightarrow (B \rightarrow A)$ 

$$A2: (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$A3: (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$

4. 推理规则:用于从已有的公理和已推理出来的结论来推理另一结论。 在PC系统中仅有一个推理规则, 称为分离规则( $r_{mp}$ ):

即若有结论 A 及  $A \rightarrow B$  成立则必有结论 B成立.

可用形式化序列表示为: A ,  $A \rightarrow B$  , B

5. 定理推导: 是PC形式系统中的重要内容, 包括所有的推理结论及其推理过程。



#### § 2.5.2 PC的基本定理

定义1 证明: 称下列公式序列为公式 A 在PC中的一个证明:

$$A_1, A_2, \dots, A_m (= A)$$

其中 $A_i$  ( $i=1,\cdots,m-1$ ) 或为PC的公理, 或为  $A_j$  (j < i) ,或为  $A_j$  ,  $A_k$  (j,k < i) 使用  $r_{mp}$  导出的,而 $A_m$  即为公式 A



# 定义2 定理:如果公式 A 在PC中有一个证明序列,则称 A 为PC的定理,记为 $|-_{PC}A$ 或简记为 |-A

定义3 演绎:设厂为PC的一公式集,

称下列公式序列为公式 A 以 Г 为前提的演绎:  $A_1, A_2, \dots, A_m (= A)$ 其中  $A_i$  ( $i=1,\dots,m-1$ ) 或为PC的公理, 或为  $\Gamma$  中的成员, 或为  $A_i(j < i)$ 或为 $A_i, A_k(j, k < i)$  使用 $I_{mp}$  导出的, 而  $A_m$  即为公式 A记为 $\Gamma | -_{PC} A$  或简记为 $\Gamma | -A$ 并称 A 为 \( \tau\) 的演绎结果。



# 定义4 演绎等价: 若 $A \mid -B$ 且 $B \mid -A$ 则称公式 A, B 演绎等价, 记为 $A \mid B$

定理1  $-A \rightarrow A$ 定理2 若 -P 则有  $-A \rightarrow P$ 定理3  $|--A \rightarrow (A \rightarrow B)|$ 定理4 ¬¬А|-А 定理5  $| -(B \to C) \to ((A \to B) \to (A \to C))$ 定理6  $[-(A \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow (A \rightarrow C))]$ 定理7  $-(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$ 

定理8 
$$|-(\neg A \to A) \to A$$
  
定理9  $|-\neg \neg A \to A$   
定理10  $|-A \to \neg \neg A$   
定理11  $|-(A \to \neg B) \to (B \to \neg A)$   
定理12  $|-(A \to B) \to (\neg B \to \neg A)$   
定理13  $|-(\neg A \to B) \to (\neg B \to A)$   
定理14  $|-(A \to C) \to ((B \to C) \to ((\neg A \to B) \to C))$ 

定理19
$$|-(A \to B) \to ((A \to C) \to (A \to B \land C))$$
  
定理20 $|-A \lor B \leftrightarrow B \lor A$   
定理21 $|-A \land B \leftrightarrow B \land A$   
定理22 $|-[(A \lor B) \lor C] \leftrightarrow [A \lor (B \lor C)]$   
定理23 $|-[(A \land B) \land C] \leftrightarrow [A \land (B \land C)]$ 

定理24 
$$|-A \land (A \lor B) \leftrightarrow A$$
  
定理25  $|-A \lor (A \land B) \leftrightarrow A$   
定理26  $|-A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C)$   
定理27  $|-(A \lor (B \land C) \leftrightarrow (A \lor B) \land (A \lor C)]$ 

定理28 演绎定理: 对PC中任意公式集

 $\Gamma$ 和公式 A, B,  $\Gamma \cup \{A\} \mid -B \text{ (或简记为}\Gamma; A \mid -B \text{ )}$  当且仅当  $\Gamma \mid -A \rightarrow B$ 

例利用演绎定理在PC中证明下列定理

1) 
$$\left[ -[A \rightarrow (B \rightarrow C)] \rightarrow \{(C \rightarrow D) \rightarrow [A \rightarrow (B \rightarrow D)] \right]$$

$$2) \left[ -[(A \to B) \to (A \to C)] \to [A \to (B \to C)]$$

3) 
$$[-(A \rightarrow C) \rightarrow \{(B \rightarrow C) \rightarrow [(\neg A \rightarrow B) \rightarrow C)]\}$$



#### § 2.5.3 PC的基本定理

定理1 PC是合理的(可靠的)

即对任意的公式集 $\Gamma$ 及公式 A 若 $\Gamma \mid -A$  则  $\Gamma \Rightarrow A$  特别地,若A为PC的定理,即 $\mid -A$  则 A 永真。



#### 定理2 PC是一致性的

即PC中不存在公式 A 与  $\neg A$ 均为PC的定理,即不存在公式 A 使得 |-A 及 |-¬A 同时成立。

定义1 完全的: 一个系统  $\Phi$ 是完全的, 当且仅当该系统中的任一公式 A , 或者  $\Phi$  |-A 或者  $\Phi$ 

定理3 PC不是完全的 即在PC中存在公式 A 使得 -A 及 -A均不成立。

例  $A = P \rightarrow Q$  其中 P,Q为原子变元符,  $| -P \rightarrow Q \text{ Z} | --(P \rightarrow Q)$ 均不成立。

#### 定义2 PC的理论:

$$Th(PC) = \{A \mid \vdash_{PC} A \}$$

PC的基于前提 [ 的扩充:

$$Th(PC \cup \Gamma) = \{A \mid \Gamma \vdash_{PC} A \}$$

引理1 设PC的公式集  $\Gamma$  是一致的,且  $\Gamma$   $\neq$  A则  $\Gamma$   $\cup$  { $\neg$ A}也是一致的。

引理2 若 $\Gamma$ 是PC的一致的公式集,则存在公式集 $\Delta$  使得 $\Gamma$   $\subseteq$   $\Delta$  且  $\Delta$ 是一致的且完全的。

## 引理3 对PC中任一公式 A, $A \in \Delta$ 当且仅当 $\Delta - A$

引理4 设  $\Gamma$ 是PC的一致的公式集,则存在一个指派  $\partial$  ,使得  $\Gamma$ 中每一个公式 A 有  $\partial(A) = T$ 

### 4

#### 定理4 PC是完备的

对PC中任一永真式 A,必为PC的定理,即有  $|\neg_{PC} A|$ 一般地,对PC的公式集  $\Gamma$  若  $\Gamma \Rightarrow A$ 则  $\Gamma |\neg_{PC} A|$