

#### FACULTY OF INFORMATION TECHNOLOGY

Fall,2017

#### MAT 207- LINEAR ALGEBRA

#### Lecture 6 – Vector Space

#### Content

- 1 Vector Space and Subspace
- Null space, Column Space and Linear Transformations
- Linear Independent Sets and Bases

### Vector Space and Subspace

#### VECTOR SPACES AND SUBSPACES

- **Definition:** A **vector space** is a nonempty set *V* of objects, called *vectors*, on which are defined two operations, called *addition and multiplication by scalars* (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors **u**, **v**, and **w** in *V* and for all scalars *c* and *d*.
  - 1. The sum of **u** and **v**, denoted by  $\mathbf{u} + \mathbf{v}$ , is in V.
  - 2. u + v = v + u.
  - 3. (u + v) + w = u + (v + w).
  - 4. There is a zero vector 0 in V such that

•

#### VECTOR SPACES AND SUBSPACES

- 5. For each **u** in V, there is a vector  $-\mathbf{u}$  in V such that  $\mathbf{u} + (-\mathbf{u}) = 0$ .
- 6. The scalar multiple of  $\mathbf{u}$  by c, denoted by  $c\mathbf{u}$ , is in V.
- $7. c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.$
- $8.(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u} .$
- $9. c(d\mathbf{u}) = (cd)\mathbf{u} .$
- 10. 1u = u

Using these axioms, we can show that the zero vector in Axiom 4 is unique, and the vector  $-\mathbf{u}$ , called the **negative** of  $\mathbf{u}$ , in Axiom 5 is unique for each  $\mathbf{u}$  in V.

#### VECTOR SPACES AND SUBSPACES

- **Definition:** A **subspace** of a vector space V is a subset H of V that has three properties:
  - a. The zero vector of V is in H.
  - b. H is closed under vector addition .That is, for each  $\mathbf{u}$  and  $\mathbf{v}$  in H, the sum  $\mathbf{u} + \mathbf{v}$  is in H.
  - c. H is closed under multiplication by scalars. That is, for each **u** in H and each scalar c, the vector c**u** is in H.

#### **SUBSPACES**

• Properties (a), (b), and (c) guarantee that a subspace *H* of *V* is itself a *vector space*, under the vector space operations already defined in *V*.

Every subspace is a vector space.

• Conversely, every vector space is a subspace (of itself and possibly of other larger spaces

- The set consisting of only the zero vector in a vector space V is a subspace of V, called the **zero subspace** and written as  $\{0\}$ .
- As the term **linear combination** refers to any sum of scalar multiples of vectors, and Span  $\{\mathbf{v}_1,...,\mathbf{v}_p\}$  denotes the set of all vectors that can be written as linear combinations of  $\mathbf{v}_1,...,\mathbf{v}_p$ .

- Example 10: Given  $\mathbf{v}_1$  and  $\mathbf{v}_2$  in a vector space V, let  $H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ Show that H is a subspace of V.
- Solution: The zero vector is in H, since  $0 = 0v_1 + 0v_2$ .
- To show that *H* is closed under vector addition, take two arbitrary vectors in *H*, say,

$$u = s_1 v_1 + s_2 v_2$$
 and  $w = t_1 v_1 + t_2 v_2$ 

• By Axioms 2, 3, and 8 for the vector space *V*,

$$u + w = (s_1 v_1 + s_2 v_2) + (t_1 v_1 + t_2 v_2)$$
$$= (s_1 + t_1) v_1 + (s_2 + t_2) v_2$$

• So  $\mathbf{u} + \mathbf{w}$  is in H.

• Furthermore, if c is any scalar, then by Axioms 7 and 9,  $c\mathbf{u} = c(s_1\mathbf{v}_1 + s_2\mathbf{v}_2) = (cs_1)\mathbf{v}_1 + (cs_2)\mathbf{v}_2$ 

which shows that  $c\mathbf{u}$  is in H and H is closed under scalar multiplication.

• Thus H is a subspace of V.

• Theorem 1: If  $\mathbf{v}_1, ..., \mathbf{v}_p$  are in a vector space V, then Span  $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$  is a subspace of V.

• We call Span  $\{\mathbf{v}_1,...,\mathbf{v}_p\}$  the subspace spanned (or generated) by  $\{\mathbf{v}_1,...,\mathbf{v}_p\}$ .

• Give any subspace H of V, a spanning (or generating) set for H is a set  $\{v_1,...,v_p\}$  in H such that

•

## Null Space, Column Space and Linear Transformation

- **Definition:** The **null space** of an  $m \times n$  matrix A, written as Nul A, is the set of all solutions of the homogeneous equation Ax = 0. In set notation, Nul  $A = \{x : x \text{ is in } \square^n \text{ and } Ax = 0\}$
- Theorem 2: The null space of an  $m \times n$  matrix A is a subspace of  $\mathbb{R}^n$ . Equivalently, the set of all solutions to a system Ax = 0 of m homogeneous linear equations in n unknowns is a subspace of  $\mathbb{R}^n$ .

- **Proof:** Nul A is a subset of  $\mathbb{R}^n$  because A has n columns.
- We need to show that Nul A satisfies the three properties of a subspace
- **0** is in Null *A*.
- Next, let **u** and **v** represent any two vectors in Nul A.
- Then Au = 0 and Av = 0
- To show that  $\mathbf{u}+\mathbf{v}$  is in  $\mathbf{Nul} A$ , we must show that  $\mathbf{A}(\mathbf{u}+\mathbf{v})=\mathbf{0}$
- Using a property of matrix multiplication, compute
- Thus **u**+**v** is in Nul A, and Nul A is closed under vector addition.

• Finally, if c is any scalar, then

$$A(cu) = c(Au) = c(0) = 0$$

which shows that cu is in Nul A.

• Thus Nul A is a subspace of  $\mathbb{R}^n$ .

- An Explicit Description of Nul A
- There is no obvious relation between vectors in Nul A and the entries in A.
- We say that Nul A is defined *implicitly*, because it is defined by a condition that must be checked.

- No explicit list or description of the elements in Nul A is given.
- Solving the equation Ax = 0 amounts to producing an explicit description of Nul A.
- Example 3: Find a spanning set for the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

• Solution: The first step is to find the general solution of Ax = 0 in terms of free variables.

• Row reduce the augmented matrix  $\begin{bmatrix} A & 0 \end{bmatrix}$  to *reduce* echelon form in order to write the basic variables in terms of the free variables:

$$\begin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{aligned} x_1 - 2x_2 - x_4 + 3x_5 &= 0 \\ x_3 + 2x_4 - 2x_5 &= 0 \\ 0 & 0 & 0 & 0 \end{aligned}$$

- The general solution is  $x_1 = 2x_2 + x_4 3x_5$ ,  $x_3 = -2x_4 + 2x_5$  with  $x_2$ ,  $x_4$ , and  $x_5$  free.
- Next, decompose the vector giving the general solution into a linear combination of *vectors where the weights are the free variables*. That is,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ -2 \\ x_4 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$
$$= x_2 \mathbf{u} + x_4 \mathbf{v} + x_5 \mathbf{w}$$

- Every linear combination of **u**, **v**, and **w** is an element of Nul A.
- Thus  $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$  is a spanning set for Nul A.
- **Definition:** The column space of an  $m \times n$  matrix A, written as Col A, is the set of all linear combinations of the columns of A. If  $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$ , then  $\operatorname{Col} A = \operatorname{Span}\{a_1, ..., a_n\}$

- Theorem 3: The column space of an  $m \times n$  matrix A is a subspace of  $\mathbb{R}^m$ .
- A typical vector in Col A can be written as  $A\mathbf{x}$  for some  $\mathbf{x}$  because the notation  $A\mathbf{x}$  stands for a linear combination of the columns of A. That is, Col  $A = \{b : b = A\mathbf{x} \text{ for some } \mathbf{x} \text{ in } \square^n \}$
- The notation  $A\mathbf{x}$  for vectors in Col A also shows that Col A is the *range* of the linear transformation  $\mathbf{x} \mapsto A\mathbf{x}$ .
- The column space of an  $m \times n$  matrix A is all of  $\mathbb{R}^m$  if and only if the equation  $A\mathbf{x} = \mathbf{b}$  has a solution for each  $\mathbf{b}$  in  $\mathbb{R}^m$ .

Example 7: Let 
$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$$
,  $u = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$  and  $v = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$ 

- a. Determine if **u** is in Nul A. Could **u** be in Col A?
- b. Determine if **v** is in Col A. Could **v** be in Nul A?

#### Solution:

a. An explicit description of Nul A is not needed here. Simply compute the product Au.

$$Au = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ 3 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- $\mathbf{u}$  is *not* a solution of  $A\mathbf{x} = \mathbf{0}$ , so  $\mathbf{u}$  is not in Nul A.
- Also, with four entries, **u** could not possibly be in Col A, since Col A is a subspace of  $\mathbb{R}^3$ .
  - b. Reduce  $\begin{bmatrix} A & v \end{bmatrix}$  to an echelon form.

$$\begin{bmatrix} A & v \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 & 1 & 3 \\ -2 & -5 & 7 & 3 & -1 \\ 3 & 7 & -8 & 6 & 3 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 & 1 & 3 \\ 0 & 1 & -5 & -4 & -2 \\ 0 & 0 & 0 & 17 & 1 \end{bmatrix}$$

c. The equation Ax = b is consistent, so v is in Col A.

#### KERNEL AND RANGE OF A LINEAR TRANSFORMATION

- **Definition:** A **linear transformation** T from a vector space V into a vector space W is a rule that assigns to each vector  $\mathbf{x}$  in V a unique vector  $T(\mathbf{x})$  in W, such that
  - i.  $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$  for all  $\mathbf{u}$ ,  $\mathbf{v}$  in V, and
  - ii.  $T(c\mathbf{u}) = cT(\mathbf{u})$  for all  $\mathbf{u}$  in V and all scalars c.

#### KERNEL AND RANGE OF A LINEAR TRANSFORMATION

• The **kernel** (or **null space**) of such a *T* is the set of all **u** in *V* such that (the zero vector in *W*).

• The **range** of T is the set of all vectors in W of the form  $T(\mathbf{x})$  for some  $\mathbf{x}$  in V.

• The kernel of T is a subspace of V.

• The range of T is a subspace of W.

## CONTRAST BETWEEN NUL A AND COL A FOR AN MATRIX A

| Null A                                                                                                                                  | Column A                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 1. Nul A is a subspace of $\mathbb{R}^n$ .                                                                                              | 1. Col A is a subspace of $\mathbb{R}^m$                                                                 |
| 2. Nul <i>A</i> is implicitly defined; <i>i.e.</i> , you are given only a condition $Ax = 0$ that vectors in Nul <i>A</i> must satisfy. | 2. Col <i>A</i> is explicitly defined; <i>i.e.</i> , you are told how to build vectors in Col <i>A</i> . |

## COLAFOR AN MATRIX A

- 3. It takes time to find vectors in Nul A. Row operations on are required.
- 3. It is easy to find vectors in Col A. The columns of a are displayed; others are formed from them.

- 4. There is no obvious relation between Nul *A* and the entries in *A*.
- 4. There is an obvious relation between Col *A* and the entries in *A*, since each column of *A* is in Col *A*.

## COLAFOR AN MATRIX A

- 5. A typical vector  $\mathbf{v}$  in Nul A has the property that  $A\mathbf{v} = 0$
- 5. A typical vector **v** in Col *A* has the property that the equation is consistent.

- 6. Given a specific vector **v**, it is easy to tell if **v** is in Nul A. Just compare A**v**
- 6. Given a specific vector  $\mathbf{v}$ , it may take time to tell if  $\mathbf{v}$  is in Col A. Row operations on  $\begin{bmatrix} A & \mathbf{v} \end{bmatrix}$  are required.

# Linear Independent Sets and Bases

#### LINEAR INDEPENDENT SETS; BASES

An indexed set of vectors  $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$  in V is said to be **linearly** independent if the vector equation

$$c_1 V_1 + c_2 V_2 + \dots + c_p V_p = 0$$
 (1)

has *only* the trivial solution,

- The set  $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$  is said to be **linearly dependent** if (1) has a nontrivial solution, *i.e.*, if there are some weights,  $c_1, ..., c_p$ , not all zero, such that (1) holds.
- In such a case, (1) is called a **linear dependence relation** among  $\mathbf{v}_1, \ldots, \mathbf{v}_{p}$ .

#### LINEAR INDEPENDENT SETS; BASES

• Theorem 4: An indexed set  $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$  of two or more vectors, with  $\mathbf{v}_1 \neq 0$ , is linearly dependent if and only if some  $\mathbf{v}_j$  (with ) is a linear combination of the preceding vectors,

- **Definition:** Let H be a subspace of a vector space V. An indexed set of vectors  $\mathsf{B} = \{\mathsf{b}_1, ..., \mathsf{b}_p\}$  in V is a basis for H if
  - (i) B is a linearly independent set, and
  - (ii) The subspace spanned by B coincides with H; that is,

#### LINEAR INDEPENDENT SETS; BASES

• The definition of a basis applies to the case when H = V, because any vector space is a subspace of itself.

• Thus a basis of V is a linearly independent set that spans V.

• When  $H \neq V$ , condition (ii) includes the requirement that each of the vectors  $\mathbf{b}_1, ..., \mathbf{b}_p$  must belong to H, because Span  $\{\mathbf{b}_1, ..., \mathbf{b}_p\}$  contains  $\mathbf{b}_1, ..., \mathbf{b}_p$ .

#### Standard Basis

- Let  $\mathbf{e}_1, \dots, \mathbf{e}_n$  be the columns of the  $n \times n$  matrix,  $I_n$ .
- That is,

$$\mathbf{e}_{1} = \begin{vmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{vmatrix}, \mathbf{e}_{2} = \begin{vmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{vmatrix}, \dots, \mathbf{e}_{n} = \begin{vmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{vmatrix}$$

• The set  $\{\mathbf{e}_1, ..., \mathbf{e}_n\}$  is called the **standard basis** for  $\mathbb{R}^n$ . See the following figure.

#### Standard Basis



The standard basis for  $\mathbb{R}^3$ .

- Theorem 5: Let  $S = \{v_1, ..., v_p\}$  be a set in V, and let  $H = \text{Span}\{v_1, ..., v_p\}$ 
  - a. If one of the vectors in S—say,  $\mathbf{v}_k$ —is a linear combination of the remaining vectors in S, then the set formed from S by removing  $\mathbf{v}_k$  still spans H.
  - b. If  $H \neq \{0\}$ , some subset of S is a basis for H.

#### Proof:

a. By rearranging the list of vectors in S, if necessary, we may suppose that  $\mathbf{v}_p$  is a linear combination of  $\mathbf{v}_1, \dots, \mathbf{v}_{p-1}$ —say,

$$\mathbf{v}_{p} = a_{1}\mathbf{v}_{1} + \dots + a_{p-1}\mathbf{v}_{p-1} \tag{3}$$

• Given any  $\mathbf{x}$  in H, we may write

$$X = c_1 V_1 + ... + c_{p-1} V_{p-1} + c_p V_p$$
 (4)

for suitable scalars  $c_1, ..., c_p$ .

• Substituting the expression for  $\mathbf{v}_p$  from (3) into (4), it is easy to

see that **x** is a linear combination of  $V_1,...V_{p-1}$ 

• Thus  $\{v_1,...,v_{p-1}\}$  spans H, because  $\mathbf{x}$  was an arbitrary element of H.

b, Try to do it Yourself

• Example 7: Let 
$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$$
,  $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$  and  $\mathbf{v}_3 = \begin{bmatrix} 6 \\ 16 \\ -5 \end{bmatrix}$ 

and 
$$H = \text{Span}\{v_1, v_2, v_3\}$$
  
Note that  $v_3 = 5v_1 + 3v_2$ , and show that  $\text{Span}\{v_1, v_2, v_3\} = \text{Span}\{v_1, v_2\}$ . Then find a basis for the subspace  $H$ .

• Solution: Every vector in Span  $\{v_1, v_2\}$  belongs to H because

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + 0 \mathbf{v}_3$$

- Now let **x** be any vector in H—say,  $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$
- Since  $v_3 = 5v_1 + 3v_2$ , we may substitute

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 (5 \mathbf{v}_1 + 3 \mathbf{v}_2)$$
  
=  $(c_1 + 5c_3) \mathbf{v}_1 + (c_2 + 3c_3) \mathbf{v}_2$ 

- Thus  $\mathbf{x}$  is in Span  $\{\mathbf{v}_1, \mathbf{v}_2\}$ , so every vector in H already belongs to Span  $\{\mathbf{v}_1, \mathbf{v}_2\}$ .
- We conclude that H and Span  $\{v_1, v_2\}$  are actually the set of vectors.
- It follows that  $\{\mathbf{v}_1, \mathbf{v}_2\}$  is a basis of H since  $\{\mathbf{v}_1, \mathbf{v}_2\}$  is linearly independent.

#### BASIS FOR COL B

• Example 8: Find a basis for Col B, where

$$B = \begin{bmatrix} b_1 & b_2 & \cdots & b_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Solution: Each nonpivot column of B is a linear combination of the pivot columns.
- In fact,  $b_2 = 4b_1$  and  $b_4 = 2b_1 b_3$ .
- By the Spanning Set Theorem, we may discard  $\mathbf{b}_2$  and  $\mathbf{b}_4$ , and  $\{\mathbf{b}_1, \mathbf{b}_3, \mathbf{b}_5\}$  will still span Col B.

#### BASIS FOR COL B

• Let

$$S = \{b_{1}, b_{3}, b_{5}\} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

- Since  $b_1 \neq 0$  and no vector in S is a linear combination of the vectors that precede it, S is linearly independent. (Theorem 4).
- Thus S is a basis for Col B.

#### BASES FOR NUL A AND COL A

- Theorem 6: The pivot columns of a matrix A form a basis for Col A.
- Proof : see textbook
- Warning:
- The pivot columns of a matrix A are evident when A has been reduced only to echelon form.
- But, be careful to use the pivot columns of A itself for the basis of Col A.
- Row operations can change the column space of a matrix.
- The columns of an echelon form B of A are often not in the column space of A.

## Thank you for listening