Math Refresher for DS

Lecture 1

Today

- Course overview
- Linear Algebra
 - Core objects
 - Vector spaces

- 3. A bit of Analytic Geometry
 - Orthogonal projections
 - Hyperplanes
 - Normals

About this course

(https://mml-book.github.io/book/mml-book.pdf)

About this course

In this course:

- Linear algebra
- 2. Calculus
- 3. (Basic) optimization

Prerequisites:

- basic knowledge of math;
- some Python.

About this course

Logistics

- Pre-recorded lectures
- Online practical sessions
 - → Tuesdays & Fridays 19:00 Moscow time
- 5 graded assignments
- 2 exams
- Final grade:
 - 30% Linear Algebra exam
 - 30% Calculus & Optimization exam
 - 40% graded assignments

About me

Evgeniya Korneva

- evgeniakorneva@gmail.com
- evgeniyako

Lecturer

DS content lead Academy

(Soon) Data Scientists

Linear Algebra: the Basics

• $\alpha \in \mathbb{R}$ - a scalar Example: -2

- $\alpha \in \mathbb{R}$ a scalar Example: -2
- $x \in \mathbb{R}^n$ a vector with n entries

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad \text{Example: } \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^3, \qquad \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} \in \mathbb{R}^5$$

- $\alpha \in \mathbb{R}$ a scalar Example: -2
- $x \in \mathbb{R}^n$ a vector with n entries

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad \text{Example: } \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^3, \qquad \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} \in \mathbb{R}^5$$

• $A \in \mathbb{R}^{m \times n}$ - a matrix with m rows and n columns

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$Example: \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 2}, \quad \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \in \mathbb{R}^{2 \times 3}$$

- $\alpha \in \mathbb{R}$ a scalar Example: -2
- $x \in \mathbb{R}^n$ a vector with n entries

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad \text{Example: } \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^3, \qquad \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} \in \mathbb{R}^5$$

• $A \in \mathbb{R}^{m \times n}$ - a matrix with m rows and n columns

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$Example: \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 2}, \quad \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \in \mathbb{R}^{2 \times 3}$$

What are Vectors?

• Ordered sets of numbers: x = [1, 2]

What are Vectors?

- Ordered sets of numbers: x = [1, 2]
- A point with Cartesian coordinates

What are Vectors?

- Ordered sets of numbers: x = [1, 2]
- A point with Cartesian coordinates

• Direction + length

Vector Spaces

Vector Space: Definition

• A real-valued vector space $(V, +, \cdot)$ is a set of vectors V with two operations

$$(1) +: V \times V \to V, \qquad (2) \cdot: \mathbb{R} \times V \to V$$

Vector Space: Definition

• A real-valued vector space $(V, +, \cdot)$ is a set of vectors V with two operations

$$(1) +: V \times V \to V, \qquad (2) \cdot: \mathbb{R} \times V \to V$$

that satisfy the following properties (axioms):

	Property	Meaning
1.	Associativity of addition	x + (y + z) = (x + y) + z
2.	Commutativity of addition	x + y = y + x
3.	Identity element of addition	$\exists 0 \in V \colon \ \forall x \in V 0 + x = x$
4.	Identity element of scalar multiplication	$\forall x \in V 1 \cdot x = x$
5.	Inverse element of addition	$\forall x \in V \ \exists -x \in V \colon \ x + (-x) = 0$
6.	Compatibility of scalar multiplication	$\alpha(\beta x) = (\alpha \beta) x$
7.	Distributivity	$(\alpha + \beta)x = \alpha x + \beta x$
8.		$\alpha(x+y) = \alpha x + \alpha y$

Let's define vector operations!

Operations with Vectors

Sum of two vectors:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n, \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n, \qquad x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_2 \end{bmatrix} \in \mathbb{R}^n$$

Operations with Vectors

Sum of two vectors:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n, \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n, \qquad x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_2 \end{bmatrix} \in \mathbb{R}^n$$

2. Multiplying by a scalar:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n, \qquad \alpha \in \mathbb{R}, \qquad \alpha x = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{bmatrix} \in \mathbb{R}^n$$

Operations with Vectors: Example

$$x, y \in \mathbb{R}^3$$
:

$$x = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \qquad y = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Operations with Vectors: Example

 $x, y \in \mathbb{R}^3$:

$$x = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \qquad y = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Multiplying by a scalar:

$$10x = \begin{bmatrix} 10 \\ 0 \\ 10 \end{bmatrix}$$

Operations with Vectors: Example

 $x, y \in \mathbb{R}^3$:

$$x = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \qquad y = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Multiplying by a scalar:

$$10x = \begin{bmatrix} 10 \\ 0 \\ 10 \end{bmatrix}$$

Sum:

$$x + y = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Vector Operations: Geometrical Interpretation

$$\vec{a} = [2, 3]$$

$$\vec{a} = [2, 3]$$

$$2\vec{a} = [4, 6]$$

$$\vec{a} = [2, 3]$$

$$2\vec{a} = [4, 6]$$

$$-0.5\vec{a} = [-1, -1.5]$$

$$\vec{a} = [2, 5]$$

$$\overrightarrow{b} = [4, 1]$$

$$\vec{a} = [2, 5]$$

$$\overrightarrow{b} = [4, 1]$$

$$\vec{a} + \vec{b} = [6, 6]$$

$$\vec{a} = [2, 5]$$

$$\overrightarrow{b} = [4, 1]$$

$$\vec{a} + \vec{b} = [6, 6]$$

$$\vec{a} = [2, 5]$$

$$\overrightarrow{b} = [4, 1]$$

$$\vec{a} + \vec{b} = [6, 6]$$

$$\vec{a} = [2, 5]$$

$$\overrightarrow{b} = [4, 1]$$

$$\vec{a} + \vec{b} = [6, 6]$$

Back to Vector Spaces

Operations with Vectors

Sum of two vectors:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \qquad x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_2 \end{bmatrix} \in \mathbb{R}^n$$

2. Multiplying by a scalar:

satisfy axioms (1) – (8) (check it yourself)

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad \alpha \in \mathbb{R}, \qquad \alpha x = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{bmatrix} \in \mathbb{R}^n$$

Vector Spaces

 $(\mathbb{R}^n,+,\cdot),n\in\mathbb{N}$ - a vector space with operations

1. vector addition:

$$x + y = (x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$$

2. multiplication by a scalar:

$$\alpha x = \alpha(x_1, x_2, \dots, x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$$

Vector Spaces: Another Example

- \mathbb{P}^n a set of polynomials of degree $\leq n$ with real coefficients
 - Example: $\mathbb{P}^3 = \{ax^3 + bx^2 + cx + d \mid a, b, c, d \in \mathbb{R}\}$

- \mathbb{P}^n a set of polynomials of degree $\leq n$ with real coefficients
 - Example: $\mathbb{P}^3 = \{ax^3 + bx^2 + cx + d \mid a, b, c, d \in \mathbb{R}\}$
- We can add up polynomials:

$$(a_n x^n + a_{n-1} x^{n-1} + \dots + a_0) + (b_n x^n + b_{n-1} x^{n-1} + \dots + b_0) =$$

$$= (a_n + b_n) x^n + (a_{n-1} + b_{n-1}) x^{n-1} + \dots + (a_0 + b_0) \in \mathbb{P}^n$$

- \mathbb{P}^n a set of polynomials of degree $\leq n$ with real coefficients
 - Example: $\mathbb{P}^3 = \{ax^3 + bx^2 + cx + d \mid a, b, c, d \in \mathbb{R}\}$
- We can add up polynomials:

$$(a_n x^n + a_{n-1} x^{n-1} + \dots + a_0) + (b_n x^n + b_{n-1} x^{n-1} + \dots + b_0) =$$

$$= (a_n + b_n) x^n + (a_{n-1} + b_{n-1}) x^{n-1} + \dots + (a_0 + b_0) \in \mathbb{P}^n$$

And we can multiply them by a real number:

$$\lambda(a_n x^n + a_{n-1} x^{n-1} + \dots + a_0) = \lambda a_n x^n + \lambda a_{n-1} x^{n-1} + \dots + \lambda a_0 \in \mathbb{P}^n$$

- \mathbb{P}^n a set of polynomials of degree $\leq n$ with real coefficients
 - Example: $\mathbb{P}^3 = \{ax^3 + bx^2 + cx + d \mid a, b, c, d \in \mathbb{R}\}$
- We can add up polynomials:

$$(a_n x^n + a_{n-1} x^{n-1} + \dots + a_0) + (b_n x^n + b_{n-1} x^{n-1} + \dots + b_0) =$$

$$= (a_n + b_n) x^n + (a_{n-1} + b_{n-1}) x^{n-1} + \dots + (a_0 + b_0) \in \mathbb{P}^n$$

• And we can multiply them by a real number:

$$\lambda(a_n x^n + a_{n-1} x^{n-1} + \dots + a_0) = \lambda a_n x^n + \lambda a_{n-1} x^{n-1} + \dots + \lambda a_0 \in \mathbb{P}^n$$

These operations satisfy axioms (1) – (8)!

 $\rightarrow (\mathbb{P}^n, +, \cdot)$ is also a vector space!

Inner Product

Inner Product

- Inner product is a function $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{R}$ that satisfies the following properties:
 - Symmetric: $\forall x, y \in V \langle x, y \rangle = \langle y, x \rangle$
 - Positive definite: $\forall x \in V \setminus \{0\} \ \langle x, x \rangle > 0$ and $\langle x, 0 \rangle = 0$.

Dot Product

• A particular type of inner product.

Dot Product

• A particular type of inner product.

• For
$$x = [x_1, ..., x_n], y = [y_1, ..., y_n] \in \mathbb{R}^n$$

$$(x,y) = x_1y_1 + x_2y_2 + \dots + x_ny_n$$

Dot Product

- A particular type of inner product.
- $\bullet \quad \text{For } x = [x_1, \dots, x_n], \ y = [y_1, \dots, y_n] \in \mathbb{R}^n$

$$(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

• Example:

$$x = [1, 2, 3, 4],$$
 $y = [-1, 0, 1, 2]$
 $(x, y) = 1 \cdot (-1) + 2 \cdot 0 + 3 \cdot 1 + 4 \cdot 2 = -1 + 0 + 3 + 8 = 10$

Euclidian Vector Space

• A vector space with inner product is called an *inner product space*.

Euclidian Vector Space

- A vector space with inner product is called an inner product space.
- $(\mathbb{R}^n, +, \cdot)$ with dot product (\cdot, \cdot) is called a *Euclidian vector space*.

Euclidian Vector Space

- A vector space with inner product is called an inner product space.
- $(\mathbb{R}^n, +, \cdot)$ with dot product (\cdot, \cdot) is called a *Euclidian vector space*.

Note: there're inner products different from dot product.

Norms

• A **norm** on a vector space $\mathbb V$ is a function $\|\cdot\|: \mathbb V \to \mathbb R$ which assigns each vector $x \in \mathbb V$ its $length \|x\| \in \mathbb R$.

- A **norm** on a vector space $\mathbb V$ is a function $\|\cdot\|:\mathbb V\to\mathbb R$ which assigns each vector $x\in\mathbb V$ its $length\ \|x\|\in\mathbb R$.
- A norm must satisfy the following properties:

- A **norm** on a vector space \mathbb{V} is a function $\|\cdot\|: \mathbb{V} \to \mathbb{R}$ which assigns each vector $x \in \mathbb{V}$ its $length \|x\| \in \mathbb{R}$.
- A norm must satisfy the following properties:
 - Absolutely homogeneous: $\forall x \in \mathbb{V}, \ \forall \lambda \in \mathbb{R} \ \|\lambda x\| = |\lambda| \|x\|$

- A norm on a vector space \mathbb{V} is a function $\|\cdot\|: \mathbb{V} \to \mathbb{R}$ which assigns each vector $x \in \mathbb{V}$ its $length \|x\| \in \mathbb{R}$.
- A norm must satisfy the following properties:
 - ∘ Absolutely homogeneous: $\forall x \in \mathbb{V}$, $\forall \lambda \in \mathbb{R}$ $||\lambda x|| = |\lambda|||x||$
 - Positive definite: $\forall x \in \mathbb{V} \quad ||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$

- A **norm** on a vector space $\mathbb V$ is a function $\|\cdot\|:\mathbb V\to\mathbb R$ which assigns each vector $x\in\mathbb V$ its $length\ \|x\|\in\mathbb R$.
- A norm must satisfy the following properties:
 - ∘ Absolutely homogeneous: $\forall x \in \mathbb{V}$, $\forall \lambda \in \mathbb{R}$ $||\lambda x|| = |\lambda|||x||$
 - Positive definite: $\forall x \in \mathbb{V} \quad ||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$
 - ∘ Triangle inequality: $\forall x, y \in \mathbb{V} \|x + y\| \le \|x\| + \|y\|$

Examples of Norms

Manhattan Norm

• A norm for $x \in \mathbb{R}^n$:

$$||x||_1 = \sum_{i=1}^n |x_i|$$

Manhattan Norm

• A norm for $x \in \mathbb{R}^n$:

$$||x||_1 = \sum_{i=1}^n |x_i|$$

• Examples:

$$||[1, 2, 3]||_1 = 1 + 2 + 3 = 6$$

$$||[1,0]||_1 = 1 + 0 = 1$$

$$||[-1,0]||_1 = |-1| + 0 = 1$$

Manhattan Norm

• A norm for $x \in \mathbb{R}^n$:

$$||x||_1 = \sum_{i=1}^n |x_i|$$

• Examples:

$$||[1, 2, 3]||_1 = 1 + 2 + 3 = 5$$

$$||[1,0]||_1 = 1 + 0 = 1$$

$$||[-1,0]||_1 = |-1| + 0 = 1$$

• A norm for $x \in \mathbb{R}^n$:

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

• Computes *Euclidian distance* from the origin.

• A norm for $x \in \mathbb{R}^n$:

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

• Computes *Euclidian distance* from the origin.

• A norm for $x \in \mathbb{R}^n$:

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

- Computes Euclidian distance from the origin.
- Examples:

$$||[1, 2, 3]||_2 = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$

$$||[1,0]||_2 = \sqrt{1^2 + 0} = 1$$

$$||[-1,0]||_2 = \sqrt{(-1)^2 + 0} = 1$$

• A norm for $x \in \mathbb{R}^n$:

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

- Computes Euclidian distance from the origin.
- Examples:

$$||[1, 2, 3]||_2 = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$

$$||[1,0]||_2 = \sqrt{1^2 + 0} = 1$$

$$||[-1,0]||_2 = \sqrt{(-1)^2 + 0} = 1$$

Other norms

• In general, for $x=[x_1,...,x_n]\in\mathbb{R}^n$ an ℓ_p -norm is defined as follows:

$$||x||_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}.$$

Other norms

• In general, for $x=[x_1,...,x_n]\in\mathbb{R}^n$ an ℓ_p -norm is defined as follows:

$$||x||_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}.$$

- $\cdot \quad \ell_1$ Manhattan norm $\|\cdot\|_1$;
- \circ ℓ_2 Euclidian norm $\|\cdot\|$ (default);

Other norms

• In general, for $x=[x_1,...,x_n]\in\mathbb{R}^n$ an ℓ_p -norm is defined as follows:

$$||x||_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}.$$

- \circ ℓ_1 Manhattan norm $\|\cdot\|_1$;
- $_{\circ}$ ℓ_{2} Euclidian norm $\|\cdot\|$ (default);
- $\circ \quad \ell_{\infty} \colon \|x\|_{\infty} = \max_{i} |x_{i}|$

Example:
$$||[1,2,3]||_{\infty} = 3$$
, $||[1,0]||_{\infty} = 1$, $||[-1,0.5]||_{\infty} = 1$.

• Any inner product induces a norm:

$$||x|| \coloneqq \sqrt{\langle x, x \rangle}$$

• Any inner product induces a norm:

$$||x|| \coloneqq \sqrt{\langle x, x \rangle}$$

Check yourself that this is indeed a norm.

• Any inner product induces a norm:

$$||x|| \coloneqq \sqrt{\langle x, x \rangle}$$

Check yourself that this is indeed a norm.

• Example: dot product induces Euclidian norm:

$$\sqrt{(x,x)} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = ||x||_2$$

• Any inner product induces a norm:

$$||x|| \coloneqq \sqrt{\langle x, x \rangle}$$

Check yourself that this is indeed a norm.

• Example: dot product induces Euclidian norm:

$$\sqrt{(x,x)} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = ||x||_2$$

(!) Not every norm is induced by an inner product.
 Example: Manhattan norm.

Cauchy-Schwarz Inequality

• For an inner product vector space, the induced norm satisfies the inequality:

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

Cauchy-Schwarz Inequality

• For an inner product vector space, the induced norm satisfies the inequality:

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

• For dot product and Euclidian norm:

$$|(x,y)| \le ||x||_2 \cdot ||y||_2$$

Distance between Vectors

• Distance between two vectors x and y is defined as

$$d(x,y) := \|x - y\| = \sqrt{\langle x - y, x - y \rangle}.$$

Distance between Vectors

• Distance between two vectors x and y is defined as

$$d(x,y) := \|x - y\| = \sqrt{\langle x - y, x - y \rangle}.$$

• For dot product and Euclidian norm, we get *Euclidian distance*:

$$d(x,y) = ||x - y||_2 = \sqrt{(x - y, x - y)} =$$

$$= \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}.$$

Angles and Orthogonality

Angle between Two Vectors

- Inner product also captures the geometry of vector space by defining the angle between two vectors.
- Remember Cauchy-Schwarz inequality:

$$|(x,y)| \le ||x|| \cdot ||y||$$

$$-1 \le \frac{(x,y)}{\|x\| \cdot \|y\|} \le 1$$

$$\omega$$
: $\cos \omega = \frac{(x,y)}{\|x\| \cdot \|y\|}$ - angle between x and y .

Angle between Two Vectors: Example

• What is the angle ω between x = [5, 0] and y = [1, 1]?

$$\omega = \arccos \frac{(x,y)}{\|x\| \|y\|} = \arccos \frac{5 \cdot 1 + 0 \cdot 1}{\sqrt{5^2 + 0^2} \cdot \sqrt{1^2 + 1^2}} = \arccos \frac{5}{5\sqrt{2}} = \arccos \frac{\sqrt{2}}{4} = \frac{\pi}{4}.$$

Angle between Two Vectors: Example

• What is the angle ω between x = [5, 0] and y = [1, 1]?

$$\omega = \arccos \frac{(x,y)}{\|x\| \|y\|} = \arccos \frac{5 \cdot 1 + 0 \cdot 1}{\sqrt{5^2 + 0^2} \cdot \sqrt{1^2 + 1^2}} = \arccos \frac{5}{5\sqrt{2}} = \arccos \frac{\sqrt{2}}{4} = \frac{\pi}{4}.$$

• What is the angle ω between $x = [\sqrt{3}, 0, 1]$ and y = [1, 0, 0]?

$$\omega = \arccos \frac{(x,y)}{\|x\| \|y\|} = \arccos \frac{\sqrt{3}}{\sqrt{3+1} \cdot \sqrt{1}} = \arccos \frac{\sqrt{3}}{2} = \frac{\pi}{6}.$$

Angle between Two Vectors: Example

• What is the angle ω between x = [5, 0] and y = [1, 1]?

$$\omega = \arccos \frac{(x,y)}{\|x\| \|y\|} = \arccos \frac{5 \cdot 1 + 0 \cdot 1}{\sqrt{5^2 + 0^2} \cdot \sqrt{1^2 + 1^2}} = \arccos \frac{5}{5\sqrt{2}} = \arccos \frac{\sqrt{2}}{4} = \frac{\pi}{4}.$$

• What is the angle ω between $x = [\sqrt{3}, 0, 1]$ and y = [1, 0, 0]?

$$\omega = \arccos \frac{(x,y)}{\|x\| \|y\|} = \arccos \frac{\sqrt{3}}{\sqrt{3+1} \cdot \sqrt{1}} = \arccos \frac{\sqrt{3}}{2} = \frac{\pi}{6}.$$

• What is the angle ω between x = [1, 0, 0, 0, 1] and y = [0, 1, 1, 0, 0]?

$$\omega = \arccos \frac{(x, y)}{\|x\| \|y\|} = \arccos \frac{0}{\sqrt{2} \cdot \sqrt{2}} = \arccos 0 = \frac{\pi}{2}.$$

• x and y are orthogonal if and only if $\langle x, y \rangle = 0$.

- x and y are orthogonal if and only if $\langle x, y \rangle = 0$.
- Examples in \mathbb{R}^n with dot product:

$$x = [2,3],$$
 $y = [1,0],$ $(x,y) = 2 \neq 0 \rightarrow x$ and y are not orthogonal.

- x and y are orthogonal if and only if $\langle x, y \rangle = 0$.
- Examples in \mathbb{R}^n with dot product:

$$x = [2,3],$$
 $y = [1,0],$ $(x,y) = 2 \neq 0 \rightarrow x$ and y are not orthogonal.

$$x = [1, 2, 3],$$
 $y = [-2, 1, 0],$ $(x, y) = -2 + 2 + 0 = 0 \rightarrow x$ and y are orthogonal.

- x and y are orthogonal if and only if $\langle x, y \rangle = 0$.
- Examples in \mathbb{R}^n with dot product:

$$x = [2,3],$$
 $y = [1,0],$ $(x,y) = 2 \neq 0 \rightarrow x$ and y are not orthogonal.

$$x = [1, 2, 3],$$
 $y = [-2, 1, 0],$ $(x, y) = -2 + 2 + 0 = 0 \rightarrow x$ and y are orthogonal.

$$x = [1,0],$$
 $y = [0,1],$ $(x,y) = 0,$ $||x|| = ||y|| = 1 \rightarrow x$ and y are orthonormal.

• Suppose we have two vectors u and v.

The second second

- Suppose we have two vectors u and v.
- u_{v}' orthogonal projection of u on v.

The state of the s

- Suppose we have two vectors u and v.
- u_{v}' orthogonal projection of u on v.
- What is the length of u_{ν}' ?

- Suppose we have two vectors u and v.
- u_v' orthogonal projection of u on v.
- What is the length of u_{v}' ?

If
$$0 \le \omega \le 90$$

$$(u, v) = ||u|| ||v|| \cos \omega = ||u|| ||v|| \frac{||u'_v||}{||u||} = ||u'_v|| ||v||$$

The state of the s

- Suppose we have two vectors u and v.
- u_{v}' orthogonal projection of u on v.
- What is the length of u_{ν}' ?

If $90 \le \omega \le 180$

- Suppose we have two vectors u and v.
- u_v' orthogonal projection of u on v.
- What is the length of u_{ν}' ?

If $90 \le \omega \le 180$

- Suppose we have two vectors u and v.
- u_v' orthogonal projection of u on v.
- What is the length of u_{ν}' ?

If $90 \le \omega \le 180$

- Suppose we have two vectors u and v.
- u_v' orthogonal projection of u on v.
- What is the length of u_{ν}' ?

If
$$90 \le \omega \le 180$$

$$-(u, v) = ||u|| ||v|| \cos \omega = ||u|| ||v|| \frac{||u'_v||}{||u||} =$$
$$= ||u'_v|| ||v||$$

- Suppose we have two vectors u and v.
- u_v' orthogonal projection of u on v.
- What is the length of u_v' ?

$$|(u, v)| = ||u'_v|| ||v|| \leftrightarrow ||u'_v|| = \frac{|(u, v)|}{||v||}$$

- Suppose we have two vectors u and v.
- u_v' orthogonal projection of u on v.
- What is the length of u_v' ?

$$|(u, v)| = ||u_v'|||v|| \leftrightarrow ||u_v'|| = \frac{|(u, v)|}{||v||}$$

$$u_v' = \frac{(u,v)}{(v,v)}v.$$

• What's projection of u = [1, 3, 2] on z = [0, 0, 1]?

• What's projection of u = [1, 3, 2] on z = [0, 0, 1]?

$$u_z' = \frac{(u, z)}{(z, z)}z = 2z = [0, 0, 2]$$

(Projection on the axis = drop other coordinates)

• What's projection of u = [1, 3, 2] on z = [0, 0, 1]?

$$u_z' = \frac{(u, z)}{(z, z)}z = 2z = [0, 0, 2]$$

(Projection on the axis = drop other coordinates)

• What's projection of u = [1, 3, 2] on v = [4, 1, 3]?

• What's projection of u = [1, 3, 2] on z = [0, 0, 1]?

$$u_z' = \frac{(u, z)}{(z, z)}z = 2z = [0, 0, 2]$$

(Projection on the axis = drop other coordinates)

• What's projection of u = [1, 3, 2] on v = [4, 1, 3]?

$$u_v' = \frac{(u,v)}{(v,v)}v = \frac{4+3+6}{16+1+9}v = \frac{1}{2}v = [2, 0.5, 1.5].$$

A hyperplane is described by equation

$$w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b = 0$$

where at least one $w_i \neq 0$.

• A more compact notation:

$$(w, x) + b = 0, w = (w_1, ..., w_n)$$

• A hyperplane in \mathbb{R}^n is described by equation

$$w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b = 0$$

where at least one $w_i \neq 0$.

A hyperplane in \mathbb{R}^2 is a line

A hyperplane in \mathbb{R}^3 is a plane

Image source: https://deepai.org/machine-learning-glossary-and-terms/hyperplane

• A hyperplane in \mathbb{R}^n is described by equation

$$w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b = 0$$

where at least one $w_i \neq 0$.

• A more compact notation:

$$(w, x) + b = 0, w = (w_1, ..., w_n)$$

Normal to a Hyperplane

- Consider a hyperplane (w,x) + b = 0.
- Vector $w = (w_1, ..., w_n)$ defines the hyperplane.

Normal to a Hyperplane

- Consider a hyperplane (w,x) + b = 0.
- Vector $w = (w_1, ..., w_n)$ defines the hyperplane.
- w is a normal vector to this hyperplane: it's orthogonal to every vector on it.

- Objects = 2D vectors
- Binary classification: classes +1 and -1.

- Objects = 2D vectors
- Binary classification: classes +1 and -1.
- Linear classifier: separating hyperplane (w, x) + b = 0
 - objects "above" are class +1
 - o objects "below" are class -1.

- Objects = 2D vectors
- Binary classification: classes +1 and -1.
- Linear classifier: separating hyperplane (w, x) + b = 0
 - objects "above" are class +1
 - objects "below" are class -1.
- How can we formalize this?

- Objects = 2D vectors
- Binary classification: classes +1 and -1.
- Linear classifier: separating hyperplane (w, x) + b = 0
 - objects "above" are class +1
 - o objects "below" are class -1.
- How can we formalize this?
 - o objects "above": (w, x) + b > 0
 - o objects "below": (w, x) + b < 0

To sum up

- Vectors
 - Vector spaces
 - Inner products
 - Lengths
 - Distances
 - Angles
- Analytic Geometry
 - Projections
 - Hyperplanes
 - Normal vector

Next Time

• More on vector spaces.

