ENSEMBLES DE NOMBRES

OBJECTIFS 3

- Reconnaître les ensembles usuels vus par le passé $(\mathbb{N}, \mathbb{Z}, \mathbb{D} \text{ et } \mathbb{Q})$.
- Découvrir les nombres irrationnels et apprivoiser l'ensemble $\mathbb R$ des nombres réels, avec sa représentation sous forme de droite numérique.
- Connaître les différents intervalles de \mathbb{R} avec les notations $-\infty$ et $+\infty$.
- Savoir utiliser la valeur absolue et sa caractérisation en tant que distance.
- Représenter l'intervalle [a-r;a+r] et utiliser sa caractérisation par la condition $|x-a| \le r$.

Ensembles usuels

1. Ensembles déjà connus

EV	ΕП	\sim 1	\sim E	9	-
-	ER	u	CE	_	1

EXERCICE 1
On souhaite démontrer que $\frac{1}{3}$ n'est pas un nombre décimal. Nous allons procéder <i>par l'absurde</i> .
1. Supposons que $\frac{1}{3}$ est un nombre décimal. Montrer qu'il existe $a \in \mathbb{Z}$ et $n \in \mathbb{N}$ tels que $10^n = 3a$
2. Est-ce que 10 ⁿ peut être un multiple de 3? Justifier
3. Conclure.

 $\begin{tabular}{l} \textbf{\leftarrow} Voir la \ correction: https://mes-cours-de-maths.fr/cours/seconde/ensembles-de-nombres/\#correction-1. \end{tabular}$

2. Nombres réels

EXEMPLE 💡

Les ensembles vus depuis le début sont inclus les uns dans les autres :

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$$

On a, par exemple:

- $5 \in \mathbb{N}$, donc $5 \in \mathbb{Z}$.
- $5, 2 = \frac{52}{10}$, donc $5, 2 \in \mathbb{D}$ et ainsi $5, 2 \in \mathbb{Q}$.
- $-14 \notin \mathbb{N}$, mais $-14 \in \mathbb{Z}$.
- $-\frac{1}{3} \notin \mathbb{D}$, mais $\frac{1}{3} \in \mathbb{Q}$.
- π est irrationnel : π ∉ \mathbb{Q} .
- $0 \in \mathbb{N}$, donc $0 \in \mathbb{Z}$, $0 \in \mathbb{D}$, $0 \in \mathbb{Q}$ et $0 \in \mathbb{R}$.

EXERCICE 2

Compléter le tableau suivant avec ∈ ou ∉.

Nombre	N	Z	D	Q	R
3					
18 3					
2×10^{-2}					
$-\frac{9}{11}$					
$\frac{\pi^2}{6}$					
$\sqrt{1,44}$					
$-\sqrt{64}$					

Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/ensembles-de-nombres/#correction-2.

II Intervalles

1. Définition

À RETENIR 00

Définitions

L'ensemble des nombres réels compris entre a et b (inclus) est appelé **intervalle** et se note [a;b]. a et b sont les **bornes** de l'intervalle. On peut définir d'autres types d'intervalle.

Intervalle	Signification	Représentation

Quand le crochet est **fermé** (orienté vers la borne), la borne est incluse; quand il est **ouvert** (non orienté vers la borne), la borne est exclue. À noter que le crochet est toujours ouvert en $-\infty$ et $+\infty$. On note généralement $\mathbb{R}^+ = [0, +\infty[$ et $\mathbb{R}^- = [0, +\infty[$.

EXERCICE 3

1.	Écrire sous forme d'intervalle l'ensemble des nombres réels x tels que $-3 \le x < 4$. Puis, le représenter
	sur une droite graduée.

2. Union, intersection

EXEMPLE •

Par exemple, $\mathbb{R} = \mathbb{R}^- \cup \mathbb{R}^+$.

EXERCICE 4

Écrire les intersections et les réunions suivantes sous la forme d'un seul intervalle.

1.
$$[-4;5] \cup [0;10] = \dots$$

3.
$$[0;4[\cap[4;+\infty[=\ldots]]$$

1.
$$[-4;5] \cup [0;10] = \dots$$
 3. $[0;4] \cap [4;+\infty[=\dots\dots$ **5.** $[1;2] \cup [2;3] \cup [2;4] = \dots$

2.
$$]0;5] \cap [-2;3] = \dots$$

4.
$$[-10;5] \cup [4;12] = \dots$$

2.
$$]0;5] \cap [-2;3] = \dots$$
 4. $[-10;5] \cup [4;12] = \dots$ **6.** $\mathbb{R}^- \cap \mathbb{R}^+ = \dots$

◆Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/ensembles-de-nombres/#correction-4.

Inégalités et inéquations

1. Manipulation d'inégalités

EXEMPLE 9

$$3x + 8 < 7 \iff 3x < -1$$

L'ordre ne change pas car on soustrait 8.

EXEMPLE 9

$$2x > 8 \iff x > 4$$

L'ordre ne change pas car on divise par 2.

EXEMPLE 9

$$-3x < 18 \iff x > -6$$

L'ordre change car on divise par -3.

EXERCICE 5

Compléter par le symbole « < », « \leq », « > » ou « \geq ».

1.
$$x + 2 > 0 \iff x \dots -2$$
.

3.
$$y \ge 4 \iff y-4....0$$
.

2.
$$a < 10 \iff -6a \dots -60$$
.

4.
$$3c \le 4 \iff -12c \dots -16$$
.

[◆]Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/ensembles-de-nombres/#correction-5

2. Résolution d'inéquations

EXERCICE 6

Parmi les inéquations suivantes, lesquelles acceptent le nombre 9 comme solution?

À RETENIR 99

EXEMPLE 9

$$2x + 4 \ge 8$$

$$\iff 2x \ge 4$$

$$\iff x \ge 2$$

L'ensemble solution est $\mathcal{S} = [2; +\infty[$.

À RETENIR 99

EXEMPLE 🔋

Dans l'inéquation précédente, le crochet enferme la valeur 2 car dans l'énoncé, le symbole « ≥ » est utilisé.

EXERCICE 7

Résoudre l'inéquation -x + 1 < 2x + 10.

3. Valeur absolue

EXERCICE 8

Déterminer les valeurs absolues suivantes.

♥Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/ensembles-de-nombres/#correction-8

EXERCICE 9

1. Déterminer sous forme d'intervalle l'ensemble des nombres réels x tels que $|x-4| \le 3$.

2. On considère l'intervalle I = [8; 20]. Écrire une inégalité sous la forme $|x - c| \le r$ (où c et r sont deux nombres réels à déterminer) vérifiée par tous les nombres appartenant à I.

.....

