Serie de Taylor

Leidy Yoana Medina

Universidad de Medellín

Tabla de Contenido

Qué es la serie y para qué se usa

Serie de Taylor Solución Ejemplo

Table of Contents

Qué es la serie y para qué se usa

Serie de Taylor Solución Ejemplo

Qué es la serie y para que se usa

¿Qué es la serie de taylor?

La serie de Taylor es una herramienta matemática importante en el análisis y aproximación de funciones. Esta serie se utiliza para representar una función mediante una suma infinita de términos polinomiales, que están centrados en un punto específico

Para qué sirve?

La serie de Taylor sirve como una herramienta poderosa para representar y aproximarse a funciones complicadas mediante polinomios simples, lo que facilita el análisis y la manipulación de estas funciones en una variedad de contextos matemáticos y científicos.

Table of Contents

Qué es la serie y para qué se usa

Serie de Taylor Solución Ejemplo

Serie de Taylor

Sea $f \in C^n[a,b]$, tal que $f^{(n+1)}$ existe en [a,b]. Sea un punto fijo $x_0 \in [a,b]$, para cada $x \in [a,b]$, existe un numero $\xi = \xi(x)$ entre x_0 , x tal que

$$f(x) = P_n(x) + R_n(x)$$

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

У

$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}$$

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

1. Polinomio de grado 1

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

1. Polinomio de grado 1

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

2. Polinomio de grado 2

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3$$

1. Polinomio de grado 1

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

2. Polinomio de grado 2

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

3. Polinomio de grado 3

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3$$

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 + \frac{f^{(n)}(x_0)}{4!}(x - x_0)^4$$

Ejercicio

Ejercicio

Determine el polinomio 1 para la función $f(x) = \ln(x^2 + 1)$ alrededor de $x_0 = 0$.

- ▶ De grado 1 y aproxime P(1), P(5) y calcule el error relativo y el error absoluto i Qué sucede?
- ▶ De grado 2 y aproxime P(1), P(5) y calcule el error relativo y el error absoluto. ¿Qué sucede?

Gráfica

Ejemplo

Ejemplo

Determine el polinomio de grado 3 para la función $f(x) = e^{2x} \sin(x)$ alrededor de $x_0 = 0$.

- ▶ Use el polinomio para aproximar P(1), P(4.5) y calcule el error relativo y el error absoluto ¿qué sucede?
- Determine la cota de truncamiento de Taylor $R_3(1)$
- Con un algoritmo en el lenguaje de su preferencia realice la gráfica de: la función el polinomio de grado 1, el polinomio de grado 2, el polinomio de grado 4 y el polinomio de grado 6.

Solución

Primero, la serie de Taylor para determinar un polinomio de grado 3 es:

$$P_3(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x - x_0)^2}{2!} + f'''(x_0)\frac{(x - x_0)^3}{3!}$$

Es necesario determinar las 3 primeras derivadas de la función y evaluarlas en x_0 .

$f(x) = e^{2x} \sin x$	f(0)=0
$f'(x) = 2e^{2x}\sin(x) + e^{2x}\cos x$	f'(0)=1
$f''(x) = (3\sin(x) + 4\cos(x))e^{2x}$	f''(0) = 4
$f'''(x) = (11\cos(x) + 2\sin(x))e^{2x}$	f'''(0) = 11

Reemplazando en el polinomio de grado 3 se tiene:

$$P_3(x) = 0 + 1(x - 0) + 4\frac{(x - 0)^2}{2!} + 11\frac{(x - 0)^3}{3!}$$

El polinomio es:

$$P_3(x) = x + 2x^2 + \frac{11}{6}x^3$$

Ahora para determinar los valores aproximados solo evaluamos el valor de x en el polinomio y los valores reales reemplazamos cada valor de x en la función:

Valor Aproximado	Valor Real	E _a	Error Relativo
P(1) = 4.8333	f(1) = 6.217676	P(1) - f(1) = 1.3846	= 0.22265
P(4.5) = 212.0625	f(4.5) = -7921.008	P(4.5) - f(4.5) = 8133.0705	= 1.02677

Ahora determinemos la cota del error: La fórmula de la cota del error de la serie de Taylor esta dada por la expresión, donde n es el grado del polinomio y ξ es un número entre x y x_0

$$R_3(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)^{n+1}$$

entonces, para efectos del ejercicio x=1 n=3 y debemos determinar ξ

$$R_3(1) = \frac{f^{(4)}(\xi(x))}{(4)!}(1)^4 = \underbrace{f^{(4)}(\xi(x))}_{\text{Maximizar}} \frac{1}{24}$$

Determinemos la 5 derivada de la función y calculemos los puntos críticos

$$f^{(5)}(x) = (-38\sin(x) + 41\cos(x))e^{2x} = 0$$

$$\longrightarrow -38\sin(x) + 41\cos(x) = 0$$

$$-38\sin(x) = -41\cos(x)$$

$$\frac{41}{38} = \tan(x)$$

$$x = \arctan\left(\frac{41}{38}\right) = 0.8233$$

 ξ es un número que está entre x_o y x en este caso particular ξ se encuentra en el intervalo [0,1].

Son considerados los puntos críticos de la 4 derivada los extremos y el punto o los puntos críticos determinado con el criterio de la primera derivada entonces: reemplazamos los tres puntos en

$$f^{(4)}(x) = (-7\sin(x) + 24\cos(x))e^{2x}$$
$$|f^{(4)}(0)| = 24$$
$$|f^{(4)}(1)| = 52.2920$$
$$|f^{(4)}(0.8233)| = 58.024$$
 Máximo

Por lo tanto

$$R_3(1) = f^{(4)}(\xi(x)) \frac{1}{24} = 58.02/24 = 2.4175$$

Ejemplo

Example

Ejemplo Determine el polinomio de grado 2 para la función $y=2^{-x}$ en torno al punto $x_0=0$

Solución: Antes de determinar el polinomio, vamos a escribir la expresión del polinomio de grado expresado por la serie de Taylor:

$$P_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

Primero calculemos las 2 primeras derivadas de la función y evaluemos.

Ejemplo

Ejemplo

Determine el polinomio de grado 3 para la función $f(x) = e^{2x} \cos(2x)$ alrededor de $x_0 = 0$.

- ▶ Use el polinomio para aproximar P(1), P(4.5) y calcule el error relativo y el error absoluto ¿qué sucede?
- ▶ Determine la cota de truncamiento de Taylor $R_3(0.5)$
- Con un algoritmo en el lenguaje de su preferencia realice la gráfica de: la función el polinomio de grado 1, el polinomio de grado 2, el polinomio de grado 4 y el polinomio de grado 6.

Ejercicio

Ejemplo

Sea
$$f(x) = 3^{-x}$$
 y $x_0 = 1$.

- 1. Determine el *n*-ésimo polinomio de taylor $P_n(x)$ para f(x) en torno a x_0 y error.
- 2. Determine la cota del error al aproximar con $p_3(1)$ a f(1.1),

Ejercicio

Ejemplo

Sea
$$f(x) = \frac{e^x}{x}$$
 y $x_0 = 1$.

- 1. Determine el polinomio de taylor $P_n(x)$ para f(x) en torno a x_0 y error, donde el grado del polinomio es n=8.
- 2. Aproxime f(0.5), f(1.5), f(10)
- 3. Determine la cota del error al aproximar con $p_{\delta}(0.1)$ a f(0.1) (use la fórmula del error de Taylor),
- 4. Aproxime $\int_{0.5}^{1} f(x) dx$
- 5. Aproxime f'(0.5)dx
- 6. Que pasa si en vez de construir un polinomio de grado 8, le aumentamos términos a la serie de Taylor para aproximar f(10)
- 7. Realice una gráfica de la función f(x) y los polinomioss de grado 1, 5,8 e interprete.

