Setting up a Raspberry Pi as a WiFi access point

Created by lady ada

Last updated on 2016-12-05 05:56:01 PM UTC

Guide Contents

Guide Contents	2
Overview	3
What you'll need	5
Preparation	6
Check Ethernet & Wifi	9
Install software	11
Set up DHCP server	12
Set up wlan0 for static IP	15
Configure Access Point	17
Configure Network Address Translation	21
Update hostapd (maybe)	22
First test!	23
Removing WPA-Supplicant	26
Finishing up!	26
Connect and Test	29
More!	33
Compiling hostapd	34

Overview

© Adafruit Industries

Would you like to use your Pi as a WiFi router? Or maybe have it as a special filtering access point? Setting up a Pi as an access point (AP) is a bit more advanced than using it as a client, but its still only a half hour of typing to configure. If you want to, this tutorial will make it so the Pi broadcasts a WiFi service and then routes internet traffic to an Ethernet cable. Since its all Linux you can go in and update or configure it however you like.

I used the following pages as a guide to create this tutorial, **please note** many of them will not work completely, but check them out if you are interested!

- http://qcktech.blogspot.com/2012/08/raspberry-pi-as-router.html (http://adafru.it/cfU)
- http://itsacleanmachine.blogspot.com/2013/02/wifi-access-point-with-raspberry-pi.html (http://adafru.it/cfV)
- http://esrlabs.com/android-transporter-for-the-nexus-7-and-the-raspberry-

pi/ (http://adafru.it/cfW)

- http://elinux.org/RPI-Wireless-Hotspot
- http://blog.mxard.com/persistent-iptables-on-raspberry-pi-raspbian (http://adafru.it/qmd)

Currently tested working on Raspbian only, with Jessie and up to Raspberry Pi 3

What you'll need

You'll need a few things to run this tutorial:

- Raspberry Pi (http://adafru.it/1914)- Ethernet is required
- Ethernet cable (http://adafru.it/730)
- <u>WiFi adapter</u> (http://adafru.it/814) Not all WiFi adapters work, we know for sure it works with the ones in the Adafruit shop!
- SD Card (4GB or greater) with Raspbian on it. You can either DIY it orbuy a readymade Raspbian card (http://adafru.it/1121)
- Power supply for your Pi & a Micro USB cable
- <u>USB Console cable (optional) this makes it a little easier to debug the system</u> (http://adafru.it/954)
- Case for your Pi (optional) (http://adafru.it/2258)
- A SD or MicroSD card reader (http://adafru.it/939) (optional)

Our <u>Pi starter pack</u> (http://adafru.it/sSb) will be all you need and even comes with more fun stuff you can play with

Preparation

© Adafruit Industries

This tutorial assumes you have your Pi mostly set up and ready to go.

Please follow the tutorials in order to

- 1. Install the OS onto your SD card (http://adafru.it/aWq)
- 2. Boot the Pi and configure (http://adafru.it/aUa)

Don't forget to change the default password for the 'pi' acccount!

- 3. Set up and test the Ethernet and Wifi connection (http://adafru.it/aUB)
- Connect with a USB console cable (optional) (http://adafru.it/aUA)

When done you should have a Pi that is booting Raspbian, you can connect to with a USB console cable and log into the Pi via the command line interface.

It is possible to do this tutorial via **ssh** on the Ethernet port **or** using a console cable.

If using a console cable, even though the diagram on the last step shows powering the Pi via the USB console cable (red wire) we suggest not connecting the red wire and instead powering from the wall adapter. Keep the black, white and green cables connected as is.

Don't forget to expand the SD card, or you may run out of space!

fritzing

Check Ethernet & Wifi

Before continuing make sure the Ethernet cable is connected in and you can**ping** out from the Pi: ping 8.8.8.8

```
COM3 - PuTTY
ipi@raspberrypi:~$ ifconfig -a
         Link encap: Ethernet HWaddr b8:27:eb:f1:45:81
         inet addr:10.0.1.63 Bcast:10.0.1.255 Mask:255.255.255.0
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:1420 errors:0 dropped:0 overruns:0 frame:0
         TX packets:70 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
         RX bytes:186606 (182.2 KiB) TX bytes:7204 (7.0 KiB)
10
         Link encap:Local Loopback
         inet addr:127.0.0.1 Mask:255.0.0.0
         UP LOOPBACK RUNNING MTU:16436 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
pi@raspberrypi:~$ ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_req=1 ttl=51 time=12.5 ms
64 bytes from 8.8.8.8: icmp req=2 ttl=51 time=11.4 ms
   8.8.8.8 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 11.487/12.038/12.590/0.562 ms
pi@raspberrypi:~$
```

You will also want to set up your WiFi dongle. run**sudo shutdown -h now** and then plug in the WiFi module when the Pi is off so you don't cause a power surge.

If you have a Pi 3, or any other Pi with built in WiFi, an external WiFi adapter is not required but you *can* use one if you need a bigger/external antenna

When it comes back up check with **ifconfig -a** that you see **wlan0** - the WiFi module.

© Adafruit Industries

```
- - X
pi@raspberrypi: ~
config pi@raspberrypi ~ $ ifconfig -a
         Link encap:Ethernet HWaddr b8:27:eb:f1:45:81
         inet addr:10.0.1.63 Bcast:10.0.1.255 Mask:255.255.255.0
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:112 errors:0 dropped:0 overruns:0 frame:0
         TX packets:85 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
         RX bytes:10773 (10.5 KiB) TX bytes:12163 (11.8 KiB)
10
         Link encap:Local Loopback
         inet addr:127.0.0.1 Mask:255.0.0.0
         UP LOOPBACK RUNNING MTU:16436 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
wlan0
         Link encap:Ethernet HWaddr 00:e0:4c:09:3b:f8
         UP BROADCAST MULTICAST MTU:1500 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
pi@raspberrypi ~ $
```

Install software

Next up we install the software onto the Pi that will act as the 'hostap' (host access point)

You need internet access for this step so make sure that Ethernet connection is up!

sudo apt-get update sudo apt-get install hostapd isc-dhcp-server

(You may need to **sudo apt-get update** if the Pi can't seem to get to the apt-get repositories)

```
0
COM3 - PuTTY
NOTICE: the software on this Raspberry Pi has not been fully configured. Please
run 'sudo raspi-config'
pi@raspberrypi:~$ sudo apt-get install hostapd udhcpd
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 busybox
The following NEW packages will be installed:
 busybox hostapd udhcpd
0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
Need to get 878 kB of archives.
After this operation, 1,751 kB of additional disk space will be used.
Do you want to continue [Y/n]? Y
Get:1 http://mirrordirector.raspbian.org/raspbian/ wheezy/main busybox armhf 1:1
.20.0-7 [438 kB]
Get:2 http://mirrordirector.raspbian.org/raspbian/ wheezy/main hostapd armhf 1:1
.0-3 [419 kB]
Get:3 http://mirrordirector.raspbian.org/raspbian/ wheezy/main udhcpd armhf 1:1.
20.0-7 [20.9 kB]
Fetched 878 kB in 7s (111 kB/s)
```

(text above shows udhcpd but that doesnt work as well as isc-dhcp-server, still, the output should look similar)

Also install a nice iptables manager with

sudo apt-get install iptables-persistent

You'll get two 'config' screens, say Yes to both

Set up DHCP server

Next we will edit/etc/dhcp/dhcpd.conf, a file that sets up our DHCP server - this allows wifi connections to automatically get IP addresses, DNS, etc.

Run this command to edit the file

sudo nano /etc/dhcp/dhcpd.conf

Find the lines that say

option domain-name "example.org"; option domain-name-servers ns1.example.org, ns2.example.org;

and change them to add a # in the beginning so they say

#option domain-name "example.org"; #option domain-name-servers ns1.example.org, ns2.example.org;

Find the lines that say

If this DHCP server is the official DHCP server for the local # network, the authoritative directive should be uncommented.

#authoritative;

and remove the # so it says

If this DHCP server is the official DHCP server for the local # network, the authoritative directive should be uncommented. authoritative;

```
P
 GNU nano 2.2.6
                          File: /etc/dhcp/dhcpd.conf
# option definitions common to all supported networks...
foption domain-name "example.org";
option domain-name-servers ns1.example.org, ns2.example.org;
default-lease-time 600;
max-lease-time 7200;
# If this DHCP server is the official DHCP server for the local
# network, the authoritative directive should be uncommented.
uthoritative;
Use this to send dhcp log messages to a different log file (you also
have to hack syslog.conf to complete the redirection).
log-facility local7;
# No service will be given on this subnet, but declaring it helps the
DHCP server to understand the network topology.
           [ line 21/118 (17%), col 1/15 (6%), char 654/3762 (17%)
                          ^R Read File ^Y Prev Page ^K Cut Text
  Get Help
               WriteOut
                                                                    Cur Pos
                            Where Is
                                         Next Page
```

Then scroll down to the bottom and add the following lines

```
subnet 192.168.42.0 netmask 255.255.255.0 {
range 192.168.42.10 192.168.42.50;
option broadcast-address 192.168.42.255;
option routers 192.168.42.1;
default-lease-time 600;
max-lease-time 7200;
option domain-name "local";
option domain-name-servers 8.8.8.8, 8.8.4.4;
}
```


Save the file by typing in Control-X then Y then return

Run

sudo nano /etc/default/isc-dhcp-server

and scroll down to INTERFACES="" and update it to say INTERFACES="wlan0"

Or whatever the name of your wifi adapter is!

close and save the file

© Adafruit Industries

Set up wlan0 for static IP

If you happen to have wlan0 active because you set it up, run**sudo ifdown wlan0** There's no harm in running it if you're not sure

```
00
COM3 - PuTTY
opt dns 8.8.8.8 4.2.2.2
# The Pi's IP address on wlan0 which we will set up shortly.
opt router 192.168.42.1
opt subnet 255.255.255.0
# 10 day DHCP lease time in seconds
opt lease 864000
# Comment the following line to enable
#DHCPD ENABLED="no"
                       Switched to /etc/default/udhcpd ]
pi@raspberrypi:~$ sudo ifdown wlan0
Internet Systems Consortium DHCP Client 4.2.2
Copyright 2004-2011 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/
Listening on LPF/wlan0/00:e0:4c:09:3b:f8
Sending on LPF/wlan0/00:e0:4c:09:3b:f8
Sending on
            Socket/fallback
DHCPRELEASE on wlan0 to 10.0.1.1 port 67
pi@raspberrypi:~$
```

Next we will set up the **wlan0** connection to be static and incoming. Runsudo nano /etc/network/interfaces to edit the file

Find the line **auto wlan0** and add a **#** in front of the line, and in front of every line afterwards. If you don't have that line, just make sure it looks like the screenshot below in the end! Basically just remove any old **wlan0** configuration settings, we'll be changing them up

Depending on your existing setup/distribution there might be more or less text and it may vary a little bit

Add the lines

iface wlan0 inet static address 192.168.42.1 netmask 255.255.255.0

After **allow-hotplug wlan0** - see below for an example of what it should look like. Any other lines afterwards should have a **#** in front to disable them

Save the file (Control-X Y)

© Adafruit Industries

Assign a static IP address to the wifi adapter by running sudo ifconfig wlan0 192.168.42.1

Configure Access Point

Now we can configure the access point details. We will set up a password-protected network so only people with the password can connect.

Paste the following in, you can change the text after**ssid**= to another name, that will be the network broadcast name. The password can be changed with the text after

wpa_passphrase=

interface=wlan0 driver=rtl871xdrv ssid=Pi AP country code=US hw mode=g channel=6 macaddr acl=0 auth_algs=1 ignore_broadcast_ssid=0 wpa=2 wpa passphrase=Raspberry wpa_key_mgmt=WPA-PSK wpa_pairwise=CCMP wpa_group_rekey=86400 ieee80211n=1 wme enabled=1

If you are not using the Adafruit wifi adapters, you may have to change the **driver=rtl871xdrv** to say **driver=nl80211** or something

If you are using the Raspberry Pi 3's internal WiFi adapter, comment out the driver=rtl871xdrv line altogether:

Save as usual. Make sure each line has no extra spaces or tabs at the end or beginning - this file is pretty picky!

Now we will tell the Pi where to find this configuration file. Runsudo nano /etc/default/hostapd

Find the line **#DAEMON_CONF=""** and edit it so it says **DAEMON_CONF="**/etc/hostapd/hostapd.conf"

Don't forget to remove the **#** in front to activate it!

Then save the file

Likewise, run sudo nano /etc/init.d/hostapd and find the line

DAEMON CONF=

and change it to

Adafruit Industries

DAEMON_CONF=/etc/hostapd/hostapd.conf

Configure Network Address Translation

Setting up NAT will allow multiple clients to connect to the WiFi and have all the data 'tunneled' through the single Ethernet IP. (But you should do it even if only one client is going to connect)

Run sudo nano /etc/sysctl.conf

Scroll to the bottom and add

net.ipv4.ip_forward=1

on a new line. Save the file. This will start IP forwarding on boot up

```
pi@raspberrypi: ~
  GNU nano 2.2.6
                             File: /etc/sysctl.conf
                                                                        Modified
#net.ipv4.conf.all.send redirects = 0
 Do not accept IP source route packets (we are not a router)
#net.ipv4.conf.all.accept source route = 0
#net.ipv6.conf.all.accept source route = 0
# Log Martian Packets
#net.ipv4.conf.all.log martians = 1
# rpi tweaks
vm.swappiness=1
vm.min free kbytes = 8192
net.ipv4.ip forward=1
                WriteOut
                           ^R Read File ^Y Prev Page ^K
```

Also run

sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward "

to activate it immediately

Run the following commands to create the network translation between the ethernet port **eth0** and the wifi port **wlan0**

```
sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE sudo iptables -A FORWARD -i eth0 -o wlan0 -m state --state RELATED,ESTABLISHED -j ACCEPT sudo iptables -A FORWARD -i wlan0 -o eth0 -j ACCEPT
```

You can check to see whats in the tables with

```
sudo iptables -t nat -S sudo iptables -S
```

To make this happen on reboot (so you don't have to type it every time) run sudo sh -c "iptables-save > /etc/iptables/rules.v4"

```
- 0
PuTTY COM53 - PuTTY
pi@raspberrypi:~$ sudo iptables -t nat -S
P PREROUTING ACCEPT
-P INPUT ACCEPT
-P OUTPUT ACCEPT
-P POSTROUTING ACCEPT
-A POSTROUTING -o eth0 -j MASQUERADE
pi@raspberrypi:~$ sudo iptables -S
-P INPUT ACCEPT
-P FORWARD ACCEPT
-P OUTPUT ACCEPT
-A FORWARD -i eth0 -o wlan0 -m state --state RELATED, ESTABLISHED -j ACCEPT
-A FORWARD -i wlan0 -o eth0 -j ACCEPT
pi@raspberrypi:~$ sudo sh -c "iptables-save > /etc/iptables/rules.v4"
pi@raspberrypi:~$
```

The **iptables-persistent** tool you installed at the beginning will automagically reload the configuration on boot for you.

Update hostapd (maybe)

If you are running Raspberry pi kernel 4.4.13-v7+ or greater (check your kernel vesion with **uname -a**), you do not need to do this step.

If you are using the Raspberry Pi 3 built-in WiFi or are not using RTL8192-like WiFi adapter, then skip this step!

Before we can run the access point software, we have to update it to a version that supports the WiFi adapter.

First get the new version by typing in

wget http://adafruit-download.s3.amazonaws.com/adafruit hostapd 14128.zip

to download the new version (check the next section for how to compile your own updated **hostapd**) then

unzip adafruit hostapd 14128.zip

to uncompress it. Move the old version out of the way with

sudo mv /usr/sbin/hostapd /usr/sbin/hostapd.ORIG

And move the new version back with

sudo mv hostapd /usr/sbin

set it up so its valid to run with

sudo chown root:root /usr/sbin/hostapd

sudo chmod 755 /usr/sbin/hostapd

```
pi@raspberrypi: ~
pi@raspberrypi ~ $ wget http://www.adafruit.com/downloads/adafruit hostapd.zip
-2013-06-12 16:06:50-- http://www.adafruit.com/downloads/adafruit hostapd.zip
Resolving www.adafruit.com (www.adafruit.com) ... 207.58.139.247
Connecting to www.adafruit.com (www.adafruit.com) | 207.58.139.247 | :80... connecte
HTTP request sent, awaiting response... 200 OK
Length: 709582 (693K) [application/zip]
Saving to: `adafruit hostapd.zip'
                         ======>] 709,582 3.65M/s
2013-06-12 16:06:50 (3.65 MB/s) - `adafruit hostapd.zip' saved [709582/709582]
pi@raspberrypi ~ $ unzip adafruit hostapd.zip
Archive: adafruit hostapd.zip
 inflating: hostapd
pi@raspberrypi ~ $ sudo mv /usr/sbin/hostapd /usr/sbin/hostapd.ORIG
pi@raspberrypi ~ $ sudo mv hostapd /usr/sbin
pi@raspberrypi ~ $ sudo chmod 755 /usr/sbin/hostapd
pi@raspberrypi ~ 💲
```

First test!

Finally we can test the access point host! Run

sudo /usr/sbin/hostapd /etc/hostapd/hostapd.conf

To manually run **hostapd** with our configuration file. You should see it set up and use **wlan0** then you can check with another wifi computer that you see your SSID show up. If so, you have successfully set up the access point.

If you get this warning

Configuration file: /etc/hostapd/hostapd.conf Line 2: invalid/unknown driver 'rtl871xdrv' 1 errors found in configuration file '/etc/hostapd/hostapd.conf' It could mean that either you are not using a RTL871Xdrv WiFi adapter (e.g. Pi 3 internal wifi) and should comment out the driver=rtl871xdrv line in the hostapd config **OR** you *are* using that chipset and you need to download our recompiled **hostapd** binary

If it does work, you should get something like this:

```
- - X
pi@raspberrypi: ~
pi@raspberrypi ~ $ sudo mv /usr/sbin/hostapd /usr/sbin/hostapd.ORIG
pi@raspberrypi ~ $ sudo mv hostapd /usr/sbin
pi@raspberrypi ~ $ sudo chmod 755 /usr/sbin/hostapd
pi@raspberrypi ~ $ sudo /usr/sbin/hostapd /etc/hostapd/hostapd.conf
Configuration file: /etc/hostapd/hostapd.conf
drv->ifindex=3
12 sock recv==12 sock xmit=0x0x1fb638
+rtl871x sta deauth ops, ff:ff:ff:ff:ff is deauth, reason=2
rt1871x set key ops
rt1871x set key ops
rt1871x set key ops
rt1871x set key ops
Using interface wlan0 with hwaddr 00:e0:4c:09:3b:f8 and ssid 'Pi AP'
rt1871x set wps assoc resp ie
rt1871x set wps beacon ie
rt1871x set wps probe resp ie
rt1871x set key ops
rt1871x set beacon ops
rt1871x set hidden ssid ops
                                                                      - - X
pi@raspberrypi:~$ sudo /usr/sbin/hostapd /etc/hostapd/hostapd.conf
Configuration file: /etc/hostapd/hostapd.conf
Failed to create interface mon.wlan0: -95 (Operation not supported)
wlan0: interface state UNINITIALIZED->COUNTRY UPDATE
wlan0: Could not connect to kernel driver
Using interface wlan0 with hwaddr b8:27:eb:83:b3:29 and ssid "Pi AP"
wlan0: interface state COUNTRY UPDATE->ENABLED
wlan0: AP-ENABLED
```

And see a new access point created:

You can try connecting and disconnecting from the Pi_AP with the password you set before (probably Raspberry if you copied our hostapd config), debug text will display on the Pi console but you won't be able to connect through to the Ethernet connection yet.

```
COM53 - PuTTY
rt1871x set acl
+rtl871x_get_sta_wpaie, f0:79:59:74:9e:9b is sta's address
wlan1: STA f0:79:59:74:9e:9b IEEE 802.11: associated
rt1871x set key ops
rt1871x set key ops
rt1871x set key ops
+rtl871x send eapol
+rtl871x send eapol
rt1871x set key ops
wlan1: AP-STA-CONNECTED f0:79:59:74:9e:9b
wlan1: STA f0:79:59:74:9e:9b RADIUS: starting accounting session 57D7829C-000000
wlan1: STA f0:79:59:74:9e:9b WPA: pairwise key handshake completed (RSN)
wlan1: STA f0:79:59:74:9e:9b WPA: received EAPOL-Key 2/4 Pairwise with unexpecte
d replay counter
wlan1: STA f0:79:59:74:9e:9b WPA: received EAPOL-Key 4/4 Pairwise with unexpecte
d replay counter
wlan1: STA f0:79:59:74:9e:9b IEEE 802.11: disassociated
wlan1: AP-STA-DISCONNECTED f0:79:59:74:9e:9b
rt1871x set key ops
rt1871x set key ops
rtl871x sta remove ops, f0:79:59:74:9e:9b is sta address removed
```

Cancel the test by typing Control-C in the Pi console to get back to the Pi command line

Removing WPA-Supplicant

Depending on your distro, you *may* need to remove WPASupplicant. Do so by running this command:

sudo mv /usr/share/dbus-1/system-services/fi.epitest.hostap.WPASupplicant.service ~/

and then rebooting (sudo reboot) and retrying running hostapd

Finishing up!

OK now that we know it works, time to set it up as a 'daemon' - a program that will start when the Pi boots.

Run the following commands

sudo service hostapd start sudo service isc-dhcp-server start

you can always check the status of the host AP server and the DHCP server with

sudo service hostapd status

```
0
PuTTY COM53 - PuTTY
pi@raspberrypi:~$ sudo service hostapd start
pi@raspberrypi:~$ sudo service isc-dhcp-server start
pi@raspberrypi:~$ sudo service hostapd status
hostapd.service - LSB: Advanced IEEE 802.11 management daemon
   Loaded: loaded (/etc/init.d/hostapd)
  Active: active (running) since Tue 2016-09-13 04:37:28 UTC; 10min ago
 Process: 692 ExecStart=/etc/init.d/hostapd start (code=exited, status=0/SUCCESS)
   CGroup: /system.slice/hostapd.service
           -729 /usr/sbin/hostapd -B -P /run/hostapd.pid /etc/hostapd/hostap...
Sep 13 04:38:35 raspberrypi hostapd[729]: wlan1: STA f0:79:59:74:9e:9b WPA: ...r
Sep 13 04:38:37 raspberrypi hostapd[729]: wlan1: STA f0:79:59:74:9e:9b RADIU...0
Sep 13 04:38:37 raspberrypi hostapd[729]: wlan1: STA f0:79:59:74:9e:9b WPA: ...)
Sep 13 04:39:26 raspberrypi hostapd[729]: wlan1: STA f0:79:59:74:9e:9b IEEE ...d
Sep 13 04:41:34 raspberrypi systemd[1]: Started LSB: Advanced IEEE 802.11 ma....
Sep 13 04:47:00 raspberrypi hostapd[729]: wlan1: STA f0:79:59:74:9e:9b IEEE ...d
Sep 13 04:47:00 raspberrypi hostapd[729]: wlan1: STA f0:79:59:74:9e:9b WPA: ...r
Sep 13 04:47:02 raspberrypi hostapd[729]: wlan1: STA f0:79:59:74:9e:9b RADIU...1
Sep 13 04:47:02 raspberrypi hostapd[729]: wlan1: STA f0:79:59:74:9e:9b WPA: ...)
Sep 13 04:47:05 raspberrypi hostapd[729]: wlan1: STA f0:79:59:74:9e:9b IEEE ...d
Sep 13 04:47:23 raspberrypi systemd[1]: Started LSB: Advanced IEEE 802.11 ma....
Sep 13 04:47:52 raspberrypi systemd[1]: Started LSB: Advanced IEEE 802.11 ma....
Hint: Some lines were ellipsized, use -1 to show in full.
pi@raspberrypi:~$
```

or sudo service isc-dhcp-server status

```
PuTTY PuTTY
pi@raspberrypi:~$ sudo service isc-dhcp-server status
 isc-dhcp-server.service - LSB: DHCP server
   Loaded: loaded (/etc/init.d/isc-dhcp-server)
   Active: active (running) since Tue 2016-09-13 04:47:27 UTC; 1min 12s ago
  Process: 1121 ExecStart=/etc/init.d/isc-dhcp-server start (code=exited, status=0
SUCCESS)
   CGroup: /system.slice/isc-dhcp-server.service
           L1131 /usr/sbin/dhcpd -q -cf /etc/dhcp/dhcpd.conf -pf /var/run/dh...
Sep 13 04:47:25 raspberrypi dhcpd[1130]: Copyright 2004-2014 Internet System....
Sep 13 04:47:25 raspberrypi dhcpd[1130]: All rights reserved.
Sep 13 04:47:25 raspberrypi dhcpd[1130]: For info, please visit https://www..../
Sep 13 04:47:25 raspberrypi dhcpd[1130]: Wrote 0 leases to leases file.
Sep 13 04:47:25 raspberrypi dhcpd[1131]: Server starting service.
Sep 13 04:47:27 raspberrypi isc-dhcp-server[1121]: Starting ISC DHCP server: ...
Sep 13 04:47:27 raspberrypi systemd[1]: Started LSB: DHCP server.
Sep 13 04:47:55 raspberrypi systemd[1]: Started LSB: DHCP server.
Sep 13 04:48:14 raspberrypi dhcpd[1131]: DHCPDISCOVER from 00:e0:4c:0f:59:4e...1
Sep 13 04:48:15 raspberrypi dhcpd[1131]: DHCPOFFER on 192.168.42.10 to 00:e0...1
Hint: Some lines were ellipsized, use -1 to show in full.
pi@raspberrypi:~$
```

To start the daemon services. Verify that they both start successfully (no 'failure' or 'errors')

Then to make it so it runs every time on boot

sudo update-rc.d hostapd enable sudo update-rc.d isc-dhcp-server enable

Connect and Test

Now that we have the software installed on a Pi, it's time to connect to it and test the connection. I'm using a Windows computer but any kind should work fine

On the Pi, run the command**tail -f /var/log/syslog** to watch the system log data, handy for checking and debugging whats going on!

Connect with another computer to the AP you made in the previous step

Enter the WPA key you specified in the previous step

In the Pi syslog you should see stuff like this! It indicates that a client connected, at what time and what IP address was given to them

If you can't connect at all, something is wrong withhostapd

On your computer, open up a **Terminal** (mac/linux) or **Start->Run->cmd** to open up a command line

First check what **ifconfig** (mac/linux) or **ipconfig** (windows) says. You should have IP address in the 192.168.42.10-50 range

```
- - X
C:\Windows\system32\cmd.exe
C:\Users\ladyada>ipconfig
Windows IP Configuration
Wireless LAN adapter Wireless Network Connection 3:
   Connection-specific DNS Suffix . : local
Link-local IPv6 Address . . . : fe80::e9:e1c:1ef9:7a0bx30
IPv4 Address . . . . : 192.168.42.10
Subnet Mask . . . . . : 252.252.252.0
   Ethernet adapter Local Area Connection:
   Media State . . . . . . . . : Media disconnected Connection-specific DNS Suffix . :
Ethernet adapter VirtualBox Host-Only Network:
   Connection-specific DNS Suffix .:
Link-local IPv6 Address . . . . : fe80::e91e:be0d:6eb9:b792x21
IPv4 Address . . . . . . . : 192.168.56.1
Subnet Mask . . . . . . . : 255.255.255.0
Default Gateway . . . . . . :
Tunnel adapter isatap. <6E34487D-1AB2-46BD-A955-5D6945E39890>:
   . : Media disconnected
Tunnel adapter isatap.{F52288E5-61A3-464B-92B6-20E0FA8E2152}:
   : Media disconnected
Tunnel adapter Teredo Tunneling Pseudo-Interface:
   : Media disconnected
Tunnel adapter isatap.{A76BF87D-040E-4B0B-8099-A50EBA854757};
   : Media disconnected
Tunnel adapter isatap.local:
   Media State . . . . . . . . : Media disconnected Connection-specific DNS Suffix . : local
C:\Users\ladyada>_
```

Try pinging the Pi, its address is **192.168.42.1** - on windows it will ping 3 times and quit. On mac/linux press Control-C to quit after a few pings. You should get successful pings as seen below

If that doesn't work, something is wrong with **hostapd** or **dhcpd** (more likely)

Adafruit Industries

Next try ping 8.8.8.8, if this doesn't work but the previous does, something is wrong with **dhcpd** or the NAT configuration (more likely)

Finally, we'll check that DNS works, try pinging www.mit.edu (http://adafru.it/cfT). If this doesn't work, something is wrong with **dhcpd**

If everything is good so far, try browsing the internet, sending email, etc. You are now using your Pi as a Wifi Router!

More!

Adafruit Industries

Its possible to set up your router for open or WEP access, but we don't cover that here (and it's not as secure!) You might want to search around for tutorials such as this one that cover (http://adafru.it/cDx)hostapd (http://adafru.it/cDx) options (http://adafru.it/cDx)

Compiling hostapd

This step is not required, it is for curious people only!

You may have noticed that one step is downloading a copy of hostapd from adafruit.com and swapping it with yours. In case you want to compile your own, here's how (its easy but not necessary if you are OK with using our binary)

- Go to the Realtek downloads page <u>http://152.104.125.41/downloads/downloadsView.aspx?</u> <u>Langid=1&PNid=21&PFid=48&Level=5&Conn=4&ProdID=27...</u> (http://adafru.it/cfY)
- 2. Download linux 3.4.4 4749
- 3. Copy the zip to the SD card using any computer which will place it in the Pi's /boot directory (or somehow get that file onto your Pi)
- 4. Boot the Pi from the SD card
- 5. sudo mv /boot/RTL8192xC USB linux v3.4.4 4749.20121105.zip.
- 6. unzip RTL8192xC_USB_linux_v3.4.4_4749.20121105.zip
- 7. mv RTL8188C_8192C_USB_linux_v3.4.4_4749.20121105/ rtl
- 8. cd rtl
- 9. cd wpa_supplicant_hostapd
- 10. unzip wpa_supplicant_hostapd-0.8_rtw_20120803.zip
- 11. cd wpa supplicant hostapd-0.8/
- 12. cd hostapd
- 13. make
- 14. *have a sandwich*
- 15. when done, **hostapd** binary is in the directory

(Download link isn't working, maybe its somewhere in http://www.realtek.com.tw/downloads/downloadsView.aspx? Langid=1&PNid=21&PFid=48&Level=5&Conn=4&DownTypeID=3&GetDown=false)