

1 Data description

2 Data processing

3 EDA

- Data preparation & Training model
- 5 Conclusion

DATA DESCRIPTION

Data description

- Bộ dữ liệu này chứa một số thông tin về ô tô đã qua sử dụng được liệt kê trên www.cardekho.com
- Bao gồm 8128 dòng và 13 cột

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner	mileage	engine	max_power	torque	seats
0	Maruti Swift Dzire VDI	2014	450000	145500	Diesel	Individual	Manual	First Owner	23.4 kmpl	1248 CC	74 bhp	190Nm@ 2000rpm	5.0
1	Skoda Rapid 1.5 TDI Ambition	2014	370000	120000	Diesel	Individual	Manual	Second Owner	21.14 kmpl	1498 CC	103.52 bhp	250Nm@ 1500-2500rpm	5.0
2	Honda City 2017-2020 EXi	2006	158000	140000	Petrol	Individual	Manual	Third Owner	17.7 kmpl	1497 CC	78 bhp	12.7@ 2,700(kgm@ rpm)	5.0
3	Hyundai i20 Sportz Diesel	2010	225000	127000	Diesel	Individual	Manual	First Owner	23.0 kmpl	1396 CC	90 bhp	22.4 kgm at 1750-2750rpm	5.0
4	Maruti Swift VXI BSIII	2007	130000	120000	Petrol	Individual	Manual	First Owner	16.1 kmpl	1298 CC	88.2 bhp	11.5@ 4,500(kgm@ rpm)	5.0
	***			***							***		
8123	Hyundai i20 Magna	2013	320000	110000	Petrol	Individual	Manual	First Owner	18.5 kmpl	1197 CC	82.85 bhp	113.7Nm@ 4000rpm	5.0
8124	Hyundai Vema CRDi SX	2007	135000	119000	Diesel	Individual	Manual	Fourth & Above Owner	16.8 kmpl	1493 CC	110 bhp	24@ 1,900-2,750(kgm@ rpm)	5.0
8125	Maruti Swift Dzire ZDi	2009	382000	120000	Diesel	Individual	Manual	First Owner	19.3 kmpl	1248 CC	73.9 bhp	190Nm@ 2000rpm	5.0
8126	Tata Indigo CR4	2013	290000	25000	Diesel	Individual	Manual	First Owner	23.57 kmpl	1396 CC	70 bhp	140Nm@ 1800-3000rpm	5.0
8127	Tata Indigo CR4	2013	290000	25000	Diesel	Individual	Manual	First Owner	23.57 kmpl	1396 CC	70 bhp	140Nm@ 1800-3000rpm	5.0
8128 rows × 13 columns													

Data description

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8128 entries, 0 to 8127
Data columns (total 13 columns):
                  Non-Null Count Dtype
    Column
                 8128 non-null
                                  object
                  8128 non-null
                                  int64
    year
    selling price 8128 non-null
                                  int64
                   8128 non-null
                                  int64
    km driven
   fuel
                                  object
                   8128 non-null
   seller type
                 8128 non-null
                                  object
   transmission 8128 non-null
                                  object
                  8128 non-null
                                  object
    owner
                                  object
    mileage
                  7907 non-null
                                  object
    engine
                  7907 non-null
                  7913 non-null
                                  object
    max_power
                  7906 non-null
                                  object
    torque
                  7907 non-null
 12 seats
                                  float64
dtypes: float64(1), int64(3), object(9)
memory usage: 825.6+ KB
```

Column

- 1. name: Tên của xe
- 2. year: Năm mà chiếc xe được mua
- 3. selling_price: Giá của chiếc xe đang được bán
- 4. km_driven: Số kilomet chiếc xe đã đi
- 5. fuel: Loại nhiên liệu của xe (xăng / diesel / CNG / LPG / điện)
- 6. seller_type: Cho biết Người bán là Cá nhân hay Đại lý
- 7. transmission: Cho biết hộp số của xe (Tự động / Thủ công)
- 8. owner: Số lượng chủ sở hữu trước đó
- 9. mileage: đơn vị tính số Kilomet đi được của xe đó với 1lit chất đốt
- 10. engine: Dung tích động cơ của xe tính bằng CC
- 11. max_power: Công suất tối đa của động cơ
- 12. torque: mô-men xoắn của xe
- 13. seats: Số chỗ ngồi trên xe

DATA PROCESSING

name có thể thấy các hãng xe đều có chữ đầu tiên trong tên là Brand của hãng xe (ví dụ : Honda City 2017-2020 EXi thì Brand là Honda)

```
df['name']
              Maruti Swift Dzire VDI
1
        Skoda Rapid 1.5 TDI Ambition
            Honda City 2017-2020 EXi
           Hyundai i20 Sportz Diesel
3
              Maruti Swift VXI BSIII
4
                   Hyundai i20 Magna
8123
8124
               Hyundai Verna CRDi SX
              Maruti Swift Dzire ZDi
8125
8126
                     Tata Indigo CR4
                     Tata Indigo CR4
8127
Name: name, Length: 8128, dtype: obje
```

```
def get_car_brand():
    car_brand_list= []
    for name in df['name']:
        car_brand_list.append(name.split(' ')[0])
    return car_brand_list

df['brand'] = get_car_brand()
```

```
df['brand']
          Maruti
           Skoda
           Honda
        Hyundai
          Maruti
          . . .
        Hyundai
8123
8124
        Hyundai
         Maruti
8125
8126
            Tata
8127
            Tata
Name: brand, Length: 8128,
```

year

df['year']								
0 1 2 3	2014 2014 2006 2010							
4	2007							
8123 8124	2013							
8125 8126 8127	2009 2013 2013							
Name:								

có thể tính tuổi của xe bằng cách lấy năm hiện tại trừ năm sản xuất

```
df["car_age"] = (datetime.datetime.now().year) - (df["year"])
```

```
df["car_age"]
0
2
        17
        13
        16
8123
        10
8124
        16
8125
        14
8126
        10
8127
        10
Name: car_age, L
```

mileage

```
df['mileage']
        23.4 kmpl
        21.14 kmpl
        17.7 kmpl
        23.0 kmpl
        16.1 kmpl
8123
        18.5 kmpl
8124
        16.8 kmpl
8125
        19.3 kmpl
8126
        23.57 kmpl
8127
        23.57 kmpl
Name: mileage, Leng
```

chuyển từ dạng object có đơn vị 'kmpl' về dạng số thay thế giá trị null bằng giá trị mean

```
df["mileage"] = df["mileage"].str.extract('([^\s]+)').astype("float")

df["mileage"].replace(np.nan, "%.3f" % df["mileage"].astype("float").mean(axis=0), inplace=True)

df["mileage"] = df["mileage"].astype("float")
```

```
df["mileage"]
        23.40
        21.14
        17.70
        23.00
        16.10
8123
        18.50
8124
        16.80
        19.30
8125
8126
        23.57
8127
        23.57
Name: mileage, L
```

Làm tương tự với column 'max_power' và 'engine' ta có

```
df["max_power"]
         74.00
        103.52
         78.00
         90.00
         88.20
         . . .
8123
         82.85
8124
        110.00
8125
         73.90
         70.00
8126
8127
         70.00
Name: max_power, Length: 8128, dtype: float64
```

```
df["engine"]
        1248.0
       1498.0
       1497.0
       1396.0
        1298.0
8123
      1197.0
      1493.0
8124
8125
      1248.0
8126
       1396.0
        1396.0
8127
Name: engine, Length: 8128, dtype: float64
```

Với column 'seats' ta thay thế giá trị null bằng giá trị xuất hiện nhiều nhất

Drop các column không cần thiết và check null

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8128 entries, 0 to 8127
Data columns (total 12 columns):
                  Non-Null Count Dtype
    Column
    selling_price 8128 non-null int64
                 8128 non-null int64
    km driven
    fuel
               8128 non-null object
    seller_type 8128 non-null object
    transmission 8128 non-null object
                  8128 non-null object
    owner
    mileage
                 8128 non-null float64
                 8128 non-null float64
    engine
                8128 non-null float64
    max_power
               8128 non-null float64
    seats
               8128 non-null object
    brand
                8128 non-null
                                int64
11 car age
dtypes: float64(4), int64(3), object(5)
memory usage: 762.1+ KB
```

```
df.drop(['torque'], axis = 1, inplace = True)
df.drop(['year'], axis = 1, inplace = True)
df.drop(['name'], axis = 1, inplace = True)
```

Dữ liệu đã khá sạch, cùng sang bước EDA

EXPLORATORY DATA ANALYSIS

EDA

- Khách đa phần yêu thích loại xe số sàn (87%) so với số tự động (12.9%)
- 2 loại nguyên liệu chính được phổ biến trên các dòng xe là Diesel và Petrol
- Khách hàng mua xe qua đại lý nhiều hơn so với việc mua xe qua cá nhân

- Xe được mua nhiều nhất từ năm thứ 4 trở đi,
- Doanh thu cao nhất đến từ xe đã 1 người sử dụng.
- Tiêu chí chọn xe của khách hàng khi chọn xe cũ là xe khoảng 4,5, 6 năm có thể lúc này là lúc mà giá chiếc xe thích hợp nhất so với giá trị của chiếc xe, hơn nữa mới chỉ qua tay của 1 đến 2 người thì chiếc xe không bị xuống cấp quá nhiều

Top 10 hãng xe bán chạy nhất

2.448 Maruti 1.415 Hyundai Mahindra 772 734 Tata 488 Toyota 467 Honda 397 Ford Chevrolet 230 Renault 228 Volkswagen 186

Giá xe trung bình của 10 hãng xe trên

Maruti 403.075 Hyundai 458.554 Mahindra 623.224 357.433 Tata 959.946 Toyota Honda 596.178 516.682 Ford Chevrolet 273.867 462.618 Renault Volkswagen 498.817

- Hãng xe bán chạy nhất là Maruti
 và bỏ xa so với các hãng xe còn lại
- Hãng xe Maruti này lại có giá xe trung bình lại không cao
- Khách hàng chọn xe vì nó có giá cả hợp lý, không quá xa xỉ, chất lượng ổn định

DATA PREPARATION & TRAINING MODEL

- giữa các biến 'mileage' và 'engine' : 0,57
- giữa các biến 'max_power' và 'engine' : 0,70
- giữa các biến 'seats' và 'engine' : 0,61
- giữa các biến 'max_power' và 'selling_price' : 0,74
- Cũng có mức độ tương quan trung bình giữa các biến khác.

Chọn biến đầu vào X và biến target y

```
X = df.drop("selling_price", axis = 1)
y = df['selling_price']
```

LabelEncoder với các biến categorical

```
le = LabelEncoder()
categorical_feature_mask = df.dtypes==object
categorical_cols = df.columns[categorical_feature_mask].tolist()
df[categorical_cols] = df[categorical_cols].apply(lambda col: le.fit_transform(col))
```

StandardScaler X

```
X=preprocessing.StandardScaler().fit(X).transform(X.astype(float))
```

Chia tập train và tập test

```
Xtrain,Xtest,ytrain,ytest=train_test_split(X,y,test_size=0.25,random_state=42)
print(Xtrain.shape,ytrain.shape,Xtest.shape,ytest.shape)

(6096, 11) (6096,) (2032, 11) (2032,)
```

Chạy với các mô hình với thông số như hình

```
lr = LinearRegression()
knn = KNeighborsRegressor(n_neighbors=8)
dt = DecisionTreeRegressor(max_depth = 5)
rf = RandomForestRegressor(n_estimators=100, max_features= 7)
ada = AdaBoostRegressor( n_estimators=150, learning_rate = .08)
gbr = GradientBoostingRegressor(max_depth=7, n_estimators=500, learning_rate = .05)
xgb = XGBRegressor(max_depth = 7, n_estimators=500, learning_rate = .05)
```

Kết quả

Linear Regression: 68 %

K Nearest Neighbours: 92 %

Decision Tree: 91 %

Random Forest: 97 %

AdaBoost: 88 %

Gradient Boosting Regressor: 97 %

XGBRegressor: 98 %

Dùng Polynomial (Degree= 2) ta được kết quả như sau

Linear Regression: 90 %

K Nearest Neighbours: 93 %

Decision Tree: 94 %

Random Forest: 97 %

AdaBoost: 88 %

Gradient Boosting Regressor: 98 %

XGBRegressor: 98 %

