Genomics, proteomics and evolution

peak-motifs: detecting motifs in large sets of ChIP-seq peak sequences

Work flow for chip-seq analysis

- ChIP-seq data can be retrieved from specialized databases such as Gene Expression Omnibus (GEO).
- The GEO database allows to retrieve sequences at various processing stages.
 - Read sequences: typically, several millions of short sequences (25bp).
 - Read locations: chromosal coordinates of each read.
 - Peak locations: several thousands of variable size regions (~10bp - 10kb).

Case study 1: Chen et al. 2008

- Binding location of 13 mouse transcription factors involved in the embryonic stem cell regulation.
- Combined the motif discovery tools Weeder and NMICA to predict motifs in each set of ChIP-seq peaks.
- Several data sets reveal the same composite motif (SOCT motif) reflecting the Sox2 / Oct4 cooperative binding.

Transcription factor binding sites: from site-wise characterization to genome-scale location (ChIP-on-chip, ChIP-seq)

Transcription factor binding site prediction : difficulties

- Until recently, our knowledge on transcription factors relied on small collections of binding sites.
 - Such motifs are over-fitted to the few binding sites that were used to build them.
- Transcription factor binding motifs are poorly informative.
 - Motif width varies from 5 to 25 base pairs (some factors bind spaced motifs).
 - Typically 5-10 partly conserved positions.
 - Predicting individual binding sites at a genome scale is expected to return many false positives.
- The predictive power of a matrix has to be estimated on a case-by-case basis.
 - RSAT tool matrix-quality (Medina-Rivera et al., 2010)

DNAse footprint

ChIP-on-chip

- The ChIP-on-chip method combines
 - Chromatin Immunoprecipitation (ChIP) to select genome fragments bound to a tagged transcription factor.
 - DNA microarrays (chip) spotted with several thousands of genome fragments (typically all the intergenic regions of agiven organism) are used to detect the relative enrichment: immunoprecipitated (IP) versus non-precipitated DNA (« mock » IP).
- Strength: genome-wide coverage

Weakness: fragmentation by sonication -> large variations in DNA fragment sizes (from a few tens of bases to several kbs).

ChIP-seq

Combination of

- Chromatin Immunoprecipitation (ChIP), as for ChIP-chip.
- Instead of using microarrays, the immunoprecipitated fragments are sequenced

Strength:

- no problem of imprecision due to the hybridation of large IP fragments to short spotted features.
- Thanks to the « next » generation sequencing (NGC) methods, sequencing can be very efficient.
- Does not require prior sequencing of the genome.

Weaknesses

- Variability of fragment sizes obtained by ultrasonication.
- Detection of relevant peaks (peak calling) is not trivial.

Source: Chen et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell (2008) vol. 133 (6) pp. 1106-17/7

Read mapping

- The primary result of massively parallel sequencing is a file containing seveal millions of short sequences (the "reads").
- Read mapping consists in identifying the location of the reads on a genome of reference.
- This is a computationall intensive task (may take several hours on a powerful computer).

The difficulty of peak identification (peak calling)

- A ChIP-seq experiment typically returns several millions of sequences ("reads") of short size (25bp to 100bp, depending on the sequencer characteristics).
- The reads correspond to the extremities of the DNA fragments.
 - Reads are distribued on both strands
 - The peaks on the forward and reverse strand are spaced by the average length of the fragment.
 - Most of the reads to not even cover the actual binding sites.
- Peak calling programs apply various strategies to identify and score the peaks from a set of reads, but identifying regions covered by more reads than expected by chance (see Pepke et al., 2009 for a review).
- Figure
 - RMP: read per millions.

Figure from Jothi et al. (2008)

- Pepke et al. Computation for ChIP-seq and RNA-seq studies. Nat Methods (2009) vol. 6 (11 Suppl) pp. S22-32.
- Jothi et al. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res (2008) vol. 36 (16) pp. 5221-31

Peak calling result

- Figure: peak calling result with the reads of the Oct4 ChIP-seq from Chen 2008.
 Peak calling was performed with MACS on the Galaxy server.
- The curves indicate the distribution of reads relative to the centers of the peaks.
 - Red: forward strand
 - Blue: reverse strand
 - Black: "shifted" tags, obtained by comparing the forward and reverse tags.
- The 3 curves show a well-centered acute peak, which suggests that the peak calling worked well.

An integrated work flow for analyzing ChIP-seq peaks

- The program peak-motifs is a work flow that combines a series of RSAT tools in an optimal way to discoverd motifs in large sequence sets (tens of Mb) resulting from ChIP-seq experiments.
- Simple input: a set of peak sequences (fasta format).
- Multiple pattern discovery algorithms
 - Global over-representation
 - Positional biases
 - Local over-representation
- Interfaces
 - Stand-alone command
 - Web site with user-friendly interface
 - Web services (soon)

Discovering motifs in large sequence sets

Motif discovery applied to ChIP-seq data

- Typical situation: we dispose of a collection of peak regions
 - Number : typically 1,000 to 100,000
 - Lengths: typically, between 200bp and 10,000bp, depending on
 - peak calling options
 - data type (specific transcription factor, chromatin accessibility, ...)

Challenges

- Extracting the "main" motif from the complete set of peak sequences (bound by the tagged TF).
- Discovering accessory motifs (cooperative binding or frequent associations inside CRMs).
- Comparing motifs discovered in different data sets (mutant versus WT, various conditions).
- Predicting the precise position of binding sites inside the peak regions.

Case study 1: Chen et al. 2008

- Binding location of 13 mouse transcription factors involved in the embryonic stem cell regulation.
- Combined the motif discovery tools Weeder and NMICA to predict motifs in each set of ChIP-seq peaks.
- Several data sets reveal the same composite motif (SOCT motif) reflecting the Sox2 / Oct4 cooperative binding.

Challenges

- Motif discovery difficulties
 - □ Choice of the parameters for motif discovery (program, background model, ...)
- Motif discovery in peak collections is not obvious because
 - Data sets can be very large (several tens of Mb)
 - Peaks are broadly defined
 - Data sets may contain noise
 - **-** ...

An integrated work flow for analyzing motifs in ChIP-seq and ChIP-chip peak sets

An integrated work flow for analyzing ChIP-seq peaks

- The program peak-motifs is a work flow that combines a series of RSAT tools in an optimal way to discoverd motifs in large sequence sets (tens of Mb) resulting from ChIP-seq experiments.
- Simple input: a set of peak sequences (fasta format).
- Multiple pattern discovery algorithms
 - Global over-representation
 - Positional biases
 - Local over-representation
- Interfaces
 - Stand-alone command
 - Web site with user-friendly interface
 - Web services (soon)

Testing sets: 12 transcription factors from Chen (2008)

- Reads extracted from the GEO database
- Peaks were identified by Morgane Thomas-Chollier, using MACS on the reads, trying different options.
 - False Discovery Rate (none or 0.02)
 - Limit on the peak length
 - Peak splitting or not (split large regions into peaks)
- Reference motifs collected from TRANSFAC and JASPAR databases
 - Note: some of those motifs were obtained from high-throughput methodologies (in particular those built from the Chen dataset) -> cannot be properly speaking considered as "reference".

Composition analysis

- Analysis of the input sequence composition
 - Nucleotide composition + positional distribution
 - Dinucleotide composition reveals dependencies such as CpG islands

Composition analysis results

- The composition analysis reveals differences between data sets.
 - Sox2 peaks: clear avoidance of CpG dinucleotides.
 - n-Myc peaks appear as CpG island.
 - The center of Ctcf peaks shows a strong depletion in AA, TT, AT and TA.

Reference motifs

- One or several reference motifs can be defined.
- Reference motifs are the ones which are expected to be found in the dataset.
 - More precisely, if those motifs are not reported, it is considered as a failure.
- Choice of reference motifs is somewhat tricky.
 - Ex: Sox2 peaks
 - 2 slightly different matrices are annotated in TRANSFAC for Sox2
 - The 3rd matrix reflects the composite Sox/Oct motif (SOCT).
 - This motif was obtained by the TRANSFAC team using a motif discovery algorithm on Chen data set -> not properly speaking a "golden reference" for evaluating motif discovery accuracy.

Detection of over-represented oligonucleotides (oligo-analysis)

Principle

- Count the occurrences of all words (oligonucleotides) of a given size in the input set
- Estimate the expected number of occurrences according to some background model
- Report significantly overrepresented words.

Example

- Sox2 peaks from Chen (2008).
- Word length k=7
- Markov model of order m=5 trained on the input set.

22

- 1. van Helden, J., Andre, B. and Collado-Vides, J. (1998). Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol 281, 827-42.
- 2. van Helden, J., del Olmo, M. and Perez-Ortin, J. E. (2000). Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. Nucleic Acids Res 28, 1000-10.
- 3. van Helden, J., Rios, A. F. and Collado-Vides, J. (2000). Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. Nucleic Acids Res 28, 1808-18.

Primary result: a list of over-represented words

```
column headers
       1
                                oligomer sequence
                sea
        2
                identifier
                                oligomer identifier
        3
                                expected relative frequency
                exp freq
                                observed occurrences
                occ
        5
                exp occ
                                expected occurrences
                                occurrence probability (binomial)
                occ P
        7
                occ E
                               E-value for occurrences (binomial)
                                occurrence significance (binomial)
                occ sig
        9
               rank
                                rank
                               number of overlapping occurrences (discarded from the count)
        10
                ovl occ
                               forbidden positions (to avoid self-overlap)
                forbocc
       11
        identifier
                                                                                        ovl occ forbocc
#sea
                        exp freq
                                        occ
                                                exp occ occ P
                                                                occ E
                                                                      occ sig rank
ccacacc ccacacc ggtgtgg 0.0002613028663 1317
                                                        2.2e-36 3.6e-32 31.45
                                                                                                7902
atgcaaa atgcaaa tttgcat 0.0003503737355 1662
                                                               1.3e-28 27.88
                                                                                                9972
                                                1223.51 8e-33
ataacaa ataacaa ttgttat 0.0002422800913 1214
                                                        9.6e-33 1.6e-28 27.80
                                                                                                7284
                                                846.05
atgctaa atgctaa ttagcat 0.0002118238777 1073
                                                739.69
                                                        9.9e-31 1.6e-26 25.79
                                                                                                6438
atgttaa atgttaa ttaacat 0.0001301259370 709
                                                454.40 1.6e-28 2.6e-24 23.58
                                                                                                4254
atgacaa atgacaa ttgtcat 0.0001973777152 992
                                                689.25 1.7e-27 2.7e-23 22.56
                                                                                                5952
atttgta atttgta tacaaat 0.0001000366877 557
                                                349.33
                                                       9.6e-25 1.6e-20 19.80
                                                                                                3342
                                                956.58 2.6e-24 4.3e-20 19.37
                                                                                                7716
atttgca atttgca tgcaaat 0.0002739332455 1286
caaggtc caaggtc gaccttg 0.0002598346118 1215
                                                907.35 1.6e-22 2.5e-18 17.59
                                                                                                7290
acaaagg acaaagg cctttgt 0.0007523379384 3129
                                                2627.17 1.1e-21 1.7e-17 16.76
                                                                                                18774
attttta attttta taaaaat 0.0001255564047 652
                                                438.44 1.1e-21 1.9e-17 16.73
                                                                                                3912
                                                                                11
aaggtca aaggtca tgacctt 0.0003578959186 1571
                                                1249.78 1.3e-18 2.1e-14 13.67
                                                                                                9426
caaaaac caaaaac gtttttg 0.0001378284645 684
                                                481.30 2.1e-18 3.5e-14 13.46
                                                                                        11
                                                                                                4104
ccccacc ccccacc ggtgggg 0.0004424086690 1897
                                                                                        149
                                                1544.90 2.8e-18 4.6e-14 13.34
                                                                                                11382
                                                                                                5376
ctttttc ctttttc gaaaaag 0.0001897760107 896
                                                662.70 4.5e-18 7.4e-14 13.13
                                                                                15
                                                                                        4
                                                2065.33 1.1e-16 1.7e-12 11.76
acaaaag acaaaag cttttgt 0.0005914427717 2450
                                                                                                14700
ccctcc ccctcc ggagggg 0.0004233849461 1804
                                                1478.47 1.5e-16 2.4e-12 11.62
                                                                                                10824
cttgaac cttgaac gttcaag 0.0001462757032 706
                                                510.80 1.9e-16 3.0e-12 11.52
                                                                                                4236
cgccccc cgccccc gggggcg 0.0001075537603 540
                                                375.58 9.9e-16 1.6e-11 10.79
                                                                                        3
                                                                                                3240
attgttc attgttc gaacaat 0.0003636078790 1562
                                                1269.72 1.3e-15 2.2e-11 10.67
                                                                                                9372
attagca attagca tgctaat 0.0002098395249 952
                                                732.76 5.4e-15 8.9e-11 10.05
                                                                                                5712
                                                                                21
cccaccc cccaccc gggtggg 0.0004814771589 2001
                                                1681.32 2e-14
                                                                3.3e-10 9.49
                                                                                        166
                                                                                                12006
caaggac caaggac gtccttg 0.0001695781657 785
                                                                                                4710
                                                        2.5e-14 4.1e-10 9.39
                                                                                        1
atgtaaa atgtaaa ttttacat 0.0001915519678 873
                                                668.90
                                                        2.7e-14 4.4e-10 9.36
                                                                                24
                                                                                                5238
                                                                                                6336
aacacaa aacacaa ttgtgtt 0.0002376492556 1056
                                                829.87 2.8e-14 4.5e-10 9.34
: Job started
               2010 10 19.201655
; Job done
                2010 10 19.201704
: Seconds
                8.3
```

The over-represented words can be assembled

- The list of over-represented words generally contain groups of mutually overlapping words.
- Those groups can be aligned using the program patternassembly
- Assembled words reveal
 - larger motifs than the initial word length
 - positions with variable residues
- Word assemblies can be used to build a significance matrix (example below).

```
;assembly # 1
                         2 words length
                seed:
;alignt rev cpl score
ccacacc ggtgtgg 31.45
ccccacc ggtgggg 13.34
                31.45
                         best consensus
;assembly # 2
                seed:
                         6 words length 0
;alignt rev cpl score
                .tttqcat
                                 27.88
atgcaaa.
                                 25.79
atgctaa.
                .ttagcat
                                 9.36
atgtaaa.
                .tttacat
.tacaaat
                atttqta.
                                 19.80
.tgcaaat
                atttqca.
                                 19.37
.tgctaat
                attagca.
                                 10.05
                27.88
                         best consensus
;assembly # 3
                         2 words length 0
                seed:
;alignt rev cpl score
ataacaa ttgttat 27.80
atgacaa ttgtcat 22.56
                27.80
                         best consensus
```

a		0	0	0	0	31.45	0	31.45	0	0	0	0	
c	1	0	0	31.45	31.45	13.34	31.45	0	31.45	31.45	0	0	
g	1	0	0	0	0	0	0	0	0	0	0	0	
t	1	0	0	0	0	0	0	0	0	0	0	0	
11													
a	1	0	0	27.88	0	19.8	0	27.88	27.88	27.88	0	0	0
c		0	0	0	0	0	27.88	0	0	0	0	0	0
g	İ	0	0	0	0	27.88	0	0	0	0	0	0	0
t	İ	0	0	0	27.88	0	9.36	25.79	0	0	19.8	0	0
11													
a		0	0	27.8	0	27.8	27.8	0	27.8	27.8	0	0	
c	İ	0	0	0	0	0	0	27.8	0	0	0	0	
g	İ	0	0	0	0	22.56	0	0	0	0	0	0	
t	İ	0	0	0	27.8	0	0	0	0	0	0	0	
	-												

Collecting a matrix from assembled words

- The significance matrix can be used as "seed" to scan the input sequences and collect site.
- Those sites are in turn used to build a final matrix.

Significance matrix

a	1	0	0	0	0	31.45	0	31.45	0	0	0	0	
c	1	Ŏ	Ŏ	31.45	31.45	13.34	31.45	0	31.45	31.45	Ŏ	Ö	
g	i	0	0	0	0	0	0	0	0	0	0	0	
t	İ	0	0	0	0	0	0	0	0	0	0	0	
11													
a		0	0	27.88	0	19.8	0	27.88	27.88	27.88	0	0	0
c		0	0	0	0	0	27.88	0	0	0	0	0	0
g		0	0	0	0	27.88	0	0	0	0	0	0	0
t	1	0	0	0	27.88	0	9.36	25.79	0	0	19.8	0	0
//													
a		0	0	27.8	0	27.8	27.8	0	27.8	27.8	0	0	
c	1	0	0	0	0	0	0	27.8	0	0	0	0	
g		0	0	0	0	22.56	0	0	0	0	0	0	
t		0	0	0	27.8	0	0	0	0	0	0	0	

Final matrix

a	901	784	0	0	1330	0	3357	0	0	498	783	
c	1033	1041	3360	3359	2026	3360	0	3360	3358	1868	1368	
g	664	883	0	1	4	0	3	0	2	139	445	
t	762	652	0	0	0	0	0	0	0	855	764	
//												
a	902	660	2351	0	391	0	1414	2346	2353	0	504	740
C	268	529	0	2	0	1500	0	0	0	1	319	479
g	395	369	2	0	1962	0	2	0	0	1	869	495
t	788	795	0	2351	0	853	937	7	0	2351	661	639
//												
a	599	770	2228	0	1227	2229	0	2225	2229	924	749	
C	457	1045	0	0	0	0	2229	1	0	246	245	
g	867	259	1	0	1002	0	0	3	0	253	936	
t	306	155	0	2229	0	0	0	0	0	806	299	

Motifs reported with oligo-analysis (Sox2 peaks from Chen, 2008)

- The program oligo-analysis detects over-represented words, as compared to some background model.
- For words of lenth k, we use the most stringent Markov chain model (m = k 2).
- The program detects the Sox2 and Oct4 motifs.
- It also returns a Klf-like motif

KLF (TRANSFAC built from Chen Klf4 set)

OCT (TRANSFAC, various OCT factors)

Sox2 (TRANSFAC, built from individual sites)

Detecting biases in word positions

- The program position-analysis (van Helden et al., 2000) detects words showing a heterogeneous distribution of occurrences across a set of input sequences.
- Principle: for each word
 - Compute the number of occurrences in non-overlapping windows starting from a reference point (sequence start, center or end).
 - Compute the expected occurrences in each window according to a homogeneous distribution model
 - Compute the difference between the observed and expected positional distribution (chi2 test for goodness of fit).
- Example: Sox2 peaks from Chen, 2008
 - 10,929 peaks of size between 60 and 1,059 bp
 - Word length k=7
 - Reference position: the center of each peak.
 - The most significant word is ACAAAGG, which corresponds to the Sox2 consensus.

1. van Helden, J., del Olmo, M. and Perez-Ortin, J. E. (2000). Statistical analysis of yeast genomic downstream seguences reveals putative polyadenylation signals. Nucleic Acids Res 28, 1000-10.

Green: expected occurrences

- Note: the expectation decreases with the distance to peak center because peaks have variable lengths.
- Blue: observed occurrences
 - The word ACAAGG is concentrated the center the ChIP-seq peak regions.

Motifs with position biases in Sox2 peaks from Chen, 2008

position-analysis

- detects the Sox2 motif in Sox2 peaks.
- the partner motifs (Oct4, Klf4 are not detected).

local-words

 detects both the Sox2 and Oct4 motifs

Sox2 (TRANSFAC, built from individual sites)

OCT (TRANSFAC, various OCT factors)

Local over-representation (program local-words)

- The program *local-words* detects words that are overrepresented in specific position windows.
- The result is thus more informative than for positionanalysis: in addition to the global positional bias, we detect the precise window where each word is overrepresented.

Local over-representation (local-words)

- The program local-words detects windows of local over-representation.
- With windows of 50 bp, the program detects the Sox2 and Oct4 motifs.
- Those motifs are concentrated in the center of the peaks.

Sox2 (TRANSFAC, built from individual sites)

SOCT (JASPAR, built from Chen Sox2 set)

Comparisons between discovered motifs

 Pairwise comparisons show the consistency between the motifs discovered by the different approaches.

Word merging

- The words discovered by the different approaches can be compared and merged into a word significance table.
- The most significant and consistent words (discovered by several approaches) are used as seeds to collect final matrices.

Discovered versus reference motifs

- Discovered motifs are compared to and aligned with the reference motifs.
- The program compare-motifs supports various scoring schemes for assessing the similarity between motifs: correlation, Euclidian, Sandelin-Wasserman, SSD, ...

One-to-n matrix alignment; reference matrix: MA0143.1_shift3; 14 matrices; sort_field=Icor

Discovered motifs versus databases (TRANSFAC, JASPAR, ...)

Discovered motifs are compared to all motifs

Time efficiency : position-analysis

- The processing time increases linearly with sequence size.
- The memory is principally affected by the number of patterns (oligo size) -> large sequences can be treated with moderate RAM.
- On my laptop (MacBook Pro, 8Gb RAM), the biggest files (37Mb) are treated in
 - 69 seconds with oligo-analysis
 - 7 minutes with dyad-analysis
 - 20 minutes with position-analysis

Conclusions

Conclusions

- The program peak-motifs provides a flexible tool for analyzing motifs in large collections of peaks.
 - Time-linear algorithms.
 - Reduced memory usage.
- The work flow provides an integrated view of all steps from peaks to motifs.
 - Sequence length distribution
 - Composition analysis
 - Motif discovery
 - Positional distribution of the discovered motifs
 - Comparison of discovered motifs with
 - reference motifs
 - motif databases
- Web interface
 - Simplicity of use ("one click" interface).
 - Advanced options can be accessed optionally.
 - Allows to analyze data set of realistic size (uploaded files).
- Perspectives
 - Predicting the most likely site sinside the peaks.
 - Interfacing the results with genome browsers (UCSC) for direct visualization of the predicted sites.
 - Integrating additional motif discovery software (MEME, info-gibbs) to evaluate the robustness of the motifs.