$12n_{0096} \ (K12n_{0096})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -4915u^{16} + 20254u^{15} + \dots + 7156b + 9167, \ -123805u^{16} + 530300u^{15} + \dots + 7156a + 154261, \\ u^{17} - 5u^{16} + \dots - 9u + 1 \rangle \\ I_2^u &= \langle u^2 + b, \ a + u + 2, \ u^3 + u^2 - 1 \rangle \\ I_3^u &= \langle b, \ 3u^4 - u^3 - u^2 + a + 3u + 4, \ u^5 - u^4 + u^2 + u - 1 \rangle \\ I_4^u &= \langle -3u^2a - 2au - 4u^2 + 5b - a - u + 2, \ a^2 + 2u^2 + a + 2u, \ u^3 + u^2 - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 31 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -4915u^{16} + 20254u^{15} + \dots + 7156b + 9167, \ -1.24 \times 10^5u^{16} + 5.30 \times 10^5u^{15} + \dots + 7156a + 1.54 \times 10^5, \ u^{17} - 5u^{16} + \dots - 9u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 17.3009u^{16} - 74.1056u^{15} + \dots + 179.512u - 21.5569 \\ 0.686836u^{16} - 2.83035u^{15} + \dots + 5.34754u - 1.28102 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 17.9877u^{16} - 76.9360u^{15} + \dots + 184.860u - 22.8379 \\ 0.686836u^{16} - 2.83035u^{15} + \dots + 5.34754u - 1.28102 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -4.26593u^{16} + 18.3215u^{15} + \dots - 48.9090u + 8.75545 \\ -0.297652u^{16} + 1.56051u^{15} + \dots - 5.66867u + 0.378144 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2.46297u^{16} + 10.6539u^{15} + \dots - 31.7707u + 6.12549 \\ 0.563164u^{16} - 2.41965u^{15} + \dots + 4.65246u - 0.968977 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 18.8118u^{16} - 80.6283u^{15} + \dots + 197.318u - 25.5869 \\ 0.563164u^{16} - 2.41965u^{15} + \dots + 4.65246u - 0.968977 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{7} + 2u^{3} \\ u^{7} - u^{5} + 2u^{3} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{440209}{1789}u^{16} + \frac{7557829}{7156}u^{15} + \dots - \frac{18828293}{7156}u + \frac{602132}{1789}u^{15} + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$u^{17} + 25u^{16} + \dots + 349u + 1$
c_{2}, c_{4}	$u^{17} - 9u^{16} + \dots - 23u - 1$
c_{3}, c_{6}	$u^{17} - 4u^{16} + \dots - 808u^2 + 32$
c_5, c_8	$u^{17} - 9u^{16} + \dots + 1536u + 512$
c_7, c_{10}	$u^{17} + 5u^{16} + \dots - 9u - 1$
c_9, c_{11}, c_{12}	$u^{17} + 9u^{16} + \dots + 19u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{17} - 57y^{16} + \dots + 110253y - 1$
c_2, c_4	$y^{17} - 25y^{16} + \dots + 349y - 1$
c_3, c_6	$y^{17} - 48y^{16} + \dots + 51712y - 1024$
c_5, c_8	$y^{17} - 49y^{16} + \dots + 4063232y - 262144$
c_7, c_{10}	$y^{17} - 9y^{16} + \dots + 19y - 1$
c_9, c_{11}, c_{12}	$y^{17} + 3y^{16} + \dots - 149y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.838900 + 0.274006I		
a = -0.541331 + 1.242290I	1.70067 + 3.40197I	-9.83492 - 9.12548I
b = 0.022802 + 1.171600I		
u = -0.838900 - 0.274006I		
a = -0.541331 - 1.242290I	1.70067 - 3.40197I	-9.83492 + 9.12548I
b = 0.022802 - 1.171600I		
u = -0.888050 + 0.699587I		
a = 0.963662 + 0.607402I	2.22871 + 2.69541I	-2.36795 - 0.48316I
b = 0.599165 + 0.085043I		
u = -0.888050 - 0.699587I		
a = 0.963662 - 0.607402I	2.22871 - 2.69541I	-2.36795 + 0.48316I
b = 0.599165 - 0.085043I		
u = 0.702958		
a = 8.08327	-2.60036	-117.690
b = 0.212168		
u = 0.638788 + 1.195210I		
a = -0.615352 + 0.257656I	-10.83360 + 4.83632I	-9.98493 - 0.99160I
b = 2.18853 - 1.40547I		
u = 0.638788 - 1.195210I		
a = -0.615352 - 0.257656I	-10.83360 - 4.83632I	-9.98493 + 0.99160I
b = 2.18853 + 1.40547I		
u = 0.932524 + 0.992733I		
a = 0.024900 + 0.723358I	8.46454 - 3.58781I	-11.43442 + 3.20089I
b = -1.316500 - 0.396988I		
u = 0.932524 - 0.992733I		
a = 0.024900 - 0.723358I	8.46454 + 3.58781I	-11.43442 - 3.20089I
b = -1.316500 + 0.396988I		
u = 0.596043		
a = 0.723994	-0.842519	-11.7040
b = -0.233910		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.18905 + 0.84637I		
a = 1.44006 - 1.34507I	-12.6169 - 12.0697I	-10.79554 + 4.97668I
b = 1.69244 + 1.67258I		
u = 1.18905 - 0.84637I		
a = 1.44006 + 1.34507I	-12.6169 + 12.0697I	-10.79554 - 4.97668I
b = 1.69244 - 1.67258I		
u = 1.45050 + 0.33561I		
a = -1.67908 + 1.23512I	-4.97113 - 2.77667I	-12.19520 + 1.72835I
b = -2.95952 + 0.58336I		
u = 1.45050 - 0.33561I		
a = -1.67908 - 1.23512I	-4.97113 + 2.77667I	-12.19520 - 1.72835I
b = -2.95952 - 0.58336I		
u = 0.248594 + 0.150644I		
a = 1.39946 - 0.69681I	-0.943827 + 0.013133I	-9.47910 + 0.58994I
b = -0.634067 + 0.017100I		
u = 0.248594 - 0.150644I		
a = 1.39946 + 0.69681I	-0.943827 - 0.013133I	-9.47910 - 0.58994I
b = -0.634067 - 0.017100I		
u = -1.76401		
a = 2.20808	19.2915	-12.4240
b = 4.83602		

II.
$$I_2^u = \langle u^2 + b, \ a + u + 2, \ u^3 + u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u - 2 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} - u - 2 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{2} - u - 1 \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} - 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2u^2 5u 14$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_9	$u^3 - u^2 + 2u - 1$
c_2, c_7	$u^3 + u^2 - 1$
c_4, c_{10}	$u^3 - u^2 + 1$
c_5,c_8	u^3
c_6, c_{11}, c_{12}	$u^3 + u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6 c_9, c_{11}, c_{12}	$y^3 + 3y^2 + 2y - 1$
c_2, c_4, c_7 c_{10}	$y^3 - y^2 + 2y - 1$
c_{5}, c_{8}	y^3

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = -1.122560 - 0.744862I	6.04826 + 5.65624I	-9.18265 - 6.33859I
b = -0.215080 + 1.307140I		
u = -0.877439 - 0.744862I		
a = -1.122560 + 0.744862I	6.04826 - 5.65624I	-9.18265 + 6.33859I
b = -0.215080 - 1.307140I		
u = 0.754878		
a = -2.75488	-2.22691	-16.6350
b = -0.569840		

III.
$$I_3^u = \langle b, 3u^4 - u^3 - u^2 + a + 3u + 4, u^5 - u^4 + u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -3u^{4} + u^{3} + u^{2} - 3u - 4 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -3u^{4} + u^{3} + u^{2} - 3u - 4 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - 1 \\ u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} - u^{3} - u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $10u^4 7u^3 + u^2 + 10u + 7$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^5$
c_3, c_6	u^5
C ₄	$(u+1)^5$
c_5, c_9	$u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1$
	$u^5 - u^4 + u^2 + u - 1$
c_8, c_{11}, c_{12}	$u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1$
c_{10}	$u^5 + u^4 - u^2 + u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^5$
c_3, c_6	y^5
$c_5, c_8, c_9 \\ c_{11}, c_{12}$	$y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1$
c_{7}, c_{10}	$y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.758138 + 0.584034I		
a = 1.036940 - 0.588205I	0.17487 + 2.21397I	-10.02401 - 4.83884I
b = 0		
u = -0.758138 - 0.584034I		
a = 1.036940 + 0.588205I	0.17487 - 2.21397I	-10.02401 + 4.83884I
b = 0		
u = 0.935538 + 0.903908I		
a = 0.348360 + 0.023996I	9.31336 - 3.33174I	-1.83654 + 1.25445I
b = 0		
u = 0.935538 - 0.903908I		
a = 0.348360 - 0.023996I	9.31336 + 3.33174I	-1.83654 - 1.25445I
b = 0		
u = 0.645200		
a = -5.77061	-2.52712	13.7210
b = 0		

IV. $I_4^u = \langle -3u^2a - 2au - 4u^2 + 5b - a - u + 2, \ a^2 + 2u^2 + a + 2u, \ u^3 + u^2 - 1 \rangle$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{3}{5}u^{2}a + \frac{4}{5}u^{2} + \dots + \frac{1}{5}a - \frac{2}{5} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{3}{5}u^{2}a + \frac{4}{5}u^{2} + \dots + \frac{6}{5}a - \frac{2}{5} \\ \frac{3}{5}u^{2}a + \frac{4}{5}u^{2} + \dots + \frac{1}{5}a - \frac{2}{5} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{5}u^{2}a + \frac{2}{5}u^{2} + \dots + \frac{3}{5}a + \frac{9}{5} \\ \frac{1}{5}u^{2}a + \frac{3}{5}u^{2} + \dots + \frac{2}{5}a + \frac{6}{5} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{5}u^{2}a + \frac{2}{5}u^{2} + \dots + \frac{3}{5}a + \frac{9}{5} \\ \frac{1}{5}u^{2}a + \frac{3}{5}u^{2} + \dots + \frac{2}{5}a + \frac{6}{5} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + a + 2u + 1 \\ \frac{1}{5}u^{2}a + \frac{3}{5}u^{2} + \dots + \frac{2}{5}a + \frac{6}{5} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} - 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{13}{5}u^2a \frac{17}{5}au + \frac{26}{5}u^2 + \frac{29}{5}a + \frac{24}{5}u \frac{58}{5}$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_9	$(u^3 - u^2 + 2u - 1)^2$
c_{2}, c_{7}	$(u^3 + u^2 - 1)^2$
c_4,c_{10}	$(u^3 - u^2 + 1)^2$
c_{5}, c_{8}	u^6
c_6, c_{11}, c_{12}	$(u^3 + u^2 + 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_6 \\ c_9, c_{11}, c_{12}$	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4, c_7 c_{10}	$(y^3 - y^2 + 2y - 1)^2$
c_5, c_8	y^6

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = 0.824718 + 0.424452I	6.04826	-8.27833 + 0.98317I
b = -0.215080 - 1.307140I		
u = -0.877439 + 0.744862I		
a = -1.82472 - 0.42445I	1.91067 + 2.82812I	-29.3323 - 8.2928I
b = -0.569840		
u = -0.877439 - 0.744862I		
a = 0.824718 - 0.424452I	6.04826	-8.27833 - 0.98317I
b = -0.215080 + 1.307140I		
u = -0.877439 - 0.744862I		
a = -1.82472 + 0.42445I	1.91067 - 2.82812I	-29.3323 + 8.2928I
b = -0.569840		
u = 0.754878		
a = -0.50000 + 1.54901I	1.91067 + 2.82812I	-5.88933 + 2.71361I
b = -0.215080 + 1.307140I		
u = 0.754878		
a = -0.50000 - 1.54901I	1.91067 - 2.82812I	-5.88933 - 2.71361I
b = -0.215080 - 1.307140I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^5)(u^3-u^2+2u-1)^3(u^{17}+25u^{16}+\cdots+349u+1)$
c_2	$((u-1)^5)(u^3+u^2-1)^3(u^{17}-9u^{16}+\cdots-23u-1)$
<i>c</i> ₃	$u^{5}(u^{3} - u^{2} + 2u - 1)^{3}(u^{17} - 4u^{16} + \dots - 808u^{2} + 32)$
C4	$((u+1)^5)(u^3-u^2+1)^3(u^{17}-9u^{16}+\cdots-23u-1)$
<i>C</i> ₅	$u^{9}(u^{5} - u^{4} + \dots + 3u - 1)(u^{17} - 9u^{16} + \dots + 1536u + 512)$
<i>C</i> ₆	$u^{5}(u^{3} + u^{2} + 2u + 1)^{3}(u^{17} - 4u^{16} + \dots - 808u^{2} + 32)$
c_7	$((u^3 + u^2 - 1)^3)(u^5 - u^4 + u^2 + u - 1)(u^{17} + 5u^{16} + \dots - 9u - 1)$
<i>c</i> ₈	$u^{9}(u^{5} + u^{4} + \dots + 3u + 1)(u^{17} - 9u^{16} + \dots + 1536u + 512)$
<i>c</i> 9	$(u^{3} - u^{2} + 2u - 1)^{3}(u^{5} - u^{4} + 4u^{3} - 3u^{2} + 3u - 1)$ $\cdot (u^{17} + 9u^{16} + \dots + 19u + 1)$
c_{10}	$((u^3 - u^2 + 1)^3)(u^5 + u^4 - u^2 + u + 1)(u^{17} + 5u^{16} + \dots - 9u - 1)$
c_{11}, c_{12}	$(u^{3} + u^{2} + 2u + 1)^{3}(u^{5} + u^{4} + 4u^{3} + 3u^{2} + 3u + 1)$ $\cdot (u^{17} + 9u^{16} + \dots + 19u + 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^5)(y^3+3y^2+2y-1)^3(y^{17}-57y^{16}+\cdots+110253y-1)$
c_2, c_4	$((y-1)^5)(y^3-y^2+2y-1)^3(y^{17}-25y^{16}+\cdots+349y-1)$
c_3, c_6	$y^{5}(y^{3} + 3y^{2} + 2y - 1)^{3}(y^{17} - 48y^{16} + \dots + 51712y - 1024)$
c_5, c_8	$y^{9}(y^{5} + 7y^{4} + 16y^{3} + 13y^{2} + 3y - 1)$ $\cdot (y^{17} - 49y^{16} + \dots + 4063232y - 262144)$
c_7, c_{10}	$(y^3 - y^2 + 2y - 1)^3 (y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)$ $\cdot (y^{17} - 9y^{16} + \dots + 19y - 1)$
c_9, c_{11}, c_{12}	$(y^3 + 3y^2 + 2y - 1)^3(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)$ $\cdot (y^{17} + 3y^{16} + \dots - 149y - 1)$