Analytical Hierarchy Process

CIV E 601

Hussien Al-Battaineh

NSERC/Alberta

Construction Industry Research Chair
In Construction Engineering &
Management

Leaders in the construction Industry

Research Chair
In Construction Engineering &
Management

Analytical Hierarchy Process

- Analytical Hierarchy Process (AHP) can be defined as:
 - A well established mathematically proven formal method used for scaling or evaluating the weights of a criterion with respect to other criteria

Analytical Hierarchy Process

 AHP is a consistent procedure not like other pair wise comparison techniques.
 The method is accounted for the consistency of thought, and consistency index has been introduced to account of this important issue

Management

Applying AHP

- As mentioned earlier that AHP is a formal structural process, and in order to apply the AHP we need to do the following:
 - 1. Determine the requirements of the system:
 - Answering (What do we need to do?)
 - 2. Generating alternatives to satisfy those requirements
 - Answering (What are the possible courses of action?)
 - 3. Set priorities
 - 4. Chose the best policy alternative or mix of the best policy alternatives

NSERC/Alberta
Construction Industry Research Chair
In Construction Engineering &
Management
In Construction Industry Research Chair
In Construction Industry Research

- 1. Define the set of alternatives (2)
- 2. Define a set of criteria
- 3. Perform the pair wise comparison between those criteria
- 4. Calculate the priorities (weight)
- 5. Assign a score for each criteria
- 6. Calculate the total score, and select the maximum

Management

- Given Example:
 - Assume that the success of a person in a university position is characterized by:
 - Hard work (HD)
 - Productivity (PR)
 - Intelligence (IN)
 - Perseverance (PE)

 A committee come up with the following pair wise comparison matrix.

	HD	PI	R I	PE
HD	$\lceil 1 \rceil$	1/6	1/3	$\frac{1}{5}$
PR	6	1	4	3
I	3	1/4	1	1
PE	5	1/3	1	$\begin{bmatrix} 1 \end{bmatrix}$

Intensity of Importance Scale

- Equal Importance
- 3 Weak Importance
- 5 Strong Importance
- 7 Demonstrated Importance
- 9 Absolute Importance
- 2,4 Intermediate Values
- 6,8 Between the two Adjacent Judgments

1- Sum the elements in each row and normalize by dividing each sum by the total of all sums.

The first entry of the resulting vector the priority of the first criteria and so on

2- Sum the elements in each column and take the reciprocals of those sums, then normalize by dividing each sum by the total of all sums.

The first entry of the resulting vector the priority of the first criteria and so

On	HD	PR	I	PE	
HD	1	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{5}$	
PR	6	1	4	3	
I	3	$\frac{1}{4}$	1	1	
PE	5	$\frac{1}{3}$	1	1	
Sum	15	1.75	6.333	5.2	sum
Reciprocals	0.0676	0.5714	0.1579	0.1923	0.9883
Priority	0.0683	0.5782	0.1598	0.1946	1.000

on

3- Divide the elements of each column by the sum of that column and then ass the elements in each resulting row and divide this sum by the number of elements in that row.

Sum 15 1.75 6.333 5.2

0.0667	0.0952	0.0526	0.0385 0.5769 0.1923 0.1923
0.4000	0.5714	0.6316	0.5769
0.2000	0.1429	0.1579	0.1923
0.3333	0.1905	0.1579	0.1923

4- Multiply the n element in each row and take the nth root, and then normalize the resulting number.

AHP Example

- Calculate Consistency Ratio
 - 1- Multiply the pair wise comparison matrix by the weight vector, the resultant is a vector {B}
 - 2- Divide vector {B} by the weight vector and calculate the average $\boldsymbol{\lambda}$
 - 3- Calculate Consistency Index (C.I.)
 - 4- Calculate Consistency Ratio (C.R.)

AHP Example

Weight Vector B
$$\begin{bmatrix}
1 & \frac{1}{6} & \frac{1}{3} & \frac{1}{5} \\
6 & 1 & 4 & 3 \\
3 & \frac{1}{4} & 1 & 1 \\
5 & \frac{1}{3} & 1 & 1
\end{bmatrix} * \begin{cases}
0.0612 \\
0.5492 \\
0.1733 \\
0.2185
\end{cases} = \begin{cases}
0.2541 \\
2.2608 \\
0.71060 \\
0.87870
\end{cases}$$

Vector B Weight
$$\begin{cases} 0.2541 \\ 2.2608 \\ 0.71060 \\ 0.87870 \end{cases} / \begin{cases} 0.0612 \\ 0.5492 \\ 0.1733 \\ 0.2185 \end{cases} = \begin{cases} 4.1507 \\ 4.1168 \\ 4.0501 \\ 4.1023 \end{cases} \Rightarrow \lambda = 4.1050$$

AHP Example

$$C.I. = \frac{\lambda - n}{n - 1} = \frac{4.105 - 4}{3} = 0.035$$

$$C.R. = \frac{C.I.}{RC} = \frac{0.035}{0.90} = 0.0389 < 0.1$$
 Ok.

C.R. Should be less than 0.10 To accept the calculated weight

RC from Table

matrix size	RC
1	0.00
2	0.00
3	0.58
4	0.90
5	1.12
6	1.24
7	1.32
8	1.41
9	1.45
10	1.49

air

What is in you tool box?

AHP Program

• A computer program has been developed for the purpose of facilitating AHP comparison

• The tool generates a spreadsheet file with all information required to complete the

evaluation process

• Defining a set of evaluation criteria

Perform pair wise comparison

Calculate criteria relative weights

- A number which indicate if there are significant contradictions in the pair wise comparison values or not.
- acceptable consistency value is less than or equal to 10%.

Compare the weight of three people

Then

Compare the weight of three people

Compare the weight of three people

• If we said that Mr.A and Mr.C are equal:

4	Consultant Evaluation By Using AHP								
-Δ	-Analytical Hierarchy Process (AHP)								
		Enter Evaluat	ion Criteria	Pairwise Comparison					
	Please enter the pairwise comparisons, the number you select represent the weight of the associated row criteria over the column criteria (Wr/Wc)								
			Comp	parison Criteria					
Ш									
Ш			Mr. A	Mr. B	Mr. C				
Ш		Mr. A	1	1/2	1				
Ш		Mr. B	2	1	1/2				
Ш	\blacksquare	Mr. C	1	2	1 🔻				

Consistency ratio is >10%

• If all have the same weight (100 kg), then

Simply

• Fill Project Information and Number of Consultants

• Evaluate score for each consultant firm

Construction Industry Research In Construction Engineering &

committed to excellence

Management

• Select the highest scoring firm:

	A	В	С	D	E	F	G	Н	1	J
1	Consultant Evaluation -Scoring Summary									
2										
3	Project No. :12030-03-444888									
4	Project Name: Presentation Test Project									
5			Firm	1	My Fin	m	Firm	3	Firm	4
6	ltem	Weight	Rating (100)	Score						
7	1. Firm Experience	0.654806738	85	55.659	99	64.826	85	55.659	26	17.025
8	2. Past Performance	0.249855533	55	13.742	87	21.737	88	21.987	75	18.739
9	3. Team Composition	0.095337729	62	5.9109	45	4.2902	24	2.2881	65	6.197
10	Firm Total Score			75.312		90.853		79.934		41.961
4.4										

