Univerzita Hradec Králové Fakulta informatiky a managementu katedra informatiky a kvantitativních metod

Orchestrace a management virtuálních síťových funkcí

DIPLOMOVÁ PRÁCE

Autor: Bc. Ondřej Smola

Studijní obor: Aplikovaná informatika

Vedoucí práce: Ing. Vladimír Soběslav, Ph.D.

Hradec Králové duben, 2016

Dvobléžoví	
Prohlášení Prohlašuji, že jsem bakalářskou práci vypracoval samosta prameny a literaturu.	ntně a uvedl jsem všechny použité
VIII. 1. V. dan dan 7. 1 han 2016	On IX: County
V Hradci Králové dne 7. dubna 2016	Ondřej Smola
iii	

Poděkování
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean placerat. Duis pulvinar. Maecenas lorem. Mauris tincidunt sem sed arcu. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt.
iv

Anotace

Tato diplomová práce pojednává o aktuálním tématu, kterým je Virtualizace síťových funkcí (Network funcktion virtualization).

Annotation

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean placerat. Duis pulvinar. Maecenas lorem. Mauris tincidunt sem sed arcu. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Phasellus rhoncus. Praesent vitae arcu tempor neque lacinia pretium. Mauris suscipit, ligula sit amet pharetra semper, nibh ante cursus purus, vel sagittis velit mauris vel metus. Etiam posuere lacus quis dolor. Curabitur bibendum justo non orci. Praesent in mauris eu tortor porttitor accumsan. Nullam lectus justo, vulputate eget mollis sed, tempor sed magna. Donec quis nibh at felis congue commodo. Integer tempor. Maecenas libero.

Obsah

1	Úvo	d	1
2	Zák	ladní problematika virtualizace síťových funkcí	3
	2.1	Souvislost NFV a SDN	4
	2.2	Architektura NFV a VNF	4
	2.3	Management a orchestrace NFV a VNF	5
		2.3.1 Tosca	
		2.3.2 Netconf/Yang	5
		2.3.3 Heat engine v OpenStacku	5
3	Pop	is navrženého řešení a použitých technologií	6
	3.1	OpenStack	6
		3.1.1 Heat Templates	6
	3.2	OpenContrail	6
		3.2.1 Service Chaining	7
4	Tes	tování navrženého řešení	8
	4.1	Testovací topologie	8
	4.2	Testované síťové funkce	8
	4.3	Heat template pro LbaaS	9
		4.3.1 Testování LbaaS	10
	4.4	Heat template pro FwaaS	11
		4.4.1 Testování FwaaS	12
5	Shr	nutí poznatků	16
6	Záv	ěr	17
Li	tera	tura	18
Ρì	ŕíloh	V	ı

1 Úvod

V dnešní době dochází v datových centrech k nasazování nových moderních technologii. Jednou z nich je například virtualizace a to především v oblasti výpočetního výkonu a úložišť. Je již běžnou praxí, že v datových centrech vše běží na jedné fyzické infrastruktuře, která je abstrahovaná na jeden souvislé blok výpočetního výkonu a jeden souvislí blok úložiště. Dalším takovýmto funkcionálním blokem v datových centrech jsou počítačové sítě. Avšak v počítačových sítích byl, oproti dvěma zmíněným oblastem, pomalejší vývoj inovací a není zde tolik vyžívána virtualizace. Pro zvýšení efektivity je proto nutné, aby se počítačové sítě staly programovatelnými a mohli být spravovány z jednoho centrálního místa.

Dnes je však nejvíce síťové funkčnosti zatím soustředěno ve fyzických proprietárních zařízeních jako jsou routery, firewally či load balancery. To znamená, že provozovatelé počítačových sítí se při spouštění nových síťových služeb musí na tyto zařízení spoléhat. Což může vést k zdlouhavému nasazování, zvýšené spotřebě energii a investici do školení pracovníků pro dané proprietární zařízení. Zároveň zde není možnost, aby síť mohla být dynamicky ovládána dle aktuálních požadavků uživatelů sítě. Například vývojář nemůže hned nasadit aplikaci do produkce. Musí nejprve čekat na síťový tým než patřičně nakonfigurují síťové prvky pro správné a bezpečné fungování celé infrastruktury.

Virtualizace síťových funkcí se zaměřuje na transformaci způsobu, jakým síťový architekti přistupují k oblasti počítačových sítí a to pomocí stávájících a neustále se vyvíjejících virtualizačních technologii. Snaha je tedy přesunout mnoho typů síťového příslušenství z fyzických síťových prvků do standardních průmyslově používaných serverů a úložišť, které mohou být umístěny v datových centrech či přímo u koncových zákazníků. Tímto lze dosáhnout virtuálních síťových funkcí, které mají naprosto stejnou funkcionalitu jako síťové funkce umístěné v síťových prvcích.

Cílem této diplomové práce je analyzovat aktuální stav v oblasti virtualizace síťových funkcí. Dále je cílem navrhnout několik příkladů řešení, které bude sloužit k možnosti rychlého a jednoduchého nasazení vybraných síťových funkcí. K tomu budou použité vybrané aktuálně dostupně technologie. Toto řešení musí být univerzální, nezávislé na vendorech a flexibilní.

Celá struktura této práce je rozdělena na 3 hlavní části. První dvě části jsou popisují

oblast virtualizace síťových funkcí z teoretického hlediska a poslední pak z hlediska praktického. V druhé kapitole jsou vysvětleny hlavní pojmy a problematika této oblasti. Třetí je věnována popisu použitých technologii OpenStack a OpenContrail. Ve čtvrté kapitole je následně ukázáno několik praktických příkladů. Na konci této práce dojde k závěrečnému shrnutí.

Závěrečná práce byla zpracována ve spolupráci s firmou tcp cloud a.s., která poskytuje implementace jednoho z nejlepších cloudových řešení na světě. Firma umožnila využít jejich stávající infrastrukturu v nejmodernějším datovém centru v České republice, které je v budově Technologického centra Písek s.r.o.

2 Základní problematika virtualizace síťových funkcí

Tato kapitola se zabývá základní analýzou a popisem problematiky spojené s oblastí virtuální síťových funkcí. V tradičních počítačových sítích je v Routery, Firewally, IPS, IDS, Load-balancery a další.

Obrázek 2.1: Koncept virtualizace síťových funkcí (NFV)

- Virtualizace síťových funkcí (Network Functions Virtualization NFV)
- Virtuální síťové funkce (Virtual network function VNF)

Hlavní výhody NFV:

Eliminace CapEx – snížení potřeby nákupu jednoúčelových hardwarových zařízení, možnost platby pouze za využité kapacity a snížení rizik přílišného předimenzování kapacit

- Eliminace provozních nákladů snížení prostoru, napájení a požadavky na chlazení, zjednodušení správy a řízení síťových služeb
- Urychlení Time-to-market –zkrácení doby pro nasazení nových síťových služeb, chopení se nových příležitosti na trhu, vyhovění potřebám zákazníka
- Doručit agilitu a flexibilitu možnost rychle škálovat (rozšiřovat nebo zmenšovat služby) dle měnících se požadavků od zákazníka. Podpora služeb, které mají být dodány pomocí softwaru na libovolném standartním serverovém hardwaru

2.1 Souvislost NFV a SDN

2.2 Architektura NFV a VNF

Hypervizor + hovna k tomu Základní komponenty virtualizované platform, ve které může být NFV framework nasazen, jsou následující:

Obrázek 2.2: NFV architektura

2.3 Management a orchestrace NFV a VNF

- 2.3.1 Tosca
- 2.3.2 Netconf/Yang
- 2.3.3 Heat engine v OpenStacku
- 2.4

3 Popis navrženého řešení a použitých technologií

3.1 OpenStack

Popis Openstacku

3.1.1 Heat Templates

Popis co jsou to heat templates.

Heat is the main project of the OpenStack orchestration program. It allows users to describe deployments of complex cloud applications in text files called templates. These templates are then parsed and executed by the Heat engine.

Obrázek 3.1: Popis heat orchestrace

OpenStack Heat Templates are used to demonstrate load balancing and firewalling inside of Openstack.

3.2 OpenContrail

Popis OpenContrailu.

3.2.1 Service Chaining

Popis service chaining v contrail a service instanci. a jak to může být využito pro VNF.

4 Testování navrženého řešení

V předchozí kapitole byly popsány technologie, které byly v této práci použity. V této kapitole bude uvedeno několik příkladů, jak lze jednoduše vytvořit VNF v prostředí OpenStack a OpenContrail pomocí heat templatů. Všechna uvedená řešení byla testována v prostředí OpenStack s OpenContrailem, které bylo pro tyto účely poskytnuto společností tcp cloud a.s.

4.1 Testovací topologie

The NFV topology consist of 5 nodes. The management node is used for public IP access and is accessible via SSH. It is also used as a JUMP host to connect to all other nodes in the blueprint. The controller node is the brains of the operation and is where Openstack and OpenContrail are installed. Finally, we have three compute nodes named Compute 1, Compute 2 and Compute 3 with Nova Compute and the Opencontrail vRouter agent installed. This is where the data plane forwarding will be carried out.

The diagram below display the 5 components used in the topology. All nodes apart from the management node have 8 CPU, 16GB of RAM and 64GB of total storage. The management node has 4 CPU, 4GB of RAM and 32GB of total storage.

4.2 Testované síťové funkce

Navrhnutá řešení v této práci předvádějí virtuální víťové funkce pro firewall a load balancing. Jsou zde ukázány celkem 3 scénáře případu užíti. Dva jsou zaměřeny na FwaaS (Firewall as a Service) a jeden na LbaaS (Load balancer as a Service). Všechna řešení jsou vytvořena pomocí Heat templatů, které se spouští v prostředí OpenStack.

Aby mohla být nějaká VNF vůbec vytvořena, tak musel být nejprve zvolen software či operační systěm, který má požadovanou funkci implementovánu. Pro tyto účely byly použity následující řešení:

- PFSense open-souce firewall založený na operačním systému FreeBSD.
- FortiGate-VM je plnohodnotně vybavený Fortigate firewall zabalený jako virtualní instance.

Obrázek 4.1: Testovací topologie

 Neutron Agent-HAproxy – je velmi rychlé a spolehlivé řešení nabízející vysokou dostupnost, load balancing a proxy pro aplikace založené na TCP a HTTP

Následující diagram znázorňuje logickou architekturu navrženého řešení dle referenční architektury zmíněné v kapitole 2.4. OpenStack spolu s OpenContrailem poskytují NFV infrastrukturu jednotlivé VNF jsou řízeny pomocí Heat.

4.3 Heat template pro LbaaS

Navržený heat template pro LbaaS v sobě obsahuje následující prostředky, které se po spuštění pokusí vytvořit.

- pool
- members
- health monitoring
- 2 web instance
- privatni síť
- public síť

Obrázek 4.2: Architektura NFV řešení

4.3.1 Testování LbaaS

Pro vytvoření heat stacku s Load balancerem je nutné daný template vytvořit pomocí příkazu:

heat stack-create -f heat/templates/lbaas_template.hot -e heat/e-nv/lbaas_env.env lbaas

Tento příkaz vytvoří všechny již uvedené prostředky pro load balancing. Konkrétní load balancer má nakonfigurovanou virtual ip adresu (VIP) a k ní přiřazenou floating adresu, která je přístupná z externích sítí. Zároveň má tento load balancer přiřazený pool, ke kterému je přiřazena přiřazena privátní síť 10.10.10.0/24. Na obrázku č. X znázorňuje tento pool a obrázek č. X+1 jsou vidět členové (members) toho poolu.

Obrázek 4.3: Vytvořený pool

Další zdrojem, který byl vytvořen je health monitor, který lze viděn na obrázku č. X+2. Díky němu má load balancer přehled o aktuálním stavu webových instancí. Pokud by náhodou některá z nich přestala odpovídat, v tomto případě na ping, tak by load balancer na tuto instanci přestal zasílat traffic.

Obrázek 4.4: Vytvoření members

Obrázek 4.5: Vytvořený health monitor

Finální síťovou topologii znázorňuje obrázek č. X+3.

Otestování webových serverů lze provést příkazem curl, kterému dáme jako paramert ip VIP nebo floating ip load balanceru. Po několika takovýchto zadání tohoto příkazu je vidět, že oba web servery odpovídají a je probíhá mezi nimi load balancing metodou round robin. Celý tento test je vidět na obr. č. X+4

4.4 Heat template pro FwaaS

Pro FwaaS je narhnut heat template, který obsahuje:

- 1 firewall instanci
- 1 testovaci instanci
- 1 management instanci
- management síť
- privátní síť
- contrail policy

Obrázek 4.6: Vytvořená síťová topologie

4.4.1 Testování FwaaS

Pro vytvoření heat stacku s PFSense z templatu lze použít příkaz:

heat stack-create -f heat/templates/fwaas_mnmg_template.hot -e he-at/env/fwaas_pfsense_env.env pfsense

a pro vytvoření heat stacku s Fortigate VM jde vytvořit pomocí příkazu:

heat stack-create -f heat/templates/fwaas_mnmg_template.hot -e heat/env/fwaas_fortios_contrail.env fortios

By default, pfsense firewall is configured to NAT after the heat stack is started. As a result, there is no need to make any configuration for this function. Pfsense image was preconfigured with DHCP services on every interface and there is outbound policy for NAT.

After we start the heat with pfsense there is already functional service chaining. Testing instance has default gateway to contrail and contrail redirects it to pfsense.

There is also NAT session in pfsense. In shell run command:

```
root@Management:~# curl 172.0.0.6
Instance 01
root@Management:~# curl 172.0.0.6
Instance 01
root@Management:~# curl 172.0.0.6
Instance 02
root@Management:~# curl 172.0.0.6
Instance 02
root@Management:~# curl 172.0.0.6
Instance 01
root@Management:~# curl 172.0.0.6
Instance 01
root@Management:~# curl 172.0.0.6
Instance 02
root@Management:~# curl 172.0.0.6
Instance 02
root@Management:~# curl 172.0.0.6
Instance 01
root@Management:~# curl 172.0.0.6
root@Management:~# curl 172.0.0.6
Instance 02
root@Management:~# curl 172.0.0.6
Instance 02
root@Management:~# curl 172.0.0.6
Instance 01
root@Management:~#
```

Obrázek 4.7: Test konektivity a load balancingu

Obrázek 4.8: Síťová topologie

```
If console is not responding to keyboard input: click the gray status bar below. Click here to show only console

To exit the fullscreen mode, click the browser's back button.

Connected (unmonrypted) (n) OEMU (instance=00000131)

FrootUtest=unb01:** | ip route and in the full of proto forms | console and in the full of proto forms | console and in the full of proto forms | console and | con
```

Obrázek 4.9: Test konektivity PFSense

```
If console is not responding to keyboard input: click the grey status bar below. Click here to show only console

To exit the full screen mode, click the browser's back buffon.

Commented (unemorphised to: CEUU (instance 00000147)

Commented (unemorphised to: CEUU
```

Obrázek 4.10: Ukázka NAT session

```
root@mnmg01:~# python fortios_intf.py
This is the diff of the conigs:
This is how to reach the desired state:
    config system interface
edit port1
set allowaccess ssh ping http https
         next
         edit port2
           set defaultgw enable
         next
         edit port4
           set mode static
         next
         edit port5
           set mode static
         edit port6
           set mode static
         edit port7
           set mode static
         next
         edit ssl.root
set mode static
         next
root@mnmg01:~#
```

Obrázek 4.11: Fortigate VM intergace konfigurace

```
ubuntu@Management:~$ ssh root@172.0.0.5
Welcome to Ubuntu 14.04.3 LTS (GNU/Linux 3.19.0-26-generic x86_64)

* Documentation: https://help.ubuntu.com/
Last login: Tue Jan 12 10:03:49 2016 from mgmtserver14041vag
root@mnmg01:~# ls
fabfile.py fortigate-formula fortios_intf.txt fortios_nat.py param.py update.sh
fabfile.pyc fortios_intf.py fortios_nat.conf fortios_nat.txt text.py
root@mnmg01:~# python fortios_nat.py
This is the diff of the conigs:

This is how to reach the desired state:
    config firewall policy
    edit 1
        set nat enable
        set service ALL
        set schedule always
        set srcaddr all
        set dstintf port2
        set scrintf port3
        set action accept
        set dstaddr all
        set logtraffic all
        next
    end

root@mnmg01:~# []
```

Obrázek 4.12: Fortigate VM NAT konfigurace

```
If console is not responding to keyboard input: click the grey status bar below. Click here to show only console

To soil the full-creen mode, click the browser's back button.

Connected (unmorphish) to CEMU (restance-600000145)

ProotEtest-web01: **E ping goog le.com (74.125.126.101) to goog le.com (74.125.126.101)
```

Obrázek 4.13: Test konektivity

5 Shrnutí poznatků

K čemu to je dobrý, na co jsem narazil, atd.

6 Závěr

Je v paráda.

Literatura

[1] R. Guerzoni, "Network Functions Virtualisation: An Introduction, Benefits, Enablers, Challenges and Call for Action. Introductory white paper," in SDN and OpenFlow World Congress, June 2012. [online]. [cit. 2016-04-07]. Dostupné také z: https://portal.etsi.org/NFV/NFV_White_Paper.pdf

[2]

- [3] ETSI Industry Specification Group (ISG) NFV, "ETSI GS NFV 002 V1.2.1: Network Functions Virtualisation (NFV); Architectural Framework," December 2014. [online]. [cit. 2016-04-07]. Dostupné také z: http://www.etsi.org/deliver/etsigs/NFV/001099/002/01.02.0160/gsNFV002v010201p.pdf
- [4] ETSI Industry Specification Group (ISG) NFV, "ETSI GS NFV 003 V1.2.1: Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV," December 2014. [online]. [cit. 2016-04-07]. ttp://www.etsi.org/deliver/etsigs/NFV/001099/003/01.02.0160/gsNFV003v010201p.pdf
- [5] ETSI, "Network Function Virtualization: Use Cases", http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf, 2013
- [6] MIJUMBI, Rashid, Joan SERRAT, Juan-Luis GORRICHO, Niels BOUTEN, Filip DE TURCK a Raouf BOUTABA. Network Function Virtualization: State-ofthe-Art and Research Challenges. IEEE Communications Surveys. 2016, 18(1), 236-262. DOI: 10.1109/COMST.2015.2477041. ISSN 1553-877x. Dostupné také z: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnumber=7243304
- [7] HAN, Bo, Vijay GOPALAKRISHNAN, Lusheng JI a Seungjoon LEE. Network function virtualization: Challenges and opportunities for innovations. IEEE Communications Magazine. 2015, 53(2), 90-97. DOI: 10.1109/MCOM.2015.7045396. ISSN 0163-6804. Dostupné také z: http://ieeexplore.ieee.org/lpdocs/ epic03/wrapper.htm?arnumber=7045396

- [8] MIJUMBI, Rashid, Joan SERRAT, Juan-luis GORRICHO, Steven LATRE, Marinos CHARALAMBIDES a Diego LOPEZ. Management and orchestration challenges in network functions virtualization. IEEE Communications Magazine. 2016, 54(1), 98-105. DOI: 10.1109/MCOM.2016.7378433. ISSN 0163-6804. Dostupné také z: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7378433
- [9] JENNINGS, Brendan a Rolf STADLER. Resource Management in Clouds: Survey and Research Challenges. Journal of Network and Systems Management. 2015, 23(3), 567-619. DOI: 10.1007/s10922-014-9307-7. ISSN 1064-7570. Dostupné také z: http://link.springer.com/10.1007/s10922-014-9307-7

http://network-functions-virtualization.com/mano.html

http://www.alticelabs.com/content/WP-An-NFV-SDN-Enabled-Service-

Provider.pdf

http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2013/9377-network-functions-virtualization-challenges-solutions.pdf

http://link.springer.com/article/10.1186/s13638-015-0450-y

http://link.springer.com/article/10.1007/s11036-015-0630-3

Přílohy

Seznam obrázků

2.1	Koncept virtualizace síťových funkcí (NFV)	3
2.2	NFV architektura	4
3.1	Popis heat orchestrace	6
4.1	Testovací topologie	9
4.2	Architektura NFV řešení	10
4.3	Vytvořený pool	10
4.4	Vytvoření members	11
4.5	Vytvořený health monitor	11
4.6	Vytvořená síťová topologie	12
4.7	Test konektivity a load balancingu	13
4.8	Síťová topologie	13
4.9	Test konektivity PFSense	14
4.10	Ukázka NAT session	14
4.11	Fortigate VM intergace konfigurace	14
4.12	Fortigate VM NAT konfigurace	15
4.13	Test konektivity	15

Seznam tabulek

Seznam ukázek kódu

Univerzita Hradec Králové Faculty of Informatics and Management

Akademický rok: 2015/2016

Studijní program: Applied Informatics

Forma: Full-time

Obor/komb.: Aplikovaná informatika (ai2-p)

Podklad pro zadání DIPLOMOVÉ práce studenta

PŘEDKLÁDÁ:	ADRESA	OSOBNÍ ČÍSLO
Smola Ondřej	Polizy 16, Osice - Polizy	I1475

TÉMA ČESKY:

Orchestrace a management virtuálních síťových funkcí

TÉMA ANGLICKY:

Orchestration and management of virtual network functions

VEDOUCÍ PRÁCE:

Ing. Vladimír Soběslav, Ph.D. - KIT

ZÁSADY PRO VYPRACOVÁNÍ:

Cílem této práce je analyzovat možnosti vytvářeni a nasazeni virtuálních sítí v cloud computingu s důrazem na technologie VNF nad NFV a jejich srovnání. V rámci závěrečné práce budou analyzovány metody a nástroje pro vývoj a automatizaci služeb virtuálních sítí. V závěrečné části provede autor implementaci VNF řešení v prostředí cloud computingové platformy OpenStack.

Osnova:

- 1. Úvod
- 2. Problematika virtualizace síťových funkcí
- 3. Testovací prostředí
- 4. Příklad virtualizace síťových funkcí
- 5. Shrnutí
- 6. Závěr

SEZNAM DOPORUČENÉ LITERATURY:

DOSTÁLEK, Libor.; KABELOVÁ, Alena. Velký průvodce protokoly TCP/IP a systémem DNS. 5. aktualizované vydání, Brno: Computer Press, a.s., 2008. 488 s. ISBN 978-80-251-2236-5.

HICKS, Michael. Optimizing Applications on Cisco Networks. 1. vydání. Indianapolis: Cisco Press, 2004. 384 s. ISBN: 978-1-58705-153-1.

HUCABY, David. CCNP SWITCH 642-813 Official Certification Guide. 1. vydání. Indianapolis: Cisco Press, 2011, 533 s. ISBN 978-1-58720-243-8.

Podpis studenta:		Datum:
Podpis vedoucího prá	ce:	Datum: