

TECHNIKI STOSOWANE W KOMPRESJI SYGNAŁÓW

www.agh.edu.p

1

TECHNIKI KOMPRESJI SYGNAŁÓW

- 1. Metody bezstratne:
- nie dopuszcza się w nich utraty informacji (ani 1 bitu)
- najistotniejsze to tzw. metody entropii

2. Metody stratne:

- często stosowane w kodowaniu rzeczywistych sygnałów multimedialnych
- z reguły otrzymujemy dolno-częstotliwościową aproksymację sygnału oryginalnego (bez wysokoczęstotliwościowych detali/szczegółów)

Kodowanie entropowe

AGH

EC od ang. Entropy Coding

$$s(n) \in \left\{ s_m \right\}_{m=1}^M$$

Ilość informacji stowarzyszona z komunikatami $\{s_m : m = 1,..., M\}$ wynosi $I(m) = -\log_2 p_m$, gdzie p_m jest prawdopodobieństwem

wystąpienia s_m , a jej miarą jest ilość bitów.

Średnia liczba bitów potrzebnych do bezstratnego zakodowania komunikatu (entropia) jest wartością oczekiwaną <u>M</u>

 $H = -\sum_{m=1}^{M} p_m \log_2 p_m$

4

Alfabet Morse'a

Samuel Finley Breese MORSE (1791-1872) – amerykański malarz i wynalazca

1837 – aparat telegraficzny

1840 - alfabet telegraficzny

1844 – pierwsza na świecie linia Baltimore - Washington

www.agh.edu.p

5

Sprawność kodowania

Oczekiwana ilość bitów

$$H_{w} = \sum_{m=1}^{M} b_{m} p_{m}$$

 $H = -\sum_{m=1}^{M} p_m \log_2 p_m$

gdzie p_m jest prawdopodobieństwem komunikatu zakodowanego przez symbol posiadający b_m bitów.

Sprawność kodowania

$$\eta = \frac{H}{H_{w}} 100\%$$

może być co najwyżej równa 100%, bo entropia jest dolną granicą średniej liczby bitów wymaganych do reprezentacji komunikatów.

Kodowanie ze zmienną długością słowa

VLC ang. Variable Length Coding

S_{m}	$p_{\scriptscriptstyle m}$
-1	1/8
0	1/4
1	3/8
2	1/4

$$H = -\frac{1}{8}\log_2\frac{1}{8} - \frac{1}{4}\log_2\frac{1}{4} - \frac{3}{8}\log_2\frac{3}{8} - \frac{1}{4}\log_2\frac{1}{4} \approx 1,9$$

Przykład 1: kodowanie metodą Huffmana

1952 rok

	Prawdo-	Prawdo-	Prawdo-
Symbol	podobieństwo	podobieństwo	podobieństwo
1	3/8 —	→ 3/8	5/8 1
0	1/4	3/8 1	3/8 0
2	1/4 1 \ _	1/4 0	·
-1	1/8 0		

Przykład 1: kodowanie metodą Huffmana

Symbol	-1	0	1	2
Prawdopodobieństwo	0,125	0,250	0,375	0,250
Kod binarny	110	10	0	111

Przeciętna ilość bitów na symbol $H_w = 1 \cdot \frac{3}{8} + 2 \cdot \frac{1}{4} + 3(\frac{1}{4} + \frac{1}{8}) = 2$ Sprawność kodowania $\eta = \frac{1.9}{2} 100\% = 95\%$

111|111|110|0|0|10|0|0|110 2 2 -1 1 1 0 1 1 -1

100~%sprawność kodowania gdy prawdopodobieństwa są potęgami1/2

www.agh.edu.pl

9

Przykład 2: kodowanie metodą Huffmana AGH

e	[0,076]	e	[0,076] → e	[0,076]	₁a c d	b (1)[0,148]
a	[0,073]—	a	$ \begin{array}{c} [0,076] \longrightarrow \mathbf{e} \\ [0,073] \longrightarrow \mathbf{c} \mathbf{d} \\ (1)[0,038] \longrightarrow \mathbf{a} \\ 0)[0,037] \end{array} $	b (1)[0,075]	× e	(0)[0,076]
c	[0,037]	,db((1)[0,038]	(0)[0,073]		
d(1)[0,030] \	c (0)[0,037]			
b(0)[0,008]	`	-			

Symbol	а	b	С	d	е
Prawdopodobieństwo	0,073	0,008	0,037	0,030	0,076
Kod binarny	10	1110	110	1111	0

10

Przykład 3: kodowanie metodą Huffmana

 p_m gęstość prawdopodobieństwa zmiennej losowej s_m

$$F_m = \sum_{i=1}^m p_i$$
 dystrybuanta

Znak	Prawdopo- dobieństwo	Kod Huffmana
3	0,95	1
9	0,02	00
\odot	0,03	01

H = 0.335 bit/symbol $H_w = 1,05$ bit/symbol Sprawność tylko

 $\eta = 31,9\%$

11

Sekwencja symboli	Iloczyn prawdopo- dobieństw	Kod Huffmana
33	0,9025	1
32	0,0190	000
∂⊚	0,0285	011
23	0,0190	0010
22	0,0004	001100
200	0,0006	001110
් ම∂්	0,0285	010
○ ♀	0,0006	001101
00	0,0009	001111
www.agh.edu.pl		

Przykład 4: kod Huffmana sekwencji symboli

H = 0.611 bit/symbol

 $H_w = 1,222$ bit/symbol

sprawność $\eta = 50\%$

Poprzednio:

H = 0.335 bit/symbol

 $H_{w} = 1,05$

 $\eta = 31,9\%$

	Przykład	5: kodow	anie ary	tmetyczn	ie	
Sekwen symbo	, ,	Granice przedziału	Wartość środkowa w kodzie dziesiętnym	Wartość środkowa w kodzie binarnym	$1-\log_2 p_n$	AGH
33	0,9025	0 – 0,9025	0,45125	0,0111001110000101 0	1,15	
39	0,0190	0,9025 - 0,9215	0,912	0,11101001011111000 111010	6,72	
∂@) 0,0285	0,9215 – 0,95	0,93575	0,11101111110001101 111011	6,13	
93	0,0190	0,95 - 0,969	0,9595	0,1111010110100001 111101	6,72	$H_{w} = 1,5008$ $\eta = 40,7\%$
22	0,0004	0,969 – 0,9694	0,9692	0,1111100000011101 1111100000011	13,29	
Ç ©	0,0006	0,9694 - 0,97	0,9697	0,1111100000111110 11111000001	11,70	
© ć	0,0285	0,97 – 0,9985	0,98425	0,1111101111110111 111110	6 ,13	
(a)	0,0006	0,9985 - 0,9991	0,9988	0,1111111110110001 111111111101	11,70	
00	0,0009	0,9991 - 1	0,99955	0,1111111111100010 1111111111111	11,12	14
www.agh	.edu.pl					

RLC ang. Run Length Coding

(v,r) gdzie v (od ang. value) powtarzający się symbol r (od ang. run) liczba powtórzeń

(1,1)(0,1) (1,2) (0,1)(1,1) (0,2) (1,3)

1 kod 1111 0 kod 000

www.agh.edu.n

- Szum kwantyzacji różnica pomiędzy sygnałem oryginalnym a skwantowanym, jest przypadkowy i szerokopasmowy, lecz nie jest szumem białym gdyż jest skorelowany z sygnałem oryginalnym.
- Im mniej bitów (mniej poziomów kwantyzacji) tym silniejszy szum kwantyzacji

www.agh.edu.p

19

Kodowanie transformatowe

- T transformacja
- K-1 dekodowanie
- **Q** kwantowanie
- Q-1 dekwantyzacja
- K kodowanie bezstratne

IT- transformacja odwrotna

20

Poznane transformacje częstotliwościowe

Krótko-czasowa Transformacja Fouriera (STFT)

$$\hat{s}(f) = \int_{-\infty}^{+\infty} w(t) \, s(t) e^{-2\pi i j t} dt = \int_{-\infty}^{+\infty} w(t) \, s(t) \left(\cos(2\pi f) - j \sin(2\pi f) \right) dt$$

Transformacja Falkowa

$$\widetilde{s}_{\psi}(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} s(t) \, \psi\left(\frac{t-b}{a}\right) dt$$

Transformacja Kosinusowa

$$\widehat{s}(f) = \int_{-\infty}^{+\infty} w(t)s(t)\cos(2\pi t f) dt$$

www.agh.edu.pl

21

Dyskretna transformacja kosinusowa

DCT od ang. Discrete Cosine Transform

Transformacja DCT:

$$\widehat{s}(k) = \sqrt{\frac{2}{N}} c(k) \sum_{n=0}^{N-1} s(n) \cos\left(\frac{(2n+1)k\pi}{2N}\right) \qquad k = 0,1,\dots, N-1$$

$$\text{gdzie} \quad c(k) = \begin{cases} 1/\sqrt{2} & \text{dla } k = 0\\ 1 & \text{dla } k \neq 0 \end{cases}$$

Odwrotna transformacja DCT (IDCT):

$$s(n) = \sqrt{\frac{2}{N}} \sum_{k=0}^{N-1} c(k) \hat{s}(k) \cos\left(\frac{(2n+1)k\pi}{2N}\right)$$

Dyskretna transformacja kosinusowa

DCT od ang. Discrete Cosine Transform

Analogicznie do DFT, transformację DCT możemy obliczyć macierzowo

$$\hat{\mathbf{s}} = \mathbf{W}_{DCT} \mathbf{s}$$

Przykład: korzystając z równania z poprzedniego slajdu, wyznacz 4-elementową macierz transformacji DCT. Dla N=4

$$n = 0,1,...,N-1$$
 $k = 0,1,...,N-1$

$$\mathbf{W}_{DCT} = \begin{bmatrix} \frac{1}{2}\cos(0) & \frac{1}{2}\cos(0) & \frac{1}{2}\cos(0) & \frac{1}{2}\cos(0) & \frac{1}{2}\cos(0) \\ \frac{1}{\sqrt{2}}\cos(\frac{1\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{3\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{5\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{7\pi}{8}) \\ \frac{1}{\sqrt{2}}\cos(\frac{2\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{6\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{10\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{14\pi}{8}) \\ \frac{1}{\sqrt{2}}\cos(\frac{3\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{9\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{15\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{21\pi}{8}) \\ \frac{1}{\sqrt{2}}\cos(\frac{3\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) \\ \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{4}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{4}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{4}) \\ \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{4}) \\ \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) \\ \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) & \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) \\ \frac{1}{\sqrt{2}}\cos(\frac{\pi}{8}) & \frac{1}{\sqrt{2}}$$

www.agh.edu.pl

Dyskretna transformacja kosinusowa

DCT od ang. Discrete Cosine Transform

Zalety:

- współczynniki po transformacji DCT są bliskie wartości 0, więc wiele z nich wyzeruje się po kwantyzacji
 - => mniej bitów bez dużego błędu kwantyzacji
- ■Transformata N-wymiarowa jako N transformat 1-wymiarowych
- ■Po transformacji DCT sygnał jest zdekorelowany
 - => często stosowany w kompresji

Przykład: DCT dla bloków po 8 próbek

Dzieląc sygnał na bloki po 8 próbek posługujemy się transformacją

$$s(k) = 0.5 c(k) \sum_{n=0}^{7} s(n) \cos((2n+1)k\pi/16)$$

W celu uniknięcia efektów brzegowych w DCT, np. w kompresji JPEG oraz MPEG stosuje się Zmodyfikowaną DCT (MDCT), która bazuje na nachodzących na siebie blokach.

www.agh.edu.pl

Sygnał audio CD (Compact Disc-Audio):

- Sony vs Philips (13 vs 16 bitów)
- Dynamika na poziomie 96 dB bo kwantyzacja równomierna (PCM) gdzie każdy bit to podwojenie liczby poziomów kwantyzacji czyli wzrost parametru SNR o 6 dB

■ Fp = 44.1kHz stąd mamy 44 100 próbek/sekundę po 16 bitów co daje 705 600 bitów/s w jednym kanale

Kompresja audio

- Kompresja audio jako wsparcie aplikacji:
 Digital Audio Broadcasting, Internet audio, DVD
- Percepcyjne kodowanie dźwięku:
 - Optymalizacja subiektywnej jakości, a nie obiektywnych parametrów
 - Wykorzystanie psychoakustyki
 - Utrzymanie zakłóceń kodowania poniżej limitów psychoakustycznych (nietransmitowanie danych nieistotnych)
 - Brak jednego modelu źródła (jak w przypadku mowy)

www.agh.edu.pl

Kompresja audio - psychoakustyka

- Efekt maskowania sygnałów w sąsiednich pasmach:
 - · Asymetria maskowania
 - Sygn. zbliżone do szumu lepiej maskują niż sygn. tonowe
 - · Zależne od poziomu sygnału i szumu

