NOTES ON SIMPLICIAL HOMOTOPY THEORY

NICOLA GAMBINO AND SIMON HENRY

 $\ensuremath{\mathsf{ABSTRACT}}.$ Some notes on simplicial homotopy theory

1. Introduction

Date: May 14, 2018.

2. Constructive simplicial homotopy theory

- Basics on **SSet** and notation.
- We use $\Delta[n]$, $\partial\Delta[n]$ and $\Lambda^k[n]$ and following Joyal.
- Recall the existence of a weak model structure on **SSet**:
 - Fibrations = Kan fibrations
 - Cofibrations = Levelwise complemented monomorphisms such that degeracies are decidable on the complement of the image.
 - Cofibrant objects are simplicial sets in which degeneracies are decidable.
- It would be good to have an explicit definition of the cofibrant replacement functor.
- Recall the pushout product property.

Proposition 2.1. Cofibrations are closed under pullbacks.

Proof. To be added. \Box

Lemma 2.2. For $0 \le k \le n$, the horn inclusion $i: \Lambda^k[n] \to \Delta[n]$ is a retract of the pushout product

$$i \hat{\times} \delta^k (\Lambda^k[n] \times \Delta[1]) \cup (\Delta[n] \times k) \to \Delta[n] \times \Delta[1]$$
.

Proposition 2.3. A map is a Kan fibration if and only if it has the right lifting property with respect to the pushout products $i \hat{\times} \delta^k$.

3. Dependent products

- \bullet We wish to establish a restricted form of the Frobenius condition.
- We follow Gambino-Sattler, but without making use of the assumption that every object is cofibrant.

4. The universe

Recall that we work in a constructive set theory with two universes u_1 and u_2 and that we refer to elements of u_1 as small sets. We then define a simplicial set X to be *small* if X_n is a small set for every $[n] \in \Delta$.

Definition 4.1. We say that a map $f: Y \to X$ in **SSet** is small if for every $x: \Delta[n] \to X$ the simplicial set Y_x is small.

By the results in [?] for arbitrary presheaf categories, small maps in **SSet** admit a weak classifier, i.e. a small map $\rho \colon \overline{\mathsf{V}} \to \mathsf{V}$ such that for every small map $f \colon Y \to X$ there exists a pullback diagram of the form

$$\begin{array}{ccc}
Y & \longrightarrow \overline{V} \\
\downarrow f & & \downarrow \rho \\
X & \longrightarrow V
\end{array}$$

Letting $X = \Delta[n]$ in this diagram suggests to define V_n as the set of all small maps with codomain $\Delta[n]$. In this way, however, one does not obtain a presheaf since the transition functions will satisfy the functorial laws only up to isomorphism rather than equality. To remedy this, the n-simplices of V are defined instead to be the functors $F: (\Delta/[n])^{op} \to \mathbf{Set}$ such that the corresponding map of simplicial sets $\mathsf{El}(F) \to \Delta[n]$ is small. MORE TO BE ADDED.

Following [15, 38], we consider the pullback

$$\begin{array}{ccc}
\overline{U} & \longrightarrow \overline{V} \\
\pi \downarrow & & \downarrow \rho \\
U & \longrightarrow V
\end{array}$$

where $U \subseteq V$ is defined by letting

$$\mathsf{U}_n = \{ F \in \mathsf{V}_n \mid \mathsf{El}(F) \to \Delta[n] \text{ is a small Kan fibration } \}$$

Proposition 4.2.

- (i) $\pi : \overline{\mathsf{U}} \to \mathsf{U}$ is a small Kan fibration.
- (ii) $\pi \colon \overline{\mathsf{U}} \to \mathsf{U}$ classifies small Kan fibrations, i.e. for every small Kan fibration $f \colon Y \to X$ there exists a pullback diagram of the form

$$Y \longrightarrow \overline{\mathbb{U}}$$

$$f \downarrow \qquad \qquad \downarrow \pi$$

$$X \longrightarrow \mathbb{U}$$

(iii) The simplicial set $\overline{\mathsf{U}}$ is cofibrant.

Proof. We prove the two claims separately.

- (i) Should follow by locality.
- (ii) Should be immediate.
- (iii) See handwritten notes. Key step is the constructive version of the Eilenberg-Zilber lemma.

However, the simplicial set U does not appear to be cofibrant and hence it does not seem possible to show that $\pi \colon \overline{U} \to U$ is a weak classifier for small Kan fibrations with cofibrant

codomain. In order to remedy this, we consider the cofibrant replacement U_c of U, which comes equipped with a trivial fibration $p: U_c \to U$, and the pullback

$$\begin{array}{ccc}
\overline{\mathsf{U}}_c & \longrightarrow \overline{\mathsf{U}} \\
\pi_c \downarrow & & \downarrow \pi \\
\mathsf{U}_c & \longrightarrow \mathsf{U}
\end{array}$$

We can now prove that $\pi_c \colon \overline{\mathsf{U}}_c \to \mathsf{U}_c$ has the desired properties.

Proposition 4.3.

- (i) $\pi_c : \overline{\mathsf{U}}_c \to \mathsf{U}_c$ is a small Kan fibration with fibrant codomain.
- (ii) The map $\pi_c \colon \overline{\mathsf{U}}_c \to \mathsf{U}_c$ classifies small Kan fibrations with cofibrant domain, i.e. for every small Kan fibration $f \colon Y \to X$ with X cofibrant there exists a pullback diagram of the form

$$Y \longrightarrow \overline{\mathbb{U}}_c$$

$$\downarrow^{\pi_c}$$

$$X \longrightarrow \mathbb{U}_c$$

(iii) The simplicial set $\overline{\mathsf{U}}_c$ is cofibrant.

Proof. Part (i) follows directly from part (i) of Proposition 4.2. For part (ii), let $p: Y \to X$ be a small Kan fibration with X cofibrant. Since p is a small Kan fibration, we know from Proposition 4.2 that there is a pullback diagram of the form

$$Y \longrightarrow \overline{\mathbb{U}}$$

$$\downarrow^{p} \qquad \qquad \downarrow^{\pi}$$

$$X \longrightarrow \mathbb{U}$$

Since X is cofibrant, we have the lifting diagram

$$\begin{array}{ccc}
0 \longrightarrow \mathsf{U}_c \\
\downarrow & & \downarrow p \\
X \longrightarrow \mathsf{U}
\end{array}$$

which shows that the map $X \to \mathsf{U}$ factors via U_c . We then obtain the diagram

Here, the right-hand side square and the rectangle are pullbacks and therefore the left-hand side square is also a pullback, as required. Part (iii) follows from the fact that both U_c and \overline{U} are cofibrant, the latter being part (iii) of Proposition 4.2.

Note that we have not shown yet that U_c fibrant. This will be done in Section 6, as a consequence of the equivalence extension property for fibrations, which we establish in Section 5.

5. The equivalence extension property

 \bullet Here we follow Kapulkin and Lumsdaine.

6. Fibrancy and univalence of the universe

- Fibrancy should follow directly from equivalence extension property, without using 'composition vs filling' but rather retract property for horns (see notes).
- Once we have established fibrancy of U_c , then one can prove univalence by showing that $t \colon \mathsf{Weq}(U_c) \to U_c$ is a trivial fibration.
- Question: do we need to know that $Weq(U_c)$ is a cofibrant object to get univalence?

7. Semantics

 This should be essentially straightforward, following Kapulkin and Lumsdaine, but we may need to modify the notion of a Π-structure to accommodate the cofibrant replacements that we take for Π.

References

- [1] S. Awodey. Notes on cubical models of type theory. Draft manuscript, March 2015.
- [2] S. Awodey and M. A. Warren. Homotopy theoretic models of identity types. *Mathematical Proceedings of the Cambridge Philosophical Society*, 146:45–55, 2009.
- [3] M. Batanin, D.-C. Cisinski, and M. Weber. Multitensor lifting and strictly unital higher category theory. Theory and Applications of Categories, 28:804–856, 2013.
- [4] J. Bénabou and J. Roubaud. Monades et descente. C. R. Acad. Sc. Paris, 270, Serie A:96–98, 1970.
- [5] B. van den Berg and R. Garner. Types are weak ω -groupoids. Proceedings of the London Mathematical Society, 102(3):370–394, 2010.
- [6] B. van den Berg and R. Garner. Topological and simplicial models of identity types. *Transactions of the ACM on Computational Logic*, 13(1):3–44, 2012.
- [7] B. Berger and I. Moerdijk. On an extension of the notion of Reedy category. *Mathematische Zeitschrift*, 269(3-4):977–1004, 2011.
- [8] J. Bergner and C. Rezk. Reedy categories and the Θ-construction. Mathematische Zeitschrift, 274(1):499–514, 2013.
- [9] M. Bezem, T. Coquand, and S. Huber. A model of type theory in cubical sets. In Ralph Matthes and Aleksy Schubert, editors, 19th International Conference on Types for Proofs and Programs (TYPES 2013), volume 26, pages 107–128. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2014.
- [10] M. Bezem, T. Coquand, and E. Parmann. Non-constructivity in Kan simplicial sets. In Thorsten Altenkirch, editor, 13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015), volume 38, pages 92–106. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2015.
- [11] J. Bourke and R. Garner. Algebraic weak factorisation systems I: accessible AWFS. Journal of Pure and Applied Algebra, 220:108–147, 2016.
- [12] J. Bourke and R. Garner. Algebraic weak factorisation systems II: categories of weak maps. Journal of Pure and Applied Algebra, 220:148–174, 2016.
- [13] A. K. Bousfield. Constructions of factorisation systems in categories. Journal of Pure and Applied Algebra, 9:207–220, 1977.
- [14] D.-C. Cisinski. Les préfaisceaux comme modèles des types d'homotopie. Astérisque, 308:xxiv+392, 2006.
- [15] D.-C. Cisinski. Univalent universes for elegant models of homotopy types. arXiv:1406.0058, 2014.
- [16] M. M. Clementino, E. Giuli, and W. Tholen. Topology in a category: compactness. *Portugaliae Mathematica*, 53(4):397–433, 1996.
- [17] C. Cohen, T. Coquand, S. Huber, and A. Mörtberg. Cubical type theory: a constructive interpretation of the univalence axiom. arXiv:1611.02108. To be published in the post-proceedings of the 21st International Conference on Types for Proofs and Programs, TYPES 2015, 2016.
- [18] J. Emmenegger. A category-theoretic version of the identity type weak factorization system. arXiv:1412.0153,
- [19] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory, volume 35 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, 1967.
- [20] N. Gambino and R. Garner. The identity type weak factorisation system. Theoretical Computer Science, 409:94–109, 2008.
- [21] N. Gambino and J. Kock. Polynomial functors and polynomial monads. *Mathematical Proceedings of the Cambridge Philosophical Society*, 154(1):153–192, 2013.
- [22] R. Garner. A homotopy-theoretic universal property of Leinster's operad for weak ω -categories. Mathematical Proceedings of the Cambridge Philosophical Society, 147:615–628, 2009.
- [23] R. Garner. Understanding the small object argument. Applied Categorical Structures, 17(3):247–285, 2009.
- [24] R. Garner. Homomorphisms of higher categories. Advances in Mathematics, 224(6):2269–2311, 2010.
- [25] R. Garner and S. Lack. On the axioms for adhesive and quasiadhesive categories. Theory and Applications of Categories, 27(3):27–46, 2012.
- [26] P. Goerss and J. F. Jardine. Simplicial homotopy theory. Birkäuser, 1999.
- [27] M. Grandis and W. Tholen. Natural weak factorisation systems. Archivum Mathematicum, 42:397–408, 2006.
- [28] P. Hirschhorn. Model categories and their localizations. American Mathematical Society, 2003.

- [29] M. Hovey. Model categories. American Mathematical Society, 1999.
- [30] S. Huber. A model of type theory in cubical sets. Licentiate of philosophy thesis, University of Gothenburg, 2015.
- [31] J. M. E. Hyland. First steps in synthetic domain theory. In M.-C. Pedicchio A. Carboni and G. Rosolini, editors, Category Theory, volume 1488 of Lecture Notes in Mathematics, pages 280–301. Springer, 1991.
- [32] P. T. Johnstone. Sketches of an elephant: a Topos theory compendium. Oxford Logic Guides. Oxford University Press, New York, NY, 2002.
- [33] A. Joyal. The theory of quasi-categories and its applications. Quaderns 45, Centre de Recerca Matemàtica, 2008
- [34] A. Joyal and M. Tierney. An introduction to simplicial homotopy theory. Available from http://hopf.math. purdue.edu/Joyal-Tierney/JT-chap-01.pdf, 1999.
- [35] A. Joyal and M. Tierney. Quasi-categories vs Segal spaces. In Categories in algebra, geometry and mathematical physics, volume 431 of Contemp. Math., pages 277–326. American Mathematical Society, 2007.
- [36] A. Joyal and M. Tierney. Notes on simplicial homotopy theory. Lecture notes, available at http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern47.pdf, 2008.
- [37] K. Kamps and T. Porter. Abstract homotopy and simple homotopy theory. World Scientific Publishing Co., 1997.
- [38] C. Kapulkin and P. LeFanu Lumsdaine. The simplicial model of Univalent Foundations (after Voevodsky). arXiv:1211.2851v4, 2016.
- [39] G. M. Kelly and R. Street. Review of the elements of 2-categories. In Category Seminar, volume 420 of Lecture Notes in Mathematics. Springer, 1974.
- [40] S. Mac Lane. Categories for the working mathematician. Springer, second edition, 1998.
- [41] F. W. Lawvere. Adjointness in foundations. Dialectica, 23:281–296, 1969.
- [42] F. W. Lawvere. Equality in hyperdoctrines and comprehension schema as an adjoint functor. In *Proceedings* of the American Mathematical Society Symposium on Pure Mathematics XVII, pages 1–14, 1970.
- [43] J. Lurie. Higher topos theory. Number 170 in Annals of Mathematics Studies. Princeton University Press, 2009.
- [44] I. Moerdijk and J. Nuiten. Minimal fibrations of dendroidal sets. arXiv:1509.01073, 2015.
- [45] B. Nordström, K. Petersson, and J. Smith. Martin-löf type theory. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors, *Handbook of Logic in Computer Science*, Oxford Logic Guides, chapter V, pages 1–37. Oxford University Press, 2001.
- [46] I. Orton and A. M. Pitts. Axioms for modelling cubical type theory in a topos. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016), volume 62 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1–24:19, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
- [47] A. M. Pitts. Nominal presentation of cubical sets models of type theory. In H. Herbelin, P. Letouzey, and M. Sozeau, editors, 20th International Conference on Types for Proofs and Programs (TYPES 2014). Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2015.
- [48] D. G. Quillen. Homotopical algebra, volume 43 of Lecture Notes in Mathematics. Springer, 1967.
- [49] E. Riehl. Monoidal algebraic model structures. Journal of Pure and Applied Algebra, 217:1069-1104, 2013.
- [50] E. Riehl and D. Verity. The theory and practice of Reedy categories. Theory and Applications of Categories, 29(9):256–301, 2014.
- [51] E. Riell. Algebraic model structures. New York Journal of Mathematics, 17:173-231, 2011.
- [52] E. Rielh. Categorical homotopy theory. Cambridge University Press, 2014.
- [53] J. Rosický and W. Tholen. Factorization, fibration and torsion. Journal of Homotopy and Related Structures, 2(295–314), 2007.
- [54] G. Rosolini. Continuity and effectiveness in topoi. PhD thesis, University of Oxford, 1986.
- [55] M. Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathematical Structures in Computer Science, 25:1203–1277, 2015.
- [56] M. Shulman. The univalence axiom for elegant Reedy presheaves. Homology, Homotopy and Applications, To appear.
- [57] A. Swan. An algebraic weak factorisation system on 01-substitution sets: a constructive proof. arXiv:1409.1829, 2014.
- [58] V. Voevodsky. Univalent foundations project. http://www.math.ias.edu/vladimir/files/univalent_foundations_project.pdf, 2010.
- [59] V. Voevodsky. The equivalence axiom and univalent models of type theory. (talk at cmu on february 4, 2010). arXiv:1402.5556v2, 2014.
- [60] M. A. Warren. Homotopy theoretic aspects of constructive type theory. PhD thesis, Carnegie Mellon University, 2008.