Feuille d'entraînement n° 6, semaine du 18 au 20 mai Calcul matriciel

Exercice 1 Soient α et β deux réels vérifiant $0 \le \alpha < \beta \le 1$. Soit M la matrice $M = \begin{pmatrix} \alpha & 1 - \alpha \\ 1 - \beta & \beta \end{pmatrix}$

- 1) Montrer que M^2 est combinaison linéaire de M et de I.
- 2) En déduire qu'il existe deux suites (a_n) et (b_n) telles que $\forall n \in \mathbb{N}, M^n = a_n M + b_n I$. Exprimer a_n et b_n en fonction de α , de β et de n.
- 3) Étudier les suites réelles définies par : $\begin{cases} u_{n+1} &= \alpha u_n + (1-\alpha)v_n \\ v_{n+1} &= (1-\beta)u_n + \beta v_n \end{cases}$ avec u_0 et v_0 fixés.

Exercice 2 Pour $(a,b,c) \in \mathbb{C}^3$, on introduit $M(a,b,c) = \begin{pmatrix} a & 3c & 3b \\ b & a & 3c \\ c & b & a \end{pmatrix}$ ainsi que $E = \{M(a,b,c) | (a,b,c) \in \mathbb{C}^3\}$. On note aussi U = M(0,1,0) et v = M(0,0,1).

- 1) Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{C})$ dont (Id_3, U, V) est une base.
- 2) Déterminer U^n pour tout entier $n \in \mathbb{N}$.
- 3) Montrer que $(E, +, \times)$ est un anneau commutatif.
- 4) Soit $A \in \mathcal{M}_3(\mathbb{C})$. Montrer que A commute avec tous les éléments de E si et seulement si $A \in E$.

Exercice 3 Soient E un espace vectoriel de dimension n, f une application linéaire de E dans lui-même et x un élément de E tel que la famille $f(x), ..., f^n(x)$ soit libre.

- 1) Montrer que la famille $x, f(x), \ldots, f^{n-1}(x)$ est une base de E. En déduire que f est bijective.
- 2) On suppose que $f^n(x) = x$. Déterminer la matrice de f dans la base $(x, f(x), \dots, f^{n-1}(x))$.

Exercice 4 Soit $u \in \mathcal{L}(\mathbb{R}^3)$ tel que $u \neq 0$ et $u^2 = 0$. Montrer qu'il existe une base de \mathbb{R}^3 relativement à laquelle la matrice de u est : $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercice 5

Dans \mathbb{R}^3 , déterminer la matrice de passage de la base b_1 à la base b_2 avec :

$$b_1 = (1, 2, 1), (2, 3, 3), (3, 7, 1)$$

$$b_2 = (3, 1, 4), (5, 3, 2), (1, -1, 7)$$

Exercice 6 Soit f l'endomorphisme de \mathbb{R}^2 de matrice $A = \begin{pmatrix} 2 & \frac{2}{3} \\ -\frac{5}{2} & -\frac{2}{3} \end{pmatrix}$ dans la base canonique. Soient $e_1 = (-2,3)$ et $e_2 = (-2,5)$.

1) Montrer que $e=(e_1,e_2)$ est une base de \mathbb{R}^2 et déterminer $\mathrm{Mat}(f,e)$.

- **2)** Calculer A^n pour $n \in \mathbb{N}$.
- 3) Déterminer l'ensemble des suites réelles qui vérifient $\forall n \in \mathbb{N}$ $\begin{cases} x_{n+1} = 2x_n + \frac{2}{3}y_n \\ y_{n+1} = -\frac{5}{2}x_n \frac{2}{3}y_n \end{cases}.$