BLG456E Robotics Intro to mobile robot geometry & kinematics

Lecture Contents:

- Differential drive robots.
- Robot abstractions:
 - Point robot.
 - Rigid robot.
 - Rotation vectors.
 - Twists.
- Introduction to reference frames.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Differential Drive

- 2 wheels on common axis.
- Wheels rotate different speeds "differentially".
- Usually 3rd passive wheel.
- Can:
 - Rotate in-place.
 - Move forward or back.
 - Move on curve.

Question: What motions can this robot **not** make?

Abstractions

2D point geometry/kinematics

Robot as a point in Cartesian space.

State (position):
$$\chi = \begin{bmatrix} x \\ y \end{bmatrix}$$

State (position & velocity):
$$\mathbf{X} = \begin{bmatrix} \mathbf{x} \\ \dot{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \dot{\mathbf{x}} \\ \dot{\mathbf{x}} \end{bmatrix}$$

Note:
$$\dot{a} \equiv \frac{da}{dt}$$

Basic kinematics:
$$\chi_{t_1} = \chi_{t_0} + \int_{t_0}^{t_1} \dot{\chi}_t dt$$

Question: How would this look in 1D?

Question: If velocity is constant, what is the simpler version of the kinematic equation?

3D point geometry/kinematics

Robot as a point in Cartesian space.

State (position):
$$\chi = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

State (position):
$$\chi = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

State (position & velocity): $\mathbf{X} = \begin{bmatrix} \mathbf{X} \\ \dot{\mathbf{X}} \end{bmatrix} = \begin{bmatrix} x \\ \dot{\mathbf{X}} \\ \dot{\dot{\mathbf{X}}} \end{bmatrix}$

Basic kinematics:

$$\chi_{t_1} = \chi_{t_0} + \int_{t_0}^{t_1} \dot{\chi}_t dt$$

2D geometry/kinematics with rotations

Robot has many points - is extended.

State (pose):
$$\chi = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$
 $\begin{bmatrix} x \\ y \\ y \end{bmatrix}$

State (pose):
$$\chi = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$

State (position & velocity): $\mathbf{X} = \begin{bmatrix} \chi \\ \dot{\chi} \end{bmatrix} = \begin{bmatrix} x \\ y \\ \dot{\chi} \\ \dot{y} \\ \dot{\theta} \end{bmatrix}$

Kinematics: (will investigate later)

Motion of all points in a rigid body is captured by its linear and angular velocities.

3D geometry/kinematics with rotations

3D rotation is stranger.

Pose (translation vector, rotation vector): χ =

Vector, rotation vector).
$$\mathbf{x} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix}$$

$$V = \begin{bmatrix} \dot{z} \\ \dot{z} \end{bmatrix}$$

Velocity (**twist**):
$$V = \begin{bmatrix} x \\ \dot{y} \\ \dot{z} \\ \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$

$$\dot{\theta}_x \neq \omega_x$$

BLG456E Robotics Intro to mobile robot geometry & kinematics

Lecture Contents:

- Differential drive robots.
- Robot abstractions:
 - Point robot.
 - Rigid robot.
 - Rotation vectors.
 - Twists.
- Introduction to reference frames.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Rotation Vector
$$\theta = \begin{bmatrix} \theta_x \\ \theta_y \\ \theta_z \end{bmatrix}$$

- Length is amount of rotation.
- Direction is axis of rotation.

Twist (Rotation Part)
$$\omega = \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$

- Length is speed of rotation.
- Direction is axis of rotation.

Twists

Twist = a pair:

- 3D Linear Velocity (vector).
 - **Direction** = direction of travel.
 - **Magnitude** = speed of body.
- 3D Angular Velocity (vector).
 - **Direction** = axis of rotation.
 - **Magnitude** = speed of rotation (angular velocity).

Twists in two dimensions

2D case (body constrained to XY plane):

- Linear velocity vector is in the plane.
 - -z = 0.
- Direction of angular velocity vector is vertical.
 - $-\omega_{x}=0$
 - $-\omega_y=0$

For differential drive robots:

- Robot cannot move sideways:
 - y = 0.

BLG456E Robotics Intro to mobile robot geometry & kinematics

Lecture Contents:

- Differential drive robots.
- Robot abstractions:
 - Point robot.
 - Rigid robot.
 - Rotation vectors.
 - Twists.
- Introduction to reference frames.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Introduction to physical Degrees Of Freedom: poses and velocities

Spatial Dimens.	Quantity	DOF
2	Linear Displacement	2
2	Linear Velocity	2
2	Orientation	1
2	Rotational velocity	1
2	Pose	3
2	Rigid motion	3
2	Non-rigid pose/motion	?

Spatial Dimens.	Quantity	DOF
3	Linear Displacement	3
3	Linear Velocity	3
3	Orientation	3
3	Rotational velocity	3
3	Pose	6
3	Rigid motion	6
3	Non-rigid pose/motion	?

Constraints can reduce the degrees of freedom.

Exercise

- My robot is at position (x,y)=(3,5) (displacement from world origin).
 - 1. Plot this point against *x*,*y* axes.
- Its orientation is $\theta_z = \pi/2$ rad (rotation from the *x*-axis).
 - 2. Draw the robot.
- 3. From the *robot's* perspective, **what are the coordinates of the origin?**

(forward is positive x axis, left is positive y axis).

Introduction to reference frames

World reference frame:

$$x_I \quad y_I \quad \theta_I$$

Robot reference frame:

$$x_R y_R \theta_R$$

Provocation: What is the general relationship between θ_l and θ_R ?