

Week 2: Descriptive Statistics

Unit 2: Tabular and Graphical Methods to Describe Data

Introduction to data tabulation

Univariate Table	Bivariate Table	Multivariate Table
This is also known as a one-way table . It shows information on a single variable. The table reveals the counts of cases for each category of a single variable.	This is also known as a two-way table . This table displays counts for two variables which are cross-tabulated to examine how one variable influences the other.	This is also known as a three-way table . This table introduces a third variable to explain the relationship between two variables that are cross-tabulated.
An example is a simple frequency table .	For instance, a table which explores how a person's gender may influence their preferred choice of payment. An example is a contingency table.	For instance, to examine how income level influences the relationship between gender and payment method. An example is a control table .

Univariate table

• This simple univariate table example shows dress choice for 10 ladies:

Dress Color Choice	Red	Blue	Yellow
	5	3	2

Bivariate table

- Bivariate or two-way tables are ideal for analyzing relationships between categorical variables.
- The bivariate table below shows data on the leisure activity of 50 adults, with preferences broken down by gender.

Leisure Activity	Yoga	Football	Cycling	Total
Woman	16	8	6	30
Men	2	10	8	20
Total	18	18	14	50

Multivariate table

Often, the behavior you are analyzing is too complicated to be studied with only two variables. Therefore you will want to consider sets of three or more variables (called multivariate analysis).

		Older			Younger	
Voting	Male	Female	Total	Male	Female	Total
Preference	%	%	%	%	%	%
Willing to vote for a woman	43.8	56.1	49.0	44.2	55.8	52.9
Not willing to vote for a woman	56.2	43.9	51.0	55.8	44.2	47.1
	100.0	100.0	100.0	100.0	100.0	100.0
	(240)	(180)	(420)	(120)	(360)	(480)

Introduction to data visualization

Quantitative	Qualitative
Pie chart	Bar graph
Histogram	Pareto chart
Scatter plot	Heatmap

Quantitative data – Pie charts

City	Frequency	Percent
Oakville	3	11.54%
Mississauga	4	15.38%
Toronto	7	26.92%
Whitby	1	3.85%
Markham	2	7.69%
Brampton	4	15.38%
Burlington	3	11.54%
Pickering	1	3.85%
Vaughan	1	3.85%
Total	26	100.00%

Quantitative data – Histogram

Group	Frequency	%	Cum. %
100 - 350	2	6.7%	6.7%
350 - 600	4	13.3%	20.0%
600 - 850	8	26.7%	46.7%
850 - 1100	9	30.0%	76.7%
1100 - 1350	5	16.7%	93.4%
1350 - 1600	2	6.7%	100%

Quantitative data – Determining the number of classes in a histogram

a) Small data set

b)	Larger	data	set

IVICASU	11611161	ii Cias	226
c) Ver	y large	data	set

Number of Observations in Dataset	Number of Classes
Fewer than 25	5-6
25-50	7-14
More than 50	15-20

Quantitative data – Scatter plot

Qualitative data – Bar graph

Categories

Bar Chart

Number Ranges
Histogram

Qualitative data – Pareto chart

Category	Frequency	%	Cum. %
Canada	2	6.7%	6.7%
USA	4	13.3%	20.0%
France	8	26.7%	46.7%
China	9	30.0%	76.7%
India	5	16.7%	93.4%
UK	2	6.7%	100%

Qualitative data – Heatmap

https://en.wikipedia.org/wiki/Heat_map

Summary

- You have learned about the different types of table you can use (univariate, bivariate, and multivariate tables) to organize and present your data.
- You have also seen which visualizations you should choose if the data is quantitative or qualitative.

Thank you.

Contact information:

open@sap.com

Follow all of SAP

www.sap.com/contactsap

© 2019 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

The information contained herein may be changed without prior notice. Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors. National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP or SAP affiliate company products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE's or its affiliated companies' strategy and possible future developments, products, and/or platforms, directions, and functionality are all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, and they should not be relied upon in making purchasing decisions.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. All other product and service names mentioned are the trademarks of their respective companies.

See www.sap.com/copyright for additional trademark information and notices.

