

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

BEST AVAILABLE COPY

REC'D 03 SEP 2004

WIPO

PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

03013957.0

PRIORITY
DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets
p.o.

R C van Dijk

Anmeldung Nr:
Application no.: 03013957.0
Demande no:

Anmeldetag:
Date of filing: 20.06.03
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER
WISSENSCHAFTEN E.V.

14195 Berlin
ALLEMAGNE
MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN
Robert-Rössle-Strasse 10
13125 Berlin
ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Disease related protein network

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s)
revendiquée(s)
Staat/Tag/Aktenzeichen/State>Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/
Classification internationale des brevets:

G01N33/48

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of
filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL
PT RO SE SI SK TR LI

DISEASE RELATED PROTEIN NETWORK

The present invention relates to a method for generating a network of direct and indirect interaction partners of a disease-related (poly)peptide comprising the steps of (a) contacting a selection of (poly)peptides suspected to contain one or several of said direct or indirect interaction partners with said disease-related (poly)peptides and optionally with known direct or indirect interaction partners of said disease-related (poly)peptide under conditions that allow the interaction between interaction partners to occur; (b) detecting (poly)peptides that interact with said disease-related (poly)peptide or with said known direct or indirect interaction partners of said disease-related (poly)peptide; (c) contacting (poly)peptides detected in step (b) with a selection of (poly)peptides suspected to contain one or several (poly)peptides interacting with said (poly)peptides detected in step (b) under conditions that allow the interaction between interaction partners to occur; (d) detecting proteins that interact with said (poly)peptides detected in step (b); (e) contacting said disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide, said (poly)peptides detected in steps (b) and (d) and a selection of proteins suspected to contain one or several (poly)peptides interacting with any of the afore mentioned (poly)peptides under conditions that allow the interaction between interaction partners to occur; (f) detecting (poly)peptides that interact with said disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide or with said (poly)peptides identified in step (b) or (d); and (g) generating a (poly)peptide - (poly)peptide interaction network of said disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide and said (poly)peptides identified in steps (b), (d) and (f). Moreover, the present invention relates to a protein complex comprising at least two proteins and to methods for identifying compounds interfering with an interaction of said proteins. Finally, the present invention relates to a pharmaceutical composition and to the use of compounds identified by the present invention for the preparation of a pharmaceutical composition for the treatment of Huntington's disease.

Several documents are cited throughout the text of this specification. The disclosure content of the documents cited herein (including any manufacturer's specifications, instructions, etc.) is herewith incorporated by reference.

With the identification of >35,000 genes in the human genome the challenge arises to assign biological function to all proteins and to link these proteins to physiological pathways and disease processes. Since protein-protein interactions play a role in most events in a cell, clues to the function of an unknown protein can be obtained by investigating its interaction with other proteins whose function are already known. Thus, if the function of one protein is known, the function of the binding partners can be inferred (deduced). This allows the researcher to assign a biological function to uncharacterized proteins by identifying protein-protein interactions. For example, several so far uncharacterized proteins in *Caenorhabditis elegans* were identified in a yeast two-hybrid screen for eukaryotic 26S proteasome interacting proteins and thereby could be linked to the ubiquitin-proteasome proteolytic pathway (Vidal et al., 2001). Elucidation of protein-protein interactions is particularly desired when it comes to the generation of new drugs. For many diseases, the available drug portfolio is insufficient or inappropriate to provide a cure or to prevent onset of the disease. One such disease is Huntington's disease.

Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) tract in the multidomain protein huntingtin (htt). The elongated polyQ sequence is believed to confer a toxic gain of function to htt. It leads to htt aggregation primarily in neurons of the striatum and cortex and subsequently to the appearance of the disease phenotype. However, there is experimental evidence that loss of htt function may also contribute to HD pathogenesis. Since huntingtin aggregation correlates with disease progression, it is crucial to develop methods for identifying factors that promote or inhibit aggregation of huntingtin.

Previously, a number of single interaction partners of huntingtin had been reported. In light of these reports, it is tempting to speculate that huntingtin is bound into a larger network of interacting partners, many of which might be capable of modulating huntingtin's activity and function by direct or indirect interaction. It is likely that an

aberrant interaction of huntingtin with some of the members of said network will impair huntingtin's normal function. Moreover, this interaction might also be relevant for the conformation of huntingtin or for its solubility or state of aggregation. Interfering with the direct or indirect interactions of the protein-protein interaction network will provide an excellent basis for therapeutic intervention as it will allow to modulate huntingtin's activity or state of aggregation or both. The state of the art so far did not provide compounds capable of reducing or suppressing huntingtin aggregation since the factors promoting or suppressing huntingtin aggregation were not known.

Thus, the technical problem underlying the present invention was to provide novel approaches for identifying direct or indirect interaction partners of disease-related proteins, which must be seen as new targets for drug development. The solution to this technical problem is achieved by providing the embodiments characterized in the claims.

Accordingly, the present invention relates to a method for generating a network of direct and indirect interaction partners of a disease-related (poly)peptide comprising the steps of (a) contacting a selection of (poly)peptides suspected to contain one or several of said direct or indirect interaction partners with said disease-related (poly)peptides and optionally with known direct or indirect interaction partners of said disease-related (poly)peptide under conditions that allow the interaction between interaction partners to occur; (b) detecting (poly)peptides that interact with said disease-related (poly)peptide or with said known direct or indirect interaction partners of said disease-related (poly)peptide;(c) contacting (poly)peptides detected in step (b) with a selection of (poly)peptides suspected to contain one or several (poly)peptides interacting with said (poly)peptides detected in step (b) under conditions that allow the interaction between interaction partners to occur; (d) detecting proteins that interact with said (poly)peptides detected in step (b); (e) contacting said disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide, said (poly)peptides detected in steps (b) and (d) and a selection of proteins suspected to contain one or several (poly)peptides interacting with any of the afore mentioned (poly)peptides under conditions that allow the interaction between interaction partners to occur; (f) detecting (poly)peptides that interact with said disease-related (poly)peptide and

optionally said known direct or indirect interaction partners of said disease-related (poly)peptide or with said (poly)peptides identified in step (b) or (d); and (g) generating a (poly)peptide-(poly)peptide interaction network of said disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide and said (poly)peptides identified in steps (b), (d) and (f).

In accordance with the present invention, the term "direct and indirect interaction partners" relates to (poly)peptides that either directly interact with the disease-related (poly)peptide (direct interaction) or that interact via a protein binding to/interacting with said disease-related (poly)peptide. In the latter case, there is no direct contact between the direct interaction partner and the disease-related protein. Rather, a further protein forms a "bridge" between these two proteins.

The term "known direct or indirect interaction partners" refers to the fact that for certain disease-related (poly)peptides, such interaction partners are known in the art. If such interaction partners are known in the art, it is advantageous to include them into the method of the invention. If no such interaction partners are known in the art, then the network may be generated starting solely from the known disease-related (poly)peptide.

The term "conditions that allow the interaction between interaction partners to occur" relates to conditions that would, as a rule, resemble physiological conditions. Conditions that allow protein actions are well known in the art and, can be taken, for example from Golemis, E.A. Ed., Protein-Protein Interactions, Cold Spring Harbor Laboratory Press, 2002.

The term "suspected to contain one or more of said direct or indirect interaction partners" relates to the fact that normally, a selection of (poly)peptides would be employed where the person skilled in the art would expect that interaction partners are present. Examples of such selections of (poly)peptides are libraries of human origin such as cDNA libraries or genomic libraries.

The term "detecting proteins" refers to the fact that the (poly)peptides interacting with the "bait" (poly)peptides are identified within the selection of (poly)peptides. A further characterization or isolation of the "prey" (poly)peptides at this stage may be

advantageous but is not necessary. The term "detecting (poly)peptides" preferably also comprises characterizing said (poly)peptides or the nucleic acid molecules encoding said (poly)peptides. The skilled person knows that this can be done by a number of techniques, some of which are described for example in Sambrook et al., "Molecular Cloning, A Laboratory Manual"; CSH Press, Cold Spring Harbor, 1989 or Higgins and Hames (eds.). For example, the nucleotide sequence may be determined by DNA Sequencing, including PCR-Sequencing (see for example Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H., Cold Spring Harb Symp Quant Biol. 1986;51 Pt 1:263-73). Alternatively, the amino acid sequence of said (poly)peptide may be determined. The skilled artesian knows various methods for sequencing proteins which include the method of Edman degradation, which is a preferred method of the present invention of determining the amino acid sequence of a protein. However, the amino acid sequence of a protein or (poly)peptide can also be reliably determined by methods such as for example Maldi-Tof, optionally in combination with the method of Edman degradation. The interaction partner may be identified either as fusion with a DNA binding domain or as fusion with an activation domain. Preferably, if an interaction partner has been identified as a fusion molecule comprising a DNA binding domain, the interaction partner is cloned into a vector allowing the expression of the interaction partner as a fusion with an activation domain. Consequently, protein interaction can be tested in the context the DNA activation or the DNA binding domain.

In accordance with the present invention, the first round of detecting (poly)peptides that interact with the "bait" (poly)peptides recited in step (a) wherein the detected (poly)peptides be considered as "prey" (poly)peptides is followed by the second round of detecting further interacting (poly)peptides wherein the former "prey" (poly)peptides are now used as "bait" (poly)peptides. In certain preferred embodiments of the present invention such as in a two-hybrid detection system, a re-cloning of the former "prey" (poly)peptides into vectors that are suitable for expressing "bait" (poly)peptides may be desired.

Accordingly, the invention describes a novel strategy to identify protein-protein interaction networks for human disease proteins. This strategy was applied to detect pair-wise protein-protein interactions for Huntington's disease and is useful for other

hereditary diseases as well. Several human hereditary diseases are summarized in table 5.

A crucial step of the method of the invention is step (e). Here, the disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide are contacted under appropriate conditions, preferably at the same time, with both the (poly)peptides identified in steps (b) and (d) and further with a selection of (poly)peptides suspected to contain further interaction partners. Alternatively, the various baits, preys and further selection partners are added one after another, so that the final pool contains all baits and preys so far identified, in addition to the further selection partners. In other terms, in this step of the method of the invention, all "baits" and all "preys" are pooled and, additionally, further potential interaction partners are added. In this way, surprisingly the number of directed or indirect interactions partners of the previously identified "baits" and "preys" could significantly be enhanced. It is to be understood that various preys identified in one detection step may interact with each other and not only with the baits that were employed for the identification. For example, if a collection of baits detects preys "a" and "b", the invention does not exclude that "a" also interacts with "b". The same holds true mutatis mutandis for the baits used in accordance with the present invention.

It is further preferred in accordance with the present invention that the interaction of proteins is a specific interaction, such as a specific binding. This means that the (poly)peptide being an interaction partner with a further (poly)peptide only or essentially only interacts with the interaction site(s) involved with this interaction partner. This does not exclude, of course, that further interaction sites of said (poly)peptide interact with further interaction partners, wherein in the corresponding interaction is preferably also specific. The concept also embraces that, if a (poly)peptide has several identical interaction sites, which in nature bind to different interaction partners, these different interaction partners are also bound by the (poly)peptide in the method of the present invention.

In other terms, at least in the case of huntingtin, the number of interaction partners found in step (e) was enhanced in an exponential rather than in a linear fashion.

The term "(poly)peptide" refers alternatively to peptide or to (poly)peptides. Peptides conventionally are covalently linked amino acids of up to 30 residues, whereas polypeptides (also referred to as "proteins") comprise 31 and more amino acid residues.

The term "huntingtin" refers to a protein with the data bank accession number P42858 which is referenced for the purpose of the present invention as "wild-type huntingtin protein". However, the term "huntingtin" also comprises proteins encoded by the nucleic acid sequence deposited under accession number L12392 or to proteins encoded by nucleic acid molecules which hybridize to the nucleic acid molecule of L12392 under stringent conditions of hybridization. The present invention relates to all variants of the huntingtin protein. In particular, relevant for the present invention are those variants of huntingtin which comprise a polyglutamine tract (polyQ tract) or an elongated polyQ tract. A polyQ tract consists of two or more glutamines within the huntingtin protein. The insertion of additional glutamine codons will result in huntingtin proteins with, for example 2, 51, 75 or 100 added glutamines in comparison to the sequence deposited under accession number P42858. In fact, the person skilled in the art knows that the huntingtin protein may have a glutamine tract with any random number of glutamines in the range of 1 to 200 added glutamines. All these proteins are comprised by the present invention.

The term "hybridizes under stringent conditions", as used in the description of the present invention, is well known to the skilled artisan and corresponds to conditions of high stringency. Appropriate stringent hybridization conditions for each sequence may be established by a person skilled in the art on well-known parameters such as temperature, composition of the nucleic acid molecules, salt conditions etc.; see, for example, Sambrook et al., "Molecular Cloning, A Laboratory Manual"; CSH Press, Cold Spring Harbor, 1989 or Higgins and Hames (eds.), "Nucleic acid hybridization, a practical approach", IRL Press, Oxford 1985, see in particular the chapter "Hybridization Strategy" by Britten & Davidson, 3 to 15. Stringent hybridization conditions are, for example, conditions comprising overnight incubation at 42° C in a solution comprising: 50% formamide, 5x SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/ml denatured, sheared salmon sperm DNA, followed by

washing the filters in 0.1x SSC at about 65°. Other stringent hybridization conditions are for example 0.2 x SSC (0.03 M NaCl, 0.003M Natriumcitrat, pH 7) bei 65°C. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC). Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

The skilled person knows that the presence of additional codons in the nucleic acid sequence of huntingtin might significantly reduce the capability of this nucleic acid molecule to hybridize to the nucleic acid molecule deposited under L12392 and referenced as wild-type huntingtin protein. Nevertheless, such proteins shall still be comprised by the present invention. In fact, computer programs such as the computer program Bestfit (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711) or blast, capable of calculating homologies between two nucleic acid sequences, efficiently recognize nucleotide insertions and allow for an adjustment of gaps created by these insertions. The term "huntingtin" as used in the present invention, also includes those molecules of huntingtin, which have a homology of more than 95% to wild-type huntingtin when analyzed with a program like bestfit under conditions not weighing gaps created by polyQ tracts (gap penalty=0).

The term "contacting" means bringing into contact so that two or more proteins or (poly)peptides can interact with each other, preferably under physiological conditions. The terms "interacting" or "binding" refer to a transient or permanent contact between two proteins or (poly)peptides. Preferably, the (poly)peptide or protein is provided by expression from a nucleic acid molecule, more preferably from a cDNA molecule within a cDNA library. Alternatively, said nucleic acid molecule is a genomic nucleic acid molecule of a genomic DNA library, or a nucleic acid molecule from a synthetic

DNA or RNA library. Preferably, the nucleic acid molecule encoding the disease-related protein or its interaction partner is obtainable from nerve cells, brain tissue human adrenal gland, human bladder, human bone, human brain, human colon, human dorsal root ganglion, human heart, human HeLa cells, human kidney, human liver, human lung, human mammary gland, human ovary, human pancreas, human placenta, human prostate, human retina, human salivary gland, human skeletal muscle, human small intestine, human smooth muscle, human spinal cord, human spleen, human stomach, human testis, human thymus, human thyroid, human tonsil, human trachea, human uterus, human cell line HEP G2, human cell line MDA 435, human fetal brain, human fetal heart, human fetal kidney, human fetal liver, human fetal spleen, human fetal thymus, human breast tumor, human cervix tumor, human colon tumor, human kidney tumor, human lung tumor, human ovary tumor, human stomach tumor, human brain tumor and/or human uterus tumor.

The term "disease-related protein" refers to a protein known to be the causative agent of a disease or known to be involved in onset or progression of a disease. Preferably, said disease is CHOREA HUNTINGTON or the disease-related protein is huntingtin. More preferably, the disease-related protein is selected from table 1 and/or 2. The term "conditions that allow the interaction between interaction partners" means conditions that are similar to physiological conditions. Preferably, said conditions are physiological conditions.

The term "selection of (poly)peptides" refers to a library of (poly)peptides which comprises the above-mentioned libraries, but also includes libraries such as phage display libraries. Preferably, the (poly)peptide is provided by expression from a nucleic acid molecule. Preferably, the protein or (poly)peptide expressed by said nucleic acid molecule is a (poly)peptide comprising a DNA binding domain (DBD) (in this case the fusion protein is termed "bait") or (b) a (poly)peptide comprising an activation domain capable of interacting with a transcription factor or an RNA polymerase and capable of activating transcription of a reporter or indicator gene (in this case the fusion protein is called "prey"). As used here, the terms "reporter gene" and "indicator gene" are to be understood as synonyms. It is important to note that one of the interaction partners will always comprise the amino acid sequence of a protein or (poly)peptide translated from said nucleic acid molecule while the other

interaction partner will comprise the amino acid sequence of a protein or protein fragment. Preferably, a bait used for a method of the present invention is selected from the proteins listed in table 1 and/or 2. If, for example, the proteins encoded by the nucleic acid molecules contain a DNA binding domain fused in frame, the fusion protein can bind to the DNA recognition sequence of the DNA binding domain. Interaction of said fusion protein with a second fusion protein containing an activation domain can induce transcription of a nearby indicator gene. The indicator gene may encode a selection marker such as a protein that confers resistance to an antibiotic including ampicillin, kanamycin, chloramphenicol, tetracyclin, hygromycin, neomycin or methotrexate. Further examples of antibiotics are Penicillins: Ampicillin HCl, Ampicillin Na, Amoxycillin Na, Carbenicillin disodium, Penicillin G, Cephalosporins, Cefotaxim Na, Cefalexin HCl, Vancomycin, Cycloserine. Other examples include Bacteriostatic Inhibitors such as: Chloramphenicol, Erythromycin, Lincomycin, Tetracyclin, Spectinomycin sulfate, Clindamycin HCl, Chlortetracycline HCl. Additional examples are proteins that allow selection with Bacteriosidal inhibitors such as those affecting protein synthesis irreversibly causing cell death. Aminoglycosides can be inactivated by enzymes such as NPT II which phosphorylates 3'-OH present on kanamycin, thus inactivating this antibiotic. Some aminoglycoside modifying enzymes acetylate the compound and block their entry in to the cell. Gentamycin, Hygromycin B, Kanamycin, Neomycin, Streptomycin, G418, Tobramycin Nucleic Acid Metabolism Inhibitors, Rifampicin, Mitomycin C, Nalidixic acid, Doxorubicin HCl, 5-Flurouracil, 6-Mercaptopurine, Antimetabolites, Miconazole, Trimethoprim, Methotrexate, Metronidazole, Sulfametoxazole. Alternatively, said indicator gene may encode a protein such as lacZ, GFP or luciferase, the expression of which can be monitored by detection of a specific color. Other proteins commonly used as indicator proteins are beta-galactosidase, beta-glucuronidase, green fluorescent protein (GFP), autofluorescent proteins, including blue fluorescent protein (BFP), glutathione-S-transferase (GST), luciferase, horseradish peroxidase (HRP), and chloramphenicol acetyltransferase (CAT). In general, however, the selection in the yeast two hybrid-system is based on a deficiency of the yeast strain to produce specific amino acids. The skilled person knows that any amino acid deficiency can be used for this selection strategy.

Preferably said preys and baits are expressed from two separate expression vectors contained in one host cell. The nucleic acid molecule encoding the preys and baits can be introduced into the host cell, for example, by transformation, transfection, transduction or microinjection which are common techniques known to the person skilled in the art and which require no additional explanation. In addition, the nucleic acid molecule contains a chromosomal or episomal nucleic acid sequence encoding the above-mentioned indicator protein. The expression of said indicator protein is under control of a recognition sequence which serves as a binding site for the bait protein. The nucleic acid molecule may be fused either to a DNA binding domain or to an activation domain. Co-expression of only those bait- and prey fusion proteins which are capable of interacting will induce the expression of one of the above-identified indicator proteins and thus allow the identification a nucleic acid molecule encoding a protein capable of interacting with huntingtin or an interaction or binding partner of huntingtin. The skilled person knows this system as the yeast two hybrid system. The yeast two hybrid system, which uses a bait protein-prey protein combination to induce transcription of the reporter gene, is a preferred method to identify proteins capable of interacting with huntingtin or with a direct or indirect interaction or binding partner of huntingtin. See for example Fields and Song, Nature 340:245 (1989) or Uetz et al., 2000 Nature 403(6770): 623-7. This is a useful way of determining protein-protein interactions. Another preferred method uses the yeast three hybrid system, as described in U.S. Pat. No. 5,928,868. Preferably, steps (a) to (d) of the method for generating a network of direct and indirect interaction partners comprise the yeast two hybrid system. Preferably, steps (e) and (f) of the method for generating a network of direct and indirect interaction partners comprise yeast interaction mating. Preferably, said "interaction mating" comprises the interaction of all interaction partners identified in steps (a) to (d). Also preferred is that the interaction partners identified in steps (a) to (d) interact as prey and bait proteins, so that all prey proteins are contacted with all bait proteins. Using the array mating system, each bait is tested individually for interaction with every prey in the array. Alternatively, steps (e) and (f) of the method for generating a network of direct and indirect interaction partners comprise testing all interaction partners identified in steps (a) to (d) in interaction assays such as biacore or coimmunoprecipitation. When performing such an assay, it is preferred that the interaction partners are tested as prey and/or bait fusion proteins or contain no fused (poly)peptides. Preferably, all

interaction partners are contacted in the biacore or coimmunoprecipitation assay by themselves and by all other remaining interaction partners identified in steps (a) to (d).

The method for generating a network of direct and indirect interaction partners of a disease related protein or (poly)peptide has proven to be an effective tool for unveiling the protein-protein interactions (PPI) of preferably monogenic diseases. This is exemplified by the analysis of the disease related protein of Chorea Huntington, the analysis of which has demonstrated that the method of the present invention will be useful in an approach to identify potential drugs in the treatment of CHOREA HUNTINGTON. Moreover, this method will also be effective in unveiling the protein-protein interactions of other disease related proteins and in identifying novel targets for treatment of these diseases. Using a preferred combination of library and matrix yeast two-hybrid screens, based on the methods of the present invention, a highly connected network was generated among 70 proteins involved in 117 protein-protein interactions, 99 of which had not been described previously. As progression of Huntington's disease (HD) appears to be linked to huntingtin aggregation, a set of network proteins was tested for their potential to modulate this process. By using the methods of the present invention, it was discovered that the GTPase activating protein GIT1 strongly promotes huntingtin aggregation *in vivo*. GIT1 also localises to huntingtin aggregates in brains of transgenic mice and HD patients. Therefore, a combination of the methods of the present invention has proven to provide effective means for the identification of potential targets for therapeutic intervention. GIT1 is a selected example of a modulator interaction partner of huntingtin. The other proteins in the network of interaction partners disclosed by the present invention are further modulator interaction partners of huntingtin.

Preferably, the interaction mating comprises using an array mating system. In general, for this screen, MAT α yeast cultures are transformed with plasmids encoding prey proteins and arrayed on a microtiter plate for interaction mating with individual MAT α strains expressing bait proteins. Using this test system, each bait can be tested individually for interaction with every prey in the array. Diploid yeast clones, formed by mating on YPD plates and expressing both, bait and prey

proteins, are selected on agar SDII plates, and further transferred for example by a spotting robot on SDIV plates to select for protein-protein interactions. In a more preferred embodiment of the method, plasmids encoding bait and prey proteins are transformed into strains L40ccua and L40cca, respectively. L40cca clones are arrayed on microtitre plates and mixed with a single L40ccua clone for interaction mating. These cells are transferred, preferably by a robot onto YPD medium plates and, after incubation for 20h to 28h at approximately 30°C, for selection of the cells, were transferred onto SDII medium plates, where mating takes place, for additional 60h to 80h at approximately 30°C. For two-hybrid selection diploid cells are transferred onto SDIV medium plates with and without nylon or nitrocellulose membranes and incubated for approximately 5 days at about 30°C. The nylon or nitrocellulose membranes are subjected to the β -GAL assay. Positive clones can be verified by cotransformation assays using plasmids encoding respective bait and prey proteins. Other preferred methods for studying protein-protein interactions according to the present invention are colocalization, coimmunoprecipitation, screening of protein or (poly)peptide arrays, library screens, in vivo and in vitro binding experiments using different tags such as HIS6, TAP or FLAG.

In a preferred embodiment of the present invention's method for generating a network of direct and indirect interaction partners of a disease related protein or (poly)peptide, plasmids encoding bait proteins are transformed into a strain such as L40ccua, tested for the absence of reporter gene activity and co-transformed with a human fetal brain cDNA library. Independent transformants are plated onto minimal medium lacking tryptophan, leucine, histidine and uracil (SDIV medium) and incubated at about 30°C for 5 to 10 days. Clones are transferred into microtitre plates, optionally using a picking robot, and grown over night in liquid minimal medium lacking tryptophan and leucine (SDII medium). Subsequently, the clones are spotted onto nylon or nitrocellulose membranes placed on SDIV medium plates. After incubation for about 4 days membranes are subjected to a β -galactosidase (β -GAL) assay. Plasmids are prepared from positive clones and characterised, for example by restriction analyses and sequencing. For retransformation assays plasmids encoding bait and prey proteins are cotransformed in the yeast strain L40ccua and plated onto SDIV medium.

The term "generating a protein-protein interaction (PPI) network" means listing the interactions of all proteins interacting or binding directly or indirectly interacting the disease related (poly)peptide or protein. Preferably, this can be done by displaying the information in a matrix or a network representation. In a more preferred embodiment of the present invention's method, the protein-protein interaction network is generated by using Pivot 1.0 (Prof. Ron Shamir, Prof. Yossi Shilo, Nir Orlev; Tel Aviv University (TAU); Dep. of computer science; Ramat Aviv; Tel Aviv 69978; Israel).

In a preferred embodiment of the invention, interactions are detected by using the yeast two-hybrid system, MALDI-TOF MS or electro spray MS. Preferably, yeast strains such as strains L40ccua and L40cca, are transformed with an expression selected from the group consisting of pBTM116, pBTM117, pBTM117c, pACT2, pAS2-1, pGAD10, pGAD424, pGAD425, pGAD426, pGAD427, pGAD428.

In another preferred embodiment of the present invention's method for generating a network of direct and indirect interaction partners of a disease-related polypeptide, the method contains after step (d) the additional steps of isolating a nucleic acid molecule with homology to said nucleic acid molecule expressing the encoded protein and testing it for its activity as a modulator of huntingtin, wherein said nucleic acid molecule is DNA, RNA, cDNA, or genomic DNA. Said testing can be done in several different assays. Preferably, the testing is performed in a co-immunoprecipitation assay or an affinity chromatography-based technique. Generally, co-immunoprecipitation is performed by purifying an interacting protein complex with a single antibody specific for one protein in the protein complex and by detecting the proteins in the protein complex. The step of detection can involve the use of additional antibodies directed against proteins suspected of being trapped in the purified protein complex. Alternatively, at least one protein in the protein complex is fused to a tag sequence with affinity to a compound fixed to a solid matrix. By contacting the solid matrix with said tagged protein, further proteins binding to said protein can be purified and binding can be detected. GST or HA are preferred tags in accordance with the present invention.

In a preferred embodiment of the present invention's method, said contacting step (e) is effected in an interaction mating two hybrid approach.

In another preferred embodiment of the present invention's method, said method comprises after step (d) and before step (e) the steps of: (d') contacting (poly)peptides detected in step (d) with a selection of (poly)peptides suspected to contain one or several (poly)peptides interacting with said (poly)peptides detected in step (d) under conditions that allow the interaction between interaction partners to occur; and (d'') detecting proteins that interact with said (poly)peptides detected in step (d').

This preferred embodiment of the invention, an additional step of identifying further interaction partners is carried out prior to the contacting of all "baits" and "preys" in one pool (step (e)). Optionally, further steps of selecting interaction partners in analogy to steps (d') and (d'') may be infected prior to the pooling/interaction step.

Diseases of particular interest for which interrelationships of disease-related proteins may be analyzed in accordance with the invention are provided in Table 5.

In yet another preferred embodiment of the present invention's method, said disease related protein is a protein suspected of being a causative agent of a hereditary (see Table 5), such as a monogenic disease.

In another preferred embodiment of the present invention's method, said disease related protein is huntingtin and said interaction partners are the interaction partners as shown in table 1 and/or table 2.

In another preferred embodiment of the present invention's method, said method comprises the step of determining the nucleotide sequence of a nucleic acid molecule encoding a direct or indirect interaction partner of the disease related protein.

In another preferred embodiment of the present invention's method, said selections of proteins are translated from a nucleic acid library.

In another preferred embodiment of the present invention's method, said selection of proteins in step (a) and/or (c) and/or (d') and/or (e) is the same selection or a selection from the same source. In another preferred embodiment of the present

invention's method, said selection of proteins in step (a) and/or (c) and/or (d') and/or (e) is a different selection or a selection from a different source.

Preferably, said source is selected from nerve cells, brain tissue, human adrenal gland, human bladder, human bone, human brain, human colon, human dorsal root ganglion, human heart, human HeLa cells, human kidney, human liver, human lung, human mammary gland, human ovary, human pancreas, human placenta, human prostate, human retina, human salivary gland, human skeletal muscle, human small intestine, human smooth muscle, human spinal cord, human spleen, human stomach, human testis, human thymus, human thyroid, human tonsil, human trachea, human uterus, human cell line HEP G2, human cell line MDA 435, human fetal brain, human fetal heart, human fetal kidney, human fetal liver, human fetal spleen, human fetal thymus, human breast tumor, human cervix tumor, human colon tumor, human kidney tumor, human lung tumor, human ovary tumor, human stomach tumor, human brain tumor and/or human uterus tumor.

In another preferred embodiment of the present invention's method, said method is performed by contacting the proteins on an array. Preferably, said array is an array allowing to detect protein-protein interaction by the principle of a biacore detector.

In another preferred embodiment of the present invention's method, said interactions are detected by using the yeast two-hybrid system. Preferably, said interactions detected by using MALDI-TOF, MS, electro spray MS or biacore.

In another preferred embodiment of the present invention's method, said method contains after step of (b), (d), (d'') or (f) the additional steps of isolating a nucleic acid molecule with homology to said cDNA expressing the encoded protein and testing it for its activity as a modulator of huntingtin, wherein said nucleic acid molecule is DNA, or RNA, and preferably cDNA, or genomic or synthetic DNA, or mRNA.

The present invention also relates to a nucleic acid molecule encoding a modulator of huntingtin, wherein said modulator is a protein selected from table 3. Figure 6 provides the amino acid sequences of the new proteins or (poly)peptides listed in table 3. The term "modulator protein of huntingtin" comprises two types of proteins within the network of proteins interacting with huntingtin. Direct interaction or binding partners of huntingtin are those proteins in the PPI network of huntingtin that directly

interact with or bind to huntingtin (see figure 2). Examples of these proteins are IKAP, HYPA, CA150, HIP1, HIP11, HIP13, HIP15, CGI-125, PFN2, HP28, DRP-1, SH3GL3, HZFH, HIP5, PIAS γ , HIP16, GIT1, Ku70 and FEZ1. Table 2 and figure 6 provides a reference allowing to identify these proteins. The second class of proteins are indirect interaction or binding partners of huntingtin, i.e. those proteins in the PPI network of huntingtin that do not directly interact with or bind to huntingtin. Such proteins require a mediator, i.e. a direct binding partner of huntingtin to exert their huntingtin modulating function. Examples of these proteins are BARD1 or VIM, which bind to direct interaction partners of huntingtin. However, complexes of huntingtin and a direct interaction or binding partner are likely to interact with additional indirect interaction or binding partners. To summarize the above, modulator proteins of huntingtin can exert their function by direct or indirect contact to huntingtin.

The term "modulator protein", as used in the present invention, refers to a protein capable of modulating the function or physical state of a second protein and comprises proteins that enhance or reduce (inhibit) the function or activity of huntingtin. Preferably, the modulator protein is a protein having an activity selected from the group consisting of oxidoreductase activity (acting on the CH-OH group of donors, acting on the aldehyde or oxo group of donors, acting on the CH-CH group of donors, acting on the CH-NH(2) group of donors, acting on the CH-NH group of donors, acting on NADH or NADPH, acting on other nitrogenous compounds as donors, acting on a sulfur group of donors, acting on a heme group of donors, acting on diphenols and related substances as donors, acting on a peroxide as acceptor, acting on hydrogen as donor, acting on single donors with incorporation of molecular oxygen, acting on the CH-OH group of donors, acting on superoxide as acceptor, oxidizing metal ions, acting on -CH(2) groups, acting on iron-sulfur proteins as donors, acting on reduced flavodoxin as donor, acting on phosphorus or arsenic in donors, acting on x-H and y-H to form an x-y bond, other oxidoreductases), transferase activity (transferring one-carbon groups, transferring aldehyde or ketone residues, acyltransferases, glycosyltransferases, transferring alkyl or aryl groups, other than methyl groups, transferring nitrogenous groups, transferring phosphorous-containing groups, transferring sulfur-containing groups, transferring selenium-containing groups), hydrolase activity (glycosylase activity, acting on ether bonds, acting on peptide bonds, acting on carbon-nitrogen bonds (other than peptide

bonds), acting on acid anhydrides, acting on carbon-carbon bonds, acting on halide bonds, acting on phosphorus-nitrogen bonds, acting on sulfur-nitrogen bonds, acting on carbon-phosphorus bonds, acting on sulfur-nitrogen bonds, acting on carbon-phosphorus bonds; acting on sulfur-sulfur bonds, acting on carbon-sulfur bonds, lyases (carbon-carbon lyases, carbon-oxygen lyases, carbon-nitrogen lyases, carbon-sulfur lyases, carbon-halide lyases, phosphorus-oxygen lyases, other lyases), isomerases (racemases and epimerases, cis-trans-isomerases, intramolecular oxidoreductases, intramolecular transferases, intramolecular lyases, other isomerases), ligases activity (forming carbon-oxygen bonds, forming carbon-sulfur bonds, forming carbon-nitrogen bonds, forming carbon-carbon bonds, forming phosphoric ester bonds), transcription factor activity, filament protein, membrane protein and structural protein.

In a preferred embodiment, the present invention's nucleic acid molecule is DNA, or RNA, and preferably cDNA, or genomic DNA or synthetic DNA or mRNA

In another preferred embodiment of the invention, the nucleic acid molecule is double stranded or single stranded.

In another preferred embodiment of the invention, the nucleic acid molecule is of vertebrate, nematode, insect, bacterium or yeast. Preferably, the nematode is *Caenorhabditis elegans*. In another more preferred embodiment of the present invention, the insect is *drosophila*, preferably *drosophila melanogaster*. In another more preferred embodiment of the present invention, the vertebrate is human, mouse rat, *Xenopus laevis*, zebrafish.

In yet another preferred embodiment of the present invention, the nucleic acid molecule is fused to a heterologous nucleic acid molecule. In a further preferred embodiment of the present invention, the heterologous (poly)peptide encoded by said heterologous nucleic acid molecule is an immunoglobulin Fc domain.

In another preferred embodiment of the present invention the nucleic acid molecule is labeled. Labeled nucleic acid molecules may be useful for purification or detection. Suitable labels include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-

FAM), 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine(ROX), 6-carboxy-2',4',7',4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, e.g. ^{32}P , ^{35}S , ^3H ; etc. The label may also be a two stage system, where the DNA is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. In the case of amplification the label may be conjugated to one or both of the primers. The pool of nucleotides used in the amplification may also be labeled, so as to incorporate the label into the amplification product. Alternatively, the double strand formed after hybridization can be detected by anti-double strand DNA specific antibodies or aptamers etc.

In a more preferred embodiment said heterologous nucleic acid molecule encodes a heterologous polypeptide. Preferably said heterologous (poly)peptide, fused to the (poly)peptide encoded by the nucleic acid molecule of the present invention, is a DNA binding protein selected from the group consisting of GAL4 (DBP) and LexA (DBP). Also preferred in accordance with the present invention are activation domains selected from the group consisting of GAL4(AD) and VP16(AD). Also preferred are (poly)peptides selected from the group consisting of GST, His Tag, Flag Tag, Tap Tag, HA Tag and Protein A Tag.

Thus, the sequence encoding the (poly)peptide may be fused to a marker sequence, such as a sequence encoding a peptide which facilitates purification of the fused (poly)peptide. In certain preferred embodiments of this aspect of the invention, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz *et al.*, *Proc. Natl. Acad. Sci. USA* 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. The "HA" tag is another peptide useful for purification which corresponds to an epitope derived from the influenza hemagglutinin protein, which has been described by Wilson *et al.*, *Cell* 37: 767 (1984).

The (poly)peptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals, but also additional heterologous

functional regions. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the (poly)peptide to improve stability and persistence in the host cell, during purification, or during subsequent handling and storage. Also, peptide moieties may be added to the (poly)peptide to facilitate purification. Such regions may be removed prior to final preparation of the (poly)peptide. The addition of peptide moieties to (poly)peptides to engender secretion or excretion, to improve stability and to facilitate purification, among others, are familiar and routine techniques in the art. A preferred fusion protein comprises a heterologous region from immunoglobulin that is useful to stabilize and purify proteins.

The present invention also relates to a method of producing a vector comprising the nucleic acid molecule the present invention. Furthermore, the present invention relates to a vector produced said method.

The present invention also relates to a vector comprising the nucleic acid molecule of the present invention. Preferably said vector is a transfer or expression vector selected from the group consisting of pACT2; pAS2-1; pBTM116; pBTM117; pcDNA3.1; pcDNA1; pECFP; pECFP-C1; pECFP-N1; pECFP-N2; pECFP-N3; pEYFP-C1; pFLAG-CMV-5 a, b, c; pGAD10; pGAD424; pGAD425; pGAD427; pGAD428; pGBT9; pGEX-3X1; pGEX-5X1; pGEX-6P1; pGFP; pQE30; pQE30N; pQE30-NST; pQE31; pQE31N; pQE32; pQE32N; pQE60; pSE111; pSG5; pTET-CMV-AS; pTET-CMV-F°-AS; pTET-CMV-F°-S; pTET-CMV-MCS; pTET-CMV-S; pTK-Hyg; pTL1; pTL10; pTL-HA0; pTL-HA1; pTL-HA2; pTL-HA3; pBTM118c; pGEX-6P3; pACGHLT-C; pACGHLT-A; pACGHLT-B; pUP; pcDNA3.1-V5His; pMalc2x. Said expression vectors may particularly be plasmids, cosmids, viruses or bacteriophages used conventionally in genetic engineering plasmids, cosmids, viruses and bacteriophages used conventionally in genetic engineering that comprise the aforementioned nucleic acid. Preferably, said vector is a gene transfer or targeting vector. Expression vectors derived from viruses such as retroviruses, vaccinia virus, adeno-associated virus, herpes viruses, or bovine papilloma virus, may be used for delivery of the nucleic acid into targeted cell population. Methods which are well known to those skilled in the art can be used to construct recombinant viral vectors; see, for example, the techniques described in Sambrook et al., Molecular Cloning A

Laboratory Manual, Cold Spring Harbor Laboratory (1989) N.Y. and Ausubel et al., Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y. (1989).

In yet a further preferred embodiment of the invention the vector contains an additional expression cassette for a reporter protein, selected from the group consisting of β -galactosidase, luciferase, green fluorescent protein and variants thereof.

Preferably, said vector comprises regulatory elements for expression of said nucleic acid molecule. Consequently, the nucleic acid of the invention may be operatively linked to expression control sequences allowing expression in eukaryotic cells. Expression of said nucleic acid molecule comprises transcription of the sequence nucleic acid molecule into a translatable mRNA. Regulatory elements ensuring expression in eukaryotic cells, preferably mammalian cells, are well known to those skilled in the art. They usually comprise regulatory sequences ensuring initiation of transcription and, optionally, a poly-A signal ensuring termination of transcription and stabilization of the transcript, and/or an intron further enhancing expression of said nucleic acid. Additional regulatory elements may include transcriptional as well as translational enhancers, and/or naturally-associated or heterologous promoter regions. Possible regulatory elements permitting expression in eukaryotic host cells are the AOX1 or GAL1 promoter in yeast or the CMV-, SV40-, RSV-promoter (Rous sarcoma virus), CMV-enhancer, SV40-enhancer or a globin intron in mammalian and other animal cells. Beside elements which are responsible for the initiation of transcription such regulatory elements may also comprise transcription termination signals, such as the SV40-poly-A site or the tk-poly-A site, downstream of the nucleic acid molecule. Furthermore, depending on the expression system used leader sequences capable of directing the (poly)peptide to a cellular compartment or secreting it into the medium may be added to the coding sequence of the aforementioned nucleic acid and are well known in the art. The leader sequence(s) is (are) assembled in appropriate phase with translation, initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein, or a portion thereof, into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein

including an C- or N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. In this context, suitable expression vectors are known in the art such as Okayama-Berg cDNA expression vector pcDVI (Pharmacia), pCDM8, pRc/CMV, pcDNA1, pcDNA3, the EchoTM Cloning System (Invitrogen), pSPORT1 (GIBCO BRL) or pRevTet-On/pRevTet-Off or pCI (Promega).

The present invention also relates to a method of producing a host cell comprising genetically engineering cells with the nucleic acid molecule or the vector of the present invention. The present invention also relates to a host cell produced said method. Furthermore, the present invention relates to a host cell comprising the vector of the present invention. Preferably, said host cell contains an endogenous nucleic acid molecule which is operably associated with a heterologous regulatory control sequence, including the regulatory elements contained in the vector of the present invention.

The present invention also relates to a method of producing a (poly)peptide, comprising culturing the host cell of the present invention under conditions such that the (poly)peptide encoded by said polynucleotide is expressed and recovering said (poly)peptide.

The present invention also relates to a (poly)peptide comprising an amino acid sequence encoded by a nucleic acid molecule the present invention, or which is chemically synthesized, or is obtainable from the host cell of the present invention, or which is obtainable by a method the present invention.

In another preferred embodiment of the invention, the (poly)peptide or protein is of vertebrate, nematode, insect, bacterium or yeast. Preferably, the nematode is *Caenorhabditis elegans*. In another more preferred embodiment of the present invention, the insect is *drosophila*, preferably *drosophila melanogaster*. In another more preferred embodiment of the present invention, the vertebrate is human, mouse rat, *Xenopus laevis*, zebrafish.

In another preferred embodiment, the (poly)peptide of the present invention is fused to a heterologous (poly)peptide. Such a fusion protein may include not only secretion signals, but also additional heterologous functional regions. For instance, a region of

additional amino acids, particularly charged amino acids, may be added to the N-terminus of the (poly)peptide to improve stability and persistence in the host cell, during purification, or during subsequent handling and storage. Also, peptide moieties may be added to the (poly)peptide to facilitate purification. Such regions may be removed prior to final preparation of the (poly)peptide. The addition of peptide moieties to (poly)peptides to engender secretion or excretion, to improve stability and to facilitate purification, among others, are familiar and routine techniques in the art. A preferred fusion protein comprises a heterologous region from immunoglobulin that is useful to stabilize and purify proteins.

In a preferred embodiment of the present invention, the (poly)peptide of the present invention is fused to a heterologous (poly)peptide which is an immunoglobulin Fc domain or Protein A domain. In another preferred embodiment of the present invention, the (poly)peptide the (poly)peptide is labelled. Preferably, the label is selected from the group consisting of fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine(ROX), 6-carboxy-2',4',7',4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, e.g. ^{32}P , ^{35}S , ^3H ; etc. The label may also be a two stage system, where the protein or (poly)peptide is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. In another preferred embodiment of the present invention the label is a toxin, radioisotope, or fluorescent label.

In another preferred embodiment of the present invention, the (poly)peptide contains or lacks an N-terminal methionine. It is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

The present invention also relates to a protein complex comprising at least two proteins, wherein the two proteins are selected from the group of interaction partners listed in table 4. The term "protein complex" refers to a compound stably comprising at least two proteins wherein said stability allows to purify said protein complex.

In a preferred embodiment of the present invention, the protein complex comprises GIT1 and huntingtin.

The present invention also relates to an antibody specifically recognizing the (poly)peptide of the present invention or specifically reacting with the protein complex of the present invention. This antibody is characterized in not recognizing the individual components of the protein complex but rather the complex itself. As such, said antibody recognizes a combined epitope, composed of amino acids of two different proteins within the protein complex. Dissociation of the complex will be detrimental to antibody recognition. Therefore, antibody binding depends on the integrity of the protein complex. In a preferred embodiment of the present invention, the antibody is specific for a protein complex comprising GIT1 and huntingtin.

In a preferred embodiment, the antibody of the present invention is polyclonal, monoclonal, chimeric, single chain, single chain Fv, human antibody, humanized antibody, or Fab fragment

In a more preferred embodiment of the present invention the antibody is labeled. Preferably, the label is selected from the group consisting of fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine(ROX), 6-carboxy-2',4',7',4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, e.g. ^{32}P , ^{35}S , ^3H ; etc. The label may also be a two stage system, where the antibody is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. In another preferred embodiment of the present invention the label is a toxin, radioisotope, or fluorescent label.

In a preferred embodiment of the present invention, the antibody is immobilized to a solid support. Preferably, the solid support may be the surface of a cell, a microtiter plate, beads or the surface of a sensor capable of detecting binding of the antibody or to the antibody.

The present invention also relates to a method of identifying whether a protein promotes huntingtin aggregation, comprising (a) transfecting a first cell with a nucleic acid molecule encoding a variant of the huntingtin protein or a fragment thereof capable of forming huntingtin aggregates; (b) co-transfected a second cell with (i) a nucleic acid molecule encoding a variant of the huntingtin protein or a fragment thereof capable of forming huntingtin aggregates; and (ii) a nucleic acid molecule encoding a candidate modulator protein identified by the methods of the present invention or a nucleic acid molecule encoding a modulator protein selected from table 1 or table 2 (c) expressing the proteins encoded by the transfected nucleic acid molecule of (a) and (b); (d) isolating insoluble aggregates of huntingtin from the transfected cell of (a) and (b); and (e) determining the amount of insoluble huntingtin aggregates from the transfected cell of (a) and (b), wherein an increased amount of huntingtin aggregates isolated from the transfected cells of (b) in comparison with the amount of huntingtin aggregates isolated from the transfected cells of (a) is indicative of a protein's activity as an enhancer of huntingtin aggregation. Preferably, the huntingtin protein or protein fragment of step (a) is HD169Q68 or HD510Q68.

The present invention also relates to a method of identifying whether a protein inhibits huntingtin aggregation, comprising (a) transfecting a first cell with a nucleic acid molecule encoding a variant of the huntingtin protein or a fragment thereof capable of forming huntingtin aggregates; (b) co-transfected a second cell with (i) a nucleic acid molecule encoding a variant of the huntingtin protein or a fragment thereof capable of forming huntingtin aggregates; and (ii) a nucleic acid molecule encoding a candidate modulator protein identified by the methods of the present invention or a nucleic acid molecule encoding a modulator protein selected from table 1 or table 2 (c) expressing the proteins encoded by the transfected nucleic acid molecule of (a) and (b); (d) isolating insoluble aggregates of huntingtin from the transfected cell of (a) and (b); and (e) determining the amount of insoluble huntingtin aggregates from the transfected cell of (a) and (b), wherein a reduced amount of

huntingtin aggregates isolated from the transfected cells of (b) in comparison with the amount of huntingtin aggregates isolated from the transfected cells of (a) is indicative of a protein's activity as an inhibitor of huntingtin aggregation. Preferably, the huntingtin protein or protein fragment of step (a) is HD169Q68 or HD510Q68 or HdexQ51.

The term "promotes" means increasing the amount of huntingtin aggregation.

Preferably said huntingtin protein or the fragments thereof is selected from the proteins listed in table 1 and/or 2. Preferably said insoluble aggregates are isolated by using a filter retardation method comprising lysing cells and boiling in 2%SDS for 5min in the presence of 100mM DDT followed by a filtration step. The presence of aggregates is detected by using specific antibodies.

In a preferred embodiment of the present invention, determining the amount of insoluble huntingtin is performed by using light scattering or size exclusion chromatography. In another preferred embodiment of the present invention prior to step (d) the cells are treated with an ionic detergent. In yet another preferred embodiment of the methods of the present invention, the huntingtin aggregates are filtered onto a membrane.

The present invention also relates to a method for identifying compounds affecting, e.g. interfering or enhancing the interaction of huntingtin or of a direct or indirect interaction partner of huntingtin comprising (a) contacting interacting proteins selected from the group of interacting proteins listed in table 1 in the presence or absence of a potential modulator of interaction; and (b) identifying compounds capable of modulating said interaction. The contacting is performed under conditions that permit the interaction of the two proteins. Sometimes more than two interacting proteins might be present in a single reaction as additional interaction partners of those listed under table 1, can be tested. However, the compound may also be a small molecule. Preferably said compounds are antibodies directed to huntingtin or to said interaction partner listed in table 1, wherein these antibodies are capable of interfering with the interaction with huntingtin. Alternatively, said compound is a peptide fragment of 10 to 25 amino acid residues of an interaction partner listed in table 1, wherein said peptide fragment is capable of interfering with the interaction

with huntingtin. In a more preferred embodiment of the present invention, said antibody is an antibody directed to GIT1. In another more preferred embodiment of the invention, said peptide fragment is a peptide fragment of GIT1 of 10 to 25 capable of interfering with the interaction of GIT1 with huntingtin. Said interfering peptide may contain additional modifications in order to increase cellular uptake, solubility or to increase stability. Such modifications are known to the person skilled in the art and need not be listed here in detail. In a preferred embodiment of the present invention, the methods for identifying a compound further comprise the steps of modeling said compound by peptidomantics and chemically synthesizing the modeled compound.

In another preferred embodiment of the present invention, the methods for identifying a compound further comprise producing said compound. In yet another preferred embodiment of the present invention, the method for identifying said compound further comprise modifying to achieve (i) modified site of action, spectrum of activity, organ specificity, and/or (ii) improved potency, and/or (iii) decreased toxicity (improved therapeutic index), and/or (iv) decreased side effects, and/or (v) modified onset of therapeutic action, duration of effect, and/or (vi) modified pharmokinetic parameters (resorption, distribution, metabolism and excretion), and/or (vii) modified physico-chemical parameters (solubility, hygroscopicity, color, taste, odor, stability, state), and/or (viii) improved general specificity, organ/tissue specificity, and/or (ix) optimized application form and route by (i) esterification of carboxyl groups, or (ii) esterification of hydroxyl groups with carbon acids, or (iii) esterification of hydroxyl groups to, e.g. phosphates, pyrophosphates or sulfates or hemi succinates, or (iv) formation of pharmaceutically acceptable salts, or (v) formation of pharmaceutically acceptable complexes, or (vi) synthesis of pharmacologically active polymers, or (vii) introduction of hydrophilic moieties, or (viii) introduction/exchange of substituents on aromates or side chains, change of substituent pattern, or (ix) modification by introduction of isosteric or bioisosteric moieties, or (x) synthesis of homologous compounds, or (xi) introduction of branched side chains, or (xii) conversion of alkyl substituents to cyclic analogues, or (xiii) derivatisation of hydroxyl group to ketales, acetals, or (xiv) N-acetylation to amides, phenylcarbamates, or (xv) synthesis of Mannich bases, imines, or transformation of

ketones or aldehydes to Schiff's bases, oximes, acetals, ketales, enoesters, oxazolidines, thiazolidines or combinations thereof.

The present invention also relates to a method of diagnosing Huntington's disease in a biological sample comprising the steps of (a) contacting the sample with an antibody specific for a protein of table 1 or 2 or an antibody specific for the protein complex of the present invention; and (b) detecting binding of the antibody to a protein complex, wherein the detection of binding is indicative of Huntington's disease or of a predisposition to develop Huntington's disease. Preferably, binding is detected by measuring the presence of a fluorescent label bound to the protein complex.

In a preferred embodiment of the present invention's method protein complex contains (a) GIT1 or (b) said antibody is specific for a protein complex containing GIT1.

The present invention also relates to a diagnostic agent/composition comprising the nucleic acid molecule of the present invention, the (poly)peptide of the present invention including/or the (poly)peptide mentioned in table 1 or 2, the antibody of the present invention, an antibody specifically reacting with a protein selected from table 2 and/or a protein selected from table 2.

Moreover, the present invention also relates to a pharmaceutical composition comprising the nucleic acid molecule of the present invention, the (poly)peptide of the present invention, the interfering compound identified with a method of the present invention, the antibody of the present invention, an antibody specifically reacting with a protein selected from table 2 and/or a protein selected from table 2.

The pharmaceutical composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient, the site of delivery of the pharmaceutical composition, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" of the pharmaceutical composition for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of pharmaceutical composition administered parenterally per dose will be in the range of about 1 µg protein /kg/day to 10 mg protein /kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg protein /kg/day, and most preferably for humans between about 0.01 and 1 mg protein /kg/day for the peptide. If given continuously, the pharmaceutical composition is typically administered at a dose rate of about 1 µg/kg/hour to about 50 µg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions of the invention may be administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, drops or transdermal patch), buccally, or as an oral or nasal spray. By "pharmaceutically acceptable carrier" is meant a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The pharmaceutical composition is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or microcapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., *Biopolymers* 22:547-556 (1983)), poly (2-hydroxyethyl methacrylate) (R. Langer et al., *J. Biomed. Mater. Res.* 15:167-277 (1981), and R. Langer, *Chem. Tech.* 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al., *Id.*) or poly-D-(-)-3-hydroxybutyric acid (EP 133,988). Sustained-release pharmaceutical composition also include liposomally entrapped protein, antibody, (poly)peptide, peptide or nucleic acid. Liposomes containing the pharmaceutical composition are prepared by methods known per se: DE 3,218,121; Epstein et al., *Proc. Natl. Acad.*

Sci. (USA) 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. (USA) 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal therapy.

For parenteral administration, in one embodiment, the pharmaceutical composition is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to (poly)peptides.

Generally, the formulations are prepared by contacting the components of the pharmaceutical composition uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes. The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) (poly)peptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrans; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG. The

proteinaceous components of the pharmaceutical composition are typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation protein or (poly)peptide salts.

The components of the pharmaceutical composition to be used for therapeutic administration must be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic components of the pharmaceutical composition (poly)peptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

The components of the pharmaceutical composition ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous protein solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized protein using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical/diagnostic pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical/diagnostic compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the (poly)peptides of the components of the pharmaceutical composition invention may be employed in conjunction with other therapeutic compounds.

Finally, the present invention relates to the use of the nucleic acid molecule of the present invention, the interfering compound identified with a method of the present invention, the (poly)peptide of the present invention including/or the (poly)peptide mentioned in table 1 or 2, the antibody of the present invention, an antibody specifically reacting with a protein selected from table 2 and/or a protein selected

from table 2 for the preparation of a pharmaceutical composition for the treatment of Huntington's disease.

Tables:

Table 1:

PROTEIN-PROTEIN INTERACTIONS IN THE PPI OF HUNTINGTIN	
Baits (DBD)	Preys (AD)
BARD1	PLIP
EF1G	EF1G
HD1.7	CA150
HD1.7	HIP1
HD1.7	HYPA
HD1.7	SH3GL3
HDexQ20	CA150
HDexQ20	HYPA
HDexQ20	SH3GL3
HDexQ51	CA150
HDexQ51	HYPA
HDexQ51	SH3GL3
mp53	p53
mp53	PIASy
PIASy	SUMO-2
PIASy	SUMO-3
VIM	NEFL
VIM	VIMc
BARD1	BAIP1
BARD1	BAIP2
BARD1	BAIP3
BARD1	FEZ1
BARD1	GIT1
BARD1	HBO1
BARD1	HIP5
BARD1	HZFH
BARD1	IKAP
BARD1	mHAP1
BARD1	NAG4
BARD1	PIASy
BARD1	PTN
BARD1	SETBD1

BARD1	ZHX1
CLH-17	Ku70
CLK1	PIASy
GADD45G	BAIP3
GADD45G	CGI-125
GADD45G	CGI-74
GADD45G	EF1A
GADD45G	EF1G
GADD45G	G45IP1
GADD45G	G45IP2
GADD45G	G45IP3
GADD45G	HIP16
GADD45G	HIP5
GADD45G	LUC7B1
GADD45G	PIASy
GADD45G	PLIP
GADD45G	PTN
GADD45G	PTPK
hADA3	BAIP1
hADA3	Ku70
hADA3	MAGEH1
hADA3	PIASy
HD1.7	CGI-125
HD1.7	DRP-1
HD1.7	FEZ1
HD1.7	GIT1
HD1.7	HIP11
HD1.7	HIP13
HD1.7	HIP15
HD1.7	HIP16
HD1.7	HIP5
HD1.7	HZFH
HD1.7	IKAP
HD1.7	Ku70
HD1.7	PIASy
HDd1.0	FEZ1
HDd1.0	GIT1
HDd1.0	IKAP
HDd1.3	HZFH

HDd1.3	IKAP
HDd1.3	Ku70
HDd1.3	PIASy
HDexQ20	CGI-125
HDexQ20	HIP13
HDexQ20	HP28
HDexQ20	PFN2
HDexQ51	CGI-125
HDexQ51	HIP13
HDexQ51	HIP15
HDexQ51	HP28
HDexQ51	PFN2
HIP2	PIASy
HIP5	APP1
HIP5	BAIP1
HIP5	BAIP2
HIP5	CGI-74
HIP5	FEZ1
HIP5	GIT1
HIP5	HBO1
HIP5	HMP
HIP5	KPNA2
HIP5	mHAP1
HIP5	NAG4
HIP5	PLIP
IMPD2	PIASy
KPNB1	PIASy
KPNB1	PTN
mp53	HZFH
mp53	ZHX1
PIASy	MAPIc3
TAL1	ZHX1
TCP1G	Ku70
VIM	ALEX2
VIM	BAIP1
VIM	DRP-1
VIM	G45IP1
VIM	HBO1
VIM	HSPC232

VIM	HZFH
VIM	PIASy
VIM	SETBD1
VIM	SH3GL3
ZNF33B	mHAP1
ZNF33B	ZHX1

Table 2 Classification of proteins in Huntington's disease interaction network

ID	NAME	FUSION	ACCESSION	IDEN	aa MATCH	LOC
Huntingtin fragments						
HD1.7	huntingtin	DBD	P42858	100	1-506	N, C
HDd1.0	huntingtin	DBD	P42858	100	1-320	N, C
HDd1.3	huntingtin	DBD	P42858	100	166-506	N, C
HdexQ20	huntingtin	DBD	P42858	98	1-90	N, C
HdexQ51	huntingtin	DBD	P42858	75	1-82	N, C
Transcriptional control and DNA maintenance						
BARD1	BRCA1 associated ring domain protein 1	DBD	Q99728	99	1-379	N
CA150	putative transcription factor CA150	AD	O14776	93	299-629	N
GADD45G	growth arrest and DNA damage inducible protein GADD45 gamma	DBD	O95257	100	18-159	N
hADA3	ADA3 like protein	DBD	O75528	100	235-432	N
HBO1	histone acetyltransferase binding to ORC	AD	O95251	100	1-611	N
PIASy	protein inhibitor of activated STAT protein gamma (PIASy)	AD, DBD	Q8N2W9	100	5-510	N, C
HYPA	huntingtin interacting protein HYPA/FBP11 (fragment)	AD	O75400	100	8-422	C, N
HZFH	zinc finger helicase HZFH	AD, DBD	Q9Y4I0	100	1830-2000	N
IKAP	IKK complex associated protein	AD	O95163	100	1207-1332	N, C
Ku70	ATP dependent DNA helicase II, 70 kDa subunit	AD	P12956	100	298-608	N
NAG4	bromodomain containing protein NAG4	AD	Q9NP11	100	94-651	N
p53	cellular tumor antigen p53	AD	P04637	100	1-393	N
p53c	cellular tumor antigen p53 (C-terminus)	AD	P04637	100	248-393	N
mp53	cellular tumor antigen p53 (mouse)	DBD	P02340	100	73-390	N
PLIP	cPLA2 interacting protein	AD	O95624	100	5-461	N, PN
SETDB1	histone-lysine N-methyltransferase, H3 lysine-9 specific 4	AD	Q15047	100	1023-1291	N
SUMO-2	ubiquitin like protein SMT3A (SUMO-2)	AD	P55854	100	1-103	C, N
SUMO-3	ubiquitin like protein SMT3B (SUMO-3)	AD	P55855	100	1-95	C, N
ZHX1	zinc finger homeobox protein ZHX1	AD	Q9UKY1	100	145-873	N
ZNF33B	zinc finger protein 33b	DBD	Q8NDW3	100	527-778	N
Cellular organization and protein transport						
APP1	amyloid like protein 1 precursor	AD	P51693	100	243-555	PM, EC
CLH-17	clathrin heavy chain 1	DBD	Q00610	100	1-289	PM, V
HP28	axonemal dynein light chain (hp28)	AD	Q9BQZ6	100	3-258	CN
mHAP1	huntingtin associated protein 1 (mouse)	AD	O35668	100	3-471	C, EE
HIP1	huntingtin interacting protein 1	AD	O00291	100	245-631	C, GN
HMP	mitofillin	AD	Q16891	100	212-758	Mit
MAP1lc3	microtubule associated proteins 1A/1B light chain 3	AD	Q9H491	100	58-170	CN, MT
NEFL	light molecular weight neurofilament protein	AD	Q8IU72	100	1-543	CN, IF

PFN2	profilin II	AD	P35080	100	1-140	CN
PTN	pleiotrophin precursor (exon 1 included)	AD	P21246	100	1-168	PM, EC
SH3GL3	SH3 containing GRB2 like protein 3	AD	Q99963	100	3-347	V
KPNA2	karyopherin alpha-2 subunit	AD	P52292	100	141-529	C, N
KPNB1	karyopherin beta-1 subunit	DBD	Q14974	100	668-876	C, N
VIM	vimentin	DBD	P08670	100	1-466	CN, IF
VIMc	vimentin (C-terminus)	AD	P08670	100	190-466	CN, IF
Cell signalling and fate						
ALEX2	armadillo repeat protein ALEX2	AD	O60267	100	127-632	C, PM
CLK1	protein kinase CLK1	DBD	P49759	100	209-484	N
FEZ1	fasciculation and elongation protein zeta 1	AD	Q99689	100	131-392	C, PM
GIT1	ARF GTPase activating protein GIT1	AD	Q9Y2X7	98	249-761	PM, V
PTPK	protein-tyrosine phosphatase kappa precursor	AD	Q15262	100	1227-1439	PM, AJ
Cellular metabolism						
DRP-1	dihydropyrimidinase related protein 1 (C-terminus)	AD	Q14194	100	345-572	C
IMPD2	inosine-5'-monophosphate dehydrogenase 2	DBD	P12268	100	34-514	C
TAL1	transaldolase	DBD	P37837	100	3-337	C
Protein synthesis and turnover						
EF1A	translation elongation factor 1 alpha 1	AD	P04720	100	294-462	C, MT
EF1G	elongation factor 1 gamma	AD, DBD	P26641	100	2-437	C, MT
EF1Gc	elongation factor 1 gamma (C-terminus)	AD	P26641	100	123-437	C, MT
HIP2	ubiquitin conjugating enzyme E2-25 kDa	DBD	P27924	100	1-200	C, N
TCPG	T-complex protein 1, gamma subunit	DBD	P49368	100	252-544	C
Uncharacterized proteins						
BAIP1	BARD1 interacting protein 1 [similar to RIKEN cDNA 1810018M11]	AD	Q9BS30	100	1-226	UN
BAIP2	BARD1 interacting protein 2 [hypothetical protein]	AD	Q9H0I6	100	107-684	UN
BAIP3	BARD1 interacting protein 3 [hypothetical protein]	AD	Q96HT4	100	152-436	UN
CGI-74	CGI-74 protein	AD	Q9Y383	100	159-270	UN
CGI-125	CGI-125 protein	AD	Q9Y3C7	100	1-131	UN
G45IP1	GADD45G interacting protein 1 [hypothetical protein]	AD	Q9H0V7	100	1-340	UN
G45IP2	GADD45G interacting protein 2 [B2 gene partial cDNA, clone B2E]	AD	Q9NYA0	100	566-926	UN
G45IP3	GADD45G interacting protein 3 [OK/SW-CL.16]	AD	Q8NI70	100	3-134	UN
HIP5	huntingtin interacting protein 5 [hypothetical protein KIAA1377]	AD, DBD	Q9P2H0	100	445-988	N, C
HIP11	huntingtin interacting protein 11 [hypothetical protein]	AD	Q96EZ9	100	176-328	UN
HIP13	huntingtin interacting protein 13 [metastasis suppressor protein]	AD	Q96RX2	100	512-755	UN
HIP15	huntingtin interacting protein 15 [similar to KIAA0443 gene product]	AD	Q96D09	100	663-838	UN
HIP16	huntingtin interacting protein 16 [similar to KIAA0266 gene product]	AD	Q9BVJ6	100	585-771	UN
HSPC232	HSPC232	AD	Q9P0P6	92	1-319	UN
LUC7B1	putative SR protein LUC7B1 (SR+89)	AD	Q9NQ29	99	116-371	ER
MAGEH1	melanoma associated antigen H1	AD	Q9H213	100	1-219	UN

Abbreviations: aa, amino acids; IDEN, identity; LOC, localisation; AD, activation domain; DBD, DNA binding domain; AJ, adherens junctions; C, cytosol; CN, cytoskeleton; EC, extracellular space; EE, early endosomes; ER, endoplasmic reticulum; IF, intermediate filaments; GN, Golgi network; Mit, mitochondria; MT, microtubules; N, nucleus; PM, plasma membrane; PN, perinuclear; UN, unknown; V, vesicles; [], database annotation

Table 3 New proteins in Huntington's disease interaction network

ID	NAME	FUSION	ACCESSION	IDEN	aa MATCH	LOC
Transcriptional control and DNA maintenance						
BARD1	BRCA1 associated ring domain protein 1	DBD	Q99728	99	1-379	N
CA150	putative transcription factor CA150	AD	Q14776	93	299-629	N
Cell signaling and fate						
GIT1	ARF GTPase activating protein GIT1	AD	Q9Y2X7	98	249-761	PM, V
HSPC232	HSPC232	AD	Q9P0P6	92	1-319	UN
LUC7B1	putative SR protein LUC7B1 (SR+89)	AD	Q9NQ29	99	116-371	ER

Abbreviations: aa, amino acids; IDEN, Identity; LOC, localisation; AD, activation domain; DBD, DNA binding domain; AJ, adherens junctions; C, cytosol; CN, cytoskeleton; EC, extracellular space; EE, early endosomes; ER, endoplasmic reticulum; IF, intermediate filaments; GN, Golgi network; Mit, mitochondria; MT, microtubules; N, nucleus; PM, plasma membrane; PN, perinuclear; UN, unknown; V, vesicles; [], database annotation

Table 4:

New protein-protein interactions, found	
Baits (DBD)	Preys (AD)
BARD1	BAIP1
BARD1	BAIP2
BARD1	BAIP3
BARD1	FEZ1
BARD1	GIT1
BARD1	HBO1
BARD1	HIP5
BARD1	HZFH
BARD1	IKAP
BARD1	mHAP1
BARD1	NAG4
BARD1	PIASy
BARD1	PTN
BARD1	SETBD1
BARD1	ZHX1
CLH-17	Ku70
CLK1	PIASy
GADD45G	BAIP3
GADD45G	CGI-125
GADD45G	CGI-74

GADD45G	EF1A
GADD45G	EF1G
GADD45G	G45IP1
GADD45G	G45IP2
GADD45G	G45IP3
GADD45G	HIP16
GADD45G	HIP5
GADD45G	LUC7B1
GADD45G	PIASy
GADD45G	PLIP
GADD45G	PTN
GADD45G	PTPK
hADA3	BAIP1
hADA3	Ku70
hADA3	MAGEH1
hADA3	PIASy
HD1.7	CGI-125
HD1.7	DRP-1
HD1.7	FEZ1
HD1.7	GIT1
HD1.7	HIP11
HD1.7	HIP13
HD1.7	HIP15
HD1.7	HIP16
HD1.7	HIP5
HD1.7	HZFH
HD1.7	IKAP
HD1.7	Ku70
HD1.7	PIASy
HDd1.0	FEZ1
HDd1.0	GIT1
HDd1.0	IKAP
HDd1.3	HZFH
HDd1.3	IKAP
HDd1.3	Ku70
HDd1.3	PIASy
HDexQ20	CGI-125
HDexQ20	HIP13
HDexQ20	HP28

HDexQ20	PFN2
HDexQ51	CGI-125
HDexQ51	HIP13
HDexQ51	HIP15
HDexQ51	HP28
HDexQ51	PFN2
HIP2	PIASy
HIP5	APP1
HIP5	BAIP1
HIP5	BAIP2
HIP5	CGI-74
HIP5	FEZ1
HIP5	GIT1
HIP5	HBO1
HIP5	HMP
HIP5	KPNA2
HIP5	mHAP1
HIP5	NAG4
HIP5	PLIP
IMPD2	PIASy
KPNB1	PIASy
KPNB1	PTN
mp53	HZFH
mp53	ZHX1
PIASy	MAPIc3
TAL1	ZHX1
TCP1G	Ku70
VIM	ALEX2
VIM	BAIP1
VIM	DRP-1
VIM	G45IP1
VIM	HBO1
VIM	HSPC232
VIM	HZFH
VIM	PIASy
VIM	SETBD1
VIM	SH3GL3
ZNF33B	mHAP1
ZNF33B	ZHX1

Table 5:

- * Aarskog syndrome
- * Achromatopsia
- * Acoustic neuroma
- * Adrenal hyperplasia
- * Adrenoleukodystrophy
- * Agenesis of corpus callosum
- * Aicardi syndrome
- * Alagille syndrome
- * Albinism
- * Alopecia areata
- * Alstrom syndrome
- * Alpha-1-antitrypsin deficiency
- * Alzheimer
- * Ambiguous genitalia
- * Androgen insensitivity syndrome(s)
- * Anorchia
- * Angelman syndrome
- * Anophthalmia
- * Apert syndrome
- * Arthrogryposis
- * Ataxia
- * Autism
- * Bardet-Biedl syndrome
- * Basal cell carcinoma
- * Batten disease
- * Beckwith-Wiedemann syndrome
- * Blepharophimosis
- * Blind
- * Branchio-Oto-Renal (BOR) syndrome
- * Canavan
- * Cancer: (ataxia telangiectasia, basal cell nevus, brain /spine, breast, colon / bowel, leukemia / lymphoma, lung, melanoma / skin, multiple endocrine neoplasia, oral, ovarian, prostate, retinoblastoma, testicular, von Hippel-Lindau, xeroderma pigmentosa)
- * Cardiofaciocutaneous syndrome
- * Celiac sprue
- * Charcot-Marie-Tooth
- * CHARGE association
- * Chromosome anomalies - trisomy, deletions, inversions, duplications, translocations, 4p- (Wolf-Hirshhorn), 5 (cri-du-chat, 5p-), 6, 8p, 9 (trisomy 9, 9p-), 11 (11q, 11;22), 13 (trisomy 13, Patau), 15, 16 (mosaic), 18 (18q-, 18p-, ring 18, trisomy 18, tetrasomy 18p, Edwards), 21 (Down syndrome, trisomy 21), 22, X & Y [sex chromosome anomalies, Klinefelter (XXY, other), Turner (XO, other), fragile-X, other]
- * Cleft lip and/or cleft palate
- * Cockayne syndrome
- * Coffin-Lowry syndrome
- * Coffin-Siris syndrome
- * Congenital heart defects

- * Connective tissue conditions
- * Cooley anemia
- * Conjoined twins
- * Cornelia de Lange syndrome
- * Costello syndrome
- * Craniofacial conditions
- * Cri-du-Chat (5p-)
- * Cystic fibrosis
- * Cystinosis
- * Cystinuria
- * Dandy-Walker syndrome
- * Deaf / hard of hearing
- * Dermatological (skin) conditions
- * Developmental delay / mental retardation
- * DiGeorge syndrome
- * Down syndrome
- * DRPLA
- * Dubowitz syndrome
- * Dwarfism/ short stature
- * Dysautonomia
- * Dystonia
- * Ectodermal dysplasia
- * Ehlers Danlos syndrome
- * Endocrine Conditions
- * Epidermolysis bullosa
- * Facial anomalies, disfigurement
- * Fanconi anemia
- * Fetal alcohol syndrome and effects
- * FG syndrome
- * Fragile-X syndrome
- * Friedreich ataxia
- * Freeman Sheldon syndrome
- * Galactosemia
- * Gardner syndrome
- * Gastroenterology conditions
- * Gaucher disease
- * Glycogen storage disease
- * Goldenhar syndrome
- * Gorlin syndrome
- * Hallerman Streiff syndrome
- * Hearing problems
- * Heart conditions
- * Hemochromatosis
- * Hemophilia
- * Hemoglobinopathies
- * Hereditary hemorrhagic telangiectasia
- * Hereditary spastic paraplegia
- * Hermansky-Pudlak syndrome
- * Hirschsprung anomaly
- * Holoprosencephaly

- * Huntington disease
- * Hydrocephalus
- * Ichthyosis
- * Immune deficiencies
- * Incontinentia pigmenti
- * Infertility
- * Intestinal problems
- * Joseph disease
- * Joubert syndrome
- * Kabuki syndrome
- * Kidney conditions
- * Klinefelter syndrome
- * Klippel-Feil syndrome
- * Klippel-Trenaunay syndrome
- * Langer-Giedion syndrome
- * Laurence-Moon-Biedl syndrome
- * Leber Optic Atrophy
- * Leigh disease
- * Lesch-Nyhan syndrome
- * Leukodystrophy [Adrenoleukodystrophy (ALD), Alexanders Disease, CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts & Leukoencephalopathy), Canavan Disease (Spongy Degeneration), Cerebrotendinous Xanthomatosis (CTX), Globoid Cell (Krabbes) Leukodystrophy, Metachromatic Leukodystrophy (MLD), Ovarioleukodystrophy , Pelizaeus-Merzbacher Disease, Refsum Disease, van der Knaap syndrome, Zellweger syndrome]
- * Limb anomalies [missing arm(s) or leg(s), Poland anomaly, other]
- * Lissencephaly [Isolated Sequence (ILS), X-Linked (XLIS), Subcortical Band Heterotopia (SBH), Miller-Dieker syndrome (MDS), Microcephaly, Microlissencephaly (MLIS), Norman-Roberts syndrome (NRS), With Cerebellar Hypoplasia (LCH), Polymicrogyria (PMG), Schizencephaly (SCH), Muscle-Eye-Brain (MEB) Disease, and Walker-Warburg syndrome (WWS), 17p13.3 deletion]
- * Liver conditions (biliary atresia, Alagille syndrome, alpha-1 antitrypsin, tyrosinemia, neonatal hepatitis, Wilson disease)
- * Lowe syndrome
- * Lung / pulmonary conditions
- * Lymphedema
- * Maffucci syndrome(Ollier, multiple cartilaginous enchondromatosis)
- * Malignant hyperthermia
- * Maple syrup urine disease
- * Marinesco-Sjogren Syndrome
- * Marfan syndrome
- * Menke syndrome
- * Mental retardation / developmental delay
- * Metabolic conditions (carbohydrate deficient glycoprotein syndrome (CDGS), diabetes insipidus, Fabry, galactosemia, glucose-6-phosphate dehydrogenase (G6PD), fatty acid oxidation disorders, glutaric aciduria, hypophosphatemia, Krabbe, lactic acidosis, lysosomal storage diseases, mannosidosis, maple syrup urine, mitochondrial, neuro-metabolic, organic acidemias, PKU, purine, pyruvate dehydrogenase deficiency, urea cycle conditions, vitamin D deficient rickets)

- * Miscarriage, stillbirth, infant death
- * Mitochondrial conditions (Alpers, Barth, beta-oxidation defects, carnitine deficiency, CPEO, Kearns-Sayre, lactic acidosis, Leber optic neuropathy, Leigh, LCAD, Luft, MCAD, MAD, glutaric aciduria, MERRF, MNGIE, NARP, Pearson, PHD, SCAD, NADH-CoQ reductase, succinate dehydrogenase, Complex III, Complex IV, COX, Complex V, other)
- * Moebius syndrome
- * Mucolipidosis, type IV (ML4)
- * Mucopolysaccharidosis (Hunter syndrome, Hurler syndrome, Maroteaux-Lamy syndrome, Sanfilippo syndrome, Scheie syndrome, Morquio syndrome, other)
- * Multiple hereditary exostoses
- * Muscular dystrophy /atrophy (neuromuscular conditions including: Duchenne, facioscapulohumeral, Charcot Marie Tooth, spinal muscular atrophy, other)
- * Myotonic dystrophy
- * Nager & Miller syndromes
- * Nail Patella syndrome
- * Narcolepsy
- * Neurologic conditions (neuro-metabolic, neurogenetics, neuromuscular, other)
- * Neurofibromatosis (von Recklinghausen)
- * Neuromuscular conditions
- * Niemann-Pick disease
- * Noonan syndrome
- * Opitz syndromes [Opitz-Frias, Opitz FG (Opitz-Kaveggia), Opitz-C (Trigonocephaly)]
- * Organic acidemias
- * Osler-Weber-Rendu syndrome
- * Osteogenesis imperfecta
- * Oxalosis & hyperoxaluria
- * Pallister-Hall syndrome
- * Pallister-Killian syndrome (tetrasomy 12p, Teschler-Nicola syndrome)
- * Parkinson's disease
- * Periodic paralysis
- * Phenylketonuria (PKU)
- * Polycystic kidney disease
- * Popliteal pterygium syndrome
- * Porphyria
- * Prader-Willi syndrome
- * Progeria (Werner, Hutchinson-Gilford, Cockayne, Rothmond-Thomson syndromes)
- * Proteus syndrome
- * Prune belly syndrome
- * Pseudoxanthoma elasticum (PXE)
- * Psychiatric conditions
- * Refsum disease
- * Retinal degeneration
- * Retinitis pigmentosa (retinal degenerative diseases, Usher syndrome)
- * Retinoblastoma
- * Rett syndrome
- * Robinow syndrome
- * Rubinstein-Taybi syndrome
- * Russell-Silver syndrome

- * SBMA
- * SCA
- * Schizencephaly
- * Sex chromosome anomalies (47,XXY, 47,XXX, 45,X and variants, 47,XYY)
- * Shwachman syndrome
- * Sickle cell anemia
- * Skeletal dysplasia
- * Smith-Lemli-Opitz syndrome (RHS syndrome)
- * Smith-Magenis syndrome (17p-)
- * Sotos syndrome
- * Spina bifida (myelomeningocele, neural tube defects)
- * Spinal muscular atrophy (Werdnig-Hoffman, Kugelberg-Welander)
- * Stickler / Marshall syndrome
- * Sturge-Weber
- * Tay-Sachs disease / other (dysautonomia, dystonia, Gaucher, Niemann Pick, Canavan, Bloom)
- * Thalassemia (Cooley anemia)
- * Thrombocytopenia absent radius syndrome
- * Tourette syndrome
- * Treacher Collins syndrome (craniofacial)
- * Trisomy (21, 18, 13, 9, other, see chromosome syndromes)
- * Tuberous sclerosis
- * Turner syndrome
- * Twins / triplets / multiple births
- * Unknown disorders
- * Urea cycle conditions
- * Usher syndrome
- * VATER association
- * Velo-cardio-facial syndrome (Shprintzen, DiGeorge, 22q deletion)
- * Visual impairment / blind
- * Von Hippel-Lindau syndrome
- * Waardenburg syndrome
- * Weaver syndrome
- * Werner syndrome
- * Williams syndrome
- * Wilson disease (hepatolenticular degeneration)
- * Xeroderma pigmentosum
- * Zellweger syndrome

The figures show:

Figure 1 Identification of two-hybrid interactions connected to HD. a, Schematic representation of the screening strategy. b, Identification of interactions by systematic interaction mating. Upper panel: Selection of diploid yeast clones by transfer on minimal medium lacking leucine and tryptophan (SDII). Lower panel: Two-hybrid selection of interactions on minimal medium lacking leucine, tryptophan, histidine and

uracil (SDIV) after 5 days of growth at 30°C. The prey proteins HP28 (A5), SH3GL3 (A7), CA150 (B9), HIP15 (B10), PFN2 (B11), HIP13 (C1), CGI125 (C12) and HYPA (D1) were identified as HDexQ51 interactors.

Figure 2 Protein interaction network for Huntington's disease. a, Matrix of 117 two-hybrid interactions between 21 bait and 49 prey proteins. b, Yeast two-hybrid interactions depicted as network using the software Pivot 1.0. In total, 96 interactions and 61 distinct proteins are depicted. In addition, dimers of EF1G, VIM and p53 are shown.

Figure 3 Systematic validation of two-hybrid interactions by *in vitro* binding experiments. GST-fusion proteins (baits) immobilised on glutathione agarose beads were incubated with COS1 cell extracts containing HA-tagged prey proteins. After extensive washing of the beads, bound proteins were eluted and analysed by SDS-PAGE and immunoblotting using anti-HA antibody.

Figure 4 Identification of network proteins stimulating htt aggregation. a, Filter retardation assay. Protein extracts were prepared from HEK293 cells coexpressing HD169Q68 and network proteins as indicated. The aggregated proteins retained on the filter were detected with anti htt antibody (CAG53b) and anti-GIT1 antibody. b, Coimmunoprecipitation of HD510Q68 and GIT1 from COS1 cell extracts. Extracts were incubated with anti-GIT1 or preimmune serum. Immunoprecipitated material was analysed by immunoblotting using htt- antibody 4C8 and anti-HA antibody. c, Coimmunoprecipitation of htt and GIT1 from human brain extracts. Protein complexes containing GIT1 were pulled-down with increasing amounts of anti htt antibodies, but not with corresponding preimmune sera. d, Analysis of subcellular localisation of HD510Q68 and GIT1 by immunofluorescence microscopy. COS1 cells were transfected with the indicated constructs and immunolabelled with 4C8 anti htt antibody coupled to Cy3-conjugated antibody (red) and with anti-HA antibody coupled to FITC-conjugated antibody (green). Nuclei were counterstained with Hoechst (blue). Colocalisation of HD510Q68 and GIT1 is illustrated by yellow colour of the insoluble aggregates. Scale bars, 10 µm.

Figure 5 Detection of GIT1 in brains of R6/1 transgenic mice and HD patients. a, Sections of striatum and cortex of R6/1 mice brains labelled with anti-GIT1 and anti-

htt (EM48) antisera. Arrows point to nuclear inclusions. b, Inclusions in cortex of HD patients are labelled with anti-htt (2B4) and anti-GIT1 antibodies. Arrows indicate neuronal inclusions, recognized by anti-htt (2B4) and anti-GIT1 antibodies. Scale bars, 20 µm. c, Colocalisation of GIT1 and htt in the cortex of HD patients detected by immunofluorescence microscopy.

Figure 6 Amino acid sequence of the interacting proteins of the PPI of huntingtin.

The examples illustrate the invention:

Examples 1: Particular methods and material used in the Examples

• Antibodies, strains and plasmids

A polyclonal antibody (pAb) against GIT1 was generated by injection of affinity purified His₆-tagged GIT1 (residues 368-587) into a rabbit. The htt-specific pAb CAG53b and HD1 were described ^{13,14}. Commercially available antibodies were anti-GST pAb (Amersham Pharmacia), anti-GIT1 pAb (Santa Cruz Biotechnology), anti-HA monoclonal antibody 12CA5 (mAb) (Roche Diagnostics), anti htt pAb EM48 ⁴⁷, anti htt mAb 2B4 ⁴⁸ and anti htt mAb 4C8 (Chemicon). As secondary antibodies for immunofluorescence microscopy Cy3- and FITC-conjugated IgGs (Jackson ImmunoResearch) were used.

The yeast strains used as two-hybrid reporters were L40ccua [MAT α his3Δ200 trp1-901 leu2-3,112 LYS2::(lexAop)₄-HIS3 ura3::(lexAop)₈-lacZ ADE2::(lexAop)₈- URA3 GAL4 gal80 can1 cyh2] and L40cc α [MAT α his3Δ200 trp1-910 leu2-3,112 ade2 LYS2::(lexAop)₄-HIS3 URA3::(lexAop)₈-lacZ GAL4 gal80 can1 cyh2]. Both strains are derivatives of L40c ¹⁷. Two-hybrid vector maps are available at <http://www.mdc-berlin.de/neuroprot/labequip.htm>. Plasmids pHD510Q17 and pHD510Q68 were generated by insertion of fragments coding for HD510Q17 and HD510Q68 into pcDNA-I (Invitrogen). pHD169Q68 was derived from pHD510Q68 by deletion of the Xhol-Xhol fragment encoding aa 170-510 of human htt.

• Library screening

Plasmids encoding bait proteins were transformed into the strain L40ccua, tested for the absence of reporter gene activity and cotransformed with a human fetal brain cDNA library (Clontech). For each transformation 1×10^6 independent transformants were plated onto minimal medium lacking tryptophan, leucine, histidine and uracil (SDIV medium) and incubated at 30°C for 5 to 10 days. Clones were picked into microtitre plates using a picking robot and grown over night in liquid minimal medium lacking tryptophan and leucine (SDII medium). Then, they were spotted onto nylon or nitrocellulose membranes placed on SDIV medium plates. After incubation for 4 days

membranes were subjected to a β -galactosidase (β -GAL) assay. Plasmids were prepared from positive clones and characterised by restriction analyses and sequencing. For retransformation assays plasmids encoding bait and prey proteins were cotransformed in the yeast strain L40ccua and plated onto SDIV medium.

- **Array mating screen**

Plasmids encoding bait and prey proteins were transformed into strains L40ccua and L40cc α , respectively. L40cc α clones were arrayed in 96-well microtitre plates and mixed with a single L40ccua clone for interaction mating. Diploid cells were transferred by a robot (Beckman, Biomek® 2000) onto YPD medium plates and, after incubation for 24 h at 30°C, onto SDII medium plates for additional 72 h at 30°C. For two-hybrid selection diploid cells were transferred onto SDIV medium plates with and without nylon or nitrocellulose membranes and incubated for 5 days at 30°C. The nylon or nitrocellulose membranes were subjected to the β -GAL assay. Positive clones were verified by cotransformation assays using plasmids encoding respective bait and prey proteins.

- **Protein expression and verification assays**

For verification experiments cDNA fragments encoding baits and preys were subcloned into pGEX derivatives (Stratagene) or pTL-HA¹⁸. GST fusion proteins were expressed in *E. coli* BL21-codon PlusTM RP (Stratagene) and affinity purified on glutathione agarose beads (Sigma) using standard protocols¹⁷. COS1 cells were transfected with mammalian expression plasmids and lysed as described¹⁸. For *in vitro* binding assays, 30 μ g of GST or GST fusion protein were immobilized on glutathione agarose beads and incubated with 500 μ g protein extract prepared from COS1 cells expressing a HA-tagged fusion protein for 2 h at 4°C in binding buffer [50 mM HEPES pH 7.4, 150 mM NaCl, 10% glycerol, 1 % NP-40, 1 mM EDTA, 20 mM NaF, 1 mM DTT, 0.1 % Triton X-100, protease inhibitors (Roche Diagnostics)]. After centrifugation and extensive washing of the beads bound proteins were eluted and analysed by SDS-PAGE and Western blotting.

Coimmunoprecipitation experiments were performed as described by Sittler *et al.*¹⁸. For immunofluorescence microscopy COS1 cells were grown on cover slips and

cotransfected with pcDNA-HD510Q68 and pTL-HA-GIT1. 40 h post transfection cells were fixed with 2% paraformaldehyde. Standard protocols for staining with appropriate primary and secondary antibodies were used¹⁸.

- **Filter Retardation Assay**

HEK293 cells coexpressing HD169Q68 and GIT1, PIASy, HIP5, HP28, PFN2, FEZ1 or BARD1 were harvested 48 h post transfection. Cells were lysed as described¹⁸ and boiled in 2% SDS, 100 mM DTT for 5 min. Aliquots containing 50, 25 and 12.5 µg of total protein were used for filtration on a cellulose acetate membrane¹⁴. SDS-resistant aggregates were detected using anti-CAG53b or anti-GIT1 antibodies.

- **Immunocytochemistry**

Mice were deeply anaesthetised and perfused through the left cardiac ventricle with 4% paraformaldehyde in 0.1 M phosphate buffer. Brains were removed and postfixed overnight in 4% paraformaldehyde. Sections were processed for immunocytochemistry as described⁴⁷. pAb EM48 (1:1000) and affinity purified anti-GIT1 pAb (1:100) were used as primary antibodies.

Six human HD and 5 control brains were used in this study. Two HD cases were classified as grade 3 and four cases as grade 4 of neuropathological severity. For immunolabelling standard protocols were used⁴⁸. 2B4 mAb (1:200) and affinity purified GIT1 pAb (1:50) were used as primary antibodies.

Example 2: Two-hybrid screens and data management

To generate a PPI network for HD we used a combination of library and matrix yeast two-hybrid screens (Fig. 1a). First, 50 selected cDNAs encoding proteins potentially involved in HD including 10 different htt fragments were cloned into a DNA binding domain vector for expression of LexA fusion proteins (baits). The resulting plasmids were introduced into yeast strain L40ccua, which carries three reporter genes, *HIS3*, *URA3* and *lacZ*, for two-hybrid interaction analyses. Forty baits did not activate the reporters by themselves and were used individually for cotransformation screening of a human fetal brain cDNA library expressing GAL4 activation domain hybrids (preys). In each screen, 1×10^6 auxotrophic transformants were tested on selective plates,

and 1-50 positive colonies were typically obtained. Restriction analyses and sequencing identified preys that together with their respective baits repeatedly activated the reporter genes. Starting with 40 baits in the first round of cotransformation screens we identified 34 PPIs for 10 baits (Table 1).

In the second round of screens, 12 cDNA fragments encoding preys identified in the first screen were subcloned into a DNA binding domain vector. The resulting baits were tested for autoactivation and 10 were screened against a human fetal brain cDNA library. Four of the 10 proteins revealed additional 13 PPIs.

Finally, an array mating screen was performed to connect all baits and preys identified in the transformation screens. For this assay, MAT α yeast cultures were transformed with plasmids encoding prey proteins and arrayed in 96-well microtitre plates for interaction mating with individual MAT α strains expressing bait proteins. Using this strategy each bait was individually tested for interaction with every prey in the array. Diploid yeast clones, formed by mating on YPD plates, were selected on agar SDII plates, and further transferred by a spotting robot on SDIV plates to select for Y2H interactions (Fig. 1b). We examined 3500 pairwise combinations of baits and preys in the mating assay and identified additional 70 PPIs. These interactions could be confirmed in cotransformation assays (Table 5).

Table 5:

Summary of two-hybrid screens

Screen	baits	preys	baits yielding	interactions
	screened	screened	interactions	identified
1st transformation screen	40	4×10^7	10	34
2nd transformation screen	10	1×10^7	4	13
Array mating screen	50	70	21	70

Thus, the combination of cDNA library and array mating screens proved powerful in establishing a highly connected PPI network linked to htt.

Sequence analysis of the cDNAs encoding bait and prey proteins revealed ORFs ranging from 82 to 728 amino acids in size (Table 2). In a systematic Blast search 60 out of the 67 proteins identified were identical to a SwissProt or TrEMBL protein entry (<http://us.expasy.org/sprot/>). The remaining 7 proteins showed 75-99 % identity to its best fit and either contained single amino acid substitutions, variable polyQ lengths or small regions of sequence variation. Uncharacterised proteins were named according to their interaction partners. Each ORF was further examined for consensus protein domains using the FprintScan, HMMPfam, HMMSmart, ProfileScan, and BlastProDom programs providing useful hints to protein function. For example, the protein BAIP1 (BARD1 interacting protein 1) possesses a Zn-finger-like PHD finger that is believed to be important for chromatin-mediated transcriptional regulation. Similarly, domain searches for BAIP2 (BARD1 interacting protein 2) revealed a BTB/POZ domain, a motif found in developmentally regulated zinc finger proteins of the Kelch family of actin-associated proteins. Thus, BAIP2 could potentially mediate the association of BARD1 with the actin cytoskeleton.

Example 3: Analysis and functional assignment of the two-hybrid data

Our two-hybrid screens identified a total of 117 PPIs between 70 protein fragments. As a result of the iterative two-hybrid strategy all interactions could be depicted in a single large network. The number of interactions identified for each bait varied from 1 to 18, with each protein having 1.6 interaction partners on average. In order to display the PPI data, both matrix and network representations were used (Fig. 2). The matrix shows, in addition to the two-hybrid interactions, previously reported interactions and interactions verified by independent methods (Fig. 2a). In comparison, the network view allows to immediately recognize local PPI patterns and paths connecting two proteins in the network (Fig. 2b). Interestingly, proteins such as htt, BARD1, GADD45G, HIP5, PIASy or VIM interact with more than 11 other proteins forming nodes within the HD network, while 30 proteins have only one interaction partner and thus are located at the periphery of the network (Fig. 2b). Indeed, all other proteins are embedded in many bi-fan motifs and multiple circular interaction clusters that have been interpreted to be an indication for biological relevance^{11,19}. Schwikowski et al.²⁰ defined network proteins, which are separated

by no more than two other proteins, as being part of a functional cluster. In this respect all proteins in our network form a functional cluster with htt.

We assigned a subcellular localisation to each protein by examining various sources of literature and based on available experimental data we grouped the proteins into six broad functional categories (Fig. 2a, Table 2).

Eighteen proteins in the HD network are involved in transcriptional regulation or DNA maintenance (Fig. 2a). The second largest group, 14 proteins, includes mainly cytoskeletal and transport proteins. We assigned 5 proteins to cellular signalling and fate, another 4 proteins to protein synthesis and turnover, and 3 proteins to cellular metabolism. Being part of 41 interactions, 16 proteins of unknown function were identified.

For the analysis of htt PPIs, as much as 40 out of 117 interactions (34,2%) included a htt fragment (Fig. 2a). In total, 19 different htt interacting partners from various functional groups were detected, 4 proteins had been previously described and 6 involved proteins of unknown function. Surprisingly, most htt partners (6) are involved in transcriptional regulation and DNA maintenance, but others function in cell organization and transport (4), cellular signalling (2), or cellular metabolism (1), suggesting that htt functions in different subcellular processes.

The current hypothesis that htt has a function in transcriptional regulation is inferred from its interactions with transcriptional activators, coactivators or repressors²¹. In agreement with previous reports, binding of htt to CA150²² and HYPA²³ has been detected in our screens. In addition, new connections to nuclear proteins such as SETBD1, PLIP and HBO1 were found. These multidomain proteins act on histones and are known modulators of chromatin structure and gene expression. Similarly, the zinc finger bromo domain containing proteins BARD1, NAG4, HZFH, ZHX1, ZNF33B play a role in transcriptional control. The protein IKAP directly interacts with htt and was recently shown to be part of a complex regulating RNA polymerase II activity²⁴. Htt also interacts with PIASy, which inhibits transcription factor STAT-mediated gene activation²⁵. PIASy functions as SUMO E3 ligase for the Wnt-responsive transcription factor LEF1, inhibiting its activity via sumoylation²⁶. This suggests that PIASy catalysed sumoylation of transcription factors could represent a general

mechanism in repression of gene expression. The binding of PIASy to htt indicates that htt may itself be a substrate for sumoylation. Alternatively, it could influence the sumoylation of other transcription factors. Thus, our data extend the nuclear role of htt and provide additional leads for its involvement in transcriptional regulation.

Another large group of htt interactors identified here are proteins that function in cellular organization and vesicle transport. We report a new interaction between htt and dynein light chain (HP28), a component of the dynein/dynactin motor protein complex. Interestingly, the p150^{Glued} subunit of dynactin is linked to the htt-associated protein HAP1^{16,27}. Our observation that htt directly binds to HP28 underscores the potential scaffolding role of htt/HAP1 in dynein/dynactin driven retrograde vesicle transport along microtubules in axons.

The htt interacting protein HIP1 anchors clathrin-coated vesicles to the cytoskeleton via its actin-binding domain, a link crucial for synaptic vesicle endocytosis²⁸. Here, a new PPI between htt and profilin II (PFN2)²⁹ was detected. PFN2, a protein enriched in neurons, modulates actin polymerization *in vitro* and is involved in endocytosis via association with scaffolding proteins²⁹. The htt-PFN2 connection adds support to a potential role of htt in modulation of both actin polymerization and vesicle transport processes.

Currently, for the function of 6 htt interactors, including HIP5, no genetic or biochemical evidence is available (Table 2). We found that HIP5 binds to htt as well as to karyopherin α (KPNA2). KPNA2 serves as an adapter for karyopherin β (KPNB1), which transports NLS-tagged proteins into the nucleus³⁰. Thus, HIP5 might take this route to the nucleus. Interestingly, HEAT or armadillo (ARM) repeats, forming α-helical structures in KPNA2 and KPNB1 are also present in htt³¹. Therefore, the complexes between KPNA2 and HIP5 as well as between htt and HIP5 could be similar in terms of protein structure. It is tempting to further speculate that htt participates in nucleocytoplasmic transport.

Example 3: Verification of PPIs

Comparison with literature-cited interactions revealed that more than 80% of the two-hybrid interactions identified here are novel. For all network bait and prey proteins only 24 PPIs have been reported previously using two-hybrid methods,

coimmunoprecipitations or affinity chromatography-based techniques; 18 of these were confirmed in our Y2H assays (Fig 2a, Table 2). Failure to detect interactions may result from the high stringency of our particular two-hybrid system. However, in most cases the occurrence of false negatives can be explained by the lack of essential domains in one of the protein fragments used. For example, an interaction between p53 and hADA3 has been described³², with the first 214 amino acids of hADA3 being essential for this interaction. It escaped our two-hybrid analysis, because a C-terminal hADA3 fragment (amino acids 235-432) was used. For the same reason, an interaction between p53 and BARD1 or between KPNA2 and KPNB1 was not observed.

Beside false negatives, the two-hybrid assay is also prone to create false positive results⁹. Addressing this issue we performed a series of pull-down and overlay assays and thereby confirmed several of the two-hybrid PPIs independently. Proteins were expressed as GST-fusions in *E. coli* and as HA-fusions in COS1 cells. After immobilization of the GST-fusion protein to beads or nitrocellulose membranes the respective partner was affinity-purified from a COS1 cell extract and binding was detected by immunoblotting. Using these assays, 22 physical interactions, central to the HD network, were verified (Fig. 2a). The results of some *in vitro* GST pull-down assays are shown in Fig. 3. For example HD510Q17 interacts with HIP1, GIT1, PIASy, FEZ1 and HIP11, and HIP5 binds to HD510Q68, GIT1, HBO1, PLIP and FEZ1 (Fig. 3). In total, 35 two-hybrid interactions were verified independently either in previous studies or by our *in vitro* binding assays (Fig. 2a).

Example 4: GIT1 promotes htt aggregation *in vivo*

The formation of insoluble polyQ-containing protein aggregates is a pathological hallmark of HD. Several lines of evidence link htt aggregation to disease progression and the development of motor symptoms. We screened network proteins for their potential to enhance htt aggregation in a cell-based aggregation assay¹⁴. In this assay, formation of SDS-insoluble htt aggregates in mammalian cells, that have been cotransfected with constructs encoding an N-terminal htt fragment with 68 glutamines (HD169Q68) and a network protein of interest, is monitored by filter retardation¹⁴. HD169Q68 *per se* has only a low propensity to form insoluble aggregates in HEK293 cells. However, as shown in Fig. 4a coexpression of the htt-interacting protein GIT1

strongly promotes the formation of HD169Q68 aggregates, whereas coexpression of PIASy, HIP5, HP28, PFN2, FEZ1 and BARD1 has no discernable effect. Thus, GIT1 is a potential modifier of HD pathogenesis, which may influence the rate of formation of insoluble htt aggregates *in vivo*.

Furthermore, probing of the insoluble HD169Q68 aggregates with an anti-GIT1 antibody revealed that GIT1 does not only stimulate aggregation but is also an integral part of the insoluble aggregates (Fig. 4a). This suggests that GIT1 promotes aggregation through direct binding to mutant htt.

The interaction between GIT1 and htt was confirmed by coimmunoprecipitation from COS1 cells transfected with constructs encoding HD510Q68 and HA-GIT1. Forty hours post transfection cell extracts were prepared and treated with antiserum against GIT1. HD510Q68 and HA-GIT1 were detected in the immunoprecipitate on Western blots with anti htt antibody 4C8 and anti-HA antibody 12CA5, respectively (Fig. 4b).

The GIT1 htt interaction was also detected in human brain. Protein extracts prepared from human cortex were treated with the anti htt antibodies CAG53b and HD1, and the precipitate was probed for the presence of GIT1 (Fig. 4c). Full length GIT1, migrating at about 90 kDa³³, was precipitated by both anti htt antibodies in a concentration dependent manner, indicating the existence of a complex between htt and GIT1 in neurons.

Finally, we performed colocalisation studies of htt and GIT1 in COS1 cells using immunofluorescence microscopy. In cells expressing HD510Q68 or GIT1 alone a diffuse cytoplasmic staining was observed for each protein (Fig. 4d). However, when GIT1 and mutant htt were coexpressed, large perinuclear structures, most likely reflecting protein aggregates, appeared almost exclusively. These structures contained both GIT1 and htt. The images further substantiate the findings that GIT1 and htt bind to each other and that GIT1 is a potent enhancer of mutant htt aggregation.

Example 5: GIT1 localises to htt aggregates in HD transgenic mouse and patient brains

The finding of colocalisation of htt and GIT1 within aggregates in transfected COS1 cells suggests that GIT1 might also be a component of htt aggregates *in vivo*. To investigate this possibility we first assessed the distribution of GIT1 in brains of R6/1 transgenic mice expressing a human htt exon 1 protein with 150 glutamines³⁴. In wildtype mice, GIT1 immunoreaction product was found diffuse in the cytoplasm and nuclei of neurons throughout the brain. In R6/1 brains, in addition to the diffuse staining, GIT1 immunoreactivity was also present in large nuclear and cytoplasmic puncta similar to htt aggregates (Figure 5a). To further confirm these data, we examined the subcellular distribution of GIT1 in cortex from HD patient brains and healthy individuals (Fig. 5b). In patient brains, GIT1 antibodies labelled neuronal nuclear inclusions as well as neuropil aggregates characteristic of HD brains³⁵. In contrast, neurons from control brains only showed a diffuse nuclear and cytoplasmic GIT1 immunostaining. In fact, in colocalisation studies performed in HD brain sections, GIT1 positive aggregates were also labelled with anti htt antibody 2B4, indicating that both proteins coaggregated *in vivo* (Fig. 5c). This observation raises the possibility that an alteration of the neuronal GIT1 subcellular distribution contributes to HD pathogenesis.

Additional references:

1. Tucker, C. L., Gera, J. F. & Uetz, P. Towards an understanding of complex protein networks. *Trends Cell. Biol.* **11**, 102-106 (2001).
2. Alberts, B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. *Cell* **92**, 291-294 (1998).
3. Legrain, P., Wojcik, J. & Gauthier, J. M. Protein-protein interaction maps: a lead towards cellular functions. *Trends Genet.* **17**, 346-352 (2001).
4. Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. *Nature* **340**, 245-246 (1989).
5. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in *Saccharomyces cerevisiae*. *Nature* **403**, 623-627 (2000).
6. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. *Proc. Natl Acad. Sci. USA* **98**, 4569-74 (2001).
7. Rain, J. C. et al. The protein-protein interaction map of *Helicobacter pylori*. *Nature* **409**, 211-5 (2001).
8. Bader, G. D. & Hogue, C. W. Analyzing yeast protein-protein interaction data obtained from different sources. *Nature Biotechnol.* **20**, 991-997 (2002).
9. von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. *Nature* **417**, 399-403 (2002).
10. Walhout, A. J. et al. Integrating Interactome, Phenome, and Transcriptome Mapping Data for the *C. elegans* Germline. *Curr. Biol.* **12**, 1952-1958 (2002).
11. Walhout, A. et al. Protein interaction mapping in *C. elegans* using proteins involved in vulval development. *Science* **287**, 116-122 (2000).
12. Fromont-Racine, M., Rain, J. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. *Nature Genet.* **16**, 277-282 (1997).
13. Davies, S. W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. *Cell* **90**, 537-548 (1997).
14. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. *Cell* **90**, 549-558 (1997).
15. Cattaneo, E. et al. Loss of normal huntingtin function: new developments in Huntington's disease research. *Trends Neurosci.* **24**, 182-188 (2001).
16. Li, X. et al. A huntingtin-associated protein enriched in brain with implications for pathology. *Nature* **378**, 398-402 (1995).
17. Wanker, E. et al. HIP-1: a huntingtin interacting protein isolated by the yeast two-hybrid system. *Hum. Mol. Genet.* **3**, 487-495 (1997).
18. Sittler, A. et al. SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polyglu-containing protein aggregates. *Mol. Cell* **4**, 427-436 (1998).
19. Milo, R. et al. Network motifs: simple building blocks of complex networks. *Science* **298**, 824-7 (2002).
20. Schwikowski, B., Uetz, P. & Fields, S. A network of protein-protein interactions in yeast. *Nature Biotechnol.* **17**, 1030-1032 (2000).
21. Cha, J. H. Transcriptional dysregulation in Huntington's disease. *Trends Neurosci.* **23**, 387-392 (2000).

22. Holbert, S. et al. The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington's disease pathogenesis. *Proc. Natl Acad. Sci. USA* **98**, 1811-1816 (2001).
23. Faber, P. et al. Huntingtin interacts with a family of WW domain proteins. *Hum. Mol. Genet.* **7**, 1463-1474 (1998).
24. Hawkes, N. A. et al. Purification and characterization of the human elongator complex. *J. Biol. Chem.* **277**, 3047-3052 (2002).
25. Liu, B., Gross, M., ten Hoeve, J. & Shuai, K. A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. *Proc. Natl Acad. Sci. USA* **98**, 3203-3207 (2001).
26. Sachdev, S. et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. *Genes Dev.* **15**, 3088-3103 (2001).
27. Engelender, S. et al. Huntingtin-associated protein 1 (HAP1) interacts with the p150^{Glued} subunit of dynactin. *Hum. Mol. Genet.* **6**, 2205- 2212 (1997).
28. Waelter, S. et al. The huntingtin interacting protein HIP1 is a clathrin and alpha-adaptin-binding protein involved in receptor-mediated endocytosis. *Hum. Mol. Genet.* **10**, 1807-1817 (2001).
29. Witke, W. et al. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. *EMBO J.* **17**, 967-976 (1998).
30. Chook, Y. & Blobel, G. Karyopherins and nuclear import. *Curr. Opin. Struct. Biol.* **11**, 703-715 (2001).
31. Andrade, M. A., Petosa, C., O'Donoghue, S. I., Muller, C. W. & Bork, P. Comparison of ARM and HEAT protein repeats. *J. Mol. Biol.* **309**, 1-18 (2001).
32. Wang, T. et al. hADA3 is required for p53 activity. *EMBO J.* **20**, 6404-6413 (2001).
33. Vitale, N. et al. GIT proteins, A novel family of phosphatidylinositol 3,4, 5-trisphosphate-stimulated GTPase-activating proteins for ARF6. *J. Biol. Chem.* **275**, 13901-13916 (2000).
34. Mangiarini, L. et al. Exon 1 of the Huntington's disease gene containing a highly expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. *Cell* **87**, 493-506 (1996).
35. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. *Science* **277**, 1990-1993 (1997).
36. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. *Nature* **422**, 198-207 (2003).
37. Bernstein, C., Bernstein, H., Payne, C. M. & Garewal, H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. *Mutat. Res.* **511**, 145-178 (2002).
38. Becher, M. W. et al. Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and *IT15* CAG triplet repeat length. *Neurobiol. Dis.* **4**, 387-397 (1998).
39. Hernandez-Deviez, D. J., Casanova, J. E. & Wilson, J. M. Regulation of dendritic development by the ARF exchange factor ARNO. *Nature Neurosci.* **5**, 623-624 (2002).
40. Di Cesare, A. et al. p95-APP1 links membrane transport to Rac-mediated reorganization of actin. *Nature Cell Biol.* **8**, 521-530 (2000).

41. Zhang, H., Webb, D. J., Asmussen, H. & Horwitz, A. F. Synapse formation is regulated by the signaling adaptor GIT1. *J. Cell. Biol.* **161**, 131-142 (2003).
42. Graveland, G. A., Williams, R. S. & DiFiglia, M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. *Science* **227**, 770-773 (1985).
43. Ko, J. et al. Interaction between liprin-alpha and GIT1 is required for AMPA receptor targeting. *J. Neurosci.* **23**, 1667-1677 (2003).
44. Cha, J. H. et al. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human Huntington disease gene. *Proc. Natl Acad. Sci. USA* **95**, 6480-6485 (1998).
45. Kim, S. et al. The GIT family of proteins forms multimers and associates with the presynaptic cytomatrix protein Piccolo. *J. Biol. Chem.* **278**, 6291-6300 (2003).
46. Scherzinger, E. et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. *Proc. Natl Acad. Sci. USA* **96**, 4604-4609 (1999).
47. Gutekunst, C. A. et al. Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. *J. Neurosci.* **19**, 2522-2534 (1999).
48. Lunkes, A. et al. Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. *Mol. Cell* **10**, 259-269 (2002).
49. Davy A., Bello P., Thierry-Mieg N., Vaglio P., Hitti J., Doucette-Stamm L., Thierry-Mieg D., Reboul J., Boulton S., Walhout AJ., Coux O., Vidal M. A protein-protein interaction map of the *Caenorhabditis elegans* 26S proteasome. *EMBO Rep.* **2001**, Sep; 2(9) : 821-8.

Claims

1. A method for generating a network of direct and indirect interaction partners of a disease-related (poly)peptide comprising the steps of
 - (a) contacting a selection of (poly)peptides suspected to contain one or several of said direct or indirect interaction partners with said disease-related (poly)peptides and optionally with known direct or indirect interaction partners of said disease-related (poly)peptide under conditions that allow the interaction between interaction partners to occur;
 - (b) detecting (poly)peptides that interact with said disease-related (poly)peptide or with said known direct or indirect interaction partners of said disease-related (poly)peptide;
 - (c) contacting (poly)peptides detected in step (b) with a selection of (poly)peptides suspected to contain one or several (poly)peptides interacting with said (poly)peptides detected in step (b) under conditions that allow the interaction between interaction partners to occur;
 - (d) detecting proteins that interact with said (poly)peptides detected in step (b);
 - (e) contacting said disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide, said (poly)peptides detected in steps (b) and (d) and a selection of proteins suspected to contain one or several (poly)peptides interacting with any of the afore mentioned (poly)peptides under conditions that allow the interaction between interaction partners to occur;
 - (f) detecting (poly)peptides that interact with said disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide or with said (poly)peptides identified in step (b) or (d); and
 - (g) generating a (poly)peptide-(poly)peptide interaction network of said disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide and said (poly)peptides identified in steps (b), (d) and (f).
2. The method of claim 1, wherein said contacting step (e) is effected in an interaction mating two hybrid approach.

3. The method of claim 1 or 2, said method comprising after step (d) and before step (e) the steps of:
 - (d') contacting (poly)peptides detected in step (d) with a selection of (poly)peptides suspected to contain one or several (poly)peptides interacting with said (poly)peptides detected in step (d) under conditions that allow the interaction between interaction partners to occur; and
 - (d'') detecting proteins that interact with said (poly)peptides detected in step (d').
4. The method of any one of claims 1 to 3, wherein said disease-related protein is a protein suspected of being a causative agent of a hereditary disease.
5. The method of any one of claims 1 to 4, wherein said disease-related protein is huntingtin and wherein said interaction partners are the interaction partners as shown in tables 1 and 2.
6. The method of any one of claims 1 to 5, said method comprising the step of determining the nucleotide sequence of a nucleic acid molecule encoding a direct or indirect interaction partner of the disease related protein.
7. The method of any one of claims 1 to 6, wherein said selections of proteins are translated from a nucleic acid library.
8. The method of any one of claims 1 to 7, wherein said selection of proteins in step (a) and/or (c) and/or (d') and/or (e) is the same selection or a selection from the same source.
9. The method of any one of claims 1 to 7, wherein said selection of proteins in step (a) and/or (c) and/or (d') and/or (e) is a different selection or a selection from a different source.
10. The method of any one of claims 1 to 9, wherein said method is performed by contacting the proteins on an array.

11. The method of any one of claims 1 to 10, wherein said interactions are detected by using the yeast two-hybrid system.
12. The method of any one of claims 1 to 11, containing after step (b), (d), (d'') or (f) the additional steps of isolating a nucleic acid molecule with homology to said cDNA expressing the encoded protein and testing it for its activity as a modulator of huntingtin, wherein said nucleic acid molecule is DNA, or RNA, preferably cDNA, or genomic or synthetic DNA or mRNA.
13. A nucleic acid molecule encoding a modulator of huntingtin, wherein said modulator is a protein selected from table 3.
14. The nucleic acid molecule of claim 13, wherein said nucleic acid molecule is DNA, preferably cDNA, genomic DNA, or synthetic DNA or RNA, preferably mRNA.
15. The nucleic acid molecule of claim 13 or 14 fused to a heterologous nucleic acid molecule.
16. The nucleic acid molecule of claim 15, wherein the heterologous nucleic acid molecule encodes a heterologous (poly)peptide.
17. A vector comprising the nucleic acid molecule of any one of claims 13 to 16.
18. A host cell containing the nucleic acid molecule of any one of claims 13 to 16 or the vector of claim 17.
19. A method of producing a (poly)peptide, comprising culturing the host cell of claim 18 under conditions such that the (poly)peptide encoded by said polynucleotide is expressed and recovering said (poly)peptide.
20. A (poly)peptide comprising an amino acid sequence encoded by a nucleic acid molecule of any one of claims 13 to 16, or which is chemically synthesized, or is obtainable from the host cell of claim 18, or which is obtainable by the method of claim 18.

21. The (poly)peptide of claim 20 fused to a heterologous (poly)peptide.
22. A protein complex comprising at least two proteins, wherein the two proteins are selected from the group of interaction partners listed in table 4.
23. An antibody specifically recognizing the (poly)peptide of claim 20 or 21 or specifically reacting with the protein complex of claim 22.
24. The antibody of claim 23 which is polyclonal, monoclonal, chimeric, single chain, single chain Fv, human antibody, humanized antibody, or Fab fragment.
25. A method of identifying whether a protein promotes huntingtin aggregation, comprising
 - (a) transfecting a first cell with a nucleic acid molecule encoding a variant of the huntingtin protein or a fragment thereof capable of forming huntingtin aggregates;
 - (b) co-transfected a second cell with
 - (i.) a nucleic acid molecule encoding a variant of the huntingtin protein or a fragment thereof capable of forming huntingtin aggregates; and
 - (ii.) a nucleic acid molecule encoding a candidate modulator protein identified by the methods of any one of claims 1 to 12 or a nucleic acid molecule encoding a modulator protein selected from table 1 or table 2;
 - (c) expressing the proteins encoded by the transfected nucleic acid molecule of (a) and (b);
 - (d) isolating insoluble aggregates of huntingtin from the transfected cell of (a) and (b); and
 - (e) determining the amount of insoluble huntingtin aggregates from the transfected cell of (a) and (b)wherein an increased amount of huntingtin aggregates isolated from the transfected cells of (b) in comparison with the amount of huntingtin aggregates isolated from the transfected cells of (a) is indicative of a protein's activity as an enhancer of huntingtin aggregation.

26. A method of identifying whether a protein inhibits huntingtin aggregation, comprising
- (a) transfecting a first cell with a nucleic acid molecule encoding a variant of the huntingtin protein or a fragment thereof capable of forming huntingtin aggregates;
 - (b) co-transfected a second cell with
 - (i.) a nucleic acid molecule encoding a variant of the huntingtin protein or a fragment thereof capable of forming huntingtin aggregates ; and
 - (ii.) a nucleic acid molecule encoding a candidate modulator protein identified by the methods of any one of claims 1 to 12 or a nucleic acid molecule encoding a modulator protein selected from table 1 or table 2;
 - (c) expressing the proteins encoded by the transfected nucleic acid molecule of (a) and (b);
 - (d) isolating insoluble aggregates of huntingtin from the transfected cell of (a) and (b); and
 - (e) determining the amount of insoluble huntingtin aggregates from the transfected cell of (a) and (b)
wherein a reduced amount of huntingtin aggregates isolated from the transfected cells of (b) in comparison with the amount of huntingtin aggregates isolated from the transfected cells of (a) is indicative of a protein's activity as an inhibitor of huntingtin aggregation.
27. The method of claim 25 or 26, wherein prior to step (d) the cells are treated with an ionic detergent.
28. The method of any one of claims 25 to 27, wherein the huntingtin aggregates are filtered onto a membrane.
29. A method for identifying compounds affecting an interaction of huntingtin or of a direct or indirect interaction partner of huntingtin comprising

- (a) contacting interacting proteins selected from the group of interacting proteins listed in table 1 and/or table 2 in the presence or absence of an potential modular of interaction;
 - (b) identifying compounds capable of modulating said interaction.
30. The method of any one of claims 25 to 29 , further comprising
- (a) modeling said compound by peptidomantics and
 - (b) chemically synthesizing the modeled compound.
31. The method of any one of claims 25 to 30, wherein said compound is further modified to achieve
- (i) modified site of action, spectrum of activity, organ specificity, and/or
 - (ii) improved potency, and/or
 - (iii) decreased toxicity (improved therapeutic index), and/or
 - (iv) decreased side effects, and/or
 - (v) modified onset of therapeutic action, duration of effect, and/or
 - (vi) modified pharmokinetic parameters (resorption, distribution, metabolism and excretion), and/or
 - (vii) modified physico-chemical parameters (solubility, hygroscopicity, color, taste, odor, stability, state), and/or
 - (viii) improved general specificity, organ/tissue specificity, and/or
 - (ix) optimized application form and route
- by
- (i) esterification of carboxyl groups, or
 - (ii) esterification of hydroxyl groups with carbon acids, or
 - (iii) esterification of hydroxyl groups to, e.g. phosphates, pyrophosphates or sulfates or hemi succinates, or
 - (iv) formation of pharmaceutically acceptable salts, or
 - (v) formation of pharmaceutically acceptable complexes, or
 - (vi) synthesis of pharmacologically active polymers, or
 - (vii) introduction of hydrophilic moieties, or
 - (viii) introduction/exchange of substituents on aromates or side chains, change of substituent pattern, or
 - (ix) modification by introduction of isosteric or bioisosteric moieties, or

- (x) synthesis of homologous compounds, or
 - (xi) introduction of branched side chains, or
 - (xii) conversion of alkyl substituents to cyclic analogues, or
 - (xiii) derivatisation of hydroxyl group to ketales, acetals, or
 - (xiv) N-acetylation to amides, phenylcarbamates, or
 - (xv) synthesis of Mannich bases, imines, or
 - (xvi) transformation of ketones or aldehydes to Schiff's bases, oximes, acetals, ketales, enoesters, oxazolidines, thiazolidines or combinations thereof.
32. A method of diagnosing Huntington's disease in a biological sample comprising the steps of
- (a) contacting the sample with an antibody specific for a protein of table 1 or 2 or an antibody specific for the protein complex of claim 22; and
 - (b) detecting binding of the antibody to a protein complex, wherein the detection of binding is indicative of Huntington's disease or of a predisposition to develop Huntington's disease.
33. The method of claim 32, wherein
- (a) said protein complex contains GIT1 or
 - (b) said antibody is specific for a protein complex containing GIT1.
34. A diagnostic agent/composition or pharmaceutical composition comprising the nucleic acid molecule of any one of claims 13 to 16, the (poly)peptide of claim 20 or 21 or the (poly)peptide mentioned in anyone of tables 1 and 2, the antibody of claim 23 or 24, an antibody specifically reacting with a protein selected from table 2 and/or a protein selected from table 2.
35. Use of the molecule of any one of claims 13 to 16, the (poly)peptide of claim 20 or 21 or the (poly)peptide mentioned in anyone of tables 1 and 2, the antibody of claim 23 or 24, an antibody specifically reacting with a protein selected from table 2 and/or a protein selected from table 2, for the preparation of a pharmaceutical composition for the treatment of Huntington's disease.

20. Juni 2003

- ABSTRACT

The present invention relates to a method for generating a network of direct and indirect interaction partners of a disease-related (poly)peptide comprising the steps of (a) contacting a selection of (poly)peptides suspected to contain one or several of said direct or indirect interaction partners with said disease-related (poly)peptides and optionally with known direct or indirect interaction partners of said disease-related (poly)peptide under conditions that allow the interaction between interaction partners to occur; (b) detecting (poly)peptides that interact with said disease-related (poly)peptide or with said known direct or indirect interaction partners of said disease-related (poly)peptide; (c) contacting (poly)peptides detected in step (b) with a selection of (poly)peptides suspected to contain one or several (poly)peptides interacting with said (poly)peptides detected in step (b) under conditions that allow the interaction between interaction partners to occur; (d) detecting proteins that interact with said (poly)peptides detected in step (b); (e) contacting said disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide, said (poly)peptides detected in steps (b) and (d) and a selection of proteins suspected to contain one or several (poly)peptides interacting with any of the afore mentioned (poly)peptides under conditions that allow the interaction between interaction partners to occur; (f) detecting (poly)peptides that interact with said disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide or with said (poly)peptides identified in step (b) or (d); and (g) generating a (poly)peptide-(poly)peptide interaction network of said disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide and said (poly)peptides identified in steps (b), (d) and (f). Moreover, the present invention relates to a protein complex comprising at least two proteins and to methods for identifying compounds interfering with an interaction of said proteins. Finally, the present invention relates to a pharmaceutical composition and to the use of compounds identified by the present invention for the preparation of a pharmaceutical composition for the treatment of Huntington's disease.

EPO - Munich
3
20. Juni 2003

Figure 1

Figure 3

>ALEX2
AESVVGAAAMASAIAPPGVTEALGAEAPAMAGAPKVAEAPREAEATSRAAVPPGTVVPTTEAAAPTE
VTEGPVAAPTKVAEAPGVASPTEAAEAPVPATPTGAAAPTGAESPGTSGSPRTAVVPGTSAAKK
ATPGAHTGAIPKATSATGAVPKGGKGVTRSRNGGKGKGSKSKVEVDELMGFRRPGDGAACAAAAS
ANGGQAFLAEVPDSEEGESGWTDTESDSDSEPETQRRGRGRRPVAMQKRPPYEIDEILGVRDLRK
VLALLQKSDDPFIQQVALLTLSNNANSCNQETIRKLGLLPIIANMINKTDPHIKEKALMAMNNLS
ENYENQGRLQVYMNKVMDIMASNLNSAVQVUGLKFLTNMTITNDYQHLLVNSIANFRLLSQGGG
KIKVEILKILSNFAENPDMLKKLLSTQVPASFSSLYNSYVESBILINALTLFEIYDNLRAEVFN
REFNKGSFLYLCCTSGVCVKIRALANHDLVVKVVIKLVNKF
>APP1
EEEEESFPQPVDDYFVEPPQAEAAAETVPPPSHTLAUVGKVTPTPRTDGVDIYFGMPGEISHE
GFLRAKMDLEERRMRQINEVMREWAMADNQSKNLKPADROALNEHFQSILQTLLEEQVSGERQROLVE
THATRIVALINDQRRAALEGFLAALQADPPQAERVLLALRRYLRAEQKEQRHTLRHYQHVAADVPE
KAQQMRFQVHILQVIEERVNQSLGLLDQNPHLAQELRPQIQELLHSEHLGPSELEAPAPPGGSSED
KGGLQPDSDSKDDTPMTLPKGSTEQDAASPEKEKMNPLEQYERKVNASVPGVSLSTHRRFRGMSWHQ
LGQGCPVRLCRVC
>BAIP1
RPRTKMATAMYLEHYLDSIENLPCELQRNFQLMRELDQRTEDKKAEIDLAAEYISTVKTLSPDQR
VERLQKIQNAYSCKKEYSDDKVQLAMQTYEMVDKHIRRLDADLARFEADLKDKMEGSDFESSGGRG
LKKGRGQKEKRGSRGRRTSEEDTPKKKKHKGSEFTDTILSVHPSDVLDMPVDPNEPTYCLCHQ
VSYGEMIGCDNPDCPIEWFHACVDLTTKPKGKW
>BAIP2
SQQASVTMHDVDAESFEVLVDYCYTGRVSLSEANQRLYAASDMLQLEYVREACASFLARRLDLT
CTAILKFADAFDHKLRSQAQSYIAHNFKQLSRMGSIREETLADLTLAQLLAVRLRDSLIESERT
VCHVAVQWLEAAAKERGPSAAEVFKCVRWMHFTeedQDYLEGLLTkpIVKKYCLDVIEGALQMRYG
DILYKSLVPVPNSSSSSSSNSLVSAAEPPQRLGMCAKEMVIFFGHPRDPFLCYDPYSGDIYTMP
SPLTSFAHTKTVT&SAVCVSPDHDIYLAAQPRKDlwVYKPAQNSWQQLADRLLCREGMDVAYLNGY
IYILGGRDPITGVKLKEVECYSVQRNQWALVAPVPHSFYSELIVQNYLYAVNSKRMLCYDPSHN
MWLNCAASLKRSDFQEACVFNDEIYCICIDIPVMKVYNPARGEWRRISNIPLDSETHNYQIVNHQKL
LLITSTTPQWKKNRVTVYEYDTREDQWINIGTMGLLQFDSGFICLCARVYPSCLEPGQSFITEED
DARSESSTEWDLDGFSELDSESQSSFSDDDEVVQAPQRNAQDQQQGSL
>BAIP3
GHNAPRKVTAVIYARKGSVILQSIKISSVDATTVTSSQCVFRDQEPRKIHNEMASTSDKGAQGRND
KKDSQGRSNKALHLKSDAEFFKKIFGLTKDLRVCLTRIPDHLTSGEGFDSFSSLVKSGTYKETEFMV
KEGERKQQNFDKKRKAKTNKMDHIKKRKTENAYNAIINGEANVTGSQOLLSSILPTSDVSQHNILT
SHSKTRQEKRTEMYYTHEKQEKGTLNSNAAYEQSHFFNKNYTEDIFPVTPPELEETIRDEKIRRL
KQVLREKEAALEEMRKKMHQK
>BARD1
LAGFESLTCSPVVSRGLLASRSPRSLSSEGGIMPNDNRQPRNRQPRIRSGNEPRSASAMEPDGRGA
WAHSRAALDRLEKLLRCRCTNILREPVCGLGCEHIFCSNCVSDCIGTCPVYTPAWIQLDKINR
QLDSMIQLCSKLRNLLHDNEPSDLKEDKPRKSLFNDAGNKKNSIKMWFSRSGKVKRYVVKASVQT
QPAIKKDASAQQDSYEFVSPSPPADVSEAKASARSGKKQKKKTLABINQKWNLEAEKEDGEFDS
KEESQKLVFSFCQPSVISSPQINGEIDLILLASGSLTESECFCGSLTEVSLPLAEQIESPDTKSNEV
UTPEVKCKNYLTSKKSLPLENNNGKRGHHNRLLSPISKRCRTSILSTSGDFVKQTVPSENIPLPECS
BPPSCKRKVGGTSGSKTVTCPMNSLVFHQVHLLH
>CA150
QQFIPGPLKILVWPCCFLSQAPTTQDQTPSSAVSVATPTSVSTPAPTAATPVQTVQPHPQTLPPA
VPHSVPQPTTAIPAFPPVMPPFRVLPGMPILPLPGVLPGMAPPIVPMIHQVIAIAASPATLAGAT
AVSEWTEYKTADGKTYYYNNRTLESTWEKPQELKEKEKLEEKIKEPIKEPSEEPLPMETEEEDPKE
EPIKEIKEPKEEEMTEEKAQAKPVATAPIPGTPWCWVWTGDERVFYNTTRLSMWDRPDDL
IGRADVDKIIQEPPHKKGMEELKKLRHPTPTMLSIQKWFQSMSAIKEEQELMSEINEDEPVKAKKR

Figure 6

>CGI-125

FDASARNFARVSGLLL CQAGGVLVSSFVMAAAVAMETDDAGNRLRFQLELEFVQCLANPNYLNFLA
 QRGYFKDKAFVNLYKLLYWKDPEYAKYLKPQCLHMLLELLOYEHFRKELVNAQCACKFIDEOQQILH
 WQHYSRKRMRLQQALAEQQQQNNTSGK

>CGI-74

VEKARAKKREAAEVYRNSMPASSFQQQKLRVCEVCSAYLGLHDNDRRLADHFGGKLHLGFIEIREK
 LEEILKRVVAEKQEKRNQERLKRREREREREKLRRSRSHSKNPKR

>CLH-17

MAQILPIRFQEHLQLQNLGINPANIGFSTLTMESDKFICIREKVGEQAQVVIIDMNDPSNPIRRPI
 SADS AIMNPASKVIALKAGKTLQIFNIEMSKMKHAHTMTDDVTFWKWISLNTVALVTDNAVYHWSM
 EGESQPVVKMFDRHSSLAGCQIINYRTDAKQKWLTTGISAQQNRVVGAMQLYSVDRKVSQPIEGHA
 ASFAQFKMEGNAEESTLFCFAVRGQAGGKLHIIIEVGTPTGNQFPKKAVDVFFPPEAQNDFPVAM
 QISEKHDVVFLITKYGYIHLYDLET

>CLK1

DAWVLEHLNTTDPNSTFRCVQMLEWFEHHGHICIVFELLGLSTYDFIKENGFLPFRLDHIRK MAYQ
 ICKSVNFLHSNKLTHDLKPENILFVQSDYTEAYNPKIKRDERTLINPDIKVVDFGSATYDDEHHS
 TLVSTRHYRAPEVILALGWSPQPCDVWSIGCILIEYYLGFVFTPHDSKEHLAGMERILGPLPKHMI
 QKTRKRKYFHDLWDHRSAGRYVSRRCKPLKEFMLSQDVHERLFDLIQKMLEYDPAKRITLR
 EALKHPFFDLLKKSI

>DRP-1

KDNFTLIPGVNGIEERMTVVWDKAVATGKMDENQFVAVTSTNAAKIFNLYPRKGRIAVGSDADVV
 IWDPDKLKTITAKSHKSAVEYNIFEGMECHGSPLVVISQGKIVFEDGNINVNKGMGRFIPRKAFPE
 HLYQRVKIRNKVFGLQGVSRGMYDGPVYEVPATPKYATPAPSAKSSPSKHOPPPIRNLHQSNFSLS
 GAQIDDNNPRRTGHRIVAPPGRSNITSLG

>EF1A

MHHEALSEALPGDNVGFNVKNVSVKDVRGNVAGDSKNDPPMEAAGFTAQVIIILNHPGQISAGYAP
 VLDCHTAHIACKFAELKEKIDRRSGKKLEDGPKFALKSGDAIAIVDMVPGKPMCVESFSDYPPLGRFA
 VRDMRQTAVGVVIKAVDKKAAGAGKVTSAQKAQKAK

>EF1G (bait)

AAGTLYTYPEWRAFKALIAAQSGAQVRVL SAPPHFHGQTNRTPFELRKFPACKVPAFEGDDGF
 CVFESNAIAYYVSNEELRGSTPEAAAQVWVSPFADSDIVPPASTWVFTLGIMHHNKQATENAKE
 EVRILGLLDAYLKTRTFLVGERVTLADI TVVCTLWLYKQVLEPSFRQAFPNTNRWF LTCINQPQ
 FRAVLGEVKLCEKMAQFDAKKFAETQPKKDTPRKEGSREEKQKQPAERKEEKAAAAPAPEEEMDE
 CEQALAAEPKAKDPFAHLPKSTFVLDDEFKRKYSNETTLSVALPYFWEHFDKDGWSLWYSEYRFPEE
 LTQTFMSCNLITGMFQRLDKLRKNAFASVILFGTNSSSISGVWVFRGQELAFPLSPDWQVDYESY
 TWRKLDPGSEETQTLVREYFSWEGAFQHVGKAFNQGKIFK

>EF1G (prey)

AAGTLYTYPEWRAFKALIAAQSGAQVRVL SAPPHFHGQTNRTPFELRKFPACKVPAFEGDDGF
 CVFESNAIAYYVSNEELRGSTPEAAAQVWVSPFADSDIVPPASTWVFTLGIMHHNKQATENAKE
 EVRILGLLDAYLKTRTFLVGERVTLADI TVVCTLWLYKQVLEPSFRQAFPNTNRWF LTCINQPQ
 FRAVLGEVKLCEKMAQFDAKKFAETQPKKDTPRKEGSREEKQKQPAERKEEKAAAAPAPEEEMDE
 CEQALAAEPKAKDPFAHLPKSTFVLDDEFKRKYSNETTLSVALPYFWEHFDKDGWSLWYSEYRFPEE
 LTQTFMSCNLITGMFQRLDKLRKNAFASVILFGTNSSSISGVWVFRGQELAFPLSPDWQVDYESY
 TWRKLDPGSEETQTLVREYFSWEGAFQHVGKAFNQGKIFK

>FEZ1

GNCSDTEIHEKEEEBFNEKSENDSGINEEPLLTAQVIEEIEEMMQNSPDPEEEEVLEEDGET
 SSQADSVLLOEMQALTQTFNNNWSYEGLRHMSGSELTELDDQVEGAIRDSEELVQQLARRDELF
 EKEVKNSFITVLIIEVQNQKQEORELMKKRRKEGLSLQSSRIEKGNQMLKRFMSMEGI.SNILQSGI
 RQTFGSSGTDKQYLNTVIPYEKKASPPSVEDLQMLTNILFAMKEDNEKVPTLLTDYILKVL.CPT

Figure 6 (continued)

>G45IP1
MASSGGELGSLFDHHVQRAVCDTRAKYREGRRPRAVKVYTINLESQYLLIQGVPAVGVMKELVERF
ALYGAIEQYNALDEYPAEDFTEVYLIKPMNLQSARTAKRMDEQSFVGGLLHVCYAPEFETVEETR
KKLQMRKAYVVKTENKOHYVTKKLVTEHKDTEFRQDFHSEMSGFCKAALNTSAGNSNPYLPYS
CELPLCYFSSKCMCSSGGPVDRAPDSSKGDRNHHKTMGHYNHNDSLRKTOINSLKNSVACPGAQKA
ITSSEAVDRFMPRTTQLQERKRRREDDRKLGTFLQTNPTGNEIMIGPLLPDISKVDMHDDSLNTTA
NLIRHKLKEVISSVPKPPEDKPEDVHTSHPLKQRRRI
>G45IP2
RTCMPYIFSLSLEALKCPRIRNNEKMLSDSHGVETIRDILPDTSLGGSFFKIIITAKAVLKLQAGN
AEEAALWRDLVRKVLASYLETAAEAVTLGGSDLDENCOEVLFATRENGFLQYLVAIPMEKGLDQ
GCFCAGCSRQIGFSFVRPKLCAPSGLYCDICHQDDASVI PARI IHNWDLTKRPICRQALKFLTQI
RAQPLINLQMVNASLYEHVERMHLIGRRREQLKLGDYLGLCRSGALKEALKRLNHRNYLLESPHR
FSVADLQQIADGVYEGFLKALIEFASQHVVYHCDLCTQRGFICQICQHHDIIIFPFEFDTTVRCAECK
TVFHQSCQAVVKKGCPRCARRKYQEQNIFA
>G45IP3
PNRGPLSPNDLRPSHVISLPLHNAPHTRPTNQHTNHIPMMARCNTRKHIPRPPHTTCPKRPSIRD
NPIYYLRSFFLRRIFLSLLPLQSPYPPIRRALAPNRHHPAKSPRSPTPKHIRITRIRSINHLSSP
>GADD45G
GAGAEPGLECGWSWGAKVCRWPGLSPRPPAGSRSLRWLLRRMQGAGKALHELLL SAQRQGCLT
AGVYESAKVLNVDPDNVTFCVLAAGEEDEGDI ALQIHFTL IQAFCCENDIDIVRVGDVQLAAIVG
AGEEAGAPGDLHCILI SNPNEAWKDPALEKLSLFCESRSVNDWVPSITLPE
>GIT1
PQADRSRQKCMSQSLDSELAKAKKLQALSNRLFEELAMDVYDEVDRRENDAVWLATQNHSTL
VTERSAVPFLPVNPEYSATRNQGRQKLARFNAREFATLI IDILSEAKRQQGKSLSSPTDNLELSL
RSQSDLDDQHDYDSVASDEDTDQEPLRSTGATRSNRARSMDSSLSDGAVTLOEYLELKALATSE
AKVQQLMKVNSSLSDELRLQREIHKLQAENLQLRQPPGPVTPPLPSERAETHPMAPGGSTHRD
RQAFSMYEPGSALKPFGPPGDELTTRLQPFHSTELEDDAIYSVHVPAGLYRIRKGVSASAVPFTP
SSPLLSCSQEGSRHTSKLSRHGSGADS DVENTQSGDPLLGLEGKRFLELGKEEDFHP ELES LDGDL
DPGLPSTEDVILKTEQVTKNIQELLRAAQEFKHDSFVPCSEKIHLAVTEMASLFPKRPALEPV RSS
LRLINASAYRLQSECRTVPPPEPGAPVDFQLLTQVIQCAYDIAKAAKQLVTIT TREKKQ
>hADA3
KDVDALLKKSEAQHEQPEDGCPFGALTQRLLQALVEENI ISPMEDSP IPDMSGKESGADGASTSPR
NQNKPFSVPHTKSLESRIKEELIAQGLLESED RPAEDSEDEVLAELRKROAEELKALSAHNRTKKHD
LLRLAKEEVSRQELRQVRVMADNEVMDA FRKIMAARQKKRPTKKEKDQAWKTLKERESILKLLDG
>HB01
DAERQEALGIVRRIGTDTEAATEPAGATVPAAAAARIGTVGPQPPAMPRKRNAGSSSDGTEDSD
FSTDLEHTDSSESDGT SRRSARVTRSSARL SQSSQDSSPVRNLQSF GTEEPAYSTRRVTRSQQOPT
PVTPKKYPLRQTRSSGSETEQVVD FSDRET KNTADHDES PRTPTGNAPSSES DIDISSPNVSHDE
SIAKDMSLKDSGSDLSHPKRRFHESYNFNMKCPTPGCNSLGHLTGKHERHFSISGCPLYHNLSA
DECKVRAQS RDQIEERMLSHRQDDNNRHATRHQAPTER QLRYKEKVAELRKKRNSGLSKEQKEKY
MEHQTYGNTREPLLENLTSEYDLDLFRAQARASEDLEKLR LQGQITEGSNMIKTI AFGRYELDT
WYHSPYPEEYARLGRILYMC EFCLKYMKSQTILRRHMAKCVWKHPPGDEIYRKGSISVFEVDGKKNK
IYCQNLCLLAKLFLDHKTLYYDVEPFLFYVMTEADNTGCHLIGYFSKEKNSFLNVNVSCILT MPQY
MRQGYGKMLIDFSYLLSKVEEKVGS PERLSDLGLISYRSWKEVLLRYLHN FQGKEISIKEISQE
TAVNPVDIVSTLQALQMLKYWKKGKHLVLKRQDLIDEWI AKEAKRSNSNKTMDPSCLKWTPPKGT

Figure 6 (continued)

>HD1.7

MATLEKLMKAFESLKSFQQQQQQQQQQQQQQQQQQQQQQQPPPPPPPPPQLPQPPPQAQPLLPQ
PQPPPPPPPPPGPAVAEEPLHRPKELSATKKDRVNHCCLTICENIVAQSVRNSPEFKQLLGIAME
LFLLCSDDAESDVRMVADECILNKVIKALMDSNLPRLQLELYKEIKKNGAPRSLLRAALWRFAELAHL
VRPQKCRPYLVNLLPCLTRTSKRPEESVQETLAAAVPKIMASFGMFANDNEIKVLLKAFIANLKSS
SPTIRRTAAGSAVSICQHSRRTQYFYSWLLNVLLGLLVPVEDEHSTLLILGVLLTRYLVPPLLQQQ
VKDTSLKGSGVTRKEMEVSPSAEQLVQVYELTLHHTQHQDHNVVTGALELLQQLFRTPPPPELLQT
LTAVGGIGQLTAKEESGGRSRSGSIVELIAGGGSSCPVLSRKQKGKVLLGEEEALEDDESRSRD
VSSSALTASVKDEISGELAASSGVSTPGSAGHDIITEQPRSQHTAGGLSGSGQL

>HDD1.0

MATLEKLMKAESLKSFQQQQQQQQQQQQQQQQQQQQQQQQQPPPPPPPPPPPPPOLPQPPPQAQPLLPQ
PQPPPPPPPPPGPAVAEPLHRPKELSATKKDRVNHCLTICENIVAQSVRNSPEFKQLLGIA
LFLLCSDDAESDVRMVADECLNKVIKALMDNSLPRLQLELYKEIKKNGAPRSLRAALWRFAELAHL
VRPQKCRPYLVNLLPCLTRTSKRPEEVQETLAAAVPKIMASFGNFANDNEIKVLLKAFIANLKSS
SPTIRRTAAGSAVSICQHSRTQYFYSWLLNVLLGLLVPVEDEHSTLLILGVLLTLSR

>HDd1.3

PRLQLELYKEIKKNGAPRSLRAALWRFAELAHLVRPQKCRPYLVNLLPCLTRTSKRPEESVQETLA
AAVPKIMASFGNFANDNEIKVLLKAFIANLKSSSPTIRRTAAGSAVSICQHSRTQFYFWLNLNVL
LGLLVPUVEDEHSTLLILGVLLTLRYLVPPLLQQVKDTSLKGSFGVTRKEMEVSPSAEQLVQVYELT
LHHTQHQDHNVVTGALELLQLFRTPPPPELLQTLTAVGGIGQLTAAKEESGGRSRSGSIVELIAGG
GSSCSPVLSRKQKGKVLLGEEEALEDDSESRSVDSSALTASVKDEISGELAASSGVSTPGSAGHD
IIITEQPRSQHTAGGLSGSGQL

>HDexQ20

MATLEKMMKA FESLKS FQQQQQQQQQQQQQQQQQQQ P PPPPPP QLPQPQQAQPLLQP
OPPPPPPPPPPGPAVAEEPLHRP

>HDex051

>HIP1

ADTLQGHRDRFMEQFTKLKDLFYRSSNLQYFKRLIQIPQLPENPPNFLRASALSEHISPVVVPAE
ASSPDSEPVLEKDDLMDMDASQQNLFDNKFDDIFGSSFSDPFNFSQNGVNKDEKDHLLIERLYRE
ISGLKAQLENMKTESQRVVLQLKGHVSELEADLAEQQHLRQQAADDCEFLRAELDELRRQREDTEK
AQRSLSEIERKAQANEQRYSKLEKYSELVONHADLLRKNAEVTKQVSMARQAQVDLEREKKELED
SLERISDQGQRKTQEOLLEVLESLKQELATSQRELQVILQGSLETSAQSEANWAAEFIALEKERDSLVS
SGAAHREEELSALRKELDTQKLASTEESMCOLAKDORKMLLVGSRKAAEVOIODASTRB

>HIP11

VDLVTACDIRYCAQDAFFQVKEVDVGLAADVGTQLQRLPKVIGNQSLVNELAFTARKMMADEALGSG
LVSRVFPDKEVMILDAALALAAEISSKSPVAVQSTKVNLLYSRDHSAESLNVASWNMSMLQTQDL
VKSVOATTENKEI.KTVTESKT.

>HTP13

PCCSED TIPSQVSDYDYFSVSGDQEADQQEFDKSSTIPRNSDIQS SYRRMFQAKRPASTAGLPTTL
GPAMVTPGVATIRRTPSTKPSVRRGTIGAGPIPIKTPVIPVKTPVDPDLPGVLPAPPDGPEERGEH
SPESPSPVGEGPQGVTSMPSSMWSGQASVNPPLPGPKPSPPEEHROQIPESEAEQEREPPSATVSP
GQIPESDPADLSPRDT PQGEDMLNAIRGVKLKKTTNDRSAPRFS

>HIP15

IHMAPPNLNMIEFTICQVCEETLAHSVDSLEQLTGIRMLRHTMTIDYHTLIANYMSGFLSLLT
TANARTKFHVLKMLLNLSENPAVAKKLFSAKALSIFVGFLFNIETNDNIQIVIKMFQNISNIKSG
KMSLIDDDFSLEPLISAFREFEELAKOLOAQIDNONDPEVGOOS

Figure 6 (continued)

>HIP16
DEEERNHRQMIKEAFAGDDVIRDFLKEKREAVEASKPKDVLTLPGWGEWGVGLKPSAKKRRFL
IKAPEGPPRKDKNLPNVIINEKRNIHAAAHQVRVLPPFTHWQFERTIQTPIGSTWNTQRAFQKL
TTPKVVTKPGHIINPIKAEDVGYRSSRSDLSVIQRNPKRITTRHKKQLKKCSVD

>HIP2
MANIAVQRIKREFKEVLKSEETSKNQIKVDLVDEDNFTELRGEIAGPPDTPYEGGRYQLEIKIPETY
PFNPPKVRFITKIWHPNISSVTGAIICLDILKDQWAAMTLRTVLLSLQALLAAEPDDPQDAVVAN
QYKQNPEMFQOTARLWAHVVAGAPVSSPEYTKKIELCAMGFDRNAVIVALSSKSWDVETATELL
SNX

>HIP5 (bait)
FLKSILKESKYEHGYLKALIINOSFKFGNQKAAIRDSIELTKEKGAEIPKTIKKLRWFDETSNI
ENNAENSHSLKNKTGTQQHSQQFHIQSGAGSNIISVSTCAVNSADTKKSREDSISENVTTLGGSG
ADHMPLNCIFPSGYNFAKHAWPASKKEESKIPVHDDSKTKQGPQRGRAKIIRKPGSAKVQSGFIC
TNRKGAVIOPOSASKVNIFTQAQGKLIIPCPPPQSTSNIIRSGKNIQVSQCQPVTPENPQNIITHNS
FNSKHVLPTEHSLNQWNQESSPLSNACSDLTVIPSLPSYCSECQTFAKINHSNGTQAVARQDA
TLYCTQRSPVCEESYPSVTLRTAEEEESVPLWKRGPNVLHQNKRTGSTVMRRKRIAETKRRNILEQ
KRQNPQGSVGQKYSEQINNFGQSVLLSSSEPQKTRGTSYIEEVSDSTSEFLMAENLVKAQPEDEI
LTVLNSKQIQKSNLPLNKTOQFNICTLSAEEQKILESLNDLNERLHYIQESICKNPSIKNTLQIIP
LLEKREDRTSSCRDKR

>HIP5 (prey)
FLKSILKESKYEHGYLKALIINOSFKFGNQKAAIRDSIELTKEKGAEIPKTIKKLRWFDETSNI
ENNAENSHSLKNKTGTQQHSQQFHIQSGAGSNIISVSTCAVNSADTKKSREDSISENVTTLGGSG
ADHMPLNCIFPSGYNFAKHAWPASKKEESKIPVHDDSKTKQGPQRGRAKIIRKPGSAKVQSGFIC
TNRKGAVIOPQSASKVNIFTQAQGKLIIPCPPPQSTSNIIRSGKNIQVSQCQPVTPENPQNIITHNS
FNSKHVLPTEHSLNQWNQESSPLSNACSDLTVIPSLPSYCSECQTFAKINHSNGTQAVARQDA
TLYCTQRSPVCEESYPSVTLRTAEEEESVPLWKRGPNVLHQNKRTGSTVMRRKRIAETKRRNILEQ
KRQNPQGSVGQKYSEQINNFGQSVLLSSSEPQKTRGTSYIEEVSDSTSEFLMAENLVKAQPEDEI
LTVLNSKQIQKSNLPLNKTOQFNICTLSAEEQKILESLNDLNERLHYIQESICKNPSIKNTLQIIP
LLEKREDRTSSCRDKR

>HMP
QEQUKIESLAKSLEDALRQTAUTLQAIAAQNAAVQAVNAHSNILKAAMDNSEIAGEKKSQWRTV
EGALKERRKAVDEAADALLKAKEELEMKSVIENAKKEVAGAKPHITAAEGKLHNIVDLDNVVK
KVQAAQSEAKVVSQYHELVVQARDDFKRELDSTPEVLPGWKGMSVSDLADKLSTDDLNSLIAAH
RRIDQLNRELAEQKATEBKQHITLALEKOKLEEKRAFDAVAKALEHIRSEIQAEQDRKIEEVRDAM
ENEMRTQLRQAAAHTDHLRDVLRVQEQLSEKFEONLSEKLFQRLSQEQVDNFITLDINT
AYARLRGIEQAVQSHAVAEEARKAHQLWLVEALKYSMKTSSAETPTIPLGSAVEAIKANCSDNE
FTQALTAIIPESLTRGVYSEETLRARFYAVQKLARRVAMIDETRNSLYQYFLSYLQSLLFPPQQ
LKPPPELCPEDINTFKLLSYASYCIEHGDLELAAKFVNQLKGESRRVAQDWLKEARMTLETQKIVE
ILTAYASAVGIGTTQVQPE

>HP28
PPADSLKYDTPVLSRNTEKRSRKARLLKVSPQQPGPSGSAPQPPKTKLPSTPCVPDPTKQAEI
LNAILPPREWVEDTQLWIQQVSTPSTRMDVVHLQEQLDLKLQQRQARETGICPVRRELYSQCFDE
LTREVTINCAERGLLLLVRDEIRMTIAAYQTLYESVAFGMRKALQAEQGKSDMERKIAELETEK
RDLERQVNEQKAKCEATEKRESERRQVEEKHNEBIQFLKRTNQQLKAQLEGIIAPKK

>HSPC232
RRRADGCIYGVSRRARVVAYRRDEMWSGRYERYERIPRERAPPRSHPSDESGYRWRDDHSASRQP
EYRDMRDGFRRKSFYSSHARERSPYKRDNTFFRESPVGRKDPSPHSRGSSVSSRSYSPERSKSYS
FHQSQHRNKERPVQSLKTSRDTSPSSGSAVSSSKVLDKPSRLTEKELAEEASKWAAEKLEKSDESN
LPEISEYEAGSTAPLFTDQPEEPESNTTHGIELFEDSQLTTRSKAIASKTKEIEQVYRQDCETFGM
VVKMLIEKDPSEKSIQFALRQLHEIGERCVEELKFIAEYDTSTQDFGEFF

Figure 6 (continued)

>HYPA
 GRRSSLSPTMRPGTGAERGGMMGHPGMHYAPMGHPMGQRANPPVPHGMPQMMPPMGGPPMG
 QMPGMMSSVMPGMMMSHMSQASMQPALPPGVNSMDVAAGTASGAKSMWTEHKSPDGRTYYNTETK
 QSTWEKPDDLKTPAEQLSKCPWKEYKSDSGPKYYNSQTKESRWAKPKELEDLEGYQNTIVAGSL
 ITKSNLHAMIKAEESSKQEECTTISTAPVTTEIPTTMSTMAAAEEAAAVVAAAAAAAANA
 NASTSASNTVSGTVPVPEPEVTSIVATVVDNENTVTISTEEQAQLTSTPAIQDQSVEVSSNTGEE
 TSKQETVADFTPKEEEEESQPAKTYTWNTKEEAKQAFKELLKEKRVPNASWEQAMKMIINDPRY
 SALAKLSEKKQAFNAYKVQAKKEKKKKKK
>HZPH
 HARFAEAECCLAESHQHLSKESLAGNKPANAVLHKVILNQLEELLSDMKADVTRLPATLSRIPPIAAR
 LQMSERSILSRSLASKGTEPHPTPAYPPGPYATPPGYGAFAFSAAPVGALAAAGANYSQMPAGSFITA
 ATNGPPVLVKKEKEMVGALVSDGLDRKEPRAGEVICIDD
>IKAP
 LKEGSPLEDLALLEALSEVVQNTENLKDEVYHILKVLFLFEFDEQGRELOKAFEDTLQLMERSLPE
 IWTLTYQQNSATPVLPVNSTANSIMASYQQQKTSVPVLDALFIPPKINRRTQWKLSLLD
>IMPD2
 DFLILPGYIDFTADQVDLTSALTKitLkTlVlSSPMdTvtEAGMAIAmALTGGIGFIHHNCTPEF
 QANEVRKVKKYEQGFITDPVVLSPKDRVRDVFEAKARHGFCGIPITDTGRMGSRLVGIISSRDIDF
 LKEEEHDCFLEEIMTKREDLvvApAGITLKEANEILQRSKKGKLPiVNEDELVAIIARTDLKKNR
 DYPLASKDAKKQLLCGAAIGTHEDDKYRLDLLAQAGVDVvVLDSSQGNSIFQINMIKYIKDKYPNL
 QVIGGNVVTAAQAKNLIAGVDALRVGMGGSICITQEVLAAGRQATAVYKVSEYARRFGVPVIA
 DGGIQNVGHIAKALALGASTVMMCSLLAATTEAPGEYFFSDGIRLKKYRGMGSLAMDKHLSQQNR
 YFSEADKIKVAQGVSGAVQDKGSIHKFVPYLIAGIQHSCQDIGAKSLTQVRAMMYSGELKFEKRTS
 SAQVEGGVHSLHSYEKRLF
>KPNA2
 AWALTNIASGTSEQTKAVVDGGAIPAFISLLASPHAHISEQAVWALGNIAGDGSVFRDLVICKYGA
 DPLLALLAVPDMSSLACGYLRNLTWTLSNLCRKNPAPPIDAVEQILPTLVRLHHDDPEVLA
 WAI SYLTDGPNERIGMVVKTGVPQLVKLLGASELPiVTPALRAIGNIVGTDEQTQVVIDAGALA
 VFPSSLTNPKTNIQKEATWTMSNITAGRQDQIQQVWNHGLVPFLVSVLSKADFKTQKEAVWAVTN
 TSCGTVEQIVYLVHCGIEPLMNLLTAKDTKIIILVILDAISNIFQAAEKLGETEKSIMIECGGL
 DKIEALQNHENESVYKASLSLIEKYFSVEEEEDQNVVPETTSEGYTFQVQDGAPGTFNF
>KPNB1
 LAAVGLVGDLCRALQSNIIIPFCDEVMQLLLENGNENVHRSPVKPQILSVPGDIALAIGGEFKYLE
 VVLNTLQQASQAQVDKSDYDMVDYLNELRESCLEAYTGIVQGLKGDQENVHPDVMLVQPRVEFILS
 FIDHIAGDEDHTDGVVACAAGLIGDLCTAFGKDVLKLVEARPMIHELLTEGRRSKTNKAKTLATWA
 TKELRKLKNQA
>KU70
 KTRTFNTSTGGLLLPSDTKRSQIYGSRQIILEKEETEELKRFDDPGLMLMGFKPLVLLKKHHYLRP
 SLFVYPEESLVIIGSSTLFSALLIKCLEKEVAALCRYTPRRNIPPYFVALVPQEEELDDQKIQVTPP
 GFQLVFLPFADDKRKMPTEKIMATPEQVGKMKAIVEKLRFTYRSDFSVPVLQOHFRNLEALALD
 LMEPEQAVELTLPKVEAMNKRLGSLVDEFKELVYPPDYNPEGKVTKRKHDNEGSGSKRPKVEYSEE
 ELKTHISKGTLGKFTVPMLEACRAYGLKSGLKKQELLEALTKHFD
>LUC7B1
 VDAVAVDAAAASAKAEKVHELNEKIGKLLAKAEQLGAEGNVDESQKILMEVEKVRACKKEAEEYR
 NSMPASSFQQQKLRVCCEVCSAYLGLHDNDRRLADHF GGKLHLGFIQIREKLDQLRKTVAEKQEKR
 QDRLRRREEREREERLSRRSGSRDRRRRSRSRSTSERRKLSRSRSRDRHRRRSRS
 RSHSRGHRRASRDRSAKYFSSRERASREEWSGRSERGPPDWRLESSNGKMASRRSEEKEAGEI

Figure 6 (continued)

>MAGEH1
ASFPRTAVSFEPLAGDMPRGRKSRRRNARAAEENRNNRKIQASEASETPMAASVVASTPEDDLSG
PEEDPSTPEEASTTPEEASSTAQAQKPSVPRSNFQGTKKSSLMSILALIFIMGNSAKEALVWKVLG
KLGMQPGRQHSIFGDPKKIVTEEFVRGYLIYKPVPRSSPVEFFWGPRAHVESSKLKVMHFVAR
VRNRCSKDWPCNYDWDSDDDAEVEAILNSGARGYSAP

>MAP11c3
QRSPFADRCKEVQQIRDQHPSKIPVIERYKGEKQLPVLDKTKFLVPDVHNMSELVKIIIRRLQLN
PTQAFFL VNQHSMVS VSTPIADIYEQEKD EDFGFLYMVYASQETFGF

>mHAP1
PKEQVQSGAGDGTGS GDP AAGTPTT QPAVG PAPEPSAEPKPAPA QGTGSGOKSGSRTKTGSFCRSM
IIGDS DAPWTRYVFQGPYGP RATGL GTKAEGIW KTPAAYIG RRP GVSG PERAAFIRELQEA LCPN
PPPTKKITTEDDVKVMLYLLEEKERDLNTAARIQGS LVKQNSVLMEE NNKLETMLGSAREEILHLRK
QVNLRDDLLQLYSDSDDDDDEEDEEDEEEGEEEREQQRDQDQHQHDHPYGA PKPHKAETAHRCPO
LETLOQKLRLLLEEENDHLREEASHLDNLEDEEQMLILEC VEQPSEASOQMAELSEV LVRLEG YER
QOEITQLQAEITKLQQRQCQSYGAQTEKLQQLASEKG IHS ESEL RAGSYM QDYGS RPRDRQEDGKS
HRQRSSMPAGSVTHYG SVPLD ALPS F PETLA EELRTSLRKFI TDPAYFMERRDTHCREGRKKEQR
AMPPP PAX

>mp53
VTE TPGPVA PAPAT PWPLSSF VPSQ KTYQ GNYGF HLGFL QSGTAKS VMCT YSPLN KLF CQL A KTC
PVQLWVSATPPAGSR VRAMAIYKKSQHMTEVVRCPH HERCS DGD GLAPP QHL IRVE GNLYPE YLE
DROQTFRHSVVV PYEPPEAGSE YTTIHYK YM CNSSCM GMN RR PILT I ITLED SSGN LLGRD SFE VR
VCACPGDR DR RTTEE ENFRK KEVLCPELPGSAKRAL PTCTSASPPQKKPLDGEYFTLK IRGRKR FE
MF RELNEALELK DAHATE ESGD RAHSS YLKT KGQ STSRH KTMV KK VGP DSD

>NAG4
RDRVNEAEKDLQCHAPVR LD LIPPEKPLTSSLAKQEEVEQTPLQEA LNQLMRQLQRKDPSAFFSFP
VTDFIAPGYS MIIKHPMD FSTMKEKIKNDYQSIEELKDNFKLMCTNAMIY NKPETIYYKA AKKLL
HSGMKILS QERI QSLK QOSIDF MADLQ KTRK QKD GTDT SQSG E DGGC W QRER E DSG DAE AHAF KSPS
KENKKDKDM LEDKF KSNN LERE QE QLDR IVK ESGG KLT RRL VNS QCE FERR KPD GTT LGLLHPV
DPIVGE PGY CPV RLGM TT GRL QSG VNTL QGF KED KR NKV TPV LYLN YGP SSY A PHY D STF AN ISK
DDS DLI YSTY GE DSD LP SD FS IHE FLAT CQD YPV MADS LLD VLTK GH SRT LQEM EM SLP ED EGH
TRTL DTAKEME I TEVE PP GR L DS ST QDR LIA L KAV TN FG VP VE VF DSEE AE I FOK KLD ETR LL RE
LQEAQNERI LSTR PPN MICL LG PSY REM H LA EQ VT NN L KELA QQ VTP GDIV STY GVR KAM GIS IPS
PVMENN FVD L TED TEEPK KTD VAE CG PG GS

>NEFL
LSP LSS LSG LPPP PRAGE PPA AT MSSFS YEP YS TS YK RRY VET PRV HISS VR SGY STARS SAY SSY
SAPVSS SLV RRSY SSS SGSL MPSLEN L DLSQ VAAI SNDLK SIRT QEK AQL QD LND RFAS FIER VH
ELEQ QNK VLEA ELL VLR QKH SEPSR FRAI LYQE I RD LRLA EADAT NEKO ALQ GERE GLEET LR NLQ
ARYEE EVL SREDAE GRL MBE ARKA GDA EA ALA ELE KRD SLM DEI SFL KK VHEE EIA LQ A QI QYA
QIS VEM DVTK PDLS AALKD I RAQ YEK LA KNM QNA EEW FK SRF TVL TES A KNT DVA AKD E VSE
SRR LLKAKT LEI EAC RGM N EA LEK QL QELED KQ NAD IS AM QD TINK L E N LRT KSE MARY LKEY Q
DL IN V KMA D LIE I A A YR K LLE GE ETR L SFT SVGS I TSG YS QSS QV FGR SAY GGL QTSS YLM STR SF
PS YYT SHV QEB QI E VEET IE A A KAE EAKD EPP S EGE A EEE E K D KEE A EEE A EEE A K B E S E E A
KEEE EGGE GEE GE ET KE A EEE E K VEG AG E E Q A K K D

>p53
MEPQSDPSVEPLSQETFSDLWKL LPENN VLSPLPSQAMDDMLSPDDIEQWFTEDPGPDEAPRM
PEA APPVAPAPAAPTAA PAPAPSWPLSSVPSQ KTYQ GSYG FRLGFLHSGTAKS VTC T YSPALNK
MFCQLAKTCPVQLWV D ST PPPGTRV RAMAIYKQS QHMTEVVRCPH HERCS DGD GLAPP QHL IRVE
GNL RVE YL D DR NTFR HS VVV PYEPPEVG SDCTT I HY NY MC NSSCM GMN RR PILT I ITLED SSGN L
LGRNSF E V RV CACP GDR RTTEE ENLR KK GE PHBL PPG STK RAL PNNTTSS SPQPK KPLDGEYFTL
QIRGRER FEM FRELNE ALELK DAQ AGK EPG GS RAHSS H LK S K K Q STSR H K L MF K TEG P DSD

Figure 6 (continued)

>PFN2
APRRPRCSAKGSKAGWQSVDNLCDGCCQAAIVGYCDAKYVWAATAGGVFQSITPIEIDMIVG
KDREGFFTNGLTLGAKKCSVIRDSLVDGDCTMDIRTKSQGGEPTYNAVGRAGRVLVFVMGKEGV
HGGGLNKAYSMAKYLRDGF
>PIASy (bait)
LVEAKNMVMSFRVSDLQMLLGFGVGRSKSGLKHELVTRALQLVQFDSCP ELFKKIKELYETRYAKKN
SEPAPQPHRPLDPLTMHSTYDRAGAVPRTPLAGPNIDYPVLYGKYLNGLGRLPAKTLKPEVRLVKL
PFFNMLDELLKPTELVPQNNEKLQESP C IFALT P R Q V E L I R N S R E L Q P G V K A V Q V V L R I C Y S D T S C
PQEDQYPPNIAVKVNHSYCSVPGYYPSNKGVEPKRPCRPI NLTHL MYLSSATNRITVTWGNYGKS
YSVALYLVRLQTSSELLQRLKTIGVKHPELCKALVKEKLRLDPDSEIATTGVRVSLICPLVKMRLS
VPCRAETCAHLQCFDAVFYLQMNEKKPTWMCPCDKPAPYDQLIIDGLLSKILSECEADEIEYLV
DGSWCPIRAEKERSCSPQGAILVLG PSDANGLLPAPS VNGSGALGSTGGGPVGSMENGKPGADVV
DLTLDSSSSSEDEEEEEEEDEDEEGPRPKRRCPFQKGLVPAC
>PIASy (prey)
LVEAKNMVMSFRVSDLQMLLGFGVGRSKSGLKHELVTRALQLVQFDSCP ELFKKIKELYETRYAKKN
SEPAPQPHRPLDPLTMHSTYDRAGAVPRTPLAGPNIDYPVLYGKYLNGLGRLPAKTLKPEVRLVKL
PFFNMLDELLKPTELVPQNNEKLQESP C IFALT P R Q V E L I R N S R E L Q P G V K A V Q V V L R I C Y S D T S C
PQEDQYPPNIAVKVNHSYCSVPGYYPSNKGVEPKRPCRPI NLTHL MYLSSATNRITVTWGNYGKS
YSVALYLVRLQTSSELLQRLKTIGVKHPELCKALVKEKLRLDPDSEIATTGVRVSLICPLVKMRLS
VPCRAETCAHLQCFDAVFYLQMNEKKPTWMCPCDKPAPYDQLIIDGLLSKILSECEADEIEYLV
DGSWCPIRAEKERSCSPQGAILVLG PSDANGLLPAPS VNGSGALGSTGGGPVGSMENGKPGADVV
DLTLDSSSSSEDEEEEEEEDEDEEGPRPKRRCPFQKGLVPAC .
>PLIP
GEIIEGCR LPV LRRNQDNEDEWPLAEI LS V K D I S G R K L F Y V H Y I D F N K R L D E W V T H E R L D L K K I Q F
PKKEAKTPTKNGLPGSRPGSPEREVKRKVEVVSPATPVPSETAPASVFPQNGAARRAVAAQPGKR
KSNCLGTDEDSQDSSDGIPSAPRMGTGSLVSDRSHDITVTRMKNIECIELGRHRLKPWYFSPYPQEL
TTLPVLYLCEFCLKYGRSLKCLQRHLTCKCDLRHPPGNEIYRKGTISFFEIDGRKNKSYSQNLCLLA
KCFLDHKTLYYDTDPFLFYVMTEYDCKGFHIVGYFSKEESTEDYNVACILTLPYQRRGYGKLLI
EFSYELSKVEGKTGTPEKPLSDLGLLSYRSYWSQTILEILMGLKSESGERPQITINESEITSIKK
EDVISTLQYLNLINYYKGQYILTLSEDIVDGH ERAMLKRLLRIDS KCLHFTP KDW SKRGK
>PTN
LSQRQDQVPRLPVQKS RQES PRAEENPKWREGKETSESSVQKAGR AAAA QAGAA ASRV PG LSGSN
LAPCNKGRLSAREDVNSNSKMQAQYQQQRKFAAFLAFIFILA AVDTAEAGKKEKPEKKVKKSDC
GEWQWSVCVPTSGDCGLGTREGTRTGAECQTMKTQRCKIPCNWKKQFGAECKYQFQAWGECDLNT
ALKTRTGSLKRALHN AECQKTVTISKPCGKLTKPKPQAESKKKKKEGKKQEKMLD
>PTPK
SNYINAALMDSYRQPAAFIVTOYPLPNTVKDFWRLVYDYGCTSIVMLNEVDLSQGCPQYWPEEGML
RYGPIQVEC M S C S M D C D V I N R I F R I C N L T R P Q E G Y L M V Q Q F Q Y L G W A S H R E V P G S K R S F L K L I L Q V
E K W Q E E C E E G E G R T I I H C L N G G R S G M F C A I G I V V E M V K R Q N V V D F H A V K T L R N S K P N M V E A P E Q
Y R F C Y D V A L E Y L E S S
>SETBD1
KASTSGLGIKDEGDIKOAKKEDTDDRNKMSVVT ESSRNYGYNPSPVKPEGLRRPPSKTSMHQS RRL
MASAQSNPDDVLTLSSTESEGESEGT SRKPTAGQTSATAVDSDDIQTISSGSEGDDFEDKKNMTGP
MKRQAVKSTRGFALKSTHGIAIKSTNMA SVDKGESAPVRKNT RQFYDGE ESCYI IDAKLEGNLGR
YLNHSCSPNLFVQNFVDT HDLRF PW AFFASKRIRAGTEL TD NYEVGSVEG KELLCCC GAI EC
RGRLL .

Figure 6 (continued)

>SH3GL3
 VAGLKKQFHKAQLFSEKISGAEGTKLDDEFIDLMERKIDVTNKVVAEILSKTEYLQPNPAYRAKL
 GMLNTVSKIRGQVKTTGYPQTEGGLGDCMLKYKGELGEDSTFGNALIEVGESMKLMAEVKDSLIDIN
 VKQTFIDPLQLLQDKDLKEIGHLKLEGRRLDYDYKKRUGKIPDEEVVRQAVEKFEESSKELAERS
 MFNFLENDVEQVSQALAVFIEAALDYHRQSTEILQELQSKLQMRISAASSVPRREYKPRPVKRSSSE
 LNGVETTSVVKTGNSNIPMDQPCRGLYDFEPENQGELGPKEGDIITLTNQIDENWYEGMIHGESG
 FFPINYVEVIVPLPQ
>SUMO-2
 RPRAQLRRESGGAESVTRPLRAASPAPPRAARAAMSEEKPKEGVKTENDHINLKVAGQDGSVVQF
 KIKRHTPLSKLMKAYCERQGLSMRQIRFRFDGQPINETDTPAQUEMEDEDTIDVFQQQTGGVPESS
 LAGHSF
>SUMO-3
 PSSTAAASFFCRSWCCLCARLVRTWYLFCCEAAAEEETPALAMADEKPKEGVKTENNDHINLKVAGQD
 GSVVQFKIKRHTPLSKLMKAYCERQGLSMRQIRFRFDGQPINETDTPAQUEMEDEDTIDVFQQQTG
 GVY
>TAL1
 SSPVKRQRMEASLDQLKQFTTVVADTGDFHAIDEYKPQDATTNPSLILAAAQMPAYQELVEEAIAY
 GRKLGGSQEDQIKNAIDKLFVLFGAEILKKIPGRVSTEVDARLSFDKDMVARARRLIELYKEAGI
 SKDRILIKLSSTWEGIQAGKELEEQHGIHCNMILLFSFAQAVACAEAGVTLI SPFVGRILDWHVAN
 TDKKSYEPELEDPGVKSVTKIYNYKKFSYKTIVMGASFRNTGEIKALAGCDFLTISPKLLGELLQD
 NAKLVPVLSAKAAQASDLEKIHLDKESFRWLHNEDQMAVEKLSDGIRKFAADAVKLERMLTERMFN
 AENGK
>TCPG
 QTDIEITREEDFTRILQMEEEYIQQLCEDI IQLKPDVVITEKGISDLAQHYLMRANITAIRRVRKT
 DNNRIARACGARIVSRRPEELREDDVGTGAGLLEIKKIGDEYFTFITDCKDPKACTILLRGASKEIL
 SEVERNLQDAMQVCRNVLLDPQLVPGGGASEMAVAHALTEKSKAMTGVEQWPYRAVAQALEVIPRT
 LIQNCASTIRLLSLRAKHTQENCETWGVNGETGTLVDMKELGIWEPLAVKLQTYKTAVETAVIL
 LRIDDIVSGHKKGDDQSRRQGGAPDAGQE
>VIM
 SPRQRSSRAPTTTHRALVRLFSCSQSAPPPPPRSPSSAAMSTRVSSSYRRMFGGPGTASRPS
 SSRSYVTTSTRTYSLGSALRPSTSRSILYASSPGVYATRSSAVRLRSSVPGVLLQDSVDFSLADA
 INTEFKNTRTNEKVELQELNDRFANYIDKVRFLEQQNKLILLEQQLKGQGKSRLGDLYEEEMREL
 RRQVDQLTNDKARVEVERDNLAEIDIMRLREKLQEEMLQREEAENTLQSFQDVDNASLARLDLERK
 VESLQEEIAFLKKLHEEEIQELOAQIQEQQHVQIDDVDVKPDLTAAALRDVRQQYESVAAKNLQBAEE
 WYKSKFADLSEAANRNNDALRQAKQESTEYRRQVQSLTCEVDALKGTNESLERQMREMEENFAVEA
 ANYQDTIGRLQDEI QNMKEEMARHLREYQDLLNVKMALDIEIATYRKLEGEESRISLPLPNFSSL
 NLRETNLDSLPLVDTHSKRTLLIKTVETRDGQVINETSQHDDLE
>VIMC
 QEEMLQREEEAENTLQSFQDVDNASLARLDLERKVESLQEEIAFLKKLHEEEIQELOAQIQEQQHVQ
 IDDVDVKPDLTAAALRDVRQQYESVAAKNLQEAEEWYKSKFADLSEAANRNNDALRQAKQESTEYRR
 QVQSLTCEVDALKGTNESLERQMREMEENFAVEAANYQDTIGRLQDEI QNMKEEMARHLREYQDLI
 NVKMALDIEIATYRKLEGEESRISLPLPNFSSLNLRETNLDSLPLVDTHSKRTLLIKTVETRDGQ
 VINETSQHDDLE

Figure 6 (continued)

>ZHX1
EQTINDLTFDGSFVKEENAEQAESTEVSSSGISISKTPIMKMMKNKVENKRIAVHHNSVEDVPEEK
ENEIKPDREEIVENPSSSASESNTSTSIVNRIPHSTASTVVTPAAVLPGLAQVITAVSAQQNSNLI
PKVLIPVNSIPTYNAALDNPLLNTYNKF PYPTMSEITVLSAQAKYTEEQIKIWFSAQRLKHGV
WTPEEEVEARRKQFNGTVHTVPQTITVIPTHISTGSNGLPSILQTCQIVGQPGLVLTQVAGTNL
VTAPIALTAVGVPSQNNIQKSQVPAAQPTAETKPATAAVPTSQSVDKETALVNPDSFGIRAKKT
QLAELKVSYLNQFPHDSEIIIRLMKITGLTKGEIKKWFSDTRYNQRNSKSNQCLHLNNDSSTTII
DSSDETTESPVGTAAQPKQSWNPFPDFTPQKFKEKTAEQLRVLQASFLNSVLTDEELNRLRAQTK
LTRREIDAWFTTEKKKSALKEEKMEIDESNAGSSKEEAGETSPADESCAPKGSTGKICKKTPEQL
HMLKSAFVRTQWPSPPEEYDKLAKESGLARTDIVSWFGDTRYAWKNGNLKWYYYYQSANSSSMNGLS
SLRKGRGRGPKGGRGRPRGRPRGSKRINNWDRGPSLIKFKTGTAIKDYYLKHKFLNEQDLDELV
NKSHMGYEQVREWFAERQRSELGIELFEENEEDEVIDDQEEDEEETDDSDTWEPPRHVKRKLSK
SDD
>ZNF33B
CYECGKTFCLKSDLTIHQRTHTGEKPFACPECGKFFSHKSTLSQHYRTHTGEKPYECHECGKIFYN
KSYLTKHNRTHTGEKPYECNECGKTFQKSQLTQHQRIHIGEKPYECNECGKAFCHKSALIVHQRT
HTQEKPYKCNECGKSFCKVSGLILHERKHTGEKPYECNECGKSFHKSSLTVHYRAHTGEKSCQCN
ECGKIFYRKSDLAKHQRSHTGEKPYECNTCRKTFSQKSNLIVHQRTIGEKPYE

Figure 6 (continued)

>ALEX2

GCCGAATCAGTAGTTGGGCTGCAATGGCTCTGCAATAGCACCACTCCCGGGGTGACAGAGGCC
 CTTGGGCTGCAGAAGCCCCCTGCAATGGCAGGGCTCCCAAAGTGGCAGAAGCTCCAGAGAACGG
 GAGACTTCCAGGGCAGCGGTGCCTCTGGACAGTGGTGCTACCGAAGCGGCAGCACCACTGAG
 GTGACCGAGGGTCTGGGTAGCAGCACCTACCAAGGTAGCTGAAGCTCCGGGTGGCATGCC
 ACCGAGGCAGCTGAGGCTCTGTGCCGCAACGCCACTGGGCTGCAGCACCTACTGGGCTGCA
 GAGTCTCCTGAACTTCTGGTCCCCTAGAACACAGCGGTGTTCTGGAACATCAGCTGCCAAGAAA
 GCAACCCCTGGGCTCACACTGGGCTATAACGAAAGCCACATCAGCAGCTGGAGCGGTACCCAAA
 GGTGGAGGCAAGGGTGTAAACCAAGGTCCCGAATGGGCAAGGGCAAGGGCAAGAAAAGCAAAGTT
 GAAGTAGACGAACCTGGGATGGCTTCCGTCTGGAGATGGGCTGCAGCACCTGCTGCAGCCTCT
 GCTAATGGCGACAGGCTTCTGGCAGAGGTCCCTGATTCTGAGGAAGGGAGTCCGGGTGGACT
 GACACAGAGTCAGATTCAAGACTCTGAGCCCCAGCCAGGGAGGGGAAGAAGACCCGTT
 GCCATGCAAGGCCCTTCTTATGAAATTGATGAGATTCTGGGTGTCCCGATCTCAGGAAG
 GTCTTGCCTGCTTCAGAAATCTGATGATCCTTCATCCAACAGGTAGCTTCTCACTCTGAGC
 AACAAATGCCAATTATTCAATGCAATCAAGAGACAATCCGCAAATTGGGAGGCCCTCCAATTATTGCA
 AACATGATCAACAAAATGATCCACACATTAAGGAAAAGCCTTAATGGCCATGAATAACCTGAGT
 GAGAATTATGAAAATCAGGGCCGGCTCAGGTGTACATGAATAAAAGTGTGATGGATGATCATGGCC
 TCTAACCTGAACCTCAGCAGTCAAGTAGTTGGACTAAAAATTCTAACAAACATGACTATTACTAAAT
 GACTACCAACACCTGCTGCAATTCCATTGCAAACCTTTCCGTTGCTATCTCAGGGAGGTGGA
 AAAATCAAGGTGAGATTGAAAATCTTCTGAAATTGCTGAAAATCCAGATATGTTGAAGAAA
 CTTCTCAGTACCCAAAGTGCCAGCATCTTGTACCTCTATAATTCTTACGTGGAATCAGAAATC
 CTTATTAAATGCCCTTACTCTATTGAGATTATCTATGACAATCTCAGAGCAGAAAGTGTAACTAT
 AGAGAAATTCAATAAAAGGTTCCCTTTTACTTATGCACATCTGGAGTGTGTTAGAAAATT
 AGAGCCTAGCAAATCACCAGACCTCTTAGTGAAGTATAAAACTAGTGAACAAATTCA

>APP1

GAGGAAGAGGAGGAATCCTTCCCACAGCCAGTAGATGATTACTTCGTGGAGCTCCGCAGGCTGAA
 GAGGAAGAGGAAACGGTCCCACCCCCAACGCTCCATACACTTGCAGTGGTCGGCAAAGTCACTCCC
 ACCCGAGGCCACAGACGGTGTGGATATTACTTGGCATGCCTGGGAAATCAGTGAGCACGAG
 GGGTCCCTGAGGGCCAAGATGGACCTGGAGGAGCGTAGGATGCGCAGATTAATGAGGTGATGCGT
 GAATGGGCCATGGCAGACAACCAAGTCCAAGAACCTGCCCTAAAGCCGACAGACAGGCCCTGAATGAG
 CACTTCCAGTCCATTCTGCAGACTCTGGAGGAGCAGGTGCTGGTGAGCGACAGCGCCTGGTGGAA
 ACCCACGCCACCCCGGTATCGCCCTTATCAACGACCAGCGCCGGCTGCCCTGGAGGGCTTCTG
 GCAGCCCTGCAGGAGATCCGCTCAGGCGGAGCGTCTGGCCCTGCGCGCTACCTGCGT
 GCGGAGCAGAAGGAACAGAGGCACACGCTGCCACTACCAAGCATGTGGCCGCCGTGGATCCCGAG
 AAGGCACAGCAGATGCGCTTCAGGTGCATACCCACCTCAAGTGATTGAGGAGAGGGTGAATCAG
 AGCCTGGGCTGCTGACCAGAACCCCCACCTGGCTCAGGAGCTGGGCCCCAAATCCAGGAACCTC
 CTCCACTCTGAACACCTGGTCCCAGTGAATTGAAAGGCCCTGCCCTGGGGCAGCAGCGAGGAC
 AACGGTGGGCTGCAGCCTCCAGATTCCAAGGATGACACCCCCATGACCCCTCCAAAAGGGTCCACA
 GAACAAAGATGCTGCATCCCCTGAGAAAGAGATGAACCCGCTGAAACAGTATGAGCGAAAGGTG
 AATGCGTCTGTTCCAGGGTTTCCCTTCACTCATCGGAGATTAGAGGGATGAGCTGGCACCAAG
 CTGGGACAGGGTGTCCGTGAGGCTGTGCGGGTCTGC

Figure 6 (continued)

>BAIP1

CGGCCGGACGAAGATGGCGACGCCATGTACTTGGAGCACTATCTGGACAGTATCGAGAACCTT
 CCCTGCAGACTTCAGAGGAACCTCCAGCTGATGCGAGAGCTGGACCAGAGGACGAAAGATAAGAAA
 GCAGAGATTGACATCCTGGCTGCAGAGTACATCTCACGGTAAGACGCTGTCTCCAGACCAGCGC
 GTGGAGCGCCTGCAGAAGATCCAGAACCCCTACAGCAAGTGAAGGAATACAGTGACGACAAAGTG
 CAGCTGGCATGCGACACCTACGAGATGGTGGATAAACACATCGAAGGCTTGATGCAGACCTGGCG
 CGCTTGAAGCAGATCTGAAGGACAAGATGGAGGGCAGCGATTTGAAAGCTCCGGAGGGCGAGGG
 TTAAGGAGGGCTCAGAAAGAAAAAGAGGGTCCCAGGGCGAGGCAGGAGGACATCAGAG
 GAAGACACACCAAAGAAAAAGAACGACAAAGGAGGGTCTGAGTTACTGACACCATCCTGTCCGTG
 CACCCCTCTGATGTGCTGGACATGCCGTGGACCCAAACGAACCCACGTACTGCCTGTGCCACCAAG
 GTCTCCTATGGGAGATGATTGGCTGTGACAATCAGACTGTCCAATTGAGTGGTTCACTTGCC
 TCGTGGACCTTACACGAAACCCAAAGGAAAATGG

>BAIP2

AGCCAGCAGGCCAGCGTGACCATGCACGATGTGGACGCCAGTCCTCGAGGTGTTGGTCGACTAC
 TGCTACACGGGTCGTTCTCAGTGAGGCCAATGTGAGCGCCTGTACGCGCCCTCCGACATG
 CTACAGCTGAAATATGTGCGGAAGCCTGTGCTCCTCTTAGCCCCGACGCTTGACCTGACCAAC
 TGCAACGCCATCCTCAAGTTGCAAGACGCCCTCGACCATCACAAGCTTGATCTCAGGCCAGTCC
 TACATAGCTCACAACCTCAAGCAGCTCAGCCGAATGGGTTCAATTCTGGGAGGAGACTCTAGCAGAT
 CTAACCCCTGGCCAGCTGCTGGCTCCTACGCCCTGGATAGTCTGGACATAGAGAGTGAGCGGACT
 GTATGCCATGTAGCTGTGCACTGGCTGGAGGCTGTCGCAAAGAGCGGGGCTCCAGTGTGCAGAA
 GTCTTCAAGTGCCTGCGCTGGATGCACTTCACTGAAGAAGATCAGGACTACTTAGAAGGGCTGCTG
 ACCAAGCCCCTCGTGAAGAAGTACTGCCCTGGACGTTATTGAAGGGGCCCTGCAGATGCCATGGT
 GACCTGTTGACAAAGTCTGCTGGCTCAGTGCACACAGCAGCAGCAGTAGCAGCAGCAACTCT
 CTTGTATCTGCAGCAGAAAATCCACCCAGAGACTGGGTATGTGCAAGGGAGATGGTATCTC
 TTTGGACATCCTAGAGATCCCTTCTGCTATGACCTTACTCGGGGACATTACACAAATGCCA
 TCCCTTGGACAGCTTGCTCACACTAAGACTGTCACCTCTCAGCTGCTGTGTGCCCCAGAC
 CATGACATCTATCTAGCTGCTCAGGCCAGGAAAGACCTCTGGGTGATAAACCAAGCTCAGAAATGT
 TGGCAGCAACTTGCAAGATGCCCTGCTGTCGAGGGCATGGATGTCATATCTCAATGGCTAC
 ATCTACATTGGGGGACGAGACCTTAACTACTGAGTTAAGTGAAGGAAGTGGAAATGCTACAGT
 GTTCAGAGAAACCAAGTGGCATTGGCTCCTGCTCCTATTCCCTCTATTCCCTTGAACTCATA
 GTGGTTCAAGAAACTATCTTATGCTGTCACACTAAGCGCAGTGTGCTTGTGCTATGATCCTAGCCACAAT
 ATGTGGCTGAAGTGTGCTCTTAAACGTACTGACTTTCAGGAAGCAGTGTGCTTCAATGATGAA
 ATCTATTGTATCTGTGACATCCAGTCAGAAGGCTTACACCCAGCTAGGGAGAATGGAGGCGG
 ATTAGTAATATTCCATTGGATTCAAGAGACCCACAACCTACCAAGATTGTCATGACCAAAAGTTG
 CTTCTCATCACTTCAAAACCCACAATGGAAAAAGAACCGAGTGACAGTGTATGAGTATGATACT
 AGGGAAAGATCAGTGGATTAAATATAGGTACCATGTTAGGCCTTTGCAGTTGACTCTGGCTTATT
 TGCCTTGTGCTCGTGTGTTATCCTTCCCTGCGCTTGAACCTGGTCAGAGTTTATTACTGAGGAAGAT
 GATGCACGGAGTGAAGTCTAGTACTGAATGGGAAGTGAAGTGGACTCTGAGTCA
 GGAAGTTCAAGTTCTTTCAAGATGATGAAGTCTGGGTGCAAGTAGCACCTCAGCGAAATGCACAG
 GATCAGCAGGGTTCTTG

Figure 6 (continued)

>BAIP3
 GGACACAATGCCCCAGAAAAGTAACAGCCGTCAATTATGCTAGAAAAGGAAGTGTCTCCAGAGC
 ATAGAGAAAATAAGTTCTCTGTGATGCAACAACTGTTACTTCACAACAGTGTGTTTCAGAGAC
 CAAGAACCAAAGATCCATAATGAGATGGCATCACACATCAGATAAAGGTGCCAAGGAAGAAATGAC
 AAGAAAGATTCTCAAGGAAGAAGTAATAAGGCATTACATCTGAAGAGTGATGCTGAATTAAAAAG
 ATATTGCCCCCTACTAAGGATTGAGAGTGTCCTTACTCGAATTCTGACCATTGACCTCTGGA
 GAAGGTTTCGATTCTTAGCAGTTGGTAAAGAGTGGTACTTACAAGAGACAGAGTTATGGTG
 AAGGAAGGAGAGAGAAAACAGCAGAATTGATAAGAAAAGCAAAACTAATAAGAAGATG
 GATCACATAAAGAAGAGAAAACAGAGAATGCTTATAACGCAATCATAATGGGAAGCTAATGTC
 ACCGGTCTCCAACTCTAAGCAGTATTTCACCAACTTCAGATGTGTCACAACATAACATTCTCACG
 AGTCACAGCAAAACCAAGACAAGAAAAGAGAACTGAGATGGAATACTATACCCATGAGAAGCAAGAG
 AAAGGCACTTGAATTCAAATGCACTTATGAACAAAGTCATTCTCAATAAAAATTATACCGAA
 GATATTCTCCAGTGACACCACCGGAGTTAGAAGAAACCATTGAGATGAAAAAATAAGAAGACTT
 AAGCAGGTGCTGAGAGAGAAGCAGCTTGAAGAAATGCGTAAGAAGATGCCACCAAAA
 >BARD1
 TTGGCCGGTTTCGAGTCGCTGACCTGCAGCTTCCCTGTGGTTCCCGAGGCCCTCTGCTTCCCGC
 TCTCCGGAGGAGCCTTCATCCGAAGGCGGGACGATGCCGATAATCGCAGCCGAGGAACCAGGCA
 CCGAGGATCCGCTCCGGAACGAGCCTCGTTCCCGCTGCCATGGAACCGGATGGTCGCGGTGCC
 TGGGCCCCACAGTCGCGCCGCGCTGACCGCCTGGAGAAGCTGCTGCGCTGCGTTGACTAAC
 ATTCTGAGAGAGCCTGTGTGTTAGGAGGATGTGAGCACATCTCTGTAGTAATTGTGTAAGTGAC
 TGCATTGGAACTGGATGTCCAGTGTGTTACACCCGGCTGGATACAAGACTGAAAGATAAAAGA
 CAACTGGACAGCATGATTCAACTTGTAGTAAGCTTCGAAATTGCTACATGACAATGAGCCGTCA
 GATTGAAAGAAGATAAAACCTAGGAAAAGTTGTTAATGATGCAAGGAAACAAGAAGAAATTCAATT
 AAAATGCGTTAGCCCTCGAAGTAAGAAAGTCAGATATGTTGAGTAAAGCTTCAGTGCAAAC
 CAGCCTGCAATAAAAAGATGCAAGTGCTCAGCAAGACTCATATGAAATTGTTCCCAAGTCCT
 CCTGCAGATGTTCTGAGAGGGCTAAAAGGCTCTGCAAGATCTGAAAAAGCAAAAAAGAAA
 ACTTTAGCTGAAATCAACAAAAATGAAATTAGAGGCAAGGAGATGGTAATTGACTCC
 AAAGAGGAATCTAAGCAAAAGCTGGATCCTCTGTAGCCAACCATCTGTTATCTCAGTCCTCAG
 ATAAATGGTAAATAGACTTACAGCAAGTGGCTCTTGACAGAACTGAAATGTTGGAGTTA
 ACTGAAGTCTCTTACCATGGCTGAGCAAATAGAGTCTCAGACACTAAGAGCAGGAATGAAGTA
 GTGACTCCTGAGAAGGTCTGCAAAAATATCTTACATCTAAGAAATCTTGCCATTAGAAAATAAT
 GGAAAACGTGGCCATCACAATAGACTTCCAGTCCCATTCTAAGAGATGTAGAACCGAGATTCTG
 AGCACCAGTGGAGATTGTTAGCAACGGTGCCCTCAGAAAATATACCATGCTGAATGTTCT
 TCACCACTTCATGCAAACGTAAGTTGGTGGTACATCAGGGAGCAAAACAGTAACATGTCGATG
 AATTCAATTAGTCTTCACCAAGGTACACCACCTTACAT
 >CA150
 CAACAATTCTGGGCCCTGAAAGATACTTGTGTTGGCCCTGCTGTCTATTAGCCAAGCACCC
 ACAACACAAGATCAGACCCCAAGTTCTGCTGTTCACTTCACTGCTACAGTTAGTGTTCACCT
 CCTGCTCCTACAGCCACACCTGTGCAACCGTCTCCAGCCGACCCCTCAGACGTTACCTCCTGCT
 GTTCCTCATTCTGATACCTCAGCCAACACAGCAATACCTGCTTTCCACCGAGTAATGGTACCTCCG
 TTCGTGTTCCCTTGGCATGCCAATTCACTTCCAGGTGTATTGCCAGGAATGGCCCTCCT
 ATCGTACCCATGATAACATCCCAGGTTGCTATTGCACTGCTACCTTAGCTGGAGCAACA
 GCAGTTCTGAATGGACTGAATATAAACAGCAGATGGGAAGACATATTATAATAATAGAACA
 TTAGAATCAACCTGGAAAAACCCCAAGAACTAAAGGAAAAGAAAAGTTAGAAGAGAAGATTAA
 GAGCCAATTAAAGAACCCCTCTGAAGAGCCTCTGCCAATGGAGAGCAGGAGGAGGAGTCTAAAGAA
 GAGCCTATAAAGGAGATAAAGGAGGAGGCCAAGAAGAGGAGATGACTGAAGAAGAAAAGGCTGCC
 CAGAAGGCAAAGCCAGTTGCTACTGCTCCTATTCTGGTACTCCATGGTGTGCGTTGGACTGGT
 GATGAGCGGGTCTTCTTTATAATCCACACTGCTCTTCTATGTGGGACCGACCTGATGATCTG
 ATTGGCAGGGCAGATGTTGACAAAATTATTAGGAGCCCTCATAAAAAGGAATGGAGGAATTG
 AAGAAACTAAGGCACCCAACTCCGACAAATGCTGTCGATCCAAAAGTGGCAATTCTATGAGTGCA
 ATTAAAGAGGAACAAGAATTAAATGGAAGAAATTAAATGAAGATGAGCCTGTTAAAGCAAAAAACGG
 AAG

Figure 6 (continued)

>CGI-125
TTCGACCGCTCCCGCGGAACCTCGCCCGCGTCTGGGCTTTGCTCTGTCAAGGCTGGTGGCGTT
TTGGTGTCTCGTTATGCCGCTGCTCGCTATGGAGACAGATGATGCTGGAAATCGACTT
CGGTTCACTGGAGTTGAATTGTGCAATGTTAGCCAACCCAAATTACCTTAATTCTTCTGCC
CAAAGAGGTTACTTCAAACAGACAAAGCTTTGTTAATTATCTAAATACCTGCTTACTGGAAAGAC
CCAGAATATGCCAAGTATCTAAAGTACCCCTCAGTGTACACATGTTAGAGCTGCTCCAATATGAA
CACTCCGAAAGGAGCTGGTGAATGCTCAGTGTGCGAAATTATTGATGAACAGCAGATTACAT
TGGCAGCACTATTCCCGGAAGCGGATGCCCTCAGCAAGCCTGGCAGAGCAGCAACAGCAAAAT
AACACATCGGGAAAA
>CGI-74
GTAGAGAAAGCACGGCAAAGAAAAGAGAAGCAGAGGAAGTTATCGGAATTCTATGCCAGCTTCC
AGTTTCAGCAGCAAACCTCGAGTCTGTGAAGTCTGCTCGCTATTAGGACTTCATGATAAT
GACAGACGACTGGCTGATCATTGGGGTAAACTGCACCTGGGATTATTGAAATAAGAGAGAAG
CTTGAAGAATTAAAGAGAGTCGTAGCTGAGAAGCAGGAGAAAAGAAACCAGGAACGGCTGAAACGA
AGAGAAGAGAGAGAGAGAGAAGAAAGGGAGAAGCTGAGGAGGTCCCAGTACACAGCAAGAATCCA
AAAAGG
>CLH-17
ATGGCCCAGATTCTGCCAATTGTTTCAGGAGCATCTCCAGCTCCAGAACCTGGGTATCAACCCA
GCAAACATTGGCTTCAGTACCCGACTATGGAGTCTGACAATTCTGATTAGAGAAAAAGTA
GGAGAGCAGGCCAGGTGTAATCATTGATATGAATGACCCAAGTAATCCAATTGAAAGACCAATT
TCAGCAGACAGGCCATCATGAATCCAGCTAGCAAAGTAATTGCACTGAAAGCTGGAAAACCTT
CAGATTTAACATTGAAATGAAAATGAAGGCTCATACCATGACTGATGATGTACCTT
TGAAATGGATCTTGAATACGGTTGCTTGTACGGATAATGCAGTTATCACTGGAGTATG
GAAGGAGAGTCTCAGCCAGTGAAGGAAATGTTGATGCCATTCTAGCCTTGAGGGTGCAGATTATC
AATTACCGTACAGATGCAAAACAAAAGTGGTTACTTCTGACTGGTATATCTGCACAGCAAAATCGT
GTGGTGGAGCTATGCAGCTATATTCTGTAGATAGGAAAGTGTCTGAGCCCATTGAAAGGACATGCA
GCTAGCTTGCACAGTTAAGATGGAAGGAAATGCAAGAAATCAACGTTATTITGTTTGCAGTT
CGGGGCCAAGCTGGAGGGAAAGTTACATATTATTGAAAGTTGGCACACCCACCTACAGGGAACAGCCC
TTTCCAAGAAGGCAGTGGATGCTCTTCTCCAGAAGCACAAAATGATTTCTGTTGCAATG
CAGATCAGTGAAGGACATGATGTTGTTGATAACCAAGTATGGTTATATCCACCTCTATGAT
CTTGAGACT
>CLK1
GACCGCGTGGGTCTGAAACATCTGAATAACACAGACCCAAACAGTACTTCCGCTGTGCCAGATG
TTGGAATGGTTGAGCATCATGGTCACATTGCAATTGTTGAACATTGGGACTTAGTACTTAC
GACTTCATTAAAGAAAATGGTTCTACCATTTGCACTGGATCATATCAGAAAGATGGCATATCAG
ATATGCAAGTCTGTGAATTGGTTCACAGTAATAAGTTGACTCACACAGACTTAAAGCCTGAAAAC
ATCTTATTGTCAGTCTGACTACACAGAGGCGTATAATCCAAAATAAAACGTGATGAAACGCACC
TTAATAATCCAGATAATTAAAGTTGAGACTTGGTAGTGCACATATGATGACAAACATCACAGT
ACATTGGTATCTACAAGACATTATAGAGCACCTGAAGTTATTAGCCTAGGGTGGTCCCAACCA
TGTGATGTCGGAGCATAGGATGCATTCTTATTGAAATACTATCTGGGTTACCGTATTCCAACA
CACGATAGTAAGGAGCATTTAGCAATGATGGAAAGGATTCTGGACCTCTACAAAACATATGATA
CAGAAAACAGGAAACGTAAAATTTTACCCACGATCGATTAGACTGGGATGAACACAGTCTGCC
GGCAGATATGTTCAAGACGCTGTAACCTCTGAAAGGAATTATGCTTTCTCAAGATGTTGAAACAT
GAGCGTCTCTTGCACCTCATCAGAAAATGTTGGAGTATGATCCAGCCAAAAGAATTACTCTCAGA
GAAGCCTTAAAGCATCCTTCTGACCTTCTGAAGAAAAGTATA

Figure 6 (continued)

>DRP-1
AAGGACAACCTTACCCGTACCGGAGGGTAGAGGAGCGGATGACCGTCGTCGG
GACAAGGGCGTGGCTACTGGCAAAATGGATGAGAACCGAGTTGTCGCTGTCACCAGCACCAATGCA
GCCAAGATCTTAACCTGTACCCAAGGAAGGGCGGATTGCCGTGGCTCGGATGCCGACGTGGTC
ATCTGGGACCCGACAAGTGAAGACCATAACAGCAAAGTCACAAGTCGGCGGTGGAGTACAAC
ATCTCGAGGTATGGAGTGCCACGGCTCCCCACTAGTGGTCATCAGCCAGGGCAAGATCGTC
GAAGACGAAACATCAACGTCAACAAGGGCATGGGCCCTCATTCCGCGAAGGCCTTCCCAGG
CACCTGTACCGCGTCAAAATCAGGAATAAGGTTTGAGTGCAGGGTTCCAGGGCATG
TATGACGGTCTGTGTACGAGGTACAGCTACACCCAAATATGCAACTCCCCTCAGCCAAA
TCTTCGCTCTAAACACCAGCCCCACCCATCAGAAACCTCCACCAAGTCAACTTCAGCTTATCA
GGTGCAGAGATGACAACAATCCCAGGCGACCGGCATCGTGGCGCCCCCTGGTGG
CGCTCCAACATCACCAGCCTCGGT
>EF1A
ATGCACCATGAAGCTTGAGTGAAGCTCTGGGACAATGTGGCTTCATGTCAAGAATGTG
TCTGTCAAGGATGTCGTGCGAACGTTGCTGGTACAGCAGAAAATGACCCACCAATGGAAGCA
GCTGGCTTCACTGCTCAGGTGATTATCCTGAACCATCCAGGCCAAATAAGGCCGGCTATGCCCT
GTATTGGATTGCCACACGGCTCACATTGCATGCAAGTTGCTGAGCTGAAGGAAAAGATTGATCGC
CGTTCTGGTAAAAGCTGGAAGATGGCCCTAAATTCTGAAGTCTGCTGATGCTGCCATTGTTGAT
AIGGTTCTGGCAAGGCCATGTGTGAGAGCTCTCAGACTATCACCTTGGGTCGTTGCT
GTTCGTGTATGAGACAGACAGTTGGGTGTCATCAAAGCAGTGGACAAGAAGGCTGCTGGA
GCTGGCAAGGTACCAAGTCTGCCAGAAAGCTCAGAAGGCTAAA
>EF1G(bait)
GCGGCTGGGACCCGTACACGTATCCTGAAAACGGACGGCCTCAAGGCTCTCATCGCTGCTCAG
TACAGCGGGGCTCAGGTCCGCGTCTCCGACCCACCTCCATTGGCAAACCAACCGC
ACCCCTGAATTCTCCGAAATTCTCGCCAGGTCCAGCATTGAGGGTGTGATGGATT
TGTGTGTTGAGAGCAACGCCATTGCCTACTATGTGAGCAATGAGGAGCTGCCGGAAAGTACTCCA
GAGGCAGCAGCCCAGGTGGTGCAGTGGGTGAGCTTGCTGATTCGATATAGTCCCCCAGCCAGT
ACCTGGGTGTTCCCCACCTTGGCATTGCACCAACAAACAGGCCACTGAGAATGCAAAGGAG
GAAGTGAGGCGAATTCTGGGCTGCTGGATGTTACTTGAAGACGAGGACTTCTGGTGGCGAA
CGAGTGACATTGGCTGACATCACAGTTGTCACCTGTTGTGGCTCTATAAGCAGGTTCTAGAG
CCTTCTTCCGCCAGGCCTTCCAATACCAACCGCTGGTCTCTCACCTGCATAACCAGCCCCAG
TTCCGGGCTGCTTGGCGAAGTGAAACTGTGTGAGAAGATGGCCAGTTGATGCTAAAAAGTT
GCAGAGACCCAACCTAAAAGACACACCACGGAAAGAGAAGGGTCACTGGGAAGAGAACAGAAG
CCCCAGGCTGAGCGGAAGGAGGAGAAAAAGGGCTGCCCTGCTCTGAGGAGGAGATGGATGAA
TGTGAGCAGGCGCTGGCTGCTGAGGCCAAGGACCCCTCGCTCACCTGCCAAGAGTACC
TTTGTGTTGGATGAAATTAAAGCGCAAGTACTCCATGAGGACACACTCTCTGGCACTGCCATAT
TTCTGGGACCACTTGATAAGGACGGCTGGTCCCTGGTACTCAGAGTATGCCCTCCCTGAAGAA
CTCACTCAGACCTTCACTGAGCTGCAATCTCATCACTGGAAATGTCAGCGACTGGACAAGCTGAGG
AAGAATGCCCTCGCCAGTGTCACTCTTTGGAAACCAACAATAGCAGCTCCATTCTGGAGTCTGG
GTCTTCCGAGGCCAGGAGCTGCTTCCGCTGAGTCCAGATTGGCAGGTGGACTACGAGTCATAC
ACATGGCGGAAACTGGATCCTGGCAGCGAGGAGACCCAGACGCTGGTTCGAGAGTACTTTCTGG
GAGGGGGCCCTCCAGCATGTGGCAAAGCCTTCAATCAGGGCAAGATCTTCAAG

Figure 6 (continued)

>EF1G (prey)

GGGGCTGGGACCCCTGTACACGTATCCTGAAAAGTGGAGGGCCTTCAGGCTCTCGCACCAACCCACTTCCATTGGCAAACCAACCACGC
 TACAGGGGGCTCAGGTCCGCGTCTCCGACCAACCCACTTCCATTGGCAAACCAACCACGC
 ACCCCTGAATTCTCCGAAATTCTCCGCGAAGGTCCCAGCATTTGAGGGTGTGATGGATTCTGAGGAGCTGCAGGGAAACTACTCCA
 TGTTGTTGAGAGCAACGCCATTGCCTACTATGTGAGCAATGAGGAGCTGCAGGGAAACTACTCCA
 GAGGCAGCAGCCCAGGTGGTGCAGTGGTGAGCTTGCTGATTCCGATATAGTGCAGGGAACTACTCCA
 ACCTGGGTGTCTCCCCACCTTGGCATCATGCACCAACAAACAGGCCACTGAGAATGCAAAGGAG
 GAAGTGAGGCGAATTCTGGGCTGCTGGATGCTTACTTGAAGACGAGGACTTTCTGGTGGCGAA
 CGAGTGACATTGGCTGACATCACAGTTGCTGACCCCTGTTGGCTCTATAAGCAGGTTCTAGAG
 CCTTCTTCCGCCAGGCCTTCCAATACCAACCGCTGGTCTCACCTGCATTAACCAGCCCCAG
 TTCCGGGCTGTCTTGGCGAAGTGAAGACTGTGAGAAGATGGCCAGTTGATGCTAAAAGTT
 GCAGAGACCAACCTAAAAGGACACACCACGGAAAGAGAAGGGTTACGGGAAGAGAAGCAGAAG
 CCCCAGGCTGAGCGGAAGGAGGAGAAAAGGCGGCTGCCCCCTGCTCTGAGGAGGAGATGGATGAA
 TGTGAGCAGCGCTGGCTGAGCCAAAGGCAAGGACCCCTCGCTCACCTGCCAAGAGTAC
 TTTGTGTTGGATGAATTAAAGCGCAAGTACTCCAATGAGGACACACTCTGTGGCACTGCCATAT
 TTCTGGGAGCACTTGATAAGGACGGCTGGTCCCTGTGGTACTCAGAGTATCGCTTCCCTGAAGAA
 CTCACTCAGACCTTCATGAGCTGCAATCTCATCAGGAACTGGATGTTCCAGCGACTGGACAAGCTGAGG
 AAGAATGCCCTGCCAGTGTCACTCTTTGGAACCAACAATAGCAGCTCCATTCTGGAGTCTGG
 GTCTCCGAGGCCAGGAGCTTGCCTTCCGCTGAGTCCAGATTGGCAGGTGGACTACGAGTCATAC
 ACATGGCGAAACTGGATCCTGCCAGCGAGGAGACCCAGACGCTGGTCAGAGTACTTTCCCTGG
 GAGGGGGCCTCCAGCATGTGGCAAAGCCTCAATCAGGGCAAGATCTCAAG

>FEZ1

GGCAACTGCTCTGACACTGAGATCCATGAGAAAGAAGAGGAAGAGTCAATGAGAAGAGTGAAT
 GATTCCGGTATCAACGAGGAGCCTCTGCTCACAGCAGATCAGGTAAATTGAGGAGATTGAGGAAATG
 ATGCAGAACCTCCAGACCCCTGAGGAAGAAGAGGAGGTTCTGGAAGAAGAGGATGGAGGAGAAACT
 TCCTCCCAGGCAACTCGGTCCCTGAGGAGATGCAAGGCAATTGACACAGACCTCAACACAAC
 TGGCCTATGAACGGCTGAGGCACATGTCGGTCTGAGCTGACCGAGCTGGACCAGGTGGAG
 GGTGCCATCCGTACTCTCGGAGGAGCTGGTGCAGCAGCTGGCCCGCCGGACGAGCTGGAGTT
 GAGAAGGAAGTGAAGAACTCCTTATCACGGTGTATTGAGGTTCAAGAACAGCAGAAGGAGCAG
 CGAGAACTGATGAAAAAGAGGCCAGAGAAAGGGCTGAGGCTGAGGAGCAGCCGGATAGAGAAG
 GGAAACAGATGCCCTCAAGCGCTTCAGCATGGAAGGCATCTCAACATTCTGAGACTGGCATT
 CGCCAGACCTTGGCTCCTCAGAAACTGACAAACAGTATCTGAACACAGTCATTCTTACGAGAAG
 AAAGCCTCTCCCTCAGTGGAAAGACCTGCAAGATGCTGACAAACATTCTTGGCCATGAAGGAG
 GATAATGAGAAGGTGCCTACTTGCTAACGGACTACATTAAAAGTGTCTGCCCTACC

>G45IP1

ATGGCGTCGAGCGGGGGAGCTAGGGAGTTATTGATCACCACTGCAGAGGGCGGTATGCGAC
 ACACGGGCCAAATATCGAGAGGGACGACGGCCTCGTGTGAAGGTATATACAATCAATTGGAA
 TCTCAGTACTTATTAAATACAAGAGTTCTGCTGAGTCAAGGAAATTAGTTGAGCGATT
 GCTTTATATGGTCAATTGAACAGTACAATGCTCTAGATGAATACCCAGCAGAAGACTTTACTGAA
 GTTATCTTATTAAATTATGAACTTACAAGTCAAGGACAGCCAAGAGAAAATGGATGAAACAG
 AGTTTCTCGGTGGATTGCTCATGTTGCTATGCTCCAGAAATTGAAACAGTTGAAGAAACTAGA
 AAAAAGTACAATGCCAAGGCATATGAGTAAAGACTACTGAAAATAAGACCAATTACGTGACA
 AAGAAGAAATTGGTTACAGAGCATAAAAGACACAGAGGATTTAGACAAGACTTCCACTCAGAGATG
 TCTGGATTGGTAAAGCTGCTTGAACACTTCTGCAAGGGAACTCAAATCTTATCTCGTATTCC
 TGTGAATTGCCATTGTTATTCTCCTCAAAATGATGTTGCTCATCCGGGGACCTGTAGACAGA
 GCACCAACTCCTCTAAGGATGTTAGAAAACATCATAAACATGGGCATTATAACCACAATGAC
 TCTTGCGGAAACACAGATAAAACTCTTGAAGGAAACTCTGAGGAGCTGGCCTGCCCTGGTGCACAAAGGCT
 ATTACGTCTCAGAGGCAGTTGACAGATTATGCCTAGGACAACACAACCTGCAGGAGCGAAAAGA
 AGAAGAGAAGATGATGTTAAAGCTGGAACATTCTCAAACAAACCCAACTGGTAATGAGATTATG
 ATTGGACCTCTGTTACAGACATCTCTAAAGTGGATATGCACGATGACTCATTGAATACAACGGCG
 AATTAAATTGGCATAAAACTTAAAGAGGTAATTCTGTCATCTGTCAGGCCAAAGCCTCCAGAGGACAAGCCA
 GAAGATGTACATACAAGTCATCATTAAAACAAAGAAGAAGATA

Figure 6 (continued)

>G45IP2

AGGACCTGTATGCCCTATATATTTCTCTGCCTGGAGGCTCTGAAATGTTCCGCATCAGGAAC
 AATGAGAAAGATGCTGAGTGACAGCCACGGCGTGGAGACCCTCGGGACATCCTGCCAGACACCAGC
 CTTGGGGGCCATCCTCTCAAAATCATCACGGCCAAGGCTGTCTGAAGCTGCAGGCCGGAAAC
 GCCGAGGAAGCCGCCCTGTGGAGGGATCTGGTCGCAAAGTCTGGCATCCTACTTGGAGACAGCC
 GAGGAGGGGGTGACCCCTGGCGGGAGCCTGGATGAAAATGTCAGGAGGTGCTGAAATTGCCACC
 CGGGAGAATGGCTCCTGCTGAGTACCTGGTGGCTATCCCCATGGAGAAAGGCCTTGACTCCAA
 GGCTGCTCTGCGCAGGCTGCTCCGGCAGATGGCTTCTCCTTGTACGACCCAAGCTGTGCC
 TTCTCTGCCCTCTATTACTGTGACATCTGCCACCAAGACGATGCCCTCAGTGAATTCCGGCCAGGATC
 ATCCACAACGGGACCTCACCAAGCGCCCGATCTGCAGGCAGGCCCTGAAGTTCTGACACAGATC
 CGGGCCAGCCCTCATCAACCTGCAGATGGTGAACGCGCTCTGTACGAGCATGTGGAGCGGATG
 CACCTCATTGGGAGGAGACGGGAGCAGCTGAAGCTCCTGGGGATTACCTGGCCTGTGCCGGAGT
 GGCGCCCTGAAGGAGCTCAGCAAGAGGCTAACACAGGAATTATCTCTTGAATCTCCGCATAGG
 TTCAGTGTGCTGACCTCAACAGATCGCAGACGGGGTGTATGAAGGATTCTCAAGGCCCTGATT
 GAATTTCGCTCCCAGCATGCTTACCACTGCGACTGTGCAACCCAGCGCGGCTCATCTGCCAGATC
 TGCCAGCACCACGACATCATCTCCCTTGAGTTGACACCACAGTCAGGTGTGCCGAGTGCAG
 ACCGTCTTCCACCAGAGCTGCCAGGCTGTGGTGAAGAAGGGCTGCCCGCTGTGCCGCCGGCGC
 AAGTACCAAGAACAGAACATTTCGCG

>G45IP3

CCTAACAGGGGCCCTCAGCCCTCTAACATGACCTCCGGCTAGCCATGTGATTCACTCCACTC
 CATAACGCTCCTCATACTAGGCCTACTAACCAACACACTAACCATATACCAATGATGGCGCGATGT
 AACACGAGAAAGCACATACCAAGGCCACACACACCCACCTGTCCAAAAAGGCCCTCGATACGGGAT
 AATCCTATTATTACCTCAGAAGTTTTCTCGCAGGATTTCTGAGCCTTACCACTCCAG
 CCTAGGCCCTACCCCCAATTAGGAGGGCACTGCCACAGGCTAACCCGCTAAATCCCCT
 AGAAGTCCCACCTCTAACACATCCGTATTACTCGCATCAGGAGTATCAATCACCTGAGCTACCA

>GADD4.5G

GGTGCAGGGCGCTGAGCCGGATTGGAGTGTGGTGGAGTTGGGAGCCAAGGGTGTGCGCGGTGG
 CCGGGCTGGGTCTCCGCCGCCCTCCGGCGTCCCGCTCACTGCGCTGGCTCTCCGCAGG
 ATGCAGGGTGCCTGGAAAGCGCTGCATGAGTTGCTGCTGCGCGAGCGTCAGGGCTGCCACT
 GCCGGCGTCTACGAGTCAGCCAAAGTCTGAAACGGGACCCGACAATGTGACCTCTGTGTGCTG
 GCTGCGGGTGAGGAGGGACGAGGGGACATCGCGCTGCAGATCCATTACGCTGATCCAGGGCTTTC
 TGCTGCGAGAACGACATCGACATAGTGCCTGGCGATGTGCAGGGCTGGGGCTATGTGGGG
 GCCGGCGAGGAGGGGGTGCGCCGGCGACCTGCAGTCATCCTCATTCGAACCCAACGAGGAC
 GCCTGGAAGGATCCCCCTTGGAGAACGTCAGCCCTGTTTGCAGGAGAGGCCAGCGTTAACGAC
 TGGTGCCAGCATCACCCCTCCCCGAG

Figure 6 (continued)

>GIT1

CCACAGATGGCTGACAGATCTGGCAAAAGTGCATGTCAGAGCCTGACTTATCGAATTGGCC
 AAAGCTGCTAAGAAGAAGCTGCAGGCGCTAGCAACCGCTTTTGAGGAACCTGCCATGGACGTG
 TATGACGAGGTGGATCGAAGAGAAAATGATGCAGTGTGGCTGGCTACCCAAAACCACAGCACTCTG
 GTGACAGAGCGCAGTGCCGTGCCCTCCTGCCGTAAACCGGAATACTCAGCCACGCCAATCAG
 GGGCGACAAAAGCTGGCCCGTTAATGCCGAGAGTTGCCACCTGATCATCGACATTCTCAGT
 GAGGCCAAGCGGAGACAGCAGGGCAAGAGCCTGAGCAGCCCCACAGACAACCTCGAGCTGTCTG
 CGGAGCCAGAGTGACCTCGACGACCAACACGACTACGACAGCGTGGCCTTGACGAGGACACAGAC
 CAGGAGCCCCCTGCGCAGCACCGGCCACTCGGAGCAACCGGGCCGGAGCATGGACTCCTCGGAC
 TTGCTGACGGGCTGTGACGCTGAGGAGTACCTGGAGCTGAAGAAGGCCCTGGCTACATCGGAG
 GCAAAGGTGCAGCAGCTCATGAAGGTCAACAGTAGCCTGAGCAGGCTCCGGAGGCTGCAGCGA
 GAGATCCACAAGCTGCAGGCGGAGAACCTGCAGCTCCGGCAGCCTCCAGGGCCGGTGCACACCT
 CCACTCCCCAGTGAACGGGCGGAACACACACACCCATGGCGCAGGCGGGAGCACACACCGCAGGGAT
 CGCCAGGCCTTTCCATGTATGAACCTGGCTTGCCCTGAAGCCCTTGGGGGCCCTGGGAC
 GAGCTCACTACGGGCTGCAGCTTCCACAGCACTGAGCTAGAGGACGACGCCATCTATTAGTG
 CACGTCCTGCTGGCCTTACCGGATCCGAAAGGGGTGTCTGCCTCAGCTGTGCCCTTCACTCCC
 TCCTCCCCGCTGCTGTCTGCCAGGAGGGAAAGCCGCCACACGAGCAAGCTTCCGCCACGGC
 AGTGGAGCCGACAGTGAATGAGAACACGCCAAAGTGGGGACCCACTGCTGGGCTGGAAGGGAAAG
 AGTTTCTAGAGCTGGCAAAGAGGAAGACTTCCACCCAGAGCTGAAAGCCTGGATGGAGACCTA
 GATCCTGGGCTTCCCAGCACAGAGGATGTCATCTTGAAAGACAGAGCAGGTCACCAAGAACATTAG
 GAACTGTTGGGGCAGCCAGGAGTTCAAGCATGACAGCTTGTGCCCTGCTCAGAGAACATCCAT
 TTGGCTGTGACCGAGATGGCTCCCTTCCCTAAAGAGGCCAGCCCTGGAGGCCAGTGGAGCTCA
 CTGGGCTGCTCAACGCCAGGCCCTACCGGCTGCAGAGTGAGTGCCGAAAGACAGTGCCCTAGAG
 CCCGGGCCCTAGTGGACTTCCAGCTGCTGACTCAGCAGGTGATCCAGTGCCTATGACATGCC
 AAGGCTGCCAAGCAGCTGGTACCATCACACCCGAGAGAACAGCAG

>hADA3

AAAGATGTGGATGCCCTGCTGAAGAAGTCTGAGGCCAGCATGAACAGCCGAAGATGGATGCC
 TTTGGTGCCTGACGCAGGCCCTCCTGCAGGCCCTGGTGGAGAAAATATTATTCCTATGGAG
 GATTCTCCTATTCCCTGACATGTCGGAAAGAATCAGGGCTGACGGGCAAGCACCTCCCCCTGC
 AATCAGAACAGCCCTCAGTGTGCCCATACTAAGTCCCTGGAGAGGCCCATCAAGGAGGAGCTA
 ATTGCCAGGGCTTTGGAGTCTGAGGACCGCCCGCAGAGGACTCCAGGATGAGGTCTTGCT
 GAGCTCGAAACGGCAGGCTGAGCTGAGGCACTTAGTGCCACAACCGCACCAGAACGAC
 CTGCTGAGGCTGGCAAAGGAGGAGGTGAGCCGGCAGGAGCTGAGGAGCAGGGGTGCGCATGGCTGAC
 AACGAGGTATGGACGCCCTTCGCAAGATCATGGCTGCCGGCAGAAGAAGCGGACTCCCACCAAG
 AAAGAAAAGGACCAGGCCTGGAAGACTCTGAAGGAGCGTGAAGAGCATCCTGAAGCTGCTGGATGGG

Figure 6 (continued)

>HB01
 GACGCTGAGAGGCAGGGCACTAGGGATCGTCCGCAGGATTGGACTGATAACAGAGGCCACG
 GAGCCCCGGAGCCACCGTCCCTGCTGCCGCTGCCGAATCGAACCGTCGGCCGCAAG
 CCGCCGGCAATGCCGAGAAGAGGAATGCAGGCAGTAGTTCAAGATGGAACCGAAGATTCCGAT
 TTTTCTACAGATCTCAGCACACAGACAGTTCAAGAAAGTGTGGCACATCCCAGCATGCTCGA
 GTCACCCGCTCCTCAGCCAGGCTAAGCCAGAGTTCTAAGATTCCAGTCCTGAAATCTGCAG
 TCTTTGGCACTGAGGAGGCTGCTTACTCTACCAAGAAGAGTGACCGTAGTCAGCAGCAGCTACC
 CCAGTGACACCGAAAAAAATACCCCTCTCGGCAGACTCGTTCACTGTTCAAGAAACTGAGCAAGTG
 GTTGATTTTCAGATAGAGAACTAAAAATACAGCTGATGATGAGTCACCGCCTCGAAGTCCA
 ACTGGAATGCGCTTCTTCTGAGTCTGACATAGACATCTCAGCCCCAATGTATCTCACGATGAG
 AGCATTGCCAAGGACATGTCCTGAAGGACTCAGGCAGTGATCTCTCATGCCCAAGCGCCGT
 CGCTTCCATGAAAGCTACAACCTCAATATGAAGTGTCCTACACCAGCTGTAACTCTCTAGGACAC
 CTTACAGGAAAACATGAGAGACATTCTCCATCTCAGGATGCCACTGTATCATAACCTCTCAGCT
 GACGAATGCAAGGTGAGAGACAGAGCCGGATAAGCAGATAGAAGAAAGGATGCTGTACAGG
 CAAGATGACAACAAAGGCATGCAACCAGGCACCAAGGACACAGGAGAGGAGCTTCGATATAAG
 GAAAAAGTGGCTGAACTCAGGAAGAAAAGAAATTCTGGACTGAGCAAAGAACAGAAAGAGAAATAT
 ATGGAACACAGACAGACCTATGGGAACACACGGGAACCTCTTTAGAAAACCTGACAAGCGAGTAT
 GACTTGGATCTTTCGAAGAGCACAAGCCGGGCTTCAGAGGATTGGAGAACTTAAGGCTGCAA
 GCCCAAATCACAGAGGGAAAGCAACATGATTAAAACAATTGCTTTGGCCGCTATGAGCTTGATACC
 TGGTATCATTCTCCATATCTGAAGAATATGCACGGCTGGACGCTCTATATGTTGAAATTCTGT
 TTAAGGAAATATGAGAGGCCAACGATACTCCGCCGGCACATGGCAAATGTGTGTTGAAACACCCA
 CCTGGTGTGAGATATATGCAAGGTTCAATCTCTGTGTTGAGTGGATGGCAAGAAAAACAAG
 ATCTACTGCCAAAACCTGTGCCTGTTGGCAAACCTTTCTGGACGACAAAGACATTATATTATGAT
 GTGGAGCCCTTCCCTGTTCTATGTTGACAGAGGGGACAACACTGGCTGTCACCTGATTGGATAT
 TTTTCTAAGGAAAAGAATTCTCCTCAACTACAACGTCCTCTGTATCCTTACTATGCCTCAGTAC
 ATGAGAÇAGGGCTATGCCAAGATGCTTATTGATTGCTTCAAGTCAAGAAAA
 GTGGCTCCCCAGAACGTCCACTCTCAGATCTGGGCTTATAAGCTATCGCAGTTACTGGAAAGAA
 GTACTTCTCCGCTACCTGCATAATTCAAGGAAAGAGATTCTATCAAAGAAATCAGTCAGGAG
 ACGGCTGTGAATCCTGTGGACATTGTCACTGCAAGGCCCTCAGATGCTCAAATACTGGAAG
 GGAAAACACCTAGTTAAAGAGAGACAGGACCTGATTGAGTGGATAGCCAAAGAGGCCAAAAGG
 TCCAACCTCAAATAAACCATGGATCCCAGCTGCTAAATGGACCCCTCCCAAGGGCACT

Figure 6 (continued)

>HD1.7

ATGGCGACCTGGAAAAGCTGATGAAGGCCTCGAGTCCTCAAGTCCTCCAGCAGCAGCAG
 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
 CGCCGCCGCCGCCCTCAGCTCAGCTCAGCCGCCGCCAGGCACAGCCGTGCTGCTCAG
 CGCAGCCCCCCGCCGCCACCCGGCCGGCTGTGGCTGAGGAGCCGCTGCAC
 CGACAAAGAAAGAACCTTCAAGCTACCAAGAAAGACC GTGTGAATCAT TGTCTGACAATATGTGAA
 AACATAGTGGCACAGTCTGTCAAGAAATTCTCAGAAACTCTGGGCATCGCTATGGAA
 CTTTCTGCTGTGAGTCAGCTCAGATGTCAAGGATGGTGCTGACGAATGCCTCAAC
 AAAGTTATCAAAGCTTGTATGGATTCTAATCTCCAAGGTACAGCTCGAGCTATAAGGAAATT
 AAAAGAAATGGTGCCTCGGAGTTGCGTGTGCCCTGTGGAGGTTGCTGAGCTGGCTACCTG
 GTTCCGGCTCAGAAATGCAGGCCCTACCTGGTAACCTCTGCCGTGACTCGAACAGCAAG
 AGACCCGAAGAACATCAGTCCAGGAGACCTGGCTGCA GCTGTCCAAAATTATGGCTTCTTGGC
 AATTTGCAAATGACAATGAAATTAAAGGTTTGTAAAGGCTTCATAGCGAACCTGAAGTCAAGC
 TCCCCCACCATTGGCGGACAGCGGCTGGATCAGCAGTGA GCACTCGCCAGCACTCAAGAAGGACA
 CAATATTCTATAGTGGCTACTAAATGTGCTCTTAGGCTACTCGTTCTGTGAGGATGAACAC
 TCCACTCTGCTGATTCTGGCGTGTGCTCACCCCTGAGGTATTGGTGCCTTGCTGAGCAGCAG
 GTCAAGGACACAAGCCTGAAAGGCAGCTCGGAGTGACAAGGAAAGAAATGGAAGTCTCCTTCT
 GCAGAGCAGCTTGTCCAGGTTATGA ACTGACGTTACATCATAACACAGCACCAAGACCACAATGTT
 GTGACCGGAGCCCTGGAGCTGTTGAGCAGCTCTCAGAACGCCCTCACCCGAGCTTGTGCAAACC
 CTGACCGCAGTCGGGGCATTGGCAGCTCACCGCTGCTAAGGAGGAGTCTGGTGGCCGAAGCCGT
 AGTGGGAGTATTGTGAACTTATAGCTGGAGGGGTTCTCATGCA GGCCTGTCCCTCAAGAAAA
 CAAAAAGGCAAAGTGTCTTAGGAGAAGAAGAACCTTGGAGGATGACTCTGAATCGAGATCGGAT
 GTCAGCAGCTTGCTTAACAGCCTCAGTGAGGATGAGATCAGTGGAGAGCTGGCTGCTTCTCA
 GGGTTTCCACTCCAGGGTCAGCAGGTATGACATCATCAGAACAGCCACGGTACAGCACACT
 GCAGGCGGACTCAGTGGATCTGGCCAGCTG

>Hdd1.0

ATGGCGACCTGGAAAAGCTGATGAAGGCCTCGAGTCCTCAAGTCCTCCAGCAGCAGCAG
 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
 CGCCGCCGCCGCCCTCAGCTCAGCTCAGCCGCCGCCAGGCACAGCCGTGCTGCCCTCAG
 CGCAGCCGCCCGCCGCCGCCACCCGGCCGGCTGTGGCTGAGGAGCCGCTGCAC
 CGACCAAAGAAAGAACCTTCAAGCTACCAAGAAAGACC GTGTGAATCAT TGTCTGACAATATGTGAA
 AACATAGTGGCACAGTCTGTCAAGAAATTCTCAGAAATTCTCAGAAACTCTGGGCATCGCTATGGAA
 CTTTCTGCTGTGCA GTGATGACGAGTCAGATGTCAAGGATGGTGGCTGACGAATGCCTCAAC
 AAAGTTATCAAAGCTTGTATGGATTCTAATCTCCAAGGTACAGCTCGAGCTCTATAAGGAAATT
 AAAAGAAATGGTGCCTCGGAGTTGCGTGTGCCCTGTGGAGGTTGCTGAGCTGGCTCACCTG
 GTTCCGGCTCAGAAATGCAGGCCCTACCTGGTAACCTCTGCCGTGACTCGAACAGCAAG
 AGACCCGAAGAACATCAGTCCAGGAGACCTGGCTGCA GCTGTCCAAAATTATGGCTTCTTGGC
 AATTTGCAAATGACAATGAAATTAAAGGTTTGTAAAGGCTTCATAGCGAACCTGAAGTCAAGC
 TCCCCCACCATTGGCGCACAGCGGCTGGATCAGCAGTGA GAGCATCGCCAGCACTCAAGAAGGACA
 CAATATTCTATAGTGGCTACTAAATGTGCTCTTAGGCTTACTCGTTCTGTGAGGATGAACAC
 TCCACTCTGCTGATTCTGGCGTGTGCTCACCTCTAGA

Figure 6 (continued)

>HDd1.3
 CCAAGGTTACAGCTCGAGCTCTATAAGGAAATTAAAAAGAATGGTCCCCCTCGGAGTTTCGTGCT
 GCCCTGTGGAGGTTGCTGAGCTGGCTCACCTGGTCAGAAATGCAGGCCTTACCTGGTG
 AACCTTCTGCCGTGCCGTGACTCGAACAGCAAGAGACCCGAAGAATCAGTCCAGGAGACCTGGCT
 GCAGCTGTTCCAAAATTATGGCTTCTTGGCAATTGCAAATGACAATGAAATTAAAGGTTTG
 TTAAAGGCTTCATAGCGAACCTGAAGTCAAGCTCCCCACCATTGGCGGACAGCGGCTGGATCA
 GCAGTGAGCATCTGCCAGCACTCAAGAAGGACACAATATTCTATAGTTGGCTACTAAATGTGCTC
 TTAGGCTTACTCGTCCCTGTCGAGGATGAAACACTCCACTCTGCTGATTCTGGCGTGTGCTCAC
 CTGAGGTATTGGTGCCTTGCTGAGCAGCAAGGACACAAGCCTGAAAGGCAGCTCGGA
 GTGACAAGGAAAGAAATGGAAGTCTCTTCTGAGAGCAGCTTGTCCAGGTTATGAACTGAC
 TTACATCATAACACAGCACCAAGACCAATGTTGTGACCGGAGCCCTGGAGCTGTTGCAGCAGCTC
 TTCAGAACGCCCTCCACCCGAGCTTCTGCAAACCTGACCGCAGTCGGGGCATTGGCAGCTCAC
 GCTGCTAAGGAGGAGTCTGGTGGCGAAGCGTAGTGGAGTATTGGAACCTATAGCTGGAGGG
 GGTTCCCTATGCGAGCCCTGTCCTTCAAGAAAACAAAAGGAAAGTGCCTTACGGAGAAGAAGAA
 GCCTTGGAGGATGACTCTGAAATCGAGATCGGATGTCAGCAGCTCTGCTTAACAGCCTCAGTGAAG
 GATGAGATCAGTGGAGAGCTGGCTGCTCTTCAGGGTTTCACTCCAGGGTACGAGGTACATGAC
 ATCATCACAGAACGCCACGGTACAGCACACTGCAGCAGGACTCAGTGGATCTGGCAGCTG
 >HDexQ20
 ATGGCGACCCCTGGAAAAGATGATGAAGGCCTTCGAGTCCCTCAAGTCCTTCCAGCAGCAGCAG
 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
 CCGCCGCCGCCCTCCTCAGCTTCTCAGCCGCCGCCAGGCACAGCCGCTGCTGCCCTCAGCCG
 CAGCCGCCGCCGCCGCCGCCACCCGGCCGGCTGTGGCTGAGGAGCCGCTGCCACCG
 CCG
 >HDexQ51
 ATGGCGACCCCTGGAAAAGCTGATGAAGGCCTTCGAGTCCCTCAAGTCCTTCCAGCAGCAGCAG
 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
 CAACAGCCGCCACCGCCGCCGCCGCCGCCGCTCCTCAGCTTCTCAGCCGCCGCCAGGCA
 CAGCCGCTGCTGCTCAGCCGAGCCGCCGCCGCCGCCACCCGGCCGGCTGTGGCTGAGGAGCCGCTGCCACCG
 CTGAGGAGCCGCTGCAACCGACCGTAGTCAG
 >HIP1
 GCTGACACCCCTGCAAGGCCACGGGACCGCTTCATGGAGCAGTTACAAAGTGAAGATCTGTC
 TACCGCTCCAGCAACCTGCAAGTACTTCAGCAGCTCATTCAAGATCCCCAGCTGCTGAGAACCCA
 CCCAACCTCCTGCGAGCCTCAGCCCTGTAGAACATATCAGCCCTGGGTGATCCCTGAGAG
 GCTCATCCCCGACAGCGAGCCAGTCCTAGAGAAGGATGACCTCATGGACATGGATGCCCTCAG
 CAGAATTATTGACAACAAGTTGATGACATCTTGGCAGTTCAATTCAAGCAGTGAATCCCTCAAT
 TTCAACAGTCAAAATGGTGTGAACAAGGATGAGAAGGACCACTTAATGAGCAGTATAACAGAGAG
 ATCACTGGATTGAAGGCACAGCTAGAAAACATGAAGACTGAGAGGCCAGCGGGTTGTGCTGAGCTG
 AAGGGCCACGTCAGCGAGCTGGAGCAGATCTGGCGAGCAGCACCTGGGGAGCAGCGGGGCC
 GACGACTGTGAATTCTGCGGGCAGAACACTGGACAGCTCAGGAGGAGCAGCGGGAGGACACCGAGAAG
 GCTCAGCGGAGGCTGCTGAGATAGAAAGGAAAGCTCAAGCCAATGAACAGCGATATAGCAAGCTA
 AAGGAGAAGTACAGCGAGCTGGTTCAAGAACACACGCTGACCTGCTGCGGAAGAATGCAAGAGGTGACC
 AACACAGGTGTCATGCCAGACAAGCCAGGTAGATTGGAACGAGAGAAAAAGAGCTGGAGGAT
 TCGTTGGAGCGCATCAGTGACCAAGGGCCAGCGGAAGACTCAAGAACAGCTGGAAGTTCTAGAGAGC
 TTGAAGCAGGAACCTGCCACAAGCCAACGGGAGCTTCAGGTTCTGCAAGGAGCAGCTGGAAACTTCT
 GCCCAGTCAGAACAGCAACTGGGAGCCAGTTGCCAGGCTAGAGAAGGAGCGGGACAGCCTGGTG
 AGTGGCGAGCTCATAGGGAGGAGGAATTATCTGCTCTCGAAAGAAGACTGCAGGACACTCAGCTC
 AAACCTGGCCAGCACAGAGGAATCTATGTGCCAGCTGCCAAAGACCAACGAAAAATGCTCTGGTG
 GGGTCCAGGAAGGCTGCCAGGCTGAGCAGGTGATACAAGACGCGTCAGCGGCCCG

Figure 6 (continued)

>HIP11

GTGGACCTTGTACCGCCTGTGACATCCGGTACTGTGCCAGGATGTTCTTCAGGTGAAGGAG
 GTGGACGTGGTTGGCTGCCGATGTAGGAACACTGCAGGCCCTGCCAAGGTATCGGGAAACCAG
 AGCCTGGTCAACGAGCTGGCCTCACCGCCCGCAAGATGATGGCTGACGAGGCCCTGGGAGTGGG
 CTGGTCAGCCGGTGTCCCAGACAAAGAGGTATGCTGGATGCTGCCCTAGCGCTGGCGGCCGAG
 ATTCCAGCAAGAGCCCCGTGGCGGTGCAAGACCAAGGTCAACCTGCTGTATTCCCGAACCAT
 TCGGTGGCCAGAGCCTCAACTACGTGGCGTCTGGAACATGAGCATGCTGCAGACCCAAGACCTC
 GTGAAGTCGGTCCAGGCCACGACTGAGAACAAAGGAACGTGACCTTCTCCAAGCTC

>HIP13

CCCTGCTGCTCTGAGGACACCATCCCTCCAAGTTTCAAGATTATGATTATTCCTGTAAAGTGGT
 GACCAAGGAGGACATCAGCAGGAGTTCGACAAGTCCACCAATTCCAAGAAAACAGCGACATCAGC
 CAGTCCTACCGACGGATGTTCAAGCCAAGCGTCCAGCCTCAACTGCTGGCTCCCCACCAACCTG
 GGACCTGCTATGGTCACTCCAGGGGTTGCAACTATCCGACGACCCCTCCACCAAGCCTCTGTC
 CGCCGGGGAACCATGGAGCTGGTCCCATCCCCATCAAGACACCCGTATCCCTGTCAAGACCCCA
 ACCGTCACAGACCTCCAGGGGTTGCAAGCCCTCCAGATGGGCCAGAACAGCGGGGGAGCAC
 AGCCCTGAGTCGCATCTGTGGGTGAGGGCCCCAAGGTGTCACCAGCATGCCCTCTCAATGTGG
 AGCGGCCAGCTCCGTTAACCCCTCCACTTCCAGGCCAGAACGGGATCTCCACAAAGGAGAACATG
 CAGGCAATTCCAGAAAGTGAAGCTGAAGACCAGGAACGGGACCCCCAAGTGCCACTGTCTCCCCA
 GGCCAGATTCCAGAGGTGACCCCTGCAGACCTGAGGCCAAGGGATACTCCACAAAGGAGAACATG
 CTGAACGCCATCCGAAGGGCGTAAACTGAAGAACACGACAAACGATCGCTAGCCCTCGC
 TTTCT

>HIP15

ATTCACATGGCTCCACCTTATCAAATCTAAACATGATTGAGACATTCAATATGTCAAGTGTGTGAG
 GAAACCTTGCACATAGTGTGGATTCCCTTGAGCAGCTGACTGGAATAAGGATGCTTAGACACCTC
 ACTATGACTATTGACTATCACACACTGATTGCCAACTATATGTCCGGTTCTCTCCTTATTAACC
 ACAGCCAATGCGAGAACGAAGTTCACGTTCTGAAAATGCTATTGAATTGCTCTGAAAATCCTGCT
 GTGGCAAAAAAAACTATTCACTGCCAAAGCTTTCAATATTGTGGGTCTCTTAAACATAGAAGAG
 ACAAAATGATAATATTCAAATTGTTATTAAAATGTTCAAGAATATCAGTAACATTATAAAAGTGG
 AAGATGTCTTAATTGATGATGATTTCAGTCTTGAGGCCCTTATTCTGCATTGCAATTGAG
 GAGTTAGCTAAGCAACTACAAGCCAAATAGACAACCAAAATGATCCCTGAGGTGGACAACAAAGT

>HIP16

GATGAAGAGGGAGAGAAACATAGGCAGATGATAAAGGAAGCTTTGCTGGGATGATGTACATCAGA
 GATTCTTGAAGAGAACAGGGAGCTGTGGAGGCCAGTAAGCCAAGGACGTGGACCTGACACTA
 CCTGGCTGGGCCAGTGGGTGGTGTGGCCTAAAGCCAGTGCCAAGAAAAGACGCCGGTTCTC
 ATTAAGCCCTGAGGGTCTCCAAGAAAAGATAAGAATTGCAAATGTGATTATCAATGAGAAG
 CGCAACATCCACGCACTGCTCATCAGGTACGAGTGCTCCATATCCATTACCCACCATGGCAA
 TTGAAAGGACCATCCAGACCCCCATAGGATCCACATGGAACACCCAGAGGGCTTCCAAAAGCTG
 ACTACTCCCAAGGTGTCACCAAGCCAGGCCATACTCATTAACCCATAAAAGCAGAACAGTGGGC
 TACCGGTCTCTCAAGGTGCGACCTGTCATACAGAGGAATCCAAAACGAATCACCACACGT
 CAACAAAACAGCTGAAGAAATGCTCTGTAGAT

>HIP2

ATGGCCAACATCGCGGTGCAGCGAATCAAGCGGGAGTTCAAGGAGGTGCTGAAGACCGAGGAGACG
 AGCAAAATCAAATTAAAGTAGATCTGTAGATGAGAATTTCAGAATTAGAGGAGAAATAGCA
 GGACCTCCAGACACACCATATGAAGGAGGAAGATACCAACTAGAGATAAAAATACAGAAACATAC
 CCATTAAATCCCCCTAAGGTCCGGTTATCACTAAAATATGGCATCTTAATATTAGTTCCGTACA
 GGGGCTATTGTTGGATATCTGAAAGATCAATGGCAGCTGCAATGACTCTCCGCACGGTATTA
 TTGTCATTGCAAGCACTATTGGCAGCTGCAAGGCCAGATGATCCACAGGGATGCTGTAGTAGCAAAT
 CAGTACAACAAAATCCGAAATGTTCAAACAGACAGCTGACTTTGGGCACATGTGTATGCTGGA
 GCACCACTTCTAGTCCAGAACACACCAAAATAGAAAACCTATGTGCTATGGCTTGTAGAG
 AATGCAGTAATAGTGGCTTGTCTCAAAATCATGGATGTAGAGACTGCAACAGAACAGTGTCTG
 AGTAACGT

Figure 6 (continued)

>HIP5 (bait)

TTTCTTAAAAGTATTTAAAGAAAATCTAAATATGAACATGGTTATCTTAAGGCATTAATTATA
 AATCAGAGCTTAAGTTGAAATCAAAAGCAGCAGCTATCAGAGATAGTATTGAATTAAACAAAG
 GAAAAGGTGCAGAAATTCCAAAGACTATTAAAAACTGAGGTGGTTGATGAAACTAGCAATATA
 GAAAACAATGCTGAAAACAGTCATTCACTGAAGAATAAAACAGGAACAACAGCATTCTCAA
 CAATTCCACATTCAAAGTGGTGTGAAGCAACATAATTAGTGTCTACTGTGCTGAAATTCT
 GCTGATACAAAGAAGTCCAGGGAGGATTCTATCTGAAAATGTTACGACTTAGGAGGATCTGGA
 GCAGACCATATGCCCTTGAACTGTTTATACCTTCAGGTATAACTTGCTAACATGCCCTGGCCA
 GCCTCAAAAAGAAGAAGTAAAATCCCTGTACATGATGATTCTAAACTAACAGGTAAGCCA
 CAAAGAGGTAGAGCAAAATAATTAGAAAACCAGGATCTGCAAAGTCAAACATTTACACAAGCT
 ACAAAACAGAAAAGGCGCTGTCAATTCAACCACAGTCAGTGTGAAAGTCAAACAGGCTTATATGT
 CAGGGAAAATTAAATTATACCTTGCTCCTCAATCTACATCAAATTAGTAGAAGTGGTAAAAT
 ATACAAGTGTCTAGTGTCAACCAGTAACCTCTGAAATTCTCAAACATTACACATAACTCT
 TTTAATTCAAACATGTGCTTCCAACAGAACAGTTGAAATCAGTGGAAATCAGGAAAGTAGTTCT
 CCACTCTCAAATGCTTGTGAACTGTTCTGACCTAGTCAGTGTGACTCTAAGAAGTCAAAC
 GAGTGCAGGAAACTTGTGAAATGAGAAAGTCAAACATGCTGAAAGTCAAACAGGCTTATATGT
 ACATTATATTGCAACCAAGAAGTCTGAGCTGAAAGACAGAAGATCCCTAGAGTCCCTTAATGATCTCAATGAAAGA
 CTACATTATATAAGAATCCATTGCAAAACCCATCCATCAAACATTACACATAACTTACAAATAATACCA
 CTTCTGGAGAAGAGAGAAGATAGAACACAGCAGCTGCAGAGACAAGAGA

>HIP5 (prey)

TTTCTTAAAAGTATTTAAAGAAAATCTAAATATGAACATGGTTATCTTAAGGCATTAATTATA
 AATCAGAGCTTAAGTTGAAATCAAAAGCAGCAGCTATCAGAGATAGTATTGAATTAAACAAAG
 GAAAAGGTGCAGAAATTCCAAAGACTATTAAAAACTGAGGTGGTTGATGAAACTAGCAATATA
 GAAAACAATGCTGAAAACAGTCATTCACTGAAGAATAAAACAGGAACAACAGCATTCTCAA
 CAATTCCACATTCAAAGTGGTGTGAAGCAACATAATTAGTGTCTACTTGCTGAAATTCT
 GCTGATACAAAGAAGTCCAGGGAGGATTCTATCTGAAAATGTTACGACTTAGGAGGATCTGGA
 GCAGACCATATGCCCTTGAACTGTTTATACCTTCAGGTATAACTTGCTAACATGCCCTGGCCA
 GCCTCAAAAAGAAGAAGTAAAATCCCTGTACATGATGATTCTAAACTAACAGGTAAGCCA
 CAAAGAGGTAGAGCAAAATAATTAGAAAACCAGGATCTGCAAAGTCAAACAGGCTTATATGT
 ACAAAACAGAAAAGGCGCTGTCAATTCAACCACAGTCAGTGTGAAAGTCAAACATTTACACAAGCT
 CAGGGAAAATTAAATTATACCTTGCTCCTCTCAATCTACATCAAATTAGAAGTGGTAAAAT
 ATACAAGTGTCTAGTGTCAACCAGTAACCTCTGAAAATCTCAAACATTACACATAACTCT
 TTTAATTCAAACATGTGCTTCCAACAGAACACAGTTGAAATCAGTGGAAATCAGGAAAGTAGTTCT
 CCACTCTCAAATGCTTGTGAACTGTTCTGACCTAGTCAGTGTGACTTCAAGAAGTCAAAC
 GAGTGCAGGAAACTTGTGAAAATTCAATGGCACTCAAGCAGTGTGCCCCGGCAAGATGCG
 ACATTATATTGCAACCAAGAAGTCTGTTGAAAGAAGAGGTCTTAATGTCCTGCATCAAATAAGAGGGCT
 GCTGAAGAAGAATCAGTCCCTTATGAAAAGAGGTCTTAATGTCCTGCATCAAATAAGAGGGCT
 ACAGGGTCTACTGTATGAGAAGAAAAGCAATTGCTGAAACTAACAGGGAGAAATTTAGAGCAG
 AAAAGACAAAACCCCTGGATCTGAGGACAGAAGTACAGTGAGCAAATTAAATAATTGGACAAAGT
 GTCCCTGCTAAGTCAAGTGTGAGGCAAAACAAACTACAAGGGTACTCTTATATTGAAGAAGTTCT
 GATAGTACTCTGAGTTTGTGATGGCTGAAAACCTAGTGAAGACATCAGTGCAGGAGGATGAGGATT
 CTGACTGTCTGAAATGCAAACAGATAACAGAAAATCTACCTTAAATAAAACTAACACAAATT
 AACATCTGCACACTGTCAAGCTGAAGAACAGAACAGATCCCTAGAGTCCCTTAATGATCTCAATGAAAGA
 CTACATTATATAAGAATCCATTGCAAAACCCATCCATCAAACATTACAAATAATACCA
 CTTCTGGAGAAGAGAGAAGATAGAACACAGCAGCTGCAGAGACAAGAGA

Figure 6 (continued)

>HMP

CAAGAACAAAGTTAAAATTGAGTCTCTAGCCAAGAGCTTAGAAGATGCTCTGAGGCCAAACTGCAAGT
 GTCACTCTGCAGGCTATTGCAGCTCAGAAATGCTGCCGTCCAGGCTGTCAATGCACACTCCAACATA
 TTGAAAGCCGCCATGGACAATTCTGAGATTGCAGGGAGAAGAAATCTGCTCAGTGGCGCACAGTG
 GAGGGTGCATTGAAGGAACGCAGAAAGGCAGTAGATGAAGCTGCCGATGCCCTCTCAAAGCCAA
 GAAGAGTTAGAGAAGATGAAAAGTGTGATTGAAAATGCAAAGAAAAAGAGGTTGCTGGGGCCAAG
 CCTCATATAACTGCTCAGAGGGTAAACTTCACAAACATGATAGTTGATCTGGATAATGTGGTCAA
 AAGGTCCAAGCAGCTCAGTCTGAGGCTAAGGTTGATCTCAGTATCATGAGCTGGTGGTCAAAGCT
 CGGGATGACTTAAACGAGAGCTGGACAGTATTACTCCAGAAGTCCTTCTGGTGGAAAGGAATG
 AGTGTTCAGACTTAGCTGACAAGCTCTACTGATGATCTGAACCTCCCTCATTGCTCATGCACAT
 CGTCGTATTGATCAGCTGAACAGAGAGCTGGCAGAACAGAAGGCCACCGAAAAGCAGCACATCACG
 TTAGCCTTGGAGAAACAAAAGCTGGAAGAAAAGCAGGGCATTGACTCTGCAGTAGCAGAAAAGCATT
 GAACATCACAGAAGTGAATACAGGCTGAACAGGACAGAAAGATAGAAGAAGTCAGAGATGCCATG
 GAAAATGAAATGAGAACCCAGCTTCGCCACAGGCAGCTGCCACACTGATCATTGCGAGATGTC
 CTTAGGGTACAAGAACAGGAATTGAGTCTGAATTGAGCAGAACCTGCTCTGAGAAAACCTCTGAA
 CAAGAATTACAATTTCGTCGTCAGTCAGAGAGCAAGTTGACAACATTACTCTGGATATAAAACT
 GCCTATGCCAGACTCAGAGGAATCGAACAGGCTGTCAGAGCCATGCAGTTGCTGAAGAGGAAGCC
 AGAAAAGCCCAACCTCTGGCTTCAGTGGAGGCATTAAAGTACAGCATGAAAGAACCTCATCTGCA
 GAAACACCTACTATCCCCTGGTAGTGCGGTTGAGGCCATCAAAGCCAACTGTTCTGATAATGAA
 TTCACCCAAGCTTAACCGCAGCTATCCCTCCAGAGTCCCTGACCCGTGGGGTGTACAGTGAAGAG
 ACCCTTAGAGGCCGTTCTATGCTGTTCAAAAACAGGCTGTCAGAGCCATGCAATGATTGATGAAACC
 AGAAAATAGCTTGTACCAAGTACTCCTCTCTACCTACAGTCCTGCTCCTATTCCACCTCAGCAA
 CTGAAGCCGCCAGAGCTCTGCCCTGAGGATATAAACACATTTAAATTACTGTCATATGCTTCC
 TATTGCAATTGAGCATGGTGTACGGAGCTAGCAGCAAAGTTGTCATCAGCTGAAGGGGAATCC
 AGACGAGTGGCACAGGACTGGCTGAAGGAAGCCGAATGACCCCTAGAAACGAAACAGATAGTGGAA
 ATCCGTACAGCATATGCCAGGCCGTAGGAATAGGAACCACACTCAGTGCAGCCAGAG

>HP28

CCGCCCGCAGACTCTTGCTCAAGTACGACACCCAGTGCTGGTGAGCCGGAACACGGAGAAACGG
 AGCCCCAAGGCTCGGCTACTGAAAGTCAGCCCCCAGCAGCCCTGGACCTTCAGGTTCAGCCCCACAG
 CCACCCAAGACCAAGCTCCCCTCAACTCCTGTCAGGCTCAGATCCTACAAAGCAGGCAGAAGAAATC
 TTGAATGCCATACTACCCCCAAGGGAGTGGGTGGAAGACAGCAGCTATGGATCCAGCAGGTGTCC
 AGCACCCCTAGCACCAGGATGGACGCTGGTGCACCTCCAGGAGCAGTTAGACTTAAAGCTGCAGCAG
 CGGCAGGCCAGGGAAACAGGCATCTGCCCTGTCGCCAGGGAACTCTACTCACAGTGTGATGAG
 TTGATCCGGGAGGTACCATCAACTGTCGGAGAGGGGCTGCTGCTGCCAGTCGGGACGAG
 ATCCGCATGACCATCGCTGCCCTACCAAGACCCCTGTACAGAGAGCAGCGTGGCGTTGGCATGAGGAAG
 GCACGTCAGGCTGAGCAGGGAAAGTCAGACATGGAGAGGAAATCGCAGAATTGGAGACGGAAAAG
 AGAGACCTGGAGAGGAAGTCAGAACGAGCAGAAGGAAAATGTGAAGCCACTGAGAACGGGAGAGC
 GAGAGGCCAGGTGGAGGGAGAAGAAGCACAATGAGGAGATTCAAGTCCCTGAAGCGAACAAATCAG
 CAGCTGAAGGCCAACTGGAAAGGCATTATTGCACCAAAAGAAG

Figure 6 (continued)

>HSPC232

CGGCAGGGAGCGGACGGCTGCATTACGGGTCTCCGGAGGGCAGAGTCGGCTTACAGAAGA
 GACGAAATGTGGTCTGAGGGACGATGAATAATGAAAGAATTCCGAGAGAACGAGCACCTCCTCGA
 AGTCATCCCAGTGTGAACTGGTTAGATGGACAAGAGACGATCATTCTGCAAGCAGGAAACCT
 GAATACAGGGACATGAGAGATGGCTTAGAAGAAAAAGTTCTACTCTTCCATTATGCGAGAGAG
 CGGTCTCCTTATAAAAGGGACAATACTTTTCAAGAGAATCACCTGTTGGCCGAAAGGATTCTCA
 CACAGCAGATCTGGTCCAGTGTCACTGAGCTACTCTCCAGAAAGGAGCAAATCATACTCT
 TTCCATCAGTCTCAACATAGAAATAAGAGAGGCTGTCAGTCTTGAAAACATCAAGAGATACT
 TCACCCCTCAAGTGGTCAGCAGTTCTCATCAAAGGTGTTAGACAACCAGTAGGCTAAGTGA
 AAGGAACCTGGCTGAGGCTGCAAGCAAGTGGCTGCTGAAAAGCTAGAGAAATCAGATGAAAGTAAC
 TTGCTGAAATTCTGAGTATGAGGCGGATCCACAGCACCATTGTTACTGACCAGGCCAGAGGAA
 CCTGAGTCAAACACAACATGGGATAGAATTATTGAAAGATAGTCAGCTAACACTCGCTCTAAA
 GCAATAGCATCAAAACAAAGAGATTGAACAGGTTACCGACAAGACTGTGAAACTTCCGGATG
 GTGGTGAAATGCTGATTGAAAAAGATCCTCATTAGAAAAGTCTATACAGTTGCATTGAGGCAG
 AATTACATGAAATAGGTGAGCGGTGTTGAAGAACTCAAGCATTGCAAGTATGAGTATGATACT
 TCCACTCAAGATTGGAGAGCCTTT

>HYPA

GGCCGCCGGCGGAGCAGTCTGAGCCCCACGATGAGGCCGGGACGGGAGCTGAGCGTGGAGGCCTC
 ATGATGGGGCACCCCTGGCATGCATTATGCCCAATGGGAATGCACCCATGGGTAGAGAGCGAAT
 ATGCCTCTGTACCTCATGGAATGATGCCGCAAGATGATGATGCCCTATGGGAGGGCACCAATGGGA
 CAAATGCCCTGGAATGATGTCGTCACTAATGCCCTGGAATGATGATGTCATATGTCAGGCTTCC
 ATGCAGGCTGCCCTACCGCAGGAGTAAATAGTATGGATGTAGCAGCAGGTACAGCATCTGGTCA
 AAATCAATGTGGACTGAACATAAATCACCTGATGGAAGGACTTACTACTACAACACTGAAACCAA
 CAGTCTACCTGGGAGAAACAGATGATCTTAAACACCTGCTGAGCAACTCTTATCTAAATGCC
 TGGAAGGAATAACAAATCAGATTCTGAAAGCCTTACTATTATAATTCTCAAACAAAAGAATCTGC
 TGGCCAAACCTAAAGAACCTGAGGATCTGAGGATACCAGAATACCATTGCTGGAAGTCTT
 ATTACAAAATCAAACCTGCATGCAATGATCAAAGCTGAAAGAAGCAGTAAGCAAGAAGAGTCACC
 ACAACATCAACAGCTCCAGTCCCTACACAGAAATTCCGACCACAATGAGCACCATGGCTGCTGCC
 GAAGCAGCAGCTGCTGTTGCAGCAGCAGCGGAGCAGCAGCAGCTGCAGCCAATGCT
 AATGCTTCCACTCTGCTTAAACTGTCAGTGGAACTGTTCCAGTTGCTGAGCCTGAAAGTT
 ACTTCCATTGTTGCTACTGTTGTTAGATAATGAGAATACTGAGGAAACAAGCA
 CAACTTACTAGTACCCCTGCTATTCAAGTGTGGAAGTATCCAGTAATACTGGAGAAGAA
 ACATCTAACAGCAAGAAACTGTAGCTGATTTCCTTAAAGAAGAGGAGAGGCCAACAGCA
 AAGAAAACATACACTTGGAAATACAAAGGAAGAGGCAAGCAAGCTTTAAAGAATTATTGAAAGAA
 AACGGGGTACCATCGAATGCTCATGGGAGCAGGCTATGAAAATGATTATAATGATCCACGATAC
 AGTGCCTTGGCAAAGTTAAGTGAAGAAAAGCAAGCCTTAATGCCTATAAGTCCAGGCAAAAAAA
 AAAAGAAAAAAAAAAAAAA

>HZFH

CACGCCCGCTTCGCCAGGGCGAGTGCCTGGCGAGAGGCCACCAGCACCTCCAAGGAGTCGCTG
 GCAGGGAAACAAGCCGCCAACGCCGCTCCCTGCACAAGGTTCTGAAACCAGCTGGAGGAGTTGCTGAGC
 GACATGAAGGCCGACGTGACCCGCCAGCCAGCACGCTGCCCAGTACCCCCCATCGCAGCCCG
 CTTCAAGATGTCGAGCGCAGCATCCTCAGCCGCTGGCCAGCAAGGGCACGGAGCCTACCCCCACA
 CGGGCCTACCCGCCGGTCCCTACGCTACACCTCCGGGTACGGGGCGGCTTCAGCGCCGCACCC
 GTAGGGGCCCTGGCCGCCAGGCGCCAATTACAGCCAGATGCCTGCAGGGTCTTCACTCACAGCC
 GCCACCAACGGCCCTCCAGTGTGAAGAAGGAGAAGGAAATGGTGGGGCATTGGTGTAGAC
 GGGCTGGATCGGAAGGAGCCCCGAGCCGGGAGGTGATCTGTATAAGCAGAC

Figure 6 (continued)

>IKAP

CTCAAAGAAGGCAGTCGCTGGAGGACCTGGCCCTCCTGGAGGCAGTGAGTGAAGTGGTGCAGAAC
 ACTGAAAACCTGAAAGATGAAGTATAACCATATTTAAAGGTACTCTTCTTTGAGTTGATGAA
 CAAGGAAGGAAATTACAGAAGGCCCTTGAAGATAACGCTGAGTTGATGAAAGGTCACTCCAGAA
 ATTTGGACTCTTACTTACCAAGCAGAATTCACTACCCCCGGTTCTAGGTCCAATCTACTGCAAAT
 AGTATCATGGCATCTTATCAGCAACAGAAAGACTTCGGTTCTGATGCTGAGCTTTTATA
 CCACCAAAGATCAACAGAAGAACCCAGTGGAAAGCTGAGCCTGCTAGAC

>IMPD2

GACTTCTCATTCTCCCTGGGTACATCGACTTCAGTGAGACCAGGTGGACCTGACTCTGCTCTG
 ACCAAGAAAATCACTCTTAAGACCCCAGTGGTTCTCTCCATGGACACAGTCACAGAGGCTGGG
 ATGGCCATAGCAATGGCGCTTACAGGCGGTATTGGCTTATCCACCACAACGTACACCTGAATT
 CAGGCCAATGAAGTTCGGAAAGTGAAGAAATATGAACAGGGATTCACTCACAGACCCGTGGTCTC
 AGCCCCAAGGATCGCGTGCGGGATGTTTTGAGGCCAAGGCCGGATGGTTCTGCGGTATCCA
 ATCACAGACACAGGCCGGATGGGAGCCGCTTGGTGGCATCATCTCCCTCAGGGACATTGATT
 CTCAAAGAGGAGGAACATGACTGTTCTGGAAGAGATAATGACAAAGAGGAAAGACTTGGTGGTA
 GCCCCTGCAGGCATCACACTGAAGGAGGAAATGAAATTCTGCAGCGCAGCAAGAAGGGAAAGTTG
 CCCATTGTAATGAAGATGATGAGCTTGTGGCATCATTGCCGGACAGACCTGAAGAAGAATCGG
 GACTACCCACTAGCCTCAAAGATGCCAAGAACAGCTGCTGTGGGGCAGCCATTGGCACTCAT
 GAGGGATGACAAGTATAAGGCTGGACTTGCTGCCAGGCTGGTGGATGTTGACTCT
 TCCCAGGGAAATTCCATCTTCCAGATCAATATGATCAAGTACATCAAAGACAAATACCTAATCTC
 CAAGTCATTGGAGGCAATGTGGTCACTGCTGCCAGGCCAGGCAAGAACCTCATTGATGCAGGTGTGGAT
 GCCCTGCGGGTGGGCATGGGAAGTGGCTCATCTGCATTACGCAGGAAGTGCCTGGCCTGTGGGGCG
 CCCCAAGCAACAGCAAGTGTACAAGGTGTAGAGTGCAGGCCAGGCTGGTGTCCGGTATTGCT
 GATGGAGGAATCCAAAATGTGGGTATTTGCGAAGGCCCTGGCCCTACAGTCATG
 ATGGGCTCTCTCCTGGCTGCCACCAACTGAGGCCCTGGTGAATACTCTTCCGATGGGATCCGG
 CTTAAAGAAAATATCGCGGTATGGTTCTCGATGCCATGGACAAGCACCTCAGCAGGCCAGAACAGA
 TATTTCACTGAGCTGACAAAATCAAAGTGCAGGCCAGGAGTGTCTGGCTGTGCAGGACAAAGGG
 TCAATCCACAAATTGTCCCTACCTGATTGCTGCCATCCAACACTCATGCCAGGACATTGGTGC
 AAGAGCTGACCCAAAGTCCGAGCCATGATGACTCTGGGAGCTTAAGTTGAGAAGAGAACGTCC
 TCAGCCCAGGTGGAAGGTGGCGTCCATAGCCTCATTGATGAGAAGCGGCTTTTC

>KPNA2

GCTTGGGCACTCACTAACATTGCTTCTGGGACATCAGAACAAACCAAGGCTGGTAGATGGAGGT
 GCCATCCCAGCATTCTCATTCTGTGTTGGCATCTCCCCATGTCACATCAGTGAAACAGCTGTCTGG
 GCTCTAGGAAACATTGCAAGGTGATGGCTCAGTGTCCGAGACTTGGTTATTAAAGTACGGTGCAGTT
 GACCCACTGTTGGCTCTCCTGCAAGTCTCTGATATGTCATCTTAGCATGTGGTACTTACGTAAT
 CTTACCTGGACACTTTCTAATCTTGCCTGCCAACAGAACATCTGCACCCCGATAGATGCTGTTGAG
 CAGATTCTCCTACCTTAGTTGGCTCTGCATCATGATGCCAGAACAGTGTAGCAGATACCTGC
 TGGGCTATTCTACCTTACTGATGGTCAAATGACGAAATTGGCATGGTGGAAAACAGGAGTT
 GTGCCCAACTTGTGAAGCTCTAGGAGCTCTGAATTGCCAATTGTGACTCTGCCCTAAGAGCC
 ATAGGGAATATTGTCACTGGTACAGATGAAACAGAACACTCAGGTGTGATTGATGCAGGAGCACTCGCC
 GTCTTCCAGCCTGCTACCAACCCAAAACATCACATTGAGAACAGCTACGTGGACAATGTCA
 AACATCACAGCCGGCGCCAGGACAGATAAGCAAGTGTGAATCATGGATTAGTCCCATTCCCT
 GTCAGTGTCTCTCTAAGGAGATTAAAGACACAAAGGAAGCTGTGGGCCGTGACCAACTAT
 ACCAGTGGTGGAACAGTGTGAACAGAACAGATTGTGACCTTGTACTGTGGCATAATAGAACCGTTGATG
 AACCTCTTAACGCAAAAGATACCAAGATTATTCTGGTTATCCTGGATGCCATTCAAATATCTT
 CAGGCTGCTGAGAAACTAGGTGAAACTGAGAAACTTAGTATAATGATGAGAAGATGTGGAGGCTTA
 GACAAAATTGAGCTCTACAAACCATGAAAATGAGTGTGATGAGGCTCTGTTAAGCTTAATT
 GAGAAGTATTCTGAGAGGAAGAGATCAAAACGTTGATCAGGAAACTACCTCTGAAAGGC
 TACACTTCCAAGTTCAAGGATGGGCTCTGGACCTTAACCTT

Figure 6 (continued)

>KPNB1

TGGCAGCTGTGGCTTAGTGGAGACTGTGCCGTGCCCTGCAATCCAACATCATACTTTCTGT
 GACGAGGTGATGCAGCTGCTCTGGAAAATTGGGAATGAGAACGTCACAGGTCTGTGAAGCCG
 CAGATTCTGTCACTGTTGGTATATTGCCCTGCTATTGGAGGAGGTTAAAAAATACTTAGAG
 GTTGTATTGAATACTCTCAGCAGGCCTCCCAGCCAGGTGGACAAGTCAGACTATGACATGGTG
 GATTATCTGAATGAGCTAAGGGAAAGCTGTTGGAAGCCTATACTGGAATCGTCCAGGGATTAAG
 GGGGATCAGGAGAACGTACACCCGGATGTGATGCTGGTACAACCCAGAGTAGAATTATTCTGTCT
 TTCATTGACCACATTGCTGGAGATGAGGATCACACAGATGGAGTAGTAGCTTGTGCTGGACTA
 ATAGGGACTTATGTACAGCTTGGAGGATGTACTGAAATTAGTAGAAGCTAGGCCAATGATC
 CATGAATTGTTAATGAGGGGGAGATGAAAGACTAACAAAGCAAACCTTGCTACATGGCA
 ACAAAAGAACTGAGGAAACTGAAGAACCAAGCT

>Ku70

AAGACCCGGACCTTAATACAAGTACAGGCGGTTGCTTCTGCCCTAGCGATACCAAGAGGGTCTCAG
 ATCTATGGGAGTCGTCACTTAACTGGAGAACAGAGGAAACAGAACAGCTAAAACGGTTTGATQAT
 CCAGGTTGATGCTCATGGGTTCAAGCCGGTGGTACTGCTGAAGAAACACCATTACCTGAGGCC
 TCCCTGTCGTGACCCAGAGGAGTCGCTGGTATTGGGAGCTCACCCCTGTCAGTGCCTGCTC
 ATCAAGTGTCTGGAGAAGGAGGTTGCAGCATTGTCAGATACACACCCCGCAGGAACATCCCTCCT
 TATTTGGCTTGGCACAGGAAGAGTGGATGACCAGAAAATTCAAGGTGACTCCTCCA
 GGCTTCCAGCTGGCTTTTACCCCTTGCTGATGATAAAAGGAAGATGCCCTTACTGAAAAAAATC
 ATGGCAACTCCAGAGCAGGTGGCAAGATGAAGGCTATCGITGAGAAGCTCGCTCACATACAGA
 AGTGACAGCTTGAGAACCCGTGCTGCAGCAGCAGTCAAGAACCTGGAGGCCTGGGCTTGGAT
 TTGATGGAGCCGAAACAAGCAGTGGACCTGACATTGCCAAGGTTGAAGCAATGAATAAAAGACTG
 GGCTCTGGTGGATGAGTTAACGGAGCTGTTACCCACCAGATTACAATCCTGAAGGGAAAGTT
 ACCAAGAGAAAACAGATAATGAAGGTTCTGGAAGCAAAAGGCCAAGGTGGAGTATTAGAAGAG
 GAGCTGAAGACCCACATCAGCAAGGGTACGCTGGCAAGTTCACTGTGCCATGCTGAAGAGGCC
 TGCCGGCTTACGGCTGAAGAGTGGCTGAAGAAGCAGGAGCTGCTGGAGGCCACCAAGCAC
 TTCCAGGAC

>LUC7B1

GTCGACGCCGTGCCGTGACGCCGCCGGTTCTGCAAAGGCAGAAAAGTACATGAGTTAAAT
 GAAAAAAATAGGAAAACCTCCTGCTAAAGCCGAAACAGCTAGGGCTGAAGGTAATGTGGATGAATCC
 CAGAAGATTCTTATGGAAGTGGAAAAGTTCTGCGGAAGAAAAAGAAGCTGAGGAAGAATACAGA
 AATTCCATGCCTGCATCCAGTTTCAAGCAGCAGGAAAGCTGCGTGTGCGAGGTCTGCTAC
 CTTGGTCTCCATGACAATGACCGTCGCGCTGGCAGACCACTTCGGTGGCAAGTTACACTGGGTT
 ATTCAAGATCCGAGAGAACGCTGATCAGTTGAGGAAAAGTGTGCTGAAAGCAGGAGAACAGAAAAT
 CAGGATCGCTTGAGGAGGGAGAGGGAGGGGAGCGCTGAGCAGGAGGTGGGATCA
 AGAACCGAGAGATCCGAGGAGGTACGCTCCGGGATCGCGTGGAGGCGGTCAGATCTACCTCC
 CGAGAGCGACGGAAATTGTCGGGCTCCGGTCCCGAGATAGACATCGCGCCACCGCAGCGTTCC
 CGGAGCCACAGCCCCGGACATCGTGGGCTTCCGGGACCGAAGTGCAGAAATACAAGTCTCCAGA
 GAGCGGGCATCCAGAGAGGGAGTCTGGAGAGCGGGGGCGGAGCGAGCGAGGGCCCCCGGACTGGAGG
 CTTGAGAGCTCCAACGGGAAGATGGCTTACGGAGGTCAAGAGAGAACGGAGGCCGGAGATC

>MAGEH1

GCATCCTCCCTAGGACTGCTGTAAGCTTGTAGCAGGAGACATGCCCTGGGAGCAAAG
 AGTCGGCCGCCGTAATGCGAGGCCGAGAACGCAACAATCGAAAATCCAGGCC
 GAGGCCCTCGAGACCCCTATGGCCGCTCTGTGGTAGCGAGCACCCCGAAGACGACCTGAGCGGC
 CCCGAGGAAGACCCGAGCACTCCAGAGGAGGCCTTACCAACCCCTGAAGAAGCCTCGAGCACTGCC
 CAAGCACAAGCCTTCAGTCCCCGGAGCAATTTCAGGGCACCAAGAAAAGTCTCCTGATGTCT
 ATATTAGCGCTCATCTCATGGCAACAGCGCAAGGAAGCTCTGGTCTGAAAGTGCTGGGG
 AAGTTAGGAATGCGAGCCTGGACGTCAAGCAGCATCTTGGAGATCCGAAGAACGATCGTACAGAA
 GAGTTTGCGCAGAGGGTACCTGATTATAAACCGGTGCCCGTAGCAGTCCGGTGGAGTATGAG
 TTCTCTGGGGCCCCGGAGCACGTTGAATCGAGCAAACGTGAAAGTCATGCAATTGTGGCAAGG
 GTTGTGTAACCGATGCTCTAAAGACTGGCCTTGTAAATTAGACTGGGATTGGACGATGAGCAGAG
 GTTGTGAGGCTATCCTCAATTAGGTGCTAGGGTTATTCCGCCCCCT

Figure 6 (continued)

>MAP11c3
CAGCGGGAGCTCGCCGACCGCTGTAAAGGAGGTACAGCAGATCCGGACCAGCACCCCAGCAAA
ATCCCGGTGATCATCGAGCGTACAAGGGTGAGAAGCAGCTGCCGTCTGGACAAGACCAAGT
TTGGTCCCGGACCATGTCAACATGAGCGAGTTGGTCAGAGATCATCCGGCGCCGCTGCAGCTGAAC
CCCACCGAGGCCTCTCCTGCTGGTGAACCAGCACAGCATGGTGAGTGTGTCCACGCCATCGCG
GACATCTACGAGCAGGAGAAAGACGAGGACGGCTTCTCTATATGGTCTACGCCCTCCCAGGAAACC
TTCGGCTTC
>mHAP1
CCGAAAGAGCAGGTGCAGAGCGGTGCCGGAGACGGGACAGGGTCGGGGACCCAGCAGCAGGCACC
CCCACGACCCAGCCTGCAGTTGGTCCCGCTCCGGAGCCCTCGCCGGAGCCAAACCTGCTCAGCG
CAGGGAACCGGGTCCGGACAAAAATCAGGATCCCAGCAAGACAGGAAGCTTTGTGCGGTCCATG
ATCATTGGTATTGGACGCACCATGGACCCGCTACGTATTCCAGGGCCTTACGGTCCCCGGCC
ACTGGCCTGGGCACTGAAAGGCCAGGGAACTGGAAGACACCAGCCGTAACATCGGCCGGAGG
CCCGCGTGTCCGGCTTGAGCGTGCAGCGTTATTGAGAGCTGCAGGAAGCGTTGTCTTAAT
CCACCAACCCACGAAGAAGATCACCGAAGATGATGTCAAAGTGTGTTGCTGGAAAGAGAAA
GAACGGGACCTGAACACAGCCGGATCGGCCAGTCCCTGGTGAACACAGAACAGTGTCTGATG
GAGGAGAATAATAAGCTGAAACCATGCTGGCTCAGCCAGGGAGGAGATTTACATCTCCGGAAG
CAGGTGAACCTGCAGGAGATGACCTTCTCAGCTCTACTCAGACTCTGATGACGATGATGAGGAA
GACGAGGAAGACGAGGAAGAGGGCGAAGAGGGAGGAACGAGAAGGACAGAGGATCAAGACCCAGCAG
CACGACCACCCCTATGGTCCCCAAGCCACACCTAAGGCTGAGACAGCCACCGCTGCCACAG
CTGAAACCTGAGCAGGCTCAGGCTCTGGAGGAAGAGAACGACACCTGGAGAGGAGGCC
TCCACCTGACAACCTGGAGGACGAAGAGCAGATGCTCATTCTGGAATGTTGGAGCAGTTCTCT
GAAGCCAGCCAGCAGATGGCAGAGCTATCGGAAGTGTGTTGAGGCTGGAAGGCTATGAGAGG
CAGCAGAAAGAGATCACTCAGCTGCAGGCCAGATCACCAGCTACAAACAGCGTGTGTCAGTCTTAT
GGGGCCCGAGCGAGGAAACTGCAGCAGATGCTGGCTCAGAGAACGGGATCCACTCGGAGAGCCTG
CGAGCTGGCTCCTACATGCAGGATTATGGGAGCAGGCCCTCGTGAACGCCAGGAGGATGGGAAAGAGT
CATGCCAGCGCTCCTCCATGCCCGCAGGCTCTGTCACCCACTATGGATAAGTGTGCTCTGGAT
GCACTTCAAGTTCCAGAGACACTGGCTGAGGAGCTCCGAACATCTGTGAGGAAGTTCATCACT
GACCTGCGTATTCATGGAGGAGACGTGACACTCACTGCAGGGAGGGCGTAAGAAGGAGCAGAGG
GCGATGCCACCCCCACCGCTCA
>mp53
GTCACCGAGACCCCTGGCCAGTGGCCCCCTGCCACTCCATGGCCCCCTGTCATCTTGT
CCTCTCAAAAAAACTTACCAAGGCAACTATGGCTTCCACCTGGCTCTGCACTGGACAGCC
AAGTCTGTTATGTGCACGTACTCTCTCCCTCAATAAGCTATTCTGCCAGCTGGCGAAGACGTGC
CCTGTGCAGTTGTGGTCAGGCCACACCTCCAGCTGGAGCCGTGTCGCCATGGCCATCTAC
AAGAAGTCACAGCACATGACGGAGGCTGAGACGCTGCCACCATGAGCGCTGCTCCGATGGT
GATGGCTGGCTCCTCCCCAGCATCTTATCGGGTGGAAAGGAAATTGTATCCGAGTATCTGGAA
GACAGGCAGACTTTGCCACAGCGTGGTACCTTATGAGCCACCCGAGGCCGCTCTGAGTAT
ACCACCATCACTACAAGTACATGTGTAATAGCTOCTGCATGGGGGATGAACCGCCGACCTATC
CTTACCATCATCACACTGGAAGAGACTCCAGTGGAACCTTCTGGACGGGACAGCTTGAGGTTCGT
GTTGTGCTGCCCTGGGAGAGACCGCCGTACAGAAGAAATTCCGAAAAAGGAAGTCCTT
TGCCCTGAACTGCCAGGGAGCGCAAAGAGAGCGCTGCCACCTGCACAAGGCCCTCTCCCCG
CAAAAGAAAAAAACCACTTGATGGAGAGTATTCACCCCTAAGATCCGCGGGCGTAAACGCTTCGAG
ATGTTCOGGGAGCTGAATGAGGCTTAGAGTTAAAGGATGCCATGCTACAGAGGAGTCTGGAGAC
AGCAGGGCTCACTCCAGCTACCTGAAGACCAAGAAGGCCAGTCTACTTCCGCCATAAAAAAAACA
ATGGTCAAGAAAGTGGGGCCTGACTCAGAC

Figure 6 (continued)

>NAG4

CGAGACCGGGTGGAGAATGAGGCAGAAAAAGATCTCCAGTGTACGCCCTGTGAGATTAGACTTG
CCTCCTGAGAACGCTCTCACAGCTTTAGCAAACAAGAAGAAGTAGAACAGACACCCCTCAA
GAAGCTTGAATCAACTGATGAGACAATTGAGAGAAAAGATCCAAGTGCTTCTTCATTCCT
GTGACTGATTTATTGCTCTGGCTACTCCATGATCATTAAACACCCAATGGATTTAGTACCATG
AAAGAAAAGATCAAGAACAAATGACTATCAGTCATAGAACAACTAAAGGATAACTTCAAACAAATG
TGTACTAATGCCATGATTTACAATAAACAGAGACCATTATTATAAGCTGCAAAGAACGCTGTTG
CACTCAGGAATGAAAATTCTAGCCAGGAAAGAACATTGAGCCTGAAGCAGAGCATAGACTTCATG
GCTGACTTGCAGAAAACTCGAAAGCAGAAAGATGGAACAGACACCTCACAGAGTGGGGAGGACGGA
GGCTGCTGCCAGAGAGAGAGAGGACTCTGGAGATGCCGAAGCACACGCCCTCAAGAGTCCCAGC
AAAGAAAATAAAAGAACAAAGATATGCTGAAAGATAAGTTAAAAGCAATAATTAGAGAGA
GAGCAGGAGCAGCTGACCGCATCGTAAGGAATCTGGAGGAAAGCTGACCAGGCGGCTGTGAAC
AGTCAGTGCAGATTGAAAGAACCCAGATGGAACACGACGTTGGGACTCTCCATCCTGTG
GATCCCATTGTAGGAGAGCCAGGCTACTGCCCTGTGAGACTGGGAATGACAACGGAAAGACTTCAG
TCTGGAGTGAATACTTGCAGGGGTTCAAAGAGGATAAAAGGAACAAAGTCACTCCAGTGTATAT
TTGAATTATGGGCCCTACAGTTCTATGCACCGCATTATGACTCCACATTGCAAATATCAGCAAG
GATGATTCTGATTTAATCTATTCAACCTATGGGAAGACTCTGATCTCCAAAGTGATTTCAGCATIC
CATGAGTTTGGCCACGTGCCAAGATTATCCGTATGTCATGGCAGATAGTTACTGGATGTTTA
ACAAAAGGAGGGCATTCCAGGACCTACAAGAGATGGAGATGTCATTGCCCTGAAGATGAAGGCCAT
ACTAGGACACTTGACACAGCAAAAGAACATGGAGATTACAGAACAGTAGAGGCCACCAGGGCTTGGAC
TCCAGTACTCAAGACAGGCTCATAGCGCTGAAAGCAGTAACAAATTGGCGTTCCAGTTGAAGTT
TTGACTCTGAAAGAGCTGAAATATTCCAGAAAGAAACTTGTGAGACCCAGATTGCTCAGGGAA
CTCCAGGAAGCCAGAATGAAACGTTGAGCACCAGACCCCCCTCCGAACATGATCTGTCCTTGGGT
CCCTCATACAGAGAAATGCATCTGCTGAACAAGTGACCAATAATCTTAAAGAACCTTGACAGCAA
GTAACCTCAGGTGATATCGTAAGCACGTATGGAGTTGAAAGAACACTGAAAGAACCTAAAAAGACGGATGTT
CCCGTCATGGAAAACAACCTTGTGGATTGACAGAACACTGAAAGAACCTAAAAAGACGGATGTT
GCTGAGTGTGGACCTGGTGGAAAGT

Figure 6 (continued)

>NEFL

CTCTCTCCCTGCTCTCTCCACCGCCGCCGGGGAGCCACCGGCCGCC
 ACCATGAGTTCTCAGCTACGAGCGTACTACTCGACCTCTACAAGCGGCCTACGTGGAGACG
 CCCGGGTGCACATCTCCAGCGTGCAGCGCTACAGCACCGCACGCTCAGCTTACTCCAGCTAC
 TCGGCGCCGGTGTCTCCTCGCTGTCCGTGCCGCCAGCTACTCCAGCTCTGGATCGTTGATG
 CCCAGCTGGAGAACCTCGACCTGAGCCAGGTAGCCGCATCAGCAACGACCTCAAGTCCATCCGC
 ACGCAGGAGAACGGCGAGCTCCAGGACCTCAATGACCGCTCGCCAGCTTCATCGAGCGCGTGCAC
 GAGCTGGAGCAGCAGAACAAAGTCCCTGGAAGCCGAGCTGCTGGTGTGCCAGAAGCACTCCGAG
 CCATCCCCTCCGGCGCTGTACGAGCAGGAGATCCGCCACCTGCCCTGGCGGGAAAGATGCC
 ACCAACGAGAACAGCGCTCCAGGGCGAGCGCGAAGGGCTGGAGGAGACCTGCGCAACCTGCAG
 GCGCGCTATGAAGAGGAGGTGCTGAGCCCGAGGACGCCAGGGCCGGCTGATGGAAGCGCGCAA
 GGCGCCACGAGGCCGCGCTCGCTCGCCCGAGCTCGAGAACGCCATCGACAGCTTGATGGACGA
 ATCTCTTCTGAAGAACAGAACAGAGGAGATCGCCGAACCTGAGGCCAGATCCAGTACGCG
 CAGATCTCCGTGGAGATGGACGTGACCAAGCCGACCTTCCGCCGCTCAAGGACATCCGCCG
 CAGTACGAGAACAGCTGGCCGCAAGAACATGCGAGAACGCTGAGGAATGGTTCAAGAGCCCTTCACC
 GTGCTGACCGAGAGCCCCGCAAGAACACCGACGCCGTGCGGCCCAAGGACGAGGTGTCGAG
 AGCCGTCGTCTGCTCAAGGCAAGACCCCTGGAATCGAACGATGCCGGGGCATGAATGAAGCGCTG
 GAGAAGCAGCTGAGGAGCAAGCAGAACGCCACATCGCGCTATGCAGGACACGATC
 AACAAATTAGAAAATGAATTGAGGACCAAAAGAGTGAATGGCAGCATACTAAAAGAACATACAA
 GACCTCTCAACGTGAAGATGGCTTGATATTGAGATTGAGCTACAGGAAACTCTTGGAGGC
 GAGGAGACCCGACTCAGTTCAACCAGCTGGGAAGCATAACCACTGGTACTCTCCAGAGCTCCAG
 GTCTTGGCGATCTGCCCTACGGCGTTTACAGACCGACTCCCTATCTGATGTCACCCGCTCCTC
 CGTCCCTACTACACCAGCCATGTCCAAGAGGAGCAGATCGAAGTGGAGGAAACCATTGAGGCTG
 AAGGCTGAGGAACCCAAGGATGAGCCCCCTCTGAAGGAGAACGCCAGGGAGGAGAACAG
 GAAGAGGCCGAGGAAGAGGGAGGAGCTGAAGAGAACAGGAGGAGAACAGGAGAACAG
 AAAGAAGAACAGAACAGGAGGTGAAGGTGAAGAACAGGAGAACACAAAGAACAGTGAAGAGGAGGAG
 AAGAAAGTTGAAGGTGCTGGGAGGAACAAGCAGCTAACAGAACAG
 >p53

ATGGAGGAGCCGAGTCAGATCCTAGCGTAGGCCCCCTGTAGTCAGGAAACATTTAGACCTA
 TGAAACTACTTCTGAAAACAACGTTCTGCCCCCTGCCGCCAGCAATGGATGATTGATG
 CTGCCCCGGACGATATTGAACAATGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCAGAATG
 CCAGAGGTGCTCCCCCTGTCATCTCTGCCCCCTGCCAGCAGCTCCTACACCGGGCCCTGCCACCGCC
 CCTCTGGCCCCCTGTCATCTCTGCCCCCTGCCAGAAAACCTACCAAGGGCAGCTACGGTTCCGT
 CTGGGCTCTTGCAATTGGACAGCCAAGTCTGTGACTTGCACGTACTCCCTGCCCTAACAAAG
 ATGTTTGCCAACCTGGCCAAGACCTGCCCTGTGAGCTGTGGTTGATTCCACACCCCGCCCGC
 ACCCGCGTCCGCGCCATGGCCATCTAACAGCAGTCACAGCACATGACGGAGGTGTGAGGCGCTGC
 CCCCACCATGAGCGCTGCTCAGATAGCGATGGCTGGCCCCCTCCAGCATCTTATCCGAGTGGAA
 GGAAATTGCGTGTGGAGTATTGGATGACAGAACACTTTGACATAGTGTGGTGGTGCCTAT
 GAGCCGCTGAGGTGGCTCTGACTGTACCAACCATCCACTACAACATGTGTAACAGTCCCTGC
 ATGGGGCGCATGAACCGGAGGCCATCTCACCATCATCACACTGGAAAGACTCCAGTGGTAATCTA
 CTGGGACGGAACAGCTTGAGGTGGCTGTTGTGCCCTGTCCTGGGAGAGACCGGGCGCACAGAGGAA
 GAGAATCTCCGCAAGAACAGGGAGCCTACCCAGGAGCTGCCCTGGGAGAGACCGGGCGCACAGAGGAA
 CCCAACACACCAGCTCTCCCCAGCAAAGAACAGAACACTGGATGGAGAATATTCACCCCTT
 CAGATCCGTGGCGTGAGCGCTCGAGATGTTCCGAGAGCTGAATGAGGCCCTGGAACCTAAGGAT
 GCCCAGGCTGGGAAGGAGCCAGGGGGAGCAGGGCTCACTCCAGCCACCTGAAGTCCAAAAAGGGT
 CAGTCTACCTCCGCCATAAAACTCATGTTCAAGACAGAACAGAAGGGCTGACTCAGAC

Figure 6 (continued)

>PFN2
 GCTCCTGCCGTCCCGCTGCAGTGCAGAGGGCTCGAAGATGGCCGTTGGCAGAGCTACGTGGAT
 AACCTGATGTGCCATGGCTGCTGCCAGGAGGCCATTGTCGGCTACTGCAGGCCAAATACGTC
 TGGGCAGCCACGGCCGGGGCGTCTTCAGAGCATTACGCCAATAGAAATAGATATGATTGTAGGA
 AAAGACCGGGAAAGGTTCTTACCAACGGTTGACTCTGGCGGAAGAAATGCTCAGTGATCAGA
 GATAGTCTATACTCGATGGTACTGCACAATGGACATCCGGACAAAGACTCAAGGTGGGAGCCA
 ACATACAATGTGGCTGCGAGAGCTGGTAGAGTCTGGTCTTGTAAATGGAAAAGAAGGGTC
 CATGGAGGGCGGATTGAATAAGAAGGCATACTCAATGGCAAAATACTTGAGAGACTCTGGGTT
 >PIASy (bait)
 CTGGTGGAGGCCAAAAACATGGTGTGAGTTTCGAGTCTCCGACCTTCAGATGCTCTGGTTTC
 GTGGGCCGGAGTAAGAGTGGACTGAAGCACGGACTCGTACCCAGGGCCCTCAGCTGGTGCAGTT
 GACTGTAGCCCTGAGCTGTCAGAAAGATCAAGGAGCTGTACGAGACCCGCTACGCCAAGAAC
 TCGGAGCCTGCCCCACAGCCGACCGGCCCCCTGGACCCCTGACCATGCACCTCACGACCGG
 GCCGGCGCTGTGCCAGGACTCCGCTGGCAGGCCAATATTGACTACCCGTGCTACGGAAAG
 TACTTAAACGGACTGGGACGGTTGCCGCCAAGACCCCTCAAGCCAGAAGTCCGCTGGTGAAGCTG
 CCGTTCTTAATATGCTGGATGAGCTGCTGAAGCCCACCGAATTAGTCCCACAGAACACGAGAAAG
 CTTCAAGGAGAGCCCGTGCATCTCGCATTGACGCCAAGACAGGTGGAGTTGATCCGGAACCTCAGG
 GAAC TGCAAGCCCGAGTTAAAGCCGTGCAGGTGTCCTGAGAATCTGTTACTCAGACACCAAGCTGC
 CCTCAGGAGGAGCCAGTACCCGCCAACATCGCTGTGAAGGTCAACCACAGCTACTGCTCCGTC
 GGCTACTACCCCTCCAATAAGCCGGGTGGAGGCCAAGAGGCCGTGCCGCCCATCAACCTCACT
 CACCTCATGTACCTGTCTCGGCCACCAACCGCATCACTGTCACCTGGGGAACTACGGCAAGAGC
 TACTCGGTGGCCCTGTACCTGGTGCAGCTGACCTCATCGGAGCTGCTGCAGAGGCTGAAGACC
 ATTGGGTTAAAGCACCCGGAGCTGTGCAAGGCACTGGTCAAGGAGAAGCTGCGCCTTGATCCTGAC
 AGCGAGATGCCACCACCGGTGTGCGGGTGTCCCTCATCTGTCGCTGGTGAAGATGCGGCTCTCC
 GTGCCCTGCCGGCAGAGACCTGCGGCCACCTGCACTGCTTCGACGCCGTCTTACCTGAGATG
 AACGAGAAAGGCCACCTGGATGTGCCCGTGTGCAGAAGCCAGGCCACCGACTCATC
 ATCGACGGGCTCCTCTCGAAGATCCTGAGCGAGTGTGAGGACGCCAGGAGATCGAGTACCTGGTG
 GACGGCTCGTGGTGCCTCGATCCCGCGCGAAAAGGAGCGCAGCTGCAGGCCGCCAGGGCGCCATCCTC
 GTGCTGGGCCCTCGGACGCCAATGGCTCCTGCCGCCAGCGTCAACGGGAGCGGTGCCCTG
 GGCAGCACGGGTGGCGGGCCCGGTGGCAGGATGGAGAATGGGAAGGCCGGCGCCATGTGGTG
 GACCTCACGCTGGACAGCTCATCGTCTCGGAGGATGAGGAGGAGGAGGAAGAGGAGGAGGAAGAC
 GAGGACGAAGAGGGCCCCCGGCCAACCGCCGCTGCCCTTCCAGAAGGGCTGGTGCGGCCCTGC

Figure 6 (continued)

>PIASy (prey)

CTGGTGGAGGCCAAAACATGGTATGAGTTTCGAGTCTCGACCTTCAGATGCTCTGGTTTC
 GTGGGCCGGAGTAAGAGTGGACTGAAGCAGCAGCTCGCACCAAGGGCCCTCAGCTGGTGAGTT
 GACTGTAGCCCTGAGCTTTCAAGAAGATCAAGGAGCTGTACGAGACCCCTACGCCAAGAAC
 TCGGAGCCTGCCACAGCCGACCCGGCCCTGGACCCCTGACCATGCACCTCCACCTACGACCG
 GCCGGCGCTGTGCCAGGACTCCGCTGGCAGGCCAAATATTGACTACCCCGTGTCTACGGAAAG
 TACTTAAACGGACTGGGACGGTTGCCGCCAAGACCCCTCAAGCCAGAAGTCCGCTGGTGAAGCTG
 CCGTTCTTAATATGCTGGATGAGCTGTGAAGCCCACCGAATTAGTCCCACAGAACAAACGAGAAAG
 CTTCAAGGAGAGCCCGTGCATCTTCGATTGACGCCAAGACAGGGAGTTGATCCGGAACTCCAGG
 GAACTGCAGCCCCGAGTTAAAGCCGTGCAGGTGCTGAGAACTGTACTCAGACACCAGCTGC
 CCTCAGGAGGACCAGTACCCGCCAACATCGTGTGAAGGTCAACCACAGCTACTGCTCCGTCCCC
 GGCTACTACCCCTCCAATAAGCCGGGGTGGAGGCCAAGAGGCCGTGCCGCCATCAACCTCACT
 CACCTCATGTACCTGTCCCTGCCACCAACCGCATCTGTCACCTGGGGAACTACGGCAAGAGC
 TACTCGGTGGCCCTGTACCTCGTGCAGCTGACCTCATCGGAGCTGCTCAGAGGCTGAAGACC
 ATTGGGGTAAAGCACCCGGAGCTGTCAAGGCACTGGTCAAGGAGAAGCTGCGCCTTGATCCTGAC
 AGCGAGATGCCACCACCGGTGTGCGGGTGTCCCTCATCTGTCCGCTGGTGAAGATGCCGCTCTCC
 GTGCCCTGCCGGCAGAGACCTGCQCCCACCTGCAGTGCTTGACGCCGTCTTCTACCTGCAGATG
 AACGAGAAGAACCCACCTGGATGTGCCCCGTGTGCGACAAGCCAGCCCCCTACGACCCAGCTCATC
 ATCGACGGGCTCTCTCGAAGATCCTGAGCAGTGAGGACGCCAGGAGATCGAGTACCTGGTG
 GACGGCTGTGGTGCCTGATCCGCCGAAAAGGAGCGCAGCTGCAGCAGGCCAGGGGCCATCTC
 GTGCTGGGCCCTCGGACGCCAATGGCTCTGCCGCCAGCGTCAACGGGAGCGGTGCCCTG
 GGCAGCACGGGTGGCGGCCGGCCGGTGGCAGCATGGAGAATGGGAAGCCGGGCCGATGTGGTG
 GACCTCACGCTGGACAGCTCATCGTCTCGGAGGATGAGGAGGAGGAAGAGGAGGAGGAAGAC
 GAGGACGAAGAGGGCCCCGCCAACGCCGCTGCCCTTCCAGAAGGGCTGGTGCCGCCCTGC

>PLIP

GGGGAGATAATCGAGGGCTGCCCTACCGTGCTGCCGGAACCGAGAACAGAACGAGATGAGTGG
 CCCCTGGCCGAGATCCTGAGCGTGAAGGACATCAGTGGCCGGAAAGCTTTCTACGTCCATTACATT
 GACTTCAACAAACGTCTGGATGAATGGGTGACGCATGAGCCGCTGGACCTAAAGAAGATCCAGTC
 CCCAAGAAAGAGGCCAACGACCCCTAAGAACGGACTCCTGGGTCCCGTCTGGCTCTCAGAG
 AGAGAGCTGAAACGGAAGGTGGAGGTGGTTTACCAAGCAACTCCAGTGGCCAGGCCAGGACGGAAAGCGA
 GCCTCGGTTTCCCAGAATGGACCCGCCGTAGGGCAGTGGCAGGCCAGGACGGACGGAAAGCGA
 AAATCGAATTGTTGGCACTGATGAGGACTCCAGGACAGCTCTGATGGAATACCGTCAGCACCA
 CGCATGACTGGCAGCCTGGTGTCTGATCGAAGCCACGACATCGTACCCGGATGAAGAACATT
 GAGTCATTGAGCTGGGCCGACGCCCTCAAGCCGTGGTACTTCTCCCGTACCCACAGGAACCTC
 ACCACATTGCCGTCTCTACCTGTGCGAGTTCTGCCCTCAAGTACGGCCGTAGTCTCAAGTGTCTT
 CAGCGTCATTGACCAAGTGTGACCTACGACATCCTCCAGGAATGAGATTACCGCAAGGGCACC
 ATCTCCCTCTTGAGATTGACCGTAAGAACAAAGAGTTATTCCAGAACCTGTGTCTTGGCC
 AAGTGTCTCTTGACCATAAAGACACTGTACTATGACACAGACCCCTTCCCTCTACGTCTACGACA
 GAGTATGACTGTAAGGGCTCCACATCGTGGGCTACTCTCCAAAGGAGAAGAACGAGAC
 TACAATGTGGCCTGCATCTAACCTGCCCTACCGGCCGGCTACGGCAAGCTGCTGATC
 GAGTTCAGCTATGAACTCTCAAAGTGGAGGGAAAACAGGGACCCCTGAGAACGCCCTCAGAC
 CTTGGCCTCTATCTATCGAAGCTACTGGTCCAGACCATCCTGGAGATCCTGATGGGCTGAAG
 TCGGAGAGCGGGGAGAGGCCACAGATCACCATAATGAGATTAGTGAATCACCAGCATCAAGAAC
 GAGGATGTCATCTCACTCTGCAGTACCTCAATCTCATCAACTACTACAAGGGCCAGTACATCCTC
 TCCAAGTGTCTGCACTCCAAAGGACTGGAGCAAGAGGGGGAGTG

Figure 6 (continued)

>PTN

TTGAGTCAAAGGCAGGATCAGGTTCCCGCCTTCAGTCAAAAATCCCGCCAAGAGAGCCCCAGA
 GCAGAGGAAAATCAAAGTGGAGAGAGGGGAAGAAAGAGACCGAGTCAGTCATCCGTCCAGAAGGCG
 GGGAGAGCAGCAGCGGCCAAGCAGGAGCTGCAGCGAGCCGGTACCTGGACTCAGCGGTAGCAAC
 CTCGCCCTTGCAACAAAGGCAGACTGAGCGCCAGAGAGGACGTTCCAACTCAAAATGCAGGCT
 CAACAGTACCAGCAGCAGCGTCGAAAATTGAGCTGCCCTCTTGCATTCAACTGGCA
 GCTGTGGATACTGCTGAAGCAGGGAAAGAAAGAGAAACAGAAAAAAAGTGAAGAAGTCTGACTGT
 GGAGAATGGCAGTGGAGTGTGTGCCCACCACTGGAGACTGTGGCTGGGACACCGGAGGGC
 ACTCGGACTGGAGCTGAGTGAAGCAAACCATGAAGACCCAGAGATGTAAGATCCCCTGCAACTGG
 AAGAAGCAATTGGCGCGGAGTGCRAAATACCAAGTCCAGGCCCTGGGAGAATGTGACCTGAACACA
 GCCCTGAAGACCAAGAACCTGGAAAGTCTGAAGCGAGCCCTGACAATGCCGAATGCCAGAAGACTGTC
 ACCATCTCCAAGCCCTGTGGCAAACGTACCAAGCCAAACCTCAAGCAGAATCTAAGAAGAAGAAA
 AAGGAAGGCAAGAACAGGAGAAGATGCTGGAT

>PTPK

AGTAACATACATCAATGCTGCTTATGGACAGCTACAGGCAACCAAGCTGCTTCATCGTCACACAA
 TACCCCTGCCAAACACTGTAAAAGACTTCTGGAGATTAGTGTATGATTATGGCTGTACCTCCATT
 GTGATGTTAACGAAGTCGACTTGTCCCAGGGCTGCCCTCAGTACTGCCAGAGGAAGGGATGCTA
 CGATATGGCCCCATCCAAGTGGATGTATGTTCAATGGACTGTGATGTGATCAACCGGATT
 TTTAGGATATGCAATCTAACAGACACAGGAAGGTTATCTGATGGTCAACAGTTCACTGAGTACCTA
 GGATGGGCTTCTCATCGAGAAGTGCCTGGATCCAAAAGGTCAATTCTGAAACTGATACTTCAGGTG
 GAAAAGTGGCAGGAGGAATGCGAGGAAGGGGAAGGCCGACGATTATCCACTGCCAAATGGTGGC
 GGGCGAAGTGGCATGTTCTGCTATAGGCATCGTGTGAAATGGTGAACAGGCAAACATGGTGGAAAGCCCGGAGCAA
 GATGTTTCCATGCACTAAAGACACTGAGGAACAGCAAGCCAAACATGGTGGAAAGCCCGGAGCAA
 TACCGTTCTGCTATGATGTAGCTTGGAGTACCTGGAATCATCT

>SETBD1

AAGGCCCTCACCTCAGGACTAGGCATCAAGGATGAGGGAGACATCAAACAGGCAAGAAAGAGGAC
 ACTGACGACCGAAACAAGATGTCAGTAGTTACTGAAAGCTCTGAAATTACGGTTACAATCCTCT
 CCTGTGAAGCCTGAAAGGACTTCGCCGCCACCTAGTAAGACTAGTATGCATCAAAGCCGAAAGACTC
 ATGGCTTCTGCTCAGTCAACCCCTGATGATGTCTGACACTGTCCAGCAGCACAGAAAGTGAGGG
 GAAAGTGGGACCAGCCGAAAGCCACTGCTGGTCAGACTCGGCTACAGCGGTTGACAGTGTGAT
 ATCCAGACCATATCCTCTGGCTCTGAAAGGGATGACTTGTGAGGACAAGAAGAACATGACTGGTCCA
 ATGAAGCGTCAAGTGGCAGTAAAATCAACCCGAGGCTTGTCTTAAATCAACCCATGGGATTGCA
 ATTAAATCAACCAACATGCCCTCTGTTGACAAGGGGGAGAGCGCACCTGTTGTAAGAACACACCC
 CAATTCTATGATGGCGAGGAGTCTTGTACATATTGATGCCAAGCTTGAAGGCAACCTGGCCCG
 TACCTCAACCACAGTTGCAGCCCCAACCTGTTGTCCAGAAATGTCTTGTGGATACCCATGATCTT
 CGCTTCCCTGGTGGCCTTCTTGCAGCAAAGAATCCGGCTGGACAGAAACTTACTTGGGAC
 TACAACCTACGAGGTGGGCAGTGTGGAAGGAGCTACTCTGTTGCTGGGGCATTGAATGCA
 AGAGGACGTCTTCTT

Figure 6 (continued)

>SH3GL3

GTGGCCGGGCTGAAGAACGAGTCCACAAAGCCAGCCAGCTATTAGTAAAAATAAGTGGTGCT
 GAAGGAACTAAACTAGACATGAATTCTTGACATGGAAAGGAAAATAGATGTTACCAATAAAGTT
 GTTCAGAAATTCTTCAAAAACCCTGAATATCTTCAGCCAAATCCAGCATACAGAGCTAACGTA
 GGAATGCTGAACACTGTGCGAGATCCGAGGGCAGGTGAAGACCAACAGGATACCCGAGACGGAA
 GGCTTGCTGGGGACTGTATGCTGAAATACGGGAAGGAGCTCGGGGAAGGACTCCACCTTGGCAAT
 GCATTGATAGAAGTGGTGAATCCATGAAGCTAATGGTGAAGGAGACTCTCTTGATATTAAT
 GTAAAGCAAACTTTATTGATCCACTTCAGTACTACAAGATAAAAGATTAAAAGAGATCGGGCAT
 CACCTGAAAAGCTGGAAGGCCGCCCTGGATTACGATTATAAAAAGAACGAGTAGGTAAGATA
 CCAGACGAAGAAGTCAGACAAGCGGTAGAAAATTGAAGAGTCAGGAGTTGGCTGAAAGAAC
 ATGTTAACCTTTAGAAAATGATGAGAACAGTCAGCCAGTGGCTGTGTTAGAGGAGCA
 TTAGACTATCACAGACAGTCCACAGAGATTCTGCAGGAGCTGCAGAGCAAGCTACAGATGCGAATA
 TCAGCTGCATCCAGTGTCCCCAGACGAGAATACAAGCCAAGGCCGTGAAAAGGAGTTAGTGG
 CTCAATGGAGTTCCACCACCTCTGAGTGAAGACGACAGGCTAACATTCCATGGACCAGCCC
 TGCTGCGTGGTCTATGACTTGAGCCAGAAAACCAAGGAGAATTAGGATTAAAAGAAGGGAC
 ATCATACATTAACCAATCAAATAGATGAAAATGGTATGAAGGAATGATACACGGAGAATCGGGA
 TTCTCCCCATTAATTACGTGGAAGTGTGCGCTTACCTCAG

>SUMO-2

CGGCCCCGCGCACAGTTCGGCGGGAGAGCGCCGGGGCGAGAGCGTGACTCGCCCGCTCCGCGCT
 GCTTCCCCCGCGCCGCTCCCCCGCGCTCGCGCAGCCATGTCGAGGAGAACGCCAAGGAGGGT
 GTGAAGACAGAGAAATGACACATCACCTGAAGGTGGCCGGCAGGACCGCTCCGTGGTGCAGTTC
 AAGATCAAGAGGCACACGCCGCTGAGCAAGCTGATGAAGGCCTACTGCAGAGGAGGCAGGGCTTGTCA
 ATGAGGCAGATCAGATTCAAGGTTGACGGCAGCCAATCAATGAAACTGACACTCCAGCACAGCTG
 GAGATGGAGGACGAGGACACCATCGACGTGTTCCAGCAGCAGACGGGAGGTGTGCCGGAGAGCAGC
 CTGGCAGGGCACAGTTTC

>SUMO-3

CCCTCGTCCACCGCTGCCGCTCCTCTTCTGCGCCTCTGGTGTGCTTGTGCTCGTTGGTG
 CGGACCTGGTACCTCTTGTGAAGCGGCAGCTGAGGAGACTCCGGCGCTGCCATGCCAGCAGAA
 AAGGCCAAGGAAGGAGTCAGACTGAGAACACGATCATATTAAATTGAAGGTGGGGGGAGGAT
 GGTCTGTGGTGCAGTTAAGATTAAGAGGCATACACCACTTAGAAACTAATGAAAGCCTATTGT
 GAACGACAGGGATTGTCAATGAGGCAGATCAGATTCCGATTGACGGCAACCAATCAATGAAA
 GACACACCTGCACAGTTGGAATGGAGGATGAAGATAAAATTGATGTTCCAACAGCAGACGGGA
 GGTGTCTAC

>TAL1

AGCTCACCCGTGAAGCGTCAGAGGA TGGAGTCGCGCTGGACCAGCTAACAGCAGTTCACCAACCGTG
 GTGGCCGACACGGCGACTTCCACGCCATCGACGAGTACAAGCCCCAGGATGCTACCAACCAACCG
 TCCCTGATCCTGCCGAGCACAGATGCCCTTACCAAGGAGGACAGATTAAAAATGCTATTGATAAA
 ACTTTGTGTTG
 GGCAGGAAAGCTGGCGGGTACAAGAGGACCAAGATTAAAGGAGCTACCCACTTAGAAACTAATGAA
 AGCCTATTG
 GGTCTGTGGTGCAGTTAAGATTAAGAGGCATACACCACTTAGAAACTAATGAAAGCCTATTGT
 GAACGACAGGGATTGTCAATGAGGCAGATCAGATTCCGATTGACGGCAACCAATCAATGAAA
 GACACACCTGCACAGTTGGAATGGAGGATGAAGATAAAATTGATGTTCCAACAGCAGACGGGA
 GGTGTCTAC
 AGCAAGGACCGAATTCTTAAAGCTGTCACTAACCTGGAAAGGAATTCAAGGCTGGAAAGGAGCTC
 GAGGAGCAGCACGGCATCCACTGCAACATGACGTTACTCTCTCCGCCAGGCTGTGGCTGT
 GCCGAGGCGGGTGTGACCCATCTCCCATTTGTTGGCGCATCTTGATGGCATGTGGCAA
 ACCGACAAGAAATCCTATGAGCCCCCTGGAAGAACCCCTGGGTAAAGAGTGTCACTAAATCTACAA
 ACTAAGAAGATTAGCTACAAAACCATTGTCATGGCGCCTCTCCGAAACACGGCGAGATC
 AAAGCACTGGCGGGCTGTGACTTCCCTCACCATCTCACCAAGCTCTGGGAGAGCTGCTGCAGGAC
 AACGCAAGCTGGTGCCTGTGCTCTCAGCCAAGGCCGGCCAAGCCAGTGACCTGGAAAAAA
 ATCCAC
 CTGGATGAGAAGTCTTCCGTTGGTGCACAAACGAGGACCAGATGGCTGTGGAGAAGCTCTGAC
 GGGATCCGAAGTTGCCGCTGATGCAAGTGAAGCTGGAGCGGATGCTGACAGAACGAATGTTCAAT
 GCAGAGAATGGAAAG

Figure 6 (continued)

>TCPG
 CAGACTGACATTGAGATTACCGAGAGGAGGACTTCACCGAATTCTCCAGATGGAGGAAGAGTAC
 ATCCAGCAGCTGTGAGGACATTATCCAACGTAAAGCCCCATGTGGTCATCACTGAAAAGGGCATC
 TCAGATTAGCTCAGCACTACCTTATGCCGGCCAATATCACAGCCATCCGCAGAGTCCCGAAGACA
 GACAATAATCGCATTGCTAGGCCGTGGGGCCCGGATAGTCAGCCGACCAGAGGAAGTGGAGAGAA
 GATGATGTTGGAACAGGGAGCAGGCCGTGGAAATCAAGAAAATTGGAGATGAATACTTACTTTC
 ATCACTGACTGCAAAGACCCCAAGGCCGTGACCCATTCTCCTCCGGGGCTAGCAAAGAGATTCTC
 TCGGAAGTAGAACGCAACCTCCAGGATGCCATGCAAGTGTGCGCAATGTTCTCCTGGACCCCTCAG
 CTGGTGCCAGGGGGTGGGGCCTCGAGATGGCTGTGGCCCAGTGCCTTGACAGAAAATCCAAGGCC
 ATGACTGGTGTGGAACAATGCCATACAGGGCTGTGCCCAGGCCCTAGAGGTCAATTCTCGTAC
 CTGATCCAGAACTGTGGGCCAGCACCATCCGTCTACTTACCTCCCTCGGGCCAAGCACACCCAG
 GAGAACTGTGAGACCTGGGTGTAATGGTGAAGACGGGTACTTGGTGGACATGAAGGAACGGGC
 ATATGGGAGCCATTGGCTGTGAAGCTGCAGACTTATAAGACAGCAGTGGAGACGGCAGTCTGCTA
 CTGCGAATTGATGACATCGTTAGGCCACAAAAAGAAAGGCCATGACCAGAGCCGGCAAGGCCGG
 GCTCCTGATGCTGGCCAGGAG
>VIM
 TCCCCCGGCCAGAGACGCGAGCCGCTCCCACCCACACCCACCGCGCCCTCGTTCGCCCTTTC
 TCCGGGAGCCAGTCGCCGCACCGCCGCCAGGCCATGCCACCCCTCCGCAGCCATGTCCACC
 AGGTCCGTGTCCTCGTCCCTACCGCAGGATGTTGGGGCCCGGACCCCGAGCCGGCCGAGC
 TCCAGCCGGAGCTACGTGACTACGTCACCCGCACCTACAGCCTGGCAGGCCGCTGCCGCCCAGC
 ACCAGCCGAGCCCTACGCCCTCGTCCCCGGCGGTATGCCACCCGCTCCTCTGCCGTGCGC
 CTGGGAGCAGCGTGGGGCTCCTGCAGGACTCGGTGGACTTCCTCGTGGAGCTGCAAGGAGCTGAATGACCGC
 ATCAACACCGAGTTCAAGAACACCCGACCAACGAGAAGGTGGAGCTGCAAGGAGCTGAATGACCGC
 TTGCGCAAACATACGACAAGGTGCGCTTCTGGAGCAGCAGAATAAGATCCTGCTGCCGAGCTC
 GAGCAGCTCAAGGGCCAAGGCAAGTCGCCCTGGGGACCTCTACGAGGAGGAGATGCCGGAGCTG
 CGCCGGCAGGTGGACCAGCTAACGACAAGCCCGCTCGAGGTGGAGCGCAGAACCTGGCC
 GAGGACATCATGCCCTCCGGAGAACATTGCAAGGAGATGCTCAGGAGGAGATGCTTCAGAGAGAGGAAGCCAAA
 ACCCTGCAATCTTCAGACAGGATGTTGACAATGCGTCTCTGGCACGTCTGACCTTGAAACGAAA
 GTGGAATCTTGCAAGAAGAGATTGCCCTTTGAAAGAAACTCCACGAAGAGGAATCCAGGAGCTG
 CAGGCTCAGATTAGGAACAGCATGCCAAATCGATGTTGATGTTCCAAGCCTGACCTCACGGCT
 GCCCTGCGTGCAGCTACGTCAAGCAATATGAAAGTGTGGCTGCCAAGAACCTGCAAGGAGGAGAAGAA
 TGGTACAATCCAAGTTGCTGACCTCTGAGGCTGCCAACCGGAACAAATGACGCCCTGCCAG
 GCAAAGCAGGAGTCCACTGAGTACGGAGACAGGTGCAAGTCCCTCACCTGTGAAGTGGATGCCCTT
 AAAGGAACCAATGAGTCCCTGGAACGCCAGATGCCGTGAAATGGAAGAGAACCTTGCCGTTGAAGCT
 GCTAACTACCAAGACACTATTGCCCTGCAAGGAGATGAGATTCAGAAATATGAAGGAGGAATGGCT
 CGTCACCTCGTGAATACCAAGACCTGCTCAATGTTAAGATGCCCTTGACATTGAGATTGCCACC
 TACAGGAAGCTGCTGGAAGGCCAGGAGAGCAGGATTCTCTGCCCTTCCAAACTTTCCCTCCCTG
 AACCTGAGGAAACTAATCTGGATTCACTCCCTCTGGTTGATACCCACTAAAAAGGACACTTCTG
 ATTAAGACGGTTGAAACTAGAGATGGACAGGTTATCAACGAAACTTCTCAGCATCACGATGACCTT
 GAA

Figure 6 (continued)

>VIMc
 CAGGAGGGAGATGCTTCAGAGAGAGGAAGGCCAAAACACCCCTGCAATCTTCAGACAGGATGTTGAC
 AATCGTCTCTGGCACGTCTGACCTTGAAACGCAAAGTGGAAATCTTGCAAGAAGAGATTGCCTT
 TTGAAGAAAATCCACGAAGAGGAAATCCAGGAGCTGCAGGCTCAGATTCAAGAACAGCATGTCAA
 ATCGATGTGGATGTTCCAAGCCTGACCTCACGGCTGCCCTGCGTGAACGTACGTCAAGCAATATGAA
 AGTGTGGCTGCCAAGAACCTGCAGGAGGCAGAAGAAATGGTACAATCCAAGTTGCTGACCTCT
 GAGGCTGCCAACCGGAACAATGACGCCCTGCCAGGCAAAGCAGGAGTCCACTGAGTACCGGAGA
 CAGGTGCACTCCCTCACCTGTGAAGTGGATGCCCTTAAAGGAACAATGAGTCCCTGGAACGCCAG
 ATGCGTGAATGGAAGAGAACCTTGCCGTTGAAGCTGCTAATACCAAGACACTATTGGCCGCTG
 CAGGATGAGATTCAAATAAGGAGGAATGGCTGTCACCTCGTGAATACCAAGACACTGCTC
 AATGTTAAGATGGCCCTTGACATTGAGATTGCCACCTACAGGAAGCTGCTGGAAGGGAGGAGAG
 AGGATTCTCTGCCCTTCCAAACTTTCCCTGAAACCTGAGGGAAACTAATCTGGATTCACTC
 CCTCTGGTTGATAACCACCTCAAAAGGACACTTCTGATTAAGACGGTTGAAACTAGAGATGGACAG
 GTTATCAACGAAACTCTCAGCATACGATGACCTTGAA
>ZHX1
 GAACAAACAATAATGATCTGACTTTGATGGTAGTTTGTAAAGAGGAGAATGCAAGAGCAAGCA
 GAATCTACAGAAGTTCTTCGGGAATATCTATCAGTAAAACCTTATCATGAAAATGATGAAA
 AATAAAGTGGAAAATAACCGGATTGCAGTTCATATAACTCAGTTGAGGACGTTCTGAAAGAGAAA
 GAGAATGAAATCAAACCAGACCGTGAAGAAATTGAGAAAATCCAAGTTCTCAGCTCTGAATCT
 AATACAAGTACTCCATTGTAACAGAATACATCCAAGTACTGCCAGCACGGTAGTGACACCAGCA
 GCAGTTCTCCTGGATTGCCACAGGTGATAACTGCTGATCTGCTCAGCAGAATTCTAATTGATT
 CCCAAAGTCTTAATCCCTGTTAATAGCATTCCCACCTACAATGCTGCATTGGATAACAATCCCCCT
 TTACTTAAACACCTACAACAAGTTCCCTTACCCAAACAATGTCAGAAATTACAGTTCTGCTCAA
 GCAAAATATAACAGAGGAACAGATCAAGATATGGTTTCAGCCAACTGTTAAACATGGTGTAGT
 TGGACTCCGGAGGAAGTAGAGGAGGAAGAAGGAAACATTCAATGGAACAGTGCATACTGTACCT
 CAGACCATAACTGTTATTCTACACACATTCCACAGGGAGTAATGGTTACCATCTATTTACAG
 ACATGCCAAATAGTTGGTCAGCCTGGTCTGGCTTACTCAAGTGGCTGGAAACAAACACCTGCCA
 GTTACAGCACCTATAGCCTGACAGTGGCAGGGTCCAAGTCAAAATAATATACAGAAAAGTCAG
 GTACCTGCTGTCAGCCTACTGCAGAAACAAAGCCAGAACAGCAGCAGTTCCAACCTCTCAAAGT
 GTCAAACATGAAACTGCCATTGGTAACCCCTGATTTCATTGGCATTCGGGAAACAAAAAGACAAAAGAG
 CAACTGGCAGAATTAAAAGTTAGCTACCTTAAACATGAGTTCCCATGATTCAAGAAATTATCAGA
 CTTATGAAAATAACAGGCTGACGAAAGGAGAGATTTAAAGGTTAGTGCACACAAGGTACAAC
 CAGAGAAATTCAAAGAGTAATCAGTGCCTACATCTCAACAAATGATCCTCTACCACCATTTATA
 GACTCCAGTGTGAAACCAACCGGAATCCCCAACTGTTGGTACTGCACAGCCTAAGCAATCCTGGAAT
 CCTTTCTGACTTTACTCCCCAAAGTTAAAGAGAAAACCTGCAGAGCAGCTCGTGTCTTCAG
 GCAAGTTCTCAACAGCTGTACTTACAGATGAAGAATTAAAGGTTAAGGGCACAAACCAA
 CTTACCGAGAGAAATCGATGCTGGTTACAGAGAAGAAGAAATCAAAGCTTAAAGGAAGAG
 AAAATGAAAATAGATGAAAGTAATGCAGGTAGTTCCAAAGAAGAAGCTGGAGAAAATCTCTGCA
 GATGAATCTGGTGCACCTAAGTCAGGGAGTACAGGCAAGATATGTTAAAAAAACACCTGAGCAGCTG
 CACATGCTTAAGAGTGCATTGTCGGACACAGTGGCCATCACCAGAACAGAGTATGACAAGTTGGCC
 AAAGAAAAGCGGGCTTGCTAGAACAGACATAGTTAGTTGGTTGGGACACCCGTTATGCTTGGAAAG
 AATGGAAAATGAAATGGTACTACTATCAGACGCCAATTCAAGTAGTATGAATGGTCTGTCT
 TCCCTTAGGAAAAGAGGGAGAGGGAGACCCAAAGGACGGGAAGAGGAAGACCGCGTGGCGGCGCT
 AGAGGAAGCAAAGAATTAAACAACTGGGACAGGGGACCATCACTCATAAAATTAAACTGGAACT
 GCAATACTTAAGGATTATTACCTGAAGCACAAGTTCTTAATGAGCAAGACCTTGATGAACCTGTT
 AACAAATCACATATGGCTATGAGCAGGTAGAGAGTGGTTGCAGAAAGACAGAGAAGATCAGAA
 TTAGGTATAGAATTATTGAGGAAAATGAGGAGGAAGATGAAGTTATTGATGACCAGGAAGAGGAT
 GAAGAAGAAACAGATGATGACACTTGGGAACCTCCACGACATGTGAAACCGGAAGCTGTCTAAA
 TCAGATGAC

Figure 6 (continued)

>ZNF33B

TGTTATGAATGTGGAAAACCTTCTGCTGAAGTCAGACCTCACAAATAACATCAGAGAACGCACACA
GGGGAGAACCCTTGCATGCTGAATGTGGAAATTCTTAGCCATAAGTCACCCCTCTCAA
CATTATAGAACACACACGGGGAGAAACCTATGAATGTCATGAATGTGGAAAAATCTTTACAAT
AAATCATACCTAACAAAACATAATAGAACACATACAGGGGAGAAACCTATGAATGTAATGAATGT
GGAAAAACCTTCTGCCAGAAGTCACAACACTCACTCAGCATCAGAGAATTACATAGGGGAGAAACCC
TATGAATGTAATGAGTGTGGAAAAGCTTCTGCCATAAGTCAGCTCTAATTGTACATCAGAGAAC
CATACACAAAGAAAAGCCTTATAAATGTAACGAATGTGGAAAATCTTCTGTGTGAAGTCAGGACTT
ATTTTACATGAGAGAAAGCACACGGGGAGAAACCTATGAATGCAATGAATGTGGAAATCCTTC
AGTCACAAATCATCACTCACAGTACATTACAGGGCTCACACAGGAGAGAAATCTTGTCAAGTGTAA
GAATGTGGAAAATCTTTACCGTAAATCAGACCTTGCTAACATCAGAGATCACATACAGGGAA
AAGCCCTATGAATGTAACACATGCAGGAAAACCTTCTCAAAAGTCAAATCTCATTGTACATCAG
AGAACACACATAGGAGAAAACCTTATGAA

Figure 6 (continued)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.