FEATURES

- Output Current up to 1.0A
- Low Dropout Voltage (1.2V at 1.0A Output current)
- Three Terminal Adjustable(ADJ) or Fixed 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, and 5.0V
- Line Regulation typically at 0.1% typ.
- Load Regulation typically at 0.2% typ.
- Internal Current and Terminal Protection
- Maximum Input Voltage 20V
- Surface Mount Package SOT-223, TO-252, and SOT-89
- Moisture Sensitivity Level 3

APPLICATIONS

- Active SCSI Terminators
- Portable/ Plan Top/ Notebook Computers
- High Efficiency Linear Regulators
- SMPS Post Regulators
- Mother B/D Clock Supplies
- Disk Drives
- Battery Chargers

ORDERING INFORMATION

Device	Package					
LM1117S-ADJ	SOT-223 3L					
LM1117S-x.x	301-223 3L					
LM1117RS-ADJ	TO-252 3L					
LM1117RS-x.x	10-252 3L					
LM1117F-ADJ	SOT-89 3L					
LM1117F-x.x	301-69 3L					

x.x: Output Voltage = 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, and 5.0V

DESCRIPTION

The LM1117 is a low power positive-voltage regulator designed to meet 1A output current. This device is an excellent choice for use in battery-powered applications, as active terminators for the SCSI bus, and portable computers. The LM1117 features very low quiescent current and very low dropout voltage of 1.2V at a full load and lower as output current decreases. LM1117 is available as an adjustable or fixed 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, and 5.0V output voltages. The LM1117 is offered in a 3-pin surface mount package SOT-223, TO-252 & SOT-89. The output capacitor of 10μF or larger is needed for output stability of LM1117 as required by most of the other regulator circuits.

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Input Supply Voltage	V _{IN}	-	20	V
Lead Temperature	T _{SOL}	-	260	°C
Storage Temperature Range	T _{STG}	-65	150	°C
Operating Junction Temperature Range	T _{OPR}	-40	125	°C

LM1117

ORDERING INFORMATION

V _{OUT}	Package	Order No.	Package Marking	Supplied As	Status
	SOT-223	LM1117S-ADJ	1117C ADJ	Reel	Active
ADJ	TO-252	LM1117RS-ADJ	LM1117C ADJ	Reel	Active
	SOT-89	LM1117F-ADJ	1117C ADJ	Reel	Active
	SOT-223	LM1117S-1.2	1117C 1.2	Reel	Active
1.2V	TO-252	LM1117RS-1.2	LM1117C 1.2	Reel	Active
	SOT-89	LM1117F-1.2	1117C 1.2	Reel	Active
	SOT-223	LM1117S-1.5	1117C 1.5	Reel	Active
1.5V	TO-252	LM1117RS-1.5	LM1117C 1.5	Reel	Active
	SOT-89	LM1117F-1.5	1117C 1.5	Reel	Active
	SOT-223	LM1117S-1.8	1117C 1.8	Reel	Active
1.8V	TO-252	LM1117RS-1.8	LM1117C 1.8	Reel	Active
	SOT-89	LM1117F-1.8	1117C 1.8	Reel	Active
	SOT-223	LM1117S-2.5	1117C 2.5	Reel	Active
2.5V	TO-252	LM1117RS-2.5	LM1117C 2.5	Reel	Active
	SOT-89	LM1117F-2.5	1117C 2.5	Reel	Active
	SOT-223	LM1117S-3.3	1117C 3.3	Reel	Active
3.3V	TO-252	LM1117RS-3.3	LM1117C 3.3	Reel	Active
	SOT-89	LM1117F-3.3	1117C 3.3	Reel	Active
	SOT-223	LM1117S-5.0	1117C 5.0	Reel	Active
5.0V	TO-252	LM1117RS-5.0	LM1117C 5.0	Reel	Active
	SOT-89	LM1117F-5.0	1117C 5.0	Reel	Active

PIN CONFIGURATIONS

TO-252

SOT-89

PIN DESCRIPTION

Pin No.	SOT-223 / TO	-252 / SOT-89
FIIT NO.	Name	Function
1	ADJ / GND	Adjustable / Ground
2	VOUT	Output Voltage
3	VIN	Input Voltage

TYPICAL APPLICATION CIRCUITS

- Adjustable Version

ELECTRICAL CHARACTERISTICS

For ADJ Output Voltage

 $(T_J=25^{\circ}C, C_{OUT} = 10\mu F \text{ unless otherwise specified})$

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
V_{REF}	Reference Voltage	V _{IN} = 5V, I _O = 10mA	1.238	1.250	1.262	V
V _{REF}	Reference Voltage	$I_O = 10$ mA to 1A, V_{IN} - $V_{REF} = 1.5$ V to 13.75V ($T_J = 0 \sim 125$ °C)	1.219		1.281	V
ΔV_{LINE}	Line Regulation	$I_{O} = 10 \text{mA}$, $V_{IN} - V_{REF} = 1.5 \text{V}$ to 12 V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	$I_0 = 10$ mA to 1A, $V_{IN} - V_{REF} = 2V$		0.2	0.4	%
V _{IN}	Operating Input Voltage				12	V
I _{ADJ}	Adjustment pin Current	V_{IN} - V_{REF} = 1.5V to 12V, I_{O} = 100mA		50	120	μA
ΔI_{ADJ}	Adjustment Pin Current Change	V_{IN} - V_{REF} = 1.5V to 12V, I_{O} = 100mA to 1A		0.5	5	μΑ
I _{O(MIN)}	Minimum Load Current	V _{IN} = 5V, V _{REF} = 0V		5	10	mA
Io	Current Limit	V_{IN} - V_{REF} = 5V	1000			mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25°C		0.003		%
SVR	Supply Voltage Rejection	I _O = 1A, f = 120Hz, V _{IN} - V _{REF} = 3V, V _{RIPPLE} = 1V _{PP}	60	75		dB

For 1.2V Output Voltage

 $(T_J=25^{\circ}C, C_{OUT} = 10\mu F \text{ unless otherwise specified})$

	aipat teitage	(:3 =	o o, o oor –		o ourior mioc	opodinou)
Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 2.7V, I _O = 10mA	1.176	1.200	1.224	V
Vo	Output Voltage	$V_{IN} = 2.7V$ to 12V, $I_{O} = 0$ mA to 1A $(T_{J} = 0 \sim 125^{\circ}C)$	1.152		1.248	V
ΔV_{LINE}	Line Regulation	I_{O} = 10mA , V_{IN} = 2.7V to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 10mA to 1A, V _{IN} = 3.2V		0.2	0.4	%
V_{IN}	Operating Input Voltage				12	V
I _D	Quiescent Current	V _{IN} - V _O = 5V		5	10	mA
Io	Current Limit	V _{IN} - V _O = 5V	1000			mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25°C		0.003		%
SVR	Supply Voltage Rejection	I _O = 1A, f = 120Hz, V _{IN} - V _O = 1.5V, V _{RIPPLE} = 1V _{PP}	60	75		dB

For 1.5V Output Voltage

 $(T_J=25^{\circ}C, C_{OUT} = 10\mu F \text{ unless otherwise specified})$

		(0	, -001			-1 /
Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 3.0V, I _O = 10mA	1.485	1.5	1.515	V
Vo	Output Voltage	$V_{IN} = 3.0 V$ to 12V, $I_O = 0$ mA to 1A $(T_J = 0 \sim 125 ^{\circ}C)$	1.470		1.530	V
ΔV_{LINE}	Line Regulation	$I_0 = 10 \text{mA}$, $V_{IN} = 3.0 \text{V}$ to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	I _O = 10mA to 1A, V _{IN} = 3.5V		0.2	0.4	%
V_{IN}	Operating Input Voltage				12	>
I_D	Quiescent Current	V _{IN} - V _O = 5V		5	10	mA
Ιο	Current Limit	V _{IN} - V _O = 5V	1000			mA
ΕN	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25°C		100		μV
SVR	Supply Voltage Rejection	I _O = 1A, f = 120Hz, V _{IN} - V _O = 3V, V _{RIPPLE} = 1V _{PP}	60	75		dB

For 1.8V Output Voltage

(T_J=25°C, C_{OUT} = 10 μF unless otherwise specified)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 3.3V, I _O = 10mA	1.782	1.8	1.818	V
Vo	Output Voltage	$V_{IN} = 3.3 V$ to 12V, $I_{O} = 0$ mA to 1A $(T_{J} = 0 \sim 125^{\circ}\text{C})$	1.764		1.836	V
ΔV_{LINE}	Line Regulation	$I_{O} = 10$ mA , $V_{IN} = 3.3$ V to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	$I_0 = 10$ mA to 1A, $V_{IN} = 3.8$ V		0.2	0.4	%
V _{IN}	Operating Input Voltage				12	V
I _D	Quiescent Current	$V_{IN} - V_O = 5V$		5	10	mA
lo	Current Limit	$V_{IN} - V_O = 5V$	1000			mA
EΝ	Output Noise(%V ₀)	B = 10Hz to 10kHz, T _J = 25°C		100		μV
SVR	Supply Voltage Rejection	$I_{O} = 1A, f = 120Hz,$ $V_{IN} - V_{O} = 3V, V_{RIPPLE} = 1V_{PP}$	60	75		dB

For 2.5V Output Voltage

(T_J=25°C, C_{OUT} = 10 μF unless otherwise specified)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 4.0V, I _O = 10mA	2.475	2.5	2.525	V
Vo	Output Voltage	$V_{IN} = 4.0 V$ to 12V, $I_{O} = 0 mA$ to 1A $(T_{J} = 0 \sim 125^{\circ}C)$	2.450		2.550	V
ΔV_{LINE}	Line Regulation	$I_0 = 10 \text{mA}$, $V_{IN} = 4.0 \text{V}$ to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	$I_0 = 10$ mA to 1A, $V_{IN} = 4.5$ V		0.2	0.4	%
V _{IN}	Operating Input Voltage				12	٧
I _D	Quiescent Current	$V_{IN} - V_O = 5V$		5	10	mA
lo	Current Limit	$V_{IN} - V_O = 5V$	1000			mA
ΕN	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25°C		100		μV
SVR	Supply Voltage Rejection	$I_{O} = 1A, f = 120Hz,$ $V_{IN} - V_{O} = 3V, V_{RIPPLE} = 1V_{PP}$	60	75		dB

For 3.3V Output Voltage

 $(T_J=25^{\circ}C,\ C_{OUT}=10\mu F \ unless \ otherwise \ specified)$

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 4.8V, I _O = 10mA	3.267	3.3	3.333	V
Vo	Output Voltage	$V_{IN} = 4.8 V$ to 12V, $I_{O} = 0$ mA to 1A $(T_{J} = 0 \sim 125^{\circ}\text{C})$	3.234		3.366	V
ΔV_{LINE}	Line Regulation	$I_{O} = 10 \text{mA}$, $V_{IN} = 4.8 \text{V}$ to 12V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	$I_0 = 10$ mA to 1A, $V_{IN} = 5.3$ V		0.2	0.4	%
V _{IN}	Operating Input Voltage				12	V
I _D	Quiescent Current	$V_{IN} - V_O = 5V$		5	10	mA
lo	Current Limit	$V_{IN} - V_O = 5V$	1000			mA
EΝ	Output Noise(%V ₀)	B = 10Hz to 10kHz, T _J = 25°C		100		μV
SVR	Supply Voltage Rejection	$I_{O} = 1A, f = 120Hz,$ $V_{IN} - V_{O} = 3V, V_{RIPPLE} = 1V_{PP}$	60	75		dB

For 5.0V Output Voltage

(T_J=25°C, C_{OUT} = 10 μF unless otherwise specified)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Vo	Output Voltage	V _{IN} = 6.5V, I _O = 10mA	4.950	5.0	5.050	V
Vo	Output Voltage	$V_{IN} = 6.5 V$ to 15V, $I_{O} = 0$ mA to 1A $(T_{J} = 0 \sim 125^{\circ}\text{C})$	4.900		5.100	V
ΔV_{LINE}	Line Regulation	$I_{O} = 10$ mA , $V_{IN} = 6.5$ V to 15V		0.1	0.2	%
ΔV_{LOAD}	Load Regulation	$I_0 = 10$ mA to 1A, $V_{IN} = 7.0$ V		0.2	0.4	%
V _{IN}	Operating Input Voltage				15	٧
I _D	Quiescent Current	$V_{IN} - V_O = 5V$		5	10	mA
lo	Current Limit	$V_{IN} - V_O = 5V$	1000			mA
EΝ	Output Noise(%V _O)	B = 10Hz to 10kHz, T _J = 25°C		100		μV
SVR	Supply Voltage Rejection	$I_O = 1A$, $f = 120Hz$, $V_{IN} - V_O = 3V$, $V_{RIPPLE} = 1V_{PP}$	60	75		dB

For All Output Voltage

 $(T_J=25^{\circ}C, C_{OUT} = 10 \mu F \text{ unless otherwise specified})$

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
		I _O = 100mA		1.0	1.1	V
V_D	Dropout Voltage	I _O = 500mA		1.1	1.2	V
		I _O = 1A		1.2	1.3	V
	Temperature Stability			0.5		%
	Long Term Stability	1000 hrs, T _J = 125°C		0.3		%
	Thermal Regulation	T _A = 25°C 30ms Pulse		0.003		%/W

TYPICAL OPERATING CHARACTERISTICS

ADJ PIN CURRENT VS TEMPERATURE

QUIESCENT CURRENT CHANGE VS TEMPERATURE

APPLICATION CIRCUITS

Fig.1 1A Current Output

Fig.2 Typical Adjustable Regulator

Fig.3 Negative Supply

Fig.4 Active Terminator for SCSI-2BUS

Fig.5 Voltage Regulator with Reference

Fig.6 Battery Backed-up Regulated Supply

APPLICATION INFORMATION

Maximum Output Current Capability

The LM1117 can deliver a continuous current of 1A over the full operating junction temperature range. However, the output current is limited by the restriction of power dissipation which differs from packages. A heat sink may be required depending on the maximum power dissipation and maximum ambient temperature of application. With respect to the applied package, the maximum output current of 1A may be still undeliverable due to the restriction of the power dissipation of LM1117. Under all possible conditions, the junction temperature must be within the range specified under operating conditions. The temperatures over the device are given by:

$$T_C = T_A + P_D X \theta_{CA} / T_J = T_C + P_D X \theta_{JC} / T_J = T_A + P_D X \theta_{JA}$$

where T_J is the junction temperature, T_C is the case temperature, T_A is the ambient temperature, P_D is the total power dissipation of the device, θ_{CA} is the thermal resistance of case-to-ambient, θ_{JC} is the thermal resistance of junction-to-case, and θ_{JA} is the thermal resistance of junction to ambient. The total power dissipation of the device is given by:

$$PD = PIN - POUT = (VIN X IIN) - (VOUT X IOUT)$$

= $(VIN X (IOUT + IGND)) - (VOUT X IOUT) = (VIN - VOUT) X IOUT + (VIN X IGND)$

where IGND is the operating ground current of the device which is specified at the Electrical Characteristics. The maximum allowable temperature rise (TRMAX) depends on the maximum ambient temperature (TAMAX) of the application, and the maximum allowable junction temperature (TJMAX):

$$T_{Rmax} = T_{Jmax} - T_{Amax}$$

The maximum allowable value for junction-to-ambient thermal resistance, θ_{JA} , can be calculated using the formula:

$$\theta_{JA} = T_{Rmax} / P_D = (T_{Jmax} - T_{Amax}) / P_D$$

LM1117 is available in SOT223, TO252 and SOT89 packages. The thermal resistance depends on amount of copper area or heat sink, and on air flow. If the maximum allowable value of θ_{JA} calculated above is over 137°C/W for SOT-223 package, over 105 °C/W for TO-252 package, over 315 °C/W for SOT-89 package, no heat sink is needed since the package can dissipate enough heat to satisfy these requirements. If the value for allowable θ_{JA} falls near or below these limits, a heat sink or proper area of copper plane is required. In summary, the absolute maximum ratings of thermal resistances are as follow:

Absolute Maximum Ratings of Thermal Resistance

Characteristic	Symbol	Rating	Unit
Thermal Resistance Junction-To-Ambient / SOT-223	θJA-SOT-223	137	°C/W
Thermal Resistance Junction-To-Ambient / TO-252	θJA-TO-252	105	°C/W
Thermal Resistance Junction-To-Ambient / SOT-89	θJA-SOT-89	315	°C/W

No heat sink / No air flow / No adjacent heat source / TA=25°C

1A L.D.O VOLTAGE REGULATOR

LM1117

REVISION NOTICE

The description in this datasheet is subject to change without any notice to describe its electrical characteristics properly.