

Deepfake Video Detection

Piyush Dangi | 23EE65R08 Signal Processing and Machine Learning

Under the supervision of

Dr. Rajiv Ranjan Sahay

Department of Electrical Engineering

Indian Institute of Technology Kharagpur Department of Electrical Engineering | Signal Processing and Machine Learning

Outline

Introduction

Deepfake Detection Methods

Photo-Response Non-Uniformity Based Detection Method

Datasets

Results

Future Work

Introduction

- What are Deepfakes?
 - Deepfakes are synthetic media, typically videos or images, where a person's likeness is manipulated using AI.

- Why is deepfake detection important?
 - Misinformation
 - Security Threats

Deepfake Detection Methods

Traditional Methods based on:

- Image Power Spectrum^[1].
- Color Filter Array (CFA)^[2].
- Photo-Response Non-Uniformity (PRNU)[3].

Methods based on:

- Biometric Feature
- Deep learning

[1] Durall, R., Keuper, M. and Keuper, J., 2020. Watch your up-convolution: Cnn based generative deep neural networks are failing to reproduce spectral distributions. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7890-7899).

[2] Gallagher, A.C. and Chen, T., 2008, June. Image authentication by detecting traces of demosaicing. In 2008 IEEE computer society conference on computer vision and pattern recognition workshops (pp. 1-8). IEEE.

[3] Chen, M., Fridrich, J., Goljan, M. and Lukás, J., 2008. Determining image origin and integrity using sensor noise. IEEE Transactions on information forensics and security, 3(1), pp.74-90.

PRNU Based Deepfake Detection

Overview of the pipeline structure of the PRNU based deepfake detection

PRNU: Photo-Response Non-Uniformity

SVM: Support Vector Machine

Photo-Response Non-uniformity

• Due to manufacturing imperfections, camera sensor elements exhibit small deviations from expected behavior, forming a stable noise-like pattern known as Photo-Response Non-Uniformity (PRNU).

The device PRNU Pattern is estimated by a large number of noise residuals.

PRNU Extraction

- The extraction of the PRNU noise residual from an image is performed by applying Fridrich's approach^[3].
- For each image I_k the noise residual W_k is estimated as described in Eq. (1),

$$\mathbf{W}_k = \mathbf{I}_k - F(\mathbf{I}_k) \tag{1}$$

The estimation of the PRNU K:

$$\mathbf{K} = \frac{\sum_{k=1}^{N} \mathbf{W}_{k} \mathbf{I}_{k}}{\sum_{k=1}^{N} (\mathbf{I}_{k})^{2}}$$
(2)

Where

F : Denoising function

 I_k : Image

 \mathbf{W}_k : Noise residual

N: number of images obtained by the camera.

[3] Chen, M., Fridrich, J., Goljan, M. and Lukás, J., 2008. Determining image origin and integrity using sensor noise. IEEE Transactions on information forensics and security, 3(1), pp.74-90.

PRNU Splitting

Figure 1: Example for splitting the PRNU into $C\!=\!4$ Cells $(2\!\times\!2)$ of equal size.

Figure 2: DFT magnitude spectra of the PRNUs extracted from (a) real (b) fake face images.

Spatial Features

• P_{en} Energy of the PRNU values:

$$P_{en} = \sum_{i=1}^{N} |x_i|^2 \tag{3}$$

• P_{skew} Skewness of PRNU values:

$$P_{skew} = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^3}{\left(\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2\right)^{\frac{3}{2}}}$$
(4)

Where:

- N is the number of PRNU values.
- x_i represents each PRNU value.
- μ is the mean of the PRNU values.

Spatial Features

• P_{kurt} Kurtosis of PRNU values:

$$P_{kurt} = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^4}{\left(\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2\right)^2} - 3$$
 (5)

• P_{varH} Variance of values in PRNU histogram:

$$P_{varH} = \frac{1}{B} \sum_{n=1}^{B} (H_p(n) - \bar{H}_p)^2$$
 (6)

Where:

- *N* is the number of pixels.
- x_i represents each pixel value.
- μ is the mean of the pixel values.

- *B* is number of bins in PRNU cell's histogram.
- $H_p(n)$ PRNU cell's histogram.
- $ar{H}_p$ represents the mean frequency of the histogram bins.

Spatial Features

• P_{maxH} Position of maximum value in PRNU histogram:

$$P_{maxH} = \underset{n=1,...,B}{\operatorname{argmin}} H_p(n) \tag{7}$$

Where:

- *B* is number of bins in PRNU cell's histogram
- $H_p(n)$ PRNU cell's histogram
- ullet For the histogram features P_{varH} and P_{maxH} , we created a histogram H of PRNU values of a cell,

Similarly, spectral features can be calculated from the DFT magnitude spectra of the PRNU cell,

PRNU Features

Spatial Feature:-

 P_{en} : Energy of PRNU values

 P_{var} : Variance of PRNU values

 P_{skew} : Skewness of PRNU values

 P_{kurt} : Kurtosis of PRNU values

 P_{varH} : Variance of values in PRNU histogram

 P_{maxH} : Position of maximum value in PRNU histogram

Spectral Feature:-

 D_{en} : Energy of DFT values

 D_{var} : Variance of DFT values

 D_{skew} : Skewness of DFT values

 D_{kurt} : Kurtosis of DFT values

 D_{varH} : Variance of values in DFT histogram

 D_{maxH} : Position of maximum value in DFT histogram

Feature Aggregation

• For every feature, we compute the mean and variance over all cells of one image.

Example:-

Mean of feature P_{en} :

$$\bar{P}_{en} = \frac{1}{C} \sum_{c=1}^{C} P_{en}(c) \tag{8}$$

Variance of feature P_{en} :

$$P_{enVar} = \frac{1}{C} \sum_{c=1}^{C} (P_{en}(c) - \bar{P}_{en})^2$$
 (9)

• So, this results in a total of 24 features per image.

Where:

- C is number of cells.
- $P_{en}(c)$ represents energy of PRNU values of a cell.

Classification

Indian Institute of Technology Kharagpur
Department of Electrical Engineering | Signal Processing and
Machine Learning

Datasets

Dataset	Pristine / Forged	Frame size	Year
FaceForensics++ [4]	1,000 / 4,000	480p, 720p, 1080p	2019
Celeb-DF [5]	590 / 5,639	various	2020
DeeperForensics-1.0 [6]	50,000 / 10,000	1080p	2020
DFDC [7]	19,154 / 100,000	240p - 2160p	2019

^[4] Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J. and Nießner, M., 2019. Faceforensics++: Learning to detect manipulated facial images. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1-11).

^[5] Li, Y., Yang, X., Sun, P., Qi, H. and Lyu, S., 2020. Celeb-df: A large-scale challenging dataset for deepfake forensics. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 3207-3216).

^[6] Jiang, L., Li, R., Wu, W., Qian, C. and Loy, C.C., 2020. Deeperforensics-1.0: A large-scale dataset for real-world face forgery detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2889-2898).

^[7]Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M. and Ferrer, C.C., 2020. The deepfake detection challenge (dfdc) dataset. arXiv preprint arXiv:2006.07397.

Results

- Accuracy $\approx\!61.3\,\%$
- Error rate $\approx 38.5\%$

Future Work

Literature Review for Deepfake Detection methods

To implement Fully
Unsupervised
based deepfake
video detection

To develop light weight network for deepfake detection

July 2024 – August 2024

September 2024 – November 2024

December 2024 – March 2025

Indian Institute of Technology Kharagpur Department of Electrical Engineering | Signal Processing and Machine Learning

Thank you