NM 22.10.18

Z ostatniego wykładu

Nanometr, nanonauka, nanotechnologia

Nanomateriał - jeden z wymiarów 1-100nm, inne właściwości niż materiał makroskopowy

Klasyfikacja nanomateriałów (OD,1D,2D,3D; top-down,bottom-up)

Techniki badawcze nanomateriałów

Wybrane techniki charakteryzacji

Narzędzie	Zasada działania	Uzyskana informacja
XRD - dyfrakcja rentgenowska	dyfrakcja Bragga	krystalografia, informacja o strukturze
TEM/HRTEM/SEM - transmisyjna/skaningowa mikroskopia elektronowa	wiązka elektronów przenika próbkę lub jest od niej odbita	morfologia - kształt, rozmiar
STM/AFM - mikroskopia sił atomowych	technika wykorzystująca sondę skanującą	obraz powierzchni z rozdzielczością atomową
UV/Vis	struktura elektronowa, przejścia promieniste	widma
TCSPC - time correlated single photon counting	ultraszybka spektroskopia laserowa, kwantowo-mechaniczna natura luminescencji	czas życia luminescencji
DLS - dynamiczne rozpraszanie światła	rozpraszanie światła, ruchy Browna	stopień agregacji, wykres rozkładu wielkości cząstek

XRD

Warunek dyfrakcji

$$2d_{hkl}sin(heta)=n\lambda$$

 d_{hkl} - odległość między płaszczyznami krystalograficznymi,

 λ - długość fali,

 θ - kąt odbłysku

Dyfraktometr rentgenowski - otrzymujemy dyfraktodgram ilustrujący piki (refleksy). Możemy dyfraktogrwmy porównywać z wzorcowymi z baz danych.

Równanie Scherrara

$$d = \frac{0.9\lambda}{Bcos\theta_b}$$

d - rozmiar krystalitu w nanometrach

B - szerokość połówkowa refleksu

$$d \approx \frac{1}{R}$$

Mikroskopia elektronowa (TEM/SEM)

Narzędzie	Rozdzielczość	Ograniczenie
oko ludzkie	0.02 mm	siatkówka
klasyczny mikroskop optyczny	200 nm	dyfrakcja światła
skaningowy mikroskop elektronowy	3nm	dyfrakcja elektronów
transmisyjny mikroskop elektronowy	0.1nm	dyfrakcja elektronów

Zależność Abbe'go

$$R = \frac{0.61\lambda}{NA}$$

R - rozdzielczość,

NA - apertura numeryczna soczewki

$$Rpproxrac{\lambda}{2}$$

schemat TEM/SEM; schemat próbki do TEM - grid, formvar, carbon

W mikroskopie skaningowym próbka musi być przewodząca

Selektywna dyfrakcja elektronów (SAED) - zagadnienie dodatkowe

Mikroskopia tunelowa i sił atomowych (STM/AFM)

Skaningowa mikroskopia tunelowa

Próbka musi być przewodząca.

Przy przyłożonym do materiału i igły napięciu popłynie między nimi prąd tunelowy wprost proporcjonalny do odległości między igłą a materiałem

Mikroskop sił atomowych - rejestruje nie prąd a siłę. Próbka nie musi być przewodząca

Spektroskopia UV/Vis

Wiadomo co

Czas życia luminescencji - TCSPC/FLIM

- TCSPC skorelowanie w czasie zliczanie pojedynczych fotonów
- FLIM (Fluorescence-lifetime imaging microscopy) obrazowanie za pomocą czasu życia luminescencji

Dynamiczne rozpraszanie światła (DLS)

Ruchy Browna + oświetlanie

Fluktuacje intensywności światła rozporoszonego zależą od wielkości zdyspergowanych cząstek, ponieważ większe cząstki poruszają się wolniej pod wpływem ruchów Browna.

Analizując te fluktuacje otrzymujemy wykres rozkładu wielkości cząstek.