OTIMIZAÇÃO DE VIGAS DE CONCRETO ARMADO DE SEÇÃO RETANGULAR E ARMADURA SIMPLES

Álvaro Luiz Lago de Menezes Professor: Mário Mestria

Conteúdo

- Introdução;
- Conceitos;
- Função objetivo;
- Restrições;
- Resultados;
- Conclusão;
- Referências.

Introdução

 Otimização da seção transversal de vigas de concreto armado biapoiadas e com carregamento distribuído.

Fonte: Acervo Pessoal

Conceitos

- Armadura longitudinal resistência ao momento fletor;
- Armadura transversal resistência ao esforço cortante;
- Três materiais envolvidos:
 - Concreto;
 - Aço;
 - Madeira (Fôrma).

Conceitos

- Dimensionamento utilizando as hipóteses da NBR 6118 (2004);
- Valores fixos assumidos:
 - Resistência de compressão do concreto (fck);
 - Resistência do escoamento do aço (fyk);
 - Carregamento permanente (g);
 - Carregamento variável (q) NBR 6120.

Função objetivo

- Custo de construção da viga (SINAPI);
- Valor aço = área do aço * peso específico * custo por kg;
- Valor concreto = área do concreto * custo por m³;
- Valor da fôrma = perímetro da viga * custo por m²;
- Valor total = valor aço + valor do concreto + valor da fôrma;
- Base, Altura e Comprimento variáveis.

Restrições

- Capacidade de resistência à flexão;
- Armadura máxima;
- Capacidade de resistência ao cisalhamento;
- Verificação da flecha limite;
- Normas de segurança à instabilidade da viga.

	KE	esultados 🗀	Comprimento da Viga		
120			5m	6m	7m
	SQP	Iterações	5	4	4
- 1		FuncEvals	18	15	15
- 1		b (cm)	22,3128	26,298	30,2104
	X	h (cm)	55,7821	65,745	75,5259
- 1		Valor / m (R\$/m)	186,01	230,65	278,67
L		Valor Total (R\$)	930,07	1383,87	1950,72
Т	Interior-point	Iterações	15	15	7
S C		FuncEvals	52	52	25
Algoritmos		b (cm)	22,3128	26,298	30,2104
8		h (cm)	55,7821	65,745	75,5259
₹		Valor / m (R\$/m)	186,01	230,65	278,67
L		Valor Total (R\$)	930,07	1383,87	1950,72
- [Active-set	Iterações	6	6	5
- 1		FuncEvals	18	18	19
- 1		b (cm)	22,3128	26,298	30,2104
-1		h (cm)	55,7821	65,745	75,5259
-1		Valor / m (R\$/m)	186,01	230,65	278,67
		Valor Total (R\$)	930,07	1383,87	1950,72

Conclusão

- Todos os algoritmos convergiram;
- Problema depende bastante do chute inicial;
- Não foi possível testar trust-region-reflective por impossibilidade de calcular gradiente da função objetivo.

Referências

AMERICAN CONCRETE INSTITUTE. ACI 318-98: Building code requirements for reinforced concrete, 1998.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6118:** Projetos de estruturas de concreto: procedimento. Rio de Janeiro, RJ. 2004.

CARVALHO R. C.; FIGUEIREDO FILHO J. R. **Cálculo e detalhamento de estruturas usuais de concreto armado.** 4 ed. São Carlos: EdUFSCar, 2014.

MAIA, J. P. R. Otimização estrutural: estudo e aplicações em problemas clássicos de vigas utilizando a ferramenta Solver. 2009. 83 f. Dissertação (Mestrado em Engenharia Civil) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, SP. 2009.

MUSSO JUNIOR, F. Estruturas de Concreto. Vitória, ES. 2012. (Apostila).

PEDROSO, Fábio Luís. Concreto: as origens e a evolução do material construtivo mais usado pelo homem. **Concreto: material construtivo mais consumido no mundo.** São Paulo, SP. 53, p. 14-19, jan-mar, 2009.

PRAVIA, Z. M. C. Exemplo de um Projeto Completo de um Edifício de Concreto Armado. São Paulo, SP. 2001.

Obrigado.

Álvaro Menezes alvarollmenezes@gmail.com

