Week 3 Live Session

NEBA NFONSANG

Data Splitting

- Why do we need to split our data when building supervised learning models?
- What if we evaluate the model only on the training set?
- If you split your data into two sets, what ratios are commonly used?
- When should you use a higher proportion of the data for the training set?
- When is it okay to use a lower proportion of the data for training?

Data Partitioning

- What is the name of this data partitioning approach?
- What is the downside of using this type of data partitioning approach?

Data Partitioning

- What is the name of this data partitioning approach?
- What is the advantage of using this type of data partitioning approach?

Model Construction

- Does this diagram represent model construction in a supervised learning or in an unsupervised learning?
- What is the difference between supervised learning and unsupervised learning?

Supervised learning

What is the difference between regression supervised learning and classification supervised learning?

Underfitting

- What is the difference between bias and variance?
- When is a model said to underfit the data?

Overfitting

- What are some of the characteristics of overfitting?
- When is a model said to overfit the data?

Optimal fit

- When is a model said to be optimal?
- What is the Occam's Razor principle?

Bias-Variance Trade off

When is the model said to be optimal?

Hyper parameters

- What are hyperparameters?
- What are the hyperparameters for these models?

Model

Polynomial regression

Naïve Bayes

Decision Tree

K-Nearest Neighbor

Model Selection and Comparison

- How is model selection different from model comparison?
- What is the purpose of model selection?
- What is the purpose of model comparison?

Two-way holdout

Three-way holdout validation

Leave-one-out cross validation

Iteration 1	1	2	3	4	5	6	7	8				n
Iteration 2	1	2	3	4	5	6	7	8			•••	n
Iteration 3	1	2	3	4	5	6	7	8				n
Test instance												
Iteration n	1	2	3	4	5	6	7	8				n

K-fold cross validation

Group Activity

- Discuss at least 5 evaluation metric or performance measures used to evaluate the performance of a regression model model.
- Discuss at least 5 evaluation metrics or performance measures used to evaluate the performance of a classification model.

Define these measures whether by describing them or mathematically (instead of just listing them).

How are these measures used?