Sur les schémas de l'équation "KPP avec mémoire"

Liam Toran

Contents

T	Sch	emas et Positivite
	1.1	Pour l'équation différentielle ordinaire
		1.1.1 Schéma semi-implicite I pour l'EDO
		1.1.2 Schéma semi-implicite II pour l'EDO
	1.2	Pour l'équation aux dérivées partielles
		1.2.1 Schéma semi-implicite I pour l'EDP
2	Rés	solution numérique 3
	2.1	Résolution de l'EDO
		2.1.1 Code de résolution de l'EDO
		2.1.2 Résultat de la simulation de l'EDO
	2.2	Résolution de l'EDP en 1D
		2.2.1 Code de la résolution de l'EDP en 1D
		2.2.2 Résultat de la simulation de l'EDP en 1D

1 Schémas et Positivité

On a le modèle suivant ("KPP avec mémoire"):

$$\begin{cases}
\partial_t \mu = K \Delta \mu + C(\mu + \rho) - \mu \rho \\
\partial_t \rho = F_0 \mu \\
\partial_t C = -b \rho C
\end{cases} \tag{1}$$

1.1 Pour l'équation différentielle ordinaire

Sans dépendance spatiale:

$$\begin{cases} \partial_t \mu = C(\mu + \rho) - \mu \rho \\ \partial_t \rho = F_0 \mu \\ \partial_t C = -b \rho C \end{cases}$$
 (2)

1.1.1 Schéma semi-implicite I pour l'EDO

Soit le schéma semi-implicite I pour l'EDO:

$$\begin{cases} \mu^{n+1} = \mu^n + \Delta t (C^n(\mu^{n+1} + \rho^{n+1}) - \mu^{n+1}\rho^n) \\ \rho^{n+1} = \rho^n + \Delta t (F_0\mu^{n+1}) \\ C^{n+1} = C^n - \Delta t (b\rho^{n+1}C^{n+1}) \end{cases}$$
(3)

Ce schéma donne:

$$\begin{cases} \mu^{n+1}(1 - \Delta t(C^n(1 + \Delta t F_0)) + \rho^n) = \mu^n + \Delta t C^n \rho^n \\ \rho^{n+1} = \rho^n + \Delta t(F_0 \mu^{n+1}) \\ C^{n+1} = C^n \frac{1}{1 + \Delta t b \rho^{n+1}} \end{cases}$$

Pour conserver la positivité il suffit que le terme $(1 - \Delta t(C^n(1 + \Delta t F_0)) + \rho^n)$ reste positif: Par exemple:

$$C^0 < \frac{1}{\Delta t (1 + F_0 \Delta t)} \tag{4}$$

1.1.2 Schéma semi-implicite II pour l'EDO

Soit le schéma semi-implicite II pour l'EDO:

$$\begin{cases} \mu^{n+1} = \mu^n + \Delta t (C^n(\mu^{n+1} + \rho^{n+1}) - \mu^n \rho^n) \\ \rho^{n+1} = \rho^n + \Delta t (F_0 \mu^{n+1}) \\ C^{n+1} = C^n - \Delta t (b\rho^{n+1} C^{n+1}) \end{cases}$$
(5)

Ce schéma donne:

$$\begin{cases} \mu^{n+1}(1 - \Delta t(C^n(1 + \Delta t F_0))) = \mu^n + \Delta t \rho^n(C^n - \mu^n) \\ \rho^{n+1} = \rho^n + \Delta t(F_0 \mu^{n+1}) \\ C^{n+1} = C^n \frac{1}{1 + \Delta t b \rho^{n+1}} \end{cases}$$

Pour conserver la positivité il suffit que les terme $(1 - \Delta t(C^n(1 + \Delta t F_0)))$ et $\mu^n + \Delta t \rho^n(C^n - \mu^n)$ restent positif:

Par exemple:

$$C^0 < \frac{1}{\Delta t (1 + F_0 \Delta t)} \tag{6}$$

 et

$$\rho^n < \frac{1}{\Delta t} \tag{7}$$

On obtient une condition de plus que le schéma semi-implicite I.

1.2 Pour l'équation aux dérivées partielles

1.2.1 Schéma semi-implicite I pour l'EDP

Soit le schéma semi-implicite I pour l'EDP:

$$\begin{cases} \mu^{n+1} = \mu^n + K\Delta t \frac{\mu^{n+1} - 2\mu^{n+1} + \mu^{n-1}}{\Delta x^2} + \Delta t (C^n(\mu^{n+1} + \rho^{n+1}) - \mu^{n+1}\rho^n) \\ \rho^{n+1} = \rho^n + \Delta t (F_0\mu^{n+1}) \\ C^{n+1} = C^n - \Delta t (b\rho^{n+1}C^{n+1}) \end{cases}$$
(8)

Ce schéma donne:

$$\begin{cases} (1 + \frac{K\Delta t}{\Delta x^2} A - \Delta t (C^n (1 + \Delta t F_0)) + \rho^n) \mu^{n+1} = \mu^n + \Delta t C^n \rho^n \\ \rho^{n+1} = \rho^n + \Delta t (F_0 \mu^{n+1}) \\ C^{n+1} = C^n \frac{1}{1 + \Delta t h \rho^{n+1}} \end{cases}$$

où A est la matrice de $-\Delta$:

$$A = \begin{bmatrix} 2 & -1 & & 0 \\ -1 & \ddots & \ddots & \\ & \ddots & \ddots & -1 \\ 0 & & -1 & 2 \end{bmatrix}$$
 (9)

A étant symétrique définie positive, afin de préserver la positivité, on obtient la même condition (suffisante) que pour l'EDO:

$$C^0 < \frac{1}{\Delta t(1 + F_0 \Delta t)} \tag{10}$$

2 Résolution numérique

2.1 Résolution de l'EDO

2.1.1 Code de résolution de l'EDO

```
import matplotlib.pyplot as plt
   from scipy.integrate import ode
1002
   b=.1 \# dtC=-b*rho*C
   F0=1 \# dtRho = Fo*Mu
   tf=50~\# temps final de la simulation
   rho0=0 #rho initial
   mu0=0.01 #mu initial
   c0=1 #concentration initiale
   n=1000~\#nombre de pas de temps
1010
   #Résolution du schéma éxplicite
def euler_explicite_edo(b, F0, tf, rho0, mu0, c0, n):
     #t0<t1, temps etudies,
     #rho0, mu0,c0 reels positifs: condition initiale
1014
     #n entier (nombre d'iterations)
     h=tf/n #pas Deltat
1016
     rho = rho0
     mu=mu0
     c=c0
      t = 0
1020
     Rho=[rho0]
     Mu=[mu0]
     C = [c0]
     T=[t]
1024
      for k in range(n):
       new_mu = mu + h*(c*(mu+rho)-mu*rho)
1026
        new\_rho = rho + h*F0*mu
       new_c = c - h*b*rho*c
1028
       mu=new_mu
       rho=new_rho
1030
        c=new_c
1032
        t=t+h
       Mu. append (new_mu)
       Rho.append(new_rho)
       C. append (new_c)
       T. append(t)
1036
      return T, Mu, Rho, C
1038
   #Résolution du schéma semi- implicite I
def euler_semi_I_edo(b, F0, tf, rho0, mu0, c0, n):
     \#t0 < t1 , temps etudies,
     #rho0, mu0,c0 reels positifs: condition initiale
1042
     #n entier (nombre d'iterations)
1044
     h=tf/n #pas Deltat
     rho=rho0
     mu=mu0
1046
     c=c0
      t=0
1048
     Rho=[rho0]
     Mu=[mu0]
1050
     C=[c0]
```

```
T = [0]
      for k in range(n):
        new_mu = (mu + h*c*rho)/(1+h*rho-h*c*(1+h*F0))
        new\_rho = rho + h*F0*new\_mu
        new_c = c/(1 + b*h*new_rho)
1056
       mu=new_mu
        rho=new_rho
1058
        c=new c
        t=t+h
1060
       Mu. append (new_mu)
1062
        Rho. append (new_rho)
       C. append (new_c)
       T. append(t)
1064
      return T, Mu, Rho, C
1066
   #Résolution du schéma semi- implicite II
def euler_semi_II_edo(b, F0, tf, rho0, mu0, c0, n):
     \#t0 < t1, temps etudies,
     #rho0, mu0,c0 reels positifs: condition initiale
     #n entier (nombre d'iterations)
     t=0
     h=tf/n #pas Deltat
     rho=rho0
     mu=mu0
      c=c0
1076
     Rho=[rho0]
     Mu=[mu0]
1078
     C=[c0]
     T = [0]
1080
      for k in range(n):
       new_mu = (mu + h*c*rho-h*rho*mu)/(1-h*c*(1+h*F0))
1082
        new\_rho = rho + h*F0*new\_mu
        new_c = c/(1 + b*h*new_rho)
1084
       mu=new_mu
1086
        rho=new_rho
        c=new_c
        t=t+h
       Mu. append (new_mu)
        Rho.append(new_rho)
       C. append (new_c)
       T. append(t)
      return T, Mu, Rho, C
   #Programmation de la méthode de Newton-Raphson
   def newton(f, gradf, newton_steps, x0):
1096
     x=x0
      for k in range (newton_steps):
1098
        x=x-f(x)/gradf(x)
      return x
   #Résolution du schéma implicite
def euler_implicite_edo(b, F0, tf, rho0, mu0, c0, n):
     \#t0 < t1 , temps etudiés,
     #rho0, mu0,c0 reels positifs: conditions initiale
1104
     #n entier (nombre d'itérations)
1106
      newton_steps=10 #nombre d'itérations de la méthode de Newton-Raphson pour le
       calcul implicite
     h=tf/n #pas deltat
1108
     rho=rho0
```

```
mu=mu0
      c=c0
     Rho=[rho0]
1112
     Mu=[mu0]
     C = [c0]
1114
     T = [0]
      for k in range(n):
        #Calcul de new_mu par methode de Newton Raphson
        #coefficients du polynome d'ordre 3 en new_mu
1118
        alpha = -h**4*F0**2*b
1120
        beta = -F0*h**2*(b+1+2*rho*b*h)
        gamma = -(1+b*h*rho)+b*h**2*F0*mu+h*(c*(1+h*F0)-rho*(1+b*h*rho))
        delta = (1+b*h*rho)*mu + h*c*rho
        def P(X):
          return alpha*X**3+beta*X**2+gamma*X+delta
1124
        def gradP(X):
          return 3*alpha*X**2+2*beta*X+gamma
1126
        new_mu=newton(P, gradP, newton_steps, mu)
        new\_rho = rho + h*F0*new\_mu
1128
        new_c = c/(1 + b*h*new_rho)
        mu=new_mu
1130
        rho=new_rho
        c=new_c
        t=t+h
        Mu. append (new_mu)
1134
        Rho.append(new_rho)
        C. append (new_c)
1136
        T. append(t)
      return T, Mu, Rho, C
1138
1140 #Utilisation des libraries python (scipy) pour résoudre l'EDO
    def black_box_edo(b, F0, tf, rho0, mu0, c0, n):
        def f(t,y,arg1,arg2):
1142
            mu=y[0]
            rho=y[1]
1144
            c=y[2]
            return [c*(mu+rho)-mu*rho, F0*mu, -b*rho*c]
        r = ode(f).set\_integrator('zvode', method='adams')
1148
        r.set_initial_value([mu0, rho0, c0],0).set_f_params(F0,b)
        dt=tf/(n-1)
        Rho = [rho0]
        Mu=[mu0]
        C = [c0]
        t\!=\!\!0
        T = [0]
        while r.t < tf:
1156
            mu, rho, c = r.integrate(r.t+dt)
            Mu. append (mu)
            Rho. append (rho)
            C. append (c)
1160
            T. append (r.t)
        return T, Mu, Rho, C
1164
T, Mu, Rho, C = black_box_edo(b, F0, tf, rho0, mu0, c0, n)
   #Tracé des solutions
1168 plt. subplot (221)
```

```
plt.plot(T,Mu)
plt.ylabel('mu')
plt.xlabel('t')

1172 plt.subplot(222)
plt.plot(T,Rho)

1174 plt.ylabel('rho')
plt.subplot(223)

1176 plt.plot(T,C)
plt.ylabel('C')
plt.ylabel('C')
plt.show()
```

edo.py

2.1.2 Résultat de la simulation de l'EDO

Figure 1: Résolution du schéma implicite pour l'EDO

2.2 Résolution de l'EDP en 1D

2.2.1 Code de la résolution de l'EDP en 1D

```
import matplotlib.pyplot as plt
        import numpy as np
       import scipy.sparse as sp
        from scipy.sparse.linalg.dsolve import spsolve
1004 import matplotlib. animation as animation
1006 #Coéfficients physiques
       K=.2 #coefficient diffusion
b=.2 \# dtC=-b*rho*C
       F0=1 \# dtRho = Fo*Mu
1010
       #Paramêtres numériques
n_t = 501 #nombre de pas de temps
        tf=30~\# temps final de la simulation
       xf = 100 #longeur de lasimulation
        n_x = 600 \text{ #nombres de points de la simulation}
       #Données initiales
       rho0=np.zeros(n_x) #rho initial
       mu0=np.zeros(n_x) #mu initial
       mu0[(n_x//2):(n_x//2+10)]=.01
       c0=np.zeros(n_x)+1 #concentration initiale
        def edp_1d_explicite(K, b, F0, rho0, mu0, c0, n_t, tf, xf, n_x):
            dt=tf/(n_t-1)
1024
            dx=xf/(n_x-1)
            X=np.linspace(0,xf,n_x)
            T=np.linspace(0,tf,n_t)
            Mu=np.zeros((n_t, n_x))
1028
            Rho=np.zeros((n_t, n_x))
            C=np.zeros((n_t, n_x))
1030
            Mu[0] = mu0
            Rho[0] = rho0
            C[0] = c0
            #Résolution du schema éxplicite
1034
             for n in range (0, n_t - 1):
1036
                 RHS=np.zeros(n_x)
                 alpha = -C[n] * dt * (1 + dt * F0) + dt * Rho[n] + 1
                 RHS[1:-1] = dt * ((K/(dx*2))*(Mu[n,:-2] - 2*Mu[n,1:-1] + Mu[n,2:]) + C[n,1:-1]*Rho[n,2:]) + C[n,1:-1]*(Rho[n,2:]) + C[n,1:-1
1038
                 ,1:-1])
                 RHS[0] = dt * ((K/(dx**2))*(-2*Mu[n,0]+Mu[n,1])+C[n,0]*Rho[n,0])
                 RHS[-1] = dt * ((K/(dx*2))*(-2*Mu[n,-1]+Mu[n,-2])+C[n,-1]*Rho[n,-1])
1040
                 Mu[n+1] = (1/alpha) * (Mu[n] + RHS)
                 Rho[n+1]=Rho[n]+dt*F0*Mu[n+1]
                 C[n+1]=C[n]/(1 + b*dt*Rho[n])
             return X,T,Mu,Rho,C
1044
def edp_1d_semi_implicite_I(K, b, F0, rho0, mu0, c0, n_t, tf, xf, n_x):
            #Détermination des paramêtres numeriques deltat et deltax
1048
             dt=tf/(n_t-1)
            dx=xf/(n_x-1)
            #Représentation de l'éspace et du temps
            X=np.linspace(0,xf,n_x)
            T=np.linspace(0,tf,n_t)
1052
            #Initialisation
```

```
Mu=np.zeros((n_t,n_x))
1054
            Rho=np.zeros((n_t, n_x))
            C=np.zeros((n_t,n_x))
1056
            Mu[0] = mu0
            Rho[0] = rho0
1058
            C[0] = c0
            #Résolution du schéma implicite-explicite I
1060
             for n in range (0, n_t - 1):
                  alpha = -C[n] * dt * (1 + dt * F0) + dt * Rho[n] + 1
1062
                  A=np.diag(-np.ones(n_x-1),-1)+np.diag(2*np.ones(n_x),0)+np.diag(-np.ones(n_x-1),0)
                 A = A * K * dt / (dx * * 2)
1064
                 A+=np.diag(alpha,0)
                 Mu[n+1] = spsolve(A, Mu[n]+dt*C[n]*Rho[n])
1066
                  Rho[n+1]=Rho[n]+dt*F0*Mu[n+1]
                 C[n+1]=C[n]/(1 + b*dt*Rho[n])
1068
             return X,T,Mu,Rho,C
1070
        def edp_1d_semi_implicite_II(K, b, F0, rho0, mu0, c0, n_t, tf, xf, n_x):
            #Détermination des paramêtres numériques deltat et deltax
1072
             dt=tf/(n_t-1)
             dx=xf/(n_x-1)
1074
            #Représentation de l'éspace et du temps
            X=np.linspace(0,xf,n_x)
            T=np.linspace(0,tf,n_t)
            #Initialisation
1078
            Mu=np.zeros((n_t,n_x))
            Rho=np.zeros((n_t, n_x))
1080
            C=np.zeros((n_t,n_x))
            Mu[0] = mu0
1082
            Rho[0] = rho0
            C[0] = c0
1084
            #Résolution du schéma implicite-explicite II
             for n in range (0, n_t - 1):
1086
                 #Matrice du Laplacien
                 A=np.diag(-np.ones(n_x-1),-1)+np.diag(2*np.ones(n_x),0)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-np.ones(n_x-1),-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x-1)+np.diag(-n_x
1088
                 A=A*K*dt/(dx**2) #Laplacien Numerique
                 #Ajout des termes implicites
1090
                  alpha = -C[n] * dt * (1 + dt * F0) + 1
                 A+=np.diag(alpha,0)
                 #Résolution du systême implicite
                 Mu[n+1] = spsolve(A, Mu[n]+dt*C[n]*Rho[n]-dt*Mu[n]*Rho[n])
                  Rho[n+1]=Rho[n]+dt*F0*Mu[n+1]
                 C[n+1]=C[n]/(1 + b*dt*Rho[n])
1096
             return X,T,Mu,Rho,C
        X,T,Mu,Rho,C= edp_1d_semi_implicite_I(K, b, F0, rho0, mu0, c0, n_t, tf, xf, n_x)
        #Valeur de rho a l'infini
        rho_{inf} = Rho[n_{t}-1,(n_{x}/2)]
1102
         print(rho_inf)
1104
1106 def speed (X, Rho):
                 #Position du front
             argmed=np.zeros(n_t)
             for i in range(n_t):
```

```
\operatorname{argmed}[i] = X[(n_x/2) + \operatorname{np.min}(\operatorname{np.where}(\operatorname{np.append}(\operatorname{Rho}[i,(n_x/2):],[0]) < \operatorname{rho\_inf}/2)
1110
        ) ]
      #Vitesse du front
      S = (argmed [(n_t/2)+1:]-argmed [(n_t/2):-1])*((n_t-1)/tf)
      s= np.average(S)
      return s
1114
    s=0
   s = speed(X, Rho)
1116
    print(s)
1118
   #Animation
1120
    fig = plt.figure()
1122
    ax = plt.axes(xlim=(0, xf), ylim=(0, rho_inf+1))
| \text{line} | = \text{ax.plot}([], [], \text{lw}=2)
    line2, = ax.plot([], [], lw=2)
   line3, = ax.plot([], [], lw=2)
    line4, = ax.plot([], [], lw=2)
    time_text = ax.text(0.02, 0.92, '', transform=ax.transAxes)
    legend_text = ax.text(0.80, 0.82, '', transform=ax.transAxes)
    def init():
        line.set_data([], [])
        line2.set_data([], [])
        line3.set_data([], [])
1134
        line4.set_data([], [])
        time_text.set_text('')
1136
        legend_text.set_text(',')
        return line, line2, line3, line4, time_text, legend_text
1138
1140
    def animate(i):
        line.set_data(X, C[i])
1142
        line2.set_data(X, Rho[i])
        line3.set_data(X, Mu[i])
1144
        \#line4.set_data(50+((i*s)*tf/(n_t-1)),np.linspace(0,rho_inf+1,10))
        time_text.set_text('time = \{0:.1f\}\n K=\{1\}, b=\{2\}, F0=\{3\}'.format(T[i],K,b,F0))
1146
        legend_text.set_text('Rho=Orange \nMu=Green \nC=Blue\ns={0:.3f}'.format(s))
        return line, line2, line3, line4, time_text, legend_text
1148
1150
    anim = animation.FuncAnimation(fig, animate, init_func=init,
                                        frames = (n_t - 1), interval = (tf * 200) / (n_t - 1), blit = True
1154
#anim.save('EDP_1D.gif', writer='imagemagick', fps=30)
    plt.show()
```

edp_1d.py

2.2.2 Résultat de la simulation de l'EDP en 1D

Figure 2: Résolution du schéma semi implicite I pour l'EDP en 1D