# PneumoniaCXR: AI-Enabled Pneumonia Detection

Gary Kong, Drew Piispanen, Diqing Wu

### Contents

- Introduction (Drew)
- Data and Preprocessing (Drew)
- Feature Engineering (Gary)
  - Histogram of Oriented Gradients (HOG)
  - Radiomics Features
  - ResNet50
  - t-SNE Visualizations
  - Principal Component Analysis (Diging)

#### Results

- Classification Performance (Diging)
- Feature Importance (Diging)
- Efficiency (Diqing)
- Generalizability (Drew)
- Conclusions (Drew)

## Introduction

- **The COVID-19 Crisis**: Underscored the urgent need for accurate diagnostics.
- Hard to Differentiate: COVID-19 vs. non COVID-19 vs. normal lung issues can be hard to diagnose.
- Understaffing of Medical Professionals: Only doctors can diagnose these issues, but many are understaffed with the need for second opinions.
- Our Approach: Using feature sets (HOG, ResNet, Pyradiomics) we'll classify CXR images, aiming for improved diagnostics.



# Data and Preprocessing

#### Dataset:

- From Kaggle 32,103 CXR images (255, 255) of chest x-rays from all over the world, labeled to three classes:
  - o COVID-19 pneumonia
  - Non COVID-19 pneumonia
  - Normal non-pneumonia
- After processing:
  - 10,701 COVID-19, 10,701 non-COVID, and 10,701 Normal

#### **Data Preprocessing:**

- Contrast Normalization: Applied z-score scaling to normalize intensity across images.
- Image Cropping: Removed blank space and zoomed out images.
   Applied to both image and mask.
- Orientation Standardization: OpenCV image alignment, adjusting spines to align perpendicularly. Applied to both image and mask.
- Balancing Classes: Implemented random undersampling to balance the 3 classes.



# Feature Engineering

# Histogram of Oriented Gradients (HOG)



| Parameters      | Initial<br>Configuration | Search Values                   | Parameter<br>Importance | Best<br>Configuration |
|-----------------|--------------------------|---------------------------------|-------------------------|-----------------------|
| Image Size      | (128, 255)               | (128,255), (255,128), (255,255) | 30.9%                   | (255, 255)            |
| Orientations    | 9                        | 7, 8, 9                         | 4.3%                    | 9                     |
| Pixels per Cell | (16, 6)                  | (8,8), (12,12), (16,16)         | 58.7%                   | (16, 16)              |
| Cells per Block | (2, 2)                   | (2,2), (3,3)                    | 6.2%                    | (2, 2)                |

- Relevance to Pneumonia: Orientations, locations and strength of edges are relevant to consolidations and ground-glass opacities.
- Hyperparameter Tuning: Optimized image size, orientation pixels per cell, and cells per block to maximize mutual information
- **Initial Configuration:** Based our initial settings on a similar study of pneumonia detection.
- Key Parameters: Pixels per cell and image size were most crucial for maximizing mutual information.
- Optimized Image Size: Modified the image size from the initial configuration to enhance performance.

# Radiomics: Capturing Textural Cues (1 of 2)



- Texture and Disease: Radiomics extracts quantitative features from medical images, revealing textural patterns correlated with underlying pathologies.
- Transformations Matter: Gradient and wavelet transformations enhanced the discriminative power of our radiomics features.
- Feature Class Insights: GLCM, GLDM, first-order statistics, and GLRLM emerged as particularly informative for pneumonia detection.

# Radiomics: Capturing Textural Cues (2 of 2)



- Reducing Redundancy:
   Reduced correlated
   features to enhance
   efficiency and avoid bias
   towards correlated
   features in PCA
- Wavelet Dominance: Wavelet-transformed features proved highly informative.
- Diverse Feature Classes:
   Top features include
   First-order, GLCM, GLDM,
   and GLRLM

# Deep Learning with ResNet50



- Proven in Medical Imaging: ResNet demonstrates strong performance in medical image analysis, including pneumonia classification.
- ResNet50 for Efficiency: We selected ResNet50 for its balance of depth and computational efficiency.
- Pre-trained Power: Employed a pre-trained ResNet50 model on ImageNet for robust feature extraction.
- Adaptation: Images were resized and normalized for compatibility with the pre-trained model.

### t-SNE Visualizations





- Dimensionality Reduction for Visualization: t-SNE projects high-dimensional features into 2D or 3D space for easier exploration.
- Insights into Class Separability: t-SNE helps us assess if features naturally cluster by pneumonia type.
- Partial Clustering: HOG and ResNet features show some clustering, suggesting potential discriminative power.
- Radiomics Diversity: Lack of clustering in radiomics features could be due to their diverse nature.
- **t-SNE Limitations:** Challenges in preserving relationships between heterogeneous features in lower dimensions.

# Principal Component Analysis



# Results

## Feature Importance

- Feature importance from Random Forest Model using 90% explained variance PCA
  - No one set of features shows significantly more importance than the others across different metrics
    - Sum of importance
    - Average importance per feature
    - Max single feature importance
    - etc.

|                                      | HOG    | Resnet | Radiomic |
|--------------------------------------|--------|--------|----------|
| sum<br>importance                    | 50.14% | 26.59% | 23.27%   |
| num of<br>features                   | 1065   | 193    | 22       |
| average<br>importance<br>per feature | 0.05%  | 0.14%  | 1.06%    |
| max feature importance               | 6.01%  | 4.34%  | 2.91%    |

| Top 10   | importance |
|----------|------------|
| hog_0    | 6.0%       |
| resnet_1 | 4.3%       |
| hog_1    | 4.2%       |
| resnet_0 | 3.4%       |
| radio_2  | 2.9%       |
| radio_10 | 2.9%       |
| radio_3  | 2.2%       |
| resnet_3 | 2.2%       |
| radio_1  | 2.1%       |
| radio_5  | 2.1%       |

## Classification Performance

Hyperparameter Tuning

- SVM
- Logistic Regression
- Gradient Boosting
- Random Forest

Best set of parameters is also used for efficiency comparison

| Model      | Number of Trials | Search Time<br>Per Trial (s) | Parameter         | Search Values                            | Best Value |
|------------|------------------|------------------------------|-------------------|------------------------------------------|------------|
| SVM        | 25               | 1577/25                      | С                 | [1e-4, 1e-3, 1e-2,<br>1e-1, 1, 1e1, 1e2] | 1          |
|            |                  |                              | kernel            | 'linear', 'sigmoid', 'rbf'               | rbf        |
| Logistic   | 25               | 1584/25                      | С                 | [0.01, 0.1, 1.0, 10]                     | 0.1        |
| Regression |                  |                              | penalty           | ['L1', L2']                              | L1         |
| Gradient   | 15               | 30411/15                     | learning_rate     | [0.01, 0.05, 0.1]                        | 0.1        |
| Boosting   |                  |                              | n_estimators      | [100,200]                                | 100        |
|            |                  | subsample                    |                   | [0.5, 1.0]                               | 1.0        |
| Random     | 25               | 1336/25                      | n_estimators      | [50, 100, 200]                           | 200        |
| Forest     |                  |                              | max_depth         | [5, 10]                                  | 10         |
|            |                  |                              | criterion         | ["gini", "entropy"]                      | "entropy"  |
|            |                  |                              | min_samples_split | [2, 5]                                   | 5          |

## Classification Performance

| Model                  |              | Accuracy       |          |              | F1-Score       |          |  |
|------------------------|--------------|----------------|----------|--------------|----------------|----------|--|
|                        | Training Set | Validation Set | Test Set | Training Set | Validation Set | Test Set |  |
| SVM                    | 0.97         | 0.87           | 0.89 😕   | 0.97         | 0.87           | 0.89 🚇   |  |
| Logistic<br>Regression | 0.91         | 0.88           | 0.90 😜   | 0.91         | 0.88           | 0.90 😜   |  |
| Gradient<br>Boosting   | 0.86         | 0.85           | 0.85     | 0.86         | 0.85           | 0.85     |  |
| Random<br>Forest       | 0.92         | 0.81           | 0.82     | 0.92         | 0.81           | 0.82     |  |

# Classification Performance - Logistic Regression



|                                       | precision            | recall               | f1-score             | support              |
|---------------------------------------|----------------------|----------------------|----------------------|----------------------|
| COVID-19<br>Non-COVID<br>Normal       | 0.93<br>0.88<br>0.88 | 0.89<br>0.90<br>0.90 | 0.91<br>0.89<br>0.89 | 2140<br>2140<br>2140 |
| accuracy<br>macro avg<br>weighted avg | 0.90<br>0.90         | 0.90<br>0.90         | 0.90<br>0.90<br>0.90 | 6420<br>6420<br>6420 |

# Misclassification Examples







True Label:
Covid-19
Predicted Label
(misclassify):
Normal

True Label: Normal Predicted Label (misclassify): Covid-19

True Label:
Non-Covid
Predicted Label
(misclassify):
Normal

True Label:
Normal
Predicted Label
(misclassify):
Non-Covid

# Efficiency

### • 90% PCA

|                        | Per Trial          | Training             | Pr              | Prediction Time (s) |             | Accuracy    | F1-Score    |
|------------------------|--------------------|----------------------|-----------------|---------------------|-------------|-------------|-------------|
|                        | Tuning<br>Time (s) | Training<br>Time (s) | Training<br>Set | Validation<br>Set   | Test<br>Set | Test<br>Set | Test<br>Set |
| Logistic<br>Regression | 63.36              | 17                   | 0.02            | 0.01                | 0.01        | 0.90        | 0.90        |
| SVM                    | 63.08              | 21                   | 50              | 12                  | 16          | 0.89        | 0.89        |
| Gradient<br>Boost      | 2094.07            | 2089                 | 0.30            | 0.06                | 0.08        | 0.85        | 0.85        |
| Random<br>Forest       | 53.4               | 111                  | 0.60            | 0.14                | 0.17        | 0.82        | 0.85        |

• 80% PCA: faster but not significantly

All features: crash the runtime

# Generalizability

- Logistic Regression & Gradient Boosting
  - Good generalizability
  - The minimal drop between validation and test set accuracy suggests the model generalizes well to unseen data
- SVM & Random Forest
  - Potential Overfitting?
  - Visible accuracy drop from train to validation/test
  - But not necessarily as it is not significant

|                        |                 | Accuracy          |          | F1-Score        |                   |          |  |
|------------------------|-----------------|-------------------|----------|-----------------|-------------------|----------|--|
| Model                  | Training<br>Set | Validation<br>Set | Test Set | Training<br>Set | Validation<br>Set | Test Set |  |
| SVM                    | 0.97            | 0.87              | 0.89     | 0.97            | 0.87              | 0.89     |  |
| Logistic<br>Regression | 0.91            | 0.88              | 0.90     | 0.91            | 0.88              | 0.90     |  |
| Gradient<br>Boosting   | 0.86            | 0.85              | 0.85     | 0.86            | 0.85              | 0.85     |  |
| Random<br>Forest       | 0.92            | 0.81              | 0.82     | 0.92            | 0.81              | 0.82     |  |

## Conclusions

Created an effective model to classify COVID-19, non-COVID pneumonia, and normal chest x-rays.

- 90% model accuracy
- Good generalizability
- No one feature set had greater importance over the others.
- Future studies could work with CXR machine-specific models, and future model experimentation.



