Effectivess comparison report

Raphael Rodrigues Campos January 17, 2016

Eu implementei o BROOF usando Extremely Randomized Trees no lugar da RF, gerando o algoritmo que chamei de BERT (Boosted Extremely Randomized Trees).

A própria ERT se sai melhor em alguns datasets do que a RF. Portanto, era de se esperar que a BERT se saísse um pouco melhor que o BROOF, como pode-se verificar no arquivo anexo.

O arquivo anexo possui uma tabela comparando todos os métodos rodados até agora.

Além da implementação do BERT, eu também implementei método de ensemble "Stacked Generalization" descrito em [1] David H. Wolpert, "Stacked Generalization", Neural Networks, 5, 241–259, 1992.

O método comb
1 na tabela é o stacking de 2 níveis para combinação dos métodos Lazy
NN_RF e BROOF. No nível do zero do stacking foram utilizados os classificadores Lazy
NN_RF e BROOF para gerar o conjunto de treino do nível 1. No nível 1 foi utilizado uma RF com 200 árvores.

Os resultados apresentados são promissores. Sobretudo quando se trata de métrica microf1, onde tivemos mais ganhos significativos.

Resultados

% latex table generated in R 3.2.3 by xtable 1.8-0 package % Fri Mar 4 22:13:12 2016 Legenda para os métodos:

- LXT: Lazy Extremely Randomized Trees
- RF: Random Forest com 200 árvores
- RF1000: Random Forest com 1000 árvores
- XT: Extremely Randomized Trees com 200 árvores
- XT1000: Extremely Randomized Trees com 1000 árvores
- COMB1: Stacking (Lazy + BROOF)
- BERT: Boosted Extremely Randomized Trees

	V2	20NG	4UNI	ACM	REUTERS90
BERT	microF1	89.13 ± 0.41	84.53 ± 0.9	74.66 ± 0.63	67.23 ± 0.86
	macroF1	89.11 ± 0.48	$\textbf{75.46}\pm\textbf{1.98}$	65.05 ± 1.34	$\textbf{29.93}\pm\textbf{2.56}$
BROOF	microF1	87.56 ± 0.23	84.42 ± 0.7	73.25 ± 0.69	66.48 ± 0.9
	macroF1	87.58 ± 0.22	76.19 ± 0.54	$\textbf{62.55}\pm\textbf{1.5}$	$\textbf{29.53}\pm\textbf{2.95}$
COMB1	microF1	89.74 ± 0.57	$\textbf{86.4}\pm\textbf{0.91}$	$\textbf{77.05}\pm\textbf{0.64}$	77.99 ± 1.33
	macroF1	$\textbf{89.53}\pm\textbf{0.62}$	$\textbf{79.04}\pm\textbf{1.95}$	64.36 ± 0.78	$\textbf{35.73}\pm\textbf{3.96}$
KNN	microF1	87.41 ± 0.7	75.02 ± 1.39	70.41 ± 0.81	69.04 ± 0.96
	macroF1	87.24 ± 0.68	62.62 ± 1.77	62.91 ± 1.01	$\textbf{36.97}\pm\textbf{1.64}$
LAZY	microF1	88.22 ± 0.29	82.04 ± 0.83	73.41 ± 0.79	66.2 ± 1.23
	macroF1	88.02 ± 0.33	$\textbf{72.55}\pm\textbf{1.26}$	64.6 ± 1.97	$\textbf{28.17}\pm\textbf{2.77}$
LXT	microF1	88.49 ± 0.43	82.15 ± 0.81	71.71 ± 0.69	65.82 ± 1.25
	macroF1	88.37 ± 0.43	72.7 ± 1.05	63.44 ± 0.77	$\textbf{29.55}\pm\textbf{3.13}$
NB	microF1	$\textbf{88.99}\pm\textbf{0.54}$	59.76 ± 1.75	$\textbf{71.79}\pm\textbf{1.01}$	64.86 ± 1.59
	macroF1	$\textbf{88.78}\pm\textbf{0.54}$	58 ± 1	58.35 ± 0.54	28.01 ± 1.66
RF1000	microF1	86.49 ± 0.46	81.37 ± 0.85	71.41 ± 0.53	63.88 ± 0.96
	macroF1	86.66 ± 0.5	$\textbf{71.92}\pm\textbf{1.3}$	59.02 ± 0.6	25.68 ± 2.5
RF	microF1	84.03 ± 0.39	81.25 ± 1.13	71.06 ± 0.48	63.83 ± 1.13
	macroF1	84.26 ± 0.36	$\textbf{72.14}\pm\textbf{1.08}$	58.66 ± 0.79	25.34 ± 2.02
SVM	microF1	90.77 ± 0.49	83.36 ± 0.93	$\textbf{76.05}\pm\textbf{0.61}$	68.08 ± 1.06
	macroF1	90.6 ± 0.5	$\textbf{74.9}\pm\textbf{2.55}$	$\textbf{68.47}\pm\textbf{1.09}$	$\textbf{33.83}\pm\textbf{2.76}$
XT1000	microF1	$\textbf{88.71}\pm\textbf{0.52}$	82.61 ± 1	73.53 ± 0.69	64.87 ± 0.95
	macroF1	88.72 ± 0.57	$\textbf{72.13}\pm\textbf{1.52}$	60.83 ± 0.92	$\textbf{26.47}\pm\textbf{2.91}$
XT	microF1	86.83 ± 0.49	82.49 ± 1.07	73.15 ± 0.68	64.89 ± 1.01
	macroF1	86.91 ± 0.52	$\textbf{72.24}\pm\textbf{1.87}$	60.6 ± 0.92	$\textbf{26.36}\pm\textbf{3.13}$

Table 1: Comparação entre todos os métodos