인체와 건강 _ 트레이닝의 이해와 활용2

IV 트레이닝의 이해와 활용2_5주차 온라인강의

- 1. 트레이닝의 이해
- 2. 트레이닝의 구성 요소
- 3. 트레이닝의 효과
- 4. 근력 트레이닝 원리와 방법
- 5. 파워 트레이닝 원리와 방법

- 6. 지구력 트레이닝 원리와 방법
- 7. 조정력 트레이닝 원리와 방법
- 8. 유연성 트레이닝 원리와 방법
- 9. 생애주기별 트레이닝

- 근력(muscle strength)
 - 근육의 생리적 작용(동적 또는 정적)인 <u>힘을 방출하는 근육의 능력</u>. <u>수축을 반복하는 능력</u>. <u>다른 근육 혹은 근육무리와 적절한 연관성을 가지고 수축하는 능력</u> 즉, <u>협응성</u>과 밀접한 관련. 다시 말하면, <u>근육이 저항을 이겨내기 위하여 최대한으로 수축력을 발휘하는 능력</u>
- 근력을 발달시키기 위한 방법에서 'specific adaptation to imposed demand(SAID)'와 점진적 과부 하 원리를 적용하는 것이 근력 트레이닝의 관건
 - SAID 원리 : 어떤 운동이나 특정한 훈련을 할 때 우리 신체는 <u>그 특정한 형태의 운동에 필요한</u> <u>근육에 국한하여 적응</u> (참고:특이성의 원리)
 - 근력 트레이닝의 종류
 - · <u>정적</u>트레이닝 : 등척성 트레이닝
 - · <u>동적</u>트레이닝 : 등장성 트레이닝(단축성 수축, 신장성 수축, 등속성 수축)

운동형태	근수축		특징	근길이 변화
동적 수축	단축성 (concentic)	등장성 (isobnic)	운동하는 관절의 각도에 따라서 근육의 길이가 변화	감소
		등속성 (isokinetic)	안정성 있게 빠른 시간 안에 근력강화 가능	
	신장성 (eccentic)		파워 능력의 극대화 선수 훈련에 많이 사용	증가
정적 수축	등척성 (isometric)		신경근육조직기능 향상 (neuromuscle tissue)	변화 없음
' 운동과 근활동 형	태의 분류			

- <u>정적</u> 트레이닝 (static training) : <u>등척성 트레이닝</u>
 - 근육이 장력을 발생할 때 <u>근육의 길이가 변화하지 않고</u> <u>관절의 움직임도 없기</u> 때문에 일반적으로 근육무리의 수축은 움직이지 않는 고정된 물체(기구)에 대하여 이 루어지므로 역학적 운동은 이루어지지 않음
 - <u>근육의 움직임이나 관절의 움직임 없이 근육을 자극시</u> <u>키는 운동</u> 방법(예 : 플랭크, 벽밀기 등)

근력 트레이닝의 원리

• 동적 트레이닝 (dynamic training) : 등장성 트레이닝

종류	정의
단축성 수축	<mark>근육의 길이가 짧아지면서</mark> 힘이
(Concentric Contraction)	발생되는 경우
신장성 수축	<mark>근육의 길이가 길어지면서</mark> 힘이
(Eccentric Contraction)	발생되는 경우

- <u>동적</u> 트레이닝 (dynamic training) : 등장성 트레이닝
 - <u>등속성 운동(Isokinetic Exercise)</u>: 내 몸이 움직일 때, <u>일정한 속도를 유지하고, 근육의 힘과 길이가 동시에</u> 변화하는 운동
 - <u>시작에서 끝까지 관절의 운동범위 전체에 골고루 최대</u> 의 근력을 발휘 할 수 있도록 기계가 컨트롤 해주어서 등척성운동과 등장성운동의 특징을 결합한 운동
 - 부상의 위험이 낮아, 주로 <u>재활훈련</u>에 많이 사용
 - 장비가 고가라는 단점

- 근력 트레이닝에 대한 일반적 반응
 - 근력은 급격하게 증가하지 않음. <u>일주일에 1~3%가 평균적인 향상</u>속도이며 <u>고강도 트레이닝을</u> 실시하면 4~5% 향상이 일어날 수 있고 단련되지 않은 근육일수록 빠르게 향상. 저항 트레이닝은 3~6개월 내에 유의한 근력증가를 가져옴(25~50% 향상)
 - <u>신경계의 변화와 증가된 근육크기</u>가 <u>근력 증가</u>를 설명하는 일차적인 요인
 - 8~10주의 트레이닝 후 근력 증가는 <u>신경적 적응과 근육 크기 증가(근비대)의 복합적 결과</u>에 의함. 3~4개월 트레이닝 후 추가적인 근력 증가는 주로 근육 크기의 증가에 의한 것
 - 근육 크기 : 트레이닝 프로그램 초기보다는 후기에 효과가 나타나며 일반적으로 비단련자에게서 근육 크기의 변화가 나타나기 위해서는 4주 또는 그 이상의 트레이닝 기간이 필요

근력 트레이닝의 방법

号 丑	동적 근력	정적 근력
근 핵	- 최대근력의 약 2/3 이상 강도 - 약 3 15회 반복 - all-out 유도	- 전력 또는 거의 전력 - 약 2 ⁻ 6초간 힘 발휘
파위	- 최대근력의 약 1/3 [*] 2/3 강도 - 약 15 [*] 60회 반복 - speed(5 [*] 20회) 반복	- 전력 또는 거의 전력 - 약 1 3조간 집중적인 힘 방휘 - 약 5 10회 반복
무산소성 지구력	- 최대근력의 약 1/3 ⁻ 1/2 강도 - 약 30 ⁻ 60회 반복 - speed-all out 유도	- 최대근력 1/3 2/3 강도 - 약 30 90초간 지속 - all out 유도

 근력 트레이닝에서는 단축성 수축과 신장성 수축을 따로 구분하여 트레이닝 하지는 않음. 동적 트레이닝이 등척성 트레이닝보다 선호되는데 그 이유는 동적 트레이닝이 근 력과 근지구력 발달면에서 우수하고 효율적이기 때문

• 반복횟수와 세트

- 대부분 초보자는 3세트 이하의 부하를 이용하여 근력을 증가시켜야 할 것이며, 숙련된 사람은 3~5세트 부하를 적용하는 것이 바람직

근력 트레이닝의 방법

- 트레이닝 자극을 위한 강도
 - 근력 트레이닝의 부하강도 역치는 최대근력의 40~50% 이상이며, 20~30% 수준에서는 근지구력만 증가. 최대로 수축될 수 있는 근육에 힘이 가해지는 범위 내에서 체계적인 과부하에 의해 근력이 증가. 최대 근력증가를 위해 알맞은 자극을 주기 위해서는 <u>최대근력의</u> 75~80% 이상의 중량이 요구

- 지속시간
 - 부하 지속시간은 <u>최대 근력의 지속시간(</u>최대 저항력의 10초를 지탱할 수 있는 힘)에 대한 <u>20</u> ~ <u>30%로</u> 매회 지속시간을 반복하는 것이 바람직. 중량이 무거우면 운동간 휴식시간이 길어 져야 함

근력 트레이닝의 방법

• 트레이닝의 빈도

- 현재의 지식과 경험에서 볼 때 최대근력 증가를 달성하기 위해서는 <u>1주에 약 3~6회의 트레이</u> <u>닝</u>이 요구
- 근력 운동 중 휴식은 적절한 근력 향상을 위해 중요하므로 주당 3일이 권장
- 초보자의 경우 주 3회, 경험자의 경우 <u>분할법(split routine)</u>을 이용하여 주 4회를 권장. 분할법이 란 상체운동은 월요일과 목요일에, 하체운동은 화요일과 금요일에 집중 트레이닝 하는 방법

• 종목과 휴식시간

- 트레이닝 종목은 대개 8~12종목으로 전체 운동이 골고루 되도록 <u>다양하게 선정</u>하고, 종목 간 <u>휴식은 1~3분이 필요</u>하며, 다음 세트의 목표에 준하여 근력이 발휘할 수 있는 최소한의 시간은 2~5분 정도가 소요. 또한 휴식형태는 반복 트레이닝 형식으로 <u>동적 휴식</u>이 바람직

근력 트레이닝의 방법

- <u>트레이닝 코스 편성</u>
 - 일반적으로 트레이닝 코스 편성은 <u>전신의 근육을 강화</u>하기 위한 코스와 필요부위 즉, <u>국부적 근</u> 력을 강화하기 위한 전문별 코스로 나뉨
 - 전신 트레이닝 코스는 7~8부분으로 뼈대근육의 구조부위를 크게 나누어 각 부분을 강화하는 트레이닝을 1~3종목씩 선택하여 8~10종목으로 편성하는 것이 보편적
- 기타 고려할 사항
 - 세트마다 목표를 바꾸어 행할 수 있음
 - 목표가 같아도 세트마다 1세트의 부하를 주는 방법, 세트 간 휴식시간, 휴식방법을 바꿀 수 있음
 - 1회의 트레이닝으로 이용하는 종목 수를 적게 하고 세트 수를 많게 하는 방법을 이용하거나, 그 반대의 방법을 이용하여 행할 수 있음. 또는 동적인 방법과 정적인 방법을 복합할 수 있음

웨이트 트레이닝의 활용(용어/종류)

① 스탠딩(standing) : 선다

그림 4-5. 덤벌 컬(dumbbell curl)

③ 라잉(Lying) : 눕는다

그럼 4-7. 플럿 벤치 프레스(flat bench press)

② 시팅(seating) : 앉는다

그림 4-6. 레그 익스텐션(leg extension)

④ 스쿼트(squat) : 웅크리고 앉다

그럼 4-8. 스쿼트(squat)

웨이트 트레이닝의 활용(용어)

⑤ 벤트(bent) : 상체를 구부린다

그림 4-9. 벤트 오버 로(bent-over low)

⑦ 프레스(press) : 올린다

그럼 4-11. 레그 프레스(leg press)

⑥ <u>싯업(sit-up)</u> : 상체를 일으킨다

그램 4-10. 디클라인 벤치 첫 업(declined bench sit-up)

⑧ 풀(pull) : 당긴다

그림 4-12. 랫 물 다운(lat pull down)

웨이트 트레이닝의 활용(용어)

⑨ <u>레이즈(raise)</u> : 일으킨다

그림 4-13. 사이드 래터럴 레이즈(side lateral raise)

① 로잉(rowing): 젖는다

그림 4-15. 시티드 케이블 로(Seated Cable Row)

⑩ 익스텐션(extension) : 편다

그림 4-14. 레그 익스텐션(leg extension)

⑫ 컬(curl) : 구부려 올린다

그림 4-16. 레그 컬(leg curl)

웨이트 트레이닝의 활용(용어)

⑬ 킥(kick): 찬다

그림 4-17. 덤벨 킥 백(dumbbell kick back)

⑭ 트위스트(twist) : 비튼다

한 관절을 중심으로 주동작 방향과는 달리 내·외선 방향으로 좌우 회전운 동을 하는 동작을 의미한다. 트렁크 트위스트(trunk twist) 종목이 해당된 다.

웨이트 트레이닝의 활용(기본원칙)

- 관절가동범위 전체에서 실시
 - 정확한 자세를 익히기 위해서는 각 관절을 중심으로 이루어지는 여러 동작을 할 때 근육을 최대 한으로 신장시키고 수축시키는 것이 중요
- <u>주동근에 의식 집중</u>
 - 주동근은 어떤 운동을 하든지 제일 많이 동원되는 근육을 말하며 트레이닝을 하는 경우 항상
 주동근이 어떤 근육인가 생각하고 그 근육에 정신을 집중해야만 근육을 효율적으로 발달시킬수 있음
- 호흡을 멈추지 않는다
 - 저항과 반대 방향으로 힘을 넣는 정방향 운동에서는 숨을 내쉬고 반대인 역방향 운동에서는 숨을 들이마시는 것이 웨이트 트레이닝의 기본 호흡법

웨이트 트레이닝의 활용(기본원칙)

- 호흡을 멈추지 않는다
 - <u>힘을 쓸 때 (근육 수축이 일어날 때) 숨을 내쉬고 원래 상태로 복귀할 때(이완이 일어날 때) 숨을</u> <u>들이 마심.</u> 밀 때, 당길 때 숨을 내쉬고 원래 상태로 복귀할 때 숨을 들이마시면 됨
 - 중량을 무겁게 하여 트레이닝 할 때에도 가능하면 숨을 멈추지 않는 것이 좋음. 호흡을 오래 멈추고 힘을 주면 동맥의 흐름이 극단적으로 변화되어 심장에 큰 부담을 주게 되고(valsalva maneuver) <u>일시적인 실신</u>을 일으킬 수도 있기 때문
 - <u>발살바 호흡법</u>: 복압과 호흡을 활용하는 호흡법. 고중량의 데드리프트, 스쿼트 등을 할때에는 많은 도움이 되는 호흡법. <u>순간적으로 큰 숨을 들이마시며 흉강과 복강의 압력을 최대한 높여서</u> 몸을 더 단단하게 만들어 좀더 무거운 무게를 들 수 있게 도움

파워의 종류

- 파워의 종류 : 무산소성 파워, 유·무산소성 파워, 유산소성 파워
- 무산소성 파워
 - 1분 이내에 끝나는 경기 종목은 거의 <u>무산소성 에너지 동원능력</u>에 의존하므로 ATP-PCr 시스템이나 무산소성 해당과정(젖산시스템)을 향상시키기 위해 무산소성 파워를 증대시켜 주는 트레이닝이 필요
 - ATP-PCr 시스템 향상 트레이닝: 특별한 형태의 인터벌 트레이닝으로 ATP-PCr 대사 경로를 최대한으로 강화시켜 주기 위해 시합 중에 쓰이는 근육을 짧고, 고강도의 인터벌(5~10초)을 사용하여 훈련하는 것
 - <u>해당작용 시스템 향상 트레이닝</u>: 약 10초 동안의 최대 운동 이후에는 무산소성 해당작용에 의한 에너지 산출 의존도가 커짐. 일반적으로 20~60초 사이의 고강도 운동인터벌

파워의 종류

- 유·무산소성 파워
 - 근 수축과 같은 신체운동은 근육에 저장되어 있는 ATP-CP 고에너지 인산결합이 분해될 때 생기는 에너지를 이용. 이 에너지는 산소의 공급을 받아 이루어지는 유산소성 대사(aerobic metabolism)와 산소의 공급 없이 이루어지는 무산소성 대사(anaerobic metabolism)를 통해서 생성
 - 운동강도가 높고 운동시간이 짧을수록 무산소성 대사의 비율이 높은 반면, 운동강도가 낮고 운동시간이 길어지면 유산소성 대사의 비율이 높음
 - <u>최대운동이 10초 이내</u>에 이루어지는 운동에서는 거의 대부분 <u>무산소성 대사</u>에 의해 에너지를 공급받으며 이와 반대로 <u>장시간 운동</u>에서는 주로 <u>유산소 에너지대사</u>에 의해 에너지를 공급
 - 경기시간이 1.5~2분이 소요되는 운동경기인 800m 달리기와 200m 수영은 유산소와 무산소적 대사의 이용비율이 각각 50%씩 차지

파워의 종류

• 유산소성 파워

- 지구성 트레이닝은 최대 <u>심박출량과 동정맥 산소차(산소를 이용하는 근육의 능력 증대)의 증가</u> <u>를 통해서 최대산소섭취량을 향상</u>시키므로 최대유산소성 파워를 증가시키는 트레이닝은 순환계 에 과부하를 주어 <u>뼈대근육의 산소결합능력을 강화</u>시키는데 중점
- <u>인터벌 트레이닝</u>: 짧은 회복시간을 사이에 두고 운동을 반복하는 것. 최대산소섭취량을 향상시키기 위한 인터벌 트레이닝은 유산소성 ATP 산출을 증대시키기 위해서 60초 이상 운동
- <u>장거리, 저 강도 운동</u>: 지구력 향상은 트레이닝 수행량에 비례한다는 관점.
- <u>고강도, 지속성 운동</u>: 연속적인 고강도(최대산소섭취량의 80~90%, 젖산 역치와 같거나 약간 높은 수준) 운동이 최대 유산소성 파워를 최상으로 향상시키는데 좋은 훈련방법으로 제시

파워에 영향을 주는 요인

• <u>속도</u>

- 힘이 일어나는 속도, 큰 힘의 지속 속도, 힘을 빼는 속도, 반응속도, 동작을 바꾸는 속도 등이 파워에 영향을 줌. 근 파워 향상을 위해서 근력과 속도 중 하나 또는 둘 다 증대시켜야 한다는 것
- 속근과 지근의 비율
 - 근육이 절대적인 힘을 발휘할 때 근육의 속도 또는 움직임의 스피드는 지근섬유를 많이 함유하고 있는 근육보다 속근섬유를 많이 함유하고 있는 섬유에서 더 큼
- 신체 각 부위 길이, 각 부위 간 길이 비율, 근이 뼈에 부착되어 있는 부위
 - 신체 각 부위의 길이가 긴 사람은 최대속도도 크다는 것을 의미. 근육의 최대 근 수축 속도는 근육길이와의 해부학적 요인만이 아니라 화학반응 속도(근섬유 형태) 등 근육의 질적인 요인에 의한 것임
- <u>근력, 조정력, 유연성, 지구력 기술</u> 등이 파워에 영향

- 서킷 트레이닝
 - <u>서킷 트레이닝(circuit training)</u>은 종합적인 체력강화를 위해 <u>순환하는 형식의 트레이닝</u>. 서킷 트레이닝은 여러 가지 운동종목을 통하여 근력, 지구력, 순발력, 민첩성 등을 <u>동시에 강화시킬 수 있는 체력 트레이닝</u>방법
 - 총 구간을 통과하는 한 세트의 운동이 2~3회 반복되어 야 하고 총 시간은 20~30분 정도. 각 구간은 30초내에 근육에 피로를 줄 수 있는 정도의 운동부하로 이루어져 야 하고 각 구간 사이에는 15초 정도의 휴식시간이 있어야 함. 보통 1주일에 3일 정도 실시. 근력과 근지구력의 향상은 다른 동적 웨이트 트레이닝보다 효율적

- 서킷 트레이닝 주의사항
 - 서킷 종목 구성은 <u>운동종목의 특성을 고려</u>하여 구성
 - 서킷 종목 순서 구성은 신체 부위에 대한 근 피로를 감 안하여 <u>상체, 하체, 몸통 운동이 겹치지 않도록 함</u>
 - 트레이닝 목적을 달성하기 위해서는 트레이닝 원리에 입각하여 실시
 - 일정한 트레이닝 기간이 지나면 서킷 종목을 바꿔주어 주어야 그 효과를 최대로 얻을 수 있음
 - 트레이닝 효과를 얻기 위해 음악을 틀어 주는 방법도 이용

그림 4-27. 뎁스 점프(depth jump)

- 플라이오메트릭 트레이닝
 - 플라이오메트릭 트레이닝(plyometric training)은 근육을 가능한 짧은 시간 내 최대의 힘에 도달하도록 하는 운동법으로 근육이 순간적으로 늘어났다가(eccentric contraction) 최대 구심성 수축(maximal concentric contraction)을 하도록 하는 훈련방법
 - bounds, hops, jumps, leaps, skips, ricochets, swings, twists 동작을 활용
 - 예로 약 3피트(feet) 높이의 <u>의자에서 뛰어내린 후 바로</u> <u>또 다른 의자로 뛰어올라가는 것</u>이 다리 근력 강화를 위한 플라이오메트릭 트레이닝의 예

그림 4-28. 스트라이드 점프 크로스오버(stride jump crossover)

- 플라이오메트릭 트레이닝
 - 매우 고강도이므로 1 session에 15~20분씩 1~3일/주
 - <u>주당 2회, 1회 실시 후 48시간의 휴식을 취하고 약 30</u> 분간 지속
 - 초보자의 경우 3~4회 훈련, 훈련 당 2~3세트, 세트 당 10~15 반복횟수, 세트사이 1~2분 휴식
 - 잠재적 상해의 위험이 있으므로 일반인을 대상으로 한 근력 프로그램에는 사용하지 않는다. 운동을 하는 바닥 은 탄력성이 있어야 함

그림 4-29. 스플리트 정프(split jump)

그림 4-30. 스쿼트 점프(squat jump)

그림 4-31. 사이드 점프(side jump)

The End.

