Minor Research Report 4

06/09/2023

Student: TRAN, Thanh Cong Supervisor: Nao Hirokawa

I. Overview

- Objectives:
 - Translate IMP code into type expressions and generate type constraint equations
 - o Perform type inference by using unification algorithm
- Progress: Done Source code:

https://github.com/thanhtcptit/imp-typescript/blob/main/imp_interpreter/typing.t

<u>S</u>

II. Implementation

1. Type terms

Term	Form
Type Variable	α
Type Arrow	$\alpha ightarrow lpha$
Type Application	αα
Type Constructor	Int, Bool, Unit

2. Type environment (Γ)

Variable	Туре
0, 1, 2,	Int
true, false	Bool
+, -	$Int \to Int \to Int$
>, >=, <, <=, ==, !=	$Int \to Int \to Bool$
&&,	$Bool \to Bool \to Bool$
1	Bool → Bool
=	$\alpha \to \alpha \to Unit$
if	$Bool \to Unit \to Unit$
if-else	$Bool \to Unit \to Unit \to Unit$
while	Bool → Unit → Unit
;	Unit $\rightarrow \alpha \rightarrow \alpha$

Variable	Туре
0, 1, 2,	Int
true, false	Bool
+, -	$Int \to Int \to Int$
>, >=, <, <=, ==, !=	$Int \to Int \to Bool$
&&,	$Bool \to Bool \to Bool$
!	Bool → Bool
:=	$\alpha \to \alpha \to Unit$
if	Bool → Unit → Unit
if-else	$Bool \to Unit \to Unit \to Unit$
while	Bool → Unit → Unit
return	$\alpha o \alpha$

3. Type expressions

Expression (e)	Form	Example
Variable	x	х
Integer	0, 1, 2,	1
Boolean	true, false	true
λ-abstraction	λх. е	λx. x
Application	e1 e2	λx. λy. (+) x y
Let	let t = e1 in e2	let t = λx. (+) x 1 in t 1

4. Type inference rules

Expression	Deduction form
Variable	$\frac{\Gamma(x) = \alpha}{\Gamma \vdash x : \alpha}$
Integer	$\Gamma \vdash 1 : Int$
Boolean	$\Gamma \vdash true : Bool$

λ-abstraction	$\frac{\Gamma \cup \{x : \alpha\} \vdash e : \beta}{\Gamma \vdash \lambda x. \ e : \alpha \rightarrow \beta}$
Application	$\frac{\Gamma \vdash e_1 : \alpha \to \beta \Gamma \vdash e_2 : \alpha}{\Gamma \vdash e_1 e_2 : \beta}$
Let	$\frac{\Gamma \vdash e_1 : \alpha \Gamma \cup \{x : \alpha\} \vdash e_2 : \beta}{\Gamma \vdash let \ x = e_1 \ in \ e_2 : \beta}$

5. Type constraints

Expression	Constraint
Variable	$\frac{\Gamma(x) = \bot}{\Gamma \vdash x : a} [a \approx \alpha]$
	$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : a} [a \approx \tau']$
λ-abstraction	$\frac{\Gamma \cup \{x : b\} \vdash e : c}{\Gamma \vdash \lambda x. \ e : a} \ [a \approx b \rightarrow c]$
Application	$\frac{\mathbf{\Gamma} \vdash e_1 \colon b \mathbf{\Gamma} \vdash e_2 \colon c}{\mathbf{\Gamma} \vdash e_1 e_2 \colon a} [b \approx c \to a]$
Let	$\frac{\Gamma \vdash e_1 : b \Gamma \cup \{x : b\} \vdash e_2 : c}{\Gamma \vdash let \ x = e_1 in \ e_2 : a} [a \approx c]$