Real Analysis Basic Topology

Abhijeet abhijeet.m@igidr.ac.in

Mathematics for Economists IGIDR

September 4, 2025

Metric Spaces

- A metric space is a set X together with a function $d: X \times X \to \mathbb{R}$ satisfying:
 - Non-negativity: $d(x, y) \ge 0$ and d(x, y) = 0 iff x = y.
 - Symmetry: d(x, y) = d(y, x).
 - Triangle inequality: $d(x,z) \le d(x,y) + d(y,z)$.
- Example: The Euclidean space \mathbb{R}^n with the standard distance $d(x,y) = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$.
- Metric spaces provide a framework for discussing concepts like convergence, continuity, and compactness.

Metric Spaces

Let X be a metric space. All points and sets below are understood to be in X.

- **a** A **neighborhood** of p is a set $N_r(p)$ consisting of all q such that d(p,q) < r for some r > 0. The number r is called the *radius* of $N_r(p)$.
- ② A point p is a **limit point** of the set E if every neighborhood of p contains a point $q \neq p$ such that $q \in E$.
- If $p \in E$ and p is not a limit point of E, then p is called an **isolated** point of E.
- \bullet *E* is **closed** if every limit point of *E* belongs to *E*.
- a A point p is an **interior point** of E if there exists a neighborhood N of p such that $N \subseteq E$.
- \bullet E is **open** if every point of E is an interior point.

Metric Spaces

- ① The **complement** of E (denoted E^c) is the set of all points $p \in X$ such that $p \notin E$.
- ullet is **perfect** if E is closed and every point of E is a limit point of E.
- **②** E is **bounded** if there exists a real number M and a point $q \in X$ such that d(p,q) < M for all $p \in E$.
- E is dense in X if every point of X is a limit point of E, or a point of E (or both).

Numerical Sequence and Series

Definition.¹ Let m be an integer. A sequence $(p_n)_{n=m}^{\infty}$ of rational numbers is any function

$$f: \{n \in \mathbb{Z} : n \geq m\} \rightarrow \mathbb{Q},$$

i.e., a mapping which assigns to each integer $n \ge m$ a rational number p_n .

More informally, a sequence $(p_n)_{n=m}^{\infty}$ of rational numbers is a collection:

$$p_m, p_{m+1}, p_{m+2}, \ldots$$

Example. The sequence defined by $p_n = \frac{1}{n}$ for $n \ge 1$ is

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

¹Definition adapted from T. Tao, Analysis I.

Definition.² A sequence p_n in a metric space X is said to **converge** if there is said a point $a \in X$ with the following property: for every $\epsilon > 0$, there is an integer N such that $d(p_n,p) < \epsilon$ whenever n > N implies $d(p_n,p) < \epsilon$. In this case, we say that the sequence converges to p, or that p is the **limit** of the sequence, and we write $\lim_{n \to \infty} p_n = p$ or $p_n \to p$ as $n \to \infty$.

If p_n does not converge, we say that the sequence **diverges**.

The set of points p_n is called the **range** of the sequence. The sequence is said to be **bounded**³ iff it is bounded by M for some rational $M \ge 0$.

Abhijeet (IGIDR) Real Analysis September 4, 2025 6 / 20

²Definition adapted from W. Rudin, *Principles of Mathematical Analysis*.

³Let $M \ge 0$ be rational. A finite sequence p_1, p_2, \ldots, p_n is bounded by M iff $|p_i| \le M$ for all $1 \le i \le n$. An infinite sequence $\{a_n\}_{n=1}^{\infty}$ is bounded by M iff $|a_i| \le M$ for all $i \ge 1$.

Theorem 1

Let (p_n) be a sequence in a metric space X.

- (a) (p_n) converges to $p \in X$ if and only if every neighborhood of p contains p_n for all but finitely many n.
- (b) If $p \in X$, $p' \in X$, and if (p_n) converges to p and to p', then p' = p.
- (c) If (p_n) converges, then (p_n) is bounded.
- (d) If $E \subset X$ and if p is a limit point of E, then there is a sequence (p_n) in E such that $p = \lim_{n \to \infty} p_n$.

Theorem 2

Suppose (s_n) , (t_n) are complex sequences and $\lim_{n\to\infty} s_n = s$, $\lim_{n\to\infty} t_n = t$. Then

- (a) $\lim_{n\to\infty} (s_n + t_n) = s + t$;
- (b) $\lim_{n\to\infty} cs_n = cs$, $\lim_{n\to\infty} (c+s_n) = c+s$ for any number c;
- (c) $\lim_{n\to\infty} s_n t_n = st$;
- (d) $\lim_{n\to\infty} (1/s_n) = 1/s$, provided $s_n \neq 0$ (n = 1, 2, 3, ...) and $s \neq 0$.

Theorem 3

(a) Suppose $\mathbf{x}_n \in \mathbb{R}^k$ (n = 1, 2, 3, ...) and $\mathbf{x}_n = (\alpha_{1,n}, ..., \alpha_{k,n})$. Then (\mathbf{x}_n) converges to $\mathbf{x} = (\alpha_1, ..., \alpha_k)$ if and only if

$$\lim_{n\to\infty}\alpha_{j,n}=\alpha_j\quad (1\leq j\leq k). \tag{1}$$

(b) Suppose (\mathbf{x}_n) , (\mathbf{y}_n) are sequences in \mathbb{R}^k , (β_n) is a sequence of real numbers, and $\mathbf{x}_n \to \mathbf{x}$, $\mathbf{y}_n \to \mathbf{y}$, $\beta_n \to \beta$. Then

$$\lim_{n\to\infty}(\mathbf{x}_n+\mathbf{y}_n)=\mathbf{x}+\mathbf{y},\quad \lim_{n\to\infty}\mathbf{x}_n\cdot\mathbf{y}_n=\mathbf{x}\cdot\mathbf{y},\quad \lim_{n\to\infty}\beta_n\mathbf{x}_n=\beta\mathbf{x}.$$

Abhijeet (IGIDR)

Sub-Sequences

Definition. Given a sequence (p_n) , consider a sequence (n_k) of positive integers such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence (p_{n_k}) is called a **subsequence** of (p_n) . If (p_{n_k}) converges, its limit is called a **subsequential limit** of (p_n) .

A sequence (p_n) converges to p if and only if every subsequence of (p_n) converges to p.

Theorem 4

- (a) If (p_n) is a sequence in a compact metric space X, then some subsequence of (p_n) converges to a point of X.
- (b) Every bounded sequence in \mathbb{R}^k contains a convergent subsequence.

Theorem 5

The subsequential limits of a sequence (p_n) in a metric space X form a closed subset of X.

Definition. A sequence (p_n) in a metric space X is called a **Cauchy sequence** if for every $\epsilon > 0$ there is an integer N such that $d(p_n, p_m) < \epsilon$ whenever m, n > N.

Definition. Let E be a nonempty subset of a metric space X and let S be the set of all real numbers of the form d(p,q) with $p \in E$ and $q \in E$. The sup S is called the **diameter** of E.

If (p_n) is a sequence in X and if E_N consists of the points $p_N, p_{N+1}, p_{N+2}, \ldots$, it is clear from the two preceding definitions that (p_n) is a Cauchy sequence if and only if

 $\lim_{N\to\infty} \operatorname{diam} E_N = 0.$

Theorem 6

(a) If \overline{E} is the closure of a set E in a metric space X, then

$$diam \overline{E} = diam E$$
.

(b) If K_n is a sequence of compact sets in X such that $K_n \supset K_{n+1}$ (n = 1, 2, 3, ...) and if

$$\lim_{n\to\infty} diam \ K_n = 0,$$

then $\bigcap_{n=1}^{\infty} K_n$ consists of exactly one point.

Theorem 7

- (a) In any metric space X, every convergent sequence is a Cauchy sequence.
- (b) If X is a compact metric space and if (p_n) is a Cauchy sequence in X, then (p_n) converges to some point of X.
- (c) In \mathbb{R}^k , every Cauchy sequence converges.

Note

The difference between the definition of convergence and the definition of a Cauchy sequence is that the limit is explicitly involved in the former, but not in the latter.

The fact that a sequence converges in \mathbb{R}^k if and only if it is a Cauchy sequence is usually called the Cauchy criterion for convergence.

Definition. A metric space in which every Cauchy sequence converges is said to be **complete**.

Definition. A sequence (s_n) of real numbers is said to be

- (a) monotonically increasing if $s_n \leq s_{n+1}$ (n = 1, 2, 3, ...);
- (b) monotonically decreasing if $s_n \ge s_{n+1}$ (n = 1, 2, 3, ...).

Theorem 8

Suppose (s_n) is a monotonic sequence of real numbers. Then (s_n) converges if and only if it is bounded.

Upper and Lower Limits

Definition. Let (s_n) be a sequence of real numbers with the following property: For every real M there is an integer N such that $n \ge N$ implies $s_n \ge M$. We then write

$$s_n \to +\infty$$
.

Similarly, if for every real M there exists an integer N such that $n \ge N$ implies $s_n \le M$, we write

$$s_n \to -\infty$$
.

Definition. Let (s_n) be a sequence of real numbers. Let E be the set of numbers x (in the extended real number system) such that $s_{n_k} \to x$ for some subsequence (s_{n_k}) . This set E contains all subsequential limits, plus possibly the numbers $+\infty$, $-\infty$.

Recall:

- The supremum (sup), or least upper bound, of a set is the smallest real number (or $+\infty$) that is \geq every element.
- The **infimum** (inf), or **greatest lower bound**, of a set is the largest real number (or $-\infty$) that is \leq every element.

Upper and Lower Limits

We now put

$$s^* = \sup E$$
, $s_* = \inf E$.

The numbers s^* , s_* are called the **upper** and **lower limits** of (s_n) ; we use the notation

$$\limsup_{n\to\infty} s_n = s^*, \quad \liminf_{n\to\infty} s_n = s_*.$$

Theorem 9

Let (s_n) be a sequence of real numbers. Let E and s^* have the same meaning as in Definition 3.16. Then s^* has the following two properties:

- (a) $s^* \in E$.
- (b) If $x > s^*$, there is an integer N such that $n \ge N$ implies $s_n < x$.

Moreover, s^* is the only number with the properties (a) and (b).

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

16/20

Upper and Lower Limits

Theorem 10

If $s_n \leq t_n$ for $n \geq N$, where N is fixed, then

$$\liminf_{n\to\infty} s_n \leq \liminf_{n\to\infty} t_n, \quad \limsup_{n\to\infty} s_n \leq \limsup_{n\to\infty} t_n.$$

Some Special Series

Remark

If $0 \le x_n \le s_n$ for $n \ge N$, where N is some fixed number, and if $s_n \to 0$, then $x_n \to 0$.

Theorem 11

- (a) If p > 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$.
- **(b)** If p > 0, then $\lim_{n \to \infty} \sqrt[n]{p} = 1$.
- (c) $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- (d) If p > 0 and α is real, then $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$.
- (e) If |x| < 1, then $\lim_{n \to \infty} x^n = 0$.

Series

Definition. Given a sequence (a_n) , we use the notation

$$\sum_{n=p}^{q} a_n \quad (p \le q)$$

to denote the sum $a_p + a_{p+1} + \cdots + a_q$. With (a_n) , we associate a sequence (s_n) , where

$$s_n = \sum_{k=1}^n a_k.$$

For (s_n) we also use the symbolic expression

$$a_1+a_2+a_3+\cdots$$

or, more concisely,

$$\sum_{n=1}^{\infty} a_n.$$
 (a)

The symbol in (a) we call an **infinite series** or just a **series**. The numbers s_n are called the **partial sums** of the series.

Abhijeet (IGIDR) Real Analysis

Root and Ratio Tests

Theorem. The series $\sum a_n$

- (a) converges if $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$,
- (b) diverges if $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$ for all $n \ge n_0$, where n_0 is some fixed integer.

Theorem. For any sequence (c_n) of positive numbers,

$$\liminf_{n\to\infty}\frac{c_{n+1}}{c_n}\leq \liminf_{n\to\infty}\sqrt[n]{c_n}\leq \limsup_{n\to\infty}\sqrt[n]{c_n}\leq \limsup_{n\to\infty}\frac{c_{n+1}}{c_n}.$$