

Complejidad Computacional

Tema 2: Decidibilidad y Reducibilidad

Modelos abstractos de computación

Hilbert:

- * Todo problema matemático bien definido debe ser necesariamente susceptible de un planteamiento exacto, ya sea en forma de una respuesta real a la pregunta planteada o debido a la constatación de la imposibilidad de resolverlo...
- Descripciones de algoritmo:
 - Máquinas computadoras abstractas
 - Construcciones formales de procedimientos de cómputo
 - Construcciones formales productoras de clases de funciones

Modelos abstractos de computación

- Cuestiones planteadas: ¿Las matemáticas...
 - son consistentes?
 - * son decidibles?
 - son completas?
 - Se demostró que era imposible
 - **Church**
 - Turing
 - **G**ödel
 - **Kleene**
 - **№** Post

Teoría Complejidad Computacional

- Recursos requeridos para resolver un problema teóricamente computables.
- Clasificación de los problemas
 - Problemas con solución (computables)
 - Complejidad: cantidad de recursos necesarios
 - Algoritmos efectivos o tratables
 - Problemas sin solución (no computables)

Problemas de decisión

- Problemas de decisión, D:
 - Una entrada
 - Instancia: Conjunto I_d
 - Una pregunta
 - Respuestas sí o no
 - * Instancias positivas: Conjunto I_d^+
 - $*D = (I_d, I_d^+), donde I_d^+ \subseteq I_d$
- Ejemplo:
 - * Problema de accesibilidad en un grafo

Problemas de decisión

Ejemplo:

- Máquina de Turing como reconocedora de un lenguaje
- ***** ¿w ∈ L(M)?
- Lenguaje reconocido por una Máquina de Turing
 - Lenguaje recursivamente enumerable
 - Problema computable / aceptable
- Si se garantiza que la Máquina de Turing siempre para
 - Lenguaje recursivo
 - Problema decidible

Problemas de decisión

Problemas de decisión, D:

- * Entrada
 - ▶ Par (Σ, φ)
- Respuesta
 - **№** SI: Si se cumple $\Sigma \vdash^* \varphi$
- $L = \{ \langle \Sigma, \varphi \rangle \mid \Sigma \subseteq L(P), \varphi \in L(P), \Sigma \vdash^* \varphi \}$

Codificación de una MT

- Una Máquina de Turing puede codificarse como una secuencia binaria finita
 - Simplificación:
 - Sólo un estado inicial y sólo un estado de aceptación
 - * A cada estado, símbolo del alfabeto y movimiento se le asigna una codificación
 - Una transición se codifica a partir de los estados, símbolos y movimientos que la forman

$$\delta(q_i, s_j) = (q_k, s_l, m_m) \Rightarrow 0^i 10^j 10^k 10^l 10^m$$

- Una máquina de Turing se codifica escribiendo consecutivamente las transiciones
 - $111T_111T_211T_311 \cdots 11T_n111$

Problemas no decidibles

- Problema decidible
 - Máquina de Turing que:
 - ▶ Acepte cualquier w ∈ L
 - Rechace cualquier w ∉ L
- Problemas no decidibles
- Identificar los límites de la computabilidad
 - * Técnica de la diagonalización (Cantor)
 - Conjuntos numerables / incontables

Problema de la parada

- Problema de la parada:
 - Dado un algoritmo A y un valor de entrada x, ¿parará A con x?

Turing demostró ninguna máquina de Turing lo puede resolver

Problema de la parada

Reducción al absurdo:

```
int Halts(char * P, char * I) {
    // P : código fuente y I : datos

// 1. Compilar el programa
    // 2. Determinar si P finaliza su ejecución con I
    return halt;
```

```
int main() {
  leer_programa(I);

if (Halts(I, I))
  while (1);
  else
  return 1;
```

Lenguaje complementario

- Complementario de un lenguaje: (co-L)
 - * Todas las palabras que no están en L
- co-Turing-reconocible
 - Lenguaje complementario de un lenguaje Turingreconocible

L decidible ⇔ L Turing-reconocible y co-L Turing-reconocible

- Técnica de reducibilidad
 - Reducir un problema a otro
 - Una solución del segundo problema puede ser usada para resolver el primer problema
 - Comprobar si un problema tiene o no solución efectiva

Método:

- * Reducir el problema A al problema B:
 - Existe una función computable que convierte instancias de A en instancias de B (Reducción)
 - Se puede resolver A con un algoritmo para resolver B

$$A \leq_m B$$

- Complejidad
 - El tiempo de la función de transformación afecta al tiempo total
 - Si se puede calcular en tiempo polinómico

$$A \leq_{p} B$$

- Formalmente:
 - * Cambiar un problema D por un problema D':
 - Construir f del conjunto I_d al conjunto I'_d tal que $I \in I_d^+ \Leftrightarrow f(I) \in I'_d^+$
- Reducción de lenguajes
 - * A se reduce a B:

$$A \leq_m B$$
, si existe $f: \Sigma^* \to \Sigma^*$
tal que $\forall w \in \Sigma^*: w \in A \Leftrightarrow f(x) \in B$

- Clasificación: A no puede ser más difícil de resolver que B
 - * Si $A \leq_m B$ y B es decidible A es decidible
 - * Si $A \leq_m B$ y B es Turing-reconocible A es Turing-reconocible
 - * Si $A \leq_m B$ y A es indecidible B es indecidible

Clasificación de lenguajes

- Gramáticas: G = (V, T, P, S) $L(G) = \{u \in T^* \mid S \stackrel{*}{\Rightarrow} u\}$
- Jerarquía de Chomsky:
 - Clasificación de gramáticas

Clasificación de lenguajes

- Gramáticas equivalentes
 - Problema indecidible
- Clasificación de Lenguajes
 - ♣ Lenguaje de tipo i ⇔ Generado por gramática tipo i
- Lenguaje Tipo 0 (L0):
 - Lenguaje recursivamente enumerable
 - Lenguaje parcialmente decidible
 - Lenguaje Turing-computable

Complejidad algorítmica

- Complejidad:
 - Notación O:
 - Establecer clases de problemas de la misma dificultad
 - Máquina de Turing
 - n: longitud de la cadena de entrada
 - Complejidad espacial: número de celdas visitadas
 - Complejidad temporal: número de movimientos de la cabeza Lectura/Escritura

Clasificación de problemas

- Clasificación:
 - Computables
 - Eficientemente computables
 - Intratables
 - No computables
- Clases
 - **#** P
 - * NP

Máquina Universal de Turing

Turing:

* "Se puede demostrar que es posible construir una máquina especial de este tipo que pueda realizar el trabajo de todas las demás. Esta máquina especial puede ser denominada máquina universal"

Máquina Universal de Turing:

- * MT programables que pueden simular cualquier otra MT:
 - M_U : Capaz de simular una máquina de Turing M $M_U(M, w) = M(w)$

Máquina Universal de Turing

- Máquina Universal de Turing:
 - * Programa: Codificación de M y la entrada
 - * Máquina de Turing de 3 cintas:
 - 1. (M, w)
 - 2. Área de trabajo
 - 3. Estado actual de la máquina simulada
 - Proceso
- Lenguaje Universal:

$$L_U = \{ \langle M, w \rangle \mid M \text{ acepta } w \}$$

* Lu recursivamente enumerable, no recursivo

Tesis de Church - Turing

- Tesis de Church:
 - La clase de funciones calculables coincide con el de las funciones parcialmente recursivas
- Tesis de Turing:
 - La clase de las funciones que pueden ser calculadas mediante un método definido coincide con la clase de las funciones calculables mediante una Máquina de Turing

Tesis de Church - Turing

- Equivalencia:
 - * {Funciones Recursivas Parciales} = {Funciones Turing-Computables}
- Tesis de Church-Turing
 - Todo algoritmo o procedimiento efectivo es Turingcomputable
 - * Afirmación formalmente indemostrable