Práctica 9

En lo que sigue \mathcal{M} será la σ -álgebra de los conjuntos medibles Lebesgue de \mathbb{R} y μ la medida de Lebesgue.

- 1. Probar que dada una σ -álgebra \mathcal{A} de subconjuntos de X y dada $f:X\to\mathbb{R}$, son equivalentes:
 - (a) $\{x \in X : f(x) > a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.
 - (b) $\{x \in X : f(x) \le a\} \in \mathcal{A} \text{ para todo } a \in \mathbb{R}.$
 - (c) $\{x \in X : f(x) \ge a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.
 - (d) $\{x \in X : f(x) < a\} \in \mathcal{A} \text{ para todo } a \in \mathbb{R}.$

Concluir que si $X = \mathbb{R}$ y $A = \mathcal{M}$, entonces f es medible si y sólo si vale alguno de (y por lo tanto todos) los items de arriba.

- **2.** Sean $E, F \subseteq \mathbb{R}$ Probar:
 - (a) χ_E es medible $\iff E \in \mathcal{M}$.
 - (b) $\chi_{E \cap F} = \chi_E \cdot \chi_F$.
 - (c) $\chi_{E \cup F} = \chi_E + \chi_F \chi_{E \cap F}$.
- **3.** Sea $f: \mathbb{R} \to \mathbb{R}$ monótona. Probar que f es medible.
- **4.** Probar que si f es medible entonces $\{x \in X : f(x) = a\} \in \mathcal{M}$ para todo $a \in \mathbb{R}$.
- **5.** Probar que si f y g son medibles entonces $\{x \in X : f(x) \leq g(x)\} \in \mathcal{M}$.
- **6.** Sea $f:[0,1]\to\mathbb{R}$ una función. Probar que:
 - (a) Si f es continua en [0,1], entonces es medible.
 - (b) Si f es continua en casi todo punto de [0,1] entonces es medible.
- **7.** Sean $f, g : [0,1] \to \mathbb{R}$ functiones medibles. Probar que:
 - (a) f + g es medible.
 - (b) f^2 es medible.
 - (c) $f \cdot g$ es medible.
 - 8. Dada una sucesión $(f_n)_n$ de funciones en [0,1], consideremos las funciones

$$S(x) := \sup_{n \in \mathbb{N}} f_n(x)$$
 y $I(x) := \inf_{n \in \mathbb{N}} f_n(x)$.

Probar que si las funciones f_n son medibles, entonces S e I también lo son.

- 9. Sea $(f_n)_n$ una sucesión de funciones medibles definidas en [0,1] tales que convergen en casi todo punto a una función f. Probar que f es medible.
- **10.** Sea $f:[0,1] \to \mathbb{R}$ una función medible, no negativa e integrable. Probar que si $E \subseteq [0,1]$ es medible, entonces

$$\int_{E} f(x+y) d\mu(x) = \int_{E+y} f(x) d\mu(x)$$

para todo $y \in [0,1]$ tal que $E + y \subseteq [0,1]$.

- 11. Sean $f, g : [0, 1] \to \mathbb{R}$ funciones medibles e integrables tales que para todo $E \subseteq [0, 1]$ medible, se tiene que $\int_E f \, d\mu = \int_E g \, d\mu$. Probar que f = g en casi todo punto.
- **12.** Sean $g_n : [0,1] \to \mathbb{R}$ funciones medibles y no negativas tales que la serie $\sum_{n=1}^{\infty} g_n(x)$ converge a una función g(x). Probar que g es medible y que

$$\int_{[0,1]} g \ d\mu = \sum_{n=1}^{\infty} \int_{[0,1]} g_n \ d\mu.$$

13. Sea $f_n:[0,+\infty)\to\mathbb{R}$ dada por $f_n=(-1/n)\chi_{[0,n]}$. Probar que la sucesión $(f_n)_n$ converge uniformemente a 0 en $[0,\infty)$. Probar que sin embargo $\int f_n \ d\mu=-1$, de manera que

$$\underline{\lim} \int_{[0,+\infty)} f_n \ d\mu = -1 < 0 = \int_{[0,+\infty)} \underline{\lim} f_n \ d\mu.$$

Deducir que el Lema de Fatou no vale si las funciones f_n no son no negativas, aún cuando converjan uniformemente.

- **14.** Sean $f:[0,1] \to \mathbb{R}$ una función integrable, $\{E_n\}_{n\in\mathbb{N}}$ una sucesión de subconjuntos medibles del [0,1] y $E = \bigcup_{n\in\mathbb{N}} E_n$. Probar que:
 - (a) Si los E_n son disjuntos dos a dos entonces

$$\int_{E} f \ d\mu = \sum_{n=1}^{\infty} \int_{E_n} f \ d\mu.$$

(b) Si $\{E_n\}_{n\in\mathbb{N}}$ es una sucesión creciente entonces

$$\lim_{n\to\infty}\int_{E_n}f\ d\mu=\int_E f\ d\mu\quad {\rm y}\quad \lim_{n\to\infty}\int_{E\backslash E_n} f\ d\mu=0.$$