Problem A. La pirámide

Time limit 2000 ms Mem limit 262144 kB

La pirámide está de vuelta. Esta vez, tendremos un arreglo a de 2^n enteros no-negativos $a_1, a_2, \ldots, a_{2^n}$. A partir de este arreglo a, podemos formar una pirámide.

La pirámide se construye en varias iteraciones, desde abajo hacia arriba. En la base de la pirámide escribiremos el arreglo a original, es decir, $a_1, a_2, \ldots, a_{2^n}$.

En la primera iteración, escribiremos el arreglo a_1 OR a_2, a_3 OR a_4, \ldots, a_{2^n-1} OR a_{2^n} arriba. Es decir, calculamos el **OR** binario entre elementos adyacentes del arreglo.

En la segunda iteración, haremos lo mismo pero con el **OR** exclusivo (**XOR**) de los elementos adyacentes, en la tercera iteración con el **OR**, en la cuarta con el **XOR**, y así alternadamente hasta llegar a un solo elemento: la punta de la pirámide.

A continuación puedes ver cómo quedaría una pirámide empezando con el arreglo 4,6,3,5:

Te entregaremos el arreglo inicial a (la base de la pirámide). Como calcular la punta de esta pirámide sería muy fácil, te haremos m consultas. Cada consulta consiste en un par de números enteros (i,x), y significa que debes asignar $a_i=x$. Después de cada consulta, debes imprimir el valor de la punta de la pirámide que tiene al arreglo a como base.

Entrada

La primera línea contiene dos enteros n y m $(1 \le n \le 17, 1 \le m \le 10^5)$. La siguiente línea contiene 2^n enteros $a_1, a_2, \ldots, a_{2^n}$ $(0 \le a_i \le 2^{30})$.

Cada una de las siguientes m líneas contienen una consulta. Cada consulta consiste en un par de enteros (i,x) separados por espacios $(1 \le i \le 2^n, 0 \le x \le 2^{30})$.

Salida

Imprime una línea por cada consulta, indicando el valor de la punta de la pirámide después de la actualización.

Ejemplos

Nota: el arreglo después de la primera actualización corresponde al ejemplo del enunciado.