

3º Grado en Ingeniería Informática

Transmisión de Datos y Redes de Computadores

TEMA 5. REDES INALÁMBRICAS

(2021-2022)

TEMA 5. Índice

- 5.1. Redes Inalámbricas. (2h)
- © 5.2. Redes Móviles. (2h)

TDRC

Tema 5.1. Redes inalámbricas

Antonio M. Mora García

Introducción

- Definición: Una red inalámbrica es aquella en la que los nodos se conectan por medio de ondas electromagnéticas, que son transportadas por el aire (no por cables).
- Ventaja → evita cableado (costes) y ofrece más flexibilidad/comodidad en la conexión.
- Inconveniente → requieren mucha más seguridad al ser visibles y accesibles a intrusos.
- Distinción: Inalámbrico ≠ Móvil
 - Es posible tener equipos de sobremesa conectados de forma inalámbrica, pero ocupando un sitio físico fijo.
 - Es posible tener un dispositivo móvil (un portátil) que se conecte por cable, una vez esté en su lugar físico habitual.
 - Aunque lo habitual es tener dispositivos móviles dentro de un entorno de red inalámbrica.

Hosts inalámbricos

- Portátiles, móviles/smartphones, IoT.
- Sistemas terminales en la red.
- Ejecutan aplicaciones en red.
- Pueden ser móviles o estacionarios.

Estaciones base

Figura: [Kurose and Ross. Computer Networking: A top down Approach. Slides]

Torres de telefonía, puntos de acceso WiFi.

- Normalmente conectadas a una red cableada.
- Responsables de enviar paquetes entre la red cableada y los hosts inalámbricos en su área de cobertura.
- Gestionan y coordinan el envío y recepción de datos desde/hacia varios hosts inalámbricos conectados a ellas.

Infraestructura de red cableada

Estaciones base

- Si un host móvil se desplaza fuera del área de cobertura de una estación base y entra en el área de otra → se conecta a ella.
- Al cambiar de estación base → cambia su punto de conexión con la red mayor (cableada).
- Este proceso se llama transferencia (handoff).

Enlaces inalámbricos

- Medio a través del que se conectan los hosts entre sí o con las estaciones base.
- Hay distintas tecnologías que tienen distintas velocidades de transmisión y pueden transmitir a distintas distancias.
- Se usan distintas bandas de frecuencia.
- Se aplican protocolos de control de acceso al medio para evitar colisiones (interferencias).

Infraestructura

 Los hosts conectados a una estación base, utilizan los servicios de la red (asignación de IP, enrutamiento) a través de la estación base.

*** La infraestructura de red cableada es la red de mayor tamaño a la que se quiere conectar un host ***

Infraestructura

- En las redes ad hoc (establecidas directamente entre hosts), los propios hosts deben proporcionar los servicios de red.
- No hay estaciones base.
- Los hosts se organizan para formar una red, resolviendo, por ejemplo, el enrutamiento entre ellos.

Taxonomía de redes inalámbricas

- Redes basadas en infraestructura y un único salto → una estación base conectada a una red cableada mayor (ej: Internet). Toda la comunicación se produce entre el host y la estación base. Son las redes más habituales.
- Redes sin infraestructura y un único salto → no existe una estación base conectada a las redes. Un host se encarga coordinar las comunicaciones del resto de hosts. Son de este tipo las redes bluetooth o las redes WiFi en modo ad hoc.
- Redes basadas en infraestructura y múltiples saltos → una estación base conectada a una red cableada mayor (ej: Internet). Algunos hosts deben retransmitir sus comunicaciones a través de otros nodos inalámbricos para comunicarse a través de la estación base. Redes de sensores y redes de malla inalámbricas son de este tipo.
- Redes sin infraestructura y múltiples saltos → no existe una estación base conectada a las redes. Los hosts deben retransmitir sus comunicaciones a través de otros nodos inalámbricos para comunicarse con un determinado destino. Además, los nodos pueden ser móviles, constituyendo las llamadas redes MANET (Mobile ad hoc network).

• Las redes inalámbricas funcionan igual que las cableadas en las capas superiores del modelo OSI o TCP/IP (desde red hacia arriba). Diferencias en capa de enlace y física.

Diferencias con enlaces con cable

- **Pérdida de propagación** (*Path loss*) → las señales electromagnéticas se van atenuando al ir atravesando materiales (como paredes). También se atenúan con la distancia.
- Interferencias → Las fuentes que emitan en la misma frecuencia se interferirán (Ej: teléfono móvil y algunas redes WiFi, en la banda de los 2,4GHz). También se producirán interferencias por 'ruido' electromagnético (microondas, motores, etc).
- Propagación multicamino (multipath) → la onda electromagnética se refleja en distintos elementos del espacio (suelo, objetos), tomando distintos caminos entre el emisor y el receptor y llegando en distintos intervalos de tiempo.

- Se producirán más errores en la señal en las redes inalámbricas, por lo que:
 - Se usan códigos de detección de errores (CRC) potentes.
 - Protocolos de enlace fiables que retransmitan las tramas corrompidas.
- El host de destino de una transmisión inalámbrica recibe una señal que es una combinación:
 Señal original degradada + Ruido presente en el entorno
- Relación Señal-Ruido(SNR, Signal-to-Noise Ratio) → medida relativa entre la señal recibida y el ruido de fondo existente. Cuanto mayor sea su valor, más calidad tendrá la señal recibida.
- **Tasa de error de bits** (*BER*, *Bit Error Rate*) → probabilidad de que un bit transmitido llegue de manera errónea al destino. Cuanto mayor sea, peor será el enlace inalámbrico.
- ▲SNR ⇔ ▼BER

 En las redes por cable, los mensajes de difusión llegan a todos los nodos. En las redes inalámbricas pueden surgir problemas:

- **Problema del terminal oculto** → A y C están transmitiendo hacia B, pero entre ellas no se ven. Las transmisiones se interferirán en B.

- **Problema del desvanecimiento** → A y C no detectan sus transmisiones (por distancia) y ambas transmiten hacia B. Se producen colisiones entre las transmisiones en B.

Figuras: [Kurose and Ross. Computer Networking: A top down Approach. Slides]

Code Division Multiple Access (CDMA)

- Forma de **particionamiento del canal** (usar un mismo canal de manera que no se interfieran las señales enviadas).
- Protocolo más utilizado en redes LAN inalámbricas.
- Cada emisor tiene un código único asignado (chipping sequence) con el que se reparte el canal:
 - Todos los emisores comparten la misma banda de frecuencia para transmitir.
 - Pero el código de cada uno permitirá que las transmisiones coexistan con mínimas interferencias (si los códigos son ortogonales).
- Codificación → datos originales X chipping sequence
- Decodificación → datos codificados X chipping sequence

Code Division Multiple Access (CDMA)

17

Code Division Multiple Access (CDMA)

Sender 1

Sender 2

Se suman las transmisiones del emisor 1 y 2

Usando el código del emisor 1, el receptor puede recuperar la señal original de ese emisor a partir de los datos sumados en el canal

18

Antecedentes:

- En los 90 empieza el uso masivo de las redes para conectarse a Internet .
- Redes de Telefonía Conmutada (RTC): muy lentas (modems en banda vocal a 56 kbps), conexiones xDSL (~1 Mbps) o redes por cable (varios Mbps).
- Se extiende el uso de portátiles → se requieren puertos Ethernet en varias localizaciones para el mismo equipo.

Red pública telefónica conmutada (RTC)

Figura: Nora Suaza

Solución - Redes inalámbricas de área local o Redes WLAN (Wireless LAN).

DOS ESTÁNDARES:

- HIPERLAN (High PERformance Local Area Network) de la ETSI (European Telecommunications Standards Institute).
- 802.11 de IEEE (Institute of Electrical and Electronics Engineers).
 - '802' usado para todos los estándares LAN y MAN.
 - '11' asignados a las redes WLAN.

*** 802.11 ganó popularidad e HIPERLAN prácticamente desapareció.

802.11 (1997)

- Velocidades de 1 y 2Mbps.
- Banda 2.4 GHz (2.4 2.4835 GHz).
- Usa CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) como protocolo de acceso al medio.
- Se puede reducir velocidad de transmisión para aumentar distancia de cobertura.
- Compatible con estaciones base.
- Permite crear redes ad-hoc.

802.11b (1999)

- Velocidades hasta 11Mbps.
- Banda 2.4 GHz

802.11a (1999)

- Velocidades hasta 54Mbps.
- Banda 5 GHz

802.11g (2003)

- Velocidades hasta 54Mbps.
- Bandas 2.4-5 GHz

802.11n (2009)

- Múltiples antenas (haz dirigido) MIMO
- Velocidades hasta 200Mbps.
- Bandas 2.4-5 GHz

Todas las versiones

Evolución:

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.11b	1999	11 Mbps	30 m	2.4 Ghz
802.11g	2003	54 Mbps	30m	2.4 Ghz
802.11n (WiFi 4)	2009	600	70m	2.4, 5 Ghz
802.11ac (WiFi 5)	2013	3.47Gpbs	70m	5 Ghz
802.11ax (WiFi 6)	2020	14 Gbps	70m	2.4, 5 Ghz
802.11af	2014	35 – 560 Mbps	1 Km	unused TV bands (54-790 MHz)
802.11ah	2017	347Mbps	1 Km	900 Mhz

WiFi (Wireless Fidelity)

- También escrito Wi-Fi, wifi, wi-fi, wi fi...
- Cumple con el estándar 802.11.
- Es la más extendida.
- Depende de la Alianza WiFi (Wireless Ethernet Compatibility Alliance), creada en 1999.
- Una organización sin ánimo de lucro que fomenta la compatibilidad entre tecnologías inalámbricas.
- Incluye más de 500 compañías.

Figura: NorfiPC

Arquitectura de una WLAN 802.11

- Conjunto de Servicio Básico (BSS, Basic Service **Set**), contiene:
 - Una estación base central o Punto de Acceso (AP, Access Point).
 - Una o más estaciones (hosts) inalámbricas.
- Los AP se conectan con un dispositivo de interconexión, como un switch o router y éste a Internet (u otra intrared).
- Cada interfaz de red inalámbrica tiene asignada una MAC (48 bits), similar a la de Ethernet.
- El AP también tiene asignada una MAC.
- Las MAC son administradas por el IEEE y son únicas.

Canales

- Cada AP tiene asociado un Identificador de Conjunto de Servicio (SSID, Service Set Identifier).
- Además, el administrador de la red asociará un canal a dicho AP.
- 2.4 2.4835 → 84 MHz → Se fragmenta en 11 canales parcialmente solapados.

solapan entre si

Asociación

- Cuando un host llega al área de cobertura de varios APs, se debe seleccionar uno para asociarse a él.
- Sólo es posible estar asociado con un AP en un momento dado.
- Sólo el AP asociado enviará tramas de datos al host inalámbrico y el host enviará tramas a Internet sólo a través del AP con el que esté asociado.
- ¿Cómo se sabe los AP disponibles y se elige uno?

BSS

Asociación (escaneo)

- Cada AP enviará periódicamente tramas baliza (*beacon frames*) dentro de su área de cobertura.
- Cada trama incluye el SSID y la dirección MAC del AP.
- El host explora los 11 canales buscando las tramas baliza.
- De entre los APs disponibles el host elegirá uno, pero el estándar no determina cuál. La elección se hará en base al firmware que tenga definido el host.

Normalmente se elige el AP cuya baliza se recibe con la máxima intensidad

BSS

28

Asociación (escaneo pasivo)

- 1) Los AP envían las balizas.
- 2) Trama de Solicitud de asociación enviada desde H1 al AP deseado.
- 3) Trama de Respuesta de asociación enviada desde AP a H1.

Normalmente se elige el AP cuya baliza se recibe con la máxima intensidad

Asociación (escaneo activo)

(se reduce el tráfico generado)

- 1) Difusión desde H1 de una trama de Solicitud de Sondeo.
- 2) Envío de tramas de respuesta por parte de todos los APs que recibieran la de sondeo.
- 3) Trama de Solicitud de asociación enviada desde H1 al AP deseado.
- 3) Trama de Respuesta de asociación enviada desde AP a H1.

Normalmente se elige el AP cuya baliza se recibe con la máxima intensidad

Asociación

- Para la asociación se usará autenticación (dependiendo del tipo de seguridad que se implemente en la red).
- Una vez asociado, el AP asignará una IP al host, normalmente mediante DHCP.

	Autenticación	Cifrado	Seguridad	Rendimiento	Complejidad implementación
WEP	Ninguna	WEP	Nula	Alto	Baja
WPA -PSK-KIP	Handshake	TKIP	Aceptable	Bajo	Baja
WPA2-PSK-TKIP	Handshake	TKIP	Aceptable	Bajo	Baja
WPA -PSK-AES	Handshake	AES	Buena	Normal	Baja
WPA2-psk-aes	Handshake	AES	Muy Buena	Normal	Baja
WPA -MGT-TKIP	Servidor	TKIP	Buena	Bajo	Alta
WPA2-MGT-TKIP	Servidor	TKIP	Muy Buena	Bajo	Alta
WPA -MGT-AES	Servidor	AES	Muy Buena	Normal	Alta
WPA2-MGT-AES	Servidor	AES	La Mejor	Normal	Alta

Comparativa de tecnologías inalámbricas

Áreas de cobertura y velocidades de enlace para distintas tecnologías inalámbricas:

Bibliografía

- James F. Kurose, Keith W. Ross. Redes de computadoras. Un enfoque descendente. 7º Edición. Editorial Pearson S.A., 2017. TEMA 7.
- Behrouz A. Forouzan. Transmisión de datos y redes de comunicaciones, 4º Edición. Ed. Mc Graw Hill 2007. *TEMA 14*.

¿Alguna duda?