Definitions and Theorems from Elliptic Curves

Isaac Martin

Last compiled February 6, 2022

			. 4 .
Co	nı	$\boldsymbol{\Phi}$	ntc
\mathbf{v}			

·		
1	Fermat's Method of Infinite Descent	2
2	Remarks on Algebraic Curves	2

1 Fermat's Method of Infinite Descent

Definition 1.1 (Rational Triangle). Let a,b,c be the side lengths of a right triangle Δ .

- 1. Δ is rational if $a, b, c \in \mathbb{Q}$.
- 2. Δ is *primitive* if $a,b,c \in \mathbb{Z}$ and are pairwise coprime.

Lemma 1.2 (Lemma 1.1). Every primitive triangle has side lengths of the form $u^2 + v^2$, 2uv, and $u^2 - v^2$ for some integers u > v > 0.

Definition 1.3. $D \in \mathbb{Q}_{>0}$ is a *congruent number* if there exists a rational triangle Δ with area $(\Delta) = 0$.

N.B. it suffices to to consider D a positive integer which is squarefree, e.g. D = 5.6 are congruent.

Lemma 1.4 (Lemma 1.2). $D \in \mathbb{Q}_{>0}$ is congruent if and only if $Dy^2 = x^3 - x$ for some $x, y \in \mathbb{Q}$ with $y \neq 0$.

Theorem 1.5. There is no solution to

$$w^2 = uv(u+v)(u-v)$$

for $u, v, w \in \mathbb{Z}$ and $w \neq 0$.

Lemma 1.6. Let $u, v \in K[t]$ be coprime polynomials. If $\alpha u + \beta v$ is a square for four distinct choices of $(\alpha : \beta) \in \mathbb{P}^1_K$ then $u, v \in K$.

Corollary 1.7 (1.6 in Lecture). Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. Without loss of generality may assume $K = \overline{K}$. By a change of coordinates we may assume $E : y^2 = x(x-1)(x-\lambda)$ for some $\lambda \in K \setminus \{0,1\}$ Suppose $(x,y) \in E(K(t))$. Write $x = \frac{u}{v}$ for coprime polynomials $u,v \in K[t]$. Then

$$w^2 = uv(u - v)(u - \lambda v)$$

for some $w \in K[t]$. Because K[t] is a UFD, we get that u, v, u - v, and $u - \lambda v$ are all squares in K[t] and then Lemma

2 Remarks on Algebraic Curves

Definition 2.1. A plane curve $\{f(x,y)=0 \mid (x,y) \in K=\overline{K}\} \subseteq \mathbb{A}^2$ (with f irreducible over \overline{K}) is said to be **rational** if it has a rational parameterization, i.e. $\exists \phi, \psi \in K(t)$ such that

- (i) $\mathbb{A}^1 \to \mathbb{A}^2$ defined $t \mapsto (\phi(t), \psi(t))$ is an injection on $\mathbb{A}^1 \setminus \{\text{finite set}\}$
- (ii) $f(\phi(t), \psi(t)) = 0$

Definition 2.2 (Riemann-Roch Space). Let C be a smooth projective curve. The Riemann-Roch space of a $D \in \text{Div}(C)$ is

$$\mathcal{L}(D) = \left\{ f \in K(C)^* \mid \operatorname{div}(f) + D \ge 0 \right\} \cup \{0\}$$

i.e. the K-vector space of rational functions on C with "poles no worse than specified by D."

Here, the space K(C) is $\operatorname{Frac}(K[x_1,...,x_n]/(F))$