# **Bayesian approach to statistics**



## Different approaches to statistics

Frequentist





## **Uncertainty interpretation**



### **Data and parameters**





 $\theta$  is random X is fixed

 $\theta$  is fixed X is random



## **Data and parameters**



For any  $\left|X\right|$ 

 $|X|\gg |\theta|$ 



## **Training**

### Frequentist



### Maximum Likelihood:

$$\widehat{\theta} = \arg\max_{\theta} P(X|\theta)$$



## **Training**





### Bayes theorem:

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$



### Classification

#### Training:

$$P(\theta|X_{\rm tr}, y_{\rm tr}) = \frac{P(y_{\rm tr}|X_{\rm tr}, \theta)P(\theta)}{P(y_{\rm tr}|X_{\rm tr})}$$

#### **Prediction:**

$$P(y_{\rm ts}|X_{\rm ts},X_{\rm tr},y_{\rm tr}) = \int P(y_{\rm ts}|X_{\rm ts},\theta)P(\theta|X_{\rm tr},y_{\rm tr})d\theta$$



## Regularization

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

Regularizer



## Regularization





## Regularization





New prior — Likelihood — Prior 
$$P_k(\theta) = P(\theta|x_k) = \frac{P(x_k|\theta)P_{k-1}(\theta)}{P(x_k)}$$
 — Posterior



# **On-line learning** 0 points 2.0 1.5 1.0 0.5 0.0 1.5 0.5 1.0 2.0 -2.0 -1.5 -1.0 -0.50.0





