6.2 Regions Between Curves

Proposition (Area Between Curves)

Assume that $f(x) \ge g(x)$ on [a, b]. The area A of the region bounded by y = f(x), y = g(x), and x = a, x = b, is given by

$$A = \int_a^b [f(x) - g(x)] dx.$$

Proof.

$$A = \lim_{n \to \infty} \sum_{k=1}^{n} [f(\bar{x}_k) - g(\bar{x}_k)] \Delta x$$

Corollary

The area A of the region bounded by y = f(x), y = g(x), and x = a,

$$x = b$$
, is

$$A = \int_a^b |f(x) - g(x)| dx.$$

Corollary

The area A of the region bounded by x = f(y), x = g(y), and y = c,

$$y = d$$
, is

$$A = \int_0^d |f(y) - g(y)| dx.$$

- Given the fact $\int_0^{\pi/4} \cos \theta \sin \theta d\theta = \sqrt{2} 1$, what is the area between $y = \cos x$ and $y = \sin x$ from 0 to 2π ?
 - A. 0

- B. 1 C. $\sqrt{2} 1$ D. $4\sqrt{2}$ E. $4\sqrt{2} 4$

