	218050340
	Abuinar Dinesh Srivatsa
	evestion 1
	y=0.65in (0.5x - 2.5+ + 172)
	w = 2.5 rad/sec
	k = 0.5 m-1
	$f = \omega$
	2.7
=)	f = 0.398 Nz
	$\lambda = 2\pi$
	Ł
=)	1 = 12.57 m
	$v = f \lambda$
=)	v = 5 m/s
	$T = 1/\xi$
=)	T = 2.51 Seconds
	$\phi = \pi/2$

	218050340
	Abhinau Dinesh Siivatsa
	µ = 0.2 kg/m
	T = uw²
	K _r
)	T = 5 N
	duestion 2
	The role of impedance is to oppose the wave motion. This
	is expressed by the medium of propogation of the wave. The
	expression for transmission we fficient is:
	2 21
	£1 + £2
	This will not affect an equation when to = tz. Therefore
	when the medians have the same impedance, transmission
	wefficient does not affect.

218BS 0340

Alphinan Dineth Stivatia

Duestion 3

$$y = ae^{i(\omega t - kx)}$$

where equation: $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$
 $\frac{\partial y}{\partial t} = -ikae^{i(\omega t - kx)}$
 $\frac{\partial y}{\partial x} = -k^2ae^{i(\omega t - kx)}$
 $\frac{\partial y}{\partial x} = i\omega ae^{i(\omega t - kx)}$
 $\frac{\partial y}{\partial t} = i\omega ae^{i(\omega t - kx)}$
 $\frac{\partial y}{\partial t} = -\omega^2ae^{i(\omega t - kx)}$
 $\frac{\partial^2 y}{\partial t^2} = -\omega^2ae^{i(\omega t - kx)}$
 $\frac{\partial^2 y}{\partial t^2} = -\omega^2ae^{i(\omega t - kx)}$

This is a Solution to the wave equation. The velocity is ω/k

```
21 R D S O 3 40
   Abbinar Dinesh Srivatsa
   ducttion 4
   Amp = 3 cm
   x = 25 m
   p = 1g/cm
   Joined to u= 4 g/cm
  == (T. G = TK/W
a. A2 = A1 . 2 21
           21+ 2
  Az = 3.x 2. (T (1
        (11+64)(T
  A2 = 6 x 1
  A2 = 2 m
  21 = K1
                (: Tim = constants)
  tz kz
=) \pm_1 = \lambda_2
   t, λ1
  A_1 = 1 \left( 1 + \lambda_1 \right)
```

230	
	213030340
	Abhinar Dinesh Srivatsa
,	$\lambda_2 = \lambda_1$
	$\left(\begin{array}{c} 2A_1 & -1 \\ A_2 \end{array}\right)$
	A ₂
*)	λι = 25
	2.3 -1
	2
=)	$\lambda_L = 25$
	2
=	λ ₂ = 12.5 cm
0.	Re Hection co efficient = 21-22
	t1 + t2
	= T - 2T
	T+2T
	= 1
	3
	Power is proportional to amplitude squared. There fore, wave
	power reflected is 1 of the power

213D50340
Alhinar Dinesh Srivatsa
ovestion 5
Hauss' Theorem uses divergence of vertors, while stoke's theorem
uses the wr1. Stokes theorem calulates Hux lines going through
a single surface, while Gauss' Theorem calculates flux lines
passing a solid, in and outgoing.