Domain Adaptation for Robust Question Answering

AIX7023-01

Jiyong Moon¹

¹Department of Artificial Intelligence, Dongguk University, Seoul, Korea

CONTENTS

- 1 Introduction
- Proposed Method
- O3 Experimental Result
- Conclusion

Introduction

Robust Question Answering

- Question Answering (QA) aims to extract the correct answer span given the context and question
- Pre-trained transformers showed good performance in QA, but this requires a large amount of labeled data
- The model performs well in domains in which it is trained with large amounts of labeled data (in-domain)
- But the model performs poorly in domains that share some similarities but are different (out-of-domain)
- The model generalizes poorly (poor robustness)

Method	Backbone	In-Do	-Domain Out-of-Domain		-Domain
Method	Dackbone	F1 EM		F1	EM
IND-only	TinyBERT	72.15	56.45	49.68	35.08

Causes of Poor Robustness

(1) Domain Shift

- Domain shift refers to the difference in distribution between the model's training data (source) and test data (target)
- Weak at generalizing learned knowledge

(2) Insufficient Labeled Data

- There are very few labeled samples in the out-of-domain training set (150,000)>> 381)
- It is difficult to improve only with supervised tuning for out-of-domain

01 Introduction AIX7023-01

Domain Adaptation

- In this project, we improve the robustness of QA model by using domain adaptation method
- Learn domain-invariant feature representations
- Learning a model that can be applied to both source and target domains (improved generalization)

SHOT

• "Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation", ICML 2020.

Difference in Scenario

- There are differences between SHOT's scenario and ours
- Therefore, there are some modifications to the implementation

Ours
– Supervised (But very few labels for target data)
– For question answering (NLP)

$$\mathcal{L} = CE(\hat{\boldsymbol{s}}_{S}^{S}, \boldsymbol{s}_{S}^{S}) + CE(\hat{\boldsymbol{e}}_{S}^{S}, \boldsymbol{e}_{S}^{S}), \quad where \ CE(\hat{\boldsymbol{y}}, \boldsymbol{y}) = -\sum_{k}^{K} \boldsymbol{y}_{k} \log \hat{\boldsymbol{y}}_{k}$$

The target model is optimized by three loss functions

$$\mathcal{L}_{cls} = CE(\hat{\boldsymbol{s}}_t^t, \boldsymbol{s}_t^t) + CE(\hat{\boldsymbol{e}}_t^t, \boldsymbol{e}_t^t), \quad where \ CE(\hat{\boldsymbol{y}}, \boldsymbol{y}) = -\sum_k^K \boldsymbol{y}_k \log \hat{\boldsymbol{y}}_k$$

$$\mathcal{L}_{sim} = S(\boldsymbol{h}_t^t, \boldsymbol{h}_t^s), \quad where S(\boldsymbol{u}, \boldsymbol{v}) = 2 - 2\left(\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}\right)$$

$$\mathcal{L}_{ent} = E(\hat{\boldsymbol{s}}_t^t) + E(\hat{\boldsymbol{e}}_t^t), \quad where E(\boldsymbol{y}) = -\sum_k^K \boldsymbol{y}_k \log \boldsymbol{y}_k$$

$$\mathcal{L} = \mathcal{L}_{cls} + \alpha \mathcal{L}_{sim} + \beta \mathcal{L}_{ent}$$

03

Experimental Result

Experimental Evaluation

• Performance comparison with other methods

Table 1: Experimental Evaluation

Method	Backbone	In-Domain		Out-of-Domain	
Method	Dackbolle	F1	EM	F1	EM
IND-only	TinyBERT	72.15	56.45	49.68	35.08
OOD-only	TinyBERT	53.42 (-18.73)	37.40 (-19.05)	43.24 (-6.44)	30.10 (-4.98)
Fine-tuning	TinyBERT	70.40 (-1.75)	54.40 (-2.05)	50.66 (+0.98)	35.34 (+0.35)
Ours	TinyBERT	65.87 (-6.28)	49.16 (-7.29)	52.20 (+2.52)	36.65 (+1.57)

Experimental Evaluation

• Our method records the highest performance on out-of-domain dataset

Table 1: Experimental Evaluation

Method	Backbone	In-Domain		Out-of-Domain	
Metriod	Dackbone	F1	EM	F1	EM
IND-only	TinyBERT	72.15	56.45	49.68	35.08
OOD-only	TinyBERT	53.42 (-18.73)	37.40 (-19.05)	43.24 (-6.44)	30.10 (-4.98)
Fine-tuning	TinyBERT	70.40 (-1.75)	54.40 (-2.05)	50.66 (+0.98)	35.34 (+0.35)
Ours	TinyBERT	65.87 (-6.28)	49.16 (-7.29)	52.20 (+2.52)	36.65 (+1.57)

Experimental Evaluation

• However, there is a problem that the performance on in-domain dataset is significantly traded-off

Table 1: Experimental Evaluation

Method	Backbone	In-Do	In-Domain		Out-of-Domain	
Metriod	Dackbolle	F1	EM	F1	EM	
IND-only	TinyBERT	72.15	56.45	49.68	35.08	
OOD-only	TinyBERT	53.42 (-18.73)	37.40 (-19.05)	43.24 (-6.44)	30.10 (-4.98)	
Fine-tuning	TinyBERT	70.40 (-1.75)	54.40 (-2.05)	50.66 (+0.98)	35.34 (+0.35)	
Ours	TinyBERT	65.87 (-6.28)	49.16 (-7.29)	52.20 (+2.52)	36.65 (+1.57)	

Other Baselines

• Evaluate performance when using DistilBERT, BERT, and SqueezeBERT as backbones

Ablation Study: α , β

- Grid search to find the optimal loss weights α , β
- Best when $\alpha = 0.4$ and $\beta = 0.3$

$$\mathcal{L} = \mathcal{L}_{cls} + \alpha \mathcal{L}_{sim} + \beta \mathcal{L}_{ent}$$

Ablation Study: Similarity Measure

• Ablation on other similarity measures

Table 2: Ablation on Similarity Measure

Similarity Measure	Out-of-Domain		
Similarity Weasure	F1	EM	
Cross Entropy	48.41	34.29	
KL-divergence	49.67	34.55	
Negative Cosine Similarity	49.09	34.55	
BYOL (ours)	52.20	36.65	

Cross Entropy:
$$-\sum_{k}^{K} \varphi(\boldsymbol{h}_{t}^{s})_{k} \log \varphi(\boldsymbol{h}_{t}^{t})_{k}$$

KL-divergence:
$$-\sum_{k}^{K} \varphi(\boldsymbol{h}_{t}^{S})_{k} \log \frac{\varphi(\boldsymbol{h}_{t}^{S})_{k}}{\varphi(\boldsymbol{h}_{t}^{t})_{k}}$$

Negative Cosine Similarity:
$$-\left(\frac{\boldsymbol{h}_t^t \cdot \boldsymbol{h}_t^s}{\|\boldsymbol{h}_t^t\| \|\boldsymbol{h}_t^s\|}\right)$$

BYOL:
$$2-2\left(\frac{\boldsymbol{h}_t^t \cdot \boldsymbol{h}_t^s}{\|\boldsymbol{h}_t^t\| \|\boldsymbol{h}_t^s\|}\right)$$

• Analyze the effect of each loss term

Table 3: Ablation on Loss Composition

Loss Composition	In-Do	omain	Out-of-Domain	
Loss Composition	F1	EM	F1	EM
\mathcal{L}_{cls}	65.15	48.33	49.61	33.77
$\mathcal{L}_{cls} + \mathcal{L}_{ent}$	64.09 (-1.06)	47.45 (-0.88)	50.67 (+1.06)	35.60 (+1.83)
$\mathcal{L}_{cls} + \mathcal{L}_{sim}$	67.40 (+2.25)	50.38 (+2.05)	48.49 (-1.12)	32.25 (-1.52)
$\mathcal{L}_{cls} + \mathcal{L}_{sim} + \mathcal{L}_{ent}$ (ours)	65.87 (+0.72)	49.16 (+0.83)	52.20 (+2.59)	36.65 (+2.88)

- \mathcal{L}_{ent} strengthens representation learning for the out-of-domain dataset
- But it weakens the representation for in-domain datasets

Table 3: Ablation on Loss Composition

Loss Composition	In-Domain		Out-of-Domain	
Loss Composition	F1	EM	F1	EM
\mathcal{L}_{cls}	65.15	48.33	49.61	33.77
$\mathcal{L}_{cls} + \mathcal{L}_{ent}$	64.09 (-1.06)	47.45 (-0.88)	50.67 (+1.06)	35.60 (+1.83)
$\mathcal{L}_{cls} + \mathcal{L}_{sim}$	67.40 (+2.25)	50.38 (+2.05)	48.49 (-1.12)	32.25 (-1.52)
$\mathcal{L}_{cls} + \mathcal{L}_{sim} + \mathcal{L}_{ent}$ (ours)	65.87 (+0.72)	49.16 (+0.83)	52.20 (+2.59)	36.65 (+2.88)

- \mathcal{L}_{sim} forces the model to retain learning knowledge from in-domain dataset
- But it inhibits learning on out-of-domain datasets

Table 3: Ablation on Loss Composition

Loss Composition	In-Do	omain	Out-of-Domain	
Loss Composition	F1	EM	F1	EM
\mathcal{L}_{cls}	65.15	48.33	49.61	33.77
$\mathcal{L}_{cls} + \mathcal{L}_{ent}$	64.09 (-1.06)	47.45 (-0.88)	50.67 (+1.06)	35.60 (+1.83)
$\mathcal{L}_{cls} + \mathcal{L}_{sim}$	67.40 (+2.25)	50.38 (+2.05)	48.49 (-1.12)	32.25 (-1.52)
$\mathcal{L}_{cls} + \mathcal{L}_{sim} + \mathcal{L}_{ent}$ (ours)	65.87 (+0.72)	49.16 (+0.83)	52.20 (+2.59)	36.65 (+2.88)

- We can use \mathcal{L}_{ent} and \mathcal{L}_{sim} at the same time to get all the advantages
- Learning on out-of-domain datasets is balanced with learning on in-domain datasets

Table 3: Ablation on Loss Composition

Loss Composition	In-Do	omain	Out-of-Domain	
Loss Composition	F1	EM	F1	EM
\mathcal{L}_{cls}	65.15	48.33	49.61	33.77
$\mathcal{L}_{cls} + \mathcal{L}_{ent}$	64.09 (-1.06)	47.45 (-0.88)	50.67 (+1.06)	35.60 (+1.83)
$\mathcal{L}_{cls} + \mathcal{L}_{sim}$	67.40 (+2.25)	50.38 (+2.05)	48.49 (-1.12)	32.25 (-1.52)
$\mathcal{L}_{cls} + \mathcal{L}_{sim} + \mathcal{L}_{ent}$ (ours)	65.87 (+0.72)	49.16 (+0.83)	52.20 (+2.59)	36.65 (+2.88)

Conclusion

Conclusion

- Inspired by SHOT, we propose a domain adaptation method for robust question answering
- Improving QA performance in out-of-domain dataset
- But the performance on in-domain dataset is traded-off

