Fake news: an algorithmic perspective on fact-checking

3	Martijn B.J. Schouten
4	11295562
5	Bachelor thesis
6	Credits: 12 EC
7	Bachelor's degree Information Science
8	University of Amsterdam
9	Faculty of Science
.0	Science Park 904
	1098 XH Amsterdam
1	1030 All Amsterdam

Supervisor
Dr. M. J. Marx

ILPS, IvI
Faculty of Science
University of Amsterdam
Science Park 904
1098 XH Amsterdam

19 2019-06

20 Abstract

22 Contents

23	1	Introduction	4	
24	2 Related Work			
25		2.1 RQ1	4	
26		2.2 RQ2	4	
27		2.3 RQ3		
28	3	Methodology	5	
29		3.1 Description of the data	5	
30		3.2 Data charts	5	
31		3.3 Methods		
32		3.3.1 RQ1		
33		$3.3.2$ $\overrightarrow{RQ2}$		
34	4	Evaluation		
35	5	Conclusions 5		
36		5.1 Acknowledgements	5	

1 Introduction

- Bevat je onderzoeksvraag (of vragen)
- Plaatst je vraag in de bestaande literatuur.
- Je onderzoeksvraag is leidend voor je hele scriptie. Alles wat je doet moet uiteindelijk terug te voeren zijn op 1 doel: het beantwoorden van die vraag.
- Typisch zal je het dan ook zo doen:
- Mijn onderzoeksvraag is onderverdeeld in de volgende deelvragen:
- RQ1 ... We beantwoorden deze vraag door het volgende te doen/ antwoord op de volgende vragen te vinden/ ...
 - Vragen op dit niveau kan je echt beantwoorden, en dat doe je in je Evaluatie sectie.
- 48 RQ2 ...

46

52

- 49 **RQ3** ...
- Je Evaluatie sectie bevat evenveel subsecties als je deelvragen hebt. En in elke sectie beantwoord je dan die deelvraag met behulp van de vragen op het onderste
- In je conclusies kan je dan je hoofdvraag gaan beantwoorden op basis van al

het eerder vergaarde bewijs.

Overview of thesis Hier geef je even kort weer wat in elke sectie staat.

56 2 Related Work

57 2.1 RQ1

- Fake news as a term only caught public attention starting from the end of 2016,
- ⁵⁹ during the Presidential Elections of the United States [7].

60 2.2 RQ2

- In the last couple of years, using transfer learning for natural language processing
- $_{62}$ has given promisable results. The following sentence embeddings will be used
- 63 to detect fake news:
 - Bag of Words as a baseline for performance of non-pretrained embeddings;
- Facebook's InferSent [1];
- ELMo from the Allen Institute for Artificial Intelligence [5];
- OpenAI's GPT-2 [6];
- Transformer-XL [2];
- Microsoft's MT-DNN [4];
- and Google's BERT [3].

71 **2.3 RQ3**

- Aligned with the original research on this dataset by Wang [8], the following
- machine learning algorithms will be used to test the applicability of the abovementioned
- 74 embedding techniques:
- SVMs;
- Logistic regression;
- Bi-LSTMs;
- CNNs.

$_{79}$ 3 Methodology

- 80 3.1 Description of the data
- 81 3.2 Data charts
- 82 3.3 Methods
- 83 3.3.1 RQ1
- 84 3.3.2 RQ2

85 4 Evaluation

86 Evaluation.

5 Conclusions

88 Conclusions.

89 5.1 Acknowledgements

90 Many thanks.

References

- ₉₂ [1] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine
- Bordes. Supervised learning of universal sentence representations from
- natural language inference data. In *Proceedings of the 2017 Conference*
- on Empirical Methods in Natural Language Processing, pages 670–680,
- Copenhagen, Denmark, September 2017. Association for Computational
- 97 Linguistics.
- 98 [2] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and
- Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond
- a fixed-length context. CoRR, abs/1901.02860, 2019.

- [3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
 Pre-training of deep bidirectional transformers for language understanding.
 arXiv preprint arXiv:1810.04805, 2018.
- [4] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task
 deep neural networks for natural language understanding. arXiv preprint
 arXiv:1901.11504, 2019.
- [5] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
 Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized
 word representations. CoRR, abs/1802.05365, 2018.
- [6] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
 Sutskever. Language models are unsupervised multitask learners. 2019.
- [7] Google Trends. Explore. https://trends.google.nl/trends/explore? date=today%205-y&q=fake%20news, 2019. Retrieved on 16th of April, 2019.
- 114 [8] William Yang Wang. "liar, liar pants on fire": A new benchmark dataset 115 for fake news detection. *CoRR*, abs/1705.00648, 2017.