Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination January 2012

Physics A

PHYA1

Unit 1 Particles, Quantum Phenomena and Electricity

Thursday 12 January 2012 1.30 pm to 2.45 pm

For this paper you must have:

- a pencil and a ruler
- a calculator
- a Data and Formulae Booklet (enclosed).

Time allowed

• 1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You are expected to use a calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Answer **all** questions in the spaces provided.

1 (a) The table gives information about some fundamental particles.

Complete the table by filling in the missing information.

particle	quark structure	charge	strangeness	baryon number
	uud		0	
Sigma +	uus	+ 1		
	ud		0	0

(7 marks)

1	(b)	Each of the particles in the table has an antiparticle.
1	(b) (i)	Give one example of a baryon particle and its corresponding antiparticle.
		particle
		antiparticle
		(1 mark)
1	(b) (ii)	State the quark structure of an antibaryon.
		(1 mark)
1	(b) (iii)	Give one property of an antiparticle that is the same for its corresponding particle and one property that is different.
		Same
		Different
		(2 marks)

2	(a)	State what is meant by the specific charge of a nucleus and give an appropriate unit for this quantity.
		unit:
		(2 marks)
2	(b)	Nucleus X has the same nucleon number as nucleus Y. The specific charge of X is 1.25 times greater than that of Y.
2	(b) (i)	Explain, in terms of protons and neutrons, why the specific charge of X is greater than that of Y.
		(2 marks)
2	(b) (ii)	Nucleus X is ${}^{10}_{5}$ B. Deduce the number of protons and the number of neutrons in nucleus Y.
		number of protons
		number of neutrons
		(4 marks)

Turn over ▶

8

3 (a)	Pair production can occur when a photon interacts with matter. Explain the process of pair production.
	(2 marks)
3 (b)	Explain why pair production cannot take place if the frequency of the photon is below a certain value.
	(3 marks)
3 (c)	Energy and momentum are conserved during pair production. State two other quantities that must also be conserved.
	(2 marks)

4 (a)	When free electrons collide with atoms in their <i>ground state</i> , the atoms can be excited or ionised.
4 (a) (i)	State what is meant by ground state.
	(1 mark)
4 (a) (!!)	
4 (a) (II)	Explain the difference between excitation and ionisation.
	(3 marks)
4 (b)	An atom can also become excited by the absorption of photons. Explain why only photons of certain frequencies cause excitation in a particular atom.
	(1.4
	(4 marks)
	Question 4 continues on the next page

Turn over ▶

4 (c) The ionisation energy of hydrogen is 13.6 eV. Calculate the minimum frequency necessary for a photon to cause the ionisation of a hydrogen atom. Give your answer to an appropriate number of significant figures.

answerHz

12

- 5 (a) A student is given a piece of metal wire and asked to investigate how the resistance of the wire changes between a temperature of 0 °C and 100 °C.
- **5** (a) (i) Draw a labelled diagram of a suitable arrangement that would enable the student to carry out the experiment.

(3 marks)

5 (a) (ii)	Describe the procedure the student would follow in order to obtain accurate and reliable measurements of the resistance of the wire at different temperatures between 0 °C and 100 °C.				
	The quality of written communication will be assessed in your answer.				
	(6 marks)				
	Question 5 continues on the next page				

11

- **6 X** and **Y** are two lamps. **X** is rated at 12 V 36 W and **Y** at 4.5 V 2.0 W.
- **6** (a) Calculate the current in each lamp when it is operated at its correct working voltage.

X A

Y A (2 marks)

6 (b) The two lamps are connected in the circuit shown in **Figure 1**. The battery has an emf of $24 \, \text{V}$ and negligible internal resistance. The resistors, R_1 and R_2 are chosen so that the lamps are operating at their correct working voltage.

Figure 1

6 (b) (i)	Calculate the pd across R_1 .		
6 (b) (ii)	Calculate the current in R_1 .	answer	V (1 mark)
6 (b) (iii)	Calculate the resistance of R_1 .	answer	A (1 mark)
6 (b) (iv)	Calculate the pd across R_2 .	answer	Ω (1 mark)
6 (b) (v)	Calculate the resistance of R_2 .	answer	V (1 mark)
	Question 6 continues on the nex		Ω (1 mark)

Turn over ▶

6 (c) The filament of the lamp in X breaks and the lamp no longer conducts. It is observed that the voltmeter reading decreases and lamp Y glows more brightly.
6 (c) (i) Explain without calculation why the voltmeter reading decreases.

•••••		

(2 marks)

6 (c) (ii) Explain without calculation why the lamp Y glows more brightly.

(2 marks)

11

A battery of emf $9.0 \,\mathrm{V}$ and internal resistance, r, is connected in the circuit shown in **Figure 2**.

Figure 2

7 (a)	The current in the battery is 1.0 A.
7 (a) (i)	Calculate the pd between points A and B in the circuit.
	answer =
	answer = Ω
	(2 marks)
7 (a) (iii)	Calculate the total energy transformed by the battery in 5.0 minutes.
7 (a) (iv)	answer =
	answer
	Question 7 continues on the next page

7 (b)	State and explain one reason why it is an advantage for a rechargeable battery to have a low internal resistance.
	(2 marks)

10

END OF QUESTIONS

Copyright © 2012 AQA and its licensors. All rights reserved.

