第1章

数列の極限

練習問題1

$$c_n = \frac{1}{\sqrt{n}}$$

で与えられる数列 $\{c_n\}$ が 0 に収束することを示せ。

また,3つの数列 $\{a_n\},\{b_n\},\{c_n\}$ が 0 に収束する速さを比較しなさい。ただし

$$a_n = \frac{1}{n}$$

$$b_n = \frac{1}{n^2}$$

とする。。

第2章

関数の極限

2.1 練習問題 2

 $f(x) = \sqrt{x}$ のとき, $\lim_{x \to 1} f(x) = 1$ であることを示せ。

2.2 練習問題3

関数 $f(x) = x^2 - 2x$ が $\mathbb R$ 上の任意の点 a で連続であることを示せ。

第3章

集合の上限と下限

3.1 練習問題 1'

集合 $S = \left\{ \frac{n}{n+1} \mid n=1,2,3,\cdots \right\}$ の上限と下限を求めよ(定義をみたすことを示せ)。

3.2 練習問題 2'

集合

$$S_1 = \{x \mid x > 0\}$$

$$S_2 = \{x \mid x \le 1\}$$

$$S_3 = \{x \mid 0 < x \le 1\}$$

について、 S_1 が下に有界、 S_2 が上に有界、 S_3 が有界であることを定義にしたがって確かめよ。

3.3 練習問題 3'

実数 $\mathbb R$ 上の集合 S は下に有界であるとする。S の最大下界が存在すれば,S の下限が存在し,S の最大下界と下限は一致することを示せ。

第4章

技術的な話

4.1 練習問題 5

 $\lim_{n\to\infty}a_n=\alpha$ のとき、 $\lim_{n\to\infty}ca_n=c\alpha$ が成り立つことを示せ。

4.2 練習問題 6

 $\lim_{n\to\infty}a_n=lpha\neq 0$ のとき, $a_n=0$ のとなる a_n は有限個 (0 個の場合も含む) であることを示しなさい。

4.3 練習問題 7

 $\lim_{n\to\infty}a_n=lpha\neq 0$ のとき、次が成り立つことを示しなさい。

- (1) $\exists N_1 \in \mathbb{N} \text{ s.t.} \forall n \ge N_1, \quad \frac{1}{|a_n|} < \frac{2}{|\alpha|}$
- $(2) \quad \lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{\alpha}$

4.4 練習問題 8

以下の(1)と(2)が成り立つことを示せ。

- (1) $\lim_{x \to a} f(x) = \alpha$ のとき, ある正の数 M が存在して次が成り立つ; ある正の数 ρ が存在して, $0 < |x-a| < \rho$ をみたすすべての x に対して, f(x) < M である。
- (2) $\lim_{x \to a} f(x) = \alpha$, $\lim_{x \to a} g(x) = \beta$ ならば、 $\lim_{x \to a} f(x)g(x) = \alpha\beta$

4.5 練習問題 9

次の条件 (A'),(B') を満たす数列の例をそれぞれ考えよ。

- (A') ある自然数 n に対して、ある正の数 M が存在して、 $|a_n| \leq M$ が成り立つ。
- (B') ある正の数 M が存在して、 $|a_n| > M$ が成り立つ。

4.6 練習問題 10

次の主張を満たす関数 f(x) の例を挙げよ。また、もとの主張の否定形をつくり、それをみたす関数 f(x) の例を挙げよ。

- (i) ある正の数 K が存在して、任意の正の数 x に対して、 $f(x) \leq K$ が成り立つ。
- (ii) 任意の正の数 K に対して,x<1 を満たすある正の数 x=x(K) が存在して,f(x)>K が成り立つ。