

By using Natural Language Processing, train a machine learning model to accurately classify whether a reddit post belongs to the depression subreddit or the bipolar subreddit

ABOUT ME

DEPRESSION VS. BIPOLAR DISORDER

NON-DIAGNOSIS CAN BE DANGEROUS

Often bipolar patients are prescribed traditional depression medications with serious consequences, including increased suicide risk.

WHY DIFFERENTIATE?

MISDIAGNOSIS CAN ALSO BE NEGATIVE

Those incorrectly identified as bipolar may not receive adequate treatment and it may prolong their depression

ROOM FOR **IMPROVEMENT**

The American Journal of Psychiatry studied the most common screening for bipolar disorder, the Mood Disorder Questionnaire, in November 2000 and correctly diagnosed Bipolar Disorder just 73% of the time (sensitivity).

DATA COLLECTION


```
[ ]: subreddit_df_create('community', 8)
```

X

REMOVE CONTRACTIONS

Expand contractions like "can't" to "can" and "not"

LEMMATIZE WORDS

Return words to their base form

2%

Increase in model accuracy by preprocessing language data

Punctuation is so commonplace and while it may have some meaning, machines have trouble with their meaning

REMOVE STOP WORDS

Stop words are very common words like "the" that will not help our analysis and maybe even hinder it

Data Cleaning

Distribution of Word Counts

ANALYZING WORD COUNTS

Most Words Occur Very Few Times

If a word occurs only a few times in a dataset of millions, how important is it?

Distribution of Word Count with Limits Imposed 1200 -1000 -800 -Count 600 -400 200 -100 150 200 250 300 350 400 Occurences by Word

ANALYZING WORD COUNTS

This is now the distribution of our words when limits are imposed

We will keep this in mind when we start modeling

Most Common Words in Data Set

SENTIMENT ANALYSIS

The general distribution of the sentiment scores had a large amount of positives

Looking closer, there might be a genuine reason for this and it may provide predictive value

STEP 1: TFIDF Vectorization

Term frequency—inverse document frequency, or **TFIDF**, is a way to weight a word depending on how important it is to our data

TFIDF ADVANTAGES

Analyze which words are being weighted heavily Test what the optimal amount of features should be

Analyzes combinations of words without using too much memory

STEP 2: Model Selection

Select models that make sense for language processing

Get a baseline accuracy for our data: ours is 0.5 or 50%

Use "grid searches" to try thousands of different model builds and find the highest performing ones

SELECTED MODELS

NAIVE BAYES

LOGISTIC REGRESSION

RANDOM FOREST

Model Performance

Score	Naïve Bayes	Logistic Regression	Random Forest	
Accuracy (Baseline: 50%)	82.2%	84.8%	84.4%	
Sensitivity (Recall)	<mark>78.5%</mark>	77.9%	80.2%	
Precision	84.7%	80.2%	87.6%	

NLP IS USEFUL FOR DIAGNOSES

The model outperformed the industry standard. That is encouraging.

PREPROCESSING IS ABSOLUTELY VITAL FOR A GOOD NLP MODEL

The combination of preprocessing & TFIDF resulted in significant improvements on our model

THE FUTURE

These are really promising results. The use of natural language could be an accurate diagnostic rather than questions that are often too pointed and leading. A questionnaire should be made and tested.

THANKS

slidesgo