Práctica 9

En lo que sigue \mathcal{M} será la σ -álgebra de los conjuntos medibles Lebesgue de \mathbb{R} y μ la medida de Lebesgue.

- 1. Probar que dada una σ -álgebra \mathcal{A} de subconjuntos de X y dada $f:X\to\mathbb{R}$, son equivalentes:
 - (a) $\{x \in X : f(x) > a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.
- \Rightarrow (b) $\{x \in X : f(x) \le a\} \in \mathcal{A} \text{ para todo } a \in \mathbb{R}.$
 - (c) $\{x \in X : f(x) \ge a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.
 - (d) $\{x \in X : f(x) < a\} \in \mathcal{A} \text{ para todo } a \in \mathbb{R}.$

Concluir que si $X = \mathbb{R}$ y $A = \mathcal{M}$, entonces f es medible si y sólo si vale alguno de (y por lo tanto todos) los items de arriba.

$$\{x \in X : f(x) < a\} \in A$$

y ademas

$$\left\{ \times \in X : f(x) \leqslant a \right\} = X \setminus \left\{ \times \in X : f(x) > a \right\}$$

 \mathcal{P}

$$\{x \in X : f(x) \leq a \} = X \setminus \{x \in X : f(x) > a \}$$

$$\mathcal{B} \in \mathcal{A}$$
?

Como
$$A^{c}$$
 er B

A $\in A$

A

B $\in A$

$$D = \{x \in X : f(x) \leq \alpha \}$$

$$D = \{x \in X : f(x) \leq \alpha \}$$

$$f(x) \leq \alpha \iff \exists n \in \mathbb{N} / f(x) \leq \alpha - \frac{1}{n}$$

$$\begin{cases} \times e \times : f(x) < a \end{cases} = \bigcup_{n \in \mathbb{N}} \left\{ \times e \times : f(x) \leqslant a - \frac{1}{n} \right\}$$

$$e A \quad \text{pues}$$

$$v \neq B \quad \text{por } H$$

Como A er o-élgebra corrada por union numerado => vale que DE A d => c) mismo que a >> b pres $\mathcal{D}^{c} = C$ Sale igual que b => d

Folto C=> a)

Pro bé

... a, b, c, d son equivalenter

Si A = M => si vale a, b, c, ó d

f er medible

y si no vale algum

a f & M puer no

vale ningúno de bor

a, b, c, d equi valenter.

2. Sean $E, F \subseteq \mathbb{R}$ Probar:

(a) χ_E es medible $\iff E \in \mathcal{M}$.

(b) $\chi_{E \cap F} = \chi_E \cdot \chi_F$.

(c) $\chi_{E \cup F} = \chi_E + \chi_F - \chi_{E \cap F}$.

a) $\chi_{E(x)}$ er me dible (=>> E & M

 $\chi_{E(x)} = \begin{cases} 1 & \text{si} & \text{xeE} \subseteq \mathbb{R} \\ 0 & \text{si} & \text{xpE} \subseteq \mathbb{R} \end{cases}$

=) Si $\chi_{E}(x)$ es medible

 $\left\{ \times \in \mathbb{R} : \chi_{E(x)} > \alpha \right\}$

5; elijo

 $= 0 \qquad \left\{ \times e \mathbb{R} : \chi_{E}(x) > 0 \right\} = E$

oo E er medible.

$$\left\{ \times \in \mathbb{R} : \mathcal{X}_{E}(x) > \alpha \right\} = ?$$

· 5: a <0

$$XE(x) > a = XE(x) > 0$$

Sucede pero todo $x \in \mathbb{R}$ puer

 $XE(x) \in \{0,1\}$

· 5: a = [0,1)

$$\chi_{E(x)} > \alpha = \chi_{E(x)} > 0$$

$$= \chi_{E(x)} = 1$$

· S: a ∈ [1, +00)

$$\chi_{E(x)} > \alpha = \chi_{E(x)} > 1$$

nunce sucède

$$\left\{ \times \in \mathbb{R} : \mathcal{X}_{E}(x) > \alpha \right\} = \begin{cases} \mathbb{R} & \text{si } \alpha < 0 \\ \neq & \text{si } \alpha < 1 \end{cases}$$

Gono
$$\mathbb{R} \in \mathcal{M}$$
,

 $E \in \mathcal{M} \text{ (por } \mathcal{H})$,

 $g \neq e \mathcal{M}$
 $\Rightarrow \{ \times e \mathbb{R} : \mathcal{X}_{E}(x) > \alpha \} \in \mathcal{M}$

i.o. $\mathcal{X}_{E}(x) \text{ es medible}$.

(b) $\chi_{E \cap F} = \chi_E \cdot \chi_F$.

$$\chi_{E} = \frac{0}{\sqrt{1 + \frac{1}{1 +$$

"Comprets bgics AND"

$$\mathcal{X}_{En} \mp (x) = 1 \iff x \in En \mp 1$$

$$\mathcal{X}_{En} \mp (x) = 0 \iff x \notin En \mp 1$$

$$\mathbb{I} \begin{cases} \chi_{E}(x) = 1 & \iff x \in E \\ \chi_{E}(x) = 0 & \iff x \notin E \end{cases}$$

$$\mathbb{Z} \left\{ \begin{array}{l} \chi_{F}(x) = 1 \\ \chi_{F}(x) = 0 \end{array} \right. \times \in F$$

XE	χ_{F}	X En F	XE·XF
0	0	Ó	0
\circ	1	0	0
1	\circ	0	0
1)	1

en togal (or cs202 Cowo 202 nspror 200 idnspor

团

(c)
$$\chi_{E \cup F} = \chi_E + \chi_F - \chi_{E \cap F}$$
.

XE	XF	XEn F	XE + XF - XENF	XEUF
0	0	0	\bigcirc	0
0	1	0	1	1
1	O	0	1	ſ
١)	1	2-1=1	1

Tgusler

3. Sea $f: \mathbb{R} \to \mathbb{R}$ monótona. Probar que f es medible.

Proebo monétore creciate:

Sez Xo e R:

$$f(x_0) \leq f(x) \quad \forall x > x_0$$

f medible A ? X: f(x) > a'y es medible ta. Sug: nuoriotora creciente ⇒ 3x: fcx1>a4 , eo m intertato.

> · Zx: fazaz = x = a e fas = D cualquer y 220 => f(g) 2 f00) 20 → [xo,+0) []x: f(x)>a} si xo c. si {x: f(x)>a} & acolado lufo-plince luf.

$$\{x \in \mathbb{R} : f(x) > f(x_0), x_0 \in \mathbb{R} \}$$

$$S:=f(x_0)$$

$$\left\{ \times \in \mathbb{R} : f(x) \geqslant a \right\} =$$

3 d= inf 2x: \$(x) 2a2 S; d ≠ 7 x: f(N) a } } x. f(x) z a { = (d,+a) formo (xn)n C } x: f(x) > a } / x m \ a. $(\alpha_1 + \infty) = \bigcup_{M} [x_{M_1} + \infty)$

 $= \left\{ \times \in \mathbb{R} : f'(f(x)) > f'(a) \right\}$

$$= \left\{ \times \in \mathbb{R} : \times > f^{-1}(\alpha) \right\}$$

in
$$[f'(\alpha), +\infty) \in M$$
 ta $\in \mathbb{R}$

4. Probar que si f es medible entonces $\{x \in X : f(x) = a\} \in \mathcal{M}$ para todo $a \in \mathbb{R}$.

$$\Rightarrow$$
 $A := \{x \in X : f(x) \leq \alpha \}$ er medible

$$B := \{x \in X : f(x) < \alpha\} \text{ er medible}$$

$$an A \setminus B = \left\{ x \in X : f(x) = \alpha \right\}$$

fer medible

$$A := \{ x \in X : f(x) \leq \alpha \} \text{ or medible}$$

ger medible

$$B:=\{x\in X: \alpha \leq g(x)\}$$
 or medible

$$AnB = \bigcup_{x \in X} \{x \in X : f(x) \le a \le g(x)\}$$

Pregunta 1

$$\begin{cases} x \in X : f(x) \in g(x) \end{cases} \text{ or medible }.$$

No puedo hacer esto pues cuando quiera unir sobre todos los a en R, ésta unión será de NO NUMERABLES

elementos, por lo que no vale que es medible por ser unión de medibles.

De nuevo:

y 2 demas

$$\left\{ x \in X : f(x) \leqslant g(x) \right\}^{C} = X \setminus \left\{ x \in X : f(x) \leqslant g(x) \right\}$$

$$= \left\{ x \in X : f(x) \neq g(x) \right\}$$

$$X = \left\{ x \in X : f(x) < g(x) \right\} \mathcal{O} \left\{ x \in X : f(x) = g(x) \right\} \mathcal{O} \left\{ x \in X : f(x) > g(x) \right\}$$

$$Complemento de$$
es medible?

Tengo

$$\left\{ x \in X : f(x) > g(x) \right\}$$

y como
$$f(x) > g(x)$$
 con $f(x), g(x) \in X \subseteq \mathbb{R}$

$$\Rightarrow \exists g \in Q / f(x) > g > g(x)$$
 para cada

$$\left\{ x \in X : f(x) > g(x) \right\} = \bigcup_{q} \left\{ x \in X : f(x) > q > g(x) \right\}$$

er une unión numerable.

Sepero

$$\left\{ \times \in X : f(k) > g > g(k) \right\} = \left\{ \times \in X : f(k) > g \right\} \cap \left\{ \times \in X : g > g(k) \right\}$$

9

es medible Pres finedible

es medible prer g nedible enton cez

$$\{x \in X : f(x) > g > g(x)\}$$
 er medible

$$\Rightarrow$$
 { $x \in X : f(x) > g(x)$ } es medible

$$\left\{ x \in X : f(x) > g(x) \right\}^{C} = \left\{ x \in X : f(x) \leqslant g(x) \right\}$$

- **6.** Sea $f:[0,1]\to\mathbb{R}$ una función. Probar que:
 - (a) Si f es continua en [0,1], entonces es medible.
 - (b) Si f es continua en casi todo punto de [0,1] entonces es medible.

$$f^{-1}((-\infty, a)) \leq [0, 1]$$

$$f$$
 er medible $\equiv \{x \in [0,1] : f(x) < a \} \forall a \in \mathbb{R}$ er medible

veo que pers cada cerrado de er ta forma

$$f^{-1}((-\infty,\alpha]) = [\alpha,\beta] \subseteq [0,1]$$

complemento de abierto e M

fuer

$$f^{-1}((-\infty, \alpha]) = \begin{cases} x \in X : f(x) \in (-\infty, \alpha] \end{cases} \forall \alpha \in \mathbb{R}$$

$$= \begin{cases} x \in X : f(x) < \alpha \end{cases} \forall \alpha \in \mathbb{R}$$

por E es un intervalo corra do ... es medible.

M

b) le guettres renter un conjunto mbo y conduir que sigue siendo medible. 7. Sean $f, g: [0,1] \to \mathbb{R}$ funciones medibles. Probar que:

- (a) f + g es medible.
- (b) f^2 es medible.
- (c) $f \cdot g$ es medible.

Llamo

$$h(x) := f(x) + g(x)$$

med medible $\Rightarrow h(x)$ er medible

4. Probar que si f es medible entonces $\{x \in X : f(x) = a\} \in \mathcal{M}$ para todo $a \in \mathbb{R}$.

$$=) \left\{ x \in X : h(x) = a \right\} \text{ es medible}$$

8. Dada una sucesión $(f_n)_n$ de funciones en [0,1], consideremos las funciones

$$S(x) := \sup_{n \in \mathbb{N}} f_n(x)$$
 y $I(x) := \inf_{n \in \mathbb{N}} f_n(x)$.

Probar que si las funciones f_n son medibles, entonces S e I también lo son.

limite de medibles es medible? lo probamos en alguna teórica?

