Manual for Package: tide Revision 20M

Karl Kästner

September 2, 2020

Contents

1	$@T_T$	ide	7			
	1.1	T_Tide	7			
	1.2	build_index	7			
	1.3	from_tpxo	7			
	1.4	get_constituents	7			
	1.5	reorder	7			
	1.6	select	7			
	1.7	shift_time_zone	8			
2	@Tida	al_Envelope	8			
	2.1	Tidal_Envelope	8			
	2.2	init	8			
3	@Tide	e_{-} wft	8			
	3.1	Tide_wft	8			
	3.2	transform	8			
4	@Tidetable 9					
	4.1	Tidetable	9			
	4.2	analyze	9			
	4.3	export_csv	9			
	4.4	generate	9			
	4.5	generate_tpxo_input	9			
	4.6	import_tpxo	10			
	4.7	plot_neap_spring	10			
5	\mathbf{tide}		10			
	5.1	constituents	10			
	5.2	doodson	10			
	5.3	envelope_amplitude	10			

	5.4	envelope_slack_water	0
	5.5	interval_extrema	0
	5.6	interval_extrema2	1
	5.7	interval_zeros	1
	5.8	lunar_phase	1
	5.9	rayleigh_criterion	1
6	river-t	ide/@Bifurcation 1	1
	6.1	Bifurcation	1
	6.2	confluence_rule	1
	6.3	sediment_division	1
	6.4	sediment_division_geometric	1
7	river-t	$ide/@River_Tide$ 12	2
	7.1	River_Tide	4
	7.2	check_continuity	4
	7.3	check_momentum	4
	7.4	d2au1_dx2	5
	7.5	d2az1_dx2	5
	7.6	decompose	5
	7.7	dkq_dx	5
	7.8	dkz_dx	5
	7.9	even_overtide_analytic	5
	7.10	friction_coefficient	6
	7.11	friction_coefficient_dronkers	6
	7.12	friction_coefficient_godin	6
	7.13	friction_coefficient_lorentz	6
	7.14	friction_dronkers	6
	7.15	friction_exponential_dronkers	7
	7.16	friction_godin	7
	7.17	friction_lorentz	7
	7.18	friction_quadratic	
	7.19	friction_trigonometric_dronkers	
	7.20	friction_trigonometric_godin	
	7.21	friction_trigonometric_lorentz	
	7.22	mwl_offset	
	7.23	mwl_offset_2	
	7.24	mwl_offset_analytic	
	7.25	odefun	
	7.26	odefunQ0	
	7.27	odefun_advective_acceleration	
	7.28	odefun_friction	
	7.29	odefun_ghof	
	7.30	odefun_swe_iacobian	

	7.31	odefun_width	9
	7.32	odefunk	9
	7.33	odefunz0	9
	7.34	wave_number_analytic	О
	7.35	wave_number_approximation	О
8	river-t	ide/@River_Tide_BVP 20	n
Ü	8.1	River_Tide_BVP	_
	8.2	bc_transformation	
	8.3	bcfun	
	8.4	check_continuity	
	8.5	check_momentum	
	8.6	decompose	
	8.7	discharge2level	
	8.8	dzb_dt	
	8.9	evolve_bed_level	
	8.10	evolve_bed_level_scenario	
	8.11	extract	
	8.12	generate_delft3d	
	8.13	init	
	8.14	initial_value	
	8.15	odefun	
	8.16	postprocess	
	8.17	sediment_transport	
	8.18	sediment_transport	
	8.19	solve	
	0.10	20210	,
9	river-t	$ide/@River_Tide_Cai$ 24	4
	9.1	Gamma	4
	9.2	River_Tide_Cai	4
	9.3	river_tide_cai	4
	9.4	rt_quantities	4
10	river-t	ide/@River_Tide_Empirical	4
	10.1	River_Tide_Empirical	4
	10.2	fit_amplitude	5
	10.3	fit_mwl	
	10.4	fit_phase	
	10.5	fit_range	
	10.6	predict_amplitude	
	10.7	predict_mwl	
	10.8	predict_phase	
	10.9	predict_range	
	10.10	rt_model	

11 river-	tide/@River_Tide_Hydrodynamics_Map	26
11.1	River_Tide_Hydrodynamics_Map	26
11.2	fun	26
11.3	plot	26
12 river-	$tide/@River_Tide_IVP$	26
12.1	solve	26
13 river-	$ m tide/@River_Tide_JK$	26
13.1	$River_Tide_JK \ \dots $	26
13.2	damping_modulus	27
13.3	mean_level	27
13.4	rivertide_predict	27
13.5	rivertide_regress	27
13.6	tidal_discharge	27
13.7	tidal_range	27
14 river-	tide/@River_Tide_Morphodynamics_Map	28
14.1	River_Tide_Morphodynamics_Map	28
14.2	fun	28
15 river-	tide/@River_Tide_Network_Simple	28
15.1	River_Tide_Network_Simple	28
15.2	discharge_amplitude	28
15.3	mean_water_level	28
15.4	plot_mean_water_level	28
15.5	plot_water_level_amplitude	28
15.6	solve	29
15.7	$water_level_amplitude \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	29
16 river-	$tide/@River_Tide_SWE$	29
16.1	solve	29
17 river-	tide	29
17.1	$damped_wave_bvp \ \dots \dots \dots \dots \dots \dots \dots \dots \dots$	30
17.2	damped_wave_ivp	30
17.3	damping_modulus_river	30
17.4	rdamping_to_cdrag_tide	30
17.5	river_tide_godin	30
17.6	river_tide_transport_scale	31
17.7	river_tide_transport_scale_5	31
17.8	rt_celerity	31
17.9	rt_quasi_stationary_complex	31
17.10	rt_quasi_stationary_trigonometric	31
17.11	rt_reflection_coefficient_gradual	31

	17.12	rt_transport
	17.13	rt_wave_equation
	17.14	rt_z2q
	17.15	tidal_ellipse
	17.16	tide_slack_exp
	17.17	wave_number_tide
	17.18	wavetrainz
	17.19	wavetwopassz
10		4.1 1 1 1 1 2
18	,	ver-tide-hydrodynamics 33
	18.1	example_river_tide
	18.2	example_river_tide_map
	18.3	hydrodynamic_scenario
	18.4	river_tide_test_metadata
	18.5	river_tide_test_plot
	18.6	test_bvp2c2
	18.7	test_bvp2c_sym
	18.8	test_celerity
	18.9	test_characteristic_rate_of_change
	18.10	test_complex_even_overtide
	18.11	test_dronkers_compound
	18.12	test_fourier_power_exp
	18.13	test_friction
	18.14	test_friction_dronkers
	18.15	test_friction_dronkers2
	18.16	test_fv_compare_schemes
	18.17	test_fv_convergence
	18.18	test_power_series
	18.19	test_reflection
	18.20	test_reflection_coefficient_gradual
	18.21	test_ricatti
	18.22	test_river_tide_hydrodynamics_01
	18.23	test_river_tide_hydrodynamics_02
	18.24	test_river_tide_hydrodynamics_03
	18.25	test_river_tide_hydrodynamics_04
	18.26	test_river_tide_hydrodynamics_05
	18.27	test_river_tide_hydrodynamics_06
	18.28	test_river_tide_hydrodynamics_07
	18.29	test_river_tide_hydrodynamics_08
	18.30	test_river_tide_hydrodynamics_09
	18.31	test_river_tide_hydrodynamics_10
	18.32	test_river_tide_hydrodynamics_11
	18.33	test_river_tide_hydrodynamics_12
	18.34	test_river_tide_hydrodynamics_13

	18.35	test_river_tide_hydrodynamics_batch	37
	18.36	test_river_tide_models	37
	18.37	test_rt_reflection	37
	18.38	test_rt_wave_number	37
	18.39	test_rt_zs0	37
	18.40	test_swe	37
	18.41	test_tidal_river_network	37
	18.42	test_tidal_river_network_z0	37
	18.43	test_tide_slack_exp	37
	18.44	test_utm2latlon	37
	18.45	test_wave_number_godin	38
	18.46	test_wave_numer_aproximation	38
	18.47	test_wave_twopass	38
19	test/ri	ver-tide-morphodynamics	38
	19.1	rtm_plot	38
	19.2	test_river_tide_morphodynamics_01	38
	19.3	test_river_tide_morphodynamics_02	38
	19.4	test_river_tide_morphodynamics_03	38
	19.5	test_river_tide_morphodynamics_04	38
	19.6	test_river_tide_transport_scale	38
20	test/ri	ver-tide-network	39
	20.1	$test_river_tide_network_01\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	39
	20.2	$test_river_tide_network_02 \dots \dots \dots$	39
	20.3	$test_river_tide_network_03 \dots \dots$	39
	20.4	$test_river_tide_network_04$	39
	20.5	test_river_tide_network_05	39
21	test		39
	21.1	$test_rt_transport \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	39
	21.1 21.2	test_stokes_transport	39
		•	39
22	21.2	test_stokes_transport	39 39 39 40
22	21.2 21.3	test_stokes_transport	39 39 39 40 40
22	21.2 21.3 tide	test_stokes_transport	39 39 39 40
22	21.2 21.3 tide 22.1 22.2 22.3	test_stokes_transport	39 39 39 40 40 40
22	21.2 21.3 tide 22.1 22.2	test_stokes_transport	39 39 39 40 40 40 40
22	21.2 21.3 tide 22.1 22.2 22.3	test_stokes_transport	39 39 39 40 40 40
22	21.2 21.3 tide 22.1 22.2 22.3 22.4	test_stokes_transport	39 39 39 40 40 40 40 41 41
22	21.2 21.3 tide 22.1 22.2 22.3 22.4 22.5	test_stokes_transport	39 39 39 40 40 40 40 41

	23.1	savenije_phase_lag	41
	23.2	savenije_tidal_range	42
	23.3	savenije_tidal_range1	42
	23.4	savenije_timing_hw_lw	42
	23.5	tide-savenije	42
24	${f tide}$	4	42
	24.1	tide_low_high_exp	43
	24.2	$tide_low_high_tri \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	43

1 @T_Tide

$1.1 T_{-}Tide$

wrapper for TPXO generated tidal time series

1.2 build_index

build a structure whose field names contain the index

1.3 from_tpxo

read TPXO output into tidetable object

1.4 get_constituents

extract constituents of tpxo object

1.5 reorder

order constituents as specified by "name"

1.6 select

select a subsect of constituents

1.7 shift_time_zone

shift phase according to time zone

2 @Tidal_Envelope

2.1 Tidal_Envelope

process tidal data to extrac the tidal envelope

2.2 init

initialize with data

3 @Tide_wft

wavelet analysis of tidal data

3.1 Tide_wft

wavelet transform of tidal time series

3.2 transform

```
wavelet transform tidal time series
input:
time : [1xn] abszissa of input vector, for example time, must be
    equally spaced
val : [1xn] signal, input data series (e.g water level or
    velocity)
F : [1xm] base frequencies, 1, 1, 2, ... for mean level,
    diurnal, semidirunal ...
        base periods from base frequencies T=1/F
n : [1xm] wavelet window length in multiple of periods
fc, nc : [scalar] low frequency cutoff and window length in periods
winstr : [char] fourier windows (kaiser (recommended), hanning, box
    , etc)
dt_max : [scalar] maximum time to fill gaps in input data series (
    recommended 3/24 for tide)
```

output:

tide : struct with fields

w_coeff : [1xn] wavelet coefficients (complex)

amplitude : amplitude
phase : phase

range :
h_tide :
h_low :
h

4 @Tidetable

class for generating tidetable data

4.1 Tidetable

Tide table

4.2 analyze

extract tidal envelope from time series

4.3 export_csv

export tide table to csv file

4.4 generate

 ${\tt run} \ {\tt TPXO} \ {\tt to} \ {\tt generate} \ {\tt time} \ {\tt series}$

$4.5 \quad generate_tpxo_input$

generate tpxo input table
Note: superseeded by perl script

4.6 import_tpxo

import TPXO data into tidetable object

4.7 plot_neap_spring

plot average neap and spring tide

5 tide

analysis prediction of tides in rivers and estuaries by empirical and theoretical methods $\,$

5.1 constituents

5.2 doodson

frequency of tidal constituents method of doodson source: wikipedia

5.3 envelope_amplitude

compute envelopes of hw and low water

5.4 envelope_slack_water

slack water envelope of the tide

5.5 interval_extrema

times and evelations for high and low water

5.6 interval_extrema2

mimimum and maximum within intervals of constant length, intended for periodic functions

5.7 interval_zeros

times of slack water determined frim velocity u

5.8 lunar_phase

lunar phase

5.9 rayleigh_criterion

raleigh criterion for resolving tidal constituents T > 1/|f1-f2|

6 river-tide/@Bifurcation

6.1 Bifurcation

6.2 confluence_rule

6.3 sediment_division

6.4 sediment_division_geometric

7 river-tide/@River_Tide

predict tide in a backwater affected river with a sloping/varying
 bed

Assumptions and capabilities:

- tidal dynamics follow the 1D-Shallow-Water-Equation (depth and cross-sectionally averaged Navier-Stokes-Equation)
- rectangular cross section
- width can vary along the channel
- friction coefficient (cd) constant along channel and over time (Chezy)
- advective accelleration term is considered, but can be deactivated
- vertical profile of streamwise velocity is constant (Boussinesq coefficient is unity (1))

Limitations / TODO list:

- single channel dynamics only (no tidal networks)
- no wind-shear stress (no storm surges)
- no tidal flats / intertidal areas (width constant in time)
- no flood-plain during high-river flow
- no stratification or along-channel salinty gradient
- negligible head loss in channel bends
- negligible feed-back of the sediment concentration on the propagation of the tide $% \left(1\right) =\left(1\right) +\left(1\right)$
- low Froude Number (no hydraulic jumps due to cataracts or tidal bores)
- At present, only two tidal components are supported (either D1 with D2 or D2 with D4, in addition to the mean water level z0),
 - for mixed diurnal-semidiurnal cases with dominant semidiurnal component,
 - the class has to be extended to support three components (D1, D2 and D4) $\,$
- At present, the tripel overtide is not computed (D3 for diurnal, D6 for semindiurnal tide), note that this is the main overtide for the case of low river flow
- At present, the 1/h non-linearity is only included in the approximations of
 - the backwater curve, but not it's influence on the tidal frequency components

Method:

```
differential
equation boundary value problems
Tides is represented as exponential series in form of total
   discharge Q = sum Q_i = Q_0 + Q_1 + Q_2,
as discharge is conserved (balanced), the equations are simpler than
     for level z and velocity u,
and the frequency components of z are straight forward determined by
    differentiation of Q
Class and function structure:
       River_Tide :
              computes river tide, provides the ode coefficients to
                  the boundary value solver
       bvp2c, bvp2fdm :
              solve the underlying second order boundary value
                  problem
       River_Tide_Map :
              provides convenient batch runs and processing of
                  River_Tide instances
Minimum working example, c.f. example_rive_tide.m and
   example_river_tide_map.m
       input:
            : scalar, river discharge (m^3/s)
       omega : scalar, angular frequency main tidal species in (1/
           seconds)
             : 2x1 vector, left and right end of computational
           domain of the river (m)
       w(x): function of width along the river (m)
       \operatorname{cd}(\mathbf{x}) : function of drag coefficient along the river (1)
       zb(x) : function of bed level along the river (m)
       opt : structure with options
       opt.model_str = 'wave' (other solver are not supported at the
            moment)
       opt.solver = @bvp2c or @bvp2fdm
       opt.nx : number of grid points along channel
       opt.ns : base for logarithmic spacing of grid points, 1 :
           linear spacing
       bc : structure array of boundary conditions
              r, row 1..2 : left and right end, respectively
              c, column 1 : mean (river) component
                        2..n : condition form column-1 frequency
                            component
```

This class calls numerical solvers for second order ordinary

```
q(1)*(p(1) y^-(x0) + p(2) dy^-/dx(x0) ...
           + q(2)*(p(1) y^+(x0) + p(2) dy^+/dx(x0)) = bc(c
               r).val
                 = val(0)
bc(c,r).var : Quantity, either 'z' or 'Q'
bc(c,r).val : complex amplitude of chosen variable
            (c.f. (1 + 0i) [m] for surface elevation
                amplitude of 1m)
            (value has to be real for mean component)
            mean component requires z and Q to be specified
                at opposit ends
bc(c,r).p : factor for Dirichlet p(1) or Neumann p(2)
   condition
            p = [1,0] : pure Dirichlet
            p = [0,1] : pure Neumann
            sum of abs(p) must be nonzero for each end and
                each frequency component
bc(c,r).q : factor for left and right going wave, only
   available for bvp2c
            q = [1,1] : total water level / discharge
            q = [1,0] : only left going wave
            q = [0,1]: only right going wave
            q has no meaning for the mean component and is
                ignored
            q is only supported by bvp2c,
            bvpfdm uses default q = [1,1]
            sum of abs(q) for each frequency component must
                be zero
```

7.1 River_Tide

physical functions for computation of river tides in a single 1D
 channel
combined with BVP-solver in child-classes to determine the
 hydrodynamics

7.2 check_continuity

7.3 check_momentum

$7.4 d2au1_dx2$

second derivative of the tidal velocity magnitude

note: this is for finding zeros, the true derivative has to be scaled up by \boldsymbol{z}

$7.5 d2az1_dx2$

second derivative of the tidal surface elevation

note: this is for finding zeros, the true derivative has to be scaled up by \boldsymbol{z}

7.6 decompose

decompose the tide into a right and left travelling wave, i.e. into incoming and reflected wave TODO subtract forcing term

$7.7 dkq_dx$

along-channel derivative of the wave number of the discharge neglects width variation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

TODO, rederive with g as variable

$7.8 dkz_dx$

along channel derivative of the wave number of the tidal surface elevation ignores width variation dh/dx and second order depth variation (d^2 h/dx^2)

 ${\tt TODO}$ rederive with g symbolic

7.9 even_overtide_analytic

7.10 friction_coefficient

7.11 friction_coefficient_dronkers

```
friction coefficient according to Dronkers

the coefficients are semi-autogenerated

c.f. dronkers 1964
c.f. Cai 2016

p = [p0,p1,p2,p3];
alpha = Ur/Ut = river velocity / tidal velocity amplitude = (umax+ umin)/(umax-umin)

function p = friction_coefficient_dronkers(alpha,order)
```

7.12 friction_coefficient_godin

```
friction coefficient according to Godin
these coefficients are identical to Dronker's for U_R = phi = 0
function G = friction_coefficient_godin(obj,phi)
```

7.13 friction_coefficient_lorentz

```
friction coefficient according to Lorent'z
identical to Dronker's coefficient for zero river flow
and a single frequency component
c.f. Cai
c.f. Dronkers

function L = friction_coefficient_lorentz(obj,phi)
```

7.14 friction_dronkers

```
friction determined by Dronker's method
input :
```

u : velocity time series

Umid : arithmetic mean of mininmum and maximum velocity (not the mean of the velocity, usually non-zero even

without river flow)

Uhr : half-range of the velocity, less than the sum of the frequency amplitudes, except at perigean spring $% \left(1\right) =\left(1\right) \left(1\right) \left($

tides

function [uau_sum uau p] = friction_dronkers(u,Umid,Uhr,order)

7.15 friction_exponential_dronkers

friction coefficients for the frequency components computed by
 Dronkers method
c.f. Dronker's 1964 eq 8.2 and 8.4
Note: Cai dennominates alpha as phi
function [c uau uau_ p] = friction_trigonometric_dronkers(u,dp,Umid)

7.16 friction_godin

,Uhr,order,psym)

compute friction with the method of Godin

7.17 friction_lorentz

7.18 friction_quadratic

friction determined by Dronker's method

7.19 friction_trigonometric_dronkers

friction computed by the method of Dronkers expressed as coefficients for the frequency components c.f. dronkers 1964 eq 8.2 and 8.4 Note: Cai dennominates alpha as phi

7.20 friction_trigonometric_godin

```
friction computed by the method of Godin
expressed as coefficients of the frequency components (
    trigonometric form)

function [c, uau] = friction_trigonometric_godin(obj,u,dp,Umax)
```

7.21 friction_trigonometric_lorentz

```
friction computed by the method of Lorent'z
expressed as coefficients of the frequency components (
    trigonometric form)
```

7.22 mwl_offset

```
offset of the tidally averaged surface elevation caused by tidal friction

Linear estimate of the mean water level offset (ignoring feed-back of tide)
```

$7.23 \quad mwl_offset_2$

7.24 mwl_offset_analytic

7.25 odefun

coefficients of the backwater and wave equation for river-tides

7.26 odefunQ0

7.27 odefun_advective_acceleration

7.28 odefun_friction

7.29 odefun_ghof

7.30 odefun_swe_jacobian

Jacobian matrix indices of the Shallow-Water Equation $d(A,Q)/dt + J(A,Q) \ d(A,Q)/dx =$ forcing terms

[0, 1]
$$[dA/dx]$$
 [-Q^2/A^2, 2 Q/A] $[dQ/dx]$

7.31 odefun_width

7.32 odefunk

coefficients of the ordinary differential equation of the k-th
 frequency
component of the tide

f1 Q'' + f2 Q' + f3 Q + f4 = 0

TODO rename f into c
TODO better pass dzb_dx instead of dz0_dx
TODO aa, oh and gh terms are not tested for width ~= 1

7.33 odefunz0

coefficients of the backwater equation for the river tide $\ensuremath{\texttt{TODO}}$ merge with backwater class

7.34 wave_number_analytic

analytic expression of the wave number of river tides

valid for both tidally, river dominated and low friction conditions and converging channels

 $\mbox{k10}$: complex wave number for \mbox{k} and \mbox{z} in a reach with constant width and bed slope

im(k) : damping modulus (rate of amplitude change)
re(k) : actual wave number (rate of phase change)

kq : wave number for Q for a reach with changing width and depthkz : wave number for z for a reach with changing width and depth

c.f. derive_wave_number

7.35 wave_number_approximation

approximate wave number of the left and right traveling wave for variable coefficients

TODO merge with wave_number_analytic

function [k, k0, dk0_dx_rel, obj] = wave_numer_aproximation(obj)

8 river-tide/@River_Tide_BVP

8.1 River_Tide_BVP

hydrodynamics and morphodynamics of 1D tidal channel networks

8.2 bc_transformation

transform arbitrary to cs-integrated discharge boundary condition

8.3 bcfun

```
Robin (mixed) boundary conditions for the river tide,
supplied for each frequency component,
wrapper that copies values are from the member struct "bc"
     q*(p*Q_1^- + (1-p)*dQ_1^-/dx
input :
      cid : channel index
      bif: 1,2: index for letft/right end of channel
      fid : frequency component index
              (1 = 0 \text{ omega (mean)}, 2 : 1 \text{ omega}, 3 : 2 \text{ omega}, \dots)
columns of bc : frequency
rows of bc, left, right boundary
output :
      p : [2x1] linear combination of Dirichlet and Neumann
          boundary condition
        p(1) -> weight Dirichlet boundary condition
          p(2) -> weight Neumann boundary condition
    q linear combination of left and right travelling (incoming and
         outgoing) wave
          q(1) weight left going wave
        q(2) weight right going wave
      rhs = 0 -> homogeneous boundary condition
function [rhs, p, q, obj] = bcfun(obj,cid,bid,fid)
```

8.4 check_continuity

```
compute residual for the continuity equation dA/dt + dQ/dx = Q_in
```

8.5 check_momentum

```
compute residual for the momentum equation dQ/dt + d/dx (Q^2/A) = -g A dz/dx - g A dw/dx - cd w Q|Q|/A^2
```

8.6 decompose

decompose the tide into a right and left travelling wave, i.e. into incoming and reflected wave
TODO subtract forcing term

8.7 discharge2level

determines tidal water surface amplitude (non-zero frequency
 components of surface elevation)
from tidal discharge (non-zero frequency components of the
 discharge)

by continuity:

```
dz/dt + dq/dx = 0
=> i o z = - dq/dx
=> z = -1/(io) dq/dx
=> z = 1i/o dq/dx
```

$8.8 ext{ } ext{dzb_dt}$

change of bed level over time, when width constant over time dzb/dt + 1/(p rho w) dQs/dx = 0

8.9 evolve_bed_level

evolve the bed level of the tidal river network over time

8.10 evolve_bed_level_scenario

shortcut function for batch simulation runs

8.11 extract

extract values of individual variables from BVP-solver result vector $% \left(\mathbf{r}\right) =\left(\mathbf{r}\right)$

8.12 generate_delft3d

generate a Delft3D 4 model for the channel network

8.13 init

```
initial condition
function obj = init(obj)
```

8.14 initial_value

8.15 odefun

coefficients of the backwater and wave equation for river-tides

8.16 postprocess

postprocess hydrodynamic solver

8.17 sediment_transport

```
compute sediment transport for the channel network, including
  routing at
junctions
```

8.18 sediment_transport_

compute sediment transport for a single channel

8.19 solve

determine hydrodynamics

9 river-tide/@River_Tide_Cai

Prediction of river tide by the method of Cai c.f. Cai 2013, Cai 2015 $\,$

9.1 Gamma

Gamma parameter for tidal propagation c.f. Cai 2014

9.2 River_Tide_Cai

prediction of river tide by the method of Cai (2014)

9.3 river_tide_cai_

determine the surface amplitude of the river-tide ${\tt c.f.}$ Cai

9.4 rt_quantities

determine the quantities that determine the tidal propagation $\ensuremath{\text{c.f.}}$ Cai

Note: this computes 4 unknowns following Cai, however, lambda, mu and epsilon can be substituted making it an equation in one unknown (delta) only

10 river-tide/@River_Tide_Empirical

Empirical fit to measurement and prediction (from tide at sea and river discharge) of the river tide

10.1 River_Tide_Empirical

class for fitting models to at-a-station time series of tidal elevation

10.2 fit_amplitude

fit the oscillatory components

10.3 fit_mwl

fit the tidally averaged water level

10.4 fit_phase

fit the phase of the oscillatory components

10.5 fit_range

fit the tidal range

10.6 predict_amplitude

predict the oscillatory components

10.7 predict_mwl

predict the mean water level

10.8 predict_phase

predict tidal phase

10.9 predict_range

predict the tidal range

$10.10 \quad rt_model$

select the model for fitting

11 river-tide/@River_Tide_Hydrodynamics_Map

hash container for a set of River_Tide predictions for different boundary conditions

11.1 River_Tide_Hydrodynamics_Map

container class to store multiple river-tide scenarios

11.2 fun

compute river tide for a scenario with specific boundary conditions
 and store it in the hash,
or retrive the scenario, if it was already computed

11.3 plot

quick plot of scenario result

function obj = plot(obj,Xi,Q0,W0,S0,z1_downstream,cd,zb_downstream,
 omega,q,opt)

12 river-tide/@River_Tide_IVP

12.1 solve

13 river-tide/@River_Tide_JK

empirical analysis and prediction of river tides by the method of Jay and Kukulka

13.1 River_Tide_JK

13.2 damping_modulus

```
damping modulus of the river tide
c.f. Jay and Kukula
function r = damping_modulus(obj,h0,b,Qr)
```

13.3 mean_level

tidally averaged surface elevation c.f. Jay and Kukulka

13.4 rivertide_predict

predict river tide by the method of jay and kukulka $\ensuremath{\mathsf{TODO}}$ rename

13.5 rivertide_regress

Regression of tidal coefficients according to Jay & Kulkulka coefficients of the r-regression factor 2 apart for specis (jay C7) this can be repeated for each tidal species (diurnal, semidiurnal)

13.6 tidal_discharge

```
tidal discharge
c.f. Jay and Kukulka
function Qt = tidal_discharge(obj,x,R0,h0,b,Qr)
```

13.7 tidal_range

predict tidal range

14 river-tide/@River_Tide_Morphodynamics_Map

14.1 River_Tide_Morphodynamics_Map

container class to store multiple river-tide morphodyanics scenarios

14.2 fun

morphodynamics of a tidal river
either retrive a precomputed scenario or compute and store a new
scenario

15 river-tide/@River_Tide_Network_Simple

15.1 River_Tide_Network_Simple

tide in a fluvial delta channel network, extension of 1D river tide the network is a directed graph TODO convert from trig-to exponential form

15.2 discharge_amplitude

discharge amplitude

15.3 mean_water_level

predict the mean water level

15.4 plot_mean_water_level

plot tidally averaged water level

15.5 plot_water_level_amplitude

plot surface elevation amplitude

15.6 solve

15.7 water_level_amplitude

predict the surface elevation amplitude

16 river-tide/@River_Tide_SWE

16.1 solve

determine river tide by the fully non-stationary FVM and then extract the tide this is experimental and not yet fully working

17 river-tide

```
analysis and prediction of river tides
```

Sub-Classes:

@River_Tide

- prediction of river tide in a backwater affected river with a sloping bed

@River_Tide_Cai

- prediction of river tide, method of Cai

17.1 damped_wave_bvp

```
solved damped wave equation z'' + a z = 0

z(0) = z0, z(L) = 0
```

17.2 damped_wave_ivp

linearly damped wave in rectangular channel solve tide as initial value problem damped wave approximation

$$z'' + a z = 0$$

 $x_t = Ax + b$

17.3 damping_modulus_river

damping modulus of the tidal wave for river flow only

17.4 rdamping_to_cdrag_tide

converts damping rate to drag coefficient c.f. friedrichs, ippen harleman

17.5 river_tide_godin

analytic solution to the river tide formulated as boundary value
 problem
in a river with finite length
c.f. Godin 1986

$17.6 \quad river_tide_transport_scale$

17.7 river_tide_transport_scale_5

17.8 rt_celerity

celerity of the tidal wave

17.9 rt_quasi_stationary_complex

quasi-stationary solution of the SWE TODO staggered grid does not help: q1' needed

17.10 rt_quasi_stationary_trigonometric

 ${\tt quasi}$ statinary form of the ${\tt SWE}$

17.11 rt_reflection_coefficient_gradual

reflection coefficient for gradual varying cross section geometry without damping

17.12 rt_transport

17.13 rt_wave_equation

solve river tide as boundary value problem

input:

omega : [nfx1] angluar frequency of tidal component, zero for mean flow $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

reach : [nrx1] struct

.L : [1x1] length of reaches
 .width(x,h) width
 .bed(x,h) bed level

.surface(x,h) surface elevation .Cd(x,h) drag coefficient

.bc : [nd,nf] boundary/junction conditions

bc(id,if).type : {surface, velocity, discharge} (dirichlet)

bc(id,if).val : value

opt : [1x1] struct

- constant surface elevation

- deactivative advective acceleration

.dx: spatial resolution

dimensions:

nr : nurmber or reaches

nd : upstream/downstream index

nf : frequency index

17.14 rt_z2q

determine tidal discharge from water level for tidal wave

17.15 tidal_ellipse

tidal ellipse, numerical ode solution

17.16 tide_slack_exp

17.17 wave_number_tide

wave number of the tide without river flow
c.f. friedrichs, ippen harleman
output :

k : wave number, such that

```
z(t,x) = z1(t,0) \exp(1i*(omega*t-k*x))
```

re(k) : rate of phase change

-im(k) : damping rate

function [k k_low k_high] = damping_modulus_tide(omega,cd,h0,az1)

17.18 wavetrainz

determine river tide by iterated integration of the surface elevation

17.19 wavetwopassz

two pass solution for the linearised wave equation, for surface elevation $% \left(1\right) =\left(1\right) \left(1\right)$

18 test/river-tide-hydrodynamics

18.1 example_river_tide

18.2 example_river_tide_map

18.3 hydrodynamic_scenario

18.4 river_tide_test_metadata

$18.5 \quad river_tide_test_plot$

- $18.6 \quad test_bvp2c2$
- $18.7 \quad test_bvp2c_sym$
- 18.8 test_celerity
- 18.9 test_characteristic_rate_of_change
- 18.10 test_complex_even_overtide
- 18.11 test_dronkers_compound
- 18.12 test_fourier_power_exp
- 18.13 test_friction
- 18.14 test_friction_dronkers
- 18.15 test_friction_dronkers2

18.17	$test_fv_convergence$
18.18	${ m test_power_series}$
18.19	test_reflection
18.20	$test_reflection_coefficient_gradual$
18.21	test_ricatti
18.22	$test_river_tide_hydrodynamics_01$
18.23	$test_river_tide_hydrodynamics_02$
18.24	test_river_tide_hydrodynamics_03

 $18.25 \quad test_river_tide_hydrodynamics_04$

 $18.16 \quad test_fv_compare_schemes$

- 18.26 test_river_tide_hydrodynamics_05
- 18.27 test_river_tide_hydrodynamics_06
- 18.28 test_river_tide_hydrodynamics_07
- 18.29 test_river_tide_hydrodynamics_08

```
hold on;
plot(x,abs(z),'--');
hold on;
plot(x,angle(z),'--');
```

- 18.30 test_river_tide_hydrodynamics_09
- 18.31 test_river_tide_hydrodynamics_10
- 18.32 test_river_tide_hydrodynamics_11
- 18.33 test_river_tide_hydrodynamics_12
- 18.34 test_river_tide_hydrodynamics_13

18.36 test_river_tide_models 18.37 test_rt_reflection 18.38 test_rt_wave_number $18.39 \quad test_rt_zs0$ 18.40 test_swe 18.41 test_tidal_river_network 18.42 test_tidal_river_network_z0 18.43 test_tide_slack_exp

18.44 test_utm2latlon

 $18.35 \quad test_river_tide_hydrodynamics_batch$

- $18.45 \quad test_wave_number_godin$
- 18.46 test_wave_numer_aproximation
- 18.47 test_wave_twopass
- 19 test/river-tide-morphodynamics
- 19.1 rtm_plot
- $19.2 \quad test_river_tide_morphodynamics_01$
- $19.3 \quad test_river_tide_morphodynamics_02$
- $19.4 \quad test_river_tide_morphodynamics_03$
- 19.5 test_river_tide_morphodynamics_04
- 19.6 test_river_tide_transport_scale

20	test/river-tide-network
20.1	$test_river_tide_network_01$
20.2	$test_river_tide_network_02$
20.3	$test_river_tide_network_03$
20.4	$test_river_tide_network_04$
20.5	$test_river_tide_network_05$
21	test
21.1	$test_rt_transport$

 ${\bf 21.2} \quad test_stokes_transport$

 ${\bf 21.3} \quad test_tidal_harmonic_analysis$

22 tide

analysis prediction of tides in rivers and estuaries by empirical and theoretical methods

22.1 tidal_constituents

${\bf 22.2} \quad tidal_energy_transport_1d$

```
energy transport of a tidal wave
```

22.3 tidal_envelope

```
envelope of the tide

input : t time in days
    f surface elevation

ouput : tl time of low water
    vl surface elevation at low water
    ldx index of low water
    th time of high water
    vh surface elevation at high water
    vh surface elevation at high water
    hdx index of high water
    ndx neap index
    sdx spring index
    dmax:
    drange: range per day
```

22.4 tidal_envelope2

```
surface levelation envelope of the tide
low water, high water and tidal range for lunar each day
input:
        time :
        L : surface elevation
        order : interpolation order (default 2)
ouput:
        timei : vector eqispaced
        lmini : minimum level
```

lmaxi : maximum level

rangei : range

midrangei : (min + max)/2, usually different from mean

phii : pseudo phase

Note: the pseudo phase phi jumps, this is because if the tide is semidiurnal,

sometimes the lower hw becomes the next day higher then than

current high water, e.g. there is no smooth transition by 51 min but a jump by 12 h

22.5 tidal_harmonic_analysis

tidal_harmonic analysis

22.6 tidal_range_exp

22.7 tidal_range_tri

23 tide-savenije

23.1 savenije_phase_lag

```
phase lag of high and low water

phi : u_river/u_tide < 1

delta_eps_hw = omega*(t_hws - t_hw)
delta_eps_hw = omega*(t_lws - t_lw)

c.f. savenije</pre>
```

23.2 savenije_tidal_range

tidal range

based on Savenije 2012

x : distance to river mouth

eta : range

eta0 : range at river mouth
hbar : mean water depth

phi : velocity ratio u_tide/u_river

note: this varies in strongly convergent estuaries

K : mannings coefficient
I : residual surface slope I

23.3 savenije_tidal_range1

tidal range

based on Horrevoets/Savenije, 2004

HO : tidal range at river mouth

h0 : initial water depth
v : velocity scale
b : convergence length

 $\verb|sine|: phase lag|\\$

 $\begin{array}{lll} {\tt K} & : \; {\tt Mannings} \; {\tt coefficient} \\ {\tt Q_r} & : \; {\tt river} \; {\tt discharge} \end{array}$

23.4 savenije_timing_hw_lw

time of high water and low water c.f. savenije 2012

23.5 tide-savenije

24 tide

- $24.1 \quad tide_low_high_exp$
- $24.2 \quad tide_low_high_tri$