Homework Six

```
Jeremy Harper
STA4702
02.16.12
```

4.25.

1.2894373 2.0194923 1.4072664

	a					
108.28	17.05	1484.1				
152.36	16.59	750.33				
95.04	10.91	766.42				
65.45	14.14	1110.46				
62.97	9.52	1031.29				
263.99	25.33	195.26				
265.19	18.54	193.83				
285.06	15.73	191.11				
92.01	8.1	1175.16				
165.68	11.13	211.15				
Scov			Sinv			
7476.4532	303.61862	2 -35575.96	0.000867	-0.005864	0.000104	
		6 -1053.827		0.0861661		
-35575.96	-1053.82	7 237054.27		-0.000497	0.0000176	
x_bar						
155.603						
14.704						
710.911						
diff (x - x-bar)						
-47.323	2.346	773.189				
-3.243	1.886	39.419				
-60.563	-3.794	55.509				
-90.153	-0.564	399.549				
-92.633	-5.184	320.379				
108.387	10.626	-515.651				
109.587	3.836	-517.081				
129.457	1.026	-519.801				
-63.593	-6.604	464.249				
10.077	-3.574	-499.761				
d^2						
4.8364455						
0.3142263						

4.9090461

1.6418144

4.3520262

3.041105

3.1891403

4.26a.

а

```
7.49
 9
           6
11
        3.99
 Scov
                       Sinv
 10.266667 -17.54289
                       3.4212167 1.9452037
-17.54289 30.854366 1.9452037 1.1383962
 x_bar
  5.6
12.481
diff(x - x-bar)
-4.6
        6.469
-3.6
         6.519
-2.6
        5.469
-1.6
        3.059
-0.6
        1.519
 0.4
        0.469
 1.4
       -3.541
 2.4
        -4.991
 3.4
       -6.481
 5.4
       -8.491
   d^2
4.2640977
1.4161667
1.8575523
0.3696258
0.3126117
1.5276379
1.693266
1.4628942
1.6390493
3.457098
4.26b.
50% probability contour with p(2) = 1.3862943611
```

50% probability contour with p(2) = 1.3862943611 2 distances < 1.39, thus 20% of the observations fall within 50% probability contour.

4.26c.

d^2	quantiles
0.31261	0.1025
0.36963	0.3250
1.41617	0.5753
1.46289	0.8615
1.52764	1.1956

1.63905	1.5970
1.69327	2.0996
1.85755	2.7725
3.45710	3.7942
4.26410	5.9914

4.26d. The data do not appear to be bivariate normal. There are serious departures from normality in the chi-square plot, and only 20% of the observations fall within the 50% contour (one would expect 50% of the observations to be within the contour if the data were normal).

CODE

data P1_4;
 infile

 $[\]label{locality} $$ \ \Documents\University\Spring_2012\STA4702\Datasets\P1-4.dat'; $$$

```
input x1 x2 x3;
run;
/* 4.25 */
proc iml;
use work.P1 4;
read all into a;
at = t(a);
Scov = cov(a);
Sinv = inv(Scov);
x bar = mean(a);
x^{-} bart = t(x bar);
\overline{\text{diff}} = \text{at} - \overline{x} \text{ bart};
difft = t(diff);
dist2 = difft*Sinv*diff;
d2 = vecdiag(dist2);
print a at Scov Sinv x bar x bart diff difft dist2 d2;
print Scov Sinv;
create d2_one from d2;
append from d2;
quit;
proc sort data = d2 one;
      by col1;
run;
data plot;
      set d2 one;
      rename col1 = d2;
      input quantiles;
      datalines;
      0.3518
      0.7978
      1.2125
      1.6416
      2.1095
      2.6430
      3.2831
      4.1083
      5.3170
      7.8147
run;
proc sgplot data=plot;
   scatter y=d2 x=quantiles;
   series y=quantiles x=quantiles;
run;
/* 4.26 */
proc iml;
at = \{1 2 3 4 5 6 7 8 9 11, 18.95 19.00 17.95 15.54 14.00 12.95 8.94 7.49 \}
6.00 3.99};
a = t(at);
Scov = cov(a);
Sinv = inv(Scov);
x_bar = mean(a);
```

```
x_bart = t(x_bar);
\overline{\text{diff}} = \text{at} - \overline{x} \text{ bart};
difft = t(dif\overline{f});
dist2 = difft*Sinv*diff;
d2 = vecdiag(dist2);
probs = (rank(d2) - j(10,1,.5))/10;
quants = quantile('chisquare', probs, 2);
print a at Scov Sinv x bar x bart diff difft dist2 d2 probs quants;
create d2 one from d2;
append from d2;
quit;
/* 4.26b */
data quant;
      quants = quantile('chisquare', .50, 2);
run;
/* 4.26c */
proc sort data = d2 one;
      by col1;
run;
data plot;
      set d2 one;
      rename col1 = d2;
      input quantiles;
      datalines;
      0.1025
      0.3250
      0.5753
      0.8615
      1.1956
      1.5970
      2.0996
      2.7725
      3.7942
      5.9914
run;
proc print data = plot;
run;
proc sgplot data=plot;
   scatter y=d2 x=quantiles;
   series y=quantiles x=quantiles;
run;
```