$$\frac{C_1(s)}{R_1(s)} = \frac{G_1(s)G_2(s)(1 - G_3(s)G_4(s))}{1 - G_1(s)G_2(s) - G_3(s)G_4(s) + G_1(s)G_2(s)G_3(s)G_4(s)} = \frac{G_1(s)G_2(s)}{1 - G_1(s)G_2(s)}$$

②从 R₂到 C₁没有前向通道,因此

$$\frac{C_1(s)}{R_2(s)} = 0$$

③从 R₁ 到 C₂ 有两条前向通道

$$P_1 = G_1(s)G_2(s)G_3(s)G_4(s)G_6(s), \Delta_1 = 1$$

$$P_2 = G_1(s)G_4(s)G_5(s), \Delta_1 = 1$$

$$\frac{C_2(s)}{R_1(s)} = \frac{G_1(s)G_2(s)G_3(s)G_4(s)G_6(s) + G_1(s)G_4(s)G_5(s)}{1 - G_1(s)G_2(s) - G_3(s)G_4(s) + G_1(s)G_2(s)G_3(s)G_4(s)}$$

④从 R₂到 C₂有一个前向通道

$$P_1 = G_2(s)G_4(s), \Delta_1 = 1 - G_1(s)G_2(s)$$

根据梅森增益公式, 可得

$$\frac{C_2(s)}{R_2(s)} = \frac{G_3(s)G_4(s)(1 - G_1(s)G_2(s))}{1 - G_1(s)G_2(s) - G_3(s)G_4(s) + G_1(s)G_2(s)G_3(s)G_4(s)} = \frac{G_3(s)G_4(s)}{1 - G_3(s)G_4(s)}$$

第三章习题答案

A3-1 如图 A3-1 系统,用劳斯判据判别系统的稳定性。若不稳定,确定有几个根在右半 s 平面。

图 A3-1 题 A3-1 的系统方块图

(1)
$$G(s) = \frac{10}{s(s-1)(2s+3)}, H(s) = 1$$

(2)
$$G(s) = \frac{1}{(s-1)}, H(s) = \frac{s-1}{s+1}$$

(3)
$$G(s) = \frac{12}{s(s+1)}, H(s) = \frac{1}{s+3}$$

解(1):

已知;
$$G(s) = \frac{10}{s(s-1)(2s+3)}, H(s) = 1$$

系统的闭环传递函数为:

$$G(s) = \frac{10}{2s^3 + s^2 - 3s + 10},$$

系统的闭环特征方程: $2s^3 + s^2 - 3s + 10 = 0$

系统的劳斯表为:

从劳斯表上可以看出首列元素变号两次,所以闭环系统不稳定,有两个根在 S 右半平面。

解(2):

已知:
$$G(s) = \frac{1}{(s-1)}, H(s) = \frac{s-1}{s+1}$$

系统的闭环传递函数为:

$$G(s) = \frac{s+1}{s^2 + s - 2},$$

系统的闭环特征方程: $s^2 + s - 2 = 0$

系统的劳斯表为:

从劳斯表上可以看出首列元素变号一次,所以闭环系统不稳定,有一个根在S右半平面。(本题要注意的是,在G(s)H(s)中,不要消去公因子。)

解(3):

已知:
$$G(s) = \frac{12}{s(s+1)}, H(s) = \frac{1}{s+3}$$

系统的闭环传递函数为:

$$G(s) = \frac{12s+3}{s^3+4s^2+3s+12},$$

系统的闭环特征方程: $s^3 + 4s^2 + 3s + 12 = 0$

系统的劳斯表就是:

$$s^0$$
 12

从劳斯表上可以看出有全零行的存在,但是首列元素不变号,所以系统有两个根虚轴上,没有根位于 S 右半平面,闭环系统是临界稳定的。

A3-2 确定使下列系统稳定的 K 值范围。

(1)
$$s^4 + 22s^3 + 10s^2 + 2s + K = 0$$

(2)
$$0.1s^3 + s^2 + s + K = 0$$

解(1):

已知系统的特征方程是: $s^4 + 22s^3 + 10s^2 + 2s + K = 0$

系统的劳斯表就是:

如果系统是稳定的,则在劳斯表中首列不变号,且没有全零行。

所以:
$$\frac{218}{11} - 22K > 0$$
$$K > 0$$

即使闭环稳定的 K 取值范围是: 109/121 > K > 0

解(2):

已知系统的特征方程是: $0.1s^3 + s^2 + s + K = 0$

系统的劳斯表为:

如果系统是稳定的,则在劳斯表中首列不变号,且没有全零行。

所以:
$$1-0.1K > 0$$
 $K > 0$

即使闭环稳定的 K 的取值范围是: 10 > K > 0

A3-3 试确定下列系统的位置误差系数 K_n ,速度误差系数 K_n 和加速度误差系数 K_n 。

(1)
$$G(s) = \frac{50}{(1+0.1s)(s+2)}$$

(2)
$$G(s) = \frac{K}{s(s^2 + 4s + 200)}$$

(3)
$$G(s) = \frac{K(1+2s)(1+4s)}{s^2(s^2+2s+10)}$$

(4)
$$G(s) = \frac{6}{s(s+1)(s+2)}$$

(本题叙述不严谨,解题时 G(s) 视为开环传递函数,且为单位反馈。)

解(1):

$$G(s) = \frac{50}{(1+0.1s)(s+2)}$$

直接验证闭环系统是稳定的。系统为 0 型,位置误差系数 $K_p=25$,速度误差系数

$$K_v = 0$$
, 加速度误差系数 $K_a = 0$

解(2):

$$G(s) = \frac{K}{s(s^2 + 4s + 200)}$$

当 0 < K < 800 时,闭环系统稳定。系统为 I 型,稳定时,系统的位置误差系数 $K_p = \infty$,

速度误差系数
$$K_v = \frac{K}{200}$$
, 加速度误差系数 $K_a = 0$

解(3):

$$G(s) = \frac{K(1+2s)(1+4s)}{s^2(s^2+2s+10)}$$

当K>0时闭环系统稳定,系统为II型,稳定时,位置误差系数 $K_p=\infty$,速度误差系

数
$$K_v = \infty$$
 , 加速度误差系数 $K_a = \frac{K}{10}$

解(4):

$$G(s) = \frac{6}{s(s+1)(s+2)}$$

系统临界稳定。系统为 I 型。位置误差系数 $K_p=\infty$,速度误差系数 $K_v=3$,加速度误差系数 $K_a=0$ 。这些误差系数只是形式上的定义,不能用于求稳态误差的计算。

A3-6 某闭环系统如图 A3-2 所示。

图 A3-2 题 A3-6 闭环系统

- (1) 求系统的传递函数 C(s)/R(s);
- (2) 计算系统的稳态误差系数;
- (3) 求闭环系统的零、极点:
- (4) 用 MATLAB 求系统的单位阶跃响应曲线;
- (5) 讨论闭环极点对系统动态响应的影响,哪些极点起主导作用,哪些极点有重要影响。

解: 系统中开环传递函数
$$G(s) = \frac{6205}{s(s^2 + 13s + 1281)}$$
, 反馈传递函数 $H(s) = 1$

(1) 系统的闭环传递函数
$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{6205}{s^3 + 13s^2 + 1281s + 6205}$$

(2)直接验证闭环系统是稳定的。系统的稳态误差系数:位置误差系数 $K_p=\infty$,速度误差系数 $K_v=4.84$,加速度误差系数 $K_a=0$ 。

(3) 由系统的闭环传递函数
$$M(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{6205}{s^3 + 13s^2 + 1281s + 6205}$$

闭环系统的不存在零点,极点为 $s_1 = -5$ 、 $s_2 = -4 + 35i$ 、 $s_3 = -4 - 35i$

(4) 系统的阶跃响应曲线:

(5) 系统的闭环极点对于系统的阶跃响应的影响分析:

系统的三个极点 $s_1 = -5$ 、 $s_2 = -4 + 35i$ 、 $s_3 = -4 - 35i$ 比较接近,没有主导极点,因此阶跃响应与典型二阶系统有较大的区别。

A3-7 某反馈系统如图 A3-3 所示。

图 A3-3 题 A3-7 系统图

- (1) 选择 K_1, K_2 , 使系统的 $\varsigma = 0.707$, $\omega_n = 2 rad / \sec$;
- (2) 选择 K_1, K_2 , 使系统有两个相等的实根 s = -10;
- (3) 分别求(1)、(2)两种情况下,系统的超调量 M_p ,调整时间 t_s 和上升时间 t_p 。

解: 视系统为单位反馈,其等效开环传递函数为 $G(s) = \frac{K_1}{s(s+1+K_1K_2)}$,闭环传递函数

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{K_1}{s^2 + (1 + K_1K_2)s + K_1}$$

(1) 若系统的 $\varsigma = 0.707$, $\omega_n = 2rad/\sec$

则期望的系统的闭环特征方程就是

$$f^*(s) = s^2 + 2\sqrt{2}s + 4$$

系统的闭环特征方程是

$$f(s) = s^2 + (1 + K_1 K_2) s + K_1$$
,

比较对应项的系数得出参数 $K_1 = 4$; $K_2 = (2\sqrt{2} - 1)/4 = 0.457$

(2) 若系统有两个相等的实根 s = -10 则期望的系统的闭环特征方程就是

$$f^*(s) = s^2 + 20s + 100$$

系统的闭环特征方程是

$$f(s) = s^2 + (1 + K_1 K_2)s + K_1$$

根据对应项的系数相同的关系得出参数 $K_1 = 100$; $K_2 = 0.19$

(3)

在情况(1)下,

最大超调量:
$$M_p = e^{-\pi\xi/\sqrt{1-\xi^2}} \times 100\% = 4.3\%$$

上升时间:
$$t_r = \frac{\pi - \cos^{-1} \xi}{\omega_r \sqrt{1 - \xi^2}} = 1.667s$$
;

调整时间:
$$t_s \approx \frac{3}{\xi \omega_n} = 2.12s$$
 ($\Delta = 5\%$)

在情况(2)下,系统的 $\xi=1$

最大超调量: $M_p = 0$

上升时间: $1-e^{-\omega_n t_1}\left(1+\omega_n t_1\right)=0.1$ (这两个为超越方程,无法解,要用 Matlab 解。)

$$1 - e^{-\omega_n t_2} \left(1 + \omega_n t_2 \right) = 0.9$$

$$t_r = t_2 - t_1 = 0.39 - 0.055 = 0.335s$$
;

调整时间: $e^{-\omega_n t_s} (1 + \omega_n t_s) = 0.05$

 $t_s \approx 0.48s$ ($\Delta = 5\%$)

B3-4 某系统的方块图如图 B3-3 所示。

图 B3-3 题 B3-4 系统方块图

试求:

- (1) 系统的稳态误差系数: K_p 、 K_v 、 K_a ;
- (2) 由单位阶跃扰动引起的稳态误差 e_{ssn} ;
- (3) 系统的阻尼比 ς 与无阻尼振荡角频率 ω_n ;

解: 系统的方块图为

系统的方块图可以简化为

(1) 系统的稳态误差系数: K_p K_v K_a

当考虑 R(s)与 C(s)关系时,系统的开环函数为

$$G(s)H(s) = \frac{K_1}{s(s+1)(s+K_2)}$$

为 I 型系统,其位置误差系数 $K_p = \infty$,速度误差系数 $K_{\nu} = \frac{K_1}{K_2}$,加速度误差系数

$$K_a = 0$$

(2) 单位阶跃扰动引起的稳态误差 e_{ssn}

设闭环系统稳定, 由前题

$$e_{ssn} = \lim_{s \to 0} sE_N(s) = \lim_{s \to 0} sN(s) \frac{-G_2(s)H(s)}{1 + G_1(s)G_2(s)H(s)}$$

$$e_{ssn} = \lim_{s \to 0} s \cdot \frac{1}{s} \cdot \frac{-\frac{1}{s(s+1)(s+K_2)}}{1 + \frac{K_1}{s(s+1)(s+K_2)}} = -\frac{1}{K_1}$$

- (3) 无法求解(因为无法获得主导极点)
- (4) 系统单位阶跃响应的超调量 $M_p \leq 5\%$; 在斜坡输入下,稳态误差最小; 尽量减小阶跃扰动引起的稳态误差。

系统的闭环传递函数为:

$$M(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{K_1}{s^3 + (1 + K_2)s^2 + K_2s + K_1}$$

由 $M_p = e^{-\pi\xi/\sqrt{1-\xi^2}} \times 100\% \le 5\%$,得到 $\xi = 0.7$

选择 K_1 , K_2 , 使得共轭极点为主导极点,且 $\xi = 0.7$ 。(不对的,本题有误,用根轨迹可以进行一些分析,下面的关于稳态误差是可以有些分析的。) 斜坡输入引起的误差:

$$\frac{E(s)}{R(s)} = \frac{1}{1 + G_1(s)G_2(s)} = \frac{s(s+1)(s+K_2)}{s^3 + (1+K_2)s^2 + K_2s + K_1}$$

$$e_{ssv} = \lim_{s \to 0} sR(s) \frac{s(s+1)(s+K_2)}{s^3 + (1+K_2)s^2 + K_2s + K_1} = \frac{K_2}{K_1}$$

扰动引起的稳态误差:

$$e_{ssn} = \frac{R}{K_1}$$

若减小 e_{ssv} 与 e_{ssn} ,则应该在保持系统稳定条件下 $(K_1 < K_2(K_2 + 1))$ 增大 K_1 的值。

第四章习题答案

A4-1 已知单位反馈系统的开环传递函数为 $G(s)=\frac{K_r(s+1)}{s^2(s+a)}$ 分别画出 $a=5, a=9, \alpha=10$ 的根轨迹草图,并计算根轨迹在实轴上的分离点(或会合点),根轨迹渐近线与实轴的夹角和交点。

解:

1. 由题可知,根轨迹有3条分支.。

当 a=5 时,根轨迹的起点分别是 p_1 =0, p_2 =0, p_3 = -5.一条终止于 z_1 = -1,另两条趋向无穷远.

当 a=9 时,根轨迹的起点分别是 p_1 =0, p_2 =0, p_3 = -9.一条终止于 z_1 = -1,另两条趋向无穷远.