Introduction to Machine Learning Course

Short HW3 - SVM, Optimization, and PAC learning

Submitted individually by Sunday, 11.06, at 23:59.

You may answer in Hebrew or English and write on a computer or by hand (but be clear).

Please submit a PDF file named like your ID number, e.g., 123456789.pdf.

Bonus (maximal grade is 100): Writing on a computer (using LyX/LaTeX, Word + Equation tool, etc.) = 2 pts.

1. VC-dimension exercises:

Define the hypothesis class of axis aligned squares in \mathbb{R}^2 .

$$\mathcal{X} = \mathbb{R}^2$$
, $\mathcal{H}_{sar} = \{h_{\theta} | \theta = (a, b, r) \in \mathbb{R}^3 \text{ s.t. } r > 0\}$

where a single hypothesis is defined by $h_{\theta}(x) = \begin{cases} +1, & (a \leq x_1 \leq a+r) \land (b \leq x_2 \leq b+r) \\ -1, & \text{otherwise} \end{cases}$.

Find $VCdim(\mathcal{H}_{sqr})$ and prove your answer (rigorously).

2. Let $K_1(u,v) = \langle \phi_1(u), \phi_1(v) \rangle$, $K_2(u,v) = \langle \phi_2(u), \phi_2(v) \rangle$ be two kernels with corresponding feature mappings $\phi_1 \colon \mathcal{X} \to \mathbb{R}^{n_1}, \phi_2 \colon \mathcal{X} \to \mathbb{R}^{n_2}$ where $n_1, n_2 \in \mathbb{N}$. Notice that K is a valid (i.e., well-defined) kernel since it can be written as an inner product of a mapping of u and v.

Prove that $K_3(u,v) = 2 \cdot K_1(u,v) + 3 \cdot K_2(u,v)$ is a valid kernel. That is, propose a feature mapping $\phi_3: \mathcal{X} \to \mathbb{R}^{n_3}$ for some $n_3 \in \mathbb{N}$, such that $K_3(u,v) = \langle \phi_3(u), \phi_3(v) \rangle$.

3. We will now prove that the following Soft-SVM problem is convex:

$$argmin_{w \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \max\{0, 1 - y_i \cdot w^\top x_i\} + \lambda \|w\|_2^2$$

Let $f, g: C \to \mathbb{R}$ be two convex functions defined over a convex set C.

Lemma (no need to prove): given a constant $\alpha \in \mathbb{R}_{\geq 0}$, the function $\alpha f(z)$ is convex w.r.t z.

Lemma (no need to prove): a sum of <u>any</u> number of convex functions is convex.

- 3.1. Prove (by definition) that $q(z) \triangleq \max\{f(z), g(z)\}\$ is convex w.r.t z.
- 3.2. Using a rule from Tutorial 07, conclude that $\max\{0, 1 y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i\}$ is convex w.r.t \mathbf{w} .
- 3.3. Using the above (and properties from Tutorial 07), conclude that the Soft-SVM optimization problem is convex w.r.t w.