

Análise de Circuitos

Licenciatura em Engenharia Electrotécnica e de Computadores LEEC e MBioNano 2021/22

4º Trabalho de Laboratório

AMPLIFICADORES OPERACIONAIS

Paulo Flores

Departamento de Engenharia Electrotécnica e de Computadores Área Científica de Electrónica

Setembro de 2021

GUIA DO TRABALHO DE LABORATÓRIO

1 Introdução

Para a realização deste trabalho é necessário fazer uma preparação antes da aula de laboratório, que consta da leitura do guia do trabalho, da aprendizagem dos conceitos necessários, da análise teórica dos circuitos a serem testados, da resposta a todas as questões teóricas que são colocadas no guia de trabalho, da simulação dos circuitos em análise e da previsão e planeamento dos procedimentos experimentais a realizar na aula de laboratório. Durante a aula de laboratório devem ser realizadas as experiências indicadas no guia do trabalho, registados os resultados e elaborado o relatório. Este relatório consiste no correcto preenchimento da secção 3.2 - RELATÓRIO DO TRABALHO DE LABORATÓRIO, que faz parte deste guia e que deve ser entregue em papel no final da aula de laboratório juntamente com as simulações previamente impressas.

A realização da parte experimental deste laboratório implica que a sua preparação relativamente às questões teóricas e simulações necessárias.

1.1 Objectivos

Este trabalho de laboratório tem os seguintes objectivos:

- 1. análise teórica e experimental de uma montagem inversora com ampop
- 2. análise teórica e experimental de uma montagem subtractora com ampop
- 3. utilização do simulador eléctrico LTspice para verificar a análise teórica e prever os resultados experimentais a obter durante a aula de laboratório.
- 4. desenvolvimento de competências em ambiente laboratorial e de trabalho em equipe.
- análise dos resultados experimentais obtidos através da sua confrontação com os resultados da previsão teórica e da simulação;
- 6. elaboração de um relatório do trabalho experimental;

Através da realização deste trabalho, todos elementos do grupo consolidarão as suas competências em ambiente laboratorial, a sua capacidade de análise e crítica de resultados e a gestão de trabalho em equipa.

1.2 Equipamento e Material para Ensaio Laboratorial

Para a realização do trabalho são necessários os seguintes equipamentos: base de experimentação com fontes de tensão fixas de $\pm 5\,\mathrm{V}$ e reguláveis até $\pm 15\,\mathrm{V}$, multímetro, osciloscópio, gerador de funções, cabos BNC-BNC, um adaptador T e um alicate e/ou descarnador. Para realizar as montagens precisa de uma placa de ensaio, fios e os componentes do circuito.

Os componentes a utilizar são os seguintes:

Resistências: $3 \times 10k\Omega$ $1 \times 22k\Omega$ $1 \times 100k\Omega$

Ampop: $1 \times \mu A741$

No início do laboratório, deve trazer para a bancada todo o equipamento e material necessário e no fim da aula deve devolvê-lo, arrumá-lo e deixar a bancada arrumada e limpa e todos os equipamentos desligados.

1.3 Base de Experimentação

A montagem dos circuitos em ensaio é feita sobre a base de experimentação e interligando os respectivos componentes na placa ensaio.

Análise de Circuitos - 2021/22

2 O Amplificador Operacional

Na figura 1 apresenta-se o símbolo eléctrico e um esquema equivalente muito simplificado, do amplificador operacional (ampop), que é um amplificador integrado monolítico.

Figura 1: Amplificador operacional: a) símbolo eléctrico, b) modelo linear simplificado

Um amplificador operacional é dito ideal quando o seu funcionamento linear pode ser descrito pelo modelo simplificado da figura 1-b) com $R_{in} = \infty$, $R_o = 0$ e $A \to \infty$. Estas condições correspondem respectivamente a:

- i) ter as correntes nas entradas nos terminais + e do ampop como nulas;
- ii) ter o gerador de tensão comandado ligado directamente ao nó de saída;
- iii) ter a tensão de entrada V_d com o valor nulo (ou seja, as tensões v^+ e v^- são iguais), em virtude da tensão de saída ter de ser finita e o ganho tender para infinito ($V_d = \frac{V_o}{A}$).

As ligações do circuito integrado $\mu A74$ é feita de acordo com o diagrama da figura 2. As tensões de alimentação positiva e negativa ($V_{al}+$ e $V_{al}-$) devem ser de +15V e -15V, respectivamente, e provenientes das fontes DC da base de experimentação.

Figura 2: Diagrama de ligações do μΑ741.

Para simular o funcionamento dos circuitos deste laboratório que contenham amplificadores operacionais, como o circuito da figura 3, deve usar o programa LTspice.

Análise de Circuitos - 2021/22

Como o modelo do amplificador operacional μ A741 não faz parte da biblioteca distribuída com o LSspice, este deve ser adicionado previamente usando a seguinte sequência de operações:

- 1. Obtenha o modelo do ampop μA741 descarregado os ficheiros uA741.1ib e uA741.asy da página da disciplina (disponíveis na secção de Laboratórios).
- 2. Copie o ficheiro com o modelo do ampop, uA741.lib, para a sub-directoria lib/sub de instalação do LTspice (por exemplo, LTspiceXVII\lib\sub\)
- 3. Copie o ficheiro com o símbolo do ampop, uA741.asy, para a sub-directoria lib/sym de instalação do LTspice (por exemplo, LTspiceXVII\lib\sym\)
- 4. Inicie de novo o simulador LTspice para poder começar a usar o modelo do ampop μΑ741.

Nas ligações do esquemático que realizar tem que alimentar o amplificador operacional (para fornecer energia) através dos respectivos terminais de alimentação com duas fontes de tensão de valores +15V e -15V em relação ao GND (0V). Note-se que em geral no símbolo eléctrico do ampop não se representam as tensões de alimentação, para não sobrecarregar o esquema, mas elas têm que existir sempre para o correcto funcionamento do ampop.

3 Plano de Trabalho

3.1 Montagem Inversora com Amplificador Operacional

Monte o circuito representado na Figura 3 utilizando os seguintes valores para as resistências: $R_a = 10k\Omega$ e $R_f = 100k\Omega$.

Figura 3: Amplificador operacional em montagem inversora.

Execute de seguida os seguintes passos do procedimento experimental:

- 1. Obtenha a expressão simbólica que permite determinar o ganho de tensão do circuito em funcionamento linear (G_1) . Determine o valor numérico desse ganho.
- 2. Simule o circuito da Figura 3 para uma onda de entrada sinusoidal de 0.5V de amplitude e frequência de 1kHz (Simulação-1). Observe os sinais na entrada e saída do circuito (V_i e V_o) e na entrada do v^- do ampop.
- 3. Para as tensões de alimentação do ampop vão ser usadas as fontes se tensão DC variáveis da base de experimentação. Ajuste na base de experimentação o valor de cada uma das fontes para mais próximo de +15V e -15V. Registe os valores experimentais que obteve e que vai usar para alimentar o ampop.
- 4. Monte o circuito da Figura 3 sem se esquecer de ligar as fontes de alimentação que regulou anteriormente ao circuito. Tenha cuidado ao fazer as ligações sobre a base de experimentação para não alterar o valor que registou para a fontes.
- 5. Aplique em V_i um sinal sinusoidal com 0.5V de amplitude ($1V_{pp}$) e com frequência de 1kHz. Observe e registe os sinais de entrada e de saída simultaneamente no osciloscópio (entrada no Canal 1 e saída no Canal 2). A escala de cada canal deve ser regulada por forma a permitir a melhor

- observação possível do sinal em questão. Comente os resultados obtidos tendo em consideração os valores das resistências R_a e R_f .
- 6. Observe e descreva também o sinal presente na entrada inversora do ampop, v^- (pino 2). Comente e compare com os resultados obtidos na simulação.
- 7. Simule o circuito da Figura 3 para uma onda de entrada sinusoidal de 2V de amplitude e frequência de 1kHz (Simulação-2). Observe novamente os sinais na entrada e saída do circuito e na entrada inversora (v⁻) do ampop.
- 8. Altere agora no gerador de sinais a amplitude do sinal de entrada para 2V ($4V_{pp}$) e registe as alterações aos sinais observados anteriormente.
- Observe simultaneamente no osciloscópio o sinal na entrada inversora do ampop (v⁻) e na saída do circuito. Registe e comentes os respectivos sinais, em particular o que ocorre na entrada inversora do ampop (v⁻).
- 10. Se os valores das resistências forem alterados para: $R_a = 22k\Omega$ e $R_f = 100k\Omega$. Determine teorcamente a amplitude máxima que a uma onda de entrada sinusoidal (A_i^{max}) pode ter para que o circuito mantenha um comportamento linear.

3.2 Montagem Subtractora com Amplificador Operacional

Monte o circuito representado na Figura 4 fazendo $R_1 = R_2 = 10k\Omega$ e $R_f = 10k\Omega$.

Figura 4: Amplificador operacional em montagem subtractora.

Execute os seguintes passos do procedimento experimental:

- 1. Obtenha a expressão simbólica que permite determinar tensão de saída do circuito em funcionamento linear em função de $v_1(t)$ e $v_2(t)$ (Sugestão: use o teorema da sobreposição).
- 2. Realize a simulação do circuito representado na Figura 4 quando na entrada V_2 tem uma onda sinusoidal de 2V de amplitude e frequência de 1kHz e na entrada V_1 tem uma fonte de tensão constante de 5V. Observe os sinais em V_1 , V_2 , na entrada v^- do ampop e na saída do circuito, V_o (Simulação-3).
- 3. Aplique em V_2 um sinal sinusoidal com 2V de amplitude $(4V_{pp})$ e frequência de 1 kHz. Em V_2 ligue a fonte de tensão de 5V da base de alimentação. Utilize o canal 1 do osciloscópio para visualizar a tensão de entrada V_2 e o canal 2 para visualizar a tensão de saída V_o . Observe e registe V_2 , V_o e valor da fonte de tensão em V_1 .
- 4. Nas condições da montagem anterior, determine a expressão simbólica e o valor máximo de amplitude (V_2^{max}) que a onda sinusoidal V_2 pode ter sem que haja distorção do sinal de saída, ou seja, a amplitude máxima de V_2 para o qual o circuito tem um funcionamento linear.
- 5. Obtenha o valor dessa amplitude máxima da onda sinusoidal experimentalmente. Para isso aumente a amplitude da onda sinusoidal de entrada e verifique quando a saída apresenta distorção, deixando de ser uma onda sinusoidal. Compare obtido experimentalmente com o valor teórico calculado anteriormente.

RELATÓRIO DO TRABALHO DE LABORATÓRIO

úmara		_//	Turno	_ Grupo
úmero	Nome			
úmero	Nome			
úmero	Nome			
as folhas servem para ro umeração das secções o	-			
Montagem Inverso	ra com Amplific	ador Operacio	onal	
Expressão simbólica par	ra o ganho de tensã	to G_1 e respective	valor numérico:	
$\frac{V_o}{V_i} =$			<i>G</i> ₁ =	
/alores das tensões de a	limentação experi	nentais:		
			/al+:	-
Registo das ondas de en	trada ($0.5V$ de amj	olitude) e saída:		
			1	
	‡		Legenda	
	+ +			
			Canal 1: Sinal:	
			Escala:	
	‡] ;	
			Canal 2:	
			Sinal: Escala:	
			Escara:	Voits/div
			- ' Tempo:	s/div
	†		l i rempo.	5/ G 1 V

6. Descrição, comentário e comparação com a simulação do sinal em v^- :

8. Registo das ondas de entrada (2V de amplitude) e saída:

9. Registo dos sinais em v^- e na saída:

Legenda
Canal 1: Sinal: Volts/div
0 10
Tempo: s/div

Comentário ao sinal na entrada inversora do ampop (v^-):

10. Amplitude máxima da onda sinusoidal de entrada (A_{max}) para comportamento linear do circuito (valor teórico e valor experimental):

Val. Teo.
$$A_i^{max} \le$$

3.2 Montagem Subtractora com Amplificador Operacional

1. Expressão simbólica a tensão de saída $v_o(t)$ em função de $v_1(t)$ e $v_2(t)$:

$$v_o(t) =$$

3. Registo das ondas de entrada (V_2) e de saída (V_o) :

Valor da fonte de tensão V_1 :

. Expressão simbólica e valor da amplitude máxima de V_2 em função de V_1 e dos elementos do circuito:		
$V_2^{max} \le$	$V_2^{max} \leq$	
5. Amplitude máxima de V_2 obtida experimen	ntalmente:	
Comparação e comentário:		
Conclusões Gerais		