Order of Growth of Functions Analysis and Design of Algorithms

Research Group on Artificial Life – Grupo de investigación en vida artificial – (Alife)

Computer and System Department

Engineering School

Universidad Nacional de Colombia

Agenda

Asymptotic notation

Common functions

Agenda

Asymptotic notation

2 Common functions

Agenda

Asymptotic notation

2 Common functions

Outline

Asymptotic notation

2 Common functions

Asymptotically No Negative Functions

Definition

f(n) is asymptotically no negative if there exist $n_0 \in \mathbb{N}$ such that for every $n \geq n_0$, $0 \leq f(n)$.

U / 1 CF / 1 E / 1 E / 2 / 1 V A

Theta ⊖

Definition

$$\Theta(g(n)) = \{f : \mathbb{N} \to \mathbb{R}^* : (\exists C_1, C_2 \in \mathbb{R}^+) (\exists n_0 \in \mathbb{N})$$

$$(\forall n \ge n_0) (0 \le C_1 g(n) \le f(n) \le C_2 g(n)) \}$$

$$C_1 \le \lim_{n \to \infty} \frac{f(n)}{g(n)} \le C_2$$

E.C. Cubides Algorithms – UN

$$"f(n) = \Theta(g(n))" \equiv "f(n) \in \Theta(g(n))"$$

g is asymptotically tight bound for f or f is of the exact order of g

- ullet Every member of $\Thetaig(g(n)ig)$ is asymptotically no negative
- The function g(n) must itself asymptotically no negative, or else $\Theta(g(n)) = \varnothing$.

$$"f(n) = \Theta(g(n))" \equiv "f(n) \in \Theta(g(n))"$$

g is asymptotically tight bound for f or f is of the exact order of g

- Every member of $\Theta(g(n))$ is asymptotically no negative.
- The function g(n) must itself asymptotically no negative, or else $\Theta(g(n)) = \emptyset$.

$$"f(n) = \Theta(g(n))" \equiv "f(n) \in \Theta(g(n))"$$

g is asymptotically tight bound for f or f is of the exact order of g

- Every member of $\Theta(g(n))$ is asymptotically no negative.
- The function g(n) must itself asymptotically no negative, or else $\Theta(g(n)) = \emptyset$.

Example

Lets show that

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

We have to find C_1 , C_2 and n_0 such that

$$C_1 n^2 \le \frac{1}{2} n^2 - 3n \le C_2 n^2$$

For all $n \ge n_0$, Dividing by n^2 yields

$$C_1 \leq \frac{1}{2} - \frac{3}{n} \leq C_2$$

We have that $\frac{3}{n}$ is a decreasing sequence

$$3, \frac{3}{2}, 1, \frac{3}{4}, \frac{3}{5}, \frac{1}{2}, \frac{3}{7}, \frac{3}{8}, \frac{1}{3}, \dots$$

and then $\frac{1}{2} - \frac{3}{n}$ is an increasing sequence

$$-\frac{5}{2}$$
, -1 , $-\frac{1}{2}$, $-\frac{1}{4}$, $-\frac{1}{10}$, 0 , $\frac{1}{14}$, ...

that is upper bounded by $\frac{1}{2}$.

The right hand inequality can be made to hold for $n \ge 1$ by choosing $C_2 \ge \frac{1}{2}$. Likewise, the left hand inequality can be made to hold for $n \ge 7$ by choosing $C_1 \le \frac{1}{14}$.

Thus, by choosing $C_1 = \frac{1}{14}$, $C_2 = \frac{1}{2}$ and $n_0 = 7$ then we can verify that

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

Big \mathcal{O} (Omicron)

Definition

$$\begin{split} \mathcal{O}\big(g(n)\big) &= \big\{f: \mathbb{N} \to \mathbb{R}^*: \big(\exists C \in \mathbb{R}^+\big) \big(\exists n_0 \in \mathbb{N}\big) \\ &\quad (\forall n \geq n_0) \big(0 \leq f(n) \leq Cg(n)\big) \big\} \\ &\lim_{n \to \infty} \frac{f(n)}{g(n)} \leq C \end{split}$$

"
$$f(n) = \mathcal{O}(g(n))$$
" $\equiv "f(n) \in \mathcal{O}(g(n))$ "

f is asymptotically upper bound for g or g is an asymptotic upper bound for f

• $\mathcal{O}(g(n))$ is pronounced "big-oh of g(n)"

"
$$f(n) = \mathcal{O}(g(n))$$
" $\equiv "f(n) \in \mathcal{O}(g(n))$ "

f is asymptotically upper bound for g or g is an asymptotic upper bound for f

• $\mathcal{O}(g(n))$ is pronounced "big-oh of g(n)".

Example

Lets show that if a, b > 0 then

$$an + b = \mathcal{O}(n)$$

We have to find C and n_0 such that

$$an + b \le Cn$$

For all $n \ge n_0$, dividing by n yields

$$0 \le a + \frac{b}{n} \le C$$

The inequality can be made to hold for $n \ge 1$ by choosing $C \ge a + b$. Thus by choosing $C \ge a + b$ and $n_0 = 1$ then we can verify that $0 \le an + b \le (a + b)n$, that is to say

E.C. Cubides Algorithms – UN

Big Omega Ω

Definition

$$\Omega(g(n)) = \{ f : \mathbb{N} \to \mathbb{R}^* : (\exists C \in \mathbb{R}^+) (\exists n_0 \in \mathbb{N}) \\ (\forall n \ge n_0) (0 \le Cg(n) \le f(n)) \}$$

$$C \le \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

◆ロト ◆個ト ◆基ト ◆基ト ■ 90

E.C. Cubides Algorithms – UN

"
$$f(n) = \Omega(g(n))$$
" $\equiv f(n) \in \Omega(g(n))$ "

f is asymptotically lower bound for g or g is an asymptotic lower bound for f

ullet $\Omegaig(g(n)ig)$ is pronounced "big-omega of g(n)"

"
$$f(n) = \Omega(g(n))$$
" $\equiv "f(n) \in \Omega(g(n))$ "

f is asymptotically lower bound for g or g is an asymptotic lower bound for f

• $\Omega(g(n))$ is pronounced "big-omega of g(n)"

Example

Lets show that

$$5n^3 - 5n^2 - 2n - 3 = \Omega(n^2)$$

We have to find C and n_0 such that

$$0 \le Cn^2 \le 5n^3 - 5n^2 - 2n - 3$$

if $n \geq n_0$.

For all $n \ge n_0$, Dividing by n^2 yields

$$0 \le C \le 5n - 5 - \frac{2}{n} - \frac{3}{n^2} = 5n - \left(5 + \frac{2}{n} + \frac{3}{n^2}\right)$$

We have that $5+\frac{2}{n}+\frac{3}{n^2}$ is a decreasing sequence that takes its maximum value 10 when n=1; and therefore $5n-\left(5+\frac{2}{n}+\frac{3}{n^2}\right)$ is an increasing sequence such that is non-negative for $n\geq 2$, whence if $n_0=2$ then it is lower bounded by $\frac{13}{4}$.

Thus, by choosing $C = \frac{13}{4}$ and $n_0 = 2$ then we can verify that

$$5n^3 - 5n^2 - 2n - 3 = \Omega(n^2)$$

Little o

Definition

$$\begin{split} o\big(g(n)\big) &= \big\{f: \mathbb{N} \to \mathbb{R}^*: \big(\forall C \in \mathbb{R}^+\big) \big(\exists n_0 \in \mathbb{N}\big) \\ &\quad (\forall n \geq n_0) \big(0 \leq f(n) < Cg(n)\big) \big\} \\ &\quad \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \end{split}$$

E.C. Cubides Algorithms - UN

"
$$f(n) = o(g(n))$$
" $\equiv "f(n) \in o(g(n))$ "

f is asymptotically smaller than g

- o(g(n)) is pronounced "little-oh of g(n)"
- ullet o(g(n)) is the set of functions that grow slower than g

"
$$f(n) = o(g(n))$$
" $\equiv "f(n) \in o(g(n))$ "

f is asymptotically smaller than g

- o(g(n)) is pronounced "little-oh of g(n)".
- o(g(n)) is the set of functions that grow slower than g

"
$$f(n) = o(g(n))$$
" $\equiv "f(n) \in o(g(n))$ "

f is asymptotically smaller than g

- o(g(n)) is pronounced "little-oh of g(n)".
- o(g(n)) is the set of functions that grow slower than g.

Example

Lets show that

$$n = o(n^2)$$

we only have to show

$$\lim_{n\to\infty}\frac{n}{n^2}=\lim_{n\to\infty}\frac{1}{n}=0$$

E.C. Cubides

Example

Lets show that

$$n \notin o(3n)$$

we have

$$\lim_{n\to\infty}\frac{n}{3n}=\lim_{n\to\infty}\frac{1}{3}=\frac{1}{3}\neq 0$$

Little omega ω

Definition

$$\omega(g(n)) = \{f : \mathbb{N} \to \mathbb{R}^* : (\forall C \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}) \\ (\forall n \ge n_0)(0 \le Cg(n) < f(n))\}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

E.C. Cubides Algorithms – UN

"
$$f(n) = \omega(g(n))$$
" $\equiv "f(n) \in \omega(g(n))$ "

f is asymptotically larger than g

- $ullet\; \omega(g(n))$ is pronounced "little-omega of g(n)".
- \bullet $\omega(g(n))$ is the set of functions that grow faster than g

"
$$f(n) = \omega(g(n))$$
" $\equiv "f(n) \in \omega(g(n))$ "

f is asymptotically larger than g

- $\omega(g(n))$ is pronounced "little-omega of g(n)".
- \bullet $\omega(g(n))$ is the set of functions that grow faster than g

"
$$f(n) = \omega(g(n))$$
" $\equiv "f(n) \in \omega(g(n))$ "

f is asymptotically larger than g

- $\omega(g(n))$ is pronounced "little-omega of g(n)".
- $\omega(g(n))$ is the set of functions that grow faster than g.

Example

Lets show that

$$e^n = \omega(n+1)$$

we only have to show

$$\lim_{n\to\infty}\frac{e^n}{n+1}=\lim_{n\to\infty}e^n=\infty$$

E.C. Cubides

Analogy with the comparison of two real numbers

Asymptotic notation	Real numbers
$f(n) \in \mathcal{O}(g(n))$	$f \leq g$
$f(n) \in \Omega(g(n))$	$f \geq g$
$f(n) \in \Theta(g(n))$	f = g
$f(n) \in o(g(n))$	f < g
$f(n) \in \omega(g(n))$	f > g

Trichotomy does not hold!

Analogy with the comparison of two real numbers

Asymptotic notation	Real numbers
$f(n) \in \mathcal{O}(g(n))$	$f \leq g$
$f(n) \in \Omega(g(n))$	$f \geq g$
$f(n) \in \Theta(g(n))$	f = g
$f(n) \in o(g(n))$	f < g
$f(n) \in \omega(g(n))$	f > g

Trichotomy does not hold!

Not all functions are asymptotically comparable Trichotomy does not hold

Example

Following functions are asymptotically non-negative

$$\bullet$$
 $f(n) = n$

•
$$g(n) = n^{1+\sin(n)}$$

but, they are not comparable because $1 + \sin(n) \in [0, 2]$, the function g varies between 1 and n^2 , when $n \to \infty$.

E.C. Cubides Algorithms – UN

Not all functions are asymptotically comparable

Trichotomy does not hold

Example

Following functions are asymptotically non-negative

$$\bullet$$
 $f(n) = n$

$$\sigma(n) = n^{1+\sin(n)}$$

but, they are not comparable because $1 + \sin(n) \in [0, 2]$, the function g varies between 1 and n^2 , when $n \to \infty$.

E.C. Cubides Algorithms – UN

Not all functions are asymptotically comparable

Trichotomy does not hold

Example

Following functions are asymptotically non-negative

$$\bullet$$
 $f(n) = n$

•
$$g(n) = n^{1+\sin(n)}$$

but, they are not comparable because $1 + \sin(n) \in [0, 2]$, the function g varies between 1 and n^2 , when $n \to \infty$.

E.C. Cubides Algorithms – UN

$$\Theta(f(n)) = \mathcal{O}(f(n)) \cap \Omega(f(n))$$

The running time of an algorithm is $\Theta(f(n))$

if and only if

igoplus lts worst-case running time is $\mathcal{O}(f(n))$, and

$$\Theta(f(n)) = \mathcal{O}(f(n)) \cap \Omega(f(n))$$

The running time of an algorithm is $\Theta(f(n))$

if and only if

- ① Its worst-case running time is $\mathcal{O}(f(n))$, and
- ② Its best-case running time is $\Omega(f(n))$.

$$\Theta(f(n)) = \mathcal{O}(f(n)) \cap \Omega(f(n))$$

The running time of an algorithm is $\Theta(f(n))$

if and only if

- 1 Its worst-case running time is $\mathcal{O}(f(n))$, and
- ② Its best-case running time is $\Omega(f(n))$.

$$\Theta(f(n)) = \mathcal{O}(f(n)) \cap \Omega(f(n))$$

The running time of an algorithm is $\Theta(f(n))$

if and only if

- 1 Its worst-case running time is $\mathcal{O}(f(n))$, and
- ② Its best-case running time is $\Omega(f(n))$.

Given f, g and h asymptotically no negative functions, we have:

Transitivity of
$$\mathcal{O}, \Omega, \Theta$$
 $f(n) \in \Delta(g(n))$ and $g(n) \in \Delta(h(n))$ then $f(n) \in \Delta(h(n))$, for $\Delta \in \{\mathcal{O}, \Omega, \Theta\}$.

Reflexivity of $\mathcal{O}, \Omega, \Theta$ $f(n) \in \Delta(f(n))$, for $\Delta \in \{\mathcal{O}, \Omega, \Theta\}$.

Symmetry of
$$\Theta$$
 $f(n) \in \Thetaig(g(n)ig) \Longleftrightarrow g(n) \in \Thetaig(f(n)ig)$

Anti-symmetry of $\mathcal{O}, \Omega \ \forall f(n) \notin \Theta(g(n))$,

$$f(n) \in \Delta(g(n)) \Longrightarrow g(n) \notin \Delta(f(n)), \text{ for } \Delta \in \{\mathcal{O}, \Omega\}$$

Transpose Symmetry

$$f(n) \in \mathcal{O}(g(n)) \iff g(n) \in \Omega(f(n))$$
$$f(n) \in o(g(n)) \iff g(n) \in \omega(f(n))$$

Given f, g and h asymptotically no negative functions, we have:

Transitivity of
$$\mathcal{O}, \Omega, \Theta$$
 $f(n) \in \Delta(g(n))$ and $g(n) \in \Delta(h(n))$ then $f(n) \in \Delta(h(n))$, for $\Delta \in \{\mathcal{O}, \Omega, \Theta\}$.

Reflexivity of $\mathcal{O}, \Omega, \Theta$ $f(n) \in \Delta(f(n))$, for $\Delta \in \{\mathcal{O}, \Omega, \Theta\}$

Symmetry of
$$\Theta$$
 $f(n) \in \Thetaig(g(n)ig) \Longleftrightarrow g(n) \in \Thetaig(f(n)ig)$

Anti-symmetry of $\mathcal{O}, \Omega \ \forall f(n) \notin \Theta(g(n))$

$$f(n) \in \Delta(g(n)) \Longrightarrow g(n) \notin \Delta(f(n))$$
, for $\Delta \in \{\mathcal{O}, \Omega\}$

Transpose Symmetry

$$f(n) \in \mathcal{O}(g(n)) \iff g(n) \in \Omega(f(n))$$
$$f(n) \in \mathcal{O}(g(n)) \iff g(n) \in \mathcal{O}(f(n))$$

<ロト <個ト < 差ト < 差ト = 一切への

Given f, g and h asymptotically no negative functions, we have:

Transitivity of
$$\mathcal{O}, \Omega, \Theta$$
 $f(n) \in \Delta(g(n))$ and $g(n) \in \Delta(h(n))$ then $f(n) \in \Delta(h(n))$, for $\Delta \in \{\mathcal{O}, \Omega, \Theta\}$.

Reflexivity of $\mathcal{O}, \Omega, \Theta$ $f(n) \in \Delta(f(n))$, for $\Delta \in \{\mathcal{O}, \Omega, \Theta\}$.

Symmetry of
$$\Theta$$
 $f(n) \in \Thetaig(g(n)ig) \Longleftrightarrow g(n) \in \Thetaig(f(n)ig)$

Anti-symmetry of \mathcal{O},Ω $\forall f(n)
otin \Thetaig(g(n)ig)$,

$$f(n) \in \Delta(g(n)) \Longrightarrow g(n) \notin \Delta(f(n)), \text{ for } \Delta \in \{\mathcal{O}, \Omega\}$$

Transpose Symmetry

$$f(n) \in \mathcal{O}(g(n)) \iff g(n) \in \Omega(f(n))$$

$$f(n) \in \mathcal{O}(g(n)) \iff g(n) \in \mathcal{O}(f(n))$$

Given f, g and h asymptotically no negative functions, we have:

Transitivity of
$$\mathcal{O}, \Omega, \Theta$$
 $f(n) \in \Delta(g(n))$ and $g(n) \in \Delta(h(n))$ then $f(n) \in \Delta(h(n))$, for $\Delta \in \{\mathcal{O}, \Omega, \Theta\}$.

Reflexivity of
$$\mathcal{O}, \Omega, \Theta$$
 $f(n) \in \Delta(f(n))$, for $\Delta \in \{\mathcal{O}, \Omega, \Theta\}$.

Symmetry of
$$\Theta$$
 $f(n) \in \Theta(g(n)) \iff g(n) \in \Theta(f(n))$.

Anti-symmetry of
$$\mathcal{O}, \Omega \ \forall f(n) \notin \Theta(g(n))$$
,

$$f(n) \in \Delta(g(n)) \Longrightarrow g(n) \notin \Delta(f(n)), \text{ for } \Delta \in \{\mathcal{O}, \Omega\}$$

Transpose Symmetry

$$f(n) \in \mathcal{O}(g(n)) \iff g(n) \in \Omega(f(n))$$

 $f(n) \in o(g(n)) \iff g(n) \in \omega(f(n))$

(ㅁ▶ <蕳▶ <불▶ <불▶ 를 씻으

Given f, g and h asymptotically no negative functions, we have:

Transitivity of
$$\mathcal{O}, \Omega, \Theta$$
 $f(n) \in \Delta(g(n))$ and $g(n) \in \Delta(h(n))$ then $f(n) \in \Delta(h(n))$, for $\Delta \in \{\mathcal{O}, \Omega, \Theta\}$.

Reflexivity of
$$\mathcal{O}, \Omega, \Theta$$
 $f(n) \in \Delta(f(n))$, for $\Delta \in \{\mathcal{O}, \Omega, \Theta\}$.

Symmetry of
$$\Theta$$
 $f(n) \in \Theta(g(n)) \iff g(n) \in \Theta(f(n))$.

Anti-symmetry of
$$\mathcal{O}, \Omega \ \forall f(n) \notin \Theta(g(n))$$
, $f(n) \in \Delta(g(n)) \Longrightarrow g(n) \notin \Delta(f(n))$, for $\Delta \in \{\mathcal{O}, \Omega\}$.

Transpose Symmetry

$$f(n) \in \mathcal{O}(g(n)) \iff g(n) \in \Omega(f(n))$$

 $f(n) \in o(g(n)) \iff g(n) \in \omega(f(n))$

Given f, g and h asymptotically no negative functions, we have:

Transitivity of
$$\mathcal{O}, \Omega, \Theta$$
 $f(n) \in \Delta(g(n))$ and $g(n) \in \Delta(h(n))$ then $f(n) \in \Delta(h(n))$, for $\Delta \in \{\mathcal{O}, \Omega, \Theta\}$.

Reflexivity of
$$\mathcal{O}, \Omega, \Theta$$
 $f(n) \in \Delta(f(n))$, for $\Delta \in \{\mathcal{O}, \Omega, \Theta\}$.

Symmetry of
$$\Theta$$
 $f(n) \in \Theta(g(n)) \iff g(n) \in \Theta(f(n))$.

Anti-symmetry of
$$\mathcal{O}, \Omega \ \forall f(n) \notin \Theta(g(n))$$
, $f(n) \in \Delta(g(n)) \Longrightarrow g(n) \notin \Delta(f(n))$, for $\Delta \in \{\mathcal{O}, \Omega\}$.

Transpose Symmetry

$$f(n) \in \mathcal{O}(g(n)) \iff g(n) \in \Omega(f(n))$$

 $f(n) \in o(g(n)) \iff g(n) \in \omega(f(n))$

- $f \leq g \iff f(n) \in \mathcal{O}(g(n))$ order relatio
 - o renexive
 - в апп-зупшиеци.
 - o firansitiwe
- $f \ge g \Longleftrightarrow f(n) \in \Omega(g(n))$ order relation

- $f \leq g \iff f(n) \in \mathcal{O}(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f \ge g \iff f(n) \in \Omega(g(n))$ order relation

- $f \leq g \iff f(n) \in \mathcal{O}(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f \ge g \Longleftrightarrow f(n) \in \Omega(g(n))$ order relation

- $f \leq g \iff f(n) \in \mathcal{O}(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f \ge g \Longleftrightarrow f(n) \in \Omega(g(n))$ order relation
- o transitive
- $f = g \iff f(n) \in \Theta(g(n))$ equivalence relation

- $f \leq g \iff f(n) \in \mathcal{O}(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f \ge g \Longleftrightarrow f(n) \in \Omega(g(n))$ order relation

- $f \leq g \iff f(n) \in \mathcal{O}(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f \ge g \iff f(n) \in \Omega(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f = g \iff f(n) \in \Theta(g(n))$ equivalence relation

- $f \leq g \iff f(n) \in \mathcal{O}(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f \ge g \iff f(n) \in \Omega(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f = g \iff f(n) \in \Theta(g(n))$ equivalence relation

- $f \leq g \iff f(n) \in \mathcal{O}(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f \ge g \iff f(n) \in \Omega(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f = g \iff f(n) \in \Theta(g(n))$ equivalence relation

- $f \leq g \iff f(n) \in \mathcal{O}(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f \ge g \iff f(n) \in \Omega(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f = g \iff f(n) \in \Theta(g(n))$ equivalence relation

- $f \leq g \iff f(n) \in \mathcal{O}(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f \ge g \iff f(n) \in \Omega(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f = g \iff f(n) \in \Theta(g(n))$ equivalence relation
 - reflexive
 - symmetric
 - transitive

- $f \leq g \iff f(n) \in \mathcal{O}(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f \ge g \iff f(n) \in \Omega(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f = g \iff f(n) \in \Theta(g(n))$ equivalence relation
 - reflexive
 - symmetric
 - transitive

- $f \leq g \iff f(n) \in \mathcal{O}(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f \ge g \iff f(n) \in \Omega(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f = g \iff f(n) \in \Theta(g(n))$ equivalence relation
 - reflexive
 - symmetric
 - transitive

- $f \leq g \iff f(n) \in \mathcal{O}(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f \ge g \iff f(n) \in \Omega(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f = g \iff f(n) \in \Theta(g(n))$ equivalence relation
 - reflexive
 - symmetric
 - transitive

$$o(f(n))\cap\omega(f(n))=\varnothing$$

Relation between σ and ${\cal O}$

$$f(n) \in o(g(n)) \Longrightarrow f(n) \in \mathcal{O}(g(n))$$

lation between ω and Ω

$$g(n) \in \omega(\ell(n)) \Longrightarrow g(n) \in \Omega(\ell(n))$$

$$o(f(n)) \cap \omega(f(n)) = \emptyset$$

Relation between o and O

$$f(n) \in o(g(n)) \Longrightarrow f(n) \in \mathcal{O}(g(n))$$

Relation between ω and Ω

$$g(n) \in \omega(f(n)) \Longrightarrow g(n) \in \Omega(f(n))$$

$$o(f(n)) \cap \omega(f(n)) = \emptyset$$

Relation between o and \mathcal{O}

$$f(n) \in o(g(n)) \Longrightarrow f(n) \in \mathcal{O}(g(n))$$

Relation between ω and Ω

$$g(n) \in \omega(f(n)) \Longrightarrow g(n) \in \Omega(f(n))$$

$$o(f(n)) \cap \omega(f(n)) = \emptyset$$

Relation between o and \mathcal{O}

$$f(n) \in o(g(n)) \Longrightarrow f(n) \in \mathcal{O}(g(n))$$

Relation between ω and Ω

$$g(n) \in \omega(f(n)) \Longrightarrow g(n) \in \Omega(f(n))$$

Asymptotic notation two variables

Definition

$$\begin{split} \mathcal{O}\big(g(m,n)\big) &= \big\{f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}^*: (\exists C \in \mathbb{R}^+)(\exists m_0, n_0 \in \mathbb{N}) \\ & (\forall m \geq m_0)(\forall n \geq n_0)\big(f(m,n) \leq Cg(m,n)\big)\big\} \end{split}$$

Outline

Asymptotic notation

2 Common functions

3 Examples

Monotonicity

```
f is monotonically increasing if: \forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) \le f(y)

f is monotonically decreasing if: \forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) \ge f(y)

f is strictly increasing if: \forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) < f(y)

f is strictly decreasing if: \forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) > f(y)
```


Monotonicity

f is monotonically increasing if: $\forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) \le f(y)$

f is monotonically decreasing if: $\forall x,y \in \mathbb{R}, x < y \Longrightarrow f(x) \geq f(y)$

f is strictly increasing if: $\forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) < f(y)$

f is strictly decreasing if: $\forall x, v \in \mathbb{R}, x < v \Longrightarrow f(x) > f(v)$

Monotonicity

f is monotonically increasing if: $\forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) \le f(y)$ f is monotonically decreasing if: $\forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) \ge f(y)$ f is strictly increasing if: $\forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) < f(y)$ f is strictly decreasing if: $\forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) > f(y)$

Monotonicity

```
f is monotonically increasing if: \forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) \le f(y)
```

$$f$$
 is monotonically decreasing if: $\forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) \ge f(y)$

$$f$$
 is strictly increasing if: $\forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) < f(y)$

f is strictly decreasing if: $\forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) > f(y)$

Monotonicity

```
f is monotonically increasing if: \forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) \le f(y)
```

$$f$$
 is monotonically decreasing if: $\forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) \ge f(y)$

$$f$$
 is strictly increasing if: $\forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) < f(y)$

f is strictly decreasing if:
$$\forall x, y \in \mathbb{R}, x < y \Longrightarrow f(x) > f(y)$$

Floors and Ceilings

Definition

[x] floor of x: The greatest integer less than or equal to x.

$$\forall x \in \mathbb{R}, \qquad x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

 $\forall n \in \mathbb{Z}, \qquad |n| = n = \lceil n \rceil \text{ and } |n/2| + \lceil n/2 \rceil = n$

E.C. Cubides Algorithms – UN

Floors and Ceilings

Definition

[x] floor of x: The greatest integer less than or equal to x.

x ceiling of x: The smallest integer greater than or equal to x

$$\forall x \in \mathbb{R}, \qquad x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

 $\forall n \in \mathbb{Z}, \qquad |n| = n = \lceil n \rceil \text{ and } |n/2| + \lceil n/2 \rceil = n$

E.C. Cubides Algorithms – UN

Floors and Ceilings

Definition

[x] floor of x: The greatest integer less than or equal to x.

[x] ceiling of x: The smallest integer greater than or equal to x.

$$\forall x \in \mathbb{R}, \qquad x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

 $\forall n \in \mathbb{Z}, \qquad |n| = n = \lceil n \rceil \text{ and } |n/2| + \lceil n/2 \rceil = n$

 $\forall x \in \mathbb{R} \text{ and } n, m \in \mathbb{Z}^+$

$$\lfloor \lfloor x/n \rfloor/m \rfloor = \lfloor x/nm \rfloor$$

$$\lceil \lceil x/n \rceil/m \rceil = \lceil x/nm \rceil$$

$$\lfloor n/m \rfloor \le (n + (m-1))/m$$

$$\lceil n/m \rceil \ge (n - (m-1))/m$$

 $\lfloor x \rfloor$ and $\lceil x \rceil$ are monotonically increasing.

Modular arithmetic

For every integer a and any possible positive integer n,

a mod n

is the **remainder** (or **residue**) of the quotient a/n

$$a \mod n = a - \lfloor a/n \rfloor n$$

Congruency or equivalence mod n

If $(a \mod n) = (b \mod n)$ we write

$$a \equiv b \pmod{n}$$

and we say that a is **equivalent** to b module n or that a is **congruent** to b module n.

In other words $a \equiv b \pmod{n}$ if a and b have the same remainder when they are divided by n.

Also $a \equiv b \pmod{n}$ if and only if n is a divisor of b - a

defines a equivalence relation \mathbb{Z} and produces a partitioned set called $\mathbb{Z}_n = \mathbb{Z}_{/n} = \{0, 1, 2, \dots, n-1\}$ in which can be defined arithmetic operations

$$a+b \pmod{n}$$

defines a equivalence relation in \mathbb{Z} and produces a partitioned set called $\mathbb{Z}_n = \mathbb{Z}_{/n} = \{0,1,2,\ldots,n-1\}$ in which can be defined arithmetic operations

$$a+b \pmod{n}$$

$$a*b \pmod{n}$$

defines a equivalence relation in \mathbb{Z} and produces a partitioned set called $\mathbb{Z}_n = \mathbb{Z}_{/n} = \{0,1,2,\ldots,n-1\}$ in which can be defined arithmetic operations

$$a+b \pmod{n}$$

$$a * b \pmod{n}$$

defines a equivalence relation in \mathbb{Z} and produces a partitioned set called $\mathbb{Z}_n =$ $\mathbb{Z}_{/n} = \{0, 1, 2, \dots, n-1\}$ in which can be defined arithmetic operations

$$a+b \pmod{n}$$

$$a * b \pmod{n}$$

$$\mathbb{Z}_{/4} = \{[0], [1], [2], [3]\} = \{0, 1, 2, 3\}$$

$$4+1 \pmod{4} = 1$$

$$*2 \pmod{4} = 2$$

E.C. Cubides

Algorithms - UN

defines a equivalence relation in \mathbb{Z} and produces a partitioned set called $\mathbb{Z}_n = \mathbb{Z}_{/n} = \{0,1,2,\ldots,n-1\}$ in which can be defined arithmetic operations

$$a+b \pmod{n}$$

$$a * b \pmod{n}$$

Example $\equiv \pmod{4}$

$$\mathbb{Z}_{/4} = \big\{[0],[1],[2],[3]\big\} = \{0,1,2,3\}$$

$$4+1\pmod{4}=1$$

$$5*2 \pmod{4} = 2$$

E.C. Cubides

Algorithms - UN

Polynomials

Given a no negative integer d, a **polynomial in** n **of degree** d is a function p(n) of the form:

$$p(n) = \sum_{i=0}^{d} a_i n^i$$

Where $a_0, a_1, a_2, \ldots, a_d$ are the **coefficients** and $a_d \neq 0$, a_d is called the **main coefficient** and a_0 is called the **independent term**.

- A polynomial p(n) es asymptotically positive if and only if $a_d > 0$.
- If p(n), of degree d is asymptotically positive, we have $p(n) = \Theta(n^d)$
- $\forall a \in \mathbb{R}$, a > 0, n^a es monotonically increasing
- $\forall a \in \mathbb{R}$, a < 0, n^a es monotonically decreasing.
- A function f(n) is **polynomially bounded** if $f(n) = \mathcal{O}(n^d)$ for some constant d.

- A polynomial p(n) es asymptotically positive if and only if $a_d > 0$.
- If p(n), of degree d is asymptotically positive, we have $p(n) = \Theta(n^{d})$
- $\forall a \in \mathbb{R}, \ a > 0, \ n^a$ es monotonically increasing
- ullet $orall a \in \mathbb{R}$, a < 0, n^a es monotonically decreasing
- A function f(n) is **polynomially bounded** if $f(n) = \mathcal{O}(n^d)$ for some constant d.

- A polynomial p(n) es asymptotically positive if and only if $a_d > 0$.
- If p(n), of degree d is asymptotically positive, we have $p(n) = \Theta(n^d)$.
- $\forall a \in \mathbb{R}, \ a > 0, \ n^a$ es monotonically increasing
- $\forall a \in \mathbb{R}$, a < 0, n^a es monotonically decreasing.
- A function f(n) is **polynomially bounded** if $f(n) = \mathcal{O}(n^d)$ for some constant d.

- A polynomial p(n) es asymptotically positive if and only if $a_d > 0$.
- If p(n), of degree d is asymptotically positive, we have $p(n) = \Theta(n^d)$.
- $\forall a \in \mathbb{R}$, a > 0, n^a es monotonically increasing.
- ullet $orall a \in \mathbb{R}$, a < 0, n^a es monotonically decreasing
- A function f(n) is **polynomially bounded** if $f(n) = \mathcal{O}(n^d)$ for some constant d.

- A polynomial p(n) es asymptotically positive if and only if $a_d > 0$.
- If p(n), of degree d is asymptotically positive, we have $p(n) = \Theta(n^d)$.
- $\forall a \in \mathbb{R}$, a > 0, n^a es monotonically increasing.
- $\forall a \in \mathbb{R}$, a < 0, n^a es monotonically decreasing.
- A function f(n) is **polynomially bounded** if $f(n) = \mathcal{O}(n^d)$ for some constant d.

- A polynomial p(n) es asymptotically positive if and only if $a_d > 0$.
- If p(n), of degree d is asymptotically positive, we have $p(n) = \Theta(n^d)$.
- $\forall a \in \mathbb{R}$, a > 0, n^a es monotonically increasing.
- $\forall a \in \mathbb{R}$, a < 0, n^a es monotonically decreasing.
- A function f(n) is **polynomially bounded** if $f(n) = \mathcal{O}(n^d)$ for some constant d.

$$a^0 = 1$$

•
$$a^1 = a$$

•
$$a^{-1} = 1/a$$

•
$$(a^m)^n = a^{mn}$$

•
$$(a^m)^n = (a^n)^m$$

•
$$a^m a^n = a^{m+n}$$

•
$$\frac{a^n}{a^m} = a^{n-m}$$

•
$$\frac{d}{dx}(a^u) = a^u \cdot \ln a \frac{du}{dx}$$

•
$$a^0 = 1$$

•
$$a^1 = a$$

•
$$a^{-1} = 1/a$$

•
$$(a^m)^n = a^{mn}$$

•
$$(a^m)^n = (a^n)^m$$

•
$$a^m a^n = a^{m+n}$$

- $a^0 = 1$
- $a^1 = a$
- $a^{-1} = 1/a$
- $(a^m)^n = (a^n)^m$
- $\bullet \ a^m a^n = a^{m+n}$
- $a^{n} = a^{n-m}$
- $\frac{d}{dx}(a^u) = a^u \cdot \ln a \frac{du}{dx}$

- $a^0 = 1$
- $a^1 = a$
- $a^{-1} = 1/a$
- $(a^m)^n = a^{mn}$
- $(a^m)^n = (a^n)^m$
- $\bullet \ a^m a^n = a^{m+n}$
- $\bullet \ \frac{a^n}{a^m} = a^{n-m}$
- $\frac{d}{dx}(a^u) = a^u \cdot \ln a \frac{du}{dx}$

- $a^0 = 1$
- $a^1 = a$
- $a^{-1} = 1/a$
- $(a^m)^n = a^{mn}$
- $(a^m)^n = (a^n)^m$
- $a^{m}a^{n} = a^{m+n}$
- $\bullet \ \frac{a^n}{a^m} = a^{n-m}$
- $\bullet \ \frac{d}{dx}(a^u) = a^u \cdot \ln a \frac{du}{dx}$

- $a^0 = 1$
- $a^1 = a$
- $a^{-1} = 1/a$
- $(a^m)^n = a^{mn}$
- $(a^m)^n = (a^n)^m$
- $\bullet \ a^m a^n = a^{m+n}$
- $\frac{d}{dx}(a^u) = a^u \cdot \ln a \frac{du}{dx}$

- $a^0 = 1$
- $a^1 = a$
- $a^{-1} = 1/a$
- $(a^m)^n = a^{mn}$
- $(a^m)^n = (a^n)^m$
- $a^m a^n = a^{m+n}$

- $a^0 = 1$
- $a^1 = a$
- $a^{-1} = 1/a$
- $(a^m)^n = a^{mn}$
- $(a^m)^n = (a^n)^m$
- $a^m a^n = a^{m+n}$
- $a^n = a^{n-m}$

- $a^0 = 1$
- $a^1 = a$
- $a^{-1} = 1/a$
- $(a^m)^n = a^{mn}$
- $(a^m)^n = (a^n)^m$
- $a^m a^n = a^{m+n}$
- $a^n = a^{n-m}$
- $\frac{d}{dx}(a^u) = a^u \cdot \ln a \frac{du}{dx}$

- If a > 1, for all $n \in \mathbb{Z}^+$,
 - aⁿ is monotonically increasing
- If 0 < a < 1, for all $n \in \mathbb{Z}^+$,
 - a" is monotonically decreasing
- $\forall a \in \mathbb{R}$ with a > 1, as:

$$\lim_{n\to\infty}\frac{n^{\alpha}}{a^n}=0$$

then $n^d = o(a^n)$.

- If a > 1, for all $n \in \mathbb{Z}^+$,
 - a^n is monotonically increasing
- ullet If 0 < a < 1, for all $n \in \mathbb{Z}^+$,
 - a" is monotonically decreasing
- $\forall a \in \mathbb{R}$ with a > 1, as:

$$\lim_{n\to\infty}\frac{n^a}{a^n}=0$$

then $n^d = o(a^n)$.

- If a > 1, for all $n \in \mathbb{Z}^+$,
 - a^n is monotonically increasing
- If 0 < a < 1, for all $n \in \mathbb{Z}^+$,
 - aⁿ is monotonically decreasing
- $\forall a \in \mathbb{R}$ with a > 1, as

$$\lim_{n\to\infty}\frac{n^a}{a^n}=0$$

then $n^d = o(a^n)$.

- ullet If a>1, for all $n\in\mathbb{Z}^+$,
 - a^n is monotonically increasing
- If 0 < a < 1, for all $n \in \mathbb{Z}^+$, a^n is monotonically decreasing
- $\forall a \in \mathbb{R}$ with a > 1, as:

$$\lim_{n\to\infty}\frac{n^d}{a^n}=0$$

then $n^d = o(a^n)$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \dots = \sum_{i=0}^{\infty} \frac{x^{i}}{i!}$$

- $\forall x \in \mathbb{R}, e^x \ge 1 + x$, equality holds for x = 0
- If $|x| \le 1$, $1 + x \le e^x \le 1 + x + x^2$
- When $x \to 0$, $e^x = 1 + x + \mathcal{O}(x^2)$.
- $e^{\mathsf{x}} = \lim_{n \to \infty} \left(1 + \frac{\mathsf{x}}{n} \right)^n.$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \dots = \sum_{i=0}^{\infty} \frac{x^{i}}{i!}$$

- $\forall x \in \mathbb{R}, e^x \ge 1 + x$, equality holds for x = 0.
- If $|x| \le 1$,

$$1 + x \le e^x \le 1 + x + x^2$$
.

- When $x \to 0$, $e^x = 1 + x + \mathcal{O}(x^2)$.
- $e^{\times} = \lim_{n \to \infty} \left(1 + \frac{\times}{n} \right)^n$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \dots = \sum_{i=0}^{\infty} \frac{x^{i}}{i!}$$

- $\forall x \in \mathbb{R}, e^x \ge 1 + x$, equality holds for x = 0.
- If $|x| \le 1$, $1 + x \le e^x \le 1 + x + x^2$.
- When $x \to 0$, $e^x = 1 + x + \mathcal{O}(x^2)$.
- $e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n}$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \dots = \sum_{i=0}^{\infty} \frac{x^{i}}{i!}$$

- $\forall x \in \mathbb{R}, e^x \ge 1 + x$, equality holds for x = 0.
- If $|x| \le 1$, $1 + x \le e^x \le 1 + x + x^2$.
- When $x \to 0$, $e^x = 1 + x + \mathcal{O}(x^2)$.
- $e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n}$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \dots = \sum_{i=0}^{\infty} \frac{x^{i}}{i!}$$

- $\forall x \in \mathbb{R}$, $e^x \ge 1 + x$, equality holds for x = 0.
- If $|x| \le 1$, $1 + x \le e^x \le 1 + x + x^2$.
- When $x \to 0$, $e^x = 1 + x + \mathcal{O}(x^2)$.
- $e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$.

Notations:

- $\lg n = \log_2 n$
- $\ln n = \log_e r$
- $\lg^k n = (\lg n)^k$
- \bullet lg lg $n = \lg(\lg n)$

Logarithm function will only apply to next term in the formula:

$$\lg n + k = (\lg n) + k$$

For b > 1 constant and n > 0,

log_b n

is strictly increasing.

Notations:

- $\lg n = \log_2 n$
- $\ln n = \log_e n$
- $\bullet \lg^k n = (\lg n)^k$
- $\lg \lg n = \lg(\lg n)$

Logarithm function will only apply to next term in the formula:

$$\lg n + k = (\lg n) + k$$

For b > 1 constant and n > 0,

is strictly increasing.

E.C. Cubides

Notations:

- $\lg n = \log_2 n$
- $\ln n = \log_e n$
- $\bullet \lg^k n = (\lg n)$
- $\lg \lg n = \lg (\lg n)$

Logarithm function will only apply to next term in the formula:

$$\lg n + k = (\lg n) + k$$

For b > 1 constant and n > 0,

is strictly increasing.

E.C. Cubides

Notations:

- $\lg n = \log_2 n$
- $\ln n = \log_e n$
- $\lg^k n = (\lg n)^k$
- $\bullet \lg \lg n = \lg(\lg n)$

Logarithm function will only apply to next term in the formula:

$$\lg n + k = (\lg n) + k$$

For b > 1 constant and n > 0,

is strictly increasing.

Notations:

- $\lg n = \log_2 n$
- $\ln n = \log_e n$
- $\lg^k n = (\lg n)^k$
- $\lg \lg n = \lg(\lg n)$

Logarithm function will only apply to next term in the formula:

$$\lg n + k = (\lg n) + k$$

For b > 1 constant and n > 0,

is strictly increasing.

•
$$a = b^{\log_b a}$$

•
$$\log_c(ab) = \log_c a + \log_c b$$

$$\bullet \log_b a^n = n \log_b a$$

$$\bullet \log_b a = \frac{\log_c a}{\log_c b}$$

$$\bullet \log_b(1/a) = -\log_b a$$

$$\bullet \log_b a = \frac{1}{\log_a b}$$

$$\bullet \ a^{\log_b c} = c^{\log_b a}$$

•
$$\frac{d}{dx}(\log_a u) = \frac{1}{\ln a} \cdot \frac{1}{u} \frac{du}{dx}$$

•
$$a = b^{\log_b a}$$

$$\bullet \log_b a^n = n \log_b a$$

$$\bullet \log_b a = \frac{\log_c a}{\log_c b}$$

$$\bullet \log_b(1/a) = -\log_b a$$

$$\bullet \log_b a = \frac{1}{\log_a b}$$

$$\bullet \ a^{\log_b c} = c^{\log_b a}$$

•
$$\frac{d}{dx}(\log_a u) = \frac{1}{\ln a} \cdot \frac{1}{u} \frac{du}{dx}$$

•
$$a = b^{\log_b a}$$

•
$$\log_c(ab) = \log_c a + \log_c b$$

$$\bullet \log_b a^n = n \log_b a$$

$$\bullet \log_b a = \frac{\log_c a}{\log_c b}$$

$$\bullet \log_b(1/a) = -\log_b a$$

$$\bullet \log_b a = \frac{1}{\log_a b}$$

$$\bullet \ a^{\log_b c} = c^{\log_b a}$$

•
$$\frac{d}{dx}(\log_a u) = \frac{1}{\ln a} \cdot \frac{1}{u} \frac{du}{dx}$$

•
$$a = b^{\log_b a}$$

•
$$\log_c(ab) = \log_c a + \log_c b$$

•
$$\log_c(a/b) = \log_c(a) - \log_c(b)$$

$$\bullet \log_b a = \frac{\log_c a}{\log_c b}$$

$$\bullet \log_b(1/a) = -\log_b a$$

$$\bullet \log_b a = \frac{1}{\log_b b}$$

$$\bullet \ a^{\log_b c} = c^{\log_b a}$$

$$\bullet$$
 $\frac{d}{dx}(\log_a u) = \frac{1}{\ln a} \cdot \frac{1}{u} \frac{du}{dx}$

•
$$a = b^{\log_b a}$$

•
$$\log_c(ab) = \log_c a + \log_c b$$

•
$$\log_c(a/b) = \log_c(a) - \log_c(b)$$

•
$$\log_b a^n = n \log_b a$$

•
$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\bullet \log_b(1/a) = -\log_b a$$

•
$$\log_b a = \frac{1}{\log_a b}$$

$$\bullet \ a^{\log_b c} = c^{\log_b a}$$

•
$$\frac{d}{dx}(\log_a u) = \frac{1}{\ln a} \cdot \frac{1}{u} \frac{du}{dx}$$

•
$$a = b^{\log_b a}$$

•
$$\log_c(a/b) = \log_c(a) - \log_c(b)$$

$$\bullet \log_b a = \frac{\log_c a}{\log_c b}$$

$$\bullet \log_b(1/a) = -\log_b a$$

•
$$\log_b a = \frac{1}{\log_a b}$$

$$\bullet \ a^{\log_b c} = c^{\log_b a}$$

$$\bullet$$
 $\frac{d}{dx}(\log_a u) = \frac{1}{\log_a x} \cdot \frac{1}{u} \frac{du}{dx}$

•
$$a = b^{\log_b a}$$

•
$$\log_c(ab) = \log_c a + \log_c b$$

•
$$\log_c(a/b) = \log_c(a) - \log_c(b)$$

•
$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\bullet \log_b(1/a) = -\log_b a$$

•
$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

$$\bullet \ \frac{d}{dx}(\log_a u) = \frac{1}{\ln a} \cdot \frac{1}{u} \frac{du}{dx}$$

•
$$a = b^{\log_b a}$$

•
$$\log_c(ab) = \log_c a + \log_c b$$

•
$$\log_c(a/b) = \log_c(a) - \log_c(b)$$

•
$$\log_b a^n = n \log_b a$$

•
$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\bullet \log_b(1/a) = -\log_b a$$

•
$$\log_b a = \frac{1}{\log_a b}$$

$$\bullet \ a^{\log_b c} = c^{\log_b a}$$

•
$$a = b^{\log_b a}$$

•
$$\log_c(ab) = \log_c a + \log_c b$$

•
$$\log_c(a/b) = \log_c(a) - \log_c(b)$$

•
$$\log_b a^n = n \log_b a$$

•
$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\bullet \log_b(1/a) = -\log_b a$$

•
$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

$$\frac{d}{dx}(\log_a u) = \frac{1}{\ln a} \cdot \frac{1}{u} \frac{du}{dx}$$

•
$$a = b^{\log_b a}$$

•
$$\log_c(ab) = \log_c a + \log_c b$$

•
$$\log_c(a/b) = \log_c(a) - \log_c(b)$$

$$\bullet \log_b a = \frac{\log_c a}{\log_c b}$$

$$\bullet \log_b(1/a) = -\log_b a$$

•
$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

•
$$\frac{d}{dx}(\log_a u) = \frac{1}{\ln a} \cdot \frac{1}{u} \frac{du}{dx}$$

For $x \in \mathbb{R}$, if |x| < 1 then:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}x^i}{i}$$

- When x > -1, $\frac{x}{1+x} \le \ln(1+x) \le x$
- For x > -1, equality holds for x = 0.

For $x \in \mathbb{R}$, if |x| < 1 then:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}x^i}{i}$$

- When x > -1, $\frac{x}{1+x} \le \ln(1+x) \le x$.
- For x > -1, equality holds for x = 0.

For $x \in \mathbb{R}$, if |x| < 1 then:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}x^i}{i}$$

- When x > -1, $\frac{x}{1+x} \le \ln(1+x) \le x$.
- For x > -1, equality holds for x = 0.

A function f(n) is **polylogaritmically** bounded if

$$f(n) = \mathcal{O}(\lg^k n)$$
 for some constant k

We have the following relation between polynomials and polylogarithms:

$$n^d = 2^{\lg n^d} = 2^{d(\lg n)} = (2^d)^{\lg n}$$

$$\lim_{n\to\infty} \frac{\lg^k n}{n^d} = \lim_{n\to\infty} \frac{\lg^k n}{(2^d)^{\lg n}} = \lim_{x\to\infty} \frac{x^k}{(2^d)^x} = 0, \quad \text{as} \quad x = \lg n \to \infty$$

then $\lg^k n = o(n^d)$, for any constant d > 0.

Factorials

Given $n \in \mathbb{N}$, factorial of n is defined as:

Definition (No recursive)

$$n! = \begin{cases} 1, & \text{if } n = 0; \\ \prod_{i=1}^{n} i, & \text{if } n > 0. \end{cases}$$

Definition (Recursive)

$$n! = \begin{cases} 1, & \text{if } n = 0; \\ n \cdot (n-1)!, & \text{if } n > 0. \end{cases}$$

Weak upper bound

$$n! \leq n^n$$

Factorials

Given $n \in \mathbb{N}$, factorial of n is defined as:

Definition (No recursive)

$$n! = \begin{cases} 1, & \text{if } n = 0; \\ \prod_{i=1}^{n} i, & \text{if } n > 0. \end{cases}$$

Definition (Recursive)

$$n! = \begin{cases} 1, & \text{if } n = 0; \\ n \cdot (n-1)!, & \text{if } n > 0. \end{cases}$$

Weak upper bound

$$n! \leq n^n$$

Stirling's approximation

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left[1 + \Theta\left(\frac{1}{n}\right)\right]$$

then

$$n! = o(n^n)$$
 $n! = \omega(a^n)$
 $\lg(n!) = \Theta(n \lg n)$
 $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\alpha_n}, \quad \text{where} \quad \frac{1}{12n+1} \le \alpha_n \le \frac{1}{12n}$

(□ > <□ > < = > < = > < = <) <

E.C. Cubides

Functional iteration

Definition

Given a function f(n) the *i*-th functional iteration of f is defined as:

$$f^{i} = \begin{cases} I, & \text{if } i = 0; \\ f \circ f^{(i-1)}, & \text{if } i > 0. \end{cases}$$

with *I* the identity function.

For a particular n, we have:

$$f^{i}(n) = \begin{cases} n, & \text{if } i = 0; \\ f(f^{(i-1)}(n)), & \text{if } i > 0. \end{cases}$$

Examples

- ① f(n) = 2n then $f^{(i)}(n) = 2^{i}n$
- ② $f(n) = n^2$ then:

$$f^{(2)}(n) = (n^2)^2 = (n^2)(n^2) = n^{2*2} = n^6$$

$$f^{(3)}(n) = (n^{2*2})^2 = n^{2*2*2} = n^8$$

$$f^{(4)}(n) = (n^{2*2*2})^2 = n^{2*2*2*2} = n^{16}$$

$$\vdots$$

$$f^{(i)}(n) = n^{2^i}$$

Examples

- **1** f(n) = 2n then $f^{(i)}(n) = 2^{i}n$
- ② $f(n) = n^2$ then:

$$f^{(2)}(n) = (n^2)^2 = (n^2)(n^2) = n^{2*2} = n^4$$

$$f^{(3)}(n) = (n^{2*2})^2 = n^{2*2*2} = n^8$$

$$f^{(4)}(n) = (n^{2*2*2})^2 = n^{2*2*2*2} = n^{16}$$

$$\vdots$$

$$f^{(i)}(n) = n^{2^i}$$

□▶ 4億▶ 4億▶ 4億▶ 億 90

Examples

- **1** f(n) = 2n then $f^{(i)}(n) = 2^{i}n$
- **2** $f(n) = n^2$ then:

$$f^{(2)}(n) = (n^2)^2 = (n^2)(n^2) = n^{2*2} = n^4$$

$$f^{(3)}(n) = (n^{2*2})^2 = n^{2*2*2} = n^8$$

$$f^{(4)}(n) = (n^{2*2*2})^2 = n^{2*2*2*2} = n^{16}$$

$$\vdots$$

$$f^{(i)}(n) = n^{2^i}$$

Example

$$f(n) = n^n$$
 then

$$f^{(2)}(n) = n^{n^n}$$

$$f^{(3)}(n) = n^{n^{n^n}}$$

$$f^{(4)}(n) = n^{n^{n^n}}$$

$$\vdots$$

$$f^{(i)}(n) = n^{n^{n^{n^n}}}$$

Iterated logarithm

Definition

The iterated logarithm of n, denoted $\lg^* n$ ("log star of n") is defined as:

$$\lg^* n = \min\left\{i \ge 0 : \lg^{(i)} n \le 1\right\}$$

 $\lg^* n$, is a very slowly growing function

Definition

The iterated logarithm of n, denoted $\lg^* n$ ("log star of n") is defined as:

$$\lg^* n = \min\left\{i \ge 0 : \lg^{(i)} n \le 1\right\}$$

 $\lg^* n$, is a very slowly growing function

Definition

The iterated logarithm of n, denoted $\lg^* n$ ("log star of n") is defined as:

$$\lg^* n = \min\left\{i \ge 0 : \lg^{(i)} n \le 1\right\}$$

 $lg^* n$, is a very slowly growing function

$$\lg^* 1 = 0$$

$$lg^* 2 = 1$$

$$g^* 4 = 2$$

$$\lg^*(65536)^2 = 5$$

Definition

The iterated logarithm of n, denoted $\lg^* n$ ("log star of n") is defined as:

$$\lg^* n = \min\left\{i \ge 0 : \lg^{(i)} n \le 1\right\}$$

 $\lg^* n$, is a very slowly growing function

$$lg^* 1 = 0$$
 $lg^* 2 = 1$
 $lg^* 4 = 2$
 $lg^* 16 = 3$

$$\lg^*(65536)^2 = 5$$

Definition

The iterated logarithm of n, denoted $\lg^* n$ ("log star of n") is defined as:

$$\lg^* n = \min\left\{i \ge 0 : \lg^{(i)} n \le 1\right\}$$

 $lg^* n$, is a very slowly growing function

$$\lg^* 1 = 0
 \lg^* 2 = 1
 \lg^* 4 = 2
 \lg^* 16 = 3
 \lg^* 65536 = 4
 \lg^* (65536)^2 = 5$$

In general

E.C. Cubides Algorithms – UN

Definition

The iterated logarithm of n, denoted $\lg^* n$ ("log star of n") is defined as:

$$\lg^* n = \min\left\{i \ge 0 : \lg^{(i)} n \le 1\right\}$$

 $lg^* n$, is a very slowly growing function

$$\lg^* 1 = 0
 \lg^* 2 = 1
 \lg^* 4 = 2
 \lg^* 16 = 3
 \lg^* 65536 = 4
 \lg^* (65536)^2 = 5$$

In general

E.C. Cubides Algorithms – UN

Summary

```
o(n^n) \in O(n^n) \in O(n^n)
```

Logarithmic graph of main functions into Computer Sciences

E.C. Cubides

- First o head in a list $\in \mathcal{O}(1)$.
- Binary search, recursive power $\in \mathcal{O}(\lg(n))$
- Primality of a number $\in \mathcal{O}(\sqrt{n})$
- Minimum of a list, sum of a list, counting sort $\in \mathcal{O}(n)$
- Merge sort, Heap sort $\in \mathcal{O}(n \lg(n))$.
- Selection sort, bubble sort, sum of square matrices $\in \mathcal{O}(n^2)$
- Multiplication of square matrices $\in \mathcal{O}(n^3)$
- SAT, power set, tower of Hanoi $\in \mathcal{O}(2^n)$.
- TSP, Hamiltonian cycle $\in \mathcal{O}(n!)$.
- Interpretations over a *n*-valued logic, strings of length *n* with *n* symbols $\in \mathcal{O}(n^n)$.

- First o head in a list $\in \mathcal{O}(1)$.
- Binary search, recursive power $\in \mathcal{O}(\lg(n))$.
- Primality of a number $\in \mathcal{O}(\sqrt{n})$
- Minimum of a list, sum of a list, counting sort $\in \mathcal{O}(n)$
- Merge sort, Heap sort $\in \mathcal{O}(n \lg(n))$
- ullet Selection sort, bubble sort, sum of square matrices $\in \mathcal{O}(n^2)$
- Multiplication of square matrices $\in \mathcal{O}(n^3)$
- SAT, power set, tower of Hanoi $\in \mathcal{O}(2^n)$.
- TSP, Hamiltonian cycle $\in \mathcal{O}(n!)$
- Interpretations over a n-valued logic, strings of length n with n symbols $\in \mathcal{O}(n^n)$.
 - Relations of a set over itself $\in \mathcal{O}\left(2^{n^2}\right)$.

- First o head in a list $\in \mathcal{O}(1)$.
- Binary search, recursive power $\in \mathcal{O}(\lg(n))$.
- Primality of a number $\in \mathcal{O}(\sqrt{n})$.
- Minimum of a list, sum of a list, counting sort $\in \mathcal{O}(n)$
- Merge sort, Heap sort $\in \mathcal{O}(n \lg(n))$.
- ullet Selection sort, bubble sort, sum of square matrices $\in \mathcal{O}(n^2)$
- Multiplication of square matrices $\in \mathcal{O}(n^3)$
- SAT, power set, tower of Hanoi $\in \mathcal{O}(2^n)$.
- TSP, Hamiltonian cycle $\in \mathcal{O}(n!)$
- Interpretations over a n-valued logic, strings of length n with n symbols $\in \mathcal{O}(n^n)$.

- First o head in a list $\in \mathcal{O}(1)$.
- Binary search, recursive power $\in \mathcal{O}(\lg(n))$.
- Primality of a number $\in \mathcal{O}(\sqrt{n})$.
- Minimum of a list, sum of a list, counting sort $\in \mathcal{O}(n)$.
- Merge sort, Heap sort $\in \mathcal{O}(n \lg(n))$.
- Selection sort, bubble sort, sum of square matrices $\in \mathcal{O}(n^2)$
- Multiplication of square matrices $\in \mathcal{O}(n^3)$
- SAT, power set, tower of Hanoi $\in \mathcal{O}(2^n)$.
- TSP, Hamiltonian cycle $\in \mathcal{O}(n!)$
- Interpretations over a *n*-valued logic, strings of length *n* with *n* symbols $\in \mathcal{O}(n^n)$.

- First o head in a list $\in \mathcal{O}(1)$.
- Binary search, recursive power $\in \mathcal{O}(\lg(n))$.
- Primality of a number $\in \mathcal{O}(\sqrt{n})$.
- Minimum of a list, sum of a list, counting sort $\in \mathcal{O}(n)$.
- Merge sort, Heap sort $\in \mathcal{O}(n \lg(n))$.
- Selection sort, bubble sort, sum of square matrices $\in \mathcal{O}(n^2)$
- Multiplication of square matrices $\in \mathcal{O}(n^3)$
- SAT, power set, tower of Hanoi $\in \mathcal{O}(2^n)$.
- TSP, Hamiltonian cycle $\in \mathcal{O}(n!)$
- Interpretations over a *n*-valued logic, strings of length *n* with *n* symbols $\in \mathcal{O}(n^n)$.

- First o head in a list $\in \mathcal{O}(1)$.
- Binary search, recursive power $\in \mathcal{O}(\lg(n))$.
- Primality of a number $\in \mathcal{O}(\sqrt{n})$.
- Minimum of a list, sum of a list, counting sort $\in \mathcal{O}(n)$.
- Merge sort, Heap sort $\in \mathcal{O}(n \lg(n))$.
- Selection sort, bubble sort, sum of square matrices $\in \mathcal{O}(n^2)$.
- Multiplication of square matrices $\in \mathcal{O}(n^3)$
- SAT, power set, tower of Hanoi $\in \mathcal{O}(2^n)$.
- TSP, Hamiltonian cycle $\in \mathcal{O}(n!)$
- Interpretations over a *n*-valued logic, strings of length *n* with *n* symbols $\in \mathcal{O}(n^n)$.

- First o head in a list $\in \mathcal{O}(1)$.
- Binary search, recursive power $\in \mathcal{O}(\lg(n))$.
- Primality of a number $\in \mathcal{O}(\sqrt{n})$.
- Minimum of a list, sum of a list, counting sort $\in \mathcal{O}(n)$.
- Merge sort, Heap sort $\in \mathcal{O}(n \lg(n))$.
- Selection sort, bubble sort, sum of square matrices $\in \mathcal{O}(n^2)$.
- Multiplication of square matrices $\in \mathcal{O}(n^3)$.
- SAT, power set, tower of Hanoi $\in \mathcal{O}(2^n)$.
- TSP, Hamiltonian cycle $\in \mathcal{O}(n!)$
- Interpretations over a *n*-valued logic, strings of length *n* with *n* symbols $\in \mathcal{O}(n^n)$.

- First o head in a list $\in \mathcal{O}(1)$.
- Binary search, recursive power $\in \mathcal{O}(\lg(n))$.
- Primality of a number $\in \mathcal{O}(\sqrt{n})$.
- Minimum of a list, sum of a list, counting sort $\in \mathcal{O}(n)$.
- Merge sort, Heap sort $\in \mathcal{O}(n \lg(n))$.
- Selection sort, bubble sort, sum of square matrices $\in \mathcal{O}(n^2)$.
- Multiplication of square matrices $\in \mathcal{O}(n^3)$.
- SAT, power set, tower of Hanoi $\in \mathcal{O}(2^n)$.
- TSP, Hamiltonian cycle $\in \mathcal{O}(n!)$
- Interpretations over a n-valued logic, strings of length n with n symbols $\in \mathcal{O}(n^n)$.

- First o head in a list $\in \mathcal{O}(1)$.
- Binary search, recursive power $\in \mathcal{O}(\lg(n))$.
- Primality of a number $\in \mathcal{O}(\sqrt{n})$.
- Minimum of a list, sum of a list, counting sort $\in \mathcal{O}(n)$.
- Merge sort, Heap sort $\in \mathcal{O}(n \lg(n))$.
- Selection sort, bubble sort, sum of square matrices $\in \mathcal{O}(n^2)$.
- Multiplication of square matrices $\in \mathcal{O}(n^3)$.
- SAT, power set, tower of Hanoi $\in \mathcal{O}(2^n)$.
- TSP, Hamiltonian cycle $\in \mathcal{O}(n!)$.
- Interpretations over a n-valued logic, strings of length n with n symbols $\in \mathcal{O}(n^n)$.
- PLIFE

Relations of a set over itself $\in \mathcal{O}\left(2^{n^2}\right)$

E.C. Cubides

- First o head in a list $\in \mathcal{O}(1)$.
- Binary search, recursive power $\in \mathcal{O}(\lg(n))$.
- Primality of a number $\in \mathcal{O}(\sqrt{n})$.
- Minimum of a list, sum of a list, counting sort $\in \mathcal{O}(n)$.
- Merge sort, Heap sort $\in \mathcal{O}(n \lg(n))$.
- Selection sort, bubble sort, sum of square matrices $\in \mathcal{O}(n^2)$.
- Multiplication of square matrices $\in \mathcal{O}(n^3)$.
- SAT, power set, tower of Hanoi $\in \mathcal{O}(2^n)$.
- TSP, Hamiltonian cycle $\in \mathcal{O}(n!)$.
- Interpretations over a n-valued logic, strings of length n with n symbols $\in \mathcal{O}(n^n)$.

Relations of a set over itself $\in \mathcal{O}\left(2^{n^2}\right)$

E.C. Cubides

- First o head in a list $\in \mathcal{O}(1)$.
- Binary search, recursive power $\in \mathcal{O}(\lg(n))$.
- Primality of a number $\in \mathcal{O}(\sqrt{n})$.
- Minimum of a list, sum of a list, counting sort $\in \mathcal{O}(n)$.
- Merge sort, Heap sort $\in \mathcal{O}(n \lg(n))$.
- Selection sort, bubble sort, sum of square matrices $\in \mathcal{O}(n^2)$.
- Multiplication of square matrices $\in \mathcal{O}(n^3)$.
- SAT, power set, tower of Hanoi $\in \mathcal{O}(2^n)$.
- TSP, Hamiltonian cycle $\in \mathcal{O}(n!)$.
- Interpretations over a n-valued logic, strings of length n with n symbols $\in \mathcal{O}(n^n)$.
- Relations of a set over itself $\in \mathcal{O}\left(2^{n^2}\right)$.

Outline

Asymptotic notation

2 Common functions

3 Examples

Example

$$\begin{array}{c|cccc} \mathbf{A} & \mathbf{B} & & & \\ \hline & 5n^2 + 100n & 3n^2 + 2 & \mathbf{A} \in \Theta(\mathbf{B}) \\ & \log_3\left(n^2\right) & \log_2\left(n^3\right) & \mathbf{A} \in \Theta(\mathbf{B}) \\ & & & n^{\lg 4} & 3^{\lg n} & \mathbf{A} \in \omega(\mathbf{B}) \\ & & \lg n & n^{1/2} & \mathbf{A} \in o(\mathbf{B}) \\ \hline & & & & \lg n \text{ denotes } \log_2 n. \end{array}$$

$$5n^2 + 100n$$
 $3n^2 + 2$ $\mathbf{A} \in \Theta(\mathbf{B})$
 $\mathbf{A} \in \Theta(n^2), n^2 \in \Theta(\mathbf{B}) \Longrightarrow \mathbf{A} \in \Theta(B)$

$$\log_3(n^2) \quad \log_2(n^3) \quad \mathbf{A} \in \Theta(\mathbf{B})$$

 $\log_b a = \log_c a / \log_c b; \mathbf{A} = 2 \lg n / \lg 3, \mathbf{B} = 3 \lg n; \mathbf{A} / \mathbf{B} = 2/(3 \lg 3)$

$$n^{\lg 4}$$
 $3^{\lg n}$ $\mathbf{A} \in \omega(\mathbf{B})$
 $a^{\log b} = b^{\log a}; B = 3^{\lg n} = n^{\lg 3}; \mathbf{A}/\mathbf{B} = n^{\lg(4/3)} \to \infty \text{ as } n \to \infty$

$$\lg n \qquad n^{1/2} \qquad \mathbf{A} \in o(\mathbf{B}) \\
\lim_{n \to \infty} \left(\log_a n / n^b \right) = 0, \text{ here } a = 2 \text{ and } b = 1/2 \Longrightarrow \mathbf{A} \in o(\mathbf{B})$$

Problems

- Prove that $2n^3 + 30n^2 + 9n + 15 = \Theta(n^3)$
- Prove that $5n + 3 \lg n = \Theta(n)$.
- Let $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ be a polynomial of degree k, where a_i is not negative. Show that $p(n) = \Theta(n^k)$.
- Prove that $5n^2 100n = \Theta(n^2)$
- Prove that $5n^3 5n^2 + 2n 3 = \Theta(n^3)$.
- Let n be a natural number. Show that $1+2+\cdots+n=\Theta(n^2)$
- Let k be a positive integer. Show that $1^k + 2^k + \cdots + n^k = \Theta(n^{k+1})$ for all $n \ge 1$.
- Suppose a, and b are real such that a>1 and b>1. Show that $\log_b n = \Theta(\log_a n)$.
- Prove that for all $n \ge 4$, $\lg n! = \Theta(n \lg n)$

ur ı 🕶 —

- Prove that $2n^3 + 30n^2 + 9n + 15 = \Theta(n^3)$.
- Prove that $5n + 3 \lg n = \Theta(n)$
- Let $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ be a polynomial of degree k, where a_i is not negative. Show that $p(n) = \Theta(n^k)$.
- Prove that $5n^2 100n = \Theta(n^2)$
- Prove that $5n^3 5n^2 + 2n 3 = \Theta(n^3)$
- Let n be a natural number. Show that $1+2+\cdots+n=\Theta(n^2)$
- Let k be a positive integer. Show that $1^k + 2^k + \cdots + n^k = \Theta(n^{k+1})$ for all $n \ge 1$.
- Suppose a, and b are real such that a > 1 and b > 1. Show that $\log_b n = \Theta(\log_a n)$.
- Prove that for all $n \ge 4$, $\lg n! = \Theta(n \lg n)$.

ur ı 🕶 —

Problems

- Prove that $2n^3 + 30n^2 + 9n + 15 = \Theta(n^3)$.
- Prove that $5n + 3 \lg n = \Theta(n)$.
- Let $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ be a polynomial of degree k, where a_i is not negative. Show that $p(n) = \Theta(n^k)$.
- Prove that $5n^2 100n = \Theta(n^2)$
- Prove that $5n^3 5n^2 + 2n 3 = \Theta(n^3)$
- Let *n* be a natural number. Show that $1+2+\cdots+n=\Theta(n^2)$
- Let k be a positive integer. Show that $1^k + 2^k + \cdots + n^k = \Theta(n^{k+1})$ for all $n \ge 1$.
- Suppose a, and b are real such that a>1 and b>1. Show that $\log_b n = \Theta(\log_a n)$.
- Prove that for all $n \ge 4$, $\lg n! = \Theta(n \lg n)$.

di i 🕶 —

Problems

- Prove that $2n^3 + 30n^2 + 9n + 15 = \Theta(n^3)$.
- Prove that $5n + 3 \lg n = \Theta(n)$.
- Let $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ be a polynomial of degree k, where a_i is not negative. Show that $p(n) = \Theta(n^k)$.
- Prove that $5n^2 100n = \Theta(n^2)$
- Prove that $5n^3 5n^2 + 2n 3 = \Theta(n^3)$
- ullet Let n be a natural number. Show that $1+2+\cdots+n=\Thetaig(n^2)$
- Let k be a positive integer. Show that $1^k + 2^k + \cdots + n^k = \Theta(n^{k+1})$ for all $n \ge 1$.
- Suppose a, and b are real such that a>1 and b>1. Show that $\log_b n = \Theta(\log_a n)$.
- Prove that for all $n \ge 4$, $\lg n! = \Theta(n \lg n)$.

ir i 🕶

Problems

- Prove that $2n^3 + 30n^2 + 9n + 15 = \Theta(n^3)$.
- Prove that $5n + 3 \lg n = \Theta(n)$.
- Let $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ be a polynomial of degree k, where a_i is not negative. Show that $p(n) = \Theta(n^k)$.
- Prove that $5n^2 100n = \Theta(n^2)$.
- Prove that $5n^3 5n^2 + 2n 3 = \Theta(n^3)$
- Let n be a natural number. Show that $1+2+\cdots+n=\Theta(n^2)$
- Let k be a positive integer. Show that $1^k + 2^k + \cdots + n^k = \Theta(n^{k+1})$ for all $n \ge 1$.
- Suppose a, and b are real such that a>1 and b>1. Show that $\log_b n = \Theta(\log_a n)$.
- Prove that for all $n \ge 4$, $\lg n! = \Theta(n \lg n)$.

di i 🕶 —

- Prove that $2n^3 + 30n^2 + 9n + 15 = \Theta(n^3)$.
- Prove that $5n + 3 \lg n = \Theta(n)$.
- Let $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ be a polynomial of degree k, where a_i is not negative. Show that $p(n) = \Theta(n^k)$.
- Prove that $5n^2 100n = \Theta(n^2)$.
- Prove that $5n^3 5n^2 + 2n 3 = \Theta(n^3)$.
- Let n be a natural number. Show that $1+2+\cdots+n=\Theta(n^2)$
- Let k be a positive integer. Show that $1^k + 2^k + \cdots + n^k = \Theta(n^{k+1})$ for all $n \ge 1$.
- Suppose a, and b are real such that a>1 and b>1. Show that $\log_b n = \Theta(\log_a n)$.
- Prove that for all $n \ge 4$, $\lg n! = \Theta(n \lg n)$

ur i 🕶 —

- Prove that $2n^3 + 30n^2 + 9n + 15 = \Theta(n^3)$.
- Prove that $5n + 3 \lg n = \Theta(n)$.
- Let $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ be a polynomial of degree k, where a_i is not negative. Show that $p(n) = \Theta(n^k)$.
- Prove that $5n^2 100n = \Theta(n^2)$.
- Prove that $5n^3 5n^2 + 2n 3 = \Theta(n^3)$.
- Let n be a natural number. Show that $1+2+\cdots+n=\Theta(n^2)$.
- Let k be a positive integer. Show that $1^k + 2^k + \cdots + n^k = \Theta(n^{k+1})$ for all $n \ge 1$.
- Suppose a, and b are real such that a>1 and b>1. Show that $\log_b n = \Theta(\log_a n)$.
- Prove that for all $n \ge 4$, $\lg n! = \Theta(n \lg n)$

di i 🕶 —

Problems

- Prove that $2n^3 + 30n^2 + 9n + 15 = \Theta(n^3)$.
- Prove that $5n + 3 \lg n = \Theta(n)$.
- Let $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ be a polynomial of degree k, where a_i is not negative. Show that $p(n) = \Theta(n^k)$.
- Prove that $5n^2 100n = \Theta(n^2)$.
- Prove that $5n^3 5n^2 + 2n 3 = \Theta(n^3)$.
- Let *n* be a natural number. Show that $1 + 2 + \cdots + n = \Theta(n^2)$.
- Let k be a positive integer. Show that $1^k + 2^k + \cdots + n^k = \Theta(n^{k+1})$, for all $n \ge 1$.
- Suppose a, and b are real such that a>1 and b>1. Show that $\log_b n = \Theta(\log_a n)$.
- Prove that for all $n \ge 4$, $\lg n! = \Theta(n \lg n)$

- Prove that $2n^3 + 30n^2 + 9n + 15 = \Theta(n^3)$.
- Prove that $5n + 3 \lg n = \Theta(n)$.
- Let $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ be a polynomial of degree k, where a_i is not negative. Show that $p(n) = \Theta(n^k)$.
- Prove that $5n^2 100n = \Theta(n^2)$.
- Prove that $5n^3 5n^2 + 2n 3 = \Theta(n^3)$.
- Let n be a natural number. Show that $1+2+\cdots+n=\Theta(n^2)$.
- Let k be a positive integer. Show that $1^k + 2^k + \cdots + n^k = \Theta(n^{k+1})$, for all $n \ge 1$.
- Suppose a, and b are real such that a > 1 and b > 1. Show that $\log_b n = \Theta(\log_a n)$.
- ullet Prove that for all $n\geq 4$, $\lg n!=\Theta(n\lg n)$.

◆□▶▲☆▶▲壹▶▲壹▶ 壹 ❤)९(

Problems

- Prove that $2n^3 + 30n^2 + 9n + 15 = \Theta(n^3)$.
- Prove that $5n + 3 \lg n = \Theta(n)$.
- Let $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ be a polynomial of degree k, where a_i is not negative. Show that $p(n) = \Theta(n^k)$.
- Prove that $5n^2 100n = \Theta(n^2)$.
- Prove that $5n^3 5n^2 + 2n 3 = \Theta(n^3)$.
- Let *n* be a natural number. Show that $1 + 2 + \cdots + n = \Theta(n^2)$.
- Let k be a positive integer. Show that $1^k + 2^k + \cdots + n^k = \Theta(n^{k+1})$, for all $n \ge 1$.
- Suppose a, and b are real such that a > 1 and b > 1. Show that $\log_b n = \Theta(\log_a n)$.
- Prove that for all $n \ge 4$, $\lg n! = \Theta(n \lg n)$.

Jr 1 -

