

Opponent Detection and Localization

Humanoid Robocup Introduction/Advanced Lab

Bowen Ma

Siyu Chen

Yixi Zhao

Zhen Zhou

Supervisor : M.Sc. Quentin Leboutet

Chair for Cognitve Systems

Prof. Dr. Gordon Cheng

Munich, XX. March 2019

Motivation

- Lack of opponent detection
- No fixed features in robotics (change as different state)
- Can be applied in other fields (like ball detection)

Approach

- More reliable preprocessing
- CNN-based approach
- Open-CV approach

Preprocess Image

Approach:

- Create filter image
 pixel between edges = 1
- 1. Use sliding window
 - a. Shift by 30 pixel
 - b. If sum > threshold
 - →valid window
- 1. Combine valid windows
- 2. Cut window image

Dataset

- Use the dataset from https://github.com/szemenyeim/ROBO
- Select image with robot after preprocessing

Not Robot: 2016 Pictures

Robot: 2233 Pictures

CNN Architecture

CNN Block

CNN for Binary Classification

Hyperparameters

```
- CNN filters: [4, 8], [8, 16], [8, 16, 32], [16, 32, 64], [32, 64, 128]
```

- Loss: Binary cross entropy

- Metrics: Accuracy

→ Best filter size: [8, 16] [16, 1]

Training Result

Loss:

Training = 0.1197 Validation = 0.1140

Accuracy:

Training = 0.9654 Validation = 0.9710

Test = 0.9738

Test on Real Robot

Time consumption:

Max Preprocessing = 0.00s
Max Robot detection = 0.0

Problems:

Edge detection not perfect Light fluctuation

Team Identification

Solutions:

- 1. Directly use YCrCb
- 2. Transform YCrCb into HSV

Team Identification

Original Image

HSV Image

HSV after Histogram Equalization

Binary Image

Position Estimate

middle-point of the bottom-line in pixel coordination

Positions of the robots in robot coordination

Pose of the robot in field coordination

Position Estimate

Lehrstuhl für Mustertechnik Fakultät für Musterverfahren Technische Universität München

Question?

Future Work and Outlook

Future Work

- More stable purple circle of robot detection in MATE
- Integrate the teammate estimation
- Optimize the memory consumption of the neural network
- Faster the speed of processing

Outlook

- Algorithm which can detect all types of color
- Optimization for reducing the influence of light elements
- More accurate self-positioning

	Technische Universität Munchen			
	Layer(type)	Output Shape	Param #	Dor
	conv2d	(None, 28, 28, 8)	80	Para
	activation	(None, 28, 28, 8)	0	
	batch_normalization	(None, 28, 28, 8)	32	
	max_pooling2d	(None, 14, 14, 8)	0	
	dropout	(None, 14, 14, 8)	0	
	conv2d_1	(None, 12, 12, 16)	1168	
	activation_1	(None, 12, 12, 16)	0	Total F
	batch_normalization_1	(None, 12, 12, 16)	64	
	max_pooling2d_1	(None, 6, 6,16)	0	1,633
	dropout_1	(None, 6, 6,16)	0	
	global_average_pooling2d	(None, 16)	0	
	dropout_2	(None, 16)	0	Traina
	dense	(None, 16)	272	
	activation_2	(None, 16)	0	1,585
	dropout_3	(None, 16)	0	
	dense_1	(None, 1)	17	
	activate_3	(None, 1)	0	Non tr

Parameters

otal Params:

rainable Params:

Non-trainable Params: