Introduction to Algorithms HW6

109511207 蔡宗儒

Pseudo Code

```
OPTIMAL-BST(p,q,n)
     let e[1...n+1,0...n], w[1...n+1,0...n], and root[1...n,1...n] be new tables
2.
     for i = 1 to n+1
3.
          e[i,i-1] = qi-1
4.
          w[i,i-1] = qi-1
5.
     for l = 1 to n
6.
          for i = 1 to n-1+1
7.
                i = i+1-1
8.
                e[i,j] = \infty
                w[i,j] = w[i,j-1] + pj + qj
9.
10.
                for t = i to j
                     t = e[i,r-1] + e[r+1,j] + w[i,j]
11.
12.
                     if t < e[i,j]
13.
                           e[i,j] = t
14.
                           root[i,j] = r
```

Introduction of Code

15. return e and root

Optimal BST,根據課本 pseudo code 實踐計算最小 search cost

printOBST,利用自己寫的 Depth 計算 OBST 的高度,由此高度宣告出需要的 size 的二維 string vector,最後利用自己寫的 fillOBST 來把要印的 OBST 存入二維 string vector 中,最後再輸出。

```
int Depth(vector<vector<int>>> &r,int root,int left,int right)
{
    int ldep, rdep;
    if(root-1 < left)
        ldep = 1;
    else
    {
        int lroot = r[left][root-1];
        ldep = Depth(r,lroot,left,root-1) + 1;
    }
    if(root+1 > right)
        rdep = 1;
    else
    {
        int rroot = r[root+1][right];
        rdep = Depth(r,rroot,root+1,right) + 1;
    }
    return max(ldep,rdep);
}
```

Depth,利用將 r table(即 pseudo code 中的 root table)結合 recursive 的方式來 back track 整個 OBST 的高度為何。

```
void fillOBST(vector<vector<int>>> &r,vector<vector<string>>> &obst,int root,int left,int right,int level)
{
   obst[level][2*root] = "k" + to_string(root);
   if(root-1 < left)
        obst[level+1][2*root-1] = "d" + to_string(root-1);
   else
   {
        int lroot = r[left][root-1];
        fillOBST(r,obst,lroot,left,root-1,level+1);
      }
   if(root+1 > right)
      obst[level+1][2*root+1] = "d" + to_string(root);
   else
   {
      int rroot = r[root+1][right];
      fillOBST(r,obst,rroot,root+1,right,level+1);
   }
}
```

fillOBST,同樣利用 r table 結合 recursive 的方式來 back track 整個 OBST 在不同高度所需輸出的 string,並存入二維 string vector 中。

討論

1.

實際執行我所打的程式碼結果如下,與題目之圖有所差別。

```
Smallest search cost: 2.75
Root: 3

Optimal Binary Search Tree are below:

k3

k2

k1

d2

d3

k5

d0

d4

d5
```

但實際計算題目之圖的 Search Cost 後可以發現,此圖的 Search Cost 和我打的程式碼的 Search Cost 一樣都是 2.75,表示此兩個 BST 都是 optimal 的 BST。這也是因為我的程式碼如下,在找到 Search Cost 比較小時才會更新 e 跟 r 的 table,然而當 Search Cost 一樣時,此寫法僅只會保留 root 較小的 optimal BST,當我將 t < e[i][j] 改為 t <= e[i][j] 後,便能產生出題目所提供之下圖

```
double t = e[i][k-1] + e[k+1][j] + w[i][j];
if(t < e[i][j])
{
    e[i][j] = t;
    r[i][j] = k;
}</pre>
```


2. 實際所能找到的 Optimal BST 如上題有兩個,分別如下圖

k3								k3								
	k2		k4							k2					k5	
k1		d2	d3		k5			k1			d2		k4		d:	5
d0	d1			d4		d5	d0		d1			d3		d4		

執行結果

根據下面 table 所產生的 OBST 如下圖

i	0	1	2	3	4	5	6	7	8	9
$\mathbf{p_i}$		0.05	0.04	0.02	0.07	0.08	0.09	0.04	0.08	0.03
$\mathbf{q_i}$	0.08	0.06	0.04	0.04	0.03	0.06	0.07	0.06	0.04	0.02

根據下面 table 所產生的 OBST 如下圖

i	0	1 2		3	4	5	
pi		0.15	0.10	0.05	0.10	0.20	
qi	0.05	0.10	0.05	0.05	0.05	0.10	

```
Smallest search cost: 2.75
Root: 2

Optimal Binary Search Tree are below:

k2

k1

k1

k5

d0

d1

k3

d4

d2

d3
```