Proposition: For all $n, m, p \in \mathbb{Z}$ where $n, m, p \geq 0$, it follows that $S_n: \sum_{i=0}^m {m \choose i} {n \choose p+i} = {m+n \choose m+p}$.

Proof. (Induction).

Basis step. Suppose n=0 for any $m \in \mathbb{Z}$ where $m \geq 0$. We consider two cases for p. Let p=0. Observe that $\sum_{i=0}^{m} \binom{m}{i} \binom{0}{0+i} = \binom{m}{0} \binom{0}{0} = 1 = \binom{m+0}{m+0}$. Let $p \in \mathbb{N}$. Observe that $\sum_{i=0}^{m} \binom{m}{i} \binom{0}{p+i} = \sum_{i=0}^{m} \binom{m}{i} (0) = 0 = \binom{m+0}{m+p}$.

Thus S_0 .

Inductive step. Suppose S_n for any $n, m, p \in \mathbb{Z}$ where $n, m, p \geq 0$.

We now show S_n implies S_{n+1} . Observe that

$$\binom{m+n+1}{m+p} = \binom{m+n}{m+p} + \binom{m+n}{m+p-1}$$
 (Def. of Pascal's triangle) (1)
$$\sum_{m=0}^{m} \binom{m}{m} \binom{n}{m} + \sum_{m=0}^{m} \binom{m}{m} \binom{m}{m}$$

$$= \sum_{i=0}^{m} {m \choose i} {n \choose p+i} + \sum_{i=0}^{m} {m \choose i} {n \choose p+i-1}$$
 (Inductive hypothesis) (2)

$$=\sum_{i=0}^{m} \left[\binom{m}{i} \binom{n}{p+i} + \binom{m}{i} \binom{n}{p+i-1} \right] \tag{3}$$

$$=\sum_{i=0}^{m} \binom{m}{i} \left(\binom{n}{p+i} + \binom{n}{p+i-1} \right)$$
 (4)

$$=\sum_{i=0}^{m} \binom{m}{i} \binom{n+1}{p+i}.$$
 (5)

Thus S_{n+1} .

It follows by mathematical induction that S_n for all $n, m, p \in \mathbb{Z}$ where $n, m, p \geq 0$.