

Abschlussprojekt von ALI IBRAHIM YILMAZ

Thema: Statistik mit R

Dozentin: Julianne Wawerda

Projektzeitraum: 09.12.2020 – 11.12.2020

Partner: Abdelrahman Barakat, Teklehaimanot Zere Aman

Inhaltsverzeichnis

Aufgabe 1: Grundlagen	3
Aufgabe 2: Multiple Choice	
Aufgabe 3: Zusammenhangshypothese	7
Aufgabe 4: Unterschiedshypothese	8
Aufgabe 5: Unterschiedshypothese	9
Aufgabe 6: Unterschiedshypothese	. 10

Aufgabe 1: Grundlagen

SAP vorher	2	5	2	7	5	6	1	3	7	3	
SAP nachher	10	10	8	6	4	9	4	8	7	5	

Berechne die Mittelwerte, Modus/Modi und die Mediane (SAPvorher und SAPnachher)

M(SAPvorher) =
$$(2+5+2+7+5+6+1+3+7+3) / 10 = 4.1$$

Modi(SAPvorher) = $(1, 2, 2, 3, 3, 5, 5, 6, 7, 7) \rightarrow 2, 3, 5, 7$
Mediane(SAPvorher) = $(1, 2, 2, 3, 3, 5, 5, 6, 7, 7) \rightarrow 3+5/2 = 4$

M(SAPnachher) =
$$(10+10+8+6+4+9+4+8+7+5) / 10 = 7.1$$

Modi(SAPnachher) = $(4, 4, 5, 6, 7, 8, 8, 9, 10, 10) \rightarrow 4, 8, 10$
Mediane(SAPnachher) = $(4, 4, 5, 6, 7, 8, 8, 9, 10, 10) \rightarrow 7+8 / 2 = 7.5$

2) Berechne die Varianzen und Standardabweichungen (SAPvorher und SAPnachher)

$$S^{2} \text{ (vorher)} = [(1-4.1)^{2}+(2-4.1)^{2}+(2-4.1)^{2}+(3-4.1)^{2}+(3-4.1)^{2}+(5-4.1)^{2}+(5-4.1)^{2}+(5-4.1)^{2}+(6-4.1)^{2}+(7-4.1)^{2}+(7-4.1)^{2}] / (10-1) = \textbf{4.29 (varianz)}$$

$$S \text{ (vorher)} = \operatorname{sqrt}([(1-4.1)^{2}+(2-4.1)^{2}+(2-4.1)^{2}+(3-4.1)^{2}+(3-4.1)^{2}+(5-4.1)^{2}+(5-4.1)^{2}+(6-4.1)^{2}+(7-4.1)^{2}] / (10-1)) = \textbf{2.07 (SD)}$$

$$S^{2} \text{ (nachher)} = [(4-7.1)^{2}+(4-7.1)^{2}+(5-7.1)^{2}+(6-7.1)^{2}+(7-7.1)^{2}+(8-7.1)^{2}+(8-7.1)^{2}+(9-7.1)^{2}+(10-7.1)^{2}] / (10-1) = \textbf{4.689 (varianz)}$$

$$S \text{ (nachher)} = \operatorname{sqrt}([(4-7.1)^{2}+(4-7.1)^{2}+(5-7.1)^{2}+(6-7.1)^{2}+(7-7.1)^{2}+(8-7.1)^{2}+(8-7.1)^{2}+(9-7.1)^{2}+(10-7.1)^{2}] / (10-1)) = \textbf{2.16 (SD)}$$

3) Ist der Graph recht-, linksschief und symmetrisch?

a) rechtschief b) linksschief c) symmetrisch

4) Ordne der Daten das Skalenniveau zu: (Nominal, Ordinal, Intervall, Ratio, Absolut), welcher Rechenoperation ist erlaubt.

Art der Variable	Skalenniveau	Operation
Militärdienstgrad	Ordinal	(=/!=,)
Alter	Ratio	(=/!=, , +-*/)
Verkehrsdichte	Ratio	(=/!=, , +-*/)
Geschlecht	Nominal	(=/!=)
Fahrpreise	Ratio	(=/!=, , +-*/)
Nationalität	Nominal	(=/!=)
Schulbildung(Gymn	Ordinal	(=/!=,)
asium-Real-Haupt)		
Intelligenzquotient	Intervall	(=/!=, , +-)
Studienfach	Nominal	(=/!=)
Semesterzahl(1-8)	Absolut	(=/!=, , +-*/)
Klausurpunkte(0-	Ratio	(=/!=, , +-*/)
15)		
Tarifklassen bei der	Ordinal	(=/!=,)
Kfz-Haftpflicht		

5) Ordne den Daten die folgenden Variablen das Variablenniveau zu (stetig vs. diskret).

Nr.	Wert	Variable			
	vvert	diskret	stetig		
1	Steuerklasse	X			
2	Geschlecht	hlecht			
3	soziale Schicht	X			
4	Einkommenssteuer		X		
5	Temperatur in Kelvin		X		
6	Windstärke in Meter/Sekunde		X		
7	Körpergewicht		X		
8	Schulnote (1-6)	X			
9	Klausurpunkte	X			
10	Einwohnerzahl	X			
11	Semesterzahl	X			
12	Handelsklasse (Obst)	X			

6) Beschreibe in Sätzen, was der Unterschied und Gemeinsamkeiten zwischen Standardnormalverteilung und der Normalverteilung ist. Verwenden Sie die Formeln.

Eine besondere Form der Normalverteilung ist die Standardnormalverteilung.

Das Aussehen der beiden Normalverteilungen ähnelt sehr einer Glocke, wobei die Funktionswerte der Kurve gegen 0 streben, wenn man die x-Werte gegen Unendlich gehen lässt. Beide sind symmetrisch um den Mittelwert verteilt. Beim Mittelwert besitzt die Verteilung ihr Maximum.

Normalverteilung
$$\rightarrow f(x) = \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

Für sie gilt, dass der Mittelwert bei 0 liegt und die Standardabweichung bei 1, also μ =0 und σ =1. Damit nimmt die Funktionsgleichung folgende Form an:

Standardnormalverteilung
$$\rightarrow$$
 $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2}x^2}$

Aufgabe 2: Multiple Choice

Der Sonderpunkt gilt nur innerhalb dieser Aufgabe. Maximal können Sie 10 Punkte erreichen.

	1) Ein Bravais-Pearson-Korrelationskoeffizient von 0,85 deutet auf eine schwache lineare Korrelation hin.				
Richtig	Falsch(X)				
	ist der doppelte Abstand zwischen				
Median und Modus.					
Richtig	Falsch(X)				
3) Die Modi lassen sich nur bestimmen, wenn eine unimodale					
Verteilung vorliegt.					
Richtig (X)	Falsch ×				
4) Nominalskalierte Daten könne	n in eine natürliche Reihenfolge				
gebracht werden.					
Richtig	Falsch (X)				
5) Ausreißer wirken sich auf die B	Ergebnisse nicht robuster				
Analyseverfahren besonders s	tark aus.				
Richtig (X)	Falsch				
6) Die Standardabweichung bere	chnet sich nicht als positive Wurzel aus				
der Varianz.					
Richtig	Falsch (X)				
7) Die Kurtosis ist ein Maß für die	Wölbung einer Verteilung.				
Richtig (X) Falsch					
8) Die Berechnung der Varianz setzt mindestens metrisch skalierte					
Daten voraus.					
Richtig (X)	Falsch				
9) Die Spannweite ist der absolute Abstand zwischen dem kleinsten und					
dem größten Wert.					
Richtig (X)	Falsch				
10) Der Bravais-Pearson-Korrelationskoeffizient kann nur Werte					
zwischen 0 und 1 annehmen.					
Richtig Falsch (X)					
11) Der statistische Ersatz fehlender Werte setzt mindestens metrisch					
skalierte Daten voraus.					
Richtig (X)	Falsch				

Aufgabe 3: Zusammenhangshypothese

Datensatz: diamonds.csv

Var 1 = "price" in US Dollar

Var 2 = "carat" (Gewicht des Diamanten)

<u>Aufgabenstellung</u>

- 1) Hypothese
- 2) Voraussetzungen
- 3) Grundlegende Konzepte: Was ist Pearson?
- 4) Grafische Veranschaulichung des Zusammenhangs
- 5) Deskriptive Statistik
- 6) Ergebnisse der Korrelationsanalyse
- 7) Berechnung des Bestimmtheitsmasses
- 8) Berechnung der Effektstärke
- 9) Eine Aussage

Aufgabe 4: Unterschiedshypothese

Datensatz: insurance.csv

Var 1 (AV) = "charges" (das Geld in US Dollars, das von Krankenkasse für Behandlungen bezahlt werden muss)

Var 2 (UV)= "smoker" (Raucher, nicht-Raucher)

<u>Aufgabenstellung</u>

- 1) Hypothese
- 2) Voraussetzungen des t-Tests für unabhängige Stichproben
- 3) Grundlegende Konzepte: Was ist t-Test für unabhängige Stichproben?
- 4) Deskriptive Statistiken
- 5) Test auf Varianzhomogenität (Levene-Test)
- 6) Ergebnisse des t-Tests für unabhängige Stichproben
- 7) Berechnung der Effektstärke
- 8) Eine Aussage

Aufgabe 5: Unterschiedshypothese

Datensatz: verbunden2.xlsx

Var 1 = "Zufriedenheit"

Var 2 = "Messzeitorten (Land, Stadt)"

Aufgabenstellung

- 1) Hypothese
- 2) Voraussetzungen des t-Tests für abhängige Stichproben
- 3) Grundlegende Konzepte: Was ist t-Test für abhängige Stichproben?
- 4) Deskriptive Statistiken und Korrelation
- 5) Ergebnisse des t-Tests für abhängige Stichproben
- 6) Berechnung der Effektstärke
- 7) Eine Aussage

Aufgabe 6: Unterschiedshypothese

Datensatz: insurance.csv

Var 1 (AV) = "charges" (das Geld in US Dollars, das von Krankenkasse für Behandlungen bezahlt werden muss)

Var 2 (UV) = "children" (die Anzahl der Kinder)

<u>Aufgabenstellung</u>

- 1) Hypothese
- Voraussetzungen für die einfaktoriellen Varianzanalyse ohne Messwiederholung
- 3) Grundlegende Konzepte: Was ist die einfaktoriellen Varianzanalyse ohne Messwiederholung
- 4) Deskriptive Statistiken
- 5) Prüfung der Varianzhomogenität (Levene-Test)
- 6) Ergebnisse der einfaktoriellen Varianzanalyse ohne Messwiederholung
- 7) Post-hoc-Tests
- 8) Profildiagramm
- 9) Berechnung der Effektstärke
- 10) Eine Aussage