ADMAS WAR
ADAMAS
UNIVERSITY
PURSUE EXCELLENCE

ADAMAS UNIVERSITY

END SEMESTER EXAMINATION

ADAMAS UNIVERSITY PURSUE EXCELLENCE		END SEMESTER EXAMINATION (Academic Session: 2020 – 21)			
Name of the Program:	B.Sc.(Computer Science)	Semester:	II		
Paper Title:	Discrete Mathematics	Paper Code:	MTH11518		
Maximum Marks:	50	Time Duration:	3 Hrs		
Total No. of Questions:	17	Total No of Pages:	2		
(Any other information for the student may be mentioned here)	 At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. Assumptions made if any, should be stated clearly at the beginning of your answer. 				

	Group A		
1	Answer All the Questions $(5 \times 1 = 5)$ What is equivalence relation?	Remembering	CO1
2	What is right coset?	Remembering	CO2
3	What is right coset: What is generating function?	Understanding	CO2
4	What is generating function: What do you mean by degree of a vertex of a graph?	Applying	CO4
5	What is Euler's tour a cycle?	Applying	CO4
<u> </u>	Group B	Applying	CO4
	Answer All the Questions (5 x $2 = 10$)		
6 a)	Find whether $(p \land q \rightarrow p \lor q)$ is a tautology or not.	Remembering	CO1
,	(OR)		
6 b)	What is well formed formula?	Remembering	CO1
7 a)	Show that in a group left inverse is also right inverse.	Remembering	CO2
/ α)	(OR)	Remembering	CO2
7 b)	In a group (G,.) show that $(a^{-1})^{-1} = a, \forall a \in G$.	Remembering	CO2
8 a)	If $gcd(a,b)=1$ then show that $gcd(a+b,a-b)=1$ or 2.	Understanding	CO3
,	(OR)		
8 b)	What is Pigeon hole principle?	Understanding	CO3
9 a)	Show that every cyclic group is abelian.	Remembering	CO2
·	(OR)		
9 b)	Show that intersection of two subgroups is also a subgroup.	Remembering	CO2
10 a)	What is proper subgraph and spanning subgraph?	Applying	CO4
	(OR)		
10 b)	Show that the number of vertices of odd degree is always	Applying	CO4
	even.		
	Group C		
	Answer All the Questions $(7 \times 5 = 35)$		
11 a)	Show that the following argument is valid or not $p \lor q, q \rightarrow$	Remembering	CO1
	$r, p \rightarrow s, \sim s \Rightarrow r.$		

	(OR)		
11 b)	A relation β is defined on \mathbb{Z} by " $x\beta y$ if and only if $x^2 - y^2$ is divisible by 5" for $y \in \mathbb{Z}$. Show that β is an equivalence	Remembering	CO1
	relation on $\mathbb Z$.		
12 a)	Show that $(R-\{1\},*)$ is an abelian group, where the binary	Remembering	CO2
	operation "*" is defined as $\forall a, b \in R - \{1\}, a*b = a+b-ab$.		
	(OR)	l l	
12 b)	Show that the cube roots of unity forms an abelian group	Remembering	CO2
	under complex multiplication.		
13 a)	Show that there are infinite number of primes.	Understanding	CO3
	(OR)	T	
13 b)	In a group of people there are 750 who can speak Hindi and	Understanding	CO ₃
	400 who can speak in Bengali. How many can speak Hindi		
	and Bengali both? How many can speak Bengali only? How		
1.4 \	many can speak?		004
14 a)	Show that a simple graph with $n(\geq 2)$ vertices must have at	Applying	CO4
	least one pair of vertices whose degrees are equal.		
14 b)	(OR)	A manderies or	COA
14 b)	Explain that a graph is a tree if and only if it is minimally connected.	Applying	CO4
15 a)	Show that a tree with n vertices has n-1 edges.	Applying	CO4
15 a)	(OR)	Applying	CO4
15 b)	Find the minimal spanning tree of the following graph by	Applying	CO4
13 0)	Kruskal's algorithm	nppiying	004
	5		
16 a)	Let G be a group and $a, b \in G$ such that $a^4 = e, ab = ba^2$ then show that $a = e$.	Remembering	CO2
	(OR)	T	
16 b)	Show that the set $G = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a group with respect to addition.	Remembering	CO2
17 a)	Show that $a^{n+1} - (a-1)n - a$ is divisible by $(a-1)^2$, a being an integer.	Understanding	CO3
	being an integer.		
	(OR)	,	
17 b)	· · · · · ·	Understanding	CO3