22AIE313 Computer Vision & Image Understanding (2-1-3-4)

Dr. Aiswarya S Kumar Dept. of Computer Science & Engineering (AI) Amrita School of Computing

Course Objectives

- Introduces the geometry of image formation and its use for 3D reconstruction and calibration.
- Introduces the analysis of patterns in visual images that are used to reconstruct and understand objects and scenes.

Course Outcomes

CO#	Outcome	
CO1	Apply image formation and camera calibration for various applications.	
CO2	Analyze and select image features and apply for image matching.	
CO3	Develop image recognition algorithms.	
CO4	Develop stereo vision applications for distance estimation.	

Syllabus

Unit 1

Introduction, Image Formation – geometric primitives and transformations, photometric image formation, digital camera, Camera calibration. Edge Detection, Segmentation.

Unit 2

Feature Detection and Matching – points and patches, edges, lines, Feature-Based Alignment - 2D, 3D feature-based alignment, pose estimation, Image Stitching, Dense motion estimation – Optical flow - layered motion, parametric motion, Structure from Motion.

Unit 3

Recognition – object detection, face recognition, instance recognition, category recognition, Stereo Correspondence – Epipolar geometry, 3D reconstruction.

Textbooks/References

- 1. Szeliski R. Computer Vision: Algorithms and Applications Springer. New York. 2022.
- 2. Shapiro LG, Stockman GC. Computer Vision: Theory and Applications. 2001.
- 3. Forsyth DA, Ponce J. Computer Vision: a modern approach;2012.
- 4. Davies ER. Machine vision: theory, algorithms, practicalities. Elsevier; 2004 Dec 22.
- 5. Jain R, Kasturi R, Schunck BG. Machine vision. New York: McGraw-Hill; 1995 Mar 1

Evaluation Policy

Sl. No.	Exam	Weightage%
1	Mid Term Exam	20%
2	Continuous Evaluation (Theory)	
	• Quiz 1 (19 th March, 2025)	10%
	• Quiz 2 (10 th June, 2025)	10%
3	Continuous Evaluation (Lab)	
	 Assignment 1 – Written assignment based on labsheets (1 – 3) 	10%
	 Assignment 2 - Written assignment based on labsheets (4 – 6) 	10%
	 Assignment 3 – Written assignment based on tutorial sessions 	10%
4	End Semester Exam	30%
	Total	100%

Thank you