Esercizi di Geometria differenziale

Bernardo Tomelleri*

4 ottobre 2021

1 ESERCIZI DEL 02/10/2021

Esercizio 1.1. Siano X e Y due spazi topologici. La topologia prodotto su $X \times Y$ è definita nel modo seguente: un sottoinsieme $A \subseteq X \times Y$ è aperto se e solo se è unione arbitraria di sottoinsiemi $U \times V$ dove $U \subseteq X$ e $V \subseteq Y$ sono entrambi aperti. Mostra che questa è veramente una topologia su $X \times Y$.

Svolgimento.

Esercizio 1.2. Sia $f: X \to Y$ una funzione suriettiva da uno spazio topologico X su un insieme Y. La topologia quoziente su Y è definita nel modo seguente: un sottoinsieme $A \subseteq Y$ è aperto se e solo se la sua controimmagine $f^{-1}(A)$ è aperta. Mostra che questa è veramente una topologia su X.

Svolgimento.

Esercizio 1.3. Sia $f: X \to Y$ una funzione fra spazi topologici. Mostra che f è continua se e solo se vale il fatto seguente: per ogni $x \in X$ e per ogni intorno A di f(x), la controimmagine $f^{-1}(A)$ è un intorno di x. *Svolgimento.*

Esercizio 1.4. Sia K uno spazio topologico compatto. Sia $C \subseteq K$ un sottoinsieme chiuso. Mostra che C è compatto.

Svolgimento.

Esercizio 1.5. Mostra che il segmento [0, 1] è connesso, usando solo la definizione di connesso (e nessun altro teorema: di solito questo fatto si mostra subito dopo la definizione).

Svolgimento.

Esercizio 1.6. Mostra che il sottoinsieme seguente in \mathbb{R}^2 è connesso ma non connesso per archi:

$$X = \{(0,y)|y \in [-1,1]\} \bigcup \{(x,\sin 1/x)|x > 0\}.$$

Svolgimento.

^{*}Università di Pisa

Esercizio 1.7. Scrivere le funzioni di transizione di uno dei due atlanti che abbiamo scelto per S^n e verifica che sono lisce.

Svolgimento.

Esercizio 1.8. Mostra che la mappa

$$f: S^n \to \mathbb{RP}^n, (x_1, x_2, \dots, x_{n+1} \mapsto [x_1, x_2, \dots, x_{n+1}]$$

è liscia.

Svolgimento.

Un *diffeomorfismo* è una mappa liscia $f: M \to N$ fra varietà lisce che ha un'inversa, anch'essa liscia.

Esercizio 1.9. Costruisci due atlanti *non* compatibili per la varietà topologica \mathbb{R} . Mostra però che le due varietà lisce risultanti sono comunque diffeomorfe!

Svolgimento.

Esercizio 1.10. Mostra che \mathbb{RP}^1 e S^1 sono diffeomorfi.

Svolgimento.