M. Fouquet

Examen du 26 novembre 2013

Durée: 3 heures Téléphones interdits.

Exercice 1 On expose ici un cryptosystème à clefs publiques.

Génération des clefs :

- Soient p et q deux nombres premiers distincts, différents de 2 et de même taille;
- on pose N = pq;
- soit z un entier qui n'est pas un carré modulo N mais qui a la propriété que le symbôle de Jacobi $\left(\frac{z}{N}\right)$ est égal à +1.

La clef publique est le couple (N, z) et la clef privée est le couple (p, q).

Chiffrement du message m:

On suppose que m est un entier. Soit (m_0, m_1, \ldots, m_k) la décomposition binaire de m (avec m_0 bit de poids faible et m_k bit de poids fort).

Pour chaque bit m_i , on génère un entier aléatoire y < N et on calcule la valeur $c_i \equiv y^2 z^{m_i} \mod N$.

Le chiffré de m est la suite (c_0, \ldots, c_k) .

Déchiffrement :

Pour chaque c_i on détermine si c_i est un carré modulo N ou pas. Si oui, m_i vaut 0 et si non, m_i vaut 1.

- 1. Quelles sont les conditions nécessaires pour que z ne soit pas un carré modulo N mais soit tel que $\left(\frac{z}{N}\right) = 1$? Montrer que si $p \equiv 3 \mod 4$ et $q \equiv 3 \mod 4$ alors N-1 n'est pas un carré modulo N mais $\left(\frac{N-1}{N}\right)=1$.
- 2. Expliquer pourquoi on ne peut pas déchiffrer correctement le message si z est un carré modulo N.
- 3. Au cours du déchiffrement, comment déterminer si c_i est un carré modulo N?
- 4. Expliquer comment, si z est tel que $\left(\frac{z}{N}\right) = -1$, le déchiffrement peut être réalisé sans la clef privée.
- 5. Soit m le message qui a pour décomposition binaire 1010101010101. Pourquoi un attaquant ne peut-il pas savoir si un message chiffré donné chiffre le message m? Est-ce le cas pour l'algorithme RSA?
- 6. Pourquoi faut-il générer une valeur aléatoire y pour chaque m_i et non pas une unique valeur aléatoire pour tout le chiffrement?
- 7. Que pensez-vous d'un tel système de chiffrement?
- 8. Programmer la fonction de chiffrement ainsi que celle de déchiffrement.

Exercice 2 Soit G un groupe cyclique fini d'ordre n, de générateur q et noté multiplicativement. Le but de cette méthode est de déterminer le logarithme discret α d'un élément h de G en base g, ie tràuver α tel que $h = g^{\alpha}$ s'il appartient à un intervalle [a, b] avec $0 \le a < b < n$.

Première partie : l'algorithme Soit f une fonction pseudoaléatoire de G dans \mathbb{N} . Soit N un entier.

- 1. On calcule une suite d'éléments $\{x_0, x_1, \dots, x_N\}$ de G telle que :
 - $x_0 = g^b$;
 - $x_{i+1} = x_i g^{f(x_i)}$ pour tout $0 \le i < N$. On pose $d = \sum_{i=0}^{N-1} f(x_i)$.

Déterminez et prouvez une expression du logarithme discret de x_N en base g en fonction de b et de d.

- 2. On calcule une suite $\{y_0, y_1, \ldots\}$ d'éléments de G telle que :
 - $y_0 = h$;
 - $y_{i+1} = y_i g^{f(y_i)}$ pour tout $0 \le i$.

Parallèlement, on calcule la suite (d_i) définie par $d_0 = 0$ et $d_i = \sum_{j=0}^{i-1} f(y_j)$ pour tout i > 0. Déterminez et prouvez une expression de y_i avec $i \leq N$ en terme de h, g et d_i .

3. On arrête le calcul de la suite (y_i) (et donc de la suite (d_i)) dès que $y_j = x_N$ pour un certain j ou alors dès que $d_i > b - a + d$.

Montrez que dans un cas, on a résolu le problème du logarithme discret (et donnez la solution) et dans l'autre la méthode échoue.

- **Exercice 3** 1. Montrer que choisir \mathbb{F}_p avec $p=2^{2^k}+1$ dans un cryptosystème fondé sur le problème du logarithme discret est une mauvaise idée. Pour se faire, trouver un algorithme polynomial pour résoudre le problème du logarithme discret dans \mathbb{F}_p^* . Idée : soit g un générateur et pour a donné, on cherche x, avec $0 \le x < p-1 = 2^{2^k}$, tel que $g^x \equiv a \mod p$. Écrire x sous sa représentation binaire et calquer son algorithme sur celui du calcul de racines carrées modulo p.
 - 2. Estimer (en utilisant la fonction O) le nombre d'opérations nécessaires pour résoudre le problème du logarithme discret dans \mathbb{F}_p . Cet algorithme est-il déterministe?
 - 3. Programmer l'algorithme trouvé en langage C en utilisant la librairie GMP. Toy example : On pose $p=2^{2^4}+1$. On pose g=814. Soit a=46080. Déterminer le logarithme discret de a en base g.