DFA: Equivalence & Minimal State Automaton

CS301 Theory of Computation

$$L(\mathcal{A}) = ?$$

$$L(\mathcal{A}) = \{a, b\}^*$$

$$L(\mathcal{A}) = \{a, b\}^*$$

$$L(\mathcal{A}) = \{a, b\}^* = L(\mathcal{B})$$

$$L(\mathcal{A}) = \{a, b\}^* = L(\mathcal{B})$$

O Hence, A and B are equivalent DFAs

$$L(\mathcal{A}) = \{a, b\}^* = L(\mathcal{B})$$

O Hence, A and B are equivalent DFAs

Equivalent states can be collapsed to get a DFA with fewer number of states

$$L(\mathcal{A}) = \{a, b\}^* = L(\mathcal{B})$$

O Hence, A and B are equivalent DFAs

Two DFAs \mathscr{A} and \mathscr{B} are said to be *equivalent* iff $L(\mathscr{A}) = L(\mathscr{B})$.

$$L(\mathcal{A}) = \{a, b\}^* = L(\mathcal{B})$$

O Hence, A and B are equivalent DFAs

Two DFAs \mathcal{A} and \mathcal{B} are said to be *equivalent* iff $L(\mathcal{A}) = L(\mathcal{B})$.

 \mathcal{B} is a DFA with fewer number of states

$$L(\mathcal{A}) = ?$$

$$L(\mathcal{A}) = \{x \in \{a, b\}^* \mid |x| \ge 3\}$$

$$L(\mathcal{A}) = \{x \in \{a, b\}^* \mid |x| \ge 3\}$$

$$p_0 \xrightarrow{a, b} p_1 \xrightarrow{a, b} p_2 \xrightarrow{a, b} p_3$$

$$L(\mathcal{A}) = \{x \in \{a,b\}^* \mid |x| \ge 3\} = L(\mathcal{B})$$

$$p_0 \xrightarrow{a,b} p_1 \xrightarrow{a,b} p_2 \xrightarrow{a,b} p_3$$

Equivalent states can be collapsed to get a DFA with fewer number of states

$$L(\mathcal{A}) = \{x \in \{a,b\}^* \mid |x| \ge 3\} = L(\mathcal{B})$$

$$p_0 \xrightarrow{a,b} p_1 \xrightarrow{a,b} p_2 \xrightarrow{a,b} p_3$$

o B is a DFA with fewer number of states

$$L(\mathcal{A}) = ?$$

$$L(\mathcal{A}) = \{x \in \{a, b\}^* \mid aba \text{ is a substring in } x\}$$

 $L(\mathcal{A}) = \{x \in \{a, b\}^* \mid aba \text{ is a substring in } x\}$

$$L(\mathcal{A}) = \{x \in \{a, b\}^* \mid aba \text{ is a substring in } x\} = L(\mathcal{B})$$

$$L(\mathcal{A}) = \{x \in \{a, b\}^* \mid aba \text{ is a substring in } x\} = L(\mathcal{B})$$

Equivalent states can be collapsed to get a DFA with fewer number of states

 $L(\mathcal{A}) = \{x \in \{a,b\}^* \mid aba \text{ is a substring in } x\} = L(\mathcal{B})$

o \mathscr{B} is a DFA with fewer number of states

NFA -> DFA

 $L(\mathcal{A}) = \{x \in \{a, b\}^* \mid \text{third last symbol in } x \text{ is } b\}$

 $L(\mathcal{A}) = \{x \in \{a,b\}^* \mid \text{third last symbol in } x \text{ is } b\}$ Subset construction on \mathcal{A} gives the DFA:

 $L(\mathcal{A}) = \{x \in \{a,b\}^* \mid \text{third last symbol in } x \text{ is } b\}$ These are non reachable states in the DFA:

 $L(\mathcal{A}) = \{x \in \{a, b\}^* \mid \text{third last symbol in } x \text{ is } b\}$

Removing non reachable states gives the DFA:

 $L(\mathcal{A}) = \{x \in \{a, b\}^* \mid \text{third last symbol in } x \text{ is } b\}$

Removing non reachable states gives the DFA:

Non-reachable states can be removed to get an equivalent DFA with fewer number of states

Minimal-state DFA

O Given a DFA \mathcal{A} , can we automatically find the minimal-state DFA equivalent to \mathcal{A} ?

Minimal-state DFA

- O Given a DFA \mathcal{A} , can we automatically find the minimal-state DFA equivalent to \mathcal{A} ?
- O Yes. \exists algorithm to find the equivalent minimal-state DFA from a given DFA.

Minimal-state DFA

- O Given a DFA \mathcal{A} , can we automatically find the minimal-state DFA equivalent to \mathcal{A} ?
- O Yes. \exists algorithm to find the equivalent minimal-state DFA from a given DFA.
- o Steps in the algorithm:
 - o Remove non-reachable states if any.
 - o Collapse equivalent states if any.