Fundamentos de los Lenguajes Informáticos

 Grado en Ingeniería Informática (GII)

Doble Grado en Ingeniería Informática y Matemáticas (DGIIM)

EXAMEN PARCIAL	de abril de 2015	modelo X
APELLIDOS, NOMBI	RE:	GRADO:
Para cada pregunta la Si conoces la respuesta Cada respuesta corre	ay una única respuesta correcta. ca correcta, escríbela en el cuadrado correspondie ccta vale 0,1 puntos positivos. crecta vale 0,05 puntos negativos.	
	ular describe el lenguaje generado por la gramáti $ \longrightarrow \ aSb \mid aSa \mid bSb \mid bSa \mid \varepsilon \ \}?$	ica independiente del contexto con (a) $(a + b)^*$ (b) $(a + b)^{2n}$ (c) $(ab + ba + aa + bb)^*$
ceros consecutivos (a) $(\varepsilon + 0)(110 + (b) (0 + 110 + 10)$	ntes expresiones regulares representa al lenguaje y tiene exactamente una aparición de 111} ? $10)*111(011+01)*(\varepsilon+0)$ $*111(011+01+0)*$ $10)*111(011)*(01)*(\varepsilon+0)$	$L = \{w \in \{0,1\}^* \mid w \text{ no tiene dos} $
 3. Señala la única afirmación falsa entre las tres siguientes. (a) Si L es un lenguaje no regular, entonces el complementario de L tampoco es regular. (b) Todo lenguaje finito es regular. (c) Cualquier subconjunto de un lenguaje regular es a su vez regular. 		
GIC? (a) $\{w \in \Sigma^* \mid w = 0\}$	vv para alguna $v \in \Sigma^*$. vv^R para alguna $v \in \Sigma^*$. vv^R para alguna $v \in \Sigma^*$. vv^R para alguna $v \in \Sigma^*$.	e puede representar mediante una
ε -AFN? (a) $L(1^*(01+1)^*)$ (b) $\{1^m0^n \mid n, m \in \mathbb{R}^n\}$		se puede representar mediante un
6. Dada la gramática $S \longrightarrow aSc \mid cB$ $B \longrightarrow bBc \mid \varepsilon$	independiente del contexto G definida por el sig $ (a) \ aaacbbcccc \in L(G). $ (b) $aaccbbcccc \in L(G). $ (c) $aacacbbcccc \in L(G). $	uiente conjunto de producciones,

7. Para los lenguajes $L = L((ab+b)^*)$, $L_1 = L((a+b)^*aa(a+b)^*)$, $L_2 = L((a+b)^*a)$ se tiene

(a) $\overline{L} = L_1$.

(b) $\overline{L} = L_2$.

(c) $\overline{L} = L_1 \cup L_2$.

	$\begin{array}{c cccc} & 0 & 1 \\ \rightarrow A & A & B \\ \hline * B & B & A \end{array}$	 (a) El lenguaje que acepta este autómata finito se puede representar mediante la expresión regular (1 + 01)*0. (b) El autómata finito no puede reconocer cadenas que contengan dos unos consecutivos. (c) El lenguaje que acepta este autómata finito se puede representar mediante la expresión regular (0*10*1)*0*10*. 		
	Sean los siguientes lenguajes: las siguientes afirmaciones es (a) L_1 es regular pero L_2 no		ál de	
	(b) L_2 es regular pero L_1 no (c) L_1 y L_2 son regulares.	o lo es.		
	ean los lenguajes regulares $L_1 = \{w \in \{a,b\}^* \mid \text{el primer símbolo de } w \text{ coincide con el último}\}$ y $L_2 = \{w \in \{a,b\}^* \mid w = xyx^R \text{ para algunas } x,y \in \{a,b\}^*\}$. ¿Son L_1 y L_2 iguales?			
	 (a) No, pero L₁ ⊂ L₂. (b) No, pero L₂ ⊂ L₁. (c) Sí, son iguales. 			
11. Sea $G = (\{E, O\}, \{a, b\}, P, E)$ la gramática independiente del contexto donde P consta de las si producciones:				
	$\begin{array}{ccc} E & \longrightarrow & aO \mid bE \mid \varepsilon \\ O & \longrightarrow & aE \mid bO \end{array}$	(a) $L(G) = \{w \in \{a, b\}^* \mid w _a = w _b\}.$ (b) $L(G) = \{w \in \{a, b\}^* \mid w _a \text{ es par}\}.$ (c) $L(G) = \{w \in \{a, b\}^* \mid w _b \text{ es impar}\}.$		
12. Sea L el lenguaje sobre el alfabeto Σ de las palabras que se pueden construir como concate parejas de caracteres iguales (como, por ejemplo, $aabbaacc$). El AFD mínimo tiene (a) $ \Sigma + 1$ estados.				
	(b) $ \Sigma + 2$ estados. (c) a veces $ \Sigma + 1$ y a veces	$ \Sigma + 2$ estados.		
13.	Sean E, F y G expresiones re (a) Si $E = F$ entonces $EG = G$ (b) $E = F$ si y solo si $EG = G$	egulares. ¿Cuál de las siguientes afirmaciones es cierta? $= FG.$ $= FG.$ $= FG$ y además, cuando E, F y G representan lenguajes		
14.	¿Puede un autómata con pila (a) No, porque no sería dete (b) Sí, porque esto no afecta (c) Sí, pero no en cualquier	a en nada al determinismo.		
	e dos lenguajes L_1 y L_2 se sabe que $L_1L_2^*$ consta exactamente de 5 palabras y que $aba \in L_1L_2$; atonces,			
	 (a) aba ∈ L₁. (b) aba ∈ L₁L₂* pero puede ∈ (c) la situación descrita es in 			

8. Para el autómata definido por la tabla, ¿cuál de las siguientes afirmaciones es verdadera?