UNIDAD 4: ALGORITMOS PARA FLUJOS DE DATOS

Gibran Fuentes-Pineda Diapositivas basadas en las de la M. en C. Blanca Vázquez Mayo 2021

ESTIMACIÓN DE MOMENTOS EN FLUJOS DE DATOS

- Generalización del problema del conteo de elementos distintos.
- Objetivo: estimar los momentos en un flujo de datos, lo cual se obtiene mediante la distribución de frecuencias de los diferentes elementos.

MOMENTOS

 Sea m_e es el número de ocurrencias del elemento e en el flujo, el momento i-ésimo está definido por

$$\sum_{e\in\mathbb{U}}(m_e)^i$$

donde U es el conjunto universal.

- · El momento 0 es el número de elementos distintos
- El momento 1 es la suma de m_i , es decir, el tamaño del flujo de datos
- El momento 2 es la suma de los cuadrados de m_i , también conocido como número sorpresa

EJEMPLO (1)

EJEMPLO (2)

ALGORITMO DE ALON-MATIAS-SZEGEDY (AMS)

- Algoritmo para el cálculo de momentos en flujos de datos, definido por Noga Alon, Yossi Matias y Mario Szegedy.
- Se enfoca en aproximar la suma de las entradas al cuadrado de un vector definido por un flujo de datos.
- Permite calcular cualquier momento aún si no es posible almacenar todas las cuentas m_i de todos los elementos.

ALGORITMO DE AMS PARA ESTIMAR EL SEGUNDO MOMENTO

- Dado un flujo de tamaño n constante, se toman K variables X_1, X_2, \ldots, X_K seleccionando K posiciones en el flujo de forma aleatoria y uniforme.
- Las variables almacenan el elemento de la posición correspondiente en X_k.elemento y un valor entero X_k.valor, el cual se inicializa con 1 y se incrementa en 1 cada vez que se encuentra una ocurrencia de X_k.elemento
- El segundo momento de cualquier variable X_k se estima con $n \cdot (2 \cdot X_k.valor 1)$.

EJEMPLO: CÁLCULO DEL 2DO MOMENTO

• Considera el flujo *a*, *b*, *c*, *b*, *d*, *a*, *c*, *d*, *a*, *b*, *d*, *c*, *a*, *a*, *b*

Elemento (e)	Número de ocurrencias (m_e)		
а	5		
Ь	4		
С	3		
d	3		

- El primero momento es 5 + 4 + 3 + 3 = 15
- El segundo momento es $5^2 + 4^2 + 3^2 + 3^2 = 59$

EJEMPLO: SEGUNDO MOMENTO CON EL ALGORITMO AMS (1)

- 1. Seleccionamos 3 variables aleatorias: X_1, X_2 y X_3
- 2. Supongamos que las posiciones para las 3 variables son 3, 8 y 13.
 - En la posición 3, encontramos el elemento c, al cual llamamos: X₁.elemento = c
 - En la posición 8, encontramos el elemento d, al cual llamamos: X₂.elemento = d
 - En la posición 13, encontramos el elemento a, al cual llamamos: X₃.elemento = a

$$a,b,$$
 $\stackrel{3}{\overset{\circ}{\mathbf{c}}}$, $b,d,a,c,$ $\stackrel{8}{\overset{\circ}{\mathbf{d}}}$, $a,b,d,c,$ $\stackrel{13}{\overset{\circ}{\mathbf{a}}}$, a,b

EJEMPLO: SEGUNDO MOMENTO CON EL ALGORITMO AMS (2)

$$a,b,$$
 $\stackrel{3}{\overset{\circ}{\mathbf{c}}}$, $b,d,a,c,$ $\stackrel{8}{\overset{\circ}{\mathbf{d}}}$, $a,b,d,c,$ $\stackrel{13}{\overset{\circ}{\mathbf{a}}}$, a,b

X_1 .elemento = c	X_1 .valor = 1	X_1 .valor = 2	X_1 .valor = 3
X_2 .elemento = d	X_2 .valor = 1	X_2 .valor = 2	
X_3 .elemento = a	X_3 .valor = 1	X_3 .valor = 2	

El valor final es X_1 .valor = 3, X_2 .valor = 2 y X_3 .valor = 2

EJEMPLO: SEGUNDO MOMENTO CON EL ALGORITMO AMS (3)

$$a,b, \stackrel{3}{\overset{}{\overset{}{\overset{}}{\overset{}{\overset{}}{\overset{}}{\overset{}}}}}, b,d,a,c, \stackrel{8}{\overset{}{\overset{}{\overset{}}{\overset{}}}}, a,b,d,c, \stackrel{13}{\overset{}{\overset{}{\overset{}}{\overset{}}}}, a,b}$$

- Estimamos el segundo momento con $n \cdot (2 \cdot X_k.valor 1)$
 - Para X_1 : 15 (2 3 1) = 75
 - Para X_2 : 15 (2 2 1) = 45
 - Para X_3 : $15 \cdot (2 * 2 1) = 45$
- Promediando las estimaciones de cada variable tenemos (75 + 45 + 45)/3 = 55

ANÁLISIS DEL ALGORITMO AMS (1)

- El valor esperado de cualquier variable es el segundo momento del flujo del que fue generada
- Sea e(i) el elemento que aparece en la posición i en el flujo y c(i) el número de veces que aparece este elemento de la posición i a la n, el valor esperado del estimador del segundo momento es

$$E[n \cdot (2 \cdot X_k.valor - 1)] = \frac{1}{n} \sum_{i=1}^n n \cdot (2 \cdot c(i) - 1) = \sum_{i=1}^n (2 \cdot c(i) - 1)$$

Análisis del algoritmo AMS (2)

- Podemos el valor esperado de otra forma si agrupamos los términos de todas las posiciones que tienen el mismo elemento
- Para el ejemplo anterior, la letra a aparece ma veces. Si tomamos los términos de la última posición hacia la primera tendríamos

$$2 \cdot 1 - 1 = 1$$

 $2 \cdot 2 - 1 = 3$
 $2 \cdot 3 - 1 = 5$
 \vdots
 $2 \cdot m_0 - 1$

ANÁLISIS DEL ALGORITMO AMS (3)

• Por lo tanto, podemos reescribir el valor esperado para cada elemento $e \in \mathbb{U}$ de la siguiente manera

$$E[n \cdot (2 \cdot X_k.valor - 1)] = \sum_{e \in \mathbb{U}} [1 + 3 + 5 + \dots + (2 \cdot m_e - 1)]$$

• Dado que
$$[1 + 3 + 5 + \dots + (2 \cdot m_e - 1)] = (m_e)^2$$

$$\mathbb{E}[n \cdot (2 \cdot X_k.valor - 1)] = \sum_e (m_e)^2$$

ESTIMANDO EL i-ÉSIMO MOMENTO

· Para el estimador del segundo momento tenemos

$$n \cdot (2 \cdot X_k.valor - 1) = n \cdot (X_k.valor^2 - (X_k.valor - 1)^2)$$

· El estimador del tercer momento es

$$n \cdot (X_k.valor^3 - (X_k.valor-1)^3) = n \cdot (3 \cdot X_k.valor^2 - 3 \cdot X_k.valor+1)$$

· En general, el estimador del i-ésimo momento es

$$n \cdot (X_k.valor^i - (X_k.valor - 1)^i)$$

ESTIMACIÓN PARA FLUJOS INFINITOS (1)

- Hasta ahora hemos considerado que n es constante, sin embargo, en la práctica no lo es
- · ¿Cómo seleccionamos las posiciones para la variables?
 - Si se hace al inicio y no se actualiza, conforme el flujo crezca habría un sesgo hacia las primeras posiciones y la estimación sería demasiado grande
 - Si se espera demasiado y no mantenemos suficientes variables en las posiciones al principio del flujo, podemos tener una estimación poco confiable

ESTIMACIÓN PARA FLUJOS INFINITOS (2)

- · Estrategia de selección de posiciones
 - 1. Se toman las primeras s posiciones del flujo como variables.
 - 2. Se elige la posición n > s con probabilidad $\frac{s}{n}$
 - Si es elegida, se selecciona de forma aleatoria y uniforme una de las s variables y se reemplaza por la de la posición *n*
 - En caso contrario se mantienen las posiciones de las s variables