Image Restoration

Pengolahan Citra
Semester Gasal 2019/2020

Laksmita Rahadianti, Aniati Murni

Fakultas Ilmu Komputer Universitas Indonesia

Review

- We have previously studied image enhancement techniques.
- Image enhancement.. aims to improve the image heuristically until we achieve a result that is visually pleasing.

- We will now consider image restoration
- Image restoration.. attempts to recover a degraded image using prior knowledge of the distortion.

Restoration vs Enhancement

- Image enhancement dilakukan secara heuristic, trial and error, sampai diperoleh image yang sudah baik menurut kita
- In image restoration usually we know the model of distortion

Image Enhancement

Image Restoration

Before we continue....

Convolution vs Correlation

- Are both used in spatial and frequency filtering
- Are not the same thing..

Correlation

- The process of moving a filter mask over the image and computing the sum of products at each location.
 - Slide filter g(x) by image f(x)

Original position of filter

Filtering result

Convolution

- Rotating a filter mask by 180° and moving it over the image and computing the sum of products at each location.
 - Flip filter g(x)
 - Slide filter g(x) by image f(x)

0	()	0	0	0	0	0	0	()
0	0	0	0	0	0	0	0	()
0	()	0	0	0	0	0	0	()
0	0	0	0	0	0	0	0	()
0	()	()	0	1	0	0	()	0
0	0	0	0	0	0	0	0	()
0	0	0	0	0	0	0	0	()
0	0	0	0	0	0	0 0	0	()
0	()	()	0	0	0	0	()	()

image

Original position of filter

Filtering result

Model of Image Degradation

Model of Image Degradation (2)

Spatial domain

$$g(x,y) = h(x,y) * f(x,y) + \eta(x,y)$$

- If the degradation function h is linear, and the noise is spatially independent
- Frequency domain

$$G(u,v) = H(u,v)F(u,v) + N(u,v)$$

- g/G(x,y) : degraded image
- h/H(x,y): degradation function
- f/F(x,y): original image
- $\eta/N(x,y)$: noise

Which Domain to Use?

	Spatial Restoration	Frequency Restoration
Type of Noise	Additive	Blur
Solution	Spatial Masks	Filter Masks

Restoring Images based on Noise Model

$$g(x,y) = h(x,y) * f(x,y) + \eta(x,y)$$
$$G(u,v) = H(u,v)F(u,v) + N(u,v)$$

- Recall:
 - Image restoration attempts to recover a degraded image using **prior knowledge** of the distortion.
- Assume:
 - Degradation function can be ignored

We focus on the noise model $\eta(x,y)$

Noise Model

- Noise in digital images occur during acquisition, such as:
 - Sensor errors: quality of electronics
 - Light levels
 - Sensor temperature
- Or during transmission, such as:
 - Interference in the transmission channel

Spatial Noise

- Can be described statistically as random variables
 - Hence we will consider them as probability density functions (PDF)
 - Probability Density Functions: A function that describes the distribution of a continuous random variable

Common PDFs in Images

Gaussian Noise

Clear Image

Degraded Image

Histogram of degraded image

Very commonly used to describe image noise

$$p(z) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(z-\bar{z})^2/2\sigma^2}$$

z: intensity

 \bar{z} : mean intensity

 σ : standard deviation

Rayleigh Noise

Clear Image

Degraded Image

Histogram of degraded image

$$p(z) = \begin{cases} \frac{2}{b}(z-a)e^{-\frac{(z-a)^2}{b}}, & \text{for } z \ge a \end{cases}$$

$$0, & \text{for } z < a \end{cases}$$

$$z : \text{intensity}$$

$$\bar{z} : \text{mean interesting}$$

$$a, b : \text{certain}$$

 \bar{z} : mean intensity = $a + \sqrt{\pi b/4}$

a, b: certain values

Erlang/Gamma Noise

Clear Image

Degraded Image

Histogram of degraded image

 Can be called gamma noise only when the denominator is the gamma function

$$p(z) = \begin{cases} \frac{a^b z^{b-1}}{(b-1)!}, & for \ z \ge 0\\ 0, & for \ z < 0 \end{cases}$$

z: intensity

 \bar{z} : mean intensity = $\frac{b}{a}$

a, b: certain values

a > 0, b is a positive integer

Exponential Noise

Clear Image

Degraded Image

Histogram of degraded image

• This is a special case of Erlang where b=1

$$p(z) = \begin{cases} ae^{-az}, for \ z \ge 0\\ 0, for \ z < 0 \end{cases}$$

z: intensity

 \bar{z} : mean intensity = $\frac{1}{a}$

a: certain value

Uniform Noise

Clear Image

Degraded Image

Histogram of degraded image

This noise is —as its name says- uniform

$$p(z) = \begin{cases} \frac{1}{b-a}, & \text{for } a \le z \le b\\ 0, & \text{otherwise} \end{cases}$$

z: intensity

 \bar{z} : mean intensity = $\frac{a+b}{2}$

Impulse Noise

Clear Image

Degraded Image

Histogram of degraded image

Only gives peaks of noise: salt-and pepper noise

$$p(z) = \begin{cases} P_a, for \ z = a \\ P_b, for \ z = b \\ 0, otherwise \end{cases}$$

a, b: certain values

Statistical Noise

What do all of the previously described noise have

in common?

- Gaussian
- Rayleigh
- Erlang
- Exponential
- Uniform
- Impulse

Spatially Independent

Estimation of Noise

What does a clear image look like?

Clear Image

Histogram

Noise Estimation: If the imaging system is available

- Capture images of a "flat" environment
 - Capture a plain known surface
 - We can then see the pattern of the noise

Captured Image

Estimation of Noise (3)

- If the imaging system is **not** available
 - Use the captured images
 - Take strips of a reasonably constant intensity
 - Observe the histogram of the strips

Captured Image

Histogram

Which noise is this?

Gaussian/Normal

Estimation of Noise (4)

- Indicators:
 - Mean intensity \bar{z}
 - Standard deviation σ

Eliminating Additive Noise

We have assumed:

- Degradation function can be ignored
- Focus on the additive noise model $\eta(x,y)$

Spatial Filtering

Arithmetic Mean Filter

- Smoothing and noise reduction
- Loss of detail

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{x,y}} g(s,t) \qquad \begin{array}{l} \bullet & m \times n \text{ image} \\ \bullet & S_{x,y} \text{ kernel centered at } (x,y) \end{array}$$

Clear Image

Image w/ Gaussian Noise

Restored Image with Arithmetic Mean Filter

Geometric Mean Filter

- Smoothing and noise reduction
- Less loss of detail compared to arithmetic mean filter

$$\hat{f}(x,y) = \left[\prod_{(s,t) \in S_{x,y}} g(s,t) \right]^{1/2} \cdot m \times n \text{ image}$$

$$\cdot S_{x,y} \text{ kernel centered at } (x,y)$$

Clear Image

Image w/ Gaussian Noise

Restored Image with Geometric Mean Filter

Harmonic Mean Filter

- Works especially well for salt noise (not pepper noise!)
- Works well for Gaussian noise and other noise types

$$\hat{f}(x,y) = \frac{mn}{\sum_{(s,t)\in S_{x,y}} \frac{1}{g(s,t)}} \cdot m \times n \text{ image}$$

$$S_{x,y} \text{ kernel centered at } (x,y)$$

Contraharmonic Mean Filter

Perfect for salt-and-pepper noise

$$\hat{f}(x,y) = \frac{\sum_{(s,t)\in S_{x,y}} g(s,t)^{Q+1}}{\sum_{(s,t)\in S_{x,y}} g(s,t)^{Q}} \cdot m \times n \text{ image}$$

$$S_{x,y} \text{ kernel centered at } (x,y)$$

- *Q* (filter order)
- Q > 0 eliminates pepper,
- Q < 0 eliminates salt

Contraharmonic Mean Filter (2)

Clear Image

Image w/ Pepper Noise

Image w/ Salt Noise

Restored Image (Q=1.5)

Restored Image (Q=-1.5)
Pengolahan Citra Gasal 2019-2020

Contraharmonic Mean Filter (3)

The choice of Q is crucial!

Clear Image

Image w/ Pepper Noise

Image w/ Salt Noise

Restored Image (Q=-1.5)

Restored Image (Q=1.5)

Pengolahan Citra Gasal 2019-2020

Order-Statistic Filters

 Spatial filters based on ordering (ranking) the values of the pixels contained in the local image area encompassed by the filter.

- Median Filters
- Min/Max
- Alpha Trimmed

Order-Statistic Filters (2)

Median Filters

$$\hat{f}(x,y) = \underset{(s,t) \in S_{x,y}}{\text{median}} \{g(s,t)\}$$

Clear Image

Image w/ Salt and Pepper Noise

Restored Image with 1 pass of Median Filter

Restored Image with 3 passes of Median Filter

Order-Statistic Filters (3)

Min / Max Filters

$$\hat{f}(x,y) = \min_{(s,t) \in S_{x,y}} \{g(s,t)\}$$

$$\hat{f}(x,y) = \max_{(s,t)\in S_{x,y}} \{g(s,t)\}$$

Clear Image

Image w/ Pepper Noise

Restored Image with Max Filter

Restored Image with Min Filter

Order-Statistic Filters (4)

Alpha Trimmed Mean Filter

$$\hat{f}(x,y) = \frac{1}{mn-d} \sum_{(s,t) \in S_{x,y}} g(s,t) \quad d : \text{between 0 and } mn-1$$

Clear Image

Image w/ Salt and Pepper Noise

Restored Image with Alpha-Trimmed Filter

Image Restoration with Spatial Filters

Clear Image

Image w/ Salt and Pepper Noise

Restored Image with Arithmetic Mean Filter

Image Restoration

Restored Image with Geometric Mean Filter

Restored Image with Median Filter

Restored Image with Alpha-Trimmed Filter

Pengolahan Citra Gasal 2019-2020

Adaptive Local Noise Reduction Filter

- Changes its behavior based on the statistical characteristics of the image inside the filter region defined by the neighborhood.
 - Simplest statistical measurement
 - Mean and variance
 - Known parameters on local region $S_{x,y}$
 - g(x,y): noisy image pixel value
 - σ_{η}^2 : noise variance (assume known a prior)
 - m_L : local mean
 - σ^2_L : local variance

$$\hat{f}(x,y) = g(x,y) - \frac{\sigma_{\eta}^2}{\sigma_L^2} [g(x,y) - m_L]$$

Adaptive Local Noise Reduction Filter (2)

Clear Image

Restored Image with Arithmetic Mean Filter

h Restored Image with er Geometric Mean Filter

Restored Image with Adaptive Local Filter

Image w/ Gaussian Noise

Periodic Noise

- Unlike previously, periodic noise is spatially dependent
- Can be handled well by frequency domain filtering

Spatial Image

Fourier Transform

Band Reject Filters

Band Reject Filters

Ideal Bandreject Filter

Butterworth Bandreject Filter

Gaussian Bandreject Filter

Band Reject Filters (2)

Spatial Image

Band Reject Filter

Fourier Transform

Restored Image

Band Pass Filters

The opposite of Band Reject Filters

$$H_{BP}(u,v) = 1 - H_{BR}(u,v)$$

Spatial Image

Fourier Transform

Band Reject Filter

Band Pass Filter

 What will I obtain if I filter the image with the band pass filter?

Band Pass Filters (2)

Spatial Image

Band Pass Filter

Fourier Transform

Noise Pattern of Image

Restoring Images based on Degradation Model

$$g(x,y) = h(x,y) * f(x,y) + \eta(x,y)$$
$$G(u,v) = H(u,v)F(u,v) + N(u,v)$$

- Previously we assumed:
 - Degradation function can be ignored

We focus now on the degradation model H(u, v)

Estimating the Degradation Function

- Given a degraded image without any knowledge of the degradation.
- Assume a linear, spatially independent process.
- What can we do?
 - Observation
 - Experimentation
 - Mathematical Modeling.

Estimation By Image Observation

- Take a local window in the degraded image $G_s(u, v)$
 - → simple structure, strong signal
- Estimate the original image in the window $\widehat{F}_{S}(u, v)$
- Use the degraded and the estimated "clear" window

$$H(u,v) = \frac{G_S(u,v)}{\widehat{F}_S(u,v)}$$

Estimation By Image Observation (2)

- Example:
 - We have a blurred image
 - Take a small rectangular section of background
 - Attempt to enhance the image → any ideas how?
- Thus, we approximate the degradation by assuming position invariance

$$H(u,v) = \frac{G_S(u,v)}{\widehat{F}_S(u,v)}$$

Estimation By Experimentation

- If we can obtain similar equipment to that used in the image acquisition.
 - Capture an image of a single impulse
 - The fourier transform of a single impulse is a constant, A
- Thus, we can estimate

$$H(u,v) = \frac{G(u,v)}{A}$$

Estimation By Mathematical Modelling

- Can be used to estimate environmental effects to image capture
- Example in the frequency domain: Atmospheric effects

$$H(u, v) = e^{-k(u^2 + v^2)^{\frac{5}{6}}}$$

Estimation By Mathematical Modelling (2)

• Example in the spatial domain: Photometric scattering effects

Transmission

Beer-lambert law

$$T = e^{-cd}$$

c : Attenuation coefficient of media

d: Distance of object and camera

J: Original intensity of scene

A: Airlight (The color of surrounding media, composed solely of scattering effects.)

Rahadianti, L., Sakaue, F., Sato, J. "Time-to-Contact in Scattering Media based on Statistical Priors".

ITE Transactions on Media Technology and Applications. October 2017.

Image Restoration Pengolahan Citra Gasal 2019-2020

Inverse Filtering

Using the previous estimation methods, we obtain

$$\widehat{F}(u,v) = \frac{G(u,v)}{H(u,v)}$$

Back to our degradation model

$$G(u,v) = H(u,v)F(u,v) + N(u,v)$$

We obtain

$$\widehat{F}(u,v)H(u,v) = H(u,v)F(u,v) + N(u,v)$$

$$\widehat{F}(u,v) = F(u,v) + \frac{N(u,v)}{H(u,v)}$$

We still need N(u,v).

If H(u,v) is close to 0, N(u,v) will dominate the estimate $\hat{F}(u,v)$.

Inverse Filtering(2)

- To avoid near-zero values:
 - Limit filter frequencies near the origin
 - Manual adjustments to restoration
 - Experimental approaches to set parameters

Wiener Filter

- N. Wiener (1942)
- Also known as:
 - Minimum mean square filter
 - Least square error filter
- What does it do:
 - Considers both degradation function and statistical noise
 - The objective is to find the estimate \hat{f} for a clear image f with the mean square error between them is minimized

Wiener Filter (2)

• The objective is to find the estimate \hat{f} for a clear image f with the mean square error between them is minimized

$$\widehat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + \frac{S_{\eta}(u,v)}{S_f(u,v)}} \right] G(u,v)$$

H(u, v): degradation function

 $H^*(u, v)$: complex conjugate of H(u, v)

 $|H(u,v)|^2$: $H^*(u,v) H(u,v)$

 $S_{\eta}(u, v)$: power spectrum of noise

 $S_f(u, v)$: power spectrum of the original image

Usually unknown

Wiener Filter (3)

Constant K as an estimate

$$\widehat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + K} \right] G(u,v)$$

H(u, v): degradation function

 $H^*(u, v)$: complex conjugate of H(u, v)

 $|H(u,v)|^2$: $H^*(u,v) H(u,v)$

K: constant chosen for the best visual result

Wiener Filter Results

Clear Image

Image w/ Motion Blur and Additive Noise

Pengolahan Citra Gasal 2019-2020

Additional Reading

- Inverse Filtering and its applications
- Wiener Filter and its applications
- Constrained Least Squares Filtering
- Image Quality Measures

Image Quality

Pedersen, Marius & Yngve Hardeberg, Jon. (2012). Full-Reference Image Quality Metrics: Classification and Evaluation. Foundations and Trends in Computer Graphics and Vision.

AHMED, ISMAIL T., Chen Soong Der, and BARAA TAREQ HAMMAD. "A Survey of Recent Approaches on No-Reference Image Quality Assessment with Multiscale Geometric Analysis Transforms."

Image Quality

- Image Quality
 - The level of accuracy in which digital systems display the signals that form an image.
 - The weighted combination of all of the visually significant attributes of an image.
- Image Quality Methods, Image Quality Metrics, Image Quality Assessment
- Ways to assess image quality
 - Subjective methods
 - Objective methods

Image Quality Metrics (1)

- Objective methods:
 - Full-reference (FR) methods The image quality is computed by comparing it with a reference image that is assumed to have perfect quality
 - Reduced-reference (RR) methods The image quality is measured based on a features extracted from the reference image.
 - No-reference (NR) methods The image quality is measured without any reference to the original one.

Image Quality Metrics

- Based on the information used:
 - **Pixel difference-based** which uses the difference of value of each pixel.
 - Correlation-based measures: correlation of pixels or vector angular directions.
 - Edge-based measures: displacement of edge positions or their consistency across resolution levels.
 - Spectral distance-based measures: the Fourier magnitude and/or phase spectral discrepancy on a block basis.
 - Context-based measures: based on various functionals of the multidimensional context probability.
 - HVS-based measures, based on the human visual system (HVS) weighted spectral distortion measures or (dis)similarity criteria used in image-based browsing functions.

A Non-Exhaustive List of Image Quality Measures

- Full/Reduced Reference
 - Signal to Noise Ratio
 - Mean Square Error / Root Mean Square Error
 - Structural Similarity (SSIM)
 - ΔE_{ab}^* , ΔE_{94}^* , etc: color difference methods
 - Adaptive Image Difference
 - Universal Image Quality Index
- No-Reference
 - Blind Image Spatial Quality Evaluator (BRISQUE)
 - Natural Image Quality Evaluator (NIQE)
 - Perception based Image Quality Evaluator (PIQE)