Dimensionality Reduction

Lecture 12

The Curse of Dimensionality

Challenge 1

In high dimensions, data become sparse

(increasing the risk of overfitting)

Random data points in a unit hypercube...

- Data point is a distance < 0.01 units from the edge of a unit hypercube
- All other data

Fraction of edge data

0.016

0.030

0.064

In high dimensions...

...nearly all of the high dimensional space is far away from the center

Note: figures constructed using 1,000 random points

In high dimensions...

...data become sparse

Note: figures constructed using 1,000 random points

Challenge 2

Much more data are needed for sampling higher dimensional spaces

Sample a unit hypercube on a grid spaced at intervals of 0.5

...it takes more data to learn in high dimensional spaces

Kyle Bradbury Dimensionality Reduction Lecture 12

Dimensionality Reduction

Benefits:

Simplified computation
Reduced redundancy of features
Improved numerical stability due to removed correlations

Popular approach:

Principal Components Analysis (PCA)

PCA

Before you begin: Normalize the data!

For each feature, subtract the mean and divide by the standard deviation

$$\boldsymbol{X} = \begin{bmatrix} x_{11} & \cdots & x_{1D} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{ND} \end{bmatrix} \text{rows = observations}$$

We normalize each of the columns

columns = features

Principal components analysis

Karhunen-Loève Transform
Proper orthogonal decomposition
Hotelling transform

Transform the data from a high dimensional space to a lower dimensional subspace, while minimizing the projection error

linear
transformation
matrix
(this is what we want to find through PCA)

sample of data in original D-dimensional space (this is one of N observations)

Transformed data in M-dimensional (lower dimensional) subspace

Principal components analysis

$$\begin{bmatrix} u_{11} & \cdots & u_{1D} \\ \vdots & \ddots & \vdots \\ u_{M1} & \cdots & u_{MD} \end{bmatrix} = \begin{bmatrix} -\boldsymbol{u}_1^T - \\ \vdots \\ -\boldsymbol{u}_M^T - \end{bmatrix}$$

linear transformation represents a matrix

Each u_i unit vector The i^{th} principal component:

$$z_i = \boldsymbol{u}_i^T \boldsymbol{x}$$

† the scalar and the scalar are unit vector

Since only direction matters, we assume the u_i are unit vectors

$$\boldsymbol{u}_i^T \boldsymbol{u}_i = 1$$

Principal Components

Maximum variance formulation

$$\boldsymbol{x}_i = \begin{bmatrix} x_{i,1} \\ x_{i,2} \end{bmatrix}$$

Reprojected Data onto Principal Components

Any point x_i can be represented as a combination of the principle components

$$x_i = \sum_{i=1}^D z_{ij} \mathbf{u}_j$$

The u_j 's are an orthogonal basis for the space \mathbb{R}^D

Approximating data with principal components

