Problem 1

	Collegiate	Mini
Sq Ft	3	2
Labour (mins)	45	40
Profit	32	24

5000 material per week

Units sold per week

Collegiate <= 1000

Mini <= 1200

35 employees work 40 hrs. per week

a. Decision Variables:

X = collegiate units Y = Mini Units

b. Objective Function: Max32X+24Y

c. Constraints:

Material Constraint: 3X+2Y <= 5000 Labour Constraint: 45X+40Y <=84,000

X <= 1000

Y <= 1200

d. Full math formula:

Max32X+24Y = Profit Min 45X+40Y = labour Cost

Problem 2

Plant	Production Capacity	Storage Capacity	Layoffs
1	S+M+L <= 750	125+15M+20 (S+	>0.5
2	S+M+L <= 900	125+15M+20L <= 12000	(S+M+L)/90 0 >0.5
3	S+M+L <= 450	125+15M+20 (S+	> 0.5

	Small	Medium	Large
Profit	300	360	420
Storage	12	15	20
Plant 1	540	13000	
Plant 2	900	12000	
Plant 3	450	5000	

a. Decision Variables:

S = Small product M = Medium Product L = Large Product

b. Linear Programming Model:

Max300s+360m+420I = Profit

Maximize:

300s1+300s2+300s3+360m1+360m2+360m3+420l1+420l2+420l3

Constraints:

S, M, L >= 0 Plant:

s1+m1+l2 <= 750 s2+m2+l3 <= 900 s3+m3+l3 <= 450

Sales:

s1+s2+s3 <= 750 m1+m2+m3 <= 1200 | 1+|2+|3 <= 900

Storage:

12s1+15m1+20l1 <= 13000 12s2+15m2+20l2 <= 12000 12s3+15m3+20l3 <= 5000