Подготовка: Дифференциальные уравнения

Полная версия с разборами тем и ссылками

Содержание

1	Однородные линейные разностные уравнения	2
2	Минимальное ЛОУ: метод аннигиляторов	2
3	Неоднородные динейные разностные уравнения	1

by werserk 1

1 Однородные линейные разностные уравнения

Пример. Решите однородное линейное разностное уравнение:

$$y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t = 0 (1)$$

Определение. Линейное однородное разностное уравнение порядка k с постоянными коэффициентами:

$$a_t + c_1 a_{t-1} + c_2 a_{t-2} + \dots + c_k a_{t-k} = 0, \quad c_k \neq 0$$
 (2)

 Π ара «уравнение + k начальных условий» задаёт единственное решение.

Идея решения: метод характеристических корней. Полагаем $a_t = r^t \Rightarrow$

$$r^{t}(1 + c_{1}r^{-1} + c_{2}r^{-2} + \dots + c_{k}r^{-k}) = 0 \iff r^{k} + c_{1}r^{k-1} + \dots + c_{k} = 0$$
(3)

т.е. характеристический многочлен $\chi(r) = r^k + c_1 r^{k-1} + \cdots + c_k$. Его корни целиком описывают форму общего решения.

Обозначения: $p_i(t), q_i(t)$ — полиномы по t степени $\leq j$.

Таблица 1: Выбор формы решения по типу корней характеристического многочлена

Условия на корни	Вклад в решение
Действительный корень r кратности $m \geq 1$	$p_{m-1}(t) r^t$
Комплексно-сопряжённая пара $ ho e^{\pm i heta}$ кратности $s \geq 1$	$\rho^{t}(p_{s-1}(t)\cos(\theta t) + q_{s-1}(t)\sin(\theta t))$

Итоговое общее решение — сумма форм всех корней:

$$a_t = \sum_{j} p_{m_j - 1}(t) r_j^t + \sum_{k} \rho_k^t (p_{s_k - 1}(t) \cos(\theta_k t) + q_{s_k - 1}(t) \sin(\theta_k t)),$$

где r_j — действительные корни кратности m_j , $\rho_k e^{\pm i\theta_k}$ — комплексно-сопряжённые корни кратности s_k . Сумма кратностей всех корней равна порядку k.

Начальные условия. Подставляем $t = 0, 1, \dots, k-1$ в общий вид, решаем линейную систему на α -коэффициенты.

Алгоритм.

- 1. Нормализация. Привести уравнение к виду $a_t + \sum_{j=1}^k c_j a_{t-j} = 0, c_k \neq 0.$ 2. Характеристический многочлен. Записать $\chi(r) = r^k + c_1 r^{k-1} + \cdots + c_k.$
- 3. **Корни и кратности.** Найти корни r и их кратности m ($\sum m = k$).
- 4. Общий вид решения (см. таблицу 1). Для каждого корня/пары взять соответствующий вклад из таблицы и сложить их.
- 5. **Подгонка под начальные условия.** Подставить k заданных значений подряд и решить линейную систему для постоянных.

2 Минимальное ЛОУ: метод аннигиляторов

TL;DR: минимальное ЛОУ (минимальная однородная линейная рекуррент с постоянными коэффициентами), которое имеет данные последовательности в качестве решений, строится

- 1. к каждой заданной последовательности приписать аннигилятор (многочлен от E);
- 2. взять НОК этих аннигиляторов как многочлен $L(\lambda)$;
- 3. развернуть L(E) y = 0 в явную рекурренту. Степень L минимальный порядок.

by werserk 2

Методика (детерминированно)

Пусть даны частные решения $y^{(1)}, \dots, y^{(m)}$.

Шаг 1. Атом \rightarrow аннигилятор

Для каждой последовательности выпиши минимальный аннигилирующий многочлен:

Таблица 2: Атом \rightarrow аннигилятор

Атом (последовательность)	Минимальный аннигилятор $L(\lambda)$
r^t	$(\lambda - r)$
$t^k r^t$	$(\lambda - r)^{k+1}$
$\rho^t \cos(\omega t), \rho^t \sin(\omega t)$	$Q_{\rho,\omega}(\lambda) = \lambda^2 - 2\rho\cos\omega\lambda + \rho^2$
$t^k \rho^t \cos / \sin(\omega t)$	$Q_{\rho,\omega}(\lambda)^{k+1}$
t^k	$(\lambda - 1)^{k+1}$
$(-1)^t$	$(\lambda + 1)$

Шаг 2. Собрать общий аннигилятор

Возьмём НОК (наименьший общий кратный) всех многочленов из шага 1:

$$L(\lambda) = \operatorname{lcm} (L_1(\lambda), \dots, L_m(\lambda)).$$

При одинаковых базах/частотах выбирается максимальная кратность (а не сумма).

Шаг 3. Развернуть в рекуррент

Если $L(\lambda) = \lambda^k + c_1 \lambda^{k-1} + \dots + c_k$, то искомое уравнение:

$$y_{t+k} + c_1 y_{t+k-1} + \dots + c_k y_t = 0$$
.

Минимальность. Любой многочлен P(E), который зануляет все данные последовательности, обязан делиться на L(E). Поэтому $\deg L$ — минимально возможный порядок.

Простой пример

Дано:

$$y_t^{(1)} = 3^t, y_t^{(2)} = (-2)^t.$$

Шаг 1. Аннигиляторы: $(\lambda - 3)$ и $(\lambda + 2)$.

Шаг 2. НОК:

$$(\lambda - 3)(\lambda + 2) = \lambda^2 - \lambda - 6.$$

Шаг 3. Рекуррентное соотношение (развёртка):

$$y_{t+2} - y_{t+1} - 6y_t = 0$$

Проверка: последовательности 3^t и $(-2)^t$ действительно являются решениями; порядок 2 минимален.

Пример посложнее

Дано:

$$y_t^{(1)} = 2^t, y_t^{(2)} = t2^t, y_t^{(3)} = (-1)^t, y_t^{(4)} = 3^t \cos \frac{\pi t}{3}.$$

Шаг 1. Аннигиляторы

- Для 2^t : $(\lambda 2)$.
- ullet Для $t2^t$: $(\lambda 2)^2$ (кратность на 1 больше из-за множителя t).
- Для $(-1)^t$: $(\lambda + 1)$.
- Для $3^t \cos \frac{\pi t}{3}$:

$$Q_{3,\pi/3}(\lambda) = \lambda^2 - 2 \cdot 3\cos\frac{\pi}{3} \lambda + 3^2 = \lambda^2 - 3\lambda + 9.$$

Шаг 2. НОК

Учитываем максимальную кратность по базе 2, значит

$$L(\lambda) = (\lambda - 2)^2(\lambda + 1)(\lambda^2 - 3\lambda + 9).$$

Шаг 3. Развёртка

Сначала

$$(\lambda - 2)^2(\lambda + 1) = (\lambda^2 - 4\lambda + 4)(\lambda + 1) = \lambda^3 - 3\lambda^2 + 4.$$

Умножаем на $\lambda^2 - 3\lambda + 9$:

$$L(\lambda) = (\lambda^3 - 3\lambda^2 + 4)(\lambda^2 - 3\lambda + 9) = \lambda^5 - 6\lambda^4 + 18\lambda^3 - 23\lambda^2 - 12\lambda + 36.$$

Соответствующая рекуррентная формула (коэффициенты берём по степеням λ) будет

$$y_{t+5} - 6y_{t+4} + 18y_{t+3} - 23y_{t+2} - 12y_{t+1} + 36y_t = 0.$$

Комментарий. Это и есть минимальное ЛОУ, annihilator которого равен $L(\lambda)$.

3 Неоднородные линейные разностные уравнения

Пример. Решите неоднородное линейное разностное уравнение:

$$y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t = 2^t + t (4)$$

Определение. Линейное неоднородное разностное уравнение порядка k с постоянными коэффициентами:

$$a_t + c_1 a_{t-1} + c_2 a_{t-2} + \dots + c_k a_{t-k} = f(t), \quad c_k \neq 0$$
 (5)

4

где f(t) — заданная функция (неоднородность).

Структура общего решения: $a_t = a_t^{(h)} + a_t^{(p)}$, где:

- $a_t^{(h)}$ общее решение однородного уравнения (см. раздел 1)
- $a_t^{(p)}$ частное решение неоднородного уравнения

Метод неопределённых коэффициентов для $a_t^{(p)}.$

Пусть характеристический многочлен однородного уравнения:

$$\chi(r) = r^k + c_1 r^{k-1} + \dots + c_k$$
 if $\chi(r) = \prod_i (r - r_i)^{m_i} \prod_{\ell} Q_{\rho_{\ell}, \theta_{\ell}}(r)^{s_{\ell}}$,

где

$$Q_{\rho,\theta}(r) = (r - \rho e^{i\theta})(r - \rho e^{-i\theta}) = r^2 - 2\rho\cos\theta \, r + \rho^2.$$

Правило «множитель \rightarrow вклад» (однородная часть):

- Линейный $(r-r_0)^m \Rightarrow \sum_{j=0}^{m-1} \alpha_j t^j r_0^t$.
- Квадратный $Q_{\rho,\theta}(r)^s \Rightarrow \rho^t \Big(\sum_{j=0}^{s-1} t^j \big(a_j \cos(\theta t) + b_j \sin(\theta t) \big) \Big).$

Итог: $a_t^{(h)}$ — сумма всех таких вкладов по всем множителям χ .

Выбор формы частного решения $a_t^{(p)}$:

Обозначения: $P_n(t)$ — полином степени n; $Q_n(t)$, $R_n(t)$ — полиномы; $\lambda \in \mathbb{C}$; s — кратность резонанса (кратность соответствующего множителя в χ).

Таблица 3: Выбор формы частного решения и проверка резонанса

$oxed{Heoднoродность} f(t)$	Проверка резонанса	Базовая форма $a_t^{(p)}$
$P_n(t) \lambda^t$	$\chi(\lambda) = 0?$	$Q_n(t) \lambda^t$
$\rho^t \cos(\theta t), \rho^t \sin(\theta t)$	$Q_{\rho,\theta}(r) \mid \chi(r)$?	$\rho^t (A\cos(\theta t) + B\sin(\theta t))$
$P_n(t) \rho^t \cos(\theta t)$ (или \sin)	$Q_{\rho,\theta}(r) \mid \chi(r)$?	$\rho^{t}(Q_{n}(t)\cos(\theta t) + R_{n}(t)\sin(\theta t))$
Чистый полином $P_n(t)$	$\chi(1) = 0?$	$Q_n(t)$

Правило резонанса: если проверка даёт резонанс кратности s, домножьте базовую форму на t^s .

Алгоритм решения неоднородного уравнения.

- 1. **Однородная часть.** Найти $a_t^{(h)}$ методом характеристических корней (см. раздел 1).
- 2. **Форма частного решения.** По таблице 3 выбрать форму $a_t^{(p)}$ с учётом правила резонанса.
- 3. **Подстановка.** Подставить $a_t^{(p)}$ в исходное неоднородное уравнение и найти неопределённые коэффициенты.
- 4. Общее решение. $a_t = a_t^{(h)} + a_t^{(p)}$.
- 5. **Начальные условия.** Подставить k заданных значений и найти константы в $a_t^{(h)}$.

Пример. Решите разностное уравнение третьего порядка с постоянными коэффициентами:

$$y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t = 2^t + t$$

Найти общее решение y_t .

Решение.

1) Однородная часть. Характеристический многочлен:

$$\chi(r) = r^3 - 3r^2 + 6r - 4 = (r - 1)(r^2 - 2r + 4),$$

корни: $r_1 = 1$, $r_{2,3} = 1 \pm i\sqrt{3} = 2e^{\pm i\pi/3}$.

Отсюда

$$y_t^{(h)} = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{3} + C_3 \sin \frac{\pi t}{3} \right).$$

2) Частное решение $y_t^{(p)}$. Правая часть $f(t)=2^t+t$ — сумма двух типов. Экспонента 2^t : $\chi(2)=8-12+12-4=4\neq 0 \Rightarrow$ резонанса нет, берём $y_{(1)}^{(p)}=\alpha\,2^t$. Полином t: $\chi(1)=0$ (кратность 1) \Rightarrow резонанс порядка s=1. Базовая форма для $P_1(t)$ — At+B, домножаем на t:

$$y_{(2)}^{(p)} = t(At + B) = At^2 + Bt.$$

Итого

$$y_t^{(p)} = \alpha 2^t + At^2 + Bt.$$

3) Подстановка и определение коэффициентов. Обозначим линейный оператор:

$$\mathcal{L}[y_t] = y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t.$$

Для экспоненты: $\mathcal{L}[2^t]=\chi(2)\,2^t=4\cdot 2^t\Rightarrow 4\alpha\,2^t=2^t,$ значит $\alpha=\frac{1}{4}.$ Для полинома At^2+Bt прямой подсчёт даёт:

$$\mathcal{L}[At^2 + Bt] = 6At + (3A + 3B).$$

Требуем $\mathcal{L}[At^2 + Bt] = t$, откуда

$$6A = 1 \Rightarrow A = \frac{1}{6}, \qquad 3A + 3B = 0 \Rightarrow B = -\frac{1}{6}.$$

Следовательно,

$$y_t^{(p)} = \frac{1}{4} 2^t + \frac{t^2 - t}{6}.$$

4) Общее решение.

$$y_t = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{3} + C_3 \sin \frac{\pi t}{3} \right) + \frac{1}{4} 2^t + \frac{t^2 - t}{6}$$

(константы C_1, C_2, C_3 находятся по начальным условиям).