

Crystal Calorimeters at Linear Collider

Ren-yuan Zhu
California Institute of Technology

Outline

Crystal Calorimetry for LC:

- Why Crystal Calorimetry at LC;
- Possible Crystal Technologies for LC.
- Recent Progress on Crystal R&D:
 - Yttrium Doped PWO Crystals for CMS;
 - PWO Crystals with High Light Yield;
 - PbF₂ Crystals;
 - LSO(Ce) and GSO(Ce).

Why Crystal Calorimetry at LC (I)

Charmonium System Observed Through Inclusive Photons: CB

SUSY Breaking with Gravitino

$$\mathbf{e}^{\scriptscriptstyle +}\mathbf{e}^{\scriptscriptstyle -} \rightarrow \widetilde{\chi}_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}\widetilde{\chi}_{\scriptscriptstyle 1}^{\scriptscriptstyle 0} \rightarrow \gamma\gamma\widetilde{\mathsf{G}}\widetilde{\mathsf{G}}$$

Why Crystal Calorimetry at LC (II)

The CDF event: $2 e + 2 ? + E_T^{miss}$

SM expectation (WW??) $\sim 10^{-6}$ (PR D59 1999)

Possible SUSY explanation

$$q\overline{q} \rightarrow \widetilde{e}^{\scriptscriptstyle +}\widetilde{e}^{\scriptscriptstyle -} \rightarrow ee\widetilde{\chi}_1^0\widetilde{\chi}_1^0 \rightarrow ee\gamma\gamma\widetilde{G}\widetilde{G}$$

L3 should be able to observe

$$\mathbf{e}^{\scriptscriptstyle +}\mathbf{e}^{\scriptscriptstyle -} \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \rightarrow \gamma \gamma \widetilde{\mathsf{G}}\widetilde{\mathsf{G}}$$

Another possible channel

$$\mathbf{e}^{\scriptscriptstyle +}\mathbf{e}^{\scriptscriptstyle -} \to \widetilde{\chi}_{2}^{\scriptscriptstyle 0}\widetilde{\chi}_{2}^{\scriptscriptstyle 0} \to \gamma\gamma\widetilde{\chi}_{1}^{\scriptscriptstyle 0}\widetilde{\chi}_{1}^{\scriptscriptstyle 0}$$

Jet Mass Resolution

Improved by using Tracker, I.e. Energy Flow Concept: 10% to 7%

Further Improved by using Kinematic Constraints: 3%

Properties of Crystal Scintillators

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	PbWO ₄	LSO(Ce)	GSO(Ce)
Density (g/cm³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71
Melting Point (?C)	651	621	621	1280	1050	1123	2050	1950
Radiation Length (cm)	2.59	1.85	1.85	2.06	1.12	0.9	1.14	1.37
Moliere Radius (cm)	4.8	3.5	3.5	3.4	2.3	2.0	2.3	2.37
Interaction Length (cm)	41.4	37.0	37.0	29.9	21.8	18	21	22
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	2.2	1.82	1.85
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm)	410	560	420	300	480	560	420	440
(at peak)			310	220		420		
Decay Time ^b (ns)	230	1300	35	630	300	50	40	60
			6	0.9		10		
Light Yield ^{b,c} (%)	100	45	5.6	21	9	0.1	75	30
			2.3	2.7		0.6		
d(LY)/dT ^b (%/ ?C)	~0	0.3	-0.6	-2	-1.6	-1.9	?	?
				~0				
Volume Price (\$/cm³)	1 to 2	2	2.5	2.5	7	2.5	-	-

a. at peak of emission; b. up/low row: slow/fast component; c. measured by PMT of bi-alkali cathode.

Samples of Crystal Scintillators

1.5 X₀ Cubic

Full Size Samples

BaBar CsI(TI): 16 X₀

L3 BGO: 22 X₀

CMS PWO(Y): 25 X₀

Scintillation Light of 6 Samples

Summary: Crystal Calorimetry for LC

- To maximize physics reach, calorimetry for LC should have good measurement on electrons, photons and jets.
- The crystal calorimetry provides the best achievable EM resolution, good missing energy and jet resolution.
- Heavy crystal scintillators may provide a cost effective EM calorimeter solution.

Yttrium Doped PWO for CMS

Bridgman Growth

Segregation = 0.91 ± 0.04

CMS PWO(Y) Emission

Excitation & Emission not affected by radiation.

CMS PWO(Y) Uniformity

$$\frac{y}{v_{mid}} = 1 + \delta(x/x_{mid} - 1)$$

Light response Uniformity is not affected by radiation

CMS PWO(Y): Transmittance

Grown along c axis

Grown along a axis

Progress observed during crystal development

CMS PWO(Y): Decay Kinetics

90 and 95% of light output in 50 and 100 ns respectively

CMS PWO(Y): Radiation Damage

5 to 15% loss of light output at 15 brad/h (the maximum in barrel)

CMS PWO(Y): Color Centers

C₁: 3.07 eV (400 nm) / 0.76 eV,

C₂: 2.30 eV (540 nm) / 0.19 eV

New Type PWO Crystal Samples

PWO Samples from SIC

Emission Spectra

New PWO has emission peaked at 560 nm

PWO Crystal with High Light Yield

QE of PMT and Emission

Taking into account of PMT QE, new PWO has 10 X LY

Poor Longitudinal Uniformity

Z9 Emission: Seed, Middle, Tail

Z9 Decay: Tail, Middle, Seed

Doping is not uniform: Segregation < 1

Status of Lead Fluoride

Scintillation of PbF₂(Gd)

PbF₂(Gd) Response to MIP of 1 GeV/c

Fast Scintillation of 6.5 p.e./MeV with decay time of less than 10 ns

C. Woody et al., in Proceedings of SCINT95, Delft, The Netherlands

Summary: Crystal R&D

- Two dopants increase PWO light output by ten folds as compared to PWO(Y). Both have poor longitudinal uniformity due to different segregation coefficients.
 Approach: double doping.
- Scintillating PbF₂ has light yield of 6 p.e./MeV after trying dopants of Sm, Tb, Na, K, Eu, La, Pr, Ce, Nd, Pm, Dy, Er and Gd at SIC.
- Ce doped lutetium oxyorthosilicate, LSO(Ce), and gadolinium orthosilicate, GSO(Ce), have light yield of 75% and 30% of Nal(Tl) and 40 and 60 ns decay time, respectively, but high price (60\$/cc during R&D stage) caused by high melting point (~2,000°C) and expensive raw material and poor uniformity.

Approach: try mass production at SIC.