Hvordan lage svart te?

Teknisk rapportmal NTNU Studenter Trondheim, vår 2024

Kandidater (etternavn, fornavn):

Helle Augland Grasmo

DATO: Fagkode: Gruppe (navn/nr) | Sider / Bilag: BIBL. NR: 2024-02-20 | IELET2112 | Not applicable / 0 | 12 / 0 | N/A

FAGLÆRER(E):

Dominik Osinksi

TITTLEL:

Hvordan lage svart te?

SAMMENDRAG:

En veldig god oppsummering

Innhold

1 Introduksjon	4
2 Teori	5
2.1 Framgangsmåte ish. pr nå	5
3 Maskinvare	
4 Programvare	7
5 Eksperimenter og resultater	
6 Konklusjon	9
7 Tilbakemeldinger	10
7.1 Hva har vi lært?	10
7.2 Forslag til prosjektendringer	10
Bibliografi	
9 Vedlegg	12

1 Introduksjon

Prosjekt går ut på å hvordan man lager best sensorer. liten tanktegang om hvordan man måler, hva slags feilkilder og litt lingnenge.

2 Teori

Bruker steinhart-hart formel. spenningsdeling

Stein

For å måle motstanden til thermistoren, så brukte vi matte for å regne den ut. Det vi vet er at strømmen igennom den ene motstanden er den samme som igjennom thermistoren. Det gjør at vi kan bruke sammenhengen

$$I_1 = I_2 = I_{\rm tot}$$

$$\frac{U_1}{R_1} = \frac{U_2}{R_2} = I_{\rm tot}$$

Ved å regne ut med hensyn på r_1 så vil vi få formelen

$$R_1 = \frac{U_1}{U_2} \cdot R_2$$

Ved å måle spenningen så

2.1 Framgangsmåte ish. pr nå.

Kan bruke sammenhengen $u_1/r_1 = u_2/r_2 = I_{tot}$ pg vi måler spenningne over begge u. Hvis vi ikke hadde gjort det så hadde det bare vært basert på u_tot som ikke er helt presis pg

Bruker Steinhart–Hart equation https://en.wikipedia.org/wiki/Steinhart%E2%80%93 Hart_equation For å regne ut temperaturen. Fant de ulike delene ved å lete i databladet til thermistoren. Dette ble så bygget opp i labview.

Steinarthartsformula: T_0 = 25+273 R = den vi måler B = 3950 R-0 = 10k som alle målinger er i 25 grader

3 Maskinvare

Hardware består av en Mydaq, et breadboard, kabler, thermistor $10\mathrm{k},$ og en $10\mathrm{k}.$

4 Programvare

5 Eksperimenter og resultater

6 Konklusjon

7 TILBAKEMELDINGER

- 7.1 Hva har vi lært?
- 7.2 Forslag til prosjektendringer

8 BIBLIOGRAFI

9 Vedlegg