

2019.04.30

Toy OBDH system

Juan A. de la Puente
<jpuente@dit.upm.es>

Overview

- The aim of this project is to build a simple mockup of a satellite OBDH system performing basic housekeeping telemetry
 - periodic sensor sampling
 - periodic basic telemetry
 - on-request housekeeping telemetry with recent data
- The target platform is an STM32F429 discovery board
- The host platform is a GNU/Linux workstation

Functional requirements

- A temperature sensor is periodically sampled with period T_S
- A basic TM message is sent periodically with period T_B. The message contains the average value of the temperatures measured since the last basic TM
- The system can receive a TC from the ground station requesting a temperature report. It replies with a housekeeping TM message including the values of all temperatures stored since the last basic TM message and their respective reading times.
- TM messages are stamped with the current time.
- Time stamp values are given in seconds from the system start time, with a resolution of at least 1 ms.

Temporal requirements

- Temperature must be sampled every $T_S = 1 \text{ s}$
 - ▶ reading to be completed before D_S = 0.1 s
- Basic telemetry must be sent every $T_B = 10 \text{ s}$
 - ▶ message must be sent before D_B = 0.5 s
- Telecommands are separated by at least $T_C = 2$ s
 - processing must be completed before $D_C = 0.05$ s
- Housekeeping telemetry messages are sent after reception of a TC
 - ▶ message must be sent before D_H = 0.2 s

Context diagram

Architectural design (AADL)

Architectural design (UML)

Detailed design

RT Analysis

Task		Р	Т	С	В	R	D
TC	S	4	2,0	0,020	0,001	0,021	0,050
Housekeeping	Р	3	0,1	0,010	0,002	0,032	0,100
HK_TM	S	2	2,0	0,12	0,005	0,165	0,200
Basic_TM	Р	1	10,0	0,050	0,000	0,210	0,500
РО							
HK request		4		0,001			
TC event		4		0,001			
Buffer		3		0,002			
TM		2		0,005			

Ground station

Ground station test arrangement

Embedded computer STM32F4 - discovery


```
temperature sensor TMP36 (ADC)
pin 1 (violet) -> + 3V
pin2 (orange) -> PA5 (V out)
pin3 (black) -> GND
```



```
USB serial cable — IEEE 1394 e.g. FTDI TTL-232R-5V
```

```
serial port
pin 1 (black) -> GND
pin 4 (orange) -> PB7 RX
pin 5 (yellow) -> PB6 TX
```

115200 bps 8N1

Ground station

runs on Ubuntu, MacOS, Windows

Implementation

- obdh: compile on development platform (linux)
 - ▶ download code from the <u>STR-UPM ToyOBDH</u> GitHub repository
 - compile and build with the arm-elf compiler
 - upload to the board through usb connection
- gs: compile on linux/Mac/Windows workstation
 - requires a native GNAT compiler and the GtkAda library

References

- Github repositories
 - https://github.com/STR-UPM
 - ToyOBDH and ToyGS sources
- AdaCore Community site
 - https://www.adacore.com/community
 - native GNAT compilation system for the development platform
 download also gtkada libraries
 - cross compilation system for Raspberry Pi with linux, hosted on linux