PROBABILIDADE E PROCESSOS ESTOCÁSTICOS (CKP7366)

Prof. João Paulo Pordeus Gomes

PROBABILIDADE CONDICIONAL E REGRA DE BAYES

Probabilidade Condicional

- Conhecimento sobre um evento leva a uma revisão da sua crença sobre a probabilidade de um novo evento
 - Exemplo
 - Probabilidade de uma pessoa ter mais de 25 anos

Probabilidade Condicional e Regra de Bayes

- Probabilidade Condicional
- Regras derivadas do conceito de PC
 - Regra da multiplicação
 - Teorema da probabilidade total
 - Regra de Bayes

$$P(A) =$$

$$P(B) =$$

$$P(A) = 5/12$$

$$P(B) = 6/12$$

$$P(A) = 5/12$$

$$P(B) = 6/12$$

$$P(A) = ?$$

$$P(B) = ?$$

$$P(A) = 5/12$$

$$P(B) = 6/12$$

$$P(A|B) = ?$$

$$P(B|B) = ?$$

$$P(A) = 5/12$$

$$P(B) = 6/12$$

$$P(A|B) = 2/6$$

$$P(B|B) = 1$$

Probabilidade Condicional

$$P(A|B) =$$

Probabilidade Condicional

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

• Seja B um evento : min(X,Y)=2

- Seja B um evento : min(X,Y)=2
- Seja M = max(X,Y)
- P(M = 3|B) =

- Seja B um evento : min(X,Y)=2
- Seja M = max(X,Y)
- $P(M = 3|B) = \frac{2}{5}$

Probabilidade condicional e os axiomas

- $P(A|B) \ge 0$
- $P(\Omega|B) = 1$
- P(B|B) = 1
- $P(A \cup C|B) = P(A|B) + P(C|B)$

- Evento A: Avião voando
- Evento B: Algo detectado

- Evento A: Avião voando
- Evento B: Algo detectado

• $P(A \cap B) =$

- Evento A: Avião voando
- Evento B: Algo detectado

- Evento A: Avião voando
- Evento B: Algo detectado

P(B) =

- Evento A: Avião voando
- Evento B: Algo detectado

- Evento A: Avião voando
- Evento B: Algo detectado

P(A|B) =

- Evento A: Avião voando
- Evento B: Algo detectado

• P(A|B) = 0.34

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \cap B) = P(A|B)P(B)$$

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \cap B) = P(A|B)P(B)$$

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \cap B) = P(A|B)P(B)$$

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \cap B) = P(A|B)P(B)$$

•
$$P(A^c \cap B \cap C^c) =$$

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \cap B) = P(A|B)P(B)$$

•
$$P((A^c \cap B) \cap C^c) =$$

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \cap B) = P(A|B)P(B)$$

•
$$P((A^c \cap B) \cap C^c) =$$

• =
$$P(C^c|A^c \cap B)P(A^c \cap B)$$

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(A \cap B) = P(A|B)P(B)$$

•
$$P((A^c \cap B) \cap C^c) =$$

• =
$$P(C^c|A^c \cap B)P(A^c \cap B)$$

• =
$$P(C^c|A^c \cap B)P(B|A^c)P(A^c)$$

Exercícios

- Mostre que:
- $P(A \cap B|C) = P(A|C)P(B|A \cap C)$
- $P(A \cap B \cap C) = P(A)P(C \cap A|A)P(B|A \cap C)$

- Temos P(A_i) e P(B|A_i)
- Calcular P(B)

- Temos P(A_i) e P(B|A_i)
- Calcular P(B)
- $B = (A_1 \cap B) \cup (A_2 \cap B) \cup (A_3 \cap B)$

- Calcular P(B)
- $B = (A_1 \cap B) \cup (A_2 \cap B) \cup (A_3 \cap B)$
- $P(B) = P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B)$

 $A_2 \cap B$

 $A_1 \cap B$

 $A_3 \cap B$

- Temos P(A_i) e P(B|A_i)
- Calcular P(B)
- $B = (A_1 \cap B) \cup (A_2 \cap B) \cup (A_3 \cap B)$
- $P(B) = P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B)$
- $P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + P(A_3)P(B|A_3)$

- $P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + P(A_3)P(B|A_3)$
- $P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i)$

- Temos P(A_i) e P(B|A_i)
- Calcular P(A_i|B)

- Temos P(A_i) e P(B|A_i)
- Calcular P(A_i|B)

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

•
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

•
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Exemplo
 - Diagnóstico

DÚVIDAS?