МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФРМАТИКИ

Кафедра теории вероятностей и математической статистики

ПОЛУЗЁРОВ Тимофей Дмитриевич

МОДЕЛИ ДОХОДНОСТЕЙ АКТИВОВ В СРЕДНЕ-ДИСПЕРСИОННОМ АНАЛИЗЕ МАРКОВИЦА НА КРИПТОВАЛЮТНЫХ РЫНКАХ

Магистерска диссертация специальность 1-31 80 09 «Прикладная математика и информатика»

Научный руководитель
Харин Алексей Юрьевич
заведующий кафедрой, доктор
физико-математических наук,
профессор

Доп	ущена к защите
«	.» 2025 г.
Зав.	кафедрой теории вероятностей и математической статистики
	А. Ю. Харин
док	гор физико-математических наук, профессор

Минск, 2025

ОГЛАВЛЕНИЕ

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ	3
АГУЛЬНАЯ ХАРАКТЫРЫСТЫКА РАБОТЫ	4
GENERAL DESCRIPTION OF WORK	5
введение	6
1. ВВЕДЕНИЕ В РЫНОК КРИПТОВАЛЮТ	7
2. СРЕДНЕ-ДИСПЕРСИОННЫЙ АНАЛИЗ ПОРТФЕЛЯ	8
2.1. Основные понятия	8
2.2. Сведение к процентным ставкам	9
2.3. Диверсификация портфеля	11
3. ПРОВЕРКА СТРАТЕГИЙ НА РЫНОЧНЫХ ДАННЫХ	
3.1. Подготовка данных	14
3.2. Оценка ковариации между активами	19
3.3. Модели оценки средней доходности	20
3.4. Проверка стратегий на тестовых данных	22
ЗАКЛЮЧЕНИЕ	2/

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Ключевые слова: кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс dct ghbdt ndctgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g

Задачи исследования:

- 1. пункт 1
- 2. пункт 2

Цель работы: тут цель

Объект исследования является

Предмет исследования является

Методы исследования: методы методы

Результаты работы

Области применения

АГУЛЬНАЯ ХАРАКТЫРЫСТЫКА РАБОТЫ

Ключавыя словы: кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g

Мэта работы: тут цель Задачи исследования:

- 1. пункт 1
- 2. пункт 2

Аб'ектам даследавання является Метады даследавання методы методы Вынікі работы Вобласть ўжывання

GENERAL DESCRIPTION OF WORK

Keywords: кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g кейвордс det ghbdt ndetgfd mfjgm jdfgm jmfg mjdjf gmjldfmjl gmdfl g

The object: тут цель

The objective:

- 1. item one
- 2. item two

Research methods: методы методы

The results

Application

введение

Тут введение будет

1. ВВЕДЕНИЕ В РЫНОК КРИПТОВАЛЮТ

2. СРЕДНЕ-ДИСПЕРСИОННЫЙ АНАЛИЗ ПОРТФЕЛЯ

2.1. Основные понятия

Будем рассматривать одношаговую задачу инвестирования.

Пусть инвестор имееот возможность разместить свой начальный капитал x по акциям A_1, \ldots, A_N , стоимость которых в момент n=0 равна соответственно $S_0(A_1), \ldots, S_0(A_N)$

Пусть $X_0(b)=b_1S_0(A_1)+\cdots+B_NS_0(A_N)$, где $b_i\geq 0,\,i=1,\ldots N$. Иначе говоря, пусть

$$b = (b_1, \dots, b_N) \tag{2.1}$$

есть портфель ценных бумаг, где b_i – число акций A_i стоимостью $S_0(A_i)$.

Будем предпоалагать, что эволбция каждой акции A_i определяется тем, что её цена $S_1(A_i)$ в момент n=1 подчиняется разностному уравнению

$$\Delta S_1(A_i) = \rho(A_i)S_0(A_i) \tag{2.2}$$

или, что равносильно,

$$S_1(A_i) = (1 = \rho(A_i))S_0(A_i) \tag{2.3}$$

где $\rho(A_i)$ — случайная процентная ставка акции $A_i, \, \rho(A_i) > -1.$

Если инвестор выбрал портфель $b=(b_1,\ldots,b_N)$, то его начальный капитал $X_0(b)=x$ превратится в

$$X_1(b) = b_1 S_1(A_1) + \dots + b_N S_1(A_N), \tag{2.4}$$

и эту величину желательно сделать «побольше». Это желание, однако, должно рассматриваться с учетом «риска», связанного с получением «большего» дохода.

C этой целью Γ . Марковитц рассматривает две характеристики капитала

 $X_1(B)$:

$$\mathbb{E}\left[X_1(b)\right] \tag{2.5}$$

- математическое ожидание и

$$\mathbb{D}\left[X_1(b)\right] \tag{2.6}$$

– дисперсию.

Имея эти две характеристики, можно по-разному формулировать оптимизационную задачу выбора наилучшего портфеля в зависимости от критерия оптимальности.

Можно, например, задаться вопросом о том, на каком портфеле b^* достигается максимум некоторой целевой функции $f = f(\mathbb{E}[X_1(b)], \mathbb{D}[X_1(b)])$ при «бюджетном ограничении» на класс допустимых портфелей:

$$B(x) = \{b = (b_1, \dots, b_N) : b_i \ge 0, X_0(b) = x\}, x > 0$$
(2.7)

Естественна и следующая вариационная постановка: найти

$$\inf \mathbb{D}\left[X_1(b)\right] \tag{2.8}$$

в предположении, что inf берется по тем портфелям b, для которых выполнены ограничения

$$b \in B(x), \tag{2.9}$$

$$\mathbb{E}\left[X_1(b)\right] = m,\tag{2.10}$$

где m — некоторая константа.

2.2. Сведение к процентным ставкам

Покажем теперь, что в одношаговой задаче оптимизации портфеля ценных бумаг можно вместо величин $(s_1(A_1), \ldots, S_1(A_N))$ работать непосред-

ственно с процентными ставками $(\rho(A_1), \ldots, \rho(A_N))$, подразумевая под этим следующее.

Пусть $b \in B(X)$, т.е. $x = b_1 S_0(A_1) + \cdots + b_N S_0(A_N)$. Введем величины $d = (d_1, \ldots, d_N)$, полагая

$$d_i = \frac{b_i S_0(A_i)}{r} \tag{2.11}$$

.

Поскольку $b \in B(X)$, получаем, что $d_i \geq 0$ и $\sum_{i=1}^N = 1$. Представим капитал $X_1(B)$ в виде

$$X_1(b) = (1 + R(b))X_0(b),$$
 (2.12)

и пусть

$$\rho(d) = d_1 \rho(A_1) + \dots + d_N \rho(A_N). \tag{2.13}$$

Ясно, что

$$R(b) = \frac{X_1(b)}{X_0(b)} - 1 = \frac{X_1(b)}{x} - 1 = \tag{2.14}$$

$$\frac{\sum b_i S_1(A_i)}{x} - 1 = \sum d_i \frac{S_1(A_i)}{S_0(A_i)} - 1 =$$
 (2.15)

$$\sum d_i \left(\frac{S_1(A_i)}{S_0(A_i)} - 1 \right) = \sum d_i \rho(A_i) = \rho(d)$$
 (2.16)

Итак,

$$R(b) = \rho(d), \tag{2.17}$$

откуда следует, что если $d=(d_1,\ldots,d_N)$ и $b=(b_1,\ldots,b_N)$ связаны соотношениями $d_i=\frac{b_iS_0(A_i)}{x}, i=1,\ldots,N,$ то для $b\in B(x)$ выполняется равенство

$$X_1(b) = x(1 + \rho(d)),$$
 (2.18)

и, следовательно, с точки зрения оптимизационных задач для $X_1(b)$ можно оперировать с соотвествующими задачами для $\rho(d)$.

2.3. Диверсификация портфеля

Обратимся теперь к вопросу о том, как диверсификацией можно добится сколь угодно малого (несистематического) риска, измеряемого дисперсией или стандарным отклонением величин $X_1(b)$.

С этой целью рассмотрим для начала пару случайных величин ξ_1 и ξ_2 с конечными вторыми моментами. Тогда если c_1 и c_2 – константы, $\sigma_i = \sqrt{\mathbb{D}\left[\xi_i\right]}, i=1,2,$ то

$$\mathbb{D}\left[c_1\xi_1 + c_2\xi_2\right] = (c_1\sigma_1 - c_2\sigma_2)^2 + 2c_1c_2\sigma_1\sigma_2(1+\sigma_{12}),\tag{2.19}$$

где $\sigma_{12} = \frac{\mathbf{Cov}(\xi_1,\xi_2)}{\sigma_1\sigma_2}$, $\mathbf{Cov}(\xi_1,\xi_2) = \mathbb{E}\left[\xi_1\xi_2\right] - \mathbb{E}\left[\xi_1\right] \cdot \mathbb{E}\left[\xi_2\right]$. Отсюда ясно, что если $c_1\sigma_1 = c_2\sigma_2$ и $\sigma_{12} = -1$, то $\mathbb{D}\left[c_1\xi_1 + c_2\xi_2\right] = 0$. ак Таким образом, если величины ξ_1 и ξ_2 отрицательно коррелированы с коэффициентом корреляции $\sigma_{12} = -1$, то таким подбором констант c_1 и c_2 , что $c_1\sigma_1 = c_2\sigma_2$, получаем комбинацию $c_1\xi_1 + c_2\xi_2$ с нулевой дисперсией. Но, конечно, при этом среднее значение $\mathbb{E}\left[c_1\xi_1 + c_2\xi_2\right]$ может оказаться достаточно малым. (Случай $c_1 = c_2 = 0$ для задачи оптимизации не интересен в силу условия $b \in B(X)$).

Из этих элементарных рассуждений ясно, что при заданных ограничениях на (c_1, c_2) и класс величин (ξ_1, ξ_2) при решении задачи о том, чтобы сделать $\mathbb{E}\left[c_1\xi_1+c_2\xi_2\right]$ «побольше», а $\mathbb{D}\left[c_1\xi_1+c_2\xi_2\right]$ «поменьше», надо стремиться к выбору таких пар (ξ_1, ξ_2) , для которыз их ковариация была бы как можно ближе к минус единице.

Изложенный эффект отрицательной коррелированности, называемый эффектом Марковитца, является одной из основных идей диверсификации при инвестировании — при составлении портфеля ценных бумаг надо стремиться к тому, чтобы вложения делались в бумаги, среди которых по возможности много отрицательно коррелированных.

Другая идея, лежащая в основе диверсификации, основана на следующем соображении.

Пусть ξ_1, \dots, ξ_N — последоватльность некоррелированных случайных величин с дисперсиями $\mathbb{D}\left[\xi_i\right] \leq C, i=1,\dots,N,$ где C — некоторая константа.

Тогда

$$\mathbb{D}\left[d_1\xi_1 + \dots + d_N\xi_N\right] = \sum_{i=1}^N d_i^2 \mathbb{D}\left[\xi_i\right] \le C \sum_{i=1}^N d_i^2.$$
 (2.20)

Поэтому, взяв, например, $d_i = \frac{1}{N}$, находим, что

$$\mathbb{D}\left[d_1\xi_1 + \dots + d_N\xi_N\right] \le \frac{C}{N} \to 0, N \to \infty \tag{2.21}$$

Этот эффект некоррелиованности говорит о том, что если инвестирование производится в некоррелированные ценные бумаги, то для уменьшения риска, т. е. дисперсии $\mathbb{D}[d_1\xi_1+\cdots+d_N\xi_N]$, надо по возможности брать их число N как можно большим.

Вернемся к вопросу о дисперсии $\mathbb{D}\left[\rho(d)\right]$ величины

$$\rho(d) = d_1 \rho(A_1) + \dots + d_N \rho(A_N). \tag{2.22}$$

Имеем

$$\mathbb{D}\left[\rho(d)\right] = \sum_{i=1}^{N} d_i^2 \mathbb{D}\left[\rho(A_i)\right] + \sum_{i,j=1,i\neq j}^{N} d_i d_j \mathbf{Cov}\left(\rho(A_i), \rho(A_j)\right). \tag{2.23}$$

Возьмем здесь $d_i = \frac{1}{N}$. Тогда

$$\sum_{i=1}^{N} d_i^2 \mathbb{D}\left[\rho(A_i)\right] = \left(\frac{1}{N}\right) \cdot N \cdot \frac{1}{N} \sum_{i=1}^{N} \mathbb{D}\left[\rho(a_i)\right] = \frac{1}{N} \cdot \overline{\sigma}_N^2, \tag{2.24}$$

где $\bar{\sigma}_N^2 = \frac{1}{N} \sum_{i=1}^N \mathbb{D} \left[\rho(A_i) \right]$ — средняя дисперсия. Далее,

$$\sum_{i,j=1,i\neq j}^{N} d_i d_j \mathbf{Cov}\left(\rho(A_i), \rho(A_j)\right) = \left(\frac{1}{N}\right)^2 N(N-1) \overline{\mathbf{Cov}}_N, \tag{2.25}$$

где $\overline{\mathbf{Cov}}_N$ есть средняя ковариация

$$\overline{\mathbf{Cov}}_N = \frac{1}{N(N-1)} \sum_{i,j=1, i \neq j}^{N} \mathbf{Cov}\left(\rho(A_i), \rho(A_j)\right). \tag{2.26}$$

Таким образом,

$$\mathbb{D}\left[\rho(d)\right] = \frac{1}{N}\overline{\sigma}_N^2 + \left(1 - \frac{1}{N}\right)\overline{\mathbf{Cov}}_N,\tag{2.27}$$

и ясно, что если $\overline{\sigma}_N^2 \leq C$ и $\overline{\mathbf{Cov}}_N \to \overline{\mathbf{Cov}}$ при $N \to \infty$, то

$$\mathbb{D}\left[\rho(d)\right] \to \overline{\mathbf{Cov}}, N \to \infty. \tag{2.28}$$

Из этой формулы мы видим, что если $\overline{\mathbf{Cov}}$ равна нулю, то диверсификацией с достаточно большим N риск инвестирования, т.е. $\mathbb{D}\left[\rho(d)\right]$, может быть сделан сколь угодно малым. К сожалению, если рассматривать, скажем, рынок акций, то на нем, как правило, имеется положительная корреляция в ценах (они движутся довольно-таки согласованно в одном направлении), что приводит к тому, что $\overline{\mathbf{Cov}}_N$ не стремится к нулю при $N \to \infty$. Предельное значение $\overline{\mathbf{Cov}}$ и есть тот систематический, иначе — рыночный — риск, который присущ рассматриваемому рынку и диверсификацией не может быть редуцирован. Первый же член в формуле !!! определяет несистематический риск, который может быть редуцирован, как мы видели, выбором большого числа акций.

3. ПРОВЕРКА СТРАТЕГИЙ НА РЫНОЧНЫХ ДАННЫХ

3.1. Подготовка данных

В качестве реальных данных рассматриваются 8 наиболее популярных крюптовалют. Временной период с 1 января 2022 по 1 января 2025. Был выбран дневной таймфрейм. Период инвестирования 1 неделя.

На графике 3.1 изображены динамики цен активов

Рис. 3.1. Цены активов

Перейдем от цен к недельным доходностям. Временные ряды соответсвующие доходностям представлены на графике 3.2, а некоторые статистики относительно распределений доходностей в таблице 3.1

Таблица 3.1. Доходности активов

	BTC	ETH	DOT	OKB	XRP	SOL	TRX	LTC
mean	0.0073	0.0038	-0.0031	0.0077	0.0132	0.0114	0.0105	0.0025
std	0.0779	0.0961	0.1110	0.0936	0.1328	0.1482	0.0800	0.1001
\min	-0.3328	-0.3830	-0.3925	-0.3591	-0.3596	-0.6018	-0.3162	-0.3392
25%	-0.0358	-0.0477	-0.0724	-0.0401	-0.0506	-0.0765	-0.0236	-0.0513
50%	0.0026	-0.0013	-0.0084	-0.0016	-0.0003	-0.0034	0.0106	0.0001
75%	0.0446	0.0555	0.0573	0.0494	0.0430	0.0906	0.0373	0.0546
max	0.3566	0.5056	0.6188	0.4003	1.0235	0.7409	0.7407	0.5294

Рис. 3.2. Доходности активов

Можно видеть редкие но достаточно сильные скачки.

Распределение доходностей активов представлено на гистограммах на рисунке 3.3

Рис. 3.3. Гистограммы доходностей активов

Из гистограмм видно, что распределение доходностей унимодально и имеет тяжелый правый хвост.

На графике 3.4 сравниваются активы с точки зрения среднего и стандартного отклонения доходности.

Рис. 3.4. Среднее и стандартное отклонение доходностей

Разделим имеющиеся данные на валидационную и тестовую выборки. В качестве тестовых данных возьмем 2024 год. По валидационной выборке подберем гиперпараметры для модели из каждого рассматриваемого класса.

В дальнейшем тестовые данные будут использоваться для:

- 1. оценки качества прогнозирования средней ожидаемой доходности
- 2. тестирования портфельных стратегий

Из тестовых днных формируется набор тест-кейсов на которых и оценивается качество. Процесс формирования тест-кейсов схематично проилюстрирован на рисунке 3.5.

Рис. 3.5. Формирование тест-кейсов из тестовых данных

Следующим этапом идет расчет необходимых параметров для оптимизации портфеля — оценка ковариаций и прогноз средних значений доходности.

3.2. Оценка ковариации между активами

Особую сложность предстваляет задача прогноза будущей ковариации временных рядов. Вполне естественным вляется предположение стационарности ковариации во времени. Поэтому воспользуемся выборочной оценкой ковариации по историческим данным.

Имея r_t - вектор-столбец доходностей в момент времени t, по истории наблюдений $r_1, \cdots r_n$ выборочная ковариация Σ рассчитывается как

$$\Sigma = \frac{1}{n} \sum_{t=1}^{n} (r_t - \overline{r}) \cdot (r_t - \overline{r})^T$$
(3.1)

где $\overline{r} = \frac{1}{n} \sum_{t=1}^{n} r_t$.

Корреляция Пирсона между доступными активами представлена на рисунке 3.6.

Рис. 3.6. Корреляции доходностей активов

Активы имею сильную положительную корреляцию.

3.3. Модели оценки средней доходности

Задача оценки средней ожидаемой доходности сводиться к умению прогнозировать значение основываясь на стории наблюдений. Для этого подходят классические статистические модели, модел имашинного обучения и нейросети в адаптации для прогнозирования временных рядов.

Ограничемся рассмотрением следующих моеделей:

- 1. NAIVE выборочное среднее
- 2. MARTINGAL прогноз последним наблюдаемым значением
- 3. ARIMA модель авторегрессии и скользящего среднего

- 4. LR линейная регрессия
- 5. RF случайный лес

Для каждого актива будем строить отдельную модель не принимающую в расчет историю других активов. Таким образом, для прогноза будующих доходностей активов необходимо построить моделей по числу активов.

Некоторые модели (ARIMA, RF) — допускают свободу в выборе гиперпараметров. Подбор гиперпараметров моделей осуществлялся по тренировочной выборке.

Качество прогнозирования моделей оценивается с помощью среднеквадратичной ошибки MSE (Mean Squared Error):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (r_i - \hat{r}_i)^2$$
 (3.2)

где r_i - истинное значение доходности, а \hat{r}_i - прогнозное значение модели на i-м объекте тестовой выборки.

Результаты оценки качества прогнозирования на тестовых данных представлены в таблице 3.2

	NAIVE	MARTINGAL	LR	ARIMA	RF
BTC	5.63	1.20	1.58	1.62	2.07
ETH	8.00	1.99	4.47	3.70	5.05
DOT	16.51	3.89	4.09	3.98	5.28
OKB	6.06	1.56	1.77	1.95	2.05
XRP	24.33	5.04	6.98	5.71	6.53
SOL	21.19	4.47	11.86	6.16	5.31
TRX	7.96	1.85	4.19	5.30	6.04

2.66

LTC

8.53

Таблица 3.2. Качество прогнозирования $MSE \cdot 10^4$

Наихудшее значениие показывает подход NAIVE. Это обусловлено резким ростом цен в 2024 году после относительно спокойной динамики. MARTINGAI показывает хорошие результаты в случае рядов с затяжным трендов. Остальные модели показывают сопоставимое качество.

 $3.22 \quad 5.11$

2.24

3.4. Проверка стратегий на тестовых данных

Под стратегией будем понимать некоторый принцип или алгоритм по которому в каждый момент времени формируется портфель. Будем рассматривать стратегии двух видов:

- тривиальные
- основанные на идеи Марковица

Среди тривиальных стратегий выберем следующие:

- 1. UNIFORM равномерное инвестированиие во все доступные активы
- 2. MOST RISKY актив с наибольней дисперсией доходности
- 3. LESS RISKY актив с наименьшей дисперсией доходности
- 4. BEST RETURN актив с наибольшей средней доходностью
- 5. WORST RETURN актив с наименьшей средней доходностью

Стратегии Марковица определяются риск-параметром и моделью оценки средней ожидаемой доходностью. Риск-параметр будем воспринимать как параметризацию класса стратегий с определенной моделью оценки средней ожидаемой доходности. Таким образом, одной стратегии Марковица соответсвует множество стратегий с разным риск-параметром. Это множество стратегий будет называть фронтирой.

На каждом тест-кейсе с помощью стратегии формируется инвестиционный портфель в расчете на единичную сумму инвестирования и оценивается доходность ROI (Return On Investment) полученного портфеля.

На графике 3.7 представлены фронтиры соответсвующие торговым стратегиям. Серым цветом отмечены тривиальные портфели. По оси абсцисс отложены стандартые отклонения ROI, а по оси ординат — средние значение ROI.

Рис. 3.7. Результаты тестирования стратегий

Более детально средние значения и стандартные отклонения ROI стратегий представлены в таблицах 3.3 и 3.4 соответственно.

Метрики тривиальных портфелей представлены в таблице 3.5

Таблица 3.3. Средние ROI $\cdot 10^3$

	0.01	0.26	0.51	0.75	1.00
NAIVE	6.9451	8.0025	11.0462	10.6657	15.4227
MARTINGAL	2.9859	6.0019	3.6178	6.5656	3.9942
LR	8.2600	19.0185	21.5537	22.7442	23.1668
ARIMA	7.4648	14.7066	13.9296	13.1520	15.9971
RF	5.2633	9.4236	7.2398	4.3777	4.5050

Таблица 3.4. Стандартное отклонение ROI $\cdot 10^2$

	0.01	0.26	0.51	0.75	1.00
NAIVE	3.4328	5.3375	8.3427	9.8131	10.6650
MARTINGAL	3.8577	9.4886	9.8051	11.0111	10.7128
LR	3.7892	10.6314	13.1000	14.3570	14.3071
ARIMA	3.5454	10.0037	11.5506	11.1001	12.4518
RF	3.9215	10.7564	11.3710	11.9397	11.9118

Таблица 3.5. Тривиальные портфели

	mean ROI $\cdot 10^3$	std ROI $\cdot 10^2$
UNIFORM	15.5372	8.1775
MOST RISKY	18.5904	11.3970
LESS RISKY	21.1635	9.6881
BEST RETURN	1.2790	7.7329
WORST RETURN	4.9217	12.6324

ЗАКЛЮЧЕНИЕ

В работе была рассмотрена проблема формирования оптимального портфеля с точки зрения ожидаемой доходности и принимаемого риска. Были предложены и протестированы модели ожидаемой средней доходности активов внутри подхода формирования оптимального портфеля по Марковицу. На основании прогнозов этих моделей и исторической ковариации между активами, формируется множество парето-оптмальных портфелей, соответсвующих заданному уровню риску.

Полученные портфели были протестированы на реальных данных за 2024 год. Результаты проверки стратегий:

- 1. Активы имеют сильную положительную корреляцию
- 2. С помощью диверсификации можно добиться снижения рисков
- 3. Эмпирические фронтиры стратегий имеют выпуклую вверх форму, что согласуется с теорией
- 4. Сформированные портфели оптимальнее инвестирования в отдельные активы