LAPORAN PRAKTIKUM TEKNIK DIGITAL "JOB SHEET 7 - COUNTER ASYNCHRONOUS"

DISUSUN OLEH:

NAMA : DWI ARFIAN

NIM : 22520244009

PRODI : PEND. TEKNIK INFORMATIKA

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA TAHUN AJARAN 2022/2023

LAPORAN PRAKTIKUM TEKNIK DIGITAL

Nama	:	Dwi Arfian
NIM	:	22520244009
Mata Kuliah	:	Praktik Teknik Digital
Dosen	:	Dr. Umi Rochayati, M.T.
Tanggal Praktik	:	10-11-2022
Judul Job	:	Job Sheet 7 - Counter Asynchronous

A. Tujuan

Mahasiswa diharapkan dapat mengkaji prinsip kerja dari:

- 1. Counter Asynchronous modulo-4.
- 2. Counter Asynchronous modulo-8.
- Counter Asynchronous modulo-16.
 Yang tersusun dari D Flip-Flop dan JK Flip-Flop.

B. Langkah dan Hasil Percobaan

1. Uji Gambar 1. Masukan Clock dengan frekuensi 1 Hz! Hasil:

- 2. Amati dan catat setiap variasi masukan terhadap pola keluaran! **Hasil:**
 - a. Timing Diagram

b. Tabel present state dan next state

Present State		Next State	
Q1	Q0	Clock = 0	Clock = 1
0	0	0 0	0 1
0	1	0 1	10
1	0	10	1 1
1	1	11	0 0

3. Ulangi langkah 1 dan 2 untuk uji gambar 3, 4 dan 5.

Hasil:

- a. Gambar 3. Counter Up Asynchronous Modulo-8 D Flip-flop.
 - 1) Gambar rangkaian masukan clock dengan frekuensi 1 Hz

2) Timing Diagram

3) Tabel present state dan next state

P	resent Stat	e	Next State		
Q2	Q1	Q0	Clock = 0	Clock = 1	
0	0	0	0 0 0	0 0 1	
0	0	1	0 0 1	010	
0	1	0	010	011	
0	1	1	0 1 1	100	
1	0	0	100	1 0 1	
1	0	1	1 0 1	110	
1	1	0	110	111	
1	1	1	1 1 1	0 0 0	

- b. Gambar 4. Counter Up Asynchronous Modulo-16 D Flip-flop.
 - 1) Gambar rangkaian masukan clock dengan frekuensi 1 Hz

2) Timing Diagram

3) Tabel present state dan next state

Present State			Next State		
Q3	Q2	Q1	Q0	Clock = 0	Clock = 1
0	0	0	0	0000	0001
0	0	0	1	0001	0010
0	0	1	0	0010	0 0 1 1
0	0	1	1	0 0 1 1	0100
0	1	0	0	0100	0101
0	1	0	1	0101	0110
0	1	1	0	0110	0111
0	1	1	1	0111	1000
1	0	0	0	1000	1001
1	0	0	1	1001	1010
1	0	1	0	1010	1011
1	0	1	1	1011	1100
1	1	0	0	1100	1101
1	1	0	1	1101	1110
1	1	1	0	1110	1111
1	1	1	1	1111	0000

- c. Gambar 5. Counter Up Asynchronous Modulo-4 JK Flip-flop.
 - 1) Gambar rangkaian masukan clock dengan frekuensi 1 Hz

2) Timing Diagram

3) Tabel present state dan next state

Present State		Next State		
Q1	Q0	Clock = 0	Clock = 1	
0	0	0 0	0 1	
0	1	0 1	10	
1	0	10	1 1	
1	1	11	0 0	

C. Analisis

Dari hasil percobaan yang telah saya lakukan, saya mendapatkan beberapa data:

- Dari percobaan ini menggunakan D FF, dalam hal ini clock bermula dari nol lalu ketika sampai biner 3, clock akan berulang lagi dari nol. Sesuai dengan logic analyzer diatas.
- Dalam percobaan counter asyncronous modulo-8 menggunakan D FF, dalam hl ini clock bermula dari nol, lalu ketika telah mencapai biner 7. Maka clock akan berulang kembali menjadi nol dan begitu seterusnya.
- 3. Dalam percobaan counter asyncronous modulo-16 menggunakan D FF, dalam hl ini clock bermula dari nol, lalu ketika telah mencapai biner 15. Maka clock akan berulang kembali menjadi nol dan begitu seterusnya.
- 4. Dalam percobaam Counter Asynchronous ini menggunakan JK FF modulo-4. Clock akan berawal dari nol, kemudian setelah sampai biner 3 akan berulang lagi dari nol.

D. Kesimpulan

Dari percobaan di atas dapat disimpilkan bahwa:

- 1. Counter Asynchronous merupakan rangkaian flip-flop yang outputnya akan berubah bergantian dari kondisi 0 ke 1 dan sebaliknya secara berurutan atau langkah demi langkah, hal ini disebabkan karena hanya flip-flop yang paling ujung saja yang dikendalikan oleh sinyal clock, sedangkan sinyal clock untuk flip-flop lainnya diambilkan dari masing-masing flip-flop sebelumnya.
- 2. Dalam rangkaian counter asynchronous, setelah flip-flop telah mencapai biner tertinggi, maka flip-flop akan berulang kembali ke biner awal yaitu nol.