

Varianta 070

Subjectul I

- **a**) AB = 5.
- **b)** $|12-7i| = \sqrt{193}$.
- c) $(x-1)^2 + (y-3)^2 1 = 0$.
- **d**) $S_{ABC} = 6$.
- e) $\cos \frac{3\pi}{7} > \cos \frac{5\pi}{7}$.
- **f)** x + y 4 = 0.

Subjectul II.

- 1.
- **a**) 6.
- **b**) 16.
- c) suma rădăcinilor ecuației este egală cu 0.
- **d)** 1+5+9+13+...+37=190.
- e) $x_1 + x_2 + x_3 = -2$.
- 2
- a) $f'(x) = 1 + \cos x$, $x \in \mathbf{R}$.
- **b)** $\lim_{x\to 0} \frac{f(x)}{x} = 2$.
- c) $\lim_{x\to\infty} \frac{f(x)}{x} = 1$.
- **d)** $\int_{0}^{\pi} f(x) dx = 2 + \frac{\pi^{2}}{2}.$
- e) $\lim_{n\to\infty} n \cdot f\left(\frac{1}{n}\right) = 2$.

Subjectul III.

- a) Evident, punând x = y = 0 în ipoteză.
- **b)** Pentru orice $x \in \mathbb{Z}$, punând y = -x în relația din enunț, obținem f(-x) = -f(x).
- c) Se demonstrează prin inducție, folosind relația din ipoteză.
- **d**) Pentru n = 0, avem $f(0) = 0 = a \cdot 0$.

Pentru $n \in \mathbb{N}^*$, alegând $a_1 = a_2 = \dots = a_n = 1$ în **c**), obținem $f(n) = a \cdot n$ Pentru $x \in \mathbb{Z}$, x < 0, din **b**) și **a**) deducem că $f(x) = a \cdot x$.

- e) Evident, folosind definiția funcției injective.
- **f**) Dacă a = 0, f este funcția nulă, care nu este surjectivă. Dacă $a \neq 0$, alegem $p, q \in \mathbb{Z}$, $q \neq 0$ astfel încât $f(1) = a = \frac{p}{q}$. Fie $n \in \mathbb{N}$, $n \geq 2$ astfel încât (n, q) = 1.

Atunci $\frac{1}{n} \notin \text{Im } f$, deci funcția f nu este surjectivă.

g) Ca și la punctele anterioare se arată că $\forall n \in \mathbb{N}^*$ și $\forall x \in \mathbb{Q}$, $g(nx) = n \cdot g(x)$. Presupunem că există $a \in \mathbb{Q}^*$ și $b \in \mathbb{Z}^*$ astfel încât g(a) = b.

Pentru orice $n \in \mathbb{N}^*$, avem $b = g(a) = n \cdot g\left(\frac{a}{n}\right)$, deci numărul $b \in \mathbb{Z}^*$ are o infinitate de divizori naturali, fals.

Subjectul IV.

$$a) f'(x) = \frac{1}{x \cdot \ln x}, \forall x > 1.$$

- **b**) f''(x) < 0, $\forall x > 1$, deci funcția f' e strict descrescătoare pe $(1, \infty)$.
- c) Considerăm $k \in (1, \infty)$. Funcția f este o funcție Rolle pe [k, k+1] și din teorema lui Lagrange deducem că există $c \in (k, k+1)$ astfel încât $\frac{f(k+1)-f(k)}{k+1-k} = f'(c) \Leftrightarrow \frac{a}{k+1-k}$

$$\Leftrightarrow f(k+1)-f(k)=\frac{1}{c\cdot \ln c}$$
.

- **d**) Se folosește punctul **c**) și monotonia funcției f'.
- e) Din d) se arată că $\forall n \in \mathbb{N}$, $n \ge 2$, avem $b_{n+1} b_n < 0$ și $c_{n+1} c_n > 0$, deci șirul $(b_n)_{n \ge 2}$ este strict descrescător iar șirul $(c_n)_{n \ge 2}$ este strict crescător.
- **f**) Pentru $n \in \mathbb{N}$, $n \ge 2$, avem $b_n c_n > 0$ și folosind monotonia celor două șiruri deducem: $\forall n \in \mathbb{N}$, $n \ge 2$, $c_2 < c_n < b_n < b_2$.

Obținem că șirurile $(b_n)_{n\geq 2}$ și $(c_n)_{n\geq 2}$ sunt convergente, fiind monotone și mărginite. Notăm $\lim_{n\to\infty}b_n=b$ și $\lim_{n\to\infty}c_n=c$.

Trecând la limită în (1) deducem b-c=0, deci $\lim_{n\to\infty} b_n = \lim_{n\to\infty} c_n$.

g) Deoarece şirul $(b_n)_{n\geq 2}$ este convergent, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (b_n + \ln(\ln n)) = +\infty$.

h)
$$\lim_{n \to \infty} \left(\frac{1}{(2^n + 1) \cdot \ln(2^n + 1)} + \frac{1}{(2^n + 2) \cdot \ln(2^n + 2)} + \dots + \frac{1}{3^n \cdot \ln(3^n)} \right) = \lim_{n \to \infty} (a_{3^n} - a_{2^n}) = \lim_{n \to \infty} (a_{3^$$

$$\lim_{n\to\infty} \left(b_{3^n} - b_{2^n}\right) + \lim_{n\to\infty} \left(f\left(3^n\right) - f\left(2^n\right)\right) = \ln\left(\frac{\ln 3}{\ln 2}\right).$$