

tej 1con plet | Lastcon

Centro Universitário Presidente Antônio Carlos Teoria de Grafos

Características e Tipos de Grafos Felipe Roncalli de Paula Carneiro

felipecarneiro@unipac.br

O que vamos aprender nessa aula

- Quais os tipos de Grafos;
- Informações contidas nos Grafos;

Definição Formal

Grafo
$$G = (V, A)$$

- Conjunto V com n vértices (também chamados nós) $\{v_1, v_2, \ldots, v_n\}$
- Conjunto A com m arestas ou arcos $\{a_1, a_2, \dots, a_m\}$

Grafo não Direcionado

Ligações expressas em Arestas

Se o vértice a está ligado a b, a recíproca é verdadeira;

Cada aresta é representada por um conjunto {v1, v2}, indicando os dois vértices envolvidos.

Grafo Direcionado

Ligações expressas em Arcos ->

Se o vértice a está ligado a b, a recíproca não é necessariamente verdadeira;

Cada arcoé representada por um par ordenado {v1, v2}, indicando os dois vértices envolvidos.

LAÇO

Uma aresta cujas duas extremidades incidem em um mesmo vértice.

ARESTAS PARALELAS

Mais de uma aresta associada ao mesmo par de vértices.

GRAFO SIMPLES

Grafo que não possui laços e nem arestas paralelas.

VÉRTICES ADJACENTES

Vértices que são os vizinhos do vértice selecionado através de uma aresta.

A função retorna o conjunto de vértices adjacentes ao vértice i.

GRAU DO VÉRTICE

O grau (d(i)) de um vértice i em um grafo não direcionado é igual o número de arestas incidentes a i .

O grau de entrada (d-(i)) de um vértice i em um grafo direcionado é igual o número de arestas que entram em i.

O grau de saída (d+(i)) de um vértice i em um grafo direcionado é igual o número de arestas que saem de i.

Fundamento

Teorema do Aperto de Mãos Handshaking

A soma dos graus de todos os vértices de um GND G é duas vezes o número de arestas de G.

$$\sum_{i=1}^{n} d(i) = 2m$$

Corolário

O número de vértices de grau ímpar em um GND é par.

GRAFO COMPLETO

Um grafo completo com n vértices, denominado Kn é um grafo simples contendo exatamente uma aresta para cada par de vértices distintos.

GRAFO REGULAR

Grafo no qual todos os vértices possuem o mesmo grau.

Obs: qualquer grafo completo é regular

VÉRTICE ISOLADO

Vértice com nenhuma aresta incidente.

GRAFO CONEXO

Para todo par de vértices i e j de G existe pelo menos um caminho entre i e j.

GRAFO DESCONEXO

Consiste de 2 ou mais grafos conexos, chamados de componentes.

GRAFO COMPELEMENTO

Os vértices de G são todos os vértices de G;

As arestas de <u>G</u> são exatamente as arestas que faltam em G para formarmos um grafo completo.

GRAFO BIPARTIDO

Um grafo é bipartido se o conjunto de vértices V pode ser particionado em 2 subconjuntos V1 e V2 tal que todas as arestas do grafo são incidentes a um vértice de V1 e a um vértice de V2.

Dúvidas??