問題 4-3 nは正の整数であるとし, ω=5n=e^{2πi/n}とおく、以下を示せ、

(1) $k \in \mathbb{Z} \times n \, \text{n o 最大公約数が d の とき, } Q(\omega^k) = Q(\omega^d)$ 特に $k \in \mathbb{Z}$ とれの最大公約数が1のとき、 $\mathbb{Q}(\omega^k) = \mathbb{Q}(\omega)$.

以下, n=pは素数であるとし、W=5,について考える、

- $\mathbb{Q}(\omega) = \mathbb{Q}(\omega^{k}) = \mathbb{Q}(\omega, \omega^{2}, ..., \omega^{k-1}) \quad (k=1, 2, ..., \beta-1)$

解答例 (1) kとれの最大公的数がdのとき、ks+nt=dをみたする、teZが 存在するので、 $\omega^d = \omega^{ks+nt} = (\omega^k)^s \in \mathbb{Q}(\omega^k)$ 、 ゆえに、 $\mathbb{Q}(\omega^d) \subset \mathbb{Q}(\omega^k)$

d はんの 約数なので k = du, $u \in \mathbb{Z}$ と書けるので $\omega^k = (\omega^d)^k \in \mathbb{Q}(\omega^d)$, ゆえに $\mathbb{Q}(\omega^k) \subset \mathbb{Q}(\omega^d)$ これでQ(wx)=Q(wx)か示された。

d=1 2312" Q(WK) = Q(W).

以下, れニアは季数であるとし、い=5なであるとする、

- (2) k=1,2,...,P-1と Pの最大公約数 L d=1 るので (1)より $Q(w^k)=Q(w)$, $b \stackrel{>}{\sim} L$, U, W^2 , ..., $W^{P-1} \in Q(W)$ なので, $Q(W)=Q(W,W^2,...,W^{P-1})$ となることがわかる、
- (3) 問題 $2^{-1}(4)$ の 結果 より、 $\chi^{Pl}+\chi^{Pl}+\dots+\chi+1$ は Q 上の 既約 多 項式 に なる、 $\omega^{P}=1$ かつ $\omega+1$ と $\omega^{P}-1=(\omega-1)(\omega^{Pl}+\omega^{Pl}+\dots+\omega+1)$ より、 $\omega^{Pl}+\omega^{Pl}+\dots+\omega+1$ より、 $\omega^{Pl}+\omega^{Pl}+\dots+\omega+1=0$ と なることがわかる、

以上より、 ω の Q上での最小多項式 $(x^{p-1}+x^{p-2}+\dots+x+1)$ に $(x^{$

特に, 1, W, W2, ..., W 12 は Q上一次独立である。

Wをかける操作はQ(W)のQ上での殺形同型になるので, W,W²,W³,…,W^{p-1}もQ上一次然立である。