Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Física Prof. Dr. Alan Barros de Oliveira

Prova 2 - FIS110-73 - 17/06/2022

1. Na figura abaixo, um pequeno bloco de 51 g desliza para baixo em uma superfície curva sem atrito a partir de uma altura h=20 cm e depois adere a uma barra uniforme de massa 119 g e comprimento 89 cm. A barra gira em torno do ponto O antes de parar momentaneamente. Determine θ em graus.

(a)19,7 (b)12,4 (c)0,8 (d)9,2 (e)33,7 (f)40,1 (g)26,5

- 2. Considere um corpo de massa m, sob a ação de um campo de forças F conservativo, cuja energia mecânica é E=K+U, onde K e U são as energias cinética e potencial. Considerando que o movimento do corpo é restrito a uma dimensão, pode-se afirmar que
- (a) quando U=0, tem-se um ponto de equilíbrio instável.
- (b) K = U apenas em pontos de retorno.
- (c) se F = 0 o sistema é dito anti-conservativo.
- (d) Todas as outras alternativas são falsas.
- (e) F = -dU/dx.
- (f) se F = mg o sistema encontra-se em repouso ultra-móvel.
- (g) U > E é condição de flutuação mega dissonante.
- 3. Um rifle, que atira balas a 487 m/s, é apontado para um alvo situado a 57 m de distância. Se o centro do alvo está na mesma altura do rifle, para que altura (**em centímetros**) acima do alvo o cano do rifle deve ser apontado para que a bala atinja o seu centro?

(a) 6.8 (b) 29.5 (c) 65.7 (d) 17.6 (e) 43.6 (f) 75.2 (g) 93.4

- 4. Um metrô percorre uma curva plana de raio 19 m a 33 km/h. Qual o ângulo, em graus, que as alças de mão penduradas no teto fazem com a vertical? (a)46,1 (b)63,4 (c)56,7 (d)80,1 (e)67,9 (f)75,6 (g)49,8
- 5. A figura abaixo mostra um corpo rígido formado por um aro fino (de massa m, raio R=0.22 m e momento de inércia em relação ao diâmetro $mR^2/2$) e uma barra fina radial (de massa m, comprimento L=2.00R e momento de inércia em relação ao seu CM $mL^2/12$). O conjunto está na vertical, mas se recebe um pequeno empurrão começa a girar em torno de um eixo horizontal no plano do aro e da barra, que passa pela extremidade inferior da barra. Supondo que a energia fornecida ao sistema pelo pequeno empurrão é desprezível, qual é a velocidade angular em rad/s do conjunto quando ele passa pela posição invertida (de cabeça para baixo)?

(a)8,80 (b)5,28 (c)4,31 (d)8,19 (e)6,16 (f)10,05 (g)6,97

- 6. Uma partícula de massa 1,9 kg, lançada sobre um trilho retilíneo com velocidade de 3,8 m/s, está sujeita a uma força F(x) = -bx, onde b = 1,1 N/m e x é o deslocamento, em m, a partir da origem. Sabendo-se que a partícula para em dois pontos do trilho, a saber, $+x_0$ e $-x_0$, determine x_0 em metros. (a)7,7 (b)5,0 (c)8,7 (d)3,3 (e)6,0 (f)2,4 (g)1,1
- 7. Considere uma colisão frontal elástica entre duas partículas de massas m e m'=1m. A partícula de massa m se move inicialmente com velocidade v, enquanto a outra encontra-se em repouso. Qual é a fração de energia cinética transferida de m para m' durante a colisão?

(a)0,61 (b)0,71 (c)0,26 (d)0,39 (e)1,00 (f)0,15 (g)0,87

8. Uma pequena aranha de peso P_a está pendurada na ponta de um fio de teia, no teto de um elevador. Sabendo-se que o fio suporta uma tensão máxima de $2.8P_a$, qual seria a mínima aceleração (em m/s²) de subida do elevador para que o fio se partisse?

(a)30,0 (b)60,7 (c)50,7 (d)67,3 (e)80,0 (f)36,0 (g)18,0

- 9. Duas partículas, de massas m_1 e m_2 , são empurradas uma contra a outra, comprimindo uma mola colocada entre elas. Quando são liberadas, a mola as arremessa em sentidos opostos. A relação entre as massas das partículas é $m_2/m_1=5$ e a energia armazenada na mola é de 71 J. Suponha que a mola tenha massa desprezível e que toda a energia armazenada seja transferida para as partículas. Após terminada essa transferência, qual é a energia cinética **da partícula 1** em J? (a)52,9 (b)24,6 (c)9,1 (d)59,2 (e)36,8 (f)17,5 (g)45,0
- 10. Considere um objeto que se move em uma dimensão de acordo com a equação horária $x=v_0te^{-t/t_0}$, onde t é o tempo, $v_0=12.2$ m/s e $t_0=1.2$ s. Qual é a distância, em metros, que o objeto se encontra da origem quando para momentaneamente?

(a)7,1 (b)5,4 (c)3,9 (d)11,1 (e)13,1 (f)8,4 (g)9,8

Fórmulas e Constantes

$$\begin{split} I &= \frac{P_s}{4\pi r^2}; \quad E = hf; \quad p = \frac{hf}{c} = \frac{h}{\lambda} \\ hf &= K_{\text{max}} + \Phi; \quad \Delta \lambda = \frac{h}{mc} (1 - \cos \phi) \\ \frac{d^2 \psi}{dx^2} + \frac{8\pi^2 m}{h^2} [E - U(x)] \psi = 0 \\ T &\approx e^{-2bL}, \text{ onde } b = \sqrt{\frac{8\pi^2 m (U_b - E)}{h^2}} \\ E_n &= \left(\frac{h^2}{8mL^2}\right) n^2, \text{ para } n = 1,2,3 \dots \\ \psi_n(x) &= A \sin \left(\frac{n\pi}{L}x\right), \text{ para } n = 1,2,3 \dots \\ \Delta x \Delta p &= h/2\pi \\ \epsilon_0 &= 8,854 \times 10^{12} \text{ F/m}; \quad \mu_0 = 1,257 \times 10^{-6} \text{ H/m} \\ c &= 3,0 \times 10^8 \text{ m/s}; \quad h = 6,63 \times 10^{-34} \text{ J/s} = 4,14 \times 10^{-15} \text{ eV.s} \\ hc &= 1240 \text{ eV.nm} \end{split}$$

Por exemplo, se seu número de matrícula for 12.1.3579, temos que

Eletron: $mc^2 = 511 \text{ keV}$

e a tabela deve ser preenchida assim:

XX	0	1	2	3	4	5	6	7	8	9
1°										
2°										
3°										
4°										
5°										
6°										
7°										

NAO MARCAR											
un	_	_	_	_	_	_	_		_	_	
de	_		_	_	_	_	_	_	_	_	
GABARITO											
_	1	2	3	4	5	6	7	8	9	10	
a											
b											
c											
d											
е											
f											
g											
MATRÍCULA											
_	0	1	2	3	4	5	6	7	8	9	
1°											
2°											
3°											
4°											
5°											
6°											
7°											

MATRÍCULA:

NOME:

TURMA: