Universidade do Minho

14 de janeiro de 2022

2º Teste de Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 1h45min

Este teste é constituído por 4 questões. Todas as respostas devem ser devidamente justificadas.

- 1. Seja $h: \mathbb{N}_0^3 \to \mathbb{N}_0$ a função definida, para cada $(x,y,z) \in \mathbb{N}_0^3$, por h(x,y,z) = xy + z.
 - Defina recursivamente a função h. Ou seja, determine funções $f: \mathbb{N}_0^2 \to \mathbb{N}_0$ e $g: \mathbb{N}_0^4 \to \mathbb{N}_0$ tais que h = Rec(f, g).
 - Mostre que h é uma função recursiva primitiva.
 - c) Determine a função M_h de minimização de h.
- 2. Seja $A:\mathbb{N}_0^2\to\mathbb{N}_0$ a função de Ackermann que, recorde, é definida por:
- i) A(0,y) = y + 1; ii) A(x+1,0) = A(x,1); iii) A(x+1,y+1) = A(x,A(x+1,y)).
- Determine A(1,4).
- Mostre que A é uma função total, isto é, que $(x,y) \in Dom(A)$ para quaisquer $x,y \in \mathbb{N}_0$. |Sugestão: use indução sobre x e, no passo indutivo, depois de assumir a hipótese de $indução(x,y) \in Dom(A)$, prove que $(x+1,y) \in Dom(A)$ por indução sobre y.
- 3. Seja $A = \{a, b\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A,

- Indique a sequência de configurações que podem ser computadas a partir de $(0, \underline{\Delta}baabab, \underline{\Delta}baabab)$
- b) Identifique a linguagem L reconhecida por \mathcal{T} .
- \mathcal{C} Determine a função $tc_{\mathcal{T}}$, de complexidade temporal da máquina \mathcal{T} .
- d) Mostre que $L \in DTIME(n^2)$.
- Sendo K a linguagem $K = \{w \in A^* : |w|_a = |w|_b + 1\}$, mostre que $L \leq_p K$.
- Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - Seja A a função de Ackermann e sejam $f,g:\mathbb{N}_0^2\to\mathbb{N}_0$ as funções parciais definidas por f(x,y)=A(x,y)-6 e g(x,y)=xy+2. Cada uma das funções A, f e g é computável.

 (b) A função $f(n)=2n^2+\left(\frac{1}{2}\right)^n$ é de ordem $\mathcal{O}(n^3)$.

Cotações	1.	2.	3.	4.
	2+1,5+2	1,5+2	1+(1,5)+2+1.5+2	1,5+1,5