

Cargador de Baterías Modular con Monitoreo Remoto

Autor:

Felipe Calcavecchia

Director:

Alejandro Permingeat (FIUBA)

Jurados:

Nombre y Apellido (1) (pertenencia (1))

Nombre y Apellido (2) (pertenencia (2))

Nombre y Apellido (3) (pertenencia (3))

Índice

Registros de cambios	3
Acta de constitución del proyecto	4
Descripción técnica-conceptual del proyecto a realizar	5
Identificación y análisis de los interesados	7
1. Propósito del proyecto	7
2. Alcance del proyecto	7
3. Supuestos del proyecto	8
4. Requerimientos	8
Historias de usuarios (<i>Product backlog</i>)	9
5. Entregables principales del proyecto	10
6. Desglose del trabajo en tareas	10
7. Diagrama de Activity On Node	11
8. Diagrama de Gantt	12
9. Matriz de uso de recursos de materiales	14
10. Presupuesto detallado del proyecto	15
11. Matriz de asignación de responsabilidades	16
12. Gestión de riesgos	16
13. Gestión de la calidad	18
14. Comunicación del proyecto	21
15. Gestión de Compras	22
16. Seguimiento y control	22
17 Procesos de cierre	23

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
1.0	Creación del documento	27/06/2020
1.1	Se completó Propósito, Alcance, Supuestos, Requerimientos,	10/07/2020
	Entregables y Desglose del trabajo en taréas	
1.2	Se Hacen correcciones y se avanza hasta el punto 11	23/07/2020
1.3	Se avanza hasta el punto 17	7/08/2020

Acta de constitución del proyecto

Buenos Aires, 27 de junio de 2020

Por medio de la presente se acuerda con el Ing. Felipe Calcavecchia que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Cargador de Baterías Modular con Monitoreo Remoto", consistirá esencialmente en el prototipo preliminar de una fuente utilizada como cargador y una placa de control que garantice la funcionalidad del mismo, y tendrá un presupuesto preliminar estimado de 670 hs de trabajo y \$845.619, con fecha de inicio 27 de junio de 2020 y fecha de presentación pública 5 de Agosto de 2021.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Luis A. Rosende **proba** Baterías

Alejandro Permingeat Director del Trabajo Final

Nombre y Apellido (1) Jurado del Trabajo Final Nombre y Apellido (2) Jurado del Trabajo Final

Nombre y Apellido (3) Jurado del Trabajo Final

Descripción técnica-conceptual del proyecto a realizar

Hoy en día las baterías de uso industrial constituyen una parte fundamental en sistemas de respaldo de alimentación, vehículos de tracción eléctrica y otros múltiples usos. Su elevado costo respecto de los dispositivos que alimentan, hacen que un buen uso y mantenimiento sea una cuestión a tener en cuenta a la hora de considerar su vida útil.

Todo esto lleva a la necesidad de desarrollar un cargador que asegure una carga adecuada (en tensión y corriente), de acuerdo al tipo de batería, a su estado de carga y a las condiciones ambientales que la rodean.

Si tenemos en cuenta que el mercado local ofrece algunos cargadores nacionales, la mayoría se basan en tecnologías antiguas. Por el lado de los importados, tecnológicamente mas avanzados, necesitan certificaciones aduaneras que elevan su precio.

Si bien la empresa produce cargadores, estos son un complemento en la comercialización de baterías para automóviles. Con este proyecto se pretende aumentar la presencia de la compañía en el segmento del mercado que corresponde a las baterías industriales expandiendo su modelo de negocio a otras áreas menos explotadas.

En la Figura 1 se puede observar el modelo Canvas de negocio.

Figura 1: Modelo Canvas de negocio

El presente proyecto se destaca en tres aspectos que le agregan valor, dos enfocados en el consumidor final y uno en el cliente.

En lo pertinente al consumidor final, y desde el punto de vista del hardware, se reemplazan los voluminosos y pesados transformadores por fuentes conmutadas de alta frecuencia, mas eficaces, pequeñas y livianas.

Desde el lado del firmware de control, este, permite adaptarse a cada tipo de banco de baterías en forma particular. Además como aspecto innovador, se incorpora un monitoreo de cada una de las cargas que realiza y con esa información genera un log que permite hacer un análisis periódico

del estado de la batería y activar alarmas tempranas en caso de detectar alguna anomalía.

Por el lado del cliente, se beneficia al disminuir stock inmovilizado, teniendo un solo modelo de cargador modularizado y configurable, en vez de varios cargadores, uno por cada tipo de batería, simplificando su producción y ahorrando costos.

En la Figura 2 se muestra el diagrama en bloques del proyecto a realizar. Se observa que el cargador posee una disposición modular en la que admite 1, 2 ó 3 fuentes. Cada una puede aportar hasta 40 Amperes. Esto posiblita configurar el cargador para adaptarse a los requerimientos de los distintos tipos de baterías, abarcando las tensiones standards más utilizadas (12V, 24V, 36V y 48V) y corrientes de carga que pueden ir desde 1A hasta 120A.

La placa que controla al cargador contiene un microprocesador capaz de suministrar tres señales PWM independientes que manejan las tensiones de salidas de las tres fuentes, cinco canales ADC para leer sensores, un puerto con entradas/salidas digitales para el display, teclado, relés de alarma y otros accesorios como indicadores luminosos, ventiladores, etc, y por último una comunicacion serie para los módulos de WIFI y el reloj de tiempo real.

El firmware controla, en forma secuencial, cuatro etapas de carga:

Figura 2: Diagrama en bloques del sistema

- 1. CARGA A FONDO: Suministra aproximadamente el 80 % de la carga total, se realiza a corriente constante y se registra el tiempo de duración.
- 2. CARGA POR ABSORCIÓN: Le entrega el 20 % restante de carga y se realiza a tensión constante. Dura aproximadamente el mismo tiempo que la carga a Fondo.
- CARGA A FLOTE: Cuando finaliza la carga, se fija una tensión y corriente máxima de forma que la batería pueda quedar conectada al cargador indefinidamente sin provocar sobrecargas.
- 4. ECUALIZACIÓN: Cada un número determinado de cargas, se realiza este paso para equilibrar los elementos que conforman la batería. Se hace forzando una sobrecarga durante un tiempo controlado relativamente corto.

Las corrientes de las fuentes son medidas y comparadas con las de referencia, generando una señal de error que se usa para actuar sobre los PWM's formando un sistema de lazo cerrado que se controla por un algoritmo PID. Al finalizar la carga, se genera un registro identificando parámetros como, tensión, corriente, fecha y hora de inicio y finalización, Ampere-Hora suministrado, temperatura y cantidad de cargas realizadas. Estos datos sirven para llevar una "historia clínica" de la batería y verificar si existe alguna anomalía para activar las correspondientes alarmas.

Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Auspiciante Cliente Impulsor	Luis A. Rosende	proba Baterías	Dto. Ventas
Responsable	Felipe Calcavecchia	proba Instrumentos	Ing. Desarrollo
Equipo	Luca Calcavecchia	UTN-FRH	Alumno
Orientador	Alejandro Permingeat	FIUBA	Director Trabajo final
Usuario final	Empresas	-	-

- El Auspiciante, Cliente e Impulsor es el titular de **proba** Baterías y socio con el Responsable del proyecto en **proba** Instrumentos.
- El Equipo se encarga del diseño del gabinete y la documentación correspondiente.

1. Propósito del proyecto

El propósito de este proyecto es diseñar e implementar un prototipo funcional de un cargador de baterías modular, aplicando los conocimiento que se van adquiriendo en el curso. A su vez que esos conocimientos sirvan para ser incorporados como metodología de trabajo a futuros productos realizados en la empresa.

2. Alcance del proyecto

Este proyecto incluirá el diseño y construcción de un prototipo funcional de un cargador de baterías que conste de un sistema embebido formado por una placa, que interactúe con sus periféricos y controle las fuentes de carga. También se incluirá toda la documentación y archivos necesarios para su producción, así como también su manual de uso e instalación.

No queda incluido en el presente proyecto, el diseño y construcción de las fuentes, el diseño del gabinete y partes mecánicas. Tampoco incluye la implementación de una aplicación de software para la lectura remota del reporte de cargas. Solo se enviarán los datos crudos del log.

3. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Se dispondrá de la información de marketing de los posibles usuarios para analizar las funcionalidades del proyecto.
- 2. Se contará con los suficientes recursos económicos para la compra de todo el material necesario.
- 3. Se supone que los componentes a utilizar se consiguen localmente o que se dispone de todos los requisitos necesarios para su importación en caso de ser necesario.
- 4. Se supone que las fuentes a utilizar tienen el correspondiente certificado de seguridad eléctrica.
- 5. Se supone que los tiempos de importación están dentro de lo planificado.
- 6. Se supone que los tiempos de fabricación están dentro de lo planificado.
- 7. Se supone que se tendrá acceso a las instalaciones y elementos necesarios para realizar las pruebas de campo.
- 8. Debido a que las pruebas de campo son de larga duración, se dispondrá del tiempo necesario para usar las instalaciones sin restricciones.

4. Requerimientos

Los requerimientos del presente proyecto se establecieron luego de acordar con el cliente y muchos a sugerencia de posibles usuarios finales. Los mismos se describen a continuación en orden prioritario.

1. Requerimientos generales del proyecto

- 1.1. Fecha de entrega del proyecto terminado: 5 de Julio de 2021
- 1.2. El responsable asegura al cliente el know-how del proyecto.
- 1.3. Podrá alimentarse con línea de red monofásica o trifásica.
- 1.4. Deberá contemplar protecciones de alimentación a través de llaves térmicas.

2. Requerimientos funcionales

2.1. Requerimientos de Hardware

- 2.1.1. El dispositivo debe contemplar un diseño modular.
- 2.1.2. El diseño modular debe permitir su reconfiguración.
- 2.1.3. Debe tener un teclado accesible para su configuración y manejo.

- 2.1.4. Debe poseer un display que permita visualizar la configuración y parámetros mensurables.
- 2.1.5. Debe poseer indicadores luminosos bien visibles.
- 2.1.6. Cada fuente debe tener su propio sensor de corriente.
- 2.1.7. El sensor de tensión es común a todas las fuentes.
- 2.1.8. Se agrega un botón de parada de emergencia.

2.2. Requerimientos de Firmware

- 2.2.1. Debe permitir configurar la tensión y corriente máxima de carga.
- 2.2.2. Debe permitir configurar los tiempos máximos para cada etapa de carga.
- 2.2.3. Debe guardar al menos dos configuraciones.
- 2.2.4. Tendrá que medir tensión, corriente y temperatura.
- 2.2.5. Tendrá que garantizar cuatro etapas de carga:
 - 2.2.5.1. Carga a Fondo.
 - 2.2.5.2. Carga por Absorción.
 - 2.2.5.3. Carga a Flote.
 - 2.2.5.4. Ecualización.
- 2.2.6. Tendrá un algoritmo que atienda al botón de parada de emergencia.
- 2.2.7. El control de carga se realizará por un algoritmo PID
- $2.2.8. \ \,$ Se registrará la fecha y hora de inicio y finalización de cada carga a través de un RTC.
- 2.2.9. Debe guardar las últimas mil cargas realizadas.
- 2.2.10. Con los datos recavados se podrá determinar anomalías y generar alarmas.
- 2.2.11. El registro de datos almacenados debe estar disponible para ser consultado remotamente.

3. Requerimientos no funcionales

- 3.1. Se deberá generar documentación:
 - 3.1.1. Esquemáticos eléctricos.
 - 3.1.2. Manual de instalación.
 - 3.1.3. Manual de uso.
- 3.2. Se contará con la correspondiente certificación eléctrica otorgada por un laboratorio habilitado para la importación de las fuentes de carga.
- 3.3. El grado de protección del sistema debe ser como mínimo IP50.
- 3.4. Se debe garantizar un servicio de post venta por al menos 5 años.

Historias de usuarios (*Product backlog*)

Descripción: En esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

5. Entregables principales del proyecto

- Plan de trabajo
- Memoria del proyecto
- Prototipo funcional
- Diagrama esquemático
- Manual de instalación
- Manual de uso
- Código fuente

6. Desglose del trabajo en tareas

1. Planificación del proyecto (30hs)

- 1.1. Definición de requerimientos con el cliente (15hs)
- 1.2. Confección del plan de trabajo (15hs)

2. Investigación preliminar (65hs)

- 2.1. Información sobre la competencia (5hs)
- 2.2. Análisis técnico-económico (10hs)
- 2.3. Análisis comparativo para determinar que microprocesador usar $(10\mathrm{hs})$
- 2.4. Investigación sobre los periféricos a utilizar (15hs)
- 2.5. Estudio de los datasheet de los periféricos elegidos (25hs)

3. Desarrollo del Hardware (100hs)

- 3.1. Diseño del diagrama esquemático (30hs)
- 3.2. Diseño del diagrama de conexión (20hs)
- 3.3. Diseño de los PCB's preliminares (30hs)
- 3.4. Armado de los PCB's (10hs)
- 3.5. Ensamblado del prototipo inicial (10hs)

4. Desarrollo del Firmware (250hs)

- 4.1. Definición de funciones a realizar (30hs)
- 4.2. Modularización del código
 - 4.2.1. Módulo de inicialización (10hs)
 - 4.2.2. Módulo de teclado (10hs)
 - 4.2.3. Módulo del menú y presentación (30hs)
 - 4.2.4. Módulo de configuración (40hs)
 - 4.2.5. Módulo de adquisición de datos (25hs)
 - 4.2.6. Módulo PID de control (20hs)
 - 4.2.7. Módulo de comunicación con periféricos (30hs)

- 4.2.8. Módulo para guardar los registros (20hs)
- 4.2.9. Módulo de diagnóstico y alarmas (35hs)

5. Vereficación y validación (130hs)

- 5.1. Integración del sistema (40hs)
- 5.2. Pruebas de campo (40hs)
- 5.3. Correcciones de los PCB's (10hs)
- 5.4. Búsqueda de posibles bugs (30hs)
- 5.5. Ensamblado final del prototipo (10hs)

6. Proceso de cierre (95hs)

- 6.1. Elaboración de la documentación y manuales (20hs)
- 6.2. Elaboración de la memoria técnica (60hs)
- 6.3. Preparación de la presentación final (15hs)

Cantidad total de horas: (670 hs)

7. Diagrama de Activity On Node

Figura 3: Diagrama en Activity on Node

Camino crítico t = 475 hs

8. Diagrama de Gantt

	Nombre	Duración	Inicio	Fin	Predecesoras
0	⊟Gantt_Cargador	205días	29/06/2020	09/04/2021	
1	Comienzo	0día	29/06/2020	29/06/2020	
2	□ 1. Planificación del proyecto	25dias	29/06/2020	31/07/2020	
3	1.1. Definición de requerimientos	5días	29/06/2020	03/07/2020	1
4	1.2. Confección plan de trabajo	20días	06/07/2020	31/07/2020	3
5	2. Investigación preliminar	20días	03/08/2020	28/08/2020	
6	2.1. Investigación de la competencia	5días	03/08/2020	07/08/2020	4
7	2.2. Análisis técnico económico	5días	10/08/2020	14/08/2020	6,4
8	2.3. Determinar microprocesador	5días	17/08/2020	21/08/2020	7
9	2.4. Definir periféricos	5días	17/08/2020	21/08/2020	7
10	2.5. Estudio de datasheet	5días	24/08/2020	28/08/2020	8,9
11	□3. Diseño del hardware	39dias	31/08/2020	22/10/2020	
12	3.1. Diseño diagrama esquemático	5días	31/08/2020	04/09/2020	10
13	3.2. Diseño diagrama de conexión	5días	07/09/2020	11/09/2020	12
14	3.3. Diseño de PCB	5días	14/09/2020	18/09/2020	13
15	3.4. Armado PCB	5días	08/10/2020	14/10/2020	14
16	3.5. Ensamblado del prototipo	6días	15/10/2020	22/10/2020	14,15
17	□4. Diseño del firmware	62días	26/08/2020	19/11/2020	
18	4.1. Definición de funciones del firmware	7días	26/08/2020	03/09/2020	9
19	4.2. Desarrollo del firmware	50días	11/09/2020	19/11/2020	18
20	□ 5. Verificación y validación	54días	20/11/2020	03/02/2021	
21	5.1. Integración del sistema	10días	20/11/2020	03/12/2020	16,19
22	5.2. Pruebas de campo	10días	04/12/2020	17/12/2020	21
23	5.3. Correcciones PCB	5días	18/12/2020	24/12/2020	22
24	5.4. Búsqueda de bugs	8días	18/01/2021	27/01/2021	23
25	5.5. Ensamblado final	5días	28/01/2021	03/02/2021	24
26	6. Proceso de cierre	45días	08/02/2021	09/04/2021	
27	6.1.Documentación y manuales	15días	08/02/2021	26/02/2021	25
28	6.2. Memoria técnica	15días	01/03/2021	19/03/2021	27
29	6.3. Presentación final	15días	22/03/2021	09/04/2021	28
30	Fin	0día	09/04/2021	09/04/2021	25,29

Figura 4: Tabla de tareas

Figura 5: Diagrama de Gantt

9. Matriz de uso de recursos de materiales

Código	Nombre de la tarea		Recursos requ	ieridos (horas	5)
WBS	Nombre de la tarea	PC	Placa PCB	Prototipo	Laboratorio
1.	Planificación del proyecto				
1.1.	Definición requerimientos	15 hs			
1.2.	Plan de trabajo	15 hs			
2.	Investigación preliminar				
2.1.	Info de la competencia	5 hs			
2.2.	A. técnico-económico	10 hs			
2.3.	Determinar microprocesador	10 hs			
2.4.	Determinar periféricos	15 hs			
2.5.	Estudio datasheet	25 hs			
3.	Desarrollo del hardware				
3.1.	Diseño Esquemático	30 hs			
3.2.	Diseño diagrama conexión	20 hs			
3.3.	Diseño PCB	30 hs			
3.4.	Armado PCB				10 hs
3.5.	Ensamblado del prototipo				10 hs
4.	Desarrollo del firmware				
4.1.	Funciones del firmware	30 hs			
4.2.	Modularización del código	185 hs	30 hs		5 hs
5.	Verificación y validación				
5.1.	Integración del sistema	5 hs	10hs	20 hs	5 hs
5.2.	Prueba de campo				40 hs
5.3.	Corrección PCB	5 hs	5 hs		
5.4.	Búsqueda de bugs	20 hs	10 hs		
5.5.	Ensamble final			10 hs	
6.	Proceso de cierre				
6.1.	Documentación y manuales	20 hs			
6.2.	Memoria técnica	60 hs			
6.3.	Presentación final	15 hs			
	Totales	515 hs	55 hs	$30 \mathrm{hs}$	70 hs

- PC: Computadora con las aplicaciones necesarias para el diseño del hardware y firmware.
- Placa PCB: placa de circuito impreso funcional con microprocesador y periféricos.
- Prototipo: Placa de control integrada al hardware del cargador
- Laboratorio: Espacio físico con instrumental de medición.

10. Presupuesto detallado del proyecto

COSTOS DIRECTOS					
Descripción	Cantidad	Valor unitario	Valor total		
Fuentes de carga	3	\$ 26.950	\$ 80.850		
PCB	2	\$ 4.620	\$ 9.240		
Sensor de corriente	3	\$ 924	\$ 2.772		
Sensor de tenperatura	2	\$ 153	\$ 306		
Pantalla LCD	2	\$ 1.155	\$ 2.310		
Placa de evaluación	1	\$ 2.541	\$ 2.541		
Módulo WIFI	2	\$ 800	\$ 800		
Componentes electrónicos varios (*)	1	\$ 3.000	\$ 3.000		
Electricidad y conexionado (*)	1	\$ 2.500	\$ 2.500		
Honorario profecional	670 hs	\$ 750	\$ 502.500		
SUBTOTAL			\$ 605.969		
COSTOS IND	IRECTOS				
Descripción	Cantidad	Valor unitario	Valor total		
Servicios y alquileres	10	\$ 7.500	\$ 75.000		
Baterías para pruebas de campo	4	\$ 19.000	\$ 76.000		
Gastos de aduana e importación	1	\$ 34.650	\$ 34.650		
Certificaciones para la importación	1	\$ 54.000	\$ 54.000		
SUBTOTAL					
		TOTAL	\$ 845.619		

(*) Valores aproximados

11. Matriz de asignación de responsabilidades

C(4):		Nombres y roles del proyecto				
Código WBS	Nombre de la tarea	Responsable	Orientador	Equipo	Cliente	
WBS		Felipe Calcavecchia	Alejandro Permingeat	Luca Calcavecchia	Luis A. Rosende	
1.	Planificación del proyecto					
1.1.	Definición requerimientos	Р	I	S	P / A	
1.2.	Plan de trabajo	P	C / A	S	I	
2.	Investigación preliminar					
2.1.	Info de la competencia	Р	-	S	С	
2.2.	A. técnico-económico	S	-	-	P	
2.3.	Determinar microprocesador	P	A	-	I	
2.4.	Determinar periféricos	P / A	С	-	-	
2.5.	Estudio datasheet	P	-	-	-	
3.	Desarrollo del hardware					
3.1.	Diseño Esquemático	P	S	-	-	
3.2.	Diseño diagrama conexión	P	-	C	-	
3.3.	Diseño PCB	P / A	С	S	I	
3.4.	Armado PCB	P	I	-	I	
3.5.	Ensamblado del prototipo	Р	I	S	I	
4.	Desarrollo del firmware					
4.1.	Funciones del firmware	P	С	-	-	
4.2.	Modularización del código	Р	C / A	-	-	
5.	Verificación y validación					
5.1.	Integración del sistema	P	A	S	I	
5.2.	Prueba de campo	P	I	S	A	
5.3.	Corrección PCB	P / A	I	-	-	
5.4.	Búsqueda de bugs	P	С	-	-	
5.5.	Ensamble final	P	I	P	A	
6.	Proceso de cierre					
6.1.	Documentación y manuales	P	С	S	A	
6.2.	Memoria técnica	P	A	-	I	
6.3.	Presentación final	P	A	-	I	

Referencias:

- $\bullet~{\bf P}={\bf Responsabilidad~Primaria}$
- $\, \bullet \,$ S = Responsabilidad Secundaria
- A = Aprobación
- \blacksquare I = Informado
- $\, \bullet \,$ C = Consultado

12. Gestión de riesgos

A continuación se detallan cinco posibles riesgos inherentes al proyecto. Los mismos son evaluados según su grado de severidad y su probabilidad de ocurrencia tomando valores de $1\ a\ 10$.

Riesgo 1: Retrasos en las tareas realizadas por el equipo				
Severidad	9	No cumplir lo acordado con el cliente. Se disminuye el TIR (tasa interna de		
		retorno). Se pierden posibles ventas.		
Ocurrencia	5	No se planificó correctamente los tiempos. La curva de aprendizaje se		
		retrasa. Mala coordinación del equipo de trabajo.		

	Riesgo 2: Demora en la entrega de insumos			
Severidad	7	Desabastecimiento del mercado electrónico local. Demoras aduaneras en la		
		importación.		
Ocurrencia	8	Es muy común con los proveedores locales. Modificaciones de las		
		regulaciones aduaneras.		

		Riesgo 3: Pérdida de información
Severidad	7	Por desperfectos de la PC de desarrollo. Robo
Ocurrencia	3	Es poco probable si se usa un sistema de control de versiones y/o backup en la nube según sea el caso.

Riesgo 4: Rotura del prototipo				
Severidad	9	Roturas por accidentes en la manipulación. Mal armado. Errores de		
		conexión. Deficiencias en el diseño.		
Ocurrencia	4	Si no se usan instalaciones de pruebas adecuadas. Apuros por terminar		
		rápido una tarea. No se dio la suficiente importancia al diseño del hardward.		

		Riesgo 5: Selección del procesador y/o periféricos
Severidad	4	Las características no alcanzan para cumplir el objetivo, como ser poca
		capacidad de memoria, pocos GPIO o baja resolución del ADC.
Ocurrencia	5	No poseer suficiente experiencia en este tipo de tecnología. La respuesta de
		los distintos sensores no es la esperada.

Estos riesgos se ponderan de acuerdo a la siguiente fórmula:

$$RPN = S * O$$

A continuacion se muestra una tabla de gestión de riesgos:

Riesgo	S	О	RPN	S*	O*	RPN*
1: Retrasos en las tareas realizadas por el equipo	9	5	45	9	2	18
2: Demora en la entrega de insumos	7	8	56	3	8	24
3: Pérdida de información	7	3	21			
4: Rotura del prototipo	9	4	36	5	3	15
5: Selección del procesador y/o periféricos		5	20			

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a 30

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

Como se observa en la tabla vemos que tres de los cinco riesgos no cumplen el criterio. A continuación analizaremos como mitigar los riesgos con RPN mayor a 30.

Riesgo 1: Retrasos en las tareas realizadas por el equipo									
Severidad	9	La severidad sigue siendo la misma que antes de la mitigación.							
Ocurrencia	2	Se puede reordenar la distribución de horas de trabajo. Se pide							
		asesoramiento al director del proyecto para los temas que generan mayores							
		dudas. Para mejorar la relacion con el equipo se pueden implementar							
		conceptos aprendidos en metodologías ágiles y scrum.							

Riesgo 2: Demora en la entrega de insumos						
Severidad	3	Se puede bajar la severidad, generando las compras con mayor antelación.				
		Gestionar las importaciones con los proveedores locales. Dentro de lo posible				
		adaptarse a los insumos que se consiguen en el mercado local				
Ocurrencia	8	La ocurrencia no cambia porque seguimos dependiendo de terceros.				

Riesgo 4: Rotura del prototipo						
Severidad	5	Se baja la severidad armando al menos dos prototipos (redundancia del				
		100 %).				
Ocurrencia	3	Se puede bajar la ocurrencia maximizando los cuidados en la manipulación				
		y los ensayos. Minimizar la precariedad.				

13. Gestión de la calidad

1. Requerimientos generales del proyecto

- 1.1. Fecha de entrega del proyecto terminado: 5 de Julio de 2021.
 - -Verificación: Se verifica acorde al diagrama de Gantt.
 - -Validación: Es tarea del cliente y del director del proyecto hacer el seguimiento.
- 1.2. El responsable asegura al cliente el know-how del proyecto.
 - -Verificación: Se irán entregando los avances del proyecto al cliente
 - -Validación: El cliente dará conformidad a la documentación entregada
- 1.3. Podrá alimentarse con línea de red monofásica o trifásica.
 - -Verificación: Se verificará que el prototipo tenga conexión para los tipos de alimentación.
 - -Validación: Se hará en las pruebas de campo. El prototipo debe responder indistintamente con ambos tipos de alimentación.
- 1.4. Deberá contemplar protecciones de alimentación a través de llaves térmicas.
 - -Verificación: Se realiza cálculo de consumo a plena carga.
 - -Validación: Se realiza prueba de corto circuito con Variac y amperímetro.

2. Requerimientos funcionales

2.1. Requerimientos de Hardware

- 2.1.1. El dispositivo debe contemplar un diseño modular.
 - -Verificación: Se verifica que el diseño se adapte para conectar múltiples fuente de carga.
 - -Validación: Se hace funcionar el cargador con una, dos y hasta tres fuentes de carga.
- 2.1.2. El diseño modular debe permitir su re configuración.
 - -Verificación: Ídem 2.1.1.
 - -Validación: Las pruebas de campo se harán conectando una, dos o tres fuentes de carga y comprobando el funcionamiento en los tres casos.
- 2.1.3. Debe tener un teclado accesible para su configuración y manejo.
 - -Verificación: Se puede verificar simulando el código o directamente en la placa de control presionando todas las teclas y verificando si responden.
 - -Validación: Se comprueba en el prototipo que las teclas ejecutan las acciones para las que fueron encomendadas.
- 2.1.4. Debe poseer un display que permita visualizar la configuración y parámetros mensurables.
 - -Verificación: Se verifica el encuadre, brillo y contraste.
 - -Validación: Se comprueba el funcionamiento sincronizado con el teclado y que los valores mensurables sean los correctos (alineación, decimales, unidades, decenas y centenas).
- 2.1.5. Debe poseer indicadores luminosos bien visibles.
 - -Verificación: Se verifica que enciendan y apaguen.
 - -Validación: Se comprueba que se correspondan a las funciones asociadas.
- 2.1.6. Cada fuente debe tener su propio sensor de corriente.
 - -Verificación: Se verifica que respondan a los estímulos y su correcta polaridad.
 - -Validación: Se comprueba su precision y exactitud según hoja de datos.
- 2.1.7. El sensor de tensión es común a todas las fuentes.
 - -Verificación: Se verifica que responda a los estímulos y su correcta polaridad.
 - -Validación: Se comprueba su precision y exactitud.
- 2.1.8. Se agrega un botón de parada de emergencia.
 - -Verificación: Se simula su accionamiento y que responda deteniendo el proceso de carga.
 - -Validación: Se mide que el tiempo de respuesta sea el correcto.

2.2. Requerimientos de Firmware

- 2.2.1. Debe permitir configurar la tensión y corriente máxima de carga.
 - -Verificación: Se simula una configuración de batería y se verifica que tengan un límite máximo.
 - -Validación: Se comprueba que los límites máximos sean los que correspondan a cada etapa de carga.
- 2.2.2. Debe permitir configurar los tiempos máximos para cada etapa de carga.
 - -Verificación: Se verifica que los procesos de carga finalicen por tiempo, haciendo simulaciones con tiempos de carga mas cortos a los reales.
 - **-Validación:** Se mide los tiempos de los distintos pasos de carga y se comprueba que sean los correctos.
- 2.2.3. Debe guardar al menos dos configuraciones.
 - -Verificación: Se realiza pudiendo cargar los parámetros de dos tipos de baterías distintas.
 - -Validación: Se controla que cada configuración de batería modifique los parámetros de carga máximos.
- 2.2.4. Tendrá que medir tensión, corriente y temperatura.

- -Verificación: Se simulan los datos de los sensores y se visualizan en la pantalla.
- -Validación: Se comprueba con un multímetro auxiliar los valores medidos.
- 2.2.5. Tendrá que garantizar cuatro etapas de carga:
 - 2.2.5.1. Carga a Fondo.
 - -Verificación: Se simula la conexión de una batería y que el detector de comienzo a la carga a fondo .
 - -Validación: Se comprueba que la carga se haga a corriente constante y sea la corriente máxima.
 - 2.2.5.2. Carga por Absorción.
 - **-Verificación:** Se realizan simulaciones con tiempos cortos de ejecución verificando el paso de carga a fondo a carga por absorción.
 - -Validación: Se comprueba la transición y que la carga se haga a tensión máxima constante.
 - 2.2.5.3. Carga a Flote.
 - -Verificación: Se realizan simulaciones con tiempos cortos de ejecución verificando el paso de carga por absorción a flote.
 - -Validación: Se comprueba la transición y que la tensión no supere el 10% de la tensión nominal ni el 10% de la corriente máxima.
 - 2.2.5.4. Ecualización.
 - -Verificación: Se realizan simulaciones con tiempos cortos de ejecución, verificando el cambio del paso de carga por absorción a ecualización.
 - -Validación: Se comprueba la transición y que la tensión no supere el $10\,\%$ de la tensión máxima y que la corriente se se limite al $10\,\%$ de la corriente máxima.
- 2.2.6. Tendrá un algoritmo que atienda al botón de parada de emergencia.
 - -Verificación: Se simula el accionamiento del botón y como responde el programa.
 - -Validación: Con el prototipo funcionando, se presiona el botón de parada de emergencia, y se comprueba la detención automática la carga y el tiempo que demora.
- 2.2.7. El control de carga se realizará por un algoritmo PID.
 - -Verificación: Se determinan las constantes Kp, Ki y Kd y se verifica su comportamiento.
 - -Validación: Una vez sintonizadas las constantes del PID se comprueba la estabilidad del sistema.
- 2.2.8. Se registrará la fecha y hora de inicio y finalización de cada carga a través de un RTC.
 - -Verificación: Se realizan simulaciones con tiempos cortos de ejecución de una carga y se verifica que se registren la fecha y hora.
 - -Validación: Se comprueba luego de una carga completa que al finalizar se registren la fecha y hora.
- 2.2.9. Debe guardar las últimas mil cargas realizadas.
 - -Verificación: Se simula la carga de 1000 registros en la EEPROM.
 - -Validación: Se comprueba la integridad de los 1000 registros grabados.
- 2.2.10. Con los datos recavados se podrá determinar anomalías y generar alarmas.
 - -Verificación: Se simula un caso particular guardando datos en EEPROM que fuercen el disparo de alarmas.
 - -Validación: Resulta complicado hacer la validación, por los tiempos que llevaría la comprobación, por lo que que se aceptará si cumple la verificación.

- 2.2.11. El registro de datos almacenados debe estar disponible para ser consultado remotamente.
 - -Verificación: Se simula por UART la consulta del registro de datos.
 - **-Validación:** Se comprueba enviando el comando de lectura y que el mismo sea recibido por el módulo WIFI. A su vez el módulo WIFI enviará los datos guardados en EEPROM.

3. Requerimientos no funcionales

- 3.1. Se deberá generar documentación:
 - 3.1.1. Esquemáticos eléctricos.
 - -Verificación: Se verifica que lo documentado se corresponda con el prototipo final
 - -Validación: Será validado por el responsable del proyecto.
 - 3.1.2. Manual de instalación.
 - -Verificación: Ídem 3.1.1. -Validación: Ídem 3.1.1.
 - 3.1.3. Manual de uso.
 - -Verificación: Se verifica que lo documentado se cumpla en la práctica
 - -Validación: Será validado por el cliente.
- 3.2. Se contará con la correspondiente certificación eléctrica otorgada por un laboratorio habilitado para la importación de las fuentes de carga.
 - -Verificación: No aplica-Validación: No aplica
- 3.3. El grado de protección del sistema debe ser como mínimo IP50.
 - -Verificación: Se verifica de acuerdo a lo establecido en la norma
 - -Validación: Será validado por el cliente.
- 3.4. Se debe garantizar un servicio de post venta por al menos 5 años.
 - -Verificación: No aplica.-Validación: No aplica

14. Comunicación del proyecto

El plan de comunicación del proyecto es el siguiente:

PLAN DE COMUNICACIÓN DEL PROYECTO						
¿Qué comunicar?	Audiencia	Propósito	Frecuencia	Comunicación	Responsable	
Plan de trabajo	Cliente Director Clase GdP	Dar a conocer el proyecto y como se realizará	Una vez	Por escrito y/o videoconferencia	Felipe Calcavecchia	
Informe de avance	Cliente Director	Informar si las tareas se cumplen en los plazos establecidos	quincenal- mente	e-mail y/o videoconferencia	Felipe Calcavecchia	
Desviaciones Director		Buscar posibles soluciones y re programar tareas si fuera necesario	Cuando ocurra	e-mail y/o videoconferencia	Felipe Calcavecchia	
Presentación del proyecto final	Cliente Director Jurado	Exponer el producto final, detallando su diseño y construcción	Una vez	videoconferencia	Felipe Calcavecchia	

15. Gestión de Compras

El presente proyecto no presenta gran complejidad en la adquisición de sus insumos. Los componentes electrónico se consiguen en parte en el mercado local (Elemon, Cika o Semak) y parte en el extranjero (DigiKey, Mean Well). Además el cliente asegura poseer en stock todos los elementos necesarios para la construcción del prototipo. El único elemento pendiente de compra, a la hora de la creación de este plan de trabajo, es el PCB, que queda supeditado al diseño del mismo.

16. Seguimiento y control

		SEG	UIMIENTO	DEL AVANCE		
WBS	Nombre de la tarea	Indicador de avance	Frecuencia de reporte	Responsable del seguimiento	Persona a ser informada	Comunicación
1.1.	Definición de los requerimientos	% de definiciones	Al finalizar	Felipe Calcavecchia	Luis A. Rosende	Reunion personal
1.2.	Confección del plan de trabajo	% de Ítems	Al finalizar	Felipe Calcavecchia	Luis A. Rosende	e-mail
2.1.	Información sobre la competencia	% del informe	Al finalizar	Luis A. Rosende	Felipe Calcavecchia	Reunion personal
2.2.	Análisis Técnico- Económico	% del informe	Al finalizar	Felipe Calcavecchia	Luis A. Rosende	Reunion personal
2.3.	Análisis sobre el microprocesador	% del análisis	Semanal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
2.4.	Investigación sobre los periféricos	% de la investigación	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
2.5.	Estudio de los data sheet de periféricos	% del estudio	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
3.1.	Diseño del diagrama esquemático	% del diseño	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
3.2.	Diseño del diagrama de conexión	% del diseño	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
3.3.	Diseño de los PCB's	% del diseño	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
3.4.	Armado de los PCB's	% de armado	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
3.5.	Ensamblado del prototipo inicial	% de ensamblaje	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
4.1.	Definición de funciones	Cantidad de funciones	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
4.2.	Modularización del código	% de módulos terminados	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
5.1.	Integración del sistema	% de integración	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
5.2.	Pruebas de campo	Cantidad de pruebas	quincenal	Felipe Calcavecchia	Alejandro Permingeat Luis A. Rosende	e-mail
5.3.	Corrección de los PCB's	% de realización	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
5.4.	Búsqueda de bugs	% de realización	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
5.5.	Ensamblado final del prototipo	% de ensamblaje	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
5.3.	Corrección de los PCB's	% de realizaci	quincenal	Felipe Calcavecchia	Alejandro Permingeat	e-mail
6.	Proceso de cierre	% de elaboración	quincenal	Felipe Calcavecchia	Alejandro Permingeat Luis A. Rosende Jurado	e-mail

17. Procesos de cierre

Se establecerá una reunión con los distintos actores involucrados e interesados en el proyecto donde se contemple las siguientes actividades:

- El responsable del proyecto, Felipe Calcavecchia, analizará junto al director, Alejandro Permingeat, el cumplimiento del WBS, los cambios realizados y los tiempos en el que se llevaron a cabo. Se revisarán las técnicas de diseño aplicadas en el proyecto, y se comentarán cuales tuvieron éxito y cuáles no. A su vez se repasarán los problemas enfrentados y como se solucionaron.
- El responsable del proyecto, Felipe Calcavecchia, comunicará al cliente, Luis A. Rosende, la finalización del proyecto y hará entrega de toda la documentación correspondiente del producto para su producción. También entregará un informe técnico-económico del producto.
- El responsable del proyecto, Felipe Calcavecchia, elaborará un documento con la memoria y una presentación del producto para su defensa pública ante un jurado evaluador. En ella también se agradecerá al director por haber dirigido y controlado todo el trabajo, al cliente por la confianza dispensada y por el aporte financiero y en especial al equipo y colaboradores por su compromiso de trabajo para con el proyecto.