```
clear; close all;
```

Solve Poisson Equation

Consider the 2D Poisson equation with only Dirichlet boundary conditions:

$$u_t - \Delta u = f$$
 on Ω
 $u = g$ on $\partial \Omega$
 $u = u_0$ $t = 0$

where

$$g = \sin(x)\cos(y)\cos(t)$$
.

and

$$f = \sin(x)\cos(y)(-\sin(t) + 2\cos(t)).$$

```
global f g
f = @(x,y,t) sin(x).*cos(y).*(-sin(t)+2*cos(t));
g = @(x,y,t) sin(x).*cos(y).*cos(t);
```

Note that one true solution is u = g if $u_0(x, y) = g(x, y, 0)$.

```
u_true = g;
```

Domain

First we define our domain Ω and generate a function space on it with finite element of choice:

```
addpath('..') import MatFem.* domain = [-0.4\ 0.4\ -0.4\ 0.4]; % define a domain with -0.4\le x\le 0.4, -0.4\le y\le 0.4 % NOTE: if we choose too large a mesh, each mesh grid will have little communication, which less to poor observability. shape = [8\ 8]; % 8\times 8 grids mesh = rectMesh(domain, shape);
```

Now let's construct a degree 2 function space with 9 quadrature points in each element:

```
global V
V = MatFem.mesh2spc(mesh, 1, 4); % P1 element with degree 4 quadrature
figure()
V.plot()
```


% title('Function space of degree 2 element and degree 4 quadrature points')

Variational form

With backward-Euler, the variational form at time t is

$$\int_{\Omega} (u_t v + \Delta t \nabla u_t \cdot \nabla v) = \int_{\Omega} (\Delta t \; f v + u_{t-\Delta t} v).$$

The left hand side matrix then can be assembled as

To see what assemble does, run

```
% help assemble
```

Boundary Condition

Boundary conditions can be defined as

```
global bc
bc = MatFem.rectBndCond(V, 'd', domain); % 'd' means dirichlet. This creates Dirichlet boundar
[~, A] = bc.applyDir('d', 0, [], A); % apply Dirichlet boundary conditions to A. The value
```

Solution

Now let us solve the system.

We'd like to write a function F s.t. $u_t = F(u_{t-\Delta t}, t)$.

Definition code is placed at the end of the file.

Now let's examine the solution. Given initial value $u_0 = g(t = 0)$, our solution should be close to g.

```
T = 1;
u = V.project(@(x,y)u_true(x,y,0)); % initial condition
for t = dt:dt:T
    u = F(u, t); % solve for next state
end
MatFem.errorNorm(V, u, @(x,y)u_true(x,y,T), 'L2')
```

```
ans = 1.9745e-04
```

A more rigorous test would be to examin convergence rate. But it is not our focus here.

Data Assimilation

Suppose we are trying to recover the initial state $u_0 = g(t = 0)$.

```
V.plotu(@(x,y)u_true(x,y,0))
```


Bases

The number of bases in our function space V

```
V.nb

ans = 81
```

However the Dirichlet boundaries reduces some of them. In order to find all valid bases, we can apply Dirichlet Boundary conditions

```
global bases
bases = ones(V.nb, 1);
bases = bc.applyDir('d', 0, bases);
bases = logical(bases);
```

Now the number of bases is

```
nb = sum(bases)
nb = 49
```

We can write a function to map a vector $[\alpha_1,\alpha_2,\ldots,\alpha_{nb}]$ to a function in our function space V with value 0 at all Dirichlet boundaries. See the function alphas 2V at the end of this file. And the function V2alphas is vice versa.

Now the i^{th} base function is:

```
i = 41;
basei = zeros(nb,1);
basei(i) = 1;
C1 = alphas2V(basei);
V.plotu(C1)
```


In fact, if we stack all base functions into one matrix, it would be

```
alphas = eye(nb);
C = alphas2V(alphas);
```

Observations

Now let's assume *g* describes true states, but we don't know it yet.

We made some observations every $^{2\Delta t}$, at positions (-0.2, -0.2), (-0.2, 0), (-0.2, 0.2), (0, -0.2), (0, 0), (0, 0.2), (0.2, -0.2), (0.2, 0), (0.2, 0.2) and we have some error in our observations.

```
data = zeros(nobst * nsensor, 1);
for i = 1:nobst
    data((nsensor*(i-1)+1):(nsensor*i)) = reshape(g(X,Y,dt*ndtobs*i), nsensor, 1) + randn(nsensor)
```

In order to do data assimilation, we also need to define a function for numerical observations. To do that, we need an interpolation function in our finite element package that can evaluate a function given a vector u and location (x, y). This is not implemented in my MatFem. So for now I'll just hard code the observation in observe at the end of this file.

Homogenize

Consider the homogenized Poisson system:

$$u_t - \Delta u = 0$$
 on Ω
 $u = 0$ on $\partial \Omega$
 $u = u_0$ $t = 0$

Because of the linearity of this system, if u_1, u_2 are two solutions to this system corresponding to initial conditions u_{01}, u_{02} , then for any $\alpha_1, \alpha_2 \in R$, $\alpha_1 u_1 + \alpha_2 u_2$ is a solution corresponding to initial condition $\alpha_1 u_{01} + \alpha_2 u_{02}$.

Moreover, if u^* is a solution to the inhomogeneous system with initial condition u_0^* , then $\sum_i \alpha_i u_i + u^*$ is a solution to the inhomogeneous system with initial condition $\sum_i \alpha_i u_{0i} + u_0^*$.

A solution to the homogenized system is written in function Fh. See the end of this file.

We randomly select an initial condition for inhomogeneous system

```
u0star = zeros(V.nb, 1);
u0star = bc.applyDir('d', @(x,y)g(x,y,0), u0star);
```

Note that a smooth u_0^* is better. Here we just leave it as it is for simplicity.

If we observe this solution, we can get a set of data

```
inhodata = zeros(nobst * nsensor, 1);
ustar = u0star;
for i = 1:(nobst*ndtobs)
    t = i * dt;
    ustar = F(ustar, t); % solve for $\tilde{C_i^0}$ at time $t$.
    if mod(i, ndtobs) == 0
        inhodata((1+nsensor*(i/ndtobs-1)):(nsensor*i/ndtobs)) = observe(ustar);
    end
end
```

Subtracting real data by this one, we get the data that should be observed by homogeneous system.

```
homodata = data - inhodata;
```

Solve for \widetilde{C}_i

Now by using the homogeneous solver and the bases we introduced above, we can solve for \widetilde{C}_i^0 and \widetilde{C}_i .

The $i^{\,\mathrm{th}}$ column of numdata corresponds to $\widetilde{C}_i.$

Solve for u_0

Now we are ready to solve for all α_i . We expect numdata * alphas = homodata. So

```
alphas = numdata \ homodata;
```

The guess of our initial condition is then

```
u0 = alphas2V(alphas) + u0star;
```



```
title('recovered initial conditoin without prior knowledge');
MatFem.errorNorm(V, u0, @(x,y)u_true(x,y,0), 'L2')
ans = 0.0145
```

Solve for u_0 with prior $oldsymbol{eta}$

If we have some prior knowledge $\beta = u_0$, given weight $\kappa = 0.01$, then the least square solve becomes

```
beta = V.project(@(x,y)u_true(x,y,0));
kappa = 0.01;

alphas = (numdata' * numdata + kappa * eye(nb)) \ (numdata' * homodata + kappa * V2alphas(beta
u0 = alphas2V(alphas) + u0star;
figure();
V.plotu(u0)
title('recovered initial conditoin with prior knowledge');
MatFem.errorNorm(V, u0, @(x,y)u_true(x,y,0), 'L2')
```

Functions

ans = 3.5642e-04

```
function u = F(u \text{ old}, t)
    % Solve the poisson system for 1 timestep.
    import MatFem.assemble
    global V bc Auv f g A dt
    b = dt * assemble(V, [0 0], @(x,y)f(x,y,t)); % \Delta t * integrate(f*v)
    b = b + Auv * u old; % Auv * u_old gives integrate(u_old*v)
    b = bc.applyDir('d', @(x,y)q(x,y,t), b); % apply boundary condition
    u = A \setminus b;
end
function u = Fh(u \text{ old})
    % Solve the homogenized poisson system for 1 timestep.
    import MatFem.assemble
    global bc Auv A
    b = Auv * u old;
    b = bc.applyDir('d', 0, b);
    u = A \setminus b;
end
function v = alphas2V(alphas)
    % Map a vector of alphas to a function with
        v = \sum i alpha i \phi i
    % where \phi i is one basis of the functionspace V.
    % This function is vectorized. `alphas` can be a 2D array
    % with each column represent a vector of alphas.
    qlobal bases
    v = zeros(size(bases, 1), size(alphas, 2));
    v(bases,:) = alphas;
```

```
end
function alphas = V2alphas(v)
    % Map a vector in our function space to alphas.
    % I.e., remove all Dirichlet boundaries.
    global bases
    alphas = v(bases,:);
end
function data = observe(v)
    % Observe a state v in function space V.
    % Corresponds to sensors at locations:
          [-0.2 0 0.2] x [-0.2 0 0.2] (Cartesian product)
    % Vectorized so that alphas can be a row of vector of alphas.
    pos = [9 11 13 23 25 27 37 39 41]; % You can use the codes in section *Bases* to examine to
    alphas = V2alphas(v);
    data = alphas(pos, :);
end
```