Master in Artificial Intelligence

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models

Advanced Human Language Technologies Statistical Models of Language

Outline

- Statistical Models for NLP
- Maximum Likelihood Estimation (MLE)

- Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Log-Linear Models
 - Maximum Entropy Models
 - Examples

Outline

Statistical Models for NLP

Why modeling

Maximum Likelihood Estimation (MLE)

- Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Log-Linear Models
 - Maximum Entropy Models
 - Examples

Training data

Statistical Models for NLP Why modeling

vvny modeling

Maximum Likelihood Estimation (MLE)

Statistical Models for NLP

Why modeling

Maximum Likelihood Estimation (MLE)

Statistical Models for NLP

Why modeling

Maximum Likelihood Estimation (MLE)

Statistical Models for NLP

Why modeling

Maximum Likelihood Estimation (MLE)

Statistical Models for NLP

Why modeling

Maximum Likelihood Estimation (MLE)

Statistical Models for NLP

Why modeling

Maximum Likelihood Estimation (MLE)

Outline

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

- Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Log-Linear Models
 - Maximum Entropy Models
 - Examples

Prediction Models & Similarity Models

Statistical Models for Prediction &

Similarity Models

Maximum Likelihood Estimation (MLE)

- **Prediction Models**: Oriented to *predict* probabilities of future events, knowing past and present.
- **Similarity Models**: Oriented to compute *similarities* between objects (may be used to predict, EBL).

Prediction Models

- Estimation: Using data to infer information about distributions
 - Parametric / non-parametric estimation
 - Finding good estimators: MLE, MEE, ...
 - Explicit / implicit models
- Classification: Predictions based on past behaviour
 - Predict most likely target given classification features (implies independence assumptions!)
 - Granularity of equivalence classes (bins): discrimination power vs. statistical reliability
- In general, ML models estimate (i.e. learn) conditional probability distributions P(target|features)
- Many NLP tasks require a posterior search step to find the best combination of predictions.

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Prediction Models

Example: Noisy Channel Model (Shannon 48)

NLP Applications

Appl.	Input	Output	p(i)	p(o i)
MT	L word	M word	p(L)	Translation
	sequence	sequence		model
OCR	Actual text	Text with	prob. of	model of
		mistakes	language text	OCR errors
PoS	PoS tags	word	prob. of PoS	p(w t)
tagging	sequence	sequence	sequence	
Speech	word	speech	prob. of word	acoustic
recog.	sequence	signal	sequence	model

Given o, we want to find the most likely i

$$\mathop{\mathsf{argmax}}_{\mathbf{i}} P(\mathbf{i} \mid \mathbf{o}) = \mathop{\mathsf{argmax}}_{\mathbf{i}} P(\mathbf{o}, \mathbf{i}) = \mathop{\mathsf{argmax}}_{\mathbf{i}} P(\mathbf{i}) P(\mathbf{o} \mid \mathbf{i})$$

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Finding good estimators: MLE

Maximum Likelihood Estimation (MLE)

- Choose the alternative that maximizes the probability of the observed outcome.
- lacksquare $\bar{\mu}_n$ is a MLE for E(X)
- s_n^2 is a MLE for σ^2
- Zipf's Laws. Data sparseness. Smoothing tecnhiques.

P(a, b)	dans	en	à	sur	au-cours-de	pendant	selon	
						0.03	0	0.40
on	0.06	0.25	0.10	0.15	0	0	0.04	0.60
total	0.10	0.35	0.25	0.15	0.08	0.03	0.04	1.0

Statistical Models for NLP Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

Choose the alternative that maximizes the entropy of the obtained distribution, maintaining the observed probabilities.

Observations:

$$p(\mathsf{en} \lor \grave{\mathsf{a}}) = 0.6$$

P(a, b)	dans	en	à	sur	au-cours-de	pendant	selon	
in	0.04	0.15	0.15	0.04	0.04	0.04	0.04	
on	0.04	0.15	0.15	0.04	0.04	0.04	0.04	
total								1.0

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

Choose the alternative that maximizes the entropy of the obtained distribution, maintaining the observed probabilities.

Observations:

$$p(\mathsf{en} \lor \grave{\mathsf{a}}) = \mathsf{0.6}; \qquad p((\mathsf{en} \lor \grave{\mathsf{a}}) \land \mathsf{in}) = \mathsf{0.4}$$

P(a, b)	dans	en	à	sur	au-cours-de	pendant	selon	
in	0.04	0.20	0.20	0.04	0.04	0.04	0.04	
on	0.04	0.10	0.10	0.04	0.04	0.04	0.04	
total		_						1.0
	0.6							

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

Choose the alternative that maximizes the entropy of the obtained distribution, maintaining the observed probabilities.

Observations:

$$p(\mathsf{en} \lor \grave{\mathsf{a}}) = \mathsf{0.6}; \qquad p((\mathsf{en} \lor \grave{\mathsf{a}}) \land \mathsf{in}) = \mathsf{0.4}; \qquad p(\mathsf{in}) = \mathsf{0.5}$$

P(a, b)	dans	en	à	sur	au-cours-de	pendant	selon	
in	0.02	0.20	0.20	0.02	0.02	0.02	0.02	0.5
on	0.06	0.10	0.10	0.06	0.06	0.06	0.06	
total								1.0
	0.6							

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Outline

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Log-Linear Models
 - Maximum Entropy Models
 - Examples

Outline

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Working example

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Log-Linear Models
 - Maximum Entropy Models
 - Examples

Working Example: N-gram models

Predict the next element in a sequence (e.g. next character, next word, next PoS, next stock value, ...), given the *history* of previous elements: $P(w_n \mid w_1 \dots w_{n-1})$

■ Markov assumption: Only *local* context (of size n-1) is taken into account. $P(w_i \mid w_{i-n+1} \dots w_{i-1})$

- bigrams, trigrams, four-grams (n = 2, 3, 4). Sue swallowed the large green <?>
- Parameter estimation (number of equivalence classes)
- Parameter reduction: stemming, semantic classes, PoS, ...

Model	Parameters
bigram	$20,000^2 = 4 \times 10^8$
trigram	$20,000^3 = 8 \times 10^{12}$
four-gram	$20,000^4 = 1.6 \times 10^{17}$

Language model sizes for a 20,000 words vocabulary

Statistical Models for

Maximum Likelihood Estimation (MLE) Working example

Log-Linear

N-gram model estimation

Estimate the probability of the target feature based on observed data. The prediction task can be reduced to having good estimations of the n-gram distribution:

$$P(w_n \mid w_1 \dots w_{n-1}) = \frac{P(w_1 \dots w_n)}{P(w_1 \dots w_{n-1})}$$

MLE (Maximum Likelihood Estimation)

$$P_{MLE}(w_1...w_n) = \frac{C(w_1...w_n)}{N}$$

$$P_{MLE}(w_n \mid w_1...w_{n-1}) = \frac{C(w_1...w_n)}{C(w_1...w_{n-1})}$$

- No probability mass for unseen events
- Data sparseness, Zipf's Law
- Unsuitable for NLP (widely used, though)

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Working example

Brief Parenthesis: Zipf's Laws

Zipf's Laws (1929)

- Word frequency is inversely proportional to its rank (speaker/hearer minimum effort) $f \sim 1/r$
- \blacksquare Number of senses is proportional to frequency root $m \sim \sqrt{f}$
- Frequency of intervals between repetitions is inversely proportional to the length of the interval $F \sim 1/I$
- Frequency based approaches are hard, since most words are rare
 - Most common 5% words account for about 50% of a text
 - 90% least common words account for less than 10% of the text
 - Almost half of the words in a text occurr only once

Statistical Models for NLP

Maximum Likelihood Estimation (MLE) Working example

Outline

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Smoothing & Estimator Combination

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Log-Linear Models
 - Maximum Entropy Models
 - Examples

Notation

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Smoothing & Estimator Combination

- $C(w_1 ... w_n)$: Observed occurrence count for n-gram $w_1 ... w_n$.
- N: Number of observed n-gram occurrences

$$N = \sum_{w_1 \dots w_n} C(w_1 \dots w_n)$$

- $ightharpoonup N_k$: Number of classes (n-grams) observed k times.
- B: Number of equivalence classes or bins (number of potentially observable n-grams).

Smoothing 1 - Adding Counts

Statistical Models for NLP

Likelihood Estimation (MLE) Smoothing &

Estimator Combination

Log-Linear Models ■ Laplace's Law (adding one)

$$P_{LAP}(w_1 \dots w_n) = \frac{C(w_1 \dots w_n) + 1}{N + B}$$

- For large values of B too much probability mass is assigned to unseen events
- Lidstone's Law

$$P_{LID}(w_1 \dots w_n) = \frac{C(w_1 \dots w_n) + \lambda}{N + B\lambda}$$

- Usually $\lambda = 0.5$, Expected Likelihood Estimation.
- Equivalent to linear interpolation between MLE and uniform prior, with $\mu = N/(N+B\lambda)$,

$$P_{\text{LID}}(w_1 \dots w_n) = \mu \frac{C(w_1 \dots w_n)}{N} + (1 - \mu) \frac{1}{B}$$

Smoothing 2 - Discounting Counts

Absolute Discounting

$$P_{ABS}(w_1 \dots w_n) = \left\{ \begin{array}{ll} \frac{C(w_1 \dots w_n) - \delta}{N} & \text{if } C(w_1 \dots w_n) > 0 \\ \\ \frac{(B - N_0)\delta/N_0}{N} & \text{otherwise} \end{array} \right.$$

Linear Discounting

$$P_{LIN}(w_1 \dots w_n) = \left\{ \begin{array}{ll} (1-\alpha) \frac{C(w_1 \dots w_n)}{N} & \text{if } C(w_1 \dots w_n) > 0 \\ \\ \alpha/N_0 & \text{otherwise} \end{array} \right.$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE) Smoothing &

Estimator Combination Log-Linear Models

Combining Estimators

■ Simple Linear Interpolation

$$\begin{split} P_{LI}(w_n \mid w_{n-2}, w_{n-1}) &= \lambda_1 P_1(w_n) \\ &+ \lambda_2 P_2(w_n \mid w_{n-1}) \\ &+ \lambda_3 P_3(w_n \mid w_{n-2}, w_{n-1}) \end{split}$$

Backing-off

$$P_{BO}(w_i \mid h) = \left\{ \begin{array}{ll} (1 - \alpha_h) \frac{C(h, w_i)}{C(h)} & \text{if } C(h, w_i) > k \\ \delta_{h'} P_{BO}(w_i \mid h') & \text{otherwise} \end{array} \right.$$

(where
$$h=w_{i-n+1}\dots w_{i-1},\ h'=w_{i-n+2}\dots w_{i-1}$$
)
Different options to determine α_h and $\delta_{h'}$ (e.g. $\alpha_h=\delta_{h'}$ $\forall h$)

Statistical Models for NLP

Maximum Likelihood Estimation (MLE) Smoothing &

Smoothing & Estimator Combination

Outline

- Statistical Models for NLP
- Maximum Likelihood Estimation (MLE)

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Log-Linear Models
 - Maximum Entropy Models
 - Examples

Log-Linear Models

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models

$$P(y \mid x; \mathbf{w}) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(x, y))}{\sum_{u} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))}$$

where

- f(x, y) is a feature vector representing x and y
- w are the parameters of the model
- $\mathbf{w} \cdot \mathbf{f}(x, y)$ is a score for x and y
- $Z(x) = \sum_{y} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))$ is a normalizer (sums over all possible values y for x); it's sometimes called the *partition* function

Features, Indicator Features

■ $\mathbf{f}(x, y)$ is a vector of d features representing x and y

$$(\ \mathbf{f}_1(x,y),\ldots,\mathbf{f}_j(x,y),\ldots,\mathbf{f}_d(x,y)\)$$

- What's in a feature $f_j(x, y)$?
 - \blacksquare Anything we can compute using x and y
 - Anything that is informative for (or against) x belonging to class y
 - Indicator features: binary-valued features looking at a single simple property

$$\begin{split} \mathbf{f}_j(c,b) = \left\{ \begin{array}{ll} 1 & \text{if prefix}(c) = & \textit{Mr} \text{ and } b = & \text{no} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_k(c,b) = \left\{ \begin{array}{ll} 1 & \text{if uppercase}(\mathsf{next}(c)) \text{ and } b = & \text{yes} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Features, Parameters, Inner Products

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

$$P(y \mid x; \mathbf{w}) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(x, y))}{\sum_{\mathbf{u}} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))}$$

- $\mathbf{f}(x,y) \in \mathbb{R}^d$ is a feature vector with d features
- $\mathbf{w} \in \mathbb{R}^d$ is a parameter vector, with d parameters
- Inner products (a.k.a. dot products)

$$\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{d} \mathbf{w}_{i} \mathbf{f}_{i}(\mathbf{x}, \mathbf{y})$$

Log-linear Models

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models

$$P(y \mid x; \mathbf{w}) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(x, y))}{\sum_{\mathbf{u}} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))}$$

where

- f f(x,y) is a feature vector representing x and y
 - Arbitrary features of x and y are allowed
 - They are provided for the application in turn
- w are the parameters of the model
- Two problems:
 - How to make predictions using $P(y \mid x)$
 - How to estimate the parameters w?

Log-linear Models: Name

Let's take the log of the conditional probability:

$$\begin{split} \log \mathsf{P}(y \mid x; \mathbf{w}) &= \log \frac{\exp \left(\mathbf{w} \cdot \mathbf{f}(x, y) \right)}{\sum_{y} \exp \left(\mathbf{w} \cdot \mathbf{f}(x, y) \right)} \\ &= \mathbf{w} \cdot \mathbf{f}(x, y) - \log \sum_{y} \exp \left(\mathbf{w} \cdot \mathbf{f}(x, y) \right) \\ &= \mathbf{w} \cdot \mathbf{f}(x, y) - \log \mathsf{Z}(x) \end{split}$$

- Partition function: $Z(x) = \sum_{\mathbf{u}} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))$
- $\log Z(x)$ is a constant for a fixed x
- In the log space, computations are linear

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-linear Models: Making Predictions

• Given x, what y in $\{1, ..., L\}$ is most appropriate?

$$\begin{aligned} \mathsf{best}(x) &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \, \mathsf{P}(y \mid x; \mathbf{w}) \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \, \frac{\mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{\mathsf{Z}(x)} \end{aligned}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-linear Models: Making Predictions

• Given x, what y in $\{1, ..., L\}$ is most appropriate?

$$\begin{aligned} \mathsf{best}(x) &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \mathsf{P}(y \mid x; \mathbf{w}) \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \frac{\mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{\mathsf{Z}(x)} \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right) \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \mathbf{w} \cdot \mathbf{f}(x, y) \end{aligned}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-linear Models: Making Predictions

• Given x, what y in $\{1, \ldots, L\}$ is most appropriate?

$$\begin{aligned} \mathsf{best}(x) &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \mathsf{P}(y \mid x; \mathbf{w}) \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \frac{\mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{\mathsf{Z}(x)} \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right) \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \mathbf{w} \cdot \mathbf{f}(x, y) \end{aligned}$$

- Predictions only require simple inner products (linear)
- No need to exponentiate!

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-linear Models: Computing Probabilities

$$\mathsf{P}(y \mid x; \mathbf{w}) = \frac{\mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{\mathsf{Z}(x)}$$

- Sometimes we will be interested in computing $P(y \mid x)$
 - It can be used as a measure of confidence, e.g.

$$\begin{array}{l} \mathsf{P}(\texttt{yes} \mid c) = 0.51 \ \textit{versus} \\ \mathsf{P}(\texttt{yes} \mid c) = 0.99 \end{array}$$

■ We need to compute:

$$Z(x) = \sum_{y = \{1, \dots, L\}} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))$$

■ Fast as long as L is not too large

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Parameter Estimation in Log-linear Models

■ How to estimate model parameters w given a training set:

$$\left\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\ldots,(x^{(m)},y^{(m)})\right\}$$

■ Let's define the conditional log-likelihood of the data:

$$L(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \log P(y^{(k)}|x^{(k)}; \mathbf{w})$$

- $L(\mathbf{w})$ measures how well \mathbf{w} explains the data. A good value for \mathbf{w} will give a high value for $P(y^{(k)}|x^{(k)};\mathbf{w})$ for all $k=1\ldots m$.
- We want w that maximizes L(w)

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Parameter Estimation in Log-Linear Models

- We pose it as an optimization problem
- Find:

$$\mathbf{w}^* = \underset{\mathbf{w} \in \mathbb{R}^d}{\mathsf{argmax}} L(\mathbf{w})$$

where

- But low-frequency features may end up having large weights (i.e. overfitting)
- We need a regularization factor that penalizes solutions with a large norm (similar to norm-minimization in SVM):

$$L'(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \log P(y^{(k)}|x^{(k)}; \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2$$

• where λ is a parameter to control the trade-off between fitting the data and model complexity. Tuned experimentally.

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Parameter Estimation in Log-Linear Models

So we want to find:

$$\begin{split} \mathbf{w}^* &= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmax}} \, L'(\mathbf{w}) \\ &= \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmax}} \left(\frac{1}{m} \sum_{k=1}^m \log \mathsf{P}(\mathbf{y}^{(k)} | \mathbf{x}^{(k)}; \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2 \right) \end{split}$$

- In general there is no analytical solution to this optimization
- ... but it is a convex function ⇒ We use iterative techniques, i.e. gradient-based optimization
- Very fast algorithms exist (e.g. LBFGS)

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Parameter Estimation in Log-Linear Models : Gradient step

Repeat

• Compute gradient $\delta = (\delta_1, \dots, \delta_d)$, where:

$$\delta_j = \frac{\partial L'(\mathbf{w})}{\partial \mathbf{w}_j} \quad \forall j = 1 \dots d$$

Compute step size

Initialize $\mathbf{w} = \mathbf{0}$

$$\beta^* = \operatorname*{argmax}_{\beta \in \mathbb{R}} L'(\mathbf{w} + \beta \delta)$$

■ Move w in the direction of the gradient

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{\beta}^* \mathbf{\delta}$$

■ until convergence ($\|\delta\| < \epsilon$)

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-linear Models: Computing the Gradient

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

$$\begin{split} \frac{\partial L'(\mathbf{w})}{\partial \mathbf{w}_j} &= \frac{1}{m} \sum_{k=1}^m \mathbf{f}_j(x^{(k)}, y^{(k)}) \\ &- \sum_{k=1}^m \sum_{y \in \{1, \dots, L\}} \mathsf{P}(y|x^{(k)}; \mathbf{w}) \; \mathbf{f}_j(x^{(k)}, y) \\ &- \lambda \mathbf{w}_j \end{split}$$

- First term: observed mean feature value
- Second term: expected feature value under current w
- In the optimal, observed = expected

Outline

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Log-Linear Models
 - Maximum Entropy Models
 - Examples

MEM Overview

ME Models are the dual formulation of Log-Linear models.

- Maximum Entropy: alternative estimation technique.
- Able to deal with different kinds of evidence
- ME principle:

Statistical

Models for

Maximum

Likelihood Estimation

Log-Linear Models

> Maximum Entropy Models

(MLE)

- Do not assume anything about non-observed events.
- Find the most uniform (maximum entropy, less informed) probability distribution that matches the observations.
- Example:

	p(x, y)	0	1		p(x, y)	0	1		p(x, y)	0	1	
	а	?	?			0.5				0.3		
	b	?	?		b	0.1	0.3		b	0.3	0.2	
	total	0.6		1.0	total	0.6		1.0	total	0.6		1.0
						•		•				'
Observations			S	One possible $p(x, y)$			Max Entropy $p(x, y)$					

ME Modeling

- Observed facts are constraints for the desired model p.
- Constraints take the form of feature functions:

$$f_{i}:\epsilon\rightarrow\{0,1\}$$

The desired model p must satisfy the constraints:
The expectation predicted by model p for any feature fi must match the observed expectation for fi i.e.:

$$\begin{array}{rcl} E_p(f_\mathfrak{i}) & = & E_{\widetilde{p}}(f_\mathfrak{i}) & \forall \mathfrak{i} \\ \sum_{x \in \varepsilon} p(x) f_\mathfrak{i}(x) & = & \sum_{x \in \varepsilon} \widetilde{p}(x) f_\mathfrak{i}(x) & \forall \mathfrak{i} \end{array}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models

Probability Model

■ There is an infinite set P of probability models consistent with observations:

$$P = \{p \mid E_p(f_i) = E_{\widetilde{p}}(f_i), \ \forall i\}$$

Maximum entropy model

$$\begin{split} p^* &= \underset{p \in P}{\operatorname{argmax}} \, H(p) \\ &= \underset{p \in P}{\operatorname{argmax}} \left(-\sum_{x \in \epsilon} p(x) \log p(x) \right) \end{split}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models

Conditional Probability Model

■ For NLP applications, we are usually interested in conditional distributions P(Y|X), thus, the ME model is

$$p^* = \mathop{\mathsf{argmax}}_{p \in P} \mathsf{H}(p) = \mathop{\mathsf{argmax}}_{p \in P} \mathsf{H}(\mathsf{Y} \mid X)$$

where:

$$H(Y \mid X) = \sum_{x \in X} p(x)H(Y \mid X = x)$$

$$= -\sum_{x \in X} p(x) \sum_{y \in Y} p(y \mid x) \log p(y \mid x)$$

$$= -\sum_{x \in X, y \in Y} p(x, y) \log p(y \mid x)$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models

Parameter Estimation

Example: Maximum entropy model for translating in to French

No constraints

P(x)	P(x) dans en		à	au-cours-de	pendant	
	0.2	0.2	0.2	0.2	0.2	
total						1.0

■ With constraint p(dans) + p(en) = 0.3

P(x)	dans	en	à	au-cours-de	pendant	
	0.15	0.15	0.233	0.233	0.233	
total	0.3					1.0

■ With constraints

$$p(dans) + p(en) = 0.3;$$
 $p(en) + p(a) = 0.5$

...Not so easy !

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models

Maximum Entropy

Parameter estimation

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models

Maximum Entropy Models ME models are exponential models, same as log-linear models

$$\begin{split} p(y \mid x) &= \frac{1}{Z(x)} \exp \left(\sum_{j=1}^k \lambda_j f_j(x,y) \right) \\ &\text{where } Z(x) = \sum_{y'} \exp \left(\sum_{j=1}^k \lambda_j f_j(x,y') \right) \end{split}$$

- Each model parameter weights the influence of a feature.
- Same convex optimization algorithms are used (e.g. LM-BFGS [Malouf 03])

Outline

Statistical Models for NI P

Maximum Likelihood Estimation (MLE)

- Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Maximum Likelihood Estimation (MLE)
 - Working example
 - Smoothing & Estimator Combination
- 3 Log-Linear Models
 - Maximum Entropy Models
 - Examples

Example: Text Categorization

■ Probabilistic model over $W \times C$ (Words \times Categories). A document is a set of words: $d = (w_1, w_2 \dots w_N)$. Each combination $w, c \in W \times C$ is a feature:

$$f_{w,c}(d,c') = \left\{ \begin{array}{ll} \frac{N(w,d)}{N(d)} & \text{if } c = c' \\ 0 & \text{otherwise} \end{array} \right.$$

■ Disambiguation: Select class with highest $P(c \mid d)$

$$P(c \mid d) = \frac{1}{Z(d)} \exp(\sum_{i} \lambda_{i} f_{i}(d, c))$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Example: Identifying Sentence Boundaries

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models Examples The president lives in Washington, D.C. The presidents met in Washington D.C. in 2010. Mr. Wayne is young. Mr. Wayne is a Ph.D. I got 98.5%! What?

Goal: given a text, identify tokens that end a sentence

- Candidate characters: . ! ?
- Candidate tokens: tokens containing candidate characters
- Given a candidate token in a context decide whether it ends a sentence or not

Example: Sentence Boundaries

■ Candidate: punctuation sign + context c = < sign, prefix, suffix, previous, next >

■ Assume access to annotated data:

b	sign	prefix	suffix	prev	next
no		D	C.	Washington,	The
yes		D.C		Washington,	The
no		Mr		2010.	Wayne

- Let's take a probabilistic approach:
 - P(yes | c): conditional probability of c being end of sentence
 - \blacksquare P(no | c): conditional probability of c not being e.o.s.
 - Obviously, P(yes | c) + P(no | c) = 1
 - Predict yes if P(yes | c) > 0.5
- How to model P(yes | c) and P(no | c)?

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Example system: Identifying Sentence Boundaries

(Reynar and Ratnaparkhi '97)

- Candidate: punctuation sign + context
 c = < sign, prefix, suffix, previous, next >
- **Goal**: estimate P(yes | c) and P(no | c)
- Feature templates:
 - 1 The prefix
 - 2 The suffix
 - 3 The word previous
 - 4 The word next
 - 5 Whether prefix or suffix are in ABBREVIATIONS
 - ABBREVIATIONS: list of all training tokens that contain a
 and are not sentence boundaries
 - 6 Whether previous or next are in ABBREVIATIONS
- Actual features are generated by applying each template to each training example

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Example system: Identifying Sentence Boundaries

(Reynar and Ratnaparkhi '97)

Statistical Models for

NI P

Maximum Likelihood Estimation (MLE)

Log-Linear Models Examples

```
Feature Templates
```

- The prefix
- 2 The suffix
- 3 The word previous
- 4 The word next
- 5 Whether prefix or suffix are in Abbreviations
- 6 Whether previous or next are in ABBREVIATIONS

< b=no punc=. pref=Mr suff= prev=2010. next=Wayne >

Generated Features

$$\begin{split} f_1(c,b) = \left\{ \begin{array}{ll} 1 & \text{if pref}(c) = \texttt{Mr} \\ & \text{and } b = \texttt{no} \\ 0 & \text{otherwise} \end{array} \right. & f_4(c,b) = \left\{ \begin{array}{ll} 1 & \text{if next}(c) = \texttt{Wayne} \\ & \text{and } b = \texttt{no} \\ 0 & \text{otherwise} \end{array} \right. \\ f_2(c,b) = \left\{ \begin{array}{ll} 1 & \text{if suff}(c) = \texttt{NULL} \\ & \text{and } b = \texttt{no} \\ 0 & \text{otherwise} \end{array} \right. & f_5(c,b) = \left\{ \begin{array}{ll} 1 & \text{if (abbr(pref(c)) or abbr(suff(c)))} \\ & \text{and } b = \texttt{no} \\ 0 & \text{otherwise} \end{array} \right. \\ f_3(c,b) = \left\{ \begin{array}{ll} 1 & \text{if prev}(c) = 2010. \\ & \text{and } b = \texttt{no} \\ 0 & \text{otherwise} \end{array} \right. & f_6(c,b) = \left\{ \begin{array}{ll} 1 & \text{if (abbr(prev(c)) or abbr(next(c)))} \\ & \text{and } b = \texttt{no} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

Example System: Identifying Sentence Boundaries

(Reynar and Ratnaparkhi '97)

training sentences	test accuracy
500	96.5%
1000	97.3%
2000	97.3%
4000	97.6%
8000	97.6%
16000	97.8%
39441	98.0%

■ Corpus: Wall Street Journal, English

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-linear Models Summary

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Log-Linear Models Examples

Advantages

- Teoretically well founded
- Enables combination of random context features
- Better probabilistic models than MLE (no smoothing needed)
- General approach (features, events and classes)
- Disadvantages
 - Implicit probabilistic model (joint or conditional probability distribution obtained from model parameters).