Lab 4 - Naive Bayes Classifier Titanic Dataset

Author: Krishna Swaroop

181CO125, NITK Surathkal

Introduction

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes' theorem with the "naive" assumption of conditional independence between every pair of features given the value of the class variable.

Dataset

We are using the <u>Titanic Disaster Dataset</u>. It gathers personal information about the passengers onboard the Titanic Ship which met a iceberg crash in the ocean in 1912.

Our target is to predict whether or not a person will survive with the given features

Features:

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton>

Survival is numbered as 1/0 respectively and is our target variable

Naive Bayes Classifier

- 1) Import Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import time
from sklearn.model_selection import train_test_split
from sklearn.naive bayes import GaussianNB, BernoulliNB, MultinomialNB
```

- 2) Load data

```
data = pd.read_csv("/content/train.csv")
```

Print head of dataset

```
print(data.info())
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 714 entries, 0 to 890
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Survived	714 non-null	int64
1	Pclass	714 non-null	int64
2	Sex_cleaned	714 non-null	int64
3	Age	714 non-null	float64
4	SibSp	714 non-null	int64
5	Parch	714 non-null	int64
6	Fare	714 non-null	float64
7	Embarked_cleaned	714 non-null	int64

dtypes: float64(2), int64(6)

memory usage: 50.2 KB

None

3) Clean data

Here, Male is replaced by 0 and female is replaced by 1

```
# Convert categorical variable to numeric
data["Sex_cleaned"]=np.where(data["Sex"]=="male",0,1)
data["Embarked_cleaned"]=np.where(data["Embarked"]=="S",0, np.where(data["Embarked"]=="S",0, np.where(data["E
```

Print cleaned data values

```
print(data.head())
```

PassengerId Survived Pclass ... Embarked Sex_cleaned Embarked_cleaned

0	1	0	3	S	0	0
1	2	1	1	С	1	1
2	3	1	3	S	1	0
3	4	1	1	S	1	0
4	5	0	3	S	0	0

[5 rows x 14 columns]

Select features

```
data=data[[
    "Survived",
    "Pclass",
    "Sex cleaned",
    "Age",
    "SibSp",
    "Parch",
    "Fare",
    "Embarked cleaned"
]].dropna(axis=0, how='any')
```

4) Split data

Use train test split() to split the data to training and testing dataset. Here, 20% of the dataset is reserved to test our algorithm

```
X train, X test = train test split(data, test size=0.2, random state=10)
```

5) Fit model

```
gnb = GaussianNB()
used_features =[
    "Pclass",
    "Sex cleaned",
    "Age",
    "SibSp",
    "Parch",
    "Fare",
    "Embarked cleaned"
]
# Train classifier
gnb.fit(X_train[used_features].values,X_train["Survived"])
```

GaussianNB(priors=None, var smoothing=1e-09)

6) Predict

7) Analysis

We get a performance of 78.32% on the test set containing 143 points. Hence there are a total of 31 mislabelled points in our test dataset