МФТИ, сложность вычислений, осень 2023 Семинар 07. Диагонализация

Определение. Функция $T: \mathbb{N} \to \mathbb{N}$ называется конструируемой (по времени), если $\forall n \in \mathbb{N}: T(n) \geqslant n$, а также существует машина Тьюринга M, вычисляющая T(n) на входе 1^n за время O(T(n)).

Определение. Функция $S: \mathbb{N} \to N$ называется конструируемой по памяти, если $\forall n \in \mathbb{N}: S(n) \geqslant \log_2 n$, а также существует машина Тьюринга, вычисляющая S(n) на входе 1^n , используя память O(S(n)).

Теорема Пусть f, g — конструируемые по времени функции, причём $f(n) \log f(n) = o(g(n))$. Тогда $\mathbf{DTIME}(f(n)) \subsetneq \mathbf{DTIME}(g(n))$.

Теорема Пусть f, g — конструируемые по памяти функции, причём f(n) = o(g(n)). Тогда $\mathbf{DSPACE}(f(n)) \subsetneq \mathbf{DSPACE}(g(n))$.

Теорема Пусть f, g — конструируемые по времени функции, причём f(n+1) = o(g(n)). Тогда $\mathbf{NTIME}(f(n)) \subsetneq \mathbf{NTIME}(g(n))$.

- **1.** Пусть O некий язык. Пусть \mathcal{C} множество языков, полиномиально сводящихся к O. Чем отличаются \mathcal{C} и \mathbf{P}^O ?
- **2.** Предположим, что существует полиномиальный алгоритм, который на входе (φ_1, φ_2) выдаёт правильный ответ на вопрос выполнимости каждой из формул φ_1 , φ_2 по отдельности, обратившись к оракулу SAT не более одного раза. Докажите тогда, что $\mathbf{P} = \mathbf{NP}$.
- **3.** Докажите, что в определении конструируемости фразу «на входе 1^n » можно заменить на
 - а) на любом входе длины n;
 - б) на входе n, записанном в двоичной записи.
- **4.** Докажите, что если язык распознаётся за o(n), то он распознаётся и за O(1).
- 5^* . Докажите, что если язык распознаётся на одноленточной машине Тьюринга за время $o(n \log n)$, то он является регулярным. Покажите, что для многоленточных машин это уже неверно.
- **6.** Докажите теорему Бородина Трахтенброта: если $g(n) \ge n$ вычислимая функция, то существует вычислимая $t(n) \ge n$, для которой $\mathbf{DTIME}(t(n)) = \mathbf{DTIME}(g(t(n)))$.

Отсюда следует, например, что существует [не конструируемая по времени] функция T(n), такая что всякий язык, разрешимый за время O(T(n)), также разрешим за $O(\log T(n))$.

- 7. Пусть $k \geqslant 1$. Докажите, что $\mathbf{P} \neq \mathbf{DSPACE}(n^k)$. Докажите, что $\mathbf{NP} \neq \mathbf{DSPACE}(n^k)$.
- **8.** Пусть f, g, h—конструируемые по времени функции. Пусть $\mathbf{DTIME}(f(n)) = \mathbf{DTIME}(g(n))$. Докажите, что $\mathbf{DTIME}(f(h(n))) = \mathbf{DTIME}(g(h(n)))$. При необходимости можете считать, что f, g, h—строго монотонно возрастают.
- **9.** Пусть BB(n) максимальное (конечное) время работы машины Тьюринга не более чем с n состояниями на пустом входе. Покажите, что BB(n) не является вычислимой.
- **10.** Пусть C случайный оракул, конструируемый следующим образом. Для каждого n (независимо от остальных) в C с вероятностью 1/2 не лежит ни одно слово длины n, а с вероятностью 1/2 лежит ровно одно случайное слово длины n. Докажите, что $\mathbf{P}^C \neq \mathbf{NP}^C$ с вероятностью 1.
- **11*.** Докажите, что существует универсальная машина Тьюринга, которая на вход принимает (α, x) и моделируем поведение M_{α} на входе x, причём если M_{α} останавливается за время T(n), то универсальная машина останавливается за $O(T(n)\log T(n))$ [константа внутри O зависит от α].

- 1. При сводимости можно запрашивать оракул O только один раз, а в \mathbf{P}^O число запросов полиномиально.
- **2.** Из условия следует, что существует такой полиномиальный алгоритм B, который конструирует $\psi = \psi(\varphi_1, \varphi_2)$, из (не-)выполнимости которой можно вывести (не-)выполнимость φ_1 и φ_2 . Аналогично, можно применить B многократно и свети вопрос о выполнимости полиномиального числа формул к выполнимости всего одной.

Значит, существует такой алгоритм A, принимающий список формул $\varphi_1, \ldots, \varphi_k$ и бит b, такой что $A(\varphi_1, \ldots, \varphi_k, b)$ выдаёт правильные ответы на вопросы о выполнимости всех k формул по крайней мере при одной значении бита b (этот бит отвечает за выполнимость $\psi(\varphi_1, \ldots, \varphi_k)$).

Научимся тогда проверять φ на выполнимость за полиномиальное время. Будем постепенно фиксировать значения переменных в φ , получая тем самым новое множество формул, которые нужно проверить на выполнимость. Применим к ним A с обоими значениями b. Тогда все формулы разобьются не более чем на 4 класса. Если две формулы имеют одинаковую выполнимость при b=0 и b=1, то достаточно оставить лишь одну из них. Тем самым, на каждом шаге остаётся не более 4 формул. В конце каждую из них проверяем на выполнимость.

- 3.
 - а) Можно не различать единицы и нули.
 - б) Можно сначала превратить n в 1^n за O(n).
- **4.** Рассмотрим такой n_0 , что на всех входах длины n_0 машина останавливается менее чем за n_0 шагов. Тогда машина не отличает входы длины n_0 от входов большей длины.
- 5^* . См. https://core.ac.uk/download/pdf/81988943.pdf. В качестве примера можно рассмотреть $\{0^n1^n\mid n-\text{уелое}\ \text{положительноe}\}.$
- **6.** Идея следующая: будем строить t так, что если машина не остановилась за t(n) шагов, но не остановится и за g(t(n)). Занумеруем все машины Тьюринга. Пусть $time_i(n)$ максимальное время работы M_i среди всех входов длины n (возможно, это число равно $+\infty$). Тогда подойдёт

$$t(n) = \min\left\{k \mid k > t(n-1) \text{ и } \forall i \in \{1,2,\ldots,n\} : \mathrm{time}_i(n) < k \text{ или } \mathrm{time}_i(n) > n \cdot g(k)\right\}.$$

Далее, покажем, что если $A \in \mathbf{DTIME}(g(t(n)))$, то $A \in \mathbf{DTIME}(t(n))$. Действительно, пусть A распознаётся машиной M_i за время $\leq C \cdot g(t(n))$. При $n > \max\{C, i\}$ неравенство $\dim_i(n) > n \cdot g(k)$ (для k = t(n)) выполняться не может, так что выполняется $\dim_i(n) < k$.

В частном случае, достаточно выбрать $g(n) = 2^n$, затем положить $T(n) = 2^{t(n)}$.

- 7. Пусть $\mathbf{P} = \mathbf{DSPACE}(n^k)$. Пусть $A \in \mathbf{DSPACE}(n^{k+1})$. Тогда $A' = \{x01^{|x|^{k+1}} \mid x \in A\} \in \mathbf{DSPACE}(n)$, то есть $A' \in \mathbf{P}$. Но тогда и $A \in \mathbf{P}$. Значит, $\mathbf{DSPACE}(n^{k+1}) \subset \mathbf{DSPACE}(n^k)$, что неверно.
- 8. Примените пэддинг.

1.A.

- **9.** Пусть есть машина M с k состояниями, вычисляющая $BB(\cdot)$. Построим семейство машин M_n : сначала она выписывает на вход число n, затем вычисляем BB(n) и проделывает BB(n) действий (например, вычитает из числа единицу, пока оно не станет нулём). Ясно, что для такой машины достаточно $k+O(\log n)+O(1)$ состояний. Но время её работы превосходит BB(n).
- **10.** Рассмотрим язык $U = \{1^n \mid \exists x \in \{0,1\}^n \cap C\}$. Ясно, что $U \in \mathbf{NP}^C$: в качестве сертификата достаточно передать то самое слово из C.
- Однако алгоритмы из \mathbf{P}^C на тех входах 1^n , на которых существует слово $x \in \{0,1\}^n \cap C$, зададут вопрос $x \in C$ с вероятностью $\frac{\text{poly}(n)}{2^n}$, а значит, вернут такой же ответ, как если бы такого x не существовала. 11*. См. книгу Ароры — Барака (https://theory.cs.princeton.edu/complexity/book.pdf), раздел