DETERMINING IF AN ACCIDENT IS FATAL OR NOT A COMPARISON OF DIFFERENT ALGORITHMS

OBJECTIVE

- To implement our own Decision Tree algorithm.
- To use the Sklearn library to implement a Decision Tree, an AdaBoost Decision Tree, a Random Forest, a K Nearest Neighbors, a Decision Tree using undersampling, a Decision Tree using oversampling, an AdaBoost Random Forest, and a Voting Classifier algorithm.
- To use the above algorithms to predict if an accident will be fatal or slight based off of the values of the provided features.
- To calculate a variety of metrics to compare the performance of all the different algorithms that we implemented.

HYPOTHESIS

- More predictions would be classified as slight than fatal due to the data containing 25% fatal and 75% slight classifications.
- We predicted that the Random Forest algorithm would perform best.

DATASET

- Used data found on Kaggle of Road Accidents in U.K. that classified accidents as either slight or fatal depending on the values of the provided features.
- Used Ordinal Encoder to convert strings in the dataset to integer values so that our algorithms could process the data.
- There are 33 features including date, time, longitude, and latitude.

METHODS

- The AdaBoost Decision Tree performed best with a learning rate of 0.25.
- Used K=5 for KNN algorithm (defult value).
- Used the ensemble method for the Voting Classifier.
- Random Forest performed best with number of estimators = 100.
- Metrics: Accuracy, Precision, Recall, Precision/Recall Curve, and F1 Score.
- Used SKlearn.metrics to calculate the different metrics.

PRELIMINARY RESULTS

- Preliminary results show that the AdaBoost Random Forest has the best performing accuracy at 92.6%.
- The Decision Tree accuracy did not improve much by adding a boost with and without a learning rate.
- The Decision Tree accuracy did improve significantly by over and undersampling. Oversampling performed slightly better at 91.0% accuracy while undersampling was only at 90.9% accuracy.

FUTURE GOALS

- Optimize the K value to find the best results for KNN algorithm.
- While our algorithms are performing around a 90% accuracy rate, we would like to improve these results.
- We plan on adding cross-validation as another way to assess the performance of the algorithms.
- Our Precision/Recall Curve does not seem to be outputting correct results, so we plan on revisiting that.

	Acc	Prec	Rec	F1
Our DT				
Decisio n Tree	89.39	0.9254	0.9338	0.9296
AdaBoo st DT	89.42	0.9259	0.9345	0.9299
Rando m Forest	92.59	0.9917	0.9089	0.9485
KNN	84.58	0.8917	0.9044	0.8980
Under DT	90.86	0.9635	0.9128	0.9375
Over DT	91.02	0.9657	0.9127	0.9385
AdaBoo st RF	92.59	0.9912	0.9093	0.9485
Voting Class.	90.51	0.9276	0.9277	0.9362