Machine Learning Engineer

Nanodegree

Rossman 销售预测开题报告

战柏瑞 2018 年

主要背景

该项目是 Kaggle 上 Rossmann 公司举办的一个竞赛项目.Rossmann 是德国第二大药品销售链,在欧洲 7 个国家拥有近 3600 家药店.公司由 Dirk Rossmann 建立于 1972 年ⁱ.在 2015 年 Rossmann 的管理层被指派预测近 6 周的日销售额.销售额会被很多因素印象例如,促销,竞争对手,学校以及州节假日,季节性,和地域性.ⁱⁱ

问题称述

在分类中,我们想了解模型隔多久正确或不正确地识别新样本一次。而在回归中,我们可能更关注模型的预测值与真正值之间差多少。iii 通过对 Rossmann数据分割,得到 35 天的销售数据,然后使用 xgboost 进行回归预测,因为此次项目更关注预测值和真实值之间的差,所以是一个回归问题.

数据集与输入

使用 Kaggle website (https://www.kaggle.com/c/rossmann-store-sales)的数据,将 Train.csv 进行分割,从而获得最近的 35 天数据集作为测试集.

显示train特征 df_train.head()

	Store	DayOfWeek	Date	Sales	Customers	Open	Promo	StateHoliday	SchoolHoliday
0	1	5	2015-07-31	5263	555	1	1	0	1
1	2	5	2015-07-31	6064	625	1	1	0	1
2	3	5	2015-07-31	8314	821	1	1	0	1
3	4	5	2015-07-31	13995	1498	1	1	0	1
4	5	5	2015-07-31	4822	559	1	1	0	1

训练集具有 9 个特征,其中 Sales 作为结果应从特征中分离出来. Date 特征中需要从字符串处理为年月日三个不同的特征.对于 StateHoliday 进行 one-hot 编码. 最后一共有 13 个特征值.

显示store特征 E_store, head ()													
	Store	Store Type	Assortment	Competition Distance	Competition Open SinceMonth	Open	Promo2	Promo2 SinceWeek	Promo2 SinceYear	Promo Interval			
0	1	С	а	1270.0	9.0	2008.0	0	NaN	NaN	NaN			
1	2	а	а	570.0	11.0	2007.0	1	13.0	2010.0	Jan,Apr,Jul,O			
2	3	а	а	14130.0	12.0	2006.0	1	14.0	2011.0	Jan,Apr,Jul,O			
3	4	С	С	620.0	9.0	2009.0	0	NaN	NaN	NaN			
4	5	а	a	29910.0	4.0	2015.0	0	NaN	NaN	NaN			

Store 数据集是训练集的衍生部分,通过共有 10 个特征值,对其进行 one-hot 编码,最后有 17 个特征值.对于缺省值,competition distance 可以用平均值 meadian 代替,别的缺省值由 xgboost 自行处理(默认处理 0)iv. 然后对 store 数据集和训练集以 Store ld 对应的方式进行合并填充

解决方案

此次项目通过 XGboost 来完成. XGBoost 实现的是一种通用的 Tree Boosting 算法,此算法的一个代表为梯度提升决策树 (Gradient Boosting Decision Tree, GBDT),又名 MART (Multiple Additive Regression Tree)。GBDT 的原理是,首

先使用训练集和样本真值(即标准答案)训练一棵树,然后使用这棵树预测训练集,得到每个样本的预测值,由于预测值与真值存在偏差,所以二者相减可以得到"残差"。接下来训练第二棵树,此时不再使用真值,而是使用残差作为标准答案。两棵树训练完成后,可以再次得到每个样本的残差,然后进一步训练第三棵树,以此类推。树的总棵数可以人为指定,也可以监控某些指标(例如验证集上的误差)来停止训练。*

评估标准

通过对测试集的 Root Mean Square Percentage Error (RMSPE)对已知模型进行评价.

$$ext{RMSPE} = \sqrt{rac{1}{n}\sum_{i=1}^{n}\left(rac{y_i-\hat{y}_i}{y_i}
ight)^2},$$

Yi 为单个门店单天的销售 Yihat 是对此进行的预测

基准模型

设定基准阈值为 kaggle 排行榜前 10%(330/3303),也就是在 Private Leaderboard 上的分数要低于 0.11737。^{vii}

项目设计

• 数据预处理

此阶段是对数据进行分割,以产生本地测试集以及训练集,对 Store 数据集进行合并,以及简单的时间转化成年月日,对其他特征进行 one-hot 编码.

• 模型搭建

此阶段对特征的重要性进行排序,去掉不必要的特征,还有重复特征.

模型训练

训练模型,对训练集进行分割,从而训练 N 次,每次对模型进行修正.

• 模型调参

通过参照 XGboost APIviii进行调参

例如,max_depth 尝试不同深度对模型的影响,从而选定合理的数值.

Learning_rate,调整学习率,太大的学习率可能无法收敛.

n_estimators:调整有几个 boosted tree.

以及其他ix

• 模型评估

同评估标准

- 可视化
- 对必要以及可观的数据进行可视化,从而更好的了解数据

参考文献

i https://en.wikipedia.org/wiki/Rossmann (company)

ii https://www.kaggle.com/c/rossmann-store-sales#description

[&]quot;Udacity,机器学习(进阶)-课程 12 评估指标-分类指标与回归指标

iv http://xgboost.readthedocs.io/en/latest/faq.html?highlight=missing

v http://www.a-site.cn/article/714295.html

vi https://www.kaggle.com/c/rossmann-store-sales#evaluation

vii https://www.kaggle.com/c/rossmann-store-sales/leaderboard

viii http://xgboost.readthedocs.io/en/latest/python/python_api.html
ix_http://blog.csdn.net/sb19931201/article/details/52557382