Gary is an avid hiker. He tracks his hikes meticulously, paying close attention to small details like topography. During his last hike he took exactly \boldsymbol{n} steps. For every step he took, he noted if it was an uphill, \boldsymbol{U} , or a downhill, \boldsymbol{D} step. Gary's hikes start and end at sea level and each step up or down represents a $\boldsymbol{1}$ unit change in altitude. We define the following terms:

- A mountain is a sequence of consecutive steps above sea level, starting with a step up from sea level and ending with a step down to sea level.
- A *valley* is a sequence of consecutive steps *below* sea level, starting with a step *down* from sea level and ending with a step *up* to sea level.

Given Gary's sequence of up and down steps during his last hike, find and print the number of valleys he walked through.

For example, if Gary's path is s = [DDUUUUDD], he first enters a valley 2 units deep. Then he climbs out an up onto a mountain 2 units high. Finally, he returns to sea level and ends his hike.

Function Description

Complete the *countingValleys* function in the editor below. It must return an integer that denotes the number of valleys Gary traversed.

countingValleys has the following parameter(s):

- *n*: the number of steps Gary takes
- s: a string describing his path

Input Format

The first line contains an integer n, the number of steps in Gary's hike. The second line contains a single string s, of n characters that describe his path.

Constraints

 $\begin{array}{l} \bullet \;\; 2 \leq n \leq 10^6 \\ \bullet \;\; s[i] \in \{UD\} \end{array}$

Output Format

Print a single integer that denotes the number of valleys Gary walked through during his hike.

Sample Input

8 UUDDUUDUU

Sample Output

1

Explanation

If we represent _ as sea level, a step up as /, and a step down as \, Gary's hike can be drawn as:

He enters and leaves one valley.