Logistic Regression

Logistic regression is used to predict a dependent categorical variable.

$$Oddsigg(successigg) = rac{P\!(Y\!=1)}{P\!(Y\!=0)}$$

In logistic regression, we use log of odds.

then

$$\log(Odds) = ~eta_0 + ~eta_1 X_1 + \ldots + ~eta_k X_k$$

$$egin{aligned} Odds = \ e^{eta_0 + \, eta_1 X_1 + \ldots + \, eta_k X_k} \end{aligned}$$

$$P(Y\!=1) = rac{Odds}{1 \, + \, Odds} \; = \; rac{e^{eta_0 + \, eta_1 X_1 + \, eta_2 X_2 + \, eta_3 X_2 + \, eta_4 X_4}}{1 \, + \, e^{eta_0 + \, eta_1 X_1 + \, eta_2 X_2 + \, eta_3 X_2 + \, eta_4 X_4}}$$

- Above expression will give us probabilities. But, we want to make predictions in 0-1 (yes/no) format.
- So, we set a threshold (or cut-off) which is a number.

If
$$P(Y=1) > ext{cut-off:}$$
 $\widehat{Y} = 1$ Else: $\widehat{Y} = 0$

• In logistic regression, if an explanatory variable increases by 1 unit, then the odds of Y=1 increases by a factor of e^{β} .

Evaluation of logistic regression model

Confusion Matrix			
		Prediction	
		0	1
Actual	0	TN	FP
	1	FN	TP

$$egin{aligned} \mathbf{Accuracy} = & \frac{\mathbf{TN} + \mathbf{TP}}{\mathbf{Total\ number\ of\ observations}} \end{aligned}$$

$$\frac{For \, predicting.0}{Precision} = \frac{TP}{TP + FP}$$

$$\frac{TP}{TP + FN}$$

$$\frac{TP}{TP + FN}$$

$$\frac{TN}{TN + FN}$$

$$\frac{TN}{TN + FN}$$

• The parameters are **larger the better** type.

How to find optimal cut-off?

At different cut off-values, we calculate these three performance indicators: accuracy, precision, recall, and then compare the results.

Example:

In the above analysis, optimal cut-off = 0.4