Exam 1

Denis Ostroushko

2022-10-25

Problem 1

1- A

Disbtribution of Complaint Rates per 1,000 Visits

Average: 1.33 Median: 0.98

Table 1: Summary of Numeric Variables

Variables	Min	Max	Mean	S.D
complaint_rate_1000	0.00	3.02	1.33	0.88
revenue	206.42	334.94	260.14	32.64
hours	589.00	1917.25	1417.40	326.98

Table 2: Correlation of Numeric Covariates

	Complaint Rate per 1,000	Revenue	Hours Worked
Complaint Rate per 1,000 Revenue	1.0000000 0.0305876	0.0305876 1.0000000	0.2788799 -0.0405506
Hours Worked	0.2788799	-0.0405506	1.0000000

Revenue

Relationship between Hours Worked and Complaint Rate

We have categorical predictors also:

- Residency has two levels: Y, N with 54.55%, 45.45% class presence respectively
- Gender has two levels: F, M with 27.27%, 72.73% class presence respectively

Overall comments on variables

Model Assumptions

- one
- two

Model Statement

 $E[Complaint \ Rate] = \hat{\beta}_0 + \hat{\beta}_1 * Residency + \hat{\beta}_2 * Gender + \hat{\beta}_3 * Revenue + \hat{\beta}_4 * Hours \ Worked + \hat{\beta}_$

Overall ANOVA

Source	SSR	DF	MS	F Statistic	$P(F^* > F)$
Regression	3.254294	4	0.8135735	1.04	0.3969
Error	30.386120	39	0.7791313	NA	NA
Total	33.640414	43	NA	NA	NA

- Null Hypothesis: $H_0: \beta_1 = \beta_2 = ... = \beta_{p-1}$
- Alternative Hypothesis: H_a : Not all coefficients β_i are zero

^{*}three

• F-statistic: 1.04

• Cutoff F^* -statistic: 2.6123

• So, $F < F^*$, therefore we do not have enough evidence to reject the null hypothesis to conclude that some or all coefficients β_i are consistently different from zero.

• Moreover, $P(F^* > F) = 0.3969$

• Conclusion:

Regression Coefficients

Predictor	Estiamte	Standard Error	T Value	P value
(Intercept)	-0.064405	1.250366	-0.051509	0.959183
$\operatorname{residency} Y$	-0.132728	0.329286	-0.403077	0.689093
$\operatorname{genderM}$	0.197338	0.314907	0.626654	0.534537
revenue	0.001351	0.004610	0.293122	0.770983
hours	0.000676	0.000461	1.467079	0.150373

• R square and 0.0967

• Adjusted R Square 0.0041

• Explain Coefficients

1- B

T-test for hours worked

• Null Hypothesis: $H_0: \hat{\beta}_4 = 0$

• Alternative Hypothesis: $H_a: \hat{\beta}_4 \neq 0$ \$

• Test statistic T: 1.467079

• $P(t^* > t) = 0.150373$

• Conclusion

Interpretation of coefficient One additional Hour worked results in 0.000676 additional complaints on average. However, it makes more sense to say look at 100 hours, which is 0.0676

C.I.

Using formula C.I. $bounds = Estimate \pm 1.96 * Standard Error$

C.I. for the estimate 0.000676 with a 0.000461 standard error is (-0.000256, 0.001609)

1- $^{\rm C}$ Relationship between Hours Worked and Complaint Rate

 ${\bf 1-~D}$ Effect plots needed here, find a nice package

Problem 2

- 2 A
- 2 B
- 2 C
- 2 D