	Radioactive Decay ♡	Copyright - not legal for resale		
52		or distribution.		
		From Isaac Covid lessons archive:		
		isaacphysics.org/pages/covid19_gcse		

Some nuclei are stable, and will remain as they are for ever. Others are unstable. After an unpredictable period of time, unstable nuclei will change. This change is called decay. When a nucleus decays, it gives out highly energetic, ionizing radiation. The main forms of ionizing radiation are alpha particles, beta particles and gamma rays.

Type of decay	Particle given out	Penetrating ability	lonising ability	Change to the original nucleus
Alpha	⁴ α - Helium nucleus (2 protons + 2 neutrons)	Low - stopped by 5 cm of air, by skin or paper	High	Mass number reduces by 4 Atomic number reduces by 2
Beta minus Beta plus	o ₋₁ β - High speed electron pro- duced when a neutron turns into a proton o ₊₁ β - High speed positron (anti- electron) pro- duced when a proton turns into	Medium - can pass 1 mm of aluminium, but stopped by 2 cm Very low - annihilates on contact with normal matter	Medium N/A	Mass number doesn't change Atomic num- ber increases by 1 Mass number doesn't change Atomic num- ber reduces by
Gamma	a neutron ${}^0_0\gamma$ - High frequency electromagnetic wave	High - can pass through many cm of lead	Low	Mass number doesn't change Atomic num- ber doesn't change Excess nuclear poten- tial energy is released

Example 1 - Write the equation for the alpha decay of $^{241}_{95}$ Am into Np.

The symbol for the alpha particle is $\frac{4}{2}\alpha$.

We write the equation $^{241}_{95}\text{Am} \longrightarrow \text{Np} + ^{4}_{2}\alpha$ to show the decay.

Next, we need to put mass and atomic numbers on the Np. We do this using the rules in the table: $^{241}_{95}$ Am $\longrightarrow ^{237}_{93}$ Np $+ ^{4}_{2}\alpha$.

Notice that once the equation is complete the numbers on the top balance (214 = 237 + 4), as do the numbers on the bottom (95 = 93 + 2).

Example 2 - Write the equation for the beta minus decay of ³₁H into He.

Firstly, we write ${}^3_1H \longrightarrow He + {}^0_1\beta$, then put numbers on He to balance it: ${}^3_1H \longrightarrow {}^3_2He + {}^0_1\beta$.

Again notice that the top row balances (3 = 3 + 0) and so does the bottom (1 = 2 - 1).

Write equations for the following decays.

- 52.1 The alpha decay of $^{238}_{92}$ U into Th.
- 52.2 The beta minus decay of ${}_{6}^{14}$ C into N.
- 52.3 The gamma decay of $^{60}_{27}$ Co. [Hint: with no change to the atomic number, the decay produces Co]
- 52.4 The beta minus decay of ${}_{38}^{90}$ Sr into Y.
- 52.5 \heartsuit The beta plus decay of ${}_{6}^{11}$ C into B.
- 52.6 The beta minus decay of ${}_{3}^{8}$ Li into Be.
- 52.7 The beta minus decay of $^{40}_{19}$ K into Ca.
- 52.8 The alpha decay of ²³⁹₉₄Pu into U.
- 52.9 The alpha decay of $^{210}_{86}$ Rn into Po.
- 52.10 \heartsuit The beta plus decay of $^{14}_{8}$ O into N.