



# Synthesis of Metal Nanoparticle-Decorated Carbon Nanotubes under Ambient Conditions

Yi Lin,<sup>1</sup> Kent A. Watson,<sup>2</sup> Sayata Ghose,<sup>2</sup>  
Joseph G. Smith, Jr.,<sup>3</sup> John W. Connell<sup>3</sup>

<sup>1</sup>NASA Postdoctoral Program Fellow, Oak Ridge Associated Universities

<sup>2</sup>National Institute of Aerospace, Hampton, VA 23666

<sup>3</sup>NASA Langley Research Center, Hampton, VA 23681

235<sup>th</sup> ACS National Meeting & Exhibition

April 7, 2008

New Orleans, LA

Yi.Lin-1@nasa.gov; John.W.CConnell@nasa.gov

## Preparation of Metal Nanoparticle-Decorated CNTs

- Metal nanoparticles + CNT
- Electrochemical methods
- Electroless methods
  - Sputtering
  - Activation bath
  - Use of reducing agents
    - Solid-phase reduction
      - H<sub>2</sub>
    - Dispersion in solvents
      - NaBH<sub>4</sub>
      - Ethylene Glycol
    - Pyrolysis from organometallic compounds
    - Spontaneous reduction
    - Substrate-Enhanced Electroless Deposition (SEED)



## Thermal Decomposition of Metal Acetates in the Presence of CNTs

• Electroless  
• Solventless  
• No added reducing agent  
• Readily scaled-up

$$\text{CH}_3\text{COOAg} \xrightarrow[\Delta]{\text{CNT}} \text{Ag} + \text{CH}_3\text{COOH} + \text{C} + \text{CO}_2$$

Patent Pending 1.00um

## To Improve from Mortar/Pestle Mixing

- SPEX CertiPrep 8000D ***High-Energy Shaker Mill***
  - ~1000 cycles/min
  - 2.25" back and forth and 1" side-to-side movements
  - Zirconia vial: ~20 mL mixing load
  - Two zirconia balls: d ~ 0.5"



## Thermal Decomposition of Metal Acetates in the Presence of CNTs



## 2-min Milling *without* Thermal Treatment



## Sintering or Intermediate?



## Sintering or Intermediate?



## Sintering or Intermediate?



1. Formation of AgOAc nanoparticles
2. Decomposition of AgOAc on C surface



## 2-min Milling *without* Thermal Treatment



S-5200 5.0kV 0.0mm x50.0k SE

## 10-min Milling *without* Thermal Treatment



## Formation of Ag (0) Nanoparticles on MWNT Surface



## Estimated Yield of Conversion

1 mol% AgOAc Feed (10-min Milling): ~40-60%



Estimation from Thermal Decomposition (350°C)



## Shorter Milling, Less Conversion

1 mol% AgOAc Feed (2-min Milling): ~10-20%



Estimation from Thermal Decomposition

## Conversion vs. Milling Time



| <u>Ball-Mill Time</u> | <u>Yield</u> |
|-----------------------|--------------|
| 120-min               | >90%         |
| 10-min                | 40-60%       |
| 2-min                 | 10-20%       |

• 1% AgOAc Feed



## Can't Mill Too Long



## Dependence on CNT Diameter?



## Yield of Conversion

1 mol% AgOAc Feed (10-min Milling): ~40-60%



Estimation from Thermal Decomposition



## More Ag Feed, Less Conversion

10 mol% AgOAc Feed (10-min Milling): ~5-10%



Estimation from Thermal Decomposition



## More Ag, More Decoration



Other Metals?





## Pd Nanoparticle-Decorated MWNTs



## Conclusions

- Advantages
  - Ambient conditions
  - Electroless, solventless, no reducing agent
  - Rapid, single-step (< 30 min), readily scaled up
  - Narrow size distribution (sub-5 nm)
  - Widely applicable to various carbon substrates
  - Applicable to various metals: Ag, Pd, Pt ...
- Applications
  - Catalysis at the expense of nanotube structural integrity
  - Selective to all metal salts?
  - Electromagnetic devices



# Acknowledgments

- Financial Support:
  - NASA Postdoctoral Program managed by Oak Ridge Associated Universities (ORAU)
- Experiments & Discussions
  - David Hartman (XRD)
  - Dr. Roy Crooks & Dr. Wei Cao (HR-TEM)
  - Dr. Peter Lillehei (SEM)
  - Dr. Donavon Delozier, Dr. Michael Fallbach
  - Dr. Tony Belcher, Dr. Chris Wohl
- Collaborators
  - Western Kentucky University
    - Dr. Wei-Ping Pan, Dr. Yan Cao, Quentin Lineberry
  - Clemson University
    - Dr. Ya-Ping Sun

