EA1

Bagging (weka.classifiers.meta.Bagging). You will use decision tree (weka.classifiers.trees.j48) as the base supervised learner. Try trees of different depth (1, 2, 3, 5, 10) and different sizes of bag or ensemble, i.e., number of trees (10, 20, 40, 60, 80, 100). Compute the training accuracy and testing accuracy for different combinations of tree depth and number of trees; and plot them. List your observations.

Voting

Depth	Trees	Training Accuracy	Testing Accuracy
1	10	0.967	0.920
2	10	0.967	0.920
3	10	0.964	0.920
5	10	0.964	0.920
10	10	0.964	0.920

Depth	Trees	Training Accuracy	Testing Accuracy
1	20	0.967	0.920
2	20	0.967	0.920
3	20	0.961	0.920
5	20	0.961	0.920
10	20	0.961	0.920

Depth	Trees	Training Accuracy	Testing Accuracy
1	40	0.967	0.920
2	40	0.967	0.920
3	40	0.967	0.910
5	40	0.967	0.900
10	40	0.967	0.900

Depth	Trees	Training Accuracy	Testing Accuracy
1	60	0.967	0.920
2	60	0.967	0.920
3	60	0.967	0.920
5	60	0.967	0.920
10	60	0.967	0.920

Depth	Trees	Training Accuracy	Testing Accuracy
1	80	0.967	0.920
2	80	0.967	0.920
3	80	0.964	0.900
5	80	0.964	0.900
10	80	0.964	0.900

Depth	Trees	Training Accuracy	Testing Accuracy
1	100	0.967	0.920
2	100	0.967	0.920
3	100	0.967	0.920
5	100	0.967	0.910
10	100	0.967	0.910

Training ——Testing

20 Trees

10 Trees

0.97

100 Trees

Ionosphere

Depth	Trees	Training Accuracy	Testing Accuracy
1	10	0.779	1.000
2	10	0.886	1.000
3	10	0.886	1.000
5	10	0.886	1.000
10	10	0.882	1.000

Depth	Trees	Training Accuracy	Testing Accuracy
1	20	0.776	1.000
2	20	0.882	1.000
3	20	0.886	1.000
5	20	0.875	1.000
10	20	0.875	1.000

Depth	Trees	Training Accuracy	Testing Accuracy
1	40	0.768	1.000
2	40	0.886	1.000
3	40	0.886	1.000
5	40	0.878	1.000
10	40	0.878	1.000

Depth	Trees	Training Accuracy	Testing Accuracy
1	60	0.772	1.000
2	60	0.878	1.000
3	60	0.878	1.000
5	60	0.875	1.000
10	60	0.875	1.000

Depth	Trees	Training Accuracy	Testing Accuracy
1	80	0.783	1.000
2	80	0.875	1.000
3	80	0.878	1.000
5	80	0.875	1.000
10	80	0.875	1.000

Depth	Trees	Training Accuracy	Testing Accuracy
1	100	0.779	NA
2	100	0.878	NA
3	100	0.878	NA
5	100	0.859	NA
10	100	0.867	NA

40 Trees

80 Trees

SVM Classification learner (weka.classifiers.functions.supportVector). You will run the SVM classifier on the training data to answer the following questions.

- (a) Using a linear kernel (-t 0 option), train the SVM on the training data for different values of C parameter(-c option): 10^{4} ,
- (b) Repeat the experiment (a) with polynomial kernel (-t 1 -d option) of degree 2, 3, and 4. Compare the training and testing accuracies for different kernels (linear, polynomial kernel of degree 2, polynomial kernel of degree 3, and polynomial kernel of degree 4). List your observations.

Voting

a. Linear Kernel

Degree	C Parameter	Training Accuracy	Testing Accuracy
0	0.0001	0.621	0.590
0	0.001	0.621	0.590
0	0.01	0.949	0.890
0	0.1	0.967	0.920
0	1	0.976	0.930
0	10	0.979	0.920
0	100	0.976	0.910
0	1000	0.976	0.910
0	10000	0.976	0.910

b. Poly Degree

Degree	C Parameter	Training Accuracy	Testing Accuracy
2	0.0001	0.621	0.590
2	0.001	0.946	0.900
2	0.01	0.970	0.930
2	0.1	0.982	0.950
2	1	0.997	0.920
2	10	0.997	0.930
2	100	0.997	0.930
2	1000	0.997	0.930
2	10000	0.997	0.930

Degree	C Parameter	Training Accuracy	Testing Accuracy
3	0.0001	0.940	0.890
3	0.001	0.976	0.920
3	0.01	0.988	0.950
3	0.1	0.997	0.930
3	1	0.997	0.930
3	10	0.997	0.930
3	100	0.997	0.930
3	1000	0.997	0.930
3	10000	0.997	0.930

Degree	C Parameter	Training Accuracy	Testing Accuracy
4	0.0001	0.979	0.930
4	0.001	0.988	0.950
4	0.01	0.997	0.930
4	0.1	0.997	0.930
4	1	0.997	0.930
4	10	0.997	0.930
4	100	0.997	0.930
4	1000	0.997	0.930
4	10000	0.997	0.930

Ionosphere

a. Linear kernel

Degree	C Parameter	Training Accuracy	Testing Accuracy
0	0.0001	0.521	1.000
0	0.001	0.521	1.000
0	0.01	0.521	1.000
0	0.1	0.521	1.000
0	1	0.521	1.000
0	10	0.521	1.000
0	100	0.521	1.000
0	1000	0.521	1.000
0	10000	0.521	1.000

b. Poly Degree

Degree	C Parameter	Training Accuracy	Testing Accuracy
2	0.0001	0.521	1.000
2	0.001	0.802	1.000
2	0.01	0.871	1.000
2	0.1	0.867	1.000
2	1	0.878	1.000
2	10	0.856	1.000
2	100	0.821	1.000
2	1000	0.821	1.000
2	10000	0.821	1.000

Degree	C Parameter	Training Accuracy	Testing Accuracy
3	0.0001	0.844	1.000
3	0.001	0.859	1.000
3	0.01	0.867	1.000
3	0.1	0.859	1.000
3	1	0.829	1.000
3	10	0.821	1.000
3	100	0.821	1.000
3	1000	0.821	1.000
3	10000	0.821	1.000

Degree	C Parameter	Training Accuracy	Testing Accuracy
4	0.0001	0.871	1.000
4	0.001	0.875	1.000
4	0.01	0.863	1.000
4	0.1	0.825	1.000
4	1	0.825	1.000
4	10	0.825	1.000
4	100	0.825	1.000
4	1000	0.825	1.000
4	10000	0.825	1.000