REPEATED EVENTS

Dr. Aric LaBarr
Institute for Advanced Analytics

INTRODUCTION

Multiple Events

- Previously discussed how to analyze:
 - Time to single event
 - Time to one of many events
- What if we extended this again to the possibility of multiple occurrences of a single event?
- Repeated events, like competing risks, is a particular type of multi-state analysis that builds upon the previous things we have learned.

Independent Observations

- For some situations/data, it may be informative to consider the event of interest happening more than once:
 - Repairs for a car/machine/part
 - Hospital readmissions
 - Defaults on loans
- Most techniques are the same, however, the independence of observations no longer applies since an observation can potentially contribute multiple events.

Bladder Tumors Data Set

- Randomized trial of 85 patients.
- Count of recurrences of bladder tumors.
- Andrews DF,
 Hertzberg AM (1985)

Bladder Tumors Data Set

- Start: Either a 0 or time of previous recurrence (in months)
- Stop: Current recurrence time (or time of censoring)
- Event: Tumor recurrence during the observed start, stop time period (in months)
- ID: Patient ID
- rx: placebo (1) or treatment (2) group
- number: number of tumors initially present (truncated at 8)
- size: diameter (cm) of largest initial tumor
- enum: # of previous times with tumors (up to max of 4)

INTENSITY PROCESS

Approaches for Repeated Events

- New modeling choices with repeated events.
- Each modeling choice will end up answering a different question.
- How to treat the repeated events?
 - Order of events important?
 - Additional events indicative of a more serious issue?
- What is the time scale?
 - Time to the event?
 - Time between events?

Intensity Process

 In repeated events, the hazard function is called the intensity process:

$$h_i(t) = y_i(t)h_0(t)e^{\beta_1 x_{i,1} + \dots + \beta_k x_{i,k}}$$

where $y_i(t)$ is an indicator for being in the risk set at time t

• All previous models implied $y_i(t) = 1$ for an observation's entire tenure in the data set.

Intensity Process

 In repeated events, the hazard function is called the intensity process:

$$h_i(t) = y_i(t)h_0(t)e^{\beta_1 x_{i,1} + \dots + \beta_k x_{i,k}}$$

where $y_i(t)$ is an indicator for being in the risk set at time t

- How you answer the previous questions determines the value of $y_i(t)$.
 - Who is in the risk set?
 - When are they in the risk set?
 - Which risk set are they in?

Example Patients

ID	rx	number	size	start	stop	event	enum
5	1	4	1	0	6	1	1
5	1	4	1	6	10	0	2
13	1	3	1	0	3	1	1
13	1	3	1	3	9	1	2
13	1	3	1	9	21	1	3
13	1	3	1	21	23	0	4
16	1	1	2	0	26	0	1
41	1	3	1	0	35	1	1
41	1	3	1	35	51	0	2

MODELS FOR REPEATED EVENTS

Independence Model

Independence Model

- Easiest approach is modeling the recurrences as separate, independent events.
- Assumes that all recurrences are identical the risk of the event is the same regardless of previous events.
- Only care about the overall effect, ignoring the order or type of recurrence.

Independence Model – Risk Set

Each observation has time intervals of (start, 1st], (1st, 2nd],
 ..., (kth,stop)

ID	start	stop	event	enum
5	0	6	1	1
5	6	10	0	2
13	0	3	1	1
13	3	9	1	2
13	9	21	1	3
13	21	23	0	4
16	0	26	0	1
41	0	35	1	1
41	35	51	0	2

Accounting for Dependence

- Easiest approach is modeling the recurrences as separate, independent events.
- But they aren't! Right?
- 2 Approaches:
 - Time-Dependent Variables
 - Robust Standard Errors

Accounting for Dependence

- Easiest approach is modeling the recurrences as separate, independent events.
- But they aren't! Right?
- 2 Approaches:
 - Time-Dependent Variables → Counting Process Data Structure
 - 2. Robust Standard Errors

Counting Process Example

 Create a "new" person starting after time = 5 who is the exact same as Person 1, but with new x value:

Person	Start	Stop	Х	Event
1	0	5	3	0
1	5	9	7	1

- We observe this "new" person until either x changes again or their tenure ends (whichever comes first).
- This is exactly how we structured the independence model risk set!

Independence Model – Risk Set

Each observation has time intervals of (start, 1st], (1st, 2nd],
 ..., (kth,stop)

ID	start	stop	event	enum
5	0	6	1	1
5	6	10	0	2
13	0	3	1	1
13	3	9	1	2
13	9	21	1	3
13	21	23	0	4
16	0	26	0	1
41	0	35	1	1
41	35	51	0	2

Time dependent variable!

Independence Model – Risk Set

Each observation has time intervals of (start, 1st], (1st, 2nd],
 ..., (kth,stop)

ID	start	stop	event	enum
5	0	6	1	1
5	6	10	0	2
13	0	3	1	1
13	3	9	1	2
13	9	21	1	3
13	21	23	0	4
16	0	26	0	1
41	0	35	1	1
41	35	51	0	2

These could be thought of as "different" people!

Independence! Maybe?

The PHREG Procedure

Model Information					
Data Set SURVIVAL.BLADDER					
Dependent Variable	start				
Dependent Variable	stop				
Censoring Variable	event				
Censoring Value(s)	0				
Ties Handling	EFRON				

Number of Observations Read	178
Number of Observations Used	178

Summary of the Number of Event and Censored Values						
Total	Event	Censored	Percent Censored			
178	112	66	37.08			

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics					
Criterion	Without Covariates	With Covariates			
-2 LOG L	917.479	873.585			
AIC	917.479	881.585			
SBC	917.479	892.459			

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	43.8935	4	<.0001		
Score	50.6853	4	<.0001		
Wald	45.6483	4	<.0001		

Analysis of Maximum Likelihood Estimates						
Parameter	DF	Parameter Estimate	Standard Error	Chi- Square	Pr > ChiSq	Hazard Ratio
rx	1	-0.30125	0.20440	2.1722	0.1405	0.740
number	1	0.14193	0.04949	8.2228	0.0041	1.152
size	1	-0.01586	0.06926	0.0524	0.8189	0.984
enum	1	0.53604	0.10192	27.6638	<.0001	1.709

```
## Call:
## coxph(formula = Surv(start, stop, event == 1) ~ rx + number +
##
      size + enum, data = bladder)
##
## n= 178, number of events= 112
##
            coef exp(coef) se(coef) z Pr(>|z|)
##
## rx -0.30125 0.73989 0.20440 -1.474 0.14052
## number 0.14193 1.15249 0.04949 2.868 0.00414 **
## size -0.01586 0.98427 0.06926 -0.229 0.81892
## enum 0.53604 1.70922 0.10192 5.260 1.44e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Accounting for Dependence

- Easiest approach is modeling the recurrences as separate, independent events.
- But they aren't! Right?
- 2 Approaches:
 - 1. Time-Dependent Variables
 - Robust Standard Errors → Still possible correlation between observations that can not be explained away with time-dependent variables.

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

	Model Fit Statistics					
Criterion	Without Covariates	With Covariates				
-2 LOG L	917.479	873.585				
AIC	917.479	881.585				
SBC	917.479	892.459				

Testing Global Null Hypothesis: BETA=0							
Test	Chi-Square	DF	Pr > ChiSq				
Likelihood Ratio	43.8935	4	<.0001				
Score (Model-Based)	50.6853	4	<.0001				
Score (Sandwich)	21.8793	4	0.0002				
Wald (Model-Based)	45.6483	4	<.0001				
Wald (Sandwich)	41.4133	4	<.0001				

Analysis of Maximum Likelihood Estimates							
with Model-Based Variance Estimate							
Parameter	DF	Parameter Estimate	Standard Error	Chi- Square	Pr > ChiSq	Hazard Ratio	
rx	1	-0.30125	0.20440	2.1722	0.1405	0.740	
number	1	0.14193	0.04949	8.2228	0.0041	1.152	
size	1	-0.01586	0.06926	0.0524	0.8189	0.984	
enum	1	0.53604	0.10192	27.6638	<.0001	1.709	

Analysis of Maximum Likelihood Estimates								
with Sandwich Variance Estimate								
Parameter	DF	Parameter Estimate	Standard Error	StdErr Ratio	Chi- Square	Pr > ChiSq	Hazard Ratio	
rx	1	-0.30125	0.21277	1.041	2.0046	0.1568	0.740	
number	1	0.14193	0.05321	1.075	7.1154	0.0076	1.152	
size	1	-0.01586	0.06175	0.892	0.0659	0.7973	0.984	
enum	1	0.53604	0.10516	1.032	25.9816	<.0001	1.709	

```
## Call:
## coxph(formula = Surv(start, stop, event == 1) ~ rx + number +
##
      size + enum + cluster(id), data = bladder)
##
  n= 178, number of events= 112
##
##
            coef exp(coef) se(coef) robust se z Pr(>|z|)
##
## rx -0.30125 0.73989 0.20440 0.21277 -1.416 0.15682
## number 0.14193 1.15249 0.04949 0.05321 2.667 0.00764 **
## size -0.01586 0.98427 0.06926 0.06175 -0.257 0.79734
## enum 0.53604 1.70922 0.10192 0.10516 5.097 3.45e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
exp(coef) exp(-coef) lower .95 upper .95
##
                              0.4876
           0.7399
## rx
                     1.3516
                                        1.123
## number 1.1525 0.8677 1.0384
                                        1.279
## size 0.9843 1.0160 0.8721
                                        1.111
## enum 1.7092 0.5851 1.3909
                                        2.100
##
## Concordance= 0.673 (se = 0.031 )
## Likelihood ratio test= 43.89 on 4 df, p=7e-09
## Wald test
                     = 41.41 on 4 df, p=2e-08
## Score (logrank) test = 50.69 on 4 df, p=3e-10, Robust = 21.88 p=2e-04
##
    (Note: the likelihood ratio and score tests assume independence of
##
##
       observations within a cluster, the Wald and robust score tests do not).
```


MODELS FOR REPEATED EVENTS

Conditional Model

Stratified Models

- Unlike the independence model, we can preserve the ordering of events if it's important.
- In the **conditional model**, we stratify on the number of events, so only those who have had a previous event are in the risk set for the next one.
 - Example: Not in the risk set for the 3rd event until you have had the 2nd event.
- Each recurrence is a separate stratum (imagine own model) with its own baseline hazard – no estimates/inferences on the number of recurrences.

Conditional Model – Risk Set

Risk set for 1st event:

ID	start	stop	event	enum
5	0	6	1	1
13	0	3	1	1
16	0	26	0	1
41	0	35	1	1

Risk set for 2nd event:

ID	start	stop	event	enum
5	6	10	0	2
13	3	9	1	2
41	35	51	0	2

Code above assumes variable effects (coefficients) same across each stratum.

Summary of the Number of Event and Censored Values								
Stratum	enum	Total	Event	Censored	Percent Censored			
1	1	85	47	38	44.71			
2	2	46	29	17	36.96			
3	3	27	22	5	18.52			
4	4	20	14	6	30.00			
Total		178	112	66	37.08			

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Parameter Estimate	Standard Error	Chi- Square	Pr > ChiSq	Hazard Ratio	
rx	1	-0.33349	0.21617	2.3800	0.1229	0.716	
number	1	0.11962	0.05334	5.0294	0.0249	1.127	
size	1	-0.00849	0.07276	0.0136	0,8071	0.992	

Effect of kth event since entry time

```
## coxph(formula = Surv(start, stop, event == 1) ~ rx + number +
      size + strata(enum), data = bladder)
##
##
   n= 178, number of events= 112
##
##
      coef exp(coef) se(coef) z Pr(>|z|)
##
## rx -0.333489 0.716420 0.216168 -1.543 0.1229
## number 0.119617 1.127065 0.053338 2.243 0.0249 *
## size -0.008495 0.991541 0.072762 -0.117 0.9071
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## \exp(\operatorname{coef}) \exp(-\operatorname{coef}) \log n .95 upper .95
## rx 0.7164 1.3958 0.4690 1.094
## number 1.1271 0.8873 1.0152 1.251
## size 0.9915 1.0085 0.8598 1.144
##
## Concordance= 0.616 (se = 0.038)
## Likelihood ratio test= 6.51 on 3 df,
                                       p = 0.09
## Wald test
                                       p=0.08
                     = 6.85 on 3 df,
## Score (logrank) test = 6.91 on 3 df,
                                       p = 0.07
```

```
proc phreg data=Survival.Bladder;
   model (start, stop) *event(0) = rx1-rx4
                                    number1-number4
                                    size1-size4 /
                                    ties=efron:
   rx1 = rx * (enum=1);
   rx2 = rx * (enum=2);
   rx3 = rx * (enum=3);
   rx4 = rx * (enum=4);
   number1 = number * (enum=\mathbf{1});
   number2 = number * (enum=2);
   number3 = number * (enum=3);
   number4 = number * (enum=4);
   size1 = size * (enum=1);
   size2 = size * (enum=2);
   size3 = size * (enum=3);
                                      Code assumes variable
   size4 = size * (enum=4);
                                        effects (coefficients)
   strata enum;
                                     differ across each stratum.
run;
```

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Parameter Estimate	Standard Error	Chi- Square	Pr > ChiSq	Hazard Ratio	
rx1	1	-0.52593	0.31583	2.7730	0.0959	0.591	
rx2	1	-0.50384	0.40617	1.5388	0.2148	0.604	
rx3	1	0.14066	0.67306	0.0437	0.8345	1.151	
rx4	1	0.05033	0.79171	0.0040	0.9493	1.052	
number1	1	0.23824	0.07588	9.8579	0.0017	1.269	
number2	1	-0.02464	0.08987	0.0752	0.7840	0.976	
number3	1	0.04966	0.18532	0.0718	0.7887	1.051	
number4	1	0.20428	0.24204	0.7123	0.3987	1.227	
size1	1	0.06963	0.10156	0.4700	0.4930	1.072	
size2	1	-0.16072	0.12247	1.7222	0.1894	0.852	
size3	1	0.16810	0.26904	0.3904	0.5321	1.183	
size4	1	0.00910	0.33893	0.0007	0.9786	1.009	

```
coxph(formula = Surv(start, stop, event == 1) ~ rx:strata(enum) +
       number:strata(enum) + size:strata(enum), data = bladder)
##
##
     n= 178, number of events= 112
##
##
##
                                   coef exp(coef)
                                                   se(coef)
                                                                  z Pr(>|z|)
   rx:strata(enum)enum=1
                              -0.525984
                                         0.590973
                                                   0.315826 -1.665
                                                                      0.0958 .
## rx:strata(enum)enum=2
                              -0.503837
                                         0.604208
                                                   0.406167 -1.240
                                                                      0.2148
## rx:strata(enum)enum=3
                               0.140657
                                         1.151029
                                                   0.673063
                                                              0.209
                                                                      0.8345
## rx:strata(enum)enum=4
                              0.050331
                                         1.051619
                                                             0.064
                                                                      0.9493
                                                   0.791710
## strata(enum)enum=1:number
                               0.238180
                                         1.268937
                                                   0.075885
                                                              3.139
                                                                      0.0017 **
## strata(enum)enum=2:number
                              -0.024641
                                         0.975660
                                                   0.089873
                                                             -0.274
                                                                      0.7840
## strata(enum)enum=3:number
                                                   0.185323
                                                             0.268
                               0.049661
                                         1.050915
                                                                      0.7887
## strata(enum)enum=4:number
                               0.204277
                                         1.226637
                                                   0.242040
                                                              0.844
                                                                      0.3987
## strata(enum)enum=1:size
                                                              0.685
                               0.069613
                                         1.072094
                                                   0.101559
                                                                      0.4931
## strata(enum)enum=2:size
                              -0.160716
                                         0.851534
                                                   0.122467 -1.312
                                                                      0.1894
## strata(enum)enum=3:size
                               0.168099
                                         1.183053
                                                   0.269040
                                                              0.625
                                                                      0.5321
## strata(enum)enum=4:size
                               0.009095
                                         1.009137
                                                   0.338928
                                                              0.027
                                                                      0.9786
## ---
                            0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

Gap Time

- Notice that in the conditional model, each event's start time is determined by the previous event's stop time!
- An alternative time scale is the gap time, where we instead choose to model the time since last event.
- In gap-time models, time is reset to 0 after each event, so the time until the prior event has no bearing on the current event's risk set.

Gap Time – Risk Set

Risk set for 1st event:

ID	start	stop	event	enum
5	0	6	1	1
13	0	3	1	1
16	0	26	0	1
41	0	35	1	1

Risk set for 2nd event:

ID	start	stop	event	enum
5	0	4	0	2
13	0	6	1	2
41	0	16	0	2

Gap Time – SAS

```
data bladder_gap;
    set Survival.Bladder;
    gaptime = stop - start;
run;

proc phreg data=bladder_gap;
    model gaptime*event(0) = rx number size / ties=efron;
    strata enum;
run;
```

Code above assumes variable effects (coefficients)
same across each stratum.
Could easily extend to different variable effects as before.

Gap Time – SAS

Analysis of Maximum Likelihood Estimates								
Parameter DF Parameter Estimate Standard Chi- Square Pr > ChiSq Rat								
rx	1	-0.27900	0.20735	1.8106	0.1784	0.757		
number	1	0.15805	0.05194	9.2582	0.0023	1.171		
size	1	0.00742	0.07002	0.0112	0.9157	1.007		

Effect of kth event since time of previous event

Gap Time – R

Gap Time – R

```
## coxph(formula = Surv(time = (stop - start), event == 1) ~ rx +
      number + size + strata(enum), data = bladder)
##
##
   n= 178, number of events= 112
##
##
       coef exp(coef) se(coef) z Pr(>|z|)
##
## rx -0.279005 0.756536 0.207348 -1.346 0.17844
## number 0.158046 1.171220 0.051942 3.043 0.00234 **
## size 0.007415 1.007443 0.070023 0.106 0.91567
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## \exp(\operatorname{coef}) \exp(-\operatorname{coef}) \log n .95 upper .95
## rx 0.7565 1.3218 0.5039 1.136
## number 1.1712 0.8538 1.0579 1.297
           1.0074 0.9926 0.8782 1.156
## size
##
## Concordance= 0.596 (se = 0.035 )
## Likelihood ratio test= 9.33 on 3 df, p=0.03
## Wald test
                      = 10.11 on 3 df, p=0.02
## Score (logrank) test = 10.27 on 3 df, p=0.02
```

