Combinatorics, 2018 Fall, USTC Homework 1

- The due is on Thursday, Sep. 20.
- Please sign your name and student number.
- Please solve as many problems as you can.
- 1. Prove: Let X be a set of size $n, r \ge n$, then the number of surjections $f: [r] \to X$ is $S(r, n) \cdot n!$
- 2. Prove:

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{k}{m} = (-1)^m \delta_{m,n}.$$

where
$$\delta_{m,n} = \begin{cases} 0 & \text{if } m \neq n \\ 1 & \text{if } m = n \end{cases}$$

3. Let $n \ge m$. Give a combinatorial proof of the following identity:

$$\sum_{k=0}^{m} \binom{m}{k} \binom{n+k}{m} = \sum_{k=0}^{m} \binom{m}{k} \binom{n}{k} 2^{k}.$$

4. How many functions $f : [n] \to [n]$ are there that are monotone; that is, for i < j, we have $f(i) \leq f(j)$?

5. Show that

$$\sum_{k=0}^{n} k \binom{n}{k} = n \cdot 2^{n-1}.$$

6. Let p be a permutation of the set [n]. Let us write it in the one-line notation, and let us mark the *increasing segments* in the resulting sequence of numbers. For example, in $(4\ 5\ 7\ 2\ 6\ 8\ 3\ 1)$, there are 4 increasing segments: $(4\ 5\ 7)$, $(2\ 6\ 8)$, (3), and (1). Let f(n,k) denote the number of permutations over [n] with exactly k increasing segments. Show that:

(1)
$$f(n,k) = f(n,n+1-k)$$

(2)
$$f(n,k) = k \cdot f(n-1,k) + (n+1-k) \cdot f(n-1,k-1)$$