# Simple Linear Regression Part 4: Software & Diagnostic Plots

STAT 705: Regression and Analysis of Variance



#### **Using Software**

- Most of the calculations can be performed with SAS
- Other software can be used, but we will use SAS
- Software is a TOOL
  - It follows orders
  - It does not make any decisions
  - It cannot interpret results
- MAKE SURE your data has no mistakes
- MAKE SURE the computer is calculating what you intend



#### A SAS Program

```
DATA example;
INPUT traffic lead;
DATALINES:
 8.1 227
 8.3 312
12.1 362
13.2 521
16.5 640
17.5 539
19.2 728
24.8 945
24.1 738
26.1 759
33.6 1263
22
SYMBOL1 V=DOT C=PURPLE;
PROC GPLOT DATA=example;
  PLOT lead*traffic;
  RUN;
PROC REG DATA=example;
MODEL lead=traffic / P CLM CLI;
 RUN:
QUIT;
```

The DATA step defines the dataset name ('example') and the variable names ('traffic' and 'lead').

I use capital letters for SAS keywords, while lower case letters are names I chose for this example.

The last data line (22 and a period) are used to get a prediction interval and a confidence interval of the mean when X = 22.

Generate a scatterplot, using purple dots. The format for the PLOT statement is Y\*X.

PROC REG performs regression.

The format for the MODEL statement is Y=X.

Options for the model are after the slash.

P = predicted values

CLM = confidence limits for the mean
CLI = prediction limits for individual observations

#### SAS Output for PROC REG





## Output for Options CLM, CLI and P

| Output Statistics |                       |                    |                           |             |          |                |          |           |
|-------------------|-----------------------|--------------------|---------------------------|-------------|----------|----------------|----------|-----------|
| Obs               | Dependent<br>Variable | Predicted<br>Value | Std Error<br>Mean Predict | 95% CL Mean |          | 95% CL Predict |          | Residual  |
| 1                 | 227.0000              | 267.8480           | 45.1375                   | 165.7399    | 369.9561 | 42.7144        | 492.9815 | -40.8480  |
| 2                 | 312.0000              | 274.9943           | 44.5761                   | 174.1561    | 375.8324 | 50.4338        | 499.5547 | 37.0057   |
| 3                 | 362.0000              | 410.7736           | 34.8699                   | 331.8924    | 489.6548 | 195.1784       | 626.3688 | -48.7736  |
| 4                 | 521.0000              | 450.0781           | 32.5358                   | 376.4769    | 523.6793 | 236.3582       | 663.7980 | 70.9219   |
| 5                 | 640.0000              | 567.9917           | 27.6423                   | 505.4606    | 630.5229 | 357.8270       | 778.1564 | 72.0083   |
| 6                 | 539.0000              | 603.7231           | 26.9707                   | 542.7111    | 664.7352 | 394.0054       | 813.4409 | -64.7231  |
| 7                 | 728.0000              | 664.4665           | 26.8549                   | 603.7165    | 725.2166 | 454.8249       | 874.1082 | 63.5335   |
| 8                 | 945.0000              | 864.5624           | 34.6466                   | 786.1864    | 942.9383 | 649.1515       | 1080     | 80.4376   |
| 9                 | 738.0000              | 839.5504           | 33.1445                   | 764.5724    | 914.5284 | 625.3524       | 1054     | -101.5504 |
| 10                | 759.0000              | 911.0132           | 37.6999                   | 825.7302    | 996.2962 | 692.9943       | 1129     | -152.0132 |
| 11                | 1263                  | 1179               | 59.1819                   | 1045        | 1313     | 937.7881       | 1420     | 84.0013   |
| 12                |                       | 764.5144           | 29.4100                   | 697.9845    | 831.0444 | 553.1255       | 975.9034 |           |





#### **Model Assumptions**

- $\varepsilon_i \sim NIID(0,\sigma^2)$  encompasses three assumptions:
  - 1. Normal
  - 2. Independent
  - 3. Constant variance
- Should be checked <u>before</u> conducting any inference
- Can only be checked after fitting the model
- Methods
  - Interpret graphs (subjective)
  - Conduct formal hypothesis tests
    - Can be limited in scope, too sensitive

### **Checking Model Assumptions**

Assumption:  $\varepsilon_i \sim \text{NIID}(0, \sigma^2)$ 

- Assess normality
  - Compare the residuals from the fitted model to the normal distribution
- 2. Assess independence
  - Consider the nature of the experiment. Non-independent data include time series data and some geographic data.
  - Objects that are "nearby" in either space or time may have values that are similar (so not independent)
- 3. Assess equality of variances
  - If this assumption is not satisfied, then inference that relies on the tdistribution may not be valid

#### More on Model Assumptions

- Various diagnostic plots can be used to determine if these assumptions are grossly violated
- We can never be absolutely sure that these assumptions are valid for a particular population
- We look for evidence that one or more of the assumptions are grossly violated
- If the assumptions of the model are questionable, we may need to adjust the model or adjust the data (more on this later)

#### **Assess Normality**

- Normal probability plot ... or ... QQ plot
  - If points follow the line ⇒ residuals could be normal
  - Serious departures from the line ⇒ residuals probably not normal
- Formal hypothesis tests (e.g. Shapiro-Wilk), but these tend to be sensitive to the sample size



#### Assess Equality of Variances

- Homoscedastic ⇒ variances are equal
- Heteroscedastic ⇒ variances are not equal
- Assumptions on independence and variances can both be examined with a residual plot
  - On x-axis: observed Y, or fitted Y
  - On y-axis: residual, perhaps standardized
- There are formal hypothesis tests for equality of variances (e.g., Brown-Forsythe), but these require several observations for each value of X

#### Fitted vs. Residual Plots

- We want the points to show no obvious patterns
- Quadratic patterns (as in the 3<sup>rd</sup> graph) indicate the linear model is a poor fit to the data
- Wedge-shaped patterns (as in the 4<sup>th</sup> graph) indicate the variances are not all equal



Fitted values are on x-axis; Residuals are on y-axis.



#### Generating Diagnostic Plots in SAS

```
SYMBOL1 V=DOT C=PURPLE;

PROC REG DATA=example;

MODEL lead=traffic / P CLM CLI;

OUTPUT OUT=diagnostics

RESIDUAL = resid

PREDICTED = fitted;

RUN;

PROC GPLOT DATA=diagnostics;

PLOT resid*fitted;

RUN;

PROC UNIVARIATE DATA=diagnostics N
```

In PROC REG, the OUTPUT statement creates a new SAS dataset. We have called the dataset 'diagnostics' and it contains the residuals and the predicted values from the fitted model. In the new dataset, these variables are called 'resid' and 'fitted', respectively.

PROC GPLOT uses our newly-created dataset and generates the fitted vs. residual plot.

PROC UNIVARIATE DATA=diagnostics NOPRINT;
QQPLOT resid / NORMAL (MU=EST SIGMA=EST COLOR=BLACK);
RUN;

PROC UNIVARIATE generates a lot of printed output; the NOPRINT option suppresses that.

On the QQPLOT statement, the NORMAL option produces the line on the QQ plot.

QUIT;

# Diagnostic Plots from SAS Lead vs. Traffic Example



Suggests variances are not all the same. We will discuss possible corrective action in a later lesson.



Acceptable, considering the sample size is so small

#### Things You Should Know

- Access SAS and run the provided code
  - TrafficLead.sas
- Interpret normal probability plot
- Interpret residual plot