Содержание

2. Линеиный оператор (линеиное отооражение, линеиный функционал, линеиное преображение)	4
2.1. Определение	4
2.2. Действия с операторами	4
2.3. Обратимость оператора	5
2.4. Матрица ЛО	6
2.5. Ядро и образ оператора	7
2.6. Преобразование матрицы оператора при переходе к другому базису	8
2.7. Собственные векторы и значения оператора	10
2.8. Самосопряженные операторы	12
2.9. Ортогональный оператор	15
3. Билинейные и квадратичные формы	17
3.1. Билинейные формы	17
3.2. Квадратичные формы	18
4. Дифференциальные уравнения	20
4.1. Общие понятия	20
$4.2~\Pi ext{У}$ первого порядка $(\Pi ext{$Y_1$})$	22

Nota. Изоморфизм $E^n \to E'^n$ позволяет переносить свойства скалярного произведения из одного в другое пространство

Ех: $\|x+y\| \leq \|x\| + \|y\|$ - арифметические векторы со скалярным произведением $(x,y) = \sum_{i=1}^n x_i y_i$

 $E'^n \in C_{[a;b]}$ со скалярным произведением $(f,g) = \int_a^b f * g dx$

$$\sqrt{\int_a^b (f*g)^2 dx} \le \sqrt{\int_a^b f^2 dx} + \sqrt{\int_a^b g^2 dx}$$

Задача о перпендикуляре

Постановка: Нужно опустить перпендикуляр из точки пространства ${\it E}^n$ на подпространство ${\it G}$

Точка M - конец вектора x в пространстве E^n . Нужно найти M_0 (конец вектора x_0 , проекции x на G)

$$x_0 + h = x$$

где $h \perp G$. Правда ли что, длина перпендикулярного вектора h - минимальная длина от точки M до G?

Th.
$$h \perp G, x_0 \in G, x = x_0 + h$$
. Тогда $\forall x' \in G(x' \neq x_0) \quad ||x - x'|| > ||x - x_0||$

$$\Box ||x - x'|| = ||x - x_0 + x_0 - x'|| \stackrel{\text{по теореме Пифагора}}{====} ||x - x_0|| + ||x_0 - x'|| = ||h|| + ||x_0 - x'|| > ||x - x_0||$$

 $Nota.\ x_0$ называется ортогональной проекцией, возникает вопрос о ее вычислении (так находятся основания перпендикуляров)

Алгоритм: $x_0 = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_k + e_k$, $\{e_i\}_{i=1}^k$ - базис G (необязательно ортонормированный) Дан вектор x, пространство G, нужно найти λ_i

$$h = x - x_0, \ h \perp G \quad (h, e_i) \stackrel{h \perp e_i}{=} {}^{\forall i} 0$$

 $(x - x_0, e_i) = (x, e_i) - (x_0, e_i) = 0$

$$(x, e_i) = (x_0, e_i)$$

Тогда $\forall i \quad (x_0,e_i) = (\lambda_1 e_1 + \dots + \lambda_k e_k,e_i) = \lambda_1(e_1,e_i) + \dots + \lambda_k(e_k,e_i)$ - (e_k,e_i) - числа, а λ_i - неизвестные

Получили СЛАУ:

$$\begin{vmatrix} (e_1, e_1) & (e_1, e_2) & \dots & (e_1, e_k) \\ \dots & \dots & \dots & \dots \\ (e_k, e_1) & (e_k, e_2) & \dots & (e_k, e_k) \end{vmatrix} \times \begin{vmatrix} \lambda_1 \\ \lambda_k \end{vmatrix} = \Gamma \times \begin{vmatrix} \lambda_1 \\ \lambda_k \end{vmatrix} = \begin{vmatrix} (x, e_1) \\ \dots \\ \lambda_k \end{vmatrix}$$

Nota. В матрице Γ нет нулевых строк, так как e_i - бизисная и по крайней мере $e_i^2 \neq 0$ Таким образом по теореме Крамера $\exists!(\lambda_1,\ldots,\lambda_k)$

 ${f Def.}$ Матрица $\Gamma=(e_i,e_j)_{i,j=1...k}$ называют матрицей Γ рама

$$\Gamma = I = \left| \begin{array}{ccc} 1 & 0 & \dots \\ 0 & 1 & \dots \\ \dots & 1 \end{array} \right|, \text{ если базис ортонормированный }$$

Далее, І - единичная матрица Грама

$$Nota.$$
 Тогда $I imes egin{array}{c|c} \lambda_1 & = & \lambda_1 \\ \dots & \lambda_k & = & \dots \\ \lambda_k & = & (x,e_1) \\ \lambda_k & = & (x,e_k) \\ \end{array}$

Приложения задачи о перпендикуляре

1) Метод наименьших квадратов

В качестве простейшей модели зависимости y=y(x) берем линейную функцию $y=\lambda x$ Ищем минимально отстоящую прямую от данных (x_i,y_i) , то есть ищем λ Определим расстояние (в этом методе) как $\sigma^2 = \sum_{i=1}^n (y_i - y_{0i})^2 = \sum_{i=1}^n (y_i - \lambda x_i)^2$ - минимизируем Таким образом, ищем y_0 (ортог. проекция) такое, что $(y-y_0)^2 = \sigma^2$ - минимальное Если $y_0 = \lambda_1 x_1 + \dots + \lambda_k x_k$, где x_i - набор измерений для i-ой точки Рассмотрим y_0 как разложение по базису $\{x_i\}$

2) Многочлен Фурье

$$P(t) = \frac{a_0}{2} + a_1 cost + b_1 sint + \dots a_n cosnt + b_n sinnt$$
 - линейная комбинация

Функции 1, cost, sint, . . . , cosnt, sinnt - ортогональны

Задача в том, чтобы для функции f(t), определенной на отрезке $[0;2\pi]$ найти минимально отстоящий многочлен P(t) при том, что расстояние определяется как $\sigma^2 = \int_0^{2\pi} (f(t) - P(t))^2 dt$ Нужно найти a_i и b_i - обычные скалярные произведения $a_i = k \int_0^{2\pi} f(t) cos(it) dt, \ b_i = m \int_0^{2\pi} f(t) sin(it) dt \ (k, m$ - нормирующие множители)

2. Линейный оператор (линейное отображение, линейный функционал, линейное преображение)

2.1. Определение

Линейный оператор - это отображение $V^n \stackrel{\mathcal{A}}{\Longrightarrow} W^m$ $(V^n, W^m$ - линейные пространства размерности $n \neq m$ в общем случае), которое $\forall x \in V^n$ сопоставляет один какой-либо $y \in W^m$ и $\mathcal{A}(\lambda x_1 + \mu x_2) = \lambda \mathcal{A} x_1 + \mu \mathcal{A} x_2 = \lambda y_1 + \mu y_2$

Nota. Заметим, что если 0 представим как 0*x, где $x \neq 0$, то $\mathcal{A}(0) = \mathcal{A}(0*x) = 0*\mathcal{A}x \stackrel{0*y}{=} 0$

Nota. Если V=W, то $\mathcal A$ называют линейным преобразованием, но далее будем рассматривать в основном операторы $\mathcal A:\ V\to V,\ \mathcal A:\ V^n\to W^n$

 $Ex.\ 1.\ V=\mathbb{R}^2$ - пространство направленных отрезков $\mathcal{A}:V\leftarrow V$ $\mathcal{A}x=y=\lambda y_1+\mu y_2$ для таких \mathcal{A} как сдвиг, поворот, гомотетия, симметрия

 $Ex. \ 2. \ V^n = W^m$, где m < n

 \mathcal{A} - оператор проектирования (убедиться, что он линейный)

 $\mathit{Ex. 3. V}^n$ - пространство числовых строк длины n

 $\mathcal{A}: V^n \leftarrow V^n$

 $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$ $\mathcal{A}x = y : \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} x = y$

2.2. Действия с операторами

Def. $\mathcal{AB}: V \to W$

1. $(\mathcal{A} + \mathcal{B})x \stackrel{def}{=} \mathcal{A}x + \mathcal{B}x$ - определение суммы $\mathcal{A} + \mathcal{B} = C$

2. $(\lambda \mathcal{A})x \stackrel{def}{=} \lambda(\mathcal{A}x) - \lambda \mathcal{A} = \mathcal{D}$

Nota. Сформируем линейное пространство из операторов $\mathcal{A}:V\to W$

- 1. Ассоциативность сложения (очевидно)
- 2. Коммутативность (очевидно)
- 3. Нейтральный элемент Ox = 0
- 4. Противоположный: $-\mathcal{A} = (-1) * A$
- 5. ... *LAB*

$$Def: I$$
 - тождественный - $\forall x \in V \ Ix = x$

Def. Произведение операторов (композиция)

 \mathcal{AB} - произведение, $\mathcal{A}: V \to W; \ \mathcal{B}: U \to V$

 $(\mathcal{AB})x = \mathcal{A}(\mathcal{B}x); \quad x \in U$

Свойства: Lab доказать

 $1^* \lambda(\mathcal{AB}) = (\lambda \mathcal{A})\mathcal{B}$

 $2^* (\mathcal{A} + \mathcal{B})C = \mathcal{A}C + \mathcal{B}C$

 $3^* \mathcal{A}(\mathcal{B} + C) = \mathcal{A}\mathcal{B} + \mathcal{A}C$

 $4* \mathcal{A}(\mathcal{B}C) = (\mathcal{A}\mathcal{B})C$

Nota. Можно обобщить 4^* на n равных \mathcal{A}

 $\mathbf{Def.}\ \mathcal{H}^n = \mathcal{H} \cdot \mathcal{H} \ldots \mathcal{H}$ - n раз, степень оператора

Свойства: $\mathcal{A}^{m+n} = \mathcal{A}^n \cdot \mathcal{A}^m$

2.3. Обратимость оператора

Def:
$$\mathcal{A}: V \to W$$
 так, что $\mathcal{A}V = W$ и $\forall x_1 \neq x_2(x_1, x_2 \in V)$
$$\begin{cases} y_1 = \mathcal{A}x_1 \\ y_2 = \mathcal{A}x_2 \end{cases} \implies y_1 \neq y_2$$

Тогда $\mathcal A$ называется взаимно-однозначно действующим

Nota: Проще сказать «линейный изоморфизм»

 $\mathbf{Th.}\ \{x_i\}$ - линейно независима $\stackrel{\mathcal{A}x=y}{\longrightarrow} \{y_i\}$ - линейно независима

В обратную сторону, если $\mathcal A$ - взаимно-однозначен

 $\square \ \square \ \mathcal{A}: V \to W$ и $0_V, 0_W$ - нули V и W соответственно

1. $\mathcal{A}(O_V) = \mathcal{A}(\Sigma_{i=1}^k O \cdot e_i) = \Sigma_{i=1}^k O \cdot \mathcal{A}e_i = O_W$

2. Докажем, что если $x_i \subset V$ - лин. нез., то $y_i \subset W$ - лин. нез.

Составим $\Sigma_{j=1}^m \lambda_j y_j = \mathtt{0}_W$ (От противного) $\sqsupset \{y_i\}$ - лин. зав., тогда $\exists \lambda_k \neq 0$

При этом $\forall j \ y_j = \mathcal{A}x_j$ (т. к. \mathcal{A} - вз.-однозн., то n' = m': кол-во x_i и y_i равно)

$$\Sigma_{j=1}^{m'} \lambda_j \mathcal{A} x_j \stackrel{\text{линейность}}{=} \mathcal{A}(\Sigma_{j=1}^{m'} \lambda_j x_j) = 0_W$$

Так как $\mathcal{A} 0_V = 0_W$, то 0_W - образ $x = 0_V$, но так как \mathcal{A} - вз.-однозн., то $\nexists x' \neq x \mid \mathcal{A}(x') = 0_W$

Значит $\Sigma_{j=1}^{m'} \lambda_j x_j = 0_V$, но $\exists \lambda_k \neq 0 \Longrightarrow \{x_j\}$ - лин. зав. - противоречие

3. \Box теперь $\{y_i\}$ - л. нез., а $\{x_i\}$ (по предположению от противного) - лин. зав.

$$\sum_{i=1}^{n'} \lambda_i x_i \stackrel{\exists \lambda_k \neq 0}{=} \mathsf{O}_V \quad \middle| \mathcal{A}$$

$$\Sigma_{i=1}^{n'} \lambda_i \mathcal{A} x_i = 0_W$$

При этом $\exists \lambda_k \neq 0 \Longrightarrow \{y_i\}$ - лин. зав. - противоречие

Следствие: $\dim V = \dim W \longleftarrow \mathcal{A}$ - лин. изоморфизм

Def: $\mathcal{B}:W\to V$ называется обратным оператором для $\mathcal{A}:V\to W$

если $\mathcal{B}\mathcal{A} = \mathcal{A}\mathcal{B} = I$ (обозначается $\mathcal{B} = \mathcal{A}^{-1}$)

Следствие: $\mathcal{A}\mathcal{A}^{-1}x = x$

Th.
$$\mathcal{A}x = 0$$
 и $\exists \mathcal{A}^{-1}$, тогда $x = 0$ $\Box \mathcal{A}^{-1}\mathcal{A}x = \mathcal{A}^{-1}(\mathcal{A}x) = \mathcal{A}^{-1}0_W = 0_V \Longrightarrow x = 0$

Th. H. и Д. условия существования \mathcal{A}^{-1}

 $\exists \mathcal{A}^{-1} \Longleftrightarrow \mathcal{A}$ - вз.-однозн.

 $\square \Longrightarrow \exists \mathcal{A}^{-1}$, но $\square \mathcal{A}$ - не вз.-однозн., то есть $\exists x_1, x_2 \in V(x_1 \neq x_2) \mid \mathcal{A}x_1 = \mathcal{A}x_2 \Longleftrightarrow \mathcal{A}x_1 - \mathcal{A}x_2$

 $\mathcal{A}x_2=0 \Longleftrightarrow \mathcal{A}(x_1-x_2)=\mathtt{O}_W \overset{\exists \mathcal{A}^{-1}}{\Longrightarrow} x=\mathtt{O}_V \Longleftrightarrow x_1=x_2$ - противоречие

 \leftarrow Так как \mathcal{A} - изоморфизм (не учитывая линейность), то $\exists \mathcal{A}'$ - обратное отображение (не обязат. линейное)

Докажем, что $\mathcal{A}':W\to V$ - линейный оператор

? $\mathcal{A}'(\Sigma \lambda_i y_i) = \Sigma \lambda_i \mathcal{A}' y_i = \Sigma \lambda_i x_i$

$$\mathcal{A}$$
 - вз.-однозн. $\Longleftrightarrow \forall x_i \longleftrightarrow y_i \mid \cdot \lambda_i, \Sigma$

 \mathcal{A} - вз.-однозн. $\Longleftrightarrow \forall x_i \longleftrightarrow y_i \quad \Big| \cdot \lambda_i, \Sigma$ $\mathcal{A}(\Sigma \lambda_i x_i) = \mathcal{A} x = y = \Sigma \lambda_i y_i$ и y имеет только один прообраз x

Применим \mathcal{H}' к $y = \sum \lambda_i y_i$ $\mathcal{H}' y = x = \sum \lambda_i x_i$ - единственный прообраз y

Таким образом, \mathcal{A}' переводит лин. комбинацию в такую же лин. комбинацию прообразов, то есть \mathcal{A}' - линейный: $\mathcal{A}' = \mathcal{A}^{-1}$

2.4. Матрица ЛО

 $\mathcal{A}: V^n \to W^m$

Возьмем вектор $x \in V^n$ и разложим по какому-либо базису $\{e_i\}_{i=1}^n$

$$\mathcal{A}x = \mathcal{A}(\sum_{j=1}^{n} c_j e_j) = \sum_{j=1}^{n} c_j \mathcal{A}e_j$$

$$\mathcal{A}e_i$$
 образ базисного вектора $y_i = \{f_i\}$ – базис $W^m \sum_{i=1}^m a_{ij}$

$$\mathcal{A}x = \mathcal{A}(\Sigma_{j=1}^{n}c_{j}e_{j}) = \Sigma_{j=1}^{n}c_{j}\mathcal{A}e_{j}$$

$$\mathcal{A}e_{j} \overset{\text{образ базисного вектора}}{=} y_{j} \overset{\{f_{i}\}-\text{ базис }W^{m}}{=} \Sigma_{i=1}^{m}a_{ij}f_{i}$$

$$\mathcal{A}x = \Sigma_{j=1}^{n}c_{j}\mathcal{A}e_{j} = \Sigma_{j=1}^{n}c_{j}\Sigma_{i=1}^{m}a_{ij}f_{i} = \Sigma_{j=1}^{m}\Sigma_{j=1}^{m}c_{j}a_{ij}f_{i}$$

$$\mathcal{A}x = \sum_{j=1}^{n}c_{j}\mathcal{A}e_{j} = \sum_{j=1}^{n}c_{j}\Sigma_{i=1}^{m}a_{ij}f_{i} = \sum_{j=1}^{m}c_{j}a_{ij}f_{i}$$

$$\mathcal{A}x = \sum_{j=1}^{n}c_{j}\mathcal{A}e_{j} = \sum_{j=1}^{n}c_{j}\Sigma_{i=1}^{m}a_{ij}f_{i} = \sum_{j=1}^{m}c_{j}a_{ij}f_{i}$$

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Def: Матрица $A=a_{ij_{i=1..m},j=1..n}$ называется матрицей оператора $\mathcal{A}:V^n\to W^m$ в базисе $\{e_j\}_{j=1}^n$ пространства V^n

Вопросы:

- 1) \forall ? \mathcal{A} $\exists A$
- 2) \forall ? $A \exists \mathcal{A}$
- 3) если $\exists A$ для \mathcal{A} , то единственная?
- 4) если $\exists \mathcal{A}$ для A, то единственная?

Ответы:

- 1) При выбранном базисе $\{e_i\}$ $\forall \mathcal{A} \exists A \text{ (алгоритм выше)}$
- 3) такая A единственная \Longrightarrow в разных базисах матрицы ЛО \mathcal{A} $A_e \neq A_{e'}$
- 2) $\forall A_{m\times n}$ можно взять пару ЛП V^n, W^m и определить $\mathcal{A}: V^n \to W_n$ по правилу $\mathcal{A}e_V = e_W'$
- 4) Lab.

Nota: Далее будем решать две задачи

- 1) преобразование координат как действие оператора
- 2) поиск наиболее простой матрицы в некотором базисе

2.5. Ядро и образ оператора

```
Def. Ядро оператора - Ker\mathcal{A} \stackrel{def}{=} \{x \in V \mid \mathcal{A}x = 0_W\}
     Def. Образ оператора - Im\mathcal{A} \stackrel{def}{=} \{y \in W \mid \mathcal{A}x = y\}
     Nota.\ Ker\mathcal{A} и Im\mathcal{A} - подпространства
     Nota. Ker \mathcal{A} и Im \mathcal{A} - подпространства V (\mathcal{A}: V \to V)
     Вообще-то Ker \mathcal{A} \subset V, Im \mathcal{A} \subset W (\mathcal{A} : V \to W)
     \dim W \leq \dim V, тогда можно считать, что W \subset V' и рассмотрим \mathcal{A}: V \to V' (где V' изоморфен
V)
     Ker\mathcal{A} - подпространство, то есть Ker\mathcal{A} \subset V и \Sigma c_i x_i \subset \mathcal{A}, если \forall x_i \in Ker\mathcal{A}
     \mathcal{A}(\Sigma c_i x_i) = \Sigma c_i \mathcal{A} x_i \stackrel{x_i \in \mathcal{A}}{=} \Sigma c_i 0 = 0
     Следствие: Ker\mathcal{A} = 0 \Longrightarrow \mathcal{A} - вз.-однозн.
     □ От противного:
     \exists \mathcal{A} - не вз.-однозн., то есть \exists x_1, x_2 \in V(x_1 \neq x_2) | \mathcal{A}x_1 = \mathcal{A}x_2 \Longleftrightarrow \mathcal{A}(x_1 - x_2) = 0 \Longrightarrow x_1 - x_2 \in \mathcal{A}
Ker\mathcal{A} - противоречие
     Nota. Обратное также верно:
     \mathcal{A} - вз.-однозн. \iff y_1 = y_2 \Longrightarrow x_1 = x_2, так как \mathcal{A}(x_1 - x_2) = 0 \Longrightarrow x_1 - x_2 = 0
     Тогда 0 является образом только 0-вектора \Longrightarrow Ker\mathcal{A} = 0
     Nota. Также очевидно, что
     Ker \mathcal{A} = 0 \iff Im \mathcal{A} = V
     Ker\mathcal{A} = V \Longrightarrow Im\mathcal{A} = 0 и \mathcal{A} = 0
     Th. \mathcal{A}: V \to V, тогда \dim Ker \mathcal{A} + \dim Im \mathcal{A} = \dim V
     \square Так как Ker\mathcal{A} - подпространство V, то можно построить дополнение до прямой суммы
(взяв базисные векторы ядра, дополнить их набор до базиса V\colon e_1^k,\dots e_m^k, e_{m+1}^k,\dots e_n^k)
     Обозначим дополнение W, тогда Ker\mathcal{A} \oplus W = V \Longrightarrow \dim Ker\mathcal{A} + \dim W = \dim V
     Докажем, что W и Im\mathcal{A} - изоморфны
     \mathcal{A}: W \to Im\mathcal{A}
     \mathcal{A}: Ker \mathcal{A} \to 0
     Докажем, что \mathcal{A} действует из W в Im\mathcal{A} взаимно-однозначно
     \exists \mathcal{A} невз.-однозн., тогда \exists x_1, x_2 \in W(x_1 \neq x_2) | \mathcal{A}x_1 = \mathcal{A}x_2 \in Im\mathcal{A}
     \mathcal{A}(x_1-x_2)=0\Longrightarrow x_1-x_2\stackrel{\mathrm{o}60\mathrm{3H.}}{=}x\in Ker\mathcal{A},\ \mathrm{Ho}\ x\neq 0,\ \mathrm{так}\ \mathrm{как}\ x_1\neq x_2
     Но для прямой суммы W \cup Ker\mathcal{A} = 0, x \ni W \cup Ker\mathcal{A} \Longrightarrow предположение неверно
     \Longrightarrow \mathcal{H} - лин. вз.-однозн. \Longrightarrow \dim W = \dim Im \mathcal{H}
     V = W_1 \oplus W_2 найдется ЛО \mathcal{A}: V \to V
     W_1 = Ker\mathcal{A}, W_2 = Im\mathcal{A}
     Def. Рангом оператора \mathcal{A} называется dim Im\mathcal{A}: rang\mathcal{A} \stackrel{def}{=} \dim Im\mathcal{A} (= r(\mathcal{A}) = rank\mathcal{A})
```

Nota. Сравним ранг оператора с рангом его матрицы

$$\mathcal{A}x = y \quad \mathcal{A}: V^n \to W^m$$

$$A$$
 - матрица $\mathcal{A}, x = x_1e_1 + x_2e_2 + \cdots + x_ne_n, y = y_1f_1 + \cdots + y_mf_m$

$$A$$
 - матрица $\mathcal{A}, x = x_1e_1 + x_2e_2 + \dots + x_ne_n, y = y_1f_1 + \dots + y_mf_m$

$$\mathcal{A}x = y \Longleftrightarrow \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

Или при преобразовании базиса $Ae_i = e_i'$:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}^T = \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \end{pmatrix}$$

Здесь
$$\begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}^T$$
 - это матрица $\begin{pmatrix} e_1 & \dots & e_n \end{pmatrix} = \begin{pmatrix} e_{11} & e_{12} & \dots \\ \vdots & \vdots & \vdots \\ e_{n1} & e_{n2} & \dots \end{pmatrix}$

Nota. Поиск матрицы $\mathcal A$ можно осуществить, найдя ее в «домашнем» базисе $\{e_i\}$, то есть $A(e_1,\ldots e_n)=(e'_1,\ldots,e'_m)$

Затем, можно найти матрицу в другом (нужном) базисе, используя формулы преобразований (см. позже)

Тогда $Ker\mathcal{A} = K$ - множество векторов, которые решают систему

AX = 0 (dim $K = m = \dim \Phi CP = n - rangA$) и при этом dim $K = n - \dim Im \mathcal{A}$

 $rang\mathcal{A} = rangA = \dim Im\mathcal{A}$

Следствия (без док-в)

- 1) $rang(\mathcal{AB}) \leq rang(\mathcal{A})$ (или $rang\mathcal{B}$)
- 2) $rang(\mathcal{AB}) \ge rang(\mathcal{A}) + rang(\mathcal{B}) \dim V$

Nota. Рассмотрим преобразование координат, как линейный оператор $T: V^n \to V^n$ (переход из системы $Ox_i \rightarrow Ox'_i$, i = 1..n)

 $\dim ImT = n, \dim KerT = 0 \Longrightarrow T$ - вз.-однозн.

Поставим задачу отыскания матрицы в другом базисе, используя $T_{e \to e'}$

2.6. Преобразование матрицы оператора при переходе к другому базису

Th.
$$\mathcal{A}: V^n \to V^n$$
 $\{e_i\} \stackrel{\text{of}}{=} e \text{ и } \{e_i'\} \stackrel{\text{of}}{=} e' \text{ - базисы пространства } V$ $\mathcal{T}: V^n \to V^n$ - преобразование координат, то есть $Te_i = e_i'$ $\Box A, A'$ - матрицы \mathcal{A} в базисах e и e'
 Тогда $A' = TAT^{-1}$ $(A'_{e'} = T_{e \to e'}AT_{e \to e'}^{-1})$ $\Box y = \mathcal{A}x$, где x, y - векторы в базисе e $(x_e = x'_{e'} \text{ - один вектор})$ $y' = \mathcal{A}x'$, где x', y' - векторы в базисе e' $\mathcal{T}x = x', \mathcal{T}y = y'$ $y = Ax, y' = A'x'$, тогда $Ty = A'(Tx)$ $| \cdot T^{-1}$

$$T^{-1}Ty = (T^{-1}A'T)x$$

$$Ax = y = (T^{-1}A'T)x$$

$$A = T^{-1}A'T \Longrightarrow A' = TAT^{-1}$$

Th.
$$A' = T_{e \to e'} A T_{e \to e'}^{-1}$$

Nota. $C = A + \lambda B$

Следствия:

1)
$$TCT^{-1} = T(A + \lambda B)T^{-1} = TAT^{-1} + \lambda TBT^{-1}$$

2)
$$B = I$$
 $TBT^{-1} = TIT^{-1} = I$, T. K. $TI = T$, $TT^{-1} = I$

3)
$$\det A^{-1} = \det(TAT^{-1}) = \det T \det A \det T^{-1} = \det A \cdot 1$$

Nota. То есть характеристика нашего объекта - инвариант при преобразовании T

Def. Матрица A называется ортогональной если $A^{-1} = A^T$

Следствие: $AA^{-1} = AA^{T} = I$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdots \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$\forall i \sum_{j=1}^{n} a_{ij} a_{ij} = (A_i, A_i) = 1 \ \forall i, j (i \neq j) \sum_{kk=1}^{n} a_{ik} a_{jk} = (A_i, A_j) = 0$$

В общем
$$(A_i, A_j) = \begin{bmatrix} 1, i = j \\ 0, i \neq j \end{bmatrix}$$

Def. Оператор \mathcal{A} называется ортогональным, если его матрица ортогональна ? A ортогональна в каком-либо базисе или во всех?

Свойство. $\mathcal A$ - ортогонален, то $\det A = \pm 1$ (следует из определения $\det(AA^T) = \det^2(A) = \det(I)$)

Th. $T_{e \to e'}$ - преобразование координат в V^n . Тогда T - ортогональный оператор Базис e - ортонормированный базис

 \square \square в базисе e матрица $T = \begin{pmatrix} \tau_{11} & \dots & \tau_{1n} \\ \vdots & \ddots & \vdots \\ \tau_{n1} & \dots & \tau_{nn} \end{pmatrix}$ - неортогональна

Тогда $e_1' = \sum_{i=1}^n \tau_{1i} e_i \quad \middle| \cdot e_1'$

 $1=(e_1',e_1')=(\Sigma_{i=1}^n\tau_{1i}e_i)^2= au_{11}^2e_1^2+ au_{11}e_1 au_{12}e_2+\cdots= au_{11}^2+\cdots+ au_{1n}^2=1$ - то есть строка - единичный вектор

 $0=(e_1',e_2')=(au_{11}e_1+ au_{12}e_1+\dots)\cdot(au_{21}e_1+ au_{22}e_2+\dots)=$ произведение 1-ой строки на 2-ую, то есть строки ортогональны

Таким образом, матрица T - ортогональна

Nota. Тогда $A' = TAT^{-1} = TAT^T$

2.7. Собственные векторы и значения оператора

Def. Инвариантное подпространство оператора $\mathcal{A}: V \to V$ - это $U = \{x \in V_1 \in V | \mathcal{A}x \in V_1\}$

$$\mathit{Ex.}\ V = \mathcal{P}_n(t)$$
 - пространство многочленов степени $\leq n$ на $[a;b],\ \mathcal{D} = \dfrac{d}{dt}$

 $Nota.\ Ker\mathcal{A}, Im\mathcal{A}$ - инвариантные $(A:V\to V)$

Def. Характеристический многочлен оператора $\mathcal{A}: V \to V$ ($\mathcal{A}x = Ax, A$ - матрица в неком базисе)

$$\xi(\lambda) = \det(A - \lambda I)$$

Nota. Матрица $A - \lambda I$:

$$\begin{vmatrix} a_{11} - \lambda & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} - \lambda \end{vmatrix}$$

Nota. Уравнение $\xi(\lambda) = 0$ называется вековым

Def. Собственным вектором оператора \mathcal{A} , отвечающим собственному значению λ , называется $x \neq 0 \mid \mathcal{A}x = \lambda x$

Def. Собственное подпространство оператора \mathcal{A} , отвечающее числу λ_i , $U_{\lambda_i} = \{x \in V \mid \mathcal{A}x = \lambda_i x\} \cup \{0\}$

 $\mathbf{Def.}\ \dim U_{\lambda_i} = \beta$ - геометрическая кратность число λ_i

Th.
$$\mathcal{A}x = \lambda x \iff \det(A - \lambda I) = 0$$
, $A: V^n \to V^n$
 $\square \iff |A - \lambda I| = 0 \iff rang(A - \lambda I) < n \iff \dim Im(A - \lambda I) < n \iff \dim Ker(A - \lambda I) \ge 1$
 $\exists x \in Ker(A - \lambda I), x \ne 0 \mid (A - \lambda I)x = 0 \iff Ax - \lambda Ix = 0 \iff Ax = \lambda x$

Nota. По основной теореме алгебры вековое уравнение имеет n корней (не всех из них вещественные). В конкретном множестве $\mathcal{K} \ni \lambda$ их может не быть

Def. Кратность корня λ_i называется алгебраической кратностью

Th.
$$\lambda_1 \neq \lambda_2 (\mathcal{A}x_1 = \lambda_1 x_1, \mathcal{A}x_2 = \lambda_2 x_2) \Longrightarrow x_1, x_2$$
 - линейно независимы \square Составим комбинацию: $c_1 x_1 + c_2 x_2 = 0$ $| \cdot \mathcal{A}$ $\lambda_1 \neq \lambda_2 \Longrightarrow \lambda_1^2 + \lambda_2^2 \neq 0, \exists \ \lambda_2 \neq 0$ $c_1 \mathcal{A}x_1 + c_2 \mathcal{A}x_2 = 0 \Longleftrightarrow c_1 \lambda_1 x_1 + c_2 \lambda_2 x_2 = 0$ Умножим $c_1 x_1 + c_2 x_2 = 0$ на $\lambda_2 \colon c_1 \lambda_2 x_1 + c_2 \lambda_2 x_2 = 0$ $c_1 \lambda_1 x_1 + c_2 \lambda_2 x_2 - c_1 \lambda_2 x_1 - c_2 \lambda_2 x_2 = 0$ $c_1 x_1 (\lambda_1 - \lambda_2) = 0$

Так как $\lambda_1 \neq \lambda_2$ по условию, $x_1 \neq 0$ - собственный вектор, поэтому $c_1 = 0$, а комбинация линейно независима

Если
$$\lambda_1 = 0, \lambda_2 \neq 0$$
: $c_2 \lambda_2 x_2 = 0 \Longrightarrow c_2 = 0$

Nota. Приняв доказательство за базу индукции, можно доказать линейную независимость для k-ой системы собственных векторов для попарно различных k чисел λ

Th. $\lambda_1, \ldots \lambda_p$ - различные собственные значения $\mathcal{A}: V \to V$, им соответствуют U_{λ_i} - собственные полиространства V для λ_i

ственные подпространства
$$V$$
 для λ_i
$$\exists \ e^{(1)} = \{e_1^{(1)}, \dots, e_{k_1}^{(1)}\}, e^{(2)} = \{e_1^{(2)}, \dots, e_{k_2}^{(2)}\}, \dots \text{- базисы } U_{\lambda_1}, U_{\lambda_2}, \dots$$

Составим систему
$$e = \{e_1^{(1)}, \dots, e_{k_1}^{(1)}, \dots, e_1^{(p)}, \dots, e_{k_p}^{(p)}\}$$
 (*)

Тогда система е - линейно независима

□ Составим линейную комбинацию:

1)
$$\supset \alpha_1 e_1^{(1)} + \dots + \alpha_{k_1} e_{k_1}^{(1)} + \dots + \gamma_1 e_1^{(p)} + \dots + \gamma_{k_p} e_{k_p}^{(p)} = 0$$

Тогда $\Sigma_{i=1}^p x_i = 0 \ (x_i$ - линейно независимы, так как λ_i - различны) - этого не может быть, так как $\forall i \ x_i \neq 0 \ ($ как собственный вектор)

2) В $\forall U_{\lambda_i}$ содержится 0-вектор. Тогда $\Sigma_{i=1}^n x_i = 0 \Longleftrightarrow \forall x_i = 0$

Но $x_j = \sum_{j=1}^{k_i} c_i e_i^{(j)} = 0$ ($e_i^{(j)}$ - базисные, т. е. л/нез) $\Longrightarrow \forall c_j = 0$ (комбинация должна быть тривиальна)

Nota. Таким образов объединение базисов собственных подпространств U_{λ_i} образует линейно независимую систему в V^n

Что можно сказать о размерности системы $e\ (*)$?

Обозначим $S = \sum_{i=1}^{p} \dim U_{\lambda_i} = \sum_{i=1}^{p} \beta_i$, β_i - геометрическая кратность λ_i

Очевидно, $S \leq n$

Th. $S = n \Longleftrightarrow \exists$ базис V^n , составленный из собственных векторов

 \square Система $e = \{e_1^{(1)}, \dots, e_{k_1}^{(1)}, \dots, e_1^{(p)}, \dots, e_{k_p}^{(p)}\}$ состоит из собственных векторов

Если S=n, получаем n собственных векторов, линейно независимых - базис V^n

Если \exists базис из nлин. незав. собственных векторов, тогда $\dim e = S = n$

Nota. Условие Th равносильно: $V^n = \sum_{i=1}^p \oplus U_{\lambda_i} (\lambda_i \neq \lambda_j)$ Действительно: $\dim V^n = \sum_{i=1}^p \dim U_{\lambda_i}$ и $\forall i, j \ U_{\lambda_i} U_{\lambda_j} = 0$

Ex. Если $\exists n$ различных собственных чисел $\lambda_1, \ldots, \lambda_n$, то $\dim U_{\lambda_i} = 1 \forall i$

 $\mathbf{Def.}$ Оператор $\mathcal A$ диагонализируемый, если существует базис $e \mid A_e$ - диагональна

Th. \mathcal{A} - диаг.-ем \iff \exists базис из собственных векторов

$$\square \longleftarrow e = \{e_1, \dots, e_n\}$$
 - базис собственных векторов

Собственный вектор (def): $\exists \lambda_i \mid \mathcal{A}e_i = \lambda_i e_i = 0 \cdot e_1 + \dots + \lambda_i e_i + \dots + 0 \cdot e_n$

$$\begin{cases}
\mathcal{A}e_1 = \lambda_1 e_1 + \sum_{k \neq 1} 0 \cdot e_k \\
\mathcal{A}e_2 = \lambda_2 e_2 + \sum_{k \neq 2} 0 \cdot e_k
\end{cases}
\iff
\begin{pmatrix}
\lambda_1 & 0 & \dots & 0 \\
0 & \lambda_2 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & \lambda_n
\end{pmatrix}_e
\cdots e_i = \mathcal{A}e_i$$

 $\Longrightarrow \exists f$ - базис, в котором A_f - диагональная (по -äèàã. - åì)

$$A_f = \begin{pmatrix} \alpha_1 & 0 & \dots & 0 \\ 0 & \alpha_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \alpha_n \end{pmatrix} \qquad \text{Применим } \mathcal{A} \ \kappa \ f_i \in f$$

 $A_f = \begin{pmatrix} \alpha_1 & 0 & \dots & 0 \\ 0 & \alpha_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \alpha_n \end{pmatrix}$ Применим \mathcal{A} к $f_i \in f$ $\mathcal{A}f_i = A_f f_i = \begin{pmatrix} \alpha_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \alpha_n \end{pmatrix} f_i = \alpha_i f_i \Longrightarrow \alpha_i \text{ - собственное число (по def), a } f_i \text{ - собственный}$

вектор

Nota. О связи алгебраической и геометрической кратностей (α - алг., β - геом.)

1) α , β не зависят от выбора базиса

 $\square \beta_i$ по определению $\dim U_{\lambda_i}$ и не связана с базисом

Для α : строим вековое уравнение $|A_f - \lambda I| = 0 \Longrightarrow \lambda_i$ с кратностью $\alpha_i, \ \alpha = \Sigma \alpha_i$

 $\sqsupset A_q$ - матрица $\mathcal A$ в базисе g

Но $A_q = T_{f o q} A_f T_{q o f}$ или для оператора

$$A_g - \lambda I = T_{f \to g} (A_f - \lambda I) T_{g \to f} = \overline{T_{f \to g} A_f T_{g \to f}} - \overline{\lambda T_{f \to g} I T_{g \to f}} = A_g - \lambda I$$
 Таким образом, матрицы $A_g - \lambda I$, $A_f - \lambda I$ - подобные

Def. Подобные матрицы - матрицы, получаемые при помощи преобразования координат Тогда $\det(A_f - \lambda I) = \det(A_q - \lambda I)$ (инвариант) \Longrightarrow одинаковая кратность

2) Геометрическая кратность не превышает алгебраической. У диагонализируемого оператора $\alpha = \beta$

2.8. Самосопряженные операторы

1* Сопряженные операторы

!!! Далее будем рассматривать операторы только в евклидовом пространстве над вещественном полем

Пространство со скалярным произведением над комплексным полем называется унитарным

Мет. Скалярное произведение

$$(x,y): \mathbb{R}^2 \to \mathbb{R}$$

- 1) (x + y, z) = (x, z) + (y, z)
- 2) $(\lambda x, y) = \lambda(x, y)$
- 3) $(x, x) \ge 0$, $(x, x) = 0 \Longrightarrow x = 0$
- 4) (x,y)=(y,x) в \mathbb{R} . Но в комплексном множестве: $(x,y)=\overline{(y,x)}$. Тогда $(x,\lambda y)=\overline{(\lambda y,x)}$

Mem. (x, y) в \mathbb{R}

(x,y) = (y,x)

Но. (x, y) в комплексном множестве

$$(x, y) = \overline{(y, x)}$$

Важно: линейность по первому аргументу - везде

$$(\lambda x, y) \stackrel{\mathbb{R}, C}{=} \lambda(x, y)$$

Ho:

 $(x, \lambda y) = \lambda(x, y)$ в \mathbb{R}

$$(x, \lambda y) = \overline{\lambda}(x, y) \in C$$

Def. 1. Оператор \mathcal{A}^* называется сопряженным для $\mathcal{A}: V \to V$, если $(\mathcal{A}x, y) = (x, \mathcal{A}^*y)$

Def. 2. \mathcal{A}^* сопряженный для \mathcal{A} , если $A^* = A^T$ в любой ортонормированном базисе

Def. 1.
$$\iff$$
 Def. 2. $(\mathcal{A}x, y) \stackrel{\text{на языке матриц}}{=\!=\!=} (AX, Y) = (AX)^T \cdot Y = X^T \cdot A^T \cdot Y$

$$(x, \mathcal{A}^*y) = X^T \cdot (A^*Y) = (X^T A^*) \cdot Y = X^T \cdot A^T \cdot Y \Longrightarrow A^* = A^T$$

Lab. Очевидно существование $\mathcal{A}^* \ \forall \mathcal{A}$ (определяется в ортонормированном базисе действием \mathcal{A}^T)

Доказать единственность \mathcal{A}^* рассмотреть от противного $(x, \mathcal{A}_1^* y) \neq (x, \mathcal{A}_2^* y)$

Свойства:

- 1) $I = I^* \quad \Box(Ix, y) = (x, y) = (x, Iy) \quad \Box$
- 2) $(\mathcal{A} + \mathcal{B})^* = \mathcal{A}^* + \mathcal{B}^*$
- 3) $(\lambda \mathcal{A})^* = \lambda \mathcal{A}^*$
- 4) $(\mathcal{A}^*)^* = \mathcal{A}$
- 5) $(\mathcal{AB})^* = \mathcal{B}^* \mathcal{A}^*$ (св-во транспонирования матриц)

или
$$((\mathcal{AB})x,y)=(\mathcal{A}(\mathcal{B}x),y)=(\mathcal{B}x,\mathcal{A}^*y)=(x,\mathcal{B}^*\mathcal{A}^*y)$$

6) \mathcal{A}^* - линейный оператор ($\mathcal{A}x = x', \mathcal{A}y = y' \Longrightarrow \mathcal{A}(\lambda x + \mu y) = \lambda x' + \mu y'$)

Можно использовать линейные свойства умножения матриц $A^*(\lambda X + \mu Y) = \lambda \mathcal{R}^* X + \mu \mathcal{R}^* Y$

2* Самосопряженный оператор

Def. \mathcal{A} называется самосопряженным, если $\mathcal{A} = \mathcal{A}^*$

Следствие. $A^T = A \Longrightarrow$ матрица A симметричная

Свойства самосопряженных операторов:

1)
$$\mathcal{A}=\mathcal{A}^*,\ \lambda:\ \mathcal{A}x=\lambda x(x\neq 0).$$
 Тогда, $\lambda\in\mathbb{R}$

$$\Box(\mathcal{A}x,y) = (\lambda x,y) = \lambda(x,y) \quad (x,\mathcal{A}^*y) = (x,\mathcal{A}y) = (x,\lambda y) \stackrel{\text{B } C}{=} \overline{\lambda}(x,y)$$
$$(\mathcal{A}x,y) = (x,\mathcal{A}y) \Longrightarrow \lambda(x,y) = \overline{\lambda}(x,y) \Longrightarrow \lambda = \overline{\lambda} \Longrightarrow \lambda \in \mathbb{R}$$

2)
$$\mathcal{A} = \mathcal{A}^*$$
, $\mathcal{A}x_1 = \lambda_1 x_1$, $\mathcal{A}x_2 = \lambda_2 x_2$ if $\lambda_1 \neq \lambda_2$

Тогда $x_1 \perp x_2$

 \square Хотим доказать, что $(x_1, x_2) = 0$, при том, что $x_{1,2} \neq 0$

$$\lambda_1(x_1, x_2) = (1x_1, x_2) = (\mathcal{A}x_1, x_2) = (x_1, \mathcal{A}x_2) = (x_1, \lambda_2 x_2) = (x_1, \lambda_2 x_2) = (x_1, x_2)\lambda_2$$

Так как $\lambda_1 \neq \lambda_2$, то $(\lambda_1 - \lambda_2)(x_1, x_2) = 0 \Longrightarrow (x_1, x_2) = 0$

Th. Лемма. $\mathcal{A} = \mathcal{A}^*$, e - собственный вектор ($l_{\{e\}}$ - линейная оболочка e - инвариантное подпространство для \mathcal{A})

$$V_1 = \{x \in V \mid x \perp e\}$$

Тогда V_1 - инвариантное для ${\mathcal A}$

 \square Нужно доказать, что $\forall x \in V_1$ $\mathcal{A}x \in V_1$ и так как $x \in V_1 \mid x \perp e$, то покажем, что $\mathcal{A}x \perp e$ $(\mathcal{A}x,e)=(x,\mathcal{A}e)=(x,\lambda e)=\lambda(x,e)\stackrel{x\perp e}{=}0$ \square

Th. $\mathcal{A}=\mathcal{A}^*$ $(\mathcal{A}:V^n\to V^n),$ тогда $\exists e_1,\ldots,e_n$ - набор собственных векторов \mathcal{A} и $\{e_i\}$ - ортонормированный базис

(другими словами: \mathcal{A} - диагонализируем)

Наводящие соображения.

$$Ex. \ 1. \ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

 $Ix = x = 1 \cdot x, \quad \lambda_{1,2,3} = 1$

Здесь $U_{\lambda_{1,2,3}}=V^3, \ \{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}$ - базис из собственных векторов, ортонормированный

Ex. 2.
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O$$

$$Ox = 0$$
, $\lambda_{1,2,3} = 0$

И здесь $U_{\lambda_{1,2,3}} = V^3$, так как $0 \in U_{\lambda}$ и $\forall x \ Ox = 0 \in U_{\lambda}$

 $Ex. \ 3. \ \Pi$ оворот \mathbb{R}^2 на $\frac{\pi}{4}$

$$T = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\begin{vmatrix} \frac{1}{\sqrt{2}} - \lambda & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} - \lambda \end{vmatrix} = \left(\frac{1}{\sqrt{2}} - \lambda\right)^2 + \frac{1}{2} = 0 - \text{ вещественных корней нет}$$

 \square \square e_1 - какой-либо собственный вектор $\mathcal A$...

 $\mathbf{Th.}\ \mathcal{A}: V^n \to V^n, \mathcal{A} = \mathcal{A}^* \implies \exists \{e_i\}_{i=1}^n, e_1$ - собственные вектора \mathcal{A} и $\{e_i\}$ - ортонормированный базис

 \square e_1 - собственный вектор $\mathcal A$

 e_1 найдется, если $\mathcal{A}x = \lambda x$ имеет нетривиального решение $\iff \det(\mathcal{A} - \lambda I) = 0 \stackrel{\mathcal{A} \text{ - самосопр.}}{\Longrightarrow} \exists \lambda \in \mathbb{R}$

Для вектора e_1 строим инвариантное подпространство $V_1 \perp e_1$ (см. лемму), dim $V_1 = n-1$ В подпространстве V_1 $\mathcal A$ действует как самосопряженный и имеет собственный вектор $e_2 \perp e_1$. Для e_2 строим $V_2 \perp e_2$, e_1

Затем, V_3, V_4, V_5, \ldots , в котором, найдя e_i , ортогональный всем предыдущим

Составили ортогональный базис из e_i , который можно нормировать

Nota. Чтобы упорядочить построение базиса, в котором V_i может брать $\max \lambda_i$

Nota. Из теоремы следует, что самосопряженный оператор диагонализируется: Σ алг. крат. = n (степень уравнения), а Σ геом. крат. $= \dim\{e_1, \ldots, e_n\} = n$

Разложение самосопряж. оператора в спектр:

 $x \in V^n \quad \{e_i\}_{i=1}^n$ - базис из собственных векторов $\mathcal {A}$ (ортонорм.)

$$x = x_1e_1 + \dots + x_ne_n = (x, e_1)e_1 + \dots + (x, e_n)e_n = \sum_{i=1}^n (x, e_i)e_i$$

Def. Оператор $P_i x = (x, e_i) e_i$ называется проектором на одномерное пространство, порожденное e_i (линейная оболочка)

Свойства:

- 1) $P_i^2 = P_i$ (более того $P_i^m = P_i$)
- 2) $P_i P_i = 0$

3)
$$P_i = P_i^*$$
 $((P_i x, y) \stackrel{?}{=} (x, P_i y)) \iff (P_i x, y) = ((x, e_i)e_i, y) = (x, e_i)(e_i, y) = (x, (y, e_i)e_i) = (x, P_i y)$

3) $P_i = P_i^*$ $((P_i x, y) \stackrel{?}{=} (x, P_i y)) \Longleftrightarrow (P_i x, y) = ((x, e_i)e_i, y) = (x, e_i)(e_i, y) = (x, (y, e_i)e_i) = (x, P_i y)$ Итак, если $\mathcal{A}: V^n \to V^n$ - самосопряженный и $\{e_i\}$ - ортонормированный базис собственных

$$x = \sum_{i=1}^{n} P_{i}x = \sum_{i=1}^{n} (x, e_{i})e_{i}$$

$$\mathcal{A}x \stackrel{y=\sum(y, e_{i})e_{i}}{=} \sum_{i=1}^{n} (\mathcal{A}x, e_{i})e_{i} = \sum_{i=1}^{n} (x, \mathcal{A}e_{i})e_{i} = \sum_{i=1}^{n} (x, \lambda_{i}e_{i})e_{i} = \sum_{i=1}^{n} \lambda_{i}(x, e_{i})e_{i} = \sum_{i=1}^{n} \lambda_{i}P_{i}x$$

$$\iff \mathcal{A} = \sum_{i=1}^{n} \lambda_{i}P_{i} - \text{спектральное разложение } \mathcal{A}, \text{ спектр} = \{\lambda_{1}, \dots, \lambda_{n} \mid \lambda_{i} \leq \dots \leq \lambda_{n}\}$$

Ex.

$$y = y_1e_1 + y_2e_2 = (y, e_1)e_1 + (y, e_2)e_2 = (\mathcal{A}x, e_1)e_1 + (\mathcal{A}x, e_2)e_2 = \lambda_1x_1e_1 + \lambda_2x_2e_2$$

2.9. Ортогональный оператор

Mem. Орт. оператор $T:V^n \to V^n \stackrel{def}{\Longleftrightarrow} \forall$ о/н базиса матрица T - ортогональная $T^{-1}=T^T$

Nota. Иначе, T - ортогональный оператор $\iff T^{-1} = T^* \implies TT^* = I$

Def. T - ортог. оператор, если $(T_x, T_y) = (x, y)$

Следствие: ||Tx|| = ||x||, то есть T сохраняет расстояние

Nota. Ранее в теореме об изменении матрицы A при преобразовании координат T - ортогональный оператор

Это необязательно, то есть можно переходить в другой произвольный базис (док-во теоремы позволяет)

Диагонализация самосопряженного оператора:

Дана матрица A_f

- 1) Находим $\lambda_1, \ldots, \lambda_n$
- 2) Находим $e_1, \dots e_n$ ортогональный базис собственных векторов

3) Составляем
$$T = \begin{pmatrix} e_{11} & \dots & e_{1n} \\ \vdots & \ddots & \vdots \\ e_{n1} & \dots & e_{nn} \end{pmatrix}$$
 - матрица поворота базиса

4) Находим $T_{e o f} A_f T_{f o e} = A_e$ - диагональная

Таким образом диагонализация самосопряженного \mathcal{A} - это нахождение композиции поворотов и симметрий, как приведение пространства к главным направлением

3. Билинейные и квадратичные формы

3.1. Билинейные формы

Def. $x,y\in V^n$ Отображение $\mathcal{B}:V^n\to\mathbb{R}$ (обозн. $\mathcal{B}(x,y)$) называется билинейной формой, если выполнены

- 1) $\mathcal{B}(\lambda x + \mu y, z) = \lambda \mathcal{B}(x, z) + \mu \mathcal{B}(y, z)$
- 2) $\mathcal{B}(x, \lambda y + \mu z) = \lambda \mathcal{B}(x, y) + \mu \mathcal{B}(x, z)$

Ex.

- 1) $\mathcal{B}(x,y) \stackrel{\mathrm{B}}{=} \stackrel{E_{\mathbb{R}}^{n}}{=} (x,y)$
- 2) $\mathcal{B}(x,y) = P_y x$ проектор x на y

Матрица Б.Ф.

$$\begin{aligned} \mathbf{Th.} \ & \{e_i\}_{i=1}^n \text{ - базис } V_n, \ u,v \in V^n. \ \text{Тогда} \ \mathcal{B}(u,v) = \sum\limits_{j=1}^n \sum\limits_{i=1}^n b_{ij} u_i v_j, \ \text{где} \ b_{ij} \in \mathbb{R} \\ & \square \underbrace{u = u_1 e_1 + \dots + u_n e_n}_{v = v_1 e_1 + \dots + v_n e_n} \ \mathcal{B}(u,v) = \mathcal{B}(\sum\limits_{i=1}^n u_i e_i, \sum\limits_{j=1}^n v_j e_j) = \sum\limits_{i=1}^n u_i \mathcal{B}(e_i, \sum\limits_{j=1}^n v_j e_j) = \sum\limits_{i=1}^n u_i (\sum\limits_{j=1}^n v_j \mathcal{B}(e_i, e_j)) = \sum\limits_{i=1}^n u_i \sum\limits_{j=1}^n v_j b_{ij} = \sum\limits_{i=1}^n \sum\limits_{j=1}^n u_i v_j b_{ij} \end{aligned}$$

Nota. Составим матрицу из $\mathcal{B}(e_i, e_j)$

$$B = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nn} \end{pmatrix}$$

Def. Если

- 1) $\mathcal{B}(u,v) = \mathcal{B}(v,u)$, то \mathcal{B} симметричная
- 2) $\mathcal{B}(u,v) = -\mathcal{B}(v,u),$ то \mathcal{B} антисимметричная
- 3) $\mathcal{B}(u,v) = \overline{\mathcal{B}(v,u)}$, то \mathcal{B} кососимметричная (в \mathcal{C})

Def. $rang\mathcal{B}(u,v) \stackrel{def}{=} rangB$

Nota.

- 1) \mathcal{B} называется невырожденной, если $rang\mathcal{B} = n$
- $2)\ rang\mathcal{B}_e=rang\mathcal{B}_{e'}\ (e,e'$ различные базисы $V^n),$ то есть $rang\mathcal{B}$ инвариантно относительно преобразования $e \to e'$

$$Ex. \ \mathcal{B}(u,v) \stackrel{\text{ск. пр.}}{=} (u,v)$$
 $u = u_1e_1 + u_2e_2$, тогда $\mathcal{B}(e_i,e_j) \stackrel{\text{of}}{=} b_{ij} = (e_i,e_j)$ Таким образом, $B = \begin{pmatrix} (e_1,e_1) & (e_1,e_2) \\ (e_2,e_1) & (e_2,e_2) \end{pmatrix}$ - матрица Грама

$$Ex. \ \, egin{aligned} &u(t)=1+3t \\ &v(t)=2-t \end{aligned}, \ \{e_i\}=(1,t), \ \mathcal{B}(u,v)=(u,v)=\int_{-1}^1 uvdt \end{aligned}$$
 Тогда, $B=egin{pmatrix} \int_{-1}^1 dt & \int_{-1}^1 tdt \\ \int_{-1}^1 tdt & \int_{-1}^1 t^2dt \end{pmatrix}=egin{pmatrix} 2 & 0 \\ 0 & rac{2}{3} \end{pmatrix}$

Nota. Особое значение имеют симметричные билинейные формы

Если рассмотреть матрицы симм. Б. Ф. как матрицу самосопряженного оператора, то можно найти базис (ортонормированный базис собственных векторов), в котором матрица Б. Ф. диагонализируется

Этот базис называется каноническим базисом билинейной формы

3.2. Квадратичные формы

Def. Квадратичной формой, порожденной Б. Ф. $\mathcal{B}(u,v)$, называется форма $\mathcal{B}(u,u)$

Ех. Поверхность u = (x, y), v = (x, y, z) $\mathcal{B}(u,u) = b_{11}u_1u_1 + b_{12}u_1u_2 + b_{21}u_2u_1 + b_{22}u_2u_2 = b_{11}x^2 + b_{12}xy + b_{21}xy + b_{22}y^2$ $\mathcal{B}(v,v) = \beta_{11}x^2 + \beta_{12}xy + \beta_{13}xz + \beta_{21}xy + \beta_{22}y^2 + \beta_{23}yz + \beta_{31}xz + \beta_{32}yz + \beta_{33}z^2$

Мет. Ранее уравнение поверхности второго порядка (без линейной группы, то есть сдвига)

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{23}yz + 2a_{13}xz + a_{33}z^2 = c$$

Nota. Заметим, что здесь коэфф. a_{ij} соответствуют матрице симметричной Б. Ф.:

$$B(v,v) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

 $B(v,v) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$ Если диагонализировать B(v,v), то приведем уравнение поверхности к каноническому виду: $\mathcal{B}(v,v)_{\text{KAHOH.}} = c_{11}x^2 + c_{22}y^2 + c_{33}z^2$

Поэтому квадратичная форма, соответствующая поверхности второго порядка, рассматривается, как форма, порожденная симметричной билинейной формой

Def. Положительно определенная форма

Nota. Можно говорить о положительно определенном операторе $\mathcal{A}: V^n \to V^n$

1) Оператор \mathcal{A} называется положительно определенным, если

$$\exists \gamma > 0 \mid \forall x \in V \quad (\mathcal{A}x, x) \ge \gamma ||x||^2$$

2) \mathcal{A} называется положительным, если

$$\forall x \in V, \ x \neq 0 \quad (\mathcal{A}x, x) > 0$$

Th. 1), 2) $\iff \forall \lambda_i$ - с. число \mathcal{A} , $\lambda_i > 0$ $\square \Longrightarrow \lambda_i$ - с. число, e_i - соответствующий им с. вектора $\forall x \in V \quad x = \sum_{i=1}^{n} c_i e_i$

$$(\mathcal{A}x, x) = (\sum_{i=1}^{n} c_i \overline{\mathcal{A}e_i}, \sum_{i=1}^{n} c_i e_i) = \sum_{i=1}^{n} \lambda_i c_i^2 \ge \sum_{i=1}^{n} \lambda_{\min} c_i^2 = \lambda_{\min} \sum_{i=1}^{n} c_i^2 = \lambda_{\min} \|x\|^2$$
 Если $0 < \lambda_{\min} < \lambda_i, \lambda_i \ne \lambda_{\min}$, то $(\mathcal{A}x, x) > 0$ $\iff 1) \iff \exists \gamma > 0 \mid (\mathcal{A}x, x) \ge \gamma \|x\|^2 \quad \forall x \in V$ в том числе $x = e_i \ne 0$ $(\mathcal{A}e_i, e_i) = \lambda_i (e_i, e_i) = \lambda_i > 0 \ \forall i$

 $Nota. \det A$ инвариантен при замене базиса, $\det A = \lambda_1 \cdot \dots \cdot \lambda_n > 0$. Тогда $\exists \mathcal{A}^{-1}$

Th. Критерий Сильвестра

$$\mathcal{A}: V^n \to V^n$$
 - положительно определен $\Longleftrightarrow \forall k=1..n \ \Delta_k = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$

 $\square \Longrightarrow \mathcal{A}$ - пол. опред.

 \mathcal{A} диагонализируется в базисе $\{e_1,\ldots,e_n\}$ собственных векторов. Тогда, \mathcal{A} диагонализируется в базисе $\{e_1,\ldots,e_k\},\ k\leq n$

$$A_{k} = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kk} \end{pmatrix} \quad \Delta_{k} = \det A_{k} \stackrel{inv}{=} \begin{vmatrix} \lambda_{1} & \dots & 0 \\ & \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_{k} \end{vmatrix} > 0$$

← ММИ

 $\forall k = 1..n, \Delta_k > 0$

- 1) Для k = 1 \mathcal{A} пол. опр.
- 2) \mathcal{A}_{n-1} пол. опр. $\Longrightarrow \mathcal{A}_n$ пол. опр.
- 1) $\mathcal{A}x = a_{11}x \quad |a_{11}| > 0 \Longrightarrow \mathcal{A}$ пол. опр.

2)
$$\mathcal{A}$$
 диагон. $\mathcal{A}_e x = \begin{vmatrix} \lambda_1 & \dots & 0 \\ & \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{vmatrix} x = \sum_{i=1}^{n-1} \lambda_i c_i e_i + \lambda_n c_n e_n$ Для $i \leq n-1$ все $\lambda_i > 0$

$$(\mathcal{A}x, x) = (\sum_{i=1}^{n-1} \lambda_i c_i e_i + \lambda_n c_n e_n, \sum_{i=1}^{n-1} c_i e_i) = \sum_{i=1}^{n-1} \lambda_i c_i^2 + \lambda_n c_n^2 -$$
знак зависит от λ_n

$$\Delta_n = \underbrace{\lambda_1 \cdots \lambda_{n-1}}_{>0} \cdot \lambda_n \Longrightarrow \lambda_n > 0 \Longrightarrow (\mathcal{A}x, x) > 0$$

Ex. Поверхность: $x^2 + y^2 + z^2 = 1$

$$\mathcal{B}(u,u) = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}, \quad \Delta_k = 1 > 0 \ \forall k$$

Положительная определенность - наличие экстремума

Def. Оператор $\mathcal A$ называется отрицательно определенным, если $-\mathcal A$ - положительно определенный

$$Nota.$$
 Для $-\mathcal{A}$ работает критерий Сильвестра: $\Delta_k(-\mathcal{A}) = \begin{vmatrix} -a_{11} & \dots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_{n1} & \dots & -a_{nn} \end{vmatrix} = (-1)^k \Delta_k(\mathcal{A}) > 0$

Таким образом, \mathcal{A} - отриц. опред. $\Longleftrightarrow \Delta_k$ чередует знаки

Nota. Аналогично операторы определяются положительно или отрицательно билинейные формы

$$\mathcal{B}(u,v) = \sum_{i=1}^{n} \sum_{i=1}^{n} b_{ij} u_i v_j \stackrel{?}{=} \dots$$
 через оператор

Так как $\mathcal{B}(u,v)$ и $\mathcal{B}(u,u)$ - числа, то \mathcal{B} - называется пол. опред., если $\mathcal{B}(u,v)>0$

Nota. После приведения $\mathcal{B}(u,v)$ к каноническому виду, получаем

$$\mathcal{B}(u,u)_{\text{канон.}} = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2$$

В общем случае λ_i любого знака

Но можно доказать, что количества $\lambda_i > 0, \lambda_j < 0, \lambda_k = 0$ постоянны по отношению к способу приведения к каноническому виду (т. н. закон инерции квадратичной формы)

4. Дифференциальные уравнения

4.1. Общие понятия

1* Постановка задачи

 $Pr.\ 1.\$ Скорость распада радия в текущий момент времени t пропорциональна его наличному количеству Q. Требуется найти закон распада радия:

$$Q = Q(t)$$
,

если в начальный момент времени $t_0 = 0$ количество равнялось Q_0

Коэффициент пропорциональности k найден эмпирически.

Решение. Скорость распада.

$$\overline{\frac{dQ(t)}{dt}} = kQ$$
 - ищем $Q(t)$ $dQ(t) = kQdt$ $\underline{\frac{dQ(t)}{Q}} = \underbrace{kdt}_{\text{содержит только }t}$ - «разделение переменных»

содержит только Q

Внесем все в дифференциал:

$$d \ln Q = kdt = dkt$$

$$d(\ln Q - kt) = 0$$

Нашли семейство первообразных:

$$\ln Q - kt = \tilde{C}$$

$$\ln Q = \tilde{C} + kt$$

$$Q = e^{\tilde{C} + kt} \stackrel{e^{\tilde{C} = C}}{===} Ce^{kt}$$

По смыслу k < 0, так как Q уменьшается. Обозначим n = -k, n > 0

Тогда
$$Q(t) = Ce^{-nt}$$

Получили вид закона распада. Выбор константы C определен Н.У. (начальными условиями): $t_0 = 0$ $Q(t_0) = Q_0 = C$

Тогда, закон -
$$Q^*(t) = Q_0 e^{-nt}$$

Nota. Оба закона: общий $Q(t)=Ce^{-nt}$ и частный $Q^*(t)=Q_0e^{-nt}$ - являются решением дифференциального уравнения:

$$Q'(t) = kQ$$
 (явный вид) $d \ln Q(t) - kdt = 0$ (в дифференциалах)

 $Pr.\ 2$ Тело массой m брошено вверх с начальной скоростью v_0 . Нужно найти закон движения y=y(t). Сопротивлением воздуха пренебречь.

По II закону Ньютона:

$$\overrightarrow{d} = \overrightarrow{mg}$$
 $\overrightarrow{d} = \overrightarrow{g}$
 $\overrightarrow{d} = \overrightarrow{g}$
 $\overrightarrow{d} = \overrightarrow{g}$
 $a = \boxed{\frac{d^2y}{dt^2} = -g} - ДУ$
 \underline{P}
 \underline{P}

2* Основные определения

Def. 1. Уравнение $F(x,y(x),y'(x),...,y^{(n)}(x))=0$ - называется обыкновенным ДУ *n*-ого порядка (*)

Ex.
$$Q' + nQ = 0$$
 $y'' + g = 0$

- **Def. 2.** Решением ДУ (*) называется функция y(x), которая при подстановке обращает (*) в тождество
- **Def. 2'.** Если y(x) имеет неявное задание $\Phi(x,y(x))=0,$ то $\Phi(x,y)$ называется интегралом уравнения (*)

Nota. Разделяют общее решение ДУ - семейство функций, при этом каждое из них решение; и частное решение - отдельная функция

Def. 3. Кривая с уравнением y = y(x) или $\Phi(x, y(x)) = 0$ называют интегральной кривой

Nota. Задача Коши может не иметь решений или иметь множество решений

Th.
$$y' = f(x,y)$$
 - ДУ $M_0(x_0,y_0) \in D$ - точка, принадлежащая ОДЗ Если $f(x,y)$ и $\frac{\partial f}{\partial y}$ непрерывны в M_0 , то ЗК $\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$

имеет единственное решение $\varphi(x,y) = 0$, удовлетворяющее Н.У. (без док-ва)

Nota. Преобразуем ДУ:
$$\underbrace{y'-f(x,y)}_{F(x,y(x),y'(x))}=0$$
 См. определения обыкн. и особых точек

Def. 5. Точки, в которых нарушаются условия теоремы называются особыми, а решения, у которых каждая точка особая, называются особыми

Def. 6. Общим решением ДУ (*) называется
$$y = f(x, C_1, C_2, ..., C_n)$$

$$Nota.$$
 $\Phi(x,y(x),C_1,\ldots,C_n)=0$ - общий интеграл

Def. 7. Решением (*) с определенными значениями C_1^*, \dots, C_n^* называется частным

Nota. Форма записи:

Разрешенное относительно производной y' = f(x, y)

Сведем к виду:
$$\frac{dy}{dx} = \frac{P(x,y)}{-Q(x,y)} \Longrightarrow -Q(x,y)dy = P(x,y)dx \Longrightarrow$$

 $\overline{P(x,y)dx + Q(x,y)dy = 0}$ - форма в дифференциалах

$4.2~\rm{ДУ}$ первого порядка ($\rm{ДY}_1$)

Nota. Среди ДУ₁ рассмотрим несколько типов точно интегрируемых ДУ

1) Уравнение с разделяющимися переменными (УРП)

- 2) Однородное уравнение (ОУ)
- 3) Уравнение полных дифференциалов (УПД)
- 4) Линейное дифференциальное уравнение первого порядка (ЛДУ₁)

Кроме этого интегрируются дифференциальные уравнения Бернулли, Лагранжа, Клеро, Рикатти и др. (см. литературу)

1* УРП

Def.
$$m(x)N(y)dx + M(x)n(y)dy = 0$$

Решение :
$$N(y)M(x) \neq 0$$

$$\frac{m(x)}{M(x)}dx + \frac{n(y)}{N(y)}dy = 0$$
 $y = y(x)$ - неизвестная функция (ее ищем, решая ДУ)

$$\left(\frac{m(x)}{M(x)} + \frac{n(y)}{N(y)}y'\right)dx = 0$$

$$\int \left(\frac{m(x)}{M(x)} + \frac{n(y)}{N(y)} y' \right) dx = const$$

$$\int \frac{m(x)}{M(x)} dx + \int \frac{n(y)}{N(y)} dy = const$$
или:
$$\int \frac{m(x)}{M(x)} dx = \int \frac{-n(y)}{N(y)} dy$$

$$Ex. xdy - ydx = 0$$

$$xdy = ydx$$

$$\frac{dy}{y} = \frac{dx}{x} \quad (x, y \neq 0)$$

$$\int_{0}^{\infty} \frac{dy}{y} = \int_{0}^{\infty} \frac{dx}{x}$$

$$\ln|y| = \ln|x| + \tilde{C} = \ln|\tilde{\tilde{C}}x|$$

$$|y| = |\tilde{\tilde{C}}x|$$

$$y = Cx$$
, $C \in \mathbb{R}$

Заметим, x = y = 0 - решение, но они учтены общим решением y = Cx, (при C = 0, y = 0) и подстановкой в ДУ x = 0

Nota. В процессе решения нужно проверить M(x) = 0 и N(y) = 0

$$M(x)=0$$
 при $x=a$ и $N(y)=0$ при $y=b$

$$m(a)\underline{N(b)}dx + n(b)\underline{M(a)}dy = 0$$

$$m(a)\underline{N(b)}dx + n(b)\underline{M(a)}dy = 0$$

То есть $M(x) = 0$ и $N(y) = 0$ - решение

2* OY

Def. 1. Однородная функция n-ого порядка называется функция f(x,y) такая, что $f(\lambda x, \lambda y) = \lambda^k f(x, y), \quad \lambda \in \mathbb{R}, \lambda \neq 0$

$$Ex.\ f=\cos\left(\frac{x}{y}\right),\cos\left(\frac{\lambda x}{\lambda y}\right)=\cos\left(\frac{x}{y}\right)$$
 - нулевой порядок однородности $f=\sqrt{x^2+y^2}$ - первый порядок

Def. 2.
$$P(x,y)dx + Q(x,y)dy = 0$$
, где $P(x,y), Q(x,y)$ - однородные функции одного порядка

Решение
$$P(x, y) = P\left(x \cdot 1, x \cdot \frac{y}{x}\right) = x^k P\left(1, \frac{y}{x}\right)$$

$$Q(x, y) = x^k Q\left(1, \frac{y}{x}\right)$$

Тогда,
$$P\left(1, \frac{y}{x}\right) dx + Q\left(1, \frac{y}{x}\right) dy = 0.$$

Обозначим
$$\frac{y}{x} = t$$
, $y' = \frac{dy}{dx} \stackrel{y=tx}{=} t'_x x + t x'_x = t'_x x + t$

$$P(1,t) + Q(1,t)y' = P(1,t) + Q(1,t)(t'x+t) = 0$$

$$t'x + t = -\frac{P(1,t)}{Q(1,t)} \stackrel{\text{обозн}}{=} f(t)$$

$$t'x + t = -\frac{P(1,t)}{Q(1,t)} \stackrel{\text{обозн}}{=} f(t)$$

$$t'x = f(t) - t$$

$$\frac{dt}{dx}x = f(t) - t \neq 0$$

$$\frac{dt}{f(t) - t} = \frac{dx}{x}$$

$$\int \frac{dt}{f(t) - t} = \int \frac{dx}{x} = \ln|Cx|$$

$$Cx=e^{\int rac{dt}{f(t)-t}}=arphi(x,y)$$
 - общий интеграл

Если f(t)-t=0, то пусть t=k - корень, тогда $k=\frac{y}{x} \to y=kx$ - тоже решение

$$Ex. \ (x+y)dx + (x-y)dy = 0$$

$$\frac{y}{x} = t \quad y' = t'x + t$$

$$y = tx \quad dy = (t'x+t)dx$$

$$(x+tx)dx + (x-tx)(t'x+t)dx = 0$$

$$(1+t) + (1-t)(t'x+t) = 0$$

$$t'(1-t)x + t - t^2 + 1 + t = 0$$

$$t'(1-t)x = t^2 - 2t - 1$$

$$\frac{(1-t)dx}{t^2 - 2t - 1} = \frac{dx}{x} - \text{УРП}$$

$$\frac{(1-t)dt}{(1-t)^2 - 2} = -\frac{1}{2}\frac{d((1-t)^2) - 2}{(1-t)^2 - 2} = -\frac{1}{2}\ln|(1-t)^2 - 2| = \ln\frac{1}{\sqrt{(1-t)^2 - 2}} = \ln|Cx|$$

$$\tilde{C}x = \frac{1}{\sqrt{(1-t)^2 - 2}} \iff Cx^2 = \frac{1}{(1-t)^2 - 2} = \iff Cx^2((1-t)^2 - 2) = 1$$

$$C((y-x)^2 - 2x^2) = 1$$

$$C(y^2 - 2xy - x^2) = 1$$

$$y^2 - 2xy - x^2 = C - \text{гиперболы}$$

$$(t-1)^2 - 2 = 0 \quad \frac{y}{x} = 1 \pm \sqrt{2} \quad y = (1 \pm \sqrt{2})x - \text{асимптоты}$$
3* Уравнение в полных дифференциалах

Def.
$$P(x,y)dx + Q(x,y)dy = 0$$
 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ - УПД

Решение Mem. Th. об интеграле НЗП $\exists \Phi(x,y) \mid d\Phi = P(x,y)dx + Q(x,y)dy$

$$\Phi(x,y) = \int_{(x_0,y_0)}^{(x,y)} Pdx + Qdy$$

$$Ex. \ (x+y)dx + (x-y)dy = 0 \quad \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

$$\Phi(x,y) = \int_{(x_0,y_0)}^{(x,y)} (x+y)dx + (x-y)dy = \int_{(0,0)}^{(x,0)} xdx + \int_{(x,0)}^{(x,y)} (x-y)dy = \frac{x^2}{2}\Big|_{(0,0)}^{(x,0)} + (xy+\frac{y^2}{2})\Big|_{(x,0)}^{(x,y)} = \frac{x^2}{2} + xy - \frac{y^2}{2} + C$$
 - общий интеграл
$$x^2 + 2xy - y^2 = C$$

$$4* \ ЛЛУ$$

Def.
$$\boxed{y'+p(x)y=q(x)}$$
 - ЛДУ $_1$ $p,q\in C_{[a,b]}$

Nota. Будем решать методом Лагранжа (метод вариации произвольной постоянной) Принцип: если удалось найти частное решение ДУ_{однор} (обозначим y_0), то общее решение ДУ_{неод} можно искать в виде $y = C(x)y_0$

Def. Однородное (ЛОДУ): y' + p(x)y = 0

Def. Неоднородное (ЛНДУ): y' + p(x)y = q(x)

$$Ex. \ \exists y(x) = x^2 e^{-x}$$
 - частное решение ЛНДУ
 А $y_0 = x e^{-x}$, тогда $y = x x e^{-x} = C(x) x e^{-x}$

То есть C(x) варьируется, чтобы получить решение y = y(x)

Решение a)
$$y' + p(x)y = 0$$

$$\frac{dy}{dx} + p(x)y = 0 - \text{УР}\Pi$$

$$\frac{dy}{y} = -p(x)dx$$

$$\ln |\tilde{C}y| = -\int p(x)dx$$

$$\overline{y} = Ce^{-\int p(x)dx} = Cy_0$$

б)
$$y' + p(x)y = q(x)$$

Ищем
$$y(x)$$
 в виде $y = C(x)y_0$

$$C'(x)y_0 + C(x)y'_0 + p(x)C(x)y_0 = q(x)$$

$$C'(x)y_0 + C(x)\underbrace{(y_0' + p(x)y_0)}_{=0} = q(x)$$

$$C'(x) = \frac{q(x)}{y_0} = q(x)e^{\int p(x)dx}$$

$$C(x) = \int_{0}^{g_0} q(x)e^{\int p(x)dx}dx$$