

=====

Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Thu May 03 16:48:36 EDT 2007

=====

Reviewer Comments:

<210> 4

<211> 6223

<212> DNA

<213> crt gene

<400> 4

The <213> response is invalid. Per 1.823 of Sequence Rules, the only valid <213> responses are: "Artificial Sequence," "Unknown," or the Genus/species. FYI: if this is an Artificial Sequence, then "crt gene" would be an insufficient explanation (please explain the source of the genetic material in the <223> response).

Same type of error in sequences 5-16

Application No: 10551508 Version No: 1.0

Input Set:

Output Set:

Started: 2007-05-03 16:08:57.906
Finished: 2007-05-03 16:08:58.290
Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 384 ms
Total Warnings: 4
Total Errors: 0
No. of SeqIDs Defined: 18
Actual SeqID Count: 18

ErrCode Error Description

W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)

SEQUENCE LISTING

<110> KIM, Young Tae
LEE, Jae Hyung

<120> Gene involved in the biosynthesis of carotenoid and marine
microorganism, paracoccus haeundaesis, producing the
carotenoid

<130> 428.1056

<140> 10551508

<141> 2007-05-03

<150> US 10/551,508

<151> 2005-09-29

<150> PCT/KR2004/000752

<151> 2003-03-31

<150> KR2003-20222

<151> 2003-03-31

<150> KR2003-20023

<151> 2003-03-31

<160> 18

<170> KopatentIn 1.71

<210> 1

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> forward primer for Paracoccus haeundaesis 16S rDNA

<400> 1

cataagtaat tatggtttg t

21

<210> 2

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> reverse primer for Paracoccus haeundaesis 16S rDNA

<400> 2

cgcttcctta gaaaggag

18

<210> 3
<211> 1454
<212> DNA
<213> Paracoccus haeundaeensis

<400> 3
caactgaga gtttgatcct ggctcagaac gaacgctggc ggcaggctt acacatgcaa 60
gtcgagcgag accttcgggt ctageggcgg acgggtgagt aacgcgtggg aacgtgcct 120
tctctacgga atagccccgg gaaactggga gtaataccgt atacgcctt tgggggaaag 180
atttatcgga gaaggatcgg cccgcgttgg atttaggtgt tggtggggta atggcccacc 240
aagccgacga tccatagctg gtttgagagg atgatcagcc acactgggac tgagacacgg 300
cccagactcc tacgggagggc agcagtgggg aatcttagac aatgggggca accctgatct 360
agccatgccg cgtgagtgtat gaaggcctt gggttgtaaa gcttttcag ctggaaagat 420
aatgacggta ccagcagaag aagccccggc taactccgtg ccagcagcc cgtaatacgt 480
gagggggcta gcgttgttgc gaattactgg gcgtaaagcg cacgtggcgc gactggaaag 540
tcagaggtga aatcccaggc ctcaaccttgc gaactgcctt tgaaactatc agtctggagt 600
tcgagagagg tgagtggaat tccgagtgtt gaggtaaat tcgttagatat tcggaggaac 660
accagtggcg aaggcggctc actggctcga tactgacgct gaggtgcgaa agcgtgggga 720
gcaaacagga tttagataccc tggtagtcca cggcgtaaac gatgaatgcc agacgtcgcc 780
aagcatgctt gtcgggtgtca cacctaacgg attaagcatt ccgcctgggg agtacggctcg 840
caagattaaa actcaaagga attgacgggg gccccacaa gcggtggagc atgtggttta 900
attcgaagca acgcgcagaa ctttaccaac ctttgacatg gcaggaccgc tggagagatt 960
cagcttctc gtaagagacc tgcacacagg tgctgcatttgc ctgcgtcag ctgcgtcgt 1020
gagatgttcg gtaagtccg gcaacgagcg caaccacgt ccctagttgc cagcattcag 1080
ttgggcactc tatggaaact gccgatgata agtcggagga aggtgtggat gacgtcaagt 1140
tctcatggcc ctacgggtt gggctacaca cgtgtacaa tgggtggtgc agtgggttaa 1200
tccccaaaag ccatctcagt tggattgtc ctctgcaact cgagggcatg aagttggaaat 1260
cgctagtaat cgccgaacag catgcccgg tgaatacggtt cccggccctt gtacacaccg 1320
cccgacac catgggagtt ggttctaccc gacgacgctg cgctaacctt cggggggcag 1380
cgccgcacgg taggatcagc gactggggtg aagtctaac aaggttgcgcg taggggaacc 1440
tgccggcttggaa tcac 1454

<210> 4
<211> 6223
<212> DNA
<213> crt gene

<400> 4
gttccacgac tggggcattcc ccacgaccgc gtcgctgcgc gccatcgcc cgatgtatgg 60
gccggaccgg gttctggtcg ggtcgccccgg ggtgcgtcac gggctggacg cccgcggggc 120
catccgcctc ggcgcggacc tcgtggggca ggccggccgc ggcgtgcggccg cccgcgcaca 180
cagcgcggag gccctgtccg atcacctgtc cgacgtcgta acccagtcgc gcatcgccat 240
gttctgcacc ggatcgccgc accttgcaga gctgcgtgc ggcctctgc tggtgccgg 300
ggcggtggc caatggtcgc aagcaacggg gatggaaacc ggcgtgcgg gactgttagtc 360
tgcgccggatc gccggtccgg gggacaagat gagcgcacat gccctgccc aggcaagatct 420
gaccggccacc agcctgatecg ttcggggcgg catcatcgcc gctggctgg ccctgcatgt 480
gcatgcgtcg tggtttctgg acggggggc gcatccatc ctggcgatcg cgaatttct 540
ggggctgacc tggctgtcgg tgggtctgtt cttcatcgcc catgacgcga tgcacgggtc 600
ggtctgtccg gggcgatccgc gggcaatgc ggcgtgggc cagctggcc tggctgtta 660
tgcgggatcc tgcgtggcga agatgtatcg caagcacatg gcccataccacc gccataccgg 720
aaccgacgac gaccccgatt tcgaccatgg cggccggtc cgctggtacg cgcgtttcat 780
cgccacctat ttccggctggc gcgaggggat gctgtgcgc gtcatcgta cggtctatgc 840
gctgatctcg gggatcgct ggtatgtatcg ggttttctgg ccgtgcgtcg cgtatctggc 900
gtcgatcccg ctgttcgtgt tggcacatcg gtcgcgcac cggccggcc acgacgcgtt 960
cccgaccgc cataatgcgc ggtcgatcg gatcagcgac cccgtgtcg tgcgtacatcg 1020
ctttacttt ggtggttatc atcacgaaca ccacatgcac ccgacgggtc ttgggtggcg 1080
cctgcccage acccgaccca agggggacac cgcacatgacca atttctgtat cgtcgatcgcc 1140
accgtgtcg tggatggatcg gacggccat tccgtccacc gttggatcat gacggccccc 1200
ctgggtggg gtcggcaca gtcggccac gggacacg accacgcgt ggaaaagaac 1260
gacctgtacg gctgggtctt tgcggatcg gccacgggtc tggatcgatcg gggctggatcg 1320
tggggccgg tccgtgggtg gatcgatcg ggcacggatcg tctatgggt gatctatttc 1380
gttcgtcgatcg acggggatcg tcatcagcgac tggccgttc gctatatccc ggcacgggc 1440
tatgcccccc gctgtatca ggcacccacgc ctgcacccacg cggatcgagg aacgcgaccat 1500
tgcgtcgatcg tccgttcat cttatcgatcg cccgtcgaca agctgaagca ggacctgaag 1560

acgtcgggcg tgctgcgggc cgagggcgag gagcgcacgt gacccatgac gtgtgtctgg 1620
cagggggggg ctttgcgaac gggctgatcg ccctggcgct gccgcggcg cggccccacc 1680
tgcggtgtct gtgtgtggat catgcggcg gaccgtcaga cggccatacc tggtcctgcc 1740
acgaccccgta tctgtcgccg cactggctgg cgcggtgaa gcccctgcgc cgcgccaact 1800
ggccccacca ggagggtgcgc ttccccccgc atgcccggcg gctggccacc ggtaacgggt 1860
cgctggacgg ggccggcgctg gcggatgcgg tggcccggtc gggcgccgag atccgctgga 1920
acagcgacat cgccctgctg gatgaacagg gggcgacgct gtctgcggc acccgatcg 1980
aggcgggcgc ggtctggac gggcgccggcg cgccagccgtc gggcatctg accgtgggtt 2040
tccagaaatt cgtggcgctc gagatcgaga ccgactgccc ccacggcggtc ccccgccccga 2100
tgatcatgga cgcgaccgtc acccagcagg acgggtaccg attcatctat ctgtgtccat 2160
tctctccgac ggcacatctg atcgaggaca ctgcgtattc cgatggcgcc aatctggacg 2220
acgacgcgct ggcggccggcg tcccacgact atgcccggca gcagggtctgg accggggccg 2280
aggtaacggcg cgaacggcgcc atctgcggca ttgcgtggc ccattgacgcg gggggcttct 2340
ggggccgatca cgccggggggg cctgttccccg tggactgcg cgccgggttc tttcacccgg 2400
tcacccggcta ttgcgtgccc tatgcggcgcc aggtggcgga cgtgggtggcg ggctgtccg 2460
ggccgccccgg caccgacgcg ctgcgcggcg ccattccgcgatccatc gacccggcac 2520
ggcggtaccg cttctgcgc ctgcgtaaacc ggatgtgtt ccgcggctgc ggcggccacc 2580
ggcgctatac cctgcgtgcag cggttctacc gcatggcgca tggactgatc gaacggttct 2640
atgcggcccg gtgtgtgtgc gggatcage tgccatcgat gacccggcaag cctccatcc 2700
cccttggcac ggccatccgc tgcctgccccg aacgtccccct gctgaaggaa aacgcatgaa 2760
cgcccatccg cccggggccca agacccgcatt cgtgatcgcc gcaggcttgc gggggctggc 2820
ctggccatc cgcctgcagt cggggggcat cgccaccacc ctggtcgagg cccgggacaa 2880
ggccggccggg cgccgcctatg tctggcacga tcagggccat gtcttcgacg cggggccgac 2940
cgtcatcacc gaccccgatg cgctcaagga gctgtggcg ctgacccggc aggacatggc 3000
ggcgacgtg acgtgtatgc cggtgtcgcc ttctatcga ctgtgtggc cggggggaa 3060
ggtcttcgat tacgtgaacg agggcgatca gctggagcgc cagatcgccc agttcaaccc 3120
ggacgacctg gaaggatacc gccggttccg tgattacgcg gaggaggtgt atcaggagg 3180
ctacgtcaag ctgggcaccc tgcccttcct caagctgggc cagatgtca aggccgcgcc 3240

cgcgctgatg aagctggagg cctataagt cgtccatgcc aaggtcgcga cttcatcaa 3300
ggaccctat ctgcggcagg cgccccgtta tcacacgctg ctggggggcg gaaatccctt 3360
ctcgaccaggc tcgatctatg cgctgatcca cgcgcgtggag cggcgccggcg gggctgttt 3420
cgccaaaggc ggcaccaacc agctggtcgc gggcatggtc ggcgttgc aacggcttgg 3480
cgcccagatg atgctgaacg ccaaggctgc ccggatcgag accgaggcg cgccgaccac 3540
ggcgctcacc ctggcgacg ggccgtcttt aaggccgac atggctgcca gcaacggcga 3600
cgtcatgcac aactatcgcg acctgttggg ccacacggcc cgcggcaga gccgcgcgaa 3660
atcgctggac cgcaagcgct ggccatgtc gttgttcgtg ctgcatttcg gtctgcgcga 3720
ggcgccaaag gacatcgcgc atcacccat cctgttggc ccccgctaca gggagctgg 3780
caacgagatc ttcaagggcc cgaagctggc cgaggatttc tgcgttacc tgcattcgcc 3840
ctgcacgacc gatccggaca tggccctcc gggcatgtcc acgcattacg tgctggccc 3900
cgtgcgcacat ctggcccgcg ccgagatcga ttggggcgtc gagggccgcg gctatgcgcga 3960
ccgcacatctg gcgtccctgg aggagcggt gatccgaac ctgcgcgcga acctgaccac 4020
gacgcgcacatc ttacgccccg ccgatttcgc cagcgaactg aacgcccac acggcagcgc 4080
cttctcggtc gagccgatcc tgacgcaatc cgcgtggtc cggccgcaca accgcgcacaa 4140
gacgatccgc aacttctatc tggcgccgc gggcacccat cggggcgccg gcatccggg 4200
cgtcggtggc tccgccaagg ccacggccca ggtgtatgtc tccgacctgg cggcgccatg 4260
agcgatctgg tccgtaccc caccgaggcg atcacccaa ggtcgcaaaat ctttgccacg 4320
ggggccaaagc tcatgcgcgc gggcatccgc gacgacacgg tcatgtctaa tgcctggcgc 4380
cgccacgcgg atgacgttat cgcgggtcag gccctggca gccgcggcg ggcggtaac 4440
gaccgcagg cgccgttggc cggccgtgcgc gtcgacacgc tggccgcctt gcaaggcgac 4500
ggtcgggtga ccccgccctt tgcggcgctg cgcgggtgg cgcggcgcc gatattcccg 4560
caggccgtgc ccatggaccc gatecgaaaggc ttgcgtatgg atgtcgaggc ggcgcactat 4620
cgcacgtgg atgacgtgt ggaatattcc tatcacgtcg caggcatcg cggcgtatg 4680
atggcccgcg tcatggcgat ggcgcacgt cctgtctgg accgcgcctg cgcacgtggg 4740
ctggcggtcc agctgaccaa catcgccgc gacgtatcg acgtgcgcg catcgccgg 4800
tgcgtatctgc cggggactg gtcggaccag gggggcgccg gatcgacgg ggcgggtcccg 4860
tgcggcggc tgcgtacacgt gatectccgg ctgttggatg aggccgaacc ctattacgcg 4920
tcggccgggg tgggtctggc ggtatgcgc cgcgcgtgcg cctggccat cgcggccgcg 4980

ctacggatct atcgccgcat cgggcgtcgc atccgcaaga gcggggccga ggcctatcgc 5040
cagcggatca gcacgtccaa ggctgccaag atcgccctgc tggcgctgg gggctggat 5100
gtcgccgcat cacgcgtgcc gggggcgccc gtgtcgccgc agggcctctg gacecgcccg 5160
catcacgtct aggccccggc ggcgttgggc agaacccttt ccaggcaggcc cggatattcc 5220
ggagccctgaa ggccgttgcgc gccgcagcatc gcgtccagtt gggcgccggct ggccctcgtaa 5280
tgacgggaca cgttctgcag gtctgacacg gccagaaggc cgccggccgg gccccggcc 5340
gcggcatcgc gaccgggtatc ctggccaaaggc gccgcctggt cgccacacgc gtccagcagg 5400
tcgtcatagg actggAACAC gcggcccAGC tgacggccaa agtcgatcat ctgggtctgc 5460
tcctcgccgt cgaactcctt gatcacggcc agcatctcca gcccggcat gaacagcacg 5520
ccggtgttca ggtccgttcc ctgttgcacc cccgcgcgt tcttggccgc gtgcagggtcc 5580
agggtctggc cggccgcacag gcctggggc cccagggacc gcgcacaggat ccgcaccaggc 5640
tgcgcggca cctgtccccca cggccggccgc gcaccggca gcaggccat tgcctcggtg 5700
atcagggcga tggccggccag caccggcacgg ctttcgcatt gcgcacatg ggtcgccggc 5760
cgccgcggc gcagccggc atcgatccatg cagggcaggt cgtcgaaatg cagcgatgcg 5820
gcatgcacca tctcgaccgc gcaggccggc tcgacgatcg tgtcgccagac cccggcccgag 5880
gcctctggcc caagcagcat cagcatggc cggaaaccggc tgcccgacga cagcgccca 5940
tggctcatgg cccgcggcggag cggctgcgcac acggcaccga atccctgggc gatctccatca 6000
agtctgggtct gcagaagggt ggcgtggatc gggttgacgt ctctgtctcat cagtgccttc 6060
gcgcgttgggt tctgaccctgg cggggaaagggtc aggccggggc ggcaccccgat gacccgtcat 6120
ccaccgtcaa cagtccccat gttggAACGG ttacggcccg attgcgagcc tttcgacagg 6180
cgacgcggggc tggcgccgcatttgcctaa caaggtcagt gga 6223

<210> 5
<211> 729
<212> DNA
<213> crtW gene

gcggcgatgg	gccagctgg	cctgtggctg	tatgccgat	tttcgtggcg	caagatgatc	300
gtcaagcaca	tggcccatca	ccgcccatacc	ggaaccgacg	acgaccggaa	tttcgaccat	360
ggcggccccg	tccgctggta	cgcgcgcttc	atcggcacct	atttcggctg	gcgcgagggg	420
ctgtctgtgc	ccgtcatcg	gacggtctat	gcgtgtatcc	tggggatcg	ctggatgtac	480
gtggtcttct	ggccgctgcc	gtcgatctg	gcgtcgatcc	agctgttcgt	gttcggcacc	540
tggctgccgc	accggccccg	ccacgacgac	ttcccgacc	gccataatgc	gcggtcgtcg	600
cggatcageg	accccggtgtc	gtgtgtgacc	tgctttact	ttggtggtta	tcatcacgaa	660
caccacactgc	acccgacgg	gccttggtgg	cgccctgcca	gcacccgcac	caagggggac	720
accgcata						729

<210> 6
<211> 242
<212> PRT
<213> crtW amino acid

<400> 6
Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu
1 5 10 15

Ile	Val	Ser	Gly	Gly	Ile	Ile	Ala	Ala	Trp	Leu	Ala	Leu	His	Val	His	
														20	25	30

Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala
 35 40 45

His	Asp	Ala	Met	His	Gly	Ser	Val	Val	Pro	Gly	Arg	Pro	Arg	Gly	Asn
65				70					75					80	

Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp
85 90 95

Arg Lys Met Ile Val Lys His Met Ala His His Arg His Thr Gly Thr
100 105 110

Asp Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala
 115 120 125

Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Leu Pro
 130 135 140

Val	Ile	Val	Thr	Val	Tyr	Ala	Leu	Ile	Leu	Gly	Asp	Arg	Trp	Met	Tyr
145				150					155					160	

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe

165	170	175
Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro		
180	185	190
Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu		
195	200	205
Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His		
210	215	220
Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp		
225	230	235
Thr Ala		

<210>	7		
<211>	489		
<212>	DNA		
<213>	crtZ gene		
<400>	7		
atgaccaatt tcctgatcgt cgtcgccacc gtgctggta tggagttgac ggcctattcc	60		
gtccaccgtt ggatcatgca cggccccctg ggctggggct ggcacaagtc ccaccacgag	120		
gaacacgacc acggcgctgga aaagaacgac ctgtacggcc tggtctttgc ggtgatcgcc	180		
acggtgctgt tcacggtggg ctggatctgg gcgcgggtcc tggatggat cgctttggc	240		
atgaccgtct atgggctgat ctatttcgtc ctgcgtacgac ggctgggtca tcagcgctgg	300		
ccgttccgtt atatcccgcg caagggttat gcccggccgc tggatcaggc ccaccggctg	360		
caccacgccc tcgagggacg cgaccattgc gtcagcttcg gtttcatcta tgcggccgcg	420		
gtcgacaaggc tgaaggcagga cctgaaggacg tcggcggtgc tgccggccga ggcgcaggag	480		
cgcacgtga	489		

<210>	8		
<211>	162		
<212>	PRT		
<213>	crtZ amino acid		
<400>	8		
Met Thr Asn Phe Leu Ile Val Val Ala Thr Val Leu Val Met Glu Leu			
1	5	10	15
Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro Leu Gly Trp			
20	25	30	

Gly Trp His Lys Ser His His Glu Glu His Asp His Ala Leu Glu Lys		
35	40	45

Asn Asp Leu Tyr Gly Leu Val Phe Ala Val Ile Ala Thr Val Leu Phe
50 55 60

Thr Val Gly Trp Ile Trp Ala Pro Val Leu Trp Trp Ile Ala Leu Gly
65 70 75 80

Met Thr Val Tyr Gly Leu Ile Tyr Phe Val Leu His Asp Gly Leu Val
85 90 95

His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr Ala Arg
100 105 110

Arg Leu Tyr Gln Ala His Arg Leu His His Ala Val Glu Gly Arg Asp
115 120 125

His Cys Val Ser Phe Gly Phe Ile Tyr Ala Pro Pro Val Asp Lys Leu
130 135 140

Lys Gln Asp Leu Lys Thr Ser Gly Val Leu Arg Ala Glu Ala Gln Glu
145 150 155 160

Arg Thr

<210> 9

<211> 1161

<212> DNA

<213> crtY gene

<400> 9

gtgaccatg acgtgctgtc ggcaggggcg ggccctgcga acgggtgtat cggccctggcg 60

ctgcgcggcg cgccggcccgaa cctgcggggtg ctgctgtctgg atcatgcggc gggaccgtca 120

gacggccata cctggtcctg ccacgacccc gatctgtcgc cgcactggct ggcgcggctg 180

aagccctgc gccgcgccaa ctggcccgac caggaggtgc gttttccccg ccatgccccg 240

cggctggcca ccggttacgg gtctgtggac gggggggcgc tggcggatgc ggtggcccg 300

tccggcgccg agatccgctg gaacagcgac atcgccctgc tggatgaaca gggggcgacg 360

ctgtctgtcg gcacccggat cgaggcgggc ggggtctgg acggggcgccg cgcgcagccg 420

tccggccatc tgaccgtggg tttccagaaa ttctgtggcg tccagatcga gaccgactgc 480

ccccacggcg tgccccgccc gatgatcatg gacgcgaccg tcacccagca ggacgggtac 540

cgattcatct atctgtgcc cttctctccg acgcgcattcc tgcgtggaga cactcgctat 600

tccgatggcg gcaatctgga cgacgcacgcg ctggggcgcc cgtcccacga ctatgcccgc 660

cagcagggtt ggaccggggc cgagggtccgg cgccaaacgcg gcatctgtcc cattgcgcgt 720

gccccatgacg cggcgccgtt ctggggccat cacgcggagg ggccctgttcc cgtgggactg 780

cgcgcgggt tcttcaccc ggtcacccgc tatcgctgc cctatgcggc gcaggtggcg 840
gacgttgtgg cgggcctgtc cggggccgccc ggcaccgacg cgctgcgggg cgccatccgc 900
gattacgcga tcgaccgggc acgccccgtgac cgcttctgc gcctgtgaa ccggatgctg 960
ttccggggct ggcgcggca cggcgctat accctgtgc agcggttcta cggcatgcgg 1020
catggactga tcgaacggtt ctatgcggc cggctgagcg tggcggatca gctgcgcac 1080
gtgaccggca agccctccat tcccccttggc acggccatcc gctgcctgcc cgaacgtccc 1140
ctgctgaagg aaaacgcatt a 1161

<210> 10
<211> 386
<212> PRT
<213> crtY amino acid

<400> 10
Val Thr His Asp Val Leu Leu Ala Gly Ala Gly Leu Ala Asn Gly Leu
1 5 10 15
Ile Ala Leu Ala Leu Arg Ala Ala Arg Pro Asp Leu Arg Val Leu Leu
20 25 30
Leu Asp His Ala Ala Gly Pro Ser Asp Gly His Thr Trp Ser Cys His
35