Set theory

How data can be related

Set theory

- A set is represented by a circle
- Each set represents a group of entities that have a particular attribute.
- Intersecting sets overlap when they have attributes in common.
- Sets that have no commonality do not overlap.

Venn Diagram of Emotions

Intersection

Futuristic Trends in Law Enforcement

http://graphjam.files.wordpress.com/2008/03/robo-cop-venn-diagram-2.gif

What are the attributes of these sets?

Jolly

Larry the Cucumber

The BFG

Frozen Vegetable Mascot

Green

Bruce Banner **Giant**

Non-intersecting sets

- Have no attributes in common.
- Do not overlap.

Summary of Contentions by Bob Marley

Handling sets

- In general, where there are sets of data, some will overlap and some will not.
- It is useful to find:
 - The intersection of the sets
 - The union of sets
 - Differences between sets
 - Subsets
- SQL allows us to manipulate these relationships.

Questions we might ask

- Return the list of cops that aren't robots.
- Return the list of animals that have beaks and play six-stringed instruments.
- Return the list of things that are Jolly and Green, but not Giant.
- Return the list of law enforcement officers that Bob shot.

Assumptions we might make

- There are no sheriffs that Bob didn't shoot.
 - There is nothing in the set of sheriffs that is not in the set of people Bob shot.
 - Sheriffs are a subset of the people that Bob shot.

Sets

Although there are a lot of divisions between these groups, there is also a lot they have in common.

They are perfect groups to use for set relations.

Related domains

When do we use SET theory?

SET theory

When the tables have similar columns and constraints.

JOINs

- When the tables are related, but NOT necessarily with the same columns and constraints.
- The tables must have one or more columns with attributes in common.

Converting to SQL

- Using SET theory to formulate queries
- Set theory
- Intersection, Union, Difference

Relational algebra terms

- Projection
- Selection
- Union
- Intersect
- Minus
- Divide

Projection

- This is where we return just some columns from a table
- i.e., instead of
 - SELECT * FROM STOCK,

we select just some of the fields:

SELECT stock_code, stock_description FROM STOCK;

Selection

 This is where we select just some rows from a table, by filtering out the ones we don't want:

SELECT * FROM STOCK WHERE stock_code like 'A101';

Sets from the Stock Table

- Consider set A as all stock items supplied by supplierid 501.
 - -select * from stock where supplier_id = 501;
- Consider set B as all stock items that have a unit_price of more than €200.
 - -select * from stock where
 unit_price > 200;

Intersection in a Venn diagram

- Intersection is where the two sets overlap.
- If A is the set of stock items supplied by SupplierId 501 and
- B is the set of stock items with unit_price >

€200,

What's ANB?

Using INTERSECT in SQL

- Determine the sets in separate SQL statements.
- Use the word INTERSECT between the two SQL statements.
 - Omit the; from the first select statement.
 select * from stock where supplier_id = 501;
 select * from stock where unit_price > 200;

Using INTERSECT in SQL

- Determine the sets in separate SQL statements.
- Use the word INTERSECT between the two SQL statements.
 - Omit the; from the first select statement.
 select * from stock where supplier_id = 501
 INTERSECT
 select * from stock where unit_price > 200;

Union in a Venn diagram

- This is what it looked like in a VENN diagram
- If A is the set of stock items supplied by SupplierId 501 and
- B is the set of stock items with unit price > €200,
- What's AuB?

AuB

Using UNION in SQL

- Determine the sets in separate SQL statements.
- Use the word UNION between the two SQL statements.
 - Omit the; from the first select statement.
 select * from stock where supplier_id = 501
 UNION
 select * from stock where unit price > 200;

Difference Venn diagram

- A − B
 - What is A-B in our example?

- B − A
 - What is B A in our example?

A - B in SQL

- Determine the sets in separate SQL statements.
- Use the word MINUS between the two SQL statements.
 - Omit the; from the first select statement.
 select * from stock where supplier_id = 501
 minus
 select * from stock where unit price > 200;

B - A in SQL

- Determine the sets in separate SQL statements.
- Use the word MINUS between the two SQL statements.
 - Omit the; from the first select statement.
 select * from stock where unit_price > 200
 minus
 select * from stock where supplier id = 501;

- Socrative quiz on sets.
- Before question 5 do views.

Divide

- A ÷ B = rows in A that are related to every row in B.
 - This always requires a third table.
- Example:
 - Student that passed all modules.
 - Supplier who supplies all parts.
 - Consumer who eats all types of crisps.
- See later!