

Ayudantía 9 - Teorema del palomar y diagonalización de Cantor

Héctor Núñez, Paula Grune, Manuel Irarrázaval

Resumen

Conteo

- Regla del producto: $|A \times B| = |A| * |B|$
- Regla de la suma: $|A \cup B| = |A| + |B| |A \cap B|$

Principio del Palomar

 $f: \mathbb{N}_m \to \mathbb{N}_n$

- \bullet Si $m>n,\,f$ no puede ser inyectiva
- \bullet Si m < n, f no puede ser sobreyectiva
- $\bullet \,$ Si f biyectiva, m=n

Permutaciones y combinaciones

Dado |A| = n

- Permutación: arreglo ordenado de r elementos. $P(n,r) = \frac{n!}{(n-r)!}$
- Combinación: subconjunto de tamaño r. $C(n,r) = \frac{P(n,r)}{P(r,r)}$

No numerabilidad

Si queremos demostrar que un conjunto no es numerable, tenemos las siguientes opciones:

■ Asumir que tenemos una lista que lo númera y llegar a una contradicción. Normalmente definimos un elemento que no puede estar en la lista usando esta misma ⇒ Diagonalización

- Llegamos a una biyección con un conjunto no numerable.
- Demostramos que un subconjunto de este no es númerable.

Teo de Cantor

- $(0,1) \subseteq \mathbb{R}$ no es numerable
- $(0,1) \approx \mathbb{R} \approx \mathcal{P}(\mathbb{N})$
- \bullet $A < \mathcal{P}(A)$

Ejercicios

Pregunta 1 (Ross)

Tomemos un conjunto de puntos $(x_i, y_i, z_i) \in \mathbb{R}^3$ con i = 1, 2, ..., 9 y coordenadas enteras. Demustre, usando el principio del palomar, que existe al menos una linea entre dos de estos puntos tal que el punto medio tambien tiene coordenadas enteras.

Pregunta 2

- a) Demuestre que el intervalo abierto $(0,1) \subseteq \mathbb{R}$ no es enumerable.
- b) Sea $\mathcal{P}(\mathbb{N})$ el conjunto potencia de $\mathbb{N},$ ¿Es el conjunto $\mathcal{P}(\mathbb{N})$ enumerable? Demuestre su afirmación

Pregunta 3

Sea $\mathcal{F} = \{ f : \mathbb{N} \to N | f \text{ inyectiva} \}$

Demuestre que el conjunto $\mathcal F$ es no numerable.