1 Вступ

Cancer-cellular-automata — це Python-проєкт, що моделює ріст пухлини за допомогою клітинного автомата (KA). Проєкт реалізує дискретну модель, де кожна клітина сітки представляє біологічний стан, що змінюється згідно з локальними правилами.

2 Структура проєкту

Основні файли проєкту:

- cells.py визначає класи клітин та їх стани.
- grid.py реалізує сітку, де розміщені клітини.
- visualization.py відповідає за GUI.
- main.py файл, що запускає програму
- requirements.txt список залежностей для запуску проєкту.

3 Автомати клітин

3.1 Abtomat RegularTumorCell (RTC)

Кожна пухлинна клітина є стохастичним скінченним автоматом

$$\mathcal{A}_{\mathrm{RTC}} = (S_{\mathrm{RTC}}, \Sigma, \delta_{\mathrm{RTC}}, s_0^{\mathrm{RTC}}),$$

де

- $\bullet \ S_{\mathrm{RTC}} = \{\mathtt{RTC}_k \mid k=0,1,\ldots,K\} \cup \{\mathtt{EMPTY}\},$
 - RTC $_k$ клітина з k залишковими діленнями,
 - ЕМРТУ порожня позиція
- Вхідний алфавіт

$$\Sigma = \big\{$$
мультимножина сусідніх станів $\big\}.$

- Початковий стан $s_0^{\mathrm{RTC}} = \mathtt{RTC}_K.$
- \bullet s(t) стан автомата на кроці t
- Переходи $\delta_{\mathrm{RTC}}(s,\sigma)$ задаються стохастично:
 - 1. **Апоптоз:** з ймовірністю $p_{\text{apoptosis}}$ перехіт клітини у порожній стан (її смерть)

$$s(t+1) = EMPTY.$$

2. Розмноження : якщо $s = \mathtt{RTC}_k$ з k > 0, з ймовірністю p_{prolif} :

$$s(t+1) = RTC_{k-1}$$

в сусідній порожній клітинці додається новий автомат в стані RTC_{k-1} .

3. Міграція: з ймовірністю $p_{\text{migration}}$

$$s(t+1) = \mathtt{RTC}_k - 1,$$

клітина переходить в сусідню порожню клітинку.

4. Спокій: якщо жодна з попередніх подій не сталася,

$$s(t+1) = \mathtt{RTC}_k - 1.$$

Рис. 1: Автомат RTC, k - кількість поділів, що залишились

3.2 Abtomat StemTumorCell (STC)

Стовбурова пухлинна клітина:

$$\mathcal{A}_{\mathrm{STC}} = (S_{\mathrm{STC}}, \Sigma, \delta_{\mathrm{STC}}, s_0^{\mathrm{STC}}),$$

де

- $S_{\text{STC}} = \{ \text{STC}, \text{EMPTY} \}.$
- Початковий стан $s_0^{\mathrm{STC}} = \mathtt{STC}.$
- ullet s(t) стан автомата на кроці t
- Переходи $\delta_{\text{STC}}(s, \sigma)$:
 - 1. Апоптоз: з ймовірністю $p_{
 m apoptosis}$

s(t+1) = [EMPTY],в інших випадках стан залишається STC

2. Розмноження: з ймовірністю p_{prolif} :

симетричне ділення (з ймовірністю $p_{\rm symm}$) : додається новий автомат в стані STC в сусідню порожню клітинку, асиметричне ділення (з ймовірністю $1-p_{\rm symm}$) : додається новий автомат в стані ${
m RTC_k}$ в сусідню порожню клітинку.

- 3. **Міграція:** з ймовірністю $p_{\text{migration}}$ пересувається в порожню сусідню клітинну позицію.
- 4. Спокій: інакше залишається у стані STC.

Рис. 2: Автомат STC

3.3 Abtomat ImmuneCell (IC)

Імунна клітина — більш складний стохастичний автомат:

$$\mathcal{A}_{\mathrm{IC}} = (S_{\mathrm{IC}}, \Sigma, \delta_{\mathrm{IC}}, s_0^{\mathrm{IC}}),$$

де

- $\bullet \ S_{\mathrm{IC}} = \{ \mathtt{IC}_{L,K} \mid L = 0, 1, \ldots, L_{\mathrm{max}}; \ K = 0, 1, \ldots, K_{\mathrm{max}} \} \cup \{\mathtt{EMPTY}\},$
 - -L число вже виконаних успішних атак.
 - -K поточний вік клітини.
 - ЕМРТУ позиція без клітини.
- Початковий стан $s_0^{\rm IC} = {\tt IC}_0$.

- \bullet s(t) стан автомата на кроці t
- Переходи $\delta_{\rm IC}(s,\sigma)$:
 - 1. **Апоптоз:** з ймовірністю $p_{\text{apoptosis}}$

$$s(t+1) = \text{EMPTY}.$$

2. **Успішна атака пухлинної клітини:** якщо в сусідах є хоча б одна пухлинна клітина, вибирає ціль і атакує з імовірністю $r_I = \min \Big\{ 1, \, \text{SUCCESS_RATE} \Big\}$

$$\frac{n_{\rm IC}}{n_{
m TC}} \cdot f_{
m type}$$
}. де:

- SUCCESS_RATE базова ймовірність успішної атаки.
- $-\frac{n_{\rm IC}}{n_{\rm TC}}$ відношення кількості імунних клітин $(n_{\rm IC})$ до кількості пухлинних клітин $(n_{\rm TC})$.
- $-f_{
 m type}$ кофіціент, що залежить від типу клітини.

При успіху:

- ціль стає ЕМРТУ.
- якщо $L < L_{\text{max}}$, то $s(t) = \text{IC}_{L,K} \to s(t+1) = \text{IC}_{L+1,K+1}$.
- якщо $L=L_{\max}$, то $s(t)=\mathtt{IC}_{L_{\max},K}\to s(t+1)=\mathtt{EMPTY}.$

3. **Невдала атака пухлинної клітини:** якщо атака неуспішна, з ймовірністю

$$r_{\text{death}} = \min \left\{ 1, \text{ DEATH_RATE} \cdot \frac{n_{\text{TC}}}{n_{\text{IC}}} \right\}.$$

де:

- DEATH RATE базова ймовірність загибелі після невдалої атаки.
- $-\frac{n_{\rm TC}}{n_{\rm IC}}$ відношення кількості пухлинних клітин $(n_{\rm TC})$ до кількості імунних клітин $(n_{\rm IC})$.

переходить у ЕМРТҮ. Тобто, $s(t) = IC_{L,K} \rightarrow s(t+1) = EMPT$ Ү.

4. Міграція: з ймовірністю $p_{\text{migration}}$

$$s(t) = IC_{L,K} \rightarrow s(t+1) = IC_{L,K+1}$$
, якщо $K < K_{\text{max}}$.

де $p_{
m migration}$ — ймовірність міграції. Міграція відбувається до порожньої сусідньої позиції, що мінімізує відстань до пухлинної клітини. Якщо $K=K_{
m max}$, міграція не відбувається.

5. Смерть за віком: якщо $K = K_{\max}$ (стан ${\tt IC}_{L,K_{\max}}$) і не відбувається успішна атака, то

$$s(t) = \mathtt{IC}_{L,K_{\max}} o s(t+1) = \mathtt{EMPTY}.$$

6. Розмноження після вдалого вбивства: з ймовірністю p_{prolif}

4

додається новий автомат $IC_{0,0}$ у порожній сусідній позиції.

де p_{prolif} — ймовірність розмноження. Це відбувається після успішної атаки (перзеходу в стан $IC_{L+1,K+1}$ або ЕМРТУ при $L=L_{\max}$).

Рис. 3: Aвтомат ImmuneCell, k - вік, l - к-сть атак

4 Лікування

4.1 Хіміотерапія

Хіміотерапія в моделі реалізується як зовнішнє втручання, що динамічно змінює параметри пухлинних клітин (RegularTumorCell та StemTumorCell). Основні ефекти:

- ullet Зменшення шансу проліферації на фіксований коефіцієнт $\Delta_p = exttt{PROLIFERATION_DECREASE}.$
- ullet Негайна смерть клітини з шансом $DEATH_CHEMOTERAPY$ CHANCE.

Також ракові клітини мають певну стійкість до хіміотерапії (chemotherapy_resistance), яка визначається випадково при створенні клітини. Розподіл ймовірності стійкості визначається бета функцією з аргументом $\alpha=0.5$. Після розмноження, нащадки клітини отримують її значення стійкості. Таким чином, з застосуваннями хіміотерапій, на полі буде з'являтись більше клітин, які є менш вразливими до неї.

Нехай до застосування хіміотерапії параметри автоматів були:

$$p_{\text{prolif}}^{(0)}$$
.

Після застосування методу apply_chemotherapy() ймовірність поділу оновлюється так:

$$p'_{\text{prolif}} = p_{\text{prolif}}^{(0)} + (1 - \Delta_p) \times (1 - chemotherapy_resistance)$$

Ймовірність негайної смерті під час застосування хіміотерапії визначається як $DEATH_CHEMOTHERAPY_CHANCE \times (1-chemotherapy_resistance)$

4.2 Імунотерапія

Імунотерапія в моделі посилює функціональні можливості імунних клітин (ImmuneCell). Основні ефекти:

• Збільшення максимальної кількості атак:

max attacks' = max attacks⁽⁰⁾ +
$$\Delta_a$$
,

де Δ_a — приріст атак (метод apply_immunotherapy() додає, наприклад, 2 атаки).

• Подовження життєвого циклу:

$$lifespan' = lifespan^{(0)} + \Delta_{\ell},$$

де Δ_{ℓ} — додаткові кроки життя (наприклад, +10).

• Зменшення шансу смерті під час атаки:

$$p'_{\text{death}} = p_{\text{death}}^{(0)} \times (1 - \Delta_d),$$

де Δ_d — коефіцієнт зниження (наприклад, 0.2).

• Збільшення шансу успішної атаки:

$$p'_{\text{success}} = p^{(0)}_{\text{success}} \times (1 + \Delta_s),$$

де Δ_s — приріст ефективності (наприклад, $\times 3$).

При виклику методу:

параметри кожної ImmuneCell автоматично оновлюються:

$$\begin{aligned} \max_\text{attacks} \leftarrow \max_\text{attacks} + \Delta_a, \\ \text{lifespan} \leftarrow \text{lifespan} + \Delta_\ell, \\ \text{death_chance_of_attack} \leftarrow \text{death_chance_of_attack} \times (1 - \Delta_d), \\ \text{chance_of_succesfull_attack} \leftarrow \text{chance_of_succesfull_attack} \times (1 + \Delta_s). \end{aligned}$$

5 Візуалізація та інтерактивний інтерфейс

У visualization.py додано розширений інтерфейс, який дає змогу не лише спостерігати за ростом пухлини, а й управляти симуляцією в реальному часі.

- Зміна швидкості ітерацій. Використовується слайдер для налаштування інтервалу між кадрами (у мілісекундах).
- **Відображення статистики.** Над полем виводиться поточна кількість клітин кожного типу:

$$N_{\rm RTC}$$
, $N_{\rm STC}$, $N_{\rm IC}$.

• Завантаження клітин з файлу. Кнопка «Load Cells» відкриває JSON-файл (наприклад, cells.json) з попередньо збереженими позиціями й типами клітин.

- Генерація клітин за допомогою AI. Кнопка «AI Generate» викликає метод ai_generate_cells(), який на основі заданих параметрів (щільності, розміру пухлинного вогнища тощо) створює початковий розподіл клітин.
- Терапевтичні інструменти.
 - Chemotherapy: кнопка застосовує хіміотерапію до всіх пухлинних клітин, автоматично змінюючи коефіцієнти PROLIFERATION_DECREASE та DEATH_CHEMOTERAPY_CH.
 - Immunotherapy: кнопка підсилює імунні клітини викликом методу apply_immunotherapy
- **Налаштування ймовірностей.** Використовується текстове поле (TextBox) для динамічної зміни параметрів кожного типу клітини:

 $p_{\text{apoptosis}}, p_{\text{proliferation}}, p_{\text{migration}}, p_{\text{symm}}, \dots$

6 Завантаження та запуск

1. Клонуйте репозиторій:

```
git clone https://github.com/your-username/cancer-cellular-automata.git
```

2. Перейдіть в деректорію проєкту:

```
cd cancer-cellular-automata
```

3. Встановіть залежності:

```
pip install -r requirements.txt
```

4. Запустіть основну симуляцію:

```
python main.py
```