

Data Collection and Preprocessing Phase

Date	15 July 2024
Team ID	739682
Project Title	SpaceX Falcon 9 First Stage Landing Success Predictor
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Description										
	statistics										
Data Overview) df.describe()										
	1		FlightNumber	PayloadMass	Flights	Block	ReusedCount	Longitude	Latitude	class	E
		count	90.000000	90.000000	90.000000	90.000000	90.000000	90.000000	90.000000	90.000000	t
		mean	45.500000	6104.959412	1.788889	3.500000	1.655556	-86.366477	29.449963	0.666667	
		std	26.124701	4694.671720	1.213172	1.595288	1.710254	14.149518	2.141306	0.474045	
		min	1.000000	350.000000	1.000000	1.000000	0.000000	-120.610829	28.561857	0.000000	
		25%	23.250000	2510.750000	1.000000	2.000000	0.000000	-80.603956	28.561857	0.000000	
		50%	45.500000	4701.500000	1.000000	4.000000	1.000000	-80.577366	28.561857	1.000000	
		75%	67.750000	8912.750000	2.000000	5.000000	3.000000	-80.577366	28.608058	1.000000	
		max	90.000000	15600.000000	6.000000	5.000000	5.000000	-80.577366	34.632093	1.000000	
	:Axes: xlab	el='LaunchSit	e', ylabel='count'>								
	50 -										
Univariate	ti 30 -										
Analysis	20 -										
	10 -										
	0 1	CCAFS SLC 40	VAFB SLC 4E LaunchSite	KSC LC 39A							


```
orbit_le=LabelEncoder().fit(df['Orbit'])
                                   df['Orbit']=orbit_le.transform(df['Orbit'])
                                   launchsite_le=LabelEncoder().fit(df['LaunchSite'])
                                   df['LaunchSite']=launchsite_le.transform(df['LaunchSite'])
longitude_le=LabelEncoder().fit(df['Longitude'])
                                   df["Longitude"]=longitude_le.transform(df["Longitude"])
                                   latitude_le=LabelEncoder().fit(df['Latitude'])
df["Latitude"]=latitude_le.transform(df["Latitude"])
Data
                                   gridfins_le=LabelEncoder().fit(df['GridFins'])
Transformation
                                   df["GridFins"]=gridfins_le.transform(df["GridFins"])
legs_le=LabelEncoder().fit(df['Legs'])
                                   df['Legs']=legs_le.transform(df['Legs'])
                                44] Scaler=preprocessing.StandardScaler()
                                        x_train=Scaler.fit_transform(x_train)
                                        x_test=Scaler.transform(x_test)
                                landing_outcomes=df["Outcome"].value_counts()
                                    landing_outcomes
                                → Outcome
                                    True ASDS
None None
True RTLS
                                                   41
19
14
                                    False ASDS
True Ocean
                                    False Ocean
None ASDS
                                    False RTLS 1
Name: count, dtype: int64
                                19] for i,outcome in enumerate(landing_outcomes.keys()):
                                      print(i,outcome)

→ 0 True ASDS

Feature
                                    1 None None
2 True RTLS
Engineering
                                    3 False ASDS
4 True Ocean
5 False Ocean
                                    6 None ASDS
                                    7 False RTLS
                                20] bad_outcomes=set(landing_outcomes.keys()[[1,3,5,6,7]])
                                ₹ 'False ASDS', 'False Ocean', 'False RTLS', 'None ASDS', 'None None'}
                                21] landing_class=[0 if i in set(bad_outcomes) else 1 for i in df["Outcome"]]
                                22] df["class"]=landing_class
    df[["class"]].head(8)
                                filename="project.pkl
                                pickle.dump(lr,open(filename,'wb'))
Save Processed
                                pickle.dump(orbit_le, open('orbit_le.pkl', 'wb'))
                                pickle.dump(launchsite_le, open('launchsite_le.pkl', 'wb'))
Data
                                pickle.dump(Scaler, open('scaler.pkl', 'wb'))
```