MATH-270-45 Week 1 Book of Proofs

Paul Sherwood

 $March\ 12,\ 2023$

Contents

Chapter 1			Page 2
	11 5	ets	2

Chapter 1

1.1 Sets

Definition 1.1.1: Introduction to sets

```
N —Natural Numbers— = \{1,2,3,...\} is the set of natural numbers.
```

```
Z—Integers— = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}
```

Q —Rational Numbers— = $\{..., -2, -1, 0, 1, 2, ...\}$ R —Real Numbers— = $\{..., \frac{1}{2}, \frac{-3}{4}, 0, ...\}$ C —Complex Numbers— = All number of the form a + bi, where a and be are real numbers and i is imaginary

P—Prime Numbers— = Natural numbers greater than 1 that are divisable only by 1 and themselves

F—Finite Fields— = A set of elements with operation of +, -, * and / (except by 0)

Definition 1.1.2: The Cartesian Product

```
An ordered par (a, b) is a set
\{\{a\},\{a,b\}\}
```

You've seen ordered pairs before as graphs coordinates

```
(1,2) = \{\{1\},\{1,2\}\}\
```

$$(1,2) = \{\{2\},\{2,1\}\}\$$

(-2,0)

Definition 1.1.3: Subsets

Definition 1.1.4: Power Sets

Figure 1.1: A Venn diagram for the sets A, B, and C.

Definition 1.1.5: Union, Intersection, Difference

```
The Union of two sets contain all the elements contain in either set (or both sets).
```

The union is notated $\mathbb{A} \cup \mathbb{B}$

More formally, $x \in \mathbb{A} \cup \mathbb{B}$ if $x \in \mathbb{A}$ or $x \in \mathbb{B}$ (or both)

The **intersection** of two sets contains only the elements that ar in both sets.

The intersection is notated $\mathbb{A} \cap \mathbb{B}$

More formally, $x \in \mathbb{A} \cap \mathbb{B} \ x$ if $\epsilon \in \mathbb{A}$ and $x \in \mathbb{B}$

The **complement** of a set A contains everything that is not in the set A.

The complement is notated A, or A^c , or sometimes A.

A

 $A \cup B = \{x: x \in A \ \mathbf{OR} \ x \in B\}$

 $A \cap B = \{x: x \in A \text{ AND } x \in B\}$

 $A^e = \{x: x \not\in A\}$

 $A-B = \{x: x \in A \text{ AND } x \notin B\}$