A DEEP LEARNING BASED PIPELINE FOR METASTATIC BREAST CANCER CLASSIFICATION FROM WHOLE SLIDE IMAGES (WSI)

Presenter: Arjun Vekariya

Supervising Professor: Dr. Junzhou Huang

University of Texas at Arlington

Outline

- Introduction
- Classical methods
- Deep learning-based pipeline to detect metastatic breast cancer
 - Region of Interest (ROI) detection with Image processing.
 - Prepare training data: Extract Positive & Negative tiles from ROI
 - Train Deep ConvNet for tile-based classification
 - Building tumor probability heat-maps using trained model
 - Post-processing of heat-maps for slide-based classification
- Experiments
- Conclusion & Future work

Problem & Motivation

 $\sim 10^6 \text{ px}$

375 px

Problems

- Very large Gigapixel images (10⁶ x 10⁶)
- Hard to scan whole image manually
- Need rapid, cheaper and precise primary diagnosis method
- Classical computing methods are not robust, uses low level image analysis tasks; (e.g., color normalization, nuclear segmentation, and feature extraction)
- No Deep Learning base method for Gigapixel image classification

Motivation

 Recently, deep learning-based approaches shown promises for applications in Pathology¹

Whole Slide Image (WSI) Classification

- What?
 - Distinguish tumor positive (Cancer) slides from negatives
- Why?
 - To determine presence and severity of cancer

Figure: WSI classification example

Goal of Thesis

- Develop deep learning-based classification pipeline for detection of cancer metastases from Gigapixel whole slide images of breast sentinel lymph node
- Evaluate its effectiveness by performing extensive experiments on real life breast cancer data-set available as part of Camelyon'16 grand challenge

Classical methods

- Focused primarily on low level image analysis tasks
 - Color normalization
 - Nuclear Segmentation
 - Feature extraction
- Architecture

Classical methods (cont.)

CHALLENGES

- Relies on a-priori information. Example: shape, size of a cell
- Handcrafted features do not perform well
- Requires to set several manual parameters thus proves burdensome in practice
- Not generalized; fails when applied on images other than what it originally developed for

Our approach : OUTLINE

- In this thesis we try to overcome the challenges of classical methods by developing state-of-the-art deep learning based classification pipeline for detection of cancer metastases.
- Pipeline consists of five stages:
 - Region of Interest (ROI) detection with Image processing.
 - Construct training data: Extract Positive & Negative tiles from ROI
 - Train Deep ConvNet for tile-based classification
 - Building tumor probability heat-maps using trained model
 - Post-processing on heat-maps for slide-based classification

Cancer metastases detection framework²

2. D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck, "Deep Learning for Identifying Metastatic Breast Cancer," arXiv preprint arXiv:1606.05718

ROI detection with Image processing

- What? identifying tissue within the WSI and exclude background white space
- Why? reduce computation time and focus analysis on regions of the slide most likely to contain cancer metastasis

Training set construction

- Randomly extract patches (256 x 256) from tissue region (ROI)
 - Tumor slide: $\sim 1k$ positive and $\sim 1k$ negative from each slide
 - Normal slide: ~1k negative from each slide
 - Total ~250k training patches, ~140k normal and ~110k positive
- Patches are extracted from **level-0** (highest-**40x** magnification) of each WSI

Data augmentation

 Randomly crop a 224 x 224 sub-region and flip patches horizontally

Deep ConvNet for tile-based classification

- What in ConvNet?
 - ConvNet is a biologically inspired form of artificial neural network.
 - Stack of layers.
 - There are three main types of layers to build ConvNet:
 - Convolutional Layer + Non-Linearity (ReLU)
 - ➤ Pooling Layer
 - > Fully-Connected Layer

Figure 6: Illustration of CNN

GoogLeNet

- GooLeNet (Szeged et al. ILSCV 2014)
 - 27 layers in total
 - − ~6 million parameters
 - three loss layers
 - Source: Christia Szeged et al. Going Deeper with Convolutions
- GooLeNet Architecture:

Training GoogLeNet

- Deep model is trained from scratch using mini-batch SGD
- Batch size: **32**

Environment:

- GPU: 2 x 12 GB NVidia K40
- CPU:

 3.4GHz Intel core i7

 4770
- HDD: 7 TB
- RAM: 16 GB DDR4

Building tumor probability heat-maps

- Extract patches from ROIs of each WSI, ~ 7.6M total patches
- Use trained Deep CNN model to build heat-map for each WSI
- In heat-map, each pixel contains a value between 0 and 1, indicating the probability that the pixel contains tumor

Post-processing on tumor probability heat-maps

• Extract higher level features from tumor probability heat-maps

• Using extracted features, train binary classifier for slide based classification

Feature Importance

- Top 5 important features, computed using the "regionprops" function in skimage. t is the threshold value
 - Feature 11: given t=0.9, mean area of tumor regions
 - Feature 10: given t=0.5, the longest axis in the largest tumor region
 - Feature 09: given t=0.5, ratio of pixels in the region to pixels in the total bounding box ("extent")
 - Feature 05: given t=0.9, eccentricity of the ellipse that has the same second-moments as the region. ("eccentricity")
 - Feature 06: given t=0.9, ratio of tumor region to the tissue region

Complete list of features

- Ratio of tumor region to the tissue region
- The longest axis in the largest tumor region
- Total number of pixels with probability > 0.90
- Tumor area
 - max, mean, variance, skewness, and kurtosis of tumor area
- Tumor perimeter
 - max, mean, variance, skewness, and kurtosis of tumor perimeter
- Eccentricity (of ellipse having same second-moments as region)
 - max, mean, variance, skewness, and kurtosis of eccentricity
- Extent (ratio of pixels in the region to pixels in the total bounding box)
 - max, mean, variance, skewness, and kurtosis of extent
- Solidity
 - max, mean, variance, skewness, and kurtosis of solidity

Experiments: DATASET

- Camelyon'16¹ grand challenge dataset
 - 400 slides in total
 - Train (270)
 - ➤ 110 tumor (positive) slides with ground truth
 - ➤ 160 normal (negative) slides
 - Test (130)
 - ➤ 130 unlabeled slides

1. https://camelyon16.grand-challenge.org/

Experiments: SETUP

- Hardware Configurations:
 - CPU: 3.4GHz Intel core i7 4770
 - RAM: 12 GB DDR4
- Software Requirements:
 - 1. OS: Ubuntu 16.04
 - 2. Programming Languages: Python 3.5
 - 3. Deep Learning libraries : Tensorflow (v0.12.1)
 - 4. Support libraries: OpenSlide, SciKit, NumPy

Experiments: METRICS

• ROC:

- Helps to measure classifier accuracy.
- The ROC curve helps to create detailed sensitivity (true positive rate) vs
 1-specificity (false positive rate) report

Experiments: MODEL D-1

• ROC for Deep model D-1:

Experiments: MODEL D-1 PROBLEMS

- Low AUC: 84.42%
 - Produces lots of false positives
 - Reason: in-comprehensive training data hard negatives patches from histological mimics of cancer were missing in training dataset

Experiments: ENSEMBLE METHOD

- Remove model D-1 false positives:
 - extract additional ~100k hard negative patches corresponds to false positives of model D-l heat-maps
 - train deep model **D-2** with this enriched training dataset
 - using model D-2, build heat-map for each WSI
 - Build ensemble heat-maps by removing model D-1 false positives with model
 D-2 predictions

Experiments: ENSEMBLE RESULT

ROC for ensemble method:

Experiments: FURTHER IMPROVEMENT

- Study feature importance map
 - remove features with low importance
 - remove undistinguished features (low correlation)
 - Removed 6 features
 - Keep 22 features
- Use better classifier Support Vector Machine (SVM) instead of Random Forest

Experiments: FINAL RESULT

• Final ROC:

Experiments: RESULT COMPARISION

• ROC: comparison with Camelyon'16 **Top-5** methods

CONCLUSION & FUTURE WORK

Conclusion

- Developed deep-learning based classification pipeline for identifying metastatic breast cancer from histopathology images
- Key aspects of our system includes enrichment of the training set with patches from regions of normal lymph node that the system was initially mis-classifying as cancer; use of a state-of-the art deep learning model architecture, and careful design of post-processing methods for the slidebased classification

Future Work

- Test proposed system on other large scale cancer datasets
- Integrate staining normalization into proposed classification pipeline to eliminate variability induced by different staining techniques

Acknowledgements

- Supervising Professor
 - Dr. Junzhou Huang
- Thesis Committee
 - Dr. Heng Huang
 - Dr. Jia Rao
- Constant Support & Motivation
 - Ph.D. Mentor: Mr. Sheng Wang
 - Special Mention: Mr. Zhifei Deng, Mr. Jiawen Yao, Mr. Ashwin Raju
 - SMILE Lab colleagues
 - Friends & Family

Thank You.

Q & A