Rozhodněte o pravdivosti tvrzení.
\square Nechť $X=\{\mathbf{x}\in R^n \mathbf{A}\mathbf{x}\geq\mathbf{b}\}$ je neprázdný konvexní polyedr, kde $\mathbf{A}\in R^{m imes n}$. Potom X má nejvýše n extremálních bodů.
Každá neprázdná uzavřená konvexní množina má alespoň jeden extremální bod.
Neobsahuje-li neprázdná konvexní množina přímku, pak má extremální bod.
$lacktriangledown$ Pro $n\geq 2$ má množina $\{\mathbf{x}\in R^n \ \mathbf{x}\ _2\leq 1\}$ nekonečně mnoho extremálních bodů.
${f extit{ec V}}$ Je-li $X eq\emptyset$ omezený konvexní polyedr, pak má X alespoň jeden extremální bod.
Označme jako $X=\{\mathbf{x}\in R^n \mathbf{A}\mathbf{x}\geq \mathbf{b}\}$ neprázdný konvexní polyedr a jako $f(\mathbf{x})=\mathbf{c}^T\mathbf{x}$ libovolnou lin. fur $\mathbf{x}\in R^n$. Platí:
$ullet$ Úloha lineárního programování $\min\{f(\mathbf{x}) x\in X\}$ má optimální řešení, jen pokud X neobsahuje přímk
ullet Funkce f nabývá na množině X minima nebo maxima.
$ullet$ Pokud je ${f y}$ optimální řešení úlohy $\min\{f({f x}) x\in X\}$, pak se ${f y}$ nachází na nějaké hraně polyedru X .

ulletJsou-li ${f y}$ a ${f z}$ dvě různá optimální řešení úlohy $\min\{f({f x})|x\in X\}$, pak i jejich libovolná konvexní kombir

 \mathbb{Q} Úloha lineárního programování $\min\{f(\mathbf{x})|x\in X\}$ má vždy optimální řešení a to se nachází v nějakém

Konvexní obal bodů (1,2,0),(2,0,1),(0,2,1) je

optimálním řešením té samé úlohy.

- množina stejné dimenze jako nezáporný obal těchto bodů
- ${\Bbb E}$ trojúhelník ležící v rovině dané rovnicí x+y+z=3
- ✓ konvexní množina mající 3 extremální body
- ☑množina, která je řešením nějaké soustavy lineárních nerovnic
- ✓ konvexní polyedr dimenze 2

Konvexní polyedr X v R^2 je určen nerovnicemi $2x_1+x_2\geq 2$, $-3x_1+2x_2\leq 6$, $x_1+x_2\leq 4$, $x_1\geq 0$, $x_2\geq 2$

 $ule{X}$ má 5 faset.

polyedru X.

- $\square X$ obsahuje přímku.
- $ule{X}$ má 5 hran.
- lacksquareLineární funkce $f(x_1,x_2)=x_1-x_2$ má na množině X více než jeden bod globálního minima.

Uvažujme množinu X definovanou jako nezáporný obal vektorů, které vzniknou z vektoru (0,1,2) všemi permutacemi jeho souřadnic. Platí:

- $\square X$ má jeden vrchol a 4 fasety

- lacksquare X je konvexní polyedr dimenze 3, který má 6 extremálních bodů
- lacksquareLineární funkce $f(x_1,x_2,x_3)=\|(x_1,x_2,x_3)\|_1$ nabývá na X maxima