המשך בעיית זרימה מקסימלית

רוצים להוכיח: אם Ford-Fulkerson עוצר אז הוא מחזיר זרימה מקסימלית.

<u>תנאי העצירה</u>: עוצרים אם אין מסלול שיפור.

הגדרה [מסלול שיפור]

מסלול שיפור (c ביחס לזרימה f ברשת זרימה עם קיבולת) מסלול שיפור

מתקיים $(u,v) \in p$ כך שלכל זוג קדקודים עוקבים $p = s \rightarrow u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow t$

$$c(u,v)-f(u,v)=c_f(u,v)>0$$

הגדרה [זרימה לא ניתנת לשיפור]

זרימה f היא $rac{\mathsf{d}\mathsf{w}}{\mathsf{d}\mathsf{w}}$ זרימה f היא מיתנת לשיפור אם זרימה ווים מידי איניתנת לשיפור אם זרימה ווים מידי

התוכנית

- . נמצא חסם עליון על זרימה מקסימלית
 - נוכיח שהחסם הדוק.
- מתוך ההוכחה נראה גם שזרימה שלא ניתנת לשיפור היא מקסימלית.

[זה חלק מתופעה מאוד גדולה במתמטיקה (שלא קשורה לבעיית הזרימה) – תופעת הדואליות: לא ניכנס לפורמליות של זה – בגדול, כאשר יש בעיית מקס' ניתן לתאר בעזרתה בעיית מינ'. כלומר: בעיית מקס' ⇒ בעיה דואלית שהיא בעיית מינ'.

דואליות חלשה:

(כלומר כל הפתרונות של בעיית המינ' "גדולים" מהפתרונות לבעיית המקס'.)

דואליות חזקה:

(כלומר אותו הדבר, רק שגם קיים פתרון משותף. אז מוצאים פתרון מינימלי לבעיית המינ' ומקבלים פתרון מקסימלי לבעיית המקס'.)]

חסמים אפשריים

- סכום כל הקיבולות של כל הקשתות בגרף.
- ברור שאין זרימה שגודלה יעלה על מספר זה, אבל הוא חסם הרבה יותר מדי גדול.
- המינימום מבין סכום כל הקיבולות של הקשתות שיוצאות מ-s וסכום כל הקיבולות של המינימום מבין סכום ל. t -t
 - : נראה למה זה גם לא מספיק טוב עם דוגמה ←

בדוגמה זו הסכומים הנ"ל שניהם בעלי הערך 2,000,000, אך הזרימה המקסימלית היא בעלת גודל 3.

הגדרה [חתך s-t]

חתך S-t הוא חלוקה של V לשתי קבוצות זרות S,T (כלומר $S-T=\varnothing,S\cup T=V$ ומקיימת $t\in T,s\in S$

הגדרה [קיבולת של חתך]

קיבולת של חתך (S,T) מוגדרת ע"י:

$$c(S,T) = \sum_{\substack{u \in S \\ v \in T}} c(u,v)$$

בעיית החתך המינימלי

. מינימלית. $c\left(S,T\right)$ עם קיבולת $\left(S,T\right)$, אונימלית. יש למצוא חתך $\left(S,T\right)$ יש למצוא חתך יש למצוא חתך

[בין בעיית הזרימה המקסימלית לבעיית החתך המינימלית מתקיימת דואליות חזקה כפי שהזכרנו קודם; נראה שכל גודל זרימה תמיד \leq לקיבולת כל חתך s-t, וכן שקיימת וקיים חתך כך שגודל הזרימה שווה לקיבולת החתך.]

טענה: חסם עליון ("דואליות חלשה")

לכל חתך N מתקיים: f מתקיים: (S,T) , s-t לכל

$$\sum_{\substack{u \in S \\ v \in T}} f(u, v) = |f|$$

[[<u>כלומר</u>: סכום הזרימה שעוברת בחתך **כלשהו** שווה לגודל הזרימה.

למה? כי חתך מפריד בין חלק בגרף שמכיל את s לבין חלק שמכיל את t, וכל ערך הזרימה אמור לעבור מהצד הראשון לצד השני.]]

מסקנה – למה [גודל זרימה חסום ע"י קיבולת חתך]

:מתקיים באותה באותה לכל מתקיים (S,T) לכל

$$|f| \le c(S,T)$$
 מהטענה
$$|f| = \sum_{\substack{u \in S \\ v \in T}} f(u,v) \le \sum_{\substack{u \in S \\ v \in T}} c(u,v) = c(S,T)$$
 אילוצי קיבולת

$$|f_{\omega}|$$
 $|f_{
ho}|$ $|f_{\sigma}|$ $|f_{\sigma}|$

הוכחת הטענה

$$|f| = \sum_{v \in V} f(s, v) \stackrel{\text{(1)}}{=} \sum_{u = s} \sum_{v \in V} f(u, v) + \sum_{u \in S \setminus \{s\}} \sum_{v \in V} f(u, v) \stackrel{\text{(2)}}{=}$$

$$= \sum_{u \in S} \sum_{v \in V} f(u, v) \stackrel{\text{(3)}}{=} \sum_{u \in S} \sum_{v \in S} f(u, v) + \sum_{u \in S} \sum_{v \in T} f(u, v) \stackrel{\text{(4)}}{=}$$

$$= \sum_{u \in S} f(u, v)$$

[הסברים:

[

- מעבר (1): משימור זרימה, $f\left(u,v\right)=0$ לכל הסכום המסומן פועל רק עבור (1): משימור זרימה, $s\in S$ הוא $t\not\in S$ מעבר (1): משימור איננו $t\not\in S$ מעבר (1): משימור איננו $t\not\in S$
 - [[שני הסכומים המסומנים בסגול שווים.]]
 - מעבר (2): איחדנו את שני הסכומים החיצוניים יחדיו.
- $v\in T$ ועל $v\in S$, למעבר על כל א פיצלנו את הסכום הפנימי, שעובר על כל יער (3): פיצלנו את הסכום הפנימי, שעובר על כל בנפרד.
- בביטוי המסומן באדום, כל זוג u,v מופיע פעמיים: פעם אחת בתור $f\left(u,v\right)$ ופעם נוספת בביטוי המסומן באדום, כל זוג $f\left(u,v\right)+f\left(v,u\right)=0$ בתור בתור $f\left(u,v\right)+f\left(v,u\right)=0$
 - מעבר (4): איחדנו את שני הסכומים לסכום אחד [[כלומר שני הסכומים המסומנים בכחול שווים]].

 $(ext{Max-Flow-Min-Cut})$ משפט "דואליות חזקה" (זרימה מקס' – חתך מינ') משפט "דואליות חזקה" ($ext{max} |f| = \min_{ ext{cut}\,(S,T)} c(S,T)$

- כלומר המקסימום בין כל ה- |f| עבור זרימה חוקית s מ- s ל- t ב- N שווה למינימום בין כל ה- s ברשת s עבור s עבור s חתך s ברשת s

טענת עזר מרכזית [שקילות תנאים]

התנאים הבאים שקולים:

- (א) זרימה מקס' (בגודל מקס') זרימה |f|
- (F-F לא ניתנת לשיפור (תנאי העצירה של f (ב)
 - |f| = c(S,T)-ער ש- (S,T) קיים חתך (ג)

מסקנה: אם F-F עוצר, הוא מחזיר זרימה מקסימלית.

טענת קיום

.(מקסימלי) מקסימלית |f| חוקית עם און מקסימלי).

הוכחת המשפט

-ש כך שחתך קיים קיימת קיים חתך , f , ולפי טענת העזר המרכזית קיים חתך (S,T) כך ש $|f|=c\left(S,T\right)$

מכאן נובע ש:

$$\max_{f} |f| \ge \min_{(S,T)} c(S,T)$$

.[
$$\max |f| \ge |f| = c(S,T) \ge \min c(S,T)$$
 [C·

אבל מהדואליות החלשה נובע:

$$\max_{f} |f| \le \min_{(S,T)} c(S,T)$$

ולכן יש שוויון.

הוכחת טענת הקיום

הוכחה I (לבהות ולא לזכור) (הוכחת חדו"א):

חסומה מלמעלה ע"י דואליות חלשה. $\{|f|\}$

$$\phi = \sup_{f} \{ |f| \} < \infty$$
 לכן קיים

$$\lim_{n o \infty} \! \left| f_n
ight| \! = \! arphi$$
 . תהי $\left\{ f_n
ight\}$ סדרת זרימות כך

$$f(u,v) \in [-c(v,u),c(u,v)]$$
 , (u,v) לכל

... וכו' ... (מקומפקטיות) וכו' ... וכו' \leftarrow

[[לא עשינו כאן הוכחה פורמלית מלאה כי אף אחד לא מצפה מסטודנטים לקרוא מרצון הוכחה שהכותרת שלה היא "הוכחת חדו"א". די התאכזבתי; זה נראה מעניין. ⊗]]

הוכחה II:

נראה [בעתיד] מימוש של F-F (דיניץ) שעוצר [תמיד, גם במקרה הכללי], ולכן יש זרימה שלא ניתנת לשיפור, ולפי טענת העזר המרכזית זו זרימה מקסימלית.

הוכחת טענת העזר המרכזית

(NOT(א) \leftarrow NOT(בוכיח (ב): (נוכיח (א) \rightarrow) (נוכיח ש- f ניתנת לשיפור.

 $\Delta > 0$ עם צוואר בקבוק p עם שיפור אזי קיים מסלול שיפור

חדשה חוקית חדשה (עם זרימה לותנת ארימה חוקית חדשה F-F הוספת המסלול לזרימה המסלול לזרימה לותנת ארימה |f|, ולכן |f| לא מקסימלית.

(ב)⇒(κ):

18.5.2014

תהי c_f זרימה לא ניתנת לשיפור ותהי N_f הרשת השיורית עם קיבולות לשיפור ותהי f (יש קשת .($c_f(u,v)>0 \Leftrightarrow (u,v)\in E_f$

 $G_f = \left(V, E_f
ight)$ בגרף ל-ג ל- s אין מסלול מ- s ל-א ניתנת לשיפור, אין מסלול מ- אין מסלול מ- f בגריר:

$$S_f := \left\{ v \in V \middle| \exists p : s \leadsto v \text{ in } G_f \right\}$$
$$T_f := V \setminus S_f$$

כלומר S_f הוא קבוצת כל הקדקודים ב- V אליהם ניתן להגיע מ- S_f הוא קבוצת כל הקדקודים.]

 $t \in T_f$, כלומר , $t \not \in S_f$, ולפי ההנחה , $s \in S_f$

f(u,v) = c(u,v) מתקיים $u \in S_f, v \in T_f$ לכל:

 $(u,v)\in E_f \Longleftarrow c_f (u,v)>0$ כלומר f(u,v)< c(u,v) שיים בשלילה ש- $(u,v)\in S_f$ ב-(u,v) לפי הוא מסלול ב- $(u,v)\in S_f$ מ-(u,v) הגדרת $(u,v)\in S_f$ הוא מסלול ב- $(u,v)\in S_f$ מ-(u,v)

בסתירה להגדרת S_f, I_f לפי טענת חסם עליון $|f| = \sum_{\substack{u \in S_f \\ v \in T_f}} f\left(u,v\right) = \sum_{\substack{u \in S_f \\ v \in T_f}} c\left(u,v\right) = c\left(S_f,T_f\right)$

±<u>(ג)</u> (<u>ג)</u>:

$$|f| = c(S,T)$$
יהיו $f = (S,T)$ יהיו יהיו

לכל זרמה אחרת f' מתקיים לפי דואליות חלשה:

$$|f'| \le c(S,T) = |f|$$

. ולכן f מקסימלית

[זה שהאלגוריתם עוצר זה ממש לא טריוויאלי – למעשה, ניתן למצוא דוגמה בה לא רק שהוא לא יעצור לעולם, אלא גם ככל שמתבצעות יותר איטרציות כך הוא יותר יתקרב לתשובה **שגויה**.

ישנם שני אלגוריתמים אחרים שכן תמיד עוצרים:

. $O(|V| \cdot |E|^2)$ רץ בזמן :Edmonds-Karp ('72) •

- . $\mathrm{O}ig(ig|Vig|^2\cdotig|Eig]$ אלגוריתם של דיניץ (מהאוניברסיטה שלנו): רץ בזמן (י70) •
- . $\mathrm{O}ig(|V|\cdot|E|ig)$ אלגוריתם של Orlin הוצג בכנס בשנה שעברה): רץ בזמן (13) •

[[IT WORKS FOR PIIIIIIIIIIGS!]]

18.5.2014

[