PointConv: Deep Convolutional Networks on 3D Point Clouds

Wenxuan Wu, Zhongang Qi, Li Fuxin CORIS Institute, Oregon State University

wuwen, qiz, lif@oregonstate.edu

☆ 切 被引用次数: 28 相关文章 所有3个版本 >>

3D 点云处理的理想性质

- 1. computationally efficient
- 2. invariant to the order of points in the point cloud
- 3. robust to different samplings and varying densities
- 4. translation invariant
- 5. ...

PointNet & PointNet++

Basic Architecture

PointNet & PointNet++

Input Alignment by Transformer Network

3D 点云处理的理想性质

- 1. computationally efficient √
- 2. invariant to the order of points in the point cloud \checkmark
- 3. robust to different samplings and varying densities \checkmark
- 4. translation invariant √
- 5. ...

但不是卷积!!

2D图像卷积

 $W \in R^{C_{out} \times k \times k \times C_{in}}$

p(i,j)

$$F_{c_{out}} = \sum_{c_{in}} \sum_{i,j} \widehat{W_{i,j}^{c_{out},c_{in}}} F_{i,j}^{c_{in}}$$

$$F_{c_{out}} = \sum_{c_{in}} \sum_{i,j} p_{c_{out}}^{c_{in}}(i,j) F_{i,j}^{c_{in}}$$

$$\frac{1}{c_{out}} \sum_{i,j} p_{c_{out}}^{c_{in}}(i,j) F_{i,j}^{c_{in}}$$

3D PointConv

连续

$$Conv(W, F)_{xyz} =$$

$$\iiint_{(\delta_x, \delta_y, \delta_z) \in G} W(\delta_x, \delta_y, \delta_z) F(x + \delta_x, y + \delta_y, z + \delta_z) d\delta_x \delta_y \delta_z$$

• 离散

$$PointConv(S, W, F)_{xyz} =$$

$$\sum_{(\delta_x, \delta_y, \delta_z) \in G} S(\delta_x, \delta_y, \delta_z) W(\delta_x, \delta_y, \delta_z) F(x + \delta_x, y + \delta_y, z + \delta_z)$$

3D PointConv

• 离散

 $PointConv(S, W, F)_{xyz} =$

$$\sum_{(\delta_x, \delta_y, \delta_z) \in G} S(\delta_x, \delta_y, \delta_z) W(\delta_x, \delta_y, \delta_z) F(x + \delta_x, y + \delta_y, z + \delta_z)$$

S 表示逆密度系数函数。连续函数 W 可以用多层感知器(MLP)近似。 函数 W 的输入是以 (x, y, z) 为中心的 3D 邻域内的 3D 点的相对坐标, 输出是每个点对应的特征 F 的权重

$$\mathbf{F}_{out} = \sum_{k=1}^{K} \sum_{c_{in}=1}^{C_{in}} S(k) \mathbf{W}(k, c_{in}) F_{in}(k, c_{in})$$

$$F_{c_{out}} = \sum_{c_{in}} \sum_{i,j} p_{c_{out}}^{c_{in}}(i,j) F_{i,j}^{c_{in}}$$

3D PointConv

3D 点云处理的理想性质

- 1. computationally efficient ×
- 2. invariant to the order of points in the point cloud \checkmark
- 3. robust to different samplings and varying densities \times (scale)
- 4. translation invariant ×(rotate)
- 5. ...

Efficient PointConv

- For a point cloud, each local region shares the same weight functions which can be learned using MLP. However, weights computed from the weight functions at different points are different. The size of the weights filters generated by the MLP is
 - $B \times N \times K \times (Cin \times Cout)$.
- Suppose B = 32, N = 512, K = 32, Cin = 64, Cout = 64, and the filters are stored with single point precision. Then, the memory size for the filters is 8GB for only one layer.

Lemma 1 The PointConv is equivalent to the following formula: $\mathbf{F}_{out} = Conv_{1\times 1}(\mathbf{H}, (\mathbf{S} \cdot \mathbf{F}_{in})^T \otimes \mathbf{M})$ where $\mathbf{M} \in \mathbb{R}^{K \times C_{mid}}$ is the input to the last layer in the MLP for computing the weight function, and $\mathbf{H} \in \mathbb{R}^{C_{mid} \times (C_{in} \times C_{out})}$ is the weights of the last layer in the same MLP, $Conv_{1\times 1}$ is 1×1 convolution.

- ModelNet40
- ShapeNet
- ScanNet
- CIFAR-10

Table 1. ModelNet40 Classification Accuracy

Method	Input	Accuracy(%)
Subvolume [27]	voxels	89.2
ECC [33]	graphs	87.4
Kd-Network [18]	1024 points	91.8
PointNet [26]	1024 points	89.2
PointNet++ [28]	1024 points	90.2
PointNet++ [28]	5000 points+normal	91.9
SpiderCNN [44]	1024 points+normal	92.4
PointConv	1024 points+normal	92.5

Table 2. **Results on ShapeNet part dataset.** Class avg. is the mean IoU averaged across all object categories, and inctance avg. is the mean IoU across all objects.

	class avg.	instance avg.
SSCNN [45]	82.0	84.7
Kd-net [18]	77.4	82.3
PointNet [26]	80.4	83.7
PointNet++[28]	81.9	85.1
SpiderCNN [44]	82.4	85.3
SPLATNet _{3D} [35]	82.0	84.6
SSCN [7]	-	86.0
PointConv	82.8	85.7

Table 3. Semantic Scene Segmentation results on ScanNet

Method	mIoU(%)
ScanNet [5]	30.6
PointNet++ [28]	33.9
SPLAT Net [35]	39.3
Tangent Convolutions [37]	43.8
PointConv	55.6

Table 4. CIFAR-10 Classification Accuracy

	Accuracy(%)
Image Convolution	88.52
AlexNet [20]	89.00
VGG19 [34]	93.60
PointCNN [21]	80.22
SpiderCNN [44]	77.97
PointConv(5-layer)	89.13
PointConv(VGG19)	93.19

KPConv: Flexible and Deformable Convolution for Point Clouds

Hugues Thomas¹ Charles R. Qi² Jean-Emmanuel Deschaud¹ Beatriz Marcotegui¹ François Goulette¹ Leonidas J. Guibas^{2,3}

¹Mines ParisTech ²Facebook AI Research ³Stanford University

☆ ワワ 被引用次数: 9 相关文章 所有 2 个版本 ≫

2D图像卷积

$$W \in R^{C_{out} \times K \times K \times C_{in}}$$

$$F_{c_{out}} = \sum_{c_{in}} \sum_{i,j} \widehat{W_{i,j}^{c_{out},c_{in}}} F_{i,j}^{c_{in}}$$
 Input Kernel Output $F_{c_{out}} = \sum_{c_{in}} \sum_{x_i \in R_k} \widehat{W_{k,k}} \widehat{W_k^{c_{in}}} h(p_k,x_i) F_{x_i}^{c_{in}}$

2D图像卷积

$$F_{c_{out}} = \sum_{c_{in}} \sum_{x_i \in R_k} \sum_{k} W_k^{c_{in}} h(p_k, x_i) F_{x_i}^{c_{in}}$$

$$h(y_i, \widetilde{x}_k) = \max\left(0, 1 - \frac{\|y_i - \widetilde{x}_k\|}{\sigma}\right)$$

Kernel Position

• Deformable Kernel

$$g_{deform}(y_i, \Delta(x)) = \sum_{k < K} h(y_i, \widetilde{x}_k + \Delta_k(x)) W_k$$

3D 点云处理的理想性质

- 1. computationally efficient ?
- 2. invariant to the order of points in the point cloud \checkmark
- 3. robust to different samplings and varying densities \times (scale)
- 4. translation invariant ×(rotate)
- 5. ...

	ModelNet40	Shapel	NetPart	Methods	Scannet	Sem3D	S3DIS	PL3D
Methods	OA	mcIoU	mIoU	Pointnet [26]	-	-	41.1	-
SPLATNet [34]	_	83.7	85.4	Pointnet++ [27]	33.9	-	-	-
SGPN [42]	_	82.8	85.8	SnapNet [4]	-	59.1	-	-
3DmFV-Net [9]	91.6	81.0	84.3	SPLATNet [34]	39.3	-	-	-
SynSpecCNN [48]	51.0	82.0	84.7	SegCloud [37]	-	61.3	48.9	-
RSNet [15]	-	81.4	84.9	RF_MSSF [38]	-	62.7	49.8	56.3
SpecGCN [40]	91.5		85.4	Eff3DConv [50]	_	-	51.8	_
PointNet++ [27]	90.7	81.9	85.1	TangentConv [36]	43.8	-	52.6	_
SO-Net [19]	90.9	81.0	84.9	MSDVN [30]	-	65.3	54.7	66.9
PCNN by Ext [2]	92.3	81.8	85.1	RSNet [15]	_	_	56.5	_
SpiderCNN [45]	90.5	82.4	85.3	FCPN [28]	44.7	_	_	_
MCConv [13]			85.9	PointCNN [20]	45.8	_	57.3	_
	90.9	947		PCNN [2]	49.8	_	-	_
FlexConv [10]	90.2	84.7	85.0	SPGraph [17]	-	73.2	58.0	_
PointCNN [20]	92.2	84.6	86.1	ParamConv [41]	_	10.2	58.3	_
DGCNN [43]	92.2	85.0	84.7			_		_
SubSparseCNN [9]	-	83.3	86.0	SubSparseCNN [9]	72.5	-	-	
KPConv rigid	92.9	85.0	86.2	KPConv rigid	68.6	74.6	65.4	72.3
KPConv deform	92.7	85.1	86.4	KPConv deform	68.4	73.1	67.1	75.9