7 Bedingte Erwartungswerte und Bedingte Verteilungen

Sei (Ω, \mathcal{A}, P) ein W'Raum, (Ω', \mathcal{A}') ein Messraum, $Y : \Omega \to \Omega'$ sei $(\mathcal{A}, \mathcal{A}')$ -messbar und nehme die Werte $y_1, \ldots, y_n \in \Omega'$ an. $Y^{-1}(y_k) = \{\omega \in \Omega \mid Y(\omega) = y_k\} =: A_k \Rightarrow \Omega = A_1 + \cdots + A_n \text{ und } \sigma(Y) = \{\sum_{k \in I} A_k \mid I \subset \{1, \ldots, n\}\}.$

Definition Sei $X : \Omega \to \mathbb{R}$ eine ZV mit $E|X| < \infty$. Dann ist der bedingte Erwartungswert von X unter der Bedingung $Y = y_k$ definitiert durch:

$$E[X|Y = y_k] := \frac{1}{P(A_k)} \int_{A_k} X dP, \quad k = 1, \dots, n$$

Falls X diskret mit x_1, \ldots, x_m :

$$E[X|Y = y_k] = \frac{1}{P(Y = y_k)} \sum_{j=1}^{m} x_j \cdot P(X = x_j, Y = y_k)$$
$$= \sum_{j=1}^{m} x_j \cdot P(X = x_j | Y = y_k)$$

Definition Der bedingte Erwartungswert von X gegeben Y ist $E[X|Y]: \Omega \rightarrow \mathbb{R}$ mit

$$E[X|Y](\omega) := \sum_{k=1}^{n} E[X|Y = y_k] \cdot \mathbf{1}_{[Y = y_k]}(\omega)$$

Bemerkung a) Offenbar ist E[X|Y] ($\sigma(Y)$, \mathfrak{B})-messbar.

b) Sei Z := E[X|Y]. Dann gilt

$$\int_{A_k} Z dP = \int_{\Omega} \mathbf{1}_{A_k} Z dP$$

$$= E[X, Y = y_k] \cdot P(A_k)$$

$$= \int_{A_k} X dP$$

Wegen der Struktur von $\sigma(Y)$ folgt auch

$$\int_{A} Z dP = \int_{A} X dP \quad \forall A \in \sigma(Y)$$

c) E[X|Y] = g(Y) mit

$$g(y) = \sum_{k=1}^{n} E[X|Y = y_k] \cdot \mathbf{1}_{\{y_k\}}(y)$$

d) Offenbar hängt die Definition von E[X|Y] nur davom ab, auf welchen Mengen $A_k Y$ die verschiedenen Werte annimmt, nicht aber welche Werte das genau sind.

Deshalb schreibt man auch:

$$E[X|Y] = E[X|\sigma(Y)]$$

Beispiel 7.1 Sei
$$([0,1),\mathfrak{B}_{[0,1)},\underbrace{\lambda_{[0,1)}}_{=:P}),X(\omega)=\omega$$

- Hier fehlt ein Bild -

$$A_k = \left[\frac{k-1}{n}, \frac{k}{n}\right), k = 1, \dots, n, \quad \mathfrak{F} := \left\{\sum_{k \in I} A_k | I \subset \{1, \dots, n\}\right\}$$

$$E[X, A_k] = \frac{1}{P(A_k)} \int_{A_k} \omega P(\mathrm{d}\omega)$$

$$= n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \omega \mathrm{d}\omega$$

$$= \frac{1}{2} \frac{2k-1}{n}$$

 $E[X,\mathfrak{F}]$ ist also eine "Approximation" oder "Vergröberung" von X. Bezüglich einer beliebigen Sub- σ -Algebra $\mathfrak{F} \subset \mathcal{A}$ wird der bedingte Erwartungswert wie folgt definiert:

Definition Sei X eine Zufallsvariable mit $E|X| < \infty$ und $\mathfrak{F} \subset \mathcal{A}$ eine Sub- σ -Algebra von \mathcal{A} . Dann hei β t $Z: \Omega \to \mathbb{R}$ eine Version des bedingten Erwartungswertes $E[X|\mathfrak{F}]$ von X unter \mathfrak{F} , wenn gilt

(i) Z ist \mathfrak{F} -messbar

(ii)
$$\int_A Z dP = \int_A X dP \quad \forall A \in \mathfrak{F}$$

Satz 7.1

Der bedingte Erwartungswert existiert und ist bis auf Nullmengen eindeutig.

Beweis Sei $X \geq 0$. Durch

$$Q(A) := \int_A X(\omega) P(d\omega) \quad \forall A \in \mathfrak{F}$$

wird ein Maß auf (Ω, \mathfrak{F}) definiert (Satz 2.7).

Sei $P_{\mathfrak{F}}$ die Einschränkung von P auf \mathfrak{F} . Offenbar $Q \ll P_{\mathfrak{F}}$. Satz von Radon-Nikodym $\Longrightarrow Q$ besitzt eine Dichte Z bzgl. $P_{\mathfrak{F}}$ und Z ist nach Definition \mathfrak{F} -messbar.

Falls X beliebig: $X = X^+ - X^-$

P-f.s. Eindeutigkeit: Seien Z, \tilde{Z} Versionen von $E[X, \mathfrak{F}]$.

$$\implies \int_A (Z - \tilde{Z}) dP = 0 \quad \forall A \in \mathfrak{F}$$

Wegen $\{Z > \tilde{Z}\} \in \mathfrak{F}, \{Z < \tilde{Z}\} \in \mathfrak{F} \text{ folgt:}$

$$E|Z - \tilde{Z}| = \int_{\{Z > \tilde{Z}\}} (Z - \tilde{Z}) dP - \int_{\{Z < \tilde{Z}\}} (Z - \tilde{Z}) dP = 0$$

$$\implies Z = \tilde{Z} \text{ P-f.s.}$$

Bemerkung Der bedingte Erwartungswert ist also eigentlich die Äquivalenzklasse

$$E[X|\mathfrak{F}] = \left\{ Z \in L^1(\Omega,\mathfrak{F},P) | \int_A Z \mathrm{d}P = \int_A X \mathrm{d}P \ \forall A \in \mathfrak{F} \right\}$$

Ein Element davon nennt man "Version". Oft wird $E[X|\mathfrak{F}]$ mit einer Version identifiziert.

Definition Sei $A \in \mathfrak{F}$. Eine Version von $E[\mathbf{1}_A|\mathfrak{F}]$ bezeichnet man als **Version der** bedingten Wahrscheinlichkeit $P(A|\mathfrak{F})$.

Bemerkung Es gilt für $B \in \mathfrak{F}$:

$$\int_{B} P(A|\mathfrak{F}) dP \stackrel{(ii)}{=} \int_{B} \mathbf{1}_{A} dP = P(A \cap B)$$

Satz 7.2

Sei $X \in L^2(\Omega, \mathcal{A}, P)$ mit $||X||^2 = EX^2$. Dann gilt:

$$||X - E[X|\mathfrak{F}]||^2 = \inf\{||X - Y||^2 | Y \in L^2(\Omega, \mathfrak{F}, P)\}$$

Beweis siehe Henze Stochastik II, S.214

Satz 7.3 (Rechenregeln für bedingte Erwartungswerte)

Es seien $X, Y \in L^1(\Omega, \mathcal{A}, P), \mathfrak{F}, \mathfrak{F}_1, \mathfrak{F}_2$ Sub- σ -Algebra von \mathcal{A} . Dann gilt:

- a) $E[aX + bY|\mathfrak{F}] = aE[X|\mathfrak{F}] + bE[Y|\mathfrak{F}]$ P-f.s. $a, b \in \mathbb{R}$
- b) E[E[X|Y]] = EX
- c) $X \leq Y \implies E[X|\mathfrak{F}] \leq E[Y|\mathfrak{F}] \ P$ -f.s.
- d) $F\ddot{u}r \,\mathfrak{F}_1 \subset \mathfrak{F}_2 \, gilt \, E[E[X|\mathfrak{F}_2]|\mathfrak{F}_1] = E[X|\mathfrak{F}_1]$ $F\ddot{u}r \,\mathfrak{F}_1 \supset \mathfrak{F}_2 \, gilt \, E[E[X|\mathfrak{F}_2]|\mathfrak{F}_1] = E[X|\mathfrak{F}_2]$
- e) Falls Y \mathfrak{F} -messbar und $EXY < \infty$ gilt:

$$E[XY|\mathfrak{F}] = YE[X|\mathfrak{F}]$$

f) Falls X von \mathfrak{F} unabhängig ist (d.h. falls die X und $\mathbf{1}_A \ \forall A \in \mathfrak{F}$ unabhängig sind), dann gilt:

$$E[X|\mathfrak{F}] = EX$$

Bemerkung Aus Satz 7.3 bekommt man:

1.
$$X \equiv c \in \mathbb{R} \stackrel{\text{f}}{\Rightarrow} E[c|\mathfrak{F}] = c$$

2.
$$\mathfrak{F} = \{\emptyset, \Omega\} \stackrel{\mathrm{f}}{\Rightarrow} E[X|\mathfrak{F}] = EX$$

3.
$$X \mathfrak{F}$$
-messbar $\stackrel{\mathrm{e}}{\Rightarrow} E[X|\mathfrak{F}] = X$

4.
$$X \ge 0 \stackrel{c)}{\Rightarrow} E[X|\mathfrak{F}] \ge 0$$
 P-f.s.

Beweis von Satz 7.3:

a)

$$\begin{split} \int_A E[aX+bY|\mathfrak{F}]\mathrm{d}P &= \int_A aX+bY\mathrm{d}P \\ &\stackrel{\text{Linearität}}{=} a\int_A X\mathrm{d}P + b\int_A Y\mathrm{d}P \\ &= a\int_A E[X|\mathfrak{F}]\mathrm{d}P + b\int_A E[Y|\mathfrak{F}]\mathrm{d}P \\ &= \int_A \left(aE[X|\mathfrak{F}] + bE[Y|\mathfrak{F}]\right)\mathrm{d}P \quad \forall A \in \mathfrak{F} \end{split}$$

 \implies Behauptung, da $aE[X|\mathfrak{F}]+bE[Y|\mathfrak{F}]$ \mathfrak{F} -messbar und Radon-Nikodym-Dichte P-f.s. eindeutig.

b)
$$E[E[X|\mathfrak{F}]] = \int_{\Omega} E[X|\mathfrak{F}] dP = \int_{\Omega} X dP = EX$$

c)

$$\begin{array}{ll} A & := & \{\omega \in \Omega \, | E[X|\mathfrak{F}](\omega) > E[Y|\mathfrak{F}](\omega) \, \} \in \mathfrak{F} \\ & = & \bigcup_{n \in \mathbb{N}} \underbrace{\left\{\omega \in \Omega \, \middle| E[X|\mathfrak{F}](\omega) > E[Y|\mathfrak{F}](\omega) + \frac{1}{n} \right\}}_{A_n} \end{array}$$

Annahme: $P(A) > 0 \implies \exists n \in \mathbb{N} \text{ mit } P(A_n) > 0$

$$\implies 0 \leq \int_{A_n} (Y - X) dP$$

$$= \int_{A_n} E[Y|\mathfrak{F}] dP - \int_{A_n} E[X|\mathfrak{F}] dP$$

$$= \int_{A_n} (E[Y|\mathfrak{F}] - E[X|\mathfrak{F}]) dP$$

$$\leq -\frac{1}{n} \cdot P(A_n)$$

$$< 0 \text{ Widerspruch!}$$

d) Z.z. Für $\mathfrak{F}_1 \subset \mathfrak{F}_2$ gilt: $E[E[X|\mathfrak{F}_2]|\mathfrak{F}_1] = E[X|\mathfrak{F}_1]$. Sei $A \in \mathfrak{F}_1 \implies A \in \mathfrak{F}_2$ und

$$\int_{A} E[X|\mathfrak{F}_{1}] dP = \int_{A} X dP = \int_{A} E[X|\mathfrak{F}_{2}] dP = \int_{A} E[E[X|\mathfrak{F}_{2}]|\mathfrak{F}_{1}] dP$$

 \implies Behauptung, da Radon-Nikodym-Dichte eindeutig. Für $\mathfrak{F}_1 \supset \mathfrak{F}_2$ ähnlich.

- e) Mit algebraischer Induktion:
 - Sei $Y = \mathbf{1}_B, B \in \mathfrak{F}$ und $A \in \mathfrak{F}$ beliebig.

$$\int_A Y \cdot E[X|\mathfrak{F}] \mathrm{d}P = \int_{A \cap B} E[X|\mathfrak{F}] \mathrm{d}P = \int_{A \cap B} X \mathrm{d}P = \int_A Y X \mathrm{d}P$$

Außerdem ist $Y \cdot E[X|\mathfrak{F}]$ \mathfrak{F} -messbar \implies Behauptung, da Radon-Nikodym-Dichte P-f.s. eindeutig.

- Linearität des Integrals + Teil a) \implies Aussage für $Y \in \mathcal{E}.Y \geq 0$: Bedingte Version des Satzes von der monotonen Konvergenz (\rightarrow Übung).
- $Dann Y = Y^+ Y^-$

f)

$$\begin{split} \int_A E[X|\mathfrak{F}] \mathrm{d}P &=& \int_A X \mathrm{d}P \\ &=& \int_\Omega \mathbf{1}_A X \mathrm{d}P \\ &\stackrel{\text{unabh.}}{=} & \int \mathbf{1}_A \mathrm{d}P \cdot \underbrace{\int X \mathrm{d}P}_{=EX} \\ &=& \int_A EX \mathrm{d}P \end{split}$$

 \implies Behauptung, da $EX \mathfrak{F}$ -messbar.

Satz 7.4 (Faktorisierungssatz)

Es seien $(\Omega, \mathcal{A}), (\Omega', \mathcal{A}')$ Messräume und $Y : \Omega \to \Omega'$ ein Zufallsgröße. Ist $X : \Omega \to \mathbb{R}$ eine $(\sigma(Y), \mathfrak{B})$ -messbare Zufallsvariable. Dann gibt es eine \mathfrak{B} -messbare Funktion $g : \Omega' \to \mathbb{R}$ mit

$$X = g \circ Y$$
.

Beweis Algebraische Induktion:

(i) Sei
$$X = \sum_{j=1}^{n} a_{j} \mathbf{1}_{A_{j}} \in \mathcal{E}$$
 mit $a_{j} \geq 0, A_{j} \in \sigma(Y)$.
 $\implies A_{j} = Y^{-1}(A'_{j}), A'_{j} \in \mathcal{A}'$. Wähle $g = \sum_{j=1}^{n} a_{j} \mathbf{1}_{A'_{j}}$
 $\implies X = g \circ Y$
 \implies Behauptung

(ii) Sei $X \geq 0$ und $(\sigma(Y), \mathfrak{B})$ -messbar. $\Longrightarrow \exists (X_n) \subset \mathcal{E}, 0 \leq X_n \uparrow X$ und wegen (i) $\exists (\mathcal{A}', \mathfrak{B})$ -messbare Funktion g_n mit $X_n = g_n \circ Y, n \in \mathbb{N}$.

$$\implies X = \sup_{n \in \mathbb{N}} X_n = \sup_{n \in \mathbb{N}} (g_n \circ Y) = (\sup_{n \in \mathbb{N}} g_n) \circ Y$$

Wähle also $g = \sup_{n \in \mathbb{N}} g_n$

(iii)
$$X = X^+ - X^- \stackrel{\text{(ii)}}{\Longrightarrow} X = g_1 \circ Y - g_2 \circ Y$$
. Wähle $g = g_1 - g_2$.

Bemerkung Statt $E[X|\sigma(Y)]$ schreiben wir auch E[X|Y] und wegen Satz 7.4 $\exists g: \Omega' \to \mathbb{R}$ $(\mathcal{A}', \mathfrak{B})$ -messbar mit $E[X|Y] = g \circ Y$ P-f.s.. Die Funktion g ist P^Y -f.s. eindeutig.

Definition Ist $E[X|Y] = g \circ Y$ wie oben, so heißt E[X|Y = y] = g(y) (ein) bedingter Erwartungswert von X unter der Bedingung Y = y.

Satz 7.5

Für alle $A' \in \mathcal{A}'$ gilt:

$$\int_{A'} E[X|Y = y]P^{Y}(dy) = \int_{Y^{-1}(A')} X dP$$

Beweis

$$\int_{A'} E[X|Y=y]P^Y(\mathrm{d}y) = \int_{A'} g \mathrm{d}P^Y \overset{\mathrm{Sa. 2.4}}{=} \int_{Y^{-1}(A')} g \circ Y \mathrm{d}P = \int_{Y^{-1}(A')} X \mathrm{d}P.$$

Bemerkung Für $A \in \mathcal{A}$ heißt $P(A|Y=y) := E[\mathbf{1}_A|Y=y]$ (eine) bedingte Wahrscheinlichkeit von A unter der Bedingung Y=y. Bedingte Wahrscheinlichkeiten treten oft bei gekoppelten Zufallsexperimenten auf. Die folgende Sichtweise ist konstruktiver:

Definition Es seien $(\Omega_1, \mathcal{A}_1), (\Omega_2, \mathcal{A}_2)$ messbare Räume. Eine Abbildung $Q : \Omega_1 \times \mathcal{A}_2 \to [0, 1]$ mit

- (i) $\omega_1 \mapsto Q(\omega_1, A_2)$ ist A_1 -messbar $\forall A_2 \in A$.
- (ii) $A_2 \mapsto Q(\omega_1, A_2)$ ist ein Wahrscheinlichkeitsmaß auf $(\Omega_2, A_2) \ \forall \omega_1 \in \Omega_1$ nennt man **Übergangskern** oder **Kern** von (Ω_1, A_1) nach (Ω_2, A_2) .

Satz 7.6

Es seien $(\Omega_1, \mathcal{A}_1, P_1)$ ein Wahrscheinlichkeitsraum, $(\Omega_2, \mathcal{A}_2)$ ein Messraum und Q ein Übergangskern von $(\Omega_1, \mathcal{A}_1)$ nach $(\Omega_2, \mathcal{A}_2)$. Dann wird durch

$$P(A) := \int_{\Omega_1} \left(\int_{\Omega_2} \mathbf{1}_A(\omega_1, \omega_2) Q(\omega_1, d\omega_2) \right) P_1(d\omega_1)$$

ein Wahrscheinlichkeitsmaß $P =: P_1 \otimes Q$ auf $A_1 \otimes A_2$ definiert. P heißt **Koppelung** und ist das einzige Wahrscheinlichkeitsmaß auf $A_1 \otimes A_2$ mit der Eigenschaft

$$P(A_1 \times A_2) = \int_{A_1} Q(\omega_1, A_2) P_1(d\omega_1) \quad (*)$$

Beweis

- 1. Ähnlich wie in §3 zeigt man: für $f: \Omega_1 \times \Omega_2 \to \mathbb{R}_+$, $f(A_1 \otimes A_2)$ -messbar ist $\omega_1 \mapsto \int_{\Omega_2} f(\omega_1, \omega_2) Q(\omega_1, d\omega_2) A_1$ -messbar.
- 2. Für $A = A_1 \times A_2$ ist $\mathbf{1}_A(\omega_1, \omega_2) = \mathbf{1}_{A_1}(\omega_1)\mathbf{1}_{A_2}(\omega_2) \implies (*)$.
- 3. $P(\Omega_1 \times \Omega_2) = 1$ wegen (*). $P \ge 0$ ist klar.

$$P\left(\sum_{n=1}^{\infty} A_{n}\right) = \int_{\Omega_{1}} \left(\int_{\Omega_{2}} \underbrace{\mathbf{1}_{\sum_{n=1}^{\infty}}(\omega_{1}, \omega_{2})}_{=\sum_{n=1}^{\infty} \mathbf{1}_{A_{n}}(\omega_{1}, \omega_{2})} Q(\omega_{1}, d\omega_{2})\right) P_{1}(d\omega_{1})$$

$$= \sum_{n=1}^{\infty} \left(\int_{\Omega_{1}} \left(\int_{\Omega_{2}} \mathbf{1}_{A_{n}}(\omega_{1}, \omega_{2}) Q(\omega_{1}, d\omega_{2})\right) P_{1}(d\omega_{1})\right)$$

$$= \sum_{n=1}^{\infty} P(A_{n}).$$

4. Eindeutigkeitssatz für Maße.

Satz 7.7 Es seien (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, $(\Omega_1, \mathcal{A}_1)$ ein messbarer Raum, $Y: \Omega \to \Omega_1$ $(\mathcal{A}, \mathcal{A}_1)$ -messbar und X ein d-dimensionaler Zufallsvektor. Dann existiert ein Kern Q von $(\Omega_1, \mathcal{A}_1)$ nach $(\mathbb{R}^d, \mathfrak{B}^d)$ derart, dass

$$P^{X,Y} = P^Y \otimes Q.$$

Q ist eine Version der bedingten Verteilung von X unter Y. Schreibweise:

$$Q(y,\cdot) = P^X(\cdot|Y=y).$$

Beweis - ohne Beweis -

Bemerkung Für $A \in \mathcal{A}, B \in \mathfrak{B}^d$ gilt:

$$P(X \in B, Y \in A) = \int_{A} Q(y, B) P^{Y} dy = \int_{A} P^{X} (B|Y = y) P^{Y} (dy)$$

Satz 7.8

Es seien μ und ν σ -endliche Maße auf \mathcal{A}_1 bzw. \mathfrak{B}^d . $P^{(Y,X)}$ besitze eine Dichte f bezüglich $\mu \otimes \nu$. Es sei $f_Y(y) := \int_{\mathbb{R}^d} f(x,y)\nu(dx)$ die (Rand-)Dichte von P^Y bzgl. μ . Weiterhin sei

$$f(x|y) := \frac{f(x,y)}{f_Y(y)} \quad und \quad \frac{0}{0} := 0.$$

So wird durch

$$P^{X}(B|Y=y) := \int_{B} f(x|y)\nu(dx) \quad \forall B \in \mathfrak{B}^{d}, y \in \Omega_{1}$$

eine bedingte Verteilung von X unter der Bedingung Y = y definiert. $f(\cdot|y)$ heißt bedingte ν -Dichte von X unter der Bedingung Y = y.

Beweis

 $y\mapsto \int_B f(x|y)\nu(\mathrm{d}x)$ ist messbar $\forall B\in\mathfrak{B}^d$ (Satz von Tonelli), $B\mapsto \int_B f(x|y)\nu(\mathrm{d}x)$ ist ein Wahrscheinlichkeitsmaß $\forall y\in\Omega_1$. Für $A\in\mathcal{A}_1, B\in\mathfrak{B}^d$ gilt:

$$P^{(Y,X)}(A \times B) = \int_{A \times B} f d(\mu \otimes \nu)$$

$$= \int_{A} \left(\int_{B} f(x,y) \nu(dx) \right) \mu(dy)$$

$$= \int_{A} \left(\int_{B} f(x|y) \nu(dx) \right) f_{Y}(y) \mu(dy)$$

$$\stackrel{!}{=} \int_{A} P^{X}(B|Y=y) \underbrace{P^{Y}(dy)}_{=f_{Y}(y)\mu(dy)}$$

Satz 7.9

Es seien (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, $Y : \Omega \to \mathbb{R}^d$ ein Zufallsvektor und X eine Zufallsvariable mit $E|X| < \infty$. Dann ist

$$h(y) := \int_{\mathbb{R}} x P^X (dx | Y = y)$$

ein bedingter Erwartungswert von X unter der Bedingung Y = y.

Beweis Nach 7.5:

$$\int_{B} E[X|Y=y] P^{Y}(\mathrm{d}y) = \int_{Y^{-1}(B)} X \mathrm{d}P.$$

Für $B \in \mathfrak{B}^d$ und $T(Y,X) := X \cdot (\mathbf{1}_B \circ Y)$ gilt:

$$\int_{Y^{-1}(B)} X dP = \int T(Y, X) dP$$

$$\stackrel{2.4}{=} \int T(y, x) P^{(Y,X)} (dy, dx)$$

$$= \int x \mathbf{1}_{B}(y) P^{(Y,X)} (dy, dx)$$

$$= \int_{B} \left(\int_{\mathbb{R}} x P^{X} (dx | Y = y) \right) P^{Y} (dy)$$

 $\stackrel{7.5}{\Longrightarrow}$ Beh.

Beispiel 7.2

U und V seien unabhängig und U(0,1)-verteilt und entsprechen den zufälligen Seitenlängen eines Rechtecks. Es sei X=Flächeninhalt des Rechtecks und Y=Umfang des Rechtecks. Klar: X und Y sind nicht unabhängig.

Weiter ist
$$f_{U,V}(u,v) = \begin{cases} 1 & 0 < u < 1 \text{ und } 0 < v < 1 \\ 0 & \text{sonst} \end{cases}$$
 die gemeinsame Dichte von U und V . \Longrightarrow (Transformationssatz für Dichten) $f_{X,Y}(x,y) = \frac{2}{\sqrt{y^2-16x}}$ für $0 < x < 1$ und $4\sqrt{x} < y < 2 + 2x; f_X(x) = -\log x$ für $0 < x < 1$. $\Longrightarrow f(y|x) = -\frac{2}{\log x\sqrt{y^2-16x}}$ für $4\sqrt{x} < y < 2 + 2 + x$. $\Longrightarrow E[Y|X=x] = \int y \cdot f(y|x) \mathrm{d}y = -\frac{4(1-x)}{\log x}$.

Beispiel 7.3 (Buffonsches Nadelproblem)

Wir werfen eine Nadel der Länge 1 zufällig auf einen unendlich langen Streifen der Breite 1. Wie groß ist die Wahrscheinlichkeit, dass die Nadel mindestens eine Wand des Korridors schneidet?

X = Abstand der Nadelmitte von der linken Wand

Y = Winkel der Nadel zum Lot

Annahme: $X \sim U(0,1), Y \sim U(-\frac{\pi}{2}, \frac{\pi}{2})$ und X, Y unabhängig.

A= Nadel schneidet die Wand = $\{\omega \mid (X,Y)(\omega) \in B\}$ mit

$$B = \{(x,y) \mid |y| < \frac{\pi}{2}, x \in [0, \frac{1}{2}\cos y] \cup [1 - \frac{1}{2}\cos y, 1]\}$$

- hier fehlt eine Skizze -

Es ergibt sich:

$$P(A) = P^{X,Y}(B)$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{1} \mathbf{1}_{B}(x,y) P^{X}(dx|Y = y) P^{Y}(dy)$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} P^{X}([0, \frac{\cos y}{2}] \cup [1 - \frac{\cos y}{2}, 1] | Y = y) P^{Y}(dy)$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos y \cdot \frac{1}{\pi} dy$$

$$= \frac{2}{\pi}$$

So läßt sich zum Beispiel auch π näherungsweise bestimmen.