linguaggi Non-regolari

(Pumping Lemma)

linguaggi Non-regolari

$$\{a^nb^n: n\geq 0\}$$

$$\{vv^R: v \in \{a,b\}^*\}$$

linguaggi regolari

$$b*c+a$$

$$b+c(a+b)*$$

etc...

Come possiamo provare che un linguaggio I non è regolare?

Dobbiamo provare che non vi è Nessun DFa or NFa or RE che lo accetta

Difficulty: non è facile da provare (perchè vi sono infiniti dfa, nfa e re)

Solution: usare il Pumping Lemma !!!

il Pigeonhole Principle

Capelli. Persone.

4 pigeons

3 pigeonholes

a pigeonhole deve Contenere due pigeons

n pigeons

m pigeonholes

• • • • • • • • • •

il Pigeonhole Principle

n pigeons

m pigeonholes

n > m

a pigeonhole deve Contenere minimo due pigeons

il Pigeonhole Principle

ei

DFa

considera un DFa con 4 stati

considera il cammino di una "stringa lunga": (lunghezza almeno 4) aaaab

uno stato è ripetuto nel cammino di aaaab

il stato è ripetuto da a, risultato del pigeonhole principle

considera il cammino di a "long" stringa: aabb (lunghezza almeno 4)

Dal pigeonhole principle: uno stato è ripetuto nel cammino di *aabb*

il stato è ripetuto come risultato del pigeonhole principle

In Generale: $se|w| \ge \#states$ of DFA Per il pigeonhole principle, uno stato è ripetuto nel cammino W

cammino di $w = \sigma_1 \sigma_2 \cdots \sigma_k$

$|w| \ge \#$ states of DFA = m

il Pumping Lemma

prendi un linguaggio regolare infinito L (contiene un numero infinito di stringhe)

Sia un DFa che accetta \boldsymbol{m} stati

prendiamo una stringa $w \in L$ con $|w| \ge m$

(numero di stati del DFa)

Almeno uno stato è ripetuto nel cammino di w

Ci saranno molti stati ripetuti

prendiamo il primo stato ripetuto

9

In una dimensione il cammino di: W

Possiamo scrivere w = xyz

Una dimensione del cammino di :
$$w$$

prima seconda

occorrenza occorrenza

 $x = \sigma_1 \cdots \sigma_i$
 $y = \sigma_{i+1} \cdots \sigma_j$
 $y = \sigma_{i+1} \cdots \sigma_i$
 $y = \sigma_{i+1} \cdots \sigma_i$
 $z = \sigma_{j+1} \cdots \sigma_k$

Nel DFa: w = x y z

osservazione: lunghezza $|xy| \le m$ numero di stati del DFa

osservazione: lunghezza $|y| \ge 1$

Vi è almeno un loop

Non badiamo alla forma della stringa

Z

z può avere pezzi di cammino di x and y

stringa addizionale: la stringa xz è accettata

Non fa il loop

stringa addizionale: la stringa x y y z è accettata

addizionale stringa: la stringa x y y y z è accettata

In Generale: la stringa $x y^i z$ è accettata i = 0, 1, 2, ...

quindi:

$$x y^i z \in L$$

$$i = 0, 1, 2, \dots$$

linguaggio accettato dal DFa

il Pumping Lemma:

- \cdot dato un linguaggio regolare infinito L
- esiste an intero m (lunghezza critica)
- per ogni stringa $w \in L$ con lunghezza $|w| \ge m$
- possiamo scrivere w = x y z
- $|xy| \le m e |y| \ge 1$
- tale che: $x y^{i} z \in L$ i = 0, 1, 2, ...

nel libro sipster:

lunghezza Critica = m lunghezza Pumping p

applicazioni applicazioni

del Pumping Lemma

osservazione:

ogni linguaggio di dimensione finita è regolare

(possiamo facilmente costruire an NFa che accetta ogni stringa nel linguaggio)

quindi, ogni linguaggio non-regolare è di dimensione infinita (contiene an infinito numero di stringhe)

supponiamo vogliamo provare che Un linguaggio infinito L non è regolare

- 1. assumiamo l'opposto: L è regolare
- 2. il pumping lemma deve valere per I
- 3. usiamo il pumping lemma per ottenere una contradizione
 - 4. quindi, L non è regolare

Spiegazione Step 3: come avere una contradizione

- 1. Let m sia la lunghezza critica for L
- 2. Scegliamo una stringa particolare $w \in L$ che soddisfa la condizione di lunghezza $|w| \ge m$
 - 3. scrivere w = xyz
- 4. mostriamo che $w' = xy^iz \notin L$ Per qualche $i \neq 1$
- 5. Questo ci dà una contradizione, poichè dal pumping lemma $w' = xy^iz \in L$

Note:

È sufficiente mostrare che solo una stringa $w \in L$ genera una contradizione

Non dobbiamo ottenere contradizioni per ogni $w \in L$

Esempi di applicazioni del Pumping Lemma

teorema: il linguaggio
$$L = \{a^nb^n : n \ge 0\}$$
 non è regolare

dim: Usa il Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

assumiamo per contradizione che Lè un linguaggio regolare

Since L è infinito Possiamo applicare il Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

sia m la lunghezza critica per L

Prendiamo a stringa
$$w$$
 such che: $w \in L$ e lunghezza $|w| \ge m$

prendiamo
$$w = a^m b^m$$

Dal Pumping Lemma:

possiamoscrivere
$$W = a^m b^m = x y z$$

Con lunghezza
$$|x y| \le m, |y| \ge 1$$

$$\mathbf{w} = xyz = a^m b^m = \underbrace{a...aa...aa...ab...b}_{\mathbf{x}}$$

allora:
$$y = a^k$$
, $1 \le k \le m$

$$x y z = a^m b^m$$

$$y = a^k$$
, $1 \le k \le m$

dal Pumping Lemma:

$$x y^l z \in L$$

$$i = 0, 1, 2, \dots$$

allora:
$$x y^2 z \in L$$

$$x y z = a^m b^m$$
 $y = a^k$, $1 \le k \le m$

$$x y^2 z \in L$$

$$xy^{2}z = \underbrace{a...aa...aa...aa...ab...b}_{m+k} \in L$$

allora:
$$a^{m+k}b^m \in L$$

aaabbb =xyz
1 caso x=aa y=a z=bbb
aa aa bbb

2 caso x=aaab y=b z=b aaab bb b

3 caso
x=aa y=ab z=bb
aa ababab bb

$$a^{m+k}b^m \in L$$

$$k \ge 1$$

MA:
$$L = \{a^n b^n : n \ge 0\}$$

$$a^{m+k}b^m \notin L$$

contradizione!!!

quindi:

l'assunzione che $\,L\,$ è un linguaggio regolare non è vera

Conclusione: L non è un linguaggio regolare

END dim

linguaggio Non-regolare $\{a^nb^n: n \ge 0\}$

a*b*
aayabybb=xyz y=a
aa aa a bbb
aaa bbbbb
y=ab
aaabbbb