

61200795 MODELACIÓN

ACTIVIDAD DE APRENDIZAJE

Ubaté Cundinamarca 14 DE MAYO 2024

DOCENTE: ING. SAMIR FERNANDO VERGARA BELTRÁN¹

ELABORADO POR: JULIANA CASTILLO ARAUJO²

MIGUEL ANGEL GOMEZ ALARCON³

JULIO CESAR JUNIOR PRADA HERNANDEZ4

DIANA MAYERLY SANCHEZ GONZALEZ⁵

ACTIVIDAD DE APRENDIZAJE

Objetivo: Conocer los algoritmos que utiliza el programa MATLAB para la solución de ejercicios.

Competencias asociadas:

Solucionar ejercicios usando los algoritmos correspondientes.

Adquirir destrezas en la solución de problemas de optimización.

Actividad de aprendizaje:

En el siguiente enlace encontrara el enlace que contiene los archivos realizados en MATLAB para el desarrollo de las 4 prácticas correspondientes de este informe:

https://mailunicundiedu-

my.sharepoint.com/:f:/g/personal/magomezalarcon_ucundinamarca_edu_co/EqCF6o6vIGRNoRxFDjssie0Bpq96_r3_L3wSH0I74Et4-w?e=SACBLT

PRÁCTICA N°1 MANEJO DE MATRICES

1. Ingresar las siguientes matrices al MATLAB

¹ sfvergara@ucundinamarca.edu.co

² jcastilloa@ucundinamarca.edu.co

³ magomezalarcon@ucundinamarca.edu.co

⁴ jcesarjuniorprada@ucundinamarca.edu.co

⁵ dmayerlysanchez@ucundinamarca.edu.co

Figura 1 Manejo de matrices en MATLAB

Nota: Se evidencia el ingreso de las matrices m1, m2, m3, m4 y m5 MATLAB.

2. Guardar las matrices con el nombre matrices_01.mat

Figura 2

Guardar el archivo "matrices_01.mat" en MATLAB

```
>> save ('matrices_01.mat')
fx >> |
```

Nota: Se evidencia el guardado del archivo en MATLAB.

Acceso directo al archivo guardado "matrices_01.mat":

https://mailunicundiedu-

my.sharepoint.com/personal/jcastilloa_ucundinamarca_edu_co/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fjcastilloa%5Fucundinamarca%5Fedu%5Fco%2FDocuments%2Fmatrices%5F01%2Emat&parent=%2Fpersonal%2Fjcastilloa%5Fucundinamarca%5Fedu%5Fco%2FDocuments&ga=1

- 3. Calcular:
- 3.1 Calcular la transpuestas -> m1.

Figura 3Calcular las transpuestas en MATLAB

Nota: Se evidencia la ejecución de las transpuestas archivo en MATLAB.

3.2 Calcular la determinante -> det(mi)

Figura 4 Calcular la determinante en MATLAB

Nota: Se evidencia la ejecución de las determinantes en el archivo en MATLAB.

3.3 Calcular la inversa -> inv(mi)

Figura 5 Calcular la inversa en MATLAB

Nota: Se evidencia la ejecución de las inversas de las matrices m1, m2, m3, m4 y m5 en el archivo en MATLAB.

4. Guardar los nuevos resultados como matrices_02.mat

Figura 6 Guardar el archivo "matrices_02.mat" en MATLAB


```
>> save ('matrices_02.mat')
fx >>
```

Nota: Se evidencia el guardado del archivo en MATLAB.

Acceso directo al archivo guardado "matrices_02.mat":

https://mailunicundiedu-

my.sharepoint.com/personal/jcastilloa_ucundinamarca_edu_co/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fjcastilloa%5Fucundinamarca%5Fedu%5Fco%2FDocuments%2Fmatrices%5F02%2Emat&parent=%2Fpersonal%2Fjcastilloa%5Fucundinamarca%5Fedu%5Fco%2FDocuments&ga=1

5. Realicemos un cálculo:

Figura 7 Realizar el cálculo de las matrices en MATLAB

Nota: Se ejecuta el punto" cal_01" del archivo en MATLAB.

6. Comparemos:

Figura 8 Comparativa de las matrices en MATLAB

Nota: Se ejecuta las comparaciones de las matrices del archivo en MATLAB.

7. Comparaciones especiales

Figura 9 Comparativa especiales de las matrices en MATLAB

Nota: Se ejecuta las comparaciones especiales de las matrices del archivo en MATLAB.

8. Guardar los nuevos resultados como matrices_03.mat

Figura 10

Guardar el archivo "matrices_03.mat" en MATLAB

```
>> save ('matrices_03.mat')
fx >>
```

Nota: Se evidencia el guardado del archivo en MATLAB.

Acceso directo al archivo guardado "matrices 03.mat":

https://mailunicundiedu-

my.sharepoint.com/personal/jcastilloa_ucundinamarca_edu_co/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fjcastilloa%5Fucundinamarca%5Fedu%5Fco%2FDocuments%2Fmatrices%5F03%2Emat&parent=%2Fpersonal%2Fjcastilloa%5Fucundinamarca%5Fedu%5Fco%2FDocuments&ga=1

9. Borrar memorias con el comando "clear"

Figura 11 Ejecución del comando "clear" en MATLAB

Nota: Se evidencia el borrado automatico con el comando "clear" de todos los archivos en MATLAB.

PRÁCTICA N°2 MANEJO DE NUMEROS COMPLEJOS

Figura 12 Números complejos MATLAB


```
>> d01=(4+7i);
>> d02=(8-2i);
>> d03=(-4+3i);
>> d04=(-6-2i);
```

Nota: Se evidencia el ingreso de los números complejos en MATLAB.

Figura 13

Operación de Números complejos en MATLAB

```
>> res01=d01+d02+d03+d04

res01 =

2.0000 + 6.0000i

>> res02=d02*d03

res02 =

-26.0000 +32.0000i

>> res03=d02/d03

res03 =

-1.5200 - 0.6400i
```

Nota: Se evidencia el resultado de las operaciones en MATLAB.

Figura 14 Funciones Números complejos en MATLAB


```
Command Window
>> real(res01)

ans =
2
>> imag(res02)

ans =
32
>> conj(res03)

ans =
-1.5200 + 0.6400i
```

Nota: Se evidencia el uso de funciones para números complejos MATLAB

Figura 15

Funciones Números complejos en MATLAB

```
>> angle(res01+res02)
ans =
2.1341
:
```

Nota: Se evidencia el uso de funciones para números complejos MATLAB

https://mailunicundiedu-

my.sharepoint.com/:f:/g/personal/magomezalarcon_ucundinamarca_edu_co/EqCF 606vIGRNoRxFDjssie0Bpq96_r3_L3wSH0I74Et4-w?e=SACBLT

PRÁCTICA - N°3 MANEJO DE ARCHIVOS *.M

Resolver una solución cuadrática verificar y graficar con un sencillo archivo *.M

- 1.) Crear un archivo llamado cuadratica 01.m
- 2.) Ingresar estos datos:

Figura 16

Definición de variables

```
% Necesitamos calcular la solución de la ecuación cuadrática
% Y si a=-2, b=4 y c=3
a=-2
a =
    -2
>> b=4
b =
    4
|
>> c=3;
```

Nota: Se evidencia el uso de la ecuación cuadrática

Figura 17

Uso de las variables

```
>> % Lo hacemos utilizando la ecuación cuadrática, obteniendo las dos
% soluciones
x1 = [-b+sqrt(b^2-4*a*c)]/(2*a)
x1 =
    -0.5811

>> x2 = [-b-sqrt(b^2-4*a*c)]/(2*a)
pause
x2 =
    2.5811
```

Nota: Se evidencia el uso de la ecuación cuadrática

Figura 18

Verificación de resultados

>> % Podemos verificar que el resultado es correcto, reemplazando los valores % obtenidos en la ecuación y viendo si el resultado es cero $v1 = a*x1^2+b*x1+c$

v1 =

-4.4409e-16

>> $v2 = a*x2.^2 + b*x2+c$ pause

v2 =

-1.7764e-15

Nota: Se evidencia el uso de la ecuación cuadrática

Figura 19

Verificación con filas y columnas de la variable x

>> x = [x1-2:0.1:x2+2]

Columns 1	through 12	!									
-2.5811	-2.4811	-2.3811	-2.2811	-2.1811	-2.0811	-1.9811	-1.8811	-1.7811	-1.6811	-1.5811	-1.4811
Columns 13	through 2	14									
-1.3811	-1.2811	-1.1811	-1.0811	-0.9811	-0.8811	-0.7811	-0.6811	-0.5811	-0.4811	-0.3811	-0.2811
Columns 25	through 3	16									
-0.1811	-0.0811	0.0189	0.1189	0.2189	0.3189	0.4189	0.5189	0.6189	0.7189	0.8189	0.9189
Columns 37	through 4	18									
1.0189	1.1189	1.2189	1.3189	1.4189	1.5189	1.6189	1.7189	1.8189	1.9189	2.0189	2.1189
Columns 49	through 6	60									
2.2189	2.3189	2.4189	2.5189	2.6189	2.7189	2.8189	2.9189	3.0189	3.1189	3.2189	3.3189
Columns 61	through 7	'2									
3.4189	3.5189	3.6189	3.7189	3.8189	3.9189	4.0189	4.1189	4.2189	4.3189	4.4189	4.5189

Nota: Se evidencia el uso de la ecuación cuadrática

Figura 20

Verificación con filas y columnas de la variable y

>> y= a*x.^	2+b*x+c										
y =											
Columns 1	through 1	.2									
-20.6491	-19.2367	-17.8642	-16.5317	-15.2393	-13.9868	-12.7744	-11.6019	-10.4695	-9.3770	-8.3246	-7.3121
Columns 13 through 24											
-6.3396	-5.4072	-4.5147	-3.6623	-2.8498	-2.0774	-1.3449	-0.6525	-0.0000	0.6125	1.1849	1.7174
Columns 2	5 through	36									
2.2098	2.6623	3.0747	3.4472	3.7796	4.0721	4.3246	4.5370	4.7095	4.8419	4.9344	4.9868
Columns 3	7 through	48									
4.9993	4.9717	4.9042	4.7967	4.6491	4.4616	4.2340	3.9665	3.6589	3.3114	2.9238	2.4963
Columns 4	9 through	60									
2.0288	1.5212	0.9737	0.3861	-0.2414	-0.9090	-1.6165	-2.3641	-3.1516	-3.9791	-4.8467	-5.7542
Columns 6	1 through	72									
-6.7018	-7.6893	-8.7169	-9.7844	-10.8920	-12.0395	-13.2270	-14.4546	-15.7221	-17.0297	-18.3772	-19.7648

Nota: Se evidencia el uso de la ecuación cuadrática

Figura 21 Gráfica de la ecuación plot(x,y)

Nota: Se evidencia el uso de la ecuación cuadrática

https://mailunicundiedu-

my.sharepoint.com/:f:/g/personal/magomezalarcon_ucundinamarca_edu_co/EqCF 606vIGRNoRxFDjssie0Bpq96_r3_L3wSH0I74Et4-w?e=SACBLT

PRÁCTICA N°4 PROGRAMACIÓN

Dado el sistema de ecuaciones hallar los valores X1, X2, X3

$$3X_1 5X_2 7X_3 = 40$$

 $8X_1 4X_2 - 2X_3 = -12$
 $6X_1 7X_2 - 3X_3 = -41$

1. Construir un fichero valores_01.m

Figura 22

Archivo del fichero creado valores_01.m

Moy, 1:07 a. m. 349 bytes MA	ΓLAB Code
------------------------------	-----------

Nota: Se evidencia la creación del fichero

2. Ingresar:

Figura 23

Ingreso de los valores

Nota: Se ingresan los valores dm, dmx1, dmx2, dmx3, m, mx1, mx2, mx3, n, x1, x2, x3

3. Construir un fichero valores_02.m

Figura 24

Ingreso de los ficheros para valores_02.m

Nota: Se ingresan las variables con argumentos para estilo, tamaño y fuente

Figura 25

Vista ejecutada del fichero valores_02.m

Nota: Se ejecuta las instrucciones dadas en el fichero valores_02.m

4. Construir un fichero valores_03.m

Figura 26Vista del código instrucciones del fichero valores_03.m

```
| Valores1.m × Valores_03.m × + |
% Textos:
txt_01=uicontrol(gcf,...
"5tyle","text","String","X1",...
"Position", [280 350 50 22]);
txt_02=uicontrol(gcf,...
"5tyle","text","String","X2",...
"Position", [280 325 59 22]);
txt_03=uicontrol(gcf,...
"5tyle","text","String","X3",...
"Position", [280 300 50 22]);
|
% Resultados:
res_01 = uicontrol(gcf,...
"5tyle","text",...
"BackgroundColor","y",...
"FontSize",10, "FontName","Arial",...
"HorizontalAlignment","left",...
"String", [X(1)],...
"Position", [340 350 120 20]);
res_02 = uicontrol(gcf,...
"5tyle","text",...
"BackgroundColor","y",...
"FontSize",10, "FontName","Arial",...
"HorizontalAlignment","left",...
"String", [X(2)],...
"Position", [340 325 120 20]);
res_03 = uicontrol(gcf,...
"Style","text",...
"BackgroundColor","y",...
"FontSize",10, "FontName","Arial",...
"HorizontalAlignment","left",...
"BackgroundColor","y",...
"Style","text",...
"BackgroundColor","y",...
"Style","text",...
"BackgroundColor","y",...
"Style","text",...
"BackgroundColor","y",...
```

Nota: Se realizan las instrucciones dadas en el fichero valores_03.m

Figura 27Vista del código ejecutada del fichero valores_03.m

Nota: Se ejecuta las instrucciones dadas en el fichero valores_03.m