DEEP SEQUENTIAL LATENT VARIABLE MODELS

JOSEPH MARINO
CALTECH

time is a fundamental aspect of the universe

observed data are sequential

vision

audio

joint angles

interacting in the world involves processing sequences of data

COMPUTATIONAL APPROACHES TO STATE ESTIMATION

discriminative generative actions internal states observations

COMPUTATIONAL APPROACHES TO STATE ESTIMATION

ADVANTAGES OF GENERATIVE MODELING

unsupervised learning: learn from the data

generalization: learn a task-agnostic representation

OUTLINE

BACKGROUND

GENERATIVE MODEL

a model of the density of observed data

number of features

number of data examples

DATA

EMPIRICAL DATA DISTRIBUTION

estimating the density of the empirical data distribution

FAMILIES OF GENERATIVE MODELS

FAMILIES OF GENERATIVE MODELS

MAXIMUM LIKELIHOOD

data: $p_{\mathrm{data}}(\mathbf{x})$

model: $p_{ heta}(\mathbf{x})$

parameters: θ

maximum likelihood estimation

find the model that assigns the *maximum likelihood* to the data

$$\theta^* = \arg\min_{\theta} \ D_{KL}(p_{\text{data}}(\mathbf{x})||p_{\theta}(\mathbf{x}))$$

$$= \arg\min_{\theta} \ \mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\log p_{\text{data}}(\mathbf{x}) - \log p_{\theta}(\mathbf{x})\right]$$

$$= \arg\max_{\theta} \ \mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\log p_{\theta}(\mathbf{x})\right] \approx \frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}(\mathbf{x}^{(i)})$$

LATENT VARIABLE MODELS

model:

$$\underbrace{p_{\theta}(\mathbf{x}, \mathbf{z})}_{joint} = \underbrace{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})}_{conditional prior}$$

$$\underbrace{p_{\theta}(\mathbf{x}, \mathbf{z})}_{likelihood} = \underbrace{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})}_{conditional prior}$$

marginalization:

$$\underbrace{p_{\theta}(\mathbf{x})}_{\text{marginal}} = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$
likelihood

inference:

$$\underbrace{p_{\theta}(\mathbf{z}|\mathbf{x})}_{\text{posterior}} = \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{p_{\theta}(\mathbf{x})}$$

LATENT VARIABLE MODELS

maximum likelihood is typically intractable

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}) \right]$$

$$\approx \arg \max_{\theta} \frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}(\mathbf{x}^{(i)})$$

$$\approx \arg \max_{\theta} \frac{1}{N} \sum_{i=1}^{N} \log \left[\int p_{\theta}(\mathbf{x}^{(i)}, \mathbf{z}) d\mathbf{z} \right]$$
intractable integral

must resort to approximation techniques

VARIATIONAL INFERENCE

approximate posterior $q(\mathbf{z}|\mathbf{x})$

variational lower bound

$$\log p_{\theta}(\mathbf{x}) \ge \mathcal{L}(\mathbf{x}; q) = \mathbb{E}_q \left[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z}|\mathbf{x})} \right]$$

variational expectation maximization (EM)

tighten the bound: $q(\mathbf{z}|\mathbf{x}) \leftarrow \arg\max_{q} \mathcal{L}(\mathbf{x};q)$

improve the model: $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}(\mathbf{x};q)$

STRUCTURED VARIATIONAL INFERENCE

mean field

$$q(\mathbf{z}|\mathbf{x}) = \prod_{j} q(z_j|\mathbf{x})$$

structured (auto-regressive)

$$q(\mathbf{z}|\mathbf{x}) = \prod_{j} q(z_j|\mathbf{x}, \mathbf{z}_{< j})$$

structured approximate posteriors are important for capturing latent dependencies within the model

AMORTIZED VARIATIONAL INFERENCE

parameterize $q_{\phi}(\mathbf{z}|\mathbf{x})$ using a learned model, shared (amortized) across data examples

example: $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^2(\mathbf{x}))$

learn the model through gradient descent, using the reparameterization trick

$$\mathbf{z} = \boldsymbol{\mu}_{\phi}(\mathbf{x}) + \boldsymbol{\sigma}_{\phi}(\mathbf{x}) \odot \boldsymbol{\epsilon}$$
 where $p(\boldsymbol{\epsilon}) = \mathcal{N}(\boldsymbol{\epsilon}; \mathbf{0}, \mathbf{I})$

variational autoencoder (VAE) $\phi \qquad \qquad \phi \qquad \qquad \mathbf{z}$

AMORTIZED VARIATIONAL INFERENCE

parameterize $q_{\phi}(\mathbf{z}|\mathbf{x})$ using a learned model, shared (amortized) across data examples

example: $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^2(\mathbf{x}))$

learn the model through gradient descent, using the reparameterization trick

$$\mathbf{z} = \boldsymbol{\mu}_{\phi}(\mathbf{x}) + \boldsymbol{\sigma}_{\phi}(\mathbf{x}) \odot \boldsymbol{\epsilon}$$
 where $p(\boldsymbol{\epsilon}) = \mathcal{N}(\boldsymbol{\epsilon}; \mathbf{0}, \mathbf{I})$

AMORTIZED VARIATIONAL INFERENCE

let ${m \lambda}$ be the distribution parameters of $q({f z}|{f x})$, for example, ${m \lambda}=\{{m \mu},{m \sigma}^2\}$

inference optimization: $q(\mathbf{z}|\mathbf{x}) \leftarrow \arg\max_{q} \mathcal{L}(\mathbf{x};q)$

BLACK-BOX VARIATIONAL INFERENCE

gradient-based optimization

$$\lambda \leftarrow \lambda + \eta \nabla_{\lambda} \mathcal{L}$$

DIRECT AMORTIZED INFERENCE

standard amortized inference models learn a direct mapping

$$\lambda \leftarrow f_{\phi}(\mathbf{x})$$

efficient, but potentially inaccurate

inference models may not reach fully optimized estimates

see also: Inference Suboptimality in Variational Autoencoders, Cremer et al., 2018

Marino et al., 2018a

ITERATIVE AMORTIZED INFERENCE

let $m{\lambda}$ be the distribution parameters of $q(\mathbf{z}|\mathbf{x})$, for example, $m{\lambda} = \{m{\mu}, m{\sigma}^2\}$

inference optimization: $q(\mathbf{z}|\mathbf{x}) \leftarrow \arg\max_{q} \mathcal{L}(\mathbf{x};q)$

ITERATIVE AMORTIZED INFERENCE

iterative amortized inference models learn an iterative mapping

$$\lambda \leftarrow f_{\phi}(\lambda, \nabla_{\lambda} \mathcal{L})$$

retain efficiency, with a more flexible mapping

ITERATIVE AMORTIZED INFERENCE

iterative amortized inference models learn an iterative mapping

$$\lambda \leftarrow f_{\phi}(\lambda, \nabla_{\lambda} \mathcal{L})$$

directly visualize inference in the optimization landscape

visualize data reconstructions over inference iterations

plot the ELBO over inference iterations

DEEP SEQUENTIAL LATENT VARIABLE MODELS

use information from other time steps to estimate current state

model temporal dependencies

SEQUENTIAL LATENT VARIABLE MODELS

general form:

$$p_{\theta}(\mathbf{x}_{\leq T}, \mathbf{z}_{\leq T}) = \prod_{t=1}^{T} \underbrace{p_{\theta}(\mathbf{x}_{t} | \mathbf{x}_{< t}, \mathbf{z}_{\leq t})}_{\text{likelihood/emission prior/dynamics}} \underbrace{p_{\theta}(\mathbf{z}_{t} | \mathbf{x}_{< t}, \mathbf{z}_{\leq t})}_{\text{prior/dynamics}}$$

where

 $\mathbf{x}_{\leq T}$ is a sequence of T observed variables

 $\mathbf{Z} \leq T$ is a sequence of T latent variables

SEQUENTIAL LATENT VARIABLE MODELS

general form:

$$p_{\theta}(\mathbf{x}_{\leq T}, \mathbf{z}_{\leq T}) = \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t} | \mathbf{x}_{< t}, \mathbf{z}_{\leq t}) p_{\theta}(\mathbf{z}_{t} | \mathbf{x}_{< t}, \mathbf{z}_{< t})$$
likelihood/emission prior/dynamics

simplified case (hidden Markov model):

SEQUENTIAL DEPENDENCIES

$$p_{\theta}(\mathbf{z}_t) = \int p_{\theta}(\mathbf{z}_t | \mathbf{z}_{t-1}) p_{\theta}(\mathbf{z}_{t-1}) d\mathbf{z}_{t-1}$$
 is more flexible than a static $p_{\theta}(\mathbf{z}_t)$

can fit the data better if relationships exist between time steps

Markov model:

Parameterization:

 $p_{\theta}(\mathbf{z}_t|\mathbf{z}_{t-1})$ is typically an analytical distribution

for example, $p_{\theta}(\mathbf{z}_t|\mathbf{z}_{t-1}) = \mathcal{N}(\mathbf{z}_t; \boldsymbol{\mu}_{\theta}(\mathbf{z}_{t-1}), \operatorname{diag}(\boldsymbol{\sigma}_{\theta}^2(\mathbf{z}_{t-1})))$

the parameters of these analytical distributions are functions, often *deep networks*

the parameters of these analytical distributions are functions, often *deep networks*

the parameters of these analytical distributions are functions, often *deep networks*

WEIGHT SHARING

could use a separate network for each conditional dependence

number of parameters grows linearly with time

share weights for similar conditional dependencies

fixed number of parameters

LONG-TERM DEPENDENCIES

general model form
$$p_{\theta}(\mathbf{x}_{\leq T}, \mathbf{z}_{\leq T}) = \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t} | \mathbf{x}_{< t}, \mathbf{z}_{\leq t}) p_{\theta}(\mathbf{z}_{t} | \mathbf{x}_{< t}, \mathbf{z}_{< t})$$

how do we model long-term dependencies?

INFERENCE

given a sequence of observations, $\mathbf{x}_{\leq T}$, infer $p_{\theta}(\mathbf{z}_{\leq T}|\mathbf{x}_{\leq T})$

VARIATIONAL INFERENCE IN SEQUENTIAL MODELS

introduce an approximate posterior $q(\mathbf{z}_{\leq T}|\mathbf{x}_{\leq T})$

ELBO:
$$\mathcal{L}(\mathbf{x}_{\leq T}, q) = \mathbb{E}_q \left[\log \frac{p_{\theta}(\mathbf{x}_{\leq T}, \mathbf{z}_{\leq T})}{q(\mathbf{z}_{\leq T} | \mathbf{x}_{\leq T})} \right]$$

choices about the form of $q(\mathbf{z}_{\leq T}|\mathbf{x}_{\leq T})$ determine how we evaluate \mathcal{L}

 \longrightarrow often $q(\mathbf{z}_{\leq T}|\mathbf{x}_{\leq T})$ is structured

STRUCTURED VARIATIONAL INFERENCE

the model contains temporal dependencies

the approximate posterior should account for these dependencies

 \longrightarrow if we use $q(\mathbf{z}_t|\mathbf{x}_t)$, we cannot account for $\mathbf{x}_{< t}$ and $\mathbf{z}_{< t}$

FILTERING INFERENCE

filtering approximate posterior

$$q(\mathbf{z}_{\leq T}|\mathbf{x}_{\leq T}) = \prod_{t=1}^{T} q(\mathbf{z}_t|\mathbf{x}_{\leq t},\mathbf{z}_{< t})$$

condition on observations at past and present time steps

SMOOTHING INFERENCE

smoothing approximate posterior

$$q(\mathbf{z}_{\leq T}|\mathbf{x}_{\leq T}) = \prod_{t=1}^{T} q(\mathbf{z}_t|\mathbf{x}_{\leq T},\mathbf{z}_{< t})$$

condition on observations at all time steps

AMORTIZED VARIATIONAL INFERENCE

how do we amortize inference in sequential models? typical approach:

filtering: use a recurrent network

smoothing: use a bi-directional recurrent network

RECENT MODELS

generative model

general model form
$$p_{\theta}(\mathbf{x}_{\leq T}, \mathbf{z}_{\leq T}) = \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t} | \mathbf{x}_{< t}, \mathbf{z}_{\leq t}) p_{\theta}(\mathbf{z}_{t} | \mathbf{x}_{< t}, \mathbf{z}_{< t})$$

$$= \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t} | \mathbf{z}_{t}, \mathbf{h}_{t-1}) p_{\theta}(\mathbf{z}_{t} | \mathbf{h}_{t-1})$$

$$= \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t} | \mathbf{z}_{t}, \mathbf{h}_{t-1}) p_{\theta}(\mathbf{z}_{t} | \mathbf{h}_{t-1})$$

Chung et al., 2015

generative model

recurrence:

$$\mathbf{h}_t = \text{LSTM}([\varphi_{\mathbf{x}}(\mathbf{x}_t), \varphi_{\mathbf{z}}(\mathbf{z}_t)], \mathbf{h}_{t-1})$$

generative model

prior:

$$p_{\theta}(\mathbf{z}_t|\mathbf{h}_{t-1}) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{z},t}, \operatorname{diag}(\boldsymbol{\sigma}_{\mathbf{z},t}^2))$$

where
$$[oldsymbol{\mu}_{\mathbf{z},t},oldsymbol{\sigma}_{\mathbf{z},t})]=arphi_{\mathrm{prior}}(\mathbf{h}_{t-1})$$

generative model

conditional likelihood:

$$p_{\theta}(\mathbf{x}_t|\mathbf{z}_t,\mathbf{h}_{t-1}) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{x},t},\operatorname{diag}(\boldsymbol{\sigma}_{\mathbf{x},t}^2))$$

where
$$[\boldsymbol{\mu}_{\mathbf{x},t}, \boldsymbol{\sigma}_{\mathbf{x},t})] = arphi_{\mathrm{dec}}(arphi_{\mathbf{z}}(\mathbf{z}_t), \mathbf{h}_{t-1})$$

inference model

$$q(\mathbf{z}_{\leq T}|\mathbf{x}_{\leq T}) = \prod_{t=1}^{T} q(\mathbf{z}_{t}|\mathbf{x}_{\leq t}, \mathbf{z}_{< t})$$

VRNN inference model form

$$= \prod_{t=1}^{T} q(\mathbf{z}_t | \mathbf{x}_t, \mathbf{h}_{t-1})$$

inference model

approximate posterior:

$$q(\mathbf{z}_t|\mathbf{x}_t,\mathbf{h}_{t-1}) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{z},t},\operatorname{diag}(\boldsymbol{\sigma}_{\mathbf{z},t}^2))$$

where
$$[\boldsymbol{\mu}_{\mathbf{z},t}, \boldsymbol{\sigma}_{\mathbf{z},t})] = \varphi_{\mathrm{enc}}(\varphi_{\mathbf{x}}(\mathbf{x}_t), \mathbf{h}_{t-1})$$

MEMORY

use a specialized memory module to model longer-term dependencies

FILTERING INFERENCE MODELS

approx. posterior parameters $oldsymbol{\lambda}_t^q$

custom-designed

FILTERING VARIATIONAL LOWER BOUND

definition of lower bound

$$\mathcal{L} \equiv \mathbb{E}_{q(\mathbf{z}_{\leq T}|\mathbf{x}_{\leq T})} \left[\log \frac{p_{\theta}(\mathbf{x}_{\leq T}, \mathbf{z}_{\leq T})}{q(\mathbf{z}_{\leq T}|\mathbf{x}_{\leq T})} \right]$$

under a *filtering* approximate posterior

$$q(\mathbf{z}_{\leq T}|\mathbf{x}_{\leq T}) = \prod_{t=1}^{T} q(\mathbf{z}_t|\mathbf{x}_{\leq t},\mathbf{z}_{< t}).$$

the variational lower bound is

$$\mathcal{L} = \sum_{t=1}^{T} \mathbb{E}_{q(\mathbf{z}_{< t} | \mathbf{x}_{< t}, \mathbf{z}_{< t-1})} \left[\mathcal{L}_{t} \right]$$

where

$$\mathcal{L}_t \equiv \mathbb{E}_{q(\mathbf{z}_t|\mathbf{x}_{\leq t},\mathbf{z}_{< t})} \left[\log \frac{p_{\theta}(\mathbf{x}_t,\mathbf{z}_t|\mathbf{x}_{< t},\mathbf{z}_{< t})}{q(\mathbf{z}_t|\mathbf{x}_{\leq t},\mathbf{z}_{< t})} \right]$$

FILTERING VARIATIONAL LOWER BOUND

define
$$ilde{\mathcal{L}}_t := \mathbb{E}_{q(\mathbf{z}_{< t} | \mathbf{x}_{< t}, \mathbf{z}_{< t-1})} \left[\mathcal{L}_t \right]$$

terms in which $q(\mathbf{z}_t|\mathbf{x}_{< t},\mathbf{z}_{< t})$ appears

$$\mathcal{L} = \tilde{\mathcal{L}}_1 + \tilde{\mathcal{L}}_2 + \dots + \tilde{\mathcal{L}}_{t-1} + \tilde{\mathcal{L}}_t + \tilde{\mathcal{L}}_{t+1} + \dots + \tilde{\mathcal{L}}_{T-1} + \tilde{\mathcal{L}}_T$$

steps on which $q(\mathbf{z}_t|\mathbf{x}_{< t},\mathbf{z}_{< t})$ depends

sequentially optimize \mathcal{L}_t w.r.t. $q(\mathbf{z}_t|\mathbf{x}_{\leq t},\mathbf{z}_{< t})$, holding past expectations fixed

$$q^*(\mathbf{z}_t|\mathbf{x}_{\leq t},\mathbf{z}_{< t}) \leftarrow \arg\max_{q} \tilde{\mathcal{L}}_t$$

FILTERING VARIATIONAL LOWER BOUND

Algorithm 1 Variational Filtering Expectation Maximization

- 1: Input: observation sequence $\mathbf{x}_{1:T}$, model $p_{\theta}(\mathbf{x}_{1:T}, \mathbf{z}_{1:T})$
- 2: $\nabla_{\theta} \mathcal{L} = 0$

> parameter gradient

- 3: for t = 1 to T do
- 4: initialize $q(\mathbf{z}_t | \mathbf{x}_{\leq t}, \mathbf{z}_{\leq t})$

 \triangleright at/near $p_{\theta}(\mathbf{z}_t|\mathbf{x}_{< t},\mathbf{z}_{< t})$

- 5: $\tilde{\mathcal{L}}_t := \mathbb{E}_{q(\mathbf{z}_{< t} | \mathbf{x}_{< t}, \mathbf{z}_{< t-1})} [\mathcal{L}_t]$
- 6: $q(\mathbf{z}_t | \mathbf{x}_{\leq t}, \mathbf{z}_{< t}) = \arg \max_q \tilde{\mathcal{L}}_t$

⊳ inference (E-Step)

- 7: $\nabla_{\theta} \mathcal{L} = \nabla_{\theta} \mathcal{L} + \nabla_{\theta} \widetilde{\mathcal{L}}_t$
- 8: end for
- 9: $\theta = \theta + \alpha \nabla_{\theta} \mathcal{L}$

▷ learning (M-Step)

AMORTIZED VARIATIONAL FILTERING

- --- Inference
- Generative Model
- O Prior
- Approximate Posterior
- O Conditional Likelihood
- Observation
- KL Divergence Reconstruction Error

VISUALIZING INFERENCE IMPROVEMENT

TIMIT audio waveforms

INFERENCE ITERATIONS

training with additional inference iterations results in improved performance

INFERENCE ITERATIONS

each inference iteration yields decreasing relative improvement

ON TIMIT VAL SET

FILTERING INFERENCE MODELS

Marino et al., 2018b

MODEL-BASED REINFORCEMENT LEARNING

sequential decision making by maximizing expected future reward

a *policy* is a probability distribution over actions: $\mathbf{a} \sim \pi(\mathbf{a}|\cdot)$

RL objective:

maximize the expected sum of rewards (*return*)

$$\pi(\mathbf{a}|\cdot) \leftarrow \arg\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} r_{t} \right]$$

approaches to optimizing the RL objective

model-free

direct mapping to actions

approaches to optimizing the RL objective

model-free

direct mapping to actions

approaches to optimizing the RL objective

model-free

direct mapping to actions

model-based

unroll model to evaluate actions

approaches to optimizing the RL objective

model-free

direct mapping to actions

model-based

unroll model to evaluate actions

approaches to optimizing the RL objective

model-free

direct mapping to actions

model-based

unroll model to evaluate actions

easy/fast to act

often longer to train

difficult/slow to act

also, only as good as the model

RECENT APPROACHES TO MODEL-BASED RL

without latent variables:

with latent variables:

- learn a generative model of environment from pixel observations
- use the model as a simulator to learn actions

the model: environment action VAE (V) observation world model MDN-RNN (M) action

the model (vision):

compress the observations

Ha & Schmidhuber, 2018

the model (dynamics):

learn the dynamics of compressed state representations

CarRacing-v0

observations

reconstructions

VizDoomTakeCover

observations

reconstructions

- learn a generative model of environment from pixel observations
- use the model for planning actions

the model:

observations

predictions

OPEN RESEARCH AREAS IN MODEL-BASED RL

TEMPORAL ABSTRACTION

hierarchy of states and actions

UNCERTAINTY ESTIMATION

distinguish between model uncertainty and environment stochasticity prevent regions of exploitability in the model

INTRINSIC MOTIVATION

learning from intrinsic (non-environmental) rewards

intrinsic reward signals:

surprise, empowerment, learning improvement, etc.

often helpful to have a model of the environment to estimate these quantities

OVERVIEW

