Voltage Waveform Improvement

Multilevel Cascaded H-Bride (CHB) Inverters

H-bride power cells

CHB Inverter Fed Drive Source: Toshiba - General Electric

Multilevel CHB Inverters

Lecture Topics

- H-Bridge Inverter
- CHB Inverter Topologies
- Phase Shifted PWM
- Level Shifted PWM
- PWM Scheme Comparison

Multilevel CHB Inverters

Why Use Multilevel Inverters?

- To increase inverter operating voltage without devices in series
- To minimize THD with low switching frequencies f_{sw}
- To reduce EMI due to lower voltage steps

Switching frequency for high power converters:

$$f_{sw} = 60 \text{Hz} \sim 1000 \text{Hz}$$

Multilevel Inverter Topologies

Per-Phase Diagram

H-bridge Power Cell

Bipolar Modulation

CHB

Bipolar PWM:

$$V_{AB}$$
 from $-V_d$ to $+V_d$
or from $+V_d$ to $-V_d$

Bipolar Modulation (FFT)

Unipolar Modulation (1)

- Two modulation waves V_m and V_{m-}
- One carrier wave V_{cr}
- Unipolar PWM:

$$V_{AB}$$
 from 0 to + V_d
or from 0 to - V_d

Unipolar Modulation (2)

- One modulating wave: V_m
- Two carrier waves: V_{cr} and V_{cr}

Five-Level CHB Inverter

Converters in cascade, but no switching devices in series.

Output Voltage and Switching Status (five-level)

Output Voltage	Switching State					
v_{AN}	S_{11}	S_{31}	S_{12}	S_{32}	v_{H1}	v_{H2}
2E	1	0	1	0	Е	Е
E	1	0	1	1	E	0
	1	0	0	0	E	0
	1	1	1	0	0	E
	0	0	1	0	0	E
0	0	0	0	0	0	0
	0	0	1	1	0	0
	1	1	0	0	0	0
	1	1	1	1	0	0
	1	0	0	1	E	-E
	0	1	1	0	-E	E
-E	0	1	1	1	-E	0
	0	1	0	0	-E	0
	1	1	0	1	0	-E
	0	0	0	1	0	-E
-2E	0	1	0	1	- <i>Е</i>	-E

Waveform of V_{AN} is composed of five voltage levels: 2E, E, 0, -E, and -2E

• Seven- and Nine-Level Inverters (Per phase diagram)

Unequal dc Bus Voltages

(a) Two-cell seven-level topology

(b) Two-cell nine-level topology

• Unequal dc Bus Voltages (Two-cell seven-level topology)

Output Voltage	Switching State				T/	17
$V_{\scriptscriptstyle AN}$	S_{11}	S ₃₁	S_{12}	S_{32}	V_{H1}	V_{H2}
3 <i>E</i>	1	0	1	0	E	2E
2 <i>E</i>	1	1	1	0	0	2E
	0	0	1	0	0	2E
E	1	0	1	1	E	0
	1	0	0	0	E	0
	0	1	1	0	-E	2E
0	0	0	0	0	0	0
	0	0	1	1	0	0
	1	1	0	0	0	0
	1	1	1	1	0	0
- E	1	0	0	1	E	-2E
	0	1	1	1	-E	0
	0	1	0	0	-E	0
-2E	1	1	0	1	0	-2E
	0	0	0	1	0	-2E
-3E	0	1	0	1	-E	-2E

(a) Two-cell seven-level topology

Carrier Based PWM – Phase Shifted

- # of voltage levels: m = 7
- # of carriers: $m_c = m 1 = 6$
- Phase shift: $360^{\circ} / m_c = 60^{\circ}$

Carriers for H1 bridge: v_{cr1} and v_{cr1} -

Carriers for H2 bridge: v_{cr2} and v_{cr2}

Carriers for H3 bridge: v_{cr3} and v_{cr3} .

m = 7

• Inverter Waveforms (7-level, phase shifted)

- Switching occurs at different times
- $f_{sw(device)} = 60 \ m_f = 600 Hz$

- Inverter phase voltage levels: 7
- Low EMI

- Line-to-line voltage levels: 13
- Close to a sinusoid
- Low THD

• **FFT** (7-level, phase shifted)

 Lowest harmonics: around 2m_f

- Lowest harmonics: around 6m_f
- Containing triplen harmonics

- No triplen harmonics
- Equivalent $f_{sw(inverter)}$ = 60(6 m_f) = 3600Hz

• Harmonic Content (7-level, phase shifted)

Carrier Based PWM – Level Shifted

of voltage levels:
m = 5

IPD

• # of carriers: $m_c = m - 1 = 4$

APOD

(c) Phase opposite disposition (POD)

POD

IPD provides the best harmonic profile.

Gating Arrangement (7-level)

• # of voltage levels:

$$m = 7$$

• # of carriers:

$$m_c = m - 1 = 6$$

- f_{sw(device)}:
 - not equal to f_{cr} and
 - not the same for all switches.
- Device conduction angle:
 - not equal.
- Necessary to swap switching pattern.

Inverter Output Voltages (seven-level)

- m = 7
- Switching occurs at different times
- $f_{sw(device)} = f_{cr}/m_c =$ 600Hz (avg)
- V_{AB} close to a sinusoid
- Low THD, low EMI
- $f_{sw(inv)} = f_c = 3600 Hz$

• Measured Waveforms (IPD, 7-level)

Inverter phase voltage V_{AZ}

Line-to-line voltage V_{AB}

PWM Scheme Comparison

PWM at Low m_a

- At $m_a = 0.2$:
 - Phase shifted PWM:

THD = 96.7%

- Level shifted PWM:

THD = 48.8%

PWM Scheme Comparison

Total Harmonic Distortion (THD)

PWM Scheme Comparison

Summary

Comparison	Phase-shifted Modulation	Level-shifted Modulation (IPD)	
Device Switching Frequency	Same for all devices	Different	
Device Conduction Period	Same for all devices	Different	
Rotating of switching patterns	No required	Required	
THD of inverter output line-to-line voltage	Good	Better	
Low Order Harmonics	No	Yes (Very low amplitude)	