Who are the Loan Defaulters? - An MCMC: Metropolis Hastings Approach

CSCI-5822 Final Project

Josh-Myers Dean, Samuel Kwon, Chandra Kanth Nagesh

Department of Computer Science University of Colorado Boulder, CO - 80302

05/01/2023

University of Colorado Boulder

- Introduction
- Exploratory Data Analysis
- ③ Prinicipal Component Analysis (PCA)
- Methods
- Results
 - Graphical Structure
 - Numerical Results
- Disussion and Conclusion
- References

Introduction

Background Information

• **Defaulting** is the failure to repay interest or principal components on a loan or any borrowed finance.

Objectives

- How can we apply a probabilistic model to predict loan defaulting?
- Can we effectively estimate the parameters for logistics regressions using MCMC for our task?
- How accurate and flexible is the model in predicting loan defaulting behavior given consumer financial metrics?

Why is This Useful?

- An automated approach to assess loan default behavior, enabling faster risk calculation and improved decision-making processes.
- By leveraging a Bayesian approach, we can account for more uncertainty in our decision-making process compared to a frequentist approach.
- Caveat: This probably shouldn't be used in the real world (i.e., discriminatory practices).

- Introduction
- Exploratory Data Analysis
- 3 Prinicipal Component Analysis (PCA)
- 4 Methods
- Results
 - Graphical Structure
 - Numerical Results
- Disussion and Conclusion
- References

Exploratory Data Analysis

- Loan Default Dataset from Kaggle.
- Dataset contains 70 features with a mixture of continuous and discrete features.
- Random variables include metrics about the approved loan and metrics about the applicant.
- Contains around 148,671 rows of data – 70/30 split for training and testing

Figure: Frequency of Default Status In Our Data

Exploratory Data Analysis

Figure: Scatter plot of Key Features

Figure: Histogram of Key Features

- Introduction
- Exploratory Data Analysis
- 3 Prinicipal Component Analysis (PCA)
- Methods
- Results
 - Graphical Structure
 - Numerical Results
- Disussion and Conclusion
- References

Prinicipal Component Analysis (PCA)

- We perform informed PCA by looking into the **Scree plots**.
- The point of inflection is around 30 components, which explains 80% of the data.
- We then perform PCA and pick the 30 features based on their explained variance ratios, to form the dataset.
- Features: Income, Term, Loan Amount...

Figure: Explained variance per Principal Compnents

- Introduction
- Exploratory Data Analysis
- 3 Prinicipal Component Analysis (PCA)
- 4 Methods
- Results
 - Graphical Structure
 - Numerical Results
- Disussion and Conclusion
- References

Methods

Logistic Regression

We estimate the β parameters in logistic regression using MH-MCMC.

Model:
$$y_i = L(P) = \frac{1}{1 + e^{-P}}, \ P = \beta_0 + \sum_{i=1}^{30} \beta_i x_i$$
 (2)

Markov Chain Monte Carlo Method: Metropolis Hastings Algorithm (PyMC3)

Sampling: 10,000 Burn In Period: 500

Chains: 4

- Introduction
- Exploratory Data Analysis
- Prinicipal Component Analysis (PCA)
- Methods
- Results
 - Graphical Structure
 - Numerical Results
- Disussion and Conclusion
- References

Belief Network

Moralized Graph

Parameter Estimate

Parameter Estimate	Label	Precision	Recall	F1 Score	Support
$\mu - 3\sigma$	0	0.80	0.95	0.87	33532
	1	0.65	0.29	0.41	11068
$\mu-\sigma$	0	0.79	0.96	0.87	33532
	1	0.69	0.25	0.36	11068
μ	0	0.79	0.97	0.87	33532
	1	0.70	0.22	0.34	11068
$\mu + \sigma$	0	0.79	0.97	0.87	33532
	1	0.70	0.21	0.32	11068
$\mu + 3\sigma$	0	0.79	0.97	0.87	33532
	1	0.70	0.20	0.31	11068
Frequentist	0	0.79	0.97	0.87	33532
	1	0.70	0.22	0.34	11068

Table: Results on test set using varying point estimates for each parameter. 0: Didn't Default, 1: Defaulted.

- Introduction
- Exploratory Data Analysis
- Prinicipal Component Analysis (PCA)
- Methods
- Results
 - Graphical Structure
 - Numerical Results
- 6 Disussion and Conclusion
- References

Discussion and Conclusion

- Frequentist approach (Sklearn) matches the Bayesian approach when considering the mean.
- Bayesian approach allows to tune our results with different point estimates from our parameter distributions, better matching the true outcomes.
- Model predicts label 0 (Not Defaulted) with higher precision than label 1 (Defaulted), likely due to data imbalance.

- Introduction
- Exploratory Data Analysis
- ③ Prinicipal Component Analysis (PCA)
- Methods
- Results
 - Graphical Structure
 - Numerical Results
- Disussion and Conclusion
- References

References

- https://www.kaggle.com/datasets/yasserh/loan-default-dataset
- PyMC3
- NetworkX
- https://github.com/joshmyersdean/CSCI5822-FinalProject