New York University, CIMS, CS, Course CSCI-GA.3140-001, Spring 2024 "Abstract Interpretation"

Ch. 16, Fixpoint, Deductive, Inductive, Structural, Coinductive, and Bi-inductive Definitions

Patrick Cousot

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

Class 3, Thursday, February 5th, 2024, 4:55-6:55 PM, WWH, Room CIWW 202

These slides are available at

http://cs.nyu.edu/~pcousot/courses/spring24/CSCI-GA.3140-001/slides/03--2024-02-05-structural-fixpoint-prefix-trace-semantics/slides-16--fixpoint-inductive-deductive-structural-definitions-AI.pdf

Chapter 16

Ch. 16, Fixpoint, Deductive, Inductive, Structural, Coinductive, and Bi-inductive Definitions

Set-theoretic formal definitions

The problem is to formally define a subset $D \in \wp(\mathbb{U})$ of a set \mathbb{U} (called the universe).

Example 16.1 Define the odd numbers \mathbb{O}_d as a subset of the natural numbers \mathbb{N} . Same for the even numbers \mathbb{F}_n .

Fixpoint definitions

Fixpoint definition

- Since $\langle \wp(\mathbb{U}), \subseteq, \varnothing, \mathbb{U}, \cup, \cap \rangle$ is a complete lattice, D can be defined as the least fixpoint $D \triangleq \mathsf{lfp}^{\varsigma} F$ of an increasing function $F \in \wp(\mathbb{U}) \longrightarrow \wp(\mathbb{U})$
- So D is as the \subseteq -least solution of the equation X = F(X)
- So D is as the \subseteq -least solution of the constraint $F(X) \subseteq X$.
- D is well-defined (i.e. exists and is unique) by Tarski's theorem 15.6

Example 16.3 Continuing example 16.1, in the universe \mathbb{N} , the odd numbers are $\mathbb{O}_d \triangleq \mathsf{lfp}^{\varsigma} F$ where $F(X) \triangleq \{1\} \cup \{n+2 \mid n \in X\}$.

Applying Tarski-Kantorovich's fixpoint theorem 15.21, we get $\mathbb{O}d = \emptyset \cup \{1\} \cup \{1,3\} \cup ... \cup \{1,3,...,2k+1\} \cup$

Fixpoint definition

Definition 16.4 The fixpoint definition of $D \in \wp(\mathbb{U})$ by a \subseteq -increasing function $F \in \wp(\mathbb{U}) \longrightarrow \wp(\mathbb{U})$ is $D \triangleq \mathsf{lfp}^{\subseteq} F$.

Fixpoint definitions are well-defined

☐ **Theorem 16.5 D** in definition 16.4 is well-defined.

Proof By Tarski's theorem 15.6.

Deductive definitions

Deductive definition

- A deductive definition of $D \in \wp(\mathbb{U})$ is given by a set of inference rules $R = \{\frac{P_i}{c_i} \mid i \in \Delta\}$
- $P_i \in \wp_f(\mathbb{U})$ is the <u>finite premise</u> and $c_i \in \mathbb{U}$ is the <u>conclusion</u> of the rule.
- A rule $\frac{P_i}{c_i} \in R$ states that if $P_i \subseteq D$ then $c_i \in D$.
- If $P_i = \emptyset$, the rule is called an *axiom* and states that $c_i \in D$.

```
en.wikipedia.org/wiki/Deductive_reasoning
en.wikipedia.org/wiki/Hilbert_system
en.wikipedia.org/wiki/Axiom
en.wikipedia.org/wiki/Rule_of_inference
```

example 16.6

• Continuing example 16.3, in the universe \mathbb{N} , the odd numbers are

$$\left\{\frac{\varnothing}{1}\right\} \cup \left\{\frac{\{n\}}{n+2} \mid n \in \mathbb{N}\right\}$$

- 1 is an axiom
- from n is odd, we infer that n + 2 is odd.
- As a shorthand, this can be written symbolically in the form of

an axiom
$$1 \in \mathbb{O}d$$
 and an inference rule schema $\frac{n \in \mathbb{O}d}{n+2 \in \mathbb{O}d}$

- The instantiation for all $n \in \mathbb{N}$ yields the rules $\frac{\emptyset}{1}$, $\frac{\{0\}}{2}$, $\frac{\{1\}}{3}$, $\frac{\{2\}}{4}$, $\frac{\{3\}}{5}$, $\frac{\{4\}}{6}$, ..., $\frac{\{n\}}{n+2}$,
- Notice that the rules $\frac{\{0\}}{2}$, $\frac{\{2\}}{4}$, ... are useless since their premises cannot be derived form the deductive definition (0 is not an axiom).

proof

- A proof of p by rules R is a finite sequence $t_0 \dots t_n$ of elements of $\mathbb U$ such that
 - each t_i , $i \in [0, n]$ is deduced from $t_0 \dots t_{i-1}$ by application of a rule of R
 - $t_n = p$.
- Formally

Definition 16.7

$$\mathsf{is\text{-}provable}(p,R) \triangleq \exists t_0 \dots t_n \in \mathbb{U} \ . \ (\forall i \in [0,n] \ . \ \exists \frac{P}{c} \in R \ . \ P \subseteq \{t_0,\dots,t_{i-1}\} \land t_i = c) \land t_n = p.$$

en.wikipedia.org/wiki/Mathematical_proof
en.wikipedia.org/wiki/Formal_proof

example 16.8

With
$$R \triangleq \left\{ \frac{\varnothing}{1} \right\} \cup \left\{ \frac{\{n\}}{n+2} \mid n \in \mathbb{N} \right\}$$
 of example 16.6

- The proof that 5 is odd is 1, 3, 5.
- To prove that 4 is not odd
 - $\frac{\{2\}}{4}$ is the only rule allowing us to prove that 4 would be odd,
 - This rule requires to prove that 2 is odd
 - The only applicable rule is $\frac{\{0\}}{2}$.
 - It remains to prove that 0 is odd
 - This is impossible since there is no rule with 0 as conclusion.

Set specified by a deductive definition

The set D defined by a set of rules R is $D \triangleq \{p \in U \mid \text{is-provable}(p, R)\}.$

Example 16.9

Let us prove that $R \triangleq \left\{\frac{\emptyset}{1}\right\} \cup \left\{\frac{\{n\}}{n+2} \mid n \in \mathbb{N}\right\}$ in example 16.6 defines $\mathbb{O}d = \{2k+1 \mid k \in \mathbb{N}\}$

- We must prove that 2k + 1 is provable for all $k \in \mathbb{N}$
- 1 is provable by rule $\frac{\emptyset}{1}$
- Assume, by recurrence hypothesis, that we have got a proof $1, 3, 5, \dots, 2k + 1$ of 2k + 1.
- A proof of 2(k+1)+1=2k+3 is by the rule $\frac{\{2k+1\}}{2k+3}$ such that $\{2k+1\}\subseteq\{1,3,5,\ldots,2k+1\}$. By recurrence all $2k+1,k\in\mathbb{N}$ are provable so $\{2k+1\mid k\in\mathbb{N}\}\subseteq\mathbb{O}$ d.
- For the inverse inclusion, we can use a reasoning by *reductio ad absurdum* as illustrated in example 16.8¹.

¹More precisely, Fermat's infinite descent (en.wikipedia.org/wiki/Proof by infinite descent)

Deductive definition

Definition 16.10 (deductive definition) The deductive definition of $D \in \wp(\mathbb{U})$ by a deductive system of rules $\frac{P}{C} \in R$ is $D \triangleq \{p \in \mathbb{U} \mid \text{is-provable}(p, R)\}$.

Equivalence of the least fixpoint and deductive definition methods

A deductive definition can be expressed as a fixpoint definition and conversely.

Deductive definition as a fixpoint definition (section 16.3.1)

- 17/58 -

Consequence operator

For a deductive definition by rules $R = \left\{ \frac{P_i}{c_i} \mid i \in \Delta \right\}$, define

- the consequence operator $F_R(X) \triangleq \{c \mid \exists \frac{P}{c} \in R : P \subseteq X\}$
- $F_R(X)$ is the set of consequences provable by R when X has already been proved
- The consequence operator F_R does not necessarily preserve joins but is increasing

Equivalence of the deductive and fixpoint definitions

Theorem 16.12 We have $D = \{p \in \mathbb{U} \mid \text{is-provable}(p, R)\} = \mathsf{lfp}^{\varsigma} F_R$ where $F_R(X) \triangleq \{c \mid \exists \frac{P}{c} \in R : P \subseteq X\}$ is the *consequence operator* of R.

Theorem 16.12 may not hold when considering rules which premises can be infinite sets.

Proof of theorem 16.12

Let us first prove that $D \subseteq \bigcup \{F_R^n \mid n \in \mathbb{N}\}\$

- Let F_R^n be the iterates of F_R
- Let us prove that F_R^n contains all elements with a proof of length less than or equal to n (F_R^n may contains proofs of longer length.)
 - This holds for n = 0 since $F_R^0 = \emptyset$ and there is no proof of length 0 or less
 - F_R^1 contains all elements with a proof of length 1 obtained by applying an axiom
 - Assume that F_R^n contains all elements with a proof of length less than or equal to n
 - If c has a proof of length less than or equal to n+1 then it is deduced by a rule $\frac{P}{c} \in R$ where the elements of P are proved before c hence have proofs of length less than or equal to n
 - It follows that $c \in \{c \mid \exists \frac{P}{c} \in R : P \subseteq F_R^n\} = F_R(F_R^n) = F_R^{n+1}$
 - By recurrence, for all $n \in \mathbb{N}$, all elements c with a proof of length less than or equal to n belong to F_R^n

- Now all elements in $\{p \in \mathbb{U} \mid \text{is-provable}(p, R)\}$ have a proof of some length $n \in \mathbb{N}$ so belong to $\bigcup \{F_R^n \mid n \in \mathbb{N}\}$
- We conclude that $D \subseteq \bigcup \{F_R^n \mid n \in \mathbb{N}\}.$

Conversely, let us prove, by contradiction, that $\bigcup \{F_R^n \mid n \in \mathbb{N}\} \subseteq D$

- Assume that $\bigcup \{F_R^n \mid n \in \mathbb{N}\}\$ contains an element c not in D
- Since the $\langle F_R^n, n \in \mathbb{N} \rangle$ form a \subseteq -increasing chain, there exists a smallest n such that c belongs to F_R^n but does not belong to any of the F_R^m , m < n
- Among the pairs $\langle c, n \rangle$ with this property, chose one which minimize n
- So all F_R^m , m < n, have provable elements only, hence in D
- By definition of the iterates $F_R^n = F_R(F_R^{n-1})$
- So, by definition of F_R , c has a proof of length n
- This is a contradiction
- So $\bigcup \{F_R^n \mid n \in \mathbb{N}\} \subseteq D$.

By anstisymmetry, we conclude that $D = \bigcup \{F_R^n \mid n \in \mathbb{N}\}.$

Let us prove that $\mathsf{lfp}^{\varsigma} F_R = \bigcup \{F_R^n \mid n \in \mathbb{N}\}\$ using Tarski-Kantorovich's fixpoint theorem 15.21

- F_R is increasing since if $X \subseteq X'$ then $P \subseteq X$ implies $P \subseteq X'$ and so $C \in F_R(X)$ implies $C \in F_R(X')$, proving $F_R(X) \subseteq F_R(X')$
- Since $\langle \wp(\mathbb{U}), \subseteq \rangle$ is a complete lattice, the lub \cup exists
- It remains to prove that $F_R(\bigcup \{F_R^n \mid n \in \mathbb{N}\}) = \bigcup \{F_R(F_R^n) \mid n \in \mathbb{N}\} \text{ i.e. } .F_R(D) = D.$

Let us first prove the ⊇ inclusion.

$$\begin{split} &\forall n \in \mathbb{N} \;.\; F_R^n \subseteq \bigcup \{F_R^n \mid n \in \mathbb{N}\} \\ &\Rightarrow \forall n \in \mathbb{N} \;.\; F_R(F_R^n) \subseteq F_R(\bigcup \{F_R^n \mid n \in \mathbb{N}\}) \\ &\Rightarrow \forall n \in \mathbb{N} \;.\; F_R^{n+1} \subseteq F_R(\bigcup \{F_R^n \mid n \in \mathbb{N}\}) \\ &\Rightarrow \forall n \in \mathbb{N} \;.\; F_R^n \subseteq F_R(\bigcup \{F_R^n \mid n \in \mathbb{N}\}) \\ &\Rightarrow \bigcup \{F_R^n \mid n \in \mathbb{N}\} \subseteq F_R(\bigcup \{F_R^n \mid n \in \mathbb{N}\}) \\ &\Rightarrow D \subseteq F_R(D) \end{split}$$

- Conversely, we have to prove ⊆
- Assume by reductio ad absurdum that $F_R(D) \nsubseteq D$ so that $\exists c \in F_R(D)$. $c \notin D$.
- Since $c \notin D$ so there exists no finite proof of c
- By def. F_R , $\exists \frac{P}{c} \in R$. $P \subseteq D$
- Because $P \subseteq D$, all elements p of P have a proof.
- Since the premise P must be finite, P has a finite proof (which is the finite sequence of the proofs of the elements of P), and therefore, using the rule $\frac{P}{c}$, c has also a finite proof
- This is a contradiction.

By antisymmetry $F_R(D) = D = \bigcup \{F_R^n \mid n \in \mathbb{N}\}$ so $D = \mathsf{lfp}^{\,\varsigma} F_R$ by Tarski-Kantorovich's fixpoint theorem 15.21.

Fixpoint definition as a deductive definition

Equivalence of the fixpoint and deductive definitions

Theorem 16.16 For a fixpoint definition $\operatorname{lfp}^{\varsigma} F$ define $R = \{\frac{P}{c} \mid P \subseteq \mathbb{U} \land c \in F(P)\}$. Then $F = F_R$ so $\operatorname{lfp}^{\varsigma} F_R = \operatorname{lfp}^{\varsigma} F$.

Note that if R turns out to have finite premises only, then $\{p \in \mathbb{U} \mid \text{is-provable}(p, R)\} = \mathsf{lfp}^{\varsigma} F_R$.

Proof

$$F_R(X)$$

$$\triangleq \{c \mid \exists \frac{P}{c} \in R : P \subseteq X\} \qquad \text{(def. } F_R\text{)}$$

$$= \{c \mid \exists P \subseteq \mathbb{U} : c \in F(P) \land P \subseteq X\} \qquad \text{(def. } R\text{)}$$

$$= F(X)$$

$$\text{((\subseteq)} \quad \text{if } c \in F(P) \text{ and } P \subseteq X \text{ then } c \in F(X) \text{ since } F \text{ is \subseteq-increasing.}$$

$$\text{(\supseteq)} \quad \text{if } c \in F(X) \text{ then } \exists P \subseteq \mathbb{U} : c \in F(P) \land P \subseteq X \text{ by choosing } P = X.\text{)}$$

Well-definedness of deductive definitions

Well-definedness of deductive definitions

Theorem 16.16 *D* in definition 16.10 is well-defined.

Proof The deductive definition of D by rules R is equivalent to $D = \mathsf{lfp}^{\varsigma} F_R$ where F_R is ς -increasing so is well-defined by Tarski's fixpoint theorem 15.6.

en.wikipedia.org/wiki/Well-defined

An aside on Peano definition of naturals \mathbb{N}

- Giuseppe Peano defined $\mathbb N$ as the set such that $0 \in \mathbb N$ and if $n \in \mathbb N$ then $n+1 \in \mathbb N$.
- This is not well defined since there are many such sets such as

- One solution is to define $\mathbb N$ as the *smallest* set such that $0 \in \mathbb N$ and if $n \in \mathbb N$ then $n+1 \in \mathbb N$ (which eliminates $\mathbb M$ strictly larger than $\mathbb N$)
- Another solution is to add that the induction rule $\frac{0 \in P, \quad n \in P \Rightarrow n+1 \in P}{\mathbb{N} \subseteq P}$ (which eliminates \mathbb{M} by taking $P = \mathbb{N}$ which satisfies the premiss but not the conclusion $\mathbb{M} \subseteq P = \mathbb{N}$)
- The two solutions are equivalent.

Proof rule for a deductive definition

- Let $R = \{\frac{P_i}{c_i} \mid i \in \Delta\}$ be a deductive definition of a set D (as $Ifp^{\epsilon} F_R$ where F_R is the consequence operator for the rules R)
- Then the inductive proof method $\frac{\forall i \in \Delta : P_i \subseteq Q \Rightarrow c_i \in Q}{D \subseteq Q}$ is sound and complete
- Soundness (if the hypothesis of the proof rule holds then its conclusion holds): the premiss of the proof rule implies that $F_R(Q) \triangleq \{c_i \mid \exists i \in \Delta : P_i \subseteq Q\} \subseteq Q$ so by Tarski's fixpoint theorem $D = \mathsf{lfp}^{\, \varsigma} \, F_R \subseteq Q$.
- Completeness (if the conclusion holds then the hypothesis holds so the conclusion is provable by the proof rule): Assume $D = \mathsf{lfp}^{\varsigma} F_R \subseteq Q$ then strengthen Q to $Q' = \mathsf{lfp}^{\varsigma} F_R$, $F_R(Q') = \{c_i \mid \exists i \in \Delta : P_i \subseteq Q'\} = Q' \text{ so } Q' \text{ satisfies the hypothesis of the proof rule. Then } Q' \subseteq Q \text{ implies } D = \mathsf{lfp}^{\varsigma} F_R \subseteq Q \text{ by transitivity.}$

Proof rule for a deductive definition

- Let $R = \{\frac{P_i}{c_i} \mid i \in \Delta\}$ be a deductive definition of a set D (as $Ifp^{\varsigma} F_R$ where F_R is the consequence operator for the rules R)
- Then the inductive proof method $\frac{\forall i \in \Delta : P_i \subseteq Q \Rightarrow c_i \in Q}{D \subseteq Q}$ is sound and complete
- Soundness (if the hypothesis of the proof rule holds then its conclusion holds): the premiss of the proof rule implies that $F_R(Q) \triangleq \{c_i \mid \exists i \in \Delta : P_i \subseteq Q\} \subseteq Q$ so by Tarski's fixpoint theorem $D = \mathsf{lfp}^{\, \varsigma} \, F_R \subseteq Q$.
- Completeness (if the conclusion holds then the hypothesis holds so the conclusion is provable by the proof rule): Assume $D=\mathsf{lfp}^{\scriptscriptstyle \subseteq} F_R\subseteq Q$ then strengthen Q to $Q'=\mathsf{lfp}^{\scriptscriptstyle \subseteq} F_R$, $F_R(Q')=\{c_i\mid \exists i\in \Delta \ .\ P_i\subseteq Q'\}=Q'$ so Q' satisfies the hypothesis of the proof rule. Then $Q'\subseteq Q$ implies $D=\mathsf{lfp}^{\scriptscriptstyle \subseteq} F_R\subseteq Q$ by transitivity.

So any deductive definition of a set D comes with a sound and complete method to prove that D satisfies a property P that is $D \subseteq P$.

Inductive definitions

Inductive definitions I

Inductive definitions are mathematical generalizations of recursive programs such as the factorial f(0) = 1 and f(n) = n * f(n-1) for $n \in \mathbb{Z}$.

```
$ cat factorial.c
#include <stdio.h>
int f(int n) {
    if (n==0) return 1;
    else return n * f(n - 1);
int main () {
    int n:
    scanf("%d", &n);
    printf("%d! = %d\n", n, f(n));
 gcc factorial.c
$ echo "7" | ./a.out
7! = 5040
```

Inductive definitions II

The difference is that at each recursive call a different function is called which parameters are all previously computed values.

Programmers would implement $F_n(\langle D(i), i \in [0, n-1] \rangle)$ by a function F taking n as a parameter of F and $\langle D(i), i \in [0, n-1] \rangle$ represented e.g. as a linear list of n elements.

Inductive definitions III

- The program might not terminate for negative values of the parameter
- The corresponding mathematical definition is not well-defined.

```
$ echo "-7" | ./a.out
Segmentation fault: 11
$
```

Inductive definitions IV

Termination can be proved by recurrence.

- For n = 0, the function f returns the evaluation of expression 1, which terminates.
- Assume, by recurrence hypothesis that f(n) terminates.
- For the parameter n+1, the function call returns the evaluation of $(n+1) \times f((n+1)-1)$. Since f(n) terminates by induction hypothesis, the evaluation of the expression terminates.
- By recurrence, all calls f(n), $n \in \mathbb{N}$ do terminate.

The corresponding reasoning on the mathematical inductive definition is by induction on a given well-founded relation \leq (\leq is \leq on $\mathbb N$ for the factorial example). Of course, computer integers are limited in size which leads to errors.

Inductive definitions V

```
$ echo "20" | ./a.out
20! = -2102132736
$ echo "40" | ./a.out
40! = 0
$ echo "10000000" | ./a.out
Segmentation fault: 11
$
```

The corresponding mathematical reasoning must consider the universe $U = [INT_MIN, INT_MAX]$ from C directive #include limits.h>, not $U = \mathbb{Z}$.

Well-founded relation

Definition 16.18 A relation $\leq \in \wp(S \times S)$ on a set S is well-founded if and only there is no infinite (strictly decreasing chain if \leq is a partial order) sequence $x_0 > x_1 > x_2 > \ldots > x_n > x_{n+1} > \ldots$ of elements of S.

en.wikipedia.org/wiki/Well-founded_relation

Inductive proof

Theorem 16.19 Let \leq be a well-founded relation on S and $P \subseteq S$ be a property of the elements of S. We write P(x) for $x \in P$. If

$$\forall x \in S . (\forall y \in S . (y \prec x) \Rightarrow P(y)) \Rightarrow P(x)$$

then $\forall x \in S . P(x)$.

Proof of theorem 16.19 By reductio ad absurdum, assuming $\exists x_0 \in S : \neg P(x_0)$, we construct an infinite sequence $x_0 \succ x_1 \succ x_2 \succ \ldots \succ x_n \succ x_{n+1} \succ \ldots$ of elements of S such that $\forall n \in \mathbb{N} : \neg P(x_n)$.

- Assume we have constructed the sequence up to x_n (i.e. x_0 to start with).
- Then, by contraposition, $\neg P(x_n)$ implies $\exists x_{n+1} \prec x_n \cdot \neg P(x_{n+1})$.
- We get an infinite sequence of elements of S
- This is in contradiction with ≤ is a well-founded relation on S.

en.wikipedia.org/wiki/Mathematical_induction

Inductive definition

Definition 16.20 The inductive definition of $D \in S \to \mathbb{U}$ where $\langle S, \preccurlyeq \rangle$ is well-founded has the form

- (1) $D(m) \triangleq D_m$ where $D_m \in \mathbb{U}$ is a constant for minimal elements $m \in S$ (i.e. $\exists s \in S . s < m$);
- (2) otherwise, $D(s) \triangleq F_s(\langle D(s'), s' \prec s \rangle)$ where $F_s \in (\{s' \in S \mid s' \prec s\} \rightarrow \mathbb{U}) \rightarrow \mathbb{U}$.

Most often, we use definition 16.20 for $\mathbb{U} = \wp(\mathbb{S})$ where \mathbb{S} is a set.

Inductive definitions are well-defined

 \Box **Theorem 16.21** *D* in definition 16.20 is well-defined.

Proof • We first observe that the first case is a special case of the second case by defining $F_m(\langle \rangle) = D_m$ for all $m \in S$ such that $\nexists s \in S$. $s \prec m$.

- The proof is by the induction proof theorem 16.19 on the well-found set $\langle S, \preceq \rangle$.
- Assume, by induction hypothesis that D(s') is well-defined for all s' < s.
- Then $\langle D(s'), s' \prec s \rangle \in \{s' \in S \mid s' \prec s\} \to \mathbb{U}$ so $F_s(\langle D(s'), s' \prec s \rangle) \in \mathbb{U}$ is well-defined, proving that D(s) is well-defined.
- By induction, $\forall s \in S$. $D(s) \in U$ is well-defined.
- So $D \in S \to \mathbb{U}$ is well-defined.

Inductive definition as a fixpoint definition

Inductive definition can be expressed as an equivalent fixpoint definition

- Represent functions $f \in A \to B$ as a relation $\{\langle a, f(a) \rangle \mid a \in A\}$
- The inductive definition 16.20 is $D = \mathsf{lfp}^{\varsigma} F$ where

$$\mathcal{F}(X) \triangleq \bigcup \{ \langle m, D_m \rangle \mid \forall s' \in S . s' \not k m \}$$

$$\{ \langle s, F_s(\langle X(s'), s' \prec s \rangle) \rangle \mid \forall s' \prec s . s' \in \text{dom}(X) \}$$

Structural definitions

Structural definition

Definition 16.24 A structural definition is an inductive definition of the form

$$\begin{cases}
D[S] & \triangleq f[S] \left(\prod_{S' \triangleleft S} D[S'] \right) \\
S \in \mathcal{P}_{\mathcal{C}}
\end{cases}$$
(16.24)

where the well-founded order \leq is the syntactic order \leq on programs i.e. $S \triangleleft S'$ if and only if S is a strict syntactic component of S'.

The strict syntactic order < (example 16.25)

```
P ::= S1 &
                                              S1 ⊲ P
  S ::=
            x = E;
                                             x \triangleleft S, E \triangleleft S
        | \mathbf{if}(B) S_t
                                 B \triangleleft S, S_t \triangleleft S
        | if (B) S_t else S_f B \triangleleft S, S_t \triangleleft S, S_f \triangleleft S
           while (B) S_h B \triangleleft S, S_h \triangleleft S
             break:
             { Sl }
                                          S1 ⊲ S
Sl ::= Sl'S \mid \epsilon
                                              Sl' \triangleleft Sl, S \triangleleft Sl, \epsilon \triangleleft Sl
```

- is well-founded
- The syntactic order \triangleleft is $S \subseteq S' \triangleq S \triangleleft S' \vee S = S'$.
- The recursive syntactic order <⁺ is the transitive closure of <
- The recursive subcomponent partial order <* is the transitive closure of ≤ i.e. the reflexive transitive closure of <.

Structural proofs

```
Corollary 16.31 If \forall S \triangleleft^* P . (\forall S' \triangleleft^* P . (S' \triangleleft S) \Rightarrow P(S')) \Rightarrow P(S) then \forall S \triangleleft^* P . P(S).
```

The structural induction hypothesis P(S') is assumed to hold for all $S' \triangleleft S$ when proving P(S).

Proof By theorem 16.19 for the syntactic order $\langle \{S \mid S \triangleleft^* P\}, \trianglelefteq \rangle$ of example 16.25 which is well-founded.

Structural definitions are well-defined

Corollary 16.31 A structural definition 16.20 for the syntactic order $\langle \{S \mid S \triangleleft^* P\}, \trianglelefteq \rangle$ is well-defined.

Proof By structural induction and corollary 16.31.

Structural proofs were originally introduced by Rod Burstall [Burstall, 1969] for recursively defined structures such as data types.

Coinductive definitions

Coinductive definitions

en.wikipedia.org/wiki/Coinduction

Coinductive definition

Definition 16.34 The coinductive definition of $D \in \wp(\mathbb{U})$ by a deductive system of rules $\frac{P}{c} \in R$ is $\mathsf{gfp}^{c} FR$ where $F_{R}(X) \triangleq \{c \mid \exists \frac{P}{c} \in R : P \subseteq X\}$ is the consequence operator of R.

Infinitary language (example 16.35) I

- Let $\mathbb U$ be the set of infinite strings on the alphabet $\{a,b\}$.
- Let $R = \left\{ \frac{\{\sigma\}}{\mathsf{a}\sigma} \mid \sigma \in \mathbb{U} \right\}$
- This coinductive definition states that if $\sigma \in \mathbb{U}$ is an infinite string on the alphabet $\{a, b\}$ in D then $a\sigma$ is also an infinite string in D.
- This coinductive definition is equivalent to $\operatorname{gfp}^{\varsigma} FR$ where $F_R(X) \triangleq \{a\sigma \mid \sigma \in X\}$.
- F_R preserves arbitrary meets
- So by the dual of Tarski-Kantorovich's fixpoint theorem 15.21, the greatest fixpoint is the limit of the following \subseteq -decreasing chain of iterates of F_R

Infinitary language (example 16.35) II

```
\begin{array}{lll} F_R^0 &=& \mathbb{U} \\ F_R^1 &=& \{ \mathsf{a}\sigma \mid \sigma \in \mathbb{U} \} \\ \dots \\ F_R^n &=& \{ \mathsf{a}^n\sigma \mid \sigma \in \mathbb{U} \} \\ \dots \\ D &=& \mathsf{gfp}^{\scriptscriptstyle \subseteq} FR &=& \bigcap_{n \in \mathbb{N}} F_R^n &=& \{ \mathsf{aaaaa} \dots \} &=& \{ \mathsf{a}^\omega \} \end{array}
```

- For the limit observe that
 - all iterates contains a^ω
 - if an infinite string contains a b, say at rank n in the string, then it does not belong to F_R^n hence not to the limit $\bigcap_{n \in \mathbb{N}} F_R^n$.

Bi-inductive definition

A combination of inductive and co-inductive definitions, see section 16.7.

- 54/58 -

Conclusion

- Fixpoint, deductive, inductive, and structural definitions are used to provide well-defined specifications of the semantics of programs and their abstractions.
- Context-free grammars are a particular case

Conclusion

- Fixpoint, deductive, inductive, structural, coinductive, and bi-inductive definitions are used in the definition of semantics, verification conditions, and static analysis of programs
- An overview of set-theoretic formal definitions is given in [Aczel, 1977].
- A generalization from $\wp(\mathbb{U})$ to complete partial orders is considered in [P. Cousot and R. Cousot, 1995].

Bibliography

Bibliography I

- Aczel, Peter (1977). "An Introduction to Inductive Definitions.". In John Barwise, ed. *Handbook of Mathematical Logic*. Amsterdam: North–Holland. Chap. 7, pp. 739–782.
- Burstall, Rod M. (1969). "Proving Properties of Programs by Structural Induction.". *Computer Journal*. 12.1, pp. 41–48.
- Cousot, Patrick and Radhia Cousot (1995). "Compositional and Inductive Semantic Definitions in Fixpoint, Equational, Constraint, Closure–Condition, Rule–Based and Game–Theoretic Form.". In *CAV*. Vol. 939. Lecture Notes in Computer Science. Springer, pp. 293–308.

The End, Thank you