MULTIPLIERS AND MAGNITUDE COMPARATORS

Binary Multiplier

■ 2 bit x 2 bit binary multiplier using adders and external gates.

Design a 4 bit x 3 bit binary multiplier using 7483 ICs (4 bit binary adders) and external AND gates. By ABLABIABO FOBJAOBZ AOB,

Magnitude Comparator

■ 1 bit Magnitude comparator

Input		Output			
Α	В	A>B	A=B	A <b< td=""></b<>	
0	0	0	1	0	
0	1	0	0	1	
1	0	1	0	0	
1	1	0	1	0	

2 bit magnitude comparator

<u>Z bit magnitude comparator</u>								
		Inp	uts	Outputs				
	A_1	A_0	B ₁	B_0	A>B	A=B	A <b< td=""><td></td></b<>	
	0	0	0	0	0	1	0	
	0	0	0	1	0	0	1 ~	
	0	0	1	0	0	0	1 🜙	
	0	0	1	1	0	0	1	_
	0	1	0	0	1_	0	0	
	0	1	0	1	0	1	0	
	0	1	1	0	0	0	1 _	^
	0	1	1	1	0	0	1	
7	1	0	0	0	1/	0	0	
1	1	0	0	1	1/	0	0	
	1	0	1	0	0	1	0	
-	_ 1	0	1	1	0	0	1	
	/1	1	0	0	1 /	0	0	
1	1	1	0	1	1 _	0	0	
	1	1	1	0	1_/	0	0	
	1	1	1	1	0	1	0	

$$G_{1} = A_{1}B_{1}$$

$$G_{0} = A_{1}B_{1}$$

$$E_{1} = A_{1}B_{1} + A_{2}B_{3}$$

$$E_{0} = G_{1} + L_{1}$$

$$E_{0} = G_{0} + L_{0}$$

$$L_{1} = A_{1}B_{1}$$

$$L_{0} = A_{0}B_{0}$$

$$E_{1} = A_{1}A_{0}B_{1}B_{0} + A_{1}A_{0}B_{1}B_{0} + A_{1}A_{0}B_{1}B_{0}$$

$$E_{1} = A_{1}B_{1}A_{0}B_{0} + A_{0}B_{0} + A_{0}B_{0}$$

$$E_{1} = A_{1}B_{1}A_{0}B_{0} + A_{0}B_{0}$$

3 bit magnitude comparator

ALAIA (>B28,B0

$$G = G_2 + E_2G_1 + E_2E_1G_0$$

$$E = E_2E_1E_0$$

$$L = L_2 + E_2L_1 + E_2E_1L_0$$

$$Draw the concent$$

4 bit magnitude comparator

$$G = G_3 + E_3G_2 + E_3E_2G_1 + E_3E_2E_1G_0$$

$$E = E_3E_2E_1E_0$$

$$L = L_3 + E_3L_2 + E_3E_2L_1 + E_3E_2E_1L_0$$

$$The circuit$$

Design 4 bit magnitude comparator using 7483 IC and external gates. A3 A2 A1 A0

7485 IC (4 bit magnitude comparator with cascading inputs)

