(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 31 March 2005 (31.03.2005)

PCT

(10) International Publication Number WO 2005/029927 A2

(51) International Patent Classification7:

H05H 1/54

(21) International Application Number:

PCT/RU2004/000368

(22) International Filing Date:

20 September 2004 (20.09.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

2003128090 22 September 2003 (22.09.2003)

(71) Applicant (for all designated States except US): GOSU-DARSTVENNOE NAUCHNOE UCHREZHDENIE "GOSUDARSTVENNY NAUCHNO-ISSLEDOVA-TELSKY INSTITUT PRIKLADNOI MECHANIKI I ELEKTRODINAMIKI" [RU/RU]; GSP-3, A-80, Volokolamskoe shosse, 4, Moscow, 125993 (RU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ANTROPOV, Nikolay Nikolaevich [RU/RU]; ul. Glagoleva, 30-3-231,

Moscow, 123585 (RU). DIYAKONOV, Grigory Alexandrovich [RU/RU]; ul. Sadovaya-Samotechnaya, 9-4, Moscow, 127473 (RU). ORLOV, Michail Michailovich [RU/RU]; Gurievsky proezd, 19-3-107, Moscow, 115597 (RU). POPOV, Garry Alekseevich [RU/RU]; 1-aya ul. 8-go Marta, 3-104, Moscow, 125167 (RU). TYUTIN, Valery Konstantinovich [RU/RU]; ul. Katukova, 13-3-415, Moscow, 123181 (RU). YAKOVLEV, Vladimir Nikolaevich [RU/RU]; ul. Moskovskaya, 18-44, Chimki, Moskovskaya obl., 141400 (RU).

- (74) Agent: MELYAN, Alexander Rubenovich; G-467, a/ya 58, Moscow, 121467 (RU).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: PULSED PLASMA ACCELERATOR AND METHOD

(57) Abstract: A pulsed plasma accelerator comprises two electrodes (1) arranged between dielectric bars (2) made from an ablating material, a discharge channel with an open end part whose walls are defined by the surfaces of electrodes (1) and dielectric bars (2), an energy accumulator (11) and current supplies (14,15) for connecting the electrodes (1) with the energy accumulator (11). The current supplies (14, 15) define in conjunction with the electrodes (1) and the energy accumulator (11) an external electric circuit, with characteristics of the external electric circuit being selected on the condition: $2 \le C/L$, where $C(\mu F)$ is the electric capacitance of the external electric circuit, and L is the inductance of the external electric circuit, $L \le 100$ nH. During operation of the plasma accelerator, quazi-nonperiodic pulse discharges are ignited and maintained in the discharge channel. By providing coordinated parameters of the external and internal circuits, a substantial increase in the efficiency of plasma acceleration is achieved.

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW,

ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

- of inventorship (Rule 4.17(iv)) for US only

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.