

CNN RNN & LSTM

KARMUKILAN D K Deep2Neuron Internship

HOW NEURAL NETWORK WORKS ???

EXAMPLE OF CNN CLASSIFICATION

SINGLE CHANNEL

THREE CHANNEL -RGB

23	125	233	201	98
14	49	32	241	59
88	89	124	27	19
65	14	105	169	4
167	33	199	197	19

60	7	98	14	19
165	159	147	196	169
187	204	165	41	111
209	30	201	23	203
58	79	218	59	118

How Does CNN Recognize Images?

Have you noticed what happens behind the computer ???

another example...

As you can see from the above diagram, only those values are lit that have a value of 1.

Layers in a Convolutional Neural Network...

Convolution Layer...

Striding...

Padding...

How Convolution applied to more than one filter???

?	?	?	?
?	?	?	?
?	?	?	?
?	?	?	?

ReLu Layer -Rectified Linear Unit...

Pooling Layer...

Pooling Layer

• The pooling layer uses various filters to identify different parts of the image like edges, corners, body, feathers, eyes, and beak.

Pooling Layer types...

How Convolutional Network look so far...

Flattening...

Fully connected Layer...

Fully connected Layer...

Fully connected Layer...

How exactly CNN predicts...

Feature Extraction in multiple hidden layers

Classification in the output layer

USE CASES OF CNN

Decoding Facial Recognition

Understanding Climate

Analyzing Documents

Advertising

What is a Recurrent Neural Network (RNN)?

RNN Scenarios...

Feed Forward Neural Network ...

"A Dog catching a ball in mid air"

Here the person is speaking in English and it is getting translated into Chinese, Italian, French, German and Spanish languages

Machine Translation

When it rains, look for rainbows. When it's dark, look for stars.

Positive Sentiment

Natural Language Processing

Types of RNN...

Vanilla Neural Network

Two Issues of Standard RNNs and Solutions

"The clouds are in the _____."

"I have been staying in TamilNadu for the last 10 years...I can speak fluent

Gmail Images

India

About Advertising Business How Search works Privacy Terms Settings

i have been staying in tamilnadu for last 10 years so i x
 can speak fluent

Google Search

I'm Feeling Lucky

Google offered in: हिन्दी वाश्ना මෙවාරා मराठी தமிழ் ગુજરાતી ಕನ್ನಡ മലയാളം पंनाषी

India

About Advertising Business How Search works Privacy Terms Settings

LSTM's

	CNN (Convolutional Neural Network)	RNN (Recurrent Neural Network)	LSTM (Long Short-Term Memory)
Suitable for	Grid-like structured data (e.g., images)	Sequential data (e.g., text, speech)	Sequential data with long-term dependencies
Key feature	Convolutional layers for local feature extraction	Recurrent connections for sequential information	Memory cells for capturing long-term dependencies
Architecture	Consists of convolutional layers and pooling		A specialized type of RNN with LSTM memory cells
Information flow	Forward and occasionally backward	Unidirectional or bidirectional	Unidirectional or bidirectional
Memory	Limited memory, typically local context	Hidden state carries past information	Memory cells store past information and gate it

	Limited	Difficulty	Computational
	sequential	capturing long-	complexity,
	modeling, global	term	overfitting with
Weaknesses	context	dependencies	small data
		Sentiment	Natural language
	Image	analysis, language	processing,
Common	classification,	modeling, speech	machine
applications	object detection	recognition	translation

THANK YOU

Queries???