Modul Statistische Aspekte der Analyse molekularbiologischer und genetischer Daten

Übungsblatt 4: Populationsgenetik & SNP-Arrays

Janne Pott

WS 2021/22

Sie können Ihre Lösungen zu Aufgabe 3 und 4 als PDF in Moodle hochladen (Frist: 13.12.2021).

Aufgabe 1: Populationsgenetik

Ein SNP wird in drei verschiedenen Populationen gemessen:

Genotyp	AA	AB	ВВ
Population 1	125	250	125
Population 2	50	30	20
Population 3	100	500	400

- a) Bestimmen Sie die Allelfrequenzen p_i und q_i für jede Population i und die Gesamtfrequenzen \bar{p} und \bar{q} aller drei Populationen zusammen.
- b) Berechnen Sie den Inzuchtskoeffizient F_i pro Population i, indem Sie die beobachtete und unter HWE erwartete Heterozygosität bestimmen.
- c) Erklären Sie, warum wir die Varianz mit der Heterozygosität gleichsetzen können. Hinweis: HWE nimmt Binomialverteilung an.
- d) Bestimmen Sie
 - H_I als Mittelwert der beobachteten Heterozygoten innerhalb der Populationen,
 - H_S als Mittelwert der erwarteten Heterozygoten innerhalb der Populationen und
 - H_T als erwartete Heterozygote der Gesamtpopulation.
- e) Berechnen Sie mittels H_S und H_T den Fixationsindex F_ST .
- f) Interpretieren Sie die Ergebnisse.

Aufgabe 2: Heritabilität

In der Vorlesung haben Sie den Begriff **Heritabilität** kennengelernt. Definieren Sie diesen Begriff und beschreiben Sie kurz eine Methode wie diese geschätzt werden kann!

Schätzen Sie folgende Aussagen ein (wahr/falsch):

- a) Falls eine Person die Veranlagung einer Krankheit hat, die eine Heritabilität von 1 besitzt, wird diese Person auch die Krankheit erleiden.
- b) Die Heritabilität Finger an jeder Hand zu haben ist 1 (oder fast 1).

- c) Die Begriffe "Heritabilität" und "ererbt" bedeuten fast das Gegenteil.
- d) In Amerika der 1950er Jahre war die Heritabilität für das Tragen von Ohrringen sehr hoch.
- e) Die Heritabilität von eineigen Zwillingen ist 1.
- f) Je mehr sich die Umwelt für verschieden Populationen mit unterschiedlicher Heritabilität angleicht, desto höher wird die (Gesamt-)Heritabilität.

Aufgabe 3: Genotypisierung

Sie haben in der Vorlesung den Begriff Coverage kennengelernt.

- a) Von was hängt die Coverage einer Microarrays ab?
- b) Was sind die üblichen Referenz-Panels und wie unterscheiden diese sich?
- c) Beschreiben Sie stichpunktartig den Workflow der Affymetrix Axiom Plattform!

Aufgabe 4: SNP-Clusterplots

Beim Calling gibt es verschiedene Kriterien der SNP-Qualität:

Kriterium	Bedeutung
Call Rate	Anteil an Samples, die pro SNP gecalled wurde = 1 – Anteil missings
p(HWE)	Exakter Fisher Test \rightarrow Ist die Differenz der beobachteten und der erwarteten
	Allelfrequenz (im HWE) signifikant?
p(PA)	Chi-Quadrat Test \rightarrow Ist die Allelfrequenz abhängig von der Array-Platte (Batch-Effekt)?
nMA bzw.	Anzahl des Minor Allels in alles Samples \rightarrow Ist der SNP monomorph, d.h. ist es
MAF	eigentlich kein richtiger SNP in der verwendeten Kohorte?
FLD	Minimaler Abstand zwischen den Cluster (bzgl. X-Achse) \rightarrow Sind die Cluster gut
	trennbar?
HetSO	Abstand des AB-Clusters zu AA bzw. BB (bzgl. Y-Achse) \rightarrow Hat AB höhere Intensität
	als AA und BB?
HomRO	Verteilung der Cluster (bzgl. 0 der X-Achse) \rightarrow Ist AB in etwa bei 0?

- a) Recherchieren Sie anhand Ihrer Vorlesungsunterlagen die Thresholds für jedes Kriterium.
- b) Betrachten Sie die vier unten angezeigten Clusterplots und geben Sie mit Begründung an, ob der SNP gefiltert werden muss.

SNP	CR	p(HWE)	p(PA)	nMA	FLD	HetSO	HomRO
AX-11157239	98.97	0.0026	0.86	1598	2.84	0.13	0.81
AX-11396841	99.37	0.25	0.15	2242	5.39	0.03	-1.02
AX-11087332	99.49	0.89	0.67	1141	7.58	0.27	1.30
AX-11644635	93.92	$5.24x10^{-29}$	0	4449	3.62	-0.70	0.67

Hinweis: X-Achse: $log_2(Int(A)/Int(B))$, Y-Achse: $0.5 \cdot log_2(Int(A) \cdot Int(B))$

Figure 1: Clusterplots zu Aufgabe 4.