Table 1: Discrete models

	Parameters	${\bf Support}$	$\mathbf{PMF}\;p_X(x)$	Mean	Mean Variance
$\operatorname{Bernoulli}$	$p \in [0,1]$	$x \in [0,1]$	$p^x(1-p)^{1-x}$	d	p(1-p)
Binomial	$p \in [0,1]$	$x \in \{0, 1, \dots, n\}$	$\binom{n}{x} p^x (1-p)^{n-x}$	du	np(1-p)
Negative Binomial	$r \in \mathbb{Z}^+, p \in [0,1]$	$k\in\mathbb{N}$	$\binom{k+r-1}{k}(1-p)^r p^k \qquad \frac{pr}{1-p}$	$\frac{pr}{1-p}$	$\frac{pr}{(1-p)^2}$
Geometric	$p \in [0,1]$	$x \in \{1, 2, \dots\}$	$p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Poisson	$\mu \in \mathbb{R}^+$	$x \in \{0, 1, 2, \dots\}$	$\frac{\mu^x}{x!}e^{-\mu}$	ή	ή

Table 2: Continuous models

	Parameters	Support	$\mathbf{PDF}\;p_X(x)$	Mean	Variance
Uniform	$a < b \in \mathbb{R}$	$x \in [a,b]$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential	$\lambda > 0$	$x\in\mathbb{R}_{+}^{+}$	$\lambda e^{-\lambda x}$	1 \	$\frac{1}{\lambda^2}$
Normal	$\begin{cases} \mu \in \mathbb{R} & (\text{mean}) \\ \sigma^2 > 0 & (\text{variance}) \end{cases}$	$x \in \mathbb{R}$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$	π	σ^2
Beta	$a > 0, \ b > 0$	$x \in [0,1]$	$\frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$
Gamma	a > 0, b > 0	$x \in (0, \infty)$	$\frac{1}{\Gamma(a)}b^ax^{a-1}e^{-bx}$	$\frac{q}{p}$	$\frac{a}{b^2}$
Inverse Gamma	a > 0, b > 0	$x \in (0, \infty)$	$\frac{b^a}{\Gamma(a)} x^{-(a+1)} e^{-\frac{b}{x}}$	$\frac{b}{a-1}, a > 1$	$\frac{b^2}{(a-1)^2(a-2)}, a > 2$
Beta-Binomial	$n\in\mathbb{N}, a>0, b>0$	$k \in \{0, \dots, n\}$	$\binom{n}{k} \frac{B(k+a, n-k+b)}{B(a,b)}$	$\frac{na}{a+b}$	

Table 3: Conjugate analysis

Likelihood	Conjugate prior distribution	Posterior hyperparameters $(y = \sum Y_i)$	Posterior predictive
$\operatorname{Binomial}(n,\theta)$	$\theta \sim \text{Beta}(1,1)$ (uniform)	Beta $(1+y, 1+n-y)$	Bernoulli $\left(\frac{a'}{a'+b'}\right)$
$\operatorname{Binomial}(n,\theta)$	$\theta \sim \mathrm{Beta}(a,b)$	$Beta(a+y,\ b+n-y)$	Bernoulli $\left(\frac{a'}{a'+b'}\right)$
$Poisson(\theta)$	$\theta \sim \operatorname{Gamma}(a,b)$	$\operatorname{Gamma}(a+y,b+n)$	Negative-Binomial $\left(a', \frac{1}{1+b'}\right)$
Normal (θ, σ^2) (known σ^2)	$ heta \sim ext{Normal}(\mu_0, au_0^2)$	$\operatorname{Normal}\left(rac{1}{\kappa}\Big(rac{\mu_0}{ au_0^2}+rac{\sum_i y_i}{\sigma^2}\Big),\;rac{1}{\kappa} ight) onumber \ \kappa=rac{1}{ au_0^2}+rac{n}{\sigma^2}$	$\operatorname{Normal}\big(\mu_n,\tau_n^2+\sigma^2\big)$
Normal (θ, σ^2) (known μ)	$\sigma^2 \sim \text{Inv-Gamma}(a,b)$	InvGamma $\left(a + \frac{n}{2}, b + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}\right)$	
$\text{Normal}(\theta, \sigma^2)$ (both unknown)	$\begin{cases} \frac{1}{\sigma^2} \sim \operatorname{Gamma}\left(\frac{\nu_0}{2}, \frac{\nu_0 \sigma_0^2}{2}\right) \\ \theta \sigma^2 \sim \operatorname{Normal}\left(\mu_0, \frac{\sigma^2}{\kappa_0}\right) \end{cases}$	$ \begin{cases} \theta \sim \text{Normal}\left(\mu_n, \frac{\sigma^2}{\kappa_n}\right) \\ \frac{1}{\sigma^2} \sim \text{Gamma}\left(\frac{\nu_n}{2}, \frac{\nu_n \sigma_n^2}{2}\right) \\ \kappa_n = \kappa_0 + n \\ \mu_n = \frac{\kappa_0 \mu_0 + n\bar{y}}{\kappa_n} \\ \nu_n = \nu_0 + n \\ \nu_n = \nu_0 + n \end{cases} $	

Bayes factor for an event E s.t. Pr(E) = p:

$$odds(E) = \frac{p}{1 - p}$$

Given prior model \mathcal{M}_1 and posterior model \mathcal{M}_2 we compute:

$$BF = \frac{\text{odds}(E|M_2)}{\text{odds}(E|M_1)}$$