

Все в мире повторяется.

Ф Бэко

Технологии анализа данных

Содержание

2

- □ Основные понятия
- □ Основные алгоритмы

Технологии анализа данных © М.Л. Цымбг

Повторяющиеся шаблоны

3

- □ Повторяющийся шаблон (frequent pattern) шаблон (множество предметов, последовательностей, структур и др.), который часто встречается в исходном множестве данных.
- □ Мотивация: найти скрытые закономерности в данных
 - Какие товары часто продаются совместно? (пиво и подгузники :-)
 - Какие цепочки ДНК наиболее вероятно составляют новое лекарство?
 - Как автоматически классифицировать web-документы?

Как демографическая ситуация влияет на покупки? Имеет ли значение при покупке определенная марка молока?

молока?
Где в магазине нужно разместить помидоры для увеличения их продаж?
Хлеб обычно покупается вместе с молоком?
Хлеб покупается тогда, когда покупаются одновременно молоко и яйца?

хнологии анализа данных © М

1

Основные понятия

- □ Набор товаров (itemset)
 {молоко, хлеб, сахар}

 - □ k-элементный набор (k-itemset)
- □ Поддержка (support)

 - набора

 P({молоко, хлеб, сахар})=2

 □ *Поддержка s* доля транзакций, содержащих заданный набор

 sup({молоко, хлеб, сахар})=2/5
- Часто встречающийся набор товаров (frequent itemset) набор, имеющий поддержку не ниже заданного порога minsup.
- □ Задача анализа рыночной корзины (market basket analysis problem) для заданного порога minsup найти все часто встречающиеся наборы товаров.

TID	Транзакция
1	хлеб, молоко
2	хлеб, кофе, яйца, сахар
3	молоко, кофе, кола, сахар
4	хлеб, кофе, молоко, сахар
5	хлеб, кола, молоко, сахар

Технологии анализа данных © М.Л. Цымблер

Нахождение частых наборов $\hfill\Box$ Для d товаров имеем 2^{d} наборов-кандидатов

Нахождение частых наборов □ Brute force □ Apriori □ Вертикальный формат данных

Brute force □ Каждый набор является кандидатом □ Подсчитать поддержку каждого набора-кандидата □ Проверить каждую Транзакция транзакцию для каждого набора-кандидата хлеб, кофе, яйца, сахар молоко, кофе, кола, сахар □ Сложность: хлеб, кофе, молоко, сахар $O(N \cdot M \cdot W) = O(N \cdot 2^{d} \cdot W)$ → W + Технологии анализа данных © М.Л. Цымблер

Стратегии
8
 Уменьшение количества наборов-кандидатов M Полный перебор: $M=2^d$
□ Использование различных техник отсечения
\square Уменьшение количества транзакций N
 Уменьшение N при увеличении размера набора
□ Использование вертикального формата данных
\square Уменьшение количества сравнений NM
 Использование эффективных структур данных для хранения наборов-кандидатов или транзакций
 Отсутствие необходимости проверки каждого кандидата для каждой транзакции

Уменьшение количества
кандидатов
9
🛮 Принцип Apriori
■ Если набор является частым, то все его подмножества также являются частыми
 Антимонотонность поддержки
□ Поддержка набора не превышает поддержки его подмножеств
$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$
Taylororus analuse rausiny (C.M.I. Hungran

Алгоритм Аргіогі: идеология □ Принцип: □ для любого набора, который не является частым, его надмножество не должно попасть в список наборовкандидатов □ Метод: □ Сканировать все транзакции для получения частых 1-наборов □ Генерировать (k+1)-наборы-кандидаты из частых k-наборов □ Проверить кандидаты по всем транзакциям □ Если отсутствуют частые наборы или наборы-кандидаты, закончить

Алгоритм Apriori
14
C_{k} : k -набор-кандидат L_{k} : частый k -набор
$L_{,1} = \{$ частые товары $\};$ for $(k=1; L_{,k}!=\emptyset; k++)$ do begin C_{k+j} =наборы-кандидаты, сгенерированные из $L_{k};$ for each t in TDB do увеличить счетчики кандидатов в C_{k+j} , содержащихся в t L_{k+j} =кандидаты из C_{k+j} с поддержкой $\geq minsup$ end return $\cup_k L_{k};$

Важные детали Apriori Б | Как генерировать наборы-кандидаты? Шаг 1: соединение (self-joining) L_k*L_k Шаг 2: отсечение (pruning) Как вычислять поддержку наборов-кандидатов? Пример генерации кандидатов $L_3=\{abc, abd, acd, ace, bcd\}$ Соединение L_3*L_3 abcd из abc и abdacde из acd и aceОтбрасывание acde удалено, поскольку $ade \notin L_3$ $C_4=\{abcd\}$

Vau
Как генерировать кандидатов?
16
\square Пусть элементы L_{k-1} упорядочены
\square Шаг 1: соединение $L_{k\cdot I}$ insert into $ extbf{\textit{C}}_{k}$
select p.item ₁ , p.item ₂ ,, p.item _{k-1} , q.item _{k-1}
from L_{k-1} p , L_{k-1} q
where $p.item_1=q.item_1$,, $p.item_{k\cdot 2}=q.item_{k\cdot 2}$, $p.item_{k\cdot 1} < q.item_{k\cdot 1}$
□ Шаг 2: отсечение forall <i>itemsets c in C_k</i> do
forall (k-1)-подмножеств s из c do
if (s is not in L_{k-1}) then delete c from C_k
Технологии анализа данных © М.Л. Цымблер
Факторы, влияющие на сложность
17 Take 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
□ Выбор minsup
 Чем меньше minsup, тем больше частых наборов. Это увеличивает
количество кандидатов и макс. длину частых наборов.
 □ Количество товаров □ Необходимость хранения счетчика поддержки для каждого товара.
 ■ Если количество частых товаров возрастает, то возрастают
накладные расходы на вычисления и ввод-вывод
 □ Количество транзакций □ Поскольку Ariori предполагает множество проходов, время работы
возрастает с увеличением количества транзакций
 □ Средняя длина транзакции □ Количество подмножеств увеличивается при увеличении
мощности множества
Технологии анализа данных © М.Л. Цымблер
Улучшение Apriori
элучшение Арпоп
18
□ Уменьшение количества сравнений
□ Уменьшение количества транзакций
 Фрагментация данных при поиске кандидатов
□ Сэмплинг: анализ подмножества исходных данных
Технологии анализа данных

Уменьшение количества сравнений

19

minsup = 3

- □ При сканировании транзакций для подсчета поддержки каждого набора-кандидата количество сравнений можно уменьшить, если хранить кандидатов в хеш-структуре
 - Вместо проверки каждого кандидата проверка хеш-адреса кандидата

h(i1,i2) = (Ord(i1) * 10 + Ord(i2) mod 7

H2

h(i1,i2) 6 4 Поддержка наборов 2 2 4 2 2 {B,D} {B,E} Наборы {A,D} {A,E} {B,C} {A,B} {A,C} (C,E) {A,E} {B,C} (B,D) {B,E} {A,B} {A,C} {B,C} {A,B} {A,C}

\ /		_
Уменьшение	LOURINGCERS	Thallagirilling
7 MCUDMCUNC	KUJINIACCI DA	трапзакции
		.

20

 \square Транзакция, которая не содержит частый k-набор, не может содержать любой частый j-набор для j > k, и может не просматриваться при обработке j-наборов.

Технологии анализа данных © М.Л. Цымбле

Фрагментация данных при поиске кандидатов

21

- □ Требует лишь двух просмотров списка транзакций, если каждый фрагмент может разместиться в оперативной памяти.
- Фаза 1
 - \blacksquare Разделить TDB на n фрагментов
 - $f \square$ Для каждого фрагмента найти локальные частые наборы. Частый набор фрагмента i имеет поддержку $sup_count>minsup*d_i$, где d_i – размер фрагмента.
 - \blacksquare Для каждого набора сохранить tid транзакций, включающих в себя набор.
- □ Фаза 2
 - Второй просмотр TDB, чтобы найти действительное значение каждого локального частого набора.

Гехнологии анализа данных © М.Л. Цымбле

Сэмплинг: анализ подмножества исходных данных

- $\hfill \square$ Выбрать случайным образом часть S исходных данных TDB так, чтобы S можно было разместить в оперативной памяти
- \square Найти частые наборы L_S в S. Можно при этом уменьшить *minsup*, чтобы уменьшить количество пропущенных частых наборов.
- □ При необходимости
 - \blacksquare Найти реальную поддержку наборов из L_{S} , используя
 - \blacksquare Если $L_{\mathbb{S}}$, не содержит все частые наборы из TDB, выполнить сэмплинг повторно.

Узкое место Apriori

- □ Многочисленные просмотры TDB
- □ Анализ длинных шаблонов требует большого количества просмотров и генерации большого количества кандидатов
 - \blacksquare Пример: найти частые наборы для $i_1 i_2 ... i_{100}$
 - Количество просмотров: 100
 - Количество кандидатов: 2¹⁰⁰-1
- □ Узкое место: генерация и проверка кандидатов

Вертикальный формат данных □ Для каждого товара хранится список транзакций, в которые он входит. TID Items A,B,E B,C,D 2 3 4 3 5 7 3 C,E 5 4 5 6 4 6 A,C,D 8 5 A,B,C,D 7 8 9 6 7 A,E A,B 8 10 8 A,B,C A,C,D 9 10 B tid-списки

Вертикальный формат данных

 $\hfill\Box$ Подсчет поддержки любого k-набора — мощность пересечения tid-списков двух его (k-1)-наборов.

- □ Плюсы: быстрый подсчет поддержки.
- □ Минусы: промежуточные *tid*-списки могут не помещаться в оперативной памяти.

Использование РСУБД

 Алгоритмы интеллектуального анализа данных могут быть реализованы в реляционных СУБД.

- Плюсы:
 - Данные, подлежащие интеллектуальному анализу, не нужно экспортировать для последующего использования внешними утилитами. Результаты анализа не нужно импортировать обратно в реляционную базу данных.
 - Нет ограничения на использование оперативной памяти.
- □ Минусы:
 - SQL менее гибок, чем ЯВУ.
 - РСУБД обычно менее эффективны, когда объем данных, подлежащих анализу, позволяет разместить их в оперативной памяти.

Технологии анализа данных © М.Л. Цымбле

SQL: нахождение частых наборов □ Реляционная таблица tid item для хранения транзакций хлеб ■ TDB (tid, item) молоко хлеб кофе tid Транзакция хлеб, молоко caxap хлеб, кофе, яйца, сахар молоко 3 молоко, кофе, кола, сахар кофе кола caxap SQL: нахождение частых наборов -- Генерация кандидатов insert into Cand select * from TDB where item in (select item from TDB group by item having count(*) >= minsup); SQL: нахождение частых наборов -- Частые 2-наборы select A.item, B.item, count(A.tid) as sup_count from Cand A, Cand B where A.tid=B.tid and A.item<B.item group by A.item, B.item having count(A.tid) >= minsup; -- Частые k-наборы (k>2) -- Как автоматизировать k:=k+1? Технологии анализа данных — © М.Л. Цымблер

Компактное представление частых наборов □ Некоторые наборы являются избыточными, поскольку имеют ту же поддержку, что и их надмножества. □ По ат тад да ма да на да на да на водил в на да на водил в на да на

Замкнутый на в Набор является зами	•		
⊔ ттаоор является <i>замн</i>	кнутым, если ни	Itemset	Support
одно из его надмнож	сеств не имеет ту	{A}	4
		{B}	5
же поддержку.		{C}	3
		{D}	4
		{A,B}	4
	TID Items	{A,C}	2
	1 {A,B}	{A,D}	3
	2 {B,C,D}	{B,C}	3
	3 {A,B,C,D}	{B,D}	4
	4 {A,B,D}	{C,D}	3
	5 {A,B,C,D}	{A,B,C}	2
		{A,B,D}	3
		{A,C,D}	2
		{B,C,D}	3
		{A,B,C,D}	2
1	Технологии анализа данных © М	Л. Цымблер	

Ассоциативные правила: зачем?	
МСПОЛЬЗУЯ ДАННОЕ МНОЖЕСТВО ТРАНЗАКЦИЙ, МЫ ХОТИМ НАЙТИ ПРАВИЛА, КОТОРЫЕ ПРЕДСКАЖУТ ФАКТ ПОКУПКИ ТОВАРА НА ОСНОВЕ ФАКТОВ ПОКУПКИ ДРУГИХ ТОВАРОВ В ТРАНЗАКЦИЯХ. {Caxap} → {кофе}, {молоко, xne6} → {яйца, кола}, {кофе, xne6} → {молоко} 1	
Поддержка и доверие	
\Box <i>Ассоциативное правило</i> на наборах X и Y – это	
выражение вида $X \rightarrow Y$ ("если X , то Y ").	
□ Поддержка правила (rule support) □ показывает долю транзакций, содержащих X и Y.	
□ sup(X→Y)=P(X,Y)/ TID □ Доверие к правилу (rule confidence)	
 □ показывает, как часто товары из Y возникают в транзакции, которая содержит X 	
$ conf(X \rightarrow Y) = P(X,Y)/P(X) $	
Технологии анализа данных Ф М.Л. Цымблер	
Поддержка и доверие	
40	
□ {молоко,сахар}→{кофе} □ sup=P(молоко,сахар,кофе)/ TID =2/5 □ conf=P(молоко,сахар,кофе)/P(молоко,сахар)=2/3 2 хлеб, молоко, кофе хлеб, кофе, яйца, сахар	
□ {кофе}→{молоко,сахар} □ sup=2/5 2 клесь, коре, коре, кора, сахар 4 клесь, коре, кола, сахар	
■ conf=P(кофе,молоко,сахар)/P(кофе)=2/4	

Вычислительная сложность d товаров 2^d правил: $3^d - 2^{d+1} + 1$

© М.Л. Цымбл

Поиск ассоциативных правил

42

- □ Для заданного множества транзакций *TDB* и пороговых значений *minsup* и *minconf* найти все правила, имеющие
 - □ поддержку \ge minsup
 - \square доверие \geq minconf
- □ Полный перебор
 - □ получить список всех возможных правил
 - □ вычислить поддержку и доверие каждого правила
 - отбросить правила, не удовлетворяющие пороговым значениям

Технологии анализа данных <a> © М.Л. Цымбл

Поиск ассоциативных правил

TID	Транзакция
1	хлеб, молоко, кофе
2	хлеб, кофе, яйца, сахар
3	молоко, кофе, кола, сахар
4	хлеб, кофе, молоко, сахар
5	хлеб, кола, молоко, сахар

43

Правило	sup	conf
{молоко,сахар}→кофе	0,4	0,67
{молоко,кофе}→сахар	0,4	1,0
{сахар,кофе} →молоко	0,4	0,67
кофе→{молоко,сахар}	0,4	0,67
сахар→{молоко,кофе}	0,4	0,5
молоко→{сахар,кофе}	0,4	0,5

- □ Наблюдения
 - □ правила разбиение одного и того же набора
 - правила, полученные из одного и того же набора, имеют одну и ту же поддержку, но могут иметь разное доверие
 - при поиске правил требования поддержки и доверия можно отделить друг от друга.

Поиск ассоциативных правил
44
 □ Двухшаговый подход □ Найти частые наборы ■ найти наборы с поддержкой больше minsup □ Генерировать правила
 ■ генерировать правила с доверием больше minconf из каждого частого набора, где каждое правило является бинарным разбиением частого набора
 □ Нахождение частых наборов по-прежнему остается вычислительно сложной задачей
Технологии анализа данных © М.Л. Цымблер
Заключение
Заключение
 чs □ □ Задача анализа рыночной корзины – поиск часто
чь □ Задача анализа рыночной корзины — поиск часто встречающихся наборов товаров.
□ Задача анализа рыночной корзины – поиск часто встречающихся наборов товаров. □ Алгоритм Аргіогі поиска частых наборов.
□ Задача анализа рыночной корзины – поиск часто встречающихся наборов товаров. □ Алгоритм Аргіогі поиска частых наборов.
□ Задача анализа рыночной корзины – поиск часто встречающихся наборов товаров. □ Алгоритм Аргіогі поиска частых наборов.
□ Задача анализа рыночной корзины – поиск часто встречающихся наборов товаров. □ Алгоритм Аргіогі поиска частых наборов.
□ Задача анализа рыночной корзины – поиск часто встречающихся наборов товаров. □ Алгоритм Аргіогі поиска частых наборов.