47. Поток векторного поля через поверхность. Теорема Гаусса для поля вектора в вакууме (в интегральной форме).

По (9.3) *поток* Φ_E векторного поля $\vec{E} = \vec{E}(\vec{r})$ через произвольную ориентированную поверхность (S):

$$\Phi_E = \int_{(S)} \left(\vec{E}, \vec{n} \right) dS. \tag{S}$$

B СИ $[\Phi_E] = \mathbf{B} \cdot \mathbf{M}$.

Вычислим Φ_E поля точечного заряда q_0 через <u>замкнутую</u> поверхность (*S*), <u>охватывающую</u> этот заряд:

хватывающую этот заряд:
$$\Phi_E = \oint_{(S)} \left(\vec{E}, \vec{n} \right) dS = \oint_{(S)} E \cdot \cos \alpha \cdot dS = \oint_{(S)} E \cdot dS_{\perp} = \begin{vmatrix} \text{по определению} \\ \text{телесного угла} \\ dS_{\perp} = r^2 \cdot d\Omega \\ 0 \le \Omega \le 4\pi \end{vmatrix} =$$

$$= \int_{0}^{4\pi} E \cdot r^{2} \cdot d\Omega = \int_{0}^{4\pi} \frac{q_{0}}{4\pi\epsilon_{0} r^{2}} \cdot r^{2} \cdot d\Omega = \frac{q_{0}}{4\pi\epsilon_{0}} \int_{0}^{4\pi} d\Omega = \frac{q_{0}}{4\pi\epsilon_{0}} \cdot 4\pi = \frac{q_{0}}{\epsilon_{0}}, \quad (9.22)$$

где $d\Omega$ — телесный угол с вершиной в q_0 , вырезающий на поверхности (S) элемент площадью dS;

 $dS_{\perp} = dS \cdot \cos \alpha$ — площадь элемента, вырезаемого телесным углом $d\Omega$ на сфере с центром в q_0 и радиусом r.

Белорусский государственный университет информатики и радиоэлектроники

Кафедра физики

Пусть <u>замкнутая</u> поверхность (S) <u>не охватывает</u> заряд q_0 . Разделим (S) на 2 части: $(S) = (S_1) \cup (S_2)$,

где (S_1) и (S_2) — поверхности, стягивающие телесный угол Ω . Тогда поток Φ_E вектора \overrightarrow{E} через

(S):
$$\Phi_E = \oint_{(S)} \left(\vec{E}, \vec{n} \right) dS =$$

$$= \int_{(S_1)} \left(\vec{E}_1, \vec{n}_1 \right) dS + \int_{(S_2)} \left(\vec{E}_2, \vec{n}_2 \right) dS =$$

$$= \int_{(S_1)} E_1 \cdot dS_{\perp 1} - \int_{(S_2)} E_2 \cdot dS_{\perp 2} = \frac{q_0}{4\pi\epsilon_0} \cdot \Omega - \frac{q_0}{4\pi\epsilon_0} \cdot \Omega = 0.$$
 (9.23)

Результаты, полученные в (9.22) и (9.23), можно обобщить на любую совокупность электрических зарядов (дискретную или непрерывно распределенную).

Теорема Гаусса для поля вектора \vec{E} в вакууме (в интегральной форме):

Поток вектора напряженности \vec{E} электростатического поля в вакууме через любую <u>замкнутую</u> поверхность (S) равен алгебраической сумме зарядов $q_{\rm BHT}$, охватываемых этой поверхностью, деленной на электрическую постоянную ϵ_0 :

$$\oint_{(S)} (\vec{E}, \vec{n}) dS = \frac{1}{\varepsilon_0} q_{\text{BHT}}.$$
(9.24)

Если внутри замкнутой поверхности (S) находится n точечных зарядов, то $q_{\text{внт}} = \sum_{i=1}^{n} q_{i}.$

Если внутри замкнутой поверхности (S) заряд распределен непрерывно, то $q_{\text{внт}} = \int\limits_{(V)} \rho \, dV,$

где ρ — объемная плотность заряда, (V) — область распределения заряда, находящегося внутри замкнутой поверхности (S).

1100

Белорусский государственный университет информатики и радиоэлектроники

Кафедра физики

Т. к.
$$\Phi_{E} \sim \left(N_{\text{выход}} - N_{\text{вход}}\right),$$

то из (9.24) следует, что:

если $q_{\text{внт}} \neq 0$, то $N_{\text{выход}} \neq N_{\text{вход}}$;

если $q_{\text{внт}} = 0$, то $N_{\text{выход}} = N_{\text{вход}}$.

Содержательный смысл (9.24):

Силовые линии электростатического поля не являются замкнутыми: они начинаются на положительных электрических зарядах и оканчиваются на отрицательных.