## FIRST PRINCIPLES MODELING

#### **Topics Covered**

- Obtaining the equations of motion of a DC motor based rotary servo.
- Creating and validating a system model.
- Model validation.

#### **Prerequisites**

- QUBE-Servo Integration Lab.
- · Filtering Lab.



# 1 Background

The Quanser QUBE-Servo is a direct-drive rotary servo system. Its motor armature circuit schematic is shown in Figure 1.1 and the electrical and mechanical parameters are given in Table 1.1. The DC motor shaft is connected to the *load hub*. The hub is a metal disk used to mount the disk or rotary pendulum and has a moment of inertia of  $J_h$ . A disk load is attached to the output shaft with a moment of inertia of  $J_d$ .



Figure 1.1: QUBE-Servo DC motor and load

The back-emf (electromotive) voltage  $e_b(t)$  depends on the speed of the motor shaft,  $\omega_m$ , and the back-emf constant of the motor,  $k_m$ . It opposes the current flow. The back emf voltage is given by:

$$e_b(t) = k_m \omega_m(t)$$

| Symbol    | Description             | Value                               |
|-----------|-------------------------|-------------------------------------|
| DC Motor  |                         |                                     |
| $R_m$     | Terminal resistance     | <b>6.3</b> Ω                        |
| $k_t$     | Torque constant         | 0.036 N-m/A                         |
| $k_m$     | Motor back-emf constant | 0.036 V/(rad/s)                     |
| $J_m$     | Rotor inertia           | $4.0 	imes 10^{-6} 	ext{ kg-m}^2$   |
| $L_m$     | Rotor inductance        | 0.85 mH                             |
| $m_h$     | Load hub mass           | 0.0087 kg                           |
| $r_h$     | Load hub mass           | 0.0111 m                            |
| $J_h$     | Load hub inertia        | $1.07 	imes 10^{-6} \text{ kg-m}^2$ |
| Load Disk |                         |                                     |
| $m_d$     | Mass of disk load       | 0.054 kg                            |
| $r_d$     | Radius of disk load     | 0.0248 m                            |

Table 1.1: QUBE-Servo system parameters

Using Kirchoff's Voltage Law, we can write the following equation:

$$v_m(t) - R_m i_m(t) - L_m \frac{di_m(t)}{dt} - k_m \omega_m(t) = 0.$$

Since the motor inductance  $L_m$  is much less than its resistance, it can be ignored. Then, the equation becomes

$$v_m(t) - R_m i_m(t) - k_m \omega_m(t) = 0.$$

Solving for  $i_m(t)$ , the motor current can be found as:

$$i_m(t) = \frac{v_m(t) - k_m \omega_m(t)}{R_m}.$$
(1.1)

The motor shaft equation is expressed as

$$J_{eq}\dot{\omega}_m(t) = \tau_m(t),\tag{1.2}$$

where  $J_{eq}$  is total moment of inertia acting on the motor shaft and  $\tau_m$  is the applied torque from the DC motor. Based on the current applied, the torque is

$$\tau_m = k_m i_m(t)$$

The moment of inertia of a disk about its pivot, with mass m and radius r, is

$$J = \frac{1}{2}mr^2. (1.3)$$



### 2 In-Lab Exercises

Based on the models already designed in QUBE-Servo Integration and Filtering labs, design a model that applies a 1-3 V 0.4 Hz square wave to the motor and reads the servo velocity using the encoder as shown in Figure 2.1.



Figure 2.1: Applies a step voltage and displays measured and simulated QUBE-Servo speed.

Create subsystem called *QUBE-Servo Model*, as shown in Figure 2.1, that contains blocks to model the QUBE-Servo system. Thus using the equations given above, assemble a simple block digram in Simulink to model the system. You'll need a few Gain blocks, a Subtract block, and an Integrator block (to go from acceleration to speed). Part of the solution is shown in Figure 2.2.



Figure 2.2: Incomplete QUBE-Servo Model subsystem.

It may also help to write a short Matlab script that sets the various system parameters in Matlab, so you can use the symbol instead of entering the value numerically in the Gain blocks. In the example shown in Figure 2.2, we are using Rm for motor resistance and kt for the current-torque constant. To define these, write a script like:

```
% Resistance
Rm = 8.4;
% Current-torque (N-m/A)
kt = 0.042;
```

1. The motor shaft of the QUBE-Servo is attached to a *load hub* and a disk load. Based on the parameters given in Table 1.1, calculate the equivalent moment of inertia that is acting on the motor shaft.

- 2. Design the *QUBE-Servo Model* subsystem as described above. Attach a screen capture of your model and the Matlab script (if you used one).
- 3. Build and run the QUARC controller with your QUBE-Servo model. The scope response should be similar to Figure 2.3. Attach a screen capture of your scopes. Does your model represent the QUBE-Servo well? Explain.



Figure 2.3: QUBE Response

© 2014 Quanser Inc., All rights reserved.

Quanser Inc. 119 Spy Court Markham, Ontario L3R 5H6 Canada info@quanser.com Phone: 1-905-940-357

Phone: 1-905-940-3575 Fax: 1-905-940-3576

Printed in Markham, Ontario.

For more information on the solutions Quanser Inc. offers, please visit the web site at: http://www.quanser.com

This document and the software described in it are provided subject to a license agreement. Neither the software nor this document may be used or copied except as specified under the terms of that license agreement. Quanser Inc. grants the following rights: a) The right to reproduce the work, to incorporate the work into one or more collections, and to reproduce the work as incorporated in the collections, b) to create and reproduce adaptations provided reasonable steps are taken to clearly identify the changes that were made to the original work, c) to distribute and publically perform the work including as incorporated in collections, and d) to distribute and publicly perform adaptations. The above rights may be exercised in all media and formats whether now known or hereafter devised. These rights are granted subject to and limited by the following restrictions: a) You may not exercise any of the rights granted to You in above in any manner that is primarily intended for or directed toward commercial advantage or private monetary compensation, and b) You must keep intact all copyright notices for the Work and provide the name Quanser Inc. for attribution. These restrictions may not be waved without express prior written permission of Quanser Inc.