TRANSLATION FROM GERMAN

World Intellectual Property Organization

International application published pursuant to the Treaty on International Patent Cooperation (PCT)

(51) International Patent Classification: H02N 3/00

A₁

(11) International Publication Number: WO 00/25414

(43) International Publication Date: May 4, 2000 (5/4/00)

(21) International File Number: PCT/DE99/03389

(22) International Filing Date: October 21, 1999 (10/21/99)

(30) Priority Data: 198 48 852.1

October 22, 1998 (10/22/98) DE

- (71) (72) Applicant and inventor: LUCHINSKIY, Alexander [UA/DE]; Gymnastelstrasse 11, D-55543 Bad Kreuznach (DE), WERTH, Guenther [DE/DE]; Carl-Orff-Strasse 37, D-55127 Mainz (DE), SHIFRIN, Yakov [UA/UA]; Apartment 80, Kozmicheskaya Ulitsa 4, Kharkov 310145 (UA)
- (81) Treaty states: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG)

Published

With international search report.

Before expiration of the term allowed for amendments of the claims publication will be repeated if amendments are received

(54) Title: METHOD FOR PRODUCING ELECTRICAL ENERGY

(57) Abstract

A method for producing electrical energy in which charges are separated between two working media triboelectrically or electrostatically, the charges are moved away from one another by displacement of the working media under the action of external forces, here the external forces perform work against the Coulomb force, and the charges are routed onto electrodes, the indicated process steps being carried out within the inside volume of a heat tube, charge separation and charge displacement taking place using the directed gas flow of the heat tube, which flow entrains one working medium and routes it past the other working medium for charge separation and displacement. Application - use of solar energy

ONLY FOR INFORMATION

Codes for identification of PCT treaty states on the cover sheets of publications which disclose international applications according to the PCT.

AL	Albania	LK	Sri Lanka
AM	Armenia	LR	Liberia
AT	Austria	LS	Lesotho
AU	Australia	LT	Lithuania
AZ	Azerbaijan	LU	Luxembourg
BA	Bosnia-Herzegovina	LV	Latvia
BB	Barbados	MC	Monaco
BE	Belgium	MD	Republic of Moldova
BF	Burkina Faso	MG	Madagascar
BG	Bulgaria	MK	former Yug. Rep. Macedonia
BJ	Benin	ML	Mali
BR	Brazil	MN	Mongolia
BY	Belarus	MR	Mauritania
CA	Canada	MW	Malawi
CF	Central African Republic	MX	Mexico
CG	Congo	NE	Niger
CH	Switzerland	NL	Netherlands
CI	Ivory Coast	NO	Norway
CM	Cameroon	NZ	New Zealand
CN	China	PL	Poland
CU	.Cuba	PT	Portugal
CZ	Czech Republic	RO	Romania
DE	Germany	RU	Russian Federation
DK	Denmark	SD	Sudan
EE	Estonia	SE	Sweden
ES	Spain	SG	Singapore
FI	Finland	SI	Slovenia
FR	France	SK	Slovak Republic
GA	Gabon	SN	Senegal
GB	United Kingdom	SZ	Swaziland
GE	Georgia	TD	Chad
GH	Ghana	TG	Togo
GN	Guinea	TJ	Tajikistan
GR	Greece	TM	Turkmenistan
HU	Hungary	TR	Turkey
IL	Ireland	TT	Trinidad and Tobago
īL	Israel	UA	Ukraine
IS	Iceland	UG	Uganda
IT	Italy	US	USA

JР	Japan
KE	Kenya
KG	Kyrgyzstan
KP	Dem. People's Rep. of Korea
KR	Republic of Korea
ΚZ	Kazakhstan
LC	St. Lucia
LI	Liechtenstein
LK	Sri Lanka
LR	Liberia
LS	Lesotho

UZ	Uzbekistan
VN	Vietnam
YU	Yugoslavia
ZW	Zimbabwe

To:

28.10.02

United States Patent and Trademark Office Washington, DC, 20231

Conc: PCT/DE 99/03389 (09/830,017)

Dear Sirs,

We are sending you the amended application.

Please, pay attention, that term "heat tube", which was the mistake of translation, is corrected for "heat pipe".

Dr. Alexander Luchinskiy

Prof. Dr. Günther Werth

L. Muss Prof. Dr. Y. Shifrin

Europäisches Patentamt European Patent Office

Office européen des brevets

Urkunde Certificate Certificat

Es wird hiermit bescheinigt, daß für die in der beigefügten Patentschrift beschriebene Erfindung ein europäisches Patent für die in der Patentschrift bezeichneten Vertregsstaaten erteilt worden ist. It is hereby certified that a European patent has been granted in respect of the invention described in the annexed patent specification for the Contracting States designated in the specification.

Il est certifié qu'un brevet européen a été délivré pour l'invention décrite dans le fascicule de brevet ci-joint, pour les Etets contractants désignés dans le fascicule de brevet.

Europäisches Patent Nr.

European Patent No.

Brovet européen n°

1123578

Patentinhaber

Proprietor of the Patent

Titulaire du brevet

Luchinskiy, Alexander Gymnasialstrasse 11 55543 Bad Kreuznach/DE

Werth, Günther Carl-Orff-Strasse 37 55127 Mainz/DE

Shifrin, Yakov Apartment 80, Kosmicheskaya Strasse 4 Charkow 310145/UA

Ingo Kober

München, den 28.08.02 Mankti Feit à Manich, le

Président des Europäischen Patentamts President of the European Patent Office Présidant de l'Office européen des brevets

Vorauslexikon

in fünf Bänden zur

BROCKHAUS ENZYKLOPÄDIE

Neunzehnte Auflage

2 EL-I

F.A. Brockhaus Mannheim

ENCLOSURE 1

In diesem Buch werden, wie in allgemeinen Nachschlagewerken üblich, etwa bestehende Patente, Gebrauchsmuster oder Warenzeichen nicht erwähnt. Wenn ein solcher Hinweis fehlt, heißt das also nicht, daß eine Ware oder ein Warenname frei ist.

Das Wort Brockhaus ist für Bücher aller Art für die F.A. Brockhaus GmbH als Warenzeichen geschützt.

CIP-Kurztitelaufnahme der Deutschen Bibliothek

[Vorauslexikon zur Brockhaus-Enzyklopädie, neunzehnte Auflage]

Vorauslexikon in fünf Bänden zur Brockhaus-Enzyklopädie, neunzehnte Auflage. – Mannheim: Brockhaus

ISBN 3-7653-0857-9 NE: Brockhaus-Enzyklopädie

2. El - l. - 1986.

ISBN 3-7653-0859-5

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und straßar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

© F. A. Brockhaus GmbH, Mannheim 1986 – V. Nr. M4 – ISBN für das Gesamtwerk: 3-7653-0857-9 für Band 2: 3-7653-0859-5 Satz: Satzzentrum Oldenburg GmbH, Oldenburg (Oldb) Druck und Bindung: Neue Stalling GmbH, Oldenburg (Oldb) Printed in Germany

reichte er durch sensationelle Aufmachung, geschickte Werbung, hochbezahlte Journalisten.

Hearst-Insel [h'a:st-], engl. Hearst Island [-'ailand], vergletscherte hisel der W-Antarktis im W der Weddell-See, 1928 von H. Wilkins entdeckt.

Heartfield [h'a. fi. [d]], John, eigtl. Helmut Herzfeld, Graphiker und Bildpublizist, Schmargendorf bei Berlin 19. 6. 1891, † Berlin (Ost) 26. 4. 1968, Migründer und Illustrator der Zeitschriften der Berliner Dada-Groppe und Antikriegspublizistik, entwickelte die Photomontage zum Mittel der politischen Karikatur.

Heath [hi:0], Edward, brit. Politike (Konservativer), *Broadstairs 9. 7. 1916; zw. 1959 und 1964 Min., 1965-75 Führer der Konservativen im Unterhaus, setzte als Premiermin (1970-74) den Beitritt seines Landes in die Ed durch; sein Versuch, das Gewerkschaftswesen zu reformieren, scheiterte am Widerstand der Gewerkschaften. - 1963 erhielt H. den - Karlspreis.

Heat Pipes [hi:t paips, engl.] Pl., Wärmerohre, Vorrichtung für den Wärmetransport. Schon bei geringen Temperaturunterschieden zw. den Enden der in sich geschlossenen H. P. werden relativ große Wärmemengen geleitet. H. P. sind teilevakuierte Metallrohre, deren Innenwandungen mit einer porösen Schicht mit Kapillarstruktur ausgekleidet sind. Am wärmeren Rohrende verdampft die Flüssigkeit und nimmt dabei Verdampfungswärme auf. Am kühleren Ende kondensiert sie und gibt die Verdampfungswärme ab. Durch die Kapillarwirkung der Oberstächenschicht sließt das Kondensat wieder zum wärmeren Rohrende zurück

Heaviside [h'evisaid], Oliver, brit. Physiker, *London 18. 5. 1850, †Torquay (Devon) 3. 2. 1925, Privatgelehrter; wichtge Arbeiten auf dem Gebiet der Elektrostatik und der elektromagnet. Induktion, entwickelte die heutige Form der Vektoren- und Optratorenrechnung, führte gleichzeitig mit A. E. Kennelly (*1861, †1939) die Ausbreitung elektr. Wellen um die Erde auf das Vorhandensein einer hochliegenden ionisierten Schicht der Atmosphäre (Kennelly-H.-Schicht) zurück.

Heblamme, staatlich geprüfte und anerkannte, an einer Hebammenlehranstalt (3 Jahre) ausgebildete Geburtshelferin. Neben Beratung während der Schwangerschaft und Hilfe bei der Entbinduna pflegt sie Mutter und Kind in den ersten Tagen des Wochenbetts. H. können in freier Praxis oder als Anstalts-H. tätig sein. Nach § 18 der Ausbildungs- und Prüfungsordnung für H. v. 3. 9. 198 werden auch Männer (Entbindungspfleger) für

den Beruf der H. zugelassen.

Hebbel, Friedrich, Dichter, *Wesselburen in Dithmarschen 18. 3. 1813, Wien 13. 12. 1863, Sohn eines Maurers, autodidakt. Studien in Hamburg, unterstützt von Elise Lensing; studierte dann Jura in Heidelberg und München; nach einem 2. Aufenthalt in Hamburg und größeren Reisen seit 1845 in Wien, seit 1846 mit der Hofschauspielerin Christine Enghaus. H. bewahrte den strengen Stil der Tragödie, nahm aber bereits viele Züge des modernen Theaters (Strindberg, W. dekind) vorweg. Durch die geschichtl. Dialektik seiner Dramen (von ihm auch theoretisch formuliert), die den Untergang des Helden zur Bedingung der Überwindung eines überalterten und des Aulktiegs einer neuen Geschichtsepoche machte, suchte H. der trag. Notwendigkeit einen überindividuellen Sinn zu geben. Doch ist in sehrer Tragik ohne Versöhnung selbst die Gottheit in den Widerspruch alles Seienden hineingezogen. Stimmungsschwere, grüblerische Gedichte, Erz. und ein Tagebuch (zuerst hg. 1885-87) von hohem Rang, in dem sich Erfahrungen seines Lebens und Reflexionen zur Kunst niederschlugen.

HW: Schauspiele: Judith (1840); Genoveva (1843); Maria Magdalena (Bürgerliches Trauerspiel, 1844); Herodes und Mariamne

HW: Schauspiele: Judith (1840); Oenoveva (1843); Maria Magdalena (Bürgerliches Trauerspiel, 1844); Herodes und Mariamne (1849); Agnes Bernauer (1852); Gyges und sein Ring (1856); Die Nibelungen (Trilogie, 1861). Auch Komödlen, Dramenfragmente. – Versnovelle: Mutter und Kind (1859). – Gedichte, Erzählungen, Aufsätze, Tagebücher.

Hebe, die grch. Göttin der Jugend, Tochter des Zeus und der Hera, Mundschenkin der Götter, Gemahlin des Herakles; von den Römern der Juventas gleichgesetzt.

Hebebaum, Stange zum Anheben von Lastendurch Hebelwirkung.

Hebebühne, Plattformo. ä. Einrichtung zum Anheben von Lasten, z. B. Kraftwagen, oder als heb- und senkbare Arbeitsbühne.

Hebei, chines. Prov., → Hopeh.

Hebel der, -s/-, 1) um eine feststehende Achse drehbarer starrer

Körper, oft in Form einer geraden oder gewinkelten (Winkelhebel)

Stange. Am H. herrscht Gleichgewicht, wenn das Drehmoment aller an ihm angreifenden Kräfte (Kräfte und Lasten) gleich Null ist

(Hebelgesetz). Für den einfachen geraden H., an dessen einem Ende eine Kraft angreift und dessen anderes Ende eine Lasträgt, gilt dann die Gleichung: Kraft × Kraftarm = Last × Lastarm; dabei sind Kraftarm und Lastarm die Entfernungen der Angrifspunkte von Kraft und Last von der Drehachse. Beim einarmigen H. greifen Kräfte und Lasten am gleichen Hebelarm an, beim zweiak-

migen Hebel an je einem Arm. Der H. gehört zu den ältesten einschen Maschinen; mit ihm lassen sich mit kleinem Kraftaufwand und großem Hebelarm große Kräfte an einem entsprechend kleinen Arm erzeugen (Hebebaum, Schere, Zange und dgl.). BILD S. 534. 2) % im Budo Form des Angriffs auf ein Gelenk, bes. ein Armgelenk des Gegners (Armhebel); im Judo nur am Ellbogengelenk erlaubt.

Hebel, Johann Peter, Dichter, Basel 10. 5. 1760, †Schweitingen 22. 9. 1826, seit 1791 Lehrer am Gymnasium in Karlsruhe 1808-14 Direktor, 1819 Prälat (der bad. Landeskirche). Aus dem Heimweh nach dem ländl. Südbaden entstanden die mundartt. Alemannischen Gedichte (1803), bildkräftig, mit heiter-ernsten Stenen und Betrachtungen. Die Kurzerzählungen, als Kalendergeschichten im Rheinländ. Hausfreunde erschienen, den H. 1808-1 und später herausgab, erwarben sich große Volkstümlichkeit. Eine Reihe seiner bekanntesten Beiträge faßte er im Schatzkästlein des rhein. Hausfreundes (1811) zusammen.

heben [ahd. heven]. ich hebe (hob, & hub, habe gehoben),

1) ihn, es, bewege, tringe in die Höhe (und setze an anderer Stelle
nieder): der Kran hebt 5 000 Kilo auf 6 m Höhe; er hob die Hand
zum Schwur. 2) es, Us (eigere, bringe zur Entfaltung, Wirkung: das
hebt sein Ansehen. 3) Schätze, fördere zutage. 4) ein Haus, richte,
führe hoch. 5) einen, U trinke. 6) es, alemann.: halte es. 7) es hebt
sich, steigt: der Wassershiegel hebt sich. 8) es hebt sich, Ü belebt
sich, beginnt aufzublühen (Handel, Verkehr). 9) (habe gehebt) es,
schweizer.: greife, halte fest. ich hebe ab, 1) es, lüfte, nehme weg.
2) Geld, lasse mir von meinem Guthaben auszahlen. 3) Kartenspiel:
teile als rechter Nebenmann des Gebenden die Karten in zwei oder
mehr Häuschen und setze sie ahders zusammen. 4) Stricken: nehme
eine Masche ohne abzustricken herüber. 5) mich von ihm, unterscheide mich sehr: die Farben hehen sich gut voneinander ab. 6) ein
Flugzeug hebt ab, löst sich beim Start vom Boden. ich hebe an,
1) es, bringe ein Stück in die Höhe. 2) etwas zu tun, mit etwas,
P beginne: er hob an zu reden. ich hebe auf, 1) es, ihn, bringe in die
Höhe: er hob mir meine heruntergefolene Brille auf. 2) es, becende:
er hob die Sitzung, die Tafel auf. 3) es, etreiche, erkläre für nichtig:
die Verfügung wurde aufgehoben. 4) es, bewahre auf: den Versicherungsschein mußt du gut aufheben. 1) % räume auf. 6) sie heben sich oder einander auf, eins hebt das andere auf, eins zerstört
die Wirkung des anderen: + 2 und - 2 heben sich auf, ergeben 0.
ich hebe aus, 1) es, grabe aus (Gräben). 2) hin, ß wähle zum Heeresdienst aus. 3) es, hebe aus den Angeln (Tür, Fenster).
2) östert.: erhebe, lasse zahlen (Steuern). ich hebe es hervor,
Ubetone, unterstreiche: in der Rede wurde hervorgehoben, daß...
Hebephrenie [zu → Hebe] die, ... Form der — Schizophrenie.
Hebe der, -s/-, Gerät zum Heben von Flüssig eiten aus offenen Gefäßen durch den Luftdruck. Der Stechheber wird durch An-

Hebephrenie [zu — Hebe] die, -, Form der — Schizophrenie. Heber der, -s/-, Gerät zum Heben von Flüssig leiten aus offenen Gefäßen durch den Luftdruck. Der Stechheber wird durch Ansaugen der Flüssigkeit, z. B. mit einem Gummiballom gefüllt. Der Saug- oder Schenkelheber wird mit Flüssigkeit gefüllt und mit dem kurzen Ende in das Gefäß getaucht; dann fließt so lange Flüssigkeit heraus, wie die Ausflußöffnung tiefer liegt als der Flüssigkeitsspiegl im Gefäß. Der Gift-H. ist eine Sonderform des Saug-H. mit Hahn und besonderem Saugrohr. (Bil.D.S. 532)

Heberer, Gerhard, Zoologe, Anthropologe, * Halle 20. 3. 1901, † Göttingen 13. 4. 1973, arbeitete über allg. Entwicklungsforschung, bes. Abstammungsgeschichte des Menschen. Hg.: Die Evolution der Organismen (1943).

Hebesatz, von den Gemeinden jährlich festzulegender Prozentsatz bei der Grund- und Gewerbesteuer, mit dem der Steuer meßbetrag zu vervielfältigen ist, um die Höhe der Steuerschuld zu berechnen.

Hebetür, zur Vermeidung von Luftzug unten mit einer konischen Nut versehene Tür, die auf entsprechend geformter Schwelle aufsitzt. Durch Hebelvorrichtung wird sie beim Öffnen in den Angeln gehoben.

Hebewerk, - Schiffshebewerk.

Hebezeuge Pl., Sammelbezeichnung für Aufzug, Flaschenzug, Kran, Winde.

Hebr., Abk. für Hebräerbrief (N. T.).

Hebra, Ferdinand Ritter von, Dermatologe, *Brünn 7. 9. 1816, † Wien 5. 8. 1880, Schöpfer der modernen, auf die patholog. Anatomie gestützten Lehre von den Hautkrankheiten.

Hebräer, Ebräer, grch. hebraios, lat. hebraeus [hebr. 'ibri, 'iwri], im A. T. häufige Eigenbez. für Angehörige israelit. Stämme; daher auch Bez. ihrer Sprache als hebräisch (altjüdisch); in mehreren Sprachen Synonym für Juden.

Hebräerbrief, theolog. Schrift des N. T. in Form eines Briefes, in der kirchl. Tradition Paulus zugeschrieben. Grundgedanke: Die

Headsche Zonen: 1 kurz nach einem Gallensteinanfall; 2 bei Entzündung der Bauchspeicheldrüse; 3 bei Herzanfällen (Abb. 3 nach Hochrein/Schleicher: Herz-Kreislauferkrankungen)

Friedrich Hebbel (aus einem Gemälde von K. Rahl)

Johann Peter Hebel

Headsche Zond

ENCLOSURE 2

VDI-Lexikon Energietechnik

Herausgegeben von Prof. Dr.-Ing. Dr.-Ing. E. h. Helmut Schaefer VDI

> Vereinnahmille Bücher-Zeitschn-Verzeichnis Nr. 1994/1273 – N 27. 0kt. 1994 BIBLIOTHEK PHYSIK der Philipps-Universität Marburg

> > Bibliotheksprigastelite BAT Vo

legungsleistung entspricht einem Teil des Gesamtwärmebedarfs. Hierdurch arbeitet sie weit häufiger in der Nähe des Auslegungspunktes mit gutem Wirkungsgrad als im ungünstigeren Teillastbereich. Man unterscheidet zwischen bivalent alternativer Betriebsweise, bei welcher der Wärmebedarf ab dem Dimensionierungspunkt durch die Zusatzheizung allein gedeckt wird (Bild, Fläche 1+2) und der bivalent parallelen →Betriebsart, bei welcher die Wärmenumpe auch bei niedrigsten Außentemperaturen weiterarbeitet (Fläche 2+3) und von der Zusatzheitung (Fläche 1) unterstützt wird. Knoche

Wärmepumpe, verbrennungsmotorisch betriebene → Wärmepumpe

Wärmequelle. Energiereservoir für Niedertemperaturwärme. — Wirtschaftlichkeit, Aufbau und Betriebsweise einer → Wärmepumpe hängen weitgehend von der vorhandenen W. ab.

Natürliche W. haben alle einen jahreszeitlich veränderlichen Gang der Temperatur, der z. B. beim Erdreich als W. welt weniger ausgeprägt ist als z. B. bei Luft.

Bei der Erschließung von W.n sind folgende Kriterien zu berücksichtigen:

□ Die benötigte Wärmemenge soll zu jeder Zeit in ausreichender Menge zur Verfügung stehen:

□ die Temperatur der W. soll möglichst hoch sein, damit die Temperaturdifferenz zwischen Nutzwärme und W. klein ist und so eine hohe → Heizzahl der Wärmepumpe erreicht wird;

□ die Erschließungskosten der W. sollen gering sein;

□ der → Energieaufwand für Pumpen und Ventilatoren soll gering sein.

Im Bereich der Hausheizung sind folgende Wärmequellen geeignet:

Luft: Die normale Atmosphäre ist überall und immer verfügbar und stellt ein fast unerschöpfliches Wärmereservoir dar, allerdings bei sehr unterschiedlichen Temperaturen. Für die Bemessung einer Wärmepumpe mit der W. Luft ist deshalb der jahreszeitliche Verlauf der Lufttemperaturen von ausschlaggebender Bedeutung. Eine typische Kurve der Temperaturhäufigkeit zeigt, daß die Temperaturen nur etwa während 200 h/Jahr unter – 3°C und nur etwa während 900 h/Jahr unter 0°C liegen (Bild).

Wasser: Wasser ist wegen seiner guten Wärmeübertragungseigenschaft und hohen Wärmekapazität eine ideale Wärmequelle. Für Wärmebumpen wird – falls verfügbar – → Grundwasser oder Oberflächenwasser (Flüsse und Seen) verwendet. Grundwasser hat eine fast gleichmäßige Temperatur von 8–10 °C. Damit ergeben sich für den Heizbelrieb günstige Heizzahlen.

Erdboden: Der Erdboden besitzt ein großes Speichervermögen für die aufgenommene Sonne

Wärmequelle: Jahreshäufigkeit der Außentemperaturen am Beispiel der Stadt Mancheim. (Quelle: Trenkowitz: Die Wärmepumpe. In: VDI-Bericht 136. Düsseldorf: VDI-Verlag 1969)

wärme und hat ab Tiefen von 1,5 m eine praktisch konstante Temperatur von rd. +10 °C. Aus wirtschaftlichen Gründen werden für kleinere Anlagen Rohrschlangen für den Wärmetausch nicht tiefer als 0,80-1,50 m verlegt, wobei der Verlegeabstand ≥ 1 m betragen soll.

Aus Sicherheitsgründen wird als Wärmeträger ein → Frostschutzmittel verwendet. Aus industriellen und gewerblichen Abwässern kann oftmals mit verhältnismäßig wenig Aufwand → Abwärme zurückgewonnen werden.

Wärmerohr (Heat Pipe). Ein W. (engl. heat pipe) ist eine Apparatur mit sehr hohen effektiven Wärmetransporteigenschaften, die durch die Kombination von → Verdampfung und → Kondensation in einem geschlossenen Gefäß erreicht werden.

Den Aufbau und die Funktion eines W. zeigt Bild 1. Das W. weist eine Verdampfungszone, eine

Wärmerohr 1: Schematische Darstellung.

Nutzleizzahl 0.80-1.50 m verlegt, wober der Verlegeabstand ≥ 1 m betragen soll.

gering

Aus Sicherheitsgründen wird als Wärmeträger ein → Frostschutzmittel verwendet. Aus industriellen und gewerblichen Abwässern kann oftmals mit verhältnismäßig wenig Aufwand → Abwärme zurückgewonnen werden.

Knoche

lgende

'entila-

Wärmerohr (Heat Pipe). Ein W. (engl. heat pipe) ist eine Apparatur mit sehr hohen effektiven Wärmetransporteigenschaften, die durch die Kombination von → Verdampfung und → Kondensation in einem geschlossenen Gefäß erreicht werden.

all und
ofliches
unteressung
alb der
en von
Kurve
peratu-

and nur

s Spei-

Onnen-

Den Aufbau und die Funktion eines W. zeigt Bild 1. Das W. weist eine Verdampfungszone, eine

Bild).
Värmekapaziumpen
OberGrundtur von
betrieb

Wärmerohr 1: Schematische Darstellung. Heat pipe 1: Schematic representation

The Mark

Transportzone und eine Kondensationszone auf. Im Bereich der Verdampfungs- oder Heizungszone wird dem evakuierten W. Wärme zugeführt. Dabei verdampft der in seinem Inneren befindliche Wärmeträger und strömt mit großer Geschwindigkeit über die Transportzone der Kondensationsoder Kühlzone zu. Hier findet die Wärmeabgabe an das umgebende Medium statt. Das → Kondensat fließt schließlich über eine Kapillarstruktur wieder der Verdampfungszone zu. Als Kapillaren kommen Drahtgewebe oder Rillen bzw. Vertiefungen in der inneren Tragstruktur zum Einsatz. Bei der Auswahl der Materialien spielen Temperatur- und Korrosionsbeständigkeit eine entscheidende Rolle.

Eine typische Eigenschaft des Wärmerohres ist seine hohe Wärmeübertragungsleistung. Vergleicht man das W. mit einem homogenen Metallstab, so ist scheinbare Wärmeleitfähigkeit bis 10 000mal so hoch wie die eines guten metallischen Leiters. Deshalb werden W. dort eingesetzt, wo Aggregate mit hohen Wärmestromdichten gekühlt werden müssen. Die geringen Temperaturunterschiede zwischen der Verdampfungs- und Kondensationszone ermöglichen den Ausgleich auch kleiner Temperaturdifferenzen. Damit können z.B. Wärmespannungen innerhalb von Bauteilen vermieden werden. Dem kontinuierlichen Betrieb eines W. sind dann Grenzen gesetzt, wenn der notwendige Druckabfall die Kapillardruckdifferenz übersteigt, die kritische Wärmestromdichte an der Heizzone erreicht wird oder wenn die Schallgeschwindigkeit des Dampfes auftritt (Bild 2). Störungsfreier Betrieb eines W. ist möglich bei waagerechter bzw. geneigter Lage, wenn sich die Kondensationszone oberhalb der Heizzone befindet und so eine Addition von Kapillar- und Schwerkraft vorhanden ist. Um Anlaufschwierigkeiten zu vermeiden, sollte eine leichte Neigung des Elementes vorhanden sein. Trocknet das Wärmerohr in der

Wärmerohr 2: Einengung des Arbeitsbereiches durch Randbedingungen.

l Grenze durch Wärmestromdichte, 2 Grenze durch Schallgeschwindigkeit, 3 Grenze durch Scherwirkung zwischen Dampfund Flüssigkeitsströmung, 4 Grenze durch Kapillarkraft

Heizzone aus, kann dies bei aufgeprägter Wärmestromdichte zur Zerstörung führen (burn out).

W. Köhler

Literatur: Asselmann, G. A. A. u. D. B. Green: Das Wärmerohr – I. Arbeitsweise und Eigenschaften. Philips techn. Rundschau 33 (1973/74) Nr. 4, S. 108–117. – Cotter, T. P.: Theory of Heat Pipes. Los Alamos, N. M., USA: Los Alamos Sci. Lab. Rep. LA-3246-MS 1965. – Dunn, P. u. D. A. Reary: Heat Pipes. Third Edition. Pergamon Press 1982. – Moritz, K. u. R. Pruschek: Grenzen des Energietransportes in Wärmerohren. Chemie-Ing.-Technik 41 (1969) Nr. 1 u. 2, S. 30–37. – Reay, D. A.: Advances in Heat Pipe Technology. Pergamon Press 1982. – Zimmermann, P. u. R. Pruschek: Grundlagen und industrielle Anwendung von Wärmerohren. Dechema-Monographien Bd. 65, Nr. 1168–1192, S. 67–84.

Wärmerückgewinnung.

Industrieöfen. Die verschiedenen Möglichkeiten del Wärmerückgewinnung in Ofenprozessen werden im Bild veranschaulicht. Zunächst ist zwischen der Ajgennutzung der → Abwärme im Prozeß selbst und der Fremdnutzung in anderen Prozessen zu unterscheiden. Die Eigennutzung der Abwärme ist jedoch in mer vorzuziehen, da nur so der → Primärenergievetbrauch des betreffenden Prozesses vermindert werden kann. Eine solche Energierückführung setzt allerdings häufig wesentliche Änderungen der Prozesführung voraus. Für die Fremdnutzung stehen gegignete Wärmeverbraucher im eigenen Betrieb nut selten in erforderlichem Umfang zur Verfügung der können außerhalb meist aus wirtschaftlichen dründen nicht gefunden werden. Bei der Eigennutzung von Abwärme kann man zwischen der Wärme tückgewinnung aus dem → Abgas und der aus dem Gut unterscheiden (Bild).

Wärmerückgewinnung, Industrieöfen: Möglichkeiten der W. in Ofenprozessen.

Bei der erstgenannten Gruppe handelt es sich um eine Wärmerückgewinnung durch Vorwärmung der Verbrennungsluft bzw. manchmal auch des Brennstoffs sowie um eine Nutzung der Abwärme durch Vorwärmung des Gutes. Zur zweiten Gruppe zählen hingegen Prozesse, bei denen die Verbrennungsluft unter Nutzung der Kühlwärme vorgewärmt oder bei denen die Abwärme aus dem Kühlprozeß mit Hilfe von meist gasförmigen Wärmeträgern zur Vorwärmung des Gutes verwendet wird. Die Nutzung von

かったいろう ころない できない

ENCLOSURE 3

Russian edition of US reference book:

[Справочник по теплообменникам в двух томах, т. 2, Москва, Енергоатомиздат, 1987.]

This reference book is a translation from English of the book:

[Heat Exchanger Design Handbook, 1983, Hemisphere Publishing Corporation.]

MC

ис

nı

H2

KC

M

30

ла

ле

ДИ He

HC

MC

CT

В

из

15

пр пр

roi

вы

po To:

рa

3.

Te(

Рис. 1. Коэффициент теплоотдачи при конденсации азота в зависимости от массовой доли пара Ідавление 3.37 к Ів, массовый поток $8,5 \, \mathrm{Kr/(M^2-C)}$, теплозой поток $8,26 \, \mathrm{KBT/M^2}$]: \times — результаты измерения; — результаты расчета

рами. В этой модели также учитывается влияние трения

на границе раздела фаз. Расхождение результатов коэффициентов теплопередачи и экспериментальных данных не превышает 20%.

В [39] приведены результаты измерения коэффициентов теплоотдачи при испарении азота [39] и теплоносителя R-11 [40] с поверхности со смещенными ребрами, имеющей 591 ребро на 1 м. На рис. 2 представлена экспериментальная зависимость коэффициентов теплоотдачи от числа Рейнольдеа ($Re_L = D_h G/\eta_L$) и паросодержания в качестве параметра. Авторы работы пришли к выводу, что при экспериментах отсутствовало пузырьковое кипение и

Рис. 2. Зависимость коэффициента теплоотдачи при кипении от числа Рейнольдов $(D_{h}G/\eta_{L})$ для теплоносителя $R\!=\!11$

Раздел 3.10 ТЕПЛОВЫЕ ТРУБЫ

Чизхолм

3.10.1. Введение

Тепловые трубы (рис. 1, a) представляют собой замкнутую систему, в которой теплота передается посредством кипения жидкости в одной точке и конденсации в другой.

теплота передавалась преимущественно конвекцией. При $800 < \text{Re}_L < 1600$ коэффициенты теплоотдачи не зависели от Re. Выше значений Re_L, соответствующих переходной области, коэффициенты теплоотдачи были пропорциональны $\text{Re}_L^{0.3}$. Из экспериментальных данных также следует, что интервалы Re_L , соответствующих переходной области, при кипении азота и теплоносителя R-11 совпадают.

В [38] приведены результаты исследования испарения амиака на поверхности со смещенными ребрами. Авторы предположили, что их аналитическая модель конденсации применима также к испарению тонкой жидкой пленки. Расхождение результатов расчета по этой модели коэффициентов теплопередачи и экспериментальных данных пе превышает 5%. Поскольку в этой модели не учитывается возможность срыва пленки жидкости, возможность е применения ограничена критическими значениями Re, при которых наступит этот срыв. Авторы считают, что критическое значение Re≈ 1000. Результаты расчетов на этой модели не очень хорошо совпадают с экспериментальными данными, приведенными в [39].

Принятые обозначения

а — толщина пластины, меньшая сторона сечения канала прямоугольной формы; А — общая площадь теплообменной поверхности по одной стороне; A_c — минимальная площадь проходного сечения свободного потока и тенная площадь проходного сечения своюдного потока в тенлообменнике; A_j — общая площадь поверхности ребер; b — площадь фронтального сечения теплообменника; b расстояние между пластинами, большая сторона сечения канала прямоугольной формы; C — произведение расходь на теплоемкость (водяной эквивалент); C_c , C_h — произведение расходь менноствия до горона и устаной стороно поток водяной эквивалент по горячей и холодной стороне, соответственно; C_{min} , C_{max} — минимальное и максимальное значение из C_c и C_h соответственно; G — массовая скорость потока: L — общая длина потока в тенлообскорость потока: L — общая длина потока в тенлообменнике, длина побра для поверхности со смещенными ребрами; $m = \sqrt{2\alpha / k_0}$ — параметр эффективности ребра; — расстояние между центрами стержневых ребер; α* отношение b/a для прямоугольного канала; β общей теплообменной поверхности по одной стороне к объему между пластипами по этой же сторопе; у — отпо-шение общей теплообменной поверхности к объему тенло-обменника; Р — затраты мощисти на прокачку, отпесенные к единице теплообменной поверхности; R= $(\dot{M}C_p)_{min}/(\dot{M}C_p)_{max}; \delta$ — толицина ребра; ϵ — эффективность ребра; ность теплообменника; η_F — эффективность ребра; о — отношение площади проходного сечения спободного потока к площади фронтального сечения теплообменника A_c/A_{fr} .

Индексы

fd — стабилизированные значения параметров:
 m — средние значения;
 1, 2 — горячая, холодная сторона, вход, выход.

Жидкость возвращается в зону кипения под действием капиллярных сил через пористую среду. Именно использование капиллярных сил является характерной особенностью тепловых труб.

тью тепловым трубами тесно связаны двухфазные тер-

Рис. 1. Тепловая труба (a) и термосифон (б): $I = \text{пар}; \ 2 = \text{капиллярная структура}; \ 3 = \text{конденсат, стеквющий под действисм силы тяжести$

мосифоны (рис. 1, 6), где конденсат возвращается в зону испарения под действием гравитационных сил, а не капиллярных, как в тепловых трубах. Поэтому в термосифонах зона испарения должна быть расположена ниже зоны конденсации, тогда как в тепловых трубах зона испарения может быть ориентирована произвольно по отношению к зоне конденсации. В тепловых трубах возможна даже передана теплоты в направлении, противоположном направлению сил гравитации.

При условии, что градиент давления в паре мал, градиенты температур вдоль тенловых труб также могут быть невелики, что приводит к высоким значениям теплопроводности. Эффективная теплопроводность таких устройств может превышать в 1000 раз теплопроводность медного стержия такого же размера. В тепловых трубах с литием в качестве рабочей жидкости и при температуре 1500 °С измеренные значения тепловых потоков составляли 15 кВт см². Тепловые трубы, в которых передача теплоты производится в направлении, противоноложном силам гравитации, могут иметь максимальную длину около 40 см при использовании существующих пористых наполнителей.

Первая статья по тепловым трубам была опубликована в 1964 г. [1]. Когда автор этого раздела работал над книгой по тепловым трубам [2], в его распоряжении было 152 статьи. В настоящее время должно быть опубликовано более 1000 статей и имеются еще две монографии [3, 4].

Кроме высокой эффективной теплопроводности тепловые трубы обладают также гибкостью, могут функционировать как тепловой диод и преобразователь теплового потока, имеют изотермическую поверхность. Поэтому тепловые трубы изходят широкое применение в различных отраслях промышленности (табл. 1).

3.10.2. Циркуляция и передача теплоты

Во всех точках вдоль тепловой трубы перепад статического давления фаз на границе раздела паровой и жидкой фаз уравновешен локальной разностью давлений в капиллярах. Условия равновесия имеют вид

$$p_v - p_l = 2\sigma \cos \alpha / r. \tag{1}$$

Поверхность раздела фаз имеет в системе капилляров такой вид, который обеспечивает приведенные условия ранновесия, т. е. поверхность раздела фаз будет существовать только в порах раднусом г.

На рис. 1 показано изменение давления, расхода и уровия раздела фаз вдоль тепловой трубы. Максимальная

Таблица 1. Применение тепловых труб в различных отраслях науки и техники, в том числе в отдельных процессах и элементах оборудования

Сфера применения	Литера- тура
Температурный режим батарей Биология Тормозные системы Газификация углей Охлаждение электронного оборудования Криохирургия Размораживание Литейное производство Бытовые приборы Сушка Электродвигатели Хранение энергии и конверсия Сушка волокон Пищевая промышленность Подготовка топлива Газовые турбины Использование теплоты Земли Производство стекла Восстановление тепла Контрольно-измерительные приборы Лазеры Ядериая энергетика: реакторы экспериментальные исследования Производство стали Печи Стабилизация вечной мерэлоты Плазменная резка Рекуператоры Охлаждение ракетных двигателей Космическая техника Машины Стирлинга Солнечные коллекторы Термическое бурение Термическое бурение Термическое бурение Термическое в тро пических условиях Кондиционирование воздуха и вентиляция Использование тепловых отходов	

циркуляция возникнет, когда отсутствует разность между двлениями фаз в одной точке (в иллюстрируемом случае эта точка соответствует концу зоны конденсации), тогда как в испарителе существует граница раздела фаз в сечении, в котором радиус капилляров наименьший. Тогда разность давлений в капиллярах вдоль длины тепловой трубы

$$\Delta p_{\sigma} = 2\sigma \cos \alpha / r_{\sigma}. \tag{2}$$

Если разность давлений в капиллярах не равна нулю в конце зоны конденсации трубы, разность давлений, создаваемая капиллярными силами,

$$\Delta p_{\sigma} = 2\sigma \left(\frac{\cos \alpha_{\sigma}}{r_{\sigma}} - \frac{\cos \alpha_{c}}{r_{c}} \right). \tag{3}$$

Капиллярная разность давлений в стационарном состоянии уравновешивается трением, изменением количества движения и гравитационной разностью давлений в фазах. Это можно выразить в виде

$$-\Delta \rho_{\sigma} = \Delta \rho_{\nu} + \Delta \rho_{l}, \tag{4}$$

Рис. 1. Изменение уровня поверхности раздела (а), статического давления (б) и массового потока вдоль тепловой трубы (в): 1— испаритель; 2— участок транспорта жидкости; 3— конденсатор

причем Δp означает увеличение давления в направлении потока фазы (по всей длине тепловой трубы, если не оговорено сбратное).

Разность статического давления в жидкости может быть записана как

$$\Delta \rho_l = \Delta \rho_{fl} + \Delta \rho_g. \tag{5}$$

Разность давления, обусловленная изменением импульса, пренебрежимо мала для жидкостей. Разность давления, вызванная трением при капиллярном течении в пористой среде, может быть выражена в виде

$$\Delta \rho_{fl} = -\frac{\eta_l \, \dot{M} Z_{eff}}{\rho_l K A} \,. \tag{6}$$

Вследствие малых размеров пор в наполнителях течение, как правило, ламинарное. Следует отметить, что здесь используется эффективная длина Z_{eff} , что позволяет учесть изменение массовой скорости на участках испарения и конденсации (рис. 1). Если предположить, что скорость испарения и конденсации на соответствующих участках одинакова, можно показать, что

$$Z_{eff} = Z_s + \frac{1}{2} (Z_t + Z_c).$$
 (7)

Разность давления вследствие действия гравитацион-

$$\Delta \rho_{z} = -g \rho_{l} Z \sin \theta. \tag{8}$$

Угол в изменяется от 0 до 180°, причем угол 180° соответствует положению трубы, при котором испаритель находится выше конденсатора и жидкость течет вверх.

Из (5), (6) и (8) следует

$$\Delta \rho_{L} = -\frac{\eta_{L} M \dot{Z}_{eff}}{\rho_{L} K A} - g \rho_{L} Z \sin \theta. \tag{9}$$

Если перепад давления в паре пренебрежимо мал, из (2), (4) и (9) следует выражение для максимального расхода при циркуляции

$$\dot{M} = \frac{\sigma \rho_I \cos \alpha}{\eta_I} \frac{KA}{Z_{eff}} \left(\frac{2}{r_\sigma} - \frac{g \rho_I Z \sin \theta}{\sigma \cos \alpha} \right). \tag{10}$$

Мощность тепловой трубы

$$Q = \dot{M} \Delta h_{\nu} \,. \tag{11}$$

При отсутствии сил тяжести и при обычном предположении, что имеет место идеальное смачивание ($\cos \alpha = 1$),

Рис. 2. Изменение статического давления и уровня поверхности раздела при $\Delta \rho_{vc} > -\Delta \rho_{Lc}$: a — нестабильная ситуация при $\Delta \rho_{vc} > -\Delta \rho_{Lc}$: b — стабильная ситуация при $\Delta \rho_{vc} > -\Delta \rho_{Lc}$: b — испаритель: b — участок транспорта жидкости; b — конденсатор

(11) с учетом (10) принимает вид

$$Q = 2 \frac{\sigma \rho_t \, \Delta h_v}{\eta_t} \, \frac{KA}{r_o Z_{eff}} \,. \tag{12}$$

Следует отметить, что первый сомножитель в правой части (12) характеризует только свойства жидкости, тогда как второй определяет свойства пористого наполнителя. Это удобно при выборе рабочей жидкости и наполнителя. На практике капиллярная разность давления часто находится измерением так называемой высоты поднятия жидкости в капилляре (высоты, на которую поднимется жидкость в пористом наполнителе в поле тяжести и при отсутствии трения)

$$Z_r = \frac{\Delta \rho_\sigma}{\rho_t g} \,. \tag{13}$$

Используя (13), уравнение (10) можно записать в виде

$$Q = \frac{g\rho_l^2 \Delta h_v KAZ_r}{\eta_l Z_{eff}}, \tag{14}$$

а (12) в виде

$$Q = \frac{g\rho_I^2 \Delta h_v KAZ_r}{\eta_I Z_{eff}}.$$
 (15)

На рис. 2 изображен случай, когда $\Delta \rho_{lc} > -\Delta \rho_{vc}$, т. е. когда восстановление давления в направлении потока пара меньше, чем перепад давления в направлении потока жилкости

Если $\Delta p_{vc} > -\Delta p_{lc}$, граница раздела фаз и точка, в которой кривизна поверхности раздела фаз равна нулю, находятся в конце конденсатора, то распределение давления имеет вид, показанный на рис. 2, а. При входе пара в зону конденсации p_l больше, чем p_v , следовательно, в этой точке неизбежно возникла бы выпуклая поверхность, как показано на рис. 2, а. Этого не происходит при нормальных условиях смачивания поверхности, и возникает равновесное распределение давления (рис. 2, б). В этом случае капиллярная разность давлений уравновешивается перепадом давления на участках испарения и транспорта жидкости. При прочих равных условиях в таком случае циркуляция будет выше. В табл. 1 приведены ссылки на литературу, в которой эти вопросы рассмотрены более подробно.

Таблица 1. Литература по отдельным проблемам

Тема	Литература
Тема 1. Монографии и общие вопросы 2. Циркуляция и передача теплоты Срыв жидкости паром Затопление капиллярных структур Сдвиг на границе раздела фаз Частично насыщенные наполнители Сверхзвуковые потоки Число Маха двухфазного потока Паровой удар Перепад давления в паре 3. Распределение температур и радиальные тепловые потоки Конденсания Осущение Эффективная теплопроводность наполнителя Испарение Неравномерный нагрев Распределение температур 4. Продольная передача теплоты и условия эксплуатации Конструпрование тепловых труб Влияние пористости Общие вопросы Минимальные ограничения Пеустойчивые состояния Условия эксплуатации Онтимизация Вращение тепловых труб 5. Выбор рабочей жидкости Контактные углы Общие вопросы Высокие температуры Пизкие температуры Смачивающие агенты 6. Характеристики наполнителей Пористые среды Капиллярные силы Общие вопросы Размещение в тепловых трубах Однородная пористость Канавки, прорези Частичное насыщение Согротивление жидкому потоку	Питература [2—4, 74, 75] [76] [77, 78] [79, 88] [81] [82] [83] [84] [85—88] [89, 90] [91, 92] [93—95] [84, 96—102] [103, 104] [105, 106] [107—110] [111—117] [73, 87, 118—120] [121] [122—126] [127—129] [117—130] [131—132] [133] [134—135] [41, 136, 137] [138] [139, 140, 141—147] [148—149] [150—153] [154—155] [156] [128—157] [81] [81, 150, 158—
Двухфазные потоки в пористы телах 7. Общие вопросы запуска 8. Управление Постояпная температура Устройства Диоды Электрическая обратная связь Управление газом	[164—170] [5, 71, 171, 172] [173] [174, 175] [176, 177] [71, 109, 178—
Общие вопросы Теплообменники из тепловых тр Тепловое переключение 9. Совершенствование, изготовлени срок эксплуатации Совместимость	[[1/3, 10/]

•	_	-
Продолжение	табл.	I

Тема	Литература
Керамические тепловые трубы Соответствующие стенки Совершенствование Взрыв Гибкость Перемещение газа Общие вопросы Высокие температуры Срок эксплуатации Низкие температуры Изготовление Выбор материала 10. Смежные вопросыт Теплообменники с тепловыми трубами Восстановление тепла Тепловые трубы с вспомогательной подкачкой Жидкие ребра Осмотические тепловые трубы Фотохимические тепловые трубы Вращающиеся тепловые трубы Термосифоны	[194] [195] [146, 196] [197] [154] [198] [138] [10, 190, 199, 200] [133] [201—204] [9, 27, 191, 205, 206] [22, 55, 56, 194, 207—209] [35, 72] [212] [213] [214, 215] [216] [131, 217, 29] [51, 185, 218, 219, 211]

3.10.3. Распределение температуры и радиальный тепловой поток

На рис. 1 схематически показано изменение температуры жидкости в процессе циркуляции в тепловой трубе. Начиная с конца зоны конденсации и по направлению течения температура жидкости на поверхности уменьшается до тех пор, пока жидкость не достигнет выхода из конденсатора. На участке транспорта жидкости температура жидкости увеличивается в результате передачи теплоты от жидкости увеличивается в результате передачи теплоты от пара. В испарителе температура быстро возрастает при передаче теплоты через стенку, пока не достигнет значений, больших, чем температура пара. Так как давление жидкости в испарителе ниже, чем давление пара в результате действия капиллярных сил, температура насыщения таки пуссти имую температура насышения пара. Таким объематура насышения пара. жидкости ниже температуры насыщения пара. Таким образом, в испарителе жидкость находится при температуре выше ее температуры пасыщения. Кипение подавляется

Рис. 1. Распределение температуры жидкости и пара: // жидкость на поверхности стенки; 2 — пар; 3 — температура насыщения жидкости; / — испаритель; // — зона транспорта жидкости; /// — конденсатор

Структура наполнителей	λ ₁ , Βτ/(м²-Κ)
Чередование жидкости и пористой среды Жидкость и пористая среда, расположенные параллельно Свернутый экрин Сферы в плотной упаковке Прямоугольные пазы	$\frac{\lambda_{l}\lambda_{w}}{\varepsilon\lambda_{w}+(1-\varepsilon)\lambda_{l}}$ $\varepsilon\lambda_{l}+(1+\varepsilon)\lambda_{w}$ $\frac{\lambda_{l}\left[(\lambda_{l}+\lambda_{w}-(1-\varepsilon)(\lambda_{l}-\lambda_{w})\right]}{(\lambda_{l}+\lambda_{w})+(1-\varepsilon)(\lambda_{l}-\lambda_{w})}$ $\frac{\lambda_{l}\left[(2\lambda_{l}+\lambda_{w})-2(1-\varepsilon)(\lambda_{l}-\lambda_{w})\right]}{(2\lambda_{l}+\lambda_{w})+(1-\varepsilon)(\lambda_{l}-\lambda_{w})}$ $\frac{(w_{f}\lambda_{l}\lambda_{w}\delta+w\lambda_{l})(0,185w_{f}\lambda_{w}+\delta\lambda_{l})}{(w+w_{f})(0,185w_{f}\lambda_{f}+\delta\lambda_{l})}$

действием сил поверхностного натяжения на центры парообразования при условии, что разность температур в наполнителе меньше, чем

$$T_{wp} - T_{wv} = \frac{T_v}{\Delta h_v \rho_v} \left(\frac{2\sigma}{r_n} - \frac{2\sigma}{r_t} \right). \tag{1}$$

После выхода пара из испарителя его температура падает по всему тракту потока, при этом уменьшаются давление и подвод теплоты к жидкости. Небольшая часть пара конденсируется при определенных условиях до поступления в конденсатор. В зоне конденсации может быть небольшое увеличение температуры, связанное с ростом давления пара. Так как изменение давления вдоль всего пути пара невелико, градиент температур в паровой фазе, как правило, также невелик в абсолютном выражении (Mence 2 K).

Эффективиая теплопроводность некоторых типов насыщенных пористых структур приведена в табл. 1. Радиальный тепловой поток в испарителе определяется тогда из соотношения

$$q = \lambda_l \left(T_{wp} - T_{wv} \right). \tag{2}$$

Аналогичное уравнение получается и для конденсатора, но с противоположным знаком. Из (1) и (2) следует, что значение максимального теплового потока, при котором не наступает испарение в капиллярной структуре, равно:

$$q = \frac{\lambda_l T_v}{\Delta h_v \rho_v} \left(\frac{2\sigma}{r_n} - \frac{2\sigma}{r_l} \right). \tag{3}$$

Для многих пористых структур это значение может быть превышено, поскольку жидкость частично проникает в пористую структуру и существенно уменьшает ее тол-шину. Это, однако, имеет отрицательную сторону — уменьшается проходное сечение для жидкости и ее циркуляция.

3.10.4. Ограничения мощности

Мощность, передаваемая тепловыми трубами, может быть ограничена по следующим соображениям:

скорость пара не должна превышать звуковую или скорость запирания;

необходимо избегать уноса жидкости паром (в противном случае в испарителе будет недостаток жидкости);

в пористой среде не должно быть кипения;

циркуляции скорость имеет предел для данной жидкости.

На рис. 1 схематически показано [108], как эти четыре ограничивающих фактора определяют область рабочих параметров тепловых труб данной конструкции. низком давлении звуковая скорость может быть ограничивающим фактором, так как плотность пара невелика (область 1-2). В области 2-3 перенос теплоты ограничен уносом жидкости паром. В области 3-4 ограничения на мощность обусловлены капиллярными эффектами. В области

Рис. 1. Условия эксплуата-ции тепловых труб

4-5 продольный перенос теплоты ограничен кипением внутри наполнителя. На практике рабочие параметры выбираются внутри области 3-4.

3.10.5. Выбор рабочей жидкости

Рабочая жидкость должна иметь следующие свойства: высокое поверхностное натяжение для эффективного использования капилляров;

хорошие характеристики смачивания по тем же соображениям;

низкую вязкость;

высокие значения теплоты фазового перехода;

высокую теплопроводность для передачи теплоты от жидкости к наполнителю;

температуры кипения и замерзания в пределах рабочих температур;

высокую плотность; совместимость с наполнителем и стенками трубы в от-

ношении коррозии;

химическую стабильность.

Уравнение (12), § 3.10.2, содержит комбинацию свойств, которая может быть определена как фактор пере-

Таблица 1. Рабочие жидкости и их характеристики

		Свойсті атмосф давле	ерном	
Иптервал рабочих температур, °C	Рабочая жидкость	Температура кипения, °C	Фактор переноса (кВт/м²)·10-1	Матернал для кожуха и на- полнителя
		100		Llangeanarous ad
$-200 \div -170$	Азот	196	0,9	Нержавеющая сталь
70÷ +50	Аммиак	_33	10	Нержавеющая сталь, никель,
60 ÷ +40	Фреон-12	-30	1	алюминий Нержавеющая сталь, медь
_30-+100	Метанол	65	5	Медь
10—200	Вода	100	50	Медь. никель
190—500	Ртуть	356	200	Нержавеющая сталь
400-800	Калий	760	50	То же
500—900	Натрий	883	200	т т7M
900—1500	Литий	1330	800	Тантал, ТZМ

носа ж: фактора Фактор

где σвого пер кость. Вτ бочие ж свойств:

3.10.6.

Пег использ такие м талл и гомоген материа капилля

Ha пиллярі трубы т со стен обеспеч нок и к налы н структу Преиму уменьи: которы сатору. размера B [196] с капи. которы труб. He

тур пон ляется ляют п ния в > ют низ: тивлен

носа жидкости [107], так как чем выше значение этого фактора, тем выше скорость циркуляции в тепловой трубе. Фактор переноса определяется как

$$\dot{N} = \frac{\sigma \rho_I \, \Delta h_{\sigma}}{\eta_I} \,, \tag{1}$$

где σ — поверхностное натяжение; Δh_{σ} — теплота фазового перехода на единицу объема; η_{ℓ} — динамическая вяз-

В табл. 1 приведены наиболее распространенные рабочие жидкости, их факторы переноса и некоторые другие свойства.

3.10.6. Характеристики капиллярных структур

Первоначальные капиллярные структуры, которые использонались в тепловых трубах, представляли собой такие материалы, как ткань, стекловолокно, пористый металл и проволочная сетка. Эти структуры будем считать гомогенными, чтобы отличать их от комбинаций различных материзлов, которые будем называть композиционными

капиллярными структурами. На рис. 1, а схематически показана гомогенная капилляриая структура. Фитиль прилегает к стенке тепловой трубы таким образом, чтобы обеспечить хороший контакт со стенкой в зоне передачи теплоты. Хороший контакт обеспечивает удовлетворительную теплопередачу от стенок и к стенкам тепловой трубы. Используются также каналы на стенках (рис. 1, б). Более усовершенствованную структуру представляют собой тонкие экраны (рис. 1, а). Преимущество такой конструкции заключается в том, что уменьшается унос жидкости, текущей в фитиле, паром, который движется из испарителя тепловой трубы к конденсатору. Более важно, что экран может иметь поры малого размера и это позволяет увеличить капиллярный потенциал без существенного увеличения сопротивления в каналах. В [196] приведены результаты испытаний тепловых труб с капиллярной структурой, изображенной на рис. 1, 6, в, которые показали улучшение характеристик тепловых

труб. Несколько других конструкций капиллярных структур показано на рис. 1, е — з. Структура на рис. 1, з является примером использования артерий, которые позволяют получить низкие сопротивления и перепады давления в жидкости. Структуры на рис. 1, $\partial - \infty$ также имеют низкие сопротивления для течения жидкости.

На рис. 1, ж, в проходы или артерии с низким сопротивлением для потока примыклют к стенке, и их недостат-

Рис. 1. Капиллярные структуры? а — гомогенная капиллярная структура; б — каналы; ϵ — каналы и экраны; ϵ — сетки и экраны; δ — экран и кольцевой канал для круглых тепловых труб; ϵ — гофрированный экран; κ — капиллярная структура с каналами; ϵ — артерии

Рис. 2. Тепловые трубы с артериями [144]: I — внутренняя поверхность стенки; 2 — паровая зона; 3 — канавки; 4 — артерня для жидкости; 5 — сетка; 6 — сетка; 7 — опора; 8 — разрезанная труба без капилляров

ком является то, что в них может возникнуть кипение. Ha рис. 2 представлено поперечное сечение некоторых капиллярных структур, для которых этой проблемы можно избежать [144].

На рис. З показаны другие формы артерий [142]. Как видно на этих рисунках, большое значение имеет то, что но всех точках артерии изолированы от пара. В этом случае в артерии могут преобладать следующие механизмы: действие капиллярных сил, конденсация пара; подъем давления в паровой зоне нагрева, вызванный паром, который сжимается в артерии и замещается жидкостью, при

этом остаток пара удаляется с обогреваемой поверхности. В трубе, изображенной на рис. З, давление в артерии будет ниже давления в паровой зоне. Устройство отверстий в поверхности артерии позволяет пару проникнуть в трубу

Рис. 3. Тепловая труба с коллектором и системой артерий:

ром п системов аргерия. 1 — испаритель; 2 — стенка трубы; 3 — капиллярная конденсатор; 5, 6, 9 — пластины паровая зона; 8 — артерии

и образовать там двухфазную смесь. При работе против сил гравитации это добавит движущие силы естественной циркуляции к капиллярным силам [25, 161].

Принятые обозначения

A — площадь поперечного сечения капиллярной структуры, \mathbf{M}^3 ; h_v — теплота фазового перехода, $(\mathbf{M}^2)\mathbf{K}^2\mathbf{K}$; K — проницаемость, \mathbf{M}^2 ; N — фактор переноса, $\mathbf{K}\mathbf{B}^T\mathbf{M}^2$; Δp_{fl} — разность давлений, обусловленная трением в жидкости, Па; Δp_g — разность давлений, обусловленная гравитацией, Па; Δp_l — полная разность давлений в жидкости, Па; Δp_{ee} — полная разность давлений жидкости в конден-

саторе, Па; Δp_{v} — разность давления в паре, Па; Δp_{vc} — полная разность давлений в конденсаторе; Δp_{σ} — разность давления вследствие действия капиллярных сил, Па; r — радиус пор, м; r_{l} — радиус капилляров в испарителе, м; r_{n} — радиус центров парообразования, м; r_{σ} — минимальный радиус капилляров, м; T_{wp} — температура наполнителя на стенке трубы, K; T_{wv} — температура наполнителя на поверхности, контактирующей с паром, K; Z — длина тепловой трубы, м; Z_{c} — длина конденсатора, м; Z_{l} — длина испарителя, м; Z_{eff} — эффективная длина тепловой трубы, м; α — краевой угол смачивания; ε — пористость капиллярной структуры; λ_{f} — теплопроводность ребер, Δp_{r} — Δp_{r}

Раздел 3.11 ТОПКИ И КАМЕРЫ СГОРАНИЯ

Труелав

3.11.1. Технологические нагреватели и паровые котлы

А. Технологические нагреватели. Нагреватели используются в нефтеперерабатывающей промышленности для подогрева нефтепродуктов и разделения на фракции термического крекнига и в высокотемпературных технологических процессах. Теплоноситель протекает по трубам внутри нагревателя, рабочие температуры в трубах могут достигать 900 °С, рабочие давления при температурах 450 °С — до 20 МПа. Мощность аппаратов находится в пределах от 3 до 100 МВт, хотя мощность очень больших преобразователей паров углеводородов может быть до 300 МВт. В этих нагревателях в качестве топлива используются исключительно нефть или газ.

Существует много различных конструкций технологических нагревателей [1, 2]. На рис. 1 изображена схема типичного технологического нагревателя. Он состоит из им-

Рис. 1. Вертикальный цилиндрический нагреватель с конвективной секцией, обтекаемой поперечным потоком: I — конвективная секция; 2 — отражатели; 3 — форсунки

Рис. 2. Нагрепатель с горизонтальными трубами: I — отражатели; 2 — форсунки; 3 — конвективная секция

Рис. 3. Нагрователь с двумя форсунками: I — отражатели; 2 — стенки-рефлекторы; 3 — форсунки

линдрической вертикальной камеры сгорания, внутри которой сгорает топливо. Стенки ее 2 обычно изготавливаются из огнеупорного материала. В камере находятся теплопоглощающие трубы 3, расположенные вертикально вдольстен, которые поглощают часть теплоты от факела продуктов сгорания до того, как они попадут на участок конвективного нагрева. В такой конструкции все трубы расположены эквидистантно по отношению к форсункам 4, что гарантирует равномерное распределение тепловыделения по периметру, хотя тепловой поток может значительно изменяться вдоль труб.

На радиационном участке теплота передается преимущественно излучением, тем не менее передача теплоты конпекцией может составлять до 10%. Теплоные потоки на поверхности труб на участке радиационного теплообмена составляют около 50 кВт/м². Трубы на участке конвективного нагрева устанавливаются в виде горизонтального пучка 5 над камерой сгорания, который передает теплоту от продуктов сгорания при более низкой температуре, чем пертикальным трубам на участке раднационного теплообмена. На участке конвективного теплообмена часто используются оребренные трубы или другие типы развитых поверхностей. Однако первые один или два ряда труб, которые назваются экранирующими трубами, также получают существенное количество теплоты излучением. В качестве этих труб не используются трубы с развитыми поверхностями, поскольку в таком случае ухудшается теплообмен излучением. Котструкция технологического нагревателя, изображенного на рис. 1, обеспечивает экономичные и высокоэфрективные характеристики установки. Их мощность, как правило, составляет 3—60 МВт.

Другой тип конструкции с горизонтальными трубами показан на рис. 2. Трубы на участке теплообмена излучением устанавливаются горизонтально в золь стен и под на-

Другой тип конструкции с горизонтальными трубами показан на рис. 2. Трубы на участке теплообмена излучением устанавливаются горизонтально вдоль стен и под наклонной крышкой. На участка конвективного теплообмена устанавливаются трубы в вида горизонтального пучка 3 над камерой сгорания. Обычно в таких аппаратах форсунки 2 для сжигания топлива расположены на днище, но иногда их устанавливают на боковых стенках под трубами. Мощность таких нагревателей также изменяется от 3 до

Третий тип конструкции представляет собой нагреватель с двумя форсунками (рис. 3). Трубы / на учестке теплообмена излучением устанавливаются в один ряд и обогреваются с обеих сторон. Это позволяет достичь равноменного распределения тепловых потоков по периметру труб. В таких нагревателях форсунки 3 также устанавливаются

2 -

Рис. / мовь

дниі счет ры (щих лах

KOT.

лені дым до 2 торі могу уста испо дым рича лені дукта

накс тий иск. из д ходы пере в па Мак гут

Mor:

чере

тель на н и в темп топ. топ. уста тека ния сун

Mec

KOH:

ENCLOSURE 4

(57) Zusammenfassung

Verfahren zur Erzeugung elektrischer Energie, bei dem Ladungen zwischen zwei Arbeitskörpern triboelektrisch oder elektrostatisch getrennt, die Ladungen durch Verschiebung von Arbeitskörpern unter Einwirkung äusserer Kräfte von einander entfernt werden, hierbei die äusseren Kräfte gegen die Coulomb Kraft Arbeit leisten, und die Ladungen auf Elektroden geführt werden, wobei die Ladungsverschiebung mit Hilfe der gerichteten Gasströmung der Wärmeröhre durchgeführt werden, hierbei die Ladungstrennung und die Ladungstrennung und Verschiebung an dem anderen Arbeitskörper vorbeiführt. Anwendungsgebiet – Sonnenenergienutzung

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL AM AT AU AZ BA BB BE BF BG BJ BR BY CA CF CG CH CI CM CN CU CZ DE DK EE	Albanien Armenien Österreich Australien Aserbaidschan Bosnien-Herzegowina Barbados Belgien Burkina Faso Bulgarien Benin Brasilien Belarus Kanada Zentralafrikanische Republik Kongo Schweiz Côte d'Ivoire Kamerun China Kuba Tschechische Republik Deutschland Dänemark Estland	ES FI FR GA GB GE GH GN HU IE IL IS IT JP KE KG KP KR LC LI LK LR	Spanien Finnland Frankreich Gabun Vereinigtes Königreich Georgien Ghana Guinea Griechenland Ungarn Irland Istael Island Italien Japan Kenia Kirgisistan Demokratische Volksrepublik Korea Republik Korea Kasachstan St. Lucia Liechtenstein Sri Lanka Liberia	LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE SG	Lesotho Litauen Luxemburg Lettland Monaco Republik Moldau Madagaskar Die ehemalige jugoslawische Republik Mazedonien Mali Mongolei Mauretanien Malawi Mexiko Niger Niederlande Norwegen Neusceland Polen Portugal Rumänien Russische Föderation Sudan Schweden Singapur	SI SK SN SZ TD TG TJ TM TR TT UA UG US VN YU ZW	Slowenien Slowakei Senegal Swasiland Tschad Togo Tadschikistan Turkmenistan Türkei Trinidad und Tobago Ukraine Uganda Vereinigte Staaten von Amerika Usbekistan Vietnam Jugoslawien Zimbabwe
--	---	---	---	---	---	--	--

- 1 -

Verfahren zur Erzeugung elektrischer Energie

Es ist ein Verfahren bekannt zur Erzeugung hoher Gleichspannungen durch mechanische Verschiebung elektrischer Ladungen. Dabei werden durch Triboelektrisierung oder durch induzierte Elektrisierung die Ladungen zwischen zwei Arbeitskörpern getrennt, wobei einer von ihnen mit einer Elektrode elektrisch verbunden ist.

Danach wird der zweite Arbeitskörper an eine andere Elektrode übertragen, an der eine Ladungsabnahme erfolgt. Das beschriebene Verfahren wird in Vorrichtungen realisiert, die als elektrostatische Generatoren bezeichnet werden (DE 23 36 487 A 1, European Patent Application 0229 843 A 1).

Es ist ein Verfahren bekannt zur Erzeugung elektrischer Energie durch Reibung einiger steifer dielektrischer Oberflächen aneinander, die aus verschiedenen Materialien bestehen, und das in einer Kompaktvorrichtung realisiert wird (European Patent Application 0366591 A1).

Die aufgeführten Vorrichtungen, die die bekannten Verfahren realisieren, werden durch die Möglichkeit der Erzeugung elektrischer Hochspannung (bis 15-20 MV), durch niedrigen Strom (bis 10 mA), also auch durch eine niedrige Leistung charakterisiert. Die Leistung dieser Vorrichtungen wird durch die maximal zulässige Oberflächendichte der Ladungen auf einem Förderer, dem Träger der Ladung, einerseits und durch die Geschwindigkeit der mechanischen Bewegung dieses Ladungsförderers andererseits begrenzt.

- 2 -

Die Ladungsdichte ist ihrerseits durch die Entstehung der elektrischen Entladung an der Oberfläche begrenzt. Die Geschwindigkeit des Ladungsförderers ist durch die mechanischen Bewegungsmöglichkeiten der Systemteile begrenzt.

Den Wirkungsgrad des Systems bestimmen hauptsächlich die aerodynamischen Verluste bei der mechanischen Bewegung des Ladungsförderers und die Reibung der mechanischen Systemteile untereinander. In den existierenden Vorrichtungen beträgt diese nicht mehr als 15-20 %.

Der in den Patentansprüchen 1-6 angegebenen Erfindung liegt das Problem zugrunde, die Leistung und den Wirkungsgrad der das beschriebene Verfahren verwirklichenden Vorrichtungen zu erhöhen und die Umwandlung der Wärmeenergie in elektrische Energie zu ermöglichen.

Dieses Problem wird durch die in den Patentansprüchen 1-5 aufgeführte Merkmale gelöst.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß das angegebene Verfahren die Wärmeenergie irgendeines Erhitzers für ihre direkte Wandlung in elektrische Energie zu nutzen ermöglicht, wobei eine hohe Ausgangsleistung und ein hoher Wirkungsgrad erreicht wird.

Infolge der Eigenschaften der Wärmeröhren, reicht eine relativ kleine Temperaturdifferenz zwischen dem Erhitzer und dem Kühler, um eine hohe Stromgeschwindigkeit des gasförmigen Arbeitskörpers der Wärmeröhre, und folglich auch eine hohe kinetische Energie zu erreichen. Durch diese kinetische Energie bewirkt der genannte Strom die Triboelektrisierung der Arbeitskörper des elektrostatischen Generators und die mechanische Trennung der Ladungen. In den dieses Verfahren realisierenden Vorrichtungen fehlen somit mechanisch bewegte Teile, dadurch werden alle deswegen entstehenden Leistungs- und Wirkungsgradverluste vermieden. Außerdem erfolgt in diesem Fall der Antrieb nicht durch äußere mechanische Arbeit, sondern durch Wärmeenergie, welche sogar aus einer kleinen Temperaturdifferenz abgenommen werden kann.

- 3 -

Die Ausführungsbeispiele des Verfahrens sind in den Zeichnungen dargestellt und werden im folgenden nüher beschrieben.

Es zeigen:

Fig. 1

Ausführungsbeispiel des Verfahrens in einer stationären Vorrichtung mit seiner angegebenen Orientierung im Gewichtskraftfeld.

Fig. 2

Ausführungsbeispiel des Verfahrens in einer Vorrichtung, die bei verschiedenen Orientierungen, im Gewichtskraftfeld, als auch in der Schwerelosigkeit funktionieren kann.

Fig. 3

Ausführungsbeispiel des Verfahrens, bei dem die Elektrisierung der Arbeitsflüssigkeit des elektrostatischen Generators nicht am Ort ihrer Loslösung von der Mündung der Speiserdüse erfolgt, sondern in einiger Entfernung von dieser durch das Zerschlagen der Tropfen beim plötzlichen Auftreffen auf das Netz.

Alle Arten der Geräte, die den Prozeß ermöglichen, beinhalten die Wärmeröhre (WR) 1 und der Generator 2. Die Wärmeröhre 1 besitzt den Arbeitskörper in flüssiger Phase (die Arbeitsflüssigkeit der WR) 3, so wie in der Gasphase (das Arbeitsgas der WR) 4, und ein Kapillareinsatz der Wärmeröhre 5. Der Generator 2 enthält den harten Arbeitskörper des Generators 6, den flüssigen Arbeitskörper des Generators 7, das Netz für die Ladungsabnahme 8, die äußeren Elektroden 9a und 9b und die Kontur 10 für die Rückführung des flüssigen Arbeitskörpers.

PCT/DE99/03389

- 4 -

WO 00/25414

Beim Aufbau eines äußeren Temperaturgradienten zwischen dem Verdampfer 11 und dem Kondensator der Wärmeröhre 12 verdampft die Arbeitsflüssigkeit der WR im Verdampfer auf seiner Kapillarstruktur. Gleichzeitig verdichtet sich das Arbeitsgas WR auf der Kapillarstruktur des Kondensators der WR. Die Flüssigkeit 3 gelangt über den Kapillareinsatz 5 aus dem Kondensator zurück in den Verdampfer.

Es genügt für den Fortgang des Prozesses, daß dem Arbeitskörper der WR die verborgene Wärme der Dampfbildung im ersten Fall zugeführt und im zweiten Fall abgeführt wird. Deshalb kann dieses Prozeß auch bei sehr kleiner Temperaturdifferenz durchgeführt werden.

Dabei vergrößert sich sprungartig das Volumen des Arbeitskörpers der WR im Verdampfer und infolgedessen auch der Druck des Arbeitsgases 4 im Verdampfer. Genauso sprunghaft verkleinert sich das Volumen des Arbeitskörpers und der Druck des Arbeitsgases der WR im Kondensator.

Damit finden bei einer kleinen Temperaturdifferenz in einem geschlossenen Raum gleichzeitig und ununterbrochen zwei, den Eigenschaften nach explosionsartige, mit verschiedenen Vorzeichen ablaufende und im Raum verteilte Prozesse der Erhöhung und Erniedrigung des Gasdrucks statt. Dies führt zur Entstehung eines Hochgeschwindigkeitsgasstroms aus dem Verdampfer in den Kondensator.

Dabei wandelt sich die Wärmeenergie, die der Wärmeröhre zugeführt wird, in die kinetische Energie der Moleküle des Gasstroms um und kann im weiteren in andere Arten von Energie umgewandelt werden, z. B. in elektrische Energie.

Der harte Arbeitskörper 6 und der flüssige Arbeitskörper 7 des Generators 2 werden im Inneren der Wärmeröhre untergebracht, etwa am Ort des maximalen Stroms des Arbeitsgases der WR 4, unmittelbar hinter dem Diaphragma 13. Das Diaphragma 13 konzentriert den Gasstrom aus dem Verdampfer in den Kondensator. Dabei ist der harte Arbeitskörper 6 bzgl. der WR unbeweglich befestigt.

Der flüssige Arbeitskörper 7 wird in das Innere der WR über den Speiser 14 zugeführt, wobei die Ladungstrennung und die Ladungsverschiebung mit Hilfe der gerichteten Gasströmung der Wärmeröhre erfolgt, welche die Flüssigkeitspartikel mitführt und ihn zur Ladungstrennung und Verschiebung an dem anderen Arbeitskörper vorbeiführt.

Im weiteren erfolgt die Ladungsabnahme auf die äußere Elektrode 9a, im ganzen analog zu dem, wie dies in den elektrostatischen Generatoren mit harten Körpern erfolgt.

Bei der Variante der Verfahrensdurchführung (Fig. 2) ist die Kontur 10 für die Rückführung des flüssigen Arbeitskörpers 7 des Generators mit der Kapillarstruktur aufgefüllt. Dies gibt die Möglichkeit, die Arbeit des Gerätes unabhängig von dessen Lage im Feld der Gewichtskräfte, und auch in der Schwerelosigkeit, durchzuführen. Dabei ist die offene Oberfläche der erwähnten Kapillarstruktur unmittelbar hinter dem Netz der Abnahmeelektrode 8 untergebracht.

Bei den Ausführungsbeispielen anderer Varianten des Verfahrens (Fig. 3) erfolgt die Ladungstrennung durch das Auftreffen der Flüssigkeit 7 auf den Körper 6. Dabei hat der Körper 6 die Form von z. B. einem Netz. In diesem Fall wird der harte Arbeitskörper in einiger Entfernung l von dem Einführungsort des Speisers 14 ins Innere der Wärmeröhre gebracht. Die Tropfen des Körpers 7 gewinnen noch vor dem Aufprall auf dem Körper 6 eine gewisse kinetische Energie, die für die Ladungstrennung geleistet wird. Nach dem Aufprall werden die geladenen Tropfen weiter mit dem Gasstrom der WR 4 zur Elektrode 8 fortgetragen.

Die nicht kondensierenden Gase, die in der Wärmeröhre verweilen (z. B. Luft, und auch Dämpfe der Arbeitsflüssigkeit des Generators, die unvermeidlich in einem geschlossenen Raum mit der Flüssigkeit, die eine freie Oberfläche hat, vorhanden sind), werden in den ersten Sekunden der Arbeit von der WR durch das Arbeitsgas der WR zu einem der Röhrenenden abgedrängt, und bilden ein Gaskissen 15.

- 6 -

Bei der Geometrie der WR und der Elektrode für die Ladungsabnahme 8 (Abb. 1-3), isoliert dieses Gaskissen gewissermaßen thermisch die Abnahmeelektrode 8 und die ihr anliegende Wand der Wärmeröhre. Deshalb unterscheidet sich die Temperatur der Elektrode in allgemeinem Fall von der Temperatur der Kapillarstruktur des Kondensators der Wärmeröhre.

Da der Einführungsort des Speisers 14 in die WR sich außerhalb des Verdampfers befindet, kann als die Arbeitsflüssigkeit der WR und des Generators eine und die selbe Flüssigkeit verwendet werden.

- 7 -

PATENTANSPRÜCHE

1. Verfahren zur Erzeugung elektrischer Energie, bei dem Ladungen zwischen zwei Arbeitskörpern triboelektrisch oder elektrostatisch getrennt, die Ladungen durch Verschiebung von Arbeitskörpern unter Einwirkung äußerer Kräfte von einander entfernt werden, wobei die äußeren Kräfte gegen die Coulomb Kraft Arbeit leisten, und die Ladungen auf Elektroden geführt werden,

dadurch gekennzeichnet,

daß die genannten Verfahrensschritte innerhalb des Innenvolumens einer Wärmeröhre durchgeführt werden, wobei die Ladungstrennung und die Ladungsverschiebung mit Hilfe der gerichteten Gasströmung der Wärmeröhre erfolgt, welche den einen Arbeitskörper mitführt und ihn zur Ladungstrennung und Verschiebung an dem anderen Arbeitskörper vorbeiführt.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der eine Arbeitskörper in der Gasströmung mitgeführte Flüssigkeitspartikel umfaßt.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der eine Arbeitskörper ein von der Gasströmung durchströmtes Netz umfaßt.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der andere Arbeitskörper innerhalb der Wärmeröhre etwa an der Position maximaler Strömungsgeschwindigkeit angeordnet ist.
- 5. Verfahren nach einem der Ansprüche 2 bis 4 , dadurch gekennzeichnet, daß die Flüssigkeit zur Bildung der Flüssigkeitspartikel rückgewonnen wird.
- 6. Verfahren nach einem der Ansprüche 1 bis 5 , dadurch gekennzeichnet, daß als die Arbeitsflüssigkeit der Wärmeröhre und des Generators ein und dieselbe Flüssigkeit verwendet wird.

INTERNATIONAL SEARCH REPORT

Inte Application No

		İ	101/DE 33/03383
A. CLASSI IPC 7	FICATION OF SUBJECT MATTER H02N3/00		
According to	o International Patent Classification (IPC) or to both national classific	ation and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 7	ocumentation searched (classification system followed by classification HO2N	on symbols)	
Documenta	tion searched other than minimum documentation to the extent that s	uch documents are inclu	ded in the fields searched
Electronic d	lata base consulted during the international search (name of data ba	se and, where practical,	search terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.
Α	US 3 518 461 A (MARKS ALVIN M) 30 June 1970 (1970-06-30)		
Α	US 4 433 248 A (MARKS ALVIN M) 21 February 1984 (1984-02-21)		
A	US 4 206 396 A (MARKS ALVIN M) 3 June 1980 (1980-06-03)		
Funt	ner documents are listed in the continuation of box C.	X Patent family r	nembers are listed in annex.
		"T" later document publi	shed after the international filing date not in conflict with the application but
"E" earlier of filing d "L" docume which citation "O" docume other r "P" docume later th	ant which may throw doubts on pnority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) and referring to an oral disclosure, use, exhibition or means and published prior to the international filling date but han the priority date claimed	cited to understand invention "X" document of particular cannot be consider involve an inventive "Y" document of particular cannot be consider document is combinents, such combinents, such combinents, such combinents.	the principle or theory underlying the ar relevance; the claimed invention ed novel or cannot be considered to estep when the document is taken alone ar relevance; the claimed invention ed to involve an inventive step when the ned with one or more other such docunation being obvious to a person skilled of the same patent family
	actual completion of the international search 5 March 2000	Date of mailing of t	ne international search report
	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Authorized officer Ramos, I	

INTERMIONAL SEARCH REPORT

information on patent family members

nte .onal Application No

Patent document cited in search repor	t	Publication date	Patent family member(s)	Publication date
US 3518461	A	30-06-1970	NONE	_ 1
US 4433248	_ 	21-02-1984	NONE	
US 4206396	Α	03-06-1980	NONE	

INTERNATIONALER F HERCHENBERICHT

Inte ies Aktenzeichen
PCT/DF 99/03389

		!	101/06 33/03363		
A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 H02N3/00					
Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK					
B. RECHE	RCHIERTE GEBIETE				
Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 H02N					
Recherchierte aber nicht zum Mindestprüfstoff gehorende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen					
Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank) und evtl. verwendete Suchbegriffe)					
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN				
Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabi	e der in Betracht komme	nden Teile Betr. Anspruch Nr		
А	US 3 518 461 A (MARKS ALVIN M) 30. Juni 1970 (1970-06-30)				
A	US 4 433 248 A (MARKS ALVIN M) 21. Februar 1984 (1984-02-21)				
A	US 4 206 396 A (MARKS ALVIN M) 3. Juni 1980 (1980-06-03)				
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang	² atentfamilie		
 Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zwerfelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen Desonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Ausstellung oder andere Maßnahmen bezieht Proffentlichung, die vor dem internationalen Anmeldedatum aber nach dem beanspruchte ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindenscher Tätigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichung dieser Kategone in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "X" Veröffentlichung, die Mitglied derselben Patentfamilie ist 					
Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 15. März 2000 22/03/2000					
127, 057, 2000					
Name und Postanschnft der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Bevollmachtigter Be			

INTERNATIONA RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur seiben Patentfamilie gehören

nte onales Aktenzeichen PCT/DE 99/03389

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 3518461 A	30-06-1970	KEINE	
US 4433248 A	21-02-1984	KEINE	
US 4206396 A	03-06-1980	KEINE	

Formblatt PCT/ISA/210 (Anhang Patentfamilie)(Juli 1992)

ENCLOSURE 2

VDI-Lexikon Energietechnik

Herausgegeben von Prof. Dr.-Ing. Dr.-Ing. E. h. Helmut Schaefer VDI

> Vereinnahma! Bücher-Zekschr.-Verzeichnis 27.0kt. 1994 **BIBLIOTHEK PHYSIK** der Philipps-Universität Marburg

> > DN 235,60

Die Deutsche Bibliothek — CIP-Einheitsaufnahme

Schaefer, Helmut:

VDI-Lexikon Energietechnik / hrsg. von Helmut Schaefer. Düsseldorf: VDI-Verl., 1994

ISBN 3-18-400892-4

NE: HST

Lektorat: Siegfried Binder unter Mitarbeit von Dipl.-Ing. Heinz Gerlachten Graphische Darstellungen: Peter Lübke. Wachenheim

Gesamtherstellung: Bonner Universitäts-Buchdruckerei

© VDI-Verlag GmbH, Düsseldorf 1994

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen photomechanischen Wiedergabe (Photokopie, Mikrokopie) und das der Übersetzung, vorbehalten.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, daß solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

MARE JEG

BIBLICITATIN FLAVSIK

Printed in Germany

ISBN 3-18-400892-4

egungsleistung entspricht einem Teil des Gesamtwärmebedarfs. Hierdurch arbeitet sie weit häufiger in der Nähe des Auslegungspunktes mit gutem Wirkungsgrad als im ungünstigeren Teillastbereich. Man unterscheidet zwischen bivalent alternativer Betrebsweise, bei welcher der Wärmebedarf ab dem Dimensionierungspunkt durch die Zusatzheizung allein gedeckt wird (Bild, Fläche 1+2) und der bivalent parallelen →Betriebsart, bei welcher die Wärmenumpe auch bei niedrigsten Außentemperaturen weiterarbeitet (Fläche 2+3) und von der Zusatzheizung (Fläche 1) unterstützt wird. Knoche

Wärmepumpe, verbrennungsmotorisch betriebene →Wärmepumpe

Wärmequelle. Energiereservoir für Niedertemperaturwärme. — Wirtschaftlichkeit, Aufbau und Betriebsweise einer → Wärmepumpe hängen weitgehend von der vorhandenen W. ab.

Natürliche W. haben alle einen jahreszeitlich veränderlichen Gang der Temperatur, der z. B. beim Erdreich als W. welt weniger ausgeprägt ist als z. B. bei Luft.

Bei der Erschließung von W.n sind folgende Kriterien zu berücksichtigen:

□ Die benötigte Wärmemenge soll zu jeder Zeit in ausreichender Menge zur Verfügung stehen;

□ die Temperatur der W. soll möglichst hoch sein, damit die Temperatur differenz zwischen Nutzwärme und W. klein ist und so eine hohe → Heizzahl der Wärmepumpe erreicht wird;

□ die Erschließungskosten der W. sollen gering sein:

□ der → Energieaufwand für Pumpen und Ventilatoren soll gering sein.

Im Bereich der Hausheizung sind folgende Wärmequellen geeignet:

Luft: Die normale Atmosphäre ist überall und immer verfügbar und stellt ein fast unerschöpfliches Wärmereservoir dar, allerdings bei sehr unterschiedlichen Temperaturen. Für die Bemessung einer Wärmepumpe mit der W. Luftist deshalb der jahreszeitliche Verlauf der Lufttemperaturen von ausschlaggebender Bedeutung. Eine typische Kurve der Temperaturhäufigkeit zeigt, daß die Temperaturen nur etwa während 200 h/Jahr unter – °C und nur etwa während 900 h/Jahr unter 0 °C liegen (Bild).

Wasser: Wasser ist wegen seiner guten Wärmeübertragungseigenschaft und hohen Wärmekapazität eine ideale Wärmequelle. Für Wärmepumpen wird – falls verfügbar – → Grundwasser oder Oberflächenwasser (Flüsse und Seen) verwendet. Grundwasser hat eine fast gleichmäßige Temperatur von 8–10 °C. Damit ergeben sich für den Heizberieb günstige Heizzahlen.

Erdboden: Der Erdboden besitzt ein großes Speichervermögen für die aufgenommene Sonne

Wärmequelle: Jahreshäufigken der Außentemperaturen am Beispiel der Stadt Mannheim. (Quelle: Trenkowitz: Die Wärmepumpe. In VDI-Bericht 136. Düsseldorf: VDI-Verlag 1969)

wärme und hat ab Tiefen von 1,5 m eine praktisch konstante Temperatur von rd. +10 °C. Aus wirtschaftlichen Gründen werden für kleinere Anlagen Rohrschlangen für den Wärmetausch nicht tiefer als 0,80-1,50 m verlegt, wobei der Verlegeabstand ≥ 1 m betragen soll.

Aus Sicherheitsgründen wird als Wärmeträger ein → Frostschutzmittel verwendet. Aus industriellen und gewerblichen Abwässern kann oftmals mit verhältnismäßig wenig Aufwand → Abwärme zurückgewonnen werden.

Wärmerohr (Heat Pipe). Ein W. (engl. heat pipe) ist eine Apparatur mit sehr hohen effektiven Wärmetransporteigenschaften, die durch die Kombination von → Verdampfung und → Kondensation in einem geschlossenen Gefäß erreicht werden.

Den Aufbau und die Funktion eines W. zeigt Bild 1. Das W. weist eine Verdampfungszone, eine

Wärmerohr 1: Schematische Darstellung.

Nutzleizzahl $0.80-1.50 \,\mathrm{m}$ verlegt, wobei der Verlegeabstand $\geq 1 \,\mathrm{m}$ betragen soll.

gering

Aus Sicherheitsgründen wird als Wärmeträger ein → Frostschutzmittel verwendet. Aus industriellen und gewerblichen Abwässern kann oftmals mit verhältnismäßig wenig Aufwand → Abwärme zu-

ماممما

entila-

rückgewonnen werden. Knoche

gende

Wärmerohr (Heat Pipe). Ein W. (engl. heat pipe) ist eine Apparatur mit sehr hohen effektiven Wärmetransporteigenschaften, die durch die Kombination von → Verdampfung und → Kondensation in einem geschlossenen Gefäß erreicht werden.

Den Aufbau und die Funktion eines W. zeigt Bild 1. Das W. weist eine Verdampfungszone, eine

Eraporation-zone Transport zone Condensation - zone

Verdampfungs- Transport- Kondensationszone zone

Vaper Capellary struct
Kapillarstruktur

Dampf

Condensat

Kondensat

Wärmerohr 1: Schematische Darstellung. Heat pepe 1: Schematic representation

all und fliches unteressung alb der en von Kurve

peratuind nur

Bild). Värme-

kapaziumpen

r Ober-

Grund-

tur von betrieb

s SpeionnenTransportzone und eine Kondensationszone auf. Im Bereich der Verdampfungs- oder Heizungszone wird dem evakuierten W. Wärme zugeführt. Dabei verdampft der in seinem Inneren befindliche Wärmeträger und strömt mit großer Geschwindigkeit über die Transportzone der Kondensationsoder Kühlzone zu. Hier findet die Wärmeabgabe an das umgebende Medium statt. Das → Kondensat fließt schließlich über eine Kapillarstruktur wieder der Verdampfungszone zu. Als Kapillaren kommen Drahtgewebe oder Rillen bzw. Vertiefungen in der inneren Tragstruktur zum Einsatz. Bei der Auswahl der Materialien spielen Temperatur- und Korrosionsbeständigkeit eine entscheidende Rolle.

Eine typische Eigenschaft des Wärmerohres ist seine hohe Wärmeübertragungsleistung. Vergleicht man das W. mit einem homogenen Metallstab, so ist scheinbare Wärmeleitfähigkeit bis zu 10 000mal so hoch wie die eines guten metallischen Leiters. Deshalb werden W. dort eingesetzt, wo Aggregate mit hohen Wärmestromdichten gekühlt werden müssen. Die geringen Temperaturunterschiede zwischen der Verdampfungs- und Kondensationszone ermöglichen den Ausgleich auch kleiner Temperaturdifferenzen. Damit können z. B. Wärmespannungen innerhalb von Bauteilen vermieden werden. Dem kontinuierlichen Betrieb eines W. sind dann Grenzen gesetzt, wenn der notwendige Druckabfall die Kapillardruckdifferenz übersteigt, die kritische Wärmestromdichte an der Heizzone erreicht wird oder wenn die Schallgeschwindigkeit des Dampfes auftritt (Bild 2). Störungsfreier Betrieb eines W. ist möglich bei waagerechter bzw. geneigter Lage, wenn sich die Kondensationszone oberhalb der Heizzone befindet und so eine Addition von Kapillar- und Schwerkraft vorhanden ist. Um Anlaufschwierigkeiten zu vermeiden, sollte eine leichte Neigung des Elementes vorhanden sein. Trocknet das Wärmerohr in der

Wärmerohr 2: Einengung des Arbeitsbereiches durch Randbedingungen.

1 Grenze durch Wärmestromdichte, 2 Grenze durch Schallgeschwindigkeit, 3 Grenze durch Scherwirkung zwischen Dampfund Flüssigkeitsströmung, 4 Grenze durch Kapillarkraft

Heizzone aus, kann dies bei aufgeprägter Wärmestromdichte zur Zerstörung führen (burn out).

W. Köhler

Literatur: Asselmann, G. A. A. u. D. B. Green: Das Wärmerohr – 1. Arbeitsweise und Eigenschaften. Philips techn. Rundschau 33 (1973/74) Nr. 4, S. 108–117. – Cotter, T. P.: Theory of Heat Pipes. Los Alamos, N. M., USA: Los Alamos Sci. Lab. Rep. LA-3246-MS 1965. – Dunn, P. u. D. A. Reary: Heat Pipes. Third Edition. Pergamon Press 1982. – Moritz, K. u. R. Pruschek: Grenzen des Energietransportes in Wärmerohren. Chemie-Ing.-Technik 41 (1969) Nr. 1 u. 2, S. 30–37. – Reay, D. A.: Advances in Heat Pipe Technology. Pergamon Press 1982. – Zimmermann, P. u. R. Pruschek: Grundlagen und industrielle Anwendung von Wärmerohren. Dechema-Monographien Bd. 65, Nr. 1168–1192, S. 67–84.

Wärmerückgewinnung.

Industrieöfen. Die verschiedenen Möglichkeiten del Wärmerückgewinnung in Ofenprozessen werden im Bild veranschaulicht. Zunächst ist zwischen der Bigennutzung der → Abwärme im Prozeß selbst und der Fremdnutzung in anderen Prozessen zu unterscheiden. Die Eigennutzung der Abwärme ist jedoch immer vorzuziehen, da nur so der → Primärenergieve brauch des betreffenden Prozesses vermindert werden kann. Eine solche Energierückführung setzt allerdings häufig wesentliche Änderungen der Prozeßführung voraus. Für die Fremdnutzung stehen geeignete Wärmeverbraucher im eigenen Betrieb nut selten in erforderlichem Umfang zur Verfügung der können außerhalb meist aus wirtschaftlichen dründen nicht gefunden werden. Bei der Eigennutzung von Abwärme kann man zwischen der Wärme uckgewinnung aus dem → Abgas und der aus dem Gut unterscheiden (Bild).

Wärmerückgewinnung, Industrieöfen: Möglichkeiten der W. in Ofenprozessen.

Bei der erstgenannten Gruppe handelt es sich um eine Wärmerückgewinnung durch Vorwärmung der Verbrennungsluft bzw. manchmal auch des Brennstoffs sowie um eine Nutzung der Abwärme durch Vorwärmung des Gutes. Zur zweiten Gruppe zählen hingegen Prozesse, bei denen die Verbrennungsluft unter Nutzung der Kühlwärme vorgewärmt oder bei denen die Abwärme aus dem Kühlprozeß mit Hilfe von meist gasförmigen Wärmeträgern zur Vorwärmung des Gutes verwendet wird. Die Nutzung von