# Clustering

Clustering is a process of partitioning a set of objects (data) into a set of meaningful sub-classes called **clusters**.

Cluster: a collection of objects that are similar to each other and thus can be treated collectively as one group

Difference between Classification and Clustering

Data classification: the name and number of classes are given in the training set

Clustering: the name and number of classes are unknown

# What Is Good Clustering?

A good clustering method will produce high quality clusters where: the *intra-class similarity* (that is within a cluster) is high. the *inter-class similarity* (that is between clusters) is low.

The quality of a clustering result also depends on the similarity measure used by the method.

The quality of a clustering result also depends on the definition and representation of cluster – different clustering algorithms may have different underlying notions of clusters.

# Major Clustering Techniques

**Partitioning algorithms**: Construct various partitions and then evaluate them by some criterion.

**Hierarchy algorithms**: Create a hierarchical decomposition of the set of data (or objects) using some criterion. There is an agglomerative approach and a divisive approach.

**Density-based**: based on connectivity and density functions.

Grid-based: based on a multiple-level granularity structure.

**Model-based**: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other.

## Partitioning Algorithms: Basic Concept

**Partitioning method:** Given a number k, partition a database D of n objects into a set of k clusters so that a chosen objective function is minimized (e.g., sum of distances to the center of the clusters).

Global optimum: exhaustively enumerate all partitions – too expensive!

Heuristic methods based on iterative refinement of an initial partition

#### **Bad Clustering**



#### **Optimal Clustering**



#### Distance function

To measure similarity between two data objects It is application dependent

For example: a distance between two points in a two dimensional plane

## Summarized representation of clusters

Mean (center): the average value

Radius: the average distance between all the objects in the cluster and the center

## The K-Means Clustering Method

Given k, the k-means algorithm is implemented in 4 steps:

- 1. Partition objects into *k* nonempty subsets
- 2. Compute centers of the clusters of the current partition. The center a cluster for the *k*-means algorithm is the mean point of all points in the cluster.
- 3. Assign each object to the cluster with the nearest center.
- 4. Go back to Step 2, stop when no more new assignment.









Hierarchical Clustering

Hierarchical decomposition of the data set (with respect to a given similarity measure) into a set of nested clusters

Result represented by a so called dendrogram

Nodes in the dendrogram represent possible clusters can be constructed bottom-up (agglomerative approach) or top down (divisive approach)



# Hierarchical Clustering: Example Interpretation of the dendrogram

The root represents the whole data set

A leaf represents a single objects in the data set

An internal node represent the union of all objects in its sub-tree

The height of an internal node represents the distance/similarity between its two child nodes



## Agglomerative Hierarchical Clustering

### Single-Link Method and Variants:

start by placing each object in its own cluster.

keep merging "closest pairs" (most similar pairs) of clusters into larger clusters

until all objects are in a single cluster.

Most hierarchical methods belong to this category. They differ mainly in their definition of betweencluster similarity.

Single-Link: similarity is defined as the similarity between the "closest" (i.e., most similar) pair of objects.