Nengo Summerschool 2019

Biologically Detailed Networks and Neuron Models

Peter Duggins, Andreas Stöckel

Motivation & Background
Why care about biological detail?

- I Motivation & Background
 Why care about biological detail?
- II Conductance-based n-LIF neurons \leftarrow Andreas How to computationally exploit nonlinear dendritic interaction

- I Motivation & Background
 Why care about biological detail?
- II Conductance-based n-LIF neurons \leftarrow Andreas How to computationally exploit nonlinear dendritic interaction
- III Detailed NEURON Models and the NEF ← Peter How to integrate detailed neuron models into the NEF

- I Motivation & Background
 Why care about biological detail?
- II Conductance-based n-LIF neurons \leftarrow Andreas How to computationally exploit nonlinear dendritic interaction
- III Detailed NEURON Models and the NEF ← Peter
 How to integrate detailed neuron models into the NEF
- IV nengo-bio hands-on ← Andreas
 Build networks adhering to Dale's principle and exploit dendritic computation

PART I

Motivation & Background

Adapted from Izhikevich (2004), Which Model to Use for Cortical Spiking Neurons?

Adapted from Izhikevich (2004), Which Model to Use for Cortical Spiking Neurons?

• LIF model accounts for a fraction of the behaviour found in biological neurons

• LIF model accounts for a fraction of the behaviour found in biological neurons

• Questions:

• In how far is the additional detail functionally *relevant*?

• LIF model accounts for a fraction of the behaviour found in biological neurons

Questions:

- In how far is the additional detail functionally *relevant*?
- What is its role in terms of *computation*?

• LIF model accounts for a fraction of the behaviour found in biological neurons

Questions:

- In how far is the additional detail functionally *relevant*?
- What is its role in terms of *computation*?
- Can we *harness* these details to perform computation?

• LIF model accounts for a fraction of the behaviour found in biological neurons

• Questions:

- In how far is the additional detail functionally *relevant*?
- What is its role in terms of *computation*?
- Can we *harness* these details to perform computation?

Example:

• Excitatory and inhibitory channels interact nonlinearly.

• LIF model accounts for a fraction of the behaviour found in biological neurons

• Questions:

- In how far is the additional detail functionally *relevant*?
- What is its role in terms of *computation*?
- Can we *harness* these details to perform computation?

• Example:

- Excitatory and inhibitory channels interact nonlinearly.
- ∼→ Can we exploit this nonlinearity systematically?

Motivation — Recreating Idiosyncrasies of the Brain

1 Study Perturbations

- ▶ Drugs
- ▶ Neurological/mental disorders

Motivation — Recreating Idiosyncrasies of the Brain

1 Study Perturbations

- ▶ Drugs
- Neurological/mental disorders

2 Neuromodulation

 Model additional pathways for information processing/learning

Motivation — Recreating Idiosyncrasies of the Brain

1 Study Perturbations

- Drugs
- Neurological/mental disorders

2 Neuromodulation

 Model additional pathways for information processing/learning

3 Constrain Models

 Constrain models to available biophysical data

Neurobiology — Idealized "Textbook" Neuron

Neurobiology — Idealized "Textbook" Neuron

 $\textbf{ 1} \ \, \text{Dendrites collect input} \longrightarrow \textbf{ 2} \ \, \text{Integrated in soma} \longrightarrow \textbf{ 3} \ \, \text{Output spikes travel along axon}$

Neurobiology — Neural Heterogeneity

Santiago Ramón y Cajal

Comparing LIF and Biology

Complexity			NEF compatibility		
	LIF	BIO		LIF	BIO
Geometry	point	compartmental	Tuning curve	$A = f(\mathbf{x})$	$A = f(\mathbf{x}, t)$
Synapse	current	conductance	Inputs	linear filter	synaptic nonlinearity
Dynamics	integrate, leak	ion channels	Dynamics	synapse dominates	neuron dominates
	voltage reset	cable equation	Decoders	static	time-dependent
Simulation	fast	slow	Estimates	$\sum_j a_i(t) * \mathbf{d}_i^f$?

PART II

Conductance-based *n*-LIF neurons

Reversal potentials

Illustration adapted from Reichert, 2000, Neurobiology.

Ion channels possess a specific *reversal potential* corresponding to the combination of *ion species* they are permeable for.

Current vs. Conductance-Based LIF

Current-based LIF

$$C_{\rm m}\dot{u}(t) = J^{\rm bias}$$

 $+ \alpha J^{\rm syn}(t)$
 $+ g_{\rm L}(E_{\rm L} - u(t))$

Conductance-based LIF

$$C_{\rm m}\dot{u}(t) = g_{\rm E}(t)(E_{\rm E} - u(t))$$

+ $g_{\rm I}(t)(E_{\rm I} - u(t))$
+ $g_{\rm L}(E_{\rm L} - u(t))$

Current vs. Conductance-Based LIF

Current-based LIF

$$C_{\rm m}\dot{u}(t) = J^{\rm bias} \\ + \alpha J^{\rm syn}(t) \\ + g_{\rm L}(E_{\rm L} - u(t))$$

Conductance-based LIF

$$C_{\rm m}\dot{u}(t) = g_{\rm E}(t)(E_{\rm E} - u(t))$$

+ $g_{\rm I}(t)(E_{\rm I} - u(t))$
+ $g_{\rm L}(E_{\rm L} - u(t))$

Current vs. Conductance-Based LIF

Current-based LIF

$$C_{\rm m}\dot{u}(t) = J^{\rm bias}$$

$$+ \alpha \left(J^{+}(t) - J^{-}(t)\right)$$

$$+ g_{\rm L}(E_{\rm L} - u(t))$$

Conductance-based LIF

$$C_{\rm m}\dot{u}(t) = g_{\rm E}(t)(E_{\rm E} - u(t))$$

+ $g_{\rm I}(t)(E_{\rm I} - u(t))$
+ $g_{\rm L}(E_{\rm L} - u(t))$

Current vs. Conductance-Based LIF Tuning Curves

Current vs. Conductance-Based LIF Tuning Curves

Current vs. Conductance-Based LIF Tuning Curves

Single-compartment conductance-based LIF

• For firing rates $\gg 0$, conductance-based LIF is boring

• Can assume average membrane potential \bar{u}

$$C_{\rm m}\dot{u}(t) = g_{\rm E}(t)(E_{\rm E} - u(t)) + g_{\rm I}(t)(E_{\rm I} - u(t)) + g_{\rm L}(E_{\rm L} - u(t))$$

Single-compartment conductance-based LIF

• For firing rates $\gg 0$, conductance-based LIF is boring

• Can assume average membrane potential \bar{u}

$$C_{\rm m}\dot{u}(t) = g_{\rm E}(t)(E_{\rm E} - \bar{u}) + g_{\rm I}(t)(E_{\rm I} - \bar{u}) + g_{\rm L}(E_{\rm L} - u(t))$$

Single-compartment conductance-based LIF

• For firing rates $\gg 0$, conductance-based LIF is boring

• Can assume average membrane potential $\bar{u} \Rightarrow \text{just a skewed current-based LIF!}$

$$C_{\rm m}\dot{u}(t) = g_{\rm E}(t)\alpha_{\rm E} + g_{\rm I}(t)\alpha_{\rm I} + g_{\rm L}(E_{\rm L} - u(t))$$

Challenges

- Challenges
 - NEF assumes a constant bias current
 - ⇒ Reinterpretation of tuning curves; optimize weights in *current-space*

- Challenges
 - NEF assumes a constant bias current
 - ⇒ Reinterpretation of tuning curves; optimize weights in *current-space*
 - 2 NEF does not distinguish between *excitatory and inhibitory weights*
 - \Rightarrow Solve *non-negative* optimization problems

- Challenges
 - NEF assumes a constant bias current
 - ⇒ Reinterpretation of tuning curves; optimize weights in *current-space*
 - 2 NEF does not distinguish between excitatory and inhibitory weights
 - ⇒ Solve *non-negative* optimization problems
- Extensions

Challenges

- 1 NEF assumes a constant bias current
 - ⇒ Reinterpretation of tuning curves; optimize weights in *current-space*
- 2 NEF does not distinguish between excitatory and inhibitory weights
 - ⇒ Solve *non-negative* optimization problems

Extensions

3 Account for *sub-threshold currents* in the optimization process

Challenges

- 1 NEF assumes a constant bias current
 - ⇒ Reinterpretation of tuning curves; optimize weights in *current-space*
- NEF does not distinguish between excitatory and inhibitory weights
 - ⇒ Solve *non-negative* optimization problems

Extensions

- 3 Account for *sub-threshold currents* in the optimization process
- **4** Take *dendritic non-linearity* into account

• Interpret tuning curve as normative: "We want firing rate a if the neuron represents x"

- Interpret tuning curve as normative: "We want firing rate a if the neuron represents x"
- Firing rates correspond to a current J: "We want a current J if the neuron represents x"

- Interpret tuning curve as normative: "We want firing rate a if the neuron represents x"
- Firing rates correspond to a current J: "We want a current J if the neuron represents x"
- ⇒ Find a current-decoder for each individual post-neuron

- Interpret tuning curve as normative: "We want firing rate a if the neuron represents x"
- Firing rates correspond to a current J: "We want a current J if the neuron represents x"
- ⇒ Find a current-decoder for each individual post-neuron (instead of population-wise)

2 Nonnegative Weight Optimization

• Assume a post-neuron receives both excitatory and inhibitory input from each pre-neuron $i\Rightarrow$ weight vectors \vec{w}_i^+, \vec{w}_i^- .

$$\begin{split} \min_{\vec{w}_i^+, \vec{w}_i^-} & \ \frac{1}{2} \sum_{k=1}^N \left\| \vec{w}_i^+ \vec{a}_k^+ - \vec{w}_i^- \vec{a}_k^- - J \left(\langle \vec{e}_i, f(\vec{x}_k) \rangle \right) \right\|_2^2 \\ & = \frac{1}{2} \left\| \vec{w}_i' A' - \vec{\jmath} \right\|_2^2 \quad \text{where } \vec{w}_i' = (\vec{w}_i^+, \vec{w}_i^-), \ A' = (A^+, -A^-)^T, \\ & \quad \text{and } (\vec{\jmath})_k = J \left(\langle \vec{e}_i, f(\vec{x}_k) \rangle \right), \end{split}$$
 subject to $\vec{w}_i^+ \geq 0, \vec{w}_i^- \geq 0$

• Can remove rows/columns from A' and $\vec{w_i}$ to account for Dale's principle (e.g. only 20% of pre-neurons are inhibitory, 80% are excitatory)

3 Account for sub-threshold currents

- Tuning curves are not injective (one-to-one): multiple x map onto a zero output rate
- ⇒ If the target rate is zero, we do not care about the current, as long as the rate is zero
- ⇒ Turn zero-rates into inequality instead of equality constraints (quadratic programming)

4 Take *dendritic nonlinearity* into account

- Generalise dendritic interaction between excitation and inhibition
- Dendritic nonlinearity ${\cal H}$ converts synaptic state to somatic current

4 Take *dendritic nonlinearity* into account

- Generalise dendritic interaction between excitation and inhibition
- ullet Dendritic nonlinearity H converts synaptic state to somatic current
- Example:

Current-based model:
$$H(J^+, J^-) = J^+ - J^-$$

$$\begin{split} \min_{\vec{w}_i^+, \vec{w}_i^-} \quad & \frac{1}{2} \sum_{k=1}^N \left\| H(\vec{w}_i^+ \vec{a}_k^+, \vec{w}_i^- \vec{a}_k^-) - J \left(\langle \vec{e}_i, f(\vec{x}_k) \rangle \right) \right\|_2^2 \\ \text{subject to } \vec{w}_i^+ \geq 0, \vec{w}_i^- \geq 0 \end{split}$$

4 Take dendritic nonlinearity into account

- Generalise dendritic interaction between excitation and inhibition
- ullet Dendritic nonlinearity H converts synaptic state to somatic current
- Example:

Current-based model:
$$H(J^+, J^-) = J^+ - J^-$$

$$\begin{split} \min_{\vec{w}_i^+, \vec{w}_i^-} \quad & \frac{1}{2} \sum_{k=1}^N \left\| H(\vec{w}_i^+ \vec{a}_k^+, \vec{w}_i^- \vec{a}_k^-) - J\big(\langle \vec{e}_i, f(\vec{x}_k) \rangle\big) \right\|_2^2 \\ \text{subject to } \vec{w}_i^+ \geq 0, \vec{w}_i^- \geq 0 \end{split}$$

- Questions:
 - Can we find more interesting *H*?
 - Can we exploit H as a computational resource?
 - Under which conditions can we efficiently solve the optimization problem?

Computing Multivariate Nonlinear Functions

Example: Multiplication, compute $\phi(\vec{z}) = \phi(x, y) = x \cdot y$

Two-compartment LIF neuron

• Dendritic nonlinearity:

$$H(g_{\rm E},g_{\rm I}) = \frac{b_1 + b_2 g_{\rm E} + b_3 g_{\rm I}}{a_1 + a_2 g_{\rm E} + a_3 g_{\rm I}}$$

Two-compartment LIF neuron

• Dendritic nonlinearity:

$$H(g_{\rm E}, g_{\rm I}) = \frac{b_1 + b_2 g_{\rm E} + b_3 g_{\rm I}}{a_1 + a_2 g_{\rm E} + a_3 g_{\rm I}}$$

 Can still formalize weight-optimization as convex quadratic programming problem, guaranteed to find global optimum

Results – Dendritic computation (I)

Results – Dendritic computation (II)

	Experiment setup						
	Standard LIF			Two comp. LIF $g_{\rm C}=50{\rm nS}$		Two comp. LIF $g_{\rm C}=100{\rm nS}$	
Target	no relaxation	A standard	B two-layer	© standard	noise model	standard	noise model
x+y	$5.1 \pm 0.6\%$	$5.5 \pm 1.1\%$	$11.0 \pm 1.3\%$	$\textbf{3.2}\pm\textbf{1.1}\%$	$9.1 \pm 1.2\%$	$5.1 \pm 1.2\%$	$11.5 \pm 1.3\%$
$x \times y$	$26.2 \pm 0.4\%$	$21.5 \pm 6.6\%$	$15.4 \pm 4.0\%$	$13.9 \pm 2.9\%$	$11.9\pm1.8\%$	$18.2 \pm 4.0\%$	$14.3 \pm 2.1\%$
$\sqrt{x \times y}$	$14.1 \pm 0.4\%$	$19.7 \pm 6.1\%$	$16.3 \pm 3.0\%$	$9.7 \pm 2.6\%$	$7.1\pm1.0\%$	$13.3 \pm 4.2\%$	$8.9 \pm 1.7\%$
$(x \times y)^2$	$44.5 \pm 0.6\%$	$33.0 \pm 6.6\%$	$18.7\pm6.7\%$	$27.7 \pm 4.1\%$	$27.4 \pm 4.1\%$	$34.3 \pm 5.3\%$	$30.3 \pm 4.3\%$
x/(1+y)	$6.0 \pm 0.4\%$	$5.2 \pm 0.7\%$	$9.5 \pm 0.8\%$	$\textbf{3.4}\pm\textbf{1.0}\%$	$10.0 \pm 1.6\%$	$5.3 \pm 1.3\%$	$14.0 \pm 1.9\%$
$\ (x,y)\ $	$8.0 \pm 0.4\%$	$5.7 \pm 1.1\%$	$10.5 \pm 1.0\%$	$\textbf{3.1}\pm\textbf{1.3}\%$	$8.9 \pm 1.2\%$	$4.3 \pm 1.8\%$	$12.3\pm1.8\%$
atan(x, y)	$10.3 \pm 0.3\%$	$8.6 \pm 1.0\%$	$13.4 \pm 1.1\%$	$\boldsymbol{5.8\pm1.3\%}$	$8.4 \pm 1.0\%$	$7.0 \pm 1.2\%$	$12.7\pm1.6\%$
$\max(x, y)$	$14.9 \pm 0.3\%$	$10.0 \pm 0.9\%$	$11.3 \pm 1.4\%$	$\textbf{5.5}\pm\textbf{0.9}\%$	$7.7\pm0.9\%$	$7.3\pm0.9\%$	$9.7\pm1.0\%$

http://arxiv.org/abs/1904.11713

Three-compartment LIF neuron

• Dendritic nonlinearity:

$$\left(\frac{b_1^1+b_2^1g_{\rm E}+b_3^1g_{\rm I}}{a_1^1+a_2^1g_{\rm E}+a_3^1g_{\rm I}}\right)\cdot \left(\frac{b_1^2+b_2^2g_{\rm E}+b_3^2g_{\rm I}}{a_1^2+a_2^2g_{\rm E}+a_3^2g_{\rm I}}\right)$$

Three-compartment LIF neuron

• Dendritic nonlinearity:

$$\left(\frac{b_1^1 + b_2^1 g_{\mathsf{E}} + b_3^1 g_{\mathsf{I}}}{a_1^1 + a_2^1 g_{\mathsf{E}} + a_3^1 g_{\mathsf{I}}}\right) \cdot \left(\frac{b_1^2 + b_2^2 g_{\mathsf{E}} + b_3^2 g_{\mathsf{I}}}{a_1^2 + a_2^2 g_{\mathsf{E}} + a_3^2 g_{\mathsf{I}}}\right)$$

 For n-LIF, n ≥ 3: can formalize weight-optimization as iterative trust-region-based optimization problem; not guaranteed to find global optimum

PART III

Detailed Neuron Models and the NEF

Figure: Tuning curves from monkey visual cortex (A) and human NPH (B)

Problem Statement

Tuning-curve-based methods assume non-adaptive neurons:

$$a_i = F(\mathbf{x})$$

For adaptive neurons, activity depends on signal history

$$a_i = F(\mathbf{x}, t)$$

Goal: extend NEF methods to account for cellular dynamics

Approach

Assume neuron model is a "black box"

Use time-varying signals $\mathbf{x}(t)$ to train neural connection parameters

- Encoding: iterative optimization of gain, bias
- Decoding: least squares optimization of decoders, synapses

Considerations:

- $\mathbf{x}(t)$ spans state space and activates appropriate dynamics
- $\mathbf{x}(t)$ passes through preliminary filters (spikes, dendrites, etc.)

Static Encoding

Find gain and bias that achieve desired max_rates and intercepts

- 1. Find $J^{\text{test}}(x)$ for $\mathbf{x} \in [-1,1]$ assuming $\alpha = 1, \, \beta = 0$
- 2. Calculate $a(J^{\text{test}})$ using rate-approximation
- 3. Interpolate $a = G(J(\mathbf{x}))$
- 4. Use G^{-1} to solve for α and β

Temporal Encoding

Find gain and bias that achieve desired max_rates and intercepts

Static Decoding

Minimizes state-space error over x

$$E = \frac{1}{2} \int_{-1}^{1} (\mathbf{x} - \hat{\mathbf{x}})^{2} dx$$
$$\hat{\mathbf{x}} = \sum_{i} a_{i} \, \mathbf{d}_{i}$$

Solve using least-squares

$$\mathbf{A} \ \mathbf{d} = \mathbf{x}$$
$$\mathbf{d} = (A^T A + \sigma^2)^{-1} A^T \mathbf{x}$$

Static Decoding

Minimizes state-space error over x

$$E = \frac{1}{2} \int_{-1}^{1} (\mathbf{x} - \hat{\mathbf{x}})^{2} dx$$

$$\hat{\mathbf{x}} = \sum_{i} a_{i} \, \mathbf{d}_{i}$$
Solve using least-squares
$$A \, \mathbf{d} = \mathbf{x}$$

$$\mathbf{d} = (A^{T} A + \sigma^{2})^{-1} A^{T} \mathbf{x}$$

Activity matrix calculated by static encoding

$$A = \begin{bmatrix} a_1(\mathbf{x} = -1) & \dots & a_n(\mathbf{x} = -1) \\ \vdots & \ddots & \vdots \\ a_1(\mathbf{x} = 1) & \dots & a_n(\mathbf{x} = 1) \end{bmatrix}$$
$$a_i(\mathbf{x}) = G_i(\mathbf{x}, \alpha_i, \beta_i)$$

Temporal Decoding

Minimize state-space error over t

$$E = \frac{1}{2} \int_0^{t'} (\mathbf{x}(t) - \hat{\mathbf{x}}(t))^2 dt$$
$$\hat{\mathbf{x}}(t) = \sum_i a_i(t) \, \mathbf{d}_i$$

Solve using least-squares

$$A \mathbf{d} = \mathbf{x}(t)$$
$$\mathbf{d} = (A^T A)^{-1} A^T \mathbf{x}(t)$$

Temporal Decoding

Minimize state-space error over t

$$E = \frac{1}{2} \int_0^{t'} (\mathbf{x}(t) - \hat{\mathbf{x}}(t))^2 dt$$

$$\hat{\mathbf{x}}(t) = \sum_i a_i(t) \, \mathbf{d}_i$$

$$A \, \mathbf{d} = \mathbf{x}(t)$$

$$\mathbf{d} = (A^T A)^{-1} A^T \mathbf{x}(t)$$

Activity matrix collected by simulating over time

$$A = \begin{bmatrix} a_1(t=0) & \dots & a_n(t=0) \\ \vdots & \ddots & \vdots \\ a_1(t=t') & \dots & a_n(t=t') \end{bmatrix}$$

$$\mathbf{x}(t) = [\text{computed directly}]$$

29/39

Neuron Models

Adaptive LIF

- spikes increase V^{thr}
- divisive effect on ${\cal J}$

Wilson

- mamalian neocortex
- 3 coupled ODEs for V, R, C

Durstewitz

- Layer-V PC
- conductance syn.
- 4 geo. compartments
- 6 HH ion channels

Encoding: Training α and β

Encoding: Training α and β

Decoding: f(x) = x

Decoding: f(x) = x

Figure: Average performance across neuron models

Decoding: $f(x) = x^2$

Decoding: $f(x) = x^2$

Figure: Average performance across neuron models

Figure: Implementing a two-dimensional oscillator using 200 recurrently-connected neurons

Dynamical System: Lorenz Attractor

Figure: Implementing a three-dimensional chaotic attractor using 2000 recurrently-connected neurons

Future Work

Nengo Integration

• Online learning

Applications

- Harder dynamics
- Cognitive models
- Drug effects

Extensions

- Dale's principle
- Functional neuromodulation

Summary

Training α , β using $\mathbf{x}(t)$ distributes tuning curves of complex neurons

Training **d** using $\mathbf{x}(t)$ decodes activities of adaptive neurons

Training h(t) using $\mathbf{x}(t)$ controls for cell dynamics in recurrent networks

Thanks to

Aaron Voelker Terry Stewart Andreas Stöckel Chris Eliasmith

nengo-bio hands-on

PART IV