Лабораторна робота №7. Функції

Автор: Стась Артем

Група: КН-922Б

Завдання:

- **1.**Переробити програми, що були розроблені під час виконання лабораторних робіт з тем "Масиви" та "Цикли" таким чином, щоб використовувалися функції для обчислення результату.
- **2.**Функції повинні задовольняти основну їх причетність уникати дублювання коду.

Тому, для демонстрації роботи, ваша програма (функція main()) повинна мати можливість викликати розроблену функцію з різними вхідними даними.

- **3.**Слід звернути увагу: параметри одного з викликів функції повинні бути згенеровані за допомогою генератора псевдовипадкових чисел random().
- **4.**Слід звернути увагу (#2): продемонструвати встановлення вхідних даних через аргументи додатка (параметри командної строки).

Обробити випадок, коли дані не передались - у цьому випадку вони матимуть значення за умовчуванням, обраними розробником.

Опис програми

Функціональне призначення

Ця програма викону ϵ дві операції.

- 1. Розташовує числа за методом "бульбашки "
- 2. Знаходить факторіал заданого числа.

Опис логічної структури

(мал.1) графічна структура

Вміст файлу "таіп.с"

Головний файл

Це файл, який містить точку входу, виклики функцій lab05, lab06 та значення для аргументів цих функцій.

Головна функція.

Послідовність дій

- Присвоїти значення аргументам argc і argv.
 - 1. argc аргумент типу int необхідний для обчислення чисел в масиві .
 - 2. argv масив типу char який зберігатиме в собі значення від якого почнеться перевірка всіх чисел .
- Створення змінних яким буде надано значення для аргументів функцій link lab05, lab06.
 - 1. t зберігає значення за умовчуванням від якого буде починатися перевірка квитків для функції lab06. Воно буде використовуватися якщо не будуть передані аргументи командного рядка.
 - 2. с змінна яка використовується для перевірки аргументів командного рядка.
- Генеруємо рандомні числа за допомогою генератора rand() та функції srand(), після чого привласнюємо їх пріменним а .
- Потім викликаємо функцію lab05 і присвоюємо її аргументам значення примінних а.

```
o srand((unsigned int)time(NULL));
o h = rand() % 10;
o lab05(h);
```

- Робимо перевірку на те, чи були введені аргументи через командний рядок.
- Якщо одна з перевірок не була пройдена, то присвоюємо аргументам функції lab06 значення за замовчуванням.

```
lab06(t,s);
}
else
{
  lab06(d,s);
```

```
return 0;
```


Вміст файлу "lib.c"

Бібліотечний файл

Цей файл містить реалізацію функцій lab05, lab06.

int lab05(h)

В цю функцію передається рандомне число.

Послідовність дій

- Створення змінної і.
 - 1. і використовується для змінна "і" виступає зберігачем добутка самої себе на, ітераційно змінну, змінну "а"
- Запуск циклу у встановленому діапазоні.
- for (a = h; a>0; a--)
- Розрахунок факторіала за допомогою формул .
- i= i*a;

(мал.3) Схема алгоритму функції lab05

int lab06(long int b[], int s)

Аргументи

- і змінна для цикла
- ј- Змінна для цикла
- с- Змінна для виводу даних

Послідовність дій

- Створення змінних
- Створення циклу який порівнює два сусідніх елементи.

```
    for ( i = 0; i<s - 1;i++)</li>
    {
    for ( j =0;j<s-i-1;j++)</li>
    {
```

• якщо вони йдуть у неправильному порядку, то міняємо їх місцями.

```
if (b[j] > b[j+1])
{
c =b[j];
b[j] = b[j+1];
b[j+1] = c;
}
```


(мал. 4) Схема алгоритму функції lab06

Вміст файлу "lib.c"

Бібліотечний файл

Цей файл містить декларацію функцій lab05, lab06.

```
int lab05(int h);
int lab06(long int arr[], unsigned int s );
```

Структура проекту лабораторної роботи:

Варіанти використання

1. Ви можете використовувати цю програму двома способами. Перший спосіб-це розрахунок факторіалу числа заданого рандомно (мал. 5).

(мал.5)Як користуватися програмою

2. Другий метод використання цієї програми – це розташування цифр за методом "бульбашки"

(мал6) Як користуватися програмою

3. Щоб побачити результати роботи програми, вам потрібно завантажити її в LLDB, завантажуючи програму. факторіал числа вибереться рандомно . Якщо треба побачити як розташуються числа за методом "бульбашки", то для цього вам знадобиться точку зупинки для рядка з "return 0"; У функції lab05, та вивести значення (мал5). Якщо ви хочете факторіал числа вибереться рандомно, вам потрібно зробити точку зупинки для рядка з "return 0;" у функції lab06, після того, щоб дізнатися число , вам потрібно вивести змінну і, і щоб переглянути розташування чисел , вам потрібно вивести масив b[](мал 8)

(мал. 7) Як дізнатися факторіал числа

```
File Actions Edit View Help

[Vlad@kali]-[-/Documents/MPI/Artem/dist]

2-2 /main.bin 9 8 7 9 5 6

6 6

6 7

9 9

[Vlad@kali]-[-/Documents/MPI/Artem/dist]

1-1

24

234

234

234

236

236

237

[Vlad@kali]-[-/Documents/MPI/Artem/dist]

1-1

[Vlad@kali]-[-/Documents/MPI/Artem/dist]

2-2 /main.bin

1-3 /main.bin

1-1

[Vlad@kali]-[-/Documents/MPI/Artem/dist]
```

(мал. 8) Як дізнатися розташування чисел та їх перегляд!

Висновки: у цій роботі з було перетворено лабораторні проекти № 5 та № 6 для використання функцій. Було набуто навичок роботи з функціями, їх декларація, реалізація та виклик. Були отримані, також навички роботи з бібліотечними файлами їх зв'язком у виконанні різних дій з функціями та

їх зв'язком між собою. Під час тестування програми були отримані результати функції lab05 - це отримання факторіала числа та роботи циклу lab06 - це розташування чисел за методом "бульбашки" та їх перегляду.