第9回 線形写像

定義 9.1 (固有値・固有ベクトル)

写像 $f: \mathbb{F}^n \to \mathbb{F}^m$ が線形性と呼ばれる 2 つの性質:

- (1) $\forall x, y \in \mathbb{F}^n$, f(x+y) = f(x) + f(y)
- (2) $\forall \boldsymbol{x} \in \mathbb{F}^n, \ \forall \alpha \in \mathbb{F}, \quad f(\alpha \boldsymbol{x}) = \alpha f(\boldsymbol{x})$

を満たすとき、f を 線形写像 または 線形変換 という。

命題 9.2 (線形写像と零ベクトル)

線形写像 $f:\mathbb{F}^n \to \mathbb{F}^m$ は $f(\mathbf{0}_n) = \mathbf{0}_m$ を満たす。ただし, $\mathbf{0}_n$ は \mathbb{F}^n の零ベクトル、 $\mathbf{0}_m$ は \mathbb{F}^m の零ベクトルである。

証明 $\mathbf{0}_n + \mathbf{0}_n = \mathbf{0}_n$ なので, $f(\mathbf{0}_n + \mathbf{0}_n) = f(\mathbf{0}_n)$ 。 f は線形写像なので,

$$f(\mathbf{0}_n) + f(\mathbf{0}_n) = f(\mathbf{0}_n)$$

が成り立つ。両辺に $-f(\mathbf{0}_n)$ を加えると

$$f(\mathbf{0}_n) + f(\mathbf{0}_n) - f(\mathbf{0}_n) = f(\mathbf{0}_n) - f(\mathbf{0}_n)$$

を得る。 したがって $f(\mathbf{0}_n) + \mathbf{0}_m = \mathbf{0}_m$ であるから, $f(\mathbf{0}_n) = \mathbf{0}_m$ が成り立つ。

- (1) $\mathbf{x} = \alpha \mathbf{e}_1 + \beta \mathbf{e}_2$ が成り立つことを確かめよ。
- (2) $f: \mathbb{R}^2 \to \mathbb{R}^2$ を線形写像とする。このとき、

$$f(\alpha e_1 + \beta e_2) = \alpha f(e_1) + \beta f(bme_2)$$

が成り立つことを示せ。

命題 9.3 (線形写像を行列で表す)

線形写像 $f: \mathbb{F}^n \to \mathbb{F}^m$ は,ある $m \times n$ 行列 A を用いて f(x) = Ax と表せる。このときの A を f の **表現行列** という。

証明 省略。

練習 9.2 線形写像 $f: \mathbb{R}^3 \to \mathbb{R}^3$ が,

$$f(e_1) = \begin{pmatrix} 5 \\ 1 \\ 4\beta \end{pmatrix}, \quad f(e_1) = \begin{pmatrix} 7 \\ -1 \\ 0 \end{pmatrix}, \quad f(e_1) = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

を満たすとき、f の表現行列を求めよ。

命題 9.4 (行列の定める線形写像)

写像 $f: \mathbb{F}^n \to \mathbb{F}^m$ が、 \mathbb{F} を成分に持つ $m \times n$ 行列 A を用いて f(x) = Ax と表せるとき、f は線形写像になる。このときの f を **行列** A の定める線形写像 といい、 f_A と表す。

練習 9.3 命題 9.4 を証明せよ。

 \Box

定理 9.5 (行列の定める線形写像)

 \mathbb{R}^2 において,原点を中心に反時計回りに角度 θ だけ回転させる移動は $\mathbb{R}^2 \to \mathbb{R}^2$ の線形変換で,その表現行列は $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ である。この行列を **回転行列** という。

練習 9.4 定理 9.5 を証明せよ。

1 1

定義 9.6 (線形写像の像と核)

線形写像 $f: \mathbb{F}^n \to \mathbb{F}^m$ に対して、以下の用語を定義する:

- (1) Im $f := \{ f(x) \in \mathbb{F}^m \mid x \in \mathbb{F}^n \} : f \mathcal{O}$ 像 (イメージ)
- (2) $\operatorname{rank} f := \dim(\operatorname{Im} f)$
- (3) Ker $f := \{ x \in \mathbb{F}^n \mid f(x) = \mathbf{0} \}$: $f \mathcal{O}$ 核 (カーネル)
- (4) $\operatorname{null} f := \dim(\operatorname{Ker} f)$

定理 9.7 (次元公式)

線形写像 $f: \mathbb{F}^n \to \mathbb{F}^m$ について,

$$\operatorname{rank} f + \operatorname{null} f = n$$

が成り立つ。この式を次元公式という。