

Classical Problems of Synchronization

- Classical problems used to test newly-proposed synchronization schemes
 - Bounded-Buffer Problem
 - Readers and Writers Problem
 - Dining-Philosophers Problem

Bounded-Buffer Problem

- **n** buffers, each can hold one item
- Semaphore mutex initialized to the value 1
- Semaphore full initialized to the value 0
- Semaphore empty initialized to the value n

Bounded Buffer Problem (Cont.)

The structure of the producer process

```
do {
      /* produce an item in next_produced */
   wait(empty);
   wait(mutex);
      /* add next produced to the buffer */
   signal(mutex);
   signal(full);
} while (true);
```


Bounded Buffer Problem (Cont.)

The structure of the consumer process

```
Do {
   wait(full);
   wait(mutex);
    /* remove an item from buffer to next consumed */
   signal(mutex);
   signal(empty);
    /* consume the item in next consumed */
} while (true);
```


Readers-Writers Problem

- A data set is shared among a number of concurrent processes
 - Readers only read the data set; they do not perform any updates
 - Writers can both read and write
- Problem allow multiple readers to read at the same time
 - Only one single writer can access the shared data at the same time
- Several variations of how readers and writers are considered all involve some form of priorities
- Shared Data
 - Data set
 - Semaphore rw_mutex initialized to 1
 - Semaphore mutex initialized to 1
 - Integer read_count initialized to 0

Readers-Writers Problem (Cont.)

The structure of a writer process

Readers-Writers Problem (Cont.)

The structure of a reader process

```
do {
       wait(mutex);
       read_count++;
       if (read count == 1)
       wait(rw mutex);
    signal(mutex);
       /* reading is performed */
    wait(mutex);
       read count --;
       if (read count == 0)
    signal(rw mutex);
    signal(mutex);
} while (true);
```


Dining-Philosophers Problem

- Philosophers spend their lives alternating thinking and eating
- Don't interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time) to eat from bowl
 - Need both to eat, then release both when done
- In the case of 5 philosophers
 - Shared data
 - Bowl of rice (data set)
 - Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem Algorithm

The structure of Philosopher *i*:

```
do {
    wait (chopstick[i] );
    wait (chopStick[ (i + 1) % 5] );
                // eat
     signal (chopstick[i] );
     signal (chopstick[ (i + 1) % 5] );
                     think
} while (TRUE);
```

What is the problem with this algorithm?

Dining-Philosophers Problem Algorithm (Cont.)

Deadlock handling

- Allow at most 4 philosophers to be sitting simultaneously at the table.
- Allow a philosopher to pick up the forks only if both are available (picking must be done in a critical section.
- Use an asymmetric solution -- an odd-numbered philosopher picks up first the left chopstick and then the right chopstick. Even-numbered philosopher picks up first the right chopstick and then the left chopstick.

Problems with Semaphores

- Incorrect use of semaphore operations:
 - signal (mutex) wait (mutex)
 - wait (mutex) ... wait (mutex)
 - Omitting of wait (mutex) or signal (mutex) (or both)
- Deadlock and starvation are possible.

Pthreads Synchronization

- Pthreads API is OS-independent
- It provides:
 - mutex locks
 - condition variable
- Non-portable extensions include:
 - read-write locks
 - spinlocks

