AT2401C

Gebrauchsanweisung

Aktenzeichen: AT2401C-20180305

Versionsdatum		Writer-Update-Inl	nalt	
1.	.0	05.05.2017	LYB, QM erster E	Entwurf
1.	.1	05.01.2018	QM	Informationen aktualisieren

lhe		

Hauptanwendung

- ÿ ZigBee und zugehörige Anwendungen
- ÿ ZigBee Smart-Power-Lösung
- ÿ Kabelloses Audiosystem
- ÿ Smart Home und industrielle Automatisierung
- ÿ Drahtloses Sensornetzwerk
- ÿ 2,4-GHz-HF-System

charakteristisch

ý Hocheffizienter 2,4-GHz-ZigBee-Single-Chip-RF-Front-End-integrierter Chip
ÿ Integrierter TX/RX-Transceiver-Anschluss und Antennenanschluss
ÿ 2,4-GHz-Leistungsverstärker mit Oberwellenunterdrückung
ÿ Rauscharmer Verstärker
ÿ Schaltkreis des Sende-/Empfangsschalters
ÿ Erfüllen Sie die Anwendungsanforderungen für die Übertragung von Signalen mit hoher Linearität, die dem OQPSK-Modulationsstandard entsprechen
ÿ Niederspannungs-CMOS-Logiksteuerung
ÿ ESD-Schutzschaltung für alle Ports
ÿ HF-Ports haben eine DC-Sperrschaltung
ÿ Das Stromversorgungssignal VDD und das HF-Signal haben eine gute interne Isolationsschaltung
ÿ Der Empfangskanal ist rauscharm
ÿ Sehr niedriger Gleichstromverbrauch
ÿ Integrieren Sie alle Anpass- und Trennschaltungen
ÿ Erfordert wenige externe Komponenten
ÿ Eingang und Ausgang auf 50 Ohm abgestimmt
ÿ CMOS-Prozess mit stabiler Leistung annehmen
ÿ Kleines Gehäuse mit geerdeter QFN 3*3*0,55 mm Bodenplatte

Chip-Pin-Belegung

PIN-Nummer PIN-N		Pin-Beschreibung
4	TXRX Sende-/	Empfangs-RF-Transceiver-Signalanschluss: DC an Masse
5	CHEN	Sendeaktivierungs-CMOS-Steueranschluss
6	RXEN	Empfangsfreigabe-CMOS-Steueranschluss
10	AN	Leistungsverstärker-Signalausgangsklemme oder rauscharmer Verstärkersignaleingang
		Klemme: DC an Masse
1,2,3,7,8,9,	Masse	Massepotential: Alle müssen im Betrieb geerdet werden
11,12,15,17		
13	DNC	schwimmender Hafen
14	VDD optional	er Verbindungseingang, ist intern mit Pin 16 verbunden, kann unbeschaltet bleiben
16	VDD	Eingangspin Versorgungsspannung

Chip-Pin-Belegungsdiagramm

Absolut beste Bewertungen:

Parameter E	Einheit min	max		Bedingung	
Versorgungsspar	nung V	0	4.0		
Chipkontrolle Pin-Spannung	IN	0	3.6	über einen 1-KOhm-Widerstand	
Strom mA			350	Wenn der Sendesteuerstift TXEN hoch ist, Chip-Pin-Strom durch Versorgungsspannung	
Chipkontrolle Stiftstrom	μA		1		

ein Signal übermitteln Stärke	dBm	+5	alle Arbeitsstatus
Antennenempfang Signalstärke	dBm	+5	Steuerverbindung empfangen
Chipspeicher Temperaturbereich	ÿ -50	+125	Ohne HF-Eingang und DC-Stromversorgung herunter und muss auf den Anforderungen an die Sperrschichttemperatur des Transistors basieren etwas angemessenen Schutz tun

Hinweis: Das Überschreiten einer oder mehrerer der oben genannten absoluten Höchstwerte kann zu dauerhaften Schäden am Gerät führen, dies wird empfohlen

Innerhalb der in der Tabelle aufgeführten Bereiche verwenden. Die maximale Signalstärke des HF-Eingangsanschlusses entspricht der HF-Eingangsimpedanz von 50

Ohm.

Chip-Arbeitsbedingungen:

Parameter	Einheit N	Лin. Тур Мах. I	Bedingung		
Stromspannung	IN	2.0	3.3	3.6 Alle C	hipstifte
Steuerspannung "high" V		1.2		VDD übei	1KOhm Widerstand
Steuerspannung "low level" V		0		0,3	
Betriebstemperaturbereich	ÿ -40			85	

Typische Leistungsparameter der Sendekette

Parameter	Einheit 7	Typischer Wert	Bedingung
Dotrickofra guanak araiak	CI I=	2,4-2,52	Alle HF-Pins entsprechen einer Impedanz von 50
Betriebsfrequenzbereich	GHZ	5	Ohm
Sättigungsausgangsleisti	ung dBm	+22	
Kleinsignalverstärkung	dB	25	

2. Harmonische dBm		-10	Schmoll=+20dBm
Harmonische 3. Ordnung	g dBm	-20	Schmoll=+20dBm
Eingangsrückflussdämpfu	ing dB	-10	
Ausgangsrückflussdämpfu	ing dB	-6	
Unsymmetrischer Eingangs-/Ausgangswiderstand Anti-	Ohm	50	
Verbindungsstrom mA übert	ragen	17 Ruhebe	triebsstrom ohne HF-Signaleingang
Übertragen Sie Hochleistungsstro	om mA	90	Schmoll=+20dBm

Typische Leistungsparameter des Empfangslinks

Parameter	Einheit T	ypischer Wert	Bedingung
Potriobofroguanabaroiab C		2,4-2,52	Alle HF-Pins entsprechen einer Impedanz von 50
Betriebsfrequenzbereich G	ПΖ	5	Ohm
gewinnen	dB	12	
Rauschzahl dB		2.5	
Eingangsrückflussdämp	fung dB	-10	
Ausgangsrückflussdämp	fung dB	-12	
HF-Port-Impedanz Ohm		50	
Verbindungsstrom mA emp	fangen	8 Betriebs	ruhestrom ohne HF-Signaleingang
Eingabe 1dB Kompressionspu	ınkt dBm	-8	Entspricht der Signalstärke des ANT-Ports des Chips

Leistungsparameter im Standby-Modus

Parameter	Einheit Ty	pischer Wert	
DC-Abschaltstrom μA		<1	
TXRX-ANT-Einfügungsdämpfung	dB	-50 Eingangs	signalstärke Pin<-20dBm
ANT-TXRX Einfügedämpfung dB		-50 Eingangs	signalstärke Pin<-20dBm
Rüdflusdängfung	dB	-1,5	TXRX-Port

Sende-Empfangs-Umschaltzeit nsec	800	
Ausschaltzeit nsec	800	

Steuersignal-Logik-Wahrheitstabelle

CHEN	RXEN	Arbeits status
1	Х	Übertragungsverbindungsbetrieb
0	1	Empfangslink funktioniert
0	0	Schlafzustand abbrechen

Bemerkungen: "1" bedeutet, dass der Steuerpin im High-Zustand ist (>1,2 V)

"0" bedeutet Low-Zustand des Steuerstifts (<0,3 V)

"X" bedeutet, dass der Zustand optional ist: "1" oder "0" können sein

Schaltungsdesignvorschläge für Chipanwendungen

Abmessungen und Spezifikationen des PCB-Designs

Paketspezifikationen

TOP VIEW

BOTTOM VIEW

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS		Α	0.7	0.75	0.8
STAND OFF		A1	0	0.02	0.05
MOLD THICKNESS		A2		0.55	
L/F THICKNESS		А3	0.203 REF		
LEAD WIDTH		b	0.18	0.23	0.28
BODY SIZE	X	D	3 BSC		
	Y	E	3 BSC		
LEAD PITCH		е	0.5 BSC		
EP SIZE	X	D2	1.6	1.7	1.8
	Y	E2	1.6	1.7	1.8
LEAD LENGTH		L	0.3	0.4	0.5
LEAD TIP TO EXPOSED PAD EDGE		K	0.275 REF		
PACKAGE EDGE TOLERANCE		aaa	0.1		
MOLD FLATNESS		ссс	0.1		
COPLANARITY		eee	0.08		
LEAD OFFSET		bbb	0.1		
EXPOSED PAD OFFSET		fff	0.1		