# **Lesson 14 – Properties of Groebner Bases**

## I. Groebner Bases Yield Unique Remainders

**Theorem** Let  $G = \{g_1, g_2, ..., g_t\}$  be a Groebner basis for an ideal  $I \subseteq k[x_1, x_2, ..., x_n]$ , and let  $f \in k[x_1, x_2, ..., x_n]$ . Then there is a unique r with the following properties

- (i) No term of r is divisible by any of  $LT(g_1)$ ,  $LT(g_2)$ , ...,  $LT(g_t)$ .
- (ii) There is  $g \in I$  such that f = g + r.

In particular, r is the remainder on division of f by G no matter how the elements of G are listed when using the division algorithm.

**Proof:** The existence of r follows from the division algorithm, which yields  $f = a_1g_1 + a_2g_2 + \cdots + a_tg_t + r = g + r$ , where  $a_i \in k[x_1, x_2, \ldots, x_n]$ , and r satisfies condition (i). It suffices, then, to prove the uniqueness of r.

**Exercise 1** Prove the uniqueness of r.

**Exercise 2** We know from the above theorem that dividing a polynomial  $f \in k[x_1, x_2, ..., x_n]$  by a Groebner basis  $G = \{g_1, g_2, ..., g_t\}$  produces a unique remainder (regardless of the order of the set). Are the quotients unique too? Let's examine this question...

The set  $G = \{x + z, y - z\}$  is a Groebner basis for  $I = \langle x + z, y - z \rangle$  using the lex order w/ x > y > z.

a) Divide xy by the 2-tuple (x + z, y - z).

Solution.

So  $xy = y(x + z) - z(y - z) - z^2$ . The remainder is  $r = -z^2$ .

b) Now divide xy by (y - z, x + z). What do you discover?

Solution.

So  $xy = z(x+z) + x(y-z) - z^2$ . The remainder is  $r = -z^2$  is the same as expected, but the quotients are different.

**Notation.** We will write  $\bar{f}^F$  to denote the remainder of f upon division by an *ordered* t-tuple of polynomials  $F = \{f_1, f_2, ..., f_t\}$ . If  $G = \{f_1, f_2, ..., f_t\}$  is a Groebner basis, then we can regard the t-tuple as a set (without any particular order), and we call  $\bar{f}^G$  the **normal form** of f.

As a corollary to Theorem 1, we now know that the division algorithm decides the ideal membership problem as long as we divide the polynomial in question by a Groebner basis.

**Corollary (Ideal Membership)** Let  $G = \{g_1, g_2, ..., g_t\}$  be a Groebner basis for an ideal  $I \subseteq k[x_1, x_2, ..., x_n]$ , and let  $f \in k[x_1, x_2, ..., x_n]$ . Then  $f \in I$  if and only if  $\bar{f}^G = 0$ .

#### BUT HOW DO WE KNOW IF WE HAVE A GROEBNER BASIS???

### II. S-Polynomials and Buchberger's Criterion

Let's assume we have a potential Groebner basis

$$G = \{g_1, g_2, ..., g_t\}$$

for an ideal  $I \subseteq k[x_1, x_2, ..., x_n]$ , with  $g_1, g_2, ..., g_t \in I$ . It follows from the definition that  $\langle \mathrm{LT}(g_1), \mathrm{LT}(g_2), ..., \mathrm{LT}(g_t) \rangle \subseteq \langle \mathrm{LT}(I) \rangle$ .

However, it could be that  $\langle LT(g_1), LT(g_2), ..., LT(g_t) \rangle \not\supseteq \langle LT(I) \rangle$ . Let's remind ourselves of how this can happen with an example...

**Exercise 3** Consider the ideal  $I = \langle g_1, g_2 \rangle \subseteq k[x, y]$ , where  $g_1(x, y) = x^3 - 2x$  and  $g_2(x, y) = x^4 - 3x$ . Show that  $\langle LT(g_1), LT(g_2) \rangle \not\supseteq \langle LT(I) \rangle$ .

**Question:** What is the basic source of the obstruction to Groebner bases?

Hence we define the "S-polynomial".

**Definition** Let  $f, g \in k[x_1, x_2, ..., x_n]$  be nonzero polynomials.

- (i) If  $\operatorname{multideg}(f) = \alpha$  and  $\operatorname{multideg}(g) = \beta$ , then let  $\gamma = (\gamma_1, \gamma_2, ..., \gamma_n)$ , where  $\gamma_i = \max(\alpha_i, \beta_i)$  for each  $1 \le i \le n$ . We call the least common multiple of  $\operatorname{LM}(f)$  and  $\operatorname{LM}(g)$ , written  $x^{\gamma} = \operatorname{LCM}(\operatorname{LM}(f), \operatorname{LM}(g))$ .
- (ii) The S-polynomial of f and g is the combination

$$S(f,g) = \frac{x^{\gamma}}{\operatorname{LT}(f)} \cdot f - \frac{x^{\gamma}}{\operatorname{LT}(g)} \cdot g.$$

(Note that we are inverting the leading coefficients here as well.)

**Exercise 4** Compute the S-polynomial of  $f(x,y) = x^3y^2 - x^2y^3$  and  $g(x,y) = 3x^4y + y^2$  under the grlex order.

Notice that the S-polynomial is basically designed to cancel the leading terms of f and g, so what we get is another element of the ideal  $I = \langle f, g \rangle$  with a different leading term. Therefore, if we have a Groebner basis G, G must also generate all of the S-polynomials. This is, in fact, one way of checking that we have a Groebner basis, via the following theorem.

**Theorem (Buchberger's Criterion)** Let  $I \subseteq k[x_1, x_2, ..., x_n]$  be an ideal. Then  $G = \{g_1, g_2, ..., g_t\}$  is a Groebner basis for I if and only if for all  $i \neq j$ , the remainder upon division of  $S(g_i, g_j)$  by G is zero.

This theorem gives a fairly simple test for whether or not we have a Groebner basis.

**Exercise 5** Consider the ideal  $I = \langle x - z^2, y - z^3 \rangle \subseteq k[x, y, z]$ . a) Is  $G = \{x - z^2, y - z^3\}$  a Groebner bases for I under the lex order with x > y > z?

b) Is  $G = \{x - z^2, y - z^3\}$  a Groebner bases for I under the lex order with z > y > x?

**Remark** You can check that  $G = \{x - z^2, y - z^3\}$  is not a Groebner bases for I under the grlex order (with any ordering of the variables). Hence, a set of generators for a given ideal may form a Groebner basis under one monomial order, but not under another.

## III. A Sketch of the Proof of Buchberger's Criterion

If  $f = \sum_{i=1}^{s} h_i f_i \in I$  is such that  $LT(f) \notin \langle LT(f_1), LT(f_2), ..., LT(f_t) \rangle$  then several of the leading terms of the summands with a common leading power must cancel, leaving lower power terms that aren't generated by the  $\{LT(f_i)\}$ . This happens, of course, because the *leading coefficients* cancel. So it is useful to consider scalar combinations of the  $f_i$ .

**Lemma** If  $f = \sum_{i=1}^{s} c_i f_i \in k[x_1, x_2, ..., x_n]$  where  $c_i \in k$  and multideg $(f_i) = \delta$  for all  $1 \le i \le s$ , and multideg $(f) < \delta$ , then  $f = \sum_{i=1}^{s} c_i f_i$  is a k-linear combination of the S polynomials  $S(f_i, f_j)$ ; that is,

$$f = \sum_{i=1}^{s} c_i f_i = \sum_{j,k} c_{jk} S(f_i, f_j), \text{ for some } c_{jk} \in k$$

**Exercise 6** Compute  $S(f_i, f_j)$ , where  $1 \le i, j \le s, i \ne j$ , and the polynomials  $f_i, f_j$  satisfy the hypotheses of the above lemma (so they have the same multidegree).

