Лабораторная работа 14

Модели обработки заказов

Ендонова Арюна Валерьевна

Содержание

Цель работы	4
Задание	5
Выполнение лабораторной работы	6
Модель оформления заказов клиентов одним оператором	6
Построение гистограммы распределения заявок в очереди	12
Модель обслуживания двух типов заказов от клиентов в интернет-магазине .	16
Модель оформления заказов несколькими операторами	22
Выводы	29
Список литературы	30

Список иллюстраций

1	Модель оформления заказов клиентов одним оператором	7
2	Отчёт по модели оформления заказов в интернет-магазине	8
3	Модель оформления заказов клиентов одним оператором с измененными	
	интервалами заказов и времени оформления клиентов	10
4	Отчёт по модели оформления заказов в интернет-магазине с измененны-	
	ми интервалами заказов и времени оформления клиентов	11
5	Построение гистограммы распределения заявок в очереди	13
6	Отчёт по модели оформления заказов в интернет-магазине при построе-	
	нии гистограммы распределения заявок в очереди	14
7	Отчёт по модели оформления заказов в интернет-магазине при построе-	
	нии гистограммы распределения заявок в очереди	14
8	Гистограмма распределения заявок в очереди	16
9	Модель обслуживания двух типов заказов от клиентов в интернет-магазине	17
10	Отчёт по модели оформления заказов двух типов	18
11	Модель обслуживания двух типов заказов с условием, что число заказов	
	с дополнительным пакетом услуг составляет 30% от общего числа заказов	20
12	Отчёт по модели оформления заказов двух типов заказов	21
13	Модель оформления заказов несколькими операторами	23
14	Отчет по модели оформления заказов несколькими операторами	24
15	Модель оформления заказов несколькими операторами с учетом отказов	
	клиентов	26
16	Отчет по модели оформления заказов несколькими операторами с учетом	
	отказов клиентов	27

Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

Выполнение лабораторной работы

Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) — ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем operator_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром operator — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE — 480 (8 часов по 60 минут, всего 480 минут). Работа программы начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается — оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, имеем (рис. [-@fig:001]).

```
; operator
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 1: Модель оформления заказов клиентов одним оператором

После запуска симуляции получаем отчёт (рис. [-@fig:002]).

Model 1.2.1 - REPO	ORT					
	T TIME 0.000	END TI 480.0		FACILITIES		
OPERA	JAME ATOR ATOR_Q		VALUE 10001.000 10000.000			
LABEL	LOC	BLOCK TYPE	ENTRY COU	NT CURRENT C	OUNT RETRY	
	1	GENERATE	32		0	
		QUEUE	32		0	
		SEIZE	32	-	0	
	4	DEPART	32	0	0	
	5	ADVANCE	32	1	0	
	6	RELEASE	31	0	0	
	7	TERMINATE	31	0	0	
	8	GENERATE	1	0	0	
	9	TERMINATE	1	0	0	
FACILITY	ENTRIES	UTIL. AVE.	TIME AVAIL	. OWNER PEND	INTER RETRY	DELAY
OPERATOR		0.639				
QUEUE	MAX CO	NT. ENTRY ENT	RY(0) AVE.C	ONT. AVE.TIM	E AVE.(-0)	RETRY
OPERATOR_Q	1	0 32	31 0.0	0.02	0.671	0
FEC XN PRI				T PARAMETER	VALUE	
		86 33	-			
34 0		81 34				
35 0	0.00	00 35				

Рис. 2: Отчёт по модели оформления заказов в интернет-магазине

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT – количество транзактов, вошедших в блок с начала процедуры моделирования.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- MAX=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования очередь была пуста;
- ENTRIES=32 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(O)=31 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=0, 001 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE.(-0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях:

- XN=33 порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора;
- PRI=0 все клиенты (из заявки) равноправны;
- BDT=489, 786 время назначенного события, связанного с данным транзактом;
- ASSEM=33 номер семейства транзактов;
- CURRENT=5 номер блока, в котором находится транзакт;
- NEXT=6 номер блока, в который должен войти транзакт.

Упражнение

Изменим интервалы поступления заказов и время оформления клиентов (рис. [-@fig:003]).

```
; operator
GENERATE 3.14,1.7
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3: Модель оформления заказов клиентов одним оператором с измененными интервалами заказов и времени оформления клиентов

После запуска симуляции получаем отчёт (рис. [-@fig:004]).

Model 1.3.1 - REPO	RT					
	TIME 0.000					
	ME OR OR_Q	100	01.000			
LABEL	LOC BLOC 1 GENE 2 QUEU 3 SEIZ 4 DEPA 5 ADVA 6 RELE 7 TERM 8 GENE 9 TERM	RATE E E RT NCE ASE INATE RATE	NTRY COUNTS 152 152 70 70 70 69 69 1 1	0 82 0 0	0 0 0 0 0 0	
FACILITY OPERATOR	ENTRIES UTI 70 0.					
QUEUE OPERATOR_Q	MAX CONT.	ENTRY ENTRY(0) AVE.CO	ONT. AVE.TIM 96 123.46	E AVE.(-0) 1 124.279	RETRY 0
FEC XN PRI 71 0 154 0 155 0	480.405 483.330	71 5	6	Γ PARAMETER	VALUE	

Рис. 4: Отчёт по модели оформления заказов в интернет-магазине с измененными интервалами заказов и времени оформления клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 152; Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказ от клиентов (значение поля OWNER=71), но оператор успел принять в обработку до окончания рабочего времени только 70 (значение поля ENTRIES=70). Полезность работы оператора составила 0,991. При этом среднее время занятости оператора составило 6,796 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=82 в очереди находилось 82 ожидающих заявок от клиента;
- CONT=82 на момент завершения моделирования в очереди было 82 заявки;
- ENTRIES=82 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(O)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=39,096 заявок от клиентов в среднем были в очереди;
- AVE.TIME=123.461 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE.(-0)=123,279 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A,B,C,D Здесь Name – метка, определяющая имя таблицы. Далее должны быть заданы

операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим(рис. [-@fig:005]).

```
Waittime QTABLE operator_q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator_q,1,Fin
SAVEVALUE Custnum+,1
ASSIGN Custnum,X$Custnum
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Рис. 5: Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы, не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Custnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение СЧА оператора Custnum.

Получим отчет симуляции и проанализируем его (рис. [-@fig:006], [-@fig:007]).

	START TIME 0.000			S FACILITIES 1		
	NAME CUSTNUM FIN OPERATOR OPERATOR_Q WAITTIME		VALUE 10002.000 10.000 10003.000 10001.000 10000.000			
LABEL	1 2 3 4 5 6 7 8	SAVEVALUE ASSIGN QUEUE SEIZE DEPART	102 102		COUNT RETRY 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0	
FIN	10	TERMINATE	100		0 0	
FACILITY OPERATOR		IES UTIL. AV 54 0.987				DELAY 1
QUEUE OPERATOR		X CONT. ENTRY I			ME AVE.(-0) 28 10.824	

Рис. 6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

TABLE WAITTIM	Ε	MEAN 10.709	STD.DEV. 2.702		RAN	GE		RETRY 0	FREQUENCY	CUM.%
					_		0.000		1	1.89
			0	0.000	_		2.000		0	1.89
			2	2.000	_		4.000		1	3.77
			4	1.000	_		6.000		0	3.77
			6	5.000	_		8.000		4	11.32
			8	3.000	_	1	0.000		12	33.96
			10	0.000	_	1	2.000		17	66.04
			12	2.000	_	1	4.000		14	92.45
			14	.000	_	1	6.000		4	100.00
SAVEVALUI CUSTNUM	E			VALUE 55.00	0					
CEC XN	PRI	M1 341.23		CURR	ENT	NEXT	PARAM	ETER	VALUE	
50	Ů	011120	0 30			,	CUSTN	JM	54.000	
FEC XN 103	PRI 0	BDT 356.55	ASSEM 3 103	CURR 0	ENT	NEXT 1	PARAMI	ETER	VALUE	

Рис. 7: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

• модельное время в начале моделирования: START TIME=0.0;

- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 102;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля OWNER=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=2 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=2 на момент завершения моделирования в очереди было два клиента;
- ENTRIES=55 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=1,652 заявок от клиентов в среднем были в очереди;
- AVE.TIME=10.628 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);

• AVE.(-0)=10,824 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Также появилась таблица с информацией для гистограммы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок(17) обрабатывалось в диапазоне 10-12 минут.

В конце отчёта идёт информация о будущих событиях.

Проанализируем гистограмму (рис. [-@fig:008]).

Рис. 8: Гистограмма распределения заявок в очереди

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок (17) обрабатывалось 10-12 минут, 14 заявок – 12-14 минут, 12 заявок – 8-10 минут, в остальных диапазонах 0-4 заявок.

Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй – заказов с до-

полнительным пакетом услуг. В каждом из сегментов пара QUEUE-DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE-RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие (рис. [-@fig:009], [-@fig:010]).

```
Model 3.gps
ADVANCE 10,2
RELEASE operator
TERMINATE 0
 ; order and service package
GENERATE 30,8
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE 0
 ;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 9: Модель обслуживания двух типов заказов от клиентов в интернет-магазине

	START TI	ME		END	TIME E	BLOCKS	FACILIT	IES	STORA	GES	
	0.0	00		48	0.000	17	1		0		
	NAME				VI	ALUE					
	OPERATOR				10001	1.000					
	OPERATOR_				10000	0.000					
LABEL		LOC	BLOCK	TYPE	ENT	TRY COUN	IT CURRE	NT CO	UNT R	ETRY	
								0		0	
			QUEUE			32		4		0	
			SEIZE			28		0		0	
		4	DEPAR	T		28		0		0	
		5	ADVAN	CE		28		1		0	
		6	RELEA	SE		27		0		0	
		7	TERMI	NATE		27		0		0	
		8	GENER	ATE		15		0		0	
			QUEUE			15		3		0	
			SEIZE			12				0	
		11	DEPAR	T		12		0		0	
		12	ADVAN	CE		12				0	
		13	ADVAN	CE		12		0		0	
		14	RELEA	SE		12		0		0	
		15	TERMI	NATE		12				0	
			GENER			1					
		17	TERMI	NATE		1		0		0	
FACILITY	EN	TRIES	UTIL	. A	VE. TIME	E AVAIL.	OWNER :	PEND	INTER	RETRY	DELAY
OPERATOR		40	0.9	47	11.36	55 1	42	0	0	0	7
OUEUE		MAX C	ONT. F	NTRY	ENTRY (O)	AVE.CO	NT. AVE	TIME	ΔV	E. (-0)	RETRY
OPERATOR	Q	8	7	47	2	3.35	5 3	4.261		35.784	0
	_=0	5568		8718	30	15.01					5 5700
FEC XN							PARAM	ETER	VA	LUE	
42	0	487.	825	42	5	6					

Рис. 10: Отчёт по модели оформления заказов двух типов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок первого типа заказов с начала процедуры

моделирования ENTRY COUNT = 32, а второго типа(с дополнительными услугами) ENTRY COUNT = 15; обработано 12+27=39;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля OWNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=8 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=7 на момент завершения моделирования в очереди было 7 клиентов;
- ENTRIES=47 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- 'ENTRIES(O)=2 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=3,355 заявок от клиентов в среднем были в очереди;
- AVE.TIME=34,261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE.(-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Упражнение

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку поехtга RELEASE operator), а с вероятностью 0.3 дополнительно

заказ обрабатывается еще 5 ± 2 минуты (переход к блоку extra ADVANCE 5,2) и только после этого является обработанным (рис. [-@fig:011]).

```
; order
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
TRANSFER 0.3,noextra,extra
extra ADVANCE 5,2
noextra RELEASE operator
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 11: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования (рис. [-@fig:012]).

5	START TIME 0.000						GES	
	NAME		VA					
E	KTRA		7	.000				
NO	DEXTRA		8	.000				
01	PERATOR PERATOR_Q		10001	.000				
01	PERATOR_Q		10000	.000				
LABEL	LOC	BLOCK TYP	E ENT	RY COUNT	CURRENT	COUNT F	RETRY	
	2	GENERATE QUEUE		33		0	0	
	3	SEIZE		33		0	0	
	4	DEPART		33		0	0	
	5	ADVANCE		33		0	0	
	6	TRANSFER		33		0	0	
EXTRA	7 8	ADVANCE		8		1	0	
NOEXTRA		KELEASE		34		1 0 0 0	0	
		TERMINATE		32		0	0	
	10	GENERATE		1		0	0	
	11	TERMINATE		1		0	0	
FACTLITY	ENTRIES	UTII.	AVE. TIME	AVATT	OWNER PEN	ID TNTER	RETRY	DELAY
OPERATOR	33	0.766	11.14	6 1	34	0 0	0	0
OHEHE	MAY C	ONT ENTRY	ENTRY (A)	AVE CON	יד אני דו	ME AT	7F (-0)	DETDV
OPERATOR O	MAX C	0 33	25	0.054	0 7	181	3 220	0
0121411011_0	-	0 00	20	0.00		-	0.220	
	I BDT				PARAMETE	R VA	LUE	
34 0	482.	925 34	7	8				
35 0	487.	726 35	0	1				
36 0	960.							

Рис. 12: Отчёт по модели оформления заказов двух типов заказов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирова-

ния ENTRY COUNT = 33, при этом из них второго типа (с дополнительными услугами) ENTRY COUNT = 8; обработано 32 заказа;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов (значение поля OWNER=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=33 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=25 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=0,054 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE.(-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характери-

стики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки operator STORAGE 4 указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор operator,1, сегмент моделирования времени остается без изменений (рис. [-@fig:013]).

```
operator STORAGE 4
GENERATE 5,2
QUEUE operator_q
ENTER operator,1
DEPART operator_q
ADVANCE 10,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 13: Модель оформления заказов несколькими операторами

Далее получим и проанализируем отчет (рис. [-@fig:014]).

1	IME 000			CILITIES STC	
NAME OPERATOR OPERATOR	R	V/ 10000 10001	0.000		
LABEL	LOC BLOCK T 1 GENERAT 2 QUEUE 3 ENTER 4 DEPART 5 ADVANCE 6 LEAVE 7 TERMINA 8 GENERAT 9 TERMINA	E IE E	93 93 93 93 93	CURRENT COUNT 0 0 0 0 2 0 0 0 0 0	0 0 0 0 0 0
QUEUE OPERATOR_Q	MAX CONT. ENT				
STORAGE OPERATOR	CAP. REM. MIN 4 2 0				
FEC XN PRI 95 0 93 0	BDT AS 480.457 482.805	95 0	1	PARAMETER	VALUE

Рис. 14: Отчет по модели оформления заказов несколькими операторами

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обработан 91 заказ;

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=93 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(O)=93 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=0,000 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE.(-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 93 заказа от клиентов, но не указано, сколько операторы успели принять в обработку. Полезность работы операторов составила 0,482. При этом среднее время занятости оператора составило 1,926 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Добавим строчку TEST LE Q\$operator_q,2, которая проверяет больше ли в очереди клиентов, чем два, если нет – клиент поступает на обработку, иначе уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не было больше 2, поэтому

увеличим время обработки заказов до 30 ± 2 мин., чтобы проверить результаты изменений модели (рис. [-@fig:015]).

```
operator STORAGE 4
GENERATE 5,2
TEST LE Q$operator_q,2
QUEUE operator_q
ENTER operator,1
DEPART operator_q
ADVANCE 30,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 15: Модель оформления заказов несколькими операторами с учетом отказов клиентов

Проанализируем полученный отчет (рис. [~@fig:016]).

Model 4.3.1	- REPORT									
		IME				BLOCKS		TIES	STORAGES	
	0.0	000		400	.000	10	0		1	
1	NAME				v	ALUE				
	OPERATOR				1000	0.000				
(OPERATOR_	_Q			1000	1.000				
LABEL		LOC	BLO	CK TYPE	EN	TRY COU	NT CURF	RENT CO	OUNT RETRY	
		1	GENI	ERATE		94		27		
		2				67		0	0	
		3	_			67		3		
			ENT			64		0	-	
				ART		64		0	-	
				ANCE		64		4		
				/E		60 60		_	0	
				MINATE ERATE		60		_	0	
				MINATE		1		0	-	
		10	IERI	TINALE		1		U	U	
QUEUE		MAX C	ONT.	ENTRY E	NTRY(0) AVE.C	ONT. AV	E.TIM	E AVE.(-0)	RETRY
OPERATOR_	2	3	3	67	4	2.7	01	19.34	7 20.576	5 27
STORAGE		CAP.	REM.	MIN. MA	X. EN	TRIES A	VL. AV	7E.C. 1	UTIL. RETRY	DELAY
OPERATOR		4	0	0	4	64	1 3.	885	0.971 0	3
FEC XN PI	RT	BDT		ASSEM	CURRE	NT NEX	T PARA	METER	VALUE	
96				96					202	
62				62						
63				63						
64				64						
65	0	499.	648	65	6	7				
^7	n	0.00	000	^7	^	^				

Рис. 16: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 94; обработано 60 заказа; 27 человек отказались оставлять заявки, поскольку очередь была более 2ух заявок.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=3 в очереди находилось не более трех ожидающих заявок от клиента(как и было указано);
- CONT=3 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=67 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(O)=4 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE.CONT=2,701 заявок от клиентов в среднем были в очереди;
- AVE.TIME=19,347 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE.(-0)=20,576 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 64 заказов от клиентов. Полезность работы операторов составила 0,971. При этом среднее время занятости оператора составило 3,885 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов — 4, минимальное — 0.

Выводы

В результате была реализована с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

Список литературы

{.unnumbered} 1. Королькова А.В., Кулябов Д.С. Руководство к лабораторной работе №14. Модели обработки заказов. — 2025. 2. Овсянников А.В., Козел В.М. Формирование и моделирование стохастических процессов с заданными свойствами траекторий // Доклады Белорусского государственного университета информатики и радиоэлектроники. — 2016. — URL: https://cyberleninka.ru/article/n/formirovanie-i-modelirovanie-stohasticheskih-protsessov-s-zadannymi-svoystvami-traektoriy 3. Моделирование стохастических систем. — Мордовский государственный педагогический институт им. М.Е. Евсевьева, 2016. — URL: https://studfile.net/preview/5553697/page:9/ 4. Стохастические методы. Имитационное моделирование. — URL: https://polyakov.imamod.ru/arc/stud/mmca/lecture_06.pdf 5. Кожевникова И.А., Журбенко И.Г. Стохастическое моделирование процессов.