

Análisis de datos(I): Control de Calidad y Preprocesado

Miguel Juliá Molina

Unidad de Bioinformática

Unidades Comunes Científico Técnicas – SGAFI-ISCIII

17-21 Junio 2019, 7ª Edición Programa Formación Continua, ISCIII

Dónde estamos

Ficheros de salida del secuenciador

454 .sff

Nanopore FAST5

Bax.h5 fasta

Formato fastq

- Fácilmente se podría decir que es un fasta con calidades.
- En NGS fasta suele contener genomas y fastq fragmentos.

>SEQ ID

Secuencia @SEQ_ID GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT + !''*((((***+))%%++)(%%%).1***-+*''))**55CCF>>>>>CCCCCCC65

Calidades: sólo deben

ocupar un bit

Formato fastq

- Cada base corresponde con un valor de calidad.
- ¿Cómo se codifica?

Probabilidad de error

Transformación Phred

ASCIII encoding

- Conversión de probabilidad de error en score de calidad Phred.
- La calidad Phred se originó como aproximación algorítmica a la calidad en secuenciación Sanger.
- La **intensidad de la señal lumínica** es utilizada para calcular la probabilidad de error.

- Conversión de probabilidad de error en score de calidad Phred.
- La calidad phred en Sanger y en la versión 1.8+ de Illumina va de 0-40 en codificación decimal.

$$Q = -10 \log_{10} P$$

Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy		
10	1 in 10	90%		
20	1 in 100	99%		
30	1 in 1,000	99.9%		
40	1 in 10,000	99.99%		
50	1 in 100,000	99.999%		
50	1 in 100,000	99.99		

 Conversión de score de calidad phred en código ASCIII para que ocupe un solo bit (un solo caracter)

ASC	II BASE=3	3 Illumina	, Io	n Torrent	, PacBio	and S	anger				
Q	Perror	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59 ;	37	0.00020	70 F
5	0.31623	38 &	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

ASC	II BASE=6	4 Old Ill	umina								
Q	Perror	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	64 @	11	0.07943	75 K	22	0.00631	86 V	33	0.00050	97 a
1	0.79433	65 A	12	0.06310	76 L	23	0.00501	87 W	34	0.00040	98 b
2	0.63096	66 B	13	0.05012	77 M	24	0.00398	88 X	35	0.00032	99 c
3	0.50119	67 C	14	0.03981	78 N	25	0.00316	89 Y	36	0.00025	100 d
4	0.39811	68 D	15	0.03162	79 0	26	0.00251	90 Z	37	0.00020	101 e
5	0.31623	69 E	16	0.02512	80 P	27	0.00200	91 [38	0.00016	102 f
6	0.25119	70 F	17	0.01995	81 Q	28	0.00158	92 \	39	0.00013	103 g
7	0.19953	71 G	18	0.01585	82 R	29	0.00126	93]	40	0.00010	104 h
8	0.15849	72 H	19	0.01259	83 S	30	0.00100	94 ^	41	0.00008	105 i
9	0.12589	73 I	20	0.01000	84 T	31	0.00079	95	42	0.00006	106 j
10	0.10000	74 J	21	0.00794	85 U	32	0.00063	96 -			

- Para Sanger y versiones actuales de Illumina se usa una codificación de Phred+33 en ASCIII. Es decir una calidad de 0 es el carácter que se corresponde con el decimal 33 que se trata del símbolo!
- En versiones de Solexa y de Illumina 1.3 y 1.5 de hace unos años se utilizaba la codificación Phred+64. Lo que difería de lo acostumbrado por sanger y hacía falta una conversión para comparar las calidades.

• Ejemplo Phred

@HWI-ST731_6:1:1101:1322:1938#1@0/1 NTGACAAAGGGCTAATATCCAGAATCTACAAAGAACTTAAACAAATGTATAAGAATAAAAGTATAGTGCTAACAAT + #1:BDDADFDFDD@F>BGFIIIB@CFHIHICAGBC9CBCBGGIGCFF??>GGHFHIGGEGI<FECGDE=FHCHEG=

$$Q=-10*log10(0.001)=30$$
 ASCIII 33+30 = 63

Formato fastq

Cabecera típica de Illumina

@HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R	the unique instrument name
6	flowcell lane
73	tile number within the flowcell lane
941	'x'-coordinate of the cluster within the tile
1973	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:2458:1027 1:N:0:ACAGTG AGAAAAAACCTTGGANGGAAAAAAATCAGACATTTTCTAGAGGTGGAAGGCAAACTGAACAAAGAAATAATTCACA DGGGEDHHHHGGGFE#CBACBCA<?HHHHBHHHHHHHHHHHHHEHEFEGGGGGG/GGDDDGHFHGFCHFHHEHEH8 HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3082:1029 1:N:0:ACAGTG GGTAATACAGACTGANATGATCAAAGGCATGCTGGAAACAAACCTATTAAAGATAAGCTTTGGATCAAGCTTTCAT B:B:?BB/:=55177#55877<775EDD>E=B?BBBBGGDDAG@G>GGGGGG@)EEEEBEG>GGGGGGAAA?<[@HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3185:1033 1:N:0:ACAGTG CTGGGACATTGCTCNTGGCTGGGAGTCACCTGTCTGGGACATTGCTCAGGGCTGGGAGACACGTGTTGGAGGGA BC??A66;)74781<#7??;452.27'64(8,851DDG8GB?####################### @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3268:1033 1:N:0:ACAGTG ATTCAAATTAGAAGANAGTTGATCGTTCTTCATGATGCCCAAAAATTTCACTGAGAAAACCCTTTTTTAAGCCCA(IIIIIIIIIIFFFFE#ABACFEEFFIIGIIIFIHE@BIIIIIIIIHHIIFIIF>HHIHIFGDIIIIIIIGFHIEGH HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3400:1035 1:N:0:ACAGTG rcctgctttaggagantcctcatgctctgacaggatgctctctatgtgagttgagctggtcttctcacttttatag IIIIIHIHIIGGEGG#AACA@?=?BHHIIIIIHHIHIIXTHIHHGIHIHGHGIGIHGEGGGGHG@EFGGCEFAB @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3962:1033 1:N:0:ACAGTG CACCAACACAGTCTNCACCTTCTGTTGCTGGTGATAGATTTTTGCACCTTTCCATCCTCCAGGTTTCAAAATAGC HHFHHDHDHH>C?CA#EEEE>?A?>HHDGHEGBGBCEEEEGHHF8HEHEEHECH,=>>==EAEE>BEBBAEAACAE @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:4491:1028 1:N:0:ACAGTG AGAGAGAGAGAGAGANAGAGGACTCTGGAGATGCCGAAGCACAAGCCTGCAAGAGTCCCAGCAAAGAAAATAAAAA GADGGEGGEGBBB?B#@=@@72:64GGGFGB>GGGBDG<DBGB<DA??/?###############

Calidad en código ASCII (0-40):

- "!"#\$%" menor calidad
- "FGHI" máxima calidad

- Evaluación de la calidad de la secuenciación
 - Es el **primer paso** a realizar tras la secuenciación
 - Si realizamos una buena evaluación podremos saber cómo de fiables son nuestros resultados.
 - QC va a determinar el siguiente paso de filtrado.
 - Debemos ser consistentes con cualquier decisión de filtrado o los siguientes pasos del análisis podrían verse perjudicados.
 - Se debe realizar un control de calidad después de cada paso crítico del análisis.

- Para realizar el control de calidad se usa la información de calidad por base que hemos estado viendo hasta el momento
- Otros pasos del análisis también utilizará esta calidad por base como parámetro a tener en cuenta por los distintos algoritmos que se apliquen.

- Programas de Control de Calidad
- FastQC

NGSQCToolkit

• Otros: fastx-toolkit, sfftools, etc...

- Artefactos en preparación de librería
 - Restos de adaptadores.
 - Alto porcentaje de duplicados.
 - Sesgo en zonas GC.
- Artefactos en secuenciación
 - Baja calidad en extremos (Phasing).
 - Dificultad en determinadas zonas:
 - Repeticiones
 - Homopolímeros
 - Alto contenido GC

- Ejemplos
- Buena secuenciación de Illumina

⊘Per base sequence quality

Per sequence quality scores

• Contenido por base

Per base sequence content

• Porcentaje de QC

⊘Per sequence GC content

• Porcentaje de duplicados

Sequence Duplication Levels

- Ejemplos
- Mala secuenciación de Illumina

OPer base sequence quality Per sequence quality scores Quality scores across all bases (Illumina 1.5 encoding) Quality score distribution over all sequences 60000 Average Quality per read 30 50000 26 24 40000 22 20 18 16 20000 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 12 14 16 18 20 24 26 28 30 32 Mean Sequence Quality (Phred Score) Position in read (bp)

• Contenido por base

Per base sequence content

• Porcentaje de QC

Per sequence GC content

19/06/2019 Curso iniciación NGS 23

• Porcentaje de duplicados

Sequence Duplication Levels

• Asimetría en MiSeq

Per base sequence quality

Preprocesamiento: filtrado

- Quitar adaptadores residuales
 - Según librería utilizada
- Distintos parámetros de filtrado
 - Filtro por calidad
 - Media de calidad del read
 - Porcentaje de calidad
 - o Extremo del read
 - Ventana deslizante
 - Filtro por tamaño del read.
 - Tamaño fijo del read
 - Tamaño restante después de filtrado

Preprocesamiento: filtrado

• Ejemplo filtro por porcentaje de bases por debajo de Q

Preprocesamiento: filtrado

• Ejemplo de estadísticas finales que se obtienen

1. Preprocessing: Filter and Quality Control

Filtering Options:

- Single-End
 - o 70 % of the bases with more than 30 phred quality
 - o Trimming: trim bases from the rigth with less than 30 phred quality without allowing less than length 70.
- Paired-End
 - o 70 % of the bases with more than 30 phred quality
 - No trimming

Sample	3233-S.fastq	3233-T.fastq	3353-S.fastq	3353-T.fastq
Pre-Filter				
Sequence length	75-76	75-76	75-76	75-76
Total Sequences	101204363	128694353	134984248	127907012
%GC	44	45	46	46
Post-Filter				
Sequence length	70-76	70-76	70-76	70-76
Total Sequences	83027834	104199275	108632895	102735796
%GC	43	44	44	44

Objetivos de la práctica

- Visualización de ficheros fastq reales.
- Contabilización de número de reads.
- Pasar de fastq a fasta fácilmente.
- Ejecución de fastQC en muestras dummy
- Ejecución de NGSQCToolkit y Trimmomatic de muestas dummy

¿Preguntas?