Rough Draft of Supplemental Material

Bradley Hintze

January 2015

Contents

1	Filtered Top8000 Residue Counts	2
2	Top500 vs. Top8000 Reference Contours	3
3	Outlier Counts: Top500 vs. Top8000 Reference Contours	4
4	Top8000 Filtered Dataset: Rotamer Frequency	6
5	χ and Covalent Bond Angle Central Values	9
	5.1 SER	9
	5.2 CYS	10
	5.3 THR	11
	5.4 VAL	
	5.5 PRO	13
	5.6 LEU	14
	5.7 ILE	16
	5.8 ASN	
	5.9 ASP	
	5.10 HIS	
	5.11 PHE	
	5.12 TYR	
	5.13 TRP	
	5.14 MET	
	5.15 GLU	
	5.16 GLN	
	5.17 ARG	
	5.18 LYS	1

1 Filtered Top8000 Residue Counts

Residue			
Type	No Filter	Filter	%Kept
LYS	70035	34829	49.78%
GLU	88745	57462	64.82%
\overline{ARG}	64333	46380	72.18%
GLN	50112	37119	74.14%
ASP	88822	72336	81.52%
ASN	63553	53650	84.57%
MET	21764	18382	84.62%
HIS	33910	29791	87.99%
SER	84656	76186	90.21%
LEU	126451	115053	91.22%
ILE	78547	71693	91.51%
TYR	51638	47243	91.61%
PRO	65013	59515	91.74%
THR	82124	75180	91.80%
PHE	60306	56282	93.52%
TRP	19966	18715	93.90%
VAL	103690	97050	93.92%
CYS	17808	16708	94.15%
Total	1171473	983574	83.96%

Table 1: Residue counts with and without residue-level filters ordered by % kept after filtering. 'No Filter' means no RSCC, $2mF_o$ -DF_c sigma, and B filters but all other residue-level filters applied.

2 Top500 vs. Top8000 Reference Contours

Figure 1: Areas in orange (from Top500 data) and in blue (from Top8000) fill the allowed regions for AsN, His, Leu, and Phe/Tyr. Phe and Tyr were done together as no significant difference was detected between their distributions. The extensive areas in green are where the two systems both declare allowed conformations.

3 Outlier Counts: Top500 vs. Top8000 Reference Contours

Residue	n	Top500 $<= 0.3\%$	Top8000 $<= 1.0\%$	Δ
ARG	193295	7501	5643	-1858
ASN	161814	2143	1926	-217
ASP	225302	3745	2779	-966
CYS	50824	618	462	-156
GLN	140651	2751	2810	59
GLU	255560	4803	6334	1531
HIS	91316	1303	802	-501
ILE	222518	1766	3241	1475
LEU	347449	8245	9806	1561
LYS	209811	6501	7709	1208
MET	69395	1874	1830	-44
PHE	153564	1896	703	-1193
PRO	174910	849	800	-49
SER	236825	2640	2638	-2
THR	214960	2225	2787	562
TRP	53869	713	266	-447
TYR	134580	1757	696	-1061
VAL	280539	1633	3282	1649

Table 2: Showing differences between outlier counts in the unfiltered dataset using the Top500 and Top8000 reference contours.

4 Top8000 Filtered Dataset: Rotamer Frequency

The following is a table describing counts of each of the 213 rotamers identified in the Top8000 filtered dataset. n is the count of each rotamer, % is the percent of the rotamer that occurs in the given residue type (e.g. 17.7% of CYS are \mathbf{p}). Also noted is the rarity of each rotamer, defined at two levels – a singe and double checkmark. The rarity metric is normalized by both the number of residues and the number of rotamer types in a given residue type. If the empirical count for a rotamer is < 8% or < 1% of the expected rotamer count then the rarity is marked with a single or double checkmark, respectively. The expected rotamer count is the number of residues in a rotamer bin if all residues were distributed equally to all rotamer bins for a given residue type. e.g. if SER had 3000 residues in the dataset then the expected count for each of the three rotamers would be 1000. Further, if one of these rotamers had an empirical count < 80 or < 10, the rarity would be marked with a single or double checkmark respectively.

residue	rotamer	n	%	rarity
	SER: TOTA	AL N =	76186	
SER	p	36901	48.44	-
SER	t	17502	22.97	-
SER	m	21558	28.30	-
SER	OUTLIER	225	0.30	-
	CYS: TOT.	AL N =	16708	
CYS	p	2962	17.73	-
CYS	t	4399	26.33	-
CYS	m	9301	55.67	-
CYS	OUTLIER	46	0.28	-
	THR : TOT	AL N =		
THR	р	36195	48.14	-
THR	t	5197	6.91	-
THR	m	33559	44.64	_
THR	OUTLIER	229	0.30	_
	VAL: TOT	AL N =	97050	
VAL	p	6015	6.20	_
VAL	t	73329	75.56	-
VAL	m	17410	17.94	
VAL	OUTLIER	296	0.30	
	PRO: TOT	AL N =	59515	
PRO	Cg_exo	30128	50.62	_
PRO	Cg_endo	29192	49.05	_
PRO	OUTLIER	195	0.33	-
	LEU: TOTA		115053	
LEU	pp	521	0.45	
LEU	pt	378	0.33	
LEU	tp	34655	30.12	-
LEU	tt	1576	1.37	
LEU	tm	143	0.12	
LEU	mp	2711	2.36	
LEU	mt	74252	64.54	
LEU	mm	484	0.42	√
LEU	OUTLIER	333	0.29	
	ILE : TOTA	AL N =	71693	
ILE	pp	254	0.35	√
ILE	pt	8837	12.33	_
ILE	tp	1869	2.61	_
ILE	tt	4163	5.81	_
ILE	mp	623	0.87	√
ILE	mt	44470	62.03	
ILE	mm	11258	15.70	_
ILE	OUTLIER	219	0.31	_
	ASN : TOT			
ASN	p0	7513	14.00	
	r.	.010	11.00	

residue	rotamer	n	%	rarity
ASN	t0	15610	29.10	_
ASN	t160	61	0.11	
ASN	m110	4003	7.46	_
ASN	m-40	26292	49.01	_
ASN	OUTLIER	171	0.32	
	ASP : TOTA	AL N =	72336	
ASP	p0	11746	16.24	-
ASP	t0	17107	23.65	_
ASP	t70	6029	8.33	-
ASP	m-30	37239	51.48	
ASP	OUTLIER	215	0.30	_
	HIS: TOTA	AL N =	29791	
HIS	p90	1492	5.01	_
HIS	p-80	2203	7.39	
HIS	t70	5068	17.01	
HIS	t-170	1332	4.47	
HIS	t-90	3553	11.93	_
HIS	m170	2695	9.05	
HIS	m90	3914	13.14	
HIS	m-70	9453	31.73	
HIS	OUTLIER.	81	0.27	
	PHE : TOT	-	56282	
PHE	p90	6289	11.17	_
PHE	t80	19289	34.27	
PHE	m-10	3880	6.89	
PHE	m-80	26665	47.38	_
PHE	OUTLIER	159	0.28	_
	TYR : TOT			
TYR	p90	5466	11.57	
TYR	t80	16312	34.53	
TYR	m-10	2623	5.55	_
TYR	m-80	22683	48.01	
TYR	OUTLIER	159	0.34	
	TRP : TOT	ALN =	18715	
TRP	p90	971	5.19	
TRP	p-90	1937	10.35	
TRP	t60	3385	18.09	_
TRP	t-100	2893	15.46	
TRP	m100	6319	33.76	
TRP	m-10	2196	11.73	
TRP	m-90	961	5.13	
TRP	OUTLIER	53	0.28	
-	MET : TOT		16794	
MET	ppp	50	0.30	
MET	pp-130	27	0.16	
.,,,,,,	PP 100		3.10	•

residue	rotamer	n	%	rarity
MET	ptp	404	2.41	-
MET	ptt	260	1.55	-
MET	ptm	375	2.23	-
MET	pmt	7	0.04	√√
MET	pmm	42	0.25	√
MET	tpp	1138	6.78	_
MET	tpt	388	2.31	_
MET	ttp	1246	7.42	
MET	ttt	569	3.39	
MET	ttm	1124	6.69	
MET	tmt	34	0.20	
MET	tmm	276	1.64	-
MET	mpp	74	0.44	_
MET	mpt	34	0.20	√
MET	mpm	13	0.08	`
MET	mtp	2815	16.76	<u> </u>
MET	mtt	1542	9.18	
MET	mtm	1851	11.02	
MET		520	3.10	
MET	mmp	597	3.55	
MET	mmt	3354	19.97	
MET	mmm OUTLIER	54 54	$\frac{19.97}{0.32}$	
MITLI				
CITI	GLU: TOT		57462	
GLU	pp20	159	0.28	√
GLU	pt0	2800	4.87	
GLU	pm20	1485	2.58	
GLU	tp30	4616	8.03	
GLU	tt0	13610	23.69	
GLU	tm-30	862	1.50	-
GLU	mp0	3671	6.39	
GLU	mt-10	21021	36.58	-
GLU	mm-30	9080	15.80	-
GLU	OUTLIER	158	0.27	-
	GLN: TOT.		37119	
GLN	pp30	178	0.48	√
GLN	pt0	1885	5.08	-
GLN	pm20	487	1.31	-
GLN	tp40	3618	9.75	-
GLN	tp-100	534	1.44	-
GLN	tt0	6936	18.69	-
GLN	tm130	55	0.15	\checkmark
GLN	tm-30	547	1.47	-
GLN	mp10	1207	3.25	-
GLN	mp-120	87	0.23	<u>-</u> ✓
GLN	mt0	14370	38.71	_
GLN	mm110	1147	3.09	_
GLN	mm-40	5959	16.05	_
GLN	OUTLIER	109	0.29	_
	ARG : TOT		46380	
ARG	ppp80	10	0.02	√
ARG	ppp-140	4	0.02	
ARG	ppt170	57	0.01	√ √
ARG	ppt90	19	0.12	√
ARG	ppt-90	15	0.04	
ARG	ptp90	223	0.03	_
ARG		77	0.48	
	ptp-110			-
ARG	ptp-170	388	0.84	-
ARG	ptt180	820	1.77	
ARG	ptt90	814	1.76	-
ARG	ptt-90	726	1.57	-

residue	rotamer	n	%	rarity
ARG	ptm160	502	1.08	-
ARG	ptm-80	215	0.46	-
ARG	pmt100	4	0.01	√ √
ARG	pmt170	39	0.08	√
ARG	pmt-80	27	0.06	√
ARG	pmm150	12	0.03	√
ARG	pmm-80	19	0.04	
ARG	tpp80	363	0.78	<u> </u>
ARG	tpp-160	496	1.07	
ARG	tpt170	825	1.78	_
ARG	tpt90	652	1.41	_
ARG	tpt-90	365	0.79	_
ARG	tpm170	110	0.24	
ARG	tpm-80	20	0.24	<u>-</u> ✓
ARG	ttp80	1896	4.09	· ·
ARG	ttp-110	623	1.34	-
ARG	ttp-110	1533	3.31	
				-
ARG	ttt180	2339	5.04	-
ARG	ttt90	1057	2.28	-
ARG	ttt-90	1380	2.98	-
ARG	ttm110	725	1.56	-
ARG	ttm170	1317	2.84	-
ARG	ttm-80	1504	3.24	-
ARG	tmt170	104	0.22	-
ARG	tmt90	23	0.05	✓
ARG	tmt-80	62	0.13	-
ARG	tmm160	92	0.20	-
ARG	tmm-80	71	0.15	-
ARG	mpp80	54	0.12	√
ARG	mpp-170	64	0.14	-
ARG	mpt180	245	0.53	-
ARG	mpt90	46	0.10	√
ARG	mpt-90	85	0.18	-
ARG	mtp180	2504	5.40	-
ARG	mtp85	1857	4.00	-
ARG	mtp-110	470	1.01	-
ARG	mtt180	4592	9.90	-
ARG	mtt90	2460	5.30	_
ARG	mtt-85	2843	6.13	_
ARG	mtm110	781	1.68	_
ARG	mtm180	2407	5.19	
ARG	mtm-85	2848	6.14	_
ARG	mmp80	164	0.35	
ARG	mmp-170	123	$\frac{0.33}{0.27}$	
ARG	mmt180	1203	2.59	
ARG	mmt90		1.22	-
ARG		1428		
	mmt-90	1428	3.08	-
ARG	mmm160	951	2.05	-
ARG	mmm-85	1022	2.20	-
ARG	OUTLIER	138	0.30	-
	LYS : TOTA		34829	
LYS	pptt	25	0.07	✓
LYS	ptpp	89	0.26	-
LYS	ptpt	148	0.42	-
LYS	pttp	240	0.69	-
LYS	pttt	1385	3.98	-
LYS	$_{ m pttm}$	268	0.77	-
LYS	ptmt	187	0.54	-
LYS	ptmm	80	0.23	-
LYS	pmtt	10	0.03	√

LYS tppp 37 0.11 ✓ LYS tppt 272 0.78 - LYS tptp 409 1.17 - LYS tptt 1228 3.53 - LYS tptm 197 0.57 - LYS ttpp 229 0.66 - LYS ttpt 883 2.54 - LYS ttp 1233 3.54 - LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS tttm 1176 3.38 - LYS tttm 674 1.94 - LYS ttm 674 1.94 - LYS tmt 674 1.94 - LYS tmtm 197 0.57 - LYS tmt	residue	rotamer	n	%	rarity
LYS tptp 409 1.17 - LYS tptt 1228 3.53 - LYS tptm 197 0.57 - LYS ttpp 229 0.66 - LYS ttpt 4 0.01 √√ LYS ttpt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 √ LYS ttmm 197 0.57 - LYS tttm 1176 3.38 - LYS tttm 1176 3.38 - LYS ttmm 197 0.57 - LYS tmmm 197 0.57 - LYS tmmm 197 0.57 - LYS tmmt 82 0.24 - LYS tmtt 82 0.24 - LYS tmmm 33 0.09 √ LYS tmmm 33 0.09 √ LYS tmmm 197 0.57 - LYS tmmm 197 0.57 - LYS tmmt 33 0.09 √ LYS tmmt 1000 √ LYS tmmm 1000 0.00 √ LYS tmmm 11 0.00 √ LYS mptp 11 0.00 √ LYS mptm 11 0.00 √ LYS mptm 11 0.00 √ LYS mptm 11 0.00 √ LYS mtpm 1357 3.90 - LYS mtpm 17 0.05 √ LYS mtpm 1414 4.06 - LYS mtpm 17 0.05 √ LYS mtpm 17 0.0		tppp	37	0.11	√
LYS tptt 1228 3.53 - LYS tptm 197 0.57 - LYS ttpp 229 0.66 - LYS ttpt 883 2.54 - LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 ✓ LYS ttm 674 1.94 - LYS ttmt 674 1.94 - LYS tmtm 197 0.57 - LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmm 8 0.02 ✓ LYS mpt 31 0.09 ✓ LYS mpt 31 0.09 ✓ LYS mpt 11<	LYS	tppt	272	0.78	-
LYS tptm 197 0.57 - LYS ttpp 229 0.66 - LYS ttpt 883 2.54 - LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 ✓ LYS ttmt 674 1.94 - LYS ttmt 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mptp 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptm 11 0.03 ✓ LYS mtp 39		tptp	409	1.17	-
LYS ttpp 229 0.66 - LYS ttpt 883 2.54 - LYS ttpm 4 0.01 √√ LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 √ LYS ttmt 674 1.94 - LYS ttmm 197 0.57 - LYS tmtp 11 0.03 √ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 √ LYS tmmm 8 0.02 √ LYS mpt 31 0.09 √ LYS mpt 26 0.07 √ LYS mpt 124 0.36 - LYS mtp 392 </td <td>LYS</td> <td>tptt</td> <td>1228</td> <td>3.53</td> <td>-</td>	LYS	tptt	1228	3.53	-
LYS ttpt 883 2.54 - LYS ttpm 4 0.01 √√ LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 √ LYS ttmt 674 1.94 - LYS tmtm 197 0.57 - LYS tmtp 11 0.03 √ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 √ LYS tmmm 8 0.02 √ LYS mpt 31 0.09 √ LYS mptp 26 0.07 √ LYS mpt 124 0.36 - LYS mtp 392 1.13 - LYS mtp 1357<	LYS	tptm	197	0.57	-
LYS ttpm 4 0.01 ✓√ LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 ✓ LYS ttmt 674 1.94 - LYS tmtm 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmm 8 0.02 ✓ LYS mpt 31 0.09 ✓ LYS mpt 31 0.09 ✓ LYS mpt 26 0.07 ✓ LYS mpt 124 0.36 - LYS mtp 392 1.13 - LYS mtp 1357 <td>LYS</td> <td>ttpp</td> <td>229</td> <td>0.66</td> <td>-</td>	LYS	ttpp	229	0.66	-
LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 ✓ LYS ttmt 674 1.94 - LYS ttmm 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mptp 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtp 1357 3.90 - LYS mtp 17<	LYS	ttpt	883	2.54	-
LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 ✓ LYS ttmt 674 1.94 - LYS ttmt 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mpt 31 0.09 ✓ LYS mpt 124 0.36 - LYS mpt 124 0.36 - LYS mtp 392 1.13 - LYS mtp 1357 3.90 - LYS mtp 17 0.05 ✓ LYS mtt 1414 <td>LYS</td> <td>ttpm</td> <td>4</td> <td>0.01</td> <td>√ √</td>	LYS	ttpm	4	0.01	√ √
LYS tttm 1176 3.38 - LYS ttmp 9 0.03 ✓ LYS ttmt 674 1.94 - LYS ttmm 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mpt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mpt 124 0.36 - LYS mpt 1357 3.90 - LYS mtp 1357 3.90 - LYS mtp 17 0.05 ✓ LYS mtt 1829 5.25 - LYS mtt 1829	LYS	tttp	1233	3.54	-
LYS ttmp 9 0.03 ✓ LYS ttmt 674 1.94 - LYS ttmm 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mpt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mpt 124 0.36 - LYS mpt 130 √ LYS mtp 392 1.13 - LYS mtp 1357 3.90 - LYS mtp 17 0.05 ✓ LYS mtt 1829 5.25 - LYS mtm 1829 5.25	LYS	tttt	5043	14.48	-
LYS ttmt 674 1.94 - LYS ttmm 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mptp 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpp 392 1.13 - LYS mtp 1357 3.90 - LYS mtp 1414 4.06 - LYS mtt 8597 24.68 - LYS mtm 1829	LYS	tttm	1176	3.38	-
LYS ttmm 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmptm 8 0.02 ✓ LYS mptp 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mpt 124 0.36 - LYS mpt 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtp 1357 3.90 - LYS mtp 17 0.05 ✓ LYS mtt 18597 24.68 - LYS mtm 1829 5.25 - LYS mtm 1314 3.77 - LYS mtm 1314 </td <td>LYS</td> <td>ttmp</td> <td>9</td> <td>0.03</td> <td>√</td>	LYS	ttmp	9	0.03	√
LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmptm 8 0.02 ✓ LYS mppt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpp 1357 3.90 - LYS mtp 17 0.05 ✓ LYS mtt 8597 24.68 - LYS mtm 1829 5.25 - LYS mtm 1829 5.25 - LYS mtm 1314 3.77 - LYS mtm 1314	LYS	ttmt	674	1.94	-
LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mppt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpp 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mttm 1829 5.25 - LYS mtmt 1829 5.25 - LYS mtmt 1314 3.77 - LYS mtmt	LYS	ttmm	197	0.57	-
LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mppt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mtt 8597 24.68 - LYS mtm 1829 5.25 - LYS mtm 1314 3.77 - LYS mtmt 1314 3.77 - LYS mtmt 424 1.22 - LYS mmtp <td< td=""><td>LYS</td><td>tmtp</td><td>11</td><td>0.03</td><td>√</td></td<>	LYS	tmtp	11	0.03	√
LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mppt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mtp 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mtt 1829 5.25 - LYS mtm 1829 5.25 - LYS mtm 1314 3.77 - LYS mtm 424 1.22 - LYS mmtm 424 1.22 - LYS mmtp 463 1.33 - LYS mmtt 31		tmtt	82	0.24	-
LYS tmmm 8 0.02 ✓ LYS mppt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mtt 8597 24.68 - LYS mtm 1829 5.25 - LYS mtmp 9 0.03 ✓ LYS mtm 1314 3.77 - LYS mtm 424 1.22 - LYS mmpt 31 0.09 ✓ LYS mmt 3137 9.01 - LYS mmt 727 2.09 - LYS mmm 544 </td <td>LYS</td> <td>tmtm</td> <td>20</td> <td>0.06</td> <td>✓</td>	LYS	tmtm	20	0.06	✓
LYS mppt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mtt 8597 24.68 - LYS mtmp 9 0.03 ✓ LYS mtmp 9 0.03 ✓ LYS mtmt 1314 3.77 - LYS mtm 424 1.22 - LYS mmpt 31 0.09 ✓ LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt	LYS	tmmt	33	0.09	√
LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mtt 8597 24.68 - LYS mtmp 9 0.03 ✓ LYS mtmp 9 0.03 ✓ LYS mtmt 1314 3.77 - LYS mtm 424 1.22 - LYS mmpt 31 0.09 ✓ LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm <td< td=""><td>LYS</td><td>tmmm</td><td>8</td><td>0.02</td><td>√</td></td<>	LYS	tmmm	8	0.02	√
LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mttp 1414 4.06 - LYS mttt 8597 24.68 - LYS mttm 1829 5.25 - LYS mtmp 9 0.03 ✓ LYS mtmt 1314 3.77 - LYS mtmm 424 1.22 - LYS mmpt 31 0.09 ✓ LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mppt	31	0.09	
LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mtt 8597 24.68 - LYS mtm 1829 5.25 - LYS mtmp 9 0.03 ✓ LYS mtmt 1314 3.77 - LYS mtmm 424 1.22 - LYS mmpt 31 0.09 ✓ LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mptp	26	0.07	√
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		mptt	124	0.36	-
LYS mtpt 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mttt 8597 24.68 - LYS mtm 1829 5.25 - LYS mtmp 9 0.03 ✓ LYS mtmt 1314 3.77 - LYS mtmm 424 1.22 - LYS mmpt 31 0.09 ✓ LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mptm	11	0.03	√
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		mtpp	392	1.13	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		mtpt	1357	3.90	-
LYS mttt 8597 24.68 - LYS mttm 1829 5.25 - LYS mtmp 9 0.03 √ LYS mtmt 1314 3.77 - LYS mtmm 424 1.22 - LYS mmpt 31 0.09 √ LYS mmtp 463 1.33 - LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -	LYS	mtpm	17	0.05	√
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		mttp	1414		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		mttt	8597		-
LYS mtmt 1314 3.77 - LYS mtmm 424 1.22 - LYS mmpt 31 0.09 √ LYS mmtp 463 1.33 - LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -	LYS	mttm	1829	5.25	-
LYS mtmm 424 1.22 - LYS mmpt 31 0.09 √ LYS mmtp 463 1.33 - LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mtmp	-	0.03	✓
LYS mmpt 31 0.09 ✓ LYS mmtp 463 1.33 - LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mtmt	1314	3.77	-
LYS mmtp 463 1.33 - LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -	LYS	mtmm	424	1.22	-
LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mmpt	31	0.09	✓
LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mmtp	463	1.33	-
LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -	LYS	mmtt	3137	9.01	-
LYS mmmm 90 0.26 -	LYS	mmtm	727	2.09	-
		mmmt	544	1.56	-
LYS OUTLIER 114 0.33 -		mmmm	90	0.26	-
	LYS	OUTLIER	114	0.33	-

5 χ and Covalent Bond Angle Central Values

The following tables report the central χ and covalent bond angles for each rotamer identified in the Top8000. The central χ values are calculated by taking the center-of-mass (COM) of the smoothed contours in the given rotamer bin as described in Section 2.4. The mean for the covalent bond angles is a simple mean.

5.1 SER

$SER \mathbf{p} n = 36901$					
χ	Smooth COM	StdDev			
chi1	65.916	8.614			
Bond Angle	Mean	StdDev			
$C\alpha_{-}C\beta_{-}OG$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $N_{-}C\alpha_{-}C$	111.001 120.458 109.930 111.621	1.348 0.922 1.393 2.519			
$N_{-}C\alpha_{-}C\beta$	110.666	1.118			

$SER \mathbf{t} n = 17502$					
χ	Smooth COM	StdDev			
chi1	178.650	9.008			
Bond Angle	Mean	StdDev			
$C\alphaC\betaOG$	110.709	1.422			
$C\alphaCO$	120.567	0.818			
$C\betaC\alphaC$	109.799	1.449			
$N_{-}C\alpha_{-}C$	110.491	2.405			
$N_{-}C\alpha_{-}C\beta$	110.057	1.210			

SER \mathbf{m} n = 21558					
χ	Smooth COM	StdDev			
chi1	-63.982	7.667			
Bond Angle	Mean	StdDev			
$C\alphaC\betaOG$	110.527	1.459			
$C\alphaCO$	120.485	0.850			
$C\betaC\alphaC$	109.476	1.447			
$N_C\alpha_C$	111.471	2.440			
$N_{-}C\alpha_{-}C\beta$	110.563	1.028			

5.2 CYS

$CYS \mathbf{p} = 2962$					
χ	Smooth COM	StdDev			
chi1	64.543	8.969			
Bond Angle	Mean	StdDev			
$C\alpha_{-}C\beta_{-}SG$	114.646	1.684			
$C\alphaCO$	120.521	0.978			
$C\beta C\alpha C$	110.473	1.502			
$N_{-}C\alpha_{-}C$	111.297	2.778			
$N_C\alpha_C\beta$	110.904	1.232			

CYS t n = 4399					
χ	Smooth COM	StdDev			
chi1	-177.599	8.222			
Bond Angle	Mean	StdDev			
$C\alphaC\betaSG$	113.679	1.938			
$C\alphaCO$	120.488	0.861			
$C\betaC\alphaC$	110.333	1.295			
$N_{-}C\alpha_{-}C$	109.702	2.435			
$N_{-}C\alpha_{-}C\beta$	110.020	1.370			

$CYS \mathbf{m} n = 9301$					
χ	Smooth COM	StdDev			
chi1	-65.374	8.203			
Bond Angle	Mean	StdDev			
$C\alpha_C\beta_SG$	113.554	1.864			
$C\alphaCO$	120.431	0.871			
$C\beta_{-}C\alpha_{-}C$	109.474	1.632			
$N_C\alpha_C$	111.518	2.424			
$N_{-}C\alpha_{-}C\beta$	110.613	1.065			

5.3 THR

THR $p = 36195$						
χ	χ Smooth COM					
chi1	61.450	7.652				
Bond Angle	Mean	StdDev				
$C\alphaC\betaC\gamma_2$	110.976	1.009				
$C\alphaC\betaOG1$	109.502	0.971				
$C\alphaCO$	120.473	0.956				
$C\beta _C\alpha _C$	108.833	1.702				
$N_{-}C\alpha_{-}C$	111.374	2.770				
$N_C\alpha_C\beta$	111.784	1.258				
${ m OG1_C}eta_{ m C}\gamma2$	109.207	1.712				

THR \mathbf{t} n = 5197						
χ Smooth COM StdI						
chi1	-172.707	7.389				
Bond Angle	Mean	StdDev				
$C\alphaC\betaC\gamma_2$	111.729	1.103				
$C\alphaC\betaOG1$	109.533	0.990				
$C\alphaCO$	120.619	0.834				
$C\betaC\alphaC$	110.967	1.904				
$N_{-}C\alpha_{-}C$	110.117	2.331				
$N_C\alpha_C\beta$	111.298	1.337				
$OG1_C\beta_C\gamma 2$	109.060	1.810				

THR m $n = 33559$						
χ	Smooth COM	StdDev				
chi1	-60.109	6.107				
Bond Angle	Mean	StdDev				
$C\alpha_{-}C\beta_{-}C\gamma_{2}$	111.146	0.939				
$C\alphaC\betaOG1$	108.916	0.972				
$C\alphaCO$	120.533	0.810				
$C\beta C\alpha C$	110.050	1.532				
$N_{-}C\alpha_{-}C$	110.213	2.307				
$N_{-}C\alpha_{-}C\beta$	110.718	1.188				
$OG1_C\beta_C\gamma2$	108.767	1.669				

5.4 VAL

$VAL \mathbf{p} = 6015$						
χ	Smooth COM	StdDev				
chi1	64.912	7.166				
Bond Angle	Mean	StdDev				
$C\alphaC\betaC\gamma 1$	111.517	1.091				
$C\alpha_{-}C\beta_{-}C\gamma_{2}$	110.755	1.020				
$C\alphaCO$	120.598	0.828				
$C\beta C\alpha C$	111.418	1.568				
$C\gamma 1_C\beta_C\gamma 2$	111.030	1.204				
$N_{-}C\alpha_{-}C$	110.312	2.482				
$N_{-}C\alpha_{-}C\beta$	111.580	1.263				

$VAL \mathbf{t} n = 73329$					
χ	Smooth COM	StdDev			
chi1	175.704	6.352			
Bond Angle	Mean	StdDev			
$C\alphaC\betaC\gamma 1$	110.746	0.936			
$C\alpha_{-}C\beta_{-}C\gamma_{2}$	110.161	0.946			
$C\alphaCO$	120.549	0.788			
$C\beta _C\alpha _C$	110.193	1.510			
$C\gamma 1_C\beta_C\gamma 2$	110.464	1.126			
$N_C\alpha_C$	109.421	2.363			
$N_{-}C\alpha_{-}C\beta$	111.340	1.112			

$VAL \mathbf{m} n = 17410$						
χ	Smooth COM	StdDev				
chi1	-61.900	5.694				
Bond Angle	Mean	StdDev				
$C\alpha_{-}C\beta_{-}C\gamma 1$	110.354	0.917				
$C\alphaC\betaC\gamma_2$	111.323	1.023				
$C\alphaCO$	120.553	0.913				
$C\beta C\alpha C$	109.824	1.600				
$C\gamma 1_C\beta_C\gamma 2$	110.892	1.165				
$N_{-}C\alpha_{-}C$	111.118	2.687				
$N_{-}C\alpha_{-}C\beta$	112.271	1.177				

5.5 PRO

PRO Cg_exo n = 30128		PRO Cg_endo $n = 29192$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-24.512	7.169	chi1	26.645	7.653
chi2	35.520	7.825	chi2	-34.137	8.897
chi3	-31.747	7.122	chi3	27.789	9.234
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	104.229	1.397	$C\alphaC\betaC\gamma$	104.233	1.468
$C\alphaCO$	120.180	1.031	$C\alphaCO$	120.227	1.070
$C\alpha_N_C\delta$	111.654	0.806	$C\alpha_NC\delta$	111.798	0.843
$C\beta _C\alpha _C$	110.809	1.300	$C\beta _C\alpha _C$	110.911	1.411
$C\betaC\gammaC\delta$	104.701	2.311	$C\beta C\gamma C\delta$	105.301	2.361
$N_{-}C\alpha_{-}C$	112.655	2.417	$N_{-}C\alpha_{-}C$	112.933	2.596
$N_{-}C\alpha_{-}C\beta$	103.312	0.589	$N_{-}C\alpha_{-}C\beta$	103.192	0.719
$NC\deltaC\gamma$	102.715	0.876	$N_{-}C\delta_{-}C\gamma$	103.063	0.876

5.6 **LEU**

LE	$U \mathbf{pp} \ n = 521$			LE	EU pt n = 378	
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev
chi1	61.357	8.227		chi1	72.738	8.508
chi2	83.113	9.465		chi2	164.797	10.798
Bond Angle	Mean	StdDev	•	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	119.083	2.531		$C\alpha_C\beta_C\gamma$	118.709	2.155
$C\alphaCO$	120.578	0.835		$C\alphaCO$	120.802	0.831
$C\beta_{-}C\alpha_{-}C$	111.537	1.381		$C\betaC\alphaC$	110.423	1.451
$C\betaC\gammaC\delta 1$	111.539	1.890		$C\betaC\gammaC\delta 1$	109.794	1.542
$C\betaC\gammaC\delta_2$	109.789	1.678		$C\betaC\gammaC\delta 2$	111.556	1.845
$C\delta1_C\gamma_C\delta2$	109.695	1.226		$C\delta1_C\gamma_C\delta2$	110.437	1.240
$N_{-}C\alpha_{-}C$	110.691	2.359		$N_{-}C\alpha_{-}C$	110.447	2.450
$NC\alphaC\beta$	111.107	1.151		$N_{-}C\alpha_{-}C\beta$	111.556	1.184
LE	$U \ \mathbf{tp} \ n = 34655$			LE	$EU \mathbf{tt} n = 1576$	
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev
chi1	-177.276	8.235		chi1	-172.476	8.492
chi2	62.594	6.963		chi2	153.401	10.535
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	116.491	2.056		$C\alphaC\betaC\gamma$	117.300	2.706
$C\alphaCO$	120.525	0.788		$C\alphaCO$	120.592	0.860
$C\betaC\alphaC$	110.192	1.205		$C\betaC\alphaC$	111.070	1.256
$C\betaC\gammaC\delta 1$	111.069	1.554		$C\betaC\gammaC\delta 1$	110.121	1.530
$C\betaC\gammaC\delta_2$	109.781	1.495		$C\betaC\gammaC\delta 2$	111.610	1.837
$C\delta1_C\gamma_C\delta2$	110.707	1.134		$C\delta1_C\gamma_C\delta2$	110.437	1.320
$N_{-}C\alpha_{-}C$	110.165	2.380		$N_C\alpha_C$	109.108	2.499
$N_{-}C\alpha_{-}C\beta$	110.303	1.147		$N_{-}C\alpha_{-}C\beta$	110.213	1.253
LE	$EU \mathbf{tm} \ n = 143$			LE	$U \mathbf{mp} n = 2711$	
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev
chi1	-171.753	5.901		chi1	-77.359	12.530
chi2	-75.044	6.356		chi2	71.504	15.741
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	120.365	2.303		$C\alphaC\betaC\gamma$	116.579	2.638
$C\alphaCO$	120.583	0.802		$C\alphaCO$	120.462	0.850
$C\beta _C\alpha _C$	111.264	1.174		$C\beta C\alpha C$	109.681	1.568
$C\beta C\gamma C\delta 1$	112.297	1.918		$C\beta C\gamma C\delta 1$	111.644	2.035
$C\betaC\gammaC\delta_2$	111.622	1.690		$C\betaC\gammaC\delta_2$	109.937	1.583
$C\delta1_C\gamma_C\delta2$	111.421	1.438		$C\delta1_C\gamma_C\delta2$	110.503	1.455
$N_{-}C\alpha_{-}C$	108.547	2.317		$N_C\alpha_C$	110.165	2.644
$N_{-}C\alpha_{-}C\beta$	109.930	1.129		$N_{-}C\alpha_{-}C\beta$	111.085	1.027

LEU $\mathbf{mt} \ \mathbf{n} = 74252$			LEU $\mathbf{mm} \ \mathbf{n} = 484$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1 chi2	-65.787 174.346	8.164 8.051	chi1 chi2	-82.802 -63.907	10.177 9.998
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.859	2.169	$C\alphaC\betaC\gamma$	117.810	2.626
$C\alphaCO$	120.431	0.820	$C\alphaCO$	120.323	0.893
$C\beta_{-}C\alpha_{-}C$	109.811	1.421	$C\beta C\alpha C$	110.092	1.579
$C\beta_C\gamma_C\delta 1$	109.882	1.466	$C\beta_{-}C\gamma_{-}C\delta 1$	110.866	1.604
$C\beta_{-}C\gamma_{-}C\delta 2$	110.965	1.547	$C\beta_{-}C\gamma_{-}C\delta 2$	111.876	1.719
$C\delta1_C\gamma_C\delta2$	110.777	1.107	$C\delta1_C\gamma_C\delta2$	110.701	1.403
$N_C\alpha_C$	111.393	2.340	$N_{-}C\alpha_{-}C$	111.081	2.614
$N_{-}C\alpha_{-}C\beta$	110.599	0.985	$N_{-}C\alpha_{-}C\beta$	111.033	0.983

5.7 ILE

IL	E pp n = 254		•	ILI	$E \mathbf{pt} n = 8837$	
χ	Smooth COM	StdDev	•	χ	Smooth COM	StdDev
chi1	57.851	7.686	•	chi1	62.073	6.094
chi2	84.312	12.800		chi2	170.331	7.581
Bond Angle	Mean	StdDev	•	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma 1$	112.503	1.280		$C\alpha_{-}C\beta_{-}C\gamma 1$	111.339	1.083
$C\alpha_{-}C\beta_{-}C\gamma_{2}$	109.866	1.145		$C\alphaC\betaC\gamma_2$	110.176	0.938
$C\alphaCO$	120.547	0.873		$C\alphaCO$	120.535	0.937
$C\beta_{-}C\alpha_{-}C$	111.344	1.607		$C\beta_{-}C\alpha_{-}C$	110.110	1.671
$C\beta C\gamma 1C\delta 1$	115.059	1.803		$C\beta C\gamma 1C\delta 1$	113.605	1.254
$C\gamma 1_C\beta_C\gamma 2$	110.044	1.960		$C\gamma 1_C\beta_C\gamma 2$	111.381	1.533
$N_{-}C\alpha_{-}C$	112.012	2.513		$N_{-}C\alpha_{-}C$	111.361	2.736
$N_{-}C\alpha_{-}C\beta$	112.286	1.249		$N_{-}C\alpha_{-}C\beta$	112.260	1.195
IL	$\mathbf{E} \ \mathbf{tp} \ \mathbf{n} = 1869$			IL	E tt $n = 4163$	
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev
chi1	-167.339	7.836		chi1	-169.614	7.748
chi2	65.770	7.313		chi2	166.622	6.871
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma 1$	111.105	1.130		$C\alphaC\betaC\gamma 1$	110.680	1.065
$C\alphaC\betaC\gamma_2$	111.437	1.028		$C\alphaC\betaC\gamma_2$	111.396	1.038
$C\alphaCO$	120.365	0.819		$C\alphaCO$	120.604	0.827
$C\betaC\alphaC$	111.532	1.459		$C\betaC\alphaC$	111.636	1.480
$C\betaC\gamma_1C\delta_1$	114.167	1.154		$C\betaC\gamma_1C\delta_1$	113.490	1.268
$C\gamma 1_C\beta_C\gamma 2$	110.819	1.695		$C\gamma 1_C\beta_C\gamma 2$	111.706	1.614
$N_{-}C\alpha_{-}C$	111.577	2.333		$N_{-}C\alpha_{-}C$	110.129	2.516
$N_{-}C\alpha_{-}C\beta$	111.454	1.272	_	$N_{-}C\alpha_{-}C\beta$	111.350	1.316
IL	$E \mathbf{mp} n = 623$			ILE	mt n = 44470	
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev
chi1	-62.667	11.611		chi1	-62.999	6.427
chi2	88.683	16.573		chi2	169.237	7.398
Bond Angle	Mean	StdDev	-	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma 1$	111.150	1.110		$C\alphaC\betaC\gamma 1$	109.984	1.081
$C\alphaC\betaC\gamma_2$	110.473	1.090		$C\alphaC\betaC\gamma_2$	110.617	0.918
$C\alphaCO$	120.462	0.812		$C\alphaCO$	120.542	0.790
$C\beta C\alpha C$	110.134	1.635		$C\beta C\alpha C$	110.366	1.581
$C\beta C\gamma 1C\delta 1$	114.582	1.667		$C\beta C\gamma 1C\delta 1$	113.966	1.223
$C\gamma 1_C\beta_C\gamma 2$	109.324	1.870		$C\gamma 1_C\beta_C\gamma 2$	110.762	1.437
$N_{-}C\alpha_{-}C$	108.335	2.264		$N_{-}C\alpha_{-}C$	109.405	2.337
$N_{-}C\alpha_{-}C\beta$	111.949	1.287	_	$N_{-}C\alpha_{-}C\beta$	111.245	1.145

ILE	mm n = 11258	
χ	Smooth COM	StdDev
chi1	-59.020	7.075
chi2	-61.129	7.343
Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma 1$	110.904	1.123
$C\alphaC\betaC\gamma_2$	110.751	0.967
$C\alphaCO$	120.513	0.804
$C\beta_{-}C\alpha_{-}C$	109.837	1.605
$C\betaC\gamma_1C\delta_1$	114.776	1.211
$C\gamma 1_C\beta_C\gamma 2$	111.277	1.468
$N_{-}C\alpha_{-}C$	109.449	2.450
$N_{-}C\alpha_{-}C\beta$	111.304	1.149

5.8 ASN

ASI	$N \ \mathbf{p0} \ n = 7513$		ASI	N t0 n = 15610	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	63.756	7.767	chi1	-171.473	10.505
chi2	6.662	43.284	chi2	-1.493	54.857
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.139	0.878	$C\alpha_{-}C\beta_{-}C\gamma$	112.733	0.917
$C\alphaCO$	120.389	0.966	$C\alphaCO$	120.615	0.874
$C\beta_{-}C\alpha_{-}C$	111.273	1.683	$C\betaC\alphaC$	110.613	1.307
$C\beta_C\gamma_N\delta 2$	116.347	0.911	$C\betaC\gammaN\delta 2$	116.453	0.851
$C\beta C\gamma O\delta 1$	121.130	0.982	$C\betaC\gammaO\delta 1$	120.906	0.917
$N_C\alpha_C$	111.973	2.774	$N_{-}C\alpha_{-}C$	110.128	2.820
$N_C\alpha_C\beta$	111.073	1.286	$N_{-}C\alpha_{-}C\beta$	110.094	1.446
$O\delta1C\gammaN\delta2$	122.498	0.716	$O\delta1C\gammaN\delta2$	122.613	0.680
AS	N t160 n = 61		ASN	m110 n = 4003	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-161.337	7.377	chi1	-63.571	9.647
chi2	163.600	9.123	chi2	114.583	28.436
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.235	1.524	$C\alphaC\betaC\gamma$	112.723	1.153
$C\alphaCO$	120.433	0.848	$C\alphaCO$	120.501	0.902
$C\beta C\alpha C$	111.294	1.376	$C\betaC\alphaC$	109.543	1.841
$C\beta_C\gamma_N\delta 2$	117.029	2.099	$C\beta_C\gamma_N\delta 2$	116.643	1.136
$C\betaC\gammaO\delta 1$	120.496	2.021	$C\betaC\gammaO\delta 1$	120.710	1.173
$N_C\alpha_C$	110.034	1.950	$N_{-}C\alpha_{-}C$	112.046	2.783
$N_C\alpha_C\beta$	109.281	1.457	$N_C\alpha_C\beta$	110.629	1.196
$O\delta1_C\gamma_N\delta2$	122.428	0.778	$O\delta1_C\gamma_N\delta2$	122.607	0.825
ASN	m-40 n = 26292	}			
χ	Smooth COM	StdDev			

ASN	m-40 n = 26292	}
χ	Smooth COM	StdDev
chi1	-69.790	9.121
chi2	-41.669	26.314
Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	112.457	0.918
$C\alphaCO$	120.432	0.869
$C\beta C\alpha C$	110.006	1.725
$C\beta C\gamma N\delta 2$	116.531	0.847
$C\beta C\gamma O\delta 1$	120.778	0.894
$N_{-}C\alpha_{-}C$	112.237	2.543
$N_{-}C\alpha_{-}C\beta$	110.546	1.096
$O\delta1$ _ $C\gamma$ _ $N\delta2$	122.662	0.698

5.9 ASP

ASI	P p0 n = 11746		ASI	P t0 n = 17107	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	62.914	7.504	chi1	-171.502	10.156
chi2	-2.097	31.033	chi2	-1.704	23.754
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.477	1.018	$C\alpha_{-}C\beta_{-}C\gamma$	113.211	0.911
$C\alphaCO$	120.397	0.909	$C\alphaCO$	120.704	0.890
$C\betaC\alphaC$	111.293	1.647	$C\betaC\alphaC$	110.867	1.230
$C\betaC\gammaO\delta 1$	119.658	1.560	$C\betaC\gammaO\delta 1$	119.520	1.387
$C\betaC\gammaO\delta 2$	118.192	1.768	$C\betaC\gammaO\delta 2$	118.084	1.734
$N_{-}C\alpha_{-}C$	112.193	2.551	$N_{-}C\alpha_{-}C$	108.896	2.647
$N_{-}C\alpha_{-}C\beta$	111.140	1.255	$N_{-}C\alpha_{-}C\beta$	109.695	1.453
$O\delta1$ - $C\gamma$ - $O\delta2$	122.124	1.639	$O\delta1$ _ $C\gamma$ _ $O\delta2$	122.372	1.580
ASI	P t70 n = 6029		ASP	m-30 n = 37239	
χ ASI	P t70 n = 6029 Smooth COM	StdDev	χ	m-30 n = 37239 Smooth COM	StdDev
		StdDev 9.206			
χ	Smooth COM		χ	Smooth COM	StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM -174.210	9.206	$\frac{\chi}{\text{chi1}}$	Smooth COM -68.819	StdDev 8.157
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \text{$C\alpha$-C\beta$-$C$\gamma} \end{array}$	Smooth COM -174.210 74.194	9.206 19.764	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \text{Bond Angle} \\ \hline \text{C}\alpha\text{-C}\beta\text{-C}\gamma \end{array}$	Smooth COM -68.819 -29.214	StdDev 8.157 22.379
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM -174.210 74.194 Mean	9.206 19.764 StdDev	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM -68.819 -29.214 Mean	8.157 22.379 StdDev
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \text{$C\alpha$-C\beta$-$C$\gamma} \end{array}$	Smooth COM -174.210 74.194 Mean 112.428	9.206 19.764 StdDev 0.833	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \text{Bond Angle} \\ \hline \text{C}\alpha\text{-C}\beta\text{-C}\gamma \end{array}$	Smooth COM -68.819 -29.214 Mean 112.905	8.157 22.379 StdDev 0.946
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \end{array}$	Smooth COM -174.210 74.194 Mean 112.428 120.495	9.206 19.764 StdDev 0.833 0.800	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$_$C}\beta$_$C}\gamma \\ \hline \text{$\text{C}\alpha$_C_$O} \end{array}$	Smooth COM -68.819 -29.214 Mean 112.905 120.451	StdDev 8.157 22.379 StdDev 0.946 0.856
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \end{array}$	Smooth COM -174.210 74.194 Mean 112.428 120.495 110.144	9.206 19.764 StdDev 0.833 0.800 1.274	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ \end{array}$	Smooth COM -68.819 -29.214 Mean 112.905 120.451 109.353	8.157 22.379 StdDev 0.946 0.856 1.669
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -174.210 74.194 Mean 112.428 120.495 110.144 118.490	9.206 19.764 StdDev 0.833 0.800 1.274 1.114	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline C\alpha_C\beta_C\gamma \\ \hline C\alpha_C_O \\ \hline C\beta_C\alpha_C \\ \hline C\beta_C\gamma_O\delta1 \\ \end{array}$	Smooth COM -68.819 -29.214 Mean 112.905 120.451 109.353 119.179	8.157 22.379 StdDev 0.946 0.856 1.669 1.363
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -174.210 74.194 Mean 112.428 120.495 110.144 118.490 118.723	9.206 19.764 StdDev 0.833 0.800 1.274 1.114 1.564	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.819 -29.214 Mean 112.905 120.451 109.353 119.179 118.242	8.157 22.379 StdDev 0.946 0.856 1.669 1.363 1.703

5.10 HIS

HIS	$\mathbf{p90} \text{ n} = 1492$		HIS	p-80 n = 2203	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	62.492	9.692	chi1	64.769	9.896
chi2	86.558	21.799	chi2	-80.838	16.239
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.189	1.053	$C\alphaC\betaC\gamma$	114.073	1.065
$C\alphaCO$	120.635	0.945	$C\alphaCO$	120.392	0.980
$C\betaC\alphaC$	110.826	1.567	$C\betaC\alphaC$	110.369	1.531
$C\betaC\gammaC\delta_2$	131.000	0.858	$C\betaC\gammaC\delta 2$	131.015	0.802
$C\beta_C\gamma_N\delta 1$	122.773	0.915	$C\beta_C\gamma_N\delta 1$	122.746	0.806
$C\epsilon 1_N\epsilon 2_C\delta 2$	108.808	0.592	$C\epsilon 1_N\epsilon 2_C\delta 2$	108.828	0.584
$C\gamma_C\delta_2N\epsilon_2$	107.271	0.501	$C\gamma C\delta 2N\epsilon 2$	107.240	0.521
$C\gamma N\delta 1C\epsilon 1$	109.201	0.717	$C\gamma N\delta 1C\epsilon 1$	109.201	0.610
$N\delta1_{-}C\epsilon1_{-}N\epsilon2$	108.528	0.659	$N\delta1$ _ $C\epsilon1$ _ $N\epsilon2$	108.521	0.605
$N\delta1_{-}C\gamma_{-}C\delta2$	106.170	0.534	$N\delta1_{-}C\gamma_{-}C\delta2$	106.187	0.514
$N_{-}C\alpha_{-}C$	111.257	2.740	$N_{-}C\alpha_{-}C$	112.010	2.426
$N_{-}C\alpha_{-}C\beta$	110.998	1.361	$N_{-}C\alpha_{-}C\beta$	111.016	1.324
HIS	5 t70 n = 5068		HIS	t-170 n = 1332	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM -178.423	StdDev 10.035	$\frac{\chi}{\text{chi1}}$	Smooth COM -173.314	StdDev 9.701
chi1	-178.423	10.035	chi1	-173.314	9.701
chi1 chi2	-178.423 73.865	10.035 17.323	chi1 chi2	-173.314 -167.114	9.701 21.613
chi1 chi2 Bond Angle	-178.423 73.865 Mean	10.035 17.323 StdDev	chi1 chi2 Bond Angle	-173.314 -167.114 Mean	9.701 21.613 StdDev
$\begin{array}{c} \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline \text{$C\alpha_C\beta_C\gamma$} \end{array}$	-178.423 73.865 Mean 113.614	10.035 17.323 StdDev 1.068	chi1 chi2 Bond Angle $C\alpha C\beta C\gamma$	-173.314 -167.114 Mean 114.240	9.701 21.613 StdDev 1.024
chi1 chi2 Bond Angle Cα_Cβ_Cγ Cα_C_O	-178.423 73.865 Mean 113.614 120.573	10.035 17.323 StdDev 1.068 0.830	chi1 chi2 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$	-173.314 -167.114 Mean 114.240 120.601	9.701 21.613 StdDev 1.024 0.807
chi1 chi2 Bond Angle Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C	-178.423 73.865 Mean 113.614 120.573 110.127	10.035 17.323 StdDev 1.068 0.830 1.337	chi1 chi2 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$ $C\beta_C\alpha_C$	-173.314 -167.114 Mean 114.240 120.601 110.900	9.701 21.613 StdDev 1.024 0.807 1.306
chi1 chi2 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C _ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta 2$	-178.423 73.865 Mean 113.614 120.573 110.127 131.028	10.035 17.323 StdDev 1.068 0.830 1.337 0.815	chi1 chi2 Bond Angle Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C Cβ_Cα_C Cβ_Cγ_Cδ2	-173.314 -167.114 Mean 114.240 120.601 110.900 131.372	9.701 21.613 StdDev 1.024 0.807 1.306 0.975
chi1 chi2 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta 2$ $C\beta _C\gamma _N\delta 1$	-178.423 73.865 Mean 113.614 120.573 110.127 131.028 122.666	10.035 17.323 StdDev 1.068 0.830 1.337 0.815 0.792	chi1 chi2 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _C\gamma$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta 2$ $C\beta _C\gamma _N\delta 1$	-173.314 -167.114 Mean 114.240 120.601 110.900 131.372 122.414	9.701 21.613 StdDev 1.024 0.807 1.306 0.975 1.049
$\begin{array}{c} \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-178.423 73.865 Mean 113.614 120.573 110.127 131.028 122.666 108.853	10.035 17.323 StdDev 1.068 0.830 1.337 0.815 0.792 0.519	chi1 chi2 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$ $C\beta_C\alpha_C$ $C\beta_C\gamma_C\delta2$ $C\beta_C\gamma_N\delta1$ $C\epsilon1_N\epsilon2_C\delta2$	-173.314 -167.114 Mean 114.240 120.601 110.900 131.372 122.414 108.773	9.701 21.613 StdDev 1.024 0.807 1.306 0.975 1.049 0.553
$\begin{array}{ c c }\hline \text{chi1}\\ \text{chi2}\\\hline\hline \text{Bond Angle}\\\hline\hline \text{$C\alpha_C\beta_C\gamma$}\\ \text{$C\alpha_C_O$}\\ \text{$C\beta_C\alpha_C$}\\ \text{$C\beta_C\gamma_C\delta2$}\\ \text{$C\beta_C\gamma_N\delta1$}\\ \text{$C\epsilon1_N\epsilon2_C\delta2$}\\ \text{$C\gamma_C\delta2_N\epsilon2$}\\\hline\end{array}$	-178.423 73.865 Mean 113.614 120.573 110.127 131.028 122.666 108.853 107.197	10.035 17.323 StdDev 1.068 0.830 1.337 0.815 0.792 0.519 0.456	chi1 chi2 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_C$ $C\beta_C\alpha_C$ $C\beta_C\gamma_C\delta2$ $C\beta_C\gamma_N\delta1$ $C\epsilon1_N\epsilon2_C\delta2$ $C\gamma_C\delta2_N\epsilon2$	-173.314 -167.114 Mean 114.240 120.601 110.900 131.372 122.414 108.773 107.239	9.701 21.613 StdDev 1.024 0.807 1.306 0.975 1.049 0.553 0.449
chi1 chi2 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta 2$ $C\beta _C\gamma _N\delta 1$ $C\epsilon 1_N\epsilon 2_C\delta 2$ $C\gamma _C\delta 2_N\epsilon 2$ $C\gamma _N\delta 1_C\epsilon 1$	-178.423 73.865 Mean 113.614 120.573 110.127 131.028 122.666 108.853 107.197 109.172	10.035 17.323 StdDev 1.068 0.830 1.337 0.815 0.792 0.519 0.456 0.621	chi1 chi2 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$ $C\beta_C\alpha_C$ $C\beta_C\gamma_C\delta 2$ $C\beta_C\gamma_N\delta 1$ $C\epsilon 1.N\epsilon 2.C\delta 2$ $C\gamma_C\delta 2.N\epsilon 2$ $C\gamma_N\delta 1.C\epsilon 1$	-173.314 -167.114 Mean 114.240 120.601 110.900 131.372 122.414 108.773 107.239 109.216	9.701 21.613 StdDev 1.024 0.807 1.306 0.975 1.049 0.553 0.449 0.658
chi1 chi2 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$ $C\alpha C\delta C$ $C\alpha C$	-178.423 73.865 Mean 113.614 120.573 110.127 131.028 122.666 108.853 107.197 109.172 108.505	10.035 17.323 StdDev 1.068 0.830 1.337 0.815 0.792 0.519 0.456 0.621 0.557	chi1 chi2 Bond Angle Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C Cβ_Cγ_Cδ2 Cβ_Cγ_Nδ1 Cϵ1_Nϵ2_Cδ2 Cγ_Cδ2_Nϵ2 Cγ_Nδ1_Cϵ1 Nδ1_Cϵ1_Nϵ2	-173.314 -167.114 Mean 114.240 120.601 110.900 131.372 122.414 108.773 107.239 109.216 108.565	9.701 21.613 StdDev 1.024 0.807 1.306 0.975 1.049 0.553 0.449 0.658 0.625

HIS	t-90 n = 3553		HIS	m170 n = 2695	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-173.491	10.385	chi1	-67.985	8.200
chi2	-86.784	18.450	chi2	170.975	21.745
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.698	1.010	$C\alpha_{-}C\beta_{-}C\gamma$	113.732	0.930
$C\alphaCO$	120.474	0.846	$C\alphaCO$	120.396	0.880
$C\betaC\alphaC$	110.440	1.219	$C\betaC\alphaC$	109.708	1.788
$C\betaC\gammaC\delta_2$	130.907	0.830	$C\betaC\gammaC\delta 2$	131.144	0.993
$C\beta_C\gamma_N\delta 1$	122.790	0.749	$C\betaC\gammaN\delta 1$	122.596	1.037
$C\epsilon 1_N\epsilon 2_C\delta 2$	108.840	0.525	$C\epsilon 1_N\epsilon 2_C\delta 2$	108.792	0.528
$C\gammaC\delta_2_N\epsilon_2$	107.199	0.482	$C\gammaC\delta_2_N\epsilon_2$	107.215	0.471
$C\gamma N\delta 1C\epsilon 1$	109.174	0.721	$C\gamma N\delta 1C\epsilon 1$	109.180	0.692
$N\delta1_{-}C\epsilon1_{-}N\epsilon2$	108.510	0.617	$N\delta1$ _ $C\epsilon1$ _ $N\epsilon2$	108.559	0.624
$N\delta1_{-}C\gamma_{-}C\delta2$	106.247	0.554	$N\delta1_{-}C\gamma_{-}C\delta2$	106.227	0.530
$N_{-}C\alpha_{-}C$	109.908	2.468	$N_{-}C\alpha_{-}C$	111.531	2.540
$NC\alphaC\beta$	110.079	1.464	$NC\alphaC\beta$	110.742	1.152
HIS	m90 n = 3914		HIS	m-70 n = 9453	
χ	m90 n = 3914 Smooth COM	StdDev	χ	m-70 n = 9453 Smooth COM	StdDev
		StdDev 9.782			StdDev 10.014
χ	Smooth COM		χ	Smooth COM	
$\frac{\chi}{\text{chi1}}$	Smooth COM -65.658	9.782	χ chi1	Smooth COM -64.458	10.014
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \end{array}$	Smooth COM -65.658 88.477	9.782 17.472	χ chi1 chi2 Bond Angle $C\alpha C\beta C\gamma$	Smooth COM -64.458 -75.228	10.014 19.348
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ \end{array}$	Smooth COM -65.658 88.477 Mean	9.782 17.472 StdDev	χ chi1 chi2 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C-C$	Smooth COM -64.458 -75.228 Mean	10.014 19.348 StdDev
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \end{array}$	Smooth COM -65.658 88.477 Mean 113.467	9.782 17.472 StdDev 1.110	χ chi1 chi2 Bond Angle $C\alpha C\beta C\gamma$	Smooth COM -64.458 -75.228 Mean 113.370	10.014 19.348 StdDev 1.064
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ \end{array}$	Smooth COM -65.658 88.477 Mean 113.467 120.484	9.782 17.472 StdDev 1.110 0.896	χ chi1 chi2 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C-C$	Smooth COM -64.458 -75.228 Mean 113.370 120.407	10.014 19.348 StdDev 1.064 0.875
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \hline \\ \text{C}\beta_\text{C}\alpha_\text{C} \end{array}$	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759	9.782 17.472 StdDev 1.110 0.896 1.956	χ chi1 chi2 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$ $C\beta_C\alpha_C$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866	10.014 19.348 StdDev 1.064 0.875 1.886
χ chi1 chi2 Bond Angle Cα_Cβ_Cγ Cα_C.C Cβ_Cα_C Cβ_Cγ_Cδ2	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759 130.923	9.782 17.472 StdDev 1.110 0.896 1.956 0.854	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866 131.054	10.014 19.348 StdDev 1.064 0.875 1.886 0.818
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta2 \\ C\beta_C\gamma_N\delta1 \\ \end{array}$	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759 130.923 122.786	9.782 17.472 StdDev 1.110 0.896 1.956 0.854 0.821	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866 131.054 122.620	10.014 19.348 StdDev 1.064 0.875 1.886 0.818 0.801
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta$_$C}\gamma \\ \text{$C\alpha$_$C$_$C} \\ \text{$C\beta$_$C}\alpha$_$C} \\ \text{$C\beta$_$C}\gamma$_$C}\delta 2 \\ \text{$C\beta$_$C}\gamma$_$N}\delta 1 \\ \text{$C\epsilon 1.N}\epsilon 2.C}\delta 2 \\ \end{array}$	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759 130.923 122.786 108.852	9.782 17.472 StdDev 1.110 0.896 1.956 0.854 0.821 0.557	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866 131.054 122.620 108.856	10.014 19.348 StdDev 1.064 0.875 1.886 0.818 0.801 0.517
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta_\text{$C\gamma$} \\ \hline \\ \text{$C\alpha$_$C$_$C} \\ \text{$C\beta$_$C}\alpha_\text{$C$} \\ \hline \\ \text{$C\beta$_$C}\gamma_\text{$N\delta$1} \\ \hline \\ \text{$C\epsilon$1_$N$$\epsilon$2_$Cδ2} \\ \hline \\ \text{$C\gamma$_C\delta$2_$N$$\epsilon$2} \\ \hline \end{array}$	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759 130.923 122.786 108.852 107.207	9.782 17.472 StdDev 1.110 0.896 1.956 0.854 0.821 0.557 0.499	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866 131.054 122.620 108.856 107.184	10.014 19.348 StdDev 1.064 0.875 1.886 0.818 0.801 0.517 0.469
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \hline \\ \text{$C\alpha_C_O$} \\ \hline \\ \text{$C\beta_C\alpha_C$} \\ \hline \\ \text{$C\beta_C\gamma_C\delta2$} \\ \hline \\ \text{$C\beta_C\gamma_N\delta1$} \\ \hline \\ \text{$C\epsilon1_N\epsilon2_C\delta2$} \\ \hline \\ \text{$C\gamma_C\delta2_N\epsilon2$} \\ \hline \\ \text{$C\gamma_N\delta1_C\epsilon1$} \\ \hline \\ \text{$N\delta1_C\epsilon1_N\epsilon2$} \\ \hline \\ \text{$N\delta1_C\gamma_C\delta2$} \\ \hline \end{array}$	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759 130.923 122.786 108.852 107.207 109.189	9.782 17.472 StdDev 1.110 0.896 1.956 0.854 0.821 0.557 0.499 0.640	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866 131.054 122.620 108.856 107.184 109.178	10.014 19.348 StdDev 1.064 0.875 1.886 0.818 0.801 0.517 0.469 0.630
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta$_$C}\gamma \\ \text{$C\alpha$_$C}-\text{CO} \\ \text{$C\beta$_$C}\alpha$_$C} \\ \text{$C\beta$_$C}\gamma$_$C}\delta2 \\ \text{$C\beta$_$C}\gamma$_$N}\delta1 \\ \text{$C\epsilon1$_$N}\epsilon2$_$C}\delta2 \\ \text{$C\gamma$_$C}\delta2 \\ \text{$N\epsilon2$_$C}\delta2 \\ \text{$N\delta1$_$C}\epsilon1 \\ \text{$N\delta1$_$C}\epsilon1 \\ \text{$N\delta1$_$C}\epsilon1 \\ \text{$N\epsilon2$_$C}\epsilon2 \\ \hline \end{array}$	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759 130.923 122.786 108.852 107.207 109.189 108.501	9.782 17.472 StdDev 1.110 0.896 1.956 0.854 0.821 0.557 0.499 0.640 0.615	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta2 \\ \text{C}\beta_\text{C}\gamma_\text{N}\delta1 \\ \text{C}\epsilon1_\text{N}\epsilon2_\text{C}\delta2 \\ \text{C}\gamma_\text{C}\delta2_\text{N}\epsilon2 \\ \text{C}\gamma_\text{N}\delta1_\text{C}\epsilon1 \\ \text{N}\delta1_\text{C}\epsilon1_\text{N}\epsilon2 \\ \end{array}$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866 131.054 122.620 108.856 107.184 109.178 108.498	10.014 19.348 StdDev 1.064 0.875 1.886 0.818 0.801 0.517 0.469 0.630 0.562

5.11 PHE

PHI	$\mathbf{E} \ \mathbf{p90} \ \mathbf{n} = 6289$		PHE	E t80 n = 19289	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	63.561	9.566	chi1	-178.297	9.973
chi2	-89.699	9.411	chi2	75.767	17.432
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.408	0.965	$C\alpha_{-}C\beta_{-}C\gamma$	113.786	1.072
$C\alphaCO$	120.711	0.891	$C\alphaCO$	120.598	0.802
$C\betaC\alphaC$	110.881	1.459	$C\betaC\alphaC$	110.336	1.300
$C\betaC\gammaC\delta 1$	120.730	0.618	$C\betaC\gammaC\delta 1$	120.648	0.723
$C\betaC\gammaC\delta 2$	120.607	0.579	$C\betaC\gammaC\delta 2$	120.537	0.684
$C\delta1_C\epsilon1_C\zeta$	119.892	0.604	$C\delta1_C\epsilon1_C\zeta$	119.859	0.588
$C\delta1C\gammaC\delta2$	118.617	0.534	$C\delta1C\gammaC\delta2$	118.764	0.551
$C\epsilon 1C\zetaC\epsilon 2$	119.823	0.628	$C\epsilon 1C\zetaC\epsilon 2$	119.922	0.630
$C\gamma C\delta 1C\epsilon 1$	120.858	0.589	$C\gammaC\delta 1C\epsilon 1$	120.767	0.581
$C\gamma_C\delta_2C\epsilon_2$	120.855	0.575	$C\gamma_C\delta_2C\epsilon_2$	120.790	0.589
$C\zeta_{-}C\epsilon_{2}C\delta_{2}$	119.920	0.592	$C\zetaC\epsilon_2C\delta_2$	119.864	0.587
$N_{-}C\alpha_{-}C$	110.871	2.566	$N_{-}C\alpha_{-}C$	110.337	2.307
$N_{-}C\alpha_{-}C\beta$	111.393	1.319	$N_{-}C\alpha_{-}C\beta$	110.203	1.503
PHE	m-10 n = 3880		PHE	m-80 n = 26665	j .
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-68.127	9.328	chi1	-66.760	10.140
chi2	-14.743	19.837	chi2	-80.589	16.828
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.792	0.955	$C\alphaC\betaC\gamma$	113.517	1.023
$C\alphaCO$	120.423	0.872	$C\alphaCO$	120.453	0.861
$C\beta_{-}C\alpha_{-}C$	108.945	1.776	$C\betaC\alphaC$	109.811	1.992
$C\beta_{-}C\gamma_{-}C\delta 1$					
	121.549	1.215	$C\betaC\gammaC\delta 1$	120.579	0.602
$C\betaC\gammaC\delta_2$	121.549 119.886	1.215 1.159	$C\betaC\gammaC\delta_1$ $C\betaC\gammaC\delta_2$	$120.579 \\ 120.569$	$0.602 \\ 0.590$
$ \begin{array}{c} C\beta_C\gamma_C\delta2\\ C\delta1_C\epsilon1_C\zeta\\ C\delta1_C\gamma_C\delta2 \end{array} $	119.886	1.159	$C\beta C\gamma C\delta 2$ $C\delta 1 C\epsilon 1 C\zeta$ $C\delta 1 C\gamma C\delta 2$	120.569	0.590
$C\betaC\gammaC\delta_2$ $C\delta_1C\epsilon_1C\zeta$	119.886 119.897	$1.159 \\ 0.614$	$C\betaC\gammaC\delta_2$ $C\delta_1C\epsilon_1C\zeta$	120.569 119.862	$0.590 \\ 0.580$
$\begin{array}{c} C\beta_C\gamma_C\delta2 \\ C\delta1_C\epsilon1_C\zeta \\ C\delta1_C\gamma_C\delta2 \\ C\epsilon1_C\zeta_C\epsilon2 \\ C\gamma_C\delta1_C\epsilon1 \end{array}$	119.886 119.897 118.521	1.159 0.614 0.565	$C\betaC\gammaC\delta_2$ $C\delta_1C\epsilon_1C\zeta$ $C\delta_1C\gammaC\delta_2$ $C\epsilon_1C\zetaC\epsilon_2$ $C\gammaC\delta_1C\epsilon_1$	120.569 119.862 118.798	0.590 0.580 0.527
$\begin{array}{c} C\beta_C\gamma_C\delta2 \\ C\delta1_C\epsilon1_C\zeta \\ C\delta1_C\gamma_C\delta2 \\ C\epsilon1_C\zeta_C\epsilon2 \\ C\gamma_C\delta1_C\epsilon1 \\ C\gamma_C\delta2_C\epsilon2 \end{array}$	119.886 119.897 118.521 119.840	1.159 0.614 0.565 0.619	$\begin{array}{c} C\betaC\gammaC\delta 2 \\ C\delta 1C\epsilon 1C\zeta \\ C\delta 1C\gammaC\delta 2 \\ C\epsilon 1C\zetaC\epsilon 2 \\ C\gammaC\delta 1C\epsilon 1 \\ C\gammaC\delta 2C\epsilon 2 \end{array}$	120.569 119.862 118.798 119.894	0.590 0.580 0.527 0.607
$\begin{array}{c} C\beta_C\gamma_C\delta2 \\ C\delta1_C\epsilon1_C\zeta \\ C\delta1_C\gamma_C\delta2 \\ C\epsilon1_C\zeta_C\epsilon2 \\ C\gamma_C\delta1_C\epsilon1 \end{array}$	119.886 119.897 118.521 119.840 120.784	1.159 0.614 0.565 0.619 0.600	$C\betaC\gammaC\delta_2$ $C\delta_1C\epsilon_1C\zeta$ $C\delta_1C\gammaC\delta_2$ $C\epsilon_1C\zetaC\epsilon_2$ $C\gammaC\delta_1C\epsilon_1$	120.569 119.862 118.798 119.894 120.768	0.590 0.580 0.527 0.607 0.562
$\begin{array}{c} C\beta_C\gamma_C\delta2 \\ C\delta1_C\epsilon1_C\zeta \\ C\delta1_C\gamma_C\delta2 \\ C\epsilon1_C\zeta_C\epsilon2 \\ C\gamma_C\delta1_C\epsilon1 \\ C\gamma_C\delta2_C\epsilon2 \end{array}$	119.886 119.897 118.521 119.840 120.784 120.989	1.159 0.614 0.565 0.619 0.600 0.612	$\begin{array}{c} C\betaC\gammaC\delta 2 \\ C\delta 1C\epsilon 1C\zeta \\ C\delta 1C\gammaC\delta 2 \\ C\epsilon 1C\zetaC\epsilon 2 \\ C\gammaC\delta 1C\epsilon 1 \\ C\gammaC\delta 2C\epsilon 2 \end{array}$	120.569 119.862 118.798 119.894 120.768 120.766	0.590 0.580 0.527 0.607 0.562 0.570

5.12 TYR

TYI	R p90 n = 5466		TYI	R t80 n = 16312	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	63.561	10.553	chi1	-178.297	10.473
chi2	-89.699	10.123	chi2	75.767	16.674
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.846	1.875	$C\alpha_{-}C\beta_{-}C\gamma$	113.708	2.135
$C\alphaCO$	120.663	0.933	$C\alphaCO$	120.621	0.799
$C\betaC\alphaC$	110.645	1.410	$C\betaC\alphaC$	110.305	1.253
$C\betaC\gammaC\delta 1$	120.995	0.651	$C\beta C\gamma C\delta 1$	120.905	0.663
$C\betaC\gammaC\delta_2$	120.859	0.602	$C\betaC\gammaC\delta 2$	120.836	0.646
$C\delta1_C\epsilon1_C\zeta$	119.526	0.622	$C\delta1_C\epsilon1_C\zeta$	119.513	0.600
$C\delta1C\gammaC\delta2$	118.104	0.554	$C\delta1C\gammaC\delta2$	118.209	0.523
$C\epsilon 1 C\zeta C\epsilon 2$	120.448	0.664	$C\epsilon 1 C\zeta C\epsilon 2$	120.505	0.653
$C\epsilon 1C\zetaOH$	119.792	1.246	$C\epsilon 1 C\zeta OH$	119.748	1.279
$C\gamma C\delta 1C\epsilon 1$	121.166	0.582	$C\gamma_C\delta_1C\epsilon_1$	121.095	0.555
$C\gamma C\delta 2C\epsilon 2$	121.163	0.550	$C\gamma_C\delta_2C\epsilon_2$	121.137	0.560
$C\zetaC\epsilon_2C\delta_2$	119.562	0.624	$C\zeta_C\epsilon_2C\delta_2$	119.508	0.628
$N_C\alpha_C$	111.069	2.657	$N_{-}C\alpha_{-}C$	110.391	2.248
$N_{-}C\alpha_{-}C\beta$	111.212	1.224	$N_{-}C\alpha_{-}C\beta$	110.211	1.442
$\mathrm{OH}_{-}\mathrm{C}\zeta_{-}\mathrm{C}\epsilon 2$	119.743	1.241	$\mathrm{OH}_{-}\mathrm{C}\zeta_{-}\mathrm{C}\epsilon 2$	119.729	1.278
TYR	m-10 n = 2623		TYR	m-80 n = 22683	3
ΥΥR	m-10 n = 2623 Smooth COM	StdDev	χ	m-80 n = 22683 Smooth COM	StdDev
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM -68.127	StdDev 9.935	χ chi1	Smooth COM -66.760	StdDev 10.437
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \end{array}$	Smooth COM -68.127 -14.743	StdDev 9.935 20.169	χ chi1 chi2	Smooth COM -66.760 -80.589	StdDev 10.437 16.848
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM -68.127 -14.743 Mean	StdDev 9.935 20.169 StdDev	χ chi1 chi2 Bond Angle	Smooth COM -66.760 -80.589 Mean	StdDev 10.437 16.848 StdDev
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \\ \end{array}$	Smooth COM -68.127 -14.743 Mean 115.769	9.935 20.169 StdDev 1.568	χ chi1 chi2 Bond Angle $C\alpha C\beta C\gamma$	Smooth COM -66.760 -80.589 Mean 113.205	StdDev 10.437 16.848 StdDev 2.043
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \end{array}$	Smooth COM -68.127 -14.743 Mean 115.769 120.432	9.935 20.169 StdDev 1.568 0.845	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha\text{_C}\beta\text{_C}\gamma \\ \\ \text{C}\alpha\text{_C}\text{_O} \end{array}$	Smooth COM -66.760 -80.589 Mean 113.205 120.442	StdDev 10.437 16.848 StdDev 2.043 0.877
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha\text{_C}\beta\text{_C}\gamma \\ \\ \text{C}\alpha\text{_C_O} \\ \\ \text{C}\beta\text{_C}\alpha\text{_C} \\ \end{array}$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056	9.935 20.169 StdDev 1.568 0.845 1.746	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \end{array}$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_C$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta1$} \end{array}$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580	9.935 20.169 StdDev 1.568 0.845 1.746 1.013	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta_\text{$C\gamma$} \\ \hline \\ \text{$C\alpha$_$C$_$C} \\ \hline \\ \text{$C\beta$_$C$$\alpha$_$C} \\ \hline \\ \text{$C\beta$_$C$$\gamma$_$C$$\delta1} \\ \hline \\ \text{$C\beta$_$C$$\gamma$_$C$$\delta2} \\ \end{array}$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta_\text{$C\gamma$} \\ \hline \\ \text{$C\alpha$_$C$_$C} \\ \hline \\ \text{$C\beta$_$C$$\alpha$_$C} \\ \hline \\ \text{$C\beta$_$C$$\gamma$_$C$$\delta1} \\ \hline \\ \text{$C\beta$_$C$$\gamma$_$C$$\delta2} \\ \hline \\ \text{$C\delta$1$_$C$$\epsilon1$_$C$\zeta} \\ \end{array}$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \hline \\ \text{$C\alpha_C_O$} \\ \hline \\ \text{$C\beta_C\alpha_C$} \\ \hline \\ \text{$C\beta_C\gamma_C\delta1$} \\ \hline \\ \text{$C\beta_C\gamma_C\delta2$} \\ \hline \\ \text{$C\delta1_C\epsilon1_C\zeta$} \\ \hline \\ \text{$C\delta1_C\gamma_C\delta2$} \\ \hline \end{array}$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010	StdDev 9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010 120.405	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570 0.650	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240 120.500	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580 0.733
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010 120.405 120.080	StdDev 9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570 0.650 1.320	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240 120.500 119.719	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580 0.733 1.238
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010 120.405 120.080 121.075	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570 0.650 1.320 0.598	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240 120.500 119.719 121.099	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580 0.733 1.238 0.856
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010 120.405 120.080 121.075 121.325	StdDev 9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570 0.650 1.320 0.598 0.575	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240 120.500 119.719 121.099 121.096	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580 0.733 1.238 0.856 0.860
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010 120.405 120.080 121.075 121.325 119.652	StdDev 9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570 0.650 1.320 0.598 0.575 0.642	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240 120.500 119.719 121.099 121.096 119.515	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580 0.733 1.238 0.856 0.860 0.903

5.13 TRP

TRI	P p90 n = 971		TRP	p-90 n = 1937	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	60.293	9.937	chi1	61.771	9.829
chi2	87.822	14.661	chi2	-89.374	12.891
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	115.031	2.042	$C\alpha_{-}C\beta_{-}C\gamma$	115.039	1.903
$C\alphaCO$	120.569	0.863	$C\alphaCO$	120.457	0.933
$C\betaC\alphaC$	110.664	1.413	$C\betaC\alphaC$	110.457	1.434
$C\betaC\gammaC\delta 1$	127.002	0.699	$C\betaC\gammaC\delta 1$	126.859	0.673
$C\betaC\gammaC\delta_2$	126.749	0.757	$C\betaC\gammaC\delta_2$	126.898	0.711
$C\delta1_C\gamma_C\delta2$	106.201	0.376	$C\delta1_C\gamma_C\delta2$	106.193	0.435
$C\delta 1_N\epsilon 1_C\epsilon 2$	108.926	0.597	$C\delta 1_N\epsilon 1_C\epsilon 2$	108.956	0.459
$C\delta 2 C\epsilon 2 C\zeta 2$	122.451	0.368	$C\delta 2C\epsilon 2C\zeta 2$	122.437	0.342
$C\delta 2_C\epsilon 3_C\zeta 3$	118.690	0.344	$C\delta 2C\epsilon 3C\zeta 3$	118.715	0.472
$C\epsilon 2_C\delta 2_C\epsilon 3$	118.827	0.360	$C\epsilon 2_C\delta 2_C\epsilon 3$	118.806	0.387
$C\epsilon 2_C\delta 2_C\gamma$	107.259	0.313	$C\epsilon 2_C\delta 2_C\gamma$	107.248	0.330
$C\epsilon 3 C\zeta 3C\eta 2$	121.028	0.417	$C\epsilon 3 C\zeta 3C\eta 2$	121.029	0.457
$C\gamma_C\delta_1N\epsilon_1$	110.152	0.498	$C\gamma C\delta 1N\epsilon 1$	110.152	0.461
$C\gamma_{-}C\delta_{2}C\epsilon_{3}$	133.896	0.337	$C\gamma C\delta 2C\epsilon 3$	133.932	0.413
$C\eta_2C\zeta_2C\epsilon_2$	117.467	0.446	$C\eta_2 C\zeta_2 C\epsilon_2$	117.524	0.444
$C\zeta_3 C\eta_2 C\zeta_2$	121.507	0.461	$C\zeta_3 C\eta_2 C\zeta_2$	121.463	0.462
$N\epsilon 1C\epsilon 2C\delta 2$	107.442	0.366	$N\epsilon 1C\epsilon 2C\delta 2$	107.431	0.341
$N\epsilon 1_C\epsilon 2_C\zeta 2$	130.095	0.402	$N\epsilon 1_C\epsilon 2_C\zeta 2$	130.118	0.406
$N_{-}C\alpha_{-}C$	111.204	2.410	$N_{-}C\alpha_{-}C$	112.137	2.597
$N_{-}C\alpha_{-}C\beta$	111.115	1.260	$N_{-}C\alpha_{-}C\beta$	111.096	1.241

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.596 5.367 5tdDev 2.320 0.869 0.328 0.685 0.710 0.425 0.425 0.453 0.363
chi2 64.773 32.759 chi2 -102.575 1 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.267 2.142 $C\alpha_C\beta_C\gamma$ 113.566 2 $C\alpha_C_O$ 120.658 0.805 $C\alpha_C_O$ 120.574 0 $C\beta_C\alpha_C$ 110.556 1.354 $C\beta_C\alpha_C$ 110.338 1 $C\beta_C\gamma_C\delta1$ 127.131 0.791 $C\beta_C\gamma_C\delta1$ 126.901 0 $C\beta_C\gamma_C\delta2$ 126.521 0.816 $C\beta_C\gamma_C\delta2$ 126.744 0 $C\delta1_C\gamma_C\delta2$ 106.292 0.480 $C\delta1_C\gamma_C\delta2$ 106.290 0 $C\delta1_N\epsilon1_C\epsilon2$ 108.908 0.510 $C\delta1_N\epsilon1_C\epsilon2$ 108.932 0 $C\delta2_C\epsilon2_C\zeta2$ 122.396 0.397 $C\delta2_C\epsilon2_C\zeta2$ 122.411 0 $C\delta2_C\epsilon3_C\zeta3$ 118.696 0.418 $C\delta2_C\epsilon3_C\epsilon3$ 118.696 0 $C\epsilon2_C\delta2_C\epsilon3$ 118.868 0.376 $C\epsilon2_C\delta2_C\epsilon3$ 118.847 0	5.367 StdDev 3.320 3.869 3.28 3.685 3.710 3.425 3.453 3.363
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.267 2.142 $C\alpha_C\beta_C\gamma$ 113.566 2 $C\alpha_C_O$ 120.658 0.805 $C\alpha_C_O$ 120.574 0 $C\beta_C\alpha_C$ 110.556 1.354 $C\beta_C\alpha_C$ 110.338 1 $C\beta_C\gamma_C\delta1$ 127.131 0.791 $C\beta_C\gamma_C\delta1$ 126.901 0 $C\beta_C\gamma_C\delta2$ 126.521 0.816 $C\beta_C\gamma_C\delta2$ 126.744 0 $C\delta1_C\gamma_C\delta2$ 106.292 0.480 $C\delta1_C\gamma_C\delta2$ 106.290 0 $C\delta1_N\epsilon1_C\epsilon2$ 108.908 0.510 $C\delta1_N\epsilon1_C\epsilon2$ 108.932 0 $C\delta2_C\epsilon2_C\zeta2$ 122.396 0.397 $C\delta2_C\epsilon2_C\zeta2$ 122.411 0 $C\delta2_C\epsilon3_C\zeta3$ 118.696 0.418 $C\delta2_C\epsilon3_C\epsilon3$ 118.696 0 $C\epsilon2_C\delta2_C\epsilon3$ 118.868 0.376 $C\epsilon2_C\delta2_C\epsilon3$ 118.847 0	3.320 0.869 0.328 0.685 0.710 0.425 0.453 0.363
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.320 0.869 0.328 0.685 0.710 0.425 0.453 0.363
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.869 328 0.685 0.710 0.425 0.453 0.363
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.328 0.685 0.710 0.425 0.453
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.685 0.710 0.425 0.453 0.363
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.710 0.425 0.453 0.363
$\begin{array}{cccccccccccccccccccccccccccccccccccc$).425).453).363
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.453 0.363
$\begin{array}{ccccccccc} C\delta 2 - C\epsilon 2 - C\zeta 2 & 122.396 & 0.397 & C\delta 2 - C\epsilon 2 - C\zeta 2 & 122.411 & 0\\ C\delta 2 - C\epsilon 3 - C\zeta 3 & 118.696 & 0.418 & C\delta 2 - C\epsilon 3 - C\zeta 3 & 118.696 & 0\\ C\epsilon 2 - C\delta 2 - C\epsilon 3 & 118.868 & 0.376 & C\epsilon 2 - C\delta 2 - C\epsilon 3 & 118.847 & 0 \end{array}$.363
$C\delta_2$ _C ϵ_3 _C ζ_3 118.696 0.418 $C\delta_2$ _C ϵ_3 _C ζ_3 118.696 0 $C\epsilon_2$ _C δ_2 _C ϵ_3 118.868 0.376 $C\epsilon_2$ _C δ_2 _C ϵ_3 118.847 0	
$C\epsilon_2 C\delta_2 C\epsilon_3$ 118.868 0.376 $C\epsilon_2 C\delta_2 C\epsilon_3$ 118.847 0	
	0.451
$C\epsilon_2 - C\delta_2 - C\gamma$ 107.260 0.380 $C\epsilon_2 - C\delta_2 - C\gamma$ 107.214 0	0.349
	0.324
$C\epsilon_3 C\zeta_3 C\eta_2$ 120.994 0.476 $C\epsilon_3 C\zeta_3 C\eta_2$ 121.008 0	0.479
$C\gammaC\delta_1N\epsilon_1$ 110.066 0.533 $C\gammaC\delta_1N\epsilon_1$ 110.106 0	0.476
$C\gamma_C\delta2_C\epsilon3$ 133.854 0.427 $C\gamma_C\delta2_C\epsilon3$ 133.922 0	0.366
$C\eta_2 - C\zeta_2 - C\epsilon_2 = 117.487 \qquad 0.458 \qquad C\eta_2 - C\zeta_2 - C\epsilon_2 = 117.507 \qquad 0$.446
$C\zeta_3-C\eta_2-C\zeta_2$ 121.531 0.477 $C\zeta_3-C\eta_2-C\zeta_2$ 121.503 0	0.457
$N\epsilon 1_{-}C\epsilon 2_{-}C\delta 2 = 107.451 = 0.384 = N\epsilon 1_{-}C\epsilon 2_{-}C\delta 2 = 107.437 = 0$.338
$N\epsilon 1_{-}C\epsilon 2_{-}C\zeta 2$ 130.137 0.461 $N\epsilon 1_{-}C\epsilon 2_{-}C\zeta 2$ 130.137 0	.434
· ·	2.424
$N_{-}C\alpha_{-}C\beta$ 109.969 1.424 $N_{-}C\alpha_{-}C\beta$ 110.288 1	.416
TRP $m100 \text{ n} = 6319$ TRP $m-10 \text{ n} = 2196$	
χ Smooth COM StdDev χ Smooth COM S	StdDev
chi1 -67.358 10.774 chi1 -68.163 8	8.989
<u>chi2</u> 97.262 16.989 <u>chi2</u> -7.490 2	1.670
Bond Angle Mean StdDev Bond Angle Mean S	StdDev
$C\alpha_C\beta_C\gamma$ 113.176 2.218 $C\alpha_C\beta_C\gamma$ 114.734 1	.637
$C\alpha_{-}C_{-}O$ 120.433 0.860 $C\alpha_{-}C_{-}O$ 120.481 0	.882
00 0 0 100 000 101 - 00 0 0 100 100	.715
$C\beta_C\alpha_C$ 109.632 1.917 $C\beta_C\alpha_C$ 109.190 1	0.711
$C\beta_{-}C\gamma_{-}C\delta 1$ 127.022 0.664 $C\beta_{-}C\gamma_{-}C\delta 1$ 127.548 0	.767
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.767
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.767 0.445
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$).767).445).452
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376 0.432
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376 0.432
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376 0.432 0.481 0.391
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376 0.432 0.481 0.391
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376 0.432 0.481 0.391 0.467
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376 0.432 0.481 0.391 0.467 0.462

TRP	m-90 n = 961	
χ	Smooth COM	StdDev
chi1	-67.780	12.415
chi2	-89.279	13.788
Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.837	2.475
$C\alphaCO$	120.475	0.855
$C\beta C\alpha C$	109.396	2.035
$C\betaC\gammaC\delta 1$	126.707	0.719
$C\betaC\gammaC\delta 2$	126.952	0.778
$C\delta1_C\gamma_C\delta2$	106.279	0.441
$C\delta1_N\epsilon1_C\epsilon2$	108.930	0.474
$C\delta 2_C\epsilon 2_C\zeta 2$	122.433	0.348
$C\delta 2_C\epsilon 3_C\zeta 3$	118.702	0.453
$C\epsilon 2 C\delta 2 C\epsilon 3$	118.842	0.382
$C\epsilon 2_C\delta 2_C\gamma$	107.196	0.323
$C\epsilon 3 C\zeta 3C\eta 2$	121.019	0.460
$C\gamma_{-}C\delta 1_{-}N\epsilon 1$	110.124	0.496
$C\gamma_{-}C\delta_{2}C\epsilon_{3}$	133.947	0.378
$C\eta_2 C\zeta_2 C\epsilon_2$	117.505	0.430
$C\zeta^{3}$ _ $C\eta^{2}$ _ $C\zeta^{2}$	121.472	0.453
$N\epsilon 1_C\epsilon 2_C\delta 2$	107.451	0.346
$N\epsilon 1_C\epsilon 2_C\zeta 2$	130.101	0.430
$N_{-}C\alpha_{-}C$	110.581	2.879
$N_{-}C\alpha_{-}C\beta$	110.698	1.125

5.14 MET

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
chi2 78.960 10.968 chi2 82.303 4.909 chi3 70.700 9.878 chi3 -154.200 27.756 Bond Angle Mean StdDev Bond Angle Mean StdDev Cα_Cβ_Cγ 115.688 1.786 $Cα_Cβ_Cγ$ 115.400 1.176 Cα_CΩ 120.690 0.904 $Cα_CΩ$ 115.400 1.176 Cα_CΩ 120.690 0.904 $Cα_CΩ$ 115.400 1.176 Cβ_Cα_C 111.199 1.571 $Cβ_Cα_C$ 111.108 0.909 Cβ_Cγ_SD 114.396 2.327 $Cβ_Cα_C$ 111.108 0.909 Cβ_Cγ_SD_Cϵ 100.530 4.023 $Cγ_SD_Cϵ$ 100.847 1.954 N_Cα_C 111.830 2.718 N_Cα_C 110.987 1.836 N_Cα_C 110.925 1.021 N_Cα_C 110.899 0.988 MET ptr n = 260 $χ$ Smooth COM StdDev chi1 64.508 8.469 <
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_{-}C\beta_{-}C\gamma$ 115.688 1.786 $C\alpha_{-}C\beta_{-}C\gamma$ 115.400 1.176 $C\alpha_{-}C_{-}O$ 120.690 0.904 $C\alpha_{-}C_{-}O$ 120.921 0.655 $C\beta_{-}C\alpha_{-}C$ 111.199 1.571 $C\beta_{-}C\alpha_{-}C$ 111.108 0.909 $C\beta_{-}C\gamma_{-}SD$ 114.396 2.327 $C\beta_{-}C\gamma_{-}SD_{-}C\epsilon$ 100.847 1.954 N_{-}C\alpha_{-}C 111.830 2.718 N_{-}C\alpha_{-}C 110.987 1.836 N_{-}C\alpha_{-}C\beta 110.925 1.021 N_{-}C\alpha_{-}C\beta 110.899 0.988 MET ptp n = 404 χ Smooth COM StdDev chi1 64.508 8.469 chi1 65.361 8.250 chi2 -176.358 11.392 chi2 -178.195 9.143 chi3 73.220 11.597 chi3 179.354 15.601 Bond Angle Mean StdDev $C\alpha_{-}C\beta_{-}C\gamma$ 114.719 1.689
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
N_Cα_C 111.830 2.718 N_Cα_C 110.987 1.836 N_Cα_Cβ 110.925 1.021 N_Cα_Cβ 110.899 0.988 MET ptp n = 404 MET ptt n = 260 Description = 260 MET ptt n = 260 Description = 260 MET ptt n = 260 Description = 260 Description = 260 MET ptt n = 260 Description = 260
MET ptp n = 404 MET ptt n = 260 χ Smooth COM StdDev χ Smooth COM StdDev chi1 64.508 8.469 chi1 65.361 8.250 chi2 -176.358 11.392 chi2 -178.195 9.143 chi3 73.220 11.597 chi3 179.354 15.601 Bond Angle Mean StdDev Cα-Cβ-Cγ 114.589 1.803 Cα-Cβ-Cγ 114.719 1.689 Cα-Cβ-Cα-C 120.674 0.921 Cα-Cβ-Cγ 110.343 1.486 Cβ-Cα-C 110.290 1.464 Cβ-Cα-C 110.343 1.486 Cβ-Cγ-SD 112.889 2.185 Cβ-Cγ-SD 111.033 2.395 Cγ-SD-Cε 100.792 1.939 Cγ-SD-Cε 99.817 2.318 N-Cα-C 110.626 2.559 N-Cα-C 111.139 2.697
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.589 1.803 $C\alpha_C\beta_C\gamma$ 114.719 1.689 $C\alpha_C_O$ 120.674 0.921 $C\alpha_C_O$ 120.592 0.945 $C\beta_C\alpha_C$ 110.290 1.464 $C\beta_C\alpha_C$ 110.343 1.486 $C\beta_C\gamma_SD$ 112.889 2.185 $C\beta_C\gamma_SD$ 111.033 2.395 $C\gamma_SD_C\epsilon$ 100.792 1.939 $C\gamma_SD_C\epsilon$ 99.817 2.318 $N_C\alpha_C$ 110.626 2.559 $N_C\alpha_C$ 111.139 2.697
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$C\betaC\alphaC$ 110.290 1.464 $C\betaC\alphaC$ 110.343 1.486 $C\betaC\gammaSD$ 112.889 2.185 $C\betaC\gammaSD$ 111.033 2.395 $C\gammaSDC\epsilon$ 100.792 1.939 $C\gammaSDC\epsilon$ 99.817 2.318 $NC\alphaC$ 110.626 2.559 $NC\alphaC$ 111.139 2.697
Cβ_Cγ_SD 112.889 2.185 Cβ_Cγ_SD 111.033 2.395 Cγ_SD_C ϵ 100.792 1.939 Cγ_SD_C ϵ 99.817 2.318 N_C α _C 110.626 2.559 N_C α _C 111.139 2.697
$C\gamma_SD_C\epsilon$ 100.792 1.939 $C\gamma_SD_C\epsilon$ 99.817 2.318 $N_C\alpha_C$ 110.626 2.559 $N_C\alpha_C$ 111.139 2.697
$N_{-}C\alpha_{-}C$ 110.626 2.559 $N_{-}C\alpha_{-}C$ 111.139 2.697
N_{-} Cα_Cβ 111.047 1.233 N_{-} Cα_Cβ 111.125 1.299
MET $\mathbf{ptm} \ \mathbf{n} = 375$ MET $\mathbf{pmt} \ \mathbf{n} = 7$
χ Smooth COM StdDev χ Smooth COM StdDev
chi1 64.860 8.163 chi1 71.340 3.364
chi2 179.370 10.168 chi2 -74.720 3.186
chi3 -72.053 11.599 chi3 -162.328 4.884
Bond Angle Mean StdDev Bond Angle Mean StdDev
$C\alpha_{-}C\beta_{-}C\gamma$ 114.625 1.646 $C\alpha_{-}C\beta_{-}C\gamma$ 114.786 0.770
$C\alpha_{-}C_{-}O$ 120.634 0.935 $C\alpha_{-}C_{-}O$ 120.997 0.636
$C\beta C\alpha C$ 110.349 1.438 $C\beta C\alpha C$ 111.122 1.130
$C\betaC\gammaSD$ 112.773 2.109 $C\betaC\gammaSD$ 111.744 2.285
$C\gamma_SD_C\epsilon$ 100.903 1.820 $C\gamma_SD_C\epsilon$ 100.246 1.914
$N_{-}C\alpha_{-}C$ 110.872 2.766 $N_{-}C\alpha_{-}C$ 109.009 1.550
N_{-} CαCβ 111.166 1.207 N_{-} CαCβ 111.648 1.281

ME	$T \mathbf{pmm} \ n = 42$		ME	$T \mathbf{tpp} \ n = 1138$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	72.629	7.847	chi1	-174.981	9.366
chi2	-68.668	6.731	chi2	63.633	7.983
chi3	-68.863	8.148	chi3	72.405	12.028
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	115.484	0.858	$C\alphaC\betaC\gamma$	114.191	1.355
$C\alphaCO$	120.618	0.788	$C\alphaCO$	120.501	0.842
$C\betaC\alphaC$	110.176	1.220	$C\betaC\alphaC$	110.324	1.130
$C\betaC\gammaSD$	115.246	2.537	$C\betaC\gammaSD$	113.667	2.023
$C\gamma_SD_C\epsilon$	101.108	1.585	$C\gamma_SD_C\epsilon$	100.683	1.769
$N_{-}C\alpha_{-}C$	112.287	2.688	$N_{-}C\alpha_{-}C$	110.665	2.235
$N_{-}C\alpha_{-}C\beta$	110.768	1.207	$N_{-}C\alpha_{-}C\beta$	110.488	1.169
MI	ET $\mathbf{tpt} \ \mathbf{n} = 388$		ME	$T \mathbf{ttp} \ n = 1246$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-173.452	8.736	chi1	-177.766	8.645
chi2	65.814	7.811	chi2	179.141	11.418
chi3	-156.289	31.222	chi3	71.790	10.585
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.077	1.391	$C\alphaC\betaC\gamma$	113.559	1.653
$C\alphaCO$	120.521	0.742	$C\alphaCO$	120.611	0.853
$C\betaC\alphaC$	110.486	1.134	$C\beta C\alpha C$	110.039	1.168
$C\beta C\gamma SD$	112.447	1.994	$C\beta C\gamma SD$	112.805	2.114
$C\gammaSDC\epsilon$	100.425	2.088	$C\gammaSDC\epsilon$	100.741	2.073
$N_{-}C\alpha_{-}C$	110.446	2.248	$N_{-}C\alpha_{-}C$	110.270	2.150
$N_{-}C\alpha_{-}C\beta$	110.324	1.364	$N_{-}C\alpha_{-}C\beta$	110.378	1.313
MI	ET $\mathbf{ttt} \; \mathbf{n} = 569$		ME	$T \mathbf{ttm} \ n = 1124$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-176.725	8.762	chi1	-175.045	9.346
chi2	176.823	9.513	chi2	179.637	8.225
chi3	176.456	15.483	chi3	-71.855	13.081
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.692	1.716	$C\alphaC\betaC\gamma$	113.533	1.706
$C\alphaCO$	120.590	0.958	$C\alphaCO$	120.521	0.803
$C\betaC\alphaC$	110.139	1.307	$C\beta_{-}C\alpha_{-}C$	109.956	1.173
$C\beta C\gamma SD$	110.615	2.198	$C\betaC\gammaSD$	112.759	2.157
$C\gammaSDC\epsilon$	100.115	1.656	$C\gammaSDC\epsilon$	100.808	1.735
$N_{-}C\alpha_{-}C$	110.201	2.431	$N_{-}C\alpha_{-}C$	110.136	2.395
$N_{-}U\alpha_{-}U$	110.201	4.401	11-04-0	110.100	2.000
$N_{-}C\alpha_{-}C\beta$	110.201	1.385	$N_{-}C\alpha_{-}C\beta$	110.414	1.331

MI	ET $\mathbf{tmt} \ \mathbf{n} = 34$			ME	$T \mathbf{tmm} \ n = 276$	
χ	Smooth COM	StdDev	•	χ	Smooth COM	StdDev
chi1	-179.131	6.701		chi1	-177.257	7.306
chi2	-85.941	7.575		chi2	-81.707	6.798
chi3	173.719	24.401		chi3	-72.167	10.514
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.856	1.126		$C\alphaC\betaC\gamma$	114.995	1.371
$C\alphaCO$	120.669	0.563		$C\alphaCO$	120.520	0.782
$C\betaC\alphaC$	110.695	1.236		$C\betaC\alphaC$	111.023	1.239
$C\betaC\gammaSD$	112.753	1.775		$C\beta_C\gamma_SD$	114.026	2.121
$C\gamma_SD_C\epsilon$	100.340	1.369		$C\gamma_SD_C\epsilon$	100.840	1.640
$N_{-}C\alpha_{-}C$	110.002	2.892		$N_{-}C\alpha_{-}C$	109.902	2.105
$N_{-}C\alpha_{-}C\beta$	110.086	1.223		$N_{-}C\alpha_{-}C\beta$	110.096	1.162
ME	ET mpp n = 74		,	MI	ET mpt $n = 34$	
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev
chi1	-76.610	13.735		chi1	-69.557	11.736
chi2	73.172	12.266		chi2	74.032	10.961
chi3	73.993	11.907		chi3	167.387	18.642
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.617	1.359		$C\alphaC\betaC\gamma$	114.581	0.956
$C\alphaCO$	120.531	0.886		$C\alphaCO$	120.388	0.881
$C\beta C\alpha C$	109.865	1.627		$C\beta C\alpha C$	109.316	1.399
$C\beta C\gamma SD$	114.327	2.245		$C\beta C\gamma SD$	113.183	2.024
$C\gammaSDC\epsilon$	101.176	2.262		$C\gammaSDC\epsilon$	100.105	2.397
$N_C\alpha_C$	110.743	2.686		$N_{-}C\alpha_{-}C$	110.123	2.780
$N_{-}C\alpha_{-}C\beta$	110.760	1.199		$N_{-}C\alpha_{-}C\beta$	110.956	1.118
ME	T mpm $n = 13$			ME	$\Gamma \mathbf{mtp} \ \mathbf{n} = 2815$	
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev
chi1	-77.183	5.132		chi1	-66.650	7.058
chi2	63.994	5.469		chi2	177.074	9.262
chi3	-101.774	5.027		chi3	70.464	10.090
Bond Angle	Mean	StdDev	·	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	116.136	1.018		$C\alphaC\betaC\gamma$	113.148	1.645
$C\alphaCO$	120.662	0.735		$C\alphaCO$	120.492	0.844
$C\beta _C\alpha _C$	109.135	1.274		$C\beta _C\alpha _C$	109.955	1.587
$C\beta C\gamma SD$	115.853	2.314		$C\beta C\gamma SD$	112.850	2.081
$C\gamma_SD_C\epsilon$	100.367	1.563		$C\gamma_SD_C\epsilon$	100.766	1.731
$N_{-}C\alpha_{-}C$	110.742	1.813		$N_{-}C\alpha_{-}C$	111.257	2.348
$NC\alphaC\beta$	111.036	1.046		$N_{-}C\alpha_{-}C\beta$	110.469	1.007

MET $\mathbf{mtt} \ \mathbf{n} = 1542$				
χ	Smooth COM	StdDev		
chi1	-67.154	7.717		
chi2	179.723	8.705		
chi3	-176.816	16.539		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	113.586	1.708		
$C\alphaCO$	120.527	0.825		
$C\betaC\alphaC$	109.380	1.673		
$C\betaC\gammaSD$	110.388	2.192		
$C\gamma_SD_C\epsilon$	100.144	1.974		
$N_C\alpha_C$	111.150	2.271		
$N_{-}C\alpha_{-}C\beta$	110.658	0.996		

$MET \mathbf{mtm} \ n = 1851$			
χ	Smooth COM	StdDev	
chi1	-66.363	7.865	
chi2	-177.825	10.672	
chi3	-73.985	10.774	
Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	113.170	1.716	
$C\alphaCO$	120.494	0.902	
$C\betaC\alphaC$	109.943	1.631	
$C\betaC\gammaSD$	112.920	2.146	
$C\gamma_SD_C\epsilon$	100.758	1.779	
$N_{-}C\alpha_{-}C$	111.074	2.323	
$N_{-}C\alpha_{-}C\beta$	110.665	1.072	

$MET \mathbf{mmp} \ n = 520$				
χ	Smooth COM	StdDev		
chi1	-65.195	5.298		
chi2	-61.634	6.333		
chi3	102.180	9.255		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	114.212	1.410		
$C\alphaCO$	120.324	0.802		
$C\beta C\alpha C$	110.229	1.552		
$C\beta C\gamma SD$	113.849	2.144		
$C\gammaSDC\epsilon$	101.224	2.184		
$N_{-}C\alpha_{-}C$	111.490	2.153		
$N_{-}C\alpha_{-}C\beta$	110.838	1.099		

MET $\mathbf{mmt} \ \mathbf{n} = 597$				
χ	Smooth COM	StdDev		
chi1	-64.971	8.734		
chi2	-63.753	9.443		
chi3	172.207	18.496		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	113.918	1.444		
$C\alphaCO$	120.423	0.802		
$C\beta C\alpha C$	109.926	1.551		
$C\beta C\gamma SD$	112.060	2.042		
$C\gammaSDC\epsilon$	100.263	1.993		
$N_{-}C\alpha_{-}C$	111.450	2.253		
$N_{-}C\alpha_{-}C\beta$	110.610	0.944		

MET mmm $n = 3354$				
χ	Smooth COM	StdDev		
chi1	-65.551	8.867		
chi2	-60.977	8.775		
chi3	-69.165	10.156		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	114.003	1.286		
$C\alphaCO$	120.359	0.857		
$C\betaC\alphaC$	110.042	1.527		
$C\beta C\gamma SD$	113.654	1.948		
$C\gamma_SD_C\epsilon$	100.895	1.737		
$N_{-}C\alpha_{-}C$	111.629	2.379		
$NC\alphaC\beta$	110.711	1.020		

5.15 GLU

GLU	U pp20 n = 159		GLU pt0 $n = 2800$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	61.255	8.074	chi1	65.363	8.357
chi2	85.644	7.983	chi2	-177.309	10.089
chi3	19.654	17.191	chi3	1.201	51.015
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.555	1.282	$C\alphaC\betaC\gamma$	114.597	1.602
$C\alphaCO$	120.440	0.848	$C\alphaCO$	120.524	0.927
$C\betaC\alphaC$	111.591	1.836	$C\betaC\alphaC$	110.513	1.498
$C\betaC\gammaC\delta$	114.078	1.297	$C\betaC\gammaC\delta$	112.902	1.527
$C\gammaC\deltaO\epsilon 1$	119.034	1.429	$C\gammaC\deltaO\epsilon 1$	118.928	1.384
$C\gammaC\deltaO\epsilon 2$	118.356	1.340	$C\gammaC\deltaO\epsilon 2$	118.169	1.352
$N_{-}C\alpha_{-}C$	110.829	2.541	$N_{-}C\alpha_{-}C$	111.272	2.667
$N_{-}C\alpha_{-}C\beta$	111.446	1.254	$N_{-}C\alpha_{-}C\beta$	111.061	1.180
$O\epsilon 1_C\delta_O\epsilon 2$	122.590	1.020	$O\epsilon 1_C\delta_O\epsilon 2$	122.878	1.149
GLU	pm20 n = 1485	5	GLU	U tp30 n = 4616	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	69.039	8.839	chi1	-178.170	9.848
chi2	-84.712	8.551	chi2	64.992	9.169
chi3	15.811	21.665	chi3	25.784	26.065
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.558	1.350	$C\alphaC\betaC\gamma$	114.624	1.386
$C\alphaCO$	120.191	0.834	$C\alphaCO$	120.486	0.798
$C\beta_{-}C\alpha_{-}C$	110.506	1.246	$C\beta C\alpha C$	110.645	1.209
$C\betaC\gammaC\delta$	114.466	1.447	$C\betaC\gammaC\delta$	113.769	1.354
$C\gamma_C\delta_O\epsilon 1$	119.771	1.714	$C\gammaC\deltaO\epsilon 1$	119.284	1.459
$C\gamma_C\delta_O\epsilon_2$	117.692	1.688	$C\gammaC\deltaO\epsilon 2$	118.037	1.380
$N_{-}C\alpha_{-}C$	112.900	1.826	$N_{-}C\alpha_{-}C$	110.857	2.089
$N_{-}C\alpha_{-}C\beta$	110.887	1.055	$N_{-}C\alpha_{-}C\beta$	110.284	1.123
$O\epsilon 1_C\delta_O\epsilon 2$	122.520	1.102	$O\epsilon 1_C\delta_O\epsilon 2$	122.658	1.073
GLU	U tt0 n = 13610		GLU	1 tm-30 n = 862	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-176.677	8.634	chi1	-170.330	8.580
chi2	177.900	10.314	chi2	-83.400	9.158
chi3	1.122	41.445	chi3	-28.718	17.284
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.479	1.738	$C\alphaC\betaC\gamma$	114.520	1.347
$C\alphaCO$	120.579	0.766	$C\alphaCO$	120.511	0.838
$C\betaC\alphaC$	110.135	1.168	$C\betaC\alphaC$	110.969	1.333
$C\betaC\gammaC\delta$	113.090	1.500	$C\betaC\gammaC\delta$	113.819	1.465
$C\gammaC\deltaO\epsilon 1$	118.950	1.273	$C\gammaC\deltaO\epsilon 1$	119.014	1.362
$C\gammaC\deltaO\epsilon 2$	117.962	1.269	$C\gammaC\deltaO\epsilon 2$	118.207	1.249
$N_{-}C\alpha_{-}C$	110.583	2.260	$N_{-}C\alpha_{-}C$	110.226	2.465
$N_{-}C\alpha_{-}C\beta$	110.351	1.366	$NC\alphaC\beta$	110.236	1.156
$O\epsilon 1_C\delta_O\epsilon 2$	123.063	1.067	$O\epsilon 1_C\delta_O\epsilon 2$	122.755	1.171

GLU mp0 $n = 3671$				
Smooth COM	StdDev			
-66.877	7.274			
82.550	9.362			
3.347	27.520			
Mean	StdDev			
114.352	1.344			
120.431	0.818			
109.695	1.424			
114.166	1.404			
119.771	1.659			
117.760	1.471			
112.041	1.999			
110.602	1.057			
122.450	1.179			
	Smooth COM -66.877 82.550 3.347 Mean 114.352 120.431 109.695 114.166 119.771 117.760 112.041 110.602			

GLU mt-10 $n = 21021$				
χ	Smooth COM	StdDev		
chi1	-66.989	7.750		
chi2	179.213	11.417		
chi3	-6.596	37.250		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	113.038	1.846		
$C\alphaCO$	120.491	0.823		
$C\betaC\alphaC$	110.020	1.731		
$C\betaC\gammaC\delta$	113.253	1.500		
$C\gammaC\deltaO\epsilon 1$	119.081	1.288		
$C\gammaC\deltaO\epsilon 2$	117.940	1.286		
$N_{-}C\alpha_{-}C$	111.364	2.321		
$N_C\alpha_C\beta$	110.595	1.004		
$O\epsilon 1_C\delta_O\epsilon 2$	122.955	1.064		

GLU mm-30 $n = 9080$			
χ	Smooth COM	StdDev	
chi1	-66.002	8.689	
chi2	-66.544	10.569	
chi3	-31.662	26.859	
Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.037	1.414	
$C\alphaCO$	120.415	0.828	
$C\beta C\alpha C$	109.927	1.502	
$C\betaC\gammaC\delta$	113.361	1.338	
$C\gamma_C\delta_O\epsilon 1$	119.153	1.345	
$C\gammaC\deltaO\epsilon 2$	118.206	1.265	
$N_C\alpha_C$	111.483	2.356	
$N_C\alpha_C\beta$	110.748	1.014	
$O\epsilon 1_C\delta_O\epsilon 2$	122.622	1.092	

5.16 GLN

GLI	N pp30 n = 178		GLN $\mathbf{pt0}$ n = 1885		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	62.991	7.802	chi1	64.891	8.125
chi2	83.801	8.473	chi2	-177.468	11.284
chi3	29.841	20.903	chi3	-2.755	75.227
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.880	1.278	$C\alphaC\betaC\gamma$	114.518	1.528
$C\alphaCO$	120.321	0.946	$C\alphaCO$	120.546	0.962
$C\betaC\alphaC$	111.398	1.618	$C\betaC\alphaC$	110.361	1.519
$C\betaC\gammaC\delta$	113.604	1.401	$C\betaC\gammaC\delta$	112.497	1.466
$C\gamma_{-}C\delta_{-}N\epsilon_{2}$	116.446	0.892	$C\gammaC\deltaN\epsilon 2$	116.505	0.954
$C\gammaC\deltaO\epsilon 1$	120.885	0.949	$C\gammaC\deltaO\epsilon 1$	120.841	0.973
$N_{-}C\alpha_{-}C$	111.003	2.550	$N_{-}C\alpha_{-}C$	111.263	2.631
$N_{-}C\alpha_{-}C\beta$	111.519	1.154	$NC\alphaC\beta$	110.949	1.178
$O\epsilon 1_C\delta_N\epsilon 2$	122.630	0.669	$O\epsilon 1_C\delta_N\epsilon 2$	122.629	0.748
GLN	$N \ pm20 \ n = 487$		GLI	V tp40 n = 3618	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	69.577	9.904	chi1	-176.823	8.734
chi2	-84.394	9.313	chi2	66.430	8.230
chi3	16.576	32.336	chi3	41.056	24.195
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.686	1.408	$C\alphaC\betaC\gamma$	113.949	1.419
$C\alphaCO$	120.304	0.925	$C\alphaCO$	120.428	0.793
$C\betaC\alphaC$	110.423	1.352	$C\beta _C\alpha _C$	110.237	1.153
$C\betaC\gammaC\delta$	113.925	1.430	$C\betaC\gammaC\delta$	112.883	1.238
$C\gamma_C\delta_N\epsilon_2$	116.256	0.863	$C\gamma_C\delta_N\epsilon_2$	116.593	0.838
$C\gammaC\deltaO\epsilon 1$	121.254	0.986	$C\gamma C\delta O\epsilon 1$	120.792	0.874
$N_{-}C\alpha_{-}C$	112.420	2.222	$NC\alphaC$	111.017	2.005
$N_{-}C\alpha_{-}C\beta$	111.150	1.131	$NC\alphaC\beta$	110.571	1.130
$O\epsilon 1_C\delta_N\epsilon 2$	122.470	0.718	$O\epsilon 1_C\delta_N\epsilon 2$	122.594	0.646
GLN	tp-100 n = 534	!	GL	N tt0 n = 6936	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-176.963	8.680	chi1	-176.317	8.500
chi2	62.135	8.823	chi2	177.556	10.804
chi3	-104.704	27.530	chi3	2.032	60.871
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.443	1.567	$C\alphaC\betaC\gamma$	113.566	1.797
$C\alphaCO$	120.563	0.834	$C\alphaCO$	120.576	0.762
$C\betaC\alphaC$	110.517	1.240	$C\betaC\alphaC$	110.144	1.180
$C\betaC\gammaC\delta$	113.047	1.311	$C\betaC\gammaC\delta$	112.612	1.504
$C\gammaC\deltaN\epsilon 2$	116.553	0.949	$C\gammaC\deltaN\epsilon 2$	116.455	0.840
$C\gammaC\deltaO\epsilon 1$	120.860	0.852	$C\gammaC\deltaO\epsilon 1$	120.819	0.883
$N_{-}C\alpha_{-}C$	110.364	2.260	$N_{-}C\alpha_{-}C$	110.448	2.271
$N_{-}C\alpha_{-}C\beta$	110.382	1.236	$NC\alphaC\beta$	110.304	1.362
$O\epsilon 1_C\delta_N\epsilon 2$	122.560	0.637	$O\epsilon 1_C\delta_N\epsilon 2$	122.701	0.714

GLN	V tm130 n = 55		GLN	$t_{m-30 \text{ n}} = 547$	
$\overline{\chi}$	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-171.730	9.735	chi1	-171.950	10.144
chi2	-75.893	10.370	chi2	-85.646	10.982
chi3	127.247	16.058	chi3	-29.401	20.284
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.897	1.440	$C\alpha_{-}C\beta_{-}C\gamma$	114.618	1.348
$C\alphaCO$	120.546	0.938	$C\alphaCO$	120.534	0.826
$C\betaC\alphaC$	111.262	1.629	$C\betaC\alphaC$	110.944	1.310
$C\betaC\gammaC\delta$	114.423	2.701	$C\betaC\gammaC\delta$	113.510	1.404
$C\gamma_{-}C\delta_{-}N\epsilon_{2}$	117.082	1.285	$C\gamma_{-}C\delta_{-}N\epsilon_{2}$	116.459	0.713
$C\gamma_{-}C\delta_{-}O\epsilon 1$	120.469	1.172	$C\gamma_{-}C\delta_{-}O\epsilon 1$	120.874	0.812
$N_{C}\alpha_{C}$	108.797	3.399	$N_{-}C\alpha_{-}C$	110.153	2.506
$N_{-}C\alpha_{-}C\beta$	110.136	1.370	$N_{-}C\alpha_{-}C\beta$	110.287	1.242
$O\epsilon 1 C\delta N\epsilon 2$	122.423	0.743	$O_{\epsilon 1}C_{\delta}N_{\epsilon 2}$	122.641	0.676
	mp10 n = 1207			mp-120 n = 87	
$\frac{\chi}{\chi}$	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-66.517	8.985	chi1	-72.531	9.965
chi2	81.837	11.441	chi2	69.333	11.372
chi3	17.344	37.547	chi3	-119.632	13.002
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.240	1.363	$C\alpha_{-}C\beta_{-}C\gamma$	114.359	1.549
$C\alpha_{-}C_{-}O$	120.433	0.836	$C\alpha_{-}C\beta_{-}C\gamma$	120.487	0.882
$C\betaC\alphaC$	109.775	1.525	$C\betaC\alphaC$	109.672	1.790
$C\beta C\alpha C$	113.448	1.323 1.294	$C\beta C\alpha C$	113.610	1.567
$C\gammaC\deltaN\epsilon_2$	116.318	0.819	$C\gamma_{-}C\delta_{-}N\epsilon_{2}$	116.625	0.650
$C\gamma_{-}C\delta_{-}O\epsilon 1$	121.139	0.951	$C\gamma_{-}C\delta_{-}O\epsilon 1$	120.632	1.086
N_Cα_C	111.608	2.346	N_Cα_C	111.577	2.757
$N_{C}\alpha_{C}\beta$	110.830	1.095	$N_{-}C\alpha_{-}C\beta$	110.738	1.006
$O\epsilon 1 C\delta N\epsilon 2$	122.522	0.603	$O_{\epsilon 1}C_{\delta}N_{\epsilon 2}$	122.722	0.842
	$\frac{\text{mt0 n} = 14370}{\text{mt0 n} = 14370}$			mm110 n = 114	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-66.588	7.494	chi1	-65.092	8.598
chi2	179.220	11.203	chi2	-62.550	10.868
chi3	-3.560	62.564	chi3	109.265	24.134
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.241	1.815	$C\alphaC\betaC\gamma$	113.964	1.562
$C\alphaCO$	120.494	0.850	$C\alphaCO$	120.379	0.849
$C\betaC\alphaC$	109.919	1.708	$C\betaC\alphaC$	109.984	1.528
$C\betaC\gammaC\delta$	112.644	1.530	$C\betaC\gammaC\delta$	112.879	1.429
$C\gamma_C\delta_N\epsilon_2$	116.444	0.847	$C\gammaC\deltaN\epsilon_2$	116.587	0.920
$C\gammaC\deltaO\epsilon 1$	120.849	0.897	$C\gammaC\deltaO\epsilon 1$	120.788	0.941
$N_{-}C\alpha_{-}C$	111.415	2.256	$N_{-}C\alpha_{-}C$	111.589	2.280
$N_{-}C\alpha_{-}C\beta$	110.567	1.042	$N_{-}C\alpha_{-}C\beta$	110.721	1.066
$O\epsilon 1 C\delta N\epsilon 2$	122.680	0.696	$O\epsilon 1_C\delta_N\epsilon 2$	122.597	0.683

GLN	mm-40 n = 595	9
χ	Smooth COM	StdDev
chi1	-63.698	8.629
chi2	-66.032	10.427
chi3	-38.665	24.730
Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.884	1.423
$C\alphaCO$	120.457	0.869
$C\betaC\alphaC$	109.908	1.491
$C\betaC\gammaC\delta$	112.838	1.280
$C\gamma_C\delta_N\epsilon_2$	116.518	0.909
$C\gammaC\deltaO\epsilon 1$	120.856	0.911
$N_{-}C\alpha_{-}C$	111.383	2.451
$N_C\alpha_C\beta$	110.631	1.036
$O\epsilon 1_C\delta_N\epsilon 2$	122.604	0.776

5.17 ARG

ARC	G ppp80 n = 10		ARG	ppp-140 n = 4	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	62.201	5.082	chi1	58.431	3.025
chi2	86.595	6.961	chi2	91.756	4.604
chi3	57.216	3.753	chi3	62.263	10.579
chi4	79.687	8.472	chi4	-143.455	12.578
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	116.109	0.884	$C\alphaC\betaC\gamma$	115.223	0.896
$C\alphaCO$	120.837	0.551	$C\alphaCO$	120.687	0.538
$C\betaC\alphaC$	111.013	1.509	$C\betaC\alphaC$	111.973	1.456
$C\betaC\gammaC\delta$	113.944	0.819	$C\betaC\gammaC\delta$	112.231	1.497
$C\delta_N\epsilon_C\zeta$	125.029	0.341	$C\deltaN\epsilonC\zeta$	125.872	1.184
$C\gammaC\deltaN\epsilon$	112.507	1.082	$C\gammaC\deltaN\epsilon$	113.783	2.259
$N\epsilonC\zetaN\eta 1$	120.628	0.683	$N\epsilonC\zetaN\eta 1$	120.992	1.242
$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.754	0.628	$N\epsilon_{-}C\zeta_{-}N\eta 2$	120.128	1.383
$N\eta 1_C\zeta_N\eta 2$	119.607	0.318	$N\eta 1_C\zeta_N\eta 2$	118.855	0.611
$N_{-}C\alpha_{-}C$	111.134	2.176	$N_{-}C\alpha_{-}C$	113.626	2.343
$N_{-}C\alpha_{-}C\beta$	111.870	1.188	$N_{-}C\alpha_{-}C\beta$	111.211	1.258
ARG $ppt170 \text{ n} = 57$		$ARG \mathbf{ppt90} \ n = 19$			
ARG	$\frac{1}{10} \text{ ppt170 n} = 57$		ARG	3 ppt90 n = 19	
$\frac{\lambda}{\chi}$	$\begin{array}{c} \mathbf{ppt170} \ \mathbf{n} = 57 \\ \mathbf{Smooth} \ \mathbf{COM} \end{array}$	StdDev	χ	Smooth COM	StdDev
					StdDev 5.887
χ chi1 chi2	Smooth COM	StdDev	χ	Smooth COM	
χ chi1 chi2 chi3	Smooth COM 59.128 87.628 173.545	9.858 12.300 12.300	χ chi1 chi2 chi3	Smooth COM 63.537 99.251 -179.890	5.887 7.971 9.835
χ chi1 chi2	Smooth COM 59.128 87.628	9.858 12.300	χ chi1 chi2	Smooth COM 63.537 99.251	5.887 7.971
χ chi1 chi2 chi3	Smooth COM 59.128 87.628 173.545	9.858 12.300 12.300	χ chi1 chi2 chi3	Smooth COM 63.537 99.251 -179.890	5.887 7.971 9.835
chi1 chi2 chi3 chi4	Smooth COM 59.128 87.628 173.545 173.353	9.858 12.300 12.300 17.309	chi1 chi2 chi3 chi4	Smooth COM 63.537 99.251 -179.890 87.261	5.887 7.971 9.835 12.995
χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$	Smooth COM 59.128 87.628 173.545 173.353 Mean	9.858 12.300 12.300 17.309 StdDev	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha CO$	Smooth COM 63.537 99.251 -179.890 87.261 Mean	5.887 7.971 9.835 12.995 StdDev
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$_$C}\beta$_$C}\gamma \\ \hline \text{$\text{C}\alpha$_C_$O} \\ \hline \text{$\text{C}\beta$_$C}\alpha$_$C} \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237	9.858 12.300 12.300 17.309 StdDev 1.393	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ O$ $C\beta _ C\alpha _ C$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366	5.887 7.971 9.835 12.995 StdDev 1.885
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372	9.858 12.300 12.300 17.309 StdDev 1.393 1.040	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762	5.887 7.971 9.835 12.995 StdDev 1.885 0.834
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_C$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\beta_N\epsilon_C\zeta$} \\ \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372 111.948 112.408 124.240	9.858 12.300 12.300 17.309 StdDev 1.393 1.040 1.371 1.628 1.282	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762 110.804 111.852 125.397	5.887 7.971 9.835 12.995 StdDev 1.885 0.834 1.700 2.407 1.126
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \text{$\text{C}\alpha_\text{C}_\text{C}$} \\ \text{$\text{C}\beta_\text{C}\alpha_\text{C}$} \\ \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372 111.948 112.408 124.240 111.386	9.858 12.300 12.300 17.309 StdDev 1.393 1.040 1.371 1.628 1.282 1.601	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \hline \text{$\text{C}\alpha_\text{C}_\text{C}$} \\ \hline \text{$\text{C}\beta_\text{C}\alpha_\text{C}$} \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \hline \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \hline \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762 110.804 111.852 125.397 113.143	5.887 7.971 9.835 12.995 StdDev 1.885 0.834 1.700 2.407 1.126 2.891
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \text{$\text{C}\alpha_\text{C}_\text{C}$} \\ \text{$\text{C}\beta_\text{C}\alpha_\text{C}$} \\ \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \text{$\text{N}\epsilon_\text{C}\zeta_\text{N}\eta1$} \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372 111.948 112.408 124.240 111.386 120.500	9.858 12.300 12.300 17.309 StdDev 1.393 1.040 1.371 1.628 1.282 1.601 1.081	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \text{$\text{C}\alpha_\text{C}_\text{O}$} \\ \text{$\text{C}\beta_\text{C}\alpha_\text{C}$} \\ \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \text{$\text{N}\epsilon_\text{C}\zeta_\text{N}\eta1$} \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762 110.804 111.852 125.397 113.143 120.860	5.887 7.971 9.835 12.995 StdDev 1.885 0.834 1.700 2.407 1.126
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \text{$\text{C}\alpha_\text{C}_\text{C}$} \\ \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \text{$\text{N}\epsilon_\text{C}\zeta_\text{N}\eta 1$} \\ \text{$\text{N}\epsilon_\text{C}\zeta_\text{N}\eta 2$} \\ \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372 111.948 112.408 124.240 111.386	9.858 12.300 12.300 17.309 StdDev 1.393 1.040 1.371 1.628 1.282 1.601	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{Cα_Cβ_C$\gamma} \\ \text{C$\alpha$_C$_O} \\ \text{Cβ_Cα_C} \\ \text{Cβ_Cγ_C$\delta} \\ \text{C$\delta$_N$\epsilon$_C$\zeta} \\ \text{Cγ_Cδ_N$\epsilon} \\ \text{N$\epsilon$_C$\zeta} \\ \text{Nϵ_C$\zeta} \\ \text{N$\eta$$1} \\ \text{Nϵ_Cζ_N$\eta$$2} \\ \hline \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762 110.804 111.852 125.397 113.143	5.887 7.971 9.835 12.995 StdDev 1.885 0.834 1.700 2.407 1.126 2.891
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372 111.948 112.408 124.240 111.386 120.500	9.858 12.300 12.300 17.309 StdDev 1.393 1.040 1.371 1.628 1.282 1.601 1.081	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762 110.804 111.852 125.397 113.143 120.860	5.887 7.971 9.835 12.995 StdDev 1.885 0.834 1.700 2.407 1.126 2.891 1.089
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \text{$\text{C}\alpha_\text{C}_\text{C}$} \\ \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \text{$\text{N}\epsilon_\text{C}\zeta_\text{N}\eta 1$} \\ \text{$\text{N}\epsilon_\text{C}\zeta_\text{N}\eta 2$} \\ \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372 111.948 112.408 124.240 111.386 120.500 119.821	StdDev 9.858 12.300 12.300 17.309 StdDev 1.393 1.040 1.371 1.628 1.282 1.601 1.081 0.871	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{Cα_Cβ_C$\gamma} \\ \text{C$\alpha$_C$_O} \\ \text{Cβ_Cα_C} \\ \text{Cβ_Cγ_C$\delta} \\ \text{C$\delta$_N$\epsilon$_C$\zeta} \\ \text{Cγ_Cδ_N$\epsilon} \\ \text{N$\epsilon$_C$\zeta} \\ \text{Nϵ_C$\zeta} \\ \text{N$\eta$$1} \\ \text{Nϵ_Cζ_N$\eta$$2} \\ \hline \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762 110.804 111.852 125.397 113.143 120.860 119.873	5.887 7.971 9.835 12.995 StdDev 1.885 0.834 1.700 2.407 1.126 2.891 1.089 1.094

	1 1 00 15		4.D.C	1 1 00 000	
ARC	$\frac{2}{3} \text{ ppt-90 } n = 15$		ARG	$\frac{1}{2}$ ptp90 n = 223	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	61.770	9.125	chi1	65.165	9.396
chi2	90.213	11.134	chi2	178.845	11.322
chi3	177.663	5.499	chi3	64.039	8.635
chi4	-92.246	14.372	chi4	87.873	11.117
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.763	1.382	$C\alphaC\betaC\gamma$	114.956	1.706
$C\alphaCO$	120.637	0.931	$C\alphaCO$	120.464	0.957
$C\betaC\alphaC$	111.235	1.747	$C\betaC\alphaC$	110.461	1.385
$C\betaC\gammaC\delta$	113.040	1.278	$C\betaC\gammaC\delta$	111.807	1.560
$C\delta_N\epsilon_C\zeta$	124.988	0.738	$C\delta_N\epsilon_C\zeta$	124.916	1.152
$C\gamma_C\delta_N\epsilon$	111.689	1.956	$C\gammaC\deltaN\epsilon$	112.153	2.179
$N\epsilon C\zeta N\eta 1$	120.569	1.315	$N\epsilon C\zeta N\eta 1$	120.771	1.065
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.890	1.166	$N\epsilonC\zetaN\eta 2$	119.714	0.970
$N\eta 1_C\zeta_N\eta 2$	119.520	0.600	$N\eta 1C\zetaN\eta 2$	119.498	0.797
$N_{-}C\alpha_{-}C$	111.578	3.116	$N_{-}C\alpha_{-}C$	110.918	2.815
$N_C\alpha_C\beta$	111.579	1.236	$N_{-}C\alpha_{-}C\beta$	111.106	1.187
ARG	ptp-110 n = 77	7	,	ptp-170 n = 386	
$\frac{\lambda}{\chi}$		StdDev	,		
	ptp-110 n = 77		ARG	ptp-170 n = 38	8
χ	ptp-110 n = 77 Smooth COM	StdDev	$\frac{\lambda}{\chi}$	ptp-170 n = 38 Smooth COM	8 StdDev
$\frac{\chi}{\text{chi1}}$	ptp-110 n = 77 Smooth COM 67.597	StdDev 8.250	$\frac{\chi}{\text{chi1}}$	ptp-170 n = 38 Smooth COM 67.375	8 StdDev 7.654
χ chi1 chi2	ptp-110 n = 77 Smooth COM 67.597 -179.670	StdDev 8.250 11.900	$\begin{array}{c} \lambda \\ \chi \\ \text{chi1} \\ \text{chi2} \end{array}$	ptp-170 n = 38 Smooth COM 67.375 -175.630	8 StdDev 7.654 12.219
χ chi1 chi2 chi3	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784	8.250 11.900 10.049	ARG	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232	8 StdDev 7.654 12.219 9.651
chi1 chi2 chi3 chi4	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305	8.250 11.900 10.049 9.865	$\begin{array}{c} \lambda \\ \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \end{array}$	ptp-170 n = 386 Smooth COM 67.375 -175.630 68.232 -172.286	8 StdDev 7.654 12.219 9.651 15.957
χ chi1 chi2 chi3 chi4 Bond Angle	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean	8.250 11.900 10.049 9.865 StdDev	ARG $ \begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \end{array} $ Bond Angle $ \begin{array}{c} \text{C}\alpha_{\text{-}}\text{C}\beta_{\text{-}}\text{C}\gamma \\ \text{C}\alpha_{\text{-}}\text{C}_{\text{-}}\text{O} \end{array} $	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean	8 StdDev 7.654 12.219 9.651 15.957 StdDev
χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792	8.250 11.900 10.049 9.865 StdDev 1.933	ARG $\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha\text{_C}\beta\text{_C}\gamma \end{array}$	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$_$C}\beta$_$C}\gamma \\ \hline \text{$\text{C}\alpha$_C_$O} \end{array}$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741	8.250 11.900 10.049 9.865 StdDev 1.933 1.224	ARG $ \begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \end{array} $ Bond Angle $ \begin{array}{c} \text{C}\alpha_{\text{-}}\text{C}\beta_{\text{-}}\text{C}\gamma \\ \text{C}\alpha_{\text{-}}\text{C}_{\text{-}}\text{O} \end{array} $	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ \end{array}$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741 110.403	8.250 11.900 10.049 9.865 StdDev 1.933 1.224 1.416	ARG χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C _ C$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563 110.408	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963 1.567
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \hline \\ \hline \text{$\text{C}\alpha_\text{C}_{-}\text{C} \text{C}$} \\ \hline \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \\ \hline \\ \hline \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \hline \\ \hline \\ \hline \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \hline \end{array}$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741 110.403 111.895	8.250 11.900 10.049 9.865 StdDev 1.933 1.224 1.416 1.473 1.443 2.285	ARG χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C _ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$ $C\gamma _ C\delta _ N\epsilon$	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563 110.408 111.291 124.582 111.416	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963 1.567 1.743
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \end{array}$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741 110.403 111.895 125.606 111.728 120.996	8.250 11.900 10.049 9.865 StdDev 1.933 1.224 1.416 1.473 1.443 2.285 1.421	ARG $ \chi $ chi1 chi2 chi3 chi4 Bond Angle $ C\alpha_{-}C\beta_{-}C\gamma $ $ C\alpha_{-}C_{-}CO $ $ C\beta_{-}C\alpha_{-}C $ $ C\beta_{-}C\gamma_{-}C\delta $ $ C\delta_{-}N\epsilon_{-}C\zeta $ $ C\gamma_{-}C\delta_{-}N\epsilon $ $ N\epsilon_{-}C\zeta_{-}N\eta_{1}$	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563 110.408 111.291 124.582 111.416 120.454	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963 1.567 1.743 1.140 1.628 0.937
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \hline \\ \text{$C\alpha_C_O$} \\ \hline \\ \text{$C\beta_C\alpha_C$} \\ \hline \\ \text{$C\beta_C\gamma_C\delta$} \\ \hline \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \hline \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \hline \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \hline \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \hline \end{array}$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741 110.403 111.895 125.606 111.728 120.996 119.559	8.250 11.900 10.049 9.865 StdDev 1.933 1.224 1.416 1.473 1.443 2.285 1.421 1.566	ARG $ \chi $ chi1 chi2 chi3 chi4 Bond Angle $ C\alpha_{-}C\beta_{-}C\gamma $ $ C\alpha_{-}C_{-}O $ $ C\beta_{-}C\alpha_{-}C $ $ C\beta_{-}C\gamma_{-}C\delta $ $ C\delta_{-}N\epsilon_{-}C\zeta $ $ C\gamma_{-}C\delta_{-}N\epsilon $ $ N\epsilon_{-}C\zeta_{-}N\eta_{1} $ $ N\epsilon_{-}C\zeta_{-}N\eta_{2} $	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563 110.408 111.291 124.582 111.416 120.454 119.760	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963 1.567 1.743 1.140 1.628 0.937 0.930
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741 110.403 111.895 125.606 111.728 120.996 119.559 119.421	8.250 11.900 10.049 9.865 StdDev 1.933 1.224 1.416 1.473 1.443 2.285 1.421 1.566 1.129	ARG $ \chi $ chi1 chi2 chi3 chi4 Bond Angle $ C\alpha_{-}C\beta_{-}C\gamma $ $ C\alpha_{-}C_{-}C $ $ C\beta_{-}C\alpha_{-}C $ $ C\beta_{-}C\gamma_{-}C\delta $ $ C\delta_{-}N\epsilon_{-}C\zeta $ $ C\gamma_{-}C\delta_{-}N\epsilon $ $ N\epsilon_{-}C\zeta_{-}N\eta 1 $ $ N\epsilon_{-}C\zeta_{-}N\eta 2 $	ptp-170 n = 380 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563 110.408 111.291 124.582 111.416 120.454 119.760 119.756	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963 1.567 1.743 1.140 1.628 0.937 0.930 0.920
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \hline \\ \text{$C\alpha_C_O$} \\ \hline \\ \text{$C\beta_C\alpha_C$} \\ \hline \\ \text{$C\beta_C\gamma_C\delta$} \\ \hline \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \hline \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \hline \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \hline \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \hline \end{array}$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741 110.403 111.895 125.606 111.728 120.996 119.559	8.250 11.900 10.049 9.865 StdDev 1.933 1.224 1.416 1.473 1.443 2.285 1.421 1.566	ARG $ \chi $ chi1 chi2 chi3 chi4 Bond Angle $ C\alpha_{-}C\beta_{-}C\gamma $ $ C\alpha_{-}C_{-}O $ $ C\beta_{-}C\alpha_{-}C $ $ C\beta_{-}C\gamma_{-}C\delta $ $ C\delta_{-}N\epsilon_{-}C\zeta $ $ C\gamma_{-}C\delta_{-}N\epsilon $ $ N\epsilon_{-}C\zeta_{-}N\eta_{1} $ $ N\epsilon_{-}C\zeta_{-}N\eta_{2} $	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563 110.408 111.291 124.582 111.416 120.454 119.760	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963 1.567 1.743 1.140 1.628 0.937 0.930

	ptt180 n = 820	1		G ptt90 n = 814	
					Q. 1D
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	65.305	8.301	chi1	64.935	7.600
chi2	-177.454	10.432	chi2	178.802	12.292
chi3	-179.814	10.417	chi3	176.614	8.719
chi4	179.152	17.466	chi4	87.625	9.814
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.577	1.525	$C\alphaC\betaC\gamma$	114.818	1.433
$C\alphaCO$	120.578	1.008	$C\alphaCO$	120.575	0.864
$C\betaC\alphaC$	110.520	1.503	$C\betaC\alphaC$	110.208	1.412
$C\betaC\gammaC\delta$	111.129	2.013	$C\betaC\gammaC\delta$	110.988	1.946
$C\delta_N\epsilon_C\zeta$	124.433	1.099	$C\delta_N\epsilon_C\zeta$	124.876	0.920
$C\gamma_C\delta_N\epsilon$	110.745	1.990	$C\gammaC\deltaN\epsilon$	111.873	2.472
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.477	0.941	$N\epsilonC\zetaN\eta 1$	120.762	0.988
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.617	0.893	$N\epsilonC\zetaN\eta 2$	119.679	0.912
$N\eta_1 C\zeta N\eta_2$	119.887	0.877	$N\eta 1C\zetaN\eta 2$	119.540	0.696
$N_{-}C\alpha_{-}C$	111.325	2.492	$N_{-}C\alpha_{-}C$	110.780	2.513
$N_C\alpha_C\beta$	111.010	1.124	$N_{-}C\alpha_{-}C\beta$	111.050	1.153
ARG	ptt-90 n = 726		,	ptm160 n = 50	2
ARG	ptt-90 n = 726 Smooth COM	StdDev	,		2 StdDev
	-		ARG	ptm160 n = 50	
χ	Smooth COM	StdDev	$\frac{\lambda}{\chi}$	ptm160 n = 50 Smooth COM	StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM 66.303	StdDev 7.908	$\frac{\chi}{\text{chi1}}$	ptm160 n = 50 Smooth COM 63.484	StdDev 8.731
χ chi1 chi2	Smooth COM 66.303 -175.118	StdDev 7.908 12.037	ARG χ chi1 chi2	ptm160 n = 50 Smooth COM 63.484 -179.108	StdDev 8.731 14.966
χ chi1 chi2 chi3	Smooth COM 66.303 -175.118 -176.524	7.908 12.037 8.892	ARG χ chi1 chi2 chi3	ptm160 n = 50 Smooth COM 63.484 -179.108 -67.148	8.731 14.966 9.716
χ chi1 chi2 chi3 chi4	Smooth COM 66.303 -175.118 -176.524 -87.098	7.908 12.037 8.892 11.825	$\begin{array}{c} \text{ARG} \\ \hline \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \end{array}$	ptm160 n = 50 Smooth COM 63.484 -179.108 -67.148 165.337	8.731 14.966 9.716 25.706
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$_$C}\beta$_$C}\gamma \\ \hline \text{$\text{C}\alpha$_$C}_2\text{CO} \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean	7.908 12.037 8.892 11.825 StdDev	ARG $\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ \end{array}$	ptm160 n = 50 Smooth COM 63.484 -179.108 -67.148 165.337 Mean	8.731 14.966 9.716 25.706 StdDev
χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840	7.908 12.037 8.892 11.825 StdDev 1.508	ARG $ \begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \end{array} $ Bond Angle $ \begin{array}{c} \text{C}\alpha_\text{C}\beta_\text{C}\gamma \end{array} $	ptm160 n = 50 Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588	8.731 14.966 9.716 25.706 StdDev 1.635
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$_$C}\beta$_$C}\gamma \\ \hline \text{$\text{C}\alpha$_$C}_2\text{CO} \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486	7.908 12.037 8.892 11.825 StdDev 1.508 0.935	ARG $\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ \end{array}$	ptm160 n = 50 Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504	8.731 14.966 9.716 25.706 StdDev 1.635 0.978
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486 110.455	7.908 12.037 8.892 11.825 StdDev 1.508 0.935 1.554	ARG $ \begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \end{array} $ Bond Angle $ \begin{array}{c} \text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma \\ \text{C}\alpha_{-}\text{C}_{-}\text{O} \\ \text{C}\beta_{-}\text{C}\alpha_{-}\text{C} \end{array} $	ptm160 n = 50 Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504 110.438	8.731 14.966 9.716 25.706 StdDev 1.635 0.978 1.556
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$-C\beta$-$Cγ} \\ \text{$C\alpha$-C_{-}C$} \\ \text{$C\beta$-$Cα-C} \\ \text{$C\beta$-C\gamma$-$Cδ} \\ \text{$C\delta$-N\epsilon$-$Cζ} \\ \text{$C\gamma$-C\delta$-$Nϵ} \\ \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486 110.455 110.983	7.908 12.037 8.892 11.825 StdDev 1.508 0.935 1.554 2.037	ARG χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C _ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$ $C\gamma _ C\delta _ N\epsilon$	ptm160 n = 50 Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504 110.438 111.713	8.731 14.966 9.716 25.706 StdDev 1.635 0.978 1.556 1.805
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486 110.455 110.983 124.865 111.656 120.763	7.908 12.037 8.892 11.825 StdDev 1.508 0.935 1.554 2.037 1.144 2.664 1.014	ARG $ \chi $ chi1 chi2 chi3 chi4 Bond Angle $ C\alpha_{-}C\beta_{-}C\gamma $ $ C\alpha_{-}C_{-}O $ $ C\beta_{-}C\alpha_{-}C $ $ C\beta_{-}C\gamma_{-}C\delta $ $ C\delta_{-}N\epsilon_{-}C\zeta $ $ C\gamma_{-}C\delta_{-}N\epsilon $ $ N\epsilon_{-}C\zeta_{-}N\eta_{1}$	ptm160 n = 50 Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504 110.438 111.713 124.678 111.548 120.580	StdDev 8.731 14.966 9.716 25.706 StdDev 1.635 0.978 1.556 1.805 1.394 2.110 1.282
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta_\text{$C\gamma$} \\ \text{$C\alpha$_$C$_$C} \\ \text{$C\beta$_$C}\alpha_\text{$C$} \\ \text{$C\beta$_$C}\gamma_\text{$C\delta$} \\ \text{$C\delta$_$N$$\epsilon$_$C$\zeta} \\ \text{$C\gamma$_$Cδ_N\epsilon$_$C$\zeta} \\ \text{$C\gamma$_$Cδ_N\epsilon$} \\ \text{$N\epsilon$_$Cζ_N\eta$1} \\ \text{$N\epsilon$_$Cζ_N\eta$2} \\ \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486 110.455 110.983 124.865 111.656 120.763 119.688	7.908 12.037 8.892 11.825 StdDev 1.508 0.935 1.554 2.037 1.144 2.664 1.014 1.138	ARG $ \chi $ chi1 chi2 chi3 chi4 Bond Angle $ C\alpha_{-}C\beta_{-}C\gamma $ $ C\alpha_{-}C_{-}O $ $ C\beta_{-}C\alpha_{-}C $ $ C\beta_{-}C\gamma_{-}C\delta $ $ C\delta_{-}N\epsilon_{-}C\zeta $ $ C\gamma_{-}C\delta_{-}N\epsilon $ $ N\epsilon_{-}C\zeta_{-}N\eta_{1} $ $ N\epsilon_{-}C\zeta_{-}N\eta_{2} $	ptm160 n = 50 Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504 110.438 111.713 124.678 111.548 120.580 119.717	8.731 14.966 9.716 25.706 StdDev 1.635 0.978 1.556 1.805 1.394 2.110 1.282 1.123
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_C$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \text{$N\eta1_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486 110.455 110.983 124.865 111.656 120.763 119.688 119.527	7.908 12.037 8.892 11.825 StdDev 1.508 0.935 1.554 2.037 1.144 2.664 1.014 1.138 1.027	ARG $ \chi $ chi1 chi2 chi3 chi4 Bond Angle $ C\alpha_{-}C\beta_{-}C\gamma $ $ C\alpha_{-}C - O $ $ C\beta_{-}C\alpha_{-}C $ $ C\beta_{-}C\gamma_{-}C\delta $ $ C\delta_{-}N\epsilon_{-}C\zeta $ $ C\gamma_{-}C\delta_{-}N\epsilon $ $ N\epsilon_{-}C\zeta_{-}N\eta 1 $ $ N\epsilon_{-}C\zeta_{-}N\eta 2 $	ptm160 n = 50 Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504 110.438 111.713 124.678 111.548 120.580 119.717 119.683	StdDev 8.731 14.966 9.716 25.706 StdDev 1.635 0.978 1.556 1.805 1.394 2.110 1.282 1.123 1.001
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \hline \\ \text{$C\alpha_C_O$} \\ \hline \\ \text{$C\beta_C\alpha_C$} \\ \hline \\ \text{$C\beta_C\gamma_C\delta$} \\ \hline \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \hline \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \hline \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \hline \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486 110.455 110.983 124.865 111.656 120.763 119.688	7.908 12.037 8.892 11.825 StdDev 1.508 0.935 1.554 2.037 1.144 2.664 1.014 1.138	ARG $ \chi $ chi1 chi2 chi3 chi4 Bond Angle $ C\alpha_{-}C\beta_{-}C\gamma $ $ C\alpha_{-}C_{-}O $ $ C\beta_{-}C\alpha_{-}C $ $ C\beta_{-}C\gamma_{-}C\delta $ $ C\delta_{-}N\epsilon_{-}C\zeta $ $ C\gamma_{-}C\delta_{-}N\epsilon $ $ N\epsilon_{-}C\zeta_{-}N\eta_{1} $ $ N\epsilon_{-}C\zeta_{-}N\eta_{2} $	ptm160 n = 50 Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504 110.438 111.713 124.678 111.548 120.580 119.717	8.731 14.966 9.716 25.706 StdDev 1.635 0.978 1.556 1.805 1.394 2.110 1.282 1.123

ARG	ptm-80 n = 215	<u> </u>	ARC	$\frac{1}{8}$ pmt100 n = 4	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	65.373	8.260	chi1	70.210	7.245
chi2	-178.472	14.370	chi2	-90.541	9.055
chi3	-66.034	10.269	chi3	-174.190	5.432
chi4	-84.515	10.828	chi4	97.849	2.006
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.564	1.281	$C\alphaC\betaC\gamma$	115.830	0.421
$C\alphaCO$	120.421	0.844	$C\alphaCO$	120.581	0.283
$C\betaC\alphaC$	110.304	1.382	$C\betaC\alphaC$	110.812	0.494
$C\betaC\gammaC\delta$	111.894	1.743	$C\betaC\gammaC\delta$	112.728	0.575
$C\delta_N\epsilon_C\zeta$	124.963	1.432	$C\delta_N\epsilon_C\zeta$	125.083	0.125
$C\gammaC\deltaN\epsilon$	112.362	2.279	$C\gammaC\deltaN\epsilon$	111.181	0.920
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.717	1.214	$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.967	0.288
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.898	1.456	$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.634	0.266
$N\eta 1C\zetaN\eta 2$	119.365	0.871	$N\eta_1 C\zeta N\eta_2$	119.397	0.052
$N_{-}C\alpha_{-}C$	111.616	2.543	$N_{-}C\alpha_{-}C$	110.231	1.442
$N_{-}C\alpha_{-}C\beta$	110.971	1.307	$N_{-}C\alpha_{-}C\beta$	111.390	0.423
ARG	pmt170 n = 39	1	ARG	pmt-80 $n = 27$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	73.963	11.193	chi1	81.229	9.292
chi2	-78.972	15.367	chi2	-68.144	7.568
chi3	-169.420	10.139	chi3	-176.905	10.963
chi4	-169.441	15.119	1 . 4	-84.063	0.017
~	-109.441	15.119	chi4	-84.005	8.317
Bond Angle	Mean	StdDev	Bond Angle	-84.003 Mean	8.317 StdDev
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$\frac{\text{Bond Angle}}{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}$	Mean 116.291	StdDev 1.188	Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \end{array} $	Mean 115.767	StdDev 1.164
Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \end{array} $	Mean 116.291 120.751	StdDev 1.188 0.702	Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \end{array} $	Mean 115.767 120.964	StdDev 1.164 0.647
Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \end{array} $	Mean 116.291 120.751 110.782	StdDev 1.188 0.702 1.123	Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \end{array} $	Mean 115.767 120.964 110.281	StdDev 1.164 0.647 1.017
Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \end{array} $	Mean 116.291 120.751 110.782 112.734	StdDev 1.188 0.702 1.123 1.257	Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \end{array} $	Mean 115.767 120.964 110.281 113.254	StdDev 1.164 0.647 1.017 1.792
Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \\ N\epsilon_{-}C\zeta_{-}N\eta_{1} \end{array} $	Mean 116.291 120.751 110.782 112.734 124.390	StdDev 1.188 0.702 1.123 1.257 1.048	Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \\ N\epsilon_{-}C\zeta_{-}N\eta_{1} \end{array} $	Mean 115.767 120.964 110.281 113.254 124.929	StdDev 1.164 0.647 1.017 1.792 0.992
Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \\ N\epsilon_{-}C\zeta_{-}N\eta_{1} \\ N\epsilon_{-}C\zeta_{-}N\eta_{2} \end{array} $	Mean 116.291 120.751 110.782 112.734 124.390 111.561	StdDev 1.188 0.702 1.123 1.257 1.048 1.865	Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \\ N\epsilon_{-}C\zeta_{-}N\eta_{1} \\ N\epsilon_{-}C\zeta_{-}N\eta_{2} \end{array} $	Mean 115.767 120.964 110.281 113.254 124.929 112.132	StdDev 1.164 0.647 1.017 1.792 0.992 1.754
Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \\ N\epsilon_{-}C\zeta_{-}N\eta_{1} \end{array} $	Mean 116.291 120.751 110.782 112.734 124.390 111.561 120.368	StdDev 1.188 0.702 1.123 1.257 1.048 1.865 0.782	Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \\ N\epsilon_{-}C\zeta_{-}N\eta_{1} \end{array} $	Mean 115.767 120.964 110.281 113.254 124.929 112.132 120.989	StdDev 1.164 0.647 1.017 1.792 0.992 1.754 0.889
Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \\ N\epsilon_{-}C\zeta_{-}N\eta_{1} \\ N\epsilon_{-}C\zeta_{-}N\eta_{2} \end{array} $	Mean 116.291 120.751 110.782 112.734 124.390 111.561 120.368 119.973	1.188 0.702 1.123 1.257 1.048 1.865 0.782 0.643	Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \\ N\epsilon_{-}C\zeta_{-}N\eta_{1} \\ N\epsilon_{-}C\zeta_{-}N\eta_{2} \end{array} $	Mean 115.767 120.964 110.281 113.254 124.929 112.132 120.989 119.623	StdDev 1.164 0.647 1.017 1.792 0.992 1.754 0.889 0.599

ARG	pmm150 n = 12	2		ARG	pmm-80 n = 19)
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev
chi1	75.579	3.166		chi1	73.642	12.608
chi2	-75.440	5.561		chi2	-75.958	11.183
chi3	-64.975	6.260		chi3	-56.789	8.115
chi4	151.999	15.442		chi4	-81.265	7.401
Bond Angle	Mean	StdDev	•	Bond Angle	Mean	StdDev
$C\alpha C\beta C\gamma$	116.190	1.499		$C\alpha C\beta C\gamma$	115.931	1.019
$C\alphaCO$	120.267	0.926		$C\alphaCO$	120.769	0.553
$C\betaC\alphaC$	110.409	1.045		$C\betaC\alphaC$	110.942	1.227
$C\betaC\gammaC\delta$	112.425	1.153		$C\betaC\gammaC\delta$	113.505	1.558
$C\delta_N\epsilon_C\zeta$	125.348	2.473		$C\delta_N\epsilon_C\zeta$	125.145	1.080
$C\gamma_C\delta_N\epsilon$	111.569	2.064		$C\gamma_C\delta_N\epsilon$	112.540	1.304
$N\epsilon_{-}C\zeta_{-}N\eta 1$	121.076	1.741		$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.428	0.947
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.660	1.033		$N\epsilon_{-}C\zeta_{-}N\eta 2$	120.291	0.953
$N\eta_1 C\zeta N\eta_2$	119.218	1.385		$N\eta 1_C\zeta_N\eta 2$	119.271	0.671
$N_{-}C\alpha_{-}C$	109.038	0.995		$N_{-}C\alpha_{-}C$	109.672	2.434
$N_{-}C\alpha_{-}C\beta$	112.126	0.964		$N_{-}C\alpha_{-}C\beta$	111.608	1.001
ARG	tpp80 n = 363			ARG	tpp-160 n = 49	6
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev
chi1	-177.765	10.251		chi1	178.900	9.622
chi2	65.211	10.679		chi2	65.564	10.745
chi3	59.806	9.544		chi3	65.339	9.826
chi4	84.211	9.112		chi4	-167.680	19.748
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.925	1.369		$C\alphaC\betaC\gamma$	114.753	1.301
$C\alphaCO$	120.516	0.750		$C\alphaCO$	120.521	0.835
$C\beta C\alpha C$	110.476	1.234		$C\beta C\alpha C$	110.424	1.291
$C\betaC\gammaC\delta$	112.970	1.585		$C\betaC\gammaC\delta$	112.686	1.753
$C\delta_N\epsilon_C\zeta$	124.999	1.053		$C\delta_N\epsilon_C\zeta$	124.533	1.383
$C\gammaC\deltaN\epsilon$	112.587	2.062		$C\gammaC\deltaN\epsilon$	111.868	1.817
$N\epsilon C\zeta N\eta 1$	120.720	0.868		$N\epsilon C\zeta N\eta 1$	120.495	1.034
$N\epsilon_C \zeta_N \eta^2$	119.749	0.827		$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.796	1.090
$N\eta 1_C\zeta_N\eta 2$	119.512	0.717		$N\eta 1_C \zeta_N \eta 2$	119.690	0.837
$N_{-}C\alpha_{-}C$	110.795	2.025		$N_{-}C\alpha_{-}C$	110.619	2.297
$N_C\alpha_C\beta$	110.349	1.121		$N_{-}C\alpha_{-}C\beta$	110.242	1.093

ARG	tpt170 n = 825	,	ARC	6 tpt90 n = 652	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-178.826	8.985	chi1	178.926	8.381
chi2	66.313	10.376	chi2	65.741	7.685
chi3	177.963	11.716	chi3	178.589	9.896
chi4	171.354	19.311	chi4	86.350	10.296
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.515	1.233	$C\alphaC\betaC\gamma$	114.718	1.274
$C\alphaCO$	120.510	0.735	$C\alphaCO$	120.469	0.802
$C\betaC\alphaC$	110.571	1.154	$C\betaC\alphaC$	110.288	1.182
$C\betaC\gammaC\delta$	112.241	1.705	$C\betaC\gammaC\delta$	112.118	1.671
$C\delta_N\epsilon_C\zeta$	124.487	1.136	$C\delta_N\epsilon_C\zeta$	124.798	0.923
$C\gammaC\deltaN\epsilon$	110.851	1.868	$C\gammaC\deltaN\epsilon$	111.919	2.267
$N\epsilonC\zetaN\eta 1$	120.532	0.938	$N\epsilon C\zeta \eta 1$	120.812	0.967
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.674	0.880	$N\epsilon C\zeta \eta 2$	119.714	0.888
$N\eta 1C\zetaN\eta 2$	119.775	0.857	$N\eta 1C\zetaN\eta 2$	119.453	0.822
$N_{-}C\alpha_{-}C$	110.743	1.989	$N_{-}C\alpha_{-}C$	111.449	2.056
$N_{-}C\alpha_{-}C\beta$	110.225	1.192	$N_{-}C\alpha_{-}C\beta$	110.205	1.088
ARG	tpt-90 n = 365		ARG	tpm170 n = 110	0
χ	tpt-90 n = 365 Smooth COM	StdDev	χ	tpm170 n = 110 Smooth COM	0 StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM 179.343	StdDev 8.403	χ chi1	Smooth COM 178.317	StdDev 8.113
χ	Smooth COM	StdDev	χ chi1 chi2	Smooth COM	StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM 179.343	StdDev 8.403	χ chi1	Smooth COM 178.317	StdDev 8.113
χ chi1 chi2	Smooth COM 179.343 67.144	StdDev 8.403 10.829	χ chi1 chi2	Smooth COM 178.317 70.416	StdDev 8.113 10.901
χ chi1 chi2 chi3	Smooth COM 179.343 67.144 -179.669	StdDev 8.403 10.829 8.849	χ chi1 chi2 chi3	Smooth COM 178.317 70.416 -85.345	StdDev 8.113 10.901 12.809
chi1 chi2 chi3 chi4	Smooth COM 179.343 67.144 -179.669 -89.385	8.403 10.829 8.849 12.210	chi1 chi2 chi3 chi4	Smooth COM 178.317 70.416 -85.345 171.668	8.113 10.901 12.809 18.570
χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$	Smooth COM 179.343 67.144 -179.669 -89.385 Mean	8.403 10.829 8.849 12.210 StdDev	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C CO$	Smooth COM 178.317 70.416 -85.345 171.668 Mean	StdDev 8.113 10.901 12.809 18.570 StdDev
χ chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$	Smooth COM 179.343 67.144 -179.669 -89.385 Mean 114.741	8.403 10.829 8.849 12.210 StdDev 1.251	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$	Smooth COM 178.317 70.416 -85.345 171.668 Mean 115.637	StdDev 8.113 10.901 12.809 18.570 StdDev 1.263
χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$	Smooth COM 179.343 67.144 -179.669 -89.385 Mean 114.741 120.494	8.403 10.829 8.849 12.210 StdDev 1.251 0.717	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \end{array}$	Smooth COM 178.317 70.416 -85.345 171.668 Mean 115.637 120.626	8.113 10.901 12.809 18.570 StdDev 1.263 0.802
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ \end{array}$	Smooth COM 179.343 67.144 -179.669 -89.385 Mean 114.741 120.494 110.562	8.403 10.829 8.849 12.210 StdDev 1.251 0.717 1.204	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \end{array}$	Smooth COM 178.317 70.416 -85.345 171.668 Mean 115.637 120.626 110.602	8.113 10.901 12.809 18.570 StdDev 1.263 0.802 1.333
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ \end{array}$	Smooth COM 179.343 67.144 -179.669 -89.385 Mean 114.741 120.494 110.562 112.371 124.855 111.131	8.403 10.829 8.849 12.210 StdDev 1.251 0.717 1.204 1.618	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \hline \end{array}$	Smooth COM 178.317 70.416 -85.345 171.668 Mean 115.637 120.626 110.602 112.785 124.702 111.970	8.113 10.901 12.809 18.570 StdDev 1.263 0.802 1.333 2.167
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ \end{array}$	Smooth COM 179.343 67.144 -179.669 -89.385 Mean 114.741 120.494 110.562 112.371 124.855	8.403 10.829 8.849 12.210 StdDev 1.251 0.717 1.204 1.618 1.145	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \end{array}$	Smooth COM 178.317 70.416 -85.345 171.668 Mean 115.637 120.626 110.602 112.785 124.702	StdDev 8.113 10.901 12.809 18.570 StdDev 1.263 0.802 1.333 2.167 2.252
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ \end{array}$	Smooth COM 179.343 67.144 -179.669 -89.385 Mean 114.741 120.494 110.562 112.371 124.855 111.131	8.403 10.829 8.849 12.210 StdDev 1.251 0.717 1.204 1.618 1.145 2.518	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \text{$\text{C}\alpha_\text{C}_\text{C}$} \\ \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \hline \end{array}$	Smooth COM 178.317 70.416 -85.345 171.668 Mean 115.637 120.626 110.602 112.785 124.702 111.970	8.113 10.901 12.809 18.570 StdDev 1.263 0.802 1.333 2.167 2.252 2.147
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \text{$N\eta1_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM 179.343 67.144 -179.669 -89.385 Mean 114.741 120.494 110.562 112.371 124.855 111.131 120.736	8.403 10.829 8.849 12.210 StdDev 1.251 0.717 1.204 1.618 1.145 2.518 1.033	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta 1 \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta 2 \\ \text{N}\eta 1_\text{C}\zeta_\text{N}\eta 2 \\ \hline \end{array}$	Smooth COM 178.317 70.416 -85.345 171.668 Mean 115.637 120.626 110.602 112.785 124.702 111.970 120.476	StdDev 8.113 10.901 12.809 18.570 StdDev 1.263 0.802 1.333 2.167 2.252 2.147 1.046
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM 179.343 67.144 -179.669 -89.385 Mean 114.741 120.494 110.562 112.371 124.855 111.131 120.736 119.671	8.403 10.829 8.849 12.210 StdDev 1.251 0.717 1.204 1.618 1.145 2.518 1.033 1.050	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta1 \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta2 \\ \end{array}$	Smooth COM 178.317 70.416 -85.345 171.668 Mean 115.637 120.626 110.602 112.785 124.702 111.970 120.476 119.776	8.113 10.901 12.809 18.570 StdDev 1.263 0.802 1.333 2.167 2.252 2.147 1.046 0.905

ARG	tpm-80 n = 20)	ARG	ttp80 n = 1896	;
$\overline{\chi}$	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-177.264	5.162	chi1	-177.383	8.162
chi2	78.524	8.234	chi2	179.646	13.425
chi3	-80.359	10.382	chi3	62.978	9.944
chi4	-79.824	9.071	chi4	82.895	9.577
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.170	1.379	$C\alphaC\betaC\gamma$	113.686	1.495
$C\alphaCO$	120.653	1.054	$C\alphaCO$	120.681	0.798
$C\betaC\alphaC$	110.318	1.131	$C\betaC\alphaC$	110.045	1.208
$C\betaC\gammaC\delta$	113.047	1.221	$C\betaC\gammaC\delta$	112.080	1.526
$C\delta_N\epsilon_C\zeta$	125.229	1.191	$C\delta_N\epsilon_C\zeta$	124.882	1.039
$C\gammaC\deltaN\epsilon$	113.709	2.206	$C\gammaC\deltaN\epsilon$	112.575	1.938
$N\epsilonC\zetaN\eta 1$	120.646	0.958	$N\epsilon C\zeta \eta 1$	120.750	0.949
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	120.052	0.924	$N\epsilon C\zeta \eta 2$	119.766	0.857
$N\eta_1 C\zeta N\eta_2$	119.284	0.631	$N\eta 1_C\zeta_N\eta 2$	119.465	0.753
$N_{-}C\alpha_{-}C$	110.800	1.483	$N_{-}C\alpha_{-}C$	110.748	2.056
$N_{-}C\alpha_{-}C\beta$	109.849	1.128	$N_{-}C\alpha_{-}C\beta$	110.433	1.201
ARG	ttp-110 n = 623	3	ARG	ttp-170 n = 153	3
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-174.744	8.457	chi1	-175.447	9.345
			chi1 chi2		
chi1	-174.744 177.160 64.599	8.457	chi1	-175.447	9.345
chi1 chi2	-174.744 177.160	8.457 12.953	chi1 chi2	-175.447 179.359	9.345 13.232
chi1 chi2 chi3	-174.744 177.160 64.599	8.457 12.953 10.746	chi1 chi2 chi3	-175.447 179.359 66.850	9.345 13.232 8.993
chi1 chi2 chi3 chi4	-174.744 177.160 64.599 -113.458	8.457 12.953 10.746 9.867	chi1 chi2 chi3 chi4	-175.447 179.359 66.850 -171.036	9.345 13.232 8.993 17.274
chi1 chi2 chi3 chi4 Bond Angle	-174.744 177.160 64.599 -113.458 Mean	8.457 12.953 10.746 9.867 StdDev	chi1 chi2 chi3 chi4 Bond Angle	-175.447 179.359 66.850 -171.036 Mean	9.345 13.232 8.993 17.274 StdDev
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$	-174.744 177.160 64.599 -113.458 Mean 113.826	8.457 12.953 10.746 9.867 StdDev 1.633	chi1 chi2 chi3 chi4 Bond Angle Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C	-175.447 179.359 66.850 -171.036 Mean 113.660	9.345 13.232 8.993 17.274 StdDev 1.651
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaCO$	-174.744 177.160 64.599 -113.458 Mean 113.826 120.605	8.457 12.953 10.746 9.867 StdDev 1.633 0.798	chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C CO$	-175.447 179.359 66.850 -171.036 Mean 113.660 120.595	9.345 13.232 8.993 17.274 StdDev 1.651 0.757
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaCO$ $C\betaC\alphaC$	-174.744 177.160 64.599 -113.458 Mean 113.826 120.605 110.158	8.457 12.953 10.746 9.867 StdDev 1.633 0.798 1.233	chi1 chi2 chi3 chi4 Bond Angle Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C	-175.447 179.359 66.850 -171.036 Mean 113.660 120.595 110.009	9.345 13.232 8.993 17.274 StdDev 1.651 0.757 1.236
chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$ $C\beta_C\alpha_C$ $C\beta_C\gamma_C\delta$	-174.744 177.160 64.599 -113.458 Mean 113.826 120.605 110.158 112.012	8.457 12.953 10.746 9.867 StdDev 1.633 0.798 1.233 1.748	chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$	-175.447 179.359 66.850 -171.036 Mean 113.660 120.595 110.009 111.642	9.345 13.232 8.993 17.274 StdDev 1.651 0.757 1.236 1.683
chi1 chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$	-174.744 177.160 64.599 -113.458 Mean 113.826 120.605 110.158 112.012 125.367	8.457 12.953 10.746 9.867 StdDev 1.633 0.798 1.233 1.748 1.360	chi1 chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}C$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$	-175.447 179.359 66.850 -171.036 Mean 113.660 120.595 110.009 111.642 124.480	9.345 13.232 8.993 17.274 StdDev 1.651 0.757 1.236 1.683 1.169
chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C _ C$ $C\beta _ C\alpha _ C$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$ $C\gamma _ C\delta _ N\epsilon$	-174.744 177.160 64.599 -113.458 Mean 113.826 120.605 110.158 112.012 125.367 111.876	8.457 12.953 10.746 9.867 StdDev 1.633 0.798 1.233 1.748 1.360 2.159	chi1 chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}C$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$	-175.447 179.359 66.850 -171.036 Mean 113.660 120.595 110.009 111.642 124.480 111.497	9.345 13.232 8.993 17.274 StdDev 1.651 0.757 1.236 1.683 1.169 1.581
chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$	-174.744 177.160 64.599 -113.458 Mean 113.826 120.605 110.158 112.012 125.367 111.876 121.079	8.457 12.953 10.746 9.867 StdDev 1.633 0.798 1.233 1.748 1.360 2.159 1.283	chi1 chi2 chi3 chi4 Bond Angle Cα_Cβ_Cγ Cα_Cβ_Cγ Cα_Cβ_Cγ Cα_Cβ_Cγ Cβ_Cα_C Cβ_Cγ_Cδ Cγ_Cδ_Nε Nε_Cζ_Nη1	-175.447 179.359 66.850 -171.036 Mean 113.660 120.595 110.009 111.642 124.480 111.497 120.455	9.345 13.232 8.993 17.274 StdDev 1.651 0.757 1.236 1.683 1.169 1.581 0.896
chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\beta C\alpha C$ $C\beta C\alpha C\beta C\gamma C\delta C\alpha C$ $C\alpha C\beta C\alpha C\gamma C\alpha C\beta C\gamma C\alpha C\alpha C\gamma C\alpha C\alpha C\gamma C\alpha C\alpha C\alpha C\gamma C\alpha $	-174.744 177.160 64.599 -113.458 Mean 113.826 120.605 110.158 112.012 125.367 111.876 121.079 119.474	8.457 12.953 10.746 9.867 StdDev 1.633 0.798 1.233 1.748 1.360 2.159 1.283 1.161	chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$ $C\gamma _ C\delta _ N\epsilon$ $N\epsilon _ C\zeta _ N\eta 1$ $N\epsilon _ C\zeta _ N\eta 2$	-175.447 179.359 66.850 -171.036 Mean 113.660 120.595 110.009 111.642 124.480 111.497 120.455 119.763	9.345 13.232 8.993 17.274 StdDev 1.651 0.757 1.236 1.683 1.169 1.581 0.896 0.881

ARG	ttt180 n = 2339	9	ARG	ttt90 n = 1057	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-176.225	9.097	chi1	-176.157	9.260
chi2	176.468	11.186	chi2	176.118	10.807
chi3	178.543	11.535	chi3	176.454	9.628
chi4	179.245	18.746	chi4	86.745	10.847
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.475	1.785	$C\alphaC\betaC\gamma$	113.859	1.696
$C\alphaCO$	120.570	0.812	$C\alphaCO$	120.572	0.794
$C\betaC\alphaC$	110.176	1.171	$C\betaC\alphaC$	110.230	1.247
$C\betaC\gammaC\delta$	111.351	2.189	$C\betaC\gammaC\delta$	111.326	2.078
$C\delta_N\epsilon_C\zeta$	124.329	1.194	$C\delta_N\epsilon_C\zeta$	124.757	1.007
$C\gamma_C\delta_N\epsilon$	110.653	1.920	$C\gamma_C\delta_N\epsilon$	111.615	2.616
$N\epsilon C\zeta \eta 1$	120.399	0.902	$N\epsilon C\zeta \eta 1$	120.741	1.016
$N\epsilon C\zeta N\eta 2$	119.608	0.915	$N\epsilon C\zeta N\eta 2$	119.607	0.998
$N\eta_1 C\zeta N\eta_2$	119.974	0.814	$N\eta_1 C\zeta N\eta_2$	119.628	0.738
$N_{-}C\alpha_{-}C$	110.517	2.410	$NC\alphaC$	110.528	2.396
$N_{-}C\alpha_{-}C\beta$	110.183	1.389	$N_{-}C\alpha_{-}C\beta$	110.355	1.373
ARG	ttt-90 n = 1380)	ADC	ttm110 n = 725	-
	000 00 H = 1000)	Ang	timilio n = 726)
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
$\frac{\chi}{\text{chi1}}$			-		
	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	Smooth COM -176.754	StdDev 9.438	χ chi1	Smooth COM -175.260	StdDev 8.991
chi1 chi2	Smooth COM -176.754 177.849	StdDev 9.438 11.450	χ chi1 chi2	Smooth COM -175.260 178.639	StdDev 8.991 9.463
chi1 chi2 chi3	Smooth COM -176.754 177.849 -178.261	9.438 11.450 9.915	chi1 chi2 chi3	Smooth COM -175.260 178.639 -64.314	StdDev 8.991 9.463 10.708
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$	Smooth COM -176.754 177.849 -178.261 -89.587	9.438 11.450 9.915 12.519	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$	Smooth COM -175.260 178.639 -64.314 112.805	8.991 9.463 10.708 9.769
chi1 chi2 chi3 chi4 Bond Angle	Smooth COM -176.754 177.849 -178.261 -89.587 Mean	9.438 11.450 9.915 12.519 StdDev	chi1 chi2 chi3 chi4 Bond Angle	Smooth COM -175.260 178.639 -64.314 112.805 Mean	StdDev 8.991 9.463 10.708 9.769 StdDev
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964	9.438 11.450 9.915 12.519 StdDev 1.616	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$	Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881	StdDev 8.991 9.463 10.708 9.769 StdDev 1.635
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaCO$	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540	9.438 11.450 9.915 12.519 StdDev 1.616 0.793	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$	Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589	8.991 9.463 10.708 9.769 StdDev 1.635 0.780
chi1 chi2 chi3 chi4 Bond Angle Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540 110.272	9.438 11.450 9.915 12.519 StdDev 1.616 0.793 1.256		Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589 110.255	8.991 9.463 10.708 9.769 StdDev 1.635 0.780 1.228
chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$ $C\beta_C\alpha_C$ $C\beta_C\alpha_C$ $C\beta_C\gamma_C\delta$	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540 110.272 110.941	9.438 11.450 9.915 12.519 StdDev 1.616 0.793 1.256 2.077	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \end{array}$	Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589 110.255 112.165	8.991 9.463 10.708 9.769 StdDev 1.635 0.780 1.228 1.691
chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta C\delta C$	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540 110.272 110.941 124.821	9.438 11.450 9.915 12.519 StdDev 1.616 0.793 1.256 2.077 1.167		Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589 110.255 112.165 125.322	8.991 9.463 10.708 9.769 StdDev 1.635 0.780 1.228 1.691 1.226
chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\gamma$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta C\delta C$	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540 110.272 110.941 124.821 111.802	9.438 11.450 9.915 12.519 StdDev 1.616 0.793 1.256 2.077 1.167 2.580	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \end{array}$	Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589 110.255 112.165 125.322 111.648	StdDev 8.991 9.463 10.708 9.769 StdDev 1.635 0.780 1.228 1.691 1.226 1.927
chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\gamma$ $C\beta C\gamma C\delta$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540 110.272 110.941 124.821 111.802 120.801	9.438 11.450 9.915 12.519 StdDev 1.616 0.793 1.256 2.077 1.167 2.580 1.078		Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589 110.255 112.165 125.322 111.648 121.010	StdDev 8.991 9.463 10.708 9.769 StdDev 1.635 0.780 1.228 1.691 1.226 1.927 1.241
chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$ $C\alpha C\beta C\alpha C$ $C\alpha C\alpha C\alpha $	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540 110.272 110.941 124.821 111.802 120.801 119.565	9.438 11.450 9.915 12.519 StdDev 1.616 0.793 1.256 2.077 1.167 2.580 1.078 1.015		Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589 110.255 112.165 125.322 111.648 121.010 119.531	StdDev 8.991 9.463 10.708 9.769 StdDev 1.635 0.780 1.228 1.691 1.226 1.927 1.241 1.123

ARG	ttm170 n = 131	7	ARG	ttm-80 n = 150	4
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-177.285	9.924	chi1	-174.135	9.435
chi2	176.943	12.449	chi2	179.281	9.905
chi3	-67.797	9.912	chi3	-64.732	10.575
chi4	171.206	17.554	chi4	-84.522	9.745
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.752	1.740	$C\alphaC\betaC\gamma$	113.668	1.664
$C\alphaCO$	120.583	0.815	$C\alphaCO$	120.532	0.789
$C\betaC\alphaC$	110.105	1.164	$C\betaC\alphaC$	110.241	1.238
$C\betaC\gammaC\delta$	111.482	1.826	$C\betaC\gammaC\delta$	111.990	1.645
$C\delta_N\epsilon_C\zeta$	124.437	1.166	$C\delta_N\epsilon_C\zeta$	124.859	1.304
$C\gamma_C\delta_N\epsilon$	111.263	1.652	$C\gamma_C\delta_N\epsilon$	112.437	2.033
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.519	0.959	$N\epsilonC\zetaN\eta 1$	120.726	1.016
$N\epsilonC\zetaN\eta^2$	119.735	0.929	$N\epsilonC\zetaN\eta 2$	119.733	1.037
$N\eta 1C\zetaN\eta 2$	119.728	0.835	$N\eta 1C\zetaN\eta 2$	119.521	0.763
$N_{-}C\alpha_{-}C$	110.279	2.382	$NC\alphaC$	110.578	2.257
$N_{-}C\alpha_{-}C\beta$	110.267	1.337	$N_{-}C\alpha_{-}C\beta$	110.372	1.356
ARG	tmt170 n = 104	1	ARC	3 tmt90 n = 23	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-173.869	12.307	chi1	-178.402	9.228
chi2	-91.306	10.705	-1-:0	00 505	0 400
	-91.500	12.725	chi2	-93.565	9.120
chi3	-91.500 -173.542	9.380	chi3	-93.565 -177.879	9.120 11.168
chi3 chi4					
	-173.542	9.380	chi3	-177.879	11.168
chi4	-173.542 -170.971	9.380 17.524	chi3 chi4	-177.879 87.027	11.168 11.977
chi4 Bond Angle	-173.542 -170.971 Mean	9.380 17.524 StdDev	chi3 chi4 Bond Angle	-177.879 87.027 Mean	11.168 11.977 StdDev
$\frac{\text{chi4}}{\text{Bond Angle}}$ $\frac{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}{\text{C}\gamma}$	-173.542 -170.971 Mean 115.031	9.380 17.524 StdDev 1.334	$ \begin{array}{c} \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \text{C}\alpha \text{-} \text{C}\beta \text{-} \text{C}\gamma \end{array} $	-177.879 87.027 Mean 115.152	11.168 11.977 StdDev 1.485
$ \begin{array}{c} \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \end{array} $	-173.542 -170.971 Mean 115.031 120.633	9.380 17.524 StdDev 1.334 0.742	$\begin{array}{c} \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \end{array}$	-177.879 87.027 Mean 115.152 120.604	11.168 11.977 StdDev 1.485 0.982
	-173.542 -170.971 Mean 115.031 120.633 110.891	9.380 17.524 StdDev 1.334 0.742 1.069	chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\alpha C$ $C\beta C\alpha C$	-177.879 87.027 Mean 115.152 120.604 110.471	11.168 11.977 StdDev 1.485 0.982 1.327
chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\alpha _C$	-173.542 -170.971 Mean 115.031 120.633 110.891 112.702	9.380 17.524 StdDev 1.334 0.742 1.069 1.716	chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$	-177.879 87.027 Mean 115.152 120.604 110.471 112.863	11.168 11.977 StdDev 1.485 0.982 1.327 2.341
	-173.542 -170.971 Mean 115.031 120.633 110.891 112.702 124.499	9.380 17.524 StdDev 1.334 0.742 1.069 1.716 0.904	chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$	-177.879 87.027 Mean 115.152 120.604 110.471 112.863 125.096	11.168 11.977 StdDev 1.485 0.982 1.327 2.341 1.261
chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$	-173.542 -170.971 Mean 115.031 120.633 110.891 112.702 124.499 110.712	9.380 17.524 StdDev 1.334 0.742 1.069 1.716 0.904 1.619	chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _C$ $C\beta _C\alpha _C$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$ $C\gamma _C\delta _N\epsilon$	-177.879 87.027 Mean 115.152 120.604 110.471 112.863 125.096 111.403	11.168 11.977 StdDev 1.485 0.982 1.327 2.341 1.261 2.847
chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$	-173.542 -170.971 Mean 115.031 120.633 110.891 112.702 124.499 110.712 120.677	9.380 17.524 StdDev 1.334 0.742 1.069 1.716 0.904 1.619 1.032	chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\gamma$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$	-177.879 87.027 Mean 115.152 120.604 110.471 112.863 125.096 111.403 120.873	11.168 11.977 StdDev 1.485 0.982 1.327 2.341 1.261 2.847 1.858
chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C_O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$ $C\gamma _C\delta _N\epsilon$ $N\epsilon _C\zeta _N\eta 1$ $N\epsilon _C\zeta _N\eta 2$	-173.542 -170.971 Mean 115.031 120.633 110.891 112.702 124.499 110.712 120.677 119.571	9.380 17.524 StdDev 1.334 0.742 1.069 1.716 0.904 1.619 1.032 0.805	chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$ $C\gamma _C\delta _N\epsilon$ $N\epsilon _C\zeta _N\eta 1$ $N\epsilon _C\zeta _N\eta 2$	-177.879 87.027 Mean 115.152 120.604 110.471 112.863 125.096 111.403 120.873 119.647	11.168 11.977 StdDev 1.485 0.982 1.327 2.341 1.261 2.847 1.858 1.458

ARG	$\frac{1}{6}$ tmt-80 n = 62		ARG	tmm160 n = 92	2
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-174.441	10.751	chi1	-172.150	10.890
chi2	-92.932	11.363	chi2	-90.073	11.146
chi3	-177.757	10.023	chi3	-61.282	11.279
chi4	-84.998	11.504	chi4	163.764	18.601
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.665	1.340	$C\alpha_{-}C\beta_{-}C\gamma$	114.825	1.323
$C\alphaCO$	120.545	0.772	$C\alphaCO$	120.627	0.803
$C\betaC\alphaC$	111.341	1.330	$C\betaC\alphaC$	111.278	1.113
$C\betaC\gammaC\delta$	112.460	1.924	$C\betaC\gammaC\delta$	112.552	1.822
$C\delta_N\epsilon_C\zeta$	124.688	1.117	$C\delta_N\epsilon_C\zeta$	124.630	1.190
$C\gamma_C\delta_N\epsilon$	111.211	2.142	$C\gamma_C\delta_N\epsilon$	111.887	1.925
$N\epsilon C\zeta \eta 1$	120.610	0.908	$N\epsilon C\zeta N\eta 1$	120.655	1.000
$N\epsilon C\zeta \eta 2$	119.729	0.896	$N\epsilon C\zeta N\eta 2$	119.705	0.893
$N\eta_1 C\zeta N\eta_2$	119.637	0.627	$N\eta 1_C\zeta_N\eta 2$	119.616	0.813
$NC\alphaC$	110.062	2.449	$N_{-}C\alpha_{-}C$	109.950	2.048
$N_{-}C\alpha_{-}C\beta$	110.064	1.027	$N_{-}C\alpha_{-}C\beta$	110.061	1.132
ARG	tmm-80 n = 71	_	ARG	mpp80 n = 54	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-174.294	9.153	chi1	-76.744	11.753
chi2	-86.372	8.784	chi2	81.853	11.964
chi3	-56.434	10.717	chi3	57.995	7.391
chi4	-82.108	8.527	chi4	84.630	10.143
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.257	1.317	$C\alphaC\betaC\gamma$	115.469	1.724
$C\alphaCO$	120.621	0.778	$C\alphaCO$	120.418	1.087
$C\betaC\alphaC$	111.061	1.008	$C\beta_{-}C\alpha_{-}C$	109.200	1.982
$C\betaC\gammaC\delta$	113.720	2.294	$C\betaC\gammaC\delta$	113.558	1.616
$C\delta_N\epsilon_C\zeta$	124.893	1.247	$C\delta_N\epsilon_C\zeta$	124.998	1.163
$C\gammaC\deltaN\epsilon$	112.553	1.891	$C\gammaC\deltaN\epsilon$	113.125	2.284
$N\epsilonC\zetaN\eta 1$	120.861	1.095	$N\epsilon C\zeta N\eta 1$	120.782	1.174
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.709	0.923	$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.773	1.129
$N\eta 1_C\zeta_N\eta 2$	119.397	0.720	$N\eta 1_C\zeta_N\eta 2$	119.423	0.733
$N_{-}C\alpha_{-}C$	109.672	1.698	$N_{-}C\alpha_{-}C$	109.653	2.541
$N_{-}C\alpha_{-}C\beta$	110.067	1.009	$N_{-}C\alpha_{-}C\beta$	111.451	1.261

ARG	mpp-170 n = 6	4	ARG	mpt180 n = 248	5
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-78.876	12.884	chi1	-84.592	7.996
chi2	81.734	17.402	chi2	69.331	13.073
chi3	65.059	7.427	chi3	173.629	9.351
chi4	-166.895	16.426	chi4	174.437	16.771
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.639	1.431	$C\alphaC\betaC\gamma$	114.779	1.423
$C\alphaCO$	120.527	0.677	$C\alphaCO$	120.561	0.858
$C\betaC\alphaC$	109.707	1.574	$C\betaC\alphaC$	109.479	1.658
$C\betaC\gammaC\delta$	112.675	1.744	$C\betaC\gammaC\delta$	113.013	1.809
$C\delta_N\epsilon_C\zeta$	124.456	1.194	$C\delta_N\epsilon_C\zeta$	124.423	1.453
$C\gamma_C\delta_N\epsilon$	111.467	1.342	$C\gamma_C\delta_N\epsilon$	110.690	1.999
$N\epsilon C\zeta \eta 1$	120.599	1.057	$N\epsilon C\zeta \eta 1$	120.410	1.021
$N\epsilon C\zeta \eta 2$	119.723	0.761	$N\epsilon C\zeta N\eta 2$	119.733	0.916
$N\eta_1 C\zeta N\eta_2$	119.659	0.703	$N\eta 1_C\zeta N\eta 2$	119.829	0.881
$N_{-}C\alpha_{-}C$	109.974	3.124	$NC\alphaC$	109.972	2.748
$N_{-}C\alpha_{-}C\beta$	111.366	1.108	$N_{-}C\alpha_{-}C\beta$	111.150	1.151
ARC	6 mpt90 n = 46		ARG	mpt-90 $n = 85$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-76.133	12.907	chi1	-78.778	13.914
chi2	84.673	13.588	chi2	74.660	16.331
chi3	170.244	9.730	chi3	177.663	9.619
chi4	93.427	11.198	chi4	-87.847	13.667
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.631	1.635	$C\alphaC\betaC\gamma$	114.921	1.261
$C\alphaCO$	120.402	0.642	$C\alphaCO$	120.436	0.752
$C\betaC\alphaC$	109.251	1.434	$C\beta_{-}C\alpha_{-}C$	109.954	1.553
$C\beta C\gamma C\delta$	112.529	1.552	$C\betaC\gammaC\delta$	112.861	2.301
$C\delta_N\epsilon_C\zeta$	125.102	0.846	$C\delta_N\epsilon_C\zeta$	124.891	0.998
$C\gammaC\deltaN\epsilon$	111.041	2.030	$C\gammaC\deltaN\epsilon$	111.632	2.525
$N\epsilonC\zetaN\eta 1$	121.088	0.907	$N\epsilon C\zeta N\eta 1$	120.590	1.067
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.381	0.679	$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.828	0.834
$N\eta 1_C\zeta_N\eta 2$	119.512	0.586	$N\eta 1_C\zeta_N\eta 2$	119.561	0.667
$N_{-}C\alpha_{-}C$	109.965	2.682	$N_{-}C\alpha_{-}C$	110.431	2.708
$N_C\alpha_C\beta$	111.296	1.245	$N_C\alpha_C\beta$	110.866	1.019

ARG	mtp180 n = 250)4	ARG	mtp85 n = 185	7
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-66.448	8.145	chi1	-66.328	8.550
chi2	178.975	13.041	chi2	177.775	11.188
chi3	66.423	9.133	chi3	64.643	9.713
chi4	-171.573	16.500	chi4	87.715	10.960
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.196	1.788	$C\alphaC\betaC\gamma$	113.275	1.819
$C\alphaCO$	120.474	0.834	$C\alphaCO$	120.493	0.910
$C\betaC\alphaC$	110.040	1.648	$C\betaC\alphaC$	110.136	1.676
$C\betaC\gammaC\delta$	111.714	1.807	$C\betaC\gammaC\delta$	112.055	1.715
$C\delta_N\epsilon_C\zeta$	124.376	1.212	$C\deltaN\epsilonC\zeta$	124.893	1.199
$C\gammaC\deltaN\epsilon$	111.554	1.558	$C\gamma_C\delta_N\epsilon$	112.285	1.990
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.437	0.999	$N\epsilonC\zetaN\eta 1$	120.785	1.055
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.768	0.969	$N\epsilonC\zetaN\eta 2$	119.683	1.040
$N\eta_1 C\zeta N\eta_2$	119.779	0.774	$N\eta 1C\zetaN\eta 2$	119.513	0.811
$N_{-}C\alpha_{-}C$	111.426	2.415	$NC\alphaC$	111.102	2.410
$N_{-}C\alpha_{-}C\beta$	110.537	1.046	$N_{-}C\alpha_{-}C\beta$	110.598	1.049
ARG	mtp-110 n = 47	0	ARG	mtt180 n = 459	2
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-65.062	8.129	chi1	-67.383	7.802
chi2	179.092	10.812	chi2	179.853	11.020
chi3	66.411	11.580	chi3	-179.128	10.659
chi4	-109.636	9.635	chi4	177.093	17.916
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.354	1.662	$C\alphaC\betaC\gamma$	112.906	1.753
$C\alphaCO$	120.369	0.947	$C\alphaCO$	120.449	0.847
$C\betaC\alphaC$	110.075	1.684	$C\betaC\alphaC$	109.969	1.657
$C\beta C\gamma C\delta$	112.354	1.634	$C\betaC\gammaC\delta$	111.523	2.022
$C\delta_N\epsilon_C\zeta$	125.306	2.055	$C\deltaN\epsilonC\zeta$	124.359	1.101
$C\gammaC\deltaN\epsilon$	111.671	1.878	$C\gammaC\deltaN\epsilon$	110.625	1.820
$N\epsilonC\zetaN\eta 1$	121.057	1.200	$N\epsilonC\zetaN\eta 1$	120.426	0.894
$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.441	1.295	$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.625	0.896
	110 470	0.895	$N\eta_1 C\zeta N\eta_2$	119.931	0.794
$N\eta_1 C\zeta N\eta_2$	119.478	0.030	11//1-05-11//2	110.001	0.101
$N\eta 1_{-}C\zeta_{-}N\eta 2$ $N_{-}C\alpha_{-}C$ $N_{-}C\alpha_{-}C\beta$	119.478 111.125 110.743	2.585 1.052	$N_{-}C\alpha_{-}C$ $N_{-}C\alpha_{-}C\beta$	111.576 110.570	2.328 1.047

ARG	mtt90 n = 2460)	ARG	mtt-85 n = 284	3
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-67.677	7.504	chi1	-67.013	7.843
chi2	179.859	13.535	chi2	-178.550	10.650
chi3	178.901	10.625	chi3	-176.240	9.240
chi4	90.605	15.148	chi4	-88.795	11.677
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.347	1.719	$C\alphaC\betaC\gamma$	113.460	1.703
$C\alphaCO$	120.443	0.802	$C\alphaCO$	120.445	0.822
$C\betaC\alphaC$	109.894	1.726	$C\betaC\alphaC$	109.838	1.651
$C\betaC\gammaC\delta$	111.540	2.042	$C\betaC\gammaC\delta$	111.361	1.969
$C\delta_N\epsilon_C\zeta$	124.859	1.138	$C\delta_N\epsilon_C\zeta$	124.795	1.053
$C\gamma_C\delta_N\epsilon$	111.010	2.492	$C\gamma_C\delta_N\epsilon$	111.412	2.434
$N\epsilon C\zeta \eta 1$	120.854	1.069	$N\epsilon C\zeta \eta 1$	120.794	1.020
$N\epsilon C\zeta \eta 2$	119.529	1.057	$N\epsilonC\zetaN\eta^2$	119.578	0.926
$N\eta_1$ _C ζ _ $N\eta_2$	119.591	0.803	$N\eta 1_C\zeta_N\eta 2$	119.609	0.768
$N_{-}C\alpha_{-}C$	111.444	2.403	$N_{-}C\alpha_{-}C$	111.436	2.299
$N_{-}C\alpha_{-}C\beta$	110.565	1.121	$N_{-}C\alpha_{-}C\beta$	110.636	1.045
ARG	mtm110 n = 78	1	ARG r	mtm180 n = 240)7
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-68.128	8.152	chi1	-66.409	8.111
chi2	-177.015	9.719	chi2	179.025	12.715
chi3	-68.916	10.245	chi3	-67.433	8.823
chi4	112.867	10.583	chi4	172.922	15.154
Bond Angle	3.6	G. 1D			
	Mean	StdDev	Bond Angle	Mean	StdDev
$\frac{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}$	113.128	1.811	$\frac{\text{Bond Angle}}{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}$	Mean 113.294	1.630
$C\alpha_{-}C\beta_{-}C\gamma$	113.128	1.811	$C\alpha_{-}C\beta_{-}C\gamma$	113.294	1.630
$ \begin{array}{c} $	113.128 120.427	1.811 0.902	$ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \end{array} $	113.294 120.456	1.630 0.891
$ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \end{array} $	113.128 120.427 110.057	1.811 0.902 1.759	$ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \end{array} $	113.294 120.456 109.865	1.630 0.891 1.623
Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C Cβ_Cγ_Cδ	113.128 120.427 110.057 112.410	1.811 0.902 1.759 1.719	Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C Cβ_Cγ_Cδ	113.294 120.456 109.865 111.632	1.630 0.891 1.623 1.675
Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C Cβ_Cγ_Cδ Cδ_Nε_Cζ	113.128 120.427 110.057 112.410 125.312	1.811 0.902 1.759 1.719 1.518	$\begin{array}{c} C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \end{array}$	113.294 120.456 109.865 111.632 124.437	1.630 0.891 1.623 1.675 1.082
$\begin{array}{c} C\alpha_C\beta_C\gamma\\ C\alpha_C_O\\ C\beta_C\alpha_C\\ C\beta_C\gamma_C\delta\\ C\delta_N\epsilon_C\zeta\\ C\gamma_C\delta_N\epsilon \end{array}$	113.128 120.427 110.057 112.410 125.312 112.087	1.811 0.902 1.759 1.719 1.518 1.885	$\begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \end{array}$	113.294 120.456 109.865 111.632 124.437 111.358	1.630 0.891 1.623 1.675 1.082 1.691
$\begin{array}{c} C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ N\epsilon_C\zeta_N\eta1 \end{array}$	113.128 120.427 110.057 112.410 125.312 112.087 121.057	1.811 0.902 1.759 1.719 1.518 1.885 1.278	$\begin{array}{c} C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ N\epsilon_C\zeta \\ N\epsilon_C\zeta_N\eta1 \end{array}$	113.294 120.456 109.865 111.632 124.437 111.358 120.426	1.630 0.891 1.623 1.675 1.082 1.691 0.896
$\begin{array}{c} C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ N\epsilon_C\zeta_N\eta1 \\ N\epsilon_C\zeta_N\eta2 \end{array}$	113.128 120.427 110.057 112.410 125.312 112.087 121.057 119.445	1.811 0.902 1.759 1.719 1.518 1.885 1.278 1.122	$\begin{array}{c} C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ N\epsilon_C\zeta_N\eta1 \\ N\epsilon_C\zeta_N\eta2 \end{array}$	113.294 120.456 109.865 111.632 124.437 111.358 120.426 119.771	1.630 0.891 1.623 1.675 1.082 1.691 0.896 0.882

ARG	mtm-85 n = 284	18	ARG	mmp80 n = 164	4
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-68.282	8.114	chi1	-62.526	6.654
chi2	-171.664	9.296	chi2	-75.134	12.697
chi3	-63.903	9.515	chi3	74.408	11.683
chi4	-88.066	8.888	chi4	77.834	6.858
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.529	1.560	$C\alphaC\betaC\gamma$	114.756	1.393
$C\alphaCO$	120.475	0.810	$C\alphaCO$	120.405	0.951
$C\betaC\alphaC$	110.037	1.494	$C\betaC\alphaC$	109.795	1.486
$C\betaC\gammaC\delta$	111.973	1.573	$C\betaC\gammaC\delta$	113.417	1.619
$C\delta_N\epsilon_C\zeta$	124.892	1.167	$C\deltaN\epsilonC\zeta$	125.034	1.158
$C\gammaC\deltaN\epsilon$	112.687	1.963	$C\gamma_C\delta_N\epsilon$	113.473	2.231
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.777	1.028	$N\epsilonC\zetaN\eta 1$	120.554	0.995
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.743	1.003	$N\epsilonC\zetaN\eta 2$	119.976	0.857
$N\eta_1 C\zeta N\eta_2$	119.464	0.785	$N\eta 1C\zetaN\eta 2$	119.450	0.642
$NC\alphaC$	111.343	1.972	$N_{-}C\alpha_{-}C$	111.399	1.818
$N_{-}C\alpha_{-}C\beta$	111.054	1.026	$N_{-}C\alpha_{-}C\beta$	110.883	0.931
450					
ARG r	nmp-170 n = 12	23	ARG 1	mmt180 n = 120	03
χ	$\frac{\text{nmp-170 n} = 12}{\text{Smooth COM}}$	StdDev	χ	$\frac{\mathbf{mmt180} \text{ n} = 120}{\mathbf{Smooth COM}}$	O3 StdDev
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM -64.124	StdDev 7.185	χ chi1	Smooth COM -61.912	StdDev 9.054
χ chi1 chi2	Smooth COM -64.124 -65.485	StdDev 7.185 14.262	χ chi1 chi2	Smooth COM -61.912 -68.373	StdDev 9.054 12.909
χ chi1 chi2 chi3	Smooth COM -64.124 -65.485 85.873	7.185 14.262 9.711	χ chi1 chi2 chi3	Smooth COM -61.912 -68.373 -176.971	StdDev 9.054 12.909 11.256
chi1 chi2 chi3 chi4	Smooth COM -64.124 -65.485 85.873 -167.047	7.185 14.262 9.711 19.760	χ chi1 chi2 chi3 chi4	Smooth COM -61.912 -68.373 -176.971 -176.339	9.054 12.909 11.256 17.437
χ chi1 chi2 chi3 chi4 Bond Angle	Smooth COM -64.124 -65.485 85.873 -167.047 Mean	7.185 14.262 9.711 19.760 StdDev	χ chi1 chi2 chi3 chi4 Bond Angle	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean	StdDev 9.054 12.909 11.256 17.437 StdDev
χ chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$	Smooth COM -64.124 -65.485 85.873 -167.047 Mean 115.470	7.185 14.262 9.711 19.760 StdDev 1.274	χ chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.493	StdDev 9.054 12.909 11.256 17.437 StdDev 1.380
χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$	Smooth COM -64.124 -65.485 85.873 -167.047 Mean 115.470 120.374	7.185 14.262 9.711 19.760 StdDev 1.274 0.989	χ chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaCO$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.493 120.394	9.054 12.909 11.256 17.437 StdDev 1.380 0.872
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ \end{array}$	Smooth COM -64.124 -65.485 85.873 -167.047 Mean 115.470 120.374 109.451 112.812 124.848	7.185 14.262 9.711 19.760 StdDev 1.274 0.989 1.525	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \end{array}$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.493 120.394 109.365	9.054 12.909 11.256 17.437 StdDev 1.380 0.872 1.625
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \end{array}$	Smooth COM -64.124 -65.485 85.873 -167.047 Mean 115.470 120.374 109.451 112.812	7.185 14.262 9.711 19.760 StdDev 1.274 0.989 1.525 1.743	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \hline \text{$\text{C}\alpha_\text{C}_\text{C}$} \\ \hline \text{$\text{C}\alpha_\text{C}_{-}\text{C}$} \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \hline \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \end{array}$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.493 120.394 109.365 112.048	9.054 12.909 11.256 17.437 StdDev 1.380 0.872 1.625 1.715
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta-N\eta1$} \\ \hline \end{array}$	Smooth COM -64.124 -65.485 85.873 -167.047 Mean 115.470 120.374 109.451 112.812 124.848	7.185 14.262 9.711 19.760 StdDev 1.274 0.989 1.525 1.743 1.315	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \text{$\text{C}\alpha_\text{C}_\text{O}$} \\ \text{$\text{C}\beta_\text{C}\alpha_\text{C}$} \\ \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \text{$\text{N}\epsilon_\text{C}\zeta_\text{N}\eta1$} \end{array}$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.493 120.394 109.365 112.048 124.422	9.054 12.909 11.256 17.437 StdDev 1.380 0.872 1.625 1.715 1.187
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM -64.124 -65.485 85.873 -167.047 Mean 115.470 120.374 109.451 112.812 124.848 111.535 120.505 119.752	7.185 14.262 9.711 19.760 StdDev 1.274 0.989 1.525 1.743 1.315 1.611 1.207 1.096	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \hline \\ \hline \text{$\text{C}\alpha_\text{C}_{\beta}$-$\text{C}\gamma$} \\ \hline \\ \hline \text{$\text{C}\alpha_\text{C}_{\beta}$-$\text{C}\gamma$-$\text{C}\delta$} \\ \hline \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \\ \hline \\ \hline \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \hline \\ \hline \\ \hline \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \hline \\ \hline \text{$\text{N}\epsilon_\text{C}\zeta_\text{N}\eta1$} \\ \hline \\ \hline \text{$\text{N}\epsilon_\text{C}\zeta_\text{N}\eta2$} \\ \end{array}$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.493 120.394 109.365 112.048 124.422 110.995 120.487 119.663	StdDev 9.054 12.909 11.256 17.437 StdDev 1.380 0.872 1.625 1.715 1.187 1.829 0.873 0.872
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ N\epsilon_C\zeta_N\eta1 \\ N\epsilon_C\zeta_N\eta2 \\ N\eta1_C\zeta_N\eta2 \\ \hline \end{array}$	Smooth COM -64.124 -65.485 85.873 -167.047 Mean 115.470 120.374 109.451 112.812 124.848 111.535 120.505 119.752 119.724	7.185 14.262 9.711 19.760 StdDev 1.274 0.989 1.525 1.743 1.315 1.611 1.207	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta1 \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta2 \\ \text{N}\eta1_\text{C}\zeta_\text{N}\eta2 \\ \end{array}$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.493 120.394 109.365 112.048 124.422 110.995 120.487 119.663 119.830	StdDev 9.054 12.909 11.256 17.437 StdDev 1.380 0.872 1.625 1.715 1.187 1.829 0.873 0.872 0.740
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM -64.124 -65.485 85.873 -167.047 Mean 115.470 120.374 109.451 112.812 124.848 111.535 120.505 119.752	7.185 14.262 9.711 19.760 StdDev 1.274 0.989 1.525 1.743 1.315 1.611 1.207 1.096	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \hline \\ \hline \text{$\text{C}\alpha_\text{C}_{\beta}$-$\text{C}\gamma$} \\ \hline \\ \hline \text{$\text{C}\alpha_\text{C}_{\beta}$-$\text{C}\gamma$-$\text{C}\delta$} \\ \hline \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \\ \hline \\ \hline \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \hline \\ \hline \\ \hline \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \hline \\ \hline \text{$\text{N}\epsilon_\text{C}\zeta_\text{N}\eta1$} \\ \hline \\ \hline \text{$\text{N}\epsilon_\text{C}\zeta_\text{N}\eta2$} \\ \end{array}$	Smooth COM -61.912 -68.373 -176.971 -176.339 Mean 114.493 120.394 109.365 112.048 124.422 110.995 120.487 119.663	StdDev 9.054 12.909 11.256 17.437 StdDev 1.380 0.872 1.625 1.715 1.187 1.829 0.873 0.872

$ARG \mathbf{mmt90} \text{ n} = 567$			ARG mmt-90 n = 1428		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-60.697	8.808	chi1	-63.806	6.649
chi2	-68.408	12.498	chi2	-68.992	8.052
chi3	179.437	10.449	chi3	-175.179	7.656
chi4	90.018	12.895	chi4	-91.022	11.109
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.636	1.391	$C\alphaC\betaC\gamma$	114.535	1.429
$C\alphaCO$	120.470	0.870	$C\alphaCO$	120.522	0.849
$C\betaC\alphaC$	109.542	1.648	$C\betaC\alphaC$	109.577	1.636
$C\betaC\gammaC\delta$	112.219	1.613	$C\betaC\gammaC\delta$	112.031	1.668
$C\delta_N\epsilon_C\zeta$	124.948	1.236	$C\delta_N\epsilon_C\zeta$	124.921	0.997
$C\gamma_C\delta_N\epsilon$	111.566	2.487	$C\gamma_C\delta_N\epsilon$	111.800	2.277
$N\epsilon C\zeta \eta 1$	120.843	1.216	$N\epsilon C\zeta N\eta 1$	120.940	0.997
$N\epsilonC\zetaN\eta^2$	119.554	1.095	$N\epsilon C\zeta N\eta 2$	119.615	0.880
$N\eta 1_C\zeta_N\eta 2$	119.578	0.717	$N\eta 1_C\zeta_N\eta 2$	119.419	0.824
$N_{-}C\alpha_{-}C$	111.367	2.715	$N_{-}C\alpha_{-}C$	110.068	2.671
$N_{-}C\alpha_{-}C\beta$	110.685	1.076	$N_{-}C\alpha_{-}C\beta$	110.879	1.109
ARG r	mm160 n = 98	51	ARG n	nmm-85 n = 10	22
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-61.827	9.224	chi1	-63.497	9.155
chi2	-66.167	13.742	chi2	-67.585	10.864
chi3	-64.223	9.924	chi3	-60.741	9.180
chi4	163.153	24.183	chi4	-86.156	10.081
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.464	1.598	$C\alphaC\betaC\gamma$	114.631	1.520
$C\alphaCO$	120.403	0.880	$C\alphaCO$	120.548	0.882
$C\betaC\alphaC$	109.780	1.544	$C\betaC\alphaC$	109.688	1.537
$C\betaC\gammaC\delta$	112.547	1.734	$C\betaC\gammaC\delta$	112.840	1.621
$C\delta_N\epsilon_C\zeta$	124.581	1.313	$C\delta_N\epsilon_C\zeta$	124.979	1.088
	111.850	1.891	$C\gammaC\deltaN\epsilon$	112.452	2.260
$C\gammaC\deltaN\epsilon$	111.000				
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.567	1.167	$N\epsilon C\zeta N\eta 1$	120.857	1.007
,		$1.167 \\ 1.115$	$N\epsilon_{-}C\zeta_{-}N\eta 1$ $N\epsilon_{-}C\zeta_{-}N\eta 2$	$120.857 \\ 119.638$	$1.007 \\ 0.965$
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.567				
$N\epsilon_{-}C\zeta_{-}N\eta 1$ $N\epsilon_{-}C\zeta_{-}N\eta 2$	120.567 119.783	1.115	$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.638	0.965

5.18 LYS

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 116.057 1.244 $C\alpha_C\beta_C\gamma$ 114.569 1.201 $C\alpha_C_O$ 120.408 0.698 $C\alpha_C_O$ 120.169 0.968 $C\beta_C\alpha_C$ 111.303 1.430 $C\beta_C\alpha_C$ 110.070 1.280 $C\beta_C\gamma_C\delta$ 112.212 1.704 $C\beta_C\gamma_C\delta$ 112.209 1.294 $C\delta_C\epsilon_N\zeta$ 111.319 1.822 $C\delta_C\epsilon_N\zeta$ 112.484 1.716 $C\gamma_C\delta_C\epsilon$ 110.556 1.940 $C\gamma_C\delta_C\epsilon$ 112.719 1.335 N_Cα_C 111.714 2.089 N_Cα_C 111.895 2.034 N_Cα_Cβ 111.577 1.190 N_Cα_Cβ 110.924 1.307 LYS ptp t n = 148 LYS ptp n = 240 χ Smooth COM StdDev χ Smooth COM StdDe chi1 64.802 8.153 chi1 67.562 8.269 chi2 179.088 11.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
chi1 64.802 8.153 chi1 67.562 8.269 chi2 179.088 11.802 chi2 -179.054 10.390 chi3 72.966 10.396 chi3 178.259 11.216
chi2 179.088 11.802 chi2 -179.054 10.390 chi3 72.966 10.396 chi3 178.259 11.216
chi3 72.966 10.396 chi3 178.259 11.216
abi4 174.545 11.910 abi4 66.600 19.970
CIII4 174.545 11.210 CIII4 00.099 12.279
Bond Angle Mean StdDev Bond Angle Mean StdDe
$C\alpha_{-}C\beta_{-}C\gamma$ 114.721 1.636 $C\alpha_{-}C\beta_{-}C\gamma$ 114.794 1.433
$C\alpha_{-}C_{-}O$ 120.525 0.854 $C\alpha_{-}C_{-}O$ 120.380 0.901
$C\beta C\alpha C$ 110.518 1.433 $C\beta C\alpha C$ 110.362 1.449
$C\beta - C\gamma - C\delta$ 112.144 1.650 $C\beta - C\gamma - C\delta$ 110.892 1.675
$C\delta_{-}C\epsilon_{-}N\zeta$ 111.436 2.103 $C\delta_{-}C\epsilon_{-}N\zeta$ 112.359 2.336
$C\gamma_{-}C\delta_{-}C\epsilon$ 112.378 1.854 $C\gamma_{-}C\delta_{-}C\epsilon$ 111.720 1.424
$N_{-}C\alpha_{-}C$ 111.237 2.936 $N_{-}C\alpha_{-}C$ 111.801 2.552
N_{-} Cα_Cβ 111.124 1.321 N_{-} Cα_Cβ 110.983 1.091
LYS pttt $n = 1385$ LYS pttm $n = 268$
χ Smooth COM StdDev χ Smooth COM StdDe
chi1 65.436 7.578 chi1 64.251 6.915
chi2 -178.083 8.650 chi2 -177.627 9.133
chi3 -179.332 9.673 chi3 -178.897 9.970
chi4 -179.680 9.634 chi4 -67.053 11.673
Bond Angle Mean StdDev Bond Angle Mean StdDe
$C\alpha_{-}C\beta_{-}C\gamma$ 114.839 1.455 $C\alpha_{-}C\beta_{-}C\gamma$ 114.862 1.467
$C\alpha_{-}C_{-}O$ 120.431 0.948 $C\alpha_{-}C_{-}O$ 120.393 0.977
$C\beta - C\alpha - C$ 110.437 1.381 $C\beta - C\alpha - C$ 110.414 1.447
$C\beta - C\gamma - C\delta$ 110.833 1.793 $C\beta - C\gamma - C\delta$ 110.696 2.050
$C\deltaC\epsilonN\zeta$ 111.334 2.005 $C\deltaC\epsilonN\zeta$ 112.324 2.369
$C\gamma - C\delta - C\epsilon$ 111.005 1.621 $C\gamma - C\delta - C\epsilon$ 111.942 1.508
$N_{-}C\alpha_{-}C$ 111.317 2.768 $N_{-}C\alpha_{-}C$ 111.970 2.550
N_{-} Cα_Cβ 111.134 1.099 N_{-} Cα_Cβ 110.983 1.162

LYS	$8 \mathbf{ptmt} \ n = 187$	_	LYS	8 ptmm n = 80	_
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	66.652	8.246	chi1	66.614	8.388
chi2	-175.856	12.044	chi2	-177.929	9.983
chi3	-71.430	11.735	chi3	-69.614	9.844
chi4	-175.836	10.337	chi4	-66.129	7.000
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
		· ·			
$C\alphaC\betaC\gamma$	114.548	1.572	$C\alphaC\betaC\gamma$	114.458	1.301
$C\alpha_{-}C_{-}O$	120.513	0.972	$C\alpha_{-}C_{-}O$	120.630	1.032
$C\beta_{-}C\alpha_{-}C$	110.429	1.608	$C\beta_{-}C\alpha_{-}C$	109.915	1.495
$C\betaC\gammaC\delta$	112.146	1.576	$C\betaC\gammaC\delta$	112.342	1.435
$C\deltaC\epsilonN\zeta$	111.541	2.110	$C\deltaC\epsilonN\zeta$	112.989	1.776
$C\gammaC\deltaC\epsilon$	112.363	1.870	$C\gammaC\deltaC\epsilon$	112.999	1.154
$N_{-}C\alpha_{-}C$	111.050	2.718	$N_{-}C\alpha_{-}C$	110.495	2.702
$N_{-}C\alpha_{-}C\beta$	111.011	1.103	$N_{-}C\alpha_{-}C\beta$	110.827	1.205
LY	S pmtt $n = 10$		LY	S tppp $n = 37$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	73.156	8.365	chi1	-177.926	11.531
chi2	-74.065	10.515	chi2	62.258	10.078
chi3	-168.029	10.580	chi3	65.517	7.785
chi4	-174.606	10.738	chi4	67.940	11.330
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	116.445	1.641	$C\alphaC\betaC\gamma$	115.134	1.503
$C\alphaCO$	120.801	0.552	$C\alphaCO$	120.707	0.872
$C\betaC\alphaC$	110.351	1.279	$C\betaC\alphaC$	110.330	0.746
$C\betaC\gammaC\delta$	112.587	2.234	$C\betaC\gammaC\delta$	113.479	1.870
$C\deltaC\epsilonN\zeta$	111.694	2.248	$C\deltaC\epsilonN\zeta$	112.983	1.698
$C\gammaC\deltaC\overset{_{}_\circ}{\epsilon}$	111.327	1.312	$\text{C}\gamma_{-}\text{C}\delta_{-}\text{C}\overset{ ext{ iny }}{\epsilon}$	113.390	1.737
$N_{-}C\alpha_{-}C$	109.953	2.378	$N_{-}C\alpha_{-}C$	110.891	1.930
$N_{-}C\alpha_{-}C\beta$	112.145	2.128	$N_{-}C\alpha_{-}C\beta$	110.228	1.115
LY	$S \mathbf{tppt} \ n = 272$		LY	S $\mathbf{tptp} \ n = 409$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-178.194	7.887	chi1	-179.932	7.986
chi2	63.490	8.924	chi2	67.443	10.399
chi3	69.535	9.197	chi3	173.601	13.550
chi4	177.447	9.361	chi4	66.191	12.980
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.823	1.234	$C\alpha_{-}C\beta_{-}C\gamma$	114.807	1.338
$C\alphaCO$	120.535	0.743	$C\alphaCO$	120.530	0.826
$C\betaC\alphaC$	110.620	1.101	$C\betaC\alphaC$	110.226	1.227
$C\beta C\gamma C\delta$	113.177	1.543	$C\beta C\gamma C\delta$	112.085	1.487
$C\deltaC\epsilonN\zeta$	111.201	1.842	$C\deltaC\epsilonN\zeta$	112.676	1.952
$C\gammaC\deltaC\epsilon$	112.378	1.445	$C\gammaC\deltaC\epsilon$	112.158	1.332 1.313
$N_{-}C\alpha_{-}C$	110.638	2.080	N_Cα_C	110.254	
$N_{-}C\alpha_{-}C\beta$				110.234	2.081
α_{-}	110.328	1.075	$N_{-}C\alpha_{-}C\beta$	110.998	1.125

LYS tptt $n = 1228$		LYS $\mathbf{tptm} \ n = 197$				
$\overline{\chi}$	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-178.908	9.092	chi1	-177.928	7.615	
chi2	69.056	9.015	chi2	67.158	9.702	
chi3	175.565	10.063	chi3	-179.368	11.396	
chi4	177.246	12.306	chi4	-66.243	13.423	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alpha_{-}C\beta_{-}C\gamma$	114.773	1.314	$C\alpha_{-}C\beta_{-}C\gamma$	114.983	1.451	
$C\alphaCO$	120.549	0.775	$C\alphaCO$	120.391	0.767	
$C\betaC\alphaC$	110.423	1.219	$C\betaC\alphaC$	110.392	1.099	
$C\betaC\gammaC\delta$	112.033	1.596	$C\betaC\gammaC\delta$	111.930	1.409	
$C\delta_C\epsilon_N\zeta$	111.116	2.237	$C\deltaC\epsilonN\zeta$	112.550	2.065	
$C\gammaC\deltaC\epsilon$	111.028	1.474	$C\gammaC\deltaC\epsilon$	111.891	1.350	
$N_{-}C\alpha_{-}C$	110.655	2.152	$N_{-}C\alpha_{-}C$	110.288	2.061	
$N_{-}C\alpha_{-}C\beta$	110.224	1.113	$N_{-}C\alpha_{-}C\beta$	110.274	1.138	
LY	S ttpp n = 229		LY	S ttpt n = 883		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-178.427	8.557	chi1	-178.343	8.129	
chi2	174.058	14.474	chi2	174.555	12.116	
chi3	71.618	11.151	chi3	73.017	11.886	
chi4	68.201	10.487	chi4	175.105	11.316	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alpha_{-}C\beta_{-}C\gamma$	113.658	1.575	$C\alphaC\betaC\gamma$	113.777	1.645	
$C\alphaCO$	120.629	0.777	$C\alphaCO$	120.604	0.755	
$C\betaC\alphaC$	110.131	1.263	$C\betaC\alphaC$	110.066	1.179	
$C\betaC\gammaC\delta$	112.134	1.677	$C\betaC\gammaC\delta$	112.121	1.474	
$C\delta_{-}C\epsilon_{-}N\zeta$	112.810	2.349	$C\deltaC\epsilonN\zeta$	111.088	2.074	
$C\gammaC\deltaC\epsilon$	112.800	1.569	$C\gammaC\deltaC\epsilon$	112.173	1.575	
$N_C\alpha_C$	110.229	2.480	$N_{-}C\alpha_{-}C$	110.329	2.318	
$NC\alphaC\beta$	110.369	1.468	$N_{-}C\alpha_{-}C\beta$	110.243	1.317	
LY	VS ttpm $n = 4$		LYS	LYS $\mathbf{tttp} \ \mathbf{n} = 1233$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-176.905	10.026	chi1	-177.650	8.068	
chi2	175.311	6.851	chi2	175.444	9.877	
chi3	87.099	18.038	chi3	173.929	10.830	
chi4	-84.400	4.171	chi4	65.901	12.780	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	115.353	1.109	$C\alphaC\betaC\gamma$	113.932	1.516	
$C\alphaCO$	120.752	0.322	$C\alphaCO$	120.582	0.750	
$C\betaC\alphaC$	110.281	0.444	$C\betaC\alphaC$	110.189	1.092	
$C\betaC\gammaC\delta$	111.616	0.992	$C\betaC\gammaC\delta$	111.148	1.611	
$C\deltaC\epsilonN\zeta$	113.892	1.178	$C\deltaC\epsilonN\zeta$	112.268	1.984	
$C\gammaC\deltaC\epsilon$	113.140	0.242	$C\gammaC\deltaC\epsilon$	111.826	1.347	
$N_{-}C\alpha_{-}C$	110.149	1.306	$N_{-}C\alpha_{-}C$	110.703	2.222	
$N_{-}C\alpha_{-}C\beta$	110.149	0.835	$N_{-}C\alpha_{-}C\beta$	110.410	1.138	

LY	$S \mathbf{t}\mathbf{t}\mathbf{t}\mathbf{t} \mathbf{n} = 5043$		LYS	6 tttm n = 1176	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-175.451	8.188	chi1	-176.393	8.096
chi2	176.592	8.732	chi2	177.818	9.663
chi3	179.677	9.233	chi3	-176.243	10.489
chi4	-179.889	10.261	chi4	-67.353	12.094
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.874	1.525	$C\alphaC\betaC\gamma$	113.887	1.596
$C\alpha_{-}C_{-}O$	120.583	0.778	$C\alphaCO$	120.552	0.824
$C\betaC\alphaC$	110.243	1.137	$C\betaC\alphaC$	110.254	1.139
$C\betaC\gammaC\delta$	111.148	1.744	$C\betaC\gammaC\delta$	111.029	1.702
$C\delta_C\epsilon_N\zeta$	111.156	1.986	$C\deltaC\epsilonN\zeta$	112.329	1.971
$C\gammaC\deltaC\epsilon$	111.042	1.543	$C\gammaC\deltaC\epsilon$	111.847	1.465
$N_{-}C\alpha_{-}C$	110.545	2.283	$N_{-}C\alpha_{-}C$	110.514	2.115
$NC\alphaC\beta$	110.335	1.206	$N_{-}C\alpha_{-}C\beta$	110.424	1.165
LY	$TS \mathbf{ttmp} \ n = 9$		LY	S $ttmt n = 674$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-174.170	4.238	chi1	-174.573	9.441
chi2	-179.415	8.457	chi2	-177.288	10.835
chi3	-95.701	18.562	chi3	-73.479	11.719
chi4	76.743	25.218	chi4	-175.112	11.548
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.206	1.243	$C\alphaC\betaC\gamma$	113.686	1.546
$C\alphaCO$	120.593	0.500	$C\alphaCO$	120.604	0.865
$C\betaC\alphaC$	110.316	1.623	$C\betaC\alphaC$	110.214	1.180
$C\betaC\gammaC\delta$	112.630	1.745	$C\betaC\gammaC\delta$	112.161	1.524
$C\deltaC\epsilonN\zeta$	114.038	1.362	$C\deltaC\epsilonN\zeta$	110.881	2.322
$C\gammaC\deltaC\epsilon$	112.905	0.737	$C\gammaC\deltaC\epsilon$	112.229	1.651
$N_{-}C\alpha_{-}C$	110.754	1.510	$N_{-}C\alpha_{-}C$	110.307	2.331
$N_{-}C\alpha_{-}C\beta$	111.426	1.042	$N_{-}C\alpha_{-}C\beta$	110.339	1.250
LYS	5 ttmm n = 197		LYS $\mathbf{tmtp} \ n = 11$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-174.055	8.490	chi1	-176.649	7.525
chi2	179.742	9.943	chi2	-97.994	8.314
chi3	-71.028	11.891	chi3	-178.365	12.353
chi4	-67.045	11.420	chi4	65.083	7.821
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.643	1.459	$C\alphaC\betaC\gamma$	114.616	1.223
$C\alphaCO$	120.558	0.817	$C\alphaCO$	120.800	0.413
$C\betaC\alphaC$	110.229	1.285	$C\betaC\alphaC$	110.486	0.704
$C\betaC\gammaC\delta$	112.136	1.574	$C\betaC\gammaC\delta$	112.010	1.506
$C\deltaC\epsilonN\zeta$	112.648	2.300	$C\deltaC\epsilonN\zeta$	113.099	3.033
$C\gammaC\deltaC\epsilon$	112.487	1.564	$C\gammaC\deltaC\epsilon$	111.842	1.204
$N_{-}C\alpha_{-}C$	110.191	2.445	$N_{-}C\alpha_{-}C$	110.140	3.054
$N_{-}C\alpha_{-}C\beta$	110.327	1.394	$N_{-}C\alpha_{-}C\beta$	110.368	0.871

LYS	$S \mathbf{tmtt} \mathbf{n} = 82$		LYS	$S \mathbf{tmtm} \ n = 20$	
$\overline{\chi}$	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-172.661	8.464	chi1	-172.233	10.447
chi2	-91.117	9.621	chi2	-90.510	5.572
chi3	-176.853	11.750	chi3	-172.543	15.072
chi4	-178.511	10.695	chi4	-64.869	7.732
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.500	1.145	$C\alphaC\betaC\gamma$	115.452	1.619
$C\alphaCO$	120.778	0.610	$C\alphaCO$	120.586	0.646
$C\betaC\alphaC$	110.869	1.093	$C\betaC\alphaC$	110.984	0.853
$C\betaC\gammaC\delta$	111.882	1.443	$C\betaC\gammaC\delta$	112.208	1.226
$C\deltaC\epsilonN\zeta$	110.842	2.070	$C\deltaC\epsilonN\zeta$	112.679	1.691
$C\gammaC\deltaC\epsilon$	111.015	1.375	$C\gammaC\deltaC\epsilon$	111.998	1.546
$N_{-}C\alpha_{-}C$	110.180	1.891	$N_C\alpha_C$	110.089	1.720
$N_{-}C\alpha_{-}C\beta$	110.078	0.810	$N_{-}C\alpha_{-}C\beta$	109.782	0.789
LYS	5 tmmt n = 33		LYS	S tmmm $n = 8$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-179.225	9.981	chi1	-177.527	11.864
chi2	-93.418	12.058	chi2	-81.761	7.499
chi3	-70.433	8.917	chi3	-63.102	8.026
chi4	-179.549	10.245	chi4	-64.475	4.939
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.020	1.846	$C\alphaC\betaC\gamma$	116.243	2.695
$C\alphaCO$	120.544	0.877	$C\alphaCO$	120.272	0.848
$C\betaC\alphaC$	110.741	1.116	$C\betaC\alphaC$	111.246	1.126
$C\betaC\gammaC\delta$	113.459	1.734	$C\betaC\gammaC\delta$	114.871	1.367
$C\deltaC\epsilonN\zeta$	110.756	2.859	$C\deltaC\epsilonN\zeta$	113.141	1.476
$C\gammaC\deltaC\epsilon$	112.411	2.864	$C\gammaC\deltaC\epsilon$	114.998	1.617
$N_{-}C\alpha_{-}C$	109.953	2.155	$N_{-}C\alpha_{-}C$	108.983	2.013
$N_{-}C\alpha_{-}C\beta$	109.895	1.083	$N_{-}C\alpha_{-}C\beta$	109.523	1.258
LYS	8 mppt n = 31		LY	S mptp n = 26	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-82.599	8.918	chi1	-74.901	18.526
chi2	73.518	14.873	chi2	86.563	18.186
chi3	69.157	8.044	chi3	171.631	8.992
chi4	177.385	5.414	chi4	65.232	12.143
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.111	1.987	$C\alphaC\betaC\gamma$	114.682	1.564
$C\alphaCO$	120.424	0.890	$C\alphaCO$	120.477	1.133
$C\betaC\alphaC$	109.879	1.228	$C\betaC\alphaC$	110.099	1.428
$C\betaC\gammaC\delta$	113.688	1.564	$C\betaC\gammaC\delta$	113.211	2.501
' '	444 050	1.922	$C\deltaC\epsilonN\zeta$	113.419	2.262
$C\deltaC\epsilonN\zeta$	111.358				
$C\deltaC\epsilonN\zeta$ $C\gammaC\deltaC\epsilon$	111.358 112.185	1.373	$C\gammaC\deltaC\epsilon$	112.501	2.718
$C\deltaC\epsilonN\zeta$					

LYS	S mptt $n = 124$		LYS	$S \mathbf{mptm} \ n = 11$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-79.911	13.282	chi1	-91.748	6.662	
chi2	72.964	17.284	chi2	61.180	11.061	
chi3	176.124	12.429	chi3	-173.655	5.358	
chi4	175.095		chi4	-60.981		
		11.920			13.466	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.896	1.389	$C\alphaC\betaC\gamma$	114.614	0.809	
$C\alphaCO$	120.553	0.785	$C\alphaCO$	120.670	0.565	
$C\betaC\alphaC$	109.748	1.534	$C\betaC\alphaC$	110.693	0.842	
$C\betaC\gammaC\delta$	112.619	2.029	$C\betaC\gammaC\delta$	112.838	0.654	
$C\deltaC\epsilonN\zeta$	110.877	2.274	$C\deltaC\epsilonN\zeta$	113.434	1.681	
$C\gammaC\deltaC\epsilon$	111.162	1.603	$C\gammaC\deltaC\epsilon$	111.830	0.502	
$N_{-}C\alpha_{-}C$	110.579	2.594	$N_{-}C\alpha_{-}C$	110.770	2.188	
$N_{-}C\alpha_{-}C\beta$	110.815	1.103	$N_{-}C\alpha_{-}C\beta$	110.642	0.906	
LYS	8 mtpp n = 392		LYS	$\mathbf{mtpt} \ \mathbf{n} = 1357$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-68.535	7.507	chi1	-69.197	8.061	
chi2	176.954	10.868	chi2	174.242	11.340	
chi3	70.471	10.847	chi3	70.524	11.811	
chi4	67.722	10.865	chi4	175.197	10.445	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	113.235	1.656	$C\alphaC\betaC\gamma$	113.256	1.539	
$C\alphaCO$	120.433	0.824	$C\alphaCO$	120.481	0.839	
$C\betaC\alphaC$	110.157	1.514	$C\betaC\alphaC$	109.985	1.646	
$C\betaC\gammaC\delta$	112.402	1.454	$C\betaC\gammaC\delta$	112.293	1.551	
$C\delta_C\epsilon_N\zeta$	112.819	2.106	$C\deltaC\epsilonN\zeta$	110.841	2.155	
$C\gammaC\deltaC\epsilon$	112.704	1.415	$C\gammaC\deltaC\epsilon$	112.343	1.491	
$N_{-}C\alpha_{-}C$	111.365	2.533	$N_{-}C\alpha_{-}C$	111.357	2.211	
$N_{-}C\alpha_{-}C\beta$	110.495	1.009	$N_{-}C\alpha_{-}C\beta$	110.670	1.031	
LYS	S mtpm $n = 17$		LYS mttp $n = 1414$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-70.323	6.135	chi1	-65.910	8.334	
chi2	174.831	15.490	chi2	-179.442	10.679	
chi3	90.638	14.675	chi3	176.319	11.179	
chi4	-70.024	12.061	chi4	66.691	13.607	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alpha_{-}C\beta_{-}C\gamma$	113.509	2.138	$C\alphaC\betaC\gamma$	113.442	1.732	
$C\alphaCO$	120.306	0.769	$C\alphaCO$	120.510	0.841	
$C\betaC\alphaC$	109.783	2.273	$C\betaC\alphaC$	110.097	1.628	
$\overset{'}{\mathrm{C}\beta}$ _ $\mathrm{C}\gamma$ _ $\mathrm{C}\delta$	112.290	1.700	$C\betaC\gammaC\delta$	111.258	1.746	
$C\deltaC\epsilonN\zeta$	113.385	1.869	$C\deltaC\epsilonN\zeta$	112.223	1.982	
$C\gammaC\deltaC\epsilon$	113.180	1.587	$C\gammaC\deltaC\epsilon$	111.751	1.466	
N_Cα_C	110.870	2.120	$N_{-}C\alpha_{-}C$	111.268	2.491	
$N_{-}C\alpha_{-}C\beta$	110.511	1.029	$N_{-}C\alpha_{-}C\beta$	110.594	1.017	
<u> </u>	110.011	1.040	<u> </u>	110.034	1.011	

LYS mttt $n = 8597$			-	LYS $\mathbf{mttm} \ \mathbf{n} = 1829$			
$\overline{\chi}$	Smooth COM	StdDev	-	χ	Smooth COM	StdDev	
chi1	-67.654	7.111	-	chi1	-66.855	7.320	
chi2	-178.811	9.067		chi2	-177.777	10.020	
chi3	-179.106	9.781		chi3	-176.656	10.842	
chi4	179.484	10.347		chi4	-67.384	12.838	
Bond Angle	Mean	StdDev	-	Bond Angle	Mean	StdDev	
$C\alpha_{-}C\beta_{-}C\gamma$	113.453	1.623	-	$C\alpha_{-}C\beta_{-}C\gamma$	113.406	1.737	
$C\alpha_{-}C_{-}O$	120.467	0.827		$C\alpha_{-}C_{-}O$	120.484	0.849	
$C\betaC\alphaC$	109.998	1.557		$C\betaC\alphaC$	110.086	1.544	
$C\beta$ _ $C\gamma$ _ $C\delta$	111.143	1.850		$C\beta C\gamma C\delta$	111.204	1.726	
$C\deltaC\epsilonN\zeta$	111.119	2.099		$C\deltaC\epsilonN\zeta$	112.211	2.034	
$C\gammaC\deltaC\epsilon$	111.049	1.601		$C\gammaC\deltaC\epsilon$	111.752	1.469	
$N_{-}C\alpha_{-}C$	111.334	2.236		N_Cα_C	111.378	2.375	
$N_{-}C\alpha_{-}C\beta$	110.665	0.988		$N_{-}C\alpha_{-}C\beta$	110.611	1.003	
		0.000	-	,			
	$\frac{\text{S mtmp n} = 9}{\text{Gartingork}}$	G. ID	-		$\frac{\mathbf{mtmt} \ \mathbf{n} = 1314}{\mathbf{n} + \mathbf{n} = 1314}$		
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev	
chi1	-67.465	5.792		chi1	-66.838	6.886	
chi2	-175.781	8.346		chi2	-173.335	9.847	
chi3	-95.844	7.431		chi3	-73.733	11.654	
chi4	73.531	12.322		chi4	-175.371	10.598	
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	113.802	1.228		$C\alphaC\betaC\gamma$	113.209	1.595	
$C\alphaCO$	120.633	0.607		$C\alphaCO$	120.408	0.857	
$C\betaC\alphaC$	109.891	1.198		$C\betaC\alphaC$	110.085	1.557	
$C\betaC\gammaC\delta$	111.699	1.976		$C\betaC\gammaC\delta$	112.313	1.519	
$C\deltaC\epsilonN\zeta$	113.681	2.374		$C\deltaC\epsilonN\zeta$	111.041	2.184	
$C\gammaC\deltaC\epsilon$	112.703	0.792		$C\gammaC\deltaC\epsilon$	112.107	1.451	
$N_{-}C\alpha_{-}C$	110.375	2.291		$N_{-}C\alpha_{-}C$	111.319	2.137	
$N_{-}C\alpha_{-}C\beta$	110.828	0.914		$N_{-}C\alpha_{-}C\beta$	110.673	0.960	
LYS	$\mathbf{mtmm} \ \mathrm{n} = 424$			LYS mmpt $n = 31$			
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev	
chi1	-63.898	6.909		chi1	-60.371	7.013	
chi2	-177.154	10.058		chi2	-70.556	19.521	
chi3	-70.378	10.902		chi3	93.615	14.476	
chi4	-66.004	9.830		chi4	175.537	10.679	
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	113.456	1.534		$C\alphaC\betaC\gamma$	115.281	1.118	
$C\alphaCO$	120.488	0.838		$C\alphaCO$	120.359	0.888	
$C\betaC\alphaC$	109.818	1.557		$C\betaC\alphaC$	109.807	1.683	
$C\betaC\gammaC\delta$	112.288	1.374		$C\betaC\gammaC\delta$	113.354	1.803	
$C\deltaC\epsilonN\zeta$	112.759	2.097		$C\deltaC\epsilonN\zeta$	111.539	1.766	
$C\gammaC\deltaC\epsilon$	112.869	1.500		$C\gammaC\deltaC\epsilon$	112.040	1.404	
$N_{-}C\alpha_{-}C$	111.524	2.392		$N_{-}C\alpha_{-}C$	111.535	2.365	
$N_{-}C\alpha_{-}C\beta$	110.573	1.029	_	$N_{-}C\alpha_{-}C\beta$	111.168	1.386	
			-				

LYS $\mathbf{mmtp} \ n = 463$			LYS $mmtt n = 3137$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-61.499	8.157	chi1	-61.713	8.298	
chi2	-68.646	12.048	chi2	-67.230	9.794	
chi3	179.724	11.913	chi3	-176.776	10.146	
chi4	67.912	13.158	chi4	-178.237	10.966	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.716	1.514	$C\alpha_{-}C\beta_{-}C\gamma$	114.531	1.322	
$C\alpha_{-}C_{-}O$	120.405	0.904	$C\alphaCO$	120.435	0.906	
$C\betaC\alphaC$	109.563	1.559	$C\betaC\alphaC$	109.619	1.555	
$C\betaC\gammaC\delta$	112.024	1.545	$C\betaC\gammaC\delta$	111.910	1.487	
$C\delta_C\epsilon_N\zeta$	112.649	2.339	$C\deltaC\epsilonN\zeta$	111.069	2.082	
$C\gammaC\deltaC\epsilon$	111.879	1.343	$\mathrm{C}\gamma\mathrm{C}\delta\mathrm{C}\epsilon$	111.132	1.533	
$N_C\alpha_C$	111.141	2.596	$N_{-}C\alpha_{-}C$	111.465	2.473	
$N_{-}C\alpha_{-}C\beta$	110.702	1.044	$N_{-}C\alpha_{-}C\beta$	110.691	1.009	
LYS	mmtm n = 727	,	LYS	$\mathbf{mmmt} \ n = 544$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-60.188	8.246	chi1	-62.678	7.662	
chi2	-65.555	10.785	chi2	-64.116	10.733	
chi3	-173.090	11.157	chi3	-70.703	9.725	
chi4	-68.899	13.356	chi4	-176.812	9.766	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.540	1.397	$C\alphaC\betaC\gamma$	114.613	1.313	
$C\alphaCO$	120.538	0.866	$C\alphaCO$	120.383	0.968	
$C\betaC\alphaC$	109.750	1.568	$C\betaC\alphaC$	109.622	1.455	
$C\betaC\gammaC\delta$	111.934	1.429	$C\betaC\gammaC\delta$	113.105	1.508	
$C\delta_C\epsilon_N\zeta$	112.437	1.969	$C\deltaC\epsilonN\zeta$	111.154	2.215	
$C\gamma_{-}C\delta_{-}C\epsilon$	111.964	1.439	$C\gammaC\deltaC\epsilon$	112.301	1.533	
$N_{-}C\alpha_{-}C$	111.442	2.525	$N_{-}C\alpha_{-}C$	111.767	2.314	
$N_{-}C\alpha_{-}C\beta$	110.623	1.025	$N_{-}C\alpha_{-}C\beta$	110.671	1.052	
LYS	mmmm n = 90)				
χ	Smooth COM	StdDev				
chi1	-61.396	8.320				
chi2	-61.832	10.421				
chi3	-66.893	10.843				
chi4	-64.659	10.880				
Bond Angle	Mean	StdDev				
$C\alpha_{-}C\beta_{-}C\gamma$	114.738	1.388				
Co. CO	120 417	1.064				

1.064

1.525

1.432

2.734

1.865

2.469

1.112

 $C\alpha_-C_-O$

 $C\beta_-C\alpha_-C$

 $C\beta C\gamma C\delta$

 $C\delta_-C\epsilon_-N\zeta$

 $C\gamma_-C\delta_-C\epsilon$

 $N_C\alpha_C$

 $N_-C\alpha_-C\beta$

120.417

109.517

113.153

112.644

113.176

111.658

110.501