סדרות של פונקציות והתכנסות במ"ש

נערך ע"י אמיר קסיס

תזכורת:

- $E\subseteq\mathbb{R}$ סדרה של פונקציה בקבוצה $\{f_n\}$ סדרה: תהי
- $\lim_{n \to \infty} f_n\left(x
 ight) = 1$ אם $x \in E$ אם בנקודה f מתכנסות נקודתית לפונקציה לפונקציה $x \in E$ אם $x \in E$ יהי .א.א.

 $\left|f_{n}\left(x
ight)-f\left(x
ight)
ight|<\epsilon$ מתקיים מספר טבעי $n\geq N$ כך שלכל אלכל קייים מספר סבעי $\epsilon>0$ ולכל

- . א.א. $x\in E$ מתכנסות נקודתית ל־ f ב־ f אם E ב־ f אם מתכנסות נקודתית ל־ f_n מתקיים $n\geq N$ לכל $n\in E$ לכל $n\in E$ קיים מספר טבעי $n\in E$ לכל $n\in E$ לכל $n\in E$ לכל $n\in E$
- נאמר ש־ f_n מתכנסות במידה שווה ל־ f_n ב־ f_n אם: $|f_n(x)-f(x)|<\epsilon \text{ מתקיים} \ x\in E \$ מתקיים מספר טבעי f_n כך שלכל f_n ולכל f_n מסתכלים על f_n בכל נקודה בנפרד, אלה במסתכלים על f_n כסדרה של פונקציות שמתכנסות באופן אחיד לפונקציה f_n ב־ f_n ב- f_n
- - $\sup_E |f_n-f| o 0$ אם ורק אם E ב־ $f_n o f$ משפט: תהי $\{f_n\}$ סדרת פונקציות ב־ E ותהיE ותהי
 - .Dב־ תציפה f אזי אזי f_n ב־ הבי ווDבתחום בתחום רציפה \bullet
- $\int_a^x f_n o \int_a^x f$ שם, אזי f אינטגבילית שם ו־ [a,b] ו־ ו־ ו- [a,b] שם, אינטגבילית שם ו־ [a,b] במ"ש ב־ [a,b]
 - כך ש
ד וע בקטע ברציפות גזירות גזירות אם סשפט: אם \bullet
 - ϕ מתכנסת במ"ש ב־ I לפונקציה מ
 - מתכנסת $f_{n}\left(x_{0}
 ight)$ שבו $x_{0}\in I$ מתכנסת

Iב־ $f'=\phi$ מתכנסות במ"ש ב־ לפונקציה f גזירה ו־ מתכנסות במ"ש

- . תם החלקיים, הסכומים החלקיים, בור החלקים, בור החלקיים, בור החלקיים, בור החלקיים, בור החלקיים, בור החלקים, בור הח
- מתכנס במ"ש ב $\sum f_n$ אזי אזי $\sum a_n < \infty$ ו־ ב־ $|f_n| \le a_n$ מתכנס בn מתכנס משפט ויירשטראס: אם לכל n קיים n כך ש־ n

תרגילים:

. האם (α,∞) עבור (במ"ש) בקטע (במ"ש) מתכנסת מתכנסת כי הוכיחו הוכיחו הוכיחו הוכיחו הוכיחו (במ"ש) בקטע ((α,∞) האם התכנסות במ"ש ב־ $(0,\infty)$

פתרון:

$$|f_n(x) - 1| = \frac{1}{1 + nx} \le \frac{1}{1 + n\alpha}$$

יים $x \geq \alpha$ ולכל הכל לכל אלכל ואז $\frac{1}{1+N\alpha} < \epsilon$ שר כך כך N נבחר יהי יהי $\epsilon > 0$ יהי

$$|f_n(x) - 1| \le \frac{1}{1 + n\alpha} \le \frac{1}{1 + N\alpha} < \epsilon$$

אבל נשים לב ש־ f_n . $f_n(0)=0$ רציפות היא ופונקצית הגבול החתכנסות היא התכנסות היא החתכנסות היא במ"ש ב־ $[0,\infty)$ לא במ"ש ב־ $[0,\infty)$

הערה: אין התכנסות במ"ש ב־ $(0,\infty)$ כי כי $f_n\left(x\right) \to 0$ אבל אבל הערה: אין התכנסות במ"ש ב־ $(0,\infty)$ כי כי $(0,\infty)$ הפרטים).

 $\left\{ f_{n}
ight\}$ מתכנסות במ"ש ב־ $x\in\left[0,1
ight]$, $f_{n}\left(x
ight)=nx\left(1-x
ight)^{n}$.2

פתרון:

תית. $f_n o 0$ נקדותית ע"י מבחן השורש ש־

 $|f_n-0|=f_n$ על מנת לבדוק הכי גדול את גב"ש ב־ [0,1], נעריך מ"ש ב־ במ"ש התכנסות האם על מנת לבדוק האם את

ע"י חישוב פשוט, רואים ש־ $rac{1}{n+1}$ מקסימיזר של f_n לכן

$$\max f_n = f_n\left(\frac{1}{n+1}\right) = \frac{n}{n+1}\left(1 - \frac{1}{n+1}\right)^n$$

[0,1] במ"ש ב־ במ"ש לכן אין התכנסות במ"ש בי פוזה אוזה שואף ל

- $0=f\left(0
 ight)=\lim_{x o\infty}f\left(x
 ight)$ מגדירים $f:\left[0,\infty
 ight) o g_{n}\left(x
 ight)=f\left(rac{x}{n}
 ight)$ ור $g_{n}\left(x
 ight)=f\left(nx
 ight)$ הראו ש־
 - $[0,\infty)$ בה לאפס במ"ש לאפס נקודתית נקודתית מתכנסות החכנסות לאפס הא $h_n,\,g_n$
- לא החלק הזה של החלק הזה לא הבנתי את ההוכחה של החלק הזה $h_n \cdot g_n ullet$

פתרון:

, $f\left(x_{0}
ight)
eq 0$ שבה $x_{0}>0$ שבה $\lim_{n \to \infty}h_{n}\left(x\right)=\lim_{n \to \infty}g_{n}\left(x\right)=0$ שבה $x_{0}>0$ שבה כי לכל כי לכל לכל לכל לכן אין התכנסות במ"ש שם. לכן אין התכנסות לכן $h_{n}\left(x_{0}n\right)=g_{n}\left(\frac{x_{0}}{n}\right)=f\left(x_{0}\right)$

מצד שני, יהי $\epsilon>0$, קיים M>0 כך שאם M>0 כך או $x<\frac{1}{M}$ או $x\geq M$ כך שאם M>0 פעד שני, יהי $\epsilon>0$, קיים הגבול ב־ ∞ , חסומה ב־0, חסומה ב־0, ב"כ על ידי 0. לכן, לכל 0 מתקיים:

:עבור lpha מספר ממשי נגדיר

עבור x קבוע אפשר למצוא $f_n\left(x\right)=n^{\alpha}xe^{-\frac{1}{2}nx^2}$ את הגבול עם מבחן המנה

- $\{f_n\}$ מתכנסת במידה שווה ב־ $\{f_n\}$ הסדרה מעבור אילו ערכי
 - ?מתכנסת $\left\{ \int_{0}^{1}f_{n}\left(x\right) dx
 ight\}$ מתכנסת lpha עבור אילו ערכי

פתרון:

.Iבר f_n של מקסימיזר אל כן גית על כן $x_n=\frac{1}{\sqrt{n}}$ יתר על כן $.f_n\left(x\right)\to 0$ מתקיים $x\in I=[0,1]$ ברור שלכל $\alpha<\frac{1}{2}$ אם ורק אם $f_n\left(x_n\right)\to 0$ לכן $\alpha<\frac{1}{2}$ אם ורק אם $f_n\left(x_n\right)\to 0$

 $.\alpha \leq 1$ אם ורק אם קיים לכן לכן $\int_0^1 f_n = n^{\alpha-1} \left(1 - e^{-\frac{n}{2}}\right)$ מתקיים

נתונה סדרת פונקציות רציפות ואי־שליליות \mathbb{R} הוכיחו המתכנסות במ"ש ל־ f שם. כמו כן נתון . $\int_0^b f=0$ מתקיים b>0 מתקיים . $\lim_{n\to\infty}\int_0^\infty f_n=0$ ו־ ו־ $\int_0^\infty f_n=0$ הוכיחו שלכל

פתרון:

נשים לב ש־ $\int_b^\infty f_n o 0$ ומכאן $\int_b^\infty f_n = \int_0^b f_n + \int_b^\infty f_n o 0$ לכן $\int_b^\infty f_n = \int_0^b f_n + \int_b^\infty f_n$ ומכאן $\int_0^b f_n o \int_0^b f_n o 0$ אבל $\int_0^\infty f = 0$ לכן $\int_0^b f_n o 0$ ומיחידות הגבול $\int_0^b f_n o 0$ מין זו חי?

 $\lim_{n\to\infty}\int_{-\infty}^\infty f_n$ את וחשבו את \mathbb{R} ב־ $f_n o 0$ ב־ f_n עבור n>0 עבור $f_n\left(x
ight)=rac{1}{n}\chi_{[n,n+1]}$.6

 $\lim_{n o\infty}\int_0^1f_n$ ב. תהי קיים. חשבו את $\lim_{n o\infty}f_n$ בכל נקודה בה הגבול קיים. חשבו את f_n ב. תהי

ג. תהי g_n ור g_n אבל g_n, f_n הראו ש־ g_n, f_n מתכנסות במ"ש ב־ $g_n(x) = x$ לא.

פתרון:

 $x \in \mathbb{R}$ ולכל $n \geq N$ אזי לכל אזי לכל $n \geq N$ ולכל היי $\epsilon > 0$ א. יהי

$$|f_n(x) - 0| = f_n(x) \le \frac{1}{n} \le \frac{1}{N} < \epsilon$$

 $\lim_{n\to\infty}\int_{-\infty}^{\infty}f_n=\lim_{n\to\infty}1=1$ כמו כן,

שימו שימו כי שם הכל מההרצאה, כי שם הכל מתרחש . $\int_{\mathbb{R}} f_n \nrightarrow \int_{\mathbb{R}} 0$ ב־ $f_n \to 0$ ב־ $f_n \to 0$ בקטע סגור וחסום.

 $\lim_{n \to \infty} \int_0^1 f_n = 1$,כמו כן, $\lim_{n \to \infty} f_n\left(x
ight) = 0$ לכן . $f_n\left(x
ight) o 0$ ב. קל מאוד לראות ש־

שימו לב: $f_n o f \equiv 0$ ב־ $f_n o f = 0$ אבל לה לא סותר את המשפט מההרצאה כי אין $f_n o f = 0$ שימו לב: לה לה במ"ש בקטע.

ג. ברור ש־ $g_n\left(x\right)g_n\left(x\right)\to 0$ כמו כן $f_n\left(x\right)g_n\left(x\right)\to 0$ ב־ $f_n\to 0$ לכן $f_n\left(x\right)g_n\left(x\right)\to 0$ אבל $f_n\left(x\right)g_n\left(x\right)\to 0$ נקודתית, ו־ ... ברור ש־ $f_n\left(x\right)g_n\left(x\right)\to 0$ לכל $f_n\left(x\right)g_n\left(x\right)\to 0$ לכל $f_n\left(x\right)g_n\left(x\right)\to 0$ לכל $f_n\left(x\right)g_n\left(x\right)\to 0$ לכל אין התכנסות במ"ש ב־ ...

שימו לב: בתרגיל בית אתם תוכיחו שבהנחות מתאימות f_ng_n מתכנסות במ"ש בתחום. הבעיה היא ש־ g_n לא חסומה ב־ \mathbb{R} . (ראו תרגיל בית).

בי שווה במידה מתכנסת מתכנסת להיו נתונים הקטעים [a,b], [c,d] וסדרת הפונקציות [a,b], [c,d] שהיא מתכנסת במידה שווה ב־.[a,b]

תהי $\mathbb{R} o \phi: [c,d] o \mathbb{R}$ מונקציה רציפה.

[a,b] במידה שווה בי מתכנסת מתכנסת הפונקציות הפונקציות הוכח

<u>פתרון:</u>

 $.\phi\circ f$ הוא $\phi\circ f_n$ של של הפוטציאלי הפוט ברור ברור הרוא . $f_n woheadrightarrow f$

 $.|\phi\circ f_{n}\left(x
ight)-\phi\circ f\left(x
ight)|$ אנחנו רוצים להעריך את

אנחנו יודעים ש־ $f_n \twoheadrightarrow f$ לכן מצד שני, ϕ (t) ϕ אזי אזי אזי אזי אזי רציף. אנחנו ש־ ϕ רציף. אנחנו יודעים ש־ אזי אזי אזי אזי אזי (a, b]. ומכאן: $f_n \Rightarrow f$ באופן אחיד על

 $|\phi\left(t
ight)-\phi\left(s
ight)|<\epsilon$ אזי $s,t\in\left[c,d
ight]$, אזי $s,t\in\left[c,d
ight]$ אזיי $s,t\in\left[a,b
ight]$ אזיי $t,t\in\left[a,b
ight]$

- נקודתית ב
ד $p_n \to f$ המקיימת: , $n \geq 1$, $p_n\left(x\right) = a_n x^2 + b_n x + c_n$ נקודתי
ם פולינומים . 1 .[-1,1]
 - .היא פולינום שמעלתו f לכל היותר \bullet
 - [-1,1] יש להוכיח שההתכנסות היא במ"ש ב-

:פתרון

 $c_n \rightarrow c$ מתכנסת לכן מתכנסת מתכנסת $c_n = p_n\left(0\right)$

כמו כן מתקיים: $p_n\left(1\right)-p\left(-1\right)=2b_n$. $a_n\to a$ מתכנסת: $p_n\left(1\right)+p_n\left(-1\right)=2a_n$ מתכנסת: $f\left(x\right)=ax^2+bx+c$ מכאן לפי אריתמטיקה של גבולות. לכן $p_n\left(x\right)\to ax^2+bx+c$ למעשה, $p_n\left(x\right)\to ax^2+bx+c$ נעריך לכל $x\in [-1,1]$. נעריך לכל

$$|p_n(x) - f(x)| \le x^2 |a_n - a| + |x| |b_n - b| + |c_n - c| \le |a_n - a| + |b_n - b| + |c_n - c|$$

לכן

$$M_n = \sup_{[-1,1]} |p_n(x) - f(x)| \le |a_n - a| + |b_n - b| + |c_n - c| \to 0$$

.[-1,1] ב־ $p_n o f$ לכן

.9 חסומה אזי $f_n \twoheadrightarrow f$ ו־ ב־ E חסומות חסומות פונקציות סדרה של סדרה פונקציות .9

פתרוו:

מהנתון, לכל n קיים M_n כך ש־ M_n לכל $|f_n(x)| \le M_n$ מההתכנסות במ"ש קיים M_n מהנתון, לכל $x \in E$ מתקיים $x \in E$ מתקיים $x \in E$ לכל $x \in E$ ולכל $x \in E$

$$|f(x)| \le |f_N(x) - f(x)| + |f_N(x)| \le 1 + M_N$$

 $x\in\mathbb{R}$ עבור $\sum_{n=0}^{\infty} rac{x^n}{n^2+1}$ עבור התכנסות העור את התכנסות

פתרון:

בתרגול הקודם ראינו כי הטור מתכנס בלכל בלכל . $x \in [-1,1]$ נראה שם. נשים לב בתרגול הקודם ראינו כי הטור מתכנס בלכל

$$\frac{|x|^n}{n^2+1} \le \frac{1}{n^2+1}, x \in [-1,1]$$

[-1,1] מתכנס, לכן ע"פ מבחן וירשטרשס, הטור מתכנס במ"ש ב־ ב מתכנס, לכן מבחן הטור הטור

ע"י $f:\mathbb{R} o\mathbb{R}$ ע"י. 11.

$$f(x) = \sum_{n=1}^{\infty} \frac{n}{3^n} \sin\left(\frac{x}{n}\right), x \in \mathbb{R}$$

- א. הראו ש־f מוגדרת היטב.
- . אני התמשתי בגבול sinx/x=1 אני התמשתי בגבול באנו פום סדרה הנדסית. ב. חשבו את הגבול $\lim_{x \to 0} \frac{f(3x)}{x}$ האם זה בסדר?

:פתרון

- ב. $f\left(0
 ight)=0$ בנוסף, $\sum_{n=1}^{\infty}\frac{1}{3^{n}}\cos\left(\frac{x}{n}\right)$ גזירה איבר־איבר בנוסף, $f\left(0
 ight)=0$ ב. לכן מתכנס במ"ש באופן לכן לכן לכן לכן לכן לכן לכן לכן לכן ליינו ביינו באופן ליינו ליינו ביינו ליינו איבר־איבר ליינו לי

$$\lim_{x \to 0} \frac{f(3x)}{x} = \lim_{x \to 0} 3f'(3x) = \frac{3}{2}$$

כך ש
ד $a\in E$ סדרה של פונקציות המוגדרת בקבוצה Eויורדת המוגדרת המוגדרת סדרה של סדרה א. 12
 $x\in E$ לכל nלכל $f_n\left(x\right)\leq f_n\left(a\right)$

.E במ"ש בי מתכנס מתכנס במ"ש בי $\sum \left(-1\right)^{n}f_{n}\left(x
ight)$

 $x \in \mathbb{R}$ עבור $\sum_{n=1}^{\infty} rac{(-1)^n}{|x|+4n}$ עבור התכנסות העור את ב.

פתרון:

ר ב־ $S\left(x\right)$ א. ע"פ לייבניץ הטור מתכנס ל־

$$|S(x) - S_n(x)| \le f_{n+1}(a) \to 0$$

ב־ ב.

ב. לפי הסעיף הקודם, או ישירות:

ע"פ לייבניץ הטור מתכנס לכל x נגיד לפונקציה $f\left(x
ight)$ ו־

$$|f(x) - S_n(x)| \le \frac{1}{|x| + 4(n+1)}$$

לכל $S_n o f$..א. $n o \infty$ כאשר $\sup_{\mathbb{R}} |f-S_n| o 0$ ב־ $|f-S_n| \le \frac{1}{4(n+1)}$ לכל $x \in \mathbb{R}$ לכל $x \in \mathbb{R}$

 $\sum_{n=0}^{\infty} rac{n}{e^n}$.13

פתרון:

ידוע ש־ $q\in(0,1)$ לכל [-q,q] לכל במ"ש בי התכנסות שטראס יש היירשטראס ולפי ויירשטראס ולפי ויירשטראס יש התכנסות במ"ש בי $\frac{1}{1-x}=\sum_{n=0}^\infty x^n$ לכן $\sum_{n=0}^\infty nx^n$

$$\frac{x}{(1-x)^2} = \sum_{n=0}^{\infty} nx^n$$

 $.x=e^{-1}$ נציב $.x\in(-1,1)$ לכל

- $\sum_{n=0}^{\infty} rac{x}{n^2x^2+1}$ הוכח כי הטור 14
 - $x \in \mathbb{R}$ א. מתכנס לכל
- a>0 לכל $[a,\infty)$ ב. מתכנס במ"ש ב
 - ג. ההתכנסות ב־ $[0,\infty)$ אינה במ"ש.

פתרון:

- אם $x \neq 0$ אם $\lim_{n \to \infty} \frac{\frac{|x|}{n^2 x^2 + 1}}{\frac{1}{n^2}} = \frac{1}{|x|}$ אואם טור של אפסים. בכל אפסים. בכל מקרה, ההתכנסות של $\frac{1}{n^2}$ מחייבת את ההתכנסות של הטור הנתון.
 - ב. נשים לב שאם a>0 אז

$$\frac{|x|}{n^2x^2+1} = \frac{n^2x^2}{n^2x^2+1} \cdot \frac{1}{n^2x} \le 1 \cdot \frac{1}{n^2a}, \ x \in [a, \infty)$$

 $[a,\infty)$ במ"ש ב' אז יש התכנסות במ"ש ב' ה $\sum rac{1}{n^2} < \infty$ מכיוון ש

 $x_k=\frac{1}{k}\in[0,\infty)$ ניקח (ניקח $\sum_{n=k+1}^{2k}\frac{x}{n^2x^2+1}\geq\frac{xk}{4k^2x^2+1}$ מתקיים $x\geq0$ ואז ג. קל לראות שעבור

$$\left|S_{2k}\left(x_{k}\right) - S_{k}\left(x_{k}\right)\right| \ge \frac{1}{5}$$

לכן אין התכנסות במ"ש לפי קריטריון קושי.