International Rectifier

STPS30L30CT STPS30L30CG

SCHOTTKY RECTIFIER

30 Amp

$$I_{F(AV)} = 30Amp$$

 $V_R = 30V$

Major Ratings and Characteristics

Characteristics		Values	Units
I _{F(AV)}	Rectangular waveform	2 x 15	А
V _{RRIV}	I	30	V
V _F	@ 15 Apk, T _J = 125°C (Per Leg)	0.37	V
Т	range	- 55 to 150	°C

Description/ Features

This center tap Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 150° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 150° C T_{,I} operation
- Center tap configuration
- Very low forward voltage drop
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

STPS30L30CT, STPS30L30CG

Bulletin PD-20626 rev. D 01/07

Voltage Ratings

Parameters	Values
V _R Max. DC Reverse Voltage (V)	30
V _{RWM} Max. Working Peak Reverse Voltage (V)	

Absolute Maximum Ratings

	Parameters	Values	Units	Conditions	
I _{F(AV)}	Max. Average Forward Per Device Current Per Leg	30 15	Α	50% duty cycle @ T _C = 140°C, r	ectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	1450	Α	5μs Sine or 3μs Rect. pulse	Following any rated
	Surge Current	220		10ms Sine or 6ms Rect. pulse	load condition and with rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	15	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 2 \text{Amps}, L = 7.5 \text{mH}$	
	(Per Leg)				
I _{AR}	Repetitive Avalanche Current	2	Α	Current decaying linearly to zero in 1 µsec	
	(Per Leg)			Frequency limited by T _J max.	$V_A = 1.5 \times V_R$ typical

Electrical Specifications

	Parameters		Units	Conditions	
V _{FM}	Max. Forward Voltage Drop	0.46	V	@ 15A	T ₁ = 25 °C
'	(Per Leg) (1)	0.57	V	@ 30A	1 _J = 25 0
		0.37	V	@ 15A	T 405 °C
		0.50	V	@ 30A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage Current	1.50	mA	T _J = 25 °C	\/ = rated \/
	(Per Leg)	350	mA	T _J = 125 °C	$V_R = \text{rated } V_R$
Ст	Max. Junction Capacitance(Per Leg)	1500	pF	V _R = 5V _{DC} (test signal range 100Khz to 1Mhz) 25°C	
L _s	Typical Series Inductance (Per Leg)	8.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change (Rated V_R)	10000	V/µs		

(1) Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters		Values	Units	Conditions
T _J	Max. Junction Temperature Range		-55 to 150	°C	
T _{stg}	Max. Storage Temperature Range		-55 to 150	°C	
R _{thJC}	Max. Thermal Resistance Junction to Case (Per Leg)		1.5	°C/W	DC operation
R _{thJC}	Max. Thermal Resistance Jurto Case (Per Package)	nction	0.8	°C/W	DC operation
wt	Approximate Weight		2 (0.07)	g (oz.)	
Т	Mounting Torque	Min.	6 (5)	Kg-cm	
		Max. 12 (10) (lbf-in)			
	Marking Device		STPS 30L30CT		Case Style TO-220
			STPS30L	30CG	Case Style D ² Pak

www.irf.com 3

Fig. 4-Max. Thermal Impedance Z_{thJC} Characteristics

Bulletin PD-20626 rev. D 01/07

Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Fig. 7 - Max. Non-Repetitive Surge Current (Per Leg)

(2) Formula used: $T_C = T_J - Pd \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)}/D)$ (see Fig. 6)

Outline Table

Bulletin PD-20626 rev. D 01/07

Part Marking Information

Tape & Reel Information

Bulletin PD-20626 rev. D 01/07

```
30L30CT
                         ************************************
          This model has been developed by
        Wizard SPICE MODEL GENERATOR (1999)
     (International Rectifier Corporation)
     contains Proprietary Information
   SPICE Model Diode is composed by a
   simple diode plus paralled VCG2T
  .SUBCKT 30I30ct ANO CAT
 D1 ANO 1 DMOD (0.08936)
 *Define diode model
 .MODEL DMOD D(IS=3.01789428908089E-04A,N=1.12506549677918,BV=35V,
 + IBV=0.40837541124234A,RS= 0.000285952,CJO=3.65460570356249E-08,
 + VJ=0.934944724736772,XTI=2, EG=0.674450307828855)
 *Implementation of VCG2T
 VX 1 2 DC 0V
 R1 2 CAT TRES 1E-6
 .MODEL TRES RES(R=1,TC1=11.2856367229303)
 {\sf GP1\ ANO\ CAT\ VALUE=\{-ABS(I(VX))^*(EXP((((-2.138249E-03/11.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)-1.28564)^*((V(2,CAT)^*1E6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(I(VX)+1E-6)/(
1))+1)*9.434315E-02*ABS(V(ANO,CAT)))-1)}
 .ENDS 30I30ct
 Thermal Model Subcircuit
 .SUBCKT 30L30CT 5 1
CTHERM1 5 4
                                                               3.53E-1
CTHERM2 4 3
CTHERM3 3 2
CTHERM4 2 1
                                                                     6.35E0
                                                                     5.15E+1
                                                               4.08E+3
RTHERM1 5
                                                                    3.15E-1
                                              3
RTHERM2 4
PTHERM1 3
                                                                        6.15E-1
 RTHERM1
                                                    2
                                                                        3.7E-1
 RTHERM1 2
                                                                        1.98E-1
 .ENDS 30L30CT
```

Ordering Information Table

Bulletin PD-20626 rev. D 01/07

- 1 Essential Part Number
- 2 Current Rating (30A)
- L = Low Voltage
- Voltage Rating (30 = 30V)
- C = Common cathode
- 6 • G = D²Pak package
 - T = TO-220
- none = Tube (50 pieces)
 - TRL = Tape & Reel (Left Oriented for D²Pak only)
 - TRR = Tape & Reel (Right Oriented for D²Pak only)
- none = Standard Production
 - PbF = Lead-Free (for D^2 Pak tube)
 - P = Lead-Free (for D^2 Pak TRR and TRL)

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309

Visit us at www.irf.com for sales contact information. 01/07