			Created with OSdag
Company Name	KLE Technological University	Project Title	Problem Set 2 - Problem 4: Fin plate Column flange to beam
Group/Team Name	Civil Engineering Department	Subtitle	
Designer	Satish Annigeri	Job Number	
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Conclusion	
Finplate	Pass
Finplate	
Connection Properties	
Connection	
Connection Title	Single Finplate
Connection Type	Shear Connection
Connection Category	
Connectivity	Column flange-Beam web
Beam Connection	Bolted
Column Connection	Welded
Loading (Factored Load)	
Shear Force (kN)	200
Components	
Column Section	ISSC 200
Material	Fe 410
Beam Section	ISMB 400
Material	Fe 410
Hole	STD
Plate Section	250X80X16
Thickness (mm)	16
Width (mm)	80
Depth (mm)	250
Hole	STD
Weld	
Туре	Double Fillet
Size (mm)	13
Bolts	
Туре	HSFG
Grade	8.8
Diameter (mm)	12
Bolt Numbers	7
Columns (Vertical Lines)	1
Bolts Per Column	7
Gauge (mm)	0

Pitch (mm)	31	
End Distance (mm)	30	
Edge Distance (mm)	30	
Assembly	•	
Column-Beam Clearance (mm)	20	

			Created with Sdag
Company Name	KLE Technological University	Project Title	Problem Set 2 - Problem 4: Fin plate Column flange to beam
Group/Team Name	Civil Engineering Department	Subtitle	
Designer	Satish Annigeri	Job Number	
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Check				
Check	Required	Provided	Remark	
Bolt shear capacity (kN)		V_{dsb} = (800*0.6126*12*12)/($\sqrt{3}$ *1.25*1000) = 31.223 [cl. 10.3.3]		
Bolt bearing capacity (kN)		V _{dpb} = (2.5*0.519*12*8.9*410)/(1.25*1000) = 45.452 [cl. 10.3.4]		
Bolt capacity (kN)		Min (31.223, 45.452) = 31.223		
No. of bolts	200/31.223 = 6.4	7	Pass	
No.of column(s)	≤ 2	1		
No. of bolts per column		7		
Bolt pitch (mm)	≥ 2.5* 12 = 30, ≤ Min(32*8.9, 300) = 285 [cl. 10.2.2]	31	Pass	
Bolt gauge (mm)	≥ 2.5*12 = 30, ≤ Min(32*8.9, 300) = 285 [cl. 10.2.2]	0		
End distance (mm)	≥ 1.7*13 = 22.1, ≤ 12*8.9 = 106.8 [cl. 10.2.4]	30	Pass	
Edge distance (mm)	≥ 1.7*13 = 22.1, ≤ 12*8.9 = 106.8 [cl. 10.2.4]	30	Pass	
Block shear capacity (kN)	≥ 200	V _{db} = 467	Pass	
Plate thickness (mm)	(5*200*1000)/(250*250) = 16.0 [Owens and Cheal, 1989]	16	Pass	
Plate height (mm)	≥ 0.6*400=240.0, ≤ 400-16-14- 10=330.0 [cl. 10.2.4, Insdag Detailing Manual, 2002]	250	Pass	
Plate width (mm)		100		
Plate moment capacity (kNm)	(2*31.223*31 ²)/(31*1000) = 11.99	$M_{\rm d}$ = (1.2*250* Z)/(1000*1.1) = 45.45 [cl. 8.2.1.2]	Pass	
Effective weld length (mm)		250-2*16 = 218		

Weld strength (kN/mm)	[200/(2*218)] ²	f_{V} = (0.7*13*410)/($\sqrt{3}$ *1.25) = 2.121	Pass
Weld thickness	Max(65.885*1000*√3* 1.25)/(0.7 * 410),16* 0.8) = 12.8	[cl. 10.5.7]	Pass
(mm)	[cl. 10.5.7, Insdag Detailing Manual, 2002]	13	

			Created with OSdag
Company Name	KLE Technological University	Project Title	Problem Set 2 - Problem 4: Fin plate Column flange to beam
Group/Team Name	Civil Engineering Department	Subtitle	
Designer	Satish Annigeri	Job Number	
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

			Created with OSdag
Company Name	KLE Technological University	Project Title	Problem Set 2 - Problem 4: Fin plate Column flange to beam
Group/Team Name	Civil Engineering Department	Subtitle	
Designer	Satish Annigeri	Job Number	
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Additional Comments	