Logic Circuit (2015)

Unit 11. Latches and Flip-Flops

Spring 2015

School of Electrical Engineering

Prof. Jong-Myon Kim

Objectives – To Learn

- ⇒ Explain in words the operation of S-R and gated D latches
- ⇒ Explain in words the operation of D, D-CE, S-R, J-K, and T flip-flops
- ⇒ Make a table and derive the characteristic (next-state) equation for such latches and flip-flops. State any necessary restrictions on the input signals
- ⇒ Draw a timing diagram relating the input and output of such latches flip-flops
- ⇒ Show how latches and flip-flops can be constructed using gates.
 Analyze the operation of a flip-flop that is constructed of gates and latches

Introduction

- Sequential switching networks
 - Output depends on both present inputs and past sequence of inputs
 - ❖ Latches & Flip-Flops are most commonly used memory devices
- ◆ Latches & Flip-Flops
 - ❖ Assume one of two stable output states
 - Has one or more inputs which can cause the output state to change
 - ❖ Latch : a memory element that has no clock input
 - Flip-Flop: a memory device that changes output state in response to a clock input and not in response to a data input

Feedback

- ◆ Feedback
 - output of one gate is connected back into the another gate's input so as to form a closed loop
 - needed to construct a switching circuit which has a memory
- ◆ Inverter with feedback
 - oscillate back and forth between 0 and 1
 - never reach a stable condition
 - oscillation rate is determined by the inverter's propagation delay

Introduction

Two inverters with feedback two stable conditions – stable states

Fig 11-2.

→ Stable state

Set-Reset Latch (S-R Latch)

- can make a simple Latch by using a feedback
- Operations:
 - **❖** S=R=0, Q=0, P=1?
 - stable? yes
 - ❖ becomes S=1
 - ◆ S=1, R=0 P=0, Q=1
 - ❖ S=0 again. Then?
 - ◆ P=0, Q=1
 - **❖** R=1 − Q=0, P=1
 - ❖ R=0 : go back to first
 - Two different stable state for a given set of inputs
 - ❖ R=S=1을 허용하지 않으며 항상 P=Q'

SR Latch: Cross-Coupled Structure

- ◆ To emphasize the symmetry, SR latch is often drawn in cross-coupled form
- ◆ Although Q comes out of NOR gate with R input, the symbol has Q directly above S input

Improper S-R Latch Operation

- What if S=R=1?
 - P=Q=0 (violate basic rule of latch operation that requires the latch outputs to be complements)

 if S & R change back to 0, P=Q=1 and .. (oscillate if the
 - gate delays are exactly equal)

Logic Circuit

Set-Reset Latch

Fig 11-7. Timing Diagram for S-R Latch

ε : response time or delay time of the latch

Table 11-1. S-R Latch Operation

S(t)	R(t)		Q(t)	$Q(t+\varepsilon)$	
0 0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1 0		0 1 0 0 1 1	
					<i>)</i>

Set-Reset Latch

Fig 11–8. Map for $Q(t+\varepsilon)$

next-state equation(다음상태 방정식) or characteristic equation(특성방정식)

Switch Debouncing with an S-R Latch

Alternative Form of Set-Reset Latch

$$\overline{S} - \overline{R}$$
 Latch

Gated D Latch

- ◆ Two inputs : D, G
 - \bullet when G=0 \rightarrow S=R=0 \bigcirc Q does not change
 - ❖ when G=1, D=1, S=1, R=0 ☑ Q=1
 - ❖ when G=1, D=0, S=0, R=1 ☞ Q=0
- ♦ when G=1, the Q output follows D input when G=0, Q does not change
- Transparent latch

Gated D Latch

Figure 11-12. Symbol and Truth Table for Gated Latch

Edge-Triggered D Flip-Flop

Figure 11-13. D Flip-Flops

D	Q	$Q^{^{\scriptscriptstyle +}}$
0	0	0
0	1	0
1	0	1
1	1	1

$$Q^+ = D$$

- (a) Rising-edge trigger
- (b) Falling-edge trigger
- (c) Truth table

Figure 11-14. Timing for D Flip-Flop (Falling-Edge Trigger)

Rising-Edge-Triggered D F/F

(a) Construction from two gated D latches

- ◆ CLK=0, G1=1
 - ❖ P output follows D input
 - since G2=0, 2nd latch hold current Q
- ◆ CLK=1, G1=0
 - current D is stored in 1st latch
 - since G2=1, P flows thru 2nd latch to Q output

Edge-Triggered D Flip-Flop

Figure 11-16. Setup and Hold Times for an Edge-Triggered D Flip-Flop

Edge-Triggered D Flip-Flop

Figure 11-17. Determination of Minimum Clock Period

(a) Simple flip-flop circuit

(b) Setup time not satisfied

CLK

Setup
time 3 ns

Flip-flop
delay 5 ns

Inverter
delay 2 ns

(d) Minimum clock period

© 2015, Jong-Myon Kim Logic Circuit

S-R Flip-Flop

Figure 11-18. S-R Flip-Flop

Operation summary:

S=R=0 No state change

S=1, R=0 Set Q to 1 (after active Ck edge) S=0, R=1 Reset Q to 0 (after active Ck edge)

S=R=1 Not allowed

S-R F/F Implementation & Timing

(a) Implementation with two latches

- constructed from two S-R latchesgates
- master-slave F/F
- ◆ ML: master latch, SL: slave latch
- ◆ CLK=0
 - ❖ ML's output : appropriate value
 - \diamond SL hold prev. value Q (S₂=R₂=0)
- ◆ CLK 0→1
 - ML's P output is transferred to SL
- ◆ CLK=1
 - ML holds P
 - Q does not change
- ◆ CLK 1→0
 - ❖ Q(P?) value is latched in SL
 - ML processes new input
- Problem at t5?
 - ❖ → S & R inputs to change while the clock is high

J-K Flip-Flop

Figure 11-20. J-K Flip-Flop (Q Changes on the Rising Edge)

J	K	,	Q	$Q^{\scriptscriptstyle +}$
0	0	0		0
0	0	1		1
0	1	0		0
0	1	1		0
1	0	0		1
1	0	1		1
1	1	0		1
1	1	1		0

$$Q^+ = JQ' + K'Q$$

(a) J-K flip-flop

(b) Truth table and characteristic equation

(c) J-K flip-flop timing

J-K Flip-Flop

Figure 11-21. Master-Slave J-K Flip-Flop (Q Changes on Rising Edge)

T Flip-Flop

Figure 11-22. T Flip-Flop

T	Q	$Q^{\scriptscriptstyle +}$
0	0	
0	0	0
0	1	1
1	0	1
1	1	0

$$Q^+ = T'Q + TQ' = T \oplus Q$$

(b)

Figure 11-23. Timing Diagram for T Flip-Flop (Falling-Edge Trigger)

T Flip-Flop

Figure 11-24. Implementation of T Flip-Flop

(a) Conversion of J-K to T

(b) Conversion of D to T

$$Q^{+} = JQ' + K'Q = TQ' + T'Q$$
 $Q^{+} = D = T \oplus Q = TQ' + T'Q$

$$Q^+ = D = T \oplus Q = TQ' + T'Q$$

Flip-Flops with Additional Inputs

- additional inputs to set the F/F to an initial state independent of the clock
- ◆ active-low signals
- ◆ CIrN=0 → Q=0 PreN=0 → Q=1로 됨
- ◆ CIrN=PreN=1 → normal operation
- ◆ CIrN, PreN override the clock & D input

Flip-Flops with Additional Inputs

Figure 11-25. D Flip-Flop with Clear and Preset

Figure 11-26. Timing Diagram for D Flip-Flop with Asynchronous Clear and Preset

Flip-Flops with Additional Inputs

Figure 11-27. D Flip-Flop with Clock Enable

The characteristic equation : $Q^+ = Q \cdot CE' + D \cdot CE$

The MUX output: $Q^+ = D = Q \cdot CE' + D_{in} \cdot CE$

Summary

$$Q^+ = S + R'Q \quad (SR = 0)$$

$$Q^+ = GD + G'Q$$

$$Q^+ = D$$

$$Q^+ = D \cdot CE + Q \cdot CE'$$

$$Q^+ = JQ' + K'Q$$

$$Q^+ = T \oplus Q = T'Q + TQ'$$

(S-R latch or flip-flop)

(gated D latch)

(D flip-flop)

(D-CE flip-flop)

(J-K flip-flop)

(T flip-flop)