Politechnika Poznańska

Wydział Budownictwa i Inżynierii Środowiska Kierunek: Inżynieria Środowiska

Zapotrzebowanie w wodę

Projekt sieci wodociągowej dla miasta średniej wielkości o zrównoważonych funkcjach

Prowadzący:

Wykonał: Jakub Nonna

Gr. 16

Nr albumu: **135109**

1.Dane wyjściowe do projektu:

Projekt sieci wodociągowej dla miasta średniej wielkości o zrównoważonych funkcjach powstał w oparciu o plan miasta nr 3. Poszczególnym działkom przypisane określony tym zabudowy: BWI(budownictwo wielorodzinne intensywne), BWŚ(budownictwo wielorodzinne średniointensywne), BJ(budownictwo jednorodzinne), przemysł, oraz tereny zielone.

Na podstawie wskaźników gęstości zaludnienia dla poszczególnych rodzajów zabudowy obliczono liczbę mieszkańców na każdej działce.

Charakter dwóch zakładów przemysłowych nie został określony. Pierwszy zakład pracuje w systemie dwuzmianowym – 16 godzin w ciągu doby – a drugi w systemie trzyzmianowym – 24 godziny w ciągu doby.

Na podstawie powstałego planu zagospodarowania przestrzennego wyznaczono przebieg przewodów sieci magistralnej i położenie przewodów sieci rozdzielczej, a także dokonano obliczeń zapotrzebowania na wodę dla miasta.

2. Określenie ilości mieszkańców zasiedlających miasto:

Przyjęte parametry gęstości zaludnienia :
Budownictwo jednorodzinne – 90 Mk/ha
Budownictwo wielorodzinne średnio intensywne – 150 Mk/ha
Budownictwo wielorodzinne intensywne – 200Mk/ha

Ilość mieszkańców (Mk) = A * x

Gdzie: A-powierzchnia działki [ha]

x-wskaźnik gęstości zaludnienia [Mk/ha]

Poniżej znajdują się tabele z zestawieniem liczby mieszkańców na poszczególnych działkach : (tabela nr.1)

Numer działki	Rola działki	Powierzchnia działki	liczba mieszkańców
1	Budownictwo jednorodzinne	0,39	35,1
2	Budownictwo jednorodzinne	0,39	35,1
3	Budownictwo jednorodzinne	0,54	48,6
4	Budownictwo jednorodzinne	0,26	23,4
5	Budownictwo jednorodzinne	0,27	24,3
6	Budownictwo jednorodzinne	0,42	37,8
7	Budownictwo jednorodzinne	0,31	27,9
8	Budownictwo jednorodzinne	0,80	72
9	Budownictwo jednorodzinne	0,99	89,1
10	Budownictwo jednorodzinne	0,38	34,2
11	Budownictwo jednorodzinne	0,54	48,6
12	Budownictwo jednorodzinne	0,39	35,1
13	Budownictwo jednorodzinne	0,26	23,4
14	Budownictwo jednorodzinne	0,27	24,3
15	Budownictwo jednorodzinne	0,42	37,8
16	Budownictwo jednorodzinne	0,31	27,9
17	Budownictwo jednorodzinne	0,80	72

I		1	I
18	Budownictwo jednorodzinne	0,39	35,1
19	Budownictwo jednorodzinne	0,54	48,6
20	Budownictwo jednorodzinne	0,38	34,2
21	Budownictwo jednorodzinne	0,26	23,4
22	Budownictwo jednorodzinne	0,27	24,3
23	Budownictwo jednorodzinne	0,42	37,8
24	Budownictwo jednorodzinne	0,31	27,9
25	Budownictwo jednorodzinne	0,18	16,2
26	Budownictwo jednorodzinne	0,48	43,2
27	Budownictwo jednorodzinne	0,20	18
28	Budownictwo jednorodzinne	0,19	17,1
29	Budownictwo jednorodzinne	0,38	34,2
30	Budownictwo jednorodzinne	0,24	21,6
31	Budownictwo jednorodzinne	0,42	37,8
32	Budownictwo jednorodzinne	0,27	24,3
33	Budownictwo jednorodzinne	0,54	48,6
34	Budownictwo jednorodzinne	0,38	34,2
35	Budownictwo jednorodzinne	0,39	35,1
36	Budownictwo jednorodzinne	0,08	7,2
37	Budownictwo jednorodzinne	0,80	72
38	Budownictwo jednorodzinne	0,52	46,8
39	Budownictwo jednorodzinne	0,14	12,6
40	Budownictwo jednorodzinne	0,76	68,4
41	Budownictwo jednorodzinne	0,55	49,5
42	Budownictwo jednorodzinne	1,05	94,5
43	Budownictwo jednorodzinne	0,65	58,5
44	Budownictwo jednorodzinne	0,45	40,5
45	Budownictwo jednorodzinne	0,62	55,8
46	Budownictwo jednorodzinne	0,78	70,2
47	Budownictwo jednorodzinne	0,67	60,3
48	Budownictwo jednorodzinne	0,28	25,2
49	Budownictwo jednorodzinne	0,64	57,6
50	Budownictwo jednorodzinne	0,58	52,2
51	Budownictwo jednorodzinne	0,81	72,9
52	Budownictwo jednorodzinne	0,45	40,5
53	Budownictwo jednorodzinne	0,69	62,1
54	Budownictwo jednorodzinne	0,78	70,2
55	Budownictwo jednorodzinne	0,51	45,9
56	Budownictwo jednorodzinne	0,37	33,3
57	Budownictwo jednorodzinne	0,37	33,3
58	Budownictwo jednorodzinne	0,43	38,7
59	Budownictwo jednorodzinne	3,20	288
60	Budownictwo jednorodzinne	0,95	85,5
61	Budownictwo jednorodzinne	1,33	119,7
62	Budownictwo jednorodzinne	0,74	66,6
	•	·	·

	•	i	•
63	Budownictwo jednorodzinne	0,64	57,6
64	Budownictwo jednorodzinne	0,76	68,4
65	Budownictwo jednorodzinne	0,49	44,1
66	Budownictwo jednorodzinne	0,48	43,2
67	Budownictwo jednorodzinne	1,31	117,9
68	Budownictwo jednorodzinne	1,71	153,9
69	Budownictwo jednorodzinne	0,92	82,8
70	Budownictwo jednorodzinne	0,37	33,3
71	Budownictwo jednorodzinne	1,04	93,6
72	Budownictwo jednorodzinne	0,26	23,4
73	Budownictwo jednorodzinne	0,34	30,6
74	Budownictwo jednorodzinne	0,46	41,4
75	Budownictwo jednorodzinne	0,31	27,9
76	Budownictwo jednorodzinne	0,56	50,4
77	Budownictwo jednorodzinne	0,78	70,2
78	Budownictwo jednorodzinne	0,68	61,2
79	Budownictwo jednorodzinne	0,73	65,7
80	Budownictwo jednorodzinne	0,71	63,9
81	Budownictwo jednorodzinne	1,82	163,8
82	Budownictwo jednorodzinne	1,17	105,3
83	Budownictwo jednorodzinne	1,97	177,3
84	Budownictwo jednorodzinne	0,18	16,2
		50,87	4585

Numer działki	Rola działki	Powierzchnia działki	liczba mieszkańców
85	Budownictwo wielorodzinne średnio intensywne	1,71	256,5
86	Budownictwo wielorodzinne średnio intensywne	1,48	222
87	Budownictwo wielorodzinne średnio intensywne	1,48	222
88	Budownictwo wielorodzinne średnio intensywne	1,93	289,5
89	Budownictwo wielorodzinne średnio intensywne	1,19	178,5
90	Budownictwo wielorodzinne średnio intensywne	1,93	289,5
91	Budownictwo wielorodzinne średnio intensywne	0,78	117
92	Budownictwo wielorodzinne średnio intensywne	1,63	244,5
93	Budownictwo wielorodzinne średnio intensywne	1,24	186
94	Budownictwo wielorodzinne średnio intensywne	2,26	339
95	Budownictwo wielorodzinne średnio intensywne	1,74	261
96	Budownictwo wielorodzinne średnio intensywne	1,48	222
97	Budownictwo wielorodzinne średnio intensywne	1,93	289,5
98	Budownictwo wielorodzinne średnio intensywne	4,83	724,5
99	Budownictwo wielorodzinne średnio intensywne	1,51	226,5
100	Budownictwo wielorodzinne średnio intensywne	0,52	78
101	Budownictwo wielorodzinne średnio intensywne	0,51	76,5
102	Budownictwo wielorodzinne średnio intensywne	0,67	100,5

103	Budownictwo wielorodzinne średnio intensywne	0,71	106,5
104	Budownictwo wielorodzinne średnio intensywne	0,86	129
105	Budownictwo wielorodzinne średnio intensywne	0,78	117
106	Budownictwo wielorodzinne średnio intensywne	1,10	165
107	Budownictwo wielorodzinne średnio intensywne	0,94	141
108	Budownictwo wielorodzinne średnio intensywne	1,01	151,5
109	Budownictwo wielorodzinne średnio intensywne	1,31	196,5
110	Budownictwo wielorodzinne średnio intensywne	1,82	273
111	Budownictwo wielorodzinne średnio intensywne	2,85	427,5
112	Budownictwo wielorodzinne średnio intensywne	0,81	121,5
113	Budownictwo wielorodzinne średnio intensywne	0,76	114
114	Budownictwo wielorodzinne średnio intensywne	1,03	154,5
115	Budownictwo wielorodzinne średnio intensywne	2,13	319,5
116	Budownictwo wielorodzinne średnio intensywne	2,45	367,5
117	Budownictwo wielorodzinne średnio intensywne	1,64	246
118	Budownictwo wielorodzinne średnio intensywne	1,13	169,5
		50,15	7524

Numer działki	Rola działki	Powierzchnia działki	liczba mieszkańców
119	Budownictwo wielorodzinne intensywne	2,94	588
120	Budownictwo wielorodzinne intensywne	2,75	550
121	Budownictwo wielorodzinne intensywne	1,28	256
122	Budownictwo wielorodzinne intensywne	2,31	462
123	Budownictwo wielorodzinne intensywne	1,42	284
124	Budownictwo wielorodzinne intensywne	0,49	98
125	Budownictwo wielorodzinne intensywne	0,69	138
126	Budownictwo wielorodzinne intensywne	1,11	222
127	Budownictwo wielorodzinne intensywne	1,55	310
128	Budownictwo wielorodzinne intensywne	1,27	254
129	Budownictwo wielorodzinne intensywne	1,96	392
		17,77	3552

Łączna liczba mieszkańców : 15661

3. Zapotrzebowanie na wodę dla miasta: (tabela nr.2)

		_	,					
Lp.	Rodzaj odbiorcy wody	Ilość jednostek	Wskaźnik jednostkowego zapotrzebowania na wodę-qj	Qdśr	Nd	Qdmax	Nh	Qhmax
	-	Mk	dm3/Mk*d	m3/d	-	m3/d	-	m3/h
1	2	3	4	5	6	7	8	9
	Mieszkalnictwo:							
	a) wielorodzinne intensywne	4585	210	962,85	1,43	1376,88	1,76	100,97
1	b)wielorodzinne średnio intensywne	7524	190	1429,56	1,53	2187,23	2,43	221,46
	c)jednorodzinne	3552	140	497,28	1,84	915,00	2,85	108,66
	Razem:	15661	-	2889,69	-	4479,11	-	431,09
2	Pozostali odbiorcy wody	15 661	30	469,83	1,00	469,83	2,53	49,61
	Przemysł							
3	zakład I (2 zmiany)	-		220,00	1,15	253,00	1,54	24,35
	zakład II (3 zmiany)	-	-	285,00	1,15	327,75	1,48	20,21
4	Razem dla miasta	15 661	-	3394,69	-	5529,69	-	-
5	Straty wody w sieci (16%)	-	-	543,15	1,00	543,15	1,00	22,63
6	Ilość wody tłoczona do sieci	-	-	3937,84	-	6072,84	-	-
7	Cele własne wodociągów (5%)	-	-	169,73	1,00	169,73	1,00	-
8	Ilość wody brutto	-	-	4107,57	-	6242,57	-	-
	•							

Wzory użyte do obliczeń "Zapotrzebowania na wodę dla miasta":

Średnie dobowe zapotrzebowanie na wodę:

$$Q_{d \pm r} = \frac{M_k * q_j}{1000}$$

Gdzie:

Qdśr – średnie dobowe zapotrzebowanie na wodę [m3/d]

 M_k - liczba mieszkańców

 q_i - wskaźnik jednostkowego zużycia wody [md³/Mk*d]

2) Maksymalne dobowe zapotrzebowanie na wodę:

$$Q_{dMax} = Q_{d\acute{s}r} * N_d \text{ [m³/d]}$$

Gdzie:

Qdmax – maksymalne dobowe zapotrzebowanie na wodę [m3/d]

Qdśr – średnie dobowe zapotrzebowanie na wodę [m3/d]

Nd – wskaźnik nierównomierności dobowej [-]

Maksymalne godzinowe zapotrzebowanie na wodę: 3)

$$Q_{hmax} = \frac{Q_{dMax}*N_h}{24} \text{ [m}^3/\text{h]}$$

Gdzie:

Q_{hmax} –maksymalne godzinowe zapotrzebowanie na wodę [m³/h]

Q_{dmax} – maksymalne dobowe zapotrzebowanie na wodę [m³/d]

N_h – współczynnik nierównomierności godzinowej[-]

4) Współczynnik nierównomierności godzinowej dla innych celów:

$$N_h = \frac{Pmax*24}{100}$$
 [-]

Gdzie: N_h - współczynnik nierównomierności godzinowej [-]

P_{max}- maksymalna wartość procentowa (10,56 %)

Maksymalne godzinowe zapotrzebowanie na wodę dla pozostałych odbiorców wody : $Q_{hmax} = \frac{\mathbf{P}_{max}*Q_{dMax}}{\mathbf{100}} \ [\text{m}^3/\text{h}]$ 5)

$$Q_{hmax} = \frac{P_{max} * Q_{dMax}}{100} \text{ [m}^3/\text{h}$$

Maksymalne godzinowe zapotrzebowanie na wodę dla zakładów przemysłowych : 6)

$$Q_{hmax} = \frac{N_h * Q_{dMax}}{n} \text{ [m}^3/\text{h]}$$

Gdzie:

Q_{hmax} – maksymalne godzinowe zapotrzebowanie na wodę dla przemysłu [m³/h]

Q_{dmax} – maksymalne dobowe zapotrzebowanie na wodę [m³/d]

N_h – współczynnik nierównomierności godzinowej [-]

n- ilość godzin pracy zakładu

Maksymalne godzinowe zapotrzebowanie na wodę z uwagi na straty wody w sieci : $Q_{hmax}=\frac{Q_{dsr}}{24}~[{\rm m^3/h}]$ 7)

$$Q_{hmax} = \frac{Q_{d\acute{s}r}}{24}$$
 [m³/h]

Współczynniki N_h I N_d ,wskaźnik gęstości zaludnienia oraz wskaźnik q_j dobrano z poniższych tabel : (tabela nr.3)

Parametr		jednostka	budownictwo wielorodzinne					budownictwo	
				średnio intensywne			jednorodzinne		
wskaźnik gęst zaludnieni		Mk/ha	150÷210		90÷150			70÷90	
wskaźnik jednostkowe zużycia wody	_	dm/Mk*d	180÷220	160÷200			120÷150		
współczynn nierównomier dobowej -N	ności	-	1,5÷1,3		1,6÷1,4			2,0÷1,5	
współczynn nierównomier godzinowej-	ności	-	1,8÷1,6		2,5÷1,8			3,0÷2,5	
zakład przemysłowy	śre	dnie dobowe wo	anie na	Nd	Nh				
l II		100	÷ 300 m³/d		1,15	1,6÷1,	,3		

^{4.}Opracowanie rozkładu godzinowego zapotrzebowania na wodę w dobie maksymalnego rozbioru: (tabela nr. 4)

godziny	mieszkalnictwo			no.7	ostali	za	kłady pr	zemysło	owe	straty						
doby		odzinne sywne		odzinne ntensywne	jednor	odzinne	•	cy wody	Zak	kład I	Zak	ład II	wody w sieci	Ogół	em	
-	%	m3/h	%	m3/h	%	m3/h	%	m3/h	%	m3/h	%	m3/h	m3/h	m3/h	%	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
0.00-1.00	1,25	17,21	1,30	28,43	1,35	12,35	0,83	3,90	1,96	4,96	3,34	10,95	22,63	100,43	1,65	
1.00-2.00	0,85	11,70	0,75	16,40	0,65	5,95	1,64	7,71	1,12	2,83	3,45	11,31	22,64	78,54	1,29	
2.00-3.00	0,86	11,84	0,75	16,40	0,65	5,95	1,64	7,71	0,78	1,97	3,23	10,59	22,64	77,10	1,27	Qtr
3.004.00	0,86	11,84	0,75	16,40	0,65	5,95	1,64	7,71	0,78	1,97	3,67	12,03	22,64	78,54	1,29	
4.00-5.00	2,07	28,50	1,48	32,37	0,85	7,78	2,70	12,69	0,78	1,97	3,89	12,75	22,63	118,69	1,96	
5.00-6.00	2,47	34,01	2,62	57,31	3,00	27,45	2,30	10,81	0,89	2,25	3,96	12,98	22,63	167,44	2,77	
6.00-7.00	5,43	74,76	5,12	112,00	5,15	47,12	1,89	8,88	1,23	3,11	4,21	13,79	22,63	282,29	4,65	
7.00-8.00	6,22	85,64	5,24	114,62	4,59	42,00	2,72	12,78	2,43	6,15	4,36	14,29	22,63	298,11	4,91	
8.00-9.00	4,92	67,74	4,43	96,90	4,29	39,25	2,48	11,65	5,36	13,56	4,42	14,49	22,63	266,22	4,38	
9.00-10.00	4,37	60,17	4,27	93,40	4,04	36,97	5,80	27,25	7,12	18,01	4,56	14,95	22,63	273,38	4,50	
10.00-11.00	4,17	57,41	3,67	80,28	3,24	29,65	8,90	41,81	8,42	21,30	5,32	17,44	22,63	270,52	4,45	
11.00-12.00	4,02	55,35	3,60	78,74	3,24	29,65	10,56	49,61	9,62	24,35	6,17	20,21	22,63	280,54	4,62	
12.00-13.00	3,87	53,29	3,51	76,77	3,24	29,65	10,56	49,61	7,86	19,89	5,62	18,42	22,63	270,26	4,45	
13.00-14.00	4,27	58,79	4,02	87,94	3,84	35,14	10,56	49,61	7,13	18,04	4,86	15,93	22,63	288,08	4,74	
14.00-15.00	4,37	60,17	4,17	91,22	4,04	36,97	8,28	38,90	6,12	15,48	4,62	15,13	22,63	280,50	4,62	
15.00-16.00	4,72	64,98	4,15	90,78	3,64	33,31	5,80	27,26	3,56	9,010	4,52	14,81	22,63	262,78	4,33	
16.00-17.00	5,62	77,38	4,87	106,53	4,19	38,34	2,49	11,70	2,75	6,96	4,30	14,09	22,63	277,63	4,57	
17.00-18.00	5,27	72,56	5,02	109,81	4,84	44,29	3,55	16,68	2,95	7,46	4,06	13,31	22,63	286,74	4,72	
18.00-19.00	5,62	77,37	6,12	133,87	6,69	61,21	3,97	18,65	3,62	9,16	3,75	12,29	22,63	335,18	5,52	
19.00-20.00	6,27	86,33	7,70	168,42	11,88	108,66	3,97	18,65	5,12	12,95	3,73	12,23	22,63	429,87	7,08	
20.00-21.00	6,57	90,46	10,13	221,46	8,78	80,34	3,14	14,75	7,39	18,70	3,56	11,67	22,63	460,01	7,57	Qn
21.00-22.00	7,33	100,97	7,11	155,51	7,26	66,43	2,08	9,77	6,14	15,53	3,52	11,54	22,63	382,38	6,30	
22.00-23.00	5,42	74,63	5,35	117,02	5,30	48,50	1,25	5,87	4,03	10,2	3,43	11,24	22,63	290,09	4,78	
23.00-24.00	3,18	43,78	3,87	84,65	4,60	42,09	1,25	5,87	2,84	7,19	3,45	11,31	22,63	217,52	3,58	
Suma 1	100,00	1376,88	100,00	2187,23	100	915,00	100	469,83	100	253,00	100	327,75	543,15	6072,84	100	
Suma 2	100%	1376,88	100%	2187,23	100%	915,00	100%	469,83	100%	253,00	100%	327,75	543,15	6072,84	100%	

Wzory użyte do obliczeń "Rozkładu godzinowego": Udział procentowy godziny maksymalnej w dobie maksymalnej:

$$\frac{Q_{hmax}*Q_{dmax}}{100}$$

5. Obliczenia objętości zbiorników wodociągowych: **Zbiornik dolny**

Zasilanie zbiornika dolnego ze stacji uzdatniania wody jest stałe przez całą dobre , natomiast pobór wody ze zbiornika zależy od przyjętego harmonogramu pracy pompowni. W zależności od tego, czy ilość wody zasilającej zbiornik jest większa czy mniejsza od wody pobieranej, następuje odpowiednio podnoszenie poziomu wody w zbiorniku lub jego opadanie. Dzięki temu możliwe jest określenie procentowej zawartości zbiornika w poszczególnych godzinach doby.

Bilans	ns objętościowy zbiornika dolnego (tabela nr.5) :								
	Godziny doby	Zasilanie	Pobór	Dopływ do zbiornika	Wypływ ze zbiornika	Ilość wody w zbiorniku			
	1	%Qdmax	%Qdmax	%Qdmax	%Qdmax	%Qdmax			
	1	2	3	4	5	6			
	0.00-1.00	4,16	3,00	1,16	-	2,33			
	1.00-2.00	4,16	3,00	1,16	-	3,49			
Qtr	2.00-3.00	4,16	3,00	1,16	-	4,65			
	3.00-4.00	4,16	2,00	2,16	-	6,81			
	4.00-5.00	4,16	2,00	2,16	-	8,97			
	5.00-6.00	4,16	2,00	2,16	-	11,13			
	6.00-7.00	4,16	4,00	0,16	-	11,29			
	7.00-8.00	4,16	4,00	0,16	-	11,45			
	8.00-9.00	4,17	4,00	0,17	-	11,62			
	9.00-10.00	4,17	4,00	0,17	-	11,79			
	10.00-11.00	4,17	4,00	0,17	-	11,96			
	11.00-12.00	4,17	4,00	0,17	-	12,13			
	12.00-13.00	4,17	5,00	-	0,83	11,30			
	13.00-14.00	4,17	5,00	-	0,83	10,47			
	14.00-15.00	4,17	5,00	-	0,83	9,64			
	15.00-16.00	4,17	5,00	-	0,83	8,81			
	16.00-17.00	4,17	5,00	-	0,83	7,98			
	17.00-18.00	4,17	5,00	-	0,83	7,15			
	18.00-19.00	4,17	6,00	- 1,83		5,00 - 1,83		5,32	
	19.00-20.00	4,17	6,00	-	1,83	3,49			
Qmr	20.00-21.00	4,17	6,00	-	1,83	1,66			
	21.00-22.00	4,17	5,00	-	0,83	0,83			
	22.00-23.00	4,17	5,00	-	0,83	0,00			
	23.00-24.00	4,17	3,00	1,17	-	1,17			
	-	100	100	12,13	12,13	-			

Objętość zbiornika dolnego:

Vzb. dolnego = Vużyteczne + Vcele własne + Vzapasowe + Vmartwe

Gdzie:

 $\label{eq:Vuzyteczne} Vuzyteczne = Max\%Q_{dmax}*Q_{dmax}$ Vcele własne –zgodnie z tabelą nr. 2 Vzapas – 0,2 * Q_{dmax} Vmartwe = 3,14 * r^2 * h_{martwe}

Dobrano zbiornik:

Zbiorniki ACONTANK C6								
pojemność [m3]	promień [m]	wysokość [m]						
2305,00	22,10	11,05	6,00					

	V[m3]
Max%Qdmax	9,64
Vcelewłasne	169,73
Qdmax	6242,57
Vzapas	1248,51
Vużyteczne	601,78
Vmartwa	134,19
Vzbiornika dolnego	2154,21

Zbiornik górny

Zbiornik górny pomaga zapewnić wymaganą ilość wody w wodociągu i magazynuje wodę na cele przeciwpożarowe. Jego zawartość zależy poboru wody przez odbiorców w mieście oraz od harmonogramu pracy pompowni: gdy podawane są ilości wody większe od potrzeb odbiorców, woda dopływa do zbiornika, gdzie jest magazynowana, natomiast gdy wody pompowanej przez pompownie jest za mało na pokrycie zapotrzebowania odbiorców woda spływa ze zbiornika. Można więc określić procentową zawartość zbiornika w poszczególnych godzinach dobry.

Bilans objętościowy zbiornika górnego (tabela nr.6):

	Godziny doby	Zasilanie	Pobór	Dopływ do zbiornika	Wypływ ze zbiornika	Ilość wody w zbiorniku	
	-	%Qdmax	%Qdmax	%Qdmax	%Qdmax	%Qdmax	
	1	2	3	4	5	6	
	0.00-1.00	3,00	1,65	1,35	-	1,35	
	1.00-2.00	3,00	1,29	1,71	-	3,06	
Qtr	2.00-3.00	3,00	1,27	1,73	-	4,79	
'	3.004.00	2,00	1,29	0,71	-	5,50	
	4.00-5.00	2,00	1,96	0,04	-	5,54	
	5.00-6.00	2,00	2,77	-	0,77	4,77	
	6.00-7.00	4,00	4,65	-	0,65	4,12	
	7.00-8.00	4,00	4,91	-	0,91	3,21	
	8.00-9.00	4,00	4,38	-	0,38	2,83	
	9.00-10.00	4,00	4,50	-	0,5	2,33	
	10.00-11.00	4,00	4,45	- 0,45		1,88	
	11.00-12.00	4,00	4,62	-	0,62	1,26	
	12.00-13.00	5,00	4,45	0,55	-	1,81	
	13.00-14.00	5,00	4,74	0,26	-	2,07	
	14.00-15.00	5,00	4,62	0,38	-	2,45	
	15.00-16.00	5,00	4,33	0,67	-	3,12	
	16.00-17.00	5,00	4,57	0,43	-	3,55	
	17.00-18.00	5,00	4,72	0,28	-	3,83	
	18.00-19.00	6,00	5,52	0,48	-	4,31	
	19.00-20.00	6,00	7,08	-	1,08	3,23	
Qmr	20.00-21.00	6,00	7,57	-	1,57	1,66	
	21.00-22.00	5,00	6,30	-	1,30	0,36	
	22.00-23.00	5,00	4,78	0,22	-	0,58	
	23.00-24.00	3,00	3,58	-	0,58	0,00	
	-	100	100	-	-	-	

Objętość zbiornika górnego :

 $Vzb.\,$ górnego = $Vużyteczne + Vp.\,$ poż + Vmartwa

$$\label{eq:Vuzyteczne} \begin{split} \text{Vuzyteczne} &= \text{MAX\%Q}_{\text{dmax}} * \text{ Q_{dmax}} \\ \text{Vp. poż} &= \text{wg. wytycznych do projektowania (200 m}^3) \end{split}$$

Dobrano zbiornik:

Zbiorniki ACONTANK C6									
pojemność [m3]	pojemność [m3] średnica [m] promień [m] wysokość [m]								
602,00 13,90 6,95 4,00									

	V[m3]
MAX%Qdmax	5,54
Qdmax	6242,57
Vp.poż.	200,00
Vużyteczne	345,84
Vmartwa	39,43
Vzb.górnego	585,27

W pierwszej fazie projektu został popełniony błąd . Do tabeli "Zapotrzebowanie na wodę" zostały źle podstawione wartości liczby mieszkańców BWI i BJ. Zostały one zamienione ze sobą . Błędnie przyjęte wartości zmieniły wyniki chociażby Qdmax,Qtr czy Qmr. Błąd ten został naprawiony w dalszej części projektu (po doborze zbiorników),dlatego pewne wartości odbiegają nieco od siebie tj. np. ilość wody wypływająca ze zbiornika górnego w godzinie Qmr delikatnie odbiega od wartości ze schematu Qmr.

6. Przypisanie odbiorców wody odcinkom magistrali

Każde wpięcie do magistrali sieci rozdzielczej oraz połączenia samych przewodów magistralnych traktujemy jako węzeł. Po wrysowaniu sieci rozdzielczej przyporządkowujemy obszary odcinkom magistrali. Do tego stosujemy metodę dwusiecznych kątów (dotyczących tylko obszarów zabudowy) i przypisujemy je do najbliższego odcinka magistrali. Wszystko to wykonujemy mając na uwadze podział na 3 rodzaje budownictwa. W celu obliczenia ilości mieszkańców na przyporządkowanej powierzchni wykonujemy działanie mnożenia powierzchni danego budownictwa i dobranego wcześniej wskaźnika gęstości zaludnienia dla tego rodzaju budownictwa.

Tabela nr.7 Przyporządkowanie mieszkańców odcinkom magistrali.

		Ilość	mieszkaŕ	iców przy _l	pisanych	do odcink	a magisti	rali .
	1	2	3	4	5	6	7	8
	L.p	Odcinek magistra li	wielor	vnictwo odzinne wne BWI	wielorodzi	vnictwo nne średnio wne BWśr		vnictwo rodzinne
		"	pole	Ilość	pole	ilość	pole	ilość
	-	-	ha	Mk	ha	Mk	ha	Mk
1	96				0,97	146		
2	67	1—2					1,31	118
3	68	1 2					1,71	154
4	69						0,92	83
5	96				0,28	43		
6	64	2—3					0,69	62
7	65	2-3					0,49	44
8	66						0,48	43
9	64						0,07	6
10	59						2,49	224
11	60						0,95	86
12	61	3-4					1,33	120
13	62						0,74	67
14	63						0,64	58
15	55						0,40	36
16	55						0,12	10
16	59						0,48	43
17	58	4—5					0,43	39
18	57						0,37	33
19	56						0,37	33
20	59						0,23	21
21	95				1,74	261		
22	94	5_ 6			2,26	339		
23	93	5—6			1,24	186		
24	92				1,63	245		
25	87				0,11	16		
26	87				1,37	206		
27	88	6—7			1,69	254		
28	91				0,78	117		

	1	2	3	4	5	6	7	8
29	88				0,24	36		
30	89				0,50	74		
31	1						0,39	35
32	2						0,39	35
33	3	7—8					0,54	49
34	4	/-8					0,26	23
35	5						0,27	24
36	6						0,42	38
37	7						0,31	28
38	8						0,80	72
39	89				0,70	105		
40	85	8—9			1,71	257		
41	86	8—9			0,54	81		
42	90				1,93	290		
43	86				0,94	141		
44	9						0,99	89
45	10		•				0,38	34
46	11						0,54	49
47	12						0,39	35
48	13						0,26	23
49	14	9—10					0,27	24
50	18	9—10	•				0,39	35
51	19						0,54	49
52	20						0,38	34
53	21						0,26	23
54	22						0,27	24
55	23						0,42	38
56	39						0,14	13
57	17	10-11					0,80	72
58	15						0,42	38
59	16	11—12					0,31	28
60	25						0,01	1
61	24						0,31	28
62	25						0,17	15
63	26	12—29					0,48	43
64	27						0,20	18
65	28						0,19	17
66	96	1—13			0,06	8		
67	98	1-13			0,48	72		

	1	2	3	4	5	6	7	8
68	96	12 14			0,16	24		
69	97	13—14			0,95	142		
70	70						0,37	33
71	71	14—15					1,04	94
72	72						0,26	23
73	73						0,34	31
74	74						0,46	41
75	51						0,81	73
76	52						0,45	41
77	53	15—16					0,69	62
78	54						0,78	70
79	100				0,52	78		
80	101				0,51	77		
81	103				0,71	107		
82	49						0,64	58
83	50	16—17					0,58	52
84	102	10—17			0,67	101		
85	125		0,69	138				
86	45						0,62	56
87	46						0,78	70
88	48	17—18					0,28	25
89	75	17—18					0,31	28
90	76						0,56	50
91	104				0,86	129		
92	42						1,05	95
93	43						0,65	59
94	44	18—19					0,45	41
95	47	10 13					0,67	60
96	79						0,38	34
97	109				0,46	69		
98	109				0,84	126		
99	77						0,78	70
100	79	19—20					0,35	32
101	40	13 20					0,76	68
102	41						0,55	50
103	110				0,02	3		
104	37						0,80	72
105	38	20—21					0,52	47
106	110	_01			0,68	102		
107	31						0,42	38

	1	2	3	4	5	6	7	8
108	32						0,27	24
109	35	24 22					0,37	33
110	36	21—22					0,08	7
111	110				0,61	91		
112	33						0,54	49
113	34						0,38	34
114	35	22—29					0,02	2
115	29						0,38	34
116	30						0,24	22
117	97				0,98	148		
118	98				4,34	651		
119	99	13—23			1,51	227		
120	84	15—25					0,18	16
121	122		0,32	64				
122	123		1,42	284				
123	120		1,98	397				
124	122	23—24	1,00	200				
125	124		0,49	98				
126	120		1,23	246				
127	121	24—25	1,28	256				
128	126	24-25	1,11	222				
129	127		1,55	310				
130	120		0,51	102				
131	119		2,94	588				
132	128	25—26	1,27	254				
133	129		0,87	175				
134	115				0,70	105		
135	129		1,09	218				
136	112				0,30	45		
137	113				0,76	114		
138	114				1,03	155		
139	115				1,43	214		
140	116	26—27			2,45	368		
141	117				1,64	246		
142	81						1,82	164
143	82						1,17	105
144	83						1,97	177
145	108				0,91	136		

146	112				0,51	76		
147	111				2,85	428		
148	118				1,13	170		
149	108	27—28			0,10	15		
150	105				0,78	117		
151	106				1,10	165		
152	107				0,94	141		
153	80						0,71	64
154	78	28—22					0,68	61
155	110				0,51	77		
			suma	3560	suma	7536	suma	4595
		•					łącznie	15691

7. Obliczenie skumulowanego wskaźnika jednostkowego zapotrzebowania na wodę.

$$q_i = \frac{Q_i^{(Qmr)} + (Q_{in.cel} + Q_{h\,straty})^{(Qmr)} * \beta_i}{\Sigma M k_i} \; \text{[I/Mk*s]}$$

gdzie:

Indeks " Qmr " oznacza, że jest to wartość zapotrzebowania na wodę w godzinie Qmr(Tabela 3)

$$\beta_i = \frac{\Sigma M k_i}{\Sigma M k_{calk}}$$
 [-]

Obliczenia jednostkowego zapotrzebowania na wodę wykonujemy dla trzech rodzajów budownictwa w godzinie maksymalnego rozbioru (godz. 20:00-21:00). Zapotrzebowanie dla przemysłu odczytujemy z tabeli rozkładu godzinowego na zapotrzebowanie na wodę w godzinie maksymalnego rozbioru, zamieniając jednostki na l/s.

Wyznaczenie rozbiorów węzłowych dla trzech charakterystycznych stanów rozbioru wody.

Do każdego węzła przypisujemy rozbiór połowy odcinka rurociągu między dwoma węzłami-bierzemy pod uwagę tylko węzły magistralne.

Rozbiory węzłowe zostały wyznaczone dla trzech charakterystycznych stanów rozbiorów wody(Qmr,Qtr,Qmr+p.poż)

Obliczenia wykonujemy według poniższych wzorów: Rozbiór Qmr w i-tym węźle :

$$q_i^{Qmr} = Mk_{BWI}^i * q_i^{BWI} + Mk_{BWSr}^i * q_i^{BWSr} + Mk_{BI}^i * q_i^{BJ} + przemys$$

Z powyższego wzoru obliczamy wartości dla trzech rodzajów budownictwa.

Następnie wyznaczamy współczynnik korygujący α .

$$\alpha = \frac{Q_{tr} - (Q_{p1}^{Qtr} + Q_{p2}^{Qtr})}{Q_{mr} - (Q_{p1}^{Qmr} + Q_{p2}^{Qmr})} [-]$$

Rozbiór Qtr w i-tym węźle :

$$q_i^{Qtr} = q_i^{Qmr} * \alpha$$

Rozbiór Qmr+p.poż w i-tym węźle :

 $Q_{mr+p,po2}$ - obliczamy w taki sam sposób jak Q_{mr} tylko w jednym węźle zerowym dodajemy 20 I, które będą przeznaczone na gaszenie pożaru.

	Rozbiory węzłowe w w	1		Ilość mi	eszkańców			Wskaźnik je	dnostkowego z	zużycia wody				
Numer węzła	Odcinki przylegające do węzła + rozbiory punktowe	l	o wielorodzinne /wne BWI	Budownictwo wielorodzinne średniointenywne BWŚr		ı	o jednorodzinne BWJ	qBWI	qBWŚr	qBWJ	Rozbiory węzłowe dla Qmr	α	Rozbiory węzłowe dla Qtr	Rozbiory węzłowe dla
	panktore	na odcinku	obciążających węzeł	na odcinku	obciążających węzeł	na odcinku	obciążających węzeł							Qmr+pp.
_	_	Mk	Mk	Mk	Mk	Mk	Mk	I/Mk*s	I/Mk*s	I/Mk*s	l/s	-	l/s	I/s
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1-2 1-13	_	_	146 80	113	355	178				1,98		0,30	1,98
2	1-2 2-3	-	_	146 43	94	355 149	252				2,23		0,33	2,23
3	2—3 3—4	-	_	43	22	149 597	373				2,26		0.34	2,26
4	3-4 4-5	_	_	_	_	597 158	377				2,09		0,31	2,09
5	4-5	_	_	_	523	158	90				5,12			
6	5-6 5-6	_	_	1047 1047	812	21 21	10				7,23		0,77	5,12
7	6—7 6—7	_	_	577 577	344	_	152				3,88		1,09	7,23
8	7—8 7—8	-	_	110 110	421	304 304	152				4,56		0,58	23,88
	8—9 8—9	_		733 733		_							0,68	4,56
9	9—10 9—10	_		141	437	470	235				5,16		0,78	5,16
10	10-11	-	-	141 —	71	470 72	271				2,13		0,32	2,13
11	10-11 11-12		_		-	72 67	70				0,39		0,06	0,39
12	11-12 12-29	_	_		_	67 121	94	0	0	0	0,52	0	0,08	0,52
13	1-13 13-14	-	174	80 166	636	_	8)())	7,01	, 1	1,05	
	13-23 13-14	348		1026		16)(\sim	\sim		_5		7,01
14	14-15	_	_	166	83	150	75)7	8	005	1,15	\tilde{C}	0,17	1,15
15	14—15 15—16	_	_	262	131	150 318	234	7	0088	5	2,45	2	0,37	2,45
16	15—16 16—17	_ 138	69	262 101	181	318 110	214	3	4	Ü	3,32	\vdash	0.50	3,32
17	16—17 17—18	138	69	101	115	110 229	169	∞	Ó	∞	2,49	∞	0,37	2,49
18	17—18	_	_	129	99	229	259	5	\vdash	\vdash	2,31	7	·	
19	18—19 18—19	-	_	69 69	99	289 289	255	7	∞	—	2,29	∞	0,35	2,31
	19—20 19—20	_		129 129		220 220		1	∞	2		∞	0,34	2,29
20	20—21 20—21	_	_	102	116	157	188				2,07		0,31	2,07
21	21-22		_	91	96	157 64	111				1,46		0,22	1,46

	21-22	_		91		64							
22	22-29	_	l _		84	141	165		1	66	۱ ،	,25	
						_	103			۰ ۱	"	,23	
	28-22	_		77		125							1,66
29	22-29	_	_	_	_	141	131		١ ,	73			
	12-29	_		_		121	-52		٠,		0	,11	0,73
23	13-23	348	522	1026	513	16	8			62			
23	23-24	695	322	_	313	_	Ů		٥,	02	1	,29	8,62
24	23-24	695	864	_		_			_	en			
24	24-25	1034	804	_	_	_	_		۰,	69	1	,00	6,69
25	24-25	1034	1077	_	53	_				.8			
25	25-26	1119	10//	105	33	_	_		l °	ه,٥	1	,32	8,8
26	25-26	1119	668	105	691	_	223		43				
20	26-27	218	008	1278	991	446	223		12	,51	1	,88	12,51
	26-27	218		1278		446			43.54		4.0		
27	27-28	-	109	1112	1195	_	223		12,64	17,83	1,9	2,44	i
	przemysł I	_	1	_		_	1		5,19	1	0,54		17,83
	27-28	-		1112		_					0.04		
28	28-22	_	1 –	77	595	125	62		5,6	8,84	0,84	3,78	
	przemysł II	_	1	_		_	1		3,24	1	2,94		8,84
			3552		7524		4579		suma	127,78	suma	21,39	147,78

8. Przygotowanie schematów obliczeniowych

Zostały wykonane trzy schematy dla trzech stanów: Qmr, Qtr oraz Qmr+p.poż. Schematy wykonane są bez skali. Na schematach znajduje się sieć magistralna i wszystkie węzły. Naniesione są na nie również przepływy i rozbiory węzłowe. Rozbiory węzłowe dla poszczególnych przepływów i węzłów zostały naniesione na schematy z tabeli "rozbiory węzłowe".

Schemat Qmr:

Nanosimy na rysunek rozbiory wody dla stanu Qmr .Ustalamy kierunek zasilania sieci wodociągowej w godzinie Qmr. Następnie ustalamy lokalizacje węzłów zerowych (trzy węzły na każdej magistrali) .Ustalamy kierunek przepływu na poszczególnych odcinkach magistrali a następnie wyznaczamy wartości przepływu na kolejnych odcinkach magistrali .

Schemat Qtr:

Nanosimy na schemat rozbiory węzłowe dla stanu Qtr. Ustalamy kierunek przepływu w sieci (w tym przypadku wszędzie od dolnego do górnego zbiornika). Ustalenie wartości przepływu zasilającego sieć wodociągową (tabela zbiornik górny wiersz Qtr kolumna 2).Następie ustalamy wartości przepływu pozostałych odcinkach magistrali (od wartości przepływu zasilającego "wypływającego ze zbiornika dolnego odejmujemy wartości rozbiorów węzłowych tak by nie stworzyć węzłów zerowych).

Schemat Qmr+p.poż:

Przepisujemy rozbiory z węzłów Qmr. Ustalamy lokalizację węzła pożarowego (dość wysoko, nie za blisko zb. Górnego) . Następnie ustalamy wartość przepływu na odcinkach magistrali (dodatkowa porcja wody na cele p.poż wypływa ze zbiornika górnego, wypływ ze zbiornika dolnego bez zmian).

9. Wstępny dobór średnic przewodów magistralnych .

Średnicę dobieram na dla wartości maksymalnej z trzech stanów.

Średnica obliczona to średnica wewnętrzna przewodu. Z katalogu dobieram rury firmy Wavin PE 100 RC SDR 17 (PN 10) w sztangach o średnicach wewnętrznych większych (po uwzględnieniu grubości ścianek) niż 80 mm. Średnicę obliczam według wzoru:

$$D_{obl} = \sqrt{\frac{4 \cdot Q}{\pi \cdot v_{ekon.}}} [m]$$

Q podstawiam w m 3 /s. Po otrzymaniu wyniku obliczoną średnicę w m zamieniamy na mm. Vekon.= 1,0-1,2 m/s (założenie; 1,1 m/s)

Tabela nr.9 (wstępny dobór średnic przewodów)

	Odeinek magistrali		Przep	ływ		średnica		
	Odcinek magistrali	Qmr	Qtr	Qmr+p.poż	dobl	dnom.	dwew.	prędkość obliczeniowa
	[-]	I/s	I/s	I/s	mm	mm	mm	Obliczeriiowa
	1	2	3	4	5	6	7	8
1	zbd—1	101,29	52,02	101,29	342,41	355,00	312,8	1,32
2	1—2	21,93	8,92	31,93	192,25	225,00	198,2	1,03
3	1—13	77,38	43,10	67,38	299,28	250,00	220,4	2,03
4	2—3	19,70	8,59	29,70	185,41	250,00	220,4	0,78
5	3-4	17,44	8,25	27,44	178,22	250,00	220,4	0,72
6	4—5	15,35	7,94	25,35	171,30	200,00	176,2	1,04
7	5—6	10,23	7,17	20,23	153,02	225,00	198,2	0,66
8	6—7	3,00	6,08	13,00	122,67	160,00	141	0,83
9	7—8	0,88	5,50	10,88	112,22	160,00	141	0,70
10	8—9	5,44	4,82	15,44	133,68	200,00	176,2	0,63
11	9—10	10,60	4,04	20,60	154,42	250	220,4	0,54
12	10—11	12,73	3,72	22,73	162,20	225,00	198,2	0,74

13	11—12	13,12	3,66	23,12	163,59	200,00	176,2	0,95
14	12—29	13,64	3,58	23,64	165,42	200,00	176,2	0,97
15	29—zbgórny	26,49	30,94	46,49	231,97	280,00	246,8	0,97
16	13—14	8,92	10,00	3,92	107,59	160,00	141	0,64
17	14—15	7,77	9,83	2,77	106,67	160,00	141	0,63
18	15—16	5,32	9,46	0,32	104,64	160,00	141	0,61
19	16—17	2,00	8,96	3,00	101,84	125,00	110,2	0,94
20	17—18	0,49	8,59	5,49	99,71	125,00	110,2	0,90
21	18—19	2,80	8,24	7,80	97,66	160,00	141	0,53
22	19—20	5,09	7,90	10,09	108,07	160,00	141	0,65
23	20—21	7,16	7,59	12,16	118,64	160,00	141	0,78
24	21—22	8,62	7,37	13,62	125,56	160,00	141	0,87
25	22—29	12,12	27,47	22,12	178,32	200,00	176,2	0,56

10. Obliczenie sieci wodociągowej metodą Crossa-Łobaczewa.

Celem tej metody jest:

- -sprawdzenie kierunku oraz natężenia przepływu na odcinku magistrali,
- -określenie spadków naporu na długości poszczególnych odcinków.

Uwagi do obliczeń:

- -obliczenia przeprowadzamy zgodnie z ruchem wskazówek zegara,
- -wartość przepływu ma znak "+", gdy jego kierunek jest zgodny z ruchem zegara, znak "-" w sytuacji przeciwnej,
- -spadek został ustalony na podstawie programu doboru rurociągów firmy Wavin
- -ΔHu na poszczególnych odcinkach ma taki sam znak jak przepływ,
- -Sprawdzamy czy I∑∆h I<∆Hdop<±0,5 m dla obu pierścieni,
- -w obu pierścieniach warunek musi być spełniony. Jeśli nie jest, należy wykonać dalsze obliczenia dla obu pierścieni.
- -dla każdego pierścienia obliczamy poprawkę ΔQu'

$$\Delta q_{I,II} = -\frac{\Sigma^{\Delta h}}{2\Sigma^{\frac{\Delta h}{O}}} [dm^3/s]$$

Poprawka dla wszystkich odcinków tego samego pierścienia ma taką samą wartość. Wyjątek stanowią odcinki wspólne dla obu pierścieni.

Dla pierścienia I: $\Delta q_I = \Delta q_I - \Delta q_{II}$ Dla pierścienia II: $\Delta \text{QII} = \Delta q_{II} - \Delta q_I$

Poprawka dla odcinków wspólnych ma taką samą wartość ,ale przeciwny znak.

- -należy obliczyć Qi=Δq +Q_{i-1}, powtórzyć odczyt z programu i sprawdzić czy dana zależność została spełniona.
- -Zmiana znaku przepływu oznacza zmianę węzła zerowego.

	Qn	nr																
uni a u é a i a ué	ا مامنحاد	dnom	d _{wew.}	I	Q_1	i ₁	▲ h₁	A b /O	A ==	Q_2	i ₂	▲ h ₂	A h /O	A ~	Q ₃	i ₃	▲ h ₃	A b /O
pierścień	odcinek -	mm	mm	m	I/s	‰	m	▲ h/Q₁	▲ q₁	I/s	‰	m	▲ h/Q ₂	▲ q ₂	I/s	%	m	▲ h/Q ₃
	22—29	200,00	176,20	384,00	-12,12	2,35	-0,9	0,07	0,32	-11,80	2,24	-0,86	0,07	-0,53	-12,33	2,43	-0,93	0,08
	12-29	200,00	176,20	174,40	13,64	5,13	0,89	0,07	0,32	13,96	5,35	0,93	0,07	-0,53	13,43	4,93	0,86	0,06
	11—12	200,00	176,20	77,80	13,12	4,79	0,37	0,03	0,32	13,44	5	0,39	0,03	-0,53	12,91	4,65	0,36	0,03
	10—11	225,00	198,20	249,70	12,73	2,57	0,64	0,05	0,32	13,05	2,69	0,67	0,05	-0,53	12,52	2,5	0,62	0,05
	9-10	250	220,40	477,40	10,60	1,85	0,88	0,08	0,32	10,92	1,95	0,93	0,09	-0,53	10,39	1,79	0,85	0,08
	8—9	200,00	176,20	272,20	5,44	3,22	0,88	0,16	0,32	5,76	3,57	0,97	0,17	-0,53	5,23	3	0,82	0,16
	7—8	160,00	141,00	289,80	0,88	0,24	0,07	0,08	0,32	1,20	0,41	0,12	0,1	-0,53	0,67	0,15	0,04	0,06
	6—7	160,00	141,00	148,70	-3,00	2,08	-0,31	0,1	0,32	-2,68	1,7	-0,25	0,09	-0,53	-3,21	2,34	-0,35	0,11
	5—6	225,00	198,20	464,30	-10,23	1,74	-0,81	0,08	0,32	-9,91	1,64	-0,76	0,08	-0,53	-10,44	1,8	-0,84	0,08
	4—5	200,00	176,20	90,50	-15,35	6,32	-0,57	0,04	0,32	-15,03	6,12	-0,55	0,04	-0,53	-15,56	6,51	-0,59	0,04
	3-4	250,00	220,40	310,10	-17,44	2,72	-0,84	0,05	0,32	-17,12	2,64	-0,82	0,05	-0,53	-17,65	2,79	-0,87	0,05
I	2—3	250,00	220,40	263,00	-19,70	3,4	-0,89	0,05	0,32	-19,38	3,3	-0,87	0,04	-0,53	-19,91	3,47	-0,91	0,05
	1—2	225,00	198,20	139,00	-21,93	6,87	-0,95	0,04	0,32	-21,61	6,69	-0,93	0,04	-0,53	-22,14	6,99	-0,97	0,04
	1—13	250,00	220,40	57,00	77,38	15,47	0,88	0,01	0,32	77,70	15,59	0,89	0,01	-0,53	77,17	15,39	0,88	0,01
	13—14	160,00	141,00	173,80	8,92	2,39	0,42	0,05	2,32	11,24	3,62	0,63	0,06	0,35	11,59	3,83	0,67	0,06
	14—15	160,00	141,00	238,60	7,77	1,84	0,44	0,06	2,32	10,09	2,98	0,71	0,07	0,35	10,44	3,17	0,76	0,07
	15—16	160,00	141,00	196,20	5,32	3,1	0,61	0,11	2,32	7,64	4,61	0,9	0,12	0,35	7,99	5,05	0,99	0,12
	16—17	125,00	110,20	100,20	2,00	1,02	0,1	0,05	2,32	4,32	3,98	0,4	0,09	0,35	4,67	4,57	0,46	0,1
	17—18	125,00	110,20	86,50	-0,49	0,11	-0,01	0,02	2,32	1,83	0,87	0,08	0,04	0,35	2,18	1,18	0,10	0,05
	18—19	160,00	141,00	152,90	-2,80	1,84	-0,28	0,1	2,32	-0,48	0,6	-0,09	0,19	0,35	-0,13	0,37	-0,06	0,46
	19—20	160,00	141,00	243,90	-5,09	2,87	-0,7	0,14	2,32	-2,77	0,97	-0,24	0,09	0,35	-2,42	0,77	-0,19	0,08
	20—21	160,00	141,00	102,10	-7,16	5,28	-0,54	0,08	2,32	-4,84	2,62	-0,27	0,06	0,35	-4,49	2,29	-0,23	0,05
	21—22	160,00	141,00	166,80	-8,62	2,25	-0,38	0,04	2,32	-6,30	1,28	-0,21	0,03	0,35	-5,95	1,16	-0,19	0,03
						suma	-1	1,56			suma	1,77	1,68			suma	1,28	1,92

	21—22	160,00	141,00	166,80	8,62	2,25	0,38	0,04	-2,32	6,30	3,62	0,6	0,1	-0,35	5,95	1,16	0,19	0,03
	20—21	160,00	141,00	102,10	7,16	5,28	0,54	0,08	-2,32	4,84	2,98	0,3	0,06	-0,35	4,49	2,29	0,23	0,05
	19—20	160,00	141,00	243,90	5,09	2,87	0,7	0,14	-2,32	2,77	4,61	1,12	0,4	-0,35	2,42	0,77	0,19	0,08
	18—19	160,00	141,00	152,90	2,80	1,84	0,28	0,1	-2,32	0,48	3,98	0,61	1,27	-0,35	0,13	0,37	0,06	0,46
	17—18	125,00	110,20	86,50	0,49	0,11	0,01	0,02	-2,32	-1,83	0,87	-0,08	0,04	-0,35	-2,18	1,18	-0,10	0,05
	16—17	125,00	110,20	100,20	-2,00	1,02	-0,1	0,05	-2,32	-4,32	0,6	-0,06	0,01	-0,35	-4,67	4,57	-0,46	0,1
	15—16	160,00	141,00	196,20	-5,32	3,1	-0,61	0,11	-2,32	-7,64	0,97	-0,19	0,02	-0,35	-7,99	5,05	-0,99	0,12
l II	14—15	160,00	141,00	238,60	-7,77	1,84	-0,44	0,06	-2,32	-10,09	2,62	-0,63	0,06	-0,35	-10,44	3,17	-0,76	0,07
"	13—14	160,00	141,00	173,80	-8,92	2,39	-0,42	0,05	-2,32	-11,24	1,28	-0,22	0,02	-0,35	-11,59	3,83	-0,67	0,06
	13—23	355,00	312,80	409,30	61,45	1,77	0,72	0,01	-2	59,45	1,66	0,68	0,01	-0,88	58,57	1,56	0,64	0,01
	23—24	250,00	220,40	103,60	52,83	7,52	0,78	0,01	-2	50,83	7	0,73	0,01	-0,88	49,95	6,47	0,67	0,01
	24—25	250,00	220,40	106,60	46,14	5,84	0,62	0,01	-2	44,14	5,37	0,57	0,01	-0,88	43,26	4,91	0,52	0,01
	25—26	280,00	246,80	261,70	37,34	2,25	0,59	0,02	-2	35,34	2,04	0,53	0,01	-0,88	34,46	2,81	0,74	0,02
	26—27	250,00	220,40	330,70	24,83	1,85	0,61	0,02	-2	22,83	1,58	0,52	0,02	-0,88	21,95	3,17	1,05	0,05
	27—28	200,00	176,20	190,00	7,00	5,07	0,96	0,14	-2	5,00	2,77	0,53	0,11	-0,88	4,12	1,07	0,20	0,05
	28—22	225,00	198,20	437,40	-1,84	0,84	-0,37	0,2	-2	-3,84	1,89	-0,83	0,22	-0,88	-4,72	1,97	-0,86	0,18
	·		·	·		suma	4,25	1,06			suma	4,18	2,37			suma	0,65	1,35

▲ q ₃	Q ₄	i ₄	▲ h ₄	▲ h/Q ₄	▲ q ₄	Q ₅	i ₅	▲ h ₅	▲ h/Q₅	▲ q ₅	Q_6	i ₆	▲ h ₆	W
▲ Ч 3	l/s	‰	m	■ 11/Q4	▲ Ч 4	I/s	‰	m	A 11/Q5	▲ 4 5	I/s	‰	m	[m/s]
-0,33	-12,66	2,55	-0,98	0,08	-0,19	-12,85	2,26	-0,87	0,07	-0,08	-12,93	2,29	-0,88	0,6
-0,33	13,10	4,77	0,83	0,06	-0,19	12,91	4,65	0,81	0,06	-0,08	12,83	4,6	0,80	0,82
-0,33	12,58	4,44	0,35	0,03	-0,19	12,39	4,32	0,34	0,03	-0,08	12,31	4,27	0,33	0,79
-0,33	12,19	2,38	0,59	0,05	-0,19	12,00	2,31	0,58	0,05	-0,08	11,92	2,29	0,57	0,6
-0,33	10,06	1,69	0,81	0,08	-0,19	9,87	1,63	0,78	0,08	-0,08	9,79	1,61	0,77	0,5
-0,33	4,90	2,67	0,73	0,15	-0,19	4,71	2,49	0,68	0,14	-0,08	4,63	2,42	0,66	0,49
-0,33	0,34	0,5	0,14	0,41	-0,19	0,15	0,39	0,11	0,73	-0,08	0,07	0,3	0,09	0,14
-0,33	-3,54	2,79	-0,41	0,12	-0,19	-3,73	3,06	-0,46	0,12	-0,08	-3,81	3,18	-0,47	0,52
-0,33	-10,77	1,9	-0,88	0,08	-0,19	-10,96	1,97	-0,91	0,08	-0,08	-11,04	1,99	-0,92	0,56
-0,33	-15,89	6,77	-0,61	0,04	-0,19	-16,08	6,91	-0,63	0,04	-0,08	-16,16	6,98	-0,63	1,03
-0,33	-17,98	2,89	-0,90	0,05	-0,19	-18,17	2,94	-0,91	0,05	-0,08	-18,25	2,96	-0,92	0,75
-0,33	-20,24	3,57	-0,94	0,05	-0,19	-20,43	3,63	-0,95	0,05	-0,08	-20,51	3,66	-0,96	0,84
-0,33	-22,47	7,18	-1,00	0,04	-0,19	-22,66	6,72	-0,93	0,04	-0,08	-22,74	6,76	-0,94	1,1
-0,33	76,84	15,26	0,87	0,01	-0,19	76,65	15,19	0,87	0,01	-0,08	76,57	15,16	0,86	2,01
-0,09	11,50	3,77	0,66	0,06	-0,4	11,10	3,54	0,62	0,06	0,28	11,38	3,7	0,64	0,73
-0,09	10,35	3,12	0,74	0,07	-0,4	9,95	2,91	0,69	0,07	0,28	10,23	3,06	0,73	0,66
-0,09	7,90	4,94	0,97	0,12	-0,4	7,50	4,43	0,87	0,12	0,28	7,78	4,78	0,94	0,71
-0,09	4,58	4,42	0,44	0,1	-0,4	4,18	3,75	0,38	0,09	0,28	4,46	4,21	0,42	0,61
-0,09	2,09	1,1	0,10	0,05	-0,4	1,69	0,76	0,07	0,04	0,28	1,97	0,99	0,09	0,27
-0,09	-0,22	0,43	-0,07	0,32	-0,4	-0,62	0,13	-0,02	0,03	0,28	-0,34	0,5	-0,08	0,18
-0,09	-2,51	0,82	-0,20	0,08	-0,4	-2,91	1,06	-0,26	0,09	0,28	-2,63	0,89	-0,22	0,28
-0,09	-4,58	2,37	-0,24	0,05	-0,4	-4,98	2,75	-0,28	0,06	0,28	-4,70	2,48	-0,25	0,49
-0,09	-6,04	1,19	-0,20	0,03	-0,4	-6,44	1,34	-0,22	0,03	0,28	-6,16	1,23	-0,21	0,39
		suma	0,80	2,13			suma	0,36	2,14			suma	0,42	

0,09	6,04	1,19	0,20	0,03	0,4	6,44	1,34	0,22	0,03	-0,28	6,16	1,23	0,21	0,39
0,09	4,58	2,37	0,24	0,05	0,4	4,98	2,75	0,28	0,06	-0,28	4,70	2,48	0,25	0,49
0,09	2,51	0,82	0,20	0,08	0,4	2,91	1,06	0,26	0,09	-0,28	2,63	0,89	0,22	0,28
0,09	0,22	0,43	0,07	0,32	0,4	0,62	0,13	0,02	0,03	-0,28	0,34	0,5	0,08	0,18
0,09	-2,09	1,1	-0,10	0,05	0,4	-1,69	0,76	-0,07	0,04	-0,28	-1,97	0,99	-0,09	0,27
0,09	-4,58	4,42	-0,44	0,1	0,4	-4,18	3,75	-0,38	0,09	-0,28	-4,46	4,21	-0,42	0,61
0,09	-7,90	4,94	-0,97	0,12	0,4	-7,50	4,43	-0,87	0,12	-0,28	-7,78	4,78	-0,94	0,71
0,09	-10,35	3,12	-0,74	0,07	0,4	-9,95	2,91	-0,69	0,07	-0,28	-10,23	3,06	-0,73	0,66
0,09	-11,50	3,77	-0,66	0,06	0,4	-11,10	3,54	-0,62	0,06	-0,28	-11,38	3,7	-0,64	0,73
-0,24	58,33	1,5	0,61	0,01	0,21	58,54	1,62	0,66	0,01	-0,36	58,18	1,6	0,65	0,76
-0,24	49,71	6,19	0,64	0,01	0,21	49,92	6,76	0,70	0,01	-0,36	49,56	6,67	0,69	1,3
-0,24	43,02	4,66	0,50	0,01	0,21	43,23	5,17	0,55	0,01	-0,36	42,87	5,09	0,54	1,12
-0,24	34,22	1,61	0,42	0,01	0,21	34,43	1,94	0,51	0,01	-0,36	34,07	1,9	0,50	0,71
-0,24	21,71	1,2	0,40	0,02	0,21	21,92	1,47	0,49	0,02	-0,36	21,56	1,43	0,47	0,57
-0,24	3,88	0,45	0,09	0,02	0,21	4,09	1,95	0,37	0,09	-0,36	3,73	1,65	0,31	0,39
-0,24	-4,96	2,15	-0,94	0,19	0,21	-4,75	1,78	-0,78	0,16	-0,36	-5,11	2,22	-0,97	0,42
		suma	-0,48	1,15			suma	0,65	0,9			suma	0,13	

		Qtr						
pierścień	odcinek	dnom	$d_{\text{wew.}}$	I	Q_1	i ₁	▲ h ₁	W
pierscien	Ouclifek	mm	mm	m	I/s	%	m	[m/s]
	22—29	200,00	176,20	384,00	27,47	2,23	0,86	0,72
	12—29	200,00	176,20	174,40	-3,58	2,85	-0,5	0,49
	11—12	200,00	176,20	77,80	-3,66	2,96	-0,23	0,5
	10-11	225,00	198,20	249,70	-3,72	3,05	-0,76	0,51
	9—10	250	220,40	477,40	-4,04	1,9	-0,91	0,42
	8-9	200,00	176,20	272,20	-4,82	2,6	-0,71	0,51
	7—8	160,00	141,00	289,80	-5,5	3,29	-0,95	0,58
	6—7	160,00	141,00	148,70	-6,08	3,93	-0,58	0,64
	5-6	225,00	198,20	464,30	-7,17	1,62	-0,75	0,46
	4—5	200,00	176,20	90,50	-7,94	6,35	-0,57	0,83
	3-4	250,00	220,40	310,10	-8,25	2,08	-0,65	0,53
I	2—3	250,00	220,40	263,00	-8,59	2,24	-0,59	0,55
	1-2	225,00	198,20	139,00	-8,92	2,39	-0,33	0,57
	1—13	250,00	220,40	57,00	43,11	14,14	0,81	1,77
	13—14	160,00	141,00	173,80	10	2,94	0,51	0,64
	14—15	160,00	141,00	238,60	9,83	2,85	0,68	0,63
	15—16	160,00	141,00	196,20	9,46	2,66	0,52	0,61
	16—17	125,00	110,20	100,20	8,96	7,9	0,79	0,94
	17—18	125,00	110,20	86,50	8,59	7,32	0,63	0,9
	18—19	160,00	141,00	152,90	8,24	2,07	0,32	0,53
	19—20	160,00	141,00	243,90	7,9	1,92	0,47	0,51
	20—21	160,00	141,00	102,10	7,59	5,86	0,6	0,8
	21—22	160,00	141,00	166,80	7,37	5,56	0,93	0,77
				,		suma	-0,41	

	21—22	160,00	141,00	166,80	-7,37	5,56	-0,93	0,77
	20—21	160,00	141,00	102,10	-7,59	5,86	-0,6	0,8
	19—20	160,00	141,00	243,90	-7,9	1,92	-0,47	0,51
	18—19	160,00	141,00	152,90	-8,24	2,07	-0,32	0,53
	17—18	125,00	110,20	86,50	-8,59	7,32	-0,63	0,9
	16—17	125,00	110,20	100,20	-8,96	7,9	-0,79	0,94
	15—16	160,00	141,00	196,20	-9,46	2,66	-0,52	0,61
II	14—15	160,00	141,00	238,60	-9,83	2,85	-0,68	0,63
"	13—14	160,00	141,00	173,80	-10	2,94	-0,51	0,64
	13-23	355,00	312,80	409,30	32,06	1,7	0,7	0,67
	23—24	250,00	220,40	103,60	30,77	7,64	0,79	1,26
	24—25	250,00	220,40	106,60	29,77	7,19	0,77	1,22
	25—26	280,00	246,80	261,70	28,45	2,38	0,62	0,75
	26—27	250,00	220,40	330,70	26,57	2,09	0,69	0,7
	27—28	200,00	176,20	190,00	24,13	4,91	0,93	0,99
	28—22	225,00	198,20	437,40	20,35	2,16	0,94	0,66
						suma	-0,01	

	Q	mr+p.poż																
piorégion	o doin ak	dnom	d _{wew.}	I	Q_1	i ₁	▲ h₁	▲ h/Q ₁	A ~	Q_2	i ₂	▲ h ₂	A b/O	A ~	Q ₃	i ₃	▲ h₃	A b/O
pierścień	odcinek -	mm	mm	m	I/s	‰	m	▲ n/Q ₁	▲ q₁	l/s	‰	m	▲ h/Q ₂	▲ q ₂	l/s	‰	m	▲ h/Q ₃
	22—29	200,00	176,20	384,00	-22,12	2,52	-0,97	0,04	0,88	-21,24	1,95	-0,75	0,04	-0,05	-21,29	2,34	-0,9	0,04
	12—29	200,00	176,20	174,40	23,64	4,73	0,82	0,03	0,88	24,52	5,06	0,88	0,04	-0,05	24,47	5,04	0,88	0,04
	11—12	200,00	176,20	77,80	23,12	7,56	0,59	0,03	0,88	24,00	8,09	0,63	0,03	-0,05	23,95	8,06	0,63	0,03
	10—11	225,00	198,20	249,70	22,73	2,64	0,66	0,03	0,88	23,61	2,84	0,71	0,03	-0,05	23,56	2,83	0,71	0,03
	9-10	250	220,40	477,40	20,6	1,31	0,63	0,03	0,88	21,48	1,42	0,68	0,03	-0,05	21,43	0,85	0,41	0,02
	8—9	200,00	176,20	272,20	15,44	3,64	0,99	0,06	0,88	16,32	3,59	0,98	0,06	-0,05	16,27	2,21	0,6	0,04
	7—8	160,00	141,00	289,80	10,88	3,42	0,99	0,09	0,88	11,76	3,35	0,97	0,08	-0,05	11,71	3,32	0,96	0,08
	6—7	160,00	141,00	148,70	-13	4,71	-0,7	0,05	0,88	-12,12	4,15	-0,62	0,05	-0,05	-12,17	4,18	-0,62	0,05
	5—6	225,00	198,20	464,30	-20,23	2,13	-0,99	0,05	0,88	-19,35	1,97	-0,91	0,05	-0,05	-19,40	1,98	-0,92	0,05
	4—5	200,00	176,20	90,50	-25,35	8,94	-0,81	0,03	0,88	-24,47	8,38	-0,76	0,03	-0,05	-24,52	8,41	-0,76	0,03
	3-4	250,00	220,40	310,10	-27,44	2,22	-0,69	0,03	0,88	-26,56	2,09	-0,65	0,02	-0,05	-26,61	2,1	-0,65	0,02
1	2—3	250,00	220,40	263,00	-29,7	2,57	-0,68	0,02	0,88	-28,82	2,43	-0,64	0,02	-0,05	-28,87	2,44	-0,64	0,02
	1-2	225,00	198,20	139,00	-31,93	4,97	-0,69	0,02	0,88	-31,05	4,71	-0,65	0,02	-0,05	-31,10	4,73	-0,66	0,02
	1—13	250,00	220,40	57,00	67,38	11,9	0,68	0,01	0,88	68,26	12,2	0,7	0,01	-0,05	68,21	12,18	0,69	0,01
	13—14	160,00	141,00	173,80	3,92	3,35	0,58	0,15	3,01	6,93	5,04	0,88	0,13	0,07	7,00	5,17	0,9	0,13
	14—15	160,00	141,00	238,60	2,77	1,8	0,43	0,16	3,01	5,78	3,14	0,75	0,13	0,07	5,85	3,24	0,77	0,13
	15—16	160,00	141,00	196,20	0,32	0,48	0,09	0,28	3,01	3,33	2,5	0,49	0,15	0,07	3,40	2,6	0,51	0,15
	16—17	125,00	110,20	100,20	-3	2,08	-0,21	0,07	3,01	0,01	0,61	0,06	6	0,07	0,08	0,12	0,01	0,13
	17—18	125,00	110,20	86,50	-5,49	6,11	-0,53	0,1	3,01	-2,48	4,25	-0,37	0,15	0,07	-2,41	1,41	-0,12	0,05
	18—19	160,00	141,00	152,90	-7,8	6,15	-0,94	0,12	3,01	-4,79	2,57	-0,39	0,08	0,07	-4,72	2,5	-0,38	0,08
	19—20	160,00	141,00	243,90	-10,09	2,98	-0,73	0,07	3,01	-7,08	1,58	-0,39	0,06	0,07	-7,01	1,55	-0,38	0,05
	20—21	160,00	141,00	102,10	-12,16	4,17	-0,43	0,04	3,01	-9,15	2,5	-0,26	0,03	0,07	-9,08	2,47	-0,25	0,03
	21—22	160,00	141,00	166,80	-13,62	5,12	-0,85	0,06	3,01	-10,61	3,26	-0,54	0,05	0,07	-10,54	3,23	-0,54	0,05
						suma	-2,76	1,57			suma	0,8	7,29			suma	0,25	1,28

	21—22	160,00	141 00	166,80	13,62	E 12	U 0E	0.06	2.01	10,61	2 26	1 25	0.12	-0,07	10,54	3,23	0 54	0.05
		160,00	141,00	100,80	13,02	5,12	0,85	0,06	-3,01		3,26	1,25	0,12	-0,07		3,23	0,54	0,05
	20—21	160,00	141,00	102,10	12,16	4,17	0,43	0,04	-3,01	9,15	2,5	0,44	0,05	-0,07	9,08	2,47	0,25	0,03
	19—20	160,00	141,00	243,90	10,09	2,98	0,73	0,07	-3,01	7,08	1,58	0,12	0,02	-0,07	7,01	1,55	0,38	0,05
	18—19	160,00	141,00	152,90	7,8	6,15	0,94	0,12	-3,01	4,79	2,57	0,64	0,13	-0,07	4,72	2,5	0,38	0,08
	17—18	125,00	110,20	86,50	5,49	6,11	0,53	0,1	-3,01	2,48	4,25	2,03	0,82	-0,07	2,41	1,41	0,12	0,05
	16—17	125,00	110,20	100,20	3	2,08	0,21	0,07	-3,01	-0,01	0,61	-0,17	17	-0,07	-0,08	0,12	-0,01	0,13
	15—16	160,00	141,00	196,20	-0,32	0,48	-0,09	0,28	-3,01	-3,33	2,5	-0,72	0,22	-0,07	-3,40	2,6	-0,51	0,15
l II	14—15	160,00	141,00	238,60	-2,77	1,8	-0,43	0,16	-3,01	-5,78	3,14	-0,47	0,08	-0,07	-5,85	3,24	-0,77	0,13
"	13—14	160,00	141,00	173,80	-3,92	3,35	-0,58	0,15	-3,01	-6,93	5,04	-2,34	0,34	-0,07	-7,00	5,17	-0,9	0,13
	13—23	355,00	312,80	409,30	56,45	1,51	0,62	0,01	-2,13	54,32	1,41	0,13	0	-0,12	54,20	1,4	0,57	0,01
	23—24	250,00	220,40	103,60	47,83	6,24	0,65	0,01	-2,13	45,70	5,73	1,78	0,04	-0,12	45,58	5,71	0,59	0,01
	24—25	250,00	220,40	106,60	41,14	7,97	0,85	0,02	-2,13	39,01	7,22	1,9	0,05	-0,12	38,89	7,18	0,77	0,02
	25—26	280,00	246,80	261,70	32,34	3,01	0,79	0,02	-2,13	30,21	3,69	0,51	0,02	-0,12	30,09	3,66	0,96	0,03
	26—27	250,00	220,40	330,70	19,83	2,06	0,68	0,03	-2,13	17,70	1,67	0,1	0,01	-0,12	17,58	1,65	0,55	0,03
	27—28	200,00	176,20	190,00	2	1,02	0,19	0,1	-2,13	-0,13	0,37	-0,06	0,46	-0,12	-0,25	0,45	-0,09	0,36
	28—22	225,00	198,20	437,40	-6,84	1,49	-0,65	0,1	-2,13	-8,97	1,95	-0,47	0,05	-0,12	-9,09	2,01	-0,88	0,1
						suma	5,72	1,34			suma	4,67	19,41			suma	1,95	1,36

▲ q ₃	Q ₄	i ₄	▲ h ₄	▲ h/Q₄	▲ q ₄	Q ₅	i ₅	▲ h ₅	▲h/Q₅	▲ q ₅	Q_6	i ₆	▲ h ₆	▲ h/Q ₆
– Ч 3	l/s	‰	m	▲ 11/ Q4	4 44	I/s	‰	m	■ 11/Q5	4 5	l/s	‰	m	■ 11/Q ₆
-0,1	-21,39	2,36	-0,91	0,04	-0,43	-21,82	2,45	-0,94	0,04	-0,56	-22,38	2,57	-0,99	0,04
-0,1	24,37	5	0,87	0,04	-0,43	23,94	4,84	0,84	0,04	-0,56	23,38	4,64	0,81	0,03
-0,1	23,85	8	0,62	0,03	-0,43	23,42	7,74	0,6	0,03	-0,56	22,86	7,41	0,58	0,03
-0,1	23,46	2,8	0,7	0,03	-0,43	23,03	2,71	0,68	0,03	-0,56	22,47	2,6	0,65	0,03
-0,1	21,33	1,4	0,67	0,03	-0,43	20,90	1,35	0,64	0,03	-0,56	20,34	1,28	0,61	0,03
-0,1	16,17	3,53	0,96	0,06	-0,43	15,74	3,35	0,91	0,06	-0,56	15,18	3,53	0,96	0,06
-0,1	11,61	3,26	0,94	0,08	-0,43	11,18	3,03	0,88	0,08	-0,56	10,62	3,27	0,95	0,09
-0,1	-12,27	4,24	-0,63	0,05	-0,43	-12,70	4,51	-0,67	0,05	-0,56	-13,26	4,88	-0,73	0,06
-0,1	-19,50	1,99	-0,92	0,05	-0,43	-19,93	2,08	-0,97	0,05	-0,56	-20,49	1,99	-0,92	0,04
-0,1	-24,62	8,48	-0,77	0,03	-0,43	-25,05	8,75	-0,79	0,03	-0,56	-25,61	9,11	-0,82	0,03
-0,1	-26,71	2,12	-0,66	0,02	-0,43	-27,14	2,18	-0,68	0,03	-0,56	-27,70	2,26	-0,7	0,03
-0,1	-28,97	2,46	-0,65	0,02	-0,43	-29,40	2,52	-0,66	0,02	-0,56	-29,96	2,61	-0,69	0,02
-0,1	-31,20	4,76	-0,66	0,02	-0,43	-31,63	4,88	-0,68	0,02	-0,56	-32,19	5,04	-0,7	0,02
-0,1	68,11	12,14	0,69	0,01	-0,43	67,68	12	0,68	0,01	-0,56	67,12	11,81	0,67	0,01
0,62	7,62	4,49	0,78	0,1	0,55	8,17	5,49	0,95	0,12	-0,2	7,97	5,11	0,89	0,11
0,62	6,47	2,69	0,64	0,1	0,55	7,02	3,5	0,84	0,12	-0,2	6,82	3,2	0,76	0,11
0,62	4,02	3,5	0,69	0,17	0,55	4,57	4,4	0,86	0,19	-0,2	4,37	4,06	0,8	0,18
0,62	0,70	0,16	0,02	0,03	0,55	1,25	0,45	0,05	0,04	-0,2	1,05	0,33	0,03	0,03
0,62	-1,79	0,84	-0,07	0,04	0,55	-1,24	0,44	-0,04	0,03	-0,2	-1,44	0,57	-0,05	0,03
0,62	-4,10	1,95	-0,3	0,07	0,55	-3,55	1,51	-0,23	0,06	-0,2	-3,75	1,66	-0,25	0,07
0,62	-6,39	1,32	-0,32	0,05	0,55	-5,84	1,12	-0,27	0,05	-0,2	-6,04	1,19	-0,29	0,05
0,62	-8,46	2,17	-0,22	0,03	0,55	-7,91	1,93	-0,2	0,03	-0,2	-8,11	2,02	-0,21	0,03
0,62	-9,92	2,89	-0,48	0,05	0,55	-9,37	2,61	-0,44	0,05	-0,2	-9,57	2,71	-0,45	0,05
		suma	0,99	1,15			suma	1,36	1,21			suma	0,91	1,18

-0,62	9,92	2,89	0,48	0,05	-0,55	9,37	2,61	0,44	0,05	0,2	9,57	2,71	0,45	0,05
-0,62	8,46	2,17	0,22	0,03	-0,55	7,91	1,93	0,2	0,03	0,2	8,11	2,02	0,21	0,03
-0,62	6,39	1,32	0,32	0,05	-0,55	5,84	1,12	0,27	0,05	0,2	6,04	1,19	0,29	0,05
-0,62	4,10	1,95	0,3	0,07	-0,55	3,55	1,51	0,23	0,06	0,2	3,75	1,66	0,25	0,07
-0,62	1,79	0,84	0,07	0,04	-0,55	1,24	0,44	0,04	0,03	0,2	1,44	0,57	0,05	0,03
-0,62	-0,70	0,16	-0,02	0,03	-0,55	-1,25	0,45	-0,05	0,04	0,2	-1,05	0,33	-0,03	0,03
-0,62	-4,02	3,5	-0,69	0,17	-0,55	-4,57	4,4	-0,86	0,19	0,2	-4,37	4,06	-0,8	0,18
-0,62	-6,47	2,69	-0,64	0,1	-0,55	-7,02	3,5	-0,84	0,12	0,2	-6,82	3,2	-0,76	0,11
-0,62	-7,62	4,49	-0,78	0,1	-0,55	-8,17	5,49	-0,95	0,12	0,2	-7,97	5,11	-0,89	0,11
-0,72	53,48	1,37	0,56	0,01	-0,98	52,50	1,32	0,54	0,01	-0,36	52,14	1,3	0,53	0,01
-0,72	44,86	5,54	0,57	0,01	-0,98	43,88	5,31	0,55	0,01	-0,36	43,52	5,23	0,54	0,01
-0,72	38,17	6,93	0,74	0,02	-0,98	37,19	6,6	0,7	0,02	-0,36	36,83	6,49	0,69	0,02
-0,72	29,37	3,73	0,98	0,03	-0,98	28,39	3,73	0,98	0,03	-0,36	28,03	3,64	0,95	0,03
-0,72	16,86	1,53	0,51	0,03	-0,98	15,88	1,37	0,45	0,03	-0,36	15,52	1,31	0,43	0,03
-0,72	-0,97	0,29	-0,06	0,06	-0,98	-1,95	0,97	-0,18	0,09	-0,36	-2,31	1,31	-0,25	0,11
-0,72	-9,81	1,89	-0,83	0,08	-0,98	-10,79	1,88	-0,82	0,08	-0,36	-11,15	2,03	-0,89	0,08
		suma	1,73	0,88			suma	0,7	0,96			suma	0,77	0,95

▲ q ₆	Q ₇	i ₇	$\blacktriangle h_7$	▲ h/Q ₇	▲ q ₇	Q ₈	i ₈	▲ h ₈	W
▲ Y6	I/s	%	m	A 11/Q/	4 4/	I/s	‰	m	[m/s]
-0,39	-22,77	2,44	-0,94	0,04	-0,26	-23,03	2,5	-0,96	0,71
-0,39	22,99	4,5	0,78	0,03	-0,26	22,73	4,41	0,77	0,93
-0,39	22,47	7,18	0,56	0,02	-0,26	22,21	7,03	0,55	1,12
-0,39	22,08	2,51	0,63	0,03	-0,26	21,82	2,45	0,61	0,71
-0,39	19,95	1,24	0,59	0,03	-0,26	19,69	1,21	0,58	0,52
-0,39	14,79	3,35	0,91	0,06	-0,26	14,53	3,26	0,89	0,74
-0,39	10,23	3,06	0,89	0,09	-0,26	9,97	2,92	0,85	0,64
-0,39	-13,65	5,17	-0,77	0,06	-0,26	-13,91	5,32	-0,79	0,89
-0,39	-20,88	2,07	-0,96	0,05	-0,26	-21,14	2,12	-0,98	0,65
-0,39	-26,00	9,36	-0,85	0,03	-0,26	-26,26	9,53	-0,86	1,33
-0,39	-28,09	2,32	-0,72	0,03	-0,26	-28,35	2,36	-0,73	0,74
-0,39	-30,35	2,68	-0,7	0,02	-0,26	-30,61	2,72	-0,72	0,8
-0,39	-32,58	5,14	-0,71	0,02	-0,26	-32,84	5,23	-0,73	1,06
-0,39	66,73	11,56	0,66	0,01	-0,26	66,47	11,6	0,66	1,74
0,02	7,99	5,15	0,9	0,11	0,05	8,04	5,24	0,91	0,68
0,02	6,84	3,23	0,77	0,11	0,05	6,89	3,3	0,79	0,53
0,02	4,39	4,1	0,8	0,18	0,05	4,44	4,18	0,82	0,6
0,02	1,07	0,34	0,03	0,03	0,05	1,12	0,37	0,04	0,15
0,02	-1,42	0,56	-0,05	0,04	0,05	-1,37	0,52	-0,04	0,19
0,02	-3,73	1,64	-0,25	0,07	0,05	-3,68	1,61	-0,25	0,39
0,02	-6,02	1,18	-0,29	0,05	0,05	-5,97	1,17	-0,29	0,38
0,02	-8,09	2,01	-0,21	0,03	0,05	-8,04	1,99	-0,2	0,51
0,02	-9,55	2,7	-0,45	0,05	0,05	-9,50	2,68	-0,45	0,61
		suma	0,62	1,19			suma	0,47	

-0,02	9,55	2,7	0,45	0,05	-0,05	9,50	2,68	0,45	0,61
-0,02	8,09	2,01	0,21	0,03	-0,05	8,04	1,99	0,2	0,51
-0,02	6,02	1,18	0,29	0,05	-0,05	5,97	1,17	0,29	0,38
-0,02	3,73	1,64	0,25	0,07	-0,05	3,68	1,61	0,25	0,39
-0,02	1,42	0,56	0,05	0,04	-0,05	1,37	0,52	0,04	0,19
-0,02	-1,07	0,34	-0,03	0,03	-0,05	-1,12	0,37	-0,04	0,15
-0,02	-4,39	4,1	-0,8	0,18	-0,05	-4,44	4,18	-0,82	0,6
-0,02	-6,84	3,23	-0,77	0,11	-0,05	-6,89	3,3	-0,79	0,53
-0,02	-7,99	5,15	-0,9	0,11	-0,05	-8,04	5,24	-0,91	0,68
-0,41	51,73	1,33	0,54	0,01	-0,31	51,42	1,27	0,52	0,67
-0,41	43,11	5,14	0,53	0,01	-0,31	42,80	5,07	0,53	1,12
-0,41	36,42	6,35	0,68	0,02	-0,31	36,11	6,25	0,67	1,17
-0,41	27,62	3,79	0,99	0,04	-0,31	27,31	3,71	0,97	0,89
-0,41	15,11	1,25	0,41	0,03	-0,31	14,80	1,2	0,4	0,48
-0,41	-2,72	1,75	-0,33	0,12	-0,31	-3,03	2,14	-0,41	0,41
-0,41	-11,56	2,22	-0,97	0,08	-0,31	-11,87	1,97	-0,86	0,5
		suma	0,6	0,98			suma	0,49	

Tabela nr.12 Obliczenia Crossa dla odcinków nie należących do pierścieni.

				DN							Δh
Odcinek magistrali	Qmr	Qtr	Qmr+p.poż.	DIN	- 1	i mr	i tr	i mr poż	Δh mr	Δh tr	mr+p.poż.
	[l/s]	[l/s]	[l/s]	[mm]	[m]	[‰]	[‰]	[‰]	[m]	[m]	[m]
zbd—1	101,29	52,02	101,29	355,00	172,3	4,49	1,3	4,49	0,77	0,22	0,77
29—zbgórny	26,49	30,94	46,49	280,00	231,3	1,2	1,59	3,39	0,28	0,37	0,78

11.Linia ciśnień:

Z planu miasta odczytano rzędne terenu węzłów sieci magistralnej oraz odległości między nimi. Na tej podstawie wykreślono linię wzniesienia terenu wzdłuż przebiegu przewodów w sieci. Oś rurociągu znajduje się na głębokości 1,6m.

Następnie wykreślono linie ciśnień (w skali 1:200 w pionie i 1:5000 w poziomie) dla trzech charakterystycznych stanów wody (Q_{mr} , Q_{tr} i $Q_{mr+p,po\dot{z}}$). Spadki ciśnień na poszczególnych odcinkach sieci zawarto w tabeli przedstawiającej obliczenia sieci metodą Crossa - Łobaczewa.

Linia ciśnień gospodarczych:

$$H_{gosp} = H_{geometryczne} + H_{roboocze} + A h_{strat}$$

Gdzie: $H_{rob,=}10mH_20$ $\blacktriangle h_{strat}=10-15 mH_20$

Hgeom = 3 * n Gdzie: n-ilość kondygnacji n=1 dla BJ

n=4 dla BWI i BWŚ

Linia ciśnień gospodarczych jest linią równoległą do osi przewodu lecz nie jest linią ciągłą . Uskoki pojawiają się w miejscu zmiany rodzaju zabudowy.

Linia ciśnień Qmr:

Kreślenie zaczynamy od najbardziej niekorzystnego położonego punktu (od miejsca gdzie Hgosp. ma największą rzędną). Dodajemy 20-50 cm zapasu. Zaznaczamy punkty zerowe po Crossie . Następnie dodajemy(jeśli poruszamy się przeciwnie do kierunku przepływu) lub odejmujemy (jeśli poruszamy się zgodnie z kierunkiem przepływu) wartość ▲h z ostatniego przybliżenia Crossa. Qmr nie może przeciąć linii ciśnień gospodarczych.

Linia ciśnień Qtr:

Zaczynamy od zbiornika górnego. Pierwsza rzędna linii Qtr wyznaczona jest przez maksymalne wypełnienie zbiornika górnego(którego wrysowujemy w skali). Poruszamy się przeciwnie do kierunku przepływu dlatego wartość \blacktriangle h z ostatniego Crossa dla Qtr dodajemy. Linia ciśnień Qtr nie może sięgnąć punktu wyższego niż 60mH_2 o.

Linia ciśnień Qmr+p.poż.:

Ponownie zaczynamy od zbiornika górnego. Punktem początkowym jest technologiczne dno zbiornika górnego. Podobnie jak w linii ciśnień Qmr dodajemy bądź odejmujemy wartość \blacktriangle h z ostatniego Crossa dla Qmr+p.poż. Jednak linia Qmr+p.poż może przeciąć linie ciśnień gospodarczych pod warunkiem że w węźle pożarowym zostanie zapewnione ciśnienie niezbędne do ugaszenie pożaru.

12.Dobór pomp:

Pompa							
H_p	Q_p	p_{max}					
[m]	[l/s]	[mH ₂ O]					
56	101,29	60					

W etapie obliczania objętości zbiornika górnego przyjęto, że sieć zasilana jest przez dwie pompy pracujące w układzie równoległym.

Na podstawie obliczeń dobrano dwie pompy firmy Grundfos typu NKG 125-100-250/242. Pompa ta posiad oczywiście ATEST HIGIENICZNY .