Olimpiada Națională de Informatică, Etapa județeană, Clasa a VII-a Descrierea soluțiilor

Comisia științifică

March 15, 2025

Problema 1. Prietenie

Propusă de: stud. Marcu Mihai, Delft University of Technology

Cerința 1.

O observație necesară pentru rezolvarea primei cerințe este că $(a_i - b_j)^2$ se poate scrie sub forma $a_i^2 - 2 * a_i * b_j + b_j^2$, iar o altă observație e că fiecare număr din șirul a, va fi implicat în n sume (cu fiecare element din șirul b). Deci pentru fiecare element a_i , vom avea suma:

$$(a_{i} - b_{1})^{2} + (a_{i} - b_{2})^{2} + \dots + (a_{i} - b_{n})^{2} =$$

$$= (a_{i}^{2} - 2 * a_{i} * b_{1} + b_{1}^{2}) + (a_{i}^{2} - 2 * a_{i} * b_{2} + b_{2}^{2}) + \dots + (a_{i}^{2} - 2 * a_{i} * b_{n} + b_{n}^{2}) =$$

$$= n * a_{i}^{2} - 2 * a_{i} * (b_{1} + b_{2} + \dots + b_{n}) + (b_{1}^{2} + b_{2}^{2} + \dots + b_{n}^{2}) =$$

$$= n * a_{i}^{2} - 2 * a_{i} * SumB + SumPatrateB$$

unde $SumB = b_1 + b_2 + ... + b_n$ este constant și se va calcula separat. Similar, $SumPatrateB = b_1^2 + b_2^2 + ... + b_n^2$. Astfel se vor calcula pentru fiecare termen al șirului a aceste sume și se vor adăuga la suma totală. Complexitatea finală este O(n).

Cerința 2.

Pentru fiecare element al șirului a (a_i) , vom căuta câte elemente din șirul b (b_j) , au proprietatea că $(a_i-b_j)^2$ este fie mai mic sau egal cu X, fie mai mare sau egal cu Y. Pentru a obține acest lucru se vor calcula frecvențele din șirul b și sumele parțiale pe ele. Așadar, considerăm fr_i frecvența fiecărui număr din șirul b, iar $sumfr_i = fr_1 + fr_2 + ... + fr_i$. Vom calcula câte numere avem astfel încât $(a_i-b_j)^2 <= X$, $-\sqrt{X} <= b_j - a_i <= \sqrt{X}$, adică $a_i - \sqrt{X} <= b_j <= a_i + \sqrt{X}$. Pentru a calcula numărul de numere dintre aceste 2 valori se va folosi șirul de sume partiale $sumfr_i$. Acum vom calcula câte numere din șirul b există astfel încât $(a_i-b_j)^2 >= Y$, adică $b_j - a_i >= \sqrt{Y}$ sau $b_j - a_i <= -\sqrt{Y}$, deci $b_j >= \sqrt{Y} + a_i$ sau $b_j <= -\sqrt{Y} + a_i$, cu ajutorul șirului $sumfr_i$. Complexitatea finală este O(n).

Problema 2. Teren

Propusă de: prof. Popa Daniel, Colegiul Național "Aurel Vlaicu", Orăștie

Cerința 1.

Se citesc coordonatele de început ale însămânțării L1, C1 și coordonatele de sfârșit L2, C2. Dacă L1==L2 la numărul de seminte aruncate se adună abs(C1-C2)+1, altfel se adună abs(L1-L2)+1.

Precalcule pentru Cerința 2 și 3.

Atât pentru cerința 2 cât și pentru cerința 3 se folosesc 5 matrici: matricea o pentru parcurgerile orizontale, v pentru cele verticale, dp pentru cele paralele cu diagonala principală, ds pentru parcurgerile paralele cu diagonala secundară. Pentru fiecare zbor/parcurgere se aplică difference array. Deoarece parcurgerea este liniară difference array se aplică exact ca la vectori: Pentru parcurgerile orizontale (unde L1 == L2):

$$\begin{cases} o[L1][min(C1,C2)] + +; \\ o[L1][max(C1,C2) + 1] - -; \end{cases}$$

Pentru parcurgerile verticale (unde C1 == C2):

$$\begin{cases} v[min(L1, L2)][C1] + +; \\ v[max(L1, L2) + 1][C1] - -; \end{cases}$$

Pentru parcurgerile paralele cu diagonala secundară (unde L1+C1 == L2+C2): se interschimbă capetele a.î. L1 < L2 și apoi:

$$\begin{cases} ds[L1][C1] + +; \\ ds[L2+1][C2-1] - -; \end{cases}$$

Pentru parcurgerile paralele cu diagonala principală: se interschimbă capetele a.î. L1 < L2 și apoi

$$\begin{cases} dp[L1][C1] + +; \\ dp[L2+1][C2+1] - -; \end{cases}$$

Se parcurg matricele și se fac adunările corespunzătoare:

$$\begin{cases} o[i][j] + = o[i][j-1]; \\ v[i][j] + = v[i-1][j]; \\ dp[i][j] + = dp[i-1][j-1]; \\ ds[i][j] + = ds[i-1][j+1]; \end{cases}$$

Într-o matrice rezultat se marchează acele celule care sunt nenule în cel puțin una din matricele anterioare.

Cerința 2.

Pentru obtinerea rezultatului se numără câte valori nenule sunt în matricea rezultat.

Cerința 3.

Pentru a obține rezultatul se numără pentru fiecare celulă nenulă câți vecini au valoarea 0.

Echipa

Problemele pentru această etapă au fost pregătite de:

- prof. Boca Alina Gabriela, Colegiul Național de Informatică "Tudor Vianu", București
- prof. Costineanu Veronica-Raluca, Colegiul Național "Ștefan cel Mare", Suceava
- stud. Cotoi Rareș-Andrei, Facultatea de Matematică și Informatică, Universitatea Babeș-Bolyai, Cluj-Napoca
- prof. Gorea-Zamfir Claudiu-Cristian, Inspectoratul Scolar Județean, Iași
- stud. Marcu Mihai, Delft University of Technology
- prof. Nicu Vlad-Laurențiu, Liceul Teoretic "Mihail Kogălniceanu", Vaslui
- prof. Panaete Adrian, Colegiul Național "August Treboniu Laurian", Botoșani
- prof. Popa Daniel, Colegiul National "Aurel Vlaicu", Orăștie
- stud. Pop Ioan-Cristian, Facultatea de Automatică și Calculatoare, Universitatea Politehnica Bucuresti
- prog. Trișcă-Vicol Cezar, 2k Games, Dublin