

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS FÍSICAS ESCUELA PROFESIONAL DE FÍSICA DEPARTAMENTO ACADÉMICO DE FÍSICA DEL ESTADO SÓLIDO

SILABO

1. DATOS GENERALES:

Asignatura : FÍSICA MATEMÁTICA II

Código : CFO406Créditos : 4,0

Pre requisito : Cálculo II Semestre Académico : 2021-II

Ciclo : 4^0

Carácter : Obligatorio
Naturaleza : Profesional
Duración : 16 semanas

Departamento Académico : Física del Estado Sólido

Número de horas por semana : Teoría: 3 h.

Práctica: 2 h.

Modalidad : No presencial (virtual)

Profesor : Dr. Richard Toribio Saavedra

Email: rtoribios@unmsm.edu.pe

Horarios : Martes 14 - 17 hrs. y Jueves 14 - 16 hrs.

2. SUMILLA:

Asignatura obligatoria de nivel profesional, dirigida a estudiantes del segundo año de la carrera de Física de la Universidad Nacional Mayor de San Marcos (UNMSM). Su naturaleza es teórico-práctica, de sólida formación científica. El propósito es el estudio de la realidad física con conocimiento de diversas teorías, conceptos y enfoques de la ciencia e ingenierías, que el estudiante desarrolle conocimientos, habilidades y destrezas para manejar técnicas, métodos y procedimientos de la física matemática que corrientemente usan los físicos para explicar y modelar fenómenos físicos que se presentan cotidianamente en la naturaleza, aplicarlos en la solución de problemas y en proyectos preliminares de investigación. Desarrolla actitud crítica, solidaria, creativa, participativa, democrática y búsqueda de la verdad. Orientado a crear, desarrollar y difundir conocimientos, cultivar ciencia y tecnología.

Contenido: Estudia las aplicaciones a la física: álgebra vectorial, álgebra lineal. Series de Fourier. Transformada de Fourier. Variable compleja. Ecuaciones diferenciales parciales, método de separación de variables. Ecuaciones hiperbólicas, parabólicas y elípticas.

3. COMPETENCIAS DE LA CARRERA:

El estudiante se familiariza con los fundamentos de la física matemática acompañados de técnicas matemáticas consistentes, de manera tal que desarrolla nuevas habilidades y destrezas en las aplicaciones y resolución de problemas siguiendo un proceso estructurado y lógico pasando de menor a mayor grado de conocimiento, dialécticamente y sin límites.

4. COMPETENCIAS Y CAPACIDADES DEL CURSO

COMPETENCIAS GENERALES

El estudiante:

Desarrolla habilidades cognitivas, procedimentales y actitudinales, respecto al razonamiento lógico y procedimientos para la aplicación de temas tratados en la asignatura tales como el álgebra vectorial, serie y transformada de Fourier, etc., utilizados en muchos aspectos reales tales como: la nanofísica, la aeronáutica, y áreas relacionadas con su profesión. De esta manera se encuentra competente para estudiar cursos avanzados sólidos en conocimientos que requiere para los semestres posteriores.

■ COMPETENCIAS ESPECIFICAS DEL CURSO

Al finalizar el curso el estudiante podrá:

- Desarrollar un conjunto de habilidades cognitivas que le permitirán optimizar sus procesos de razonamiento.
- Analizar y expresar físicamente los fenómenos mecánicos desde un punto de vista físico clásico.
- Comprender e interpretar el significado físico de las ecuaciones de movimiento de sistemas mecánicos clásicos.
- Pensar, ordenar, clasificar, representar, memorizar, participar, evaluar con mentalidad científica.

■ CAPACIDADES

Utiliza los formalismos del álgebra vectorial y la transformada de Fourier para resolver con habilidad y destreza problemas de aplicación, analizando y evaluando los resultados.

5. MAPA DE APRENDIZAJE Producto escalar Álgebra vectorial Producto vectorial Triple producto escalar Álgebra tensorial Triple producto vectorial Tensores Gradiente, divergencia FÍSICA Propiedades y rotacional MATEMÁTICA II Aplicación del álgebra luerpos elásticos vectorial y tensorial Fluidos Funciones de una Funciones holomorfas variable compleja Potencias y raíces Ecuaciones de Series de Taylor y de Laurent Cauchy-Riemann Teorema de los residuos Ecs. de tipo hiperbólico Ecuaciones diferenciales parciales Ecs. de tipo parabólico Transformada Inversa Transformada Tema Avanzado de Fourier de Fourier

6. UNIDADES DE APRENDIZAJE

UNIDAD APRENDIZAJE N 1: Álgebra vectorial y tensorial: Conceptos, definiciones y principios básicos.

1. Logro de la unidad: Comprende y reflexiona sobre la importancia del álgebra vectorial.

2. Competencia específica 1:

- Define, reconoce y aplica los conceptos básicos del álgebra vectorial en ciencias e ingeniería.
- Maneja el álgebra vectorial y tensorial.

3. Competencia específica 2:

■ Maneja procedimientos basados en modelos vectoriales y demuestra interés.

Semana	Contenidos	Contenidos	Contenidos
	Conceptuales	Procedimentales	Actitudinales
1	Prueba de entrada. Introducción.	Resuelve	Comprende la
	Álgebra vectorial.	problemas de	importancia del
	Propiedades del álgebra vectorial	álgebra vectorial	álgebra vectorial
	Gradiente, divergencia y rotacional.	básica.	
2	Transformación de coordenadas	Resuelve	
	Tensor en el espacio euclideano.	problemas de	Participa activamente,
	Álgebra de tensores.	álgebra vcetorial y tensorial	con responsabilidad.
3	Tensores de orden superior	Resuelve	Comprende la
	Tensores ortogonales	problemas de	inportancia de los
	Magnitudes imprtantes en los campos	ejercicios	procedimientos.
	Sistemas de coordenadas ortogonales.	aplicados.	
4	Coordenadas curvilíneas	Resuelve	Participa activamente, con
	Aplicaciones del álgebra vectorial	problemas de	responsabilidad en
	Álgebra vectorial en fluidos	tensores	las actividades
	Aplicaciones.	y sus propiedades.	programadas.
5	Cuerpos elásticos	Resuelve problemas	
	Tensor de deformación	de aplicación a	Reflexiona sobre la
	Flujo viscoso	la física.	importancia de
	Ecuación de Euler en fluidos		las ecuaciones
	Esfuerzo y la ley de Hooke generalizada.		vectoriales y tensoriales.
	PRÁCTICA CALIFICADA 1		

UNIDAD APRENDIZAJE N 2: Funciones de una variable compleja.

1. Logro de la unidad: Conoce y comprende el número complejo y las funciones complejas.

2. Competencia específica 1:

- Identifica, reconoce y clasifica la variable compleja, funciones complejas, e interpreta su aplicación en ciencias e ingeniería.
- Aplica las propiedades de la integral de línea compleja.
- Emplea el uso de las técnicas de integrales de funciones complejas.

3. Competencia específica 2:

Participación activa de los estudiantes a través de intervenciones orales.

6	Funciones de una variable compleja	Resuelve	Muestra habilidad y
	Forma polar de un númeor complejo	problemas de	destreza en la
	Funciones holomorfas. Definiciones	funciones complejas	solución de ejercicios.
7	Funciones en forma trigonométrica	Resuelve	Reflexiona sobre
	Potencias y raíces	problemas de	la importancia de las
	Derivada en el cuerpo complejo	aplicaciones	funciones holomorfas.
9	Ecuaciones de Cauchy-Riemann	Resuelve	Muestra habilidad y
	Funciones armónicas	problemas de	destreza en la solución
	Funciones complejas como flujo	Cauchy-Riemann.	de los ejercicios.
10	Integrales complejas de línea	Resuelve	Reflexiona sobre la
	Teorema integral de Cauchy	problemas de	importancia de las
	Series de Taylor y de Laurent	de series e integrales.	técnicas de integración
	PRÁCTICA CALIFICADA 2		

8	Examen parcial	

Semana	Contenidos	Contenidos	Contenidos
	Conceptuales	Procedimentales	Actitudinales
11	Teorema de los residuos	Resuelve	Principio del
	Integrales de funciones complejas	problemas de	teorema de
	El teorema de los residuos	La integral utilizando el	los residuos.
	Práctica dirigida	teorema de los residuos	
12	Serie de Fourier	Resuelve	Muestra preocupación
	Transformada de Fourier	aplicaciones de	y dedicación por el
	Transformada inversa de Fourier	la transformada de Fourier	cumplimiento de las tareas

UNIDAD APRENDIZAJE N 3: Ecuaciones en derivadas parciales lineales

- 1. Logro de la unidad: Conoce y comprende las ecuaciones diferenciales parciales.
- 2. Competencia específica 1:
 - \blacksquare Resuelve las ecuaciones diferenciales parciales a diversos casos.
 - Participación activa de los estudiantes a través de intervenciones orales.

Semana	Contenidos	Contenidos	Contenidos
	Conceptuales	Procedimentales	Actitudinales
13	Ecuaciones diferenciales parciales	Resuelve	Muestra habilidad
	Método de separación de variables	problemas de	y destreza en la
	Ecuaciones de tipo hiperbólico	ecs. dif. parciales lineales	solución de ejercicios.
14	Ecuación de tipo parabólico	Resuelve	Muestra preocupación
	Ecuación de tipo elíptico	problemas de	y dedicación por
	Práctica dirigida.	tipo parabólico y elíptico	el cumplimiento.
15			
10	PRÁCTICA CALIFICADA 3		
16			
	Examen Final		
17	ENTREGA DE ACTAS		

7. METODOLOGÍA

Las sesiones de aprendizaje serán no presenciales, a través de la plataforma virtual Classrroom de la UNMSM. La metodología de la asignatura, tiene la característica básica de ser eminentemente práctica, donde la participación activa del estudiante es fundamental.

En el presente semestre académico las clases se desarrollarán en la modalidad no presencial (virtual) como consecuencia del estado de emergencia COVID-19. Se da a conocer los principales medios y materiales educativos que se utilizarán para la adquisición de los aprendizajes. Ejemplos: Diapositivas, vídeos, separatas, guías de problemas, etc.

8. CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN

La evaluación se orienta a comprobar que el estudiante logre los objetivos planteados, mediante avances parciales en sus niveles de organización y tratamiento de la información. Así como el afianzamiento de los potenciales intelectuales de análisis, síntesis, criticidad y creatividad. Se tomará en cuenta la asistencia, puntualidad y la participación en clase. Según Resolución Rectoral, el 30 % de inasistencia inhabilita al alumno.

Sistema de calificación: escala vigesimal (0 a 20). Para obtener la nota final de la asignatura se considera las siguientes evaluaciones: Tres (03) prácticas calificadas, un (01) examen parcial, un (01) examen final.

La fórmula para obtener el promedio final es la siguiente:

$$N = (EP + EF + PPC)/3$$

donde: EP : Examen parcial, EF : Examen final, PPC : Promedio de prácticas calificadas + intervenciones en clases.

9. REFERENCIAS BIBLIOGRÁFICAS Y OTRAS FUENTES

8.1 TEXTOS

- 1. **Matemáticas para Físicos**. J. Mathews, R.L. Walker. Editorial Reverté, S.A., Impreso en España. 1979.
- 2. **Fórmulas y Tablas de Matemática Aplicada**. Murray R. Spiegel, John Liu y Lorenzo Abellanas. Segunda edición revisada. McGraw-Hill/Interamericana de España, S.A.U. 2005.

8.2 BIBLIOGRAFÍA DE CONSULTA

- 1. **Mathematical Methods for Physicists**. Sixth Edition. Hans J. Weber y George B. Arfken. Elsevier Academic Press Publication. Impreso en USA. 2005.
- 2. Mathematical Physics. Eugene Butkov. Adinson Wesley. 1966.

8.3 LECTURA COMPLEMENTARIA

- 1. **Table of Integrals, Series, and Products**. I.S. Gradshteyn, I.M. Ryzhik. Seventh edition. Academic Press. Impreso en USA. 2007.
- 2. Teoría y problemas de ecuaciones diferenciales. Frank Ayres, Jr. 1969.