

Одеська Політехніка Інститут комп`ютерних систем Кафедра інформаційних систем Дисципліна «Операційні системи»

Тема 2: Керування процесами Лекція 7: Основи операційного керування процесами в Unix-подібних ОС

Олександр А. Блажко, доцент кафедри інформаційних систем,

E-mail: blazhko@ieee.org

Telegram-канал: t.me/Operating_Systems_IS

Одеса, 17 квітня 2023 року

Основні типи багатозадачності

• Компонентна багатозадачність: декілька програм одночасно використовують різні апаратні компоненти (пристрої вводу/виводу, процесор), але лише одна програма використовує процесор

- Інтерактивні програми активно використовують пристрої вводу/виводу під час взаємодії з користувачем
- Невитісняюча багатозадачність (*Non-preemptive multitasking*): кожна програма за бажанням користувача запускається на процесорі та звільняє його за власним бажанням або за бажанням користувача
- Витісняюча багатозадачність (*Preemptive multitasking*): кожна програма виконується на процесорі лише обмежений час, ОС слідкує за часом та періодично перериває роботу програми, надаючи процесор іншій

Програма -> Процесор -> Процес

- Термін "процес" вперше з'явився при розробці ОС *Multix*
- Процес це програма на стадії виконання або "об'єкт", якому виділено процесорний час на процесорі

Модель процесу

Найпростіша модель опису станів процесів - це модель 3-х станів

Оцінка завантаженності процесора в режиму витісняючої багатозадачності. Моделювання

Припущення моделювання (спрощення багатозадачності при абстрагуванні):

- процес проводить частину свого часу *р* в очікуванні завершення операцій вводу/виводу;
- при одночасній присутності в пам'яті n процесів ймовірність того, що всі n процесів очікують завершення вводу/виводу, = p^n ;

• завантаженність процесору (час використання процесора) = $1 - p^n$ Приклад: ОП = 8 Гбайт, ОС та її таблиці процесів <= 2 Гбайт, кожна програма <= 2 Гбайт (3 програми в ОП). При очікуванні вводу/виводу = 80%, завантаженість процесора, $1 - 0.8^3 = 49\%$.

Керування об'єктами ОС

- Відомо, що будь-яке керування будь-яким об'єктом включає в себе чотири основні операції (*CRUD*-операції):
 - Create створення об'єкта,
 - *Read* перегляд значень атрибутів об'єкта;
 - *Update* зміна значень атрибутів об'єкта;
 - *Delete* видалення об'єкта.
- Відомі об'єкти ОС: файл, користувач, група, псевдотермінал
- Об'єкт типу «процес ОС» має особливості
- Для процесів ОС вказані операції створення, зміни і видалення представляються у вигляді 7-ми додаткових операцій, які забезпечують перехід процесів між 5-ма станами

Операції керування процесами

Для процесів операції створення, зміни і видалення представляються у вигляді 7-ми операцій

Ієрархія процесів в *Unix*-подібній ОС

Процес не може взятися з порожнини – його запускає інший процес:

- процес, який запустив (породив) інший процес, це *parent*-процес;
- процес, запущений (породжний) іншим процесом, це *child*-процес.

У кожного процеса є два атрибути:

- PID (Process ID) ідентифікатор процесу;
- PPID Parent Process ID, ідентифікатор parent-процесу.

Процеси створюють ієрархію у вигляді дерева:

child-процес має лише один parent-процес;

parent-процес може мати багато child-процесів;

процес з PID = 1 — найголовніший процес з назвою init aбо systemd

Команда перегляду дерева процесів:

• pstree [опції] [аргумент], наприклад, pstree -up

Таблиця процесів ОС

Приклад таблиці процесів як результат виконання команди *PS*

VSZ (Virtual Size), RSS (Resident Set Size)

Приклад таблиці процесів як результат виконання команди ТОР

```
20:42:43 up 162 days, 5:30, 4 users, load average: 0.50, 1.17, 0.94
asks: 128 total, 1 running, 127 sleeping, 0 stopped,
                                                         O zombie
        0.3 us, 0.5 sy, 0.0 ni, 98.5 id, 0.0 wa, 0.0 hi, 0.5 si, 0.2 st
          1881836 total, 883128 free, 145088 used, 853620 buff/cache
          4194300 total, 3609888 free, 584412 used. 1687644 avail Mem
KiB Swap:
                                              %CPU %MEM
                                RES
 PID USER
                        VIRT
                                                           TIME+ COMMAND
     root
                                                         7:14.28 jbd2/vda1-8
 274 root
                                               0.3
               20
                                                    0.0
                               1076
               20
                    0 1272260
                                               0.3
                                                    0.1 170:33.48 mysqld
2021 mysq1
7079 oracle
               20
                               2280
                      162104
                                                         0:00.11 top
```

PR (Priority), NI (Nice), VIRT (Virtual memory), RES (Resident memory size), SHR (Shared Memory size), S – Process Status

Керування процесами через сигнали ОС

Unix-подібні ОС керують процесами через сигнали, як засіб передачі повідомлення про деякі події в ОС

Процеси теж можуть генерувати сигнали для передачі повідомлень іншим процесам

Команда передачі сигналів:

- kill [-сигнал] PID [PID ..],
- сигнал номер/ символічне ім'я сигналу

Nº	Назва	Опис	Комбінаці я клавіш
1	HUP	<i>Hangup</i> . Відміна роботи процесу	
2	INT	Interrupt. У разі виконання простих команд викликає припинення виконання, в інтерактивних програмах - припинення активного процесу	<ctrl>+<c> або <ctrl>+</del </ctrl></c></ctrl>
3	QUIT	Як правило, сильніше сигналу Interrupt	<ctrl>+<\></ctrl>
9	KILL	Завершення роботи процесу	
15	TERM	Software Termination. Вимагання завершити процес (програмне завершення)	
18	CONT	Продовжити виконання призупиненого процесу	
19	STOP	Призупинення виконання процесу	
20	TSTR	Сигнал призупинення процесу, генеруємий клавіатурою. Переводить процес у фоновий режим	<ctrl>+<z></z></ctrl>

Ступінь свободи процесів в *Unix*-подібній ОС

Мінімальний ступінь свободи – режим *foreground* («передній план»):

- процес є результатом запуску програми з командного рядку;
- процес "прив'язується" до псевдотерміналу, з якого він запущений;

Середній ступінь свободи – режим background («задній план»):

• процес є результатом запуску програми з командного рядку із завершальним символом & (фоновий режим);

Середній ступінь свободи – режим «background without hanging up» :

• процес ігнорує сигнал *HUP* (команда *nohup*).

Максимальний ступінь свободи – daemon-процес («даймон», не демон):

- «не прив'язані» до псевдотерміналу;
- найчастіше для взаємодії з іншими процесами надають свої копії;
- найчастіше запускаються під час старту ОС;
- найчастіше у назві мають останню літеру *d.*

Визначення станів процесів в *Unix*-подібній ОС

```
R (Running aбo Runnable) — процес у стані виконання або готовності; 
S (Interruptible Sleeping) — процес у стані «сну», не у стані очікування, 
пов'язаного з операціями вводу/виводу, а, наприклад, у стані 
очікування завершення свого child-процесу 
D (Uninterruptible Sleeping) — процес у стані очікування завершення
```

T (Stopped) – процес у стані тимчасового призупинення;

операцій вводу/виводу;

- *Z (Zombie)* процес-зомбі помилковий процес, який знаходиться у стані завершення, але від нього не очищено таблицю процесів. Додаткові властивості станів:
- *s* процес є лідером псевдотерміналу головним *parent*-процесом у ланцюжку запуску *child*-процесів власником псевдотерміналу; + (плюс) процес в інтерактивному режимі свого псевдотерміналу, запущений користувачем з командного рядку не у фоновому режимі.

Визначення пріоритетів процесів в *Unix*-подібній ОС

- Пріоритет процесу пов'язано з англійським словом «*nice*» «милий», «ввічливий».
- «Ввічливий» процес завжди «поступається дорогою» іншим процесам.
- «Грубий» процес намагається сам обійти всі процеси, що знаходяться у стані виконання або готовності.
- *nice = +20* найнижчий пріоритет процесу, який виконується рідше за інших і тільки тоді, коли ніщо інше не займає процесор;
- *nice = -19* найвищий пріоритет процесу, який виконується частіше за інших.
- За замовчуванням для *child*-процесу встановлюється значення *nice*, збільшене на +10 у порівнянні із *nice* його *parent*-процесу.
- Негативні значення *пісе*, які забезпечать більший приоритет може встановлювати тільки привілейований користувач.

Одеська Політехніка Інститут комп`ютерних систем Кафедра інформаційних систем Дисципліна «Операційні системи»

Дякую за увагу! Запитання?

Олександр А. Блажко, доцент кафедри інформаційних систем,

E-mail: blazhko@ieee.org

Telegram-канал: t.me/Operating_Systems_IS

Одеса, 17 квітня 2023 року