Pipelining I

From Chapter 14, Computer Organization and Architecture by William Stallings

Credits: based on slides by Ms. Noshaba Nasir

What Is Pipelining?

- Pipelining is an implementation technique whereby multiple instructions are overlapped in execution.
- It takes advantage of parallelism that exists among the actions needed to execute an instruction.
- Today, pipelining is the key technique used to make fast CPUs.

- A pipeline is like an assembly line.
- In an automobile manufacturing line, there are many steps, each contributing something to the construction of the car.
- Each step operates in parallel with the other steps, although on a different car.

- Automobile manufacturing line without pipelining, in 3 stages: Assemble (A), Paint (P), Fix tires (T)
- Assume A+P+T take 3 hours

Timeline	0-3 hours	3-6 hours	6-9 hours
Car 1	A+P+T		
Car 2		A+P+T	
Car 3			A+P+T

- Assembly line with pipelining
- Assuming each stage takes 1 hour

Time	1 st hr	2 nd hr	3 rd hr	4 th hr	5 th hr	6 th hr	7 th hr	8 th hr	9 th hr
Car 1	Α	Р	Т						
Car 2		Α	P	T					
Car 3			Α	Р	T				

- It takes 5 hours with pipelining and 9 hours without pipelining.
- Speedup = 9/5

- Here our assumptions are
 - There is no time consumed to transition car from one working station on other
 - All the stages consume equal time
- However, these assumption are not realistic
 - Each stage can take different amount of time
 - e.g. painting a car takes 2 hours and assembly and installing tires take 0.5 hours each
 - To transfer car from one stage to another will take time.
 - e.g. it takes 10 minutes to transfer a car from assembly room to paint rooms and 10 minute to transfer from paint room to tire fixing room.
 - Note that this time will not be consumed in non-pipelined factory as everything will be done in same room

- If Assembly takes 0.5 hour, Paint 2 hours and Tires 0.5 hours
 - Paint of car 2 cannot start before 2.5th hour because Paint unit is busy with car 1.
 - So after Assembly car 2 has to wait for 1.5 hours
- Total time take to complete 3 cars = 7 h
- Speed Up = 9/7

Time	0.5h	2h	2h	2h	0.5h
Car 1	A (0.5h)	P (2h)	T (0.5h)		
Car 2		A (0.5h) + wait for 1.5h	P (2h)	T (0.5h)	
Car 3			A (0.5h) + wait for 1.5h	P (2h)	T (0.5h)

- If we add time for transition between stages as well
- Total time taken to complete 3 cars = 7 h 40 m = 7.67 hr
- Speed Up = 9/7.67

Time	0.5h	in	2h	min	2h	min	2h	min	0.5h
Car 1	A (0.5h)	10 min	P (2h)	10 m	T (0.5h)	10 m		10 m	
Car 2		Transition	A (0.5h) + wait for 1.5h	sition	P (2h)	nsition	T (0.5h)	nsition	
Car 3		Tran		Tran	A (0.5h) + wait for 1.5h	Tran	P (2h)	Trar	T (0.5h)

Cycle Time

- The time required between moving an object one step down the pipeline is a cycle time
- Realistically, all stages proceed at the same time
 - There is only one conveyer belt, and it only moves cars to next step when longest stage is complete, i.e. every two hours

Cycle Time

- In the current example, cycle time will be 2 hours
 - Even the car in T stage will be there for 2 hours and will only come out of pipeline when 2 hours of P (of other car) are completed

Time	2 hr				
Car 1	Α	Р	Т		
Car 2		Α	Р	Т	
Car 3			Α	Р	Т

Ignoring latch (transition) time

Throughput and Latency

- In case of car manufacturing, throughput is number of cars created per unit of time (say, 1 hour)
 - From slide 4, throughput without pipelining is 3 cars in 9 hours, i.e. 0.33 cars/hour
 - From slide 8, throughput with pipelining is 3 cars in 7.67 hours, i.e. 0.4 cars/hour
 - From slide 10, throughput with pipelining is 3 cars in 10 hours, i.e. 0.3 cars/hour
- So, we can see that the throughput with pipelining can be higher.

Throughput and Latency

- Latency is time taken to complete a single car
 - From slide 4, latency without pipelining is 3 hours (time consumed to create each car)
 - From slide 8, latency with pipelining is 4.83 hours (time consumed to create car 2 and 3)
 - From slide 10, latency with pipelining is 6 hours (time consumed to create each car)
- Observation: Pipeline does not improve latency, it can only improve throughput

Throughput and Latency for n=3

Case	Latency (hr)	Throughput	Speed up
Non pipelined	3	3/9=0.33	NA
Pipelined ideal case (1h each stage)	3	3/5=0.6	9/5
Pipeline with non uniform stages' time (0.5h, 2.5h, 1.5h)	4.5	3/7=0.42	9/7
Pipeline with latch time (10m transition)	4.833	3/7.67=0.39	9/7.67
Pipeline with uniform cycle time restriction (2h each stage)	6	3/10=0.3	9/10

Exercise

- Divide your paint job in 4 stages, 1st coat, 2nd coat, 3rd coat and drying, each phase takes 0.5 hours.
- What will be throughput with these 6 stages for 3 cars? Ignore the latch/transition time.

Time	0.5h							
Car 1	Α	P1	P2	Р3	P4	Т		
Car 2		Α	P1	P2	Р3	P4	Т	
Car 3			Α	P1	P2	Р3	P4	Т

Observation: Throughput and speedup of pipeline are best if stages are of more or less equal time duration.

Pipeline in Computer

- In a computer pipeline, each step in the pipeline completes a part of an instruction.
- Like the assembly line, different steps are completing different parts of different instructions in parallel.
- Each of these steps is called a pipe stage or a pipe segment.
- The stages are connected one to the next to form a pipe—instructions enter at one end, progress through the stages, and exit at the other end, just as cars would in an assembly line

Pipeline in Computer: Stages

- The number of stages in which one instruction can be divided is different from processor to processor.
- If we only create two stages Fetch Instruction (FI) and Execute Instruction (EI), EI will take a lot more time than FI.
- To get a better throughput and speedup, pipeline must have more stages.
- The pipeline designer's goal is to balance the length of each pipeline stage

Pipeline in Computer: Stages

- Let us consider the following decomposition of the instruction processing
- **Fetch instruction (FI):** Read the next expected instruction into a buffer.
- **Decode instruction (DI):** Determine the opcode and the operand specifiers.
- Calculate operands (CO): Calculate the effective address of each source operand. This may involve displacement, register indirect, indirect, or other forms of address calculation.
- Fetch operands (FO): Fetch each operand from memory. Operands in registers need not be fetched.
- Execute instruction (EI): Perform the indicated operation and store the result, if any, in the specified destination operand location.
- Write operand (WO): Store the result in memory.

Pipeline in Computer: Stages

- Six-stage pipeline can reduce the execution time for 9 instructions from 54 time units to 14 time units.
- Speedup = 54/14
- Note that all instructions might not require going through all these stages
 - e.g. WO is not required in load operations. FO is not required if operand is register

Figure 14.10 Timing Diagram for Instruction Pipeline Operation

Pipeline in Computer: Cycle Time

- The time required between moving an instruction one step down the pipeline is called cycle time
- Because all stages proceed at the same time, the length of a cycle time is determined by the time required for the slowest pipe stage, just as in an auto assembly line
- The longest step would determine the time between advancing the line
- In a computer, this processor cycle is usually 1 clock cycle
 - One cell in figure 14.10 is 1 clock cycle

Pipeline in Computer: Cycle Time

- For example, if each stage takes 1 μs
 - Clock cyle should be of 1 μs
 - Although this is the ideal case
- If FI takes 5 μs, DI takes 1 μs, CO takes 1 μs, FO takes 10 μs, EI takes 1 μs, and WO also takes 10 μs
 - Clock cyle should be of 10 μs
- In processor with no pipelining, If one instruction takes 10 μs
 - Clock cycle should 10 μs

Performance of Pipeline

Assume

- **Ideal Case:** All stages take equal amount of time T, Latch time = 0
- Stages = k
- Number of instructions in program = n

Without pipeline

- Time to complete one instruction (i.e. all stages) = kT
- Time taken to complete n instructions = nkT
- Throughput for *n* instructions = $\frac{n}{nkT} = \frac{1}{kT}$

• With pipeline

- Time taken to complete n instructions = [k + (n 1)] T
- Throughput for n instructions = $\frac{n}{[k+(n-1)]T}$
- Speedup = $\frac{nkT}{[k+(n-1)]T} = \frac{nk}{k+(n-1)}$

Performance of Ideal Pipeline

As $n \to \infty$, speed up factor $\to k$

Performance of Ideal Pipeline

Performance of Pipeline: Example

- Suppose
 - It takes 6 μs to complete one instruction in non-pipelined processor
 - We were able to convert the circuit into 6 equal sequential pipeline stages.
 - Assume latch time is 0
- Answer the following, assuming that there are no stalls in the pipeline.
 - What are the clock cycles in the two processors?
 - How long does it take to finish one instruction in pipelined and nonpipelined processor (latency)?
 - What is the throughput for 100 instructions without pipelining?
 - What is the throughput for 100 instructions with pipelining?
 - What is the speedup from pipelining for 1 instructions?
 - What is the speedup from pipelining for 100 instructions?

Performance: Non-Ideal Case I

 Where all stages do not take same amount of time and ignoring latch time

• Speedup=
$$\frac{n T_1}{[k + (n-1)] T_2}$$

• where n is number of instructions, k is number of stages, T_1 is time required by one instruction to complete in non pipelined processor and T_2 is max time required by any stage in pipelined processor.

Time	T ₁	T ₁	T ₁
Car 1	A+P+T		
Car 2		A+P+T	
Car 3			A+P+T
••			

Time	T ₂				
Car 1	Α	Р	Т		
Car 2		Α	Р	Т	
Car 3			Α	Р	Т
••					•••

Non pipelined

Pipelined

Non-Ideal case I example

- Suppose
 - It takes 6 μs to complete one instruction in non-pipelined processor
 - We were able to convert the circuit into 6 sequential pipeline stages.
 - Stage 1 and 2 take 2 μs each and stage 3-6 take 0.5 μs each
 - Assume latch time is 0.
- Answer the following, assuming that there are no stalls in the pipeline.
 - What are the clock cycles in the two processors?
 - How long does it take to finish one instruction in pipelined and non pipelined processor (latency)?
 - What is the throughput for 100 instructions without pipelining?
 - What is the throughput for 100 instructions with pipelining?
 - What is the speedup from pipelining for 1 instructions?
 - What is the speedup from pipelining for 100 instructions?

Performance: Non-Ideal Case II

Also including latch time

• Speedup =
$$\frac{n T_1}{[k + (n-1)](T_2 + T_3)}$$

• where n is number of instructions, k is number of stages, T_1 is time required by one instruction to complete without pipeline, and T_2 is max time required of all the stages, T_3 is latch (transition) time

Time	T ₂	T ₃	T ₂	T ₃						
Car 1	Α		Р		Т					
Car 2		Latch	Α	Latch	Р	Latch	Т	Latch		Latch
Car 3		time		time	Α	time	Р	time	T	time
••										

Non-Ideal case II example

- Suppose
 - It takes 6 μs to complete one instruction in non-pipelined processor
 - We were able to convert the circuit into 6 sequential pipeline stages.
 - Stage 1 and 2 take 2 μs each and stage 3-6 take 0.5 μs each
 - Latch time is 2 μs
- Answer the following, assuming that there are no stalls in the pipeline.
 - What are the clock cycles in the two processors?
 - How long does it take to finish one instruction in pipelined and non pipelined processor (latency)?
 - What is the throughput for 100 instructions without pipelining?
 - What is the throughput for 100 instructions with pipelining?
 - What is the speedup from pipelining for 1 instructions?
 - What is the speedup from pipelining for 100 instructions?

Another example

- Suppose
 - It takes 5 μs to complete one instruction in non-pipelined processor
 - We were able to convert the circuit into 5 equal duration sequential pipeline stages.
 - Latch time is 0.2 μs
- Answer the following, assuming that there are no stalls in the pipeline.
 - What are the clock cycles in the two processors?
 - How long does it take to finish one instruction in pipelined and non pipelined processor (latency)?
 - What is the throughput for 100 instructions without pipelining?
 - What is the throughput for 100 instructions with pipelining?
 - What is the speedup from pipelining for 1 instructions?
 - What is the speedup from pipelining for 100 instructions?

Exercise

Question 1

• If processor 1 completes n instructions in 15 μ s and processor 2 completes same n instructions in 10 μ s, what speedup is achieved by processor 2 as compared to processor 1?

Question 2

• If latency with pipelining with 5 stages is 6 μ s and latch time is 0 what is the clock cycle time?