Part 1. Q/FS lattices

- Description of 'spin-orbit motion,' as in:
 - 1. Form of equation (TBMT) \rightarrow
 - 2. Form of solution $(\vec{s}(t) = \vec{s}_{homo}(t) + \vec{s}_{inhomo}(t)) \rightarrow$
 - 3. Form of observable (Ω_{meas}).
 - * Problematic aspects of the observable:
 - mixing of irrelevant components into measured signal $\Rightarrow \Omega_{\text{meas}} \neq \Omega_x$.

Part 2. Problem statement

- Experimental conditions:
 - 1. bounds on component mixing (*);
 - 2. requirements for enabling the CW/CCW Comparison methodology (see Part 3.).
- Devices (reflects 'Experimental conditions'):
 - 1. Minimization solenoid;
 - 2. Calibration solenoid.
- Precision requirements
 - 1. Decoherence.

Part 3. Imperfect ring

Comparison methodology \rightarrow

Reproduction of experimental conditions \rightarrow

Calibration of Ω_x by $\Omega_y \Rightarrow$

- Study imperfections ¹ as relevant for a) Observable, b) Calibration:
 - O1. (Tilt) introduction of MDM precession in the signal plane $\Rightarrow \boxed{\Omega_x \neq \Omega_x^{\text{EDM}};}$
 - C1. (Tilt) Different relationship between Ω_x^{MDM} and Ω_y^{MDM} for the same $(\vec{x}, \Delta \gamma_s)$ point \Rightarrow

$$\boxed{\exists \epsilon > 0 \forall \delta > 0 \ \Delta |\Omega_y^{\text{MDM}}| < \delta \wedge \Delta |\Omega_x^{\text{MDM}}| > \epsilon;}$$

- * Study how much the relationship between Ω_y^{MDM} and Ω_x^{MDM} changes from CW to CCW under a given σ [tilt]. Quantify $\epsilon(\sigma[\text{tilt}])$.
- C2. (Injection) variation of the injection point $\Rightarrow \vec{\Omega} := f(\vec{x}, \Delta \gamma_s); \sigma[(\vec{x}, \Delta \gamma_s)] \implies \sigma[\vec{\Omega}].$
 - * Study whether variation in the injection point changes the angle between Ω_x^{MDM} and Ω_y^{MDM} . ⁴

Research questions

- 1. Magnet tilts affect our ability to calibrate Ω_x^{MDM} by observing Ω_y^{MDM} . Quantify calibration accuracy (the difference in Ω_x^{MDM} when $\Delta\Omega_y^{\text{MDM}}$ is strictly 0) as a function of $\sigma[\text{tilt}]$. (Bonus: quantify precision.)
- 2. Do the same, but as a function of $\sigma[(\vec{x}, \Delta \gamma_s)]$. (Bonus: modify COSYInf to make TSP produce an appropriate (phasespace-dependent) DA-vector.)

 $^{^{1}}$ List of categories of imperfections!

²We deal with that by the intriduction of the CW/CCW procedure, i.e. by change of estimator to $\hat{\Omega}^{\text{EDM}} = \kappa \cdot (\hat{\Omega}^{CW}_{meas} + \hat{\Omega}^{CCW}_{meas})$.

³Unless the deviation of an injection point changes the angle between Ω_y^{MDM} and Ω_x^{MDM} , this is irrelevant, is covered by calibration; if it does, then it affects our ability to calibrate the CW-to-CCW transition, and thus the problem is reduced to that of C1.

⁴In COSYInf, that would be given by n-bar from TSP; however, TSP yields the spin-tune and spin-invariant axis' dependence on parameters only, we need that on phase space variables. Figure out how to do that?