CS Accelerated qMT Mapping

I. Scanning Protocol

- 1) Turn on Console
 - username: sdwpassword: adw2.0
- 2) Write a file for qMT sequence to read offset points
 - · This must be done connected to the SFC network.
 - To set up an offset table:
 - 1. Plug computer into ethernet in console room.
 - 2. Terminal: ssh -xy sdc@139.48.44.90
 - · password: adw2.0
 - 3. cd /usr/g/research/UofC/mmacdon
 - 4. Find the custom file and edit it:
 - vi filename.txt (or gedit filename.txt)
 - x to delete stuff
 - i to insert
 - · esc to exit insert mode
 - :wq to save and exit
 - :q to close without saving
 - dd to delete line
 - 5. make a copy of the file to use later
 - · cp oldfile newfile
 - The file you want the scanner to read should just be saved as mem_qMT_parameters_custom.txt
- 3) Consent + Screen Participant
 - Use ethics qMRI of MS. Forms can be found in Sinology share folder.
 - Protocol: QMRIMS xxx
- 4) Scan Participant
 - 1. Console login:
 - sdc, adw2.0
 - · Takes about 10 minutes.
 - 2. Create a new session and load protocol:
 - Last name: MM (initials)
 - Patient ID: QMRIMS_xxx
 - Weight:
 - Exam Description: QMRIMS??
 - Select protocol: Show all protocols Other Pike Labs-MAM-qMT-2018_03_28, accept
 - Start Exam
 - First Level First Level SAR No Accept
 - 3. Loc scan: 0:32 (1)
 - · Save and scan

4. Calibration scan: 0:05 (2)

- Place the box
- Save and scan

5. T1-weighted Anatomical 4:31 (3)

- Click NOVA 32ch coil and unclick HNS
- · Center the brain, make sure nose is in.
 - NOT going to plan other scans off this one.
- · Save and scan

6. multi_tr_b1-Mapping scan: 7:50 (4)

- · Place the box very carefully. Try to get all of nose.
- Save and scan

7. AX ME SPGRE MPRI scan: 0:37 (5)

- Double click
- Copy prescription from scan #4 (if not linked to 4 already)
 - Use Graphic RX toolbar
 - Rx to Rx symbol
 - Choose multi_tr scan
 - Keep checked: Match Field of View, Phase FOV, and Slice thickness.
 - Accept
- Save (may take a couple seconds), and scan
 - qMT scan may change time when you do this
 - This is the one that can cause PNS!

8. **DESPOT 1 scan: 1:25 (6)**

- Single click
- Should be linked to scan 4, copy if not
- Scan
- Make sure this one isn't all noise (Subj 09 failed)

9. IR SSFSE: 0:04 (7-20)

- Copy slice prescription from scan 6
 - Use Graphic RX toolbar
 - Rx to Rx
 - 3D dropdown menu
 - Choose DESPOT1 scan
 - Check scan coverage
 - Accept
- · Change the #slices back to 1
- Save and scan
- For scans 8-20:
 - Scan dropdown
 - Manual prescan
 - Done
- Scan

10. qMT scan: 28:14 (21-32)

- · Should be linked to other scans
- Details tab:
 - Freq + Phase = 128
 - Phase FOV = 0.75
 - TE = Minimum (29.7)
- · Save and scan
- For scans 22-32:
 - Scan dropdown
 - Manual prescan
 - Done
- Scan
- Run again to get pulse timing graph (if needed)

11. End the exam.

- Top left
- · "End", "End Exam"

12. Push the data.

- Image icon, top left
- Select scan in top box push ALL series
- Select node in bottom row. Push to node corresponding to exam description. Clicking the button pushes it automatically.
- QUANT MR MS
- To check data immediately:
 - Push to **QCWorkstation** node
 - View images on computer in room MR115

13. Fill out log book and QC form

- 14. System Restart end of the day
 - Tool icon System Restart
 - · Takes about 10 mins

15. Fax copy of signed consent and screening to Fran

- **(403) 944-3622** (include research request number)
- · Add participant to database (mricalgary) or let Kristen know so she can do it

5) Get K Space Data

- 1. Plug into SFC network.
 - Use ethernet cable with thunderbolt dongle in console room.
- 2. Find the pfile you're looking for (on Terminal).
 - ssh sdc@139.48.44.90
 - yes
 - pwd: adw2.0
 - cdraw
 - bwd
 - /usr/g/mrraw
 - Is -Irt P*

- Find the file (based on date, time, and size).
- Copy the name "P____.7"
- exit
- 3. Get the file.
 - sftp sdc@139.48.44.90
 - pwd: MR114@3t
 - cd /usr/g/mrraw
 - get P117____.7
 - wait for it to finish
 - bye
- 6) Get DICOM Data
 - Push to node indicated by protocol (QMRIMS)
 - Check in AcademicFS/PikeLab/INCOMING
 - Takes about a day
 - · Open and save data in HOROS so that it is in order for parameter map code
 - Save to CSProject/SourceData/yyyy_mm_dd_qMRIms_xxx

II. Data Processing

- 1) Prepare Data
 - · On Laptop:
 - · Log into academic FS
 - Username (mamclean)
 - Password (6*******_Uc)
 - Open Osirix and import images from the server
 - Copy links
 - Export images to AcademicFS/PikeLab/Melany/CSData/SubjectID
 - Get all the AX ME SPGRE and B1 files
 - Get P-file from computer and put it in AcademicFS/PikeLab/Melany/CSData/ SubjectID
 - On Linux:
 - Make a folder for data 1.9TB/Documents/CSProject/sourceData/SubjectID
 - Make sub-folder SPMData and DICOMS
 - Log on to AcademicFS:
 - · "Connect to Server"
 - mamclean
 - UC
 - 691266501Mel**
 - Put P-file into SubjectID folder
 - Put folders in study of the server into DICOM folder
 - There may be images that do not get copied over. Check the #items in the folder matches the highest image #.
- 2) Set up Undersampling Schemes
 - Documents/CSProject/Undersample.m

- Make sampling schemes for each <u>matrix size</u> and undersampling <u>rate</u>. You may also want to create multiple <u>versions</u> for each rate:
 - 1. Enter rate and version.
 - 2. Direct output to matrix size folder.
 - 3. Run.
- Saves the undersampling mask in CSPreparedData/Masks/MatrixSize as "CSimputData_R_Vn_P1", "mask1"
- Matrices for data pipeline found in CSProject/Subsample_Patterns/MatrixSize.
- Text files for prospective sampling in CSProject/Subsample Lookup Tables.
- 3) Create Subject Field Maps
 - Documents/CSProject/ethanCode/qMT_Protocol_Analysis.m
 - In the first section, you can adjust the display settings.
 - · To create maps:
 - 1. Specify directory of DICOM data in 1.9TBVolume/Documents/CSProject/sourceData. Specify subdirectories.
 - 2. Add subjectID for output file name.
 - 3. Run. It will crash when T2* is called. (If there is an error, try restarting Matlab.)
 - 4. Check the mask and adjust thresholds if needed (lines 104-108)
- 4) Reconstruct P-files + Prepare Full K Space
 - Documents/CSProject/Orchestra/Examples/RunCartesian.m
 - This will convert p-files into a k-space matrix.
 - Will take ~20 minutes.
 - To prepare k-space:
 - 1. Make sure you are in the directory with the p-files. Desktop/Storage/Documents/CSProject/SourceData/SubjectID.
 - 2. Indicate the output filename. "SubjectID_Kspace" in Documents/CSProject/ CSPreparedData/Data/
 - 3. Double check the location of the reference volume (i.e. 1 or 11)
 - 4. Indicate how many processing "chunks" you need.
 - Splits recon into multiple sets (chunks) of z-spectrum points. You could do each flip angle set separately or split them to save memory.
 - Set to 1 for CS project.
 - 5. Run.
 - Saves the full K-space to "CSProject/CSPreparedData/SubjectID_Kspace" as data1 and refVol
 - You may run out of memory when running this code. More can be available by turning swap memory on.
 - 1. In terminal: sudo gparted
 - 2. In GParted:
 - Devices
 - /dev/sdb
 - **Sdb2** (restart computer if this is not available)
 - Right click, 'swap on'
 - Note: Make sure swap is on for 3D matricies!
- 5) Retrospective K Space Reconstruction

- Documents/CSProject/Archive/ReconQMT.m
- This will reconstruct k-space matrices with various sampling masks. Marc Lebel's code.
- Time depends on rate; R = 16 takes ~20m, R = 0 takes ~18h
- To reconstruct k-space:
 - 1. Make SubjectID folder in Storage/Documents/CSProject/outputData with MTunscaled folder inside.
 - 2. Enter subject ID, rate, and version.
 - 3. Run.
- Note: Make sure that a filter of the correct size and roll off is in the CSPreparedData/ HammingFilters folder if you want to do hamming filter. Filter called on line 72. For a new matrix size:
 - 1. CSProject/HammingFilter.m
 - 2. Enter matrix size. For 2-d use Z = 40 and save the middle slice after.
 - 3. Enter edge size, usually 15.
- Reconstructed k-space gets taken from CSPreparedData/Data, reconstructed, and placed in CSProject/outputData folder.
- You may run out of memory when running this code. Make sure you watch the system monitor while it is running.
- 6) Z-Spectrum Quick Check (Optional)
 - Load previous results OutputData/zSpectResults/zSpectResults.mat
 - Make WM/GM masks
 - maskcon = zeros(256);
 - mackcon(a:b,c:d) = 1; Choose any WM rectangle
 - maskwat = zeros(256);
 - Load the fully sampled 'MTdata' you want to use (post-normalized)
 - Run CSProject/zspect.m
 - Save new responses
 - WM0x = conditionerResponse;
 - stdWM0x = stdConditionerResponse;
 - save('file','var1','var2','-append')
 - Run lines from plotz.m
- 7) Motion Correction and GM WM Segmentation
 - Avery's SPM instructions are saved and documented in a Matlab script:
 - Documents/CSProject/gMTCoregistration.m
 - Change path names to correct locations.
 - Run 1st section.
 - Takes about 5 minutes
 - Crashes at some point (Undefined im_anat)
 - Should put **struct.nii** and others into SPM folder
 - · Follow instructions in 2nd section.
 - Run following sections (3, 4, 5, remember to change paths!)
 - View the maps in ITK-SNAP.
 - CSProject/itksnap-3.../bin
 - · You can add new images and decide where you want to threshold the maps.
 - Threshold using Contrast Inspector min 0.9 max 1 (90% or higher is included)
 - · Go to the maps and remove skull from the mask or change size if you need to
 - · Threshold mask:

- Mask(find(Mask<=0.99))=0;
- Mask(find(Mask>=0.99))=1;
- To strip the skull off the mask:
 - 1. Make sure there's no skull attached to main blob.
 - figure, imshow (Mask2)
 - Use cursor to find attached voxels (corners count).
 - Mask2 (y , x) = 0
 - ..
 - 2. Label "blobs"
 - [Mask2, #blobs] = bwlabel (Mask)
 - 3. Set Mask to the correct blob
 - MaskNew = ismember (Mask2 , 2)
 - second blob
 - Mask = MaskNew
- · Helpful mask adjustments you may need:
 - Resize maps:
 - Map = resizem (Map, x), where x is the scaling factor (usually 0.5).
 - Rotate maps:
 - Map = rot90 (Map , n) , where n is the number of 90 degree rotations.
 - · Remove zeros:
 - Map (find (Map == 0)) = 1, or use this to replace any number with another.
 - Remove NaN or INF:
 - Map (isfinite (Map)) = 0, or use isnan to find NaN values.
- 8) Get Pulse Timing Variables
 - Do this IF the scan parameters have changed from past settings
 - Get info from pulse timing diagram collected during scan
- 9) qMT Mapping
 - Documents/CSProject/qMTLab-master/qMTLab.m
 - Map CS reconstructed data and zero-filled data found in CSProject/outputData/SubjectID
 - Enter the protocol and click "Build SF Table" or load a saved protocol
 - · For CS data:
 - Use MTdata rate Vn
 - Study ID: SubjectID_rate_Vn
 - For ZF data:
 - Use MTdataZF_rate_Vn
 - Study ID: SubjectID_ZF_rate_Vn

10) Expected Values

• F wm - 0.13	F gm - 0.07	
• Kf wm - 4.12	Kf gm - 2.5	(1/s)
• T2f wm - 30	T2f gm - 50	(ms)
 B0 map - minus 30 to 70 		(Hz)
• B1 map high - 1.1	B1 map low - 0.9	(ratio)
• T1 map wm - 904	T1 map gm - 1059 to 1331	(ms)
• R1 Map wm - 1.1	R1 map gm - 0.9 to 0.75	(1/s)

More literature values can be found on laptop in qMTLabStartParameters - Sheet 2

III. Statistical Analysis

- 1) Figures
 - Documents/CSProject/outputData/Accel gMT Figures.m
 - Make single subject, side by side gMT parameter maps
 - Load F, kf, R1f, T2f, and T2r from the **FitResults** folder of the subject you want (R=0)
 - Input crop size params
 - Run section for Figure #1
 - Make single subject accelerated and difference F maps
 - Load the F map for each rate and save as F0, F4, F8, ...
 - Run section for Figure #2
- 2) Accelerated Z-spectra
 - This will generate images like the ones in the 2017 ISMRM presentation
 - · Go to folder with SPM data:
 - CSProject/outputData/subjectID/SPMdata
 - WM = load_nii('rc2structural.nii')
 - GM = load_nii('rc1structural.nii')
 - WMroi = WM.img;
 - WMroi (find(WM<=0.99)) = 0;
 - WMroi (find(WM>=0.99)) = 1;
 - maskcon = rot90(WMroi(:,:,30));
 - maskcon = flipIr(maskcon);
 - · It's a good idea to save the masks first!
 - Navigate to outputData/SubjectID/Slice 30
 - Load the MTdata R Vn of the rate you want to work on
 - Run Ethan's script (zspect.m) with the ROI lines commented out (15-21)
 - Save the outputs:
 - Make a storage folder outputData/subjectID/z-spectra 0.99Masks
 - Save: WMx = conditionerResponse, GMx = waterResponse, stdWMx = stdConditionerResponse, stdGMx = stdWaterResponse
 - Stored in: WMResponses[WM0,WM2,...], GMResponses[GM0,GM2,...], Masks[maskcon,maskwat], WMSDev[stdWM0,stdWM2...], offsets, ...
 - Repeat for next rate/ version
 - How to get z-spectra images like the ones in the **ISMRM abstract**:
 - 1. Place ROI in WM and GM
 - Run Ethan's script
 - SCProject/zspect.m
 - Place first cursor to choose ROI in WM. Right click, create mask.
 - Place second cursor to choose ROI in GM. Right click, create mask.
 - Override other ROI's using:
 - maskcon = roipoly; Place in WM
 - maskwat = roipoly; Place in GM

- 2. Save WM and GM responses (for rate x)
 - GMx = waterResponse; WMx = conditionerResponse;
 - stdGMx = stdWaterResponse; stdWMx = stdConditionerResponse;
 - · Repeat for each rate, using original ROI's
 - Comment out roipoly lines
- 3. Run graphing script
 - · CSProject/Z-spectra/Plotz2.m
- 4. Calculate goodness of fit measures (for rate x)
 - NMSEgmx = sum ((GMx GM0).^2) / sum (GM0 .^2)
 - NMSEwmx = sum ((WMx WM0) .^2) / sum (WM0 .^2)
- 3) NMSE Bar Graph
 - Documents/CSProject/outputData/Accel_qMT_NMSEtable.m
- 4) Bland-Altman Plots
 - · Documents/CSProject/outputData/ThesisFiguresData/BAplots2.m
 - Follow instructions in script
 - Save workspace as "BAdataSubject__"
 - Documents/CSProject/outputData/ThesisFiguresData/BAplotsAllSubjects
 - Enter all subjects you want included
 - Enter Rate
 - · Repeat for all rates