

Term End Examination - May 2013

Course : MAT101 - Multivariable Calculus and Differential Slot: F1+TF1

Equations

Class NBR : 2636

Time : Three Hours Max.Marks:100

PART - A (10 X 3 = 30 Marks) Answer <u>ALL</u> Questions

1. If
$$u = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$$
, then find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$

2. If
$$u = 2x - 3y$$
, $v = 5x + 4y$, then find $\frac{\partial(u, v)}{\partial(x, y)}$.

3. Transform the following integral in to polar coordinates and hence evaluate.

$$\int_{0}^{a\sqrt{a^{2}-x^{2}}} \sqrt{x^{2}+y^{2}} dy dx$$

4. Evaluate.

$$\int_{0}^{\infty} e^{-x^2} dx$$

- 5. Find the directional derivative of f = xyz at (1,1,1) in the direction of the vector $\vec{i} + \vec{j} + \vec{k}$.
- 6. Find $div \, curl \vec{F}$ where $\vec{F} = x^2 y \vec{i} + xz \vec{j} + 2yz \vec{k}$.

7. Solve
$$\frac{d^2y}{dx^2} + 4y = 0$$
.

- 8. Reduce the equation $x^2 \frac{d^2y}{dx^2} 2x \frac{dy}{dx} + 4y = x^2 + 2logx$ into a linear differential equation.
- 9. Find the Laplace transform of $e^{-3t}sin^2t$.

10. Find
$$f(0)$$
 and $f(\infty)$ if $F(s) = \frac{1}{s(s+1)(s+2)}$.

PART - B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

- 11. a) Expand $e^x \log(1+y)$ at (0,0) as the Taylor's series up to second degree. [7]
 - b) The temperature T at any point (x, y, z) in space is $T = 400xyz^2$. Find the highest temperature on the surface of unit sphere $x^2 + y^2 + z^2 = 1$.
- 12. a) Change the order of integration in $\int_{0}^{a} \int_{x}^{a} (x^2 + y^2) dy dx$ and hence evaluate it. [7]
 - b) Evaluate $\iiint xyz \, dx \, dy \, dz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$ by transforming in to spherical coordinates. [7]
- 13. a) Verify Green's theorem in the xy-plane for $\int_C \{(3x^2 8y^2)dx + (4y 6xy)dy\}$, where [7] C is the boundary of the region given by x = 0, y = 0, x + y = 1.
 - b) Show that $\bar{F} = (y^2 + 2xz^2)\bar{\iota} + (2xy z)\bar{\jmath} + (2x^2z y + 2z)\bar{k}$ is irrotational and hence find its scalar potential. [7]
- 14. a) Solve $\frac{d^2y}{dx^2} + y = \cos ec x$ by using the method of variation of parameters. [7]
 - b) Solve the differential equation $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} + 4y = 2x^2$. [7]
- 15. a) Find the Laplace transform of the function

$$f(t) = \begin{cases} \sin \omega t, & \text{for } 0 < t < \frac{\pi}{\omega} \\ 0, & \text{for } \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases} \text{ with } f(t + \frac{2\pi}{\omega}) = f(t).$$

- b) Using Convolution theorem find $L^{-1} \left[\frac{s}{(s^2 + a^2)^2} \right]$. [7]
- 16. a) Evaluate $\iint_{S} \vec{F} \cdot \vec{n} ds$ where $\vec{F} = 4x\vec{i} 2y^{2}\vec{j} + z^{2}\vec{k}$ taken over the region bounded by $x^{2} + y^{2} = 4$, z = 0 and z = 3.
 - b) Solve: $(D^3 D)y = 2x$ by the method of undetermined coefficients. [7]
- 17. a) Use the Laplace transform to solve the differential equation $y''(t) + 4y'(t) + 3y(t) = e^{-t} \text{ given } y(0) = 1 \text{ and } y'(0) = 1.$
 - b) Find the area of the asteroid $x^{2/3} + y^{2/3} = a^{2/3}$, using Gamma function. [7]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$

[7]