Tuesday, March 31, 2020 1:41 AM

The Lecture begins formally at 9:00 until then we chat on course topics, and assessments. N, D, Xc, Yc & Hoo $P = \frac{\lambda}{\lambda}$ $C = \frac{\lambda}{\lambda}$ ((C,P) is stable) P -2 C

DY+ NX= U EH WEHO Char. function

 $C = \frac{X + DQ}{Y - NQ}$ D(4u1)+N(&u1)=1 NX+DY=1

(5 HW 7pts each) Grading Scheme: { Homework: 35 Midterm: 35 Final Exam: 30 For 544 and 440:

pts each 2 HWs (1) and (2) 3rd Hw is still on - 10pts

-> 10 pts 4th -> 10 pt 544

Last week: Robustness optimization and Sensitivity Minimization

Nopt = inf || T1 - T2 Qc || 00 = inf || W - MQ || 00

Q = Tzo Qc model Matching problem:

Popt = inf 11W-MQII00

WEHOO

|M(jω)|= | Vω Metho, inner

Find Yapt, - Qort & Has

F=W-MQ;

M(s)= TT (s-ai) { Fe Hoo F(ai) = W(ai) = i Bi II FIloo should be minimized

Nevanlinna-Pick intepolation
Solution is given last week. 3 HW#3 new due date

 $|F(j\omega)| = |M(j\omega)|F(j\omega)|$ FE Hos

```
F \in \mathcal{H}_{\infty} |F(j\omega)| = |M(j\omega)| F(j\omega)| \forall \omega
                                       ₩ Wortation: M(ju) = M*
   |M(j\omega)| = 1 = |\overline{M(j\omega)}|
     | M*(W-MQ) | = | M*W-Q| because M*M=1
                                             M(j\omega) = \frac{j\omega - 1}{j\omega + 1} \qquad \overline{M(j\omega)} = \frac{-j\omega - 1}{-j\omega + 1}
Example M(s) = \frac{S-1}{s+1}
  M*M=1 4w
    17501 = | M(ju) W(ju) - Q(ju)
 ||F||_{\mathcal{H}_{\infty}} = ||F||_{\mathcal{L}_{\infty}} 
||F||_{\mathcal{H}_{\infty}} = ||F||_{\mathcal{H}_{\infty}} 
||F||_{\mathcal{H}_{\infty}} = ||F||_{\mathcal{H}_{\infty}} 
||F||_{\mathcal{H}_{\infty}} = ||F||_{\mathcal{H}_{\infty}} 
 11Fly = 11 M*W-alle a function in 200 (i.e. poles in RHP and UP)
  M^*W \in \mathcal{L}_{\infty} \longrightarrow \left(\frac{1}{M_{\Omega}}W_{\Omega}\right) s = j\omega
 \frac{W(s)}{M(s)} = R(s) \sim no poles on 2m-axis and some poles in LHP and some poles in LHP
(Section 2.4.2 (The Nehari problem) of OGKY2018 book
See moodle
                                                           example M(s) = \frac{s-1}{s+1}
  V_{opt} = \inf_{Q \in \mathcal{H}_{oo}} |R - Q|_{oo}
V(s) = \frac{1}{s+2}
                                                  Off JW to enleg = poles of WETTO
```

```
LHP DAKE poles = poles of WETHS

(UM To cons = colog DAKS 9HS)
 \frac{M(r)}{M(r)} = \mathcal{L}(r) = \frac{(z+5)(z-1)}{z+1}
Therefore (R(s) = Rs + Ru)
                                   Rs & Hoo Ru(-s) & Xoo
                                  are in RHP (zeros of MGI)
Ru: anti-stable all its poles
                                    R(s) = \frac{W(s)}{M(s)} = R_s + R_u
Guen W, M - Zs define
Rs & Hoo Ru(-s) & Hoo
                                         Matlab command: >> Stabep
                                        Q-R_s=Q_1
 \|R-Q\|_{\infty} = \|R_u + R_s - Q\|_{\infty}
 Popt = inf || Ru - Qillos )_, The Nehari Problem
                                         (pp. 18-20 of the book)
 Solution of the Nehari Problem
 Summary (Theorem 2.13):
   Ru(s) = all its poles are in RHA
  R_{u}(s) = C(sT-A)B \begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} R_{u}(s)
 assumption: (A,B) anthollable (C,A) observable
   [B; AB: ... And B] has rank a
                                            · controllability
    CA has rank n
                                 : observability
```

CA has rank n : observability If Ru(s) is given as a transfer function You can use "tf2ss" in Matlab to get A,B,C. Step 1: Silve the Lyapunov egn: AWe + We AT = BBT AT Wo + Wo A = CTC find Wo and We: nxn matrices $\gamma_{\rm opt} = \sqrt{\lambda_{\rm max}(W_{\rm c}W_{\rm o})}$ $\sigma_{\rm max}^2 = \gamma_{\rm opt}^2$ My is the corresponding eigenvector Omer x may = We Wo 2 max $\frac{Q_{\text{opt}} = R(s) - \gamma_{\text{opt}} \frac{C(sI - A)^{T} \times max}{B^{T}(sI + A^{T})^{-1} y_{\text{max}}}$ Where Jmax = Yopt Wo 2 max -> find Fopt from Here. In the handout there is an example (2.14) and there is an exercise.

and there is an exercise.

Sensitivity Minimization and
Robustness Optimization are solved by
Nevarlinna-Pick or Nehan approach
1-block Hoo problems (model Matching Problem)
Next: Mixed Sensitivity minimization

 $\mathcal{S}_{opt} = \inf_{\substack{C \text{ stability} \\ (C,P)}} \| \begin{bmatrix} W_1 S \\ W_2 T \end{bmatrix} \|_{60}$

Lis first transform this problem to a 1-blok problem (by wing Spectral factorization)

(C, Pa) stable "allmogh"

"allmosh" -> stable

Hitay cell phone:

533 383 3931