# Lecture 14

# State-Space Models

Readings: Shumway & Stoffer Ch 6.1-6.3; Brockwell & Davis Ch 8.1-8.5

MATH 8090 Time Series Analysis November 16 & 18 & 23, 2021 State-Space Models

CLEMS IN YERSITY

Background

orecasting, Filtering,

State-Space Mod
Parameters

Whitney Huang Clemson University



Background

Forecasting, Filtering

Estimating the
State-Space Model
Parameters

Background

Porecasting, Filtering, and Smoothing

Estimating the State-Space Model Parameters

# **Historical Background**

- The original model arose in the space tracking setting [Kalman, 1960]; [Kalman and Bucy, 1961]
- ullet The "state equation" defines the motion equations for the position of a spacecraft with location  $x_t$



ullet The data  $y_t$  reflect information that can be observed from a tracking device such as velocity and azimuth

The main goal was to retrieve the underling state  $\{x_t\}$  based on observed data  $\{y_t\}$ 



#### Background

forecasting, Filtering, and Smoothing

State-Space Model Parameters



# State equation:

$$\boldsymbol{X}_{t+1} = F_t \boldsymbol{X}_t + \boldsymbol{V}_t, \quad t = 1, 2, \cdots,$$

#### where

- $X_t \in \mathbb{R}^p$  is the state vector at time t
- $F_t$  is the  $p \times p$  transition matrix
- $V_t \overset{i.i.d.}{\sim} \mathrm{WN}(\mathbf{0},Q_t)$  is the state-transition noise
- Observation equation:

$$\boldsymbol{Y}_t = H_t \boldsymbol{X}_t + \boldsymbol{W}_t, \quad t = 1, 2, \cdots,$$

#### where

- $Y_t \in \mathbb{R}^q$  is the observation vector at time t
- $H_t$  is the  $q \times p$  observation matrix
- $W_t \overset{i.i.d.}{\sim} \mathrm{WN}(\mathbf{0}, R_t)$  is the observation noise

#### Background

Forecasting, Filtering,

State-Space Model
Parameters

# **Applications of State-Space Models**

#### Background

Forecasting, Filtering, and Smoothing

Estimating the State-Space Mode Parameters

- Through two seemingly simple equations, state-space models define a rich class of processes that have served well as models for time series
- The so-called Kalman recursions for state-space models offer an elegant solution not only for forecasting time series, but also for filtering and smoothing
- State-space models and Kalman recursions can be readily adapted to handle time series with missing values

# **Additional Assumptions of State-Space Models**

# State-Space Models CLEMS NUMBER NUM

## State equation:

$$\boldsymbol{X}_{t+1} = F_t \boldsymbol{X}_t + \boldsymbol{V}_t, \quad t = 1, 2, \cdots$$

Observation equation:

$$Y_t = H_t X_t + W_t, \quad t = 1, 2, \cdots$$

•  $E(W_sV_t^T)$  = 0 for all s and t, that is, every observation noise is uncorrelated with every state-transition noise

• Assuming  $E(X_1) = m_1$ ,  $E(X_1W_t^T) = 0$  and  $E(X_1V_t^T) = 0$  for all t, that is, initial state vector are uncorrelated with both observation and state transition noises

#### Enroporting Filtering

and Smoothing

State-Space Mode Parameters

$$\boldsymbol{X}_{t+1} = F_t \boldsymbol{X}_t + \boldsymbol{V}_t$$

is reminiscent of a causal AR(1) model:

$$Y_{t+1} = \phi Y_t + Z_{t+1},$$

with 
$$\{Z_t\} \sim WN(0, \sigma^2)$$
 and  $|\phi| < 1$ 

- AR(1) can be expressed in state-space formulation by setting
  - $X_{t+1} = Y_{t+1}$ ;  $F_t = \phi$
  - $V_t = Z_{t+1}$  along with  $Q_t \stackrel{\text{def}}{=} \mathrm{E}(V_t V_t^T) = \mathrm{E}(Z_{t+1}^2) = \sigma^2$

and by using a degenerate form of the observation equation:  $Y_t = H_t X_t + W_t$  in which  $H_t = 1$  and  $W_t = 0$  so that  $Y_t = X_t$ 



#### Edonground Em

and Smoothing

State-Space Mode Parameters Need to define the initial state  $X_1$  in order to complete the model:

A natural choice is

$$X_1 = \sum_{j=0}^{\infty} \phi^j Z_{1-j}$$
, for which  $\operatorname{Var}(X_1) = \frac{\sigma^2}{1 - \phi^2}$ 

- With this choice, the required conditions, namely,  $\mathrm{E}(X_1 \boldsymbol{W}_t^T) = 0$  and  $\mathrm{E}(X_1 \boldsymbol{V}_t^T) = 0$  hold
- Could also set  $X_1=Z_1\frac{\sigma}{\sqrt{1-\phi^2}}$  to get a AR(1) process, but using  $X_1=Z_1$  would lead to a valid state-space model that is **not** a true AR(1) model

Estimating the State-Space Model

AR(1) process with  $0 < \phi < 1$  is known as "red noise", red noise is related to a 1st order stochastic differential equation, rendering it a model for various geophysical processes:

- Typically only observe red noise process of interest in presence of observational noise (often taken to be white noise)
- Can modify this setup by changing observational noise from  $W_t = 0$  to  $W_t = W_t \sim WN(0, \sigma^2)$ , where  $W_t$  is uncorrelated with  $Z_t$ 's
- The observation and state-transition equations become

$$Y_{t} = X_{t} + W_{t} \text{ and } X_{t+1} = \phi X_{t} + Z_{t+1}$$

Recall ARMA(1,1) process  $Y_t - \phi Y_{t-1} = Z_t + \theta Z_{t-1}$ 

- Expressing ARMA(1,1) as  $\phi(B)Y_t = \theta(B)Z_t$ , note that one can create  $Y_t$  by taking causal AR(1) process  $X_t = \phi^{-1}(B)Z_t$  and subjecting it to a  $\theta(B)$  filter to obtain output  $Y_t = \theta(B)X_t = \theta(B)\phi^{-1}(B)Z_t$
- Can express filtering of AR(1) process by

$$Y_t = \begin{bmatrix} 1 & \theta \end{bmatrix} \begin{bmatrix} X_t \\ X_{t-1} \end{bmatrix},$$

which matches up with observation equation

$$\boldsymbol{Y}_t = H_t \boldsymbol{X}_t + \boldsymbol{W}_t$$

if 
$$Y_t = Y_t$$
,  $H_t = \begin{bmatrix} 1 & \theta \end{bmatrix}$ ,  $X_t = \begin{bmatrix} X_t \\ X_{t-1} \end{bmatrix}$  and  $W_t = 0$ 



#### Background

Forecasting, Filtering, and Smoothing
Estimating the State-Space Model

• Given  $X_t = \begin{bmatrix} X_t & X_{t-1} \end{bmatrix}^T$ , can express  $X_{t+1} = \phi X_t + Z_{t+1}$  in the 1st row of matrix equation

$$\begin{bmatrix} X_{t+1} \\ X_t \end{bmatrix} = \begin{bmatrix} \phi & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} X_t \\ X_{t-1} \end{bmatrix} + \begin{bmatrix} Z_{t+1} \\ 0 \end{bmatrix},$$

which matches up with state-transition equation

$$\boldsymbol{X}_{t+1} = F_t \boldsymbol{X}_t + \boldsymbol{V}_t$$
 if  $F_t = \begin{bmatrix} \phi & 0 \\ 1 & 0 \end{bmatrix}$  and  $\boldsymbol{V}_t = \begin{bmatrix} Z_{t+1} \\ 0 \end{bmatrix}$  with 
$$Q_t \stackrel{\text{def}}{=} \mathrm{E}(\boldsymbol{V}_t \boldsymbol{V}_t^T) = \begin{bmatrix} \sigma^2 & 0 \\ 0 & 0 \end{bmatrix}$$

to complete the model, let

$$\boldsymbol{X}_1 = \begin{bmatrix} X_1 \\ X_0 \end{bmatrix} = \begin{bmatrix} \sum_{j=0}^{\infty} \phi^j Z_{1-j} \\ \sum_{j=0}^{\infty} \phi^j Z_{-j} \end{bmatrix},$$

noting that  $\boldsymbol{X}_1$  and  $\boldsymbol{V}_t$  for  $t \geq 1$  are uncorrelated, as required

## Background

Forecasting, Filtering, and Smoothing

Estimating the State-Space Model Parameters

Since

$$E(\boldsymbol{X}_1 \boldsymbol{X}_1^T) = \begin{bmatrix} \gamma(0) & \gamma(1) \\ \gamma(1) & \gamma(0) \end{bmatrix} = \frac{\sigma^2}{1 - \phi^2} \begin{bmatrix} 1 & \phi \\ \phi & 1 \end{bmatrix},$$

can alternatively stipulate

$$\boldsymbol{X}_1 = \begin{bmatrix} 1 & \frac{\phi}{\sqrt{1-\phi^2}} \\ 0 & \frac{\phi}{\sqrt{1-\phi^2}} \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_0 \end{bmatrix},$$

yielding

$$E(\boldsymbol{X}_{1}\boldsymbol{X}_{1}^{T}) = \begin{bmatrix} 1 & \frac{\phi}{\sqrt{1-\phi^{2}}} \\ 0 & \frac{\phi}{\sqrt{1-\phi^{2}}} \end{bmatrix} \begin{bmatrix} \sigma^{2} & 0 \\ 0 & \sigma^{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\phi} & 0 \\ \frac{1}{\sqrt{1-\phi^{2}}} & \frac{1}{\sqrt{1-\phi^{2}}} \end{bmatrix}$$
$$= \frac{\sigma^{2}}{1-\phi^{2}} \begin{bmatrix} 1 & \phi \\ \phi & 1 \end{bmatrix}$$

as required

#### State-Space Models



#### Background

Forecasting, Filtering, and Smoothing

State-Space Mod Parameters

#### Background

Forecasting, Filtering,

State-Space Model Parameters

# State equation:

$$\boldsymbol{X}_{t+1} = F_t \boldsymbol{X}_t + \boldsymbol{V}_t,$$

where  $V_t \overset{iid}{\sim} \mathrm{N}(0,Q_t)$  with  $X_1 \sim \mathrm{N}(\boldsymbol{m}_1,P_1)$ 

# Observation equation:

$$\boldsymbol{Y}_t = H_t \boldsymbol{X}_t + \boldsymbol{W}_t,$$

where  $W_t \stackrel{iid}{\sim} N(\mathbf{0}, R_t)$ 

ullet Additional assumptions:  $m{X}_1,\,\{m{V}_t\},\, ext{and}\,\,\{m{W}_t\}$  are uncorrelated

**Goal**: To estimate the underlying unobserved signal  $X_t$ , given the data  $Y_{1:s} = \{Y_1, Y_2, \dots, Y_s\}$ :

- When s < t, the problem is called forecasting or prediction
- When s = t, the problem is called filtering
- When s > t, the problem is called smoothing

In addition to these estimates, we would also want to measure their precision. The solution to these problems is accomplished via the Kalman filter and Kalman smoother

State-Space Model
Parameters

# Observation equation:

$$Y_t = X_t + W_t, \quad \{W_t\} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_W^2)$$

State equation:

$$X_{t+1} = X_t + V_t, \quad \{V_t\} \stackrel{iid}{\sim} \mathrm{N}(0, \sigma_V^2)$$

• Assume  $E(X_1) = m_1$  and  $Var(X_1) = P_1$  and  $X_1$  is uncorrected with  $W_t$ 's and  $V_t$ 's

## Local Level Model Part II

- Since  $X_{t+1} = X_t + V_t$ , state variable  $X_t$  is a random walk starting from  $m_1$  (intended to model a slowly varying trend)
- Since  $V_t$  and  $X_t$  are uncorrelated,

$$E(X_{t+1}|X_t) = E(X_t + V_t|X_t) = X_t + E(V_t) = X_t;$$

i.e., if state variable is at a certain 'level' at time t, we can expect no change in its level at time t+1

• When  $\sigma_W^2 > 0$ , trend is corrupted by noise, so ability to pick out trend depends upon "signal to noise" ratio (SNR)  $\frac{\sigma_V^2}{\sigma_W^2}$ .

# **Local Level Model: Examples**





Background

Forecasting, Filtering, and Smoothing

Estimating the State-Space Mod Parameters





- Given observations  $\{Y_i\}_{i=1}^t$  of a local level process,
  - **O** Filtering: what is best predictor of state  $X_t$ ?
  - **②** Forecasting: what is best predictor of state  $X_{t+1}$ ?
  - **Smoothing:** what is best predictor of state  $X_s$  for s < t?
  - **Sestimation:** what are best estimates of model parameters  $\sigma_W^2, \sigma_V^2, m_1, P_1$ ?
- Will concentrate first on filtering and forecasting problems with "best" taken to be minimum mean square error (MSE)
- To facilitate discussion, will assume that  $X_1$ ,  $V_t$ 's and  $W_t$  are multivariate normal (Gaussian)  $\Rightarrow Y_t$  and remaining  $X_t$ 's are also such

• Suppose random vectors X and Y are jointly normal with mean vector  $\mu$  and covariance matrix  $\Sigma$ , to be denoted by

$$\begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \end{bmatrix} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

• Can partition both  $\mu$  and  $\Sigma$ :

$$\begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \end{bmatrix} \sim \mathcal{N} \left( \begin{bmatrix} \boldsymbol{\mu}_{\boldsymbol{X}} \\ \boldsymbol{\mu}_{\boldsymbol{Y}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}} & \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}} \\ \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{X}} & \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{Y}} \end{bmatrix} \right),$$

where  $\mu_X$  ( $\mu_Y$ ) and  $\Sigma_{XX}$  ( $\Sigma_{YY}$ ) are mean and covariance matrix for X (Y);  $\Sigma_{XY}$  is the cross-covariance matrix between X and Y

 Conditional distribution of X given Y = y is multivariate normal with mean vector

$$\mu_{\boldsymbol{X}|\boldsymbol{y}} = \mu_{\boldsymbol{X}} + \Sigma_{\boldsymbol{X}\boldsymbol{Y}}\Sigma_{\boldsymbol{Y}\boldsymbol{Y}}^{-1}(\boldsymbol{y} - \mu_{\boldsymbol{Y}})$$

and covariance matrix

$$\Sigma_{\boldsymbol{X}|\boldsymbol{y}} = \Sigma_{\boldsymbol{X}\boldsymbol{X}} - \Sigma_{\boldsymbol{X}\boldsymbol{Y}} \Sigma_{\boldsymbol{Y}\boldsymbol{Y}}^{-1} \Sigma_{\boldsymbol{X}\boldsymbol{Y}}^T$$

Best (under MSE) predictor of X given Y is

$$E(X|Y) = \mu_{X|Y} = \mu_X + \Sigma_{XY} \Sigma_{YY}^{-1} (Y - \mu_Y)$$

stimating the state-Space Model drameters

• Recall that, if random vector U has covariance matrix  $\Sigma_U$ , then covariance matrix for AU is  $A\Sigma_UA^T$ 

$$\Rightarrow$$
 covariance matrix of  $c$  +  $A(U - \mu_U)$  is also  $A\Sigma_U A^T$ 

Covariance matrix for

$$E(X|Y) = \mu_{X|Y} = \mu_X + \Sigma_{XX}\Sigma_{YY}^{-1}(Y - \mu_Y)$$

is thus

$$\Sigma_{\boldsymbol{X}\boldsymbol{Y}}\Sigma_{\boldsymbol{Y}\boldsymbol{Y}}^{-1}\Sigma_{\boldsymbol{Y}\boldsymbol{Y}}\Sigma_{\boldsymbol{Y}\boldsymbol{Y}}^{-1}\Sigma_{\boldsymbol{X}\boldsymbol{Y}}^{T} = \Sigma_{\boldsymbol{X}\boldsymbol{Y}}\Sigma_{\boldsymbol{Y}\boldsymbol{Y}}^{-1}\Sigma_{\boldsymbol{X}\boldsymbol{Y}}^{T}$$

**Note**: it is not the same as  $\Sigma_{X|y} = \Sigma_{XX} - \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{XY}^{T}$ 

Consider prediction error  $\boldsymbol{U}$  associated with best linear predictor of  $\boldsymbol{X}$ :

$$\boldsymbol{U}$$
 =  $\boldsymbol{X}$  –  $\mathrm{E}(\boldsymbol{X}|\boldsymbol{Y})$ 

- ullet Since  $\mathrm{E}\left[\mathrm{E}\left(X|Y
  ight)
  ight]$  =  $\mu_{X}$   $\Rightarrow$   $\mathrm{E}(U)$  = 0
- ullet Covariance matrix for  $oldsymbol{U}$  is given by

$$E(UU^{T}) = E([X - E(X|Y)][X - E(X|Y)]^{T})$$

$$= E(XX^{T}) + E[E(X|Y)]E[X|Y]^{T}$$

$$- E[XE(X|Y]^{T}] - E[E(X|Y)X^{T}]$$

$$= \Sigma_{XX} - \Sigma_{XY}\Sigma_{YY}^{-1}\Sigma_{XY}^{T},$$

which is equal to  $\Sigma_{X|y}$ , the conditional covariance matrix

- Specialize now to case where X has just one element, say, X
- Corollary: conditional distribution of X given Y = y is normal with mean

$$\mu_X + \Sigma_{XY}^T \Sigma_{YY}^{-1} (\boldsymbol{y} - \boldsymbol{\mu_Y})$$

and conditional variance

$$\Sigma_{X|\boldsymbol{y}} = \sigma_X^2 - \Sigma_{X\boldsymbol{Y}}^T \Sigma_{\boldsymbol{Y}\boldsymbol{Y}}^{-1} \Sigma_{X\boldsymbol{Y}},$$

where  $\sigma_X^2 = \text{Var}(X)$  and  $\Sigma_{XY}$  is a column vector containing covariance between X and Y

• Since conditional variance is same as MSE for X, will refer to  $\Sigma_{X|y}$  as MSE

- Suppose  $\{X_t\}$  is zero mean stationary process with ACF  $\gamma(h)$ 
  - Set X to  $X_{n+1}$  and put  $X_1, \dots, X_n$  into Y
  - $\bullet$  Corollary says best linear predictor  $\hat{X}_{n+1}$  of  $X_{n+1}$  given  $X_1, \cdots, X_n$  is

$$\hat{X}_{n+1} = \Sigma_{XY}^T \Sigma_{YY}^{-1} Y = \gamma_n^T \Gamma_n^{-1} Y \stackrel{\text{def}}{=} \phi_n^T Y,$$

where

- (i, j)th entry of matrix  $\Gamma_n = \Sigma_{YY}$  is  $\gamma(i j)$

State-Space Model

• Recall that MSE for  $\hat{X}_{n+1}$  is

$$v_n = \operatorname{Var}(X_{n+1}) - \phi_n^T \gamma_n$$

$$= \sigma_X^2 - \gamma_n^T \Gamma_n^{-1} \gamma_n$$

$$= \sigma_X^2 - \Sigma_{XY}^T \Sigma_{YY}^{-1} \Sigma_{XY}$$

$$= \Sigma_{X|y}$$

This is a special case of regression corollary

Return now to local level model:

$$Y_t = X_t + W_t, \quad \{W_t\} \sim \mathcal{N}(0, \sigma_W^2)$$
$$X_{t+1} = X_t + V_t, \quad \{V_t\} \sim \mathcal{N}(0, \sigma_V^2)$$

and  $X_1$  is an RV that

- is uncorrelated with  $W_t$ 's and  $V_t$ 's
- has  $E(X_1) = m_1$  and  $Var(X_1) = P_1$
- Filtering problem is to predict unknown state  $X_t$  based on data up to time t, i.e.,  $Y_1,\cdots,Y_t$
- In what follows, let  $Y_{1:t} \stackrel{\text{def}}{=} [Y_1, \cdots, Y_t]^T$

$$\hat{X}_{t|t} \stackrel{\text{def}}{=} \mathrm{E}(X_t|Y_{1:t}) = m_t + \Sigma_{t,t}^T \Sigma_t^{-1} (Y_{1:t} - \boldsymbol{m}_t),$$

# where

- $m_t = \mathrm{E}(X_t)$
- Vector  $\Sigma_{t,t}$  contains covarinces between  $X_t$  and  $Y_{1:t}$
- (i,j)th element of matrix  $\Sigma_t$  is covariance between  $Y_i$  and  $Y_j$
- $m_t$  is a vector containing, for  $j = 1, \dots, t$ ,

$$m_j \stackrel{\text{def}}{=} \mathrm{E}(X_j) = \mathrm{E}(X_j + W_j) = \mathrm{E}(Y_j)$$

- Note:  $\mathrm{E}(\hat{X}_{t|t}) = \mathrm{E}[\mathrm{E}(X_t|Y_{1:t})] = \mathrm{E}(X_t) = m_t$
- With  $P_t \stackrel{\text{def}}{=} \operatorname{Var}(X_t)$ , MSE for predictor is

$$\mathbf{E}[(X_t - \hat{X}_{t|t})^2] = P_t - \Sigma_{t,t}^T \Sigma_t^{-1} \Sigma_{t,t} \stackrel{\text{def}}{=} P_{t|t}$$



Backgrour

forecasting, Filtering, and Smoothing

State-Space Model Parameters **Forecasting**: estimate  $X_{t+1}$  given  $Y_{1:t}$ 

• Best linear predictor of  $X_{t+1}$  given  $Y_{1:t}$  is

$$\hat{X}_{t+1|t} \stackrel{\text{def}}{=} \mathrm{E}(X_{t+1}|Y_{1:t}) = m_{t+1} + \Sigma_{t+1,t}^T \Sigma_t^{-1}(Y_{1:t} - \boldsymbol{m}_t),$$

where vector  $\Sigma_{t+1,t}$  has covaraince between  $X_{t+1}$  and  $Y_{1:t}$ 

- Note:  $E(\hat{X}_{t+1}|t) = E[E(X_{t+1}|Y_{1:t})] = E(X_{t+1}) = m_{t+1}$
- MSE for predictor is

$$E[(X_{t+1} - \hat{X}_{t+1|t})^2] = P_{t+1} - \sum_{t+1,t}^T \sum_{t=1}^{-1} \sum_{t+1,t} \stackrel{\text{def}}{=} P_{t+1|t}$$

$$\hat{Y}_{t+1|t} \stackrel{\text{def}}{=} \mathbb{E}(Y_{t+1}|Y_{1:t}) = m_{t+1} + \tilde{\Sigma}_{t+1,t}^T \Sigma_t^{-1}(Y_{1:t} - \boldsymbol{m}_t),$$

where the vector  $\hat{\Sigma}_{t+1,t}$  has covarainces between  $Y_{t+1}$  and  $Y_{1:t}$ 

• However, note that, for  $j = 1, \dots, t$ 

$$Cov(Y_{t+1}, Y_j) = Cov(X_{t+1} + W_{t+1}, Y_j) = Cov(X_{t+1}, Y_j)$$

• Thus  $\tilde{\Sigma}_{t+1,t} = \Sigma_{t+1,t}$ , yielding

$$\hat{Y}_{t+1|t} = m_{t+1} + \Sigma_{t+1,t}^T \Sigma_t^{-1} \big( Y_{1:t} - \boldsymbol{m}_t \big) = \hat{X}_{t+1|t}$$

 $\Rightarrow$  difference between  $Y_{t+1}$  and  $X_{t+1}$  is  $W_{t+1}$ , therefore they have the same estimator, but their MSEs differ:

$$\mathbb{E}\left[(Y_{t+1} - \hat{Y}_{t+1}|t)^2\right] = P_{t+1|t} + \sigma_W^2$$





- To implement filtering (i.e., compute  $\hat{X}_{t|t}$ ), need to determine

  - ② Elements of  $\Sigma_{t,t}$ , i.e., covarainces between  $X_t$  and  $Y_1, \dots, Y_t$
  - **③** Elements of  $\Sigma_t$ , i.e., covariances between  $Y_j$  and  $Y_k$ ,  $1 \le j \le k \le t$
- To compute  $P_{t|t}$ , i.e., MSE for  $\hat{X}_{t|t}$ , need  $P_t = \text{Var}(X_t)$  in addition to 2 and 3 above
- Since  $X_t = X_{t-1} + V_{t-1}$  and  $Y_t = X_t + W_t$ , telescoping yields  $X_j = X_1 + \sum_{l=1}^{j-1} V_l$  and  $Y_j = X_1 + \sum_{l=1}^{j-1} V_l + W_j, j = 1, \cdots, t$

estimating the State-Space Model Parameters

Using

$$X_j = X_1 + \sum_{l=1}^{j-1} V_l \text{ and } Y_j = X_1 + \sum_{l=1}^{j-1} + W_j, \quad \ j = 1, \cdots, t,$$

get 
$$m_j$$
 =  $\mathbb{E}[X_j]$  =  $\mathbb{E}[X_1]$  =  $m_1$  and (assuming  $j \le k \le t$ )

$$\mathbb{Cov}(X_t, Y_j) = \mathbb{Cov}\left(X_1 + \sum_{l=1}^{t-1} V_l, X_1 + \sum_{l=1}^{j-1} V_l + W_j\right)$$

$$= P_1 + (j-1)\sigma_V^2$$

$$\mathbb{Cov}(Y_j, Y_k) = \mathbb{Cov}\left(X_1 + \sum_{l=1}^{j-1} V_l + W_j, X_1 + \sum_{l=1}^{k-1} V_l + W_k\right)$$
$$= P_1 + (j-1)\sigma_V^2 + \delta_{jk}\sigma_W^2,$$

where  $\delta_{jk}$  = 1 if j = k and  $\delta_{jk}$  = 0 if  $j \neq k$ 

Using

$$X_t = X_1 + \sum_{l=1}^{t-1} V_l,$$

get

$$P_t = Vor(X_t) = P_1 + (t-1)\sigma_V^2$$

- $\bullet$  Now we have all the pieces needed to form  $\hat{X}_{t|t}$  and its MSE  $P_{t|t}$
- $\bullet$  Note: similar argument leads to pieces needed to form forecast  $\hat{X}_{t+1|t}$  and its MSE  $P_{t+1|t}$

$$\hat{X}_{t|t} = m_t + \Sigma_{t,t}^T \Sigma_t^{-1} (Y_{1:t} - \boldsymbol{m}_t)$$

and

$$\hat{X}_{t+1|t} = m_{t+1} + \Sigma_{t+1,t}^T \Sigma_t^{-1} (Y_{1:t} - \boldsymbol{m}_t)$$

via these equations requires inversion of matrix  $\Sigma_t$  whose dimension  $t \times t$  becomes problematic as t gets large

- The celebrated Kalman recursions give a recipe that avoids explicit matrix inversion
- **Idea**: at time t-1, we have 4 quantities of interest: fitted value  $\hat{X}_{t-1|t-1}$ , and forecast  $\hat{X}_{t|t-1}$  and their associated MSEs  $P_{t-1|t-1}$  and  $P_{t|t-1}$
- Note:  $\hat{X}_{t-1|t-1} = \hat{X}_{t|t-1}$  for local level model (but not others)

State-Space Models

Background

orecasting, Filtering, and Smoothing

tate-Space Model arameters

- At time t, new observation  $Y_t$  becomes available
- $\bullet$  Kalman recursion takes  $\hat{X}_{t|t-1}$  ,  $P_{t|t-1}$  and  $Y_t$  and yields
  - fitted values  $\hat{X}_{t|t}$  and forecast  $\hat{X}_{t+1|t}$
  - $\bullet$  associated MSEs  $P_{t|t}$  and  $P_{t+1|t}$
- There are six steps in the Kalman recursion:
  - steps 1 and 2 are preparatory
  - ② steps 3 and 4 yield  $\hat{X}_{t|t}$  and  $P_{t|t}$  (filtering)
  - $oldsymbol{0}$  steps 5 and 6 yield  $\hat{X}_{t+1|t}$  and  $P_{t+1|t}$  (forecasting)

$$U_t = Y_t - \hat{Y}_{t|t-1} = Y_t - \hat{X}_{t|t-1}$$

2. Compute MSE for  $\hat{Y}_{t|t-1}$ :

$$P_{t|t-1} + \sigma_W^2 \stackrel{\text{def}}{=} F_t$$

3. Compute new filtered value:

$$\hat{X}_{t|t} = \hat{X}_{t|t-1} + K_t U_t,$$

where  $K_t \stackrel{\text{def}}{=} P_{t|t-1}/F_t$  is the so-called Kalman gain

4. Compute MSE for new filtered value:

$$P_{t|t} = P_{t|t-1}(1 - K_t)$$



Background

Forecasting, Filtering, and Smoothing

tate-Space Model arameters

tate-Space Model arameters

5. Compute new forecast:

$$\hat{X}_{t+1|t} = \hat{X}_{t|t-1} + K_t U_t = \hat{X}_{t|t}$$

6. Compute MSE for new forecast:

$$P_{t+1|t} = P_{t|t-1}(1 - K_t) + \sigma_V^2 = P_{t|t} + \sigma_V^2$$

• Recursions are carried out for  $t=1,\cdots,n$  with inputs at t=1 being  $\hat{X}_{1|0} \stackrel{\mathrm{def}}{=} m_1 = \mathbb{E}[X_1], \, P_{1|0} \stackrel{\mathrm{def}}{=} P_1 = \mathbb{Vor}(X_1)$  and  $Y_1$ 

CLEMS N

Backgrou

and Smoothing

State-Space Model Parameters

To prove validity of steps 3 and 4, need to show that

- $\hat{X}_{t|t-1}$  +  $K_tU_t$  is equal to  $\hat{X}_{t|t}$ 
  - $P_{t|t-1}(1-K_t)$  is equal to  $P_{t|t}$

$$\begin{split} \mathbb{C} \text{ov} \big( X_t, U_t | Y_{1:t-1} \big) &= \mathbb{C} \text{ov} \big( X_t, Y_t - \hat{Y}_{t|t-1} | Y_{1:t-1} \big) \\ &= \mathbb{C} \text{ov} \big( X_t, X_t + W_t | Y_{1:t-1} \big) = \mathbb{V} \text{or} \big( X_t | Y_{1:t-1} \big) \\ &= P_{t|t-1} \end{split}$$

• **Key fact**:  $X_t$  conditioned on both  $U_t = Y_t - \hat{Y}_{t|t-1}$  and  $Y_{1:t-1}$  is the same as  $X_t$  conditioned on  $Y_{1:t-1}$  We have

$$\hat{X}_{t|t} = \hat{X}_{t|t-1} + \frac{P_{t|t-1}}{F_t} U_t$$

and

$$P_{t|t} = P_{t|t-1} - \frac{P_{t|t-1}^2}{F_t}$$

since  $K_t \stackrel{\text{def}}{=} \frac{P_{t|t-1}}{F_t}$ , we get required

$$\hat{X}_{t|t} = \hat{X}_{t|t-1} + K_t U_t \text{ and } P_{t|t} = P_{t|t-1} (1 - K_t)$$

## **Simulated Example: Local Level Model with SNR** = 2

Time series  $Y_t$ , states  $X_t$ , and forecasts  $\hat{X}_{t|t-1}$ 



State-Space Models



Background

## Simulated Data from Local Level Model with SNR = 2

States  $X_t$ , forecasts  $\hat{X}_{t|t-1}$ , and 95% CIs based on  $P_{t|t-1}$ 





Background

One of the strengths of state-space formulation is the capability to handle time series with missing values. Suppose  $Y_1, \dots, Y_t$  and  $Y_{t+3}$  are observed, but not  $Y_{t+1}$  and  $Y_{t+2}$ :

- use modified recursion (i.e., skip the calculation of the innovation when data is missing)
  - use  $\hat{X}_{t+1|t}$  and  $P_{t+1|t}$  for  $\hat{X}_{t+2|t}$  and  $P_{t+2|t}$
  - use  $\hat{X}_{t+2|t}$  and  $P_{t+2|t}$  for  $\hat{X}_{t+3|t}$  and  $P_{t+3|t}$
- take  $\hat{X}_{t+3|t}$ ,  $P_{t+3|t}$ , and  $Y_{t+3}$  into usual recursion to obtain  $\hat{X}_{t+3|t+3}$  and  $P_{t+3|t+3}$  and  $\hat{X}_{t+4|t+3}$  and  $P_{t+4|t+3}$
- need to interpret "given t+3" as conditioning on everything available at time t+3, i.e.,  $Y_1, \dots, Y_t$  and  $Y_{t+3}$

State-Space Models

CLEMS N

Баскугоино

and Smoothing

tate-Space Model arameters

## **Example: Nile River Annual Minima Series**









## **Nile River Annual Minima Series with Missing Values Imputed**



Background

Forecasting, Filtering, and Smoothing

State-Space Mod Parameters



#### Nile River Annual Minima Series Forecasts with 95 % CI



Background

Forecasting, Filtering, and Smoothing

State-Space Mode Parameters



Given time series  $Y_1, \dots, Y_n$ , Kalman filter recursions give us  $\hat{X}_{t|t}$  for  $t=1, \dots, n$ 

Regression lemma says solution to smoothing problem is

$$\hat{X}_{t|n} \stackrel{\text{def}}{=} \mathbb{E}[X_t|Y_{1:n}] = m_t + \Sigma_{t,n}^T \Sigma_n^{-1} (Y_{1:n} - \boldsymbol{m}_n)$$

• MSE for predictor, i.e.,  $\mathbb{E}\left[\left(X_t - \hat{X}_{t|n}\right)^2\right]$ , is

$$P_t - \Sigma_{t,n}^T \Sigma_n^{-1} \Sigma_{t,n} \stackrel{\text{def}}{=} P_{t|n},$$

where  $P_t \stackrel{\mathrm{def}}{=} \mathbb{Var}[X_t]$ 

State-Space Model Parameters

Using innovation  $U_t$ , innovation variance  $F_t$ , Kalman gains  $K_t$ , forecasts  $\hat{X}_{t|t-1}$  and associated MSEs  $P_{t|t-1}, t=1, \cdots, n$  computed by Kalman filter recursions, Kalman smoother recursions allow efficient computation of  $\hat{X}_{t|n}, t=1, \cdots, n$ 

The first two steps yield desired predictor  $\hat{X}_{t|n}$ 

1. Manipulate innovations: starting with  $r_n$  = 0, recursively form

$$r_{n-1} = \frac{U_t}{F_t} + (1 - K_t)r_t, \quad t = n, \dots, 1$$

2. Combine manipulated innovations and forecasts:

$$\hat{X}_{t|n} = \hat{X}_{t|t} + P_{t|t-1}r_{t-1}, \quad t = 1, \dots, n$$

Next two steps yield MSE for predictor  $\hat{X}_{t|n}$ :

3. Manipulate innovation variances: starting with  $N_n$  = 0, recursively form

$$N_{t-1} = \frac{1}{F_t} + (1 - K_t)^2 N_t, \quad t = n, \dots, 1$$

4. Combine manipulated innovation variances and forecast MSEs:

$$V_t = P_{t|t-1} - P_{t|t-1}^2 N_{t-1}, \quad t = 1, \dots, n,$$

where  $V_t$  is the desired MSE

# **Simulated Example: Local Level Model with SNR** = 2

Time series  $Y_t$ , states  $X_t$ , and smooths  $\hat{X}_{t|n}$ 



State-Space Models



Background

Forecasting, Filtering, and Smoothing

Estimating the State-Space Model Parameters

### Simulated Data from Local Level Model with SNR = 2

States  $X_t$ , smooths  $\hat{X}_{t|n}$ , and 95% CIs based on  $P_{t|n}$ 



State-Space Models



Background

Estimating the State-Space Model Parameters

So far, we've assumed that the parameters  $\theta$  =  $(\sigma_V^2, \sigma_W^2, m_1, P_1)$  are known. In practice, we need to estimate from the data.

This requires maximizing the marginal likelihood of the data y, having integrated the latent time series x out. This is given by:

$$f(\boldsymbol{y}|\sigma_V^2, \sigma_W^2, m_1, P_1) = \int f(\boldsymbol{y}|\boldsymbol{x}, \sigma_W^2) f(\boldsymbol{x}|m_1, P_1, \sigma_V^2)$$

Maximizing over an integral can be difficult

Fortunately, our normal distribution facts tell us that the marginal distribution of y is

$$\boldsymbol{y} \sim \mathrm{N}(\mathbb{E}(\boldsymbol{x}), \mathbb{Vor}(\boldsymbol{x}) + \sigma_W^2 I_n).$$

However, the direct evaluation of the marginal likelihood can be challenge due to  $n \times n$  matrix inversions

Alternative, we use the innovations  $u_t = y_t - \hat{Y}_{t|t-1}$  to compute the likelihood:

$$\ell(\boldsymbol{\theta}) \propto f(u_1) \prod_{t=2}^n f(u_t|y_{1:t-1}).$$

We can do the following iteratively:

- Pick an initial guess  $\hat{\theta}^0$  and run the Kalman filter to get a set of innovations u
- Maximizing  $\theta$  (e.g., via Newton–Raphson) with u to obtain new estimate of  $\theta$

# **Expectation-Maximization (EM) Maximum Marginal Likelihood**

State-Space Models

LEMS

N | V E R S | T Y

Background

casting, Filtering,

Stimating the State-Space Model

Another way to compute maximum likelihood estimate  $\hat{\theta}$  is to use the expectation-maximization (EM) algorithm [Dempster, Laird, and Rubin, 1977]

- Initialize by choosing starting value  $\theta^0$ , and compute the incomplete likelihood
- ullet Perform the E-step to obtained  $\hat{X}_{t|n}$ ,  $P_{t|n}$
- ullet Perform M-step to update the estimate heta using the complete likelihood
- Recompute the incomplete likelihood
- Repeat until convergence, i.e.,  $|\hat{\theta}^T \hat{\theta}^{T-1}| < \epsilon$