Nguyễn Minh Đườ - I	TITIU21	045-La	ab 10	Ng	ày Tha	áng Năi	<i>m</i>
01 · a)						,	
t	2 2	21.	22	27	3	3.4	
			0.256			145,168	. 0.5
y (n)=+(r	o)+(2+20)+(2+22				(x-1)(x-1,	/c-1/c-2/	(1-x3)
t	2	1st	2nc	340	1 40	1 5+1	
1 2	1 7.752	25,04	37.0				
t, 2	2 10.256	52.64	46			32.	2)
t, 2	7 36.576	38 08	56 8	771	5 45.	8 1 04.	
t	3 66	197 97	142	6			
	4 145 168		\ \ \ \ \ \ \		26		-(-)(-)(
F)y=6+	17. 92 (2-2)+	37.6 (2-	4(2-2.1)	-12 (x-2)	2-2-1/(2-0	12) + 31	A(1-2)(1-21)(-2
(-) (-))- 72 /0.07						(i-27)(x-3)6
)= 23, 1962 = 42 + 43-						
() by	23-	X,					
- AV -	10.256 + 3	6-576 -	10.256	(n - 2	2)		
		2.7 -0	1.7				
) 3 y (2.5)= 10.2	\$6 + 3	576	10.25	6 (2.5-	2.2) =	26.048
			2.7	-2.2			
Q2 _j 2							
	0	1	2.5	3	4.5	2 5	
7	26	15-5 5	.3+5	3,5	2375	3 5	

Ngày Tháng Năm...... 15 5 10 9 5.375 -3.75 2.375) -0.75) 1.5 = 3.5 2.25 1.5 1.5 1-05 y(v)= 26+0.5(x-10.5x+1.5x(x-1)-0011(x-1)(x-25)(x-3)(x-4.5)(x-5)(x-6)x Dy (3.5) = 2.56 b) Polyromials to find P, (2) = 9x + b,2 +c P. (x) = 42x + b2x + C2 P3 (x) = a3 10 + b32 + C3 We choose four points between range of 3.5 and substitute · P. (2) = y = 5 375 = a (2.5)2 + 2.5b, +c. =) 5.375 = 6.25 g + 2.5b, tc1 Pa (3) = y3 = 3.5 = a, (3) + 3b, +c, 335 = 9a1 + 3b1 +C1 P2 (43) = 43 = 3.5 = a2 (3) + 3b2 + c2 -) 3,5 = 9a+ 3b, +c2 P2 (xy)===2.375 = ag (4.5)2 +4.5b, +62 72.875 = 20.250, +45b, +c, · P3 (x4) = y4 = 2.375 = a3 (4.5) + 4.5b2+c3 =) 2.375 = 20.25 az + 4.56; +cz HÒA BÌNH

Ngày Tháng Năm														
dra de de de	2 = 23	1	=) 3 P2 x 10 clP3	5 = x3	7)	a, - , a, z 6 a,	5 b; + b; + b;	1/2	3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 =	+ 62 2a3 x	+ 62/2 + 63/			
6.25 9 0 0 0 6 0 2 Ther	3 0 0 0 0 1 0 0		0 0 -6 9 0	0 -1 1 59 -1 59	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25	4.5 5 0	0 0 0 1 1 1 0 0	62 C2 G3 D3 C5		5-375 3-5 3-5 2-375 2-375 3-5 0 0 59 4 63 4	131		
			63								4	HÒAI	DÎNH	

HÒA BÌNH

Ngày Tháng Năm...... =) P2(3.5) = 2 (3.5) - C3 (3.5) - 131 = 2.125 Q3; Fourth order RK de de de + ty = 0 ; y(0)= 4; y'(0)= 0 Let z dy odz dy Soly x=0.5; h=0.5 Therefore, dr , 0.52 , 7y = 0 , dr -0.52 7y Nehoue dy - z and dz -0.52 7y f(x,y,2) = = and g(x,y,2) = -0.5z - 7y Hence, y(0)=4 =) x = 0, y = 4 and y'(0)=0=) z = x = 0 We have Fourth-order RK equation: y(x)= y+ 1 (K, 21C2+ 2 C3+ K4) Nehoue · K = h.f (x0,40)=0.5 f(0,4,0)=0.5 x0=0 · ly = hg (x, y, 120) = 0.5 g(0, 4,0) = -14 · K, = h f(xo + h), (yo + k1), (20 + l1) 0.5 f[(0+0.5), (4+0), (0-14)] = 0.5 f(0.25, 4, -a)· l2 = hg(n+h) (yo+h) (zo+la) - 12.25 · K3 - h f (x - h) (y 0 + 2) (20 + g)] 3.0625

HÒA BÌNH

Ngày Tháng Năm...... · l3= Hol(x+h), (yo (L2), (zo l2)) = 9.4 · ley = hf(x, h) h f(x+h) yo + k3 / Zo+ls) = 4.7 · h= hg (x+4, yo+ kg 20+l,) x Therefore y (n)= 40 + 2 (k+2 ky+2 ky+1 (0+2(-3.5)+2+3.0625+42) x(0) = m+ [(kx + 2kx + 2kx + ky) x = 0 +0 5) (0) = 0 + 1 (6, + 2kg + kg) = 0 638 ; 10(0,5)= 1,138 x(1) = 1 + 0.638 = 1.638 y(1.5) = 2.138x 2/2 2.638 ; x (2.5) = 3,138 x(3) = 3 638 · x(3.5) = 4 138 x(4)=4,638 , x(4.5)=5,138 s (5) = 5,638 g Str 6 5 2 1 0.63

HOA BÌNH

```
# Code designed by Nguyen Minh Duc - ITITIU21045 - TMC Lab 10
# Ouestion 1
# Given data
t_values = [2, 2.1, 2.2, 2.7, 3, 3.4]
z_values = [6, 7.752, 10.256, 36.576, 66, 145.168]
# Function to calculate divided differences
def divided_difference(x, y):
    n = len(x)
    if n == 1:
       return y[0]
        \text{return (divided\_difference(x[1:], y[1:]) - divided\_difference(x[:-1], y[:-1])) / (x[-1] - x[0]) } 
# Newton interpolating polynomial
def newton_interpolation(t, t_values, z_values):
    result = z_values[0]
    for i in range(1, len(t_values)):
       term = divided_difference(t_values[:i+1], z_values[:i+1])
       for j in range(i):
           term *= (t - t_values[j])
       result += term
    return result
# Calculate z at t = 2.5
t target = 2.5
z_at_t_2_5 = newton_interpolation(t_target, t_values, z_values)
print(f"Newton Interpolation at t = 2.5: {z_at_t_2_5}")
    Newton Interpolation at t = 2.5: 23.19623233908947
# Using numpy library for Newton interpolation
import numpy as np
# Create a Newton interpolating polynomial
poly\_coefficients = np.polyfit(t\_values, z\_values, len(t\_values) - 1)
# Evaluate the polynomial at t = 2.5
z_at_t_2_5_np = np.polyval(poly_coefficients, t_target)
print(f"Numpy Newton Interpolation at t = 2.5: {z_at_t_2_5_np}")
    Numpy Newton Interpolation at t = 2.5: 23.1962323390826
# Using scipy library for linear spline interpolation
from scipy.interpolate import interp1d
# Create a linear spline interpolation function
linear_spline = interp1d(t_values, z_values, kind='linear', fill_value='extrapolate')
# Evaluate the linear spline at t = 2.5
z_at_t_2_5_spline = linear_spline(t_target)
print(f"Linear Spline Interpolation at t = 2.5: {z_at_t_2_5_spline}")
```

```
# Code designed by Nguyen Minh Duc - ITITIU21045 - TMCLab
# Ouestion 2
# (a)
# Given data
t_values = [0, 1, 2.5, 3, 4.5, 5, 6]
z_values = [26, 15.5, 5.375, 3.5, 2.375, 3.5, 5]
# Function to calculate divided differences
def divided_difference(x, y):
   n = len(x)
   if n == 1:
       return y[0]
    else:
         return \ (divided\_difference(x[1:], y[1:]) - divided\_difference(x[:-1], y[:-1])) \ / \ (x[-1] - x[0]) 
# Newton interpolating polynomial
def newton_interpolation(t, t_values, z_values):
    result = z_values[0]
    for i in range(1, len(t_values)):
        term = divided_difference(t_values[:i+1], z_values[:i+1])
        for j in range(i):
           term *= (t - t_values[j])
        result += term
    return result
# Calculate \tau at t = 3.5
t_target = 3.5
z_at_t_3_5 = newton_interpolation(t_target, t_values, z_values)
print(f"Newton Interpolation at t = 3.5: {z_at_t_3_5}")
Newton Interpolation at t = 3.5: 2.333333333333333
# (b)
# Using numpy library for Newton interpolation
import numpy as np
# Create a Newton interpolating polynomial
poly_coefficients = np.polyfit(t_values, z_values, len(t_values) - 1)
# Evaluate the polynomial at t = 3.5
z_at_t_3_5_np = np.polyval(poly_coefficients, t_target)
print(f"Numpy Newton Interpolation at t = 3.5: {z_at_t_3_5_np}")
     Numpy Newton Interpolation at t = 3.5: 2.333333333333
# (c)
# Using scipy library for cubic spline interpolation
from scipy.interpolate import CubicSpline
# Create a cubic spline interpolation function
cubic_spline = CubicSpline(t_values, z_values)
# Evaluate the cubic spline at t = 3.5
z_at_t_3_5_spline = cubic_spline(t_target)
print(f"Cubic Spline Interpolation at t = 3.5: {z_at_t_3_5_spline}")
     Cubic Spline Interpolation at t = 3.5: 2.350447082966872
```

 \supseteq

```
# Code designed by Nguyen Minh Duc - ITITIU21045 - TMC Lab
# Question 3
import numpy as np
import matplotlib.pyplot as plt
def f(x, y):
    # System of ODEs
   dy1dx = y[1]
    dy2dx = -0.5 * y[1] - 7 * y[0]
   return np.array([dy1dx, dy2dx])
def rk4_step(f, x, y, h):
    # One step of the RK4 method
    k1 = h * f(x, y)
    k2 = h * f(x + 0.5 * h, y + 0.5 * k1)
    k3 = h * f(x + 0.5 * h, y + 0.5 * k2)
    k4 = h * f(x + h, y + k3)
   return y + (k1 + 2 * k2 + 2 * k3 + k4) / 6
def solve_ode_rk4(f, y0, dy0, x_range, h):
   # Initial conditions
    y = np.array([y0, dy0])
   \# Lists to store the results
    x_values = [x_range[0]]
   y1_values = [y0]
    # RK4 integration
    for x in np.arange(x_range[0], x_range[1], h):
        y = rk4\_step(f, x, y, h)
        x_{values.append}(x + h)
        y1_values.append(y[0])
    return np.array(x_values), np.array(y1_values)
# Initial conditions
y0 = 4
dy0 = 0
# Solve the ODE using RK4
x_range = (0, 5)
h = 0.5
x_values, y_values = solve_ode_rk4(f, y0, dy0, x_range, h)
# Plotting the results
plt.plot(x_values, y_values, label='RK4 Method')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Solution of the ODE using RK4 Method')
plt.legend()
plt.grid(True)
plt.show()
```

