$v_0=4$ et de raison -3. Exprimer v_{n+1} en fonction de v_n .

112

Soit w la suite géométrique de premier terme $w_0=5$ et de raison 2.

- 1. Exprimer w_{n+1} en fonction de w_n .
- 2. Calculer w_4 à l'aide de la calculatrice.

113

Soit x la suite arithmétique de premier terme $x_0 = -2$ et de raison -5.

- 1. Exprimer x_{n+1} en fonction de x_n .
- 2. Calculer x_5 à l'aide de la calculatrice.

114

Soit u la suite géométrique de premier terme $u_0 = 3$ et de raison 2. Calculer u_1 , u_2 et u_3 .

115

Soit v la suite géométrique de premier terme $v_0 = 2$ et de raison 4. Calculer v_1 , v_2 et v_3 .

116

Soit w la suite géométrique de premier terme $w_0 = 5$ et de raison -3. Calculer w_1, w_2 et w_3 .

117

Soit x la suite géométrique de premier terme $x_1=8$ et de raison 3. Calculer les termes d'indice 2 et 3.

118

Soit y la suite géométrique de premier terme $y_0 = 6$ et de raison -4. Calculer les termes d'indice 3 et 4.

119

Soit z la suite géométrique de premier terme $z_0=\frac{1}{2}$ et de raison $\frac{2}{3}$. Calculer les quatre premiers termes de la suite.

120

Soit a une suite géométrique de raison 3 tel que $a_4 = 9$. Calculer a_5 et a_6 .

121

Soit b une suite géométrique de raison -5 tel que $b_6 = 13$. Calculer b_7 et b_8 .

122

Soit u une suite géométrique telle que $u_{15}=8$ et $u_{18}=64$. Donner sa raison.

123

Soit v une suite géométrique telle que $v_2=54$ et $v_5=2$. Donner sa raison.

124

Parmi les suites suivantes, repérer les suites géométriques et donner leur raison. Donner ensuite les 3 premiers termes de ces suites.

1.
$$\begin{cases} u_0 = -1 \\ u_{n+1} = 3u_n \end{cases}$$

$$\begin{cases}
 u_0 = 3 \\
 u_{n+1} = u_n - 5
\end{cases}$$

3.
$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{1}{2} u_n \end{cases}$$

$$4. \begin{cases} u_0 = 3 \\ u_n = 4u_{n-1} \end{cases}$$

5.
$$\begin{cases} u_0 = 2 \\ u_n = -2u_{n-1} + 4 \end{cases}$$

6. $u_{n+1} = 8 + n$

125

On considère la suite (u_n) définie pour tout entier naturel par $u_n=u_{n+1}\times 6$. Cette suite est-elle géométrique?

126

On considère la suite (v_n) définie pour tout entier naturel par $v_n=v_{n+1}-8$. Cette suite est-elle géométrique?

127

On considère la suite géométrique (u_n) de premier terme 7 et de raison 5. Déterminer, en justifiant, le sens de variation de cette suite.

128

Soit la suite géométrique (v_n) de premier terme -5 et de raison 2. Déterminer, en justifiant, le sens de variation de cette suite.

129

 (w_n) est une suite géométrique de premier terme 6 et de raison $\frac{1}{4}$. Déterminer, en justifiant, le sens de variation de cette suite.

130

On considère la suite (u_n) définie ci-dessous.

$$\begin{cases} u_0 = 2 \\ u_{n+1} = 9u \end{cases}$$

Donner son sens de variation.

131

On considère la suite (v_n) définie ci-dessous.

$$\begin{cases} v_0 = 11 \\ v_{n+1} = \frac{v_n}{6} \end{cases}$$

Donner son sens de variation.

132

Parmi les suites suivantes, repérer les suites géométriques, donner leur raison ainsi que leur sens de variation.

1.
$$\begin{cases} u_1 = 3 \\ u_{n-1} = 4u_{n-2} \end{cases}$$

$$2. \begin{cases} u_1 = 9 \\ u_{n+1} = \frac{u_n}{3} \end{cases}$$

3.
$$\begin{cases} u_0 = 1 \\ u_{n+1} = -5 + u_n \end{cases}$$

4.
$$u_n = 7n$$

5.
$$\begin{cases} u_0 = 125 \\ u_n = \frac{u_{n-1}}{5} \end{cases}$$

6.
$$u_n = 9^n$$

133

Soit u une suite géométrique telle que $u_6=21$ et $u_8=84$. Donner sa raison et en déduire son sens de variation.

134

Soit v une suite géométrique telle que $v_7=36$ et $v_9=9$. Donner sa raison et en déduire son sens de variation.

Reconnaître une suite géométrique

135

La suite (v_n) est définie pour tout entier naturel n par $v_n = 5 \times 2^n$.

- 1. Calculer v_0 , v_1 et v_2 . Quelle semble être la nature de la suite (v_n) ?
- 2. Exprimer v_{n+1} en fonction de n.
- 3. Calculer le rapport $\frac{v_{n+1}}{v_n}$. Qu'en déduisez-
- 4. Faire de même pour les suites (t_n) et (w_n) définies par :

$$t_n = 100 - 4n$$

$$w_n = 0.7^n$$

136

Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$ par $v_n = 4^n$. Montrer que v est une suite géométrique.

137

Soit (w_n) la suite définie pour tout $n \in \mathbb{N}$ par $w_n = 7^n$. Montrer que w est une suite géométrique.