

Modeling and Simulation of a Skid-Steer UGV in Simulink

Atilla Dogan

XX4378 and XX5378 - Fall 2017 Introduction to UVS September 25, 2017

Motion Mechanism (Skid Steer Track Platform)

Motion Mechanism (Skid Steered Wheel Platform)

Wheel Rotation & Forward Speed

 ω_R : wheel angular speed

 r_R : wheel radius

 $\omega_R r_R$: wheel forward speed if there is no slippage

 $0 \le s_R \le 1$: slippage factor

 $s_R = 0$: no slippage

 $s_R = 1$: full slippage

Wheel forward speed with slippage:

$$V_R = (1 - s_R) r_R \omega_R$$

Wheel Forward Speed & Platform Motion

Forward Velocity Components

 \dot{x} : x-component of forward velocity

y : y-component of forward velocity

$$\dot{x} = V \cos \theta$$

$$\dot{y} = V \sin \theta$$

$$V = \sqrt{\dot{x}^2 + \dot{y}^2}$$

Navigational Frame

 y_N

Track Speed & Platform Motion

: UGV forward speed x_N **Navigational Frame**

UGV forward speed is the average of left and right track speeds

$$V = \frac{1}{2} \left(V_L + V_R \right)$$

UGV angular speed is due to the difference between left and right track speeds

$$\dot{\theta} = \frac{1}{b} \left(V_L - V_R \right)$$

b: reference length

Kinematic Equations of Motion

$$\begin{split} \dot{x} &= \frac{1}{2} \left[(1 - s_L) r_L \omega_L + (1 - s_R) r_R \omega_R \right] \cos \theta \\ \dot{y} &= \frac{1}{2} \left[(1 - s_L) r_L \omega_L + (1 - s_R) r_R \omega_R \right] \sin \theta \\ \dot{\theta} &= \frac{1}{b} \left[(1 - s_L) r_L \omega_L - (1 - s_R) r_R \omega_R \right] \end{split}$$

Given the left and right wheel speeds, we can compute translational and angular speed

By integrating translational and angular speeds, We can compute position and orientation of the UGV

Pulse Width Modulation (PWM)*

- PWM Signal is a method for generating an analog signal using a digital source.
- Two main components
 - Duty Cycle (DC): Amount of time the signal is in a high (on) state as a percentage of its one complete cycle.
 - Frequency: How fast the PWM completes a cycle
- By cycling a digital signal ON and OFF at a fast enough rate, and with a certain duty cycle,
 - the output will behave like a constant voltage analog signal when providing power to devices.

^{*} http://www.ni.com/tutorial/2991/en/

PWM (Pulse Width Modulation)

Electric Motor Speed Control

- PWM signal to control electric motor speed and thus wheel speed
- Experiments done to determine relation between duty cycle and wheel speed

Electric Motor Speed Control

- There are two electric motors, each driving left or right wheels
- Total Two Input Signals
 - %DC Left Wheel
 - %DC Right Wheel

Powertrain Dynamics

This is modeled by a 1st order TF (Transfer Function) or Filter with a time constant (τ) , determined by experiment

Simulink Model (Top Level)

Simulink Model

Simulink Model

MATLAB Function

Forward Motion

Corresponding speed (top speed)

Forward Motion

Corresponding speed (lower than before)

Forward Motion

Speed changes

Backward Motion

Speed is magnitude of velocity

Turn

UGV speed changes

Turn

UGV speed changes

Forward w/ Slippage **UGV** speed drops when wheels slip - 0 {V,theta}Act Duty Cycles 🖨 ③ | 역 🗠 호 | 🖾 🎏 🎏 | 🖵 🔒 🕏 🝱 **Duty Cycle 50% both wheels** slippageFactors 🚊 🕲 🔍 🔫 🕹 🖾 🎏 🎏 📙 🔒 🛧 📶 Both wheel slip, 20% E × **UGV** moves forward y [m]

Uneven Slippage

UGV speed drops when wheels slip

