Chapter 2 Inference Theory

An argument is a sequence of propositions H_1, H_2, \ldots, H_n called premises (or hypotheses) followed by a proposition C called conclusion. An argument is usually written:

$$H_1$$
 H_2
 \vdots
 H_n
implies C

or
 $H_1 \land H_2 \land \dots \land H_n \Rightarrow C$

The argument is valid if C is true whenever $H_1, H_2, ..., H_n$ are true; otherwise it is invalid.

Example: $H_1: p$ and $H_2: p \rightarrow q$ then C: q (Modus Ponens)

р	q	p o q	$p \wedge (p ightarrow q)$	$(p \land (p ightarrow q)) ightarrow q$
Т	Τ	Т	Т	Τ
T	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

Notice that $(p \land (p \rightarrow q)) \rightarrow q$ is a tautology. Therefore it is valid. Thus $p, \ p \rightarrow q \Rightarrow q$.

Example: $H_1: q$ and $H_2: p \rightarrow q$ then C: p

р	q	p o q	$q \wedge (p ightarrow q)$	$(q \land (p \rightarrow q)) \rightarrow p$
Т	Т	Т	Т	Т
T	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	F	Т

Notice that $q \land (p \rightarrow q) \rightarrow p$ is a condigency. Therefore it is invalid.

Implication Table:

S.No	Formula	Name
1	$p \land q \Rightarrow p$	simplification
	$p \wedge q \Rightarrow q$	
2	$p \Rightarrow p \lor q$	addition
	$q \Rightarrow p \lor q$	
3	$p, \ q \Rightarrow p \wedge q$	
4	$p,\ p o q\Rightarrow q$	modus ponens
5	$\neg p, \ p \lor q \Rightarrow q$	disjunctive syllogism
6	$ eg q, \ p o q \Rightarrow eg p$	modus tollens
7	$p \to q, q \to r \Rightarrow p \to r$	

Rules of inference:

Rule P: A premises can be introduced at any step of derivation.

Rule T: A formula can be introduced provided it is Tautologically implied by previously introduced formulas in the derivation.

Rule CP: If the conclusion is of the form $r \to s$ then we include r as an additional premises and derive s.

Indirect method: We use negation of the conclusion as an additional premise and try to arrive a contradiction.

Inconsistent: A set of premises are inconsistent provided their conjunction implies a contradiction.

Example: Show that $\neg q$ and $p \rightarrow q$ implies $\neg p$.

Solution: (A formal proof is as follows):

Step 1.
$$p \rightarrow q$$
 Rule P

Step 2.
$$\neg q \rightarrow \neg p$$
 Rule T

Step 3.
$$\neg q$$
 Rule P

Step 4.
$$\neg p$$
 Combined $\{2,3\}$ and apply Modus Ponens

Example: Show that r is a valid inference from the premises $p \to q, \ q \to r$ and p. Solution:

Step	Derivation	Rule
1	p	Р
2	p o q	Р
3	q	$\{1,2\}, \frac{\mathcal{I}_4}{}$
4	q ightarrow r	Р
5	r	$\{3,4\}, \frac{\mathcal{I}_4}{}$

Example: Show that $s \lor r$ is tautologically implied by $p \lor q, \ p \to r$ and $q \to s$. Solution:

Step	Derivation	Rule
1	$p \lor q$	Р
2	eg p ightarrow q	Т
3	q o s	Р
4	eg p o s	$\{2,3\}, \mathcal{I}_{7}$
5	eg s ightarrow p	Т
6	$p \rightarrow r$	Р
7	$\neg s \rightarrow r$	$\{5,6\}, \frac{\mathcal{I}_7}{}$
8	$s \vee r$	Т

Example: Prove by indirect method that $p \to q$, $p \lor r$, $\neg q$ implies r. Solution: The desired result is r. Include $\neg r$ as a new premise.

Step	Derivation	Rule
1	p∨r	Р
2	$\neg r \rightarrow p$	Т
3	$\neg r$	P(additional premise)
4	p	$\{2,3\}$, $\frac{\mathcal{I}_4}{}$
5	p ightarrow q	Р
6	q	$\{4,5\}$, \mathcal{I}_{4}
7	$ \neg q$	Р
8	$q \wedge \neg q$	$\{6,7\}$, \mathcal{I}_3

The new premise together with the given premises, leads to a contradiction. Thus $p \to q$, $p \lor r$, $\neg q$ implies r.

Example: Prove that $p \to q, \ p \to r, \ q \to \neg r$ and p are inconsistent.

Solution: The desired result is false.

Step	Derivation	Rule
1	р	Р
2	p ightarrow q	Р
3	q	$\{1,2\}$, \mathcal{I}_{4}
4	q ightarrow eg r	Р
5	$\neg r$	$\{3,4\}, \frac{\mathcal{I}_4}{}$
6	$p \rightarrow r$	Р
7	$\neg p$	$\{5,6\}$, \mathcal{I}_{6}
8	F	$\{1,7\}$, \mathcal{I}_3

III. Problems:

- (i) Show that $r \lor s$ is tautologically implied by $c \lor d$, $(c \lor d) \to \neg h, \neg h \to (a \land \neg b)$ and $(a \land \neg b) \to (r \lor s)$.
- (ii) Show that $r \land (p \lor q)$ is tautologically implied by $p \lor q, \ q \to r, \ p \to m$ and $\neg m$.
- (iii) Show that $r \to s$ is tautologically implied by $\neg r \lor p, \ p \to (q \to s)$ and q.
- (iv) Show that $p \to s$ is tautologically implied by $\neg p \lor q, \ \neg q \lor r$ and $r \to s$.

- (v) Show that $p \to (q \to s)$ is tautologically implied by $p \to (q \to r)$ and $q \to (r \to s)$ using CP rule.
- (vi) Show that the following premises are inconsistent. $v \to I$, $I \to b$, $m \to \neg b$ and $v \land m$.
- (vii) Show that $p \to \neg s$ logically follows from the premises $p \to (q \lor r)$, $q \to \neg p$, $s \to \neg r$ and p by indirect method.
- (viii) Show that r logically follows from the premises $p \to q, \neg q$ and $p \lor r$ by indirect method.

Example: Consider the following statements: 'I take the bus or I walk. If I walk I get tired. I do not get tired. Therefore I take the bus.' We can formalize this by calling B = I take the bus, W = I walk and J = I get tired. The premises are $B \vee W$, $W \to J$ and $\neg J$, and the conclusion is B. The argument can be described in the following steps:

step	statement	reason
1	W o J	Р
2	$\neg J$	P
3	$\neg W$	$\{1,2\}$, Modus Tollens
4	$B \vee W$	P
5	В	{3,4}, Disjunctive Syllogism

- (i) Show that the following set of premises is inconsistent.
- 1. If Jack misses many classes through illness, then he fails high school.
- 2. If Jack fails high school, then he is uneducated.
- 3. If Jack reads a lot of books, then he is not uneducated.
- 4. Jack misses many classes through illness and reads a lot of books.

E : Jack misses many classes through illness

S: Jack fails high school

A: Jack reads a lot of books

H: Jack is uneducated.

E: Jack misses many classes through illness

S: Jack fails high school

A: Jack reads a lot of books

H: Jack is uneducated.

The premises are,

 \bullet $E \rightarrow S$

E: Jack misses many classes through illness

S: Jack fails high school

A: Jack reads a lot of books

H: Jack is uneducated.

- \bullet $E \rightarrow S$
- \bullet $S \rightarrow H$

E: Jack misses many classes through illness

S: Jack fails high school

A: Jack reads a lot of books

H: Jack is uneducated.

- \bullet $E \rightarrow S$
- \bullet $S \rightarrow H$
- $A \rightarrow \neg H$ and

E: Jack misses many classes through illness

S : Jack fails high school

A: Jack reads a lot of books

H: Jack is uneducated.

- \bullet $E \rightarrow S$
- \bullet $S \rightarrow H$
- $A \rightarrow \neg H$ and
- \bullet $E \wedge A$

Step	Derivation	Rule
1	$E \wedge A$	Р
2	E	Т
3	A	Т
4	$E \rightarrow S$	Р
5	S	$\{2,4\}$, \mathcal{I}_{4}
6	$S \rightarrow H$	Р
7	Н	$\{5,6\}, \frac{\mathcal{I}_4}{}$
8	A ightarrow eg H	Р
9	$\neg H$	$\{3,8\}$, \mathcal{I}_4
10	$H \wedge \neg H$	$\{7,9\}, \frac{\mathcal{I}_3}{}$

II. Problems:

- (i) Show that the following argument is valid.
- My father praises me only if i can be proud of myself. Either I do well in sports
- or I cannot be proud of myself. If study hard, then I cannot do well in sports. Therefore, if father praises me, then I do not study well.
- (ii) Show that the following set of premises is inconsistent.
- If the contract is valid, then John is liable for penalty. If John is liable for penalty,
- he will go bankrupt. If the bank will loan him money, he will not go bankrupt. As a matter of fact, the contract is valid and the bank will loan him money.