STATS 3006 Mathematical Statistics III Assignment 1 2018

Assignment 1 is due by 5:00pm Monday 19 March 2018.

Assignments are to be submitted online on MyUni.

1. Suppose $X \sim \text{geom}(p)$ with probability function

$$p(x) = p(1-p)^x$$
 for $x = 0, 1, 2, ...$

Prove that $var(X) = (1 - p)/p^2$.

2. Consider the Binomial distribution with probability function

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 for $x = 0, 1, 2, \dots, n$.

- (a) Show directly that E(X) = np. That is, without using the MGF.
- (b) Show directly that var(X) = np(1-p). That is, without using the MGF.
- (c) Consider the moment generating function, $M_n(t)$, for the binomial distribution with parameters n and p_n and suppose

$$n \to \infty$$
; $p_n \to 0$ such that $np_n = \mu > 0$.

Find $\lim_{n\to\infty} M_n(t)$ and interpret the result.

- 3. Suppose $X \sim \text{Gamma}(\alpha, \lambda)$.
 - (a) Show directly that $E(X) = \alpha/\lambda$. That is, without using the MGF.
 - (b) Show directly that $var(X) = \alpha/\lambda^2$. That is, without using the MGF.
 - (c) Show that the MGF is given by

$$M(t) = \left(\frac{\lambda}{\lambda - t}\right)^{\alpha}$$

for $t < \lambda$.

- 4. Suppose $U \sim U(0,1)$ and let $X = \sqrt{U}$.
 - (a) Find the PDF of X.
 - (b) Calculate E(X) directly from its PDF and also from the distribution of U and check that the two answers agree.
- 5. Supposed $U \sim U(0,1)$ and let X = 3U + 2.
 - (a) Find the MGF of X.
 - (b) Hence, identify the distribution of X.
- 6. Suppose $Z \sim N(0,1)$.
 - (a) Show that E(Z) = 0

- (b) Show that var(Z) = 1.
- (c) Derive the moment generating function, M(t).
- 7. Suppose $X \sim N(\mu, \sigma^2)$ and let Y = aX + b for constants a, b with $a \neq 0$. Prove that $Y \sim N(a\mu + b, a^2\sigma^2)$.

Honours Questions

The following questions are compulsory for Honours and Masters students and may be attempted for bonus marks by all students.

- 8. Suppose X has the Cauchy distribution. Find the distribution of Y = 1/X.
- 9. Consider the Poisson process with rate λ and suppose it is given that there is exactly 1 occurrence in the interval [0,t). Show that conditionally on this information, the exact time, X, of the occurrence is U(0,t).

Hint: Find the conditional CDF of X using the usual definition of conditional probability.

* * * * * *