Advance Serial Communication and Wireless Technologies

Outline

- Ethernet Communication
 - Ethernet port of LPC1769
 - Direct Connection between LPC1769
 - Connecting LPC1769 to Network
- Wireless Technologies
 - ZigBee
 - Bluetooth
 - Wifi
- Interfacing wireless modules to MCU

Basic of Ethernet

- Ethernet is a serial protocol which is designed to facilitate network communications.
 - Any device successfully connected to the Ethernet can potentially communicate with any other device connected to the network.
- Networks are often described as being one of two types:
 - Local area network (LAN): usually for devices connected together in close proximity, perhaps in the same building and often without Internet access
 - Wide area network (WAN): describes a network of devices over a greater geographical area, usually connected by the Internet.

Basic of Ethernet

- Ethernet communications
 - Serial Data communication
 - Defined by the IEEE 802.3 standard
 - Support data rates up to 100 Gigabits per second.
 - Uses differential send (Tx) and receive (Rx) signals, resulting in four wires labeled RX+, RX-, TX+ and TX-

Basic of Ethernet

- Ethernet Data package: A serial data packet referred to as *frame*.
- Frame defines its own size
 - Only the necessary amount of data is communicated, with no wasted or empty data bytes
- Each frame also includes
 - A unique source and destination MAC address.
 - A set of preamble and start of frame (SOF) bytes and
 - A frame check sequence (FCS)
- Package is transmitted least-significant bit first

Ethernet Frame

Preamble	Start of	Destinatio	Source	Length	Data	Frame	Interframe
	frame	MAC	MAC			check	gap
	delimiter	address	address			sequence	
7 bytes of	1 byte of	6	6	2	46-1500	4	12
10101010	10101011	bytes	bytes	bytes	bytes	bytes	bytes
synchronous			header	•	payload	CRC	Idle

- Minimum package size is 7+1+6+6+2+46+4 = 72 bytes
- If data is less than 46 bytes, 0x00 will be filled in until its payload is equal to 46 bytes
- Using Manchester encoding to simplify clock recovery (it does not have no explicit clock line)

Manchester Encoding for Ethernet

- Low-to-hi transition means 1, hi-to-low transition means 0.
- This always creates transition in data stream. As a result, the clock signal is effectively embedded within the data.

LPC1769 Ethernet Port

- Features and Configuration
 - 10/100 Mbps, Fully compliant with IEEE 802.3
 - Independent transmit and receive buffers memory mapped to shared SRAM

(for more see the user manual)

- Configuration
 - Power set PCENET in PCONP
 - Pin set PONSEL, PINMODE
 - Interrupts are enabled in NVIC using ISEN Register

LPC1769 Ethernet Port

- Ethernet Communicate between two LPC1769s
 - Differential signaling
 - Crossed signal connection
 - Configure its registers or use API such as mbed.h

LPC1769: Ethernet Port

- Connecting to the network
 - Link embedded system to the internet (and hence the devices under its control)
 - Once the link is established we can do many things such as monitor status, exert the control, etc.
 - For examples
 - Update firmware of embedded system over the internet
 - Vending machine report its stock to the head office
 - Remotely control home appliances from the office
 - etc.

LPC1769 Ethernet

Connecting Xpresso to the network

- Requires
 - Software: network interface libraries (as a software stack)
 - Hardware: connecting network port to a hub/router (RJ45)
- Using Xpresso as an HTTP client
 - To access data from the Internet, it requires
- Using Xpresso as an HTTP File sever
 - Host files to be accessed from a remote PC
- Using Remote Procedure Calls (RPCs) to modify LPC1769 outputs
 - Ex: RPCs from a network PC to control GPIO port, etc.

Wireless Technologies

Embedded System + Wireless Technology

Wireless Technologies

ZigBee: Basic

- Protocol for low speed, low power wireless network
- Adapted from IEEE 802.15.4
- Applications
 - Home Automation
 - Building Automation
 - Healthcare system
 - Wireless sensor network (WSN)

ZigBee Protocol Stack

ZigBee in Home Automation

ZigBee in Smart Power Management

(Source: Dr.Visit Hirankitti and PEA)

Wireless Sensor Network using ZigBee

ZigBee: Basic

- How to use Zigbee with MCU?
 - Using ZigBee module such as the Xbee
 - Radio Transceiver
 - Simple digital I/O
 - Interface with MCU using UART

Bluetooth

- What is Bluetooth?
 - A form of digital radio communication, operating in the 2.402-2.480 GHz radio band
 - Provides wireless data links between devices such as mobile phones, computers, wireless audio headsets and systems requiring the use of remote sensors
 - Accepted as a standard (IEEE 802.15)
- Main characteristics :
 - Class
 - Range
 - Power
 - Data rate
 - Number of simultaneous links

Bluetooth: Basic

Class	Max. permi	Typ. range	
	(mW)	(dBm)	Typ. range (m)
1	100	20	100
2	2.5	4	10
3	1	0	1

Version	Data rate	Max. application throughput
1.2	1 Mbit/s	80 kbit/s
2.0 + EDR	3 Mbit/s	80 kbit/s
3.0 + HS	24 Mbit/s	N/A
4.0	24 Mbit/s	N/A

Current version is V 4.1 (low Energy Blue Tooth Smart)

Bluetooth System-on-chip

nRF51822 MCU + BT transceiver

Bluetooth System-on-chip

Button and LED connection

Part	GPIO	Short
Button 1	P0.16	
Button 2	P0.17	
LED 1	P0.18	SB6
LED 2	P0.19	SB7

UART connections on nRF51822 and the Interface MCU

nRF51822		Interface MCU	
Default GPIO	UART	UART	
P0.09	TXD	RXD	
P0.11	RXD	TXD	

Wi-Fi Overview

- Protocol
 - Built on the IEEE 802.11 standard (WLAN)
 - Conformance testing performed by the non-profit Wi-Fi Alliance (formed in 1999)
- Why Wi-Fi Network?
 - Widely used to connect a variety of devices
 - Expanding network in the future
 - Flexibility
 - Internet of Things
 - Recently TI has introduced ARM Cortex-M4 with WiFi

Wi-Fi Module

PCB Trace WiFly RN-171 Reset Pushbutton (GP109)

- 10 general-purpose digital I/O pins
- 8 analog sensor interfaces;
- Ultra-low power: 4 μA sleep, 40 mA Rx, 180 mA Tx at +10 dBm
- Configurable transmit power: 0 to +12 dBm
- UART hardware interface
- Up to 1 Mbps data rate over UART

RN-171 Network Support

Infrastructure

- Client nodes communicate via an access point
- Most common, like connecting your PC to a
- home network

Adhoc

- Point-to-Point connection
- Every node connected to every other node
- Android unsupported

Soft AP

- Module looks like an Access point
- AP module is central coordinator
- Basic network management
- DHCP, Routing, Gateway redirection

Interfacing to MCU

- Usually interfaces to MCU through serial communication such as UART, USB, SPI, I2C
- Modules for standard communication usually provide either partial or complete software stack
 - Partial: User interfaces with drivers and implements stack and services
 - Complete: User interfaces to simple API
- Configuration/set up
 - Can be done in text mode such as using text command with terminal emulator configure before connecting to a MCU
 - Can be done by connecting to MCU and using its serial port to configure the device registers

The End