Übung "Grundbegriffe der Informatik"

Karlsruher Institut für Technologie

Matthias Schulz, Gebäude 50.34, Raum 247

email: schulz@ira.uka.de

Matthias Janke, Gebäude 50.34, Raum 249

email: matthias.janke@kit.edu

$$L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$$

Allgemein:
$$A \circ B = \{a \circ b \mid a \in A \land b \in B\}$$

$$L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$$

Allgemein: $A \circ B = \{a \circ b \mid a \in A \land b \in B\}$

Endliche Mengen $A, B: |A \circ B| \leq |A| \cdot |B|$

Beispiel Multiplikation:

$$\{1, 2, 3, 4, 5\} \cdot \{1, 2, 3, 4, 5\}$$
:

Beispiel Multiplikation:

$$\{1, 2, 3, 4, 5\} \cdot \{1, 2, 3, 4, 5\}$$
:

•	1	2	3	4	5
1	1	2	3	4	5
2	2	4	6	8	10
3	3	6	9	12	15
4	4	8	12	16	20
5	5	10	15	4 8 12 16 20	25

Beispiel Multiplikation:

$$\{1, 2, 3, 4, 5\} \cdot \{1, 2, 3, 4, 5\}$$
:

•	1	2	3	4	5
1	1	2	3	4	5
2	2	4	6	8	10
3	3	6	9	12	15
4	4	8	12	16	20
5	5	10	15	4 8 12 16 20	25

$$\{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25\}$$

25 Einträge, 14 verschiedene Elemente

$$L^{0} = \{\epsilon\}, \forall n \in \mathbb{N}_{0} : L^{n+1} = L^{n} \cdot L$$

Allgemein: Falls $\exists e \in M : \forall x \in M : e \circ x = x = x \circ e$:

$$M^{0} = \{e\}, \forall n \in \mathbb{N}_{0} : M^{n+1} = M^{n} \circ M.$$

Menge M abgeschlossen bezüglich Operation \circ :

$$\forall x \in M : \forall y \in M : x \circ y \in M$$

Menge M abgeschlossen bezüglich Operation \circ :

 $\forall x \in M : \forall y \in M : x \circ y \in M$

Kürzer: $\forall x,y \in M : x \circ y \in M$

Menge M abgeschlossen bezüglich Operation \circ :

 $\forall x \in M : \forall y \in M : x \circ y \in M$

Kürzer: $\forall x, y \in M : x \circ y \in M$

Noch kürzer: $M \circ M \subseteq M$

Menge M abgeschlossen bezüglich Operation \circ :

 $\forall x \in M : \forall y \in M : x \circ y \in M$

Kürzer: $\forall x,y \in M: x \circ y \in M$

Noch kürzer: $M \circ M \subseteq M$

Ganz arg kurz: $M^2 \subseteq M$.

Behauptung: $L^+ \cdot L^+ \subseteq L^+$

Behauptung: $L^+ \cdot L^+ \subseteq L^+$

Beweis, dass eine Menge Teilmenge einer anderen Menge ist:

• Nimm beliebiges, aber festes Element aus erster Menge.

• Zeige, dass Element auch in zweiter Menge liegen muss.

_

Behauptung: $L^+ \cdot L^+ \subseteq L^+$

 $w \in L^+ \cdot L^+$ beliebig, aber fest gewählt.

Behauptung: $L^+ \cdot L^+ \subseteq L^+$

 $w \in L^+ \cdot L^+$ beliebig, aber fest gewählt.

$$\Rightarrow \exists w_1 \in L^+ : \exists w_2 \in L^+ : w = w_1 w_2$$

Behauptung: $L^+ \cdot L^+ \subset L^+$

 $w \in L^+ \cdot L^+$ beliebig, aber fest gewählt.

 $\Rightarrow \exists w_1 \in L^+ : \exists w_2 \in L^+ : w = w_1 w_2$

 $\Rightarrow \exists n_1, n_2 \in \mathbb{N}_+ : \exists w_1 \in L^{n_1} : \exists w_2 \in L^{n_2} : w = w_1 w_2$

Behauptung: $L^+ \cdot L^+ \subset L^+$

```
w \in L^+ \cdot L^+ beliebig, aber fest gewählt.
```

$$\Rightarrow \exists w_1 \in L^+ : \exists w_2 \in L^+ : w = w_1 w_2$$

$$\Rightarrow \exists n_1, n_2 \in \mathbb{N}_+ : \exists w_1 \in L^{n_1} : \exists w_2 \in L^{n_2} : w = w_1 w_2$$

$$\Rightarrow \exists n_1, n_2 \in \mathbb{N}_+ : w \in L^{n_1 + n_2}$$

Behauptung: $L^+ \cdot L^+ \subset L^+$

```
w \in L^+ \cdot L^+ beliebig, aber fest gewählt.

\Rightarrow \exists w_1 \in L^+ : \exists w_2 \in L^+ : w = w_1 w_2
\Rightarrow \exists n_1, n_2 \in \mathbb{N}_+ : \exists w_1 \in L^{n_1} : \exists w_2 \in L^{n_2} : w = w_1 w_2
\Rightarrow \exists n_1, n_2 \in \mathbb{N}_+ : w \in L^{n_1 + n_2}
\Rightarrow \exists n \in \mathbb{N}_+ : w \in L^n
```

Behauptung: $L^+ \cdot L^+ \subset L^+$

```
w \in L^+ \cdot L^+ beliebig, aber fest gewählt.

\Rightarrow \exists w_1 \in L^+ : \exists w_2 \in L^+ : w = w_1 w_2
\Rightarrow \exists n_1, n_2 \in \mathbb{N}_+ : \exists w_1 \in L^{n_1} : \exists w_2 \in L^{n_2} : w = w_1 w_2
\Rightarrow \exists n_1, n_2 \in \mathbb{N}_+ : w \in L^{n_1 + n_2}
\Rightarrow \exists n \in \mathbb{N}_+ : w \in L^n
\Rightarrow w \in L^+
```

Behauptung: $L^+ \cdot L^+ \subset L^+$

 $w \in L^+ \cdot L^+$ beliebig, aber fest gewählt. $\Rightarrow \exists w_1 \in L^+ : \exists w_2 \in L^+ : w = w_1 w_2$ $\Rightarrow \exists n_1, n_2 \in \mathbb{N}_+ : \exists w_1 \in L^{n_1} : \exists w_2 \in L^{n_2} : w = w_1 w_2$ $\Rightarrow \exists n_1, n_2 \in \mathbb{N}_+ : w \in L^{n_1 + n_2}$ $\Rightarrow \exists n \in \mathbb{N}_+ : w \in L^n$

Daraus folgt $L^+ \cdot L^+ \subseteq L^+$.

.

 $\Rightarrow w \in L^+$

Feststellung: $\forall n \in \mathbb{N}_+ : (L^+)^n \subseteq L^+$

Details wären zu verräterisch, was das 3. Übungsblatt angeht ...

Behauptung:
$$(L^+)^+ = L^+$$

Behauptung: $(L^+)^+ = L^+$

Nachweis der Gleichheit von zwei Mengen:

• Zeige, dass linke Menge Teilmenge von rechter Menge ist.

 Zeige, dass rechte Menge Teilmenge von linker Menge ist.

Behauptung: $(L^+)^+ = L^+$

(i)
$$(L^+)^+ \subseteq L^+$$
:

Sei $w \in (L^+)^+$ beliebig, aber fest gewählt.

Behauptung: $(L^+)^+ = L^+$

(i)
$$(L^+)^+ \subseteq L^+$$
:

Sei $w \in (L^+)^+$ beliebig, aber fest gewählt. $\Rightarrow \exists n \in \mathbb{N}_+ : w \in (L^+)^n \subseteq L^+$

Behauptung: $(L^+)^+ = L^+$

(i)
$$(L^+)^+ \subseteq L^+$$
:

Sei $w \in (L^+)^+$ beliebig, aber fest gewählt. $\Rightarrow \exists n \in \mathbb{N}_+ : w \in (L^+)^n \subseteq L^+$ $\Rightarrow w \in L^+$

Behauptung: $(L^+)^+ = L^+$

(i)
$$(L^+)^+ \subseteq L^+$$
:

Sei $w \in (L^+)^+$ beliebig, aber fest gewählt. $\Rightarrow \exists n \in \mathbb{N}_+ : w \in (L^+)^n \subseteq L^+$ $\Rightarrow w \in L^+$

Daraus folgt $(L^+)^+ \subseteq L^+$.

Behauptung: $(L^+)^+ = L^+$

(ii)
$$L^{+} \subseteq (L^{+})^{+}$$
:

Sei $w \in L^+$ beliebig, aber fest gewählt.

Behauptung: $(L^+)^+ = L^+$

(ii)
$$L^{+} \subseteq (L^{+})^{+}$$
:

Sei $w \in L^+$ beliebig, aber fest gewählt. $\Rightarrow \exists n \in \mathbb{N}_+ : w \in (L^+)^n \text{ (nämlich } n = 1)$

Behauptung: $(L^+)^+ = L^+$

(ii)
$$L^{+} \subseteq (L^{+})^{+}$$
:

Sei $w \in L^+$ beliebig, aber fest gewählt. $\Rightarrow \exists n \in \mathbb{N}_+ : w \in (L^+)^n \text{ (nämlich } n = 1)$ $\Rightarrow w \in (L^+)^+$

Behauptung: $(L^+)^+ = L^+$

(ii)
$$L^{+} \subseteq (L^{+})^{+}$$
:

Sei $w \in L^+$ beliebig, aber fest gewählt. $\Rightarrow \exists n \in \mathbb{N}_+ : w \in (L^+)^n \text{ (nämlich } n = 1)$ $\Rightarrow w \in (L^+)^+$

Daraus folgt $L^+ \subseteq (L^+)^+$.

Behauptung: $(L^+)^+ = L^+$

Aus (i) und (ii) folgt $(L^{+})^{+} = L^{+}$

Es gilt: $L^* \cdot L^* = L^*$

Dann einfach zu zeigen: $\forall n \in \mathbb{N}_+ : (L^*)^n = L^*$

$$\Rightarrow (L^*)^* = L^*$$

Widerspruchsbeweise

$$L\subseteq A^*$$

Was ist $L \cdot \{\}$?

Widerspruchsbeweise

Was ist $L \cdot \{\}$?

Annahme: $L \cdot \{\} \neq \{\}$.

Widerspruchsbeweise

Was ist $L \cdot \{\}$?

Annahme: $L \cdot \{\} \neq \{\}$.

Sei dann $w \in L' = L \cdot \{\}$ beliebig, aber fest gewählt.

Was ist $L \cdot \{\}$?

Annahme: $L \cdot \{\} \neq \{\}$.

Sei dann $w \in L' = L \cdot \{\}$ beliebig, aber fest gewählt.

 $\Rightarrow \exists w_1 \in L : \exists w_2 \in \{\} : w = w_1 w_2$

Was ist $L \cdot \{\}$?

Annahme: $L \cdot \{\} \neq \{\}$.

Sei dann $w \in L' = L \cdot \{\}$ beliebig, aber fest gewählt.

 $\Rightarrow \exists w_1 \in L : \exists w_2 \in \{\} : w = w_1 w_2$

 $\exists w_2 \in \{\}???$

Was ist $L \cdot \{\}$?

Annahme: $L \cdot \{\} \neq \{\}$.

Sei dann $w \in L' = L \cdot \{\}$ beliebig, aber fest gewählt. $\Rightarrow \exists w_1 \in L : \exists w_2 \in \{\} : w = w_1w_2$

Widerspruch zur Definition der leeren Menge!

Was ist $L \cdot \{\}$?

Annahme: $L \cdot \{\} \neq \{\}$.

Sei dann $w \in L' = L \cdot \{\}$ beliebig, aber fest gewählt. $\Rightarrow \exists w_1 \in L : \exists w_2 \in \{\} : w = w_1w_2$

Widerspruch zur Definition der leeren Menge!

 \Rightarrow Annahme war falsch, und $L \cdot \{\} = \{\}$ muss gelten.

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.$

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.$

Beispiele: $abacbccbc, abc, bbabbcbb \in L$

Gegenbeispiele: $abacaba, ca, cbbba \notin L$

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.$

Beispiele: $abacbccbc, abc, bbabbcbb \in L$

Gegenbeispiele: $abacaba, ca, cbbba \notin L$

 $aabaa \in L$?

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.$

Beispiele: $abacbccbc, abc, bbabbcbb \in L$

Gegenbeispiele: $abacaba, ca, cbbba \notin L$

 $aabaa \in L$? Unklar!

Wenn etwas unklar ist: Tutoren fragen, Übungsleiter fragen, Annahmen treffen.

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.$

Beispiele: $abacbccbc, abc, bbabbcbb \in L$

Gegenbeispiele: $abacaba, ca, cbbba \notin L$

 $aabaa \in L!$

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.$

Struktur: Erst beliebig viele a und b, dann ein c, danach keine a mehr

oder: Nur a und b

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.$

Struktur: Erst beliebig viele a und b, dann ein c, danach keine a mehr

$${a,b}^*{c}{b,c}^*$$

oder: Nur a und b

$$\cup \{a,b\}^*$$

$$A = \{a, b, c\}$$

$$L = \{w \in A^* \mid \text{vor einem } b \text{ steht nie ein } a \}.$$

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{vor einem } b \text{ steht nie ein } a \}.$

Beispiele: $aaacbbbbaaaca, acacbac \in L$

Gegenbeispiele: $ab, acabbcba \notin L$

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{vor einem } b \text{ steht nie ein } a \}.$

Struktur: Vor erstem b in einem Block steht ein c

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{vor einem } b \text{ steht nie ein } a \}.$

Struktur: Vor erstem b in einem Block steht ein c

$${a,c}^*{c}{b}^+$$

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{vor einem } b \text{ steht nie ein } a \}.$

Struktur: Vor erstem b in einem Block steht ein c

 $\{a,c\}^*\{c\}\{b\}^+$, wenn nur ein b-Block vorhanden.

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{vor einem } b \text{ steht nie ein } a \}.$

Struktur: Vor erstem b in einem Block steht ein c

 $\{a,c\}^*\{c\}\{b\}^+$, wenn genau ein b-Block vorhanden.

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{vor einem } b \text{ steht nie ein } a \}.$

Struktur: Vor erstem b in einem Block steht ein c

 $(\{a,c\}^*\{c\}\{b\}^+)^*$ für beliebig viele b-Blöcke.

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{vor einem } b \text{ steht nie ein } a \}.$

Struktur: Vor erstem b in einem Block steht ein c außer, wenn das erste Zeichen ein b ist!

$$({a,c}^*{c}_b^+)^* \cup {b}^+({a,c}^*{c}_b^+)^*$$

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{vor einem } b \text{ steht nie ein } a \}.$

Struktur: Vor erstem b in einem Block steht ein c außer, wenn das erste Zeichen ein b ist!

$$({a,c}^*{c}_b^+)^* \cup {b}^+({a,c}^*{c}_b^+)^*$$

Ausklammern: $(\{b\}^+ \cup \{\epsilon\})(\{a,c\}^* \{c\} \{b\}^+)^*$

 $L = \{w \in A^* \mid \text{vor einem } b \text{ steht nie ein } a \}.$

$$({a,c}^*{c}_b^+)^* \cup {b}^+({a,c}^*{c}_b^+)^*$$

Ausklammern: $(\{b\}^+ \cup \{\epsilon\})(\{a,c\}^* \{c\} \{b\}^+)^*$

Erinnern: $\{b\}^*(\{a,c\}^*\{c\}\{b\}^+)^*$

 $L = \{w \in A^* \mid \text{vor einem } b \text{ steht nie ein } a \}.$

$${b}^*({a,c}^*{c}_{b}^+)^*$$

Obligatorischer "Mist, ich habe was vergessen"-Moment:

Wörter aus der angegebenen Sprache enden mit b, falls ein b vorkommt.

 $L = \{w \in A^* \mid \text{vor einem } b \text{ steht nie ein } a \}.$

$${b}^*({a,c}^*{c}_{b}^+)^*$$

Obligatorischer "Mist, ich habe was vergessen"-Moment:

Wörter aus der angegebenen Sprache enden mit b, falls ein b vorkommt.

$${b}^*({a,c}^*{c}_{b}^+)^*{a,c}^*$$

 $L = \{w \in A^* \mid \text{vor einem } b \text{ steht nie ein } a \}.$

$$({a,c}^*{c}_b^+)^* \cup {b}^+({a,c}^*{c}_b^+)^*$$

Feinschliff: $\{b\}^*(\{a\} \cup (\{c\}\{b\}^*))^*$

Hinweis: Es gibt schönere Notationen ...

Zu zeigen: $L \subseteq L \cdot L \Rightarrow \epsilon \in L$

Fehler in Aufgabenstellung: $\{\} \cdot \{\} \subseteq \{\}$ ist natürlich auch korrekt, obwohl $\epsilon \notin \{\}$ gilt. Wir gehen daher von einer nichtleeren Sprache L aus!

Zu zeigen: $L \subseteq L \cdot L \Rightarrow \epsilon \in L$

Beispiel: $L = \{ab, aa, a, ac\}$

Zu zeigen: $L \subseteq L \cdot L \Rightarrow \epsilon \in L$

Beispiel: $L = \{ab, aa, a, ac\}$

Zu zeigen: $L \subseteq L \cdot L \Rightarrow \epsilon \in L$

Beispiel: $L = \{ab, aa, a, ac\}$

Betrachte Wortlängen ...

Zu zeigen: $L \subseteq L \cdot L \Rightarrow \epsilon \in L$

Voraussetzung: Für L gilt $L \subseteq L \cdot L$.

Sei $w \in L$ ein Wort mit minimaler Länge |w| = n.

Zu zeigen: $L \subseteq L \cdot L \Rightarrow \epsilon \in L$

Voraussetzung: Für L gilt $L \subseteq L \cdot L$.

Sei $w \in L$ ein Wort mit minimaler Länge |w| = n.

$$\Rightarrow \forall w_1, w_2 \in L : |w_1 w_2| = |w_1| + |w_2| \ge 2n$$

Zu zeigen: $L \subseteq L \cdot L \Rightarrow \epsilon \in L$

Voraussetzung: Für L gilt $L \subseteq L \cdot L$.

Sei $w \in L$ ein Wort mit minimaler Länge |w| = n.

$$\Rightarrow \forall w_1, w_2 \in L : |w_1 w_2| = |w_1| + |w_2| \ge 2n$$

$$\Rightarrow \forall w' \in L^2 : |w'| \ge 2n.$$

Zu zeigen: $L \subseteq L \cdot L \Rightarrow \epsilon \in L$

Voraussetzung: Für L gilt $L \subseteq L \cdot L$.

Sei $w \in L$ ein Wort mit minimaler Länge |w| = n.

$$\Rightarrow \forall w_1, w_2 \in L : |w_1 w_2| = |w_1| + |w_2| \ge 2n$$

$$\Rightarrow \forall w' \in L^2 : |w'| \ge 2n.$$

Da nach Voraussetzung $w \in L \subseteq L^2$ gilt, folgt $|w| \ge 2n$

Zu zeigen: $L \subseteq L \cdot L \Rightarrow \epsilon \in L$

Voraussetzung: Für L gilt $L \subseteq L \cdot L$.

Sei $w \in L$ ein Wort mit minimaler Länge |w| = n.

$$\Rightarrow \forall w_1, w_2 \in L : |w_1 w_2| = |w_1| + |w_2| \ge 2n$$

$$\Rightarrow \forall w' \in L^2 : |w'| \ge 2n.$$

Da nach Voraussetzung $w \in L \subseteq L^2$ gilt, folgt $|w| \ge 2n$ $\Rightarrow n \ge 2n$

Zu zeigen: $L \subseteq L \cdot L \Rightarrow \epsilon \in L$

Voraussetzung: Für L gilt $L \subseteq L \cdot L$.

Sei $w \in L$ ein Wort mit minimaler Länge |w| = n.

$$\Rightarrow \forall w_1, w_2 \in L : |w_1 w_2| = |w_1| + |w_2| \ge 2n$$

$$\Rightarrow \forall w' \in L^2 : |w'| \ge 2n.$$

Da nach Voraussetzung $w \in L \subseteq L^2$ gilt, folgt $|w| \ge 2n$ $\Rightarrow n \ge 2n \Rightarrow n \le 0$

Zu zeigen: $L \subseteq L \cdot L \Rightarrow \epsilon \in L$

Voraussetzung: Für L gilt $L \subseteq L \cdot L$.

Sei $w \in L$ ein Wort mit minimaler Länge |w| = n.

$$\Rightarrow \forall w_1, w_2 \in L : |w_1 w_2| = |w_1| + |w_2| \ge 2n$$

$$\Rightarrow \forall w' \in L^2 : |w'| \ge 2n.$$

Da nach Voraussetzung $w\in L\subseteq L^2$ gilt, folgt $|w|\geq 2n$ $\Rightarrow n\geq 2n$ $\Rightarrow n<0$ $\Rightarrow n=0$

Zu zeigen: $L \subseteq L \cdot L \Rightarrow \epsilon \in L$

Voraussetzung: Für L gilt $L \subseteq L \cdot L$.

Sei $w \in L$ ein Wort mit minimaler Länge |w| = n.

$$\Rightarrow \forall w_1, w_2 \in L : |w_1 w_2| = |w_1| + |w_2| \ge 2n$$

$$\Rightarrow \forall w' \in L^2 : |w'| \ge 2n.$$

Da nach Voraussetzung $w \in L \subseteq L^2$ gilt, folgt $|w| \ge 2n$ $\Rightarrow n \ge 2n \Rightarrow n \le 0 \Rightarrow n = 0 \Rightarrow w = \epsilon$. \square