

3.1. 结型场效应管

3.1.1 JFET的结构与工作原理

3.1.2 JFET的特性曲线

【问题思考】 $u_{\rm GS}$ =0可工作在恒流区的场效应管有哪几种? $u_{\rm GS}$ >0才可能工作在恒流区的场效应管有哪几种? $u_{\rm GS}$ <0才可能工作在恒流区的场效应管有哪几种?

N沟道MOSFET工作区判断

类型。	截止区。	可变电阻区。	預夹断区。	放大区。
N沟道	$U_{\rm GS} < U_{\rm GS(th)}$	$U_{GS} > U_{GS(sh)} > 0$	$U_{GS} > U_{GS(sh)} > 0$	$U_{GS} > U_{GS(sh)} > 0$
增强型		$U_{\rm GD} > U_{\rm GS(sh)}$	$U_{GD} = U_{GS(sh)}$	$U_{GD} < U_{GS(sh)}$ +
MOSFET.	$U_{\mathrm{DS}}>0$	U _{Di} >0(充分条件)	Uns > 0(充分条件)	U _{DS} > 0(充分条件)
V 沟道	$U_{\rm GS} < U_{\rm GS(eff)} < 0$	$U_{GS} > U_{GS(egF)}$	$U_{GS} > U_{GS(aff)}$	$U_{GS} > U_{GS(agr)}$
耗尽型	$U_{GD} < U_{GS(cgl)} < 0^{\omega}$	$U_{GD} > U_{GS(eff)}$ \circ	$U_{ab} = U_{as(ab)}$	$U_{GD} < U_{GR(eff)}$ +
MOSFET.	$U_{DS} > 0$	U _{DS} > 0(充分条件)	$U_{DS} > 0$ (充分条件)	U _{DS} > 0(充分条件)

例A 判断下图各场效应管的工作状态。已知 $U_{GS\ (th)}$ =-2V ho -10V

为什么要画出转移特性曲线? 为了便于分析!

3.3 场效应管的主要参数 及交流小信号模型

3.3.1 场效应管的主要参数

3.3.2 场效应管的交流小信号模型

3.3.2 场效应管的交流小信号模型

3.4 场效应管放大电路

3.4.1 场效应管放大电路的静态偏置及静态分析

3.4.2 场效应管放大电路的动态分析

3.4.1 场效应管放大电路的静态偏置及静态分析

栅极电阻 R_G 的作用: $\left\{egin{array}{c} (1) 为栅偏压提供通路 \\ (2) 泻放栅极积累电荷 \end{array}\right.$

源极电阻 R_s 的作用: 提供负栅偏压

漏极电阻 R_D 的作用: 把 i_D 的变化变为 u_{DS} 的变化

估算法静态分析 $\left\{ \begin{aligned} U_{\rm GSQ} &= -I_{\rm DQ} R_{\rm S} \\ I_{\rm DQ} &= I_{\rm DSS} (1 - \frac{U_{\rm GSQ}}{U_{\rm GS(off)}})^2 \end{aligned} \right.$ 解方程组得 直流通路 $U_{\rm GSO} = \cdots$ $I_{\text{DO}} = \cdots$ $U_{\rm DSO} = V_{\rm DD} - I_{\rm DO}(R_{\rm D} + R_{\rm S})$

