

Building Maintenance and Repair Data for Life-Cycle Cost Analyses: Electrical Systems

by Edgar S. Neely Robert D. Neathammer James R. Stirn Robert P. Winkler

This research project has provided improved maintenance resource data for use during facility planning, design, and maintenance activities. Data bases and computer systems have been developed to assist planners in preparing DD Form 1391 documentation, designers in life-cycle cost component selection, and maintainers in resource planning. The data bases and computer systems are being used by U.S. Army Corps of Engineers (USACE) designers at the District and installation levels and by resource programmers at USACE Headquarters, and Army Major Commands and installations. These research products may also be useful to other Government agencies and the private sector.

This report describes the building task maintenance and repair data base development and gives examples of its application. It is one of a series of special reports on the maintenance and repair data base. While this report describes electrical systems, other reports in the series cover heating, ventilation, and air-conditioning systems, plumbing systems, and architectural systems.

Approved for public release; distribution is unlimited.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0189

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Histories, Via 1204, Adjuston, Via 2202-4302, and to the Office of Management and Rudost Persent Reduction Prince (0774-0198, Westerter, Oct. 1999).

Building Maintenance and Repair Data for Life-Cycle Cost Analyses: Electrical Systems 6. AUTHOR(S) Edgar S. Neely, Robert D. Neathammer, James R. Stim, and Robert P. Winkler 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Construction Engineering Research Laboratory (USACERL) P. O. Box 9005 Champaign, IL 61826-9005 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) HQUSACE Office of the Chief of Engineers ATTN: CEMP-EC ATTN: DAEN-ZCF-R	REPORT NUMBER
Electrical Systems AUTHOR(S) Edgar S. Neely, Robert D. Neathammer, James R. Stim, and Robert P. Winkler Performing organization name(s) and address(es) U.S. Army Construction Engineering Research Laboratory (USACERL) P. O. Box 9005 Champaign, IL 61826-9005 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) HQUSACE Office of the Chief of Engineers ATTN: CEMP-EC ATTN: DAEN-ZCF-R	8. PERFORMING ORGANIZATION REPORT NUMBER
Edgar S. Neely, Robert D. Neathammer, James R. Stim, and Robert P. Winkler Performing organization name(s) and address(es) U.S. Army Construction Engineering Research Laboratory (USACERL) P. O. Box 9005 Champaign, IL 61826-9005 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) HQUSACE Office of the Chief of Engineers ATTN: CEMP-EC ATTN: DAEN-ZCF-R	REPORT NUMBER
Winkler PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Construction Engineering Research Laboratory (USACERL) P. O. Box 9005 Champaign, IL 61826-9005 SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) HQUSACE Office of the Chief of Engineers ATTN: CEMP-EC ATTN: DAEN-ZCF-R	REPORT NUMBER
U.S. Army Construction Engineering Research Laboratory (USACERL) P. O. Box 9005 Champaign, IL 61826-9005 SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) HQUSACE Office of the Chief of Engineers ATTN: CEMP-EC ATTN: DAEN-ZCF-R)
P. O. Box 9005 Champaign, IL 61826-9005 SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) HQUSACE Office of the Chief of Engineers ATTN: CEMP-EC ATTN: DAEN-ZCF-R)
HQUSACE Office of the Chief of Engineers ATTN: CEMP-EC ATTN: DAEN-ZCF-R	
HQUSACE Office of the Chief of Engineers ATTN: CEMP-EC ATTN: DAEN-ZCF-R	
ATTN: CEMP-EC ATTN: DAEN-ZCF-R	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
20 Massachusetts Avenue, NW Pentagon Washington DC 20001 Washington DC 20310	AGENOT REPORT NUMBER
11. SUPPLEMENTARY NOTES	
Copies are available from the National Technical Information Service, Springfield, VA 22161	5285 Port Royal Road,
12a. DISTRIBUTION/AVAILABILITY STATEMENT	12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.	
13. ABSTRACT (Maximum 200 words)	

This research project has provided improved maintenance resource data for use during facility planning, design, and maintenance activities. Data bases and computer s systems have been developed to assist planners in preparing DD Form 1391 documentation, designers in life-cycle cost component selection, and maintainers in resource planning. The data bases and computer systems are being used by U.S. Army Corps of Engineers (USACE) designers at the District and installation levels and by resource programmers at USACE Headquarters, and Army Major Commands and installations. These research products may also be useful to other Government agencies and the private sector.

This report describes the building task maintenance and repair data base development and gives examples of its application. It is one of a series of special reports on the maintenance and repair data base. While this report describes electrical systems, other reports in the series cover heating, ventilation, and air-conditioning systems, plumbing systems, and architectural systems.

14. SUBJECT TERMS data bases	facilities	maintenance	15. NUMBER OF PAGES 66	
life-cycle costs	cost analysis		16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT	
Unclassified	Unclassified	Unclassified	SAR	

FOREWORD

This research was conducted for the Directorate of Military Programs, Headquarters, U.S. Army Corps of Engineers (HQUSACE) and the Office of the Assistant Chief of Engineers under various research, development, testing, and evaluation (RDTE) and reimbursable funding documents. Work began under RDTE in 1980 and continued in reimbursable projects during 1984 through 1989. The technical monitor for the RDTE part was Dr. Larry Schindler (CEMP-EC) and for the reimbursable part was Ms. Val Corbridge (DAEN-ZCF-R).

The work was performed by the Facility Systems Division (FS), U.S. Army Construction Engineering Research Laboratory (USACERL). The Principal Investigators were Dr. Edgar Neely and Mr. Robert Neathammer (USACERL-FS). The primary contractor for much of the data development was the Department of Architectural Engineering, Pennsylvania State University. Dr. Michael O'Connor is Chief of USACERL-FS.

COL Everett R. Thomas is Commander and Director of USACERL, and Dr. L.R. Shaffer is Technical Director.

· < 1	Accession For	4
CCPY ED	NTIS GRA&I DTIC TAB Unannounced Justification	
	By	
	Dist Special	

CONTENTS

	P	age
	SF 298	1
	FOREWORD	2
	LIST OF TABLES AND FIGURES	4
1	INTRODUCTION Background Research Performed and Reports Published Objective Approach Scope Mode of Technology Transfer	. 5
2	PROBLEM DEFINITION	11
_		••
3	Introduction Historical Data Review Engineered Performance Standards Committee Reviews Building Subdivision Task Data Development Significance of the Task Data Component Summary Tables Life-Cycle Cost Analysis Tables	12
4	DATA BASE APPLICATION EXAMPLES	24
	REFERENCES	38
	LIST OF ACRONYMS	39
	APPENDIX A: Life-Cycle Cost Analysis (7 Percent)	41
	APPENDIX B: Life-Cycle Cost Analysis (10 Percent)	47
	APPENDIX C: Technical Bulletin Index for Engineered Performance Standards	52
	APPENDIX D: Geographical Location Adjustment Factors	55
	DISTRIBUTION	

TABLES

Number		Page
1	Typical Task Data Form	7
2	Typical Component Summary	8
3	Life-Cycle Cost Analysis	9
4	Task GT-309	15
5	Tasks for a 175W Mercury Vapor Fixture	17
6	Task Summary Data for a 175W Mercury Vapor Fixture	19
7	175W Mercury Vapor Spreadsheet - Labor Hours	20
8	7 Percent Discount Factors From Date of Study	.22
9	10 Percent Discount Factors From Date of Study	23
10	Calculation Sheet - Example 1	29
11	Calculation Sheet - Example 2	31
12	Calculation Sheet - Example 5	34
13	Calculation Sheet - Example 6	37
	FIGURES	
1	DOS, BOD, EOS Relationship	25

BUILDING MAINTENANCE AND REPAIR DATA FOR LIFE-CYCLE COST ANALYSES: ELECTRICAL SYSTEMS

1 INTRODUCTION

Background

Maintenance and repair (M&R) cost estimates are needed during planning, design, and operations/maintenance of Army facilities. During planning, life-cycle costs are needed to evaluate alternative ways of meeting requirements (e.g., lease, new construction, renovate existing facilities). During design, M&R requirements for various types of components, such as built-up or shingle roofs, are needed so that the total life-cycle cost of different designs can be minimized. Finally, once the facility has been constructed, outyear predictions of maintenance and repair costs are needed so that enough funds can be programmed to ensure that Army facilities are maintained properly and do not deteriorate due to lack of maintenance.

The Directorate of Engineering and Construction (EC), Headquarters, U.S. Army Corps of Engineers (HQUSACE), asked the U.S. Army Construction Engineering Research Laboratory (USACERL) to coordinate the assembly of a single centralized maintenance and repair data base for use by Corps designers. This research was required because designers were not able to obtain reliable maintenance and repair data to support their life-cycle cost (LCC) analysis from installations or from the technical literature. One of the first tasks in the research effort was to determine if reliable data bases, which could be adapted for Corps use, existed in government or private industry. Comprehensive data bases of maintenance costs for government and private sector facilities did not exist. The little data available always depended on widely varying standards of maintenance used to maintain the facilities for which the data was collected and thus was unreliable for prediction purposes. Recognizing this, HQUSACE asked USACERL to develop a maintenance and repair cost data base. This data is for use by U.S. Army Corps of Engineers (USACE) designers in performing life-cycle cost analyses during the design of new facilities. Initial results were presented in several USACERL reports.¹

Soon after this request, the Facilities Programming and Budgeting Branch of the Facilities Engineering Directorate asked USACERL to develop prediction models for outyear maintenance requirements of the Army facility inventory. The Programming Office of EC, responsible for Military Construction, Army (MCA) planning, also requested that USACERL provide methods and automated tools to help installations perform economic analyses. Part of the objective was to allow analysts to obtain future maintenance cost data.

^{*}Maintenance in this report means all work required to keep a facility in good operating condition; it includes all maintenance, repair, and replacement of components required over the life of a facility.

At the time of this request, EC was part of the Office of the Chief of Engineers, which has since reorganized. In addition, EC has now become the Directorate of Military Programs.

¹ R.D. Neathammer, Life-Cycle Cost Database Design and Sample Cost Data Development, Interim Report P-120/ADA0997222 (U.S. Army Construction Engineering Research Laboratory [USACERL], February 1981); R.D. Neathammer, Life-Cycle Cost Database: Vol I, Design, and Vol II, Sample Data Development, Technical Report P-139/ADA126644 and ADA126645 (USACERL, January 1983), Appendices E through G.

In response to these requests, USACERL began a multiyear effort to develop a comprehensive maintenance and repair cost research program for buildings. This coordinated program is the key to all detailed estimation of future maintenance costs for Army facilities.

Research Performed and Reports Published

This is one of several interrelated reports addressing maintenance resource prediction in the facility life-cycle process. The total research effort is described in a USACERL Technical Report.²

The first research product was a data base containing maintenance tasks related to every building construction component. This data base provides labor, material, and equipment resource information. The frequency of task occurrence is also included. This information is published in a series of four USACERL Special Reports by engineering systems: (1) architectural, (2) heating, ventilating, and airconditioning (HVAC), (3) plumbing, and (4) electrical. The title for the series is *Maintenance Task Data Base for Buildings*³ Table 1 shows an example from this data base. This data is also available in electronic form. The data base is used in a personal computer (PC) system under the Disk Operating System (DOS). This computer program allows a facility to be defined by entering the components and component quantities comprising the facility. The tasks are used to determine the resources required annually to keep the facility maintained.

The second research product was a component resource summary for the first 25 years of a facility. The tasks for the component were scheduled and combined into one set of annual resource requirements. This annual resource information is published in a series of four USACERL Special Reports titled Building Component Maintenance and Repair Data Base.⁴ An example from this data base is shown in Table 2. The data base is also available in electronic form. This data can be used to perform special economic analyses such as one for a 20-year life using a 10 percent discount rate.

The third research product was a set of 25-year present worth factor tables for use by designers in selecting components for discount rates of 7 and 10 percent. The annual component resource values were multiplied by the appropriate present worth factor and added for the 25 years to produce one set of resource values. This information is published in a series of four USACERL Special Reports titled

² E.S. Neely, R.D. Neathammer, J.R. Stirn, and R.P. Winkler, Maintenance Resource Prediction in the Facility Life-Cycle Process, Technical Report P-91/10 (USACERL, March 1991).

E.S. Neely, R.D. Neathammer, J.R. Stirn, and R.P. Winkler, Maintenance Task Data Base for Buildings: Heating, Ventilation, and Air-Conditioning Systems, Special Report P-91/21 (USACERL, May 1991); E.S. Neely, R.D. Neathammer, J.R. Stirn, and R.P. Winkler, Maintenance Task Data Base for Buildings: Plumbing Systems, Special Report P-91/18 (USACERL, May 1991); E.S. Neely, R.D. Neathammer, J.R. Stirn, and R.P. Winkler, Maintenance Task Data Base for Buildings: Electrical Systems, Special Report P-91/25 (USACERL, May 1991), and E.S. Neely, R.D. Neathammer, J.R. Stirn, and R.P. Winkler, Maintenance Task Data Base for Buildings: Architecutral Systems, Special Report P-91/23 (USACERL, May 1991).

⁴ E.S. Neely, R.D. Neathammer, J.R. Stirn, and R.P. Winkler, Building Component Mainten ince and Repair Data Base for Buildings: Architectural Systems, Special Report P-91/27 (USACERL, May 1991); E. S. Neely, R. D. Neathammer, J.R. Stirn, and R.P. Winkler, Building Component Maintenance and Repair Data Base for Buildings: Heating, Ventilation, and Air-Conditioning Systems, Special Report P-91/22 (USACERL, May 1991); E.S. Neely, R.D. Neathammer, J.R. Stirn, and R.P. Winkler, Building Component Maintenance and Repair Data Base for Buildings: Plumbing Systems, Special Report P-91/30 (USACERL, May 1991); E.S. Neely, R.D. Neathammer, J.R. Stirn, and R.P. Winkler, Building Component Maintenance and Repair Data Base for Buildings: Electrical Systems, Special Report P-91/19 (USACERL, May 1991).

Typical Task Data Form

Task Code: 1131411

Subsystem: LIGHTING FIXTURES System: LIGHTING SYSTEM Component: MERCURY VAPOR FIXT. 175W.

Task Description: M/R MAINTENANCE AND REPAIR

Unit of Measure: COUNT

Frequency of Occurence: H: 5.00 A: 10.00 L: 20.00 Once every (H, A, L) years

Persons per Team: 1 Task Duration: 0.6154 hourz

Trade: ELECTRICAL, INT. Task Classification: 0

Material Resources	Description Quantity Unit Cost		20.0000		
	Labor Hours	0.004100	0.071200	0.384000	0.014100
Labor Resources	Subtask Description	1. REMOVE AND REINSTALL LOUVER	2. REMOVE AND REINSTALL 1 TUBE	3. REMOVE OLD/REINSTALL BALLAST	4. TEST FIXTURES

	ndirect Total	0.142020 0.615420	50.00000	0.615420
SUMMARY	Direct	0.473400 0.1	50.00000	
	Pesources UOM	Labor Hours	Material Cost	Equipment Hours

Table 2

CACES No.: 031134 - Roll Roofing

031135 - Shingles

Labor Hours	Materials \$	Equipment Hours	YR	Labor Hours	Materials	Equipment Hours
0.0076	0.0165	0.0039	1	0.0024	0.0220	0.0013
0.0076	0.0165	0.0039	2	0.0024	0.0220	0.0013
0.0090	0.0165	0.0046	3	0.0024	0.0220	0.0013
0.0076	0.0165	0.0039	4	0.0024	0.0220	0.0014
0.0076	0.0165	0.0039	5	0.0024	0.0220	0.0013
0.0070	0.0165	0.0039	6	0.0032	0.0330	0.0017
0.0076	0.0165	0.0039	7	0.0026		1 ' '
0.0076	0.0165	0.0039	8	0.0024	0.0220	0.0013
0.0076	0.0165	0.0039	9	0.0024	0.0220	0.0013
0.0030	0.7496	0.0046		0.0026	0.0220	0.0014
0.0414	0.7496	0.0207	10		0.0330	0.0017
0.0076	0.0165	0.0039	11 12	0.0024	0.0220	0.0013
i		4		0.0026	0.0220	0.0014
0.0090	0.0165	0.0046	13	0.0024	0.0220	0.0013
0.0076	0.0165	0.0039	14	0.0024	0.0220	0.0013
0.0076	0.0165	0.0039	15	0.0034	0.0330	0.0018
0.0090	0.0165	0.0046	16	0.0024	0.0220	0.0013
0.0076	0.0165	0.0039	17	0.0024	0.0220	0.0013
0.0076	0.0165	0.0039	18	0.0026	0.0220	0.0014
0.0090	0.0165	0.0046	19	0.0024	0.0220	0.0013
0.0414	0.7496	0.0207	20	0.0332	0.4675	0.0167
0.0076	0.0165	0.0039	21	0.0026	0.0220	0.0014
0.0076	0.0165	0.0039	22	0.0024	0.0220	0.0013
0.0090	0.0165	0.0046	23	0.0024	0.0220	0.0013
0.0076	0.0165	0.0039	24	0.0026	0.0220	0.0014
0.0076	0.0165	0.0039	25	0.0032	0.0330	0.0017

All data is per fixture.

Building Maintenance and Repair Data for Life-Cycle Cost Analyses.⁵ Table 3 shows an example from this data base. The data base is also available in electronic form. The first three resource columns provide data to allow designers to calculate the life-cycle costs at any location by multiplying by the correct labor rate, equipment rate, and material geographic factor. The multiplication and addition have been performed for the Military District of Washington, DC, and results are given in the fourth column of the table. The right section of the table is information that can be entered into computer systems that perform life-cycle cost analysis.

E.S. Neely, R.D. Neathammer, J.R. Stirn, and R.P. Winkler, Building Maintenance and Repair Data for Life-Cycle Cost Analyses: Architectural Systems, Special Report P-91/17 (USACERL, May 1991); E.S. Neely, R.D. Neathammer, J.R. Stirn, and R.P. Winkler, Building Maintenance and Repair Data for Life-Cycle Cost Analyses: Heating, Ventilation, and Air-Conditioning Systems, Special Report P-91/20 (USACERL, May 1991), and E.S. Neely, R.D. Neathammer, J.R. Stirn, and R.P. Winkler, Building Maintenance and Repair Data for Life-Cycle Cost Analyses: Plumbing Systems, Special Report P-91/24 (USACERL, May 1991).

Table 3

Life-Cycle Cost Analysis

PAGE 97		osts Tesks	equipment	044850	0.44830				_	0.224.23
	R PLUS AT COSTS	Replacement and High Costs Tasks	malerial	0009631	00000	134.62000	197.15000	100,000	436 72000	34132000 000000000000000000000000000000000
	AND REPAIR EPLACEMEN	Replacemen	labor	044850	044850	0.58162	0.43550	3.14782	044850	044850
SURE	AND R		۸۲	8 8	R 8	8 8	8	8	8	8
ER UNIT ME	ANNUAL MAINTENANCE AND REPAIR PLUS HIGH COST REPAIR AND REPLACEMENT COSTS	ind Repair	equipment	0.01012	96/100	0.02905	0.03626	0.04779	001733	25.00
ALYSIS (\$ PI	ANNU HIGH CC	Annual Maintenance and Repair	material	0.1407.3	2	3.46673	9.17686	0.60201	16.20810	832916
LE COST AN		Annual W	tabor	210107	967100	0.02905	0.03626	0.047	003465	0.03465
IN LIFE CYC	(EAR (d = 10%)	Washington	D.C. Total	6.20	26.23	4764	96.69	3432	174.29	106.77
AND REPAIR COST DATA FOR USE IN LIFE CYCLE COST ANALYSIS (\$ PER UNIT MEASURE)	PRESENT WORTH OF ALL 25 YEAR WAINTENANCE AND REPAIR COSTS (4 = 10%)		tramdinbe	Q12489	0.18095	0.27593	0.31034	0.71046	Q 15019	610510
PAIR COST D	SENT WORTH	By Resources	material	2.39191	21.89174	40.56016	88.72582	16.09790	167.06999	99.54.37.5
	PRE:		Labor	Q12489	0.18095	0.27593	031034	Q.71076	0.30038	030038
TENAN			Ę	כל	ל ו	5 b	Ե	ნ	5	5
EPS BASED MAINTENANCE	COMPONENT DESCRIPTION			LIGHTING SYSTEM LIGHTING FIXTURES INCANDESCENT LIGHTING FIXT	OVARTZ FIXTURE	MERCURY VAPOR FIXT. 175W	METAL-HALIDE FIXT, 175W.	EMERGENCY LIGHTING FIXT.	H.P. SOCIUM FIXT, 250W.	L.P. SODIUM FIXT. 200W.

A fourth research product was a PC system that allows facilities to be modeled by entering the components that comprise the facility. Future years resource predictions are produced by applying the individual tasks and then for sing resource summaries by subsystems, systems, facilities, installations, reporting installations, Major Commands (MACOMS) and Army. A summary level computer system was also developed for use by the Department of the Army (DA) and MACOMS. The summary level system applies the most basic data contained in the current facility real property inventory files: (1) current facility use, (2) floor area, and (3) construction date. Users and systems manuals will be published as USACERL ADP Reports.

Objective

The objective of this report is to describe the component summaries for electrical systems and give examples for using these tables in performing the component during the design process.

Approach

The first activity in the research was to survey the literature for available maintenance data. No comprehensive task resource data base was located. The Navy has developed a series of manuals dealing with labor hours required to perform several basic maintenance tasks. This work has been adopted by the Department of Defense (DOD) for tri-service use. A series of Technical Bulletins (TBs) under the general title *Engineered Performance Standards* has been published.

The next activity was to survey USACE District offices to solicit their input for a data base. A guiding committee composed of District personnel, installation representatives, and private sector consultants met and agreed upon a general data base design. More importantly, they recommended that the data base be developed using the Engineered Performance Standards rather than historical data.

Once the data base was developed, component summaries were created by summing all tasks for a component. These summaries were then input into a program that computed present worth values for each component.

The calculation procedures described in this report were performed and summarized for standard Army life-cycle analysis of 25 years with a 7 or 10 percent present worth factor. Final results are published in the USACERL Special report series Building Maintenance and Repair Data Base for Life-Cycle Analyses.

Scope

The 25 year component resources summary tables are for DOD designers and can also be used by those in the private sector.

Mode of Technology Transfer

The tables pertinent to designer use will be issued as a supplement to Technical Manual (TM) 5-802-1, Economic Studies for Military Construction Design—Applications.

2 PROBLEM DEFINITION

In the facility life-cycle process, costs are incurred in construction, operation, maintenance, and disposal of a facility. Past emphasis during the planning, design, and construction phases has been on estimating initial construction costs. The impact of operating and maintaining facilities has always been a secondary consideration. In many cases, the operation and maintenance (O&M) costs are far greater than initial construction costs. Building owners are concerned with the total ownership costs of facilities rather than just the initial construction costs.

The Army has realized the importance of performing total life-cycle cost analyses for facilities at the design stage of accurately forecasting these costs for funds programming. HQUSACE asked USACERL in 1980 to develop a method of estimating future maintenance costs for buildings. In 1982, the programming branch of the former Facilities Engineering Directorate asked USACERL to develop effective models for forecasting facility maintenance resource requirements based on the actual facility.

Life-cycle cost economic studies are an integral part of facility design in the MCA program. Requirements for performing these studies are given in:

- Statutes, Code of Federal Regulations, and Executive Orders for performing analyses when energy is a key cost and for wastewater treatment plants
- USACE Architectural and Engineering Instructions: Design Criteria
- Army Regulation (AR) 11-28, Economic Analysis and Program Evaluation for Resource Management for general economic analyses
- TM 5-802-1, Economic Studies for Military Construction Design--Applications

The main purpose of these studies is to minimize the life-cycle costs of Army facilities.

To perform life-cycle cost analyses on facility designs, three categories of costs are needed: initial, operating, and maintenance. Initial costs are usually easy to estimate through existing cost estimating systems such as the Corps of Engineers Computer Assisted Cost Estimating System (CACES) and standard publications such as Means or Dodge. Operating costs can be estimated by using energy consumption models such as the Corps of Engineers Building Loads Analysis and System Thermodynamics (BLAST) program or the Trane Company's Trace program. However, accurate estimates of maintenance costs are not available.

There are no comprehensive data bases of maintenance costs for building components either in the private sector or State/Federal Governments. Some historical data is available from the Building Owners' and Managers' Association reports. Within the Army, the Integrated Facilities System (IFS) contains some historical data; however, it does not have a feature for retaining several types of a building component (e.g., having brick and wood exteriors or three types of floor covering). Moreover, the data in IFS has not been kept current. For example, at one installation several family housing units were shown as having wood siding when, in fact, they had been covered with aluminum siding several years earlier.

3 DATA BASE DEVELOPMENT

Introduction

Historical data within the Army and other agencies was reviewed to determine the availability of accurate resource data. The best source of labor resource data was the Engineered Performance Standards⁶ adopted by DOD for use by all DOD agencies. The advisory committee decided to develop a maintenance task data base using the Engineered Performance Standards as the basis for the labor resources.

A typical building was subdivided into systems, sub-systems, and components. All maintenance, repair and replacement tasks were listed for each component. The resources required to perform each task were identified and the significance of the task resources discussed. Component summary tables listing resources by component age were developed by combining all tasks that were scheduled to be performed during each year. A summary of labor, material, and equipment requirements was given by component age. Life-cycle costs analysis tables were created by applying discount factors to the resources given in the component summary tables. The resulting tables can be used to perform life-cycle cost analysis.

Historical Data Review

Extensive research was performed during a 3-year period of reviewing the available historical data at several installations. This research revealed that a large portion of the component replacement tasks was not performed when replacement was required, due to lack of available funding, but was completed several years later. Most replacements performed by contract were not entered into the corporate data base. Most installations maintained few historical records because there was no Army regulation requiring such records to be kept. When component replacement dates were available, the comparable component installation or previous replacement dates were unknown, thus, accurate frequencies could not be established.

The task description fields given for the tasks performed were often blank or the descriptions given were very vague. Often several tasks were reported on one entry. Most entries gave a dollar cost but provided very little information about labor hours, materials, and equipment hours. Discussions with service personnel revealed that the data recorded on the forms may not actually relate to the resources required to perform the work.

In conclusion, all maintenance personnel interviewed stated clearly and emphatically that the current historical data cannot be used to develop accurate resource predictions. This data is erroneous, incomplete, and inaccurate.

Engineered Performance Standards

In 1955 the new use of maintenance management for public works and public utilities required that a greater portion of maintenance work be planned and estimated. The general absence, however, of

⁶ Army Technical Bulletin 420-1 through 420-51.

adequate and reliable maintenance estimating data severely handicapped any increase in the number of estimates, and, more seriously, the production of accurate estimates. About this time, the Department of Defense directed that standards for work should be developed to the maximum feasible extent and applied throughout the military establishment. As a result of that directive, Engineered Performance Standards were developed.

The Navy undertook a large research program to perform time and motion studies of maintenance personnel as they performed their maintenance tasks. After several years of effort, the Navy published the results under the title "Engineered Performance Standards." Both Army and Air Force maintenance personnel reviewed this set of manuals and adopted it for official use. Today, the Engineered Performance Standards are used by all DOD agencies and are published as one set of reports carrying three different publication numbers for the Army, Navy, and Air Force.

Committee Reviews

At the beginning of this research project HQUSACE and USACERL formed an advisory committee composed of representatives from all offices involved in performing life-cycle cost analysis. The basic objective of the advisory committee was to involve as many appropriate and knowledgeable people as possible in deciding how to solve the M&R data base problem. The advisory committee reviewed the historical information research results and the Engineered Performance Standards research program and reports. After lengthy discussion of all possible alternatives, the advisory committee decided to develop a maintenance task data base using the Engineered Performance Standards as the basis for the labor resources. The advisory committee was active for the first two years of the project.

A second maintenance steering committee was formed that was composed of one representative from each HQDA office involved in maintenance resource programming and planning, six major commands, and ten installations. This maintenance steering committee had the same basic objective as the first advisory committee. In addition, the steering committee wanted to use the data developed to predict actual maintenance resource requirements at installations.

Building Subdivision

The UNIFORMAT method of dividing a building into systems, subsystems, and components was adopted because it is used by all Federal construction agencies and many private organizations. Systems requiring little maintenance such as foundations and superstructure were not considered.

The level of component detail was determined by the members of the maintenance steering committee. This level varied, depending on the facility classification and the costs versus the benefit of collecting and maintaining data. For example, in the typical building the steering committee voted to stop at the door level and not define hardware requirements because the hardware was not a costly item, but for historical family housing, where one hinge could cost two hundred dollars, all door hardware had to be defined.

Task Data Development

A task is defined as the work performed by a single trade. Each task is divided into the labor, material, and equipment resources required to perform the work. By separating the tasks in this manner the data can also be used to determine manpower staffing requirements and equipment requirements. The following procedures have been used to develop the tasks for this research project. Identical procedures can be applied to develop new tasks not currently covered in the task data base.

The task development procedures can be demonstrated by using the existing task number 1131411, MAINTENANCE AND REPAIR OF 175W MERCURY VAPOR LIGHT FIXTURE, shown in Table 1. This task involves: removing and reinstalling the louver, one tube, ballast and testing the fixture.

In order to repair most light fixtures, the electrician must first gain access to the fixture by removing the louver.

The first step is to obtain a copy of DA Pamphlet 25-30, Consolidated Index of Army Publications and Blank Forms. A list of the current TBs covering Engineered Performance Standards (EPS) is given in Appendix C. Review this list to determine which TBs seem to address the task to be developed. The TBs can be obtained from your library or from:

Naval Publications and Forms Center 5801 Tabor Avenue Philadelphia, PA 19120

Once the TBs are available, the second step is to review the Table of Contents of each to determine if tasks related to the component are covered in the bulletin. If the tasks to be developed are covered by the bulletin, review the tasks to determine if the data given can be applied to the task under development. When tasks related to the new component tasks under development are not covered by EPS, other sources such as estimating books and manuals, national standards, trade publications, and manufacturer data must be researched. It is important to provide a complete list of such materials. A reference librarian can provide resources addressing a specific component.

In order to repair most light fixtures, the worker must first gain access to the fixture by removing the louver. One reference to this subtask is TB 420-6(PG 175), Task GT -307, -308, -309, Subtask 1, remove and reinstall louver, as duplicated in Table 4. The labor rate is given as .00410/hr/fixture.

The next step "Remove plus reinstall one tube" can be found in TB 420-6(PG 175), Task GT -309, Subtask 2. If we assume that a ladder will be needed, the labor rate will be .07120/hr/fixture.

TB 420-6 (PG 175) Task GT-309, Subtask 3, Lists the labor rate to remove old and reinstall new ballast in florescent fixture as .03560, to remove and .34840 to reinstall. The total labor rate for subtask 3 would be .38400/hr/fixture.

The final task is to test the newly installed light fixture. TB 420-6(pg 175) Task GT -309 Subtask 4, shows the labor rate as .01410/hr/fixture.

The total direct labor hours to perform the entire job would be the sum of all subtasks, or .47340 hr/fixture. The indirect time or the time to plan the work, load the truck at the beginning of the day, unload the truck at the end of the day, personal time, delay time, and material handling time must be included to obtain the total onsite labor time. In EPS, this value is expressed as a percentage of the direct labor. When all factors have been considered, the direct labor should be increased by 30 percent or .14202 hr/fixture.

Table 4
Task GT-309*

No.	Reference	Work Unit Description	Hours	Units
1	PWG-18-VI	Remove and install louver, glass or plastic diffuser	.00410	Fixture
2	PWG-18-II	Remove and reinstall 1 tube, including 2 fiber locks, using ladder	.02330 .04790	Fixture Fixture
3	PWMU-1-8374	Remove old and reinstall new ballast in flourescent fixture	.03560 .34840	Fixture Fixture
4	PWMU-1-8383	Test fixture	.01410	Fixture

^{*}GT-309 = .47340 Hrs Per Fixture

The steering committee wanted to apply the same material costs for all planning, programming, design, construction, and operations activities. For this research project, all material costs were developed using prices in the Washington, DC area. Material prices for exact locations throughout the world can be obtained by multiplying the Washington, D.C. area costs by the appropriate location adjustment factor published in a Programming, Administration, and Execution System (PAX) Newsletter under the title "Area Cost Factor Indexes." A copy of the 22 September 1988 indexes are given in Appendix D, Geographical Location Adjustment Factors. The CACES Unit Price Book for Region II dated July 1, 1985 has been used for all costs and can be obtained from the Corps District Cost Estimating Section.

In reviewing material prices, there will usually be many grades listed for the component in question. Since only one entry for the component task will be made for the maintenance data base, it is important to use the middle grade for pricing. This will produce an average material cost.

When materials are not given in the CACES manuals, other material pricing manuals, such as Means, should be used to determine the cost.

The material cost for ballast, \$50/ballast, was taken from *Means Electrical Cost Data* (p 191). Since only one material is involved, the material cost for ballast equals total cost

The normal equipment cost is for a maintenance truck with all required tools such as ladders and hand tools. The cost for the truck and equipment is usually based on task duration.

Task frequency determination is the most subjective area in the data base. Most frequencies must be determined by the judgment of professional maintenance personnel with many years of experience in performing the maintenance tasks. Some task frequencies are suggested by the manufacturer or professional organizations. Some frequencies, such as for interior wall painting, are set by regulations. There is very little published information in this area.

The data base has been reviewed by ten installation Directorates of Engineering and Housing (DEHs) and has been determined to accurately represent the resources required to perform the tasks. This data base serves as the foundation for the tables published in this report. The complete data base is too large to be duplicated in this report, but is available in the USACERL Special Report series titled Maintenance Task Data Base for Buildings.

The maintenance steering committee asked Forts Leonard Wood and Bragg to use the tasks to produce resource estimates for the past 3 years and then compare the predictions with their actual expenditures on a facility-by-facility basis. After this comparison was performed by both installations, the results were presented to the steering committee. Both installations stated that they were not performing all the tasks that they should, such as annual gutter cleaning and annual roof inspection. For the total installation, the tasks predicted an 8 to 10 percent higher total expenditure than the actual expenditure. This difference was due to the difference between the tasks predicted and actually performed. When comparisons were made at the task level, the task resource predictions were found to be accurate.

Two additional reviews were performed by two independent organizations that had related research work in the Army. The first review was for a research project to determine the maintenance requirements for historical family housing within the Military District of Washington, DC. The second review was a research project which needed an estimate of all resource requirements for the entire Army. This effort is known as the RPLANS research project. Both organizations reviewed the data base in detail and approved the resource requirements stated in the tasks. In addition, both used the data base within their research projects.

Significance of the Task Data

The task data presented in the previous section is based on average resources. Actual resource values for a particular project will vary as discussed below.

The labor hours reported will vary, depending on factors such as the actual productivity of the workers, the weather conditions, and the working space available. The labor hours given in this report are based on the average obtained from performing time and motion studies as tasks were performed.

The Washington, DC, material costs will vary, depending on factors such as the grade of material actually used, the manufacturer, and the quantity of material actually purchased. The figures given are the averages for all material prices found in the unit price books.

Task frequencies are the most subjective feature in the data base. High, average, and low frequency values are given to emphasize the variances. Average frequencies are used in developing the life-cycle analysis tables presented in the following sections.

Component Summary Tables

A typical component summary is shown in Table 2 (Chapter 1). The development process is illustrated by using the labor resource for the Mercury Vapor 175W Light Fixture.

All tasks related to the mercury vapor component are listed individually in Table 5, with a task summary in Table 6. The task average frequency is used to project times of occurrence of M&R tasks for the first 25-year period as shown in Table 7.

The first task (Task 1 - 1131411 -Maintenance and Repair) has an average frequency (AVE FREQ in Table 5) of 10.00 years; thus, it would be performed once every ten years. The labor hours (.615420 in Table 5) are listed for every ten years of the 25 years in the second column of Table 7.

The second task (Task 2 - 1131412 - Replacement of Lamp) has an average frequency from Table 5 of ten years; thus, it would be performed once every ten years. The labor hours (.068640 in Table 5) are listed for the year 10 in the third column of Table 7.

The third task (Task 3 - 1131413 - Replacement of Fixture) has an average frequency of 20 years; thus it would be performed one time. (Note that tasks 1 and 2 would not be performed in year 20.) The labor hours (.581620 in Table 5) are listed for the twentieth year in the fourth column of Table 7.

The total column in Table 7 is formed by adding the labor hours for tasks one through three on a year-by-year basis. For example, during the tenth year, Tasks one and two, are performed. The total labor hours would be .615420 and .068640 which equals .684060.

The total column in Table 7 is shown in Table 2, Typical Component Summary for Fixtures-1131410. The material costs and equipment hours have been developed in the same manner as explained for the labor hours.

Table 5 Tasks for a 175W Mercury Vapor Fixture

| SUPPLATE | CONTINUE | CONTINUE

Table 5 (Cont'd)

TASK DATA FORM

Tesk Code: __1131412

	14	11314	<u>!</u>	
Component: MERCURY VAPOR FIXT, 1754		IGHTING SYSTEM	Subsystem: LIGI	TING FIXTURES
Task Description: M/R REPL Unit of Measure: COUNT Persons per Team: Track Dura Trade: ELECTRICAL TRY,	tion: 0.00		H: 5.00 A: 10.00 L Once every (H,A,L) years	
Labor Resources			Material Reso	turces
Subtask Description 1.CHANGE LAMP IN FLUSH FIXTURE	Lebor Hrs 0.052500	Description LAMP	Quantity	Unit Cost 27.0000 27.0000
		Resources USA	SUBURY	
		Labor Hours Material Cost 8 Equipment Hours Components In Th	0.052800 0.0 274,000000	11 rect Total 175840 0.068640 27.000000 0.068640
	, Te	TASK DAYA FORM	13	
Component: MERCURY VAPOR FIXT, 175W. Tesk Description: REPLACE REPU	System:	IGHTING SYSTEM	Subsystem: LIG	ITING FIXTURES
Task Description: REPLACE REPL Unit of Measure: COUNT Persons per Team: Task Dura Trade: <u>ELECTRICAL</u> THY.	requence tion:0.5	of Occurrence: 16 hours 161ficetion: 1	T: 10.00 A: 20.00 L: Druce every (N,A,L) years	40.00
Labor Resources			Material Res	XUFC00
Subtack Description T.TURN SEAUCH CIRCUIT OFF AND CO 2.INSTALL CUTLET BOK COVER PLATE 3.CUT LEADS IN SON AND TAPE ENDS 4.DISASSEMBLE/REMOVE FIXTURES 5.REMOVE AND UNPACK PARTS 6.INSTALL MOUNTING BRACKETS 7.ASSEMBLE AND MANG REFLECTER	0.014100 0.014100 0.012900 0.016400 0.090700 0.064300 0.218400	Description FIXTURE	Guentity	Unit Cost 127,0000 127,0000
	0.2.200			

ELPWAY

		·	
Resources UUI	Direct	Indirect	Total
Labor Rours	0.447400	0.135220	0.581620
Reterial Cost \$	127.000000		127,000000
FOUT STREET			0.581620
Components in This	Tesk: 1131410		

Table 6

Task Summary Data for a 175W Mercury Vapor Fixture

ر مرهو	Description		2	TOD	Clace	High	Ave	F. 64	Labor	Material	Equip.
	nondi vesa					ried	ried.	haid	nour	COME	Sinon
1131101	MAINTENANCE AND REPAIR	AND REPAIR	1	7	0	10.00	20.00	30.00	390000	10.000000	39000
1131102	REPLACE LAMP		-	7	0	700	5.00	8.00	.068640	000006	068640
1131103	REPLACE LIGHTING FIXTURE	ING FIXTURE	-	7	-	10.00	20.00	40.00	.448500	16.000000	.448500
4 2 11	4 2 1131200 QUARTZ LIGHTING FIXTURE	HTING FIXTURE									
1131201	MAINTENANCE AND REPAIR	AND REPAIR	-	7	0	2.00	10.00	20.00	390000	1.160000	390000
1131202	REPLACE LAMP		-	71	0	2:00	10.00	15.00	.032760	45.000000	032760
1131203	REPLACE FIXTURE	æ	-	7	1	10.00	20.00	40.00	.448500	55.000000	.448500
4 3 1	4 3 1131300 FLUORESCENT LIGHTING FIXTURE	NT LIGHTING									
1131301	MAINTENANCE AND REPAIR	AND REPAIR	~	7	0	9:00	10.00	20.00	615420	50.000000	.615420
1131302	REPLACE LAMPS (2)	(2)		71	0	2:00	10.00	15.00	.045890	4.50000	042890
1131303	REPLACE FIXTURE	RE	-	7	-	10.00	20.00	40.00	.741260	64.000000	.741260
4 2	4 1131400 HID 1 1131410 HID, MERCURY VAPOR FIXTURES, 175W	URY VAPOR W									
1131411	MAINTENANCE AND REPAIR	AND REPAIR		71	•	2:00	10.00	20.00	.615420	5.000000	027519
1131412	REPLACE LAMP			71	0	2.00	10.00	15.00	.068640	27.000000	068640
1131413	REPLACE FIXTURE	æ	-	8	-	10.00	20.00	40.00	281620	127.000000	281620
5 2 11	2 1131420 HD, METAL HALID FIXTURE, 250W	HALID FIXTURE,									
1131421	MAINTENANCE AND REPAIR	AND REPAIR	-	71	0	2:00	10.00	20.00	.615420	65.000000	.615420
1131422	REPLACE LAMP		-	7	0	3.00	9.00	8.00	.068640	40.000000	.068640
1131423	REPLACE FIXTURE	a	-	7	-	10.00	20.00	40.00	435500	186.000000	.435500
Army Wide	Army Wide Task/Basic Task Structure List	cture List	T.	Tree id: BF	5	Group id: BS					
UM - Unit	UM - Unit of Measure	TRD = Trade Index	Class - Task Classification	Classificati		TWPMIH - Task Work Performance Method	k Work Perfor	mence Method			

Table 7

175W Mercury Vapor Spreadsheet - Labor Hours

Year	Task 1 1131411	Task 2 1131412	Task 3 1131413	Total Labor Hrs	10% P.W.F.	P.W. Labor Hours
-				0.00000	0.7164	0.00000
· 7				0.00000	0.6512	0.00000
ı m				0.00000	0.5920	0.000000
4				0.00000	0.5382	0.00000
· v				0.00000	0.4893	0.000000
. 9				0.00000	0.4448	0.00000
7				0.00000	0.4044	0.00000
oc oc				0.00000	0.3676	0.000000
6				0.00000	0.3342	0.000000
10	0.615420	0.068640		0.684060	0.3038	0.207817
				0.00000	0.2762	0.000000
12				0.00000	0.2511	0.000000
13				0.00000	0.2283	0.000000
14				0.00000	0.2075	0.000000
15				0.00000	0.1886	0.000000
16				0.00000	0.1715	0.000000
17				0.00000	0.1559	0.000000
18				0.00000	0.1417	0.000000
19				0.00000	0.1288	0.000000
20			0.581620	0.581620	0.1171	0.068108
21				0.00000	0.1065	0.000000
22				0.00000	0.0968	0.000000
23				0.00000	0.0880	0.000000
24				0.00000	0.0800	0.000000
25				0.00000	0.0727	0.000000

TOTAL 0.275925

The component data base is not printed in this report because of its size. Component summary data tables are published in the USACERL Special Report series titled Maintenance Component Data Base for Buildings.

Life-Cycle Cost Analysis Tables

The main purpose of this report is to provide the designer with easy-to-use tables for the most common life-cycle cost analysis. USACE designers frequently perform life-cycle cost analysis for a 25-year period using a 7 or 10 percent discount rate shown in Tables 8 and 9. Two sets of summary tables have been generated for these cases and are given in Appendices A and B. Table 3 shows typical life-cycle cost analysis data.

<u>Present Worth.</u> The left four columns of Table 3, labeled "Present Worth of All 25-Year Maintenance and Repair Costs," were developed by multiplying the resources in Table 2 by the 7 or 10 percent present worth factors shown in Tables 8 and 9. The 25 individual year resource figures are totaled as shown for labor in Table 7.

The 1988 Washington, DC area labor and equipment rates were applied to this data to produce the totals shown in the column so titled. This column is given to provide one comparative cost figure for easy computation. This column can be used to quickly assess the ranking of various components' total 25-year LCC.

Annual and High Cost. The right section of Table 3 is provided as input data for current life-cycle cost analysis computer programs. Two types of input are usually required: (1) a uniform or annual maintenance figure and (2) high-cost and replacement tasks that occur in specific years.

The data listed under the heading "Annual Maintenance and Repair" was generated by subtracting the present worth of the replacement task, if its occurrence is 25 years or less, and any high-cost tasks from the present worth values given in the "Present Worth" section of the table. The remaining present worth figures for the low-cost task resources are divided by the cumulative 25-year present worth figure to arrive at the "uniform" or "annual" maintenance figures shown under the "Annual Maintenance and Repair" heading.

There are two types of tasks listed under the heading "Replacement and High-Cost Tasks." The first is the replacement task. The replacement task is shown on the same line as the component description. For example, the replacement task for 175 Mercury Vapor Fixture, shown in Table 3 would occur when the fixture is 20 years old. Replacement would require the expenditure of .58162 hours of labor unit, \$134.62 of material per unit, and .58162 hours of equipment (maintenance truck) per unit. The second type of task is the high-cost task. Each high-cost task is listed on a separate line below the component description line. There is no example of this here. High cost tasks are figured in the same manner as replacement tasks.

Table 8

7 Percent Discount Factors From Date of Study*

	TOTAL HOLL DOD	End of Year	End of Year
		0.9346	0.9346
	7	0.8734	1.8080
	8	0.8163	2.6243
	4	0.7629	3.3872
	∽	0.7130	4.1002
	9	0.6663	4.7665
	7	0.6227	5.3893
	∞	0.5820	5.9713
	6	0.5439	6.5152
	10	0.5083	7.0236
	11	0.4751	7.4987
	12	0.4440	7.9427
	13	0.4150	8.3576
	14	0.3878	8.7455
	15	0.3624	9.1079
	16	0.3387	9.4466
	17	0.3166	9.7632
	18	0.2959	10.0591
	19	0.2765	10.3356
	20	0.2584	10.5940
	21	0.2415	10.8355
	22	0.2257	11.0612
	23	0.2109	11.2722
,	24	0.1971	11.4693
(Retention value at end	25 (Retention value at end	0.1842	11.6536

*Date of Study (DOS) is the Beneficial Occupancy Date (BOD)

Table 9

10 Percent Discount Factors From Date of Study*

	Factors	1	Accumulated
Year from BOD	Mid-Year	End of Year	Mid-Year
87-	0.9535		0.0
ď	0.8668		0.0
7	0.7880		0.0
BOD			
-	0.7164		0.7164
୯	0.6512		1.3676
1 60	0.5920		1.9596
•	0.5382		2.4978
10	0.4893		2.9871
• •	0.4448		3.4319
	0.4044		3.8362
· ««	0.3676		4.2038
· @	0.8342		4.5380
10	0.3038		4.8418
11	0.2762		5.1180
11	0.2511		5.3691
601	0.2283		5.5973
14	0.2075		5.8048
15	0.1886		5.9935
16	0.1716		6.1650
17	0.1559		6.3209
9	0.1417		6.4626
19	0.1288		6.5914
8	0.1171		6.7086
ंद	0.1065		6.8150
ង	0.0968		6.9118
2	0.0880		6.9998
্ব	0.0800		7.0799
প্ল	0.0727		7.1526
Retention Value at End			
of 25th Year		0.0693	

*Date of Study (DOS) exactly 3 years before the Beneficial (Accupancy Date (BOD).

4 DATA BASE APPLICATION EXAMPLES

Introduction

This chapter is divided into two sections. The first section defines the terminology used in the report and information needed to apply the labor hour, material cost and equipment hour resource data in this report. The second section gives specific examples using both the 10 percent present worth tables given in Appendix B and the 7 percent present worth tables given in Appendix A.

Terminology

Economic Studies

Two basic types of economic studies are covered in this report: (1) general economic studies and (2) special energy-conservation studies.

General economic studies are conducted routinely as part of the design process for all military facilities. Such studies are normally performed for a 25-year period using a 10 percent discount rate and considering tasks to be performed mid-year. The Beneficial Occupancy Date (BOD) occurs approximately three years after the Date of Study (DOS) for most MILCON projects, and that assumed in the example.

Special economic studies for the design of energy-consuming portions of a building are required by statute. Such studies analyze the use of extraordinary energy-saving design initiatives to conserve energy in new Federal facilities. The studies are normally performed for a 25-year period using a 7 percent discount rate considering all tasks to be performed at the end of the year. The BOD is normally assumed to occur on the DOS, in accordance with the provisions of the design criteria.

Installation Labor Rates

To perform an accurate cost analysis, the current shop effective labor rates and equipment rates per hour must be obtained from the installation. This information can be obtained from the DEH. Telephone numbers for the DEH are listed in the "Director of Engineering and Housing/Facilities, Engineer Assignments Roster" published yearly by the Office of the Chief of Engineers. Most installations maintain this information within their IFS data base; it can be obtained from the IFS data base administrator within the Management Engineering and Systems Branch.

Initial Costs

The initial construction costs can be obtained from the CACES Regional Unit Cost Manuals. The manuals are available from the district cost estimating section. When this manual is not available the cost estimates can be taken from other publications such as Means and Dodge.

Geographical Location Adjustment Factors

The Washington, DC-based material costs in the summary tables can be adjusted to a specific installation through the application of a geographical location adjustment factor. The factors are published in AR 415-17 and updates are available through the PAX computer system (Area Cost Factor Newsletter)

and through the Engineering Improvement Recommendation System (EIRS) Bulletin. The 1988 set of factors is given in Appendix D.

Inflation Factors

The material costs and Washington, DC, total costs presented in Appendices A and B are in July 1988 dollars. The costs need to be adjusted to the date of study by applying an approved inflation factor obtained from the District cost estimating office.

Timing of Costs

Figure 1 shows the relationship of DOS, BOD, and the end of the study (EOS) which is assumed to be a 25-year comparison period:

Figure 1. DOS, BOD, EOS relationship.

In Appendix B, costs are discounted 3 years from time of occurrence to DOS. M&R costs occur throughout a year and are costed at mid-year in accordance with established criteria for MILCON design. The basic present worth factor formula is:

$$PWF(BA) = \frac{1}{(1 + DR)^{(B+BA-C)}}$$
 [Eq 1]

where PWF = present worth factor

BA = building age
DR = discount rate

B = years from DOS to BOD

C = task placement, either .5 for mid-year, or 0 for end of year

The 10 percent present worth factor to bring costs from the mid-year of first year of occupancy to the DOS is $1/(1.1)^{3.5} = 0.7164$ which is the first value in Table 10. If the DOS is not 3 years before BOD, Appendix B data can be adjusted. For example, if there is only 1 year between BOD and DOS (two less than the 3 years in the appendices), multiply this data by $(1.1)^2$. If there are 5 years (2 years more than the 3 years in the appendices), divide by $(1.1)^2$.

In Appendix A, the DOS and BOD are identical. M&R costs are assumed to occur at the end of the year as stipulated by regulations. The basic formula is:

$$PWF(BA) = \frac{1}{(1 + DR)^{(BA)}}$$
 [Eq 2]

where PWF = present worth factor

BA = building age
DR = discount rate

Disposal Costs/Retention Value

When disposal costs/retention value is considered, it should be expressed as a percentage of the initial cost occurring at the end of the study period. The present worth of this value can be subtracted from the final net present worth.

Examples

Introduction

This section contains one example for each of the basic uses for this life-cycle cost data. The first example demonstrates the procedures for calculating LCC for construction and maintenance and repair data when the DOS is exactly 3 years before the BOD: the building is 25 years old at the end of the study and installation resource costs are available from the installation. The second example demonstrates the procedures for calculating LCC for construction and maintenance and repair data when resource costs are not available from the installation and Washington, DC, cost data is to be applied. Examples 3 and 4 show how to adjust data to cover the case for which BOD is not 3 years after DOS. Example 5 shows how to use the data to generate input for other computer programs. Example 6 demonstrates the use for a project containing an extraordinary energy-saving design initiative to conserve energy.

Each example is presented in five sections:

- 1. Statement of the problem.
- 2. Identification of all installation-related information.
- 3. Identification of all component-related information.
- 4. Description of the present worth calculations.
- 5. A typical calculation worksheet.

Example 1: BOD 3 Years After DOS--175W Mercury Vapor Fixture

<u>Problem Statement</u>. This example demonstrates all steps using a system of ten mercury vapor fixtures. An apartment building for family housing is under design at Fort Eustis, VA. The DOS is July 1989. The projected BOD is July 1992. A 25-year life-cycle cost analysis using a 10 percent discount rate is required.

Installation-Related Data.

Geographic Location Adjustment Factor. The geographic location adjustment factor (LAF) can be obtained from the latest EIRS bulletin or from the Area Cost Factor Newsletter on the PAX computer system, as shown in Appendix D. The factors are indexed by state and then by location within the state. From Appendix D, for Virginia and Fort Eustis, the geographic LAF (or Area Cost Factor [ACF] Index) is 0.96.

Inflation. The cost data in Appendix B is expressed in July 1988 dollars. Since the date of the study is July 1989, all cost figures must be adjusted. A telephone conversation with a District cost estimator has revealed that the costs have risen 2 percent from July 1988 to July 1989. This means that all costs need to be multiplied by a 1.02 cost adjustment factor.

Resource Rates. The labor and equipment resources in Appendix B are expressed in hours per unit measure. To obtain accurate cost figures the designer called the Fort Eustis DEH-ME branch. The July 1989 rates of \$13.50 per hour for an electrician and \$3.00 per hour for an electrician maintenance truck were obtained.

Component Information.

Size. The designer is considering a system of ten mercury vapor fixtures.

Initial Costs. The designer obtained a CACES unit price manual from the cost estimator. For the mercury vapor fixture component, a cost of \$134.62 per unit was obtained. (Note: if the component is not found in the CACES Unit Price Manual, other books such as Means and Dodge can be used.)

Retention Value. The average life of a mercury vapor fixture is 20 years for the replacement task in Appendix B. At the end of the 25-year analysis period, the mercury vapor fixture would still have fifteen years of life remaining or 15/20 = 75 percent of its useful life. The retention value can be considered to be 75 percent of the initial cost of \$134.62 per unit, or \$100.965/per unit.

<u>Present Worth Calculations</u>. Three factors must be considered when performing a present worth calculation: initial cost, maintenance costs, and retention value. Each factor is discussed below.

Initial Costs. The average construction project would normally be completed in one year. The contractor normally receives progress payments for work completed throughout the construction period. The initial cost of \$134.62/per unit is assumed to occur at the midpoint of construction during the year before BOD. The present worth factor at midyear for the year before BOD is given in Table 9 as 0.7880. The present worth of the initial cost would be the initial cost multiplied by the present worth factor at BOD or \$134.62/unit x 0.7880 = \$106.08/unit.

$$134.62 \times 0.7880 = 106.08/unit$$
 [Eq 2]

25-Year Maintenance Cost. The total 25-year maintenance cost is composed of three parts: labor, material, and equipment. Labor costs per unit are equal to the labor hours per unit obtained from Appendix B, multiplied by the installation labor hourly rate. This would be .27593 hr/unit multiplied by a labor rate of \$13.50/hr, which is equal to \$3.72506/unit.

Labor =
$$.27593$$
 hours/unit x \$13.50/hr = \$3.72506/unit [Eq 3]

Material costs per unit are equal to the material dollars in Washington, DC, base per unit obtained from Appendix B, multiplied by the geographic LAF from Appendix D and then multiplied by the inflation factor. This would be \$40.56016 DC-based dollars per unit multiplied by a geographic LAF of 0.96 and a cost escalation factor (CEF) of 1.02 which is equal to \$39.71651/unit.

Material =
$$40.56016/unit \times 0.96 \times 1.02 = 39.71651/unit$$
 [Eq 4]

Equipment costs per unit are equal to the equipment hours per unit obtained from Appendix B, multiplied by the installation equipment hourly rate. This would be .27593 hr/unit multiplied by an equipment rate of \$3.00/hr which is equal to \$.82779/unit.

Equipment =
$$.27593$$
 hr/unit x $$3.00$ /hr = $$.82779$ /unit [Eq 5]

The total maintenance cost per unit would be the labor cost (\$3.72506/unit) plus the material cost (\$39.71651/unit) plus the equipment cost (\$.82779/unit) or \$44.27/unit.

Total =
$$\$3.72506/\text{unit} + \$39.71651/\text{unit} + \$.82779/\text{unit} = \$44.27/\text{unit}$$
 [Eq 6]

This total has already been discounted to the DOS since all figures on the left side of the table in Appendix B are expressed in terms of the DOS.

Retention Value. The DOS present worth for the retention value would be the expected retention value of \$100.965/unit multiplied by the end-of-year present worth factor for the end of study year (EOS) obtained from Table 9, 0.06930, which produces a cost of \$7.00/unit.

Total Life Cycle Cost for Construction and Maintenance and Repair. The total life-cycle cost (LCC) per unit for the DOS is the sum of the present worth costs for the initial cost of \$106.08/unit plus the 25-year maintenance cost of \$44.26936/unit minus the retention value of \$7.00/unit.

Total LCC =
$$$106.08 + $44.27 - $7.00/unit = $143.35/unit$$
 [Eq 7]

The total dollar cost would be the LCC per unit of \$143.35 multiplied by the 10 units producing a total cost of \$1433.50.

Calculation Sheet. A typical calculation sheet is shown in Table 10.

Example 2: BOD 3 Years After DOS -- Washington, DC Rate Applied

<u>Problem Statement</u>. This example demonstrates all steps using a system of ten mercury vapor fixtures. An apartment building for family housing is under design at Fort Eustis, VA. The DOS is July 1989. The projected BOD is July 1992, three years after DOS. A 25-year life-cycle cost analysis using a 10 percent mid-year discount rate is required.

The designer wishes to perform a rough cost estimate without calling the installation to obtain cost information. It should be understood that the installation's costs may vary significantly from the Washington, DC, costs and the rough calculations may be misleading. However, if the designer is going to compare several types of fixtures such as mercury vapor, metal halide, and flourescent all of which involve the identical trade such as an electrician—he comparisons may be quite accurate.

Installation-Related Data.

Geographic Location Adjustment Factor. The geographic LAF can be obtained from the latest EIRS bulletin or from the Area Cost Factor Newsletter on the PAX computer system as shown in Appendix D. The factors are indexed by state and then by location within the state. From Appendix D, for Virginia and Fort Eustis, the geographic LAF (or ACF Index) is 0.96.

Table 10

Calculation Sheet - Example 1

•	Calculation Column	Subfactor Cost/Unit	Factor Cost/Unit	Total <u>Cost</u>
Initial Cost Initial Cost PWF for BOD-1 Initial cost/unit	\$134.62/unit x7880		\$106.08	
25-Year Maintenance Cost		•		
PW - Labor Labor Rate Labor cost/unit PW - Material LAF CEF Material cost/unit PW - Equipment Equipment Rate Equipment cost/unit Maintenance cost/unit	.27593 hr/unit x \$13.50/hr \$40.56016/unit x .96 x 1.02 .27593 hr/unit x \$3.00/hr	\$3.73 \$39.72 \$ <u>.83</u>	\$44.28	
Retention Value Initial Cost Remaining Life PWF for EOS Retention Value cost/unit Life Cycle Cost/unit Unit Total Life Cycle Cost	\$134.62/unit x .75 x .06930 uit		-\$7 <u>.00</u> \$143.35 x <u>10 unit</u>	\$1433.50

Inflation. The cost data in Appendix B is expressed in July 1988 dollars. Since the DOS is July 1989, all cost figures must be adjusted. A telephone conversation with a District cost estimator has revealed that the costs have risen 2 percent from July 1988 to July 1989. This means that all costs need to be multiplied by a 1.02 cost adjustment factor.

Resource Rates. The designer wishes to perform a rough calculation using the Washington, DC, labor and equipment rates rather than calling the installation.

Component Information.

Size. The designer is considering a system of ten mercury vapor fixtures.

Initial Costs. The designer obtained a CACES Unit Price Manual from the cost estimator. For the mercury vapor fixture component, a cost figure of \$134.62/unit was obtained. (Note: if the component is not found in the CACES Unit Price Manual, other books such as Means and Dodge can be used.)

Retention Value. The average life of a mercury vapor fixture unit is 20 years, as shown for the replacement task in Appendix B. At the end of the 25-year analysis period, the unit would still have 15 years of life remaining or 15/20 = 75 percent of its useful life. The retention value can be considered to be 75 percent of the initial cost of \$134.62/per unit or \$100.965/per unit.

<u>Present Worth Calculations</u>. Three factors need to be considered when performing a present worth calculation: initial cost, maintenance costs, and retention value. Each factor is discussed below.

Initial Costs. The average construction project would normally be completed in one year. The contractor normally receives progress payments for work completed throughout the construction period. The initial cost of \$134.62/per unit is assumed to occur at the midpoint of construction during the year before BOD. The present worth factor at midyear for the year before BOD is given in Table 9 as 0.7880. The present worth of the initial cost would be the initial cost multiplied by the present worth factor at BOD or $134.62/\text{unit} \times 0.7880 = 106.08/\text{unit}$.

25-Year Maintenance Cost. The total 25-year maintenance cost for Fort Eustis can be calculated by taking the Washington, DC, total cost per unit, \$47.64, and multiplying by the location adjustment factor (0.96) producing a cost of \$45.73/unit.

Retention Value. The DOS present worth for the retention value would be the expected retention value of \$100.965/ unit multiplied by the end of year present worth factor for the EOD obtained from Table 10, 0.06930, which produces a cost of \$7.00/unit.

Total LCC for Construction and Maintenance and Repair. The total LCC per unit for the DOS is the sum of the present worth costs for the initial cost of \$106.08/unit plus the 25-year maintenance cost of \$45.73/unit minus the salvage value of \$7.00/unit.

Total LCC =
$$$106.08/\text{unit} + $45.73/\text{unit} - $7.00/\text{unit} = $144.81/\text{unit}$$
 [Eq 13]

The total dollar cost would be the LCC per unit, \$144.81, multiplied by the number of units, 10, units, producing a total cost of \$1448.10.

Calculation Sheet. A typical calculation sheet is shown in Table 11.

Example 3: DOS Less Than 3 Years Before BOD

Perform the calculations as shown in Examples 1 through 3. The answers are lower than the actual DOS answers. The calculated values must be adjusted by multiplying by the formula:

$$(1 + DR)^{(3-A)}$$
 [Eq 14]

where DR = discount rate

3 = years between DOS and BOD given in the tables

A = actual years between DOS and BOD

For example, using the answer of \$1433.50 in Example 1 and assuming 1 year between BOD and DOS with discount rate = 10% (0.10), the formula would be $(1.10)^{(3-1)} = (1.1)^{(2)} = 1.21$. The correct answer would be \$1433.50 x 1.21 = \$1734.51

Example 4: DOS Greater Than 3 Years Before BOD

Perform the calculation as shown in Examples 1 and 2. The answers are larger than the actual DOS answers. The calculated values must be adjusted by dividing by the formula:

$$(1 + DR)^{(A-3)}$$
 [Eq 15]

where DR = discount rate

3 = years between DOS and BOD given in the tables

A = actual years between DOS and BOD

For example, using the answer of \$1433.50 in Example 1 and assuming 5 years between BOD and DOS with d = 10% (0.10), the formula would be $(1.10)^{(5-3)} = (1.10)^{(2)} = 1.21$. The correct answer would be \$1433.50 ÷ 1.21 = \$1184.71.

Table 11

Calculation Sheet - Example 2

Initial Cost	Calculation Column	Subfactor Cost/Unit	Factor Cost/Unit	Total <u>Cost</u>
Initial Cost PWF for BOD Initial Cost/unit	\$134.62/unit x <u>.7880</u>		\$106.08/unit	
25-Year Maintenance Cost				
PW Total LAF Maintenance Cost/unit	\$47.64/unit x <u>.96</u>		\$45.73/unit	
Retention Value Initial Cost Remaining Life PWF for EOS Retention value/unit	\$134.62/unit x .75 x .06930		-7.00/uni <u>t</u>	
Life Cycle cost/unit	•		\$144.81	
Units Total Life Cycle Cost			x 10 units	\$1448.10

Example 5: Computer Input-BOD 3 Years After DOS Mercury Vapor

<u>Problem Statement</u>. This example demonstrates all steps using a system of ten mercury vapor fixtures. An apartment building for family housing is under design at Fort Eustis, VA. The BOD is July 1992. The DOS is 3 years before BOD or July 1989. A 25-year LCC analysis using a 10 percent discount rate is required. A computer program, such as the Corps' LCCID, that requires an annual maintenance figure and high cost tasks will be used.

Installation Related Data.

Geographic Location Adjustment Factor. The LAF can be obtained from the latest EIRS bulletin or from the Area Cost Factor Newsletter on the PAX computer system as shown in Appendix D. The factors are indexed by state and then by location within the state. From Appendix D, for Virginia and Fort Eustis, the geographic LAF (or ACF Index) is 0.96.

Inflation. The cost data in Appendix B is expressed in July 1988 dollars. Since the DOS is July 1989, all cost figures must be adjusted. A telephone conversation with a District cost estimator has revealed that the costs have risen 2 percent from July 1988 to July 1989. This means that all material costs need to be multiplied by a 1.02 cost adjustment factor.

Resource Rates. The labor and equipment resources in Appendix B are expressed in hours per unit measure. To obtain accurate cost figures the designer called the Fort Eustis DEH-MES branch. The July 1989 rates of \$13.50/hr for an electrician and \$3.00/hr for a maintenance truck were obtained.

Component Information.

Size. The designer is considering a system of ten mercury vapors.

Initial Costs. The designer obtained a CACES Unit Price Manual from the cost estimator. By looking up the mercury vapors component, a cost of \$134.62/per unit was obtained. (Note: if the component is not found in the CACES Unit Price Manual, other books such as Means and Dodge can be used.)

Retention Value. The average life of a mercury vapors is 20 years, as shown for the replacement table in Appendix B. At the end of the 25-year analysis period, the mercury vapor fixture would still have 15 years of life remaining or 15/20 = 75 percent of its useful life. The retention value can be considered to be 75 percent of the initial cost of \$134.62/unit, or \$100.97/unit.

<u>Data Entry Calculations</u>. Four factors need to be considered when performing a present worth calculation: initial cost, annual maintenance costs, high costs, and retention value. Each factor is discussed below.

Initial Costs. The initial cost of \$134.62/unit is estimated from CACES as discussed above.

25-Year Maintenance Cost. The total annual 25-year maintenance cost is composed of three parts: labor, material, and equipment. Annual labor costs per unit is equal to the labor hours per units obtained from Appendix B, multiplied by the installation labor hourly rate. This would be .02905 hr/unit/yr multiplied by a labor rate of \$13.50/hr, which is equal to \$.39218/unit.

Labor = .02905 hr/unit/yr x 13.50/hr = \$.39218/unit/yr

Annual material costs per unit is equal to the material dollars in Washington, DC, base units obtained from Appendix B, multiplied by the geographic LAF from Appendix D, and then multiplied by the inflation factor. This would be \$3.46673 DC-based dollars per unit multiplied by a geographic LAF of 0.96 and a CEF of 1.02, or \$3.39462/per unit.

Material =
$$\$3.46673/\text{unit/yr} \times 0.96 \times 1.02 = \$3.39/\text{unit/yr}$$
 [Eq 17]

Annual equipment costs per unit is equal to the equipment hours per unit obtained from Appendix B, multiplied by the installation equipment hourly rate. This would be .02905 hr/units multiplied by an equipment rate of \$3.00/hr, which is equal to \$.08715/units.

Equipment =
$$.02905 \text{ hr/unit/yr x } 3.00/\text{hr} = $.08715/\text{unit/yr}$$
 [Eq 18]

The total annual maintenance cost per unit would be the labor cost (\$.39268/unit) plus the material cost (\$3.39/unit), plus the equipment cost (\$.08715/unit) or \$3.88/unit

Total:
$$3.39268/\text{unit/yr} + 3.39/\text{unit/yr} + 0.08715/\text{unit/yr} = 3.88/\text{unit/yr}$$
 [Eq 19]

The total cost figure for the uniform maintenance cost for computer entry is obtained by multiplying the total of \$3.88 by the ten units, resulting in an annual cost of \$38.80.

Replacement/High Cost Tasks. There are no high-cost tasks for mercury vapor fixtures.

Replacement Task. The maintenance cost is composed of three parts: labor, material, and equipment. Labor costs per unit is equal to the labor hours per units obtained from Appendix B, multiplied by the installation labor hourly rate. This would be .58162 hr/unit/yr multiplied by a labor rate of \$13.50/hr, which is equal to \$7.85.

Labor =
$$.58162 \text{ hr/unit/yr } x $13.50/\text{hr} = $7.85/\text{unit/yr}$$
 [Eq 16]

Material costs per unit is equal to the material dollars in Washington, DC, base units obtained from Appendix B, multiplied by the geographic LAF from Appendix D, and then multiplied by the inflation factor. This would be \$134.62000 DC-based dollars per unit multiplied by a geographic LAF of 0.96 and a CEF of 1.02, or \$131.82 per unit.

Material =
$$$134.62000/\text{unit/yr} \times 0.96 \times 1.02 = $131.82$$
 [Eq 17]

Equipment costs per unit is equal to the equipment hours per unit obtained from Appendix B, multiplied by the installation equipment hourly rate. This would be .58162 hr/units multiplied by an equipment rate of \$3.00/hr, which is equal to \$1.74/units.

Equipment =
$$.58162 \text{ hr/unit/yr } \times \$3.00/\text{hr} = \$1.74/\text{unit/yr}$$
 [Eq 18]

The replacement cost per unit would be the labor cost (7.85/unit) plus the material cost (\$134.62/unit), plus the equipment cost (\$1.74/unit) or \$144.22/unit.

Total:
$$\$7.85/\text{unit/yr} + \$134.62/\text{unit/yr} + \$1.74/\text{unit/yr} = \$144.22$$
 [Eq 19]

Table 12

Calculation Sheet - Example 5

ANNUAL MAINTENANCE

	Calculation <u>Column</u>	Subfactor Cost/Unit	Factor Cost/Unit
Initial Cost Initial Cost/unit Unit Initial Cost	\$134.62/unit x <u>10 unit</u>		\$1346.20
25-Year Annual Maintenance Labor hours/per unit Labor Rate Labor cost/per unit Material/per unit AF CEF Material cost/unit Equipment Equipment Rate Equipment cost/unit Annual Maintenance/unit Units TOTAL Annual Maintenance	.02905 hr/unit x \$13.50/hr \$3.46673/unit x .96 x 1.02 .02905 hr/unit x \$3.00/hr	\$.39218/unit 3.39 \$.08715/unit	\$ 3.88 x_10 units \$38.80
Replacement Task Labor hours/per unit Labor Rate Labor cost/per unit Material/per unit AF CEF Material cost/unit Equipment Equipment Rate Equipment cost/unit	.58162 hr/unit x \$13.50/hr 134.62000 x .96 x 1.02 .58162 hr/unit x \$3.00/hr	\$7.85 131.82 \$1.74	
Total Replacement/unit Units TOTAL Replacement			\$144.22 x <u>10 units</u> \$1442.20
Retention Value Initial Cost Remaining Life Retention Value	\$134.62/unit x .75	\$100.97/unit	

Example 6: Extraordinary Energy-Saving Design Initiatives—Mercury Vapor Fixture

Problem Statement. This example demonstrates all steps involved in using the summary tables in Appendix A for the conventional mercury vapor fixture alternative. An apartment building for family housing is under design at Fort Eustis, VA. The designers are considering the use of a new-technology energy conserving, low maintenance unit. They will determine if it is more cost effective on the basis of a life-cycle cost analysis. The system contains ten mercury vapor units. The DOS is July 1989. The analysis period is 25 years. In accordance with established criteria for energy-conservation studies, the BOD is assumed to occur on the DOS (July 1989); all costs are assumed to occur at the end of the year in which they are projected to occur; and the discount rate for the present worth calculations is assumed to be seven percent.

Installation Related Data.

Geographic Location Adjustment Factor. The geographic LAF can be obtained from the latest EIRS bulletin or from the Area Cost Factor Newsletter on the PAX computer system as shown in Appendix D. The factors are indexed by state and then by location within the state. From Appendix D, for Virginia and Fort Eustis, the geographic LAF (or ACF Index) is 0.96.

Inflation. The cost data in Appendix A is expressed in July 1988 dollars. Since the DOS is July 1989, all cost figures must be adjusted. A telephone conversation with a District cost estimator has revealed that the costs have risen 2 percent from July 1988 to July 1989. This means that all costs need to be multiplied by a 1.02 cost adjustment factor.

Resource Rates: The labor and equipment resources in Appendix B are expressed in hours per unit measure. To obtain accurate cost figures, the designer called the Fort Eustis DEH-MES branch. The July 1989 rates of \$13.50 per hour for a electrician and \$3.00 per hour for a maintenance truck were obtained.

Component Information.

Size. The designer is considering a system of ten mercury vapor fixtures.

Initial Costs. The designer obtained a CACES Unit Price Manual from the cost estimator. For the mercury vapor fixture component a cost figure of \$134.62/unit was obtained. (Note: if the component is not found in the CACES Unit Price Manual, other books such as Means and Dodge can be used.)

Retention Value. The average life of a mercury vapor fixture is 20 years as shown for the replacement task in Appendix B. At the end of the 25-year analysis period, the mercury vapor fixture would still have 15 years of life remaining or 15/20 = 75 percent of its useful life. The retention value can be considered to be 75 percent of the initial cost of \$134.62/unit or \$100.965/unit.

<u>Present Worth Calculations</u>. The following factors are considered in performing the present worth calculation: initial cost, maintenance costs, and retention value. Each factor is discussed below.

Initial Costs. The initial cost of \$134.62/unit is assumed to occur on the BOD/DOS in accordance with established criteria for energy conservation studies.

25-Year Maintenance Cost. The total 25-year maintenance cost is composed of three parts: labor, material, and equipment. Labor costs per unit is equal to the labor hours per units obtained from

Appendix A multiplied by the installation labor hourly rate. This would be .49800 hr/unit multiplied by a labor rate of \$13.50/hr which is equal to \$6.72/unit.

Labor =
$$.49800$$
 hours/units x \$13.50/hour = \$6.72/unit [Eq 24]

Material costs per unit are equal to the material dollars in Washington, DC, base per unit obtained from Appendix A multiplied by the geographic LAF from Appendix D and then multiplied by the inflation factor. This would be \$76.27325 DC-based dollars per unit multiplied by a geographic LAF of 0.96 and a CEF of 1.02, which is equal to \$74.69/unit.

Material =
$$$76.27325$$
/unit x 0.96 x 1.02 = $$74.69$ /unit [Eq 25]

Equipment costs per unit are equal to the equipment hours per unit obtained from Appendix A multiplied by the installation equipment hourly rate. This would be .49800 hr/unit multiplied by an equipment rate of \$3.00/hr, which is equal to \$1.49/unit.

Equipment =
$$.49800 \text{ hr/unit } \times \$3.00/\text{hr} = \$1.49/\text{unit}$$
 [Eq 26]

The total maintenance cost per unit would be the labor cost (\$6.72/unit) plus the material cost (\$74.69/unit) plus the equipment cost (\$1.49/unit) or \$82.90/unit.

Total =
$$$6.72/\text{unit} + $74.69/\text{unit} + $1.49/\text{unit} = $82.90/\text{unit}$$
 [Eq 27]

This total has already been discounted to the date of study since all figures on the left side of the table in the Appendix are expressed in terms of the DOS.

Retention Value. The DOS present worth for the retention value would be the expected retention value of \$100.965/unit multiplied by the end of year present worth factor for the EOD of .1842 obtained from Table 9 which produces a cost of \$18.60/unit.

Total Life Cycle Cost for Construction and Maintenance and Repair. The total LCC per unit for the DOS is the sum of the present worth costs for the initial cost of \$134.62/unit plus the 25-year maintenance cost of \$82.90/unit minus the retention value of \$18.60/unit.

Total LCC =
$$$134.62/unit + $82.90/unit - $18.60/unit = $198.92/unit$$
 [Eq 28]

The total dollar cost would be the LCC per unit of \$198.92 multiplied by the ten units producing a total cost of \$1989.20.

Calculation Sheet. A typical calculation sheet is shown in Table 13.

Table 13

Calculation Sheet - Example 6

	Calculation <u>Column</u>	Subfactor Cost/Unit	Factor Cost/Unit	Total <u>Cost</u>
Initial Cost Initial Cost			\$134.62/unit	
25 Year Maintenance Cost				
PW - Labor	.49800 hr/unit			
Labor Rate	x <u>\$13.50/hr</u>			
Labor cost/unit		\$6.72/unit		
PW - Material	\$76.27325/unit			
LAF	x .96			
CEF	x <u>1.02</u>			
Material cost/unit		\$74.69/unit		
PW - Equipment	.49800 hr/unit			
Equipment Rate	x <u>\$3.00/hr</u>			
Equipment cost/unit		\$1 <u>.49/unit</u>		
Maintenance cost/unit		\$82.90/unit		
Retention Value				
Initial Cost	\$134.62/unit			
Remaining Life	x .75			
PWF for EOS	x .1842			
Retention value/unit			<u>- 18.60/unit</u>	
Life Cycle Cost/unit			\$198.92/unit	
Units			x <u>10 unit</u>	
TOTAL Life Cycle Cost				\$1989.20

REFERENCES

- AR 11-28, Economic Analysis and Program Evaluation for Resource Management (Headquarters, Department of the Army [HQDA], December 1975).
- Neathammer, R.D., Life-Cycle Cost Database Design and Sample Cost Data Development, Interim Report P-120/ADA0997222 (U.S. Army Construction Engineering Research Laboratory [USACERL], February 1981).
- Neathammer, R.D., Life-Cycle Cost Database: Vol I, Design, and Vol II, Sample Data Development, Technical Report P-139/. DA126644 and ADA126645 (USACERL, January 1983), Appendices E through G.
- Neely, E.S., et al., B. ilding Component Maintenance and Repair Data Base: Architectural Systems, Special Report P-91/27 (USACERL, May 1991).
- Neely, E.S., et al., Building Component Maintenance and Repair Data Base: Electrical Systems, Special Report P-91/19 (USACERL, May 1991).
- Neely, E.S., et al., Building Component Maintenance and Repair Data Base: Heating, Ventilation, and Air-Conditioning Systems, Special Report P-91/22 (USACERL, May 1991).
- Neely, E.S, et al., Building Component Maintenance and Repair Data Base: Plumbing Systems, Special Report P-91/30 (USACERL, May 1991).
- Neely, E.S., et al., Building Maintenance and Repair Data for Life-Cycle Cost Analysis: Architectural Systems, Special Report P-91/17 (USACERL, May 1991).
- Neely, E.S., et al., Building Maintenance and Repair Data for Life-Cycle Cost Analyses: Heating, Ventilation, .r., Air-Conditioning Systems, Special Report P-91/20 (USACERL, May 1991)
- Neely, E.S., et al., Building Maintenance and Repair Data for Life-Cycle Cost Analyses: Plumbing Systems, Special Report P-91/24 (USACERL, May 1991)
- Neely, E.S., et al., Maintenance Resource Prediction in the Facility Life-Cycle Process, Technical Report P-91/10 (USACERL, March 1991).
- Neely, E.S., et al., Maintenance Task Data Base for Buildings: Architectural Systems, Special Report P-91/23 (USACERL, May 1991).
- Neely, E.S., et al., Maintenance Task Data Base for Buildings: Electrical Systems, Special Report P-91/25 (USACERL, May 1991).
- Neely, E.S., et al., Maintenance Task Data Base for Buildings: Heating, Ventilation, and Air-Conditioning Systems, Special Report P-91/21 (USACERL, May 1991).
- Neely, E.S., et al., Maintenance Task Data Base for Buildings: Plumbing Systems, Special Report P-91/18 (USACERL, May 1991).
- TM 5-802-1, Economic Studies for Military Construction—Applications (HQDA, 31 December, 1986).

LIST OF ACRONYMS

ACE Assistant Chief of Engineers

AMS Army Management System

APC Account Processing Code

AR Army Regulation

ARR Annual Requirements Report

ASTM American Society for Testing and Materials

BLAST Building Loads Analysis and System Thermodynamics

BMAR Backlog of Maintenance and Repair

CA Commercial Activities

CACES Computer-Assisted Cost Estimating System

CONUS Continental United States

DA Department of the Army

DEH Directorate of Engineering and Housing

DOD Department of Defense

EA Economic Analysis

EPS Engineered Performance Standards

HQ-IFS Headquarters - Integrated Facilities System

HQDA Headquarters Department of the Army

IFS Integrated Facilities System

IJO Individual Job Order

LCC Life-Cycle Cost

LCCID Life-Cycle Cost in Design

M&R Maintenance and Repair

MACOM Major Command

MCA Military Construction, Army

MRPM Maintenance Resource Prediction Model

OCE Office of the Chief of Engineers

PAVER Pavement Maintenance Management System

PC Personal Computer

PM Preventive Maintenance

R&D Research and Development

RAM Random Access Memory

RMF Recurring Maintenance Factor

RPI Real Property Inventory

RPLANS Real Property Planning System

RPMS Real Property Management System

SO Service Order

STANFINS Standard Army Financial System

TB Technical Bulletin

URR Unconstrained Requirements Report

USACE U.S. Army Corps of Engineers

USACERL U.S. Army Construction Engineering Research Laboratory

USAEHSC U.S. Army Engineering and Housing Support Center

APPENDIX A:

LIFE-CYCLE COST ANALYSIS (7 PERCENT)

EPS BASED MAINTENANCE	MTENA	ş	REPAIR COST DATA	A FOR USE	IN LIFE CYCLE	COST ANALYSIS	IS (S PER UNIT	MEASURE)				PAGE 71
	_	PRESENT MAINTENANCE	ESENT MORTH OF	ALL 25	(F. 73)		ANNUA MIGN CO	ANNUAL MAINTENANCE HIGH COST REPAIR AND		AND REPAIR PLUS REPLACEMENT COSTS	PLUS T COSTS	
COMPONENT DESCRIPTION	<u>. </u>		By Resources		Vashington	} =	Maintenance and Repair	Repair	2	Replacement	and High Cost	ts Tasks
	5:	- rode	neteriol	equipment	D.C. Total	labor	material	equipment	\$	(*por	moterial	equipment
ELECTRICAL SERVICE AND DIST. OVERHEAD SERVICE FEEDER OVERHEAD SERVICE FEEDER		172.	73067	17261	150 031	72025	12831	72025 0	Ş	21 01570	00078 817	10.95780
MAIN PROTECTION EQUIP.	2:	21.22458	1478.10184	20.89701	2021.46	1.77913	97.60951	1.77913	25	1,90151	1318.11000	
PRIMARY TRANSFORMERS TRANS., LIQUID FILLED >600V TRANS., DRY > 15,000V.	5 55	11.95237	1450.67307	11.95237	157.25	1.02564	124.48283	1.02564		15.99000	17307.68000	_
POLER PROTECTION EQUIP. SAITCHGEAR, INDOOR, < 600V. SAITCHGEAR, INDOOR, < 600V.	ጸጸ	0.12611	2.64128	0.12611	%. %.	0.01082	0.22665	0.01082	22	1.12476	122.69500	1.12476
SECONDARY TAMASFORMER TRAMSLIQUID FILLED <600V TAMASDRY < 15,000V	55	15.38862	4.88130	15.38862	399.60	1.32050	0.41887 5.23037	1.32050	28	2.62561	7645.78000	1.31281
LIGHTING PROPECTION SATITCHEEA, INDOOR, <600V. SATITCHEEA, INDOOR, > 600V.	22	0.12611	2.64128	0.12611	5.88 76.09	0.01062	0.22665	0.01062	22	1.12424	122.69500	0.56212
CALE, THEOPERST. 415,000V. CALE, THEOPERST. 415,000V. CALE, THEOPERST. 415,000V.			0.0000		888	0.00	00000	8000	385	7.36268	76.32000	
CARLE SELEDED AS SOUV. CARLE FLEX. METALL C 4600V. MACHURING < 4600V.	- 2 2 :	8888	9000	3888	3888		8888	3000	3885	56.21200 10.35307	595.72000 150.52000	28.10600 5.17654
MAJACH VIRING, > 600V. BLSS BLCS CONDUIT ENT	===		9.51816 0.0000		97.9 97.8	0.0000	0.0000	803	208	28.98259	36.83500 1283.13000	
	551	2.79334 116.06578	680.07840	2.79334 87.66937	3365.26	9.91481	3.10938	0.21806	ನಿನಿನ	2.0950	1485.06000	0.97500 1.04975 7.975
POLER SYSTEM CARTY CASTUM CAST	5	3 8 •	/ocas.1701	4.36.4	6.00	9.5/136	AISCS: 11	oc / .	3	2640.3	27. Yea	
20,	555	9.75852	7.60697	9.62426	257.73	0.82845	0.0000	0.82845	RRA	0.78537	41.30820 212.00000 224.72000	0.28269
CIR, BCR, 18.C. A 1999V 39 CIR, BCR, 18.C. A 1600V 19	<u>55</u>	5.55.28 5.55.28 5.55.28	0.0000	5.62426 15.6964.26	26. 26. 26. 26. 26.	0.82586	0.0000 5.56511	0.62586	28	0.75049	73.14000	
BCR. M.C. V	וטט	55.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	4.85.42 6.85.4	15.68 26 26 26 26 26 26 26 26 26 26 26 26 26	467.52	283 24,4 24,4 36,4 36,4 36,4 36,4 36,4 36,4 36,4 3	5.56512 5.56513	288	888	0.97292	\$22.26000 \$23.26000	
CIR. BCC., FIRED CAWY IP CIR. BCC., FIRED CAWY V		177.73 177.73 177.73	9000	7773 8.8	333	0.40299	00000	0.40299	និនិន	, 25 25 25 25 25 25 25 25 25 25 25 25 25 2	22.7.600	
EX. FIXED		18.01460	558.80178	18.94.66 18.94.66	1020.88	1.49232	14.16060	1.69232	225	0.97292	256.5200	
		7,295.2	2.92878	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	253.07	0.82845	0.0000	0.82845	323	0.56537	15.9000	
SUITCH FUSED	555	0.0000	18.54894	6.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	26.69 6.00 6.00 6.00	0.82845	0.0000	0.0000	X S X	0.56537	100.70000 0.83740 0.31800	
MOTOR STATER 4 600V.		18.51200	77.40421	18.51200	552.24	1.56724	4.08088	1.56724	25	0.83824	100.86960	
CONTACTORS AND RELAYS			111.61111	13.45261	456.67	1.13532	4.46359	1.13532	2	0.75049	201.40000	0.7049
RECEPTACLES AND PLUGS See MOTES on the last page of this table	_ <u>ē</u>	e for Expl	anation of Co	Column Headin	- seu	- -	-	-	-	- : :	-	-

	MAILEGE DE LA MANAGEMENT PERCEI DE LE MANAGEMENT PERCE		MAINT	PRESENT WORTH OF ALL 25 YEAR MAINTENANCE AND REPAIR COSTS (de 7%)	OF ALL 25 Y	EAR (4-72)		AUNUA NIGH CO	ANNUAL MAINTENANCE AND REPAIR PLUS	AND R	AND REPAIR PLUS	PLUS COSTS	
	COLORER PROPERTY.			By Resources	_	Weshington	Arrasel M	Annual Maintenance and Repair	Repair	ž	Replacement	and Migh Costs Tasks	5 Tasks
		5	labor	meterial .	equipment	D.C. Total	Lebor	meterial	equipment	<u>~</u>	- rode	meterial	equipment
	URING DEVICES, SAUTCHES RECEPTACLES AND PLUCS SAUTCH, PALL COND	555	0.51959 0.12335 1.00578	2.72600 1.52017 4.27053	0.51959 0.12335 1.00578	30.07	0.02974 0.00000 0.07146	0.09448	0.02974 0.00000 0.07146	. 282	2,5,5 2,5,5 2,5,5 2,5,5 3,5,5 3,5 3,5 3,5 3,5 3,5 3,5 3,5 3	4.48380 5.88300 4.48380	0.47736
·	LIGHTING FIXTURES INCANDESCENT LIGHTING FIXT GUARTZ FIXTURE	55	0.23724	6.06904 39.93564	000	12.15	0.01041	0.1473		22	0.44850	16.96000	0.44850
	FLOOR, LIGHTING FIXT, BOW. MERCIRY VAPOR FIXT, 1754. METAL-MALIDE FIXT, 1754.	555	26.00	76.27325	900	785	0.02984	3.56005		222	0.58162	67.84.000 134.62000 197.16000	0.54126 0.58162 0.43550
	EMERGENCY LIGHTING FIXT. II.P. SOOLUM FIXT. 250V. L.P. SOOLUM FIXT. 200V.	5551	53060	33.02878 306.81573 187.8772	0.26530	25.55 25.55 25.55 25.55	0.03559	0.60135 16.6441 8.55338	0.04812	222	3.14782 0.44850 0.44850	100.70000 436.72000 341.32000	3.14782 0.22425 0.22425
	GROUNDING SYSTEM ELECTRICAL SERVICE GRO. ELECTRICAL SERVICE GRO.	; <u>}</u>	0.19430	0.43346		5.42	0.01667	0.03720			11.97118	320.33200	11.97118
		11	1.32063	2.94621	1.32063	36.82	0.11332	0.25282	0.11332 150		11.97118	363.93200	11.97118
<u> </u>	LIGHTHM PROTECTION STS. LIGHTHM PROTECTION STS. LIGHTHM GR. BOD	≒ 5	11.91446	178.57657	10.05286 12.33719	367.60	0.84019	2.99733	1.03611	XX	11.52658	14.20400	5.76329
	CONFUTER CROUME SYSTEM CONFUTER CROUME SYSTEM	=	D.68134	3.72380	0.66134	21.20	0.05847	0.31954	0.05847	8	7.03300	99.21600	7.03300
	SPECIAL GROUND STSTEN SPECIAL GROUND STSTEN See MOTES on the last page of this table			.68134 3.72380 0.68134 for Explanation of Column Neadings	0.68134	21.20	0.05847	0.31954	0.05847	3	7.03300	99.21600	3.51650

***********************************									٠			
		MAJNT	PRESENT WORTH O MAINTENANCE AND REP	MORTH OF ALL 25 YEAR AND REPAIR COSTS (de	£ 3		ANNUAL HIGH COS	ANNUAL MAINTENANCE HIGH COST REPAIR AND		AND REPAIR P REPLACEMENT	PLUS T COSTS	
COMPONENT DESCRIPTION			2		Vashington	Armuel H		and Repair	Rept	7	ā	Costs Tasks
	5	Labor	material	equipment	D.C. Total	Labor 1	materiol .	equipment	<u> </u>	Labor	material	equipment
ELECTRICAL SOUND SYSTEM												
TELEPHONE STRIEM 4-PIN RECEPTACLE TELEPHONE CABLE	17	0.51356	1.18865	0.51356	7.5 8.8	0.02620	0.04161	0.02620	88 0.5	0.80600	2.72420	0.80600 6.77365
DCOR BELL DCOR BELL	5	5.29744	20.06573	5.29744	155.96	0.35351	0.50391	0.35351	15	3.25000	39.22000	3.25000
ALAUN SYSTEM FIRE ALAUN SYSTEM		0000	****		27 03	עסטנט ע	74270		_	2834.0	00082 07	
MANUAL PLAL STATION SHOKE DETECTOR	<u> </u>	2.7.29	30.26178		.85 28.8	0.21983	0.15747			27.70	78.44000	
FIRE ALADM WELL AMMINICIATION PANEL MEAT DETECTOR	555	2.72000	159.33655	2.71209	25.23	0.21983	3.78367	0.21983	*****	0.4150	20.14000	1.76150
FIRE ALAM CONT. PANEL TELEVISION STSTEM	<u>5</u>	13.06000	351.40635		98 88	7.003	3.7836				940.000	
TELEVISION SYSTEM TV CABLE GUITLET	5	0.51356	3.90872	0.51356	17.00	0.02920	0.04161	0.02620	8	0.80600	13.25000	0.80600
CONTROL STRIEN CONTROL STRIEN LIGHT DIMING PANEL	<u> </u>	4.96708	157.766	4.96708	285.69	0.37316	5.29713	0.37316	15.	1.76150	265.00000	1.76150
TINE SYSTEMS CLOCK & PROGRAM SYSTEM TIME CONTROL CLOCK	<u> </u>	5.13510	31.72488	5.13510	163.64	0.39213	0.78736	0.39213	15	1.56000	62.22200	1.56000
ELECTIC MEATING SYSTEM DASEBOARD MEATING UNIT.	13	28.88241	61.35450	28.88241	802.19	2.42298	0.0000	2.42298	<u>ئ</u>	2.49990	237.44000	2.49990
WALL AND CEILING WEATERS	تا	*		14.90168	27.597	1.22329	5.62823			06667	137.80000	_
	<u>55</u>	22.01712 32.52246	8.03600 61.07890	29.91712 32.52246	860.33 895.28	2.41223	0.0000	2.71302	<u>25</u>	2.49990	168.54000	2.49990
INDUSTRIAL MEATERS. STANDARD SUSPENDED MEATER EXPLOSION PROOF INDUSTRIAL	55	29.01712	240.57760	29.01712	1225.44	2.41223	12.40317	2.41223	55	2.49990	265.00000 530.00000	2.49990
DUCT NEATER DUCT NEATER	5	32.52246	699.44227	32.52246	1533.64	2.71302	\$1.35000	2.71302	15 2.	2.49990	278.78000	2.49990
POWER GENERATION SYSTEM ENGINE GENERATOR SETS EST CASCALINE TORONS	<u>5</u>	161.61327	39050.40000	135.82343	43113.25	9.44.203	0.0000	_	23 23 23 23 23 23		12000.00000	140.0100
GENERATOR, DIESEL, 1000KV.	<u>55</u>	161.61327	39050.40000	122.92651 122.92651	4307.99	• • • • • • • • • • • • • • • • • • •	0000		388 0X1		12000.00000	255 255 255 255 255 255 255 255 255 255
GEN., STEAN TURBINE, 1000KV.	<u> </u>	147.05410	48813.00000	119.28872	53407.41	25.23 25.23	0.0000 2.44853	9.44.203	0X5	400.0000 200.0000 200.0000	265000.00000	200.00500 0.75023
UNINTERRUPT FOUR SOURCE STATIC - CHARGER, BATTERY	<u> </u>	74.74.30	282.98555	74.74.30	2201.46	6.37158	11.05046		52 5.2		596.78000	2.09950
MOION - GEMERATUR, BALLERY EMERCENCY BATTERY STS.	<u> </u>		200.00		07 84.74	24 31283	00000			39010	265, 00000	1001
BATTERY, PRIMARY NET BATTERY, PRIMARY DRY BATTERY, SECONDARY WET	555	28.62786 28.62786 28.63894	107.39380 264.44570	28.62786 28.62786	759.76	24.75	0000	24.31283	<u>vār</u>	0.399	371.0000	200
BATTERY, SECONDARY DRY	<u>5</u>	58.62756	214.78780	26.62/36		\$ R			_		33.6	2.24

Notes

- 1. The resources listed in this table are as of the Date of Study (DOS) and have been calculated using a present worth discount factor (d) of 7 percent. The Date of Study (DOS) is the Beneficial Occupancy Date (BOD). All tasks are assumed to occur at the end of the year. All resources have been assumed to be constant with no differential escalation from year to year.
- 2. <u>Component Description</u> This column contains an indented list of systems, subsystems, components, and high cost task descriptions.
- 3. <u>Unit of Measure (UM)</u> This column contains a two-character code to indicate the measurement unit for the component. Units used in this column are as follows:

CT	Count
LF	Linear Foot
SF	Square Foot
TF	Thousands of Linear Feet

- 4. <u>Labor</u> Labor resources can be used in one of two ways: (1) labor hours per unit of measure, or (2) dollars per unit of measure assuming a \$1.00/hr labor rate.
- 5. <u>Materials</u> Material resources are expressed in dollars per unit of measure in July 1988 dollars for the Washington, DC, area.
- 6. Equipment Equipment resources can be used in one of two ways: (1) equipment hours per unit of measure, or (2) dollars per unit of measure assuming a \$1.00/hr equipment rate.
- 7. Washington, DC, Total The dollars per unit of measure figures were calculated by applying the Military District of Washington labor and equipment rates to the labor and equipment resources, then adding the labor, material, and equipment costs together to form one total cost figure.
- 8. Year (YR) This column contains the average age of the component when the high cost task or replacement task would be performed.
- 9. <u>Engineered Performance Standards (EPS)</u> Most labor and equipment resource data is based on the DOD series of Technical Bulletins as discussed in the body of the report.

APPENDIX B:

LIFE-CYCLE COST ANALYSIS (10 PERCENT)

EPS BASED MAINTENANCE	INTENA	3	REPAIR COST DATA FOR USE		IN LIFE CYCLE	COST ANALYSIS	IS (S PER UNIT	MEASURE)				PAGE 71
		1	PRESENT WORTH OF MAINTENANCE AND REPA	⋜≝	1 25 YEAR COSTS (4=10%)		ANNUAL HIGH COST	ANNUAL MAINTENANCE GH COST REPAIR AND	AKE A	AND REPAIR REPLACEMEN	AIR PLUS MENT COSTS	
. COMPONENT DESCRIPTION	<u></u>		By Resources		Washington	Annual R	Naintenance and Repai	Repair	æ	Replacement	and High Costs	s Tasks
	5:	lebor	meterial	equipment	D.C. Total	Labor		equipment	<u> </u>	Lebor	material	equipment
ELECTRICAL SERVICE AND DIST.	•											
OVERHEAD SERVICE, SPLICE	16	3.26955	0.35097	3.26955	12.20	0.45711	0.04907	0.45711	8	21.91579	438.84000	10.95790
FUSES FUSES WAINTRY, 1200a.	25	12.77505	832.77273 0.00000	12.62660	1159.98	1.75494	94.84971	1.75494	22	1.90151	1318,11000 265.00000	0.63364
PRIMARY TRANSFORMERS S TRANS .LIGHID FILLED >600V TRANS .DRY . > 15,000V	55	7.14243	796.38489	7.14243	979.59	0.99858	111.34201	0.99858	88	15.99000	17307.68000 20926.52000	5.33000
POWER PROFESTION COURTS SHITCHERA, IMPOOR, < 600V. SWITCHERA, IMPOOR, > 600V.	አሻ	0.07158	3.66077	0.07158	3.29	0.01001	0.20272	0.01001	22	1.12476	122.69500 177.28500	1.12476
SECONDARY TRANSFORMER TRANS., LIGUID FILLED <600V TRANS., DRY, < 15,000V.	55	9.39289	1.92655	9.39289	242.85	1.31321	0.26935	1.31321	22	2.62561	7645.78000	1.31281
LIGHTING PROTECTION SATTCHERA, IMDOOR, <600V. SATTCHERA, IMDOOR, > 600V.	ភ័ភ	0.07158	1.45000	0.07158	89.38	0.01001	0.20272	0.01001	22	1.12424	122.69500	0.56212
POLICE & LIGHTIMG DIST. CLARE THREWELST., 415,000V. CLARE THREWSETT., 415,000V.	22		0.0000	999	988	000	0000	000		7.36268	76.32000	
CABLE, FLEX METALIC 4600V. CABLE, FLEX METALIC 4600V. BRANCH WIRING, < 4600V.	===	888	0000	388	388	888	888	300	388	56.21200	595.72000 150.52000	28.10600
BRANCH UTRING, > 600V. BASS DUCT COMDUIT ENT	===	0.06760	0.00000 4.31338 0.00000	0.000	0 v 0	0.00447	0.0000	0.00		28.9829 28.98259	36.83500 36.83500 1283.13000	
υ T-	551	1.63311	351.01593 222.83638	1.63311	392.91	9.97399	24.76236	7.54443	222	2.0930	1485.06000	0.9730 7.9730 7.9730
POLER STEEN COON.	5	*0. Upon	632.31767		1013.37	0.4009	***	À CO	₹		2007. /ca	
= U.	555	5.96532	3.00311	5.87003	155.95	0.82826	0.0000	0.82826	322X	0.75049	41.30820 212.00000 224.72000	0.28269
CIR. BKR., N.C. < 595W 3P CIR. BKR., N.C. > 6600V 1P		5.87003	35.60309	5.67003	150.57	0.82069	0.00000	0.62069	200	0.97292	73.14000	
BKR., M.C. > BKR., M.C. > BKR., M.C. >		9.53117	35.60309	9.53117	388	1.33255	27.000	1.33255	388	26.65	923.26000	
MCA. FIXED		2.88250	00000	2.88250	2.5 2.5	0.40300	0.0000	0.40300	222	326	25.54600	
BKR., FIXED X600V		11.07697	234.3287	11.07697	2555	38.5	2.7.7 2.2.2 2.2.2 2.3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	2000	777	0.97292	256.52000	
7 20 TG		5.86532	3.23660	25.5	7.7. 5.5.	0.82826	00000	0.82826	RR	0.56537	15.9000	
CARTRIDGE	355	0.0000	0.0000	000	2000	0.0000	00000	0000	<u>388</u>	0.06500	0.83740 0.31800	
MOTOR STARTER 4 600V. MOTOR STARTER, 4 600V. MOTOR STARTER, 601-15,000V.	55	31.73766	42.64027	11.31886	1318.71	1.56588	3.96318	1.56588	5 5	0.83824	100.86960	0.83824
CONTACTORS AND RELAYS CONTACTORS AND RELAYS	5	8.21560	60.29386	8.21560	271.02	1.13375	4.43971	1.13375	20	0.75049	201.40000	0.75049
NECEPTACIES AND PLUSS See NOTES on the last page of this table	-ğ	e for Expl	anation of Co	Lum Keadings	sō.	- ; - ;	-	-	-	- :	-	

EPS BASED MAINTENA	NTEN	ANCE AND R	EPAIR COST DAT	IA FOR USE	NCE AND REPAIR COST DATA FOR USE IN LIFE CYCLE COST ANALYSIS (\$ PER UNIT MEASURE	COST ANALYS	IS (\$ PER UNIT	MEASURE)				PAGE 72
	_	MAINT	PRESENT WORTH OF ALL 25 YEAR MAINTENANCE AND REPAIR COSTS (G=10%)	PAIR COSTS	EAR (0=10%)		ANNUA HIGH CO	ANNUAL MAINTENANCE AND REPAIR PLUS	ABG	ND REPAIR EPLACEMENT	PLUS F COSTS	
CONTORER DESCRIPTION			By Resources		Vashington	Arranal	Annual Maintenance and Repair	Repair	æ	placement	Replacement and High Costs Tasks	s Tasks
;	5	Loge	material	equipment	D.C. Total	labor	material	equipment	- 1	- jode	meterial	equipment
WIRING DEVICES, SWITCHES RECEPTACLES AND PLUGS	: 55	0.27847	1.44428	0.27847	8.59 2.12	0.02635	0.0000	0.02635	£ 8;	0.477 0.477 0.477 0.477 0.477	4.48380 5.88300	\$£!
SAITCH, PULL CORO LIGHTIMO SYSTEM LICHTIMO SYSTEM	5	0.58197					0.21850		₹	0.47736	4.48380	0.47730
INCANDESCENT LIGHTING FIXT	טט	0.12489	21.69191	00	6.20	0.01012	0.14063	0.01012	22	0.44850	16.96000	0.44850
FLOUR, LIGHTING FIXT, 800.	55	0.35366	14.22361	0.35366	2.2 8.3	0.03731	3.46673	0.03731	22	0.74126	134.62000	0.74126
METALIDE FIXT. 1754.	:55	7302	16.00700	00	28	0.03626	9.17686	0.03626	ನಿನಿ	3.43550	197, 16000	3.14782
H.P. SCOLUM FIXT. 2504.	ដ	0.30038	167.06999	0	12.	0.03465	16.20810	0.01733	ನಿನಿ	0.44850	436.72000	0.22425
EXIT LIGHT CANADA CANADA	55	0.12489	6.60589		9.6	0.01012	0.70317	0.01012	32	0.44850	13.46200	0.44850
ELECTRICAL SERVICE GRO. ELECTRICAL SERVICE GROUND	11	0.07669	0.17108	0.07669	2.14	0.01072	0.02392	0.01072	8	11.97118	320,33200	11.97118
BLDG. STRUCTURE GROUND BUILDING STRUCTURE GROUND	1	0.75778	1.69054	0.75778	21.13	0.10595	0.23635	0.10595 150		11.97118	363,93200	11.97118
LIGHTHING PROTECTION SYS. LIGHTHING PROTECTION SYS. LIGHTHING GR. ROD	# 5	6.79255	77.95702	6.37356	223.77	0.83250	3.72475	0.83250	XX	11.52658	779.64200	5.76329
COMPUTER GROUND SYSTEM COMPUTER GROUND SYSTEM	1	0.40238	2.19916	0.40238	12.52	0.05626	0.30746	0.05626	3	7.03300	99.21600	7.03300
SPECIAL GROUND STSTEM SPECIAL GROUND STSTEM TELEMONTORY	E.		0.40238 2.19916	0.40238	12.52	0.05626	97200	0.05626 60	8	7.03300	99.21600	3.51650

EPS BASED MAINTENANCE	INTEN	Ş.	REPAIR COS! DATA	FOR USE	IN LIFE CYCLE	COST ANALYSIS	IS (S PER UNIT	MEASURE)			FAGE 73
	_	X X	PRESENT WORTH OF	F ALL 25 YEAR AIR COSTS (d=10%)	:		ANNUAL MAIN HIGH COST REP	ATEN	NICE AND R	AND REPAIR PLUS REPLACEMENT COSTS	
COMPONENT DESCRIPTION			: 🚡		Weshington		Maintenance and Repai	Repair	Replacement	and Migh	Costs Tesks
	5	rode.)	material	equipment	D.C. Total	- ode	material	equipment	yr Labor	E E	equipment
ELECTRICAL SOLMO SYSTEM TELEPROME SYSTEM A-BIM BEFEDIAL		0.27684	0.60883	0.27684	7.7	0.02551	0.04052	0.02551			
TELEPHONE CABLE	1	0.34125	0.27562	0.34125	9.03	0.04771	0.03853	0.0471		~	
MAN SYSTEM AND	5	3.12098	10.58961	3.12098	39.08	0.35065	0.44637	0.35065	15 3.2	3.25000 39.22000	3.25000
FIRE ALARM SYSTEM MANALL WILL STATION SACKE DEFECTOR	55	0.24923	7.89613	0.24923	14.29	0.02737	0.04185	0.02737			
FIRE ALARM BELL MANUELINION PANEL MEAT DETECTOR	ចចច	7.97600	4.09616 86.02165 5.59431	7.97600	290.61	0.00000	0.00000 3.64159 0.25108	0.00000	855 9-9	0.28730 34.98000 1.76150 318.00000 0.41470 20.14000	00.28730
FIRE ALARM CONT. PANEL TELEVISION SYSTEM	5	7.97600	185.97965	7.97600	390.56	1.06867	3.64159	1.06867			
TELEVISION SYSTEM TV CABLE QUILET CONTROL SYSTEM	5	0.27684	1.84140	0.27684	8.8	0.02551	0.04052	0.02551	20 0.8	0.80600 13.25000	00908.0
CONTROL SYSTEM	5	2.99674	96.44459	2.99674	163.31	0.37252	5.09823	0.37252	15 1.7	.76150 265.00000	1.76150
CLOCK & PROGRAM SYSTEM CLOCK & PROGRAM SYSTEM CLOCK & PROGRAM SYSTEM CLOCK & PROGRAM CLOCK & P	5	3.04697	16.72369	3.04697	98.76	0.38486	0.69746	0.38486	1.5	1.56000 62.22200	1.56000
BASEBOARD MEATING UNITS BASEBOARD MEATING UNITS	5	17.7250	27.80422	17.72250	482.39	2.43684	0.0000	2.43684	20 2.4	49990 237.44000	2.49990
MALL AND CELLING MEATERS WALL NTD ANGECSS, WITH FAN AADLANT SUSPENDED, COMM. INFARED SUSPENDED, COMM.	555	9.05842 17.78115 19.97207	55.25462 49.97900 31.78664	9.05842 17.78115 19.97207	287.60 506.07 544.07	1.22552 2.42005 2.72636	5.46909 0.00000 0.00000	1.22552 2.42005 2.72636	555 222	2.49990 137.80000 2.49990 265.00000 2.49990 168.54000	2.49990
IMOVISITAL MATRES. STAMBARD SUSPEMBED NEATER EXPLOSION PRODE IMOUSTRIAL	ซซ	17.78115	137.85565	17.78115	593.94	2.42005	12.26597 24.57195	2.42005	15 2.4 15 2.4	2.49990 265.00000	2.49990
DUCT MEATER OUCT MEATER PAINS CHEEN CYCTEM	5	19.97207	421.66991	19.97207	933.95	2.72636	51.60249	2.72636	15 2.4	2.49990 278.78000	2.49990
ENGINE GENERATOR SETS CERT, CASCULINE 1000000. GENERATOR, DIESEL, 100000. GEN., VAPOR GAS, 100000.	ฮฮฮฮ	88.26201 88.26201 88.26201	15412.40000 15412.40000 15412.40000	78, 10329 73, 01392 73, 01392	17644.26 17627.98 17627.98	3333	00000	6767.6	XX X80.02000 XX X80.02000 280.02000	212000.00000 212000.00000 212000.00000	76.00500 76.00500
GER., STEAN TOWNER, TOWNER, GER., GAS TURBINE, TOWNER, TRANSFER SAITCH	355		19265.50000 19265.50000 63.39751		23.22	9,50	2.37791	9.494. 0.7966. 0.7966.			200.00500
UNITERADE FOLKE SOURCE STATIC - CHARGER BATTERY NOTOR - CENERATOR, BATTERY	55	55.29728	149.22033	46.06894	1330.89	6.40649	11.09211	6.40649	20 15 15 5.3	33000 181.26000	2.09950
EMERGENCY BATTERY SYS. BATTERY PRIMARY WET BATTERY PRIMARY ONT BATTERY SECONDARY WET	555	13.3621 36.39903 17.3621	111.53850 62.08950 156.15390	17.3671 36.39003 17.36721	669.71 995.49 654.32	24.49448 5.02230 24.49448	0.00000	24.49448 5.02230 24.49448	000 000	39910 265.00000 39910 53.00000 39910 371.00000	0.3%10
BATTERY, SECONDARY DRY See MOTES on the last page of this table f	<u>5</u> 5	36.39003 (e for Exp	124.17900 (anation of Co	36.39003 (um Head	1057.56 ngs	5.02230	0.0000	5.02230	<u> </u>	_	:

Notes

- 1. The resources listed in this table are as of the Date of Study (DOS) and have been calculated using a discount rate (d) of 10 percent. The Date of Study (DOS) is 3 years before the Beneficial Occupancy Date (BOD). All tasks are assumed to occur at mid-year. All resources have been assumed to be constant with no differential escalation from year to year.
- 2. <u>Component Description</u> This column contains an indented list of systems, subsystems, components, and high cost task descriptions.
- 3. <u>Unit of Measure (UM)</u> This column contains a two-character code to indicate the measurement unit for the component. Units used in this column are as follows:

CT	Count
LF	Linear Foot
SF	Square Foot
TF	Thousands of Linear Feet

- 4. <u>Labor</u> Labor resources can be used in one of two ways: (1) labor hours per unit of measure, or (2) dollars per unit of measure assuming a \$1.00/hr labor rate.
- 5. <u>Materials</u> Material resources are expressed in dollars per unit of measure in July 1988 dollars for the Washington, DC, area.
- 6. Equipment Equipment resources can be used in one of two ways: (1) equipment hours per unit of measure, or (2) dollars per unit of measure assuming a \$1.00/hr equipment rate.
- 7. <u>Washington, DC, Total</u> The dollars per unit of measure figures were calculated by applying the Military District of Washington labor and equipment rates to the labor and equipment resources, then adding the labor, material, and equipment costs together to form one total cost figure.
- 8. Year (YR) This column contains the average age of the component when the high-cost task or replacement task would be performed.
- 9. <u>Engineered Performance Standards (EPS)</u> Most labor and equipment resource data is based on the DOD series of Technical Bulletins as discussed in the body of the report.

APPENDIX C:
TECHNICAL BULLETIN INDEX FOR ENGINEERED PERFORMANCE STANDARDS

TB No.	Date	<u>Title</u>
TB 420-1	5 Oct 72	Engineered Performance Standards Public Works Maintenance: Engineers Manual (NAVDOCKS P-700.0)
TB 420-2	5 Oct 72	Engineered Performance Standards Public Works Maintenance: General Handbook (NAVDOCKS P-701.0)
TB 420-3	5 Oct 72	Engineered Performance Standards Public Works Maintenance: General Formulas
TB 420-4	1 Mar 82	Tri-Service Coordination of the Carpenary Handbook
TB 420-5	5 Oct 72	Engineered Performance Standards Public Works Maintenance: Carpentry Formulas
TB 420-6	1 Feb 82	Tri-Service Coordination of the Electric, Electronic Handbook
TB 420-7	5 Oct 72	Engineered Performance Standards Public Works Maintenance: Electric, Electronic Formulas
TB 420-8	1 Feb 82	Tri-Service Coordination of the Heating, Cooling and Ventilating Handbook
TB 420-9	5 Oct 72	Engineered Performance Standards Public Works Maintenance: Heating, Cooling, Ventilating Formulas
TB 420-10	1 Apr 81	Engineered Performance Standards Real Property Maintenance Activities Janitorial Handbook
TB 420-11	5 Oct 72	Engineered Performance Standards Public Works Maintenance: Janitorial Formulas
ТБ 420-12	1 Apr 83	Engineered Performance Standards Real Property Maintenance Activities Machine Shop, Machine Repairs Handbook
TB 420-13	5 Oct 72	Engineered Performance S indards Public Works Maintenance: Machine Shop and Repairs Formulas
TB 420-14	Sep 80	Engineered Performance Standards Real Property Maintenance Activities: Masonry Handbook
TB 420-15	5 Oct 72	Engineered Performance Standards Public Works Maintenance: Masonry Formulas

TB 420-16	1 Apr 81	Engineered Performance Standards Real Property Maintenance Activities: Moving, Rigging Handbook
TB 420-17	5 Oct 72	Engineered Performance Standards Public Works Maintenance: Moving, Rigging Formulas
TB 420-18	1 Nov 78	Engineered Performance Standards Real Property Maintenance Activities: Paint Handbook
TB 420-19	5 Oct 72	Engineered Pertormance Standards Public Works Maintenance: Paint Formulas
TB 420-20	1 Aug 83	Engineered Performance Standards Real Property Maintenance Activities: Pipefitting, Plumbing Handbook
TB 420-21	5 Oct 72	Engineered Performance Standards Public Works Maintenance: Pipefitting, Plumbing Formulas
TB 420-22	1 Sep 80	Engineered Performance Standards Public Works Maintenance: Roads, Grounds, Pest Control, Refuse Collection Handbook
TB 420-24	1 Mar 84	Engineered Performance Standards Real Property Maintenance Activities: Sheet Metal, Structural Iron and Welding Handbook
TB 420-25	5 Oct 72	Engineered Performance Standards Public Works Maintenance: Sheet Metal, Structural Iron and Welding Handbook
TB 420-25 TB 420-26	5 Oct 72	
		Metal, Structural Iron and Welding Handbook Engineered Performance Standards Real Property Maintenance Activities:
TB 420-26	1 Nov 79	Metal, Structural Iron and Welding Handbook Engineered Performance Standards Real Property Maintenance Activities: Trackage Handbook Engineered Performance Standards Public Works Maintenance: Trackage
TB 420-26 TB 420-27	1 Nov 79 5 Oct 72	Metal, Structural Iron and Welding Handbook Engineered Performance Standards Real Property Maintenance Activities: Trackage Handbook Engineered Performance Standards Public Works Maintenance: Trackage Formulas Engineered Performance Standards Real Property Maintenance Activities:
TB 420-26 TB 420-27 TB 420-28	1 Nov 79 5 Oct 72 1 Nov 79	Metal, Structural Iron and Welding Handbook Engineered Performance Standards Real Property Maintenance Activities: Trackage Handbook Engineered Performance Standards Public Works Maintenance: Trackage Formulas Engineered Performance Standards Real Property Maintenance Activities: Wharfbuilding Handbook Engineered Performance Standards Public Works Maintenance:
TB 420-26 TB 420-27 TB 420-28 TB 420-29	1 Nov 79 5 Oct 72 1 Nov 79 5 Oct 72	Metal, Structural Iron and Welding Handbook Engineered Performance Standards Real Property Maintenance Activities: Trackage Handbook Engineered Performance Standards Public Works Maintenance: Trackage Formulas Engineered Performance Standards Real Property Maintenance Activities: Wharfbuilding Handbook Engineered Performance Standards Public Works Maintenance: Wharfbuilding Formulas Engineered Performance Standards Real Property Maintenance Activities:

TB 420-33	1 Aug 83	Engineered Performance Standards Real Property Maintenance Activities: Unit Price Standards Handbook
TB 420-34	1 Mar 84	Engineered Performance Standards Real Property Maintenance Activities: Preventive/Recurring Maintenance Handbook
TB 420-35	1 Apr 81	Tri-Service Coordination of the Moving, Rigging Handbook
TB 420-51	30 Oct 73	Engineered Performance Standards Public Works Maintenance: Facilities Engineering Management of Maintenance Painting of Facilities

APPENDIX D:

GEOGRAPHICAL LOCATION ADJUSTMENT FACTORS

State	Location	ACF Index
Alabama	State Average	. 86
	Birmingham	.96
	Mobile	.86
	Montgomery	.76
	Anniston Army Depot	.81
	Huntsville	.88
•	Fort McClellan	.80
	Redstone Arsenal	.88
	Fort Rucker	.80
Alaska	State Average	2.25
	Anchorage	1.92
· .	Delta Junction	2.70
	Fairbanks	2.13
	Adak	3.88
	Aleutian Islands	3.86
	Anchorage NSGA	1.92
	Barrow	4.18
•	Burnt Mtn.	6.86
	· Clear	3.10
	Eielson AFB	2.13
	Elmendorf AFB	1.92
	Ga lena	3.73
	Fort Greely	2.70
	Fort Richardson	1.92
	Fort Wainwright	2.13
Arizona	State Average	1.02
	Flagstaff	1.02
	Phoenix	.99
	Tucson	1.05
	Fort Huachuca	1.22
	Yuma Proving Ground	1.31
	Yuma	1.31
Arkansas	State Average	.89
	Pinebluff	.93
•	Little Rock	.83
	Fort Smith	.92
	Fort Chaffee	. 92
	Pine Bluff Arsenal	.93
California	State Average	1.21
	Los Angeles	1.20
	San Diago	1.18
	San Francisco	1.25
	Beale	1.28
	Bridgeport NWTC	1.27
	Castle	1.13
	Centerville Beach	1.32
	Desert Area	1.18
	Edwards AFB	1.30

State_	Location	ACF Index
California (Cont'd)	El Centro	1.27
	George AFB	1.31
	Fort Hunter Liggett	1.29
	Fort Irwin	1.29
•	Le Moore NAS	1.20
	March AFB	1.18
	Mather AFB	1.17
	McClellan AFB	1.17
	Monterey Area	1.23
	Presidio of Monterey	1.23
	Norton AFB	1.16
	Oakland Army Base	1.33
	Fort Ord	. 1.24
	Port Huenema Area	1.20
	Riverside	1.18
•	Sacramento	1.15
	Sacramento Army Depot	1.15
·	Presidio of San Francisco	1.25
	San Nicholas Island	2.59
	Sharpe Army Depot	1.13
	Sierra Army Depot	1.33
	Stockton	1.15
• •	Travis AFB	1.27
	Vandenburg AFB	1.38
Colorado	State Average	. 98
	Colorado Springs	.94
	Denver	1.04
	Pueblo	. 96
	Fort Carson	1.01
	Pitzsimmons AMC	1.06
	Pueblo Army Depot	.96
	Peterson APB	94
Connecticut	Rocky Mountain Arsenal	1.06
Connecticut	State Average	1.13
	Bridgeport	1.16
	Hartford New London	1.10 1.14
Delaware	State Average	.99
ne re we re	Dover	1.04
	Leves	.98
	Milford	.96
	Leves NP	1.04
	Dover AFB	1.04
District of Columbia	Washington	1.03
	Fort McNair	1.03
	Walter Reed AMC	1.03
Florida	State Average	.89
	Hiami	.95
	Panama City	.92
	Tampa	.79
	Cape Canaveral	. 96
	Cape Kennedy	.96
	•	

S ta te		Location	ACF Index
Florida	(Cont'd)	Gulf Coast	
	,	Homestead AFB	.85
		Homestead	.88
		Jacksonville Area	.88
	•	Key West NAS	.85
		Orlando	1.08
		Pensacola Area	.85
		McDill AFB	.17
		Eglin AFB	.77
		Tyndall AFB	.92
Georgia		State Average	.80
		Albany	.82
		Atlanta	.87
		Macon	.70
		Athens	.90
		Atlanta-Marietta	.93
		Fort Benning	.71
		Columbus	.71
		Fort Gillem	.87
	•	Fort Gordon	.94
		Kinga Bay Fort McPherson	.93
		Fort Stewart	.87
Hawaii		State Average	.84
		Hawaii	1.28 1.29
	•	Honolulu	1.27
		Maui	1.27
		Alimanu	1.27
		Barbars Point NAS	1.34
		Fort Debussy	1.27
		EWA Beach Area	1.34
		He lemano	1.34
		Hickam Army Air Field	1.27
		Kaneohe MCAS	1.34
		Moanalua	1.27
		Pearl City	1.27
•		Pearl Harbor	1.27
		Pohakuloa	1.32
	•	Schofield Barracks	1.27
		Fort Shafter	1.27
		Tripler AMC	1.27
• • • •		Wheeler Army Air Field	1.34
I da ho		State Average Boise	1.11
			1.05
		Idaho Falls Mountain Home	1.19
	•	Hountain Home AFB	1.20
Illinois	•	State Average	1.03
11111011	•	Belleville	. 96
		Chicago	1.09
		Rock Island	1.03
		Rock Island Arsenal	1.06

Sta te	Location	ACF Index
Illinois (Cont'd)	St. Louis Support Ctr	.96
	Savannah Army Depot	1.05
	Scott AFB	1.03
•	Fort Sheridan	1.10
Indiana	State Average	.99
	Indianapolis	1.03
	Logansport	. 99
	Madison	.94
	Fort Benjamin Harrison	1.07
	Crane	1.10
•	Crane AAP	1.10
	Grissom AFB	1.06
	Indiana AAP	1.02
_	Jefferson Proving Ground	. 94
Iowa '	State Average	1.02
•	Burlington	1.04
	Cedar Rapids	.98
	Des Moines	1.05
Kansas	Iowa AAP	1.06
Kansas	State Average Manhattan	.94
	Topeka	.97 .96
	Wichita	.88
	Kansas AAP	.94
	Fort Leavenworth	.94
•	Fort Riley	.97
	Sunflower AAP	.97
Ken tucky	State Average	.96
Reli Cocky	Bowling Gree	.99
	Lexington	.96
	Louisville	.93
·	Fort Campbell	.93
	Fort Knox	.99
	Lexington/Bluegrass Army Depot	1.06
	Louisville NAS	.93
Louisiana	State Average	.92
	Alexandria	.87
	New Orleans	.94
	Shreveport	.94
	Barksdale AFB	.94
	England AFB	.87
	Gulf Outport New Orleans	.94
	Louisiana AAP	. 94
	Fort Polk	. 94
Maine	State Average	.93 .85
	Bangor	.85 .99
	Caribou	.94
	Portland	.94
	Brunswick	.98
	Cutler	1.17
	Northern Area	.98
	Winter Herbor	. 70

State .	Location	ACF Index
Maryland	State Average	.97
	Baltimore	.95
	Fredrick	.94
	Lexington Park	1.01
	Aberdeen Proving Ground	,94
	Annapolis	1.03
	Fort Detrick	.94
	Harry Diamond Lab	1.00
	Fort Meade	.95
	Patuxent River Area	1.08
	Fort Ritchie	.90
Massachusetts	State Average	1.10
	Boston	1.13
	Fitchburg	1.08
	Springfield	1.08
	Army Mtls & Mech Research Ctr	1.13
	Fort Devens	1.15
	Natick Research & Development Ctr	1.13
	South Weymouth	1.13
Michigan	State Average	1.06
	Bay City	1.02
	Detroit	1.14
	Marquette	1.03
	Detroit Arsenal	1.14
	Northern Area	1.25
	Republic (Elfcom)	1.10
	Selfridge AFB	1.14
Minnesota	State Average	1.08
	Duluth	1.05
	Minneapolis	1.09
	St. Cloud	1.10
	Twin Cities AAP	1.09
Mississippi	State Average	.84
	Biloxi	.87
	Colu mbus	.81
	Jackson	.84
	Columbus AFB	.81
	Gulfport Area	.87
	Meridian	.92
Missouri	State Average	.92
	Kansas City	.92
	St. Louis	.99
	Rolla	.85
	Lake City AAP	.93
•	Fort Leonard Wood	.91
Mon tana	State Average	1.15
	Billings	1.15
	Butte	1.18
	Great Falls	1.12
	Mainstrom AFB	1.12
Nebraska	State Average	1.03
	Grand Island	1.00

State	Location	ACF Index
Nebraska (Cont'd)	Lincoln	1.05
	Oma ha	1.05
	Offutt AFB	1.05
Nevada	State Average	1.18
•	Hawthorne	1.26
	Las Vegas	1.13
	Reno	1.15
	Fallon	1.28
	Hawthorne AAP	1.26
	Nellis AFB	1.13
New Hampshire	State Average	1.09
	Concord	1.06
	Na s hua	1.06
	Portsmouth	1.14
	Cold Regions Lab	1.17
New Jersey	State Average	1.08
	Newark	1.11
	Red Bank	1.08
	Trenton	1.06
	Bayonne	1.10
•	Bayonne Mil Ocean Term	1.09
	Fort Dix	1.03
	Earle	1.10
	Lakehurst	1.05
	Fort Monmouth	1.09
Mara Maria	Picatinny Arsenal	1.20
New Mexico	State Average	1.03
	Alamogordo	.99
	Albuquerque	1.03
	Gallup Holloman AFB	1.06
		1.05
	Kirtland AFB	1.03
	White Sands Missile Range	1.09
New York	Fort Vingate	1.06
New IOIR	State Average Albany	1.12 1.07
•	New York City	1.24
	Syracuse	1.05
•	Brooklyn	1.24
	Fort Drum	1.18
	Fort Hamilton	1.24
	Seneca Army Depot	1.15
	U.S. Military Academy	1.17
	Watervliet Arsenal	1.07
North Carolina	State Average	.76
	Fayettaville	.76
	Greensboro	.75
	Wilmington	.78
	Fort Bragg	.76
	Camp Lejeune Area	.86
	Cherry Point	.86
	Goldsboro	.77

<u>State</u>	Location	ACF Index
North Carolina (Cont'd)	Pope AFB	
	Seymour AFB	.82
	Sunny Point Mil Ocean Term	.77
North Dakota	State Average	.78
	Bismarck	1.03
	Grand Forks	1.02 .98
	Minot	1.10
	Grand Forks AFB	.98
	Stanley R. Hicklesen CPX	1.03
	Minot AFB	1.12
Ohio	State Average	1.00
·	Columbus	1.03
	Dayton	.98
•	Youngstown	.99
	Cleveland	1.14
	Wright-Patterson AFB	.98
Ok la homa	State Average	.93
	Lawton	.90
	McAlester	.91
	Oklahoma City	.98
	Altus AFB	.94
	Enid	1.01
•	McAlester AAP	.91
•	Fort Sill	.90
Oregon	State Average	1.05
	Pendle ton	1.08
	Portland	1.07
	Sa lem	.99
	Charleston	1.11
	Coos Head	1.08
	Umatilla Army Depot	1.18
Pennsylvania	State Average	1.00
	Harrisburg	.91
	Phi la de lphia	1.05
	Pittsburgh	1.04
	Carlisia Berranks	.93
	New Cumberland Army Depot	.91
	Fort Indiantown Gap	1.07
	Letterkenny Army Depot	1.07
	Mechanicsburg Area	.91
	Tobyhanna Army Depot	1.14
Minds Taland	Warminster Area	1.04
Rhode Island	State Average	1.11
	Bristol	1.13
	Newport	1.11
	Providence Davisville	1.10 1.17
South Carolina		.82
South Catorida	State Average Charleston	.81
	Columbia	.82
	Myrtle Beach	.84
	Beaufort Area	.89
	DARATOLF WEAR	. 07

S ta te	Location	ACF Index
South Carolina (Cont'd)	Charleston AFB	0.1
	Fort Jackson	.31
	Sumter	.82 .80
South Dakota.	State Average	.95
	Aberdeen	. 95
	Sioux Falls	.94
•	Rapid City	.96
·	Ellsworth AFB	.98
Tennessee	State Average	.84
	Cha t tanooga	.36
	Kingsport	.72
	Memphis	.95
	Arnold AFB	.90
	Milan AAP	.98
•	Holston AAP	.71
Texas	State Average	.85
	San Angelo	.76
	San Antonio	.86
	Fort Worth	,93
	Fort Bliss	.96
	Carswell AFB	.93
	Chase Field - Beeville	.97
	Corpus Christi Army Depot	.92
	Corpus Christi	.92
	Dallas	.93
	Dyess AFB	.94
	Fort Hood	. 89
	Kingsville	. 99
	Red River Army Depot	.78
	Fort Sam Houston	.86
	William Beaumont AMC	.96
	Bergstrom AFB Brooks AFB	.95
		.86
	Randolph AFB Kelly AFB	.86
	Lackland AFB	.86
Utah	State Average	.86 1.03
o ca ii	Ogden	1.05
	Salt Lake City	1.00
	Tooele	1.06
	Dugway Proving Ground	1.03
	Hill AFB	1.07
	Tooele Army Depot	1.05
Vermont	State Average	.99
	Burlington	1.00
	Montpelier	1.00
	Rutland	,96
Virginia	State Average	.95
	Norfolk	.95
	Radford	.95
	Richmond	.94
	Arlington	1.04

S ta te	Location	ACF Index
Virginia (Cont'd)	Arlington Hall Station	1.04
•	Arlington National Cemetery	1.04
	Fort Belvoir	1.04
	Cameron Station	1.04
·	Dahlgren	1.10
	Fort Eustis	.96
	Humphreys Engineer Center	1.03
	Fort A. P. Hill	.92
	Fort Lee	.93
	Fort Monroe	. 94
	Fort Myer	1.03
	Norfolk-Newport News Area	.95
	Fort Pickett	.98
	Quantico	1.03
	Nadford AAP	1.02
·	Port Story	.95
	Vint Hill Farms Station	1.08
Washington	State Average	1.09
	Spokane	1.08
	Tacoma	i.07
	Yakima	1.11
	Fairchild AFB	1.13
	Jim Creek	1.34
	Fort Lewis	1.07
	Pacific Beach	1.27
	Puget Sound Area	1.15
	Seattle Area	1.12
	Widbey Island	1.12
Hook Windows	Yakima Firing Center	1.18
West Virginia	State Average Bluefield	.95
	Clarksburg	.92 .95
	Charleston	.99
	Sugar Grove	1.15
Wisconsin	State Average	1.06
w 1 3 COLI 3 III	LaCrosse	1.04
	Madison	1.02
	Milwaukee	1.13
	Badger AAP	1.06
	Clam Lake	1.20
•	Fort McCoy	1.11
Wyoming	State Average	1.08
,	Casper	1.07
	Cheyenne	1.10
	Laramie	1.08
	F. E. Warren AFB	1.10

DISTRIBUTION

Chief of Engineers

ATTN: CEHSC-IM-LH (2)
ATTN: CEHSC-IM-LP (2)
ATTN: CEHSC-FM-R
ATTN: CEMP-EC
ATTN: CERD-L

US Army Engineer Districts (41) ATTN: Chief, Design Branch

ATTN: Chief, Cost Estimating Branch

US Army Engr. Divisions (14) ATTN: Chief, Design Branch

ATTN: Chief, Cost Estimating Branch

Fort Belvoir, VA 22060 ATTN: CECC-R

Defense Technical Info. Center 22304 ATTN: DTIC-FAB (2)

> 120 04/91