2004年"宇振杯"上海市初中数学竞赛答案

一、填空题

1、【答案】a<-2

2、【答案】
$$6,4\pm\frac{\sqrt{3}}{3}$$

3、【答案】63

4、【答案】
$$\frac{7\sqrt{3}}{6}$$

5、【答案】14

$$6$$
、【答案】 $\frac{3}{7}$

7、【答案】12,52,69

8、【答案】40

9、【答案】
$$\sqrt{3} < d < 2\sqrt{3}$$

10、【答案】20°

故
$$S_{\text{四边形}PQMN} = \frac{1}{2}$$
 ($S_{\text{DAMPD}} + S_{\text{DMBCP}}$) $= \frac{1}{2}$ S_{DABCD}

(2)一定能推出 MP // BC 或 NQ // AB, 如图,

若 MP // BC,则断言已经成立。

若 MP 与 BC 不平行, 过 M 作 MP′// BC, 交 CD 与 P′, P′ 与 P 不重合。

由题设及(1)的结论有 $S_{\text{PQMN}} = \frac{1}{2} S_{\text{DABCD}} + S_{\text{DPQMN}}$

所以, S△QNP=S△QNP,.

从而, PP'/QN, 故 QN//AB.

三、【答案】130/

【解析】若 n 为奇数,则 d_1 , d_2 , d_3 , d_4 都是奇数,故 $n=d_1^2+d_2^2+d_3^2+d_4^2=1+1+1+1=0$ (mod4),矛盾。

若 4|n,则有 d_1 =1, d_2 =2,由 d_i^2 =0 或 1(mod4)知, n=1+0+ d_3^2 + d_4^2 ≠0(mod4),也矛盾。从而,n=2(2 n_1 -1), n_1 为某正整数,且数组(d_1 , d_2 , d_3 , d_4)=(1,2,p,q)或(1,2,p,2p),其中 p,q 为奇质数。

在前一种情形,有 $n=1^2+2^2+p^2+q^2\equiv 3 \pmod{4}$,矛盾。

则只能是 $n=1^2+2^2+p^2+(2p)^2 \equiv 5(1+p^2)$.故 5|n.

若 d_3 =3,则 d_4 =5,这将回到前一种情形,因此,只能是 d_3 =p=5,则 n=1 2 +2 2 +5 2 +10 2 =130.容易验证,130的四个连续最小的正约数就是 1,2,5,10,满足条件,因此,n=130.

四、【答案】
$$\frac{1}{18}$$

【解析】设
$$\frac{AE}{AB}$$
=x, $\frac{AD}{AC}$ =y, $S_{\triangle AED}$: $S_{\triangle ABC}$ =(AE • AD) : (AB • AC)=xy

因为 S△ABC =1, 所以 S△ADE =xy, S□BCDE =1-xy

在 \triangle ABC 中,有**梅涅劳斯定理**的 $\frac{BP}{PD} \cdot \frac{DC}{CA} \cdot \frac{AE}{EB} = 1$,则

$$\frac{BP}{PD} = \frac{CA}{DC} \cdot \frac{EB}{AE} = \frac{1}{1-y} \cdot \frac{1-x}{x} = \frac{1-x}{x(1-y)}$$
 (1)

同理,
$$\frac{CP}{PE} = \frac{1-y}{y(1-x)}$$
,于是

$$S_{\triangle DEP}$$
: $S_{\triangle BPC} = \frac{PD}{PB} \cdot \frac{PE}{PC} = \frac{x(1-y)}{1-x} \cdot \frac{y(1-x)}{1-y} = xy_{\circ}$

同时,由式(1)得
$$\frac{BP}{BD} = \frac{BP}{BP + PD} = \frac{1-x}{1-xy}$$

故
$$S_{\triangle BPC} = \frac{BP}{BD} S_{\triangle BCD} = \frac{1-x}{1-xy} \cdot \frac{CD}{CA} S_{\triangle ABC} = \frac{(1-x)(1-y)}{1-xy}$$

由题设有
$$\frac{(1-x)(1-y)}{1-xy} = S_{\triangle BPC} = \frac{9}{16} S_{\square BCDE} = \frac{9}{16}$$
 (1-xy)

♦ u=xy,y 9 (1-u) 2 =16[1+u-(x+y)]≤16(1- \sqrt{u}) 2

注意到 $0 \le u \le 1$, 得 $3(1-u) \le 4(1-\sqrt{u})$, $3(1+\sqrt{u}) \le 4$, 解得 $0 \le u \le \frac{1}{9}$

当且仅当
$$x=y=\frac{1}{3}$$
, $u=xy=\frac{1}{9}$

则
$$S_{\triangle DEP} = xy \cdot S_{\triangle BPC} = xy \cdot \frac{9}{16} (1 - xy) = \frac{9}{16} (-u^2 + u) = \frac{9}{16} [-(u - \frac{1}{2})^2 + \frac{1}{4}]$$

故当
$$u=\frac{1}{9}$$
,即 $x=y=\frac{1}{3}$ 时, $S_{\triangle DEP}$ 取最大值 $\frac{1}{18}$

翔文学习 数学频道

00: 2254 2374 33

Email: xiangwenjy@gmail.com