Package 'convo'

June 18, 2018

Type Package

Title Fast Computation of Running Sample Statistics

Version 0.1.0
Description Provides methods for fast computation of running (aka rolling) sample statistics. These include running sample mean of a single numeric sequence, running sample variance of a single numeric sequence, running sample covariance of two numeric sequences. Implementation of the methods uses convolution via Fast Fourier Transform. The complexity of the convolution can be reduced from $O(n^2)$ to $O(n \log n)$ with fast Fourier transform compared to conventional computation.
License GPL-3
Imports stats
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Suggests knitr, rmarkdown, testthat, covr
VignetteBuilder knitr
Author Marta Karas [aut, cre], Jacek Urbanek [aut]
Maintainer Marta Karas <mkaras 2@jhu.edu=""></mkaras>
R topics documented:
DigFilter
RunningCorr
RunningCov
RunningL2Norm
RunningMean
RunningSd
Running Var
Index 9

2 RunningCorr

DigFilter

Bandpass Digital Filter

Description

Bandpass digital filter; passes frequencies within a certain range and rejects frequencies outside that range.

Usage

```
DigFilter(x, fs, LD, LU)
```

Arguments

Χ	numeric sequence
fs	sampling frequency of a numeric sequence x
LD	lower bandpass frequency
LU	higher bandpass frequency

Examples

```
## generate components of a signal x
fs <- 1000
t.seq <- seq(0, 1, length.out = 1000)
x1 <- \sin(2 * pi * t.seq * 50)
x2 <- \sin(2 * pi * t.seq * 150)
x3 <- \sin(2 * pi * t.seq * 250)
x0 <- rnorm(length(t.seq), sd = 0.1)
plot(x0, ylim = range(c(x0, x1, x2, x3)), main = "x components")
lines(x1, col = "blue")
lines(x2, col = "red")
lines(x3, col = "green")
## generate signal x
x < -x1 + x2 + x3 + x0
plot(x, main = "x", type = "1")
## use filter with passband frequencies [100 Hz, 200 Hz]
x.filtered <- DigFilter(x, 1000, 100, 200)</pre>
plot(x.filtered, type = "l", main = "x filtered with [100 Hz, 200 Hz] frequency bandpass")
plot(x2, type = "1", main = "compare: x2 component of x")
```

RunningCorr

Fast Running Correlation Computation

Description

Computes running correlation between two sequences in a fixed width window, whose length corresponds to the length of the shorter sequence. Uses convolution via Fast Fourier Transform.

RunningCorr 3

Usage

```
RunningCorr(x, y, circular = FALSE)
```

Arguments

X	numeric sequence
У	numeric sequence, of equal or shorter length than x sequence
circular	logical; whether running correlation is computed assuming circular nature of \boldsymbol{x} sequence (see Details)

Details

Computes running correlation between two sequences in a fixed width window. The length of a window is equal to the shorter of the two sequences (y), and window "runs" over the length of longer sequence (x).

Parameter circular determines whether x sequence is assumed to have a circular nature. Assume l_x is the length of sequence x, l_y is the length of shorter sequence y.

If circular equals TRUE then

- output sequence length equals l_x ,
- first element of the output sequence corresponds to sample correlation between x[1:1_y] and y,
- last element of the output sequence corresponds to sample correlation between $c(x[1_x], x[1:(1_y 1)])$ and y.

If circular equals FALSE then

- output sequence length equals $l_x l_y + 1$,
- first element of the output sequence corresponds to sample correlation between x[1:1_y] and y,
- last element of the output sequence corresponds to sample correlation between $x[(1_x 1_y + 1):1_x]$.

Value

numeric sequence

Examples

```
x <- sin(seq(0, 1, length.out = 1000) * 2 * pi * 6)
y <- x[1:100]
out1 <- RunningCorr(x, y, circular = TRUE)
out2 <- RunningCorr(x, y, circular = FALSE)
plot(out1, type = "l"); points(out2, col = "red")</pre>
```

4 RunningCov

D	:	gCov
RIIN	nın	ยเกง

Fast Running Covariance Computation

Description

Computes running covariance between two sequences in a fixed width window, whose length corresponds to the length of the shorter sequence. Uses convolution via Fast Fourier Transform.

Usage

```
RunningCov(x, y, circular = FALSE)
```

Arguments

x numeric sequence

y numeric sequence, of equal or shorter length than x sequence

circular logical; whether running variance is computed assuming circular nature of x

sequence (see Details)

Details

Computes running covariance between two sequences in a fixed width window. The length of a window is equal to the shorter of the two sequences (y), and window "runs" over the length of longer sequence (x).

Parameter circular determines whether x sequence is assumed to have a circular nature. Assume l_x is the length of sequence x, l_y is the length of shorter sequence y.

If circular equals TRUE then $\,$

- output sequence length equals l_x ,
- first element of the output sequence corresponds to sample covariance between x[1:1_y] and y,
- last element of the output sequence corresponds to sample covariance between c(x[1_x], x[1:(1_y 1)]) and y.

If circular equals FALSE then

- output sequence length equals $l_x l_y + 1$,
- first element of the output sequence corresponds to sample covariance between x[1:1_y] and y,
- last element of the output sequence corresponds to sample covariance between $x[(1_x 1_y + 1):1_x]$.

Value

numeric sequence

RunningL2Norm 5

Examples

```
x <- sin(seq(0, 1, length.out = 1000) * 2 * pi * 6)
y <- x[1:100]
out1 <- RunningCov(x, y, circular = TRUE)
out2 <- RunningCov(x, y, circular = FALSE)
plot(out1, type = "l"); points(out2, col = "red")</pre>
```

RunningL2Norm

Fast Running L2 Norm Computation

Description

Computes running L2 norm between two sequences in a fixed width window, whose length corresponds to the length of the shorter sequence. Uses convolution via Fast Fourier Transform.

Usage

```
RunningL2Norm(x, y, circular = FALSE)
```

Arguments

x numeric sequence

y numeric sequence, of equal or shorter length than x sequence

circular logical; whether running L2 norm is computed assuming circular nature of x

sequence (see Details)

Details

Computes running L2 norm between two sequences in a fixed width window. The length of a window is equal to the shorter of the two sequences (y), and window "runs" over the length of longer sequence (x).

Parameter circular determines whether x sequence is assumed to have a circular nature. Assume l_x is the length of sequence x, l_y is the length of shorter sequence y.

If circular equals TRUE then

- output sequence length equals l_x ,
- first element of the output sequence corresponds to sample L2 norm between x[1:1_y] and y,
- last element of the output sequence corresponds to sample L2 norm between $c(x[1_x], x[1:(1_y 1)])$ and y.

If circular equals FALSE then

- output sequence length equals $l_x l_y + 1$,
- first element of the output sequence corresponds to sample L2 norm between x[1:1_y] and y,
- last element of the output sequence corresponds to sample L2 norm between $x[(1_x 1_y + 1):1_x]$.

RunningMean

Value

numeric sequence

Examples

```
x <- sin(seq(0, 1, length.out = 1000) * 2 * pi * 6)
y1 <- x[1:100] + rnorm(100)
y2 <- rnorm(100)
out1 <- RunningL2Norm(x, y1)
out2 <- RunningL2Norm(x, y2)
plot(out1, type = "1"); points(out2, col = "blue")</pre>
```

RunningMean

Fast Running Mean Computation

Description

Computes running sample mean of a sequence in a fixed width window. Uses convolution via Fast Fourier Transform.

Usage

```
RunningMean(x, W, circular = FALSE)
```

Arguments

x numeric sequence

W numeric; width of x sequence window

circular logical; whether running sample mean is computed assuming circular nature of

x sequence (see Details)

Details

Parameter circular determines whether x sequence is assumed to have a circular nature. Assume l_x is the length of sequence x, W is a fixed length of x sequence window.

If circular equals TRUE then

- output sequence length equals l_x ,
- first element of the output sequence corresponds to sample mean of x[1:W],
- last element of the output sequence corresponds to sample mean of $c(x[1_x], x[1:(W-1)])$.

If circular equals FALSE then

- output sequence length equals $l_x W + 1$,
- first element of the output sequence corresponds to sample mean of x[1:W],
- last element of the output sequence corresponds to sample mean of $x[(1_x W + 1):1_x]$.

Value

numeric sequence

RunningSd 7

Examples

```
x <- rnorm(1000)
RunningMean(x, 100)
length(RunningMean(x, 100, circular = FALSE))
length(RunningMean(x, 100, circular = TRUE))</pre>
```

RunningSd

Fast Running Standard Deviation Computation

Description

Computes running sample standard deviation of a sequence in a fixed width window. Uses convolution via Fast Fourier Transform.

Usage

```
RunningSd(x, W, circular = FALSE)
```

Arguments

x numeric sequence

W numeric; width of x sequence window

circular logical; whether running sample standard deviation is computed assuming cir-

cular nature of x sequence (see Details)

Details

Parameter circular determines whether x sequence is assumed to have a circular nature. Assume l_x is the length of sequence x, W is a fixed length of x sequence window.

If circular equals TRUE then

- output sequence length equals l_x ,
- first element of the output sequence corresponds to sample standard deviation of x[1:W],
- last element of the output sequence corresponds to sample standard deviation of $c(x[1_x], x[1:(W-1)])$.

If circular equals FALSE then

- output sequence length equals $l_x W + 1$,
- first element of the output sequence corresponds to sample standard deviation of x[1:W],
- last element of the output sequence corresponds to sample standard deviation of $x[(1_x W + 1):1_x]$.

Value

numeric sequence

Examples

```
x <- rnorm(1000)
RunningSd(x, 100)
length(RunningSd(x, 100, circular = FALSE))
length(RunningSd(x, 100, circular = TRUE))</pre>
```

8 Running Var

\neg	 		•				
 ≺	 n	n	п.	n	σ	٧a	ır

Fast Running Variance Computation

Description

Computes running sample variance of a sequence in a fixed width window. Uses convolution via Fast Fourier Transform.

Usage

```
RunningVar(x, W, circular = FALSE)
```

Arguments

x numeric sequence

W numeric; width of x sequence window

circular logical; whether running sample variance is computed assuming circular nature

of x sequence (see Details)

Details

Parameter circular determines whether x sequence is assumed to have a circular nature. Assume l_x is the length of sequence x, W is a fixed length of x sequence window.

If circular equals TRUE then

- output sequence length equals l_x ,
- first element of the output sequence corresponds to sample variance of x[1:W],
- last element of the output sequence corresponds to sample variance of $c(x[1_x], x[1:(W-1)])$.

If circular equals FALSE then

- output sequence length equals $l_x W + 1$,
- first element of the output sequence corresponds to sample variance of x[1:W],
- last element of the output sequence corresponds to sample variance of $x[(1_x W + 1):1_x]$.

Value

numeric sequence

Examples

```
x <- rnorm(1000)
RunningVar(x, 100)
length(RunningVar(x, 100, circular = FALSE))
length(RunningVar(x, 100, circular = TRUE))</pre>
```

Index

DigFilter, 2 RunningCorr, 2 RunningCov, 4 RunningL2Norm, 5 RunningMean, 6 RunningSd, 7

 ${\tt RunningVar}, {\color{red} 8}$