Introdução as Derivadas – <u>Aula 1</u>

$$\frac{\partial f(x)}{\partial x} = D_x f(x) = f'(x)$$

1)
$$f(x)=c$$
 $\Rightarrow f'(x)=0$
2) $f(x)=x$ $\Rightarrow f'(x)=1$
3) $f(x)=x^{p}$ $\Rightarrow f'(x)=p\cdot x^{p-1}$
4) $f(x)=e^{x}$ $\Rightarrow f'(x)=e^{x}$
5) $f(x)=\ln(x)$ $\Rightarrow f'(x)=\frac{1}{x}$
6) $f(x)=g(x)\cdot h(x)$ $\Rightarrow f'(x)=g'(x)\cdot h(x)+g(x)\cdot h'(x)$
7) $f(x)=\frac{g(x)}{h(x)}$ $\Rightarrow f'(x)=\frac{g'(x)\cdot h(x)-g(x)\cdot h'(x)}{h(x)^{2}}$
8) $f(x)=g(x)^{p}$ $\Rightarrow f'(x)=p\cdot g(x)^{p-1}\cdot g'(x)$

Exercício I

a)
$$y=8 \rightarrow y'=0$$

b) $y=\sqrt{3} \rightarrow y'=0$
c) $f(x)=\pi \rightarrow f'(x)=0$
d) $g(x)=(\pi-1)^{\pi} \rightarrow g'(x)=0$ (1)

Exercício II

a)
$$y=x^5 \rightarrow y'=5 x^{5-1}=5 x^4$$

b) $h(x)=x^{-5} \rightarrow h'(x)=-5 x^{-5-1}=-5 x^{-6}=-5 \cdot \frac{1}{x^6}=-\frac{5}{x^6}$
c) $g(x)=5 x^3 \rightarrow g'(x)=5 \cdot 3 x^{3-1}=15 x^2$ (2)

Exercício III

$$h(x) = 8x \rightarrow h'(x) = 8 \cdot 1 = 8$$
 (3)

Exercício IV

$$f(x) = 7x^{3} - 2x - 400$$

$$f'(x) = 7 \cdot 3x^{3-1} - 2 \cdot 1 - 0 = 21x^{2} - 2$$
 (4)

Derivada com X no Denominador – <u>Aula 2</u>

Exercício I

$$g(x) = \frac{3}{x^5} = 3x^{-5}$$

$$g'(x) = 3(-5x^{-5-1}) = -15x^{-6} = -\frac{15}{x^6}$$
(5)

Exercício II

$$h(x) = 3x^{5} - \frac{2}{x^{4}} = 3x^{5} - 2x^{-4}$$

$$h'(x) = 3(5x^{5-1}) - 2(-4x^{-4-1}) = 15x^{4} + 8x^{-5} = 15x^{4} + \frac{8}{x^{5}}$$
(6)

Derivada de Função Raiz – Aula 3

Exercício I

$$y = \sqrt[3]{x^4} = x^{\frac{4}{3}}$$

$$y' = \frac{4}{3}x^{\frac{4}{3}-1} = \frac{4}{3}x^{\frac{1}{3}} = \frac{4}{3}\sqrt[3]{x}$$
(7)

Exercício II

$$g'(x) = 7\left(\frac{1}{3}x^{\frac{1}{3}-1}\right) = \frac{7}{3}x^{-\frac{2}{3}} = \frac{7}{3} \cdot \frac{1}{x^{\frac{2}{3}}} = \frac{7}{3\sqrt[3]{x^2}} \left(\frac{\sqrt[3]{x}}{\sqrt[3]{x}}\right) = \frac{7\sqrt[3]{x}}{3x}$$
(8)

Derivada de uma Função Potência – <u>Aula 4</u>

Exercício I

$$y = x^3 \Rightarrow y' = 3x^2 \tag{9}$$

Exercício II

$$y = \frac{5x^{4}x^{3}}{x^{2}} = 5x^{4+3-2} = 5x^{5}$$

$$y' = 5(5x^{5-1}) = 25x^{4}$$
(10)

Derivada de uma Função Potência – Aula 5

Exercício I

$$y = \frac{x^{2}\sqrt{x}}{\sqrt[3]{x}} = x^{2} \frac{x^{\frac{1}{2}}}{\sqrt[3]{x}} = x^{2 + \frac{1}{2} - \frac{1}{3}} = x^{\frac{12 + 3 - 2}{6}} = x^{\frac{13}{6}}$$

$$y' = \frac{13}{6} x^{\frac{13}{6} - 1} = \frac{13}{6} x^{\frac{7}{6}} = \frac{13}{6} \sqrt[6]{x^{\frac{7}{7}}}$$
(11)

Derivada de Função Exponencial e Logarítmica – Aula 6

Exercício I

$$f(x) = 3e^{x} + 10 \cdot \ln(x)$$

$$f'(x) = 3e^{x} + \frac{10}{x} = \frac{3xe^{x} + 10}{x}$$
 (12)

Exercício II

$$g(x) = 7e^{x} + 9 \cdot \ln(x) + 3x^{4} - 4x + 100$$

$$g'(x) = 7e^{x} + \frac{9}{x} + 12x^{3} - 4 = \frac{7xe^{x} + 9 + 12x^{4} - 4x}{x}$$
(13)

Derivada de um Produto de Funções – <u>Aula 7</u>

Exercício I

$$f(x) = x \cdot \ln(x)$$

$$\begin{cases} g(x) = x & \Rightarrow g'(x) = 1 \\ h(x) = \ln(x) & \Rightarrow h'(x) = \frac{1}{x} \end{cases}$$

$$f(x) = g(x) \cdot h(x) \Rightarrow f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x) = 1 \cdot \ln(x) + x \cdot \frac{1}{x} = \ln(x) + 1$$

$$(14)$$

Derivada de uma Divisão de Funções – <u>Aula 8</u>

Exercício I

$$f(x) = \frac{e^{x}}{3x} = e^{x} \cdot \frac{1}{3x} = e^{x} \cdot \frac{x^{-1}}{3}$$

$$\begin{cases} g(x) = e^{x} & \rightarrow g'(x) = e^{x} \\ h(x) = \frac{x^{-1}}{3} = \frac{1}{3x} & \rightarrow h'(x) = \frac{-x^{-2}}{3} = -\frac{1}{3x^{2}} \end{cases}$$

$$f(x) = g(x) \cdot h(x) \rightarrow f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x) = e^{x} \cdot \frac{1}{3x} + e^{x} \cdot \left(-\frac{1}{3x^{2}}\right) = \frac{e^{x}}{3x} - \frac{e^{x}}{3x^{2}} = \frac{x \cdot e^{x} - e^{x}}{3x^{2}} = \frac{e^{x}(x - 1)}{3x^{2}}$$

$$f(x) = \frac{e^{x}}{3x}$$

$$\begin{cases} g(x) = e^{x} & \rightarrow g'(x) = e^{x} \\ h(x) = 3x & \rightarrow h'(x) = 3 \end{cases}$$

$$f(x) = \frac{g(x)}{h(x)} \rightarrow f'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{h(x)^{2}} = \frac{e^{x} \cdot 3x - e^{x} \cdot 3}{(3x)^{2}} = \frac{3e^{x}(x - 1)}{9x^{2}} = \frac{e^{x}(x - 1)}{3x^{2}}$$

Derivadas Básicas – Aula 9

Exercício I

$$y = \frac{2x^2 + 5x}{x} = \frac{2x^2}{x} + \frac{5x}{x} = 2x + 5$$

$$y' = 2$$
(16)

Exercício II

$$h(x) = \frac{3(x^2 - 1)}{x} = \frac{3x^2 - 3}{x} = \frac{3x^2}{x} - \frac{3}{x} = 3x - 3x^{-1}$$

$$h'(x) = 3 - (-3x^{-2}) = 3 + \frac{3}{x^2} = \frac{3x^2 + 3}{x^2} = \frac{3(x^2 + 1)}{x^2}$$
(17)

Exercícios de Derivada – <u>Aula 10</u>

Exercício I

$$h(x) = 3x^{3}(2+4x) = 6x^{3}+12x^{4}$$

$$h'(x) = 18x^{2}+48x^{3} = 6x^{2}(8x+3)$$
(18)

Exercício II

$$g(x) = (x^{2} - 1)(x^{3} + 4) = x^{5} + 4x^{2} - x^{3} - 4$$

$$g'(x) = 5x^{4} + 8x - 3x^{2} = x(5x^{3} - 3x + 8)$$
(19)

Curso básico de derivadas – Aula 12

Exercício I

$$g(x)=x^{4}+2e^{x}+e^{2}$$

$$g'(x)=4x^{3}+2e^{x}=2(2x^{3}+e^{x})$$
(20)

Exercício II

$$g(x) = \sqrt[3]{x^7} + \frac{3}{x^2} + 5 = x^{\frac{7}{3}} + 3x^{-2} + 5$$

$$g'(x) = \frac{7x^{\frac{4}{3}}}{3} + (-6x^{-3}) = \frac{7\sqrt[3]{x^4}}{3} - \frac{6}{x^3} = \frac{7x^3\sqrt[3]{x^4} - 18}{3x^3} = \frac{7\sqrt[3]{x^{13}} - 18}{3x^3}$$
(21)

Derivada de um Produto de Funções – <u>Aula 13</u>

Exercício I

$$y = 8x \cdot \ln(x)$$

$$y' = 8 \cdot \ln(x) + 8x \cdot \frac{1}{x} = 8 \cdot \ln(x) + 8 = 8(\ln(x) + 1)$$
(22)

Derivada de função composta, raiz, polinomial – Aula 14

Exercício I

$$y = x^3 \rightarrow y' = 3x^2 \tag{23}$$

Exercício II

$$f(x) = (2x^{2} - 1)^{3}$$

$$g(x) = 2x^{2} - 1 \rightarrow g'(x) = 4x$$

$$f(x) = g(x)^{p} \rightarrow f'(x) = p \cdot g(x)^{p-1} \cdot g'(x) = 3(2x^{2} - 1)^{2} \cdot 4x = 12x(2x^{2} - 1)^{2}$$
(24)

Exercício III

$$y = (3 - x^{2})^{3}$$

$$y' = 3(3 - x^{2})^{2}(-2x) = -6x(3 - x^{2})^{2}$$
(25)

Exercício IV

$$y = \frac{3}{(2x^2 - 1)^4} = 3(2x^2 - 1)^{-4}$$

$$y' = 3(-4)(2x^2 - 1)^{-5} \cdot 4x = -48x(2x^2 - 1)^{-5} = -\frac{48x}{(2x^2 - 1)^5}$$
(26)

Exercício V

$$y = \sqrt{(2x^2 - 1)^3} = (2x^2 - 1)^{\frac{3}{2}}$$

$$y' = \frac{3}{2}(2x^2 - 1)^{\frac{1}{2}} \cdot 4x = 6x(2x^2 - 1)^{\frac{1}{2}} = 6x\sqrt{2x^2 - 1}$$
(27)

Derivada de funções quociente, produto, polinomial – <u>Aula 15</u>

Exercício I

$$y=7x^{4}-2x^{3}+8x+5$$

$$y'=28x^{3}-6x^{2}+8=2(14x^{3}-3x^{2}+4)$$
(28)

Exercício II

$$y = (2x^{3} - 4x^{2})(3x^{5} + x^{2}) = 6x^{8} + 2x^{5} - 12x^{7} - 4x^{4} = 6x^{8} - 12x^{7} + 2x^{5} - 4x^{4}$$

$$y' = 48x^{7} - 84x^{6} + 10x^{4} - 16x^{3} = 2x^{3}(24x^{4} - 42x^{3} + 5x - 8)$$
(29)

Exercício III

$$h(x) = \frac{2x^{3} + 4}{x^{2} - 4x + 1}$$

$$\begin{cases} f(x) = 2x^{3} + 4 & \Rightarrow f'(x) = 6x^{2} \\ g(x) = x^{2} - 4x + 1 & \Rightarrow g'(x) = 2x - 4 \end{cases}$$

$$h'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^{2}} = \frac{6x^{2}(x^{2} - 4x + 1) - (2x^{3} + 4)(2x - 4)}{(x^{2} - 4x + 1)^{2}} = \frac{6x^{4} - 24x^{3} + 6x^{2} - 4x^{4} + 8x^{3} - 8x + 16}{(x^{2} - 4x + 1)^{2}} = \frac{6x^{4} - 24x^{3} + 6x^{2} - 4x^{4} + 8x^{3} - 8x + 16}{(x^{2} - 4x + 1)^{2}} = \frac{2x^{4} - 16x^{3} + 6x^{2} - 8x + 16}{(x^{2} - 4x + 1)^{2}} = \frac{2(x^{4} - 8x^{3} + 3x^{2} - 4x + 8)}{(x^{2} - 4x + 1)^{2}}$$

$$\frac{2x^{4} - 16x^{3} + 6x^{2} - 8x + 16}{(x^{2} - 4x + 1)^{2}} = \frac{2(x^{4} - 8x^{3} + 3x^{2} - 4x + 8)}{(x^{2} - 4x + 1)^{2}}$$

Exercício IV

$$y = \frac{3}{x^5} = 3x^{-5} \rightarrow y' = -15x^{-6} = -\frac{15}{x^6}$$
 (31)

Exercício V

$$v(r) = \frac{4}{3}\pi r^3 \rightarrow v'(r) = 4\pi r^2$$
 (32)

Exercício VI

$$f(s) = \sqrt{3}(s^3 - s^2) = \sqrt{3}s^3 - \sqrt{3}s^2$$

$$f'(s) = 3\sqrt{3}s^2 - 2\sqrt{3}s = s\sqrt{3}(3s - 2)$$
(33)

Exercício VII

$$y = (4x^{2}+3)^{2} = 16x^{4}+12x^{2}+12x^{2}+9=16x^{4}+24x^{2}+9$$

$$y' = 64x^{3}+48x=16x(4x^{2}+3)$$
(34)

Derivadas de função quociente e produto – <u>Aula 16</u>

Exercício I

$$y = \frac{x^4 - 2x^2 + 5x + 1}{x^4} = \frac{x^4}{x^4} - \frac{2x^2}{x^4} + \frac{5x}{x^4} + \frac{1}{x^4} = 1 - 2x^{-2} + 5x^{-3} + x^{-4}$$

$$y' = 4x^{-3} - 15x^{-4} - 4x^{-5} = \frac{4}{x^3} - \frac{15}{x^4} - \frac{4}{x^5} = \frac{4x^2 - 15x - 4}{x^5}$$
(35)

Exercício II

$$y = \frac{x}{x-1}$$

$$y' = \frac{1(x-1) - x \cdot 1}{(x-1)^2} = \frac{x - 1 - x}{(x-1)^2} = -\frac{1}{(x-1)^2}$$
(36)

Exercício III

$$y = \left(\frac{2x+1}{x+5}\right)(3x-1) = \frac{6x^2 - 2x + 3x - 1}{x+5} = \frac{6x^2 + x - 1}{x+5}$$

$$y' = \frac{(12x+1)(x+5) - (6x^2 + x - 1) \cdot 1}{(x+5)^2} = \frac{12x^2 + 60x + x + 5 - 6x^2 - x + 1}{(x+5)^2} = \frac{6x^2 + 60x + 6}{(x+5)^2} = \frac{6(x^2 + 10x + 1)}{(x+5)^2}$$
(37)

Exercício IV

$$y = \frac{1}{8}x^{8} - 4x^{4} \rightarrow y' = x^{7} - 16x^{3} = x^{3}(x^{4} - 16)$$
(38)

Exercício V

$$y = x^{2} + 3x + \frac{1}{x^{2}} = x^{2} + 3x + x^{-2}$$

$$y' = 2x + 3 - 2x^{-3} = 2x + 3 + \frac{2}{x^{3}} = \frac{2x^{4} + 3x^{3} + 2}{x^{3}}$$
(39)

Exercício VI

$$y = \frac{3}{x^2} + \frac{5}{x^4} = 3x^{-2} + 5x^{-4} \Rightarrow y' = -6x^{-3} - 20x^{-5} = -\frac{6}{x^3} - \frac{20}{x^5} = \frac{-6x^2 - 20}{x^5}$$
(40)