Reliability of Emerging Memory Devices

Asif Ali Khan

Fall Semester 2024

Department of Computer Systems Engineering

UET Peshawar, Pakistan

Dec 12, 2024

Recap: Compute-in-memory (CIM)

- The CIM paradigm aims to completely eliminate the data movement
- □ The fundamental idea is to exploit the physical properties of the memory devices to perform computations
- Not every computation can be performed with every technology

Memory Reliability

What?

■ Ability of memory devices to perform correctly over time under different conditions

Memory Reliability

What?

■ Ability of memory devices to perform correctly over time under different conditions

Why?

Critical for data integrity, system stability, and performance

Retention time: Ability to store data without corruption

- Retention time: Ability to store data without corruption
- Endurance: Number of read/write cycles before failure

- Retention time: Ability to store data without corruption
- Endurance: Number of read/write cycles before failure
- $lue{}$ Error rate: Frequency of error during read/write operation

- Retention time: Ability to store data without corruption
- Endurance: Number of read/write cycles before failure
- $lue{}$ Error rate: Frequency of error during read/write operation
- Power cycling: Stability under repeated on/off cycles

- Retention time: Ability to store data without corruption
- Endurance: Number of read/write cycles before failure
- $lue{}$ Error rate: Frequency of error during read/write operation
- Power cycling: Stability under repeated on/off cycles
- □ Temperature stability: Resilience under varying thermal condition

Conventional memories

- SRAM
 - Soft errors due to cosmic rays
 - Power consumption in standby mode

Conventional memories

- □ SRAM
 - Soft errors due to cosmic rays
 - Power consumption in standby mode
- □ DRAM:
 - Row hammer effect causing bit flips
 - Data retention issues with scaling

Conventional memories

- □ SRAM
 - Soft errors due to cosmic rays
 - Power consumption in standby mode
- □ DRAM:
 - Row hammer effect causing bit flips
 - Data retention issues with scaling
- □ Flash Memory:
 - ☐ Limited write endurance
 - Retention degradation with smaller feature sizes
 - Charge leakage in floating gate cells

Emerging NVMs

- RRAM
 - Variability in resistance states
 - Retention times
 - Endurance issues

- RRAM
 - Variability in resistance states
 - Retention times
 - Endurance issues
- □ PCM
 - Drift in resistance over time
 - Cycling induced wear and tear

- □ RRAM
 - Variability in resistance states
 - Retention times
 - Endurance issues
- □ PCM
 - Drift in resistance over time
 - Cycling induced wear and tear
- MRAM
 - Write-energy and variability trade-off
 - □ Thermal stability of magnetic layers

- RRAM
 - Variability in resistance states
 - Retention times
 - Endurance issues
- □ PCM
 - Drift in resistance over time
 - Cycling induced wear and tear
- MRAM
 - Write-energy and variability trade-off
 - Thermal stability of magnetic layers
- RTMs: Misalignment issues (position errors)

CIM reliability

Reliability issue/description	Effect on logic gates	Statistical behavior	Implementation in proposed framework					
Program variability (cycle-to-cycle (C2C) and device-to-device (D2D)) [20,21]: At each programming (even with same applied voltage/time), the resultant resistance state will be (slightly) different	Variations in device resistance lead to voltage variations in resistive voltage divider	The read-out resistance state after programming follows a statistical distribution, where the programming sets the distribution mean. Mean is statistically distributed, following either a C2C distribution (1 device): or a D2D distribution (multiple devices)	In MC-runs: draw devices parameters (filament length etc.) out of statistical distributions. Evaluate device resistance after switching with JART-model, fit to distribution and end resistance states.					
Write Failures [23,24]: at any fixed programming conditions, not all devices will switch (both for SET and RESET)	Switching of memristive devices is not guaranteed for a certain (V,t) pulse. Devices have no fixed switching threshold.	Switching follows a stochastic process.	Obtain mean fitted switching probability function using MC-analysis with varied device parameters.					
Read Noise [25] (also known as RTN or program instability): Short-time current fluctuations (jumps) during device read-out over time, caused by resistance changes. Fluctuations increase with resistance.	Variations in device resistance lead to voltage variations in resistive voltage divider (similar as Program variability)	At each device read, actual resistance values are varying over a statistical distribution. Mean is determined by programming. Distribution width increases with resistance.	Modeled as random walk with changes in oxygen vacancy concentration (only applied for Scouting)					
Retention/State Drift [26] Long-time changes of device resistance, effect is typically temperature accelerated	Device resistance drifts over time and may lead to increased number of failures	Effect can be deterministically described on level of distributions as shift and tilt of read resistance distribution	-					
Endurance Device resistance window typically decreases with increasing number of program cycles, at the end devices no longer switch (stuck at 0 or 1)	Change of device resistance may cause voltage divider and output stage errors, while stuck-at devices may cause write failures	Effect is also deterministic on distribution level: drift of C2C distributions and eventually occurrence of write failures	-					
Sudden bit flips Radiation-caused perturbation of CMOS based logic gates.	Logic error	Potentially Erratic	Not present in ReRAM devices (but may affect transistors)					

CIM reliability

- Error correction codes (ECC)
 - □ Single error correction, double error detection codes (SECDED)

- Error correction codes (ECC)
 - □ Single error correction, double error detection codes (SECDED)
- Redundancy
 - ☐ Triple modular redundancy (TMR) or higher

- Error correction codes (ECC)
 - □ Single error correction, double error detection codes (SECDED)
- Redundancy
 - ☐ Triple modular redundancy (TMR) or higher
- Wear levelling
 - □ A standard techniques to prevent premature wear in NVMs/Flash

- Error correction codes (ECC)
 - Single error correction, double error detection codes (SECDED)
- Redundancy
 - ☐ Triple modular redundancy (TMR) or higher
- Wear levelling
 - □ A standard techniques to prevent premature wear in NVMs/Flash
- Circuit level techniques
 - Write verification for Flash and RRAM
 - Adaptive compression etc.

Distance	$\pm k$ Step Error Rate												
	k = 1	k = 2	$k \ge 3$										
1	4.55×10^{-5}	1.37×10^{-21}	too small										
2	9.95×10^{-5}	1.19×10^{-20}	too small										
3	2.07×10^{-4}	5.59×10^{-20}	too small										
4	3.76×10^{-4}	1.80×10^{-19}	too small										
5	5.94×10^{-4}	4.47×10^{-19}	too small										
6	8.43×10^{-4}	9.96×10^{-18}	too small										
7	1.10×10^{-3}	7.57×10^{-15}	too small										

Under- or over-shift can occur

☐ There are other proposals that reduces the overhead and improve performance

Reliability optimizations: Flip-N-write

suppress unnecessary bit programming actions by inspecting the old data word before writing the new data word and to opportunistically re-encode the new data word to further minimize bit programming. The following pseudo-code cap-

- Write as few bits as possible
- Only replace data bits if needed (compare new data to the old data and only write the different bits)

Compression-aware cache insertion

In the case of hard faults, cache lines are disabled

Compression-aware cache insertion

- In the case of hard faults, cache lines are disabled
- Not all cache lines require 100% capacity

Compression-aware cache insertion

- In the case of hard faults, cache lines are disabled
- Not all cache lines require 100% capacity
- Map cache lines to NVM cache blocks, depending on the compression ratio of the cache line and faulty cells in the cache block

Collaboratively optimizing for reliability and performance

- ECC is not for free
- □ The performance and energy overhead can be easily over 50%
- Therefore, it makes sense to jointly optimize for performance/reliability
- For instance, for reliable CIM-logic:
 - □ Reduce data movement by mapping dependent contents to the same column
 - □ Replace multi-operands operations with 2-operands ops

Optimizing for reliability overhead

☐ The expensive ECCs might not be equally effective in all cases

Laver			10)-4					4.55	×10 ⁻⁵					10)-5		
Luyer	64	32	16	8	4	2	64	32	16	8	4	2	64	32	16	8	4	2
1	-0.53	0.02	-0.23	-0.60	0.00	0.11	-0.51	-0.46	-0.79	-0.63	-0.63	0.00	-0.71	-0.46	-0.63	-0.58	0.00	0.00
2	-10.4	-9.68	-8.26	-6.50	-3.62	-1.73	-9.47	-9.17	-6.75	-3.67	-1.78	-0.12	-5.60	-3.08	-2.29	-1.07	-1.04	-0.35
3	-12.0	-11.7	-11.3	-7.80	-2.63	-1.86	-9.73	-6.29	-4.20	-4.28	-1.60	-1.27	-6.26	-2.82	-0.61	-0.86	-0.96	-0.58
4	-30.5	-23.0	-22.5	-22.6	-5.07	-3.49	-29.7	-24.9	-4.74	-9.60	-1.50	-0.96	-11.9	-9.78	-2.65	-1.68	-0.58	-0.61
5	-12.9	-16.6	-13.4	-5.86	-5.07	-0.97	-20.7	-13.1	-6.32	-7.13	-5.12	-0.96	-3.28	-1.88	-1.30	-0.99	-0.74	-0.23
6	-57.0	-48.1	-47.7	-46.5	-16.9	-3.31	-48.6	-41.3	-33.6	-14.4	-5.27	-0.91	-40.5	-20.8	-7.13	-2.09	-0.71	-0.61
7	-52.1	-49.3	-45.2	-40.7	-13.7	-3.11	-51.4	-46.8	-29.8	-20.5	-4.94	-0.89	-32.2	-27.7	-6.70	-2.06	-1.47	-0.81
8	-19.1	-18.0	-16.3	-8.69	-3.47	-0.97	-11.9	-10.0	-7.59	-2.34	-0.99	-0.28	-8.68	-2.95	-1.45	-1.45	-0.33	0.00
9	-18.1	-17.1	-11.5	-6.78	-2.50	-1.07	-20.4	-9.83	-9.37	-1.98	-0.89	-0.30	-6.29	-2.29	-1.02	-0.12	-0.48	-0.18
10	-10.9	-7.19	-5.27	-4.87	-1.53	-0.13	-7.61	-7.00	-6.14	-1.93	-0.84	-0.23	-3.23	-2.60	-0.99	-0.89	-0.81	-0.38
11	-46.5	-42.7	-33.5	-19.6	-9.45	-1.15	-35.0	-28.3	-18.6	-6.82	-2.90	-0.51	-17.9	-7.33	-4.30	-1.35	0.05	-0.07
12	-12.5	-11.6	-9.27	-5.27	-1.53	-0.61	-12.4	-8.79	-5.30	-1.98	-0.74	-0.05	-5.17	-2.19	-1.30	-0.91	-0.35	-0.10
13	-8.53	-5.35	-4.77	-3.64	-1.38	-0.56	-6.04	-4.86	-2.42	-1.63	-0.71	-0.40	-2.88	-1.58	-0.28	-0.58	-0.33	-0.76
14	-9.56	-5.89	-3.80	-2.70	-0.33	0.08	-6.49	-5.88	-2.72	-0.61	-0.18	-0.48	-2.29	-1.07	-0.20	0.13	-0.43	-0.46
15	-7.82	-5.40	-5.00	-3.62	-1.28	-0.23	-5.78	-5.37	-2.95	-2.37	-0.96	-0.33	-1.81	-0.63	-0.56	-0.66	-0.74	-0.10
16	-52.8	-46.0	-36.2	-7.84	-5.73	-1.61	-44.7	-31.0	-17.6	-7.26	-2.72	-0.66	-18.8	-5.88	-2.67	-0.79	-0.79	-0.46
17	-45.2	-35.4	-25.6	-12.2	-3.82	-0.48	-34.9	-24.7	-13.7	-4.63	-1.63	-0.58	-11.6	-4.25	-1.42	-1.27	0.05	-0.33
18	-3.21	-2.06	-2.29	-1.38	-0.33	-0.41	-1.98	-1.75	-1.09	-0.48	-0.25	-0.23	-0.84	-0.18	-0.05	-0.53	-0.28	-0.07
19	-51.6	-40.3	-22.8	-9.30	-2.27	-0.46	-31.1	-21.5	-8.71	-2.06	-0.99	-0.18	-7.54	-2.77	-1.37	-0.02	-0.05	-0.10
20	-56.8	-51.3	-30.2	-7.31	-0.46	-0.20	-45.0	-31.8	-7.31	-0.18	-0.07	-0.02	-6.70	-0.48	0.00	0.05	-0.07	-0.15
21	-61.4	-62.1	-43.2	-25.0	-21.4	-2.93	-59.5	-55.5	-32.5	-14.2	-3.74	-1.07	-38.8	-3.95	-4.15	-2.04	-0.89	-0.76

Optimizing for reliability overhead

☐ The expensive ECCs might not be equally effective in all cases

Balancing performance and accuracy tradeoff by selectively protecting only important layers/ regions.

	10 ⁻⁴ 4.55×10 ⁻⁵ 10 ⁻⁵																	
Layer																		
	64	32	16	8	4	2	64	32	16	8	4	2	64	32	16	8	4	2
1	-0.53	0.02	-0.23	-0.60	0.00	0.11	-0.51	-0.46	-0.79	-0.63	-0.63	0.00	-0.71	-0.46	-0.63	-0.58	0.00	0.00
2	-10.4	-9.68	-8.26	-6.50	-3.62	-1.73	-9.47	-9.17	-6.75	-3.67	-1.78	-0.12	-5.60	-3.08	-2.29	-1.07	-1.04	-0.35
3	-12.0	-11.7	-11.3	-7.80	-2.63	-1.86	-9.73	-6.29	-4.20	-4.28	-1.60	-1.27	-6.26	-2.82	-0.61	-0.86	-0.96	-0.58
4	-30.5	-23.0	-22.5	-22.6	-5.07	-3.49	-29.7	-24.9	-4.74	-9.60	-1.50	-0.96	-11.9	-9.78	-2.65	-1.68	-0.58	-0.61
5	-12.9	-16.6	-13.4	-5.86	-5.07	-0.97	-20.7	-13.1	-6.32	-7.13	-5.12	-0.96	-3.28	-1.88	-1.30	-0.99	-0.74	-0.23
6	-57.0	-48.1	-47.7	-46.5	-16.9	-3.31	-48.6	-41.3	-33.6	-14.4	-5.27	-0.91	-40.5	-20.8	-7.13	-2.09	-0.71	-0.61
7	-52.1	-49.3	-45.2	-40.7	-13.7	-3.11	-51.4	-46.8	-29.8	-20.5	-4.94	-0.89	-32.2	-27.7	-6.70	-2.06	-1.47	-0.81
8	-19.1	-18.0	-16.3	-8.69	-3.47	-0.97	-11.9	-10.0	-7.59	-2.34	-0.99	-0.28	-8.68	-2.95	-1.45	-1.45	-0.33	0.00
9	-18.1	-17.1	-11.5	-6.78	-2.50	-1.07	-20.4	-9.83	-9.37	-1.98	-0.89	-0.30	-6.29	-2.29	-1.02	-0.12	-0.48	-0.18
10	-10.9	-7.19	-5.27	-4.87	-1.53	-0.13	-7.61	-7.00	-6.14	-1.93	-0.84	-0.23	-3.23	-2.60	-0.99	-0.89	-0.81	-0.38
11	-46.5	-42.7	-33.5	-19.6	-9.45	-1.15	-35.0	-28.3	-18.6	-6.82	-2.90	-0.51	-17.9	-7.33	-4.30	-1.35	0.05	-0.07
12	-12.5	-11.6	-9.27	-5.27	-1.53	-0.61	-12.4	-8.79	-5.30	-1.98	-0.74	-0.05	-5.17	-2.19	-1.30	-0.91	-0.35	-0.10
13	-8.53	-5.35	-4.77	-3.64	-1.38	-0.56	-6.04	-4.86	-2.42	-1.63	-0.71	-0.40	-2.88	-1.58	-0.28	-0.58	-0.33	-0.76
14	-9.56	-5.89	-3.80	-2.70	-0.33	0.08	-6.49	-5.88	-2.72	-0.61	-0.18	-0.48	-2.29	-1.07	-0.20	0.13	-0.43	-0.46
15	-7.82	-5.40	-5.00	-3.62	-1.28	-0.23	-5.78	-5.37	-2.95	-2.37	-0.96	-0.33	-1.81	-0.63	-0.56	-0.66	-0.74	-0.10
16	-52.8	-46.0	-36.2	-7.84	-5.73	-1.61	-44.7	-31.0	-17.6	-7.26	-2.72	-0.66	-18.8	-5.88	-2.67	-0.79	-0.79	-0.46
17	-45.2	-35.4	-25.6	-12.2	-3.82	-0.48	-34.9	-24.7	-13.7	-4.63	-1.63	-0.58	-11.6	-4.25	-1.42	-1.27	0.05	-0.33
18	-3.21	-2.06	-2.29	-1.38	-0.33	-0.41	-1.98	-1.75	-1.09	-0.48	-0.25	-0.23	-0.84	-0.18	-0.05	-0.53	-0.28	-0.07
19	-51.6	-40.3	-22.8	-9.30	-2.27	-0.46	-31.1	-21.5	-8.71	-2.06	-0.99	-0.18	-7.54	-2.77	-1.37	-0.02	-0.05	-0.10
20	-56.8	-51.3	-30.2	-7.31	-0.46	-0.20	-45.0	-31.8	-7.31	-0.18	-0.07	-0.02	-6.70	-0.48	0.00	0.05	-0.07	-0.15
21	-61.4	-62.1	-43.2	-25.0	-21.4	-2.93	-59.5	-55.5	-32.5	-14.2	-3.74	-1.07	-38.8	-3.95	-4.15	-2.04	-0.89	-0.76

Thank you!

asif.ali@uetpeshawar.edu.pk