

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления (ИУ)»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии (ИУ7)»

ОТЧЕТ

Лабораторная работа №4

по курсу «Методы вычислений» на тему: «Метод Ньютона» Вариант № 6

Студент	ИУ7-22М		К.Э. Ковалец
	(Группа)	(Подпись, дата)	(И. О. Фамилия)
Преподаватель			П.А. Власов
		(Подпись, дата)	(И. О. Фамилия)

1 Теоретическая часть

Цель работы: изучение метода парабол для решения задачи одномерной минимизации.

Задание:

- 1. Реализовать модифицированный метод Ньютона с конечно-разностной аппроксимацией производных в виде программы на ЭВМ.
- 2. Провести решение задачи:

$$\begin{cases} f(x) \to min, \\ x \in [a, b] \end{cases} \tag{1.1}$$

для данных индивидуального варианта;

- 3. организовать вывод на экран графика целевой функции, найденной точки минимума $(x^*, f(x^*))$ и последовательности точек $(x_i, f(x_i))$, приближающих точку искомого минимума (для последовательности точек следует предусмотреть возможность «отключения» вывода ее на экран);
- 4. провести решение задачи с использованием стандартной функции fminbnd пакета MatLAB.

Таблица 1.1 – Данные индивидуального варианта

№ вар.	Целевая функция $f(x)$			
6	$\cosh\left(\frac{3x^3+2x^2-4x+5}{3}\right) + \th\left(\frac{x^3-3\sqrt{2}x-2}{2x+\sqrt{2}}\right) - 2.5$	[0, 1]		

1.1 Краткое описание метода Ньютона

Для приближения корня x^* используется точка \overline{x} пересечения касательной к графику g(x) в точке текущего приближения с осью Ox.

Пусть \overline{x} — текущее приближение точки x^* . Уравнение касательной к графику функции g в точке $(\overline{x}, g(\overline{x}))$:

$$y - \overline{y} = g'(\overline{x})(x - \overline{x}). \tag{1.2}$$

Пересечение с OX:

$$\overline{x} = \overline{x}' - \frac{g(\overline{x}')}{g'(\overline{x}')},$$
 (1.3)

где \overline{x}' — приближение x^* с предыдущего шага, \overline{x} — приближение x^* с текущего шага.

Условие окончанния итераций:

$$|\overline{x} - \overline{x}'| < \varepsilon$$
 или $|g(\overline{x})| < \varepsilon$. (1.4)

Замечание

1. Метод Ньютона обладает высокой точностью и скоростью сходимости, если начальное приближение выбрано удачно. Если нет — метод может разойтись. Тогда стоит выполнить несколько итераций другого метода, например, золотого сечения.

2. Модифицированный метод Ньютона.

Рассчетная схема метода:

$$\overline{x} = \overline{x}' - \frac{g(\overline{x}')}{g'(x_0)}, \tag{1.5}$$

где x_0 — начальное приближение корня.

В качестве очередного приближения для корня x^* используется точка пересечения прямой, проходящей через x_n и параллельной касательной в точке x_0 , с осью Ox.

В данном методе меньше вычислений в рамках одной итерации, но самих итераций больше.

3. О вычислениии производных.

Конечно-разностная аппроксимация производных:

$$f'(\overline{x}) \approx \frac{f(\overline{x} + \delta) - f(\overline{x} - \delta)}{2\delta}, \ \delta > 0;$$
 (1.6)

$$f''(\overline{x}) \approx \frac{f(\overline{x} - \delta) - 2f(\overline{x}) + f(\overline{x} + \delta)}{\delta^2}, \ \delta > 0.$$
 (1.7)

Схема рассматриваемого метода представлена на рисунке 1.1.

Рисунок 1.1 – Схема алгорима метода Ньютона

2 Практическая часть

Таблица 2.1 – Результаты расчетов для задачи из индивидуального варианта

\mid N $_{f 0}$ $\Pi/\Pi \mid$ $arepsilon$		N	x^*	$f(x^*)$	
1	0.01	8	0.4826521305	-1.4738930849	
2	0.0001	10	0.4824240968	-1.4738932842	
3	0.000001	14	0.4824180859	-1.4738932844	

Таблица 2.2 – Обобщающая таблица (для $\varepsilon = 1e - 6$)

№ п/п	Метод	N	x^*	$f(x^*)$
1	Поразрядного поиска	50	0.4824180603	-1.4738932844
2	Золотого сечения	31	0.4824184653	-1.4738932844
3	Парабол	10	0.4824179876	-1.4738932844
4	Ньютона модифицированный	14	0.4824180859	-1.4738932844
5	Функция fminbnd	9	0.4824181903	-1.4738932844

В листинге 2.1 представлен код программы.

Листинг 2.1 — Код программы

```
function lab_04()
         clc();
3
         a = 0;
         b = 1;
         delta = 1e-3;
6
         eps = 1e-6;
7
         debugFlag = true;
9
         delay = 0.5;
10
11
         fplot(@f, [a, b]);
12
         hold on;
13
15
         x = (a + b) / 2;
         f2_x0 = (f(x - delta) - 2 * f(x) + f(x + delta)) / power(delta, 2);
16
         N = 3;
18
         while true
19
              f1 = (f(x + delta) - f(x - delta)) / (2 * delta);
```

Продолжение листинга 2.1

```
N = N + 2;
21
22
              if debugFlag
23
                  fprintf('N = %2d: x = %.10f; f1 = %.10f; \n\n', N, x, f1);
24
                  scatter(x, f(x), 'b', 'filled');
25
                  pause(delay);
26
              end
27
28
              if abs(f1) < eps
29
                  break;
30
              else
31
32
                  x = x - f1 / f2_x0;
              end
33
          end
34
35
36
          x_star = x;
          f_star = f(x);
37
          N = N + 1;
38
39
          scatter(x_star, f_star, 'filled');
          fprintf('OTBET: N = \frac{2d}{2}; x* = \frac{10f}{10f}; f(x*) = \frac{10f}{n}, N, x_star,
40

    f_star);
41
          options = optimset('TolX', eps);
42
          if debugFlag
43
              options = optimset(options, 'Display', 'iter');
44
          end
45
          [x_star, f_star] = fminbnd(@f, a, b, options);
          fprintf('fminbnd: x = \%.10f; f(x) = \%.10f.\n\n', x_star, f_star);
47
     end
48
49
     function y = f(x)
50
          y = cosh((3 .* power(x, 3) + 2 .* power(x, 2) - 4 .* x + 5) ./ 3) +
51
      \rightarrow tanh((power(x, 3) - 3 .* power(2, 1/2) .* x - 2) ./ (2 .* x + power(2, 1/2))) -
         2.5;
     end
52
```