Wednesday, June 23 Official department tutors - see Piazza

Recall: Defined <u>supremum</u>: least upper bound infimum: greatest lower bound.

I if SCR is nonempty and bounded above:

- · s = sup S for all s = S
- · For any ε>0, there exists seS such that s>supS-ε.

if S is not bounded above, set sup S = 00 (convention).

supS.

max S does not exist.

sup S = 2.

Easy facts:

. If a set S has finitely many elements, then max S exists.

. If maxs exists, then sup S = max S.

For any S≠Ø, sup S.

(Proof: For any SES: infS & S & SupS).

Convention: inf $\emptyset = \infty$ sup $\emptyset = -\infty$

if A, then B

= if NOTB, then
NOTA

Math 104 Worksheet 2 UC Berkeley, Summer 2021 Tuesday, June 22

(3+d=0,0<3F) = (3+d=0) = (

1. The following theorem is a fundamental idea in real analysis, and it is one of the most important techniques in the subject.

Theorem.

(a) If $a \le b + \varepsilon$ for any $\varepsilon > 0$, then $a \le b$.

(b) If $a \ge b - \varepsilon$ for any $\varepsilon > 0$, then $a \ge b$.

Proof. (a) Suppose that a > b. Let $\varepsilon = (a - b)/2 > 0$. Then $a > b + \varepsilon$, so the statement that $a \le b + \varepsilon$ for any $\varepsilon > 0$ is not true.

(b) (Your turn)

Suppose a < b. Let $\epsilon = (b-a)/2 > 0$.
Then $a < b - \epsilon$.

Theorem.

- (a) $\sup(A+B) = \sup(A) + \sup(B)$.
- (b) $\inf(A + B) = \inf(A) + \inf(B)$.

Proof. Given two quantities x and y, if you are asked to show that x = y, a common technique is to show that $x \le y$ and $x \ge y$, since if both are true then x = y.

- (a) Strategy: We will show that both inequalities (i) sup(A + B) ≤ sup(A) + sup(B) and
 (ii) sup(A + B) ≥ sup(A) + sup(B) are true.
- (i) For any pair of elements a ∈ A and b ∈ B, since the supremum of a set is an upper bound for the set, we have that a ≤ sup(A) and b ≤ sup(B). Therefore, a + b ≤ sup(A) + sup(B). Since this is true for any a ∈ A and b ∈ B, it follows that c ≤ sup(A) + sup(B) for all c ∈ A + B. That means that sup(A) + sup(B) is an upper bound for A + B. (Complete the proof by explaining why sup(A + B) must be less than sup(A) + sup(B).)

by def of $\sup(A+B)$, it is the LEAST upper bd, and $\sup A+\sup B$ (ii) To show that $|\sup(A+B)| \ge \sup(A) + \sup(B)$, we will use the technique from Prob-

(ii) To show that $\sup(A+B) \ge \sup(A) + \sup(B)$, we will use the technique from Problem 1. Let $\varepsilon > 0$. The goal is to show that $\sup(A+B) \ge \sup(A) + \sup(B) - \varepsilon$. If we can find $a \in A$ and $b \in B$ such that $a+b \ge \sup(A) + \sup(B) - \varepsilon$, the boxed inequality would follow because... (why?) Sup $(A+B) \ge a+b \ge \sup(A) + \sup(B) - \varepsilon$. Now explain why it is possible to find such a and b. (Hint: $\sup(A) - \frac{\varepsilon}{2}$ is **not** an upper bound for A.)

Recall: LUBP

X has the LUBP if for any subset S=X which is bounded above, supS exists (in X).

S = $Q \in Q : 0 \leq q \leq \sqrt{2}$

Completeness Akiom: IR has the LUBP.

Corollary: Every subsect of IR which is bounded below has a greatest lower bound.

Archimedean property of R If a>0 and b>0, then there exists nell such that na>b. 2a 3a 4a ··· b na. Proof: (Contradiction) Suppose there exist a>0 and b>0 such na < b for all nt M Let S= {na: nEN}. So b is an upper bound for S. By Completeness Axiom, sup S exists.

Then $\sup S - a$ is not an upper bound for S, so there exists melN such that ma > $\sup S - a$. or $(m+1)a > \sup S$. Contradiction.

Corollary (Set a=1). For any b>0, there exists nEM	euch that
Corollary (Set $b=1$) For any $a>0$, there exists ne that $\frac{1}{n} < a$ or na	M such
that $\frac{1}{n} < \alpha$ or na	> \ .
Denseness of Q in R. y>x+1 more useful in pr	actice.
Lemma: If x,y ∈ R such that y-x>1, then ther	e exists
$m \in \mathbb{Z}$ such that $x < m < y$.	
Proof: Case 1: $\chi \geq 0$.	y .
Let $S = \{n \in \mathbb{Z}_{\geq 0} : n \leq x \}$. By Corollary of Archimedean S has finitely many elements, so $K = \max S$ exists	property
S has finitely many elements, so K=max3 exists	
$x < k+1 < x+1 < y. \qquad x < k+1 <$	J
Case 2: X<0. K+1 \neq 5	ζ.
Case 2: $x > 0$. By Corollary of A.P., there exists $N \in \mathbb{N}$ such that $N > -2$. Then $-x > 0$. By Corollary of A.P., there exists $N \in \mathbb{N}$ such that $x + N > 0$ and $(y + N) - (x + N) > 1$. By Case 1, there exists $M \in \mathbb{N}$. Then $x < m$.	7 such - N < 4.

Theorem: For any a, b & R with a < b, there exists $q \in \mathbb{Q}$ such that a < q < b. Proof: Want to show that there exist m, n e Z such that positive $a < \frac{m}{n} < b$ or equivalently, na< m< nb. By A.P., there exists neN such that n(b-a)>1. i.e. nb-na>1. By Lemma, there exists an integer m & Z such that na<m<nb Hence $a < \frac{m}{n} < b$.