Identifying Gender From SMS Text Messages

Pavithra C P PKD17CSCL10

Guided By Shibily Joseph Asst. Professor

Department of Computer Science and Engineering GOVERNMENT ENGINEERING COLLEGE, PALAKKAD

April 11, 2017

Outline

- Introduction
- Problem Formulation
- System Architecture
- System Implementation
- Comparison
- Result
- Conclusion
- References

Introduction

- Short message service (SMS) has become a very popular medium for communication due to its convenience and low cost.
- As of December 2012, U.S. wireless users sent and received an average of 6 billion text messages per day.
- This growth also encourages various kinds of misuses.
- Online communities are vulnerable to deceptive attacks, receiving false information, etc.

Introduction

- It easy to provide a false name, age, gender, and location in order to hide ones true identity.
- It becomes imperative to design an efficient method for identity tracing in cyberspace forensics.
- Gender identification is on the focus here.

Introduction

Example:

Figure: Input-Output Flow

Problem Formulation

 A question address in text based Internet forensics is the following: given a short text document, can we identify if the author is a man or a woman?

Problem definition:

Given a short text message, identify the gender of the sender using machine learning techniques.

The problem is a binary classification problem involving text based features.

Overview of Work

- Comparison of two approach for gender identification is performed:
 - Based on n-gram feature
 - Based On Manually extracted 5-set of features
- Comparison on two classification algorithm:
 - Naive Bayes
 - Support Vector Machine(SVM)
- Identify which feature is important to predict the gender.
- Testing and Prediction for one input is performed.
- Implementation Language : Python3

System Architecture

Figure: Gender Identificaion Process

System Implementation

Mainly Consist of 4 Modules:

- Data Collection
- Text Processing
- Model Generation
- Gender Identification

Data Collection

- NUS SMS Corpus is used as dataset, which contains 55,585 SMS text messages.
- The final dataset consist of 28,288 male author messages and 12,647 female author messages.
- In order to clean up the data the gender unknown messages, VCARD messages and chinese messages were removed.
- Total 40935 messages are there in final dataset.
- The first module is same for both the approaches.

```
"@time": "2003/4"}}, {"@id": 15527, "text": {"$": "Cable can jus buy one
rite?"}, "source": {"srcNumber": {"$": 81}, "phoneModel": {"@manufactuer":
"unknown", "@smartphone": "unknown"}, "userProfile": {"userID": {"$": 81},
"unknown"}, "country": {"$": "SG"}, "city": {"$": "unknown"}, "experience":
"unknown"}}}, "destination": {"@country": "unknown", "destNumber": {"$":
"unknown"}}, "messageProfile": {"@language": "en", "@time": "unknown", "@type":
"unknown"}, "collectionMethod": {"@collector": "howyijue", "@method": "unknown",
"@time": "2003/4"}}, {"@id": 15528, "text": {"$": "Did noe valentine is oso
friendship day.. eh heh, long live our friendship and A6!"}, "source":
{"srcNumber": {"$": 81}, "phoneModel": {"@manufactuer": "unknown",
"@smartphone": "unknown"}, "userProfile": {"userID": {"$": 81}, "age": {"$":
"unknown"}, "gender": {"$": "unknown"}, "nativeSpeaker": {"$": "unknown"},
"country": {"$": "SG"}, "city": {"$": "unknown"}, "experience": {"$":
"unknown"}, "frequency": {"$": "unknown"}, "inputMethod": {"$": "unknown"}}},
"destination": {"@country": "unknown", "destNumber": {"$": "unknown"}},
"messageProfile": {"@language": "en", "@time": "unknown", "@type": "unknown"},
"collectionMethod": {"@collector": "howyijue", "@method": "unknown", "@time":
"2003/4"}}, {"@id": 15529, "text": {"$": "Thru icq. :)"}, "source":
```

Figure: Dataset

Text Processing

- In second module, text processing and feature extraction is performed.
- Cleaned dataset is the input and the extracted features set is the output to these module.
- In First approach five sets of gender-related features are considered:
 - Character based
 - Word based
 - Syntactic
 - Structure
 - Function words

First Approach

- Manually extracted 5-set of features.
- Total: 59 Features are extracted
 - Character based : 6
 - Word based: 4
 - Syntactic : 10
 - Structure : 4
 - Function words: 35
- Saved as a .csv file for testing and training.

gender	charcount	letter	upper	spcl	digts	space	wrds	long	short	avg Ingth	qutn	commas
0	18	15	1	15	0	2	3	2	1	5	0	(
0	3	2	1	2	0	0	1	0	1	3	0	(
0	13	10	1	10	0	2	3	0	2	3	0	(
0	16	11	1	11	0	2	3	0	0	4	0	(
0	14	9	1	9	0	1	2	1	. 0	6	0	(
0	27	19	1	19	0	4	5	2	2	4	1	. (
0	19	15	1	15	0	2	3	2	1	5	0	(
0	12	11	1	11	0	1	2	1	. 1	5	0	(
0	16	13	1	13	0	2	3	1	. 1	4	0	(
0	8	7	1	7	0	1	2	0	1	3	0	(
0	14	12	1	12	0	2	3	0	1	4	0	(
0	14	12	1	12	0	2	3	0	1	4	0	(
0	9	8	1	8	0	1	2	0	1	4	0	(
0	14	12	1	12	0	2	3	0	1	4	0	(
0	11	10	1	10	0	1	2	1	. 0	5	0	(
0	5	4	1	4	0	0	1	0	0	5	0	(
0	16	13	1	13	0	2	3	2	1	4	0	(
0	16	13	1	13	0	2	3	2	1	4	0	(
0	10	9	1	9	0	1	2	1	1	4	0	(

Figure: Feature set

Second Approach

- To Implement n-gram model, Tf-Idf vectorization method is used.
- From sklearn feature extraction module TfidfVectorizer is imported.
- In which, n-gram range is set as 1 and 2. ie, unigram and bigram is considered.
- (eg)
 vect = TfidfVectorizer(ngram_range=(1,2),max_features=100)

Figure: Feature set using n-gram

Model Generation

- In third stage classification model is created.
- Feature set is the input to these stage and output is a binary classifier.
- Two classification algorithms are used.
 - Naive Bayes
 - Support Vector Machine
- Feature Set is split for training and testing in 1/3 ratio.
- Same for both approaches and the classification model is created.

Gender Identification

- Test for both approaches and Performance is measured using:
 - Accuracy
 - Precision
 - Recall
 - F-measure
- Prediction is also performed for one input text message.

Comparison

Model	Algorithm	Accuracy	Precision	Recall	F-Measure
N-Gram Model	SVM	71.07	0.98	0.71	0.82
	NB	64.52	0.69	0.77	0.73
Feature Extracted Model	SVM	77.75	0.96	0.77	0.85
	NB	68.11	0.72	0.79	0.75

Figure: Comparison of 2-approaches

Best Feature

Features Included	No: of Features	Accuracy	
Character Based	6	71.74 %	
Word Based	4	69.69%	
Syntactic Based	10	76.48%	
Structural Based	4	68.88%	
Functional Based	35	71.75%	

Figure: Comparison- only one feature

Combination of Features	No.of Features	Accuracy	
Character, Word	10	71.69%	
Character, Syntactic	16	76.59%	
Character, Structural	10	72.23%	
Character, Functional	41	72.67%	
Word, Syntactic	14	75.82%	
Word, Structural	8	70.22%	
Word, Functional	39	72.02%	
Syntactic, Structural	14	77.02%	
Syntactic, Functional	45	76.66%	
Structural, Functional	39	72.74%	

Figure: Comparison- two feature set

Combination of Features	No: of Features	Accuracy	
Character, word, Syntactic	20	76.31%	
Character , Word, Structural	14	72.31%	
Character , Word, Functional	45	72.73%	
Character , Syntactic, Structure	20	76.92%	
Character , Syntactic, Functional	51	76.86%	
Character, Structural, Functional	45	73.05%	
Word, Syntactic, Structure	18	76.24%	
Word, Syntactic, Functional	49	76.91%	
Word, Structural, Functional	43	73.07%	
Syntactic, Structure, Functional	49	77.36%	

Figure: Comparison- three feature set

Combination of Features	No: of Features	Accuracy	Not Included
Character, word, Syntactic, Structural	24	76.74	Functional
Character , Word, Syntactic, Functional	55	76.81	Structural
Character , Word, Structure, Functional	49	73.23	Syntactic
Character , Syntactic, Structure, Functional	55	77.64	Word
Word, Syntactic, Structure, Functional	53	77.64	Character

Figure: Comparison- four feature set

Result

- Feature extracted model is better than n-gram model.
- In both approaches, support vector machine performs more than naive bayes classification algorithm.
- Syntactic Feature is important among 5-set of features.

Conclusion

- Gender identification is one of the technique to identify the true identity of a person.
- In these Work, mainly focusing two approaches:
 - Feature extracted method.
 - N-gram method.
- Two classification algorithms are used.
- From the study, its conclude that Feature extraction method with SVM algorithm gives better result for gender identification.

Reference

- [1] Shannon Silessi, Cihan Varol et.al "Identifying Gender From SMS Text Messages" 2016 15th IEEE International Conference on Machine LearningSam Houston State University Huntsville, TX, USA.
- [2] N. Cheng et al. Author gender identification from text, *Digital Investigation* Volume 8, Issue 1, pp. 78-88, Jule 2011.
- [3] S. Argamon et al. Automatically profiling the author of an anonymous text, *Communications of the ACM Inspiring Women in Computing* Volume 52, Issue 2, pp. 119-123, February 2009.
- [4] J. Soler and L. Wanner. How to Use Less Features and Reach Better Performance in Author Gender Identification, *Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC)*, Reykjavik, Iceland, 2014, pp. 1315-1319.

Thank you!