· Recap: Part 1: $\int_{C} \nabla f \cdot d\vec{r} = f(r(b)) - f(r(a))$ where $C: \vec{r}(b)$, $a \leq b \leq b \leq b$ is piecewise smooth f differentiable, ∇f continues on C

Part 2: $\int_{C} \vec{F} \cdot d\vec{r}$ independent of Path on $D \Rightarrow \vec{F}$ conservative on D

- · Goal: Showing ScF.dr is independent of path is hard Want an easier way to Show F is conservative!
- · Idea: Assume F is conservative work backwards to find conditions on F?

Suppose $\vec{F} = \langle P, Q \rangle$ is a conservative vector field that means: $\nabla f = \vec{F}$ so $P = \frac{\partial f}{\partial x}$ and $Q = \frac{\partial f}{\partial y}$

Assume P, Q have Continuous first order partial Derivatives So by: Clairant's Theorem $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} \Rightarrow \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

Theorem If $F(x,y) = \langle P, Q \rangle$ is Conservative where P, Q have continuous first order partial derivatives then: $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

Want a Converse of this! Weed special regions

· Simply-Connected Regions:

Simple Curve:

A curve that cloesn't intersect it self.

Closed Curve:

Curre with Plby= Pla)

Simply-Connected region:

Connected region D with all simple closed curves in D enclosing points only in D.

/3

Theorem (Partial Converse of the Last theorem)

F= <P, Q> a vector field on an open simply Connected region D,

P, Q have Continuous first order partial Derivatives With

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

throughout D then: F is Conservative.

Proof: Consequence of Green's Theorem next section 16.4.

[Example] Determine if $\vec{F}(x,y) = \langle 3+2xy, x^2-3y^2 \rangle$ is conservative. If it is find its potential function

$$P(x,y) = 3 + 2xy$$
 $Q(x,y) = x^2 - 3y^2$

$$\frac{\partial P}{\partial y} = 2x$$
 $\frac{\partial Q}{\partial x} = 2x$ Since $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ $D = \mathbb{R}^2$ open Simply connected \Rightarrow \overrightarrow{F} is Conservative

$$P = \frac{\partial f}{\partial x}$$
 \Rightarrow $f(x,y) = \int P dx = 3x + x^2y + g(y)$

$$Q = \frac{\partial f}{\partial y} \Rightarrow f(x_1y) = \int Q dy = x^2y - y^3 + h(x)$$

Example Evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $C : \vec{r}(t) = \langle e^t \sin t, e^t \cos t \rangle$ of $e^t = \pi$ and $\vec{F}(x,y) = \langle 3 + 2xy, x^2 - 3x^2 \rangle$.

By above example
$$\vec{F} = \nabla f$$
 where $f(x,y) = x^2y - y^3 + 3x$
So $\int_C \vec{F} \cdot d\vec{r} = \int_C \nabla f \cdot d\vec{r} = f(r(\pi)) - f(r(0))$
 $= f(0, -e^{\pi}) - f(0, 1)$

$$= e^{3\pi} + 1$$

· Conservation of Energy:

Fa force field moves an object of mass m along a curve C: FCE) astab

Work done =
$$\int_{c} \vec{F} \cdot d\vec{r} = \int_{a}^{b} m \vec{r}''(t) \cdot \vec{r}'(t) dt$$
 Recall:
= $\int_{a}^{b} \frac{1}{2} \frac{d}{dt} (\vec{r}'(t) \cdot \vec{r}'(t)) dt = \frac{m}{2} \int_{a}^{d} |\vec{r}'(t)|^{2} dt$ $2\vec{r}''(t) \cdot \vec{r}'(t)$
= $\frac{m}{2} |\vec{r}'(b)|^{2} - \frac{m}{2} |\vec{r}'(a)|^{2} = K(b) - K(a)$

Kinetic Energy of the object K(t) = \frac{1}{2}m |V(t)|^2 = \frac{1}{2}m |r'(t)|^2

Assume F is conservative so: F=Vf

Potential Energy of the object at (x, y, z) is defined by:

$$P(x,y,z) = -f(x,y,z) \Rightarrow \vec{F} = -\nabla P$$

By Fundamental Theorem for line integrals we have:

Law of Conservation of Energy:

Sum of Potential and Kinetic Energy remains constant.