Multiprocesorski sistemi

Domaći zadatak 3 MPI – osnove i komunikacija

Uvod

Cilj zadatka je da studente obuči da samostalno podese MPI okruženje i razvijaju osnovne MPI programe.

Podešavanje okruženja

Preuzeti http://mups.etf.rs/vezbe/mpi/code/mpi win vs2008.zip (ili ... vs2005.zip). Prema uputstvima u priloženom readme.txt fajlu podesiti okruženje za razvoj i kontrolisano izvršavanje (engl. debugging) MPI programa na lokalnom računaru. Alternativno, koristiti OpenMPI na računaru rtidev4.etf.rs.

Zadaci

Svaki od programa treba napisati tako da može biti izvršen sa bilo kojim od broja procesa iz opsega navedenog iza postavke zadatka. N označava maksimalan mogući broj procesa u trenutno dostupnom MPI okruženju. Za programe koji će biti izvršavani na samo jednom računaru, pretpostaviti da važi N=6. Svaki program treba da vrši proveru da li je broj procesa tekućeg izvršavanja odgovarajući postavci zadatka. U slučaju da to nije zadovoljeno, prekinuti izvršavanje korišćenjem MPI poziva Abort.

Svaki program treba da ima ispis formatiran na sledeći način: rang procesa unutar comm_world komunikatora (2 cifre, sa vodećim nulama), znak :, redni broj poruke koju posmatrani proces ispisuje (3 cifre, sa vodećim nulama), znak :, tekst konkretne poruke. Na primer, u prvom zadatku proces sa rangom 0 će ispisati 00:001:Hello world!, proces sa rangom 1 će ispisati 01:001:Hello world! itd.

- 1. Sastaviti program koji ispisuje Hello World!. Od MPI poziva, program treba da sadrži samo Init i Finalize. [1,N]
- 2. Proširiti prethodni program tako da ispiše rang svog procesa i ukupan broj procesa u MPI svetu. [1,N]
- 3. Sastaviti program koji učitava broj u procesu sa rangom 0, pa taj broj šalje procesu sa rangom 1, koji ispisuje njegovu neizmenjenu vrednost. Koristiti MPI pozive send i Receive. [2,2]
- 4. Sastaviti program koji učitava broj u procesu sa rangom 0, pa taj broj šalje ostalim procesima, koji ispisuju njegovu neizmenjenu vrednost. Koristiti MPI pozive send i Receive. [2,N]
- 5. Sastaviti program koji učitava broj u procesu sa rangom 0, a zatim taj broj šalje svim procesima. Svaki od procesa treba da ispiše neizmenjenu vrednost poslatog broja. Koristiti MPI poziv Bcast. [1,N]
- 6. Sastaviti program koji određuje vrednost broja π. Proces sa rangom 0 treba da obavesti ostale procese o broju tačaka koje treba da obrade, prikupi podatke od ostalih procesa i ne treba da učestvuje u računanju. Za komunikaciju koristiti samo MPI pozive send i Receive. [2,N]
- 7. Sastaviti program koji određuje vrednost broja π. Proces sa rangom 0 treba da obavesti ostale procese o broju tačaka koje treba da obrade, prikupi podatke od ostalih procesa i treba da učestvuje u računanju. Za komunikaciju koristiti samo MPI pozive Bcast i Reduce. [1,N]
- 8. Sastaviti program koji kvadrira sve elemente niza celih brojeva. Proces sa rangom 0 treba da obavlja svu komunikaciju sa korisnikom. Za komunikaciju koristiti MPI pozive scatter i Gather. Ako broj elemenata niza nije celobrojni umnožak broja procesa u MPI svetu, prekinuti izvršavanje. [1,N]
- 9. Sastaviti program koji računa treći koren svakog elementa niza realnih brojeva. Proces sa rangom 0 (upravljač) treba da obavlja svu komunikaciju sa korisnikom i raspodelu poslova ostalim procesima (radnicima). Upravljač treba da šalje neobrađene elemente niza slobodnim radnicima i da prihvata rezultate od radnika, sve dok ima neobrađenih elemenata. Radnici treba da prihvataju po jedan element niza, obrađuju i vraćaju nazad sve dok ih upravljač ne obavesti da više nema posla. [2,N]

Važno: Ukoliko u nekom zadatku nešto nije dovoljno precizno definisano, student treba da uvede razumnu pretpostavku i da nastavi da izgrađuje svoje rešenje na temeljima uvedene pretpostavke.

Napomena: Vrednost broja π se može statistički odrediti na više načina uz pomoć generatora pseudoslučajnih brojeva uniformne raspodele. Jedan od načina je generisanje tačaka u ravni sa obema koordinatama u realnom opsegu [0,1]. Vrednost broja π tada može biti određena na osnovu odnosa broja tačaka koje se nalaze u delu kruga poluprečnika 1 sa centrom u koordinatnom početku i broja tačaka koje pripadaju kvadratu stranice 1 koji obuhvata sve generisane tačke.