

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Dipartimento di Informatica

Calcolo delle Probabilità

Autore:

Simone Lidonnici

Indice

T		dello probabilistico
	1.1	Spazio degli eventi elementari
	1.2	Algebra degli eventi
	1.3	Probabilità
		1.3.1 Conseguenze degli assiomi
	1.4	Costruire la probabilità
	1.5	Esempio finale
2	Cal	colo combinatorio 4
	2.1	Permutazioni
	2.2	Coefficiente binomiale
	2.3	Principio di inclusione esclusione
3	Mo	delli di estrazione da urna 6
•	3.1	Estrazioni ordinate con rimpiazzo
	3.2	Estrazioni ordinate senza rimpiazzo
	3.3	Estrazioni non ordinate senza rimpiazzo
	3.4	Estrazioni non ordinate con rimpiazzo
4	Dmo	babilità particolari 9
4	4.1	<u> </u>
	4.2	Spazi di probabilitò prodotto
	4.3	Indipendenza tra eventi
	4.4	Schema di Bernoulli
	4.5	Probabilità condizionata
	4.6	Probabilità totali
	4.7	Problema della rovina del giocatore
5	Var	riabili aleatorie 14
	5.1	Valore atteso
	5.2	Varianza
	5.3	Variabili aleatorie indipendenti
	5.4	Covarianza
	5.5	Distribuzione congiunta
	5.6	Funzione di distribuzione
6	Var	iabili aleaorie celebri 20
	6.1	Variabile aleatoria certa
	6.2	Variabile aleatoria di Bernoulli
	6.3	Variabile aleatoria binomiale
	6.4	Variabile aleatoria geometrica
	6.5	Variabile aleatoria binomiale negativa
	6.6	Variabile aleatoria di Poisson
	6.7	Variabile aleatoria multinomiale

7	Var	iabili aleatorie continue	27
	7.1	Densità di probabilità	27
	7.2	Valore atteso di variabili aleatorie continue	28
	7.3	Varianza di variabili aleatorie continue	28
	7.4	Somma di variabili aleatorie continue indipendenti	28
	7.5	Funzione di distribuzione per variabili aleatorie continue	29
	7.6	Variabile aleatoria Gaussiana	29
8	Leg	gi varie sulla probabilità	31
	8.1	Gioco equo	31
	8.2	Legge dei grandi numeri	31
	8.3	Teorema limite centrale	32
		8.3.1 Applicazione del teorema	32
	8.4	Simulare una variabile aleatoria arbitraria	33

Modello probabilistico

Un modello probabilistico è formato da 3 elementi:

 \bullet Spazio degli eventi elementari: Ω

ullet Algebra degli eventi: ${\cal A}$

• Probabilità: P

1.1 Spazio degli eventi elementari

Lo spazio degli eventi elementari o spazio campionario contiene tutti i possibili risultati dell'esperimento e si indica con Ω .

 $|\Omega|$ = cardinalità dell'insieme, cioè numero di risultati possibili dell'esperimento.

Esempi:

Lancio di una moneta: $\Omega = \{T, C\}$ Lancio di un dado: $\Omega = \{1, 2, 3, 4, 5, 6\}$ Compleanni di 25 persone: $\Omega = \{(\omega_1, \omega_2, ..., \omega_{25}) | \omega \in [1, 365]\}$

1.2 Algebra degli eventi

L'algebra degli eventi è una domanda binaria (con risposta solo vero o falso) sull'esito dell'esperimento. L'evento è un sottoinsieme di Ω e si indica con una lettera maiuscola, cioè $A, B, C \subseteq \Omega$. L'insieme di tutti gli eventi si indica con \mathcal{A} .

Operazioni tra eventi

Dati $A, B \subseteq \Omega$ eventi:

- $A \cup B = \{ \omega \in \Omega | \omega \in A \lor \omega \in B \}$
- $\bullet \ A\cap B=\{\omega\in\Omega|\omega\in A\wedge\omega\in B\}$
- A^C (complementare di A) = $\{\omega \in \Omega | \omega \notin A\}$

Esempi:

Lancio di una moneta: $\mathcal{A} = \{\emptyset, \{T\}, \{C\}, \{T, C\}\}$ Lancio di un dado a 3 faccie: $\mathcal{A} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

1.3 Probabilità

Funzione probabilità

La **probabilità** è una funzione che associa ad ogni evento $A \in \mathcal{A}$ un numero $p \in [0, 1]$ che indica la probabilità di verificarsi dell'evento.

$$\mathbb{P}:\mathcal{A}\to [\prime,\infty]$$

La funzione P deve seguire delle condizioni:

- $\mathbb{P}(\emptyset) = 0$
- $\mathbb{P}(\Omega) = 1 = \mathbb{P}(A) + \mathbb{P}(A^C)$
- \bullet \mathbb{P} è una funzione additiva

1.3.1 Conseguenze degli assiomi

Se $A, B \in \mathcal{A}$ sono eventi disgiunti allora $A \cap B = \emptyset$ e $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ Se $A, B \in \mathcal{A}$ sono eventi non disgiunti allora $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$ P è una funzione monotona rispetto all'inclusione di insiemi, cioè se $A \subseteq B \implies \mathbb{P}(A) \leq \mathbb{P}(B)$

1.4 Costruire la probabilità

Costruzione di \mathbb{P}

Dato uno spazio degli eventi Ω , scelgo \mathcal{A} algebra di tutti i sottoinsiemi di Ω :

$$|\Omega| = n \implies |\mathcal{A}| = 2^n$$

Per costruire $\mathbb P$ basta conoscere la probabilità degli eventi elementari. Sia:

$$p: \Omega \to [0,1] | \sum_{\omega \in \Omega} p(\omega) = 1$$

Definisco:

$$\mathbb{P}:\mathcal{A}\to [0,1]|\mathbb{P}(A)=\sum_{\omega\in A}p(\omega)$$

 $p(w) = P(\{\omega\}) \text{ con } \omega \in \Omega$

Se la probabilità degli eventi elementari è uniforme allora:

$$p(\omega) = \text{cost.} = \frac{1}{|\Omega|}$$

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|}$$

Esempio:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$p(1) = p(2) = p(3) = 0.1$$

$$p(4) = p(5) = 0.2$$

$$p(6) = 0.3$$

$$P(\{3, 4\}) = 0.1 + 0.2$$

1.5 Esempio finale

In una scatola ci sono 3 palle bianche e 2 palle nere, facendo due estrazioni casuali, quale è la probabilità che la seconda estratta sia bianca?

Se numeriamo le palle bianche 1, 2 e 3 e le palle nere 4 e 5 allora:

$$\Omega = \{(\omega_1, \omega_2) | \omega_1, \omega_2 \in [1, 5] \land \omega_1 \neq \omega_2\} \implies |\Omega| = 5 \cdot 4 = 20$$

$$A = \{(\omega_1, \omega_2) \in \Omega | \omega_2 \in [1, 3]\} \implies |A| = 3 \cdot 4 = 12$$

Essendo la probabilità di estrazione di ogni pallina uniforme:

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{12}{20} = 0.6$$

Calcolo combinatorio

Teorema fondamentale

Dati 2 insiemi finiti non vuoti A e B si possono formare $|A| \cdot |B|$ coppie ordinate prendendo un elemento da A e uno da B.

$$|A \times B| = |A| \cdot |B|$$

Con k insiemi con la stessa cardinalità n:

$$|A \times ... \times Z| = n^k$$

Esempi:

Abbiamo k scatole e r palline, quanti modi ho di sistemare le palline nelle scatole? $\forall i \in [1, r] \omega_i = \{\text{scatola dove sta la pallina i}\} = [1, k]$ modi di sistemare le palline= k^r

Lancio un dado 6 volte, quanto è la probabilità che esca almeno un 6?

 $\mathbb{P}(\text{almeno un } 6) = 1 - \mathbb{P}(\text{almeno un } 6)^C = 1 - \mathbb{P}(\text{nessun } 6)$

$$\Omega = \{(\omega_1, ..., \omega_6) | \omega_i \in [1, 6]\} \implies |\Omega| = 6^6$$

$$A = \{\text{nessun } 6\} = \{\omega \in \Omega | \omega_i \in [1, 5], i \in [1, 6]\} \implies |A| = 5^6$$

$$A = \{\text{nessun } 6\} = \{\omega \in \Omega | \omega_i \in [1, 5], i \in [1, 6]\} \implies |A| = 5^6$$

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{5^6}{6^6} \approx 0.33 \implies \mathbb{P}(\text{almeno un } 6) = 1 - 0.33 = 0.66$$

Permutazioni 2.1

Permutazioni

Sia S un insieme finito non vuoto, una permutazione è una scelta di un ordine tra gli elementi. Se |S| = n:

$$\varphi:S\to [1,n]$$

Il numero di permutazioni di S:

$$P_n = n!$$

Se ci sono delle ripetizioni $r_1, r_2, ..., r_k$ allora il numero delle permutazioni di S:

$$P_n = \frac{n!}{r_1! \cdot \dots \cdot r_k!}$$

Esempio:

Numero di anagrammi della parola pippo:

$$P_n = \frac{n!}{r!} = \frac{5!}{3!}$$

2.2 Coefficiente binomiale

Coefficiente binomiale

Il coefficiente binomiale rappresenta i modi di scegliere k oggetti su n totali non considerando l'ordine:

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Il coefficiente biomiale ha inoltre una proprietà per cui:

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$$

Se abbiamo invece n elementi da dividere in k parti, ciascuna con $n_1, ..., n_k$ elementi, rappresentanti una partizione quindi tali che:

$$\sum_{i=1}^{k} n_i = n$$

I modi di dividerle sono:

$$\binom{n}{n_1,\dots,n_k} = \frac{n!}{n_1!\cdot\dots\cdot n_k!}$$

2.3 Principio di inclusione esclusione

Princpio di esclusione inclusione

Per trovare la probabilità dell'unione di due insiemi non disgiunti:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Nel caso in cui dobbiamo trovare la probabilità dell'unione di n insiemi non disgiunti;

$$\mathbb{P}(A_1 \cup ... \cup A_n) = \sum_{i=0}^n (-1)^{i+1} \sum_{1 \le j_1 < ... < j_i \le n} \bigcap_{k=1}^i A_{j_k}$$

Detto in modo più semplice dobbiamo sommare la probabilità degli insiemi singoli, sottrarre tutte le probabilità delle intersezioni di n insiemi in cui n è pari e aggiungere tutte le probabilità delle intersezioni di n insiemi in cui n è dispari.

$$P(A_1 \cap ... \cap A_n) = P(A_1) + ... + P(A_n) - P(A_1 \cap A_2) - ... - P(A_{n-1} \cap A_n) + P(A_1 \cap A_2 \cap A_3) + ... + P(A_{n-2} \cap A_{n-1} \cap A_n)...$$

Modelli di estrazione da urna

Ci sono diversi tipi di estrazione da urna:

- Estrazioni ordinate con rimpiazzo
- Estrazioni ordinate senza rimpiazzo
- Estrazioni non ordinate senza rimpiazzo
- Estrazioni non ordinate con rimpiazzo

3.1 Estrazioni ordinate con rimpiazzo

Se facciamo k estrazioni da una scatola con n palline e ci interessa sapere l'ordine con cui sono state estratte le palline, rimettendo dentro la pallina estratta ogni volta:

$$\Omega = \{(\omega_1, ..., \omega_k) | \omega_i \in [1, n]\} \implies |\Omega| = n^k$$

3.2 Estrazioni ordinate senza rimpiazzo

Se facciamo k estrazioni da una scatola con n palline e ci interessa sapere l'ordine con cui sono state estratte le palline, ma senza rimettere dentro la pallina estratta ogni volta:

$$\Omega = \{(\omega_1, ..., \omega_k) | \omega_i \in [1, n], \omega_i \neq \omega_j\} \implies |\Omega| = \frac{n!}{(n - k)!}$$

Serve che $k \leq n$.

Esempio:

In un palazzo con 10 piani, ci sono 7 persone in ascensore, quale è la probabilità che scendano tutti a piani diversi?

$$\Omega = \{(\omega_1, ..., \omega_7) | \omega_i \in [1, 10]\} \implies |\Omega| = 10^7
A = \{\text{scendono tutti a piani diversi}\} = \{\omega \in \Omega | \omega_i \neq \omega_j\} \implies |A| = \frac{10!}{(10-7)!}
\mathbb{P}(A) = \frac{\frac{10!}{3!}}{10^7}$$

3.3 Estrazioni non ordinate senza rimpiazzo

Se facciamo k estrazioni da una scatola con n palline in cui **non** ci interessa sapere l'ordine con cui sono state estratte le palline, ma senza rimettere dentro la pallina estratta ogni volta:

$$\Omega = \{(\omega_1, ..., \omega_k) | i < j \implies \omega_i < \omega_j\} \implies |\Omega| = \frac{n!}{k! \cdot (n-k)!} = \binom{n}{k}$$

Esempi:

Disponiamo 10 palline in 4 scatole, quale è la probabilità che nella scatola A ci siano 5 palline?

$$\Omega = \{(\omega_1, ..., \omega_{10}) | \omega_i = [1, 4]\} \implies |\Omega| = 4^{10}
A = \{\omega \in \Omega | j = \{w_i = 1\} | |j| = 5\} \implies |A| = {10 \choose 5} \cdot 3^5
\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{\frac{10!}{5! \cdot 5!}}{4^{10}}$$

Abbiamo 40 carte divise in 4 semi ognuno con carte da 1 a 10, 4 giocatori ricevono a testa 10 carte:

$$\Omega = \{(\omega_1, ..., \omega_{10}) | \omega_i \neq \omega_j \land \omega_i \in [1, 40]\} \implies |\Omega| = \binom{40}{10}$$

1. Quale è la probabilità io che abbia tutte le carte di denari?

$$A = \{(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)\} \implies |A| = 1$$

$$\mathbb{P}(A) = \frac{1}{\binom{40}{10}}$$

2. Quale è la probabilità che io riceva il 7 di denari?

$$A = \{\omega \in \Omega | (7, \omega_2, ..., \omega_{10})\} \implies |A| = {39 \choose 9}$$

$$\mathbb{P}(A) = \frac{{39 \choose 9}}{{40 \choose 10}} = \frac{1}{4}$$

3. Quale è la probabilità che io riceva tutti e 4 i 7?

$$A = \{ \omega \in \Omega | (7, 17, 27, 37, \omega_5, ..., \omega_{10}) \} \implies |A| = {36 \choose 6}$$

$$\mathbb{P}(A) = \frac{{36 \choose 6}}{{40 \choose 10}}$$

4. Quale è la probabilità che io riceva un solo 7?

$$|A| = {4 \choose 1} {36 \choose 9}$$

$$\mathbb{P}(A) = \frac{{36 \choose 9}}{{40 \choose 10}}$$

5. Quale è la probabilità che i 4 giocatori ricevano un 7 a testa?

Descrivo i 4 giocatori con i puni cardinali: N, E, S e O.

$$\Omega = \{(\omega_1^N, ..., \omega_{10}^N), (\omega_1^E, ..., \omega_{10}^E), (\omega_1^S, ..., \omega_{10}^S), (\omega_1^O, ..., \omega_{10}^O) | \omega_i \neq \omega_j \land \omega_i \in [1, 40] \} \implies |\Omega| = \binom{40}{10} \binom{30}{10} \binom{20}{10} \binom{10}{10} \binom{10}{10} \binom{27}{9} \cdot \binom{2}{1} \binom{18}{9} \cdot \binom{1}{1} \binom{9}{9}$$

$$|A| = \underbrace{\binom{4}{1} \binom{36}{9}}_{1} \cdot \underbrace{\binom{3}{1} \binom{27}{9}}_{1} \cdot \underbrace{\binom{2}{1} \binom{18}{9}}_{1} \cdot \underbrace{\binom{1}{1} \binom{9}{9}}_{1}$$

Estrazioni non ordinate con rimpiazzo 3.4

Se ho due eventi concatenati ma indistinguibili come il lancio di due dadi:

$$\Omega = \{(\omega_1, \omega_2) | \omega_1 \le \omega_2\} \implies |\Omega| = \frac{n^2 + n}{2} = \binom{n+1}{2}$$

Considerando n come il numero di esiti possibili.

Nel caso in cui ci siano k eventi concatenati, come k lanci di dadi o k estrazioni, con n esiti possibili la cardinalità di Ω :

$$|\Omega| = \binom{n+k-1}{k}$$

Esempi:

Lancio di due dadi a 6 faccie:

$$|\Omega| = \frac{6^2 + 6}{2} = \frac{42}{2} = 21 = \frac{7!}{2! \cdot 5!} = \binom{7}{2}$$

Lancio di 10 dadi a 6 faccie:
$$|\Omega| = {10+6-1 \choose 6} = {15 \choose 6}$$

Probabilità particolari

4.1 Probabilità con valori tendenti ad infinito

Se abbiamo una permutazione e vogliamo sapere la probabilità che $\forall i \ \omega_i \neq i \ \text{con } n \ \text{tendente}$ a infinito allora:

$$\lim_{n \to +\infty} \mathbb{P}(P_n | \forall i \ \omega_i \neq i) = \frac{1}{e}$$

4.2 Spazi di probabilitò prodotto

Prodotto cartesiano di spazi di probabilità

Dati (Ω_1, \mathbb{P}_1) e (Ω_2, \mathbb{P}_2) degli schemi probabilistici, lo spazio degli eventi elementari dei due eventi concatenati:

$$\Omega = \Omega_1 \times \Omega_2 = \{(\omega_1, \omega_2) | \omega_i \in \Omega_i\}$$

Se gli eventi non si influenzano a vicenda la probabilità di una coppia di esiti è:

$$\mathbb{P}(\{\omega\}) = \mathbb{P}(\{(\omega_1, \omega_2)\}) = \mathbb{P}_1(\{\omega_1\}) \cdot \mathbb{P}_2(\{\omega_2\})$$

$$\mathbb{P}(A \cap B) = \mathbb{P}_1(A) \cdot \mathbb{P}_2(B) \qquad A \subset \Omega_1, B \subset \Omega_2$$

La somma delle probabilità di tutte le coppie di esiti deve sempre fare 1:

$$\sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \sum_{\omega_1 \in \Omega_1} \mathbb{P}_1(\{\omega_1\}) \cdot \sum_{\omega_2 \in \Omega_2} \mathbb{P}_2(\{\omega_2\}) = 1$$

Se le probabilità \mathbb{P}_1 e \mathbb{P}_2 sono uniformi la probabilità prodotto:

$$\mathbb{P}(\{\omega\}) = \frac{1}{|\Omega_1 \times \Omega_2|}$$

Esempio:

Lancio due dadi:

$$A = \{\text{somma} = 7\}$$

$$B = \{1^{\circ} \text{ dado} = 5\}$$

Questi sono eventi indipendenti perché qualsiasi sia il risultato del primo dado si può sempre arrivare a 7 con il secondo dado.

4.3 Indipendenza tra eventi

Definizione di indipendenza

Un numero n di eventi $A_1, A_2, ..., A_n \subset \Omega$ sono indipendenti se:

- 1. $\mathbb{P}(A_i \cap A_j) = P(A_i) \cdot \mathbb{P}(A_j)$
- 2. $\forall k | 1 \leq i_1 < i_2 < \dots < i_k \leq n \implies \mathbb{P}(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}) = \mathbb{P}(A_{i_1}) \cdot \mathbb{P}(A_{i_2}) \cdot \dots \cdot \mathbb{P}(A_{i_k})$

4.4 Schema di Bernoulli

Schema di Bernoulli

Preso un esperimento binario (cioè con solo due esiti, non necessariamente equiprobabili) ripetuto n volte:

$$\Omega = \underbrace{\{0,1\} \times \{0,1\} \times \dots \times \{0,1\}}_{\text{n volte}} = \{0,1\}^n$$

La probabilità dei due esiti si identifica:

$$\mathbb{P}(\{1\}) = p$$
$$\mathbb{P}(\{0\}) = 1 - p$$

In cui $p \in [0,1]$ misura la non equiprobabilità degli esiti. La probabilità di n esiti concatenati:

$$\mathbb{P}(\{(\omega_1, ..., \omega_n)\}) = p^{\sum_{i=1}^n \omega_i} \cdot (1-p)^{n-\sum_{i=1}^n \omega_i}$$

Lo schema di Bernoulli viene definito con una coppia (n, p). La probabilità che su n esiti k siano positivi (quindi n - k negativi):

$$\mathbb{P}(A_k) = \binom{n}{k} p^k (1-p)^{n-k}$$

4.5 Probabilità condizionata

Probabilità condizionata

Dato uno schema probabilistico (Ω, P) e due eventi A, B la probabilità che si verifichi B sapendo che si è già verificato A:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$

Se la probabilità è uniforme:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} = \frac{\frac{|A \cap B|}{|\Omega|}}{\frac{|A|}{|\Omega|}} = \frac{|A \cap B|}{|A|}$$

Dati k eventi $A_1, A_2, ..., A_k$ la probabilità che accadano tutti, ognuno dando per scontato il precedente:

$$\mathbb{P}(\bigcap_{i=1}^{k} A_i) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)...P(A_k|A_1 \cap ... \cap A_{k-1})$$

$$\mathbb{P}(\bigcap_{i=1}^{k} A_i) = P(A_1 \cap ... \cap A_k)$$

In generale se fisso A come evento condizionante e considero la funzione:

$$B \to \mathbb{P}(B|A)$$

Questa funzione è una probabilità sullo spazio di probabilità A. Se \mathbb{P} è una probabilità uniforme allora anche $\mathbb{P}(B|A)$ è una probabilità uniforme su A.

Esempi:

Estraggo 2 palline da un'urna contenente 3 palle bianche e 2 nere, quale è la probabilità che la seconda sia bianca nel caso in cui la prima sia bianca e nel caso in cui la prima sia nera?

$$\mathbb{P}(2B|1B) = \frac{\mathbb{P}(BB)}{\mathbb{P}(1B)} = \frac{3/10}{6/10} = \frac{1}{2}$$

$$\mathbb{P}(2B|1N) = \frac{\mathbb{P}(BB)}{\mathbb{P}(1N)} = \frac{3/10}{4/10} = \frac{3}{4}$$

In un mazzo di 40 carte se ne danno 10 a testa tra 4 giocatori, quale è la probabilità che E e O abbiano uno 2 denari e l'altro 1 sapendo che N+S hanno 7 denari?

$$\mathbb{P} = 2\frac{\binom{3}{2}\binom{17}{8}}{\binom{20}{10}} = 2\frac{\binom{3}{1}\binom{17}{9}}{\binom{20}{10}}$$

Probabilità totali 4.6

Probabilità totali

Dato uno schema probabilistico (Ω, \mathbb{P}) con k partizioni $D_1, D_2, ..., D_k$:

$$\Omega = \{ \bigcup_{i=1}^k D_i | D_i \cap D_j = \}$$

La probabilità di un evento A condizionato dagli eventi D_i :

$$\mathbb{P}(A) = \sum_{i=1}^{k} \mathbb{P}(D_i) \mathbb{P}(A|D_i)$$

La probabilità di un preciso D_i dato l'esito dell'evento A condizionato dagli eventi D_i :

$$\mathbb{P}(D_i|A) = \frac{\mathbb{P}(D_i)\mathbb{P}(A|D_i)}{\sum_{j=1}^k \mathbb{P}(D_j)\mathbb{P}(A|D_j)}$$

Esempio:

Lancio una moneta e in base al risultato:

 $\int T \implies \text{estrazione con 2B e 3N}$

 $C \implies \text{estrazione con 1B e 2N}$

Quale è la probabilità che esca una pallina bianca?

$$\mathbb{P}(B) = \mathbb{P}(T) \cdot \mathbb{P}(B|T) + \mathbb{P}(C) \cdot \mathbb{P}(B|C) = \frac{1}{2} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{1}{3} = \frac{11}{30}$$

Sapendo che è uscita una pallina bianca quale è la probabilità che sia uscito testa?
$$\mathbb{P}(T|B) = \frac{\mathbb{P}(T\cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(T)\mathbb{P}(B|T)}{\mathbb{P}(T)\mathbb{P}(B|T) + \mathbb{P}(C)\mathbb{P}(B|C)} = \frac{\frac{1}{2}\cdot\frac{2}{5}}{\frac{1}{2}\cdot\frac{2}{5} + \frac{1}{2}\cdot\frac{1}{3}} = \frac{6}{11}$$

4.7 Problema della rovina del giocatore

Dati due giocatori A, B con capitali iniziali a, b che giocano ad un gioco binario finchè uno dei due non finisce i soldi, in cui:

- A vince con probabilità p
- B vince con probabilità 1-p

Chiamo S_n la somma che A ha vinto a B nei primi n lanci in cui:

$$S_0 = 0$$

$$S_1 = \begin{cases} 1 & \text{con prob } p \\ -1 & \text{con prob } 1 - p \end{cases}$$

$$S_{n+1} = S_n + \begin{cases} 1 & \text{con prob } p \\ -1 & \text{con prob } 1 - p \end{cases}$$

$$S_n = \begin{cases} b \implies \text{rovina di B} \\ -a \implies \text{rovina di A} \end{cases}$$

Chiamo rispettivamente $\alpha(x)$ e $\beta(x)$ la probabilità che A e B perdano tutti i soldi nel momento in cui $S_n = x$.

$$\alpha(x) = \begin{cases} p \cdot \alpha(x+1) + (1-p)\alpha(x-1) & -a < x < b \\ 1 & x = -a \\ 0 & x = b \end{cases}$$
$$\beta(x) = \begin{cases} p \cdot \beta(x+1) + (1-p)\beta(x-1) & -a < x < b \\ 1 & x = b \\ 0 & x = -a \end{cases}$$

Se le probabilità sono eque quindi $p = \frac{1}{2}$:

$$\alpha(x) = \frac{x+a}{a+b} \implies \alpha(0) = \frac{a}{a+b}$$
$$\beta(x) = \frac{x+b}{a+b} \implies \beta(0) = \frac{b}{a+b}$$

Se le probabilità non sono eque quindi $p \neq \frac{1}{2}$:

$$\alpha(x) = \frac{1 - (\frac{1-p}{p})^{x+b}}{1 - (\frac{1-p}{p})^{b+a}} \implies \alpha(0) = \frac{1 - (\frac{1-p}{p})^b}{1 - (\frac{1-p}{p})^{b+a}}$$
$$\beta(x) = \frac{1 - (\frac{1-p}{p})^{x+a}}{1 - (\frac{1-p}{p})^{b+a}} \implies \beta(0) = \frac{1 - (\frac{1-p}{p})^a}{1 - (\frac{1-p}{p})^{b+a}}$$

Visto che $\alpha(x) + \beta(x) = 1$ la probabilità che il gioco duri all'infinito è 0.

Variabili aleatorie

Definizione di variabile aleatoria

Dato uno schema probabilistico (Ω, \mathbb{P}) una variabile aleatoria X è una funzione su Ω a valori reali:

$$X: \Omega \to \mathbb{R}$$

$$X = \begin{cases} x_1 & \omega_1 = \dots \\ \dots & \\ x_n & \omega_n = \dots \end{cases}$$

$$Im(X) = \{X(\omega), \omega \in \Omega\}$$

La probabilità \mathbb{P} induce una probabilità μ_X su Im(X) mediante (distribuzione):

$$\mu_X(\{\omega\}) = \mathbb{P}(x) = P(\omega \in \Omega | X(\omega) = x)$$

 $\mu_X = \mathbb{P} \circ X^{-1}$

Nel caso di probabilità uniforme la distribuzione di X:

$$\mathbb{P}(X=x) = \frac{|X=x|}{|\Omega|}$$

Preso un insieme $B \subset \mathbb{R}$:

$$X^{-1}(B) = \{ \omega \in \Omega | X(\omega) \subset B \}$$

Esempi:

Facciamo n lanci di moneta in cui $p={\cal P}(T)$

X = numero di teste

$$\Omega = \{(\omega_1, ..., \omega_n) | \omega_i = [0, 1]\}$$

$$X(\omega) = \text{numero di } 1 = \sum_{i=1}^{n} \omega_i$$

$$Im(X) = \{0,1,...,n\}$$

$$\mu(\lbrace k \rbrace) = \mathbb{P}(\lbrace \omega \in \Omega | X(\omega) = k \rbrace) = \binom{n}{k} p^k (1-p)^{n-k}$$

5. Variabili aleatorie 5.1. Valore atteso

5.1 Valore atteso

Valore atteso

Data una variabile aleatoria X, il valore atteso, cioè la media del valore x:

$$E(X) = \sum_{x \in Im(X)} x \mathbb{P}(x)$$

Il valore atteso è lineare cioè:

$$E(\alpha X) = \alpha E(X)$$

Prese due variabili aleatorie indipendenti X, Y:

$$E(X + Y) = E(X) + E(Y)$$

$$E(X \cdot Y) = E(X) \cdot E(Y)$$

Esempio:

$$X = \begin{cases} -1 & \omega = 1, 2\\ 0 & \omega = 3\\ 1 & \omega = 4\\ 2 & \omega = 5, 6 \end{cases}$$
$$E(X) = -1\frac{2}{6} + 0\frac{1}{6} + 1\frac{1}{6} + 2\frac{2}{6} = \frac{1}{2}$$

Valore atteso condizionato

Date due variabili aleatorie X,Y non indipendenti tra loro la probabilità condizionata:

$$\mathbb{P}(y|X=x) = \frac{\mathbb{P}(X=x, Y=y)}{\mathbb{P}(X=x)}$$

Il valore atteso condizionato è il valore atteso calcolato usando la distribuzione condizionata:

$$E(Y|X=x) = \sum_{y \in Im(Y)} y \mathbb{P}(y|X=x)$$

5.2 Varianza

Varianza

Data una variabile aleatoria X, la varianza:

$$V(X) = \sum_{x \in Im(X)} [x - E(X)]^2 \mathbb{P}(x)$$

Se V(X) = 0 allora X è costante.

Esempio:

$$X = \begin{cases} -3 & \omega = 1 \\ -2 & 2 \\ -1 & 3 \\ 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{cases}$$

$$V(X) = [-3 - 0]^2 \mathbb{P}(-3) + \dots + [3 - 0]^2 \mathbb{P}(3) = \frac{1}{6}((-3)^2 + (-2)^2 + (-1)^2 + 1^2 + 2^2 + 3^2) = \frac{14}{3}$$

Variabili aleatorie indipendenti 5.3

Indipendenza tra variabili aleatorie

Date due variabili aleatorie X, Y sono indipendenti se:

$$\mathbb{P}(x \cap y) = \mathbb{P}(x) \cdot \mathbb{P}(y) \qquad \forall x \in Im(X), \forall y \in Im(Y)$$

Se due variabili solo indipendenti:

$$V(X + Y) = V(X) + V(Y)$$

Se prendo n variabili aleatorie $X_1, X_2, ..., X_n$ sono indipendenti se:

$$\mathbb{P}(x_1 \cap \ldots \cap x_n) = \mathbb{P}(x_1) \cdot \ldots \cdot \mathbb{P}(x_n) \quad \forall x_i \in Im(X_i)$$

Esempio:

$$X_{i}(\omega) = \begin{cases} 1 & i\text{-esimo lancio} = T \\ 0 & i\text{-esimo lancio} = C \end{cases}$$
Tutte le X_{i} sono indipendenti quindi:

$$X = \sum_{i=0}^{n} X_{i}$$

$$Y(X) = \sum_{i=0}^{n} Y(X_{i}) = m(1 - n)$$

$$X = \sum_{i=0}^{n} X_i$$

$$V(X) = \sum_{i=0}^{n} V(X_i) = np(1-p)$$

5. Variabili aleatorie 5.4. Covarianza

Somma di variabili aleatorie indipendenti

Date due variabili aleatorie X, Y indipendenti la probabilità cha la variabile aleatoria di Z = X + Y sia z:

$$\mathbb{P}(Z=z) = \mathbb{P}(X+Y=z) = \sum_{x \in Im(X)} \mathbb{P}(X=x)\mathbb{P}(Y=z-x)$$

Esempio:

 $X \backsim Bin(n,p)$

 $Y \backsim Bin(m, p)$

 $X + Y \backsim Bin(n + m, p)$

$$\mathbb{P}(X+Y=k) = \sum_{h=0}^{n} \mathbb{P}(X=h)\mathbb{P}(Y=k-h) = p^{k}(1-p)^{n+m-k} \binom{n+m}{k}$$

5.4 Covarianza

Covarianza

Date due variabili aleatorie X, Y:

$$\begin{aligned} \mathrm{COV}(X,Y) &= \begin{cases} 0 & X,Y \text{ indip.} \\ E(X \cdot Y) - E(X) \cdot E(Y) & X,Y \text{ non indip.} \end{cases} \\ &|\mathrm{COV}(X,Y)| \leq \sqrt{V(X)} \cdot \sqrt{V(Y)} \end{aligned}$$

In cui:

$$E(X \cdot Y) = \sum_{x \in Im(X)} \sum_{y \in Im(Y)} (xy) \cdot \mathbb{P}(X = x \cap Y = y)$$

La varianza invece:

$$V(X+Y) = V(X) + V(Y) + 2[\underbrace{E(XY) - E(X) \cdot E(Y)}_{\text{covarianza}}]$$

5.5 Distribuzione congiunta

Distribuzione congiunta di variabili aleatorie

Date due variabili aleatorie non indipendenti X, Y:

$$(X,Y):\Omega\to\mathbb{R}^2$$

$$Im(X,Y)\subset Im(X)\times Im(Y)\subset\mathbb{R}^2$$

Scrivendo le due variabili aleatorie come:

$$X = \begin{cases} x_1 & \omega_{x_1} \\ x_2 & \omega_{x_2} \\ x_3 & \omega_{x_3} \end{cases} \qquad Y = \begin{cases} y_1 & \omega_{y_1} \\ y_2 & \omega_{y_2} \end{cases}$$

La distribuzione congiunta:

$$\mathbb{P}(X = x, Y = y) = \frac{|X = x, Y = y|}{|\Omega|}$$

Possiamo rappresentare la distribuzione congiunta sotto forma di tabella:

	x_1	x_2	x_3	Dist Y
y_1	$\mathbb{P}(x_1,y_1)$	$\mathbb{P}(x_2,y_1)$	$\mathbb{P}(x_3,y_1)$	$\mathbb{P}(y_1)$
y_2	$\mathbb{P}(x_1,y_2)$	$\mathbb{P}(x_2,y_2)$	$\mathbb{P}(x_3,y_2)$	$\mathbb{P}(y_2)$
Dist X	$\mathbb{P}(x_1)$	$\mathbb{P}(x_2)$	$\mathbb{P}(x_3)$	1

Dalla distribuzione congiunta posso calcolare le distribuzioni marginali (singole) di X e Y, sommando le righe per X e le colonne per Y:

$$\mathbb{P}(X(\omega) = x) = \sum_{y \in Im(Y)} \mathbb{P}(X(\omega) = x, Y(\omega) = y)$$
$$\mathbb{P}(Y(\omega) = y) = \sum_{x \in Im(X)} \mathbb{P}(Y(\omega) = y, X(\omega) = x)$$

Esempio

Lancio di un dado:

$$X = \begin{cases} -1 & \omega = 1, 2 \\ 0 & \omega = 3, 4 \\ 1 & \omega = 5, 6 \end{cases} \qquad Y = \begin{cases} -2 & \omega = 1, 2, 3 \\ 2 & \omega = 4, 5, 6 \end{cases}$$

Creo una tabella in cui in ogni casella scrivo la probabilità che X sia uguale alla colonna e Y uguale alla riga:

	-1	0	1	Dist X
-2	$\frac{2}{6}$	$\frac{1}{6}$	0	$\frac{3}{6}$
2	0	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$
Dist Y	$\frac{2}{6}$	$\frac{2}{6}$	$\frac{2}{6}$	1

Sapendo il risultato di X possiamo cambiare le probabilità del risultato di Y:

Sapendo il risultato di
$$X$$
 possiamo cambiare le probabilità del risultato di Y :
$$X = -1 \implies \begin{cases} \mathbb{P}(Y = -2|X = -1) = 1 \\ \mathbb{P}(Y = 2|X = -1) = 0 \end{cases}$$

$$X = 0 \implies \begin{cases} \mathbb{P}(Y = -2|X = 0) = \frac{1}{2} \\ \mathbb{P}(Y = 2|X = 0) = \frac{1}{2} \end{cases}$$

$$X = 1 \implies \begin{cases} \mathbb{P}(Y = -2|X = 1) = 0 \\ \mathbb{P}(Y = 2|X = 1) = 1 \end{cases}$$
Sapendo il risultato di Y possiamo cambiare le probabilità del risultato di X :
$$(\mathbb{P}(X = 1|X = 2)) = \frac{2}{2}$$

$$Y = -2 \implies \begin{cases} \mathbb{P}(X = -1|Y = -2) = \frac{2}{3} \\ \mathbb{P}(X = 0|Y = -2) = \frac{1}{3} \\ \mathbb{P}(X = -1|Y = -2) = 0 \end{cases}$$

$$Y = 2 \implies \begin{cases} \mathbb{P}(X = -1|Y = 2) = 0 \\ \mathbb{P}(X = 0|Y = 2) = \frac{1}{3} \\ \mathbb{P}(X = -1|Y = 2) = \frac{2}{3} \end{cases}$$

Funzione di distribuzione 5.6

Data una variabile aleatoria X la funzione distribuzione è:

$$F_X : \mathbb{R} \to [0, 1]$$

 $F_X(b) = \mathbb{P}(x \le b) = \sum_{x \le b} \mathbb{P}(x)$

Variabili aleaorie celebri

Ci sono diverse variabili aleatorie celebri:

- 1. Variabile aleatoria certa
- 2. Variabile aleatoria di Bernoulli
- 3. Variabile aleatoria binomiale
- 4. Variabile aleatoria geometrica
- 5. Variabile aleatoria binomiale negativa
- 6. Variabile aleatoria di Poissun
- 7. Variabile aleatoria multinomiale

6.1 Variabile aleatoria certa

Variabile aleatoria certa

Una variabile aleatoria certa è una variabile X in cui qualsiasi esito da un valore fisso:

$$X = n$$

$$|Im(X)| = 1$$

Il valore atteso:

$$E(X) = n$$

$$V(X) = 0$$

6.2 Variabile aleatoria di Bernoulli

Variabile aleaoria di Bernoulli

Una variabile aleatoria di Bernoulli è una variabile X con risultati solo 0 o 1:

$$X \backsim Bern(p)$$
$$Im(X) = \{0, 1\}$$

Le probabilità di 0 e 1 sono definite da p:

$$\mathbb{P}(1) = p$$

$$\mathbb{P}(0) = 1 - p$$

$$p \in [0, 1]$$

Il valore atteso:

$$E(X) = p$$

$$V(X) = p(1-p) = p - p^2$$

6.3 Variabile aleatoria binomiale

Variabile aleatoria binomiale

Una variabile aleatoria binomiale è una variabile X che presa una stringa lunga ncomposta da 0 e 1 conta la quantità di 1:

$$X \backsim Bin(n, p)$$
$$Im(X) = \{0, ..., n\}$$
$$n \in \mathbb{N}$$

Le probabilità di 0 e 1 sono definite da p:

$$\mathbb{P}(\{1\}) = p$$

$$\mathbb{P}(\{0\}) = 1 - p$$

$$p \in [0, 1]$$

Le probabilità che esca k volte 1 (distribuzione):

$$P(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Il valore atteso:

$$E(X) = np$$

$$V(X) = np(1-p) = np - np^2$$

6.4 Variabile aleatoria geometrica

Variabile aleatoria geometrica

Una variabile aleatoria geometrica è una variabile X che presa una stringa potenzialmente infinita composta da 0 e 1 conta quando appare il primo 1:

$$X\backsim Geom(p)$$

$$Im(X)=\{1,...,+\infty\}$$

Le probabilità di 0 e 1 sono definite da p:

$$\mathbb{P}(1) = p$$

$$\mathbb{P}(0) = 1 - p$$

$$p \in [0, 1]$$

Le probabilità che 1 esca dopo k volte(distribuzione):

$$P(k) = p(1 - p)^{k - 1}$$

Il valore atteso:

$$E(X) = \frac{1}{p}$$

La varianza:

$$V(X) = \frac{(1-p)}{p^2}$$

Funzione di sopravvivenza

Data una variabile aleatoria geometrica X la probabilità che 1 non sia presente nei primi k numeri:

$$G(n) = \mathbb{P}(x > k) = (1 - p)^k$$

Perdita di memoria

Data una variabile aleatoria geometrica X la probabilità che 1 sia presente dopo k+l numeri sapendo che nei primi k non c'era:

$$\mathbb{P}(x = k + l | x > k) = \mathbb{P}(l)$$

6.5 Variabile aleatoria binomiale negativa

Variabile aleatoria binomiale negativa

Una variabile aleatoria binomiale negativa è una variabile X che presa una stringa potenzialmente infinita composta da 0 e 1 conta quando appare l'n-esimo 1:

$$X \backsim BinNeg(n, p)$$
$$Im(X) = \{n, ..., +\infty\}$$

Le probabilità di 0 e 1 sono definite da p:

$$\mathbb{P}(1) = p$$

$$\mathbb{P}(0) = 1 - p$$

$$p \in [0, 1]$$

Le probabilità che 1 esca la n-esima volta dopo k volte(distribuzione):

$$\mathbb{P}(k) = \binom{k-1}{n-1} p^n (1-p)^{k-n}$$

Il valore atteso:

$$E(X) = \frac{n}{p}$$

La varianza:

$$V(X) = \frac{n(1-p)}{p^2}$$

6.6 Variabile aleatoria di Poisson

Variabile aleatoria di Poisson

Una variabile aleatoria di Poisson è una variabile X che conta quanti clienti arrivano in un intervallo dato λ tasso degli arrivi:

$$X \backsim Poisson(\lambda)$$
$$Im(X) = \{0, ..., +\infty\}$$

La probabilità che arrivino k persone:

$$\mathbb{P}(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Il valore atteso:

$$E(X) = \lambda$$

$$V(X) = \lambda$$

Variabili indipendenti di Poisson

Date due variabili aleatorie di Poisson X_1, X_2 :

$$X_1 \backsim Poisson(\lambda_1)$$

 $X_2 \backsim Poisson(\lambda_2)$

La probabilità che $X_1 + X_2 = k$:

$$\mathbb{P}(k) = e^{-(\lambda_1 + \lambda_1)} \frac{(\lambda_1 + \lambda_2)^k}{k!}$$

Quindi possiamo scrivere $X_1 + X_2$ come:

$$X_1 + X_2 \backsim Poisson(\lambda_1 + \lambda_2)$$

Aprossimazione della binomiale tramite Poisson

Una variabile aleatoria binomiale può essere approssimata ad con una variabile aleatoria di Poisson:

$$X \backsim Bin(n,p) \rightarrow X \backsim Poisson(\lambda = np)$$

6.7 Variabile aleatoria multinomiale

Variabile aleatoria multinomiale

Una variabile aleatoria multinomiale è una variabile X che presa una stringa lunga ncomposta da 1, ..., k conta la quantità di tutti i numeri:

$$(X_1, ..., X_k) \backsim Multi(n, p_1, ..., p_k)$$
$$Im(X_i) = \{0, ..., n\}$$
$$n \in \mathbb{N}$$

Le probabilità di 1, ..., k sono definite da $p_1, ..., p_k$:

$$\mathbb{P}(\{1\}) = p_1$$

$$\mathbb{P}(\{i\}) = p_i$$

$$p_i \in [0, 1]$$

Le probabilità che esca n_1 volte 1, n_2 volte 2,..., n_k volte k(distribuzione congiunta):

$$\mathbb{P}(n_1, n_2, ..., n_k) = \frac{n!}{n_1! n_2! ... n_k!} \cdot p_1^{n_1} p_2^{n_2} ... p_k^{n_k}$$

Possiamo anche calcolare la distribuzione marginale di X_i :

$$\mathbb{P}(n_i) = \binom{n}{n_i} p_i^{n_i} (1 - p_i)^{n - n_i}$$

Se sappiamo che un determinato numero j è uscito n_j volte:

$$\mathbb{P}(n_i|n_j) = \frac{\mathbb{P}(n_i, n_j)}{\mathbb{P}(n_j)}$$

Variabili aleatorie continue

Data una variabile aleatoria X, questa è continua se $Im(X) \subseteq \mathbb{R}$ con cardinalità infinita:

$$X \backsim Unif([a,b])$$

La probabilità che esca qualsiasi numero k (distribuzione):

$$\mathbb{P}(k) = 0$$

7.1 Densità di probabilità

Densità di probabilità

Presa una variabile aleatoria continua X la densità di probabilità è una funzione che definisce come è distribuita la probabilità nell'intervallo [a, b]:

$$f_X(x) = \begin{cases} 0 & x < a \\ f(x) & a < x < b \\ 0 & x > b \end{cases}$$

Per calcolare la probabilità in un intervallo [c, d]:

$$\mathbb{P}(c < x < d) = \int_{c}^{d} f_X(x) dx$$

Esempio:

$$X \backsim Unif([0,1])$$

$$F_X(x) = \begin{cases} 0 & x < 0 \\ 1 & 0 \le x \le 1 \\ 0 & x > 1 \end{cases}$$

$$\mathbb{P}(a < x < b) = \int_a^b f_X(x) dx = b - a$$

Condizione di normalizzazione

La densità di probabilità nell'intervallo $(-\infty, +\infty)$ deve essere sempre 1:

$$\int_{-\infty}^{+\infty} f_X(x) dx = \mathbb{P}(-\infty < x < +\infty) = 1$$

Quindi presa una variabile aleatoria continua uniforme in un intervallo [a, b]:

$$f_X(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$$

7.2 Valore atteso di variabili aleatorie continue

Valore atteso

Presa una variabile aleatoria continua X con densità di probabilità $F_X(x)$:

$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$$

7.3 Varianza di variabili aleatorie continue

Varianza

Presa una variabile aleatoria continua X con densità di probabilità $F_X(x)$:

$$V(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx = E(X^2) - [E(X)]^2$$

In cui:

$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx$$

7.4 Somma di variabili aleatorie continue indipendenti

Date due variabili aleatorie continue indipendenti X, Y con densità F_X, F_Y , la densità della somma Z = X + Y:

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx$$

7.5 Funzione di distribuzione per variabili aleatorie continue

Funzione di distribuzione

Data una variabile aleatoria continua X la funzione distribuzione:

$$F_X : \mathbb{R} \to [0, 1]$$

 $F_X(b) = \mathbb{P}(x \le b)$

Per calcolare la probabilità che x sia compreso in un intervallo:

$$\mathbb{P}(a < x \le b) = \mathbb{P}(x \le b) - \mathbb{P}(x \le a) = F_X(b) - F_X(a)$$

Da questo possiamo dire che:

$$\frac{d}{dx} \underbrace{F_X(x)}_{\text{funzione distribuzione}} = \underbrace{f_X(x)}_{\text{densità di probabilità}}$$

Funzione distribuzione per variabili uniformi

Data una variabile aleatoria continua uniforme X:

$$X \backsim Unif([0,1])$$

La funzione distribuzione:

$$F_X(k) = \mathbb{P}(x \le k) = \int_{-\infty}^k f_X(x) dx = \begin{cases} 0 & k < 0 \\ k & 0 \le k \le 1 \\ 1 & k > 1 \end{cases}$$

7.6 Variabile aleatoria Gaussiana

Variabile aleaoria Gaussiana

Una variabile aleatoria Gaussiana è una variabile X continua che misurata qualsiasi cosa controlla la distribuzione dovuta all'inaccuratezza dello strumento di misura:

$$X \backsim W(\mu, \sigma^2)$$

In cui μ è il valore atteso e σ^2 è la varianza.

La densità è descritta:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

Standardizzazione di una variabile Gaussiana

Tutte le variabili Gaussiane si riconducono alla variabile standard:

$$X \backsim W(\mu, \sigma^2)$$

Calcolando Z con la formula:

$$Z = \frac{X - \mu}{\sigma} \backsim W(0, 1)$$
$$X = \sigma Z + \mu$$

In questo modo possiamo calcolare gli integrali tramite la tabella su Z.

Tavola dell'integrale Gaussiano

Se vogliamo calcolare la probabilità che il valore sia minore di un certo numero $z \ge 0$:

$$F_Z(z) = P(Z < z) = \int_{-\infty}^{z} \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} dx$$

Il risultato dell'integrale è scritto su una tabella in base al valore di z. Valori importanti:

$$\mathbb{P}(-1 \le Z \le 1) = 0.6\overline{6}$$

 $\mathbb{P}(-2 \le Z \le 2) = 0.95$
 $\mathbb{P}(-3 \le Z \le 3) = 0.997$

Nel caso in cui volessimo calcolare la probabilità che il valore sia maggiore di un certo numero $z \leq 0$ basta usare la simmetria:

$$\mathbb{P}(Z > z) = \mathbb{P}(Z < -z)$$

Leggi varie sulla probabilità

8.1 Gioco equo

Data una qualsiasi variabile aleatoria X, questa rappresenta un gioco equo se:

$$X \text{ equa} \iff E(X) = 0$$

Esempio:

Roulette in cui giochiamo solo su rosso o nero.

Iniziamo giocando 1 e ogni volta che perdiamo raddoppiamo la puntata successiva, se vinciamo smettiamo.

$$X = \begin{cases} 1 & \mathbb{P} = 1 - \frac{1}{2^n} \\ -(2^n - 1) & \mathbb{P} = \frac{1}{2^n} \end{cases}$$
$$E(X) = (1 - \frac{1}{2^n}) - (2^n - 1) \cdot \frac{1}{2^n} = 0$$

8.2 Legge dei grandi numeri

Legge dei grandi numeri

Prese n variabili aleatorie indipendenti $X_1, X_2, ..., X_n$ con la stessa distribuzione e preso

$$S_n = \sum_{i=1}^n X_i$$
:

$$\lim_{n \to +\infty} \frac{S_n}{n} = E(X_i) \quad \forall i$$

Possiamo anche dire che presa una variabile aleatoria sempre positiva:

$$\mathbb{P}(Y \ge \lambda) \le \frac{1}{\lambda} E(Y) \quad \forall \lambda \in \mathbb{R}$$

e conseguentemente:

$$\mathbb{P}(|X - E(X)| \ge \lambda) \le \frac{1}{\lambda^2} V(X) \quad \forall \lambda \in \mathbb{R}$$

8.3 Teorema limite centrale

Teorema limite centrale

Data una variabile aleatoria binomiale $S_n \backsim Bin(n,p)$, sapendo per la legge dei grandi numeri che:

$$\lim_{n \to +\infty} \frac{S_n}{n} = p$$

è possibile ricondurre l'istogramma di $\frac{S_n}{n}$ ad una variabile aleatoria gaussiana:

$$\frac{S_n}{n} \to W(\mu = p, \sigma^2 = \frac{p(1-p)}{n})$$

Se invece prendiamo n variabili indipendenti $X_1,...,X_n$ con $\mu=E(X_i)$ e $\sigma^2=V(X_i)$ quindi:

$$S_n = \sum_{i=1}^n X_i$$

$$E(S_n) = n\mu$$

$$V(S_n) = n\sigma^2$$

A questo punto possiamo ricongiungere S_n a una gaussiana standard:

$$\frac{S_n - n\mu}{\sqrt{n\sigma^2}} = \frac{S_n - E(S_n)}{\sqrt{V(S_n)}} \xrightarrow{n \to +\infty} W(0, 1)$$

8.3.1 Applicazione del teorema

Preso un qualsiasi esperimento lo eseguo un numero n di volte e ottengo un determinato numero di volte k diverso dal E(X) un risultato posso calcolare quale è la probabilità che la differenza rispetto al valore atteso sia quella osservata:

$$S_n = n^\circ$$
 di volte ottenuto il risultato in n esperimenti $\backsim Bin(n, p)$

$$\mathbb{P}(|S_n - E(S_n)| \ge k) - E(S_n)$$

Usando il teorema limite centrale questa probabilità è uguale a:

$$\mathbb{P}(\frac{|S_n - E(S_n)|}{\sqrt{V(S_n)}} \ge \frac{k - E(S_n)}{\sqrt{np(1-p)}})$$

In base al risultato devo scegliere se questa probabilità è accettabile o no.

Esempio:

faccio 10000 lanci di moneta ed escono 5500 teste.

$$S_n = \#T \backsim Bin(10^4, \frac{1}{2})$$

$$\mathbb{P}(|S_n - E(S_n)| \ge 500) = \mathbb{P}(\frac{|S_n - E(S_n)|}{\sqrt{V(S_n)}} \ge \frac{500}{\sqrt{10^4 \cdot \frac{1}{4}}}) = \mathbb{P}(W(0, 1) \ge 10) \stackrel{\text{tavola}}{=} e^{-100}$$

Simulare una variabile aleatoria arbitraria 8.4

Simulare una variabile aleatoria arbitraria

Data una variabile aleatoria $X \in U \backsim Unif([0,1])$:

$$\exists \varphi_X : [0,1] \to \mathbb{R} | X \backsim \varphi_X(u)$$

 $Xe \varphi_X$ hanno la stessa distribuzione.

Per ottenere la variabile aleatoria φ_X dobbiamo fare il grafico della funzione di distribuzione F_X :

$$F_X = \mathbb{P}(X < x)$$

Poi dobbiamo sviluppare dal grafico l'esito di φ_X .

$$X \sim Bern(p) = \begin{cases} 1 & \mathbb{P}(1) = p \\ 0 & \mathbb{P}(0) = (1-p) \end{cases}$$
 Questa variabile può essere generata tramite U :

$$X = \begin{cases} 0 & 0 < U \le 1 - p \\ 1 & 1 - p < U \le p \end{cases}$$

$$X \backsim Poisson(\lambda)$$

$$P(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Questa variabile può essere costruita tramite U:

$$X = \begin{cases} 0 & 0 < U \le e^{-\lambda} \\ 1 & e^{-\lambda} < U \le e^{-\lambda} (1 + \lambda) \\ \dots \\ k & e^{-\lambda} (1 + \lambda + \dots + \frac{\lambda^{k-1}}{(k-1)!}) < U \le e^{-\lambda} (1 + \lambda + \dots + \frac{\lambda^k}{k!}) \end{cases}$$