

Elektromagnetska polja

MATERIJALI U MAGNETSKOM POLJU

Magnetiziranje materijala

 Gibanje naboja → struja → orbitalno gibanje elektrona, spinovi elektrona, spinovi jezgre

16.4.2007

EMP - Materijali u magnetskom polju

Magnetski dipol i magnetizacija

· Magnetski dipol

- Dipolni moment: $\vec{m} = \vec{n}SI$
- Uvodimo magnetizaciju:

$$\vec{M}(\vec{r}) = \lim_{\Delta V \to 0 \atop \text{obs} \ \vec{r}} \frac{\sum_{\Delta V} \vec{m}_i}{\Delta V} = \frac{\text{d}\vec{m}}{\text{d}V} \quad \Longrightarrow \quad \text{d}\vec{m} = \vec{M} \text{d}V$$

16.4.2007

EMP - Materijali u magnetskom polju

3

- Razmotrimo elementarni volumen materijala
 - Dipolni moment je:

$$d\vec{m} = \vec{M}dV = \vec{M}dldS =$$

$$= (\vec{M} \cdot d\vec{l})\vec{n}dS = dI \vec{n}dS$$

- Slijedi da elementarni volumen možemo nadomjestiti magnetskim dipolom protjecanim strujom: $\mathrm{d}I_a = \vec{M} \cdot \mathrm{d}\vec{l}$
- Struju I_a zovemo amperska struja
 - Ekvivalentni makroskopski izvor

16.4.2007

EMP - Materijali u magnetskom polju

Veza magnetizacije i amperskih struja

- Razmotrimo plohu S_c magnetiziranog materijala
- · Ukupna amperska struja je:

$$I_a = \oint_c \vec{M} \cdot d\vec{l} = \iint_{S_C} \vec{J}_a \cdot \vec{n}_{S_C} dS$$

- Stokesov teorem $\nabla \times \vec{M} = \vec{J}_a$
- Ako je $\nabla \times \vec{M}$ singularan
 - Granična ploha
 - Amperska plošna struja

 $\vec{K}_a = \vec{M} \times \vec{n}$

16.4.2007

EMP - Materijali u magnetskom polju

5

Vektor jakosti magnetskog polja

- Materijali u magnetskom polju \rightarrow magnetizacija \rightarrow dodatni izvor polja: \vec{J}_a
- Magnetska indukcija u materijalu \vec{B} = indukcija u vakuumu \vec{B}_0 stvorena slobodnim strujama vodiča \vec{J}_s + indukcija \vec{B}_a od dodatnog izvora amperskih struja \vec{J}_a
- Ukupnu indukciju dobivamo superpozicijom:

$$\vec{B} = \vec{B}_0 + \vec{B}_a \implies \nabla \times \vec{B} = \mu_0 (\vec{J}_s + \vec{J}_a) \implies \nabla \times (\frac{\vec{B}}{\mu_0} - \vec{M}) = \vec{J}_s$$

· Uvodimo dodatni vektor jakosti magnetskog polja:

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \quad \Rightarrow \quad \nabla \times \vec{H} = \vec{J}_s$$

16.4.2007

EMP - Materijali u magnetskom polju

Magnetski materijali

- Vrijedi: $\vec{B} = \mu_0 \vec{H} + \vec{M} = \mu_0 (1 + \chi_m) \vec{H} = \mu_0 \mu_r \vec{H}$
- Magnetska susceptibilnost χ_m
- · Ponašanje materijala
 - Dijamagnetizam: $\chi_m < 0$

- Paramagnetizam
 - Susceptibilnost mali pozitivni broj
- Feromagnetizam
 - Susceptibilnost veliki pozitivni broj
 - Složena nelinearna ovisnost M i H

16.4.2007

EMP - Materijali u magnetskom

Jednadžbe statičkog magnetskog polja u materijalu

· Ampereov zakon u materijalima:

$$\nabla \times \vec{H} = \vec{J}_s \implies \oint_c \vec{H} \cdot d\vec{l} = \iint_S \vec{J}_s \cdot \vec{n} dS = I$$

Jednadžba

$$\nabla \cdot \vec{B} = 0 \quad \Rightarrow \quad \iint_{S} \vec{B} \cdot \vec{n} \, dS = 0$$

ne uključuje izvore polja pa se ne mijenja prisutnošću materijala

16.4.2007

EMP - Materijali u magnetskom polju

1

Uvjeti na granici dva materijala

- Izvode se iz integralnog oblika jednadžbi polja
- Postupak analogan pokazanom za statičko električno polje
- Tangencijalna komponenta H→ skok za iznos gustoće slobodnih plošnih struja na granici:

 $\vec{n} \times (\vec{H}_2 - \vec{H}_1) = \vec{K}_s$

• Okomita komponenta $\vec{B} \to \text{kontinuirano prelazi}$ granicu:

$$\vec{n} \cdot (\vec{B}_2 - \vec{B}_1) = 0$$

 $\begin{array}{cccc} \vec{n} & \mu_2 & (2) \\ \hline & \mu_1 & (1) \end{array}$

16.4.2007

EMP - Materijali u magnetskom polju

Primjer: Magnetsko polje ulazi iz zraka μ_1 = μ_0 gdje je magnetska indukcija:

$$\vec{B}_1 = \vec{a}_x 0.01 + \vec{a}_z 0.02$$
 (T)

u feromagnetski materijal s μ_2 = 100 μ_0 . Granica sredstava je ravnina z = 0, na kojoj postoji plošna struja \vec{K}_s = \vec{a}_x 5000 (A/m). Odrediti magnetsku indukciju u feromagnetskom materijalu.

16.4.2007

EMP - Materijali u magnetskom polju