Computational Security

Perfect Security

Let (K,E,D) be a symmetric encryption scheme. It is said to be perfectly secure if for any two plaintexts P₁,P₂ and a ciphertext C

$$\Pr[E_k(P_1) = C] = \Pr[E_k(P_2) = C],$$

where the probability is over the random choice $k \leftarrow K$, and also over the coins flipped by E

Perfect Security is Far From Perfect

不切实际的

- Perfect security is impractically strong
- Need to relax it. There are two ways to do that
- Put restrictions on the adversary: not almighty, but computationally efficient
- Give the adversary some chance: do not insist that the probabilities in the definition are equal, just close

Algorithms

- Algorithm performs a sequence of `elementary steps' that can be:
 - arithmetic operations
 - bit operations
 - Turing machine moves
 - (but not quantum computing!!)
- We allow probabilistic algorithms, that is, flipping coins is permitted

USE some random bit for its computation

Complexity

- The time complexity of algorithm A is function f(n) that is equal to the number of elementary steps required to process the most difficult input of length n worst case complexity
- We do not distinguish algorithms of complexity $2n^2$ and $100000n^2$
- A computational problem has time complexity at most f(n) if there is an algorithm that solves the problem and has complexity O(f(n)) for Like ceiling
 - problem solvable in linear time: there is an algorithm that on input of length $\,n\,$ performs at most $\,Cn\,$ steps
 - problem solvable in quadratic time: there is an algorithm that on input of length $\,n\,$ performs at most $\,Cn^2\,$ steps

Complexity (cntd)

- There is a polynomial p(n) such that the problem is solvable in time O(p(n))
- P class of problems solvable in poly time by a deterministic algorithm
- BPP class of problems solvable in poly time by a probabilistic algorithm Bounded Probabilistic Polynomial
- An algorithm is superpolynomial if its time complexity f(n) is not in O(p(n)) for any polynomial p(n) k letters $\rightarrow k!$ attempt \rightarrow not polynomial eg try all possible permutations of the alphabet (Brute force) eg super-poly eg. A function $eg: N \rightarrow [0,1]$ is polynomially bounded if $eg = \frac{1}{p(n)}$ super-poly
 - for some polynomial p(n)eg. 2(n) = 13

E is a very small number

Usually Brute Force is inefficient

Statistical Tests

- In the definition of security as a game the Eavesdropper sees a ciphertext C that is an encryption of one of the two plaintexts
- The only thing Eve can do is to run some algorithm on C that tells her whether it is an encryption of P_1 or P_2
- Such algorithms are called statistical tests
- More formally, a statistical test is an algorithm (function) that on input from $\{0,1\}^n$ outputs 0 or 1 0 the algorithm thinks the ciphertest is P_1 1 the
- Examples:
 - ❖ On input $C \in \{0,1\}^n$ output 1 if the second byte of C is 00, otherwise output 0 or 1 with probability 1/2
 - \bullet On input $C \in \{0,1\}^n$ output 1 if C contains a string of consecutive 0s or 1s of length at least $\log(n) + 1$, otherwise 0 distinguishes "human generated bit string" & "real random bit strings"

Indistinguishability 不順區分中生

- Let W_1 , W_2 be two distributions on $\{0,1\}^n$.
- ullet Distributions W_1 , W_2 are said to be computationally indistinguishable if for any efficient statistical test Eve

$$|\Pr_{X \leftarrow W_1}[Eve(X) = 1] - \Pr_{X \leftarrow W_2}[Eve(X) = 1]| < \varepsilon$$

where Pr means that X is sampled from W_i , and ε is negligible. 独不及道的

- ε is often called the advantage of the test $\varepsilon = 0 \rightarrow abs$. random $\varepsilon = 1 \rightarrow abs$. correct
- - What is an efficient test
 - What is negligible ε
 - How is it related to security

Computational (Semantic) Security

- Distributions that appear naturally in cryptography are encryptions of some plaintext with a random key.
- Let P be a plaintext and the corresponding distribution W over all possible ciphertexts that are produced from P assigns a ciphertex C the probability

$$\Pr_{k \leftarrow K}[E_k(P) = C]$$

• An SES (K, E, D) is said to be computationally secure if for any plaintexts P_1, P_2 the corresponding distributions W_1, W_2 are computationally indistinguishable

Computational Security as a Game

- We assume that Eve is efficient
- Game
 - Alice chooses a key k
 - Eve chooses 2 plaintexts and gives them to Alice
 - Alice encrypts one of them and sends to Eve
 - Eve decides which one is encrypted

Eve wins if her decision is right

The system is computationally secure if Eve wins with probability $\frac{1}{2} + \varepsilon$, where ε is negligible

Efficient Statistical Tests

- In practice: Takes reasonable time to run
- Difficulties: What time is reasonable? Different grades of security We do not know the adversary's capabilities
- In theory: Adversary is pory.......

 This means that we consider the adversary's performance 在big data是 dynamically, looking how it scales as the length of keys and messages grow

Negligible Advantage

- What ε is negligible?
- In practice:
- Depends on the task, but generally $\varepsilon = 2^{-30}$ is not negligible. It is about one billionth and is comparable with the amount of data we have to deal with
- $\varepsilon=2^{-100}$ is negligible. At least for now. With the current technology there is no way the adversary has anything close to 2^{100} attempts on your cryptosystem. But things change ...
- In theory: The advantage is not polynomially bounded, that is, ε decreases faster than $\frac{1}{p(n)}$ for any polynomial p