Série 4 du jeudi 13 octobre 2016

Exercice 1.

On dit que $x \in \mathbb{R}$ est un **point d'accumulation** de la suite $(x_n)_{n=0}^{\infty}$ si de celle-ci on peut extraire une sous-suite qui converge vers x.

Soit $(x_n)_{n=0}^{\infty}$ une suite bornée et désignons par E l'ensemble de ses points d'accumulation. Montrer que

$$\sup E = \limsup_{n \to \infty} x_n.$$

Indications

- 1.) Montrer que $E \neq \emptyset$.
- 2.) Si $\alpha = \sup E, \beta = \limsup x_n$, montrer que $\beta \leq \alpha$.
- 3.) Soit $\lambda \in E$, limite de la sous-suite $(x_{n_j})_{j=0}^{\infty}$ de $(x_n)_{n=0}^{\infty}$; montrer que $\beta \geq \lambda$.

Exercice 2 (* A rendre).

On considère la suite $(x_n)_{n=0}^{\infty}$ donnée par

$$x_0 = 0,$$
 $x_{\frac{q(q-1)}{2} + p} = \frac{p}{q},$

pour $1 \le p \le q$, q = 1, 2, ...

- (1) Écrire les 20 premiers termes de cette suite.
- (2) Trouver tous les points d'accumulation de cette suite.
- (3) Tirer de cette suite une injection de $\mathbb{Q} \cap]0,1[$ dans $\mathbb{N}.$

Exercice 3.

1.) Soit $a_k \in \{0, 1, 2, \dots, 9\}$ pour $k = 1, 2, \dots$ On définit la suite (x_n) par

$$x_n = \sum_{k=1}^n \frac{a_k}{10^k}.$$

Montrer que la suite x_n est de Cauchy.

- 2.) Soit $x \in [0, 1[$. Montrer qu'il existe une suite de $a_k \in \{0, 1, 2, \dots, 9\}$ telle que la suite x_n formée comme en 1.) converge vers x.

 Indication: Partitionner [0, 1[en 10 intervalles égaux: $[0, \frac{1}{10}[, [\frac{1}{10}, \frac{2}{10}[, \dots, [\frac{9}{10}, 1[$ et bien choisir a_1 . etc...
- 3.) Montrer que l'expansion décimale d'un nombre n'est pas toujours unique.