Devoir surveillé n°2

Exercice 1 | 7 points

- 1. Donner les trois identités remarquables.
- **2.** Factoriser les expressions suivantes.

a)
$$x^2 - 10x + 25$$

b)
$$4z^2 + 12z + 9$$

c)
$$16 - 36u^2$$

3. Calculer, à la main, le nombre $1\,000\,000\,002^2 - 999\,999\,998^2$.

Correction

1. Soient $a, b \in \mathbb{R}$.

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a + b)^2 = a^2 + 2ab + b^2$$
 $(a - b)^2 = a^2 - 2ab + b^2$

$$(a+b)(a-b) = a^2 - b^2$$

2. a)
$$x^2 - 10x + 25 = (x - 5)^2$$

b)
$$4z^2 + 12z + 9 = (2z + 3)^2$$

c)
$$16 - 36u^2 = (4 - 6u)(4 + 6u)$$

3.

$$1\,000\,000\,002^2 - 999\,999\,998^2 = (1\,000\,000\,002 + 999\,999\,998)(1\,000\,000\,002 - 999\,999\,998)$$

= $2\,000\,000\,000 \times 4$
= $8\,000\,000\,000$

Exercice 2 | 2 points

Factorise en reconnaissant un facteur en commun.

1.
$$(4x + 5)(x + 3) - 3(x + 3)(x - 2)$$

2.
$$(x + 3)(2x - 3) - (2x - 3)$$

Correction

1.
$$(4x+5)(x+3) - 3(x+3)(x-2) = (x+3)[(4x+5) - 3(x-2)] = (x+3)(x+7)$$

2.
$$(x+3)(2x-3) - (2x-3) = (2x-3)[(x+3)-1] = (2x-3)(x+2)$$

Exercice 3 | 11 points

- 1. Donne la notation mathématique de l'ensemble de nombres associé.
 - a) L'ensemble des nombres rationnels.
 - **b)** L'ensemble des nombres entiers naturels non-nuls.
 - c) L'ensemble des nombres réels compris entre 4, inclus, et 10, exclu.
 - d) L'ensemble des nombres réels négatifs.
- **2.** Compléter le tableau suivant :

	1	
Inégalité	Intervalle	Représentation graphique
$x < \pi$] – ∞; π[
5 ≤ <i>x</i> < 10		5 10
		-1 3
$\sqrt{2} \geqslant x$		
]-∞;+∞[

- **3.** Soient I = [-5, 3] et $J =]-\infty; 7[$. Représente sur la droite réelle :
 - a) la réunion de I et $J: I \cup J$

b) l'intersection de I et J : $I \cap J$.

Correction

1. a) Q

b) №*

- **c)** [4;10[
- **d**) ℝ_

2.

Inégalité	Intervalle	Représentation graphique
$x < \pi$] − ∞; π[π
5 ≤ <i>x</i> < 10	[5;10[5 10
-1 < x < 3]-1;3[-1 3
$\sqrt{2} \geqslant x$	$\left[\sqrt{2};+\infty\right[$	$\sqrt{2}$
$x \in \mathbb{R}$] – ∞; +∞[

3. a) Remarquons que $I \subset J$ et donc $I \cup J$ étant l'ensemble des éléments de I ou de J (et aussi des deux en même temps), on a ainsi : $I \cup J = J$.

b) De même, $I \subset J$ donc $I \cap J$ étant l'ensemble des éléments à la fois de I et de J, on a : $I \cap J = I$.

