1. Simulation for flash distillation

Feed Stream:

✓ Temperature: 115.6 °C ✓ Pressure: 1896 kPa

✓ Molar Flow: 1748 kgmol/h✓ Component Mole Fractions:

o Hydrogen: 0.004700

o Methane: 0.017600

o Ethane: 0.005400

o Benzene: 0.32900

o Toluene: 0.380900

o m-Xylene: 0.26200

✓ Vessel Pressure: 896.3 kPa

Question: Define suitable fluid package? Find out the vapor and liquid parameters.

Answer: Pheng-Robinson fluid package because of its characteristics. The parameters are given below.

Is it possible for the sum of the mole fraction of methane and ethane in L. to be lower than 0.0005 and for the temperature of V to be 37.8 degree Celsius.?

Answer: No.

2. Simulation for rectifier or multistage distillation

Feed Stream:

✓ Temperature: 115.6 °C ✓ Pressure: 1896 kPa

✓ Molar Flow: 1748 kgmol/h✓ Component Mole Fractions:

o Hydrogen: 0.004700

o Methane: 0.017600

o Ethane: 0.005400

o Benzene: 0.32900

o Toluene: 0.380900

o m-Xylene: 0.26200

✓ Vessel Pressure: 896.3 kPa

✓ Extra Data:

o Real stages: (70% efficiency): 9 + partial reboiler+ full reflux condenser

o Feed stage: 2 (counting the condenser as 0), column pressure: 896.3 kPa

 \circ Approximation: Distillate rate (D) = 49.4 kgmol/h; Reflux ratio (LD/D) = 2

Make it the sum of the mole fraction of methane and ethane in L. to be lower than 0.0005 and for the temperature of V to be 37.8 degree Celsius.?

3. Distillation of a Multi-Component Hydrocarbon Feed

Feed Stream:

Temperature: 98.2 °C

Pressure: 1500 kPa

Molar Flow: 2100 kmol/h

Component Mole Fractions:

o Hydrogen: 0.0020

o Methane: 0.0150

o Ethane: 0.0090

o n-Butane: 0.0500

o Benzene: 0.4200

o Toluene: 0.3200

o Ethylbenzene: 0.1840

Column Information:

Real stages (75% efficiency): 10 + partial reboiler + full reflux condenser

Feed stage: 2 (condenser counted as stage 0)

Column pressure: 1013 kPa

Approximation: D = 58.2 kmol/h; L/D = 2.5

Question:

Define suitable fluid package? Is it feasible for the sum of the mole fractions of hydrogen, methane, and ethane in the bottom product (L) to be lower than 0.001 and for the condenser vapor temperature (V) to be around 45.0 °C? Justify your reasoning based on component volatilities and typical distillation behavior.

Peng Robinson fluid package because of the all-feed input is mixed vapor- liquid hydrocarbon. Zudkevitch Jofee may also use for this case.

It is feasible for the sum of the mole fractions of hydrogen, methane, and ethane in the bottom product (L) to be lower than 0.001 and for the condenser vapor temperature (V) to be around 45.0 °C. If the reflux ratio, top product molar flow, and bottom product molar flow are 0.1432, 59.88 kgmol/h, and 2040 kgmol/h, respectively.

4. Separation of Light Hydrocarbons (C1–C4)

Feed Stream:

Temperature: 35.0 °C

Pressure: 3000 kPa

Molar Flow Rate: 1000 kmol/h

Component Mole Fractions:

o Methane: 0.250

o Ethane: 0.400

o Propane: 0.250

o n-Butane: 0.100

Query:

Define suitable fluid package? If Propane Mole Fraction in distillate stream is 0.0120 (3000 kPa), Ethane Mole Fraction in bottom is 0.0250 (3000 kPa), and actual reflux ratio is 1.5 times higher to minimum reflux ratio, then is it feasible for the propane mole fraction in the distillate to be as low as 0.0120, and the ethane mole fraction in the bottoms to be as low as 0.0250, under the specified reflux ratio? Justify based on component volatility and shortcut distillation theory.

Answer: Peng-Robinson fluid package because of the all-feed input is mixed vapor-liquid hydrocarbon. The actual reflux ratio is 1.332. It is feasible for the propane mole fraction in the distillate to be as low as 0.0120, and the ethane mole fraction in the bottoms to be as low as 0.0250, under the specified reflux ratio.

5. Distillation of a Multi-Component Hydrocarbon Feed

Feed Stream:

Temperature: 132.5 °C

Pressure: 2100 kPa

Molar Flow: 1600 kmol/h

Component Mole Fractions:

o Methane: 0.0120

Ethane: 0.0180

o Propylene: 0.0450

o Benzene: 0.2800

o Toluene: 0.3300

o m-Xylene: 0.3150

Column Information:

Real stages (65% efficiency): 8 + partial reboiler + total reflux condenser

Feed stage: 3 (condenser counted as stage 0)

Column pressure: 1200 kPa

Approximation: D = 42 kmol/h; L/D = 1.8

Query:

Define suitable fluid package? Can the mole fraction of propylene in the bottom stream (L) be less than 0.003, and can the vapor temperature at the top of the column be about 55.0 °C? Provide justification considering separation principles and boiling point trends.

Fluid package: Pheng Robinson for hydrocarbon feed.

It is not possible to get the mole fraction of propylene in the bottom stream (L) be less than 0.003, and can the vapor temperature at the top of the column be about 55.0 °C.

6. De-ethanizer Design in Ethylene Plant

Feed Stream:

Temperature: 45.2 °C

Pressure: 2800 kPa

Molar Flow Rate: 850 kmol/h

Component Mole Fractions:

Methane: 0.180

o Ethylene: 0.420

o Ethane: 0.250

Propane: 0.150

Query:

Define suitable fluid package? If Ethane Mole Fraction in distillate stream is 0.0070, Ethylene Mole Fraction in bottom is 0.0200, and actual reflux ratio is 1.8 times higher to minimum reflux ratio, then calculate the actual reflux ratio, and actual and minimum stages of column.

Answer: Actual reflux ration: 5.969, actual stages of column; 35.52, and minimum stages of column: 23.68.

7. Debutanizer Column Design

Feed Stream:

Temperature: 52.5 °C

Pressure: 2600 kPa

Molar Flow Rate: 900 kmol/h

Component Mole Fractions:

o Propane: 0.100

o n-Butane: 0.400

o i-Butane: 0.250

o n-Pentane: 0.180

o i-Pentane: 0.070

Query:

Define suitable fluid package? If n-Pentane Mole Fraction in distillate stream is 0.0100, i-Butane Mole Fraction in bottom is 0.0210, and actual reflux ratio is 2 times higher to minimum reflux ratio, then calculate the actual reflux ratio, actual and minimum stages of column, and give some observation on influencing parameters of short cut distillation column.

Answer: Peng-Robinson for organic compounds. Actual reflux ration: 3.820, actual stages of column; 20.94, and minimum stages of column: 14.06.

						Top Product			
Feed							Temperature	116.7	С
Temperature	52.50	С					Pressure	2600	kPa
Pressure	2600					Top Product	Molar Flow	686.7	kgmole/h
Molar Flow	900.0	kgmole/h							
Master Comp Mole Frac (Propane)	0.100000		Feed		Qc				
Master Comp Mole Frac (n-Butane)	0.400000		1 000	Lilling	Or		Bott	om Produ	ct
Master Comp Mole Frac (i-Butane)	0.250000			Shortcut Distilation		Pottore Bradust	Temperature	172.8	С
Master Comp Mole Frac (n-Pentane)	0.180000					Bottom Product	Pressure	2600	kPa
Master Comp Mole Frac (i-Pentane)	0.070000			Shortcut Distilation			Molar Flow	213.3	kgmole/l
				Minimum Reflux	1.910				
				Minimum Trays	14.06				
				Actual Trays	20.94				
				Optimal Feed	7.354				
				External Reflux	3.820				

8. Distillation of a Multi-Component Hydrocarbon Feed

Feed Stream:

Temperature: 125 °C

Pressure: 1800 kPa

Molar Flow: 2000 kmol/h

Component Mole Fractions:

o Methane: 0.0100

o Ethane: 0.0075

o Benzene: 0.3050

o Toluene: 0.2900

o m-Xylene: 0.2800

o o-Xylene: 0.1075

Column Information:

Real stages (72% efficiency): 12 + partial reboiler + total reflux condenser

Feed stage: 4 (condenser counted as stage 0)

Column pressure: 1000 kPa

Approximation: D = 60 kmol/h; L/D = 3.0

Query:

Define suitable fluid package? Is it possible for the total mole fraction of ethane and methane in the distillate stream (V) to exceed 0.015, and for the condenser temperature to be around 41.5 °C? Explain your answer based on the separation profile and volatility characteristics.

Answer: Peng-Robinson fluid package. It is not possible for the total mole fraction of ethane and methane in the distillate stream (V) to exceed 0.015, but it is possible for the condenser temperature to be around $41.5~^{\circ}\text{C}$ for changing molar flow rate.

Feed		
Temperature	125.0	С
Pressure	1800	kPa
Molar Flow	2000	kgmole/h
Master Comp Mole Frac (Methane)	0.010000	
Master Comp Mole Frac (Ethane)	0.007500	
Master Comp Mole Frac (Benzene)	0.305000	
Master Comp Mole Frac (Toluene)	0.290000	
Master Comp Mole Frac (m-Xylene)	0.280000	
Master Comp Mole Frac (o-Xylene)	0.107500	

Distillation Column		
Number of Trays in Main Tray Section	12.00	
Reflux Ratio	3.000	
Molar Flow (Molar Flow_1)	2000	kgmole/h
Molar Flow (Molar Flow_2)	911.1	kgmole/h
Molar Flow (Molar Flow 3)	1089	kgmole/h

Top	Product	t
Temperature	41.51	С
Pressure	1000	kPa
Molar Flow	911.1	kgmole/h

Bottom Product		
Temperature	238.6	С
Master Comp Mole Frac (Methane)	0.000000	
Master Comp Mole Frac (Ethane)	0.000000	