• Who is this guy?

- Lets watch a portion of a video...
 - 2:45 (specially)

 Imagine a situation where River Plate plays against Boca Juniors and falls to 2nd division iff it loses

VS.

$$u(L) =$$

Utilities for this lottery

 Imagine a situation where River Plate plays against Boca Juniors and falls to 2nd division iff it loses

VS.

$$u(W,D) = $105$$

$$u(L) = -\$105$$

What should I do if I am extremely risk averse?

VS.

$$u(W,D) = $105$$

$$u(L) = -\$105$$

- Suppose a site is paying r = 3 dollars for each dollar I put on Boca Juniors
- Then...
 - let x be the amount of dollars I put on Boca Juniors
 - then, if u(W,D) x = u(L) + (r-1)x, I have nothing to worry about!

$$-105 - x = -105 + 3x - x$$

$$-3x = 210$$

$$- x = $70$$

Utilities for this lottery

Utilities for this lottery

 ... as if I am paying \$70 for not playing this lottery

a

Smart TV Gamer LED 3D 40" Samsung UN40J6400 - Full HD 4 HDMI 3 USB 2 Óculos

de R\$ 2.549,00

por R\$ 1.999,00 em até 10x de R\$ 199,90 sem juros ou R\$ 1.799,10 à vista

disponível sob consulta

□ Ver com outros produtos

b

Smart TV Gamer LED 4k Ultra HD 75" Samsung - UN75JU6500 4 HDMI 3 USB Wi-Fi

R\$ 15.999,00

em até 12x de R\$ 1.333,25 sem juros ou **R\$ 14.399,10 à vista**

∇er com outros produtos

Smart TV OLED Curva 3D 55" LG 55EA9850 Full HD - Conversor Integrado 4 HDMI 3 USB Wi-Fi 4 Óculos

de R\$ 11.990,00

por R\$ 7.999,00

em até 12x de R\$ 666,58 sem juros ou R\$ 7.199,10 à vista

Ver com outros produtos

d

Smart TV Gamer LED 75" Samsung UN75J6300A - Full HD Conversor Integrado 4 HDMI 3 USB Wi-Fi

R\$ 11.499,00

em até 12x de R\$ 958,25 sem juros ou **R\$ 10.349,10 à vista**

Ver com outros produtos

u(c) = \$7.999,00

a

b

$$u(a) = $5,00$$

$$u(b) = $1.299,00$$

Preference relations ≥ over the space of lotteries for which there is a <u>continuous</u> function *u*, such that ≥ is represented by

$$Eu(p) = \sum_{z \in Z} p(z)u(z)$$

The function *Eu* assigns to the lottery *p* the expectation of the <u>random variable</u> that receives the value *u(x)* with a probability *p(x)*

lottery	\$30	\$50	\$70
р	50%	0%	50%
q	0%	100%	0%

$$Eu(p) = $50,00$$

lottery	\$0	\$50	\$100
р	50%	0%	50%
q	0%	100%	0%

$$Eu(p) = $50,00$$

lottery	\$0	\$30	\$100
р	50%	0%	50%
q	0%	100%	0%

lottery	\$0	\$30M	\$100M
р	50%	0%	50%
q	0%	100%	0%

Let's play a game...

lottery	\$0	\$30M	\$100M
р	50%	0%	50%
q	0%	100%	0%

Is there an x value that would make you choose p?

lottery	\$0	\$30M	\$[x]M
р	50%	0%	50%
q	0%	100%	0%

- If yes, let's imagine the following situation...
 - Choose X₁ that will make you choose p

lottery	\$0	\$30M	\$[x ₁]M
р	50%	0%	50%
q	0%	100%	0%

Now flip a coin

- If yes, let's imagine the following situation...
 - Choose X₁ that will make you choose p

lottery	\$0	\$30M	\$[x ₁]M
р	50%	0%	50%
q	0%	100%	0%

- YOU WON!

- If yes, let's imagine the following situation...
 - Choose x₂ that will make you choose p

lottery	\$0	\$[x ₁]M	\$[x ₂]M
р	50%	0%	50%
q	0%	100%	0%

Now flip a coin

- If yes, let's imagine the following situation...
 - Choose now a x₂ that will make you choose p

lottery	\$0	\$[<mark>x₁]M</mark>	\$[x ₂]M
р	50%	0%	50%
q	0%	100%	0%

- YOU WON!

- If yes, let's imagine the following situation...
 - Choose x₃ that will make you choose p

lottery	\$0	\$[x ₂]M	\$[x ₃]M
р	50%	0%	50%
q	0%	100%	0%

Now flip a coin

- If utility is <u>not bounded</u>, this game goes on forever
- More important:

- What is the probability of our decision maker being left with no money?

- 1!
- St. Petersburg paradox

 St. Petersburg paradox, proposed by Nicolaus Bernoulli more than 300 years ago

Money vs. Utility over money

Money vs. Utility over money

Money vs. Utility over money

- Daniel Bernoulli (cousin of Nicolaus) explains :
 - "The value of an item must not be based upon its price, but rather on the utility it yields.
 - The price of the item is dependent only on the thing itself and is equal for everyone.
 - The utility, however, is dependent on the particular circumstances of the person making the estimate."

- Two insights about the St. Petersburg paradox
 - The value attached to this gamble would vary across individuals, with some individuals willing to pay more than others
 - The utility from gaining an additional dollar would decrease with wealth
 - Utility increases as wealth increases and at a declining rate

 The value attached to this gamble would vary across individuals, with some individuals willing to pay more than others

. How to measure?

- . How to measure?
 - Every prize should be converted to money
 - Define a utility function u(\$) over money
 - For a lottery **p** over prizes, calculate:
 - *E(p)*: the expected amount of money of lottery *p*
 - Eu(p): the expected utility of lottery p
 - u(E(p)): the utility of the expected amount of money of p
 - CE(p): the certainty equivalent
 - the amount of money I am willing to pay to play lottery **p**

- How much would you pay to play lottery p?
 - Let CE(p), the <u>certainty equivalent</u>, be the amount of money I am willing to pay to play lottery p
- How much A and B value to you?
 - **u(A)** and **u(B)** (or **u(\$20)** and **u(\$80)**)
 - Eu(p) = p(A)u(A) + p(B)u(B) = 0.25 u(\$20) + 0.75 u(\$80)
 - E(p) = p(A)A + p(B)B = 0.25 \$20 + 0.75 \$80 = \$65
- If I am <u>risk neutral</u>
 - u(E(p)) = Eu(p) and E(p) = CE(p) = \$65

lottery	A(\$20)	B(\$80)	
р	25%	75%	

- How much would you pay to play lottery p?
 - Let CE(p), the <u>certainty equivalent</u>, be the amount of money I am willing to pay to play lottery p
- How much A and B value to you?
 - **u(A)** and **u(B)** (or **u(\$20)** and **u(\$80)**)
 - Eu(p) = p(A)u(A) + p(B)u(B) = 0.25 u(\$20) + 0.75 u(\$80)
 - E(p) = p(A)A + p(B)B = 0.25 \$20 + 0.75 \$80 = \$65
- If I am <u>risk averse</u>
 - u(E(p)) > Eu(p) and E(p) > CE(p) < \$65

lottery	A(\$20)	B(\$80)
р	25%	75%

- How much would you pay to play lottery p?
 - Let CE(p), the <u>certainty equivalent</u>, be the amount of money I am willing to pay to play lottery p
- How much A and B value to you?
 - **u(A)** and **u(B)** (or **u(\$20)** and **u(\$80)**)
 - Eu(p) = p(A)u(A) + p(B)u(B) = 0.25 u(\$20) + 0.75 u(\$80)
 - E(p) = p(A)A + p(B)B = 0.25 \$20 + 0.75 \$80 = \$65
- If I am <u>risk seeking</u>
 - u(E(p)) < Eu(p) and E(p) < CE(p) > \$65

lottery	A(\$20)	B(\$80)
р	25%	75%

. Claim:

Let ≥ be a preference on L(Z) represented by the vNM utility function u,
the preference relation ≥ is risk averse iff u is strictly concave

Proof

- In the book

Reminder: strictly concave functions

$$f((1-\alpha)x + \alpha y) > (1-\alpha)f(x) + \alpha f(y)$$

consider a lottery with two prizes x and y
and $p(y) = \alpha$ and $p(x) = 1-\alpha$
 $E(p) = (1-\alpha)x + \alpha y$
if the function f is strictly concave
 $f(E(p)) > (1-\alpha)f(x) + \alpha f(y)$
if f is the utility function
 $u(E(p)) > (1-\alpha)u(x) + \alpha u(y)$
 $u(E(p)) > Eu(p)$ (definition of risk aversion)

- u(x) = In(x)
- $p = (0.5) \$20 \oplus (0.5) \100

- $\cdot \quad u(x) = In(x)$
- $p = (0.5) \$20 \oplus (0.5) \100

- u(x) = In(x)
- $p = (0.5) \$20 \oplus (0.5) \100

- $\cdot u(x) = In(x)$
- $p = (0.5) \$20 \oplus (0.5) \100

- u(x) = In(x)
- $p = (0.5) \$20 \oplus (0.5) \100

- Risk premium R(p)
 - -R(p)=E(p)-CE(p)

. Claim:

The preference relation ≥₁ is more risk averse than
≥₂ if CE₁(p) ≤ CE₂(p) for all p

• Which individual is more risk averse?

- Another definition of the relation "more risk averse" exists when vNM utility functions are twice differentiable:
 - Let u_1 and u_2 be twice differentiable vNM utility functions representing \geq_1 and \geq_2 , respectively
 - The preference relation \geq_1 is more risk averse than \geq_2 if $r_1(x) \geq r_2(x)$ for all x, where
 - $r_i(x) = -u''_i(x)/u'_i(x)$
- The number r(x) is called the <u>coefficient of absolute risk</u> aversion of u at x
- A higher coefficient of absolute risk aversion means a more risk-averse decision maker

• Which individual is more risk averse?

Absolute risk aversion coefficient r

$$- r(x) = -u''(x) / u'(x)$$

- Relative risk aversion coefficient rw
 - rw(x) = x r(x)

- Absolute risk aversion coefficient r
 - If r(x) decreases with x, then individuals will invest larger money amounts in risky assets as they get wealthier
- Relative risk aversion coefficient rw
 - If rw(x) is constant with x, individuals will invest the same percentage of their wealth in risky assets as they get wealthier

• Which individual is more risk averse?

Absolute risk aversion coefficient r

$$- r(x) = -u''(x) / u'(x)$$

Absolute risk aversion coefficient r

$$- u(x) = 10(1-e^{-0.1x})$$

- Relative risk aversion coefficient rw
 - rw(x) = x r(x)

• What happens with an agent represented by the red curve?

- Absolute risk aversion coefficient r
 - With constant *r(x)*, the amount of wealth that we expose to risk remains constant as wealth increases
 - Invariance to wealth
- Relative risk aversion coefficient rw
 - If rw(x) is increasing with x, individuals will invest less percentage of their wealth in risky assets as they get wealthier

Invariance to Wealth

. Claim:

- Assume that u is a vNM utility function representing preferences ≥, which are monotonic and exhibit invariance to wealth
- Then u must be exponential or linear
- Proof in the book

- Is there other ways to compare lotteries besides using the expected utility *Eu*?
- Now we see when a lottery p first-order stochastically dominates a lottery q
 - Or pD₁ q

• Which lottery do you prefer?

	\$0	\$20	\$50	\$100	\$200
p	0.1	0.1	0.2	0.3	0.3
q	0.15	0.05	0.25	0.35	0.20

• Which lottery do you prefer?

$$- G(p,x) = \sum_{z \geq x} p(z)$$

	\$0	\$20	\$50	\$100	\$200
G(p,x)	1	0.9	0.8	0.6	0.3
	(0.1)	(0.1)	(0.2)	(0.3)	(0.3)
G(q,x)	1	0.85	0.8	0.55	0.2
	(0.15)	(0.05)	(0.25)	(0.35)	(0.20)

• Which lottery do you prefer?

$$- F(p,x) = \sum_{z \leq x} p(z)$$

	\$0	\$20	\$50	\$100	\$200
F(p,x)	0.1	0.2	0.4	0.7	1
	(0.1)	(0.1)	(0.2)	(0.3)	(0.3)
F(q,x)	0.15	0.2	0.45	0.80	1
	(0.15)	(0.05)	(0.25)	(0.35)	(0.20)

. Claim:

- pD_1q iff for all x, $G(p, x) \ge G(q, x)$ or
- pD_1q iff for all x, F(p, x) ≤ F(q, x)

