CS-E4740 Federated Learning

"FL Design Principle"

Dipl.-Ing. Dr.techn. Alexander Jung

What are the main components of ML and how are they combined?

Previous Lecture: Networked Data and Models

Today: Loss and Optimization

Weather Stations

The Empirical Graph

Networked Models.

Local Parametric Models

Clustering Assumption

the local datasets form clusters

datasets in same can be approximated as realizations of i.i.d. RVs with prob. dist p(x,y;c)

more edges inside clusters

Measure Clustering via Variation

local model params

require similar params at ends of edge e penalty function measures "variation"

Generalized Total Variation (GTV)

10

Two Special Cases of GTV

total variation $\phi(\mathbf{u}) = \|\mathbf{u}\|_2$

graph Laplacian quadratic from is GTV with

$$\phi(\mathbf{u}) = \|\mathbf{u}\|_2^2$$

Local Loss Function

model params $\mathbf{w}^{(i)}$

measure quality of params by local loss function

GTV Minimization

$$\min_{\mathbf{w}} \sum_{i} L^{(i)}(\mathbf{w}^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(\mathbf{w}^{(i)} - \mathbf{w}^{(j)})$$

 $\begin{array}{c} \\ \text{increasing } \lambda \\ \text{average local loss} \end{array}$

"clusteredness"

Network Lasso

$$\min_{\mathbf{w}} \sum_{i} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \|w^{(i)} - w^{(j)}\|$$

Network Lasso: Clustering and Optimization in Large Graphs

by D Hallac · 2015 · Cited by 206 — Network Lasso: Clustering and Optimization in Large

Graphs ... Keywords: Convex Optimization, ADMM, Network Lasso. Go to: ... 2013 [Google

Scholar]. 2.

Abstract · INTRODUCTION · CONVEX PROBLEM... · EXPERIMENTS

Special Case: "MOCHA"

$$\min_{w} \sum_{i} L^{(i)}(w^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} ||w^{(i)} - w^{(j)}||^{2}$$

https://papers.nips.cc > paper > 7029-federated-m... ▼ PDF

Federated Multi-Task Learning - NIPS Proceedings

by V Smith · 2017 · Cited by 501 — 3.2 MOCHA: A Framework for **Federated Multi-Task Learning**. In the **federated** setting, the aim is to train statistical models directly on the edge, and thus we solve (1) while assuming that the data {X1,..., Xm} is distributed across m nodes or devices.

Two Key Questions of ML

$$\min_{\mathbf{w}} \sum_{i} L^{(i)}(\mathbf{w}^{(i)}) + \lambda \sum_{\{i,j\}} A_{i,j} \phi(\mathbf{w}^{(i)} - \mathbf{w}^{(j)})$$

 computational aspects: how to compute (approximate) solutions efficiently?

statistical aspects: are the solutions any good?

Computational Aspects

A FL Setting

Requirements

- run in ad-hoc nets of low-cost devices
- robustness against node/link failures
- robustness against "stragglers"

Another FL Setting...

https://www.google.com/about/datacenters/

https://en.wikipedia.org/wiki/Optical fiber

GTV Min. for Local Lin.Reg.

$$\min_{\mathbf{w}} \sum_{i} \|\mathbf{X}^{(i)}\mathbf{w}^{(i)} - \mathbf{y}^{(i)}\|^{2} + \lambda \sum_{\{i,j\}} A_{i,j} \|\mathbf{w}^{(i)} - \mathbf{w}^{(j)}\|^{2}$$

using stacked parameters $\mathbf{w} = (\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(n)})^T$,

$$\min_{\mathbf{w}} \mathbf{w}^T \mathbf{Q} \mathbf{w} + \mathbf{w}^T \mathbf{q}$$

with psd matrix ${f Q}$ and vector ${f q}$ that depend on local datasets, GTVMin parameter λ and empirical graph

GTV Min. for Local Lin.Reg.

$$\min_{\mathbf{w}} \mathbf{w}^T \mathbf{Q} \mathbf{w} + \mathbf{w}^T \mathbf{q}$$

can be solved using gradient methods

$$w^{(k+1)} = w^{(k)} - \alpha_k \left(2Qw^{(k)} + \mathsf{q} \right)$$

Statistical Aspects

GTV Min. for Local Lin.Reg.

$$\min_{\mathbf{w}} \sum_{i} \|\mathbf{X}^{(i)}\mathbf{w}^{(i)} - \mathbf{y}^{(i)}\|^{2} + \lambda \sum_{\{i,j\}} A_{i,j} \|\mathbf{w}^{(i)} - \mathbf{w}^{(j)}\|^{2}$$

using stacked parameters $\mathbf{w} = (\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(n)})^T$,

$$\sum_{\{i,j\}} A_{i,j} \|\mathbf{w}^{(i)} - \mathbf{w}^{(j)}\|^2 = \mathbf{w}^T (\mathbf{L} \otimes \mathbf{I}) \mathbf{w}$$

with the graph Laplacian L

Spectral Clustering

for large λ , GTVMin is to minimize

$$\sum_{\{i,j\}} A_{i,j} \|\mathbf{w}^{(i)} - \mathbf{w}^{(j)}\|^2 = \mathbf{w}^T (\mathbf{L} \otimes \mathbf{I}) \mathbf{w}$$

⇒ local model parameters composed of eigvecs. of L corresponding to smallest eig.vals

Clustering of GTVMin Solutions

Interpretations

Multi-Task Learning

each local dataset/model is separate learning task

Locally Weighted Learning

William S. Cleveland, Susan J. Devlin, Eric Grosse, "Regression by local fitting: Methods, properties, and computational algorithms," Journal of Econometrics, Volume 37, Issue 1, 1988.

Generalized Convex Clustering

$$\min_{\mathbf{w}} \sum_{i} \|w^{(i)} - a^{(i)}\|^{2} + \lambda \sum_{\{i,j\}} A_{i,j} \|w^{(i)} - w^{(j)}\|_{p}$$

D. Sun, K.-C. Toh, Y. Yuan;

Convex Clustering: Model, Theoretical Guarantee and Efficient Algorithm, JMLR, 22(9):1–32, 2021

(Probabilistic) Graphical Model

separate prob. space for each local dataset

traditionally, PGMs use a common prob. space for all local datasets

AJ, "Networked Exponential Families for Big Data Over Networks," in *IEEE Access*, vol. 8, pp. 202897-202909, 2020, doi: 10.1109/ACCESS.2020.3033817.

Approx. Hierarch. Bayes' Model

Lyu, B., Hanzely, F., and Kolar, M., "Personalized Federated Learning with Multiple Known Clusters", arXiv e-prints, 2022. doi:10.48550/arXiv.2204.13619.

Non-Linear Min-Cost-Flow

Non-Linear Min-Cost-Flow

3/20/23 34

Electrical Network. ("Al is new Electricity!")

Kirchhoff's Current Law

$$\sum_{e \in \mathcal{E}} \sum_{i=e_{+}} \widehat{\mathbf{u}}^{(e)} - \sum_{i=e_{-}} \widehat{\mathbf{u}}^{(e)} = -\nabla L_{i} \left(\widehat{\mathbf{w}}^{(i)}\right) \text{ for all nodes } i \in \mathcal{V}$$

$$\widehat{\mathbf{w}}^{(e_+)} - \widehat{\mathbf{w}}^{(e_-)} \in (\lambda A_e) \partial \phi^* (\widehat{\mathbf{u}}^{(e)} / (\lambda A_e))$$
 for every edge $e \in \mathcal{E}$.

Generalized Ohm Law

GTVMin for Non-Param. Models

Variation of Non-Param. Models

Wrap Up.

- couple local model training via regularization
- regularizer obtained via GTV (over empirical graph)
- FL algorithms = optimization methods for GTV min
- GTVmin pools local datasets into clusters
- cluster structure depends on emp.graph and local data!

3/20/23 38

Thank you for your attention!