Electric Vehicle (EE60082)

Lecture 18: Charger part3

DR. SHIMULK. DAM

ASSISTANT PROFESSOR,
DEPARTMENT OF ELECTRICAL ENGINEERING,
INDIAN INSTITUTE OF TECHNOLOGY (IIT), KHARAGPUR.

Charging power requirements (recap)

Legend: PHEV BEV

Top 15 PHEVs and EVs

(in terms of year to date unit sales) in 2020 in Europe

		Legend: Legend:			
Brand	Model	Battery Capacity kWh	AC Charging Capacity kW	DC Charging Capacity kW	
Renault	Zoe	44.1	22	50	
Tesla	Model 3	75	11	145	
vw	ID.3	48	7.2	50	
Hyundai	Kona EV	67.1	7.2	77	
Audi	e-Tron	95	22	150	
vw	e-Golf	35.8	7.2	44	
Nissan	LEAF	40	3.6	46	
Peugeot	208 EV	46	11	100	
KIA	Niro EV	67.1	7.2	77	

Brand	Model	Battery Capacity kWh	AC Charging Capacity kW	DC Charging Capacity kW
Mercedes	A250e	15.6	3.7	NA
Volvo	XC40 PHEV	10.7	3.7	NA
Mitsubishi	Outlander PHEV	13.8	3.7	22
VW	Passat GTE	13	3.7	NA
BMW	330e	7.6	3.6	NA

3.7

Source: CleanTechnica.com

XC60 PHEV

Charging infrastructure levels (recap)

Indian Standards EV Charging notified by BIS of 01.11.2021

1. Light EV AC Charge Point

Power Level 1	Charging Device	EV-EVSE Communication	Charge Point Plug/ Socket	Vehicle Inlet/ Connector	
Up to 7 kW	IS-17017-22-1	Bluetooth Low Energy	IS-60309	As per EV manufacturer	

2. <u>Light EV DC Charge Point</u>

Power	Charging	EV-EVSE	Charge Point Plug/	Vehicle Inlet/
Level 1	Device	Communication	Socket	Connector
Up to 7 kW	IS-17017-25 [CAN]		Combined Socket under development	IS-17017-2-6

3. Parkbay AC Charge Point

Power L	evel-	Device/ Protocol	EV-EVSE Communications	Infrastructure Socket	Vehicle Connector
Norm Powe ~11kW kW	er	IS-17017-1	IS-15118 [PLC] for Smart Charging	IS-17017-2-2	IS-17017-2-2

4. Parkbay DC Charge Point

Power	Device/	EV-EVSE	Infrastructure	Vehicle
Level-2	Protocol	Communications	Socket	Connector
Normal Power ~11kW/ 22 kW	IS-17017-23	IS-17017-24 [CAN] IS-15118 [PLC]	IS-17017-22-2	IS-17017-2-3

5. <u>DC Charging Protocol</u>

Power Level 3	Charging Device	EV-EVSE Communication	Connector
DC 50 kW to 250 kW	IS-17017-23	IS-17017-24 [CAN] IS-15118 [PLC]	IS-17017-2-3

6. <u>eBus Charging Station (Level-4: 250 to 500 kW)</u>

Power Level 4 DC High Power (250 kW> 500 kW)	Charging Device	EV-EVSE Communication	Connector
Dual Gun Charging Station	IS-17017-23-2	IS-15118 [PLC]	IS-17017-2-3
Automated Pantograph Charging Station	IS-17017-3-1		IS-17017-3-2

Electric Vehicle Supply Equipment (EVSE) (recap)

- Required hardware between charging plug and AC grid
- > Can be simple or sophisticated based on the power level

EVSE for level 1 and 2 (AC charging) (recap)

Some commercial on-board chargers (recap

Volt

Tesla

Hyundai

Hella electronics

Integrated Onboard Charger (recap)

- Motor drive inverter and machine windings are multi-purposed as battery charger
- Reduced size, weight, and cost

Some commercial integrated chargers (recap)

Renault

Valeo

Continental

Level 3 and 4 (recap)

Charging station structure (recap)

Common AC bus structure

Common DC bus structure

Converter topologies for Off-board chargers (recap)

ABB Terra 53/54 50-kW fast charger

ABB Terra HP 150-kW highpower charger

Converter topologies for Off-board chargers (recap)

Porsche modular fast charger Park A, up to 400 kW

Porsche modular fast charging Park B, up to 350 kW

Converter topologies for Off-board chargers (recap)

Tesla V2 Supercharger (150 kW)

Vehicle to grid (recap)

Advantages of V2G operation (recap)

- Grid Stabilization & Support
 - Peak shaving
 - > Frequency regulation
 - > Emergency backup
- Financial benefits to EV owners
 - Reduced energy bills
 - Utility may pay back to EV owner
- > Environmental Impact
 - ➤ Better renewable integration
 - > Better utilization of battery assets

Charging protocols

- CC-CV method:
 - Simple, effective, and popular
 - Long CV mode
 - Possibility of degradation from over-voltage

Multi-stage charging current protocol

Fixed cut-off voltage technique

Hierarchical cut-off voltage technique

- MSCC method:
 - Many charging pattern possible
 - Optimization to be carried out for specific cell design and environmental conditions
 - Faster charging possible to reduce total charging time

Thermal management protocol

CT-CV protocol

- Constant temperature constant voltage (CT-CV) protocol:
 - > Fast charging till temperature cut-off is reached
 - CV mode follows
 - Faster charging possible to reduce total charging time
 - Safer charging

Pulse charging current (PCC) protocol

Upper and lower current limit protocol

PCC protocol:

Pros:

- Rest between current pulses
- Helps in diffusion of ions
- Reduction in diffusion resistance

Cons:

- Cost and complexity of charger increases
- Marginal benefits for a large battery pack
- Stress on power grid
- May have adverse impact on battery life

DC fast chargers

DC fast charging in USA

Total DC Fast Charger Stations

The number of public, quick-turn stations in the US surged by 36% in 2023

Source: US Department of Energy

Bloomberg Green

58% of US Corridor DC Fast Chargers Are 150 kW and 50 kW

Data: Alternative Fuels Data Centers (AFDC) — July 30, 2022 Chart: EVAdoption, LLC | August 4, 2022

DC fast charging in India

DC fast charging – charging profiles

Performances of Tesla superchargers

Practice

For Tesla model 3 extended range vehicle, energy stored in battery pack is 82 kWh. Ignoring current and temperature dependance of SOC, find out the followings from the charging current profiles,

- > average charging power for each stage
- charging time of each stage
- > compare total charging times of different chargers
- > plot the charger power rating utilization with time
- > calculate and compare average power rating utilizations

Drive cycle to test and certify EV

A standard drive cycle is required to certify the range of vehicle under realistic driving scenario

- Indian Driving Cycle (IDC) is developed for Indian city road condition
- Not very realistic
- Average velocity is too high

Modified IDC

- Developed by ARAI to capture more realistic driving pattern
- Two parts
- Part one: Urban Driving Cycle (UDC): is for slow city driving
- Part two: Extra-Urban Driving Cycle (EUDC): is highway and suburban driving

IDC vs. MIDC

Modified IDC (MIDC) is almost same as New European Driving Cycle (NEDC)

Practice

A vehicle has following parameter values:

$$m=692kg$$
, $C_D = 0.2$, $A_F = 2m^2$, $f_0 = 0.009$,

$$f_s = 1.75*10^{-6} \text{ s}^2/\text{m}^2$$
, $\rho = 1.18 \text{ kg/m}^3$, $g = 9.81 \text{ m/s}^2$

- Find the required battery capacity (in kWh) to get a range of 100 km under IDC.
- What is the time needed to travel this distance

Vehicle dynamic equations

$$m \frac{dV}{dt} = F_{TR} - F_r - F_g - F_w$$

> Required tractive power:

$$F_{TR} = m\frac{dV}{dt} + F_r + F_g + F_w$$

$$F_r = mg\cos\alpha \left(f_0 + f_s V^2\right)$$

$$F_g = mg \sin \alpha$$

$$F_{\rm W} = \frac{1}{2} \rho A_{\rm f} C_{\rm D} (V - V_{\rm w})^2$$

 \triangleright Power delivered by vehicle engine = $F_{TR}V$

Thank you!