Zosilňovače

Zosilňovač transformuje vstupný signál na výstupná s rovnakým charakterom, ale väčšou využiteľnou energiou. Rozdelenie:

a) Z hľadiska priebehu signálu v čase:

Spojité / nespojité

b) Podľa funkcie v obvode:

Operačné / výkonové / oddeľovače

c) Podľa fyz. veličín

Pneumatické / hydraulické / elektrické

d) Podľa statických charakteristík

lineárne / nelineárne

e) Podľa dynamických charakteristík

NF / VF / širokopásmové

PNEUMATICKÉ ZOSILŇOVAČE

Pneum. zdroj – ladička / dýza

- + Používajú sa vo výbušnom prostredí
- + Nenáročné na údržbu
- + Znesú veľké preťaženia
- + Relatívne malé rozmery
- Potrebujú ďalší zdroj energie

(tlaku, napr. kompresor)

Základná zostava flujdikovho log. Člena

P napájací signál, r1, r2- riadiaci sig., v1, v2- výstupný signál

HYDRAULICKÉ ZOSILŇOVAČE

- + Vysoká spoľahlivosť
- + Nízke nároky na údržbu
- + Znesú veľké preťaženia
- + Používajú sa vo výbušnom prostredí
- + Relatívne malé rozmery

Delíme:

- a) H.Z. s výkyvnou dýzou
- b) H.Z. s dvoma riadiacimi dýzami
- c) H.Z. s posúvačkou

ELEKTRICKÉ ZOSILŇOVAČE

Invertujúci zosilňovač

Derivačný zosilňovač

Diferenčný zosilňovač

$$U2 = (U - U1)\frac{R2}{R1}$$

HLAVNÉ TECHNICKÉ VLASTNOSTI ZOSILŇOVAČOV

Zosilňovač je charakterizovaný svojimi technickými vlastnosťami, ktoré ho predurčujú na konkrétne použitie. Sú to tieto vlastnosti:

- 1. Zosilnenie A je definované ako pomer výstupnej veličiny k zodpovedajúcej vstupnej veličine. Poznáme tri základné zosilnenia:
- napäťové
- prúdové
- výkonové

Zosilnenie vyjadrené v dB označujeme ako zisk zosilňovača.

2. Dynamický rozsah D je daný pomerom najväčšieho k najmenšiemu signálu na vstupe zosilňovača, ktorý je zosilňovač schopný preniesť pri definovanom výstupnom výkone a skreslení.

3. Amplitúdová charakteristika je grafické znázornenie závislosti amplitúdy výstupného napätia U_2 od amplitúdy U_1 vstupného signálu pre určitú konštantnú frekvenciu vstupného signálu.

Ako z obrázku vidno, výstupné napätie U_2 má vždy určitú počiatočnú hodnotu rovnú šumovému napätiu U_{sum} , aj keď na vstupe nie je žiadne napätie U_1 . Je spôsobené šumovými vlastnosťami obvodových prvkov, t.j. taktívnych a pasívnych súčiastok. Od napätia U_{1min} po napätie U_{1max} je charakteristika lineárna. Nad úrovňou U_{1max} sa charakteristika zakrivuje vplyvom konečného napájacieho napätia U_{cc} . Rozkmit výstupného napätia U_2 nemôže byť väčší než napätie U_{cc}

- **4. Vstupná impedancia Z**_{vst} je daná pomerom napätia U₁ medzi vstupnými svorkami zosilňovača a prúdom I₁ vtekajúcim do vstupných svoriek zosilňovača. Vo všeobecnosti je vstupná impedancia komplexné číslo, teda má svoju reálnu a imaginárnu časť, vplyvom prítomnosti reaktančných prvkov vo vstupnom obvode. Vstupná impedancia nezávisí od veľkosti budiaceho signálu, ale závisí od jeho frekvencie.
- **5. Výstupná impedancia Z**_{výst} je daná pomerom napätia U₂ medzi výstupnými svorkami zosilňovača pri odpojenej záťaži a výstupného prúdu I₂, ktorý je výstupný obvod zosilňovača schopný dodať pri skratovaných výstupných svorkách. Podobne ako vstupná impedancia, aj výstupná impedancia je vo všeobecnosti komplexné číslo, teda má svoju reálnu a imaginárnu časť a taktiež nezávisí od veľkosti výstupného signálu, ale od jeho frekvencie.
- **6. Výstupný výkon P**_{2ef} sa udáva ako maximálny výkon na výstupných svorkách zosilňovača pri definovanom skreslení, frekvencii, tvare signálu a záťaži.
- 7. Účinnosť η je pomer výstupného efektívneho výkonu P_{2ef} na výstupných svorkách zosilňovača k jednosmernému príkonu P_0 zosilňovača odoberaného z napájacieho zdroja U_{cc} .
- **8.** Citlivosť sa udáva veľkosťou menovitého napätia na vstupe zosilňovača, ktorým na výstupe dosiahneme požadovaný výkon (poprípade veľkosť výstupného napätia

pre predzosilňovacie stupne) pre určité skreslenie, záťaž, frekvenciu a tvar vstupného signálu.

9. Pásmo priepustnosti B₃ (šírka prenášaného frekvenčného pásma) je pásmo frekvencií vstupných signálov, pri ktorých je zosilnenie zosilňovača v daných technických podmienkach.

Ohraničené je hornou medznou frekvenciou f_h a dolnou medznou frekvenciou f_d . Medzné frekvencie sú frekvencie, pri ktorých dochádza k poklesu zosilnenia o 3dB voči referenčnej frekvencii fref .

10. Vlastné hlukové napätie je určité malé napätie, ktoré je na výstupných svorkách zosilňovača aj keď na vstup neprivádzame žiadny signál. Vytvára nežiadúci hluk v pozadí užitočného signálu. Toto napätie je spôsobené zdrojmi hluku samotných súčiastok a zosilňovacích prvkov. Skladá sa z tepelného šumu odporov, šumu zosilňovacích prvkov, sieťového brumu z napájacieho zdroja alebo indukovaného napätia z blízkych zdrojov sieťového napätia.

Skreslenie rozoznávame ako:

Nelineárne -tvarové (harmonické) intermodulačné

Lineárne - frekvenčné, fázové

Tvarové (harmonické) skreslenie, je spôsobené nelineárnou VA charakteristikou zosilňovacích alebo magnetických prvkov.

Intermodulačné skreslenie, vzniká v zosilňovači pôsobením aspoň dvoch signálov s rôznymi frekvenciami na jeho vstupe.

Frekvenčné skreslenie je spôsobené závislosťou zosilnenia A_u od frekvencie f_f vstupného signálu.

Fázové skreslenie je definované ako fázový posun medzi fázou výstupného a vstupného signálu.

ZOSILŇOVAČE - PRACOVNÉ TRIEDY

Všetky vlastnosti závisia od konštrukcie samotného zosilňovača. Niektoré vlastnosti zosilňovačov závisia totiž od toho, v ktorom mieste prevodovej charakteristiky zosilňovacieho prvku je umiestnený kľudový pracovný bod P₀. Podľa jeho polohy zaraďujeme zosilňovače do tzv. "pracovných tried". Hlavným hľadiskom pre toto delenie je doba, čas, počas ktorého tečie prúd kolektorom tranzistora (anódou elektrónky) vzhľadom na periódu vstupného zosilňovaného signálu. Podľa toho rozlišujeme 3 pracovné triedy zosilňovačov:

Zosilňovače pracujúce v triede A Zosilňovače pracujúce v triede B Zosilňovače pracujúce v triede C

Trieda A - je definovaná umiestnením kľudového pracovného bodu P_o v strede lineárnej časti prevodovej charakteristiky a uhol otvorenia $2\alpha_o$ = T = 360°, takže prúd tečie kolektorom tranzistora (anódou elektrónky) počas celej periódy vstupného signálu.

Vlastnosti:

Zosilnenie : najväčšie Skreslenie : najmenšie

Uhol otvorenia : $2\alpha_o = T = 360^\circ$

Účinnosť: malá (pre sínusový signál max. 25 %)

Použitie : nízkofrekvenčné zosilňovače a vysokofrekvenčné predzosilňovacie stupne.

Trieda B - je definovaná umiestnením kľudového pracovného bodu P_o do miesta zániku kolektorového prúdu, takže uhol otvorenia $2\alpha_o = T/2 = 180^\circ$ a kolektorom tranzistora (anódou elektrónky) tečie prúd počas celej polperiódy vstupného signálu.

Vlastnosti :

Zosilnenie : strené Skreslenie : veľké

Uhol otvorenia : $2\alpha_0 = T = 180^\circ$

Účinnosť: najväčšia (teoreticky 50 %)

Použitie: v koncových výkonových stupňoch NF zosilňovačov.

Trieda C - je definovaná umiestnením kľudového pracovného bodu P_o za miesto zániku kolektorového prúdu, takže kolektorom tranzistora (anódou elektrónky) tečie prúd v kratšom čase ako je polperióda vstupného signálu a uhol otvorenia $2\alpha_o < T/2 = 180^\circ$.

Vlastnosti:

Zosilnenie : najmenšie Skreslenie : najväčšie

Uhol otvorenia : $2\alpha_o < T/2 = 180^\circ$

Účinnosť: stredná

Použitie : vysokofrekvenčné zmiešavače, násobiče kmitočtu a koncové stupne vf vysielačov.