Şiruri de numere reale - sinteză-

Lect. univ. dr.**Anca GRAD** 17 noiembrie 2017

Fie $m \in \mathbb{N}$ fixat. Considerăm mulțimea $N_m = \{n \in \mathbb{N} : n \geq m\}$.

Definiție: Se numește șir de numere reale orice funție

$$f: N_m \to \mathbb{R}$$
.

$$f(n) : \stackrel{not.}{=} x_n$$
.

$$(x_n)_{n\in\mathbb{N}_m}$$
, sau $(x_n)_{n\geq m}$ sau $(x_n,x_{n+1},...,x_n,...)$.

Fie $m \in \mathbb{N}$ fixat. Considerăm mulțimea $N_m = \{n \in \mathbb{N} : n \geq m\}$.

Definiție: Se numește șir de numere reale orice funție

$$f: N_m \to \mathbb{R}$$
.

Şirul $f: \mathbb{N}_m \to \mathbb{R}$ ataşează fiecărui nr. natural $n \geq m$, nr. real

$$f(n) : \stackrel{not.}{=} x_n$$
.

$$(x_n)_{n \in \mathbb{N}_m}$$
, sau $(x_n)_{n \ge m}$ sau $(x_n, x_{n+1}, ..., x_n, ...)$.

Fie $m \in \mathbb{N}$ fixat. Considerăm mulțimea $N_m = \{n \in \mathbb{N} : n \geq m\}$.

Definiție: Se numește șir de numere reale orice funție

$$f: N_m \to \mathbb{R}$$
.

Şirul $f: \mathbb{N}_m \to \mathbb{R}$ ataşează fiecărui nr. natural $n \geq m$, nr. real

$$f(n) \stackrel{\text{not.}}{=} x_n$$
.

Notațiile uzuale folosite pentru un șir sunt

$$(x_n)_{n\in\mathbb{N}_m}$$
, sau $(x_n)_{n\geq m}$ sau $(x_n, x_{n+1}, ..., x_n, ...)$.

Când nu există pericol de confuzie notăm simplu (x_n) .

Pentru $n \in \mathbb{N}_m$ arbitrar, nr. real x_n s.n. **termenul de rang** n sau **termenul general** al sirului $(x_n)_{n \in \mathbb{N}_m}$.

Fie $m \in \mathbb{N}$ fixat. Considerăm mulțimea $N_m = \{n \in \mathbb{N} : n \geq m\}$.

Definiție: Se numește șir de numere reale orice funție

$$f: N_m \to \mathbb{R}$$
.

Şirul $f: \mathbb{N}_m \to \mathbb{R}$ ataşează fiecărui nr. natural $n \geq m$, nr. real

$$f(n) : \stackrel{not.}{=} x_n$$
.

Notațiile uzuale folosite pentru un șir sunt

$$(x_n)_{n\in\mathbb{N}_m}$$
, sau $(x_n)_{n\geq m}$ sau $(x_n, x_{n+1}, ..., x_n, ...)$.

Când nu există pericol de confuzie notăm simplu (x_n) . Pentru $n \in \mathbb{N}_m$ arbitrar, nr. real x_n s.n. **termenul de rang** n sau **termenul general** al șirului $(x_n)_{n \in \mathbb{N}_m}$.

Definiție: Fie $(x_n)_{n\in\mathbb{N}_m}$ un șir de numere reale. Spunem că șirul $(x_n)_{n\in\mathbb{N}_m}$ are limită (în $\overline{\mathbb{R}}$) dacă

$$\exists x \in \overline{\mathbb{R}}$$
, a.î. $\forall V \in \vartheta(x)$, $\exists n_V \geq m$ a.î. $\forall n \geq n_V, x_n \in V$.

Teorema 1: Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$. Şirul $(x_n)_{n\in N_m}$ are limită (în $\overline{\mathbb{R}}$) dacă există un element $x\in \overline{\mathbb{R}}$ a.î. în afara oricărei vecinătăți V a lui x se află cel mult un număr finit de termeni ai șirului $(x_n)_{n\in N_m}$.

Dacă limita unui șir există, ea este unică.

Teorema 2 (de unicitate a limitei): Dacă $(x_n)_{n \in N_m} \subseteq \mathbb{R}$, atunci există cel mult un element $x \in \overline{\mathbb{R}}$ a.î.

$$\forall V \in \vartheta(x), \quad \exists n_V \ge m \quad \text{ a.i.} \quad \forall n \ge n_V, x_n \in V.$$

Definiție: Fie $(x_n)_{n\in\mathbb{N}_m}$ un șir de numere reale. Spunem că șirul $(x_n)_{n\in\mathbb{N}_m}$ are limită (în $\overline{\mathbb{R}}$) dacă

$$\exists x \in \overline{\mathbb{R}}$$
, a.î. $\forall V \in \vartheta(x)$, $\exists n_V \ge m$ a.î. $\forall n \ge n_V, x_n \in V$.

Teorema 1: Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$. Şirul $(x_n)_{n\in N_m}$ are limită (în $\overline{\mathbb{R}}$) dacă există un element $x\in \overline{\mathbb{R}}$ a.î. în afara oricărei vecinătăți V a lui x se află cel mult un număr finit de termeni ai șirului $(x_n)_{n\in N_m}$.

Dacă limita unui șir există, ea este unică.

Teorema 2 (de unicitate a limitei): Dacă $(x_n)_{n \in N_m} \subseteq \mathbb{R}$, atunci există cel mult un element $x \in \overline{\mathbb{R}}$ a.î.

$$\forall V \in \vartheta(x), \quad \exists n_V \ge m \quad \text{ a.i.} \quad \forall n \ge n_V, x_n \in V.$$

Definiție: Fie $(x_n)_{n\in\mathbb{N}_m}$ un șir de numere reale. Spunem că șirul $(x_n)_{n\in\mathbb{N}_m}$ are limită (în $\overline{\mathbb{R}}$) dacă

$$\exists x \in \overline{\mathbb{R}}$$
, a.î. $\forall V \in \vartheta(x)$, $\exists n_V \ge m$ a.î. $\forall n \ge n_V, x_n \in V$.

Teorema 1: Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$. Şirul $(x_n)_{n\in N_m}$ are limită (în $\overline{\mathbb{R}}$) dacă există un element $x\in \overline{\mathbb{R}}$ a.î. în afara oricărei vecinătăți V a lui x se află cel mult un număr finit de termeni ai șirului $(x_n)_{n\in N_m}$.

Dacă limita unui șir există, ea este unică.

Teorema 2 (de unicitate a limitei): Dacă $(x_n)_{n \in N_m} \subseteq \mathbb{R}$, atunci există cel mult un element $x \in \mathbb{R}$ a.î.

$$\forall V \in \vartheta(x), \quad \exists n_V \ge m \quad \text{a.i.} \quad \forall n \ge n_V, x_n \in V.$$

Definiție: Fie $(x_n)_{n\in\mathbb{N}_m}$ un șir de numere reale. Spunem că șirul $(x_n)_{n\in\mathbb{N}_m}$ are limită (în $\overline{\mathbb{R}}$) dacă

$$\exists x \in \overline{\mathbb{R}}$$
, a.î. $\forall V \in \vartheta(x)$, $\exists n_V \ge m$ a.î. $\forall n \ge n_V, x_n \in V$.

Teorema 1: Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$. Şirul $(x_n)_{n\in N_m}$ are limită (în $\overline{\mathbb{R}}$) dacă există un element $x\in \overline{\mathbb{R}}$ a.î. în afara oricărei vecinătăți V a lui x se află cel mult un număr finit de termeni ai șirului $(x_n)_{n\in N_m}$.

Dacă limita unui șir există, ea este unică.

Teorema 2 (de unicitate a limitei): Dacă $(x_n)_{n \in N_m} \subseteq \mathbb{R}$, atunci există cel mult un element $x \in \overline{\mathbb{R}}$ a.î.

$$\forall V \in \vartheta(x), \quad \exists n_V \ge m \quad \text{a.i.} \quad \forall n \ge n_V, x_n \in V.$$

Definiție: Fie $(x_n)_{n\in\mathbb{N}_m}$ un șir de numere reale. Spunem că șirul $(x_n)_{n\in\mathbb{N}_m}$ are limită (în $\overline{\mathbb{R}}$) dacă

$$\exists x \in \overline{\mathbb{R}}$$
, a.î. $\forall V \in \vartheta(x)$, $\exists n_V \ge m$ a.î. $\forall n \ge n_V, x_n \in V$.

Teorema 1: Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$. Şirul $(x_n)_{n\in N_m}$ are limită (în $\overline{\mathbb{R}}$) dacă există un element $x\in \overline{\mathbb{R}}$ a.î. în afara oricărei vecinătăți V a lui x se află cel mult un număr finit de termeni ai șirului $(x_n)_{n\in N_m}$.

Dacă limita unui șir există, ea este unică.

Teorema 2 (de unicitate a limitei): Dacă $(x_n)_{n \in N_m} \subseteq \mathbb{R}$, atunci există cel mult un element $x \in \overline{\mathbb{R}}$ a.î.

$$\forall V \in \vartheta(x), \quad \exists n_V \geq m \quad \text{ a.i.} \quad \forall n \geq n_V, x_n \in V.$$

$$\lim_{n\to\infty} x_n$$
 și se numește **limita șirului** (x_n) .

Definiție $(x_n)_{n \in N_m} \subseteq \mathbb{R}$. Spunem că șirul (x_n) este **convergent** dacă

$$\exists \lim_{n\to\infty} x_n \text{ și } \lim_{n\to\infty} x_n \in \mathbb{R}.$$

Pentru $(x_n)_{n\in\mathbb{N}_m}\subseteq\mathbb{R}$ există una din posibilitățile:

- ▶ are o limită unică $x \in \mathbb{R}$,(s.n. **șir convergent**);
- ▶ are limita ∞ sau $-\infty$ (s.n. **şir cu limita infinită**);
- ightharpoonup nu admite limită în $\overline{\mathbb{R}}$.

Orice șir care nu admite limită finită s.n. șir divergent.

Studiul unui șir comportă două probleme

$$\lim_{n\to\infty} x_n$$
 și se numește **limita șirului** (x_n) .

Definiție $(x_n)_{n \in N_m} \subseteq \mathbb{R}$. Spunem că șirul (x_n) este **convergent** dacă

$$\exists \lim_{n\to\infty} x_n \text{ și } \lim_{n\to\infty} x_n \in \mathbb{R}.$$

Pentru $(x_n)_{n\in\mathbb{N}_m}\subseteq\mathbb{R}$ există una din posibilitățile:

- ▶ are o limită unică $x \in \mathbb{R}$,(s.n. **șir convergent**);
- ▶ are limita ∞ sau $-\infty$ (s.n. **şir cu limita infinită**);
- ightharpoonup nu admite limită în $\overline{\mathbb{R}}$.

Orice șir care nu admite limită finită s.n. șir divergent.

Studiul unui șir comportă două probleme

- -

$$\lim_{n\to\infty} x_n$$
 și se numește **limita șirului** (x_n) .

Definiție $(x_n)_{n\in\mathbb{N}_m}\subseteq\mathbb{R}$. Spunem că șirul (x_n) este **convergent** dacă

$$\exists \lim_{n\to\infty} x_n \text{ și } \lim_{n\to\infty} x_n \in \mathbb{R}.$$

- ightharpoonup are o limită unică $x \in \mathbb{R}$,(s.n. sir convergent);
- ▶ are limita ∞ sau $-\infty$ (s.n. şir cu limita infinită);

$$\lim_{n\to\infty} x_n$$
 și se numește **limita șirului** (x_n) .

Definiție $(x_n)_{n \in N_m} \subseteq \mathbb{R}$. Spunem că șirul (x_n) este **convergent** dacă

$$\exists \lim_{n\to\infty} x_n \text{ și } \lim_{n\to\infty} x_n \in \mathbb{R}.$$

Pentru $(x_n)_{n\in\mathbb{N}_m}\subseteq\mathbb{R}$ există una din posibilitățile:

- ▶ are o limită unică $x \in \mathbb{R}$,(s.n. şir convergent);
- ▶ are limita ∞ sau $-\infty$ (s.n. şir cu limita infinită);
- ightharpoonup nu admite limită în $\overline{\mathbb{R}}$.

Orice șir care nu admite limită finită s.n. șir divergent.

Studiul unui șir comportă două probleme

$$\lim_{n\to\infty} x_n$$
 și se numește **limita șirului** (x_n) .

Definiție $(x_n)_{n \in N_m} \subseteq \mathbb{R}$. Spunem că șirul (x_n) este **convergent** dacă

$$\exists \lim_{n\to\infty} x_n \text{ și } \lim_{n\to\infty} x_n \in \mathbb{R}.$$

Pentru $(x_n)_{n\in\mathbb{N}_m}\subseteq\mathbb{R}$ există una din posibilitățile:

- ▶ are o limită unică $x \in \mathbb{R}$,(s.n. şir convergent);
- ▶ are limita ∞ sau $-\infty$ (s.n. şir cu limita infinită);
- ightharpoonup nu admite limită în $\overline{\mathbb{R}}$.

Orice șir care nu admite limită finită s.n. șir divergent.

Studiul unui șir comportă două probleme:

$$\lim_{n\to\infty} x_n$$
 și se numește **limita șirului** (x_n) .

Definiție $(x_n)_{n \in N_m} \subseteq \mathbb{R}$. Spunem că șirul (x_n) este convergent dacă

$$\exists \lim_{n\to\infty} x_n \text{ și } \lim_{n\to\infty} x_n \in \mathbb{R}.$$

Pentru $(x_n)_{n\in\mathbb{N}_m}\subseteq\mathbb{R}$ există una din posibilitățile:

- ▶ are o limită unică $x \in \mathbb{R}$,(s.n. şir convergent);
- ▶ are limita ∞ sau $-\infty$ (s.n. şir cu limita infinită);
- ightharpoonup nu admite limită în $\overline{\mathbb{R}}$.

Orice șir care nu admite limită finită s.n. șir divergent.

Studiul unui șir comportă două probleme:

Teorema 3 (de caracterizare cu ε a limitei finite): Fie $(x_n)_{n \in N_m} \subseteq \mathbb{R}$ și $x \in \mathbb{R}$. Atunci

$$\lim_{n\to\infty}x_n=x\Longleftrightarrow\forall\varepsilon>0(\in\mathbb{R}),\exists n_\varepsilon\geq m(\in\mathbb{N})\text{ a.i. }|x_n-x|<\varepsilon,\ \forall n\geq n_\varepsilon.$$

Consecința: Fie $(x_n)_{n\in\mathbb{N}_m}\subseteq\mathbb{R}$ și $x\in\mathbb{R}$. Atunci șirul $(x_n)_{n\in\mathbb{N}_n}$ converge către x, \iff șirul $(x_n-x)_{n\in\mathbb{N}_m}$ converge către 0.

Teorema 4 (de caracterizare cu ε a limitelor ∞ și $-\infty$): Fie $(x_n)_{n\in\mathbb{N}_m}\subseteq\mathbb{R}$. Atunci

$$\lim_{n\to\infty}x_n=+\infty\Longleftrightarrow\forall\varepsilon>0(\in\mathbb{R}),\exists n_\varepsilon\geq m(\in\mathbb{N})\text{ a.i. }x_n>\varepsilon,\ \forall n\geq n_\varepsilon.$$

$$\lim_{n\to\infty} x_n = -\infty \Longleftrightarrow \forall \varepsilon > 0 (\in \mathbb{R}), \exists n_\varepsilon \geq m (\in \mathbb{N}) \text{ a.i. } x_n < -\varepsilon, \ \forall n \geq n_\varepsilon$$

Teorema 3 (de caracterizare cu ε a limitei finite):

Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$ și $x\in \mathbb{R}$. Atunci

$$\lim_{n\to\infty}x_n=x\Longleftrightarrow \forall \varepsilon>0 (\in\mathbb{R}), \exists n_\varepsilon\geq m(\in\mathbb{N}) \text{ a.i. } |x_n-x|<\varepsilon, \ \forall n\geq n_\varepsilon.$$

Consecința: Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$ și $x\in \mathbb{R}$. Atunci șirul $(x_n)_{n\in \mathbb{N}_n}$ converge către x, \iff șirul $(x_n-x)_{n\in \mathbb{N}_m}$ converge către 0.

Teorema 4 (de caracterizare cu ε a limitelor ∞ și $-\infty$): Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$. Atunci

$$\lim_{n\to\infty}x_n=+\infty\Longleftrightarrow\forall\varepsilon>0(\in\mathbb{R}),\exists n_\varepsilon\geq m(\in\mathbb{N})\text{ a.i. }x_n>\varepsilon,\ \forall n\geq n_\varepsilon.$$

 $\lim_{n\to\infty} x_n = -\infty \Longleftrightarrow \forall \varepsilon > 0 (\in \mathbb{R}), \exists n_\varepsilon \geq m (\in \mathbb{N}) \text{ a.i. } x_n < -\varepsilon, \ \forall n \geq n_\varepsilon.$

Teorema 3 (de caracterizare cu ε a limitei finite):

Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$ și $x\in \mathbb{R}$. Atunci

$$\lim_{n\to\infty}x_n=x\Longleftrightarrow \forall \varepsilon>0 (\in\mathbb{R}), \exists n_\varepsilon\geq m(\in\mathbb{N}) \text{ a.i. } |x_n-x|<\varepsilon, \ \forall n\geq n_\varepsilon.$$

Consecința: Fie $(x_n)_{n \in N_m} \subseteq \mathbb{R}$ și $x \in \mathbb{R}$. Atunci șirul $(x_n)_{n \in \mathbb{N}_m}$ converge către x, \iff șirul $(x_n - x)_{n \in \mathbb{N}_m}$ converge către 0.

Teorema 4 (de caracterizare cu ε a limitelor ∞ și $-\infty$): Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$. Atunci

$$\lim_{n\to\infty} x_n = +\infty \Longleftrightarrow \forall \varepsilon > 0 (\in \mathbb{R}), \exists n_\varepsilon \geq m (\in \mathbb{N}) \text{ a.i. } x_n > \varepsilon, \ \forall n \geq n_\varepsilon.$$

$$\lim_{n\to\infty} x_n = -\infty \Longleftrightarrow \forall \varepsilon > 0 (\in \mathbb{R}), \exists n_\varepsilon \geq m (\in \mathbb{N}) \text{ a.i. } x_n < -\varepsilon, \ \forall n \geq n_\varepsilon$$

Teorema 3 (de caracterizare cu ε a limitei finite):

Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$ și $x\in \mathbb{R}$. Atunci

$$\lim_{n\to\infty}x_n=x\Longleftrightarrow \forall \varepsilon>0 (\in\mathbb{R}), \exists n_\varepsilon\geq m(\in\mathbb{N}) \text{ a.i. } |x_n-x|<\varepsilon, \ \forall n\geq n_\varepsilon.$$

Consecința: Fie $(x_n)_{n \in N_m} \subseteq \mathbb{R}$ și $x \in \mathbb{R}$. Atunci șirul $(x_n)_{n \in \mathbb{N}_m}$ converge către x, \iff șirul $(x_n - x)_{n \in \mathbb{N}_m}$ converge către 0.

Teorema 4 (de caracterizare cu ε a limitelor ∞ și $-\infty$):

Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$. Atunci

$$\lim_{n\to\infty}x_n=+\infty\Longleftrightarrow\forall\varepsilon>0(\in\mathbb{R}),\exists n_\varepsilon\geq m(\in\mathbb{N})\text{ a.i. }x_n>\varepsilon,\ \forall n\geq n_\varepsilon.$$

$$\lim_{n\to\infty}x_n=-\infty\Longleftrightarrow\forall\varepsilon>0(\in\mathbb{R}),\exists n_\varepsilon\geq m(\in\mathbb{N})\text{ a.î. }x_n<-\varepsilon,\ \forall n\geq n_\varepsilon.$$

Teorema 3 (de caracterizare cu ε a limitei finite):

Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$ și $x\in \mathbb{R}$. Atunci

$$\lim_{n\to\infty}x_n=x\Longleftrightarrow \forall \varepsilon>0 (\in\mathbb{R}), \exists n_\varepsilon\geq m(\in\mathbb{N}) \text{ a.i. } |x_n-x|<\varepsilon, \ \forall n\geq n_\varepsilon.$$

Consecința: Fie $(x_n)_{n \in N_m} \subseteq \mathbb{R}$ și $x \in \mathbb{R}$. Atunci șirul $(x_n)_{n \in \mathbb{N}_m}$ converge către x, \iff șirul $(x_n - x)_{n \in \mathbb{N}_m}$ converge către 0.

Teorema 4 (de caracterizare cu ε a limitelor ∞ și $-\infty$):

Fie $(x_n)_{n\in N_m}\subseteq \mathbb{R}$. Atunci

$$\lim_{n\to\infty}x_n=+\infty\Longleftrightarrow\forall\varepsilon>0(\in\mathbb{R}),\exists n_\varepsilon\geq m(\in\mathbb{N})\text{ a.i. }x_n>\varepsilon,\ \forall n\geq n_\varepsilon.$$

$$\lim_{n\to\infty}x_n=-\infty\Longleftrightarrow\forall\varepsilon>0(\in\mathbb{R}),\exists n_\varepsilon\geq m(\in\mathbb{N})\text{ a.î. }x_n<-\varepsilon,\ \forall n\geq n_\varepsilon.$$

lack șirul cu termenul general $x_n=0, (n\in \mathbb{N})$ are limita 0 $n_arepsilon=1;$

• şirul cu termenul general $x_n = \frac{1}{n}, (n \in \mathbb{N})$ are limita 0

$$n_{arepsilon}=\left[rac{1}{arepsilon}
ight]+1;$$

ightharpoonup șirul cu termenul general $x_n=n, (n\in\mathbb{N})$ are limita $+\infty$ $n_{\varepsilon}=[arepsilon]+1;$

- ightharpoonup șirul cu termenul general $x_n=-n, (n\in\mathbb{N})$ are limita $-\infty$ $n_{arepsilon}=[arepsilon]+1;$
- şirul cu termenul general $x_n=(-1)^n, (n\in\mathbb{N})$ nu are limită în

ightharpoonup șirul cu termenul general $x_n=0, (n\in\mathbb{N})$ are limita 0 $n_arepsilon=1;$

• şirul cu termenul general $x_n = \frac{1}{n}, (n \in \mathbb{N})$ are limita 0

$$n_{arepsilon}=\left[rac{1}{arepsilon}
ight]+1;$$

ightharpoonup șirul cu termenul general $x_n=n, (n\in\mathbb{N})$ are limita $+\infty$ $n_{arepsilon}=[arepsilon]+1;$

- ightharpoonup șirul cu termenul general $x_n=-n, (n\in\mathbb{N})$ are limita $-\infty$ $n_{arepsilon}=[arepsilon]+1;$
- şirul cu termenul general $x_n=(-1)^n, (n\in\mathbb{N})$ nu are limită în $\overline{\mathbb{R}}$

lack șirul cu termenul general $x_n=0, (n\in \mathbb N)$ are limita 0 $n_arepsilon=1;$

> șirul cu termenul general $x_n=rac{1}{n}, (n\in\mathbb{N})$ are limita 0 $n_arepsilon=\left[rac{1}{arepsilon}
ight]+1;$

$$ightharpoonup$$
 șirul cu termenul general $x_n=n, (n\in\mathbb{N})$ are limita $+\infty$ $n_{arepsilon}=[arepsilon]+1;$

- ightharpoonup șirul cu termenul general $x_n=-n, (n\in\mathbb{N})$ are limita $-\infty$ $n_{arepsilon}=[arepsilon]+1;$
- > şirul cu termenul general $x_n=(-1)^n, (n\in\mathbb{N})$ nu are limită în \mathbb{R}

lack șirul cu termenul general $x_n=0, (n\in \mathbb N)$ are limita 0 $n_arepsilon=1;$

lack șirul cu termenul general $x_n=rac{1}{n}, (n\in \mathbb{N})$ are limita 0 $n_arepsilon=\left[rac{1}{arepsilon}
ight]+1;$

- ightharpoonup șirul cu termenul general $x_n=n, (n\in\mathbb{N})$ are limita $+\infty$ $n_{arepsilon}=[arepsilon]+1;$
- lacktriangle șirul cu termenul general $x_n=-n, (n\in\mathbb{N})$ are limita $-\infty$ $n_arepsilon=[arepsilon]+1;$
- > şirul cu termenul general $x_n=(-1)^n, (n\in\mathbb{N})$ nu are limită în \mathbb{R}

lacksquare șirul cu termenul general $x_n=0, (n\in\mathbb{N})$ are limita 0 $n_arepsilon=1;$

• șirul cu termenul general $x_n = \frac{1}{n}, (n \in \mathbb{N})$ are limita 0

$$n_{\varepsilon}=\left[rac{1}{arepsilon}
ight]+1;$$

lacktriangle șirul cu termenul general $x_n=n, (n\in\mathbb{N})$ are limita $+\infty$ $n_arepsilon=[arepsilon]+1;$

- ightharpoonup șirul cu termenul general $x_n=-n, (n\in\mathbb{N})$ are limita $-\infty$ $n_{arepsilon}=[arepsilon]+1;$
- şirul cu termenul general $x_n=(-1)^n, (n\in\mathbb{N})$ nu are limită în $\overline{\mathbb{R}}$.

lacksquare șirul cu termenul general $x_n=0, (n\in\mathbb{N})$ are limita 0 $n_arepsilon=1;$

• șirul cu termenul general $x_n = \frac{1}{n}, (n \in \mathbb{N})$ are limita 0

$$n_{\varepsilon}=\left[rac{1}{arepsilon}
ight]+1;$$

lacktriangle șirul cu termenul general $x_n=n, (n\in\mathbb{N})$ are limita $+\infty$ $n_arepsilon=[arepsilon]+1;$

- ightharpoonup șirul cu termenul general $x_n=-n, (n\in\mathbb{N})$ are limita $-\infty$ $n_{arepsilon}=[arepsilon]+1;$
- şirul cu termenul general $x_n=(-1)^n, (n\in\mathbb{N})$ nu are limită în $\overline{\mathbb{R}}$.

Teorema 5 Orice șir convergent este mărginit.

Teorema 6 Orice șir nemărginit este divergent.

Observație: Nu orice șir mărginit este convergent. De exemplu șirul cu termenul general

$$x_n=(-1)^n, n\in\mathbb{N}$$

Teorema 5 Orice șir convergent este mărginit.

Teorema 6 Orice șir nemărginit este divergent.

Observație: Nu orice șir mărginit este convergent. De exemplu șirul cu termenul general

$$x_n=(-1)^n, n\in\mathbb{N}$$

Teorema 5 Orice șir convergent este mărginit.

Teorema 6 Orice șir nemărginit este divergent.

Observație: Nu orice șir mărginit este convergent. De exemplu șirul cu termenul general

$$x_n = (-1)^n, n \in \mathbb{N}$$

Teorema 5 Orice șir convergent este mărginit.

Teorema 6 Orice șir nemărginit este divergent.

Observație: Nu orice șir mărginit este convergent. De exemplu, șirul cu termenul general

$$x_n=(-1)^n, n\in\mathbb{N}.$$

Fie $(x_n)_{n\in\mathbb{N}_m}\subseteq\mathbb{R}$. Atunci u.a.s. adevărate:

1. Şirul
$$(x_n)$$

$$\begin{cases}
& \text{crescător} \\
& \text{si} \\
& \text{mărginit superior}
\end{cases} \implies \begin{cases}
& (x_n) \text{ este convergent} \\
& \text{si} \\
& \lim_{n \to \infty} x_n = \sup\{x_n : n \in \mathbb{N}_m\}
\end{cases}$$

2. Sirul
$$(x_n)$$

$$\begin{cases}
& \text{descrescător} \\
& \text{si} \\
& \text{mărginit inferior}
\end{cases}
\Rightarrow
\begin{cases}
& (x_n) \text{ este convergent} \\
& \text{si} \\
& \lim_{n \to \infty} x_n = \inf\{x_n : n \in \mathbb{N}_m\}
\end{cases}$$

Fie $(x_n)_{n\in\mathbb{N}_m}\subseteq\mathbb{R}$. Atunci u.a.s. adevărate:

1. Şirul
$$(x_n)$$

$$\begin{cases}
\text{crescător} \\
\text{si} \\
\text{mărginit superior}
\end{cases} \implies \begin{cases}
(x_n) \text{ este convergent} \\
\text{si} \\
\text{lim} \\
x_n = \sup\{x_n : n \in \mathbb{N}_m\}
\end{cases}$$
2. Sirul (x_n)

$$\begin{cases}
\text{descrescător} \\
\text{si} \\
\text{mărginit inferior}
\end{cases} \implies \begin{cases}
(x_n) \text{ este convergent} \\
\text{si} \\
\text{lim} \\
x_n = \inf\{x_n : n \in \mathbb{N}_m\}
\end{cases}$$

Fie $(x_n)_{n\in\mathbb{N}_m}\subseteq\mathbb{R}$. Atunci u.a.s. adevărate:

1. Şirul
$$(x_n)$$

$$\begin{cases} & \text{crescător} \\ & \text{si} \\ & \text{mărginit superior} \end{cases} \implies \begin{cases} & (x_n) \text{ este convergent} \\ & \text{si} \\ & \lim_{n \to \infty} x_n = \sup\{x_n : n \in \mathbb{N}_m\} \end{cases}.$$

2. Sirul (x_n) $\begin{cases}
&\text{descrescător} \\
&\text{si} \\
&\text{mărginit inferior}
\end{cases} \implies \begin{cases}
&(x_n) \text{ este convergent} \\
&\text{si} \\
&\lim_{n \to \infty} x_n = \inf\{x_n : n \in \mathbb{N}_m\}
\end{cases}.$

Fie $(x_n)_{n\in\mathbb{N}_m}\subseteq\mathbb{R}$. Atunci u.a.s. adevărate:

1. Şirul
$$(x_n)$$

$$\begin{cases}
& \text{crescător} \\
& \text{si} \\
& \text{mărginit superior}
\end{cases} \implies \begin{cases}
& (x_n) \text{ este convergent} \\
& \text{si} \\
& \lim_{n \to \infty} x_n = \sup\{x_n : n \in \mathbb{N}_m\}
\end{cases}.$$

2. Sirul
$$(x_n)$$

$$\begin{cases}
&\text{descrescător} \\
&\text{si} \\
&\text{mărginit inferior}
\end{cases} \implies \begin{cases}
&(x_n) \text{ este convergent} \\
&\text{si} \\
&\lim_{n \to \infty} x_n = \inf\{x_n : n \in \mathbb{N}_m\}
\end{cases}.$$

Observație: Referitor la șiruri monotone și/sau mărginite întâlnim ipostazele:

- ▶ convergent ⇒ mărginit;
- ▶ convergent \iff monoton. Exemplu: $x_n = \frac{(-1)^n}{n}, n \in \mathbb{N}$;
- ▶ monoton \iff convergent. Exemplu: $x_n = n, n \in \mathbb{N}$;
- ▶ mărginit \iff convergent. Exemplu: $x_n = (-1)^n, n \in \mathbb{N}$.

Consecința: Fie
$$(x_n) \subseteq \mathbb{R}$$
 un șir monoton. Atunc (x_n) convergent \iff mărginit.

- convergent \imp m\u00e4rginit;
- ▶ convergent \Longrightarrow monoton. Exemplu: $x_n = \frac{(-1)^n}{n}, n \in \mathbb{N}$;
- ▶ monoton \iff convergent. Exemplu: $x_n = n, n \in \mathbb{N}$;
- ▶ mărginit \iff convergent. Exemplu: $x_n = (-1)^n, n \in \mathbb{N}$.

Consecința: Fie
$$(x_n) \subseteq \mathbb{R}$$
 un șir monoton. Atunc (x_n) convergent \iff mărginit.

- ▶ convergent ⇒ mărginit;
- ▶ convergent \iff monoton. Exemplu: $x_n = \frac{(-1)^n}{n}, n \in \mathbb{N}$;
- ▶ monoton \iff convergent. Exemplu: $x_n = n, n \in \mathbb{N}$;
- ▶ mărginit \iff convergent. Exemplu: $x_n = (-1)^n, n \in \mathbb{N}$.

Consecința: Fie
$$(x_n) \subseteq \mathbb{R}$$
 un șir monoton. Atunc (x_n) convergent \iff mărginit.

- ▶ convergent ⇒ mărginit;
- ▶ convergent \iff monoton. Exemplu: $x_n = \frac{(-1)^n}{n}, n \in \mathbb{N}$;
- ▶ monoton \iff convergent. Exemplu: $x_n = n, n \in \mathbb{N}$;
- ▶ mărginit \iff convergent. Exemplu: $x_n = (-1)^n, n \in \mathbb{N}$.

- ▶ convergent ⇒ mărginit;
- ▶ convergent \iff monoton. Exemplu: $x_n = \frac{(-1)^n}{n}, n \in \mathbb{N}$;
- ▶ monoton \iff convergent. Exemplu: $x_n = n, n \in \mathbb{N}$;
- \blacktriangleright mărginit \Longrightarrow convergent. Exemplu: $x_n = (-1)^n, n \in \mathbb{N}$.

- ▶ convergent ⇒ mărginit;
- ▶ convergent $\not\Longrightarrow$ monoton. Exemplu: $x_n = \frac{(-1)^n}{n}, n \in \mathbb{N}$;
- ▶ monoton $\not\Longrightarrow$ convergent. Exemplu: $x_n = n, n \in \mathbb{N}$;
- ▶ mărginit \Longrightarrow convergent. Exemplu: $x_n = (-1)^n, n \in \mathbb{N}$.

Consecința: Fie $(x_n) \subseteq \mathbb{R}$ un șir monoton. Atunc (x_n) convergent \iff mărginit.

Teorema 8: U.a.s. adevărate:

- 1. Orice șir crescător și nemărginit are limita $+\infty$.
- 2. Orice sir descrescător si nemărgnit are limita $-\infty$.

- ▶ convergent ⇒ mărginit;
- ▶ convergent $\not\Longrightarrow$ monoton. Exemplu: $x_n = \frac{(-1)^n}{n}, n \in \mathbb{N}$;
- ▶ monoton $\not\Longrightarrow$ convergent. Exemplu: $x_n = n, n \in \mathbb{N}$;
- ▶ mărginit \Longrightarrow convergent. Exemplu: $x_n = (-1)^n, n \in \mathbb{N}$.

Consecința: Fie $(x_n) \subseteq \mathbb{R}$ un șir monoton. Atunci (x_n) convergent \iff mărginit.

Teorema 8: U.a.s. adevărate:

- 1. Orice șir crescător și nemărginit are limita $+\infty$.
- 2. Orice sir descrescător si nemărgnit are limita $-\infty$.

- ▶ convergent ⇒ mărginit;
- ▶ convergent $\not\Longrightarrow$ monoton. Exemplu: $x_n = \frac{(-1)^n}{n}, n \in \mathbb{N}$;
- ▶ monoton \not convergent. Exemplu: $x_n = n, n \in \mathbb{N}$;
- ▶ mărginit \Longrightarrow convergent. Exemplu: $x_n = (-1)^n, n \in \mathbb{N}$.

Consecința: Fie $(x_n) \subseteq \mathbb{R}$ un șir monoton. Atunci (x_n) convergent \iff mărginit.

Teorema 8: U.a.s. adevărate:

- 1. Orice sir crescător și nemărginit are limita $+\infty$.
- 2. Orice șir descrescător și nemărgnit are limita $-\infty$.

Teorema 9 [a lui Cantor]: Fie $(x_n)_{n\in\mathbb{N}}$ și $(y_n)_{n\in\mathbb{N}}$ două șiruri $\subseteq \mathbb{R}$ care satisfac proprietățile:

i) $\exists p \in \mathbb{N} \text{ a.î.}$

$$x_n \le x_{n+1} < y_{n+1} \le y_n, \ \forall n \in \mathbb{N}, n \ge p;$$

ii) $\lim_{n\to\infty}(y_n-x_n)=0.$

Atunci șirurile (x_n) și (y_n) sunt convergente și

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n.$$

Observație Teorema de mai sus folosită pentru delimitarea constantei e, prin particularizarea

$$x_n = \left(1 + \frac{1}{n}\right)^n \text{ si } y_n = \left(1 + \frac{1}{n}\right)^{n+1}$$

10 Anca Grad Siruri de numere reale

Teorema 9 [a lui Cantor]: Fie $(x_n)_{n\in\mathbb{N}}$ și $(y_n)_{n\in\mathbb{N}}$ două șiruri $\subseteq \mathbb{R}$ care satisfac proprietățile:

i) $\exists p \in \mathbb{N} \text{ a.î.}$

$$x_n \le x_{n+1} < y_{n+1} \le y_n, \ \forall n \in \mathbb{N}, n \ge p;$$

ii) $\lim_{n\to\infty}(y_n-x_n)=0.$

Atunci şirurile (x_n) şi (y_n) sunt convergente şi

$$\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n.$$

Observație Teorema de mai sus folosită pentru delimitarea constantei e, prin particularizarea

$$x_n = \left(1 + \frac{1}{n}\right)^n \text{ si } y_n = \left(1 + \frac{1}{n}\right)^{n+1}$$

10 Anca Grad

Teorema 9 [a lui Cantor]: Fie $(x_n)_{n\in\mathbb{N}}$ și $(y_n)_{n\in\mathbb{N}}$ două șiruri $\subseteq \mathbb{R}$ care satisfac proprietățile:

i) $\exists p \in \mathbb{N} \text{ a.î.}$

$$x_n \leq x_{n+1} < y_{n+1} \leq y_n, \ \forall n \in \mathbb{N}, n \geq p;$$

ii) $\lim_{n\to\infty}(y_n-x_n)=0.$

Atunci şirurile (x_n) şi (y_n) sunt convergente şi

$$\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n.$$

Observație Teorema de mai sus folosită pentru delimitarea constantei e, prin particularizarea

$$x_n = \left(1 + \frac{1}{n}\right)^n$$
 și $y_n = \left(1 + \frac{1}{n}\right)^{n+1}$

Anca Grad Siruri de numere reale

Trecerea la limită în inegalități

$$x_n \leq y_n, \ \forall n \in \mathbb{N}, n \geq p,$$

$$\lim_{n\to\infty}x_n\leq\lim_{n\to\infty}y_n.$$

$$x_n \leq y_n \leq z_n, \ \forall n \in \mathbb{N}, n \geq p$$

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n$$

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = \lim_{n\to\infty} z_n.$$

Trecerea la limită în inegalități

Teorema 10: Fie (x_n) și $(y_n) \subseteq \mathbb{R}$, două șiruri care au limită. Daca $\exists p \in \mathbb{N}$ a.î.

$$x_n \leq y_n, \ \forall n \in \mathbb{N}, n \geq p,$$

atunci

$$\lim_{n\to\infty}x_n\leq\lim_{n\to\infty}y_n.$$

$$x_n \leq y_n \leq z_n, \ \forall n \in \mathbb{N}, n \geq p$$

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n$$

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = \lim_{n\to\infty} z_n$$

Trecerea la limită în inegalități

Teorema 10: Fie (x_n) și $(y_n) \subseteq \mathbb{R}$, două șiruri care au limită. Daca $\exists p \in \mathbb{N}$ a.î.

$$x_n \leq y_n, \ \forall n \in \mathbb{N}, n \geq p,$$

atunci

$$\lim_{n\to\infty}x_n\leq\lim_{n\to\infty}y_n.$$

Teorema 11 [a cleștelui]: Fie (x_n) , (y_n) și $(z_n) \subseteq \mathbb{R}$, trei șiruri și fie $p \in \mathbb{N}$ a.î.

$$x_n \leq y_n \leq z_n, \ \forall n \in \mathbb{N}, n \geq p$$

Dacă

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n$$

atunci șirul (y_n) are limită și

$$\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=\lim_{n\to\infty}z_n.$$

Teorema 12 Fie $(x_n), (y_n) \subseteq \mathbb{R}$ două șiruri convergente. U.a.s.a:

1. şirul sumă $(x_n + y_n)$ este convergent ş

$$\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n$$

2. dacă $c \in \mathbb{R}$, atunci șirul (cx_n) este convergent și

$$\lim_{n\to\infty}(cx_n)=c\left(\lim_{n\to\infty}x_n\right)$$

3. şirul produs $(x_n y_n)$ este convergent şi

$$\lim_{n\to\infty}(x_ny_n)=\lim_{n\to\infty}x_n\cdot\lim_{n\to\infty}y_n$$

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{\lim_{n\to\infty}x_n}{\lim_{n\to\infty}y_n}$$

Teorema 12 Fie $(x_n), (y_n) \subseteq \mathbb{R}$ două șiruri convergente. U.a.s.a:

1. şirul sumă $(x_n + y_n)$ este convergent și

$$\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n;$$

2. dacă $c \in \mathbb{R}$, atunci șirul (cx_n) este convergent și

$$\lim_{n\to\infty}(cx_n)=c\left(\lim_{n\to\infty}x_n\right)$$

3. şirul produs $(x_n y_n)$ este convergent şi

$$\lim_{n\to\infty}(x_ny_n)=\lim_{n\to\infty}x_n\cdot\lim_{n\to\infty}y_n$$

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$

Teorema 12 Fie $(x_n), (y_n) \subseteq \mathbb{R}$ două șiruri convergente. U.a.s.a:

1. şirul sumă $(x_n + y_n)$ este convergent și

$$\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n;$$

2. dacă $c \in \mathbb{R}$, atunci șirul (cx_n) este convergent și

$$\lim_{n\to\infty}(cx_n)=c\left(\lim_{n\to\infty}x_n\right)$$

3. șirul produs $(x_n y_n)$ este convergent și

$$\lim_{n\to\infty}(x_ny_n)=\lim_{n\to\infty}x_n\cdot\lim_{n\to\infty}y_n$$

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$

Teorema 12 Fie $(x_n), (y_n) \subseteq \mathbb{R}$ două șiruri convergente. U.a.s.a:

1. şirul sumă $(x_n + y_n)$ este convergent și

$$\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n;$$

2. dacă $c \in \mathbb{R}$, atunci șirul (cx_n) este convergent și

$$\lim_{n\to\infty}(cx_n)=c\left(\lim_{n\to\infty}x_n\right);$$

3. şirul produs $(x_n y_n)$ este convergent şi

$$\lim_{n\to\infty}(x_ny_n)=\lim_{n\to\infty}x_n\cdot\lim_{n\to\infty}y_n$$

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$

Teorema 12 Fie $(x_n), (y_n) \subseteq \mathbb{R}$ două șiruri convergente. U.a.s.a:

1. şirul sumă $(x_n + y_n)$ este convergent și

$$\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n;$$

2. dacă $c \in \mathbb{R}$, atunci șirul (cx_n) este convergent și

$$\lim_{n\to\infty}(cx_n)=c\left(\lim_{n\to\infty}x_n\right);$$

3. șirul produs $(x_n y_n)$ este convergent și

$$\lim_{n\to\infty}(x_ny_n)=\lim_{n\to\infty}x_n\cdot\lim_{n\to\infty}y_n;$$

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$

Teorema 12 Fie $(x_n), (y_n) \subseteq \mathbb{R}$ două șiruri convergente. U.a.s.a:

1. şirul sumă $(x_n + y_n)$ este convergent și

$$\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n;$$

2. dacă $c \in \mathbb{R}$, atunci șirul (cx_n) este convergent și

$$\lim_{n\to\infty}(cx_n)=c\left(\lim_{n\to\infty}x_n\right);$$

3. şirul produs $(x_n y_n)$ este convergent şi

$$\lim_{n\to\infty}(x_ny_n)=\lim_{n\to\infty}x_n\cdot\lim_{n\to\infty}y_n;$$

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{\lim_{n\to\infty}x_n}{\lim_{n\to\infty}y_n}.$$