Hledání dostatečného počtu tahů k zámíchání Rubikovy kostky

Viktor Číhal

Úvod

V této práci jsem se rozhodl zkoumat vliv počtu tahů při míchání na dosažené skóre svého řešiče. Řešič má určité podobnosti s lidskými řešiteli, a proto by výsledky mohly být použitelné i pro ně. Zdrojový kód a notebook s experimenty se dá nalézt na https://github.com/Reblexis/rubik-solver.

Popis řešiče

Algoritmus

Rešič funguje na základě opakovaného prohledávání stavového prostoru metodou DFS s dodatečným přidáváním náhodných tahů, pokud není nalezen zlepšující stav kostky. K rozhodnutí o tom, zda je nalezen zlepšující stav, se používá metrika, počítající správné kostičky v kostce. Hledání je rozděleno do 2 fází. V první fázi se hledá řešení, které dostane kostku do podgrupy G1 a ve druhé fázi se pomocí menšího počtu různých tahů (a tedy i větší hloubky) hledá již úplné řešení.

Řešič tedy většinou nenalezne nejkratší řešení.

Parametry

Při spouštění lze nastavovat tyto parametry:

- \bullet Počet tahů zamíchání kostky (n)
- Časový limit pro hledání řešení (v milisekundách) (t)
- Maximální hloubka hledání v první fázi (d1)
- \bullet Maximální hloubka hledání ve druhé fázi (d2)

Více informací se nachází v README.md souboru.

Vliv počtu tahů při míchání na dosažené skóre

Rozhodl jsem se prozkoumat tento vztah, neboť se hodí vědět kolik stačí tahů při míchání, aby byla kostka 'dostatečně náhodná'.

Graf závislosti

Skóre je počítáno jako počet správně umístěných kostiček v kostce (tedy na správné pozici a zároveň správně otočených). Pro každou testovanou hodnotu n spustíme 100-krát řešič a ostatní parametry zafixujeme na $t=100,\ d1=4$ a d2=5.

Algoritmus sice řeší kostku jiným způsobem než člověk, ale je založený na podobném principu postupného přesouvání kostiček na správné pozice.

Figure 1: Vliv počtu tahů při míchání na dosažené skóre

Z grafu můžem vypozorovat, že 15 míchacích tahů nejspíš nestačí a od 20 míchacích tahů by již kostka mohla být dostatečně náhodná pro lidské řešitele. Pojďme se ale ujistit, že 15 tahů opravdu není dostatečné.

Test normality distribuce

Raději ale tyto hypotézy otestujeme. Nejprve provedeme test, zda mají distribuce skóre normální rozdělení. Provedeme tedy Shapiro-Wilkův test s nulovou hypotézou, že data pocházejí z normálního rozdělení.

Spustíme 100-krát řešič jednotlivě pro hodnoty $n=15,\,n=20$ a n=50 (což by již mělo být dostatečně náhodné) a zafixujeme $t=100,\,d1=4$ a d2=5.

Z testu nám vyšla p-hodnota výrazně menší než 0.05, což znamená, že zamítáme

nulovou hypotézu a můžeme říct, že distribuce skóre není normální.

Figure 2: Histogram skóre pro $n=15,\,n=20$ a n=50

KS test

Jelikož distribuce není normální, nemůžeme použít t-test a místo toho tedy provedeme dvouvýběrový KS test s nulovou hypotézou, že distribuce jsou stejné. Pro pár n=15 a n=50 vyšlo p=0.0037, tedy můžeme nulovou hypotézu zamítnout.

Pro pár n=20 a n=50 vyšlo p=0.9084, tedy hypotézu zamítnout nelze.

Figure 3: KS test pro n=15 a n=50

Figure 4: KS test pro n=20 a n=50