Лекция 7. Гомоморфизм и изоморфизм. Циклические группы. Смежные классы

#вшпи #дискретная математика #теория

Вспомним определение группы

Def. Множество M и операцию \circ на нём (" \circ ": $M \times M \to M$) называют группой G и пишут $G=(M,\circ)$, если:

- 0) " \circ " алгебраическая операция, то есть $foralla,b\in G(M)\implies a\circ b\in G.$
 - 1. ассоциативность: $\forall a,b,c \in G \implies a \circ (b \circ c) = (a \circ b) \circ c$.
 - 2. нейтральный элемент $\exists ! e \in G : \forall a \in G \implies e \circ a = a \circ e = a$. Нетрудно показать, что нейтральный элемент единственный. Действительно,

$$e_1 \circ e_2 = e_1 = e_2 \circ e_1 = e_2 \implies e_1 = e_2.$$

3. обратный элемент. $\forall a \in G \exists ! b \in G : a \circ b = b \circ a = e$. Нетрудно показать, что обратный элемент может единственный. Действительно,

$$a\circ b=a\circ c=e \ (b\circ a)\circ b=b=(b\circ a)\circ c=c \ b=c$$