47

CLAIMS

- 1. An automatic dishwasher detergent formulation comprising: -
- (a) a metal complex compounds of formula (1)

$$[L_n Me_m X_p]^z Y_q \tag{1},$$

wherein Me is manganese, titanium, iron, cobalt, nickel or copper,

X is a co-ordinating or bridging radical,

n and m are each independently of the other an integer having

a value of from 1 to 8,

p is an integer having a value of from 0 to 32,

z is the charge of the metal complex,

Y is a counter-ion,

q = z/(charge Y), and

L is a ligand of formula

$$R_{3}$$

$$R_{2}$$

$$R_{1}$$

$$R_{11}$$

$$R_{10}$$

$$R_{11}$$

$$R_{10}$$

$$R_{11}$$

$$R_{10}$$

$$R_{11}$$

$$R_{10}$$

wherein

 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} and R_{11} are each independently of the others hydrogen; unsubstituted or substituted C_1 - C_{18} alkyl or aryl; cyano; halogen; nitro; -COOR₁₂ or -SO₃R₁₂ wherein R_{12} is in each case hydrogen, a cation or unsubstituted or substituted C_1 - C_{18} alkyl or aryl; -SR₁₃, -SO₂R₁₃

or $-OR_{13}$ wherein R_{13} is in each case hydrogen or unsubstituted or substituted C_1 - C_{18} alkyl or aryl; $-N(R_{13})$ - $NR'_{13}R''_{13}$ wherein R_{13} , R'_{13} and R''_{13} are as defined above for R_{13} ; $-NR_{14}R_{15}$ or $-N^{\theta}R_{14}R_{15}R_{16}$ wherein R_{14} , R_{15} and R_{16} are each independently of the other(s) hydrogen or unsubstituted or substituted C_1 - C_{18} alkyl or aryl, or R_{14} and R_{15} together with the nitrogen atom bonding them form an unsubstituted or substituted 5-, 6- or 7-membered ring which may optionally contain further hetero atoms; with the proviso that R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} and R_{11} are not simultaneously hydrogen, as a catalyst for oxidation reactions; and

- (b) an enzyme.
- 2. A formulation according to claim 1, wherein Me is manganese which is present in oxidation state II, III, IV or V.
- 3. A formulation to either claim 1 or claim 2, wherein X is CH_3CN , H_2O , F, Cl, Br, HOO, O_2^{2-} , O^{2-} , $R_{17}COO$, $R_{17}O$, R_{1
- 4. A formulation according to any one of claims 1 to 3, wherein Y is $R_{17}COO^-$, ClO_4^- , BF_4^- , PF_6^- , $R_{17}SO_3^-$, $R_{17}SO_4^-$, $SO_4^{2^-}$, NO_3^- , F^- , Cl^- , Br^- or I^- wherein R_{17} is hydrogen or unsubstituted or substituted C_1-C_{18} alkyl or aryl.

- 5. A formulation according to any one of claims 1 to 4, wherein n is an integer having a value of from 1 to 4, especially 1 or 2.
- 6. A formulation according to any one of claims 1 to 5, wherein m is an integer having a value of 1 or 2, especially 1.
- 7. A formulation according to any one of claims 1 to 6, wherein p is an integer having a value of from 0 to 4, especially 2.
- 8. A formulation according to any one of claims 1 to 7, wherein z is an integer having a value of from 8- to 8+.
- 9. A formulation according to any one of claims 1 to 8, wherein aryl is phenyl or naphthyl unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, halogen, cyano, nitro, carboxyl, sulfo, hydroxyl, amino, N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, N-phenylamino, N-naphthylamino, phenyl, phenoxy or by naphthoxy.
- 10. A formulation according to any one of claims 1 to 9 wherein the 5-, 6- or 7-membered ring formed by R_{14} and R_{15} together with the nitrogen atom bonding them is an unsubstituted or C_1 - C_4 alkyl-substituted pyrrolidine, piperidine, piperazine, morpholine or azepane ring.
- 11. A formulation according to any one of claims 1 to 10, wherein R_6 is C_1 - C_{12} alkyl; phenyl unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halogen, cyano, nitro, carboxyl,

sulfo, hydroxyl, amino, N-mono- or N,N-di-C1-C4alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, N-phenylamino, N-naphthylamino, phenyl, phenoxy or by naphthoxy; cyano; halogen; nitro; -COOR₁₂ or -SO₃R₁₂ wherein R_{12} is in each case hydrogen, a cation, C_1 - C_{12} alkyl, or phenyl unsubstituted or substituted as indicated above; $-SR_{13}$, $-SO_2R_{13}$ or $-OR_{13}$ wherein R_{13} is in each case hydrogen, C_1-C_{12} alkyl, or phenyl unsubstituted or substituted as indicated above; - $N(R_{13})$ -NR' $_{13}$ R'' $_{13}$ wherein R_{13} , R' $_{13}$ and R'' $_{13}$ are as defined above for R_{13} ; $-NR_{14}R_{15}$ or $-N^{\oplus}R_{14}R_{15}R_{16}$ wherein R_{14} , R_{15} and R_{16} are each independently of the other(s) hydrogen, unsubstituted or hydroxyl-substituted C_1 - C_{12} alkyl, or phenyl unsubstituted or substituted as indicated above, or R_{14} and R_{15} together with the nitrogen atom bonding them form an unsubstituted or C_1 - C_4 alkylsubstituted pyrrolidine, piperidine, piperazine, morpholine or azepane ring; and R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} and R_{11} are as defined above or are hydrogen.

12. A formulation according to claim 11, wherein the ligand L is a compound of formula

$$R'_3$$
 N
 N
 R'_9
 R'_9

wherein

 R'_3 , R'_6 and R'_9 are as defined for R_6 in claim 11.

13. A formulation according to claim 12, wherein R'3, R'6 and R'9 are each independently of the others C1-C4alkoxy; hydroxy; phenyl unsubstituted or substituted by C1-C4alkyl, C1-C4alkoxy, phenyl or by hydroxy; hydrazino; amino;

WO 2004/039932

N-mono- or N,N-di- C_1 - C_4 alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety; or an unsubstituted or C_1 - C_4 alkyl-substituted pyrrolidine, piperidine, piperazine, morpholine or azepane ring.

- 14. A formulation according to claim 13, wherein R_6 is hydroxy.
- 15. A formulation according to claim 14, wherein a metal complex compound of formula (1) is formed *in situ* in the dishwashing operation.
- 16. A formulation according to any one of claims 1 to 15, wherein the enzyme is a protease.
- 17. A formulation according to any one of claims 1 to 16, wherein the enzyme is separated from a component of the formulation.
- 18. A formulation according to claim 17 wherein the enzyme is encapsulated.
- 19. A formulation according to any one of claims 1 to 18, wherein the metal complex compounds of formula (1) is a bleach activation catalyst.
- 20. A formulation according to claims 19, wherein the formulation comprises an additional bleach-activating component.
- 21. A formulation according to any one of claims 1 to 20, wherein the formulation comprises a builder.

- 22. A formulation according to any one of claims 1 to 21, wherein the formulation comprises a surfactant.
- 23. A formulation according to claim 22, wherein the surfactant is a nonionic low sudsing surfactant.
- 24. A formulation according to any one of claims 1 to 23, wherein the formulation comprises an oxygen source.
- 25. A formulation according to claim 24, wherein the oxygen source is perborate, percarbonate, hydrogen peroxide or a mixture thereof.
- 26. An automatic dishwasher detergent formulation, containing
- I) 0 30%, preferably 0 10%, of a surfactant,
- II) 0 90%, preferably 0 70%, of a builder / co-builder,
- III) 1 99%, preferably 1 50 %, of a peroxide or a
 peroxide-forming substance, and
- IV) a metal complex compound of formula (1) in an amount which, in the liquor, gives a concentration of 0.5 200 mg/litre of liquor, when from 0.5 to 20g/litre of the dishwashing formulation are added to the liquor.
- 27. A formulation according to any one of claims 1 to 26, wherein the formulation is in the form of a tablet.
- 28. Use of a formulation according to any one of claims 1 to 27 in an automatic dishwasher.