Kiedy pierścień skończony jest ciałem?

Marcin Ból

Politechnika Krakowska ul. Warszawska 24, Kraków

28 listopada 2021

Kiedy pierścień skończony jest ciałem?

Definicja

Dziedziną całkowitości nazywamy niezerowy pierścień przemienny z jedynką bez dzielników zera.

Kiedy pierścień skończony jest ciałem?

Definicja

Dziedziną całkowitości nazywamy niezerowy pierścień przemienny z jedynką bez dzielników zera.

Definicja

Pierścieniem z dzieleniem nazywamy niezerowy pierścień z jedynką, w którym każdy niezerowy element jest odwracalny.

Kiedy pierścień skończony jest ciałem?

Definicja

Dziedziną całkowitości nazywamy niezerowy pierścień przemienny z jedynką bez dzielników zera.

Definicja

Pierścieniem z dzieleniem nazywamy niezerowy pierścień z jedynką, w którym każdy niezerowy element jest odwracalny.

Twierdzenie

Każda skończona dziedzina całkowitości jest ciałem.

Kiedy pierścień skończony jest ciałem?

Definicja

Dziedziną całkowitości nazywamy niezerowy pierścień przemienny z jedynką bez dzielników zera.

Definicja

Pierścieniem z dzieleniem nazywamy niezerowy pierścień z jedynką, w którym każdy niezerowy element jest odwracalny.

Twierdzenie

Każda skończona dziedzina całkowitości jest ciałem.

Małe twierdzenie Wedderburna

Każdy skończony pierścień z dzieleniem jest ciałem.

Kiedy pierścień skończony jest ciałem?

Definicja

Dziedziną całkowitości nazywamy niezerowy pierścień przemienny z jedynką bez dzielników zera.

Definicja

Pierścieniem z dzieleniem nazywamy niezerowy pierścień z jedynką, w którym każdy niezerowy element jest odwracalny.

Twierdzenie

Każda skończona dziedzina całkowitości jest ciałem.

Małe twierdzenie Wedderburna

Każdy skończony pierścień z dzieleniem jest ciałem.

Pierwsze z powyższych twierdzeń ma krótki i prosty, a drugie dosyć skomplikowany dowód.

Kiedy pierścień skończony jest ciałem?

Twierdzenie

Każda skończona dziedzina całkowitości jest ciałem.

Kiedy pierścień skończony jest ciałem?

Twierdzenie

Każda skończona dziedzina całkowitości jest ciałem.

Dowód

Niech A będzie skończoną dziedziną całkowitości oraz niech $0 \neq x \in A$. Jedyną rzeczą, którą należy wykazać jest istnienie elementu odwrotnego do x.

Kiedy pierścień skończony jest ciałem?

Twierdzenie

Każda skończona dziedzina całkowitości jest ciałem.

Dowód

Niech A będzie skończoną dziedziną całkowitości oraz niech $0 \neq x \in A$. Jedyną rzeczą, którą należy wykazać jest istnienie elementu odwrotnego do x. Rozważmy ciąg x, x^2, x^3, \ldots Ponieważ dziedzina A jest skończona, to $x^m = x^n$ dla pewnych $m, n \in \mathbb{N}, \ m < n$.

Kiedy pierścień skończony jest ciałem?

Twierdzenie

Każda skończona dziedzina całkowitości jest ciałem.

Dowód

Niech A będzie skończoną dziedziną całkowitości oraz niech $0 \neq x \in A$. Jedyną rzeczą, którą należy wykazać jest istnienie elementu odwrotnego do x. Rozważmy ciąg x, x^2, x^3, \ldots Ponieważ dziedzina A jest skończona, to $x^m = x^n$ dla pewnych $m, n \in \mathbb{N}, \ m < n$. Wtedy

$$0 = x^m - x^n = x^m (1 - x^{n-m}).$$

Kiedy pierścień skończony jest ciałem?

Twierdzenie

Każda skończona dziedzina całkowitości jest ciałem.

Dowód

Niech A będzie skończoną dziedziną całkowitości oraz niech $0 \neq x \in A$. Jedyną rzeczą, którą należy wykazać jest istnienie elementu odwrotnego do x. Rozważmy ciąg x, x^2, x^3, \ldots Ponieważ dziedzina A jest skończona, to $x^m = x^n$ dla pewnych $m, n \in \mathbb{N}, m < n$. Wtedy

$$0 = x^m - x^n = x^m (1 - x^{n-m}).$$

Z braku dzielników zera mamy, że $x^m \neq 0$, a zatem $x^{n-m} = 1$, czyli $xx^{n-m-1} = 1$, a stad wynika, że $x^{n-m-1} = x^{-1}$.

Piękne uogólnienie

Kiedy pierścień skończony jest ciałem?

Oba wcześniej wspomniane twierdzenia są szczególnymi przypadkami twierdzenie ogólniejszego, udowodnionego przez irlandzkiego matematyka Desmonda MacHale'a.

Twierdzenie 1

Niech R będzie niezerowym pierścieniem skończonym takim, że dla dowolnych $a,b\in R$

$$ab = 0 \implies a = 0 \lor b = 0.$$

Wtedy R jest ciałem.

Piękne uogólnienie

Kiedy pierścień skończony jest ciałem?

Oba wcześniej wspomniane twierdzenia są szczególnymi przypadkami twierdzenie ogólniejszego, udowodnionego przez irlandzkiego matematyka Desmonda MacHale'a.

Twierdzenie 1

Niech R będzie niezerowym pierścieniem skończonym takim, że dla dowolnych $a,b\in R$

$$ab = 0 \implies a = 0 \lor b = 0.$$

Wtedy R jest ciałem.

Zauważmy, że powyższe twierdzenie nie zakłada ani przemienności pierścienia R, ani istnienia jedynki w tym pierścieniu.

Ponieważ $R \neq \{0\}$ możemy ustalić niezerowy element $a \in R$.

Niech $R = \{r_1, \dots, r_n\}$. Definiujemy funkcję $\alpha : R \to R$ wzorem

$$\alpha(r_i) = r_i a$$

dla każdego i.

Ponieważ $R \neq \{0\}$ możemy ustalić niezerowy element $a \in R$. Niech $R = \{r_1, \dots, r_n\}$. Definiujemy funkcję $\alpha : R \to R$ wzorem

$$\alpha(r_i) = r_i a$$

dla każdego i. Jeżeli $\alpha(r_i)=\alpha(r_j)$, wtedy $r_ia=r_ja$, a zatem $(r_i-r_j)a=0$. Ponieważ $a\neq 0$, otrzymujemy że $r_i=r_j$, a zatem α jest iniekcją, a ponieważ R jest skończony, to również bijekcją.

Ponieważ $R \neq \{0\}$ możemy ustalić niezerowy element $a \in R$. Niech $R = \{r_1, \dots, r_n\}$. Definiujemy funkcję $\alpha : R \to R$ wzorem

$$\alpha(r_i) = r_i a$$

dla każdego i. Jeżeli $\alpha(r_i)=\alpha(r_j)$, wtedy $r_ia=r_ja$, a zatem $(r_i-r_j)a=0$. Ponieważ $a\neq 0$, otrzymujemy że $r_i=r_j$, a zatem α jest iniekcją, a ponieważ R jest skończony, to również bijekcją. W takim razie istnieją takie $t,t^*\in R$, że

$$\alpha(t) = a$$
 oraz $\alpha(t^*) = t$,

czyli

$$ta = a$$
 oraz $t^*a = t$.

Zdefiniujmy teraz funkcję $\beta:R\to R$ wzorem

$$\beta(r_i) = ar_i$$

dla każdego i. Na mocy tego samego rozumowania co wcześniej β jest bijekcją

Zdefiniujmy teraz funkcję $\beta: R \rightarrow R$ wzorem

$$\beta(r_i) = ar_i$$

dla każdego i. Na mocy tego samego rozumowania co wcześniej β jest bijekcją, a stąd istnieją takie $s,s^*\in R$, że

$$\beta(s) = a$$
 oraz $\beta(s^*) = s$,

czyli

$$as = a$$
 oraz $as^* = s$.

Dowód

$$ta = a$$
, $t^*a = t$, $as = a$, $as^* = s$

Niech teraz x będzie dowolnym elementem pierścienia R.

Dowód

$$ta = a$$
, $t^*a = t$, $as = a$, $as^* = s$

Niech teraz x będzie dowolnym elementem pierścienia R. Ponieważ α,β są bijekcjami, to istnieją elementy b oraz c w R takie, że

$$x = ba = ac$$
.

Dowód

$$ta = a$$
, $t^*a = t$, $as = a$, $as^* = s$

Niech teraz x będzie dowolnym elementem pierścienia R. Ponieważ α,β są bijekcjami, to istnieją elementy b oraz c w R takie, że

$$x = ba = ac$$
.

Mamy zatem, że

$$tx = t(ac) = (ta)c = ac = x,$$

Dowód

$$ta = a$$
, $t^*a = t$, $as = a$, $as^* = s$

Niech teraz x będzie dowolnym elementem pierścienia R. Ponieważ α,β są bijekcjami, to istnieją elementy b oraz c w R takie, że

$$x = ba = ac$$
.

Mamy zatem, że

$$tx = t(ac) = (ta)c = ac = x,$$

a zatem t jest lewą jedynką pierścienia R. Podobnie,

Dowód

$$ta = a$$
, $t^*a = t$, $as = a$, $as^* = s$

Niech teraz x będzie dowolnym elementem pierścienia R. Ponieważ α,β są bijekcjami, to istnieją elementy b oraz c w R takie, że

$$x = ba = ac$$
.

Mamy zatem, że

$$tx = t(ac) = (ta)c = ac = x,$$

a zatem t jest lewą jedynką pierścienia R. Podobnie,

$$xs = (ba)s = b(as) = ba = x,$$

Dowód

$$ta = a$$
, $t^*a = t$, $as = a$, $as^* = s$

Niech teraz x będzie dowolnym elementem pierścienia R. Ponieważ α,β są bijekcjami, to istnieją elementy b oraz c w R takie, że

x = ba = ac.

$$tx = t(ac) = (ta)c = ac = x,$$

a zatem t jest lewą jedynką pierścienia R. Podobnie,

$$xs = (ba)s = b(as) = ba = x$$
.

a zatem s jest prawą jedynką R. A więc t = ts = s = 1.

Dowód

$$ta=a, \quad t^*a=t, \quad as=a, \quad as^*=s, \quad s=t=1$$
 Teraz ponieważ

$$as^* = s = 1 = t = t^*a,$$

$$ta=a, \quad t^*a=t, \quad as=a, \quad as^*=s, \quad s=t=1$$
 Teraz ponieważ

$$as^* = s = 1 = t = t^*a,$$

wnioskujemy, że a posiada prawą odwrotność s^* i lewą odwrotność t^* .

 $ta=a, \quad t^*a=t, \quad as=a, \quad as^*=s, \quad s=t=1$ Teraz ponieważ

$$as^* = s = 1 = t = t^*a,$$

wnioskujemy, że a posiada prawą odwrotność s^* i lewą odwrotność t^* . Stąd

$$s^* = 1s^* = (t^*a)s^* = t^*(as^*) = t^*1 = t^*,$$

Dowód

 $ta=a, \quad t^*a=t, \quad as=a, \quad as^*=s, \quad s=t=1$ Teraz ponieważ

$$as^* = s = 1 = t = t^*a,$$

wnioskujemy, że a posiada prawą odwrotność s^* i lewą odwrotność t^* . Stąd

$$s^* = 1s^* = (t^*a)s^* = t^*(as^*) = t^*1 = t^*,$$

zatem $s^* = t^* = a^{-1}$ i stąd każdy niezerowy element $a \in R$ jest odwracalny w R.

 $ta=a, \quad t^*a=t, \quad as=a, \quad as^*=s, \quad s=t=1$ Teraz ponieważ

$$as^* = s = 1 = t = t^*a,$$

wnioskujemy, że a posiada prawą odwrotność s^* i lewą odwrotność t^* . Stąd

$$s^* = 1s^* = (t^*a)s^* = t^*(as^*) = t^*1 = t^*,$$

zatem $s^* = t^* = a^{-1}$ i stąd każdy niezerowy element $a \in R$ jest odwracalny w R. Widzimy zatem, że R jest skończonym pierścieniem z dzieleniem, a z małego twierdzenia Wedderburna R jest ciałem, co kończy dowód.

Kolejne ładne twierdzenie

Kiedy pierścień skończony jest ciałem?

Zajmiemy się teraz drugim uogólnieniem małego twierdzenia Wedderburna.

Twierdzenie 2

Niech R będzie pierścieniem skończonym z jedynką i niech T będzie zbiorem elementów odwracalnych pierścienia R. Jeśli $|T|>|R|-\sqrt{|R|}$, to R jest ciałem.

Kolejne ładne twierdzenie

Kiedy pierścień skończony jest ciałem?

Zajmiemy się teraz drugim uogólnieniem małego twierdzenia Wedderburna.

Twierdzenie 2

Niech R będzie pierścieniem skończonym z jedynką i niech T będzie zbiorem elementów odwracalnych pierścienia R. Jeśli $|T|>|R|-\sqrt{|R|}$, to R jest ciałem.

Zauważmy, że w założeniach małego twierdzenia Wedderburna występuje warunek |T|=|R|-1. Powyższe twierdzenie mówi o tym, że wystarczy, aby zachodził warunek $|T|>|R|-\sqrt{|R|}$ by otrzymać ten sam wniosek.

Kolejne ładne twierdzenie

Kiedy pierścień skończony jest ciałem?

Zajmiemy się teraz drugim uogólnieniem małego twierdzenia Wedderburna.

Twierdzenie 2

Niech R będzie pierścieniem skończonym z jedynką i niech T będzie zbiorem elementów odwracalnych pierścienia R. Jeśli $|T|>|R|-\sqrt{|R|}$, to R jest ciałem.

Zauważmy, że w założeniach małego twierdzenia Wedderburna występuje warunek |T|=|R|-1. Powyższe twierdzenie mówi o tym, że wystarczy, aby zachodził warunek $|T|>|R|-\sqrt{|R|}$ by otrzymać ten sam wniosek.

Co więcej, tego wyniku nie da się już poprawić, gdyż pierścień $\mathbb{Z}_{p^2}, p \in \mathbb{P}$, posiada dokładnie p^2-p elementów odwracalnych oraz nie jest ciałem.

Do dowodu tego twierdzenia będziemy potrzebować kilku prostych lematów. Od tej pory R jest pierścieniem skończonym z jedynką $1 \neq 0$.

Do dowodu tego twierdzenia będziemy potrzebować kilku prostych lematów. Od tej pory R jest pierścieniem skończonym z jedynką $1 \neq 0$.

Lemat 1

Dla $b \in R$, jeśli b^n jest lewym (odpowiednio, prawym) dzielnikiem zera dla pewnego $n \ge 1$, wtedy b jest lewym (odpowiednio, prawym) dzielnikiem zera.

Do dowodu tego twierdzenia będziemy potrzebować kilku prostych lematów. Od tej pory R jest pierścieniem skończonym z jedynką $1 \neq 0$.

Lemat 1

Dla $b \in R$, jeśli b^n jest lewym (odpowiednio, prawym) dzielnikiem zera dla pewnego $n \ge 1$, wtedy b jest lewym (odpowiednio, prawym) dzielnikiem zera.

Dowód

Niech n>1 będzie najmniejszą liczbą naturalną, że b^n jest lewym dzielnikiem zera, oraz niech $t\neq 0$ będzie takie, że $b^nt=0$.

Do dowodu tego twierdzenia będziemy potrzebować kilku prostych lematów. Od tej pory R jest pierścieniem skończonym z jedynką $1 \neq 0$.

Lemat 1

Dla $b \in R$, jeśli b^n jest lewym (odpowiednio, prawym) dzielnikiem zera dla pewnego $n \ge 1$, wtedy b jest lewym (odpowiednio, prawym) dzielnikiem zera.

Dowód

Niech n>1 będzie najmniejszą liczbą naturalną, że b^n jest lewym dzielnikiem zera, oraz niech $t\neq 0$ będzie takie, że $b^nt=0$. Wtedy równość $b(b^{n-1}t)=0$ implikuje, że b jest lewym dzielnikiem zera, gdyż $b^{n-1}t\neq 0$. Dla prawych dzielników zera dowód jest analogiczny.

Lemat 2

Jeżeli $b \in R$, to albo b jest odwracalny, albo b jest zarówno lewym, jak i prawym dzielnikiem zera.

Ponieważ R jest skończony, to istnieją takie $i,j\in\mathbb{N},$ że $b^{i+j}=b^i.$

Lemat 2

Jeżeli $b \in R$, to albo b jest odwracalny, albo b jest zarówno lewym, jak i prawym dzielnikiem zera.

Dowód

Ponieważ R jest skończony, to istnieją takie $i,j\in\mathbb{N},$ że $b^{i+j}=b^i.$ Stad

$$b^{i+j} - b^i = b^i(b^j - 1) = (b^j - 1)b^i = 0.$$

Lemat 2

Jeżeli $b \in R$, to albo b jest odwracalny, albo b jest zarówno lewym, jak i prawym dzielnikiem zera.

Dowód

Ponieważ R jest skończony, to istnieją takie $i,j\in\mathbb{N},$ że $b^{i+j}=b^i.$ Stad

$$b^{i+j} - b^i = b^i(b^j - 1) = (b^j - 1)b^i = 0.$$

A zatem albo $b^j=1$, albo b^i jest zarówno lewym i prawym dzielnikiem zera. Jeśli $b^j=1$, to b jest odwracalny, a jeśli b^i jest dzielnikiem zera, to z Lematu 1 mamy, że b jest dzielnikiem zera.

Lemat 3

Przypuśćmy, że R posiada n>1 lewych dzielników zera. Wtedy $|R|\leqslant n^2.$

Zauważmy, że skoro

 $|R| = |A(y)||yR| \leqslant n \cdot n = n^2$.

Z Lematu 2, R ma również dokładnie n > 1 prawych dzielników zera. Dla $x \in R$ niech $A(x) = \{r \in R \mid xr = 0\}$.

Ponieważ R ma n prawych dzielników zera i n > 1, to istnieje takie $0 \neq x \in R$, że $1 < |A(x)| \le n$. Niech $0 \neq y \in A(x)$.

$$x(yr) = (xy)r = 0$$
, to $yR \leqslant A(x)$ istad $|yR| \leqslant n$.

Rozważmy teraz grupy (R, +) oraz (yR, +). Definiujemy

funkcję $f: R \to yR$ wzorem f(r) = yr, dla każdego $r \in R$. Zauważmy, że Ker(f) = A(y), a zatem R/A(y) oraz yR są izomorficzne jako grupy abelowe. W szczególności,

Możemy przystąpić do dowodu Twierdzenia 2.

Dowód

Niech D będzie zbiorem (lewych lub prawych) dzielników zera pierścienia R. Przypuśćmy, że $|T|>|R|-\sqrt{|R|}$.

Możemy przystąpić do dowodu Twierdzenia 2.

Dowód

Niech D będzie zbiorem (lewych lub prawych) dzielników zera pierścienia R. Przypuśćmy, że $|T|>|R|-\sqrt{|R|}$. Ponieważ żaden dzielnik zera nie jest odwracalny, to z Lematu 2 mamy, że |T|+|D|=|R|.

Możemy przystąpić do dowodu Twierdzenia 2.

Dowód

Niech D będzie zbiorem (lewych lub prawych) dzielników zera pierścienia R. Przypuśćmy, że $|T|>|R|-\sqrt{|R|}$. Ponieważ żaden dzielnik zera nie jest odwracalny, to z Lematu 2 mamy, że |T|+|D|=|R|. Jeśli $D=\{0\}$, to R jest ciałem na mocy Twierdzenia 1. W przeciwnym wpadku |D|>1.

Możemy przystąpić do dowodu Twierdzenia 2.

Dowód

Niech D będzie zbiorem (lewych lub prawych) dzielników zera pierścienia R. Przypuśćmy, że $|T|>|R|-\sqrt{|R|}$. Ponieważ żaden dzielnik zera nie jest odwracalny, to z Lematu 2 mamy, że |T|+|D|=|R|. Jeśli $D=\{0\}$, to R jest ciałem na mocy Twierdzenia 1. W przeciwnym wpadku |D|>1. Założenia Lematu 3 są spełnione, zatem

$$|R| \leqslant |D|^2$$
 oraz $\sqrt{|R|} \leqslant |D|$.

Kiedv

Możemy przystąpić do dowodu Twierdzenia 2.

Dowód

Niech D będzie zbiorem (lewych lub prawych) dzielników zera pierścienia R. Przypuśćmy, że $|T|>|R|-\sqrt{|R|}$. Ponieważ żaden dzielnik zera nie jest odwracalny, to z Lematu 2 mamy, że |T|+|D|=|R|. Jeśli $D=\{0\}$, to R jest ciałem na mocy Twierdzenia 1. W przeciwnym wpadku |D|>1. Założenia Lematu 3 są spełnione, zatem

 $|R| \leqslant |D|^2$ oraz $\sqrt{|R|} \leqslant |D|$.

Jednak ponieważ

 $|T|>|R|-\sqrt{|R|}$ oraz |T|=|R|-|D|,

Bibliografia

Kiedy pierścień skończony jest ciałem?

- D. MacHale, When is a Finite Ring a Field?, IMS Bulletin 37, 1996
- D. MacHale, Wedderburn's Theorem Revisited, IMS Bulletin 20, 1986
- D. MacHale, Wedderburn's Theorem Revisited (Again), IMS Bulletin 20, 1988
- N. Ganesan, Properties of Rings with Finite Number of Zero Divisors II, Math. Annalen 161 (1965) 241-246.