P510/2
PHYSICS
(Theory)
Paper 2
Nov./Dec. 2020
21/2 hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

PHYSICS (THEORY)

Paper 2

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

Answer five questions, taking at least one from each of the sections; A, B, C and D, but not more than one question should be chosen from either A or B.

Any additional question(s) answered will not be marked.

Mathematical tables and graph paper are provided.

Non-programmable scientific calculatiors may be used.

Assume where necessary:

Speed of light in a vacuum, C $= 3.0 \times 10^8 \,\mathrm{ms}^{-1}$. $= 9.81 \text{ ms}^{-2}$. Acceleration due to gravity, g Electron charge, e $= 1.6 \times 10^{-19} C$ $= 9.11 \times 10^{-31}$ kg. Electron mass $= 6.6 \times 10^{-34} \text{ Js}.$ Planck's constant, h $= 4.0\pi \times 10^{-7} \text{ Hm}^{-1}$ Permeability of free space, μ_0 Permittivity of free space, ε_0 $= 8.85 \times 10^{-1} \text{ Fm}^{-1}$ $= 9.0 \times 10^9 \,\mathrm{F}^{-1} \,\mathrm{m}$ The constant $\frac{1}{4\pi\epsilon_0}$ $= 1.6 \times 10^{-19} \text{ J}.$ One election volt (eV) $= 6.02 \times 10^{23} \text{ mol}^{-1}$. Avogadro's number, NA $= 1.2 \times 10^{-6} \Omega m$. Resistivity of Nichrome wire at 25 °C $= 4.2 \times 10^3 \text{ Jkg}^{-1} \text{ K}^{-1}$. Specific heat capacity of water

SECTION A

- 1. (a) State the laws of refraction of light. (02 marks)
 - (b) (i) The deviation, d, by a prism of small angle A and refractive index, n, is d = (n 1)A. Use this to show that the focal length of a thin converging lens of refractive index, n, is given by

$$\frac{1}{f} = (n-1)\left(\frac{1}{r_1} + \frac{1}{r_2}\right)^{r_1}$$

where r_1 and r_2 are the radii of curvature of the lens surfaces.

(05 marks)

- (ii) The radii of curvature of the surface of a converging meniscus are 25 cm and 20 cm. Find its focal length if the refractive index of the lens is 1.5.

 (02 marks)
- (c) Describe an experiment to determine the refractive index of a liquid using a biconvex lens of known radius of curvature and a plane mirror.

 (06 marks)
- (d) The focal length of a projector lens is 3.0 cm. If a magnification of 300 is required, find the;
 - (i) distance of the screen from the lens. (03 marks)
 - (ii) distance between the slide and the lens. (02 marks)
- 2. (a) (i) State the laws of reflection of light. (02 marks)
 - (ii) With the aid of a diagram, describe the operation of an optical lever in a mirror galvanometer.

 (04 marks)
 - (b) Describe an experiment to determine the focal length of a concave lens using a convex lens and a plane mirror. (04 marks)
 - (c) Figure 1 shows a ray of monochromatic light incident on a triangular glass prism at an angle of incidence θ . Light just emerges from the face AB of the prism. The speed of light in the prism is $2.0 \times 10^8 \text{ms}^{-1}$.

Fig. 1

		(i)	Calculate the refractive index of the glass.	(02 marks)	
		(ii) (iii)	Find the value of θ . Explain what happens when the angle of incidance in than θ .	(03 marks) s greater (02 marks)	
	(d)	Describe adjustments of the telescope, and the collimator of a spectrometer before making measurements. (03 marks)			
* ' ji			SECTION B		
3.	(a)	State two differences between mechanical and electromagnetic waves. (02 marks)			
41.	(b)	Describe an experiment to demonstrate that sound obeys the laws of reflection. (04 marks)			
lur ⁴ lur	(c)	(i) (ii)	Explain what is meant by beats . Explain how beats are used to determine the frequent given note.	(03 marks) cy of a (04 marks)	
(d)		A car, P , moving at a speed of 108 kmh ⁻¹ towards a stationary observer and another observer in car, Q , moving in the opposite direction with the same speed as, P , sounds a horn of frequency 256 Hz. Find the frequency of sound heard by the;			
i La		•	 (i) stationary observer. (ii) observer in car, Q. (Speed of sound in air = 340 ms⁻¹) 	(03 marks) (03 marks)	
	(e)	State	two applications of the Doppler effect.	(01 mark)	
4.	(a)	What is meant by the following:			
		(i)	Ordinary light,	(01 mark)	
		(ii)	Plane polarised light?	(01 mark)	
	(b)	(i)	Describe how plane polarised light can be produced reflection.	by (<i>04 marks</i>)	
		(ii)	The refractive index of a polaroid is 2.417. Find the angle of the polaroid.	polarising (02 marks)	
	(c)	(i) (ii)	State Huygen's principle. Use Huygen's construction to verify the laws of refletight.	(01 mark) ection of (04 marks)	
	(d)	(i)	What is a diffraction grating?	(01 mark)	

(ii) Describe an experiment to determine the wave length of monochromatic light using a diffraction grating and a spectrometer. (06 marks)

SECTION C

- 5. (a) Define the following as applied to the earth magnetic field:
 - (i) Magnetic meridian.

(01 mark)

(ii) Angle of dip at a location.

(01 mark)

- (b) Describe an experiment to compare the magnetic flux density at the centre of a coil carrying current with the horizontal component of the earth's magnetic flux density.

 (05 marks)
- (c) A rectangular coil of a wire of N turns and area, A, is suspended at the mid point of one side by a fibre of torsional constant K. The plane of the coil is initially set parallel to a horizontal uniform magnetic field of flux density B.
 - (i) Derive an expression for the angle of rotation of the coil when a current I flows through it.

 (04 marks)
 - (ii) State the modification that would be required to turn the arrangement in (c) (i) into a moving coil galvanometer.

(02 marks)

(d) Figure 2 shows two parallel conductors A and B, each carrying current of 2 A into the plane of the page.

(i) Find the resultant magnetic flux density at C. (06 marks)

(ii) Draw the magnetic field pattern due to currents throught A and B.

(00 marks)

(01 mark)

- 6. (a) (i) Define self induction. (01 mark)
 - (ii) Derive the expression, $E = -L \frac{dI}{dt}$ where L is the inductance of a coil and I is the value of the alternating current flowing in the coil. (03 marks)
 - (b) Figure 3 shows two coils A and B. Coil B is connected to an ammeter A_2 while coil A is connected to an alternating voltage source and an ammeter A_1 .

Fig. 3

- (i) Explain why current flowing through A₁, in circuit A is less than current that would flow through a straight wire of equal resistance when connected across the same voltage source.

 (03 marks)
- (ii) Explain what will be observed on the ammeters when the coils are brought closer to each other.

 (03 marks)
- (c) A motor consists of a rectangular coil of area 20 cm² having 50 turns. A current of 2.5 A is passed through the coil.
 - (i) Calculate the flux density of the field in which the coil is placed if a torque of 0.30 Nm acts on the coil. (03 marks)
 - (ii) Calculate the back e.m.f in the coil if the coil is rotating at 2400 revolutions per minute. (03 marks)
- (d) (i) Explain how Eddy currents are produced in a motor. (03 marks)
 (ii) How are effects of Eddy currents minimised in a motor?
 (01 mark)

- 7. (a) Define the root mean square value of an alternating current.
 (01 mark)
 - (b) With the aid of a diagram, describe the structure and action of a moving iron meter.

 (05 marks)
 - (c) An 8.0 μ F capacitor is placed across a 200 V (rms) supply.
 - (i) Calculate the amplitude of the current which flows if the frequency of the a.c is 50 Hz. (04 marks)
 - (ii) Explain what happens to the value of the current in the circuit if the frequency of the a.c is increased. (02 marks)
 - (d) Explain the phase relationship between the applied alternating voltage across an inductor and the current that flows.

 (04 marks)
 - (e) A sinusoidal alternating voltage, $V = V_0 \sin \omega t$ is applied to a resistor of resistance, R. Derive an expression for the mean power dissipated in the resistor.

 (02 marks)
 - (f) Find the amplitude of the a.c which dissipates energy in a resistor equal to three times that produced by a d.c of 2 A passed through the resistor under the same condition.

 (02 marks)

SECTION D

- 8. (a) What is meant by potential difference? (01 mark)
 - (b) (i) Describe an experiment to verify Ohm's law. (04 marks)
 - (ii) A 12 V battery is connected across a potential divider of resistance 600 Ω. If a bulb with a filament resistance of 100 Ω is connected across one third of the potential divider, determine the amount of electrical energy consumed by the bulb in 10 s.
 - (c) Describe the mechanism of heat generation in a current carrying conductor. (04 marks)
 - (d) Describe an experiment to determine internal resistance of a cell using a potentiometer. (07 marks)

- 9. (a) Define the following:
 - (i) Electric field intensity. (01 mark)
 (ii) Electric potential. (01 mark)
 - (b) Sketch two graphs on the same axes to show the variation of electric field intensity and electric potential with distance from an isolated point charge.

 (02 marks)
 - (c) Describe an experiment to show that the potential over the surface of a pear-shaped charged conductor is constant. (04 marks)
 - (d) Figure 4 shows two parallel metal plates placed 10 mm apart in a vacuum with a potential difference of 100 V between them. A point charge of $+2 \mu C$ is transferred from A to C following the path shown.

Fig. 4

If AB is parallel to the metal plates, and BC is 10 mm long, find the work done in moving the point charge from:

- (i) A to B and explain your answer. (02 marks)
 (ii) B to C. (04 marks)
- (e) An alpha particle of charge +3.2 × 10⁻¹⁹ C and mass 6.8 × 10⁻²⁷ kg travels with a velocity V directly towards a nitrogen nucleus which has a charge of +11.2 × 10⁻¹⁹ C. The alpha particle reverses direction at a distance of 9.4 × 10⁻¹⁵ m from the nitrogen nucleus.
 - (i) Explain why the alpha particle reverses direction. (02 marks)
 - (ii) Find the initial velocity V of the alpha particle. (04 marks)

- 10. (a) (i) Define capacitance of a capacitor. (01 mark)
 - (ii) A conducting sphere of radius 7.5 cm is maintained at an electric potential of 9 kV. Calculate the charge on the sphere.

 (03 marks)
 - (b) Describe an experiment to determine the effect of the separation of the plates on capacitance of a capacitor. (04 marks)
 - (c) The plates of a parallel plate capacitor are separated by a distance of 2 mm in air. If the surface area of each plate is 5.0 cm², and a p.d of 6 V is applied across the plates, find the magnitude of the charge on each plate.

 (03 marks)
 - (d) Explain the effect of replacing a dielectric by filling the space between the plates of a charged capacitor with a conductor. (03 marks)
 - (e) (i) What is meant by relative permittivity of an insulating material? (01 mark)
 - (ii) Describe how the relative permittivity of an insulating material is determined by using a ballistic galvanometer.

 (05 marks)