

特征工程

Part 3 2025/03/18 凤维杰

• 线性分类器 $h(x; \theta, \theta_0) = \text{sign}(\theta^T x + \theta_0)$

• 线性分类器 $h(x; \theta, \theta_0) = \text{sign}(\theta^T x + \theta_0)$

• 线性分类器 $h(x; \theta, \theta_0) = \text{sign}(\theta^T x + \theta_0)$

- 线性分类器 $h(x; \theta, \theta_0) = \text{sign}(\theta^T x + \theta_0)$
- 0-1损失: $L(g,a) = \begin{cases} 0, & \text{if } g = a \\ 1, & \text{else} \end{cases}$

- 线性分类器 $h(x; \theta, \theta_0) = \text{sign}(\theta^T x + \theta_0)$
- 0-1损失: $L(g,a) = \begin{cases} 0, & \text{if } g = a \\ 1, & \text{else} \end{cases}$ 训练误差: $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$

- 线性分类器 $h(x; \theta, \theta_0) = \text{sign}(\theta^T x + \theta_0)$
- 0-1 损失: $L(g,a) = \begin{cases} 0, & \text{if } g = a \\ 1, & \text{else} \end{cases}$
- 训练误差: $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$

机器学习流程

- 1. 建立目标 & 收集数据
 - Ex: 疾病预测

- 线性分类器 $h(x; \theta, \theta_0) = \text{sign}(\theta^T x + \theta_0)$
- 0-1损失: $L(g,a) = \begin{cases} 0, & \text{if } g = a \\ 1, & \text{else} \end{cases}$
- 训练误差: $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$

机器学习流程

- 1. 建立目标 & 收集数据
 - Ex: 疾病预测
- 2. 特征工程

- 线性分类器 $h(x; \theta, \theta_0) = \text{sign}(\theta^T x + \theta_0)$
- 0-1损失: $L(g,a) = \begin{cases} 0, & \text{if } g = a \\ 1, & \text{else} \end{cases}$
- 训练误差: $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$

机器学习流程

- 1. 建立目标 & 收集数据
 - Ex: 疾病预测
- 2. 特征工程
- 3. 运行学习算法 & 学习分类器
 - Ex: 比较学习算法、感知器
- 4. 分析 & 评估

- 目标 & 数据
 - E.g. 心脏病预测

- 目标 & 数据
 - E.g. 心脏病预测

	心脏病 情况	心率	疼痛 症状	职业	用药	年龄	收入
1	否	55	否	护士	止痛药	40+	123000
2	否	71	否	管理	降压药& 止痛药	20+	134000
3	是	89	是	护士	降压药	50+	140000
4	否	67	否	医生	无	50+	130000

- 目标 & 数据
 - E.g. 心脏病预测
- 将数据编码成适合学习算法的形式

	心脏病 情况	心率	疼痛 症状	职业	用药	年龄	收入
1	否	55	否	护士	止痛药	40+	123000
2	否	71	否	管理	降压药& 止痛药	20+	134000
3	是	89	是	护士	降压药	50+	140000
4	否	67	否	医生	无	50+	130000

- 目标 & 数据
 - E.g. 心脏病预测
- 将数据编码成适合学习算法的形式

	心脏病 情况	心率	疼痛 症状	职业	用药	年龄	收入
1	否	55	否	护士	止痛药	40+	123000
2	否	71	否	管理	降压药& 止痛药	20+	134000
3	是	89	是	护士	降压药	50+	140000
4	否	67	否	医生	无	50+	130000

● 识别标签,并编码成实数

	心脏病 情况	{'是','否'}↔		
1	否		1	-1
2	否		2	-1
3	是		3	+1
4	否		4	-1

● 识别标签,并编码成实数

	心脏病 情况	{'是','否'}←		
1	否		1	-1
2	否		2	-1
3	是		3	+1
4	否		4	-1

- 编码形式自由(e.g. {0,1}), 取决于算法
- 保存映射字典以实现 标签的输出

● 识别特征,并编码成实数

● 特征: 除标签外的其余部分

	心率	疼痛 症状	职业	用药	年龄	收入
1	55	否	护士	止痛药	40+	123000
2	71	否	管理	降压药& 止痛药	20+	134000
3	89	是	护士	降压药	50+	140000
4	67	否	医生	无	50+	130000

● 识别特征,并编码成实数

● 特征: 除标签外的其余部分

		心率	疼痛 症状	职业	用药	年龄	收入
$\left(x^{(1)}\right)^T$	1	55	否	护士	止痛药	40+	123000
	2	71	否	管理	降压药& 止痛药	20+	134000
	3	89	是	护士	降压药	50+	140000
	4	67	否	医生	无	50+	130000

● 识别特征,并编码成实数

● 特征: 除标签外的其余部分

		心率	疼痛 症状	职业	用药	年龄	收入
$\left(x^{(1)}\right)^T$	1	55	否	护士	止痛药	40+	123000
	2	71	否	管理	降压药& 止痛药	20+	134000
	3	89	是	护士	降压药	50+	140000
	4	67	否	医生	无	50+	130000

● 识别特征,并编码成实数

● 特征: 除标签外的其余部分

	心率	疼痛 症状	职业	用药	年龄	收入
1	55	否	护士	止痛药	40+	123000
2	71	否	管理	降压药& 止痛药	20+	134000
3	89	是	护士	降压药	50+	140000
4	67	否	医生	无	50+	130000

● 识别特征,并编码成实数

● 特征: 除标签外的其余部分

	心率	疼痛 症状	职业	用药	年龄	收入
1	55	否	护士	止痛药	40+	123000
2	71	否	管理	降压药& 止痛药	20+	134000
3	89	是	护士	降压药	50+	140000
4	67	否	医生	无	50+	130000

● 识别特征,并编码成实数

● 特征: 除标签外的其余部分

	心率	疼痛 症状	职业	用药	年龄	收入
1	55	0	护士	止痛药	40+	123000
2	71	0	管理	降压药& 止痛药	20+	134000
3	89	1	护士	降压药	50+	140000
4	67	0	医生	无	50+	130000

● 识别特征,并编码成实数

● 特征: 除标签外的其余部分

	心率	疼痛 症状	职业	用药	年龄	收入
1	55	0	护士	止痛药	40+	123000
2	71	0	管理	降压药& 止痛药	20+	134000
3	89	1	护士	降压药	50+	140000
4	67	0	医生	无	50+	130000

	$\phi_{m{d}}$	ϕ_{d+1}	ϕ_{d+2}
护士	0	0	0
管理	0	0	1
医生	0	1	0
药剂师	0	1	1
护工	1	0	0

	$\phi_{m{d}}$	ϕ_{d+1}	ϕ_{d+2}
护士	0	0	0
管理	0	0	1
医生	0	1	0
药剂师	0	1	1
护工	1	0	0

	$\phi_{m{d}}$	ϕ_{d+1}	ϕ_{d+2}
护士	0	0	0
管理	0	0	1
医生	0	1	0
药剂师	0	1	1
护工	1	0	0

● Idea 3: 将每个类别转换成唯一的0-1向量

	$\phi_{m{d}}$	ϕ_{d+1}	ϕ_{d+2}	ϕ_{d+3}	ϕ_{d+4}
护士	1	0	0	0	0
管理	0	1	0	0	0
医生	0	0	1	0	0
药剂师	0	0	0	1	0
护工	0	0	0	0	1

● Idea 3: 将每个类别转换成唯一的0-1向量

	$\phi_{m{d}}$	ϕ_{d+1}	ϕ_{d+2}	ϕ_{d+3}	ϕ_{d+4}
护士	1	0	0	0	0
管理	0	1	0	0	0
医生	0	0	1	0	0
药剂师	0	0	0	1	0
护工	0	0	0	0	1

● Idea 3: 将每个类别转换成唯一的0-1向量

	$\phi_{m{d}}$	ϕ_{d+1}	ϕ_{d+2}	ϕ_{d+3}	ϕ_{d+4}
护士	1	0	0	0	0
管理	0	1	0	0	0
医生	0	0	1	0	0
药剂师	0	0	0	1	0
护工	0	0	0	0	1

● 独热编码 one-hot encoding

● 识别特征,并编码成实数

	心率	疼痛 症状	职业	用药	年龄	收入
1	55	0	护士	止痛药	40+	123000
2	71	0	管理	降压药& 止痛药	20+	134000
3	89	1	护士	降压药	50+	140000
4	67	0	医生	无	50+	130000

● 识别特征,并编码成实数

	心率	疼痛 症状	j1,j2,j3,j4,j5	用药	年龄	收入
1	55	0	1, 0, 0, 0, 0	止痛药	40+	123000
2	71	0	0, 1, 0, 0, 0	降压药& 止痛药	20+	134000
3	89	1	0, 0, 1, 0, 0	降压药	50+	140000
4	67	0	0, 0, 0, 1, 0	无	50+	130000

	心率	疼痛 症状	j1,j2,j3,j4,j5	用药	年龄	收入
1	55	0	1, 0, 0, 0, 0	止痛药	40+	123000
2	71	0	0, 1, 0, 0, 0	降压药& 止痛药	20+	134000
3	89	1	0, 0, 1, 0, 0	降压药	50+	140000
4	67	0	0, 0, 0, 1, 0	无	50+	130000

● 是否继续使用one-hot编码?

止痛药 止痛药 & 降压药 降压药 无

● 是否继续使用one-hot编码?

		$\phi_{m{d}}$	ϕ_{d+1}	p_{d+2}	ϕ_{d+3}
T	L痛药	1	0	0	0
止痛药 & 🌣	峰压药	0	1	0	0
Bi	峰压药	0	0	1	0
	无	0	0	0	1

● 是否继续使用one-hot编码?

● 是否继续使用one-hot编码?

● 是否继续使用one-hot编码?

● 是否继续使用one-hot编码?

	心率	疼痛 症状	j1,j2,j3,j4,j5	用药	年龄	收入
1	55	0	1, 0, 0, 0, 0	止痛药	40+	123000
2	71	0	0, 1, 0, 0, 0	降压药& 止痛药	20+	134000
3	89	1	0, 0, 1, 0, 0	降压药	50+	140000
4	67	0	0, 0, 0, 1, 0	无	50+	130000

	心率	疼痛 症状	j1,j2,j3,j4,j5	m1,m2	年龄	收入
1	55	0	1, 0, 0, 0, 0	1, 0	40+	123000
2	71	0	0, 1, 0, 0, 0	1, 1	20+	134000
3	89	1	0, 0, 1, 0, 0	0, 1	50+	140000
4	67	0	0, 0, 0, 1, 0	0, 0	50+	130000

	心率	疼痛 症状	j1,j2,j3,j4,j5	m1,m2	年龄	收入
1	55	0	1, 0, 0, 0, 0	1, 0	40+	123000
2	71	0	0, 1, 0, 0, 0	1, 1	20+	134000
3	89	1	0, 0, 1, 0, 0	0, 1	50+	140000
4	67	0	0, 0, 0, 1, 0	0, 0	50+	130000

- 识别特征,并编码成实数
- 使用代表性数字(均值、中位数)表示区间
- 缺点: 忽略了数据中的细节

	心率	疼痛 症状	j1,j2,j3,j4,j5	m1,m2	年龄	收入
1	55	0	1, 0, 0, 0, 0	1, 0	45	123000
2	71	0	0, 1, 0, 0, 0	1, 1	25	134000
3	89	1	0, 0, 1, 0, 0	0, 1	55	140000
4	67	0	0, 0, 0, 1, 0	0, 0	55	130000

	心率	疼痛 症状	j1,j2,j3,j4,j5	m1,m2	d	收入
1	55	0	1, 0, 0, 0, 0	1, 0	4	123000
2	71	0	0, 1, 0, 0, 0	1, 1	2	134000
3	89	1	0, 0, 1, 0, 0	0, 1	5	140000
4	67	0	0, 0, 0, 1, 0	0, 0	5	130000

	心率	疼痛 症状	j1,j2,j3,j4,j5	m1,m2	d	收入
1	55	0	1, 0, 0, 0, 0	1, 0	4	123000
2	71	0	0, 1, 0, 0, 0	1, 1	2	134000
3	89	1	0, 0, 1, 0, 0	0, 1	5	140000
4	67	0	0, 0, 0, 1, 0	0, 0	5	130000

● 数值数据:按数据值的顺序排列,数据值的差异在某些任务中可能有意义

● 类别数据:无需考虑顺序

● 序列数据: 按数据值的顺序排列, 但数据值差异没有意义

● 数值数据:按数据值的顺序排列,数据值的差异在某些任务中可能有意义

● 类别数据: 无需考虑顺序

● 序列数据: 按数据值的顺序排列, 但数据值差异没有意义

● E.g. 李克特量表:

强烈否定	否定	中立	同意	强烈同意
1	2	3	4	5

● 数值数据:按数据值的顺序排列,数据值的差异在某些任务中可能有意义

● 类别数据: 无需考虑顺序

● 序列数据: 按数据值的顺序排列, 但数据值差异没有意义

● E.g. 李克特量表:

心率	+ + ++	+ +++	+ + ++	+ ++	÷	
		_	_		-	
4	-	Ī	=	<u>-</u>	<u>-</u>	□ ● ●
	, 1	2	3	4	5	→ 同意度

强烈否定	否定	中立	同意	强烈同意
1	2	3	4	5

● 数值数据:按数据值的顺序排列,数据值的差异在某些任务中可能有意义

● 类别数据: 无需考虑顺序

● 序列数据:按数据值的顺序排列,但数据值差异没有意义

● 数值数据:按数据值的顺序排列,数据值的差异在某些任务中可能有意义

● 类别数据: 无需考虑顺序

● 序列数据:按数据值的顺序排列,但数据值差异没有意义

● E.g. 李克特量表:

● 数值数据:按数据值的顺序排列,数据值的差异在某些任务中可能有意义

● 类别数据: 无需考虑顺序

● 序列数据: 按数据值的顺序排列, 但数据值差异没有意义

● E.g. 李克特量表:

强烈否定	否定	中立	同意	强烈同意
1	2	3	4	5
• Idea: —	-元码(温度	计编码)		

● 数值数据:按数据值的顺序排列,数据值的差异在某些任务中可能有意义

● 类别数据: 无需考虑顺序

● 序列数据:按数据值的顺序排列,但数据值差异没有意义

● E.g. 李克特量表:

心率	+ + ++	+ +++	+ + ++	+ ++	‡ _	
	_					
+			<u>_</u>	Ţ	Ţ	➡ 同意度

强烈否定	否定	中立	同意	强烈同意
1,0,0,0,0	1,1,0,0,0	1,1,1,0,0	1,1,1,1,0	1,1,1,1,1

● Idea: 一元码 (温度计编码)

- 观察线性分类器的输出
- Idea: 标准化数值数据

- 观察线性分类器的输出
- Idea: 标准化数值数据

• 对于d-th特征: $\phi_d^k = \frac{x_d^{(k)} - \text{mean}_d}{\text{stddev}_d}$ 收入

- 观察线性分类器的输出
- Idea: 标准化数值数据
 - 对于d-th特征: $\phi_d^k = \frac{x_d^{(k)} \text{mean}_d}{\text{stddev}_d}$

- 识别特征,并编码成实数
- 标准化数值数据

	心率	疼痛 症状	j1,j2,j3,j4,j5	m1,m2	d	收入
1	55	0	1, 0, 0, 0, 0	1, 0	4	123000
2	71	0	0, 1, 0, 0, 0	1, 1	2	134000
3	89	1	0, 0, 1, 0, 0	0, 1	5	140000
4	67	0	0, 0, 0, 1, 0	0, 0	5	130000

- 识别特征,并编码成实数
- 标准化数值数据

	心率	疼痛 症状	j1,j2,j3,j4,j5	m1,m2	d	收入
1	-1.5	0	1, 0, 0, 0, 0	1, 0	1	2.075
2	0.1	0	0, 1, 0, 0, 0	1, 1	-1	-0.4
3	1.9	1	0, 0, 1, 0, 0	0, 1	2	-0.25
4	-0.3	0	0, 0, 0, 1, 0	0, 0	2	1.75

● Idea: k阶泰勒多项式近似非线性边界

阶	d=1 时的项	一般情况下的项
0	[1]	
1	$[1, x_1]$	
2		
3		

● Idea: k阶泰勒多项式近似非线性边界

阶	d=1 时的 项	一般情况下的项
0	[1]	
1	$[1, x_1]$	
2	$[1, x_1, x_1^2]$	
3	$[1, x_1, x_1^2, x_1^3]$	

● Idea: k阶泰勒多项式近似非线性边界

阶	d=1 时的 项	一般情况下的项
0	[1]	[1]
1	$[1,x_1]$	$[1, x_1, \dots, x_d]$
2	$[1, x_1, x_1^2]$	$ [1, x_1, \dots, x_d, \\ x_1^2, x_1 x_2, \dots, x_{d-1} x_d, x_d^2] $
3	$[1, x_1, x_1^2, x_1^3]$	$ \begin{bmatrix} 1, x_1, \dots, x_d, \\ x_1^2, x_1 x_2, \dots, x_{d-1} x_d, x_d^2, \\ x_1^3, x_1^2 x_2, x_1 x_2 x_3, \dots, x_d^3 \end{bmatrix} $

● 训练误差为0

● 过拟合!

周运动量

心率

周运动量

- 训练误差为0
- 过拟合!
- 如何判断过拟合?
- 如何避免过拟合?

● 如何评估学习算法在某个数据集上的优劣?

- 如何评估学习算法在某个数据集上的优劣?
- Idea 1: 用整个数据集作为训练集, 并评估 训练误差

- 如何评估学习算法在某个数据集上的优劣?
- Idea 1: 用整个数据集作为训练集,并评估训练误差
- Idea 2: 保留部分数据用作测试

- 如何评估学习算法在某个数据集上的优劣?
- Idea 1: 用整个数据集作为训练集,并评估 训练误差
- Idea 2: 保留部分数据用作测试
 - 更多的训练数据: 近似全数据训练
 - 更多的测试数据:稳定性能评估
 - 单个分类器的性能不代表学习算法性能

- 如何评估学习算法在某个数据集上的优劣?
- Idea 1: 用整个数据集作为训练集, 并评估 训练误差
- Idea 2: 保留部分数据用作测试
 - 更多的训练数据: 近似全数据训练
 - 更多的测试数据:稳定性能评估
 - 单个分类器的性能不代表学习算法性能
 - trick: 打乱数据集

Cross-validate(\mathcal{D}_n , k)

将 \mathcal{D}_n 分为相同尺寸的k折 $\mathcal{D}_{n,1}$, $\mathcal{D}_{n,2}$, ..., $\mathcal{D}_{n,k}$

Cross-validate(\mathcal{D}_n , k)

将 \mathcal{D}_n 分为相同尺寸的k折 $\mathcal{D}_{n,1}$, $\mathcal{D}_{n,2}$, ..., $\mathcal{D}_{n,k}$

for i = 1 to k

Cross-validate(\mathcal{D}_n , k)

将 \mathcal{D}_n 分为相同尺寸的k折 $\mathcal{D}_{n,1}$, $\mathcal{D}_{n,2}$, ..., $\mathcal{D}_{n,k}$

for i = 1 to k

在 $\mathcal{D}_n \setminus \mathcal{D}_{n,i}$ 上训练分类器 h_i (即除了第i折)

计算 h_i 在 $\mathcal{D}_{n,i}$ 上的测试误差 $\mathcal{E}(h_i,\mathcal{D}_{n,i})$

Cross-validate(\mathcal{D}_n , k)

将 \mathcal{D}_n 分为相同尺寸的k折 $\mathcal{D}_{n,1}$, $\mathcal{D}_{n,2}$, ..., $\mathcal{D}_{n,k}$

for i = 1 to k

在 $\mathcal{D}_n \setminus \mathcal{D}_{n,i}$ 上训练分类器 h_i (即除了第i折)

计算 h_i 在 $\mathcal{D}_{n,i}$ 上的测试误差 $\mathcal{E}(h_i, \mathcal{D}_{n,i})$

Return $\frac{1}{k}\sum_{i=1}^k \mathcal{E}(h_i, \mathcal{D}_{n,i})$

Cross-validate(\mathcal{D}_n , k)

将 \mathcal{D}_n 分为相同尺寸的k折 $\mathcal{D}_{n,1}$, $\mathcal{D}_{n,2}$, ..., $\mathcal{D}_{n,k}$

for
$$i = 1$$
 to k

计算 h_i 在 $\mathcal{D}_{n,i}$ 上的测试误差 $\mathcal{E}(h_i, \mathcal{D}_{n,i})$

Return
$$\frac{1}{k}\sum_{i=1}^k \mathcal{E}(h_i, \mathcal{D}_{n,i})$$

■ trick: 打乱数据集