Advanced Encryption Standard (AES)

The AES Cipher - Rijndael

- designed by Rijmen-Daemen in Belgium
- has 128/192/256 bit keys, 128 bit data
- an iterative rather than Feistel cipher
 - processes data as block of 4 columns of 4 bytes
 - operates on entire data block in every round
- designed to have:
 - resistance against known attacks
 - speed and code compactness on many CPUs
 - design simplicity

AES Encryption Process

AES Structure

- data block of 4 columns of 4 bytes is state
- key is expanded to array of words
- has 9/11/13 rounds in which state undergoes:
 - byte substitution (1 S-box used on every byte)
 - shift rows (permute bytes between groups/columns)
 - mix columns (subs using matrix multiply of groups)
 - add round key (XOR state with key material)
 - view as alternating XOR key & scramble data bytes
- initial XOR key material & incomplete last round
- with fast XOR & table lookup implementation

AES Structure

Block Diagram of AES Encryption

Substitute Bytes Example

Input State Array

Output State Array

Substitute Bytes

Shift Rows

						1 SOL 1		
87	F2	4D	97 ~	7	87	F2	4D	97
EC	6E	4C	90		6E	4C	90	EC
4A	C3	46	E7 -	7	46	E7	4A	C3
8C	D8	95	A6 -	/ 3	A6	8C	D8	95

Mix Columns

- each column is processed separately
- each byte is replaced by a value dependent on all 4 bytes in the column
- > effectively a matrix multiplication in $GF(2^8)$ using prime poly $m(x) = x^8 + x^4 + x^3 + x + 1$

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}$$

Mix Columns

Mix Columns Example

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

$$= \{47\}$$

$$\oplus$$
 ({02} • {6E }) \oplus ({03} • {46}) \oplus {A6}

$$= {37}$$

$$\oplus (\{02\} \bullet \{46\}) \oplus (\{03\} \bullet \{A6\}) = \{94\}$$

$$\oplus (\{02\} \bullet \{A6\}) = \{ED\}$$

Add Round Key

S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}
S _{1,0}	S _{1,1}	s _{1,2}	S _{1,3}
S _{2,0}	S _{2,1}	S _{2,2}	S _{2,3}
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}

	s' _{0,0}	s' _{0,1}	s' _{0,2}	s' _{0,3}
_	s' _{1,0}	s' _{1,1}	s' _{1,2}	s' _{1,3}
_	s' _{2,0}	s' _{2,1}	s' _{2,2}	s' _{2,3}
A	s' _{3,0}	s' _{3,1}	s' _{3,2}	s' _{3,3}

AES Key Expansion

AES Round

AES Decryption

Thank you