

planetmath.org

Math for the people, by the people.

convergence in probability is preserved under continuous transformations

 $Canonical\ name \qquad Convergence In Probability Is Preserved Under Continuous Transformations$

Date of creation 2013-03-22 16:15:05 Last modified on 2013-03-22 16:15:05 Owner stevecheng (10074) Last modified by stevecheng (10074)

Numerical id 10

Author stevecheng (10074)

Entry type Theorem Classification msc 60A10

Theorem 1. Let $g: \mathbb{R}^k \to \mathbb{R}^l$ be a continuous function. If $\{X_n\}$ are \mathbb{R}^k -valued random variables converging to X in probability, then $\{g(X_n)\}$ converge in probability to g(X) also.

Proof. Suppose first that g is uniformly continuous. Given $\epsilon > 0$, there is $\delta > 0$ such that $||g(X_n) - g(X)|| < \epsilon$ whenever $||X_n - X|| < \delta$. Therefore,

$$\mathbb{P}(\|g(X_n) - g(X)\| \ge \epsilon) \le \mathbb{P}(\|X_n - X\| \ge \delta) \to 0$$

as $n \to \infty$.

Now suppose g is not necessarily uniformly continuous on \mathbb{R}^k . But it will be uniformly continuous on any compact set $\{x \in \mathbb{R}^k : ||x|| \leq m\}$ for $m \geq 0$. Consequently, if X_n and X are bounded (by m), then the proof just given is applicable. Thus we attempt to reduce the general case to the case that X_n and X are bounded.

Let

$$f_m(x) = \begin{cases} x, & ||x|| \le m \\ mx/||x||, & ||x|| \ge m \end{cases}$$

Clearly, $f_m \colon \mathbb{R}^k \to \mathbb{R}^k$ is continuous; in fact, it can be verified that f_m is uniformly continuous on \mathbb{R}^k . (This is geometrically obvious in the one-dimensional case.)

Set $X_n^m = f_m(X_n)$ and $X^m = f_m(X)$, so that X_n^m converge to X^m in probability for each m > 0.

We now show that $g(X_n)$ converge to g(X) in probability by a four-step estimate. Let $\epsilon > 0$ and $\delta > 0$ be given. For any $m \geq 0$ (which we will later),

$$\mathbb{P}(\|g(X_n) - g(X)\| \ge \delta) \le \mathbb{P}(\|g(X_n^m) - g(X^m)\| \ge \delta) + \mathbb{P}(\|X_n\| \ge m) + \mathbb{P}(\|X\| \ge m).$$

Choose M such that for $m \geq M$,

$$\mathbb{P}(\|X\| \ge m) \le \mathbb{P}(\|X\| \ge M) < \frac{\epsilon}{4}.$$

(This is possible since $\lim_{m\to\infty} \mathbb{P}(\|X\| \ge m) = \mathbb{P}(\bigcap_{m=0}^{\infty} \{\|X\| \ge m\}) = \mathbb{P}(\emptyset) = 0.$)

In particular, let m = M + 1. Since X_n^m converge in probability to X^m and X_n^m , X^m are bounded, $g(X_n^m)$ converge in probability to $g(X^m)$. That means for n large enough,

$$\mathbb{P}\big(\|g(X_n^m) - g(X^m)\| \geq \delta\big) < \frac{\epsilon}{4} \,.$$

Finally, since $||X_n|| \le ||X_n - X|| + ||X||$, and X_n converge to X in probability, we have

$$\mathbb{P}(\|X_n\| \ge m = M+1) \le \mathbb{P}(\|X_n - X\| \ge 1) + \mathbb{P}(\|X\| \ge M) < \frac{\epsilon}{4} + \frac{\epsilon}{4}$$

for large enough n.

Collecting the previous inequalities together, we have

$$\mathbb{P}(\|g(X_n) - g(X)\| \ge \delta) < \epsilon$$

for large enough n.