Challenges in Manufacturing/Quality Control and Detection of Faults in the Process of Manufacturing by Multivariate Analysis (Principle Component Analysis)

Veerendra C Angadi

Department of Electronic and Electrical Engineering, George Porter Building, Red Hill - Broad Lane, University of Sheffield - S3 7HQ

September 21, 2017

- 1 Introduction
 - Why do we look at challenges of Manufacturing?
- 2 Challenges in Manufacturing and Quality Control
 - Size
 - Orientation
 - Tolerance
 - Time
- 3 Fault Detection using Multivariate Analysis
 - Production Model and Anomalies
 - Principle Component Analysis
 - Testing the robustness of the method

- 1 Introduction
 - Why do we look at challenges of Manufacturing?
- 2 Challenges in Manufacturing and Quality Control
 - Size
 - Orientation
 - Tolerance
 - Time
- 3 Fault Detection using Multivariate Analysis
 - Production Model and Anomalies
 - Principle Component Analysis
 - Testing the robustness of the method

Why do we look at challenges in Manufacturing?

- Important to check the sanity of the manufacturing.
- Is it producing what it is supposed to be producing?
- Are the analytics used in the decision making are efficient?Eg: Confusion matrix.
- What are the cost associated w.r.t. metrology used? Eg: Time, Complexity and Design.

- 1 Introduction
 - Why do we look at challenges of Manufacturing?
- 2 Challenges in Manufacturing and Quality Control
 - Size
 - Orientation
 - Tolerance
 - Time
- 3 Fault Detection using Multivariate Analysis
 - Production Model and Anomalies
 - Principle Component Analysis
 - Testing the robustness of the method

Size

Eg: Fasteners, Sub-parts, etc.

- Items manufactured by one process must be of same/specified size.
- Whole point (!) of production (Custom or Mass).

Figure: Production batch in which item no.3 & 4 are oversized by Δx & Δy units respectively.

Orientation

Eg: PCBs, Masks, Sub-parts etc.

- Similarly, items produced by single process must be of same/specific orientation.
- Or no anomaly expected in the orientation.

Figure: Anomaly in the production of item no. 3. The item has a defect in its orientation by an angle of $\Delta\theta^{\circ}$.

Tolerance

- Needed for better judgement of quality of product. Eg: Allowance for Δx , Δy and $\Delta \theta$
- The errors occurred in measuring the parameters are due to actual physical error or analytical methods used or could be due to vibrations.
- It is important to know the source of error to precisely measure the parameters.

Time

Eg: Sorting in industries

- Very crucial when the throughput is of importance.
 Eg: Japanese recycling industry. 2 tonne in 1 hr.!
- The decision making analytical methods must have low (or no) complexity.
- Linear models are preferable.

- 1 Introduction
 - Why do we look at challenges of Manufacturing?
- 2 Challenges in Manufacturing and Quality Control
 - Size
 - Orientation
 - Tolerance
 - Time
- 3 Fault Detection using Multivariate Analysis
 - Production Model and Anomalies
 - Principle Component Analysis
 - Testing the robustness of the method

Production Model and Anomalies

Size and Orientation

Anomaly due to change in Size

Batch Size $\mathit{N}=5$, with Gaussian noise, $\mathcal{N}(\mu,\sigma^2)=\mathcal{N}(0,0.25)$

-0.5

Component 1

Anomaly due to change in Orientation

Batch Size N=5, with Gaussian noise, $\mathcal{N}(\mu,\sigma^2)=\mathcal{N}(0,0.25)$

Component 1

Robustness of PCA

- nfaults=randi([1 5]); % Number of fault parts
 % -----Random Size of Parts-----
- \blacksquare sz1 = randi([1 r/2], 1, nfaults); % Size rows
- sz2 = randi([1 c/2], 1, nfaults); % Size columns
 % -------Random Orientation------
- rt = randi([1 360], 1, nfaults); % Rotation angles
 % -----Random location of faults-----
- Pos = randi([1 N], 1, nfaults); % Locations in stack

Robustness of PCA: Size

Batch Size N=100, with Gaussian noise, $\mathcal{N}(\mu,\sigma^2)=\mathcal{N}(0,2)$

Robustness of PCA: Orientation

Batch Size N=100, with Gaussian noise, $\mathcal{N}(\mu, \sigma^2) = \mathcal{N}(0,2)$

Summary

- The PCA method is robust in identifying abnormalities in the process.
- **Random** number of faulty images and their locations, $\Delta\theta$ and Sizes have been tested.
- PCA is a linear model. Fast decision maker.
- Simpler, Cost effective metrological method of fault detection in manufacturing and quality control.
- Outlook
 - The extent of abnormalities can be studied in depth in Endmember extraction methods such as Vertex Component Analysis (VCA) and random N-findr extraction.

The University

Open Source Data I

GitHub: vcangadi1

Matlab Codes, Documentation, LATEX Slides and Data.

https://github.com/vcangadi1/Presentations

