

UNIVERSIDADE FEDERAL DE MATO GROSSO ENGENHARIA FLORESTAL

Motores, Máquinas e Implementos Florestais (40219930)

Tipos de Motores

Prof. Dr. Gabriel Agostini Orso

Recapitulando

- Matriz energética vs. Matriz elétrica
 - Fontes renováveis vs. Fontes não renováveis
- Fontes de energia utilizadas no meio rural
 - Hidráulica
 - Eólica
 - Solar
 - Nuclear
 - Combustíveis
 - Petróleo
 - Gás natural
 - Biocombustíveis
 - Etanol
 - Biodiesel

1. Tópicos da Aula

- 2. Introdução
- 3. Tipos de motores
 - 1. Tração animal
 - 2. Motores de combustão externa
 - 3. Motores de combustão interna
 - 4. Motores elétricos

2. Introdução

Motores: Motor é uma máquina que converte qualquer forma de energia em trabalho mecânico;

Os motores podem variar de acordo com a fonte de energia que será convertida em trabalho;

Tipos de motores: tração animal, combustão externa, combustão interna e elétrico.

- Utilizado desde 20.000 A.C, em que pode ser considerado a primeira ferramenta agrícola;
- Com o aumento da população, a partir 2.800 A.C, teve o registro do primeiro arado;
- A energia dos animais é proveniente dos alimentos.

- A energia fornecida pelos animais pode ser convertida em duas principais formas de utilização:
 - Esforço tractório (Retilíneo ou Circular);
 - > Transporte de carga no dorso

- https://www.youtube.com/watch?v=yLIDh5pkM2o
- https://www.youtube.com/watch?v=qxyLqKQbO3I

3.1 Tração animal (transporte de carga no dorso)

O transporte de carga no dorso vai depender principalmente

Raça
Espécie
Peso vivo
Velocidade de trabalho
Alimentação
Forma de atrelamento
Jornada
Ambiente

3.1 Tração animal

Os minifúndios representam 70% do total de propriedades rurais, e ocupam uma área de cerca de 11% do espaço agrário brasileiro.

Latifúndios representam ocupam 55% da zona rural do Brasil.

Minifúndios e estabelecimentos de agricultura familiar fazem uso de animais domésticos como fonte de potência

3.1 Tração animal (capacidade de trabalho)

A capacidade de trabalho pode ser obtida da seguinte forma, por meio de alguns parâmetros relacionados à tração:

Índice Anamorfósico

$$I = \frac{C^2}{A}$$

Em que: C = Perímetro toráxico; A = Altura da cernelha.

Se o I > 2,116 - Animal apto à tração.

Se o I < 2,116 - Animal apto à velocidade.

3.1 Tração animal (capacidade de trabalho)

3.1 Tração animal (capacidade de trabalho)

Capacidade de trabalho:

Passo do animal =
$$\frac{3}{4}$$
 . A (deslocamento - d)
Esforço Tratório = 30 . I (força - F)
Trabalho por passo Wpasso = (F . d) = 30 .I. $\frac{3}{4}$. A (Kgfm/passo)

Trabalho máximo no dia:

3.1 Tração animal (capacidade de trabalho)

Exemplo:

Um cavalo com peso de 600 Kg, perímetro toráxico (C) 2,3 m, Altura da cernelha 1,85 m (A), calcule: O índice anamorfósico, a capacidade de trabalho e o trabalho:

$$I = \frac{2,30^2}{1.85} = 2,859$$

Wpasso=30. 2,859. 0,75 . 1,85=119 Kgfm/passo

Wdia = 3200.600 = 1920000 Kgfm/dia

No passos =
$$\frac{Wdia}{Wpasso} = \frac{1920000kgfm/dia}{119kgfm/passo} = 16134passos/dia$$

3.1 Tração animal (capacidade de trabalho)

1 passo = $\frac{3}{4}$. A = 1,3875m

Portanto: d = 1,3875m . 16134 passos/dia = 22386m/dia

Jornada:

$$t = \frac{d}{v} = \frac{22386m/dia}{4995m/h} = 4,48h/dia$$

3.1 Tração animal (capacidade de trabalho)

Potência:

$$P = \frac{Wdia}{t} = \frac{1920000kgfm/dia}{4,48h|dia.3600s|h} = 119kgfm/s$$

$$P = 119kgfm|s.9,8 N|kgf = 1166W(1,6cv)$$

Pois 1cv = 735,49875 W

3.1 Tração animal (capacidade de trabalho)

Exercício

Peso: $P = 520 \, kg$

Altura da centelha: A = 1,76 m

Perímetro torácico: C = 3,09 m

Calcule:

Índice Anamorfósico: $I = \frac{C^2}{A} = ?$

Deslocamento por passo: $d = \frac{3}{4}A = ?$

Esforço Tratório: F = 30 . I = ?

Trabalho por passo: $Wpasso = F \cdot d = ?$

Trabalho no dia: Wdia = 3200 . P = ?

No passos no dia = $\frac{Wdia}{Wpasso}$ = ?

Deslocamento no dia (m/dia): ddia = ?

Velocidade: v (m/s) = ?

Velocidade: v (m/h) = ?

(Supondo 1 passo = 1s)

Jornada: $t = \frac{ddia}{v} = ?$

Potência (kgmf/s): $P = \frac{Wdia}{t.3600} = ?$

Potência (cv): $\frac{P.9,8}{735,49875} = ?$

3.1 Tração animal (capacidade de trabalho)

Exercício

Peso: $P = 520 \, kg$

Altura da centelha: A = 1,76 m

Perímetro torácico: C = 3,09 m

Calcule:

Índice Anamorfósico:
$$I = \frac{C^2}{A} = 5,425$$

Deslocamento por passo: $d = \frac{3}{4}A = 1,32m$

Esforço Tratório: F = 30 . I = 162,75

Trabalho no dia: Wdia = 3200 . P = 1664000 kgfm/dia

No passos no dia =
$$\frac{Wdia}{Wpasso}$$
 = 7745,66 passos/dia

Deslocamento no dia (m/dia): ddia = 10224,27 m

Velocidade: v (m/s) = 1,32 m/s

Velocidade: v (m/h) = 4752 m/h (Supondo 1 passo = 1s)

Jornada:
$$t = \frac{ddia}{v} = 1,63 \text{ h/dia}$$

Potência (kgmf/s):
$$P = \frac{Wdia}{t.3600} = 283,57 \text{ kgfm/s}$$

Trabalho por passo: $Wpasso = F \cdot d = 214,83 \ kgfm/passo (cv): \frac{P.9,8}{735,49875} = 3,77 \ cv$

3.1 Tração animal (Vantagens e Desvantagens)

Vantagens:

- Grande reserva de potência para sobrecargas temporárias;
- Alimentação obtida na propriedade;
- Adapta-se a todo tipo de trabalho que exige tração;
- ❖Boa tração em solos úmidos e soltos;
- O total da potência está distribuído em vários animais;
- Pode ser produzido na propriedade;
- Potência a preço relativamente baixo.

3.1 Tração animal (Vantagens e Desvantagens)

Desvantagens:

- *Requer alimentação quando não trabalha;
- Utiliza terra produtiva para pasto;
- Trabalha curtos períodos com cargas pesadas;
- Exige períodos frequentes de recuperação;
- ❖ Velocidade de trabalho limitada;
- *Pouca eficiência para acionar máquinas estacionárias.

3.2 Combustão Externa

O nome se dá combustão externa, pois a queima do combustível se dá fora do motor (Ciclo a vapor);

Em 1712, o inglês Thomas Newcomen, desenvolveu o primeiro motor a vapor que ainda era a combustão externa;

Tem como princípio de funcionamento o aquecimento da água para geração de vapor, utilizado para gerar energia mecânica no motor;

Utiliza como combustível materiais como lenha e carvão;

3.2 Combustão Externa

3.2 Combustão Externa

3.2 Combustão Externa

3.2 Combustão Externa

https://www.youtube.com/watch?v=08P5BIMqAMo

3.3 Combustão Interna

Os motores de combustão interna podem ser definidos como máquinas térmicas que transformam o calor em trabalho mecânico;

3.3 Combustão Interna

Os motores a combustão interna são aqueles em que o combustível é queimado internamente;

Um mecanismo constituído por pistão, biela e virabrequim é que transforma a energia térmica (calorífica) em energia mecânica.

3.3 Combustão Interna

O movimento alternativo (vai e vem) do pistão dentro do cilindro é transformado em movimento rotativo através da biela e do virabrequim.

3.3 Combustão Interna

Os motores de combustão interna apresentam principalmente dois tipos:

❖Ciclo Otto – A gasolina;

❖Ciclo Diesel – A óleo diesel.

3.4 Motores elétricos

- Em 1900, os carros elétricos estavam em seu auge, respondendo por cerca de um terço de todos os veículos na estrada;
- A queda nas vendas dos carros elétrico se deu em 1908 quando foi introduzido no mercado o modelo T, um automóvel a gasolina produzido por Henry Ford, esse foi o golpe fatal para os carros elétricos, pois o modelo T custava na época US\$ 650, enquanto um carro elétrico custava US\$ 1.750;
- Atualmente o interesse por carros elétricos voltou devido as questões ambientais.

3.4 Motores elétricos

Tipos de veículos elétricos:

- Veículos elétricos híbridos:
 - Possuem dois tipos de motor, um a combustão e outro elétrico;
 - O motor elétrico tem a energia usada para carregar as baterias do carro gerada pelo próprio carro, usando a frenagem regenerativa, esse processo ocorre quando é acionado o freio.

- Veículos elétricos a bateria:
 - São veículos possuem apenas um único motor, o elétrico, desta forma não há nestes veículos tanque de combustível nem cano de descarga.

3.4 Motores elétricos

Motor híbrido

3.4 Motores elétricos

Utilizam motor de indução para seu funcionamento

Efeito oposto ao do gerador elétrico

- 1) Carcaça;
- 2) Núcleo de chapas estator;
- 3) Núcleo de chapas rotor;
- 4) Tampa;
- 5) Ventilador;
- 6) Tampa defletora;
- 7) Eixo;
- 8) Enrolamento tifásico;
- 9) Caixa de ligação;
- 10)Terminais;
- 11)Rolamentos;
- 12)Barras e anéis de curto-circuito;

3.4 Motores elétricos

https://www.youtube.com/watch?v=-j50dgnR8eA&t=1s