Notas del teórico

Medida e Integración - Francisco Martinez Pería 2025

Bustos Jordi

Bustos Jordi jordibustos01@gmail.com

Contenido

6	C	lase I - 06/03	
	1.1	Integral de Riemann	
	1.2	.1.1 Desventajas de la integral de Riemann	
11	c	lase II - 11/03	
	2.1 2.2	La σ-álgebra de Borel	
16	Pa	arciales	
	3.1	Primer parcial - Primera fecha	
	3.2	Primer parcial - Segunda fecha	
	3.3	Segundo parcial - Primera fecha	
	3.4	Segundo parcial - Segunda fecha	
	3.5	Segundo parcial - Tercera fecha	10

Prefacio

"Considero a cada hombre como un deudor de su profesión, y ya que de ella recibe sustento y provecho, así debe procurar, mediante el estudio, servirle de ayuda y ornato."

Francis Bacon

Este libro recoge las notas tomadas durante el curso de Medida e Integración dictado por Francisco Martinez Pería en el primer cuatrimestre de 2025.

Estas notas se basan principalmente en la cursada del '99 brindada por Jorge Samur y material del libro *The elements of integration and Lebesgue Measure* de Robert G. Bartle.

Clase I - 06/03

1.1 Integral de Riemann

Sea $f:[a,b]\subseteq\mathbb{R}\to\mathbb{R}$ una función. Una partición P de [a,b] es un conjunto finito $\{x_0,x_1,\cdots,x_n\}$, con $a=x_0< x_1<\cdots< x_n=b$. A P le asignamos una norma $\|P\|=\max\{l(J_k)\}$. $J_k=[x_{k-1},x_k]$ y a cada P le podemos asignar una etiqueta, que es un vector $\xi=(\xi_1,\cdots,\xi_n)$ tal que $\xi_k\in J_k$. Una partición etiquetada es un par (P,ξ) ; y le podemos asignar su suma de Riemann: $S(P,\xi)=\sum_{k=1}^n f(\xi_k)l(J_k)$.

```
Definición 1.1. Una función f:[a,b]\to\mathbb{R} es integrable Riemann si \exists I\in\mathbb{R}:\forall\epsilon>0,\exists\delta>0:|S(P,\xi)-I|<\epsilon si (P,\xi) es tal que \|P\|\leq\delta
```

Ejercicio: Probar que si f es integrable Riemann entonces es acotada.

Si f es acotada, dada una partición P del dominio de f, para cada $i \in 1, \dots, n$. Sean $M_i = \sup\{f(x): x \in J_i\}$ y $m_i = \inf\{f(x): x \in J_i\}$. Luego definimos la suma superior y la suma inferior asociada a P como $S(f,P) = \sum_{k=1}^n M_k l(J_k)$ y $s(f,P) = \sum_{k=1}^n m_k l(J_k)$. Entonces podemos definir suma superior e inferior de Riemann como $\int_a^b f(x) \, dx = \sup\{S(f,P): P \text{ partición de } [a,b]\}$ y $\bar{\int}_a^b f(x) \, dx = \inf\{s(f,P): P \text{ partición de } [a,b]\}$.

Proposición 1.2. Dada una función $f : [a, b] \to \mathbb{R}$, f es integrable Riemann \iff es acotada y la suma superior es igual a la inferior.

Nota. f es integrable Riemann si:

- 1. f es continua.
- 2. f es continua salvo finitos puntos en los que existen los límites laterales.
- 3. f es monótona y acotada (en este caso pueden existir numerables discontinuidades).

1.1.1. Desventajas de la integral de Riemann

- Exige que la función oscile poco en intervalos pequeños.
- Hay funciones simples que no son integrables Riemann.
- No se comporta bien con respecto a la convergencia puntual.

Ejemplo. Sea $f:[0,1]\to\mathbb{R}:f(x)=\begin{cases} 1 & x\in\mathbb{Q}\\ 0 & x\in\mathbb{R}\setminus\mathbb{Q} \end{cases}$ f no es integrable Riemann.

Demostración. Llamemos $A = [0,1] \cap \mathbb{Q}$. A es numerable entonces $\exists \sigma : \mathbb{N} \to A$ biyección. Para cada $n \in \mathbb{N}$, sea $A_n = \{\sigma(1), \cdots, \sigma(n)\}$, $A_n \subset A_{n+1}$ y $\bigcup_{n=1}^{\infty} A_n = A$. Ahora para cada $n \geq 1$ consideramos: $f_n : [0,1] \to \mathbb{R}$ dada por

$$f_n(x) = \begin{cases} 1 & x \in A_n \\ 0 & x \in [0, 1] \setminus A_n \end{cases}$$
 (1.1)

 f_n es integrable Riemann (queda como ejercicio demostrarlo) ya que es continua salvo en los puntos de A_n y los límites laterales son siempre cero. Veamos ahora que $f_n \to f$. Sea $x \in [0,1]$

- $1. \ \mathrm{Si} \ x \in A \rightarrow x \in A_{n_0}, n_0 \in \mathbb{N} \rightarrow (\forall n > n_0) x \in A_n \rightarrow (\forall n > n_0) f_n(x) = 1 \rightarrow f_n(x) \rightarrow f(x) = 1.$
- $2. \ \mathrm{Si} \ x \notin A \to (\forall n \in \mathbb{N}) x \notin A_n \to (\forall n \in \mathbb{N}) f_n(x) = 0 \to f_n(x) \to f(x) = 0.$

 $f_n \to f$. Si conocieramos l(A) y $l([0,1] \setminus A)$ podríamos definir $\int f = 1 \times l(A) + 0 \times l([0,1] \setminus A)$.

1.2 Espacios Medibles

Dado X un conjunto arbitrario no vacío. Sea $\mathcal{P}(X)$ el conjunto de partes de X.

Definición 1.3 (σ -álgebra). Una familia \mathfrak{X} es una σ -álgebra si verifica:

- 1. $\emptyset, X \in \mathfrak{X}$.
- 2. Si $A \in X \to A^c \in \mathfrak{X}$.
- 3. Sea $(A_n)_{n\geq 1}$ es una sucesión en $\mathfrak{X}\to \bigcup_{n=1}^\infty A_n\in\mathfrak{X}.$

Si $\mathfrak X$ es una σ -álgebra de subconjuntos de $\mathfrak X$ el par $(X,\mathfrak X)$ es un espacio medible. A cada $A\in\mathfrak X$ lo llamaremos conjunto $\mathfrak X$ -medible.

Nota. Si \mathfrak{X} es una σ -álgebra de X y $A_1, \dots A_n \in \mathfrak{X}$ entonces $\bigcup_{k=1}^n A_k \in \mathfrak{X}$. Idea de la demostración: Sea $(B_m)_{m \geq 1}$ la sucesión en \mathfrak{X} definida por

$$B_{\mathfrak{m}} = \begin{cases} A_{\mathfrak{m}} & 1 \leq \mathfrak{m} \leq \mathfrak{n} \\ \emptyset & \mathfrak{m} > \mathfrak{n} \end{cases} \tag{1.2}$$

Nota. Si $(A_n)_{n\geq 1}$ es una sucesión de una σ -álgebra $\mathfrak X$ entonces $\bigcap_{n=1}^\infty A_n\in \mathfrak X$.

Demostración.
$$\bigcup_{n\geq 1}A_n^c\in\mathfrak{X}\to (\bigcap_{n\geq 1}A_n^c)^c\in\mathfrak{X}\to \bigcup_{n\geq 1}A_n\in\mathfrak{X}.$$

Ejemplo (σ-álgebras). Dado X cualquiera no vacío.

- 1. $\mathfrak{X} = {\emptyset, X}$ es una σ -álgebra.
- 2. $\mathfrak{X} = \mathcal{P}(X)$ es una σ -álgebra.
- 3. Sea $A \neq \emptyset \subset X$. Luego $\mathfrak{X} = \{\emptyset, A, A^c, X\}$ es una σ -álgebra.
- 4. Supongamos que X no es numerable y sea

$$\mathfrak{X} = \{ A \subseteq X : A \text{ es numerable \'o } A^{c} \text{ es numerable} \}$$
 (1.3)

es una σ -álgebra. Demostración ejercicio y además $\mathfrak{X} \neq \mathcal{P}(X)$.

Lema 1.4. Dado un conjunto X, sean $\mathfrak{X}_1, \mathfrak{X}_2$ dos σ -álgebras de X. Entonces $\mathfrak{X}_1 \cap \mathfrak{X}_2$ es una σ -álgebra de X. Más aún si $(\mathfrak{X}_i)_{i \in I}$ es una familia de σ -álgebras de X entonces $\bigcap_{i \in I} \mathfrak{X}_i$ es una σ -álgebra de X. Demostración, ejercicio.

Proposición 1.5. Dado un conjunto X, sea $A \neq \emptyset \subseteq \mathcal{P}(X) \to \exists \sigma$ -álgebra $\sigma(A)$ que verifica:

- 1. $A \subseteq \sigma(A)$.
- 2. \mathfrak{X} es σ -álgebra de X tal que $A\subseteq X\to \sigma(A)\subseteq \mathfrak{X}.$
- 3. $\sigma(A)$ es la única que verifica ambas propiedades en simultáneo.

La llamaremos σ -álgebra generada por A.

Demostración. Sea $\Delta = \{\mathcal{C} \subseteq \mathcal{P}(X) : \mathcal{C} \text{ es } \sigma\text{-\'algebra de } X \text{ y } A \subseteq \mathcal{C}\} \neq \emptyset \text{ pues } \mathcal{P}(X) \in \Delta.$ Llamemos $\mathfrak{X} = \bigcap_{\mathcal{C} \in \Delta} \mathcal{C} = \{B \in \mathcal{P}(X) : B \in \mathcal{C}(\forall \mathcal{C} \in \Delta)\}$. Veamos que \mathfrak{X} es una σ -álgebra de X.

- 1. $\emptyset, X \in \mathcal{C}(\forall \mathcal{C} \in \Delta) \to \emptyset, X \in \mathfrak{X}$.
- $2. \ \mathrm{Sea} \ A \in \mathfrak{X} \to (\forall \mathfrak{C} \in \Delta) A \in \mathfrak{C} \to A^c \in \mathfrak{C} (\forall \mathfrak{C} \in \Delta) \to A^c \in \mathfrak{X}.$
- 3. Sea $(A_n)_{n\geq 1}$ una sucesión en $\mathfrak X$ el argumento es análogo a los dos anteriores.
- x es una σ-álgebra que verifica ambas condiciones. Supongamos que existe otra \overline{x} σ-álgebra que verifica las dos condiciones por la propiedad uno y dos podemos deducir que $x \subseteq \overline{x}$ y $\overline{x} \subseteq x$.

Ejemplo. Consideremos $X = \mathbb{R}$ y sea $A = \{(a, b) : a, b \in \mathbb{R}, a \leq b\}$. La σ -álgebra generada por A es la σ -álgebra de Borel \mathcal{B} . A los conjuntos de \mathcal{B} los llamaremos conjuntos Borelianos. Veamos que si $\overline{A} = \{(a, +\infty) : a \in \mathbb{R}\} \to \sigma(\overline{A}) = \mathcal{B}$.

Demostración. • Dado $\alpha \in \mathbb{R}$, $(\alpha, +\infty) = \bigcup_{n \geq 1} (\alpha, \alpha + n) \in \mathcal{B} \to \overline{A} \subseteq \mathcal{B}$. Luego $\sigma(\overline{A}) \subseteq \mathcal{B}$. Por ser $\sigma(\overline{A})$ la mínima σ -álgebra que contiene a \overline{A} .

■ Dado $a, b \in \mathbb{R}$, a < b. Sabemos que $(a, b] = (a, +\infty) \cap (b, +\infty)^c \in \sigma(\overline{A})$. Luego $(a, b) = \bigcup_{n \ge 1} (a, b - \frac{1}{n}] \in \sigma(\overline{A})$. Por lo que $A \subset \sigma(\overline{A})$. $\mathcal{B} = \sigma(A) \subset \sigma(\overline{A})$. Por ser $\sigma(A)$ la mínima σ -álgebra que contiene a A.

Ejercicio demostrar que la σ -álgebra de Borel está generada también por las siguientes familias:

- 1. $\{(a, b] : a, b \in \mathbb{R}, a < b\}$.
- 2. $\{[a,b): a,b \in \mathbb{R}, a < b\}$.
- 3. $\{[a, b] : a, b \in \mathbb{R}, a < b\}$.
- 4. $\{[\alpha, +\infty) : \alpha \in \mathbb{R}\}.$
- 5. $\{(-\infty, \alpha) : \alpha \in \mathbb{R}\}.$
- 6. $\{(-\infty, \alpha] : \alpha \in \mathbb{R}\}.$

Luego, se puede ver que $\{\mathfrak{a}\}=\bigcap_{n\geq 1}[\mathfrak{a},\mathfrak{a}-\frac{1}{n})\in\mathcal{B}.$

Clase II - 11/03

2.1 La σ-álgebra de Borel

A \mathbb{R}^n lo pensamos dotado de la distancia euclídea. Si $\mathbf{x}=(x_1,\cdots,x_n)$ e $\mathbf{y}=(y_1,\cdots,y_n)$ son dos puntos de \mathbb{R}^n , la distancia entre ellos es

$$d(x,y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (2.1)

Consideramos la topología usual de \mathbb{R}^n notada τ^n al conjunto de todos los abiertos de \mathbb{R}^n

Definición 2.1. Dados $a=(a_1,\cdots,a_n),\ b=(b_1,\cdots,b_n)\in\mathbb{R}^n$ con $a_i< b_i(\forall i=1,\cdots,n)$ Definimos el intervalo abierto (a,b) como

$$(a,b) = \prod_{i=1}^{n} (a_i, b_i) = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n : a_i < x_i < b_i, (\forall i = 1, \dots, n)\}$$
 (2.2)

Definición 2.2. Dados $x=(x_1,\cdots,x_n)$ y $\varepsilon>0$ el ε -cubo centrado en x es el conjunto definido por

$$C(x,\varepsilon) = \prod_{i=1}^{n} (x - \frac{\varepsilon}{2}, x + \frac{\varepsilon}{2})$$
 (2.3)

Proposición 2.3. Sea $V \subseteq \mathbb{R}^n$ abierto e $y \in C(x, \varepsilon)$ entonces

- 1. $(\forall x \in V)(\exists \epsilon > 0)C(x, \epsilon) \subseteq V$.
- 2. $x \in C(y, \varepsilon)$.
- 3. $C(x, \varepsilon) \subseteq C(y, 2\varepsilon)$.

Definición 2.4. La σ -álgebra de Borel de \mathbb{R}^n es la σ -álgebra generada por

$$\mathcal{A} = \{ (a, b) : a, b \in \mathbb{R}^n : a_i < b_i, i = 1, \dots, n \}$$
 (2.4)

Lo notamos \mathcal{B}^n .

Queremos ver que efectivamente $\tau_n \subseteq \mathcal{B}^n$. Consideremos la clase $\beta_n = \{C(q, \frac{1}{m}) : q \in \mathbb{Q}^n, m \in \mathbb{N}\}$. β_n es numerable pues el conjunto de índices que enumera a β_n es

$$\underbrace{\mathbb{Q}^n \times \cdots \times \mathbb{Q}^n}_{n \text{ veces}} \times \mathbb{N}$$

que es numerable.

Proposición 2.5. Dado un abierto no vacío $V \subseteq \mathbb{R}^n$ existe una familia $\mathcal{A}_V \subseteq \mathcal{B}_n$ tal que $V = \bigcup_{B \in \mathcal{A}_V} B$.

Demostración. Sabemos que \mathbb{Q}^n es denso en \mathbb{R}^n . Como V es abierto y no vacío entonces $V \cap \mathbb{Q}^n \neq \emptyset$. Luego $B(x,\epsilon) \subseteq V$ y $B(x,\epsilon) \cap \mathbb{Q}^n \neq \emptyset$. Por lo tanto $B(x,\epsilon) \subset V \cap \mathbb{Q}^n$. Para cada $q \in V \cap \mathbb{Q}^n$ defino $m_q = \min\{m \in \mathbb{N} : C(q,\frac{1}{m})\} \subseteq V$. Llamemos $\mathcal{A}_V = \{C(q,\frac{1}{m_q}): q \in V \cap \mathbb{Q}^n\}$ la cual es una familia numerable. Veamos que $\bigcup_{q \in V \cap \mathbb{Q}^n} C(q,\frac{1}{m_q}) = V$.

- \subseteq es trivial.
- ⊇ Dado $x \in V$, $\exists m \in \mathbb{N} : C(x, \frac{1}{m}) \subseteq V$. Consideremos $C(x, \frac{1}{2m}) \subseteq C(x, \frac{1}{m}) \subseteq V$ que es un abierto no vacío. Resulta que $C(x, \frac{1}{2m}) \cap \mathbb{Q}^n \neq \emptyset$. Sea $q \in C(x, \frac{1}{2m}) \subseteq V \cap \mathbb{Q}^n$. Entonces $x \in C(q, \frac{1}{2m})$, en particular $m_q \leq 2m$, pues como $x \in C(q, \frac{1}{2m})$ implica que $C(q, \frac{1}{2m}) \subseteq C(x, \frac{2}{2m}) \subseteq V$. Por lo tanto $x \in C(q, \frac{1}{2m}) \subseteq C(q, \frac{1}{m_q})$ ∴ $x \in \bigcup_{q \in \mathcal{A}_V} C(q, \frac{1}{m_q}) = \bigcup_{B \in \mathcal{A}_V} B$.

Corolario 2.6. La σ -álgebra de Borel de \mathbb{R}^n coincide con la $\sigma(\tau_n)$. En particular:

- lacktriangle Todo abierto de \mathbb{R}^n es un conjunto Boreliano.
- \bullet Todo conjunto cerrado de \mathbb{R}^n es un Boreliano por ser complemento de un abierto.
- Por último, todo subconjunto numerable de \mathbb{R}^n es un Boreliano. (Dado $x \in \mathbb{R}^n, \{x\} = \bigcap_{n \geq 1} C(x, \frac{1}{n})$).

Proposición 2.7. Dado un espacio medible (X, \mathfrak{X}) y sea $X_0 \subseteq \mathfrak{X}$, entonces

- 1. $\mathfrak{X}_0 = \{A \subseteq X_0 : A = E \cap X_0 \text{ para algún } E \in \mathfrak{X}\}\$ es σ -álgebra de X_0 . En particular, si $X_0 \in \mathfrak{X} \to \mathfrak{X}_0 = \{A \subseteq X_0 : A \in \mathfrak{X}\}\$, la demostración queda como ejercicio.
- 2. Si \mathcal{A} es una familia en partes de X tal que $\mathfrak{X} = \sigma(\mathcal{A})$ entonces $\mathfrak{X}_0 = \sigma(\mathcal{A}_0)$ donde $\mathcal{A}_0 = \{A_0 \subseteq X_0 : A_0 = A \cap X_0 \text{ para algún } A \in \mathcal{A}\}.$

Demostración. Veamos primero que $\mathcal{A}_0 \subseteq \mathfrak{X}_0$. Si $A_0 \in \mathcal{A}_0 \to \exists A \in \mathcal{A} : A_0 = \mathcal{A} \cap X_0$. Como $A \in \mathcal{A} \subseteq \sigma(\mathcal{A}) = \mathfrak{X}$ resulta que $A_0 = A \cap X_0 \in \mathfrak{X}_0$. Entonces $\mathcal{A}_0 \subseteq \mathfrak{X}_0$. Por lo tanto $\sigma(\mathcal{A}_0) \subseteq \mathfrak{X}_0$.

Ahora veamos que $\mathfrak{X}_0 \subseteq \sigma(\mathcal{A}_0)$. Consideramos la clase $\mathcal{G} = \{E \subseteq X : E \cap X_0 \in \sigma(\mathcal{A}_0)\}$ y veamos que $\mathfrak{X} \subseteq \mathcal{G}$. Alcanza con probar que $\mathcal{A} \subseteq \mathcal{G}$. Pues si $A \in \mathcal{A}$, $A \cap X_0 \in \mathcal{A}_0 \subseteq \sigma(\mathcal{A}_0) \to A \in \mathcal{G}$. Si probamos que G es una G-álgebra, tendríamos que G y G

Ejemplo. Si $\beta \in B_n$ entonces la σ -álgebra de Borel de β , $B_n(\beta) = \{A \subseteq \beta : A \in B_n\}$ está generado por la familia de conjuntos de la forma $(a,b) \cap \beta$ para $a,b \in \mathbb{R}^n$ con $a_i < b_i (\forall i = 1, \dots, n)$.

2.2 Recta real extendida

Definición 2.8 (Recta real extendida). Definimos $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$. Con las siguientes convenciones:

- 1. Dado $r \in \mathbb{R}$ tenemos que $-\infty < r < +\infty$.
- 2. $^{+}_{-}\infty + ^{+}_{-}\infty = ^{+}_{-}\infty$ y $^{+}_{-}\infty + ^{-}_{+}\infty$ no está definido.
- 3. $_{-\infty}^{+} \cdot _{-\infty}^{+} = +\infty$ y $_{-\infty}^{+} \cdot _{+\infty}^{-} = -\infty$ Si $r \in \mathbb{R}$ entonces $r \cdot +\infty = +\infty$ si r > 0 y $r \cdot +\infty = -\infty$. si r < 0.
- 4. $0 \cdot +\infty = 0 = +\infty \cdot 0$.
- 5. Tampoco definimos cocientes entre infinitos o de la forma $\frac{r}{+\infty}$.

Nota. El producto no va a ser continuo en la recta real extendida. Si $a_n = +\infty \cdot \frac{1}{n} (\forall n \in \mathbb{N})$ entonces $\lim_{n \to +\infty} a_n = +\infty$. Pero $+\infty \cdot \lim_{n \to +\infty} \frac{1}{n} = +\infty \cdot 0 = 0$.

Notemos que si $A \subseteq \overline{\mathbb{R}} \to \text{inf}(A) \in \overline{\mathbb{R}} \ y \ \text{sup}(A) \in \overline{\mathbb{R}}.$

Dada una sucesión $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$, sea $\emptyset\neq L=\{x\in\overline{\mathbb{R}}:\exists x_{n_k}\to x\}\subseteq\overline{\mathbb{R}}$.

 $\begin{array}{l} \text{\textbf{Definición 2.9.}} \ \operatorname{l\acute{i}m} \sup_{n \to \infty} x_n = \sup(L) \ y \ \operatorname{l\acute{i}m} \inf_{n \to \infty} x_n = \inf(L). \\ \operatorname{Adem\'{a}s, \ si \ para \ cada} \ n \in \mathbb{N} \ \operatorname{definimos} \ \alpha_m = \sup\{x_n : n \ge m\} \ \operatorname{la \ sucesi\'{o}n} \ \alpha_m \ \operatorname{es \ decreciente} \\ y \ \operatorname{l\acute{i}m} \sup_{n \to \infty} x_n = \inf\{\alpha_m\} = \inf_{m \ge n} (\sup_{n \ge m} \{x_n\}). \\ \operatorname{An\'{a}logamente} \ \operatorname{l\acute{i}m} \inf_{n \to \infty} x_n = \sup\{\alpha_m\} = \sup_{m \ge n} (\inf_{n \ge m} \{x_n\}). \end{array}$

Proposición 2.10. Propiedades de límite superior e inferior:

- $\limsup_{n\to\infty} (-x_n) = -\liminf_{n\to\infty} x_n$
- $\liminf_{n\to\infty} (-x_n) = -\limsup_{n\to\infty} x_n$

Nota. Si $(x_n)_{n\in\mathbb{N}}$ es una sucesión en \mathbb{R} y $x\in\overline{\mathbb{R}}, x_n\to x\iff \limsup x_n=\liminf x_n=x.$

Veamos como extender \mathcal{B} a $\overline{\mathbb{R}}$.

Definición 2.11 (Borel extendida). Para cada $E \in \mathcal{B}$, sean $E_1 = E \cup \{+\infty\}$, $E_2 = E \cup \{-\infty\}$ y $E_3 = E \cup \{+\infty, -\infty\}$. Consideremos $\overline{\mathcal{B}} = \{E_1, E_2, E_3, E : E \in \mathcal{B}\} = \sigma(\{(\alpha, +\infty] : \alpha \in \mathbb{R}\})$. Probar que $\overline{\mathcal{B}}$ es σ-álgebra de $\overline{\mathbb{R}}$ se deja como ejercicio. Se la llama la σ-álgebra de Borel extendida.

Parciales

- 3.1 Primer parcial Primera fecha
- 3.2 Primer parcial Segunda fecha
- 3.3 Segundo parcial Primera fecha
- 3.4 Segundo parcial Segunda fecha
- 3.5 Segundo parcial Tercera fecha

Bibliografía

[1] Robert G. Bartle. The elements of integration and Lebesgue. John Wiley and Sons, 1995.