A second year mathematics degree

Yu Coughlin

# Contents

| L1 | 1   | Euclid    | ean spaces $\dots \dots \dots$ |
|----|-----|-----------|--------------------------------------------------------------------------------------------------------------------------------|
|    |     | 1.1       | Euclidean norm                                                                                                                 |
|    |     | 1.2       | Convergence in $\mathbb{R}^n$                                                                                                  |
|    | 2   | Contin    | nuity and limits of functions                                                                                                  |
|    |     | 2.1       | Open sets                                                                                                                      |
|    |     | 2.2       | Continuity                                                                                                                     |
|    | 3   | Deriva    | tive of maps of Euclidean spaces                                                                                               |
|    |     | 3.1       | Total derivatives                                                                                                              |
|    |     | 3.2       | Directional and partial derivatives                                                                                            |
|    |     | 3.3       | Higher order derivatives                                                                                                       |
|    | 4   |           | e and implicit function theorems                                                                                               |
|    | -   | 4.1       | Inverse function theorem                                                                                                       |
|    |     | 4.2       | Implicit function theorem                                                                                                      |
|    | 5   |           | spaces                                                                                                                         |
|    | 9   | 5.1       | Introduction                                                                                                                   |
|    |     | 5.2       |                                                                                                                                |
|    |     | 5.2 $5.3$ | 1                                                                                                                              |
|    |     |           | Open and closed sets                                                                                                           |
|    |     | 5.4       | Separable space                                                                                                                |
|    | 6   |           | nuous maps in metric spaces                                                                                                    |
|    |     | 6.1       | Convergence                                                                                                                    |
|    |     | 6.2       | Continuity of maps                                                                                                             |
|    |     | 6.3       | Metric homeomorphisms                                                                                                          |
|    | 7   | Topolo    | ogical spaces                                                                                                                  |
|    |     | 7.1       | Topologies and their spaces                                                                                                    |
|    |     | 7.2       | Bases                                                                                                                          |
|    |     | 7.3       | Closed sets                                                                                                                    |
|    |     | 7.4       | Convergence and Hausdorff property                                                                                             |
|    |     | 7.5       | Continuous maps                                                                                                                |
|    |     | 7.6       | Subspaces                                                                                                                      |
|    | 8   | Conne     | ctedness                                                                                                                       |
|    |     | 8.1       | Definition                                                                                                                     |
|    |     | 8.2       | Continuous maps                                                                                                                |
|    |     | 8.3       | Path connected sets                                                                                                            |
|    | 9   |           | actness                                                                                                                        |
|    |     | 9.1       | Covers                                                                                                                         |
|    |     | 9.2       | Sequential compactness                                                                                                         |
|    |     | 9.3       | Continuous maps                                                                                                                |
|    |     | 9.4       | Arzelá-Ascoli theorem                                                                                                          |
|    | 10  | -         |                                                                                                                                |
|    | 10  | -         |                                                                                                                                |
|    |     | 10.1      | Banach spaces                                                                                                                  |
|    |     | 10.2      | Fixed point theorem                                                                                                            |
| 1  | Gro | nine an   | nd Rings                                                                                                                       |
| _  | 1   | _         | ent groups                                                                                                                     |
|    | 1   | 1.1       | Group homomorphisms                                                                                                            |
|    |     | 1.1       | 1                                                                                                                              |
|    |     |           | 0 1                                                                                                                            |
|    |     | 1.3       | Quotient groups                                                                                                                |
|    |     | 1.4       | Isomorphism theorems                                                                                                           |

MATH50000 Contents

|    |     | 1.5       |                                                     | 15              |
|----|-----|-----------|-----------------------------------------------------|-----------------|
|    |     | 1.6       |                                                     | 15              |
|    |     | 1.7       | Torsion and <i>p</i> -primary subgroups             | 15              |
|    |     | 1.8       | Generators                                          | 15              |
|    |     | 1.9       | Classification of finitely generated Abelian groups | 16              |
|    | 2   | Group     |                                                     | 16              |
|    |     | 2.1       |                                                     | 16              |
|    |     | 2.2       |                                                     | - °<br>16       |
|    |     | 2.3       |                                                     | 17              |
|    | 3   | Rings     |                                                     | 17              |
|    | 9   | 3.1       |                                                     | $17 \\ 17$      |
|    |     | 3.2       | 8                                                   | 17<br>17        |
|    |     | 3.3       | Ŭ .                                                 |                 |
|    | 4   |           |                                                     | 18              |
|    | 4   | 0         |                                                     | 18              |
|    |     | 4.1       | 8                                                   | 18              |
|    |     | 4.2       |                                                     | 18              |
|    |     | 4.3       | v                                                   | 19              |
|    | 5   | PIDs a    |                                                     | 19              |
|    |     | 5.1       |                                                     | 19              |
|    |     | 5.2       | Principal ideal domains                             | 19              |
|    |     | 5.3       | Unique factorisation domains                        | 19              |
|    | 6   | Fields    | •                                                   | 19              |
|    |     | 6.1       |                                                     | 19              |
|    |     | 6.2       | •                                                   | 20              |
|    |     | 6.3       |                                                     | 20<br>20        |
|    |     | 6.4       |                                                     | $\frac{20}{20}$ |
|    |     | 0.4       | Existence of finite fields                          | 20              |
| 2  | Leb | esgue l   | Measure and Integration                             | 21              |
| L1 | 1   | Motiva    | _                                                   | 24              |
| ПТ | 2   | Measu     |                                                     | $\frac{24}{24}$ |
|    | 4   | 2.1       |                                                     | $\frac{24}{24}$ |
|    |     | 2.1       |                                                     | $\frac{24}{24}$ |
|    |     |           |                                                     |                 |
|    | 0   | 2.3       | 1                                                   | 24              |
|    | 3   |           |                                                     | 24              |
|    |     | 3.1       |                                                     | 24              |
|    |     | 3.2       | Outer measure                                       |                 |
|    |     | 3.3       | Restriction                                         | 24              |
|    |     | 3.4       | Lebesgue measure                                    | 24              |
|    | 4   | Measu     |                                                     | 24              |
|    |     | 4.1       | Defintion                                           | 24              |
|    |     | 4.2       | Properties                                          | 24              |
|    |     | 4.3       | Continuity                                          | 24              |
|    | 5   |           | gue integral                                        | 24              |
|    |     | 5.1       |                                                     | $^{-4}$         |
|    |     | 5.2       |                                                     | 24              |
|    | 6   |           | T. T            | $\frac{24}{24}$ |
|    | U   | 6.1       |                                                     | $\frac{24}{24}$ |
|    |     | 6.2       |                                                     | $\frac{24}{24}$ |
|    |     |           |                                                     |                 |
|    |     | 6.3       | 9                                                   | 24              |
|    | _   | 6.4       |                                                     | 24              |
|    | 7   | $L^p$ spa |                                                     | 24              |
|    |     | 7.1       | Norms                                               | 24              |
|    |     | 7.2       | $L^p$ spaces                                        | 24              |
|    |     | 7.3       | Normed vector spaces                                | 24              |
|    |     | 7.4       | Completeness                                        | 24              |
|    | 8   | Produc    | et measures                                         | 24              |
|    |     | 8.1       |                                                     | 24              |
|    |     | 8.2       |                                                     | 24              |
|    |     | 8.3       |                                                     | $\frac{24}{24}$ |
|    |     | 0.0       | 1104400 1110404100                                  | t               |

MATH50000 Contents

|   | 9      | Fubini  | i's theorem                                                                                 | 24 |
|---|--------|---------|---------------------------------------------------------------------------------------------|----|
|   |        | 9.1     | Motivations                                                                                 | 24 |
|   |        | 9.2     | Setup                                                                                       | 24 |
|   |        | 9.3     | Fubini's theorem                                                                            | 24 |
|   | 10     | Differe | entiation                                                                                   | 24 |
|   |        | 10.1    | Hardy-Littlewood maximal function                                                           | 24 |
|   |        | 10.2    | Compact support spaces                                                                      | 24 |
|   |        | 10.3    | Lebesgue's differentiation theorem                                                          | 24 |
|   | 11 Dec |         | ${\it nposition}  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  $ | 24 |
|   |        | 11.1    | Signed measures                                                                             | 24 |
|   |        | 11.2    | Hahn decomposition theorem                                                                  | 24 |
|   |        | 11.3    | Mutually singular measures                                                                  | 24 |
|   |        | 11.4    | Jordan decomposition theorem                                                                | 24 |
|   |        | 11.5    | Lebesgue decomposition theorem                                                              | 24 |
|   |        | 11.6    | Radon-Nikodym theorem                                                                       | 24 |
| 3 | Cat    | egories | S                                                                                           | 25 |
|   | 1      | _       | definitions                                                                                 | 26 |
|   |        | 1.1     | Categories                                                                                  |    |
|   |        | 1.2     | Functors                                                                                    |    |
|   |        | 1.3     | Natural transformations                                                                     | 27 |
|   |        | 1.4     | Equivalence of categories                                                                   |    |
|   |        | 1.5     | Representable functors                                                                      |    |
|   |        | 1.6     | Yoneda lemma                                                                                |    |
|   |        |         |                                                                                             |    |

## Real Analysis and Topology

Lectured by Someone Typed by Yu Coughlin Season Year

## Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

**Notation.** Unbracketed superscripts are used to label the components of vectors, with unbracketed subscripts labellin different vectors.

#### Lecture 1 Monday 30/10/2023

#### Euclidean spaces 1

**Definition 1.0.1** ( $\mathbb{R}^n$ ). The set  $\mathbb{R}^n = \{(x^1, x^2, \dots, x^n) : x^i \in \mathbb{R}, \forall i \in [1, n]\}$  will be considered with the operations to make it a real vector space.

#### Euclidean norm 1.1

**Definition 1.1.1** (Inner product). We will have the inner product on  $\mathbb{R}^n$  by  $\langle \cdot, \cdot \rangle : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  satisfying:

$$\langle x, y \rangle := \sum_{i=1}^{n} x^{i} y^{i},$$

with the Euclidean norm given by,

$$||\cdot||: \mathbb{R}^n \to [0,\infty) \text{ with } ||x|| = \sqrt{\langle x,x\rangle}.$$

**Proposition 1.1.2** (Properties of the Euclidean norm). The Euclidean norm satisfies the following properties:

- (N1) for all  $x \in \mathbb{R}^n$ ,  $||x|| \ge 0$  achieving equality iff x = 0,
- (N2) for all  $x \in \mathbb{R}^n$  and  $\lambda \in \mathbb{R}$ ,  $||\lambda x|| = |\lambda| \cdot ||x||$ ,
- (N3) for all  $x, y \in \mathbb{R}^n$ :  $||x + y|| \le ||x|| + ||y||$ ,

**Theorem 1.1.3** (Cauchy-Swartz innequality). For all  $x, y \in \mathbb{R}^n$ ,  $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$ .

**Theorem 1.1.4** (Reverse triangle innequality). For all  $x, y \in \mathbb{R}^n$ ,  $|||x|| - ||y|| | \le ||x - y||$ .

**Proposition 1.1.5.** For  $x = (x^1, x^2, \dots, x^n) \in \mathbb{R}^n$ ,

$$\max_{k \in [1,n]} \left| x^k \right| \le ||x|| \le \sqrt{n} \max_{k \in [1,n]} \left| x^k \right|.$$

Proof. Exercise

### Convergence in $\mathbb{R}^n$

**Definition 1.2.1** (Open ball). In  $\mathbb{R}^n$  we define the open ball around  $x \in \mathbb{R}^n$  of size  $r \in \mathbb{R}$  as

$$B_r(x) := \{ y \in \mathbb{R}^n : ||x - y|| < r \}.$$

This will be analoguous the the notion of open intervals used throughout analysis 1.

**Definition 1.2.2** (Sequence in  $\mathbb{R}^n$ ). A sequence in  $\mathbb{R}^n$  is an ordered list  $x_0, x_1, \ldots, x_i \ldots$  with  $x_i \in \mathbb{R}^n$  for all  $i \in \mathbb{N}$ , written  $(x_i)_{i=0}^{\infty}$ 

**Definition 1.2.3** (Convergence in  $\mathbb{R}^n$ ). We say a sequence in  $\mathbb{R}^n$ ,  $(x_i)_{i=0}^{\infty}$  converges to  $x \in \mathbb{R}^n$  iff

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \text{ such that, } \forall n > N, \; ||x_i - x|| < \epsilon$$

and we write  $x_i \to x$  as  $i \to \infty$  or  $\lim_{n \to \infty} x_i = x$ .

**Lemma 1.2.4.** The sequence of vectors in  $\mathbb{R}^n$ ,  $(x_i)_{i=0}^{\infty}$ , converges to some  $x=(x^1,x^2,\ldots,x^n)\in\mathbb{R}^n$  iff each component of  $x_i$  converges to the corresponding component in x:

$$\forall k \in [1, n] \lim_{i \to \infty} x_i^k = x^k.$$

 $\forall k \in [1,n] \ \lim_{i \to \infty} x_i^k = x^k.$  Proof. (  $\Longrightarrow$  ) Given  $\lim_{i \to \infty} x_i^k = x^k$  for all  $k \in [1,n]$  we have that for all  $\epsilon > 0$ ,  $\left| x_i^k - x^k \right| < \frac{\epsilon}{\sqrt{n}}$  for all  $i \ge N_k$ for each  $k \in [1, n]$  respectively. We take  $N = \max_{k \in [1, n]} N_k$  and now have:

$$\max_{k \in [1,n]} \left| x_i^k - x^k \right| < \frac{\epsilon}{\sqrt{n}} \implies \left| |x_i - x| \right| \le \sqrt{n} \max_{k \in [1,n]} \left| x_i^k - x^k \right| < \epsilon.$$

( $\iff$ ) Similarly, given  $\lim_{i \to \infty} x_i = x \implies ||x_i - x|| < \epsilon$  for all  $\epsilon > 0$ :

$$|x_i^k - x^k| \le \max_{k \in [1,n]} |x_i^k - x^k| \le ||x_i - x|| < \epsilon,$$

therefore  $\lim_{i\to\infty} x_i^k = x^k$  for all  $k\in[1,n]$ .

## 2 Continuity and limits of functions

#### 2.1 Open sets

**Definition 2.1.1** (Open set in  $\mathbb{R}^n$ ). A subset  $U \subseteq \mathbb{R}^n$  is open in  $\mathbb{R}^n$  iff:

$$\forall x \in U, \ \exists r > 0 \text{ such that } B_r(x) \subseteq U.$$

#### 2.2 Continuity

**Definition 2.2.1** (Continuity). Let  $A \subseteq \mathbb{R}^n$  the we have  $f: A \to \mathbb{R}^m$  continuous at some  $p \in A$  iff

$$\forall \epsilon > 0, \ \exists \delta > 0 \ \text{such that} \ \forall x \in A \ \text{with} \ ||x-p|| < \delta, \ ||f(x)-f(p)|| < \epsilon.$$

If f is continuous at all  $p \in A$  we say f is **continuous on** A.

**Theorem 2.2.2.** Let  $A \subseteq \mathbb{R}^n$  and  $B \subseteq \mathbb{R}^m$  with  $f: A \to B$  continuous at  $p \in A$ . Supporse  $g: B \to \mathbb{R}^l$  is continuous as f(p), then  $g \circ f: A \to \mathbb{R}^l$  is continuous at p.

*Proof.* Given any  $\epsilon > 0$  have  $||x-p|| < \delta_f \circ \delta_g(\epsilon) \implies ||f(x)-f(p)|| < \delta_g(\epsilon) \implies ||g \circ f(x) - g \circ f(p)|| < \epsilon$ .  $\square$ 

## 3 Derivative of maps of Euclidean spaces

#### 3.1 Total derivatives

**Definition 3.1.1** (Total derivate). Given open  $\Omega \subset \mathbb{R}^n$ , the function  $f:\Omega \to \mathbb{R}^m$  is **differentiable as**  $p \in \Omega$  iff there is a linear linear map  $\Lambda: \mathbb{R}^n \to \mathbb{R}^m$  satisfying:

$$\lim_{x \to p} \frac{||f(x) - f(p) - \Lambda(x - p)||}{||x - p||} = 0.$$

Have  $Df(p) := \Lambda$  be the **total derivative** of f at p.

**Remark 3.1.2.** Given  $f:(a,b)\to\mathbb{R}$  differentiable at  $p\in(a,b)$ , we have

$$\lim_{x \to p} \frac{||f(x) - f(p) - \Lambda(x - p)||}{||x - p||} = \lim_{x \to p} \frac{|f(x) - f(p) - \lambda \cdot (x - p)|}{|x - p|} = \lim_{x \to p} \left| \frac{f(x) - f(p)}{x - p} - \lambda \right| = 0$$

$$\implies \lim_{x \to p} \left| \frac{f(x) - f(p)}{x - p} \right| = \lambda, \text{ which satisfies the normal definition for a derivative.}$$

**Theorem 3.1.3** (Uniqueness of total derivative). If the total derivative of a function  $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$  exists, then it is unique.

**Theorem 3.1.4** (Chain rule). Let  $\Omega \subset \mathbb{R}^n$ ,  $\Omega' \subset \mathbb{R}^m$  be open and have  $g: \Omega \to \Omega'$ ,  $f: \Omega' \to \mathbb{R}^l$  differentiable at p, g(p) respectively and let  $h := f \circ g$ ,  $Dh(p) = Df(g(p)) \circ Dg(p)$ .

#### 3.2 Directional and partial derivatives

**Definition 3.2.1** (Direction derivative). Suppose  $\Omega \subseteq \mathbb{R}^n$  is open with  $f: \Omega \to \mathbb{R}^m$  differentiable at  $p \in \Omega$ . For all  $v \in \mathbb{R}^n$  the **directional derivative** of f at p in the direction of v is:

$$\frac{\partial f}{\partial v}(p) := \lim_{t \to 0} \frac{f(p+tv) - f(p)}{t} = Df(p)[v].$$

With the partial derivatives of f given by:

$$D_i f(p) := \frac{\partial f}{\partial e_i}(p)$$
, for all  $i \in [1, n]$ .

Remark 3.2.2. If the total derivative of a function exists, then so do all of its directional derivatives.

**Theorem 3.2.3.** If  $\Omega \subset \mathbb{R}^n$  is open with  $f: \Omega \to \mathbb{R}$  with all partial derivatives existing for all  $x \in \Omega$ . If the map  $x \mapsto D_i f(x)$  is continuous at  $p \in \Omega$  for all partial derivatives, then f is differentiable at p.

#### 3.3 Higher order derivatives

**Definition 3.3.1** (Second order partial derivatives). Let  $\Omega \subset \mathbb{R}^n$  be open with differentiable  $f: \Omega \to \mathbb{R}$  written as  $(f^1, f^2, \dots, f^n)^T$ , the *ik*th second partial derivative at p is

$$D_k D_i f^j(p) := \lim_{t \to 0} \frac{D_i f^j(p + te_k) - D_i f^j(p)}{t}.$$

This can naturally be extended to nth order partial derivatives.

**Theorem 3.3.2.** Given open  $\Omega \subseteq \mathbb{R}^n$  and  $f: \Omega \to \mathbb{R}^m$  differentiable on  $\Omega$ , consider the map:

$$Df: \Omega \longrightarrow \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \cong M_{n \times m}(\mathbb{R}) \cong \mathbb{R}^{m \times n}$$
,  $p \longmapsto Df(p)$ 

which we can now show to be continuous or differentiable at  $p \in \Omega$ , when differentiable we can take  $DDf(p) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ . The components of the corresponding matrix are give by:

$$[DDf(p)[h]]_{ij} = \sum_{k=1}^{n} D_k D_i f^j(p) h^k.$$

Proof.

**Remark 3.3.3.** The condition of a function being k times differentiable at a point p can is often difficult to establish, instead the continuous existence of all k-th partial derivatives in a neighbourhood of p is a prefereable question which implies the former statement.

**Theorem 3.3.4** (Schwartz's theorem). Suppose  $\Omega \subseteq \mathbb{R}^n$  is open and  $f: \Omega \to \mathbb{R}^m$  is differentiable on  $\Omega$  with  $D_i D_j f(p), D_j D_i f(p)$  both exist continuous only  $\Omega$ ; then we have

$$D_i D_j f(p) = D_j D_i f(p)$$
 for all  $p \in \Omega$ .

Proof.

**Notation 3.3.5.** We need the following necessary notation around an n-vector of non-negative integers,  $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in (\mathbb{Z}_{>0})^n$  for some  $n \in \mathbb{Z}_{>0}$ , to easily express Taylor's theorem in multiple dimensions:

- 1.  $|\alpha| = \alpha_1 + \alpha_2 + \ldots + \alpha_n$ ,
- 2.  $D^{\alpha} f = (D_1)^{\alpha_1} (D_2)^{\alpha_2} \cdots (D_n)^{\alpha_n}$ .
- 3. for some vector  $h = (h^1, h^2, \dots, h^n) \in \mathbb{R}^n$ ,  $h^{\alpha} = ((h^1)^{\alpha_1}, (h^2)^{\alpha_2}, \dots, (h^n)^{\alpha_n})$ ,
- 4.  $\alpha! = \alpha_1! \alpha_2! \cdots \alpha_n!$

**Theorem 3.3.6** (Taylor's theorem). Given  $p \in \mathbb{R}^n$  with  $f: B_r(p) \to \mathbb{R}$ , for some r > 0, k-times continuous differentiable on  $B_r(p)$  and some ||h|| < r; we have:

$$f(p+h) = \sum_{|\alpha| \le k-1} \frac{h^{\alpha}}{\alpha!} D^{\alpha} f(p) + R_k(p,h).$$

Where the remainder term,  $R_k(p,h)$  is given by:

$$R_k(p,h) = \sum_{|\alpha|=k} \frac{h^{\alpha}}{\alpha!} D^{\alpha} f(x).$$

Proof.

## 4 Inverse and implicit function theorems

#### 4.1 Inverse function theorem

**Theorem 4.1.1** (Inverse function theorem). Have  $f: \mathbb{R}^n \to \mathbb{R}^n$  continuous differentiable on  $\Omega \subseteq \mathbb{R}^n$  and Df(p) be invertible for a  $p \in \Omega$ . There exists open sets  $U \in \Omega$  and  $V \in \mathbb{R}^n$  such that  $f: U \to V$  is a bijection. Furthermore,  $f^{-1}: V \to U$  is continuous differentiable on V with:

$$Df^{-1}(y) = [Df(f^{-1}(y))]^{-1}.$$

**Lemma 4.1.2.** Have  $B_r(p) \subset \mathbb{R}^n$  with  $f: B_r(p) \to \mathbb{R}^n$  contoniously differntiable. If there exists some  $M \in \mathbb{R}_{>0}$  with  $|D_i f^i(x)| < M$  for all  $x \in B_r(p)$  then

$$||f(x) - f(y)|| \le nM||x - y||$$
, for all  $x, y \in B_r(p)$ .

Proof.

Lemma 4.1.3.

Lemma 4.1.4.

Lemma 4.1.5.

Proof of Theorem 4.1.1(Inverse function theorem).

## 4.2 Implicit function theorem

**Theorem 4.2.1** (Implicit function theorem). Given  $\Omega \subseteq \mathbb{R}^n$  and  $\Omega' \subseteq \mathbb{R}^m$  both open with  $f: \Omega \times \Omega' \to \mathbb{R}^m$  continuous differentiable on  $\Omega \times \Omega'$ . If there is some  $p \in \Omega \times \Omega'$  with f(p) = 0 and  $D_{n+j}f^i(p)$  invertible for  $1 \le i, j \le m$ . Then, there are open sets  $A \in \Omega$  and  $B \in \Omega'$  containg a and b respectively such that for all  $x \in A$  ther is a unique and differentiable  $g(x) \in B$  with f(x, g(x)) = 0.

Proof.

## 5 Metric spaces

#### 5.1 Introduction

**Definition 5.1.1** (Metric). A **metric** on some arbitrary set X is a function:

$$d: X \times X \to \mathbb{R}$$

that satisfies the following properties for all  $x, y, z \in X$ :

- (M1)  $d(x,y) \ge 0$  with d(x,y) = 0 iff x = y (positibity),
- (M2) d(x,y) = d(y,x) (symmetry),
- (M3)  $d(x,y) \le d(x,z) + d(z,y)$  (triangle innequality).

**Definition 5.1.2** (Metric space). A **metric space** is a pair consisting of a set and a metric on said set, often denoted M = (X, d). The elements of X are called **points** and for any two points of M, x, y, their **distance** (with respect to d) is d(x, y).

**Examples 5.1.3.** The following are common examples of metric spaces:

- 1. have  $X = \mathbb{R}$  and  $d_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  by  $d_1(x, y) := |x y|$ ,
- 2. have  $X = \mathbb{R}^n$  and have  $d(x, y) := \sqrt{\sum_{i=1}^n (x^i y^i)^2}$ ,
- 3. for an arbitary non-empty set X we have  $d_{\text{disc}}: X \times X \to \mathbb{R}$  by  $d_{\text{disc}}(x, y) := 0$  iff x = y and 1 otherwise (discrete metric),

- 4. have X be the set of bounded real sequences, then we can have  $d_{\infty}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  given by  $d_{\infty}(x,y) := \sup_{k \ge 1} |x^k y^k|$ ,
- 5. let X be the set of continuous real functions on [a,b] with  $d(f,g) := \int_{t=a}^{b} |f(t) g(t)| dt$ .

**Definition 5.1.4** (Induced metric). Given the metric space (X, d) and some  $Y \subset X$ , we have  $d_Y : Y \times Y \to \mathbb{R}$  with  $d_Y(x, y) = d(x, y)$  for all  $x, y \in Y$  as the **induced metric** on Y.  $(Y, d_Y)$  is a **metric subspace** of (X, d).

## 5.2 Normed vector spaces

**Definition 5.2.1** (Normed vector spaces). Given a real-vector space V, a function  $|| \cdots || : V \to \mathbb{R}$  is a **norm** on V iff the following hold for all  $u, v \in V$ :

- (N1)  $||v|| \ge 0$  with ||v|| = 0 iff  $v = 0_V$ ,
- (N2) for all  $\lambda \in \mathbb{R}$ ,  $||\lambda v|| = |\lambda| \cdot ||v||$ ,
- (N3)  $||u+v|| \le ||u|| + ||v||$ .

A vector space together with a norm is a **normed vector space**.

**Lemma 5.2.2.** If  $(V, ||\cdot||)$  is a normed vector space,  $d_{||\cdot||}: V \times V \to \mathbb{R}$  with  $d_{||\cdot||}(u, v) = ||u - v||$  is a metric on V.

Proof.

#### 5.3 Open and closed sets

**Definition 5.3.1** ( $\epsilon$ -ball). Given a point x in the metric space (X, d) and a real  $\epsilon > 0$ , the ball of radius  $\epsilon$  centred at x is the set,

$$B_{\epsilon}(x) := \{ y \in X : d(x, y) < \epsilon \},$$

which is sometimes referred to as a neighbourhood of x.

**Definition 5.3.2** (Open sets). Given metric space (X, d) a set  $U \subseteq X$  is **open** in (X, d) iff, for all  $u \in U$  there exists some  $\delta > 0$  such that  $B_{\delta}(u) \subseteq U$ .

**Proposition 5.3.3.** Have  $\mathcal{X} = (X, d)$  a metric space, the follow hold true:

- 1.  $\emptyset$  and  $\mathcal{X}$  are open in  $\mathcal{X}$ ,
- 2. for all  $x \in \mathcal{X}$  and  $\epsilon > 0$ ,  $B_{\epsilon}(x)$  is open in  $\mathcal{X}$ ,
- 3. the union of (up to uncountably many) open sets in  $\mathcal{X}$  are open in  $\mathcal{X}$ ,
- 4. the intersection of finitely many open sets in  $\mathcal{X}$  is open in  $\mathcal{X}$ .

Proof.

**Definition 5.3.4** (Topological equivalence). Two metrics d, d' on X are topologically equivalent iff  $U \subseteq X$  is open in (X, d) iff it is also open in (X, d').

**Definition 5.3.5** (Closed sets). Given the metric space (X, d) with  $U \subseteq X$ , U is **closed** iff  $X \setminus U$  is open.

**Proposition 5.3.6.** A set  $U \subseteq X$  with (X, d) a metric space is closed iff, every convergenct sequence in V has a limit in V.

Proof.

**Proposition 5.3.7.** The intersection of (up to ocuntable many) closed sets in a metric space is closed; the union of finitely many sets in a metric space is closed.

Proof.

#### 5.4 Separable space

**Definition 5.4.1** (Interior, isolated, limits and boundary points). We will have (X, d) be a metric space with  $V \subseteq X$  and  $x \in X$ :

- x is an interor point of V if there is some  $\delta > 0$  with  $B_{\delta}(x) \subseteq V$ ,
- x is an **isolated point** of V if there is some  $\delta > 0$  such that  $V \cap B_{\delta}(x) = \{x\}$ ,
- x is a **limit point** of V if for all  $\delta > 0$ , we have  $(B_{\delta}(x) \cap V) \setminus \{x\} \neq \emptyset$ ,
- x is a boundary point of V if it is a limit point, under the previous definition, and  $B_{\delta}(x) \setminus V \neq \emptyset$ .

**Remark 5.4.2.** Interior and isolated points are necessarily in V, but limit points and boundary points need not be elements of V.

**Definition 5.4.3** (Interior, closure and boundary). Once again, we will have (X, d) a metric space with  $V \subset X$ :

- the interior of V is the set of all  $v \in V$  with v an interior point of V, denoted  $V^{\circ}$ ,
- the closure of V is the union of V with the set of limit points of V, denoted  $\overline{V}$ ,
- the **boundary** of V is the set of boundary points of V, denoted  $\partial V$ .

Proposition 5.4.4.  $\partial V = \overline{V} \setminus V^{\circ}$ .

Proof.

**Definition 5.4.5** (Dense set). Have (X, d) a metric space,  $V \subseteq X$  is dense in (X, d) iff  $\overline{V} = X$ .

**Definition 5.4.6** (Separable space). We say the metric space (X, d) is **separable** if there is a countable, dense set in X.

## 6 Continuous maps in metric spaces

#### 6.1 Convergence

**Definition 6.1.1** (Convergence in metric spaces). Let  $(x_n)_{n\geq 1}$  be a sequence in the metric space (X,d). We say  $(x_n)_{n\geq 1}$  converges in (X,d) iff:

 $\exists x \in X \text{ such that, } \forall \epsilon > 0, \ \exists N \in \mathbb{Z}_{>0} \text{ with } d(x_n, x) < \epsilon \text{ for all } n \geq N.$ 

And we say  $(x_n)_{x\geq 1}$  converges to x in (X,d), or any other equivalent phrasing from analysis.

**Definition 6.1.2** (Cauchy sequences). A sequence  $(x_n)_{n\geq 1}$  is Cauchy in (X,d) iff

 $\forall \epsilon > 0, \ \exists N \in \mathbb{Z}_{>0} \text{ such that } \forall n, m \geq N, \ d(x_n, x_m) < \epsilon.$ 

**Lemma 6.1.3** (Uniqueness of limits). If the sequence  $(x_n)_{n\geq 1}$  converges to some x in the metric space (X,d) then this limit is unique.

Proof.

**Theorem 6.1.4.** Given two topologically equivalent metrics d, d' on X, the sequence  $(x_n)_{n\geq 1}$  converges in (X, d) iff it also converges in (X, d').

Proof.

#### 6.2 Continuity of maps

**Definition 6.2.1** (Continuous map). Given the metric spaces  $(X, d_X), (Y, d_Y)$  and  $f: X \to Y$ :

1. f is continuous at  $x \in X$  iff for all  $x' \in X$ :

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that } d_X(x, x') < \delta \implies d_X(f(x), f(x')) < \epsilon,$$

- 2. f is **continuous on**  $U \subseteq X$  if f is continuous at every  $u \in U$ ,
- 3. f is uniformly continuous on  $U \subseteq X$  is f is continuous on U and  $\delta = \delta(\epsilon)$  does not depend on x.

**Theorem 6.2.2.** Let  $(X, d_X), (Y, d_Y)$  be metric spaces, a function  $f: X \to Y$  is continuous iff the pre-image of any open  $U \subseteq Y$  is open in X.

**Proposition 6.2.3.** If, similarly,  $(X, d_X), (Y, d_Y)$  are metric spaces with  $f: X \to Y$ , the following are equivalent:

- 1. f is continuous at  $x \in X$ ,
- 2. if a sequence  $(x_n)_{n\geq 1}$  converges to  $x\in X$  then  $(f(x_n))_{n\geq 1}$  converges to  $f(x)\in Y$ .

Proof.

#### 6.3 Metric homeomorphisms

**Definition 6.3.1** (Homeomorphism). Have  $(X, d_X), (Y, d_Y)$  be metric spaces, a mapping  $f: X \to Y$  is a **homeomorphism** if it is a bijection with  $f, f^{-1}$  both continuous. Metric spaces with homeomorphisms between then are **homeomorphic**.

**Definition 6.3.2** (Lipschitz). Given metric spaces  $(X, d_X), (Y, d_Y)$  and  $f: X \to Y$  we say:

1. f is **Lipschitz** if there is some M > 0 with:

$$d_Y(f(x_1), f(x_2)) \le M \cdot d_X(x_1, x_2)$$
 for all  $x_1, x_2 \in X$ ,

2. f is **bi-Lipschitz** if there is some  $M_1, M_2 > 0$  with:

$$M_1 \cdot d_X(x_1, x_2) \le d_Y(f(x_1), f(x_2)) \le M_2 \cdot d_X(x_1, x_2)$$
 for all  $x_1, x_2 \in X$ ,

3. f is **isometric** if,

$$d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2)$$
 for all  $x_1, x_2 \in X$ .

Remark 6.3.3. An isometry between metric spaces is a bi-Lipschitz map with two unit constants.

## 7 Topological spaces

#### 7.1 Topologies and their spaces

**Definition 7.1.1** (Topology). Given a non-emtpy set X, we say  $\tau$ , a collection of subsets of X, is a **topology** on X if it satisfies the following conditions:

- (T1)  $\emptyset, X \subseteq \tau$ ,
- (T2) if  $X_i \in \tau$  for all i in a indexing set  $\mathcal{I}$ ,  $\bigcup_{i \in \mathcal{I}} X_i \in \tau$ ,

(T3) if 
$$X_1, X_2, ..., X_n \in \tau, \bigcap_{i=1}^m X_i \in \tau$$
.

The pair  $(X, \tau)$  is called a **topological space** with elements of X called **points** and elements of  $\tau$  called open sets. If  $x \in X$  and  $x \in U \in \tau$ , U is a neighbourhood of x.

**Examples 7.1.2.** These are some common examples of topological spaces:

1. for any set X have  $\tau = \{\emptyset, X\}$ , the trivial topology on X,

- 2. instead have  $\tau$  be the collection of subsets of X, the discrete topology on X,
- 3. if (X,d) is a metric space,  $\tau := \{U \subseteq X : U \text{ is open in } (X,d)\}$  the metric topology on X,
- 4. for a non-empty set X,  $\tau = \{\emptyset, V, X\}$  for some non-empty  $V \subset X$ ,
- 5. if  $X = \{a, b\}$  and  $\tau = \{\emptyset, \{a, b\}, \{b\}\}$  is the smallest toplogical space that is neither trivial nor discrete (called the Sierpinski topology).

**Definition 7.1.3** (Metrisability). A topological space  $(X, \tau)$  is **metrisable** iff it is the topology induced by some metric.

**Definition 7.1.4** (Coarser and finer topologies). Given two topologies  $\tau_1, \tau_2$  both on X, we say  $\tau_1$  is **coarser** than  $\tau_2$ , and equivalently  $\tau_2$  is **finer** than  $\tau_1$ , iff  $\tau_2 \subseteq \tau_1$ .

#### 7.2 Bases

**Definition 7.2.1** (Basis). Given a topological space  $(X, \tau)$  we call a subfamily  $B \subseteq \tau$  a **basis** for  $\tau$  iff every open set in  $\tau$  is the union of open sets in B.

#### 7.3 Closed sets

**Definition 7.3.1** (Closed sets). Given a topological space  $(X,\tau)$ , we say  $V\subseteq X$  is closed iff  $X\setminus V$  is open.

**Proposition 7.3.2.** Closed sets in any given topological space  $(X, \tau)$  satisfy the following:

- (C1)  $X, \emptyset$  are closed,
- (C2) if  $C_1, C_2$  are closed,  $C_1 \cup C_2$  is closed,
- (C3) the (up to uncountable) intersection of closed sets is closed.

Proof.

**Definition 7.3.3** (Closure). Given an open set U in the topological space  $(X, \tau)$  the closure of U in  $(X_{\tau})$  is given by:

$$\overline{U} := \bigcap_{\substack{V \subseteq X \\ V \text{closed}, A \subseteq V}} V.$$

**Definition 7.3.4** (Point of closure). Given the topological space  $\mathcal{X}$  with  $A \subseteq \mathcal{X}$ ,  $x \in \mathcal{X}$  is a **point of closure** of A iff every open set U with  $x \in U$  has  $U \cap A = \emptyset$ .

**Proposition 7.3.5.**  $\overline{A} = \{x \in X : x \text{ is a point of closure for } A\}.$ 

Proof.

#### 7.4 Convergence and Hausdorff property

**Definition 7.4.1** (Convergence). For a sequences  $(x_n)_{n\geq 1}$  in a topological space  $(X,\tau)$  we say  $(x_n)_{n\geq 1}$  converges (in  $(X,\tau)$ ) to  $x\in X$  iff

$$\forall T \in \tau \text{ with } x \in T, \exists N \in \mathbb{Z}_{>0} \text{ such that } \forall n > N, x_n \in T.$$

**Definition 7.4.2** (Hausdorff). A topological space  $(X, \tau)$  is **Hausdorff** iff for all  $x, y \in X$  with  $x \neq y$  there are open sets U, V containing x, y respectively with  $U \cap V = \emptyset$ . With U and V separating x and y.

**Theorem 7.4.3.** Limits of convergent sequences in Hausdorff spaces are unique.

Proof.

**Definition 7.4.4** (Regular spaces). A topological space  $(X, \tau)$  is **regular** iff for every closed subset  $C \subseteq X$  with point  $p \notin C$  there are open sets  $U, V \in \tau$  such that  $p \in U, C \subseteq V$  and  $U \cap V = \emptyset$ .

MATH50000 Contents

#### 7.5 Continuous maps

**Definition 7.5.1** (Continuous map). Given two topological spaces  $(X, \tau_X), (Y, \tau_Y)$  the map  $f: X \to Y$  is **continuous** iff  $f^{-1}(U) \in \tau_X$  for all  $U \in \tau_Y$ .

**Definition 7.5.2** (Continuity at points). The map  $f: X \to Y$ , with  $(X, \tau_X), (Y, \tau_Y)$  topological spaces, is **continuous at**  $x \in X$  iff  $f^{-1}(U) \in \tau_X$  for all  $U \in \tau_Y$  with  $f(x) \in U$ .

**Definition 7.5.3** (Homeomorphism). A **homeomorphism** between topolgical spaces is a bijection map, f, where both f and  $f^{-1}$  are continuous. Spaces with homeomorphisms between them are **topologically equivalent**.

#### 7.6 Subspaces

**Definition 7.6.1** (Subspace). If  $(X, \tau)$  is a topological space and  $A \subseteq X$ , the subspace topology on A is  $\tau_A = \{A \cap U : U \in \tau\}$ ,  $(A, \tau_A)$  is a topological space called the supspace of  $(X, \tau)$ .

Proof of topological space.  $\Box$ 

**Proposition 7.6.2** (Universal property). Given topological spaces  $(X, \tau_X), (Y, \tau_Y)$  with  $A \subseteq X$  with its supspace topology and  $g: Y \to A$ , g is continuous iff  $i \circ g$  is continuous, where i is the inclusion map,



Proof.

**Theorem 7.6.3.** Given the topological space  $(X, \tau)$  and  $A \subseteq X$ , the subspace topology is the only topology such that for all  $(Y, \tau_Y)$ ,  $g: Y \to A$  is continuous iff  $(i \circ g)$  is continuous.

Proof.

**Lemma 7.6.4.** If B is a basis for the topological space  $(X, \tau)$  and  $A \subseteq X$ ,  $B_A := \{U \cap A : U \in B\}$  is a basis for  $\tau_A$ .

Proof.

**Proposition 7.6.5.** For a metric space (X, d) with  $A \subseteq X$ , the two canonical topologies on A,  $\tau_{d_A}$  and  $T_A$  are equal.

Proof.

#### 8 Connectedness

#### 8.1 Definition

**Definition 8.1.1** (Disconnected sets). Let

MATH50000 Contents

- 8.2 Continuous maps
- 8.3 Path connected sets
- 9 Compactness
- 9.1 Covers
- 9.2 Sequential compactness
- 9.3 Continuous maps
- 9.4 Arzelá-Ascoli theorem
- 10 Completeness
- 10.1 Banach spaces
- 10.2 Fixed point theorem

## Chapter 1

# Groups and Rings

Lectured by Someone Typed by Yu Coughlin Autumn 2024

## Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

## 1 Quotient groups

#### 1.1 Group homomorphisms

**Definition 1.1.1** (Group isomorphism). Given groups G, H, a function  $f: G \to H$  is a **group isomorphism** if it is a bijective group homomorphism. If there exists an isomorphism between groups, G is **isomorphic** to H written  $G \cong H$ .

**Definition 1.1.2** (Group automorphism). Given G a group, an isomorphism  $f: G \xrightarrow{\sim} G$  is a **group automorphism**.

**Theorem 1.1.3.** Aut G (the set of automorphisms of a group G) is a group under function composition.

*Proof.* By examining the defintion of  $\operatorname{Aut} G$ , taking  $e = \operatorname{id}$  and showing association elementwise.

**Theorem 1.1.4.** Given groups G, H, if  $f: G \xrightarrow{\sim} H$  then  $f^{-1}: H \xrightarrow{\sim} G$ .

*Proof.*  $f^{-1}(f(g_1))f^{-1}(f(g_2)) = g_1g_2 = f^{-1}(f(g_1g_2)) = f^{-1}(f(g_1)g(g_2))$  is sufficient as f is surjective.  $\Box$ 

#### 1.2 Normal subgroups

**Definition 1.2.1** (Normal subgroup). A sugroup N of G is **normal**, written  $N \leq G$ , if it satisfies any of these equal properties:

- (N1) N is the kernel of some group homomorphism  $\phi$ ,
- (N2) N is stable under conjugations  $(\forall n \in N \text{ and } g \in G, gng^{-1} \in N)$ ,
- (N3) for all  $g \in G$  gN = Ng.

Proof of equivalence. (N1  $\Longrightarrow$  N2):  $\phi(gng^{-1}) = \phi(g)\phi(n)\phi(g^{-1}) = \phi(g)\phi(g)^{-1} = e_H$ .

(N2  $\Longrightarrow$  N3):  $gng^{-1} \in N \implies gn \in Ng$  by  $g^{-1}$  so  $gN \subseteq Ng$ , similarly for  $Ng \subseteq gN$  with  $g^{-1}$  replacing g.

 $(N3 \Longrightarrow N2)$ : The set of left and right cosets of G by N are isomorphic with N as the kernel.

### 1.3 Quotient groups

**Definition 1.3.1** (Quotient groups). Let  $N \subseteq G$ , the quotient group of G modulo N, written G/N, is the group with elements as left cosets of N in G with  $(g_1N) \cdot (g_2N) = (g_1g_2N)$ .

*Proof.* One can easily check this satisfies all of the group axioms.

**Remark 1.3.2.** By Lagrange's theorem |G/N| = |G|/|N|.

**Definition 1.3.3** (Simple group). A group G is **simple** if it has no normal subgroups except  $\{e_G\}$  and G.

## 1.4 Isomorphism theorems

**Theorem 1.4.1** (First isomorphism theorem). If  $f: G \to H$  is a group homomorphism,  $G/\ker f \cong \operatorname{im} f$ .

*Proof.* Have  $\phi: G/\ker f \to \operatorname{im} f$  with  $\phi: g \ker f \mapsto f(g)$ .

```
well defined: if g \ker f = h \ker f, gh^{-1} \ker f = \ker f \implies f(g) = f(gh^{-1}h) = f(gh^{-1})f(h) = f(h).
```

homomorphism:  $\phi((g \ker f)(h \ker f)) = \phi(gh \ker f) = f(gh) = f(g)f(h) = \phi(g \ker f)\phi(h \ker f)$ .

surjective: any  $h = f(g) \in \operatorname{im} f$  is clearly  $\phi(g \ker f)$  for any  $g \in G$ .

injective: if  $\phi(g \ker f) = e_H$ ,  $f(g) = e_H \implies g \in \ker f$  so  $\ker f = \{\ker \phi\} = \{e_{G/\ker \phi}\}$ . By a lemma from *Linear algebra and groups*, we now have  $\phi$  injective.

**Theorem 1.4.2** (Universal property of quotients). Let  $N \subseteq G$  and  $f: G \to H$  be a group homomorphism such that  $N \subseteq \ker f$ . There exists a *unique* homomorphism  $\tilde{f}: G/N \to H$  such that the diagram



commutes, (here  $\pi: G \to G/N$  is the projection map with  $\pi: g \to gN$ ).

*Proof.* The proof is essentially that of Theorem 1.4.1 with  $H = \operatorname{im} f$ .

**Lemma 1.4.3.** If  $N \subseteq G$  and  $N \subseteq H \subseteq G$  then  $N \subseteq H$ .

*Proof.* gN = Ng for all  $g \in G$  so also for all  $g \in H$ .

**Theorem 1.4.4** (Second isomorphism theorem). Let  $K, L \subseteq G$  with  $K \subseteq L, G/L \cong (G/K)/(L/K)$ 

*Proof.* Have  $f: G/K \to G/L$ , via same arguments in Theorem 1.4.1, f is a surjective group homomorphism,  $gK \in \ker f \implies f(gK) = gL = L$  so  $g \in L$  and  $\ker f = L/K$ . By Theorem 1.4.1,  $(G/K)/(\ker f) = (G/K)/(L/K) \cong (G/L)$ .

**Definition 1.4.5** (Frobenius product). Given  $A, B \subseteq G$  a group, the (Frobenius) product of A and B is

$$AB := \{ab \in G : a \in A, b \in B\}.$$

**Lemma 1.4.6.** Given  $H, N \leq G$  a group, N is normal  $\implies HN \leq G$  and N, H normal  $\implies HN \leq G$ .

*Proof.* 1. HN is nonempty with  $(h_1n_1)(h_2n_2) = (n_1n_3)(h_1h_2) \in NH$  for some  $n_3 \in N$  and  $(hn)^{-1} = n^{-1}h^{-1} \in Nh^{-1} = h^{-1}N \subseteq HN$ .

2. 
$$gHNg^{-1} = gHg^{-1} \cdot gNg^{-1} = HN$$
.

**Theorem 1.4.7** (Third isomorphism theorem). If  $H \leq G$  and  $N \leq G$ ,  $H/(H \cap N) \cong (HN)/N$ . This is ometimes called the *diamond theorem* due to the shape of the subgroup lattice it produces:



where arrows point to subgroups.

*Proof.* Have  $\phi: H \to G/N$  be the canonical map,  $\ker \phi = H \cap N$  as hN = N iff  $h \in N$ ,  $\operatorname{im} \phi = \{hN : h \in H\} = HN/N$ , Theorem 1.4.1 on  $\phi$  gives the result.

Note 1.4.8. The naming of the group isomorphism theorems throughout literatue is very inconsistent.

#### 1.5 Centres

**Definition 1.5.1** (Inner automorphisms). Given the group G the conjugations by elements of G form the group  $Inn G \subseteq Aut G$ .

*Proof.* Have  $\phi: G \to \operatorname{Aut}(G)$  assigning to each element in  $g \in G$  the conjugation map by G,  $\operatorname{Inn}(G) = \operatorname{im} \phi \subset \operatorname{Aut}(G)$ .

**Definition 1.5.2** (Centre of group). Given the group G the elements of G that commute with all other elements form the **centre** of G,  $Z(G) \subseteq G$ .

Proof of normality. Have  $\phi: G \to \operatorname{Aut} G$  with  $\phi: g \mapsto \operatorname{conjugation} \operatorname{by} g, \ker \phi = Z(G)$ .

**Proposition 1.5.3.** If G/Z(G) is cyclic, G is Abelian.

Proof.  $G/Z(G) = \langle aZ(G) \rangle$  for some  $a \in G$ , for all  $g \in G$   $gZ(G) = [aZ(G)]^m = a^m Z(G)$  for some  $m \in \mathbb{N}$  therefore  $a^{-m}g = z \in Z(G)$  so  $g = a^m z$  and for all  $g, h \in G$  we have  $gh = a^n z_g a^m z_h = a^{n+m} z_g z_h = a^m z_h a^n z_g = hg$ .

#### 1.6 Commutators

**Definition 1.6.1** (Commutator). For  $a, b \in G$  a group, we have  $[a, b] := aba^{-1}b^{-1}$  the **commutator** of a and b. [G, G] is the smallest subgroup of G containing all commutators of elements of G, called the **commutator** of G.

**Remark 1.6.2.** A group *G* is Abelian iff  $[G, G] = e_G$ .

**Theorem 1.6.3.** Given G a group,  $[G,G] \triangleleft G$  with its quotient in G Abelian.

**Theorem 1.6.4.** Let  $N \subseteq G$ , G/N is Abelian iff  $[G, G] \subseteq N$ .

**Theorem 1.6.5.** Given a group G with  $A, B \subseteq G$ ,  $A \cap B = \{e_G\}$  and AB = G;  $A \times B \cong G$ .

#### 1.7 Torsion and p-primary subgroups

**Definition 1.7.1** (Torsion subgroup). Given an abelian group G, the set of elemnts of G with finite order form the **torsion subgroup** of G, denoted  $G_{tors}$ . When  $G = G_{tors}$ , we call G a **torsion Abelian group**.

**Definition 1.7.2** (*p*-primary subgroups). Given an abelian group G, the set of elements of g with order p (a prime) is the p-primary subgroup of G, written  $G\{p\}$ . When  $G = G_G\{p\}$ , we call G a p-primary torsion Abelian group.

**Theorem 1.7.3.** Let the prime factorisation of  $n \in \mathbb{N}$  be  $p_1^{a_1} p_2^{a_2} \dots p_m^{a_m}$  with  $C_n$  the cyclic group of order

$$C_n \cong C_{p_1^{a_1}} \times C_{p_2^{a_2}} \times \cdots \times C_{p_m^{a_m}}.$$

Proof.

#### 1.8 Generators

**Lemma 1.8.1.** Given an indexing set  $\mathcal{I}$ , and a sequence of subgroups  $(H_i)_{i\in\mathcal{I}} \leq H$ ,  $\bigcap_{i\in\mathcal{I}} H_i \leq G$ .

**Definition 1.8.2** (Subgroup generated by a set). Given  $S \subseteq G$  a group,

$$\langle S \rangle := \left( \bigcap_{S \subseteq H \le G} H \right) \le G$$

is the subgroup of G generated by S. If  $\langle S \rangle = G$  then we say S generates G and G is finitely generated is S is finite.

#### 1.9 Classification of finitely generated Abelian groups

**Definition 1.9.1** (Free Abelian group of rank n). The Free Abelian group of rank n is the group  $\mathbb{Z}^n$  under addition. The free abelian group of rank 0 is the trivial group.

**Lemma 1.9.2.** If  $\mathbb{Z}^m \cong \mathbb{Z}^n$  then n=m, so the rank of a free abelian group is well defined.

**Lemma 1.9.3.** Any subgroup of  $\mathbb{Z}^n$  is isomorphic to some  $\mathbb{Z}^m$  for some  $m \leq m$ .

**Theorem 1.9.4.** Every finitely generated Abelian group is isomorphic to a product of finitely many cyclic groups.

**Theorem 1.9.5.** Every finitely generated Abelian group is isomorphic to a product of finitely many infinite cyclic groups and finitely many cyclic groups of prime order. The number of ininfite cyclic factors and the number of cclic factors of order  $p^r$ , where p is primse and  $r \in \mathbb{N}$  is determined solely by the group.

**Theorem 1.9.6.** A finitely generated Abelian group, G, is not cyclic iff there exists a prime p such that  $G \cong C_p \times C_p$ .

## 2 Group actions

#### 2.1 Actions

**Definition 2.1.1** (Actions). Given a group G and a set X, a group action is: a binary operation

$$\begin{array}{cccc} \cdot & : & G \times X & \longrightarrow & X \\ & (g,x) & \longmapsto & g \cdot x \end{array}$$

with  $e_G \cdot x = x$  for all  $x \in X$  and  $(g_1g_2) \cdot x = g_1 \cdot (g_2x)$  for all  $g_1, g_2 \in G$  and  $x \in X$ ; or, equivalently, a homomorphism  $\rho : G \to \operatorname{Sym}(X)$ .

**Definition 2.1.2** (Faithful set). An action of a group G on a set X is **faithful** if the map  $\rho: G \to \operatorname{Sym}(X)$  is injective.

#### 2.2 Orbit-stabiliser theorem

**Definition 2.2.1** (Orbit). Given a group G acting on a set X, the G-orbit of  $x \in X$  is

$$G(x) := \{q \cdot x : q \in G\} \subseteq X.$$

Orbits partition X into X/G.

**Definition 2.2.2** (Stabiliser). Given a group G acting on a set X, the **stabiliser** of  $x \in X$  is

$$\operatorname{Stab}_G(x) := \{ g \in G : g \cdot x = x \} \subseteq G.$$

Stabilisers also partition G.

**Remark 2.2.3** (Conjugacy classes). When G acts on itself by conjugations, orbits of G are the **conjugacy** classes,  $x^G$  of G and the stabilisers of G are the centralisers of G.

**Lemma 2.2.4.** Given a group G acting on a set X,  $\operatorname{Stab}_G(g \cdot x) = g \operatorname{Stab}_G(x) g^{-1}$ 

**Theorem 2.2.5** (Orbit-stabiliser theorem). Given a group G acting on a set X. For all  $x \in X$ , we have  $\phi_x : G/\operatorname{Stab}(x) \xrightarrow{\sim} G(x)$  by  $\phi_x : g\operatorname{Stab}(x) \mapsto g \cdot x$ , giving  $|G(x)| = |G| \cdot |\operatorname{Stab}(x)| = |G| / |\operatorname{Stab}(x)|$ .

Proof. asdfsd 
$$\frac{n}{n}$$

Corollary 2.2.6. 
$$|X| = \sum_{i=1}^{n} |G(x_i)| = \sum_{i=1}^{n} [G : Stab(x_i)].$$

Corollary 2.2.7 (Cayley's theorem). Let G be a finite group of order n. Then  $S_n \cong \operatorname{Sym}(G)$  contains a finite subgroup isomorphic to G.

Corollary 2.2.8 (Cauchy's theorem). Let G be a finite group of order n and let p be a prime factor of n. Then G contains an element of order p.

**Definition 2.2.9** (p-group). A finite group G is a p-group is the order of G is a power of prime p.

**Theorem 2.2.10.** Let G be a p-group,  $Z(G) \neq \{e_G\}$ .

Proof.

#### 2.3 Jordan's theorem

**Definition 2.3.1** (Transitive action). Given a group G acting on a set X, if X is a G-orbit then we say G acts **transitively** on X.

**Definition 2.3.2** (Fixed points). Given a group G acting on a set X, an element  $x \in X$  is a fixed point of  $g \in G$  iff  $g \cdot x = x$ . We have  $Fix(g) \subseteq X$  the set of fixed points of  $g \in G$  satisfying:

$$\operatorname{Stab}(x) \leftarrow_{\overline{\pi_G}} \{(x,g) \in X \times G; \ g \cdot x = x\} \xrightarrow{\pi_X} \operatorname{Fix}(g) \ .$$

**Theorem 2.3.3** (Jordan's theorem). Let G act transitively on a finite set X, we have

$$\sum_{g \in G} |\operatorname{Fix}(g)| = |G|,$$

with there being some element  $g \in G$  such that  $Fix(g) = \emptyset$ .

Corollary 2.3.4 (Burnside's lemma). Given a group G acting on a finite set X:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|.$$

## 3 Rings

#### 3.1 Rings

**Definition 3.1.1** (Ring). A ring (with 1) is a set R with elements 0,1 and binary operations  $+,\times$  such that

- 1. (R, +) is an abelian group with identity 0,
- 2.  $(R, \times)$  is a semigroup with 1 as the identity,
- 3. both left and right multiplication are distributive over addition.

**Examples 3.1.2.**  $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$  are all rings with their normal operations.  $\mathbb{R}[x]$  is the set of real-valued polynomials and is also a ring.

**Definition 3.1.3** (Subring). A subset of a ring wich is itself a ring under the same operators with the same 1 is a **subring**.

**Definition 3.1.4** (Commutative ring). A ring, R, is **commutative** iff a + b = b + a for all  $a, b \in \mathbb{R}$ .

**Definition 3.1.5** (Invertible). An element x of a ring R is invertible if there exists  $y, z \in R$  with yx = zx = 1.

**Definition 3.1.6** (Division ring). A ring R is called a **division ring** if  $R \setminus \{0\}$  is a group under multiplication with identity 1.

**Remark 3.1.7.** A commutative division ring is a field.

**Definition 3.1.8** (Integral domain). A commutative ring R is an integral domain iff  $0 \neq 1$  and for all  $a, b \in R$   $ab = 0 \implies a = 0$  or b = 0.

#### 3.2 Ring homomorphisms

**Definition 3.2.1** (Ring homomorphism). Let R, S be rings, a function  $f: R \to S$  is a **ring homomorphism** iff it satisfies

- 1.  $f:(R,+)\to(S,+)$  is a group homomorphism,
- 2. f(xy) = f(x)f(y) for all  $x, y \in R$ ,
- 3.  $f(1_R) = 1_S$ .

**Lemma 3.2.2.** Given the ring homomorphism  $f: R \to S$  the kernel of f is a subgroup of (R, +) which satisfies  $xr, rx \in \ker f$  for all  $x \in \ker f$  and  $r \in R$ .

#### 3.3 Ideals

**Definition 3.3.1** (Ideal). For a ring R, a subset  $I \subseteq R$  is a **left ideal**, denoted  $I \subseteq R$  iff

- 1. (I, +) is a subgroups of (R, +),
- 2. if  $r \in R$  and  $i \in I$ ,  $ri \in R$ .

Similarly, for **right ideals**. A subset *I* is a bi-ideal if it is both a left and right ideal.

**Definition 3.3.2** (Quotient ring). Given ring R with proper ideal  $I \subset R$ , The quotient abelian group R/I, with natural multiplication, forms the **quotient ring** of R by I.

**Definition 3.3.3** (Principal ideal). Given a commutative ring R and some  $a \in R$ ,  $aR := \{ax : x \in R\}$  is an ideal called a **principal ideal** with **generator** a.

**Definition 3.3.4.** A bijective ring homomorphism is a **ring isomorphism**, a ring homomorphism  $f: R \to R$  is a **ring endomorphism**, an isomorphic ring endomorphism is **ring automorphism**.

**Proposition 3.3.5.** Given the ring homomorphism  $f: R \to S$ ,  $f(R) = \operatorname{im} R$  is a subring of S which is isomorphic to  $R/\ker f$ .

**Proposition 3.3.6.** A commutative ring is a field iff its only proper ideal is the trivial / zero ideal.

**Proposition 3.3.7.** Given  $f: R \to S$  a ring homomorphism with J a left (or right or bi) ideal of S,  $f^{-1}(J)$  is a left (respectively) ideal of R.

**Definition 3.3.8** (Prime ideal). Let R be a commutative ring, a proper ideal  $I \subset R$  is a **prime ideal** iff  $ab \in I$  for  $a, b \in R \implies a \in I$  or  $b \in I$ .

**Theorem 3.3.9.** If  $I \subset R$  is a prime ideal, R/I is an integral domain

**Definition 3.3.10** (Maximal ideal). A proper ideal I in a commutative rign R is **maximal** iff there are no other proper ideals J with  $I \subset J$ .

**Theorem 3.3.11.** I is a maximal ideal of R iff R/I is a field.

## 4 Integral domains

Throughout this section we will always have R be an integral domain.

#### 4.1 Integral domains

**Theorem 4.1.1.**  $ab = ac \implies b = c$  for all  $a, b, c \in R$ . (the cancellation law holds for all integral domains)

**Proposition 4.1.2.** For  $a, b \in R$ , aR = bR iff a = br for some  $r \neq 0 \in R$ .

Proof.

**Theorem 4.1.3.** All fields are integral domains and all finite integral domains are fields.

**Remark 4.1.4.** The ring  $\mathbb{Z}/n\mathbb{Z}$  is an integral domain iff it is a field  $\iff$  n is prime.

**Definition 4.1.5** (Unit).  $r \in R$  is a **unit** if there exists some  $y \in R$  with  $x \times y = 1_R$ . We write  $R^{\times}$  for the group of units in R under multiplication.

**Definition 4.1.6** (Irreducible).  $r \in R \setminus R^{\times}$  is **irreducible** if it cannot be written as the product of two elements of  $R \setminus R^{\times}$ .

#### 4.2 Charateristic

**Lemma 4.2.1.** For any ring S there is a uniquer ring homomorphism  $f: \mathbb{Z} \to S$ .

*Proof.* Have  $f(0_R) = 0$ ,  $f(1) \to 1_S$  and inductively have f(n) be the sum of  $1_S$  n times.

**Lemma 4.2.2.** The kernel of the unique homomorphism  $\mathbb{Z} \to \mathbb{R}$  is either  $\{0\}$  or  $p\mathbb{Z}$  for some prime p.

**Definition 4.2.3** (Charateristic). The **characteristic** of R is the unique non-negative generator of the kernel of  $\mathbb{Z} \to R$ , denoted char R.

#### 4.3 Polynomial rings

**Definition 4.3.1** (Polynomial ring). R[t] is, formally, the set of infinite sequences of elements of R with finitely many non-zero terms, but more helpfully: the set of polynomials in t with coefficients in R.

**Definition 4.3.2** (Polynomial degree). The **degree** of a polynomial,  $r_0 + r_1t + r_2t^2 + \ldots + r_it^i + \ldots \in R[t]$ , is the unique maximum  $i \in \mathbb{N}$  with  $r_i \neq 0$  and 0 otherwise.

**Lemma 4.3.3.** Given  $p(t), q(t) \in R$ ,  $\deg(p(t)q(t)) = \deg(p(t)) + \deg(q(t))$ , R[t] is an integral domain and  $R[t]^* = R^*$ .

**Theorem 4.3.4.** If k is a field with  $a(t), b(t) \in k[t]$  with  $b(t) \neq 0$ , there exists  $q(t), r(t) \in k[t]$  such that a(t) = q(t)b(t) = r(t) with  $\deg(r(t)) < \deg(b(t))$  and q(t), r(t) unique.

## 5 PIDs and UFDs

#### 5.1 Euclidian domains

**Definition 5.1.1** (Euclidian domain). An integral domain R is a Euclidian domain if there exists some  $\phi: R^* \to \mathbb{N}_0$  satisfying:

- 1.  $\phi(ab) \leq \phi(a)$  for all  $a, b \neq 0$ ,
- 2. for all  $a, b \in R$  there exists  $q, r \in R$  with a = qb + r with r = 0 or  $\phi(r) \leq \phi(b)$ .

#### 5.2 Principal ideal domains

**Definition 5.2.1** (Principal integral domain). An integral domain R is a **principal integral domain** iff every ideal of R is principal.

**Theorem 5.2.2.** R is a Euclidian domain  $\implies R$  is a principal integral domain.

Proof.

Corollary 5.2.3. F is a field  $\implies F[t]$  is a PID.

#### 5.3 Unique factorisation domains

**Definition 5.3.1** (Unique factorisation domain). An integral domain R is a **unique factorisation domain** iff every element of  $R \setminus R^{\times}$  can be written as the product of a single unit and finitely many irreducibles in R which is unique up to rearrangement.

**Definition 5.3.2** (Division). Given a, b in the integral domain R, we say a divides b, written a|b iff b = ra for some  $r \in R$  and **properly divides** if  $r \notin R^{\times}$ .

**Lemma 5.3.3.** Given  $p, a, b \in R$  a UFD, if p is irreducible then  $p|ab \implies p|a$  or p|b.

**Lemma 5.3.4.** There is no infinite sequence of non-zero  $r_1, r_2, \ldots \in R$  a UFD such that  $r_{n+1}$  properly divides r for all  $n \ge 1$ .

**Theorem 5.3.5.** The integral domain  $\mathbb{R}$  is a UFD iff the properties in Lemma 5.3.3 and Lemma 5.3.4 hold.

**Theorem 5.3.6.** Every principal ideal domain is a unique factorisation domain.

#### 6 Fields

#### 6.1 Vector spaces

Throughout this section let k be a field.

**Definition 6.1.1** (Vector space). A k-vector space V is an abelian group with an action of k on the elements of V satisfying

- 1.  $1_k v = v$  for all  $v \in V$ ,
- 2. (x+y)V = xv + yv for all  $x, y \in k$  and  $v \in V$ ,

3. x(v+w) = xv + xw for all  $x \in k$  and  $v, w \in V$ .

**Proposition 6.1.2.** If  $\operatorname{ch} k = 0$  then k contains a unique subfield isomorphic to  $\mathbb{Q}$ . Otherwise, if  $\operatorname{ch} k = p$  then k contains a unique subfield isomorphic to  $\mathbb{F}_p$ .

**Theorem 6.1.3.** Every finite field has  $p^n$  elements for some prime p and  $n \in \mathbb{N}$ .

#### 6.2 Field extensions

**Definition 6.2.1** (Field extension). A field extension F of k is a k-vector space.

**Proposition 6.2.2.** All homomorphisms between fields and rings are injective.

*Proof.* The only possible maps between fields are field extensions, the only proper ideal of a field is the zero ideal.  $\Box$ 

**Definition 6.2.3** (Finite field extension). An extension of the fields  $k \subset K$  is **finite** iff K is a finite dimensional vector space over k with  $\dim K$  the **degree** of the extension

Remark 6.2.5. Degree 2 and 3 field extensions are called quadratics and cubics respectively.

#### 6.3 Constructing fields

**Lemma 6.3.1.** Given R a PID with  $a \neq 0 \in R$ , aR is maximal iff a is irreducible.

Proof.

Corollary 6.3.2. Given R a PID with reducible  $a \in R$ , R/aR is a field.

**Theorem 6.3.3.** A polynomial  $f(t) \in k[t]$  of degree 2 or 3 is irreducible iff it has no root in k.

**Definition 6.3.4** (Non-Square).  $a \in k$  is non-square if there is no element  $b \in k$  with  $b^2 = a$ .

**Lemma 6.3.5.** Let p be an odd prime. The field  $\mathbb{F}_p$  contins (p-1)/2 non-squares. For all non-square  $a \in \mathbb{F}_p$ ,  $t^2 - a$  is irreducible in  $\mathbb{F}_p[t]$ .

**Theorem 6.3.6.** For all  $p(t) \in k[t]$ , there exists a finite field extension  $k \subset K$  such that:

$$p(t) = c \prod_{i=1}^{n} (t - a_i),$$

for some  $c \in k^{\times}$  and  $a_i \in K$  for all  $i \in [1, n]$ .

#### 6.4 Existence of finite fields

**Theorem 6.4.1.** Let k have characteristic  $p \neq 0$ , for all  $x, y \in k$  and  $m \in \mathbb{Z}^{\geq 0}$ ,

$$(x+y)^{p^m} = x^{p^m} + y^{p^m}.$$

**Definition 6.4.2** (Derivative). Let  $p(t) = a_0 + a_1 t + \ldots + a_n t^n \in k[t]$ , the derivative of p(t) is

$$p'(t) := a_1 + 2a_2t + \ldots + na_nt^{n-1}.$$

**Lemma 6.4.3.** Let  $p(t) = (x - a_1)(x - a_2) \dots (x - a_n) \in k[t]$ ,  $a_i \neq a_j$  for all  $i \neq j$  iff p(t) and p'(t) have no common roots.

**Theorem 6.4.4.** For all prime p and natural n, there exists a field with  $p^n$  elements.

## Chapter 2

# Lebesgue Measure and Integration

Lectured by Someone Typed by Yu Coughlin Season Year

## Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

Lecture 1 Monday 30/10/2023

## 1 Motivation

- 2 Measures
- 2.1 Algebras and  $\sigma$ -algebras
- 2.2 Measures
- 2.3 Complete measure spaces
- 3 Constructing measures
- 3.1 Pre-measure
- 3.2 Outer measure
- 3.3 Restriction
- 3.4 Lebesgue measure
- 4 Measurable functions
- 4.1 Defintion
- 4.2 Properties
- 4.3 Continuity
- 5 Lebesgue integral
- 5.1 Construction
- 5.2 Properties
- 6 Convergence
- 6.1 Monotone convergence
- 6.2 Fatou's lemma
- 6.3 Lebesgue dominated convergence
- 6.4 Vitali's theorem
- 7  $L^p$  spaces
- 7.1 Norms
- 7.2  $L^p$  spaces
- 7.3 Normed vector spaces
- 7.4 Completeness
- 8 Product measures
- 8.1 Products of sets
- 8.2  $\sigma$ -algebras on product sets

24

- 8.3 Product measures
- 9 Fubini's theorem
- 9.1 Motivations
- 9.2 Setup
- 9.3 Fubini's theorem
- 10 Differentiation

## Chapter 3

# Categories

Lectured by noone Typed by Yu Coughlin Season Year

## Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

## 1 Basic definitions

#### 1.1 Categories

**Definition 1.1.1** (Category). A category  $\mathcal{C}$  contains the following data:

- 1. a collection of objects,  $Ob(\mathcal{C})$ ,
- 2. for every  $x, y \in \text{Ob}(\mathcal{C})$  a collection of morphisms  $\text{Hom}_{\mathcal{C}}(x, y)$  from x to y,
- 3. an identity morphism  $id_x \in Hom_{\mathcal{C}}(x,x)$  for all  $x \in Ob(\mathcal{C})$ ,
- 4. a composition map of morphisms,  $\circ : \operatorname{Hom}_{\mathcal{C}}(y,z) \times \operatorname{Hom}_{\mathcal{C}}(x,y) \to \operatorname{Hom}_{\mathcal{C}}(x,z)$  for all  $x,y,z \in \operatorname{Ob}(\mathcal{C})$ .

Which satisfy the two axioms:

- 1. for all  $f \in \operatorname{Hom}_{\mathcal{C}}(x,y)$  with  $x,y \in \operatorname{Ob}(\mathcal{C})$  we have  $f \circ \operatorname{id}_x = f = \operatorname{id}_y \circ f$ ,
- 2. for compatible morphisms f, g, h we have  $f \circ (g \circ h) = (f \circ g) \circ h$ .

We will use the shorthand  $x \in \mathcal{C}$  for  $x \in \text{Ob } \mathcal{C}$ , Hom(x,y) for  $\text{Hom}_{\mathcal{C}}(x,y)$  when  $\mathcal{C}$  is obvious and End(x) for Hom(x,x).

**Note 1.1.2.** Note that in our definition the term *collection* is used instead of set, this is commonplace and necessary to prevent paradoxes when constructing the category of sets.

**Examples 1.1.3.** The following are all categories:

- 1. Set with sets as objects and functions as their morphisms,
- 2. Grp with groups as objects and their homomorphisms as morphisms,
- 3. Ab, Grp restricted to abelian groups,
- 4. for a field k, Vectk with k-vector spaces as objects and linear transformations as morphisms,
- 5. Cat with categories as objects and soon to be defined functors as morphisms,
- 6. Top, Rng, Meas, Poset, Man with their objects and morphisms all defined similarly
- 7. Given a category  $\mathcal{C}$ ,  $\mathcal{C}^{op}$  wich has the same opjects as  $\mathcal{C}$  but  $\operatorname{Hom}_{\mathcal{C}^{op}}(x,y) = \operatorname{Hom}_{\mathcal{C}}(y,x)$  for all  $x,y \in \mathcal{C}$ ,
- 8. Any set X with objects as elements in X and no morphisms except the identities
- 9.  $(\mathbb{R}, \leq)$  with objects as  $\mathbb{R}$  and a morphisms from x to y iff  $x \leq y$  for all  $x, y \in \mathbb{R}$ .

**Definition 1.1.4** (Isomorphism). A morphism  $f \in \text{Hom}(x, y)$  is an **isomorphism** iff there is a morphism  $f^{-1} \in \text{Hom}(y, x)$  with  $f \circ f^{-1} = \text{id}_y$  and  $f^{-1} \circ f = \text{id}_x$ .

#### 1.2 Functors

**Definition 1.2.1** ((Covariant) Functor). Given categories  $\mathcal{C}, \mathcal{D}$  a (covariant) functor  $F : \mathcal{C} \to \mathcal{D}$  is the following data:

- 1. a map  $Ob(\mathcal{C}) \to Ob(\mathcal{D})$  (also denoted F),
- 2. for any two objects  $x, y \in \mathcal{C}$  a map  $\operatorname{Hom}_{\mathcal{C}}(x, y) \to \operatorname{Hom}_{\mathcal{D}}(F(x), F(y))$  (also also denoted F)

satisfying the properties:

- 1. for all  $x \in \mathcal{C}$ ,  $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$ ,
- 2. for all x, y, z with f, g in  $\operatorname{Hom}_{\mathcal{C}}(y, z), \operatorname{Hom}_{\mathcal{C}}(x, y), F(f \circ g) = F(f) \circ F(g)$ .

**Definition 1.2.2** (Contravariant functor). A **contravariant functor** from  $\mathcal{C}$  to  $\mathcal{D}$  is a covariant functor from  $\mathcal{C}^{op}$  to  $\mathcal{D}$ .

**Definition 1.2.3** (Hom-functor). The **hom-functor** for a given category  $\mathcal{C}$  is  $\operatorname{Hom}_{\mathcal{C}}: \mathcal{C}^{op} \times \mathcal{C} \to \operatorname{Set}$  sending a pair of elements  $c, d \in \mathcal{C}$  to  $\operatorname{Hom}_{\mathcal{C}}(c, d)$ .

#### 1.3 Natural transformations

**Definition 1.3.1** (Natural transformation). Given categories  $\mathcal{C}, \mathcal{D}$  with functors  $F, G : \mathcal{C} \to \mathcal{D}$ , a **natural** transformation  $\eta : F \to G$  consists of morphisms  $\eta_x$  for all  $x \in \mathcal{C}$  such that the diagram,

$$F(x) \xrightarrow{F(f)} F(y)$$

$$\downarrow^{\eta_x} \qquad \qquad \downarrow^{\eta_y}$$

$$G(x) \xrightarrow{G(f)} G(y)$$

commutes for all  $x, y \in \mathcal{C}$  and  $f \in \text{Hom}_{\mathcal{C}}(x, y)$ .

**Remark 1.3.2.** By constructing the category of functors from  $\mathcal{C}$  to  $\mathcal{D}$ , denoted  $\text{Fun}(\mathcal{C}, \mathcal{D})$ , morphisms are natural transformations. **Natural isomorphisms** are defined as isomorphisms in this category.

#### 1.4 Equivalence of categories

**Definition 1.4.1** (Equivalence). Given categories  $\mathcal{C}, \mathcal{D}$  an **equivalence of categories** is a pair of functors  $F: \mathcal{C} \to \mathcal{D}$  and  $G: \mathcal{D} \to \mathcal{C}$  with natural isomorphisms  $FG \xrightarrow{\sim} \mathrm{id}_{\mathcal{D}}$  and  $\mathrm{id}_{\mathcal{C}} \xrightarrow{\sim} GF$ .

**Definition 1.4.2** (Adjunction). An **adjuction** between categories  $\mathcal{C}, \mathcal{D}$  is a pair of functors  $F: \mathcal{C} \to \mathcal{D}$  and  $G: \mathcal{D} \to \mathcal{C}$  such that for all  $x \in \mathcal{C}$  and  $y \in \mathcal{D}$ , there exists an  $\eta_{x,y} : \operatorname{Hom}_{\mathcal{C}}(x, G(y)) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{D}}(F(x), y)$  such that the diagram

$$\operatorname{Hom}_{\mathcal{D}}(F(x'), y) \xrightarrow{\circ F(f)} \operatorname{Hom}_{\mathcal{D}}(F(x), y) \xrightarrow{g \circ} \operatorname{Hom}_{\mathcal{D}}(F(x), y')$$

$$\downarrow^{\eta_{x', y}} \qquad \downarrow^{\eta_{x, y}} \qquad \downarrow^{\eta_{x, y'}}$$

$$\operatorname{Hom}_{\mathcal{C}}(x', G(y)) \xrightarrow{\circ f} \operatorname{Hom}_{\mathcal{C}}(x, G(y)) \xrightarrow{G(g) \circ} \operatorname{Hom}_{\mathcal{C}}(x, G(y'))$$

commutes for all  $x, x' \in \mathcal{C}$ ;  $y, y' \in \mathcal{D}$ ;  $f: x \to x'$  and  $g: y \to y'$ .

**Theorem 1.4.3.** If F, G form an equivalence of the categories  $C, \mathcal{D}$  then F, G are an adjunction.

**Examples 1.4.4** (Adjunctions in group theory). Consider the **forgetful functor**  $F: Ab \to Grp$  which simply forgets the Abelian property of a group. We also have the **abeliantisation functor**  $(-)^{ab}: Grp \to Ab$  which maps  $G \mapsto G^{ab} := G/[G, G]$ . F and  $(-)^{ab}$  for an adjuction between Grp and Ab.

#### 1.5 Representable functors

**Definition 1.5.1** (Yoneda functor). Given some x in a category C, there is a functor  $\operatorname{Hom}_{C}(-,x): C^{op} \to \operatorname{Set}$  which satisfies the required properties to have the **Yoneda functor**:

$$Y: \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set}).$$

Which sends an element  $y \in \mathcal{C}$  to the functor from objects in  $\mathcal{C}^{op}$  to the set of morphisms from these objects to y.

Lemma 1.5.2. The Yoneda functor and the hom-functor form an adjunction in Cat.

**Definition 1.5.3** (Representable). A functor  $F \in \text{Fun}(\mathcal{C}^{op}, \text{Set})$  is **representable** if  $F \cong Y(c)$  for some  $c \in \mathcal{C}$ .

**Example 1.5.4.** Consider the functor  $F : Set^{(op)} \to Set$  sending a set to its powerset. F is clearly isomorphic the functor  $Hom(-, \{0, 1\})$  from subsets to indicator functions on X. This is the image of the Yoneda functor so F is representable.

#### 1.6 Yoneda lemma

**Theorem 1.6.1** (Yoneda lemma). Given some  $x \in \mathcal{C}$  and  $F \in \text{Fun}(\mathcal{C}^{op}, \text{Set})$  we have

$$\operatorname{Hom}_{\operatorname{Fun}(\mathcal{C}^{op},\operatorname{Set})}(Y(x),F) \cong F(x).$$

**Remark 1.6.2.** This is a generalisation of Cayley's theorem which shows that we can study a group by instead studying the permutations of its underlying set.