E GEORGE SHINGTON IVERSITY HINGTON, DC

EGEORGE Annotation of the gene Sox102F on the dot chromosome of Drosophila eugracilus

Gross, A., Buckley, K. & Manier, M.

Department of Biological Sciences, The George Washington University, Washington, D.C.

Introduction

- Muller elements have gone through many rearrangements in the evolutionary history of *Drosophila*.
- Muller element F, the dot chromosome, is found in *Drosophila*.
- Dot chromosome contains both euchromatin (transcriptionally active) and heterochromatin (transcriptionally silent).
- These elements seem to be shrinking across a number of different species within the *Drosophila* genus.

ig 1. Representation of chromosomes in *D. melanogaster* is a reference.

Workflow

- Contig 28 claimed using GEP Project Management system and gene Sox102F is selected for annotation.
- Gene was verified to lie within the contig using BLAST results.
- Annotation and isoforms were separated.
- NCBI BLAST gave exon coordinates and reading frames for acceptor and donor regions were input into a workbook for recording purposes.
- r Flybase BLAST database gave a comparison against *Drosophila melanogaster*, and exon coordinates were either verified or modified.
- Coordinates were confirmed with Gene Model Checker.

Fig 2. *D. eugracilis* BLAST results against *D. melanogaster* reveal possible exon differences and isoforms alongside gene model from Gene Checker.

- There are two unique sequences in the rightmost exon. (Fig 2)
- Notice no RNA Sequence data in *D. melanogaster* – suggests that it is not present. (Fig 2)
- One straight line shows no loss of genetic information but gaps between visually represent differences between D. melanogaster and D. eugracilis sequences. (Fig 3)

Fig 3. Dot plot of *Sox102F-PA* exon of *D. eugracilis* against *D. melanogaster* visually illustrates similarities in exon.

Sox102F

 Sox102F gene in D. melanogaster previous linked as a transcription factor crucial in th development of the heart and cardia function and cardiovascular system in th wing. (Fig 4)

Fig 4. Cardiovascular system in wing vein development and pattern

Conclusion

- There is an 83.2% similarity in the protein sequence, and 3.6% gap.
- This suggests that much of the sequence between the two species is the same.
- There is moderately high sequence homology on the isoforms Sox102F-Pr Sox102F-PC, and Sox102F-PD betwee species D. eugracilis and D. melanogaster.
- Sox102-PB isoform of the exon is not foun in D. melanogaster, and must have been los somewhere along the way evolutionarily.
- Further research could increase th knowledge surrounding the difference i functionality of the Sox102F-PB isoform i the D. melanogaster, as it is not likely foun in the species D. eugracilis.