PATENT SPECIFICATION

(21) Application No. 18948/71 (22) Filed 4 June 1971 (31) Convention Application No. 50114 (32) Filed 10 Tune 1970 in

(33) Tapan (TA)

(44) Complete Specification published 26 June 1974

(52) Index at acceptance

(51) International Classification C08G 41/04 C08F 29/24

C3R 32C11 32C12 32C13M 32C25 32C27 32C6X 32C8B 32C8P 32C8R 32D11A 32D1 32D9B1 32E2A 32E2Y 32E9 32G2A 32G2Y 32H5B2 32H5BY 32J11 32J1A 32J1Y 32J2C 32J2F 32J2Y 32KH 32L2CI 32L6F

C3P 10C12B 10C12X 10C13A 10C17 10C20B 10D1A 10T2A

(54) PROCESS FOR PREPARING POLYURETHANE-CONTAINING RESIN COMPOSITION

7—18, 1-chome, Nihonbashi-Bakurocho, Chuo-Ku, Tokyo, Japan, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

This invention relates to a process for the reparation of a resin composition containing a

10 finely divided, granular polyurethane resin.

The object of this invention is to provide a process which produces, at low cost, a poly-urethane-containing resin composition having a granular form suitable for shaping or mould-ing in moulding machines, especially extrusion moulding machines, blow moulding machines and injection moulding machines. Another object of this invention is to provide a process which gives a polyurethane-containing resin 20 composition which is not discolored and has not been subjected to long periods of heat

Since pulverisation of polyurethane is difficult, its development in obtaining polymer 25 blends with other polymers has been retarded, though it is known that a resin composition of unique properties is obtainable by blending polyurethane with other polymers such as polyvinyl chloride. Polyurethane, especially poly-30 ester diol-diisocyanate adduct, exhibits an excellent compatibility with polyvinyl chloride and possesses a migration or extraction resistance comparable or superior to those of conventional polyester type plasticizers. Further, 35 polyurethane can give an excellent impact resistance when mixed with polyvinyl chloride. However, since pulverisation of polyurethane is difficult, it is impossible to obtain a homogeneous mixture of polyurethane with powdery polyvinyl chloride. Accordingly, in the art there has been adopted a method comprising mixing and kneading polyurethane and polyvinyl chloride, and then cutting the mixture into pieces or granulating the mixture in an

We, KAO SOAP CO., LTD., of extruder. However, this conventional technique 45 is defective in that the number of process steps is increased and oxidation deterioration of polyurethane is brought about because it must be exposed to heat for a long time, resulting in discoloration of the end product, and that, in order to prevent this undesired discoloration, it is necessary to use a large amount of an expensive stabilizer and to change the type of colouring agent, resulting in a secondary problem of

high manufacturing cost.

We have made researches with a view to developing a process for the preparation of a powdery or granular polyurethane-containing resin composition free of the above-mentioned defects, and in accordance with this invention, there is provided a process for the preparation of a thermoplastic mouldable resin composition, which comprises mixing (A) 100 parts by weight of particles or granules of a thermoplastic mouldable resin selected from polyvinyl chloride, vinyl chloride copolymers, chlorinated polyvinyl chlorides, polyamides, polyacrylo-nitrile, polymethyl methacrylate, synthetic rubbers, saturated polyesters and epoxy resin, with (B) a total of from 70 to 200 parts by weight of (1) a polyol component and (2) a polyisocyanate or a prepolymer having so-cyanate groups at both ends of the molecule, at a temperature below the melt-adhesion temperature of the thermoplastic resin and effective to cause a polyurethane-forming reaction between components (1) and (2) to form poly-urethane resin in situ on the thermoplastic resin particles.

The starting materials for producing polyurethane resin, namely components (1) and (2) are reacted in the presence of the thermoplastic resin to obtain a powdery or granular product suitable for shaping or moulding in the above-mentioned moulding machines, which product is composed of thermoplastic resin particles containing polyurethane on the surface and in the interior of the particles, or

[Price 25p]

of thermoplastic resin particles covered with polymerthane. In the process of this invention, the urethanisation reaction is completed on the surface of powder or granules of thermoplastic resin and particularly when polywinyl chloride prepared by a suspension polymerisation process is used, since polymerthane can be contained within polyminyl chloride powder or granules, there is obtained a non-tacky, dry lelend of great adaptability.

In producing the above dry polymer blend of a polymerhane resin with a themoplassic resin such as polywinyl chloride resin, the ratio of the total weight of the starting materials for 5 producing the polymerhane resin (polyol component) to the weight of, e.g. polywinyl chloride powder or granules is generally in the range of 70–200 to 100, preferably 70–130 to 100.

Generally, the more the temperature at which

the thermoplastic resin to be used in this investion becomes sticky or adhesive exceeds the urchanisation-initiating temperature, the easier it is to prevent adhesion among resin particles assed by the reaction heat. In addition to polyvinje Ichoffed as mentioned above, there may be used as the thermoplastic resin in the present invention vinje Uchoride type resin such as vinje Ichoride-vinje etser copolymers, vinje Ichoride-vinje etser copolymers, Chlorin-

ared polyvinyl chlorides, ványl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers, vinyl chloride-ethylene copolymers, vinyl chloride-ethylene copolymers, vinyl chloride-ethylene-vinyl acetate terpolymers; polyamides polyscrylonitride expolymers; polyamides polyscrylonitride styrene resin, synthetic rubbers such as butadi ene-styrene copolymers and polysioprenes;

40 saturated polyeiters; and epoxy resins. These thermoplastic resins are used in the finely divided form, namely in the granular or powdery form. The more highly porous the structure of the powdery or granular thermo45 plastic resin to be used, the more easily the polyurerhane component can be contained in the interior of the particles of the thermoplastic or the particles of the thermoplastic polyurerhanised particles prevented. For plastic, polyingly clinicity perpared by emulsion polymerisation gives better results than polyinyingly clinicities prepared by emulsion

Particles or granules of the thermoplastic resin to be used in this invention include particles of a size, generally of 20 to 300 Tyler standard mesh, preferably 20 to 100 mesh, and pellets, the longest side of which is 1—10 mm, preferably 1—5 mm.

polymerisation.

The polyol component to be used in this invention is selected from hydroxyl-terminated polyetters, hydroxyl-terminated polyetters, monomeric diols and mixtures thereof. Polyeter diols may be prepared by ring-opening polymerisation of cyclic esters, polycondens-

tion of diols with dibasic carboxylic acids, or any other conventional processes. As the diol component constituting the polyester diol there may be used ethylene glycol, propylene glycol, 1,3-propane diol, 1,4-butane diol, 1,5-pentane diol, 1,4-pentane diol, 1,3-pentane diol, 2,3pentane diol, hexane diols, heptane diols and octane diols. The said diol component can be represented by the general formula R(OH) wherein R is a straight or branched, saturated aliphatic hydrocarbon radical of 2 to 8 carbon atoms. As the dibasic carboxylic acid constituting the polyester diol there may be used oxalic acid, succinic acid, glutaric acid, adipic acid, pimeric acid and suberic acid. This dibasic acid component can be represented by the general formula R(COOH)2 wherein R is a saturated aliphatic hydrocarbon radical of 1 to 6 carbon atoms.

Typical examples of the polyesters or polyethers to be used in the present invention include polypropylene adipate, polybutylene adi

Property, 10 The isocyanate component in this invention includes both aromatic polyisocyanates and

aliphatic polyisocyanates.

Typical camples of the isocyanates that can be suitably used include toluene diisocyanates, phenylene diisocyanates, diphenyl diisocyanate, diphenyl dimethyl methane diisocyanate, 1,5-maphtialene diisocyanate, benylene diisocyanate, teramethylene diisocyanate, potamethylene diisocyanate diisocyanate, teramethylene diisocyanate patamethylene diisocyanate adi bexamethylene diisocyanate and hexamethylene diisocyanate patamethylene diisocyanate and hexamethylene diisocyanate

It is known that, since commercially available diisocyanates generally have a low molecular weight and are volatile, the working efficiency is sometimes lowered by the smell and poisonous character of their vapours depending on the type of the manufacturing apparatus and that, in order to improve the physical properties of the polyurethane per se, it is convenient to add as the diol component a monomeric diol of a low molecular weight other than the above-mentioned polyester diols. In view of these facts, the use of a prepolymer having isocyanate groups at both ends, which may be prepared by reacting n moles of the above-mentioned diisocyanate with less than n moles of a monomeric diol or a polyester or polyether diol, may be sometimes advantageous, since the possibility of the above-men- 130 7.904

tioned lowering of the working efficiency can be removed.

3

In addition to the above-mentioned diisocyanates, polyisocyanates having 3 or more isocyanate groups in the molecule may be used likewise.

In the case when the polyisocynante or polyol component is solid or highly viscous and, thus, the process is difficult to carry out, a diluent 10 may be used. As the diluent there is preferably used a substance which is inert to the poly-userthanisation reaction and can be included as one component in the resulting moulding resin composition. In the case of polywiny 15 chloride, for instance, the use set the diluent are its especially preferred. Such plasticizer does not inhibit the advance of the polyure-thanisation reaction and acts as a plasticizer

20 for polyvinyl chloride at the time of processing.

In this invention, the use of a urethanisation catalyst is not indispensible. Of course, in order to accelerate the reaction, it is possible to use a known urethanisation catalyst. For 5 instance, dibutyl tin dilaurate or other dislay, the control of the contro

30 Other additives such as stabilisers and lubricants may be used. It is important these additives are inert to the diisocyanate or at least substantially unneactive even if they have a reactivity with the diisocyanate, it must be much lower than the rate of the intended polyurchanisation reaction so that any reaction with the isocyanate does not occur to any significant degree. It is needless to say that no or an additive of a high reactivity if the addition is effected after completion of the urerhanisation reaction.

It is desired that the reaction temperature be lower than the temperature at which bonding or melt adhesion of thermoplastic resin particles begins to occur. This is for the purpose of preventing the resin particles changing to a form not suitable for feeding them to a 50 moulding machine, caused by melt adhesion of particles. When the thermoplastic resin particles react with a component other than said resin, for instance a plasticizer or stabilizer, prior to the polyurethanisation reaction, the reaction temperature is preferably lower than that at which the composition becomes sticly or melt-adhesion begins to occur. Ordinarily, this temperatures below 145°C, and preferably 100—140°C.

In order of addition of reactants, namely the diol component and the diisocyanate component is not critical in this invention, but the operation can be accomplished more easily when the diol component is at first absorbed

in thermoplastic resin particles and then the diisocyanate component is added thereto. 3

In the polyurethane-containing resin composition prepared according to this invention the polyurethane is distributed more uniformly than in a mixture formed by merely blending a polyurethane resin with an other thermoplastic resin, and there is no fear of phase separation between the polymers. Further, since the composition according to this invention takes a powdery or granular form suit-able for feeding it to various conventional moulding machines, it can be conveniently used as the starting material for various moulded articles. For instance, it is suitably blow-moulded into bottles having an improved impact resistance and it is also suitable for the production of hoses and tubes where high migration or extraction resistance is required. The composition according to this invention is suitable for the manufacture of various other moulded articles. This invention will now be described in

detail by referring to the following examples.
In these examples, the effects of the present invention are explained with reference to typical embodiments of the invention by comparing them with conventional processes, but equivalent effects are obtainable when the process of this invention is practised with other combinations of components within the scope

Example 1 10 g of cadmium stearate and 10 g of

of the appended claims.

The community scenaries and 10 g of barium stearance were added to 1000 g of powder (about 48 Tyler mesh) of polyvinyi chloride 100 per powder (about 48 Tyler mesh) of polyvinyi chloride 100 per powder (about 48 Tyler mesh) of polyvinyi chloride 100 per powder 100 per powder

The above powderly resin composition was mixed for 10 minutes at a bot roll maintained at 150°C, and pressed for 5 minutes under a pressure of 100 kg/cm² by means of a hot 125 press maintained at 160°C. Values of 100% modulus and elongation of the so formed sample were determined to be 65 kg/cm² and

500%. According to the Clash-Berg method (Ind. Eng. Chem., 34, 1218 (1942)), the flexible temperature Tf of the sample was measured to be -16°C.

Example 2

30

35

519 g of poly(1,4-butylene adipate)glycol and 40.7 g of 1,4-butylene glycol were added to 1000 g of powder (about 48 mesh) of poly-vinyl chloride of a degree of polymerisation 10 of about 800 prepared by suspension poly-merisation, and the mixture was blended at 140°C. for 10 minutes by means of a 10-litre Henschell type mixer. Then, 245 g of diphenyl-methane-4,4'-diisocyanate was added to the tion and calender processability.

mixture and it was blended at 140°C. for 20 minutes to form a powdery resin composition (Sample 1). Separately, polyvinyl chloride of a degree of polymerisation of 800 was mixed in the same manner above with an equal

amount of a polyurethane elastomer, prepared by heating a mixture of the same starting materials as above for 3 hours at 140°C, and extruding into cubes to form a resin composition (Sample 2). When samples 1 and 2 were compared, it was seen, as shown below, that sample 1 exhibited greater tensile strength and elongation and was superior to Sample 2 with

respect to adaptability for roll kneading opera-

	Product according to this invention	Comparative product
Sample No.	1	2
Stress in 100% elongation	225 kg/cm ²	213 kg/cm ²
Tensile strength	277 kg/cm ²	242 kg/cm ³
Elongation	235%	187%
	Stress in 100% elongation Tensile strength	Sample No. 1 Stress in 100% elongation 225 kg/cm² Tensile strength 277 kg/cm²

Example 3

A powdery resin composition free of thermal discoloration was prepared by adding 519 g of poly(1,4-butylene adipate) glycol and 40.7 g 40 of 1,4-butylene glycol to 1000 g of polyvinyl chloride of a degree of polymerisation of about 800 prepared by suspension polymerisation, mixing the resulting blend at 140°C. for 10 minutes by means of a 10-litre Henschell type 45 mixer, adding to the mixture 167 g of toluene diisocyanate, and conducting the blending at 120°C. for 20 minutes.

Example 4 A 10-litre Henschell type mixer was charged 50 with 1000 g of powder (about 48 Tyler mesh) of polyvinyl chloride prepared by suspension polymerisation, 700 g of poly(hexamethylene adipate) glycol and 63 g of 1,4-butylene glycol, and they were mixed together. Then 1 g of 55 dibutyl tin dilaurate acting as both a catalyst for the urethanisation reaction and a stabilizer for polyvinyl chloride was added to the mixture, and the mixing was conducted at 140°C. for 10 minutes, followed by addition of 236 g of hexamethylene diisocyanate. The mixture was reacted at 120°C. for 20 minutes to form a polyurethane-containing, powdery resin com-position free of thermal discoloration.

When the above procedure was repeated by 65 employing powder of a vinyl chloride-vinyl acetate copolymer and powder of a vinyl chloride-vinylidene chloride copolymer instead of powder of polyvinyl chloride, there were obtained similar powdery resin compositions 70 free of thermal discoloration.

WHAT WE CLAIM IS:—

1. A process for the preparation of a thermoplastic mouldable resin composition, which comprises mixing (A) 100 parts by weight of particles or granules of a thermoplastic mouldable resin selected from polyvinyl chloride, vinyl chloride copolymers, chlorinated polyvinyl chlorides, polyamides, polyacrylonitrile, polymethyl methacrylate, synthetic rubbers, saturated polyesters and cpoxy resins, with (B) a total of from 70 to 200 parts by weight of (1) a polyol component and (2) a polyisocyanate or a prepolymer having isocyanate groups at both ends of the molecule at a temperature below the melt-adhesion temperature of the thermoplastic resin and effective to cause a polyurethane-forming reaction between components (1) and (2) to form polyurethane resin in situ on the thermoplastic resin particles.

2. A process according to Claim 1, in which said polyol component is selected from hydroxyl-terminated polyesters, hydroxyl-terminated polyethers, monomeric diols and mixtures thereof.

3. A process for the preparation of a thermoplastic mouldable resin according to claim 1 substantially as hereinbefore described with reference to the Examples.

> WITHERS & ROGERS, Chartered Patent Agents, 148-150 Holborn London, ECIN 2NT. Agents for the Applicant.

Printed for Her Majesty's Stationery Office, by the Courier Press. Learnington Spa, 1974 Published by The Patent Office, 25 Southampton Buildings, London, WCZA 1AY, from which copies may be obtained.