Aula 12

- Máquinas-Ferramentas -

Tópicos

- Histórico
- Considerações sobre o processo de usinagem
- Relação entre os processos de Fabricação Tolerâncias e Acabamento
- Nocões gerais de Teoria de Projeto aplicada a máquinas-ferramentas
- Tendências no projeto de máquinas-ferramentas
- Conceitos básicos
- Constituintes de máquinas-ferramentas

Processos de Usinagem

Histórico

- 6.000 A.C. primeiras máquinas-ferramentas
- 1.500 A.C. furadeiras a arco antigo Egito
- 400 A.C. primeiros tornos
- Século XIV furação profunda
- Século XV tornemanto ornamental
- Século XVI ensaios de D'Vincci
- Século XIX Torno de Mausdley
 - Primeiras máquinas autmáticas
 - Novos tipos de máquinas
- Século XX Novos sistemas de acionamentos
 - → Desenvolvimento CNC
 - → Máquinas de ultraprecisão, hexapot, HSC-HSM

<u>Florianópolis, iulho de 2004</u>

Como forma de fazer sua parte no processo produtivo, uma máquinaferramenta deve satisfazer os seguintes requisitos:

- independente da habilidade do operador, as peças a serem produzidas na máquina devem ser obtidas com tolerâncias de forma e dimensional dentro de limites permitíveis, juntamente com os requisitos de qualidade superficial.
- como forma de ser competitiva na operação, ela deve mostrar alto desempenho técnico com eficiência econômica

- O projeto de uma máquina-ferramenta seus elementos podem ser dividios em três grupos:
 - a estrutura;
 - os acionamentos para a ferramenta, avanços e dispositivos de movimentação;
 - a operação e os dispositivos de controles.

As condições operacionais são determinadas pelos:

- movimentos requeridos pelos diferentes processos de usinagem (cinemática)
- avanços
- dispositivos de movimentação
- as caracterísiticas do processo de usinagem

A capacidade de forma corresponde a área ou volume útil coberto pelos movimentos relativos entre peça e ferramenta de uma máquina-ferramenta, independetemente da massa da peça.

Eficiência técnica e econômica

A eficiência econômica devem levar em consideração:

Aspectos estruturais

Aspectos inerciais

Aspectos de montabilidade

Aspectos de fabricabilidade

Aspectos de transporte e instalção

Aspectos de manutenção

Aspectos de acessibilidade e a disposição dos diversos constituintes

Aspectos de segurança e hergonômia

Aspectos de intercambiabilidade dos componentes

Fatores que determinam a qualidade de uma peça usinada

Fatores que determinam a qualidade de uma máquina-ferramenta

Limitantes

Efeito da evolução dos materiais de ferramentas nas máquinas-ferramentas

- → Maiores rotações
- → Maiores avanços
- → Maiores profundidades de corte
- → Maiores forças
- → Maiores potências
- → Maiores consideratações de segurança
- → Novos acionamentos (melhores dinâmicas)
- → Maiores solicitações térmicas
- → outras

Considerações sobre o processo de usinagem

Considerações sobre o processo de usinagem

Considerações sobre o processo de usinagem

Relação entre os processos de Fabricação Tolerâncias e Acabamento

Tabela I.2 – Relação entre processo de fabricação e qualidade superficial (Whitehouse, 1994)

PROCESSO	VALORES DE RUGOSIDADE (mm R₀)												
	50	25	12,5	6,3	3,2	1,6	0,8	0,4	0,2	0,1	0,05	0,025	0,0125
FURAÇÃO								-	1	7	7		7
FRESAMENTO		8								98			50 50
TORNEMANENTO,													34
RETIFICAÇÃO													53
BRUNIMENTO			ĵ.										
POLIMENTO		- 50				:0:							
LAPIDAÇÃO		80.	100	**			- 1						*
FUNDIÇÃO EM AREIA		8					38 38	38	38	88			33
LAMINAÇÃO A QUENTE			8		8.5		90	93	762	742			
FORJAMENTO													
LAMINAÇÃO A FRIO													
FUNDIÇÃO SOB PRESSÃO			100		2.	Î			Y) C	3.8			- 9
	50	25	12,5	6,3	3,2	1,6	0,8	0,4	0,2	0,1	0,05	0,025	0,0125

Relação entre os processos de Fabricação Tolerâncias e Acabamento

Tabela I.3 - Relação entre precisão e mecanismo de usinagem.

EXATIDÃO DIMENSIONAL	MECANISMO DE USINAGEM						
10 μm	ELETROEROSÃO POR FAÍSCA USINAGEM QUÍMICA CORTE COM FIOS ABRASIVOS						
1 μm	ELETROEROSÃO DE PRECISÃO POLIMENTO ELETROLÍTICO USINAGEM FINA OU RETIFICAÇÃO FOTOLITOGRAFIA (LUZ VISÍVEL)						
0,1 μm	RETIFICAÇÃO DE SUPERFÍCIES ESPELHADAS LAPIDAÇÃO DE PRECISÃO FOTOLITOGRAFIA (LUZ ULTRAVIOLETA) USINAGEM COM FERRAMENTA DE GUME ÚNICO						
0,01 μm	USINAGEM POR ULTRA-SOM LAPIDAÇÃO MECÂNICO-QUÍMICA LAPIDAÇÃO REATIVA USINAGEM A LASER EXPOSIÇÃO A FEIXE DE ELÉTRONS EXPOSIÇÃO A RADIAÇÃO						
0,001 μm (1 nm)	LAPIDAÇÃO SEM CONTATO USINAGEM IÔNICA USINAGEM QUÍMICA						
SUBNANÔMETRO	USINAGEM POR FEIXES ATÔMICOS OU MOLECULARES						

Considerações para a escolha de uma máquina-ferramenta

- → Peça de produção: Quais os tipos (formas) que se deseja produzir?
- → Tolerâncias: Quais as tolerâncias dimensionais e geométricas envolvidas?
- → Qualidade superficial: Qual a qualidade superficial desejada?
- → Materiais de produção: os materiais que poderão ser utilizados na fabricação das peças de produção
- → Tamanho dos lotes a serem produzidos: Os tamanhos dos lotes envolvidos são em geral pequenos e médios, sendo muito comuns os lotes de peça única.

Considerações para a escolha de uma máquina-ferramenta

- → Geometria: qual é o tamanho total aproximado?
- → Montagem: a máquina pode ser montada de forma econômica?
- → Transporte: a máquina pode ser transportada com facilidade?
- → Manutenção: quais as freqüências de manutenção exigidas, e como afetam a operacionalização geral da fábrica?
- → **Ergonomia**: Como todos os fatores de projeto podem ser combinados para melhorar a relação com o operador?

Tendências no projeto de máquinas-ferramentas

Conceitos básicos

Eixos coordenados

Constituintes de máquinas-ferramentas

Florianópolis, julho de 2004

Transmissão

Cabeçote fixo

Avental

Caixa de avanço e roscas

Acessórios - Lunetas

Acessórios – sistemas de fixação de peças

Placa de quatro castanhas

Placa Lisa

Placa de três castanhas

Outros tipos de placas para fixação

Acessórios – Contra-ponta e arrastadores frontais

Contra-ponta com mandril

Arrastador frontal

Exemplo de um conjunto ávore mesa acionamentos

Estrutura de máquinas-ferramentas

Requisitos de Estruturas de Máquinas-Ferramentas:

- → rigidez estática
- → rigidez dinâmica
- → estabilidade térmica
- → estabilidade química
- → facilidade de manipulação
- → acessibilidade aos componentes internos

Arranjos de estruturas de máquinas-ferramentas

1 – Fluxo de Força

2 - Llinha de Deslocamento

3 – Peça

- 4 Ferramenta
- 5 Componete Axial da Força de Usinagem

Considerações quanto a Rigidez Dinâmica

Considerações quanto a Rigidez Dinâmica

Distribuição de tensões nas estruturas

Deformação nas estruturas

Processos de Usinagem

Árvores de máquinas-ferramentas

Árvores de máquinas-ferramentas

Definição: Conjunto de elementos responsáveis por prover movimento rotativo a peça ou à ferramenta

- As árvores são elementos complexos que necessitam de um projeto apurado e um dimensionamento correto
- Grande parte de todos os esforços de usinagem são absorvidos por seus mancais, principalmente naquelas que empregam ferramentas de geometria definida.

A escolha do tipo de mancal a ser empregado depende:

- capacidade de carga
- tipo e direções dos esforçoes principais
- velocidades a serem empregadas
- exatidão de giro requerida
- suavidade do movimento
- do torque a que será submetida
- calor gerado durante a operação e do tipo de refrigeração
- forma do acionamento
- outros

Requisitos dos principais tipos de árvores de máquinas

Aplicação	Esforços principais		Requisitos		
	direção	intensidade	capacidade de carga	velocidade	rigidez
Torneamento	Yn Z⇒	alta	alta	baixa (até 2.000 rpm) média (≈ 6.000 rpm) alta (< de8.000 rpm)	alta
Furação	Z⇒	média	média/baixa	baixa (até 800 rpm) média(≈ 2.000 rpm) alta (< de 5.000 rpm)	l
Fresamento	Yn Z⇒	alta	alta/média	baixa (até 1.500 rpm) média(≈ 8.000 rpm) alta (< de 8.000 rpm)	alta
Retificação	X fi YØ	baixa	baixa	baixa (até 5.000 rpm) média(≈ 20.000 rpm) alta (< de 50.000 rpm)	Muito alta

Considerações sobre o projeto de árvores de máquinas

Determinação da distância ótima entre mancais

Forcas atuando sobre as árvores de máquinas-ferramentas

Mancais para Máquinas-Ferramentas

Mancais para máquinas-ferramentas

Definição

- Mancais podem ser definidos como elementos de máquinas que apresentam um movimento relativo entre seus elementos constituintes.
- Mancais podem também serem definidos como sendo todos os elementos onde o movimento de translação em qualquer direção deve ser minimizado, se não proibido, deixando livre a rotação somente em torno de um eixo.

Classificação dos mancais

- A classificação dos mancais requer dois parâmetros
 - a direção preferencial do carregamento

Tipos de mancais

Mancais de Elementos Rolantes

São o tipo de mancal antifricção mais largamente utilizado Requisito:

- a) fácil movimentação;
- b) mínimo atrito

Mancais Lubrificados a Filme Fluido

Guias

Guias

Definição

→Elementos que permitem a absorção de carregamentos e o movimento dentro de um padrão linear, realizando as mesmas funções dos mancais rotativos empregado nas árvores.

Guias de escorregamento

Florianópolis, julho de 2004

Guias de elementos rolantes

Acionamentos

Acionamentos

 Definiçã - São elementos cuja a função, em uma máquinaferramenta, é prover movimento e força para os sistemas de movimentação da peça e ferramenta

Requisitos:

- custo
- facilidade de controle
- dinâmica (aceleração X tempo, torque X rotação, etc.)
- suavidade de movimento
- torque
- outros

Acionamentos

Classificação

- Quanto a forma de ação
 - Linear
 - · hidráulicos/pneumáticos
 - eletromagnéticos
 - Rotativa
 - Hidráulicos
 - Eletromagnéticos
 - outros

Sistemas de controle

Controles flexíveis

Definição

- O sistema de controle, e sua respectiva eletrônica, é responsável por gerenciar todas as informações relevantes da máquina
- Formas de controle flexível
 - malha aberta
 - malha fechada

Processos de Usinagem

Sistemas de controle

Controles flexíveis

Funções

- Controle dos movimentos
- Controle das funções secundárias
- Monitorar o processo
- prover ao usuário informações gerais sobre o estado da máquina e o andamento do processo
- Servir de interface entre o usuário e a máquina

Sistemas de controle

Malha aberta

malha aberta, onde não há realimentação de posição e o deslocamento é controlado pelo número de pulsos enviados aos acionamentos

Florianópolis, julho de 2004

Sistemas de controle

Malha fechada: onde há a necessidade de se realimentar a malha com informações de posição, velocidade ou equivalentes

Erros em Máquinas-Ferramentas

Erros nos carros de movimentação

- A qualificação das guias pode ser realizada tomando por base os resultados obtidos com:
 - ensaio de perpendicularismo
 - linearidade
 - posicionamento

Erros na árvore

Erros básicos de um eixo-árvore

