(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 November 2001 (08.11.2001)

PCT

(10) International Publication Number WO 01/83717 A2

(51) International Patent Classification7:

C12N 9/00

- (21) International Application Number: PCT/CA01/00607
- (22) International Filing Date: 2 May 2001 (02.05.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/201,841

3 May 2000 (03.05.2000) U

- (71) Applicant (for all designated States except US): GLY-CODESIGN INC. [CA/CA]; 480 University Avenue, Suite 400, Toronto, Ontario M5G 1V2 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): RAO, Mohan [IN/CA]; 95 Thorncliffe Park Drive, Apartment 3409, Toronto, Ontario M4H 1L7 (CA). TVAROSKA, Igor [SK/CA]; 65 High Park Avenue, Apartment 2201, Toronto, Ontario M6P 2R7 (CA).

- (74) Agents: VAN ZANT, Joan M. et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montreal, Québec H3A 2Y3 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: DESIGNING MODULATORS FOR GALACTOSYLTRANSFERASES

(57) Abstract: The invention relates to structures and models of ligand binding domains of galactosyltransferases, and the ligand binding domains with ligands. The structural coordinates that define the structures and any ligands bound to the structures enable the determination of homologues, the structures of polypeptides with unknown structure, and the identification of modulators of the galactosyltransferases. The invention also relates to structures and models of nucleotide-sugar donors for the galactosyltransferases, and the design of modulators for the galactosyltransferases based on the properties of these structures and models.

O 01/83717 A2

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

TITLE: Designing Modulators for Galactosyltransferases

FIELD OF THE INVENTION

5

10

15

20

25

30

35

The invention relates to structures and models of ligand binding domains of galactosyltransferases, and the ligand binding domains with ligands. The structural coordinates that define the structures and any ligands bound to the structures enable the determination of homologues, the structures of polypeptides with unknown structure, and the identification of modulators of the galactosyltransferases. The invention also relates to structures and models of nucleotide-sugar donors for the galactosyltransferases, and the design of modulators for the galactosyltransferases based on the properties of these structures and models.

BACKGROUND OF THE INVENTION

Carbohydrate groups of glycoproteins are involved in various signaling and molecular recognition processes leading to important biological functions (1) and diseases (2). The processing and synthesis of a large number of both N- and O- linked carbohydrate chains involve the sequential and coordinated action of many different glycosyltransferases. Glycosyltransferases catalyze the transfer of monosaccharide from nucleotide sugars to a specific hydroxyl of various saccharide acceptors that leads to the formation of a new glycosidic linkage. There is at least one distinct glycosyltransferase for every type of glycosidic linkage.

Galactosyltransferases are a class of enzymes that utilize uridine-5'-diphosphogalactose (UDP-Gal) as the donor. Recently, a retaining galactosyltransferase, α -1,3-galactosyltransferase (α -1'-3GalT; E.C.2.4.1.151) (4) has attracted much attention due to a problem of organ rejection in xenotransplantation. This enzyme is responsible for the formation of terminal α -Gal sequences in Gal α 1-3 Gal β 1- GlcNAc α 1-R. Oligosaccharide structures with a terminal Gal α 1-3Gal β 3 sequence (α -galactosyl epitopes) are xenoactive antigens (5) and are considered to be the major cause of hyperacute rejections in xenotransplantation. α -1,3-Galactosyltransferase is absent in humans and, conversely, large quantities of natural anti- α -1,3-Gal antibodies exist in the human body which react with the α -Gal epitope, thus providing a barrier to xenotransplant. The appearance of aberrant α -1,3-GalT in human cells is assumed to be responsible for some forms of anti-immune diseases (6).

Galactosyltransferases share a common topology with type II membrane proteins. Type II membrane proteins generally have a large N-terminal catalytic domain, a short stem region and a hydrophobic rich transmembrane domain (3). Although, various groups have performed a host of biochemical studies on this enzyme to understand structure-function relationships, the actual binding and catalytic mechanism of α -1,3-GalT is poorly understood. For an understanding of these important aspects in atomic detail it is essential to have a three-dimensional structure of α -1,3-GalT and structural information about the binding of UDP-Gal and oligosaccharide acceptor in the active site of α -1,3-GalT. Unfortunately, no crystal structure is available on α -1,3-GalT in native or complexed form.

SUMMARY OF THE INVENTION

The present inventors have produced a homology model for galactosyltransferases, and complexes of the enzymes with ligands including UDP and UDP-Gal. The homology model was developed by means of molecular modeling using the SpsA glycosyltransferase structure. In particular, a protein-ligand docking approach was used to model α -1,3-GalT complexed with UDP and UDP-Gal. In the predicted model complex, the diphosphate interacts with a DVD motif (Asp-225, Val-226 and Asp-227) of α -1-3GalT through a Mn²⁺ cation. The uridine part of the UDP binds into the cavity that consists of Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209, Asp-

PCT/CA01/00607 WO 01/83717

- 2 -

5

10

15

20

25 .

30

35

40

173, His-218, and Thr-137, in a "canonical conformation". Structural features of the α-1,3-GalT model were compared with available structural data on this class of enzymes and revealed similarities in the UDP binding pocket.

The invention provides a model or secondary, tertiary, and/or quanternary structure of a ligand binding domain of a galactosyltransferase. Binding domains are of significant utility in drug discovery. The association of natural ligands and substrates with the binding domains of galactosyltransferases is the basis of biological mechanisms. The associations may occur with all or any parts of a binding domain. An understanding of these associations will lead to the design and optimization of drugs having more favorable associations with their target enzyme and thus provide improved biological effects. Therefore, information about the shape and structure of galactosyltransferases and their ligand-binding domains is invaluable in designing potential modulators of galactosyltransferases for use in treating diseases and conditions associated with or modulated by the galactosyltransferases.

Ligand binding domains include one or more of the binding domains for a disphosphate group of a sugar nucleotide donor, a nucleotide of a sugar nucleotide donor, a nitrogeneous heterocyclic base (preferably a pyrimidine base, more preferably uracil) of a sugar nucleotide donor, a sugar of the nucleotide of a sugar nucleotide donor, a selected sugar of a sugar nucleotide donor that is transferred to an acceptor, and/or an acceptor. The structure of a ligand binding domain may be defined by selected binding sites in the domain.

Thus, broadly stated the present invention provides a model or a secondary or three dimensional structure of a ligand binding domain of a galactosyltransferase comprising one or more of the amino acid residues shown in Table 1 or Figure 2, 3, 4, or 6.

The invention also relates to a model or a secondary or three dimensional structure of a ligand binding domain of a galactosyltransferase defined by the structural coordinates of one or more of the atomic interactions or contacts of Table 1. Each of the atomic interactions is defined in Table 1 by an atomic contact (more preferably a specific atom where indicated) on the sugar nucleotide donor and an atomic contact (more preferably a specific atom where indicated) on the galactosyltransferase.

In accordance with an aspect of the invention, there is also provided a model of a ligand binding domain designed in accordance with a method of the invention and comprising hydrogen binding partners for the amide hydrogen, carbonyl oxygen in position 4, and the carbonyl oxygen of uracil.

The invention also provides a model of a ligand binding domain that binds the uridine portion of UDP and comprises two or more of Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209 (numbered as ATOM 204 in Table 8), Asp-173 (numbered as ATOM 169 in Table 8), His-218 (numbered as ATOM 213 in Table 8), and Thr-137 (numbered as ATOM 132 in Table 8). The invention also provides a model of a ligand binding domain that interacts with a pyrophosphate portion of UDP comprising Asp-225, Val-226, and Asp-227.

The invention provides a model or secondary, tertiary and/or quanternary structure of a galactosyltransferase.

The invention contemplates a model or secondary, tertiary and/or quanternary structure of a galactosyltransferase in association with a ligand or substrate.

The structures and models of the invention provide information about the atomic contacts involved in the interaction between the enzyme and a known ligand which can be used to screen for unknown ligands. Therefore the present invention provides a method of screening for a ligand capable of binding a galactosyltransferase ligand

10

15

20

25

30

35

40

binding domain, comprising the use of a secondary or three-dimensional structure or a model of the invention. For example, the method may comprise the step of contacting a ligand binding domain with a test compound, and determining if the test compound binds to the ligand.

A method of the invention may identify a ligand which can modulate the biological activity of a galactosyltransferase. Such a ligand is referred to herein as a "modulator". In an embodiment, the present invention contemplates a method of identifying a modulator of a galactosyltransferase or a ligand binding domain or binding site thereof, comprising the step of using the structural coordinates of a galactosyltransferase or a ligand binding domain or binding site thereof, or a model of the invention to computationally evaluate a test compound for its ability to associate with the galactosyltransferase or ligand binding domain or binding site thereof. Use of the structural coordinates of a galactosyltransferase structure, ligand binding domain, or binding site thereof, of the invention to identify a ligand or modulator is also provided.

A structure or model of the invention may be used to design, evaluate, and identify ligands of galactosyltransferases other than ligands that associate with a galactosyltransferase. The ligands may be based on the shape and structure of a galactosyltransferase, or a ligand binding domain or atomic interactions, or atomic contacts thereof. Therefore, ligands, in particular modulators, may be derived from ligand binding domains or analogues or parts thereof.

The present invention also contemplates a ligand identified by a method of the invention. A ligand may be a competitive or non-competitive inhibitor of a galactosyltransferase. Preferably, the ligand is capable of modulating the activity of a galactosyltransferase enzyme. Thus the methods of the invention permit the identification early in the drug development cycle of compounds that have advantageous properties.

In an embodiment of the invention, a method is provided for identifying a potential modulator of a galactosyltransferase by determining binding interactions between a test compound and atomic contacts of a binding domain of a galactosyltransferase defined in accordance with the invention comprising:

- (a) generating the atomic contacts on a computer screen;
- (b) generating test compounds with their spatial structure on the computer screen; and
- (c) determining whether the compounds associate or interact with the atomic contacts defining the galactosyltransferase;
- (d) identifying test compounds that are potential modulators by their ability to enter into a selected number of atomic contacts.

Another aspect of the invention provides methods for identifying a potential modulator of a galactosyltransferase function by docking a computer representation of a test compound with a computer representation of a structure of a galactosyltransferase or a ligand binding domain thereof that is defined as described herein. In an embodiment the method comprises the following steps:

- (a) docking a computer representation of a compound from a computer data base with a computer representation of atomic interactions or contacts of a ligand binding domain of a galactosyltransferase to obtain a complex;
- (b) determining a conformation of the complex with a favourable geometric fit and favourable complementary interactions; and
- (c) identifying test compounds that best fit the atomic interactions or contacts as potential modulators of the galactosyltransferase.

In another embodiment the method comprises the following steps:

5

10

15

20

25

30

35

modifying a computer representation of a test compound complexed with a ligand binding domain (a) of a galactosyltransferase by deleting or adding a chemical group or groups;

- determining a conformation of the complex with a favourable geometric fit and favourable (b) complementary interactions; and
- (c) identifying a test compound that best fits the ligand binding domain as a potential modulator of a galactosyltransferase.

In still another embodiment the method comprises the following steps:

- selecting a computer representation of a test compound complexed with atomic contacts of a (a) binding domain of a galactosyltransferase; and
- (b) searching for molecules in a data base that are similar to the test compound using a searching computer program, or replacing portions of the test compound with similar chemical structures from a data base using a compound building computer program.

The ligands or compounds identified according to the methods of the invention preferably have structures such that they are able to enter into an association with a ligand binding domain. Selected ligands or compounds may be characterized by their suitability for binding to particular binding domains. A ligand binding domain or binding site may be regarded as a type of negative template with which the compounds correlate as positives in the manner described herein and thus the compounds are unambiguously defined. Therefore, it is possible to describe the structure of a compound suitable as a modulator of a galactosyltransferase by accurately defining the atomic interactions to which the compound binds to a ligand binding domain and deriving the structure of the compound from the spacial structure of the target. .

The invention contemplates a method for the design of ligands, in particular modulators, for galactosyltransferases based on the three dimensional structure of a sugar nucleotide donor (or part thereof) defined in relation to its spatial association with the three dimensional structure of the galactosyltransferase or a ligand binding domain thereof. Generally, a method is provided for designing potential inhibitors of a galactosyltransferase comprising the step of using the structural coordinates of a sugar nucleotide donor or part thereof, defined in relation to its spatial association with a three dimensional structure or model of a galactosyltransferase or a ligand binding domain thereof, to generate a compound for associating with a ligand binding domain of the galactosyltransferase. The following steps are employed in a particular method of the invention: (a) generating a computer representation of a sugar nucleotide donor, or part thereof, defined in relation to its spatial association with the three dimensional structure of a galactosyltransferase or a ligand binding domain thereof; (b) searching for molecules in a data base that are similar to the defined sugar nucleotide donor, or part thereof, using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.

Therefore the invention further contemplates classes of ligands, in particular modulators, of a galactosyltransferase based on the three-dimensional structure of a sugar nucleotide donor, or part thereof, defined in relation to the sugar nucleotide donor's spatial association with a three dimensional structure of a galactosyltranferase.

- 5 -

It will be appreciated that a ligand or modulator of a galactosyltransferase may be identified by generating an actual secondary or three-dimensional model of a ligand binding domain or binding site, synthesizing a compound, and examining the components to find whether the required interaction occurs.

Modulators which are capable of modulating the activity of galactosyltransferases have therapeutic and prophylactic potential. Therefore, the methods of the invention for identifying modulators may comprise one or more of the following additional steps:

- (a) testing whether the ligand is a modulator of the activity of a galactosyltransferase, preferably testing the activity of the modulator in cellular assays and animal model assays;
- modifying the modulator; (b)

5

10

15

20

25

30

35

- (c) optionally rerunning steps (a) or (b); and
 - (d) preparing a pharmaceutical composition comprising the modulator.

Steps (a), (b) (c) and (d) may be carried out in any order, at different points in time, and they need not be sequential.

There is also provided a pharmaceutical composition comprising a modulator, and a method of treating and/or preventing disease comprising the step of administering a modulator or pharmaceutical composition comprising a modulator to a mammalian patient.

In an aspect, the invention contemplates a method of treating a disease associated with a galactosyltransferase with inappropriate activity in a cellular organism, comprising:

- (a) administering a modulator identified using the methods of the invention in an acceptable pharmaceutical preparation; and
- (b) activating or inhibiting a galactosyltransferase to treat the disease.

The invention provides for the use of a modulator identified by the methods of the invention in the preparation of a medicament to treat a disease associated with a galactosyltransferase with inappropriate activity in a cellular organism. Use of the structural coordinates of a galactosyltransferase structure of the invention to manufacture a medicament is also provided.

Another aspect of the invention provides machine readable media encoded with data representing a model of the invention or the coordinates of a structure of a galactosyltransferase or ligand binding domain or binding site thereof as defined herein, or the three dimensional structure of a sugar nucleotide donor defined in relation to its spatial association with a three dimensional structure of a galactosyltransferase as defined herein. The invention also provides computerized representations of a model of the invention or the secondary or three-dimensional structures of the invention, including any electronic, magnetic, or electromagnetic storage forms of the data needed to define the structures such that the data will be computer readable for purposes of display and/or manipulation. The invention further provides a computer programmed with a homology model of a ligand binding domain of a galactosyltransferase. The invention still further contemplates the use of a homology model of the invention as input to a computer programmed for drug design and/or database searching and/or molecular graphic imaging in order to identify new ligands for galactosyltransferases.

These and other aspects of the present invention will become evident upon reference to the following detailed description and attached drawings.

10

15

20

30

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described in relation to the drawings in which:

- Figure 1. Sequence alignment between SpsA and bovine α -1,3-GalT.
- Figure 2. A superposition of the SpsA structure and the α -1,3-GalT model. The active site residues of SpsA and the corresponding residues of α -1,3-GalT are shown as tubes. SpsA is shown in magenta and α -1,3-GalT is in blue. The side-chains of the α -1,3-GalT model are labeled. The active site modeled metal ion is shown as a red sphere.
- Figure 3. The low-energy computed docking modes of UDP to the α -1,3-GalT. About 60 low energy binding modes of UDP are shown in colored lines. The lowest energy binding mode is shown in thick tube. The critical amino acid residues are shown and labeled. All the low energy binders assume similar binding orientation.
- Figure 4. Possible docking modes of UDP-Gal to the α 1,3-GalT. The lowest-energy docking mode is shown as thick tube and some of the low energy binding modes are shown as thin lines.
- Figure 5. The predicted complex of α -1-3GalT and the inhibitor. Two top ranking docking modes are shown and in both, the inhibitor occupies the acceptor and pyrophosphate binding regions of the α -1,3-GalT. The lowest energy-binding mode is shown in thick tube.
- Figure 6 shows the overall view of a docking model of bovine alpha 1,3 galT-UDP complex. GalT is shown in colored ribbon. The UDP is shown in think tubes. The amino acid residues that interact with UDP are shown in tubes and the modeled Mn²⁺ is shown in a sphere. The conserved DVD motif interaction with a metal can be seen.
 - Figure 7 shows an overall representation of the UDP-Gal complex.
 - Figure 8 shows computed low energy binding modes of UDP-Gal.
 - Figure 9 shows lowest energy binding modes of LacNAc- β -Ome to α -1,3-GalT.

DESCRIPTION OF THE TABLES

- Table 1 Atomic interactions between a galactosyltransferase and UDP.
- Table 2 Characterization of the top five binding modes of UDP to α -1,3-galactosyltransfease.
- Table 3 Predicted secondary structures for the α -1,3-GalT sequence that was used for generating a homology model of α -1,3-GalT.
 - Table 4 Structural coordinates of a galactosyltransferase
 - Table 5 Structural coordinates of UDP.
 - Table 6 Structural coordinates of UDP-Gal.
 - Table 7 Structural coordinates of uracil, ribose, and pyrophosphate of UDP.
 - Table 8 Structural coordinates of a galactosyltransferases.
 - In Table 4, from the left, the second column identifies the atom number; the third identifies the atom type; the fourth identifies the amino acid type; the fifth identifies the residue number; the sixth identifies the x coordinates; the seventh identifies the y coordinates; and the eighth identifies the z coordinates.

35 DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Definitions:

Unless otherwise indicated, all terms used herein have the same meaning as they would to one skilled in the art of the present invention. Practitioners are particularly directed to Current Protocols in Molecular Biology

15

20

25

30

35

40

WO 01/83717 PCT/CA01/00607

- 7 -

(Ansubel) for definitions and terms of the art. Abbreviations for amino acid residues are the standard 3-letter and/or 1-letter codes used in the art to refer to one of the 20 common L-amino acids.

The term "associate", "association" or "associating" refers to a condition of proximity between a ligand, chemical entity or compound or portions or fragments thereof, and a galactosyltransferase, or portions or fragments thereof (e.g. ligand binding domain). The association may be non-covalent i.e. where the juxtaposition is energetically favored by for example, hydrogen-bonding, van der Waals, or electrostatic or hydrophobic interactions, or it may be covalent.

The term "galactosyltransferase" refers to an enzyme that catalyzes the transfer of a single monosaccharide unit i.e. galactose, from a donor to the hydroxyl group of an acceptor saccharide. The acceptor can be either a free saccharide, glycoprotein, glycolipid, or polysaccharide. The donor can be a sugar nucleotide, preferably UDP-Gal. Galactosyltransferases show a precise specificity for both the sugar acceptor and donor and generally require the presence of a metal cofactor.

Galactosyltransferases are derivable from a variety of sources, including viruses, bacteria, fungi, plants, and animals. In a preferred embodiment the galactosytransferases are derivable from an animal, preferably a mammal including but not limited to bovine, ovine, porcine, murine equine, most preferably a human. The enzyme may be from any source, whether natural, synthetic, semi-synthetic, or recombinant. Preferably the galactosyltransferase is a α1-3 galactosyltransferase, preferably derivable from bovine.

A galactosyltransferase or part thereof in the present invention may be a wild type enzyme, or part thereof, or a mutant, variant or homologue of such an enzyme.

The term "wild type" refers to a polypeptide having a primary amino acid sequence which is identical with the native enzyme (for example, the mammalian enzyme).

The term "mutant" refers to a polypeptide having a primary amino acid sequence which differs from the wild type sequence by one or more amino acid additions, substitutions or deletions. Preferably, the mutant has at least 90% sequence identity with the wild type sequence. Preferably, the mutant has 20 mutations or less over the whole wild-type sequence. More preferably the mutant has 10 mutations or less, most preferably 5 mutations or less over the whole wild-type sequence. A mutant may or may not be functional.

The term "variant" refers to a naturally occurring polypeptide which differs from a wild-type sequence. A variant may be found within the same species (i.e. if there is more than one isoform of the enzyme) or may be found within a different species. Preferably the variant has at least 90% sequence identity with the wild type sequence. Preferably, the variant has 20 mutations or less over the whole wild-type sequence. More preferably, the variant has 10 mutations or less, most preferably 5 mutations or less over the whole wild-type sequence.

The term "part" indicates that the polypeptide comprises a fraction of the wild-type amino acid sequence. It may comprise one or more large contiguous sections of sequence or a plurality of small sections. The "part" may comprise a ligand binding domain as described herein. The polypeptide may also comprise other elements of sequence, for example, it may be a fusion protein with another protein. Preferably the polypeptide comprises at least 50%, more preferably at least 65%, most preferably at least 80% of the wild-type sequence.

The term "homologue" means a polypeptide having a degree of homology with the wild-type amino acid sequence. The term "homology" can be equated with "identity".

In the present context, a homologous sequence is taken to include an amino acid sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the wild-type sequence. Typically, the

- 8 -

5

10

15

20

25

30

35

40

homologues will comprise the same sites (for example ligand binding domain) as the subject amino acid sequence. Although homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), in the context of the present invention it is preferred to express homology in terms of sequence identity.

Homology comparisons can be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs can calculate % homology between two or more sequences (e.g. Wilbur, W.J. and Lipman, D. J. Proc. Natl. Acad. Sci. USA (1983), 80:726-730).

The term "function" refers to the ability of a modulator to enhance or inhibit the association between a galactosyltransferase and a compound, or the activity of the galactosyltransferase.

"Ligand binding domain" refers to a region of a molecule or molecular complex that as a result of its shape, favourably associates with a ligand or a part thereof. For example, it may be a region of a galactoysltransferase that is responsible for binding a substrate or known modulator.

The term "ligand binding domain" includes homologues of a ligand binding domain or portions thereof. As used herein, the term "homologue" in reference to a ligand binding domain refers to a ligand binding domain or a portion thereof which may have deletions, insertions or substitutions of amino acid residues as long as the binding specificity of the molecule is retained. In this regard, deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the binding specificity of the ligand binding domain is retained.

As used herein, the term "portion thereof" means the structural coordinates corresponding to a sufficient number of amino acid residues of a galactosyltransferase ligand binding domain (or homologues thereof) that are capable of associating with or interacting with a test compound that binds to the ligand binding domain. This term includes galactosyltransferase ligand binding domain amino acid residues having amino acid residues from about 4Å to about 5Å of a bound compound or fragment thereof. Thus, for example, the structural coordinates provided in the structure may contain a subset of the amino acid residues in the ligand binding domain which may be useful in the modelling and design of compounds that bind to the ligand binding domain.

A ligand binding domain may be defined by its association with a ligand. With reference to the structures and models of the invention, residues in the ligand binding domain may be defined by their spatial proximity to a ligand. For example, such may be defined by their proximity to a substrate or modulator.

A ligand binding domain of the invention may comprise a DVD motif comprising one or more of Asp-225, Val-226, and Asp-227. A ligand binding domain may comprise one or more of Phe-134, Tyr-139, Ile-140, Val-136. Arg-194, Arg-202, Lys-209 (numbered as ATOM 204 in Table 8), Asp-173 (numbered as ATOM 169 in Table 8). His-218 (numbered as ATOM 213 in Table 8), and Thr-137 (numbered as ATOM 132 in Table 8) that binds uriding.

"Ligand" refers to a compound or entity that associates with a ligand binding domain, including substrates or analogues or parts thereof. A ligand may be designed rationally using a model according to the invention. A ligand may be a modulator.

"Modulator" refers to a molecule which changes or alters the biological activity of a galactosyltransferase. A modulator may increase or decrease galactosyltransferase activity, or change its characteristics, or functional or immunological properties. It may be an inhibitor that decreases the biological or immunological activity of the protein. A modulator may include but is not limited to peptides, members of random peptide libraries and

- 9 -

5

10

15

20

25

30

35

40

combinatorial chemistry-derived molecular libraries, phosphopeptides (including members of random or partially degenerate, directed phosphopeptide libraries), antibodies, carbohydrates, monosaccharides, oligosaccharides, polysaccharides, glycolipids, saponins, heterocyclic compounds, nucleosides or nucleotides or parts thereof, and small organic or inorganic molecules. A modulator may be an endogenous physiological compound or it may be a natural or synthetic compound. The term "modulator" also refers to a chemically modified ligand or compound, and includes isomers and racemic forms.

The term "structural coordinates" as used refers to a set of values that define the position of one or more amino acid residues with reference to a system of axes. A data set of structural coordinates defines the three dimensional structure of a molecule or molecules. Structural coordinates can be slightly modified and still render nearly identical three dimensional structures. A measure of a unique set of structural coordinates is the root-meansquare deviation of the resulting structure. Structural coordinates that render three dimensional structures that deviate from one another by a root-mean-square deviation of less than 2 Å, preferably less than 0.5 Å, more preferably less than 0.3 Å, may be viewed by a person of ordinary skill in the art as identical.

Variations in structural coordinates may be generated because of mathematical manipulations of the structural coordinates of a galactosyltransferase described herein. For example, the structural coordinates of Table 4 or 8 may be manipulated by crystallographic permutations of the structural coordinates, fractionalization of the structural coordinates, integer additions or substractions to sets of the structural coordinates, inversion of the structural coordinates or any combination of the above.

Variations in structure due to mutations, additions, substitutions, and/or deletions of the amino acids, or other changes in any of the components that make up a structure of the invention may also account for modifications in structural coordinates. If such modifications are within an acceptable standard error as compared to the original structural coordinates, the resulting structure may be the same. Therefore, a ligand that associates with or binds to a ligand binding domain of a galactosyltransferase would also be expected to associate with or bind to another ligand binding domain whose structural coordinates defined a shape that fell within the acceptable error. Such modified structures of a ligand binding domain are also within the scope of the invention.

Various computational analyses may be used to determine whether a ligand or the ligand binding domain thereof is sufficiently similar to all or parts of a ligand or ligand binding domain of the invention. Such analyses may be carried out using conventional software applications and methods as described herein.

The term "modeling" includes the quantitative and qualitative analysis of molecular structure and/or function based on atomic structural information and interaction models. The term includes conventional numericbased molecular dynamic and energy minimization models, interactive computer graphic models, modified molecular mechanics models, distance geometry, and other structure-based constraint models. Preferably modeling is performed using a computer and may be optimized using known methods. This is called modeling optimization,

The term "substrate" refers to molecules that associate with a galactosyltransferase as it catalyzes the transfer of a selected sugar from a nucleotide sugar donor to an acceptor that leads to the formation of a new glycosidic linkage. A substrate includes a sugar nucleotide donor and acceptor and parts thereof.

A "sugar nucleotide donor" refers to a nucleotide coupled to a selected sugar that is transferred by a galactosyltransferase to an acceptor. The selected sugar may be a monosaccharide or disaccharide, preferably a monosaccharide. A suitable selected sugar includes galactose. The galatose may be modified for example, the hydroxyls may be blocked with acetonide, acylated, or alkylated or substituted with other groups such as halogen.

- 10 -

5

10

15

20

25

30

35

40

The nucleotide is preferably UDP. The heterocyclic amine base in the nucleotide may be modified. For example, when the base is uridine it may be modified at the C-5 or C-6 position with groups including but not limited to alkyl. aryl, gallic acid, and with electron donating and electron withdrawing groups. The sugar in the nucleotide (e.g. ribose) may be modified at the 2' or 3' position with groups including but not limited to alkyl, aryl, gallic acid, and with electron donating and electron withdrawing groups.

An "acceptor" refers to the part of a carbohydrate structure (e.g. glycoprotein, glycolipid) where the selected sugar of a sugar nucleotide donor is transferred by the galactosyltransferase.

The term "alkyl", alone or in combination, refers to a branched or linear hydrocarbon radical, typically containing from 1 through 20 carbon atoms, preferably 1 through 10 carbon atoms, more preferably 1 to 6 carbon atoms. Typical alkyl groups include but are not limited to methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, tertbutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and the like.

The term "alkenyl", alone or in combination, refers to an unsaturated branched or linear group typically having from 2 to 20 carbon atoms and at least one double bond. Examples of such groups include but are not limited to ethenyl, 1-propenyl, 2-propenyl, 1-butenyl, 1,3-butadienyl, 1-hexenyl, 2-hexenyl, 1-pentenyl, 2-pentenyl, and the like.

The term "alkynyl", alone or in combination, refers to an unsaturated branched or linear group having 2 to 20 carbon atoms and at least one triple bond. Examples of such groups include but are not limited to ethynyl, 1propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, and the like.

The term "cycloalkyl" refers to cyclic hydrocarbon groups and includes but is not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.

The term "aryl", alone or in combination, refers to a monocyclic or polycyelic group, preferably a monocyclic or bicyclic group. An aryl group may optionally be substituted as described herein. Examples of aryl groups and substituted aryl groups are phenyl, benzyl, p-nitrobenzyl, p-methoxybenzyl, biphenyl, and naphthyl.

The term "alkoxy" alone or in combination, refers to an alkyl or cycloalkyl linked to the parent molecular moiety through an oxygen atom. The term "aryloxy" refers to an aryl linked to the parent molecular moiety through an oxygen atom. Examples of alkoxy groups are methoxy, ethoxy, propoxy, vinyloxy, allyloxy, butoxy, pentoxy, hexoxy, cyclopentoxy, and cyclohexoxy. Examples of aryloxy groups are phenyloxy, O-benzyl i.e. benzyloxy, O-pnitrobenzyl and O-p-methyl-benzyl, 4-nitrophenyloxy, 4-chlorophenyloxy, and the like.

The term "halo" or "halogen", alone or in combination, means fluoro, chloro, bromo, or iodo.

The term "amino", alone or in combination, refers to a chemical functional group where a nitrogen atom (N) is bonded to three substituents being any combination of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, or aryl with the general chemical formula $-NR_{14}R_{16}$ where R_{14} and R_{16} can be any combination of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, or aryl. Optionally one substituent on the nitrogen atom can be a hydroxyl group (-OH) to give an amine known as a hydroxylamine. Examples of amino groups are amino (-NH2), methylamine, ethylamine, dimethylamine, 2-propylamine, butylamine, isobutylamine, cyclopropylamine, benzylamine, allylamine, hydroxylamine, cyclohexylamino (-NHCH(CH₂)₄), piperidine (-N(CH₂)₄) and benzylamino (-NHCH₂C₄H₄).

The term "thioalkyl", alone or in combination, refers to a chemical functional group where a sulfur atom (S) is bonded to an alkyl. Examples of thioalkyl groups are thiomethyl, thioethyl, and thiopropyl.

. The term "thioaryl", alone or in combination, refers to a chemical functional group where a sulfur atom (S) is bonded to an aryl group with the general chemical formula $-SR_{16}$ where R_{16} is an aryl group which may be

- 11 -

substituted. Examples of thioaryl groups and substituted thioaryl groups are thiophenyl, para-chlorothiophenyl, thiobenzyl, 4-methoxy-thiophenyl, 4-nitro-thiophenyl, and para-nitrothiobenzyl.

Heterocyclic rings are molecular rings where one or more carbon atoms have been replaced by hetero atoms (atoms not being carbon) such as for example, oxygen (O), nitrogen (N) or sulfur (S), or combinations thereof. Examples of heterocyclic rings include ethylene oxide, tetrahydrofuran, thiophene, piperidine (piperidinyl group), pyridine (pyridinyl group), and caprolactam. A carbocyclic or heterocyclic group may be optionally substituted at carbon or nitrogen atoms with for example, alkyl, phenyl, benzyl or thienyl, or a carbon atom in the heterocyclic group together with an oxygen atom may form a carbonyl group, or a heterocyclic group may be fused with a phenyl group.

Three Dimensional Structure of Galactosyltransferases and Ligand Binding Domains of Same

The present invention provides a galactosyltransferase secondary, tertiary and/or quanternary structure. The invention also provides a homology model that represents the secondary, tertiary, and/or quanternary structure of a galactosyltransferase. A model may, for example, be a structural model (or representation thereof), or a computer model. The model itself may be in two or three dimensions. It is possible for a computer model to be in three dimensions despite the constraints imposed by a conventional computer screen, if it is possible to scroll along at least a pair of axes, causing "rotation" of the image.

In accordance with an aspect of the invention a method is provided for designing a homology model of a ligand binding domain of a galactosytransferase wherein the homology model may be displayed as a threedimensional image, the method comprising:

(i) providing an amino acid sequence and structural coordinates of a ligand binding domain structure of a glycosyltransferase, preferably SpsA glycosyltransferase;

- (ii) modifying said structure to take into account differences between the amino acid configuration of the ligand binding domains of the galactosyltransferase on the one hand and the SpsA glycosyltransferase on the other hand to generate a homology model, and
- (iii) if required refining the homology model.

5

10

15

20

25

30

35

The method may further comprise comparing the homology model with the structures of other, similar, proteins.

A model or structure of a preferred galactosyltransferase of the invention has the atomic structural coordinates as shown in Table 4 or Table 8. Computer representations of the structure i.e. models are illustrated in the Figures.

The structural coordinates in a structure or model of the invention may comprise the amino acid residues of a galactosyltransferase ligand binding domain, or a portion or homolog thereof useful in the modeling and design of test compounds capable of binding to the galactosyltransferase. Therefore, the invention also relates to a secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase. Ligand binding domains include the ligand binding domains for a disphosphate group of a sugar nucleotide donor, a nucleotide of a sugar nucleotide donor, a nitrogeneous heterocyclic base (preferably a pyrimidine base, more preferably uracil) of a sugar nucleotide donor, and/or a sugar (e.g. galactose) of a sugar nucleotide donor. The structure of a ligand binding domain may be defined by selected atomic interactions or contacts in the domain, preferably two or more of the atomic interactions or contacts as defined in Table 1.

10

15

20

25

30

35

40

PCT/CA01/00607

It is understood that a structure or model of the invention includes a structure where at least one amino acid residue is replaced with a different amino acid residue or by adding or deleting amino acid residues, and having substantially the same three dimensional structure as the galactosyltransferase as described in Table 4 and the Figures, or the ligand binding domains as described in Table 1 (and further defined by the structural coordinates of the ATOMS in Table 4 or Table 8), i.e. having a set of atomic structural coordinates that have a root mean square deviation of less than or equal to about 2Å, preferably less than 0.5Å, most preferably less than 0.3Å, when superimposed with the atomic structure coordinates of the galactosyltransferase as described in Table 4 or Table 8, or the binding domains as described in Table 1 (and further defined by the structural coordinates of the ATOMS in Table 4) when at least 50% to 100% of the atoms of the sugar nucleotide donor binding domain or binding domains of components of the donor as the case may be, are included in the superimposition.

- 12 -

The invention also features a secondary and three dimensional structure or model of a galactosyltransferase in association with one or more molecules (e.g. substrates such as UDP-Gal, uridine-ribose, monophophate-Mn²⁺, or diphosphate-Mn²⁺). The association may be covalent or non-covalent. The molecule may be any organic molecule, and it may modulate the function of a galactosyltransferase by for example inhibiting or enhancing its function, or it may be an acceptor or donor for the galactosyltransferase. It is preferred that the geometry of the compound and the interactions formed between the compound and the galacytosyltransferase provide high affinity binding between the two molecules.

The structure and model of the galactosyltransferase decribed herein has allowed the identification and characterization of the binding domain of UDP and UDP-Gal. The UDP-Gal binding domain has been subdivided into three sub-sites (the uracil-binding domain, the ribose-binding domain, the diphosphate-Mn²⁺ binding domain, and the Gal binding domain) and characterized.

Therefore, in an embodiment of the invention, a secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that binds a diphosphate of a sugar nucleotide donor is provided comprising at least two of atomic interactions 9, 10, and 11 of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the diphosphate, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the ligand binding domain comprises atomic interactions 9 and 10, 10 and 11, 9 and 11, or 9, 10, and 11 of Table 1. Preferably, the binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the binding domain is defined by the structural coordinates referred to as ATOM 1690, and ATOM 1718 of Table 8 most preferably ATOM 1690 to ATOM 1718 inclusive of Table 8. The binding domain of a galactosyltransferase for a diphosphate of a sugar nucleotide donor is also characterized by a DVD motif (Asp-225, Val-226, and Asp-227).

In another embodiment of the invention, a secondary or three dimensional structure or model of a ligand binding domain of a galactosyltransferase that binds a heterocyclic amine base of a sugar nucleotide donor is provided comprising at least two, preferably three, of atomic interactions 1, 2, 3, and 4 of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the heterocyclic amine base, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the ligand binding domain comprises atomic interactions 1 and 2; 1 and 3; 1 and 4; 2 and 3; 2 and 4; 3 and 4; or 1, 2, and 3; 2, 3, and 4; 1, 3,

5

10

15

20

25

30

35

and 4; 1, 2, and 4; or 1, 2, 3 and 4 of Table 1. Preferably, the binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the binding domain is defined by the structural coordinates referred to as ATOM 720, ATOM 1360, ATOM 1490, ATOM 154 to ATOM 155 in Table 8. The ligand binding domain of a galactosyltransferase for a heterocyclic amine base of a sugar nucleotide donor is also characterized by two helices and two β sheets in anti-parallel fashion. A ligand binding domain for uracil can also be characterized by the following three hydrogen bonds: (1) the amide hydrogen of uracil in position 3 and OD1 of Asp-168, (2) the carbonyl oxygen of uracil in position 4 and the side chain of Lys-204, and (3) the carbonyl oxygen of uracil in position 2 and the amide hydrogen of the His-213 side chain.

In another embodiment of the invention, a secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that binds the sugar of the nucleotide (e.g. ribose) of a sugar nucleotide donor is provided comprising at least two, preferably three, of atomic interactions 5, 6, 7, and 8 of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the sugar, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the binding domain comprises atomic interactions 5 and 6; 5 and 7; 5 and 8; 6 and 7; 6 and 8; 7 and 8; 5, 6, and 7; 5, 6, and 8; 6, 7, and 8; 5, 7, and 8; and 5, 6, 7, and 8 of Table 1. Preferably, the ligand binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the binding domain is defined by the structural coordinates referred to as ATOM 1690, ATOM 97 to ATOM 115, ATOM 1436 to ATOM 1454 of Table 8.

Atomic interactions 1 through 11 in Table 1 are preferably each characterized by the types of binding and/or the distances between atomic contacts indicated in Table 1.

In another embodiment of the invention, a secondary or three dimensional structure of a ligand binding domain of a galactosyltransferase that binds a nucleotide (preferably UDP) of a sugar nucleotide donor is provided comprising at least two or more of atomic interactions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the nucleotide, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the binding domain comprises atomic interactions 2, 3, 5, 6, 9, 10, and 11; 4, 7, 8, 9, 10, and 11; 1, 2, 3, 5, 6, 9, 10, 11, or 1 to 11 inclusive of Table 1. Preferably, the ligand binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the ligand binding domain is defined by the structural coordinates referred to as ATOM 720, ATOM 1360, ATOM 1490, ATOM 154, ATOM 155, ATOM 1690, ATOM 97 to ATOM 115, ATOM 1436 to ATOM 1454, and ATOM 1718, of Table 8. The binding domain of a galactosyltransferase for a nucleotide of a sugar nucleotide donor is also characterized by a 100 amino acid nucleotide recognition domain.

A UDP binding domain of a galactosyltransferase is also characterized by an open α,β-sandwich made up of three helices packed against four β-sheets. The following amino acid residues have also been identified to be part of the UDP binding domain: Phe-134, Typ-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209, Asp-173, His-218, Thr-137, Asp-225, Val-226, and Asp-227.

In yet another embodiment of the invention, a secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that binds a sugar nucleotide donor (preferably UDP-Gal) is provided comprising at least three of the atomic interactions of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the sugar nucleotide donor, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the binding domain comprises atomic interactions 1 to 11 inclusive of Table 1. Preferably, the ligand binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the ligand binding domain is defined by the structural coordinates referred to as ATOM 720, ATOM 1360, ATOM 1490, ATOM 154, ATOM 155, ATOM 1690, ATOM 97 to ATOM 115, ATOM 1436 to ATOM 1454, and ATOM 1718 of Table 4.

Identification of Homologues

5

10

15

20

25

30

35

The knowledge of the structures and models of the invention enables one skilled in the art to identify homologues of galactosyltransferases. This is achieved by searches of three-dimensional databases. Since structural folds are conserved to a greater extent than sequence, one may identify homologues with very little sequence identity or similarity. Programs that provide this type of database searching are known in the art and include Dal and the Fold recognition server located at UCLA (8). The structural coordinates of a protein structure are submitted and the program performs a multiple structural alignment with proteins in the protein data bank. Homologues identified in accordance with the present invention may be used in the methods of the invention described herein.

Computer Format of Structures/Models

Information derivable from the structures of the present invention (for example the structural coordinates) or a model of the present invention may be provided in a computer-readable format.

Therefore, the invention provides a computer readable medium or a machine readable storage medium which comprises the models of the invention or structural coordinates of a galactosyltransferase including all or any parts of the galactosyltransfersae (e.g ligand-binding domain), ligands including portions thereof, or substrates including portions thereof. Such storage medium or storage medium encoded with these data are capable of displaying on a computer screen or similar viewing device, a three-dimensional graphical representation of a molecule or molecular complex which comprises the enzyme or ligand binding domains or similarly shaped homologous enzymes or ligand binding domains. Thus, the invention also provides computerized representations of a model or structure of the invention, including any electronic, magnetic, or electromagnetic storage forms of the data needed to define the structures such that the data will be computer readable for purposes of display and/or manipulation.

In an aspect the invention provides a computer for producing a model or three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises a galactosyltransferase or ligand binding domain thereof defined by structural coordinates of galactosyltransferase amino acids or a ligand binding domain thereof, or comprises structural coordinates of atoms of a ligand or substrate, or a three-dimensional representation of a homologue of said molecule or molecular complex, wherein said computer comprises:

(a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises the structural coordinates of a galactosyltransferase

- 15 -

- amino acids according to Table 4 or Table 8 or a ligand binding domain thereof, or a ligand according to Table 5, 6, or 7;
- (b) a working memory for storing instructions for processing said machine-readable data;
- (c) a central-processing unit coupled to said working memory and to said machine-readable data storage medium for processing said machine readable data into said three-dimensional representation; and
- (d) a display coupled to said central-processing unit for displaying said three-dimensional representation.

A homologue may comprise a galactosyltransferase or ligand binding domain thereof, or ligand or substrate that has a root mean square deviation from the backbone atoms of not more than 1.5 angstroms.

The invention also provides a computer for determining at least a portion of the structural coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex wherein said computer comprises:

- (a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises the structural coordinates according to Table 4, 5, 6, 7, or 8;
- (b) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;
- a working memory for storing instructions for processing said machine-readable data of (a) and (c) (b);
- à central-processing unit coupled to said working memory and to said machine-readable data (d) storage medium of (a) and (b) for performing a Fourier transform of the machine readable data of (a) and for processing said machine readable data of (b) into structural coordinates; and
- a display coupled to said central-processing unit for displaying said structural coordinates of said (e) molecule or molecular complex.

The invention also contemplates a computer programmed with a homology model of a ligand binding domain according to the invention; a machine-readable data-storage medium on which has been stored in machinereadable form a homology model of a ligand binding domain of a galactosyltransferase; and the use of a homology model as input to a computer programmed for drug design and/or database searching and/or molecular graphic imaging in order to identify new ligands for galactosyltransferases.

Structural Determinations

5

10

15

20

25

30

35

The present invention also provides a method for determining the secondary and/or tertiary structures of a polypeptide by using a model according to the invention. The polypeptide may be any polypeptide for which the secondary and or tertiary structure is uncharacterised or incompletely characterised. In a preferred embodiment the polypeptide shares (or is predicted to share) some structural or functional homology to a galactosyltransferase, preferably a \$1,3 galactosyltranferase. For example, the polypeptide may show a degree of structural homology over some or all parts of the primary amino acid sequence. For example the polypeptide may have one or more domains which show homology with a galactosyltransferase domain (Kapitonov and Yu (1999) Glycobiology 9(10): 961-978).

10

15

20

25

30

35

The polypeptide may be a galactosyltransferase with a different specificity for a ligand or substrate. The polypeptide may be a galactosyltransferase which requires a different metal cofactor. Alternatively (or in addition) the polypeptide may be a galactosyltransferase from a different species.

The polypeptide may be a mutant of the wild-type galactosyltransferase. A mutant may arise naturally, or may be made artificially (for example using molecular biology techniques). The mutant may also not be "made" at all in the conventional sense, but merely tested theoretically using the model of the present invention. A mutant may or may not be functional.

Thus, using a model of the present invention, the effect of a particular mutation on the overall two and/or three dimensional structure of a galactosyltransferase and/or the interaction between the enzyme and a ligand or substrate can be investigated. Alternatively, the polypeptide may perform an analogous function or be suspected to show a similar catalytic mechanism to the galactosyltransferase enzyme. For example the polypeptide may transfer a sugar residue from a sugar nucleotide donor.

The polypeptide may also be the same as the polypeptide described herein, but in association with a different ligand (for example, modulator or inhibitor) or cofactor. In this way it is possible to investigate the effect of altering a ligand or compound with which the polypeptide is associated on the structure of a ligand binding domain.

Secondary or tertiary structure may be determined by applying the structural coordinates of the model of the present invention to other data such as an amino acid sequence, X-ray crystallographic diffraction data, or nuclear magnetic resonance (NMR) data. Homology modeling, molecular replacement, and nuclear magnetic resonance methods using these other data sets are described below.

Homology modeling (also known as comparative modeling or knowledge-based modeling) methods develop a three dimensional model from a polypeptide sequence based on the structures of known proteins (e.g. native or mutated galactosyltransferases). In the present invention the method utilizes a computer representation of the structure of a galactosyltransferase, or a binding domain or complex of same as described herein, a computer representation of the amino acid sequence of a polypeptide with an unknown structure (additional native or mutated galactosyltransferases), and standard computer representations of the structures of amino acids. The method in particular comprises the steps of; (a) identifying structurally conserved and variable regions in the known structure; (b) aligning the amino acid sequences of the known structure and unknown structure (c) generating coordinates of main chain atoms and side chain atoms in structurally conserved and variable regions of the unknown structure based on the coordinates of the known structure thereby obtaining a homology model; and (d) refining the homology model to obtain a three dimensional structure for the unknown structure. This method is well known to those skilled in the art (Greer, 1985, Science 228, 1055; Bundell et al 1988, Eur. J. Biochem. 172, 513; Knighton et al., 1992, Science 258:130-135, http://biochem.vt.edu/courses/modeling/ homology.htn). Computer programs that can be used in homology modeling are Quanta and the Homology module in the Insight II modeling package distributed by Molecular Simulations Inc, or MODELLER (Rockefeller University, www.iucr.ac.uk/sinris-top/logical/prgmodeller.html).

In step (a) of the homology modeling method, a known galactosyltransferase structure is examined to identify the structurally conserved regions (SCRs) from which an average structure, or framework, can be constructed for these regions of the protein. Variable regions (VRs), in which known structures may differ in conformation, also must be identified. SCRs generally correspond to the elements of secondary structure, such as

5

10

15

20

25

30

35

40

alpha-helices and beta-sheets, and to ligand- and substrate-binding sites (e.g. acceptor and donor binding sites). The VRs usually lie on the surface of the proteins and form the loops where the main chain turns.

Many methods are available for sequence alignment of known structures and unknown structures. Sequence alignments generally are based on the dynamic programming algorithm of Needleman and Wunsch [J. Mol. Biol. 48: 442-453, 1970]. Current methods include FASTA, Smith-Waterman, and BLASTP, with the BLASTP method differing from the other two in not allowing gaps. Scoring of alignments typically involves construction of a 20x20 matrix in which identical amino acids and those of similar character (i.e., conservative substitutions) may be scored higher than those of different character. Substitution schemes which may be used to score alignments include the scoring matrices PAM (Dayhoff et al., Meth. Enzymol. 91: 524-545, 1983), and BLOSUM (Henikoff and Henikoff, Proc. Nat. Acad. Sci. USA 89: 10915-'0919, 1992), and the matrices based on alignments derived from three-dimensional structures including that of Johnson and Overington (JO matrices) (J. Mol. Biol. 233: 716-738, 1993).

Alignment based solely on sequence may be used, though other structural features also may be taken into account. In Quanta, multiple sequence alignment algorithms are available that may be used when aligning a sequence of the unknown with the known structures. Four scoring systems (i.e. sequence homology, secondary structure homology, residue accessibility homology, CA-CA distance homology) are available, each of which may be evaluated during an alignment so that relative statistical weights may be assigned.

When generating coordinates for the unknown structure, main chain atoms and side chain atoms, both in SCRs and VRs need to be modeled. A variety of approaches may be used to assign coordinates to the unknown. In particular, the coordinates of the main chain atoms of SCRs will be transferred to the unknown structure. VRs correspond most often to the loops on the surface of the polypeptide and if a loop in the known structure is a good model for the unknown, then the main chain coordinates of the known structure may be copied. Side chain coordinates of SCRs and VRs are copied if the residue type in the unknown is identical to or very similar to that in the known structure. For other side chain coordinates, a side chain rotamer library may be used to define the side chain coordinates. When a good model for a loop cannot be found fragment databases may be searched for loops in other proteins that may provide a suitable model for the unknown. If desired, the loop may then be subjected to conformational searching to identify low energy conformers if desired.

Once a homology model has been generated it is analyzed to determine its correctness. A computer program available to assist in this analysis is the Protein Health module in Quanta which provides a variety of tests. Other programs that provide structure analysis along with output include PROCHECK and 3D-Profiler [Luthy R. et al, Nature 356: 83-85, 1992; and Bowie, J.U. et al, Science 253: 164-170, 1991]. Once any irregularities have been resolved, the entire structure may be further refined. Refinement may consist of energy minimization with restraints, especially for the SCRs. Restraints may be gradually removed for subsequent minimizations. Molecular dynamics may also be applied in conjunction with energy minimization.

The structural coordinates of a galactosyltransferase structure may be applied to nuclear magnetic resonance (NMR) data to determine the three dimensional structures of polypeptides in solution (e.g. additional native or mutated galactosyltransferases). (See for example, Wuthrich, 1986, John Wiley and Sons, New York: 176-199; Pflugrath et al., 1986, J. Molecular Biology 189: 383-386; Kline et al., 1986 J. Molecular Biology 189:377-382). While the secondary structure of a polypeptide may often be determined by NMR data, the spatial connections between individual pieces of secondary structure are not as readily determined. The structural coordinates of a polypeptide can guide the NMR spectroscopist to an understanding of the spatical interactions between secondary

- 18 -

structural elements in a polypeptide of related structure. Information on spatial interactions between secondary structural elements can greatly simplify Nuclear Overhauser Effect (NOE) data from two-dimensional NMR experiments. In addition, applying the structural coordinates after the determination of secondary structure by NMR techniques simplifies the assignment of NOE's relating to particular amino acids in the polypeptide sequence and does not greatly bias the NMR analysis of polypeptide structure.

In an embodiment, the invention relates to a method of determining three dimensional structures of polypeptides with unknown structures, preferably a native or mutated galactosyltransferases, by applying the structural coordinates of a galactosyltransferase structure, or ligand binding domain or complex thereof described herein to nuclear magnetic resonance (NMR) data of the unknown structure. This method comprises the steps of: (a) determining the secondary structure of an unknown structure using NMR data; and (b) simplifying the assignment of through-space interactions of amino acids. The term "through-space interactions" defines the orientation of the secondary structural elements in the three dimensional structure and the distances between amino acids from different portions of the amino acid sequence. The term "assignment" defines a method of analyzing NMR data and identifying which amino acids give rise to signals in the NMR spectrum.

15 Screening Method

5

10

20

25

30

35

40

The present invention provides a method of screening for a ligand that associates with a ligand binding domain and/or modulates the function of a galactosyltranssferase, by using a structure or a model according to the present invention. The method may involve investigating whether a test compound is capable of associating with or binding a ligand binding domain.

In accordance with an aspect of the present invention, a method is provided for screening for a ligand capable of associating with or binding to a ligand binding domain, wherein said method comprises the use of a structure or model according to the invention.

In another aspect, the invention relates to a method of screening for a ligand capable of associating with or binding to a ligand binding domain, wherein the ligand binding domain is defined by the amino acid residue structural coordinates given herein, the method comprising contacting the ligand binding domain with a test compound and determining if said test compound binds to said ligand binding domain.

In one embodiment, the present invention provides a method of screening for a test compound capable of interacting with a key amino acid residue of a ligand binding domain of a galactosyltransferase.

Another aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain; and
- preparing a quantity of said one or more ligands. (c)

A further aspect of the invention provides a process comprising the steps of:

- performing the method of screening for a ligand as described above; (a)
- **(b)** identifying one or more ligands capable of binding to a ligand binding domain; and
- preparing a pharmaceutical composition comprising said one or more ligands. (c)

Once a test compound capable of interacting with a key amino acid residue in a galactosyltransferase ligand binding domain has been identified, further steps may be carried out either to select and/or to modify compounds and/or to modify existing compounds, to modulate the interaction with the key amino acid residues in the galactosyltransferase ligand binding domain.

10

15

20

25

30

35

40

Yet another aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain;
- (c) modifying said one or more ligands capable of binding to a ligand binding domain;
- (d) performing said method of screening for a ligand as described above;
- (e) optionally preparing a pharmaceutical composition comprising said one or more ligands.

As used herein, the term "test compound" means any compound which is potentially capable of associating with a ligand binding domain. If, after testing, it is determined that the test compound does associate with or bind to the ligand binding domain, it is known as a "ligand".

A "test compound" includes, but is not limited to, a compound which may be obtainable from or produced by any suitable source, whether natural or not. The test compound may be designed or obtained from a library of compounds which may comprise peptides, as well as other compounds, such as small organic molecules and particularly new lead compounds. By way of example, the test compound may be a natural substance, a biological macromolecule, or an extract made from biological materials such as bacteria, fungi, or animal (particularly mammalian) cells or tissues, an organic or an inorganic molecule, a synthetic test compound, a semi-synthetic test compound, a carbohydrate, a monosaccharide, an oligosaccharide or polysaccharide, a glycolipid, a glycopeptide, a saponin, a heterocyclic compound, a structural or functional mimetic, a peptide, a peptidomimetic, a derivatised test compound, a peptide cleaved from a whole protein, or a peptide synthesised synthetically (such as, by way of example, either using a peptide synthesizer or by recombinant techniques or combinations thereof), a recombinant test compound, a natural or a non-natural test compound, a fusion protein or equivalent thereof and mutants, derivatives or combinations thereof.

The test compound may be screened as part of a library or a data base of molecules. Data bases which may be used include ACD (Molecular Designs Limited), NCI (National Cancer Institute), CCDC (Cambridge Crystallographic Data Center), CAST (Chemical Abstract Service), Derwent (Derwent Information Limited), Maybridge (Maybridge Chemical Company Ltd), Aldrich (Aldrich Chemical Company), DOCK (University of California in San Francisco), and the Directory of Natural Products (Chapman & Hall). Computer programs such as CONCORD (Tripos Associates) or DB-Converter (Molecular Simulations Limited) can be used to convert a data set represented in two dimensions to one represented in three dimensions.

Test compounds may be tested for their capacity to fit spatially into a galactosyltransferase ligand binding domain. As used herein, the term "fits spatially" means that the three-dimensional structure of the test compound is accommodated geometrically in a galactosyltransferase ligand binding domain. The test compound can then be considered to be a ligand.

A favourable geometric fit occurs when the surface area of the test compound is in close proximity with the surface area of the cavity or pocket without forming unfavorable interactions or associations. A favourable complementary interaction occurs where the test compound interacts by hydrophobic, aromatic, ionic, dipolar, or hydrogen donating and accepting forces. Unfavourable interactions or associations may be steric hindrance between atoms in the test compound and atoms in the binding site.

In an embodiment of the invention, a method is provided for identifying potential modulators of galactosyltransferase function. The method utilizes the structural coordinates or model of a galactosyltransferase three dimensional structure, or binding domain thereof. The method comprises the steps of (a) docking a computer

10

15

20

25

30

35

40

WO 01/83717 PCT/CA01/00607

- 20 -

representation of a test compound from a computer data base with a computer model of a ligand binding domain of a galactosyltransferase; (b) determining a conformation of a complex between the test compound and binding domain with a favourable geometric fit or favorable complementary interactions; and (c) identifying test compounds that best fit the galactosyltransferase binding domain as potential modulators of galactosyltransferase function. The initial galactosyltransferase structure may or may not have substrates bound to it. A favourable complementary interaction occurs where a compound in a compound-galactosyltransferase complex interacts by hydrophobic, ionic, or hydrogen donating and accepting forces, with the active-site or ligand binding domain of a galactosyltransferase without forming unfavorable interactions.

If a model of the present invention is a computer model, the test compounds may be positioned in a ligand binding domain through computational docking. If, on the other hand, the model of the present invention is a structural model, the test compounds may be positioned in the ligand binding domain by, for example, manual docking.

As used herein the term "docking" refers to a process of placing a compound in close proximity with a galactosyltransferase ligand binding domain, or a process of finding low energy conformations of a test compound/galactosyltransferase complex.

A screening method of the present invention may comprise the following steps:

- (i) generating a computer model of a galactosyltransferase or a ligand binding domain thereof according to the first aspect of the invention;
- (ii) docking a computer representation of a test compound with the computer model;
- (iii) analysing the fit of the compound in the galactosyltransferase or ligand binding domain thereof.

 In an aspect of the invention a method is provided comprising the following steps:
 - (a) docking a computer representation of a structure of a test compound into a computer representation of a ligand binding domain of a galactosyltransferase defined in accordance with the invention using a computer program, or by interactively moving the representation of the test compound into the representation of the binding domain;
 - (b) characterizing the geometry and the complementary interactions formed between the atoms of the ligand binding domain and the test compound; optionally
 - (c) searching libraries for molecular fragments which can fit into the empty space between the compound and ligand binding domain and can be linked to the compound; and
 - (d) linking the fragments found in (c) to the compound and evaluating the new modified compound. In an embodiment of the invention a method is provided which comprises the following steps:
 - (a) docking a computer representation of a test compound from a computer data base with a computer representation of a selected site (e.g. an inhibitor binding domain) on a galactosyltransferase structure or model defined in accordance with the invention to obtain a complex;
 - (b) determining a conformation of the complex with a favourable geometric fit and favourable complementary interactions; and
 - (c) identifying test compounds that best fit the selected site as potential modulators of the galactosyltransferase.

A method of the invention may be applied to a plurality of test compounds, to identify those that best fit the selected site.

10

15

20

25

30

35

40

The model used in the screening method may comprise a galactosyltransferase or ligand binding domain thereof either alone or in association with one or more ligands and/or cofactors. For example, the model may comprise the ligand-binding domain in association with a ligand, substrate, or analogue thereof.

If the model comprises an unassociated ligand binding domain, then the selected site under investigation may be the ligand binding domain itself. The test compound may, for example, mimic a known substrate for the enzyme in order to interact with the ligand binding domain. The selected site may alternatively be another site on the enzyme.

If the model comprises an associated ligand binding domain, for example a ligand binding domain in association with a ligand or substrate molecule or analogue thereof, the selected site may be the ligand binding domain or a site made up of the ligand binding domain and the complexed ligand, or a site on the ligand itself. The test compound may be investigated for its capacity to modulate the interaction with the associated molecule.

A test compound (or plurality of test compounds) may be selected on the basis of its similarity to a known ligand for the galactosyltransferase. For example, the screening method may comprise the following steps:

- generating a computer model of a galactosyltransferase ligand binding domain in complex with a (i)
- (ii) searching for a test compound with a similar three dimensional structure and/or similar chemical groups; and
- (iii) evaluating the fit of the test compound in the ligand binding domain.

Searching may be carried out using a database of computer representations of potential compounds, using methods known in the art.

The present invention also provides a method for designing ligands for a galactosyltransferase. It is well known in the art to use a screening method as described above to identify a test compound with promising fit, but then to use this test compound as a starting point to design a ligand with improved fit to the model. A known modulator can also be modified to enhance its fit with a model of the invention. Such techniques are known as "structure-based ligand design" (See Kuntz et al., 1994, Acc. Chem. Res. 27:117; Guida, 1994, Current Opinion in Struc. Biol. 4: 777; and Colman, 1994, Current Opinion in Struc. Biol. 4: 868, for reviews of structure-based drug design and identification; and Kuntz et al 1982, J. Mol. Biol. 162:269; Kuntz et al., 1994, Acc. Chem. Res. 27: 117; Meng et al., 1992, J. Compt. Chem. 13: 505; Bohm, 1994, J. Comp. Aided Molec. Design 8: 623 for methods of structure-based modulator design).

Examples of computer programs that may be used for structure-based ligand design are CAVEAT (Bartlett et al., 1989, in "Chemical and Biological Problems in Molecular Recognition", Roberts, S.M. Ley, S.V.; Campbell, N.M. eds; Royal Society of Chemistry: Cambridge, pp 182-196); FLOG (Miller et al., 1994, J. Comp. Aided Molec. Design 8:153); PRO Modulator (Clark et al., 1995 J. Comp. Aided Molec. Design 9:13); MCSS (Miranker and Karplus, 1991, Proteins: Structure, Function, and Genetics 8:195); and, GRID (Goodford, 1985, J. Med. Chem. 28:849).

The method may comprise the following steps:

- docking a model of a test compound with a model of a selected ligand binding domain; (i)
- (ii) identifying one or more groups on the test compound which may be modified to improve their fit in the selected ligand binding domain;
- replacing one or more identified groups to produce a modified test compound model; and (iii)

- (iv) docking the modified test compound model with the model of the selected ligand binding domain. Evaluation of fit may comprise the following steps:
- mapping chemical features of a test compound such as by hydrogen bond donors or acceptors, (a) hydrophobic/lipophilic sites, positively ionizable sites, or negatively ionizable sites; and
- (b) adding geometric constraints to selected mapped features.

10

15

20

25

30

35

40

The fit of the modified test compound may then be evaluated using the same criteria.

The chemical modification of a group may either enhance or reduce hydrogen bonding interaction, charge interaction, hydrophobic interaction, Van Der Waals interaction or dipole interaction between the test compound and the key amino acid residue(s) of the selected site. Preferably the group modifications involve the addition, removal, or replacement of substituents onto the test compound such that the substituents are positioned to collide or to bind preferentially with one or more amino acid residues that correspond to the key amino acid residues of the selected site.

Identified groups in a test compound may be substituted with, for example, alkyl, alkoxy, hydroxyl, aryl, cycloalkyl, alkenyl, alkynyl, thiol, thioalkyl, thioaryl, amino, or halo groups. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided.

If a modified test compound model has an improved fit, then it may bind to the selected site and be considered to be a "ligand". Rational modification of groups may be made with the aid of libraries of molecular fragments which may be screened for their capacity to fit into the available space and to interact with the appropriate atoms. Databases of computer representations of libraries of chemical groups are available commercially, for this purpose.

A test compound may also be modified "in situ" (i.e. once docked into the potential binding domain), enabling immediate evaluation of the effect of replacing selected groups. The computer representation of the test compound may be modified by deleting a chemical group or groups, replacing chemical groups, or by adding a chemical group or groups. After each modification to a compound, the atoms of the modified compound and potential binding site can be shifted in conformation and the distance between the modulator and the active site atoms may be scored on the basis of geometric fit and favourable complementary interactions between the molecules. This technique is described in detail in Molecular Simulations User Manual, 1995 in LUDI.

Examples of ligand building and/or searching computer programs include programs in the Molecular Simulations Package (Catalyst), ISIS/HOST, ISIS/BASE, and ISIS/DRAW (Molecular Designs Limited), and UNITY (Tripos Associates).

The "starting point" for rational ligand design may be a known ligand for the enzyme. For example, in order to identify potential modulators of a galactosyltransferase, a logical approach would be to start with a known ligand (for example a substrate molecule or inhibitor) to produce a molecule which mimics the binding of the ligand. Such a molecule may, for example, act as a competitive inhibitor for the true ligand, or may bind so strongly that the interaction (and inhibition) is effectively irreversible. Such a method may comprise the following steps:

- generating a computer model of a galactosyltransferase ligand binding domain in complex with a (i) ligand;
- replacing one or more groups on the ligand computer model to produce a modified ligand; and (ii)

(iii) evaluating the fit of the modified ligand in the ligand binding domain.

5

10

15

20

25

30

35

The replacement groups could be selected and replaced using a compound construction program which replaces computer representations of chemical groups with groups from a computer database, where the representations of the compounds are defined by structural coordinates.

In an embodiment, a screening method is provided for identifying a ligand of a galactosyltransferase comprising the step of using the structural coordinates or model of a substrate molecule or component thereof, defined in relation to its spatial association with a galactosyltransferase structure or a ligand binding domain, to generate a compound that is capable of associating with the galactosyltransferase or ligand binding domain.

The invention contemplates a method for the design of modulators for galactosyltransferases based on the three dimensional structure or model of a sugar nucleotide donor (or parts thereof) defined in relation to the three dimensional structure of a ligand binding domain.

In accordance with particular aspects of the invention, a method is provided for designing potential inhibitors of a galactosyltransferase comprising the step of using the structural coordinates of uracil, uridine, or UDP of Table 5, 6, or 7 to generate a compound for associating with the active site of a ligand binding domain of a galactosyltransferase. The following steps are employed in a particular method of the invention: (a) generating a computer representation of uracil, uridine, or UDP defined by structural coordinates of Table 5, 6 or 7; (b) searching for molecules in a data base that are similar to the defined uracil, uridine, or UDP using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.

In another embodiment of the invention, a method is provided for designing potential inhibitors of a glycosyltransferase comprising the step of using the structural coordinates of UDP-Gal of Table 6, to generate a compound for associating with the active site of a galactosyltransferase. The following steps are employed in a particular method of the invention: (a) generating a computer representation of UDP-Gal defined by the structural coordinates of Table 6; (b) searching for molecules in a data base that are similar to the defined UDP-Gal using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.

The screening methods of the present invention may be used to identify compounds or entities that associate with a molecule that associates with a galactosyltransferase enzyme (for example, a substrate molecule).

Compounds and entities (e.g. ligands) of a galactosyltransferase identified using the above-described methods may be prepared using methods described in standard reference sources utilized by those skilled in the art. For example, organic compounds may be prepared by organic synthetic methods described in references such as March, 1994, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, New York, McGraw Hill. (See detailed discussion herein.)

Test compounds and ligands which are identified using a model of the present invention can be screened in assays such as those well known in the art. Screening can be, for example, in vitro, in cell culture, and/or in vivo. Biological screening assays preferably centre on activity-based response models, binding assays (which measure how well a compound binds), and bacterial, yeast and animal cell lines (which measure the biological effect of a compound in a cell). The assays can be automated for high capacity-high throughput screening (HTS) in which large numbers of compounds can be tested to identify compounds with the desired activity. The biological assay,

PCT/CA01/00607 WO 01/83717

- 24 -

may also be an assay for the ligand binding activity of a compound that selectively binds to the ligand binding domain compared to other enzymes.

Ligands/Modulators

The present invention provides a ligand or compound or entity identified by a screening method of the present invention. A ligand or compound may have been designed rationally by using a model according to the present invention. A ligand or compound identified using the screening methods of the invention specifically associate with a target compound. In the present invention the target compound may be a galactosyltransferase or a molecule that is capable of associating with a galactosyltransferase (for example a substrate molecule). In a preferred embodiment the ligand is capable of binding to the ligand binding domain of a galactosyltransferase.

A ligand or compound identified using a screening method of the invention may act as a "modulator", i.e. a compound which affects the activity of a galactosyltransferase. A modulator may reduce, enhance or alter the biological function of a galactosyltransferase. For example a modulator may modulate the capacity of the enzyme to transfer a sugar from a nucleotide sugar donor to a specific hydroxyl of various saccharide acceptors that leads to the formation of a new glycosidic linkage. An alteration in biological function may be characterised by a change in specificity. For example, a modulator may cause the enzyme to accept a different substrate molecule, to transfer a different sugar, or to work with a different metal cofactor. In order to exert its function, the modulator commonly binds to the ligand binding domain.

A modulator which is capable of reducing the biological function of the enzyme may also be known as an inhibitor. Preferably an inhibitor reduces or blocks the capacity of the enzyme to form new glycosidic linkages. The inhibitor may mimic the binding of a substrate molecule, for example, it may be a substrate analogue. A substrate analogue may be designed by considering the interactions between the substrate molecule and the enzyme (for example by using information derivable from a model of the invention) and specifically altering one or more groups.

In a highly preferred embodiment, a modulator acts as an inhibitor of a galactosyltransferase and is capable of inhibiting N- or O-glycan biosynthesis.

The present invention also provides a method for modulating the activity of a galactosyltransferase within a cell using a modulator according to the present invention. It would be possible to monitor the expression of Nglycans on the cell surface following such treatment by a number of methods known in the art (for example by detecting expression with an N-and O-glycan specific antibody).

In another preferred embodiment, the modulator modulates the catalytic mechanism of the enzyme.

A modulator may be an agonist, partial agonist, partial inverse agonist or antagonist of a galactosyltransferase or a ligand binding domain.

The term "agonist" includes any ligand, which is capable of binding to a ligand binding domain and which is capable of increasing a proportion of active enzyme, resulting in an increased biological response. The term includes partial agonists and inverse agonists.

The term "partial agonist" includes an agonist that is unable to evoke the maximal response of a biological system, even at a concentration sufficient to saturate a specific ligand binding domain.

The term "partial inverse agonist" includes an inverse agonist that evokes a submaximal response to a biological system, even at a concentration sufficient to saturate a specific ligand binding domain. At high concentrations, it will diminish the actions of a full inverse agonist.

10

15

5

20

25

30

35

- 25 -

5

10

15

20

25

30

35

40

The invention relates to a galactosyltransferase ligand binding domain antagonist, wherein said ligand binding domain is that defined by the amino acid structural coordinates described herein. For example the ligand may antagonise the inhibition of galactosyltransferase by an inhibitor.

The term "antagonist" includes any agent that reduces the action of another agent, such as an agonist. The antagonist may act at the same site as the agonist (competitive antagonism). The antagonistic action may result from a combination of the substance being antagonised (chemical antagonism) or the production of an opposite effect through a different binding site (functional antagonism or physiological antagonism) or as a consequence of competition for the binding site of an intermediate that links the enzyme to the effect observed (indirect antagonism).

The term "competitive antagonism" refers to the competition between an agonist and an antagonist for a ligand binding domain that occurs when the binding of agonist and antagonist becomes mutually exclusive. This may be because the agonist and antagonist compete for the same binding site or combine with adjacent but overlapping sites. A third possibility is that different sites are involved but that they influence the same macromolecules in such a way that agonist and antagonist molecules cannot be bound at the same time. If the agonist and antagonist form only short lived combinations with the binding site so that equilibrium between agonist, antagonist and binding site is reached during the presence of the agonist, the antagonism will be surmountable over a wide range of concentrations. In contrast, some antagonists, when in close enough proximity to their binding site, may form a stable covalent bond with it and the antagonism becomes insurmountable when no spare receptors remain.

As mentioned above, an identified ligand or compound may act as a ligand model (for example, a template) for the development of other compounds. A modulator may be a mimetic of a ligand or ligand binding domain. A mimetic of a ligand may compete with a natural ligand for a galactosyltransferase and antagonize a physiological effect of the enzyme in an animal. A mimetic of a ligand may be an organically synthesized compound. A mimetic of a ligand binding domain, may be either a peptide, polysaccharide, oligosaccharide, or other biopharmaceutical (such as an organically synthesized compound) that specifically binds to a natural substrate molecule for a galactosyltransferase and antagonize a physiological effect of the enzyme in an animal.

Once a ligand has been optimally selected or designed, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided, Such substituted chemical compounds may then be analyzed for efficiency of fit to a galactosyltransfease ligand binding domain by the same computer methods described above.

Preferably, positions for substitution are selected based on the predicted binding orientation of a ligand to a galactosyltransferase ligand binding domain.

A technique suitable for preparing a modulator will depend on its chemical nature. For example, organic compounds may be prepared by organic synthetic methods described in references such as March, 1994, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, New York, McGraw Hill. Peptides can be synthesized by solid phase techniques (Roberge JY et al (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Once cleaved from the resin, the peptide may be purified by preparative high performance liquid chromatography (e.g., Creighton (1983) Proteins Structures and Molecular Principles, WH

PCT/CA01/00607 WO 01/83717

- 26 -

Freeman and Co, New York NY). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, supra).

If a modulator is a nucleotide, or a polypeptide expressable therefrom, it may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers MH et al (1980) Nuc Acids Res Symp Ser 215-23, Horn T et al (1980) Nuc Acids Res Symp Ser 225-232), or it may be prepared using recombinant techniques well known in the art.

Direct synthesis of a ligand or mimetics thereof can be performed using various solid-phase techniques (Roberge JY et al (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Additionally, the amino acid sequences obtainable from the ligand, or any part thereof, may be altered during direct synthesis and/or combined using chemical methods with a sequence from other subunits, or any part thereof, to produce a variant ligand.

In an alternative embodiment of the invention, the coding sequence of a ligand or mimetics thereof may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers MH et al (1980) Nuc Acids Res Symp Ser 215-23, Horn T et al (1980) Nuc Acids Res Symp Ser 225-232).

A wide variety of host cells can be employed for expression of the nucleotide sequences encoding a ligand of the present invention. These cells may be both prokaryotic and eukaryotic host cells. Suitable host cells include bacteria such as E. coli, yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the expression products to produce an appropriate mature polypeptide. Processing includes but is not limited to glycosylation, ubiquitination, disulfide bond formation and general post-translational modification.

In an embodiment of the present invention, the ligand may be a derivative of, or a chemically modified ligand. The term "derivative" or "derivatised" as used herein includes the chemical modification of a ligand.

A chemical modification of a ligand and/or a key amino acid residue of a ligand binding domain of the present invention may either enhance or reduce hydrogen bonding interaction, charge interaction, hydrophobic interaction, Van Der Waals interaction or dipole interaction between the ligand and the key amino acid residue(s) of a galactosyltransferase ligand binding domain.

Preferably such modifications involve the addition of substituents onto a test compound such that the substituents are positioned to collide or to bind preferentially with one or more amino acid residues that correspond to the key amino acid residues of a galactosyltransferase ligand binding domain. Typical modifications may include, for example, the replacement of a hydrogen by a halo group, an alkyl group, an acyl group or an amino group.

The invention also relates to classes of modulators of galactosyltransferase based on the structure and shape of a substrate, defined in relation to the substrate's molecule's spatial association with a galactosyltransferase structure of the invention or part thereof. Therefore, a modulator may comprise a substrate molecule having the shape or structure, preferably the structural coordinates, of a substrate molecule in an active site binding pocket of a reaction catalyzed by a galactosyltransferase.

Modulators Based on the 3D Structure of a Nucleotide Sugar Donor.

One class of modulators defined by the invention are compounds of the following formula I having the structural coordinates of uracil of Table 5, preferably Run 9, Cluster 1 or ATOM 1 to ATOM 9, inclusive of Table 7:

35

5

10

15

20

25

30

wherein R₁ and R₂ are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, pyrophophate, gallic acid, phosphonates, thioamide, and -OR₁₂ where R₁₂ is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring;

and salts and optically active and racemic forms of a compound of the formula I.

Another class of modulators defined by the invention are compounds of the following formula II having the structural coordinates of uridine of Table 5, preferably Run 9, Cluster 1 or ATOMs 1 to 20 inclusive, of Table 7:

$$R_1$$
 NH R_2 N NH R_3 R_4 R_3

10

5

wherein R₁, R₂, R₃, R₄, and R₅ are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, pyrophosphate, gallic acid, phosphonates, thioamide, and -OR₁₂ where R₁₂ is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring,

15

and salts and optically active and racemic forms of a compound of the formula II.

Yet another class of modulators defined by the invention are compounds of the following formula III having the structural coordinates of UDP in Table 5, preferably Run 9, Cluster 1, or ATOMs 1 to 28 inclusive of Table 7:

10

15

20

wherein R_1 , R_2 , R_3 , R_4 , R_6 , and R_{11} are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, gallic acid, phosphonates, thioamide, and $-OR_{12}$ where R_{12} is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring, R_6 may be a monosaccharide or disaccharide, preferably a monosaccharide, including galactose, glucose, and mannose,

and salts and optically active and racemic forms of a compound of the formula III.

Yet another class of modulators defined by the invention are compounds of the following formula IV having the structural coordinates of UDP-Gal in Table 6, preferably Run, Cluster 1:

wherein R₁, R₂, R₃, R₄, R₇, R₈, R₉, and R₁₀ are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof (e.g. -CH₂OH), amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, gallic acid, phosphonates, thioamide, and -OR₁₂ where R₁₂ is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring, and X is a counter-ion including sodium, lithium, potassium, calcium, magnesium, manganese, cobalt ions and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, preferably Mn²⁺,

and salts and optically active and racemic forms of a compound of the formula IV.

10

15

20

25

30

35

40

One or more of R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, and/or R₁₀ alone or together, which contain available functional groups as described herein, may be substituted with for example one or more of the following: alkyl, alkoxy, hydroxyl, aryl, cycloalkyl, alkenyl, alkynyl, thiol, thioalkyl, thioaryl, amino, or halo. The term "one or more" used herein preferably refers to from 1 to 2 substituents.

The present invention contemplates all optical isomers and racemic forms thereof of the compounds of the invention, and the formulas of the compounds shown herein are intended to encompass all possible optical isomers of the compounds so depicted.

The present invention also contemplates salts and esters of the compounds of the invention. In particular, the present invention includes pharmaceutically acceptable salts. By pharmaceutically acceptable salts is meant those salts which are suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art and are described for example, in S. M. Berge, et al., J. Pharmaceutical Sciences, 1977, 66:1-19.

Compositions and Methods of Treatment

The ligands and the modulators of the invention (e.g. inhibitors) may be used to modulate the biological activity of a galactosyltransferase in a cell, including modulating a pathway in a cell regulated by the galactosyltransferase or modulating a galactosyltransferase with inappropriate activity in a cellular organism.

The present invention thus provides a method for treating a condition in a subject regulated by a galactosyltransferase or involving inapproproriate galactosyltransferase activity comprising administering to a subject an effective amount of a modulator identified using the methods of the invention. The invention still further relates to a pharmaceutical composition which comprises a three dimensional galactosyltransferase of the invention or a portion thereof (e.g. a ligand binding domain), or a modulator of the invention in an amount effective to regulate one or more of the above-mentioned conditions and a pharmaceutically acceptable carrier, diluent or excipient.

The invention also provides the use of a ligand or modulator according to the invention in the manufacture of a medicament to treat and/or to prevent a disease in a patient.

Inhibitors or antagonists of $\alpha 1,3$ -Gal transferase of the present invention may be particularly useful in reducing xenotransplant rejection in an animal patient. Xenograft tissue may be treated with, or derived from an animal that has been treated with an inhibitor to decrease $Gal\alpha(1,3)$ Gal epitopes on the xenograft tissue. This treatment will reduce or avoid an immune reaction between circulating antibodies in the transplant recipient reactive with the epitopes. Preferably the xenograft tissue is of pig origin and the xenograft recipient is a human. The xenograft tissue includes any tissue which expresses antigens having $Gal\alpha(1,3)Gal$ epitopes. The tissue may be in the form of an organ, for example a kidney, heart, lung, or liver, or it may be in the form of parts of organs, cell clusters, glands and the like (e.g. lenses, pancreatic islet cells, skin, and corneal tissue).

The modulators of the invention may be converted using customary methods into pharmaceutical compositions. The pharmaceutical compositions contain the modulators either alone or together with other active substances. Such pharmaceutical compositions can be for oral, topical, rectal, parenteral, local, inhalant, or intracerebral use. They are therefore in solid or semisolid form, for example pills, tablets, creams, gelatin capsules, capsules, suppositories, soft gelatin capsules, liposomes (see for example, U.S. Patent Serial No. 5,376,452), gels, membranes, and tubelets. For parenteral and intracerebral uses, those forms for intramuscular or subcutaneous administration can be used, or forms for infusion or intravenous or intracerebral injection can be used, and can

therefore be prepared as solutions of the modulators or as powders of the modulators to be mixed with one or more pharmaceutically acceptable excipients or diluents, suitable for the aforesaid uses and with an osmolarity which is compatible with the physiological fluids. For local use, those preparations in the form of creams or ointments for topical use or in the form of sprays should be considered; for inhalant uses, preparations in the form of sprays should be considered.

The pharmaceutical compositions can be prepared by <u>per se</u> known methods for the preparation of pharmaceutically acceptable compositions which can be administered to patients, and such that an effective quantity of the active substance is combined in a mixture with a pharmaceutically acceptable vehicle. Suitable vehicles are described, for example, in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., USA 1985). On this basis, the pharmaceutical compositions include, albeit not exclusively, the modulators in association with one or more pharmaceutically acceptable vehicles or diluents, and contained in buffered solutions with a suitable pH and iso-osmotic with the physiological fluids.

The modulators may be indicated as therapeutic agents either alone or in conjunction with other therapeutic agents or other forms of treatment. By way of example, inhibitors may be used in combination with anti-proliferative agents, antimicrobial agents, immunostimulatory agents, or anti-inflammatories. The modulators may be administered concurrently, separately, or sequentially with other therapeutic agents or therapies.

The compositions containing modulators can be administered for prophylactic and/or therapeutic treatments. In therapeutic applications, compositions are administered to a patient already suffering from a condition as described above, in an amount sufficient to cure or at least alleviate the symptoms of the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose". Amounts effective for this use will depend on the severity of the disease, the weight and general state of the patient, the nature of the administration route, the nature of the formulation, and the time or interval at which it is administered.

In prophylactic applications, compositions containing modulators are administered to a patient susceptible to or otherwise at risk of a particular condition. Such an amount is defined to be a "prophylactically effective dose". In this use, the precise amounts depend on the patient's state of health and weight, the nature of the administration route, the nature of the formulation, and the time or interval at which it is administered.

The following non-limiting examples illustrate the invention:

Example 1

5

10

15

20

25

30

35

40

The modeling of bovine α -1,3-GalT was carried out using homology modeling procedures and α -1,3-GalT-ligand complexes were generated using automated docking procedures. These computational modeling approaches allow fairly reasonable predictions of three-dimensional structures of proteins and their complexes with substrates and ligands thereby offering a rational way of investigating structure-function relationships (12). The amino acid sequence of α -1,3-GalT was obtained from a publicly available sequence data bank (13).

Homology modeling. - The basic steps in the construction of a protein model based on a homologous structure are sequentially in the following order: amino acid sequence alignment, copying aligned coordinates, building loops, and refinement. The sequence alignment and secondary structure predictions were carried out using the Fold recognition server located at UCLA (14). The Molecular Simulations Inc. collection of programs was used for all protein modeling (15-17). The template structure chosen was the three-dimensional crystal structure (9) of SpsA determined at a resolution of 1.5 Å. The initial alignment of α -1,3-GalT and SpsA transferase sequences was obtained using the pair-wise alignment with the HOMOLOGY program (15). Multiple alignment of amino acid sequences was

- 31 -

performed using the Needleman and Wunch method (18). This method is capable to provide an optimum alignment of two sequences that represents the best overall balance between the number of good amino acid matches and the least number of required gaps. When necessary, the initial pair-wise sequence alignments were manually modified to obtain structure-oriented alignments. After creating the alignment, the coordinates of the homologous regions were transferred from the SpsA structure to the bovine α -1,3-GalT using the MODELER program (16). The geometry of the generated model was then locally optimized to remove steric side-chain clashes. The builder module of the InsightII program (17) was used to add hydrogen atoms to the enzyme and assign partial charges.

Docking. - Structures of α -1,3-GalT complexes with UDP, UDP-Gal, and a recently design inhibitor (19) were determined using the AutoDock suite of programs (20), which finds favorable docked configurations for a ligand in a protein-binding site starting from in an arbitrary conformation, orientation and position of a ligand molecule. AutoDock combines conformational search methods such as genetic algorithm and stochastic algorithm with a grid based energy calculation using molecular mechanics type force field, including electrostatic, hydrogen bonding, dispersion/repulsion, and solvation and entropic terms. The overall interaction between the enzyme and ligands were computed using the Amber-like force field as implemented in AutoDock (20). A Mn2+ cation position was located. based on the SpsA structure, near the side chain of the Asp227, which belongs to the aspartate-valine-aspartate (DVD) sequence motif. An aspartate-any residue-aspartate (DXD) or the aspartate-any residue-histidine (DXH) motif is common to many glycosyl transferases (21) and is involved in binding metal cations as well as its substrate. Water molecules were not considered in these computations. Positions of all protein atoms were fixed during the docking. The dihedral angles of all ligands were optimized while bond lengths and bond angles were restrained to standard values. Starting structure of UDP was obtained from SpsA-UDP complex and the UDP-Gal was generated using InsightII (17). The conformation of the ribose, galactose and uracil rings were fixed during the docking. In the present work a genetic algorithm was used as the search method. One hundred docking runs were performed for generating, complexes of α -1,3-GalT with each of the chosen ligands. For each docking simulation, the population size was set to 50 and 27,000 generations were run. The docked models are clustered using a root mean square tolerance value of 1.5 Å. This approach has been successfully used for a wide variety of structural problems and has been fully described elsewhere (20).

Results and Discussions

10

15

20

25

30

35

Homology model of α -1,3-GalT. - The amino acid sequence alignment of α -1,3-GalT with SpsA and homologous proteins are shown in Figure 1. The highest scoring alignment shows about 40% similarity and 20% identity (45 amino acids are identical). The amino acid residues of SpsA that interact with UDP or located within the UDP binding site are underlined. A clear sequence similarity can be noticed at the active site regions of SpsA and the corresponding aligned residues of α -1,3-GalT. In this figure it can be seen that the residues are well conserved in the region that encompasses the putative UDP binding pocket of SpsA. Table 3 shows the predicted secondary structures for the α -1,3-GalT sequence that was used for generating a homology model of α -1,3-GalT.

The homology model of α -1,3-GalT consists of two compact domains. The predicted N-terminal domain has about 100 residues starting at Gln-125 and ends at Gln-231 and the C-terminus domain has the remaining modeled residues. Figure 2 shows a superposition of the α -1,3-GalT model (blue) and the corresponding SpsA structure (magenta). The amino acid residues of SpsA that interact with the UDP ligand are shown as tubes. The corresponding amino acid residues of α -1,3-GalT are shown as thin tubes. In addition to this overlap at the active site, several exo-

10

15

20

25

30

35

WO 01/83717 PCT/CA01/00607

- 32 -

site residues are homologous and placed in similar positions in the three-dimensional space. It can be seen from Figure 2 that the modeled α -1,3-GalT is a compact structure similar to that of SpsA. The overall size of the model of α -1,3-GalT is about 50 Å x 45 Å x 40 Å. The (ϕ, ψ) angles of the constructed model are well within the allowed region of the Ramachandran maps (22). The UDP binding site is identified at the cleft between the strands of conserved residues and an alpha helix within this domain. This site is very deep and is highly electronegative in nature. The active site consists of an open a, \beta-sandwich made up of three helices packed against four standard \betasheets. The general topology of the modeled α-1,3-GalT resembles those of GnT I and SpsA with the secondary structural elements similarly arranged in space. The following amino acid residues have been identified to be part of the UDP docking pocket of α-1,3-GalT: Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209, Asp-173, His-218, Thr-137, Asp-225, Val-226, and Asp-227. The modeled catalytic domain has a core structure common to most of the known transferases (9-11). Moreover, amino acid residues that are involved in the UDP-Gal recognition and in the catalytic mechanism are homologous both in sequence and spatial relationship. As a consequence, the overall electrostatic property of the active site of the α-1,3-GalT is highly comparable with the UDP binding sites of GnTI and SpsA. Thus, the present analysis suggests that although the sequence homologies of SpsA, GnT I and α-1,3-GalT are relatively low, they have a structurally conserved framework of about 100 residues that specifically recognize UDP.

Complex of α -1,3-GalT with UDP and UDP-Gal. – In the GnT I, SpsA, and β 4Gal T1 structures (9-11), the above-described architecture of the secondary structure elements specifically recognizes UDP. In these X-ray structures, a conserved aspartate (Asp39 in SpsA and Asp144 in GnT I) generally interacts though the hydrogen bond interaction with the carbonyl at the 4th position of the uracil ring. The carbonyl at the 2nd position of the uracil favors charge interactions with the conserved His residue that resides at the bottom of the UDP pocket. The ribose ring packs with the conserved hydrophobic residue (Thr-9 in SpsA and Ile-113 in GnT I) that is located at the bottom of the pocket. In the model of α -1,3-GalT, the metal binding site is located at one of the β -strands that contains the conserved DVD (Asp-225, Val-226 and Asp227) motif. These conserved residues are assumed to be located in the vicinity of the pyrophosphate-binding region. The C-terminal portion of the model has a confined groove, which has a stretch of charged residues. The docking studies described below suggest that this region can specifically recognize inhibitors, which are designed based on the acceptor substrate model (19).

Simulation of the α -1,3-GalT-UDP complexes, using an automated docking procedure led to several complex structures that represent different binding modes of UDP, which were clustered to nine groups. Analysis of results revealed that in about 80% of the docking calculations, the UDP binds at the well-defined pocket located at the DVD motif. The low energy docking modes of UDP to the α -1,3-GalT are shown in Figure 3. The α -1,3-GalT structure is presented in ribbon form and the amino acid residues that directly interact with UDP are labeled. Five top ranking clusters are characterized in Table 2 together with the computed binding energy and the estimated inhibition constant. Possible intermolecular contacts in the lowest energy complex are listed in Table 1. In the top three clusters, UDP binds in the deep pocket generally in a similar conformation. This is illustrated in Figure 3, where the preferred binding mode is shown as a thick blue tube. Three hydrogen bonds that are possible between the uracil and α -1,3-GalT characterize this binding mode. These are (1) the amide hydrogen of uracil in position 3 and OD1 of Asp-168, (2) the carbonyl oxygen of uracil in position 4 and the side chain of Lys-204, and (3) the carbonyl oxygen of uracil in position 2 and the amide hydrogen of the His-213 side chain. The hydroxyl groups at the 2 and 3 positions of the

10

15

20

25

30

35

40

WO 01/83717 PCT/CA01/00607

- 33 -

ribose ring forms three hydrogen bonds with the Asp-225 side chain oxygens. The pyrophosphate oxygens interact with the Asp-227 side chain through the metal ion. Apart from these hydrogen bond interactions many favorable hydrophobic interactions are possible between the uridine and the protein. It is clear from Table 1 that the bound UDP generally favors interactions with conserved amino acid residues of the enzyme. However, some of the residues that do not interact directly with UDP but lie in the close vicinity of the UDP docked region are Tyr-139, Ile-140, Val-136, Arg-194, Asp-197, Ile-198, Arg-202, Lys-204, His209 and His-213. It is noteworthy that some of these residues such as Tyr139, Asp-197 are conserved across various species (8). It is possible that these active site side chains may be involved in direct binding interactions with UDP.

The lowest energy cluster consists of about 30% of all the docking runs. The analysis of the other low energy clusters that represent about 70% of docked structures clearly shows that many of the docking modes were very close to the lowest energy-binding mode. However, small variations in the nature of local interactions between the pyrophosphate part and the enzyme were observed. It can be seen from Figure 3 that the 5 and 6 positions of the uracil ring are exposed to the solvent and the remaining positions of the uracil fragment are in contact with the protein.

The structure of the UDP-Gal complex with α -1,3-GalT has been generated using the approach described above. Figure 4 shows the low energy binding modes of this complex. The comparison of the α -1,3-GalT complexes with UDP and UDP-Gal reveals that the uridine portion of the UDP-Gal assumes a similar binding orientation as in the case of the α -1,3-GalT-UDP complex. These results suggest that the addition of the galactopyranose residue to UDP does not alter the binding mode of the uridine, which is tightly bound in the active site. On the contrary, the pyrophosphate is more flexible and its conformation alters upon addition of this monosaccharide unit to the UDP. These data indicate that the design of an inhibitor based on the docking sites of pyrophosphate and donor sugar group fragments of UDP-Gal should consider the possible conformational flexibility of the pyrophosphate group and the corresponding diversity associated with binding interactions.

In the crystal structure of the complex of SpsA with UDP, the UDP is bound at the active site of the enzyme (8). The uracil ring of the bound UDP is placed into the cavity where its carbonyl and amide hydrogens form two hydrogen bonds with side-chains of Arg-71 and Asp-39, respectively. Apart from these hydrogen bond interactions, a favorable stacking interaction between the uracil ring and side chain of Tyr-11 is possible. A strong hydrogen bond interaction is possible between the hydroxyl of ribose in the position 3 and the side chain oxygen of Asp-99. The pyrophosphate conformation is confined to a particular orientation due to the favorable charge interactions with the bound metal ion. Unligil et al (10) has solved a structure of GnT I complexed with UDP-GlcNAc at 1.5 Å resolution. In this crystal structure of the GnT I complex, the uracil ring favors a similar interaction, as observed in the SpsA complex, with the nucleotide binding domain residues consisting of a Lys and an Asp. The ribose portions of the UDP bind into the hydrophobic rich region of the GnT I and thereby gains a stacking energy. Thus, these two structures possess a clear structural and sequence similarity at the UDP binding pocket. However, overall there is no sequence homology between the two proteins. The bound UDP conformation is very similar in these structural complexes. These data suggest that amino acid conservation at the UDP binding pocket is important for the precise recognition of UDP ligands. The homology model of α-1,3-GalT contains these critical amino acids at the identified pocket of the enzyme (Figures 2 and 3). The top ranking docked complexes are in agreement with reported X-ray structures of glycosyltransferases (7, 9, and 11). This suggests that a part of the substrate binding pocket in glycosyltransferases is specifically tailored to bind UDP. It is evident from the computed docking models that the binding modes of UDP

generally favor a standard type of interaction with the enzyme. In the predicted low energy complexes of UDP and UDP-Gal with α -1,3-GalT, the DVD motif of the enzyme interacts with pyrophosphate through the modeled metal cation.

Binding mode of an inhibitor to α -1,3-GalT

Recently, an inhibitor based on the acceptor of α -1,3-GalT has been designed (19). This compound has a disaccharide linked to a bromine substituted naphthamide ring. It has been shown that the removal of the terminal sugar unit in this inhibitor does not inhibit α -1,3-GalT, but instead inhibits β -1,4-GalT. Thus, the determination of the binding mode of this inhibitor to α -1,3-GalT might provide a stereochemical explanation for the observed binding affinities. Using the above described docking procedure, this synthetic inhibitor was docked to the surface of α -1,3-GalT. Docking simulations produced two distinct favorable regions for this molecule located in the active site of the enzyme. In the one, the inhibitor occupies the UDP binding site. Generally, in this low energy binding mode the inhibitor is placed well in the uridine pocket. The second largest cluster of conformations is located at the acceptor site. Figure 5 shows the computed binding mode of the inhibitor at the acceptor-binding region of the protein. In this binding mode, the terminal saccharide binds close to the Asp-227 side chain and the bulky aromatic group of the inhibitor interacts with the side chain of of Ile-283. The bromide atom is located close to the side chain of Asp-227 and the naphthamide ring is placed on the top of Met-224 side chain. It can be seen that the inhibitor not only occupies the acceptor-binding region of the protein but also has considerable interactions at the donor site of the enzyme. Thus, these predicted binding modes of inhibitor could explain its inhibitory activity.

Figures 6 to 9 also show models of α-1,3-GalT and ligand binding domains of the enzyme.

Conclusions

5

10

15

20

25

30

35

Using a combination of homology modeling and molecular docking approaches, the α -1,3- \bar{G} alT structure and its complexes with UDP, UDP-Gal, and a synthetic inhibitor have been modeled. The predicted N-terminal domain of the of the α -1,3- \bar{G} alT has about 100 residues that start at Gln-125 and end at Gln-131. The overall secondary structure arrangements, amino acid properties, spatial arrangement of critical amino acid residues and size of this domain are highly comparable with other GnT structures. The predicted pocket on this domain surface of α -1,3- \bar{G} alT specifically recognizes UDP in a unique binding mode. Structural analysis and comparative studies of the modeled binding site with the GnT I and SpsA structures suggested the high degree of similarity at the UDP binding pocket. This implies a possible structural homology in glycosyltransferases in spite of their low sequence identity and homology. Thus the modeled bovine structure of α -1,3- \bar{G} alT provides a framework to better understand the functional and structural similarities between galactosyltransferases.

While the present invention has been described with reference to what are presently considered to be the preferred examples, it is to be understood that the invention is not limited to the disclosed examples. To the contrary, the invention is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

All publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.

PCT/CA01/00607 **WO** 01/83717

- 35 -

References

5

10

15

20

25

30

35

40

- Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993; 3: 97-130. 1.
- Montreuil J, Vliegenthart JFG, Schachter H. Glycoproteins and Disease; Neuberger A. and van Deenen LLM, 2. editors. Amsterdam: Elsevier; 1995. Vol. 30.
- Paulson JC, Colley KJ. Glycosyltransferases structure, location, and control of cell type-specific 3. glycosylation. J Biol Chem 1989; 264: 17614-17618.
 - 4. Campbell JA, Davies G J, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 1997; 326: 929-942.
- Chen X, Andreana PR, Wang PG. Carbohydrates in transplantation. Curr Opinion Chem Biol 1999; 3: 650-5. 658.
 - 6. Galili U. 1992. In Bona C, Kaushik AK. editors, Molecular Immunobiology of Self-Reactivity. Marcel Dekker, Inc., New York, NY, pp. 355-373.
 - Vrielink A, Ruger W, Driessen HPC, Freemont PS. Crystal structure of the DNA modifying enzyme β-7. glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J 1994; 13: 3413-3422.
 - 8. Imberty A, Monier C, Bettler E, Morera S, Freemont P, Sippl M, Flockner H, Ruger W, Breton C. Fold recognition study of α3-galactosyltransferase and molecular modeling of the nucleotide sugar-binding domain. Glycobiology 1999; 9: 713-722.
- Charnock SJ, Davies GJ. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus 9. subtilis, in native and nucleotide-complexed forms. Biochemistry 1999; 38: 6380-6385.
- 10. Gastinel LN, Cambillau C, Bourne Y. Crystal structures of the bovine β4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J 1999; 18: 3546-3557.
- Unligil UM, Zhou S, Yuwaraj S, Sarkar M, Schachter H, Rini JM. X-ray crystal Structure of rabbit N-11. acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J 2000; 20: 5269-5280.
- Zemla A, Venclovas C, Moult J, Fidelis K. Processing and analysis of CASP3 protein structure predictions. 12. Proteins Suppl 1999; 3: 222-9;
- 13. http://www.ncbi.nlm.nih.gov:80/entrez
- 14. Rice D, Fischer D, Weiss R, Eisendberg D. (1997). Fold assignments for amino acid sequences of the CASP2 experiment. Proteins Suppl 1: 113-22; http://fold.doe-mci.ucla.edu.
 - 15. HOMOLOGY, User Guide, 1997, San Diego MSI, 1997.
 - MODELER, User Guide, 1997, San Diego MSI, 1997. 16.
 - Insight II, User Guide, 1997, San Diego MSI, 1997. 17.
- 18. Needlman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970; 48: 443-453.
- Chung S, Takayama S, Wong C. Acceptor substrate-based selective inhibition of galactosyltransferases. 19. Bioorg Med Chem 1998; 8: 3359-3364.
- Morris GM, Goodsell DS, Hallidy RS, Huey R, Hart WE, Belew RK, Olson A.J. Automated Docking Using a 20. Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function. J Comput Chem 1998; 19: 1639-1662.

WO 01/83717 PCT/CA01/00607

- 36 -

- 21. Hagen FK, Hazes B, Raffo R, deSa D, Tabak LA. Structure-function analysis of the UDP-N-acetyl-d-galactosamine: polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 1999; 274: 6797-6803.
- 22. Ramkrishnan C, Ramachandran GN. Stereochemical criteria for polypetide and protein chain conformations.

 II. Allowed conformations for a pair of peptide unit. Biophys J 1965; 5: 909-933.

5

Table 1
Atomic Interactions between GalT and UDP

Atomic	Atomic	Atomic Contact	Distance Between	Nature of
Interaction	Contact on UDP	on GalT	Atomic Contacts	Interaction
			on GalT and UDP	
1	Uracil NH	Asp-168 OD1	2.1 ± 0.5	НВ
2	Uracil O1	Lys-204 HZ1	3.0 ± 0.5	HB
3	Uracil 02	His-213 NE2	2.7 ± 0.5	НВ
4	Uracil Ring	Phe 134 Ring	4.2 ± 0.5	HP
5	Ribose OH2	Asp-225 OD2	2.2 ± 0.5	НВ
6	Ribose OH3	Asp –225 OD2	2.5 ± 0.5	НВ
7	Ribose ring	Leu 131	4.1 ± 0.5	HP
8	Ribose Ring	Ile-210	4.0 ± 0.5	HP
9	Ola (Diphosphate)	Asp-225 OD2(Mn)	4.6 ± 0.5	MM
10	Ola (diphosphate)	Asp-227 OD2(Mn)	4.5 ± 0.5	MM
11	O2b (diphosphate)	Asp-227 OD2(Mn)	5.1 ± 0.5	ММ

HB: hydrogen bond interaction

5

MM: metal mediated interaction

HP: hydrophobic interaction

Cluster Rank	Number of Conformers in Cluster	Computed Free energy in Kcal/mol	Calculated inhibition constant in µM
1	30	-8.72	0.40
2	24	-8.42	0.60
3	16	-8.18	1.00
4	6	-7.63	2.50
5	7	-7.54	2.90

Table 3

alphagt

PHD prediction:

		•
detail:	AA PHD sec Rel sec	MNVKGKVILSMLVVSTVIVVFWEYIHSPEGSLFWINPSRNPEVGGSSIQKGWWLPRWFNN EESEEEEEEEEEEEEEE EEEEEE EEEEEE EEEEEE E994125899999887788999988548877468897135531165644354433355657
	prH sec prE sec prL sec SUB sec	000000000000000000000000000000000000
ACCESSI	DTT.TMV	•
3st:	P_3 acc	eebebebbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
10st:	PHD acc	970706000000000000000000206097000000005007006700571200650077
	Rel acc	551641779865576498879500310241445682221214220301133011110243
subset:	SUB acc	ee.eb.bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
	AA PHD sec	GYHEEDGDINEEKEQRNEDE.SKLKLSDWFNPFKRPEVVTMTKWKAPVVWEGTYNRA
detail:	Rel sec	[863322265433522467767778887544555989999268886267713661255527]
accazi.	prH sec	11111111122332342111211100001121110000000000
	prE sec	0133333100000000000000000001221111000000478887411156774322110
	prL sec	8655545666556556777777888766566989899521011578843124566631
subset:	SUB sec	LLLLLLLLLLLLLLLLLLLLLLLLLLL
ACCESSI	שתד.דתע	
3st:	P_3 acc	bbbbbbeegcbeeeeeeeeeeebebbbbb eee eebbbbbebbbbbbbb
10st:	PHD acc	00000067777077677767776770600700579958700000626060007004500
	Rel acc	210200133340351444144431450220401144513545241101313434201114
subset:	SUB acc	b.ec.eee.eee.eeeeeeebb.bb.eb
		18 DEPARTMENT OF THE PROPERTY
	AA PHD sec	VLDNYYAKQKITVGLTVFAVGRYIEHYLEEFLTSANKHFMVGHPVIFYIMVDDVSRMPLI HHHHHHHHHHEEE EEEEEEHHHHHHHHHHHHHHHHH
	Rel sec	89999565214740586752259999999999853215544459999997177788246
detail:		102272777777777777777777777777777777777
	prH sec	889986764310000000025799999999998654321110000000000000000000
	prE sec	0000000123676468787400000000000000146666668999997510000367
	prL sec	00000222222124211113320000000000123321122220000001488888522
subset:	SUB sec	HHHHHHHHSECCESHHHHHHHHHHHHHHESEECEEEE.LLLLLE
ACCESSI	DTI.TMV	•
3st:	P_3 acc	bbee bbeeebbbbbbbbbbbbbbbbbbbbbbbbbbb
10st:	PHD acc	0077400777000000000006006000760060070000006000000
1000.	Rel acc	554410143530507473781228103651542043025452228894874301213135
subset:	SUB acc	bbeee.e.b.bbb.bbbbe.bbbbbbbbbbbb
		,19,20,21,22,23,24
	AA	ELGPLRSFKVFKIKPEKRWQDISMMRMKTIGEHIVAHIQHEVDFLFCMDVDQVFQDKFGV
	PHD sec	EE EEECEE HHHHHHHHHHHHHHHHHHHHHHHHHEEEEEEE
ant-11.	Rel sec	548785148888615434587999999996899988764223578998434112157552
detail:	prH sec	0000001000000012366888888999878899887754221100000112321101001
	pre sec	761112468887420000000000000000000112245678888655322321123
	prL sec	238886431011146653211000000002100001112322210001232344467665
subset:	SUB sec	E. LLLL., ZEEEE.L HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

```
ACCESSIBILITY
            3st:
     P_3 acc
10st:
     PHD acc
            13030212245442346313354232721634294306211505586304112313121
     Rel acc
subset: SUB acc
            ......bbeb..ec...bb..,b..b.e.bb..b..b.bbbb..b.......
             ETLGESVAQLQAWWYKADPNDFTYERRKESAAYIPFGEGDFYYHAAIFGGTPTQVLNIK
     AA
                                          EEEEEEE
     PHD sec.
            ЕЕ НИННИНИННИНИ
                           ннннн
                                    BE
     Rel sec 231356899887643138831133211122342214767456787613897458888888
detail:
            013577889887765320134455433433321110000111000111001668888888
     prH sec
            55300000000012322000011122100012454211126778774200000000000
     prE sec
            333321100001111358864333344455553346777621101135898321111100
     prL sec
            subset: SUB sec
ACCESSIBILITY
            3st:
     P_3 acc
            60007000605000070577706575676000006697050000000995066006006
10st:
      PHD acc
            235043452513030401464221512712241510340151249632531011711512
     Rel acc
            subset: SUB acc
            ...,....31...,....32...,....33...,....34...,....35...,....3
            ECPKGILKDKKNDIBAQWHDESHLNKYFLLNKPTKILSPBYCWDYH. IGLPADIKLVKMS
     AΑ
     PHD sec
                                           ннннн
                                                  HHH EEEE
            нинининин
                     EEE
                            HHHHEEEEE
                                    ĒΕ
     Rel sec | 99999754246621332352111134555388513174220234432452111216788
detail:
            999999766521121111223444452222100000001334455553213443221100
     prH sec
            00000011100003455320000111566651024541211121212111111112337788
     prE sec
            000000112467744325565544421101288643586444332224564443431000
     prb sec
            subset: SUB sec
ACCESSIBILITY
            P_3 acc
3st:
            70070006767760700057775057000077767000772007000006000600
     PHD acc
10st:
            464512214154025700133323140340463150134515130154021204236241
     Rel acc
subset: SUB acc
            | WQTKEYNVVRNNV |
            EE
     PHD sec
     Rel sec
            6323432215799
detail:
            0122232221100
     prH sec
     prE sec
            7531112231000
            1345654446799
     prL sec
           E....LLLL
subset: SUB sec
ACCESSIBILITY
3st:
     P_3 acc
            be ee ebbeeee
            0657736006799
     PHD acc
10st:
     Rel acc
            1206411242333
subset: SUB acc
            ...ee...b...
```

TABLE 4

	n mon	1	11	CTN	100	4 070	22 500	26 440
~	MOTA	1	N	GLN	129	-4.878	33.589	36.449
5	ATOM	2		GLN	129	-4.249	34.321	36.811
	ATOM	3		GLN	129	-4.600	33.343	35.488
	MOTA	4	CA	GLN	129	-4.790	32.431	37.282
	ATOM	5	HA	GLN	129	-5.554	32.501	38.056
	MOTA	6	CB	GLN	129	-5.062	31.113	36.543
10	MOTA	7	HB1	GLN	129	-4.999 -	30.257	37.215
	MOTA	8	HB2	GLN	129	4.343	30.949	35.740
	MOTA	9	CG	GLN	129	-6.456	31.098	35.916
	ATOM	10	HG1	GLN	129	-6.680	30.069	35.633
•	MOTA	11	HG2	GLN	129	-6.432	31.752	35.044
15	ATOM	12	CD	GLN	129	-7.437	31.609	36.963
	MOTA	13	OE1	GLN	129	-7.663	30.975	37.993
	ATOM	14	NE2	GLN	129	-8.032	32.803	36.697
	ATOM	15	HE2	GLN	129	-7.816	33.303	35.822
	ATOM	16		GLN	129	-8.700	33.208	37.369
20	ATOM	17	C	GLN	129	-3.430	32.389	37.898
	ATOM	18		GLN	129	-2.451	32.890	37.347
	MOTA	19	N	LYS	130	-3.379	31.794	39.100
	ATOM	20	HN	LYS	130	-4.252	31.369	39.444-
	ATOM	21	CA	LYS	130	-2.232	31.691	39.951
25	ATOM	22	HA	LYS	130	-1.740	32.653	40.094
20	ATOM	23	CB	LYS	130	-2.600	31.151	41.342
	MOTA	24	HB1	LYS	130	-1.751	31.071	42.021
	ATOM	25	HB2	LYS	130	-3.039	30.153	41.325
	ATOM	26	CG	LYS	130	-3.620	32.014	42.090
30	ATOM	27	HG1	LYS	130	-3.849	31.529	43.039
30		28	HG2	LYS	130		32.095	41.475
	ATOM					-4.516 -3 137		
	MOTA MOTA	29 30	CD HD1	LYS	130 130	-3.137 -3.945	33.432 · 34.135	42.397 42.598
25	ATOM	31	HD2	LYS	130	-2.565	33.884	41.586
35	MOTA	- 32	CE	LYS	130	-2.224	33.518	43.622
	MOTA	33	HE1	LYS	130	-2.626	32.907	44.430
	MOTA	34	HE2	LYS	130	-2.152	34.551	43.962
	ATOM	35	NZ	LYS	130	-0.869	33.030	43.278
40	ATOM	36	HZ1	LYS	130	-0.261	33.091	44.107
40	ATOM	37	HZ2	LYS	130	-0.925	32.050	42.965
	ATOM	38	HZ3	LYS	130	-0.477	33.609	42.521
	ATOM	39	С	LYS	130	-1.201	30.759	39.397
	ATOM	40	0	LYS	130	-0.005	30.974	39.587
10	ATOM	41	N	ILE	131	-1.619	29.692	38.694
45	ATOM	42	HN	ILE	131	-2.598	29.601	38.388
	ATOM	43	CA	ILE	131	-0.643	28.688	38.389
	ATOM	44	HA	ILE	131	0.116	28.575	39.162
	ATOM	45	CB	ILE	131	-1.212	27.300	38.320
	ATOM	46	HB	ILE	131	-1.745	27.101	39.250
50	ATOM	47		ILE	131	-2.172	27.231	37.122
	ATOM	48		ILE	131	-2.597	26.230	37.054
	ATOM	49		ILE	131	-2.973	27.957	37.257
	ATOM	50		ILE	131	-1.627	27.458	36.206
	ATOM	51		ILE	131	-0.082	26.256	38.292
55	MOTA	52	HG1	ILE	131	0.695	26.441	39.033
	MOTA	53		ILE	131	0.438	26.208	37.335
	ATOM	54		ILE	131	-0.566	24.832	38.560
	MOTA	55	HD1	ILE	131	. 0.281	24.147	38.526
	ATOM	56	HD1	ILE	131	-1.030	24.785	39.545
60	ATOM	57	HD1	ILE	131	-1.294	24.546	37.802
	ATOM	58	С	ILE	131	0.108	28.958	37.133
	MOTA	59	0	ILE	131	-0.444	29.257	36.075
	ATOM	60	N	THR	132	1.443	28.868	37.270
	ATOM	61	HN	THR	132	1.826	28.697	38.211
65	MOTA	62	CA	THR	132	2.359	28.998	36.182
	MOTA ·	63	HA	THR	132	1.727	29.134	35.304
	MOTA	64	CB	THR	132	3.354	30.109	36.364

	MOTA	65	HB	THR	132	2.812	31.041	36.525
	MOTA	66	0G1	THR	132	4.162	30.248	35.205
	ATOM	67	HG1	THR	132	4.271	31.247	34.980
	MOTA	68	CG2		132	4.232	29.788	37.584
5	ATOM	69	HG2		132	4.960	30.586	37.729
	MOTA	70	HG2		132	3.606	29.703	38.472
	MOTA	71	HG2		132	4.755	28.846	37.418
	MOTA	72		THR	132	3.127	27.718	36.179
	MOTA	73		THR	132	3.437	27.174	37.238
10	ATOM	74		VAL	133	3.424	27.170	34.989
	MOTA	75		VAL	133	3.112	27.603	34.109
	MOTA	76		VAL	133	4.191	25.963	34.990
	MOTA	77		VAL VAL	133	4.260	25.629	36.026
15	MOTA MOTA	78 79		VAL	133 133	3.579	24.853	34.180
15	ATOM	80	CG1		133	3.467 4.509	25.193 23.630	33.150 34.237
	ATOM	81	HG1		133	4.077	22.817	33.653
	ATOM	82	HG1		133	5.483	23.894	33.826
	ATOM	83	HG1		133	4.627	23.310	35.272
20	ATOM	84	CG2		133	2.171	24.570	34.735
	ATOM	85	HG2		133	1.708	23.768	34.162
	ATOM	86	HG2	VAL	133	2.245	24.273	
	MOTA	87	HG2		133	1.561	25.471	34.657
	ATOM	88	С	VAL	133	5.534	26.296	34.425
25	MOTA	89	0	VAL	133	5.641	26.933	33.380
	MOTA	90	N	GLY	134	6.606	25.880	35.122
	MOTA		, HN.	GLY	134	6.480	25.331	35.984
	MOTA	92	CA	GLY	134	7.924	26.201	34.664
••	ATOM	93	HA1		134	8.466	26.642	35.501
30	ATOM	94			134	7.825	26.909	33.841
	MOTA	95	C	GLY	134	8.565	24.937	34.214
	MOTA	96	0	GLY	134	8.578	23.936	34.928
	MOTA	97 98	N	LEU LEU	135 135	9.135 9.132	24.962 25.827	33.001 32.441
35	ATOM ATOM	99	HN CA	LEU	135 -	9.745	23.777	32.441
22	ATOM	100	HA	LEU	135	9.529	22.955	33.178
	ATOM	101	СВ	LEU	135	9.288	23.401	31.082
	ATOM	102			135	9.436	24.224	30.383
	ATOM	103	HB2		135	B.230	23.142	31.061
40	ATOM	104	CG	LEU	135	10.068	22.194	30.542
	MOTA	105	HG	LEU	135	11.124	22.437	30.425
	ATOM	106	CD2		135	9.638	21.839	29.113
	ATOM	107	HD2	LEU	135	10.211	20.980	28.764
	MOTA	108		LEU	135	8.576	21.595	29.102
45	MOTA	109	HD2		135	9.822	22.689	28.456
	MOTA	110	CD1		135	9.956	21.005	31.498
	ATOM	111	HD1		135	10.516	20.161	31.095
	MOTA	112	HD1		135	10.364	21.280	32.470
50	MOTA	113	HD1		135	8.908	20.725	31.610
30	ATOM	114 115	C O	LEU LEU	135 135	11.215 11.682	23.999	32.405 32.119
	MOTA MOTA	116	N	THR	136	11.002	25.098 22.945	32.119
	ATOM	117		THR	136	11.563	22.078	33.052
	ATOM	118	CA	THR	136	13.413	23.007	32.527
55	ATOM	119	HA	THR	136	13.609	24.037	32.229
••	ATOM	120	CB	THR	136	14.187	22.632	33.762
	ATOM	121	HB	THR	136	15.253	22.703	33.546
	MOTA	122	OG1		136	13.894	21.296	34.144
	MOTA	123		THR	136	12.992	21.271	34.641
60	ATOM	124	CG2		136	13.814	23.602	34.899
	MOTA	125	HG2		136	14.370	23.339	35.799
	MOTA	126	HG2		136	14.063	24.621	34.604
	ATOM	127	HG2	THR	136	12.745	23.534	35.100
, a	ATOM	128	C	THR	136	13.710	22.003	31.462
65	ATOM	129	0	THR	136	13.227	20.872	31.523
	MOTA	130	N	VAL	137	14.487	22.397	30.431
	MOTA	131	HN	VAL	137	14.898	23.340	30.399
	ATOM	132	CA	VAL	137	14.718	21.447	29.381

	ATOM	133	AH	VAL	137	14.363	20.462	29.683
	MOTA	134	CB	VAL	137	14.014	21.789	28.099
	MOTA	135	HB	VAL	137	14.297	21.056	27.343
	MOTA	136	CG1	VAL	· 137	12.497	21.745	28.349
5	MOTA	137	HG1	VAL	137	11.969	21.991	27.427
	MOTA	138	HG1	VAL	137	12.210	20.745	28.675
	ATOM	139	HG1	VAL	137	12.234	22.468	29.121
	MOTA	140	CG2	VAL	137	14.536	23.149	27.604
	ATOM	141	HG2	VAL	137	14.035	23.413	26.672
10	MOTA	142	HG2	VAL	137	14.332	23.912	28.355
	ATOM	143	HG2	VAL	137	15.610	23.086	27.433
	ATOM	144	С	VAL	137	16.179	21.363	29.078
	ATOM	145	0	VAL	137	16.898	22.362	29.101
	MOTA	146	N	PHE	138	16.663	20.128	28.828
15	MOTA	147	HN	PHE	138	16.051	19.306	28.928
	ATOM	148	CA	PHE	138	18.025	19.961	28.425
	MOTA	149	HА	PHE	138	18.327	20.795	27.792
	MOTA	150	CB	PHE	138	19.021	19.919	29.599
	ATOM	151	HB1	PHE	138	18.676	19.145	30.284
20	MOTA	152	HB2	PHE	138	19.009	20.904	30.064
	MOTA	153	CG	PHE	138	. 20.360	19.595	29.027
	MOTA	154	CD1	PHE	138	21.167.	20.575	28.499
	MOTA	155	HD1	PHE	138	20.829	21.612	28.499
	ATOM	156	CD2	PHE	138	20.800	18.291	29.005
25	ATOM	157	HD2	PHE	138	20.164	17.504	29.412
	MOTA	158	CE1	PHE	138	22.396	20.258	27.971
	ATOM	159	HEL	PHE	138	23.030	21.043	27.558
	MOTA	160	CE2	PHE	138	22.027	17.965	28.480
	ATOM	161	HE2	PHE	138	22.363	16.928	28.473
30	ATOM	162	CZ	PHE	138	22.828	18.954	27.962
	ATOM	163	HZ	PHE	138	23.804	18.704	27.545
	MOTA	164	С	PHE	138	18.174	18.680	27.658
	ATOM	165	0	PHE	138	18.069	17.587	28.211
	MOTA	166	N	ALA	139	18.436	18.820	26.344
35	ATOM_	167	HN	ALA	139	18.400	19.778	25.968
	ATOM	168	CA	ALA	139	18.760	17.776	25.412
	ATOM	169	HA	ALA	139	18.689	18.186	24.405
	MOTA	170	CB	ALA	139	20.209	17.281	25.561
	ATOM	171	HB1	ALA	139	20.401	16.492	24.833
40	ATOM	172	HB2	ALA	139	20.896	18.109	25.388
	ATOM	173	нвз	ALA	139	20.358	16.889	26.567
	ATOM	174	С	ALA	139	17.868	16.578	25.473
	MOTA	175	0	ALA	139	18.359	15.456	25.348
	ATOM	176	N	VAL	140	16.546	16.733	25.670
45	ATOM	177	HN	VAL	140	16.109	17.634	25.911
	ATOM	178	CA	VAL	140	15.812	15.518	25.511
	ATOM	179	HA	VAL	140	16.520	14.737	25.234
	ATOM	180	CB	VAL	140	15.073	15.043	26.706
	MOTA	181	HB	VAL	140	14.435	15.884	26.977
50	ATOM	182		VAL	. 140	14.311	13.812	26.211
	MOTA	183		VAL	140	13.731	13.389	27.031
	ATOM	184		VAL	140	13.639	14.101	25.402
	ATOM	185		VAL	140	15.019	13.068	25.846
	ATOM	186		VAL	140	16.062	14.743	27.846
55	ATOM	187		VAL	140	15.513	14.395	28.721
	MOTA	188		VAL	140	16.763	13.972	27.526
	MOTA	189		VAL	140	16.611	15.650	28.099
	ATOM	190	С	VAL	140	14.803	15.735	24.437
	ATOM	191	0	VAL	140	13.632	16.009	24.704
60	ATOM	192	N	GLY	141	15.244	15.558	23.183
	ATOM	193	HN	GLY		16.215	15.244	23.042
	ATOM	194	CA	GLY	141	14.425	15.788	22.033
	ATOM	195		GLY	141	15.021	15.687	21.126
,.	MOTA	196		GLY	141	14.004	16.793	22.071
65	ATOM	197	С	GLY	141	13.311	14.796	21.995
	ATOM	198	0	GLY	141	12.214	15.108	21.538
	ATOM	199	N	ARG	142	13.579	13.554	22.433
	ATOM	200	HN	ARG	142	14.509	13.337	22.819

	ATOM	201	CA	ARG	142	12.581	12.529	22.365
	ATOM	202	HA	ARG	142	12.172	12.468	21.357
	MOTA	203	CB	ARG	142	13.130	11.135	22.711
	ATOM	204	HB1	ARG	142	12.356	10.368	22.729
5	MOTA	205	HB2	ARG	142	13.609	11.099	23.689
-	ATOM	206	CG	ARG	142	14.181	10.646	21.712
	MOTA	207	HG1		142	15.085	11.239	21.848
	MOTA	208	HG2	ARG	142	13.783	10.777	20.706
	MOTA	209	CD	ARG	142	14.564	9.175	21.872
10	MOTA	210	HD1		142	13.654	8.593	21.725
10								
	ATOM	211	HD2		142	14.963	9.060	22.879
	MOTA	212	NE	ARG	142	15.587	8.880	20.830
	MOTA	213	HE	ARG	142	15.303	8.494	19.918
•	MOTA	214	CZ	ARG	142	16.903	9.124	21.093
1.5								
15	MOTA	215	NH1		142	17.268	9.588	22.323
	MOTA	216	HH1	ARG	142	18.260	9.775	22.529
	MOTA	217	HH1	ARG	142	16.553	9.752	23.045
	ATOM	218	NH2		142	17.848	8.912	20.131
••	MOTA	219	HH2		142	18.840	9.098	20.335
20	ATOM	220	HH2	ARG	142	17.568	8.566	19.202
	ATOM	221	С	ARG	142	11.466	12.829	23.318
	MOTA	222	0	ARG	142	10.302	12.577	23.012
		223			143	11.805	13.312	
	MOTA		N	TYR				24.527
	MOTA	224	HN	TYR	143	12.795	13.518	24.721
25	MOTA	225	CA	TYR	143	10.834	13.549	25.554
٠.	MOTA	226	HA	TYR	143	10.121	12.725	25.537
	MOTA	227	СВ	TYR	143	11.480	13.520	26.952
	MOTA	228	HB1	TYR	143	10.718	13.833	27.665
	MOTA	229	HB2	TYR	143	12.322	14.212	26.931
30.	MOTA	230	CG	TYR	143	11.927	12.112	27.201
•	ATOM	231	CD1	TYR	143	11.169	11.057	26.750
	MOTA	232	HD1	TYR	143	10.246	11.253	26.203
	ATOM	233	CD2	TYR.	143	13.049	11.829	27.950
	ATOM	234	HD2	TYR	143	13.633	12.650	28.365
35	ATOM	235	CE1	TYR	143	11.559	9.758	26.979
55		236	HE1	TYR	143	10.957	8.934	26.595
	ATOM							
	MOTA	237	CE2	TYR	143	13.447	10.536	28.185
	ATOM	238	HE2	TYR	143	14.351	10.338	28.762
	MOTA	239	CZ	TYR	143	12.704	9.493	27.691
40	ATOM	240	OH	TYR	143	13.106	8.161	27.926
40								
	ATOM	241	HH	TYR	143	12.350	7.654	28.408
	ATOM	242	С	TYR	143	10.033	14.831	25.431
	ATOM	243	0	TYR	143	8.809	14.823	25.543
	ATOM	244	N	ILE	144	10.687	15.959	25.108
15								
45	MOTA	245	HN	ILE	144	11.631	15.889	24.702
	MOTA	246	CA	ILE	144	10.110	17.266	25.312
	MOTA	247	HA	ILE	144	9.960	17.404	26.383
	MOTA	248	CB	ILE	144	11.045	18.376	24.925
	ATOM	249	нв	ILE	144	12.013	18.187	25.390
50								
50	MOTA	250	CG2	ILE	144	11.176	18.388	23.394
	ATOM	251	HG2	ILE	144	11.852	19.188	23.093
	MOTA	252	HG2	ILE	144	11.572	17.431	23.055
	ATOM	253	HG2	ILE	144	10.196	18.553	22.947
	MOTA	254	CG1	ILE	144	10.563	19.706	25.525
55	ATOM	255	HG1	ILE	144	10.256	19.621	26.567
	MOTA	256	HG1	ILE	144	9.705	20.127	25.002
	MOTA	. 257	CD1	ILE	144	11.630	20.799	25.502
						11.225	21.711	
	ATOM	258	HD1	ILE	144			25.940
	MOTA	259	HD1	ILE	144	12.496	20.474	26.079
60	MOTA	260	HD1	ILE	144	11.931	20.992	24.473
	MOTA	261	С	ILE	144	8.786	17.503	24.644
	ATOM	262	ō	ILE	144	7.929	18.176	25.216
	ATOM	263	Ŋ	GLU	145	8.559	16.986	.23.427
	MOTA	264	HN	GLU	145	9.270	16.399	22.969
65	MOTA	265	CA	GLU	145	7.311	17.261	22.771
	ATOM .	266	HА	GLU	145	7.201	18.334	22.616
	ATOM	267	СВ	GLU	145	7.200	16.541	21.414
						7.489	15.499	
	ATOM	268	HB1	GLU	145	7.409	13.433	21.553

	ATOM	269	HB2	GLU	145	7.869	17.033	20.708
	ATOM	270	CG	GLU	145	5.792	16.557	20.809
	ATOM	271	HG1	GLU	145	5.064	16.333	21.588
	ATOM	272	HG2		145	5.730	15.806	20.021
5	ATOM	273	CD	GLU	145	5.512	17.933	20.227
_	ATOM	274	OE1		145	5.854	18.943	20.899
	ATOM	275	OE2		145	4.951	17.992	19.100
	ATOM	277	C	GLU	145	6.174	16.771	23.610
	ATOM	278	Õ	GLU	145	5.182	17.477	23.791
10	ATOM	279	И	HIS	146	6.300	15.550	24.158
10	ATOM	280	HN	HIS	146	7.192	15:044	
		281	CA	HIS	146			24.055
	MOTA					5.227	14.935	24.880
	MOTA	282	HA	HIS	146	4.330	14.892	24.262
15	MOTA	283	ND1		146	3.840	12.371	26.806
15	ATOM	284	HD1		146	4.262	12.665	27.699
	MOTA	285	CG	HIS	146	4.305	12.661	25.543
	MOTA	286	NE2		146	2.430	11.416	25.377
	ATOM	287	HE2		146	1.637	10.885	24.989
	ATOM	288	CD2		146	3.432	12.070	24.683
20	ATOM	289	HD2		146	3.511	12.106	23.596
	MOTA	290	CE1	HIS	146	2.717	11.624	26.648
	ATOM	291	HE1	HIS	146	2.122	11.240	27.477
	MOTA	292	CB	HIS	146	5.530	13.469	25.238
	ATOM	293	HB1	HIS	146	6.169	13.358	26.113
25	MOTA	294	HB2	HIS	146	6.040	12.924	24.443
	ATOM	295	C	HIS	146	4.915	15.719	26.121
	MOTA	296	0	HIS	146	3.747	15.885	26.466
	ATOM	297	N	TYR	147	5.938	16.225	26.842
	MOTA	298	HN	TYR	147	6.915	16.068	26.555
30	ATOM	299	CA	TYR	147	5.630	16.989	28.020
	ATOM	300	HA	TYR	147	5.026	16.397	28.707
	MOTA	301	CB	TYR	147	6.829	17.505	28.833
	MOTA	302	HB1	TYR	147	7.620	17.877	28.183
	ATOM	303	HB2	TYR	147	7.258	16.717	29.452
35	ATOM	304	CG	TYR	147	6.200	18.589	29645
	ATOM	305	CD1	TYR	147	5.277	18.281	30.619
	MOTA	306	HD1	TYR	147	5.019	17.237	30.798
	ATOM	307	CD2		147	6.501	19.914	29.422
	ATOM	308	HD2	TYR	147	7.220	20.183	28.649
40	ATOM	309	CE1	TYR	147	4.673	19.260	31.369
	ATOM	310	HE1	TYR	147	3.953	18.993	32.142
	ATOM	311	CE2	TYR	147	5.901	20.902	30.169
	ATOM	312	HE2	TYR	147	6.154	21.947	29.991
	ATOM	313	CZ	TYR	147	4.982	20.576	31.140
45	ATOM	314	OH	TYR	147	4.365	21.589	31.905
-15	ATOM	315	нн	TYR	147	5.006	22.389	31.996
	ATOM	316	C	TYR	147	4.869	18.220	27.653
	ATOM	317	0	TYR	147	3.844	18.528	28.259
•	ATOM	318	N.	LEU	148	5.349	18.934	26.621
50	ATOM	319	HN	LEU	. 148	6.152	18.547	26.105
50	ATOM	320	CA	LEU	148	4.823	20.193	26.187
			HA	LEU	148	4.944	20.193	26.999
	ATOM ATOM	321	CB	LEU	148	5.608	20.510	24.935
		322						
55	MOTA	323	HB1		148	5.473 6.654	19.864	24.178
23	ATOM	324	HB2		148		20.733	25.227
	MOTA	325	CG	LEU	148	5.229	21.964	24.264
	MOTA	326	HG	LEU	148	5.245	22.748	25.021
	MOTA	327		LEU	148	3.801	21.957	23.693
	ATOM	328		LEU	148	3.589	22.921	23.231
60	ATOM	329		LEU	148	3.712	21.169	22.945
.•	ATOM	330		LEU	148	3.088	21.776	24.497
	MOTA	331		LEU	148	6.255	22.258	23.160
	ATOM	332		LEU	148	6.002	23.199	22.670
	ATOM	333		LEU	148	7.250	22.333	23.599
65	MOTA	334	HD1		148	6.242	21.452	22.427
	ATOM	335	C	LEU	148	3.371	20.006	25.855
	MOTA	336	0	LEU	148	2.518	20.774	26.301
	ATOM	337	N	GLU	149 '	3.054	18.939	25.105

PCT/CA01/00607

	ATOM	338	HN (GLU	149	3.806	18.294	24.822
	ATOM	339		GLU	149	1.714	18.659	24.681
	ATOM	340		GLU	149	1.317	19.494	24.104
	ATOM	341	_	GLU	149	1.630	17.377	23.835
5	ATOM	342		GLU	149	2.205	16.546	24.243
	ATOM	343		GLU	149	1.997	17.502	22.816
	ATOM	344		GLU	149	0.206	16.837	23.680
	ATOM	345	HG1	GLU	149	-0.294	16.880	24.648
	ATOM	346		GLU	149	0.256	15.805	23.331
10	MOTA	347	CD	GLU	149	-0.536	17.693	22.670
	MOTA	348	OE1	GLU	149	0.137	18.476	21.949
	ATOM	349	OE2	GLU	149	-1.789	17.573	22.607
	ATOM	351	C	GLU	149	0.831	18.435	25.867
•	ATOM	352	0	GLU	149	-0.298	18.921	25.905
15	ATOM	353	N	GLU	150	1.332	17.710	26.881
	MOTA	354	HN	GLU	150	2.321	17.422	26.863
	MOTA	355	CA	GLU	150	0.502	17.335	27.988
	MOTA	356		GLU	150	-0.343	16.748	27.628
	MOTA	357		GLU	150	1.238	16.472	29.027
20	ATOM	358		GLU	150	1.833	17.063	29.723
	ATOM	359		GLU	150	1.929	15.760	28.574
	ATOM	360		GLU	150	0.287	15.640	29.891
	ATOM	361		GLU	150	-0.491	16.316	30.242
25	ATOM	362	HG2		150	0.880	15.237	30.713
25	ATOM	363		GLU	150	-0.271	14.539	28.996
	ATOM	364 365	OE1		150	-0.108 -0.862	14.660	27.752
	MOTA MOTA	367	OE2 C	GLU	150 150	-0.862	13.565 18.564	29.534 28.674
	ATOM	368		GLU	150	-1.156	18.611	29.106
30	ATOM	369		PHE	151	0.859	19.584	28.821
50	ATOM	370		PHE	151	1.819	19.495	28.458
	ATOM	371		PHE	151	0.458	20.792	29.476
	ATOM	372		PHE	151	0.018	20.581	30.450
	ATOM	373		PHE	151	1.638	21.741	29.732
35	MOTA	. 374	HB1	PHE	151 _	2.158	21.863	28.781
	- ATOM	375	HB2	PHE	151	2.269	21.267	30.483
	ATOM	376	CG	PHE	151	1.063	23.023	30.218
	ATOM	377	CD1	PHE	151	0.595	23.151	31.506
	MOTA	378		PHE	151	0.642	22.301	32.187
40	MOTA	379		PHE	151	1.003	24.107	29.374
	ATOM	380		PHE	151	1.375	24.016	28.353
	ATOM	381		PHE	151	0.069	24.346	31.936
	ATOM	382		PHE	151	-0.303	24.440 25.302	32.956
45	ATOM	383 384		PHE	151 151	0.479 0.436	26.153	29.800 29.120
73	MOTA MOTA	385		PHE	151	0.010	25.422	31.084
	ATOM	386		PHE	151	-0.406	26.369	31.427
	ATOM	387		PHE	151	-0.559	21.534	28.661
	ATOM	388		PHE	151	-1.590	21.955	29.184
50	ATOM	389		LEU	152	-0.310	21.684	27.346
	ATOM.	390		LEU	152	0.509	21.214	26.936
	ATOM	391	CA	LEU	152	-1.153	22.480	26.497
	ATOM	392	HA	LEU	152	-1.211	23.501	26.874
	MOTA	393	CB	LEU	152	-0.669	22.514	25.038
55	ATOM	394		LEU	152	-1.410	23.048	24.442
	ATOM	395	HB2		152	-0.564	21.487	24.687
	MOTA	396		LEU	152	0.685	23.218	24.846
	ATOM	397		LEU	152	1.471	22.726	25.418
6 0	ATOM	398	CD2		152	0.667	24.632	25.454
60	ATOM	399 400	HD2		152	1.637	25.105	25.303
	ATOM	400	HD2		152	-0.105	25.227	24.968
	ATOM ATOM	401 402	HD2 CD1		152 152	0.458 1.112	24.566 23.214	26.521 23.369
	ATOM	403	HD1		152	2.072	23.719	23.267
65	ATOM	404	HD1		152	1.203	22.186	23.020
	ATOM	405	HD1		152	0.363	23.735	22.772
	ATOM	406		LEU	152	-2.534	21.905	26.455
	ATOM	407		LEU	152	-3.523	22.634	26.528

	N.M.O.M	400		mus	153	2 (24	00 560	06.050
	MOTA	408	N	THR	153 153	-2.624	20.568	26.352
	ATOM ATOM	409 410	HN CA	THR THR	153	-1.760 -3.865	20.012 19.882	26.416 26.156
	ATOM	411	HA	THR	153	-4.395	20.239	25.272
5	MOTA	412	CB	THR	153	-3.685	18.410	25.940
,	MOTA	413	HB	THR	153	-2.933	18.254	25.167
	ATOM	414	OG1	THR	153	-4.907	17.832	25.510
	ATOM	415	HG1	THR	153	-5.654	18.539	25.547
	ATOM	416	CG2	THR	153	-3.223	17.764	27.257
10	MOTA	417	HG2	THR	153	-3.089	16.692	27.110
	MOTA	418	HG2	THR	153	-2.278	18.208	27.569
	ATOM	419	HG2	THR	153	-3.975	17.933	28.029
	MOTA	420	С	THR	153	-4.792	20.058	27.316
	MOTA	421	0	THR	153	-6.002	20.106	27.103
15	MOTA	422	N	SER	154	-4.245	20.151	28.550
	ATOM	423	HN	SER		-3.217	20.193	28.608
	ATOM	424 425	CA	SER	154	-4.981	20.196	29.791
	ATOM ATOM	425	HA CB	SER SER	154 154	-5.266 -4.167	19.197 20.786	30.123 30.955
20	ATOM	427	HB1	SER	154	-4.784	20.780	31.852
20	ATOM	428	HB2	SER	154	-3.826	21.790	30.700
	ATOM	429	OG	SER	154	-3.037	19.970	31.221
	ATOM	430	HG	SER	154	-3.260	19.311	31.981
	MOTA	431	С	SER	154	-6.234	20.995	29.656
25	MOTA	432	0	SER	154	-6.230	22.221	29.738
	MOTA	433	N	ALA	155	-7.353	20.279	29.429
	ATOM	434	HN	ALA	155	-7.289	19.253	29.357
	ATOM	435	CA	ALA	155	-8.627	20.913	29.284
20	ATOM	436	HA	ALA	155	-8.526	21.664	28.501
30	ATOM	437	CB	ALA	155	-9.751	19.926	28.929
	MOTA "	438 439	HB2	ALA ALA	155 155	-10.693 -9.518	20.467 19.433	28.833 27.986
	ATOM	440	HB3	ALA	155	-9.841	19.179	29.717
	ATOM	441	C	ALA	155	-8.963	21.528	30.594
35	ATOM -	442	ō	ALA	155	-9.412	22.669	
	MOTA	443	N	ASN	156	-8.754	20.767	31.682
	MOTA	444	HN	ASN	156	-8.421	19.802	31.544
	MOTA	445	ÇA	ASN	156	-8.972	21.225	33.022
	MOTA	446	HA	ASN	156	-8.595	20.478	33.720
40	MOTA	447	CB	ASN	156	-8.254	22.544	33.350
	MOTA	448	HB1	ASN	156	-8.587	22.875	34.334
	ATOM	449		ASN ASN	156	-8.520	23.274	32.586
	ATOM ATOM	450 451	CG	ASN	156 156	-6.756 -7.736	22.281 21.772	33.348 33.890
45	ATOM	452		ASN	156	-6.497	23.300	32.486
45	ATOM	453		ASN	156	-5.527	23.497	32.199
	ATOM	454		ASN	156	-7.269	23.874	32.120
	MOTA	455	С	ASN	156	-10.432	21.427	33.237
	MOTA	456	0	ASN	156	-11.114	22.056	32.428
50	MOTA	457	N	LYS	157	-10.963	20.868	34.341
	ATOM	458	HN	LYS	157	-10.386	20.284	34.962
	MOTA	459	CA	LYS	157	-12.342	21.100	34.632
	MOTA	460	HA	LYS	157	-12.892	20.888	33.715
e e	ATOM	461	CB	LYS	157	-12.866	20.247	35.799
55	ATOM	462	HB1	LYS	157	-13.840	20.565	36.170
	ATOM	463 464	CG	LYS LYS	157 157	-12.214 -13.039	20.255 18.769	36.673 35.448
	ATOM ATOM	465		LYS	157	-13.382	18.168	36.291
	ATOM	466		LYS	157	-12.115	18.301	35.109
60	ATOM	467	CD	LYS	157	-14.056	18.535	34.331
	ATOM	468		LYS	157	-14.141	17.489	34.036
	ATOM	469		LYS	157	-13.822	19.075	33.413
	MOTA	470	CE	LYS	157	-15.476	18.967	34.704
	MOTA	471		LYS	157	-15.486	20.021	34.983
65	MOTA	472		LYS	157	-15.839	18.377	35.545
	ATOM	473	NZ	LYS	157	~16.386	18.770	33.554
	ATOM	474	HZ1	LYS	157	-17.338	19.063	33.814

475 HZ2 LYS 157 -16.060 19.334 32.756

MOTA

	ATOM	476	HZ3	LYS	157	-16.395	17.774	33.289
	ATOM	477		LYS	157	-12.453	22.529	35.040
	ATOM	478		LYS	157	-13.219	23.300	34.462
	ATOM	479		HIS	158	-11.653	22.918	36.051
5	ATOM	480		HIS	158	-11.014	22.238	
,	ATOM	481						36,486
				HIS	158	-11.682	24.265	36.530
	MOTA	482		HIS	158	-12.717	24.551	36.721
	MOTA	483	ND1		158	-12.504	24.615	39.778
	MOTA	484	HD1		158	-12.842	25.570	39.593
10	ATOM	485	_CG	HIS	158	-11.570	23.919	39.043
	MOTA	486	NE2		. 158	-12.274	22.634	40.759
	MOTA	487	HE2	HIS	158	-12.386	21.843	41.409
	ATOM	488	CD2	HIS	158	-11.440	22.711	39.656
	MOTA	489	HD2		158	-10.774	21.914	39.325
15	ATOM	490	CE1		158	-12.892	23.800	40.792
	ATOM	491	HE1		158	-13.628	24.077	41.546
	ATOM	492		HIS	158	-10.884	24.473	37.830
	ATOM	493	HB1		158	-10.697	25.522	38.059
	ATOM	494						37.814
20			HB2		158	-9.901	24.003	
20	MOTA	495		HIS	158	-11.090	25.158	35.495
	MOTA	496		HIS	158	-11.707	26.144	35.098
	ATOM	497		PHE	159	-9.878	24.828	35.004
	MOTA	498		PHE	159	-9.394	23.966	35.293
	ATOM	499	CA	PHE	159	-9.297	25.732	34.065
25	MOTA	500	HA	PHE	159	-9.603	26.738	34.353
	MOTA	501	CB	PHE	159	-7.764	25.681	34.055
	MOTA	502	HB1	PHE	159	-7.466	26.283	33.197
	MOTA	503	HB2	PHE	159	-7.517	24.624	33.951
	ATOM	504		PHE	159	-7.349	26.262	35.362
30	ATOM	505		PHE	159	-7.253	25.470	36.482
-	ATOM	506	HD1		159	-7.477	24.406	36.411
	ATOM	507	CD2		159	-7.082	27.607	35.474
	ATOM	508	HD2		159	-7.170	28.249	34.597
	ATOM	509	CE1		159	-6.877	26.007	37.691
35		510		PHE				
33	ATOM				1 59	-6.798	25.367	38.570
	ATOM	511		PHE	159	-6.707	28.149	36.679
	ATOM	512		PHE	159	-6.492	29.215	36.753
	ATOM	513		PHE	159	-6.602	27.349	37.791
40	ATOM	514		PHE	159	-6.301	27.777	38.748,
40	MOTA	515		PHE	159	-9.814	25.368	32.728
	MOTA	516		PHE	159	-9.080	24.820	31.910
	ATOM	517		MET	160	-11.096	25.716	32.478
	ATOM	518	HN	MET	160	-11.620	26.224	33.205
	ATOM	519	CA	MET	160	-11.755	25.406	31.246
45	MOTA	520	HA	MET	160	-11.756	24.319	31.165
	MOTA	521	CB	MET	160	-13.167	26.013	31.157
	ATOM	522	HB1		160	-13.568	25.796	30.168
	ATOM	523	HB2		160	-13.085	27.088	31.314
	MOTA	524		MET	160	-14.161	25.473	32.186
50	ATOM	525	HG1		160	-13.755	25.649	33.182
50	ATOM	526	HG2		160	-14.292	24.405	32.009
	ATOM	527		MET	160	-15.803	26.255	
						-15.256		32.109 32.785
	ATOM	528		MET	160		27.848	
E E	ATOM	529	HE1		160	-16.105	28.530	32.842
55	ATOM	530	HE2		160	-14.844	27.698	33.782
	MOTA	531	HE3		160	-14.491	28.276	32.136
	MOTA	532		MET	160	-10.959	26.053	30.174
	ATOM	533		MET	160	-10.572	25.421	29.194
	MOTA	534		VAL	161	-10.678	27.353	30.356
60	MOTA	535		VAL	161	-11.032	27.849	31.187
	MOTA	536		VAL	161	-9.885	28.043	29.393
	ATOM	537		VAL	161	-10.403	27.905	28.444
	ATOM	538	CB	VAL	161	-9.691	29.495	29.724
	ATOM	539		VAL	161	-9.036	29.936	28.973
65	ATOM	540		VAL	161	-11.065	30.186	29.710
	ATOM	541	HG1		161	-10.944	31.243	29.948
	ATOM	542	HG1		161	-11.513	30.087	28.721
	ATOM	543	HG1		161	-11.715	29.720	30.451

	ATOM	544	CG2	VAT.	161	-8.949	29.606	31.066
	MOTA	545	HG2	VAL	161	-8.803	30.657	31.316
	ATOM	546	HG2	VAL	161	-9.538	29.125	31.848
	ATOM	547	HG2	VAT.	161	-7.980	29.113	30.988
5	ATOM	548		VAL	.161	-8.553		
J							27.384	29.439
	MOTA	549	0	VAL	161	-7.872	27.249	28.423
	MOTA	550	N	GLY	162	-8.163	26.922	30.642
	MOTA	551	HN	GLY	162	-8.791	27.003	31.455
	MOTA	552	CA	GLY	162	-6.879	26.320	30.788
10	MOTA	553	HA1	GLY	162	-6.820	25.592	29.979
. •								
	MOTA	554	HA2		162	-6.893	25.872	31.781
	ATOM	555	С	GLY	162	-5.917	27.443	30.653
	ATOM	556	0	GLY	162	-5.095	27.471	29.738
	ATOM	557	N	HIS	163	-5.986	28.417	31.580
15	MOTA	558	HN	HIS	163	-6.644	28.363	32.371
	MOTA	559	CA	HIS	163	-5.105	29.529	31.417
	ATOM	560	HA	HIS	163	-4.633	29.544	30.434
	MOTA	561	ND1	HIS	163	-4.408	32.895	32.061
	MOTA	562	HD1	HIS	163	-4.423	32.809	33.088
20	ATOM	563	CG	HIS	163	-5.031	32.063	31.157
20								
	MOTA	564	NE2	HIS	163	-3.941	33.690	30.038
	MOTA	565	HE2	HIS	163	-3.566	34.274	29.276
	ATOM	566	CD2	_	163	-4.736	32.563	29.927
				-				
	MOTA	567	HD2	HIS	163	-5.079	32.135	28.985
25	MOTA	568	CE1	HIS	163	-3.771	33.850	31.338
	MOTA	569	HE1		163	-3.186	34.657	31.779
	MOTA	570	CB	HIS	163	-5.851	30.870	31.539
	MOTA	571	HB1	HIS	163	-6.161	30.997	32.576
	MOTA	572	HB2		163	-6.720	30.840	30.881
20								
30	MOTA	573	С	HIS	163	-3.990	29.528	32.424
	MOTA	574	0	HIS	163	-3.946	30.412	33.279
	MOTA	575	N	PRO	164	-3.086	28.577	32.396
	MOTA	576	CA	PRO	164	-1.916	28.762	33.206
	MOTA	577	HА	PRO	164	-2.224	29.395	34.038
35	MOTA	578	CD	PRO	164	-3.499	27.180	32.416
	_	579	HD1		164	-3.821	26.952	31.400
	ATOM							
	MOTA	580	HD2	PRO	164	-4.310	27.120	33.142
	ATOM	581	CB	PRO	164	-1.484	27.380	33.711
	MOTA	582	HB1		164	-1.775	27.364	34.761
40								
40	ATOM	583	HB2		164	-0.406	27.351	33.553
	MOTA	584	CG	PRO	164	-2.261	26.386	32.840
	MOTA	585	HG1	PRO	164	-2.527	25.494	33.408
	MOTA	586	HG2		164	-1.668	26.071	31.981
	MOTA	587	С	PRO	164	-0.906	29.419	32.324
45	ATOM	588	0	PRO	164	-1.124	29.479	31.114
	MOTA	589	N	VAL	165	0.192	29.930	32.897
	ATOM	590	HN	VAL	165	0.289	29.907	33.923
	ATOM	591	CA	VAL	165	1.230	30.507	32.104
	ATOM	592	HA	VAL	165	0.798	30.606	31.109
~~								
50	MOTA	593	CB	VAL	165	1.744	31.775	32.701
	MOTA	594	HB	VAL	165	2.116	31.563	33.703
	ATOM	595		VAL	165	2.876	32.311	31.816
	ATOM	596	HG1	VAL	165	3.261	33.239	32.240
	ATOM	597	HG1	VAL	165	3.678	31.575	31.765
55	ATOM	598		VAL	165	2.494	32.502	30.813
55								
	ATOM	599		VAL	165	0.563	32.741	32.876
	ATOM	600	HG2	VAL	165	0.919	33.675	33.312
	MOTA	601	HG2	VAL	165	0.111	32.943	31.905
		602		VAL	165	-0.178	32.293	33.536
60	MOTA							
60	ATOM	603	C	VAL	165	2.349	29.530	32.175
	ATOM	604	0	VAL	165	2.786	29.163	33.262
	ATOM	605	N	ILE	166	2.834	29.042	31.023
	MOTA	606	HN	ILE	166	2.452	29.317	30.107
	MOTA	607	CA	ILE	166	3.910	28.121	31.152
65	ATOM	608	HA	ILE	166	4.101	27.964	32.213
	MOTA	609	CB	ILE	166	3.608	26.763	30.571
	MOTA	610	HB	ILE	166	2.794	26.288	31.118
	ATOM	611	CG2	ILE	166	3.192	26.890	29.088
	041							

	ATOM	612	HG2	ILE	166	2.977	25.901	28.685
	ATOM	613	HG2	ILE	166	2.301	27.514	29.012
	ATOM	614	HG2	ILE	166	4.003	27.346	28.520
	ATOM	615		ILE	166	4.774	25.800	30.845
5	ATOM	616	HG1	ILE	166	5.104	25.833	31.884
,	MOTA	617		ILE	166	5.649	26.024	30.236
		618		ILE	166		24.346	30.555
	ATOM		CD1			4.406		
	ATOM	619	HD1	ILE	166	5.263	23.705	30.765
	ATOM	620	HD1	ILE	166	3.569	24.050	31.187
10	MOTA	621	HD1	ILE	166	4.124	24.244	29.507
	MOTA	622	С	ILE	166	5.102	28.703	30.488
	ATOM	623	0	ILE	166	5.193	28.742	29.262
	MOTA	624	N	PHE	167	6.061	29.220	31.275
	MOTA	625	HN	PHE	167	5.967	29.345	32.293
15	MOTA	626	CA	PHE	167	7.217	29.573	30.535
	ATOM	627	HA	PHE	167	6.831	29.904	29.571
	MOTA	628	CB	PHE	167	7.966	30.866	30.928
	MOTA	629	HB1	PHE	167	7.351	31.709	30.612
	ATOM	630	HB2	PHE	167	8.926	30.859	30.412
20	ATOM	631	CG	PHE	167	8.264	31.079	32.373
	ATOM	632		PHE	167	7.278	31.435	33.267
	ATOM	633	HD1	PHE	167	6.250	31.539	32.919
	ATOM	634	CD2	PHE	167	9.558	30.994	32.814
	ATOM	635		PHE	167	10.354	30.747	32.112
25	MOTA	636	CE1	PHE	167	7.569	31.660	34.590
23		637	HE1	PHE	167	6.776	31.926	35.289
	ATOM		CE2	PHE	167	9.859	31.219	34.134
	ATOM	638						
	MOTA	639	HE2	PHE	167	10.890	31.135	34.478
20	MOTA	640	CZ	PHE	167	8.865	31.550	35.026
30	MOTA	641	HZ	PHE	167	9.106	31.723	36.074
	MOTA	642	С	PHE	167	8.002	28.333	30.471
	MOTA	643	0	PHE	167	8.859	28.019	31.296
	MOTA	644	N	TYR	168	7.625	27.556	29.446
	MOTA	645	HN	TYR	168	6.935	27.914	28.769
35	MOTA	646	CA	TYR	168	8.154	26.252	29.272
	ATOM	647	AH	TYR	168	7.814	25.630	30.099
	MOTA	648	CB	TYR	168	8.061	25.640	27.863
	ATOM	649	HB1	TYR	168	8.769	24.812	27.823
	MOTA	650	HB2	TYR	168	8.321	26.423	27.151
40	MOTA	651	CG	TYR	168	6.765	25.096	27.423
	MOTA	652	CD1	TYR	168	6.214	24.010	28.059
	MOTA	653	HD1	TYR	168	6.734	23.563	28.907
	ATOM	654	CD2	TYR	168	6.164	25.598	26.300
	MOTA	655	HD2	TYR	168	6.631	26.412	25.744
45	ATOM	656	CE1	TYR	168	5.018	23.478	27.644
	ATOM	657	HE1	TYR	168	4.569	22.639	28.177
	ATOM	658	CE2	TYR	168	4.974	25.071	25.879
	ATOM	659	HE2	TYR	168 .	4.479	25.489	25.003
	ATOM	660	CZ	TYR	168	4.397	24.021	26.547
50	ATOM	661	ОН	TYR	168	3.166	23.496	26.097
50	ATOM	662	нн	TYR	168	2.446	24.232	26.131
	ATOM	663	C	TYR	168	9.607	26.344	29.265
	ATOM	664	Ö	TYR	168	10.301	25.843	30.143
		665	N	ILE	169	10.119	27.032	28.248
55	ATOM			ILE	169	9.605	27.716	27.673
33	MOTA	666	HN			11.469	26.681	28.081
	ATOM	667	CA	ILE	169		25.644	
	MOTA	668	HA	ILE	169	11.592		28.393
	MOTA	669	CB	ILE	169	11.935	26.582	26.652
	ATOM	670	HB	ILE	169	11.252	25.950	26.085
60	ATOM	671	CG2		169	11.969	27.977	26.023
	ATOM	672	HG2	ILE	169	12.307	27.902	24.989
	MOTA	673	HG2	ILE	169	10.970	28.412	26.047
	MOTA	674	HG2		169	12.655	28.612	26.583
	ATOM	675	CG1		169	13.295	25.868	26.602
65	ATOM	676	HG1		169	13.327	24.957	27.200
	ATOM	677	HG1	ILE	169	14.119	26.481	26.968
	ATOM	678	CD1	ILE	169	13.704	25.441	25.194
	ATOM	679	HD1	ILE	169	14.673	24.944	25.231

	ATOM	680	HD1	ILE	169	12.958	24.755	24.791
	ATOM	681		ILE	169	13.772	26.320	24.553
	ATOM	682						
				ILE	169	12.414	27.491	28.858
_	ATOM	683		ILE	169	12.688	28.655	28.578
5	MOTA	684		MET	170	12.900	26.847	29.920
	ATOM	685	HN	MET	170	12.428	26.010	30.289
	MOTA	686	CA	MET	170	14.075	27.338	30.526
	ATOM	687	HA	MET	170	14.282	28.370	30.240
	MOTA	688	CB I	MET	170	14.089	27.212	32.049
10	ATOM	689		MET	170	13.937	26.178	32.361
	ATOM	690		MET	170	13.302	27.813	32.503
		691						
	ATOM			MET '	170	15.421	27.679	32.631
	ATOM	692		MET	170	16.291	27.235	32.147
	ATOM	693		MET	170	15.541	27.448	33.690
15	MOTA	694	SD	MET	170	15.682	29.472	32.510
	ATOM	695	CE	\mathtt{MET}	170	16.169	29.427	30.762
	MOTA	696	HE1	MET	170	16.394	30.438	30.421
	ATOM	697	HE2	MET	170	17.054	28.800	30.646
	ATOM	698		MET	170	15.353	29.016	30.167
20	ATOM	699		MET	170	15.057	26.366	29.975
20		700						
	ATOM			MET	170	15.375	25.353	30.598
	MOTA	701		VAL	171	15.540	26.639	28.752
	MOTA	702		VAL	171	15.301	27.518	28.272
	MOTA	703	CA	VAL	171	16.395	25.677	28.138
25	MOTA	704	HA	VAL	171	16.078	24.685	28.460
	MOTA	705	СВ	VAL	171	16.369	25.696	26.637
	MOTA	706	HB	VAL	171	15.335	25.611	26.304
	ATOM	707		VAL	171	16.975	27.021.	26.149
	ATOM	708	HG1		171	16.961	27.048	25.060
30	ATOM	709		VAL	171	16.390	27.854	26.540
50								
	- ATOM	710	HG1		171	18.003	27.103	26.502
	ATOM	711	CG2		171	17.107	24.448	26.125
	MOTA	712		VAL	171	17.099	24.442	25.035
	ATOM	713		VAL	171	18.137	24.463	26.481
35	MOTA	714	HG2	VAL	171	16.608	23.553	-26.496
-	ATOM	715	С	VAL	171	17.791	25.952	28.574
	ATOM	716	0	VAL	171	18.213	27.101	28.701
	ATOM	717		ASP	172	18.537	24.868	28.839
	ATOM	718		ASP	172	18.126	23.932	28.714
40	ATOM	719		ASP	172	19.886	24.984	29.288
70	ATOM	720		ASP	172		25.936	
						19.974		29.810
	ATOM	721		ASP	172	20.295	23.806	30.189
	ATOM	722		ASP	172	20.368	22.910	29.573
	MOTA	723		ASP	172	19.534	23.679	30.958
45	MOTA	724	CG	ASP	172	21.638	24.127	30.819
	ATOM	725	OD1	ASP	172	21.805	25.272	31.320
	ATOM	726	OD2	ASP	· 172	22.512	23.221	30.823
	ATOM	727		ASP	172	20.766	24.938	28.077
	ATOM	728		ASP	172	21.788	24.254	28.079
50	ATOM	729		ASP	173	20.413	25.705	27.026
-	ATOM	730		ASP	173	19.576	26.302	27.096
	MOTA	731		ASP	173	21.177	25.711	25.809
	ATOM	732		ASP	173	20.653	26.309	25.065
	ATOM	733		ASP	173	22.582	26.326	25.965
55	ATOM	734	HB1		173	23.195	25.647	26.557
	ATOM	735	HB2	ASP	173	22.485	27.288	26.470
	ATOM	736	CG	ASP	173	23.186	26.514	24.577
	ATOM	737	OD1		173	23.330	25.502	23.840
	ATOM	738	QD2		173	23.521	27.679	24.237
60	MOTA	739		ASP	173	21.325	24.304	25.323
	ATOM	740		ASP	173	22.406	23.721	25.323
	MOTA	741		VAL	174	20.215	23.721	24.827
	ATOM	742		VAL	174	19.338	24.259	24.797
	ATOM	743		VAL	174	20.223	22.371	24.339
65	MOTA	744		VAL	174	20.895	21.773	24.955
	ATOM	745		VAL	174	18.875	21.712	24.363
	MOTA	746	HB	VAL	174	18.968	20.718	23.927
	ATOM	747	CG1	VAL	174	18.404	21.616	25.824

	ATOM	748	HG1	VAL	174	17.425	21.139	25.861
	ATOM	749	HG1	VAL	174	19.117	21.024	26.398
	ATOM	750	HG1		174	18.336	22.617	26.251
	ATOM	751	CG2		174	17.923	22.499	23.446
5	ATOM	752	HG2		174	16.939	22.031	23.454
_	ATOM	753	HG2		174	17.839	23.526	23.803
	ATOM	754	HG2		174	18.316	22.500	22.429
	ATOM	755	C	VAL	174	20.696	22.366	22.921
	MOTA	756	0	VAL				22.328
10					174	20.953	23.413	
ĬŪ	MOTA	757	N	SER	175	20.822	21.156	22.341 -
	MOTA	758	HN	SER	175	20.560	20.313	22.873
	ATOM	759	CA	SER	175	21.314	21.015	21.004
	MOTA	760	HA	SER	175	22.165	21.680	20.855
	MOTA	761	CB	SER	175	21.834	19.604	20.671
15	MOTA	762	HB1	SER	175	22.615	19.309	21.371
	MOTA	763	HB2	SER	175	22.248	19.577	19.663
	MOTA	764	OG	SER	175	20.783	18.655	20.748
	MOTA	765	HG	SER	175	19.906	19.132	21.002
	MOTA	766	С	SER	175	20.236	21.368	20.034
20	MOTA	767	0	SER	175	19.112	21.700	20.408
	MOTA	768	N	ARG	176	20.596	21.302	18.740
	MOTA	769	HN	ARG	176	21.539	20.946	18.530
	ATOM	770	CA	ARG	176	19.777	21.686	17.628
	ATOM	771	HA	ARG	176	19.491	22.736	17.692
25	ATOM	772	CB	ARG	176	20.519	21.457	16.302
 -	ATOM	773	HB1		176	21.432	22.049	16.237
	ATOM	774	HB2		176	19.908	21.725	15.440
	ATOM	775	CG	ARG	176	20.926	19.992	16.118
		776	HG1		176	20.053	19.434	15.781
20	ATOM					21.278	19.434	
30	ATOM	777	HG2		176			17.076 15.093
	ATOM	778	CD	ARG	176	22.041	19.774	
	MOTA	779		ARG	176	22.352	18.731	15.148
	MOTA	780	HD2		176	22.867	20.438	15.345
0.5	ATOM	781	ΝE	ARG	176	21.499	20.094	13.745
35	MOTA	782	HE	ARG	1-76	20.490	20.256	13.615
	MOTA	783	CZ	ARG	176	22.351	20.171	12.682
	ATOM	784	NH1		176	23.689	19.966	12.865
	ATOM	785	HH1		176	24.333	20.023	12.064
	MOTA	786	HH1	ARG	176	24.053	19.753	13.805
40	ATOM	787	NH2	ARG	176	21.872	20.454	11.437
	MOTA	788	HH2	ARG	176	22.518	20.512	10.637
	ATOM	789	HH2	ARG	176	20.863	20.611	11.297
	ATOM	790	С	ARG	176	18.520	20.876	17.575
	ATOM	791	0	ARG	176	17.433	21.426	17.406
45	ATOM	792	N	MET	177	18.617	19.544	17.731
	MOTA	793	HN	MET	177	19.518	19.105	17.967
	MOTA	794	CA	MET	177	17.434	18.752	17.561
	ATOM	795	HA	MET	177	16.992	18.939	16.583
	ATOM	796	СВ	MET	177	17.688	17.234	17.581
50	ATOM	797	HB1		177	17.922	16.864	18.579
•	ATOM	798	HB2		177	18.522	16.943	16.942
	ATOM	799	CG	MET	177	16.475	16.432	17.097
	ATOM	800		MET	177	16.079	16.922	16.208
	MOTA	801		MET	177	15.736	16.422	17.898
55	ATOM	802	SD	MET	177	16.817	14.701	16.654
55	ATOM	803	CE	MET	177	17.175	14.161	18.350
		804		MET	177	17.422	13.099	18.349
	MOTA						14.730	18.741
	ATOM	805	HE2		177	18.019		
~ 0	ATOM	806	HE3		177	16.301	14.330	18.978
60	ATOM	807	C	MET	177	16.426	19.091	18.615
	MOTA	808	.0	MET	177	15.230	19.136	18.332
	ATOM	809	N	PRO	178	16.833	19.309	19.830
	MOTA	810	CA	PRO	178	15.853	19.648	20.824
	MOTA	811	AH	PRO	178	15.036	18.927	20.853
65	MOTA	812	CD	PRO	178	17.943	18.564	20.396
	MOTA	813	HD1		178	18.829	19.169	20.205
	MOTA	814		PRO	178	17.955	17.611	19.868
	MOTA	815	CB	PRO	178	16.566	19.506	22.168

	ATOM	816	HB1	PRO	178	15.870	19.206	22.951
	ATOM	817	HB2		178	17.023	20.448	22.470
	ATOM	818	CG	PRO	178	17.623	18.420	21.894
	MOTA	819	HG1	PRO	178	17.126	17.485	22.152
5	ATOM	820	HG2	PRO	178	18.454	18.676	22.551
	ATOM	821	С	PRO	178	15.239	20.991	20.570
	ATOM	822	ō	PRO	178	14.067	21.189	20.890
	ATOM	823	N	LEU	179	16.014	21.921	19.989
	ATOM	824	HN	LEU	179	16.980	21.679	19.727
10	MOTA	825	CA	LEU	179	_15.528	23.241	19.724
••	ATOM	826	HA	LEU	179	15.187	23.666	20.668
	ATOM	827	СВ	LEU	179	16.584	24.129	19.044
	MOTA	828	HB1	LEU	179	16.153	25.119	18.897
	ATOM	829	HB2	LEU	179	16.845	23.676	18.087
15	ATOM	830	CG	LEU	179	17.890	24.305	19.845
	ATOM	831	HG	LEU	179	18.373	23.344	20.019
	ATOM	832	CD2		179	17.630	24.786	21.280
	ATOM	833		LEU	179	18.579	24.896	21.804
	MOTA	834	HD2	LEU	179	17.116	25.748	21.253
20	ATOM	835		LEU	179	17.009	24.058	21.801
	MOTA	836	CD1	LEU	179	18.881	25.203	19.088
	ATOM	837	HD1	LEU	179	19.794	25.312	19.674
	MOTA	838	HD1	LEU	179	19.119	24.752	18.125
	MOTA	839	HD1	LEU	179	18.434	26.184	18.928
25	MOTA	840	С	LEU	179	14.403	23.127	18.747
	MOTA	841	0	LEU	179	13.360	23.759	18.912
	MOTA	842	N	ILE	180	14.597	22.304	17.698
	MOTA	843	HN	ILE	180	15.468	21.757	17.638
	MOTA	844	CA	ILE	180	13.609	22.175	16.662
30	MOTA	845	HA	ILE	180	13.363	23.164	16.275
	ATOM	846	·CB	ILE	180	14.045	21.341	15.484
	MOTA	847	HB	ILE		13.225	21.314	14.767
	ATOM	848	CG2	ILE	180	15.289	22.001	14.868
~ ~	MOTA	849	HG2	ILE	180	15.625	21.415	14.012
35	ATOM	850	HG2	ILE	180	15.041	23:011	14.542
	ATOM	851	HG2	ILE	180	16.084	22.045	15.612
	MOTA	852 853	CG1 HG1	ILE	180	14.265	19.876	15.882
	ATOM ATOM	854	HG1	ILE	180 180	13.449 15.160	19.458 19.718	16.470
40	ATOM	855	CD1	ILE	180	14.418	18.937	16.484 14.688
10	MOTA	856	HD1	ILE	180	14.570	17.918	15.043
	ATOM	857	HD1	ILE	180	13.517	18.977	14.076
	ATOM	858	HD1	ILE	180	15.276	19.245	14.090
	MOTA	859	C	ILE	180	12.382	21.538	17.227
45	MOTA	860	Ō	ILE	180	11.264	21.896	16.861
	ATOM	861	N	GLU	181	12.562	20.579	18.155
	ATOM	862	HN	GLU	181	13.513	20.357	18.483
	ATOM	863	CA	GLU	181	11.440	19.864	18.692
	ATOM	864	HA	GLU	181	10.954	19.323	17.880
50	MOTA	865	CB	GLŲ	181	11.850	18.883	19.805
	ATOM	866	HB1	GLU	181	10.946	18.441	20.225
	MOTA	867	HB2	GLU	181	12.395	19.437	20.569
	ATOM	868	CG	GLU	181	12.749	17.741	19.325
	MOTA	869		GLU	181	13.188	17.272	20.205
55	ATOM	870		GLU	181	13.518	18.172	18.684
	MOTA	871	CD	GLU	181	11.880	16.760	18.556
	MOTA	872		GLU	181	11.057	16.057	19.201
	ATOM	873	OE2	GLU	181	12.028	16.705	17.307
60	MOTA	875 876	C	GLU	181	10.498	20.849	19.301
OU	MOTA	876 977	0	GLU	181	9.297	20.797	19.038
	ATOM	877	N	LEU	182	11.011	21.789	20.123
	ATOM	878 879	HN	LEU LEU	182 182	12.019 10.104	21.823	20.331
	ATOM ATOM	880	CA HA	LEU	182	9.331	22.736 22.163	20.697 21.209
65	ATOM	881	CB	LEU	182	10.717	23.682	21.744
	MOTA	882	HB1	LEU	182	10.048	24.499	22.015
	MOTA	883	HB2	LEU	182	11.640	24.149	21.399
	ATOM	884	CG	LEU	182	11.067	22.965	23.056

WO 01/83717 PCT/CA01/00607

							J4 -	
	ATOM	885	HG	LEU	182	10.229	22.368	23.415
	ATOM	.886		LEU	182	11.230	23.973	24.202
	MOTA	887			182	11.478	23.442	25.121
	ATOM	888	HD2	LEU	182	12.031	24.673	23.960
5	MOTA	. 889		TEO	182	10.299	24.522	24.339
	MOTA	890	CD1		182	12.267	22.021	22.871
	MOTA	891			182	12.491	21.528	23.817
	MOTA	892	HD1		182	12.027	21.270	22.118
10	MOTA	893		LEU	182	13.135	22.595	22.547
10	MOTA	894		LEU	182	9.546	23.540	19.568
	MOTA MOTA	895 896	O N	LEU	182 . 183	8.354 10.423	23.829 23.888	19.549
	ATOM	897		GLY GLY	183	11.397	23.595	18.602 18.764
	ATOM	898	CA	GLY	183	10.193	24.611	17.376
15	MOTA	899		GLY	183	10.272	23.909	16.546
	ATOM	900		GLY	183	10.949	25.392	17.293
	ATOM	901	С	GLY	183	8.852	25.269	17.284
	MOTA	902	0	GLY	183	8.682	26.430	17.658
	ATOM	903	N	PRO	184	7.892	24.554	16.761
20	MOTA	904	CA	PRO	184	6.596	25.124	16.533
	ATOM	905	HA	PRO	184	6.630	25.933	15.804
	MOTA	906	CD	PRO	184	8.149	23.402	15.913
	ATOM	907	HD1	PRO	184	8.339	22.579	16.602
25	ATOM	908	HD2	PRO	184	9.018	23.677	15.315
23	MOTA MOTA	909 910	CB HB1	PRO PRO	184 184	5.789 5.048	24.027 24.453	15.842 15.166
	ATOM	911	HB2	PRO	184	5.261	23.411	16.571
	ATOM	912	CG	PRO	184	6.865	23.220	15.080
	ATOM	913	HG1	PRO	184	6.910	23.684	14.095
30	MOTA	914	HG2	PRO	184	6.487	22.198	15.070
	MOTA	915	С	PRO	184	6.011	25.688	17.781
	MOTA	916	0	PRO	184	5.454	26.784	17.734
	MOTA	917	N	LEU	185	6.103	24.949	18.894
25	MOTA	918	HN	LEU	185	6.491	23.996	18.840
35	MOTA	919	CA	LEH	185	5.673	25.458	20.151
	ATOM ATOM	920 921	HA CB	LEU LEU	185 185	4.675 5.599	25.876 24.371	20.020 21.228
	ATOM	922		LEU	185	5.361	24.768	22.214
	ATOM	923	HB2	LEU.		6.536	23.826	21.344
40	ATOM	924	ÇG	LEU	185	4.525	23.305	20.930
	ATOM	925	HG	LEU	185	4.538	22.508	21.673
	MOTA	926	CD2	LEU	185	4.850	22.515	19.651
	ATOM	927	HD2	LEU	185	4.071	21.773	19.474
	ATOM	928		LEU	185	4.899	23.199	18.804
45	ATOM	929		LEU	185	5.809	22.012	19.768
	MOTA	930		LEU	185	3.111	23.915	20.934
	MOTA	931 932		LEU	185	2.378 2.905	23.137	20.721
	ATOM ATOM	933		LEU	185 185	3.048	24.350 24.691	21.912 20.171
50	ATOM	934	C	LEU	185	6.646	26.513	20.577
	MOTA	935	ō	LEU	185	6.236	27.546	21.103
	ATOM	936	N	ARG	186	7.964	26.292	20.360
	ATOM '	937	HN	ARG	186	8.286	25.438	19.883
	ATOM	938	CA	ARG	186	8.900	27.280	20.814
55	ATOM	939	HА	ARG	186	8.472	27.795	21.674
	ATOM	940	CB	ARG	186	10.277	26.738	21.260
	ATOM	941		ARG	186	10.104	25.959	22.003
	ATOM	942		ARG	186	10.840	27.568	21.688
60	ATOM ATOM	943 944	CG HG1	ARG ARG	186 186	11.149 11.235	26.124 26.770	20.163 19.289
00	ATOM	945		ARG	186	10.757	25.172	19.803
	ATOM	946	CD	ARG	186	12.579	25.849	20.638
	ATOM	947		ARG	186	13.127	25.518	19.756
	ATOM	948		ARG	186	12.495	25.074	21.399
65	ATOM	949	NE	ARG	186	13.083	27.142	21.181
	ATOM	950	HE	ARG	186	12.411	27.863	21.481
	MOTA	951	CZ	ARG	186	14.421	27.384	21.287
	ATOM	952	NHl	ARG	186	15.325	26.443	20.885

PCT/CA01/00607

	•							
	ATOM	953	HH1	ARG	186	16.334	26.630	20.967
	ATOM	954	HH1		186	14.997	25.545	20.500
	ATOM	955	NH2		186	14.857	28.579	21.778
	ATOM	956	HH2		186	15.866	28.765	21.859
5	ATOM	957	HH2		186	14.176	29.296	22.068
,		958			186			
	MOTA		C	ARG		9.149	28.244	19.703
	MOTA	959	0	ARG	186	10.285	28.605	19.399
	ATOM	960	N	SER	187	8.069	28.677	19.042
	MOTA	961	HN	SER	187	7.141	28.274	19.235
10	ATOM	962	CA	SER	187	8.223	29.702	18.069
	MOTA	963	HA	SER	187	8.998	30.409	18.365
	ATOM	964	CB	SER	187	8.560	29.160	16.673
	MOTA	965	HB1	SER	187	7.735	28.544	16.313
	MOTA	966	HB2	SER	187	9.466	28.557	16.725
15	ATOM	967	OG	SER	187	8.764	30.244	15.780
	ATOM	968	HG	SER	187	9.409	30.924	16.207
	ATOM	969	С	SER	187	6.886	30.335	18.027
	ATOM	970	ō	SER	187	6.533	30.969	17.033
	ATOM	971	N	PHE	188	6.153	30.173	19.155
20	ATOM	972	HN	PHE	188	6.595	29.660	19.931
20							30.651	
	MOTA	973	CA	PHE	188	4.814		19.366
	ATOM	974	AH	PHE	188	4.707	31.113	20.347
	MOTA	975	CB	PHE	188	4.272	31.696	18.348
	ATOM	976	HB1	PHE	188	3.199	31.542	18.239
25	MOTA	977	HB2	PHE	·188	4.781	31.541	17.397
	MOTA	978	CG	PHE	188	4.485	33.115.	
	ATOM	979	CD1	PHE	188	5.654	33.800	18.496
	MOTA	980	HD1	PHE	188	6.477	33.300	17.987
	ATOM	981	CD2	PHE	188	3.454	33.771	19.376
30	ATOM	982	HD2	PHE	188	2.521	33.241	19.569
	ATOM	983	CE1	PHE	188	5.786	35.113	18.885
	ATOM	984	HE1	PHE	188	6.716	35.646	18.689
	MOTA	985	CE2	PHE	188	3.578	35.081	19.768
	ATOM	986	HE2	PHE	188	2.751	35.583	20.270
35-	ATOM	987	CZ	PHE	188	4.750	35.755	19.521
	ATOM	988	HZ	PHE	188	4.858	36.795	19.829
	ATOM	989	C	PHE	188	3.825	29.546	19.282
	ATOM	990	ō	PHE	188	3.879	28.548	20.002
	ATOM	991	N	LYS	189	2.890	29.761	18.338
40	ATOM	992	HN	LYS	189	3.029	30.589	17.742
	ATOM	993	CA	LYS	189	1.726	28.977	18.066
		994		LYS	189	1.014	29.568	17.491
	ATOM	995	HA					17.123
	ATOM		CB	LYS	189	1.923	27.777 26.942	
45	ATOM	996	HB1	LYS	189	2.382		17.652
45	ATOM	997		LYS	189	2.568	28.047	16.287
	MOTA	998	CG	LYS	189	0.578	27.306	16.558
	MOTA	999	HG1		189	-0.134	27.007	17.327
	ATOM	1000		LYS	189	0.663	26.444	15.896
	MOTA	1001	CD	LYS	189	-0.149	28.380	15.731
50	ATOM	1002		LYS	189	-0.976	27.901	15.207
	MOTA	1003		LYS	189	0.564	28.802	15.023
	ATOM	1004	CE	LYS	189	-0.733	29.545	16.543
	ATOM	1005	HE1	LYS	189	0.051	30.062	17.095
	ATOM	1006	HE2	LYS	189	-1.472	29.184	17.258
55	ATOM	1007	NZ	LYS	189	-1.392	30.523	15.653
	ATOM	1008	HZ1	LYS	189	-1.776	31.295	16.215
	ATOM	1009		LYS	189	-0.704	30.896	14.983
	ATOM	1010	HZ3		189	-2.155	30.060	15.138
	ATOM	1011	C	LYS	189	1.098	28.557	19.348
60	ATOM	1012	ō	LYS	189	0.681	27.411	19.516
	ATOM	1013	N	VAL	190	1.082	29.508	20.299
	ATOM	1013	HN	VAL	190	1.621	30.366	20.235
	ATOM	1014	CA	VAL	190	0.383	29.431	21.544
	ATOM		HA	VAL	190	-0.655	29.650	21.294
65		1016				0.344	28.073	22.204
05	ATOM	1017	CB	VAL	190			
	ATOM	1018	HB	VAL	190	0.112	27.289	21.483
	ATOM	1019	CG1		190	1.696	27.728	22.847
	ATOM	1020	HGT	VAL	190	1.637	26.745	23.314

	ATOM	1021	HG1	VAL	190	2.472	27.720	22.081
	ATOM	1022	HG1	VAL	190	1.940	28.475	23.603
	MOTA	1023	CG2	VAL	190	-0.856	28.072	23.164
	ATOM	1024		VAL	190	-0.922	27.106	23.664
5	ATOM	1025	HG2	VAL	190	-0.728	28.858	23.908
•	ATOM	1026		VAL	190	-1.772	28.252	22.601
	ATOM	1027	C	VAL	190	1.024	30.470	22.409
	ATOM	1028	Ö	VAL	190	2.221	30.413	22.683
	ATOM	1029	N	PHE	191	0.225	31.465	22.847
10		1030	HN	PHE	191	-0.778	31.392	22.631
10	MOTA		CA	PHE	191	0.656	32.620	23.591
	ATOM	1031				1.482		23.067
	MOTA	1032	HA	PHE	191		33.101	
	MOTA	1033	CB	PHE	191	-0.475	33.640	23.756
	MOTA	1034		PHE	191	-0.053	34.492	24.289
15	MOTA	1035		PHE	191	-1.260	33.146	24.328
	MOTA	1036	CG	PHE	191	-0.925	34.005	22.383
	MOTA	1037	CD1	PHE	191	-0.158	34.830	21.595
	ATOM	1038	HD1	PHE	191	0.788	35.216	21.972
	MOTA	1039	CD2	PHE	191	-2.123	33.528	21.902
20	ATOM	1040	HD2	PHE	191	-2.735	32.876	22.527
	MOTA	1041	CE1	PHE	191	-0.581	35.171	20.334
	MOTA	1042	HE1	PHE	191	0.028	35.825	19.711
	MOTA	1043	CE2	PHE	191	-2.556	33.865	20.643
	MOTA	1044	HE2	PHE	191	-3.506	33.486	20.268
25	ATOM	1045	CZ	PHE	191	-1.778	34.684	19.860
	MOTA	1046	HZ	PHE	191	-2.111	34.950	18.856
	ATOM	1047	C	PHE	191	1.107	32.195	24.950
	ATOM	1048	Ö	PHE	191	1.908	32.867	25.601
	ATOM	1049	N	LYS	192	0.571	31.046	25.387
30	MOTA	1050	HN	LYS	192	-0.023	30.539	24.716
50	ATOM	1051	CA	LYS	192	0.730	30.441	26.676
		1051	HA	LYS	192	0.730	31.074	27.436
	MOTA				192	0.157	29.021	26.625
	MOTA	1053	CB	LYS				26.088
25	MOTA	1054			192	0.873	28.398	26.100
35	ATOM	1055	HB2		192	-0.796	29.071	
	ATOM	1056	CG	LYS	192	-0.114	28.323	27.951
	MOTA	1057	HG1		192	-0.762	28.925	28.589
	ATOM	1058	HG2		192	0.809	28.141	28.499
	MOTA	1059	CD	LYS	192	-0.800	26.971	27.738
40	MOTA	1060	HD1	LYS	192	-1.146	26.607	28.705
	MOTA	1061	HD2	LYS	192	-0.073	26.284	27.305
	MOTA	1062	CE	LYS	192	-2.012	27.014	26.799
	MOTA	1063	HE1	LYS	192	-2.144	26.052	26.305
	ATOM	1064	HE2	LYS	192	-1.874	27.780	26.036
45	ATOM	1065	NZ	LYS	192	-3.244	27.325	27.562
	MOTA	1066		LYS	192	-4.048	27.351	26.919
	ATOM	1067	HZ2	LYS	192	-3.398	26.600	28.276
	ATOM	1068	HZ3		192	-3.142	28.242	28.020
	ATOM	1069	C	LYS	192	2.187	30.279	26.980
50	ATOM	1070	ō	LYS	192	2.606	30.457	28.122
50	ATOM	1071	N	ILE	193	2.996	29.952	25.954
	ATOM	1072	HN	ILE	193	2.603	29.946	25.002
	ATOM	1073	CA	ILE	193	4.381	29.611	26.127
	MOTA	1074	HA	ILE	193	4.546	29.002	27.016
55			CB	ILE	193	4.902	28.846	24.948
22	MOTA	1075	НВ	ILE		4.735	29.444	24.052
	MOTA	1076			193	6.402	28.596	25.161
	MOTA	1077	CG2					
	MOTA	1078	HG2		193	6.802	28.040	24.313
CO	ATOM	1079		ILE	193	6.921	29.550	25.246
60	MOTA	1080	HG2		193	6.549	28.020	26.075
•	ATOM	1081	CG1		193	4.067	27.578	24.687
	MOTA	1082	HG1		193	3.001	27.784	24.590
	MOTA	1083	HG1		193	4.155	26.840	25.485
	MOTA	1084	CD1		193	4.471	26.850	23.397
65	MOTA	1085	HD1		193	3.847	25.965	23.268
	MOTA	1086	HD1		193	4.336	27.516	22.546
	MOTA	1087	HD1	ILE	193	5.517	26.550	23.461
	ATOM	1088	С	ILE	193	5.253	30.833	26.271

	ATOM	1089	0	ILE	193		5.089	31.833	25.576
	MOTA	1090	N	LYS	194		6.213	30.772	27.222
	ATOM	1091	HN	LYS	194		6.246	29.938	27.826
_	ATOM	1092	CA	LYS	194		7.192	31.807	27.438
5	ATOM	1093	AH	LYS	194		7.104	32.498	26.599
	MOTA	1094	CB HB1	LYS	194 194		7.012 7.934	32.605	28.750 28.946
	MOTA	1095	HB2		194		6.807	33.154 31.899	29.555
	ATOM	1096 1097	CG	LYS	194		5.863	31.899	28.716
10	MOTA MOTA	1098	HG1		194		4.970	33.236	28.225
10	ATOM	1098	HG2		194		6.121	34.537	28.186
	ATOM	1100	CD	LYS	194		5.412	34.062	30.117
	ATOM	1101	HD1		194		4.663	33.398	30.550
	ATOM	1102	HD2		194		4.967	35.057	30.126
15	ATOM	1103	CE	LYS	194		6.570	34.110	31.134
	ATOM	1104	HE1		194		7.248	33.267	31.000
	ATOM	1105	HE2		194		6.199	34.075	32.158
	MOTA	1106	NZ	LYS	194		7.369	35.361	30.985
	MOTA	1107	HZ1	LYS	194		8.134	35.365	31.676
20	MOTA	1108	HZ2	LYS	194		7.765	35.406	30.035
	MOTA	1109	HZ3	LYS	194		6.761	36.178	31.142
	ATOM	1110	С	LYS	194		8.530	31.130	27.477
	MOTA	1111	0	LYS	194		8.866	30.363	28.379
	MOTA	1112	N	PRO	195		9.272	31.379	26.438
25	MOTA	1113	CA	PRO	195		10.582	30.791	26.334
	ATOM	1114	HA	PRO	195		10.568	29.829	26.847
	MOTA	1115	CD	PRO	195		8.635	31.518	25.136
	ATOM	1116	HD1		195		8.172	32.504	25.155
20	MOTA	1117	HD2	PRO	195		7.918	30.699 30.506	25.086 24.844
30	ATOM	1118 1119	CB	PRO PRO	· 195 195		10.801	29.439	24.733
	ATOM ATOM	1119	HB2	PRO	195		11.837	30.786	24.656
	ATOM	1121	CG	PRO	195		9.781	31.395	24.121
	MOTA	1122	HG1		195		9.449	30.934	23.191
35	ATOM	1123.	HG2	PRO	195		10.212	32.366	23.878
55	ATOM	1124	C	PRO	195		11.681	31.617	26.943
	ATOM	1125	Ō	PRO	195		11.522	32.829	27.091
	MOTA	1126	N	GLU	196		12.794	30.945	27.318
	MOTA	1127	HN	GLU	196		12.765	29.917	27.259
40	MOTA	1128	CA	GLU	196		14.011	31.542	27.791
	ATOM	1129	HA	GLU	196		14.120	32.488	27.261
	MOTA	1130	CB	GLU	196		14.103	31.795	29.305
	ATOM	1131	HB1	GLU	196		13.964	30.870	29.865
	ATOM	1132	HB2		196		13.340	32.501	29.631
45	ATOM	1133	CG	GLU	196		15.470	32.372	29.683
	ATOM	1134		GLU	196		15.666	33.261	29.085 29.494
	ATOM	1135		GLU	196		16.243 15.471	31.627 32.742	31.160
	ATOM ATOM	1136	CD	GLU	196 196		14.584	33.541	31.568
50	ATOM	1137 1138	OE2		196		16.361	32.229	31.895
50	MOTA	1140	C	GLU	196		15.111	30.581	27.467
	MOTA	1141	ō	GLU	196		14.905	29.368	27.468
••	MOTA	1142	N	LYS	197		16.315	31.112	27.172
	ATOM	1143	HN	LYS	197		16.431	32.135	27.194
55	ATOM	1144	CA	LYS	197		17.441	30.288	26.830
	ATOM	1145	HA	LYS	197		17.260	29.285	27.217
	MOTA	1146	CB	LYS	197		17.702	30.274	25.314
	ATOM	1147	HB1	LYS	197	•	17.780	31.307	24.976
	MOTA	1148	HB2		197		16.865	29.769	24.833
60	ATOM	1149	CG	LYS	197		18.980	29.555	24.868
	MOTA	1150		LYS	197		18.992	28.509	25.174
	ATOM	1151		LYS	197		19.877	30.013	25.285
	ATOM	1152	CD	LYS	197		19.150	29.568	23.345
6 E	ATOM	1153		LYS	197 197		18.935	30.575 28.849	22.988 22.920
65	ATOM	1154	CE	LYS	197 197		18.448 20.548	29.193	22.920
	ATOM ATOM	1155 1156		LYS.	197		21.268	29.266	23.660
	ATOM	1157		LYS	197		20.853	29.867	22.045
	431 OF	110/	*****						

	ATOM	1158	NZ LYS	197	20.549	27.804	22.329
	ATOM	1159	HZ1 LYS	197	21.493	27.563	21.996
	ATOM	1160	HZ2 LYS	197	20.275	27.157	23.082
	ATOM	1161	HZ3 LYS	197	19.880	27.727	21.549
5	ATOM	1162	C LYS	197	18.666	30.883	27.456
	ATOM	1163	O LYS	197	18.825	32.101	27.507
	MOTA	1164	N ARG	198	19.574	30.030	27.968
	ATOM	1165	HN ARG	198	19.385	29.018	27.996
	ATOM	1166	CA ARG	198	20.809	30.554	28.475
10	ATOM	1167	HA ARG	198	20.676	31.636	28.498
	ATOM	1168	CB ARG	198	21.118	30.083	29.903
	ATOM	1169	HB1 ARG	198	22.135	30.362	30.179
	ATOM	1170	HB2 ARG	198	21.021	28.999	29.970
	MOTA	1171	CG ARG	198	20.142	30.727	30.894
15	ATOM	1172	HG1 ARG	198	19.146	30.700	30.453
	ATOM	1173	HG2 ARG	198	20.463	31.755	31.064
•	MOTA	1174	CD ARG	198	20.054	30.048	32.259
	MOTA	1175	HD1 ARG	198	20.265	28.986	32.130
	ATOM	1176	HD2 ARG	198	19.046	30.191	32.651
20	ATOM	1177	NE ARG	198	21.057	30.673	33.162
	ATOM	1178	HE ARG	198	21.903	31.115	32.776
	ATOM	1179	CZ ARG	198	20.840	30.651	34.509
	ATOM	1180	NH1 ARG	198	19.689	30.115	35.005
	ATOM	1181	HH1 ARG	198	19.525	30.099	36.022
25	ATOM	1182	HH1 ARG	198	18.983	29.726	34.363
	ATOM	1183	NH2 ARG	198	21.769	31.166	35.363
	ATOM	1184	HH2 ARG	198	21.601	31.148	36.379
	ATOM	1185	HH2 ARG	198	22.640	31.573	34.993
	ATOM	1186	C ARG	198	21.858	30.110	27.504
30	ATOM	1187	O ARG	198	22.486	29.064	27.662
	ATOM	1188	N TRP		22.055	30.935	26.454
	ATOM	1189	HN TRP	199	21.571	31.844	26.462
	ATOM	1190	CA TRP	199	22.892	30.634	25.328
25	ATOM	1191	HA TRP	199	22.572 22.851	29.703 31.783	24.859 24.304
35	ATOM ATOM .	1192 1193	CB TRP_ HB1 TRP	199 199	23.539	32.556	24.504
	ATOM,	1194	HB2 TRP	199	21.827	32.154	24.265
	ATOM	1195	CG TRP	199	23.247	31.455	22.881
	ATOM	1196	CD2 TRP	199	24.577	31.186	22.406
40	ATOM	1197	CD1 TRP	199	22.425	31.352	21.798
40	ATOM	1198	HD1 TRP	199	21.344	31.491	21.819
	ATOM	1199	NE1 TRP	199	23.156	31.046	20.677
	ATOM	1200	HE1 TRP	199	22.778	30.919	19.727
	ATOM	1201	CE2 TRP	199	24.481	30.936	21.036
45	ATOM	1202	CE3 TRP	199	25.778	31.148	23.055
	ATOM	1203	HE3 TRP	199	25.852	31.343	24.125
	ATOM	1204	CZ2 TRP	199	25.588	30.645	20.293
	ATOM	1205	HZ2 TRP	199	25.516	30.451	19.222
	ATOM	1206	CZ3 TRP	199	26.892	30.853	22.300
50	ATOM	1207	HZ3 TRP	199	27.869	30.813	22.783
	ATOM	1208	CH2 TRP	199	26.799	30.607	20.946
	ATOM	1209	HH2 TRP	199	27.703	30.377	20.382
	ATOM	1210	C TRP	199	24.316	30.487	25.766
	ATOM	1211	O TRP	199	24.886	29.398	25.718
55	ATOM	1212	N GLN	200	24.919	31.599	26.223
	ATOM	1213	HN GLN	200	24.369	32.466	26.302
	ATOM	1214	CA GLN	200	26.301	31.616	26.604
	ATOM	1215	HA GLN	200	26.890	31.084	25.856
	ATOM	1216	CB GLN	200	26.879	33.034	26.774
60	MOTA	1217	HB1 GLN	200	27.898	32.945	27.148
	MOTA	1218	HB2 GLN	200	26.253	33.574	27.486
	MOTA	1219	CG GLN	200	26.930	33.860	25.488
	MOTA	1220	HG1 GLN	200	27.298	33.211	24.693
	MOTA	1221	HG2 GLN	200	27.607	34.697	25.659
65	MOTA	1222	CD GLN	200	25.520	34.344	25.193
	MOTA	1223	OE1 GLN	200	24.781	34.733	26.097
	ATOM	1224	NE2 GLN	200	25.128	34.314	23.891
	ATOM	1225	HE2 GLN	200	25.779	33.982	23.165

	ATOM	1226	HE2	GLN	. 200		24.181	34.624	23.631
	ATOM	1227	С	GLN	200		26.459	30.951	27.925
	MOTA	1228	0	GLN	200		27.535	30.451	28.249
	ATOM	1229	N	ASP	201		25.376	30.913	28.720
5	MOTA	1230		ASP	201		24.449	31.176	28.356
	ATOM	1231		ASP	201		25.536	30.502	30.078
	ATOM	1232		ASP	201		26.193	31.165	30.641
	ATOM	1233		ASP	201		24.237	30.539	30.900
	MOTA	1234-	HB1		201		23.616	29.705	30.573
10	MOTA	1235	HB2		201	-	23.750	31.495	30.704
	MOTA	1236		ASP	201		24.617	30.403	32.372
	MOTA	1237		ASP	201		25.173	29.339	32.757
	ATOM	1238	OD2		201		24.369	31.378	33.131
1.5	MOTA	1239		ASP	201		26.123	29.134	30.197
15	MOTA	1240		ASP	201		27.102	28.967	30.921
	ATOM	1241	N	ILE	202		25.603	28.107	29.498
	MOTA	1242	HN	ILE	202		24.837	28.204	28.817
	ATOM	1243 1244	CA	ILE	202		26.241 27.009	26.862 26.996	29.814 30.576
20	ATOM	1244	HA CB	ILE	202 202		25.355	25.809	30.376
20	ATOM ATOM	1245	НB	ILE	202		24.759	26.264	31.206
	ATOM	1247	CG2	ILE	202		24.739	25.250	29.314
	ATOM	1248	HG2	ILE	202		23.789	24.484	29.736
	ATOM	1249	HG2	ILE	202		23.830	26.056	28.903
25	ATOM	1250	HG2	ILE	202		25.047	24.814	28.521
23	ATOM	1251	CG1	ILE	202		26.233	24.737	31.085
	ATOM	1252	HG1	ILE	202		27.005	25.240	31.668
	ATOM	1253	HG1	ILE	202		26.682	24.123	30.304
	ATOM	1254	CD1	ILE	202		25.471	23.808	32.027
30	ATOM	1255	HD1	ILE	202		26.160	23.083	32.459
-	ATOM	1256	HD1	ILE	202-	-	25.014	24.394	32.824
	ATOM	1257	HD1	ILE	202		24.694	23.285	31.470
	ATOM	1258	С	ILE	202		26.892	26.272	28.612
	MOTA	1259	0	ILE	202		26.515	26.545	27.474
35-	MOTA	1260	N	SER	203		27.907	-25.428	28.878
	ATOM	1261	HN	SER	203		28.135	25.234	29.863
	MOTA	1262	CA	SER	203		28.683	24.788	27.864
	MOTA	1263	HA	SER	203		28.104	24.825	26.941
	MOTA	1264	CB	SER	203		30.043	25.464	27.606
40	ATOM	1265	HB1	SER	203		29.910	26.501	27.299
	MOTA	1266	HB2	SER	203		30.591	24.947	26.818
	MOTA	1267	OG	SER	203		30.845	25.453	28.778
	ATOM	1268	HG	SER	203		31.198	26.403	28.963
	MOTA	1269	C	SER	203		28.920	23.378	28.309
45	ATOM	1270	0	SER	203		27.984	22.666	28.667
	ATOM	1271	N	MET	204		30.192	22.935	28.258
	ATOM	1272	HN	MET	204		30.923	23.601	27.968 28.581
	ATOM	1273	CA	MET	204		30:596 30.237	21.596	
50	MOTA	1274 1275	HA CB	MET MET	204 204		32.123	20.874 21.401	27.847 28.594
20	ATOM	1275	HB1		204		32.609	21.401	27.661
	MOTA MOTA	1277	HB2		204		32.431	20.370	28.769
	ATOM	1278	CG	MET	204		32.837	22.215	29.675
	ATOM	1279	HG1		204		32.415	21.941	30.642
55	ATOM	1280	HG2		204		32.673	23.273	29.469
-	ATOM	1281	SD	MET	204		34.634	21.947	29.766
	ATOM	1282	CE	MET	204		35.008	22.758	28.184
	ATOM	1283		MET	204		36.082	22.725	28.004
	ATOM	1284		MET	204		34.488	22.240	27.378
60	ATOM	1285	HE3	MET	204		34.678	23.796	28.221
	ATOM	1286	С	MET	204		30.072	21.159	29.913
	ATOM	1287	0	MET	204		29.383	21.886	30.629
	ATOM	1288	N	MET	205		30.427	19.909	30.266
	MOTA	1289	HN	MET	205		31.067	19.406	29.636
65	MOTA	1290	CA	MET	205		29.990	19.220	31.443
	ATOM	1291	HA	MET	205		28.901	19.171	31.454
	ATOM	1292	СВ	MET	205		30.545	17.792	31.508
	3	4000	1177 1	MODE	200				

205

ATOM

1293 HB1 MET

31.619 17.849 31.686

	MOTA	1294	HB2 MET	205		30.340	17.300	30.557
	ATOM	1295	CG MET	205		29.935	16.939	32.614
	MOTA	1296	HG1 MET	205		28.856	16.814	32.517
	MOTA	1297	HG2 MET	205		30.090	17.351	33.611
5	ATOM	1298	SD MET	205		30.610	15.257	32.677
	ATOM	1299	CE MET	205		29.841	14.726	31.118
	ATOM	1300	HE1 MET	205		30.107	13.689	30.916
	MOTA	1301	HE2 MET	205		28.758		31.199
					_		14.814	
	ATOM	1302	HE3 MET	205		30.197	15.358	30.304
10	_ MOTA	1303	C MET	205		30.466	19.951	32.656
	MOTA .	1304	O MET	205		29.792	19.953	33.685
	ATOM	1305	N ARG	206		31.649	20.582	32.573
	ATOM	1306	HN ARG	206		32.168	20.584	31.683
	ATOM	1307	CA ARG	206		32.193	21.253	33.719
1.5								
15	ATOM	1308	HA ARG	206		32.346	20.537	34.526
	MOTA	1309	CB ARG	206		33.535	21.941	33.423
	MOTA	1310	HB1 ARG	206		33.476	22.671	32.616
	ATOM	1311	HB2 ARG	206		34.320	21.245	33.127
	ATOM	1312	CG ARG	206		34.100	22.704	34.620
20	ATOM	1313	HG1 ARG	206		34.234	22.087	35.509
	MOTA	1314	HG2 ARG	206		33.472	23.533	34.947
	MOTA	1315	CD ARG	206		35.472	23.326	34.361
	MOTA	1316	HD1 ARG	206		35.729	23.910	35.245
	MOTA	1317	HD2 ARG	206		35.375	23.954	33.475
25	MOTA	1318	NE ARG	206		36.425	22.203	34.142
	MOTA	1319	HE ARG	206		36.707	21.939	33.187
	ATOM	1320	CZ ARG	206		36.922	21.524	35.218
	ATOM	1321	NH1 ARG	206		36.524	21.865	36.479
	MOTA	1322	HH1 ARG	206		36.898	21.355	37.292
30	MOTA	1323	HH1 ARG	206		35.851	22.632	36.617
	ATOM	1324	NH2 ARG	206		37.806	20.501	35.032
	MOTA	1325	HH2 ARG	206		38.181	19.990	35.844
	MOTA	1326	HH2 ARG	206		38.099	20.240	34.080
	MOTA	1327	C ARG	206		31.245	22.317	34.177
35	ATOM	1328	O _ARG	206		30.931	22.407	35.363
	ATOM	1329	N MET	207		30.745	23.148	33.245
	ATOM	1330	HN MET	207		30.992	23.020	32.253
	ATOM	1331	CA MET	207		29.868	24.212	33.636
				207		30.358	24.805	34.407
40	ATOM	1332	HA MET					
40	MOTA	1333	CB MET	207		29.527	25.178	32.487
	MOTA	1334	HB1 MET	207		28.776	25.915	32.771
	ATOM	1335	HB2 MET	207		29.134	24.663	31.611
	MOTA	1336	CG MET	207		30.747	25.971	32.007
	ATOM	1337	HG1 MET	207		31.400	25.291	31.460
45	MOTA	1338	HG2 MET	207		31.255	26.375	32.883
15	ATOM	1339	SD MET	207		30.371	27.368	30:905
						29.718	28.430	
	ATOM	1340	CE MET	207				32.219
	MOTA	1341	HE1 MET	207		29.405	29.384	31.795
	ATOM	1342	HE2 MET	207		28.863	27.944	32.689
50	MOTA	1343	HE3 MET	207		30.493	28.603	32.966
	MOTA	1344	C MET	207		28.604	23.622	34.165
	MOTA	1345	O MET	207		28.017	24.138	35.113
	ATOM	1346	N LYS	208	•	28.162	22.503	33.568
	ATOM	1347	HN LYS	208		28.721	22.081	32.812
65								
55	ATOM	1348	CA LYS	208		26.932	21.883	33.959
	MOTA	1349	HA LYS	208		26.113	22.595	33.857
	ATOM	1350	CB LYS	208		26.588	20.656	33.100
	MOTA	1351	HB1 LYS	208		25.687	20.147	33.445
	ATOM	1352	HB2 LYS	208		27.383	19.910	33.104
60	ATOM	1353	CG LYS	208		26.344	21.019	31.636
	ATOM	1354	HG1 LYS	208		27.155	21.666	31.304
		1355	HG2 LYS	208		25.387	21.537	31.566
	MOTA							
	MOTA	1356	CD LYS	208		26.292	19.818	30.696
	MOTA	1357	HD1 LYS	208		25.447	19.160	30.896
65	MOTA	1358	HD2 LYS	208		27.181	19.190	30.762
	MOTA	1359	CE LYS	208		26.171	20.221	29.224
	ATOM	1360	HE1 LYS	208		26.057	19.330	28.606
	MOTA	1361	HE2 LYS	208		27.067	20.759	28.914

	ATOM	1362	NZ LYS	208	24.991	21.095	29.040
	ATOM	1363	HZ1 LYS		24.913	21.363	28.049
	ATOM	1364	HZ2 LYS		24.140	20.588	29.326
	ATOM	1365	HZ3 LYS		25.096	21.941	29.617
5	ATOM	1366	C LYS		27.021	21.436	35.384
,	ATOM	1367	O LYS		26.035	21.468	36.113
	ATOM	1368	N THE		28.203	20.970	35.808
	ATOM	1369	HN THE		28.996	20.971	35.150
		1370	CA THE		28.418	20.469	37.137
10	MOTA	1371			27.630	19.795	37.471
10	ATOM	1372	HA THE		29.652	19.793	37.255
	ATOM	1373			29.702	19.268	38.283
	MOTA	1374	HB THE		30.816	20.390	36.203
	ATOM				31.573	20.330	37.613
1.5	ATOM	1375	HG1 THE				
15	ATOM	1376	CG2 THE		29.514 30.397	18.469 17.832	36.258 36.315
	ATOM	1377	HG2 THE				36.502
	ATOM	1378	HG2 THE		28.628	17.883	
	ATOM	1379	HG2 THE		29.418	18.867	35.247
20	MOTA	1380	C THE		28.488	21.556	38.171
20	MOTA	1381	O THE		28.309	21.281	39.357
	MOTA	1382	N ILI		28.765	22.811	37.770
	ATOM	1383	HN ILI		28.804	23.026	36.763
	ATOM	1384	CA ILI		29.007	23.858	38.729
0.5	MOTA	1385	HA ILI		29.899	23.675	39.327
25	MOTA	1386	CB IL		29.261	25.197	38.087
	MOTA	1387	HB ILI		30.064	25.093	37.357
	ATOM	1388	CG2 IL		27.975	25.670	37.390
	ATOM	1389	HG2 IL		28.150	26.639	36.923
	MOTA	1390	HG2 IL		27.687	24.946	36.628
30	MOTA	1391	HG2 IL		27.175	25.760	38.125
	ATOM	1392	CG1 IL		29.803	26.193	39.125
	MOTA	1393	HG1 IL		30.619	25.792	39.726
	MOTA	1394	HG1 IL		29.051	26.521	39.844
	ATOM	1395	CD1 IL		30.353	27.477	38.506
35	MOTA	1396	HD1 IL		30.718	28.134	39.295
	MOTA	1397	HD1 IL		31.172	27.232	37.830
	MOTA	1398	HD1 IL		29.562	27.981	37.950
	MOTA	1399	C IL		27.869	24.019	39.700
	MOTA	1400	O IL		28.106	24.125	40.902
40	MOTA	1401	N GL		26.602	24.043	39.245
	MOTA	1402	HN GL		26.394	23.941	38.241
	MOTA	1403	CA GL		25.549	24.214	40.210
	ATOM	1404	HA1 GL		25.282	25.271	40.211
	ATOM	1405	HA2 GL		25.942	23.898	41.176
45	ATOM	1406	C GL		24.410	23.362	39.775
	MOTA	1407	O GL		24.440		38.684
	MOTA	1408	N GL		23.383	23.205	40.640
	MOTA	1409	HN GL		23.387	23.626	41.580
	ATOM	1410	CA GL		22.293	22.415	40.163
50	MOTA	1411	HA GL		22.642	21.508	39.670
	ATOM	1412	CB GL		21.156	22.073	41.138
	MOTA	1413	HB1 GL		20.767	22.954	41.647
•	MOTA	1414	HB2 GL		21.474	21.381	41.918
	ATOM	1415	CG GL		19.962	21.415	40.433
55	ATOM	1416	HG1 GL		19.930	21.726	39.389
	MOTA	1417	HG2 GL		19.034	21.712	40.921
	ATOM	1418	CD GL		20.093	19.903	40.496
	ATOM	1419	OE1 GL		19.844	19.346	41.597
	MOTA	1420	OE2 GL		20.420		39.448
60	MOTA	1422	C GL		21.640		39.227
	MOTA	1423	O GL		21.015		39.669
	ATOM	1424	N HI		21.775		37.916
	MOTA	1425	HN HI		22.243		37.604
	MOTA	1426	CA HI		21.272	24.025	36.956
65	MOTA	1427	HA HI		21.693		37.105
	ATOM	1428	ND1 HI		24.202		35.496
	MOTA	1429	HD1 HI		24.304		35.970
	MOTA	1430	CG HI	S 213	23.024	24.223	35.174
					•		

	ATOM	1431	NE2	HTS	213	24.756	25.499	34.494
	ATOM	1432		HIS	213	25.306	26.269	34.088
	MOTA	1433	CD2	HIS	213	23.379	25.385	34.561
	ATOM	1434	HD2	HIS	213	22.676	26.124	34.176
5	ATOM	1435		HIS	213	25.206	24.398	35.067
_								
	MOTA	1436		HIS	213	26.264	24.163	35.182
	ATOM	1437	CB	HIS	213	21.659	23.701	35.503
	ATOM	1438	HB1	HIS	213	20.957	24.146	34.797
	ATOM	1439		HIS	213	21.666	22.625	35.326
10								
10	MOTA	1440		HIS	213	19.789	24.147	37.046
	MOTA	1441	0	HIS	213	19.267	25.255	36.949
	ATOM	1442	N	ILE	214	19.068	23.031	37.257
	ATOM	1443	HN	ILE	214	19.548	22.130	37.389
	MOTA	1444	CA	ILE	214	17.634	23.088	37.302
15	ATOM	1445	HA	ILE.	214	17.275	23.468	36.345
	MOTA	1446	CB	ILE	214	17.022	21.728	37.528
	ATOM	1447	HB	ILE	214	17.416	21.055	36.767
	MOTA	1448	CG2	ILE	214	17.420	21.263	38.937
	ATOM	1449	HG2	ILE	214	16.991	20.280	39.131
20	MOTA	1450	HG2	ILE	214	18.506	21.206	39.008
	ATOM	1451	HG2	ILE	214	17.045	21.974	39.674
	MOTA	1452	CG1	ILE	214	15.503	21.722	37.266
	MOTA	1453	HG1	ILE	214	15.152	20.692	37.326
	ATOM	1454	'HG1	ILE	214	15.328	22.132	36.272
25	MOTA	1455	CD1	ILE	214	14.677	22.546	38.254
		1456	HD1			13.622		37.990
	MOTA			ILE	214		22.481	
	ATOM	1457	HD1	ILE	214	14.823	22.158	39.262
	MOTA	1458	HD1	ILE	214	14.997	23.587	38.216
	ATOM	1459	C	ILE	214	17.231	24.007	38.418
30	ATOM	1460	Ō	ILE	214	16.278	24.771	38.272
50								
	MOTA	1461	N	VAL	215	17.948	23.970	39.561
	ATOM	1462	HN	VAL	215	18.754	23.333	39.636
	ATOM	1463	CA	VAL	215	17.599	24.812	40.677
	MOTA	1464	HA	VAL	215	16.578	24.580	40.981
35	ATOM	1465	СВ	VAL	215	18.573	24.769	41.818
33								
	ATOM	1466	HB	VAL	215	19.552	25.061	41.437
	MOTA	1467	CG1	VAL	215	18.088	25.753	42.894
	MOTA	1468	HG1	VAL	215	18.779	25.741	43.736
	ATOM	1469	HG1	VAL	215	18.044	26.758	42.474
40					215		25.459	
40	MOTA	1470	HG1	VAL		17.095		43.235
	MOTA	1471	CG2	VAL	215	18.762	23.337	42.309
	MOTA	1472	HG2	VAL	215	19.472	23.327	43.136
	MOTA	1473	HG2	VAL	215	17.806	22.939	42.646
	ATOM	1474		VAL	215	19.145	22.721	41.495
4.5								
45	ATOM	1475	С	VAL	215	17.701	26.234	40.249
	ATOM	1476	0	VAL	215	16.816	27.039	40.530
	MOTA	1477	N	ALA	216	18.811	26.581	39.575
	ATOM	1478	HN	ALA	216	19.505	25.863	39.324
	ATOM	1479	CA	ALA	216	19.031	27.946	39.204
50	MOTA	1480	HA	ALA	216	18.971	28.588	40.083
	MOTA	1481	CB	ALA	216	20.420	28.184	38.591
	ATOM	1482		ALA	216	20.527	. 29.237	38.331
						21.189	27.909	39.314
	ATOM	1483		ALA	216			
	MOTA	1484		ALA	216	20.531	27.576	37.694
55	ATOM	1485	С	ALA	216	17.993	28.387	38.213
	ATOM	1486	0	ALA	216	17.436	29.478	38.331
	ATOM	1487	N	HIS	217	17.693	27.533	37.217
	MOTA	1488	HN	HIS	217	18.138	26.605	37.208
	MOTA	1489	CA	HIS	217	16.774	27.870	36.166
60	ATOM	1490	HA	HIS	217	17.111	28.781	35.671
	ATOM	1491		HIS	217	18.889	27.082	34.036
						18.875	28.112	
	ATOM	1492		HIS	217			34.020
	МОТА	1493	CG	HIS	217	17.908	26.255	34.537
	ATOM	1494	NE2	HIS	217	19.599	24.996	33.731
65	ATOM	1495		HIS	217	20.177	24.187	33.465
	ATOM	1496		HIS	217	18.357	24.985	34.341
	ATOM	1497		HIS	217	17.813	24.084	34.625
	MOTA	1498	CE1	HIS	217	19.877	26.277	33.568

	ATOM	1499	HE1	HIS	217 ·	20.794	26.646	33.109
	ATOM	1500	СВ	HIS	217	16.620	26.727	35.147
					217			
	ATOM	1501	HB1			15.982	27.078	34.336
	ATOM	1502	HB2	HIS	217	16.165	25.876	35.654
5	MOTA	1503	С	HIS	217	15.415	28.088	36.749
	MOTA	1504	0	HIS	217	14.711	29.038	36.403
	ATOM							
		1505	N	ILE	218	15.017	27.190	37.662
	MOTA	1506	HN	ILE	218	15.676	26.451	37.947
	ATOM	1507	CA	ILE	218	13.717	27.215	38.255
10	MOTA	1508	HA	ILE	218	12.960	27.231	37.471
	ATOM	1509	СВ		218			
				ILE		13.447	25.975	39.062
	ATOM	1510	HB	ILE	218	13.729	25.100	38.477
	ATOM	1511 .	CG2	ILE	- 218	14.273	26.027	40.355
	ATOM	1512	HG2	ILE	218	14.082	25.131	40.946
15	ATOM	1513	HG2		218	15.333	26.079	40.108
13								
	ATOM	1514	HG2	ILE	218	13.992	26.908	40.932
	MOTA	1515	CG1	ILE	218	11.943	25.805	39.298
	MOTA	1516	HG1	ILE	218	11.352	26.002	38.404
	ATOM	1517	HG1	ILE	218	11.560	26.476	40.067
20		1518	CD1					
20	MOTA			ILE	218	11.573	24.394	39.747
	MOTA	1519	HD1	ILE	218	10.495	24.331	39.900
	ATOM	1520	HD1	ILE	218	11.873	23.678	38.982
	ATOM	1521	HD1	ILE	218	12.085	24.163	40.681
	MOTA	1522	С	ILE	218	13.579	28.438	39.107
25								
25	MOTA	1523	0	ILE	218	12.496	29.013	39.207
	MOTA	1524	N	GLN	219	14.684	28.884	39.733
	MOTA	1525	HN	GLN	219	15.580	28.394	39.604
	MOTA	1526	CA	GLN	219	14.618	30.040	40.581
	ATOM	1527	HA		219	13.921	29.807	41.386
20				GLN				
30	MOTA	1528	CB	GLN	219	15.987	30.457	41.145
	MOTA	1529	HB1	GLN	219	15.858	31.377	41.715
	ATOM	1530	HB2	GLN	219	16.668	30.617	40.309
	MOTA	1531	CG	GLN	219	16.621	29.419	42.072
	ATOM	1532	HG1		219	16.751	28.501	41.498
20								
35	MOTA	1533	HG2		219	15.942	_29.269	42.911
	ATOM	1534	CD	GLN	219	17.96 1	29.975	. 42.536
	MOTA	1535	OE1	GLN	219	19.007	29.358	42.344
	ATOM	1536	NE2		219	17.928	31.177	43.175
40	ATOM	1537	HE2	GLN	219	17.030	31.660	43.316
40	MOTA	1538	HE2	GLN	219	18.801	31.602	43.517
	MOTA	1539	С	GLN	219	14.132	31.173	39.740
	ATOM	1540	0	GLN	219	13.303	31.969	40.178
	ATOM	1541	N	HIS	220	14.627	31.261	38.493
•								
4.0	ATOM	1542	HN	HIS	220	15.305	30.562	38.157
45	ATOM	1543	CA	HIS	220	14.212	32.327	37.632
	MOTA	1544	HA	HIS	220	14.492	33.265	38.111
	ATOM	1545	ND1	HIS	220	17.279	31.761	36.687
	ATOM	1546		HIS	220	17.157	30.847	37.146
	MOTA	1547	CG	HIS	220	16.283	32.567	36.183
50	ATOM	1548	NE2	HIS	220	18.280	33.562	35.850
	ATOM	1549	HE2	HIS	220	19.002	34.239	35.567
	MOTA	1550	CD2	HIS	220	16.912	33.660	35.676
	ATOM	1551		HIS	220	16.407	34.499	35.197
	MOTA	1552		HIS	220	18.452	32.404	36.462
55	MOTA	1553	HE1	HIS	220	19.426	32.010	36.752
	ATOM	1554	CB	HIS	220	14.821	32.237	36.222
	ATOM	1555		HIS	220	14.355	32.913	35.505
	MOTA	1556		HIS	220	14.739	31.245	35.777
	MOTA	· .1557	С	HIS	220	12.731	32.222	37.468
60	MOTA	1558	0	HIS	220	12.014	33.218	37.543
	ATOM	1559	N	GLU	221	12.237	30.991	37.255
						12.881	30.187	37.231
	ATOM	1560	HN	GLU	221			
	MOTA	1561	CA	GLU	221	10.835	30.772	37.058
	MOTA	1562	HA	GLU	221	10.492	31.344	36.197
65	ATOM	1563	CB	GLU	221	10.519	29.283	36.819
	ATOM	1564		GLU	221	11.098	28.692	37.529
				GLU		10.800	29.035	35.795
	MOTA	1565			221			
	MOTA	1566	CG	GLU	221	9.046	28.913	36.999

	MOTA	1567	HG1 GL		8.822	28.111	36.295
	MOTA	1568	HG2 GL		8.457	29.805	36.786
	ATOM	1569	CD GL		8.863	28.455	38.442
	MOTA	1570	OE1 GL		9.899	28.242	39.126
5	MOTA	1571	OE2 GL		7.690	28.302	38.875
	ATOM	1573	C GL		10.082	31.210	38.275
	ATOM	1574	O GL		9.118	31.968	38.179
	ATOM	1575	N VA		10.550	30.761	39.453
10	ATOM	1576	HŅ VA		11.389	30.164	39.425
10	ATOM	1577	CA VA		9.989	31.036	_40.745
	MOTA	1578	HA VA		10.193	30.260	41.482
	MOTA	1579	CB VA		10.606	32.242	41.403
	MOTA	1580	HB VA		11.666	32.056	41.575
15	MOTA	1581	CG1 VA		10.439	33.466	40.485
13	MOTA	1582 1583	HG1 VA		10.885	34.340	40.959
	MOTA MOTA	1584	HG1 VA		10.935 9.378	33.277 33.648	39.533 40.312
	MOTA	1585	CG2 VA		9.978	32.417	42.796
	MOTA	1586	HG2 VA		10.415	33.287	43.286
20	MOTA	1587	HG2 VA		8.902	32.560	42.695
20	ATOM	1588	HG2 VA		10.170	31.527	
	ATOM	1589	C VA		8.495	31.179	40.730
	MOTA	1590	O VA		7.982	32.255	40.730
	ATOM	1591	N AS		7.777	30.070	41.055
25	ATOM	1592	HN AS		8.297	29.192	41.194
20	ATOM	1593	CA AS		6.339	30.030	41.221
	ATOM	1594	HA AS		6.009	30.612	42.082
	ATOM	1595	CB AS		5.484	30.685	40.115
	MOTA	1596	HB1 AS		4.538	30.147	40.060
30	ATOM	1597	HB2 AS		6.033	30.606	39.177
	ATOM	1598	CG AS		5.261	32.145	40.496
	ATOM	1599	OD1 AS	P 223	5.616	32.509	41.650
	MOTA	1600	OD2 AS	P 223	4.737	32.913	39.646
	MOTA	1601	C AS		5.830	28.624	41.427
35	MOTA	1602	O AS		6.563	27.742	41.868
	MOTA	1603	N PH		4.523	28.411	41.120
	MOTA	1604	HN PH		4.000	29.205	40.723
	MOTA	1605	CA PH		3.801	27.176	41.300
40	MOTA	1606	HA PH		3.677	26.937	42.356
40	MOTA	1607	CB PH		2.382	27.181	40.693
	ATOM	1608	HB1 PH		2.020	26.162	40.558
	ATOM	1609	HB2 PH		2.383	27.676	39.722
	MOTA	1610	CG PH		1.432	27.903 29.275	41.589 41.686
45	ATOM	1611 1612	CD1 PH HD1 PH		1.441 2.157	29.275	41.103
43	MOTA MOTA	1613	HD1 PH CD2 PH		0.503	27.192	42.315
	MOTA	1614	HD2 PH		0.474	26.106	42.232
	ATOM	1615	CE1 PH		0.552	29.923	42.514
	ATOM	1616	HE1 PH		0.574	31.010	42.590
50	ATOM	. 1617	CE2 PH		-0.386	27.833	43.142
	ATOM	1618	HE2 PH		-1.112	27.256	43.716
	ATOM	.1619	CZ PH		-0.361	29.203	43.245
•	ATOM	1620	HZ PH		-1.062	29.716	43.902
	ATOM	1621	C PH		4.517	26.027	40.662
55	ATOM	1622	O PH		5.617	26.154	40.129
	ATOM	1623	N LE	υ 225	3.841	24.859	40.720
	MOTA	1624	HN LE	U 225	2.918	24.898	41.175
	ATOM	1625	CA LE	U 225	4.243	23.569	40.227
	MOTA	1626	HA LE	U 225	4.881	23.079	40.963
60	MOTA	1627	CB LE		2.995		39.996
	MOTA	1628	HB1 LE		2.360		39.279
	MOTA	1629	HB2 LE		2.502		40.960
	MOTA	1630	CG , LE		3.186		39.437
	MOTA	1631	HG LE		3.913		40.041
65	ATOM	1632	CD2 LE		3.772	21.234	38.017
	ATOM	1633	HD2 LE		3.881	20.202	37.682
	MOTA	1634	HD2 LE		3.104	21.766	37.340

MOTA

1635 HD2 LEU

225

4.748 21.719 38.020

	ATOM	1636	CD1	LEU	225 .	1.850	20.498	39.467
	MOTA	1637	HD1	LEU	225	1.992	19.492	39.071
	MOTA	1638	HD1	LEU	225	1.490	20.436	40.493
	ATOM	1639	HD1		225	1.119	21.028	38.856
5	ATOM	1640	C	LEU	225	5.000	23.732	38,948
,	ATOM	1641	Ö	LEU	225	4.719	24.655	38.187
			_					
	ATOM	1642	N	PHE	226	5.995	22.840	38.693
	ATOM	1643	HN	PHE	226	6.207	22.104	39.381
	ATOM	1644	CA	PHE	226	6.755	22.913	37.471
10	ATOM	1645	HA	PHE	226	6.249	23.571	36.764
	ATOM	1646	CB	PHE	226	8.153	23.549	37.608
	ATOM	1647	HB1	PHE	226	8.092	24.525	38.090
	ATOM	1648	HB2	PHE	226	8.616.	23.685	36.630
	ATOM	1649	CG	PHE	226	9.049	22.690	38.423
15	MOTA	1650	CD1	PHE	226	9.081	22.819	39.790
	ATOM	1651	HD1		226	8.440	23.552	40.281
	ATOM	1652	CD2		226	9.861	21.759	37.817
	ATOM	1653	HD2		226	9.839	21.648	36.733
		1654	CE1		226	9.915	22.030	
20	MOTA							40.540
20	MOTA	1655	HE1		226	9.934	22.138	41.625
	ATOM	1656	CE2	PHE	226	10.698	20.968	38.565
	ATOM	1657	HE2	PHE	226	11.338	20.234	38.076
	ATOM	1658	CZ	PHE	226	10.727	21.105	39.932
	ATOM	1659	HZ	PHE	226	11.392	20.482	40.530
25	MOTA	1660	С	PHE	226	6.880	21.538	36.870
	ATOM	1661	0	PHE	226	6.370	20.561	37.417
	ATOM	1662	N	CYS	227	7.563	21.439	35.704
	ATOM	1663	HN	CYS	227	8.072	22.263	35.352
	ATOM	1664	CA	CYS	227	7.600	20.217	34.941
30	ATOM	1665	HA	CYS	227	7.270	19.370	35.542
50	MOTA	1666	СВ	CYS	227	6.745	20.338	33.681
	ATOM	1667		CYS	227	5.700	20.434	33.976
	ATOM	1668		CYS	227	6.885	19.442	33.076
25	ATOM	1669		CYS	227	7.273	21.807	32.758
35	MOTA	1670	HG	CYS	227	8.271	22.414	33.416
	ATOM	1671	C	CYS	227	8.994	19.924	34.456
	MOTA	1672	0	CYS	227	9.930	20.685	34.696
	ATOM	1673	N	MET	228	9.138	18.775	33.746
	MOTA	1674	HN	MET	228	8.300	18.195	33.598
40	MOTA	1675	CA	MET	228	10.384	18.311	33.183
	ATOM	1676	HA	MET	228	11.162	19.057	33.351
	MOTA	1677	CB	MET	228	10.920	16.997	33.783
	MOTA	1678	HB1	MET	228	11.690	16.604	33.119
	ATOM	1679	HB2	MET	228	10.092	16.294	33.866
45	ATOM	1680	CG	MET	228	11.539	17.159	35.175
	ATOM	1681		MET	228	10.767	17.527	35.850
	ATOM	1682		MET	228	12.360	17.872	35.102
	ATOM	1683	SD	MET	228	12.208	15.627	35.891
	ATOM	1684	CE	MET	228	13.052	16.449	37.274
50	ATOM	1685		MET	228	13.557	15.702	37.887
50	ATOM	1686		MET	228	13.785	17.155	36.885
		•				12.321	16.982	37.881
	ATOM	1687		MET	228			
	MOTA	1688	С	MET	228	10.219	18.088	31.698
	MOTA	1689	0	MET	228	9.166	18.384	31.135
55	MOTA	1690	N	ASP	229	11.276	17.543	31.040
	MOTA	1691	HN	ASP	229	12.046	17.175	31.617
	MOTA	1692	CA	ASP	229	11.419	17:432	29.599
	MOTA	1693	HА	ASP	229	11.556	18.408	29.134
	MOTA	1694	CB	ASP	229	12.584	16.502	29.221
60	MOTA	1695	HB1	ASP	229	12.660	16.448	28.135
	ATOM	1696	HB2	ASP	229	12.396	15.509	29.628
	ATOM	1697	CG	ASP	229	13.877	17.061	29.800
	MOTA	1698		ASP	229	14.290	18.175	29.383
	ATOM	1699		ASP	229	14.473	16.367	30.667
65	ATOM	1700	C	ASP	229	10.209	16.804	28.972
	ATOM	1701	ŏ	ASP	229	9.504	17.462	28.217
	ATOM	1702	N	VAL	230	9.990	15.496	29.198
	ATOM	1702	HN	VAL	230	10.766	14.939	29.583
	.11 OF	±,05	****	4	230	_0.,00	,	

	MOTA	1704	CA	VAL	230 .	8.745	14.819	28.939
	MOTA	1705	HA	VAL	230	7.900	15.498	28.819
	ATOM	1706	CB	VAL	230	8.738	13.658	27.992
	ATOM	1707	HB	VAL	230	9.299	13.902	27.090
5	ATOM	1708	CG1		230	9.384	12.421	28.656
5	ATOM	1709	HG1		230	9.372	11.585	
								27.957
	ATOM	1710	HG1		230	10.414	12.651	28.929
	ATOM	1711	HG1		230	8.822	12.154	29.551
	MOTA	1712	CG2		230	7.280	13.400	27.600
10	MOTA	1713	HG2	VAL	230	7.232	12.558	26.909
	ATOM	1714	HG2	VAL	230	6.698	13.169	28.493
	ATOM	1715	HG2	VAL	230	6.869	14.288	27.120
	MOTA	1716	С	VAL	230	8.776	14.078	30.176
	ATOM	1717		VAL	230	7.814	13,442	30.614
15	ATOM	1718	N	ASP	231	9.954	14.330	30.781
• .	ATOM	1719		ASP	231	10.552	15.057	30.363
	ATOM	1720	CA	ASP	231	10.332		
							13.684	31.933
	MOTA	1721	HA	ASP	231	10.691	12.643	31.733
	MOTA	1722	CB	ASP	231	 11.666	14.402	32.516
20	MOTA	1723	HB1		231	11.345	15.332	32.986
	MOTA	1724	HB2	ASP	231	12.368	14.617	31.709
	ATOM	1725	ÇG	ASP	231	12.324	13.501	33.548
	MOTA	1726	OD1	ASP	231	11.583	12.764	34.249
	ATOM	1727	OD2	ASP	231	13.580	13.531	33.641
25	MOTA	1728	С	ASP	231	9.293	13.822	32.841
	ATOM	1729	ō	ASP	231	8.864	12.864	33.471
	ATOM	1730	N	GLN	232	8.694	15.019	32.834
	ATOM	1731	HN	GLN	232	9.097	15.815	32.320
20	ATOM	1732	CA	GLN	232	7.483	15.146	33.562
30	ATOM	1733	HA	GLN	232	7.365	14.212	34.112
	MOTA	1734	СВ	GLN	232	7.467	16.343	34.525
	ATOM	1735	HB1		232	7.655	17.296	34.030
	MOTA	1736	HB2	GLN	232	8.218	16.273	35.312
	MOTA	1737	CG	GLN	232	6.135	16.517	35.249
35	MOTA	1738	HG1	GLN	232	5.387	16.788	34.503
	MOTA	1739	HG2	GLN	232	6.261	17.309	35.987
	ATOM	1740	CD	GLN	232	5.797	15.195	35.913
	MOTA	.1741	OE1		232	6.666	14.480	36.411
	ATOM	1742	NE2		232	4.482	14.852	35.907
40	ATOM	1,743	HE2		232	3.788	15.482	35.479
•••	ATOM	1744	HE2		232	4.180	13.963	36.330
	ATOM	1745	C	GLN	232	6.416	15.354	32.546
	ATOM	1746	0	GLN	232	6.600	16.091	31.582
4.5	ATOM	1747	N	VAL	233	5.289	14.641	32.697
45	ATOM	1748	HN	VAL	233	5.217	13.926	33.435
	MOTA	1749	CA	VAL	233	4.189	14.887	31.817
	MOTA	1750	HA	VAL	233	4.381	15.867	·31.380
	ATOM	1751	CB	VAL	233	4.004	13.876	30.725
	MOTA	1752	HB	VAL	233	3.104	14.130	30.165
50	ATOM	1753	CG1	VAL	233	5.233	13.915	29.805
	ATOM	1754		VAL	233	5.112	13.185	29.005
	ATOM	1755		VAL	233	5.334	14.911	29.374
	ATOM	1756		VAL	233	6.127	13.677	30.381
	MOTA	1757		VAL	233	3.736	12.511	3r.360
55		1758		VAL	233	3.599	11.766	
25	ATOM							30.576
		. 1759		VAL	233	4.583	12.228	31.985
	ATOM	1760		VAL	233	2.835	12.564	31.971
	ATOM	1761	C	VAL	233	2.981	14.859	32.678
	MOTA	1762	0	VAL	233	2.931	14.124	33.664
60	ATOM	1763	N	PHE	234	1.973	15.682	32.341
	MOTA	1764	HN	PHE	234	2.042.		31.527
	MOTA	1765	CA	PHE	234	0.804	15.652	33.158
	ATOM	1766	HA	PHE	234	1.148	15.887	34.165
	ATOM	1767	CB	PHE	234	-0.280	16.652	32.721
65	MOTA	1768		PHE	234	-1.159	16.444	33.331
	ATOM	1769		PHE	234	-0.462	16.472	31.662
	ATOM	1770	CG	PHE	234	0.269	18.014	32.974
	ATOM	1771		PHE	234	0.224	18.559	34.237
		<u></u>					20.000	JJ.

	ATOM	1772	HD1	PHE	234 .	-0.217	17.989	35.053
	MOTA	1773	CD2	PHE	234	0.831	18.746	31.953
	ATOM	1774		PHE	234	0.874		
							18.328	30.948
_	MOTA	1775	CE1	PHE	234	0.730	19.814	34.481
5	MOTA	1776	HE1	PHE	234	0.687	20.233	35.486
	ATOM	1777	CE2	PHE	234	1.339	20.001	32.194
	ATOM	1778	HE2	PHE	234	1.783	20.573	31.379
	ATOM	1779	CZ	PHE	234	1.290	20.537	33.458
	ATOM							
10		1780	HZ	PHE	234	1.692	21.532	33.647
10	MOTA	1781	С	PHE	234	0.268	14.272	33.029
	MOTA	1782	0	PHE	234	-0.201	13.878	31.963
	ATOM	1783	N	GLN	235	0.341	13.500	34.131
	MOTA	1784	HN	GLN	235	0.723	13.894	35.002
	ATOM	1785						
1.5			CA	GLN	235	-0.104	12.141	34.108
15	ATOM	1786	HA	GLN	235	0.356	11.676	33.236
	ATOM	1787	CB	GLN	235	0.320	11.345	35.362
	ATOM	1788	HB1	GLN	235	-0.228	11.744	36.215
	ATOM	1789	HB2	GLN	235	1.394	11.474	35.494
	ATOM	1790	CG	GLN	235	0.048	9.835	35.315
20								
20	MOTA	1791	HG1	GLN	235	-1.024	9.672	35.212
	MOTA	1792	HG2	GLN	235	0.407	9.382	36.238
	MOTA	1793	CD	GLN	235	0.781	9.239	34.123
	MOTA	1794	OE1	GLN	235	0.699	9.751	33.008
	ATOM	17,95		GLN	235	1.523	8.123	
25								34.359
23	ATOM	1796		GLN	235	1.566	7.725	35.308
	MOTA	1797	HE2	GLN	235	2.042	7.678	33.590
	MOTA	1798	С	GLN	235	-1.590	12.182	34.004
	ATOM	1799	0	GLN	235	-2.166	13.229	33.719
	ATOM	1800	N	ASP	236	-2.248	11.029	34.224
30	ATOM	1801	HN	ASP				
50					236	-1.726	10.189	34.511
	ATOM	1802	CA	ASP	236	-3.662	10.965	34.061
	ATOM	1803	HA	ASP	236	-3.938	10.002	34.490
	ATOM	1804	CB	ASP	236	-4.442	12.107	34.741
	ATOM	1805	HB1	ASP	236	-4.126	13.054	34.302
35	ATOM .	1806		ASP	236	-4.222	12.092	35.808
55			CG	ASP				
•	ATOM	1807			236	-5.932	11.886	34.504
	ATOM	1808		ASP	236	-6.292	10.869	33.855
	ATOM	1809	OD2	ASP	236	-6.733	12.735	34.978
	ATOM	1810	С	ASP	236	-3.866	11.057	32.595
40	ATOM	1811	0	ASP	236	-3.893	10.045	31.898
	ATOM	1812	N	LYS	237	-3.989	12.297	32.086
	ATOM	1813	HN	LYS	237	-3.917	13.125	32.693
	ATOM	1814	CA	LYS	237	-4.221	12.436	.30.689
	ATOM	1815	HA	LYS	237	-3.492	11.808	30.175
45	ATOM	1816	CB	LYS	237	-5.666	12.122	30.258
	ATOM	1817		LYS	237	-5.765	12.380	29.204
	ATOM	1818		LYS	237	-6.337	12.723	
								30.872
	ATOM	1819	CG	LYS	237	-6.105	10.664	30.407
	MOTA	1820	HG1	LYS	237	-5.839	10.240	31.374
50	ATOM	1821	HG2	LYS	237	-5.658	10.010	29.659
	MOTA	1822	CD	LYS	237	-7.619	10.484	30.271
	ATOM	1823		LYS	237	-7.920	10.835	29.284
		1824		LYS				
	ATOM				237	-8.106	11.071	31.050
	ATOM	1825	CE	LYS	237	-8.087	9.037	30.415
55	ATOM	1826	HE1	LYS.	237	-7.810	8.655	31.398
	ATOM	1827	HE2	LYS	237	-7.621	8.419	29.648
	ATOM	1828	NZ	LYS	237	-9.558	8.967	30.266
	ATOM	1829		LYS	237	-9.868	7.990	30.364
60	ATOM	1830		LYS	237	-10.005	9.544	30.993
60	ATOM	1831	HZ3	LYS	237	-9.826	9.321	29.336
	MOTA	1832	С	LYS	237	-4.039	13.867	30.352
	ATOM	1833	0	LYS	237	-2.991	14.465	30.588
	ATOM	1834	N	PHE	238	-5.131	14.451	29.836
	ATOM	1835	HN	PHE	238	-5.999		
65							13.898	29.784
65	ATOM	1836	CA	PHE	238	-5.162	15.792	29.356
	MOTA	1837	HA	PHE	238	-4.502	15.808	28.488
	MOTA	1838	CB	PHE	238	-6.588	16.254	29.014
	ATOM	1839	HB1	PHE	238	-6.516	17.282	28.660
			_		_			

	MOTA	1840	HB2	PHE	238	-7.176	16.182	29.928
	ATOM	1841	CG	PHE	238	-7.102	15.340	27.953
	MOTA	1842	CD1	PHE	238	-6.804	15.553	26.628
_	MOTA	1843	HD1	PHE	238	-6.181	16.401	26.343
5	MOTA	1844		PHE	238	-7.889	14.263	28.292
	MOTA	1845	HD2	PHE	238	-8.133	14.083	29.339
	MOTA	1846	CE1	PHE	238	-7.284	14.705	25.658
	MOTA	1847 1848	HE1 CE2	PHE PHE	238 238	-7.041 -8.372	14.884	24.610 27.327
10	ATOM ATOM	1849	HE2	PHE	238	-8.372 -8.995	13.412 12.563	27.610
10	MOTA	1850	CZ	PHE	238	-8.069	13.632.	26.005
	ATOM	1851	ΗZ	PHE	238	-8.449	12.959	25.236
	ATOM	1852	C	PHE	238	-4.669	16.628	30.474
	MOTA	1853	0	PHE	238	-4.044	17.666	30.275
15	MOTA	1854	N	GLY	239	-4.934	16.190	31.708
	ATOM	1855	HN	GLY	239	-5.453	15.316	31.875
	MOTA	1856	CA	GLY	239	-4.462	16.997	32.776
	MOTA	1857	HA1	GLY	· 239	3.596	17.513	32.363
	ATOM	1858	HA2	GLY	239	-4.219	16.286	33.566
20	MOTA	1859	C	GLY	239	-5.595	17.884	33.094
	ATOM	1860	0	GLY	239	-5.465	18.843	33.854
	MOTA	1861	N	VAL	240	-6.746	17.579	32.470
	MOTA MOTA	1862 1863	HN CA	VAL VAL	240 240	-6.773 -7.924	16.823 18.308	31.771 32.783
25	ATOM	1864	HA	VAL	240	-7.811	19.364	32.783
23	ATOM	1865	CB	VAL	240	-9.144	17.732	32.124
	ATOM	1866	HB	VAL	240	-9.271	16.701	32.454
	ATOM	1867	CG1	VAL	240	-10.370	18.567	32.528
	ATOM	1868	HG1	VAL	240	-11.262	18.156	32.054
30	ATOM	1869	HG1	VAL	240	-10.489	18.539	33.611
	MOTA	1870		VAL	240	-10.230	19.599	32.205
	MOTA	1871		VAL	240	-8.898	17.656	30.608
	ATOM	1872		VAL	240	-9.778	17.239	30.117
25	MOTA	1873		VAL	240	-8.706	18.656	30.219
35	ATOM	1874 1875	HG2	VAL VAL	240 240	- <u>8</u> .036 -8.065	17.018 18.086	30.411 34.239
	ATOM ATOM	1875	0.	VAL	240	-8.065	19.017	35.024
	MOTA	1877	N	GLU	241	-7.969	16.804	34.626
	ATOM	1878	HN	GLU	241	-7.844	16.064	33.922
40	ATOM	1879	CA	GLU	241	-8.041	16.465	36.006
	MOTA	1880	HA	GLU	241	-8.906	16.947	36.461
	MOTA	1881	CB	GLU	241	-8.182	14.954	36.261
	MOTA	1882	HB1	GLU	241	-8.092	14.679	37.312
	MOTA	1883	HB2	GLU	241	-7.433	14.353	35.746
45	MOTA	1884	CG	GLU	241	-9.530	14.381	35.813
	ATOM	1885	HG1	GLU	241	-9.578	14.441	34.726
	ATOM	1886	CD	GLU	241 241	-10.319 -9.606	14.978 12.933	36.270
	MOTA MOTA	1887 1888	OE1	GLU	241	-8.880	12.587	36.280 37.251
50	ATOM	1889	OE2	GLU	241	-10.394	12.156	35.679
50	ATOM	1891	C	GLU	241	-6.800	16.924	36.706
	ATOM	1892	ō	GLU	241	-6.877	17.477	37.800
	ATOM	1893	N	THR	242	-5.612	16.729	36.094
	ATOM	1894	HN	THR	242	-5.557	16.390	35.123
55	ATOM	1895	CA	THR	242	-4.428	17.015	36.856
	ATOM	1896	HА	THR	242	-4.411	16.457	37.792
	ATOM	1897	CB	THR	242	-3.146	16.638	36.166
	ATOM	1898	HB	THR	242	-2.324	16.779	36.867
60	MOTA	1899	OG1	THR	242	-2.916	17.463	35.035
60	MOTA	1900	HG1	THR	242	-2.474 -3.242	18.344	35.336
	ATOM	1901 1902	CG2 HG2	THR THR	242 242	-3.242	15.165 14.872	35.735 35.231
	MOTA MOTA	1902	HG2	THR	242	-3.390	14.537	36.614
	ATOM	1903		THR	242	-4.084	15.039	35.053
65	ATOM	1905	C	THR	242	-4.336	18.468	37.201
	ATOM	1906	ō	THR	242	-4.236	18.825	38.373
	ATOM	1907	N	LEU	243	-4.389	19.351	36.190
	3.000	1000	LIM	TOIL	2/2	4 560	10 024	25 220

1908 HN LEU

243

-4.562 19.024 35.228

	ATOM	1909	CA	LEU	243	-4.205	20.747	36.450
	MOTA	1910	HA	LEU	243	-3.282	20.883	37.014
	ATOM	1911	CB	LEU	243	-4.096	21.566	35.146
	ATOM	1912	HB1	LEU	243	-5.066	21.538	34.648
5 .	ATOM	1913	HB2	LEU	243	-3.327	21.109	34.524
-	ATOM	1914	CG	LEU	243	-3.717	23.051	35.327
	ATOM	1915	HG	LEU	243	-3.512	23.550	34.380
	ATOM	1916	CD2		243	-2.360		
							23.187	36.035
10	ATOM	1917	HD2		243	-2.115	24.243	36.151
10	MOTA	1918	HD2		243	-2.413	22.717	37.017
	MOTA	1919	HD2	LEU	243	-1.589	22.699	35.440
	ATOM	1920		TEA	243	-4.827	23.865	36.006
	MOTA	1921	HD1	LEU	243	-4.506	24.902	36.108
	MOTA	1922	HD1	LEU	243 .	-5.732	23.823	35.400
15	MOTA	1923	HD1	LEU	243	-5.031	23.450	36.993
	ATOM	1924	С	LEU	243	-5.365	21.249	37.239
	ATOM	1925	0	LEU	243	-5.197	21.944	38.240
	ATOM	1926	N	GLY	244	-6.586	20.880	36.815
	MOTA	1927	HN	GLY	244	-6.680	20.224	36.026
20	ATOM	1928	CA	GLY	244	-7.756	21.399	37.456
20	ATOM	1929	HA1		244	-8.652	21.054	36.941
	ATOM	1930	HA2					
				GLY	244	-7.741	22.489	37.442
	MOTA	1931	C	GLY	244	-7.812	20.938	38.877
25	ATOM	1932	0	GLY	244	-8.095	21.721	39.781
25	MOTA	1933	Ν.	GLU	245	-7.545	19.641	39.112
	MOTA	1934	HN	GLU	245	-7.240	19.033	38.338
	MOTA	1935	CA	GLU	245	-7.681	19.101	40.431
	ATOM	1936	AH	GLU	245	-8.678	19.294	40.829
	MOTA	1937	CB	GLU	245	-7.485	17.575	40.478
30	MOTA	1938	HB1	GLU	245	-6.471	17.259	40.235
	ATOM	1939	HB2	GLU	245	-8.126	17.033	39.782
	ATOM	1940	CG	GLU	245	~7.777	16.963	41.850
	ATOM	1941	HG1	GLU	245	-7.269	17.564	42.604
	ATOM	1942	HG2	GLU	245	-7.400	15.940	41.852
35	MOTA	1943	CD	GLU	245	-9.285	16.984	42.067
	ATOM	1944	OE1	GLU	245	-10.030	16.900	41.054
	ATOM	1945	OE2	GLU	245	-9.712	17.085	43.248
	MOTA	1947	C	GLU	245	-6.683	19.712	41.364
	ATOM	1948	ō	GLU	245	-7.024	20.092	42.483
40	ATOM	1949	N	SER	246	-5.418	19.833	40.926
40	ATOM	1950		SER	246	-5.179		39.958
			HN				19.574	
	MOTA	1951	CA	SER	246	-4.403	20.323	41.812
	MOTA	1952	HA	SER	246	-4.378	19.722	42.720
	MOTA	1953	CB	SER	246	-2.999	20.278	41.186
45	MOTA	1954		SER	246	-2.973	20.888	40.283
	MOTA	1955		SER	246	-2.739	19.251	40.926
	MOTA	1956	OG	SER	246	-2.040	20.776	42.105
	ATOM	1957	HG	SER	246	-1.351	21.354	41.603
	MOTA	1958	С	SER	246	-4.688	21.744	42.180
50	MOTA	1959	0	SER	246	-4.642	22.107	43.356
•	ATOM	1960	N	VAL	247	-5.011	22.586	41.182
	ATOM	1961	HN	VAL	247	-5.104	22.234	40.218
	ATOM	1962	CA	VAL	247	-5.227	23.973	41.462
	ATOM	1963	HA	VAL	247	-4.338	24.374	41.948
55	ATOM	1964	CB	VAL	247	-5.493	24.793	40.237
	ATOM	1965	HB	VAL	247	-6.380	24.396	39.742
	ATOM	1966		VAL	247	-5.725	26.250	40.668
	ATOM	1967		VAL	247	-5.921	26.863	39.788
	MOTA	1968		VAL	247	-6.581	26.299	41.341
60					247	-4.839		
00	MOTA	1969		VAL			26.624	41.180
	ATOM	1970		VAL	247	-4.314	24.619	39.264
	MOTA	1971		VAL	247	-4.493	25.210	38.366
	MOTA	1972		VAL	247	-3.395	24.956	39.743
	ATOM	1973		VAL	247	-4.218	23.567	38.993
65	MOTA	1974	С	VAL	247	-6.409	24.102	42.364
	MOTA	1975	0	VAL	247	-6.402	24.888	43.310
	ATOM	1976	N	ALA	248	-7.453	23.295	42.119
	MOTA	1977	HN	ALA	248	-7.392	22.581	41.379

•									
	ATOM	1978	CA	ALA	248		-8.656	23.432	42.892
	ATOM	1979	HA	ALA	248		-9.059	24.434	42,743
	ATOM	1980	CB .	ALA	248		-9.729	22,403	42.504
	ATOM	1981		ALA	248		-10.616	22.552	43.120
5	ATOM	1982	HB2		248		-9.991	22.528	41.454
-	MOTA	1983	нвз		248		-9.342	21.396	42.664
	MOTA	1984	C	ALA	248		-8.330	23.220	44.333
	ATOM	1985	0	ALA	248		-8.797	23.964	45.194
	ATOM	1986	N	GLN	249		-7.501	22.208	44.644
10	ATOM	1987	HN	GLN	249		-7.065	21.636	43.907
	ATOM	1988	CA	GLN	249		-7.241	21.946	46.027
	ATOM	1989	HA	GLN	249		-8.175	21.712	46.538
	ATOM	1990	СВ	GLN	249		-6.260	20.780	46.238
	ATOM	1991		GLN	249		-6.012	20.727	47.298
15	ATOM	1992	HB2		249		-5.366	20.971	45.645
	ATOM	1993	CG	GLN	249		-6.814	19.416	45.821
	ATOM	1994		GLN	249		-5.981	18.715	45.780
	ATOM	1995	HG2		249		-7.278	19.530	44.841
	ATOM	1996	CD	GLN	249		-7.837	18.989	46.862
20	ATOM	1997	OE1		249		-8.081	19.697	47.839
	ATOM	1998	NE2	GLN ·			-8.454	17.796	46.653
	ATOM	1999		GLN	249		-8.221	17.234	45.822
	ATOM	2000	HE2		249		-9.155	17.453	47.326
	ATOM	2001	c	GLN	249		-6.621	23.151	46.659
25	ATOM	2002	ō	GLN	249		-7.124	23.660	47.660
	ATOM	2003	N	LEU	250		-5.510	23.653	46.084
	ATOM	2004	HN	LEU	250		-5.155	23.254	45.203
	ATOM	2005	CA	LEU	250		-4.826	24.747	46.710
	ATOM	2006	HA	LEU	250		-4.611	24.549	47.760
30	ATOM	2007	CB	LEU	250		-3.487	25.076	46.023
-	ATOM	2008	HB1		250		-3.058	25.950	46.511
	ATOM	2009	HB2		250		-3.685	25.281	44.971
	MOTA	2010	CG	LEU	250		-2.444	23.947	46.088
	ATOM	2011	HG	LEU	250		-2.811	23.044	45.600
35	ATOM	2012	CD2	LEU	250	_	-2.222	23.471	47.531
	ATOM	2013	HD2	LEU	250	-	-1.479	22.674	47.540
	ATOM	2014	HD2	LEU	250		-1.868	24.304	48.138
	MOTA	2015	HD2	LEU	250		-3.161	23.097	47.939
	MOTA	2016	CD1	LEU	250		-1.139	24.359	45.390
40	MOTA	2017	HD1	LEU	250		-0.420	23.542	45.452
	MOTA	2018	HD1	LEU	250		-1.341	24.585	44.344
	ATOM	2019	HD1	LEU	250		-0.727	25.242	45.880
	MOTA	2020	С	LEU	250		-5.629	26.012	46.665
	MOTA	2021	0	LEU	250		-5.949	26.596	47.699
45	MOTA	2022	N	GLN	251		-5.992	26.443	45.444
	MOTA	2023	HN	GLN	251		-5.814	25.836	44.631
	MOTA	2024	CA	GLN	251		-6.619	27.716	45.234
	MOTA	2025	HA	GLN	251		-6.095	28.543	45.713
	ATOM	2026	CB	GLN	251		-6.641	28.131	43.752
50	MOTA	2027	HB1		251		-7.358	28.923	43.536
	MOTA	2028		GLN	251		-6.903	27.314	43.079
	MOTA	2029	CG	GLN	251		-5.292	28.656	43.248
	MOTA	2030		GLN	251		-5.026	29.552	43.809
e e	ATOM	2031		GLN	251		-5.376	28.895	42.188
55	ATOM	2032	CD	GLN	251		-4.232	27.583	43.455
	MOTA	2033	OE1		251		-4.397	26.429	43.064
	ATOM	2034		GLN	251		-3.099	27.976	44.099
	MOTA	2035		GLN	251		-2.996	28.952	44.412
60	MOTA	2036		GLN	251		-2.344	27.296	44.274
60	MOTA	2037	С	GLN	251 251		-8.015 -8.301	27.786	45.754 46.383
	MOTA	2038	0	GLN	251		-8.381	28.778	
	ATOM	2039	N	ALA			-8.829	26.738	45.522
	ATOM	2040	HN	ALA			-8.463	25.879	45.087 45.888
65	ATOM	2041	CA	ALA ALA			-10.212	26.835	45.886
O)	ATOM	2042 2043	HA CB	ALA			-10.659 -11.003	27.662 25.551	45.588
	MOTA MOTA	2043		ALA			-11.003	25.686	45.887
	ATOM	2044		ALA			-10.957	25.336	44.520
	111 013	. 030		۱ سید .	-72		-0.557	_5.550	

	ATOM	2046	HB3 ALF	252	-10.570	24.719	46.144	
	ATOM	2047	C ALP	252	-10.296	27.082	47.350	
	ATOM	2048	O ALA	252	-10.959	28.015	47.800	
	ATOM	2049	N TRE		-9.598	26.254	48.137	
5	MOTA	2050	HN TRE		-9.055	25.481	47.728	
	ATOM	2051	CA TRE		-9.614	26.455	49.548	
	ATOM	2052	HA TRE		-8.852	25.813	49.992	
	MOTA	2053	CB TRE		-9.299	27.899	49.982	
10	MOTA ATOM	2054 2055	HB1 TRE		-10.049 -8.304	28.560 28.158	49.546 49.620	
ĬΩ	ATOM	2056	CG TRI		-9.315	28.104	51.479	
	ATOM	2057	CD2 TRE		-10.480	28.518	52.218	
	ATOM	2058	CD1 TRE		-8.316	27.961	52.389	
	ATOM	2059	HD1 TRE		-7.297	27.656	52.152	
15	MOTA	2060	NE1 TRE	253	-8.777	28.255	53.650	
	MOTA	2061	HE1 TRE		-8.220	28.222	54.516	
	MOTA	2062	CE2 TRI		10.108	28.600	53.561	
	ATOM	2063	CE3 TRI		-11.754	28.804	51.810	
20	ATOM	2064	HE3 TRI		-12.044	28.740	50.761	
20	ATOM	2065 2066	CZ2 TRI		-11.007 -10.720	28.970 29.035	54.518 55.568	
	ATOM ATOM	2067	CZ3 TRI		-10.720	29.033	52.782	
	ATOM	2068	HZ3 TRI		-13.679	29.415	52.495	
	ATOM	2069	CH2 TRI		-12.292	29.260	54.109	
25	ATOM	2070	HH2 TRI		-13.034	29.559	54.849	
	ATOM	2071	C TRI		-10.965	26.093	50.053	
	ATOM	2072	O TRI	253	-11.957	26.168	49.329	
	ATOM	2073	N TRI		-11.027	25.676	51.330	
	ATOM	2074	HN TRI		-10.153	25.591	51.869	
30	ATOM	2075	CA TRI		-12.265	25.345	51.964	
	ATOM	2076	HA TRI		-12.709	26.302	52.238 51.098	
	ATOM ATOM	2077 2078	CB TRI		-13.222 -12.845	24.508 23.513	50.862	
	ATOM	2079	HB2 TR		-13.447	24.958	50.131	
35	ATOM	-2080	CG TR		-14.568	24.270	51.736	
-	ATOM	2081	CD2 TR		-15.672		51.614	
	MOTA	2082	CD1 TR		-15.005	23.233	52.508	· · · · · · · · · · · ·
	ATOM	2083	HD1 TR	P 254	-14.405	22.369	52.792	
	MOTA	2084	NE1 TR		-16.315	23.440	52.874	
40	ATOM	2085	HE1 TR		-16.884	22.809	53.455	
	ATOM	2086	CE2 TR		-16.736	24.636 26.373	52.330	
	ATOM ATOM	2087 2088	CE3 TR		-15.785 -14.950	26.796	50.959 50.401	
	ATOM	2089	CZ2 TR		-17.938	25.280	52.402	
45	ATOM	2090	HZ2 TR		-18.773	24.859	52.962	
	ATOM	2091	CZ3 TR			27.020	51.033	
	MOTA	2092	HZ3 TR		-17.127	27.975	50.523	
	ATOM	2093	CH2 TR	P 254	-18.055	26.483	51.741	
	ATOM	2094	HH2 TR		-19.001	27.022	51.777	
50	MOTA	2095	C TR		-11.892	24.510	53.135	
	ATOM	2096	O TR		-10.746 -12.848	24.081 24.266	53.258	
	MOTA MOTA	2097 2098	N TY		-12.646	24.266	54.047 53.954	
	ATOM	2099	CA TY		-12.500	23.430	55.151	
55	ATOM	2100	HA TY		-11.625	23.890	55.611	
	ATOM	2101	CB TY		-13.646	23.262	56.162	
	MOTA	2102	HB1 TY		-14.489	22.816	55.633	
	MOTA	2103	HB2 TY		-13.897	24.251	56.544	
	ATOM	2104	CG TY		-13.159	22.369	57.251	
60	ATOM	2105	CD1 TY		-12.398	22.875	58.280	
	ATOM	2106	HD1 TY			23.937	58 297	
	ATOM	2107	CD2 TY		-13.464	21.027	57.247	
	MOTA	2108	HD2 TY		-14.067 -11.946	20.614 22.054	56.439 59.289	
65	ATOM ATOM	2109 2110	CE1 TY HE1 TY			22.465	60.099	
0,5	MOTA	2111	CE2 TY			20.203	58.250	
	ATOM	2112	HE2 TY			19.142	58.234	
	ATOM	2113	CZ TY			20.715	59.273	•

	T COM	2314	011	mun	255	11 704	10 071	co 20C
	ATOM	2114	OH	TYR	255	-11.794	19.871	60.306
	ATOM	2115	HH	TYR	255	-12.089	20.249	61.217
	ATOM	2116	С	TYR	255	-12.207	22.088	54.573
	ATOM	2117	0	TYR	255	-11.103	21.563	54.704
5	ATOM	2118	N		256			
,				LYS		-13.211	21.508	53.889
	MOTA	2119	HN	LYS	256	-14.108	22.005	53.789
	MOTA	2120	CA	LYS	256	-13.057	20.216	53.301
	ATOM	2121	HA	LYS	256	-12.623	19.534	54.032
	MOTA	2122	CB	LYS	256	-14.390	19.614	52.820
1.0								
10	MOTA	2123	HB1		256	-15.152	19.558	53.597
	ATOM	2124	HB2	LYS	256	-14.301	18.596	52.441
	ATOM	2125	CG	LYS	256	-15.045	20.400	51.683
	MOTA	2126	HG1		256	-14.357	20.653	50.876
	ATOM	2127	HG2		256	-15.472	21.351	52.002
1.5				-				
15	ATOM	2128	CD	LYS	256	-16.195	19.651	51.008
	ATOM	2129	HD1	LYS	256	-16.765	20.263	50.308
	ATOM	2130	HD2	LYS	256	-16.934	19.261	51.708
	MOTA	2131	CE	LYS	256	-15.742	18.436	50.194
	ATOM	2132	HE1		256	-15.231		
20							17.724	50.841
20	MOTA	2133	HE2	LYS	256	-15.060	18.751	49.404
	ATOM	2134	NZ	LYS	256	-16.914	17.774	49.580
	ATOM	2135	HZ1	LYS	256	-16.602	16.958	49.034
	ATOM	2136	HZ2	LYS	256	-17.561	17.464	50.320
	MOTA							
		2137	HZ3	LYS	256	-17.398	18.437	48.958
25	MOTA	2138	С	LYS	256	-12.155	20.315	52.114
	MOTA	2139	0	LYS	256	-11.245	19.503	51.957
	MOTA	2140	N	ALA	257	-12.376	21.329	51.252
	ATOM	2141	HN	ALA	257	-13.096	22.037	51.456
	MOTA	2142	CA	ALA	257	-11.599	21.410	50.048
30	MOTA	2143	HA	ALA	257	-11.784	20.515	49.454
	ATOM	2144	CB	ALA	257	-11.938	22.647	49.200
	MOTA	2145	HB1	ALA	257	-11.318	22.654	48.303
	ATOM	2146		ALA	257	-12.989	22.617	48.914
				ALA				
25	MOTA	2147			257	-11.746	23.550	49.780
35	MOTA	2148	С	ALA	257	-10.158	21.498	50.418
	ATOM	2149	Ο.	ALA	257	-9.392	20.567	50.170
	ATOM	2150	N	ASP	258	-9.744	22.615	51.041
	MOTA	2151	HN	ASP	258	-10.388	23.400	51.215
	ATOM	2152	CA	ASP	258	-8.377	22.671	51.454
40								
40	MOTA	2153	HA	ASP	258	-8.195	21.850	52.147
	MOTA	2154	CB	ASP	258	-7.380.	22.568	50.287
	ATOM	2155	HB1	ASP	258	-7.433	23.495	49.715
	ATOM	2156	HB2		258	-7.666	21.715	49.672
	ATOM	2157	CG	ASP	258	-5.989	22.372	50.871
AE								
45	MOTA	2158	OD1		258	-5.879	22.319	52.126
	ATOM	2159	OD2	ASP	258	-5.020	22.265	50.073
	MOTA	2160	С	ASP	258	-8.144	23.982	52.120
	ATOM	2161	0	ASP	258	-8.499	25.035	51.601
	ATOM	2162	N	PRO	259	-7.550	23.942	53.269
50								
50	MOTA	2163	CA	PRO	259	-7.232	25.190	53.902
	ATOM	2164	HA	PRO	259	-7.984	25.946	53.675
	ATOM	2165	CD	PRO	259	-7.971	22.940	54.235
	ATOM	2166	HD1		259	-7.192	22.177	54.227
	ATOM	2167		PRO	259	-8.932	22.570	53.878
EE								
55	- ATOM	2168	CB	PRO	259	-7.168	24.904	55.399
	ATOM	2169	HB1	PRO	259	-7.531	25.757	55.9.74
	ATOM	2170	HB2	PRO	259	-6.145	24.697	55.712
	ATOM	2171	CG	PRO	259	-8.074	23.675	55.580
		2172		PRO	259	-9.100	23.976	55.794
60	ATOM							
60	MOTA	2173	HG2		259	-7.726	23.053	56.405
	ATOM	2174	С	PRO	259	-5.908	25.542	53.327
	ATOM	2175	0	PRO	259	-5.446	24.799	52.464
	ATOM	2176	N	ASN	260	-5.281	26.651	53.759
	ATOM	2177	HN	ASN	260	-5.719	27.281	54.445
65								
65	ATOM	2178	CA	ASN	260	-3.980	26.920	53.225
	ATOM	2179	HA	ASN	260	-4.106	27.027	52.148
	ATOM	2180	CB	ASN	260	-3.353	28.235	53.743
	ATOM	2181		ASN	260	-3.969	29.085	53.449

	ATOM	2182	HB2	ASN	260	-2.354	28.363	53.326
	MOTA	2183	CG	ASN	260	-3.251	28.203	55.262
	ATOM	2184	OD1	ASN	260	-4.209	27.862	55.954
	MOTA	2185	ND2	ASN	260	-2.054	28.565	55.798
5	ATOM	2186	HD2	ASN	260	-1.278	28.844	55.182
	ATOM	2187	HD2	ASN	260	-1.925	28.559	56.820
	MOTA	2188	С	ASN	260	-3.126	25.747	53.586
	MOTA	2189	0	ASN	260	-2.726	25.572	54.737
	ATOM	2190	N	ASP	261	-2.842	24.884	52.593
10	MOTA	2191	HN	ASP	261	-3.151	25.083	51.630
	MOTA	2192	CA	ASP	261	-2.111	23.690	52.879
	MOTA	2193	HA	ASP	261	-1.559	23.824	53.809
	MOTA	2194	CB	ASP	261	-2.994	22.434	53.010
	ATOM	2195		ASP	261	-2.359	21.549	52.988
15	ATOM	2196	HB2		261	-3.699	22.407	52.179
	ATOM	2197	CG	ASP	261	-3.753	22.496	54.330
	MOTA	2198		ASP	261	-3.245	23.148	55.280
	MOTA	2199		ASP	261	-4.850	21.882	54.408
20	MOTA	2200	C	ASP	261	-1.161	23.420	51.762
20	MOTA	2201	0	ASP	261	-1.063	24.177	50.797
	ATOM	2202	N	PHE	262	-0.424	22.304	51.918
	MOTA	2203 2204	HN CA	PHE PHE	262	-0.588	21.752	52.771
	MOTA MOTA	2204	HA	PHE	262 262	0.566 0.703	21.814 22.623	51.008 50.290
25	ATOM	2206	CB	PHE	262	1.823	21.407	51.796
25	ATOM	2207	HB1	PHE	262	1.645	20.525	52.411
	ATOM	2208	HB2	PHE	262	2.157	22.202	52.462
	ATOM	2209	CG	PHE	262	2.957	21.088	50.893
	ATOM	2210	CD1	PHE	262	3.827	22.077	50.497
30	ATOM	2211		PHE	262	3.675	23.100	50.844
	MOTA	2212		PHE	262	3.157	19.800	50.461
*	ATOM	2213	HD2	PHE	262	2.477	19.009	50.776
	ATOM	2214	CE1	PHE	262	4.885	21.789	49.670
	ATOM	2215	HE1	PHE	262	5.569	22.579	49.359
35	ATOM	2216	CE2	PHE	262	4.212	19.509	49.634
	ATOM	2217	HE2	PHE	262	4.363	18.485	49.290
	MOTA	2218	CZ	PHE	262	5.078	20.499	49.236
	MOTA	2219	HZ	PHE	262	5.915	20.262	48.579
	MOTA	2220	С	PHE	262	-0.039	20.576	50.420
40	ATOM	2221	0	PHE	262	-0.720	19.836	51.128
	ATOM	2222	N	THR	263	0.152	20.313	49.109
	ATOM	2223	HN	THR	263	0.725	20.929	48.514
	ATOM	2224	CA	THR	263	-0.479	19.134	48.583
45	ATOM	2225	HA	THR	263 263	-0.713 -1.753	18.443 19.421	49.392
43	ATOM ATOM	2226 2227	CB HB	THR THR	263	-1.733	20.090	47.846 47.014
	ATOM	2228	OG1	THR	263	-2.686	20.055	48.709
	ATOM	2229	HG1	THR	263	-2.364	21.009	48.923
	ATOM	2230	CG2	THR	263	-2.331	18.096	47.324
50	ATOM	2231	HG2	THR	263	-3.259	18.290	46.786
	ATOM	2232	HG2	THR	263	-1.614	17.625	46.652
	ATOM	2233	HG2	THR	263	-2.531	17.430	48.164
	ATOM	2234	С	THR	263	0.435	18.451	47.613
	ATOM	2235	o	THR	263	1.217	19.096	46.917
55	ATOM	.2236	N	TYR	264	0.361	17.101	47.562
	ATOM	2237	HN	TYR	264	-0.251	16.601	48.221
	ATOM	2238	CA	TYR	264	1.128	16.359	46.603
	MOTA	2239	HA	TYR	264	1.472	17.073	45.855
•	ATOM	2240	CB	TYR	. 264	2.376	15.650	47.166
60	ATOM	2241	HB1	TYR	264	2.989	16.340	47.746
	ATOM	2242	HB2	TYR	264	2.994	15.248	46.363
	MOTA	2243	CG	TYR	264	1.993	14.520	48.058
	ATOM	2244	CD1	TYR	264	1.649	14.735	49.373
c e	MOTA	2245	HD1	TYR	264	1.647	15.748	49.773
65	ATOM	2246	CD2		264	1.998	13.233	47.571
	ATOM	2247	HD2	TYR	264	2.276	13.052	46.532
	MOTA	2248	CE1	TYR	264	1.308	13.678	50.184
	MOTA	2249	HE1	TYR	264	1.034	13.856	51.224

					•				
	MOTA	2250	CE2	TYR	264		1.658	12:173	48.377
	ATOM	2251		TYR	264		1.664	11.159	47.977
		2252		TYR					
	MOTA				264		1.311	12.395	49.686
_	ATOM	2253		TYR	264		0.963	11.309	50.515
5	MOTA	2254		TYR	264		0.276	11.618	51.217
	MOTA	2255	C '	TYR	264		0.210	15.332	46.020
	MOTA	2256	0 '	TYR	264		-0.838	15.027	46.587
	MOTA	2257	N (GLU	265		0.584	14.773	44.852
	ATOM	2258		GLU	265			14.994	44.453
10	ATOM	2259		GLU	265		-0.291	13.872	44.161
	MOTA	2260		GLU	265		-1.208	13.769	
									44.741
	ATOM	2261		GLU	265		-0.621	14.429	42.767
	ATOM	2262	HB1		265		0.233	14.234	42.120
. 0	ATOM	2263	HB2	GLU	265		-0.800	15.500	42.871
15	ATOM	2264	CG	GLU	265		-1.844	13.843	42.070
	MOTA	2265	HG1	GLU	265		-2.611	13.771	42.841
	MOTA	2266	HG2	GLU	265		-1.526	12.872	41.691
	ATOM	2267		GLU	265		-2.196	14.831	40.966
	ATOM	2268	OE1		265		-1.626	15.954	40.985
20	ATOM	2269	OE2		265		-3.036	14.489	
20									40.095
	ATOM	2271		GLU	265		0.397	12.546	44.028
	ATOM	2272		GLU	265		1.598	12.434	44.271
	MOTA	2273	N .	ARG	266		-0.365	11.493	43.665
	ATOM	2274	HN .	ARG	266		-1.369	11.637	43.486
25	MOTA	2275	CA .	ARĠ	266		0.189	10:175	43.523
	MOTA	2276	HA .	ARG	266.		0.892	10.012	44.340
	ATOM	2277		ARG.	266		-0.855	9.046	43.540
	ATOM	2278	HB1		266		-0.451	8.069	43.275
		2279							
20	ATOM		HB2		266		-1.682	9.202	42.848
30	MOTA	2280		ARG	266		-1.517	8.839	44.901
	MOTA	2281	HG1		266		-2.192	9.648	45.183
	*ATOM	2282	HG2		266		-0.805	8.762	45.723
	MOTA	2283	CD .	ARG	266		-2.361	7.566	44.981
	MOTA	2284	HD1	ARG	266		-1.734	6.737	44.651
35.	ATOM	2285	HD2	ARG	266	-	-3.220	7.702	44.324
	ATOM	2286		ARG	266		-2.783	7.398	46.400
	ATOM	2287		ARG	266		-2.869	8.221	47.013
	ATOM	2288		ARG	266		-3.055	6.152	46.886
40	ATOM	2289	NH1		266		-2.958	5.065	46.067
40	MOTA	2290	нн1		266		-3.163	4.124	46.433
	ATOM	2291	HH1		266		-2.679	5.184	45.083
	MOTA	2292	NH2		266		-3.413	5.992	48.193
	MOTA	2293	HH2		266		-3.619	5.052	48.560
	ATOM	2294	HH2	ARG	266		-3.478	6.812	48.813
45	ATOM	2295	С	ARG	266		0.881	10.104	42.208
	MOTA	2296		ARG	266		0.463	10.727	41.235
	ATOM	2297		ARG	267		1.979	9.329	42.154
	ATOM	2298		ARG	267		2.288	8.803	42.984
	ATOM								
50		2299		ARG	267		2.710	9.246	40.932
50	MOTA	2300		ARG	267		2.245	9.909	40.202
	MOTA	2301		ARG	267		4.190	9.606	41.128
	ATOM	2302	HB1	ARG	26 7		4.777	9.522	40.213
	MOTA	2303	HB2	ARG	267		4.693	8.969	41.857
	ATOM	2304	CG	ARG	267		4.400	11.039	41.622
55	MOTA	2305		ARG	267		3.662	11.363	42.356
_	ATOM	2306	HG2		267		4.354	11.787	40.830
	ATOM	2307		ARG	267		5.754	11.265	42.299
	MOTA	2307	HD1		267		5.861	10.534	43.100
~	ATOM	2309	HD2		267		5.772	12.279	42.697
60	MOTA	2310		ARG	267		6.821	11.084	41.278
	MOTA	2311		ARG	267		6.571	10.906	40.294
	ATOM	2312		ARG	267		8.133	11.155	41.650
	ATOM	2313	NH1	ARG	267		8.459	11.363	42.958
	MOTA	2314		ARG	267		9.448	11.417	43.241
65	ATOM	2315	HH1		267		7.716	11.466	43.664
	ATOM	2316	NH2		267		9.119	11.022	40.715
	MOTA	2317	HH2		267		10.108	11.076	40.998
	ATOM	2318	HH2		267		8.874	10.866	39.727
	AIOM	2310	11112	טתה	201		0.074	10.000	33.121

	MOTA	2319	С	ARG	267		2.670	7.832	40.447
	ATOM	2320	ō	ARG	267		3.493	7.010	40.846
			_						
	ATOM	2321		LYS	268		1.696	7.504	39.573
	MOTA	2322		LYS	268		0.934	8.168	39.374
5	MOTA	2323	CA	LYS	268		1.725	6.226	38.922
	MOTA	2324	· HA	LYS	268		2.350	5.512 [.]	39.457
	ATOM	2325	CB	LYS	268		0.324	5.630	38.681
	ATOM	2326	HB1		268				
							0.100	6.107	37.798
	ATOM	2327	HB2		268		0.285	5.831	39.561
10	ATOM	2328	CG	LYS	268		0.298	4.114	38.442
	ATOM	2329	HG1	LYS	268	_	0.741	3.808	38.327
	ATOM	2330	HG2	LYS	268		0.752	3.628	39.305
	ATOM	2331	CD	LYS	268		1.053	3.636	37.200
		2332				•			
1.0	ATOM		HD1		268		2.115	3.884	37.210
15	MOTA	2333	HD2		268		0.677	4.058	36.268
	ATOM	2334	CE	LYS	268.		1.004	2.121	36.994
	ATOM	2335	HE1	LYS	268	-	0.029	1.790	36.904
	ATOM	· 2336		LYS	268		1.465	1.614	37.843
	ATOM	2337	NZ	LYS	268		1.735	1.753	35.761
20									
20	ATOM	2338			268		1.697	0.732	35.630
	MOTA	2339			268		1.301	2.218	34.951
	ATOM	2340	HZ3	LYS	268		2.718	2.052	35.841
	MOTA	2341	С.	LYS	268		2.286	6.620	37.609
•	ATOM	2342	0	LYS	268		1.912	6.148	36.538
25	ATOM	2343	N	GLU	269		3.252	7.535	37.708
23									
	ATOM	2344	HN	GLU	269		3.548	7.838	38.648
	MOTA	2345	CA	GLU	269		3.888	8.108	36.585
	ATOM	2346	HA	GLU	269		3.128	8.660	36.033
	ATOM	2347	CB	GLU	269		5.011	9.051	37.041
30	ATOM	2348	HB1		269		4.624	9.960	37.503
50		2349		GLU	269		5.645	9.369	
	ATOM								36.214
	ATOM	2350	CG	GLU	269		5.932	8.398	38.071
	ATOM	2351	HG1		269		6.587	7.698	37.551
	ATOM	2352	HG2	GLU	269	٠.	5.315	7.874	38.801
35	ATOM	_2353	CD	GLU	269		6.747	9.491	38.748
	ATOM	2354	OE1		269		6.550	10.684	38.397
	ATOM	2355		GLU	269		7.582	9.140	39.624
	ATOM	2357	C	GLU	269		4.445	6.994	35.785
	ATOM	2358	0	GLU	269		4.595	5.872	36.266
40	ATOM	2359	N	SER	270		4.748	7.289	34.511
	ATOM	2360	HN	SER	270		4.513	8.219	34.136
	ATOM	2361	CA	SER	270		5.391	6.332	33.670
	ATOM	2362	HA	SER	270		4.828	5.409	33.807
		2363	СВ	SER	270		5.425	6.707	32.177
45	ATOM								
45	MOTA	2364	HB1	SER	270		4.414	6.802	31.783
	ATOM	2365	HB2	SER	270		5.947	5.941	31.603
	ATOM	2366	OG	SER	270		6.097	7.942	31.989
	ATOM	2367	HG	SER	270		7.063	7.865	32.339
	ATOM	2368	С	SER	270		6.788	6.252	34.170
50	ATOM	2369	o	SER	270		7.575	5.432	33.704
50									
	ATOM	2370	N	ALA	271		7.150	7.171	35.098
	MOTA	2371	HN	ALA	271		6.456	7.880	35.376
	MOTA	2372	CA	ALA	271		8.442	7.213	35.715
	ATOM	2373	HA	ALA	271		9.145	7.337	34.891
55	MOTA	2374	CB	ALA	271		8.599	8.254	36.825
	ATOM	2375	HB1		271		9.610	8.207	37.228
			HB2		271		8.416		36.419
	MOTA	2376						9.249	
	ATOM	2377	HB3		271		7.882	8.049	37.620
	MOTA	2378	С	ALA	271		8.575	5.925	36.412
60	MOTA	2379	0	ALA	271		9.693	5.491	36.685
	ATOM	2380	N	ALA	272		7.405	5.344	36.761
	ATOM	2381	HN	ALA	272		6.531	5.865	36.603
	MOTA	2382	CA	ALA	272		7.326	4.044	37.337
CE	ATOM	2383	HA	ALA	272		7.642	4.176	38.372
65	MOTA	2384	CB	ALA	272		5.925	3.420	37.214
	MOTA .	2385		ALA	272		5.927	2.430	37.670
	ATOM	2386	HB2	ALA	272		5.199	4.053	37.723
	ATOM	2387		ALA			5.656	3.333	36.161
					_				-

	ATOM	2388	С	ALA	272	8.258	3.213	36.532
	ATOM	2389		ALA	272	9.072	2.473	37.074
	ATOM	2390	N	TYR	273	8.199	3.402	35.202
	ATOM	2391		TYR	273	7.478	4.034	34.825
5	ATOM	2392	CA	TYR	273	9.094	2.763	34.023
,	MOTA	2393		TYR	273	9.209		
	ATOM	2394		TYR	273		1.748	34.668
-	•					8.643	2.876	32.821
	ATOM	2395		TYR	273	9.331	2.333	32.173
10	ATOM	2396		TYR	273	8.623	3.922	32.513
10	ATOM	2397	ÇG	TYR	273	7.278	2.304	32.656
	ATOM	2398		TYR	273	6.173	3.097	32.864
	MOTA	2399		TYR	273 _.	6.306	4.140	33.152
	ATOM	2400		TYR	273	7.095	0.988	32.298
	MOTA	2401	HD2	TYR	273	7.961	0.346	32.134
15	ATOM	2402	CE1	TYR	273	4.904	2.592	32.713
	MOTA	2403	HE1	TYR	273	4.038	3.232	32.878
	MOTA	2404	CE2	TYR	273	5.827	0.476	32.144
	ATOM	2405	HE2	TYR	273	5.692	-0.565	31.856
	ATOM	2406	CZ	TYR	273	4.730	1.278	32.353
20	MOTA	2407	ОН	TYR	273	3.429	0.754	32.197
	ATOM	2408	HH	TYR	273	2.736	1.500	32.352
	ATOM	2409	С	TYR	273	10.354	3.569	34.349
	ATOM	2410	ŏ	TYR	273	10.407	4.679	33.822
	ATOM	2411	N	ILE	274	11.407	3.044	35.022
25	ATOM	2412	HN	ILE	274	11.340	2.124	35.459
23	ATOM	2413	CA	ILE	274	12.624	3.798	
		2413						35.044
	ATOM		AH.	ILE	274	12.412	4.791	34.648
	ATOM	2415		ILE	274	13.248	3.924	36.406
20	ATOM	2416	HB	ILE	274	13.303	2.917	36.820
30	MOTA	2417	CG2	ILE	274	14.642	4.542	36.198
	ATOM	2418	HG2	ILE	274	15.139	4.654	37.162
	MOTA	2419	HG2	ILE	274	15.237	3.890	35.558
	MOTA	2420	HG2	ILE	274	14.541	5.519	35.726
	MOTA	2421.	CG1	ILE	274	12.374	4.755	37.358
35	ATOM	2422	HG1	ILE	274	12.729	4.732	38.388
	ATOM	2423	HG1	ILE	274	11.340	4.412	37.392
	MOTA	2424	CD1	ILE	274	12.311	6.232	36.971
	MOTA	2425	HD1	ILE	274	11.679	6.767	37.680
	ATOM	2426	HD1	ILE	274	13.315	6.656	36.989
40	ATOM	2427	HD1	ILE	274	11.894	6.328	35.969
	ATOM	2428	С	ILE	274	13.625	3.087	34.206
	MOTA	2429	0	ILE	274	13.749	1.865	34.243
	ATOM	2430	N	PRO	275	14.308	3.853	33.410
	ATOM	2431	CA	PRO	275	15.358	3.271	32.630
45	ATOM	2432	HA	PRO	275	15.019	2.296	32.281
	ATOM	2433	CD	PRO	275	13.627	4.919	32.691
	ATOM	2434	HD1	PRO	275	13.856	5.834	33.236
	ATOM	2435	HD2	PRO	275	12.569	4.660	32.716
	ATOM	2436	CB	PRO	275	15.576	4.204	
50	ATOM		HB1	PRO	275	15.854		31.441
30		2437					3.642	30.550
	ATOM	2438	HB2	PRO	275	16.373	4.919	31.648
	ATOM	2439	CG	PRO	275	14.216	4.902	31.272
	ATOM	2440	HG1	PRO	275	13.678	4.265	30.570
	ATOM	2441	HG2	PRO	275	14.472	5.887	30.880
55	MOTA	2442	C	PRO	275	16.561	3.135	33.500
	MOTA	2443	0	PRO	275	16.674	3.878	34.473
	ATOM	2444	N	PHE	276	17.462	2.188	33.190
	ATOM	2445	HN	PHE	276	17.302	1.551	32.396
•	MOTA	2446	CA	PHE	276	18.649	2.082	33.981
60	MOTA	2447	HA	PHE	276	18.748	3.018	34.529
	ATOM	2448	CB	PHE	276	18.613	0.964	35.044
	MOTA	2449	HB1	PHE	276	17.772	1.094	35.726
	ATOM	2450	HB2	PHE	276	19.524	0.957	35.641
	ATOM	2451	CG	PHE	276	18.477	-0.377	34.412
65	ATOM	2452	CD1	PHE	276	17.278	-0.790	33.879
	ATOM	2453	HD1	PHE	276	16.417	-0.122	33.908
	ATOM	2454	CD2	PHE	276	19.548	-1.240	34.388
	ATOM	2455		PHE	276	20.499	-0.933	34.823

- 77 -

							•	
	ATOM	2456	CE1	PHE	276	17.152	-2.035	33.309
	ATOM	2457	HE1		276	16.199	-2.347	32.884
	ATOM	2458	CE2		276	19.428	-2.485	33.821
	ATOM	2459	HE2		276	20.285	-3.158	33.801
5	ATOM	2460		PHE	276	18.231	-2.885	33.278
,	ATOM	2461		PHE	276	18.137		
	ATOM	2462					-3.872	32.826
				PHE	276	19.780	1.866	33.036
	MOTA	2463		PHE	276	19.649	2.139	31.844
10	ATOM	2464		GLY	277	20.933	1.399	33.552
10	MOTA	2465		GLY	277	. 20.993	1.171	34.555
	MOTA	2466		GLY	277	22.078	1.219	32.707
	MOTA	2467		GLY	277	22.869	0.759	33.300
	MOTA	2468	HA2		277	22.389	2.198	32.342
	MOTA	2469		GLY	277	21.685	0.333	31.573
15	MOTA	2470		GLY	277	21.690	0.754	30.417
	MOTA	2471	N	GLU	278	21.332	-0.927	31.877
	MOTA	2472	HN	GLU	278	21.354	-1.255	32.852
	MOTA	2473	CA	GLU	278	20.924	-1.806	30.824
	MOTA	2474	HA	GLU	278	21.695	-1.768	30.054
20	MOTA	2475	CB	GLU	278	20.707	-3.257	31.283
	MOTA	2476	HB1	GLU	278	19.940	-3.358	32.051
	ATOM	2477	HB2	GLU	278	21.600	-3.716	31.707
	MOTA	2478	CG.	GLU	278	20.271	-4.193	30.154
	MOTA	2479	HG1		278	21.078	-4.233	29.422
25	ATOM	2480	HG2		278	19.363	-3.784	29.711
	ATOM	2481		GLU	278	20.013	-5.565	30.757
	ATOM	2482		GLU	278	20.174	-5.708	31.998
	ATOM	2483	OE2		278	19.644	-6.489	29.985
	ATOM	2485		GLU	278	19.614	-1.308	30.315
30	ATOM	2486		GLU	278	19.391	-1.243	29.106
	ATOM	2487		GLY	279	18.714	-0.913	31,236
	ATOM	2488		GLY	279	18.958	-0.916	32.237
	ATOM	2489		GLY	279	17.415	-0.491	30.809
	ATOM	2490		GLY	279	17.593	0.375	30.172
35	ATOM	2491		GLY	279	16.877	-0.251	
"	MOTA	2492		GLY	279	16.847		31.727
	ATOM	2493		GLY	279		-1.659 -2.791	30.077
	MOTA	2493				17.294		30.256
		2495		ASP	280	15.838	-1.416	29,222
40	ATOM	2495		ASP	280	15.446	-2.191	28.668
40	MOTA			ASP	280	15.300	-0.101	29.069
	ATOM	2497		ASP	280	16.143	0.583	28.983
	ATOM	2498		ASP	280	14.374	0.016	27.846
	ATOM	2499	HB1	_	280	13.494	-0.606	28.011
15	ATOM	2500		ASP	280	14.914	-0.324	26.963
45	ATOM	2501		ASP	280	13.963	1.472	27.681
	ATOM	2502	OD1		280	14.347	2.304	28.546
	ATOM	2503	OD2		280	13.253	1.772	26.683
	ATOM	2504		ASP	280	14.479	0.184	30.284
50	ATOM	2505		ASP	280	14.579	1.251	30.884
50	ATOM	2506		PHE	281	13.646	-0.795	30.682
	ATOM	2507		PHE	281	13.659	-1.694	30.179
	MOTA	2508		PHE	281	12.741	-0.630	31.782
	MOTA	2509		PHE	281	12.875	0.368	32.198
	MOTA	2510		PHE	281	11.293	-0.827	31.297
55	MOTA	2511	HB1		281	11.206	-1.698	30.647
	ATOM	2512		PHE	281	10.941	0.036	30.734
	MOTA	2513	CG	PHE	281	10.361	-1.027	32.436
	ATOM	2514	CD1	PHE	281	9.885	0.033	33.169
	MOTA	2515	HD1	PHE	281	10.200	1.048	32.926
60	ATOM	2516	CD2	PHE	281	9.949	-2.302	32.748
	ATOM	2517	HD2	PHE	281	10.319	-3.145	32.165
	ATOM	2518		PHE	281	9.013	-0.183	34.208
	ATOM	2519	HE1		281	8.637	0.658	34.788
	ATOM	2520	CE2		281	9.078	-2.525	33.785
65	ATOM	2521	HE2		281	8.757	-3.539	34.025
	ATOM	2522		PHE	281	8.615	-1.461	34.516
	ATOM	2523		PHE	281	7.928	-1.631	35.346
	ATOM	2524		PHE	281	13.051	-1.666	32.816
					-	-		

	ATOM	2525	0	PHE	281	12.644	-2.819	32.681
	ATOM	2526	N	TYR	282	13.810	-1.295	33.871
	ATOM	2527	HN	TYR	282	14.179	-0.338	33.954
_	MOTA	2528	CA	TYR	282	14.079	-2.287	34.870
5	MOTA	2529	HA	TYR	282	14.418	-3.216	34.411
	MOTA	2530	CB	TYR	282	15.293	-1.981	35.778
	MOTA	2531	HB1	TYR	282	16.230	-1.942	35.223
	ATOM	2532		TYR	282	15.431	-2.731	36.557
	ATOM	2533	CG	TYR	282	15.167	-0.672	36.477
10								
10	MOTA	2534	CD1		282	15.505	0.501	35.847
	MOTA	2535	HD1	TYR	282	15.862	0.477	34.817
	MOTA	2536	CD2	TYR	282	14.742	-0.622	37.780
	MOTA	2537	HD2	TYR	282	14.488	-1.547	38.298
	ATOM	2538	CE1		282	15.397	1.706	36.502
16								
15	ATOM	2539	HE1		282	15.660	2.631	35.988
	MOTA		· CE2		282	14.631	0.575	38.441
	MOTA	2541	HE2	TYR	282	14.283	0.597	39.474
	ATOM	2542	CZ	TYR	282	14.958	1.744	37.803
	ATOM	2543	OH	TYR	282	14.843	2.972	38.488
20								
20	ATOM	2544	HH	TYR	282	15.739	3.478	38.440
	MOTA	2545	С	TYR	282	12.844	-2.583	35.672
	ATOM	2546	0	TYR	282	12.471	-3.748	35.808
	MOTA	2547	N	TYR	283	12.148	-1.559	36.218
	ATOM	2548	HN	TYR	283	12.481	-0.586	36.153
25		2549	CA	TYR	283	10.918	-1.889	36.894
23	MOTA							
	MOTA	2550	HA	TYR	283	10.394	-2.679	36.357
	ATOM	2551	CB	TYR	283	11.029	-2.502	38.313
	ATOM	2552	HB1	TYR	283	11.706	-3.355	38.358
	MOTA	2553	HB2	TYR	283.	10.076	-2.862	38.698
30	ATOM	2554	CG	TYR	283	11.533	-1.535	39.329
50					283	10.709	-0.556	39.836
	ATOM	2555	CD1					
	MOTA	2556	HD1		283	9.678	-0.487	39.488
	MOTA	2557	CD2	TYR	283	12.828	-1.607	39.784
	ATOM	2558	HD2	TYR	283	13.494	-2.377	39.395
35	MOTA	2559	CE1	TYR	283	11.168	. 0.336	40.777
	ATOM	2560			283	10.505	1.108	41.166
						13.295	-0.719	40.725
	ATOM	2561	CE2		283			
	MOTA	2562	HE2		283	14.325	-0.788	41.076
	ATOM	2563	CZ	TYR	283	12.464	0.254	41.223
40	ATOM	2564	OH	TYR	283	12.941	1.166	42.189
	ATOM	2565	HH	TYR	283	13.805	1.609	41.846
	ATOM	2566	С	TYR	283	10.032	-0.688	36.969
					283	10.398	0.392	36.511
	ATOM	2567	0	TYR				
	ATOM	2568	N	HIS	284	8.817	-0.883	37.540
45	ATOM	2569	HN	HIS	284	8.615	-1.813	37.932
	MOTA	2570	CA	HIS	284	7.789	0.121	37.635
	ATOM	2571	HA	HIS	284	8.024	0.930	36.944
	MOTA	2572		HIS		6.216	-2.488	35.948
					284	6.497	-3.176	36.660
~^	ATOM	2573		HIS				
50	MOTA	2574	CG	HIS	284	6.112	-1.124	36.119
	ATOM	2575	NE2	HIS	284	5.564	-1.651	33.995
	MOTA	2576	HE2	HIS	284	5.274	-1.572	33.009
	ATOM	2577		HIS	284	5.715	-0.630	34.916
	ATOM	2578		HIS	284	5.539	0.425	34.707
55				HIS		5.876		34.660
55	MOTA	2579			284		-2.748	
	ATOM	2580	HE1		284	5.861	-3.748	34.225
	MOTA	2581	CB	HIS	284	. 6.363	-0.420	37.419
	ATOM	2582	HB1	HIS	284	5.676	0.424	37.461
	MOTA	2583	HB2	HIS	284	6.154	-1.135	38.214
60	ATOM	2584	С	HIS	284	7.749	0.638	39.040
						8.007	-0.096	39.993
	ATOM	2585	0	HIS	284			
	MOTA	2586	N	ALA	285	7.424	1.937	39.207
	MOTA	2587	HN	ALA		7.259	2.541	38.390
	ATOM	2588	CA	ALA	285	7.310	2.469	40.534
65	MOTA	2589	HA	ALA		7.116	1.651	41.228
	ATOM	2590	CB	ALA		8.568	3.217	41.007
				ALA		8.410	3.592	42.018
	ATOM	2591						
	ATOM	2592	нв2	ALA	285	9.420	2.537	41.001

	MOTA	2593	HB3	ALA	285	8.767	4.054	40.337
	MOTA	2594	Ç	ALA	285	6.179	3.450	40.570
	MOTA	2595	0	ALA	285	6.114	4.387	39.774
	MOTA	2596	N	ALA	286	5.240	3.250	41.512
5	MOTA	2597	HN	ALA	286	5.293	2.426	42.127
	MOTA	2598	CA	ALA	286	4.165	4.186	41.658
	ATOM	2599	HA	ALA	286	4.386	5.003	40.971
	MOTA	2600	CB	ALA	286	2.776	3.583	41.385
	MOTA	2601		ALA	286	2.014	4.351	41.516
10	MOTA	2602		ALA	286	2,738	3.204	40.364
	MOTA	2603		ALA	286	2.591	2.766	42.083
	MOTA	2604	С	ALA	286	4.186	4.609	43.083
	MOTA	2605	0	ALA	286	4.231	3.771	43.983
	ATOM	2606	N	ILE	287	4.182	5.928	43.340
15	ATOM	2607	HN	ILE	287	4.190	6.628	42.584
	MOTA	2608	CA	ILE	287	4.165	6.306	44.716
	MOTA	2609	HA	ILE	287	4.350	5.406	45.303
	MOTA	2610	CB	ILE	287	5.221	7.292	45.121
20	MOTA	2611	HB	ILE	287	6.199	6.912	44.827
20	ATOM	2612	CG2		287	4.954	8.635	44.421
•	ATOM	2613	HG2		287	5.718	9.355	44.712
	MOTA	2614	HG2		287	4.981	8.494	43.341
	MOTA	2615	HG2		287	3.973	9.009	44.714
25	MOTA	2616 2617	CG1	ILE	287 287	5.268	7.370	46.657
25	ATOM		HG1	ILE	287	5.211 4.419	6.356	47.054 46.998
	MOTA	2618		ILE	287	6.536	7.962 8.015	47.203
	ATOM ATOM	2619 2620	HD1	ILE	287	6.495	8.033	48.292
	ATOM	2621	HD1	ILE	287	7.405	7.439	46.882
30	ATOM	2622	HD1	ILE	287	6.617	9.034	46.825
50	ATOM	2623	C	ILE	287	2.824	6.878	45.004
	ATOM	2624	ŏ	ILE	287	2.349	7.780	
	ATOM	2625	N	PHE	288	2.166	6.336	46.041
	ATOM	2626	HN	PHE	288	2.619	5.606	46.610
35	ATOM	2627	CA	·PHE	288	0.844	6.766	46.360
-	ATOM	2628	HA	PHE	288	0.314	7.005	45.438
	ATOM	2629	CB	PHE	288	0.022	5.701	47.109
	ATOM	2630	HB1	PHE	288	-0.024	4.814	46.477
	ATOM	2631	HB2		288	-0.972	6.113	47.284
40	ATOM	2632	CG	PHE	288	0.719	5.411	48.394
	ATOM	2633	CD1	PHE	288	0.473	6.170	49.516
	ATOM	2634	HD1	PHE	288	-0.239	6.993	49.465
	ATOM	2635	CD2	PHE	288	1.622	4.377	48.476
	ATOM	2636	HD2	PHE	288	1.825	3.768	47.596
45	ATOM	2637	CE1	PHE	288	1.118	5.902	50.700
	ATOM	2638	HE1	PHE	288	0.915	6.510	51.581
	MOTA	2639	CE2	PHE	288	2.271	4.104	49.658
	ATOM	2640	HE2		288	2.985	3.282	49.710
	MOTA	2641	CZ	PHE	288	2.019	4.867	50.772
50	ATOM	2642	HZ ·	PHE	288	2.532	4.652	51.710
	MOTA	2643	С	PHE	288	0.919	7.975	47.226
	MOTA	2644	0	PHE	288	1.985	8.365	47.700
	ATOM	2645	N	GLY	289	-0.246	8.614	47.413
	ATOM	2646	HN	GLY	289	-1.081	8.270	46.918
55	ATOM	2647	CA	GLY	289	-0.380	9.751	48.268
	ATOM	2648	HA1		289	-0.452	10.594	47.581
	MOTA	2649	HA2		289	0.528	9.741	48.870
	MOTA	2650	С	GLY	289	-1.627	9.482	49.039
	MOTA	2651	0	GLY	289	-2.633	9.061	48.474
60	ATOM	2652	N	GLY	290	-1.623	9.766	50.352
	ATOM	2653	HN	GLY	290	-0.809	10.219	50.793
	ATOM	2654	CA	GLY	290	-2.781	9.422	51.122
	MOTA	2655	HA1		290	-2.987 -3.596	8.367	50.938
65	MOTA	2656	HA2		290	-3.596 -2.450	10.058 9.676	50.777 52.550
65	ATOM	2657	С	GLY	290	-2.450 -3.336	9.676	53.394
	MOTA	2658 2659	O N	GLY THR	290 291	-1.144	9.740	52.861
	MOTA	2660	HN	THR	291	-0.430	9.564	52.140
	MOTA	2000	TTEA	*1117		0.450	3.309	55.220

	ATOM	2661	CA	THR	. 291	-0.752	10.053	54.200
	ATOM	2662	HA	THR	291	-1.670	10.259	54.751
	ATOM	2663	CB	THR	291	0.034	8.963	54.865
	MOTA	2664	HВ	THR	291	-0.531	8.034	54.798
5	ATOM	2665	OG1	THR	291	0.239	9.270	56.236
	MOTA	2666	HG1	THR	291	0.690	10.193	56.318
	ATOM	2667	CG2	THR	291	1.384	8.819	54.141
	MOTA	2668	HG2	THR	291	1.968	8.029	54.615
	MOTA	2669	HG2	THR	291	1.211	8.565	53.096
10	ATOM	2670	HG2	THR	291	1.931	9.760	54.201
	MOTA	2671	C	THR	291	0.135	11.249	54.113
	MOTA	2672	0	THR	291	0.847	11.440	53.129
	MOTA	2673	N	PRO	292	0.076	12.091	55.104
	ATOM	2674	CA	PRO	292	0.963	13.219	55.127
15	MOTA	2675	HA	PRO	292	0.975	13.613	54.111
	ATOM	2676	CD	PRO	292	-1.165	12.363	55.802
	MOTA	2677	HD1	PRO	292	-1.532	11.470	56.306
	MOTA	2678	HD2	PRO	292	-1.937	12.699	55.109
	ATOM	2679	CB	PRO	292	0.343	14.234	56.091
20	ATOM	2680	HB1	PRO	292	-0.012	15.042	55.452
20	ATOM	2681	HB2	PRO		1.160	14.526	
					292			56.751
	MOTA	2682	CG	PRO	292	-0.784	13.464	56.803
	MOTA	2683	HG1	PRO	292	-1.627	14.120	57.018
	MOTA	2684	HG2	PRO	292	-0.433	13.045	57.746
25	ATOM	2685	С	PRO	292	2.291	12.689	55.553
23								
	ATOM	2686	Ο.	PRO	292	2.312	11.692	56.272
	MOTA	2687	N	THR	293.	3.410	13.304	55.125
	MOTA	2688	HN	THR	293	3.372	14.144	54.530
	ATOM	2689	ÇA	THR	293	4.657	12.730	55.540
30	ATOM	2690	HA	THR	293	4.615	12.530	56.611
50								
	MOTA	2691	CB	THR	293	4.965	11.443	54.826
	MOTA	2692	HB	THR	293	4.086	10.800	54.875
	ATOM	2693	OG1	THR	293	6.043	10.762	55.450
	MOTA	2694	HG1	THR	293	5.950	10.837	56.473
35	MOTA	2695	CG2	THR	293	5.310	11.768	53.361
55								
	ATOM	2696	HG2		293	5.537	10.845	52.828
	MOTA	2697	HG2	THR	293	4.462	12.261	52.888
	MOTA	2698	HG2	THR	293	6.178	12.427	53.330
	ATOM	2699 -	С	THR	293	5.760	13.698	55.243
40	ATOM	2700	ō	THR	293	5.512	14.853	54.898
-10								
	MOTA	2701	N	GLN	294	7.018	13.232	55.407
	ATOM	2702	HN	GLN	294	7.145	12.267	55.745
	ATOM	2703	CA	GLN	294	8.185	14.020	55.132
	ATOM	2704	HA	GLN	294	7.953	15.029	55.474
45	ATOM	2705	CB	GLN	294	9.463	13.495	55.808
73								
	MOTA	2706		GLN	294	9.376	13.399	56.890
	ATOM	2707	HB2	GLN	294	10.333	14.131	55.649
	MOTA	2708	CG	GLN	294	9.889	12.109	55.319
	ATOM	2709	HG1	GLN	294	10.886	11.901	55.706
50	ATOM	2710		GLN	294	9.894	12.118	54.229
50								
	MOTA	2711	CD	GLN	294	8.888	11.089	55.842
	MOTA	2712	OE1	GLN	294	8.171	11.339	56.810
	ATOM	2713	NE2	GLN	294	8.837	9.900	55.184
	ATOM	2714		GLN	294	9.455	9.730	54.378
55	ATOM	2715	HE2		294	8.182	9.168	55.493
"								
	ATOM	2716	С	GLN	294	8.393	13.945	53.656
	MOTA	2717	O :	GLN	294	8.364	12.866	53.071
	MOTA	2718	N	VAL	295	8.607	15.117	53.030
	ATOM	2719	HN	VAL	295	8.702	15.963	53.609
60								
00	MOTA	2720	CA	VAL	295	8.711	15.261	51.607
	ATOM	2721	HА	VAL	295	7.868	14.803	51.090
	MOTA	2722	CB	VAL	295	8.762	16.700	51.190
	ATOM	2723	HB	VAL	295	8.832	16.741	50.103
	ATOM	2724	CG1		295	7.476	17.390	51.674
65								
رن	MOTA	2725		VAL	·295	7.494	18.440	51.380
	ATOM	2726		VAL	295	6.610	16.903	51.226
	MOTA	2727	HG1	VAL	295	7.411	17.319	52.760
	MOTA	2728		VAL	295	10.060	17.32İ	51.733
		_	_					

	ATOM	2729	HG2 VAL	295	10.113	18.369	51.438
	ATOM	2730	HG2 VAL	295	10.071	17.249	52.820
	ATOM	2731	HG2 VAL	295	10.918	16.786	51.325
	ATOM	2732	C VAL	295	9.952	14.621	51.071
5	ATOM	2733	O VAL	295	9.928	14.073	49.970
,	ATOM	2734	N LEU	296	11.061	14.679	51.836
		2735 ·		296	10.977	15.056	52.791
	MOTA						
	ATOM	2736	CA LEU	296	12.356	14.241	51.387
10	ATOM	2737	HA LEU	296	12.801	14.943	50.682
10	ATOM	2738	CB LEU	296	13.389	14.119	52.522
	MOTA	2739	HB1 LEU	296	14.351	13.722	52.197
	ATOM	2740	HB2 LEU	296	. 13.072	13.461	53.332
	ATOM	2741	CG LEU	296	13.720	15.459	53.203
	ATOM	2742	HG LEU	296	14.068	16.197	52.480
15	MOTA	2743	CD2 LEU	296	14.932	15.326	54.138
	MOTA	2744	HD2 LEU	296	15.140	16.289	54.604
	MOTA	2745	HD2 LEU	296	14.716	14.588	54.911
	MOTA	2746	HD2 LEU	296	15.801	15.005	53.563
	MOTA	2747	CD1 LEU	296	12.487	16.049	53.908
20	MOTA	2748	HD1 LEU	296	12.754	16.995	54.379
	ATOM	2749	HD1 LEU	296	11.696	16.218	53.177
	ATOM	2750	HD1 LEU	296	12.135	15.352	54.669
	ATOM	2751	C LEU	296	12.289	12.915	50.698
	ATOM	2752	O LEU	296	12.052	11.878	51.315
25	ATOM	2753	N ASN	297	12.493	12.954	49.365
	ATOM	2754	HN ASN	297	12.601	13.882	48.932
	ATOM	2755	CA ASN	297	12.572	11.812	48.500
	ATOM	2756	HA ASN	297	12.864	12.120	47.496
	ATOM	2757	CB ASN	297	13.619	10.787	48.968
30	ATOM	2758	HB1 ASN	297	13.208	10.221	49.805
20	ATOM	2759	HB2 ASN	297	14.517	11.319	49.280
	ATOM	2760	CG ASN	297	13.941	9.849	47.810
	ATOM	2761	OD1 ASN	297	13.408	9.981	46.709
		2762	ND2 ASN		14.848	8.869	48.066
35	ATOM	2763	HD2 ASN	297	15.272	8.7-92	49.001
23	ATOM					8.204	47.324
	MOTA	2764	HD2 ASN	297	15.110		
	ATOM	2765	C ASN	297	11.243	11.128 10.241	48.424
	MOTA	2766	O ASN	297	11.045	11.522	47.596 49.278
40	MOTA	2767	N ILE	298	10.283 10.459	12.282	49.951
40	ATOM .	2768	HN ILE	298		10.864	
	MOTA	2769	CA ILE	298	9.011		49.235
	ATOM	2770	HA ILE	298	9.169	9.787	49.194
	ATOM	2771	CB ILE	298	8.166	11.120	50.462
4.5	MOTA	2772	HB ILE	298	8.772	10.947	51.352
45	ATOM	2773	CG2 ILE	298	7.674	12.576	50.436
	ATOM	2774	HG2 ILE	298		12.770	51.318
	ATOM	2775	HG2 ILE	298	8.532	13.249	50.434
	MOTA	2776	HG2 ILE	298	7.079	12.743	49.538
~ ~	MOTA	2777	CG1 ILE	298	7.023	10.091	50.579
50	MOTA	2778	HG1 ILE	298	6.505	10.266	51.522
•	MOTA	2779	HG1 ILE	298	7.461	9.093	50.557
	ATOM	2780	CD1 ILE	298	5.981	10.159	49.463
	ATOM		. HD1 ILE	298	5.218	9.399	49.631
	ATOM	2782	HD1 ILE	298	5.516	11.145	49.459
55	ATOM	2783	HD1 ILE	298	6.464	9.982	48.503
	ATOM	2784	C ITE	298	8.268	11.317	48.015
	ATOM	2785	O ILE	298	7.655	10.512	47.318
	ATOM	2786	N THR	299	8.326	12.625	47.699
	MOTA	2787	HN THR	299	8.932	13.260	48.239
60	ATOM	2788	CA THR	299	7.543	13.133	46.612
	ATOM	2789	HA THR	299	7.026	12.300	46.136
	ATOM	2790	CB THR	299	6.540	14.152	47.052
	ATOM	2791	HB THR	299	5.923	13.701	47.829
	ATOM	2792	OG1 THR	299	5.705	14.530	45.967
65	ATOM	2793	HG1 THR	299	5.593	15.554	45.960
	ATOM	2794	CG2 THR	299	7.308	15.365	47.594
	MOTA	2795	HG2 THR	299	6.601	16.126	47.923
	ATOM	2796	HG2 THR	299	7.927	15.057	48.436
			,				

	MOTA	2797	HG2 T	HR	299	7.943	15.775	46.808
	ATOM	2798	C T	HR	299	8.453	13.799	45.641
	ATOM	2799		HR	299	9.616	14.067	45.944
	MOTA	2800		LN	300	7.940	14.078	44.424
5	ATOM	2801		LN	300	6.954	13.873	44.208
-	ATOM	2802		LN	300	8.798	14.664	43.443
	ATOM	2803		LN	300	9.843	14.430	43.644
	ATOM	2804		LN	300	8.600	14.163	42.000
	ATOM	2805	HB1 G		300	8.658	13.074	42.010
10								
10	MOTA	2806	HB2 G		300	9.392	14.588	41.384
	ATOM	2807		LN	300	7.269	14.540	41.353
	ATOM	2808	HG1 G		300	7.148	15.613	41.499
	ATOM	2809	HG2 G		300	6.501	13.963	41.869
	MOTA	2810		LN	300	7.383	14.165	39.881
15	MOTA	2811	OE1 G		300	7.435	12.990	39.523
	ATOM	2812	NE2 G		300	7.444	15.195	38.996
	ATOM	2813	HE2 G	LN	300	7.397	16.167	39.333
	ATOM	2814	HE2 G	LN	300	7.538	15.003	37.988
	ATOM	2815	C	LN	300	8.658	16.155	43.425
20	ATOM	2816	0 0	LN	300	8.025	16.768	44.283
	ATOM	2817	N G	SLU	301	9.270	16.740	42.379
	MOTA	2818		ELU	301	9,648	16.088	41.676
•	ATOM	2819		SLU	301	9.479	18.131	42.090
	ATOM	2820		SLU	301	9.979	18.671	42.894
25	ATOM	2821		SLU	301	10.342	18.329	40.834
20	ATOM	2822	HB1 G		301	10.429	19.398	40.641
	ATOM	2823	HB2		301	9.852	17.829	39.998
		2824		SLU	301	11.754	17.760	40.955
	MOTA						17.700	41.955
20	ATOM	2825	HG1 C		301	12.122		
30	ATOM	2826	HG2 C		301	12.370	18.232	40.190
	ATOM	2827		SLU	301	11.669	16.254	40.738
	ATOM	2828	OE1		301	10.579	15.781	40.319
	ATOM	2829		GLU	301	12.691	15.560	40.985
	ATOM	2831		GLU	301	8.209	18.886	41.841
35	MOTA	2832		GLU	301	8.164	20.095	42.059
	ATOM	2833		CYS	302	7.142	18.209	41.388
	ATOM	2834		CYS	3,02	7.164	17.180	41.372
	ATOM	2835		CYS	302	5.968	18.897	40.924
	MOTA	2836	HA (CYS	302	6.126	19.452	39.999
40	ATOM	2837	CB (CYS	302	4.808	17.953	40.565
	ATOM	2838	HB1 (CYS	302	3.865	18.485	40.438
	ATOM	2839	HB2	CYS	302	4.636	17.198	41.332
	ATOM	2840	SG (CYS	302	5.104	17.053	39.014
	MOTA	2841	HG (CYS	302	4.320	17.554	38.049
45	MOTA	2842	C	CYS	302	5.435	19.912	41.907
	ATOM	2843		CYS	302	4.999	20.973	41.470
	ATOM	2844		PHE	303	5.435	19.679	43.238
	ATOM	2845		PHE	303	5.871	18.836	43.638
	ATOM	2846		PHE	303	4.793	20.669	44.072
50	ATOM	2847		PHE	303	3.947	21.131	43.564
50	ATOM	2848		PHE	303	4.165	20.088	45.354
	ATOM	2849	HB1		303	4.971	19.862	46.052
			HB2		303	3.621	19.183	45.082
	ATOM	2850 2851			303	3.242	21.113	45.921
E E	ATOM			PHE				45.360
55	ATOM	2852	CD1		303	2.002	21.321	
	ATOM	2853	HD1		303	1.699	20.734	44.493
	ATOM	2854	CD2		303	3.602	21.857	47.020
	MOTA	2855	HD2		303	4.576	21.700	47.481
	ATOM	2856	CE1		303	1.141	22.260	45.878
60	MOTA	2857	HE1		303	0.164	22.415	45.420
	ATOM	2858	CE2		303	2.745	22.798	47.543
	ATOM	2859	HE2		303	3.045	23.382	48.413
	MOTA	2860		PHE	303	1.512	23.003	46.972
	ATOM	2861	HZ	PHE	303	0.834	23.750	47.385
65	MOTA	2862	С	PHE	303	5.742	21.766	44.450
	ATOM	2863		PHE	303	6.717	21.578	45.178
	ATOM	2864		LYS	304	5.433	22.985	43.975
	ATOM	2865		LYS	304	4.581	23.107	43.409
		_						

	N TOOM	2866	CN	TVC	304	6.268	24 112	44.242
	MOTA		CA	LYS			24.113	
	ATOM	2867	HA	LYS	304	7.253	23.919	43.816
	ATOM	2868	CB	LYS	304	5.737	25.406	43.588
	ATOM	2869	HB1	LYS	304	5.896	25.330	42,512
_								
5	MOTA	2870		LYS	304	6.292	26.247	44.004
	ATOM	2871	ÇG	LYS	304	4.245	25.690	43.809
	MOTA	2872	HG1	LYS	304	3.698	24.760	43.657
		2873			304			
	ATOM			LYS		3.935	26.445	43.086
	MOTA	2874	CD	LYS	304	3.878	26.212	45.198
10	MOTA	2875	HD1	LYS	304	4.366	27.153	45.455
	ATOM	2876		LYS	304	4.140	25.529	46.006
		·-						
	MOTA	2877	CE	LYS	304	2.382	26.481	45.378
	ATOM	2878	HE1	LYS	304	1.815	25.565	45.212
	MOTA	2879		LYS	304	2.050	27.236	44.665
16					•			
15	ATOM	2880	NZ	LYS	304	2.117	26.967	46.751
	ATOM	2881	HZ1	LYS	304	1.109	27.146	46.864
	MOTA	2882	HZ2	LYS	304	2.417	26.255	47.432
						2.640	27.840	46.913
	MOTA	2883	HZ3	LYS	304			
	MOTA	2884	С	LYS	304	6.361	24.287	45.721
20	MOTA	2885	0	LYS	304	7.430	24.585	46.251
	MOTA	2886	N	GLY	305	5.246	24.082	46.441
	MOTA	2887	HN	GLY	305	4.371	23.802	45.976
	MOTA	2888	CA	GLY	305	5.288	24.257	47.860
	MOTA	2889	HA1	GLY	305	6.252	23.857	48.172
25				GLY		4.441	23.690	48.245
23	MOTA	2890	HA2		305			
	ATOM	2891	С	GLY	305	5.161	25.719	48.079
	MOTA	2892	0	GLY	305	5.651	26.503	47.268
	ATOM	2893	N	ILE	306 ,	4.501	26.118	49.184
	MOTA	2894	HN	ILE	306	4.123	25.418	49.838
30	ATOM	2895	CA	ILE	30 6	4.326	27.513	49.449
	ATOM	2896	HA	ILE	306	3.697	27.920	48.658
	ATOM	2897	CB	ILE	306	3.594	27.798	50.731
	MOTA	2898	HB	ILE	306	3.598	28.878	50.880
	MOTA	2899	CG2	ILE	306	2.161	27.263	50.578
35	ATOM	2900	HG2	ILE	. 306	1.601	27.454	51.493
55								
	MOTA	2901	HG2	ILE	306	1.673	27.764	49.742
	MOTA	2902	HG2	ILE	306	2.191	26.190	50.389
	MOTA	2903	CG1	ILE	306	4.337	27.222	51.943
	ATOM	2904	HG1	ILE	306	5.393	27.492	51.966
40								
40	ATOM	2905	HG1	ILE	306	4.312	26.133	51.983
	MOTA	2906	CD1	ILE	306	3.763	27.695	53.279
	MOTA	2907	HD1	ILE	306	4.333	27.252	54.096
	ATOM	2908	HD1	ILE	306	3.828	28.781	53.338
	MOTA	2909	HD1	ILE	306	2.720	27.389	53.356
45	MOTA	2910	. С	ILE	306	5.674	28.141	49.449
	MOTA	2911	0	ILE	306	6.478	27.978	50.364
		2912	N	LEU	307	5.941	28.867	48.354
	ATOM							
	MOTA	2913	HN	LEU	307	5.192	28.985	47.656
	MOTA	2914	CA	LEU	307	7.199	29.486	48.098
50	ATOM	2915	HA	LEU	307	7.955	28.703	48.134
-						7.210		
	ATOM	2916	CB	LEU	307		30.189	46.725
	MOTA	2917	HB1	LEU	307 ·	6.423	30.943	46.727
	MOTA	2918	HB2	LEU	307	7.025	29.435	45.960
	ATOM	2919	CG	LEU	307	8.523	30.905	46.351
<i>E E</i>								
55	MOTA	2920	НG	LEU	307	8.558	31.200 _.	45.302
	MOTA	2921	CD2	LEU	307	9.714	29.929	46.432
	ATOM	2922	HD2	LEU	307	10.632	30.452	46.165
				LEU	307	9.799	29.543	47.448
	MOTA	2923						
_	ATOM	2924	HD2	LEU	307	9.554	29.101	45.742
60	ATOM	2925	CD1	LEU	307	8.750	32.186	47.158
	ATOM	2926		LEU	307	9.689	32.648	46.853
	MOTA	2927	HD1	LEU	307	7.929	32.880	46.977
	MOTA	2928	HD1	LEU	307	8.793	31.944	48.220
	MOTA	2929	С	LEU	307	7.410	30.505	49.163
65	MOTA	2930	0	LEU	307	8.534	30.723	49.608
55						6.319		
	MOTA	2931	N	LYS	308		31.148	49.609
	MOTA	2932	HN	LYS	308	5.382	30.859	49.292
	MOTA	2933	CA	LYS	308	6.463	32.233	50.524

	ATOM	2934	HA	LYS	308	7.048	33.047	50.097
	ATOM	2935	CB	LYS	308	5.116	32.858	50.931
	ATOM	2936	HB1	LYS	308	4.471	32.172	51.481
	ATOM	2937	HB2	LYS	308	4.524	33.195	50.080
5	MOTA	2938	CG	LYS	308	5.268	34.086	51.833
	ATOM	2939	HG1	LYS	308	6.044	34.727	51.414
	ATOM	2940	HG2	LYS	308	5.550	33.747	52.830
	ATOM	2941	CD	LYS	308	3.992	34.919	51.965
	MOTA	2942	HD1	LYS	308	3.151	34.365	52.383
10	ATOM	2943	HD2	LYS	308	3.629	35.312	51.015
	ATOM	2944	CE	LYS	308	4.151	36.144	
								52.868
	MOTA	2945	HE1	LYS	308	4.925	36.802	52.473
	MOTA	2946	HE2	LYS	308	4.433	35.833	53.874
	ATOM	2947	NZ	LYS	308	2.877	36.893	52.939
15	ATOM	2948	HZ1	LYS	308	2.994	37.714	53.548
		2949	HZ2					
	ATOM			LYS	308	2.607	37.202	51.994
	MOTA	2950	HZ3	LYS	308	2.141	36.283	53.323
	MOTA	2951	С	LYS	308	7.153	31.809	51.784
	ATOM	2952	0	LYS	308	8.133	32.436	52.181
20	ATOM	2953	N	ASP	309	6.702	30.728	52.452
20								
	MOTA	2954	HN	ASP	309	5.948	30.131	52.082
	MOTA	2955	CA	ASP	⁻ 309	7.337	30.463	53.712
	ATOM	2956	HA	ASP	309	7.338	31.351	54.345
	ATOM	2957	СВ	ASP	309	6.610	29.452	54.635
25								
25	ATOM	2958	HB1	ASP	309	5.567	29.706	54.821
	MOTA	2959	HB2	ASP	309	7.062	29.362	55.623
	MOTA	2960	CG	ASP	309	6.582	28.034	54.079
	ATOM	2961	OD1	ASP	309	6.841	27.841	52.864
	ATOM	2962	OD2	ASP		6.287	27.111	54.884
20								
30	MOTA	2963	С	ASP	309	8.760	30.037	53.518
	ATOM	2964	0	ASP	309	9.643	30.454	54.266
	MOTA	2965	N	LYS	310	9.026	29.208	52.494
	ATOM	2966	HN	LYS	310	8.267	28.936	51.852
	ATOM	2967	CA	LYS	310	10.346	28.697	52.280
25								
35	ATOM	2968	HA	LYS	310 ,	10.683	28.199	53.189
	MOTA	2969	CB	LYS	310	10.370	27.637	51.162
	ATOM	2970	HB1	LYS.	310	9.775	26.784	51.487
	ATOM	2971	HB2	LYS	310	11.406	27.342	50.994
	ATOM	2972	CG	LYS	310	9.802	28.114	49.824
40								
40	MOTA	2973		LYS	310	8.928	28.757	49.921
	ATOM	2974	HG2	LYS	310	9.482	27.304	49.169
	ATOM	2975	CD	LYS	310	10.790	28.923	48.989
	ATOM	2976	.HD1	LYS	310	11.586	29.351	49.598
		2977		LYS	310	10.306	29.753	48.474
4.5	MOTA							45 04 6
45	ATOM	2978	CE	LYS	310	11.465	28.072	47.916
	ATOM	2979	HE1	LYS	310	12.233	28.655	47.407
	MOTA	2980	HE2	LYS	310	10.727	27.742	47.184
	ATOM	2981	NZ	LYS	310	12.094	26.882	48.535
	ATOM				310	12.547	26.314	47.806
50		2982	HZ1	LYS				
50	ATOM	2983	HZ2	LYS	310	12.800	27.185	49.222
	MOTA	2984	HZ3	LYS	310	11.373	26.320	49.010
	ATOM	2985	С	LYS	310	11.256	29.834	51.951
	ATOM	2986	0	LYS	310	12.376	29.917	52.454
					311	10.771	30.770	51.125
	MOTA	2987	N	LYS				
55	MOTA	2988	HN	LYS	311	9.806	30.685	50.773
	ATOM	2989	CA	LYS	311	11.571	31.885	50.723
	ATOM	2990	HA	LYS	311	12.472	31.502	50.245
	ATOM	2991	СВ	LYS	311	10.833	32.824	49.750
	ATOM	2992	HB1	LYS	311	9.923	33.258	50.163
60	ATOM	2993	HB2	LYS	311	10.517	32.340	48.826
	ATOM	2994	CG	LYS	311	11.668	34.024	49.298
	ATOM	2995	HG1	LYS	311	12.675	33.754	48.979
						11.804	34.774	50.076
	ATOM	2996	HG2	LYS	311			
	ATOM	2997	CD	LYS	311	11.058	34.776	48.114
65	ATOM	2998	HD1	LYS	311	10.065	35.179	48.317
	ATOM	2999	HD2	LYS	311	10.935	34.162	47.222
	ATOM	3000	CE	LYS	311	11.886	35.977	47.657
	ATOM	3001	HE1		311	12.880	35.649	47.350
	AT ON	2001	ne 1	دىدىد	J. L	12.000	55.043	47.550

	ATOM	3002	HE2	LYS	311	11.986	36.693	48.472
	ATOM	3003		LYS	311	11.225	36.641	46.512
	MOTA	3004		LYS	311	11.789	37.448	46.210
	MOTA	3005		LYS	311	11.135	35.974	45.732
5	MOTA	3006		LYS	311	10.289	36.964	46.795
	ATOM	3007		LYS	311	11.913	32.675	51.940
	ATOM	3008		LYS	311	13.005	33.229	52.047
	MOTA	3009		ASN	312	10.984	32.755	52.905
	ATOM	3010		ASN	312	10.097	32.239	52.827
10	ATOM	3011		ASN	312	11.257	33.575	54.045
	ATOM	3012		ASN	312	11.420	34.609	53.739
	ATOM	3013		ASN	312	10.099	33.574	55.063
	ATOM	3014	HB1		312	10.036	32.590	55.527
	MOTA	3015		ASN	312	9.168	33.801	54.542
15	ATOM	3016		ASN	312	10.372	34.633	56.125
	ATOM	3017.			312	11.435	34.669	56.741
	ATOM	3018		ASN	312	9.373	35.531	56.346
	ATOM	3019		ASN	312	8.496	35.468	55.809
	ATOM	3020		ASN	312	9.495	36.273	57.050
20	ATOM	3021		ASN	312	12.484	33.089	54.758
~0	ATOM	3022		ASN	312	13.420	33.856	54.976
	ATOM	3023		ASP	313	12.519	31.797	55.141
	ATOM	3024		ASP	313	11.753	31.159	54.884
	ATOM	3025		ASP	313	13.633	31.317	55.912
25	ATOM	3025		ASP	313	13.846	31.958	56.767
23	ATOM	3027		ASP	313	13.389	29.912	56.491
	ATOM	3027		ASP	313	13.397	29.191	55.674
	ATOM	3029		ASP	313	12.421	29.904	56.992
	MOTA	3030	CG	ASP	313	14.499	29.594	57.485
30	ATOM	3031		ASP	313	15.396	30.458	57.678
30	ATOM	3032		ASP	313	14.459	28.480	58.071
	MOTA	3032	C	ASP	313	14.893	31.247	55.098
	ATOM	3034	Ö	ASP	313	15.914	31.818	55.477
	ATOM	3035	N	ILE	314	14.840	30.543	
35	ATOM	3036	·HN	ILE	314	13.931	30.171	53.642
33	ATOM	3037	CA	ILE	314	16.001	30.290	53.140
	MOTA	3038	HA	ILE	314	16.848	29.957	53.740
	ATOM	3039	СВ	ILE	314	15.818	29.155	52.172
	ATOM	3040	HB	ILE	314	16.744	29.065	51.605
40	ATOM	3041	CG2	ILE	314	15.534	27.894	53.003
40	ATOM	3042	HG2	ILE	314	15.394	27.043	52.337
	ATOM	3043	HG2	ILE	314	16.375	27.699	53.668
	MOTA	3043	HG2	ILE	314	14.631	28.044	53.595
	ATOM	3045	CG1	ILE	314	14.731	29.445	51.128
45	ATOM	3046	HG1	ILE	314	14.891	30.396	50.619
73	ATOM	3047	HG1	ILE	. 314	13.736	29.494	51.571
	ATOM	3048	CD1	ILE	314	14.672	28.373	50.041
	ATOM	3049	HD1	ILE	314	13.888	28.623	49.326
	ATOM	3050	HD1	ILE	314	15.631	28.325	49.525
50	ATOM	3051	HD1	ILE	314	14.455	27.406	50.494
	ATOM	3052	С	ILE	314	16.439	31.514	52.401
	ATOM	3053	ō	ILE	314	17.616	31.642	52.065
	ATOM	3054	N	GLU	315	15.488	32.421	52.112
	ATOM	3055	HN	GLU	315	14.538	32.218	52.456
55	ATOM	3056	CA	GLU	315	15.658	33.644	51.373
-	ATOM	3057	HA	GLU	315	14.725	34.208	51.379
	ATOM	3058	СВ	GLU	315	16.633	34.692	51.965
	ATOM	3059	HB1	GLU	315	16.327	34.881	52.993
	ATOM	3060	HB2		315	16.556	35.593	51.355
60	ATOM	3061	CG	GLU	315	18.119	34.328	52,014
	ATOM	3062	HG1	GLU	315	18.700	35.213	51.754
	ATOM	3063		GLU	315	18.302	33.528	51.297
	ATOM	3064	CD	GLU	315	18.455	33.866	53.426
	ATOM	3065	OE1	GLU	315	17.508	33.744	54.248
65	ATOM	3066	OE2		315	19.662	33.627	53.700
	ATOM	3068	C	GLU	315	16.035	33.328	49.964
	ATOM	3069	ŏ	GLU	315	16.677	34.123	49.280
	ATOM	3070	N	ALA	316	15.620	32.138	49.494
	011	55.5						

	MOTA	3071	HN	ALA	316	15.141	31.488	50.133
	MOTA	3072	CA	ALA	316	15.825	31.747	48.134
	MOTA	3073	HA	ALA	316	15.932	32.684	47.588
	MOTA	3074	CB	ALA	316	17.028	30.811	47.931
5	ATOM	3075	HB1	AT.A	316	17.118	30.559	46.874
•		3076	HB2					
	ATOM				316	17.938	31.311	48.264
	ATOM	3077	HB3	ALA	316	16.882	29.899	48.510
	ATOM	3078	C	ALA	316	14.602	30.978	47.770
		3079						
	MOTA		0	ALA	316	13.837	30.575	48.642
10	ATOM	3080	N	GLN	317	14.355	30.790	46.464
	MOTA	3081	HN	GLN	317	14.951	31.225	45.745
	ATOM	3082	CA	GLN	317	13.244	29.970	46.096
	MOTA	3083	HA	GLN	317	12.404	30.119	46.774
	MOTA	3084	CB	GLN	317	12.787	30.170	44.639
15	ATOM	3085	HB1	GLN	317	13.561	29.940	43.907
10								
	MOTA	3086	HB2		317	12.478	31.191	44.418
	ATOM	3087	CG	GLN	317	11.592	29.294	44.250
	ATOM	3088	HG1	GLN	317	10.703	29.682	44.748
	ATOM	3089	HG2		317	11.793	28.272	44.571
20	ATOM	3090	CD	GLN	317	11.423	29.353	42.741
	ATOM	3091	OE1	GLN	317	12.182	30.026	42.045
						10.406		
	ATOM	3092		GLN	317		28.615	42.219
	ATOM	3093	HE2	GLN	317	9.796	28.067	42.841
	ATOM	3094	HE2	GLN	317	10.246	28.605	41.201
25			C				28.597	
25	ATOM	3095		GLN	317	13.799		46.193
	ATOM	3096	0	GLN	317	14.136	28.135	47.282
	ATOM	3097	N	TRP	318	13.907	27.901	45.049
	ATOM	3098	HN	TRP	318	13.524	28.260	44.162
	ATOM	, 3099	CA	TRP	318	14.574	26.649	45.118
30	MOTA	3100	HA	TRP	318	14.080	25.983	45.826
	ATOM	3101	СВ	TRP	318	14.701	25.917	43.774
	MOTA	3102	HB1	TRP	318	15.480	25.159	43.868
	ATOM	3103	HB2	TRP	318	14.968	26.645	43.009
	ATOM	3104	CG	TRP	318	13.438	25.227	43.334
35	ATOM	3105	CD2	TRP	318	13.213	23.824	43.520
33								
	ATOM	3106	CD1	TRP	318	12.327	25.721	42.716
	MOTA	3107	HD1	TRP	318	12.181	26.762	42.428
	MOTA	3108	NE1	TRP	318	11.419	24.709	42.511
	MOTA	3109	HE1	TRP	318	10.496	24.810	42.066
40	ATOM	3110	CE2	TRP	318	11.953	23.535	43.000
	ATOM	3111	CE3	TRP	318	13.992	22.855	44.083
			HE3		318	14.976	23.084	44.492
	ATOM	3112		TRP				
	MOTA	3113	CZ2	TRP	318 ·	11.450	22.267	43.040
	ATOM	3114	HZ2	TRP	318	10.461	22.038	42.642
45	ATOM	3115	C73	TRP	318	13.484	21.576	44.113
73								
	ATOM	3116		TRP	318	14.080	20.775	44.550
	MOTA	3117	CH2	TRP	318	12.237	21.287	43.602
	MOTA	3118	HH2	TRP	318	11.867	20.263	43.643
					318			
60	ATOM	3119	C	TRP		15.934	27.003	45.561
50	MOTA	3120	0	TRP	318	16.704	27.633	44.839
	MOTA	3121	N	HIS	319	16.265	26.644	46.804
		3122	HN	HIS	319	15.590	26.209	47.449
	MOTA							
	MOTA	3123	CA	HIS	319	17.609	26:903	47.178
	MOTA	3124	HA	HIS	319	17.968	27.836	46.744
55	ATOM	3125		HIS	319	19.405	28.897	49.152
55								
	ATOM	3126		HIS	319	18.737	29.653	48.947
	ATOM	3127	CG	HIS	319	19.158	27.543	49.089
	ATOM	3128	NF.2	HIS	319	21.298	27.881	49.725
				HIS		22.271	27.714	
	ATOM	3129			319			50.017
60	MOTA	3130		HIS	319	20.325	26.938	49.441
	ATOM	3131	HD2	HIS	319	20.474	25.860	49.493
	ATOM	3132		HIS	319	20.698	29.042	49.537
	ATOM	3133		HIS	319	21.186		49.675
	ATOM	3134	CB	HIS	319	17.831	26.955	48.701
65	ATOM	3135		HIS	319	17.801	25.974	49.176
					319		27.553	49.226
	ATOM	3136		HIS		17.086		
	ATOM	3137	С	HIS	319	18.318	25.721	46.634
	MOTA	3138	0	HIS	319	17.970	25.193	45.578
								_

	ATOM	3139	N	ASP	320		19.339	25.255	47.343
	ATOM	3140	HN	ASP	320		19.651	25.725	48.205
	ATOM	3141	CA	ASP	320		19.985	24.084	46.866
~	ATOM	3142	HA	ASP	320		20.748	23.809	47.594
5	ATOM	3143	CB	ASP	320		19.014	22.906	46.680
	MOTA	3144	HB1	ASP	320		18.406	23.133	45.804
	MOTA	3145	HB2		320		18.414	22.844	47.588
	ATOM	3146	CG	ASP	320		19.862	21.664	46.475
10	MOTA	3147	OD1	ASP ASP	320		21.108	21.797	46.605
10	MOTA	3148	OD2		320	-	19.287	20.581	46.189
	ATOM	3149 3150	C	ASP	320		20.591	24.410	45.543
	MOTA		0	ASP	320 321		20.863	23.527	44.734
	ATOM	3151 3152	N	GLU			20.805	25.711	45.284
15	ATOM	3152	HN CA	GLU	321		20.507	26.433	45.956 44.064
13	ATOM ATOM	3153	HA	GLU GLU	321 321		21.449 20.858	26.080 25.621	44.004
	ATOM	3155	CB	GLU	321		21.492	27.598	43.272
	ATOM	3156	HB1	GLU	321		20.466	27.356	43.727
	ATOM	3157	HB2	GLU	321		22.049	27.776	42.900
20	ATOM	.3158	CG	GLU	321		22.160	28.416	44.920
20	ATOM	3159	HG1	GLU	321		23.186	28.056	44.927
	ATOM	3160	HG2	GLU	321		21.591	28.234	45.832
•	ATOM	3161	CD	GLU	321		22.094	29.872	44.482
	ATOM	3162	OE1	GLU	321		22.672	30.192	43.409
25	ATOM	3163	OE2	GLU	321		21.454	30.681	45.206
20	ATOM	3165	C	GLU	321		22.827	25.529	44.160
	ATOM	3166	ō	GLU	321		23.432	25.205	43.136
	ATOM	3167	N	SER	322		23.347	25.443	45.412
	ATOM	3168	HN	SER	322		22.814	25.829	46.204
30	ATOM	3169	CA	SER	322		24.618	24.827	45.659
- •	ATOM	3170	HA	SER	322		25.430	25.437	45.262
	ATOM	3171	СВ	SER	322		24.927	24.624	47.160
	ATOM	3172	HB1	SER	322		24.996	25.576	47.687
	MOTA	3173	HB2	SER	322		25.872	24.103	47.309
35	_ ATOM	3174	OG	SER	322		23.918	23.859	47.803
	MOTA	3175	HG	SER	322		23.260	24.491	48.282
	MOTA	3176	С	SER	322 _.		24.526	23.521	44.959
	MOTA	3177	0	SER	322		25.115	23.387	43.897
	MOTA	3178	N	HIS	323		23.752	22.560	45.498
40	ATOM	3179	HN	HIS	323		23.409	22.679	46.462
	ATOM	3180	CA	HIS	323		23.388	21.374	44.775
	MOTA	3181	HA	HIS	323		22.610	20.799	45.277
	MOTA	3182	ND1	HIS	323		23.939	19.802	41.804
	MOTA	3183	HD1	HIS	323		23.138	19.168	41.935
45	ATOM	3184	CG	HIS	323		24.093	21.047	42.361
	ATOM	3185	NE2	HIS	323		25.895	20.563	41.076
	ATOM	3186		HIS	323		26.802	20.635	40.593
	ATOM	3187		HIS	323		25.298	21.496	41.902
50	ATOM	3188		HIS	323		25.732	22.463	42.154
50	ATOM	3189	CE1		323		25.041 25.200	19.562 18.644	41.048 40.481
	MOTA	3190	CB	HIS	323		23.200	21.632	43.306
	MOTA	3191		HIS HIS	323 323		22.997	22.695	43.300
	ATOM	3192 3193		HIS	323		22.100	21.202	43.010
55	MOTA MOTA	3194		HIS	323		24.526	20.450	44.588
رر	ATOM	3195	ŏ.	HIS	323		24.289	19.248	44.451
	MOTA	3196	N	LEU	324		25.759	20.990	44.683
	MOTA	3197	HN	LEU	324		25.853	21.886	45.182
	ATOM	3198	CA	LEU	324		26.948	20.402	44.136
60	ATOM	3199	HA	LEU	324		26.967	20.551	43.057
	ATOM	3200	CB	LEU	324		28.238	20.916	44.804
	MOTA	3201	HB1		324		29.079	20.386	44.357
	ATOM	3202	HB2	LEU	324		28.167	20.708	45.872
	ATOM	3203	CG	LEU	324		28.526	22.420	44.658
65	ATOM	3204	HG	LEU	324		29.405	22.708	45.234
	ATOM	3205	CD2		324		27.446	23.275	45.336
	ATOM	3206	HD2		324		27.687	24.331	45.211
	MOTA	3207	HD2	LEU	324		26.478	23.067	44.881

	ATOM	3208	HD2	LEU	324		27.407	23.036	46.399
	ATOM	3209	CD1	LEU	324		28.781	22.792	43.195
	ATOM	3210	HD1	LEU	324		28.982	23.861	43.121
	ATOM	3211	HD1	LEU	324		29.641	22.235	42.822
5	ATOM	3212	HD1	LEU	324		27.903	22.546	42.598
,	ATOM	3213	C	LEU			26.964	18.949	44.430
	ATOM	3213	0	LEU	324	•			
							27.140	18.135	43.526
	MOTA	3215	N	ASN	325		26.706	18.583	45.693
10	ATOM	3216	HN	ASN	325		26.480		46.406
10	ATOM	3217	CA	ASN	325		26.749	17.198	46.034
	MOTA	3218	HA	ASN	325		27.658	16.729	45.657
	MOTA	3219	CB	ASN	325		26.815	16.936	47.552
	MOTA	3220	HB1	ASN	325		27.743	17.346	47.949
	ATOM	3221	HB2	ASN	325		26.782	15.862	47.735
15	MOTA	3222	CG	ASN	325		25.629	17.606	48.231
	ATOM	3223	OD1	ASN	325		24.608	16.987	48.528
	ATOM	3224	ND2	ASN	325		25.786	18.928	48.504
	MOTA	3225	HD2	ASN	325		26.658	19.409	48.238
	ATOM	3226	HD2		325		25.034	19.450	48.976
20	ATOM	3227	С	ASN	325		.25.583	16.464	45.452
	ATOM	3228	ō	ASN	325	•	25.266	16.592	44.272
	ATOM	3229	N	LYS	326		24.918	15.656	46.293
	ATOM	3230	HN	LYS	326		25.203	15.646	47,283
	ATOM	3231	CA	LYS	326		23.836	14.806	45.892
25	ATOM	3232	HA	LYS	326			14.154	
23		3233					24.162		45.082
	MOTA		CB	LYS	326		23.320	13.917	47.038
	ATOM	3234	HB1	LYS	326		22.934	14.484	47.885
	ATOM	3235	HB2	LYS	326		24.085	13.262	47.456
20	ATOM	3236	CG	LYS	326		22.178	12.989	46.620
30	MOTA	3237	HG1	LYS	326		21.349	13.508	46.138
	MOTA	3238	HG2	LYS	326		21.729	12.448	-47.453
	ATOM	3239	CD	LYS	326		22.604	11.907	45.625
	ATOM	3240	HD1	LYS	326		23.383	11.245	46.004
2.5	MOTA	3241	HD2		326		23.002	12.303	44.691
35	MOTA	3242	CE	LYS	326		21.466	10.976	45.205
	ATOM	3243	HE1	LYS	326		21.801	10.312	44.407
	MOTA	3244	HE2	LYS	326		20.618	11.560	44.845
	MOTA	3245	NZ	LYS	326		21.028	10.157	46.357
	MOTA	3246	HZ1	LYS	326		20.262	9.534	46.064
40	MOTA	3247	HZ2	LYS	326		21.820	9.592	46.697
	MOTA	3248	HZ3	LYS	326		20.699	10.775	47.112
	MOTA	3249	С	LYS	326		22.690	15.639	45.423
	ATOM	3250	0	LYS	326		21.808	15.145	44.722
	ATOM	3251	N	TYR	327		22.680	16.933	45.786
45	MOTA	3252	HN	TYR	327		23.495	17.331	46.273
	ATOM	3253	CA	TYR	327		21.549	17.763	45.504
	ATOM	3254	HA	TYR	327		20.671	17.418	46.051
	MOTA	3255	CB	TYR	327		21.740	19.220	45.934
	ATOM	3256	HB1	TYR	327		20.870	19.767	45.570
50	MOTA	3257	HB2	TYR	327		22.666	19.561	45.471
	ATOM	3258	CG	TYR	327		21.821	19.215	47.421
	ATOM	3259	CD1	TYR	327		20.702	18.966	48.183
	ATOM	3260	HD1	TYR	327		19.748	18.769	47.692
	ATOM	3261	CD2		327		23.010	19.475	48.056
55	ATOM	3262	HD2	TYR	327		23.902	19.685	47.465
	MOTA	3263	CE1	TYR	327		20.774	18.963	49.556
• • •	ATOM	3264	HE1	TYR	327		19.882	18.760	50.149
	ATOM	3265	CE2	TYR	327		23.091	19.474	49.429
	MOTA	3266	HE2	TYR	327		24.043	19.678	49.920
60	ATOM	3267	CZ	TYR	327		21.972	19.076	50.182
50	ATOM	3268	OH	TYR	327		22.050	19.213	51.590
	ATOM	3269	HH	TYR	327		22.030	20.162	51.590
				TYR					
	ATOM	3270	С		327		21.228	17.742	44.049
65	MOTA	3271	0	TYR	327		20.066	17.901	43.680
65	MOTA	3272	N	PHE	328		22.233	17.554	43.175
	MOTA	3273	HN	PHE	328		23.201	17.416	43.497
	MOTA	3274	CA	PHE	328		21.907	17.554	41.779
	MOTA	3275	HA	PHE	328		21.453	18.518	41.551

	ATOM	3276	CB P	HE	328	23.092	17.255	40.855
	ATOM	3277		HE	328 '	23.318	16.194	40.961
	ATOM	3278			328	23.920	17.881	41.188
				HE				
_	MOTA	3279		HE	328	22.659	17.596	39.469
5	MOTA	3280		HE	328	21.861	16.738	38.747
	MOTA	3281	HD1 F	HE	328	21.540	15.796	39.191
	ATOM	3282	CD2 F	HE	328	23.059	18.779	38.889
	ATOM	3283	HD2 F	HE	328	23.694	19.465	39.449
	ATOM	3284		HE	328	21.466	17.060	37.470
10	MOTA	3285		HE	328	20.832	16.374	36.908
10								
	ATOM	3286	CE2.E		328	22.666	19.106	37.613
	MOTA	3287		PHE.	328	22.989	20.047	37.167
	MOTA	3288 -	CZ E	PHE .	328	21.867	18.245	36.900
	ATOM	3289	HZ E	HE	328	21.553	18.500	35.887
15	MOTA	3290		HE	328	20.956	16.433	41.547
	ATOM	3291		HE	328	19.935	16.596	40.880
		3292		ΈU	329	21.270	15.262	42.130
	MOTA							
	ATOM	3293		ĿΕÜ	329	22.106	15.206	42.730
	MOTA	3294	CA I	LEU	329	20.470	14.096	41.933
20	ATOM	3295	HA I	ĿΕŲ	329	20.416	13.895	40.863
	ATOM	3296	CB I	LEU	329	21.059	12.859	42.644
	ATOM	3297		EU	329	21.110	13.079	43.711
	ATOM	3298		LEU	329	22.053	12.679	42.234
						20.262	11.543	42.491
25	ATOM	3299		LEU	329			
25	MOTA	3300		LEU	329	20.813	10.667	42.832
	MOTA	3301	CD2 I		329	20.060	11.202	41.000
	ATOM	3302	HD2 I	LEU	329	19.497	10.273	40.912
	ATOM	3303	HD2 1	LEU	329	19.510	12.008	40.514
	MOTA	3304	HD2		329	21.031	11.085	40.519
30	ATOM	3305		LEU	329	18.949	11.540	43.283
50	ATOM	3306		LEU	329	18.436		- 43.134
								44.343
	MOTA	3307		LEU	329	19.164	11.674	
	MOTA	3308		LEU	329	18.313	12.354	42.937
	MOTA	3309	C 1	LEU	329	19.112	14.364	42.488
-35	MOTA	3310	0 1	LEU	32,9	18.107	14.056	41.848
	ATOM	3311	N I	LEU	330	19.035	14.962	43.688
	ATOM	3312		LEU	330	19.874	15.282	44.193
	ATOM	3313		LEU	330	17.722	15.129	44.223
	ATOM	3314		LEU	330	17.010	14.721	43.506
40								45.576
40	ATOM	3315		LEU	330	17.543		
	ATOM	3316		LEU	330	17.997	15.041	46.349
	MOTA	3317	HB2	LEU	330	18.036	13.451	45.523
	MOTA	3318	CG :	LEU	330	16.072	14.181	45.970
	ATOM	3319	HG :	LEU	330	15.976	13.716	46.951
45	ATOM	3320	CD2	LEU	330	15.436	13.109	45.072
	ATOM	3321	HD2		330	14.398	12.955	45.368
			HD2		330	15.472	13.437	44.033
	ATOM	3322						
	ATOM	3323	HD2		330	15.985	12.174	45.177
	ATOM	3324	CD1		330	15.262	15.482	46.026
50	ATOM	3325	HD1		330	14.233	15.258	46.308
	ATOM	3326	HD1	LEU	330	15.703	16.153	46.763
	MOTA	3327	HD1	LEU	330	15.274	15.960	45.047
	ATOM	3328		LEU	330	17.487	16.592	44.431
	MOTA	3329		LEU	330	17.444	17.077	45.562
55								
55	ATOM	3330		ASN	331	17.328	17.341	43.328
	MOTA	3331		ASN	331	17.407	16.901	42.400
	ATOM	3332	CA	ASN	331	17.051	18.742	43.424
	MOTA	3333	HA.	ASN	331	17.837	19.170	44.047
	MOTA	3334	CB	ASN	331	16.976	19.424	42.048
60	ATOM	3335	HB1		331	16.171	18.958	41.480
3.4	ATOM	3336	HB2		331	17.933	19.284	41.544
						16.694	20.904	42.264
	ATOM	3337		ASN	331			
	MOTA	3338	OD1		331	16.194	21.591	41.374
	MOTA	3339	ND2		331	17.027	21.411	43.480
65	MOTA	3340	HD2	ASN	331	17.444	20.799	44.197
	MOTA	3341	HD2		331	16.863	22.407	43.685
	ATOM	3342		ASN	331	15.703	18.864	44.050
	ATOM	3343		ASN	331	15.436	19.785	44.821
	1 011	5545	-					

	ATOM	3344	N	LYS	332	14.823	17.903	43.713
	ATOM	3345	HN	LYS	332	15.153	17.154	43.086
		3346			332	13.462		44.159
	ATOM		CA	LYS			17.843	
_	MOTA	3347	HA	LY\$	332	12.928	18.738	43.841
5	MOTA	3348	CB	LYS	332	12.715	16.655	43.515
	ATOM	3349	HB1	LYS	332	12.740	16.788	42.433
	ATOM	3350	HB2	LYS	332	11.689	16.662	43.883
	ATOM	3351	CG	LYS	332	13.296		
							15.273	43.816
	ATOM	3352	HG1		332	13.499	15.128	44.877
10	ATOM	3353	HG2	LYS	332	14.239	15.095	43,298
	ATOM	3354	CD	LYS	332	12.355	14.138	43.399
	ATOM	3355	HD1	LYS	332	12.076	14.291	42.357
	ATOM	3356	HD2		332	11.475	14.170	44.042
	ATOM	3357	CE			12.963	12.738	43.515
15	MOTA	3358	HE1	LYS	332	13.258	12.543	44.546
	MOTA	3359	HE2	LYS	· 332	13.841	12.657	42.875
	ATOM	3360	NZ	LYS	332	11.972	11.719	43.099
	ATOM	3361	HZ1		332	12.389	10.781	43.180
	MOTA	3362	HZ2	LYS	332	11.142	11.779	43.706
20	MOTA	3363	HZ3	LYS	332	11.695	11.888	42.122
	ATOM	3364	С	LYS	332	13.419	17.754	45.662
	ATOM	3365	0	LYS	332	14.399	18.071	46.332
	ATOM	3366	N	PRO	333	12.345	17.329	46.275
0.5	MOTA	3367	CA	PRO	333	12.372	17.351	47.704
25	ATOM	3368	HА	PRO	333	12.569	18.375	48.023
	MOTA	3369	CD	PRO	333 .	10.990	17.562	45.801
	MOTA	3370	HD1	PRO	333	10.839	17.134	44.810
	ATOM	3371	HD2	PRO	333	10.772	18.628	45.737
	ATOM	3372	CB	PRO	333	10.943		48.173
20								
30	MOTA	3373		PRO	333	10.656	17.963	48.728
	ATOM	3374	HB2	PRO	333	11.028	16.175	48.789
	ATOM	3375	CG	PRO	333	10.141	16.860	46.870
	ATOM	3376	HG1	PRO	333	9.148	17.302	46.948
	ATOM	3377	HG2	PRO	333	10.021	15.798	46.654
35	ATOM	3378	C	PRO	333	13.404	16.485	48.328
33								
	MOTA	3379	0	PRO	333	13.222	15.270	48.380
	MOTA	3380	N	THR	334	14.503	17.100	48.802
	MOTA	3381	HN	THR	334	14.657	18.101	48.614
	ATOM	3382	CA	THR	334	15.454	16.361	49.568
40	ATOM	3383	HA	THR	334	14.917	15.955	50.425
70								
	ATOM	3384	CB	THR	334	16.184	15.293	48.819
	MOTA	3385	HB	THR	334	15.468	14.836	48.137
	ATOM	3386	OG1	THR	334	16.744	14.358	49.730
	ATOM	3387	HG1	THR	334	16.396	14.553	50.680
45	ATOM	3388	CG2	THR	334	17.332	15.979	48.066
	ATOM	3389		THR	334	17.895	15.234	47.503
	ATOM	3390	HG2	THR	334	16.925	16.721	47.379
	MOTA	3391	HG2	THR	334	17.994	16.471	48.779
	ATOM	3392	С	THR	334	16.513	17.324	49.973
50	ATOM	3393	0	THR	334.	17.386	16.980	50.767
	MOTA	3394	N	LYS	335	16.445	18.569	49.459
	ATOM	3395	HN	LYS	335	15.670	18.833	48.834
	ATOM	3396	CA	LYS	335	17.463	19.521	49.793
	ATOM	3397	HA	LYS	335	18.411	19.126	49.429
55	MOTA	3398	CB	LYS	335	17.278	20.909	49.153
	ATOM	3399	HB1	LYS	.335	16.280	21.324	49.291
	ATOM	3400		LYS	335	17.441	20.918	48.075
		3401	CG	LYS	335	18.229	21.970	49.706
	ATOM							
	ATOM	3402		LYS	335	18.105	22.009	50.788
60	ATOM	3403		LYS	335	17.971	22.928	49.255
	ATOM	3404	CD	LYS	335	19.705	21.709	49.420
	MOTA	3405		LYS	335 ·	19.938	21.661	48.356
	ATOM	3406		LYS	335	20.067	20.769	49.837
<i>C</i> =	ATOM	3407	CE	LYS	335	20.633	22.785	49.987
65	MOTA	3408	HE1	LYS	335	20.509	22.855	51.068
	MOTA	3409	HE2	LYS	335	20.399	23.753	49.542
	ATOM	3410	NZ	LYS	335	22.043	22.448	49.688
	ATOM	3411		LYS	335	22.660	23.178	50.073

						•		
	MOTA	3412	HZ2	LYS	335	22.277	21.541	50.114
	ATOM	3413	HZ3	LYS	335	22.174	22.392	48.668
	ATOM	3414	С	LYS	335	17.466	19.668	51.276
	MOTA	3415	ō	LYS	335	16.479	20.090	51.878
5	ATOM	3416	N	ILE	336	18.609	19.311	51.894
,	ATOM	3417		ILE	336			
			HN			19.416	19.017	51.326
	ATOM	3418	CA	ILE	336	18.728	19.330	53.318
	MOTA	3419	AH	ILE	336	18.033	18.591	53.715
	MOTA	3420	CB	ILE	336	20.119	19.029	53.790
10	MOTA	3421	HB	ILE	336 .	20.798	19.724	53.296
	MOTA	3422	CG2	ILE	336	20.151	19.218	55.317
	MOTA	3423	HG2	ILE	336	21.153	19.005	55.689
	MOTA	3424	HG2	ILE	336	19.884	20.246	55.562
	MOTA	3425	HG2	ILE	336	19.439	18.537	55.783
15	ATOM	3426	CG1	ILE	336	20.547.	17.623	53.337
	ATOM	3427	HG1	ILE	336	21.559	17.358	53.640
	ATOM	3428	HG1	ILE	336	20.530	17.492	52.255
	ATOM	3429	CDI	ILE	336			
						19.659	16.509	53.889
20	ATOM	3430	HD1	ILE	336	20.018	15.545	53.528
20	ATOM	3431	HD1	ILE	336	19.691	16.524	54.978
	MOTA	3432	HD1	ILE	336	18.633	16.662	53.554
	MOTA	3433	С	ILE	336	18.382	20.700	53.777
	MOTA	3434	0	ILE	336	17.575	20.864	54.690
	MOTA	3435	N	LEU	337	18.982	21.729	53.151
25 ·	MOTA	3436	HN	LEU	337	19.674	21.566	52.405
	ATOM	3437	CA	LEU	337	18.631	23.055	53.553
	ATOM	3438	HA	LEU	337	18.867	23.081	54.617
	ATOM	3439	CB	LEU	337	19.395	24.134	52.758
	ATOM	3440	HB1	LEU	337	19.028	24.117	51.732
30	ATOM	3441	HB2	LEU	337	20.457	23.889	52.796
50	ATOM	3442	CG	LEU	337	19.243	25.585	53.272
					337	19.605		
	ATOM	3443	HG	LEU			25.670	54.297
	MOTA	3444	CD2		337	17.779	26.024	53.416
2.5	MOTA	3445	HD2	LEU	337	17.741	27.051	53.780
35	MOTA	3446	HD2	LEU	337	17.284	25.965	52.446
	MOTA	3447	HD2	LEU	337	17.270	25.369	54.123
	MOTA	3448	CD1	LEU .	337	20.047	26.557	52.396
	ATOM	3449	HD1	LEU	337	19.927	27.573	52.775
	MOTA	3450	HD1	LEU	337	21.102	26.283	52.422
40	ATOM	3451	HD1	LEU	337	19.684	26.508	51.370
	MOTA	3452	С	LEU	337	17.177	23.154	53.246
	ATOM	3453	0	LEU	337	16.363	23.423	54,127
	MOTA	3454	N	SER	338	16.815	22.904	51,972
	ATOM	3455	HN	SER	338	17.540	22.720	51.263
45	ATOM	3456	CA	SER	338 ·	15.436	22.893	51.593
	ATOM	3457	HA	SER	338	14.985	21.977	51.975
	ATOM	3458	СВ	SER	338	14.632	24.099	52.112
•	ATOM	3459	HB1	SER	338	15.054	25.026	51.722
60	ATOM	3460	HB2	SER	338	14.663	24.129	53.201
50	ATOM	3461	OG	SER	338	13.279	24.000	51.694
	MOTA	3462	HG	SER	338	12.822	24.919	51.786
	ATOM	3463	С	SER	338	15.360	22.935	50.106
	MOTA	3464	0	SER	338	16.069	23.692	49.445
	MOTA	3465	N	PRO	339	14.516	22.103	49.568
55	ATOM	3466	CA	PRO	339	14.255	22.163	48.161
	MOTA	3467	HA	PRO	339	15.088	22.609	47.617
	ATOM	3468	CD	PRO	339	14.402	20.747	50.076
	ATOM	3469	HD1	PRO	339	13.856	20.842	51.015
	ATOM	3470	HD2	PRO	339	15.429	20.405	50.202
60	ATOM	3471	CB	PRO	339	13.990	20.730	47.702
	ATOM	3472	HB1	PRO	339	14.931	20.414	47.251
	ATOM	3473	HB2	PRO	339	13.166	20.822	46.996
	ATOM	3474	CG	PRO	339	13.630	19.980	48.993
	MOTA	3475	HG1	PRO	339	13.030	18.936	48.938
65	ATOM	3476	HG2	PRO	339	12.555	20.001	49.171
00	ATOM	3477	C	PRO	339	13.035		49.171
							23.010	
	ATOM	3478	0	PRO	339	12.498	23.283	49.203
	ATOM	3479	N	GLU	340	12.566	23.426	46.943

	ATOM	3480	HN	GLU	340	13.039	23.165	46.066
	MOTA	3481	CA	GLU	340	11.393	24.242	46.929
	ATOM	3482	AH	GLU	340	11.639	25.128	47.513
	ATOM	3483	CB	GLU	340	10.903	24.629	45.525
5	MOTA	3484	HB1	GLU	340	10.465	23.789	44.985
	ATOM	3485	HB2	GLU	340	11.702	25.011	44.890
	MOTA	3486	CG	GLU	340	9.828	25.719	45.553
	ATOM	3487	HG1	GLU	340	10.290	26.661	45.847
	MOTA	3488	HG2	GLU	340	9.060	25.437	46.273
10	ATOM	3489	CD	GLU	340	9.220	25.846	44.163
	ATOM	3490	OE1	GLU	340	9.038	24.792	43.499
	MOTA	3491	OE2	GLU	340	8.910	26.997	43.756
	MOTA	3493	С	GLU	340	10.319	23.421	47.551
	MOTA	3494	0	GLU	340	9.411	23.946	48.192
15	MOTA	3495	N	TYR	341	10.412	22.087	47.387
	MOTA	3496	HN	TYR	·341	11.209	21.680	46.877
	MOTA	3497	CA	TYR	341	9.395	21.245	47.929
	ATOM	3498	HA	TYR	341	8.461	21.552	47.458
	ATOM	3499	CB	TYR	341	9.632	19.753	47.675
20	ATOM	3500	HB1	TYR	341	10.303	19.407	48.461
	ATOM	3501	HB2	TYR	341	10.081	19.674	46.685
	ATOM	3502	CG	TYR	341	8.300	19.094	47.743
	MOTA	3503	CD1	TYR	341	7.518	19.074	46.613
	MOTA	3504	HD1	TYR	341	7.882	19.541	45.698
25	MOTA	3505	CD2	TYR	341	7.831	18.510	48.895
	MOTA	3506	HD2	TYR	341	8.438	18.525	49.800
	ATOM	3507	CE1	TYR	341	6.284	18.473	46.621
	MOTA	3508	HE1	TYR	341	5.679	18.453	45.714
	MOTA	3509	CE2	TYR	341	.6.594	17.906	48.907
30	MOTA	3510	HE2	TYR	341	6.230	17.433	49.819
	ATOM	3511	CZ	TYR	341	5.816	17.898	47.774
	ATOM	3512	ОН	TYR	341	4.549	17.279	47.794
	ATOM	3513	HH	TYR	341	3.827	17.980	48.016
	ATOM	3514	С	TYR	341.	9.395	21.484	49.404
35	ATOM	3515	0	ŦYR	341	10.318	22.088	49.946
	ATOM	3516	N	CYS	342	8.345	21.014	50.097
	ATOM	3517	HN	CYS	342	7.623	20.457	49.618
	ATOM	3518	CA	CYS	342	8.225	21.281	51.499
4.0	ATOM	3519	HА	CYS	342	8.441	22.333	51.687
40	MOTA	3520	CB	CYS	342	6.811	20.969	52.020
	ATOM	3521	HB1	CYS	342	6.520	19.927	51.884
	MOTA	3522	HB2	CYS	342	6.031	21.552	51.529
	ATOM	3523	SG	CYS	342	6.610	21.296	53.793
45	MOTA	3524	HG	CYS	342	7.043	22.533	54.072
45	MOTA	3525	С	CYS	342	9.196	20.428	52.255
	ATOM	3526	0	CYS	342	8.801	19:459	52.902
	ATOM	3527	N	TRP	343	10.498	20.774	52.202
	ATOM	3528	HN	TRP	343	10.795	21.575	51.627
50	ATOM	3529	CA	TRP	343	11.470	20.028	52.947
30	ATOM ATOM	3530 3531	HA CB	TRP TRP	343 · 343	11.348 12.913	18.981 20.484	52.669
	ATOM	3532	HB1	TRP	343	13.091	21.526	52.698 52.963
	ATOM	3533	HB2	TRP	343	13.223	20.397	51.657
	ATOM	3534	CG	TRP	343	13.223	19.696	
55	ATOM	3535	CD2		343	14.489	20.117	53.482 54.739
55	ATOM	3536		TRP	343	14.520	18.497	53.186
	ATOM	3537		TRP	343	14.321	17.909	52.290
	ATOM	3538	NE1		343	15.394	18.141	54.186
	ATOM	3539	HE1	TRP	343	15.959	17.281	54.213
60	ATOM	3540	CE2		343	15.387	19.130	55.147
-	ATOM	3541		TRP	343	14.264	21.234	55.492
	ATOM	3542	HE3		343	13.561	22.002	55.172
	ATOM	3543	CZ2		343	16.075	19.245	56.322
	ATOM	3544		TRP	343	16.774	18.475	56.647
65	ATOM	3545	CZ3		343	14.964	21.348	56.673
	ATOM	3546		TRP	343	14.814	22.228	57.300
	MOTA	3547		TRP	343		20.373	57.080
	ATOM	3548		TRP	343	16.385	20.497	58.022
								

	ATOM	3549	С	TRP	343	11.180	20.256	54.394
	MOTA	3550	ō	TRP	343	11.151	19.320	55.189
	MOTA	3551	N	ASP	344	10.955	21.527	54.770
	ATOM	3552	HN	ASP	344	11.001	22.283	54.072
5	MOTA	3553	CA	ASP	344	10.650	21.836	56.137
	ATOM	3554	HA	ASP	344	10.573	20.877	56.651
					344			
	MOTA	3555	CB	ASP		11.687	22.748	56.812
	ATOM	3556	HB1	ASP	344	12.658	22.257	56.752
	ATOM	3557	HB2	ASP	344	11.388	22.890	57.850
10	ATOM	3558	CG	ASP	344	11.704	24.075	56.066
10				ASP	344		24.046	54.807
	MOTA	3559				11.690		
	ATOM	3560	OD2		344	11.738	25.136	56.745
	MOTA	3561	С	ASP	344	9.360	22.580	56.111
	ATOM	3562	0	ASP	344	8.754	22.715	55.051
15	ATOM	3563	N	TYR	345	8.913	23.047	57.296
13								
	MOTA	3564	HN	TYR	345	9.471	22.833	58.134
	ATOM	3565	CA	TYR	345	7.713	23.820	57.473
	ATOM	3566	HA	TYR	345	7.873	24.541	58.275
	ATOM	3567	СВ	TYR	345	7.279	24.664	56.257
20	ATOM	3568	HB1	TYR	345	6.334	25.147	56.507
	ATOM	3569	HB2	TYR	345	7.163	23.991	55.408
	MOTA	3570	CG	TYR	345	8.344	25.674	55.999
	ATOM	3571	CD1	TYR	345	8.405	26.833	56.739
•			HD1		345	7.668		57.521
	MOTA	3572		TYR			27.013	
25	MOTA	3573	CD2	TYR	345	9.279	25.464	55.012
	ATOM	3574	HD2	TYR	345	9.240	24.552	54.417
	ATOM	3575	CE1	TYR	345	9.387	27.766	56.499
	ATOM	3576	HE1	TYR	345	9.426	28.680	57.092
	MOTA	3577	CE2	TYR	.345	10.263	26.393	54.769
30	MOTA	3578	HE2	TYR	345	11.000	26.215	53.985
	ATOM	.3579	CZ	TYR	345	10.318	27.546	55.513
	MOTA	3580	OH	TYR	345	11.326	28.500	55.264
					345	12.183	28.235	55.769
	MOTA	3581	HH	TYR				
	MOTA	3582	С	TYR	345	6.593	22.901	57.828
35	MOTA	3583	0	TYR	345	6.663	22.172	58.815
•	MOTA	3584	N	HIS	346	5.517	22.921	57.018
	MOTA	3585	HN	HIS	346	5.531	23.508	56.172
						•		
	ATOM	3586	CA	HIS	346	4.352	22.138	57.312
	MOTA	3587	HA	HIS	346	4.231	22.053	58.392
40	ATOM	3588	ND1	HIS	346	2.100	24.270	58.548
	MOTA	3589		HIS	346	1.748	23.531	59.174
						2.747		57.346
	ATOM	3590	CĢ	HIS	346		24.090	
	ATOM	3591	NE2	HIS	346	2.559	26.299	57.763
	ATOM	3592	HE2	HIS	346	2.625	27.323	57.671
45	MOTA	3593	CD2	HIS	346	3.020	25.339	56.880
				HIS	346	3.532	25.553	55.942
	ATOM	3594						
	MOTA	3595		HIS	346	2.013	25.609	58.748
	ATOM	3596.	HE1	HIS	346	1.548	26.064	59.623
	ATOM	3597	CB	HIS	346	3.057	22.749	56.750
50	ATOM	3598		HIS	346	2.184	22.124	56.938
							22.898	55.671
	ATOM	3599		HIS	346	3.098		
	MOTA	3600	С	HIS	346	4.501	20.774	56.722
	MOTA	3601	0	HIS	346	5.584	20.370	56.303
	ATOM	3602	N	ILE	347	3.386	20.016	56.706
55		3603	HN	ILE	347	2.511	20.405	57.086
55	ATOM							
	MOTA	3604	CA	ILE	347	3.382	18.685	56.175
	MOTA	3605	HA	ILE	347	4.426	18.419	56.014
	MOTA	3606	CB	ILE	347	2.720	17.696	57.097
	MOTA	3607	HB	ILE	347	1.703	18.029	57.308
60							16.317	56.415
60	MOTA	3608	CG2		347	2.685		
	ATOM	3609	HG2		347	2.206	15.596	57.078
	ATOM	3610	HG2	ILE	347	2.121	16.385	55.485
	ATOM	3611	HG2		347	3.703	15.992	56.200
		3612	CG1		347	3.452	17.675	58.449
	MOTA							
65	ATOM	3613	HG1	ILE	347	3.633	18.667	58.862
	MOTA	3614	HG1	ILE	347	4.433	17.202	58.406
	ATOM	3615	CD1	ILE	347	2.696	16.922	59.541
	ATOM	3616	HD1		347	3.271	16.948	60.467
	2 -13							

	MOTA	3617	HD1	ILE	347	1.726	17.393	59.703
	MOTA	3618	HD1	ILE	347	2.549	15.886	59.234
	MOTA	3619	С	ILE	347	2.603	18.747	54.899
	MOTA	3620	0	ILE	347	1.826	19.676	54.687
5	ATOM	3621	N	GLY	348	2.806	17.764	53.999
_	ATOM	3622	HN	GLY	348	3.450	16.991	54.220
	ATOM	3623	CA	GLY	348	2.130	17.791	52.735
	ATOM	3624			348	2.777	17.356	51.974
	ATOM	3625		GLY	348	1.898	18.824	52.476
10	ATOM	3626	C	GLY	348	0.865	16.999	52.839
10	_		0					
	MOTA	3627		GLY	348	0.819	15.955	53.488
	MOTA	3628	N	LEU	349	-0.199	17.489	52.169
	ATOM	3629	HN	LEU	349	-0.093	18.365	51.638
	MOTA	3630	CA	LEU	349	-1.474	16.829	52.172
15	MOTA	3631	HA	LEU	349	-1.474	16.133	53.011
	ATOM	3632	CB	LEU	349	-2.666	17.793	52.297
	MOTA	3633	HB1	LEU	349	-3.634	17.298	52.226
	MOTA	3634	HB2	LEU	349	-2.683	18.565	51.527
	MOTA	3635·	CG	LEU	349	-2.701	18.557	53.634
20	MOTA	3636	HG	LEU	349	-3.510	19.288	53.652
	MOTA	3637	CD2	LEU	349	-1.462	19.452	53.800
	ATOM	3638	HD2	LEU	349	-1.518	19.977	54.754
	ATOM	3639	HD2		349	-0.563	18.836	53.777
	ATOM	3640	HD2		349	-1.425	20.178	52.988
25	ATOM	3641		LEU	349	-2.913	17.601	54.819
	ATOM	3642	HD1		349	-2.933	18.172	55.748
	ATOM	3643	HD1		349	-3.860	17.074	54.697 -
	ATOM	3644	HD1	LEU	349	-2.098	16.879	54.854
	ATOM	3645	C	LEU	349	-1.606	16.118	50.863
30	ATOM	3646	o	LEU	349	-1.295	16.653	49.799
30	ATOM	3647		PRO	350	-2.044	14.895	50.948
		3648	N CA	PRO	350 350	-2.150	14.088	49.763
	MOTA							
	MOTA	3649	HA	PRO	350	-1.272	14.281	49.147
25	MOTA	3650	CD	PRO	350	-1.680	14.100	52.112
35	ATOM	3651	HD1	PRO	350	-2.555	14.110	52.762
	ATOM	3652	HD2	PRO	350	-0.817	14.601	52.553
	ATOM	3653	CB	PRO	350	-2.095	12.634	50.233
	ATOM	3654		PRO	350	-1.550	12.120	49.442
40	MOTA	3655	HB2		350	-3.142	12.343	50.318
40	MOTA	3656	CG	PRO	350	-1.349	12.702	51.573
	ATOM	3657	HG1		350	-0.303	12.561	51.301
	ATOM	3658	HG2	PRO	350	-1.776	11.885	52.154
	MOTA	3659	С	PRO	350	-3.349	14.333	48.904
	MOTA	3660	0	PRO	350	-4.389	14.753	49.409
45	MOTA	3661	N	ALA.	351	-3.196	14.076	47.590
	MOTA	3662	HN	ALA	351	-2.249	13.861	47.246
	MOTA	3663	CA	ALA	351	-4.271	14.084	46.642
	MOTA	3664	HA	ALA	351	-5.229	14.262	47.131
	MOTA	3665	CB	ALA	351 ·	-4.081	15.093	45.497
50	MOTA	3666	HB1	ALA	351	-4.934	15.041	44.821
	ATOM	3667	HB2	ALA	351	-4.005	16.099	45.909
	ATOM	3668		ALA	351	-3.169	14.854	44.950
	ATOM	3669	С	ALA	351	-4.186	12.713	46.052
	ATOM	3670	0	ALA	351	-3.225	12.399	45.352
55	ATOM	3671	N	ASP	352	-5.192	11.857	46.309
	ATOM	3672	HN	ASP	352	-6.044	12.188	46.784
	ATOM	3673	CA	ASP	352	-5.073	10.481	45.917
	ATOM	3674	HA	ASP	352	-4.059	10.115	46.077
60	ATOM	3675	CB up1	ASP	352 352	-6.015 -7.046	9.561 9.710	46.717
UU	MOTA	3676		ASP				46.396
	ATOM	3677		ASP	352	-5.942	9.784	47.781
	ATOM	3678	CG	ASP	352	-5.636	8.100	46.493
	ATOM	3679		ASP	352	-5.393	7.704	45.322
	ATOM	3680		ASP	352	-5.597	7.354	47.506
65	ATOM	3681	С	ASP	352	-5.401	10.306	44.469
	MOTA	3682	0	ASP	352	-6.490	9.847	44.128
	ATOM	3683	N	ILE	353	-4.451	10.655	43.580
	MOTA	3684	HN	ILE	353	-3.585	11.100	43.918

	ATOM	3685	CA	ILE	353	-4.614	10.421	42.174
	MOTA	3686	HA	ILE	353	-5.130	9.465	42.076
	MOTA	3687	CB	ILE	353	-5.385	11.489	41.444
	MOTA	3688	HB	ILE	353	-5.369	11.263	40.378
5	MOTA	3689	CG2	ILE	353	-6.831	11.495	41.967
	MOTA	3690	HG2	ILE	353	-7.403	12.264	41.447
	ATOM	3691	HG2	ILE	353	-7.287	10.521	41.787
	MOTA	3692	HG2	ILE	353	-6.831	11.703	43.036
	ATOM	3693	CG1	ILE	353	-4.682	12.852	41.552
10	ATOM	3694	HG1	ILE	353	-5.226	13.569	40.939
10	ATOM	3695	HG1	ILE	353	-3.659	12.739	41.192
	ATOM	3696		ILE	353	-4.617	13.407	42.974
	ATOM	3697	HD1	ILE	353	-4.106	14.370	42.966
	MOTA	3698	HD1	ILE	353	-5.628	13.537	43.361
1.5		3699	HD1		353 353		12.712	43.501
15	MOTA			ILE		-4.071		
	ATOM	3700	C	ILE	353	-3.240	10.386	41.586
•	ATOM	3701	0	ILE	353	-2.372	11.154	41.993
	ATOM	3702	N	LYS	354	-2.986	9.477	40.623
-00	ATOM	3703	HN	LYS	354	-3.706	8.806	40.319
20	MOTA	3704	CA	LYS	354	-1.676	9.479	40.039
	MOTA	3705	HA	LYS	. 354	-1.013	9.932	40.777
	ATOM	3706	CB	LYS	354	-1.200	8.073	39.637
	MOTA	3707		LYS	354	-0.230	8.069	39.140
	MOTA	3708	HB2	LYS	354	-1.877	7.567	38.949
25	MOTA	3709	CG	LYS	354	-1.047	7.120	40.824
	MOTA	3710	HG1	LYS	354	-0.453	7.527	41.643
	ATOM	3711	HG2	-LYS	354	-0.563	6.176	40.572
	ATOM	3712	CD	LYS	354	-2.375	6.717	41.469
	MOTA	3713	HD1	LYS	354	-3.055	6.210	40.784 "
30	ATOM	3714	HD2	LYS	354	-2.943	7.561	41.860
	MOTA	3715	CE	LYS	354	-2.215	5.761	42.652
	MOTA	3716	HE1	LYS	354	-1.608	6.227	43.427
	ATOM	3717		LYS	354	-1.729	4.842	42.324
	ATOM	3718	NZ	LYS	354	-3.543	5.428	43.215
35	ATOM	3719		LYS	354	-3.427	4.784	44.011
	ATOM	3720		LYS	354	-4.006	6.290	43.536
	ATOM	3721		LYS	354	-4.121	4.978	42.491
	ATOM	3722	C	LYS	354	-1.776	10.287	38.791
	ATOM	3723	ō	LYS	354	-1.149	9.986	37.778
40	ATOM	3724	N	LEU	355	-2.588	11.352	
	ATOM	3725	HN	LEU	355	-3.084	11.560	39.721
	ATOM	3726	CA	LEU	355	-2.787	12.208	37.714
	ATOM	3727	HA	LEU	355	-2.937	11.591	36.828
	ATOM	3728	СВ	LEU	355	-3.989	13.145	37.908
45	ATOM	3729		LEU	355	-4.228	13.731	37.021
43	ATOM	3730		LEU	355	-3.845	13.875	38.704
	ATOM	3731	CG	LEU	355	-5.290	12.404	38.267
	ATOM	3732	HG	LEU	355	-5.209	11.908	39.234
	MOTA	3733		LEU	355	-5.537	11.204	37.343
50								
טכ	ATOM	3734		LEU	355	-6.464	10.708	37.629
	ATOM	3735		LEU	355	-5.613	11.548	36.312
	MOTA	3736		LEU	355	-4.708	10.501	37.430
	ATOM	373 7		LEU	355	-6.482	13.372	38.340
	MOTA	3738		LEU	355	-7.385	12.818	38.596
55	MOTA	3739		LEU	355	-6.291	14.127	39.103
	MOTA	3740		LEU	355	-6.615	13.858	37.374
	MOTA	3741	С	LEU	355	-1.577	13.067	37.545
	MOTA	3742	0	LEU	355	-1.167	13.390	36.432
	MOTA	3743	N	VAL	356	-0.974	13.447	38.680
60	ATOM	3744		. VAL	356	-1.281	13.031	39.571
	ATOM	3745	CA	VAL	356	0.081	14.411	38.695
	MOTA	3746	HA	VAL	356	-0:239	15.400	38.370
	MOTA	3747	CB	VAL	356	0.613	14,654	40.076
	ATOM	3748	HB	VAL	356	-0.188	15.056	40.696
65	MOTA	3749		VAL	356	1.113	13.323	40.656
	MOTA	3750		VAL	356	1.503	13.488	41.661
	MOTA	3751		VAL	356	0.289	12.612	40.699
	MOTA	3752	HG1	VAL	356	1.905	12.924	40.021

	MOTA	3753	CG2	WAT.	356		1.686	15.754	39.997
	ATOM	3754	HG2		356		2.085	15.945	40.993
	MOTA	3755	HG2		356		2.492	15.429	39.340
_	MOTA	3756		VAL	356		1.242	16.668	39.603
5	MOTA	3757		VAL	356		1.224	14.042	37.801
	MOTA	3758	0	VAL	356		1.563	14.814	36.907
	MOTA	3759	N	LYS	357		1.857	12.864	37.971
	ATOM	3760	HN	LYS	357		1.538	12.139	38.628
	MOTA	3761		LYS	357		3.021	12.723	37.145
10	ATOM	3762		LYS	357		3.075	13.488	36.370
10	ATOM	3763		LYS	357		4.366	12.769	37.900
	MOTA	3764		LYS	357		5.164	12.753	37.158
	MOTA	3765	HB2		357		4.412	11.894	38.548
	MOTA	3766	CG .	LYS,	. 357		4.616	13.991	38.790
15	ATOM	3767	HG1	LYS	357		4.238	14.919	38.361
	MOTA	3768	HG2	LYS	357		5.673	14.170	38.986
	ATOM	3769		LYS	357		3.959	13.879	40.166
	MOTA	3770	HD1		357		4.246	12.924	40.606
	ATOM	3771		LYS	357		2.878	13.932	40.033
20	MOTA	3772	CE	LYS	357		4.358	14.980	41.150
20									
	ATOM	3773	HE1		357		4.076	15.953	40.750
	MOTA	3774		LYS	357		5.435	14.958	41.312
	ATOM	3775	NZ	LYS	357		3.668	14.770	42.444
	MOTA	3776	HZ1	LYS	357		3.940	15.513	43.103
25	MOTA	3777	HZ2	LYS	357		2.649	14.796	42.299
	ATOM	3778	HZ3	LYS	357		3.936	13.854	42.831
	MOTA	3779	С	LYS	357		3.062	11.409	36.443
	MOTA	3780	ō	LYS	357		2.441	10.425	36.844
	ATOM	3781	N	MET	358		3.820	11.423	35.329
30	ATOM	3782	HN	MET	358		4.173	12.343	35.030
30									
	MOTA	3783	CA	MET	358		4.194	10.306	34.514
	MOTA	3784	HA	MET	358		4.098	9.364	35.054
	MOTA	3785	CB	MET	358		3.394	10.245	33.203
	MOTA	3786	HB1	MET	358		3.750	11.041	32.550
35	MOTA	3787	HB2	MET	358	•	2.339	10.383	33.441
	ATOM	3788	CG	MET	358		3.524	8.931	32.439
	MOTA	3789	HG1	MET	358		3.163	8.127	33.081
	MOTA	3790	HG2		358		4.576	8.785	32.191
	ATOM	3791	SD	MET	358		2.583	8.851	30.885
40	ATOM	3792	CE	MET	358		3.706	9.922	29.944
40			HE1		358		3.335	10.032	28.925
	ATOM	3793							
	ATOM	3794	HE2	MET	358		3.758	10.901	30.419
•	MOTA	3795	HE3	MET	358		4.700	9.476	29.922
	ATOM	3796	С	MET	358		5.620	10.646	34.193
45	MOTA	3797	0	MET	358		5.921	11.821	33.992
	ATOM	3798	N	SER	359		6.563	9.678	34.147
	ATOM	3799	HN	SER	359		6.347	8.674	34.227
	MOTA	3800	CA	SER	359		7.899	10.188	33.975
	ATOM	3801	HA	SER	359		7.932	11.039	33.296
50	MOTA	3802	CB	SER	359		8.435	10.752	35.314
50	ATOM	3803	HB1	SER	359		8.438	10.019	36.121
							7.855		
	MOTA	3804	HB2	SER	359		_	11.594	35.691
	ATOM	3805	OG	SER	359		9.770	11.223	35.231
	ATOM	3,806	HG	SER	359		10.404	10.542	35.672
55	ATOM	3807	C	SER	359		8.838		33.409
	ATOM .	3808	0	SER	359		8 455	8.052	33.024
	ATOM	3809	N	TRP	360		10.120	9.515	33.241
	ATOM	3810	HN	TRP	360		10.396	10.491	33.419
	ATOM	3811	CA	TRP	360		11.110	8.569	32.818
60	ATOM	3812	HA	TRP	360		10.756	7.591	33.145
-		3813	CB	TRP	360		11.354	8.542	31.297
	MOTA						12.306		31.111
	MOTA	3814	HB1	TRP	360			8.044	
	MOTA	3815	HB2	TRP	360		11.383	9.570	30.936
	MOTA	3816	CG	TRP	360		10.290	7.809	30.512
65	ATOM	3817	CD2	TRP	360		9.025		30.117
	MOTA	3818	CD1	TRP	360		10.307	6.524	30.054
	MOTA	3819	HD1	TRP	360		11.130	5.823	30.191
	MOTA	3820	NE1	TRP	360		9.135	6.244	29.396

	ATOM	3821	HE1	TRP	360	8.893	5.346	28.952
	ATOM	3822	CE2	TRP	360	8.336	7.367	29.428
	ATOM	3823	CE3	TRP	360	8.482	9.600	30.315
	ATOM	3824	HE3	TRP	360	9.021	10.378	30.857
5	MOTA	3825	CZ2	TRP	360	7.087	7.591	28.924
	ATOM	3826	HZ2	TRP	360	6.545	6.813	28.386
	ATOM	3827	CZ3	TRP	360	7.223	9.824	29.802
	ATOM	3828	HZ3	TRP	360	6.758	10.800	29.938
	ATOM	3829	CH2	TRP	360	6.538	8.840	29.121
10	MOTA	. 3830	HH2	TRP	360	5.544	9.054	28.730
	ATOM	3831	С	TRP	360	12.381	8.970	33.487
	ATOM	3832	0	TRP	360	12.598	10.150	33.753
	ATOM	3833	N	GLN	361	13.264	7.996	33.790
	MOTA	3834	HN	GLN	361	13.084	7.016	33.531
15	ATOM	3835	CA	GLN	361	14.460	8.370	34.486
	MOTA	. 3836	HA	GLN	361	14.467	9.444	34.669
	ATOM	3837	CB	GLN	361	14.621	7.684	35.851
	ATOM	3838	HB1	GLN	361	14.654	6.597	35.790
	ATOM	3839	HB2	GLN	361	13.811	7.906	36.546
20	ATOM	3840	CG	GLN	361	15.902	8.084	36.587
	MOTA	3841	HG1	GLN	361	15.875	9.162	36.749
	ATOM	3842	HG2	GLN	361	16.750	7.806	35.962
	ATOM	3843	CD	GLN	361	15.935	7.338	37.912
	MOTA	3844	OE1	GLN	361	15.019	6.582	38.234
25	ATOM	3845	NE2	GLN	361	17.017	7.555	38.705
	MOTA	3846	HE2	GLN	361	17.762	8.197	38.396
	MOTA	3847	HE2	GLN	361	17.093	7.079	39.615
	MOTA	3848	С	GLN	361	15.662	8.012	33.670
	MOTA	3849	HC	GLN	361	16.428	8.765	33.483
30	ATOM	3850	0	GLN	361	15.798	6.880	33.208
	MOTA	3851	MN	MET	362	15.622	12.956	35.080

- 98 -

Table 5

Residue number will be set to the conformation's cluster rank.

```
MODEL
                 9
     USER
             Run = 9
     USER
             Cluster Rank = 1
     USER
             Number of conformations in this cluster = 30
     USER
10
     USER
             RMSD from reference structure
                                                =-2.450 A
     USER
     USER
             Estimated Free Energy of Binding
                                                 = -8.72 kcal/mol [=(1)+(3)]
             Estimated Inhibition Constant, Ki = +4.04e-07 [Temperature = 298.15 K]
     USER
     USER
15
     USER
             Final Docked Energy
                                                 -11.73 \text{ kcal/mol} = (1)+(2)
      USER
              (1) Final Intermolecular Energy = -10.90 kcal/mol
      USER.
              (2) Final Internal Energy of Ligand = -0.82 kcal/mol
      USER
              (3) Torsional Free Energy = +2.18 kcal/mol
      USER
20
      USER
      USER
             DPF = test.dpf
      USER
             NEWDPF move udp_tr.pdbq
      USER
             NEWDPF about16.792999 18.735001 34.970001
      USER
25
             NEWDPF tran016.520614 19.803704 34.894085
      USER
             NEWDPF quat0-0.767123 -0.504336 0.396444 20.877983
      USER
             NEWDPF ndihe7
      USER
             NEWDPF dihe0-172.23 93.36 -16.11 -9.99 -31.01 0.20 156.88
      USER
      USER
30
                                                              vdW
      USER
                                       х
                                               У
                                                       Z
                                                                      Elec
                                                                              q
                                                                                     RMS:
               1 N1 UDP
                                     18.167 20.363 33.367
                                                               -0.38
                                                                     -0.11
                                                                            -0.211 2.450
                            1
      MOTA
               2 C2
                      UDP
                              1
                                     18.485
                                             21.574
                                                     32.818
                                                               -0.84
                                                                     +0.28
                                                                            +0.396 2.450
      MOTA
                                             21.872
                                                     32.732
                                                            . -0.53
                                                                      -0.40, -0.440 2.450
      MOTA
               3 N3
                      UDP
                              1
                                     19.821
                                                                            +0.440 2.450
                4 H3
                                     20.069 22.789
                                                              +0.07
      MOTA
                      UDP
                              1
                                                     32.334
                                                                      +0.53
                                                     33.133 - -0.75 +0.30
35
               5 C4
                                     20.878 21.052
                                                                            +0.396 2.450
      MOTA
                      UDP
                             . 1
               6 C5
                      UDP
                                     20.479 19.798
                                                     33.691
                                                               -0.55 + 0.00
                                                                            +0.000 2.450
      MOTA
                              1
                                     19.174 19.496
                                                     33.774
                                                               -0.49 + 0.00
                                                                            +0.000 2.450
      ATOM
               7 C6
                      UDP
                              1
      MOTA
               8 02
                      UDP
                              1
                                     17.619 22.362
                                                     32.433
                                                               -0.35 -0.26
                                                                            -0.396 2.450
                                                              -0.24
                                                                            -0.396 2.450
               9 04
                      UDP
                                     22.026 21.474
                                                     32.994
                                                                     -0.27
      MOTA
                              1
 40
               10 C1' UDP
                                     16.753 19.988
                                                     33.503
                                                               -0.65
                                                                      +0.07
                                                                            +0.324
      ATOM
                              1
                                                                                    2.450
      MOTA
               11
                  C2'
                      UDP
                              1
                                     16.402
                                             18.617
                                                     32.920
                                                               -0.60
                                                                      +0.00
                                                                            +0.113
                                                                                    2.450
                                     15.116 18.296
      ATOM
               12
                  C3 1
                      UDP
                              1
                                                     33.717
                                                               -0.67
                                                                      +0.00
                                                                            +0.113
                                                                                    2.450
                                                     35.076
                                     15.358 18.950
                                                               -0.56
                                                                     +0.02
                                                                            +0.113
                  C4' UDP
                                                                                    2.450
      MOTA
               13
                              1
                  O4' UDP
                                     16.521 19.804 34.894
                                                               -0.07
                                                                      -0.07
                                                                            -0.227
      MOTA
               14
                              1
                                                                                    2.450
                                     16.102 18.725
                                                     31.548
                                                               -0.24 + 0.17
 45
      MOTA
               15
                  O2' UDP
                              1
                                                                            -0.537
                                                                                    2.450
                 HO2'UDP
                                     15.697 17.839
                                                     31.214
                                                               -0.28
                                                                     -0.47
                                                                            +0.424 2.450
      ATOM
               16
                                                     33.051
                                     14.035 18.955
                                                               -0.27
                                                                            -0.537 2.450
      MOTA
               17
                  O3' UDP
                              1
                                                                     +0.16
                                     14.102 18.785
                                                     32.037
                                                               -0.17
                                                                      -0.28
                                                                            +0.424 2.450
               18 HO3'UDP
                              1
      MOTA
                                     15.666 17.939
15.126 18.439
               19 C5' UDP
                              1
                                                     36.181
                                                               -0.30
                                                                     +0.04
                                                                            +0.113
                                                                                    2.450
      MOTA
 50
      ATOM
               20
                  O5' UDP
                              1
                                                     37.390
                                                               +0.00
                                                                     -0.18
                                                                            -0.368
                                                                                    2.450
                                     15.642 18.457
                                                     38.881
                                                               -0.61
                                                                     +0.45
                                                                            +1.019
      MOTA
               21 PA
                      UDP
                              1
                                                                                    2.450
                                                                            -0.255 2.450
               22 - 01A - UDP
                                     17.132 18.480 38.845
                                                               -0.15 -0.08
                              1
      MOTA
                                     14.933 19.550 39.617
               23 O2A UDP
                              1
                                                               -0.24 -0.09
                                                                            -0.255 2.450
      MOTA
                                                     39.239
                  O3A UDP
                                     15.133 16.987
                                                               -0.07
                                                                     -0.23
                                                                            -0.510 2.450
      MOTA
               24
                                                     39.920
 55
      MOTA
               25 PB UDP
                              1
                                     15.835 15.723
                                                               -0.72 + 0.43
                                                                            +1.019
               26 O1B UDP
                                     15.020
                                             14.448
                                                     39.353
                                                               -0.03
                                                                     -0.11
                              1
                                                                            -0.255 2.450
      ATOM
      MOTA
               27
                  O2B UDP
                              1
                                     15.532
                                             15.971
                                                     41.352
                                                               -0.68
                                                                      -0.23
                                                                            -0.255
                                                                                    2.450
      ATOM
               28
                  O3B UDP
                              1
                                     17.233
                                             15.484 39.480
                                                               -0.12
                                                                     -0.06
                                                                            -0.255
      TER
 60
      ENDMDL
      MODEL
                  94
      USER
              Run = 94
              Cluster Rank = 1
      USER
              Number of conformations in this cluster = 30
      USER
 65
      USER
                                                 = 2.311 A
      USER
              RMSD from reference structure
      USER
```

- 99 -

```
= -8.70 kcal/mol [=(1)+(3)]
     USER
            Estimated Free Energy of Binding
     USER
            Estimated Inhibition Constant, Ki
                                                 = +4.17e-07
                                                                    [Temperature = 298.15 K]
     USER
                                                 = -11.71 kcal/mol [=(1)+(2)]
     USER
             Final Docked Energy
     USER
             (1) Final Intermolecular Energy ≈ -10.88 kcal/mol
     USER
             (2) Final Internal Energy of Ligand = -0.82 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
     USER
     USER
     USER
     USER
10
     USER
             DPF = test.dpf
     USER
             NEWDPF move udp_tr.pdbq
             NEWDPF about16.792999 18.735001 34.970001
     USER
     USER
             NEWDPF tran016.394484 19.723058 34.607480
             NEWDPF quat00.577475 0.654292 -0.488287 -20.995277
15
     USER
             NEWDPF ndihe7
     USER
     USER
            NEWDPF dihe0-101.36 -19.47 179.91 29.29 -15.02 1.94 142.30
     USER
     USER
                                                                       Elec
                                                                Why
                                                                                       RMS
                          Rank
                                       х
                                               У
                                                       Z
20
     MOTA
               1 N1
                      UDP
                             1
                                     18.076 20.461
                                                     33,199
                                                                -0.40 -0.10
                                                                             -0.211 2.311
     MOTA
               2 C2
                      UDP
                                     18.358 21.720 32.747
                                                                -0.87 + 0.28 + 0.396 2.311
                              1
                                     19.681 22.084 32.744
                                                                -0.50 -0.45
                                                                             -0.440 2.311
     MOTA
               3 N3
                      UDP
                              1
     MOTA
               4 H3
                      UDP
                                     19.900 23.036 32.419
                                                                +0.10 +0.73 +0.440 2.311
                              1
                                     20.757 21.288 33.138
20.397 19.982 33.593
19.106 19.615 33.595
17.472 22.491 32.375
                                                                       +0.32 +0.396
     ATOM
               5
                  C4
                      UDP
                              1
                                                                -0.77
                                                                                      2.311
25
     MOTA
               6
                  C5
                      UDP
                              1
                                                                -0.58 + 0.00
                                                                             +0.000
                                                                                      2.311
                                                                             +0.000
                                                                -0.51 + 0.00
     ATOM
               7
                  C6
                      UDP
                              1
                                                                                      2.311
                                                                             -0.396 2.311
                                                                -0.37 -0.26
     MOTA
               8
                  02
                      UDP
                              1
                                     21.888 21.771 33.081
     MOTA
               9
                      UDP
                                                                -0.27 -0.29 -0.396 2.311
                  04
                              1
                                     16.678 20.012 33.244
                                                                -0.68 +0.06 +0.324 2.311
     MOTA
              10 C1' UDP
                              1
30
     MOTA
              11 C2' UDP
                              1
                                     16.420 18.670 32.556
                                                                -0.65 -0.01 +0.113 2.311
                                                                -0.69 -0.02 +0.113
     MOTA
              12 C3' UDP
                              1
                                     15.118 18.236 33.269
                                                                                      2.311
     MOTA
              13 C4' UDP
                              1
                                     15.269 18.807 34.678
                                                                -0.55 +0.01 +0.113
                                                                                      2.311
                                     16.394 19.723
16.175 18.857
                                                     34.607
                                                                -0.07
                                                                       -0.05
                                                                              -0.227
     MOTA
              14
                  O4' UDP
                              1
                                                                                      2.311
     MOTA
              15
                  O2' UDP
                               1
                                                      31.182
                                                                -0.21 + 0.16
                                                                              -0.537
                                                                                      2.311
                                                                             +0.424
-0.537
                                     15.160 18.851 31.009
35
                  HO2'UDP
                                                                -0.25
                                                                       -0.40
     MOTA
              16
                              1
                                                                                      2.311
                  03' UDP
                                     14.037 18.889 32.598
                                                                -0.19 + 0.23
     ATOM
              17
                                                                                      2.311
                              1
     MOTA
              18 HO3'UDP
                              1
                                     14.100 19.905 32.752
                                                                -0.41 -0.42 +0.424 2.311
     ATOM
              19
                 C5' UDP
                              1
                                     15.577 17.738 35.727
                                                                -0.35 + 0.04
                                                                             +0.113 2.311
              20 05' UDP
                                 15.265 18.274 36.999
                                                                +0.05 -0.17 -0.368 2.311
     MOTA
                              1
     ATOM
              21 PA UDP
                              1
                                     15.981 18.217
                                                     38.403
                                                                -0.56 +0.43 +1.019
                                                                                      2.311
                                     17.432 18.480 38.185
15.236 19.101 39.354
15.744 16.656 38.636
                 O1A UDP
                                                                -0.13
                                                                       -0.08
                                                                              -0.255 2.311
     MOTA
              22
                               1
     MOTA
              23 O2A UDP
                              1
                                                                -0.20 -0.11
                                                                             -0.255 2.311
                              1 ·
                                                                +0.01 -0.22 -0.510 2.311
              24 O3A UDP
     ATOM
                                     16.303 15.613 39.711
                                                                -0.67 +0.38
                                                                             +1.019 2.311
     MOTA
              25 PB UDP
                              1
45
     MOTA
              26 O1B UDP
                              1
                                     16.262 16.411 41.115
                                                                -0.60 -0.27
                                                                              -0.255 2.311
     ATOM
              27 O2B UDP
                              1
                                     17.695 15.431 39.228
                                                                -0.12 \quad -0.05 \quad -0.255
                                                                                      2.311
              28 O3B UDP
     ATOM
                              1
                                      15.428 14.435 39.937
                                                                -0.08 -0.10 -0.255
     TER
     ENDMDL
50
     MODEL
                 92
             Run = 92
     USER
             Cluster Rank = 1
     USER
             Number of conformations in this cluster = 30
     USER
     USER
55
     USER
             RMSD from reference structure
                                                  = 2.359 A
     USER
                                                      -8.92 \text{ kcal/mol} [=(1)+(3)]
     USER
             Estimated Free Energy of Binding
                                                 =
             Estimated Inhibition Constant, Ki
                                                      +2.89e-07
     USER
                                                                   [Temperature = 298.15 K]
     USER
60
             Final Docked Energy
                                                  = -11.69 \text{ kcal/mol} [=(1)+(2)]
     USER
     USER
     USER
             (1) Final Intermolecular Energy
                                               = -11.10 \text{ kcal/mol}
     USER
             (2) Final Internal Energy of Ligand = -0.59 kcal/mol
                                                    +2.18 kcal/mol
     USER
             (3) Torsional Free Energy =
     USER
     USER
     USER
             DPF = test.dpf
             NEWDPF move udp tr.pdbq
     USER
```

- 100 -

```
NEWDPF about16.792999 18.735001 34.970001
           USER
           USER
                              NEWDPF tran016.539656 19.734441 34.728197
           USER
                              NEWDPF quat0-0.689836 -0.566725 0.450499 25.546722
           USER
                              NEWDPF ndihe7
           USER
                              NEWDPF dihe0-130.87 -28.43 -171.32 27.28 8.87 -22.44 135.77
     . . USER
            USER
                                                                                                                                                   vdW
                                                                                                                                                                    Elec
                                                                                                                                                                                                         RMS
                                                           Rank
                                                                                                            У
                                                                                                                                z
                                                                                                                                                                                      q
                                                                                          x
                                                                                x y z vow Elec q RMS

18.242 20.356 33.288 -0.37 -0.11 -0.211 2.359

18.519 21.569 32.723 -0.84 +0.27 +0.396 2.359

19.837 21.949 32.710 -0.51 -0.42 -0.440 2.359
                                   1 N1 UDP 1
           ATOM
                                   2 C2 UDP
                                                                      1
           MOTA
                          2 C2 UDP 1 18.519 21.569 32.723 -0.84 +0.27 +0.396 2.359 3 N3 UDP 1 19.837 21.949 32.710 -0.51 -0.42 -0.440 2.359 4 H3 UDP 1 20.052 22.868 32.300 +0.10 +0.55 +0.440 2.359 5 C4 UDP 1 20.914 21.209 33.200 -0.76 +0.32 +0.396 2.359 6 C5 UDP 1 20.559 19.948 33.772 -0.58 +0.00 +0.000 2.359 7 C6 UDP 1 19.273 19.566 33.784 -0.50 +0.00 +0.000 2.359 8 O2 UDP 1 17.631 22.290 32.261 -0.35 -0.24 -0.396 2.359 9 O4 UDP 1 22.040 21.699 33.119 -0.26 -0.29 -0.396 2.359 10 C1' UDP 1 16.848 19.895 33.349 -0.66 +0.07 +0.324 2.359 11 C2' UDP 1 16.619 18.490 32.788 -0.58 +0.00 +0.113 2.359 12 C3' UDP 1 15.308 18.109 33.514 -0.64 -0.01 +0.113 2.359 13 C4' UDP 1 15.423 18.814 34.865 -0.57 +0.02 +0.113 2.359 14 O4' UDP 1 16.540 19.734 34.728 -0.07 -0.07 -0.227 2.359 15 O2' UDP 1 16.401 18.541 31.398 -0.22 +0.14 -0.537 2.359 16 HO2'UDP 1 15.535 18.034 31.167 -0.34 -0.48 +0.424 2.359 18 H03'UDP 1 14.233 18.680 32.763 -0.29 +0.18 -0.537 2.359 18 H03'UDP 1 15.522 18.557 37.230 -0.04 -0.17 -0.368 2.359 20 O5' UDP 1 15.5972 18.295 38.719 -0.53 +0.43 +1.019 2.359 20 O5' UDP 1 15.5972 18.295 38.719 -0.53 +0.43 +1.019 2.359 20 OAUDP 1 15.5972 18.295 38.719 -0.53 +0.43 +1.019 2.359 20 OAUDP 1 15.5972 18.295 38.719 -0.53 +0.43 +1.019 2.359 24 O3A UDP 1 15.562 16.738 38.716 +0.00 -0.22 -0.510 2.359 24 O3A UDP 1 15.563 15.538 39.716 -0.67 +0.40 +1.019 2.359 25 O2B UDP 1 15.563 15.538 39.716 -0.67 +0.40 +1.019 2.359 26 O1B UDP 1 15.563 15.538 39.716 -0.67 +0.40 +1.019 2.359 26 O1B UDP 1 15.563 15.538 39.716 -0.67 +0.40 +1.019 2.359 26 O1B UDP 1 15.563 15.538 39.716 -0.67 +0.40 +1.019 2.359 28 O3B UDP 1 15.5130 14.324 39.526 -0.04 -0.11 -0.255 2.359 28 O3B UDP 1 15.5130 14.324 39.526 -0.04 -0.11 -0.255 2.359 28 O3B UDP 1 15.5130 14.324 39.526 -0.04 -0.11 -0.255 2.359 28 O3B UDP 1 15.535 16.087 41.174 -0.67 -0.24 -0.255 2.359 28 O3B UDP 1 15.535 16.087 41.174 -0.67 -0.21 -0.255 2.359 28 O3B UDP 1 15.530 14.324 39.526 -0.04 -0.11 -0.255 2.359 28 O3B UDP 1 15.530 14.324 39.526 -0.04 -0.11 -0.255 2.359 28 O3B UDP 1 15.530 14.324 39.526 -0.04 -0.11 -0.255 
                                   3 N3 UDP
        MOTA
                                                                      1
          MOTA -
           MOTA
            MOTA
           MOTA
15
           MOTA
            MOTA
            MOTA
            ATOM
            MOTA
           ATOM
            MOTA
            MOTA
            ATOM
            MOTA
            MOTA
            MOTA
            MOTA
            ATOM
            MOTA
30
            ATOM
            MOTA
            MOTA
            MOTA
            MOTA
35
            MOTA
            TER
            ENDMDL
            MODEL
                                        80
                               Run = 80
             USER
40
            USER
                               Cluster Rank = 1
                               Number of conformations in this cluster = 30
            USER
             USER
             USER
                               RMSD from reference structure
                                                                                                                 ⇒ 2.428 A
            USER
45
                               Estimated Free Energy of Binding = -8.73 \text{ kcal/mol} [=(1)+(3)]
            USER
             USER
                               Estimated Inhibition Constant, Ki = +4.00e-07 [Temperature = 298.15 K]
             USER
                                                                                                                    = -11.68 \text{ kcal/mol} [= (1) + (2)]
             USER
                               Final Docked Energy
             USER
                               (1) Final Intermolecular Energy = −10.91 kcal/mol
50
             USER
                                (2) Final Internal Energy of Ligand = -0.77 kcal/mol
             USER
                                (3) Torsional Free Energy = +2.18 kcal/mol
             USER
             USER
             USER
 55
                               DPF = test.dpf
             USER
                               NEWDPF move udp tr.pdbq
             USER
                               NEWDPF about16.792999 18.735001 34.970001
             USER
                               NEWDPF tran016.264354 19.749050 34.748403
             USER
                               NEWDPF quat0-0.636753 -0.548763 0.541668 23.855418
             USER
 60
                               NEWDPF ndihe7
             USER
                               NEWDPF dihe0-176.64 45.50 -32.26 16.31 -15.69 -5.13 142.41
             USER
             USER
                                                                                                                                                                  Elec
             USER
                                                              Rank
                                                                                                                                 Z
                                                                                                                                                    VdW
                                                                                                               У
                                1 N1 UDP 1 17.903 20.465 33.279 -0.41 -0.10 -0.211 2.428 2 C2 UDP 1 18.132 21.705 32.750 -0.88 +0.26 +0.396 2.428 3 N3 UDP 1 19.439 22.119 32.710 -0.52 -0.45 -0.440 2.428 4 H3 UDP 1 19.618 23.057 32.327 +0.10 +0.67 +0.440 2.428 5 C4 UDP 1 20.550 21.389 33.139 -0.77 +0.34 +0.396 2.428
             MOTA
 65
             ATOM
             MOTA
             MOTA
             MOTA
```

```
6 C5 UDP 1 20.244 20.100 33.675 -0.60 +0.00 +0.000 2.428  
7 C6 UDP 1 18.969 19.685 33.713 -0.52 +0.00 +0.000 2.428  
8 O2 UDP 1 17.213 22.419 32.344 -0.37 -0.24 -0.396 2.428  
9 O4 UDP 1 21.660 21.911 33.040 -0.29 -0.30 -0.396 2.428  
10 C1' UDP 1 16.524 19.967 33.367 -0.67 +0.04 +0.324 2.428  
11 C2' UDP 1 16.312 18.577 32.762 -0.63 -0.01 +0.113 2.428  
12 C3' UDP 1 15.035 18.137 33.515 -0.69 -0.01 +0.113 2.428  
13 C4' UDP 1 15.176 18.796 34.886 -0.56 +0.02 +0.113 2.428  
14 O4' UDP 1 16.264 19.749 34.748 -0.07 -0.05 -0.227 2.428  
15 O2' UDP 1 16.047 18.672 31.383 -0.22 +0.20 -0.537 2.428  
16 HO2'UDP 1 15.803 17.742 31.014 -0.26 -0.50 +0.424 2.428  
17 O3' UDP 1 13.922 18.707 32.819 -0.29 +0.15 -0.537 2.428  
18 HO3'UDP 1 15.535 17.804 35.993 -0.25 +0.04 +0.113 2.428  
20 O5' UDP 1 15.866 18.342 38.668 -0.54 +0.44 +1.019 2.428  
21 PA UDP 1 15.866 18.342 38.668 -0.54 +0.44 +1.019 2.428  
22 O1A UDP 1 15.496 16.815 38.944 -0.03 -0.23 -0.555 2.428  
24 O3A UDP 1 15.384 14.325 39.458 -0.03 -0.11 -0.255 2.428  
26 O1B UDP 1 15.384 14.325 39.458 -0.03 -0.215 2.428  
27 O2B UDP 1 15.627 16.164 41.229 -0.68 -0.23 -0.255 2.428  
28 O3B UDP 1 15.556 15.427 39.690 -0.13 -0.03 -0.255 2.428  
28 O3B UDP 1 17.556 15.427 39.690 -0.13 -0.03 -0.255 2.428
                                                                                                    20.244 20.100 33.675 -0.60 +0.00 +0.000 2.428
                  MOTA
                 ATOM
                 MOTA
                 ATOM
              MOTA
                 ATOM
                  ATOM
                 MOTA
                  ATOM
     10
                 ATOM
                 ATOM
                  MOTA
                  ATOM
                  ATOM
. 15
                  MOTA
                  MOTA
                  ATOM
                  MOTA
                  ATOM
     20
                  ATOM
                  ATOM
                  MOTA
                  ATOM
                  TER
     25 ENDMDL
                                           27
           MODEL
                  USER
                                      Run = 27
                                       Cluster Rank = 1
                  USER
                  USER
                                       Number of conformations in this cluster = 30
     30
              USER
               USER
                                      RMSD from reference structure
                                                                                                                                    = 2.268 A
                   USER Estimated Free Energy of Binding
                                                                                                                                  = -8.56 kcal/mol [=(1)+(3)]
                                      Estimated Inhibition Constant, Ki = +5.27e-07 [Temperature = 298.15 K]
                   USER
     35
                   USER
                                   Final Docked Energy
                                                                                                                                    = -11.63 \text{ kcal/mol} [= (1) + (2)]
                   USER
                   USER
                                      (1) Final Intermolecular Energy = -10.74 kcal/mol
                   USER
                                        (2) Final Internal Energy of Ligand = -0.89 kcal/mol
                   USER
      40
                                      (3) Torsional Free Energy = +2.18 kcal/mol
                   USER
                   USER
                   USER
                                       DPF = test.dpf
                   USER
                   USER
                                       NEWDPF move udp tr.pdbq
                                       NEWDPF about16.792999 18.735001 34.970001
      45
                   USER
                                       NEWDPF tran016.331560 19.472735 34.565318
                   USER
                   USER
                                       NEWDPF quat0-0.490819 -0.684766 0.538695 25.212334
                                       NEWDPF ndihe7
                   USER
                                        NEWDPF dihe0-131.49 50.61 -168.07 36.57 -13.24 1.80 131.03
                   USER
                                        Rank x y z vdw Elec q RMS

1 N1 UDP 1 18.039 20.309 33.246 -0.38 -0.10 -0.211 2.268

2 C2 UDP 1 18.266 21.581 32.799 -0.85 +0.27 +0.396 2.268

3 N3 UDP 1 19.561 22.029 32.866 -0.52 -0.46 -0.440 2.268

4 H3 UDP 1 19.737 22.991 32.546 +0.05 +0.79 +0.440 2.268

5 C4 UDP 1 20.662 21.305 33.326 -0.76 +0.35 +0.396 2.268

6 C5 UDP 1 20.359 19.981 33.772 -0.58 +0.00 +0.000 2.268

7 C6 UDP 1, 19.097 19.533 33.705 -0.50 +0.00 +0.000 2.268

8 O2 UDP 1 17.354 22.293 32.373 -0.36 -0.23 -0.396 2.268

9 O4 UDP 1 21.761 21.858 33.327 -0.20 -0.36 -0.396 2.268

10 C1' UDP 1 16.672 19.773 33.217 -0.67 +0.05 +0.324 2.268

11 C2' UDP 1 16.538 18.413 32.527 -0.61 -0.01 +0.113 2.268

12 C3' UDP 1 15.228 17.901 33.171 -0.64 -0.02 +0.113 2.268

13 C4' UDP 1 15.264 18.487 34.582 -0.60 +0.02 +0.113 2.268

14 O4' UDP 1 16.332 19.473 34.565 -0.06 -0.05 -0.227 2.268

15 O2' UDP 1 16.359 18.577 31.140 -0.22 +0.17 -0.537 2.268

16 HO2'UDP 1 15.535 18.041 30.834 -0.24 -0.56 +0.424 2.268

17 O3' UDP 1 14.147 18.480 32.436 -0.31 +0.23 -0.537 2.268
      50
                   USER
                   USER
                   ATOM
                   ATOM
                   MOTA
    . 55
                   MOTA
                   MOTA
                   ATOM
                   ATOM
                   ATOM
                  MOTA
                   MOTA
                   ATOM
                   MOTA
                   MOTA
      65
                   ATOM
                   MOTA
                   MOTA
                   ATOM
```

PCT/CA01/00607 WO 01/83717

- 102 -14.521 19.029 31.649 15.580 17.445 35.655 15.412 18.058 36.919 1 14.521 15.580 17.445 35.655 -0.22
1 15.412 18.058 36.919 +0.06 -0.17 -0.368 2.200
1 16.233 18.008 38.265 -0.62 +0.41 +1.019 2.268
1 17.673 18.192 37.926 -0.15 -0.07 -0.255 2.268
1 17.69 18.955 39.240 -0.18 -0.11 -0.255 2.268
1 10.00 -0.22 -0.510 2.268 -0.25 -0.35 +0.424 2.268 -0.29 +0.04 +0.113 2.268 MOTA 18 HO3'UDP 1 19 C5' UDP 20 O5' UDP 21 PA UDP MOTA ATOM ATOM ATOM 22 O1A UDP 1 22 O1A UDP 1 17.673 18.192 37.926 -0.15 -0.07 -0.255 2.268 23 O2A UDP 1 15.608 18.955 39.240 -0.18 -0.11 -0.255 2.268 24 O3A UDP 1 15.943 16.468 38.566 +0.00 -0.22 -0.510 2.268 25 PB UDP 1 16.424 15.469 39.718 -0.63 +0.36 +1.019 2.268 26 O1B UDP 1 16.040 16.219 41.097 -0.67 -0.23 -0.255 2.268 27 O2B UDP 1 17.891 15,464 39.492 -0.12 -0.02 -0.255 2.268 28 O3B UDP 1 15.670 14.191 39.779 -0.05 -0.10 -0.255 2.268 MOTA MOTA ATOM MOTA 10 ATOM MOTA TER ENDMDL 37 MODEL 15 USER Run = 37USER Cluster Rank = 1 Number of conformations in this cluster = 30 USER USER USER RMSD from reference structure = 2.337 A 20 USER Estimated Free Energy of Binding = -8.76 kcal/mol [=(1)+(3)] USER USER Estimated Inhibition Constant, Ki = +3.82e-07 [Temperature = 298.15 K] USER USER Final Docked Energy = -11.60 kcal/mol [=(1)+(2)] 25 USER USER (1) Final Intermolecular Energy = -10.93 kcal/mol (2) Final Internal Energy of Ligand = -0.66 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol USER USER USER 30 USER USER DPF = test.dpf USER NEWDPF move udp tr.pdbq NEWDPF about16.792999 18.735001 34.970001 NEWDPF tran016.642481 19.664002 34.683293 USER 35 NEWDPF quat00.689785 0.638573 -0.341206 -21.274560 USER NEWDPF ndihe7 USER NEWDPF dihe0-143.29 -16.74 -20.40 5.95 -28.82 6.66 151.74 USER USER У . **Z** x y z vdW Elec q RMS 18.371 20.252 33.262 -0.36 -0.11 -0.211 2.337 USER Rank 1 N1 UDP 1 18.371 20.252 33.262 -0.36 -0.11 -0.211 2.337 2 C2 UDP 1 18.727 21.475 32.765 -0.81 +0.28 +0.396 2.337 3 N3 UDP 1 20.068 21.764 32.759 -0.54 -0.38 -0.440 2.337 4 H3 UDP 1 20.343 22.689 32.400 +0.06 +0.49 +0.440 2.337 5 C4 UDP 1 21.096 20.924 33.191 -0.74 +0.30 +0.396 2.337 7 C6 UDP 1 20.659 19.659 33.692 -0.53 +0.00 +0.000 2.337 7 C6 UDP 1 19.350 19.365 33.697 -0.48 +0.00 +0.000 2.337 8 O2 UDP 1 17.888 22.281 32.358 -0.33 -0.26 -0.396 2.337 9 O4 UDP 1 22.252 21.340 33.125 -0.24 -0.30 -0.396 2.337 10 C1' UDP 1 16.950 19.885 33.312 -0.66 +0.08 +0.324 2.337 11 C2' UDP 1 16.620 18.534 32.673 -0.60 +0.00 +0.113 2.337 12 C3' UDP 1 15.292 18.202 33.391 -0.66 -0.01 +0.113 2.337 13 C4' UDP 1 15.466 18.816 34.779 -0.57 +0.02 +0.113 2.337 14 O4' UDP 1 16.642 19.664 34.683 -0.06 -0.07 -0.227 2.337 15 O2' UDP 1 16.394 18.683 31.291 -0.22 +0.13 -0.537 2.337 16 HO2'UDP 1 15.610 18.081 31.004 -0.31 -0.47 +0.424 2.337 17 O3' UDP 1 14.253 18.888 32.688 -0.24 +0.22 -0.537 2.337 18 HO3'UDP 1 14.399 19.905 32.765 -0.37 -0.36 +0.424 2.337 1 N1 UDP 1 40 ATOM MOTA MOTA ATOM . ATOM 45 ATOM ATOM ATOM ATOM MOTA 50 MOTA ATOM ATOM MOTA MOTA 55 MOTA ATOM
 14.253
 18.888
 32.688
 -0.24
 +0.22
 -0.537
 2.337

 14.399
 19.905
 32.765
 -0.37
 -0.36
 +0.424
 2.337

 15.707
 17.771
 35.870
 -0.36
 +0.04
 +0.113
 2.337

 15.214
 18.294
 37.088
 +0.06
 -0.17
 -0.368
 2.337

 15.799
 18.368
 38.552
 -0.54
 +0.44
 +1.019
 2.337

 17.282
 18.480
 38.442
 -0.13
 -0.08
 -0.255
 2.337

 15.062
 19.430
 39.306
 -0.22
 -0.10
 -0.255
 2.337

 15.399
 16.877
 38.955
 +0.00
 -0.23
 -0.510
 2.337

 16.080
 15.778
 39.895
 -0.73
 +0.43
 +1.019
 2.337

 15.467
 14.371
 39.380
 -0.73
 +0.43
 +1.019
 2.337
 ATOM . 18 HO3'UDP 1 19 C5' UDP 1 MOTA 20 O5' UDP 21 PA UDP 22 O1A UDP 23 O2A UDP 24 O3A UDP 1 MOTA 60 ATOM 1 ATOM 1 MOTA 1 1 MOTA 25 PB UDP ATOM 1 26 O1B UDP 1 27 O2B UDP 1 28 O3B UDP 1

65

ATOM

ATOM

ATOM TER

15.467 14.371 39.390 -0.02 -0.11 -0.255 2.337

15.536 16.165 41.221 -0.68 -0.23 -0.255 2.337

17.545 15.626 39.701 -0.18 -0.03 -0.255 2.337

PCT/CA01/00607 WO 01/83717

- 103 -ENDMDL MODEL 83 USER Run = 83USER Cluster Rank = 1 USER Number of conformations in this cluster = 30 USER USER RMSD from reference structure = 2.261 AUSER USER Estimated Free Energy of Binding = -8.49 kcal/mol [= (1) + (3)]10 Estimated Inhibition Constant, Ki = +5.99e-07 {Temperature = 298.15 K} USER USER USER Final Docked Energy = -11.46 kcal/mol [=(1)+(2)]USER USER (1) Final Intermolecular Energy = -10.67 kcal/molUSER (2) Final Internal Energy of Ligand = -0.79 kcal/mol USER (3) Torsional Free Energy = +2.18 kcal/mol USER USER USER DPF = test.dpf NEWDPF move udp tr.pdbq . 20 USER NEWDPF about16.792999 18.735001 34.970001 NEWDPF tran016.357985 19.606004 34.816153 USER NEWDPF quat0-0.457891 -0.473843 0.752202 19.873212 USER USER NEWDPF ndihe7 USER ' 25 NEWDPF dihe0-102.27 -10.98 18.83 69.93 -8.93 -8.56 143.76 USER USER Rank vdW Elec -0.42 -0.10 -0.211 2.261 1 N1 UDP 17.847 20.520 33.298 ATOM 1 2 C2 UDP -0.89 +0.27 +0.396 2.261 MOTA 1 17.991 21.811 32.873 30 MOTA 3 N3 UDP 1 19.276 22.280 32.771 -0.52 -0.49 -0.440 2.261 19.392 23.256 32.466 20.441 21.560 33.040 20.223 20.216 33.473 18.970 19.747 33.571 17.018 22.522 32.609 MOTA 4 H3 UDP +0.09 +0.81 +0.440 2.261 1 -0.78 +0.35 +0.396 2.261 MOTA 5 C4 UDP . 1 C5 UDP -0.61 +0.00 +0.000 2.261. MOTA 6 1 MOTA 7 C6 UDP 1 --0.52 +0.00 +0.000 2.261 -0.396 35 ATOM _ 8 02 UDP -0.35 -0.26 1 21.522 22.133 32.905 UDP -0.18 -0.29 -0.396 2.261 MOTA 9 04 1 MOTA 10 C1' UDP 1 16.497 19.961 33.445 -0.66 +0.04 +0.324 2.261 ATOM . C2' UDP 16.282 18.624 32.730 -0.64 -0.01 +0.113 2.261 11 12 C3' UDP 15.086 18.065 33.535 -0.68 -0.01 +0.113 2.261 MOTA 1 15.316 18.601 34.948 40 ATOM 13 C4' UDP 1 -0.57 +0.02 +0.113 2.261 16.358 19.606 34.816 15.903 18.835 31.391 14.882 18.739 31.303 13.902 18.651 32.985 -0.06 -0.06 -0.227 MOTA 14 O4' UDP 1 2.261 +0.21 -0.537 -0.42 +0.424 O2' UDP MOTA 15 1 -0.19 2.261 HO2'UDP MOTA 16 1 -0.21 2.261 -0.32 +0.11 -0.537 2.261 O3' UDP MOTA 17 1 13.966 19.677 33.045 45 MOTA 18 HO3'UDP 1 -0.44 -0.31 +0.424 2.261 MOTA 19 C5' UDP 1 15.797 17.527 35.924 -0.30 +0.04 +0.113 2.261 20 O5' UDP 15.528 17.981 37.236 +0.01 -0.17 -0.368 2.261 ATOM 1 ATOM 21 PA UDP 1 16.241 17.761 38.626 -0.67 +0.41 +1.019 2.261 17.687 18.081 38.451 15.474 18.500 39.678 16.039 16.179 38.656 O1A UDP -0.20 -0.05 -0.255 2.261 ATOM 22 1 50 ATOM 23 - O2A UDP 1 -0.24 -0.12 -0.255 2.261 O3A UDP -0.510 2.261 MOTA 24 1 -0.01 -0.2215.854 15.121 39.841 17.108 14.114 39.690 PB UDP 25 1 -0.63 + 0.38+1.019 MOTA 2.261 -0.255 ATOM 26 O1B UDP 1 +0.11 -0.05 2.261 1. MOTA 27 O2B UDP 14.581 14.471 39.442 -0.01 -0.09 -0.255 2.261 55 28 O3B UDP 1 16.010 15.692 41.204 MOTA -0.60 -0.19 -0.255 2.261 TER ENDMDL MODEL 65 USER Run = 6560 USER Cluster Rank = 1 Number of conformations in this cluster = 30 USER USER USER RMSD from reference structure = 2.304 A

USER 65 USER Estimated Free Energy of Binding = -8.71 kcal/mol [=(1)+(3)]= +4.12e-07 [Temperature = 298.15 K] Estimated Inhibition Constant, Ki USER USER USER Final Docked Energy = -11.45 kcal/mol = (1) + (2)

WO 01/83717 PCT/CA01/00607

```
USER
      USER
                (1) Final Intermolecular Energy ≈ -10.89 kcal/mol
      USER
                (2) Final Internal Energy of Ligand = -0.56 kcal/mol
      USER
                (3) Torsional Free Energy
                                                        = +2.18 \text{ kcal/mol}
      USER
      USER
      USER
               DPF = test.dpf
      USER
               NEWDPF move udp_tr.pdbq
               NEWDPF about16.792999 18.735001 34.970001
      USER
10
      USER
               NEWDPF tran016.670987 19.529452 34.985959
      USER
               NEWDPF quat0-0.609578 -0.251836 0.751660 12.309821
               NEWDPF ndihe7
      USER
      USER
               NEWDPF dihe0174.86 35.30 170.27 1.85 94.80 -103.65 115.10
      USER
      USER
                               Rank
                                              x
                                                                 Z
                                                                           vdW
                                                                                    Elec
                                                                                                       RMS
                                            18.083 20.325 33.334
18.319 21.606 32.917
19.629 21.940 32.687
                  1 N1 UDP
2 C2 UDP
      ATOM
                                 1
                                                                           -0.38
                                                                                   -0.10 -0.211 2.304
                                                                                    +0.28 +0.396
-0.41 -0.440
      MOTA
                                    1
                                                                           -0.85
                                                                                                      2.304
                  3 N3 UDP
      MOTA
                                    1
                                                                           -0.53
                                                                                                      2.304
                                            19.816 22.907 32.388
      ATOM
                  4 H3 UDP
                                                                           +0.07
                                                                                    +0.65 +0.440
                                    1
                                                                                                      2.304
20
      MOTA
                  5 C4 UDP
                                    1
                                            20.733 21.096 32.819
                                                                           -0.75
                                                                                   +0.27 +0.396
                                                                                                      2.304
      MOTA
                  6 C5 UDP
                                        20.419 19.770 33.251
                                                                           -0.56 +0.00 +0.000
                                                                                                      2.304
                                        19.140 19.432 33.474
17.406 22.420 32.770
      MOTA
                  7 · C6 UDP
                                    1
                                                                         -0.48 +0.00 +0.000
                                   `1
                  8 O2 UDP
      ATOM
                                                                         -0.33 -0.29 -0.396
                                                                         -0.14 -0.18 -0.396
      MOTA
                 9
                     O4 UDP
                                    1
                                            21.849 21.556 32.580
                                                                                                      2.304
                                                                        -0.64 +0.07 +0.324
-0.62 +0.00 +0.113
-0.65 +0.00 +0.113
-0.55 +0.03 +0.113
                                        16.704 19.905
16.275 18.619
25
      MOTA
                 10
                     C1' UDP
                                    1
                                                               33.614
                                                                                                      2.304
                     C2' UDP
      MOTA
                 11
                                    1
                                                      18.619
                                                               32.904
                                                                                                      2.304
                     C3' UDP
                                           15.116 18.166 33.822
      ATOM
                 12
                                    1
                                                                                                      2.304
                     C4' UDP
      MOTA
                 13
                                           15.548 18.635 35.210
                                    1
                                                                                                      2.304
                                           16.671 19.529 34.986 -0.05 -0.08 -0.227 2.304
15.784 18.905 31.616 -0.27 +0.21 -0.537 2.304
                     O4' UDP
      ATOM
                 14
                                    1
30
                     O2' UDP
     ATOM
                 15
                                    1
                                           15.764 18.905 31.616 -0.27 +0.21 -0.537 2.304 15.535 18.027 31.140 -0.35 -0.48 +0.424 2.304 13.951 18.887 33.410 -0.22 +0.09 -0.537 2.304 14.224 19.643 32.767 -0.35 -0.32 +0.424 2.304 16.010 17.490 36.112 -0.40 +0.04 +0.113 2.304 16.561 18:057 37.285 -0.03 -0.15 -0.368 2.304 16.153 18.005 38.808 -0.70 +0.42 +1.019 2.304 17.382 18.249 39.616 -0.14 -0.06 -0.255 2.304
      MOTA
               . 16 HO2'UDP
                                    1
      MOTA
                 17
                     O3' UDP
                                    1
      ATOM
                     HO3'UDP
                 18
                                    1
                     C5' UDP
      MOTA
                 19
                                    1
35 '
                 20 O5' UDP
      MOTA
                                    1
                     PA UDP
      ATOM
                 21
                                    1
      MOTA
                 22
                     O1A UDP
                                   1
                                                                           -0.21 -0.12 -0.255 2.304
-0.02 -0.22 -0.510 2.304
      MOTA
                 23
                     O2A UDP
                                    1
                                           14.977 18.907 39.017
                     O3A UDP
      ATOM
                 24
                                           15.798 16.450 38.822
                                    1
      MOTA
                 25
                     PB UDP
                                    1
                                            16.010 15.288 39.900
                                                                           -0.66 +0.39 +1.019 2.304
                                                                           -0.67 -0.25 -0.255 2.304
      ATOM
                 26
                     O1B UDP
                                    1
                                            15.889 16.031
                                                               41.330
                                                                        +0.00 -0.04 -0.255 2.304
                                            17.410 14.888 39.610
14.929 14.270 39.927
      ATOM
                 27
                     O2B UDP
                                    1
      MOTA
                 28
                     O3B UDP
                                    1
                                                                           -0.06 -0.10 -0.255 2.304
      TER
      ENDMDL
      MODEL
                    14
      USER
                Run = 14
      USER
                Cluster Rank = 1
      USER
               Number of conformations in this cluster = 30
50
      USER
               RMSD from reference structure
      USER
                                                           = 2.451 A
      USER
               Estimated Free Energy of Binding = -8.42 \text{ kcal/mol} [=(1)+(3)}
      USER
               Estimated Inhibition Constant, Ki = +6.69e-07 [Temperature = 298.15 K]
      USER
55
      USER
      USER
                Final Docked Energy
                                                           = -11.42 \text{ kcal/mol} [=(1)+(2)]
      USER
                (1) Final Intermolecular Energy = -10.60 kcal/mol
(2) Final Internal Energy of Ligand = -0.82 kcal/mol
      USER
      USER
                                                  = +2.18 kcal/mol
60
      USER
                (3) Torsional Free Energy
      USER
      USER
      USER
                DPF = test.dpf
               NEWDPF move udp_tr.pdbq
NEWDPF about16.792999 18.735001 34.970001
      USER
65
      USER
      USER
               NEWDPF tran017.100220 19.724175 34.926891
      USER
               NEWDPF quat00.896782 0.345563 -0.276348 -20.343759
               NEWDPF ndihe7
      USER
```

- 105 -

```
USER
                NEWDPF dihe0179.92 79.45 -26.55 -16.81 -42.81 3.24 -180.00
       USER
       USER
                                                                                                                          RMS ·
       ATOM
     ATOM
       MOTA
       MOTA
       MOTA
       ATOM
10
     ATOM
       ATOM
       MOTA
       ATOM
       MOTA
15
       MOTA
       MOTA
       MOTA
       MOTA
       MOTA
20
     ATOM
       ATOM
       MOTA
       ATOM
       MOTA
25
       ATOM
       ATOM
       MOTA
       MOTA
       MOTA
30
       MOTA
       MOTA
       TER
       ENDMDL
       MODEL
                       99
                   Run = 99 ·
35
       USER
       USER
                   Cluster Rank = 1
       USER
                   Number of conformations in this cluster = 30
       USER
       USER
                   RMSD from reference structure
                                                                   = 2.336 A
40
       USER
                   Estimated Free Energy of Binding = -8.47 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +6.23e-07 [Temperature = 298.15 K]
       USER
        USER
       USER
                                                                      = -11.36 \text{ kcal/mol} [= (1) + (2)]
       USER
                   Final Docked Energy
45 USER
                  (1) Final Intermolecular Energy = -10.65 kcal/mol
                   (2) Final Internal Energy of Ligand = -0.71 kcal/mol
                   (3) Torsional Free Energy = +2.18 kcal/mol
        USER
       USER
50
        USER
        USER
                   DPF = test.dpf
        USER
                   NEWDPF move udp tr.pdbq
                   NEWDPF about16.792999 18.735001 34.970001
        USER
        USER
                   NEWDPF tran016.837146 19.319611 35.006964
55
                   NEWDPF quat0-0.287528 -0.036292 0.957084 6.817381
       USER
        USER
                   NEWDPF ndihe7
        USER
                   NEWDPF dihe0179.27 74.01 -73.43 -63.66 -99.15 70.88 172.83
        USER

        x
        y
        z
        vdW
        Elec
        q
        RMS

        18.200
        20.203
        33.359
        -0.36
        -0.10
        -0.211
        2.336

        18.479
        21.505
        33.049
        -0.82
        +0.29
        +0.396
        2.336

        19.791
        21.800
        32.777
        -0.55
        -0.39
        -0.440
        2.336

      USER
                                     Rank
60
                   1 N1 UDP 1
       ATOM
                    2 C2 UDP
                                           1
       ATOM
                    3 N3 UDP 1
       ATOM
                   3 N3 UDP 1 19.791 21.800 32.777 -0.55 -0.39 -0.440 2.336 4 H3 UDP 1 20.011 22.781 32.558 +0.03 +0.65 +0.440 2.336 5 C4 UDP 1 20.855 20.897 32.768 -0.73 +0.25 +0.396 2.336 6 C5 UDP 1 20.497 19.552 33.093 -0.53 +0.00 +0.000 2.336 7 C6 UDP 1 19.216 19.253 33.355 -0.47 +0.00 +0.000 2.336 8 O2 UDP 1 17.602 22.371 33.029 -0.28 -0.32 -0.396 2.336 9 O4 UDP 1 21.979 21.327 32.510 -0.20 -0.19 -0.396 2.336
        ATOM
       ATOM
65
        ATOM
        ATOM
        ATOM
        ATOM
```

- 106 -

MOTA

```
    16.818
    19.822
    33.676
    -0.62
    +0.08
    +0.324
    2.336

    16.288
    18.630
    32.876
    -0.62
    +0.00
    +0.113
    2.336

    15.157
    18.145
    33.812
    -0.65
    +0.00
    +0.113
    2.336

              MOTA
                                        10 C1' UDP
              MOTA
                                        11 C2' UDP
                                                                                     1
                                        12 C3' UDP
              MOTA
                                                                                      1
                                      13 C4' UDP 1 15.683 18.461 35.211 -0.54 +0.03 +0.113 2.336 14 O4' UDP 1 16.837 19.320 35.007 -0.03 -0.08 -0.227 2.336 15 O2' UDP 1 15.746 19.059 31.649 -0.28 +0.19 -0.537 2.336 16 HO2'UDP 1 15.361 18.251 31.141 -0.25 -0.48 +0.424 2.336 17 O3' UDP 1 14.010 18.954 33.535 -0.18 +0.08 -0.537 2.336 18 HO3'UDP 1 14.056 19.295 32.564 -0.26 -0.27 +0.424 2.336 19 C5' UDP 1 16.133 17.215 35.975 -0.37 +0.04 +0.113 2.336 20 O5' UDP 1 15.535 17.253 37.257 +0.26 -0.17 -0.368 2.336 21 PA UDP 1 15.745 18.170 38.524 -0.58 +0.44 +1.019 2.336 22 O1A UDP 1 17.206 18.434 38.656 -0.14 -0.08 -0.255 2.336 23 O2A UDP 1 14.819 19.342 38.422 +0.01 -0.12 -0.255 2.336 24 O3A UDP 1 15.296 17.070 39.589 -0.16 -0.24 -0.510 2.336 25 PB UDP 1 16.020 15.783 40.203 -0.79 +0.47 +1.019 2.336 27 O2B UDP 1 17.435 16.232 40.207 -0.48 -0.07 -0.255 2.336 28 O3B UDP 1 15.642 14.500 39.559 -0.04 -0.10 -0.255 2.336
                                        13 C4' UDP
                                                                                                          15.683 18.461 35.211 -0.54 +0.03 +0.113 2.336
              MOTA
                                                                                      1 .
              MOTA
              ATOM
              MOTA
              ATOM
              MOTA
10
              ATOM
              MOTA
              MOTA
              ATOM
              MOTA
15
              MOTA
              ATOM
              ATOM
              MOTA
              ATOM
20
              TER
              ENDMDL
              MODEL
                                            89
              USER
                                     Run = 89
                                     Cluster Rank = 1
              USER
              USER
                                     Number of conformations in this cluster = 30
               USER
               USER
                                     RMSD from reference structure
                                                                                                                                           = 2.343 A
               USER
              USER
                                     Estimated Free Energy of Binding = -8.33 kcal/mol [=(1)+(3)]
30
                                     Estimated Inhibition Constant, Ki = +7.88e-07 [Temperature = 298.15 K]
              USER
              USER
               USER
                                     Final Docked Energy
                                                                                                                                            = -11.35 \text{ kcal/mol} [=(1)+(2)]
               USER
                                     (1) Final Intermolecular Energy = -10.51 kcal/mol
(2) Final Internal Energy of Ligand = -0.85 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
               USER
35
               USER
              USER
               USER
               USER
                                                                                                                                                                                                          . . . . . .
               USER
                                     DPF = test.dpf
                                     NEWDPF move udp_tr.pdbq
40
               USER
                                     NEWDPF about16.792999 18.735001 34.970001
               USER
                                  . NEWDPF tran017.054940 19.477433 34.899250
               USER
               USER
                                     NEWDPF quat00.673805 0.287903 -0.680513 -10.385254
                                     NEWDPF ndihe7
               USER
45
                                     NEWDPF dihe0-157.20 94.24 8.30 -47.60 -85.48 50.85 179.66
               USER
               USER
               USER
                                                                                                                                                                                     vdW
                                    Rank

1 N1 UDP 1
2 C2 UDP 1
3 N3 UDP 1
4 H3 UDP 1
5 C4 UDP 1
6 C5 UDP 1
7 C6 UDP 1
8 O2 UDP 1
9 O4 UDP 1
10 C1' UDP 1
11 C2' UDP 1
12 C3' UDP 1
13 C4' UDP 1
14 O4' UDP 1
15 O2' UDP 1
16 HO2'UDP 1
17 O3' UDP 1
18 HO3'UDP 1
19 C5' UDP 1
20 O5' UDP 1
21 PA UDP 1
                                                                          Rank
                                                                                                                                                                                                      Elec
                                    1 N1 UDP 1
               ATOM
                                                                                                          18.496 20.235 33.255 -0.35 -0.11 -0.211 2.343

    18.496
    20.235
    33.255
    -0.35
    -0.11
    -0.211
    2.343

    18.781
    21.510
    32.850
    -0.81
    +0.29
    +0.396
    2.343

    20.102
    21.797
    32.623
    -0.54
    -0.36
    -0.440
    2.343

    20.326
    22.759
    32.333
    +0.07
    +0.48
    +0.440
    2.343

    21.173
    20.910
    32.747
    -0.74
    +0.25
    +0.396
    2.343

    20.809
    19.593
    33.165
    -0.54
    +0.00
    +0.000
    2.343

    19.518
    19.301
    33.385
    -0.48
    +0.00
    +0.000
    2.343

    17.899
    22.360
    32.711
    -0.29
    -0.31
    -0.396
    2.343

    23.206
    21.230
    32.511
    -0.20
    -0.19
    -0.386
    2.343

               MOTA
50
              ATOM
              MOTA
              ATOM
              MOTA
              ATOM
55
              ATOM
                                                                                                         22.306 21.330 32.511 -0.20 -0.19 -0.396 2.343
              MOTA

      22.306
      21.330
      32.511
      -0.20
      -0.19
      -0.396
      2.343

      17.102
      19.865
      33.531
      -0.63
      +0.09
      +0.324
      2.343

      16.625
      18.603
      32.809
      -0.59
      +0.00
      +0.113
      2.343

      15.491
      18.185
      33.722
      -0.61
      +0.00
      +0.113
      2.343

      15.898
      18.624
      35.115
      -0.53
      +0.03
      +0.113
      2.343

      17.055
      19.477
      34.899
      -0.04
      -0.09
      -0.227
      2.343

      16.145
      18.920
      31.523
      -0.25
      +0.14
      -0.537
      2.343

      14.312
      18.924
      33.318
      -0.21
      +0.13
      -0.537
      2.343

      14.225
      18.926
      32.293
      -0.16
      -0.24
      +0.424
      2.343

      16.317
      17.454
      36.005
      -0.40
      +0.04
      +0.04
      +0.113
      2.343

              ATOM
               ATOM
              MOTA
60
              ATOM
              ATOM
               MOTA
               ATOM
               MOTA
65
               MOTA
                                                                                                         16.317 17.454 36.005 -0.40 +0.04 +0.113 2.343 15.535 17.503 37.184 +0.15 -0.17 -0.368 2.343 15.723 18.213 38.580 -0.59 +0.44 +1.019 2.343
               ATOM
               MOTA
```

-0.59 +0.44 +1.019 2.343

- 107 -

```
17.185 18.409 38.796 -0.16 -0.08 -0.255 2.343 14.832 19.415 38.627 -0.06 -0.11 -0.255 2.343
                ATOM
                                            22 O1A UDP
                                            22 O1A UDP 1
23 O2A UDP 1
                                           23 O2A UDP 1 14.832 19.415 38.627 -0.06 -0.11 -0.255 2.343 24 O3A UDP 1 15.209 16.980 39.452 -0.12 -0.23 -0.510 2.343 25 PB UDP 1 15.954 15.754 40.159 -0.78 +0.45 +1.019 2.343 26 O1B UDP 1 15.139 14.446 39.676 -0.06 -0.10 -0.255 2.343 27 O2B UDP 1 15.699 16.058 41.590 -0.72 -0.29 -0.255 2.343 28 O3B UDP 1 17.339 15.516 39.679 -0.16 -0.05 -0.255 2.343
                MOTA
                MOTA
                MOTA
                MOTA
                MOTA
                MOTA
                TER
                ENDMDL
10
               MODEL
                                                 75
                USER
                                         Run = 75
                USER
                                         Cluster Rank = 1
                USER
                                      Number of conformations in this cluster = 30
                USER
15
                                    RMSD from reference structure
                USER
                                                                                                                                                     = 2.190 A
                USER
                USER Estimated Free Energy of Binding = -8.35 kcal/mol [=(1)+(3)]
USER Estimated Inhibition Constant, Ki = +7.52e-07 [Temperature = 298.15 K]
           USER
USER Final Docked Energy
20
                                                                                                                                                         = -11.34 \text{ kcal/mol} [=(1)+(2)]
                USER
                                  (1) Final Intermolecular Energy = -10.53 kcal/mol

(2) Final Internal Energy of Ligand = -0.81 kcal/mol

(3) Torsional Free Energy = +2.18 kcal/mol
                USER
                USER
                USER
25
               USER
                USER
                USER
                                  DPF = test.dpf
                                         NEWDPF move udp_tr.pdbq
                USER
                USER
                                        NEWDPF about16.792999 18.735001 34.970001
30
                USER NEWDPF tran016.649808 19.351573 34.884284
                USER
                                        NEWDPF quat00.238273 0.242155 -0.940525 -7.710898
                USER
                                        NEWDPF ndihe7
                USER NEWDPF dihe0162.51 45.31 -179.82 136.56 -34.17 0.93 124.87
             USER USER USER USER | Rank | x | y | z | vdW | Elec | q | RMS | RATOM | 1 | N1 | UDP | 1 | 18.047 | 20.259 | 33.278 | -0.38 | -0.10 | -0.211 | 2.190 | ATOM | 2 | C2 | UDP | 1 | 18.316 | 21.566 | 32.981 | -0.84 | +0.28 | +0.36 | 2.190 | ATOM | 3 | N3 | UDP | 1 | 19.631 | 21.879 | 32.746 | -0.54 | -0.40 | -0.40 | 2.190 | ATOM | 4 | H3 | UDP | 1 | 19.631 | 21.879 | 32.746 | -0.54 | -0.40 | -0.40 | 2.190 | ATOM | 5 | C4 | UDP | 1 | 20.707 | 20.990 | 32.764 | -0.74 | +0.26 | +0.36 | 2.190 | ATOM | 5 | C4 | UDP | 1 | 20.707 | 20.990 | 32.764 | -0.74 | +0.26 | +0.36 | 2.190 | ATOM | 6 | C5 | UDP | 1 | 20.707 | 20.990 | 32.764 | -0.74 | +0.26 | +0.36 | 2.190 | ATOM | 7 | C6 | UDP | 1 | 19.074 | 19.323 | 33.074 | -0.54 | +0.00 | +0.000 | 2.190 | ATOM | 8 | O2 | UDP | 1 | 19.074 | 19.323 | 33.299 | -0.48 | +0.00 | +0.000 | 2.190 | ATOM | 8 | O2 | UDP | 1 | 17.429 | 22.420 | 32.939 | -0.30 | -0.31 | -0.336 | 2.190 | ATOM | 9 | O4 | UDP | 1 | 21.832 | 21.436 | 32.538 | -0.16 | -0.18 | -0.396 | 2.190 | ATOM | 10 | C1' | UDP | 1 | 16.661 | 19.859 | 33.555 | -0.64 | +0.06 | +0.324 | 2.190 | ATOM | 11 | C2' UDP | 1 | 16.661 | 19.859 | 33.555 | -0.64 | +0.06 | +0.324 | 2.190 | ATOM | 12 | C3' | UDP | 1 | 15.099 | 18.160 | 33.638 | -0.68 | -0.01 | +0.113 | 2.190 | ATOM | 13 | C4' | UDP | 1 | 15.650 | 19.352 | 34.884 | -0.04 | -0.07 | -0.227 | 2.190 | ATOM | 14 | O4' | UDP | 1 | 15.656 | 19.090 | 31.496 | -0.23 | +0.22 | -0.537 | 2.190 | ATOM | 15 | O2' | UDP | 1 | 15.656 | 19.090 | 31.496 | -0.23 | +0.22 | -0.537 | 2.190 | ATOM | 16 | HO2'UDP | 1 | 15.656 | 19.090 | 31.496 | -0.23 | +0.22 | -0.537 | 2.190 | ATOM | 18 | HO3'UDP | 1 | 15.656 | 19.090 | 31.496 | -0.23 | +0.22 | -0.537 | 2.190 | ATOM | 18 | HO3'UDP | 1 | 15.656 | 19.090 | 31.496 | -0.23 | +0.22 | -0.537 | 2.190 | ATOM | 19 | C5' | UDP | 1 | 15.656 | 19.090 | 31.496 | -0.23 | +0.02 | -0.557 | 2.190 | ATOM | 20 | O5' | UDP | 1 | 15.946 | 17.234 | 35.825 | -0.35 | +0.04 | +0.113 | 2.190 | ATOM | 20 | O5' | UDP | 1 | 15.946 | 17.234 | 35.825 | -0.35 | +0.04 | +0.113 | 2
                USER
                                                                                                                                                                          Z
35
40
         ATOM
50
           ATOM
55 ATOM
60
                TER
65
                ENDMDL
                MODEL
                                                     34
                USER
                                         Run = 34
                USER
                                         Cluster Rank = 1
```

- 108 -

```
USER
              Number of conformations in this cluster = 30
     USER
     USER
              RMSD from reference structure = 2.097 A
     USER
              Estimated Free Energy of Binding = -8.20 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +9.82e-07 [Temperature = 298.15 K]
     USER
     USER
     USER
     USER
              Final Docked Energy
                                                     = -11.33 \text{ kcal/mol} [=(1)+(2)]
     USER
10
     USER
              (1) Final Intermolecular Energy = −10.38 kcal/mol
     USER
              (2) Final Internal Energy of Ligand = .-0.96 kcal/mol
      USER
              (3) Torsional Free Energy = +2.18 kcal/mol
      USER
      USER
15
              DPF = test.dpf
      USER
              NEWDPF move udp_tr.pdbq
     USER
              NEWDPF about16.792999 18.735001 34.970001
      USER
      USER
              NEWDPF tran016.582017 19.303584 34.740441
     USER
              NEWDPF quat0-0.262934 -0.600146 0.755440 8.281891
20
              NEWDPF ndihe7
     USER
              NEWDPF dihe0-95.21 12.27 76.12 136.23 -39.68 40.94 148.63
     USER
     USER
      USER
                            Rank
                                                                     vdW
                                                                             Elec
                                                                                              RMS
                                          х
                                                   У
                                                            Z
                                        18.079 20.184 33.211
                                                                     -0.37 -0.10 -0.211 2.097
                1 N1 UDP
     MOTA
                                1
                2 C2 UDP
                                        18.387 21.485 32.927
                                                                     -0.83 +0.27 +0.396 2.097
25
     MOTA
                                 1
                3 N3 UDP
                                       19.717 21.776 32.764
                                                                     -0.54 -0.39 -0.440 2.097
     ATOM
                                 1
                4 H3 UDP
                                        19.958 22.757 32.565
                                                                     +0.03 +0.64 +0.440 2.097
      MOTA
                                 1
                                        20.776 20.870 32.842
                                                                     -0.73 +0.26 +0.396 2.097
      MOTA
                5 C4 UDP
                                 1.
                                        20.388 19.526 33.135
19.089 19.231 33.290
17.517 22.354 32.836
21.919 21.296 32.678
                6 C5 UDP
                                                                     -0.53 +0.00 +0.000 2.097
30
     MOTA
                                 1
                                                                     -0.47 +0.00 +0.000 2.097
     MOTA
                7 C6
                       UDP
                                 1
                8
                        UDP
                                 1
                                                                     -0.31 -0.30
                                                                                    -0.396 2.097
      MOTA
                   02
                                                                     -0.22 -0.22
                                                                                   -0.396
      MOTA
                9
                   04
                        UDP
                                 1
                                                                                             2.097
                   C1' UDP
                                        16.674 19.807 33.413
      MOTA
               10
                                 1
                                                                     -0.65 +0.06 +0.324
                                                                                             2.097
                                                                     -0.66 -0.01 +0.113 2.097
                   C2' UDP
                                        16.208 18.618 32.570
     ATOM
               11
                                 1
                                 1
35
                    C3' UDP
                                        15.002 18.136 33.409
                                                                    -0.70 -0.01 +0.113 2.097
     MOTA
               12
      ATOM '
               13
                   C4' UDP
                                        15.412 18.448 34.848
                                                                   -0.57 +0.02 +0.113 2.097
                                        16.582 19.304 34.740
15.770 19.049 31.304
14.756 19.225 31.332
13.885 18.949 33.040
14.208 19.905 32.835
                                                                    -0.04 -0.07 -0.227 2.097
-0.17 +0.21 -0.537 2.097
-0.30 -0.36 +0.424 2.097
-0.27 +0.14 -0.537 2.097
                              . 1
                   O4' UDP
      ATOM
               14
                              1
      MOTA
               15
                    O2' UDP
    MOTA
                16
                    HO2'UDP
                                 1
40
                    O3' UDP
      ATOM
                17
                                 1
                                                                    -0.40 -0.39 +0.424
-0.31 +0.04 +0.113
               18 HO3'UDP
      ATOM
                                 1
                                                                                             2.097
                                         15.793 17.201 35.645
               19 C5' UDP
                                 1
      MOTA
                                                                                             2.097
                                                                    +0.14 -0.17 -0.368 2.097
-0.62 +0.39 +1.019 2.097
                20 O5' UDP
                                        15.583 17.480 37.016
      MOTA
                                 1
                                        16.541 17.904 38.195
17.777 18.479 37.591
15.767 18.746 39.161
16.829 16.419 38.703
16.037 15.420 39.668
16.000 16.175 41.096
                21 PA UDP
      MOTA
                                 1
                22 O1A UDP
45
                                                                     -0.14 -0.08 -0.255 2.097
      MOTA
                                 1
                                                                     -0.16 -0.11 -0.255 2.097
      ATOM
                23 O2A UDP
                                 1
                                                                     -0.05 -0.18 -0.510 2.097
                24 O3A UDP
      MOTA
                                 1
      ATOM
                25
                   PB UDP
                                 1
                                                                     -0.65 + 0.40
                                                                                   +1.019 2.097
                26 O1B UDP
      ATOM
                                 1
                                                                     -0.67 -0.23
                                                                                    -0.255
                                                                                             2.097
                                         16.961 14.258 39.690
50
                27 O2B UDP
                                 1 .
                                                                     +0.04 -0.05
                                                                                   -0.255
      ATOM
                                                                                             2.097
                28 O3B UDP
                                        14.606 15.233 39.320
      MOTA
                               1
                                                                     +0.09 -0.09 -0.255 2.097
      TER
      ENDMDL
                   20
      MODEL
               Run = 20
      USER
      USER
               Cluster Rank = 1
               Number of conformations in this cluster = 30
      USER
      USER
      USER
               RMSD from reference structure
                                                      = 2.190 A
60
      USER
      USER
              Estimated Free Energy of Binding
                                                      = -8.37 kcal/mol [=(1)+(3)]
               Estimated Inhibition Constant, Ki
                                                    = +7.36e-07 [Temperature = 298.15 K]
      USER
      USER
      USER
              Final Docked Energy
                                                      = -11.31 \text{ kcal/mol} [=(1)+(2)]
65
      USER
               (1) Final Intermolecular Energy
                                                    = -10.55 \text{ kcal/mol}
      USER
               (2) Final Internal Energy of Ligand = -0.77 kcal/mol
      USER
                                                     = +2.18 kcal/mol
      USER
               (3) Torsional Free Energy
```

```
USER
        USER
        USER
                    DPF = test.dpf
                    NEWDPF move udp_tr.pdbq
NEWDPF about16.792999 18.735001 34.970001
        USER
        USER
                    NEWDPF tran016.600663 19.139251 34.607528
        USER
        USER
                    NEWDPF quat0-0.372510 0.542970 -0.752609 -7.650237
                    NEWDPF ndihe7
        USER
        USER
                    NEWDPF dihe0-104.31 14.83 -107.06 15.47 -94.66 40.90 152.31
10
        USER
        USER
                                                                                                               Elec
                                                                                                    vdW
                                                                                                                                        RMS
                                         Rank
                                                             х
                                                                                      z
                                                                                                   -0.37 -0.09 -0.211 2.190
-0.82 +0.27 +0.396 2.190
-0.54 -0.39 -0.440 2.190
        MOTA
                       1 N1 UDP
                                                          18.075 20.143 33.132
                                          1
                                                          18.384 21.463 32.956
19.713 21.760 32.794
19.956 22.754 32.677
20.768 20.846 32.773
        ATOM ·
                        2 C2
                                  UDP
                                               1
                        3 N3
        MOTA
                                  UDP
15
                        4 H3
                                                                                                   +0.03 +0.69 +0.440 2.190
        ATOM
                                  UDP
                                               1
                        5 C4
                                  UDP
                                                                                                   -0.73 +0.25 +0.396 2.190
        MOTA
                                               1
                                  UDP
                                                     20.377 19.484 32.955 -0.52 +0.00 +0.000 2.190
        MOTA
                        6 C5
                                               1
        MOTA
                        7 C6
                                  UDP
                                               1
                                                          19.079 19.182 33.109 -0.47 +0.00 +0.000 2.190
                                  UDP
UDP
        ATOM
                        8 02
                                                          17.518 22.340 32.958 -0.30 -0.31 -0.396 2.190
        ATOM
                       9 04
20
                                                           21.910 21.280 32.624
                                                                                                   -0.22 -0.21 -0.396 2.190
                                               1

      21.910
      21.280
      32.624
      -0.22
      -0.21
      -0.396
      2.190

      16.671
      19.756
      33.327
      -0.65
      +0.05
      +0.324
      2.190

      16.183
      18.646
      32.394
      -0.68
      -0.02
      +0.113
      2.190

      14.989
      18.099
      33.210
      -0.70
      -0.02
      +0.113
      2.190

      15.428
      18.283
      34.662
      -0.57
      +0.02
      +0.113
      2.190

      16.601
      19.139
      34.608
      -0.02
      -0.06
      -0.227
      2.190

      15.724
      19.189
      31.178
      -0.10
      +0.21
      -0.537
      2.190

      14.695
      19.223
      31.183
      -0.35
      -0.39
      +0.424
      2.190

      13.870
      18.945
      32.934
      -0.23
      +0.16
      -0.537
      2.190

      14.199
      19.907
      32.765
      -0.40
      -0.40
      +0.424
      2.190

      15.816
      16.969
      35.341
      -0.37
      +0.04
      +0.113
      2.190

      16.459
      17.421
      37.975
      -0.55
      +0.40
      +1.019
      2.190

                     9 O4 UDP 1
10 C1' UDP 1
11 C2' UDP 1
12 C3' UDP 1
13 C4' UDP 1
14 O4' UDP 1
15 O2' UDP 1
16 HO2'UDP 1
17 O3' UDP 1
18 HO3'UDP 1
19 C5' UDP 1
20 O5' UDP 1
        MOTA
        MOTA
        ATOM
        MOTA
25
        MOTA
        ATOM
        MOTA
        ATOM
        ATOM
30
        ATOM
                      20 05' UDP
        MOTA
                                               1
                                                1 .
        MOTA
                      21 PA UDP
                      22 O1A UDP
        MOTA
                                                1
                                                           16.397 18.893 38.244
                                                1
                                                                                                 +0.11 -0.11 -0.255 2.190
                      23 O2A UDP
        ATOM
                                             1
                      24 O3A UDP
                                                           15.626 16.531 39.004
                                                                                                   -0.05 -0.22 -0.510 2.190
        MOTA
        ATOM
                      25 PB UDP
                                                1
                                                           15.999 15.820 40.387 -0.80 +0.51 +1.019 2.190
                                                          15.099 16.580 41.493 -0.45 -0.30 -0.255 2.190
17.434 16.180 40.511 -0.51 -0.09 -0.255 2.190
                      26 O1B UDP
        ATOM
                                                1
                      27 O2B UDP
                                                          17.434 16.180 40.511
15.571 14.401 40.484
        MOTA
                                              1
        MOTA
                      28 O3B UDP
                                               1
                                                                                                    -0.15 -0.10 -0.255 2.190
40
        TER
        ENDMDL
                             7
        MODEL
                     Run = 7
        USER
        USER
                     Cluster Rank = 1
45
        USER
                     Number of conformations in this cluster = 30
        USER
         USER
                     RMSD from reference structure
                                                                              = 2.106 A
         USER
                     Estimated Free Energy of Binding = -8.01 \text{ kcal/mol} [=(1)+(3)]
        USER
                    Estimated Inhibition Constant, Ki = +1.34e-06 [Temperature = 298.15 K]
50
        USER
        USER
                     Final Docked Energy
                                                                              = -11.14 \text{ kcal/mol} [= (1) + (2)]
         USER
         USER
                     (1) Final Intermolecular Energy = -10.19 kcal/mol
         USER
                     (2) Final Internal Energy of Ligand = -0.95 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
        USER
         USER
         USER
         USER
         USER
                     DPF = test.dpf
60
                     NEWDPF move udp_tr.pdbq
         USER
                     NEWDPF about16.792999 18.735001 34.970001
         USER
                     NEWDPF tran016.771562 19.240141 34.663676
         USER
                     NEWDPF quat0-0.276654 -0.688269 0.670632 9.784323
         USER
         USER
                     NEWDPF ndihe7
65
                     NEWDPF dihe0179.04 77.47 173.47 135.89 -39.09 46.20 144.65
         USER
         USER
         USER
                                                           x y z vdW Elec q RMS
18.311 20.117 33.175 -0.35 -0.10 -0.211 2.106
                                                                                                    vdW
                                                                                                               Elec
                                          Rank
                        1 N1 UDP
         MOTA
```

WO 01/83717 PCT/CA01/00607

- 110 -

```
2 C2 UDP 1 18.620 21.418 32.890 -0.81 +0.28 +0.396 2.106
3 N3 UDP 1 19.953 21.715 32.766 -0.54 -0.38 -0.440 2.106
4 H3 UDP 1 20.195 22.696 32.567 +0.03 +0.60 +0.400 2.106
5 C4 UDP 1 21.014 20.815 32.885 -0.73 +0.26 +0.396 2.106
6 C5 UDP 1 20.624 19.471 33.175 -0.52 +0.00 +0.000 2.106
7 C6 UDP 1 19.323 19.171 33.293 -0.46 +0.00 +0.000 2.106
8 O2 UDP 1 17.749 22.281 32.765 -0.31 -0.30 -0.396 2.106
9 O4 UDP 1 22.159 21.247 32.752 -0.23 -0.23 -0.396 2.106
10 C1' UDP 1 16.469 18.535 32.489 -0.64 +0.07 +0.324 2.106
11 C2' UDP 1 16.469 18.535 32.489 -0.64 -0.01 +0.113 2.106
12 C3' UDP 1 15.240 18.053 33.293 -0.66 -0.02 +0.113 2.106
13 C4' UDP 1 15.604 18.379 34.741 -0.55 +0.02 +0.113 2.106
14 O4' UDP 1 16.069 18.955 31.205 -0.23 +0.16 -0.537 2.106
16 HO2' UDP 1 16.069 18.955 31.205 -0.23 +0.16 -0.537 2.106
16 HO2' UDP 1 16.069 18.955 31.205 -0.23 +0.16 -0.537 2.106
17 O3' UDP 1 14.130 18.857 32.883 -0.26 +0.18 -0.537 2.106
18 HO3' UDP 1 15.967 17.140 35.560 -0.37 +0.04 +0.113 2.106
20 O5' UDP 1 15.967 17.140 35.560 -0.23 +0.16 -0.368 2.106
21 PA UDP 1 15.967 17.140 35.560 -0.37 +0.04 +0.113 2.106
22 O1A UDP 1 15.5601 18.602 39.264 +0.08 -0.16 -0.368 2.106
24 O3A UDP 1 16.678 17.981 38.046 -0.62 +0.37 +1.019 2.106
24 O3A UDP 1 16.557 15.522 39.619 -0.63 +0.35 +1.019 2.106
25 PB UDP 1 16.596 16.105 40.911 -0.49 -0.25 2.106
26 O1B UDP 1 16.759 14.087 39.322 +0.01 -0.09 -0.255 2.106
28 O3B UDP 1 16.759 14.087 39.322 +0.01 -0.09 -0.255 2.106
            ATOM
             MOTA
             MOTA
             MOTA
         ATOM
            ATOM
ATOM
            ATOM
10
         MOTA
             MOTA
             MOTA
             MOTA
             MOTA
15
             ATOM
             ATOM
             ATOM
             MOTA
             MOTA
20
             MOTA
             MOTA
             MOTA
             MOTA
             MOTA
25
          MOTA
             MOTA
             MOTA
             TER
             ENDMDL
30
            MODEL
             USER
                                  Run = 59
             USER
                                  Cluster Rank = 1
             USER
                                  Number of conformations in this cluster = 30
             USER
35
             USER
                                  RMSD from reference structure = 2.112 A
           USER
                                                                                                                          = -8.37 kcal/mol [=(1)+(3)]
             USER
                                Estimated Free Energy of Binding
                                Estimated Inhibition Constant, Ki = +7.26e-07 [Temperature = 298.15 K]
             USER
           USER
                                                                                                                                = -11.13 kcal/mol [=(1)+(2)]
         USER Final Docked Energy
40
             USER
                                 (1) Final Intermolecular Energy = -10.55 kcal/mol
             USER
                                 (2) Final Internal Energy of Ligand = -0.58 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
             USER
             USER
45
             USER
             USER
                                 DPF = test.dpf
             USER
             USER NEWDPF move udp_tr.pdbq
             USER
                                 NEWDPF about16.792999 18.735001 34.970001
50
             USER
                                  NEWDPF tran016.789117 19.079734 34.943430
             USER
                                  NEWDPF quat00.532175 0.338229 0.776138 5.198164
             USER
                                 NEWDPF ndihe7
                                 NEWDPF dihe0163.86 24.42 -162.76 -24.87 124.02 -143.97 114.20
             USER
                               Rank x y z vdw Elec q RMS

1 N1 UDP 1 18.129 20.036 33.316 -0.34 -0.10 -0.211 2.112

2 C2 UDP 1 18.455 21.346 33.100 -0.80 +0.27 +0.396 2.112

3 N3 UDP 1 19.767 21.606 32.800 -0.53 -0.37 -0.440 2.112

4 H3 UDP 1 20.024 22.592 32.651 +0.03 +0.61 +0.440 2.112

5 C4 UDP 1 20.789 20.663 32.676 -0.70 +0.24 +0.396 2.112

6 C5 UDP 1 20.382 19.312 32.907 -0.50 +0.00 +0.000 2.112

7 C6 UDP 1 19.100 19.048 33.196 -0.45 +0.00 +0.000 2.112

8 O2 UDP 1 17.618 22.247 33.185 -0.28 -0.32 -0.396 2.112

9 O4 UDP 1 21.921 21.064 32.407 -0.19 -0.19 -0.396 2.112

10 C1' UDP 1 16.743 19.689 33.659 -0.61 +0.07 +0.324 2.112

11 C2' UDP 1 16.131 18.589 32.788 -0.64 -0.01 +0.113 2.112

12 C3' UDP 1 15.014 18.078 33.728 -0.67 +0.00 +0.113 2.112

13 C4' UDP 1 15.605 18.256 35.125 -0.53 +0.03 +0.113 2.112
             USER
                                                                                                  x .
55
             USER
             ATOM
             ATOM
             ATOM
             ATOM
60
             ATOM
             ATOM
             ATOM
             ATOM
             MOTA
65
             ATOM
             MOTA
             ATOM
             MOTA
```

WO 01/83717 PCT/CA01/00607

- 111 -

```
16.789 19.080 34.943
                                                                              -0.01 -0.08 -0.227 2.112
      ATOM
                 14 04' UDP
                                     1
      MOTA
                 15 '02' UDP
                                              15.563 19.139 31.622
                                                                            -0.29 +0.22 -0.537 2.112
                                     1
                                              15.357 18.386 30.952
                                                                              -0.19 -0.49 +0.424 2.112
      ATOM
                 16
                     HO2'UDP
                                     1
                                              13.895 18.955 33.563
      ATOM
                 17
                      O3' UDP
                                     1
                                                                              -0.18 +0.07 -0.537 2.112
 5
                 18 HO3'UDP
                                                                             -0.35 -0.37 +0.424 2.112
      ATOM
                                              14.220 19.862 33.198
                                     1
                                                                              -0.36 +0.04 +0.113 2.112
      ATOM
                 19
                     C5' UDP
                                              16.026 16.935 35.769
                                     1
                                             16.746 17.237 36.949
16.315 17.725 38.386
17.557 17.965 39.176
15.343 18.853 38.235
15.653 16.343 38.828
16.007 15.274 39.964
                                                                              +0.04 -0.15 -0.368 2.112
-0.63 +0.40 +1.019 2.112
-0.27 -0.04 -0.255 2.112
-0.10 -0.12 -0.255 _2.112
      MOTA
                 20 05' UDP
                                     1
      MOTA
                          UDP
                 21 PA
                                     1
      MOTA
                 22 O1A UDP
                                     1
10
                 23 O2A UDP
      ATOM
                                     1
      MOTA
                 24 O3A UDP
                                                                              -0.01 -0.22 -0.510 2.112
                                     1
                                                                              -0.67 +0.39 +1.019 2.112
      ATOM
                 25 PB UDP
                                     1
     ` ATOM
                                              15.929 16.105 41.347
                 26 O1B UDP
                                                                              -0.68 -0.26 -0.255 2.112
                                     1
                 27 O2B UDP
                                              17.408 14.938 39.608
                                                                              -0.02 -0.04 -0.255 2.112
      MOTA
                                     1
                 28 O3B UDP
15
      MOTA
                                    1
                                              14.997 14.197 40.130
                                                                              -0.09 -0.10 -0.255 2.112
      TER
      ENDMDL
                    98
      MODEL
                Run = 98
      USER
20
                Cluster Rank = 1
      USER
                Number of conformations in this cluster = 30
      USER
      USER
      USER
                RMSD from reference structure
                                                           = 2.109 A
      USER
                Estimated Free Energy of Binding = -7.94 kcal/mol [=(1)+(3)]
Estimated Inhibition Constant, Ki = +1.51e-06 [Temperature = 298.15 K]
25
      USER
      USER
      USER
                                                             = -11.08 \text{ kcal/mol} [=(1)+(2)]
                Final Docked Energy
      USER
      USER
                 (1) Final Intermolecular Energy = -10.12 kcal/mol
30
      USER
                 (2) Final Internal Energy of Ligand = -0.96 kcal/mol
      USER
                 (3) Torsional Free Energy = +2.18 kcal/mol
      USER
      USER
35
                DPF = test.dpf
      USER
                NEWDPF move udp_tr.pdbq
      USER
                NEWDPF about16.792999 18.735001 34.970001
      USER
                NEWDPF tran016.893783 19.279399 34.797086
       USER
      USER .
                NEWDPF quat00.214303 0.443762 -0.870143 -7.171696
40
      USER
                NEWDPF ndihe7
      USER
                NEWDPF diheO-119.38 43.09 -179.96 146.93 -44.48 49.68 150.19
       USER
                                                          у.
                                                                    z
      USER
                                                                              vdW Elec q RMS
-0.35 -0.10 -0.211 2.109
                                Rank
                                                х
                                              18.342 20.174 33.229
                   1 N1 UDP 1
      MOTA
                                              18.641 21.478 32.948 -0.82 +0.29 +0.396 2.109
19.966 21.769 32.746 -0.54 -0.38 -0.440 2.109
45
                           UDP
                   2 C2
      ATOM
                                      1
      ATOM
                   3 N3
                           UDP
                                      1
                                              19.966 21.769 32.746 -0.54 -0.38 -0.440 2.109

20.201 22.752 32.548 +0.03 +0.61 +0.440 2.109

21.026 20.862 32.782 -0.74 +0.25 +0.396 2.109

20.647 19.515 33.074 -0.53 +0.00 +0.000 2.109

19.353 19.220 33.267 -0.47 +0.00 +0.000 2.109

17.769 22.347 32.892 -0.28 -0.32 -0.396 2.109

22.164 21.290 32.585 -0.22 -0.20 -0.396 2.109

16.944 19.796 33.472 -0.63 +0.08 +0.324 2.109
                           UDP
      MOTA
                   4 H3
                                      1
                           UDP
      MOTA
                   5 C4
                                      1
                  6 C5
                           UDP
      MOTA
                                      1
50
                           UDP
      ATOM
                   7 C6
                                      1
      ATOM
                  8 02
                           UDP
                                      1
      MOTA
                  9
                     04
                           UDP
                                      1
                  10 Cl' UDP
                                      1
      ATOM
                                                                              -0.63 +0.00 +0.113 2.109
                  11 C2' UDP
                                              16.451 18.614 32.634
      MOTA
                                      1
55
                  12 C3' UDP
                                              15.272 18.125 33.506
                                                                              -0.65 -0.01 +0.113 2.109
      MOTA
                                      1
                  13 C4' UDP
                                          15.727 18.423 34.933

16.894 19.279 34.797

15.973 19.058 31.386

14.967 18.852 31.309

14.143 18.941 33.180

14.429 19.672 32.512

16.133 17.168 35.707

15.932 17.422 37.084

16.853 18.005 38.224

18.020 18.665 37.572

16.007 18.819 39.152

17.293 16.587 38.809

16.529 15.472 39.664
      ATOM
                                      1
                                              15.727 18.423 34.933 -0.54 +0.03 +0.113 2.109
                     04' UDP
                                                                              -0.02 -0.08 -0.227 2.109
      ATOM
                  14
                                      1
                      O2' UDP
HO2'UDP
       MOTA
                  15
                                      1
                                                                              -0.23
                                                                                        +0.16 -0.537 2.109
                                                                              -0.23 -0.38 +0.424 2.109
-0.24 +0.15 -0.537 2.109
-0.27 -0.32 +0.424 2.109
       MOTA
                  16
                                      1
                      O3' UDP
60
      MOTA
                  17
                                      1
                  18 HO3'UDP
                                      1
      MOTA
                                                                              -0.38 +0.04 +0.113 2.109
                  19 C5' UDP
                                      1
      MOTA
                  20 05' UDP
                                                                            +0.05 -0.16 -0.368 2.109
       MOTA
                                      1
                  21 PA UDP
                                                                              -0.63 +0.36 +1.019 2.109
                                   1
       MOTA
65
                  22 O1A UDP
                                   . .1 -
                                                                              -0.11 -0.08 -0.255 2.109
       MOTA
                                      1
       MOTA
                  23 O2A UDP
                                                                              -0.11 -0.11 -0.255 2.109
                  24 O3A UDP
                                      1
                                                                               -0.11 -0.14
                                                                                                -0.510 2.109
       MOTA
                                     ī
                                                                               -0.62 +0.35 +1.019 2.109
                  25 PB UDP
       MOTA
```

- 112 -

USER

```
15.059 15.383 39.000
                                                                       +0.05 -0.11 -0.255 2.109
                 26 O1B UDP
       MOTA
                                  1
       ATOM
                 27 O2B UDP
                                           16.487 16.122 40.998
                                                                       -0.59 -0.22 -0.255 2.109
                                  1
                 28 O3B UDP
                                           17.078 14.100 39.516
                                                                       +0.06 -0.06 -0.255 2.109
       MOTA
                                  1
       TER
       ENDMDL
       MODEL
                     91
       USER
                Run = 91
       USER
                Cluster Rank = 1
       USER
                Number of conformations in this cluster = 30
 10
       USER
                RMSD from reference structure
       USER
                                                       = 2.427 A
       USER
                Estimated Free Energy of Binding = -8.15 \text{ kcal/mol} [=(1)+(3)]
       USER
                Estimated Inhibition Constant, Ki = +1.05e-06
                                                                          [Temperature = 298.15 \text{ K}]
       USER
 15
       USER
                                                   -11.05 kcal/mol [=(1)+(2)]
       USER
                Final Docked Energy
       USER
                (1) Final Intermolecular Energy = -10.33 kcal/mol
(2) Final Internal Energy of Ligand = -0.72 kcal/mol
       USER
       USER
                (3) Torsional Free Energy = +2.18 kcal/mol
 20
       USER
       USER
       USER
       USER
                DPF = test.dpf
        USER
                NEWDPF move udp_tr.pdbq
 25
                NEWDPF about16.792999 18.735001 34.970001
       USER
        USER
                NEWDPF tran017.439802 19.336859 35.113934
        USER
                NEWDPF quat0-0.853123 -0.282142 0.438836 8.841905
        USER
                NEWDPF ndihe7
                NEWDPF dihe0176.08 67.48 151.37 -55.37 -90.07 58.66 -174.00
        USER
 30
        USER
        USER
                                                                z
                                                                          vdW
                                                                                  Elec
                                                                                                   RMS
                               Rank
                                                       У
                                                                         -0.32 -0.12 -0.211 2.427
-0.78 +0.30 +0.396 2.427
-0.52 -0.33 -0.440 2.427
+0.03 +0+34 +0.440 2.427
                                            18.914 19.999 33.457
        MOTA
                   1 N1 UDP
                                    1
                                            19.267 21.252 33.040
20.601 21.462 32.804
20.878 22.408 32.505
21.621 20.517 32.931
21.186 19.226 33.363
                   2 C2 UDP
        ATOM
                                    1
                   3 N3 UDP
      MOTA
                                    1
- 35
        MOTA
                   4 H3
                           UDP
                                    1
                                                                         -0.72 +0.26 +0.396 2.427
        ATOM
                   5
                      C4
                           UDP
                                    1
                                                                         -0.49 +0.00 +0.000 2.427
                     C5
                           UDP
        MOTA
                   6
                                    1
                                            19.882 19.010 33.590
                                                                       -0.44 +0.00 +0.000 2.427
                   7 C6 UDP
                                    1
        ATOM
                                           19.882 19.010 33.590

18.434 22.149 32.898

22.775 20.871 32.687

17.502 19.710 33.742

16.951 18.471 33.033

15.759 18.127 33.955

16.238 18.552 35.342

17.440 19.337 35.114

16.483 18.804 31.747

16.132 17.957 31.279

14.665 18.955 33.550
                                                                       -0.26 -0.36 -0.396 2.427
                   8 O2 UDP
        MOTA
                                    1
                                                                       -0.25 -0.27 -0.396 2.427
  40
                  9
                     O4 UDP
                                   1
        ATOM
                  10 C1' UDP
                                                                         -0.57
                                                                                 +0.12 +0.324
                                                                                                   2.427
        ATOM
                                    1
                                                                                 +0.01 +0.113
+0.01 +0.113
                                                                         -0.51
                  11 C2' UDP
                                                                                                   2.427
        ATOM
                                    1
                                                                         -0.54
                                                                                                   2.427
        ATOM
                  12 C3' UDP
                                    1
                                                                       -0.50 +0.04 +0.113
                                                                                                   2.427
        MOTA
                  13
                      C4' UDP
                                    1
                                                                       -0.02
                                                                                 -0.10 -0.227 2.427
                      O4' UDP
  45
        MOTA
                  14
                                    1
                  15 02' UDP
                                                                       -0.22 +0.08 -0.537 2.427
                                    1
        ATOM
                  16 HO2'UDP
                                                                       -0.22 -0.27 +0.424 2.427
        MOTA
                                    1
                                            14.665 18.955 33.550 -0.16 +0.10 -0.537 2.427
                      O3' UDP
                                    1
        ATOM
                  17
                                            14.824 19.289 32.589
16.595 17.367 36.241
15.720 17.387 37.353
15.712 18.191 38.710
17.128 18.476 39.078
                                                                         -0.09 -0.19 +0.424 2.427
                  18 HO3'UDP
        ATOM
                                    1
                                                                          -0.40 +0.05 +0.113 2.427
+0.13 -0.17 -0.368 2.427
                  19 C5' UDP
  50
                                    1
        MOTA
                  20 05' UDP
                                    1
        ATOM
                                                                          -0.63 +0.44 +1.019
                      PA UDP
                                                                                                   2.427
        MOTA
                  21
                                    1
                                                                          -0.17 -0.08 -0.255 2.427
        ATOM
                  22
                      OLA UDP
                                    1
                  23 O2A UDP
                                            14.768 19.345 38.575
                                                                          -0.07 -0.12 -0.255 2.427
                                    1
        MOTA
                  24 O3A UDP
                                            15.156 16.989 39.600
                                                                          -0.15 -0.24 -0.510 2.427
  55
                                    1
        ATOM
                  25 PB UDP
                                            15.860 15.759 40.340
                                                                          -0.78 + 0.49 + 1.019 2.427
        ATOM
                                    1
                                                                          -0.47
                                                                                  -0.07 -0.255 2.427
                                            17.435 16.117 40.322
        MOTA
                  26 O1B UDP
                                    1
                                            15.543 14.649 39.405
15.531 15.640 41.783
                                                                          -0.04 -0.11 -0.255 2.427
                  27 O2B UDP
                                   1
        MOTA
                                                                          -0.74 -0.25 -0.255 2:427
                  28 O3B UDP
                                    1
        ATOM
  60
        TER
        ENDMDL
        MODEL
                     78
                 Run = 78
        USER
        USER
                 Cluster Rank = 1
. 65
                 Number of conformations in this cluster = 30
        USER
        USER
                                                      = 2.417 A
        USER
                 RMSD from reference structure
```

```
USER
             Estimated Free Energy of Binding
                                                     -8.24 \text{ kcal/mol} = (1)+(3)
     USER
             Estimated Inhibition Constant, Ki
                                                 ===
                                                     +9.08e-07
                                                                     [Temperature = 298.15 K]
     USER
     USER
             Final Docked Energy
                                                  = -10.97 \text{ kcal/mol} [= (1) + (2)]
     USER
     USER
              (1) Final Intermolecular Energy
                                                 = -10.42 \text{ kcal/mol}
     USER
              (2) Final Internal Energy of Ligand = -0.55 kcal/mol
     USER
              (3) Torsional Free Energy
                                                      +2.18 kcal/mol
     USER
10
     USER
     USER
             DPF = test.dpf
     USER
             NEWDPF move udp tr.pdbq
             NEWDPF about16.792999 18.735001 34.970001
     USER
     USER
             NEWDPF tran016.577195 19.722656 34.915745
15
     USER
             NEWDPF quat0-0.672356 -0.299327 0.677009 17.193969
     USER
             NEWDPF ndihe7
     USER
             NEWDPF dihe0167.91 -111.85 -172.88 17.96 -34.07 -1.67 163.75
     USER
     USER
                           Rank
                                        х
                                                        Z
                                                                 vdW
                                                                        Elec
                                                                                        RMS
                                                v
                                                      33.266
20
                                      18.021
                                              20.465
                                                                 -0.40
                                                                        -0.10
                                                                              -0.211
     MOTA
               1 N1 UDP
                              1
                                                                                       2.417
                                                                        +0.27 +0.396
     MOTA
               2 C2
                      UDP
                               1
                                      18.220 21.723
                                                      32.770
                                                                 -0.87
                                                                                       2.417
                                                     32.566
     ATOM
               3 N3
                      UDP
                                      19.524 22.098
                                                                 -0.51
                                                                        -0.42
                                                                               -0.440
                               1
                                                                                       2.417
     ATOM
                  нз
                      UDP
                                      19.683 23.050
                                                      32.207
                                                                 +0.14
                                                                        +0.59
                                                                               +0.440
                               1
                                                                                       2.417
     ATOM
               5
                  C4
                      UDP
                               1
                                      20.655 21.314
                                                      32.797
                                                                 -0.77
                                                                        +0.28 +0.396
                  C5
                     UDP
                                      20.378 20.008
                                                      33.308
                                                                 -0.59 +0.00
                                                                              +0.000 2.417
25
     ATOM
               6
                               1
                     UDP
     MOTA
               7.
                  C6
                               1
                                      19.106 19.630
                                                      33.506
                                                                 -0.51
                                                                        +0.00
                                                                               +0.000
                                                                                       2.417
     ATOM
               8
                  02
                      UDP
                               1
                                      17.281
                                              22.485
                                                      32.533
                                                                 -0.36
                                                                        -0.26
                                                                               -0.396
                                                                                       2.417
                                      21.760 21.805
     ATOM ··
               9 . 04
                      UDP.
                               1
                                                      32.568
                                                                 -0.08
                                                                        -0.17
                                                                               -0.396
                                                                                       2.417
                 C1' UDP
                                     16.650 20.006
                                                      33.523
                                                                 -0.65
                                                                        +0.06 +0.324
     ATOM
               10
                               1
                                                                                       2.417
30
     MOTA
                 C2' UDP
                                      16.303 18.657
                                                      32.889
                                                                 -0.62
                                                                        +0.00 +0.113
              11
                               1
                                                                                       2.417
     ATOM
               12
                  C3' UDP
                               1
                                      15.127 18.217 33.792
                                                                 -0.66
                                                                        +0.00 +0.113 2.417
                  C4' UDP
                                      15.483 18.798 35.160
                                                                 -0.56
     ATOM
               13
                               1
                                                                        +0.03 +0.113
                  O4' UDP
                                      16.577 19.723 34.916
                                                                 -0.06
     ATOM
                               1
                                                                        -0.07
                                                                               -0.227 2.417
               14
                                                      31.567
                                                                              -0.537
     MOTA
              15
                  O2' UDP
                               1
                                      15.852 18.833
                                                                 -0.24
                                                                        +0.21
                                                                                       2.417
35
     ATOM
              16
                  HO2'UDP
                               1
                                      15.770
                                              17.916
                                                      31.106
                                                                 -0.31
                                                                        -0.44
                                                                              +0.424
                                                                                       2.417
                                      13.951 18.856
     ATOM
               17
                  O3' UDP
                               1
                                                      33.289
                                                                 -0.25
                                                                        +0.10
                                                                              -0.537
                                                                                        2.417
                  HO3'UDP
                                      13.234 18.888
                                                      34.027
     ATOM
                                                                 -0.08
                                                                        +0.11 +0.424
               18
                                                                                        2.417
                               1
     ATOM
               19
                  C5' UDP
                               1
                                      15.956 17.738
                                                      36.156
                                                                 -0.39
                                                                        +0.04 +0.113
                                                                                       2.417
     MOTA
                  O5' UDP
                                      15.393 18.045
                                                      37.417
                                                                 +0.07
                                                                        -0.17 -0.368
               20
                               1
                                                                                       2.417
40
                                      15.935 17.957
                                                      38.896
                                                                 -0.71
     MOTA
               21
                  PA UDP
                               1
                                                                        +0.44 +1.019
                                                                                       2.417
                                                      38.841
     MOTA
               22
                  O1A UDP
                               1
                                      17.421 18.066
                                                                 -0.22
                                                                        -0.06 -0.255 2.417
     ATOM
              23
                  O2A UDP
                               1
                                      15.183 18.939
                                                      39.739
                                                                 -0.23
                                                                        -0.12
                                                                               -0.255 2.417
                                      15.514 16.436
16.010 15.304
                  O3A UDP
                                                      39.126
                                                                 -0.06
                                                                        -0.22
                                                                               -0.510
     MOTA
               24
                               1
                                                                                        2,417
     MOTA
               25
                  PB UDP
                               1
                                                      40.141
                                                                 -0.69
                                                                        +0.40
                                                                               +1.019
                                                                                        2.417
45
                                                      41.590
               26
                  O1B UDP
                               1
                                      15.993 16.019
                                                                 -0.68
                                                                        -0.30
     ATOM
                                                                               -0.255
                                                                                        2.417
     MOTA
               27
                  O2B UDP
                               1
                                      17.397 15.083
                                                      39.659
                                                                 -0.06
                                                                       -0.04
                                                                               -0.255
                                                                                       2.417
                  O3B UDP
     MOTA
               28
                                      15.076 14.159
                                                     40.290
                                                                 -0.11 -0.11 -0.255 2.417
     TER '
     ENDMDL
50
     MODEL
                  67
     USER
              Run = 67
     USER
              Cluster Rank = 1
     USER
              Number of conformations in this cluster = 30
     USER
55
              RMSD from reference structure
                                                   = 2.230 A
     USER
     USER
     USER
              Estimated Free Energy of Binding
                                                  =
                                                       -8.10 \text{ kcal/mol} [=(1)+(3)]
              Estimated Inhibition Constant, Ki
                                                       +1.15e-06
                                                                    [Temperature = 298.15 K]
     USER
     USER
60
     USER
              Final Docked Energy
                                                   = -10.95 \text{ kcal/mol} [= (1) + (2)]
     USER
     USER
              (1) Final Intermolecular Energy
                                                  = -10.28 \text{ kcal/mol}
     USER
              (2) Final Internal Energy of Ligand = -0.67 kcal/mol
     USER
              (3) Torsional Free Energy
                                                      +2.18 kcal/mol
65
     USER
     USER
     USER
              DPF = test.dpf
     USER
              NEWDPF move udp tr.pdbq
```

WO 01/83717 PCT/CA01/00607

- 114 -

```
USER
                                 NEWDPF about16.792999 18.735001 34.97.0001
             USER
                                  NEWDPF tran017.161973 19.546069 34.694746
             USER
                                  NEWDPF quat00.907012 0.421046 -0.007048 -17.600431
                                 NEWDPF ndihe7
             USER
                           NEWDPF dihe0-150.07 88.07 161.44 45.36 22.65 -28.61 139.40
             USER
                              Rank x y z vdW Elec q RMS 1 N1 UDP 1 18.821 19.878 33.115 -0.32 -0.10 -0.211 2.230 2.02 UDP 1 19.295 21.037 32.566 -0.70 +0.25 +0.396 2.230 3. N3 UDP 1 20.657 21.137 32.436 -0.49 -0.25 -0.440 2.230 4 H3 UDP 1 21.023 22.012 32.037 -0.02 +0.11 +0.440 2.230 5 C4 UDP 1 21.594 20.165 32.793 -0.67 +0.25 +0.396 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.02 +0.11 +0.440 2.230 7 -0.28 +0.2230 7 -0.28 +0.26 +0.0396 2.230 7 -0.28 +0.26 +0.0396 2.230 7 -0.28 +0.26 +0.0396 2.230 7 -0.28 +0.26 +0.0396 2.230 7 -0.28 +0.26 +0.26 +0.396 2.230 7 -0.28 +0.26 +0.26 +0.396 2.230 7 -0.28 +0.26 +0.28 +0.396 2.230 7 -0.28 +0.26 +0.28 +0.396 2.230 7 -0.28 +0.26 +0.28 +0.396 2.230 7 -0.28 +0.26 +0.396 2.230 7 -0.28 +0.22 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0.28 +0
             USER
             USER
                                                                                                                                               z
                                                                                                                                                                  AGM
                                                                                                                                                                                  Elec
             MOTA
             MOTA
10
             MOTA
             MOTA
             MOTA
             ATOM
             MOTA
15
          ATOM
             ATOM
             MOTA
             MOTA
             ATOM
20
            ATOM
             MOTA
             ATOM
             ATOM
             ATOM
25
      . ATOM
             MOTA
             ATOM
             MOTA
             MOTA
30
         MOTA
             MOTA
             MOTA
             MOTA
            MOTA
             ATOM
             TER
             ENDMDL
             MODEL
                                             4
              USER
                                  Run = 4
40
             USER
                                   Cluster Rank = 1
                                  Number of conformations in this cluster = 30
              USER
              USER
                                  RMSD from reference structure
                                                                                                                         = 2.180 A
              USER
              USER
             USER Estimated Free Energy of Binding = -7.94 \text{ kcal/mol} [=(1)+(3)]
45
                                 Estimated Inhibition Constant, Ki = +1.52e-06 [Temperature = 298.15 K]
             USER
              USER
              USER Final Docked Energy
                                                                                                                                  = -10.90 \text{ kcal/mol} [=(1)+(2)]
              USER
                                  (1) Final Intermolecular Energy = -10.12 kcal/mol

(2) Final Internal Energy of Ligand = -0.79 kcal/mol

(3) Torsional Free Energy = +2.18 kcal/mol
              USER
              USER
              USER
              USER
              USER
 55
              USER
                                   DPF = test.dpf
                                  NEWDPF move udp_tr.pdbq
NEWDPF about16.792999 18.735001 34.970001
              USER
              USER
                                   NEWDPF tran016.815113 19.444013 34.902784
              USER
                                   NEWDPF quat0-0.630271 -0.262187 0.730764 9.610976
              USER
60
                                 NEWDPF ndihe7
             USER
                                  NEWDPF dihe0-171.96 113.05 85.63 129.04 -22.39 18.54 152.66
              USER
              USER
                                                                                                                                                                    vdW
                                                                                                                                                                                   Elec
              USER
                                                                    Rank
                                                                                                                                               Z
                                  RANK X Y Z VGW EIEC Q RMS

1 N1 UDP 1 18.242 20.226 33.257 -0.36 -0.10 -0.211 2.180

2 C2 UDP 1 18.524 21.507 32.871 -0.82 +0.28 +0.396 2.180

3 N3 UDP 1 19.844 21.797 32.636 -0.54 -0.37 -0.440 2.180

4 H3 UDP 1 20.066 22.763 32.359 +0.06 +0.53 +0.440 2.180

5 C4 UDP 1 20.915 20.907 32.736 -0.74 +0.25 +0.396 2.180
              ATOM
              ATOM
              MOTA
              ATOM
              ATOM
```

```
6 C5 UDP 1 20.553 19.584 33.137 -0.54 +0.00 +0.000 2.180 7 C6 UDP 1 19.264 19.290 33.364 -0.47 +0.00 +0.000 2.180 8 O2 UDP 1 17.642 22.360 32.753 -0.31 -0.30 -0.396 2.180 9 O4 UDP 1 22.046 21.330 32.496 -0.20 -0.18 -0.396 2.180 10 C1' UDP 1 16.850 19.854 33.541 -0.64 +0.07 +0.324 2.180 11 C2' UDP 1 16.365 18.604 32.803 -0.62 +0.00 +0.113 2.180 12 C3' UDP 1 15.198 18.172 33.720 -0.65 +0.00 +0.113 2.180 12 C3' UDP 1 15.660 18.589 35.116 -0.55 +0.03 +0.113 2.180 13 C4' UDP 1 16.815 19.444 34.903 -0.04 -0.08 -0.227 2.180 15 O2' UDP 1 15.874 18.941 31.527 -0.25 +0.19 -0.537 2.180 16 HO2'UDP 1 15.874 18.941 31.527 -0.25 +0.19 -0.537 2.180 17 O3' UDP 1 14.058 18.948 33.339 -0.21 +0.12 -0.537 2.180 18 HO3'UDP 1 13.771- 18.691 32.384 -0.14 -0.17 +0.424 2.180 19 C5' UDP 1 15.837 18.131 31.120 -0.23 -0.51 +0.424 2.180 19 C5' UDP 1 15.837 18.133 31.320 -0.20 -0.65 +0.00 +0.113 2.180 19 C5' UDP 1 15.837 18.948 33.339 -0.21 +0.12 -0.537 2.180 18 HO3'UDP 1 15.837 18.404 35.983 -0.40 +0.04 +0.113 2.180 19 C5' UDP 1 15.837 17.743 37.334 +0.02 -0.16 -0.368 2.180 19 C5' UDP 1 16.085 17.404 35.983 -0.40 +0.04 +0.113 2.180 19 C5' UDP 1 16.085 17.404 35.983 -0.40 +0.04 +0.113 2.180 11 FA UDP 1 16.755 17.840 38.614 -0.68 +0.36 +1.019 2.180 11 FA UDP 1 16.882 16.265 38.834 -0.16 -0.68 +0.36 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 11 16.028 
                 MOTA
                 MOTA
                 MOTA
                 MOTA
   5 ATOM
                 ATOM
                 ATOM
                 MOTA
                 MOTA
                ATOM
                 ATOM
                 MOTA
                 MOTA
                 ATOM
15
                MOTA
                 ATOM
                 ATOM
                 ATOM
                 ATOM
20
                 MOTA
                 ATOM
                 АТОМ
                 ATOM
                 TER
25
            ENDMDL
                                                  68
                 MODEL
                 USER
                                            Run \approx 68
                 USER
                                             Cluster Rank = 1
                 USER
                                            Number of conformations in this cluster = 30
30
                 USER
                 USER
                                            RMSD from reference structure
                                                                                                                                                                       = 2.052 A
                 USER Estimated Free Energy of Binding = -8.04 \text{ kcal/mol} [=(1)+(3)]
                 USER Estimated Inhibition Constant, Ki = +1.27e-06 [Temperature = 298.15 K]
35 - USER
                 USER
                                       Final Docked Energy
                                                                                                                                                                      = -10.89 \text{ kcal/mol} [=(1)+(2)]
                 USER
                                            (1) Final Intermolecular Energy = -10.22 kcal/mol
                 USER
                 USER (2) Final Internal Energy of Ligand = -0.67 kcal/mol
USER (3) Torsional Free Energy = +2.18 kcal/mol
40
                 USER
                 USER
                                            DPF = test.dpf
                 USER
                                            NEWDPF move udp tr.pdbq
45
                                             NEWDPF about16.792999 18.735001 34.970001
                                            NEWDPF tran017.046913 18.963031 34.725298
                 USER
                                            NEWDPF quat0-0.538364 0.625258 -0.564993 -1.207985
                 USER
                                            NEWDPF ndihe7
                 USER
                                            NEWDPF dihe0177.60 43.09 -156.33 -38.18 133.10 -146.64 118.61
                                         Rank x y z vdw Elec q RMS

1 N1 UDP 1 18.510 19.778 33.128 -0.31 -0.10 -0.211 2.052

2 C2 UDP 1 18.922 21.058 32.881 -0.73 +0.26 +0.396 2.052

3 N3 UDP 1 20.259 21.229 32.630 -0.50 -0.29 -0.440 2.052

4 H3 UDP 1 20.580 22.192 32.458 +0.03 +0.34 +0.440 2.052

5 C4 UDP 1 21.227 20.224 32.585 -0.66 +0.23 +0.396 2.052

6 C5 UDP 1 20.731 18.909 32.845 -0.47 +0.00 +0.000 2.052

7 C6 UDP 1 19.424 18.731 33.086 -0.43 +0.00 +0.000 2.052

8 O2 UDP 1 18.137 22.008 32.896 -0.26 -0.31 -0.396 2.052

9 O4 UDP 1 22.391 20.549 32.353 -0.22 -0.24 -0.396 2.052

10 C1' UDP 1 17.093 19.525 33.419 -0.59 +0.08 +0.324 2.052

11 C2' UDP 1 16.453 18.431 32.561 -0.62 -0.01 +0.113 2.052

12 C3' UDP 1 15.268 18.022 33.467 -0.64 -0.01 +0.113 2.052

13 C4' UDP 1 15.809 18.217 34.883 -0.51 +0.03 +0.113 2.052

14 O4' UDP 1 15.969 18.963 34.725 +0.01 -0.08 -0.227 2.052

16 H02' UDP 1 15.535 18.222 30.793 -0.25 -0.50 +0.424 2.052

17 O3' UDP 1 15.535 18.222 30.793 -0.25 -0.50 +0.424 2.052

17 O3' UDP 1 14.212 18.955 33.222 -0.23 +0.14 -0.537 2.052
50
                 USER
                 USER
                 MOTA
                 MOTA
                 ATOM
55
                 ATOM
                 MOTA
                 MOTA
                 ATOM
                 MOTA
60
                MOTA
                 ATOM
                 MOTA
                 MOTA
                 MOTA
65
                 MOTA
                 MOTA
                 MOTA
                  MOTA
```

- 116 -

TER

```
18 HO3'UDP 1 14.540 19.681 32.569 -0.27 -0.29 +0.424 2.052 19 C5' UDP 1 16.123 16.899 35.591 -0.36 +0.04 +0.113 2.052 20 O5' UDP 1 16.716 17.206 36.838 +0.04 -0.15 -0.368 2.052 21 PA UDP 1 16.152 17.782 38.194 -0.58 +0.41 +1.019 2.052 22 O1A UDP 1 17.314 18.186 39.035 -0.21 -0.07 -0.255 2.052 23 O2A UDP 1 15.113 18.813 37.878 -0.06 -0.12 -0.255 2.052 24 O3A UDP 1 15.562 16.395 38.718 +0.02 -0.22 -0.510 2.052 25 PB UDP 1 16.071 15.327 39.793 -0.64 +0.39 +1.019 2.052 26 O1B UDP 1 16.010 16.107 41.207 -0.68 -0.24 -0.255 2.052 27 O2B UDP 1 17.471 15.121 39.345 -0.08 -0.05 -0.255 2.052 28 O3B UDP 1 15.166 14.165 39.982 -0.08 -0.11 -0.255 2.052
       MOTA
       MOTA
       MOTA
       ATOM
     MOTA
       MOTA
       ATOM
       MOTA
       MOTA
10
       ATOM
       MOTA
       TER
       ENDMDL
       MODEL
                        69
15
                    Run = 69
       USER
       USER
                    Cluster Rank = 1
        USER
                    Number of conformations in this cluster = 30
        USER
                    RMSD from reference structure
        USER
                                                                        = 2.378 A
20
        USER
                   Estimated Free Energy of Binding = -8.23 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +9.27e-07 [Temperature = 298.15 K]
       USER
       USER
       USER
       USER.
                   Final Docked Energy
                                                                           = -10.89 \text{ kcal/mol} [=(1)+(2)]
25
       USER
                   (1) Final Intermolecular Energy = -10.41 kcal/mol

(2) Final Internal Energy of Ligand = -0.48 kcal/mol

(3) Torsional Free Energy = +2.18 kcal/mol
        USER
        USER
        USER
        USER
30
        USER
        USER
                    DPF = test.dpf
        USER
                   NEWDPF move udp tr.pdbq
                   NEWDPF about16.792999 18.735001 34.970001
                    NEWDPF tran016.201952 19.564603 34.695888
        USER
35
        USER
                   NEWDPF quat00.514657 0.516195 -0.684595 -28.099016 -
        USER
                   NEWDPF ndihe7
        USER
                    NEWDPF dihe0-150.93 172.72 28.50 65.97 16.78 -26.91 120.36
        USER
                    Rank x y z vdW Elec q RMS
1 N1 UDP 1 17.763 20.463 33.243 -0.42 -0.09 -0.211 2.378
                 USER
40
       MOTA
        MOTA
        MOTA
        ATOM
        MOTA
45
        MOTA
        ATOM
        ATOM
        MOTA
        ATOM
50
        MOTA
        ATOM
        ATOM
        ATOM
        ATOM
55
        ATOM
        ATOM
        ATOM
        ATOM
        ATOM
60
       ATOM
        MOTA
        MOTA
        ATOM
        ATOM
65
        ATOM
        MOTA
        ATOM
```

- 117 -

```
ENDMDL
     MODEL
                 61
     USER
             Run = 61
     USER
             Cluster Rank = 1
     USER
             Number of conformations in this cluster = 30
     USER
     USER
             RMSD from reference structure
                                                  = 2.557 A
     USER
     USER
             Estimated Free Energy of Binding = -7.87 \text{ kcal/mol} [=(1)+(3)]
10
     USER
             Estimated Inhibition Constant, Ki
                                                  = +1.71e-06
                                                                  [Temperature = 298.15 K]
     USER
                                                  = -10.89 \text{ kcal/mol} [=(1)+(2)]
     USER
             Final Docked Energy
     USER
     USER
                                               = -10.05 \text{ kcal/mol}
             (1) Final Intermolecular Energy
             (2) Final Internal Energy of Ligand = -0.84 kcal/mol
     USER
     USER
             (3) Torsional Free Energy
                                                  = +2.18 kcal/mol
     USER
     USER
     USER
             DPF = test.dpf
20
             NEWDPF move udp tr.pdbq
     USER
             NEWDPF about16.792999 18.735001 34.970001
     USER
             NEWDFF tran016.562668 19.480276 35.364105
     USER
             NEWDPF quat00.504391 0.164975 -0.847569 -18.647284
     USER
             NEWDPF ndihe7
     USER
25
             NEWDPF dihe0-178.72 70.98 -178.92 -84.93 -87.09 46.14 171.15
     USER
     USER
     USER
                                                                 vdW
                                                                        Elec
                                                                                        RMS
                          Rank
                                        х
                                                        z
                                                                -0.39 -0.10 -0.211 2.557
-0.86 +0.28 +0.396 2.557
                                      17.871 20.369 33.675
     MOTA
               1 N1 UDP
                             1
                                      17.960 21.651 33.210
     MOTA
               2
                  C2
                      UDP
                               1
                                      19.223 22.123 32.959
                                                                 -0.53 -0.48 -0.440 2.557
30
               3 N3
                      UDP
     MOTA
                               1
                                      19.299 23.093 32.623
                                                                 +0.05 +0.79 +0.440 2.557
     MOTA
               4 H3
                      UDP
                               1
     ATOM
                                      20.415 21.414 33.114
                                                                 -0.78 +0.34 +0.396 2.557
               5 C4
                      UDP
                               1
     MOTA
               6 C5
                      UDP
                               1
                                      20.254 20.078 33.596
                                                                 -0.59 +0.00 +0.000 2.557
                                      19.022 19.606 33.839
16.960 22.352 33.040
21.471 21.988 32.850
16.549 19.807 33.979
               7 C6
                                                                 -0.51 +0.00 +0.000 2.557
                      UDP
                               1
     ATOM
35
               8 . 02
                      UDP
                               1
                                                                -0.29 -0.28
                                                                               -0.396 2.557 -
     MOTA
                                                                              -0.396
+0.324
                                                                 -0.19 -0.27
     ATOM
               9
                  04
                      UDP
                               1
                                                                                       2.557
                                                                 -0.60 + 0.06
                                                                                       2.557
     ATOM
              10
                  C1' UDP
                               1
                                      16.266 18.455 33.319
                                                                 -0.55 +0.00 +0.113
                  C2' UDP
                               1
     ATOM
              11
                                                                                       2.557
                  C3' UDP
                                      15.168 17.908 34.261
                                                                 -0.59 +0.01 +0.113 2.557
     ATOM
              12
                               1
40
                                      15.548 18.474 35.629
                                                                 -0.53 +0.04 +0.113 2.557
     ATOM
              13
                  C4' UDP
                               1
     ATOM
              14
                  O4' UDP
                               1
                                      16.563 19.480 35.364
                                                                 -0.04 -0.08 -0.227 2.557
                                      15.742 18.636 32.025
15.492 17.722 31.624
13.928 18.477 33.832
13.998 18.747 32.840
16.139 17.422 36.568
                                                                 -0.22 +0.20 -0.537 2.557
                               1
     ATOM
              15
                  O2' UDP
     ATOM
              16
                  HO2'UDP
                               1
                                                                 -0.22
                                                                        -0.46 +0.424 2.557
     MOTA
              17
                  O3' UDP
                               1
                                                                 -0.23 -0.03 -0.537
                                                                                       2.557
                                                                 -0.09 -0.13 +0.424
45
     MOTA
              18
                  HO3'UDP
                               1
                                                                                       2.557
              19 C5' UDP
                                                                 -0.38 +0.05 +0.113
                               1
                                                                                       2.557
     MOTA
                                      15.490 17.543 37.819
                                                                 +0.16 -0.17 -0.368 2.557
     MOTA
              20 05' UDP
                               1
                                      15.833 18.324 39.146
                                                                 -0.55 +0.45 +1.019 2.557
     MOTA
              21 PA UDP
                               1
              22 O1A UDP
                                      17.314 18.480 39.212
     ATOM
                               1
                                                                 -0.19 -0.07 -0.255 2.557
                                      14.987 19.558 39.205
                                                                 -0.14 -0.10 -0.255 2.557
50
              23 O2A UDP
                               1
     MOTA
                                                                 -0.28 -0.28 -0.510 2.557
              24 O3A UDP
                               1
                                      15.367 17.162 40.135
     MOTA
                  PB UDP
                               1
                                      15.773
                                              15.623
                                                      40.282
                                                                 -0.75 + 0.45
                                                                              +1.019
     ATOM
               25
                                                                                       2.557
                                      17.381 15.607 40.125
     MOTA
               26
                  O1B UDP
                               1
                                                                 -0.17
                                                                        -0.04
                                                                               -0.255
                                                                                       2.557
                                      15.104 15.041 39.091
                                                                               -0.255
               27 O2B UDP
                               1
                                                                 -0.01 -0.11
     MOTA
                                                                                       2.557
55
              28 O3B UDP
                               1
                                      15.535 15.049 41.631
                                                                 -0.49 -0.17 -0.255 2.557
     MOTA
     TER
     ENDMDL
     MODEL
                  6
              Run = 6
     USER
60
     USER
              Cluster Rank = 1
     USER
              Number of conformations in this cluster = 30
     USER
     USER
              RMSD from reference structure
                                                   = 2.174 A
     USER
65
     USER
              Estimated Free Energy of Binding
                                                  = -8.10 kcal/mol [=(1)+(3)]
     USER
             Estimated Inhibition Constant, Ki = +1.16e-06
                                                                    [Temperature = 298.15 K]
     HSER
                                                  = -10.88 \text{ kcal/mol} [=(1)+(2)]
     USER
             Final Docked Energy
```

```
USER
                        (1) Final Intermolecular Energy = -10.28 kcal/mol
(2) Final Internal Energy of Ligand = -0.60 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
         USER
         USER
         USER
         USER
         USER
         USER
                        DPF = test.dpf
         USER
                        NEWDPF move udp_tr.pdbq
                        NEWDPF about16.792999 18.735001 34.970001
         USER
                       NEWDPF tran016.843938 19.665299 34.549841
10
         USER
         USER
                       NEWDPF quat0-0.680946 -0.646119 0.344735 19.606725
                        NEWDPF ndihe7
         USER
         USER
                        NEWDPF dihe0-164.02 79.05 -46.01 2.37 80.35 -64.66 114.70
         USER
15
         USER
                                                Rank
                                                                       x
                                                                                       У
                                                                                                      Z
                                                                                                                     VdW
                                                                                                                                   Elec
                                                                                                                                                                 RMS
                                                                     18.554 20.272 33.114
                                                                                                                     -0.36 -0.11 -0.\overline{2}11 2.174
         MOTA
                        1 N1 UDP 1
                                                                     18.912 21.504 32.639 -0.81 +0.28 +0.396 2.174
         MOTA
                           2 C2 UDP
                                                     1
         MOTA
                           3 N3 UDP
                                                                     20.255 21.782 32.618 -0.53 -0.35 -0.440 2.174

    20.235
    21.762
    32.616
    -0.35
    -0.35
    -0.440
    2.174

    20.531
    22.713
    32.276
    +0.10
    +0.38
    +0.440
    2.174

    21.282
    20.924
    33.014
    -0.75
    +0.28
    +0.396
    2.174

    20.843
    19.651
    33.492
    -0.54
    +0.00
    +0.000
    2.174

    19.532
    19.368
    33.512
    -0.48
    +0.00
    +0.000
    2.174

    18.073
    22.325
    32.265
    -0.33
    -0.27
    -0.396
    2.174

    22.441
    21.332
    32.938
    -0.25
    -0.27
    -0.396
    2.174

                        4 H3 UDP 1
5 C4 UDP 1
6 C5 UDP 1
7 C6 UDP 1
8 O2 UDP 1
9 O4 UDP 1
         MOTA
20
         MOTA
         MOTA
         MOTA
         ATOM
         MOTA
                          10 C1' UDP
                                                                     17.131 19.916 33.179 -0.66 +0.08 +0.324 2.174
         MOTA
                                                        1

      16.779
      18.583
      32.514
      -0.61
      +0.00
      +0.113
      2.174

      15.460
      18.244
      33.247
      -0.64
      -0.01
      +0.113
      2.174

      15.662
      18.825
      34.646
      -0.57
      +0.02
      +0.113
      2.174

      16.844
      19.665
      34.550
      -0.06
      -0.07
      -0.227
      2.174

      16.532
      18.765
      31.140
      -0.20
      +0.10
      -0.537
      2.174

      16.002
      17.960
      30.776
      -0.43
      -0.37
      +0.424
      2.174

      14.416
      18.955
      32.577
      -0.24
      +0.24
      -0.537
      2.174

      14.645
      19.040
      31.576
      -0.24
      -0.35
      +0.424
      2.174

      15.913
      17.753
      35.708
      -0.43
      +0.04
      +0.113
      2.174

      16.283
      18.408
      36.906
      -0.03--0.15
      -0.368
      2.174

      17.443
      18.479
      39.096
      -0.19--0.06
      -0.255
      2.174

      14.882
      18.484
      38.971
      -0.19-0.12-0.255
      2.174

      16.972
      15.237

                          11 C2' UDP
                                                                     16.779 18.583 32.514 -0.61 +0.00 +0.113
         MOTA
                                                        1
                                                                                                                                                               2.174
                         12 C3' UDP 1
13 C4' UDP 1
14 O4' UDP 1
15 O2' UDP 1
16 HO2'UDP 1
17 O3' UDP 1
18 HO3'UDP 1
         ATOM
         MOTA
         MOTA
30 ATOM
         MOTA
          MOTA
         ATOM
                         19 C5' UDP 1
         МОТА
35
                          20 O5' UDP - 1
         ATOM
                          21 PA UDP
                                                        1
         MOTA
                          22 O1A UDP 1
23 O2A UDP 1
24 O3A UDP 1
25 PB UDP 1
         ATOM
          MOTA
          ATOM
40
          MOTA
                          26 O1B UDP 1
27 O2B UDP 1
          MOTA
                                                                     16.297 15.342 40.297
                                                                                                                     -0.20 -0.09
                                                                                                                                               -0.255 2.174
          ATOM
                          28 O3B UDP
                                                                      18.455 15.227 38.895
                                                                                                                   -0.11 -0.04 -0.255 2.174
          MOTA
          TER
45
         ENDMDL
          MODEL
                                26
         USER
                         Run = 26
                         Cluster Rank = 1
          USER
          USER
                         Number of conformations in this cluster = 30
50
         USER
          USER
                         RMSD from reference structure
                                                                                           = 2.271 A
                                                                                           = -8.13 kcal/mol [=(1)+(3)]
                         Estimated Free Energy of Binding
          USER
          USER
                         Estimated Inhibition Constant, Ki = +1.09e-06 [Temperature = 298.15 K]
55
          USER
                                                                                            = -10.83 \text{ kcal/mol} = (1)+(2)
          USER
                         Final Docked Energy
          USER
                         (1) Final Intermolecular Energy = -10.31 kcal/mol
          USER
                         (2) Final Internal Energy of Ligand = -0.51 kcal/mol
          USER
60
                         (3) Torsional Free Energy = +2.18 kcal/mol
          USER
          USER
          USER
          USER
                         DPF = test.dpf
                         NEWDPF move udp_tr.pdbq
NEWDPF about16.792999 18.735001 34.970001
          USER
65
          USER
                         NEWDPF tran016.632623 19.448723 35.340054
          USER
                        NEWDPF quat00.615270 -0.245958 -0.748964 -10.093568
          USER .
                         NEWDPF ndihe7
```

- 119 -

```
NEWDPF dihe0174.97 44.52 29.30 28.43 75.61 -90.02 127.13
     USER
     USER
     USER
                                                               vdW
                                                                      Elec
                                                                                      RMS
                          Rank
                                       х
                                             20.223
                                                     33.570
                                                               -0.37
     MOTA
               1
                      UDP
                                     17.907
                                                                      -0.10
                                                                             -0.211 2.271
                 N1
                              1
                                                                      +0.27
     MOTA
               2
                 C2
                      UDP
                              1
                                     18.147
                                             21.502
                                                     33.150
                                                               -0.83
                                                                             +0.396
                                                                                      2.271
                                                                      -0.39
                                                    32.799
                                                               -0.55
                                                                             -0.440
     MOTA
               3
                      UDP
                                     19.440
                                             21.795
                                                                                     2.271
                 N3
                              1
                                             22.760 32.496
                      UDP
                                     19.633
                                                               +0.03 +0.60
                                                                             +0.440 2.271
     MOTA
               4
                 нз
                              1
     MOTA
               5
                  C4
                      UDP
                              1
                                     20.521 20.911 32.812
                                                               -0.73
                                                                      +0.26
                                                                             +0.396 2.271
     MOTA
               6
                  C5
                      UDP
                                     20.202 19.590 33.254
                                                               -0.53
                                                                     +0.00
                                                                             +0.000 2.271
                                     18.939 19.292 33.595
                                                               -0.47
                                                                      +0.00
                                                                             +0.000 2.271
10
               7
                  C6
                     UDP
     MOTA
                              1
                                                                             -0.396 2.271
                                     17.254 22.350 33.103
                                                               -0.29
                                                                      -0.30
     MOTA
               Я
                  02
                      UDP
                              1
                                                               -0.20
                                                                     -0.19
                                                                             -0.396 2.271
     MOTA
               9
                  04
                      UDP
                              1
                                     21.624 21.337
                                                     32.472
     MOTA
                      UDP
                                             19.847
                                                     33.977
                                                               -0.61
                                                                      +0.06
                                                                             +0.324
              10
                  C1'
                              1
                                     16.547
                                                                                      2.271
                                     16.006 18.589
                                                                             +0.113 2.271
     MOTA
              11
                  C2'
                     UDP
                              1
                                                     33.294
                                                               -0.60 + 0.00
                                     14.925 18.160 34.313
15
                                                               -0.62 +0.01 +0.113 2.271
     MOTA
              12
                  C3' UDP
                              1
                  C4' UDP
                                     15.505 18.590 35.660
                                                               -0.52 +0.04 +0.113 2.271
     ATOM
              13
                              1
     ATOM
              14
                  O4' UDP
                              1
                                     16.633 19.449 35.340
                                                               -0.04
                                                                      -0.09 -0.227 2.271
     MOTA
              15
                  O2' UDP
                              1
                                     15.403 18.914 32.063
                                                               -0.26 + 0.22 - 0.537 2.271
                                     15.076 18.053 31.602
                                                               -0.18 -0.46 +0.424 2.271
     MOTA
              16
                  HO2'UDP
                              1
                                                                             -0.537 2.271
20
                                     13.752 18.927 34.026
                                                               -0.09 -0.03
     ATOM
              17
                  O3' UDP
                              1
                                     13.950 19.584 33.258
     ATOM
              18
                  HO3'UDP
                              1
                                                               -0.37
                                                                      -0.26 + 0.424 2.271
                                     16.010 17.414 36.496
16.440 17.923 37.745
                                                               -0.36
                                                                     +0.05
                                                                             +0.113
     ATOM
              19
                  C5' UDP
                              1
                                                                                      2.271 ---
     MOTA
              20
                  O5' UDP
                              1
                                                               -0.05
                                                                      -0.15
                                                                             -0.368
                                                                                      2.271
                                     16.141 17.518 39.240
                                                                     +0.43 +1.019
                  PA UDP
                                                               -0.77
     ATOM
              21
                              1
                                                                                      2.271
                                     17.435 17.530 39.981
25
                                                               -0.35 -0.07 -0.255 2.271
                  O1A UDP
     ATOM
              22
                              1
                                     15.025 18.373 39.752
     ATOM
              23
                  O2A UDP
                              1
                                                               -0.26 -0.13 -0.255 2.271
                  O3A UDP
                                     15.720 16.014 38.913
                                                               -0.02 -0.22
                                                                             -0.510 2.271
     ATOM
              24
                              1
                                     15.458 14.728
                                                    39.827
                                                               -0.57 + 0.39
                                                                             +1.019 2.271
     MOTA
              25
                  PB UDP
                              1
                                                                             -0.255 2.271
                                                                      -0.08
     MOTA
              26
                  O1B UDP
                              1
                                     16.713 13.754 39.531
                                                               +0.02
                                                                             -0.255 2.271
30
     ATOM
              27
                  O2B UDP
                                     14.207
                                             14.205 39.222
                                                               -0.02
                                                                      -0.10
                              1
                  O3B UDP
                                     15.535 14.985 41.287
                                                                -0.38 -0.14
                                                                             -0.255 2.271
     ATOM
              28
     TER
     ENDMDL
     MODEL
                 44
35 - USER
             Run = 44
     USER
             Cluster Rank = 1
     USER
             Number of conformations in this cluster = 30
     USER
     USER
             RMSD from reference structure
                                                 = 2.334 A
40
     USER
                                                      -8.06 \text{ kcal/mol} [=(1)+(3)]
     USER
             Estimated Free Energy of Binding
                                                 =
             Estimated Inhibition Constant, Ki
                                                     +1.24e-06
                                                                    [Temperature = 298.15 K]
     USER
     USER
                                                 = -10.79 \text{ kcal/mol} [=(1)+(2)]
     USER
             Final Docked Energy
45
     USER
              (1) Final Intermolecular Energy = -10.24 kcal/mol
     USER
             (2) Final Internal Energy of Ligand = -0.55 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
     USER
     USER
     USER
50
     USER
     USER
             DPF = test.dpf
             NEWDPF move udp_tr.pdbq
     USER
             NEWDPF about16.792999 18.735001 34.970001
     USER
             NEWDPF tran016.271561 19.593224 34.779030
     USER
             NEWDPF quat00.519881 0.500873 -0.691990 -26.382845
55
     USER
             NEWDPF ndihe7
     USER
     USER
             NEWDPF dihe0-7.19 74.61 -113.35 69.18 12.29 -18.57 135.17
     USER
     USER
                           Rank
                                                                vdW
                                                                       Elec
                                                У
                                                       Z
                                                                                       RMS
                                        х
                                                                                 a
                                      17.817 20.480 33.302
60
     MOTA
               1 N1
                      UDP
                              1
                                                                -0.41
                                                                       -0.10 -0.211
                                                                                      2.334
                      UDP
                                      17.921 21.743 32.788
                                                                -0.89
               2 C2
                                                                      +0.26 +0.396 2.334
     ATOM
                               1
               3 N3
                      UDP
                               1
                                      19.183 22.278 32.739
                                                                -0.53
                                                                       -0.47
                                                                             -0.440 2.334
     ATOM
                                              23.234. 32.368
     ATOM
               4
                  Н3
                      UDP
                               1
                                      19.268
                                                                +0.08
                                                                       +0.70
                                                                             +0.440
                                                                                      2.334
     MOTA
                5
                  C4
                      UDP
                               1
                                      20.363
                                              21.651
                                                      33.144
                                                                -0.77
                                                                       +0.38
                                                                             +0.396
                                                                                      2.334
65
                  C5
                      UDP
                                      20.186 20.332
                                                     33.665
                                                                -0.63
                                                                       +0.00
                                                                              +0.000
     MOTA
                6
                               1
                                                                                      2.334
                      UDP
                                                     33.711
                                                                -0.53
                                                                       +0.00
                                                                              +0.000
                  C6
                               1
                                      18.957
                                              19.798
     ATOM
               7
                                                                                      2.334
                                                     32.403
               8 02
                       UDP
                               1
                                      16.934 22.372
                                                                -0.35
                                                                       -0.22
                                                                              -0.396
     ATOM
                                                                                      2.334
     MOTA
                9 04
                       UDP
                               1
                                      21.418 22.276
                                                     33.040
                                                                -0.41
                                                                      -0.36
                                                                             -0.396 2.334
```

- 120 -

ATOM

```
16.492 19.853 33.398 -0.66 +0.04 +0.324 2.334
          ATOM
                             10 Cl' UDP
                                                           1
                             11 C2' UDP 1
12 C3' UDP 1
          ATOM
                                                                             16.403 18.458 32.776 -0.60 +0.00 +0.113 2.334
          MOTA
                                                                             15.183 17.889 33.537 -0.65 -0.01 +0.113 2.334
                                                                             15.279 18.540 34.916 -0.58 +0.02 +0.113 2.334
                             13 C4' UDP .
          ATOM
                                                              1
                             14 04' UDP
                                                                         15.279 18.540 34.916 -0.58 +0.02 +0.113 2.334 16.272 19.593 34.779 -0.06 -0.05 -0.227 2.334 16.113 18.546 31.401 -0.21 +0.21 -0.537 2.334 15.957 19.531 31.145 -0.05 -0.08 +0.424 2.334 14.013 18.361 32.862 -0.36 +0.11 -0.537 2.334 14.233 18.530 31.870 -0.10 -0.32 +0.424 2.334 15.744 17.572 36.003 -0.24 +0.04 +0.113 2.334 15.535 18.194 37.257 -0.02 -0.17 -0.368 2.334 15.535 18.194 37.257 -0.02 -0.17 -0.368 2.334
      MOTA
                                                              1
                            14 04' UDP 1
15 02' UDP 1
16 HO2'UDP 1
17 03' UDP 1
18 HO3'UDP 1
19 C5' UDP 1
20 05' UDP 1
21 PA UDP 1
22 01A UDP 1
23 02A UDP 1
24 03A UDP 1
25 PB UDP 1
          MOTA
          MOTA
          MOTA
          MOTA
10
          MOTA
          ATOM
                                                                           16.149 17.970 38.693 -0.69 +0.42 +1.019 2.334
          MOTA

    16.149
    17.970
    38.693
    -0.69
    +0.42
    +1.019
    2.334

    17.550
    18.480
    38.673
    -0.16
    -0.06
    -0.255
    2.334

    15.204
    18.533
    39.708
    -0.25
    -0.12
    -0.255
    2.334

    16.154
    16.376
    38.613
    -0.01
    -0.21
    -0.510
    2.334

    16.024
    15.225
    39.715
    -0.63
    +0.39
    +1.019
    2.334

    14.558
    14.590
    39.472
    +0.02
    -0.09
    -0.255
    2.334

    16.070
    16.026
    40.965
    -0.59
    -0.20
    -0.255
    2.334

          MOTA
          MOTA
                             24 O3A UDP
                                                             1
1
1
15
          MOTA
                             25 PB UDP
          ATOM
                             25 PB UDP
26 O1B UDP
27 O2B UDP
28 O3B UDP
          ATOM
          MOTA
                                                             1
          MOTA
                                                                           16.951 14.082 39.523 +0.03 -0.07 -0.255 2.334
20
           TER
          ENDMDL
          MODEL
                                  93
           USER
                           Run = 93
           USER
                            Cluster Rank = 1
           USER
                           Number of conformations in this cluster = 30
           USER
                                                                                                        = 2.047 A
                           RMSD from reference structure
           USER
           USER
                                                                                                        = -7.80 kcal/mol [=(1)+(3)]
           USER
                           Estimated Free Energy of Binding
30
                           Estimated Inhibition Constant, Ki = +1.91e-06
                                                                                                                                           [Temperature = 298.15 \text{ K}]
           USER
           USER
                                                                                                        = -10.78 \text{ kcal/mol} [=(1)+(2)]
           USER
                           Final Docked Energy
           USER
                           (1) Final Intermolecular Energy = -9.98 kcal/mol
           USER
                            (2) Final_Internal Energy of Ligand = -0.80 kcal/mol
35
           USER
                           (3) Torsional Free Energy = +2.18 kcal/mol
           USER
           USER
           USER
                            DPF = test.dpf
           USER
                           NEWDPF move udp_tr.pdbq
40
           USER
                            NEWDPF about16.792999 18.735001 34.970001
           USER
                            NEWDPF tran017.106934 19.121410 34.610553
           USER
                           NEWDPF quat00.289729 0.319963 -0.902043 -3.357918
           USER
                           NEWDPF ndihe7
           USER
45
           USER
                            NEWDPF dihe0169.72 84.68 85.45 74.96 138.36 -122.86 108.33
           USER
                                                                                 X
                                                                                                                                     vdW
           USER
                                                       Rank
                                                                                                                   Z
                                                                                                                                                    Elec
                           1 N1 UDP 1
                                                                     18.546 19.949 32.998
18.907 21.237 32.717
20.238 21.457 32.468
20.521 22.426 32.271
                                                                                                                                    -0.33 -0.10 -0.211 2.047
           MOTA
                              2 C2 UDP
3 N3 UDP
4 H3 UDP
5 C4 UDP
6 C5 UDP
                                                                                                                                     -0.76 +0.26 +0.396 2.047
-0.51 -0.29 -0.440 2.047
           ATOM
                                                               1
50
           MOTA
                                                               1
                                                                                                                                  +0.06 +0.32 +0.440 2.047
           MOTA
                                                                1
                                                                       21.246 20.491 32.458
                                                                                                                                    -0.69 +0.22 +0.396 2.047
                                                               1
           ATOM

    21.246
    20.491
    32.458
    -0.69
    +0.22
    +0.396
    2.047

    20.802
    19.165
    32.752
    -0.50
    +0.00
    +0.000
    2.047

    19.502
    18.940
    32.991
    -0.45
    +0.00
    +0.000
    2.047

    18.085
    22.155
    32.701
    -0.29
    -0.30
    -0.396
    2.047

    22.398
    20.856
    32.223
    -0.24
    -0.20
    -0.396
    2.047

    17.138
    19.648
    33.289
    -0.62
    +0.08
    +0.324
    2.047

    16.549
    18.505
    32.459
    -0.63
    -0.01
    +0.113
    2.047

    15.376
    18.073
    33.370
    -0.63
    -0.01
    +0.113
    2.047

    15.900
    18.331
    34.782
    -0.51
    +0.02
    +0.113
    2.047

    17.107
    18.121
    34.611
    +0.00
    -0.08
    -0.227
    2.047

                                                               1
           MOTA
           ATOM
                              7 C6 UDP 1
                             8 O2 UDP 1
9 O4 UDP 1
10 C1' UDP 1
11 C2' UDP 1
12 C3' UDP 1
13 C4' UDP 1
55
           ATOM
           ATOM
           MOTA
            MOTA
           MOTA
60
                             13 C4' UDP 1 15.900 18.331 34.782
14 O4' UDP 1 17.107 19.121 34.611
15 O2' UDP 1 16.052 18.988 31.233
16 HO2'UDP 1 15.773 18.195 30.639
17 O3' UDP 1 14.285 18.955 33.093
18 HO3'UDP 1 14.263 19.168 32.085
19 C5' UDP 1 16.262 17.047 35.530
20 O5' UDP 1 17.045 17.404 36.653
21 PA UDP 1 16.709 17.643 38.176
           ATOM
                                                                          15.900 18.331 34.782 -0.51 +0.02 +0.113 2.047
17.107 19.121 34.611 +0.00 -0.08 -0.227 2.047
16.052 18.988 31.233 -0.22 +0.16 -0.537 2.047
15.773 18.195 30.639 -0.30 -0.42 +0.424 2.047
14.285 18.955 33.093 -0.25 +0.16 -0.537 2.047
14.263 19.168 32.085 -0.19 -0.31 +0.424 2.047
16.262 17.047 35.530 -0.36 +0.04 +0.113 2.047
17.045 17.404 36.653 +0.03 -0.15 -0.368 2.047
            MOTA
            MOTA
            MOTA
            MOTA
            ATOM
            MOTA
            MOTA
                                                                                                                                    -0.62 +0.37 +1.019 2.047
```

WO 01/83717 PCT/CA01/00607

- 121 -

```
    17.832
    18.422
    38.771
    -0.20
    -0.04
    -0.255
    2.047

    15.325
    18.205
    38.276
    -0.06
    -0.12
    -0.255
    2.047

    16.828
    16.111
    38.604
    -0.03
    -0.18
    -0.510
    2.047

                                    22 Ola UDP
             MOTA
                                                                         1
                            22 O1A UDP 1 17.832 18.422 38.771 -0.20 -0.04 -0.255 2.047
23 O2A UDP 1 15.325 18.205 38.276 -0.06 -0.12 -0.255 2.047
24 O3A UDP 1 16.828 16.111 38.604 -0.03 -0.18 -0.510 2.047
25 PB UDP 1 16.043 15.207 39.663 -0.62 +0.38 +1.019 2.047
26 O1B UDP 1 16.135 16.029 41.051 -0.62 -0.21 -0.255 2.047
27 O2B UDP 1 16.902 13.995 39.690 +0.04 -0.06 -0.255 2.047
             MOTA
             ATOM
             MOTA
             ATOM
             MOTA
                                    28 O3B UDP 1
              MOTA
                                                                                            14.585 15.087 39.409 +0.08 -0.08 -0.255 2.047
              TER
             ENDMDL
                                                                                                                                                            . . .
10
             MODEL
                                           16 .
             USER
                                 Run = 16
              USER
                                 Cluster Rank = 1
              USER
                                  Number of conformations in this cluster = 30
              USER
15
             USER
                                 RMSD from reference structure
                                                                                                                             = 1.845 A
             USER
              USER
                                                                                                                            = -7.59 kcal/mol [=(1)+(3)]
                                 Estimated Free Energy of Binding
                                 Estimated Inhibition Constant, Ki = +2.73e-06 [Temperature = 298.15 K]
              USER
              USER
20
             USER
                                 Final Docked Energy
                                                                                                                              = -10.63 \text{ kcal/mol} [= (1) + (2)]
             USER
              USER
                                (1) Final Intermolecular Energy
                                                                                                                         = -9.77 kcal/mol
              USER
                                  (2) Final Internal Energy of Ligand = -0.86 kcal/mol
             USER
                                  (3) Torsional Free Energy = +2.18 \text{ kcal/mol}
25
             USER
              USER
              USER
                                  DPF = test.dpf
                                 NEWDPF move udp_tr.pdbq
              USER
                                 NEWDPF about16.792999 18.735001 34.970001
              USER
30
                                 NEWDPF tran016.760984 19.372334 34.613037
                           NEWDPF quat00.476570 0.558632 -0.678831 -10.358588
                                 NEWDPF ndihe7
              USER
              USER
                                 NEWDPF dihe0-179.67 65.79 64.64 -43.11 -39.67 2.21 151.27
              USER

        x
        y
        z
        vdW
        Elec
        q
        RMS

        18.274
        20.197
        33.068
        -0.36
        -0.10
        -0.211
        1.845

        18.571
        21.487
        32.727
        -0.82
        +0.27
        +0.396
        1.845

        19.901
        21.786
        32.572
        -0.54
        -0.35
        -0.440
        1.845

35
              USER
                                                                 Rank
                                      1 N1 UDP
2 C2 UDP
              MOTA
                                                                  1
              ATOM
                                                                             1
                                      3 N3 UDP
              MOTA
                                                                             1
                                  4 H3 UDP 1 20.134 22.759 32.330 +0.06 +0.51 +0.440 1.845 5 C4 UDP 1 20.968 20.897 32.711 -0.74 +0.24 +0.396 1.845 6 C5 UDP 1 20.591 19.564 33.061 -0.54 +0.00 +0.000 1.845 7 C6 UDP 1 19.293 19.261 33.209 -0.47 +0.00 +0.000 1.845 8 O2 UDP 1 17.693 22.340 32.580 -0.33 -0.28 -0.396 1.845 9 O4 UDP 1 22.109 21.329 32.545 -0.21 -0.19 -0.396 1.845 10 C1' UDP 1 16.870 19.813 33.265 -0.66 +0.07 +0.324 1.845 11 C2' UDP 1 16.432 18.579 32.473 -0.65 -0.01 +0.113 1.845 12 C3' UDP 1 15.217 18.123 33.314 -0.67 -0.02 +0.113 1.845 13 C4' UDP 1 15.599 18.509 34.742 -0.56 +0.02 +0.113 1.845 14 O4' UDP 1 16.761 19.372 34.613 -0.03 -0.07 -0.227 1.845 15 O2' UDP 1 16.010 18.945 31.180 -0.23 +0.17 -0.537 1.845 16 HO2'UDP 1 15.668 18.111 30.681 -0.27 -0.50 +0.424 1.845 17 O3' UDP 1 14.097 18.904 32.887 -0.25 +0.19 -0.537 1.845 18 HO3'UDP 1 14.295 19.315 31.964 -0.22 -0.35 +0.424 1.845 19 C5' UDP 1 15.686 17.625 36.951 +0.07 -0.16 -0.368 1.845 18.45 17.389 38.312 -0.60 +0.39 +1.019 1.845
                                                                                               20.134 22.759 32.330 +0.06 +0.51 +0.440 1.845
                                       4 H3 UDP
              MOTA
                                                                          1
40
             MOTA
             MOTA
             ATOM
              ATOM
              MOTA
45
             ATOM
              ATOM
              ATOM
              ATOM
             ATOM
50
             ATOM
              ATOM
              ATOM
              ATOM
             ATOM
55
             ATOM

      21
      PA
      UDP
      1
      16.448
      17.389
      38.312
      -0.60
      +0.39
      +1.019
      1.845

      22
      O1A
      UDP
      1
      17.886
      17.155
      37.993
      -0.10
      -0.06
      -0.255
      1.845

      23
      O2A
      UDP
      1
      16.103
      18.502
      39.251
      -0.18
      -0.11
      -0.255
      1.845

      24
      O3A
      UDP
      1
      15.738
      16.001
      38.649
      +0.03
      -0.22
      -0.510
      1.845

      25
      PB
      UDP
      1
      16.164
      14.475
      38.440
      -0.39
      +0.54
      +1.019
      1.845

      26
      O1B
      UDP
      1
      16.007
      14.220
      36.852
      -0.22
      -0.29
      -0.255
      1.845

      27
      O2B
      UDP
      1
      15.104
      13.778
      39.211
      +0.01
      -0.13
      -0.255
      1.845

      28
      O3B
      UDP
      1
      17.597
      14.193
      38.713
      +0.00
      -0.10
      -0.255
      1.845

                                                                                               16.448 17.389 38.312 -0.60 +0.39 +1.019 1.845 17.886 17.155 37.993 -0.10 -0.06 -0.255 1.845
              ATOM
                                    21 PA UDP
                                                                         1
             ATOM .
              ATOM '
              MOTA
60
              MOTA
              ATOM ·
              ATOM
              ATOM
65
              ENDMDL
             MODEL
                                         15
              USER
                                  Run = 15
              USER
                                  Cluster Rank = 1
```

- 122 -

```
Number of conformations in this cluster = 30
       USER
       USER
       USER
                                                                     = 2.223 A
                  RMSD from reference structure
       USER
 5
       USER
                  Estimated Free Energy of Binding
                                                                    = -7.66 kcal/mol [=(1)+(3)]
                  Estimated Inhibition Constant, Ki =
       USER
                                                                         +2.43e-06 [Temperature = 298.15 K]
       USER
       USER
                  Final Docked Energy
                                                                     = -10.34 kcal/mol [=(1)+(2)]
       USER
10
                   (1) Final Intermolecular Energy = -9.84 kcal/mol
       USER
       USER
                   (2) Final Internal Energy of Ligand = -0.50 \text{ kcal/mol}
       USER
                   (3) Torsional Free Energy = +2.18 kcal/mol
       USER
       USER
                  DPF = test.dpf
15
       USER
                  NEWDPF move udp_tr.pdbq
NEWDPF about16.792999 18.735001 34.970001
       USER
       USER
                  NEWDPF tran016.863568 19.504418 34.934969
       USER
                  NEWDPF quat0-0.617758 -0.594434 0.514804 13.202837
       USER
20
       USER
                  NEWDPF ndihe7
                  NEWDPF dihe0102.16 43.08 -71.59 8.44 90.61 -97.23 107.68
       USER
       USER
       USER
                                                                                          vdW
                                                                                                    Elec
                                                                                                                          RMS
                                     Rank
                                                       х
                                                                  У
                                                                                                                 q
                                                                                         -0.35 -0.11 -0.211 2.223
                     1 N1 UDP
                                                    18.441 20.239 33.409
       ATOM
                                       1
                                                    18.760 21.507 33.012
20.096 21.792 32.894
20.345 22.750 32.610
21.152 20.908 33.122
                                                                                         -0.82 +0.30 +0.396 2.223

-0.54 -0.41 -0.440 2.223

+0.03 +0.62 +0.440 2.223

-0.74 +0.29 +0.396 2.223
25
       MOTA
                     2 C2 UDP
                                           1
       MOTA
                     3 N3 UDP
                                          1
                        нЗ
       MOTA
                     4
                               UDP
                                           1
                     5 C4 UDP
       MOTA
                                           1
                     6 C5 UDP
                                                     20.753 19.597 33.528
                                                                                         -0.53 +0.00 +0.000 2.223
       MOTA
                                           1
30
                                                    19.448 19.308 33.641
                                                                                         -0.47 +0.00 +0.000 2.223
       MOTA
                     7 C6 UDP
                                           1
                                                   19.446 19.506 35.641
17.894 22.354 32.785
22.301 21.325 32.979
17.028 19.872 33.570
16.614 18.599 32.829
15.364 18.194 33.644
15.692 18.654 35.064

    -0.28
    -0.32
    -0.396
    2.223

    -0.25
    -0.27
    -0.396
    2.223

                   8 O2 UDP
       MOTA
                                           1
       MOTA
                    9 O4 UDP
                                           1
                                                                                         -0.63 +0.09 +0.324 2.223
       MOTA
                    10 C1' UDP
                                           1
                                                                                         -0.59 +0.00 +0.113 2.223
-0.63 +0.00 +0.113 2.223
-0.55 +0.03 +0.113 2.223
                    11 C2' UDP
       MOTA
                                           1
                    12 C3' UDP
13 C4' UDP
35
       MOTA
                                           1
       MOTA
                                           1
                                                    16.864 19.504 34.935
                    14 04' UDP
                                                                                          -0.04 -0.08 -0.227
       MOTA
                                           1
                                                                                                                         2.223
                                                                                         -0.24 +0.12 -0.537 2.223
                    15 02' UDP
                                                    16.246 18.896 31.502
       MOTA
                                          1
       MOTA
                    16 HO2'UDP
                                           1
                                                    16.994 18.596 30.862
                                                                                         -0.02 -0.03 +0.424 2.223
40
       MOTA
                    17 03' UDP
                                                    14.267 18.955 33.133
                                                                                         -0.24 +0.16 -0.537 2.223
                                           1

    14.267
    18.935
    33.133
    -0.24
    +0.16
    -0.537
    2.223

    14.607
    19.611
    32.416
    -0.21
    -0.28
    +0.424
    2.223

    16.032
    17.497
    36.004
    -0.41
    +0.04
    +0.113
    2.223

    16.661
    18.039
    37.150
    -0.03
    -0.15
    -0.368
    2.223

    16.337
    17.982
    38.693
    -0.68
    +0.40
    +1.019
    2.223

    17.627
    18.086
    39.432
    -0.25
    -0.04
    -0.255
    2.223

       MOTA
                    18 HO3'UDP
                                           1
                    19 C5' UDP
       MOTA
                                           1
       MOTA
                    20 05' UDP
                                           1
                    21 PA UDP
                                           1
       MOTA
45
                    22 O1A UDP
       MOTA
                                           1
                                                    15.266 18.983 38.992
       MOTA
                    23 O2A UDP
                                          1
                                                                                          -0.19 -0.11 -0.255 2.223
                    24 O3A UDP
                                           1
                                                    15.837 16.467 38.690
                                                                                          +0.00 -0.22 -0.510 2.223
       ATOM
                    25 PB UDP
                                           1 - 15.882 15.298 39.781
       ATOM
                                                                                          -0.65 +0.39 +1.019 2.223

    14.585
    14.389
    39.460
    -0.02
    -0.10
    -0.255
    2.223

    15.706
    16.076
    41.033
    -0.62
    -0.20
    -0.255
    2.223

    17.026
    14.363
    39.633
    +0.04
    -0.05
    -0.255
    2.223

                    26 O1B UDP
       MOTA
                                           1
                                                                                          -0.62 -0.20 -0.255 2.223
+0.04 -0.05 -0.255 2.223
50
       ATOM
                    27 O2B UDP
                                           1
       MOTA
                    28 O3B UDP
                                           1
       TER
       ENDMDL
```

55

WO 01/83717

- 123 -

Table 6

Residue number will be set to the conformation's cluster rank.

```
5
     MODEL
                   32
      USER
               Run = 32
      USER
               Cluster Rank = 1
      USER
               Number of conformations in this cluster = 3
      USER
10
     USER
               RMSD from reference structure
                                                       = 2.229 A
    USER
      USER
               Estimated Free Energy of Binding
                                                       = -9.58 kcal/mol [=(1)+(3)]
      USER
               Estimated Inhibition Constant, Ki
                                                       = +9.46e-08
                                                                              [Temperature = 298.15
      K]
15
      USER
      USER
                                                       = -13.09 \text{ kcal/mol} [=(1)+(2)]
               Final Docked Energy
      USER
               (1) Final Intermolecular Energy = -13.94 kcal/mol

(2) Final Internal Energy of Ligand = +0.85 kcal/mol

(3) Torsional Free Energy = +4.36 kcal/mol
      USER
      USER
20
      USER
      USER
      USER
               DPF = udp gal.dpf
      USER .
               NEWDPF move udp_gal.pdbq
      USER
25
      USER
               NEWDPF about15.798000 16.955999 35.483002
               NEWDPF tran015.935308 17.497402 35.985764
      USER
      USER
               NEWDPF quat0-0.511638 0.842288 -0.169640 -0.016065
               NEWDPF ndihe14
      USER
      USER
               NEWDPF dihe00.72 72.20 174.47 61.19 -168.15 179.54 -19.00 -11.55 -110.12 -5.97
30
      49.04 165.23 96.49 -141.60
                                                             ·z
      USER
                             Rank
                                                                       vdW
                                                                               Elec
                                                                                                 RMS
                                          . x
                                                                       -0.38 -0.10 -0.211 2.229
-0.84 +0.28 +0.396 2.229
-0.54 -0.39 -0.440 2.229
-0.73 +0.25 +0.396 2.229
                                         18.011 20.255 33.276
      MOTA
                        IID1
                 1 N
                               1
                                          18.286 21.586 32.961
19.609 21.849 32.689
20.671 20.940 32.698
20.312 19.592 33.032
                        UD1
      MOTA
                 2 C
                                  1
               · 3 N1 UD1 4 C1 UD1
35
      MOTA
                                  1
      MOTA
                                  1
                 5 C2 UD1
                                                                       -0.54 +0.00 +0.000 2.229
      ATOM
                                  1
                . 6 C3 UD1
                                         19.024 19.298 33.304
                                                                     -0.47 +0.00 +0.000 2.229
      ATOM
                                  1
                 7 O UD1
                                         17.428 22.465 32.926
                                                                     -0.30 -0.31 -0.396 2.229
      ATOM
                                1
40
                 8 O1 UD1
                                         21.808 21.330 32.427
                                                                     -0.18 -0.17 -0.396 2.229
      MOTA
                                1
                                                                       -0.65 +0.06 +0.324 2.229
                                          16.615 19.895 33.578
      MOTA
                9 C4 UD1
                                  1
                                                                              -0.01 +0.113 2.229
+0.00 +0.113 2.229
                                         16.077 18.680 32.819
14.956 18.216 33.749
15.422 18.644 35.144
      MOTA
                10 C5 UD1
                                 ī.
                                                                       -0.65
                        UD1
                                                                       -0.68
      MOTA
                11
                    C6
                                                                               +0.03 +0.113
                12 C7 UD1
      MOTA
                                  1
                                                                       -0.56
45
                13 O2 UD1
                                          16.524 19.565 34.947
                                                                     -0.06 -0.07 -0.227
      MOTA
                                  1
      MOTA
                14 H1 UD1
                                  1
                                         19.844 22.824 32.454
                                                                     +0.05 +0.64 +0.440 2.229
                15 O3 UD1
                                         15.662 19.025 31.511 -0.23 +0.22 -0.537 2.229
      ATOM
                                  1
                16 HO3 UD1
                                         15.060 18.283 31.134 -0.10 -0.57 +0.424 2.229
      ATOM
                                  1
                                          13.664 18.758 33.445
                                                                               +0.02 -0.537 2.229
      MOTA
                17 O4 UD1
                                  1
                                                                       -0.27
                                          13.725 19.337 32.597
15.935 17.497 35.986
16.536 18.003 37.186
                                                                       -0.33 -0.27 +0.424 2.229
-0.36 +0.04 +0.113 2.229
-0.03 -0.15 -0.368 2.229
-0.61 +0.28 +1.019 2.229
50
                18 HO4 UD1
      ATOM
                                  1
      MOTA
                19 C8 UD1
                                  1
                20 O5 UD1
      MOTA
                                  1
                                          17.675 17.188 37.959
                21 PA UD1 .
      MOTA
                                  1
                22 O1A UD1
                                         18.860 18.071 37.912
                                                                       -0.04 +0.00 -0.255 2.229
      MOTA
                                  1
                                                                     +0.05 -0.11 -0.255 2.229
55
                    O2A UD1
                                         17.936 15.914 37.242
      ATOM
                23
                                  1
                                                                       -0.22 -0.14 -0.510 2.229
                24 O3A UD1
                                         17.175 16.955 39.357
      MOTA
                                  1
                25 PB UD1
                                         15.787 16.521 39.969
                                                                       -0.81 +0.51 +1.019 2.229
      MOTA
                                  1
                                                                       -0.25 -0.14 -0.255 2.229
                26 O1B UD1
                                         14.830 17.653 40.007
      MOTA
                                  1
                                                                       -0.23 -0.14 -0.255 2.229

-0.64 -0.22 -0.255 2.229

+0.01 -0.16 -0.368 2.229

-0.41 +0.12 +0.227 2.229

-0.35 +0.09 +0.113 2.229

-0.27 -0.77 -0.537 2.229
                                         15.957
                    O2B UD1
                                                   15.846 41.284
      ATOM -
                27
                                  1
                28 O6 UD1
29.C9 UD1
60
                                          15.245
                                                   15.340 39.034
      MOTA
                                  1
                                         15.995 14.191 38.694
      MOTA
                                  1
                30 C14 UD1
                                         15.190 13.345 37.718
      ATOM
                                  1
                                         15.060 14.028 36.445
15.628 14.888 36.456
                31
                    011 UD1
      MOTA
                                 1
                                                                       +0.08 +0.38 +0.424 2.229
                32 H11 UD1
      MOTA
                                 1
                                1 1
65
              33 C13 UD1
                                          13.829 13.117 38.359
                                                                       -0.45 + 0.06
      MOTA
                                                                                      +0.113 2.229
                                          13.011 12.358 37.481
      MOTA
                34 O10 UD1
                                                                       -0.06
                                                                               -0.19
                                                                                       -0.537 2.229
                35 HO10UD1
                                          13.199 12.641 36.508
      MOTA
                                  1
                                                                       -0.03 +0.02 +0.424 2.229
```

-0.34 +0.09 +0.113 2.268

WO 01/83717

```
- 124 -
                                           13.978 12.379 39.705
14.315 11.027 39.382
                                                                          -0.48 +0.09 +0.113 2.229
      MOTA
                36 C12 UD1
                                   1
                                                                          +0.05 -0.41
                                                                                          -0.537
                                                                                                     2.229
      MOTA
                37 0122UD1
                                   1
                                           13.665 10.671 38.667
      ATOM
                38 H122UD1
                                                                          +0.09 +0.30
                                                                                           +0.424 2.229
                                   1
                                           15.087 12.960 40.605
                                                                          -0.58 +0.07
      MOTA
                39 C10 UD1
                                                                                           +0.113 2.229
                                   1
      ATOM
                40
                    C11 UD1
                                   1
                                           15.535 11.852 41.547
                                                                          -0.54 + 0.09
                                                                                           +0.113 2.229
                                                                          +0.01
                                                                                  -0.38
                                           16.047 10.737 40.847
                                                                                           -0.537 2.229
      MOTA
                41
                    08 UD1
                                   1
                                                    9.934 40.964
                                                                          +0.09
                                                                                  +0.33
                                                                                           +0.424 2.229
      ATOM
                42 H8 UD1
                                   1
                                           15.411
                43 07 UD1
                                   1.
                                           16.258 13.366 39.840
                                                                          +0.01 -0.09 -0.227 2.229
      MOTA
      TER
10
      ENDMDL
      MODEL
                    22
      USER
               Run = 22
      USER
               Cluster Rank = 1
      USER
               Number of conformations in this cluster = 3
15
      USER
      USER
               RMSD from reference structure
                                                          = 2.268 A
      USER
                                                          = -9.61 kcal/mol [=(1)+(3)]
      USER
               Estimated Free Energy of Binding
                                                         = +9.10e-08
                                                                                   [Temperature = 298.15
      USER
               Estimated Inhibition Constant, Ki
20
      K]
      USER
                                                          = -12.75 \text{ kcal/mol} [= (1) + (2)]
      USER
               Final Docked Energy
      USER
               (1) Final Intermolecular Energy
                                                         = -13.96 kcal/mol
      USER
               (2) Final Internal Energy of Ligand = +1.21 kcal/mol
(3) Torsional Free Energy = +4.36 kcal/mol
25
      USER
      USER
      USER
      USER
      USER
               DPF = udp gal.dpf
30
               NEWDPF move udp_gal.pdbq
      USER
               NEWDPF about15.798000 16.955999 35.483002
      USER
               NEWDPF tran015.906499 17.202339 35.526945
      USER
      USER
               NEWDPF quat0-0.557219 0.582353 -0.591922 -6.199978
      USER
               NEWDPF ndihel4
35
               NEWDPF dihe0-60.31 98.78 176.75 -59.94 -135.34 13.12 -121.85 63.91 -96.51 -
      USER
      178.60 -155.47 -91.96 33.25 179.90
                                                                 z
                                                                           vdW
                                                                                    Elec
                                                                                                      RMS
      USER
                               Rank
                                              х
                                                                                               q
                                          17.957 20.246 33.121
18.162 21.609 32.903
19.479 21.969 32.733
20.596 21.129 32.758
20.307 19.743 32.989
19.027 19.354 33.159
17.252 22.433 32.863
21.720 21.605 32.583
16.572 19.782 33.312
16.162 18.585 32.450
15.020 17.996 33.277
15.371 18.365 34.722
16.420 19.363 34.650
19.664 22.970 32.570
15.806 18.985 31.140
16.228 18.342 30.458
13.716 18.475 32.923
13.699 18.716 31.922
                                            17.957 20.246 33.121
                                                                          -0.38 -0.09 -0.211 2.268
                  1 N UD1 1
      MOTA
40
                  2 C UD1
                                                                           -0.86 +0.27 +0.396 2.268
      ATOM
                                   1
                                                                           -0.53 -0.42 -0.440 2.268
                  3 N1 UD1
                                   1
      MOTA
                                                                          -0.75 +0.27 +0.396 2.268

-0.55 +0.00 +0.000 2.268

-0.49 +0.00 +0.000 2.268

-0.31 -0.29 -0.396 2.268

-0.15 -0.19 -0.396 2.268
                  4 C1 UD1
      MOTA
                                   1
                  5 C2 UD1
      MOTA
                                   1
      MOTA
                  6 C3 UD1
                                    1
45
                  7
                          UD1
                                  . 1
      MOTA
                     0
                  8 01 UD1
      MOTA
                                  1
                 9 C4 UD1
                                                                           -0.66 +0.04 +0.324 2.268
      MOTA
                                   1
                 10 '
                                                                           -0.67 -0.02 +0.113 2.268
      MOTA
                     C5 UD1
                                   1
                                                                           -0.68 -0.02 +0.113 2.268
                 11 C6 UD1
                                   1
      MOTA
                                                                           -0.58 +0.02 +0.113 2.268
50
      MOTA
                 12 C7 UD1
                                    1
                                                                                   -0.06 -0.227 2.268
+0.77 +0.440 2.268
+0.22 -0.537 2.268
                 13 O2 UD1
                                                                           -0.05
                                    1
      MOTA
                                                                           +0.04
      MOTA
                 14 H1 UD1
                                    1
      MOTA
                 15
                     03 UD1
                                    1
                                                                           -0.12
                                                                                   -0.17 +0.424 2.268
                                                                           -0.28
                     HO3 UD1
      MOTA
                 16
                                    1
                                                                                   +0.06 -0.537 2.268
55
                     04 UD1
                                    1
                                                                           -0.40
      MOTA
                 17
                                           13.699 18.716 31.922
                                                                           -0.19
                                                                                   -0.26 +0.424 2.268
      MOTA
                 18 HO4 UD1
                                    1
                                           15.906 17.202 35.527
                                                                           -0.37
                                                                                   +0.04 +0.113 2.268
      MOTA
                 19 C8 UD1
                                    1
                                           17.089 17.601 36.234
17.403 17.064 37.708
17.928 18.244 38.428
18.429 15.994 37.630
16.106 16.562 38.278
15.593 16.256 39.738
                                                                                   -0.15 -0.368 2.268
                                                                           +0.04
                 20 05 UD1
                                    1
      MOTA
                                                                          -0.55 +0.34 +1.019 2.268
-0.21 -0.04 -0.255 2.268
-0.01 -0.09 -0.255 2.268
                     PA UD1
      MOTA
                 21
                                    1
                     Ola UD1
60
      MOTA
                 22
                                    1
      MOTA
                 23
                     02A UD1
                                    1
                                                                                    -0.21 -0.510 2.268
                                                                           +0.01
      MOTA
                 24
                     O3A UD1
                                    1
                     PB UD1
                                                                           -0.72 +0.45 +1.019 2.268
                                    1
      ATOM
                 25
                                           14.588 17.251 40.183
                                                                           -0.20 -0.12 -0.255 2.268
      ATOM
                 26 O1B UD1
                                    1
                                                                           -0.56 -0.16 -0.255 2.268
                                            16.724 16.091 40.690
                     02B UD1
                                    1
      MOTA
                 27
                                            14.962 14.786 39.682
                                                                           -0.05
                                                                                   -0.13 -0.368 2.268
                 28 06 UD1
                                    7
      ATOM
                                            15.709 13.612 39.431
15.519 13.206 37.976
                 29 C9 UD1
                                                                           -0.46 +0.11 +0.227 2.268
      MOTA
                                    1
```

MOTA

30 C14 UD1

1

PCT/CA01/00607 WO 01/83717

```
- 125 -
                                                                        16.144 14.175 37.095 -0.10 -0.54 -0.537 2.268
          MOTA
                           31 Oll UD1
                           32 H11 UD1
                                                                        16.693 14.844 37.654 +0.10 +0.25 +0.424 2.268
          MOTA
                                                       1
                                                                        14.018 13.134 37.737 -0.43 +0.06 +0.113 2.268
          MOTA
                            33 C13 UD1
                                                                        13.769 12.792 36.381 -0.30 -0.27
12.822 13.098 36.118 -0.17 -0.23
                                                                                                                                                     -0.537 2.268
                            34 O10 UD1
          ATOM
                                                          1
                                                                                                                          -0.17 -0.23 +0.424 2.268
                            35 HO10UD1
                                                          1
         MOTA

    13.367
    12.093
    38.668
    -0.48
    +0.07
    +0.113
    2.268

    13.748
    10.812
    38.160
    +0.00
    -0.35
    -0.537
    2.268

    14.102
    10.914
    37.199
    +0.07
    +0.27
    +0.424
    2.268

    13.837
    12.199
    40.133
    -0.49
    +0.11
    +0.113
    2.268

    13.635
    10.835
    40.776
    -0.33
    +0.15
    +0.113
    2.268

                           36 C12 UD1 1
37 O122UD1 1
38 H122UD1 1
39 C10 UD1 1
40 C11 UD1 1
41 O8 UD1 1
42 H8 UD1 1
                            36 C12 UD1
         MOTA
         MOTA
         MOTA
          MOTA
10
         ATOM
                                                                     12.399 10.256 40.411
                                                                                                                         -0.13 -0.83 -0.537 2.268
         MOTA
                                                                      12.486 9.812 39.484
                                                                                                                        +0.09 +0.39 +0.424 2.268
          MOTA
                            43 O7 UD1 1
                                                                                                                        +0.00 -0.15 -0.227 2.268
          MOTA
                                                                         15.257 12.509 40.232
          TER
15
          ENDMDL
          MODEL
                                 38
                          Run = 38
          USER
          USER
                          Cluster Rank = 1
          USER
                          Number of conformations in this cluster = 3
20
          USER
          USER
                          RMSD from reference structure
                                                                                                = 2.343 A
          USER
                          Estimated Free Energy of Binding = -8.52 \text{ kcal/mol} [=(1)+(3)]
          USER
                         Estimated Inhibition Constant, Ki = +5.73e-07 [Temperature = 298.15
          USER
25
          K] .
          USER
                                                                                                 = -11.93 \text{ kcal/mol} [=(1)+(2)]
           USER
                          Final Docked Energy
           USER
                     (1) Final Intermolecular Energy = -12.87 kcal/mol
           USER
                        (2) Final Internal Energy of Ligand = +0.95 kcal/mol
30
          USER
                          (3) Torsional Free Energy = +4.36 kcal/mol
         USER
           USER
           USER
                      DPF = udp_gal.dpf
           USER
35
           USER
                          NEWDPF move udp gal.pdbq
                          NEWDPF about15.798000 16.955999 35.483002
           USER
           USER NEWDPF tran016.468929 17.225999 35.649499
           USER NEWDPF quat00.571135 -0.378482 -0.728393 4.119217
           USER NEWDPF ndihe14
 40
                          NEWDPF dihe0135.84 72.34 72.68 26.52 178.87 20.84 -19.04 11.86 -120.48 46.73 -
           USER
           26.80 160.70 125.77 -111.68
           USER
                                                                                                          z
           USER
                                                                                                                           vdW
                                                                                                                                          Elec
                                                                                                                                                                        RMS
                                                  Rank
                                                                            x
                                                                                          У
                                                                                                                                                            q
                                                                         18.760 19.976 33.111 -0.33 -0.11 -0.211 2.343
                          1 N UD1 1
           ATOM

    18.760
    19.976
    33.111
    -0.33
    -0.11
    -0.211
    2.343

    19.112
    21.303
    32.859
    -0.78
    +0.28
    +0.396
    2.343

    20.454
    21.506
    32.633
    -0.52
    -0.31
    -0.440
    2.343

    21.467
    20.543
    32.632
    -0.71
    +0.23
    +0.396
    2.343

    21.029
    19.203
    32.900
    -0.51
    +0.00
    +0.000
    2.343

    19.721
    18.967
    33.126
    -0.45
    +0.00
    +0.000
    2.343

    18.302
    22.227
    32.838
    -0.27
    -0.35
    -0.396
    2.343

    22.630
    20.883
    32.406
    -0.25
    -0.23
    -0.396
    2.343

    17.339
    19.679
    33.362
    -0.60
    +0.10
    +0.324
    2.343

    16.760
    18.526
    32.539
    -0.60
    +0.00
    +0.113
    2.343

    15.591
    18.084
    33.420
    -0.60
    -0.01
    +0.113
    2.343

                              2 C
 45
                                            UD1
                                                           1
           ATOM
           ATOM
                              3 N1 UD1
                                                           1
                               4 C1 UD1
           MOTA
                                                           1
           MOTA
                              5 C2 UD1
                                                           1
           ATOM
                              6 C3 UD1
                                                           1
 50
                              7 O UD1
                                                           1
           ATOM
                        8 O1 UD1
9 C4 UD1
           MOTA
                                                            1
                                                            1
           ATOM
                             10 C5 UD1

      1
      16.760
      18.526
      32.539
      -0.60
      +0.00
      +0.113
      2.343

      1
      15.591
      18.084
      33.420
      -0.60
      -0.01
      +0.113
      2.343

      1
      16.040
      18.432
      34.843
      -0.51
      +0.03
      +0.113
      2.343

      1
      17.193
      19.299
      34.713
      -0.01
      -0.09
      -0.227
      2.343

      1
      20.746
      22.476
      32.445
      +0.05
      +0.37
      +0.440
      2.343

      1
      16.401
      18.945
      31.237
      -0.21
      +0.10
      -0.537
      2.343

      1
      16.159
      19.943
      31.251
      +0.00
      -0.04
      +0.424
      2.343

      1
      14.338
      18.706
      33.106
      -0.27
      +0.13
      -0.537
      2.343

      1
      14.452
      19.313
      32.282
      -0.18
      -0.28
      +0.424
      2.343

      1
      16.469
      17.226
      35.649
      -0.37
      +0.04
      +0.113
      2.343

      1
      16.397
      17.525
      37.051
      +0.02
      -0.15
      -0.368
      <t
           ATOM
                                                            1
                             11 C6 UD1
           ATOM
                             12 C7 UD1
           MOTA
                                                         1
                             13 O2 UD1
                                                         1
           MOTA
                             14 H1 UD1
           MOTA
                                                         1
                             15 O3 UD1
           MOTA
                             16 HO3 UD1
           MOTA
 60
                             17
                                    O4 UD1
           ATOM
                             18 HO4 UD1
           ATOM
                             19 C8 UD1
           MOTA
           ATOM
                             20 O5 UD1
                             21 PA UD1
           MOTA
                                                      1 18.004 18.726 38.431
1 18.780 16.744 37.239
1 17.232 16.478 39.155
1 15.873 16.279 39.930
                                                                                                                            +0.15 -0.04 -0.255 2.343
                             22 O1A UD1
 65
           MOTA
                                                                                                                            +0.13 -0.09 -0.255 2.343
-0.15 -0.13 -0.510 2.343
-0.78 +0.49 +1.019 2.343
                             23 O2A UD1
           ATOM
                             24 O3A UD1
           ATOM
```

25 PB UD1

MOTA

WO 01/83717 PCT/CA01/00607

- 126 -

	ATOM	26	01B UD1	1	15.020	17.490	39.856	-0.23	-0.13	-0.255	2.343
	ATOM	27	02B UD1	1	16.103	15.802	41.320	-0.58	-0.22	-0.255	2.343
	ATOM	28	06 UD1	1	15.153	15.026	39.242	-0.03	-0.15	-0.368	2.343
	ATOM	29	C9 UD1	1	15.824	13.846	38.846	-0.41	+0.12	+0.227	2.343
5	MOTA	30	C14 UD1	1	15.066	13.208	37.691	-0.36	+0.09	+0.113	2.343
	ATOM	31	011 UD1	1	15.159	14.040	36.505	-0.26	-0.76	-0.537	2.343
	ATOM	32	H11 UD1	1	14.326	14.642	36.442	+0.03	+0.20	+0.424	2.343
•	ATOM	33	C13 UD1	1	13.621	13.062	38.146	-0.46	+0.06	+0.113	2.343
	ATOM	34	010 UD1	1	12.847	12.501	37.096	-0.10	-0.09	-0.537	2.343
10	MOTA	35	HO10UD1	1	12.729	13.199	36.347	-0.12	-0.17	+0.424	2.343
	MOTA	36	C12 UD1	1	13.533	12.167	39.398	-0.49	+0.09	+0.113	2.343
	ATOM	37	0122UD1	1	13.775	10.831	38.949	+0.03	-0.40	-0.537	2.343
	MOTA	38	H122UD1	1	13.044	10.555	38.279	+0.09	+0.28	+0.424	2.343
	ATOM	39	C10 UD1	1	14.576	12.517	40.479	-0.51	+0.09	+0.113	2.343
15	MOTA	40	C11 UD1	1	14.796	11.268	41.320	-0.33	+0.12	+0.113	2.343
	ATOM -	41	08 UD1	1	15.279	10.188	40.548	+0.04	-0.41	-0.537	2.343
	MOTA	42	H8 UD1	1	16.309	10.214	40.524	+0.09	+0.29	+0.424	2.343
	MOTA	43	07 UD1	1	15.865	12.874	39.903	+0.01	-0.12	-0.227	2.343
	TER										
20	ENDMOT.										

20 ENDMDL

PCT/CA01/00607 WO 01/83717

- 127 -

Table 7

	Uracil											
5	MOTA	1	N1	UDP	1	18.167	20.363.	33.367	-0.38	-0.11	-0.211	2.450
	MOTA	2	C2	UDP	1	18.485	21.574	32.818	-0.84	+0.28	+0.396	2.450
	MOTA	3	из	UDP	1	19.821	21.872	32.732	-0.53	-0.40	-0.440	2.450
	MOTA	4	нз	UDP	1	20.069	22.789	32.334	+0.07	+0.53	+0.440	2.450
	ATOM	5	C4	UDP	1	20.878	21.052	33.133	-0.75	+0.30	+0.396	2.450
10	MOTA	6	C5	UDP	1	20.479	19.798	33.691	-0.55	+0.00	+0.000	2.450
	MOTA	7	C6	UDP	1	19.174	19.496	33.774	-0.49	+0.00	+0.000	2.450
	MOTA	8	02	UDP	1	17.619	22.362	32.433	-0.35	-0.26	-0.396	2.450
	ATOM	9	04	UDP	1	22.026	21.474	32.994	-0.24	-0.27	-0.396	2.450
	Ribose											
15	MOTA	10	C1'	UDP	1	16.753	19.988	33.503	-0.65	+0.07	+0.324	2.450
	MOTA	11	C2'	UDP	1	16.402	18.617	32.920	-0.60	+0.00	+0.113	2.450
	ATOM	12	C3'	UDP	1	15.116	18.296	33.717	-0.67	+0.00	+0.113	2.450
	ATOM	13	C4'	UDP	1	15.358	18.950	35.076	-0.56	+0.02	+0.113	2.450
	MOTA	14	04'	UDP	1	16.521	19.804	34.894	-0.07	-0.07	-0.227	2.450
20	MOTA	15	02 '	UDP	1	16.102	18.725	31.548	-0.24	+0.17	-0.537	2.450
	MOTA	16	HO2	'UDP	1	15.697	17.839	31.214	-0.28	-0.47	+0.424	2.450
	MOTA	17	03'	UDP	1	14.035	18.955	33.051	-0.27	+0.16	-0.537	2.450
	MOTA	18	HO3	'UDP	1	14.102	18.785	32.037	-0.17	-0.28	+0.424	2.450
	MOTA	19	C5'	UDP	1	15.666	17.939	36.181	-0.30	+0.04	+0.113	2.450
25	ATOM	20	05'	UDP	1	15.126	18.439	37.390	+0.00	-0.18	-0.368	2.450
	Pyropho	sphat	e									
	MOTA	21	PA	UDP	1	15.642	18.457	38.881	-0.61	+0.45	+1.019	2.450
	MOTA	.22	01A	UDP	1	17.132	18.480	38.845	-0.15	-0.08	-0.255	2.450
	ATOM	23	02A	UDP	1	14.933	19.550	39.617	-0.24	-0.09	-0.255	2.450
30	MOTA	24	O3A	UDP	1	15.133	16.987	39.239	-0.07	-0.23	-0.510	2.450
	ATOM	25	PB	UDP	1	15.835	15.723	39.920	-0.72	+0.43	+1.019	2.450
	ATOM	26	O1B	UDP	1	15.020	14.448	39.353	-0.03	-0.11	-0.255	2.450
	ATOM	27		UDP.	1	15.532	15.971	41.352	-0.68	-0.23	-0.255	2.450
•	MOTA	28	03B	UDP	1	17.233	15.484	39.480	-0.12	-0.06	-0.255	2.450
35												-

- 128 -

Table 8

	REMARK	4 1GAL	COMPL	IES WITH	H FORMAT V.	2.0. 12	-JAN-200	0			
5	ATOM	1 N	GLN	125	3.774	29.638	36.504	1.00	0.00		N
-	ATOM	2 CA		125	2.861	28.997	35.607	1.00	0.00		C
	ATOM	3 C	GLN	125	3.659	28.369	34.516	1.00	0.00		č
	ATOM	4 0	GLN	125	3.480	27.195	34.201	1.00	0.00		Õ
	ATOM	. 5 CE		125	1.885	29.988	34.950	1.00	0.00		Ċ
10	ATOM	6 CG		125	0.963	30.690	35.948	1.00	0.00		Č
	ATOM	7 CE		125	0.056	31.635	35.172	1.00	0.00		č
	ATOM		1 GLN	125	-0.698	32.411	35.755	1.00	0.00		Ö
	ATOM	9 NE		125	0.131	31.571	33.815	1.00	0.00		N
	ATOM	10 1H	GLN	125	4.428	30.225 -		1.00	0.00		H
15	ATOM	11 2H	GLN	125	3.249	30.226	37.166	1.00	0.00		H
	ATOM	12 HA		125	2.310	28.245	36.172	1.00	0.00		H
	ATOM	13 1HE		125	1.217	29.524	34.223	1.00	0.00		Н
	ATOM	14 2HE		125	2.381	30.792	34.407	1.00	0.00		H
	ATOM	15 1HG		125	1.583	31.242	36.653	1.00	0.00		н
20	ATOM	16 2HG		125	0.377	29.928	36.463	1.00	0.00		H
	ATOM		2 GLN	125	-0.457	32.187	33.237	1.00	0.00		н
	ATOM	18 2HE		125	0.776	30.906	33.365	1.00	0.00		н
	ATOM	19 ทั	LYS	126	4.583	29.141	33.917	1.00	0.00		N
	MOTA	20 CA		126	5.373	28.597	32.859	1.00	0.00		C
25	ATOM	21 C	LYS	126	6.430	27.759	33.485	1.00	0.00		Ċ
	ATOM	22 0	LYS	126	6.743	27.906	34.665	1.00	0.00		ō
	ATOM	23 CE		126	6.036	29.676	31.992	1.00	0.00		Ċ
	ATOM	24 CG	LYS	126	5.011	30.426	31.142	1.00	0.00		C
	MOTA	25 CT	LYS	126	3.953	31.165	31.965	1.00	0.00		С
30	ATOM	26 CE	LYS	126	4.502	32.348	32.763	1.00	0.00		С
	ATOM	27 N2	LYS	126	3.406	33.004	33.511	1.00	0.00		N
	ATOM	28 H	LYS	126	4.719	30.116	34.218	1.00	0.00		H
•	MOTA	29 HA	LYS	126	4.707	28.002	32.232	1.00	0.00		H
	ATOM	30 1HE	LYS	126	6.769	29.248	31.308	1.00	0.00		н
35	MOTA	31 2HE	LYS	126	6.555	30.417	32.599	1.00-	0.00		H
	MOTA	32 1HC		126	4.444	29.781	30.469	1.00	0.00		H
	ATOM	33 2HG	LYS	126	5.450	31.188	30.498	1.00	0.00		H
	ATOM	34 1HI		126	3.514	30.461	32.672	1.00	0.00		H
	ATOM	35 2HI		126	3.192	31.546	31.283	1.00	0.00		H
40	ATOM	36 1H		126	4.954	33.073	32.087	1.00	0.00		H
	ATOM	37 2HE		126	5.256	32.001	33.469	1.00	0.00		H
	ATOM	38 1H2		126	2.520	32.513	33.323	1.00	0.00		H
	ATOM	39 2H2		126	3.609	32.970	34.520	1.00	0.00		н
45.	ATOM	40 3Hz		126	3.324	33.985	33.210	1.00	0.00		Н
45	ATOM	41 N	ILE	127	6.994	26.817	32.713	1.00	0.00		N
	ATOM	42 C		127	7.996	25.997	33.310	1.00	0.00		C
	ATOM	43 C	ILE	127	9.165	25.944	32.400	1.00	0.00		С
	ATOM	44 0		127	9.040			1.00	0.00		0
50	ATOM	45 CE		127	7.575	24.578	33.539	1.00	0.00		C
30	ATOM		31 ILE	127	8.654	23.841	34.351	1.00	0.00		C
	ATOM ATOM		32 ILE 31 ILE	127 127	7.271 8.211	23.937 22.470	32.176 34.856	1.00 1.00	0.00		C
	ATOM .	49 H		127	6.714	26.691	31.729	1.00	0.00		C
	ATOM	50 H		127	8.278	26.436	34.266	1.00	0.00		H
55	ATOM	51 H		127	6.684	24.581	34.167	1.00	0.00		H
55	ATOM	52 1H		127	8.974	24.379	35.242	1.00	0.00		H
	ATOM	53 2H		127	9.570	23.652	33.791	1.00	0.00		H H
	ATOM		32 ILE	127	7.435	24.668	31.385	1.00	0.00		Н
•	ATOM	55 2H		127	7.928	23.081	32.021	1.00	0.00		H
60	ATOM		32 ILE	127	6.232	23.605	32.153	1.00	0.00		H
	ATOM		ol ILE	127	7.188	22.276	34.533	1.00	0.00		Н
	ATOM	58 2HI		127	8.870	21.702	34.451	1.00	0.00		H
	ATOM		ol ILE	127	8.257	22.450	35.944	1.00	0.00		H
	ATOM	60 N	THR	128	10.355	25.811	33.002	1.00	0.00	•	N
65	ATOM	61 C		128	11.546	25.664	32.234	1.00			Ċ
	ATOM	62 C	THR	128	11.987	24.261	32.465	1.00	0.00		ç
	MOTA	63 0	THR	128	12.094	23.810	33.605	1.00	0.00		0

	ATOM	64 (CB '	THR	128	12.634	26.603	32.656	1.00	0.00		С
	MOTA			THR	128	12.906	26.435	34.037	1.00	0.00		0
	ATOM			THR	128	12.179	28.044	32.377	1.00	0.00		С
	ATOM			THR	128	10.409	25.815	34.030	1.00	0.00		Н
5	ATOM			THR	128	11.246	25.860	31.204	1.00	0.00		H
,	ATOM			THR	128	13.534	26.375	32.084	1.00	0.00		H
									1.00	0.00		Н
	MOTA		HG1		128	12.856	27.348	34.510				
	ATOM	71 1			128	11.179	28.032	31.941	1.00	0.00		Н
	MOTA		HG2		128	12.161	28.607	33.310	1.00	0.00		H
10	MOTA		HG2		128	12.872	28.516	31.680	1.00	0.00	-	H
	ATOM	74	N	VAL	129	12.221	23.517	31.369	1.00	0.00		N
	MOTA	75	CA	VAL	129	12.615	22.148	31.497	1.00	0.00		G
	MOTA	76	C	VAL	129	14.091	22.103	31.268	1.00	0.00		С
	ATOM	77	0	VAL	129	14.601	22.747	30.358	1.00	0.00		0
15	ATOM .	78	CB	VAL	129	11.961	21.255	30.478	1.00	0.00		С
	ATOM		CG1		129	12.454	19.813	30.683	1.00	0.00		C
	ATOM		CG2		129	10.434	21.408	30.611	1.00	0.00		Ċ
	ATOM			VAL	129	12.116	23.935	30.433	1.00	0.00		Н
	ATOM			VAL	129	12.347	21.838	32.507	1.00	0.00		Н
20	MOTA			VAL	129		21.599	29.478	1.00	0.00		Н
20						12.228						
	MOTA		HG1		129	13.157	19.783	31.515	1.00	0.00		H
	ATOM		HG1		129	11.604	19.165	30.902	1.00	0.00		H
	ATOM		HG1		129	12.949	19.465	29.776	1.00	0.00		H
	MOTA		HG2		129	10.207	22.120	31.404	1.00	0.00		H
25	ATOM		HG2		129	10.021	21.770	29.669	1.00	0.00		Н
	MOTA		HG2		129	9.991	20.441	30.853	1.00	0.00		H
	MOTA	90	N	GLY	130	14.827	21.351	32.109	1.00	0.00		N
	MOTA	91	CA	GLY	130	16.251	21.295	31.941:	1.00	0.00		C
	MOTA	92	С	GLY	130	16.576	19.918	31.483	1.00	0.00		С
30	MOTA	93	0	GLY	130	16.223	18.933	32.129	1.00	0.00		0
	MOTA	94	Н	GLY	130	14.371	20.821	32.865	1.00	0.00		H
	MOTA	95 1	HA	GLY	130	16.691	21.516	32.912	1.00	0.00		Н
	MOTA	96 2	HA	GLY	130	16.509	22.045	31.194	1.00	0.00		H
	ATOM		N	LEU	131	17.293	19.816	30.350	1.00	0.00		N
35	MOTA		CA	LEU	131	17.552	18.511	29.838	1.00	0.00		C -
-	ATOM		C	LEU	131	19.040	18.385	29.719	1.00	0.00		Ċ
	ATOM		ō	LEU	131	19.709	19.308	29.260	1.00	0.00		ō
	ATOM		СВ	LEU	131	16.969	18.330	28.430	1.00	0.00		č
	ATOM		CG	LEU	131	16.783	16.855	28.071	1.00	0.00		. C.
40	ATOM		CD1		131	15.603	16.268	28.862	1.00	0.00		Ċ
40	MOTA		CD2		131	16.663	16.648	26.550	1.00	0.00		C
				LEU	131	17.644	20.655		1.00	0.00		Н
	ATOM	105	H					29.866				
	ATOM		HA	LEU	131	17.135	17.805	30.557	1.00	0.00		Н
4.5	ATOM	107 1		LEU	131	17.611	18.762	27.662	1.00	0.00		H
45	ATOM	108 2		LEU	131	15.993	18.804	28.327	1.00	0.00		Н
	MOTA		HG	LEU	131	17.686	16.296	28.314	1.00	0.00		H
	ATOM	110 1			131		17.040	29.497	1.00	0.00		H
	ATOM.				131	14.845	15.903	28.168	1.00	0.00		H
	MOTA	112 3			131	15.954	15.443	29.481	1.00	0.00		H
50	MOTA	113 1			131	16.737	17.611	26.044	1.00	0.00		Н
	MOTA	114 2	HD2	LEU	131	17.466	15.995	26.207	1.00	0.00		H
	MOTA	115 3	HD2	LEU	131	15.700	16.190	26.319	1.00	0.00		H
	MOTA		N	THR	132	19.607	17.244	30.157	1.00	0.00		N
	ATOM	117	CA	THR	132	21.018	17.037	30.005	1.00	0.00		С
55	MOTA	118	C	THR	132	21.177	15.992	28.951	1.00	0.00		C
•	ATOM	119	Ō	THR	132	20.496	14.967	28.976	1.00	0.00		ō
	ATOM	120	СВ	THR	132	21.706	16.558	31.252	1.00	0.00		Ċ
	ATOM	121			132	21.133	15.339	31.699	1.00	0.00		Ö
				THR	132	21.583	17.642	32.338	1.00	0.00		C
60	ATOM	122		THR	132	19.026	16.519	30.601	1.00	0.00		
60	ATOM	123	H									Н
	ATOM	124	HA	THR	132	21.437	17.997	29.705	1.00	0.00		Н
	ATOM	125	HB	THR	132	22.756	16.372	31.027	1.00	0.00		H
	MOTA		HG1		132	20.160	15.504	31.994	1.00	0.00		H
	MOTA	127 1			132	21.028	18.492	31.941	1.00	0.00		H
65	MOTA	128 2			132	21.055	17.234	33.200	1.00	0.00		Н
	MOTA		3HG2		132	22.578	17.967	32.641	1.00	0.00		Н
	MOTA	130	N	VAL	133	22.079	16.244	27.979	1.00	0.00		N
	MOTA	131	CA	VAL	133	22.229	15.303	26.910	1.00	0.00		C

	MOTA	132 C	VAL	133	23.665	14.894	26.786	1.00	0.00		С
	MOTA	133 0	VAL	133	24.595	15.690	26.922	1.00	0.00		0
	MOTA	134 CB	VAL	133	21.830	15.851	25.570	1.00	0.00		C
5	ATOM ATOM		L VAL	133 133	20.354 22.783	16.275 16.997	25.623 25.201	1.00 1.00	0.00 0.00	•	C
3	ATOM	130 CG2	VAL	133	22.650	17.100	28.005	1.00	0.00		Н
	ATOM	138 HA	VAL	133	21.624	14.417	27.105	1.00	0.00		Н
	ATOM	139 HB	VAL	133	21.968	15.076	24.815	1.00	0.00		Н
	ATOM	140 1HG		133	19.953	16.076	26.617	1.00	0.00		-H
10	MOTA	141 2HG	L VAL	133	20.273	17.340	25.405	1.00	0.00		H
	ATOM	142 3HG	L VAL	133	19.786	15.709	24.883	1.00	0.00		H
	ATOM	143 1HG2		133	23.514	17.133	25.998	1.00	0.00		Н
	MOTA	144 2HG2		133	23.299	16.755	24.272	1.00	0.00		H
	ATOM	145 3HG		133	22.212	17.916	25.070	1.00	0.00		Н
15	ATOM	146 N	PHE	134	23.857	13.592	26.526	1.00	0.00		N
	ATOM ATOM	147 CA 148 C	PHE PHE	134 134	25.138 24.939	13.016 12.254	26.297 25.042	1.00 1.00	0.00		C
	ATOM	149 0	PHE	134	23.939	12.454	24.357	1.00	0.00		o
	ATOM	150 CB	PHE	134	25.581	12.031	27.387	1.00	0.00		Ċ
20	ATOM	151 CG	PHE	134	25.779	12.856	28.606	1.00	0.00		Č
	ATOM		1 PHE	134	24.964	12.698	29.703	1.00	0.00		С
	MOTA	153 CD	2 PHE	134	26.810	13.759	28.664	1.00	0.00		С
	MOTA		1 PHE	134	25.156	13.454	30.834	1.00	0.00		С
	MOTA		2 PHE	134	27.006	14.518	29.790	1.00	0.00		С
25	ATOM	156 CZ	PHE	134	26.179	14.370	30.876	1.00	0.00		С
	ATOM	157 H	PHE	134	23.032	12.975	26.490	1.00	0.00		H
	MOTA	158 HA 159 1HB	PHE	134 134	25.901 26.504	13.786 11.585	26.189 27.015	1.00 1.00	0.00		H H
	ATOM ATOM	160 2HB	PHE	134	24.765	11.316	27.013	1.00	0.00		Н
30	ATOM		1 PHE	134	24.157	11.965	29.674	1.00	0.00		Н
50	ATOM		2. PHE	134	27.479	13.875	27.809	1.00	0.00		H.
	ATOM		1 PHE	134	24.500	13.328	31.695	1.00	0.00		Н
	ATOM	164 HE	2 PHE	134	27.821	15.241	29.824	1.00	0.00		Н
	MOTA	165 HZ	PHE	134	26.334	14.976	31.769	1.00	0.00		Н
35	ATOM	166 N-	ALA		. 25.881	11.365	24.698	-1.00	0.00		N
	ATOM	167 CA			25.736	10.705	23.434	1.00	0.00		C
	ATOM	168 C	ALA		24.749	9.589	23.519	1.00	0.00		C
	MOTA MOTA	169 O · 170 CB			25.132 27.051	8.421 10.116	23.496 22.893	$1.00 \\ 1.00$	0.00		0
40	ATOM	170 CB	ALA		26.678	11.163	25.318	1.00	0.00		Н
	ATOM	172 HA			25.389	11.396	22.666	1.00	0.00		Н
	ATOM	173 1HB	ALA		27.858	10.321	23.596	1.00	0.00		Н
	MOTA	174 2HB	ALA	135	26.943	9.038	22.769	1.00	0.00		Н
	MOTA	175 3HB	ALA		27.284	10.570	21.930	1.00	0.00		Н
45	ATOM	· 176 N	VAL		23.446	9.913	23.642	1.00	0.00		N
	ATOM	177 CA			22.465	8.870	23.562	1.00	0.00		C
	ATOM	178 C	VAL		21.648	9.153	22.336	1.00	0.00		C
	MOTA MOTA	179 O 180 CB	VAL VAL		20.541 21.574	9.686 8.768	22.389 24.772	1.00	0.00		0 C
50	ATOM		1 VAL		20.893	10.116	25.062	1.00	0.00		c
50	ATOM		2 VAL		20.572	7.638	24.501	1.00	0.00		c
	MOTA	183 H	VAL		23.160	10.891	23.790	1.00	0.00		Н
	ATOM	184 HA			23.018	7.934		1.00	0.00		H
	ATOM	185 HB			22.149	8.481	25.652	1.00	0.00		H
55	MOTA	186 1HG			21.209	10.850	24.321	1.00	0.00		Н
	MOTA	187 2HG			19.810	9.994	25.013	1.00	0.00		H
	ATOM	188 3HG			21.175	10.459	26.057	1.00	0.00		Н
	MOTA	189 1HG			20.763	7.209	23.517	1.00 1.00	0.00		Н
60	MOTA MOTA	190 2HG 191 3HG			20.681 19.557	6.864 8.035	25.261 24.532	1.00	0.00		H H
00	ATOM	191 3hG	GLY		22.180	8.741	21.176	1.00	0.00		N
	ATOM	193 CA			21.598	9.106	19.921	1.00	0.00		C
	ATOM	194 C	GLY		20.249	8.504	19.733	1.00	0.00		Č
	MOTA	195 O	GLY	137	19.339	9.157	19.228	1.00	0.00		0
65	ATOM	196 н	GLY		23.023	8.150	21.188	1.00	0.00		Н
	ATOM	197 1HA			22.206	8.781	19.077	1.00	0.00		Н
	ATOM	198 2HA			21.476	10.184	19.823	1.00	0.00		Н
	MOTA	199 N	ARG	138	20.103	7.223	20.105	1.00	0.00		N

	•	ATOM	200 C	A ARG	. 138	18.884	6.506	19.899	1.00	0.00	c ·
•		MOTA	201 0	ARG	138	17.789	7.041	20.772	1.00	0.00	С
		MOTA	202 C) ARG	138	16.648	7.142	20.331	1.00	0.00	0
		MOTA	203 C	B ARG	138	19.029	5.019	20.256	1.00	0.00	С
	5	MOTA		G ARG	138	20.086	4.283	19.440	1.00	0.00	С
		MOTA		D ARG	138	19.502	3.245	18.482	1.00	0.00	С
		MOTA		NE ARG	138	18.334	3.855	17.782	1.00	0.00	N
		MOTA		Z ARG	138	17.889	3.261	16.637	1.00	0.00	С
		ATOM		NH1 ARG	138	18.585	2.201	16.132	1.00	0.00	N
	10	MOTA		VH2 ARG		16.757	3.708	16.016	1.00	0.00	N
		MOTA		ARG	138	20.895	6.740	20.553	1.00	0.00	Н
		MOTA		ia arg	138	18.552	6.584	18.863	1.00	0.00	Н
	•	ATOM	212 1H		138	18.071	4.528	20.078	1.00	0.00	H
		MOTA	213 2H		138	19.309	4.944	21.306	1.00	0.00	Н
	15	MOTA	214 1H		138	20.803	3.735	20.051	1.00	0.00	, H
	-	ATOM	215 2H		138	20.688	4.941	18.814	1.00	0.00	Н
		MOTA	216 11		138	19.188	2.378	19.063	1.00	0.00	Н
·		MOTA	217 21		138	20.274	2.965	17.765	1.00	0.00	Н
	20	MOTA		HE ARG	138	17.876	4.700	18.152	1.00	0.00	Н
	20	MOTA		HH1 ARG	138	19.430	1.863	16.614	1.00	0.00	. Н
		ATOM		HH1 ARG	138	18.265	1.739	15.268	1.00	0.00	Н
		MOTA		HH2 ARG	138	16.231	4.500	16.411	1.00	0.00	Н
		MOTA		HH2 ARG	138	16.429	3.252	15.152	1.00	0.00	Н
	25	MOTA	223 h		139 139	18.106 17.141	7.327	22.054 23.058	1.00 1.00	0.00	N
	23	MOTA		CA TYR	139	16.701	9.138	23.038	1.00	0.00	C C
		MOTA		O TYR	139	15.571	9.413	23.509	1.00	0.00	0
		ATOM ATOM		CB TYR	139	17.606	7.224	24.444	1.00	0.00	c
		ATOM		CG TYR	139	17.790	5.742	24.314	1.00	0.00	c
	30	MOTA		CD1 TYR	139	16.725	4.947	23.963	1.00	0.00	C.
	50	ATOM		CD2 TYR	139		5.136	24.575	1.00	0.00	Ċ
,		ATOM		CE1 TYR	139	16.864	3.584	23.834	1.00	0.00	č
		MOTA		CE2 TYR	139	19.142	3.774	24.445	1.00	0.00	Ċ
		MOTA		CZ TYR	139	18.081	2.988	24.068	1.00	0.00	Č
. . .	35	ATOM		OH TYR	139	18.231 ·	1.587	23.930	1.00	0.00	ō
***		ATOM		H TYR	139	19.097	7.284	22.328	1.00	0.00	Н
		ATOM		HA TYR	139	16.242	7.099	22.875	1.00	0.00	H
		ATOM	237 1		139	16.798	7.505	25.120	1.00	0.00	н
		MOTA		HB TYR	139	18.535	7.764	24.624	1.00	0.00	Н
	40	MOTA		HD1 TYR	139	15.752	5.404	23.783	1.00	0.00	Н
		MOTA		HD2 TYR	139	19.848	5.741	24.887	1.00	0.00	Н
		MOTA	241	HE1 TYR	139	16.007	2.975	23.545	1.00	0.00	Н
		ATOM	242	HE2 TYR	139	20.109	3.313	24.643	1.00	0.00	H
		MOTA	243	HH TYR	139	17.306	1.154	23.791	1.00	0.00	· H
	45	MOTA	244	N ILE	140	17.564	10.112	22.757	1.00	0.00	Ŋ
		MOTA	245	CA ILE	140	17.287	11.521	22.936	1.00	0.00	C
		MOTA	246	C ITE	140	16.072	11.997	22.202	1.00	0.00	С
		MOTA	247	O ILE	140	15.317	12.810	22.729	1.00	0.00	0
		MOTA		CB ILE	140	18.430	12.394	22.498	1.00	0.00	С
	50	MOTA		CG1 ILE	140	18.741	12.087	21.022	1.00	0.00	С
		MOTA		CG2 ILE	140	19.611	12.229	23.462	1.00	0.00	С
		MOTA		CD1 ILE	140	19.798	12.984	20.382	1.00	0.00	С
		MOTA		H ILE	140	18.462	9.838	22.333	1.00	0.00	Н
		ATOM		HA ILE	140	17.130	11.708	23.998	1.00	0.00	Н
	55	ATOM		HB ILE	140	. 18.117	13.438	22.492	1.00	0.00	н
		ATOM		HG1 ILE	140	17.821	12.208	20.449	1.00	0.00	Н
		ATOM		HG1 ILE	140	19.103	11.061	20.958	1.00	0.00	Н
		ATOM		HG2 ILE	140	19.346	11.515	24.242	1.00	0.00	Н
	60	ATOM		HG2 ILE	140	20.479	11.862	22.914	1.00	0.00	Н
	60	ATOM		HG2 ILE	140	19.847	13.191	23.915	1.00	0.00	Н
		ATOM		HD1 ILE	140	20.154	13.707	21.115	1.00	0.00	Н
		MOTA		HD1 ILE	140	20.633	12.373	20.038	1.00	0.00	Н
		MOTA		HD1 ILE	140	19.362	13.512	19.534	1.00	0.00	H
	65	ATOM		N GLU	141 141	15.842 14.778	11.505 11.954	20.979 20.132	1.00	0.00	. N
	ده	ATOM		CA GLU	141	13.475	11.779	20.132	1.00	0.00	C
		ATOM ATOM		O GLU	141	12.644	12.683	20.830	1.00	0.00	0
		ATOM		CB GLU	141	14.738	11.068	18.876	1.00	0.00	C
		AT OU	201	. 310	431	14.750	,	,0/0	2.00	5.50	C

	MOTA	268 CG	GLU	141	13.662	11.398	17.847	1.00	0.00		С
	MOTA	269 CD	GLU	141	13.763	10.310	16.789	1.00	0.00		С
	MOTA	270 OE1	GLU	141	14.828	9.634	16.753	1.00	0.00		0
	MOTA	271 OE2	GLU	141	12.782	10.123	16.023	1.00	0.00		0
5	ATOM	272 H	GLU	141	16.464	10.763	20.627	1.00	0.00		H
	ATOM	273 HA	GLU	141	14.932	13.006	19.894	1.00	0.00		Н
	ATOM	274 1HB	GLU	141	14.563	10.041	19.198	1.00	0.00		Н
	ATOM	275 2HB	GLU	141	15.699	11.163	18.371	1.00	0.00		Н
	MOTA	276 1HG	GLU	141	13.914	12.388	17.467	1.00	0.00		Н
10	_ ATOM	277 2HG	GLU	141	12.719	11.377	18.393	1.00	0.00		Н
	ATOM	278 N	HIS	142	13.289	10.597	21.455	1.00	0.00		N
	MOTA	279 CA	HIS	142	12.086	10.211	22.131	1.00	0.00		C
	ATOM	280 C	HIS	142	11.845	11.099	23.313	1.00	0.00		C
	ATOM	281 0	HIS	142	10.720	11.534	23.559	1.00	0.00		. 0
15	MOTA	282 CB	HIS	142	12.224	8.783	22.670	1.00	0.00		C
	ATOM	283 CG	HIS	142	11.008	8.298	23.379	1.00	0.00		C
	MOTA	284 ND1		142	10.927	7.058	23.966 23.600	1.00 1.00	0.00		N C
	ATOM ATOM		HIS HIS	142 142	9.808 9.691	8.899 6.968	24.514	1.00	0.00		C
20	ATOM		HIS	142	8.975	8.060	24.317	1.00	0.00		И
20	ATOM	288 H	HIS	142	14.064	9.919	21.432	1.00	0.00		Н
	MOTA	289 HA	HIS	142	11.231	10.288	21.458	1.00	0.00		H
	ATOM	290 1HB	HIS	142	13.038	8.666	23.385	1.00	0.00		н
	ATOM	291 2HB	HIS	142	12.416	8.043	21.892	1.00	0.00		н
25	ATOM		HIS	142	11.662	6.337	23.985	1.00	0.00		Н
23	MOTA		HIS	142	9.541	9.899	23.260	1.00	0.00		Н
	ATOM		HIS	142	9.329	6.094	25.055	1.00	0.00		Н
	ATOM		HIS	142	8.010	8.245	24.628	1.00	0.00		Н
	MOTA	296 N	TYR	143	12.917	11.376	24.070	1.00	0.00		N
30	MOTA	297 CA	TYR	143	12.847	12.085	25.311	1.00	0.00		С
	ATOM	298 C	TYR	143	12.362	13.475	25.001	1.00	0.00		С
	MOTA	299 O	TYR	143	11.390	13.953	25.584	1.00	0.00		. 0
	ATOM	300 CB	TYR	143	14.265	12.216	25.877	1.00	0.00		C
	MOTA	301 CG	TYR	143	14.353	12.188	27.364	1.00	0.00		С
35	MOTA	302 CD1		143	13.642	13.019	28.204	1.00	0.00	•	C
	MOTA		TYR	143	15.190	11.243	27.924	1.00	0.00		С
	MOTA		TYR	143	13.802	12.925	29.571	1.00	0.00		.c
	MOTA	305 .CE2		143	15.357	11.146	29.290	1.00	0.00		C
40	ATOM	306 CZ	TYR	143	14.662	12.001	30.119	1.00	0.00		C
40	ATOM	307 OH	TYR	143	14.825	11.929	31.520	1.00	0.00	•	0
	MOTA	308 н	TYR	143	13.840	11.061	23.740	1.00	0.00		Н
	ATOM	309 HA	TYR	143	12.146	11.546 13.168	25.949 25.543	1.00 1.00	0.00		H H
	ATOM	310 1HB 311 2HB	TYR TYR	143 143	14.676 14.859	11.384	25.499	1.00	0.00		H
45	MOTA		TYR	143	12.951	13.752	27.786	1.00	0.00		Н
73	ATOM ATOM		TYR	143	15.731	10.557	27.271	1.00	0.00		н
	ATOM		TYR	143	13.240	13.591	30.225	1.00	0.00		н
	MOTA		TYR	143	16.032	10.400	29.710	1.00	0.00		Н
	ATOM	316 HH	TYR	143	14.815	12.879	31.916	1.00	0.00		Н
50	ATOM	317 N	LEU	144	13.012	14.156	24.026	1.00	0.00		N
	ATOM	318 CA	LEU	144	12.699	15.521	23.676	1.00	0.00		С
	ATOM	319 C	LEU	144	11.328	15.648	23.096	1.00	0.00		С
	ATOM	320 0	LEU	144	10.590	16.568	23.440	1.00	0.00		0
	MOTA	321 CB	LEU	144	13.708	16.137	22.693	1.00	0.00		С
55	ATOM	322 CG	LEU	144	15.006	16.551	23.386	1.00	0.00		С
	MOTA	323 CD1	LEU	144	16.003	17.174	22.393	1.00	0.00	•	С
	ATOM		LEU	144	14.667	17.512	24.538	1.00	0.00		С
	ATOM	325 H	LEU	144	13.764	13.677	23.510	1.00	0.00		Н
	MOTA	326 HA	LEU	144	12.739	16.182	24.541	1.00	0.00		Н
60	MOTA	327 1HB	LEU	144	13.313	17.029	22.206	1.00	0.00		Н
	MOTA	328 2HB	LEU	144	13.983	15.442	21.899	1.00	0.00		Н
	ATOM	329 HG	LEU	144	15.501	15.698	23.851	1.00	0.00		Н
	MOTA	330 1HD1		144	15.563	17.186	21.395	1.00	0.00		Н
65	ATOM	331 2HD1		144	16.233	18.194	22.700	1.00	0.00		Н
65	ATOM	332 3HD1		144	16.919	16.583	22.378	1.00	0.00		H
	MOTA	333 1HD2		144	13.588	17.663	24.580	1.00 1.00	0.00		H
	ATOM	334 2HD2			15.010	17.085	25.480 24.371	1.00	0.00		H
	MOTA	335 3HD2	טביט.	144	15.161	18.468	24.3/1	1.00	0.00		H

	ATOM	336 N	GLU	145	10.934	14.706	22.226	1.00	0.00		N
	ATOM		GLU	145	9.653	14.803	21.588	1.00	0.00		С
	ATOM		GLU	145	8.586	14.783	22.637	1.00	0.00		Ċ
							22.512	1.00	0.00		
_	MOTA		GLU	145	7.560	15.453					0
5	MOTA		GLU	145	9.368	13.627	20.636	1.00	0.00		С
	MOTA	341 CG	GLU	145	10.226	13.647	19.371	1.00	0.00		С
	ATOM	342 CD	GLU	145	9.522	14.481	18.306	1.00	0.00		С
	MOTA	343 OE1	GLU	145	8.392	14.096	17.899	1.00	0.00		0
	MOTA	344 OE2	GLU	145	10.111	15.506	17.874	1.00	0.00		0
10	MOTA		GLU	145	11.553	13.910	22.015	1.00	0.00		Н
10	ATOM	346 HA	GLU	145	9.607	15.736	21.027	1.00	0.00		н
							20.282	1.00	0.00		
	MOTA	347 1HB	GLU	145	8.337	13.595				•	H
	MOTA	348 2HB	GLU	145	9.546	12.650	21.087	1.00	0.00		Н
	MOTA	349 1HG	GLU	145	10.358	12.625	19.015	1.00	0.00		H
15	ATOM	350 2HG	GLU	145	11.195	14.086	19.606	1.00	0.00		H
	ATOM	351 N	GLU	146	8.791	14.004	23.712	1.00	0.00		N
	ATOM	352 CA	GLU	146	7.727	13.932	24.661	1.00	0.00		С
	ATOM	353 C	GLU	146	7.460	15.289	25.248	1.00	0.00		C
	ATOM	354 O	GLU	146	6.301	15.676	25.417	1.00	0.00		ō
20						12.919	25.785	1.00	0.00		Ċ
20	ATOM	355 CB	GLU	146	7.955						
	MOTA	356 CG	GLU	146	6.927	13.058	26.897	1.00	0.00		C
	MOTA	357 CD	GLU	146	5.522	12.785	26.372	1.00	0.00		С
	ATOM	358 OE1	GLU	146	5.141	13.300	25, 282	1.00	0.00		0
	ATOM	359 OE2	GLU	146	4.797	12.056	27.087	1.00	0.00		0
25	MOTA	360 н	GLU	146	9.670	13.485	23.844	1.00	0.00		H
	ATOM	361 HA	GLU	146	6.816	13.574	24.180	1.00	0.00		н
	ATOM	362 1HB	GLU	146	8.935	13.033	26.247	1.00	0.00		Н
	ATOM	363 2HB	GLU	146	7.894	11.890	25.428	1.00	0.00		Н
		364 1HG		146	6.943	14.064	27.315		0.00		H
20	ATOM		GLU								
30	ATOM	365 2HG	GLU	146	7.131	12.352	27.702	1.00	0.00		Н
	ATOM	366 N	PHE	147	8.519	16.052	25.589	1.00	0.00		N
	MOTA	367 CA	PHE	147	8.267	17.365		1.00	0.00		С
	ATOM	368 C	PHE	147	7.670	18.299	25.118	1.00	0.00		С
	MOTA	369 O	PHE	147	6.691	18.985	25.413	1.00	0.00		0
35	MOTA	370 CB	PHE	147	9.479	18.072	.26.751	1.00	0.00		C
	ATOM	371 CG	PHE	147	9.295	17.919	28.217	1.00	0.00		С
	ATOM		PHE	147	9.728	16.820	28.917	1.00	0.00		С
	MOTA		PHE	147	8.621	18.916	28.880	1.00	0.00		č
						16.753	30.273	1.00	0.00		C
40	MOTA		PHE	147	9.500						
40	MOTA		PHE	147	8.396	18.852	30.231	1.00	0.00		C
	ATOM	376 CZ	PHE	147	8.844	17.762	30.935	1.00	0.00		С
	MOTA	377 H	PHE	147	9.481	15.703	25.475	1.00	0.00		H
	ATOM	378 HA	PHE	147	7.577	17.369	26.959	1.00	0.00		Н
	ATOM	379 1HB	PHE	147	9.416	19.106	26.413	1.00	0.00		H
45	ATOM	380 2HB	PHE	147	10.352	17.544	26.367	1.00	0.00		H
	MOTA		PHE	147	10.246	16.009	28.404	1.00	0.00		Н
	MOTA		PHE	147	8.257	19.777	28.319	1.00	0.00		н
			PHE	147	9.846	15.883	30.831	1.00	0.00		H
•	ATOM						30.740				
50	ATOM		PHE	147	7.867	19.657		1.00	0.00		H
50	ATOM	385 HZ	PHE	147	8.680	17.697	32.010	1.00	0.00		H
	MOTA	386 N	LEU	148	8.228	18.345	23.901	1.00	0.00		N
	ATOM	387 CA	LEU	148	7.756	19.335	22.986	1.00	0.00		С
	ATOM	388 C	LEU	148	6.317	19.106	22.646	1.00	0.00		С
	ATOM	389 0	LEU	148	5.555	20.070	22.555	1.00	0.00		0
55	ATOM	390 CB	LEU	148	8.611	19.432	21.719	1.00	0.00		Ċ
-	ATOM	391 CG	LEU	148	10.027	19.958	22.036	1.00	0.00		Ċ
	ATOM		LEU	148 .	10.877	20.091	20.763	1.00	0.00		Ċ
	ATOM		LEU	148	9.967	21.255	22.861	1.00	0.00		C
	MOTA	394 H	LEU	148	8.974	17.687	23.633	1.00	0.00		Н
60	MOTA	395 HA	LEU	148	7.845	20.334	23.412	1.00	0.00		Н
	ATOM	396 1HB	LEU	148	8.164	20.108	20.990	1.00	0.00		Н
	MOTA	397 2HB	LEU	148	8.721	18.459	21.239	1.00	0.00		Н
	MOTA	398 HG	LEU	148	10.559	19.290	22.713	1.00	0.00		Н
	ATOM	399 1HD1		148	10.289	19.781	19.899	1.00	0.00	•	H
65	MOTA	400 2HD1		148	11.185	21.128	20.638	1.00	0.00		H
0.5		401 3HD1		148	11.759	19.457	20.847	1.00	0.00		
	ATOM										H
	MOTA	402 1HD2		148	8.926	21.522	23.043	1.00	0.00		Н
	ATOM	403 2HD2	LEU	148	10.475	21.104	23.813	1.00	0.00		Н

	ATOM	404 3HD2	LEU	148	10.457	22.058	22.311	1.00	0.00	Н
	ATOM	405 N	THR	149	5.881	17.845	22.464	1.00	0.00	N
	ATOM	406 CA	THR	149	4.505	17.686	22.089	1.00	0.00	Ċ
	ATOM		THR		3.639			1.00	0.00	C
_				149		17.773	23.311			
5	MOTA	408 O	THR	149	2.939	16.829	23.673	1.00	0.00	. 0
	ATOM	409 CB	THR	149	4.203	16.400	21.368	1.00	0.00	C
	MOTA	410 OG1		149	4.989	16.316	20.188	1.00	0.00	0
	MOTA	411 CG2	THR	149	2.711	16.386	20.982	1.00	0.00	С
	MOTA	412 H	THR	149	6.504	17.034	22.587	1.00	0.00	Н
10	MOTA	413 HA	THR	149	4.224	18.473	21.389	1.00	0.00	H
	MOTA	414 HB	THR	149	4.427	15.564	22.031	1.00	0.00	Н
	MOTA	415 HG1	THR	149	5.121	17.259	19.795	1.00	0.00	Н
	ATOM	416 1HG2		149	2.238	17.306	21.323	1.00	0.00	Н
	ATOM	417 2HG2		149	2.616	16.309	19.898	1.00	0.00	H
15	ATOM	418 3HG2		149	2.222	15.531	21.450	1.00	0.00	Н
13	ATOM	419 N	SER	150	3.672	18.934	23.987	1.00	0.00	N
	ATOM	420 CA	SER	150	2.792	19.149	25.095	1.00	0.00	C
	MOTA	421 C	SER	150	1.441	19.352	24.478	1.00	0.00	C
	MOTA	422 O	SER	150	1.340	19.828	23.350	1.00	0.00	0
20	MOTA	423 CB	SER	150	3.136	20.402	25.916	1.00	0.00	С
	MOTA	424 OG	SER	150	2.239	20.543	27.008	1.00	0.00	0
	MOTA .	425 H	SER	150	4.333	19.672	23.706	1.00	0.00	H
	MOTA	426 HA	SER	150	2.868	18.240	25.692	1.00	0.00	Н
	MOTA	427 1HB	SER	150	3.066	21.295	25.295	1.00	0.00	H
25	MOTA	428 2HB	SER	150	4.150	20.333	26.309	1.00	0.00	H
	MOTA	429 HG	SER	150	2.118	21.542	27.226	1.00	0.00	н
	MOTA	430 N	ALA	151	0.353	18.994	25.191	1.00	0.00	N
	ATOM	431 . CA	ALA	151	-0.938	19.093	24.579	1.00	0.00	C
	ATOM	432 C	ALA	151	-1.199	20.514	24.215	1.00	0.00	C
30	ATOM	433 0	ALA	151	-1.451	20.805	23.050	1.00	0.00	. 0
30	ATOM -	434 CB	ALA	151	-2.081	18.634	25.500	1.00	0.00	C
			ALA	151	0.449	18.655	26.158	1.00	0.00	
	ATOM									Н
	MOTA	436 HA	ALA	151	-0.957	18.473	23.682	1.00	0.00	H
	MOTA	437 1HB	ALA	151	-1.670	18.316	26.458	1.00	0.00	Н
35	MOTA	438 2HB	ALA	151	-2.775	19.459	25.657	1.00	0.00	Н
•	MOTA	439 3HB	ALA	. 151	-2.608	17.799	25.037	1.00	0.00	. Н
	MOTA	440 N	ASN	152	-1.074	21.419	25.208	1.00	0.00	N
	MOTA	441 CA	ASN	152	-1.299	22.839	25.124	1.00	0.00	С
	ATOM	442 C	ASN	152	-2.555	23.137	25.881	1.00	0.00	C
40	MOTA	443 O	ASN	152	-2.645	24.149	26.571	1.00	0.00	0
	ATOM	444 CB	ASN	152	-1.443	23.453	23.706	1.00	0.00	С
	MOTA	445 CG	ASN	152	-2.843	23.286	23.104	1.00	0.00	· C
	MOTA	446 OD1	ASN	152	-3.517	22.258	23.159	1.00	0.00	0
	ATOM		ASN	152	-3.313	24.403	22.485	1.00	0.00	N
45	ATOM	448 H	ASN	152	-0.786	21.054	26.127	1.00	0.00	H
	ATOM	449 HA	ASN	152	-0.435	23.331	25.571	1.00	0.00	н.
	ATOM	450 1HB	ASN	152	-0.765	23.018	22.971	1.00	0.00	н.
	MOTA	451 2HB	ASN	152	-1.246	24.524	23.672	1.00	0.00	н
		451 2HD2		152	-4.247	24.327	22.052	1.00	0.00	
50	ATOM							1.00		Н
50	ATOM	453 2HD2		152	-2.734	25.254	22.449		0.00	Н
	MOTA	454 N	LYS	153	-3.577	22.269	25.770	1.00	0.00	N
	ATOM	455 CA	LYS	153	-4.751	22.505	26.551	1.00	0.00	С
	MOTA	456 C	LYS	153	-4.348	22.302	27.967	1.00	0.00	С
	ATOM	457 O	LYS	153	-4.538	23.175	28.813	1.00	0.00	Ο.
55	ATOM	458 CB	LYS	153	-5.884	21.508	26.258	1.00	0.00	C
	MOTA	459 CG	LYS	153	-6.668	21.807	24.979	1.00	0.00	C
	ATOM	460 CD	LYS	153	-7.456	23.119	25.040	1.00	0.00	С
	MOTA	461 CE	LYS	153	-8.706	23.049	25.924	1.00	0.00	Ċ
	ATOM	462 NZ	LYS	153	-9.731	22.186	25.293	1.00	0.00	N
60	ATOM	463 H	LYS	153	-3.515	21.456	25.139	1.00	0.00	. н
	MOTA	464 HA	LYS	153	-5.049	23.532	26.341	1.00	0.00	н
•	MOTA	465 1HB	LYS	153	-6.586	21.533	27.090	1.00	0.00	Н
	ATOM	466 2HB	LYS	153	-5.447	20.514	26.154	1.00	0.00	H
	ATOM	467 1HG	LYS	153	-7.404	21.042	24.733	1.00	0.00	н
65	MOTA	468 2HG	LYS	153	-6.037	21.892	24.094	1.00	0.00	н
	ATOM	469 1HD	LYS	153	-7.819	23.459	24.070	1.00	0.00	н
	ATOM	470 2HD	LYS	153	-6.882	23.958	25.433	1.00	0.00	н
	ATOM	470 2HB	LYS	153	-9.125	24.045	26.063	1.00	0.00	н
	NI ON	ALT THE	ניה		·· 3.123	27.073	20.003	1.00	5.00	п

	ATOM	472 2	HE LYS	153	-8.453	22.635	26.900	1.00	0.00	н
	MOTA	473 1		153	-9.372	21.824	24.397	1.00	0.00	Н
	MOTA	474 2	HZ LYS	153	-9.948	21.397	25.918	1.00	0.00	H
	MOTA	475 3	HZ LYS	153	-10.585	22.735	25.123	1.00	0.00	Н
5	MOTA	476	N HIS	154	-3.749	21.128	28.244	1.00	0.00	N
	MOTA		CA HIS	154	-3.330	20.820	29.574	1.00	0.00	С
	MOTA		C HIS	154	-2.229	21.764	29.916	1.00	0.00	С
	MOTA		O HIS	154	-2.313	22.481	30.912	1.00	0.00	0
	MOTA		CB HIS	154	-2.854	19.366	29.707	1.00	0.00	С
10	MOTA		CG HIS	154	-3.979	18.411	29.430	1.00	0.00	· c
	MOTA		ND1 HIS	154	-3.823	17.066	29.176	1.00	0.00	N
	MOTA		CD2 HIS	154	-5.318	18.647	29.367	1.00	0.00	C
	MOTA		CE1 HIS	154	-5.066	16.560	28.973	1.00	0.00	С
1.5	ATOM		NE2 HIS	154	-6.006	17.482	29.079	1.00	0.00	N
15	ATOM		H HIS	154	-3.591	20.445	27.488	1.00	0.00	н
	ATOM		HA HIS HB HIS	154	-4.195	20.957	30.222	1.00	0.00	Н
	ATOM ATOM		HB HIS HB HIS	154 154	-2.483 -2.049	19.171 19.157	30.713	1.00	0.00	H
	ATOM		nb nis HD1 HIS	154	-2.934	16.545	29.001 29.146	1.00	0.00	H H
20	ATOM		HD2 HIS	154	-5.784	19.620	29.522	1.00	0.00	Н
20	ATOM		HE1 HIS	154	-5.265	15.512	28.748	1.00	0.00	Н
	ATOM		HE2 HIS	154	-7.023	17.360	28.971	1.00	0.00	Н
-	ATOM		N PHE	155	-1.165	21.818	29.089	1.00	0.00	N
	ATOM		CA PHE	155	-0.190	22.815	29.405	1.00	0.00	C
25	ATOM		C PHE	155	-0.650	23.984	28.609	1.00	0.00	Ċ
	MOTA	497	O PHE	155	-0.273	24.133	27.448	1.00	0.00	0
	ATOM	498	CB PHE	155	1.245	22.479	28.971	1.00	0.00	С
	ATOM	499	CG · PHE	155	2.127	23.357	29.793	1.00	0.00	C
•	MOTA	500	CD1 PHE	155	2.314	24.682	29.487	1.00	0.00	С
30	ATOM		CD2 PHE	155	2.767	22.844	30.895	1.00	0.00	С
	MOTA		CE1 PHE		3.128	25.474	30.263	1.00	0.00	. C
	MOTA		CE2 PHE		3.583	23.629	31.675	1.00	0.00	. С
	ATOM		CZ PHE		3.767	24.952	31.359	1.00	0.00	С
0.5	MOTA		H PHE	•	-1.061	21.183	28.284	1.00	0.00	н
35	MOTA		HA PHE		-0.175		30.474	1.00	0.00	- H
	ATOM		HB PHE		1.288	22.706	27.905	1.00	0.00	н
	ATOM		HB PHE		1.375	21.418	29.188	1.00	0.00	н
	ATOM ATOM		HD1 PHE HD2 PHE		1.812 2.625	25.111 21.795	28.619 31.155	1.00	0.00	н
40	ATOM		HE1 PHE		3.266	26.524	30.005	1.00	0.00	H H
70	ATOM		HE2 PHE		4.083	23.201	32.543	1.00	0.00	н
	ATOM		HZ PHE		4.413	25.580	31.971	1.00	0.00	н
	ATOM		N MET		-1.446	24.859	29.262	1.00	0.00	n N
	ATOM	515	CA MET		-2.169	25.915	28.617	1.00	0.00	Ċ
45	ATOM		C MET		-1.274	26.681	27.710	1.00	0.00	Ċ
	ATOM		O MET		-1.482	26.694	26.498	1.00	0.00	0
	ATOM		CB MET		-2.778	26.915	29.617	1.00	0.00	С
	MOTA	519	CG MET	156	-3.719	27.936	28.973	1.00	0.00	С
	MOTA	520	SD MET	156	-5.305	27.249	28.409	1.00	0.00	S
50	ATOM		CE MET		-5.925	26.894	30.079	1.00	0.00	C
	MOTA		H MET		-1.538	24.761	30.283	1.00	0.00	H
	MOTA		HA MET		-2.991	25.510	28.027	1.00	0.00	H
	ATOM	524 1			-2.036	27.513	30.146	1.00	0.00	H
	ATOM	525 2			-3.370	26.445	30.402	1.00	0.00	H
55	ATOM	526 1			-3.217	28.362	28.104	1.00	0.00	. Н
	ATOM	527 2			-3.938	28.709	29.708	1.00	0.00	H
	ATOM	528 1			-5.179	27.195	30.815	1.00	0.00	Н
	ATOM	529 2			-6.848 -6.110	27.447	30.249	1.00	0.00	H
60	MOTA MOTA	530 3 531	HE MET N VAL		-6.119 -0.237	25.825 27.331	30.175 28.256	1.00 1.00	0.00 0.00	H
00			CA VAL		0.589	28.078	27.364	1.00	0.00	И
	MOTA MOTA		CA VAL		1.258	27.091	26.474	1.00	0.00	C
	ATOM	534	O VAL		1.390	27.309	25.271	1.00	0.00	0
	ATOM	535	CB VAL		1.637	28.902	28.060	1.00	0.00	c
65	ATOM		CG1 VAL		2.615	27.972	28.791	1.00	0.00	c
	ATOM		CG2 VAL		2.316	29.803	27.016	1.00	0.00	č
	ATOM	538	H VAI		-0.046	27.293	29.267	1.00	0.00	н
	MOTA		HA VAI		-0.071	28.746	26.812	1.00	0.00	Н

					•							
	ATOM	540	HB	VAL	157	1.157	29.565	28.780	1.00	0.00		н
	ATOM		1HG1		157	2.318	26.935	28.632	1.00	0.00		H
			2HG1					28.402	1.00	0.00		H
	ATOM				157	3.621	28.124					
-	ATOM		3HG1		157	2.600	28.194	29.857	1.00	0.00		H
5	MOTA		1HG2		157	1.872	29.622	26.036	1.00	0.00		н
	MOTA		2HG2		157	2.175	30.848	27.291	1.00	0.00		Н
	ATOM	546	3HG2	VAL	157	3.381	29.577	26.979	1.00	0.00		H
	ATOM	547	N	GLY	158	1.682	25.952	27.051	1.00	0.00		N
	ATOM	548	CA	GLY	158	2.374	24.964	26.287	1.00	0.00		С
10	ATOM	549	С	GLY	158	3.693	25.566	25.964	1.00	0.00		С
. •	ATOM	550	Ö	GLY	158	4.422	25.074	25.105	1.00	0.00		ő
	ATOM	551	Н	GLY	158	1.505	25.791	28.053	1.00	0.00		н
	ATOM	552		GLY	158	1.754	24.790	25.407	1.00	0.00		H
	MOTA	553		GLY	158	2.447	24.092	26.938	1.00	0.00		H
15	MOTA	554	N	HIS	159	4.039	26.665	26.659	1.00	0.00		N
	ATOM	555	CA	HIS	159	5.280	27.303	26.363	1.00	0.00		C
	ATOM	556	С	HIS	159	6.185	27.184	27.537	1.00	0.00		С
	ATOM	557	0	HIS	159	6.237	28.065	28.394	1.00	0.00		0
	ATOM	558	СВ	HIS	159	5.130	28.805	26.067	1.00	0.00		C
20	ATOM	559	CG	HIS	159	6.430	29.485	25.748	1.00	0.00		Č
20	ATOM	560		HIS	159	7.012	29.494	24.501	1.00	0.00		N
	ATOM	561		HIS	159	7.268	30.197	26.553	1.00	0.00	-	C
	MOTA	562		HIS	159	8.162	30.205	24.609	1.00	0.00		С
	MOTA	563	NE2	HIS	159	8.361	30.653	25.836	1.00	0.00		N
25	ATOM	564	H	HIS	159	3.418	27.038	27.391	1.00	0.00		н
	ATOM	565	HA	HIS	159	5.735	26.820	25.498	1.00	0.00		H
-	ATOM	566	1HB	HIS	159	4.708	29.371	26.897	1.00	0.00		н
	ATOM	567	2HB	HIS	159	4.481	29.017	25.217	1.00	0.00		H
	ATOM	568		HIS	159	6.644	29.046	23.649	1.00	0.00		H
20		569		HIS	159	7.100	30.381	27.614	1.00	0.00		н
30	ATOM											
	MOTA	570		HIS	159	8.844	30.386	23.778	1.00	0.00		H
	ATOM	571		HIS	159	9.151	31.215	26.181	1.00	0.00		н
	MOTA	572	N	PRO	160	6.878	26.091	27.621	1.00	0.00		N
	MOTA	573	CA	PRO	160	7.881	25.999	28.636	1.00	0.00		С
35	ATOM	574	С	PRO	160	9.130	26.444	27.9 5 7	1.00	0.00		С
	ATOM	575	0	PRO	160	9.143	26.496	26.728	1.00	0.00	•	0
	ATOM	576	CB	PRO	160	7.936	24.532	29.067	1.00	0.00		С
	ATOM	577	CG	PRO	160	7.240	23.770	27.930	1.00	0.00		Č
	ATOM	578	CD	PRO	160	6.260	24.803	27.361	1.00	0.00		Ċ
40			HA		160		26.674	29.417		0.00		
40	ATOM	579		PRO		7.532			1.00		•	н
•	ATOM		1HB	PRO	160	7.395	24.504	30.013	1.00	0.00		Н
	ATOM		2HB	PRO	160	8.999	24.313	29.159	1.00	0.00		H
	MOTA		1HG	PRO	160	6.723	22.887	28.308	1.00	0.00		H
	ATOM		2HG	PRO	160	7.960	23.440	27.181	1.00	0.00		H
45	ATOM	584	1HD	PRO	160	6.156	24.753	26.277	1.00	0.00		H
	ATOM	585	2HD	PRO	160	5.306	24.835	27.888	1.00	0.00		H
	ATOM	586	N	VAL	161	10.179	26.798	28.715	1.00	0.00		N
	ATOM	587	CA	VAL	161	11.414	27.057	28.050	1.00	0.00		C
	ATOM	588	C	VAL	161	12.184	25.811	28.276	1.00	0.00		č
50		589	Ö	VAL	161	12.576	25.516	29.404	1.00	0.00		Ö
50	ATOM											
	MOTA	590	CB	VAL	161	12.211	28.183	28.640	1.00	0.00		C
	ATOM	591		VAL	161	13.571	28.240	27.924	1.00	0.00		С
	MOTA	592	CG2	VAL	161	11.394	29.479	28.519	1.00	0.00		С
	ATOM	593	H	VAL	161	10.095	26.879	29.738	1.00	0.00		H
55	MOTA	594	HA	VAL	161	11.255	27.250	26.989	1.00	0.00		Н
	ATOM	595	HB	VAL	161	12.345	27.987	29.703	1.00	0.00		Н
	ATOM		1HG1		161	13.618	27.453	27.170	1.00	0.00		Н
	ATOM		2HG1		161	13.688	29.211	27.443	1.00	0.00		н
			3HG1		161	14.370	28.095	28.650	1.00	0.00		
60	ATOM											Н
60	ATOM		1HG2		161	10.440	29.264	28.036	1.00	0.00		Н
	MOTA		2HG2		161	11.213	29.889	29.512	1.00	0.00		Н
	MOTA		3HG2	VAL	161	11.947	30.203	27.921	1.00	0.00		Н
	MOTA	602	N	ILE	162	12.401	25.022	27.213	1.00	0.00		N
	MOTA	603	CA	ILE	162	13.098	23.805	27.455	1.00	0.00		С
65	ATOM	604	С	ILE	162	14.534	24.031	27.149	1.00	0.00		Ċ
	ATOM	605	ŏ	ILE	162	14.913	24.289	26.011	1.00	0.00		ŏ
	ATOM	606		ILE	162	12.561	22.641	26.660	1.00	0.00		č
	ATOM	607		ILE	162	13.202	21.326	27.125	1.00	0.00		c
	VION	007	CGT	طلديد	202	13.202	24.320	21,143		5.50		C

	ATOM	608 CG2	ILE	162	12.704	.22.921	25.157	1.00	0.00		С
	MOTA	609 CD1	ILE	162	12.483	20.090	26.587	1.00	0.00		С
	ATOM	610 H	ILE	162	12.079	25.283	26.270	1.00	0.00		Н
	ATOM	611 HA	ILE	162	12.959	23.541	28.503	1.00	0.00		H
5	ATOM	612 HB	ILE	162	11.507	22.485	26.892	1.00	0.00		H
_	ATOM	613 1HG1		162	13.208	21.216	28.209	1.00	0.00		Н
	ATOM	614 2HG1		162	14.240	21.225	26.810	1.00	0.00		н
								1.00	0.00		H
	MOTA	615 1HG2		162	13.162	23.899	25.011				
	MOTA	616 2HG2		162	13.332	22.154	24.702	1.00	0.00		Н
10	ATOM	617 3HG2		162	11.719	22.907	24.689	1.00	0.00		Н
	ATOM	618 1HD1		162	11.641	20.399	25.967	1.00	0.00		H
	MOTA	619 2HD1	ILE	162	13.175	19.498	25.988	1.00	0.00		Н.
	ATOM ·	620 3HD1		162	12.118	19.489	27,420	1.00	0.00		н
	ATOM	621 N	PHE	163	15.381	23.965	28.191	1.00	0.00		N
15	ATOM	622 CA	PHE	163	16.786	24.084	27.985	1.00	0.00		С
13	ATOM	623 C	PHE	163	17.125	22.659	27.726	1.00	0.00		Ċ
									0.00		
	ATOM	. 624 0	PHE	163	17.897	22.033	28.449	1.00			0
	MOTA	625 CB	PHE	163	17.495	24.524	29.276	1.00	0.00		С
	MOTA	626 CG	PHE	163	18.695	25.330	28.926	1.00	0.00		С
20	ATOM ,	627 CD1	PHE	163	19.891	24.765	28.556	1.00	0.00		С
	MOTA	628 CD2	PHE	163	18.592	26.700	28.988	1.00	0.00		С
	ATOM	629 CE1	PHE	163	20.963	25.573	28.249	1.00	0.00		С
	ATOM		PHE	163	19.659	27.508	28.683	1.00	0.00		С
	ATOM	631 CZ	PHE	163	20.852	26.942	28.311	1.00	0.00		С
25	ATOM	632 H	PHE	163	15.012	23.827	29.143	1.00	0.00		Н
23					17.020	24.740	27.146	1.00	0.00		н
	ATOM	633 HA	PHE	163							
	MOTA	634 1HB	PHE	163	17.797	23.640	29.838	1.00	0.00		н
	MOTA	635 2HB	PHE	163	16.810	25.125	29.874	1.00	0.00		H
	ATOM		. PHE	163	19.991	23.680	28.505	1.00	0.00		Н
30	MOTA	637 HD2	PHE	163	17.645	27.152	29.284	1.00	0.00		H
	ATOM	638 HE1	PHE	163	21.910	25.122	27.953	1.00	0.00		H
	ATOM	639 HE2	PHE	163	19.559	28.592	28.736	1.00	0.00		H
	MOTA	640 HZ	PHE	163	21.706	27.573	28.066	1.00	0.00		H
	ATOM	641 N	TYR	164	16.533	22.115	26.649	1.00	0.00		N
35	ATOM	642 CA	TYR	164	_ 16.658	20.723	26.383	1.00	0.00		C
33	ATOM	643 C	TYR	164	18.087	20.449	26.152	1.00	0.00		Ċ
				164	18.573	19.357	26.444	1.00	0.00		ő
	ATOM	644 O	TYR				25.146	1.00	0.00		c
	ATOM	645 CB	TYR	164	15.861	20.235			0.00		
	MOTA	646 CG	TYR	164	16.389	20.821	23.873	1.00			C
40	MOTA	647 CD1		164	17.522		23.271	1.00	0.00	•	С
	ATOM	648 CD2	2 TYR	164	15.731	21.861	23.256	1.00	0.00		С
	ATOM	649 CE1	LTYR	164	18.005	20.845	22.098	1.00	0.00	•	С
	ATOM	650 CE2	2 TYR	164	16.207	22.397	22.081	1.00	0.00		С
	MOTA	651 CZ	TYR	164	17.347	21.893	21.500	1.00	0.00		С
45	ATOM	652 OH	TYR	164	17.836		20.297	1.00	0.00		0
	ATOM	653 H	TYR	164	15.984		26.011	1.00	0.00		н
	ATOM	654 HA	TYR	164	16.284		27.258	1.00	0.00		Н
		655 1HB	TYR	164	14.807		25.206	1.00	0.00		Н
	MOTA				15.901		25.036	1.00	0.00		
50	MOTA	656 2HB	TYR	164							H
50	ATOM		LTYR	164	18.044		23.733	1.00	0.00		H
	ATOM		2 TYR	164	14.822		23.703	1.00	0.00		H
	MOTA	659 HE	l TYR	164	18.907		21.643	1.00	0.00		Н
	MOTA	660 HE2	2 TYR	164	15.677		21.608	1.00	0.00		Н
	MOTA	661 HH	TYR	164	18.333	23.321	20.498	1.00	0.00		H
55	ATOM	662 N	ILE	165	18.824	21.440	25.631	1.00	0.00		N
	MOTA	663 CA	ILE	165	20.121	20.985	25.289	1.00	0.00		С
	ATOM	664 C	ILE	165	21.181			1.00	0.00		C
	ATOM	665 0	ILE	165	21.709		26.027		0.00		Ö
			ILE	165	20.447		23.830	1.00	0.00		Č
60	ATOM	666 CB					23.365	1.00	0.00		
60	ATOM		l ILE	165	21.665						C
	ATOM		2 ILE	165	20.533		23.568	1.00	0.00		C
	ATOM		1 ILE	165	22.997		24.012	1.00	0.00		С
	ATOM	670 H	ILE	165	18.491		25.497	1.00	0.00		Н
	ATOM	671 HA	ILE	165	20.212		25.326	1.00	0.00		н
65	ATOM	672 HB	ILE	165	19.666	20.798	23.203	1.00	0.00		H
	ATOM	673 1HG	1 ILE	165	21.778		22.290	1.00	0.00		H
	ATOM	674 2HG			21.472		23.598	1.00	0.00		Н
	ATOM	675 1HG			20.339		24.494	1.00	0.00		Н
	011	J. J 2									

	ATOM	676	2HG2	ILE	165	21.529	22.992	23,203	1.00	0.00		Н
	ATOM	677			165	19.791	23.024	22.820	1.00	0.00		Н
	MOTA	678			165	22.844	21.592	24.719	1.00	0.00		Н
	ATOM	679	2HD1		165	23.398	19.910	24.537	1.00	0.00		Н
5	ATOM	680	3HD1	ILE	165	23.700	21.092	23.241	1.00	0.00		Н
	MOTA	681	N	MET	166	21.499	20.724	27.236	1.00	0.00		N
	ATOM	682	CA	MET	166	22.695	20.976	27.973	1.00	0.00		С
	MOTA	683	С	MET	166	23.516	19.802	27.587	1.00	0.00		С
	ATOM	684	0	MET	166	23.480	18.760	28.239	1.00	0.00		0
<u>1</u> 0	MOTA	685	CB	MET	166	22.531	20.969	29.497	1.00	0.00		С
	MOTA	686	CG	MET	166	21.894	22.253	30.014	1.00	0.00		C
	ATOM	687	SD	MET	166	22.909	23.743	29.768	1.00	0.00		S
	MOTA	688	CE	MET	166	24.234	23.246	30.907	1.00	0.00		С
	MOTA	689	H	MET	166	20.884	19.940	27.497.	1.00	0.00		H
15	ATOM	690		MET	166	23.152	21.922	27.685	1.00	0.00		Н
	MOTA		1HB	MET	166	23.485	20.865	30.013	1.00	0.00		Н
	MOTA		2HB	MET	166	21.900	20.148	29.840	1.00	0.00		H
	MOTA		1HG	MET	166	21.721	22.142	31.084	1.00	0.00		H
	MOTA		2HG	MET	166	20.951	22.403	29.487	1.00	0.00		Н
20	MOTA		1HE	MET	166	23.997	22.273	31.338	1.00	0.00		Н
	MOTA		2HE	MET	166	25.176	23.182	30.363	1.00	0.00		H
	ATOM	697		MET	166	24.324	23.983	31.704	1.00	0.00		Н
	MOTA	698		VAL	167	24.282	19.947	26.494	1.00	0.00		N
0.5	MOTA	699		VAL	167	24.972	18.801	25.997	1.00	0.00	•	C
25	MOTA	700		VAL	167	26.352	18.808	26.540	1.00	0.00		C
	ATOM	701		VAL	167	26.993	19.851	26.660	1.00	0.00		0
	ATOM	702		VAL	167	25.078	18.751	24.502	1.00	0.00		C
	MOTA	703		VAL	167	26.003	19.894	24.048	1.00	0.00		C
30	MOTA	704		VAL	167	25.571	17.354	24.093	1.00	0.00		С
30	ATOM	705		JAV	167 167	24.369	20.860 17.907	26.026 26.323		0.00		H
	ATOM ATOM	706 707		VAL	167	24.440 24.078	18.875	24.086	1.00	0.00		H H
•	MOTA	707			167	26.348	20.450	24.919	1.00	0.00		Н
	MOTA		2HG1		167	26.861	19.479	23.519	1.00	0.00		Н
35	ATOM		3HG1		167	25.455	20.562	23.383		0.00		Н
55	ATOM		1HG2		167	25.721	16.745	24.984	1.00	0.00	•	Н
	ATOM		2HG2		167	24.828	16.879	23.451	1.00	0.00		Н
	ATOM		3HG2		167	26.513	17.444	23.552	1.00	0.00		Н
	ATOM	714		ASP	168	26.836	17.613	26.917	1.00	0.00		N
40	ATOM	715		ASP	168	28.165	17.525	27.426	1.00	0.00		C
	ATOM	716		ASP	168	29.058	17.306	26.251	1.00	0.00		С
	ATOM	. 717	0	ASP	168	29.868	16.381	26.249	1.00	0.00		0
	MOTA	718	CB	ASP	168	28.387	16.336	28.371	1.00	0.00		С
	MOTA	719	ÇG	ASP	168	29.851	15.945	28.259	1.00	0.00		С
45	MOTA	720	OD1	ASP	168	30.612	16.679	27.573	1.00	0.00		0
	ATOM	721	OD2	ASP	168	30.235	14.914	28.870	1.00	0.00		0
	ATOM	722		ASP	168	26.252	16.767	26.839	1.00	0.00		Н
	ATOM	723		ASP	168	28.369	18.470	27.927	1.00	0.00		Н
	MOTA		1HB	ASP	168	27.728	15.536	28.038	1.00	0.00		H
50	MOTA		2HB	ASP	168	28.136	16.676	29.377	1.00	0.00		Н
	ATOM	726		ASP	169	28.943	18.184	25.234	1.00	0.00		N
	ATOM	727		ASP		29.722	18.092	24.032	1.00	0.00		C
	ATOM	728		ASP	169	29.683	16.694	23.501	1.00	0.00		С
	MOTA	729		ASP	169	30.666	15.958	23.583	1.00	0.00		0
55	ATOM	730		ASP	169	31.194	18.496	24.209	1.00	0.00		C
	ATOM	731		ASP	169	32.052	17.421	23.556		0.00		C
	ATOM	732		ASP	169	32.403	17.591	22.357	1.00	0.00		0
	MOTA MOTA	733		ASP ASP	169 169	32.363	16.413 18.955	24.244 25.323	1.00	0.00		0
60		734							1.00	0.00		H
oo	MOTA	735		ASP		29.323	18.767	23.275	1.00	0.00		Н
	ATOM ATOM		5 1HB 7 2HB	ASP ASP		31.393 31.334	18.562 19.460	25.278 23.722	1.00	0.00		Н
	ATOM	738		VAL		28.531	16.285	22.936	1.00	0.00	•	H
	ATOM	739		VAL		28.426	14.963	22.396	1.00	0.00		N C
65	ATOM	740		VAL		28.652	15.052	20.924	1.00	0.00		С
00	ATOM	741		VAL		28.473	16.106	20.324	1.00	0.00		0
	MOTA	742		VAL		27.084	14.333	22.627	1.00	0.00		c
	MOTA	743		. VAL		27.074	12.924	22.011	1.00	0.00		C
	0	,			_, _					5.00		C

	MOTA	744	CG2	VAL	170	26.794	14.357	24.139	1.00	0.00		С
	ATOM	745	. н .	VAL	170	27.724	16.924	22.892	1.00	0.00		н
	ATOM	746	HA	VAL	170	29.187	14.346	22.873	1.00	0.00		н
	ATOM	747	HB	VAL	170	26.314	14.945	22.157	1.00	0.00		Н
5	ATOM		1HG1		170	28.042	12.719	21.554	1.00	0.00		н
3												
	MOTA		2HG1		170	26.877	12.187	22.790	1.00	0.00		Н
	MOTA		3HG1		170	26.294	12.864	21.251	1.00	0.00		H
	MOTA		1HG2		170	27.629	14.822	24.662	1.00	0.00		H
	ATOM	752	2HG2	VAL	170	25.885	14.928	24.326	1.00	0.00		H
10	MOTA	753	3HG2	VAL	170	26.662	13.337	24.500	1.00	0.00		H
	ATOM	754	N	SER	171	29.090	13.940	20.310	1.00	0.00		N
	ATOM	755	CA	SER	171	29.316	13.919	18.897	1.00	0.00		С
	ATOM	756	С	SER	171	27.985	13.651	18.275	1.00	0.00		C
	ATOM	757	ŏ	SER	171	26.978	13.649	18.980	1.00	0.00		ō
15	ATOM	758	СВ	SER	171	30.306	12.816	18.459	1.00	0.00		č
13	ATOM	759	OG	SER	171	30.577	12.901	17.067	1.00	0.00		o
	ATOM	760	H	SER	171	29.265	13.090	20.864	1.00	0.00		Н
	MOTA	761	HA	SER	171	29.710	14.903	18.644	1.00	0.00		Н -
	MOTA	762		SER	171	29.900	11.825	18.662	1.00	0.00		H
20	MOTA	763	2HB	SER	. 171	31.252	12.908	18.992	1.00	0.00		H
	ATOM	764	HG	SER	171	30.700	13.888	16.800	1.00	0.00		Н
	ATOM	765	N	ARG	172	27.978	13.425	16.942	1.00	0.00		N
	ATOM	766	CA	ARG	172	26.839	13.151	16.103	1.00	0.00		C
	ATOM	767	- C	ARG	172	25.594	13.778	16.650	1.00	0.00		C
25	ATOM	768	0	ARG	172	24.658	13.096	17.058	1.00	0.00		0
	ATOM	769	СВ	ARG	172	26.582	11.647	15.910	1.00	0.00		· c.
	ATOM	770	CG	ARG	172	25.412	11.334	14.976	1.00	0.00	_	Ċ
	ATOM	771	CD	ARG	172	25.168	9.834	14.794	1.00	0.00	•	č
	ATOM	. 772	NE	ARG	172	24.011	9.670	13.869	1.00	0.00		Ŋ
20												
30	ATOM	773	CZ	ARG	172	23.678	8.427	13.414	1.00	0.00		C
	ATOM	774		ARG	172	24.396	7.338	13.815	1.00	0.00		N
	ATOM	775		ARG	172	22.625	8.271	12.560	1.00	0.00		N
	MOTA	776	H	ARG	172	28.893	13.451	16.471	1.00	0.00		н
	MOTA	777	HA	ARG	172	26.985	13.538	15.094	1.00	0.00		H
35	ATOM	778	1HB	ARG	172	26.359	11.208	16.882	1.00	0.00		_ H
	ATOM	779	2HB	ARG	172	27.478	11.196	15.484	1.00	0.00		H
	MOTA	780	1HG	ARG	172	25.546	11.729	13.969	1.00	0.00		H
	MOTA	781	2HG	ARG	172	24.462	11.741	15.323	1.00	0.00		H
	ATOM		1HD	ARG	172	24.949	9.410	15.774	1.00	0.00		· H
40	ATOM		2HD	ARG	172	26.073	9.398	14.371	1.00	0.00		Н
	ATOM	784	HE	ARG	172	23.464	10.491	13.574	1.00	0.00		н
	ATOM		1881		172	25.189	7.453	14.461	1.00	0.00		н
	ATOM		2HH1		172	24.144	6.400	13.471	1.00	0.00		. н
			1HH2		172	22.080	9.091	12.258	1.00	0.00		
45	ATOM											H
45	ATOM	788			172	22.374	7.332	12.217	1.00	0.00		Н
	MOTA	789		MET	173	25.574	15.121	16.643	1.00	0.00		N
	MOTA	790		MET	173	24.514	15.985	17.080	1.00	0.00		C
	MOTA	791		MET	173	23.271	15.956	16.207	1.00	0.00		С
0.	MOTA	792		MET	173	22.220	16.236	16.781	1.00	0.00		0
50	MOTA	793	CB	MET	173	24.965	17.453	17.143	1.00	0.00		С
	ATOM	794	CG	MET	173	26.131	17.692	18.105	1.00	0.00		C
	MOTA	795	SD	MET	173	27.725	17.037	17.523	1.00	0.00		S
	MOTA	796	CE	MET	173	27.899	18.244	16.176	1.00	0.00		C
	ATOM	797		MET	173	26.419	15.585	16.281	1.00	0.00		н
55	ATOM .	798		MET	173	24.217	15.679	18.083	1.00	0.00		Н
55	ATOM		1HB	MET	173	24.180	18.134	17.470	1.00	0.00		H
			2HB	MET	173	25.301	17.845	16.183	1.00	0.00		н
	ATOM					25.898	17.205	19.052				
	ATOM		1HG	MET	173				1.00	0.00		H
60	ATOM		2HG	MET	173	26.245	.18.767	18.244	1.00	0.00		Н
60	ATOM		1HE	MET	173	27.038	18.913	16.173	1.00	0.00		Н
	ATOM		2HE	MET	173	28.809	18.824	16.323	1.00	0.00		Н
	ATOM		3HE	MET	173	27.953	17.719	15.222	1.00	0.00		Н
	MOTA	806		PRO	174	23.232	15.682	14.906	1.00	0.00		N
	MOTA	807	CA	PRO	174	22.027	15.893	14.140	1.00	0.00		C
65	MOTA	808	С	PRO	174	20.773	15.279	14.674	1.00	0.00		С
	MOTA	809		PRO	174	19.710	15.754	14.285	1.00	0.00		0
	ATOM	810		PRO	174	22.314	15.362	12.737	1.00	0.00		c
	MOTA	811		PRO	174	23.324	14.239	12.993	1.00	0.00		Ċ
												•

	•									
	ATOM	812 CD	PRO	174	24.105	14.737	14.215	1.00	0.00	С
				174	21.852				0.00	н
	MOTA		PRO			16.967	14.086	1.00		
	ATOM	814 1HB	PRO	174	22.727	16.142	12.098	1.00	0.00	H
	ATOM	815 2HB	PRO	174	21.404	14.991	12.263	1.00	0.00	H
5	ATOM	816 1HG	PRO	174	23.973	14.092	12.129	1.00	0.00	H
,										
	MOTA	817 2HG	PRO	174	22.817	13.295	13.193	1.00	0.00	Н
	ATOM	818 1HD	PRO	174	24.317	13.937	14.925	1.00	0.00	H
	ATOM	819 2HD	PRO	174	25.000	15.292	13.936	1.00	0.00	Н
	ATOM	820 N	LEU	175	20.820	14.229	15.513	1.00	0.00	N
10	MOTA	821 CA	LEU	175	19.557	13.719	15.967	1.00	0.00	С
	ATOM	822 C	LEU	175	18.856	14.813	16.709	1.00	0.00	С
					17.668				0.00	
	MOTA		LEU	175		15.054	16.501	1.00		0
	MOTA	824 CB	LEU	175	19.682	12.496	16.893	1.00	0.00	С
	MOTA	825 CG	LEU	175	20.153	11.228	16.156	1.00	0.00	C
15	ATOM		1 LEU	175	19.103	10.760	15.135	1.00	0.00	c
15										
	MOTA		2 LEU	175	21.543	11.421	15.532	1.00	0.00	С
	MOTA	828 H	LEU	175	21.713	13.813	15.813	1.00	0.00	H
	MOTA	829 HA	LEU	175	18.983	13.412	15.092	1.00	0.00	Н
	MOTA	830 1HB	LEU	175	18.740	12.226	17.372	1.00	0.00	Н
20	ATOM	831 2HB	LEU	175	20.393	12.646	17.704	1.00	0.00	H
	MOTA	832 HG	LEU	175	20.326	10.410	16.855	1.00	0.00	H
	ATOM	833 1HD		175	18.247	11.435	15.157	1.00	0.00	Н
	MOTA	834 2HD		175	19.540	10.761	14.136	1.00	0.00	H
	ATOM	835 3HD	1 LEU	175	18.775	9.751	15.386	1.00	0.00	H
25	ATOM	836 1HD		175	21.902	12.427	15.747	1.00	0.00	н
23										
	ATOM	837 2HD		175	22.234	10.6 9 1	15.952	1.00	0.00	H
	ATOM	838 3HD	2 LEU	175	21.479	11.281	14.452	1.00	0.00	H
	MOTA	839 и	ILE	176	19.582	15.505	17.603	1.00	0.00	N
	MOTA	840 CA		176	19.021	16.602	18.332	1.00	0.00	С
30	ATOM	841 C	ILE	176	18.856	17.761	17.396	1.00	0.00	С
	ATOM	842 O	LLE	176	17.894	18.522	17.484	1.00	0.00	0
:	ATOM	843 CB		176	19.889	17.028	19.481	1.00	0.00	Ċ
										-
	MOTA		1 ILE	176	19.109	17.948	20.433	1.00	0.00	С
	ATOM	845 CG	2 ILE	176	21.181	17.642	18.914	1.00	0.00	С
35	ATOM	846 CD	1 ILE		19.795	18.154	21.784	1.00	0.00	С
33							_			
	MOTA	847 H	ILE	176	20.563	15.240	17.767	1.00	0.00	Н
	MOTA	848 HA	ILE	176	18.054	16.294	18.730	1.00	0.00	Н
	ATOM	849 HB	ILE	176	20.117	16.149	20.085	1.00	0.00	Н
	ATOM	850 1HG		176	18.111	17.580	20.675	1.00	0.00	Н
40										
40	ATOM	851 2HG	1 ILE	176	18.952	18.952	20.038	1.00	0.00	н
	ATOM	852 1HG	2 ILE	176	21.148	17.616	17.824	1.00	0.00	H
	ATOM	853 2HG		176	. 21.271	18.674	19.250	1.00	0.00	Н
						•				
	ATOM	854 3HG		176	22.040	17.070	19.264	1.00	0.00	Н
	ATOM	855 1HD	1 ILE	176	20.728	17.592	21.807	1.00	0.00	H
45	ATOM	856 2HD	1 ILE	176	20.005	19.213	21.927	1.00	0.00	H
	ATOM	857 3HD		176	19.140	17.803	22.581	1.00	0.00	н
	MOTA	858 N	GTA	177	19.806	17.900	16.455	1.00	0.00	N
	ATOM	859 CA	GLU	177	19.880	19.007	15.542	1.00	0.00	. С
	ATOM	860 C	GLU	177	18.707	19.040	14.608	1.00	0.00	C
50									0.00	
50	MOTA	861 O	GLU	177	18.246	20.115	14.227	1.00		0
	ATOM	862 CE	GLU	177	21.183	18.981	14.714	1.00	0.00	С
	ATOM	863 CG	GLU	17 7	21.468	20.288	13.969	1.00	0.00	С
		864 CD		177	22.934	20.298	13.545	1.00	0.00	c
	ATOM									
	MOTA		1 GLU	177	23.550	19.200	13.498	1.00	0.00	0
55	ATOM	866 OE	2 GLU	177	23.457	21.411	13.266	1.00	0.00	0
	ATOM	867 H	GLU		20.526	17.166	16.384	1.00	0.00	н
	ATOM	868 HA			19.897	19.963	16.064	1.00	0.00	н
	MOTA	869 1HE	GLU	177	21.198	18.211	13.942	1.00	0.00	H
	MOTA	870 2HE	GLU		22.078	18.798	15.308	1.00	0.00	н
60					21.262	21.122	14.639	1.00	0.00	
UU	ATOM	871 1HG								H
	MOTA	872 2HG			20.820	20.338	13.093	1.00	0.00	H
	ATOM	873 N	LEU	178	18.171	17.867	14.229	1.00	0.00	N
	ATOM	874 CA			17.164	17.780	13.210	1.00	0.00	C
									0.00	
	MOTA	875 C	LEU		15.945	18.581	13.544			C
65	MOTA	876 O	LEU	178	15.455	19.334	12.706	1.00	0.00	0
	ATOM	877 CE	LEU	178	16.678	16.342	12.969	1.00	0.00	С
	ATOM	878 CG			17.748	15.383	12.413	1.00	0.00	Ċ
	MOTA	879 CE	1 LEU	178	17.169	13.975	12.197	1.00	0.00	С

	MOTA	880 CD2	LEU	178	18.419	15.956	11.154	1.00	0.00		С
	MOTA	881 H	LEU	178	18.493	17.001	14.685	1.00	0.00		H
	MOTA	882 HA	LEU	178	17.517	18.144	12.245	1.00	0.00		H
	ATOM	883 1HB	LEU	178	15.861	16.375	12.247	1.00	0.00	•	Н -
5	ATOM	884 2HB	LEU	178	16.335	15.934	13.920	1.00	0.00		H
	ATOM	885 HG	LEU	178	18.590	15.296	13.099	1.00	0.00		H
	ATOM	886 1HD1		178	16.118	13.965	12.487	1.00	0.00		H
	MOTA	887 2HD		178	17.257	13.702	11.145	1.00	0.00		H H
10	ATOM		LEU	178	17.720	13.257	12.804 10.923	1.00 1.00	0.00		н
10	ATOM ATOM	889 1HD2 890 2HD2	LEU	178 178	17.987 19.489	16.930 16.065	11.330	1.00	0.00		H
	MOTA		F PEO	178	18.256	15.279	10.315	1.00	0.00		H
	ATOM	892 N	GLY	179	15.415	18.479	14.776	1.00	0.00		N
	ATOM	893 CA	GLY	179	14.154	19.139	14.949	1.00	0.00		C
15	ATOM	894 C	GLY	179	14.199	20.110	16.075	1.00	0.00		Ċ
	MOTA	895 O	GLY	179	13.695	21.225	15.954	1.00	0.00		0
	ATOM	896 н	GLY	179	15.880	17.965	15.538	1.00	0.00		н
	MOTA	897 1HA	GLY	179	13.357	18.426	15.163	1.00	0.00		н
	ATOM	898 2HA	GLY	179	13.866	19.690	14.053	1.00	0.00		H
20	MOTA	899 ท	PRO	180	14.773	19.733	17.174	1.00	0.00		N
	MOTA	900 CA	PRO	180	14.743	20.627	18.289	1.00	0.00		С
	MOTA	901 C	PRO	180	15.493	21.892	18.046	1.00	0.00		С
	MOTA	902 O	PRO	180	15.199	22.883	18.711	1.00	0.00		0
	MOTA	903 CB	PRO	180	15.172	19.808	19.511	1.00	0.00		C
25	ATOM	904 CG	PRO	180	15.490	18.403	18.955	1.00	0.00	•	C
	ATOM	905 CD	PRO	180	14.745	18.351	17.613	1.00	0.00		C
	ATOM	906 HA	PRO	180	13.734	20.933	18.565	1.00	0.00		H
	MOTA	907 1HB 908 2HB	PRO	180	14.310	19.829 20.329	20.178 19.905	1.00 1.00	0.00		H H
30	ATOM ATOM	909 1HG	PRO PRO	180 180	16.044 15.098	17.721	19.709	1.00	0.00		H
30	ATOM	910 2HG	PRO	180	16.576	18.390	18.863	1.00	0.00		H
	MOTA	911 1HD	PRO	180	15.243	17.700	16.894	1.00	0.00		H
	ATOM	912 2HD	PRO	180	13.721	17.995	17.728	1.00	0.00		Н
	ATOM	913 N	LEU	181	16.467	21.893	17.121	1.00	0.00		N
35 .	ATOM	914 CA	LEU	181	17.165	23.111	16.833	1.00	0.00	_	С
	ATOM	915 C	LEU	181	16.199	24.075	16.231	1.00	0.00	_	С
	MOTA	916 O	LEU	181	16.226	25.266	16.537	1.00	0.00		- 0
	ATOM	917 CB		181	18.337	22.920	15.859	1.00	0.00		С
	MOTA	918 CG		181	19.575	22.321	16.546	1.00	0.00		С
40	ATOM		1 LEU	181	20.341	23.397	17.335	1.00	0.00		C
	ATOM		2 LEU	181	19.181	21.138	17.444	1.00	0.00		C
	ATOM	921 H	LEU	181	16.710	21.025 23.504	16.622 17.766	1.00	0.00		H
	ATOM	922 HA 923 1HB	LEU LEU	181 181	17.567 18.657	23.859	15.408	1.00	0.00		H H
45	MOTA MOTA	923 INB 924 2HB		181	18.086	22.251	15.035	1.00	0.00		Н
40	ATOM	925 HG		181	20.258	21.891	15.813	1.00	0.00		H
	ATOM	926 1HD		181	19.832	24.355	17.231	1.00	0.00		Н
	ATOM	927 2HD		181	20.379	23.118	18.388	1.00	0.00		H
	ATOM	928 3HD		181	21.355	23.481	16.945	1.00	0.00		Н
50	MOTA	929 1HD	2 LEU	181	18.102	20.986	17.393	1.00	0.00		H
	MOTA	930 2HD	2 LEU	181	19.690	20.236	17.103	1.00	0.00		H
	MOTA	931 3HD		181	19.469	21.350	18.473	1.00	0.00		H
	ATOM	932 N	ARG	182	15.300	23.579	15.363	1.00	0.00		N
	MOTA	933 CA		182	14.348	24.458	14.756	1.00	0.00		С
55	ATOM	934 C	ARG	182	13.540	25.045	15.861	1.00	0.00		С
	ATOM	935 0	ARG	182	13.199	26.227	15.836	1.00	0.00		0
	ATOM	936 CB		182	13.385	23.745	13.789	1.00	0.00		C
	ATOM	937 CG		182	12.366	24.688	13.144	1.00	0.00		C
60	MOTA	938 CD 939 NE		182 182	11.503 12.360	24.028 23.836	12.065 10.860	1.00	0.00		С И
JU	ATOM ATOM	939 NE 940 CZ		182	11.960	23.000	9.857	1.00	0.00		C
	ATOM		1 ARG	182	10.785	22.314	9.967	1.00	0.00		N
	MOTA		2 ARG	182	12.736	22.850	8.745	1.00	0.00		N
	MOTA	943 H	ARG	182	15.296	22.574	15.136	1.00	0.00		н
65	ATOM	944 HA		182	14.918		14.218	1.00	0.00		Н
	MOTA	945 1HB		182	12.793	22.963	14.267	1.00	0.00		Н
	ATOM	946 2HB			13.892	23.255	12.957	1.00	0.00		H
	MOTA	947 1HG	ARG	182	12.906	25.512	12.679	1.00	0.00		н

	ATOM	948 2HG	ARG	182	11.699	25.058	13.922	1.00	0.00	Н
٠	MOTA	949 1HD	ARG	182	10.669	24.698	11.856	1.00	0.00	Н
	ATOM	950 2HD	ARG	182	11.155	23.073	12.461	1.00	0.00	н
	ATOM	951 HE	ARG	182	13.257	24.335	10.783	1.00	0.00	Н
5	ATOM	952 1HH1		182	10.199	22.426	10.806	1.00	0.00	Н
	ATOM	953 2HH1		182	10.483	21.683	9.210	1.00	0.00	н
	MOTA	954 1HH2		182	13.622	23.367	8.662	1.00	0.00	Н
	ATOM	955 2HH2		182	12.435	22.219	7.988	1.00	0.00	H
	ATOM	956 N	SER	183	13.226	24.222	16.878	1.00	0.00	N
10	ATOM	957 CA	SER	183	12.450	24.713	17.975	1.00	0.00	C
	ATOM	958 C	SER	183	13.184	25.875	18.559	1.00	0.00	C
	MOTA	959 O	SER	183	14.397	25.840	18.757	1.00	0.00	0
	ATOM	960 CB	SER	183	12.239	23.679	19.093	1.00	0.00	C
1.5	ATOM	961 OG	SER	183	11.487	22.579	18.603	1.00	0.00	0
15	MOTA	962 H	SER	183	13.543	23.242	16.866	1.00	0.00	H
	ATOM	963 HA 964 1HB	SER	183 183	11.479	25.013 24.132	17.580 19.924	1.00 1.00	0.00	H H
	ATOM ATOM	965 2HB	SER SER	183	11.699 13.201	23.316	19.452	1.00	0.00	Н
	ATOM	966 HG	SER	183	10.552	22.902	18.314	1.00	0.00	H
20	ATOM	967 N	PHE	184	12.430	26.948	18.842	1.00	0.00	N
20	ATOM	968 CA	PHE	184	12.934	28.161	19.411	1.00	0.00	c
	ATOM	969 C	PHE	184	13.337	27.865	20.818	1.00	0.00	Č
	ATOM	970 O	PHE	184	14.090	28.618	21.433	1.00	0.00	ō
	ATOM	971 CB	PHE	184	11.890	29.294	19.429	1.00	0.00	Č
25	ATOM	972 CG	PHE	184	10.758	28.871	20.300	1.00	0.00	Ċ
	ATOM		PHE	184	10.795	29.107	21.654	1.00	0.00	C
	ATOM		PHE	184	9.659	28.240	19.763	1.00	0.00	C
	ATOM	975 CE3	L PHE	184	9.754	28.719	22.463	1.00	0.00	С
	MOTA	976 CE2	2 PHE	184	8.614	27.849	20.567	1.00	0.00	С
30	ATOM	977 CZ	PHE	184	8.660	28.088	21.920	1.00	0.00	С
	MOTA	978 H	PHE	184	. 11.422	26.895	18.636	1.00	0.00	H
	MOTA	979 HA	PHE	184	13.788	28.475	18.811	1.00	0.00	Н
	MOTA	980 1HB	PHE	184	11.548	29.459	18.407	1.00	0.00	H
	ATOM	981 2HB	PHE	184	12.366	30.190	19.825	1.00	0.00	н
35	MOTA	•	L PHE	184	11.659	29.607	22.090	1.00	0.00	H
	ATOM		2 PHE	184	9.616	28.048	18.690	1.00	0.00	H
	MOTA		l PHE	184	9.795	28.911	23.535	1.00	0.00	Н
	ATOM		2 PHE		7.748	27.349	20.131	1.00	0.00	Н
40	ATOM	986 HZ	PHE	184	7.833	27.778	22.559 21.350	1.00	0.00	Н
40	ATOM ATOM	987 N 988 CA	LYS LYS	185 185	12.840 12.976	26.733 26.395	22.738	1.00 1.00	0.00	N C
	ATOM	989 C	LYS		14.390	26.554	23.216	1.00	0.00	C
	ATOM	990 O	LYS		14.618	27.336	24.138	1.00	0.00	o
	ATOM	991 CB	LYS		12.595	24.932	23.006	1.00	0.00	c
45	ATOM	992 CG	LYS		11.125	24.603	22.741	1.00	0.00	č
	ATOM	993 CD	LYS		10.152	25.346	23.658	1.00	0.00	č
	ATOM	994 CE	LYS		8.684	25.009	23.392	1.00	0.00	Č
	ATOM	995 NZ	LYS		7.824	25.699	24.378	1.00	0.00	N
	ATOM	996 H	LYS		12.338	26.078	20.732	1.00	0.00	Н
50	ATOM	997 HA	LYS	185	12.352	27.025	23.372	1.00	0.00	Н
	ATOM	998 1HB	LYS	185	12.798	24.712	24.054	1.00	0.00	Н
	ATOM	999 2HB	LYS	185	13.197	24.297	22.356	1.00	0.00	Н
	ATOM	1000 1HG	LYS		10.880	23.548	22.870	1.00	0.00	Н
	ATOM	1001 2HG	LYS		10.796	24.844	21.730	1.00	0.00	Н
55	MOTA	1002 1HD	LYS		10.214	26.430	23.571	1.00	0.00	H
	ATOM	1003 2HD			10.304	25.135	24.716	1.00	0.00	H
	ATOM	1004 1HE	LYS		8.530	23.933	23.475	1.00	0.00	Н
	ATOM	1005 2HE	LYS		8,406	25.331	22.388	1.00	0.00	Н
CO	ATOM	1006 1HZ	LYS		8.411	26.250	25.020	1.00	0.00	Н
60	ATOM	1007 2HZ	LYS		7.171	26.326	23.886	1.00	0.00	н
	MOTA	1008 3HZ	LYS		7.289	25.001	24.915	1.00	0.00	Н
	ATOM	1009 N	VAL		15.396	25.856	22.641 23.228	1.00 1.00	0.00	N
	ATOM ATOM	1010 CA 1011 C	VAL VAL		16.684 17.800	26.128 25.513	22.438	1.00	0.00	C C
65	ATOM	1011 0	VAL		17.576	24.723	21.522	1.00	0.00	o
00	ATOM	1012 CB			16.866	25.589	24.611	1.00	0.00	c
	MOTA		1 VAL		17.191	24.091	24.500	1.00	0.00	c
	ATOM		2 VAL		17.939	26.411	25.342	1.00	0.00	c
						_	_			_

		•											
	MOTA	1016	н	VAL	186	15.255	25.196	21.862	1.00	0.00		H	1
	MOTA	1017	HA	VAL	186	16.887	27.197	23.285	1.00	0.00		H	
	ATOM	1018											
			HB	VAL	186	15.937	25.744	25.159	1.00	0.00		H	
	MOTA		lHGl		186	17.207	23.799	23.450	1.00	0.00		F	1
5	MOTA	1020	2HG1	VAL	186	18.166	23.896	24.945	1.00	0.00		H	1
	ATOM	1021	3HG1	VAL	186	16.430	23.513	25.025	1.00	0.00		F	Ŧ
	ATOM		1HG2		186	18.313	27.191	24.679	1.00	0.00		F	
,													
	MOTA		2HG2		186	17.504	26.867	26.231	1.00	0.00		F	
	MOTA	1024	3HG2	VAL	186	18.761	25.758	25.633	1.00	0.00		F	1
10	MOTA	1025	N	PHE	187	19.048	25.904	22.793	1.00	0.00		N	V
	MOTA	1026	CA	PHE	187	20.262	25.391	22.216	1.00	0.00		C	7
	ATOM	1027	C	PHE	187	21.286	26.460	22.477	1.00	0.00	•	Č	
	MOTA	1028	0	PHE	187	21.009	27.384	23.239	1.00	0.00		C	
	MOTA	1029	CB	PHE	187	20.152	25.175	20.689	1.00	0.00		(2
15	MOTA	1030	CG	PHE	187	21.285	24.332	20.203	1.00	0.00			2
	MOTA	1031	CD1	PHE	187	21.291	22.977	20.443	1.00	0.00			
	ATOM	1032	CD2		187	22.322		19.478	1.00	0.00		ò	
							24.87.7						
	MOTA	1033	CE1		187	22.324	22.185	19.996	1.00	0.00		C	
	MOTA	1034	CE2	PHE	187	23.357	24.091	19.029	1.00	0.00			2
20	ATOM	1035	CZ	PHE	187	23.362	22.742	19.291	1.00	0.00		(2
	MOTA	1036	H	PHE	187	19.133	26.619	23.528	1.00	0.00			H
	ATOM	1037	HA	PHE	187	20.448		22.752					
							24.460		1.00	0.00		F	
	MOTA	1038		PHE	187	20.181	26.132	20.169	1.00	0.00		F	H
	MOTA	1039	2HB	PHE	187	19.215	24.674	20.445	1.00	0.00		F	H
25	MOTA	1040	HD1	PHE	187	20.466	22.524	20.994	1.00	0.00		F	H
	ATOM	1041	HD2		187	22.322	25.944	19.257	1.00	0.00			H
	MOTA	1042		PHE	187	22.318	21.114	20.201	1.00	0.00			H
	MOTA	1043	HE2	PHE	187	24.174	24.538	18.464	1.00	0.00		F	H
	ATOM	1044	HZ	PHE	187	24.184	22.118	18.941	1.00	0.00			H
30	ATOM	1045	N	LYS	188	22.500	26.319	21.890	1.00	0.00			Ŋ
•	ATOM	1046	CA	LYS	188	23.583	27.276	21.893	1.00	0.00			C
	ATOM	1047	С	LYS	188	24.870	26.565	22.163	1.00	0.00			C
	MOTA	1048	0	LYS	188	24.885	25.410	22.586	1.00	0.00		(0
	ATOM	1049	CB	LYS	188	23.496	28.450	22.890	1.00	0.00		(С
35	ATOM	1050	CG	LYS	188	22.508	29.554	22.501	1.00	0.00			Ξ
-	ATOM	1051	CD	LYS	188	22.239	30.545	23.634	1.00	0.00			C
	ATOM	1052	CE	LYS	188	21.535	29.916	24.838	1.00	0.00			С
	MOTA	1053	NZ	LYS	188	21.318	30.934	25.890	1.00	0.00		1	N
	ATOM	1054	H	LYS	188	22.668	25.435	21.388	1.00	0.00		3	H
40	MOTA	1055	HA	LYS	188	23.632	27.767	20.921	1.00	0.00			H
	ATOM	1056		LYS	188	24.483	28.906	22.964	1.00	0.00			
													H
	MOTA	1057		LYS	188	23.179	28.053	23.854	1.00	0.00		F	H
	ATOM	1058	1HG	LYS	188	21.530	29.169	22.209	1.00	0.00		F	H
	ATOM	1059	2HG	LYS	188	22.849	30.156	21.659	1.00	0.00		F	H
45	ATOM	1060		LYS	188	21.606	31.381	23.337	1.00	0.00			H
-13													
	ATOM	1061		LYS	188	23.144	30.999	24.036	1.00	0.00			H
	MOTA	1062		LYS	188	22.142	29.110	25.249	1.00	0.00		ŀ	H
	ATOM	1063	2HE	LYS	188	20.569	29.509	24.537	1.00	0.00	-	1	H
	MOTA	1064	1HZ	LYS	188	21.691	31.840	25.573	1.00	0.00		ī	H
50	ATOM	1065		LYS	188	20.309	31.025	26.077	1.00	0.00			H
50													
	MOTA	1066		LYS	188	21.802	30.646	26.752	1.00	0.00			H
	ATOM	1067	N	ILE	189	25.996	27.260	21.897	1.00	0.00		1	N
	MOTA	1068	CA	ILE	189	27.304	26.713	22.113	1.00	0.00		(С
	MOTA	1069	С	ILE	189	27.526	26.621	23.583	1.00	0.00			C
55	ATOM	1070	ŏ	ILE	189	28.132	25.670	24.075	1.00				
55										0.00			0
	MOTA	1071	CB	ILE	189	28.414	27.572	21.575	1.00	0.00		(С
	MOTA	1072	CG1	ILE	189	28.312	27.716	20.048	1.00	0.00	_	(С
	MOTA	1073	CG2	ILE	189	29.747	26.968	22.052	1.00	0.00	•		С
	ATOM	1074		ILE	189	29.257	28.773	19.478	1.00	0.00			C
4 0													
60	MOTA	1075	Н .	ILE	189	25.912	28.217	21.525	1.00	0.00			H
	MOTA	1076	HA	ILE	189	27.335	25.726	21.651	1.00	0.00		F	H
	MOTA	1077	HB	ILE	189	28.274	28.578	21.968	1.00	0.00			H
	MOTA		1HG1		189	27.316	28.002	19.708	1.00	0.00			H
	ATOM		2HG1		189	28.547	26.796	19.512	1.00	0.00			
65													H
65	MOTA		1HG2		189	29.549	26.080	22.652	1.00	0.00			H
	MOTA		2HG2		189	30.352	26.694	21.187	1.00	0.00		F	H
	MOTA	1082	3HG2	ILE	189	30.284	27.701	22.653	1.00	0.00			H
	MOTA		1HD1		189	29.828	29.224	20.288	1.00	0.00			H
		_000				20	~~ . ~ 6 3	23.200	50	50		r	••

	ATOM	1084 2HD1	TLE	189	29.940	28.305	18.768	1.00	0.00		Н
	ATOM	1085 3HD1		189	28.677	29.543	18.969	1.00	0.00		Н
								1.00	0.00		N
	MOTA	1086 N	LYS	190	27.035	27.629	24.324				
	MOTA	1087 CA	LYS	190	27.213	27.664	25.745	1.00	0.00		С
5	ATOM	1088 C	LYS	190	26.543	26.467	26.343	1.00	0.00		С
	ATOM	1089 O	LYS	190	27.070	25.870	27.280	1.00	0.00		0
	ATOM	1090 CB	LYS	190	26.635	28.933	26.394	1.00	0.00		С
	ATOM	1091 CG	LYS	190	26.988	29.068	27.877	1.00	0.00		С
	ATOM	1092 CD	LYS	190	26.785	30.479	28.432	1.00	0.00		Ċ
10									0.00		Č
10	ATOM	1093 CE	LYS	190	27.971	31.413	28.171	1.00			
	MOTA	1094 NZ	LYS	190	28.057	31.738	26.730	1.00	0.00		N
	MOTA	1095 H	LYS	190	26.520	28.391	23.860	1.00	0.00		H
	ATOM	1096 HA	LYS	190	28.280	27.646	25.964	1.00	0.00		H
	MOTA	1097 1HB	LYS	190	25.547	28.982	26.349	1.00	0.00		Н
15	ATOM	1098 2HB	LYS	190	26.986	29.853	25.927	1.00	0.00		Н
15	ATOM	1099 1HG	LYS	190	28.025	28.823	28.104	1.00	0.00		Н
		1100 2HG		190	26.398	28.423	28.528	1.00	0.00		H
	ATOM		LYS								
	ATOM	1101 1HD	LYS	190	26.633	30.502	29.511	1.00	0.00		Н
	MOTA	1102 2HD	LYS	190	25.919	30.990	28.010	1.00	0.00		Н
20	ATOM	1103 1HE	LYS	190	28.900	30.934	28.478	1.00	0.00		H
	MOTA	1104 2HE	LYS	190	27.850	32.339	28.732	1.00	0.00		Н
	ATOM	1105 1HZ	LYS	190	27.297	31.261	26.224	1.00	0.00		H
	ATOM	1106 2HZ	LYS	190	27.968	32.756	26.601	1.00	0.00		Н
	ATOM	1107 3HZ	LYS	190	28.965	31.423	26.360	1.00	0.00		Н
25	_										
25	ATOM	1108 N	PRO	191	25.406	26.078	25.838	1.00	0.00		N
	ATOM	1109 CA	PRO	191	24.785	24.909	26.381	1.00	0.00		С
	ATOM	1110 C	PRO	191	25.649	23.721	26.128	1.00	0.00		С
	MOTA	1111 0	PRO	191	25.410	22.675	26.728	1.00	0.00		0
	ATOM -	1112 - CB-	PRO	191	23.391	24.869	25.766	1.00	0.00		С
30	ATOM	1113 CG	PRO	191	23.050	26.360	25.589	1.00	0.00		С
-	ATOM	1114 CD	PRO	191	24.413	27.047	25.405	1.00	0.00		С
	ATOM	1115 HA	PRO	191	24.647	25.033	27.455	1.00	0.00		Н
						24.364	26.425	1.00	0.00		Н
	ATOM	1116 1HB	PRO	191	22.684					•	
	MOTA	1117 2HB	PRO	191	23.396	24.336	24.815	1.00	0.00		H
35	MOTA	1118 1HG	PRO	· 191	22.537	26.633	26.511-	1.00	0.00		Н
	MOTA	1119 2HG	PRO	191	22.415	26.391	24.703	1.00	0.00		H
	MOTA	1120 1HD	PRO	191	24.642	27.260	24.361	1.00	0.00		H
	ATOM	1121 2HD	PRO	191	24.541	27.913	26.053	1.00	0.00		H
	ATOM	1122 N	GLU	192	26.651	23.854	25.242	1.00	0.00		N
40	ATOM	1123 CA	GLU	192	27.569	22.774	25.046	1.00	0.00		C
40							25.928	1.00	0.00		c
	ATOM	1124 C	GLU	192	28.727	23.091					
	ATOM	1125 0	GLU	192	29.185	24.232	25.968	1.00	0.00		0
	MOTA	1126 CB	GLU	192	28.119	22.653	23.615	1.00	0.00		C
	MOTA	1127 CG	GLU	192	27.073	22.223	22.586	1.00	0.00		С
45	ATOM	1128 CD	GŁU	192	27.796	21.960	21.272	1.00	0.00		С
	MOTA		GLU	192	28.458	22.898	20.753	1.00	0.00		0
	ATOM		GLU	192	27.705	20.807	20.772	1.00	0.00		0
	ATOM	1131 H	GLU	192	26.757	24.728	24.707	1.00	0.00	•	Н
				192	27.020		25.348	1.00	0.00		
CO	ATOM	1132 HA	GLU			21.881					H
50	MOTA	1133 1HB	GLU	192	28.924	21.926	23.513	1.00	0.00		Н
	MOTA	1134 2HB	GLU	192	28.530	23.582	23.221	1.00	0.00		Н
	ATOM	1135 1HG	GLU	192	26.354	23.036	22.483	1.00	0.00		Н
	ATOM	1136 2HG	GLU	192	26.593	21.318	22.958	1.00	0.00		Н
	ATOM	1137 N	LYS	193	29.226	22.090	26.676	1.00	0.00		N
55	MOTA	1138 CA	LYS	193	30.300	22.366	27.583	1.00	0.00		С
	ATOM	1139 C	LYS	193	31.517	22.676	26.770	1.00	0.00		Ċ
				193	32.251	21.775	26.365	1.00	0.00		
	ATOM	1140 O	LYS								0
	MOTA	1141 CB	LYS	193	30.616	21.189	28.517	1.00	0.00		C
	MOTA	1142 CG	LYS	193	29.422	20.775	29.380	1.00	0.00		С
60	ATOM	1143 CD	LYS	193	28.864	21.913	30.235	1.00	0.00		С
	ATOM	1144 CE	LYS	193	28.068	22.942	29.429	1.00	0.00		С
	ATOM	1145 NZ	LYS	193	27.558	24.004	30.323	1.00	0.00		N
	ATOM	1146 H	LYS	193	28.840	21.137	26.597	1.00	0.00		Н
	ATOM	1147 HA	LYS	193	30.008	23.220	28.194	1.00	0.00		H
65							29.214		0.00		
65	ATOM	1148 1HB	LYS	193	31.425	21.405		1.00			Н
	ATOM	1149 2HB	LYS	193	30.919	20.290	27.980	1.00	0.00		H
	ATOM	1150 1HG	LYS	193	29.651	19.975	30.084	1.00	0.00		Н
	MOTA	1151 2HG	LYS	193	28.573	20.410	28.801	1.00	0.00		H

	ATOM	1152	1HD	LYS	193.	29.636	22.484	30.750	1.00	0.00			Н
	ATOM	1153		LYS	193	28.186	21.572	31.017	1.00	0.00			Н
	ATOM	1154		LYS	193	27.222	22.460	28.937	1.00	0.00			Н
	ATOM	1155		LYS	193	28.704	23.396	28.669	1.00	0.00			Н
5	ATOM	1156		LYS	193	27.854	23.811	31.290	1.00	0.00			Н
•	ATOM	1157		LYS	193	27.934	24.915	30.024	1.00	0.00			Н
	ATOM	1158	3HZ	LYS	193	26.529	24.026	30.277	1.00	0.00			Н
	ATOM	1159	N	ARG	194	31.741	23.979	26.494	1.00	0.00			N
	ATOM	1160	CA	ARG	194	32.867	24.397	25.713	1.00	0.00			C
10	ATOM	1161	C	ARG	194	34.107	24.240	26.526	1.00	0.00			C
10	ATOM	1162	o	ARG	194				1.00	0.00			
	ATOM	1163	CB	ARG	194	35.099	23.690 25.871	26.051 25.273	1.00	0.00			0 C
	ATOM	1164	CG			32.793				0.00			0
				ARG	194	32.765	26.874	26.429	1.00				C.
15	MOTA	1165 1166	CD	ARG	194	32.708	28.332	25.962	1.00	0.00			C
13	ATOM		NE	ARG	194	32.685	29.199	27.173	1.00	0.00			И
	ATOM	1167	CZ	ARG	194	32.910	30.540	27.058	1.00	0.00			С
	ATOM	1168	NH1		194	33.179	31.085	25.836	1.00	0.00			N
	ATOM	1169	NH2		194	32.863	31.338	28.165	1.00	0.00			N
20	ATOM	1170	H	ARG	194	31.086	24.688	26.853	1.00	0.00			Н
20	ATOM	1171	HA	ARG	194	32.928	23.777	24.818	1.00	0.00			Н
	ATOM	1172		ARG	194	31.880	26.009	24.693	1.00	0.00			Н
	ATOM	1173		ARG	194	33.671	26.091	24.665	1.00	0.00			Н
	ATOM	1174		ARG	194	33.640	26.809	27.075	1.00	0.00			Н
٠.	ATOM	1175		ARG	194	31.906	26.745	27.088	1.00	0.00	•		H
25	ATOM	1176		ARG	194	31.799	28.459	25.372	1.00	0.00			H
	MOTA	1177		ARG	194	33.595	28.525	25.359	1.00	0.00			H
	ATOM	1178	HE	ARG	194	32.499	28.785	28.098	1.00	0.00			H
	MOTA		1HH1		194	33.212	30.484	25.000	1.00	0.00			H
	MOTA		2HH1		194	33.348	32.097	25.749	1.00	0.00			Н
30	ATOM		1HH2		194	32.657	30.927	29.087	1.00	0.00			Н
	ATOM.		2HH2		194	33.033	32.350	28.077	1.00	0.00	•		H
•	ATOM	1183	N	TRP	195	34.072	24.705	27.790	1.00	0.00			N
	ATOM	1184	CA	TRP	195	35.243	24.637	28.613	1.00	0.00			С
25	ATOM	1185	С	TRP	195	35.661	23.212	28.692	1.00	0.00			С
35	· ATOM	1186	0	TRP	195	_36.778	22.858	28.320	1.00	0.00		-	0
	ATOM	1187	CB	TRP	195	34.987	25.126	30.050	1.00	0.00			С
	ATOM	1188	CG	TRP	195	36.189	25.050	30.963	1.00	0.00			С
	ATOM	1189		TRP	195	37.206	25.941	31.148	1.00	0.00			С
	MOTA	1190		TRP	195	36.447	23.951	31.849	1.00	0.00			С
40	MOTA	1191		TRP	195	38.082	25.461	32.093	1.00	0.00			N
	ATOM	1192		TRP	195	37.626	24.236	32.535	1.00	0.00			С
	ATOM	1193		TRP	195	35.753	22.796	32.075	1.00	0.00			С
	MOTA	1194		TRP	195	38.133	23.369	33.460	1.00	0.00			С
4.5	MOTA	1195		TRP	195	36.266	21.921	33.007	1.00	0.00			С
45	ATOM	1196		TRP	195	37.433	22.203	33.686	1.00	0.00			С
	MOTA	1197	н -	TRP	195	33.202	25.109	28.165	1.00	0.00			H
	MOTA	1198	HA	TRP	195	36.015	25.246	28.144	1.00	0.00			Н
	ATOM	1199		TRP	195	34.202	24.507	30.486	1.00	0.00			H
50	ATOM	1200		TRP	195	34.673	26.169	30.004	1.00	0.00			H
50 .	ATOM	1201		TRP	195	37.308	26.891	30.624	1.00	0.00			Н
	ATOM	1202		TRP	195	38.936	25.936	32.416	1.00	0.00			Н
	MOTA	1203		TRP	195	34.829	22.575	31.539	1.00	0.00			H
	ATOM	1204		TRP	195	39.054	23.590	33.998	1.00	0.00			H
	ATOM	1205		TRP	195	35.740	20.988	33.211	1.00	0.00			H
55	ATOM	1206		TRP	195	37.810	21.488	34.417	1.00	0.00			H
	ATOM	1207	N	GLN	196	34.753	22.348	29.172	1.00	0.00			И
	MOTA	1208	CA	GLN	196	35.083	20.963	29.256	1.00	0.00			С
	MOTA	1209	С	GLN	196	34.251	20.260	28.238	1.00	0.00			С
60	MOTA	1210	Ο.	GLN	196	33.074	19.982	28.453	1.00	0.00			0
60	MOTA	1211	CB	GLN	196	34.819	20.372	30.657	1.00	0.00			С
	MOTA	1212	CG	GLN	196	33.366	20.482	31.127	1.00	0.00	•		С
	MOTA	1213	CD	GLN	196	33.276	19.909	32.534	1.00	0.00			С
	ATOM	1214		GLN	196	33.699	18.784	32.794	1.00	0.00			0
~ ~	MOTA	1215		GLN	196	32.713	20.713	33.475	1.00	0.00			N
65	MOTA	1216	H	GLN	196	33.827	22.681	29.476	1.00	0.00			Н
	MOTA	1217	HA	GLN	196	36.148	20.879	29.041	1.00	0.00			Н
	ATOM	1218		GLN	196	35.439	20.906	31.375	1.00	0.00			Н
	MOTA	1219	2HB	GLN	196	35.079	19.313	30.636	1.00	0.00			Н

	ATOM	1220	1HG	GLN	196	32.741	19.912	30.438	1.00	0.00		Н
	MOTA	1221	2HG	GLN	196	33.084	21.535	31.121	1.00	0.00		H
	MOTA	1222	1HE2	GLN	196	32.628	20.385	34.448	1.00	0.00		Н
	ATOM	1223	2HE2	GLN	196	32.371	21.649	33.214	1.00	0.00		H
5	MOTA	1224	N	ASP	197	34.851	19.958	27.074	1.00	0.00		N
	MOTA	1225	CA	ASP	197	34.088	19.298	26.062	1.00	0.00		С
	ATOM	1226	С	ASP	197	33.661	17.997	26.650	1.00	0.00		С
	MOTA	1227	0	ASP	197	32.490	17.632	26.567	1.00	0.00		0
	MOTA	1228	CB	ASP	197	34.906	19.015	24.791	1.00	0.00		С
10	ATOM	1229	CG	ASP	197		_20.352	24.123	1.00	0.00		С
	MOTA	1230	QD1		197	34.612	21.375	24.562	1.00	0.00		0
	MOTA	1231	OD2	ASP	197	36.027	20.370	23.170	1.00	0.00		0
	MOTA	1232	H	ASP	197	35.840	20.197	26.914	1.00	0.00		Н
	MOTA	1233	HA	ASP	197	33.246	19.955	25.841	1.00	0.00		Н
15	MOTA		1HB	ASP	197	34.303	18.377	24.143	1.00	0.00		H
	MOTA		2HB	ASP	197 ·	35.825	18.513	25.092	1.00	0.00		н
	ATOM	1236	N	ILE	198	34.631	17.292	27.269	1.00	0.00	•	N
	MOTA	1237	CA	ILE	198	34.499	16.047	27.977	1.00	0.00		С
	ATOM	1238	С	ILE	198	35.358	15.067	27.250	1.00	0.00		С
20	ATOM	1239	0	ILE	198	36.124	15.447	26.367	1.00	0.00		0
	ATOM	1240	CB	ILE	198	33.112	15.470	28.097	1.00	0.00		С
	MOTA	1241		ILE	198	33.053	14.434	29.233	1.00	0.00		С
	MOTA	1242	CG2	ILE	198	32.712	14.897	26.728	1.00	0.00		С
	MOTA	1243		ILE	198	33.296	15.040	30.609	1.00	0.00		С
25	MOTA	1244	H	ILE	198	35.578	17.693	27.229	1.00	0.00		Н
	MOTA	1245	HA	ILE	198	34.847	16.239	28.991	1.00	0.00		Н
	ATOM	1246	HB	ILE	198	32.435	16.271	28.393	1.00	0.00		H
	ATOM		1HG1		198	33.793	13.640	29.128	1.00	0.00		Н
	ATOM		2HG1		198	32.089	13.928	29.302	1.00	0.00		Н
30	ATOM		1HG2		198	33.524	15.049	26.018	1.00	0.00		Н
	MOTA	1250			198	32.510	13.830	26.824	1.00	0.00		H
	MOTA	1251			198	31.816	15.404	26.368	1.00	0.00		Н
	ATOM	1252			198	33.467	16.111	30.509	1.00	0.00		·H
25	ATOM	1253			198 198	32.424	14.868 14.573	31.241	1.00	0.00		H
35 .	MOTA	1254 1255		ILE SER	198	34.170 35.246	13.772	31 - 062 27.596	1.00	0.00		H
	ATOM	1255	N CA	SER	199	36.063	12.779	26.971	1.00	0.00		И С
	ATOM ATOM	1256	CA	SER	199	35.305	11.490	26.984	1.00	0.00		C
	ATOM	1257	o	SER	199	34.076	11.470	26.954	1.00	0.00		0
40	MOTA	1259	CB	SER	199	37.403	12.539	27.688	1.00	0.00		C
70	ATOM	1260	OG	SER	199	38.210	13.704	27.614	1.00	0.00		0
	ATOM	1261	Н	SER	199	34.565	13.493	28.317	1.00	0.00		н
	ATOM	1262	HA	SER	199	36.263	13.106	25.950	1.00	0.00		Н
	ATOM		1HB	SER	199	37.934	11.711	27.219	1.00	0.00		Н
45	ATOM	1264		SER	199	37.227	12.297	28.736	1.00	0.00		н
	ATOM	1265	HG	SER	199	39.202	13.440	27.692	1.00	0.00		
	ATOM	1266	N	MET	200	36.051	10.370	27.007	1.00	0.00		Ŋ Ĥ
	ATOM	1267	CA	MET	200	35.486	9.053	26.947	1.00	0.00		C
	ATOM	1268	C	MET	200	34.786	8.725	28.228	1.00	0.00		C
50	ATOM	1269	0	MET	200	34.360	9.603	28.976	1.00	0.00		ō
	ATOM	1270	CB	MET	200	36.541	7.967	26.686	1.00	0.00		C
	ATOM	1271	CG	MET	200	37.206	8.112	25.316	1.00	0.00		C
	ATOM	1272	SD	MET	200	38.530	6.916	24.972	1.00	0.00		s
	ATOM	1273	CE	MET	200	38.888	7.568	23.315	1.00	0.00		С
55	MOTA	1274	Н	MET	200	37.074	10.462	27.070	1.00	0.00		Н
	MOTA	1275	HA	MET	200	34.765	8.984	26.132	1.00	0.00		Н
	ATOM	1276	1HB	MET	200	36.122	6.961	26.716	1.00	0.00		H
	MOTA	1277		MET	200	37.347	7.982	27.419	i. 00	0.00		н
	ATOM	1278	1HG	MET	200	37.643	9.108	25.255	1.00	0.00		Н
60	MOTA	1279	2HG	MET	200	36.440	7.978	24.552	1.00	0.00		H
	ATOM	1280		MET	200	38.224	8.406	23.102	1.00	0.00		н
	MOTA	1281	2HE	MET	200	39.923	7.904	23.272	1.00	0.00		н
	ATOM	1282	3HE	MET	200	38.730	6.784	22.573	1.00	0.00		н
	ATOM	1283	N	MET	201	34.643	7.410	28.486	1.00	0.00		N
65	ATOM	1284	CA	MET	201	33.949	6.882	29.621	1.00	0.00		С
	MOTA	1285	С	MET	201	34.632	7.330	30.868	1.00	0.00		С
	MOTA	1286	0	MET	201	33.966	7.659	31.846	1.00	0.00		0
,	MOTA	1287	CB	MET	201	33.891	5.344	29.590	1.00	0.00		С

	MOTA	1288 0	G MEI	201	35.265	4.683	29.484	1.00	0.00	С
	ATOM	1289 5	D MET	201	35.204	2.915	29.066	1.00	0.00	S
	ATOM	1290 C	CE MET		34.620	3.186	27.367	1.00	0.00	С
	ATOM	1291 H	i Met	201	35.060	6.741	27.823	1.00	0.00	H
5	MOTA	1292 F	IA MET	201	32.921	7.244	29.615	1.00	0.00	H
	MOTA	1293 1F	ib met	201	33.319	4.946	28.751	1.00	0.00	Н
	MOTA	1294 2H			33.433	4.907	30.477	1.00	0.00	Н
	MOTA	1295 1F			35.768	4.780	30.445	1.00	0.00	Н
	MOTA	1296 2F			35.831	5.190	28.702	1.00	0.00	H
10	MOTA	1297 1F	_		34.510	4.255	27.186	1.00	0.00	Н
	ATOM	1298 2H			35.341	2.770	26.663	1.00	0.00	Н
	MOTA	1299 3F			33.656	2.694	27.230	1.00	0.00	H
	ATOM		I ARG		35.975	7.374	30.873	1.00	0.00	N
	MOTA		CA ARG		36.676	7.778	32.060	1.00	0.00	С
15	MOTA		C ARC		36.273	9.176	32.395	1.00	0.00	С
	MOTA) ARC		35.972	9.491	33.545	1.00	0.00	0
	ATOM		CB ARC		38.197	7.887	31.873	1.00	0.00	C
	MOTA		CG ARC		38.943	6.593	31.561	1.00	0.00	C
00	MOTA		CD ARC		40.437	6.852	31.353	1.00	0.00	C
20	MOTA		NE ARC		41.109	5.558	31.053	1.00	0.00	N
	ATOM	-	CZ ARO		41.993	5.490	30.016	1.00	0.00	C
	ATOM		NH1 ARC		42.188	6.583	29.219	1.00	0.00	. N
	MOTA		NH2 ARC		42.678	4.335	29.770	1.00	0.00	N
25	MOTA		H ARC		36.501 36.405	7.118 7.099	30.025 32.869	1.00	0.00	H H
25	MOTA	1312 F	HA ARO HB ARO		38.617	8.277	32.799	1.00	0.00	H
	ATOM ATOM	1314 2			38.380	8.565	31.040	1.00	0.00	Н
	ATOM	1314 21			38.558	6.125	30.654	1.00	0.00	Н
	ATOM	1316 21			38.841	5.873	32.373	1.00	0.00	Н
30	ATOM	1317 1			40.846	7.286	32.264	1.00	0.00	H
50	MOTA	1318 21			40.559		30.518	1.00		· .H
	ATOM		HE AR		40.908	4.723	31.622	1.00	0.00	H
	ATOM	1320 1			41.668	7.453	29.402	1.00	0.00	Н
	ATOM	1321 2			42.854	6.536	28.435	1.00	0.00	н
35	ATOM	1322 1				3.510	30.368	1.00	0.00	н
	ATOM	1323 21			43.344	4.288	28.985	1.00	0.00	Н
	MOTA	1324	N ME	r 203	36.247	10.050	31.374	1.00	0.00	. N
	MOTA	1325	CA ME	г 203	36.017	11.448	31.587	1.00	0.00	C
	MOTA	1326	C ME'	r 203	34.664	11.639	32.181	1.00	0.00	С
40	MOTA	1327	O ME	r 203	34.483	12.426	33.106	1.00	0.00	0
	MOTA		CB ME'		36.040	12.247	30.275	1.00	0.00	, C
	ATOM		CG ME		36.305	13.743	30.460	1.00	0.00	C
	MOTA		SD ME		38.063	14.190	30.635	1.00	0.00	S
	MOTA		CE ME'		38.429	13.087	32.030	1.00	0.00	C
45	ATOM		H ME'		36.396	9.706	30.414	1.00	0.00	Н
	MOTA		HA ME		36.774	11.837	32.267	1.00	0.00	H
	ATOM	1334 1			35.069	12.138	29.790	1.00	0.00	Н
	MOTA	1335 2			36.831	11.845	29.642 31.364	1.00	0.00	Н
50	ATOM	1336 1			35.791 35.918	14.070 14.267	29.586	1.00	0.00	Н
30	ATOM	1337 2			37.528	12.537		1.00	0.00	H
	ATOM	1338 1 1339 2			39.210	12.383	32.305 31.742	1.00	0.00	Н
	ATOM	1340 3			38.767	13.677	32.881	1.00	0.00	H H
	ATOM ATOM	_	N LY		33.657	10.928	31.660	1.00	0.00	. N
55	ATOM		CA LY		32.345	11.162	32.170	1.00	0.00	C
55	ATOM		C LY		32.172	10.597	33.542	1.00	0.00	Č
	ATOM		O LY		31.300	11.030	34.287	1.00	0.00	. 0
	ATOM		CB LY		31.205	10.660	31.289	1.00	0.00	Č
	ATOM		CG LY		29.883	11.352	31.643	1.00	0.00	č
60	MOTA		CD LY		29.808	12.801	31.166	1.00	0.00	č
	ATOM		CE LY		29.989	12.939	29.654	1.00	0.00	č
	ATOM		NZ LY		29.112	11.989	28.941	1.00	0.00	Ŋ
	ATOM		H LY		33.823	10.235	30.916	1.00	0.00	н
	MOTA		HA LY		32.117	12.226	32.233	1.00	0.00	H
65	MOTA	1352 1			31.057	9.586	31.407	1.00	0.00	Н
	MOTA	1353 2		s 204	31.406	10.851	30.235	1.00	0.00	H
	ATOM	1354 1			29.688	11.393	32.714	1.00	0.00	Н
	MOTA	1355 2		S 204	29.008	10.864	31.212	1.00	0.00	Н

- 148 -

	ATOM	1356 1	HD	LYS	204	30.571	13.435	31.616	1.00	0.00		Н
	ATOM	1357 2		LYS	204	28.853	13.273	31.396	1.00	0.00		н
	ATOM	1358 1		LYS	204	31.022	12.732	29.374		0.00		
									1.00			Н
	ATOM	1359 2		LYS	204	29.738	13.949	29.331	1.00	0.00		Н
5	MOTA	1360 1		LYS	204	28.570	11.441	29.624	1.00	0.00		Н
	MOTA	1361 2		LYS	204	28.466	12.509	28.329	1.00	0.00		Н
	MOTA	1362 3	BHZ	LYS	204	29.686	11.352	28.370	1.00	0.00		H
	MOTA	1363	N	THR	205	32.937	9.558	33.895	1.00	0.00		N
	ATOM	1364	CA	THR	205	32.820	8.959	35.191	1.00	0.00		С
10	MOTA	1365	C.	THR	-205	33.421	9.841	36.234	1.00	0.00		C
	ATOM	1366	ō	THR	205	33.103	9.701	37.413	1.00	0.00		Ö
	ATOM.	1367	CB	THR	205	33.476	7.622	35.274	1.00	0.00		
												C
	ATOM	1368		THR	205	34.878	7.724	35.072	1.00	0.00		0
	MOTA	1369		THR	205	32.847	6.772	34.170	1.00	0.00		С
15	MOTA	1370	Н	THR	205	33.621	9.182	33.223	1.00	0.00		Н
	MOTA	1371	HA	THR	205	31.772	8.793	35.444	1.00	0.00		Н
	ATOM	1372	HB	THR	205	33.259	7.240	36.271	1.00	0.00		Н
	MOTA	1373	HG1	THR	205	35.287	8.327	35.799	1.00	0.00		Н
	ATOM .	1374 1		THR	205	32.105	7.363	33.633	1.00	0.00		Н
20	ATOM		HG2	THR	205	33.621	6.445	33.476	1.00	0.00		Н
	ATOM			THR	205	32.365	5.899	34.612	1.00	0.00		
	ATOM	1377	N			34.329						Н
				ILE	206		10.754	35.842	1.00	0.00		N
	ATOM	1378	CA	ILE	206	35.034	11.535	36.816	1.00	0.00		C
	MOTA	1379	С	ILE	206	34.105	12.396	37.621	1.00	0.00		С
25	MOTA	1380	0	ILE	206	34.317	12.542	38.819	1.00	0.00		0
	MOTA	1381	CB	ILE	206	36.137	12.392	36.249	1.00	0.00		С
	MOTA	1382	CG1	ILE	206	35.624	13.519	35.338	1.00	0.00		С
	ATOM	1383	CG2	ILE	206	37.115	11.439	35.546	1.00	0.00		C
	ATOM	1384	CD1	ILE	206	35.054	14.729	36.079	1.00	0.00	٠	Ć
30	ATOM	1385	Н	ILE	206	34.518	10.892	34.838	1.00	0.00	-	Ĥ
50	ATOM	1386	ΗA	ILE	206	35.578	10.002	37.522	1.00	0.00		
												Н
	MOTA	1387	HB	ILE	206	36.597	12.905	37.093	1.00	0.00		Н
	ATOM	1388 1		ILE	206	34.830	13.114	34.710	1.00	0.00		Н
	MOTA	1389 2		ILE	206	36.456	13.869	34.728	1.00	0.00		Н
35	ATOM_	1390 1		ILE	206	36.757	10.414	35.642	1.00	0.00		Н
	ATOM	1391 2	2HG2	ILE	206	37.183	11.701	34.490	1.00	0.00		H
	ATOM	1392 3	3HG2	ILE	206	38.099	11.524	36.005	1.00	0.00		Н
	ATOM	1393 1	lHD1	ILE	206	35.119	14.561	37.154	1.00	0.00		Н
	MOTA	1394 2	2HD1	ILE	206	35.624	15.619	35.815	1.00	0.00		Н
40	ATOM		3HD1	ILE	206	34.010	14.870	35.797	1.00	0.00		н
	ATOM	1396	N	GLY	207	33.051	12.996	37.034	1.00	0.00		
	ATOM -	1397	CA	GLY	207	32.264	13.845	37.883				N
									1.00	0.00		C
	MOTA	1398	C	GLY	207	30.833	13.516	37.728	1.00	0.00		С
45	ATOM	1399	0	GLY	207	30.434	12.850	36.776	1.00	0.00		0
45	MOTA	1400	Н	GLY	207	32.824	12.854	36.039	1.00	0.00		Н
	ATOM \	1401 1		GLY	207	32.424	14.888	37.610	1.00	0.00		Н
	MOTA	1402 2	2HA	GLY	207	32.555	13.697	38.922	1.00	0.00		Н
	MOTA	1403	N	GLU	208	30.014	13.978	38.690	1.00	0.00	•	N
	ATOM	1404	CA	GLU	208	28.631	13.734	38.496	1.00	0.00		С
50	ATOM	1405	С	GLU	208	28.284	14.781	37.488	1.00	0.00		C
	ATOM	1406	0	GLU	208	27.981	15.916	37.843	1.00	0.00		ō
	ATOM	1407	СВ	GLU	208	27.794	13.968	39.758	1.00	0.00		
												C
	ATOM	1408	CG	GLU	208	28.261	13.090	40.923	1.00	0.00		С
	ATOM	1409	CD	GLU	208	28.611	11.716	40.364	1.00	0.00		С
55	ATOM	1410	OE1		208	27.837	11.214	39.505	1.00	0.00		0
	ATOM	1411	OE2	GLU	208	29.656	11.152	40.786	1.00	0.00		0
	MOTA	1412	Н	GLU	208	30.369	14.478	39.516	1.00	0.00		Н
	MOTA	1413	HA	GLU	208	28.451	12.723	38.128	1.00	0.00		Н
	MOTA	1414 1	LHB	GLU	208	26.740	13.744	39.593	1.00	0.00		Н
60	ATOM	1415 2		GLU	208	27.850	15.002	40.096	1.00	0.00		Н
	ATOM	1416		GLU	208	27.443	13.022	41.640	1.00	0.00		Н
	ATOM	1417 2		GLU	208	29.135		·· 41.370	1.00	0.00		
	ATOM	1417 2	N	HIS		28.353						Н
					209		14.427	36.189	1.00	0.00		N
65	MOTA	1419	CA	HIS	209	28.205	15.402	35.146	1.00	0.00		C
65	MOTA	1420	C	HIS	209	26.837	15.990	35.084	1.00	0.00		С
	MOTA	1421	0	HIS	209	26.701	17.181	34.811	1.00	0.00		0
	MOTA	1422	CB	HIS	209	28.616	14.926	33.740	1.00	0.00		С
•	ATOM	1423	CG	HIS	209	30.061	15.227	33.463	1.00	0.00		С

	MOTA	1424	ND1	HIS	209	30.499	16.447	32.996	1.00	0.00		N
	MOTA	1425	CD2	HIS	209	31.178	14.464	33.616	1.00	0.00		С
	MOTA	1426	CE1		209	31.847	16.367	32.896	1.00	0.00		С
	ATOM	1427	NE2		209			33.258	1.00	0.00		
-						32.306	15.182					N
5	MOTA	1428	H	HIS	209	28.514	13.440	35.940	1.00	0.00		Н
	MOTA	1429	HA	HIS	209	28.883	16.248	35.252	1.00	0.00		H
	MOTA	1430	1HB	HIS	209	28.023	15.415	32.967	1.00	0.00		H
	MOTA	1431	2HB	HIS	209	28.476	13.850	33.629	1.00	0.00		H
	ATOM	1432	HD1		209	29.913	17.263	32.767	1.00	0.00		н
10												
10	MOTA	1433	HD2		209	31.183	13.433	33.970	1.00	0.00		H
	ATOM	1434	HE1	HIS	209	32.480	17.186	32.555	1.00	0.00		Н
	ATOM	1435	HE2	HIS	209	33.285	14.863	33.270	1.00	0.00		H
	MOTA	1436	N	ILE	210	25.788	15.189	35.333	1.00	0.00		N
	MOTA	1437	CA	ILE	210	24.456	15.709	35.250	1.00	0.00		Ċ
1.5												
15	ATOM	1438	С	ILE	210	24.317	16.825	36.239	1.00	0.00		С
	MOTA	1439	0	ILE	210	23.712	17.852	35.936	1.00	0.00		0
	ATOM	1440	CB	ILE	210	23.410	14.681	35.589	1.00	0.00		С
	ATOM	1441	CG1	ILE	210	23.451	13.504	34.604	1.00	0.00		C
	MOTA	1442	CG2	ILE	210	22.049	15.384	35.643	1.00	0.00		Ċ
20	MOTA	1443	CD1		210	22.594	12.326	35.062	1.00	0.00		č
20												
	MOTA	1444	H	ILE	210	25.941	14.201	35.583	1.00	0.00		Н
	MOTA	1445	HA	ILE	210	24.289	16.076	34.237	1.00	0.00		H
	ATOM	1446	HВ	ILE	210	23.660	14.248	36.557	1.00	0.00		H
	MOTA	1447	1HG1	ILE	210	24.457	13.110	34.463	1.00	0.00		н
25	ATOM		2HG1		210	23.089	13.775	33.612	1.00	0.00		Н.
23												
	MOTA		1HG2		210	22.178	16.444	35.424	1.00	0.00		H
	MOTA		2HG2		210	21.380	14.940	34.905	1.00	0.00		Н
	MOTA	1451	3HG2	ILE	210	21.619	15.268	36.638	1.00	0.00		Н
	MOTA	1452	1HD1	ILE	210-	. 22.120	12.568	36.013	1.00	0.00		Н
30	MOTA	1453	2HD1	ILE	210	21.826	12.122	34.315	1.00	0.00		н
50	ATOM		3HD1		210	23.223	11.444	35.184	1.00	0.00		. н
	ATOM	1455	Ň	VAL	211	24.869	16.664	37.456	1.00	0.00		N
	MOTA	1456	CA	VAL	211	24.693	17.704	38.431	1.00	0.00		С
	MOTA	1457	С	VAL	211	25.417	18.932	37.989	1.00	0.00		C
35	ATOM	1458	0	VAL	211	24.936	20.045	38.195	1.00	0.00		- 0
	ATOM	1459	CB	VAL	211	25.127	17.349	39.819	1.00	0.00		С
	ATOM	1460		VAL	211	24.270	16.147	40.226	1.00	0.00		
												C
	MOTA	1461	•	VAL	211	26.648	17.145	39.891	1.00	0.00		Ċ
	MOTA	1462	H	VAL	211	25.405	15.814	37.683	1.00	0.00		H
40	MOTA	1463	HА	VAL	211	23.631	17.929	38.537	1.00	0.00		H
	ATOM	1464	HB	VAL	211	24.932	18.234	40.424	1.00	0.00		H
	ATOM		1HG1		211	23.595	15.888	39.409	1.00	0.00		Н
	ATOM		2HG1		211	24.916	15.297	40.446	1.00	0.00	•	
												H
	ATOM		3HG1		211	23.687	16.398	41.112	1.00	0.00		. н
45	ATOM	1468	1HG2	VAL	211	27.083	17.305	38.904	1.00	0.00		н
	MOTA	1469	2HG2	VAL	211	27.077	17.855	40.597	1.00	0.00		H
	MOTA	1470	3HG2	VAL	211	26.863	16.129	40.222	1.00	0.00		н
	ATOM	1471	N	ALA	212	26.600	18.777	37.366	1.00	0.00		N
	ATOM	1472	CA	ALA	212	27.310	19.959	36.980	1.00	0.00		
6 0											•	C
50	MOTA	1473	С	ALA	212	26.495	20.728	35.979	1.00	0.00		С
	ATOM	1474	0	ALA	212	26.306	21.937	36.114	1.00	0.00		0
	MOTA	1475	CB	ALA	212	28.679	19.661	36.344	1.00	0.00		С
	ATOM	1476	H	ALA	212	26.981	17.839	37.173	1.00	0.00		Н
	ATOM	1477	HA	ALA	212	27.486	20.579	37.858	1.00	0.00		H
55												
55	ATOM	1478		ALA	212 ·	28.839	18.583	36.313	1.00	0.00		н
	MOTA	1479		ALA	212	28.703	20.060	35.330	1.00	0.00		Н
	ATOM	1480	ЗНВ	ALA	212	29.465	20.127	36.937	1.00	0.00		H
	MOTA	1481	N	HIS	213	25.966	20.037	34.952	1.00	0.00		. N
	ATOM	1482	CA	HIS	213	25.230	20.689	33.902	1.00	0.00		C
60				HIS	213							
UU	ATOM	1483				23.947	21.271	34.410	1.00	0.00		C
	MOTA	1484	0	HIS	213	23.565	22.378	34.030	1.00	0.00		0
	ATOM	1485	CB	HIS	213	24.836	19.741	32.759	1.00	0.00		C
	ATOM	1486	CG	HIS	213	25.993	19.281	31.927	1.00	0.00		С
	ATOM	1487		HIS	213	25.864	18.426	30.856	1.00	0.00		N
65	ATOM	1488		HIS	213	27.319	19.575	32.011	1.00	0.00		C
0 5												
	ATOM	1489		HIS	213	27.108	18.249	30.345	1.00	0.00		С
	ATOM	1490	•	HIS	213	28.025	18.926		1.00	0.00	•	N
	MOTA	1491	H	HIS	213	26.091	19.015	34.917	1.00	0.00		H

	ATOM	1492	HA	HIS	213	25.802	21.503	33.458	1.00	0.00			Н
	ATOM	1493	1HB	HIS	213	24.140	20.263	32.102	1.00	0.00			Н
	ATOM	1494	2HB	HIS	213	24.364	18.858	33.191	1.00	0.00			H
	ATOM	1495	HDl	HIS	213	24.991	18.002	30.509	1.00	0.00		;	Н
5	MOTA	1496		HIS	213	27.763	20.230	32.760	1.00	0.00			H
	ATOM	1497	HE1		213	27.326	17.620	29.481	1.00	0.00			H
	MOTA	1498		HIS	213	29.038	18.962	30.831	1.00	0.00			Н
	MOTA	1499	N	ILE	214	23.233	20.532	35.275	1.00	0.00			N
10	MOTA	1500	CA	ILE	214	21.952	20.991		1.00	.0.00			C
10	MOTA	1501 1502	C	ILE	214	22.133	22.235	36.526	1.00	0.00			C
	MOTA MOTA	1502	O CB	ILE	214 214	21.288 21.221	23.128 20.006	36.492 36.587	1.00 1.00	0.00			C
	ATOM	1504		ILE	214	21.026	18.672	35.855	1.00	0.00			C
	ATOM	1505	CG2	ILE	214	19.879	20.645	36.977	1.00	0.00			c
15	ATOM	1506	CD1		214	20.453	17.586	36.763	1.00	0.00			c
	ATOM	1507	Н	ILE	214	23.606	19.634	35.615	1.00	0.00			Н
	MOTA	1508	HA	ILE	214	21.322	21.197	34.859	1.00	0.00			Н
	ATOM	1509	HB	ILE	214	21.842	19.815	37.462	1.00	0.00			Н
	MOTA	1510	1HG1	ILE	214	21.959	18.275	35.455	1.00	0.00			Н
20	MOTA		2HG1		214	20.342	18.756	35.010	1.00	0.00			Н
	MOTA		1HG2		214	19.805	21.637	36.531	1.00	0.00			Н
	MOTA		2HG2	ILE	214	19.060	20.023	36.614	1.00	0.00			H
	ATOM		3HG2		214	19.817	20.728	38.062	1.00	0.00			Н
25	ATOM		1HD1	ILE	214	20.298	17.991	37.762	1.00	0.00			Н
25	MOTA	1516	2HD1		214	19.500	17.240	36.360	1.00	0.00			H
	ATOM ATOM	1517	3HD1 N		214 215	21.150 23.248	16.749 22.330	36.814 37.270	1.00	0.00			H N
	ATOM	1519	CA	GLN	215	23.456	23.479	38.098	1.00	0.00			С
	ATOM	1520	C	GLN	215	23.439	24.675	37.208	1.00	0.00			C
30	ATOM	1521	ō .	GLN	215	22.818	25.688	37.526	1.00	0.00			ŏ
	ATOM	1522	CB	GLN	215	24.809	23.448	38.840	1.00	0.00			Ċ
	MOTA	1523	CG	GLN	215	25.064	24.664	39.737	1.00	0.00			С
	MOTA	1524	CD	GLN	215	25.576	25.823	38.890	1.00	0.00			С
	MOTA	1525		GLN	215	25.486	26.981	39.294	1.00	0.00			0
35	MOTA	1526		GЪN	215	26.139	25.506	37.693	1.00	0.00			N
	ATOM	1527	H	GLN	215	23.951	21.577	37.244	1.00	0.00			Н
	ATOM	1528	HA	GLN	215	22.642	23.507	38.822	1.00	0.00			Н
	ATOM ATOM	1529 1530		GLN GLN	215 - 215	25.605 24.832	23.411 22.560	38.097 39.471	1.00	0.00			Н
40	ATOM	1531		GLN	215	25.808	24.410	40.491	1.00	0.00			H H
40	ATOM	1532		GLN	215	24.135	24.955	40.227	1.00	0.00			Н
	ATOM		1HE2		215	26.510	26.250	37.085	1.00	0.00			H
	ATOM		2HE2		215	26.193	24.521	37.394	1.00	0.00			Н
	ATOM	1535	N	HIS	216	24.099	24.574	36.042	1.00	0.00			N
45	ATOM	1536	CA	HIS	216	24.140	25.700	35.162	1.00	0.00			С
	MOTA	1537	С	HIS	216	22.738	26.055	34.766	1.00	0.00			С
	ATOM	1538	0	HIS	216	22.360	27.225	34.780	1.00	0.00			0
	ATOM	1539	CB	HIS	216	24.936	25.429	33.871	1.00	0.00			C
50	ATOM	1540	CG	HIS HIS	216	26.420	25.354 24.230	34.086	1.00	0.00			C
30	ATOM ATOM	1541 1542		HIS	. 216 216	27.091 27.373	26.311	34.514 33.914	1.00	0.00			N
	MOTA	1543		HIS	216	28.406	24.559	34.579	1.00	0.00			C
	ATOM	1544		HIS	216	28.626	25.812	34.223	1.00	0.00	•		N
	ATOM	1545	Н	HIS	216	24.570	23.694	35.785	1.00	0.00			Н
55	ATOM	1546	HA	HIS	216	24.605	26.536	35.683	1.00	0.00			Н
	ATOM	1547		HIS		24.798	26.193	33.105	1.00	0.00			Н
	ATOM	1548	2HB	HIS	216	24.671	24.489	33.385	1.00	0.00			Н
	ATOM	1549		HIS	216	26.674	23.315	34.741	1.00	0.00			H
	ATOM .	1550		HIS	216	27.176	27.329	33.579	1.00	0.00			H
60	ATOM	1551		HIS		29.190	23.868	34.889	1.00	0.00			H
	ATOM	1552		HIS	216	29.528	26.306	34.184	1.00	0.00	•		H
	MOTA	1553	N	GLU		21.919	25.045	34.418	1.00	0.00			N
	MOTA MOTA	1554 1555	CA C	GLU GLU		20.587 19.754	25.304 25.956	33.946 35.006	1.00 1.00	0.00			C
65	ATOM	1556	0	GLU		19.734	26.983	34.752	1.00	0.00			0
33	ATOM	1557	СВ	GTO		19.838	24.022	33.548	1.00	0.00			c
	ATOM	1558	CG	GLU		20.439	23.309	32.340	1.00	0.00			c
	MOTA	1559	CD	GLU	217	19.599	22.072	32.051	1.00	0.00			c

	ATOM	1560	OE1	GLU	217	19.27	7 21.335	33.021	1.00	0.00			0
	MOTA	1561		GLU	217	19.26			1.00	0.00			O
	ATOM	1562	Н	GLU	217	22.25			1.00	0.00			H
	ATOM	1563	HA	GLU	217	20.59	7 25.965	33.079	1.00	0.00			H
5	ATOM	1564	1HB	GLU	217	18.79	3 24.187	33.284	1.00	0.00			H
	MOTA	1565	2HB	GLU	217	19.81	.1 23.267	34.333	1.00	0.00			H
	ATOM	1566	1HG	GLU	217	21.46	4 23.030	32.584	1.00	0.00			H
	MOTA	1567	2HG	GLU	217 .	20.41	7 23.995	31.493	1.00	0.00			H
	ATOM	1568	N	VAL	218	19.76	25.387	36.228	1.00	0.00			N
10	MOTA	1569	CA	VAL	218	18.94	6 25.841	37.325	1.00	0.00			С
	MOTA	1570	C	VAL	218	17.55	7 26.178	36.853	1.00	0.00			C
	MOTA	1571	0	VAL	218	17.27	9 27.310	36.461	1.00	0.00			0
	MOTA	1572	CB	VAL	218	19.53	7 27.001	. 38.086	1.00	0.00			С
	MOTA	1573		VAL	218	19.78	7 28.182	37.131	1.00	0.00	٠.		С
15	MOTA	1574		VAL	218	18.59			1.00	0.00			С
	MOTA	1575	H	VAL	218	20.38			1.00	0.00	•		Н
	ATOM	1576	HA	VAL	218	18.86			1.00	0.00			H
	MOTA	1577	HB	VAL	218	20.48			1.00	0.00			H
-	ATOM	1578	1HG1		218	19.47			1.00	0.00			H
20	ATOM	1579			218	19.21			1.00	0.00			H
	MOTA	1580			218	20.84			1.00	0.00			H
	ATOM		1HG2		218	17.74			1.00	0.00			H
	MOTA		2HG2		218	19.13			1.00	0.00			H
25	MOTA . MOTA	1583 1584	3HG2		218	18.24			1.00	0.00			H
23	ATOM	1585	N CA	ASP ASP	219 219	16.63 15.28			1.00	0.00			N
	ATOM	1586	C	ASP	219	14.29			1.00	0.00			C
	ATOM	1587	0	ASP	219	14.64			1.00	0.00			C
	ATOM	1588	CB	ASP		15.11			1.00	0.00			С
30	ATOM	1589	CG	ASP	219	15.80			1.00	0.00			C
50	ATOM	1590		ASP		15.72			1.00	0.00			o
	ATOM	1591		ASP	219	16.43			1.00	0.00			Ö
	ATOM	1592	Н	ASP	219	16.89			1.00	0.00			Н
	ATOM	1593	HA	ASP	219	15.00			1.00	0.00			Н
35	MOTA	1594	1HB	ASP	219 .	14.05			1.00	0.00	-		Н
	MOTA	1595	2HB	ASP	219	15.57			1.00	0.00			Н
	ATOM	1596	N	PHE	220	13.01	0 24.525	36.743	1.00	0.00		-	N
	MOTA	1597	CA	PHE	220	11.96	54 23.735	37.359	1.00	0.00			С
	MOTA	1598	С	PHE	220	12.32	27 22.298	37.204	1.00	0.00			С
40	ATOM	1599	0	PHE	220	13.50			1.00	0.00			0
	MOTA	1600	CB	PHE	220	10.56			1.00	0.00			C
	ATOM	1601	CG	PHE	220	9.83			1.00	0.00			С
	MOTA	1602		PHE	220	9.38			1.00	0.00			С
4.5	ATOM	1603		PHE	220	9.53			1.00	0.00			C
45	ATOM	1604		PHE	220	8.69			1.00	0.00			С
	ATOM	1605		PHE	220	8.84			1.00	0.00			С
	ATOM	1606	CZ	PHE	220	8.42			1.00	0.00			C
	ATOM ATOM	1607 1608	H HA	PHE PHE	220 220	12.77 11.91			1.00	0.00	-		H
50	ATOM	1609		PHE	220	9.93			1.00 1.00	0.00			H
50	ATOM	1610		PHE	220	10.61			1.00	0.00			Н
	ATOM	1611		PHE	220	9.58			1.00	0.00			H H
	ATOM	1612		PHE	220	9.85			1.00	0.00			Н
	ATOM	1613		PHE	220	8.36			1.00	0.00			н
55	ATOM	1614		PHE	220	8.62			1.00	0.00			н
_	ATOM	1615	HZ	PHE	220	7.88			1.00	0.00			Н
	ATOM	1616	N	LEU	221	11.30			1.00	0.00			Ŋ
	ATOM	1617	CA	LEU	221	11.52			1.00	0.00			C
	MOTA	1618	C	LEU	221	12.37			1.00	0.00			C
60	ATOM	1619	0	LEU	221	12.33	31 20.695	34.908	1.00	0.00			0
	ATOM	1620	CB	LEU	221	10.24			1.00	0.00			С
	MOTA	1621	CG	LEU	221	9.18			1.00	0.00			С
	MOTA	1622		LEU	221	8.66			1.00	0.00			С
	ATOM	1623		LEU	221	8.05			1.00	0.00			С
65	ATOM	1624	Н	LEU	221	10.33			1.00	0.00			H
	MOTA	1625	HA	LEU	221	12.03			1.00	0.00			H
	MOTA	1626		LEU	221	10.50			1.00	0.00			H
	MOTA	1627	2HB	LEU	221	9.78	38 19.556	5 35.831	1.00	0.00			H

	ATOM	1628	HG	LEU	221	9.608	19.063	38.839	1.00	0.00		Н
	ATOM	1629	1HD1	LEU	221	9.161	21.394	37.220	1.00	0.00		H
	MOTA	1630	2HD1	LEU	221	7.590	20.786	37.793	1.00	0.00		Н
	MOTA		3HD1		221	8.875	21.172	38.962	1.00	0.00		Н
5	MOTA		1HD2		221	8.246	17.710	36.800	1.00	0.00		H
	MOTA		2HD2		221	8.006	17.662	38.563	1.00	0.00		H
	ATOM		3HD2		221	7.106	18.836	37.574	1.00	0.00		H
	MOTA	1635	N	PHE	222	13.170	18.758	35.719	1.00	0.00		N
10	ATOM	1636	CA	PHE	222	14.012	18.591	34.568	1.00	0.00		C
10	MOTA	1637	C	PHE	222	13.954	17.178	34.077	1.00	0.00		С
	MOTA	1638	0	PHE	222	13.414 15.491	16.287	34.732	1.00	0.00		0
	ATOM ATOM	1639 1640	CB CG	PHE	222 222	16.042	18.954 18.085	34.813 35.894	1.00	0.00		c
	ATOM	1641		PHE	222	15.894	18.442	37.214	1.00	0.00		C
15	ATOM	1642		PHE	222	16.713	16.922	35.590	1.00	0.00		C
13	ATOM	1643	CE1		222	16.404	17.652	38.216	1.00	0.00		c
	ATOM	1644	CE2		222	17.225	16.126	36.589	1.00	0.00	•	c
	ATOM	1645	CZ	PHE	222	17.071	16.492	37.904	1.00	0.00		Ċ
	ATOM	1646	Н	PHE	222	13.175	18.060	36.476	1.00	0.00		Н
20	MOTA	1647	HA	PHE	222	13.690	19.249	33.761	1.00	0.00		Н
	MOTA	1648	1HB	PHE	222	15.562	19.999	35.113	1.00	0.00		H
	MOTA	1649	2HB	PHE	222	16.058	18.798	33.895	1.00	0.00		Н
	MOTA	1650		PHE	222	15.366	19.361	37.468	1.00	0.00		H
	MOTA	1651	HD2	PHE	222	16.840	16.628	34.547	1.00	0.00		H
25	MOTA	1652		PHE	222	16.279	17.945	39.258	1.00	0.00		H
	ATOM	1653		PHE	222	17.752	15.205	36.337	1.00	0.00		H
	MOTA	1654	HZ	PHE	222	17.476	15.864	38.697	1.00	0.00		H
	ATOM	1655	N	CYS	223	14.495	16.954	32.860	1.00	0.00		N
20	MOTA	1656	CA	CYS	223	14.523	15.645	32.272	1.00	0.00		C.
30	ATOM	1657	C	CYS	223 223	15.892 16.741	15.430	31.711 31.765	1.00	0.00		0
	ATOM ATOM	1658 1659	O CB	CYS	223	13.513	16.317 15.449	31.765	1.00	0.00		c
	ATOM	1660	SG	CYS	223	11.804	15.347	31.734	1.00	0.00		s
	ATOM	1661	H	CYS	223 .	14.899	17.745	32.338	1.00	0.00		Н
35	ATOM-	1662	HA	CYS	223	14.301		33.059	1.00	0.00		Н
	ATOM	1663		CYS	223	13.697	14.534	30.567	1.00	0.00		Н
	MOTA	1664		CYS	223	13.538	16.266	30.410	1.00	0.00		Н
	ATOM	1665	HG	CYS	223	11.311	16.583	31.894	1.00	0.00		Н
	ATOM	1666	N	MET	224	16.151	14.223	31.171	1.00	0.00		N
40	MOTA	1667	CA	MET	224	17.462	13.955	30.656	1.00	0.00		С
	ATOM	1668	С	MET	224	17.336	13.567	29.227	1.00	0.00		C
	MOTA	1669	0	MET	224	16.274	13.636	28.638	1.00	0.00		0
	ATOM	1670	CB	MET	224	18.205	12.807	31.356	1.00	0.00		С
AF	ATOM	1671	CG	MET	224	18.579	13.131	32.805	1.00	0.00	_	С
45	ATOM	1672		MET	224	19.743 21.132	11.963 12.454	33.559	1.00	0.00		S
•	ATOM ATOM	1673 1674		MET MET	224 224	15.416	13.502	32.499 31.128	1.00 1.00	0.00		C H
	ATOM	1675		MET	224	18.062	14.859	30.753	1.00	0.00		Н
	ATOM	1676		MET	224	19.139	12.540	30.862	1.00	0.00		Н
50	ATOM	1677		MET	224	17.622	11.886	31.400	1.00	0.00		Н
	ATOM	1678		MET	224	17.667	13.121	33.403	1.00	0.00		Н
	MOTA	1679		MET	224	19.041	14.117	32.825	1.00	0.00		Н
	ATOM	1680		MET	224	20.807	13.236	31.813	1.00	0.00		Н
	ATOM	1681	2HE	MET	224	21.947	12.828	33.117	1.00	0.00		Н
55	MOTA	1682		MET	224	21.476	11.591	31.928	1.00	0.00		Н
	ATOM	1683		ASP	225	18.477	13.306	28.585	1.00	0.00		N
	MOTA	1684		ASP	225	18.574	12.743	27.269	1.00	0.00		С
	MOTA	1685		ASP	225	18.441	11.266	27.412	1.00	0.00		С
6 Λ	ATOM '	1686		ASP	225	17.947	10.561	26.527	1.00	0.00		0
60	ATOM	1687		ASP	225	19.958	13.023	26.656	1.00	0.00		C
	ATOM	1688		ASP ASP	225	21.036 20.926	12.366 12.417	27.527 28.783	1.00 1.00	0.00		С
	MOTA MOTA	1689 1690		ASP	225 225	20.926	12.417	26.930	1.00	0.00		0
	ATOM	1691		ASP	225	19.357	13.526	29.072	1.00	0.00		Н
65	ATOM	1692		ASP		17.761	13.165	26.678	1.00	0.00		Н
	ATOM		1HB	ASP	225	20.120	14.100	26.617	1.00	0.00		Н
	ATOM	1694		ASP	225	19.993	12.607	25.648	1.00	0.00		Н
	MOTA	1695		VAL		18.856	10.834	28.623	1.00	0.00		N

	ATOM	1696	CA	VAL	226	19.158	9.502	29.031	1.00	0.00		С
	MOTA	1697	С	VAL	226	18.347	8.518	28.280	1.00	0.00		С
	MOTA	1698	0	VAL	226	18.884	7.845	27.398	1.00	0.00		0
_	MOTA	1699	CB	VAL	226	18.990	9.296	30.517	1.00	0.00		С
5	MOTA	1700	CG1		226	17.611	9.798	30.968	1.00	0.00		C
	MOTA	1701	CG2		226	19.236	7.806	30.813	1.00	0.00		C
	MOTA	1702	H	VAL	. 226	18.968	11.560	29.344	1.00	0.00		H
	ATOM	1703	HA	VAL	226	20.208	9.267	28.859	1.00	0.00		Н
10	MOTA	1704	HB	VAL	226	19.758	9.844	31.061	1.00	0.00		н
10	ATOM		1HG1		226	17.067	10.189	30.108	1.00	0.00		. H
	ATOM		2HG1		226	17.049	8.973	31.407	1.00	0.00		H
	MOTA		3HG1		226	17.735	10.587	31.708	1.00	0.00		H
	ATOM ATOM		1HG2 2HG2		226 226	19.466 20.073	7.283 7.705	29.884 31.503	1.00 1.00	0.00		H H
15	ATOM		3HG2		226	18.342	7.703	31.261	1.00	0.00		Н
13	ATOM	1711	N	ASP	227	17.039	8.440	28.569	1.00	0.00		N
	ATOM	1712	CA	ASP	227	16.309	7.427	27.888	1.00	0.00		· C
	MOTA	1713	C	ASP	227	14.967	7.350	28.528	1.00	0.00		Č
	ATOM	1714	Ö	ASP	227	14.329	6.298	28.509	1.00	0.00		ő
20	ATOM	1715	СВ	ASP	227	16.952	6.035	28.074	1.00	0.00		Ċ
	ATOM	1716	CG	ASP	227	17.128	5.778	29.562	1.00	0.00		Č
	ATOM	1717		ASP	227	17.242	6.775	30.322	1.00	0.00		ō
	ATOM	1718		ASP	227	17.127	4.585	29.966	1.00	0.00		0
	MOTA	1719	Н	ASP	227	16.590	9.075	29.243	1.00	0.00		H
25	ATOM	1720	HA	ASP	227	16.241	7.728	26.842	1.00	0.00		H
	MOTA	1721	1HB	ASP	227	17.919	6.029	27.571	1.00	0.00		H
	ATOM	1722	2HB	ASP	227	16.292	5.286	27.635	1.00	0.00		H
	ATOM ·	1723	N	GLN	228	14.479	8.462	29.110	1.00	0.00		N
	MOTA	1724	CA	GLN	228	13.185	8.299	29.701	1.00	0.00		С
30	MOTA	1725	С	GLN	228	12.303	9.423	29.286	1.00	0.00		С
	MOTA	1726	0	GLN	228	12.746	10.488	28.871	1.00	0.00		0
	MOTA	1727	CB	GLN	228	13.189	8.205	31.239	1.00	0.00		С
	MOTA	1728	CG	GLN	228 .	13.694	9.436	31.978	1.00	0.00		C
25	MOTA	1729	CD	GLN	228	12.506	10.256	32.470	1.00	0.00		C
35	ATOM	1730		GLN	228	11.525	10.507	31.769	1.00	0.00		0
	ATOM	1731		GLN	228	12.609	10.695	33.753 29.128	1.00	0.00		N
	ATOM	1732 1733	H HA	GLN GLN	228 228	14.993 12.749	9.354 7.356	29.120	1.00	0.00		H H
	ATOM ATOM	1734		GLN	228	13.834	7.373	31.522	1.00	0.00		Н
40	MOTA	1735		GLN	228	12.163	8.032	31.566	1.00	0.00		H
70	ATOM	1736		GLN	228	14.299	10.041	31.303	1.00	0.00		н
	ATOM	1737		GLN	228	14.299	9.125	32.829	1.00	0.00		н
	ATOM	1738			228	11.851	11.256	34.167	1.00	0.00		н
	ATOM		2HE2		228	13.444	10.465	34.310	1.00	0.00		н
45	ATOM	1740	N	VAL	229	10.985	9.216	29.302	1.00	0.00		N
	MOTA	1741	CA	VAL	229	10.265	10.409	29.007	1.00	0.00		С
	MOTA	1742	С	VAL	229	8.94,3	10.261	29.650	1.00	0.00		C
	ATOM	1743	0	VAL	229	8.623	9.181	30.145	1.00	0.00		0
	MOTA	1744	CB	VAL	229	10.113	10.706	27.554	1.00	0.00		С
50	MOTA	1745		VAL	229	8.812	10.093	27.020	1.00	0.00		С
	ATOM	1746		VAL	229	10.297	12.218	27.396	1.00	0.00		С
	MOTA	1747		VAL	229	10.543	8.307	29.502	1.00	0.00		H
	MOTA	1748		VAL	229	10.847	11.227	29.430	1.00	0.00		Н
~ ~	MOTA	1749		VAL	229	10.950	10.289	26.994	1.00	0.00		Н
55	ATOM		1HG1		229	8.293	9.578	27.828	1.00	0.00		Н
	ATOM		2HG1		229	8.173	10.882	26.624	1.00	0.00		· H
	ATOM		3HG1		229 229	9.043	9.382 12.665	26.226	1.00	0.00		H
	ATOM		1HG2		229	10.486 11.142	12.414	28.371 26.736	1.00	0.00		H
60	MOTA MOTA		2HG2 3HG2		229	9.393	12.414	26.736	1.00	0.00		H H
UU	ATOM	1756		PHE	230	8.137	11.336	29.699	1.00	0.00		n N
	ATOM	1757		PHE	230	6.941	11.031	30.407	1.00	0.00		C
	MOTA	1758		PHE	230	6.080	10.040	29.682	1.00	0.00		c
	ATOM	1759		PHE	230	5.747	10.180	28.506	1.00	0.00		0
65	ATOM	1760		PHE	230	6.180	12.166	31.153	1.00	0.00		c
	ATOM	1761		PHE	230	6.085	13.496	30.474	1.00	0.00		. c
	ATOM	1762		PHE		5.393	13.701	29.304	1.00	0.00	•	C
	ATOM	1763		PHE		6.665	14.576	31.097	1.00	0.00		Ċ

	ATOM	1764	CE1	PHE	230 ·	5.326	14.963	28.755	1.00	0.00		С
	ATOM	1765	CE2		230	6.606	15.837	30.560	1.00	0.00		Ċ
	ATOM	1766	CZ	PHE	230	5.934	16.030	29.377	1.00	0.00		C
		1767										
-	MOTA		H	PHE	230	8.354	12.252	29.282	1.00	0.00		H
5	ATOM	1768	HA	PHE	230	7.134	10.603	31.390	1.00	0.00		н
	ATOM	1769		PHE	230	6.692	12,337	32.099	1.00	0.00		H
	MOTA	1770		PHE	230	5.156	11.825	31.311	1.00	0.00		H
	ATOM	1771	HD1		230	4.897	12.865	28.810	1.00	0.00		H
	MOTA	1772	HD2	PHE	230	7.185	14.426	32.042	1.00	0.00		H
10	MOTA	1773	HE1	PHE	230	4.787	15.117	27.820	1.00	0.00		н.
	ATOM	1774	HE2	PHE	230	7.086	16.675	31.065	1.00	0,00		H
	ATOM	1775	HZ	PHE	230	5.882	17.024	28.932	1.00	0.00		н
	ATOM	1776	N	GLN	231	5.783	8.965	30.445	1.00	0.00		N
	ATOM	1777	CA	GLN	231	5.096	7.740	30.141	1.00	0.00		Ċ
15	ATOM	1778	C	GLN	231	3.686	8.004	29.740	1.00	0.00		C
15		1779										
	MOTA		0	GLN	231	3.205	7.413	28.775	1.00	0.00		0
	MOTA	1780	CB	GLN	231	5.053	6.853	31.396	1.00	0.00		C
	MOTA	1781	CG	GLN	231	4.363	5.498	31.242	1.00	0.00		С
	MOTA	1782	CD	GLN	231	4.308	4.877	32.635	1.00	0.00		С
20	MOTA	1783	OE1		231	3.298	4.306	33.045	1.00	0.00		0
	MOTA	1784	NE2	GLN	231	5.432	4.995	33.394	1.00	0.00		N
	ATOM	1785	H	GLN	231	6.107	9.036	31.420	1.00	0.00		H
	ATOM	1786	HA	GLN	231	5.583	7.211	29.322	1.00	0.00		Н
	ATOM	1787	1HB	GLN	231	4.514	7.397	32.171	1.00	0.00		Н
25	ATOM	1788		GLN	231	6.080	6.653	31.699	1.00	0.00		Н
	ATOM	1789		GLN	231	4.974	4.914	30.554	1.00	0.00		н
	ATOM	1790		GLN	231	3.369	5.699	30.840	1.00	0.00		
		1791						34.344		0.00		Н
	ATOM			GLN	231	5.455	4.599		1.00			H
20	ATOM		2HE2		231	6.259	5.479	33.017	1.00	0.00		Н
30	MOTA	1793	N	ASP	232	2.981	8.885	30.475	1.00	0.00		N
	ATOM	1794	CA	ASP	232	1.612	9.139	30.151	1.00	0.00		С
	ATOM	1795	С	ASP	232	1.582	10.076	28.998	1.00	0.00		С
	ATOM	1796	0	ASP	232	1.205	11.239	29.130	1.00	0.00		0
	MOTA	1797	CB	ASP	232	0.813	9.726	31.322	1.00	0.00	•	С
35	ATOM	1798	CG	ASP	232	0.596	8.588	32.310	1.00	0.00		С
	MOTA	1799	OD1	ASP	232	-0.379	7.816	32.104	1.00	0.00		0
	MOTA	1800	OD2	ASP	232	1.392	8.476	33.280	1.00	0.00		Ō
	ATOM	1801	Н	ASP	232	3.425	9.372	31.265	1.00	0.00		Н
	ATOM	1802		ASP	232	1.146	8.187	29.893	1.00	0.00		H
40	ATOM	1803		ASP	232	-0.123	10.094	30.903	1.00	0.00		Н
40	ATOM	1804		ASP	232	1.422	10.527	31.741	1.00	0.00		
		1805	N					27.834				H
	ATOM			LYS	233	1.911	9.483		1.00	0.00		. N
	ATOM	1806	CA	LYS	233	2.059	9.917	26.474	1.00	0.00		. C
4.5	ATOM	1807	С	LYS	233	2.031	11.393	26.237	1.00	0.00		С
45	ATOM	1808	0	LYS	233	2.270	12.236	27.099	1.00	0.00		0
	ATOM	1809	CB	LYS	233	0.968	9.331	25.555	1.00	0.00		С
	ATOM	1810	CG	LYS	233	0.905	7.803	25.516	1.00	0.00		С
	MOTA	1811	CD	LYS	233	-0.411	7.293	24.923	1.00	0.00		C [
	MOTA	1812	CE	LYS	233	-1.647	7.734	25.715	1.00	0.00		С
50	ATOM	1813	NZ	LYS	233	-2.871	7.215	25.066	1.00	0.00		N
	ATOM	1814	H	LYS	233	2.102	8.477	27.947	1.00	0.00		Н
	ATOM	1815	HA	LYS	233	3.022	9.557	26.113	1.00	0.00		н
	ATOM	1816		LYS	233	1.160	9.675	24.538	1.00	0.00		Н
	ATOM	1817		LYS	233	0.000	9.687	25.907	1.00	0.00		Н
55	ATOM	1818		LYS	233	0.990	7.361	26.508	1.00	0.00		
))												H
	ATOM	1819		LYS	233	1.705	7.372	24.913	1.00	0.00		Н
	ATOM	1820		LYS	233	-0.472	6.205	24.876	1.00	0.00		Н
	ATOM	1821		LYS	233	-0.587	7.634	23.902	1.00	0.00		H
	MOTA	1822		LYS	233-		8.822	25.749	1.00	0.00		H
60	ATOM	1823		LYS	233	-1.591	7.347	26.732	1.00	0.00		Н
	ATOM	1824	1HZ	LYS	233	-2.613	6.674	24.228	1.00	0.00		Н
	ATOM	1825		LYS	233	-3.377	6.606	25.724	1.00	0.00		Н
	ATOM	1826		LYS	233	-3.475	8.002	24.793	1.00	0.00		н
	ATOM	1827	N	PHE	234	1.777	11.710	24.954	1.00	0.00		N
65	ATOM	1828	CA	PHE	234	1.759	13.034	24.418	1.00	0.00		C
	ATOM	1829	C	PHE	234	0.709	13.786	25.149	1.00	0.00	•	Ċ
	ATOM	1830	Ö	PHE	234	0.895	14.969	25.441	1.00	0.00		Ö
			CB	PHE	234							
	MOTA	1831	CD	FRE	434	1.375	13.047	22.928	1.00	0.00		С

	ATOM	1832	CG	PHE	234	2.317	12.149	22.193	1.00	0.00		С
	ATOM	1833	CD1	PHE	234	3.608	12.540	21.919	1.00	0.00		С
	MOTA	1834	CD2	PHE	234	1.899	10.909	21.762	1.00	0.00		С
	ATOM	1835	CE1	PHE	234	4.466	11.707	21.239	1.00	0.00		С
5	MOTA	1836	CE2	PHE	234	2.752	10.072	21.081	1.00	0.00		С
	ATOM	1837	CZ	PHE	234	4.040	10.469	20.818	1.00	0.00		С
	ATOM	1838	H	PHE	234	1.579	10.934	24.305	1.00	0.00		H
	ATOM	1839	HA	PHE	234	2.749	13.459	24.582	1.00	0.00		H
	MOTA	1840	1HB	PHE	234	1.456	14.070	22.562	1.00	0.00		H
10	ATOM	1841	2HB	PHE	234	0.350	12.686	22.835	1.00	0.00		H
	MOTA	1842	HD1	PHE	234	3.954	13.520	22.244	1.00	0.00		H
	ATOM	1843	HD2	PHE	234	0.877	10.586	21.963	1.00	0.00		H
	MOTA	1844	HE1	PHE	234	5.486	12.029	21.033	1.00	0.00		H
	MOTA	1845	HE2	PHE	234	2.405	9.093	20.749	1.00	0.00		H
15	MOTA	1846	HZ	PHE	234	4.719	9.808	20.279	1.00	0.00		H
	MOTA	1847	N	GLY	235	-0.428	13.104	25.425	1.00	0.00		N
	ATOM	1848	CA	GLY	235	-1.482	13.680	26.208	1.00	0.00		С
	MOTA	1849	С	GLY	235	-0.783	14.173	27.418	1.00	0.00		С
	ATOM	1850	0	GLY	235	-0.341	13.387	28.255	1.00	0.00		0
20	ATOM	1851		GLY	235	-0.538	12.146	25.062	1.00	0.00		H
	ATOM	1852		GLY	235	-2.238	12.934	26.454	1.00	0.00		н
	ATOM	1853	2HA	GLY	235	-1.972	14.489	25.667	1.00	0.00		H
	ATOM	1854	N	VAL	236	-0.631	15.508	27.495	1.00	0.00		N
	ATOM	1855	CA	VAL	236	0.170	16.056	28.538	1.00	0.00		С
25	MOTA	1856	С	VAL	236	-0.596	16.087	29.799	1.00	0.00		С
	MOTA	1857	0	VAL	236	-0.662	17.109	30.481	1,00	0.00		0
	ATOM	1858	CB	VAL	236	0.648	17.440	28.268	1.00	0.00		C
	MOTA	1859		VAL	236	1.634	17.359	27.103	1.00	0.00		С
	MOTA	1860		VAL	236	-0.576	18.339	28.023	1.00	0.00		С
30	ATOM	1861	Н	VAL	236 .	-1.087	16.125	26.808	1.00	0.00		H
	MOTA	1862	HA	VAL	236	1.062	15.447	28.681	1.00	0.00		H
	ATOM	1863	HB	VAL	236	1.129	17.798	29.177	1.00	0.00		Н
	ATOM		1HG1		236	1.728	16.322	26.778	1.00	0.00		Н
25	ATOM		2HG1		236	1.269	17.967	26.275	1.00	0.00		Н
35	ATOM		3HG1		236	2.607	17.729	27.424	1.00	0.00	•	Н
	MOTA		1HG2		236	-1.486	17.745	28.106	1.00	0.00		H
	ATOM		2HG2		236	-0.594	19.138	28.764	1.00	0.00		Н
	ATOM		3HG2		236	-0.515	18.771	27.024	1.00	0.00		н
40	MOTA	1870		GLU	237	-1.195	14.948	30.156	1.00	0.00		N
40	MOTA	1871	CA	GLU	237	-1.760	14.911	31.454	1.00	0.00		C
	MOTA	1872	C	GLU	237	-0.560	15.055	32.317	1.00	0.00		C
	MOTA	1873	O CB	GLU GLU	237 237	-0.590	15.716	33.347	1.00	0.00		. 0
	ATOM	1874	CG	GLU	237	-2.441 -3.838	13.574 13.423	31.794 31.190	1.00	0.00		C
45	ATOM ATOM	1875 1876		GLU	237	-4.819	14.039	32.179	1.00 1.00	0.00		C
43					237							C
	MOTA MOTA	1877 1878		GLU GLU	237	-4.564 -5.825	15.189 13.359	32.625 32.515	1.00	0.00		0
	ATOM	1879		GLU	237	-1.243	14.138	29.520	1.00	0.00		O H
	ATOM	1880		GLU	237	-2.474	15.721	31.599	1.00	0.00		
50	ATOM	1881		GLU	237	-2.579	13.721	32.862	1.00	0.00		H H
50	ATOM	1882		GLU	237	-1.890	12.699	31.446	1.00	0.00		Н
	ATOM	1883		GLU	237	-4.013	12.355	31.056	1.00	0.00		H
	ATOM	1884		GLU	237	-3.832	13.955	30.238	1.00	0.00		Н
	ATOM	1885		THR	238	0.559	14.451	31.880	1.00	0.00		N
55	ATOM	1886		THR	238	1.759	14.474	32.658	1.00	0.00		Č
-	ATOM	1887		THR	238	2.244	15.878	32.867	1.00	0.00		C
	ATOM	1888		THR	238	2.386	16.320	34.006	1.00	0.00		ő
	ATOM	1889		THR	238	2.848	13.716	31.974	1.00	0.00		c
	ATOM	1890		THR	238	3.071	14.280	30.692	1.00	0.00		ő
60	ATOM	1891		THR	238	2.418	12.248	31.829	1.00	0.00		c
	ATOM	1892		THR	238	0.551	13.964	30.972	1.00	0.00		н
	ATOM	1893		THR	238	1.601	14.029	33.640	1.00	0.00		H
	ATOM	1894		THR	238	3.755	13.781	32.574	1.00	0.00		Н
	ATOM	1895		THR	238	3.511	15.205	30.795	1.00	0.00		н
65	ATOM		1HG2		238	1.425	12.115	32.259	1.00	0.00		н
-	ATOM		2HG2		238	2.394	11.978	30.773	1.00	0.00		н
	ATOM		3HG2		238	3.128	11.607	32.351	1.00	0.00		Н
	ATOM	1899		LEU	239	2.493	16.631	31.778	1.00	0.00		N

											_
	MOTA	1900	CA	LEU	239	3.068	17.938 ·		1.00	0.00	С
	ATOM	1901	С	LEU	239	2.048	18.842	32.531	1.00	0.00	С
	MOTA	1902	0	LEU	239	2.335	19.584	33.470	1.00	0.00	0
	MOTA	1903	CB	LEU	239	3.477	18.540	30.565	1.00	0.00	С
5	MOTA	1904	CG	LEU	239	4.523	19.673	30.645	1.00	0.00	С
	MOTA	1905	CD1	LEU	239	4.601	20.450	29.321	1.00	0.00	С
	ATOM	1906	CD2	LEU	239	4.347	20.565	31.882	1.00	0.00	Ċ
	ATOM	1907	Н	LEU	239	2.270	16.268	30.840	1.00	0.00	н
	ATOM	1908	HA	LEU	239	3.941	17.863	32.570	1.00	0.00	н
10	MOTA	1909		LEU					1.00	0.00	
10					239	. 2.584	18.951	30.093			H
	MOTA	1910		LEU	239	3.903	17.743	29.955	1.00	0.00	H
	MOTA	1911	HG	LEU	239	5.516	19.276	30.856	1.00	0.00	Н
	MOTA	1912			239	3.893	20.026	28.608	1.00	0.00	H
	MOTA	1913			239	4.354	21.496	29.498	1.00	0.00	H
15	ATOM	1914			239	5.610	20.378	28.916	1.00	0.00	H
	MOTA	1915	1HD2	LEU	239	3.499	20.210	32.468	1.00	0.00	Н
	MOTA	1916	2HD2	LEU	239	5.250	20.526	32.490	1.00	0.00	Н
	MOTA	1917	3HD2	LEU	239	4.165	21.592	31.566	1.00	0.00	Н
	ATOM	1918	N	GLY	240	0.810	18.774	32.009	1.00	0.00	N
20	ATOM	1919	CA	GLY	240	-0.223	19.663	32.444	1.00	0.00	C
	ATOM	1920	С	GLY	240	-0.528	19.425	33.885	1.00	0.00	c
	ATOM	1921	ō	GLY	240	-0.675	20.370	34.658	1.00	0.00	ō
	ATOM	1922	н	GLY	240	0.602	18.071	31.285	1.00	0.00	н
	ATOM	1923		GLY	240	-1.127	19.497	31.859	1.00	0.00	
25	ATOM	1924									н
23				GLY	240	0.096	20.697	32.316	1.00	0.00	Н
	ATOM	1925	N	GLU	241	-0.636	18.149	34.289	1.00	0.00	N
	ATOM	1926	CA	GLU	241	-1.010	17.853	35.642	1.00	0.00	С
	MOTA	1927	С	GLU	241	0.040	18.318	36.594	1.00	0.00	С
	ATOM	1928	0	GLU	241	-0.278	18.862	37.650	1.00	0.00	0
30	MOTA	1929	CB	GLU	241	-1.230	16.361	35.924	1.00	0.00	С
	ATOM	1930	CG	GLU	241	-1.628	16.065	37.370	1.00	0.00	С
	ATOM	1931	CD	GLU	241	-1.804	14.559	37.469	1.00	0.00	С
	MOTA	1932	OE1	GLU	241	-1.731	13.902	36.397	1.00	0.00	0
	ATOM	1933	OE2	GLU	241	-2.014	14.044	38.601	1.00	0.00	0
35	ATOM	1934	Η.	GLU	241	-0.450	17.382 -	- 33.627	1.00	0.00	H
	ATOM	1935	HA	GLU	241	-1.946	18.347	35.900	1.00	0.00	H
	ATOM	1936	1HB	GLU	241	-0.347	15.748	35.741	1.00	0.00	н
	ATOM	1937	2HB	GLU	241	-2.016	15.914	35.315	1.00	0.00	н
	MOTA	1938	1HG	GLU	241	-2.558	16.602	37.550	1.00	0.00	н
40	ATOM	1939		GLU	241	-0.812	16.427	37.995	1.00	0.00	H
	ATOM	1940	N	SER	242	1.327	18.111	36.263	1.00	0.00	n N
	ATOM	1941	CA	SER	242	2.331	18.491	37.212	1.00	0.00	C
	ATOM	1942	C	SER	242	2.290	19.972	37.418	1.00	0.00	c
	ATOM	1943	Ö	SER	242	2.237	20.450	38.551	1.00	0.00	0
45		1944	СВ	SER		. 3.752					_
43	ATOM				242			36.756			C
	ATOM	1945	OG	SER	242	3.879	16.704	36.680	1.00	0.00	0
	ATOM	1946	Н	SER	242	1.582	17.693	35.357	1.00	0.00	н
	ATOM	1947	HA	SER	242	2.144	17.988	38.161	1.00	0.00	Н
	MOTA	1948		SER	242	4.483	18.502	37.466	1.00	0.00	н
50	ATOM	1949		SER	242	3.951	18.545	35. 7 73	1.00	0.00	Н
	ATOM	1950	HG	SER	242	2.944	16.278	36.604	1.00	0.00	H
	MOTA	1951	N	VAL	243	2.292	20.747	36.317	1.00	0.00	N
	ATOM	1952	CA	VAL	243	2.308	22.172	36.473	1.00	0.00	С
	ATOM	1953	С	VAL	243	1.029	22.598	37.118	1.00	0.00	С
55	MOTA	1954	0	VAL	243	1.021	23.439	38.016	1.00	0.00	0
	MOTA	1955	CB	VAL	243	2.446	22.904	35.165	1.00	0.00	С
	ATOM	1956	CG1	VAL	243	2.403	24.420	35.439	1.00	0.00	C
	MOTA	1957		VAL	243	3.745	22.442	34.483	1.00	0.00	Ċ
	ATOM	1958	Н	VAL	243	2.282	20.323	35.378	1.00	0.00	н
60	ATOM	1959	HA	VAL	243	3.156	22.445	37.100	1.00	0.00	н
	ATOM	1960	HB	VAL	243	1.620	22.615	34.513	1.00	0.00	H
	ATOM		1HG1		243	2.283	24.593	36.508	1.00	0.00	
			2HG1		243	3.331					Н
	MOTA						24.877	35.098	1.00	0.00	Н
65	ATOM		3HG1		243	1.563	24.862	34.903	1.00	0.00	н
65	MOTA		1HG2		243	4.242	21.702	35.110	1.00	0.00	н
	ATOM		2HG2		243	3.510	21.997	33.516	1.00	0.00	H
	ATOM		3HG2		243	4.404	23.297	34.338	1.00	0.00	Н
	MOTA	T367	N .	АДА	244	-0.089	21.991	36.686	1.00	0.00	N

	MOTA	1968	CA	ALA	244	-1.381	22.364	37.178	1.00	0.00		С
	MOTA	1969	С	ALA	244	-1.464	22.089	38.641	1.00	0.00		С
	MOTA	1970		ALA	244	-1.979	22.906	39.397	1.00	0.00		0
_	MOTA	1971		ALA	244	-2.522	21.587	36.498	1.00	0.00		С
5	MOTA	1972		ALA	244	-0.015	21.240	35.984	1.00	0.00		Н
	MOTA	1973		ALA	244	-1.550	23.426	37.004	1.00	0.00		Н
	MOTA	1974 1		ALA	244	-2.105	20.896	35.764	1.00	0.00		Н
	MOTA	1975 2		ALA	244 244	-3.078	21.026	37.249	1.00	0.00		H H
10	MOTA	1976 3 197.7		ALA GLN	244	-3.191 -0.932	22.287	35.997 39.095 -	1.00	0.00	·	n N
10	ATOM ATOM	1978		GLN	245	-0.932 -1.081	20.945 20.586	40.472	1.00	0.00		C
	ATOM	1979		GLN	245	-0.434	21.623	41.326	1.00	0.00		C
	ATOM	1980		GLN	245	-0.974	22.004	42.364	1.00	0.00		ŏ
	ATOM	1981		GLN	245	-0.444	19.224	40.788	1.00	0.00		Č
15	ATOM	1982		GLN	245	-0.680	18.744	42.219	1.00	0.00		Ċ
	ATOM	1983	CD	GLN	245	-0.143	17.325	42.312	1.00	0.00		Ċ
	ATOM	1984	OE1		245	0.422	16.805	41.351	1.00	0.00		0
	ATOM	1985	NE2		245	-0.323	16.683	43.496	1.00	0.00		N
	ATOM	1986	H	GLN	245	-0.416	20.325	38.453	1.00	0.00		Н
20	ATOM	1987	HA	GLN	245	-2.141	20.521	40.715	1,00	0.00		Н
	MOTA	1988 1	1HB	GLN	245	0.632	19.305	40.637	1.00	0.00		H
	ATOM	1989 2	2HB	GLN	245	-0.869	18.481	40.113	1.00	0.00		Н
	MOTA	1990 :		GLN	245	-1.754	18.779	42.398	1.00	0.00		Н
	MOTA	1991 2		GLN	245	-0.140	19.422	42.880	1.00	0.00		Н
25	MOTA	1992			245	0.020	15.719	43.616	1.00	0.00		Н
	ATOM	1993 2			. 245	-0.802	17.160	44.272	1.00	0.00		H
	MOTA	1994	N	LEU	246	0.738	22.131	40.904	1.00	0.00		N
	MOTA	1995	CA	LEU	246	1.420	23.068	41.744	1.00	0.00		C
20	ATOM	1996	C	LEU	246	0.544	24.255	41.995	1.00	0.00		С
30	MOTA	1997	0	LEU	246	0.235 2.728	24.566 23.589	43.143 41.122	1.00	0.00		0
	ATOM	1998 1999	CB CG	LEU	246 246	3.804	22.505	40.924	1.00	0.00		С
	ATOM ATOM	2000	CD1		246	5.081	23.092	40.304	1.00	0.00		C
	ATOM	2000	CD2		246	4.072	21.740	42.227	1.00	0.00		C
35	ATOM	2002	Н	LEU	246	1.136	21.851	39.996	1.00	0.00~		Н
55	ATOM	2003	HA	LEU	246	1.667	22.598	42.696	1.00	0.00		Н
	ATOM	2004		LEU	246	3.141	24.351	41.781	1.00	0.00		Н
	ATOM	2005		LEU	246	2.498	24.012	40.144	1.00	0.00		Н
	ATOM	2006	HG ·	LEU	246	3.451	21.712	40.263	1.00	0.00		H
40	ATOM	2007	1HD1	LEU	246	4.946	24.160	40.137	1.00	0.00		H
	MOTA	2008	2HD1	LEU	246	5.920	22.933	40.981	1.00	0.00		Н
	MOTA	2009			246	5.283	22.598	39.353	1.00	0.00		H
	MOTA	2010			246	3.435	22.135	43.018	1.00	0.00		H
4.5	ATOM	2011			246	3.853	20.682	42.079	1.00	0.00		Н
45	ATOM	2012			246	5.117		42.510	1.00	0.00		Н
	ATOM	2013	N	GLN	247	0.093	24.944	40.933	1.00	0.00		N
	MOTA	2014	CA C	GLN GLN	247 247	-0.684 -2.052	26.129 25.791	41.168 41.680	1.00	0.00		C
	ATOM ATOM	2015 2016	0	GLN	247	-2.532	26.370	42.654	1.00	0.00		0
50	MOTA	2017	CB	GLN	247	-0.881	26.986	39.907	1.00	0.00		c
50	MOTA	2018	CG	GLN	247	-1.694	26.296	38.811	1.00	0.00		C
	ATOM	2019	CD	GLN	247	-1.848	27.279	37.660	1.00	0.00		Č
	ATOM	2020		GLN	247	-2.517	26.995	36.668	1.00	0.00		ŏ
	ATOM	2021		GLN	247	-1.214	28.474	37.797	1.00	0.00		N
55	MOTA	2022	Н	GLN	247	0.299	24.630	39.974	1.00	0.00		Н
	MOTA	2023	HА	GLN	247	-0.207	26.775	41.904	1.00	0.00		Н
	MOTA	2024	1HB	GLN	247	0.100	27.223	39.495	1.00	0.00		H
	MOTA	2025		GLN	247	-1.407	27.897	40.189	1.00	0.00		H
	ATOM	2026		GLN	247	-2.662	26.030	39.233	1.00	0.00		H
60	MOTA	2027		GLN	247	-1.144	25.408	38.499	1.00	0.00		H
	ATOM	2028			247	-1.284	29.182	37.052	1.00	0.00		H
•	MOTA	2029			247	-0.663	28.670	38.645	1.00	0.00		Н
	ATOM	2030	N	ALA	248	-2.695	24.812	41.023	1.00	0.00		N
65	ATOM	2031	CA	ALA	248	-4.067 -4.356	24.432 23.822	41.207 42.539	1.00	0.00		С
ÛĴ	MOTA MOTA	2032 2033	C 0	ALA ALA	248 248	-4.336 -5.467	24.009	43.033	1.00	0.00		С 0
	ATOM	2033	CB	ALA	248	-4.564	23.434	40.146	1.00	0.00		C
	ATOM	2035	Н	ALA	248	-2.153	24.285	40.322	1.00	0.00		н
			-			· · · · -						

	ATOM	2036	HA	ALA	248 .	-4.686	25.323	41.108	1.00	0.00		H
	MOTA		1HB	ALA	248	-3.755	23.209	39.450	1.00	0.00		Н
	MOTA	2038	2HB	ALA	248	-4.887	22.514	40.634	1.00	0.00		H
_	MOTA	2039	3HB	ALA	248	-5.401	23.869	39.600	1.00	0.00		H
5	MOTA	2040	N	TRP	249	-3.392	23.071	43.125	1.00	0.00		N
	ATOM	2041	CA	TRP	249	-3.588	22.300	44.332	1.00	0.00		C
	MOTA MOTA	2042 2043	C	TRP	249	-4.401	23.052	45.341	1.00	0.00		C
	ATOM	2043	O CB	TRP	249 249	-4.442 -2.297	24.282 21.836	45.333 45.028	$1.00 \\ 1.00$	0.00		. C
10	ATOM	2045	CG	TRP	249	2.564	20.972	46.241	1.00	0.00		C
	ATOM	2046	CD1		249	-2.739	21.331	47.546	1.00	0.00		c
	ATOM	2047	CD2		249	-2.704	19.543	46.192	1.00	0.00		c
	ATOM	2048	NE1	TRP	249	-2.978	20.216	48.314	1.00	0.00		N
	MOTA	2049	CE2	TRP	249	-2.959	19.109	47.493	1.00	0.00		С
15	ATOM	2050	CE3	TRP	249	-2.628	18.666	45.150	1.00	0.00		С
	MOTA	2051	CZ2	TRP	249	-3.143	17.783	47.771	1.00	0.00		С
	MOTA	2052	CZ3		249	-2.812	17.330	45.433	1.00	0.00		С
	ATOM .	2053	CH2		249	-3.064	16.898	46.718	1.00	0.00		С
20	ATOM	2054	H	TRP	249	-2.462	23.048	42.682	1.00	0.00		H
20	ATOM	2055	HA	TRP	249	-4.108	21.363	44.130	1.00	0.00	•	Н
	MOTA MOTA	2056 2057	1HB 2HB	TRP TRP	249 249	-1.685 -1.654	22.666 21.245	45.379 44.374	1.00	0.00		Н
	ATOM	2058	HD1		249	-2.695	22.352	47.924	1.00	0.00		H H
	ATOM	2059	HE1		249	-3.143	20.209	49.330	1.00	0.00		H
25	ATOM	2060	HE3		249	-2.429	19.008	44.134	1.00	0.00		Н
	ATOM	2061	HZ2		249	-3.344	17.439	48.785	1.00	0.00		Н
	ATOM	2062	HZ3		249	-2.757	16.600	44.625	1.00	0.00		Н
	ATOM	2063	HH2	TRP	249	-3.203	15.833	46.904	1.00	0.00		Н
	MOTA	2064	N	TRP	250	-5.066	22.282	46.230	1.00	0.00		N
30	ATOM	2065	CA	TRP	250	-5.997	22.750	47.219	1.00	0.00		С
	ATOM	2066	C	TRP	250	-5.505	24.012	47.835	1.00	0.00		С
	ATOM	2067	0	TRP	250	-4.711	24.006	48.775	1.00	0.00		0
	ATOM	2068 2069	CB	TRP TRP	250 250	-6.252 -7.228	21.725 22.179	48.339	1.00	0.00		C
35	MOTA MOTA	2009	CD1	TRP	250 250	-7.228 -7.802	23.402	49.396 49.587	1.00	0.00		C
))	ATOM	2070		TRP	250	-7.744	21.323	50.426	1.00	0.00		C
	ATOM	2072		TRP	250	-8.646	23.361	50.672	1.00	0.00		Ŋ
	ATOM	2073		TRP	250	-8.620	22.086	51.197	1.00	0.00		C
	MOTA	2074	CE3	TRP	250	-7.510	20.007	50.703	1.00	0.00	• .	C
40	MOTA	2075		TRP	250	-9.280	21.540	52.262	1.00	0.00		С
	MOTA	2076		TRP	250	-8.174	19.460	51.779	1.00	0.00		С
	ATOM	2077	CH2		250	-9.043	20.212	52.543	1.00	0.00		C
	ATOM	2078	H	TRP	250	-4.889	21.267	46.195	1.00	0.00		Ĥ
45	MOTA	2079 2080	HA 1 U D	TRP TRP	250 250	-6.968 -5.303	22.940 21.518	46.763 48.834	1.00	0.00		H
43	ATOM ATOM	2081		TRP	250	-6.655	20.819	47.886	1.00	0.00		H H
	ATOM	2082		TRP	250	-7.618	24.281	48.970	1.00	0.00		Н
• .	ATOM	2083		TRP	250	-9.203	24.149	51.031	1.00	0.00		H
	ATOM	2084	HE3	TRP	250	-6.825	19.413	50.097	1.00	0.00		Н
50	MOTA	2085	HZ2	TRP	250 .	-9.967	22.132	52.865	1.00	0.00		H
	MOTA	2086		TRP	250	-8.009	18.412	52.031	1.00	0.00		H
	MOTA	2087		TRP	250	-9.552	19.745	53.386	1.00	0.00		H
	ATOM	2088	N	TYR	251	-5.973	25.140	47.277	1.00	0.00		N
55	ATOM	2089	CA	TYR	251	-5.632	26.446	47.746	1.00	0.00		C
55	atom Atom	2090 2091	С 0	TYR TYR	251 251	-6.001 -6.391	27.329 26.827	46.598	1.00	0.00		C
	ATOM	2091	СВ	TYR	251	-4.122	26.588	45.546 48.038	1.00	0.00		0
	ATOM	2093	CG	TYR	251	-3.855	27.870	48.753	1.00	0.00		c
	ATOM	2094		TYR	251	-4.004	27.935	50.120	1.00	0.00		c
60	ATOM	2095		TYR	251	-3.457	29.002	48.078	1.00	0.00		Č
	ATOM	2096		TYR	251	-3.762	29.104	50.802	1.00	0.00		c
	ATOM	2097		TYR	251	-3.213	30.175	48.753	1.00	0.00		С
	MOTA	2098	CZ	TYR	251	-3.365	30.227	50.118	1.00	0.00		С
	MOTA	2099		TYR	251	-3.116	31.430	50.814	1.00	0.00		0
65	ATOM	2100		TYR	251	-6.609	25.060	46.471	1.00	0.00		Н
	ATOM	2101	HA	TYR		-6.191	26.697	48.646	1.00	0.00		Н
	ATOM ATOM	2102 2103		TYR TYR	251 251	-3.557 -3.780	26.581 25.761	47.105 48.660	1.00	0.00		H H
	VIOL	2103	CILD	TTL	491	-3.700	27.101	40.000		5.50		п

	ATOM	2104	HD1		251	-4.318	27.047	50.669	1.00	0.00		H
	ATOM	2105	HD2	TYR	251	-3.333	28.968	46.995	1.00	0.00		H
	ATOM	2106	HE1	TYR	251	-3.885	29.139	51.884	1.00	0.00		Н
	MOTA	2107	HE2	TYR	251	-2.899	31.063	48.205	1.00	0.00		H
5	MOTA	2108	HH	TYR	251	-2.228	31.838	50.488	1.00	0.00		н
	ATOM	2109	N	LYS	252	-5.927	28.662	46.765	1.00	0.00		N
	ATOM	2110	CA	LYS	252	-6.222	29.485	45.633	1.00	0.00		С
	ATOM	2111	C	LYS	252	-5.202	29.112	44.610	1.00	0.00		Ċ
	ATOM	2112	Ö	LYS	252	-5.524	28.799	43.465	1.00	0.00		Õ
10						-6.079						
10	MOTA	2113	CB	LYS	252		30.989	45.931	1.00	0.00		C
	ATOM	2114	CG	LYS	252	-7.160	31.532	46.869	1.00	0.00		С
	MOTA	2115	CD	LYS	252	-7.078	30.987	48.297	1.00	0.00		С
	MOTA	2116	CE	LYS	252	-6.052	31.707	49.174	1.00	0.00		С
	ATOM	2117	NZ	LYS	252	-6.089	31.160	50.549	1.00	0.00		N
15	ATOM	2118	H	LYS	252	-5.668	29.073	47.672	1.00	0.00		Н
	ATOM	2119	HA	LYS	252	-7.240	. 29.219	45.350	1.00	0.00		H
	ATOM	2120	1HB	LYS	252	-6.133	31.616	45.041	1.00	0.00		Н
	ATOM	2121		LYS	252	-5.133	31.250	46.405	1.00	0.00		Н
	ATOM	2122		LYS	252	-8.134	31.258	46.464	1.00	0.00		Н
20	ATOM	2123		LYS	252	-7.057	32.615	46.920	1.00	0.00		Н
20	ATOM	2124		LYS	252	-6.801	29.934	48.350	1.00	0.00		Н
		2125		LYS	252	-8.015		48.848		0.00		H
	ATOM						31.057		1.00			
	MOTA	2126		LYS	252	-6.276	32.773	49.211	1.00	0.00		H
	ATOM	2127		LYS	252	-5.050	31.569	48.765	1.00	0.00		Η.
25	MOTA	2128		LYS	252	-6.799	30.416	50.604	1.00	0.00		Н
	MOTA	2129		LYS	252	-5.166	30.771	50.789	1.00	0.00		H
	ATOM	2130	3HZ	LYS	252	-6.327	31.911	51.211	1.00	0.00		H
	ATOM	2131	N	ALA	253	-3.928	29.121	45.036	1.00	0.00		N
	ATOM	2132	CA	ALA	253	-2.828	28.699	44.224	1.00	0.00		С
30	ATOM	2133	С	ALA	253	-1.768	28.363	45.213	1.00	0.00		С
	ATOM	2134	0	ALA	253	-1.332	29.233	45.965	1.00	0.00		0
	ATOM	2135	CB	ALA	253	-2.270	29.807	43.315	1.00	0.00		С
	MOTA	2136	Н	ALA	253 .	-3.733	29.447	45.993	1.00	0.00		Н
	ATOM	2137	HA	ALA	253	-3.100	27.835	43.617	1.00	0.00		H
35	ATOM	2138	1HB	ALA-	253	-2.837	30.724	43.470	1.00	0.00		Н
55	ATOM	2139		ALA	253	-1.221	29.982	43.557	1.00	0.00		Н
	ATOM	2140		ALA	253	-2.355	29.499	42.272	1.00	0.00		H
	ATOM	2141	N	ASP	254	-1.325	27.092	45.273	1.00	0.00		N
	ATOM	2142	CA	ASP	254	-0.364	26.857	46.306	1.00	0.00		C
40		. –				0.945				0.00		
40	MOTA	2143	С	ASP	254		26.444	45.725	1.00		•	C
	ATOM	2144	0	ASP	254	1.185	25.290	45.380	1.00	0.00		0
	ATOM	2145	CB	ASP	254	-0.826	25.827	47.354	1.00	0.00		С
•	MOTA	2146	CG	ASP	254	-1.081	24.488	46.688	1.00	0.00		С
	MOTA	2147		ASP	254	-1.331	24.467	45.453	1.00	0.00		0
45	MOTA	2148	OD2	ASP	254	-1.024	23.463	47.416		0:00		0
	ATOM	2149	H	ASP	254	-1.649	26.354	44.631	1.00	0.00		H
	ATOM	2150	HA	ASP	254	-0.204	27.758	46.897	1.00	0.00		H
	ATOM	2151	1HB	ASP	254	-1.746	26.166	47.829	1.00	0.00		H
	ATOM	2152		ASP	254	-0.058	25.702	48.117	1.00	0.00		H
50	ATOM	2153	N	PRO	255	1.799	27.413	45.598	1.00	0.00		N.
	ATOM	2154	CA	PRO	255	3.131	27.150	45.144	1.00	0.00		C
	ATOM	2155	C	PRO	255	3.913	26.561	46.271	1.00	0.00		Ċ
	ATOM	2156	ŏ	PRO	255	5.002	26.041	46.034	1.00	0.00		ŏ
	ATOM	2157	СВ	PRO	255	3.682	28.485	44.632	1.00	0.00		c
55			CG	PRO	255	2.680	29.543	45.131	1.00	0.00		
22	ATOM	2158										С
	ATOM	2159	CD	PRO	255	1.368	28.760	45.269	1.00	0.00		.C.
	MOTA	2160	HA	PRO	255	3.084	26.448	44.310	1.00	0.00		Н
	ATOM	2161		PRO	255	3.704	28.380	43.547	1.00	0.00		Н
	ATOM	2162		PRO	255	4.670	28.570	45.083	1.00	0.00		. Н
60	ATOM	2163		PRO	255	2.587	30.360	44.416	1.00	0.00		Н
	ATOM	2164	2HG	PRO	255	2.999	29.964	46.083	1.00	0.00		H
	MOTA	2165		PRO	255	0.737	29.170	46.057	1.00	0.00		Н
	MOTA	2166		PRO	255	0.795	28.769	44.341	1.00	0.00		H
	ATOM	2167	N	ASN	256	3.382	26.645	47.505	1.00	0.00		N
65	ATOM	2168	CA	ASN	256	4.103	26.175	48.650	1.00	0.00		C
	ATOM	2169	C	ASN	256	4.282	24.693	48.576	1.00	0.00		Ċ
	ATOM	2170	ŏ	ASN	256	5.364	24.186	48.865	1.00	0.00		ō
	ATOM	2171	СВ	ASN	256 ·	3.409	26.489	49.988	1.00	0.00		c
	014	~ - / 1						-3.555		50		_

	ATOM	2172	CG	ASN	256	2.086	25.743	50.031	1.00	0.00	c
	ATOM	2173		ASN	256	1.248	25.897	49.145	1.00	0.00	Č
	ATOM	2174	ND2		256	1.893	24.904			0.00	<i>y</i> .
								51.084	1.00		
_	ATOM	2175	H	ASN	256	2.444	27.052	47.627	1.00	0.00	F
5	MOTA	2176	HA	ASN	256	5.086	26.643	48.695	1.00	0.00	H
	MOTA	2177		ASN	256	3.241	27.564	50.046	1.00	0.00	- F
	MOTA	2178		ASN	256	4.058	26.160	50.799	1.00	0.00	H
	ATOM	2179	1HD2	ASN	256	1.017	24.367	51.161	1.00	0.00	H
	MOTA	2180	2HD2	ASN	256	2.622	24.805	51.804	1.00	0.00	F
10	MOTA	2181	N	ASP	257	3.235	23.948	48.173	1.00	0.00	. 18
	ATOM	2182	CA	ASP	257	3.373	22.521	48.199	1.00	0.00	
	ATOM	2183	C								
				ASP	257	4.172	22.062	47.023	1.00	0.00	
	MOTA	2184	0	ASP	257	4.248	22.734	45.995	1.00	0.00	C
	MOTA	2185	CB	ASP	257	2.036	21.752	48.210	1.00	0.00	C
15	ATOM	2186	CG	ASP	257	1.274	22.042	46.925	1:00	0.00	C
	MOTA	2187	OD1	ASP	257	1.721	22.934	46.156	1.00	0.00	C
	MOTA	2188	OD2	ASP	257	0.230	21.375	46.697	1.00	0.00	C
	MOTA	2189	H	ASP	257	2.360	24.390	47.855	1.00	0.00	H
	ATOM	2190	HA	ASP	257	3.880	22.211	49.112	1.00	0.00	F
20	ATOM	2191		ASP	257	1.440	22.071	49.065	1.00	0.00	
20	ATOM	2192									ŀ
				ASP	257	2.233	20.682	48.282	1.00	0.00	H
	ATOM	2193	N	PHE	258	4.823	20.892	47.190	1.00	0.00	N
	ATOM	2194	CA	PHE	258	5.592	20.266	46.156	1.00	0.00	C
	MOTA	2195	С	PHE	258	4.993	18.915	45.937	1.00	0.00	C
25	MOTA	2196	0	PHE	258	4.476	18.303	46.870	1.00	0.00	C
	ATOM	2197	CB	PHE	258	7.071	20.059	46.515	1.00	0.00	C
	MOTA	2198	CG	PHE	- 258	7.636	19.177	45.458	1.00	0.00	Ċ
	MOTA	2199		PHE	258	7.941	19.671	44.211	1.00	0.00	Č
	ATOM	2200		PHE	258	7.855	17.846	45.722	1.00	0.00	Č
30	ATOM	2201		PHE	258						
30						8.460	18.842	43.243	1.00	0.00	C
	ATOM	2202		PHE	258	8.375	17.016	44.760	1.00	0.00	C
	MOTA	2203	CZ	PHE	258	8.679	17.514	43.517	1.00	0.00	, , (
	MOTA	2204	H	PHE	258		20.425	48.106	1.00	0.00	. F
	MOTA	2205	HA	PHE	258 [,]	5.505	20.902	45.275	1.00	0.00	F
35-	MOTA	2206	1HB	PHE	258	7.082	19.591	47.499	1.00	0.00	F
	ATOM	2207	2HB	PHE	258	7.525	21.049	46.518	1.00	0.00	F
	MOTA	2208	HD1	PHE	258	7.770	20.724	43.988	1.00	0.00	. F
	ATOM	2209		, PHE	258	7.613	17.445	46.706	1.00	0.00	ŀ
	ATOM	2210		PHE	258	8.697	19.240	42.256	1.00	0.00	ŀ
40	ATOM	2211		PHE	258	8.546	15.962				
70								44.982	1.00	0.00	ŀ
	MOTA	2212	HZ	PHE	258	9.092	16.858	42.750	1.00	0.00	I
	ATOM	2213	N	THR	259	5.027	18.416	44.685	1.00	0.00	Ŋ
	MOTA	2214	CA	THR	259	4.421	17.142	44.438	1.00	0.00	C
	MOTA	2215	С	THR	259	5.332	16.310	43.599	1.00	0.00	
45	ATOM	2216	.0	THR	259	6.119	16.829	42.810	1.00	0.00	C
	ATOM	2217	CB	THR	259	3.119	17.232	43.697	1.00	0.00	C
	ATOM	2218		THR	259	2.494	15.958	43.645	1.00	0.00	
	ATOM	2219		THR	259	3.392	17.757	42.279	1.00	0.00	Č
	ATOM	2220	Н	THR	259	5.479	18.939	43.922	1.00	0.00	
50	ATOM	2221	HA	THR	259	4.238		45.385			H
50							16.635		1.00	0.00	H
	ATOM	2222	HB	THR	259	2.458	17.915	44.229	1.00	0.00	H
	ATOM	2223		THR	.259	1.471	16.077		1.00	0.00	H
	MOTA		1HG2		259	4.460	17.935	42.156	1.00	0.00	H
	MOTA	2225	2HG2	THR	259	3.061	17.019	41.547	1.00	0.00	H
55	MOTA	2226	3HG2	THR	259	2.848	18.689	42.125	1.00	0.00	F
	MOTA	2227	N	TYR	260	5.261	14.975	43.780	1.00	0.00	N
	ATOM	2228	CA	TYR	260	6.022	14.083	42.957	1.00	0.00	
	ATOM	2229	C	TYR	260	5.075	13.034	42.471	1.00	0.00	Ċ
	ATOM	2230		TYR		4.032	12.797	43.079	1.00	0.00	
60	ATOM	2230	СВ	TYR	260	7.210					C
UU							13.401	43.665	1.00	0.00	C
	MOTA	2232	CG	TYR	260	6.732		44.769	1.00	0.00	C
	ATOM	2233		TYR		6.376	13.049	45.988	1.00	0.00	C
	MOTA	2234		TYR		6.661	11:158	44.588	1.00	0.00	C
	ATOM	2235	CE1	TYR	260	5.945	12.233	47.007	1.00	0.00	C
65	ATOM	2236	CE2	TYR	260	6.231	10.336	45.603	1.00	0.00	Ċ
	MOTA	2237	CZ	TYR	260	5.872	10.874	46.815	1.00	0.00	Ċ
	ATOM	2238	OH	TYR		5.431	10.033	47.859	1.00	0.00	Č
	ATOM	2239		TYR		4.652	14.592	44.518	1.00	0.00	H
			-•	•							

	N TO OM	2240 113	mvn	260	C 427	14 670	40 120	1 00	0 00	73
	ATOM	2240 HA	TYR	· 260	6.427	14.679	42.139	1.00	0.00	H
	ATOM	2241 1HB	TYR	260	7.884	14.144	44.091	1.00	0.00	H
	ATOM	2242 2HB	TYR	260	7.778	12.789	42.963	1.00	0.00	H
_	MOTA		TYR	260	6.436	14.125	46.147	1.00	0.00	H
5	MOTA	2244 HD2	TYR	260	6.948	10.725	43.629	1.00	0.00	H
	MOTA	2245 HE1	TYR	260	5.661	12.663	47.967	1.00	0.00	H
	MOTA	2246 HE2	TYR	260	6.175	9.258	45.446	1.00	0.00	н
	MOTA	2247 HH	TYR	260	4.745	10.536	48.439	1.00	0.00	H
	ATOM	2248 N	GLU	261	5.408	12.390	41.336	1.00	0.00	N
10	ATOM	2249 CA	GLU	261	4.521	11.412	40.775	1.00	0.00	C
10	ATOM		GLU							
				261	5.158	10.065	40.886	1.00	0.00	C
	ATOM	2251 0	GLU	261	6.286	9.925	41.356	1.00	0.00	0
	ATOM	2252 · CB	GLU	261	4.219	11.655	39.286	1.00	0.00	С
	ATOM	2253 CG	GLU	261	3.389	12.917	39.035	1.00	0.00	C
15	ATOM	2254 CD	GLU	261	4.257	14.127	39.348	1.00	0.00	С
	ATOM	2255 OE1	GLU	261	5.409	14.181	38.841	1.00	0.00	0
	MOTA	2256 OE2	GLU	261	3.779	15.013	40.106	1.00	0.00	0
	ATOM	2257 H	GLU	261	6.301	12.600	40.869		0.00	Н
	ATOM	2258 HA	GLU	261	3.582	11.430	41.329	1.00	0.00	Н
20	ATOM	2259 1HB	GLU	261	3.659	10.843	38.821	1.00	0.00	H
20	ATOM	2260 2HB	GLU	261	5.116	11.772	38.678	1.00	0.00	
		2261 1HG								H
	MOTA		GLU	261	2.518	12.887	39.689	1.00	0.00	Н
	ATOM	2262 2HG	GLU	261	3.084	12.921	37.988	1.00	0.00	Н
	ATOM	2263 N	ARG	262	4.409	9.024	40.474	1.00	0.00	N
25	MOTA	2264 CA	ARG	262	4.912	7.682	40.478	1.00	0.00	C
	ATOM	2265 C	ARG	262	5.836	7.571	39.313	1.00	0.00	С
	ATOM	2266 O	ARG	262	~ 5.746	8.344	38.359	1.00	0.00	0
	ATOM	2267 CB	ARG	262	3.821	6.611	40.302	1.00	0.00	C
	ATOM	2268 CG	ARG	262	2.842	6.530	41.475	1.00	0.00	Č
30	ATOM	2269 CD	ARG	262	1.728	5.502	41.266	1.00	0.00	č
30	ATOM	2270 NE	ARG	262	0.894	5.979	40.127	1.00	0.00	
										N
•	MOTA		ARG	262	-0.207	5.271	39.738	1.00	0.00	С
	ATOM		ARG	262	-0.549	4.125	40.395	1.00	0.00	N
	MOTA		ARG	262	-0.967	5.711	38.692	1.00	0.00	N
35	ATOM	2274 H	ARG	262	3.447	9.197	40.146	1.00	0.00-	H
	MOTA	2275 HA	ARG	262	5.428	7.546	41.428	1.00	0.00	H
	MOTA	2276 1HB	ARG	262	4.212	5.599	40.193	1.00	0.00	н
	MOTA	2277 2HB	ARG	262	3.193	6.763	39.423	1.00	0.00	Н
	ATOM	2278 1HG	ARG	262	2.330	7.471	41.677	1.00	0.00	н
40	ATOM	2279 2HG	ARG	262	. 3.316	6.252	42.416	1.00	0.00	Н -
	ATOM	2280 1HD	ARG	262	1.153	5.454	42.191	1.00	0.00	н
	ATOM	2281 2HD	ARG	262	2.205	4.548	41.041	1.00	0.00	
	MOTA	2282 HE	ARG	262						H
		2283 1HH1			1.148	6.845	39.631	1.00	0.00	H
45	ATOM			262	0.023	3.793	41.184	1.00	0.00	Н
45	ATOM	.2284 2HH1		262	-1.379	3.591	40.101	1.00	0.00	 ,H
	MOTA	2285 1HH2		262	-0.709	6.576	38.196	1.00	0.00	H
	MOTA	2286 2HH2	ARG		-1.797	5.177	38.398	1.00	0.00	H
	MOTA	2287 N	ARG	263	6.773	6.608	39.364	1.00	0.00	N
	ATOM	2288 CA	ARG	263	7.701	6.525	38.280	1.00	0.00	С
50	MOTA	2289 C	ARG	263	8.128	5.105	38.141	1.00	0.00	С
	MOTA	2290 O	ARG	263	8.055	4.322	39.086	1.00	0.00	Ō
	MOTA	2291 CB	ARG	263	8.985	7.313	38.573	1.00	0.00	Č
	ATOM	2292 CG	ARG	263	8.733	8.781	38.921	1.00	0.00	č
	ATOM	2293 CD	ARG	263	9.924	9.441	39.615	1.00	0.00	
55				263	10.023		40.972			C
در	ATOM		ARG			8.832		1.00	0.00	N
	MOTA	2295 CZ	ARG	263	9.671	9.547	42.081	1.00	0.00	С
•	MOTA		ARG	263	9.233	10.835	41.951	1.00	0.00	N
	MOTA		ARG	263	9.768	8.978	43.318	1.00	0.00	N
	ATOM	2298 H	ARG	263	6.820	5.952	40.157	1.00	0.00	н
60	MOTA	2299 HA	ARG	263	7.198	6.866	37.375	1.00	0.00	н
	MOTA	2300 1HB	ARG	263	9.682	7.333	37.735	1.00	0.00	H
	ATOM	2301 2HB	ARG	263	9.557	6.915	39.411	1.00	0.00	н
	ATOM	2302 1HG	ARG	263	7.884	8.918	39.591	1.00	0.00	H
	ATOM	2303 2HG	ARG	263	8.522	9.394	38.045	1.00	0.00	H
65	ATOM	2304 1HD	ARG	263	9.709	10.508	39.660	1.00	0.00	H
55	ATOM	2305 2HD	ARG		10.801	9.226	39.005	1.00	0.00	H
	ATOM	2306 HE	ARG	263	10.359	7.863	41.074	1.00	0.00	
	ATOM	2306 HE 2307 1HH1					41.074	1.00	0.00	H
	VI OM	SOU THUT	טאה.	203	9.168	11.265	41.01/	1.00	0.00	Н

	ATOM	2308 2НН1		263	8.967	11.375	42.786	1.00	0.00	H	
	ATOM	2309 1HH2		263	10.106	8.010	43.414	1.00	0.00	H	
	MOTA	2310 2HH2		263	9.502	9.516	44.154	1.00	-0.00	H	
5	ATOM ATOM	2311 N 2312 CA	LYS LYS	264 264	8.570 9.148	4.726 3.428	36.929 36.808	1.00	0.00	N N	
3	MOTA	2312 CA	LYS	264	10.578	3.670	37.133	1.00	0.00	Ċ	
	ATOM	2314 0	LYS	264	11.396	3.925	36.250	1.00	0.00	Č	
	ATOM	2315 CB	LYS	264	9.070	2.837	35.390	1.00	0.00	Ċ	
	ATOM	2316 CG	LYS	264	7.655	2.407	35.004	1.00	0.00	C	
10	MOTA	2317 CD	LYS	264	7.088	1.325	35.923	1.00	0.00	_ (
	ATOM	2318 CE	LYS	264	5.672	0.882	35.551	1.00	0.00	C	
	ATOM	2319 NZ	LYS	264	5.215	-0.179	36.476	1.00	0.00	. 1	
	ATOM	2320 H	LYS	264	8.493	5.352	36.115	1.00	0.00	F	
15	ATOM ATOM	2321 HA 2322 1HB	LYS LYS	264 264	8.685 9.695	2.725 1.953	37.501 35.265	1.00	0.00 0.00	F	
13	ATOM	2323 2HB	LYS	264	9.389	3.540	34.620	1.00	0.00	ŀ	
	ATOM	2324 1HG	LYS	264	7.594	1.999	33.995	1.00	0.00	F	
	MOTA	2325 2HG	LYS	264	6.937	3.226	35.035	1.00	0.00	F	
	MOTA	2326 1HD	LYS	264	7.021	1.627	36.968	1.00	0.00	F	
20	ATOM -	2327 2HD	LYS	264	7.675	0.406	35.933	1.00	0.00	ŀ	ł
	ATOM	2328 1HE	LYS	264	5.658	0.493	34.532	1.00	0.00	ŀ	
	ATOM	2329 2HE	LYS	264	4.988	1.728	35.616	1.00	0.00		Ι.
	ATOM	2330 1HZ	LYS	264	5.956	-0.379	37.162	1.00	0.00	F	
25	MOTA MOTA	2331 2HZ 2332 3HZ	LYS LYS	264 264	4.367 5.003	0.136 -1.033	36.968 35.941	1.00	0.00	ŀ	
23	ATOM	2333 N	GLU	265	10.901	3.614	38.438	1.00	0.00	ì	
	ATOM	2334 CA	GLU	265	12.232	3.911	38.861	1.00	0.00		
	ATOM	2335 C	GLU	265	12.640	2.838	39.810	1.00	0.00	Ċ	
	ATOM	2336 O	GLU	265	12.170	1.706	39.718	1.00	0.00	()
30	ATOM	2337 CB	GLU	265	12.346	5.273	39.569	1.00	0.00		
	MOTA	2338 CG	GLU	265	13.781	5.779	39.744	1.00	0.00	(
	ATOM	2339 CD	GLU	265	14.355	6.111	38.376	1.00	0.00		
	ATOM ATOM	2340 OE1 2341 OE2	GLU	265 265	13.820 15.347	5.593 6.890	37.362 38.332	1.00	$0.00 \\ 0.00$	(2
35	ATOM	2342 H	GLU.	265	10.186	. 3.356	39.133	1.00	0.00	I	
	MOTA	2343 НА	GLU	265	12.857	3.919	37.968	1.00	0.00		1
	ATOM	2344 1HB	GLU	265	11.906	5.179	40.561	1.00	0.00		1
	ATOM	2345 2HB	GLU	265	11.805	6.011	38.977	1.00	0.00		H
	ATOM	2346 1HG	GLU	265	14.374	4.997	40.219	1.00	0.00		H
40	MOTA	2347 2HG	GLU	265	13.766	6.671	40.370	1.00	0.00	I	
	ATOM ATOM	2348 N 2349 CA	SER SER	266 266	13.547 14.033	3.167 2.159	40.747 41.627	1.00	0.00	1	N C
	ATOM	2350 C	SER	266	14.768	1.245	40.725	1.00	0.00		Š
	ATOM	2351 0	SER	266	15.774	1.622	40.125	1.00	0.00		5
45	ATOM	2352 CB	SER	266	12.920	1.371	42.340	1.00	0.00		
	ATOM	2353 OG	SER	266	12.204	2.227	43.218	1.00	0.00	(
	ATOM	2354 H	SER	266	13.885	4.136	40.826	1.00	0.00		H
	MOTA	2355 HA	SER	266	14.684	2.585	42.389	1.00	0.00		H
50	ATOM	2356 1HB	SER	266	13.352	0.554	42.917	1.00	0.00		H
50	ATOM ATOM	2357 2HB 2358 HG	SER SER	266 266	12.227 12.615	0.957 3.170	41.607 43.190	1.00	0.00		H H
	ATOM	2359 N	ALA	267	14.271	0.007	40.598	1.00	0.00	ì	
	ATOM	2360 CA	ALA	267	14.900	-0.876	39.675	1.00	0.00		2
•	ATOM	2361 C	ALA	267	14.689	-0.281	38.319	1.00	0.00		2
55	ATOM	2362 O	ALA	267	15.627	-0.183	37.530	1.00	0.00)
	MOTA	2363 CB	ALA	267	14.283	-2.286	39.676	1.00	0.00		2
	MOTA	2364 H	ALA	267	13.457	-0.296	41.152	1.00	0.00		H
	ATOM	2365 HA	ALA	267	15.952	-0.911	39.957	1.00	0.00		. F
60	MOTA	2366 1HB	ALA ALA	267 267	13.469 13.896	-2.326 -2.514	40.400 38.682	1.00 1.00	0.00		H
00	ATOM ATOM	2367 2HB 2368 3HB	ALA	267	15.045	-3.016	39.945	1.00	0.00		H H
	ATOM	2369 N	ALA	268	13.439	0.145	38.027	1.00	0.00	1	
	ATOM	2370 CA	ALA	268	13.096	0.696	36.748	1.00	0.00		2
	ATOM	2371 C	ALA	268	12.964	-0.484	35.852	1.00	0.00		2
65	MOTA	2372 0	ALA	268	12.531	-1.550	36.284	1.00	0.00	(2
	ATOM	2373 CB	ALA	268	14.139	1.664	36.163	1.00	0.00		2
	ATOM	2374 H	ALA	268 268	12.707	0.071	38.748	1.00	0.00		1
	ATOM	2375 HA	ALA	268	12.159	1.226	36.917	1.00	0.00	1	H

	MOTA	2376	1HB	ALA	268	14.977	1.756	36.853	1.00	0.00			н
	ATOM	2377	2HB	ALA	268	14.496	1.279	35.207	1.00	0.00			Н
	MOTA	2378	3HB	ALA	268	13.683	2.642	36.012	1.00	0.00			Н
	ATOM	2379	N	TYR	269	13.332	-0.332	34.568	1.00	0.00			N
5	MOTA	2380	CA	TYR	269	13.308	-1.488	33.728	1.00	0.00			С
	MOTA	2381	С	TYR	269	14.732	-1.897	33.563	1.00	0.00			С
	MOTA	2382	0	TYR	269	15.522	-1.202	32.926	1.00	0.00			0
	ATOM	2383	CB	TYR	269	12.681	-1.244	32.345	1.00	0.00			С
	ATOM	2384	CG	TYR		. 11.233	-0.984	32.594	1.00	0.00			C
10	ATOM	2385	CD1		269	10.355	-2.032	32,757	1.00	0.00			Č
	ATOM	2386	CD2		269	10.754	0.303	32.675	1.00	0.00		•	c
	ATOM	2387	CE1		269	9.019	-1.800	32.990	1.00	0.00			c
	ATOM	2388	CE2		269	9.419	0.541	32.907	1.00	0.00			C
	ATOM	2389	CZ	TYR	269	8.550	-0.511	33.065	1.00	0.00			c
15	ATOM	2390	OH	TYR	269	7.180	-0.270	33.304	1.00	0.00			ŏ
	ATOM	2391	H	TYR	269	13.621	0.586	34.202	1.00	0.00			Н
	ATOM	2392	HA	TYR	269	12.712	-2.228	34.261	1.00	0.00			Н
	ATOM		1HB	TYR	269	12.854	-2.156	31.774	1.00	0.00			Н
	ATOM		2HB	TYR	269	13.200	-0.380	31.930	1.00	0.00			Н
20	ATOM	2395	HD1		269	10.722	-3.056	32.700	1.00	0.00			Н
20	ATOM	2396	HD2		269	11.438	1.142	32.554	1.00	0.00			Н
	ATOM	2397	HE1		269	8.333	-2.638	33.115	1.00	0.00			Н
	ATOM	2398	HE2	TYR	269	9.050	1.565	32.965	1.00	0.00			Н
	ATOM	2399	HH	TYR	269	7.012	0.745	33.348	1.00	0.00	•		Н
25	ATOM	2400	N	ILE	270	15.098	-3.047	34.160	1.00	0.00			N
23	MOTA	2401	CA	ILE	270	16.461	-3.480	34.110	1.00	0.00			C
	ATOM	2402	C	ILE	270	16.574	-4.571	33.104	1.00	0.00			C
	ATOM	2403	Ö	ILE	270	15.905	-5.602	33.165	1.00	0.00			0
	ATOM	2404	СВ	ILE	270	16.966	-4.007	35.424	1.00	0.00			C
30	MOTA	2405	CG1		270	16.151	-5.234	35,872	1.00	0.00			c
50	ATOM	2406	.CG2		270	16.952	-2.849	36.435	1.00	0.00			c
	ATOM	2407	CD1		270	16.781	-5.991	37.041	1.00	0.00			C
	ATOM	2408	Н	ILE	270	14.395	-3.616	34.653	1.00	0.00			Н
	ATOM	2409	HA	ILE	270	17.083	-2.632	33.822	1.00	0.00			Н
35	ATOM	2410	HB	ILE	270	17.979	-4.377	35.269		-0.00			Н
55	ATOM	2411			270	16.020	-5.979	35.287	1.00	0.00			Н
	ATOM	2412			270	15.141	-4.988	36.202	1.00	0.00			Н
	ATOM	2413			270	16.582	-1.946	35.948	1.00	0.00			Н
	ATOM	2414			270	16.300	-3.103	37.270	1.00	0.00			Н
40	ATOM	2415			270	17.963	-2.675	36.803	1.00	0.00			Н
70	ATOM	2416			270	17.708	-5.499	37.335	1.00	0.00			Н
	ATOM	2417			270	16.090	-5.997	37.884	1.00-	0.00		•	Н
	ATOM		3HD1		270·	16.993	-7.016	36.738	1.00	0.00			Н
	ATOM	2419	N	PRO	271	17.430	-4.325	32.159	1.00	0.00			N
45	ATOM	2420	CA	PRO	271	17.665	-5.252	31.096	1.00	0.00			C
	ATOM	2421	C	PRO	271	18.094	-6.552	31.691	1.00	0.00			C
	ATOM	2422	Ō	PRO	271	18.881	-6.547	32.635	1.00	0.00			ō
	ATOM	2423	CB	PRO	271	18.797	-4.642	30.276	1.00	0.400			c
	ATOM	2424	CG	PRO	271	19.610	-3.876	31.337	1.00	0.00			c
50	ATOM	2425	CD	PRO	271	18.552	-3.423	32.359	1.00	0.00			c
-	ATOM	2426	HA	PRO	271	16.738	-5.375	30.536	1.00	0.00			Н
	ATOM	2427		PRO	271	18.410	-3.980	29.501	1.00	0.00			Н
	ATOM	2428		PRO	271	19.389	-5.414	29.786	1.00	0.00			Н
	ATOM	2429		PRO	271	20.126	-3.025	30.891	1.00	0.00			Н
55	ATOM	2430		PRO	271	20.358	-4.522	31.795	1.00	0.00			Н
	ATOM	2431		PRO	271	18.852	-3.575	33.395	1.00	0.00			Н
	ATOM	2432		PRO	271	18.150	-2.429	32.161	1.00	0.00			Н
	ATOM	2433	N	PHE	272	17.579	-7.672	31.155	1.00	0.00			N
	ATOM	2434	CA	PHE	272	17.987	-8.973	31.590	1.00	0.00	•	•	Ċ
60	ATOM	2435	С	PHE	272	19.382	-9.159	31.106	1.00	0.00			c
	ATOM	2436	0	PHE	272	20.182	-9.874	31.707	1.00	0.00			ō
	ATOM	2437	CB	PHE	272		-10.094	30.977	1.00	0.00			c
	ATOM	2438	CG	PHE	272		-11.395	31.241	1.00	0.00			c
	ATOM	2439		PHE	272		-12.023	32.459	1.00	0.00			C
65	ATOM	2440		PHE	272		-11.993	30.252	1.00	0.00			c
	ATOM	2441		PHE	272		-13.224	32.689	1.00	0.00			Ċ
	ATOM	2442	CE2	PHE	272		-13.194	30.473	1.00	0.00			Ċ
	ATOM	2443	CZ	PHE	272		-13.812	31.695	1.00	0.00			c
													-

	MOTA	2444	Н	PHE	272·		16.871	-7.591	30.410	1.00	0.00		н
	MOTA	2445	HA	PHE	272		17.922	-8.967	32.678	1.00	0.00		Н
	MOTA	2446	1HB	PHE	272		17.050	-9.912	29.905	1.00	0.00		H
	ATOM	2447	2HB	PHE	272		16.149	-10.069	31.448	1.00	0.00		н
5	MOTA	2448	HD1	PHE	272		17.110	-11.563	33.251	1.00	0.00		Н
	MOTA	2449	HD2	PHE	272		18.648	-11.508	29.280	1.00	0.00		H
	MOTA	2450	HE1	PHE	272		18.238	-13.710	33.660	1.00	0.00		н
	MOTA	2451	HE2	PHE	272		19.778	-13.654	29.680	1.00	0.00		H
	MOTA	2452	HZ	PHE	272		19.574	-14.764	31.875	1.00	0.00		Н
10	MOTA	2453	N	GLY	273	-	19.703	-8.479	29.994	1.00	0.00		N
	MOTA	2454	CA	GLY	273		20.971	-8.629	29.354	1.00	0.00		С
	MOTA	2455	С	GLY	273		20.614	-9.133	28.003	1.00	0.00		С
	MOTA	2456	0	GLY	273		21.319	-8.908	27.020	1.00	0.00		0
	MOTA	2457	H	GLY	273		19.013	-7.829	29.589	1.00	0.00		Н
15	MOTA	2458	1HA	GLY	273		21.602	-9.333	29.895	1.00	0.00		Н
	ATOM	2459	2HA	GLY	273		21.499	-7.677	29.304	1.00	0.00		H
	ATOM	2460	N	GLU	274		19.476	-9.846	27.948	1.00	0.00		N
	ATOM	2461	CA	GLU	274		18.940	-10.319	26.713	1.00	0.00		С
	MOTA	2462	С	GLU	274		18.518	-9.086	25.998	1.00	0.00		С
20	MOTA	2463	0	GLU	274		. 18.538	-9.015	24.769	1.00	0.00		O .
	ATOM	2464	CB	GLU	274		17.706	-11.220	26.903	1.00	0.00		С
	MOTA	2465	CG	GLU	274		17.361	-12.077	25.680	1.00	0.00		С
	MOTA	2466	CD	GLU	274		16.616	-11.235	24.652	1.00	0.00		С
	ATOM	2467	OE1	GLU	274		16.177	-10.108	25.002	1.00	0.00		0
25	ATOM	2468	OE2	GLU	274		16.471	-11.719	23.497	1.00	0.00		0
	MOTA	2469	н	GLU	274		18.975	-10.057	28.823	1.00	0.00		H
	MOTA	2470	HА	GLU	274		19.770	-10.844	26.241	1.00	0.00		Н
	MOTA	2471	1HB	GLU	274			-10.584	27.115	1.00	0.00		H
	MOTA	2472	2HB	GLU	274			-11.894	27.737	1.00	0.00		H
30	MOTA	2473		GLU	274			-12.913	25.980	1.00	0.00		H
	MOTA	2474	2HG	GLU	274			-12.463	25.229	1.00	0.00		H
	ATOM	2475	N	GLY	275		18.144	-8.054	26.782	1.00	0.00		N
	MOTA	2476	CA	GLY	275		17.694	-6.818	26.215	1.00	0.00		С
	MOTA	2477	С	GLY	275		16.234	-6.719	26.466	1.00	0.00		С
35 -	MOTA	2478	0	GLY	275			-5.654	26.331	1.00	0.00		0
	ATOM	2479	H	GLY	275		18.182	-8.156	27.806	1.00	0.00		Н
	ATOM	2480		GLY	275		17.913	-6.849	25.147	1.00	0.00	•	н
	ATOM	2481		GLY	275		18.238	-6.014	26.710	1.00	0.00		H
40	ATOM	2482	N	ASP	276		15.608	-7.849	26.850	1.00	0.00		N
40	ATOM	2483	CA	ASP	276		14.200	-7.829	27.109	1.00	0.00		C
	ATOM	2484	C	ASP	276		14.038	-7.181	28.442	1.00	0.00		С
	ATOM	2485	0	ASP	276		15.007	-6.698	29.028	1.00	0.00		0
	ATOM	2486	CB	ASP	276		13.559	-9.214	27.167 25.755	1.00	0.00		C
15	ATOM	2487	CG	ASP ASP	276		13.557	-9.785		1.00	0.00		C
45	ATOM	2488			276		13.760			1.00	0.00		0
	ATOM	2489		ASP	276 276			-11.023	25.614	1.00	0.00		0
	MOTA MOTA	2490 2491	H HA	ASP ASP	276		16.140 13.755	-8.724 -7.248	26.956 26.301	1.00	0.00		H
•	ATOM	2491		ASP	276		12.543	-9.095	27.543	1.00	0.00		H H
50	ATOM	2492		ASP	276		14.157	-9.829	27.838	1.00	0.00		Н
30	ATOM	2494	N	PHE	277		12.795	-7.146	28.960	1.00	0.00		N
	ATOM	2495	CA	PHE	277		12.576	-6.530	30.226	1.00	0.00		Č
	ATOM	2496	C.	PHE	277		12.671	-7.611	31.252	1.00	0.00		č
	ATOM	2497	Ö	PHE	277		11.708	-8.342	31.486	1.00	0.00		ŏ
55	ATOM	2498	CB	PHE	277		11.166	-5.929	30.358	1.00	0.00	•	č
	MOTA	2499	CG	PHE	277		11.010	-4.919	29.273	1.00	0.00		Ċ.
	MOTA	2500		PHE	277		10.651	-5.319	28.006	1.00	0.00		č
	ATOM	2501		PHE	277		11.226	-3.581	29.513	1.00	0.00		Č
	ATOM	2502		PHE	277		10.506	-4.402	26.992	1.00	0.00		Ċ
60	ATOM	2503		PHE	277		11.083	-2.659	28.502	1.00	0.00		č
	ATOM	2504	CZ	PHE	277		10.722	-3.068	27.240	1.00	0.00		č
	ATOM	2505	H	PHE	277		12.007	-7.562	28.443	1.00	0.00		H
	ATOM	2506	HA	PHE	277		13.356	-5.779	30.348	1.00	0.00		H
	MOTA	2507		PHE	277		11.099	-5.469	31.344	1.00	0.00		Н
65	MOTA	2508		PHE	277		10.452	-6.746	30.248	1.00	0.00		Н
	MOTA	2509		PHE	277		10.479		27.803	1.00	0.00		H
	MOTA	2510		PHE	277		11.512	-3.249	30.511	1.00	0.00		Н
	ATOM	2511	HE1	PHE	277		10.220	-4.732	25.993	1.00	0.00		H

	ATOM	2512	HE2	PHE	277	11.256	-1.601	28.702	1.00	0.00		Н
	ATOM	2513	HZ	PHE	277	10.607	-2.337	26.439	1.00	0.00		H
	ATOM	2514	N	TYR	278	13.860	-7.772	31.864	1.00	0.00		N
_	ATOM	2515	CA	TYR	278	13.996	-8.805	32.842	1.00	0.00		.C
5	ATOM	2516	С	TYR	278	13.234	-8.444	34.075	1.00	0.00		С
	ATOM	2517	0	TYR	278	12.479	-9.261	34.604	1.00	0.00		0
	ATOM	2518	CB	TYR	278	15.446	-9.075	33.265	1.00	0.00		С
	ATOM	2519	CG	TYR	278	15.368		34.268	1.00	0.00		C
			-									
	ATOM	2520		TYR	278	15.168		33.857	1.00	0.00		С
10	ATOM _	2521	CD2	TYR	278	15.494	-9.912	35.614	1.00	0.00		С
	ATOM	2522	CE1	TYR	278	15.092	-12.493	34.766	1.00	0.00		С
	ATOM	2523	CE2	TYR	278	15.419		36.532	1.00	0.00		С
	ATOM	2524	CZ	TYR	278	15.217		36.107	1.00	0.00		C
	ATOM	2525	OH									
				TYR	278	15.140		37.047	1.00	0.00		0
15	ATOM	2526	Н	TYR	278	14.656	-7.161	31.631	1.00	0.00		Н
	MOTA	2527	HA	TYR	278	13.607	-9.744	32.448	1.00	0.00		Н
	MOTA	2528	1HB	TYR	278	15.805	-8.135	33.684	1.00	0.00	•	Н
	ATOM	2529	2HB	TYR	278	15.965	-9.364	32.351	1.00	0.00		H
	ATOM	2530		TYR	278	15.068		32.793	1.00	0.00		Н
20												
20	ATOM	2531		TYR	278	15.654	-8.889	35.954	1.00	0.00		H
	ATOM	2532	HE1	TYR	278	14.932	-13.515	34.423	1.00	0.00		H
	ATOM	2533	HE2	TYR	278	15.519	-10.720	37.596	1.00	0.00	•	H
	ATOM	2534	HH	TYR	278	14.399	-13.070	37.732	1.00	0.00		Н
	ATOM	2535	N	TYR	279	13.398	-7.197	34.562	1.00	0.00		N
25	ATOM	2536	CA	TYR	279					0.00		
25						12.758	-6.824	35.794	1.00	•		C
	ATOM	2537	С	TYR	279	12.053	-5.524	35.575	1.00	0.00		С
	MOTA	2538	0	TYR	279	12.429	-4.747	34.697	1.00	0.00		0
	ATOM	2539	CB	TYR	279	13.767	-6.632	36.943	1.00	0.00		C
	ATOM	2540	CG	TYR	279	13.033	-6.261	38.186	1.00	0.00		С
30	ATOM	2541	CD1	TYR	279	12.472	-7.237	38.976	1.00	0.00		C
50	ATOM	2542		TYR	279	12.914	-4.944	38.571	1.00	0.00		c
	MOTA	2543		TYR	. 279	11.797	-6.907	40.130	1.00	0.00		С
	ATOM	2544	CE2	TYR	279	12.242	-4.608	39.722	1.00	0.00		С
	ATOM	2545	CZ	TYR	279	11.681	-5.589	40.503	1.00	0.00		С
35	ATOM	2546	OH ·	-TYR	279	10.992	-5.247	41.685	1.00	0.00		Ō
	ATOM	2547	Н	TYR	279	13.979	-6.515	34.053	1.00	0.00		Н
	٠.	2548	HA		279							
	MOTA			TYR		12.050	-7.609	36.058	1.00	0.00		H
	ATOM	2549		TYR	279	14.466	-5.838	36.679	1.00	0.00		Н
	ATOM	2550	2HB	TYR	279	14.311	-7.562	37.102	1.00	0.00		Н
40	ATOM	2551	HD1	TYR	279	12.562	-8.283	38.685	1.00	0.00		H
	ATOM	2552	HD2	TYR	279	13.357	-4.160	37.956	1.00	0.00		H
	ATOM	2553		TYR	279	11.355	-7.689	40.746	1.00	0.00		H
	ATOM	2554		TYR	279	12.154						
							-3.561	40.015	1.00	0.00		H
	ATOM	2555	HH	TYR	279	11.059	-4.231	41.840	1.00	0.00		Ή
45	ATOM	2556	N	HIS	280	10.989	-5.267	36.363	1.00	0.00		N
	ATOM	2557	CA	HIS	280	10.235	-4.059	36.201	1.00	0.00		С
	ATOM	2558	С	HIS	280	10.105	-3.437	37.556	1.00	0.00		С
	ATOM	.2559	0	HIS	280	9.822	-4.127	38.534	1.00	0.00		ō
	ATOM	2560		HIS	280	8.801	-4.330	35.718	1.00			
50										0.00		С
50	ATOM	2561	CG	HIS	280	8.752	-5.281	34.558	1.00	0.00	•	C
	ATOM	2562		HIS	280	8.694	-6.650	34.703	1.00	0.00		N
	ATOM	2563	CD2	HIS	280	8.759	-5.050	33.217	1.00	0.00		С
	MOTA	2564	CE1	HIS	280	8.669	-7.176	33.453	1.00	0.00		С
	ATOM	2565		HIS	280	8.707	-6.244	32.518	1.00	0.00		N
55					280	10.715	-5.945		1.00			
55	ATOM	2566		HIS				37.088		0.00		H
	MOTA	2567		HIS	280	10.794	-3.421	35.516	1.00	0.00		H
	ATOM	2568	1HB	HIS	280	8.290	-3.424	35.388	1.00	0.00		H
	ATOM	2569	2HB	HIS	280	8.172	-4.766	36.494	1.00	0.00		H
	ATOM	2570		HIS	280	8.673	-7.173	35.590	1.00	0.00		Н
60	ATOM	2571		HIS	280	8.799	-4.062	32.757	1.00	0.00		
-												Н
	ATOM	2572		HIS	280	8.622	-8.244	33.244	1.00	0:00		H
	ATOM	2573		HIS	280	8.699	-6.376	31.496	1.00	0.00		H
	ATOM	2574	N	ALA	281	10.314	-2.108	37.663	1.00	0.00		N
•	ATOM	2575	CA	ALA	281	10.175	-1.508	38.958	1.00	0.00		С
65	ATOM	2576		ALA	281	9.410	-0.232	38.819	1.00	0.00	•	Ċ
	ATOM	2577		ALA	281	9.697	0.591	37.950	1.00	0.00		ō
	ATOM	2578		ALA	281	11.516	-1.162	39.624	1.00	0.00		
												C
	ATOM	2579	Н	ALA	281	10.565	-1.542	36.839	1.00	0.00		H

- 166 -

		0500								
	ATOM	2580 HA	ALA	281	9.638	-2.197	39.609	1.00	0.00	Н
	ATOM	2581 1HB	ALA	281	12.334	-1.448	38.963	1.00	0.00	H
	ATOM	2582 2HB	ALA	281	11.561	-0.089	39.814	1.00	0.00	H
_	ATOM	2583 3HB	ALA	281	11.604	-1.702	40.566	1.00	0.00	H
5	ATOM	2584 N	ALA	282	8.394	-0.044	39.684	1.00	0.00	N
	ATOM	2585 CA	ALA	282	7.641	1.175	39.659	1.00	0.00	С
	MOTA	2586 C	ALA	282	7.535	1.640	41.070	1.00	0.00	C
	MOTA	2587 O	ALA	282	7.371	0.838	41.987	1.00	0.00	0
	MOTA	2588 CB	ALA	282	6.206	1.006	39.131	1.00	0.00	С
10	MOTA	2589 Н	Ala	282	8.157	-0.779	40.365	1.00	0.00	 Н
	MOTA	2590 HA	ALA	282	8.199	1.874	39.036	1.00	0.00	Н
	MOTA	2591 1HB	ALA	282	6.034	-0.038	38.870	1.00	0.00	н
	MOTA	2592 2HB	ALA	282	5.496	1.308	39.901	1.00	0.00	Н
	ATOM	2593 3HB	ALA	282	6.068	1.627	38.246	1.00	0.00	Н
15	ATOM	2594 N	ILE	283	7.655	2.960	41.291	1.00	0.00	N
	ATOM	2595 CA	ILE	283	7.501	3.417	42.634	1.00	0.00	c
	ATOM	2596 C	ILE	283	6.273	4.261	42.670	1.00	0.00	c
	ATOM	2597 O	ILE	283	6.094	5.159	41.847	1.00	0.00	Ö
	ATOM	2598 CB	ILE	283	8.655	4.217	43.170	1.00	0.00	C
20	ATOM	2599 CG					44.691	1.00	0.00	
20				283	8.501	4.389				C
	ATOM	2600 CG		283	8.755	5.538	42.391	1.00	0.00	C
	MOTA		1 ILE	283	9.765	4.892	45.386	1.00	0.00	С
	MOTA	2602 н	ILE	283	7.850	3.616	40.521	1.00	0.00	Н
	MOTA	2603 HA	ILE	283	7.402	2.532	43.263	1.00	0.00	H
25	MOTA	2604 HB	ILE	283	9.573	3.643	43.046	1.00	0.00	H
	MOTA	2605 1HG		283	. 8.243	3.468	45.214	1.00	0.00	H
	MOTA	2606 2HG	1 ILE	283	7.724	5.098	44.977	1.00	0.00	H
	MOTA	2607 1HG	2 ILE	283	7.967	5.577	41.638	1.00	0.00	H
	MOTA	2608 2HG	2 ILE	283	8.641	6.375	43.079	1.00	0.00	H
30	ATOM	2609 3HG	2 ILE	283	9.727	5.599	41.901	1.00	0.00	H
	MOTA	2610 1HD	1 ILE	283	10.553	5.035	44.647	1.00	0.00	Н
	ATOM	2611 2HD	1 ILE	283	9.555	5.839	45.881	1.00	0.00	H
	MOTA	2612 3HD	1 ILE	283	10.089	4.160	46.125	1.00	0.00	H
	MOTA	2613 N	PHE	284	5.379	3.963	43.629	1.00	0.00	N
- 35	ATOM	2614 CA		284	4.153	4.691	43.748	1.00	0.00	C
	ATOM	2615 C	PHE	284	4.420	5.967	44.469	1.00	0.00	Ċ
	ATOM	2616 O	PHE	284	5.515	6.204	44.978	1.00	0.00	Ö
	ATOM	2617 CB		284	3.069	3.986	44.587	1.00	0.00	c
	ATOM	2618 CG		284	2.427	2.887	43.816	1.00	0.00	č
40	ATOM		1 PHE	284	3.011	1.645	43.722	1.00	0.00	C
70	MOTA		2 PHE	284	1.215	3.104	43.202	1.00	0.00	C
	ATOM	2621 CE		284	2.397	0.640	43.012	1.00	0.00	C
		2622 CE		284	0.596	2.103	42.491	1.00	0.00	C
	ATOM					•		1.00	0.00	C
45	ATOM	2623 CZ		284	1.189	0.867	42.395			
45	ATOM	2624 H	PHE	284	5.580	3.198	44.288	1.00	0.00	H
	ATOM	2625 HA			3.768	4.898	42.749	1.00	0.00	H
	MOTA	2626 1HB		284	2.288	4.685	44.885	1.00	0.00	H
	MOTA	2627 2HB			3.494	3.554	45.493	1.00	0.00	H
50	ATOM		1 PHE	284	3.965	1.456	44.213	1.00	0.00	H
50	ATOM		2 PHE	- 284	0.739	4.081	43.280		0.00	H
	MOTA		1 PHE		2.869	-0.339	42.938	1.00	0.00	H
	ATOM		2 PHE		-0.361	2.289	42.005	1.00	0.00	H
	MOTA	2632 HZ	PHE		0.703	0.069	41.832	1.00	0.00	H
	MOTA	2633 N	GLY		3.397	6.842	44.485	1.00	0.00	N
55	MOTA	2634 CA	GLY	285	3.440	8.052	45.247	1.00	0.00	С
	ATOM	2635 C	GLY	285	2.218	7.984	46.105	1.00	0.00	С
	ATOM	2636 O	GLY	285	1.216	8.645	45.834	1.00	0.00	. 0
	MOTA	2637 н	GLY	285	2.554	6.633	43.929	1.00	0.00	H
	MOTA	2638 1HA	GLY		3.416	8.839	44.494	1.00	0.00	H
60	ATOM	2639 2HA			4.378	7.985	45.797	1.00	0.00	H
	ATOM	2640 N	GLY		2.279	7.135	47.151	1.00	0.00	N
	ATOM	2641 CA			1.177	6.887	48.036	1.00	0.00	C
	ATOM	2642 C	GLY		0.923	8.016	48.986	1.00	0.00	c
	ATOM	2643 O	GLY		-0.225	8.408	49.189	1.00	0.00	Ö
65	MOTA	2644 H	GLY		3.164	6.637	47.324	1.00	0.00	Н
0,5	MOTA	2645 1HA			1.320	6.004	48.659	1.00	0.00	H
	MOTA	2646 2HA			0.235	6.726	47.510	1.00	0.00	
	ATOM	2647 N	THR		1.982	8.558	47.510	1.00	0.00	H
	ATOM	7041 W	TUE	201	1.302	0.338	43.021	1.00	0.00	N

	ATOM	2648	CA	THR	287	1.737	9.563	50.617	1.00	0.00		С
	ATOM	2649	С	THR	287	2.959	10.420	50.730	1.00	0.00		c
	MOTA	2650	0	THR	287	3.998	10.130	50.140	1.00	0.00		ō
	ATOM	2651	CB	THR	287	1.472	8.963	51.971	1.00	0.00		C
5	ATOM	2652	OG1	THR	287	0.994	9.942	52.881	1.00	0.00		0
	MOTA	2653	CG2	THR	287	2.779	8.343	52.493	1.00	0.00		С
	MOTA	2654	H	THR	287	2.941	8.258	49.397	1.00	0.00		Н
	MOTA	2655	HA	THR	287	0.879	10.156	50.300	1.00	0.00		H
	ATOM	2656	HB	THR	287	0.703	8.197	51.864	1.00	0.00		H
10	MOTA	2657		THR	287	1.547	10.804	.52.780	1.00	0.00		H
	MOTA	2658	1HG2		287	3.570	8.490	51.758	1.00	0.00	•	Н
	MOTA	2659	2HG2		287	3.060	8.823	53.430	1.00	0.00		H
	ATOM	2660	3HG2		287	2.633	7.275	52.661	1.00	0.00		Н
	ATOM	2661	N	PRO	288	2.838	11.501	51.452	1.00	0.00		N
15	ATOM	2662	CA	PRO	288	3.990	12.335	51.656	1.00	0.00		С
	ATOM	2663	C	PRO	288	4.929	11.677	52.612	1.00	0.00		C
	MOTA	2664	0	PRO	288	4.465	10.951	53.489	1.00	0.00		0
	ATOM ATOM	2665 2666	CB CG	PRO PRO	288 288	3.458	13.680	52.144	1.00	0.00		C
20	ATOM	2667	CD	PRO	288	2.056 1.618	13.759 12.292	51.515 51.375	1.00	0.00		C
20	ATOM	2668	HA	PRO	288	4.502	12.292	50.707	1.00	0.00		C
	ATOM	2669		PRO	288	4.097	14.497	51.810	1.00	0.00		H
	ATOM	2670		PRO	288	3.414	13.711	53.232	1.00	0.00		H
	ATOM	2671		PRO	288	2.214	14.268	50.564	1.00	0.00	•	. H H
25	ATOM	2672		PRO	288	1.469	14.331	52.233	1.00	0.00		Н
	ATOM			PRO	288	0.991	11.958	52.202	1.00	0.00		Н
	ATOM	2674		PRO	288	1.180	12.073	50.400	1.00	0.00		Н
	ATOM	2675	N	THR	289	6.250	11.901	52.461	1.00	0.00		N
	MOTA	2676	CA	THR	289	7.166	11.281	53.373	1.00	0.00		c
30	ATOM	2677	С	THR	289	8.535	11.823	53.093	1.00	0.00		C
	MOTA	2678	0	THR	289	8.677	12.880	52.479	1.00	0.00		0
	MOTA	2679	CB	THR	289	7.214	9.785	53.233	1.00	0.00		С
	MOTA	2680	OG1		289	7.893	9.199	54.335	1.00	0.00		0
	MOTA	2681		THR	289	7.927	9.436	51.916	1.00	0.00		C
35	MOTA	2682	Н	THR	289	6.595	12.507	51.703	1.00	⊸0.00		Н
	ATOM	2683	HA	THR	289	6.849	11.527	54.386	1.00	0.00		H
	ATOM	2684	HB	THR	289	6.193	9.402	53.222	1.00	0.00		Н
	ATOM	2685		THR	289	7.656	9.711	55.196	1.00	0.00		Н
40	ATOM				289	8.222	10.353	51.407	1.00	0.00.		Н
40	ATOM ATOM	2687 2688	3HG2		289 289	8.813	8.838	52.129	1.00	0.00		H
	ATOM	2689	N	GLN	299	7.251 9.578	8.868 11.106	51.276 53.571	1.00	0.00		H
	ATOM	2690	CA	GLN	290	10.946	11.488	53.362	1.00	0.00		И
	ATOM	2691	C	GLN	290	11.307	11.065	51.975	1.00	0.00		C
45	ATOM	2692	ō	GLN	290	11.184	9.898	51.607	1.00	0.00		0
	ATOM	2693	СВ	GLN	290	11.927	10.823	54.345	1.00	0.00		c
	ATOM	2694	CG	GLN	290	11.799	11.334	55.783	1.00	0.00		c
	ATOM	2695	CD	GLN	290	12.408	12.729	55.844	1.00	0.00		c
	MOTA	2696	OE1	GLN	290	12.950	13.230	54.860	1.00	0.00		ō
50	MOTA	2697	NE2	GLN	290	12.323	13.376	57.038	1.00	0.00		N
	MOTA	2698	H	GLN	290	9.382	10.249	54.108	1.00	0.00		Н
	MOTA	2699	HA	GLN	290	10.994	12.570	53.483	1.00	0.00		H
	ATOM	2700		GLN	290	12.975	10.972	54.086	1.00	0.00		H
<i></i>	MOTA	2701		GLN	290	11.807	9.742	54.419	1.00	0.00		Н
55	MOTA	2702		GLN	290	12.337	10.646	56.434	1.00	0.00		H
•	MOTA	2703		GLN	290	10.739	11.361	56.038	1.00	0.00		H
	ATOM		1HE2		290	12.721	14.320	57.141	1.00	0.00		H
	ATOM		2HE2		290	11.860	12.921	57.838	1.00	0.00		H
60	ATOM	2706 2707	N CA	VAL	291	11.752	12.047	51.171	1.00	0.00		N
00	ATOM			VAL	291	12.052	11.906	49.776	1.00	0.00		C
	ATOM ATOM	2708 2709	C O	VAL VAL	291 291	13.310 13.433	11.142	49.519	1.00	0.00		C
	ATOM	2710	CB	VAL	291 291	12.204	10.541 13.227	48.453 49.097	1.00	0.00		0
	ATOM	2711		VAL	291	10.858	13.227	49.097	1.00	0.00		C
65	ATOM	2712		VAL	291	13.372	13.971	49.761	1.00	0.00		C
	ATOM	2713	Н	VAL	291	11.888	12.977	51.592	1.00	0.00		Н
	ATOM	2714	HA	VAL	291	11.274	11.382	49.220	1.00	0.00		H
	ATOM	2715	HB	VAL	291	12.484	13.047	48.059	1.00	0.00		Н

	ATOM	2716	1HG1	VAL	291	10.132	13.346	49.702	1.00	0.00		н
	ATOM		2HG1		291	10.989	14.906	49.710	1.00	0.00		н
	ATOM		3HG1		291	10.495	14.169	48.167	1.00	0.00		н
	ATOM		1HG2		291	13.793	13.353	50.554	1.00	0.00		Н
5	ATOM	2720	2HG2	VAL	291	14.140	14.179	49.016	1.00	0.00		Н
	ATOM	2721	3HG2	VAL	291	13.012	14.909	50.183	1.00	0.00		Н
	MOTA	2722	N	LEU	292	14.277	11.164	50.462	1.00	0.00		N
	ATOM	2723	CA	LEU	292	15.569	10.575	50.237	1.00	0.00		С
	ATOM	2724	С	LEU	292	15.457	9.193	49.670	1.00	0.00		Ċ
10	ATOM	2725	0	LEU	292	14.870	8.285	50.255	1.00	0.00		ō
	ATOM	2726	СВ	LEU	292	16.488	10.588	51.485	1.00	0.00	_	C
	ATOM	2727	CG	LEU	292	15.978	9.868	52.755	1.00	0.00		С
	ATOM	2728	CD1	LEU	292	14.588	10.374	53.161	1.00	0.00		С
	MOTA	2729		LEU	292	16.112	8.339	52.686	1.00	0.00		С
15	MOTA	2730	H	LEU	292	14.083	11.615	51.367	1.00	0.00		Н
	MOTA	2731	HA	LEU	292	16.163	11.162	49.537	1.00	0.00		Н
	ATOM	2732	1HB	LEU	292	16.648	11.629	51.762	1.00	0.00		Н
	MOTA	2733	2HB	LEU	292	17.423	10.102	51.208	1.00	0.00		H
	MOTA	2734	HG	LEU	292	16.648	10.032	53.598	1.00	0.00		н
20	MOTA	2735	1HD1	LEU	292	14.259	11.139	52.457	1.00	0.00		H
	MOTA	2736	2HD1	LEU	292	13.881	9.544	53.150	1.00	0.00		H
	ATOM	2737	3HD1	LEU	292	14.634	10.798	54.163	1.00	0.00		H
	ATOM	2738	1HD2	LEU	292	16.551	8.055	51.730	1.00	0.00		H
	MOTA		2HD2		292	16.752	7.992	53.497	1.00	0.00		H
25	MOTA	2740	3HD2	LEU	292	15.126	7.882	52.781	1.00	0.00		H
	MOTA	2741	N	ASN	293	15.983	9.054	48.437	1.00	0.00		N
	MOTA	2742	CA	ASN	293	16.061	7.821	47.709	1.00	0.00		С
	ATOM	2743	С	ASN	293	14.705	7.432	47.211	1.00	0.00		C
	ATOM	2744	0	ASN	293	14.585	6.761	46.187	1.00	0.00		0
30	MOTA	2745	CB	ASN	293	16.617	6.667	48.565	1.00	0.00		С
	MOTA	2746	CG	ASN	293	16.899	5.473	47.662	1.00	0.00		С
	MOTA	2747		ASN	293	15.993	4.858	47.102	1.00	0.00		0
	ATOM	2748		ASN	293	18.208	5.136	47.513	1.00	0.00		N
25	MOTA	2749	H	ASN	293	16.358	9.898	47.982	1.00	0.00		Н
35	MOTA	2750	HA	ASN	293	16.731	- 7.931	46.856	1.00	0.00		H
	ATOM ATOM	2751 2752		ASN ASN	293 293	15.877 17.537	6.397 6.995	49.319	1.00 1.00	0.00		Н
	ATOM		1HD2		293	18.469	4.340	49.046 46.913	1.00	0.00		H H
	ATOM	2754	2HD2		293	18.937	5.676	47.999	1.00	0.00		. н
40	ATOM	2755	N	ILE	294	13.638	7.863	47.904	1.00	0.00		N
	ATOM	2756	CA	ILE	294	12.326	7.463	47.488	1.00	0.00		Ċ
	ATOM	2757	C	ILE	294	11.915	8.198	46.246	1.00	0.00		č
	ATOM	2758	ō	ILE	294	11.329	7.610	45.338	1.00	0.00		ŏ
	ATOM	2759	СВ	ILE	294	11.275	7.676	48.544	1.00	0.00		č
45	ATOM	2760	_	ILE	294	9.992	6.906	48.184	1.00	0.00	•	Ċ
	ATOM	2761		ILE	294	11.064	9.187	48.729	1.00	0.00		Ċ
	ATOM	2762		ILE	294	9.010	6.779	49.349	1.00	0.00		С
	ATOM	2763	Н	ILE	294	13.761	8.473	48.724	1.00	0.00		Н
	MOTA	2764	HA	ILE	294	12.297	6.394	47.275	1.00	0.00		Н
50	ATOM	2765	HB	ILE	294	11.620	7.225	49.474	1.00	0.00		H
	ATOM	2766	1HG1	ILE	294	10.176	5.883	47.854	1.00	0.00		H
	ATOM	2767			294	9.420	7.366	47.378	1.00	0.00		H
	ATOM	2768			294	11.723	9.731	48.053	1.00	0.00		H
	ATOM	2769			294	10.027	9.439	48.505	1.00	0.00		Н
55	ATOM	2770			294	11.291	9.462	49.758	1.00	0.00		H
	MOTA	2771			294	9.423	7.272	50.228	1.00	0.00		H
	MOTA	2772			294	8.064	7.249	49.080	1.00	0.00		H
	ATOM	2773			294	8.841	5.724	49.569	1.00	0.00		H
	MOTA	2774	N	THR	295	12.229	9.505	46.162	1.00	0.00		N
60	ATOM	2775	CA	THR	295	11.793	10.311	45.055	1.00	0.00		С
	ATOM	2776	.C	THR	295	12.858	10.330	44.009	1.00	0.00		С
	ATOM	2777	0	THR	295	13.954	9.813	44.216	1.00	0.00		0
	ATOM	2778	CB	THR	295	11.534	11.733	45.450	1.00	0.00		C
65	MOTA	2779		THR	295	12.727	12.310	45.957	1.00	0.00		0
65	ATOM	2780		THR	295	10.429	11.764	46.521	1.00	0.00		C
	MOTA	2781	H	THR	295 295	12.794	9.936	46.907	1.00	0.00		H
	ATOM ATOM	2782 2783	HA HB	THR THR	295 295	10.878 11.214	9.887 12.294	44.639 44.571	1.00	0.00		H H
		2,03				11.514				5.50		п

- 169 -

	MOTA	2784	HG1		295	13.410	12.412	45.193	1.00	0.00	Н
	MOTA	2785			295	10.100	10.746	46.734	1.00	0.00	Н
	MOTA	2786			295	10.818	12.218	47.432	1.00	0.00	Н
_	ATOM	2787			295	9.584	12.348	46.155	1.00	0.00	Н
5	MOTA	2788	N	GLN	296	12.554	10.945	42.843	1.00	0.00	N
	MOTA	2789		GLN	296	13.513	10.934	41.777	1.00	0.00	C
	MOTA	2790	С	GLN	296	13.855	12.321	41.328	1.00	0.00	С
	MOTA	2791	0	GLN	296	13.503	13.320	41.952	1.00	0.00	0
	MOTA	2792	CB	GLN.	296	13.059	10.149	40.537	1.00	0.00	C
10	MOTA	2793	CG	GLN	296	12.877		-40.827	1.00	0.00	C
	ATOM	2794	CD	GLN	296	14.158	8.135	41.460	1.00	0.00	С
	ATOM	2795	OE1		296	14.149	7.631	42.583	1.00	0.00	0
	ATOM	2796	NE2		296	15.289	8.241	40.712	1.00	0.00	И
1.5	ATOM	2797	H	GLN	296	11.645	11.415	42.722	1.00	0.00	Н
15	ATOM	2798	HA	GLN	296	14.443	10.453	42.078	1.00	0.00	н
	ATOM	2799 2800		GLN	296	13.774	10.219	39.717	1.00	0.00	н
	MOTA MOTA	2801		GLN GLN	296 296	12.106 12.678	10.506 8.148	40.146	1.00	0.00	Н
	MOTA	2801		GLN	296	12.078	8.543	39.884 41.510	1.00	0.00	H H
20	MOTA	2802			296	16.185	7.891	41.081	1.00	0.00	H
20	ATOM	2804			296	15.249	8.670	39.776	1.00	0.00	Н
	ATOM	2805	N	GLU	297	14.554	12.362	40.176	1.00	0.00	N
	MOTA	2806	CA	GLU	297	15.187	13.472	39.516	1.00	0.00	C
	ATOM	2807	C	GLU	297	14.220	14.506	39.044	1.00	0.00	Ċ
25	ATOM	2808	ŏ	GLU	297	14.611	15.656	38.850	1.00	0.00	Ö
23	ATOM	2809	СВ	GLU	297	15.974	13.048	38.267	1.00	0.00	č
	ATOM	2810	CG	GLU	297	15.075		37.152	1.00	0.00	č
	ATOM	2811	CD	GLU	297	15.952	12.171	35.955	1.00	0.00	Č
	ATOM	2812		GLU	297	16.938	11.409	36.142	1.00	0.00	Ō
30	ATOM	2813		GLU	297	15.653	12.677	34.841	1.00	0.00	0
	ATOM	2814	Н	GLU	297	14.649	11.457	39.693	1.00	0.00	H
	ATOM	2815	HA	GLU	297	15.893	14.004	40.152	1.00	0.00	Н
	ATOM	2816	1HB	GLU	297	16.702	12.263	38.470	1.00	0.00	, H
	ATOM	2817	2HB	GLU	297	16.537	13.868	37.822	1.00	0.00	Н
35	MOTA	2818	1HG	-GLU	297	14.348	13.275	36.894	1.00	0.00	H
	MOTA	2819	2HG	GLU	297	14.573	11.611	37.523	1.00	0.00	H
	MOTA	2820	N	CYS	298	12.944	14.139	38.848	1.00	0.00	N
	ATOM	2821	CA	CYS	298	11.986	14.986	38.195	1.00	0.00	С
4.0	MOTA	2822	C	CYS	298	11.981	16.390	38.760	1.00	0.00	С
40	ATOM	2823	0	CYS	298	11.900	17.327	37.968	1.00	0.00	0
	MOTA	2824	CB	CYS	298	10.550	14.445	38.303	1.00	0.00	С
	MOTA	2825	SG	CYS		9.335	15.519	37.481	1.00	0.00	S
	ATOM	2826	H	CYS	298	12.639	13.212	39.179	1.00	0.00	H
45	ATOM	2827	HA	CYS	298	12.179	15.083	37.126	1.00	0.00	H
45	ATOM	2828		CYS		10.216		39.335	1.00	0.00	Н
	ATOM	2829		CYS		10.438	13.459	37.851	1.00	0.00	н
	ATOM ATOM	2830 2831	HG N	CYS PHE		9.782 12.054	16.782 16.616	37.481 40.098	1.00 1.00	0.00	H
	ATOM	2832	CA	PHE	299	12.054	17.995	40.533	1.00	0.00	N C
50	ATOM	2833	CA	PHE		12.861	18.123	41.799	1.00	0.00	C
50	ATOM	2834	Ö	PHE		14.090	18.050	41.787	1.00	0.00	0
	ATOM	2835	СВ	PHE		10.656	18.565	40.804	1.00	0.00	C
	ATOM	2836	CG	PHE		10.768	20.044	41.001	1.00	0.00	c
	ATOM	2837		PHE		11.026	20.869	39.930	1.00	0.00	c
55	ATOM	2838		PHE		10.589	20.618	42.240	1.00	0.00	Ċ
-	ATOM	2839		PHE		11.124	22.231	40.096	1.00	0.00	č
	ATOM	2840		PHE			21.978	42.414	1.00	0.00	č
	ATOM	2841	CZ	PHE		10.958	22.789	41.340	1.00	0.00	č
	ATOM	2842	Н	PHE		12.099	15.839	40.772	1.00	0.00	Н
60	ATOM	2843	HA	PHE			18.621	39.763	1.00	0.00	н
	ATOM	2844		PHE		10.256	18.093	41.701	1.00	0.00	н
	ATOM	2845		PHE		10.020	18.345	39.946	1.00	0.00	н
	ATOM	2846		PHE		11.154	20.437	38.937	1.00	0.00	H
	MOTA	2847		PHE		10.365	19.983	43.097	1.00	0.00	H
65	MOTA	2848		PHE		11.334		39.237	1.00	0.00	н
	MOTA	2849		PHE		10.549		43.404	1.00	0.00	н
	ATOM	2850	HZ	PHE		11.040		41.473	1.00	0.00	Н
	ATOM	2851	N	LYS	300	12.152	18.377	42.919	1.00	0.00	N

	- 170

	MOTA	2852	CA	LYS	300	12.711	18.546	44.231	1.00	0.00		С
	ATOM	2853	C	LYS	300	11.842	19.526	44.938	1.00	0.00		C
	MOTA	2854	0	LYS	300	10.626	19.541	44.767	1.00	0.00		0
5	ATOM ATOM	2855 2856	CB CG	LYS	300 300	14.135 14.273	19.134 20.503	44.286	1.00	0.00		C
,	ATOM	2857	CD	LYS	300	15.543	21.248	43.618 44.032	1.00	0.00		C
	ATOM	2858	CE	LYS	300	15.398	22.016	45.347	1.00	0.00		C
	ATOM	2859	NZ	LYS	300	15.336	21.070	46.484	1.00	0.00		N
	ATOM	2860	Н	LYS	300	11.129	18.455	42.825	1.00	0.00		Н
10	MOTA	2861	HA	LYS	300	12.695	17.563	44.703	1.00	0.00		H
	MOTA	2862	1HB	LYS	300	14.809	18.446		. 1.00	0.00		н
	MOTA	2863	2HB	LYS	300	14.419	19.245	45.332	1.00	0.00		н
	MOTA	2864		LYS	300	13.448	21.177	43.850	1.00	0.00		·H
	ATOM	2865		LYS	300	14.307	20.446	42.530	1.00	0.00		H
15	ATOM	2866		LYS	300	15.868	21.989	43.302	1.00	0.00		н
	MOTA	2867		LYS	300	16.402	20.593	44.177	1.00	0.00		H
	MOTA MOTA	2868 2869		LYS	300	14.485	22.611	45.334	1.00	0.00		H
	ATOM	2870		LYS	300 300	16.250 15.404	22.680 20.104	45.488 46.132	1.00 1.00	0.00		H H
20	ATOM	2871		LYS	300	16.117	21.256	47.129	1.00	0.00		н
20	ATOM	2872		LYS	300	14.443	21.190	46.983	1.00	0.00		Н
	ATOM	2873	N	GLY	301	12.461	20.372	45.778	1.00	0.00		N
	ATOM	2874	CA	GLY	301	11.731	21.382	46.474	1.00	0.00		C
	ATOM	2875	С	GLY	301	12.122	22.678	45.854	1.00	0.00		Ċ
25	ATOM	2876	0	GLY	301	12.740	22.704	44.791	1.00	0.00		0
	MOTA	2877	H	GLY	301	13.477	20.290	45.922	1.00	0.00		H
	MOTA	2878		GLY	301	12.033	21.310	47.518	1.00	0.00		Н
	MOTA	2879		GLY	301	10.676	21.149	46.327	1.00	0.00	•	Н
20	MOTA	2880	N .	ILE	302	11.773	23.795	46.516	1.00	0.00		N
30	ATOM	2881	CA	ILE	302	12.113	25.074	45.979	1.00	0.00		C
	ATOM ATOM	2882 2883	C O	ILE	302 302	13.590 14.361	25.101 24.917	45.795 46.735	1.00 1.00	0.00		C
	ATOM	2884	СВ	ILE	302	11.700	26.223	46.852	1.00	0.00		· C
	ATOM	2885		ILE	302	12.017	27.565	46.171	1.00	0.00		č
35	ATOM	2886		ILE	302	12.347	26.031	48.230	1.00	0.00		Č
	MOTA	2887		ILE	302	11.371	28.767	46.859	1.00	0.00		Ċ
	ATOM	2888	H	ILE	302	11.261	23.728	47.407	1.00	0.00		H
	MOTA	2889	НA	ILE	302	11.590	25.177	45.028	1.00	0.00		H
	MOTA	2890	HB	ILE	302	10.612	26.215	46.930	1.00	0.00		H
40	MOTA		1HG1		302	11.682	27.617	45.134	1.00	0.00		H
	ATOM		2HG1		302	13.081	27.795	46.137	1.00	0.00		H
	ATOM ATOM		1HG2 2HG2		302 302	12.939 12.992	25.116 26.881	48.229 48.450	1.00	0.00		H
	ATOM		3HG2		302	11.569	25.959	48.990	1.00	0.00		H H
45	ATOM		1HD1		302	10.796				0.00		Н
1,5	ATOM		2HD1		302	12.147	29.457	47.189	1.00	0.00		H
	ATOM		3HD1		302	10.708	29.274	46.158	1.00	0.00		Н
	MOTA	2899		LEU	303 .		25.313	44.536	1.00	0.00		N
	MOTA	2900	CA	LEU	303	15.389	25.330	44.179	1.00	0.00		С
50	MOTA	2901	С	LEU	303	16.008	26.457		1.00	0.00		С
	MOTA	2902		LEU	303	17.130	26.353	45.418	1.00	0.00		0
	ATOM	2903	CB	LEU	303	15.605	25.636	42.686	1.00	0.00		C.
	ATOM	2904	CG	LEU	303	14.969	24.617	41.721	1.00	0.00		C
55	ATOM ATOM	2905 2906		LEU LEU	303 303	15.618 13.439	23.232 24.583	41.852 41.865	1.00	0.00		C
55	ATOM	2907		LEU	303	13.303	25.469	43.800	1.00	0.00		С Н
	ATOM	2908		LEU	303	15.800	24.365	44.476	1.00	0.00		H
	ATOM	2909		LEU	303	16.677	25.646	42.492	1.00	0.00		H
	MOTA	2910		LEU	303	15.165	26.610	42.471	1.00	0.00		H
60	MOTA	2911	HG	LEU	303	15.076	24.926	40.681	1.00	0.00		Н
	ATOM		1HD1		303	16,400	23.267	42.610	1.00	0.00		Н
	MOTA		2HD1		303	14.862	22.502	42.143	1.00	0.00		H
	MOTA		3HD1		303	16.052	22.941	40.895	1.00	0.00		H
	ATOM		1HD2		303	13.129	25.296	42.628	1.00	0.00		Н
65	ATOM		2HD2		303	12.978	24.847	40.913	1.00	0.00		Н
	ATOM		3HD2	LYS	303 304	13.123	23.581	42.155	1.00	0.00		H
	ATOM ATOM	2918	N CA		304	15.262 15.783	27.569 28.750	45.034 45.650	1.00	0.00		N C
	ALON	2,717	Ori		204	10.703	20.750	13.030	1.00	0.00		C

- 171 -

	ATOM	2920	С	LYS	304	16.148	28.473	47.072	1.00	0.00		С
	ATOM	2921	ŏ	LYS	304	17.219	28.875	47.520	1.00	0.00		ŏ
	ATOM	2922	СВ	LYS	304	14.786	29.922	45.653	1.00	0.00		Č
												Ċ
•	ATOM	2923	CG	LYS	304	14.564	30.544	44.272	1.00	0.00		
5	ATOM	2924	CD	LYS	304	13.849	29.625	43.280	1.00	0.00		C
	MOTA	2925	CE	LYS	304	13.634	30.266	41.907	1.00	0.00		С
	ATOM	2926	NZ	LYS	304	12.942	29.318	41.007	1.00	0.00		N
·	MOTA	2927	H	LYS	304	14.299	27.571	44.668	1.00	0.00		н
	MOTA	2928	HA	LYS	304	16.673	29.090	45.120	1.00	0.00		н
10	ATOM	2929		LYS	304	15.088	30.752	46.290	1.00	0.00		H
	ATOM	2930		LYS	304	13.790	29.648	46.001	1.00	0.00		Н
	MOTA	2931	1HG	LYS	304	15.536	30.796	43.849	1.00	0.00		Н
	ATOM	2932	2HG	LYS	304	13.954	31.439	44.393	1.00	0.00		H
	ATOM	2933	.1HD	LYS	304	12.857	29.317	43.613	1.00	0.00		H
15	ATOM	2934	2HD	LYS	304	14.388	28.698	43.084	1.00	0.00		H
	MOTA	2935	1HE	LYS	304	14.593	30.534	41.465	1.00	0.00		н
	MOTA	2936	2HE	LYS	304	13.026	31.165	42.005	1.00	0.00		Н
	ATOM	2937	1HZ	LYS	304	12.760	28.437	41.509	1.00	0.00		Н
	ATOM	2938		LYS	304	12.048	29.727	40.698	1.00	0.00		Н
20	ATOM	2939		LYS	304	13.534	29.128	40.186	1.00	0.00		Н
	ATOM	2940	N	ASP	305	15.287	27.767	47.827	1.00	0.00		N
	ATOM	2941	CA	ASP	305	15.607	27.592	49.215	1.00	0.00		C
	ATOM	2942	C	ASP	305	16.862	26.797	49.367	1.00	0.00		Č
	MOTA	2943	ŏ	ASP	305	17.726	27.159	50.165	1.00	0.00		ő
25	ATOM	2944	СВ	ASP	305	14.513	26.886	50.034	1.00	0.00		c
23	ATOM	2945	CG	ASP	305	13.392	27.890	50.267	1.00	0.00		C
	ATOM	2946	OD1		305	13.596	29.090	49.942	1.00	0.00		0
	ATOM	2947	OD1		305	12.319	27.471	50.778	1.00	0.00		
												0
20	ATOM	2948	H	ASP	305	14.428	27.366	47.423	1.00	0.00		H
30	ATOM	2949	HA	ASP	305	15.751	28.558	49.698	1.00	0.00		н
	ATOM	2950		ASP	305	14.960	26.567	50.975	1.00	0.00		Н
	ATOM	2951		ASP	305	14.164	26.032	49.452	1.00	0.00		H
	MOTA	2952	N	LYS	306	17.018	25.697	48.606	1.00	0.00		N.
25	ATOM	2953	CA	LYS	306	18.190	24.902	48.824	1.00	0.00		C
35	ATOM	2954		LYS	306	19.398	25.699	48.455	1.00	0.00		. с
	MOTA	2955	0	LYS	306	20.406	25.684	49.158	1.00	0.00		0
	MOTA	2956	CB	LYS	306	18.210	23.580	48.037	1.00	0.00		С
	ATOM	2957	CG	LYS	306	18.354	23.727	46.523	1.00	0.00		C.
	MOTA	2958	CD	LYS	306	18.700	22.400	45.844	1.00	0.00		С
40	MOTA	2959	CE	LYS	306	18.844	22.501	44.327	1.00	0.00	•	С
	MOTA	2960	ΝZ	LYS	306	19.175	21.174	43.761	1.00	0.00		N
	MOTA	2961	H	LYS	306	16.320	25.436	47.893	1.00	0.00		Н
	MOTA	2962	HA	LYS	306	18.240	24.620	49.875	1.00	0.00		H
	MOTA	2963		LYS	306	17.270	23.060	48.225	1.00	0.00		Ή
45	MOTA	2964	2HB	LYS	306	19.056	22.990	48.388	1.00	0.00		Н
	MOTA	2965	1HG	LYS	306	19.140	24.431	46.250	1.00	0.00		H
	MOTA	2966	2HG	LYS	306	17.437	24.087	46.055	1.00	0.00		H
	MOTA	2967	1HD	LYS	306	17.903	21.686	46.056	1.00	0.00		H
	ATOM	2968	2HD	LYS	306	19.648	22.044	46.246	1.00	0.00		H
50	ATOM	2969	1HE	LYS	306	19.639	23.202	44.074	1.00	0.00		Н
	MOTA	2970		LYS	306	17.910	22.850	43.886	1.00	0.00		Н
	ATOM	2971	1HZ	LYS	306	19.233	20.481	44.520	1.00	0.00		Н
	ATOM	2972		LYS	306	18.441	20.891	43.095	1.00	0.00		н
	ATOM	2973		LYS	306	20.080	21.224	43.272	1.00	0.00		Н
55	ATOM	2974	N	LYS	307	19.311	26.450	47.347	1.00	0.00		N
	ATOM	2975	CA	LYS	307	20.430	27.216	46.887	1.00	0.00		C
	ATOM	2976	С	LYS	307	20.794	28.205	47.945	1.00	0.00		č
	ATOM	2977	ō	LYS	307	21.972	28.465	48.185	1.00	0.00		ŏ
	ATOM	2978	СВ	LYS	307	20.118	27.988	45.591	1.00	0.00		č
60	ATOM	2979	CG	LYS	307	21.337	28.616	44.908	1.00	0.00		C
	ATOM	2980	CD	LYS	307	22.037	29.699	45.732	1.00	0.00		C
	ATOM	2981	CE	LYS	307	23.252	30.313	45.035	1.00	0.00		C
	ATOM	2982	NZ	LYS	307	23.851	31.358	45.895	1.00	0.00		Ŋ
	ATOM	2983	H	LYS	307	18.426	26.476	46.819	1.00	0.00		H
65	ATOM	2984	HA	LYS	307	21.261	26.535	46.699	1.00	0.00		H
0.5	ATOM	2985		LYS	307	19.426	28.795	45.834	1.00	0.00		
	ATOM	2986		LYS	307	19.666	27.293	44.882	1.00	0.00		H H
	ATOM	2987		LYS	307	21.007	29.072	43.974	1.00	0.00		Н
	00	-501			55.	21.007	23.012	20.014	2.00	0.00		п

						•						
	ATOM	2988	2HG	LYS	307	22.064	27.827	44.714	1.00	0.00		н
	ATOM	2989		LYS	307	22.413	29.344	46.691	1.00	0.00		Н
	ATOM	2990		LYS	307		30.546	45.977	1.00	0.00		Н
	MOTA	2991		LYS	307	22.949	30.761	44.088	1.00	0.00		H
5	ATOM	2992		LYS	307	23.997	29.541	44.841	1.00	0.00		H
~	ATOM	2993		LYS	307	23.312	31.434	46.769	1.00	0.00		Н
	ATOM	2994		LYS	307	24.825	31.106	46.113	1.00	0.00		H
	ATOM	2995		LYS	307	23.832	32.261	45.401	1.00	0.00		н
	ATOM	2996	N	ASN	308	19.788	28.784	48.622	1.00	0.00		N
10	MOTA	2997	CA	ASN	308	20.100	29.798	49.585	1.00	0.00		· C
10	MOTA	2998	CA	ASN	308		29.231	50.635	1.00	0.00	•	C
						21.006						
	MOTA	2999	0	ASN	308	22.071	29.785	50.906	1.00	0.00		0
	ATOM	3000	CB	ASN	308	18.848	30.327	50.307	1.00	0.00		C
1.5	ATOM	3001	CG	ASN	308	19.247	31.528	51.153	1.00	0.00		C
15	ATOM	3002		ASN	308	20.366	32.029	51.054	1.00	0.00		0
	MOTA	3003		ASN	308	18.309	32.003	52.016	1.00	0.00		N
	MOTA	3004	H	ASN	308	18.811	28.504	48.451	1.00	0.00		H
	ATOM	3005	HA	ASN	308	20.597	30.631	49.089	1.00	0.00		H
	MOTA	3006		ASN	308	18.450	29.533	50.939	1.00	0.00		Н
20	MOTA	3007	2HB	ASN	308	18.112	30.618	49.557	1.00	0.00		Н
	MOTA		1HD2		308	18.524	32.811	52.617	1.00	0.00		Н
	MOTA		2HD2		308	17.383	31.554	52.068	1.00	0.00		H
	ATOM	3010	N	ASP	309	20.605	28.106	51.258	1.00	0.00		N
	MOTA	3011	CA	ASP	309	21.388	27.540	52.320	1.00	0.00		С
25	MOTA	3012	С	ASP	309	22.665	26.942	51.803	1.00	0.00		С
	MOTA	3013	0	ASP	309	23.747	27.246	52.304	1.00	0.00		0
	MOTA	3014	CB	ASP	309	20.635	26.430	53.073	1.00	0.00		С
	MOTA	3015	CG	ASP	309	19.471	27.076	53.813	1.00	0.00		C
	ATOM	3016	OD1	ASP	309	19.395	28.333	53.812	1.00	0.00		0
30	MOTA	3017	OD2	ASP	309	18.644	26.320	54.390	1.00	0.00		0
	MOTA	3018	H	ASP	309	19.728	27.647	50.969	1.00	0.00		H
	MOTA	3019	HA	ASP	309	21.657	28.292	53.061	1.00	0.00		Н
	MOTA	3020	1HB	ASP	309	21.333	25.966	53.769	1.00	0.00		Н
	MOTA	3021	2HB	ASP	309	20.279	25.709	52.336	1.00	0.00		Н
35	MOTA	3022	N	ILE	310	22.562	26.078	50.772	1.00	0.00		N
	ATOM	3023	CA	ILE	310	23.688	25.341	50.263	1.00	0.00		С
	MOTA	3024	С	ILE	310	24.679	26.236	49.592	1.00	0.00		С
	ATOM	3025	0	ILE	310	25.879	26.087	49.814	1.00	0.00		0
	ATOM	3026	CB	ILE	310	23.289	24.288	49.273	1.00	0.00		С
40	MOTA	'3027	CG1	ILE	310	22.391	23.238	49.948	1.00	0.00		С
	ATOM	3028	CG2		310	24.575	23.700	48.668	1.00	0.00		Ċ
	ATOM	3029		ILE	310	23.080	22.501	51.096	1.00	0.00		C
	ATOM	3030	H	ILE	310	21.641	25.940	50.331	1.00	0.00		Н
	ATOM	3031	HA	ILE	310	24.218	24.814	51.056	1.00	0.00		Н
45	ATOM	3032	HB	ILE	310	22.677	24.765	48.507	1.00	0.00		Н
	ATOM		1HG1		310	22.051	22.458	49.266	1.00	0.00		H
	ATOM		2HG1		310	21.483	23.659	50.379	1.00	0.00		Н
	ATOM		1HG2		310	25.442	24.192	49.107	1.00	0.00		Н
	ATOM		2HG2		310	24.620	22.631	48.877	1.00	0.00		Н
50	ATOM		3HG2		310	24.575	23.858	47.589	1.00	0.00		H
-	ATOM		1HD1		310	24.097		51.210	1.00	0.00		H
	ATOM		2HD1		310		. 22.667	52.019	1.00	0.00		н
	ATOM		3HD1		310	23.109	21.433	50.877	1.00	0.00		H
	MOTA	3041	N	GLU	311	24.186	27.194	48.779	1.00	0.00		
55	ATOM	3042	CA	GLU	311	24.943	28.128	47.983	1.00	0.00		N C
55	ATOM	3042	C	GLU	311	25.034	27.561	46.604	1.00	0.00		
	ATOM	3043		GLU	311	25.245	28.291	45.636	1.00	0.00		C
		3044	O		311		28.389	48.424	1.00	0.00		0
	ATOM			GLU		26.400	27.341			0.00		C
60	ATOM	3046		GLU		27.404		47.930	1.00			C
60	ATOM	3047	CD	GLU	311	28.788	27.726	48.434	1.00	0.00		С
	ATOM	3048		GLU	311	28.894	28.759	49.148	1.00	0.00		0
	ATOM	3049		GLU		29.759	26.993	48.108	1.00	0.00		0
	ATOM	3050		GĻŪ		23.160	27.265	48.721	1.00	0.00		Н
C F	ATOM	3051		GLU		24.401	29.073	47.993	1.00	0.00		Н
65	ATOM	3052		GLU	311	26.432	28.391	49.513	1.00	0.00		Н
	ATOM	3053		GLU		26.709	29.356	48.028	1.00	0.00		Н
	ATOM	3054		GLU	311	27.383	27.331	46.840	1.00	0.00		Н
	ATOM	3055	ZHG	GLU	311	27.110	26.369	48.326	1.00	0.00		Н

										•	
	MOTA	3056 ท	ALA	312	24.867	26.231	46.477	1.00	0.00		N
	MOTA	3057 CA	ALA	312	24.906	25.633	45.176	1.00	0.00		C
	ATOM	3058 C	ALA	312	23.634	24.875	45.010	1.00	0.00		С
	MOTA	3059 O	ALA	312	23.143	24.248	45.948	1.00	0.00		0
5	ATOM	3060 CB	ALA	312	26.064	24.640	44.983	1.00	0.00		C
	ATOM	3061 H	ALA	312	24.712	25.646	47.311	1.00	0.00		H
	MOTA	3062 HA	ALA	312	24.991	26.446	44.456	1.00	0.00		H
	MOTA	3063 1HB	ALA	312	26.649	24.580	45.900	1.00	0.00	1)(1	H
	MOTA	3064 2HB	ALA.	312	25.662	23.655	44.744	1.00	0.00		H
10	MOTA	3065 3HB	ALA	312	26.702	24.979	44.166	1.00	0.00		H
	MOTA	3066 N	GLN	.313	23.033	24.961	43.810	1.00	0.00		N
	MOTA	3067 CA	GLN	313	21.840	24.209	43.578	1.00	0.00		C
	MOTA	3068 C	GLN	313	22.262	22.783	43.604	1.00	0.00		С
	MOTA	3069 O	GLN	313	21.709	21.961	44.335	1.00	0.00		0
15	ATOM	3070 CB	GLN	313	21.222	24.531	42.204	1.00	0.00		C
	ATOM	3071 CG	GLN	313	19.914	23.796	41.908	1.00	0.00		C
	ATOM	3072 CD	GLN GLN	313	19.409	24.248	40.546 39.754	1.00 1.00	0.00		0
	ATOM ATOM	3073 OE1 3074 NE2		313 313	20.146 18.107	24.834 23.967	40.266	1.00	0.00		Ŋ
20	ATOM	3074 NE2	GLN	313	23.426	25.559	43.069	1.00	0.00		Н
20	ATOM	3076 HA	GLN	313	21.168	24.474	44.394	1.00	0.00		H
	MOTA	3077 1HB	GLN	313	21.939	24.249	41.433	1.00	0.00		н
	ATOM	3078 2HB	GLN	313	21.014	25.600	42.165	1.00	0.00		H
	MOTA	3079 1HG	GLN	313	19.194	24.049	42.686	1.00	0.00		Н
25	ATOM	3080 2HG	GLN	313	20.115	22.724	41.906	1.00	0.00		Н
	ATOM	3081 1HE2		31:3	17.702	24.247	39.361	1.00	0.00		Н
-	ATOM	3082 2HE2	GLN	313	17.526	23.474	40.959	1.00	0.00		H
	ATOM	3083 N	TRP	314	23.311	22.485	42.818	1.00	0.00		N
	ATOM	3084 CA	TRP	314	23.881	21.180	42.738	1.00	0.00		C
30	ATOM	3085 C	TRP	314	25.260	21.370	43.255	1.00	0.00		С
	MOTA	3086 O	TRP	314	26.227	21.379	42.499	1.00	0.00		0
	MOTA	3087 CB	TRP	314	23.999	20.710	41.282	1.00	0.00		С
	ATOM	3088 CG	TRP	314	22.655	20.632	40.606	1.00	0.00		C
25	ATOM		TRP	314	21.909	21.637	40.066	1.00	0.00		C
35 -	MOTA	3090 CD2		314	21.902 20.730	-19.424	40.433 39.578	1.00 1.00	0.00		C
	MOTA		TRP	314 314	20.730	21.131 19.769	39.793	1.00	0.00		И С
	MOTA MOTA	3092 CE2		314	22.179	18.135	40.779	1.00	0.00		C
	ATOM		TRP	314	19.777	18.824	39.487	1.00	0.00		C
40	ATOM		TRP	314	21.234	17.182	40.471	1.00	0.00		Ċ
	ATOM		TRP	314	20.057	17.522	39.839	1.00	0.00		Ċ
	ATOM	3097 н	TRP	314	23.723	23.235	42.245	1.00	0.00		Н
	MOTA	3098 HA	TRP	314	23.317	20.470	43.343	1.00	0.00		Н
	ATOM	3099 1HB	TRP	314	24.448	19.719	41.209	1.00	0.00		. Н
45	MOTA	3100 2HB	TRP	314	24.615	21.383	40.686	1.00	0.00		Н
	MOTA	3101 HD1	TRP	314	22.204	22.685	40.027	1.00	0.00	•	H
	MOTA		LTRP	314	19.982	21.677	39.126	1.00	0.00		Н
	MOTA		TRP	314	23.110	17.869	41:279	1.00	0.00		H
50	MOTA		TRP	314	18.846	19.088	38.985	1.00	0.00		Н
50	ATOM		TRP	314	21.419	16.140	40.731	1.00	0.00		Н
	MOTA		2 TRP	314	19.330	16.741	39.612	1.00	0.00		H
	ATOM	3107 N	HIS	315	25.394	21.550 21.750	44.575 45.084	1.00	0.00		N
	ATOM ATOM	3108 CA 3109 C	HIS HIS	315 315	26.710 27.413	20.459	44.874	1.00	0.00		C
55	MOTA	3110 0	HIS	315	28.636	20.413	44.749	1.00	0.00		Ö
22	ATOM	3111 CB	HIS	315	26.750	22.063	46.589	1.00	0.00		c
	MOTA	3112 CG	HIS	315	28.077	22.611	47.025	1.00	0.00		c
	ATOM		1 HIS	315	29.203	21.848	47.241	1.00	0.00		N
	ATOM		2 HIS	315	28.448		47.276	1.00	0.00		C
60	ATOM		l HIS	315	30.191	22.703	47.607	1.00	0.00		С
	ATOM		2 HIS	315	29.780	23.959	47.642	1.00	0.00		N
	MOTA	3117 H	HIS	315	24.575	21.544	45.200	1.00	0.00		Н
	MOTA	3118 HA	HIS	315	27.126		44.495	1.00	0.00		Н
	MOTA	3119 1HB	HIS	315	26.565		47.202	1.00	0.00		H
65	ATOM	3120 2HB	HIS	315	26.002		46.880	1.00	0.00		. н
	ATOM		1 HIS	315	29.280		47.143	1.00	0.00		Н
	MOTA		2 HIS	315	27.786		47.198	1.00	0.00		H
	MOTA	3123 HE	1 HIS	315	31.207	22.390	47.845	1.00	0.00		н

	MOTA	3124 HE	E2 HIS	315	30.328	24.795	47.887	1.00	0.00	н
	ATOM	3125 N	ASP	316	26.632	19.363	44.820	1.00	0.00	N
	ATOM	3126 CF		316	27.255	18.084	44.726	1.00	0.00	С
	ATOM	3127 C	ASP	316	27.668	17.819	43.324	1.00	0.00	С
5	ATOM	3128 0	ASP	316	27.269	16.820	42.727	1.00	0.00	O
,	ATOM	3129 CE		316	26.354	16.932	45.193	1.00	0.00	Č
	ATOM	3130 CG		316	26.248	17.068	46.702	1.00	0.00	· č
	ATOM		Ol ASP	316	26.964	17.944	47.256	1.00	0.00	Ö
			D2. ASP	316	25.459	16.310	47.324	1.00	0.00	ŏ
10	ATOM			316		19.447	44.846	1.00	0.00	Н
10	ATOM _	3133 H	ASP		25.605		45.365	1.00	0.00	Н
	MOTA	3134 HA		316	28.137	18.049			0.00	
	ATOM	3135 1HE		316	26.856	16.014	44.887	1.00		Н
	ATOM	3136 2HE		316	25.397	17.075	44.689	1.00	0.00	H
	ATOM	3137 N			28.494	18.714	42.758	1.00	0.00	N
15	ATOM	3138 C		317	29.027	18.404	41.475	1.00	0.00	C
	MOTA	3139 C	GLU	317	29.978	17.306.	41.754	1.00	0.00	C
	ATOM	3140 0		317	30.193	16.472	40.869	1.00	0.00	0
	MOTA	3141 CF		317	29.769	19.557	40.766	1.00	0.00	С
	MOTA	3142 C		317	31.038	20.061	41.451	1.00	0.00	С
20	MOTA	3143 CI		317	31.668	21.086	40.513	1.00	0.00	С
	MOTA		E1 GLU	317	32.161	20.672	39.430	1.00	0.00	0
	ATOM		E2 GLU	317	31.658	22.296	40.865	1.00	0.00	0
	ATOM	3146 H		317	28.733	19.594	43.235	1.00	0.00	Н
	MOTA	3147 H		317	28.239	18.091	40.789	1.00	0.00	H
25	MOTA	3148 1HI	B GLU	317	29.085	20.403	40.699	1.00	0.00	H
	ATOM.	3149 2HI	B GLU	317	30.058	19.208	39.774	1.00	0.00	H
	MOTA	3150 1H	G GLU	317	31.681	19.193	41.599	1.00	0.00	H
	MOTA	3151 2H	G GLU	317	30.729	20.507	42.396	1.00	0.00	H
	MOTA	3152 N	SER	318	30.507	17.340	43.021	1.00	0.00	N
30	MOTA	3153 C	A SER	318	31.471	16.482	43.681	1.00	0.00	С
	MOTA	3154 C	SER	318	31.683	15.359	42.781	1.00	0.00	С
	ATOM	3155 0	SER	318	31.131	14.271	42.940	1.00	0.00	0
	ATOM	3156 CI	B SER	318	30.999	15.951	45.046	1.00	0.00	С
	ATOM	3157 0	G SER	318	30.898	17.022	45.973	1.00	0.00	0
35	MOTA	3158 н	_SER	318	30.156	18.112	43.605	1.00	0.00	.H
	ATOM	3159 H		318	32.365	17.090	43.817	1.00	0.00	H
	ATOM	3160 1H	B SER	318	31.711	15.218	45.425	1.00	0.00	Н
	MOTA	3161 2H	B SER	318	30.022	15.477	44.942	1.00	0.00	Н
	MOTA	3162 H		318	31.605	17.736	45.751	1.00	0.00	Н
40	ATOM	3163 N		319	32.511	15.687	41.781	1.00	0.00	N
	ATOM	3164 C	A HIS	319	32.640	14.944	40.586	1.00	0.00	С
	ATOM	3165 C	HIS	319	32.692	13.484	40.840	1.00	0.00	С
	MOTA	3166 0	HIS	319	31.715	12.770	40.611	1.00	0.00	0
	ATOM	3167 C		319	33.869	15.405	39.763	1.00	0.00	С
45	MOTA	3168 C		319	34.885	16.229	40.506	1.00	0.00	С
	ATOM		D1 HIS	319	35.774	15.739	41.436	1.00	0.00	N
	ATOM		D2 HIS	319	35.149	17.562	40.405	1.00	0.00	C
	ATOM		E1 HIS	319	36.528	16.792	41.848	1.00	0.00	c
	ATOM		E2 HIS	319	36.185	17.919	41.250	1.00	0.00	N
50	ATOM	3173 H		319	33.089	16.532	41.889	1.00	0.00	Н
50	ATOM		A HIS	319	31.806	15.114	39.905	1.00	0.00	Н
	ATOM	3175 1H		319	33.507	16.013	38.933	1.00	0.00	н
	ATOM	3176 2H		319	34.382	14.514	39.399	1.00	0.00	H
	ATOM		D1 HIS	319	35.852	14.763	41.757	1.00	0.00	H
55	ATOM		D2 HIS	319	34.617	18.251	39.749	1.00	0.00	Н
55	MOTA		E1 HIS	319	37.325	16.715	42.587	1.00	0.00	Н
	ATOM		E2 HIS	319	36.596	18.853	41.383	1.00	0.00	Н
	ATOM	3181 N		320	33.829	13.006	41.338	1.00	0.00	N
	MOTA		A LEU	320	33.960	11.594	41.453	1.00	0.00	Ċ
60	ATOM	3183 C		320	33.221	11.019	42.623	1.00	0.00	c
00		3184 0		320	32.483	10.042	42.489	1.00	0.00	o
	ATOM				35.438	11.190	41.608	1.00	0.00	
	ATOM		B LEU	320 320	36.349	11.190	40.441	1.00	0.00	C
	ATOM	-	D1 LEU		36.495	13.166	40.441	1.00	0.00	C
65	MOTA		D2 LEU	320 320	37.714		40.509	1.00	0.00	C
65	MOTA			320 320		10.938	41.630	1.00	0.00	
	MOTA	3189 H		320 320	34.588	13.636		1.00	0.00	H
	MOTA	-	IA LEU	320	33.586		40.584	1.00	0.00	Н
	MOTA	3191 1H	IB LEU	320	35.490	10.103	41.670	1.00	0.00	Н

	MOTA	3192	2HB	LEU	320	35.823	11.646	42.519	1.00	0.00		H
	MOTA	3193	HG	LEU	320	35.965	11.314	39.473	1.00	0.00		H
	ATOM	3194			320	35.915	13.624	41.171	1.00	0.00		Н
	ATOM	3195			320	37.545	13.436	40.480	1.00	0.00		H
5								39.407	1.00	0.00		Н
3	MOTA	3196			320	36.128	13.522					
	ATOM	3197			320	37.740	10.274	41.373	1.00	0.00		H
	MOTA	3198			320	37.870	10.356	39.600	1.00	0.00		H
	MOTA	3199	3HD2	LEU	320	38.501	11.686	40.601	1.00	0.00		H
	MOTA	3200	N	ASN	321	33.369	11.655	43.800	1.00	0.00		N
10	MOTA	3201	CA	ASN	321	32.981	11.026	45.032	1.00	0.00		С
	ATOM	3202	C	ASN	321	31.507	10.933	45.227	1.00	0.00	•	С
	ATOM	3203	ō	ASN	321	30.830	11.938	45.420	1.00	0.00		ō
								46.279	1.00	0.00		c
	ATOM	3204	CB	ASN	321	33.583	11.700					
	MOTA	3205	CG	ASN	321	33.564	10.699	47.429	1.00	0.00		С
15	MOTA	3206		ASN	321	34.621	10.221	47.835	1.00	0.00		0
	MOTA	3207	ND2	ASN	321	32.356	10.377	47.969	1.00	0.00		N
	ATOM	3208	H	ASN	321	33.765	12.605	43.817	1.00	0.00		H
	MOTA	3209	HA	ASN	321	33.382	10.012	45.041	1.00	0.00		H
	ATOM		1HB	ASN	321	32.980	12.573	46.526	1.00	0.00		H
20	ATOM	3211		ASN	321	34.606	11.997	46.052	1.00	0.00		Н
20		3212			321	32.303	9.707	48.750	1.00	0.00		H
	ATOM											
	MOTA	3213	2HD2		321	31.495	10.802	47.596	1.00	0.00		Н
	MOTA	3214	N	LYS	322	31.016	9.677	45.216	1.00	0:00		N
	MOTA	3215	CA	LYS	322	29.662	9.267	45.453	1.00	0.00	 •	С
25	MOTA	3216	С	LYS	322	29.164	8.606	44.218	1.00	0.00	•	C
	MOTA	3217	0	LYS	322	29.905	7.895	43.539	1.00	0.00		0
	MOTA	3218	СВ	LYS	322	28.655	10.351	45.921	1.00	0.00		С
	ATOM	3219	CG	LYS	322	28.204	11.408	44.904	1.00	0.00		C
	MOTA	3220	CD	LYS	322	26.891	12.077	45.310	1.00	0.00		c
20							12.783	46.661	1.00	0.00		c
30	MOTA	3221	CE	LYS	322	26.960						
	MOTA	3222	NZ	LYS	322	27.034	14.246	46.472		0.00		N
	ATOM	3223	H	LYS	322	31.691	8.925	45.014	1.00	0.00		H
	MOTA	3224	AН	LYS	322	29.665	8.573	46.294	1.00	0.00		H
	MOTA	3225	1HB	LYS	322	29.122	10.896	46.741	1.00	0.00		H
_ 35	ATOM	3226	2HB	LYS	322	27.751	9.835	46.247	1.00	0.00		Н
	MOTA	3227		LYS	322	28.044	10.984	43.912	1.00	0.00		Н
	ATOM	3228	2HG	LYS	322	28.937	12.206	44.786	1.00	0.00		Н
	MOTA	3229		LYS	322	26.056	11.381	45.394	1.00	0.00		Н
						26.556	12.839	44.606	1.00	0.00		
40	MOTA	3230		LYS	322							H
40	MOTA	3231		LYS	322	27.842	12.458	47.213	1.00	0.00		H
	ATOM	3232	2HE	LYS	322	26.074	12.553	47.253	1.00	0.00		H
	ATOM	3233	1HZ	LYS	322	27.022	14.463	45.465	1.00	0.00		H
	ATOM	3234	2HZ	LYS	322	26.226	14.693	46.928	1.00	0.00		Н
	ATOM	3235	3HZ	LYS	322	27.905	14.603	46.890	1.00	0.00		Н
45	ATOM	3236	N	TYR	323	27.877	8.812	43.892	1.00	0.00		N
	ATOM	3237		TYR		27.365	8.140	42.748	1.00	0.00		C
	ATOM	3238	C	TYR	323	26.560	9.116	41.954	1.00	0.00		Ċ
					323	26.111	10.140	42.466	1.00	0.00		
	ATOM	3239	0	TYR								0
	ATOM	3240	CB	TYR	323	26.425	6.999	43.149	1.00	0.00		0.0.0
50	ATOM	3241	CG	TYR	323	27.172	6.143	44.116	1.00	0.00		Ċ
	ATOM	3242		TYR	323	27.955	5.095	43.699	1.00	0.00		С
	MOTA	3243	CD2	TYR	323	27.091	6.394	45.468	1.00	0.00		С
	ATOM	3244	CE1	TYR	323	28.639	4.317	44.599	1.00	0.00		С
	MOTA	3245		TYR		27.769	5.623	46.380	1.00	0.00		С
55	ATOM	3246	CZ	TYR	323	28.544	4.576	45.946	1.00	0.00		Č
33	ATOM	3247	ОН	TYR		29.242	3.783	46.876	1.00	0.00		ō
										0.00		
	ATOM	3248	H	TYR		27.280	9.436	44.452	1.00			H
	MOTA	3249		TYR		28.207	7.770	42.163	1.00	0.00		H
	MOTA	3250		TYR		26.175	6.459	42.235	1.00	0.00		H
60	ATOM	3251	2HB	TYR		25.547	7.457	43.604	1.00	0.00		Н
	MOTA	3252	HD1			28.034	4.877	42.634	1.00	0.00		Н
	ATOM	3253		TYR		26.476	7.221	45.821	1.00	0.00		H
	ATOM	3254				29.258	3.492	44.245	1.00	0.00		Н
	ATOM	3255				27.692	5.841	47.445	1.00	0.00		Н
65						28.865	3.948	47.820	1.00	0.00		Н
U.S	ATOM	3256		TYR				40.650	1.00	0.00		
	MOTA	3257		PHE		26.404	8.832					N
	ATOM	3258		PHE		25.571	9.646	39.823	1.00	0.00		С
	MOTA	3259	C	PHE	324	24.186	9.469	40.336	1.00	0.00		С

	MOTA	3260	0	PHE	324		23.420	10.424	40.441	1.00	0.00		0
	MOTA	3261	CB	PHE	324		25.516	9.189	38.347	1.00	0.00		C
	MOTA	3262	CG	PHE	324		26.667	9.706	37.536	1.00	0.00		С
	ATOM	3263	CD1	PHE	324		27.847	9.007	37.410	1.00	0.00		C
5	ATOM	3264	CD2	PHE	324		26.543	10.913	36.882	1.00	0.00		С
	MOTA	3265	CE1	PHE	324		28.882	9.508	36.654	1.00	0.00		С
	MOTA	3266	CE2	PHE	324		27.571	11.421	36.123	1.00	0.00		С
	MOTA	3267	CZ	PHE	324		28.744	10.718	36.010	1.00	0.00		С
	MOTA	3268	Н	PHE	324		26.889	8.019	40.243	1.00	0.00		Н
10	ATOM	3269	HA	PHE	324		25.936	10.666	39.940	1.00	0.00	•	H
	ATOM	3270	1HB	PHE	324		24.613	9.523	37.835	1.00	0.00		н
	ATOM	3271		PHE	324		25.536	8.104	38.240	1.00	0.00		H
	ATOM	3272	HD1	PHE	324		27.962	8.047	37.914	1.00	0.00		Н
	ATOM	3273	HD2		324		25.613	11.475	36.968	1.00	0.00		Н
15	ATOM	3274	HE1	PHE	324		29.812	8.946	36.564	1.00	0.00		н
	MOTA	3275	HE2	PHE	324		27.454	12.377	35.613	1.00	0.00		н
	ATOM	3276	HZ	PHE	324		29.564	11.115	35.412	1.00	0.00		Н
	ATOM	3277	N	LEU	325		23.861	8.213	40.695	1.00	0.00		N
	ATOM	3278	CA	LEU	325		22.565	7.783	41.130	1.00	0.00		C
20	ATOM	3279	С	LEU	325		22.154	8.523	42.366	1.00	0.00		С
	MOTA	3280	0	LEU	325		21.008	8.948	42.497	1.00	0.00		0
	MOTA	3281	CB	LEU	325		22.578	6.295	41.501	1.00	0.00		С
	MOTA	3282	CG	LEU	325		21.243	5.784	42.071	1.00	0.00	•	С
	MOTA	3283	CD1	LEU	325		20.119	5.791	41.021	1.00	0.00		С
25	ATOM	3284	CD2	LEU	325		21.435	4.421	42.755	1.00	0.00		С
	ATOM	3285	H	LEU	325		24.605	7.502	40.653	1.00	0.00		Н
	MOTA	3286	HA	LEU	325		21.821	7.967	40.354	1.00	0.00		Н
	ATOM	3287	1HB	LEU	325		23.346	6.135	42.257	1.00	0.00		Н
	ATOM	3288	2HB	LEU	325		22.800	5.718	40.603	1.00	0.00		Н
30	ATOM	3289	HG	LEU	325		20.890	6.389	42.905	1.00	0.00		H
	MOTA	3290	1HD1	LEU	325		20.508	6.163	40.073	1.00	0.00		Н
	ATOM	3291	2HD1	LEU	325		19.741	4.777	40.885	1.00	0.00		H
	ATOM	3292	3HD1	LEU	325		19.309	6.437	41.359	1.00	0.00		Н
	MOTA .	3293	1HD2	LEU	325		22.480	4.121	42.681	1.00	0.00		H
35	MOTA	3294	2HD2	LEU	325	•	21.152	4.497	43.804	1.00	0-00		Н
	MOTA		3HD2	LEU	325		20.808	3.676	42.264	1.00	0.00		Н
	MOTA	3296	N	LEU	326		23.075	8.667	43.330	1.00	0.00		N
	MOTA	3297	CA	LEU	326		22.749	9.347		1.00	0.00		С
	ATOM	3298	С	LEU	326		22.616	10.799	44.259	1.00	0.00		С
40	ATOM	3299	0	LEU	326		21.899	11.523	44.946	1.00	0.00		0
	MOTA	3300	CB	LEU	326		23.812	9.146	45.642	1.00	0.00		С
	MOTA	3301	CG	LEU	326		23.773	7.738	46.252	1.00	0.00		C
	ATOM	3302		LEU	326		22.500	7.562	47.098	1.00	0.00		C
	MOTA	3303		LEU	326		23.909	6.638	45.177	1.00	0.00		C
45	MOTA	3304	Н	LEU	326		24.022	8.286	43.193	1.00	0.00		H
	ATOM	3305	HA	LEU	326		21.808	8.948	44.927	1.00	0.00		H
	MOTA	3306		LEU	326		23.693	9.840	46.474	1.00	0.00		Н
	ATOM	3307		LEU	326		24.827	9.287	45.271	1.00	0.00		H
50	ATOM	3308		LEU	326		24.642	7.580	46.889	1.00	0.00		Н
50	ATOM		1HD1		326		21.914	8.481	47.070	1.00	0.00		н
	ATOM		2HD1		326		21.906	6.741	46.695	1.00	0.00		Н
	ATOM		3HD1		326		22.776	7.338	48.128	1.00	0.00		H
	ATOM		1HD2		326		24.005	7.099	44.194	1.00	0.00		H
<i>5 6</i>	MOTA		2HD2		326		24.793	6.035	45.383		0.00		H
55	ATOM		3HD2		326		23.024	6.001	45.193	1.00	0.00	•	H
	ATOM	3315	N	ASN	327		23.303	11.267 12.670	43.211	1.00	0.00		N
	ATOM	3316	CA	ASN	327		23.370	13.254	42.986 42.709	1.00 1.00	0.00		. С
	MOTA	3317	C	ASN	327		22.005		43.167	1.00	0.00		С
60	MOTA	3318	0	ASN	327		21.752	14.368					0
60	ATOM	3319	CB	ASN ASN	327 327		24.390 25.049	13.029 14.313	41.895 42.368	1.00	0.00		C
	ATOM	3320	CG	ASN	327		26.049	14.313	42.368	1.00	0.00		0
	MOTA MOTA	3321 3322		ASN	327		24.471	14.707	43.446	1.00	0.00		N
	MOTA	3323	H	ASN	327		23.780	10.615	42.571	1.00	0.00		H
65	ATOM	3323	п НА	ASN	327		23.777	13.195	43.849	1.00	0.00		n H
0.0	ATOM	3325		ASN	327		23.805	13.155	40.983	1.00	0.00		H
	ATOM	3326		ASN	327		25.076	12.183	41.852	1.00	0.00		H
	ATOM		1HD2		327		24.869	15.767	43.835	1.00	0.00		Н
									_				

....

							•				
	ATOM	3328 2HD2	ASN	. 327	23.633	14.481	43.874	1.00	0.00		H
	ATOM	3329 N	LYS	328	21.089	12.555	41.978	1.00	0.00		N
	ATOM	3330 CA	LYS	328	19.771	13.121	41.767	1.00	0.00		Ċ
								1.00	0.00		C
_	MOTA	3331 C	LYS	328	19.211	13.426	43.104				
5	MOTA	3332 0	LYS	328	19.463	12.693	44.050	1.00	0.00		0
	ATOM	3333 CB	LYS	328	18.750	12.263	40.983	1.00	0.00		С
	MOTA	3334 CG	LYS	328	18.902	10.751	41.124	1.00	0.00		С
	MOTA	3335 CD	LYS	328	20.036	10.188	40.268	1.00	0.00		С
	MOTA	3336 CE	LYS	328	19.653	10.045	38.792	1.00	0.00		С
10	MOTA	3337 NZ	LYS	328	18.515	9.110	38.650	1.00	0,00		N
	ATOM	3338 н	LYS	328	21.331	11.636	41.580	1.00	0.00	-	H
	MOTA	3339 HA	LYS	328	19.902	14.022	41.168	1.00	0.00		н
	MOTA	3340 1HB	LYS	328	18.857	12.498	39.924	1.00	0.00		H
	ATOM	3341 2HB	LYS	328	17.752	12.519	41.340	1.00	0.00		Н
15	MOTA	3342 1HG	LYS	328	18.004	10.207	40.828	1.00	0.00		Н
	MOTA	3343 2HG	LYS	328	19.116	10.442	42.147	1.00	0.00		H
	ATOM	3344 1HD	LYS	328	20.358	9.197	40.589	1.00	0.00		H
	ATOM	3345 2HD	LYS	328	20.929	10.812	40.285	1.00	0.00		Н
	MOTA	3346 1HE	LYS	328	20.498	9.659	38.221	1.00	0.00		H
20	ATOM	3347 2HE	LYS	328	19.365	11.013	38.384	1.00	0.00		Н
20	ATOM	3348 1HZ	LYS	328	18.235	8.764	39.579	1.00	0.00		H
	MOTA	3349 2HZ	LYS	328	17.720	9.599	38.213	1.00	0.00		H
	ATOM	3350 3HZ	LYS	328	18.795	8.314	38.058	1.00	0.00		H
	ATOM	3351 N	PRO	329	18.490	14.528	43.136	1.00	0.00		N
25	MOTA	3352 CA	PRO	329	17.995	15.142	44.344	1.00	0.00		С
	ATOM	3353 C	PRO	329	17.563	14.144	45.354	1.00	0.00		С
•	ATOM	3354 O	PRO	329	16.396	13.757	45.352	1.00	0.00		0
	ATOM	3355 CB	PRO	329	16.840	16.054	43.919	1.00	0.00		C
	ATOM	3356 CG	PRO	329	16.999	16.206	42.397	1.00	0.00		Ċ
30	ATOM	3357 CD	PRO	329	17.707	14.917	41.977	1.00	0.00		č
30											
	MOTA	3358 HA	PRO	329	18.743	15.765	44.832	1.00	0.00		H
	MOTA	3359 1HB	PRO	329	16.999	16.980	44.471	1.00	0.00		Н
_	MOTA	3360 2HB	PRO	329	15.938	15.517	44.214	1.00	0.00		H
1.2	MOTA	3361 1HG	PRO	329	17.591	17.088	42.153	1.00	0.00		Н
35	ATOM	3362 2HG	PRO	329	16.028	16.308	41.911	1.00	0.00		H
	MOTA	3363 1HD	PRO	329	17.028	14.081	41.804	1.00	0.00		H
	ATOM	3364 2HD	PRO	329	18.437	15.058	41.180	1.00	0.00		Н
	ATOM	3365 N	THR	330	18.507	13.736	46.223	1.00	0.00		N
	ATOM	3366 CA	THR	330	18.272	12.783	47.254	1.00	0.00		C
40		3367 C	THR	330	19.467	12.850	48.135	1.00	0.00		Č
40	ATOM								0.00		
•	ATOM	3368 O	THR	330	19.475	12.264	49.215	1.00			0
	MOTA	3369 CB	THR	330	18.217	11.350	46.783	1.00	0.00		С
	MOTA	3370 OG1		330	19.439	10.996	46.151	1.00	0.00		0
	ATOM	3371 CG2	THR	330	17.033	11.140	45.823	1.00	0.00		С
45	ATOM	3372 н	THR	330	19.452	14.135	46.137	1.00	0.00		H
	ATOM	3373 на	THR	330	17.356	13.108	47.747	1.00	0.00		H
	ATOM	3374 HB	THR	330	18.096	10.672	47.628	1.00	0.00		Н
	ATOM		THR	330	19.492	11.449	45.228	1.00	0.00	•	н
	ATOM	3376 1HG2		330	16.495	12.079	45.697	1.00	0.00		H
50		3370 ING2		330	17.404	10.802	44.855	1.00	0.00		H
30	ATOM										
	ATOM	3378 3HG2		330	16.359	10.388	46.235	1.00	0.00		Н
	MOTA	3379 N	LYS	331	20.510	13.596	47.715	1.00	0.00		N
	ATOM	3380 CA	LYS	331	21.658	13.604	48.564	1.00	0.00		С
	ATOM	3381 C	LYS	331	21.219	14.380	49.761	1.00	0.00		С
55	MOTA	3382 O	LYS	331	20.372	15.265	49.651	1.00	0.00		0
	ATOM	3383 CB	LYS	331	22.912	14.261	47.976	1.00	0.00		С
	ATOM	3384 CG	LYS	331	24.225	13.648	48.472	1.00	0.00		C
			LYS	331	24.389	13.572	49.985	1.00	0.00		Č
	MOTA				25.663	12.842	50.413	1.00	0.00		c
60	ATOM	3386 CE	LYS	331							
60	MOTA	3387 NZ	LYS	331	25.531	12.388	51.815	1.00	0.00		N
	MOTA	3388 н	LYS	331	20.479	14.128	46.833	1.00	0.00		H
	MOTA	3389 HA	LYS	331	21.850	12.549	48.759	1.00	0.00		Н
	MOTA	3390 1HB	LYS	331	22.910	15.315	48.253	1.00	0.00		H
	MOTA	3391 2HB	LYS	331	22.881	14.151	46.892	1.00	0.00		H
65	ATOM	3392 1HG	LYS	331	25.045	14.256	48.089	1.00	0.00		Н
	ATOM	3393 2HG	LYS	331	24.285	12.628	48.090	1.00	0.00		Н
	ATOM	3394 1HD	LYS		23.569	13.047	50.477	1.00	0.00		H
					24.438	14.552	50.458	1.00	0.00		H
	MOTA	3395 2HD	LYS	231	24.430	13.002	30.430	2.00	0.00		11

	ATOM	3396	1 HE	LYS	331 .	26.516	13.514	50.332	1.00	0.00		н
	ATOM	3397		LYS	331	25.825	11.977	49.769	1.00	0.00		Н
	ATOM	3398		LYS	331	24.610	12.668	52.181	1.00	0.00		H
	ATOM	3399		LYS	331	25.618	11.362	51.853	1.00	0.00		н
5												
2	MOTA	3400		LYS	331	26.272	12.817	52.386	1.00	0.00		H
	MOTA	3401	N	ILE	332	21.784	14.062	50.939	1.00	0.00		N
	ATOM	3402	CA	ILE	332	21.342	14.644	52.172	1.00	0.00		С
	MOTA	3403	С	ILE	332	21.553	16.121	52.152	1.00	0.00		С
	MOTA	3404	0	ILE	332	20.758	16.862	52.728	1.00	0.00		. 0
10	MOTA	3405	CB	ILE	332	22.072	14.114	_53.379	1.00	0.00		С
	ATOM	3406	CG1	ILE	332	23.561	14.495	53.330	1.00	0.00		С
	MOTA	3407		ILE	332	21.826	12.596	53.459	1.00	0.00		С
	ATOM	3408		ILE	332	24.290	14.284	54.658	1.00	0.00		C
	ATOM	3409	Н	ILE	332	22.556	13.380	50.955	1.00	0.00		H
15	MOTA	3410	HA	ILE	332	20.281	14.445	52.324	1.00	0.00		Н
13	ATOM	3411	HB	ILE							•	
					332	21.677	14.617	54.261	1.00	0.00		H
	MOTA		1HG1		332	23.735	15.540	53.073	1.00	0.00		H
	MOTA		2HG1		332	24.132	13.924	52.598	1.00	0.00		Н
	MOTA	3414			332	21.190	12.286	52.629	1.00	0.00		Н
20	MOTA		2HG2		332	22.778	12.069	53.402	1.00	0.00		H
	MOTA	3416	3HG2	ILE	332	21.334	12.356	54.401	1.00	0.00		H
	MOTA	3417	1HD1	ILE	332	23.591	13.894	55.398	1.00	0.00		H
	MOTA	3418	2HD1	ILE	332	25.103	13.572	54.517	1.00	0.00		Н
	ATOM	3419	3HD1	ILE	332	24.694	15.234	55.005	1.00	0.00		Н
25	ATOM	3420	N	LEU	333	22.615	16.605	51.481	1.00	0.00		N
	ATOM	3421	CA	LEU	333	22.866	18,011	51.586	1.00	0.00		c
	ATOM	3422	C	LEU	333	22.334	18.740	50.390	1.00	0.00		č
	ATOM	3423	Ö	LEU	333	21.128	18.814	50.188	1.00	0.00		Ö
	ATOM	3424	СВ	LEU	333	24.348	18.375	51.772	1.00	0.00		C
30				LEU								
30	MOTA	3425	CG		333	24.550	19.883	52.016	1.00	0.00		C
	ATOM	3426		LEU	333	23.819	20.341	53.291	1.00	0.00		C
	MOTA	3427		LEU	333	26.039	20.259	52.035	1.00	0.00		С
	MOTA	3428	Н	LEU	333	23.220	15.991	50.917	1.00	0.00		H
	MOTA	3429	HA	LEU	333	22.388	18.426	52.473	1.00	0.00		· H
35	ATOM	3430	1HB	-LEU	333	24.947	18.116	50.899	1.00	0.00		Н
	ATOM	3431	2HB	LEU	333	24.794	17.858	52.621	1.00	0.00		H
	MOTA	3432	HG	LEU	333	24.165	20.470	51.182	1.00	0.00		H
	ATOM	3433	1HD1	LEU	333	23.313	19.489	53.746	1.00	0.00		H
	ATOM	3434	2HD1	LEU	333	24.540	20.753	53.995	1.00	0.00		Н
40	ATOM	3435	3HD1	LEU	333	23.084	21.104	53.034	1.00	0.00		Н
	ATOM		1HD2		333	26.641	19.366	51.869	1.00	0.00		H
	ATOM	3437			333	26.241	20.984	51.247	1.00	0.00		Н
	ATOM	3438			333	26.292	20.693	53.002	1.00	0.00		H
	ATOM	3439	N	SER	334	23.227	19.303	49.556	1.00	0.00		N
15												
45	ATOM	3440	CA	SER	334	22.815	20.174	48.490	1.00	0.00		C
	ATOM	3441	С	SER	334	21.764	19.543	47.615	1.00	0.00		С
	ATOM	3442	0	SER	334	20.758	20.197	47.345	1.00	0.00		0
	ATOM	3443	СВ	SER	334	23.992	20.643	47.610	1.00	0.00		С
	ATOM	3444		SER	334	23.529	21.501	46.579	1.00	0.00		0
50	ATOM	3445	H	SER	334	24.229	19.105	49.684	1.00	0.00		H
	MOTA	3446	HA	SER	334	22.392	21.107	48.861	1.00	0.00		Η.
	MOTA	3447	1HB	SER	334	24.488	19.788	47.151	1.00	0.00		H
	MOTA	3448	2HB	SER	334	24.722	21.186	48.209	1.00	0.00		H
	ATOM	3449	HG	SER	334	24.003	22.412	46.650	1.00	0.00		H
55	ATOM	3450	N	PRO	335	21.899	18.330	47.158	1.00	0.00		N
	MOTA	3451	CA	PRO	335	20.859	17.820	46.305	1.00	0.00		C
	ATOM	3452	.C	PRO	335	19.605	17.492	47.041	1.00	0.00		Č
	ATOM	3453	ō	PRO	335	18.686	16.997	46.388	1.00	0.00		ō
	ATOM	3454	СВ	PRO	335 .	21.468	16.684	45.479	1.00	0.00		
60	ATOM	3455		PRO	335	22.905	16.541	46.006	1.00	0.00	•	C
UV				PRO	335							C
	MOTA	3456				23.197	17.884	46.680	1.00	0.00		C
	ATOM	3457	HA	PRO	335	20.564	18.519	45.523	1.00	0.00		Н
	ATOM	3458		PRO	335	21.412	17.029	44.446	1.00	0.00		Н
	MOTA	3459		PRO	335.	20.837	15.819	45.686	1.00	0.00		Н
65	ATOM	3460		PRO	335	23.502	16.352	45.113	1.00	0.00		H
	MOTA	3461		PRO	335	22.857	15.698	46.695	1.00	0.00		H
	MOTA	3462		PRO	335	23.801	17.809	47.583	1.00	0.00		H
	MOTA	3463	2HD	PRO	335	23.512	18.670	45.994	1.00	0.00		H

	MOTA	3464	N	GLU	336	19.575	17.755	48.372	1.00	0.00		N
	ATOM	3465	CA	GLU	336	18.470	17.548	49.279	1.00	0.00		C
	MOTA	3466	С	GLU	336	17.185	17.642	48.537	1.00	0.00		С
_	MOTA	3467	0	GLU	336	16.692	18.732	48.246	1.00	0.00		0
5	MOTA	3468	·CB	GLU	336	18.418	18.586	50.418	1.00	0.00		C
	MOTA	3469	CG	GLU	336	18.453	20.030	49.901	1.00	0.00		С
	ATOM	3470	CD	GLU	336	18.762	20.971	51.059	1.00	0.00		С
	ATOM	3471	OE1	GLU	336	18.934	20.470	52.202	1.00	0.00		0
	ATOM	3472	OE2	GLU	336	18.828	22.206	50.814	1.00	0.00		0
10	ATOM	3473	H-	GLU	336	20.435	18.145	48.780	1.00	0.00		H
	ATOM	3474	HA	GLU	336	18.547	16.561	49.736	1.00	0.00		Н
	ATOM	3475	1HB	GLU	336					0.00		
						19.254	18.490	51.109	1.00			H
	ATOM	3476		GLU	336	17.513	18.500	51.020	1.00	0.00		H
	MOTA	3477		GLU	336	17.483	20.281	49.472	1.00	0.00		H
15	MOTA	3478	2HG	GLU	336	19.226	20.120	49.138	1.00	0.00		H
	ATOM	3479	N	TYR	337	16.633	16.466	48.185	1.00	0.00		N
	ATOM	3480	CA	TYR	337	15.420	16.433	47.432	1.00	0.00		С
	MOTA	3481	С	TYR	337	14.430	17.194	48.240	1.00	0.00		С
	ATOM	3482	0	TYR	337	13.956	18.250	47.828	1.00	0.00		0
20	ATOM	3483	CB	TYR	337	14.899	15.002	47.283	1.00	0.00		Ç
	ATOM	3484	CG	TYR	337	13.666	15.028	46.458	1.00	0.00		Č
	ATOM	3485		TYR	337	12.443	15.315	47.015	1.00	0.00		č
				TYR								
	ATOM	3486			337	13.746	14.753	45.113	1.00	0.00		C
~ -	ATOM	3487		TYR	337	11.311	15.328	46.234	1.00	0.00		С
25	MOTA	3488		TYR	337	12.621	14.762	44.327	1.00	0.00		С
	ATOM	3489	CZ	TYR	337	11.402	15.050	44.891	1.00	0.00		С
	MOTA	3490	OH	TYR	337	10.242	15.060	44.090	1.00	0.00		0
	ATOM	3491	H	TYR	337	17.088	15.584	48.460	1.00	0.00		H
	MOTA	3492	HA	TYR	337	15.654	16.910	46.480	1.00	0.00		Н
30	ATOM	3493	1HB	TYR	337	14.680	14.604	48.274	1.00	0.00		Н
	ATOM	3494	2HB	TYR	337	15.665	14.399	46.795	1.00.			Н
	ATOM	3495		TYR	337	12.369	15.533	48.080	1.00	0.00	• •	Н
	ATOM	3496		TYR	337	14.713	14.525	44.666	1.00	0.00		Н
		3497	HE1									
25	ATOM				337	10.343	15.558	46.679	1.00	0.00		Н
35	ATOM	3498		TYR	337	12.694	14.542	43.262	1.00	0.00		Н
	MOTA	3499	HH	TYR	337	9.966	16.033	43.896	1.00	0.00	•	H
	MOTA	3500	N	CYS	338	14.109	16.673	49.435	1.00	0.00		N
	MOTA	3501	CA	CYS	338	13.277	17.399	50.342	1.00	0.00		С
	MOTA	3502	C	CYS	338	13.989	17.315	51.643	1.00	0.00		С
40	MOTA	3503	0	CYS	338	13.386	17.395	52.712	1.00	0.00		0
	ATOM	3504	CB	CYS	338	11.876	16.792	50.529	1.00	0.00		С
	ATOM	3505	SG	CYS	338	10.811	17.035	49.076	1.00	0.00		S
	ATOM	3506	H	CYS	338	14.464	15.743	49.699	1.00	0.00		Н
	ATOM	3507	HA	CYS	. 338	13.233	18.404	49.923	1.00	0.00		Н
45				CYS	338	11.341						
43	ATOM	3508					17.226	51.374	1.00	0.00		Н
	MOTA	3509		CYS	338	11.906	15.717	50.707	1.00	0.00		H
	ATOM	3510	HG	CYS	338	10.717	18.343		1.00	0.00		H
	MOTA	3511	N	TRP	339	15.323	17.158	51.567	1.00	0.00		N
	ATOM	3512	CA	TRP	339	16.108	17.085	52.757	1.00	0.00		С
50	ATOM	3513	С	TRP	339	16.105	18.421	53.421	1.00	0.00		C
	ATOM	3514	0	TRP	339	16.115	18.507	54.647	1.00	0.00		0
	ATOM	3515	CB	TRP	339	17.569	16.664	52.521	1.00	0.00		С
	ATOM	3516	CG	TRP	339	17.763	15.170	52.415	1.00	0.00		С
	ATOM	3517		TRP	339	17.577	14.320	51.364	1.00	0.00		Ċ
55	ATOM	3518		TRP	339	18.216	14.366	53.514	1.00	0.00		č
	ATOM	3519		TRP	339	17.880	13.033	51.744	1.00	0.00		N
		3520		TRP	339	18.277	13.048					
	ATOM							53.066	1.00	0.00		C
	ATOM	3521		TRP	339	18.552	14.701	54.795	1.00	0.00	•	C
60	ATOM	3522		TRP	339	18.678	12.039	53.897	1.00	0.00		С
60	MOTA	3523		TRP	339	18.958	13.684	55.629	1.00	0.00		С
	ATOM	3524		TRP	339	19.019	12.378	55.188	1.00	0.00		С
	ATOM	3525	H	TRP	339	15.779	17.090	50.646	1.00	0.00		H
	MOTA	3526	HA	TRP	339	15.674	16.337	53.421	1.00	0.00		H
	MOTA	3527	1HB	TRP	339	18.250	16.978	53.311	1.00	0.00		H
65	ATOM	3528		TRP	339	18.000	17.067	51.604	1.00	0.00		H
	ATOM	3529		TRP	339	17.238	14.616	50.371	1.00	0.00		Н
	ATOM	3530		TRP	339	17.820	12.198	51.143	1.00	0.00		Н
	ATOM	3531		TRP	339	18.500	15.732	55.142	1.00	0.00		Н
	011	7551					20.,02		2.00	0.00		n

	MOTA	3532	HZ2	TRP	339	18.726	11.006	53.551	1.00	0.00		н
	ATOM	3533	HZ3		339	19.236	13.914	56.657	1.00	0.00		Н
	MOTA	3534	HH2		339	19.344	11.597	55.876	1.00	0.00		Н
_	MOTA	3535	N	ASP	340	16.084	19.507	52.626	1.00	0.00		N
5	MOTA	3536	CA	ASP	340	16.220	20.808	53.210	1.00	0.00		С
	ATOM	3537	С	ASP	340	15.106	21.092	54.169	1.00	0.00		С
	ATOM	3538	0	ASP	340	15.311	21.083	55.381	1.00	0.00		0
	ATOM	3539	СВ	ASP	340	16.200	21.927	52.156	1.00	0.00		Č
	MOTA	3540	CG	ASP	340	16.861	23.152	52.768	1.00	0.00		С
10	MOTA	3541	OD1	ASP	340	17.663	22.967	53.721	1.00	0.00		0
	MOTA	3542	OD2	ASP	340	16.587	24.283	52.284	1.00	0.00		0
	ATOM	3543	Н	ASP	340	15.971	19.403	51.607	1.00	0.00		Н
	ATOM	3544	HA	ASP	340	17.158	20.899	53.757	1.00	0.00	•	Н
	MOTA	3545	•	ASP	340	15.158	22.127	51.903	1.00	0.00		Н
15	MOTA	3546	2HB	ASP	340	16.754	21.574	51.286	1.00	0.00		Н
	MOTA	3547	N	TYR	341	13.880	21.325	53.655	1.00	0.00		N
	ATOM	3548	CA	TYR	341	12.811	21.631	54.562	1.00	0.00		С
	ATOM	3549	C	TYR	341	11.534	21.445	53.812	1.00	0.00		č
	MOTA	3550	0	TYR	341	10.693	22.343	53.811	1.00	0.00		0
20	ATOM	3551	CB	TYR	341	12.732	23.114	54.977	1.00	0.00		С
	ATOM .	3552	CG	TYR	341	14.018	23.591	55.556	1.00	0.00		С
	MOTA	3553	CD1	TYR	341	14.307	23.445	56.892	1.00	0.00		С
	ATOM	3554		TYR	341	14.940	24.202	54.740	1.00	0.00		C
												Č
~-	MOTA	3555		TYR	341	15.503	23.901	57.399	1.00	0.00		
25	ATOM	3556		TYR	341	16.134	24.661	55.240	1.00	0.00		С
	ATOM	3557	CZ	TYR	341	16.418	24.510	56.574	1.00	0.00		С
	MOTA	3558	OH	TYR	341	17.643	24.979	57.094	1.00	0.00		0
	ATOM	3559	Н	TYR	341	13.716	21.284	52.638	1.00	0.00		H
	ATOM	3560	HA	TYR	341	12.893	20.937	55.398	1.00	0.00		Н
~ ^											•	
30	MOTA	3561		TYR	341	11.958	23.280	55.726	1.00	0.00		H
	ATOM	3562	2HB	TYR	341	12.502	23.757	54.127	1.00	0.00		H
	MOTA	3563	HD1	TYR	341	13.585	22.965	57.553	1.00	0.00		H
	ATOM	3564	HD2	TYR	341	14.720	24.324	53.679	1.00	0.00		н
	ATOM	3565	HE1		341	15.725	23.778	58.459	1.00	0.00		Н
25							25.143		1.00	0.00		
35	MOTA	3566	HE2		341	16.853		54.579				H
	MOTA	3567	HH	TYR	341	18.264	25.250	56.318	1.00	0.00		H
	ATOM	3568	N	HIS	342	11.324	20.291	53.157	1.00	0.00		N
	MOTA	3569	CA	HIS	342	10.090	20.217	52.432	1.00	0.00		C
	MOTA	3570	C	HIS	342	9.505	18.855	52.578	1.00	0.00		С
40	ATOM	3571	Ö.	HIS	342	10.209	17.874	52.807	1.00	0.00		ō
40												
	MOTA	3572	CB	HIS	342	10.247	20.457	50.920	1.00	0.00		С
	MOTA	3573	CG	HIS	342	10.701	21.845	50.578	1.00	0.00		C
	MOTA	3574	ND1	HIS	342	9.855	22.924	50.450	1.00	0.00		N
	ATOM	3575	CD2	HIS	342	11.951	22.322	50.329	1.00	0.00		С
45		3576		HIS	342	10.629	23.992	50.131	1.00	0.00		Ċ
73	ATOM		ALC	HITC								
	ATOM	3577		HIS	342	11.908	23.676	50.046	1.00	0.00		N
	MOTA	3578	H	HIS	342	12.001	19.515	53.174	1.00	0.00	•	Н
	MOTA	3579	$\mathbf{H}\mathbf{A}$	HIS	342	9.389	20.954	52.824	1.00	0.00		H
	ATOM	3580	1HB	HIS	342	9.323	20.313	50.358	1.00	0.00		H
50	MOTA	3581		HIS	342	10.973	19.795	50.447	1.00	0.00		H
	ATOM	3582		HIS	342	8.832	22.921	50.572	1.00	0.00		H
	MOTA	3583		HIS	342	12.860	21.720	50.349	1.00	0.00		Н
	ATOM '	3584	HE1	HIS	342	10.239	24.996	49.964	1.00	0.00		H
	ATOM	3585	HE2	HIS	342	12.697	24.298	49.819	1.00	0.00		H
55	MOTA	3586	N	ILE	343	8.165	18.783	52.464	1.00	0.00		N
	ATOM	3587	CA	ILE	343	7.472		52.467	1.00	0.00		C
	MOTA	3588	С	ILE	343	6.905	17.422	51.092	1.00	0.00		С
	MOTA	3589	0	ILE	343	6.523	18.429	50.498	1.00	0.00		0
	MOTA	3590	CB	ILE	343	6.331	17.470	53.441	1.00	0.00		С
60	MOTA	3591	CG1	ILE	343	5.808	16.029	53.559	1.00	0.00		С
	ATOM	3592		ILE	343	5.269	18.490	52.999	1.00	0.00		Ċ
								54.185	1.00	0.00		
	ATOM	3593		ILE	343	6.816	15.065					C
	MOTA	3594	H	ILE	343	7.623	19.654	52.371	1.00	0.00		Н
	MOTA	3595	HA	ILE	343	8.244	16.797	52.690	1.00	0.00		H
65	MOTA	3596	·HB	ILE	343	6.716	17.716	54.430	1.00	0.00		н
	ATOM	3597	1HG1	ILE	343	5.543	15.583	52.600	1.00	0.00		н
	ATOM	3598			343	4.910	15.941	54.171	1.00	0.00		Н
					343			52.096	1.00	0.00		
	MOTA	2223	1HG2	THE	343	5.607	18.999	52.090	1.00	0.00		H

	ATOM	3600	2HG2	ILE	. 343	4.331	17.973	52.794	1.00	0.00		Н
	MOTA	3601	3HG2	ILE	343	5.114	19.221	53.792	1.00	0.00		H
	ATOM	3602	1HD1	ILE	343	7.730	15.604	54.430	1.00	0.00		H
	ATOM	3603	2HD1	ILE	343	6.393	14.635	55.093	1.00	0.00		H
5	MOTA		3HD1		343	7.043	14.267	53.478	1.00	0.00		H
	MOTA	3605	N	GLY	344	6.844	16.203	50.527	1.00	0.00		N
	MOTA	3606	CA	GLY	344	6.372	16.128	49.176	1.00	0.00		С
	ATOM	3607	C	GLY	344	5.021	15.494	49.159	1.00	0.00		С
10	ATOM	3608	0	GLY	344	4.800	14.458	49.783		.0.00		0
10	MOTA	3609	H	GLY	344	7.125	15.357	51.044	1.00	0.00	•	H
	ATOM	3610 3611		GLY	344	7.064	15.529 17.133	48.584 48.759	1.00 1.00	0.00		Н
	ATOM ATOM	3612	N	LEU	344 345	6.309 4.076	16.108	48.739	1.00	0.00		H N
	ATOM	3613	CA	LEU	345	2.764	15.541	48.315	1.00	0.00		C
15	ATOM	3614	C	LEU	345	2.718	14.786	47.024	1.00	0.00		Ç.
10	ATOM	3615	Ö	LEU	345	3.242	15.217	45.998	1.00	0.00		0
	ATOM	3616	CB	LEU	345	1.617	16.577	48.385	1.00	0.00		Ċ
	MOTA	3617	CG	LEU	345	1.585	17.639	47.268	1.00	0.00		Ċ
	MOTA	3618	CD1	LEU	345	1.188	17.040	45.911	1.00	0.00		С
20	MOTA	3619	CD2	LEU	345	0.699	18.832	47.661	1.00	0.00		С
	MOTA	3620	H	LEU	345	4.297	16.985	47.925	1.00	0.00		Н
	MOTA	3621	HA	LEU	345	2.634	14.884	49.175	1.00	0.00		Н
	ATOM	3622		LEU	345	1.709	17.112	49.329	1.00	0.00		H
	MOTA	3623		LEU	345	0.673	16.033	48.333	1.00	0.00		Н
25	MOTA	.3624	HG	LEU	345	2.554	18.116	47.127	1.00	0.00		Н
	MOTA		1HD1		345	1.008	15.970	46.023	1.00	0.00		H
	MOTA		2HD1		345	0.280	17.524	45.551	1.00	0.00		Н
	ATOM		3HD1		345	1.992	17.199	45.193	1.00	0.00		Н
30	MOTA		1HD2 2HD2		345	0.282	18.664 19.743	48.654 47.667	1.00 1.00	0.00		H
30	MOTA MOTA		3HD2		345 345	1.297 -0.112	18.935	46.940	1.00	0.00	•	H H
	ATOM	3631	N	PRO	346	2.140	13.624	47.084	1.00	0.00		N
	ATOM	3632	CA	PRO	346	2.120	12.778	45.921	1.00	0.00	-	C
	ATOM	3633	C	PRO	346	1.045	13.032	44.913	1.00	0.00		C
35	ATOM	3634	ō	PRO	346	-0.015	13.551	45:259	1.00	0.00		ō
	ATOM	3635	CB	PRO	346	2.103	11.337	46.440	1.00	0.00		C
	MOTA	3636	CG	PRO	346	1.688	11.458	47.915	1.00	0.00		С
	MOTA	3637	CD	PRO	346	2.191	12.852	48.314	1.00	0.00		С
	MOTA	3638	HA	PRO	346	3.070	12.906	45.403	1.00	0.00		Н
40	MOTA	3639		PRO	346	3.122	10.979	46.298	1.00	0.00		H
	MOTA	3640		PRO	346	1.368	10.826	45.817	1.00	0.00		Н
	ATOM	3641		PRO	346	2.149	10.674	48.516	1.00	0.00		Н
	MOTA	3642		PRO	346	0.607	11.371	48.025	1.00	0.00		Н
45	MOTA	3643		PRO	346	1.527	13.382	48.997	1.00	0.00		H
43	MOTA	3644		PRO ALA	346	3.240 1.340	12.875 12.674	48.608	1.00	0.00		H
	MOTA MOTA	3645 3646		ALA	347 347	0.397	12.667	43.647 42.568	1.00	0.00		N C
	ATOM	3647		ALA	347	0.458	11.247	42.104	1.00	0.00		С
	ATOM	3648	Ö	ALA	347	1.475	10.809	41.569	1.00	0.00	•	Ö
50	MOTA	3649		ALA	347	0.792	13.567	41.385	1.00	0.00		č
	ATOM	3650		ALA	347	2.307	12.386	43.441	1.00	0.00		Н
	ATOM	3651	HA	ALA	347	-0.599	12.946	42.910	1.00	0.00		Н
	ATOM	3652	1HB	ALA	347	1.743	14.053	41.599	1.00	0.00		Н
	ATOM	3653	2HB	ALA	347	0.889	12.961	40.483	1.00	0.00		Н
55	MOTA	3654	3HB	ALA	347	0.023	14.324	41.231	1.00	0.00		Н
	MOTA	3655		ASP	348	-0.637	10.488	42.298	1.00	0.00		N
	MOTA	3656		ASP	348	-0.598	9.075	42.046	1.00	0.00		С
	ATOM	3657		ASP	348	-0.710	8.788	40.583	1.00	0.00		С
C 0	MOTA	3658	0	ASP	348	-1.773	8.384	40.115	1.00	0.00		0
60	ATOM	3659		ASP	348	-1.752	8.323	42.738	1.00	0.00		C
	ATOM	3660		ASP	348	-1.502	6.825	42.631	1.00	0.00		C
	ATOM ATOM	3661 3662		ASP ASP	348 348	-0.449 -2.357	6.363 6.125	43.146 42.025	1.00	0.00		0
	ATOM	3663		ASP	348	-1.509	10.924	42.629	1.00	0.00		O H
65	ATOM	3664		ASP	348	0.336	8.640	42.401	1.00	0.00		Н
-	ATOM	3665		ASP	348	-2.689	8.579	42.244	1.00	0.00		Н
	ATOM	3666		ASP	348	-1.790	8.619	43.786	1.00	0.00		н
	ATOM	3667		ILE	349	0.387	8.972	39.819	1.00	0.00		N

									•		**	•	
	ATOM	3668	CA	ILE	349		0.351	8.623	38.427	1.00	0.00		С
	MOTA	3669	С	ILE	349		1.763	8.377	37.997	1.00	0.00		С
	MOTA	3670	0	ILE	349	•	2.688	9.009	38.502	1.00	0.00		0
	ATOM	3671	CB	ILE	349		-0.191	9.705	37.543	1.00	0.00		С
5	ATOM	3672	CG1		349		-1.623	10.074	37.963	1.00	0.00		C
	ATOM	3673	CG2		349		-0.089	9.204	36.094	1.00	0.00		C
	MOTA	3674	CD1		349		-2.147	11.354	37.315	1.00	0.00		C
	ATOM	3675	Н	ILE	349		1.246	9.361	40.232	1.00	0.00		H
10	ATOM	3676	HA	ILE	349		-0.259	7.724	38.336	1.00	0.00		Н
10	ATOM ATOM	3677 3678	HB	ILE	349 349		0.421 -1.638	10.592	37.704 39.043	1.00	0.00 0.00		H H
	ATOM	3679			349		-2.286	10.216 9.258	37.675	1.00	0.00		Н
	ATOM	3680			349		0.345	8.204	36.084	1.00	0.00		Н
	ATOM	3681			349		-1.083	9.171	35.649	1.00	0.00		Н
15	ATOM	3682			349		0.543	9.880	35.518	1.00	0.00		Н
. 13 .	ATOM	3683			349		-1.381	11.770	36.660	1.00	0.00		Н
	ATOM	3684			349		-3.039	11.127	36.731	1.00	0.00		Н
	ATOM		3HD1		349		-2.395	12.079	38.090	1.00	0.00		Н
	ATOM	3686	N	LYS	350		1.974	7.444	37.047	1.00	0.00		N
20	ATOM	3687	CA	LYS	350		3.316	7.189	36.606	1.00	0.00		C
	MOTA	3688	С	LYS	350		3.605	8.177	35.522	1.00	0.00		С
	ATOM	3689	0	LYS	350		4.019	7.818	34.421	1.00	0.00		0
	ATOM	3690	CB	LYS	350		3.474	5.780	36.012	1.00	0.00		С
	MOTA	3691	CG	LYS	350		3.185	4.668	37.025	1.00	0.00		C
25	MOTA	3692	CD	LYS	350		2.949	3.297	36.387	1.00	0.00		С
	MOTA	3693	CE	LYS	350		1.581	3.161	35.710	1.00	0.00		С
	MOTA	3694	NZ	LYS	350		1.430	1.810	35.120	1.00	0.00		N
	ATOM	3695	H	LYS	350		1.183	6.921	36.643	1.00	0.00		H
	ATOM	3696	HA	LYS	350		3.961	7.329	37.473	1.00	0.00		Н
30	ATOM	3697		LYS	350		4.479	5.585	35.638	1.00	0.00		Н
	MOTA	3698		LYS	350		2.805	5.595	35.171	1.00	0.00		Н
•	MOTA MOTA	3699 3700		LYS LYS	350 350		2.299 3.989	4.847 4.506	37.634 37.742	1.00	0.00		H H
	MOTA	3700		LYS	350		2.995	2.470	37.096	1.00	0.00		Н
35	MOTA	3702		LYS	350		3.673	3.044	35.612	1.00	0.00		Н
	ATOM	3703		LYS	350		1.475	3.900	34.916	1.00	0.00		Н
	ATOM	3704		LYS	350		0.782	3.314	36.435	1.00	0.00	•	Н
	ATOM	3705		LYS	350		2.282	1.260	35.297	1.00	0.00		Н
	MOTA	3706		LYS	350		0.621	1.336	35.547	1.00	0.00		Н
40	ATOM	3707	3HZ	LYS	350		1.280	1.893	34.104	1.00	0.00	•	H
	MOTA	3708	N	LEU	351		3.385	9.468	35.824	1.00	0.00		N
	ATOM	3709	CA	LEU	351		3.578	10.539	34.888	1.00	0.00		C
	MOTA	3710	С	LEU	351		5.033	10.745	34.635	1.00	0.00		С
	MOTA	3711	0	LEU	351		5.466	10.904	33.495	1.00	0.00		0
45	ATOM	3712	CB	ΓĖΩ	351		3.084	11.884	35.443	1.00	0.00		С
	ATOM	3713	CG	LEU	351		1.577	11.957	35.740	1.00	0.00		C
	ATOM	3714		LEU	351		1.199	13.347	36.283	1.00	0.00		C
	ATOM	3715		LEU	351		0.741	11.549 9.700	34.514	1.00	0.00		C
50	MOTA	3716	H HA	LEU	351 351		3.061 3.087	10.305	36.774 33.943	1.00 1.00	0.00		H Á
50	ATOM ATOM	3717 3718		LEU	351		3.307	12.656	34.706	1.00	0.00	•	Н
	MOTA	3719		LEU	351		3.608	12.076	36.378	1.00	0.00		Н
	ATOM	3720	HG	LEU	351		1.296	11.210	36.483	1.00	0.00		Н
	ATOM		1HD1		351		2.090	13.971	36.335	1.00	0.00		Н
55	ATOM		2HD1		351	•	0.469	13.810	35.619	1.00	0.00		Н
	ATOM		3HD1		351		0.769	13.243	37.279	1.00	0.00		Н
	MOTA	3724	1HD2	LEU	351		1.405	11.293	33.689	1.00	0.00		Н
	ATOM	3725	2HD2	LEU	351		0.124	10.685	34.764	1.00	0.00		Н
	MOTA		3HD2		351		0.099	12.379	34.218	1.00	0.00		Н
60	ATOM	3727	N	VAL	352		5.823	10.712	35.724	1.00	0.00		N
	MOTA	3728	CA	VAL	352.		7.192	11.128	35.687	1.00	0.00		С
	ATOM	3729	C	VAL	352		7.951	10.483	34.586	1.00	0.00		С
	ATOM	3730	0	VAL	352		8.415	11.166	33.673	1.00	0.00		0
C E	ATOM	3731	CB	VAL	352		7.941	10.828	36.950	1.00	0.00		C
65	ATOM	3732		VAL	352		9.422	11.184	36.731	1.00	0.00		C
	ATOM ATOM	3733 3734	CG2	VAL VAL	352 352	• ,, .	7.285 5.429	11.599 10.375	38.106 36.614	1.00	0.00		C H
	ATOM	3735	л НА	VAL	352		7.296	12.203	35.542	1.00	0.00		Н
	-71 OF	5,55	,117	4 - 111	332		1.230		55.542		3.00		11

WO 01/83717 PCT/CA01/00607

	ATOM	3736	HB	VAL	352	7.830	9.766	37.170	1.00	0.00		Н
	ATOM		1HG1		352	9.559	11.563	35.718	1.00	0.00		Н
	ATOM ATOM		2HG1 3HG1		352 352	9.722	11.947	37.448	1.00 1.00	0.00		H
5	ATOM		1HG2		352 352	10.034 6.439	10.293 12.172	36.870 37.727	1.00	0.00		H H
J	ATOM		2HG2		352	6.936	10.894	38.861	1.00	0.00	•	H
	ATOM		3HG2		352	8.013	12.277	38.550	1.00	0.00		H
	ATOM	3743	N	LYS	353	8.094	9.151	34.606	1.00	0.00		N
	ATOM	3744	CA	LYS	353	9.002	8.687	33.610	1.00	0.00		C
10	ATOM	3745	C	LYS	. 353	8.806	7.241	33.319	1.00	0.00 -	_	С
	ATOM	3746	0	LYS	353	8.176	6.499	34.070	1.00	0.00		0
	MOTA	3747	CB	LYS	353 _.	10.454	8.836	34.085	1.00	0.00		С
	MOTA	3748	CG	LYS	353	10.710	8.059	35.379	1.00	0.00		С
1.5	MOTA	3749	CD	LYS.	353	12.154	8.085	35.881	1.00	0.00		C
15	ATOM	3750	CE	LYS	353	12.405	9.180	36.921	1.00	0.00		С
	ATOM ATOM	3751 3752	NZ	LYS LYS	353 353	13.702 7.603	8.961	37.600	1.00	0.00		N
	MOTA	3753	H HA	LYS	353	8.877	8.531 9.224	35.266 32.670	1.00 1.00	0.00		H H
	ATOM	3754		LYS	353	10.710	9.877	34.280	1.00	0.00		H
20	ATOM	3755		LYS	353	11.161	8.465	33.343	1.00	0.00		н
	ATOM	3756		LYS	353	10.445	7.016	35.204	1.00	0.00		H
	MOTA	3757	2HG	LYS	353	10.086	8.491	36.161	1.00	0.00		Н
	MOTA	3758	1HD	LYS	353	12.877	8.260	35.085	1.00	0.00		Н
	ATOM	3759	2HD	LYS	353	12.456	7.151	36.355	1.00	0.00		H
25	MOTA	3760		LYS	.353	11.616	9.178	37.673	1.00	0.00		H
	ATOM	3761		LYS	353	12.425	10.160	36.444	1.00	0.00		H
	MOTA	3762		LYS	353	14.150	8.115	37.219	1.00	0.00		Н
	MOTA	3763		LYS	353	14.314	9.774	37.442	1.00	0.00		H
30	MOTA	3764		LYS	353	13.544	8.840	38.610	1.00	0.00		Н
30	ATOM ATOM	3765 3766	N CA	MET MET	354 354	9.354 9.425	6.847 5.496	32.154 31.689	1.00	0.00		N C
	ATOM	3767	C	MET	354	10.824	5.357	31.183	1.00	0.00		C
	ATOM	3768	Ö	MET	354	11.259	6.172	30.372	1.00	0.00		0
	ATOM	3769	СВ	MET	354	8.512	5.217	30.480	1.00	0.00		Ċ
35	MOTA	3770	CG	MET	354	8.587	3.776	29.968	1.00	0.00		Č-
	MOTA	3771	SD	MET	354	7.756	2.535	31.007	1.00	0.00		S
	ATOM	3772	CE	MET	354	6.075	3.003	30.504	1.00	0.00		C
	MOTA	3773	Н	MET	354	9.754	7.577	31.548	1.00	0.00		H
40	MOTA	3774	HA	MET	354	9.207	4.897	32.574	1.00	0.00		Н
40	ATOM	3775		MET	354	8.734	5.833	29.609	1.00	0.00		H
	MOTA	3776		MET	354	7.453	5.387 3.494	30.678	1.00	0.00		H
	ATOM ATOM	3777 3778		MET MET	354 354	9.638 8.117	3.494	29.905 28.985	1.00 1.00	0.00		H
	ATOM	3779		MET	354	6.124	3.742	29.788	1.00	0.00		H H
45	ATOM	3780		MET	354	5.582	2.147		1.00			Н
	ATOM	3781		MET	354	5.507	3.318	31.379	1.00	0.00		н
	ATOM	3782	N	SER	355	11.596	4.352	31.648	1.00	0.00		N
	ATOM	3783	CA	SER	355	12.917	4.301	31.093	1.00	0.00		C
	ATOM	3784	С	SER	355	13.571	2.984	31.369	1.00	0.00		С
50	ATOM	3785	0	SER	355	13.150	2.232	32.246	1.00	0.00		0
	MOTA	3786	CB	SER	355	13.859	5.371	31.662	1.00	0.00		С
	ATOM	3787	OG	SER	355	14.104	5.120	33.038	1.00	0.00		0
	ATOM	3788	Н	SER	355	11.261	3.674	32.347	1.00	0.00		Н
55	ATOM	3789	HA	SER	355	12.897	4.439	30.012	1.00	0.00		H
55	ATOM	3790		SER SER	355 355	13.408 14.807	6.358 5.356	31.557	1.00	0.00	•	H
•	MOTA MOTA	3791 3792	HG	SER	355	13.991	5.993	31.125 33.572	1.00	0.00		H H
	ATOM	3793	N	TRP	356	14.625	2.669	30.584	1.00	0.00		N
	ATOM	3794	CA	TRP	356	15.405	1.496	30.852	1.00	0.00		C
60	ATOM	3795	C	TRP	356	16.875	1.764	30.729	1.00	0.00		c
	MOTA	3796	Ō	TRP	356	17.302	2.676	30.022		0.00		ŏ
	ATOM	3797	CB	TRP	356	14.971	0.189	30.139	1.00	0.00		C
	MOTA	3798	CG	TRP	356	14.288	0.285	28.795	1.00	0.00		С
	MOTA	3799		TRP	356	12.945	0.377	28.575	1.00	0.00		С
65	ATOM	3800		TRP	356	14.905	0.228	27.497	1.00	0.00		С
	ATOM	3801		TRP	356	12.682	0.370	27.230	1.00	0.00		N
	MOTA	3802		TRP	356	13.878	0.279	26.553	1.00	0.00		C
	MOTA	3803	CES	TRP	356	16.215	0.128	27.121	1.00	0.00		С

WO 01/83717 PCT/CA01/00607

- 184 -

	ATOM	3804	CZ2	TRP	356	14.143	0.230	25.215	1.00	0.00		С
	MOTA	3805	CZ3	TRP	356	16.478	0.094	25.768	1.00	0.00		С
	MOTA	3806	CH2	TRP	356	15.463	0.142	24.835	1.00	0.00		С
	ATOM	3807	H	TRP	356	14.869	3.275	29.788	1.00	0.00		н
5	ATOM	3808	HA	TRP	356	15.233	1.116	31.859	1.00	0.00		H
	ATOM	3809	HC	TRP	356	17.579	1.138	31.276	1.00	0.00	•	H
	MOTA	3810	1HB	TRP	356	14.267	-0.319	30.798	1.00	0.00		H
	ATOM	3811	2HB	TRP	356	15.871	-0.403	29.977	1.00	0.00		H
	ATOM	3812	HD1	TRP	356	12.189	0.446	29.357	1.00	0.00		Н
10	, ATOM	3813	HE1	TRP	356	11.748	0.423	·26.798	i.00	0.00		н
	MOTA	3814	HE3	TRP	356	17.016	0.077	27.858	1.00	0.00		H
	ATOM	3815	HZ2	TRP	356	13.341	0.259	24.477	1.00	0.00		H
	MOTA	3816	HZ3	TRP	356	17.511	0.027	25.427	1.00	0.00		H
	MOTA	3817	HH2	TRP	356	15.711	0.109	23.774	1.00	0.00		H
15	MOTA	3818	MG	MET	357	21.729	10.606	29.309	1.00	0.00		С
	TER											

WE CLAIM

5

10

15

30

40

WO 01/83717

- 1. A model for a ligand binding domain of a galactosyltransferase.
- 2. A model as claimed in claim 1 wherein the ligand binding domain is a binding domain for a disphosphate group of a sugar nucleotide donor, a nucleotide of a sugar nucleotide donor, a nitrogeneous heterocyclic base of a sugar nucleotide donor, a sugar of a nucleotide of a sugar nucleotide donor, a selected sugar of a sugar nucleotide donor that is transferred to an acceptor, or an acceptor.
 - 3. A model of a ligand binding domain as claimed in any of the preceding claims wherein the model comprises one or more of the amino acid residues shown in Table 1 or Figure 2, 3, or 4.
 - 4. A model of a ligand binding domain as claimed in claim 1 comprising hydrogen binding partners for the amide hydrogen, carbonyl oxygen in position 4 and the carbonyl oxygen of uracil.
 - 5. A model of a ligand binding domain as claimed in claim 1 that binds the uridine portion of UDP and comprises Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209, Asp-173, His-218, and Thr-137.
 - 6. A model of a ligand binding domain as claimed in claim 1 that interacts with a pyrophosphate portion of UDP comprising Asp-225, Val-226, and Asp-227 of a galactosyltransferase.
 - A model or secondary, tertiary and/or quanternary structure of a galactosyltransferase for an α1,3galactosyltransferase.
- 8. A model according to any preceding claims wherein the galactosyltransferase is characterized by the atomic contacts of a galactosyltransferase as shown in Table 1.
 - 9. A model as claimed in claim 8 wherein the atomic contacts are defined by the structural coordinates of the atomic contacts as shown in Table 4 or Table 8.
 - 10. A model according to any preceding claims in association with a ligand or substrate.
- A model according to any preceding claims having the structural coordinates shown in Table 4 or Table 8.
 - 12. A computer readable medium having stored thereon a model according to any preceding claim.
 - 13. A computerized representation of a model according to any of the preceding claims.
 - 14. A method of screening for a ligand capable of binding a ligand binding domain of a galactosyltransferase comprising the use of a model according to any preceding claim,
 - 15. A ligand identified by a method according to claim 14.
 - 16. A ligand according to claim 15 that is capable of associating with one or more atomic contacts of a galactosyltransferase as shown in Table 1.
- 17. A secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that associates with a diphosphate of a sugar nucleotide donor comprising atomic interactions 9, 10, and 11 of Table 1, each atomic interaction defined therein by an atomic contact on the diphosphate, and an atomic contact on the galactosyltransferase.
 - 18. A ligand binding domain of a galactosyltransferase that associates with uracil characterized by the following three hydrogen bonds: (1) the amide hydrogen of uracil in position 3 and OD1 of Asp-168 of the galactosyltransferase, (2) the carbonyl oxygen of uracil in position 4 and the side chain of Lys-

PCT/CA01/00607 WO 01/83717

- 186 -

5

10

20

25

30

35

204 of the galactosyltransferase, and (3) the carbonyl oxygen of uracil in position 2 and the amide hydrogen of the His-213 side chain of the galactosyltransferase.

- 19. A secondary or three dimensional structure or model of a ligand binding domain of a galactosyltransferase that associates with a heterocyclic amine base of a sugar nucleotide donor comprising atomic interactions 1, 2, 3, and 4 of Table 1, each atomic interaction defined therein by an atomic contact on the heterocyclic amine base, and an atomic contact on the galactosyltransferase.
- 20. A secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that associates with a ribose of a sugar nucleotide donor comprising atomic interactions 5, 6, 7, and 8 of Table 1, each atomic interaction defined therein by an atomic contact on the sugar, and an atomic contact on the galactosyltransferase.
- 21. A secondary or three dimensional structure of a ligand binding domain of a galactosyltransferase that associates with UDP comprising atomic interactions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 of Table 1, each atomic interaction defined therein by an atomic contact on the nucleotide, and an atomic contact on the galactosyltransferase.
- 15 22. A secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that associates with UDP-Gal comprising atomic interactions 1 through 11 of Table 1, each atomic interaction defined therein by an atomic contact on the UDP of the UDP-Gal, and an atomic contact on the galactosyltransferase.
 - 23. A method of identifying a modulator of a galactosyltransferase or a ligand binding domain thereof comprising the step of using the structural coordinates of a galactosysltransferase or a ligand binding domain thereof as shown in Table 4 or 8, or a model according to any preceding claim to computationally evaluate a test compound for its ability to associate with the galactosyltransferase or binding domain or binding site thereof.
 - 24. A method for identifying a potential modulator of a galactosyltransferase by determining binding interactions between a test compound and atomic contacts of a ligand binding domain of a galactosyltransferase comprising:
 - (a) generating the atomic contacts on a computer screen
 - (b) generating test compounds with their spatial structure on the computer screen;
 - (c) determining whether the compounds associate or interact with the atomic contacts defining the galactosyltransferase; and
 - identifying test compounds that are potential modulators by their ability to enter into a (d) selected number of atomic contacts.
 - 25. A method for identifying a potential modulator of a galactosyltransferase function by docking a computer representation of a test compound with a computer representation of a structure of a galactosyltransferase or a ligand binding domain thereof having the amino acid residues of a galactosytransferase or a ligand binding domain thereof as shown in Table 1 or Figures 3, 4, or 5.
 - 26. A method for the design of ligands for galactosyltransferases based on the three dimensional structure of a sugar nucleotide donor or part thereof comprising using the structural coordinates shown in Table 5, 6, or 7.

5

10

15

20

- 27. A method as claimed in claim 26 comprising (a) generating a computer representation of a sugar nucleotide donor, or part thereof, defined by the structural coordinates shown in Table 5, 6, or 7; (b) searching for molecules in a data base that are similar to the defined sugar nucleotide donor, or part thereof, using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.
- 28. A method as claimed in claim 27 comprising one or more of the following additional steps:
 - testing whether a ligand is a modulator of the activity of a galactosyltransferase in cellular assays and animal model assays;
 - (b) modifying the ligand;
 - (c) optionally rerunning steps (a) or (b); and
 - (d) preparing a pharmaceutical composition comprising the modulator.
- 29. A modulator identified by a method of claim 23, 24, 25, or 28.
- 30. Compounds of the formula I having the structural coordinates of uracil of Table 5, preferably Run 9, Cluster 1 or ATOM 1 to ATOM 9, inclusive of Table 7:

wherein R_1 and R_2 are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, pyrophophate, gallic acid, phosphonates, thioamide, and $-OR_{12}$ where R_{12} is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring;

31. Compounds of the following formula II having the structural coordinates of uridine of Table 5, preferably Run 9, Cluster 1 or ATOM 1 to 20 inclusive, of Table 7:

5

10

wherein R_1 , R_2 , R_3 , R_4 , and R_5 are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, pyrophosphate, gallic acid, phosphonates, thioamide, and $-OR_{12}$ where R_{12} is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring, and salts and optically active and racemic forms of a compound of the formula II.

32. Compounds of the formula III having the structural coordinates of UDP in Table 5, preferably Run 9, Cluster 1, or ATOM 1 to 28 inclusive of Table 7:

wherein R_1 , R_2 , R_3 , R_4 , R_6 , and R_{11} are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol,

15 33. Compounds of the formula IV having the structural coordinates of UDP-Gal in Table 6, preferably Run, Cluster 1:

wherein R₁, R₂, R₃, R₄, R₇, R₈, R₉, and R₁₀ are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof (e.g. -CH₂OH), amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, gallic acid, phosphonates, thioamide, and -OR12 where R₁₂ is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring, and X is a counter-ion including sodium, lithium, potassium, calcium, magnesium, manganese, cobalt ions and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, preferably Mn²⁺, and salts and optically active and racemic forms of a compound of the formula IV.

10

5

34. A pharmaceutical composition comprising a ligand, modulator, or compound according to any preceding claim, and a pharmaceutically acceptable carrier, diluent, excipient, or adjuvant or any combination

15

A method of treating and/or preventing disease comprising the step of administering a pharmaceutical composition according to claim 34 to a mammalian patient. A method of treating a disease associated with a galactosyltransferase with inappropriate activity in a

36.

35.

- cellular organism, comprising: administering a pharmaceutical composition as claimed in claim 34; and
 - (a)
 - activating or inhibiting a galactosyltransferase to treat the disease. **(b)**

20

37. Use of a modulator or compound as claimed in any of the preceding claims in the preparation of a medicament to treat a disease associated with a galactosyltransferase with inappropriate activity in a cellular organism.

38.

Use of the structural coordinates of a galactosyltransferase structure as shown in Table 1 or 8, or the structural coordinates of a ligand as shown in Table 5, 6, or 7 to manufacture a medicament.

25

39. A computer for producing a model or three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises a galactosyltransferase or ligand binding domain thereof defined by structural coordinates of galactosyltransferase amino acids or a ligand binding domain thereof, or comprises structural coordinates of atoms of a ligand or substrate, or a three-

PCT/CA01/00607

WO 01/83717

5

10

dimensional representation of a homologue of said molecule or molecular complex, wherein said computer comprises:

- (a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises the structural coordinates of a galactosyltransferase amino acids according to Table 4 or 8 or a ligand binding domain thereof, or a ligand according to Table 5, 6, or 7;
- (b) a working memory for storing instructions for processing said machine-readable data;
- (c) a central-processing unit coupled to said working memory and to said machine-readable data storage medium for processing said machine readable data into said three-dimensional representation; and
- (d) a display coupled to said central-processing unit for displaying said three-dimensional representation.

```
GALT ( 5)
SPSA ( ---> )
            5) gkvilsmlvvstvivvfweyihspegslfwinpsrnpev (43
GALT ( \cdot 44) ggssiqkgwwlprwfnngyheedgdineekeqrnedesk (82 SPSA ( ---> )
GALT ( 83)
SPSA ( ---> )
         83) lklsdwfnpfkrpevvtmtkwkapvvwegtynravldny (121
          122) yakqkitvgltvfavgryiehyleefltsankhfmvghp (160 A2) P---KVSVIMTSYNKSDYVAKSISSILSQT---F--SDF (A32
GALT (
SPSA (
          161) vifyimvddvsr--mplielgplrsfkv-fkikpekrwq (196 ) A33) ELF-IMDDNSNEETLNVIRP-FLNDNRVRF---YOS--- ( gap )
GALT (
SPSA (
           197) dismmrmktigehivahiqhevd----fl-fcmdvdqv (229
GALT (
           A64) DISGVKERTEKTRYAALINQAIEMAEGEYITYATD-DNI (A101
SPSA (
         230) fqdkfgvetlgesvaqlqawwykadpnd-ftyerrkesa(267 ) A102) Y--MP--DRLLKMVRELDT-----HPEKAVIYSASK---( gap ).
GALT (
SPSA (
         268) ayipfgeg-dfyyhaaifggtpt-qvlnitqec----f (299 A129) TYHL---N | DIVKETVRPAAQVTWNAPCAIDHCSVMHRY (A166
GALT (
SPSA (
GALT ( 300) kgilkdkkndieaqwhdeshlnkyfllnkptkilspeyc (338 ) SPSA (gap )-SVLEKVKEKFGSYW-DES-PA-FYRIGD-AR---F-F- (gap )
        339) w---dyhiglpadiklvkmswqtkeynvvrnnv (368
A196) wRVNHFYPFYPLDEEL-DLNYIT|EF--VRNLPPQRNCR (A244
SPSA (
                                                                                    <----)
                                                                                   (A256 )
SPSA ( A245) ELRESLKKLGMG
```


9/9

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 8 November 2001 (08.11.2001)

PCT

(10) International Publication Number WO 01/083717 A3

- (51) International Patent Classification⁷: C12N 9/10,
 G06F 19/00, C07D 239/54, C07H 19/073, 19/10, A61K
 31/513, 31/7072, C07H 19/06, G06F 17/50
- (21) International Application Number: PCT/CA01/00607
- (22) International Filing Date: 2 May 2001 (02.05.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/201,841

3 May 2000 (03.05.2000) US

- (71) Applicant (for all designated States except US): GLY-CODESIGN INC. [CA/CA]; 480 University Avenue, Suite 400, Toronto, Ontario M5G 1V2 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): RAO, Mohan [IN/CA]; 95 Thorncliffe Park Drive, Apartment 3409, Toronto, Ontario M4H 1L7 (CA). TVAROSKA, Igor

[SK/CA]; 65 High Park Avenue, Apartment 2201, Toronto, Ontario M6P 2R7 (CA).

- (74) Agents: VAN ZANT, Joan M. et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montreal, Québec H3A 2Y3 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: DESIGNING MODULATORS FOR ALPHA-1, 3 GALACTOSYLTRANSFERASES BASED ON A STRUCTURAL MODEL

(57) Abstract: The invention relates to structures and models of ligand binding domains of galactosyltransferases, and the ligand binding domains with ligands. The structural coordinates that define the structures and any ligands bound to the structures enable the determination of homologues, the structures of polypeptides with unknown structure, and the identification of modulators of the galactosyltransferases. The invention also relates to structures and models of nucleotide-sugar donors for the galactosyltransferases, and the design of modulators for the galactosyltransferases based on the properties of these structures and models.

O 01/083717 A

(88) Date of publication of the international search report: 8 August 2002 For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

nai Application No PCT/CA 01/00607

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N9/10 G06F19/00

A61K31/513

C07D239/54 A61K31/7072 C07H19/06

C07H19/073 G06F17/50

C07H19/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N G06F G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, EMBL, CHEM ABS Data

	Citation of document, with indication, where appropriate, of	the relevant passages	Relevant to claim No.
(CHARNOCK SIMON J ET AL: "Str nucleotide-diphospho-sugar tr SpsA from Bacillus subtilis, nucleotide-complexed forms" BIOCHEMISTRY, AMERICAN CHEMIC EASTON, PA, US, vol. 38, no. 20, 18 May 1999	in native and AL SOCIETY.	18,32
	pages 6380-6385, XP001038468	(1555 05 10),	•
Υ _	ISSN: 0006-2960 pages 6381-6382 and Figure 4		14,23-28
		-/	
		•	·
χ Furt	her documents are listed in the continuation of box C.	χ Patent family members are lister	1 in annex.
	her documents are listed in the continuation of box C. ategories of cited documents:	"T later document published after the int	ernetional filing date
Special ca		"T" later document published after the Interpretation or priority date and not in conflict with clied to understand the principle or the state of the principle of the state o	ernational filing date
'Special ca 'A' docum consid	ategories of cited documents : ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international	"T" later document published after the Int or priority date and not in conflict with clied to understand the principle or the invention "X" document of particular relevance; the	ernational filing date n the application but neory underlying the claimed invention
A docum consider filing of L docume which	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	"T" later document published after the Interpretation or priority date and not in conflict with cited to understand the principle or the Invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the decomposition of particular relevance; the "Y" document of particular relevance; the	ernational filing date in the application but neory underlying the claimed invention of be considered to ocument is taken alone claimed invention
° Special ca °A° docum consider E° earlier filing of 'L' docume which citatio	ategories of cited documents : ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"T" later document published after the Interpretation or priority date and not in conflict with cited to understand the principle or it invention. "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the discourant of particular relevance; the cannot be considered to involve an incomplete document is combined with one or metals."	ernational filing date in the application but neory underlying the claimed invention to be considered to ocument is taken alone claimed invention not be the properties of the
A' docume consider earlier filing of the citation of the country of the citation of the citati	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but	"T" later document published after the Interpretation or priority date and not in conflict with clied to understand the principle or the linvention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the distribution of particular relevance; the cannot be considered to involve an indocument is combined with one or manents, such combined with one or manents, such combination being obvisin the art.	ernational filing date in the application but neory underlying the claimed invention of the considered to ocument is taken alone claimed invention inventive step when the ions other such docu- ous to a person skilled
Special come consider the consider the comme consider the consideration that consideration that consideration the consideration that	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means	"T" later document published after the Interpretation or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the discurrence of particular relevance; the cannot be considered to involve an involve and invo	remational filing date in the application but neory underlying the claimed invention to be considered to ocument is taken alone claimed invention nore other such docu- ous to a person skilled
A docum consider docume which citation of the country and country	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filling date but than the priority date claimed	"T" later document published after the Interpretation or priority date and not in conflict with cited to understand the principle or it invention. "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the divided to involve an inventive step when the divided to involve an invention of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obviding the art. "&" document member of the same patern	remational filing date in the application but neory underlying the claimed invention to be considered to ocument is taken alone claimed invention nore other such docu- ous to a person skilled
"A" docum consider earlier filing of the citation of the citat	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but han the priority date claimed	"T" later document published after the International Section 2 of mailing of the International Section 2 of mailing 3 of mailing 2 of mailing 3 of mailin	ernational filing date in the application but neory underlying the claimed invention to be considered to ocument is taken alone claimed invention nventive step when the iore other such docu- ous to a person skilled

I Inal Application No PCT/CA 01/00607

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °		Relevant to claim No.
X	IMBERTY ANNE ET AL: "Fold recognition study of alpha3-galactosyltransferase and molecular modeling of the nucleotide sugar-binding domain." GLYCOBIOLOGY,	18,33
	vol. 9, no. 7, July 1999 (1999-07), pages 713-722, XP001026527 ISSN: 0959-6658	
Υ	abstract, Fig 1, page 717, Fig. 3 and page 719	14,23-28
Y	JOZIASSE D H ET AL: "BOVINE ALPHA-1-3 GALACTOSYLTRANSFERASE ISOLATION AND CHARACTERIZATION OF A COMPLEMENTARY DNA CLONE IDENTIFICATION OF HOMOLOGOUS SEQUENCES IN HUMAN GENOMIC DNA" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 264, no. 24, 1989, pages 14290-14297, XP001026521 ISSN: 0021-9258 abstract, fig. 2 and page 14296	18,35,36
Υ	DATABASE EMBL 'Online! accession P14769, protein EC 2.4.1.151, 1 April 1990 (1990-04-01) JOZIASSE DH ET AL.: "bovine alpha 1-3 galactosyltransferase gene" XP002186993 the whole document	18
X	DATABASE SIGMA-ALDRICH 'Online! Products for Life Science, "search for UDP" retrieved from HTTP://WWW.SIGMA-ALDRICH.COM XP002186994 Uracil, Uridine 5'-diphosphogalactose, Uridine, etc are common products listed in different providers catalog	30-33
X	GASTINEL LOUIS NOEL ET AL: "Crystal structures of the bovine beta4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose." EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 18, no. 13, 1 July 1999 (1999-07-01), pages 3546-3557, XP002186991 ISSN: 0261-4189	18,33
Υ	page 3548-50, Fig 2, 4 ,5 and page 3554	23-28

II nal Application No
PCT/CA 01/00607

0.00	STAND DOCUMENTS CONCIDENTS TO BE SELECTIVE.	PC17CA 01700607
C.(Continu Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	The state of the s	TOOTER to Occurrence.
Y	ASZODI ANDRAS ET AL: "Protein modeling by multiple sequence threading and distance geometry." PROTEINS, no. SUPPL. 1, 1997, pages 38-42, XP001038475 ISSN: 0887-3585 the whole document	18,23-28
Y	CHUNG S J ET AL: "Acceptor substrate-based selective inhibition of galactosyltransferases" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 8, no. 23, 1 December 1998 (1998-12-01), pages 3359-3364, XP004143758 ISSN: 0960-894X Fig 1, table 1, page 3362	23-28, 35,36
Υ -	BRETON CHRISTELLE ET AL: "Structure/function studies of glycosyltransferases." CURRENT OPINION IN STRUCTURAL BIOLOGY, vol. 9, no. 5, October 1999 (1999-10), pages 563-571, XP001026532 ISSN: 0959-440X page 566 and Fig. 4	18,23
A	US 5 849 991 A (CRAWFORD ROBERT J ET AL) 15 December 1998 (1998-12-15) columns 2,4,6,8	18,23-28
A	THODEN JAMES B ET AL: "Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli." BIOCHEMISTRY, vol. 36, no. 21, 1997, pages 6294-6304, XP001038467 ISSN: 0006-2960 page 2558, Figure 4, 6, 7.	30-33
Ρ,Υ	UNLIGIL ULUG M ET AL: "X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: Catalytic mechanism and a new protein superfamily." EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 19, no. 20, 16 October 2000 (2000-10-16), pages 5269-5280, XP001026132 ISSN: 0261-4189 pp5270 left column, Fig. 2 and 4.	18
	-/	

I nal Application No PCT/CA 01/00607

		PC17CA 01700607
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	<u> </u>
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
T	RAO MOHAN ET AL: "Structure of bovine alpha-1,3-galactosyltransferase and its complexes with UDP and UDPGal inferred from molecular modeling." PROTEINS, vol. 44, no. 4, 1 September 2001 (2001-09-01), pages 428-434, XP001038482 ISSN: 0887-3585 the whole document	18,23-28
		·
		·
		·
	•	
	· .	
	·	
	·	
	·	

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-13,17,19-22, 29, 34-39

Presentation of information:

The claims 1-13, 17, 19-22, 38-39 relate to, or comprise, a three dimensional homology model for the ligand binding domain of a galactosyltransferase or its production which is considered to be a subject-matter encompassed by Rule 39.1(v) and/or (vi) PCT, being subject-matter which the ISA is not required to search under Art. 17(2)(a)(i) PCT. The above mentioned claims relate to a presentation of information (protein model structure coordinates) identified as a coordinates listings and their possible use -claim 38- (using appropriate molecular modelling software), or information stored on a computer (claim 39 and 13) or computer readable media (claim 12). Thus, said claims will not be searched.

Enzyme "ligand/s" or "modulator/s" and their use: Present claims 15-16, 29, 34-37 relate to a compound (and its use in pharmaceutical composition or in methods of treatment) defined by reference to a its binding property to a glycosyltransferase (a "ligand" or a "modulator" of alpha 1-3 glycosyltransferase). The claims cover all products having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for NONE such products. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). A meaningful search cannot be established because it is not possible to determine if any of the presently known substances is falling under the terms of these "modulator" product claims. Besides it is noted, that the compounds of claims 15-16 and 29 are not rendered novel just because of the fact that they have been identified by the method of claims 23-28. e.g. such compounds can already exist.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

PCT/CA 01/00607

Patent document dted in search report		Publication date		Patent family member(s)	Publication date
US 5849991	A	15-12-1998	AU BR CA EP AU AU WO JP	695373 B2 9506652 A 2181433 A1 0755451 A1 1544595 A 711144 B2 7742898 A 9520661 A1 9508277 T	13-08-1998 02-09-1997 03-08-1995 29-01-1997 15-08-1995 07-10-1999 01-10-1998 03-08-1995 26-08-1997