Newton's Law of Motion

Physics 211 Syracuse University, Physics 211 Spring 2015 Walter Freeman

February 5, 2015

Announcements

- Homework 3 due next Wednesday (will be posted today
- Mastering Physics assignment due before class Tuesday (this one counts; will be posted today)
- Exams returned and recapped on Friday in recitation

Exam 1

- ullet Full statistics will be posted once I get them (average around 90/150)
- You probably did better than you thought: remember the grading scheme
- Remember you can drop your lowest exam grade

Ask a Physicist: Cherenkov radiation

W. Freeman Newton's Law of Motion February 5, 2015 4 / 12

Newton's laws

$$\vec{F} = m\vec{a}$$

- Forces on an object cause it to accelerate
- The larger the force, the larger the acceleration
- The larger the mass, the smaller the acceleration
- You intuitively know this already

Newton's laws

$$\vec{F} = m\vec{a}$$

- Forces on an object cause it to accelerate
- The larger the force, the larger the acceleration
- The larger the mass, the smaller the acceleration
- You intuitively know this already
- No forces → no acceleration: not necessarily no motion!
- Forces come in pairs (Newton's third law)
 - "If A pushes on B, B pushes back on A"
 - Very important to be clear about what forces you're talking about

Newtons

We need a new unit for force: the newton

 $ec{F}=mec{a}
ightarrow$ Force has dimensions kg $\mathrm{m/s^2}$

- 1 N = 1 kg m/s^2 : about the weight of an apple
- 4 N is about a pound
- 9.8 N is the weight of a kilogram

Force is a vector

$$\vec{F} = m\vec{a}$$

- Force is a vector
- Multiple forces on an object add like vectors do
- Really, we should write

$$\sum \vec{F} = m\vec{a}$$

Force is a vector

$$\vec{F} = m\vec{a}$$

- Force is a *vector*
- Multiple forces on an object add like vectors do
- Really, we should write

$$\sum \vec{F} = m\vec{a}$$

(force table demo)

- Gravity: F = mg, so $mg = ma \rightarrow a = g$
 - Gravity pulls down on everything (on Earth) with a force mg, called its weight
 - If something isn't accelerating downward, some other force must balance its weight

A force is anything that pushes or pulls something:

- Gravity: F = mg, so $mg = ma \rightarrow a = g$
- "Normal force": stops things from moving through each other
 - Are there normal forces on me right now?

A force is anything that pushes or pulls something:

- Gravity: F = mg, so $mg = ma \rightarrow a = g$
- "Normal force": stops things from moving through each other
 - Are there normal forces on me right now?
 - However big it needs to be to stop objects from sliding through each other
 - Directed "normal" (perpendicular) to the surface
 - Really caused by electric force/Pauli exclusion principle

- Gravity: F = mg, so $mg = ma \rightarrow a = g$
- "Normal force": stops things from moving through each other
- Tension: ropes pull on both sides equally
 - What are the forces in a contest of tug-of-war?

- Gravity: F = mg, so $mg = ma \rightarrow a = g$
- "Normal force": stops things from moving through each other
- Tension: ropes pull on both sides equally
 - What are the forces in a contest of tug-of-war?
 - What about the forces on the people?
- Friction: a force opposes things sliding against each other

- Gravity: F = mg, so $mg = ma \rightarrow a = g$
- "Normal force": stops things from moving through each other
- Tension: ropes pull on both sides equally
 - What are the forces in a contest of tug-of-war?
 - What about the forces on the people?
- Friction: a force opposes things sliding against each other
- Electromagnetic forces, nuclear forces, radiation pressure...

- Gravity: F = mg, so $mg = ma \rightarrow a = g$
- "Normal force": stops things from moving through each other
- Tension: ropes pull on both sides equally
 - What are the forces in a contest of tug-of-war?
 - What about the forces on the people?
- Friction: a force opposes things sliding against each other
- Electromagnetic forces, nuclear forces, radiation pressure...
- Acceleration is not a force!
- ... it's the *result* of forces

Force diagrams

- Lots of forces, easy to get confused
- Draw a picture!

Force diagrams

- Lots of forces, easy to get confused
- Draw a picture!

- Each object feeling forces gets a separate diagram
- Label each force and its direction
- These are also called "free body diagrams"

Force diagrams

- Lots of forces, easy to get confused
- Draw a picture!

- Each object feeling forces gets a separate diagram
- Label each force and its direction
- These are also called "free body diagrams"

(Examples on document camera)

• What forces act on a car?

- What forces act on a car?
- Which forces are bigger or smaller if it's driving at a constant speed?

- What forces act on a car?
- Which forces are bigger or smaller if it's driving at a constant speed?
- Which forces are bigger or smaller if it's slowing down?

- What forces act on a car?
- Which forces are bigger or smaller if it's driving at a constant speed?
- Which forces are bigger or smaller if it's slowing down?
- A 1000 kg car slows from 20 m/s to a stop over 5 sec. What force is required to do this?

- What forces act on a car?
- Which forces are bigger or smaller if it's driving at a constant speed?
- Which forces are bigger or smaller if it's slowing down?
- A 1000 kg car slows from 20 m/s to a stop over 5 sec. What force is required to do this?

(Use $\vec{F}=m\vec{a}$ to connect force to acceleration, and then kinematics to connect acceleration to motion)

Summary

- Forces: anything that pushes or pulls
- Forces cause accelerations: $\sum \vec{F} = m\vec{a}$
 - If $\sum \vec{F} = 0$, $\vec{a} = 0$: motion at a constant velocity
- Forces come in pairs: if A pushes on B, B pushes back on A
- It's the vector sum $\sum \vec{F}$ that matters
- Draw force diagrams to keep all of this straight