$$\Leftrightarrow \ln|p| = \ln(1+y^2) + \widetilde{C_1} \Leftrightarrow \ln\left|\frac{p}{1+y^2}\right| = \ln C_1 \Leftrightarrow$$

$$\Leftrightarrow \frac{p}{1+y^2} = C_1 \Leftrightarrow p = C_1(1+y^2) \Leftrightarrow y' = C_1(1+y^2)$$

Постоянную C_1 определим из начального условия:

$$y'(0) = 1 \Leftrightarrow C_1(1 + y(0)^2) = 1 \Leftrightarrow /y(0) = 0/ \Leftrightarrow C_1 = 1.$$

Следовательно, уравнение примет вид:

$$y' = 1 + y^2 \Leftrightarrow \frac{dy}{1 + y^2} = dx$$
 | Проинтегрируем $\Leftrightarrow \arctan y = x + C \Leftrightarrow y = \operatorname{tg}(x + C)$.

Постоянную C определим из начального условия:

$$y(0) = 0 \Leftrightarrow \operatorname{tg} C = 0 \Leftrightarrow C = 0.$$

Otbet: $y = \operatorname{tg} x$.

7.6 Линейные однородные уравнения

Уравнение вида

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = 0$$
(7.11)

называется линейным однородным дифференциальным уравнением n-го порядка. Любой набор из n линейно независимых решений $y_1(x),\ y_2(x),\ \dots,\ y_n(x)$ уравнения (7.11) называется фундаментальной системой решений этого уравнения. Общее решение уравнения (7.11) имеет вид: $y(x) = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x)$, где $C_1,\ C_2,\ \dots,\ C_n$ – произвольные const.

Как проверить линейную независимость решений $y_1(x), \ldots, y_n(x)$? С помощью определителя Вронского.

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) & \dots & y_n(x) \\ y'_1(x) & y'_2(x) & \dots & y'_n(x) \\ \dots & \dots & \dots & \dots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \dots & y_n^{(n-1)}(x) \end{vmatrix}$$

98 $\Gamma_{\rm ЛаВа} \ 7$

 $W(x) = 0 \ \forall \ x \Leftrightarrow$ решения $y_1(x), \ y_2(x), \ \dots, y_n(x)$ линейно зависимы. $W(x) \neq 0$ хотя бы для какого-нибудь $x \Leftrightarrow$ решения $y_1(x), \ y_2(x), \ \dots, y_n(x)$ линейно независимы.

Общего метода решения линейных однородных уравнений не существует.

7.7 Линейные однородные уравнения с постоянными коэффициентами

Общий вид линейного однородного уравнения порядка n с постоянными коэффициентами:

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0, (7.12)$$

где a_1, a_2, \ldots, a_n – некоторые вещественные const.

Характеристическое уравнение:

$$\lambda^{n} + a_{1}\lambda^{n-1} + \dots + a_{n-1}\lambda + a_{n} = 0.$$
 (7.13)

/Заменим
$$y, y', y'', \ldots, y^{(n)}$$
 на $1, \lambda, \lambda^2, \ldots, \lambda^n$ /

Каждому вещественному корню λ уравнения (7.13) кратности r соответствуют r линейно независимых решений уравнения (7.12):

$$e^{\lambda x}, xe^{\lambda x}, \dots, x^{r-1}e^{\lambda x}$$

Каждой паре комплексных корней $\lambda = \alpha \pm i \beta$ кратности s соответствуют s пар линейно независимых решений:

$$e^{\alpha x}\cos\beta x$$
, $xe^{\alpha x}\cos\beta x$, ..., $x^{s-1}e^{\alpha x}\cos\beta x$;
 $e^{\alpha x}\sin\beta x$, $xe^{\alpha x}\sin\beta x$, ..., $x^{s-1}e^{\alpha x}\sin\beta x$.

Общее решение уравнения (7.12) – это линейная комбинация всех перечисленных решений с произвольными коэффициентами.

Пример 1

Найти общее решение уравнения

$$y'' + 3y' + 2y = 0.$$

Характеристическое уравнение:

$$\lambda^{2} + 3\lambda + 2 = 0 \iff (\lambda + 1)(\lambda + 2) = 0$$
$$\lambda_{1} = -1,$$
$$\lambda_{2} = -2.$$

Фундаментальная система решений:

$$\begin{cases} y_1 = e^{-x}, \\ y_2 = e^{-2x}. \end{cases}$$

Общее решение: $y = C_1 e^{-x} + C_2 e^{-2x}$.

Пример 2

$$y'' + 2y' + 5y = 0.$$

 $\lambda^2 + 2\lambda + 5 = 0 \iff \lambda = \frac{-2 \pm \sqrt{4 - 20}}{2}.$
 $\lambda_{1,2} = -1 \pm 2i.$

Фундаментальная система решений:

$$y_1 = e^{-x} \cos 2x,$$

$$y_2 = e^{-x} \sin 2x.$$

Общее решение: $y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x)$.

Пример 3

Найти частное решение уравнения

$$y''' - 3y'' + 3y' - y = 0,$$

удовлетворяющее начальным условиям:

$$y(0) = 1$$
, $y'(0) = 2$, $y''(0) = 3$.

Характеристическое уравнение:

$$\lambda^{3} - 3\lambda^{2} + 3\lambda - 1 = 0 \iff (\lambda - 1)^{3} = 0$$

 $\lambda=1$ – корень третьей кратности.

Общее решение:
$$y = (C_1 + C_2 x + C_3 x^2) \cdot e^x$$
.

Теперь удовлетворим начальным условиям

$$y' = (C_1 + C_2 x + C_3 x^2) e^x + (C_2 + 2C_3 x) e^x$$

$$y'' = (C_1 + C_2 x + C_3 x^2) e^x + 2 (C_2 + 2C_3 x) e^x + 2C_3 e^x$$

$$y(0) = 1 \Leftrightarrow C_1 = 1$$

$$y'(0) = 2 \Leftrightarrow C_1 + C_2 = 2$$

$$y''(0) = 3 \Leftrightarrow C_1 + 2C_2 + 2C_3 = 3$$

$$\Rightarrow \begin{cases} C_1 = 1 \\ C_2 = 1 \\ C_3 = 0 \end{cases}$$

Итак, частное решение: $y = (1 + x) \cdot e^x$.

Пример 4

$$4y^{IV} + 4y'' + y = 0$$

$$4\lambda^4 + 4\lambda^2 + 1 = 0 \Leftrightarrow (2\lambda^2)^2 + 2 \cdot 2\lambda^2 + 1 = 0 \Leftrightarrow$$

$$\Leftrightarrow (2\lambda^2 + 1)^2 = 0 \Leftrightarrow \lambda^2 = -\frac{1}{2}.$$

 $\lambda_{1,2}=\pm \frac{1}{\sqrt{2}}i$ — каждый из корней второй кратности.

Фундаментальная система решений:

$$\cos \frac{x}{\sqrt{2}}, \quad x \cos \frac{x}{\sqrt{2}}, \quad \sin \frac{x}{\sqrt{2}}, \quad x \sin \frac{x}{\sqrt{2}}.$$
 Общее решение: $y = (C_1 + C_2 x) \cos \frac{x}{\sqrt{2}} + (C_3 + C_4 x) \sin \frac{x}{\sqrt{2}}.$

7.8 Линейные неоднородные уравнения

Уравнение вида

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = f(x),$$
 (7.14)

где $f(x) \not\equiv 0$, называется линейным неоднородным дифференциальным уравнением n-го порядка.

Общее решение уравнения (7.14):

$$y(x) = y_0(x) + \tilde{y}(x), \qquad (7.15)$$

где $y_0(x)$ — общее решение соответствующего однородного уравнения, $\tilde{y}(x)$ — некоторое частное решение неоднородного уравнения (7.14). Если

известно общее решение однородного уравнения, то можно найти частное решение неоднородного. Для этого существуют различные методы.

7.9 Метод вариации произвольных постоянных (метод Лагранжа)

Пусть известно общее решение однородного уравнения:

$$y_0(x) = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x),$$

где C_1, C_2, \ldots, C_n – некоторые постоянные.

Будем искать частное решение неоднородного уравнения в виде:

$$\tilde{y}(x) = C_1(x) y_1(x) + \ldots + C_n(x) y_n(x),$$

где $C_{1}\left(x\right),C_{2}\left(x\right),\ldots,C_{n}\left(x\right)$ – некоторые функции.

Если функции $C_1(x)$, , $C_n(x)$ удовлетворяют следующим условиям:

$$\begin{cases} y_1 \frac{dC_1}{dx} + y_2 \frac{dC_2}{dx} + \dots + y_n \frac{dC_n}{dx} = 0, \\ y_1' \frac{dC_1}{dx} + y_2' \frac{dC_2}{dx} + \dots + y_n' \frac{dC_n}{dx} = 0, \\ \dots + y_n' \frac{dC_n}{dx} = 0, \\ y_1^{(n-2)} \frac{dC_1}{dx} + y_2^{(n-2)} \frac{dC_2}{dx} + \dots + y_n^{(n-2)} \frac{dC_n}{dx} = 0, \\ y_1^{(n-1)} \frac{dC_1}{dx} + y_2^{(n-1)} \frac{dC_2}{dx} + \dots + y_n^{(n-1)} \frac{dC_n}{dx} = f(x), \end{cases}$$

то $\tilde{y}\left(x\right)$ будет являться решением нашего неоднородного уравнения.

Решив систему, найдем $\frac{dC_1}{dx}$, $\frac{dC_2}{dx}$, , $\frac{dC_n}{dx}$.

Функции $C_{1}\left(x\right),\ C_{2}\left(x\right),\ \ldots,C_{n}\left(x\right)$ находятся интегрированием.

Пример

Найти общее решение уравнения:

$$y''' + y' = \operatorname{tg} x.$$

Соответствующее однородное уравнение:

$$y''' + y' = 0$$

 $\lambda^3 + \lambda = 0 \iff \lambda (\lambda^2 + 1) = 0 \iff \begin{bmatrix} \lambda = 0 \\ \lambda = \pm i \end{bmatrix}$

Фундаментальная система решений:

$$\begin{cases} y_1 = 1, \\ y_2 = \cos x, \\ y_3 = \sin x. \end{cases}$$

Следовательно, общее решение однородного уравнения имеет вид:

$$y_0 = C_1 + C_2 \cos x + C_3 \sin x.$$

Для нахождения частного решения неоднородного уравнения воспользуемся методом вариации произвольных постоянных.

(1)
$$\begin{cases} C'_1 + C'_2 \cos x + C'_3 \sin x = 0, \\ -C'_2 \sin x + C'_3 \cos x = 0, \\ -C'_2 \cos x - C'_3 \sin x = \operatorname{tg} x. \end{cases}$$

$$(2) \cdot \sin x + (3) \cdot \cos x : \quad -C_2' \sin^2 x - C_2' \cos^2 x = \sin x \implies C_2' = -\sin x.$$

Подставим C_2' в уравнение (2): $\sin^2 x + C_3' \cos x = 0 \Rightarrow C_3' = -\frac{\sin^2 x}{\cos x}$.

$$(1) + (3) : C'_1 = \operatorname{tg} x.$$

Проинтегрируем C'_1 , C'_2 , C'_3 :

$$C_1 = \int \operatorname{tg} x dx = -\int \frac{d(\cos x)}{\cos x} = -\ln|\cos x| + \operatorname{const},$$

$$C_2 = -\int \sin x dx = \cos x + \operatorname{const},$$

$$C_3 = -\int \frac{\sin^2 x}{\cos x} dx = \int \frac{\cos^2 x - 1}{\cos x} dx = \int \cos x dx - \int \frac{1}{\cos x} dx = \sin x - \ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + \operatorname{const}.$$

Итак, частное решение неоднородного уравнения:

$$\tilde{y}(x) = C_1(x)y_1(x) + C_2(x)y_2(x) + C_3(x)y_3(x) \Leftrightarrow \\ \Leftrightarrow \tilde{y}(x) = \underbrace{-\ln|\cos x|}_{C_1(x)} + \underbrace{\cos x}_{C_2(x)} \cdot \underbrace{\cos x}_{y_2(x)} + \underbrace{\left(\sin x - \ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right|\right)}_{C_3(x)} \cdot \underbrace{\sin x}_{y_3(x)} \Leftrightarrow \\ \Leftrightarrow \tilde{y}(x) = -\ln|\cos x| - \ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| \cdot \sin x + 1.$$

Общее решение неоднородного уравнения:

$$y(x) = y_0(x) + \tilde{y}(x) \Leftrightarrow$$

$$\Leftrightarrow y(x) = C_1 + C_2 \cos x + C_3 \sin x - \ln|\cos x| - \ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| \cdot \sin x.$$

7.10 Метод неопределенных коэффициентов

Метод работает только для линейных неоднородных дифференциальных уравнений с <u>постоянными</u> коэффициентами.

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = f(x),$$

где a_1, a_2, \ldots, a_n – некоторые постоянные.

В некоторых случаях решение дифференциального уравнения удаётся подобрать.

Таблица видов частных решений для различных видов правых частей

Правая часть	Корни	Виды частного
дифференциального	характеристического	решения
уравнения	уравнения	
$P_m(x)$	1) Число 0 не является корнем	
	характеристического	$\tilde{P}_m(x)$
	уравнения	
	2) Число 0 является корнем	
	характеристического	$x^s \tilde{P}_m(x)$
	уравнения кратности <i>s</i>	
$P_m(x)e^{\alpha x}$	1) Число α не является корнем	
	характеристического	$\tilde{P}_m(x)e^{\alpha x}$
	уравнения	
	2) Число α является корнем	
	характеристического	$x^s \tilde{P}_m(x) e^{\alpha x}$
	уравнения кратности <i>s</i>	
$P_n(x)\cos\beta x + Q_m(x)\sin\beta x$	1) Числа $\pm i\beta$ не являются корнями	$\tilde{P}_k(x)\cos\beta x +$
	характеристического уравнения	$+\tilde{Q}_k(x)\sin\beta x$
	2) Числа $\pm i\beta$ являются корнями	
	характеристического уравнения	$x^{s}(\tilde{P}_{k}(x)\cos\beta x + \tilde{P}_{k}(x)\sin\beta x)$
	кратности s	$+\hat{Q}_k(x)\sin\beta x$
$e^{\alpha x}(P_n(x)\cos\beta x + Q_m(x)\sin\beta x)$	1) Числа $\alpha \pm i\beta$ не являются корнями	$(\tilde{P}_k(x)\cos\beta x +$
	характеристического уравнения	$+\tilde{Q}_k(x)\sin\beta x)e^{\alpha x}$
	2) Числа $\alpha \pm i\beta$ являются корнями	~
	характеристического уравнения	$x^{s}(P_{k}(x)\cos\beta x + \tilde{Q}_{k}(x))$
	кратности s	$+\tilde{Q}_k(x)\sin\beta x)e^{\alpha x}$

k – это наибольшая из степеней m и n.

 $\tilde{P}_m(x)$ – это полином степени m с неопределенными коэффициентами.

Пример 1

Найти общее решение уравнения:

$$y'''-y''+y'-y=x^2+x.$$
 $y'''-y''+y'-y=0$ — соответствующее однородное уравнение.
 Характеристическое уравнение: $\lambda^3-\lambda^2+\lambda-1=0 \iff \left(\lambda^2+1\right)(\lambda-1)=0$ $\lambda_1=1,$ $\lambda_{2,3}=\pm i.$

Общее решение однородного уравнения:

$$y_0 = C_1 e^x + C_2 \cos x + C_3 \sin x.$$

Далее смотрим таблицу.

Число 0 не является корнем характеристического уравнения, следовательно, частное решение неоднородного уравнения надо искать в виде:

$$\tilde{y}\left(x\right) = A_1 x^2 + A_2 x + A_3,$$

где $A_1,\ A_2,\ A_3$ – неизвестные константы.

Подставим $\tilde{y}(x)$ в исходное уравнение:

$$-2A_1 + 2A_1x + A_2 - A_1x^2 - A_2x - A_3 = x^2 + x$$

$$\begin{array}{c|ccc} x^2 : & -A_1 = 1 \\ x^1 : & 2A_1 - A_2 = 1 \\ x^0 : & -2A_1 + A_2 - A_3 = 0 \end{array} \right\} \Rightarrow \begin{cases} A_1 = -1 \\ A_2 = -3 \\ A_3 = -1 \end{cases}$$

Итак,
$$\tilde{y}(x) = -x^2 - 3x - 1$$
.

Общее решение неоднородного уравнения:

$$y(x) = C_1 e^x + C_2 \cos x + C_3 \sin x - x^2 - 3x - 1.$$

Пример 2

Найти общее решение уравнения:

$$y'' + 10y' + 25y = 4e^{-5x}$$

y'' + 10y' + 25y = 0 – соответствующее однородное уравнение.

Характеристическое уравнение: $\lambda^2 + 10\lambda + 25 = 0 \iff (\lambda + 5)^2 = 0$

 $\lambda = -5$ – корень второй кратности.

$$y_0(x) = (C_1 + C_2 x) e^{-5x}$$

Найдем $\widetilde{y}(x)$. Смотрим таблицу.

 $\lambda = -5\,$ является корнем характеристического уравнения кратности $s{=}2,$ значит частное решение $\tilde{y}\left(x\right)$ ищем в виде:

$$\tilde{y}(x) = Bx^2e^{-5x}$$

$$\tilde{y}' = 2Bxe^{-5x} - 5Bx^2e^{-5x}$$

$$\tilde{y}'' = 2Be^{-5x} - 10Bxe^{-5x} - 10Bxe^{-5x} + 25Bx^2e^{-5x}$$

Подставим их в уравнение:

$$2Be^{-5x} - 20Bxe^{-5x} + 20Bxe^{-5x} + 25Bx^2e^{-5x} + 25Bx^2e^{-5x} - 50Bx^2e^{-5x} = 4e^{-5x} \Rightarrow 2B = 4 \Rightarrow B = 2$$

Итак,
$$\tilde{y}(x) = 2x^2e^{-5x}$$

Общее решение неоднородного уравнения:

$$y(x) = (C_1 + C_2 x) e^{-5x} + 2x^2 e^{-5x}$$

Решите самостоятельно:

Найти общие решения дифференциальных уравнений:

21)
$$y^{IV} + 4y'' + 3y = 0$$
,

22)
$$y^{IV} + 2y''' + y'' = 0$$
,

23)
$$y^V + 8y''' + 16y' = 0$$
.

Решить методом вариации произвольных постоянных:

24)
$$y'' + 3y' + 2y = \frac{1}{e^x + 1}$$
.

Решить методом неопределенных коэффициентов:

25)
$$y'' + y' = 4x^2e^x$$
.