

Aprendizado por Reforço

Métodos de Monte Carlo (parte 2)

Recapitulação da aula passada

- Aprendizado por reforço baseado em modelo
- Aprendizado por reforço sem modelo
- O problema da estimação das médias e sua relação com o aprendizado por reforço
- MC Básico

Recapitulação da aula passada

Algorithm 5.1: MC Basic (a model-free variant of policy iteration)

Initialization: Initial guess π_0 .

Goal: Search for an optimal policy.

For the kth iteration (k = 0, 1, 2, ...), do

For every state $s \in \mathcal{S}$, do

For every action $a \in \mathcal{A}(s)$, do

Collect sufficiently many episodes starting from (s, a) by following π_k *Policy evaluation:*

 $q_{\pi_k}(s,a) \approx q_k(s,a) =$ the average return of all the episodes starting from (s,a)

Policy improvement:

$$a_k^*(s) = \arg\max_a q_k(s, a)$$

 $\pi_{k+1}(a|s) = 1$ if $a = a_k^*$, and $\pi_{k+1}(a|s) = 0$ otherwise

Exemplo: Duração do Episódio e Recompensas Esparsas

- Mundo em grade de 5x5
- Recompensas definidas como:

$$r_{forbidden} = -10$$

$$r_{boundary} = -1$$

$$r_{target} = 1$$

• Fator de desconto:

$$\gamma = 0.9$$

• Algoritmo: MC Básico

	1	2	3	4	5		
1	0.0	0.0	0.0	0.0	0.0		
2	0.0	0.0	0.0		0.0		
3	0.0	0.0	1.0	0.0	0.0		
4	0.0	1.0	1.0	1.0	0.0		
5	0.0	0.0	1.0	0.0	0.0		

Exemplo: Duração do Episódio e Recompensas

Esparsas

- Episódios curtos:
 - O que podemos observar?

- (a) Final value and policy with episode length=1
- (b) Final value and policy with episode length=2

		Epis	ode lengt	th=3		Episode length=3 Episode length=4							Episode length=4										
	1	2	3	4	5		1	2	3	4	5		1	2	3	4	5		1	2	3	4	5
1	0.0	0.0	0.0	0.0	0.0	1	ļ	+	0	ļ	-	1	0.0	0.0	0.0	0.0	0.0	1	—	←	→	-	ţ
2	0.0	0.0	0.0	0.0	0.0	2	ļ	←	†	0	0	2	0.0	0.0	0.0	0.0	0.0	2	1	-	1	0	†
3	0.0	0.0	2.7	0.0	0.0	3	1	-	—	<u></u>	+	3	0.0	0.0	3.4	0.0	0.0	3	†	-	-	1	1
4	0.0	2.7	2.7	2.7	0.0	4	†	<u> </u>	0	-	†	4	0.0	3.4	3.4	3.4	0.7	4	ļ	-	0	-	1
5	0.0	1.7	2.7	1.7	0.8	5	0	-	†	—	-	5	0.0	2.4	3.4	2.4	1.5	5	†	-	†	-	-

- (c) Final value and policy with episode length=3
- (d) Final value and policy with episode length=4

Exemplo: Duração do Episódio e Recompensas

Esparsas

- Episódios longos:
 - O que podemos observar?

- (e) Final value and policy with episode length=14
- (f) Final value and policy with episode length=15

(g) Final value and policy with episode length=30 (h) Final value and policy with episode length=100

Efeito da Duração do Episódio

- A duração do episódio afeta fortemente a política ótima final.
- Episódios curtos → política e valores de estado não são ótimos.
 - Episódio com duração 1:
 - Apenas estados adjacentes ao alvo têm valor de estado diferente de zero.
 - Demais estados têm valor de estado zero.
- Episódios mais longos → aproximação gradual da política e valor de estado ótimos.

Padrões Espaciais Emergentes

- Com o aumento da duração dos episódios:
 - Estados próximos ao alvo ganham valor não-nulo antes dos estados mais afastados.
 - O agente precisa de um número mínimo de passos para alcançar o alvo.
 - Se episódio for mais curto que isso → retorno e valor do estado = 0.
 - Exemplo:
 - Do canto inferior esquerdo até o alvo → mínimo de 15 passos.
 - Logo, episódios devem ter pelo menos 15 passos.

Episode length=14											
1	1.2	1.6	2.0	2.5	3.0						
2	0.9	1.2	2.5	3.0	3.6						
3	0.5	0.3	7.7	3.6	4.3						
4	0.3	7.7	7.7	7.7	5.0						
5	0.0	6.7	7.7	6.7	5.8						

Episódios Longos, Mas Não Infinitos

- Não é necessário que episódios sejam infinitos.
- Exemplo com episódio de 30 passos:
 - Valor de estado estimado ainda não é o ótimo.
 - Política ótima já é encontrada.

(g) Final value and policy with episode length=30

O Problema no projeto de recompensas

10

Recompensas esparsas

- Nenhuma recompensa positiva é obtida até atingir o alvo.
- Exige episódios longos.
- Dificulta o aprendizado em espaços de estado grandes.
- Eficiência do aprendizado é reduzida.

Recompensas não-esparsas

- Estratégia: adicionar pequenas recompensas em estados próximos ao alvo.
- Criação de um "campo atrativo" ao redor do alvo.
- Agente encontra o alvo com maior facilidade.

Utilização de Amostras

• Suponha que tenhamos um episódio de amostras obtido ao seguir uma política π :

$$s_1 \xrightarrow{a_2} S_2 \xrightarrow{a_4} S_1 \xrightarrow{a_2} S_2 \xrightarrow{a_3} S_5 \xrightarrow{a_1} \cdots$$

Como utilizar episódios de forma mais eficiente?

Utilização de Amostras

- Visita: ocorre toda vez que um par estado-ação (s,a) aparece em um episódio.
- Um episódio contém várias visitas a diferentes pares estado-ação.
- MC Básico adota a estratégia de visita inicial (inicial-visit):
 - Cada episódio é usado **apenas** para estimar o valor de ação **primeiro par** estado-ação (s, a) visitado.
 - Exemplo:
 - Episódio inicia em (s_1, a_2) .
 - Episódio completo é usado apenas para estimar o valor de ação para (s_1, a_2) :

$$s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_4} s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_3} s_5 \xrightarrow{a_1} \cdots$$

- Estratégia com baixo aproveitamento das amostras/ineficiente.
 - O restante do episódio não é utilizado para fins de estimativa dos valores de ação para os outros pares.

Melhorando o aproveitamento das amostras

- Em um único episódio, diversos pares (s,a) são visitados.
- Podemos <u>decompor</u> o episódio em **subepisódios**:

```
a_2 \xrightarrow{a_2} a_4 \xrightarrow{a_2} a_3 \xrightarrow{a_1} a_1 Episódio original
a_4 \xrightarrow{a_2} a_2 \xrightarrow{a_3} a_3 \xrightarrow{a_1} \dots Subepisódio iniciando em (s_2, a_4)
        a_2 \xrightarrow{a_3} a_3 \xrightarrow{a_1} \dots Subepisódio iniciando em (s_1, a_2)
                a_3 \xrightarrow{a_3} a_1... Subepisódio iniciando em (s_2, a_3)
                        s_1 \xrightarrow{a_1} \dots Subepisódio iniciando em (s_5, a_1)
```

- As visitas podem ser utilizadas para estimar os valores de ação correspondentes.
- Aumenta significativamente a eficiência no uso das amostras.

Melhorando o aproveitamento das amostras

• Um par estado-ação (s,a) pode ser visitado várias vezes em um episódio.

$$s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_4} s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_3} s_5 \xrightarrow{a_1} \cdots$$

- Primeira visita (first-visit):
 - Apenas a **primeira ocorrência** de cada par (s, a) é usada para estimação.
- Todas as visitas (every-visit) :
 - Todas as ocorrências de cada par (s,a) no episódio são utilizadas.
 - Um único episódio longo pode fornecer várias estimativas úteis.
 - Se o episódio for suficientemente longo e visitar vários pares muitas vezes, ele pode ser suficiente para estimar todos os valores de ação.
 - Estratégia mais eficiente em termos de uso de amostras.

Estratégias mais eficientes para atualizar a política

- Atualizar política: modificar as ações escolhidas com base nos novos valores de ação estimados.
- 1. Estratégia do MC Básico (durante a avaliação de política):
 - Agrega vários episódios iniciando no mesmo par (s, a).
 - Estima o valor de ação com a média dos retornos dos episódios.
 - Requer a espera da coleta de todos os episódios.

2. Estratégia do MC Inícios Exploratórios:

- Usa o retorno de um único episódio para aproximar o valor da ação correspondente.
- Permite obter uma estimativa imediata, assim que o episódio é recebido.
- A política pode ser melhorada de forma incremental, episódio por episódio.
- Mesmo sendo uma estimativa grosseira, já é suficiente para guiar atualizações.

Algoritmo MC com Inícios Exploratórios

- Combina o uso eficiente das amostras e atualizações frequentes de política.
- Utiliza a estratégia de todas as visitas (every-visit) para aproveitar melhor cada episódio.
- O cálculo do retorno descontado é feito de trás para frente:
 - Começa no estado final e retrocede até o par estado-ação inicial.
 - Essa abordagem aumenta a eficiência, mas também torna o algoritmo mais complexo.
- Condição de Inícios Exploratórios
 - Exige que haja múltiplos episódios iniciando em cada par estado-ação (s,a).
 - Isso garante estimativas confiáveis dos valores de ação, segundo a Lei dos Grandes Números.
 - Se um par não for suficientemente explorado:
 - Seu valor pode ser estimado de forma imprecisa.
 - A política pode não selecionar uma ação, mesmo que ela seja a melhor.

Algoritmo MC com Inícios Exploratórios

Algorithm 5.2: MC Exploring Starts (an efficient variant of MC Basic)

Initialization: Initial policy $\pi_0(a|s)$ and initial value q(s,a) for all (s,a). Returns(s,a)=0 and $\operatorname{Num}(s,a)=0$ for all (s,a).

Goal: Search for an optimal policy.

For each episode, do

Episode generation: Select a starting state-action pair (s_0, a_0) and ensure that all pairs can be possibly selected (this is the exploring-starts condition). Following the current policy, generate an episode of length T: $s_0, a_0, r_1, \ldots, s_{T-1}, a_{T-1}, r_T$.

Initialization for each episode: $g \leftarrow 0$

For each step of the episode, $t = T - 1, T - 2, \dots, 0$, do

$$g \leftarrow \gamma g + r_{t+1}$$

 $\mathsf{Returns}(s_t, a_t) \leftarrow \mathsf{Returns}(s_t, a_t) + g$

 $\operatorname{\mathsf{Num}}(s_t, a_t) \leftarrow \operatorname{\mathsf{Num}}(s_t, a_t) + 1$

Policy evaluation:

 $q(s_t, a_t) \leftarrow \mathsf{Returns}(s_t, a_t) / \mathsf{Num}(s_t, a_t)$

Policy improvement:

 $\pi(a|s_t) = 1$ if $a = \arg\max_a q(s_t, a)$ and $\pi(a|s_t) = 0$ otherwise

Revisão

O que é estimação Monte Carlo?

• Estimação Monte Carlo refere-se a uma ampla classe de técnicas que utilizam amostras estocásticas para resolver problemas de aproximação.

O que é o problema de estimação da média?

• O problema de estimação da média refere-se ao cálculo do valor esperado de uma variável aleatória com base em amostras estocásticas.

Como resolver o problema de estimação da média?

- Abordagens:
- Baseada em modelo: se a distribuição de probabilidade de uma variável aleatória é conhecida, o valor esperado pode ser calculado com base em sua definição
- 2. Sem modelo: se a distribuição de probabilidade é <u>desconhecida</u>, podemos usar estimação Monte Carlo para aproximar o valor esperado. Tal aproximação é precisa quando o número de amostras é grande.

Revisão

- Por que o problema de estimação da média é importante para o aprendizado por reforço?
 - Tanto os valores de estado quanto os valores de ação são definidos como valores esperados dos retornos. Portanto, estimar valores de estado ou de ação é essencialmente um problema de estimação da média.
- Qual é a ideia central do aprendizado por reforço baseado em Monte Carlo sem modelo?
 - A ideia central é converter o algoritmo de iteração de política em um algoritmo sem modelo.
 - Enquanto o algoritmo de iteração de política visa calcular valores com base no modelo do sistema, o aprendizado por reforço baseado em Monte Carlo substitui a etapa de avaliação de política baseada em modelo pela etapa de avaliação de política baseada em MC sem modelo.
- O que são as estratégias de visita inicial, primeira visita e todas as visitas?
 - São estratégias diferentes para utilizar as amostras de um episódio. Um episódio pode visitar muitos pares estado-ação.
 - Visita inicial: usa o episódio inteiro para estimar o valor de ação do par estado-ação inicial.
 - As estratégias de todas as visitas e de primeira visita podem aproveitar melhor as amostras disponíveis:
 - Todas as visitas: o restante do episódio é usado para estimar o valor de ação de um par estado-ação toda vez que ele é visitado.
 - Primeira visita: consideramos apenas a primeira vez que um par estado-ação é visitado no episódio.

Referências

- Shiyu Zhao. Mathematical Foundations of Reinforcement Learning. Springer Singapore, 2025. [capítulo 5]
 - disponível em: https://github.com/MathFoundationRL/Book-Mathematical-Foundation-of-Reinforcement-Learning
- Richard S. Sutton e Andrew G. Barto. An Introduction Reinforcement Learning, Bradford Book, 2018. [capítulo 5]
 - disponível em: http://incompleteideas.net/book/the-book-2nd.html

Slides construídos com base nos livros supracitados, os quais estão disponibilizados publicamente pelos seus respectivos autores.