商業、人工智慧與類神經網路

Businesses, Artificial Intelligence, and Artificial Neural Networks

蔡瑞煌

Distinguished Professor

Department of Management Information Systems

National Chengchi University

COGNITIVE PROJECTS BY TYPE

We studied 152 cognitive technology projects and found that they fell into three categories.

Process automation
ROBOTICS &
COGNITIVE
AUTOMATION
RPA (robotic process automation)
47%

COGNITIVE

(through data analysis)

38%

COGNITIVE ENGAGEMENT

(with customers and employees)

24

15%

by T. H. Davenport & R. Ronanki HBR, Jan.-Feb. 2018 中文版 https://www.hbrtaiwan.com/article_content_AR0007644.html

How do we cope with problems in businesses?

- (collected) Data
- Professionals or Intelligence Systems
- Insights

Data

- Text data
- Numeric data
- Voice / talk
- Image / video
- Big Data

	13051				
1 23	/ IIII \	127 / 1/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contract of the second	
12	780.8	109	15.7	-62:00	
567	120.5	107	15.1	1.8	08 1203
125 45	439.8	106	14.5	0,4	0.00 13.7
128 908	340,5 567,8	104	11,8	0,3	1-0:00 /
79	408,2	126	111.8	1.9	1-0'03
60	306.8	105	7 3 "	9 10	0

['吳王夫差敗越于夫椒/', '越子以甲楯五千保于會稽/', '伍員曰/不可/臣聞之/樹德莫如滋/去疾莫如盡/昔有過澆殺斟灌以伐斟鄩/滅夏後相/後緍方娠/逃出自竇/歸于有仍/生少康焉/為仍牧正/惎澆能戒之/澆使椒求之/逃奔有虞/為之庖正/以除其害/虞思於是妻之以二姚/而邑諸綸/有田一成/有眾一旅/能布其德/而兆其謀/以收夏眾/撫其官職/使女艾諜澆/使季杼誘豷/遂滅過戈/']

Student ID	First Name	Last Name	Credits completed	GPA
34933	Victoria	Slater	36	3.27
93759	Justin	McNeil	82	3.54
20847	Jessica	Bennett	56	2.87
65947	Michelle	Dolin	112	3.81
24956	David	Price	57	2.34
65692	Franklin	Mullins	13	3.72
24271	Alissa	Lee	77	2.96

Data

- Text data
- Numeric data
- Voice / talk
- Image / video
- Big Data

Data

- Text data
- Numeric data
- Voice / talk
- Image / video
- Big Data

Volume Velocity Variety And Value Big Data Challenges

Tools for extracting insights from data The SVM algorithm Machine learning Predictive Analytics Data Science Hand-crafted kernel function Data mining Advanced Analytics Apply simple classifier **Input Space** Feature Space

Source of image: http://www.gipsa-lab.grenoble-inp.fr/transfert/seminaire/455 Kadri2013Gipsa-lab.pdf

人工智慧

- **人工智慧**亦稱機器智慧,指由人製造出來的機器所表現出來的智慧。通常人工智慧是指透過普通電腦程式來呈現人類智慧的技術。該詞也指出研究這樣的智慧系統是否能夠實現,以及如何實現。同時,有些預測則認為人類的無數職業也逐漸被其取代。
- 人工智慧在一般教材中的定義領域是「智慧主體 (intelligent agent)的研究與設計」,智慧主體指一個可以觀察周遭環境並作出行動以達致目標的系統。於1955年的定義是「製造智慧機器的科學與工程」。
- 有人將人工智慧定義為「系統正確解釋外部資料,從這些資料中學習,並利用 這些知識透過靈活適應實現特定目標和任務的能力」。
- 人工智慧的研究是高度技術性和專業的,各分支領域都是深入且各不相通的,因而涉及範圍極廣。人工智慧的研究可以分為幾個技術問題。
- 其分支領域主要集中在解決具體問題,其中之一是,如何使用各種不同的工具完成特定的應用程式。 -- https://zh.wikipedia.org/wiki/人工智能

系統 ... 解釋外部資料,從這些資料中學習,並利用 ... 知識 ... 實現 ...

 Rule-based AI systems (e.g., expert systems, decision support systems, ...)

- Machine Learning Systems
- Deep Learning Systems

系統…解釋外部資料,從這些資料中學習並利用…知識…實現…

- Rule-based AI systems (e.g., expert systems, decision support systems, ...)
- Systems with Mathematical Models (e.g., linear programming modeling, ...)
- Systems with Statis modeling, Bayesian
- Systems with ANN, Random forest, ...
- Big Data Analytics S
- Machine Learning S
- Deep Learning Syste

系統…解釋外部資料,從這些資料中學習並利用…知識…實現…

- Rule-based AI systems (e.g., expert support systems, ...)
- Systems with Mathematical Models programming modeling, ...)

• Systems with Statistical Models (e.g., linear regression modeling, Bayesian method, Queuing method, ...)

ANN, Fuzzy logicest, ...

lytics Systems

rning Systems

ng Systems

系統…解釋外部資料,從這些資料中學習並利用…知識…實現…

系統 ... 解釋外部資料,從這些資料中學習 並利用 ... 知識 ... 實現 ...

- Rule-based Al systems (e.g., Deep Learning support systems, ...)
- Systems with Mathematical programming modeling, ...)
- Systems with Statistical Mod modeling, Bayesian method
- Systems with ANN, Fuzzy lo Random forest, ...
- Big Data Analytics Systems
- Machine Learning Systems
- **Deep Learning Systems**

Deep learning is a machine learning technique that can learn useful representations or features directly from images, text and sound

系統…解釋外部資料,從這些資料中學習。並利用…知識…實現…

- Rule-based AI systems (e.g., expert systems, decision support systems, ...)
- Systems with Mathematical Models (e.g., linear programming modeling, ...)
- Systems with Statistical Models (e.g., linear regression modeling, Bayesian method, Queuing method, ...)
- Systems with ANN, Fuzzy logic, Genetic algorithm, Random forest, ...
- Big Data Analytics Systems
- Machine Learning Systems
- Deep Learning Systems

All of them lead to the intelligent system

Al tools

- Artificial Intelligence (AI), Artificial Neural Networks (ANN), Text Mining (TM), Data Mining (DM), Business Intelligence (BI), Big Data Analytics (BDA), Machine Learning (ML), Deep Learning (DL) and so on.
- What is the difference between the old Al and the new Al?

起起伏伏的 AI 歷史

New Al systems -- Learning-based Al systems

Fig. 1: Machine learning methods categorization

Types of Learning

Supervised: Learning with a labeled training set

Example: email *classification* with already labeled emails

Unsupervised: Discover patterns in unlabeled data

Example: *cluster* similar documents based on text

Reinforcement learning: learn to act based on feedback/reward

Example: learn to *play* Go, reward: *win or lose*

Anomaly Detection Sequence labeling

Types of Learning

ANN是根基於腦神經科學,應用數學/心理學,以及電腦科學

應用研究

利用電腦解決人類社 會的應用議題

基礎研究

摹擬大腦的複雜構造和功能

Neuroscience: (+50yrs)

 Composing complex features hierarchically

摹擬人類的學習方式

Psychology: (+100yrs)

 success/failure shapes the model, improves performance (reinforcement learning)

Computer science: (+30yrs)

- · Machine learning
- Efficient search algorithm
- Internet/big data
- Hardware acceleration
- System research
- ...

AlphaGo不僅是深度學習

Ingredients for deep learning

Computation

- Facebook使用256顆GPU,把訓練時間降低到一個小時,如果沒有這樣的平台,請問需要多久時間?
- •四百萬台幣買一台DGX-1有8顆GPU,大約30小時。
- 這意味著至少要等到明天才能知道新設計的網路表現如何
- •商湯(AI新創公司)建立一個具有800+顆GPU的AI雲平台

Example: Matrix Multiplication

CPU vs GPU

	Cores	Clock Speed	Memor y	Price	Speed
CPU (Intel Core i7-7700k)	4 (8 threads with hyperthreading)	4.2 GHz	System RAM	\$385	~540 GFLOPs FP32
GPU NVIDIA RTX 2080 Ti	3584	1.6 GHz	11 GB GDDR 6	\$1099	~13 TFLOPs FP32 ~114 TFLOPs FP16
GPU (Data Center) NVIDIA V100	5120 CUDA, 640 Tensor	1.5 GHz	16/32 GB HBM2	\$2.5/hr (GCP)	~8 TFLOPs FP64 ~16 TFLOPs FP32 ~125 TFLOPs FP16
TPU Google Cloud TPUv3	2 Matrix Units (MXUs) per core, 4 cores	?	128 GB HBM	\$8/hr (GCP)	~420 TFLOPs (non-standard FP)

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and "dumber"; great for parallel tasks

TPU: Specialized hardware for deep learning

GigaFLOPs per Dollar

Programming GPUs

- CUDA (NVIDIA only)
 - Write C-like code that runs directly on the GPU
 - Optimized APIs: cuBLAS, cuFFT, cuDNN, etc
- OpenCL
 - Similar to CUDA, but runs on anything
 - Usually slower on NVIDIA hardware
- HIP https://github.com/ROCm-Developer-Tools/HIP
 - New project that automatically converts CUDA code to something that can run on AMD GPUs
- Stanford CS 149: http://cs149.stanford.edu/fall19/

A zoo of frameworks!

Chainer PaddlePaddle (Preferred Networks) (Baidu) infrastructure to PyTorch Caffe2 Caffe (Facebook) (UC Berkeley) **MXNet** CNTK mostly features absorbed by PyTorch (Amazon) (Microsoft) Developed by U Washington, CMU, MIT, Hong Kong U, etc but main framework of Torch PyTorch choice at AIVS (Facebook) (NYU / Facebook) JAX (Google) TensorFlow Theano (U Montreal) (Google) And others... We'll focus on these

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 6 - 27

April 23, 2020

The point of deep learning frameworks

- Quick to develop and test new ideas
- (2) Automatically compute gradients
- (3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, OpenCL, etc)

人工智慧應用研發

The current AI can support three business needs:

- 1. automating business processes (商業流程自動化),
- 2. gaining (cognitive) insight through data analysis (透過資料分析取得見解), and
- 3. (cognition) engaging with customers and employees (與顧客和員工交流互動).

by T. H. Davenport & R. Ronanki HBR, Jan.-Feb. 2018 中文版 https://www.hbrtaiwan.com/article_content_AR0007644.html

Cognitive Engagement

Chatbot

Amazon Alexa

Alexa是亞馬遜公司推出的一款智能助理,最初用於Amazon Echo智能音箱。該產品由Amazon Lab126開發,是一名女性語音助手。

自駕車、智慧機器人、...

Al-as-a-Services (AlaaS)

AWS	Google	Microsoft	IBM	Salesforce	SenseTime
Al Services	ML Services	Azure Al Services	Application/Micro- service	Application	Solution Layer
			Al APIs & In-house Al custom model		
	ML Data Curation		Data Lake and Data Store	Data Services	
ML Services	Pre-train, Custom model		Machine & Deep learning		Platform Layer
ML Framework & Infrastructure					
& IIIIIastructure	Al Platform	Al Tools		Al Platform Services	
	Google Cloud Colaboratory	Al Infrastructure	Distributed Computing and Infrastructure	Multitenant Infrastructure	Technology Layer

現今的AI應用研發

研發新的AI應用系統(完整的訓練資料、好的學習演算法、強大的計算能力)

- (1) 科技基礎建設,以滿足雲運算、大數據分析、AI運算等需求
- (2) 跨領域人才,或組成一個精英團隊,包括應用領域專家、AI 專家和電腦系統專家
- (3) AI 應用的知識和經驗,或促使精英團隊之知識互相分享、 融合,而形成新知識
- (4) 整個完備之資訊系統
- (5) 務實的投資

應用研發:效率、效益、價值

Black Box

美國國防高級研究計劃局(DARPA)於2017年發起了XAI (Explainable AI) 項目

AI之現在與未來

弱AI

•專注在一個領域, 個美那個 網 類域之專 業人士

強AI

專注在很多個領域與美每個類域共大士

招AI

事注在很 多個領域 且領域之 專人士