Multi-layer Perceptron

Nguyen Ngoc Thao

Department of Computer Science, FIT University of Science, VNU-HCM

Content outline

- The perceptron
- Multi-layer Perceptron (MLP)
- Accelerated learning in MLP

Perceptron: The simplest ANN

Perceptron (Frank Rosenblatt, 1958)

 The perceptron consists a single neuron with adjustable synaptic weights and a hard limiter.

How does a perceptron work?

 A perceptron divides the n-dimensional space into two decision regions by a hyperplane defined by the linearly separable function

Perceptron learning rule

Step 1: Initialization

• Initial weights $w_1, w_2, ..., w_n$ and threshold θ are randomly assigned to numbers $\in [-0.5, 0.5]$.

Step 2: Activation

- Activate the perceptron by applying inputs $x_1(p), x_2(p), ..., x_n(p)$ and desired output $Y_d(p)$.
- Calculate the actual output at iteration p

$$Y(p) = \operatorname{step}\left[\sum_{i=1}^{n} x_i(p)w_i(p) - \theta\right]$$

where n is the number of perceptron inputs and step is the step activation function

^{*} Iteration p refers to the p^{th} training example presented to the perceptron.

Perceptron learning rule

- Step 3: Weight training
 - Update the weights w_i : $w_i(p+1) = w_i(p) + \Delta w_i(p)$ where $\Delta w_i(p)$ is the weight correction at iteration p
 - The delta rule determines how to adjust the weights by $\Delta w_i(p)$

$$\Delta w_i(p) = \alpha \times x_i(p) \times e(p)$$

where α is the learning rate $(0 < \alpha < 1)$ and $e(p) = Y_d(p) - Y(p)$

- Step 4: Iteration
 - Increase iteration p by one, go back to Step 2 and repeat the process until convergence.

Perceptron for the logical AND/OR

A single-layer perceptron can learn the AND/OR operations.

	Inputs		Desired Initial weights			Actual output	Error	Final weights	
Epoch	<i>X</i> ₁	<i>X</i> ₂	Y_d	W ₁	W ₂	Y	e	W ₁	W ₂
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.2	-0.1	0	1	0.3	0.0
2	0	0	0	0.3	0.0	0	0	0.3	0.0
	0	1	0	0.3	0.0	0	0	0.3	0.0
	1	0	0	0.3	0.0	1	-1	0.2	0.0
	1	1	1	0.2	0.0	1	0	0.2	0.0
3	0	0	0	0.2	0.0	0	0	0.2	0.0
	0	1	0	0.2	0.0	0	0	0.2	0.0
	1	0	0	0.2	0.0	1	-1	0.1	0.0
	1	1	1	0.1	0.0	0	1	0.2	0.1
4	0	0	0	0.2	0.1	0	0	0.2	0.1
	0	1	0	0.2	0.1	0	0	0.2	0.1
	1	0	0	0.2	0.1	1	-1	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1
5	0	0	0	0.1	0.1	0	0	0.1	0.1
	0	1	0	0.1	0.1	0	0	0.1	0.1
	1	0	0	0.1	0.1	0	0	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1

The learning of logical AND converged after several iterations

Threshold: $\theta = 0.2$; learning rate: $\alpha = 0.1$.

Perceptron for the logical XOR

 However, a single-layer perceptron cannot be trained to perform the Exclusive-OR.

Will a sigmoidal element do better?

- Perceptrons can classify only linearly separable patterns regardless of the activation function used (Shynk, 1990; Shynk and Bershad, 1992)
- Solution: advanced forms of neural networks (e.g., multilayer perceptrons trained with back-propagation algorithm)

Perceptron: An example

Is the weather good?

Does your partner want to accompany you?

Is the festival near public transit? (You don't own a car)

Perceptron: An example

- $w_1 = 6, w_2 = 2, w_3 = 2 \rightarrow$ the weather matters to you much more than whether your partner joins you, or the nearness of public transit
- $\theta = 5 \rightarrow$ decisions are made based on the weather only
- $\theta = 3 \rightarrow \text{you go to the festival whenever the weather is good or when both the festival is near public transit and your partner wants to join you.$

Multi-layer Neural Networks

Multi-layer neural network

- A multi-layer neural network is a feedforward network with one or more hidden layers.
 - The input signals are propagated forwardly on a layer-by-layer basis.

Back-propagation learning algorithm

 Proposed by Bryson and Ho, 1969 → most popular among over a hundred different learning algorithms available.

Step 1: Initialization

- Initial weights and thresholds are assigned to random numbers.
- Random numbers may uniformly distributed inside a small range

$$\left(-\frac{2.4}{F_i}, +\frac{2.4}{F_i}\right)$$
 (Haykin, 1999).

- where F_i is the total number of inputs of neuron
- The weight initialization is done on a neuron-by-neuron basis

Step 2: Activation

• Activate the network by applying inputs $x_1(p), x_2(p), ..., x_n(p)$ and desired outputs $y_{d,1}(p), y_{d,2}(p), ..., y_{d,l}(p)$.

- Step 2: Activation (cont.)
 - (a) Calculate the actual outputs of the neurons in the hidden layer

$$y_j(p) = \text{sigmoid}\left[\sum_{i=1}^n x_i(p) \times w_{ij}(p) - \theta_j\right]$$

where n is the number of inputs of neuron j in the hidden layer.

(b) Calculate the actual outputs of the neurons in the output layer

$$y_k(p) = \text{sigmoid} \left[\sum_{j=1}^m y_j(p) \times w_{jk}(p) - \theta_k \right]$$

where m is the number of inputs of neuron k in the output layer

- Step 3: Weight training
 - Update the weights in the back-propagation network and propagate backward the errors associated with output neurons.
 - (a) Calculate the error gradient for the neurons in the output layer

$$\delta_k(p) = y_j(p) \times y_k(p) \times [1 - y_k(p)] \times e_k(p)$$
 where $e_k(p) = y_{d,k}(p) - y_k(p)$

Calculate the weight corrections: $\Delta w_{jk}(p) = \alpha \times \delta_k(p)$

Update the weights at the output neurons

$$w_{jk}(p+1) = w_{jk}(p) + \Delta w_{jk}(p)$$

- Step 3: Weight training (cont.)
 - (b) Calculate the error gradient for the neurons in the hidden layer

$$\delta_j(p) = x_i(p) \times y_j(p) \times [1 - y_j(p)] \times \sum_{k=1}^l \delta_k(p) \times w_{jk}(p)$$

Calculate the weight corrections $\Delta w_{ij}(p) = \alpha \times \delta_j(p)$

Update the weights at the hidden neurons:

$$w_{ij}(p+1) = w_{ij}(p) + \Delta w_{ij}(p)$$

- Step 4: Iteration
 - Increase iteration p by one, go back to Step 2 and repeat the process until the selected error criterion is satisfied.

Back-propagation network for XOR

 The logical XOR problem took 224 epochs or 896 iterations for network training.

Input layer Hidden layer

Output layer

$\frac{\text{Inp}}{x_1}$	uts x ₂	Desired output <i>Yd</i>	Actual output <i>y</i> 5	Error e	Sum of squared errors
1 0 1	1 1 0	0 1 1	0.0155 0.9849 0.9849	-0.0155 0.0151 0.0151	0.0010
0	0	0	0.0175	-0.0175	

Sum of the squared errors (SSE)

 When the SSE in an entire pass through all training sets is sufficiently small, a network is deemed to have converged.

Decision boundaries for XOR

Decision boundaries are demonstrated with McCulloch-Pitts neurons using a sign function.

(a)

(b)

(c)

Sigmoid neuron vs. perceptron

 Sigmoid neuron is similar to perceptron, but modified so that small changes in weights and bias cause only a small change in output.

Sigmoid neuron vs. perceptron

The shape of a sigmoidal function is a smoothed-out version

of a step function.

About back-propagation learning

- Are randomly initialized weights and thresholds leading to different solutions?
 - Starting with different initial conditions will obtain different weights and threshold values. However, the problem will always be solved although using a different number of iterations.
- Back-propagation learning cannot be viewed as emulation of brain-like learning.
 - Biological neurons do not work backward to adjust the strengths of their interconnections, synapses.
- The training is slow due to extensive calculations.
 - Improvements: Caudill, 1991; Jacobs, 1988; Stubbs, 1990

• Consider two parameters, w_1 and w_2 in a network

• Consider two parameters, w_1 and w_2 in a network

Randomly pick a starting point θ^0

Compute the neg gradient at $\theta^0 \rightarrow -\nabla C(\theta^0)$

Times the learning rate η $\rightarrow -\eta \nabla C(\theta^0)$

Gradient descent never guarantees global minima.

It also has issues at plateau and saddle point.

Accelerated Learning in Multi-layer Neural Networks

Use tanh instead of sigmoid

Represent the sigmoidal function by a hyperbolic tangent

$$Y^{\tan h} = \frac{2a}{1 - e^{-bX}} - a$$

where a = 1.716 and b = 0.667 (Guyon, 1991)

Generalized delta rule

 The generalized delta rule: A momentum term is included in the delta rule (Rumelhart et al., 1986)

$$\Delta w_{jk}(p) = \beta \times \Delta w_{jk}(p-1) + \alpha \times y_{j}(p) \times \delta_{k}(p)$$

where $\beta = 0.95$ is the momentum constant $(0 \le \beta \le 1)$

Momentum in physical world

Gradient descent with momentum

Still not guarantee reaching global minima, but give some hope

Adaptive learning rate

- One of the most effective acceleration means
- Adjust the learning rate parameter α during training
 - Small $\alpha \to \text{small}$ weight changes through iterations $\to \text{smooth}$ learning curve
 - Large α → speed up the training process with larger weight changes
 → possible instability and oscillatory
- Heuristic-like approaches
 - 1. The algebraic sign of the SSE change remains for several consequent epochs \rightarrow increase α .
 - 2. The algebraic sign of the SSE change alternates for several consequent epochs \rightarrow decrease α

Learning with momentum only

Learning with adaptive α only

Learning with adaptive α and momentum

