I RIVELATORI A SCINTILLAZIONE

IDEA DI FONDO

ENERGIA DEPOSTA DA PARTICELLA IONIZZANTE

→ ECCITAZIONE ATOMICA/MOLECOLARE

→ DISECCITAZIONE

→ LAMPO DI LUCE (LUMINESCENZA)

GLI SCINTILLATORI SONO RIVELATORI A MULTI-USO

- > SPETTROSCOPIA y
- >CALORIMFTRI
- >TEMPO DI VOLO
- >SISTEMI DI TRIGGER
- >SISTEMI DI VETO
- >TRACCIANTI

DUE GRANDI CLASSI DI SCINTILLATORI

INORGANICI

ORGANICI

Buona resa in luce, ma lenti Bassa resa in luce, ma veloci

MECCANISMO DI SCINTILLAZIONE

CRISTALLI INORGANICI (NaI, CsI, BGO...)

SPESSO 2 TEMPI CARATTERISTICI:

RICOMBINAZIONE VELOCE (ns-µs)
DAI CENTRI DI RICOMBINAZIONE

RICOMBINAZIONE RITARDATA (100 ms)
DOVUTA AI CENTRI DI INTRAPPOLAMENTO

L'ALTA DENSITA' E L'ALTO Z LI RENDE ADATTI ALLA RIVELAZIONE DI PARTICELLE CARICHE O γ

MECCANISMO DI SCINTILLAZIONE

SCINTILLATORI ORGANICI

MONOCRISTALLI ORGANICI (antracene, stilbene...)

SCINTILLATORI LIQUIDI O PLASTICI

Composti da un solvente nel quale e' disciolto lo scintillatore A volte presenza anche di WAVELENGHT SHIFTERS

TEMPI DI EMISSIONE MOLTO BREVI (1-5 ns)
IDEALI PER MISURE TEMPORALI MOLTO PRECISE

BASSO Z MA ALTO CONTENUTO DI H

MOLTO ECONOMICI

LO SCINTILLATORE IDEALE

1 CONVERTE E IN L CON ALTA EFF. DI SCINTILLAZIONE

$$S = \frac{L}{E}$$

VALORI TIPICI: QUALCHE % (PER NaI : 12%)

POICHE' $E_{ph}\sim 3-4~eV~~w\sim 50$ - 100 eV/fotone

Non competitivi con i diodi a semiconduttore!

2 LA CONVERSIONE DOVREBBE ESSERE LINEARE

$$L = S \cdot E$$

S NON DEVE DIPENDERE DALLA POSIZIONE NELLO SCINTILLATORE

- 3 GLI SPETTRI DI EMISSIONE E ASSORBIMENTO DEVONO SOVRAPPORSI IL MENO POSSIBILE (alta trasparenza)
- 4 LA COSTANTE DI TEMPO CARATTERISTICA τ₀ DEV'ESSERE BREVE PER AVERE ALTA RISOLUZIONE TEMPORALE

Legge temporale di scintillazione

$$I = I_0 \exp(-t/\tau_0) + I_1 \exp(-t/\tau_1) - I_0 \exp(-t/\tau_p)$$

Fosforescenza, fluerescenza rit. popolamento dei livelli

5 PROPRIETA' OTTICHE E MECC. BUONE. MANEGGIABILITA'

6 INDICE DI RIFRAZIONE SIMILE AL VETRO (~1.5) PER UN BUON ACCOPPIAMENTO OTTICO AL FOTOMOLTIPLICATORE

IMPOSSIBILE SODDISFARE TUTTE LE RICHIESTE

EFFICIENZA DI SCINTILLAZIONE

1 DIPENDE DALL' ENERGIA

FORMULA DI BIRKS (scintillatori organici)

$$\frac{dL}{dx} = \frac{S\frac{dE}{dx}}{1+kB\frac{dE}{dx}}$$

$$\frac{dL}{dx} = \frac{S \cdot E}{1+kB\frac{dE}{dx}}$$

$$\frac{dL}{dx}|_{\alpha} = \frac{S}{kB}$$

$$\alpha$$

MENO IMPORTANTE NEGLI INORGANICI

2 DIPENDE DALLA PARTICELLA PIU' IMPORTANTE NEGLI ORGANICI

ad es.

$$\left| \frac{S_{\alpha}}{S_{\beta}} \right|_{org} < \left| \frac{S_{\alpha}}{S_{\beta}} \right|_{inorg} < 1$$

E CAMBIA SE CAMBIA $\frac{dE}{dx}$

PROFILO TEMPORALE EMISSIONE

3 DIPENDE DALLA TEMPERATURA (SCINTILLATORI INORGANICI)

- 4 DIPENDE DALLE IMPUREZZE PRESENTI (PB DEL QUENCHING)
- 5 SUBISCE IL DETERIORAMENTO DA ESPOSIZIONE E DA USO (nei plastici anche alla luce e/o all'ossigeno)

MECCANISMI IN COMPETIZIONE CON LA SCINT. BUONA

- * Fosforescenza
- Fluorescenza ritardata

AFTERGLOW

Quenching (disecc. senza emissione di fotoni)

 Table 8.3 Properties of Common Inorganic Scintillators

						Relative Pulse	
<u>\</u> .	Specific	Wavelength of	Refractive		Abs. Light Yield	Height Using	
	Gravity	Max. Emission	Index	Decay Time (μs)	in Photons/MeV	Bialk. PM tube	References
Alkali Halides							
NaI(Tl)	3.67	415	1.85	0.23	38 000	1.00	
CsI(Tl)	4.51	540	1.80	0.68 (64%), 3.34 (36%)	65 000	0.49	78, 90, 91
CsI(Na)	4.51	420	1.84	0.46, 4.18	39 000	1.10	92
Li(Eu)	4.08	470	1.96	1.4	11 000	0.23	
Other Slow Inorganics							
BGO	7.13	480	2.15	0.30	8200	0.13	
CdWO ₄	7.90	470	2.3	1.1 (40%), 14.5 (60%)	15 000	0.4	98–100
ZnS(Ag) (polycrystalline)	4.09	450	2.36	0.2		1.3ª	
CaF ₂ (Eu)	3.19	435	1.47	0.9	24 000	0.5	
Unactivated Fast Inorganic	es						
BaF ₂ (fast component)	4.89	220		0.0006	1400	na	107-109
BaF ₂ (slow component)	4.89	310	1.56	0.63	9500	0.2	107-109
CsI (fast component)	4.51	305		0.002 (35%), 0.02 (65%)	2000	0.05	113–115
CsI (slow component)	4.51	450	1.80	multiple, up to several μs	varies	varies	114, 115
CeF ₃	6.16	310, 340	1.68	0.005, 0.027	4400	0.04 to 0.05	76, 116, 117
Cerium-Activated Fast Inc	rganics						
GSO	6.71	440	1.85	0.056 (90%), 0.4 (10%)	9000	0.2	119–121
YAP	5.37	370	1.95	0.027	18 000	0.45	78, 125
YAG	4.56	550	1.82	0.088 (72%), 0.302 (28%)	17 000	0.5	78, 127
LSO	7.4	420	1.82	0.047	25 000	0.75	130, 131
LuAP	8.4	365	1.94	0.017	17 000	0.3	134, 136, 138
Glass Scintillators							
Ce activated Li glass ^b	2.64	400	1.59	0.05 to 0.1	3500	0.09	77, 145
Tb activated glass ^b	3.03	550	1.5	~3000 to 5000	~50 000	na	145
For comparison, a typical of	organic (p	lastic) scintillator	:				
NE102A	1.03	423	1.58	0.002	10 000	0.25	

[&]quot;for alpha particles

 Table 8.1 Properties of Some Commercially Available Organic Scintillators

		Light	Wavelength	Decay					Loading Element	
		Output	of Max	Constant	Attenuation	Refractive	H/C		% by weight	
Eljen	Bicron	%Anthracene*	Emission (nm)	(ns)	Length (cm)	Index	Ratio	Density	or dist. feature	
Crystal										
Anthracer	ne	100	447	30		1.62	0.715	1.25		
Stilbene		50	410	4.5		1.626	0.858	1.16		
Plastic							1			
EJ-212	BC-400	65	423	2.4	250	1.581	1.103	1.032		
EJ-204	BC-404	68	408	1.8	160	1.58	1.107	1.032	1.8 ns time constant	
EJ-200	BC-408	64	425	2.1	380	1.58	1.104	1.032		
EJ-208	BC-412	60	434	3.3	400	1.58	1.104	1.032	Longest attn. length	
	BC-420	64	391	1.5	110	1.58	1.100	1.032	1.5 ns time constant	
EJ-232	BC-422	55	370	1.4	8	1.58	1.102	1.032	1.4 ns time constant	
	BC-422Q	11	370	0.7	< 8	1.58	1.102	1.032	Benzephenone, 1%	
	BC-428	36	480	12.5	150	1.58	1.103	1.032	Green emitter	
	BC-430	45	580	16.8	NA	1.58	1.108	1.032	Red emitter	
EJ-248	BC-434	60	425	2.2	350	1.59	0.995	1.049	High temp	
	BC-436	52	425	2.2	NA	1.61	0.960 D:C	1.130	Deuterium, 13.8%	
EJ-240	BC-444	41	428	285	180	1.58	1.109	1.032		
EJ-256	BC-452	32	424	2.1	150	1.58	1.134	1.080	Lead, 5%	
	BC-454	48	425	2.2	120	1.58	1.169	1.026	Boron, 5%	
EJ-252	BC-470	46	423	2.4	200	1.58	1.098	1.037	Air equivalent	
	BC-490	55	425	2.3		1.58	1.107	1.030	Casting resin	
	BC-498	65	423	2.4		1.58	1.103	1.032	Applied like paint	
Liquid										
EJ-301	BC-501A	78	425	3.2			1.212	0.874	Pulse shape discrim.	
EJ-305	BC-505	80	425	2.5			1.331	0.877	High light output	
EJ-313	BC-509	20	425	3.1			0.0035	1.61	F	
EJ-321H	BC-517H	52	. 425	2.0			1.89	0.86	Mineral oil-based	
	BC-517P	28	425	2.2			2.05	0.85	Mineral oil-based	
EJ-325	BC-519	60	425	4.0			1.73	0.875	Pulse shape discrim.	
EJ-331	BC-521	60	425	4.0			1.31	0.89	Gd (to 1%)	
EJ-339	BC-523A	65	425	3.7			1.67	0.93	Enriched ¹⁰ B	
EJ-335	BC-525	56	425	3.8			1.57	0.88	Gd (to 1%)	
	BC-533	51	425	3.0			1.96	0.8	Low temp operation	
	BC-537	61	425	2.8			.99 (D:C)	0.954	² H	
	BC-551	40	425	2.2			1.31	0.902	Pb (5% w/w)	
	BC-553	34	425	3.8			1.47	0.951	Sn (10% w/w)	

^{*}NaI(Tl) is 230% on this scale

LA RACCOLTA DI LUCE

LA LUCE E' EMESSA ISOTROPICAMENTE

PROBLEMA DELL' AUTOASSORBIMENTO: SCARSO
PROBLEMA DELLE PERDITE ALLA SUPERFICIE: IMPORTANTE

ANGOLO CRITICO PER RIFLESSIONE TOTALE

$$\sin \theta_c = \frac{n_1}{n_0} \qquad \exists \text{ sse } \mathbf{n_1} < \mathbf{n_0}$$

- RIDUCE LE PERDITE ALLA SUPERFICIE ε = 80%
- OSTACOLA LA TRASMISSIONE AL FOTOCATODO

USO DI ACCOPPIATORI OTTICI GRASSO OTTICO, SILICONE

LE GUIDE DI LUCE

SCINTILLATORE - FOTOMOLTIPLICATORE DISTANTI PER:

- > NECESSITA' COSTRUTTIVE
- > PRESENZA DI CAMPO MAGNETICO
- > NECESSITA' DI UNIFORMARE LA RISPOSTA DEL FOTOC.

IL FUNZIONAMENTO SI BASA SUL PRINCIPIO DI RIFLESSIONE TOTALE

IL FOTOCATODO

PROCESSO DI FOTOEMISSIONE

1 IL FOTONE VIENE ASSORBITO E L'EN. VIENE TRASFERITA AD 1 e^{-} $E_{\max}^{e^-} = E_{\nu} \sim 3 \ eV$

FOTOELETTRONE

LAVORO DI ESTRAZIONE

2 L' e- MIGRA SULLA SUPERFICIE. PERDE ENERGIA (nei metalli R ~ nm TROPPO PICCOLO → SEMICONDUTTORI)

3 L' e⁻ SFUGGE DALLA SUPERFICIE DEL CATODO, PURCHE' $E_{e^-} > W$ (nei metalli W ~ 3-4 eV NO! Materiali appositi con W ~ 1-2 eV)

DA (3) SEGUE CHE TUTTI I FOTOCATODI HANNO UN CUT-OFF

DA ② SEGUE CHE PROFONDITA' DI FUGA ≤ 25 nm

⇒ bassa capacita' di fermare i fotoni
 ⇒ semitrasparenza

IL FOTOMOLTIPLICATORE

PRINCIPIO DI FUNZIONAMENTO

* FOTOEMISSIONE DAL FOTOCATODO

sse E_{γ} > W \longrightarrow CUT-OFF

nei metalli W \approx 3-4 eV NO! Materiali appositi con W \approx 1-2 eV

Q.E. =
$$N_{\text{fotoel}}/N_{\text{fotoni}}$$
 ~ 20-30 % SEMPRE FUNZIONE DI λ

* EMISSIONE DI e- SEC. DAI DINODI

GUADAGNO DI SINGOLO DINODO: g= 3-50

GUADAGNO TOTALE $M = \prod_{i=1}^{N} g_i$

10 DINODI CON q = 4 M = $4^{10} \approx 10^6$

- * RACCOLTA ALL' ANODO. SEGNALE
- > RUMORE TERMOIONICO

KT ~ 25 meV @ 300 K, ma prob. \neq 0 E_{th} > W

semicond: 100 - 10000 / cm² s

DIPENDE (OVVIAMENTE!) DALLA TEMPERATURA

> RISOLUZIONE ENERGETICA

DOMINATA DALLE FLUTTUAZIONI STAT. DEGLI e- EMESSI DAI DINODI

$$\frac{\sigma_n}{\overline{n}} = \frac{\sqrt{\overline{n}}}{\overline{n}} = \frac{1}{\sqrt{\overline{n}}}$$

FLUTTUAZIONI > PER \overline{n} < 1° DINODO

ESEMPI NUMERICI:

EFFICIENZA DI SCINTILLAZIONE IN NaI

 $E_{\gamma} = 1 \text{ MeV}$

$$W_{e-h} \sim 3 \times E_{gap} \sim 20 \text{ eV}$$
 # coppie = E_{γ} / W ~ 50000

$$S_{NaI} \sim 12\%$$
 L = $S \cdot E_{\gamma} \sim 120 \text{ keV}$
 $E_{fot} \sim 3 \text{ eV (visibile)}$ # fotoni = L / $E_{fot} \sim 40000$

~ 1 fotone ogni coppia e-h prodotta

IL TRASFERIMENTO DI ENERGIA DAL "BULK" ALL' ATTIVATORE E' MOLTO EFFICIENTE

EMISSIONE TERMOIONICA

$$N = 10^3 e^- / s$$
 $G = 10^6$

$$I_{\text{buio}} = 10^3 \times 1.6 \times 10^{-19} \times 10^6 \text{ A} = 160 \text{ pA}$$
 \longrightarrow $I \sim I_{\text{buio}}$

RISOLUZIONE INFLUENZATA DALLE FLUTTUAZIONI DI Ibuio

STATISTICA DELLA MOLTIPLICAZIONE

 δ non e' costante \rightarrow fluttuazioni

→ allargamento della distribuz. del # di eprodotti ad ogni nuovo stadio di amplificazione

1° STADIO
$$\langle n \rangle = \delta$$
 $\sigma_n = \sqrt{\delta}$ $\left(\frac{\sigma_n}{n}\right)^2 = \frac{1}{\delta}$

N-ESIMO STADIO

$$< n >= \delta^{n} \qquad \left(\frac{\sigma_{n}^{TOT}}{n_{TOT}}\right)^{2} = \left(\frac{\sigma_{n}}{n}\right)_{1}^{2} + \left(\frac{\sigma_{n}}{n}\right)_{2}^{2} + \dots = \frac{1}{\delta} + \frac{1}{\delta^{2}} + \dots \approx \frac{1}{\delta - 1} \approx \frac{1}{\delta} \equiv \left(\frac{\sigma_{n}}{n}\right)_{1}^{2}$$

IN REALTA' E' IMPORTANTE SOLO QUANDO SI HANNO POCHI FOTOELETTRONI INIZIALI

ANCORA SUI FOTOTUBI...

FABBRICAZIONE DEI FOTOCATODI SEMI TRASPARENTI OPACHI SPESSORE > PROFONDITÀ SPESSORE = PROFONDITÀ DI FUGA SU SUBSTRATO TRASPARENTE SU SUBSTRATO SPESSO PIÚ PRATICA! LUCE INCIDENTE SUL LATO DI ESTRAZIONE DEGLI e-IMPORTANZA DELL' UNIFORMITÀ DI SPESSORE MATERIALI MULTIALCALINO Na, K Sb Cs K, Cs. Sb - bassa emissione termoionica BIALCALIND miglione Q. E. nel blu

SISTEMA DI MOLTIPLICAZIONE DEGLI ELETTRONI

EMISSIONE DI E SECONDARI

- · e del fotocatobo accelerati Lino el 1º DINODO
- · emissione di diversi e- della superficie
- · ACCELERATIONE Lino al 2º DI NO DO
- · emissione
- · RACCOLTA DI TITTI GLI E ALL'ANDDO

E STEV AV 100 V WIN ~ 2-3 eN ~ 30 € eccitati ~ 5 emes FOTO STENDO SOLO TA EDIN AV E NON DA E°

LA RESAIN & SECONDARI DIPENDE DA E INCIDENTE

CRESCE L'ENERGIA FORNITA AI SINGOLIE - AUMENTA LA PROB. DI F.

L'E PENETRA PIÙ IN PROFONDITÀ - DIMINUISCE LA PROB. DI FUGA

C'E UN OTTIMO

Det

S = # E sec. emessi ~ 5 × DINODI STANDARD E AV ~ 100 V

E Primori incid. ~ 20-30 × MATERIALI NEA

ALTA TENSIONE E PARTITORE RESISTIVO

- 2 CONFIGURAZIONI PRINCIPALI + H.V. H.V.

 d.d.p. ai dinadi (Vi) > d.d.p. al catado (Vo) SEMPRE

 Vo V1 >> DVi SEMPRE
- 1 ALIMENTARE SEPARATAMENTE I VARI STADI (Botteria a multicule)

 SCOMODO! LA corrente tra sitimo dinodo ed anodo è elevata

 Li LE BATTERIE SI SCARICANO RAPIDAMENTE
- PARTITORE DI TENSIONE RESISTIVO

 LP = H.V. = H.V. = AVI K DV = AV; FIJ

 E'RO NRD RO
 - · Pal punto oli vista PRATICO si vuole i p più piccola possible ma che poventisca corun que la stabilità vistilla vi AV:
 - · Inother alto is implied alto poteme dishipate per enetto foule nelle resistenze, non voituta!
 - « E comunque NECESSARIO che ip >> Lpm : se ip ~ ign AV: varia co varia. Ps importante soprattutto negli stadi tinali alove ign e >

ESEMPI NUMERICI:

QUANTO VALE LA CORRENTE DI PICCO?

```
Tipico evento ali suintillazione: ~ 1000 fotoel emessi

Tipico que alaquo appro 106 -> 10°e dell'oltimo dinodo ell'AN.

Rete di eventi oli scimbi U. ~ 10° ev/s (~ sorg. oli cel. in 106.)

Les Ineola 10° x 1.6 × 10° x 10° x 1.6 × 10° x = 16 Mp

Ropo continuo

In realtà Ineola non e continua ma pulsata e

lax 10° x 1.6 × 10° 3 = 32 m A

5 To ~ 1ns negli scinbi U. veloci

Quinoli ip >> Ineola FACELE (uso in modo corrente)

ip >> Inpera FACELE (uso in modo corrente)

Cist' "accontenta" ali ip vipicco + Condonsatore Stabilla.

Cist' "accontenta" ali ip vipicco + Condonsatore stabilla.

Infetti la carica Q immagazzinata inc. ala ip formisce nel transiente alelli impulso (a carica al obinodo necenaria a mantenera costante AV.

(s è poi modomente ricaricato nel At tra 2 impulsi

SE UOCLIO CHE divi (1). DEVO AVERE Qc=cs. AV! = 100× 9 imp

ES DIPRIMA: Cs = AVI = 10° x 10° x 100 × 80 pt
```

LA SCINTILLAZIONE IN NaI E' VISIBILE?

sensibilita' occhio umano ~ 10 fotoni nella banda del visibile diam. pupilla al buio ~ 3 mm d = 10 cm $E_{\gamma} = 1 \text{ MeV} \qquad S_{\text{NaI}} \sim 12\% \qquad E_{\text{fot}} \sim 3 \text{ eV (visibile)}$ # fotoni = L / $E_{\text{fot}} = S \cdot E_{\gamma}$ / $E_{\text{fot}} \sim 40000$ $\Omega = \frac{\pi r_{pupilla}^2}{4\pi d^2} = 5.6 \times 10^{-5} \qquad \rightarrow n_{\text{visti}} = 40000 \times 5.6 \times 10^{-5} = 2.24$

NON E' VISIBILE

MATERIALI SPECIALI

STRATO FINISSIMO & CS IONIZZATO MILLO ZO CHE ABBASSA LA BARRIERA
DI POT. SUPERFICIALE

PROFONDITÀ DI FUGA ALLARGATA

MIGLIORE RISOLUZIONE TEMPORALE

- · MAGGIORE UNIFORMITÀ DI EN, DECLI & EMESSI
- · MINOR MUNERO BY MINDRY PER STESSO G COMPLESSIVO

MOLTIPLICAZIONE PER SMAI MULTIPLI

 $J = 5 \times 10^{-10} = 1$

G=G(OV) Se J= K AV > G+(AV) (in realto J= K(AV) p <1...)

CARATTERISTICHE DEI FOTOTUBI

1	DIFFERENZE STRUTTURALI	
2	PROPRIETA' TEMPORALI	(vedi dopo)
3	TENSIONI E CORRENTI MASSI	$ME G = G(\Delta V)$
4	SENSIBILITA' ALLA LUCE E ALL UTILIZZO IN MODO CONT	
(5)	CORRENTE DI BUIO CORRENTE AL	L'ANODO CON CATODO NON ILLUM.
6		b di carica spaziale x imp. molto grandi ariaz. di tensione ai dinodi
7	IMPULSI SPURI E RUMORE	(vedi dopo)
8	DISUNIFORMITA' DEL FOTOCA	

VARIAZIONI DI GUADAGNO CON IL TASSO DI CONTEGGI

CAUSATE DA VARIAZIONI SU ΔV INTERDINODICA Tipica richiesta: $\Delta G/G \sim 1\%$ per tassi di $10^3 - 10^4$ c/s

Table 9	.1 Propertie	s of Son	ne Com	mercially	Available P	hotomul	tiplier Tu	bes					
A	В	С	D	E	F	G	Н	Ī	J	K	L	M	N
Ham	1635	10	8	L8	BA	1250	1500	1.1	95	76	1	0.8	8.5
Ham	1450	19	15	L10	BA	1500	1800	1.7	115	88	3	1.8	19
Ham	380	38	34	L10	BA	1250	1750	1.1	95	88	3	2.7	37
Ham	1306	51	46	B8	BA	1000	1500	0.27	110	95	2	7.0	60
Ham	3318	51 sq	45	BM10	BA	1000	1500	0.27	110	95	2	4.8	45
Ham	3336	60 h	55	BM 10	BA	1000	1500	0.27	110	95	2	6.0	47
Burle	4516	19	13	L10	ВА	1500	1800	0.52	66		0.2	1.8	20
Burle	\$83010E	38	32	C10	RbCsSb	1000	1000	2.4	100	92	1	2.8	32
Burle	S83054F	51	47	B8	BA	800	1200	0.10	10.5ª	103	3	11	63
Burle	S83020F	60 h	56	L10	BA	1100	1700	0.10	71	100	1	10	69
Burle	S83079F	76 sq	_	B8	BA	800	1200	0.21	11.3^{a}	100	3	14	73
Burle	S83006F	130	111	T10	BA	1100	1650	0.07	92	105	1	22	105
ADIT	B29B02H	29	24	B11	BA	1100	1500	1.0	70	80	10	11	35
ADIT	B51B01	51	46	B10	BA	1100	1500	1.0	70	80	10	17	45
ADIT	B76B01	76	70	B10	BA	1100	1500	1.0	70	80	10	17	50
ADIT	B133D01	127	119	B 10	BA	1100	1500	1.0	120	97	10	17	50
ETL	9078	19	15	L10	BA	900	1200	0.71	70	90	0.1	1.8	20
ETL	9924	30	23	B11	RbCs	870	1050	2.1	95	100	0.1	15	80
ETL	9266	52	45	L10	BA	900	1100	0.6	80	100	0.2	4	37
ETL	9350	200	190	L14	BA	1550	2300	67	75	100	15	5	80

A = manufacturer: Ham = Hamamatsu, ETL = Electron Tubes Limited.

B = model number.

C = diameter or dimension of tube outline (sq = square, h = hex) in mm.

D = minimum usable photocathode dimension.

E = dynode structure; L = linear focused, B = box and grid, BM = box and mesh, C = circular.

F = photocathode material: BA = bialkali.

G = recommended operating voltage.

H = maximum tube voltage.

 $I = gain \times 10^6$ at voltage in G.

 $J = cathode luminous sensitivity (\mu A/lm) measured with 2854 K tungsten source.$

K = cathode radiant sensitivity (mA/W) measured at or near the wavelength of photocathode peak sensitivity.

L = dark current (an approximate number due to large variations in the method of measurement between different manufacturers) (nA).

M =anode rise time at voltage in G (ns).

N = transit time at voltage in G (ns).

acathode luminous sensitivity is measured using a blue Corning C.S. No. 5-58 filter.

ANALISI DELLA FORMA DELL' IMPULSO

LEGGE TEMPORALE DELLA SCINTILLAZIONE

$$I = I_0 e^{-t/\tau_D} = I_0 e^{-\lambda t} \rightarrow i(t) = i_0 e^{-\lambda t}$$

ALLARGAMENTO NEL + DI TRANSITO TRASCURABILE

$$Q = \int_{0}^{\infty} i(t)dt \quad \to \quad i_{0} = \lambda Q \quad \to \quad i(t) = \lambda Q e^{-\lambda t}$$

$$Q = \int_{0}^{\infty} i(t)dt \quad \to \quad i_{0} = \lambda Q \quad \to \quad i(t) = \lambda Q e^{-\lambda t}$$

$$\mathcal{G} \equiv \frac{1}{RC}$$

$$i(t) = i_R + i_C$$

$$\to V(t) = \frac{1}{\lambda - \theta} \cdot \frac{\lambda Q}{C} (e^{-\theta t} - e^{-\lambda t})$$

$$V(t) \approx \frac{Q}{C} (e^{-\beta t} - e^{-\lambda t})$$

risetime dipendente da λ decay time dipendente da RC $V_{MAX} = Q/C$

PER ALLUNGARE RC SI FA CRESCERE R MANTENENDO C PICCOLO, COSI' V_{MAX} E' GRANDE

CASO 2

$$V(t) \approx \frac{\lambda}{\mathcal{Q}} \cdot \frac{Q}{C} (-e^{-\beta t} + e^{-\lambda t})$$

risetime dipendente da RC decay time dipendente da τ_{D} $V_{MAX} = \frac{\lambda}{Q} \frac{Q}{C} << \frac{Q}{C}$

Fissate le condizioni (λ, θ) sembra $V_{MAX} \div Q$

In realta' V_{MAX} e' sensibile alle fluttuazioni che originano dalla natura statistica della produzione di fotoelettroni

TEMPO DI TRANSITO E TIME SPREAD

Es: 14 dinodi 2 kV totale

→ 150 V interdinodica

ightharpoonup E_k media $\approx 75 \text{ eV}$

Tipica velocità media

$$\beta^2 = \frac{2\langle E_k \rangle}{mc^2} = \frac{150}{511 \times 10^3} = \left(\frac{1}{60}\right)^2$$

Tipico tempo di transito

$$\tau = \frac{10 \ cm}{\frac{1}{60} \times 3 \times 10^{10} \ cm/s} = 20 \ ns$$

FLUTTUAZIONI DI T

- ➤ Distribuzione energetica iniziale (0-2 eV)
- > Fluttuzioni del percorso catodo I dinodo

CALCOLO DELL' AMPIEZZA DI SEGNALE ASPETTATO

E= 1.2 MeV
$$S = 12 \%$$
 $\epsilon = 70 \%$ Q.E. = 20 %

$$M = 10^5$$
 C = 100 pF L.y. = 38000/MeV

$$hv = (S/L.y.) \times 10^6 = 3.2 \text{ eV}$$
 $n_v = E \cdot S / hv = 4.5 \times 10^4$

Q =
$$n_{\gamma} \cdot \varepsilon \cdot Q.E.\cdot M \cdot q_{e}$$

= $4.5 \times 10^{4} \times 0.7 \times 0.2 \times 10^{5} \times 1.62 \times 10^{-19} C$
= 0.1 nC

$$\Delta V$$
 = Q/C \approx 1 V

RISOLUZIONE ENERGETICA

CLIGINE DELLA PERDITA DI RISOLUZIONE

- · STATISTICA DI RACCOLTA DELLE CARICHE
- . RUMORE ELETTRONICO
- · RISPOSTE & WELLE VARIE REGIONI DEL VOLUME ATTIVO
- · DERIVE NELLA STABILITÀ DI TUTTA LA CATENA DI MISURA
- · FLUTTUAZIONI MEL GUADAQNO DEL FOTOMOLTIPLICATORE
- · NON ESATTA PROPORZIONALITÀ DI RISPOSTA CON L'ENERGIA

STATISTICA DEI FOTOELETTRONI

MINIMO PER IL MUNERO DI PORTATORI D'INFORMAZIONE DI
TUTTA LA CATENA > È IL FENOMENO CHE DOMINA LA COMPONENTE
STATISTICA DELLA RISOLUZIONE ENERGETICA

ES

Ex = 0.5 MeV S = 12%. L = 60 KeV con (Ex) ~ 3 eV # fotoni emessi = \(\frac{L}{3} \) = 20'000

fotoni el fotocatodo ~ 15000 (Perolite ell'interfaccia)

Q.E. ~ 20% -> # fotoelettroni emassi = 3000 HINIMO

5(E) = Gn = 1/13000 = 1.8% FWHM = 2.35 × 1.8% = 4.3%

per Ex da 500 KeV

DIPENDENTA DELLA PISOLUTIONE DALL'ENERGIA

pen alenza - k

en E

In realta

 $R = \frac{(d + (b E)^{1/2})}{E}$ can $d e \beta$ de determinarsi sperimentalm.

ALTRE SORGENTI DI PERDITA DI RISOLUTIONE

DA CARATTERISTICHE INTRINSECHE DEL CRISTALLO

- . CONTANO LE CONDITIONI IMPERFETTE DI RIFLESSIONE SULLE SUPERFICI LA EFFIC. DI RACCOLTA DELLA LUCE NON UNIFORME
- NON LINEARITÀ DELLA RISPOSTA: ANCHE IN CASO DI 8 MONO CROMATICI

 AD OGNI EVENTO CORRISPONDE UNO SPETTRO IN EN. DEGLI E SECONDARI

 PRODOTTI DIFFERENTE SE NON CIÈ LINEARITÀ LA CONVERSIONE IN

 WEE SARÀ DIFFERENTE DA EVENTO AD EVENTO

DIPENDE ANCHE DALLE DIMENSIONI E DALLA GEOMETRIA DEL RIV.

DA CARATTERISTICHE INTRINSECHE DEL FOTOMUTIPLICATORE

- . DISOMOGENEITÀ DEL FOTOCATODO
- . WON UNIFORMITÀ NELLA RACCOLTA DEI FOTOELETTRONI DAL FOTOCATO DO AL PRIMO DINODO
- · FLUTTUAZIONI STATISTICHE NEWA MOLIPULAZIONE DEGLI E

DA VARIANZA DA TRASFERIMENTO

PRODUCA 1 FOTOELETTRONE RACCOUTO AL 1° DINODO

PER DERIVA DEL GUADAGNO DELLA CATENA ELETTRONICA + MU.

SI MISURA E SI CONTROLLA CON:

- · IMPULSO DI TEST (solo catena elettronica
- · IMPULSO DI LUCE NOTO > LED (elettronico)

 Sorgente rad, + fosfono

TIPICAMENTE SI QUOTA LA RIS. ENERGETICA A 662 NOV O A 1333 NOV

Miquore n'solutione con GEOM. CILINDRICA Geom. + complesse henno maggiore difficultà di raccolta di luce uniforme + RISOLUTIONI PEGGIORI (es; a pottetto: +1-3%)

IMPULSI SPURI E RUMORE

ELETTRONI DA EMISSIONE TERMOIONICA

IMPULSI DA SINGOLO e⁻ → MOLTO SPESSO ELIMINABILI

ALTRIMENTI CERCARE DI RIDURRE IL PROBLEMA A MONTE:

- SUP. FOTOCATODO + PICCOLA POSSIBILE
- MATERIALI "SILENZIOSI"
- FOTOTUBI CON MINOR CORRENTE DI BUIO

MODO IMPULSATO

 $\Delta t \sim 1 \text{ ms} \rightarrow \tau_{sh} \sim \mu s = POCO DISTURBO$

VENGONO DISCRIMINATI → NESSUN RUMORE AGGIUNTO

MODO IN CORRENTE

LA CORRENTE DI BUIO SI SOMMA COMPLETAMENTE LE SUE FLUTTUAZIONI CONTRIBUISCONO ALLA RISOLUZIONE

SOLUZIONE

RAFFREDDAMENTO DEL FOTOCATODO $\rightarrow I_{buio}^{'} \sim \frac{1}{100} I_{buio}^{'}$

$$I_{buio} \sim \frac{1}{100} I_{buio}$$

SVANTAGGI:

CONDENSA

AUMENTO DELLA R DEL CATODO

- → DISTORSIONE DEL CAMPO ELETTRICO
 - → PERDITA DI EFF. NELLA RACCOLTA DEI FOTOELETTRONI

SE ALIMENTATI, SEMPRE AL BUIO (IA TROPPO ALTA)

ALTRA SORGENTE DI IMPULSI SPURI: LA RADIOATT, NAT.

- 40K E ²³²Th IN VETRO ~ 10-100 Bq/Kg
- RAD. COSMICA (da' luogo a Cerenkov) impulsi piccoli, da pochi fotoel.

IMPULSI RITARDATI

Da γ emessi alla fine della moltiplicazione, che risalgono al catodo:

∆t ~ t_{transito} IMPULSI PICCOLI

Da ioni⁺ dovuti a gas residuo

∆t → t_{transito} IMPULSI NON PICCOLISSIMI

CAMBIARE FOTOTUBO

ALTERNATIVE: FOTODIODI E HPMT

FOTODIODI CONVENZIONALI p-i-n

VANTAGGI:

- MAGGIOR Q.E. (60% 80%)
- MINOR POTENZA RICHIESTA
- PIU' COMPATTI
- PIU' RESISTENTI
- · INSENSIBILI A B
- · RISPOSTA SPETTRALE AMPIA (cut-off a en. minori).

MA NIENTE MOLTIPLICAZIONE

RUMORE ELETTRONICO (serie + parallelo) NON TRASCURABILE (peggiore per A_{riv} maggiori)

→ RISOLUZIONE ENERGETICA PEGGIORE DEI PMT

FOTODIODI A VALANGA

ALTO $\Delta V \rightarrow PRODUZ$. DI NUOVE COPPIE e⁻ - h $\rightarrow G \sim 100$

BUONA Q.E. E BUONA RISOL. TEMPORALE

SENSIBILITA' A E MINORI MA RISOLUZ. EN. PEGGIORE DEI PMT

HPMT

FOTOCATODO + FOTODIODO AL Si

UN UNICO STADIO DI MOLTIPLICAZIONE CON AV GRANDE

 $G_{\text{TOT}} \sim 3000 \text{ (ANZICHE' } 10^6\text{) MA } \delta \sim 3000 \text{ ANZICHE' } 5 \text{ (O 25)}$

risoluzione energetica migliore

buona discriminaz. tra eventi da singolo fotoel. ed eventi da 2,3,4,... fotoel. (noise termoionico)

 $G \div \Delta V$ anziche' $\div (\Delta V)^7 \rightarrow G$ PIU' STABILE, I_{bias} \leftrightarrow , BUONE CARATTER. TEMPORALI

MICROCHANNEL PLATE

IL FATTORE MOLTIPLICATIVO δ NON E' FISSO \rightarrow SATURAZIONE

 $\Phi \sim 15 - 50 \, \mu \text{m}$ OGNI FOTOEL. ENTRA IN UN CANALE DIVERSO

 Q_{TOT} = $N_{Ch} \times Q_{SAT} \div n_{fotoel} \div n_{fotoni}$

Proprieta' di tempo ECCELLENTI

 $t_{transito} \sim ns$ (anziche' 20 - 80 ns STANDARD) $\sigma_{t} \sim 100$ ps (2-3 volte meglio)

