COMP 3711: Mathematical Background

Common Log Identities:

$$\log(a \cdot b) = \log a + \log b$$

$$\log(a^b) = b \log a$$

$$a^{\log_a b} = b$$

$$a^{\log_b c} = c^{\log_b a}$$

$$\log_a n = \frac{\log_b n}{\log_b a} = \Theta(\log n)$$

$$\log(n!) = \Theta(n \log n) \quad \text{(Stirling's formula)}$$

Common Summations: Let $c \neq 1$ be any positive constant and assume $n \geq 0$. The following are the most common summations that arise when analyzing algorithms and data structures.

Name of Series	Formula	Closed-Form Solution	Asymptotic Form
Constant	$\sum_{i=1}^{n} 1$	= n	$\Theta(n)$
Arithmetic	$\sum_{i=1}^{i-1} i = 1 + 2 + \dots + n$	$=\frac{n(n+1)}{2}$	$\Theta(n^2)$
Polynomial	$\sum_{i=1}^{n} i^{c} = 1^{c} + 2^{c} + \dots + n^{c}$	(none for general c)	$\Theta(n^{c+1})$
Geometric	$\sum_{i=0}^{n-1} c^{i} = 1 + c + c^{2} + \dots + c^{n-1}$	$=\frac{c^n-1}{c-1}$	$\Theta(c^n) \ (c > 1)$ $\Theta(1) \ (c < 1)$
Harmonic	$\sum_{i=1}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$	$= \ln n + O(1)$	$\Theta(\log n)$

Asymptotic Notation

Asymptotic upper bound. Big-Oh: f(n) = O(g(n))

There exists constant c > 0 and n_0 such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$. Equivalent definition: $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$

Asymptotic lower bound. Big-Omega: $f(n) = \Omega(g(n))$

There exists constant c>0 and n_0 such that $f(n)\geq c\cdot g(n)$ for $n\geq n_0$. Equivalent definition: $\lim_{n\to\infty}\frac{f(n)}{g(n)}>0$

Asymptotic tight bound. Big-Theta: $f(n) = \Theta(g(n))$

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$