17th September 2018

CS 5593 - DATA MINING

PROJECT PROPOSAL

Sentiment Analysis with NLP to Classify Amazon Product Reviews using Supervised Classification Algorithms

2. Team Members:

1. Byakod, Pramod Arvind Email: byakodpramod@ou.edu

Gopal Krishna, Sudhindra Email: <u>sudhi@ou.edu</u>
 Mudduluru, Sanjana Email: <u>sanjana@ou.edu</u>
 Penki, Naveen Kumar Email: <u>naveen.penki@ou.edu</u>

3. Objective of the Project:

- The main theme of the project is to classify amazon product reviews by analyzing the sentiment
- We are going to classify the reviews into categories like positive, negative,
 or neutral. We will also classify reviews into a scale of 1 to 5
- We will implement 4 classification algorithms on the dataset and compare the performance of those algorithms in terms of accuracy, precision, recall and F1 – Score [Amancio, 2014]

4. Significance of the project:

4.1 Application & Significance

• The significance of the project would be in detecting unfair reviews, as not all the reviews [Elmurngi, 2018] of the products are related to the

- product performance or reliability. Some reviews might associate with shipping timelines and handling the package
- Thus, it is essential for the consumer to know how good or bad the product is by analyzing all the reviews related to the product
- So, the goal here is to learn the sentiment of the consumers through their review and foretell the genuine and precise review of the product
- This application also helps retailers by providing suggestions to improve the areas where they are lagging.

4.2 Dataset

- The dataset is obtained from http://jmcauley.ucsd.edu/data/amazon/ Amazon Product Data which is a JSON file
- 2. A product review from the downloaded dataset look like:

{"reviewerID": "A2JXAZZI9PHK9Z", "asin": "0594451647", "reviewerName": "Billy G. Noland \"Bill Noland\"", "helpful": [3, 3], "reviewText": "I am using this with a Nook HD+. It works as described. The HD picture on my Samsung 52"", "overall": 5.0, "summary": "HDMI Nook adapter cable", "unixReviewTime": 1388707200, "reviewTime": "01 3, 2014"}

- 3. Each row consists of nine attributes, they are
 - 1. **reviewerID**: unique alphanumeric number assigned to each individual.
 - 2. **asin**: stands for Amazon Standard Identification Number, a unique number assigned to each review.
 - reviewerName: Name of the reviewer.

- 4. **helpful**: List of two number, the first one indicates agreement with the review and the second number indicates the review wasn't helpful.
- 5. **reviewText**: Review description.
- 6. **overall**: Overall rating of that product indicated by the reviewer.
- 7. **summary**: Subject on the review.
- 8. **unixReviewTime**: Unix time is as a signed 32-bit number, the representation will end after the completion of 2,147,483,647 (2³¹ 1) seconds from 00:00:00 on 1 January 1970, which will happen at 3:14:08 on 19 January 2038 UTC.
- 9. **reviewTime**: Date on which the review was written.

4.3 Tasks

- 1. Dataset Cleaning
 - Purpose of dataset cleaning is to remove the records/rows when sufficient information is not present to analyze
- 2. Sentiment Analysis with NLP
 - Will use either NLTK or Stanford NER
 - Used to find good features to form vectors
- 3. Classification
 - To classify reviews by training and testing the data [Moldagulova, 2017]
- 4. Performance comparison of classification algorithms
 - Can come up with algorithm that performs better classification on this dataset [Fang, 2015]

4.4 Algorithms

We are yet to finalize with the algorithms. we will have to do analysis on algorithm selection considering all the requirements and constraints. Initial set of algorithms:

- 1. KNN (K-Nearest Neighbor) [5]
- 2. SVM [2] [3]
- 3. Decision Tree [2]
- 4. Random Forest [1]

5. Implementation/Research Methodology and Time Table:

Month	Week	Task	Methods	Person Responsible
				<u> </u>
September	Week - 3	1. Go through Reference Papers	None	Entire Team -Each at least 2 papers
	Week - 4	 Dataset Cleaning Preparing train and test data 	R & Python	 Naveen & Sanjana Sudhindra & Pramod
October	Week - 1	 Semantic Analysis Feature Extraction 	R & Python	 Pramod & Sanjana Naveen & Sudhindra
	Week - 2	 Semantic Analysis Vectors creation Progress Report Preparation 	Python	 Naveen & Sudhindra Pramod & Sanjana Entire Team
	Week - 3	1. Algorithm Analysis & Learninga. K-NNb. SVMc. Random Forestd. Decision Tree	Python	Entire Team a. Naveen Penki b. Pramod c. Sanjana d. Sudhindra
	Week - 4	 Algorithm Implementation a. K-NN b. SVM c. Random Forest d. Decision Tree 	Python	Entire Team a. Naveen Penki b. Pramod c. Sanjana d. Sudhindra
November	Week - 1	 Algorithm Implementation a. K-NN b. SVM c. Random Forest d. Decision Tree 	Python	Entire Team a. Naveen Penki b. Pramod c. Sanjana d. Sudhindra
	Week - 2	1. Integrate algorithms as a package	Django & Python	Entire Team Entire team

		2. Performance Comparison		a. Naveen Penki
		a. Accuracy		b. Pramod
		b. Precision		c. Sanjana
		c. Recall d. F1-Score		d. Sudhindra
	Week - 3	 Application development a. Frontend b. Backend c. Visualizations GUI Integration with models 	a. HTML, JS b. Python & Django c. WEKA	Entire Team a. Naveen Penki b. Pramod c. Sanjana d. Sudhindra
	Week - 4	 Final Report YouTube Video 	None	Entire Team
December	Week - 1	1. Poster Preparation	LaTex	Entire Team

6. References:

- 1. X. Fang and J. Zhan, "Sentiment analysis using product review data," *Journal of Big Data*, pp. 1-14, June 2015
- E. I. Elmurngi and A. Gherbi, "Unfair Reviews Detection on Amazon Reviews using Sentiment Analysis with Supervised Learning Techniques," Journal of Computer Science, pp. 714-726, May 2018
- D. R. Amancio, C. H. Comin, D. Casanova, G. Travieso, O. M. Bruno, F. A. Rodrigues and L. d. F. Costa, "A Systematic Comparison of Supervised Classifiers," Pone Journal, pp. 1-14, Mar 2014
- 4. M. b. Hossin and M. N. Sulaiman, "A Review on Evaluation Metrics for Data Classification Evaluations," International Journal of Data Mining & Knowledge Management Process (IJDKP), pp. 1-11, March 2015
- A. Moldagulova and R. B. Sulaiman, "Using KNN Algorithm for Classification of Textual Documents," International Conference on Information Technology (ICIT), pp. 665-671, October 2017