

HC32F003 系列 / HC32F005 系列 32 位 ARM® Cortex®-M0+ 微控制器 数据手册

产品特性

- 32MHz Cortex-M0+32 位 CPU 平台
- HC32F003 系列 / HC32F005 系列具有灵活 的功耗管理系统
 - 5μA @ 3V 深度睡眠模式: 所有时钟关闭, 上电复位有效, IO 状态保持, IO 中断有效, 所有寄存器、RAM 和 CPU 数据保存状态时的功耗
 - 10μA@32KkHz 低速工作模式: CPU 和 外设模块运行中,从 Flash 运行程序
 - 30μA/MHz@3V@16MHz 睡眠模式:
 CPU 停止工作,外设模块运行,主时钟运行
 - 150μA/MHz@3V@16MHz 工作模式:
 CPU 和外设模块运行,从 Flash 运行程序
 - 4μS 低功耗唤醒时间,使模式切换更加 灵活高效,系统反应更为敏捷
 - 上述特性为室温下典型值,具体的电气 特性,功耗特性参考电气特性一章
- Flash 存储器,具有擦写保护功能
 - HC32F003 系列支持 16K 字节 Flash
 - HC32F005 系列支持 32K 字节 Flash
- RAM 存储器,附带奇偶校验,增强系统的 稳定性
 - HC32F003 系列支持 2K 字节 RAM
 - HC32F005 系列支持 4K 字节 RAM
- 通用 I/O 引脚 (16IO/20pin)
- 时钟、晶振
 - 内部高速时钟 4M, 8M, 16M, 22.12M,24MHz
 - 内部低速时钟 32.8K / 38.4KHz
 - ─ 外部高速晶振 4MHz~32MHz
 - 硬件支持内外时钟校准和监控
- 定时器/计数器
 - 3个通用16位定时器/计数器

- 3 个高性能 16 位定时器/计数器,支持 PWM 互补,死区保护功能
- 1 个可编程 16 位定时器/计数器, 支持捕获比较, PWM 输出
- 1个20位可编程计数看门狗电路,内建 专用低功耗 RC-OSC 提供 WDT 计数
- 通讯接口
 - UART0-UART1 标准通讯接口
 - SPI 标准通讯接口
 - I2C 标准通讯接口
- 蜂鸣器频率发生器,支持互补输出
- 硬件 CRC-16 模块
- 唯一 10 字节 ID 号
- 12 位 1Msps 采样的高速高精度 SARADC, 内置运放,可测量外部微弱信号
 - 集成 6 位 DAC 和可编程基准输入的 2 路电压比较器 VC
- 低电压侦测器 LVD,可配置 16 阶比较电平, 可监控端口电压以及电源电压
- 嵌入式调试解决方案,提供全功能的实时调 试器
- 工作温度: -40~85℃
- 工作电压: 1.8~5.5V
- 封装形式: QFN20, QFN24, TSSOP20, SOP20

支持型号

HC32F003C4UA	HC32F003C4PA
HC32F005C6UA	HC32F005C6PA
HC32F005D6UA	

声明

- ▶ 华大半导体有限公司(以下简称: "HDSC")保留随时更改、更正、增强、修改华大半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。HDSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ▶ 用户对 HDSC 产品的选择和使用承担全部责任,用户将 HDSC 产品用于其自己或指定第三方产品上的,HDSC 不提供服务支持且不对此类产品承担任何责任。
- ▶ HDSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ▶ HDSC 产品的转售,若其条款与此处规定不同,HDSC 对此类产品的任何保修承诺无效。
- ➤ 任何带有"®"或"TM"标识的图形或字样是 HDSC 的商标。所有其他在 HDSC 产品上显示的产品或服务名称均为其各自所有者的财产。
- ▶ 本通知中的信息取代并替换先前版本中的信息。

©2019 华大半导体有限公司 - 保留所有权利

目 录

产品	品特性			1				
声	明			2				
目	录			3				
1.	简介	简介4						
2.	产品阵容13							
	产品	名称		13				
	功能			14				
3.	引脚配	置		16				
4.	引脚功	能说明.		18				
5.	框图			22				
6.	存储区	映射图.		23				
7.	电气特	性		25				
	7.1	测试象	5件	25				
		7.1.1.	最小和最大数值	25				
		7.1.2.	典型数值	25				
		7.1.3.	供电方案	26				
	7.2	绝对最	· 大额定值	27				
	7.3	工作象	5件	29				
		7.3.1.	通用工作条件	29				
		7.3.2.	上电和掉电时的工作条件	29				
		7.3.3.	内嵌复位和 LVD 模块特性	30				
		7.3.4.	内置的参考电压	32				
		7.3.5.	工作电流特性	32				
		7.3.6.	从低功耗模式唤醒的时间	34				
		7.3.7.	外部时钟源特性	34				
		7.3.8.	内部时钟源特性	36				
		7.3.9.	存储器特性	37				
		7.3.10.	EFT 特性	37				
		7.3.11.	ESD 特性	38				
		7.3.12.	端口特性	38				
		7.3.13.	RESETB 引脚特性	41				
		7.3.14.	ADC 特性	41				
		7.3.15.	VC 特性	44				
8.	封装信	息		45				
	封装	尺寸		45				
	丝印	说明		49				
9.	订购信	息		50				
10	版本证	录 & 的	4系方式	51				

1. 简介

HC32F003 系列 / HC32F005 系列是 Low Pin Count、宽电压工作范围的 MCU。集成 12 位 1M SPS 高精度 SARADC 以及集成了比较器、多路 UART、SPI、I2C 等丰富的通讯外设,具有高整合度、高抗干扰、高可靠性的特点。本产品内核采用 Cortex-M0+ 内核,配合成熟的 Keil & IAR 调试开发软件,支持 C 语言及汇编语言,汇编指令。

Low Pin Count MCU 典型应用

- 小家电,充电器,重合闸,遥控器,电子烟,燃气报警器,数显表,温控器,记录 仪等行业
- 智能交通,智慧城市,智能家居
- 火警探头,智能门锁,无线监控等智能传感器应用
- 电机驱动

32 位 CORTEX M0+ 内核

ARM® Cortex®-M0+ 处理器源于 Cortex-M0,包含了一颗 32 位 RISC 处理器,运算能力达到 0.95 Dhrystone MIPS/MHz。同时加入了多项全新设计,改进调试和追踪能力、减少每条指令循环(IPC)数量和改进 Flash 访问的两级流水线等,更纳入了节能降耗技术。Cortex-M0+ 处理器全面支持已整合 Keil & IAR 调试器

Cortex-M0+ 包含了一个硬件调试电路,支持 2-pin 的 SWD 调试界面。

ARM Cortex-M0+ 特性:

指令集	Thumb / Thumb-2
流水线	2级流水线
性能效率	2.46 CoreMark / MHz
性能效率	0.95 DMIPS / MHz in Dhrystone
中断	32个快速中断
中断优先级	可配置4级中断优先级
增强指令	单周期32位乘法器
调试	Serial-wire 调试端口,支持4个硬中断 (break point)
	以及2个观察点(watch point)

Flash 存储器

内建全集成 Flash 控制器,无需外部高压输入,由全内置电路产生高压来编程。支持 ISP、IAP、ICP 功能。

- HC32F003 系列支持 16K 字节 Flash
- HC32F005 系列支持 32K 字节 Flash

RAM 存储器

根据客户选择不同的功耗模式,RAM 数据都会被保留。自带硬件奇偶校验位,万一数据被意外破坏,在数据被读取时,硬件电路会立刻产生中断,保证系统的可靠性。

- HC32F003 系列支持 2K 字节 RAM
- HC32F005 系列支持 4K 字节 RAM

时钟系统

- 一个频率为 4M~24MHz 可配置的高精度内部时钟 RCH。在配置 16MHz 下,从低功耗模式到工作模式的唤醒时间为 4uS,全电压全温度范围内的频率偏差 < ±2.5%,无需外接昂贵的高频晶体。
- 一个频率为 4M~32MHz 的外部晶振 XTH。

一个频率为 32.8/38.4kHz 的内部时钟 RCL。

工作模式

- 1) 运行模式(Active Mode): CPU 运行,周边功能模块运行。
- 2) 休眠模式(Sleep Mode): CPU 停止运行,周边功能模块运行。
- 3) 深度休眠模式(Deep sleep Mode): CPU 停止运行,高速时钟停止运行,低功耗功能模块运行。

通用 IO 端口

最多可提供 16个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制。支持边沿触发中断和电平触发中断,可从各种功耗模式下把 MCU 唤醒到工作模式。支持 Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持 12mA 的电流驱动能力。16个通用 IO 可支持外部异步中断。

中断控制器

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ)输入; 有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。

32 个中断入口向量地址,分别为:

中断向量号	中断来源
[0]	GPIO_P0
[1]	GPIO_P1
[2]	GPIO_P2
[3]	GPIO_P3
[4]	-
[5]	-
[6]	UART0
[7]	UART1
[8]	-
[9]	-
[10]	SPI
[11]	-
[12]	I2C
[13]	-

[1.4]	Timer0
[14]	
[15]	Timer1
[16]	Timer2
[17]	-
[18]	Timer4
[19]	Timer5
[20]	Timer6
[21]	PCA
[22]	WDT
[23]	-
[24]	ADC
[25]	-
[26]	VC0
[27]	VC1
[28]	LVD
[29]	-
[30]	RAM FLASH fault
[31]	Clock trim

复位控制器

本产品具有 7 个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会复位指向 000000000。

	中断来源
[0]	上电掉电复位 POR BOR
[1]	外部 Reset Pin 复位
[2]	WDT 复位
[3]	PCA 复位
[4]	Cortex-M0+ LOCKUP 硬件复位
[5]	Cortex-M0+ SYSRESETREQ 软
	件复位
[6]	LVD 复位

定时器/计数器

		位宽	预除频	计数方向	PWM	捕获	互补输出
基本定时	Timer0	16/32	1/2/4/8/16	上计数	无	无	无
器			32/64/256				
	Timer1	16/32	1/2/4/8/16/	上计数	无	无	无
			32/64/256				
	Timer2	16/32	1/2/4/8/16/	上计数	无	无	无

			32/64/256				
可编程计	PCA	16	2/4/8/16/32	上计数	5	5	无
数阵列							
高级定时	Timer4	16	1/2/4/8/16/	上计数/	2	2	1
器			64/256/1024	下计数/			
				上下计数			
	Timer5	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			
	Timer6	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			

基本定时器包含三个定时器 Timer0/1/2。Timer0/1/2 功能完全相同。Timer0/1/2 是同步定时/计数器,可以作为 16 位自动重装载功能的定时/计数器,也可以作为 32 位无重载功能的定时/计数器。Timer0/1/2 可以对外部脉冲进行计数或者实现系统定时。

PCA(可编程计数器阵列 Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时/计数器可用作为一个通用的时钟计数/事件计数器的捕获/比较功能。PCA 的每个模块都可以进行独立编程,以提供输入捕捉,输出比较或脉冲宽度调制。另外模块 4 有额外的看门狗定时器模式。

高级定时器是一个包含三个定时器 Timer4/5/6。Timer4/5/6 功能相同的高性能计数器,可用于计数产生不同形式的时钟波形,1 个定时器可以产生互补的一对 PWM 或者独立的 2 路 PWM输出,可以捕获外界输入进行脉冲宽度或周期测量。

高级定时器基本的功能及特性如表所示:

波形模式	锯齿波、三角波
	• 递加、递减计数方向
	• 软件同步
	• 硬件同步
基本功能	• 缓存功能
至 平切肥	• 正交编码计数
	• 通用PWM输出
	• 保护机制
	• AOS关联动作
	计数比较匹配中断
中断类型	计数周期匹配中断
中断关至	死区时间错误中断
	短路监测中断

看门狗 WDT

WDT(Watch Dog Timer)是一个可配置的 20 位定时器,在 MCU 异常的情况下提供复位;内 建 10k 低速时钟输入作为计数器时钟。调试模式下,可选择暂停或继续运行;只有写入特定序列才能重启 WDT。

通用异步收发器 UART0~UART1

2 路通用异步收发器(Universal Asynchronous Receiver/Transmitter)

通用 UART 基本功能:

- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验
- 1/2-Bit 停止位
- 四种不同传输模式
- 多机通讯
- 硬件地址识别

同步串行接口 SPI

同步串行接口(Serial Peripheral Interface),支持主从模式。

SPI 基本特性:

- 通过编程可以配置为主机或者从机
- 四线传输方式,全双工通信
- 主机模式7种波特率可配置
- 主机模式最大波特率为 1/2 系统时钟
- 从机模式最大波特率为 1/4 系统时钟
- 可配置的串行时钟极性和相位
- 支持中断
- 8位数据传输,先传输高位后低位

I2C 总线

1路 I2C,采用串行同步时钟,可实现设备之间以不同的速率传输数据。

I2C 基本特性:

- 支持主机发送/接收,从机发送/接收四种工作模式
- 支持标准(100Kbps) / 快速(400Kbps) / 高速(1Mbps) 三种工作速率
- 支持7位寻址功能
- 支持噪声过滤功能
- 支持广播地址
- 支持中断状态查询功能

蜂鸣器 Buzzer

3 个定时器基本定时器功能复用输出为 Buzzer 提供可编程驱动频率。该蜂鸣器端口可提供 16mA 的 sink 电流,互补输出,不需要额外的三极管。

时钟校准电路

内建时钟校准电路,可以通过外部精准的晶振时钟校准内部 RC 时钟,亦可使用内部 RC 时钟去检验外部晶振时钟是否工作正常。

时钟校准基本特性:

- 校准模式
- 监测模式
- 32 位参考时钟计数器可加载初值
- 32 位待校准时钟计数器可配置溢出值
- 6 种参考时钟源
- 4种待校准时钟源
- 支持中断方式

唯一ID号

每颗芯片出厂前具备唯一的 10 字节设备标识号,包括 wafer lot 信息,以及芯片坐标信息等。 ID 地址 0x0010 0E76-0x0010 0E7F

CRC16 硬件循环冗余校验码

符合 ISO/IEC13239 中给出的多项式 $F(x) = X^{16} + X^{12} + X^5 + 1$ 。

12 Bit SARADC

单调不失码的 12 位逐次逼近型模数转换器,在 24M ADC 时钟下工作时,采样率达到 1Msps。参考电压可选择片内精准电压(1.5v 或 2.5v)或从外部输入或电源电压。12 个输入通道,包括 9 路外部引脚输入、1 路内部温度传感器电压、1 路 1/3 电源电压、1 路内建 BGR 1.2V 电压。内建可配置的输入信号放大器以检测弱信号。

SAR ADC 基本特性:

- 12 位转换精度;
- 1M SPS 转换速度;
- 12 个输入通道,包括 8 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 AVCC 电压、1 路内建 BGR 1.2V 电压、3 路 OPA 输出;
- 4 种参考源: AVCC 电压、ExRef 引脚、内置 1.5v 参考电压、内置 2.5v 参考电压;
- ADC 的电压输入范围: 0~Vref;
- 3 种转换模式: 单次转换、顺序扫描连续转换、连续转换累加;
- 输入通道电压阈值监测:
- 软件可配置 ADC 的转换速率;
- 内置信号放大器,可转换高阻信号;
- 支持片内外设自动触发 ADC 转换,有效降低芯片功耗并提高转换的实时性。

电压比较器 VC

芯片引脚电压监测/比较电路。8个可配置的正/负外部输入通道;5个内部输入通道,包括1路内部温度传感器电压、1路内建 BGR 2.5V 参考电压、1路内建 BGR 1.2V 电压、1路 64 阶电阻分压。VC 输出可供基本定时器、高级定时器与可编程计数阵列 PCA 捕获、门控、外部计数时钟使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒 MCU。可配置的软件防抖功能。

低电压检测器 LVD

对芯片电源电压或芯片引脚电压进行检测。16 档电压监测值(1.8v~3.3v)。可根据上升/下降边沿产生异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

LVD 基本特性:

- 4 路监测源, AVCC、PC13、PB08、PB07;
- 16 阶阈值电压, 1.8V~3.3V 可选;
- 8种触发条件,高电平、上升沿、下降沿组合;
- 2种触发结果,复位、中断;
- 8 阶滤波配置, 防止误触发;
- 具备迟滞功能,强力抗干扰。

嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil/IAR 等调试开发软件。 支持 4 个硬断点以及多个软断点。

在线编程模式

支持在线编程,复位完成后的数毫秒为 ISP 模式,之后进入用户模式。

高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

2. 产品阵容

产品名称

	HC 3	2 F	0 (5	C 6	$\int U A$
华大半导体						
CPU位宽 32: 32bit						
产品类型						
F: 通用 CPU类型						
0: Cortex-M0+						
性能识别码 0: 基本型						
功能配置识别码 5: 配置2						
3: 配置3						
C: 20Pin D: 24Pin						
FLASH容量 6: 32KB						
4: 16KB						
封装类型 P: SOP/TSSOP U: QFN						
环境温度范围 A: -40-85℃						

功能

产品名称		HC32F005C6UA / HC32F005C6PA HC32F003C4UA / HC32F003C4PA	HC32F005D6UA			
引脚数		20	24			
通月	用引脚数 GPIO	16				
CD	内核	Cortex Mo	0+			
CP	频率	32MHz				
电测	原电压范围	1.8 ~5.5	V			
单/	双电源	单电源				
温月	度范围	-40 ~ 85 °C	С			
调证	式功能	串行线调试	接口			
唯-	一识别码	支持				
多耳	功能串行接口	UART0/1				
(UA	ART/SPI/I2C)	SPI I2C				
<i>₽</i> 11	. uu	Timer0/1/2				
正印	寸器	Advanced Timer4/5/6				
液晶	晶控制器(LCDC)	无				
12	位 A/D 转换器	12bit				
模扫	以电压比较器	VC0/1				
实印	寸时钟	1				
端口	口中断	16				
低目	电压检测复位/中断	1				
	内部高速振荡器	IRC4M/8M/16M/22.12M/24M				
时	内部低速振荡器	IRC32.8K/38	3.4K			
钟	外部高速晶振振	4M/8M/16M/32M				
	荡器					
蜂鸣	9器	Max 3ch				

产品名称				
	HC32F003C4UA/HC32F003C4PA			
闪存安全保护	支持			
RAM 奇偶校验	支持			

3. 引脚配置

HC32F005C6UA / HC32F003C4UA

HC32F005C6PA / HC32F003C4PA

HC32F005C6PA / HC32F003C4PA

HC32F005D6UA

4. 引脚功能说明

Pin No.	Pin No.	Pin No.	Pin No.	Pin Name	Pin Type	Description
QFN20	QFN24	TSSOP20	SOP20			
1	4	4	4	RESETB P00	RESETB	复位输入端口,低有效,芯片复 位
					GPIO	P00 数字输入
2	5	5	5	P01	GPIO	P01 通用数字输入/输出引脚
					UART0_RXD	UART0 RXD
					I2C_SDA	I2C 数据
					UART1_TXD	UART1 TXD
					TIM0_TOG	Timer0 翻转输出
					TIM5_CHB	Timer5 捕获输入/比较输出 B
					SPI_SCK	SPI 时钟
					TIM2_EXT	Timer2 外部时钟
					AIN7/VC7	模拟输入
					XTHI	外部 XTH 晶振时钟 输入
3	6	6	6	P02	GPIO	P02 通用数字输入/输出引脚
					UART0_TXD	UART0 TXD
					I2C_SCL	I2C 时钟
					UART1_RXD	UART1 RXD
					TIM0_TOGN	Timer() 翻转反相输出
					TIM6_CHA	Timer6 捕获输入/比较输出 A
					SPI_CS	SPI CS
					TIM2_GATE	Timer2 门控
					AIN8	模拟输入
					XTHO	外部 XTH 晶振时钟 输出
4	7	7	7	DVSS	GND	芯片地
5	8	8	8	Vcap	Power	LDO 内核供电输出(仅限内部电路使用,连接 4.7uF 的电容)
6	9	9	9	DVCC	Power	芯片电源 1.8v~5.5v
	10				/	/
	11				/	/
7	12	10	10	P03	GPIO	P03 通用数字输入/输出引脚
					PCA_CH3	PCA 捕获输入/比较输出 3
					SPI_CS	SPI CS
					TIM6_CHB	Timer6 捕获输入/比较输出 B
					PCA_ECI	PCA 外部时钟输入
					VC0_OUT	VC0 输出
					LVDIN1	模拟输入
8	13	11	11	P15	GPIO	P15 通用数字输入/输出引脚
					I2C_SDA	I2C 数据
					TIM2_TOG	Timer2 翻转输出
					TIM4_CHB	Timer4 捕获输入/比较输出 B
					SPI_SCK	SPI 时钟
					UART0_RXD	UARTO RXD
					LVD_OUT	LVD 输出

Pin No.	Pin No.	Pin No.	Pin No.	Pin Name	Pin Type	Description
QFN20	QFN24	TSSOP20	SOP20			
					/	/
9	14	12	12	P14	GPIO	P14 通用数字输入/输出引脚
					I2C_SCL	I2C 时钟
					TIM2_TOGN	Timer2 翻转反相输出
					ECI	PCA 外部时钟输入
					ADC_RDY	ADC ready
					SPI_CS	SPI CS
					UARTO_TXD	UARTO TXD
					/	/
10	15	13	13	P23	GPIO	P23 通用数字输入/输出引脚
10	13	13	13	123	TIM6_CHA	Timer6 捕获输入/比较输出 A
					TIM4_CHB	Timer4 捕获输入/比较输出 B
					TIM4_CHA	Timer4 捕获输入/比较输出 A
					PCA_CH0	PCA 捕获输入/比较输出 0
						SPI 模块主机输入从机输出数据
					SPI_MISO	信号
					UART1_TXD	UART1 TXD
					IR_OUT	38K 载波输出
					LVDIN2/VC0	模拟输入
11	16	14	14	P24	GPIO	P24 通用数字输入/输出引脚
					TIM4_CHB	Timer4 捕获输入/比较输出 B
					TIM5_CHB	Timer5 捕获输入/比较输出 B
					HCLK_OUT	HCLK 输出
					PCA_CH1	PCA 捕获输入/比较输出 1
					SPI_MOSI	SPI 模块主机输出从机输入数据
					_	信号
					UART1_RXD	UART1 RXD
					VC1_OUT	VC1 输出
					AIN0	模拟输入
12	17	15	15	P25	GPIO	P25 通用数字输入/输出引脚
					SPI_SCK	SPI 时钟
					PCA_CH0	PCA 捕获输入/比较输出 0
					TIM5_CHA	Timer5 捕获输入/比较输出 A
					LVD_OUT	LVD 输出
					I2C_SDA	I2C 数据
					TIM1_GATE	Timer1 门控
					LVDIN3/VC1	模拟输入
13	18	16	16	P26	GPIO	P26 通用数字输入/输出引脚
					SPI_MOSI	SPI 模块主机输出从机输入数据 信号
					TIM4_CHA	Timer4 捕获输入/比较输出 A
					TIM5_CHB	Timer5 捕获输入/比较输出 B
					PCA_CH2	PCA 捕获输入/比较输出 2
					I2C_SCL	I2C 时钟
					TIM1_EXT	Timer1 部时钟输入
					AIN1	模拟输入
	I			I	411111	DC42A,1114A

Pin No.	Pin No.	Pin No.	Pin No.	Pin Name	Pin Type	Description
QFN20	QFN24	TSSOP20	SOP20			
14	19	17	17	P27	GPIO	P27 通用数字输入/输出引脚
					SPI_MISO	SPI 模块主机输入从机输出数据 信号
					TIM5_CHA	Timer5 捕获输入/比较输出 A
					TIM6_CHA	Timer6 捕获输入/比较输出 A
					PCA_CH3	PCA 捕获输入/比较输出 3
					UART0_RXD	UART0 RXD
					RCH_OUT	24M 振荡输出
					XTH_OUT	32M 振荡输出
					SWDIO	SWDIO
15	20	18	18	P31	GPIO	P31 通用数字输入/输出引脚
					TIM3_TOG	Timer3 翻转输出
					PCA_ECI	PCA 外部时钟
					PCLK_OUT	PCLK 输出
					VC0OUT	VC0 输出
					UART0_TXD	UART0 TXD
					RCL_OUT	RCL 振荡输出
					HCLK_OUT	HCLK 输出
					SWCLK	SWCLK
	21				/	/
	22				/	/
16	23	19	19	P32	GPIO	P32 通用数字输入/输出引脚
					PCA_CH2	PCA 捕获输入/比较输出 2
					TIM6_CHB	Timer6 捕获输入/比较输出 B
					VC1OUT	VC1 输出
					UART1_TXD	UART1 TXD
					PCA_CH4	PCA 捕获输入/比较输出 4
					AIN2/VC2	模拟输入
17	24	20	20	P33	GPIO	P33 通用数字输入/输出引脚
					PCA_CH1	PCA 捕获输入/比较输出 1
					TIM5_CHB	Timer5 捕获输入/比较输出 B
					PCA_ECI	PCA 外部时钟
					UART1_RXD	UART1 RXD
					/	/
					TIM1_TOGN	Timer1 翻转反向输出
					AIN3/VC3	模拟输入
18	1	1	1	P34	GPIO	P34 通用数字输入/输出引脚
					PCA_CH0	PCA 捕获输入/比较输出 0
					TIM5_CHA	Timer5 捕获输入/比较输出 A
					TIM0_EXT	Timer0 部时钟输入
					TIM4_CHA	Timer4 捕获输入/比较输出 A
					TIM1_TOG	Timer1 翻转输出
					AIN4/VC4	模拟输入
19	2	2	2	P35	GPIO	P35 通用数字输入/输出引脚
					UART1_TXD	UART1 TXD

	1	1	I	1	I	Ι
Pin No.	Pin No.	Pin No.	Pin No.	Pin Name	Pin Type	Description
QFN20	QFN24	TSSOP20	SOP20			
					TIM6_CHB	Timer6 捕获输入/比较输出 B
					UART0_TXD	UART0 TXD
					TIM0_GATE	Timer0 门控
					TIM4_CHB	Timer4 捕获输入/比较输出 B
					SPI_MISO	SPI 模块主机输入从机输出数据 信号
					I2C_SDA	I2C 数据
					AIN5/VC5	模拟输入
20	3	3	3	P36	GPIO	P36 通用数字输入/输出引脚
					UART1_RXD	UART1 RXD
					TIM6_CHA	Timer6 捕获输入/比较输出 A
					UART0_RXD	UART0 RXD
					PCA_CH4	PCA 捕获输入/比较输出 4
					TIM5_CHA	Timer5 捕获输入/比较输出 A
					SPI_MOSI	SPI 模块主机输出从机输入数据 信号
					I2C_SCL	I2C 时钟
					AIN6/VC6/	模拟输入
					AVREF	

5. 框图

功能模块

- *1: 16KB: HC32F003 系列; 32KB: HC32F005 系列。
- *2: 2KB: HC32F003 系列; 4KB: HC32F005 系列。

图 5-1 功能模块

6. 存储区映射图

HC32F00 HC32F00 HC32F00	5C6PA	HC32F00 HC32F00		
0x2000_1000	保留		保留	
0x2000_0000	SRAM (4KByte)	0x2000_0800 0x2000_0000	SRAM	
0x0000_8000	保留		保留	
	主闪存区 (32KByte)	0x0000_4000	主闪存区 (16KByte)	
0x0000_0000		0x0000_0000		

7. 电气特性

7.1 测试条件

除非特别说明,所有的电压都以 VSS 为基准。

7.1.1. 最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 TA=25°C 和 TA=TAmax 下执行的测试(TAmax 与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均±3Σ)得到。

7.1.2. 典型数值

除非特别说明,典型数据是基于 TA=25° C 和 VCC=3.3V(1.8V \leq VCC \leq 5.5V 电压范围)。 这些数据仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的误差小于等于给出的数值(平均 $\pm 2\Sigma$)。

7.1.3. 供电方案

注意:

- 每组电源都需要一个去耦电容,去耦电容尽量靠近相应电源管脚。

7.2 绝对最大额定值

加在器件上的载荷如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述	最小值	最大值	单位
VCC - VSS	外部主供电电压(包含AVCC和DVCC) ⁽¹⁾	-0.3	5.5	V
V _{IN}	在其它引脚上的输入电压(2)	VSS-0.3	VCC + 0.3	V
\Delta VCCx	不同供电引脚之间的电压差		50	mV
VSSx - VSS	不同接地引脚之间的电压差		50	mV
V _{ESD} (HBM)	ESD静电放电电压(人体模型)	参考绝对最大值电气参数		V

表 7-1 电压特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS, AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过 其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > V_{CC} 时,有一个正向注 入电流;当 V_{IN} < V_{SS} 时,有一个反向注入电流。

符号	描述	最大值(1)	单位
Ivcc	经过DVCC/AVCC电源线的总电流(供应电流) ⁽¹⁾	300	mA
I _{VSS}	经过VSS地线的总电流(流出电流) (1)	300	mA
	任意I/O和控制引脚上的输出灌电流	25	mA
I_{IO}	任意I/O和控制引脚上的输出电流	-25	mA
	RESETB引脚的注入电流	+/-5	mA
I _{INJ(PIN)} ^{(2) (3)}	XTH的XTHI引脚和XTL的XTLI引脚的注入电流	+/-5	mA
	其他引脚的注入电流(4)	+/-5	mA
$\sum I_{\text{INJ(PIN)}}^{(2)}$	所有I/O和控制引脚上的总注入电流 ⁽⁴⁾	+/-25	mA

表 7-2 电流特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS,AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过 其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > V_{CC} 时,有一个正向注 入电流,当 V_{IN} < V_{SS} 时,有一个反向注入电流。
- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当几个 I/O 口同时有注入电流时, $\Sigma I_{INJ(PIN)}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件 $4 \wedge I/O$ 端口上 $\Sigma I_{INJ(PIN)}$ 最大值的特性。

符号	描述	数值	单位
T _{STG}	储存温度范围	-60 ~ + 150	$^{\circ}$
T_{J}	最大结温度	105	${\mathbb C}$

表 7-3 温度特性

7.3 工作条件

7.3.1. 通用工作条件

符号	参数	条件	最小值	最大值	单位
fHCLK	内部AHB时钟频率		0	48	MHz
fPCLK	内部APB时钟频率		0	48	MHz
DVCC	标准工作电压		1.8	5.5	V
AVCC ⁽¹⁾	模拟部分工作电压	必须与DVCC ⁽²⁾ 相同	1.8	5.5	V
PD	功率耗散 TA=85℃	TSSOP20		283	mW
TA	环境温度	最大功率消耗	-40	85	$^{\circ}$ C
		低功率消耗(3)	-40	105	$^{\circ}$
ТЈ	结温度范围		-40	105	°C

表 7-4 通用工作条件

- 1. 当使用 ADC 时,参见 ADC 电气参数。
- 2. 建议使用相同的电源为 DVCC 和 AVCC 供电,在上电和正常操作期间, DVCC 和 AVCC 之间最多允许有 300mV 的差别。
- 3. 在较低的功率耗散的状态下,只要 T_J 不超过 T_{Jmax} , T_A 可以扩展到这个范围。

7.3.2. 上电和掉电时的工作条件

符号	参数	条件	最小值	最大值	单位
tVcc	VCC上升速率		0	∞	μs/V
tVcc	VCC下降速率		10	∞	μs/V

表 7-5 上电和掉电的工作条件

7.3.3. 内嵌复位和 LVD 模块特性

图 7-1 POR/Brown Out 示意图

1. 设计保证,不在生产中测试。

符号	参数	条件	最小值	典型值	最大值	单位
Vpor	POR 释放电压(上电过程)		1.45	1.50	1.65	V
	BOR 检测电压(掉电过程)					

表 7-6 POR/Brown Out

符号	参数	条件	最小值	典型值	最大值	单位
Vex	外部输入电压范围		0		VCC	V
Vlevel	检测阈值	LVD_CR.VTDS=0000		1.8		V
		LVD_CR.VTDS =0001		1.9		
		LVD_CR.VTDS =0010		2.0		
		LVD_CR.VTDS =0011		2.1		
		LVD_CR.VTDS =0100		2.2		
		LVD_CR.VTDS=0101		2.3		
		LVD_CR.VTDS=0110		2.4		
		LVD_CR.VTDS=0111		2.5		
		LVD_CR.VTDS=1000		2.6		
		LVD_CR.VTDS=1001		2.7		
		LVD_CR.VTDS=1010		2.8		
		LVD_CR.VTDS=1011		2.9		
		LVD_CR.VTDS=1100		3.0		
		LVD_CR.VTDS=1101		3.1		
		LVD_CR.VTDS=1110		3.2		
		LVD_CR.VTDS=1111		3.3		
Icomp	功耗			0.12		uA
Tresponse	响应时间			80		uS
Tsetup	建立时间			400		uS
Vhyste	迟滞电压			40		mV
Tfilter	滤波时间	LVD_debounce = 000		7		uS
		LVD_debounce = 001		14		
		LVD_debounce = 010		28		
		LVD_debounce = 011		112		
		LVD_debounce = 100		450		
		LVD_debounce = 101		1800		
		LVD_debounce = 110		7200		
		LVD_debounce = 111		28800		

表 7-7 LVD 模块特性

7.3.4. 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
VREF25	Internal 2.5v Reference Voltage	常温25°C 3.3V	2.475	2.5	2.525	V
VREF25	Internal 2.5v Reference Voltage	-40C~85C; 2.8V~5.5V	2.463	2.5	2.525	V[1]
VREF15	Internal 1.5v Reference Voltage	常温25°C 3.3V	1.485	1.5	1.515	V
VREF15	Internal 1.5v Reference Voltage	-40C~85C; 1.8V~5.5V	1.477	1.5	1.519	V[1]
TCoeff	Internal 2.5v 1.5v temperature	-40 ~ 85°C			120	Ppm/
TCOEII	coefficient	-40 ~ 65 C			120	°C

1. 数据基于考核结果,不在生产中测试。

7.3.5. 工作电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的位置以及执行的代码等。

微控制器处于下列条件:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——VCC 或 VSS(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到 fHCLK 的频率(0~24MHz 时为 0 个等待周期, 24~48MHz 时为 1 个等待周期)。
- 当开启外设时: fPCLK = fHCLK。

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit
	All			4M	290		
T	peripherals	V -1.55V		8M	520		
I _{DD} (Run in RAM)	clock OFF,	$V_{core}=1.55V$ $V_{DD}=3.3V$	RCH clock source	16M	960		uA
(Kuli ili KAWI)	Run While(1)	V DD-3.3 V		24M	1400		
	in RAM.		32M	1820			
	All			4M	870		
T	peripherals			8M	1690		
I _{DD} (Run	clock OFF,	$V_{core}=1.55V$	RCH	16M	3090		uA
CoreMark)	Run	V _{DD} =3.3V	clock source	24M	4430		uA
Colewidik)	CoreMark in			32M	4590		
	Flash.			(Flash Wait= 1)	4370		

	All			4M	910	1140	
	peripherals	1 5537	DCH	8M	1760	2080	
	clock ON,	V _{core} =1.55V	RCH clock source	16M	3250	3900	
	Run while(1) in Flash	V _{DD} =1.8-5.5V	clock source	24M	4680	5590	
I _{DD}				4M	720	980	uA
(Run mode)	All peripheral			8M	1370	1690	
	clock OFF,	V _{core} =1.55V	RCH	16M	2470	3120	
	Run while(1)	V _{DD} =1.8-5.5V	clock source	24M	3510	4290	
	in Flash			32M	3710	3900	
				(Flash Wait= 1)	3/10	3900	
				4M	340	360	
	All peripheral	V _{core} =1.55V	RCH	8M	650	680	
	clock ON	V _{DD} =1.8-5.5V	V _{DD} =1.8-5.5V clock source		1240	1260	
т				24M	1820	1850	
I _{DD} (Sleep mode)				4M	140	160	
(Steep filode)	A 11 1	V 1.55V	RCH	8M	250	270	
	All peripheral clock OFF	$V_{\text{core}} = 1.55V$ $V_{\text{DD}} = 1.8 - 5.5V$	clock source	16M	430	470	
	CIOCK OFF	V _{DD} =1.6-3.3 V	Clock source	24M	610	650	
				32M	750	790	uA
	All peripherals	V _{core} =1.55V		TA = -40 to 25° C	6	6	
	clock OFF	V _{DD} =1.8-5.5V		TA = 50 ° C	7	7	
I _{DD}	except WDT			TA = 85 ° C	8	9	
(DeepSleep	A 11			TA = -40 to			
mode)	All	V _{core} =1.55V		25° C	5	6	
	peripherals clock OFF	V _{DD} =1.8-5.5V		TA = 50 ° C	6	6	
	CIOCK OFF			TA = 85 ° C	7	8	

- 1. 若没有其他指定条件,该 Typ 的值是在 25 °C & $V_{CC} = 3.3V$ 测得。
- 2. 若没有其他指定条件,该 Max 的值是 V_{CC} = 1.8-5.5 & Temperature = N40 85 °C 范围内的最大值。
- 3. 数据基于考核结果,不在生产中测试。

表 7-8 工作电流特性

7.3.6. 从低功耗模式唤醒的时间

唤醒时间是在RCH振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- 休眠模式:时钟源是RCH振荡器
- 深度休眠模式:时钟源是进入深度休眠时所使用的时钟是 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Twu	休眠模式唤醒时间			1.8		μs
	深度休眠唤醒时间	FMCLK = 4MHz		9.0		μs
		FMCLK = 8MHz		6.0		μs
		FMCLK = 16MHz		5.0		μs
		FMCLK = 24MHz		4.0		μs

1. 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

7.3.7. 外部时钟源特性

外部输入高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
fXTH_ext	用户外部时钟频率(1)		0	8	32	MHz
VXTHH	输入引脚高电平电压		0.7VCC		VCC	V
VXTHL	输入引脚低电平电压		VSS		0.3VCC	V
Tr(XTH)	上升的时间(1)				20	ns
Tf(XTH)	下降的时间(1)				20	ns
Tw(XTH)	输入高或低的时间(1)		16			ns
Cin(XTH)	输入容抗(1)			5		pF
Duty	占空比		40		60	%
IL	输入漏电流				±1	μΑ

1. 由设计保证,不在生产中测试。

高速外部时钟 XTH

高速外部时钟(XTH)可以使用一个 4~32MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTH 晶振⁽¹⁾⁽²⁾

符号	参数	条件	最小值	典型值	最大值	单位
FCLK	振荡频率		4		32	MHz
ESR _{CLK}	支持的晶振ESR范围	32M		30	60	Ohm
		4M		400	1500	Ohm
C _L x ⁽³⁾	负载电容	两个管脚都有负载电容	12		24	pF
Duty	占空比		40	50	60	%
$\mathrm{Idd}^{(4)}$	电流	32M Xtal, CL=12pF,		600		uA
Idd	15 Jul	ESR=30ohm				
T _{start} (5)	启动时间	32MHz		400		us
		@ XTH_CR.Driver=1111				
		4MHz		2		ms
		@ XTH_CR.Driver=0011				

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. C_{LX} 指 XTAL 的两个管脚负载电容 C_{L1}和 C_{L2}。对于 C_{L1}和 C_{L2},建议使用高质量的、为高频应用而设计资介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1}和 C_{L2}具有相同参数。晶体制造商通常以 C_{L1}和 C_{L2}的串行组合给出负载电容的参数。在选择 C_{L1}和 C_{L2}时,应该根据晶振的频率和 ESR 等参数,并且将 PCB 和 MCU 引脚的容抗考虑在内。在晶振频率为 32M 时,C_{LX}需要选择小的电容值,XTH_CR.Driver 为 1110 时,可以选择 C_{LX} 为 12pF。
- 4. 电流跟随频率变化而变化,测试条件: XTH CR.Driver=1110
- 5. T_{start} 是启动时间,是从软件使能 XTH 开始测量,直至得到稳定的 32MHz/4MHz 振荡这段时间。这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

7.3.8. 内部时钟源特性

内部 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCH振荡器精度	User-trimmed with clock_trim		0.25		%
		for given VCC and TA				
		conditions				
		VCC = 1.8V ~ 5.5V	-2.5		+2.5	%
		$T_{AMB} = -40^{\circ}C \sim 85^{\circ}C$				
		VCC = 1.8V ~ 5.5V	-2.0		+2.0	%
		$T_{AMB} = -20^{\circ}C \sim 50^{\circ}C$				
F _{CLK}	振荡频率		4.0	4.0	24.0	MHz
				8.0		
				16.0		
				22.12		
				24.0		
I_{CLK}	功耗	$F_{MCLK} = 4MHz$		80		μA
		F _{MCLK} = 8MHz		100		μΑ
		F _{MCLK} = 16MHz		120		μΑ
		F _{MCLK} = 24MHz		140		μΑ
DCCLK	占空比(1)		45	50	55	%

1. 由综合评估得出,不在生产中测试。

内部 RCL 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCL振荡器精度	User-trimmed with		0.5		%
		clock_trim for given VCC				
		and TA conditions				
		$VCC = 1.8V \sim 5.5V$	-2.0		+2.0	%
		$T_{AMB} = -40^{\circ}C \sim 85^{\circ}C$				
		VCC = 1.8V ~ 5.5V	-1.5		+1.5	%
		$T_{AMB} = -20^{\circ}C \sim 50^{\circ}C$				
F _{CLK}	振荡频率			38.4		KHz
				32.768		
T _{CLK}	启动时间			150		uS
DC _{CLK}	占空比(1)		25	50	75	%
Iclk	功耗			0.25		μА

1. 由综合评估得出,不在生产中测试。

7.3.9. 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
ECFLASH	擦写次数	Regulator voltage=1.5v,	20K			cycles
		$T_{AMB} = 25$ °C				
RETFLASH	数据保存期限	$T_{AMB} = 85$ °C	20			Years
		常温	100			Years
Tw_prog	编程时间		6		7.5	μs
Tp_erase	页擦除时间		4		5	ms
Tm_erase	整片擦除时间		30		40	ms

7.3.10. EFT 特性

芯片复位可以使系统恢复正常操作。

符号	级别/类型
EFT to IO	2Kv
(IEC61000-4-4)	Class:4
EFT to Power	4Kv
(IEC61000-4-4)	Class:4

软件建议

软件的流程中必须包含程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏(控制寄存器等.....)

在进行 ESD 测试时,可以把超出应用要求的电压直接施加在芯片上,当检测到意外动作的地方,软件部分需要加强以防止发生不可恢复的错。

7.3.11. ESD 特性

使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

符号	参数	条件	最小值	典型值	最大值	单位
VESD _{HBM}	ESD @ Human Body Mode			4		KV
VESD _{CDM}	ESD @ Charge Device Mode			1		KV
VESD _{MM}	ESD @ machine Mode			200		V
Ilatchup	Latch up current			200		mA

7.3.12. 端口特性

输出特性——端口

符号	参数	条件	最小值	典型值	最大值
VoH	High level output voltage	Sourcing 4 Ma, VCC = 3.3 V	VCC-0.25		V
	Source Current	(see Note 1)			
		Sourcing 6 Ma, VCC = 3.3 V	VCC-0.6		V
		(see Note 2)			
Vol	Low level output voltage	Sinking 4 Ma, VCC = 3.3 V		VSS+0.25	V
	Sink Current	(see Note 1)			
		Sinking 6 Ma, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			
V_{OHD}	High level output voltage	Sourcing 8 Ma, VCC = 3.3 V	VCC-0.25		V
	Double source Current	(see Note 1)			
		Sourcing 12 Ma, VCC = 3.3V	VCC-0.6		V
		(see Note 2)			
V _{OLD}	Low level output voltage	Sinking 8 Ma, VCC = 3.3 V		VSS+0.25	V
	Double Sink Current	(see Note 1)			
		Sinking 12 Ma, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			

表 7-9 端口输出特性

NOTES:

- 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 40 Ma to satisfy the maximum specified voltage drop.
- 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 100 Ma to satisfy the maximum specified voltage drop.

图 7-2 输出端口 VOH/VOL 实测曲线

输入特性——端口 P0,P1,P2,P3, RESET

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	Positive-going input	VCC=1.8v	1			V
	threshold voltage	VCC=3.3v	1.75			V
		VCC=5.5v	2.8			V
V _{IL}	Negative-going input	VCC=1.8v			0.8	V
	threshold voltage	VCC=3.3v			1.5	V
		VCC=5.5v			2.4	V
V _{hys(1)}	Input voltage hysteresis	VCC=1.8v		0.3		V

	(V _{IH} – V _{IL})	VCC=3.3v	0.4	V
		VCC=5.5v	0.6	V
R _{pullhigh}	Pullup resistor	Pullup enabled	80	Kohm
		VCC=3.3V		
R _{pulllow}	Pulldown resistor	Pulldown enabled	40	Kohm
		VCC=3.3V		
Cinput	Input capacitance		5	pf

1. 由综合评估得出,不在生产中测试。

端口外部输入采样要求——Timer Gate/Timer Clock

Symbol	Papameter	Conditions	VCC	Min	Max	Uuit
t(int)	External interrupt	External trigger signal for the	1.8v	30		ns
	timing	interrupt flag (see Note 1)	3.3v	30		ns
			5.5v	30		ns
t(cap)	Timer capture timing	Timer4/5/6 capture pulse width	1.8v	0.5		us
		Fsystem = 4MHz	3.3v	0.5		us
			5.5v	0.5		us
t(clk)	Timer clock	Timer0/1/2/4/5/6 external clock	1.8v		PCLK/2	MHz
	frequency applied to	input	3.3v		PCLK/2	MHz
	pin	Fsystem = 4MHz	5.5v		PCLK/2	MHz
t(pca)	PCA clock frequency	PCA external clock input	1.8v		PCLK/8	MHz
	applied to pin	Fsystem = 4MHz	3.3v		PCLK/8	MHz
			5.5v		PCLK/8	MHz

NOTE:

1. The external signal sets the interrupt flag every time the minimum $t_{(int)}$ parameters are met. It may be set even with trigger signals shorter than $t_{(int)}$.

端口漏电特性——P0,P1,P2,P3

Symbol	Papameter	Conditions	VCC	Max	Unit
I _{lkg(Px.y)}	Leakage current	V _(Px.y) (see Note 1,2)	1.8 V/3.6 V	±50	Na

NOTES:

- 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
- 2. The port pin must be selected as input.

7.3.13. RESETB 引脚特性

RESETB 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻。

符号	参数	条件	最小值	典型值	最大值	单位
VIL(RESETB) (1)	输入低电平电压		-0.3		0.8	
VIH(RESETB)	输入高电平电压		0.8*VCC		VCC+0.5	
Vhys(RESETB)	施密特触发器电压迟滞			200		Mv
RPU	弱上拉等效电阻	VIN = VSS		80		kΩ
VF(RESETB) (1)	输入滤波脉冲				100	ns
VNF(RESETB) (1)	输入非滤波脉冲		300			ns

1. 由设计保证,不在生产中测试。

7.3.14. ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0		V _{ADCREFIN}	V
V _{ADCREFIN}	Input range of external reference voltage	Single ended	0		AVCC	V
I _{ADC1}	Active current including reference generator and buffer	200Ksps		2		Ma
I _{ADC2}	Active current without reference generator and buffer	1MSPS		0.5		Ma
C _{ADCIN}	ADC input capacitance			16	19.2	Pf
$R_{\mathrm{ADC}^{(1)}}$	ADC sampling switch impedance			1.5		Kohm
R _{AIN} ⁽¹⁾	ADC external input resistor ⁽²⁾				100	Kohm
FADCCLK	ADC clock Frequency				24M	Hz
T _{ADCSTART}	Startup time of reference generator and ADC core			30		Ms
TADCCONV	Conversion time		20	24	28	cycles
ENOB	Effective Bits	1MSPS@VCC>=2.7v 500KSPS@VCC>=2.4v 200KSPS@VCC>=1.8v REF=EXREF		10.3		Bit
		1MSPS@VCC>=2.7v 500KSPS@VCC>=2.4v		10.3		Bit

		200KSPS@VCC>=1.8v				
		REF=VCC				
		200KSPS@VCC>=1.8v		0.4		D'
		REF=internal 1.5V		9.4		Bit
		200KSPS@VCC>=2.8v		9.4		D:4
		REF=internal 2.5V		9.4		Bit
		1MSPS@VCC>=2.7v				
		500KSPS@VCC>=2.4v		68.2		Db
		200KSPS@VCC>=1.8v		08.2		ם סט
		REF=EXREF				
		1MSPS@VCC>=2.7v				
SNR	Signal to Noise	500KSPS@VCC>=2.4v		68.2		Db
SINK	Ratio	200KSPS@VCC>=1.8v		08.2		Db
		REF=VCC				
		200KSPS@VCC>=1.8v		60		Db
		REF=internal 1.5V		00		Du
		200KSPS@VCC>=2.8v		60		Db
		REF=internal 2.5V		00		Du
DNL ⁽¹⁾	Differential non-linearity	200KSps;	-1		1	LSB
DNL	Differential non-infearity	VREF=EXREF/AVCC	-1		1	LOD
INL ⁽¹⁾	Integral non-linearity	200KSps;	-3		3	LSB
TILL .	integral non-initiality	VREF=EXREF/AVCC	-5		,	LOD
Eo	Offset error			0		LSB
Eg	Gain error			0		LSB

- 1. 由设计保证,不在生产中测试。
- 2. ADC 的典型应用如下图所示:

对于 0.5LSB 采样误差精度要求的条件下,外部输入阻抗的计算公式如下:

$$R_{AIN} = \frac{M}{F_{ADC} * C_{ADC} * (N+1) * ln(2)} - R_{ADC}$$

其中 F_{ADC} 为 ADC 时钟频率,寄存器 ADC_CR0<3:2>可设定其与 PCLK 的关系,如下表:

下表为 ADC 时钟频率 F_{ADC} 和 PCLK 分频比关系:

ADC_CR0<3:2>	N
00	1
01	2
10	4
11	8

M 为采样周期个数,由寄存器 ADC_CR0<13:12>设定。

下表为采样时间 t_{sa} 和 ADC 时钟频率 F_{ADC} 的关系:

ADC_CR0<13:12>	M
00	4
01	6
10	8
11	12

下表为 ADC 时钟频率 F_{ADC} 和外部电阻 R_{AIN} 的关系(M=12,采样误差 0.5LSB 的条件下):

R _{AIN} (Kohm)	$F_{ADC}(\mathrm{KHz})$
10	5600
30	2100
50	1300
80	820
100	660
120	550
150	450

对于上述典型应用,应注意:

- 尽量减小 ADC 输入端口 AIN_X 的寄生电容 $C_{PARACITIC}$;
- 除了考虑 R_{AIN} 值外,如果信号源 V_{AIN} 的内阻较大时,也需要加入考虑。

7.3.15. VC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vin	Input voltage range		0		5.5	V
Vincom	Input common mode range		0		VCC-0.2	V
Voffset	Input offset	常温25℃ 3.3V	-10		+10	Mv
Icomp	Comparator's current	VCx_BIAS_SEL=00		0.3		Ua
		VCx_BIAS_SEL=01		1.2		
		VCx_BIAS_SEL=10		10		
		VCx_BIAS_SEL=11		20		
Tresponse	Comparator's response time	VCx_BIAS_SEL=00		20		Us
	when one input cross another	VCx_BIAS_SEL=01		5		
		VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Tsetup	Comparator's setup time	VCx_BIAS_SEL=00		20		Us
	when ENABLE.	VCx_BIAS_SEL=01		5		
	Input signals unchanged.	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Twarmup	From main bandgap enable to			20		Us
	1.2V BGR reference, Temp					
	sensor voltage. ADC internal					
	1.5V \ 2.5V reference stable					
Tfilter	Digital filter time	VC_debounce = 000		7		Ms
		VC_debounce = 001		14		
		VC_debounce = 010		28		
		VC_debounce = 011		112		
		VC_debounce = 100		450		
		VC_debounce = 101		1800		
		VC_debounce = 110		7200		
		VC_debounce = 111		28800		

8. 封装信息

封装尺寸

QFN20 封装

	QFN20 (3x3) millimeter									
Symbol	Min	Nom	Max							
A	0.70	0.75	0.80							
A1		0.02	0.05							
b	0.15	0.20	0.25							
с	0.18	0.20	0.25							
D	2.90	3.00	3.10							
D2	1.55	1.65	1.75							
e		0.40BSC								
Ne		1.60BSC								
Nd		1.60BSC								
Е	2.90	3.00	3.10							
E2	1.55	1.65	1.75							
L	0.35	0.40	0.45							
h	0.20	0.25	0.30							
L/F 载体尺 寸(Mil)	75 x 75									

QFN24 封装

	QFN24 millimeter										
Symbol	Min	Nom	Max								
A	0.70	0.75	0.80								
A1	0	0.02	0.05								
b	0.20	0.25	0.30								
b1		0.16REF									
С	0.18	0.20	0.25								
D	3.90	4.00	4.10								
D2	2.15	2.25	2.35								
e		0.50BSC									
Ne		2.50BSC									
Nd		2.50BSC									
E	3.90	4.00	4.10								
E2	2.15	2.25	2.35								
L	0.35	0.40	0.45								
h	0.30	0.35	0.40								
K	0.425	0.475	0.525								

TSSOP20 封装

	TSSOP20 millimeter								
Symbol	Min	Nom	Max						
A			1.20						
A1	0.05		0.15						
A2	0.80	1.00	1.05						
A3	0.39	0.44	0.49						
b	0.20		0.29						
b1	0.19	0.22	0.25						
С	0.13		0.18						
c1	0.12	0.13	0.14						
D	6.40	6.50	6.60						
Е	6.20	6.40	6.60						
E1	4.30	4.40	4.50						
e		0.65BSC							
L	0.45	0.60	0.75						
L1		1.00BSC							
θ	0		8°						

NOTE:

Dimensions "D" and "E1" do not include mold flash.

SOP20 封装

SECTION B-B

	SOP20 millimeter										
Symbol	Min	Nom	Max								
A			2.65								
A1	0.10		0.30								
A2	2.25	2.30	2.35								
A3	0.97	1.02	1.07								
b	0.35		0.43								
b1	0.34	0.37	0.40								
С	0.25		0.29								
c1	0.24	0.25	0.26								
D	12.70	12.80	12.90								
Е	10.10	10.30	10.50								
E1	7.40	7.50	7.60								
e		1.27BSC									
L	0.70		1.00								
L1		1.40REF									
θ	0		8°								

NOTE:

Dimensions "D" and "E1" do not include mold flash.

丝印说明

QFN20/QFN24 封装

TSSOP20 封装

SOP20 封装

9. 订购信息

Part Number	Flash	RAM	UART	SPI	I2C	ADC	VComp	I/O	LVD	Time r	PWM	PCA	CRC16	Vdd	Package	脚间 距	芯片厚度
HC32F005C6UA-SFN20TR	32K	4K	2	1	1	9*12Bit	2	16+1	\checkmark	6*16Bit	6*16Bit	\checkmark	√	1.8~5.5v	QFN20(3*3)	0.4mm	0.75mm
HC32F005C6PA-SOP20	32K	4K	2	1	1	9*12Bit	2	16+1	√	6*16Bit	6*16Bit	√	√	1.8~5.5v	SOP20	1.27mm	2.65mm
HC32F005C6PA-TSSOP20	32K	4K	2	1	1	9*12Bit	2	16+1	√	6*16Bit	6*16Bit	√	√	1.8~5.5v	TSSOP20	0.65mm	1.2mm
HC32F005C6PA-TSSOP20TR	32K	4K	2	1	1	9*12Bit	2	16+1	√	6*16Bit	6*16Bit	√	√	1.8~5.5v	TSSOP20	0.65mm	1.2mm
HC32F005D6UA-QFN24TR	32K	4K	2	1	1	9*12Bit	2	16+1	√	6*16Bit	6*16Bit	√	√	1.8~5.5v	QFN24(4*4)	0.5mm	0.75mm
HC32F003C4UA-SFN20TR	16K	2K	2	1	1	9*12Bit	2	16+1	√	6*16Bit	6*16Bit	√	√	1.8~5.5v	QFN20(3*3)	0.4mm	0.75mm
HC32F003C4PA-SOP20	16K	2K	2	1	1	9*12Bit	2	16+1	√	6*16Bit	6*16Bit	√	√	1.8~5.5v	SOP20	1.27mm	2.65mm
HC32F003C4PA-TSSOP20	16K	2K	2	1	1	9*12Bit	2	16+1	√	6*16Bit	6*16Bit	√	√	1.8~5.5v	TSSOP20	0.65mm	1.2mm
HC32F003C4PA-TSSOP20TR	16K	2K	2	1	1	9*12Bit	2	16+1	√	6*16Bit	6*16Bit	√	√	1.8~5.5v	TSSOP20	0.65mm	1.2mm

10. 版本记录 & 联系方式

版本	修订日期	修订内容摘要
Rev1.0	2018/1/24	HC32F003 系列 / HC32F005 系列数据手册初版发布。
Rev1.1	2018/4/4	版本更新。
Rev1.2	2018/4/17	修正 Flash 参数。
Rev1.3	2018/4/27	增加3种商业编号。
Rev1.4	2018/5/2	修正产品选型表,更新 VC 电气参数。
Rev1.5	2018/5/22	修正产品选型表,更新 ADC & XTH 电气参数。
Rev1.6	2018/11/1	补充第1章描述,更新第7章电气特性,增加第9章订购信息。
Rev1.7	2018/11/15	第8章中增加"丝印说明", 更正 QFN20/QFN24/TSSOP20 封装尺寸。
Rev1.8	2018/12/28	修正 TSSOP20 封装尺寸。
Rev1.9	2019/2/22	修正以下数据: ①ADC 特性 ②ESD 特性 ③存储器特性中 ECFLASH 最小值
		④TSSOP20 封装尺寸 ⑤QFN20/24 封装丝印说明 ⑥封装尺寸中增加 NOTE
		⑦更新订购信息 ⑧引脚配置中加入 AVSS/AVCC。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: http://www.hdsc.com.cn/mcu.htm

通信地址: 上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

