From integers to real numbers eIUP lecture

Johannes Agerskov PhD student

Institute for Mathematical Sciences University of Copenhagen

May 15, 2020.

Overview

1 ILOs

- 2 Naturals and integers
- 3 Square-roots and rational numbers
- 4 Proof by contradiction

ILOs

After this lecture the student will be able to

- Define and construct the natural numbers, the integers and the rational numbers.
- Understand the concept of a proof by contradiction.
- Show that $\sqrt{2}$ is not a rational number.
- If time permits; be familiar with the construction of real numbers as the completion of the rational numbers.

Natural numbers

The natural numbers are defined as the infinite totally ordered set

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}. \tag{1}$$

These come defined with two compatible binary operations: addition and multiplication denoted by $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and $\cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ respectively.

Natural numbers

The natural numbers are defined as the infinite totally ordered set

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}. \tag{1}$$

These come defined with two compatible binary operations: addition and multiplication denoted by $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and $\cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ respectively.

We also define the set

$$\mathbb{N}_{\times} = \mathbb{N} \setminus \{0\} = \{1, 2, 3, \dots\}. \tag{2}$$

Integers

Requiring all naturals to have additive inverses we obtain integers

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}. \tag{3}$$

With addition and (extended to the negatives) multiplication.

Integers

Requiring all naturals to have additive inverses we obtain integers

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}. \tag{3}$$

With addition and (extended to the negatives) multiplication. We define the even and odd integers by

$$\mathbb{Z}^{\text{even}} = \{..., -4, -2, 0, 2, 4, ...\}, \quad \mathbb{Z}^{\text{odd}} = \{..., -3, -1, 1, 3, ...\}, \tag{4}$$

such that $\mathbb{Z} = \mathbb{Z}^{\mathsf{even}} \cup \mathbb{Z}^{\mathsf{odd}}$.

The rational numbers

Construction of rational numbers

By requiring all integers to have multiplicative inverses and extending addition to these inverses we obtain the rational numbers

$$\mathbb{Q} = \left\{ \frac{n}{m} \mid n \in \mathbb{Z}, \ m \in \mathbb{N}_{\times} \right\}. \tag{5}$$

Reduced fractions

We notice that all rational numbers can be written in a reduced form $\frac{n}{m}$ where $n\in\mathbb{Z}$ and $m\in\mathbb{N}_{\times}$ have no common divisors.

Square-roots and rational numbers

The square-root

We say that $a=\sqrt{b}$ if and only if a>0 and $a^2=b$, i.e.

$$\sqrt{b}^2 = \sqrt{b} \cdot \sqrt{b} = b. \tag{6}$$

Square-roots and rational numbers

Question (we will answer shortly together): If a is a rational number, is \sqrt{a} then also always a rational numbers?

Proof by contradiction

Reductio ad absurdum

A proof by contradiction is a mathematical proof technique, that takes the following form: Let A be a logic statement,

- Assume A is true.
- Prove that A implies B.
- Prove that A implies -B (not B or opposite of B).
- Conclude that A is false (i.e. -A is true).

e.g. We want to show that there is no highest natural number: Thus A="There is a largest natural number (say N)". B="All natural numbers are smaller than N". However, if N is a natural number then N+1 is a natural number and N+1>N which proves -B. Thus we may conclude that -A is true.

Theorem

 $\sqrt{2}$ is not a rational number.

Proof

- Assume that (A) $\sqrt{2}$ is a rational number.
- Then (B) $\sqrt{2} = \frac{a}{b}$ with $a \in \mathbb{Z}$ and $b \in \mathbb{N}_{\times}$ (can assume reduced).
- Notice that then $\frac{a^2}{b^2} = \left(\frac{a}{b}\right)^2 = 2$.
- Continued on next slide...

Proof continued

• Knowing that $\frac{a^2}{b^2} = 2$, is a^2 and even or odd number?

Proof continued

• Knowing that $\frac{a^2}{b^2} = 2$, is a^2 and even or odd number?

Proof continued

• Knowing that $\frac{a^2}{b^2}=2$, is a^2 and even or odd number? (**Even** since $a^2=2b^2$.)

- Knowing that $\frac{a^2}{b^2}=2$, is a^2 and even or odd number? (**Even** since $a^2=2b^2$.)
- Knowing that a^2 is even, is a even or odd?

- Knowing that $\frac{a^2}{b^2}=2$, is a^2 and even or odd number? (**Even** since $a^2=2b^2$.)
- Knowing that a^2 is even, is a even or odd?

- Knowing that $\frac{a^2}{b^2} = 2$, is a^2 and even or odd number? (**Even** since $a^2 = 2b^2$.)
- Knowing that a^2 is even, is a even or odd? (**Even** since a^2 is odd if a is odd.)

- Knowing that $\frac{a^2}{b^2} = 2$, is a^2 and even or odd number? (**Even** since $a^2 = 2b^2$.)
- Knowing that a^2 is even, is a even or odd? (**Even** since a^2 is odd if a is odd.)
- Knowing that a is even, is $\frac{a^2}{2}$ even or odd?

- Knowing that $\frac{a^2}{b^2} = 2$, is a^2 and even or odd number? (**Even** since $a^2 = 2b^2$.)
- Knowing that a^2 is even, is a even or odd? (**Even** since a^2 is odd if a is odd.)
- Knowing that a is even, is $\frac{a^2}{2}$ even or odd?

- Knowing that $\frac{a^2}{b^2}=2$, is a^2 and even or odd number? (**Even** since $a^2=2b^2$.)
- Knowing that a^2 is even, is a even or odd? (**Even** since a^2 is odd if a is odd.)
- Knowing that a is even, is $\frac{a^2}{2}$ even or odd? (**Even** since $\frac{a^2}{2} = a \cdot \frac{a}{2}$ is even if a is even.)

- Knowing that $\frac{a^2}{b^2}=2$, is a^2 and even or odd number? (**Even** since $a^2=2b^2$.)
- Knowing that a² is even, is a even or odd?
 (Even since a² is odd if a is odd.)
- Knowing that a is even, is $\frac{a^2}{2}$ even or odd? (**Even** since $\frac{a^2}{2} = a \cdot \frac{a}{2}$ is even if a is even.)
- Knowing that $\frac{a^2}{2}$ is even, is b^2 even or odd?

- Knowing that $\frac{a^2}{b^2}=2$, is a^2 and even or odd number? (**Even** since $a^2=2b^2$.)
- Knowing that a² is even, is a even or odd?
 (Even since a² is odd if a is odd.)
- Knowing that a is even, is $\frac{a^2}{2}$ even or odd? (**Even** since $\frac{a^2}{2} = a \cdot \frac{a}{2}$ is even if a is even.)
- Knowing that $\frac{a^2}{2}$ is even, is b^2 even or odd?

- Knowing that $\frac{a^2}{b^2} = 2$, is a^2 and even or odd number? (**Even** since $a^2 = 2b^2$.)
- Knowing that a² is even, is a even or odd?
 (Even since a² is odd if a is odd.)
- Knowing that a is even, is $\frac{a^2}{2}$ even or odd? (**Even** since $\frac{a^2}{2} = a \cdot \frac{a}{2}$ is even if a is even.)
- Knowing that $\frac{a^2}{2}$ is even, is b^2 even or odd? (**Even** since $b^2 = \frac{a^2}{2}$. Notice then b is also **Even**.)

- Knowing that $\frac{a^2}{b^2} = 2$, is a^2 and even or odd number? (**Even** since $a^2 = 2b^2$.)
- Knowing that a^2 is even, is a even or odd? (**Even** since a^2 is odd if a is odd.)
- Knowing that a is even, is $\frac{a^2}{2}$ even or odd? (**Even** since $\frac{a^2}{2} = a \cdot \frac{a}{2}$ is even if a is even.)
- Knowing that $\frac{a^2}{2}$ is even, is b^2 even or odd? (**Even** since $b^2 = \frac{a^2}{2}$. Notice then b is also **Even**.)
- We go to breakout rooms and finish the proof!

Go to Padlet https://padlet.com/johannesas/wrgamlv82s844qfs

Proof continued

Questions for Padlet:

- **1** Knowing that a and b are even, is $\frac{a}{b}$ a reduced fraction?
- ② What may we then conclude about our initial assumption that $\sqrt{2}$ is a rational numbers?

Go to Padlet https://padlet.com/johannesas/wrgamlv82s844qfs

Proof continued

Questions for Padlet:

- **1** Knowing that a and b are even, is $\frac{a}{b}$ a reduced fraction?
- ② What may we then conclude about our initial assumption that $\sqrt{2}$ is a rational numbers?

Go to Padlet https://padlet.com/johannesas/wrgamlv82s844qfs

Proof continued

Questions for Padlet:

- **1** Knowing that a and b are even, is $\frac{a}{b}$ a reduced fraction?
- ② What may we then conclude about our initial assumption that $\sqrt{2}$ is a rational numbers?

Go to Padlet https://padlet.com/johannesas/wrgamlv82s844qfs

Proof continued

Questions for Padlet:

- **1** Knowing that a and b are even, is $\frac{a}{b}$ a reduced fraction?
- **2** What may we then conclude about our initial assumption that $\sqrt{2}$ is a rational numbers?

My answers:

- **1** No, $\frac{a}{b}$ is not reduced since 2 is a common divisor of a and b.
- **2** By reductio ad absurdum, we may conclude that $\sqrt{2}$ is **not** a rational number.

The real numbers

What number is $\sqrt{2}$?

- Representing $\sqrt{2}$ by decimal number $\sqrt{2}=1.414...$ we find that $\sqrt{2}$ can always be approximated by a rational number by simply cutting off the decimals at some point, e.g. $1.41=\frac{141}{100}$ and $\sqrt{2}-1.41<0.01$.
- We call all numbers that can be approximated by rational numbers in such a way for real numbers, and we say that they are obtained by completing the rational numbers.

Fun fact!

There are equally many natural numbers, integers, and rational numbers but the real numbers form a substantially larger set. If you were to say how big a percentage of the real numbers the rational numbers make up, it is 0%

Thank you for your attention.

