Problem 1 (HW 3 Problem 3)

Let $R = \{R_t, \mathcal{F}_t; 0 \leq t < \infty\}$ be a Bessel process with dimension $d \geq 2$ starting at r > 0, and define $m = \inf_{t \in [0,\infty)} R_t$.

- (i) Show that if d=2, then m=0 a.e.
- (ii) Show that if $d \ge 3$, then m has the beta distribution $P(m \le c) = (c/r)^{d-2}$ for $0 \le c \le r$.
- (iii) Show that if $r \ge 0$ and $d \ge 3$, then $P(\lim_{t \to \infty} R_t = \infty) = 1$.
- (i) Let $T_l = \inf\{t \geq 0 \mid R_t = l\}$ and $S_L = \inf\{t \geq 0 \mid R_t = L\}$ where l < r < L, and $\tau = T_l \wedge S_L \wedge n$. By similar argument in the proof of Proposition 3.3.22 in BMSC,

$$P\left(S_L < \infty, \, \forall \, L \ge 0 \text{ and } \lim_{L \to \infty} S_L = \infty\right) = 1$$

Applying Ito's rule to $\log R_t$ and by Proposition 3.3.21,

$$\log R_{\tau} = \log r + \int_0^{\tau} \frac{1}{R_s} dB_s$$

because log is C^2 over (l, L). Since τ is a bounded stopping time and $\frac{1}{R_s}$ is bounded over $(0, \tau)$, by optional sampling theorem

$$0 = \mathbb{E}\left[\int_0^\tau \frac{1}{R_s} dB_s\right] = \mathbb{E}[\log R_\tau] - \log r$$

This implies that

$$\log r = \mathbb{E}[\log R_{\tau}] = \log l \cdot P(T_l \leq S_L \wedge n) + \log L \cdot P(S_L \leq T_l \wedge n) + \mathbb{E}[(\log R_n) \mathbb{1}_{\{n \leq S_L \wedge T_l\}}]$$

Let $n \to \infty$, since $P(n < S_l \wedge T_k) \to 0$ and $\log R_n$ is bounded in $[\log l, \log L]$, we have

$$\log r = \log l \cdot P(T_l < S_L) + \log L \cdot P(S_L < T_l)$$

Combined with the fact that $P(T_l \leq S_L) + P(S_L \leq T_l) = 1$, we have

$$P(T_l \le S_L) = \frac{\log L - \log r}{\log L - \log l}$$

Let $L \to \infty$, we have $P(T_l < \infty) = 1$. Note that $P(m \le l) \ge P(T_l < \infty) = 1$, so by letting $l \to 0$, $P(m \le 0) = 1$. Since $m \ge 0$ by definition, we have m = 0 almost surely.

(ii) By exactly the same argument but applying Ito's rule to R_t^{2-d} , we obtain

$$P(T_l \le S_L) = \frac{L^{2-d} - r^{2-d}}{L^{2-d} - l^{d-2}}$$

Let $L \to \infty$, we have $P(T_l < \infty) = (\frac{l}{r})^{d-2}$ and thus $P(m \le l) \ge (\frac{l}{r})^{d-2}$. Notice that for any $\epsilon > 0$, $P(m \le l) \le P(T_{l+\epsilon} < \infty)$. By continuity, $P(T_{l+\epsilon} < \infty) \to P(T_l < \infty)$ as $\epsilon \to 0$. This shows $P(m \le l) = (\frac{l}{r})^{d-2}$.

(iii) Define events $E_n = \{R_t > n, \ \forall t \geq T_{n^3}\}$. By strong Markov property and the result in (ii),

$$P(E_n^c) = P(R_t \le n \text{ for some } t > T_{n^3}) = P(m \le n \mid R_0 = n^3) = (1/n^2)^{d-2}$$

Thus, $\sum_{n=1}^{\infty} P(E_n^c) < \infty$, and by Borel-Cantelli lemma, $P(E_n^c, i.o.) = 0$. This shows that there exists N such that for $n \geq N$, $P(E_n) = 1$. Again, since $P(T_{n^3} < \infty) = 1$, $\lim_{t \to \infty} R_t = \infty$ almost surely.

Problem 2 (HW 3 Problem 5)

Let $W = \{W_t, \mathcal{F}_t; 0 \leq t < \infty\}$ be a standard, one-dimensional Brownian motion, and let T be a stopping time of $\{\mathcal{F}_t\}$ with $\mathbb{E}[\sqrt{T}] < \infty$. Prove the Wald identities $\mathbb{E}[W_T] = 0$ and $\mathbb{E}[W_T^2] = \mathbb{E}[T]$.

Note that W is a martingale, so $\{W_{T\wedge t}, \mathcal{F}_t; 0 \leq t < \infty\}$ is also a martingale. Thus, $\mathbb{E}[W_{T\wedge t}] = \mathbb{E}[W_0] = 0$. Also $W^2 - t$ is a martingale, so $\{W_{T\wedge t}^2 - T \wedge t, \mathcal{F}_t; 0 \leq t < \infty\}$ is also a martingale. Thus, $\mathbb{E}[W_{T\wedge t}^2 - T \wedge t] = 0$ implies that $\mathbb{E}[W_{T\wedge t}^2] = \mathbb{E}[T \wedge t]$. By BDG inequality with p = 1, there exists a constant C such that

$$\mathbb{E}\left[\sup_{0 \le t \le T} |W_t|\right] \le C \mathbb{E}\left[\langle W \rangle_T^{1/2}\right] = C \mathbb{E}\left[\sqrt{T}\right] < \infty$$

Also, $\mathbb{E}[\sqrt{T}] < \infty$ implies $P(T < \infty) = 1$, so $W_{T \wedge t} \to W_T$ a..e.. Thus, using $\sup_{0 \le t \le T} |W_t|$ as dominating function of $W_{T \wedge t}$, by DCT we have $W_{T \wedge t} \to W_T$ in L^1 . This shows $\mathbb{E}[W_T] = \lim_{t \to \infty} \mathbb{E}[W_{T \wedge t}] = 0$.

Since $W_{T \wedge t} \to W_T$ in L^1 , $W_{T \wedge t}$ is a martingale with last element W_T , i.e., $W_{T \wedge t} = \mathbb{E}[W_T | \mathcal{F}_t]$. By Jensen's inequality for conditional expectation,

$$W_{T \wedge t}^2 = (\mathbb{E}[W_T \mid \mathcal{F}_t])^2 \le \mathbb{E}[W_T^2 \mid \mathcal{F}_t]$$

Taking expectation on both sides, $\mathbb{E}[W_{T\wedge t}^2] \leq \mathbb{E}[W_T^2]$ for all $t \geq 0$. Also, by Fatou's lemma, we have

$$\mathbb{E}\left[W_T^2\right] \leq \liminf_{t \to \infty} \mathbb{E}[W_{T \wedge t}^2] \leq \limsup_{t \to \infty} \mathbb{E}[W_{T \wedge t}^2] \leq \mathbb{E}[W_T^2]$$

Thus, all inequalities become equalities and $\lim_{t\to\infty} \mathbb{E}[W_{T\wedge t}^2] = E[W_T^2]$. By MCT, $\mathbb{E}[T\wedge t]\to\mathbb{E}[T]$. Thus, by taking limit on both sides of $\mathbb{E}[W_{T\wedge t}^2] = \mathbb{E}[T\wedge t]$, we obtain the Wald identities.

Problem 3 (HW 3 Problem 7)

Suppose X = X(0) + M + A is a continuous semimartingale; and H, $\{H^{(n)}\}_{n \in \mathbb{N}}$ progressively measurable and locally bounded (e.g., continuous-path) processes. Assume that there exists a progressively measurable process $K \geq 0$, so that

- $H^{(n)}(t,\omega) \to H(t,\omega)$ as $n \to \infty$ for every $t \in [0,T]$
- $|H^{(n)}(t,\omega)| \leq K(t,\omega)$, for every $(t,n) \in [0,T] \times \mathbb{N}$
- $\int_0^T K^2(t,\omega) d\langle M \rangle_t(\omega) + \int_0^T K(t,\omega) dA^{(\pm)}(t,\omega) < \infty$

hold for a.e. $\omega \in \Omega$. Show that $I_T^X(H^{(n)}) \to I_T^X(H)$ as $n \to \infty$ in probability.

Let $V_t = X(0) + A_t$, then by the usual DCT, we have $I_T^V(H^{(n)}) \to I_T^V(H)$ a.e. because V_t is of bounded variation. Thus, it suffices to show that $I_T^M(H^{(n)}) \to I_T^M(H)$. For each $j \ge 1$, define a stopping time

$$T_j = \inf \left\{ s \ge 0 \mid \int_0^s K_u^2 \, d\langle M \rangle_u \ge j \right\} \wedge t$$

By the third property, $P(T_j = T) \to 1$ as $j \to \infty$. Thus, fix j and n, we have

$$\begin{split} P(|I_{T}^{M}(H^{(n)}) - I_{T}^{M}(H)| > \delta) &= P(|I_{T}^{M}(H^{(n)}) - I_{T}^{M}(H)| > \delta, T_{j} = T) + P(|I_{T}^{M}(H^{(n)}) - I_{T}^{M}(H)| > \delta, T_{j} < T) \\ &\leq P(|I_{T_{j}}^{M}(H^{(n)}) - I_{T_{j}}^{M}(H)| > \delta) + P(T_{j} < T) \\ &\leq \frac{1}{\delta^{2}} \mathbb{E}[|I_{T_{j}}^{M}(H^{(n)}) - I_{T_{j}}^{M}(H)|^{2}] + P(T_{j} < T) \\ &= \frac{1}{\delta^{2}} \mathbb{E}[I_{T_{j}}^{\langle M \rangle}((H^{(n)} - H)^{2})] + P(T_{j} < T) \end{split}$$

Notice that $I_{T_j}^{\langle M \rangle}((H^{(n)}-H)^2)$ is a Lebesgue integral, so by the usual DCT on $(H^{(n)}-H)^2$, it converges to 0 a.e.. Using $I_{T_j}^{\langle M \rangle}(K^2) \leq j$ as dominating function, by usual DCT on $I_{T_j}^{\langle M \rangle}((H^{(n)}-H)^2)$, we have $\mathbb{E}[I_{T_j}^{\langle M \rangle}((H^{(n)}-H)^2)] \to 0$. Thus, by taking $n \to \infty$, we have $\lim_{n \to \infty} P(|I_T^M(H^{(n)}) - I_T^M(H)| > \delta) \leq P(T_j < T)$ for all j. Take $j \to \infty$, we have $\lim_{n \to \infty} P(|I_T^M(H^{(n)}) - I_T^M(H)| > \delta) = 0$.

Problem 4 (HW 3 Problem 8)

Let T be a stopping time of the filtration $\{\mathcal{F}_t^W\}$ with $P(T<\infty)=1$. A necessary and sufficient condition for the validity of the Wald identity $\mathbb{E}[\exp(\mu W_T - \frac{1}{2}\mu^2 T)] = 1$, where μ is a given real number, is that $P^{(\mu)}(T<\infty)=1$. In particular, if $b\in\mathbb{R}$ and $\mu b<0$, then this condition holds for the stopping time $S_b\triangleq\inf\{t\geq 0;W_t-\mu t=b\}$.

Notice that $\{T < \infty\} = \bigcup_{k=1}^{\infty} \{T \le k\}$. Since $P^{(\mu)}$ is a probability measure on $(\Omega, \mathcal{F}_{\infty}^{W})$, it is continuous from below, i.e., $P^{(\mu)}(T < \infty) = \lim_{k \to \infty} P^{(\mu)}(T \le k)$. Since $\{T \le k\} \in \mathcal{F}_{k}^{W}$, by BMSC, $P^{(\mu)}(T \le k) = \mathbb{E}[1_{\{T \le k\}} Z_{k}]$, where $Z_{t} = \exp(\mu W_{t} - \frac{1}{2}\mu^{2}t)$ is a continuous martingale. Thus,

$$P^{(\mu)}(T<\infty)=1\iff \lim_{k\to\infty}\mathbb{E}[1_{\{T\leq k\}}Z_k]=1$$

Notice that by optional sampling theorem, $Z_{T \wedge t}$ is also a continuous martingale because $T \wedge t$ is a bounded stopping time. Since $\mathbb{E}[Z_{T \wedge t}] = \mathbb{E}[Z_t] = 1$ for all $t \geq 0$,

$$1 = \mathbb{E}[Z_0] = \mathbb{E}[Z_{T \wedge t}] = \mathbb{E}[1_{\{T < t\}}Z_T] + \mathbb{E}[1_{\{T > t\}}Z_t] = \mathbb{E}[1_{\{T < t\}}Z_T] + 1 - \mathbb{E}[1_{\{T < t\}}Z_t]$$

This implies that $\mathbb{E}[1_{T\leq t}Z_T] = \mathbb{E}[1_{T\leq t}Z_t]$ for all $t\geq 0$. Therefore,

$$P^{(\mu)}(T<\infty)=1\iff \lim_{k\to\infty}\mathbb{E}[1_{\{T\leq k\}}Z_T]=1$$

Notice that $1_{\{T \leq k\}} Z_T$ is nonnegative and increasing in k, so by MCT, $\mathbb{E}[1_{\{T \leq k\}} Z_T] \to \mathbb{E}[1_{\{T < \infty\}} Z_T]$ as $k \to \infty$. Since $P(T < \infty) = 1$, we have $\mathbb{E}[1_{\{T < \infty\}} Z_T] = \mathbb{E}[Z_T]$. Thus,

$$P^{(\mu)}(T < \infty) = 1 \iff \mathbb{E}[Z_T] = 1$$

and the desired necessary and sufficient statement follows.

Note that under measure $P^{(\mu)}$, $\tilde{W}_t = W_t - \mu t$ is a Brownian motion. Thus, $S_b = \inf\{t \geq 0 \mid \tilde{W}_t = b\}$ and by the known result from the usual Brownian motion, $P^{(\mu)}(S_b < \infty) = 1$. It suffices to show $P(S_b < \infty) = 1$. Consider

$$P(S_b \in dt) = \mathbb{E}[1_{\{S_b \in dt\}}] = \mathbb{E}[1_{\{S_b \in dt\}}] = \mathbb{E}^{P^{(\mu)}}[1_{\{S_b \in dt\}}e^{-\mu W_t + \frac{1}{2}\mu^2 t}]$$

$$= \mathbb{E}^{P^{(\mu)}}[1_{\{S_b \in dt\}}e^{-\mu \tilde{W}_t - \frac{1}{2}\mu^2 t}] = e^{-\mu b - \frac{1}{2}\mu^2 t}\mathbb{E}^{P^{(\mu)}}[1_{\{S_b \in dt\}}] = e^{-\mu b - \frac{1}{2}\mu^2 t}P^{(\mu)}(S_b \in dt)$$

Thus, we have

$$P(S_b \le t) = \int_0^t e^{-\mu b - \frac{1}{2}\mu^2 t} P^{(\mu)}(S_b \in dt)$$

By letting $t \to \infty$, we have

$$P(S_b < \infty) = e^{-\mu b} \mathbb{E}^{P^{(\mu)}} [e^{-\frac{1}{2}\mu^2 S_b}]$$

Again by the result for usual Brownian motion, $\mathbb{E}^{P^{(\mu)}}[e^{-\frac{1}{2}\mu^2S_b}] = e^{-|\mu b|}$, so

$$P(S_b < \infty) = e^{-\mu b - |\mu b|} = \begin{cases} 1 & \text{if } \mu b < 0 \\ e^{-2\mu b} & \text{if } \mu b \ge 0 \end{cases}$$

Problem 5 (HW 3 Problem 12)

Suppose M, N are local martingales with continuous paths with $M_0 = N_0 = 0$, $\langle M \rangle \equiv \langle N \rangle =: A$, $A_\infty = \infty$, and $\langle M, N \rangle \equiv 0$. Show that the Brownian Motions β, γ in the DDS representations of these two local martingales $M_t = \beta_{A_t}$, $N_t = \gamma_{A_t}$, $0 \le t < \infty$ are independent.

Define a stopping time T_s for each $s \geq 0$ by $T_s = \inf\{t \geq 0 \mid A_t \geq s\}$. Then we have $\beta_s = M_{T_s}$ and $\gamma_s = N_{T_s}$. By the proof of DDS theorem, we know that β and γ are adapted to the same filtration, denoted by $\mathcal{G}_s = \mathcal{F}_{T_s}$. Since $\langle M, N \rangle \equiv 0$, by the uniqueness of Doob-Meyer decomposition, $M_t N_t$ is a continuous local martingale. By Problem 5.24 in Chapter 1 of BMSC, $M_{t \wedge T_n} N_{t \wedge T_n}$ is a uniformly integrable martingale for every $n \in \mathbb{N}^+$. By optional sampling theorem, for any $s \leq u \leq n$, we have

$$\mathbb{E}[\beta_u \gamma_u \mid \mathcal{G}_s] = \mathbb{E}[M_{T_u} N_{T_u} \mid \mathcal{F}_{T_s}] = \mathbb{E}[M_{T_u \wedge T_n} N_{T_u \wedge T_n} \mid \mathcal{F}_{T_s}] = M_{T_s \wedge T_n} N_{T_s \wedge T_n} = M_{T_s} N_{T_s} = \beta_s \gamma_s$$

Thus, $\beta_u \gamma_u$ is a \mathcal{G} -martingale and $\langle \beta_u, \gamma_u \rangle \equiv 0$. By Levy's characterization of Brownian motion, (β, γ) is a 2-dimensional Brownian motion w.r.t. \mathcal{G} , and hence β is independent of γ .