FIRST SEMESTER 2022-2023

Course Handout Part II

Date: 29-08-2022

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : BITS F431

Course Title : Flexible Manufacturing System

Instructor-in-Charge : Dr. Abhishek Sarkar

Instructors : Dr. Abhishek Sarkar (L,P), Ahsan Ul Hag (P)

Scope and Objective of the course:

Introduction CAD/CAM systems, overview of FMS, system hardware and general functions, material handling system, work holding systems, cutting tools and tool management, physical planning of system, software structure functions and description, cleaning and automated inspection, communications and computer networks for manufacturing, quantification of flexibility, human factors in manufacturing, FMS and CIM in action (case studies), justification of FMS, modeling for design, planning and operation of FMS.

Scope and Objective of the course:

The purpose of this course is to provide introductory as well as thorough knowledge on flexible manufacturing systems. Beside detailed discussion on different components of the FMS, CAD-CAM, Robot kinematics, NC Control, emphasis will be given also to mathematical modeling, flexibility index, etc. The topics are aimed at building up a professional career in the field of flexible manufacturing systems.

Text Book:

(T) Shivanand et al., *Flexible Manufacturing System*, New Age International.

Reference Books:

- (R1) P Radhakrishnan et al., CAD/CAM/CIM, New Age International Pvt Ltd; 4th edition, 2018.
- (R2) Chang, Wysk & Wang, Computer Aided Manufacturing, Pearson Education.
- (R3) Y Koren, Computer Control of Manufacturing System, McGraw Hill Education; 1st edition, 2017.
- (R4) N Viswanadham & Y Narahari, Performance Modeling of Automated Manufacturing System, PHI.
- (R5) B S Nagendra Parashar, Cellular Manufacturing System, PHI.
- (R6) Mikell P. Groover, <u>Automation, Production Systems, and Computer-Integrated Manufacturing</u>, Pearson Education; 4th edition, 2016.

Course Plan:

Lecturer No.	Learning Objectives	Topics to be covered	Chapter in the Text Book
1-2	Introduction to FMS and some of its components	Flexible Manufacturing Cell, Subsystems of FMS	[T:1, 2], [R1:19], [R6:16]
3-4	Material Handling System	Material Handling Systems (AGV), AS/RS	Class note, [R6:11]
5-6	Tool Management	Tool Requirement Planning Tool Room Service Cutting Tool and Tool Management	Class note, [T:9]

7-10	Computer Aided	Transformation	[D1,C 17]
1-10	Computer Aided		[R1:6, 17],
	Design	Design of Curved Shapes,	[R2:4,5], [R3:5]
		Surface Modeling, Solid Modeling,	
		Drawing Interchange Files,	
11-15	NC Machines	Operation of a CNC,	[R1:12],
		Machining Centers,	[T:5],
		Part Programming	[R3:3]
		DDA Integrator	
16-20	Robotics	Industrial Robotics,	Class note
		DH Parameters,	[T:8]
		Robot Kinematics,	
		Calibration	
21-23	Control for	Control loops for NC System,	[R3:6,7,8]
	Manufacturing	Computerized Numerical Control,	
		Adaptive Control	
24-26	Physical Planning	Programmable Logic Controller,	[T-10]
	of System	Ladder Program	
27-30	System Modeling	DTMC	[R4:3]
		CTMC	
31-33	Quantification of	Cell Formation,	[R5:1,2,4],
	flexibility	Evaluation of Cellular Manufacturing,	[R6:15],
		Machine flexibility	-
35	Cleaning and	Inspection and testing,	[R1:14], [T:7],
	automated inspection	Coordinate measuring machine,	[R6:22]
		,	Class note
36	Communications and	Principles of Networking,	[R1:15]
	computer networks for	, 9 ,	[]
	manufacturing		
37-38	Software and	Software structure functions and	[T:11],
5. 55	Human factors	description,	Class note
		Modular Software design,	
		Human factors in manufacturing,	
39-40	Justification of FMS	FMS and CIM in action,	[T:12],
39-40	Justilication of Fivis	Case studies,	Class note
		Modeling for design, planning and	Class Hole
		operation of FMS,	
	1	Beyond FMS	

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Practical		20%	To be announced during classes	OB*
Quiz		10%	To be announced during classes	OB*
Project		10%	To be presented 1 week before the beginning of Comprehensive exams	OB*
Mid-sem	90 min	25%	01/11 9.00 - 10.30AM	CB*
Comprehensive- Examination	3 hrs	35%	20/12 FN	CB*

Chamber Consultation Hour: Thursday 5-6 pm (except holidays).

Notices: All notices will be put up on CMS only.

Make-up Policy: Make-up will be given with prior concern and genuine reasons only.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE