A C H I L L E C A N N A V A L E

APPUNTI RETI WIRELESS

2023

CIAO! QUESTI APPUNTI SONO FRUTTO DEL MIO STUDIO E DELLA MIA INTERPRETAZIONE, QUINDI POTREBBERO CONTENERE ERRORI, SVISTE O COSE MIGLIORABILI. BUONO STUDIO 📚 🚣

Reti Wireless

Riassunto da

Achille Cannavale

Indice

1	Intr	Introduzione						
	1	Reti V	Vireless					
		1.1	Propagazione in spazio libero					
		1.2	Segmento di accesso					
	2	Hand	l-off					
	3	Inter	Interferenza Multi Utente					
	4	Tecni	che di Accesso Multiplo					
		4.1	FDMA (Frequency Division Multiple Access) 10					
		4.2	TDMA (Time Division Multiple Access) 10					
	5	Fadin	ng					
		5.1	Path-Loss					
		5.2	Shadowing					
	6	Cana	le Wireless					
		6.1	Doppler Spread					
		6.2	Tempo di Coerenza					
		6.3	Multipath Delay Spread					
		6.4	Banda di Coerenza					
		6.5	Selettività					
	7	Cana	le Flat Fading					
		7.1	Fading di Rayleigh					
		7.2	Fading di Rice					
	8	Stima	a di Canale					
2	Single Link 17							
	1	Paran	netri di Canale					
		1.1	Capacità di canale					
		1.2	Efficienza Energetica					
	2	Cana	le SISO (Single Input Single Output)					
	3		le SIMO (Single Input Multiple Output)					
		3.1	Capacità del canale SIMO					
		3.2	EE del canale SIMO					
		3.3	Filtro Adattato / MRC per Canali SIMO 19					

INDICE

		3.4	Antenna Selection					
	4	Cana	ale MISO (Multiple Input Single Output) 21					
		4.1	Capacità del canale MISO					
		4.2	EE del canale MISO					
		4.3	MTC (Maximum Transmit Combining)					
		4.4	Antenna Selection					
	5	Cana	ale MIMO (Multiple Input Multiple Output) 23					
		5.1	Trasmissione					
		5.2	Ricezione					
		5.3	Capacità del canale MIMO					
		5.4	Efficienza Energetica del Canale MIMO 28					
3	Multi Link: Canale SIMO Multi-Utente 29							
	1	Uplii	nk					
		1.1	Sum-Rate					
		1.2	Global Energy Efficency e sum-EE					
		1.3	Filtro Adattato (MRC)					
		1.4	Zero-Forcing					
		1.5	Ricevitore LMMSE					
	2	Dow	nlink					
		2.1	Maximum Trasmit Combining					
		2.2	Zero-Forcing Beamforming					
	3	Mass	sive MIMO					
4		eti Neurali 43						
	1	Ai, M	Sachine Learning, Deep Learning					
		1.1	Apprendimento					
	2	Appr	rendimento Supervisionato					
		2.1	Training Set					
		2.2	Validation Set					
		2.3	Test Set					
		2.4	Overfitting e Uderfitting 45					
	3	Deep	Learning					
		3.1	Classificazioni delle ANN					
	4	Fully	r-Connected Neural Network 47					
		4.1	Funzioni di Attivazione 47					
	5	Conv	volutional Neural Network					
		5.1	Layer Convoluzionali					
		5.2	Pooling Layer					
	6	Adde	estramento di Reti Neurali Artificiali 50					
		6.1	ANN Training					

INDICE 5

6.2	Algoritmo del Gradiente	50
6.3	Metodo del Gradiente Stocastico	51

INDICE 6

Capitolo 1

Introduzione

1 Reti Wireless

Qualunque comunicazione avvenga tramite propagazione di onde nell'etere viene detta **Comunicazione Wireless**.

Essa è caratterizzata da:

- Frequenza Portante e Banda
- Potenza del segnale

1.1 Propagazione in spazio libero

La potenza relativa ad un segnale radio in spazio libero segue questa formula:

$$P_r = P_t G_t G_r \left(\frac{\lambda}{4\pi d}\right)^2 = P_t G_t G_r \left(\frac{c}{4\pi d f_0}\right)^2$$

dove:

- f_0 è la frequenza portante
- d è la distanza tra Tx e Rx
- P_t e P_r sono potenza trasmessa e potenza ricevuta
- $c = 3 * 10^8 m/s$
- G_t e G_r sono i guadagni in trasmissione e ricezione

Quindi la potenza si attenua con il quadrato della distanza.

1.2 Segmento di accesso

Il territorio da coprire viene diviso in zone dette **celle** in cui vi è almeno una stazione **radio-base** (BS).

Differenziamo poi:

- canale di **Uplink** (utenti mobili verso la stazione radio-base)
- canale di **Downlink** (stazione radio-base verso gli utenti mobili)

2 Hand-off

L'Hand-off è una procedura con cui un utente mobile viene sganciato da una BS e agganciato da un'altra.

Possiamo dividerlo in due categorie:

- Hard Hand-off, in cui il terminale può essere servito SOLO da una BS
- **Soft Hand-off**, in cui il terminale può essere servito da due BS allo stesso tempo

3 Interferenza Multi Utente

Dato che il canale Wireless è un mezzo di comunicazione **condiviso**, qualunque trasmissione sarà soggetta a **interferenze** dovute agli altri segnali

degli **altri nodi della rete**.

Tipicamente ha una potenza **molto più significativa rispetto al rumore termico**, quindi è il problema principale da dover risolvere nelle trasmissioni Wireless, per questo motivo è necessario l'uso di tecniche di accesso multiplo.

4 Tecniche di Accesso Multiplo

4.1 FDMA (Frequency Division Multiple Access)

La **FDMA** (Frequency Division Multiple Access) assegna a ciascun utente una banda di frequenze dedicata:

Il ricevitore potrà così estrarre il segnale desiderato attraverso un **filtro passa-banda reale**.

Tuttavia lo spettro di frequenze è limitato!! Quindi le bande di frequenza vengono riutilizzate tra celle non adiacenti, per far in modo che l'attenuazione del segnale dovuta alla distanza, non crei interferenza.

4.2 TDMA (Time Division Multiple Access)

Il **TDMA** (Time Division Multiple Access) assegna a ciascun utente uno slot temporale dedicato:

Il ricevitore potrà così estrarre il segnale desiderato moltiplicando per un **impulso rettangolare**.

5 Fading

Il segnale che parte dal trasmettitore si propagherà attraverso dei **cammini multipli** e ciò vuol dire che al ricevitore arriveranno delle **sovrapposizioni** del segnale trasmesso con **ritardi diversi**.

Questo effetto che caratterizza il Canale Wireless viene detto **Fading** e viene trattato come una realizzazione di una **variabile aleatoria**.

5.1 Path-Loss

Il **Path-Loss** descrive l'assorbimento del segnale da parte degli oggetti presenti tra T_x e R_x :

$$P_r = P_t G_t G_r \left(\frac{c}{4\pi f_0}\right)^2 \cdot \frac{1}{d^{\eta}}$$

5.2 Shadowing

Lo **Shadowing** rappresenta anch'esso la densità di ostacoli tra T_x e R_x , ma è modellata come una variabile aleatoria **log-normale**.

6 Canale Wireless

Quindi sfruttando la sovrapposizione degli effetti possiamo rappresentare il segnale ricevuto nel seguente modo:

$$r(t) = \sum_{k=1}^{K} \alpha_k(t) \cdot s(t - \tau_k(t))$$

6.1 Doppler Spread

Il **Doppler Spread** misura la selettività del canale dovuta alla tempo-varianza dei ritardi di propagazione:

$$D_s = \max_{i,j} \left| \tau'_i(t) - \tau'_j(t) \right| \cdot f_0$$

6.2 Tempo di Coerenza

Il **Tempo di Coerenza** misura il tempo durante il quale il Canale Wireless si può ritenere stazionario:

$$T_c = \frac{1}{4D_s}$$

6.3 Multipath Delay Spread

Il **Multipath Delay Spread** misura la selettività del canale dovuta alle differenze tra i ritardi di propagazione:

$$T_s = \max_{i,j} \left| \tau_i(t) - \tau_j(t) \right|$$

6.4 Banda di Coerenza

La **Banda di Coerenza** misura la banda di frequenze in cui il Canale Wireless si può ritenere costante:

$$B_c = \frac{1}{2T_d}$$

Una volta definite queste quantità, possiamo distinguere:

6.5 Selettività

Selettività nel Tempo

Sia T_s il tempo di simbolo:

- Se $T_c >> T_s$ si parla di **Flat Fading nel tempo**.
- Se $T_c \ll T_s$ si parla di canale selettivo nel tempo.

Selettività in Frequenza

Sia B_s la banda:

- Se $B_c >> B_s$ si parla di **Flat Fading in frequenza**.
- Se $B_c << B_s$ si parla di canale selettivo in frequenza.

7 Canale Flat Fading

Consideriamo un canale Flat Fading nel tempo e in frequenza:

- $T_c >> T_s$
- $B_c >> T_s$

L'effetto complessivo del Canale Wireless può essere espresso da un singolo coefficiente aleatorio:

$$h = \underbrace{\sqrt{G_t G_r} \left(\frac{c}{4\pi f_0}\right) \cdot \frac{1}{d^{\eta/2}}}_{Path-Loss} \underbrace{\psi}_{Shadowing} \underbrace{\delta}_{Fading}$$

- ψ è una v.a. log-normale
- $\delta \sim CN(\mu, \sigma_{\delta}^2)$

Quindi ogni T_c si ha una nuova realizzazione di h!!

7.1 Fading di Rayleigh

Nel caso in cui $\mu = 0$, $|\delta|$ è distribuito come una variabile di **Rayleigh**.

7.2 Fading di Rice

Nel caso in cui $\mu \neq 0$, $|\delta|$ è distribuito come una variabile di **Rice**.

8 Stima di Canale

Come conoscere la realizzazione di h?

Essendo consci del fatto che h è costante durante il Tempo di Coerenza, trasmettiamo una sequenza di simboli noti (sequenza di training) $s_1, ..., s_J$

Quindi riceveremo:

$$\underline{\boldsymbol{r}} = \sqrt{p}h\underline{\boldsymbol{s}} + \underline{\boldsymbol{n}} = \begin{bmatrix} r_1 \\ \cdot \\ \cdot \\ \cdot \\ r_J \end{bmatrix} = \sqrt{p}h \begin{bmatrix} s_1 \\ \cdot \\ \cdot \\ \cdot \\ s_J \end{bmatrix} + \begin{bmatrix} n_1 \\ \cdot \\ \cdot \\ \cdot \\ n_J \end{bmatrix}$$

Moltiplicheremo poi il vettore \underline{r} con il vettore \underline{s}^H :

$$y = \underline{\mathbf{s}}^{H}\underline{\mathbf{r}} = \sqrt{p}h||\underline{\mathbf{s}}||^{2} + \underline{\mathbf{s}}^{H}\underline{\mathbf{n}} =$$
$$= \sqrt{p}h||\underline{\mathbf{s}}||^{2} + w$$

dove $w \sim CN(0, \sigma^2 ||s||^2)$

Quindi data la **sequenza di training** <u>s</u>, usando metodi di stima possiamo ottenere una **stima di h**.

Tuttavia in ogni **intervallo di coerenza**, prima di poter iniziare a comunicare *bisogna stimarsi il canale h*.

Capitolo 2

Single Link

Parametri di Canale

1.1 Capacità di canale

La **Capacità** di un canale è il massimo rate a cui è possibile trasmettere, avendo una probabilità di errore piccola a piacere:

$$C = B \log_2(1 + SNR) [bit/s]$$

Da notare è che la capacità non dipende nè dalla modulazione nè dalla codifica di canale in uso.

1.2 Efficienza Energetica

L'**Efficienza Energetica** di un canale di comunicazione misura quanti bit possono essere trasmessi in maniera affidabile per Joule di energia consumata:

$$EE = \frac{C}{P_t} = \frac{B\log_2(1 + SNR)}{\mu p + P_c} [bit/J]$$

dove:

- $\mu \geq 1$ è l'inverso dell'efficienza dell'amplificazione di trasmissione
- P_c è la potenza generata dai circuiti del sistema che dipende dal sistema utilizzato.

2 Canale SISO (Single Input Single Output)

Consideriamo una singola antenna in trasmissione e in ricezione.

Il segnale ricevuto è:

$$r = \sqrt{p}hs + n$$

L'SNR sarà:

$$SNR = \frac{|\sqrt{p}h|^2 \mathbb{E}\left[|s|^2\right]}{\mathbb{E}\left[|n|^2\right]} = \frac{p|h|^2}{\sigma^2}$$

La **Capacità** del canale **SISO** è:

$$C_{SISO} = B \log_2 \left(1 + \frac{p|h|^2}{\sigma^2} \right) [bit/s]$$

L'**Efficienza Energetica** del canale **SISO** è:

$$EE_{SISO} = \frac{B\log_2\left(1 + \frac{p|h|^2}{\sigma^2}\right)}{\mu p + P_c} [bit/J]$$

3 Canale SIMO (Single Input Multiple Output)

Consideriamo un canale **Flat-Fading** per una trasmissione in cui abbiamo una sola antenna trasmittente (antenna che immette l'input) e più antenne riceventi (antenne di output).

Il segnale ricevuto dall'I-esima antenna è:

$$r_l = \sqrt{p}h_l s + n$$

Quindi la BS riceve un vettore L x 1 dato da:

$$\underline{\boldsymbol{n}} \sim CN(0, \sigma^2 \underline{\boldsymbol{I}})$$
 i.i.d.

3.1 Capacità del canale SIMO

$$C_{SIMO} = B \log_2 \left(1 + \frac{p||\underline{\boldsymbol{h}}||^2}{\sigma^2} \right) [bit/s]$$

3.2 EE del canale SIMO

$$E_{SIMO} = \frac{B \log_2 \left(1 + \frac{p||\underline{\boldsymbol{h}}||^2}{\sigma^2}\right)}{\mu p + P_c} [bit/J]$$

3.3 Filtro Adattato / MRC per Canali SIMO

Si può raggiungere la capacità del canale SIMO **filtrando linearmente** il vettore ricevuto:

$$y = c^H r = \sqrt{p} c^H h s + c^H n = \sqrt{p} z + w$$

Quindi dopo il filtro l'SNR sarà:

$$SNR = \frac{p\mathbb{E}\left[|z|^2\right]}{\mathbb{E}\left[|w|^2\right]}$$

Esaminando il termine al numeratore:

$$p\mathbb{E}\left[|z|^2\right] = p\mathbb{E}\left[|s|^2\right] |\underline{\boldsymbol{c}}^H\underline{\boldsymbol{h}}|^2 = p|\underline{\boldsymbol{c}}^H\underline{\boldsymbol{h}}|^2 \le p||\underline{\boldsymbol{c}}||^2||\underline{\boldsymbol{h}}||^2 \text{ Per Shwartz}$$

Quindi si raggiunge l'uguaglianza quando **c** e **h** sono **paralleli**.

Esaminando ora il denominatore, capiamo che w è ancora una variabile aleatoria Gaussiana, quindi:

$$\mathbb{E}[w] = \underline{\boldsymbol{c}}^H \, \mathbb{E}[n] = 0$$

$$\mathbb{E}[|w|^2] = \mathbb{E}[w \, w^*] = \underline{\boldsymbol{c}}^H \mathbb{E}[\underline{\boldsymbol{n}} \, \underline{\boldsymbol{n}}^H] \, \underline{\boldsymbol{c}} = \sigma^2 ||\underline{\boldsymbol{c}}||^2$$

Quindi Il Massimo SNR ottenibile dopo il filtro è:

$$SNR = \frac{p|\underline{\boldsymbol{h}}|^2||\underline{\boldsymbol{e}}||^2}{\sigma^2||\underline{\boldsymbol{e}}||^2} = \frac{p||\underline{\boldsymbol{h}}||^2}{\sigma^2}$$

che può essere ottenuto scegliendo $\mathbf{c} = \alpha \mathbf{h}$.

Tale filtro si dice **Filtro Adattato** oppure **Maximum Reciver Combining** (MRC)

3.4 Antenna Selection

Con il metodo di **Antenna Selection** si riceve solo dall'antenna con il canale migliore:

$$\hat{h} = \max_{l \in [1, L]} |h_l|$$

Il suo SNR sarà:

$$SNR = \frac{p|\hat{h}|^2}{\sigma^2}$$

Quindi avremmo:

$$R = B \log_2 \left(1 + \frac{p|\hat{h}|^2}{\sigma^2} \right)$$

$$EE = \frac{B\log_2\left(1 + \frac{p|\hat{h}|^2}{\sigma^2}\right)}{\mu p + P_c}$$

4 Canale MISO (Multiple Input Single Output)

Consideriamo un canale **Flat-Fading** per una trasmissione in cui abbiamo una sola antenna ricevente (antenna di output) e più antenne trasmittenti (antenne che immettono l'input).

Il canale che va dall'l-esima antenna della BS verso ciascun terminale mobile è:

$$y_l = \sqrt{p} \ q_l \ g_l^* \ s$$

dove:

- g_l^* è il Coefficiente di Downlink Utente-L-esima antenna trasmittente
- q_l è il Coefficiente di Beamforming dell'l-esima antenna trasmittente, tale che $||\boldsymbol{q}||^2=1$
- La potenza del segnale trasmesso sarà quindi: $P = \sum_{l=1}^{L} p|q_l|^2 = p||\underline{\textbf{q}}||^2 = p$

Quindi il terminale mobile riceve la sovrapposizione dei segnale dalle L antenne della BS:

$$r = \sqrt{p} \left(\sum_{l=1}^{L} g_l^* \ q_l \right) s + n = \sqrt{p} \ \underline{\boldsymbol{g}}^H \ \underline{\boldsymbol{q}} \ s + n$$

4.1 Capacità del canale MISO

$$C_{MISO} = B \log_2 \left(1 + \frac{p||\underline{\mathbf{g}}||^2}{\sigma^2} \right) [bit/s]$$

4.2 EE del canale MISO

$$EE_{MISO} = \frac{B\log_2\left(1 + \frac{p||\mathbf{g}||^2}{\sigma^2}\right)}{\mu p + P_c} [bit/J]$$

4.3 MTC (Maximum Transmit Combining)

Dato il segnale ricevuto:

$$r = \sqrt{p} \, \underline{\mathbf{g}}^H \, \underline{\mathbf{q}} \, s + n = \sqrt{p} \, z + n$$

L'SNR al ricevitore sarà:

$$SNR = \frac{p\mathbb{E}\left[|z|^2\right]}{\mathbb{E}\left[|n|^2\right]}$$

Esaminando il numeratore:

$$p\mathbb{E}\left[|z|^2\right] = p\mathbb{E}\left[|s|^2\right] |\underline{\boldsymbol{g}}^H \underline{\boldsymbol{q}}|^2 \le p||\underline{\boldsymbol{g}}||^2 ||\underline{\boldsymbol{q}}||^2 = p||\underline{\boldsymbol{g}}||^2$$

dove l'uguaglianza vale quando **g** e **q** sono paralleli.

Quindi il massimo SNR ottenibile dopo il filtro sarà:

$$SNR = \frac{p||\underline{\mathbf{g}}||^2}{\sigma^2} \implies C_{MISO} = B \log_2 \left(1 + \frac{p||\underline{\mathbf{g}}||^2}{\sigma^2}\right)$$

e può essere ottenuto scegliendo $\boldsymbol{q} = \alpha \boldsymbol{g}$.

Di solito si prende $\alpha = \frac{1}{||\underline{g}||}$ in modo tale da normalizzare \underline{q} .

4.4 Antenna Selection

Con il metodo di **Antenna Selection** si trasmette solo dall'antenna con il canale migliore:

$$\hat{g} = \max_{l \in [1, L]} |g_l|$$

Il suo SNR sarà:

$$SNR = \frac{p|\hat{g}|^2}{\sigma^2}$$

Quindi avremmo:

$$R = B \log_2 \left(1 + \frac{p|\hat{g}|^2}{\sigma^2} \right)$$

$$EE = \frac{B\log_2\left(1 + \frac{p|\hat{g}|^2}{\sigma^2}\right)}{\mu p + P_c}$$

CAPITOLO 2. SINGLE LINK 23

5 Canale MIMO (Multiple Input Multiple Output)

Consideriamo un canale **Flat-Fading** per una trasmissione in cui abbiamo N_T antenne al T_x e N_R antenne al R_x e trasmettiamo N_T simboli contemporaneamente $s_1, ..., s_{N_T}$.

5.1 Trasmissione

Il Segnale x_i trasmesso dall'antenna i-esima è una sovrapposizione degli N_T simboli:

$$x_{1} = \sqrt{p} \sum_{nt=1}^{N_{T}} s_{nt} q_{nt,1}$$

$$x_{2} = \sqrt{p} \sum_{nt=1}^{N_{T}} s_{nt} q_{nt,2}$$

$$\vdots$$

$$\vdots$$

$$x_{N_{T}} = \sqrt{p} \sum_{nt=1}^{N_{T}} s_{nt} q_{nt,N_{T}}$$

con $q_{nt,i}$ il coefficiente di Beamforming dell'antenna i, relativo al simbolo nt.

Ora definiamo:

•
$$\underline{\boldsymbol{x}} = [x_1, ..., x_{N_T}]$$
• $\underline{\boldsymbol{M}} = \begin{pmatrix} q_{1,1} & q_{2,1} & ... & q_{N_T,1} \\ q_{1,2} & ... & & & \\ \vdots & & & & \\ q_{1,N_T} & ... & ... & q_{N_T,N_T} \end{pmatrix}$

Per ottenere:

$$x = \sqrt{p}Ms$$

Dove vale il seguente vincolo:

$$tr(\underline{\boldsymbol{M}}\underline{\boldsymbol{M}}^H) = 1$$

Dato che se assumiamo $\mathbb{E}\left[\underline{ss}^{H}\right] = \underline{I}$:

$$P_t = \mathbb{E}[||\boldsymbol{x}||^2] = \mathbb{E}[tr(\boldsymbol{x}\boldsymbol{x}^H)] = p tr(\boldsymbol{M}\boldsymbol{M}^H)$$

La potenza dello stream nt è:

$$P_{nt} = \mathbb{E}\left[|\sqrt{p}\underline{\boldsymbol{q}}_{nt}^T\underline{\boldsymbol{s}}|^2\right] = p||\underline{\boldsymbol{q}}_{nt}||^2\mathbb{E}\left[\underline{\boldsymbol{s}}\underline{\boldsymbol{s}}^H\right] = p||\underline{\boldsymbol{q}}_{nt}||^2$$

Allora la **Potenza Totale** può essere calcolata così:

$$\sum_{nt=1}^{N_T} P_{nt} = \sum_{nt=1}^{N_T} p||\underline{\boldsymbol{q}_{nt}}||^2 = ptr(\underline{\boldsymbol{M}} \ \underline{\boldsymbol{M}}^H) = p$$

5.2 Ricezione

Ad ogni antenna ricevente arriva la sovrapposizione dei segnali trasmessi da tutte le antenne trasmittenti, quindi il segnale ricevuto dall'antenna nr sarà:

$$r_{nr} = \sum_{nt=1}^{N_T} h_{nr,nt} x_{nt} + n_{nr}$$

con $h_{nr,nt}$ canale tra l'antenna nr ricevente e l'antenna nt trasmittente.

Che possiamo sintetizzare così:

Infine definendo la matrice:

$$\underline{\boldsymbol{H}} = \left(egin{array}{cccc} h_{1,1} & \dots & h_{1,N_T} \ dots & dots & dots \ h_{N_R,1} & \dots & h_{N_R,N_T} \end{array}
ight)$$

Otterremo il seguente modello:

$$\underline{r} = \underline{H} \underline{x} + \underline{n} = \sqrt{p} \underline{H} \underline{M} \underline{s} + \underline{n}$$

5.3 Capacità del canale MIMO

La Capacità del canale MIMO sarà:

$$C_{MIMO} = B \log_2 \left(\frac{|\mathbb{E}\left[\underline{r} \ \underline{r}^H\right]|}{|\mathbb{E}\left[\underline{n} \ \underline{n}^H\right]|} \right) [bit/s]$$

Assumiamo **x** e **n** indipendenti, allora:

$$\mathbb{E}\left[\underline{\boldsymbol{n}}\,\underline{\boldsymbol{n}}^{H}\right] = \mathbb{E}\left[\left(\underline{\boldsymbol{H}}\,\underline{\boldsymbol{x}} + \underline{\boldsymbol{n}}\right)\,\left(\underline{\boldsymbol{H}}\,\underline{\boldsymbol{x}} + \underline{\boldsymbol{n}}\right)^{H}\right] =$$

$$= \underline{\boldsymbol{H}}\,\underbrace{\mathbb{E}\left[\underline{\boldsymbol{x}}\,\underline{\boldsymbol{x}}^{H}\right]}_{p\underline{\boldsymbol{M}}\,\underline{\boldsymbol{M}}^{H} = p\,\underline{\boldsymbol{Q}}}\underline{\boldsymbol{H}}^{H} + \underbrace{\mathbb{E}\left[\underline{\boldsymbol{n}}\,\underline{\boldsymbol{n}}^{H}\right]}_{\sigma^{2}\underline{\boldsymbol{I}}} =$$

$$= p\underline{\boldsymbol{H}}\underline{\boldsymbol{Q}}\underline{\boldsymbol{H}}^{H} + \sigma^{2}\underline{\boldsymbol{I}}$$

Quindi la Capacità nel canale MIMO si scriverà:

$$C_{MIMO} = B \log_2 \left(\frac{|p\underline{\boldsymbol{H}}\underline{\boldsymbol{Q}}\underline{\boldsymbol{H}}^H + \sigma^2\underline{\boldsymbol{I}}|}{|\sigma^2\underline{\boldsymbol{I}}|} \right) = B \log_2 \left(\left| \underline{\boldsymbol{I}} + \frac{P}{\sigma^2}\underline{\boldsymbol{H}}\underline{\boldsymbol{Q}}\underline{\boldsymbol{H}}^H \right| \right) [bit/s]$$

Disuguaglianza di Hadamard

Sia $\underline{\mathbf{A}} \in \mathbb{R}^{nXn}$ definita positiva $(\Re(\underline{\mathbf{x}}^*\underline{\mathbf{A}}\underline{\mathbf{x}}) > 0 \ \forall \underline{\mathbf{x}} \neq \underline{\mathbf{0}} \in \mathbb{C}^n)$, allora:

$$|\underline{\mathbf{A}}| = \leq \prod_{i=1}^{n} A_{i,i}$$

Se $\underline{\mathbf{A}}$ è diagonale $\implies A_{i,i} = \lambda_i$

Applicazione

La matrice $\underline{I} + \frac{p}{\sigma^2} \underline{H} \underline{Q} \underline{H}^H$ è definita positiva:

Dimostrazione
$$\underline{\mathbf{x}}^{H} \left(\underline{\mathbf{I}} + \frac{p}{\sigma^{2}} \underline{\mathbf{H}} \underline{\mathbf{Q}} \underline{\mathbf{H}}^{H} \right) \underline{\mathbf{x}} = ||\underline{\mathbf{x}}||^{2} + \frac{p}{\sigma^{2}} \underline{\mathbf{x}}^{H} \underline{\mathbf{H}} \underline{\mathbf{M}} \underline{\mathbf{M}}^{H} \underline{\mathbf{H}}^{H} \underline{\mathbf{x}}$$

$$= ||\underline{\mathbf{x}}||^{2} + \frac{p}{\sigma^{2}} ||\underline{\mathbf{M}}^{H} \underline{\mathbf{H}} \underline{\mathbf{x}}||^{2} > 0$$

Quindi l'autovalore i-esimo della matrice $\left(\underline{\boldsymbol{I}} + \frac{p}{\sigma^2}\underline{\boldsymbol{H}}\underline{\boldsymbol{Q}}\underline{\boldsymbol{H}}^H\right)$ sarà $\Longrightarrow 1 + \frac{p}{\sigma^2}\lambda_i$, con λ_i che è l'autovalore della matrice $\underline{\boldsymbol{H}}\underline{\boldsymbol{Q}}\underline{\boldsymbol{H}}^H$.

In aggiunta ogni autovettore $\underline{\mathbf{v}}$ di $\underline{H}\underline{Q}\underline{H}^H$ sarà anche autovettore di \underline{I} + $\frac{P}{\sigma^2}\underline{H}\underline{Q}\underline{H}^H$ dato che:

Dimostrazione
$$\left(\underline{I} + \frac{p}{\sigma^2} \underline{H} \underline{Q} \underline{H}^H \right) \underline{\boldsymbol{v}} = \underline{\boldsymbol{v}} + \frac{p}{\sigma^2} \underline{H} \underline{Q} \underline{H}^H \underline{\boldsymbol{v}} =$$

$$= \underline{\boldsymbol{v}} + \frac{p}{\sigma^2} \lambda_i \underline{\boldsymbol{v}} =$$

$$= (1 + \frac{p}{\sigma^2} \lambda_i) \underline{\boldsymbol{v}}$$

Allora applicando la disuguaglianza di Hadamard si ha:

$$C \le B \sum_{i=1}^{\min\{N_R, N_T\}} \log_2\left(1 + \frac{p}{\sigma^2}\lambda_i\right)$$

Ma come posso rendere $\underline{I} + \frac{p}{\sigma^2} \underline{H} \underline{Q} \underline{H}^H$ anche **DIAGONALE**????

- Scriviamo la matrice di canale attraverso la sua SVD: $\underline{\mathbf{H}} = \underline{\mathbf{U}} \underline{\mathbf{\Lambda}} \underline{\mathbf{V}}^H$
- Scriviamo la matrice di covarianza del segnale tramite la sua EVD: $Q = \underline{U}_Q \underline{\lambda}_Q \underline{U}_Q^H$

Così sostituendo otterremo:

$$\underline{\boldsymbol{H}}\underline{\boldsymbol{Q}}\underline{\boldsymbol{H}}^{H} = \underbrace{\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{V}^{H}}_{\boldsymbol{H}} \underbrace{\boldsymbol{U}_{Q}\boldsymbol{\lambda}_{Q}\boldsymbol{U}_{Q}^{H}}_{\boldsymbol{Q}} \underbrace{\boldsymbol{V}\boldsymbol{\Lambda}^{H}\boldsymbol{U}^{H}}_{\boldsymbol{H}^{H}}$$

Ma se scegliamo $\underline{\boldsymbol{U}}_Q = V$ otteniamo:

$$\underline{I} + \frac{p}{\sigma^2} \underline{U} \underline{\Lambda} \underline{\Lambda}_Q \underline{\Lambda}^H \underline{U}^H$$

CAPITOLO 2. SINGLE LINK 27

Che ci fa arrivare alla massima capacità.

Ma quindi come dobbiamo elaborare il segnale al trasmettitore e al ricevitore per raggiungere la massima capacità???

$$\underline{r} = \underline{Hx} + \underline{n} = \sqrt{p}\underline{HMs} + \underline{n} =$$

$$= \sqrt{p} \underbrace{\underline{U\Lambda V}^{H}}_{\underline{H}} \underbrace{\underline{U}_{M}\underline{\Lambda}_{M}\underline{V}_{M}^{H}}_{\underline{M}} \underline{s} + \underline{n} =$$

$$= \sqrt{p} \underbrace{\underline{U\Lambda V}^{H}}_{\underline{U}_{Q}\underline{\Lambda}_{Q}^{1/2}} \underline{\tilde{s}} + \underline{n}$$

dove:

•
$$\underline{\boldsymbol{U}}_M = \underline{\boldsymbol{U}}_Q e \underline{\boldsymbol{\Lambda}}_M = \underline{\boldsymbol{\Lambda}}_Q^{1/2}$$

•
$$\tilde{\mathbf{s}} = \underline{\mathbf{V}}_{M}^{H} \mathbf{s}$$

Scegliendo $\underline{\boldsymbol{U}}_Q = \underline{\boldsymbol{V}}$ otteniamo:

$$\underline{\boldsymbol{r}} = \sqrt{p} \, \underline{\boldsymbol{U}} \underline{\boldsymbol{\Lambda}} \underline{\boldsymbol{\Lambda}}_Q^{1/2} \underline{\tilde{\boldsymbol{s}}} + \underline{\boldsymbol{n}}$$

Al ricevitore filtriamo il segnale ricevuto con $\underline{\mathbf{C}}^H = \underline{\mathbf{U}}^H$:

$$\underline{\boldsymbol{y}} = \underline{\boldsymbol{C}}^{H}\underline{\boldsymbol{r}} = \sqrt{p}\underline{\boldsymbol{C}}^{H}\underline{\boldsymbol{U}}\underline{\boldsymbol{\Lambda}}\underline{\boldsymbol{\Lambda}}_{Q}^{1/2}\underline{\tilde{\boldsymbol{s}}} + \underline{\boldsymbol{C}}^{H}\underline{\boldsymbol{n}} =$$

$$= \sqrt{p}\underline{\boldsymbol{C}}^{H}\underline{\boldsymbol{\Lambda}}\underline{\boldsymbol{\Lambda}}_{Q}^{1/2}\underline{\tilde{\boldsymbol{s}}} + \underline{\boldsymbol{U}}^{H}\underline{\boldsymbol{n}} = \sqrt{p}\underline{\boldsymbol{C}}^{H}\underline{\boldsymbol{\Lambda}}\underline{\boldsymbol{\Lambda}}_{Q}^{1/2}\underline{\tilde{\boldsymbol{s}}} + \underline{\boldsymbol{w}}$$

Scriviamolo componente per componente:

$$\underline{\boldsymbol{y}} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_{N_R} \end{pmatrix} = \sqrt{p} \begin{pmatrix} \lambda_{1,H} \sqrt{\lambda_{Q,1}} & \tilde{s}_1 + w_1 \\ \lambda_{2,H} \sqrt{\lambda_{Q,2}} & \tilde{s}_2 + w_2 \\ & \cdot \\ & \cdot \\ \lambda_{N_R,H} \sqrt{\lambda_{Q,N_R}} & \tilde{s}_1 + w_{N_R} \end{pmatrix}$$

Così facendo abbiamo ottenuto $min\{N_R, N_T\}$ Canali SISO Paralleli.

Quindi la capacità del Canale MIMO può anche essere calcolata sommando le capacità dei singoli canali SISO.

Il Canale SISO i-esimo ha il seguente SNR:

$$SNR_i = \frac{p}{\sigma^2} \lambda_{i,H}^2 \lambda_{i,Q}$$

Quindi la Capacità del Canale SISO i-esimo sarà:

$$C_i = B \log_2 \left(\frac{p}{\sigma^2} \lambda_{i,H}^2 \lambda_{i,Q} \right)$$

E quindi la Capacità Massima del Canale MIMO sarà:

$$C_{MIMO} = \sum_{i=1}^{min\{N_R, N_T\}} C_i$$

5.4 Efficienza Energetica del Canale MIMO

$$EE_{MIMO} = \frac{\sum_{i=1}^{min\{N_R, N_T\}} C_i}{\mu p + P_c}$$

Capitolo 3

Multi Link: Canale SIMO Multi-Utente

Fino ad ora abbiamo trascurato le interferenze dei segnali trasmessi dagli altri terminali mobili, quindi in questo capitolo ne terremo conto, dato che l'Interferenza Multi-Utente è una caratteristica peculiare delle Reti Wireless.

Si dice infatti che i canali wireless sono interference-limited.

1 Uplink

Consideriamo K utenti in una cella telefonica che comunicano con una BS avente L antenne allo stesso tempo.

La BS riceverà la sovrapposizione dei segnali trasmessi dai K utenti:

$$\underline{\boldsymbol{r}} = \sum_{k=1}^{K} \sqrt{p_k} \, \underline{\boldsymbol{h}}_k s_k + \underline{\boldsymbol{n}}$$

Supponiamo di voler ricavarci il simbolo trasmesso dall'utente m, possiamo riscrivere così:

$$\underline{\underline{r}} = \underbrace{\sqrt{p_m} \, \underline{\underline{h}}_m s_m}_{\text{Segnale Utile}} + \underbrace{\sum_{k \neq m} \sqrt{p_k} \, \underline{\underline{h}}_k s_k}_{\text{Interferenza Multi-Utente}} + \underline{\underline{n}}$$

Ed ora elaboriamo il segnale ricevuto con un filtro lineare $\underline{c_m}$:

$$y_{m} = \underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{r}} = \underbrace{\sqrt{p_{m}} \ \underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{m}s_{m}}_{\text{Segnale Utile}} + \underbrace{\sum_{k \neq m} \sqrt{p_{k}} \ \underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{k}s_{k}}_{\text{Interferenza Multi-Utente}} + \underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{n}}$$

Calcoliamo la Potenza del Segnale Utile:

$$p_m |\boldsymbol{c}_m^H \boldsymbol{h}_m|^2 \mathbb{E}[|s_m|^2] = p_m |\boldsymbol{c}_m^H \boldsymbol{h}_m|^2$$

Ed ora la Potenza dell'Interferenza e del Rumore Termico:

$$\mathbb{E}\left[\left|\sum_{k\neq m}\sqrt{p_{k}}\,\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{k}s_{k}+\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{n}}\right|^{2}\right] = \mathbb{E}\left[\left|\sum_{k\neq m}\sqrt{p_{k}}\,\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{k}s_{k}\right|^{2}\right] + \mathbb{E}\left[\left|\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{n}}\right|^{2}\right] =$$

$$= \sum_{k\neq m}\mathbb{E}\left[\left|\sqrt{p_{k}}\,\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{k}s_{k}\right|^{2}\right] + \sigma^{2}||\underline{\boldsymbol{c}}_{m}||^{2} =$$

$$= \sum_{k\neq m}p_{k}\left|\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{k}\right|^{2}\mathbb{E}\left[|s_{k}|^{2}\right] + \sigma^{2}||\underline{\boldsymbol{c}}_{m}||^{2} =$$

$$= \sum_{k\neq m}p_{k}\left|\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{k}\right|^{2} + \sigma^{2}||\underline{\boldsymbol{c}}_{m}||^{2}$$

Quindi il SINR dell'utente m sarà:

$$SINR_{m} = \frac{p_{m}|\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{m}|^{2}}{\sum_{k \neq m} p_{k} |\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{k}|^{2} + \sigma^{2}}$$

Di conseguenza il Rate e l'Efficienza Energetica dell'utente m saranno:

$$R_m = B \log_2(1 + SINR_m) \le C_m$$
$$EE_m = B \frac{\log_2(1 + SINR_m)}{\mu p_m + P_c}$$

Tuttavia con la Ricezione Lineare, da sola, non consente di raggiungere la capacità a causa dell'Interferenza Multi Utente, quindi per ottenerla bisognerebbe usare tecniche di ricezione non-lineari, ma di conseguenza aumenta la complessità.

1.1 Sum-Rate

Per misurare le prestazioni globali del sistema in termini di rate si usa:

$$R_{sum} = B \sum_{m=1}^{K} \beta_m \log_2(1 + SINR_m)$$

dove β_m è la priorità dell'utente m.

1.2 Global Energy Efficency e sum-EE

Per misurare le prestazioni globali del sistema in termini di EE si usa la Global Energy Efficency:

$$GEE = \frac{B\sum_{m=1}^{K} \beta_{m} \log_{2}(1 + SINR_{m})}{P_{c} + \sum_{m=1}^{K} \mu_{k} p_{m}}$$

oppure la Sum-EE:

$$EE_{sum} = B \sum_{m=1}^{K} \frac{\beta_m \log_2(1 + SINR_m)}{\mu_k p_m + P_{c.m}}$$

1.3 Filtro Adattato (MRC)

Il Filtro Addattato non è il miglior ricevitore lineare, ma è di sicuro il più semplice da implementare. Sia:

$$\underline{\boldsymbol{c}}_m = \underline{\boldsymbol{h}}_m / ||\underline{\boldsymbol{h}}_m||, \forall m = 1, ..., K$$

Si cerca di massimizzare la potenza del Segnale Utile, mitigando l'Interferenza Multi-Utente con l'uso di antenne multiple:

$$\sum_{k \neq m} p_k \left| \underline{\boldsymbol{h}}_m^H \underline{\boldsymbol{h}}_k \right|^2 = \sum_{k \neq m} p_k \left| \sum_{l=1}^L \underline{\boldsymbol{h}}_{m,l}^* \underline{\boldsymbol{h}}_{k,l} \right|^2 =$$

$$= p_m \left| \underline{\boldsymbol{h}}_m^H \underline{\boldsymbol{h}}_m \right|^2 = p_m \left| \sum_{l=1}^L |\underline{\boldsymbol{h}}_{m,l}^*|^2 \right|^2$$

Misure di Prestazione con Filtro Adattato

$$SINR_{m} = \frac{p_{m}||\underline{\boldsymbol{h}}_{m}||^{2}}{\sum_{k \neq m} p_{k} \frac{|\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{h}}_{k}|^{2}}{||\underline{\boldsymbol{h}}_{m}||^{2}}} + \sigma^{2}$$

$$R_{sum} = B \sum_{m=1}^{K} \beta_m \log_2(1 + SINR_m)$$

$$GEE = \frac{B\sum_{m=1}^{K} \beta_{m} \log_{2}(1 + SINR_{m})}{P_{c} + \sum_{m=1}^{K} \mu_{k} p_{m}}$$

$$EE_{sum} = B \sum_{m=1}^{K} \frac{\beta_m \log_2(1 + SINR_m)}{mu_k p_m + P_{c,m}}$$

1.4 Zero-Forcing

Il metodo Zero-Forcing consiste nell'azzerare l'Interferenza Multi-Utente, tuttavia non avremo controllo sulla potenza del Segnale Utile.

Caso Due Utenti

Per semplicità supponiamo di avere un sistema con solo due utenti:

$$y_1 = \underbrace{\sqrt{q_1} \underline{\boldsymbol{c}}_1^H \underline{\boldsymbol{h}}_1 s_1}_{\text{Segnale Utile}} + \underbrace{\sqrt{q_2} \underline{\boldsymbol{c}}_2^H \underline{\boldsymbol{h}}_2 s_2}_{\text{Interferenza Multi-Utente}} + \underbrace{\underline{\boldsymbol{c}}_1^H \underline{\boldsymbol{n}}}_{\text{RumoreTermics}}$$

Per azzerare l'Interferenza Multi-Utente dovremo scegliere $\underline{\boldsymbol{c}}_1$ ortogonale ad \boldsymbol{h}_2 .

In particolare fissiamo $\underline{\boldsymbol{c}}_1 = \underline{\boldsymbol{h}}_2^{1/2} / ||\underline{\boldsymbol{h}}_2^{1/2}||$, ottenendo:

$$y_1 = \sqrt{p_1} \left(\frac{\underline{\boldsymbol{h}}_2^{1/2}}{||\underline{\boldsymbol{h}}_2^{1/2}||} \right)^H \underline{\boldsymbol{h}}_1 s_1 + \left(\frac{\underline{\boldsymbol{h}}_2^{1/2}}{||\underline{\boldsymbol{h}}_2^{1/2}||} \right)^H \underline{\boldsymbol{n}}$$

Quindi che abbiamo fatto???

Abbiamo proiettato il Segnale Ricevuto \underline{r} lungo una direzione ortogonale al vettore di canale interferente (h_2).

Così facendo l'Interferenza viene azzerata, ma non abbiamo il controllo sulla potenza del Segnale Utile (noise enhacement).

Dopo l'applicazione dello Zero-Forcing avremo il seguente SNR:

$$SNR_{ZF} = p_1 \frac{|(\underline{\boldsymbol{h}}_2^{\perp})^H \underline{\boldsymbol{h}}_1|^2}{||\underline{\boldsymbol{h}}_2^{\perp}||^2 \sigma^2} < p_1 \frac{||\underline{\boldsymbol{h}}_1||^2}{\sigma^2}$$

Invece, nel caso in cui avessimo avuto un Canale Noise-Limited, i termini $\underline{\boldsymbol{h}}$ sono meno limitanti rispetto al rumore termico, quindi:

$$SNR_{NL} = p_1 \frac{||\underline{\boldsymbol{h}}_1||^4}{||\underline{\boldsymbol{h}}_1||^2 \sigma^2} = p_1 \frac{||\underline{\boldsymbol{h}}_1||^2}{\sigma^2}$$
Quindi $SNR_{ZF} < SNR_{NL}$.

Caso Generale

In generale il segnale filtrato m-esimo sarà:

$$y_m = \underline{\boldsymbol{c}}^H \underline{\boldsymbol{r}} = \sqrt{p_m} \underline{\boldsymbol{c}}_m^H \underline{\boldsymbol{h}}_m s_m + \sum_{k \neq m} \sqrt{p_k} \underline{\boldsymbol{c}}_m^H \underline{\boldsymbol{h}}_k s_k + \underline{\boldsymbol{c}}_m^H \underline{\boldsymbol{n}}$$

Quindi dato che vogliamo porre a zero l'Interferenza Multi-Utente e far rimanere il Segnale Utile:

$$\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{1} = 0$$

$$\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{2} = 0$$

$$\vdots$$

$$\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{m} = 1$$

$$\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{m+1} = 0$$

$$\vdots$$

$$\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{K} = 0$$

I vettori di canale (\underline{h}) sono Linearmente Indipendenti \Longrightarrow il sistema di sopra ammette almeno una soluzione se $L \ge K$.

Definiamo $\underline{\boldsymbol{P}}^{1/2} = diag(\sqrt{p_1},...,\sqrt{p_k}), \underline{\boldsymbol{s}} = [s_1,...,s_K]^T$, e scriviamo il vettore ricevuto così:

$$\underline{\boldsymbol{r}} = \sum_{k=1}^{K} \sqrt{p_k} \underline{\boldsymbol{h}}_k s_k + \underline{\boldsymbol{n}} = \underline{\boldsymbol{H}} \underline{\boldsymbol{P}}^{1/2} \underline{\boldsymbol{s}} + \underline{\boldsymbol{n}}$$

Definendo poi $\underline{\boldsymbol{C}} = [\underline{\boldsymbol{c}}_1,...,\underline{\boldsymbol{c}}_K]$ e $y = [\underline{\boldsymbol{y}}_1,...,\underline{\boldsymbol{y}}_K]^T$ si avrà:

$$\underline{\boldsymbol{y}} = \underline{\boldsymbol{C}}^{H}\underline{\boldsymbol{r}} = \frac{1}{\underline{\boldsymbol{H}}^{H}\underline{\boldsymbol{H}}} \underline{\boldsymbol{H}}^{H}\underline{\boldsymbol{H}}\underline{\boldsymbol{P}}^{1/2}\underline{\boldsymbol{s}} + \frac{1}{\underline{\boldsymbol{H}}^{H}\underline{\boldsymbol{H}}} \underline{\boldsymbol{H}}^{H}\underline{\boldsymbol{n}}$$
$$= \underline{\boldsymbol{P}}^{1/2}\underline{\boldsymbol{s}} + \underline{\boldsymbol{w}} = \begin{pmatrix} \sqrt{p_{1}}s_{1} \\ \vdots \\ \sqrt{p_{K}}s_{K} \end{pmatrix} + \underline{\boldsymbol{w}}$$

Quindi come abbiamo detto, la soluzione può essere calcolata SOLO quando $L \ge K$ perchè se così non fosse, la matrice $\underline{\boldsymbol{H}}^H \ \underline{\boldsymbol{H}}$ non sarebbe invertibile!!!

Infatti, $\underline{\boldsymbol{H}}^H \underline{\boldsymbol{H}}$ ha dimensioni K X K, mentre $\underline{\boldsymbol{H}}$ ha dimensioni L X K. Quindi affinchè $\underline{\boldsymbol{H}}^H \underline{\boldsymbol{H}}$ sia invertibile deve verificarsi che $L \geq K$, infatti:

$$rg(\mathbf{H}^H \mathbf{H}) \le rg(\mathbf{H}) = min\{L, K\}$$

Mentre il **w** avrà:

$$\mathbb{E}\left[\underline{\boldsymbol{w}}\right] = \frac{1}{\underline{\boldsymbol{H}}^{H}}\underline{\boldsymbol{H}}^{H}\mathbb{E}\left[\underline{\boldsymbol{n}}\right] = 0$$

$$\mathbb{E}\left[\underline{\boldsymbol{w}}\underline{\boldsymbol{w}}^{H}\right] = \frac{1}{\underline{\boldsymbol{H}}^{H}}\underline{\boldsymbol{H}}^{H}\mathbb{E}\left[\underline{\boldsymbol{n}}\underline{\boldsymbol{n}}^{H}\right]\left(\frac{1}{\underline{\boldsymbol{H}}^{H}}\underline{\boldsymbol{H}}^{H}\right)^{H} =$$

$$= \sigma^{2}\frac{1}{\underline{\boldsymbol{H}}^{H}}\underline{\boldsymbol{H}}^{H}\underline{\boldsymbol{H}}^{H}\underline{\boldsymbol{H}}^{H}\underline{\boldsymbol{H}}^{H}\underline{\boldsymbol{H}} =$$

$$= \sigma^{2}\frac{1}{\underline{\boldsymbol{H}}^{H}}\underline{\boldsymbol{H}}^{H}\underline{\boldsymbol{H}}$$

SNR ZF

Il Rapporto Segnale-Rumore dell'utente m è:

$$SNR_m^{ZF} = \frac{p_m \mathbb{E}\left[|s_m|^2\right]}{\sigma^2 ||\boldsymbol{h}_m^+||^2} = \frac{p_m}{\sigma^2 ||\boldsymbol{h}_m^+||^2}$$

dove $\underline{\textbf{\textit{h}}}_m^+$ non è altro che la riga m-esima della matrice $\frac{1}{\textbf{\textit{H}}^H \textbf{\textit{H}}} \, \underline{\textbf{\textit{H}}}^H$

Misure di Prestazione con Zero-Forcing

$$R_{sum} = B \sum_{m=1}^{K} \beta_m \log_2 \left(1 + SNR_m^{ZF}\right)$$

$$GEE = B \frac{\sum_{m=1}^{K} \beta_m \log_2 \left(1 + SNR_m^{ZF}\right)}{P_c + \sum_{m=1}^{K} \mu_m p_m}$$

$$EE_{sum} = B \sum_{m=1}^{K} \frac{\beta_m \log_2 \left(1 + SNR_m^{ZF}\right)}{\mu_m p_m + P_{c,m}}$$

1.5 Ricevitore LMMSE

Il miglior filtro lineare è il ricevitore a Minimo Errore Quadratico Medio (LMMSE).

Consiste nel minimizzare per l'appunto l'errore quadratico medio tra il Simbolo da Stimare e il risultato a valle del filtro:

$$MSE_m = \mathbb{E}[|y_m - s_m|^2] = \mathbb{E}[|y_m|^2] + \mathbb{E}[|s_m|^2] - 2\Re{\{\mathbb{E}[y_m s_m^*]\}}$$

Calcoliamo i singoli termini separatamente:

$$\bullet \mathbb{E}\left[|y_{m}|^{2}\right] = \mathbb{E}\left[y_{m}y_{m}^{*}\right] = \\
= \mathbb{E}\left[\left(\sqrt{p_{m}}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{m}s_{m} + \sum_{k \neq m}\sqrt{p_{k}}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{k}s_{k} + \underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{n}}\right) \cdot \\
\cdot \left(\sqrt{p_{m}}\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{c}}_{m}s_{m}^{*} + \sum_{i \neq m}\sqrt{p_{i}}\underline{\boldsymbol{h}}_{i}^{H}\underline{\boldsymbol{c}}_{m}s_{i} + \underline{\boldsymbol{n}}^{H}\underline{\boldsymbol{c}}_{m}\right) = \\
= p_{m}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{m}\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{c}}_{m}\mathbb{E}\left[|s_{m}|^{2}\right] + \sum_{k \neq m}p_{k}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{k}\underline{\boldsymbol{h}}_{k}^{H}\underline{\boldsymbol{c}}_{m}\mathbb{E}\left[|s_{k}|^{2}\right] + \sigma^{2}||\underline{\boldsymbol{c}}_{m}||^{2} = \\
= p_{m}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{m}\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{c}}_{m} + \sum_{k \neq m}p_{k}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{k}\underline{\boldsymbol{h}}_{k}^{H}\underline{\boldsymbol{c}}_{m} + \sigma^{2}||\underline{\boldsymbol{c}}_{m}||^{2} \\
= p_{m}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{m}\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{c}}_{m} + \sum_{k \neq m}p_{k}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{k}\underline{\boldsymbol{h}}_{k}^{H}\underline{\boldsymbol{c}}_{m} + \sigma^{2}||\underline{\boldsymbol{c}}_{m}||^{2} \\
= p_{m}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{m}\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{c}}_{m} + \sum_{k \neq m}p_{k}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{k}\underline{\boldsymbol{h}}_{k}^{H}\underline{\boldsymbol{c}}_{m} + \sigma^{2}||\underline{\boldsymbol{c}}_{m}||^{2} \\
= p_{m}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{m}\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{c}}_{m} + \sum_{k \neq m}p_{k}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{k}\underline{\boldsymbol{c}}_{m} + \sigma^{2}||\underline{\boldsymbol{c}}_{m}||^{2} \\
= p_{m}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{h}}_{m}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{c}}_{m} + \sum_{k \neq m}p_{k}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{c}}_{m} + \sigma^{2}||\underline{\boldsymbol{c}}_{m}||^{2} \\
= p_{m}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{c}}_{m}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{c}}_{m} + \sum_{k \neq m}p_{k}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{c}}_{m} + \sigma^{2}||\underline{\boldsymbol{c}}_{m}||^{2} \\
= p_{m}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{c}}_{m}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{c}}_{m} + \sum_{k \neq m}p_{k}\underline{\boldsymbol{c}}_{m}^{H}\underline{\boldsymbol{c$$

$$\bullet \Re \left(\mathbb{E} \left[y_m s_m^* \right] \right) = \Re \left(\mathbb{E} \left[\left(\sqrt{p_m} \underline{\boldsymbol{c}}_m^H \underline{\boldsymbol{h}}_m s_m + \sum_{k \neq m} \sqrt{p_k} \underline{\boldsymbol{c}}_m^H \underline{\boldsymbol{h}}_k s_k + \underline{\boldsymbol{c}}_m^H \underline{\boldsymbol{n}} \right) s_m^* \right] \right) = \\
= \sqrt{p_m} \mathbb{E} \left[|s_m|^2 \right] \Re \left(\underline{\boldsymbol{c}}_m^H \underline{\boldsymbol{h}}_m \right) = \sqrt{p_m} \Re \left(\underline{\boldsymbol{c}}_m^H \underline{\boldsymbol{h}}_m \right)$$

Ora calcoliamo il gradiente rispetto a $\underline{\boldsymbol{c}}_m$ dei singoli termini:

$$\nabla_{c_m} \left(p_m \underline{\boldsymbol{c}}_m^H \underline{\boldsymbol{h}}_m \underline{\boldsymbol{h}}_m^H \underline{\boldsymbol{c}}_m \right) = 2 p_m \underline{\boldsymbol{h}}_m \underline{\boldsymbol{h}}_m^H \underline{\boldsymbol{c}}_m$$

$$\nabla_{c_m} \left(p_k \underline{\boldsymbol{c}}_k^H \underline{\boldsymbol{h}}_k \underline{\boldsymbol{h}}_k^H \underline{\boldsymbol{c}}_k \right) = 2 p_k \underline{\boldsymbol{h}}_k \underline{\boldsymbol{h}}_k^H \underline{\boldsymbol{c}}_k$$

$$\nabla_{c_m} \left(||\underline{\boldsymbol{c}}_m||^2 \right) = \nabla_{c_m} \left(\underline{\boldsymbol{c}}_m^H \underline{\boldsymbol{c}}_m \right) = 2 \underline{\boldsymbol{c}}_m$$

$$\nabla_{c_m} \left(\sqrt{p_m} \Re \left(\underline{\boldsymbol{c}}_m^H \underline{\boldsymbol{h}}_m \right) \right) = \sqrt{p_m} \underline{\boldsymbol{h}}_m$$

Quindi ricaviamo la condizione di Ottimalità:

$$\nabla_{c_{m}} MSE_{m} = 0$$

$$= \underbrace{\left(p_{m} \underline{\boldsymbol{h}}_{m} \underline{\boldsymbol{h}}_{m}^{H} \underline{\boldsymbol{c}}_{m} + \sum_{k \neq m} p_{k} \underline{\boldsymbol{h}}_{k} \underline{\boldsymbol{h}}_{k}^{H} \underline{\boldsymbol{c}}_{k} + \sigma^{2} \underline{\boldsymbol{c}}_{m}\right)}_{\nabla_{c_{m}} (\Re(\mathbb{E}[y_{m} s_{m}^{*}]))} = \underbrace{\sqrt{p_{m}} \underline{\boldsymbol{h}}_{m}}_{\nabla_{c_{m}} (\Re(\mathbb{E}[y_{m} s_{m}^{*}]))} = \underbrace{\left(p_{m} \underline{\boldsymbol{h}}_{m} \underline{\boldsymbol{h}}_{m}^{H} + \sum_{k \neq m} p_{k} \underline{\boldsymbol{h}}_{k} \underline{\boldsymbol{h}}_{k}^{H} + \sigma^{2} \underline{\boldsymbol{I}}_{L}\right)}_{\nabla_{c_{m}} \underline{\boldsymbol{c}}_{m}} = \sqrt{p_{m}} \underline{\boldsymbol{h}}_{m}$$

$$\underline{\boldsymbol{c}}_{m} = \sqrt{p_{m}} \left(p_{m} \underline{\boldsymbol{h}}_{m} \underline{\boldsymbol{h}}_{m}^{H} \underline{\boldsymbol{c}}_{m} + \sum_{\underline{k} \neq m} p_{k} \underline{\boldsymbol{h}}_{k} \underline{\boldsymbol{h}}_{k}^{H} \underline{\boldsymbol{c}}_{k} + \sigma^{2} \underline{\boldsymbol{c}}_{m} \right)^{-1} \underline{\boldsymbol{h}}_{m} =$$

$$= \sqrt{p_m}((p_m \underline{\boldsymbol{h}}_m \underline{\boldsymbol{h}}_m^H + \underline{\boldsymbol{R}}_m)^{-1}\underline{\boldsymbol{h}}_m$$

Usando il Lemma di Inversione delle Matrici:

$$(p\underline{x}\underline{x}^{H} + \underline{M})^{-1} = \underline{M}^{-1} - \frac{p\underline{M}^{-1}\underline{x}\underline{x}^{H}\underline{M}^{-1}}{1 + p\underline{x}^{H}\underline{M}^{-1}\underline{x}}$$

Otterremo:

$$= \sqrt{p_m} \left(\underline{\mathbf{R}}_m^{-1} - \frac{p_m \underline{\mathbf{R}}_m^{-1} \underline{\mathbf{h}}_m \underline{\mathbf{h}}_m^H \underline{\mathbf{R}}_m^{-1}}{1 + p_m \underline{\mathbf{h}}_m^H \underline{\mathbf{R}}_m^{-1} \underline{\mathbf{h}}_m} \right) \underline{\mathbf{h}}_m =$$

$$= \frac{\sqrt{p_m}}{1 + p_m \underline{\mathbf{h}}_m^H \underline{\mathbf{R}}_m^{-1} \underline{\mathbf{h}}_m} \underline{\mathbf{R}}_m^{-1} \underline{\mathbf{h}}_m \Longrightarrow \underline{\mathbf{R}}_m^{-1} \underline{\mathbf{h}}_m$$

SINR dell' LMMSE

$$SINR_{m}^{LMMSE} = \frac{p_{m}|\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{R}}_{m}^{-1}\underline{\boldsymbol{h}}_{m}|^{2}}{\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{R}}_{m}^{-1}\left(\sum_{k\neq m}p_{k}\underline{\boldsymbol{h}}_{k}\underline{\boldsymbol{h}}_{k}^{H} + \sigma^{2}\underline{\boldsymbol{I}}_{L}\right)\underline{\boldsymbol{R}}_{m}^{-1}\underline{\boldsymbol{h}}_{m}} = \frac{p_{m}|\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{R}}_{m}^{-1}\underline{\boldsymbol{h}}_{m}|^{2}}{\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{R}}_{m}^{-1}\underline{\boldsymbol{h}}_{m}} = \frac{p_{m}|\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{R}}_{m}^{-1}\underline{\boldsymbol{h}}_{m}|^{2}}{\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{R}}_{m}^{-1}\underline{\boldsymbol{h}}_{m}} = p_{m}\underline{\boldsymbol{h}}_{m}^{H}\underline{\boldsymbol{R}}_{m}^{-1}\underline{\boldsymbol{h}}_{m}$$

Misure di Prestazione con LMMSE

$$R_{sum} = B \sum_{m=1}^{K} \beta_{m} \log_{2}(1 + SNR_{m}^{LMMSE})$$

$$GEE = B \frac{\sum_{m=1}^{K} \beta_{m} \log_{2}(1 + SNR_{m}^{LMMSE})}{P_{c} + \sum_{m=1}^{K} \mu_{m} p_{m}}$$

$$EE_{sum} = B \sum_{m=1}^{K} \frac{\beta_{m} \log_{2}(1 + SNR_{m}^{LMMSE})}{P_{c} + \mu_{m} p_{m}}$$

Massimizzazione del SINR

Ora cerchiamo di massimizzare il Rapporto Segnale Rumore, ovvero cherchiamo il vettore $\underline{\boldsymbol{c}}_m$ tale che:

$$\max_{c_{m}} \frac{p_{m} |\underline{\boldsymbol{c}}_{m}^{H} \underline{\boldsymbol{h}}_{m}|^{2}}{\sum_{k \neq m} p_{k} |\underline{\boldsymbol{c}}_{k}^{H} \underline{\boldsymbol{h}}_{k}|^{2} + \sigma^{2} ||\underline{\boldsymbol{c}}_{m}||^{2}}$$

$$= \max_{c_{m}} \frac{p_{m} \underline{\boldsymbol{c}}_{m}^{H} \underline{\boldsymbol{h}}_{m} \underline{\boldsymbol{h}}_{m}^{H} \underline{\boldsymbol{c}}_{m}}{\underline{\boldsymbol{c}}_{m}^{H} \left(\sum_{k \neq m} p_{k} \underline{\boldsymbol{h}}_{k} \underline{\boldsymbol{h}}_{k}^{H} + \sigma^{2} \underline{\boldsymbol{I}}\right) \underline{\boldsymbol{c}}_{m}} = \max_{c_{m}} \frac{p_{m} \underline{\boldsymbol{c}}_{m}^{H} \underline{\boldsymbol{h}}_{m} \underline{\boldsymbol{h}}_{m}^{H} \underline{\boldsymbol{c}}_{m}}{\underline{\boldsymbol{c}}_{m}^{H} \underline{\boldsymbol{k}}_{m} \underline{\boldsymbol{c}}_{m}}$$

Se definiamo $\underline{\boldsymbol{x}}_m = \underline{\boldsymbol{R}}_m^{\frac{1}{2}}\underline{\boldsymbol{c}}_m$ avremo:

$$\max_{x_m} \frac{p_m \underbrace{\underline{\boldsymbol{x}}_m^H \underline{\boldsymbol{R}}^{-1/2}}_{\boldsymbol{h}_m} \underline{\boldsymbol{h}}_m^H \underbrace{\underline{\boldsymbol{R}}^{-1/2} \underline{\boldsymbol{x}}_m}_{\boldsymbol{k}_m} = \max_{x_m} \frac{p_m |\underline{\boldsymbol{x}}_m^H \underline{\boldsymbol{R}}^{-1/2} \underline{\boldsymbol{h}}_m|^2}{||\underline{\boldsymbol{x}}_m||^2} = p_m \underline{\boldsymbol{h}}_m^H \underline{\boldsymbol{R}}_m^{-1} \underline{\boldsymbol{h}}_m$$

Che raggiunge il suo massimo per $\underline{\boldsymbol{x}}_m = \alpha \underline{\boldsymbol{R}}_m^{-1/2} \underline{\boldsymbol{h}}_m \Longrightarrow \underline{\boldsymbol{c}}_m = \alpha \underline{\boldsymbol{R}}_m^{-1} \underline{\boldsymbol{h}}_m$

Quindi il Ricevitore LMMSE massimizza il SINR!!

2 Downlink

Consideriamo ora la tratta Downlink con:

- K utenti
- Una BS con L antenne

La BS trasmetterà la sovrapposizione dei segnali per i K utenti.

$$\underline{\boldsymbol{y}} = \sum_{k=1}^{K} \sqrt{p_k} \underline{\boldsymbol{q}}_k \underline{\boldsymbol{s}}_k$$

con:

$$\mathbb{E}\left[||\underline{\boldsymbol{y}}||^2\right] = p \sum_{k=1}^K ||\underline{\boldsymbol{q}}_k||^2 = P$$

L'utente m riceverà il segnale:

$$r_{m} = \underline{\boldsymbol{g}}_{m}^{H} \left(\sum_{k=1}^{K} \sqrt{p_{k}} \underline{\boldsymbol{q}}_{k} \underline{\boldsymbol{s}}_{k} \right) + n_{m} = \sum_{k=1}^{K} \sqrt{p_{k}} \underline{\boldsymbol{g}}_{m}^{H} \underline{\boldsymbol{q}}_{k} \underline{\boldsymbol{s}}_{k} + n_{m}$$

Dato che vogliamo decodificare il simbolo indirizzato all'utente m, riscriviamo il segnale ricevuto r_m così:

$$r_{m} = \underbrace{\sqrt{p_{m}} \underline{\boldsymbol{g}}_{m}^{H} \underline{\boldsymbol{q}}_{m} \underline{\boldsymbol{s}}_{m}}_{\text{Segnale Utile}} + \underbrace{\sum_{k \neq m} \sqrt{p_{k}} \underline{\boldsymbol{g}}_{k}^{H} \underline{\boldsymbol{q}}_{k} \underline{\boldsymbol{s}}_{k}}_{\text{Rumore Termico}} + \underbrace{n_{m}}_{\text{Rumore Termico}}$$

Calcoliamo la potenza del Segnale Utile:

$$p_m |\underline{\boldsymbol{g}}_m^H \underline{\boldsymbol{q}}_m|^2 \mathbb{E}\left[|\underline{\boldsymbol{s}}_m|^2\right] = p_m |\underline{\boldsymbol{g}}_m^H \underline{\boldsymbol{q}}_m|^2$$

Mentre la potenza dell'Interferenza sommata al Rumore è:

$$\mathbb{E}\left[\left|\sum_{k\neq m}\sqrt{p_{k}}\underline{\boldsymbol{g}}_{k}^{H}\underline{\boldsymbol{q}}_{k}\underline{\boldsymbol{s}}_{k}+n_{m}\right|^{2}\right] = \mathbb{E}\left[\left|\sum_{k\neq m}\sqrt{p_{k}}\underline{\boldsymbol{g}}_{k}^{H}\underline{\boldsymbol{q}}_{k}\underline{\boldsymbol{s}}_{k}\right|^{2}\right] + \mathbb{E}\left[|n_{m}|^{2}\right] =$$

$$= \sum_{k\neq m}\mathbb{E}\left[\left|\sqrt{p_{k}}\underline{\boldsymbol{g}}_{k}^{H}\underline{\boldsymbol{q}}_{k}\underline{\boldsymbol{s}}_{k}\right|^{2}\right] + \sigma^{2} =$$

$$= \sum_{k\neq m}p_{|}\underline{\boldsymbol{g}}_{k}^{H}\underline{\boldsymbol{q}}_{k}|^{2}\mathbb{E}\left[\left|\underline{\boldsymbol{s}}_{k}\right|^{2}\right] + \sigma^{2} =$$

$$= \sum_{k\neq m}p_{|}\underline{\boldsymbol{g}}_{k}^{H}\underline{\boldsymbol{q}}_{k}|^{2} + \sigma^{2}$$

Quindi il SINR dell'Utente m sarà:

$$SINR_{m} = \frac{p_{m}|\underline{\boldsymbol{g}}_{m}^{H}\underline{\boldsymbol{q}}_{m}|^{2}}{\sum_{k \neq m} p_{k}|\underline{\boldsymbol{g}}_{k}^{H}\underline{\boldsymbol{q}}_{k}|^{2} + \sigma^{2}}$$

Definendo C_m la Capacità del Canale tra l'Utente m e la BS si ha:

$$R_m = B \log_2(1 + SINR_m) \le C_m$$

$$EE_m = \frac{B\log_2(1 + SINR_m)}{P_{c,m} + \mu_m p_m}$$

E le Prestazioni Globali sono:

$$R_{sum} = B \sum_{m=1}^{K} \beta_m \log_2(1 + SINR_m)$$

$$GEE = B \frac{\sum_{m=1}^{K} \beta_m \log_2(1 + SINR_m)}{P_{c,m} + \sum_{m=1}^{K} \mu_m p_m}$$

$$EE_{sum} = B \sum_{m=1}^{K} \frac{\beta_m \log_2(1 + SINR_m)}{P_{c,m} + \mu_m p_m}$$

2.1 Maximum Trasmit Combining

Come abbiamo detto il Filtro Adattato (o MTC) non è il migliore tra i filtri lineari, ma è di sicuro il più semplice e consiste nel massimizzare la potenza del Segnale Utile, mitigando l'Interferenza Multi-Utente con l'uso di antenne multiple.

Sia:

$$\underline{\boldsymbol{q}}_{m} = \alpha_{m}\underline{\boldsymbol{g}}_{m}, \forall m = 1, ..., K$$

Allora la potenza dell'Interferenza si scriverà:

$$\sum_{k \neq m} p_k |\underline{\boldsymbol{g}}_k^H \underline{\boldsymbol{q}}_k|^2 = \alpha_m^2 \sum_{k \neq m} p_k \left| \sum_{l=1}^L g_{m,l}^* g_{k,l} \right|^2 =$$

$$= p_m |\underline{\boldsymbol{g}}_m^H \underline{\boldsymbol{q}}_m|^2 = \alpha_m^2 p_m \left| \sum_{l=1}^L |g_{m,l}|^2 \right|^2$$

2.2 Zero-Forcing Beamforming

Lo Zero-Forcing nel Downlink consiste nel trovare un vettore $\underline{\boldsymbol{q}}_m$ ortogonale a TUTTI i K - 1 canali Interferenti:

$$r_{m} = \sqrt{p_{m}} \underline{\boldsymbol{g}}_{m}^{H} \underline{\boldsymbol{q}}_{m} s_{m} + \sum_{k \neq m} \sqrt{p_{k}} \underline{\boldsymbol{g}}_{m}^{H} \underline{\boldsymbol{q}}_{k} s_{k} + n_{m}$$

Imponiamo che:

•
$$\underline{\boldsymbol{g}}_{k}^{H}\underline{\boldsymbol{q}}_{m} = 0$$
 per ogni $k \neq m$

•
$$\underline{\boldsymbol{g}}_{k}^{H}\underline{\boldsymbol{q}}_{m} = 1 \text{ per } k = m$$

Vettorizzando e raccogliendo \boldsymbol{g}_k :

$$\underline{\boldsymbol{r}} = \begin{pmatrix} \boldsymbol{r}_{1} \\ \boldsymbol{r}_{2} \\ \vdots \\ \boldsymbol{r}_{K} \end{pmatrix} = \begin{pmatrix} \underline{\boldsymbol{g}}_{1}^{H} \left(\sum_{k=1}^{K} \sqrt{p_{k}} \underline{\boldsymbol{q}}_{k} s_{k} \right) + n_{1} \\ \underline{\boldsymbol{g}}_{2}^{H} \left(\sum_{k=1}^{K} \sqrt{p_{k}} \underline{\boldsymbol{q}}_{k} s_{k} \right) + n_{2} \\ \vdots \\ \underline{\boldsymbol{g}}_{K}^{H} \left(\sum_{k=1}^{K} \sqrt{p_{k}} \underline{\boldsymbol{q}}_{k} s_{k} \right) + n_{K} \end{pmatrix} = \\
= \begin{pmatrix} \underline{\boldsymbol{g}}_{1}^{H} \\ \underline{\boldsymbol{g}}_{2}^{H} \\ \vdots \\ \underline{\boldsymbol{g}}_{K}^{H} \end{pmatrix} \left(\sum_{k=1}^{K} \sqrt{p_{k}} \underline{\boldsymbol{q}}_{k} s_{k} \right) + \begin{pmatrix} n_{1} \\ n_{2} \\ \vdots \\ n_{K} \end{pmatrix} = \underline{\boldsymbol{G}}^{H} \underline{\boldsymbol{Q}} \underline{\boldsymbol{P}}^{1/2} \underline{\boldsymbol{s}} + \underline{\boldsymbol{n}}$$

$$\operatorname{con} \underline{\boldsymbol{P}}^{1/2} = diag(\sqrt{p_1}, ..., \sqrt{p_K})$$

Se ora scegliamo $\underline{\mathbf{Q}} = \underline{\mathbf{G}}(\underline{\mathbf{G}}^H\underline{\mathbf{G}})^{-1}$ otteniamo:

$$\underline{\mathbf{r}} = \underline{\mathbf{G}}^{H} \underline{\mathbf{Q}} \underline{\mathbf{P}}^{1/2} \underline{\mathbf{s}} + \underline{\mathbf{n}} =$$

$$= \underline{\mathbf{G}}^{H} \underline{\mathbf{G}} (\underline{\mathbf{G}}^{H} \underline{\mathbf{G}})^{-1} \underline{\mathbf{P}}^{1/2} \underline{\mathbf{s}} + \underline{\mathbf{n}} =$$

$$= \underline{\mathbf{P}}^{1/2} \underline{\mathbf{s}} + \underline{\mathbf{n}} = \begin{pmatrix} \sqrt{p_{1}} s_{1} \\ \vdots \\ \sqrt{p_{K}} s_{K} \end{pmatrix} + \underline{\mathbf{n}}$$

Però per fare ciò, la matrice ($\underline{\mathbf{G}}^H\underline{\mathbf{G}}$) deve essere invertibile, il che richiede $L \geq K!!!$

Quindi è necessario che la BS abbia un numero di antenne almeno uguale al numero degli Utenti Interferenti.

3 Massive MIMO

Il Massive MIMO è una delle principali tecniche delle reti 5G e consiste nell'uso di un gran numero di antenne alla BS.

Tuttavia comporta un maggiore costo nella costruzione e nell'energia dissipata, ma consente di ottenere prestazioni "virtualmente" uguali ad un canale noise-limited con un Filtro Adattato.

Dato che l'Interferenza Multi-Utente diventa trascurabile per L » K:

$$\sum_{k \neq m} \frac{p_k}{||\underline{\boldsymbol{h}}_m||^2} ||\underline{\boldsymbol{h}}_m^H \underline{\boldsymbol{h}}_k||^2 = \sum_{k \neq m} \frac{p_k}{||\underline{\boldsymbol{h}}_m||^2} L^2 \left| \frac{1}{L} \sum_{l=1}^L h_{m,l}^* h_{k,l} \right|^2 \approx \sum_{k \neq m} \frac{p_k}{||\underline{\boldsymbol{h}}_m||^2} L^2 |\mathbb{E} \left[H_m^* H_k \right] |^2 = 0$$

Invece il segnale utile viene preservato:

$$\frac{p_k}{||\underline{\boldsymbol{h}}_m||^2}|\underline{\boldsymbol{h}}_m^H\underline{\boldsymbol{h}}_k|^2 = \frac{p_k}{||\underline{\boldsymbol{h}}_m||^2} \left| \sum_{l=1}^L |h_{m,l}|^2 \right|^2 \approx \frac{p_k}{||\underline{\boldsymbol{h}}_m||^2} L^2 \left| \mathbb{E}\left[|H_m|^2 \right] \right|^2$$

Capitolo 4

Reti Neurali

1 Ai, Machine Learning, Deep Learning

- AI: Qualunque tecnica con cui una macchina può riprodurre il comportamento umano.
- Machine Learning: Qualunque tecnica con cui una macchina può svolgere compiti senza essere esplicitamente programmata, ma semplicemente imparando per esperienza precedente.
- Deep Learning: Una specifica tecnica di machine learning, che implementa l'apprendimento attraverso reti neurali artificiali.

1.1 Apprendimento

Possiamo dividere i tipi di Apprendimento in:

- Apprendimento Non Supervisionato: vuol dire che i dati a disposizione sono soltanto i dati di input
- Apprendimento Supervisionato: vuol dire che i dati a disposizione sono i dati di input con i corrispettivi dati di output

2 Apprendimento Supervisionato

Supponiamo di avere i seguenti dati d'esempio:

Un Algoritmo di Learning imposta i Parametri di Progetto denotati con θ , come la pendenza della retta.

Ma come si impostano???

2.1 Training Set

Definendo il Training Set con $S_{TR}\{(x_n, y_n^*)\}$ per $n = 1, ..., N_{TR}$, i parametri θ si impostano in modo tale da minimizzare:

$$\min_{\theta} \sum_{n=1}^{N_{TR}} \mathbb{L}(y_n(\theta), y_n^*)$$

dove:

- y_n è il risultato effettivo per l'ingresso x_n
- L è una funzione di errore

Oltre a θ un Algoritmo di Learning deve impostare altri parametri, che non possono essere impostati con il Training Test, ovvero gli Iperparametri, come la scelta di una curva anzichè un'altra.

2.2 Validation Set

Il Validation Set serve per testare l'algoritmo con dati non presenti nel Training Test, dato che lo scopo ultimo dell'algoritmo è la generalizzazione.

2.3 Test Set

Il Test Set svolge lo stesso ruolo del Validation Set, per questo lo scopo dell'algoritmo non è minimizzare l'errore nel training, ma è minimizzare l'Error Test.

2.4 Overfitting e Uderfitting

Si ha Overfitting quando l'algoritmo di Learning si specializza troppo sul training set in uso.

Si ha Underfitting quando si ha un Errore Medio sul Training Set troppo basso.

3 Deep Learning

Il Deep Learning utilizza, nel processo di apprendimento, le Reti Neurali Artificiali (ANN).

Le ANN sono organizzare in Layer, composti da "neuroni", divisi in:

- Input Layer che prendono i dati in ingresso e li inoltrano al Layer successivo
- Hidden Layer è il Layer che elabora i dati
- Output Layer che elabora i dati prima di mandarli in output

3.1 Classificazioni delle ANN

Le ANN possono essere classificate in:

- Feedforward Neural Network (FNN)
 in cui i dati si propagano in una sola direzione
 - Fully-Connected Neural Network (FCNN)
 è un caso particolare delle FNN, in cui ciascun neurone è connesso a tutti i neuroni del Layer successivo
 - Convolutional Neural Network (CNN)
 è una FNN in cui ogni neurone fa una convoluzione dell'ingresso
- Recurrent Neural Network (RNN)
 è una ANN in cui sono permessi loop, quindi l'uscita di un neurone potrebbe essere messa in ingresso ad un Layer precedente
- Deep Neural Network (DNN)
 è una ANN con più di un Hidden Layer
- Shallow Neural Network (SNN)
 è una ANN con un solo Hidden Layer

4 Fully-Connected Neural Network

Nelle FCNN l'ingresso del k-esimo layer è un vettore $\underline{\boldsymbol{x}}_{k-1}$.

Mentre l'uscita dell'i-esimo neurone del k-esimo Layer sarà:

$$x_k(i) = f_{i,k}(z_{i,k})$$
$$z_{i,k} = \underline{\boldsymbol{w}}_{i,k}^T \underline{\boldsymbol{x}}_{k-1} + b_{i,k}$$

dove:

- $\underline{\boldsymbol{w}}_{i,k}$ è un vettore di Pesi
- $b_{i,k}$ è un termine di Bias
- $f_{i,k}(z_{i,k})$ è una Funzione di Attivazione

4.1 Funzioni di Attivazione

Qualsiasi funzione può essere usata come Funzione di Attivazione, tuttavia esistono alcune scelte canoniche come la funzione Lineare, che viene usata al più dal Layer di Output e le funzioni Sigmoidali e Iperboliche, che non sono quasi mai usate per la loro difficile applicazione.

Le funzioni più largamente usate sono:

• Rectified Linear Unit (ReLU) è la più diffusa, anche se presenta il problema che sia identicamente nulla per ingressi negativi:

$$ReLU(z_{i,k}) = max(0, z_{i,k})$$

• Generalized ReLU, risolve il problema visto sopra:

$$G - ReLU(z_{i,k}) = max(0, z_{i,k}) + c \cdot min(0, z_{i,k})$$

• Exponential Linear Unit (ELU) risolve lo stesso problema, ma pone gli ingressi negativi come esponenziali:

$$E - ReLU(z_{i,k}) = \begin{cases} \alpha(e^{z_{i,k}} - 1) & z_{i,k} \le 0\\ z_{i,k} & z_{i,k} > 0 \end{cases}$$

5 Convolutional Neural Network

5.1 Layer Convoluzionali

Nelle Reti Convoluzionali, in ingresso si ha una matrice 3D, di dimensioni N X N X N_c

Ad ogni neurone è associato un Filtro indicato con $\underline{\mathbf{W}}$ di dimensioni F X F X $N_{c,f}$ ($F \le N$) quindi più piccolo della matrice di Input.

Ogni neurone esegue una Cross-Correlazione a Finestra Mobile¹

Il risultato sarà una matrice 2D $\underline{\mathbf{Y}}$, con dimensioni N - F + 1 X N - F + 1

Alla matrice $\underline{\mathbf{Y}}$ sommeremo un termine di Bias per ogni neurone ed una Funzione di Attivazione per ogni componente di $\underline{\mathbf{Y}}$.

Tutte le matrici $\underline{\mathbf{Y}}$ del Layer vengono unite per formare una matrice 3D di dimensioni (N - F - 1) X (N - F - 1) X N_F ed inoltrate in ingresso al Layer successivo.

¹Nel gergo delle ANN con un abuso di notazione viene chiamato Convoluzione

5.2 Pooling Layer

Il Pooling è un'operazione svolta da un intero Layer, operando su ogni "strato" ² della matrice di Input:

Max Pooling

Per ogni "strato" della matrice di Input, seleziona il massimo tra gli elementi di ogni sotto-matrice di dimensione F X F.

Average Pooling

Per ogni "strato" della matrice di Input, seleziona la media tra gli elementi di ogni sotto-matrice di dimensione F X F.

 $^{^2}$ Sugli N_{F_i}

6 Addestramento di Reti Neurali Artificiali

6.1 ANN Training

Dato il Training-Set:

$$S_{TR} = \{x_n, y_n^*\}, n = 1, ..., N_{TR}$$

l'obbiettivo dell'Algoritmo di Learning è quello di OTTIMIZZARE l'assegnazione dei Pesi e dei Coeficienti di Bias contenuti in una variabile θ :

$$\min_{\theta} \sum_{n=1}^{N_{TR}} \mathbb{L}(y_n(\theta), y_n^*)$$

Per risolvere questo problema si utilizzano metodi come l'Algoritmo del Gradiente.

6.2 Algoritmo del Gradiente

L'Algoritmo del Gradiente ha lo scopo di minimizzare una funzione.

Consideriamo il seguente problema:

$$\min_{\underline{x}} f(\underline{x})$$

Il Gradiente indica la direzione di massimo incremento della funzione, quindi l'algoritmo si muoverà in senso opposto rispetto al gradiente per trovare il minimo.

```
      Algorithm 1 Algoritmo del Gradiente

      Ensure: Inizializza x_{new}, \alpha > 0, \epsilon > 0
      > \alpha viene detto step-size

      repeat
      \underline{\mathbf{x}}_{old} = \underline{\mathbf{x}}_{new}

      \underline{\mathbf{x}}_{new} = \underline{\mathbf{x}}_{old} - \alpha \nabla f(\underline{\mathbf{x}}_{old})

      until ||\underline{\mathbf{x}}_{new} - \underline{\mathbf{x}}_{old}|| < \epsilon
```

L'algoritmo del gradiente converge ad un Punto Stazionario ($\nabla f = 0$) per α opportuni.

Tuttavia con α non opportunamente scelti si potrebbe cadere in uno di questi due casi:

IMPORTANTE:

L'Algoritmo del Gradiente arriva ad un Punto Stazionario, che NON è detto che sia un Minimo Globale!!

Ma non è detto che sia un problema, perchè alle volte trovare un Minimo Globale causerebbe un Overfitting!!!

6.3 Metodo del Gradiente Stocastico

L'Algoritmo del Gradiente è troppo complesso da calcolare per grandi quantità di dati.

Quindi scriviamo il Gradiente del Training-Set:

$$\nabla_{\theta} \Delta_{TR}(\theta) = \sum_{n=1}^{N_{TR}} \nabla_{\theta} \mathbb{L}(y_n(\theta), y_n^*)$$

Ed ora calcoliamo un'approssimazione del Gradiente, su un sotto-insieme S del Training-Set, chiamato mini-batch, con $N << N_{TR}$:

$$\widehat{\nabla_{\theta} \; \Delta_{TR}(\theta)} = \sum_{n \in S} \nabla_{\theta} \; \mathbb{L}(y_n(\theta), y_n^*)$$

SGD Training Algorithm