In this section we introduce and describe the results for $A_2 \subset A_3$ constructibility in the finite algebras of interest.

Here we follow the steps worked through in the previous section, namely

- begin with an ansatz of all f_{A_2} applied across all A_2 subalgebras of a given larger algebra,
- impose that the overall function is invariant under automorphisms up to overall sign choices,
- count the number of solutions to these constraints.

In the case of A_n algebras we only have to impose the dihedral automorphisms σ_n and τ_n , and so the resulting table is exactly analogous to eq. (1):

It is interesting to note that the +- sign choice admits at least one solution for all A_n studied so far, and that is the only sign choice for A_4 .

As discussed in sec. (automorphisms), D_4 has the automorphism group $D_4 \times S_3$, with two cyclic generators $\sigma_{D_4}^{(4)}$ and $\sigma_{D_4}^{(3)}$ (corresponding to the D_4 and S_3 , respectively) and then the D_4 flip τ_{D_4} as well as the S_3 flip denoted \mathbb{Z}_{2,D_4} . In the following table these are abbreviated $\sigma_4, \sigma_3, \tau_4, \mathbb{Z}_2$, respectively. Because of the four automorphism generators, there are 16 possible sign choices to impose on the collection of 36 distinct f_{A_2} 's in D_4 .

Here we again see that the space of functions satisfying automorphisms is remarkably constrained, with no functions exhibiting a sign flip under σ_3 and only one sign choice – $\sigma_4^+ \tau_4^- \sigma_3^+ \mathbb{Z}_2^+$ – that offers more than one possible solution.

 D_5 is less symmetric than D_4 , with only $D_5 \times \mathbb{Z}_2$ automorphism group (in the table the generators are labeled by σ, τ , and \mathbb{Z}_2). Therefore there are 8 possible sign choices to impose on the collection of 125 distinct f_{A_2} 's in D_5 , and the resulting number of solutions is

Finally we turn to E_6 , which has automorphism group D_{14} with generators σ, τ , and \mathbb{Z}_2). E_6 is much larger than the algebras studied so far, with 504 distinct A_2 subalgebras, however the space of automorphic functions is still quite constrained: