Algorytmiczne Zastosowania Łańcuchów Markowa

Odszumiane obrazów z wykorzystaniem modelu Isinga

04.06.2025

Krzysztof Tkaczyk Michał Zajączkowski

Plan prezentacji

- O modelu
- Dane
- Testy oryginalnej implementacji
- Poprawa

Wstęp teoretyczny

Model Isinga - przypomnienie

Rozpatruje się sieć n atomów rozłożonych w sieci. Każdy z atomów przyjmuje wartość spinu ze zbioru {-1, 1}. Energia w takim układzie jest określona następującym wzorem:

$$E(x)=E(x;J,H)=-\Big(rac{1}{2}\sum_{n,m}J_{n,m}x_mx_n+\sum_nHx_n\Big)$$

gdzie:

- *H* pole zewnętrzne
- x_n spin n-tego atomu
- *J_{nm}* interakcja pomiędzy atomami n i m

Próbnik Gibbsa - przypomnienie

Niech S = $|\mathsf{d}|^{\mathsf{n}}$ - zbiór stanów. Chcemy próbkować z rozkładu $\pi(x) = \frac{g(x)}{Z} \quad \forall x \in S \quad Z = \sum_{x \in S} g(x)$

Algorytm:

- 1. Wybieramy losowy stan x.
- 2. Wybieramy dowolną u-tą współrzędną stanu x. (Losowa z rozkładu jednostajnego)
- 3. Aktualizujemy u-tą współrzędną na nową wartośc zgodnie z rozkładem:

$$\pi(x'_u|x_1,\ldots,x_{u-1},x_{u+1},\ldots,x_d) = \frac{\pi(x_1,\ldots,x_{u-1},x'_u,x_{u+1},\ldots,x_d)}{\sum_{y_u\in d}\pi(x_1,\ldots,x_{u-1},y_u,x_{u+1},\ldots,x_d)}$$

4. Wracamy do 2.

Problem odszumiania zdjeć w terminach Modelu Isinga

Stan: x ← zdjęcie zbinaryzowane

Spin: x_n ← wartość n -tego piksela (u nas -1 1)

Interakcja: J_{nm} ← przyjmuje wartość 1 gdy piksele sa bezpośrednimi sąsiadami w siatce

prostokątnej i 0 w p.p

Pole zewnętrzne: H ← pewna stała rzeczywista (hiperparametr)

Chcemy minimalizować funkcję energii. Dlatego będziemy próbkować z rozkładu Gibbsa

$$P(X=x)=rac{1}{Z(eta)}\exp(-eta E(x)).$$

Wykorzystamy do tego wcześniej opisany próbnik Gibbsa.

Mninimalizacja energii

W naszym przypadku prawdopodobieństwo zmiany n-tego piksela na wartość 1 przy pozostałych pikselach niezmienionych wynosi (wyprowadzenie w dodatku):

$$\mathbb{P}(x_{n} = 1 | x_{1} = s_{1}, \dots, x_{n-1} = s_{n-1}, x_{n+1} = s_{n-1}, \dots, x_{d} = s_{u}) = \frac{\exp\left(\beta \sum_{j} J_{nj} s_{j} + \beta H\right)}{\exp\left(\beta \sum_{j} J_{nj} s_{j} + \beta H\right) + \exp\left(-\beta \sum_{j} J_{nj} s_{j} - \beta H\right)} = \frac{1}{1 + \exp\left(-2\beta \sum_{j} J_{nj} s_{j} - 2\beta H\right)}$$

Zatem próbnik Gibbsa wybiera jednostajnie n-ty piksel i z wyliczonym wyżej prawdopodobieństwem ustawia jego wartość na 1, w przeciwnym razie ustawieniu go na -1.

•

Modelowanie szumu

Prawdopodobieństwo zaobserwowania zaszumionego obrazu y przy oryginalnym obrazie z wyraża poniższy wzór:

$$\mathbb{P}(Y = y \mid Z = z) = \prod_{i,j} \left\{ \begin{array}{ll} q & : y_{i,j} = z_{i,j}, \\ 1 - q & : y_{i,j} \neq z_{i,j}, \end{array} \right. = \prod_{i,j} \left\{ \begin{array}{ll} q & : y_{i,j} z_{i,j} = 1, \\ 1 - q & : y_{i,j} z_{i,j} = -1, \end{array} \right.$$

1-q jest tutaj prawdopodobieństwem zaszumienia pojedynczego piksela.

Pstwo wystąpienia stanu Model Isinga + rozkład Gibbsa

$$P(x) \propto \exp\left(\beta \left(\frac{1}{2}\sum_{n,m}J_{n,m}x_nx_m + \sum_nH_nx_n\right)\right)$$

Zał. pstwo wystąpienia zdjęcia

$$\mathbb{P}(Z=z) \propto \exp\Big(\sum_{i,j} J_{i,j} z_i z_j\Big)$$

Wzór Bayesa, pstwo zaobserwowania zdjęcia oryginalnego pod warunkiem zaszumionego

$$\mathbb{P}(Z=z|Y=y) \propto \mathbb{P}(Y=y|Z=z)\mathbb{P}(Z=z)$$

Sformułowanie problemu w postaci pozwalającej na skorzystanie z algorytmu

$$\mathbb{P}(z=z\mid Y=y) \propto \exp(\sum_{ij} hy_{ij}z_{ij} + \sum_{ij} J_{ij}z_{i}z_{j}),$$

$$h = \log(\frac{q}{1-q})$$

W dodatku dokładniej opisano skąd wynikają poszczególne wzory

Dokładne prawdopodobieństwa oraz otrzymane z próbnika Gibbsa

Testowanie modelu

Oczekiwania

Rzeczywistość

Dane

Zbiór Chinese MNIST

Zbiór Fashion MNIST

Wpływ intensywności zaszumienia na jakość odszumienia

Dice score

Understanding Evaluation Metrics in Medical Image Segmentation

Implementation of some evaluation metrics in Python

M. Medium / Sep. 18. 2024

Wyniki gdy w modelu q = 0.9 [Chinese MNIST]

Wyniki gdy w modelu q = 0.75 [Chinese MNIST]

Wyniki gdy w modelu q = 0.9 [Fashion MNIST]

Wyniki gdy w modelu q = 0.75 [Fashion MNIST]

Wpływ kształtu obrazu na jakość odszumienia

Clumpiness

10: return suma/liczność

```
Algorithm 1 Obliczanie zwiezłości (clumpiness)
Require: Macierz Z o wymiarach h \times w
Ensure: Wartość zwiezłości (liczba rzeczywistych z przedziału [0, 1])
 1: suma \leftarrow 0
 2: liczność \leftarrow 0
 3: Zdefiniuj sasiedztwa: kierunki \leftarrow \{(-1,0), (1,0), (0,-1), (0,1)\}
 4: for każde przesuniecie (dx, dy) w kierunki do
       Z_{\text{shift}} \leftarrow \text{macierz } Z \text{ przesunieta o } (dx, dy) \text{ z zawijaniem krawedzi}
       A \leftarrow \frac{Z \cdot Z_{\text{shift}+1}}{2} \{1 \text{ jeśli takie same, } 0 \text{ jeśli różne} \}
       suma \leftarrow suma + \sum A
       liczność \leftarrow liczność + h \cdot w
 9: end for
```

Wyniki gdy w modelu q = 0.9 [Fashion MNIST]

Porównanie odszumienia z oryginałem, q = 0.9 [Fashion MNIST]

Obserwacje odstające - F1 score

Wyniki gdy w modelu q = 0.9 [Chinese MNIST]

Wyniki gdy w modelu q = 0.9 [Chinese MNIST]

Porównanie odszumienia z oryginałem, q = 0.9 [Chinese MNIST]

Porównanie odszumienia z oryginałem, q = 0.9 [Chinese MNIST]

Modyfikacje

Zmiana sąsiedztwa

Zmiana sąsiedztwa

Poprzez modyfikacje współczynników J_{nm}:

Porówanie wyników przed i po zmianie sąsiedztwa, q = 0.9 [Chinese MNIST]

Porówanie wyników odszumiania z wykorzystaniem nowego sąsiedztwa

Dodanie symulowanego wyżarzania

W celu poprawy procesu próbkowania i unikania lokalnych minimów w przestrzeni stanów, zastosowano różne schematy wyżarzania:

- liniowy
- wykładniczy
- potęgowy
- cosinusowy

W kazdym ze schematów początkową wartość parametru beta ustawiano na 0.1 a docelową na 2.

Liczba kroków burn-in - kroków nie wykorzystywanych do obliczania wyników końcowych wynosiła 50000.

Znacznie lepsze odszumienie tła

Annealing: linear

Annealing: exponential

Annealing: power Ising Ising Ising Ising

Annealing: cosine

Dziękujemy za uwagę!