

Plan du cours – Les blocs

(Bloc1)

Introduction: Le besoin, concepts et définitions

(Bloc 5) Architecture et Méta données

(Bloc 6) Définition des besoins et gestion de projet

(Bloc 7) Techniques de réalisation et opération

Lectures relatives

• Suggéré:

Data Warehousing Fundamentals, A Comprehensive Guide for IT Professionals,

Paulraj Ponniah

- Chapitres 14 à 17

• Annexes:

- Front room services for data access
- End user template definition
- End user template layout
- Product comparison matrix & example
- High-performance data mining system
- Application development checklist
- INF735 Bloc 3 Intro to KPI 2006 Seminaire PI

Concepts Clés du Bloc

- Différents outils pour différents besoins
- OLAP → explorer le modèle dimensionnel (historique)
- Tableaux de bord → Présenter une image du passé récent
- Forage → prédire et découvrir l'inconnu

DIFFÉRENTS UTILISATEURS

Utilisation de l'information

- Mode:
 - Mode Vérification
 - Mode Découverte

- Approche
 - Informelle
 - Analytique
 - Forage

- Caractéristiques:
 - Pré-traitées
 - Prédéfinis
 - Ad hoc

Classer ses utilisateurs

Touristes

Opérateurs

Fermiers

Explorateurs

Mineurs

- Novice
- Régulier
- Expert

OUTILS DE PRÉSENTATION DES DONNÉES

Outils de présentation

- Analyse de l'historique:
 - OLAP
 - Excel (Tableaux croisés dynamiques, PowerPivot, add-ins)
 - Rapports
 - Requêtes
- Performance
 - Tableaux de bord
 - Bulletin / Carte de pointage (« scorecard »)
- Prédictif
 - Forage
- Développements

Des multiples types d'outils (discutés plus tôt), nous nous attarderons aux plus classiques.

Types d'outils

Types d'outils

Types d'outils

Outils selon les profils

ANALYSE DE L'HISTORIQUE: OLAP, EXCEL, RAPPORTS

• Définition:

Online Analytical Processing / traitement analytique en ligne

Technique informatique d'analyse multidimensionnelle, qui permet aux décideurs, en entreprise, d'avoir accès rapidement et de manière interactive à une information pertinente présentée sous des angles divers et multiples, selon leurs besoins particuliers.

[Office de la langue française, 2002]

→ En résumé: Utilisation de cubes

OLAP

- Créé en 1993 par Edgar F. Codd
- Requêtes interactives pour alimenter un processus de décision
- Analyse de l'information de manière itérative

OLAP

Exemples en ligne

Radar Soft: http://olaponline.radar-soft.com/Demos/HtmlOLAPAnalysis.aspx

ElegantJ Olap: http://youtu.be/XWHRiBVnric

DevExpress:

http://demos.devexpress.com/aspxpivotgriddemos/OLAP/Browser.aspx

Dundas:

http://www.dundas.com/Products/Chart/NET/OLAP/OLAPdemos.aspx?

OLAP

• Exemple local Excel/SQL

OLAP - Opérations

- Roll Up (Zoom arrière): Résumer (agréger) les données
 - Passer à un niveau supérieur dans la hiérarchie d'une dimension
- Drill down (Zoom avant): inverse (exploser une agrégation)
 - Descendre dans la hiérarchie d'une dimension
- Slice and Dice: (découpage en tranches et en dés)
 - analyse par permutation d'axes
 - modifier la perspective dans laquelle sont représentées les données à l'intérieur d'un hypercube
- PIVOT (rotation):
 - Réorienter le cube pour visualisation

- Permettre aux analystes comme aux gestionnaires d'interroger
 « intuitivement » les données
- Peut présenter selon différentes dimensions et perspectives
- Supporte l'analyse multidimensionnelle
- Permet le Zoom arrière Zoom avant
- Réponses rapides permettre exploiter un fil de pensée
- Complète le coffre à outil (avec outils de forage)
- Présentations graphiques, cartes, etc.
- Peut être utilisé sur le Web
- Résultats peuvent êtres communiqués dans différents formats
- Analyse interactive

OLAP - 12 règles de CODD

- 1. Modèle multidimensionnel
- 2. Transparence du serveur
- 3. Accessibilité
- 4. Performances d'accès stables
- 5. Client serveur
- 6. Dimensionnalité générique
- 7. Gestion des données éparses
- 8. Multi-utilisateur
- 9. Opérations sur les dimensions
- 10. Manipulation intuitive des données
- 11. Souplesse d'affichage et d'édition
- 12. Dimensions et niveaux multiples

OLAP - Techniques

- ROLAP: Relational Online Analytical Processing
 - Sur SGBD relationnel + SQL avancé
 ** Étoiles
- MOLAP: Multidimensional Online Analytical Processing
 - Technologie BD Dimensionnelle + Serveur de traitement
 ** Cubes
- **HOLAP**: *Hybrid Online Analytical Processing*
 - Molap pour les données sommaires + Rolap pour les données détaillées

- ❖ DOLAP: Desktop Online Analytical Processing (Offline)
 - Fichier sur le poste client + Client de traitement OLAP
- ❖ WOLAP: Web-based Online Analytical Processing
- * RTOLAP: Real-Time Online Analytical Processing

MOLAP (.vs. ROLAP)

(données pré-structurées et pré-sommarisées)

Avantages

- Interrogations rapides (indexation, cache et optimisation disque)
- Espace disque compressé
- Agrégations/sommaires automatisées
- Très efficace avec peu de dimensions

Désavantages

- Traitement long, parfois très (trop) long
- Peu efficace si beaucoup de données (millions de faits) ou beaucoup de dimensions
- Donc ralentissement avec le temps / alimentations.

• Aujourd'hui langages plus standard: Exemple MDX

Data storage modes

OLAP Server	MOLAP	ROLAP	HOLAP	Offline
Essbase	Yes	No	Yes	
icCube	Yes	No	No	GWT Offline Pivot [11]
Microsoft Analysis Services	Yes	Yes	Yes	Local cubes
Microstrategy OLAP Services	Yes	Yes	Yes	Dynamic Dashboards
Mondrian OLAP server	No	Yes	No	
Oracle Database OLAP Option	Yes	Yes	Yes	
Palo	Yes	No	No	
SAS OLAP Server	Yes	Yes	Yes	
TM1	Yes	No	No	

Source: http://en.wikipedia.org/w/index.php?oldid=375229598

OLAP - Standards

APIs and query languages OLAP servers support.

OLAP Server	XML for Analysis	OLE DB for OLAP	MDX	Stored procedures	Custom functions	SQL
Essbase	Yes	Yes	Yes	Java	Yes	No
icCube	Yes	Yes	Yes	Java	Yes	No
Microsoft Analysis Services	Yes	Yes	Yes	.NET ^[12]	Yes ^[13]	No
Microstrategy OLAP Services	?	?	?	?	-	?
Mondrian OLAP server	Yes	Yes ^[14]	Yes	No	Yes ^[15]	No
Palo	Yes	Yes	Yes	?	-	No
Oracle Database OLAP Option	No	Yes ^[16]	Yes ^[16]	Java, PL/SQL, OLAP DML	Yes	Yes ^[17]
SAS OLAP Server	Yes	Yes	Yes	No	No	No
TM1	Yes	Yes	Yes	?	Yes	No

Source: http://en.wikipedia.org/w/index.php?oldid=375229598

OLAP - Standards

OLAP features

OLAP Server	Parent-child hierarchies	Semi-additive measures	Write-back	Partitioning
Essbase	Yes	Yes	Yes	Yes
icCube	Yes	Yes	Planned	Planned
Microsoft Analysis Services	Yes	Yes	Yes	Yes
Microstrategy OLAP Services	?	?	No	?
Mondrian OLAP server	Yes	Yes	Planned	No
Oracle Database OLAP Option	Yes	Yes	Yes	Yes
Palo	?	?	Yes	?
TM1	Yes	Yes	Yes	No

Source: http://en.wikipedia.org/w/index.php?oldid=375229598

OLAP – Critères de sélection

- Présentation multidimensionnelle
- Fonctions d'agrégation...
- Calculs complexes
- Calculs multidimensionnels
- Intelligence dans les dates + notion de totaux partiels
- Opérations de base intuitives et faciles
- Performance
- Interfaces

Solutions Microsoft

Microsoft:

- SSAS

- Tableaux croisés dynamiques (« Pivot table »)

- « Power Pivot »

Tableau Croisé Dynamique

Excel Demo 1

Excel Demo 2

Power Pivot : Vu au Lab

MS Excel comme outil OLAP

→ Plusieurs exploitent Excel avec modules ajoutés

http://www.cognos.com/products/cognos8businessintelligence/demos/excel_demo/index.html

IBM Cognos 8 Business Intelligence

IBM Cognos 8 BI Analysis for Microsoft Excel®

EXCEL

Même SAS (Forage – présenté plus loin)

dans EXCEL

SAS dans Excel

Rapports

- Rapports multidimensionnels
 - Comme Crystal report SAP Business Object

Vidéo de Cognos:

ANALYSE DE LA PERFORMANCE: TABLEAU DE BORD, CARTE DE POINTAGE

Tableaux de bord

Employee Metrics

Overall Summary Current Staff:

1410

Avg. Age: 41.5

Employees By Dept Hotel Property

Corporate Office

Regional Office

Tableau de bord (« Dashboard »):

Sommaire graphique en un coup d'œil sur des données dans une plage de temps pré-établie à partir duquel nous

pourrons naviguer et exploser

l'information.

Carte de pointage (« Scorecard »):

Mesure de la santé de l'entreprise selon des métriques précis (« KPI ») où on compare les données à des cibles.

Within 5 Years of Retin

11% of Employees 250 Staff Within 10 Years of

18% of Employees

1210 Employees 85%

130 Employees

70 Employees

Tableaux de bord

Tableaux de bord

INF735 Entrepôt et forage de données, Bloc 3 Préparé par Robert J. Laurin

Tableaux de bord

Tableaux de bord

http://media1.dundas.com/DashboardDemo/Viewer.aspx?view=Sonatica Performance Dashboards&width=966&height=836

Carte de pointage

Super Tableaux de bord

Intégration du tableau de bord - Olap — Forage - Rapports — intégration avec Office - etc...

-Suite de produits

-Produits intégrés (ex: Hyperion)

Cartes de pointage et Indicateurs Clés de la performance « KPI »

• RtPM - PI Process book pour automatisation industrielle

OUTIL PRÉDICTIF: FORAGE

Forage (Data Mining)

• Définition:

Technique de recherche et d'analyse de données qui permet de dénicher des tendances ou des corrélations cachées parmi des masses de données, ou encore de détecter des informations stratégiques ou de découvrir de nouvelles connaissances en s'appuyant sur des méthodes de traitement statistique.

synonyme(s)
 prospection de données n. f.
 forage de données n. m.
 fouille de données n. f.
 orpaillage n. m.

[Office de la langue française, 2002]

- Technique
- Tendances ou corrélations
- Cachées parmi des masses de données,
- Détecter des informations stratégiques
- Découvrir de nouvelles connaissances
- en s'appuyant sur des méthodes de traitement statistique!

OLAP .vs. Forage

Aspects	OLAP	Forage		
Motivation	Historique et actuel	Prédictif		
Granularité	Sommaires (Drill down)	Détails		
Dimensions	Limité	Très large		
Volume	Variant par dimension	Très large		
Analyse	Interactive avec l'utilisateur	Automatique avec la donnée		
Technique	Drill down, Slice and dice	Lancer et attendre un résultat		

- Le forage (data mining) sera utilisé quand on doit:
 - Trouver un algorithme (« pattern ») qui permettra éventuellement interpréter des données sans l'intervention d'un expert
 - Identifier un individu, un produit ou un cas par rapport à un groupe connu.
 - Découvrir des séquences d'événements ayant une probabilité d'amélioration

• Exemples:

- Mesure de risques sur un prêt bancaire
- Analyse du « panier d'épicerie » pour la grande distribution
- Détection de fraude pour les compagnies de cartes de crédit
- Chercher à cibler qui est un client potentiel

- Analyse d'importantes masses de données tel:
 - Résultats R&D
 - Clientèle cible
 - Examiner les effets de la concurrence
 - Traitement de crédits
 - Habitudes de consommation et tendances

« Capital qui sommeille – Inexploité et insoupçonné »

Welcome to FREAKONOMICS

STEVEN D. LEVITT IS AN ECONOMIST. STEPHEN J. DUBNER IS A WRITER. THEY CO-AUTHORED FREAKONOMICS, A BOOK ABOUT CHEATING TEACHERS, BIZARRE BABY NAMES, SELF-DEALING REALTORS, AND CRACK-SELLING MAMA'S BOYS. THEY FIGURED IT WOULD SELL ABOUT 80 COPIES. INSTEAD, IT HAS SOLD 4 MILLION, IN 35 LANGUAGES. THEN THEY WROTE SUPERFREAKONOMICS, WITH STORIES ABOUT DRUNK WALKING, THE ECONOMICS OF PROSTITUTION, AND HOW TO STOP GLOBAL WARMING. IT HASN'T QUITE SOLD 4 MILLION COPIES YET BUT IT'S GETTING THERE. A LOT OF OTHER STUFF HAS HAPPENED, TOO. A BLOG. A MOVIE. A RADIO SHOW. LECTURES. EVEN JON STEWART—AND BEAUTY AND THE GEEK. THIS IS THE PLACE WHERE ALL THAT STUFF CONTINUES TO HAPPEN. WELCOME TO FREAKONOMICS.COM.

Forage - Utilité

- Segmentation des marchés
- Analyse du panier
- Gestion du risque
- Détection de fraude
- Prévision de délinquance
- Prédiction de la demande

SPSS: Crime Fighting

Forage - Étapes

- 1. Définir les objectifs
- 2. Préparer les données
- 3. Faire le forage (selon la technique voulu)
- 4. Évaluer les résultats
- 5. Présenter les trouvailles
- 6. Mettre les découvertes à profit

Forage - Techniques

• Détection de « cluster » (regroupements)

Arbres de décision

• Raisonnement par cas (Intelligence Artificielle - MBR)

- Pattern séquentiel
- Réseaux neuronaux

• Génétique

Détection de Cluster

- Analyse des données qui se concentrent selon différentes dimensions.
- Il faut comprendre le nuage (cluster) pour l'exploiter

Arbre de décision

- Classer et prédire
- Basé sur la probabilité de prédire le chemin dans l'arbre

Raisonnement par cas (MBR)

- Intelligence Artificielle Apprendre
- Basé sur la distance et la combinaison

Figure 4 Concept of MBR.

FUJITSU Sci. Tech. J.,36, 2,(December 2000)

Pattern séquentiel

- Pattern basé sur une série d'événements
- On introduit un facteur de « confiance »
 - Ex: Quand achète du vin, 34% achètent du fromage; Des acheteurs de fromage, 10% achètent du vin en même temps.

Réseaux neuronaux

- Basé sur l'apprentissage des liens entre les nœuds
- Chaque lien a sa pondération

Génétique

- Technique scientifique de recoupement de l'information
- Reproduction et survie des éléments viables...

Forage – Exemple

Books structure mining

This data set illustrates *Structure Mining*. This data set contains the skeletal structure of a range of fiction and non-fiction books, matching their chapter structure, indexes, tables of contents, etc.. Each is marked up as fiction or non fiction. In this example XML Miner mines the structure, i.e. the presence of various structural elements for each book, as well as their number trying to predict fiction or non-fiction.

Rules generated:

if index is absent then nonfiction will be false (confidence 1.00) if index is present then nonfiction will be true (confidence 1.00)

Forage – Exemple

Retail - Shopping basket analysis

Rules generated:

if item is 32 then item will be 39 (confidence NaN)

if item is 38 and item is 32 then item will be 39 (confidence NaN)

if item is 38 and item is 36 then item will be 39 (confidence NaN)

if item is 38 then item will be 39 (confidence NaN)

if item is 41 and item is 39 and item is 32 then item will be 48 (confidence NaN)

if item is 39 and item is 32 then item will be 48 (confidence NaN)

if item is 39 and item is 38 and item is 32 then item will be 48 (confidence NaN)

if item is 39 and item is 38 and item is 36 then item will be 48 (confidence NaN)

if item is 39 and item is 38 then item will be 48 (confidence NaN)

if item is 41 and item is 39 and item is 38 then item will be 48 (confidence NaN)

if item is 41 and item is 39 then item will be 48 (confidence NaN)

if item is 39 then item will be 48 (confidence NaN)

if item is 41 then item will be 48 (confidence NaN)

if item is 36 then item will be 38 (confidence NaN)

if item is 37 then item will be 38 (confidence NaN)

This data set illustrates *Shopping* basket analysis otherwise known as Association Learning. It contains the contents of 88,000 shopping baskets from a supermarket chain in Belgium. The rules returned represent items that frequently occur together, and form the basis of the recommendation or cross selling process used by online retailers such as Amazon. The contents have been anonymized to integers representing different items drawn from a total range of 16,000 items. The average number of items in a shopping basket in this data set is 11. For this example thresholds have been set high so that only a few associations are returned. **Due to the** very large data set, processing will take 10-20 seconds.

Exemple d'outils

• SAS: <u>www.sas.com</u>

•SAS Enterprise Miner provides the most comprehensive set of advanced predictive and descriptive modeling algorithms, including market basket analysis, decision trees, gradient boosting, least angular regression splines, neural networks, linear and logistic regression, partial least squares regression and many more.

SAS Forecasting Overview

• SPSS :

- Démo profile acheteurs
- Démo code postaux
- SPSS helps fight crime

Malédiction de la dimensionalité

« Curse of Dimensionality »

• Plus on a de Dimensions (d) dans notre analyse de segmentation (« Clustering »), plus l'échantillonnage doit être grand.

Règle du pouce: $> 10 \times 10^{d}$ échantillons requis

pour obtenir un nombre significatif d'occurrence pour voir l'influence de la dimension

Leçon: Garder le modèle simple – une bonne approximation simple vaut mieux qu'une recherche de la précision de prédiction.

Logiciels de forage

- Comparatif des plus populaires:
 http://www.softwareadvice.com/bi/data-mining-comparison/
- Forage avec SAS et Excel: https://www.youtube.com/watch?v=Pzh1D-_0hQA

• SAS Enterprise miner : https://www.youtube.com/watch?v=Nj4L5RFvkMg

Forage – Critères de sélection

- Méthodes statistiques offertes
- Accès aux données
- Convivialité
- Sélection efficace des données
- Sensible à la qualité des données
- Présentation des données
- Intégration
- Performance
- Flexibilité (techniques)
- Volume de traitement / « scalable »
- Support de plusieurs algorithmes
- Déploiement

Technique de critères de sélection

Product Comparison Matrix Example

Example evaluation grid based on customer-specific requirements.

Note: This is not meant to be a complete list of requirements, and the weights reflect a specific organizational situation.

1	-5	Ra	tin	C

	Feature				
Feature	Weight	Product 1	Product 2	Product 3	
Basic Staging Capabilities					
Supports source extract from multiple legacy and					
warehouse platforms, incl. RDBMS, IDMS, WKS, DB2,					
VSAM	85				
Can determine net-change from source log/journal	50				
Provides fast copy, replication	85				
Provides data compression / decompression	50				
Supports transformation functions: validate, translate,					
integrate, check integrity, calculate, derive, aggregate,					
allocate	85				
Provides loading of target via replace, append, update					
functions on target RDBMS	85				
Job Control and Scheduling					
Supports job scheduling (time / event-based)	75				
Supports monitoring, reporting, recovery from					
unsuccessful completion	75				
Supports archive / restore	25				
Supports security via access and encryption checks	25				
Provides time synchronization of updates	25				
Metadata and Standards					
Driven by open repository	100				
Supports metadata exchange with other key products	85				
Supports messaging standards, incl: com, dce, corba	25				
Supports transport levels, incl. TCP/IP, FTP	25				
Vendor Items					
Cost	85				
Tech support	85				
Documentation	50				
Training availability / quality	25				
Consulting availability / quality	50				
TOTAL SCORE (based on 1-5 rating scale)	5975	0	0	0	
Ranking					

OUTILS DE DÉVELOPEMENT

Outils de développement

- OLAP CODE pour .Net, Java, C, etc...
 - Propriétaire et openSource
- Générateurs de code
 - Ex: InformationBuilers Development Tools

Information Builders

• Code et générateurs aussi pour Tableaux de bord, Forage ...

Beaucoup de XML

Outil - Développement

Application Development Checklist

- Un choix possible
- Suivre les méthodologies de développement standard
- Suivre les standards « DEV → QA → PROD »

Exercices

SÉLECTION D'OUTILS

Sélection d'outils - Étapes

- 1. Monter l'équipe
- 2. Revue des besoins
- 3. Définir les critères de sélection
- 4. Rechercher les outils et leurs représentants (DM Review)

- 5. Évaluer la liste obtenue Chercher à en savoir plus (références).
- 6. Sélectionner les 3 à 5 potentiels
- 7. Voir démo remplir grille évaluation
- 8. Faire évaluer les outils potentiels par T.I.
- 9. Évaluation finale et choix

Sélection d'outils – critères

- Coût
- Convivialité
- Performant
- Compatibilité
- Fonctionnalités
- Intégration avec autres outils
- Gestion et déploiement
- Interfaces (Web?)
- Sécurité
- Sauvegardes
- Capacité de navigation et traitement des données
- Façon de sélectionner l'information
- Connectivité
- Présentation des résultats
- Robuste
- Manufacturier et vendeur

VUE GLOBALE

Produits d'IA et Analytiques

Gartner 2016

De bout en bout

High Level Warehouse Technical Architecture

Vue complète

Data Warehouse - Components

Source: IBM – Business Intelligence Certification Guide – January 2000

L'important, c'est le gain à l'opération

Source: SAS Analytics

Une fois la boucle complète...

American Civil Liberties Union

