Zadania zamkniete

ZAD. 1P. (1 pkt)

Liczba $(\sqrt{27} - \sqrt{12})^3$ jest równa:

A. $3\sqrt{3}$

B. $\sqrt{15}$ **C.** $\sqrt{18}$ **D.** $\sqrt{3}$

ZAD. 2P. (1 pkt)

Cena akcji pewnej firmy wzrosła w pierwszym tygodniu po jej wejściu na gieldę o 20%. Niestety, po dwu miesiącach od wybuchu pandemii ich cena spadła o tyle samo procent. Zatem aktualna cena tych akcji stanowi x% ceny wyjściowej, gdzie:

A. x = 90

B. x = 95; **C.** x = 96 **D.** x = 98

ZAD. 3P.(1 pkt)

Liczba $2\log_3\sqrt{12} - (\log_2\sqrt{3})^{-1}$ jest równa:

 \mathbf{A} . $\log_3 2$

B. 1

C. $\log_2 3$ D. $\sqrt{3}$

ZAD. 4P.(1 pkt)

Suma wszystkich rozwiązań równania $(2x - x^2)(x^2 + 3x)(x^2 - 2) = 0$ jest równa:

A. 1

B. 2 **C.** −2 **D.** −1

ZAD. 5P. (1 pkt)

Zbiorem rozwiązań nierówności $\frac{2-x}{3} - \frac{x-3}{4} \geqslant \frac{4-x}{6}$ jest:

A. $(-\infty, -1]$ **B.** $(-\infty, 1]$ **C.** $[3, \infty)$ **D.** $\left(-\infty, \frac{9}{5}\right]$

ZAD. 6P. (1 pkt)

Liczby x-3, 6, x+2 są trzema kolejnymi wyrazami rosnącego ciągu geometrycznego. Wówczas x jest równe:

A. 2

B. $\sqrt{3}$ **C.** 3 **D.** 7

ZAD. 7P. (1 pkt)

Przekątne równoległoboku mają długości 8 i 12 i przecinają się pod kątem 30°. Pole tego równoległoboku jest równe:

A. 18

B. $12\sqrt{3}$ **C.** 24 **D.** $\sqrt{42}$

ZAD. 8P. (1 pkt)

Proste $k: y = -\frac{3}{2}x + 1$ i l: mx + 2x - my - y - 2 = 0 są prostopadłe dla:

A. m = 2 **B.** m = -3 **C.** m = -4 **D.** m = 4

ZAD. 9P. (2 pkt)

W trójkacie prostokatnym ABC dane sa: |BC| = 6, |CA| = 8. Odcinek DE jest prostopadły do przeciwprostokatnej ABoraz |AE| = 3|EB| (zobacz rysunek). Wówczas pole trójkata BDE wynosi:

A. 4

B. $\frac{25}{6}$ C. $\frac{5}{2}$ D. 2

ZAD. 10P. (2 pkt)

Punkty A, B, C, D leżą na okręgu o środku S, a styczna w punkcie Atworzy z cięciwą AD kąt 46°. Miara kąta BDC jest równa 32° (zobacz rysunek). Wówczas cięciwy AC i BD przecinają się pod katem:

A. 64°

B. 42°

C. 78°

D. 46°

ZAD. 11P. (1 pkt)

Punkty A, B, P leżą na okregu o środku S i promieniu 1, przy czym czworokąt ASBP jest rombem (zobacz rysunek). Wówczas pole zakreskowanego wycinka koła jest równe:

A. $\frac{1}{3}$

B. $\frac{2}{5}$ C. $\frac{\pi}{3}$ D. $\frac{2\pi}{5}$

ZAD. 12P. (2 pkt)

W trójkącie prostokątnym ABC wierzchołkiem kąta prostego jest punkt C(1,2), a środkiem przeciwprostokatnej jest punkt S(3,3). Trójkat SBC jest równoboczny. Wówczas pole trójkata ABCjest równe:

A. $\frac{5\sqrt{3}}{2}$ **B.** $\frac{5\sqrt{3}}{4}$ **C.** $2\sqrt{5}$ **D.** $\frac{3\sqrt{5}}{2}$

ZAD. 13P.(1 pkt)

Wszystkich czterocyfrowych liczb parzystych podzielnych przez 5 o niepowtarzających się cyfrach jest:

A. 504

B. 1008

C. 648

D. 816

ZAD. 14P. (2 pkt)

Podstawą ostrosłupa jest kwadrat o boku a, a jedna z jego krawędzi jest prostopadła do podstawy i też ma długość a (zobacz rysunek). Pole powierzchni całkowitej tego ostrosłupa jest równe:

A. $a^2(2+\sqrt{2})$ **B.** $4a^2$ **C.** $a^2(1+\sqrt{2})$ **D.** $a^2(3-\sqrt{2})$

