Syntaks og semaktik - kursusgang 01 af Peter Viggo Printz Madsen **Mængdeoperationen** $A \times B$ - **kartesisk produkt/krydsprodukt** Lad A og B være mængder. Da kan vi definere

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

 $A\times B$ betegner altså de par hvor 1.
komponent er iA og 2. komponent er iB. Det kaldes det kartesiske produkt eller krydsproduktet.

Definition af sprog

Definition: Givet et alfabet Σ , er et sprog L over Σ en mængde af strenge over Σ .

Definition: Et alfabet Σ er en endelig mængde tegn.

Definition: Givet et alfabet Σ , er en streng over Σ en endelig følge af tegn fra Σ .

Transitionsfunktionen $\delta: Q \times \Sigma \to Q$

 δ betegner transitions-funktionen der tager som input det kartesiske produkt, hvor 1.komponent er i Q, hvor Q er tilstandsmængden for en DFA(Deterministic finite automaton/deterministisk endelig automat), og hvor 2.komponent er i Σ , der er alfabetet given en DFA. Transitions-funktionen kan ses som f(x) = y, hvor x er parret(det kartesiske produkt) og y er tilstanden Q der er i tilstandsmængden.

Definition af et regulært sprog

Sproget L er et regulært sprog hvis $\exists DFA A : L = L(A)$. Med andre ord er et sprog L, regulært hvis og kun hvis der findes mindst én endelig automat A der kan genkende sproget (L = L(A)).

De regulære operationer

De regulære operationer bruges til at bygge nye regulære sprog med. Ved hjælp af de regulære operationer er det muligt at bygge ALLE regulære sprog. Lad A og B være sprog. Vi definere de regulære operationer: forenings $(L_1 \cup L_2)$, konkatenering $(L_1 \circ L_2)$, og kleene stjerne (L^*) ved:

Forening: $L_1 \cup L_2 = \{ w \mid w \in L_1 \lor w \in L_2 \}$

Konkaterning: $L_1 \circ L_2 = \{ w \mid \exists u \in L_1, \exists v \in L_2 : w = uv \}$

Kleene stjerne: $L^* = \{w_1w_2w_3...w_k \mid w_i \in L \text{ for } 0 \leq i \leq k\}$

Da k kan være 0, er den tomme streng ALTID en del af L^* . L^* giver altid et regulært sprog med en uendelig mængde af strenge, **hvis** at $L \neq \emptyset$.

De regulære sprog er lukket under foreningsmængden \cup

Hvis L_1 og L_2 er regulære sprog, så er foreningsmængden $L_1 \cup L_2$ også et regulært sprog. Dvs. Da L_1 er et regulært sprog, så findes der en DFA A_1 , så $L(A_1) = L_1$. Da L_2 er et regulært sprog, så findes der en DFA A_2 , så $L(A_2) = L_2$. Så findes der en DFA A_{12} , så at A_{12} genkender $L_1 \cup L_2$, altså $L(A_{12}) = L_1 \cup L_2$. Denne DFA A_{12} kan konstrureres ved hjælp af produkt konstruktion: Vi kører de to DFA'er parallelt, det kan vises sådan her:

$$DFA_{12} = (Q, \Sigma, \delta, q_0, F): \quad Q = Q_1 \times Q_2$$

$$q_0 = (q_{0_1}, q_{0_2})$$

$$\delta((q_1, q_2), a) = (r_1, r_2) \rightarrow r_1 = \delta_1(q_1, a) \text{ og } r_2 = \delta_2(q_2, a)$$

$$\Sigma = \Sigma_1 \cup \Sigma_2$$

$$F = \{(q_1, q_2) \mid q_1 \in F_1 \lor q_2 \in F_2\}$$