Part IB — Linear Algebra

Based on lectures by Dr. A. Keating (amk50@cam.ac.uk) Notes taken by Christopher Turnbull

Michaelmas 2017

0 Introduction

Linear algebra is an important component of undergraduate mathematics. At the practical level, matrix theory and the related vector-space concepts provide a language and a powerful computational framework for posing and solving important problems.

Beyond this, elementary linear algebra is a valuable introduction to mathematical abstraction and logical reasoning because the theoretical development is self-contained, consistent, and accessible to most students.

1 Vector Spaces

1.1 Vector Spaces

Definition. An \mathbb{F} -Vector space (a vector space on \mathbb{F}) is an abelian group (V, +) equipped with a function $F \times V \to V$, $(\lambda, v) \mapsto \lambda V$

$$\lambda(v_1 + v_2) = \lambda v_1 + \lambda v_2$$
$$(\lambda_1 + \lambda_2)v = \lambda_1 v + \lambda_2 v$$
$$\lambda(\mu v) = \lambda \mu v$$
$$1v = v$$
$$v + \mathbf{0} = v$$

for all $\lambda_i, \lambda, \mu \in F, v_i \in V$

Note that we will not be underlining our vectors, as this is cumbersome here. We will however be using $\mathbf{0}$ to denote the zero vector.

Example. For all $n \in \mathbb{N}$, \mathbb{F}^n = space of column vectors of length n, entries in \mathbb{F} . We understand the definition as entry-wise addition, entry-wise scalar multiplication

Example. $M_{m,m}(\mathbb{F})$, the set of $m \times m$ matrices with entries in \mathbb{F}

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}$$

again all operations defined entry-wise

Example. For any set X, $\mathbb{R}^X = \{f : X \to \mathbb{R}\}$ Addition and scalar multiplication defined pointwise $= f_1(x) + f_2(x)$.

Exercise. Show that the above examples satisfy the axioms

Proposition. $0v = \mathbf{0}$ for all $v \in V$.

Proof.
$$((0+0)v = 0v \iff 0v + 0v = 0v \iff 0v = \mathbf{0})$$

Exercise. Show² that (-1)v = -v

Definition. Let V be an \mathbb{F} -vector space. A subset U of V is a subspace ($U \leq V$) if:

- (i) $\mathbf{0} \in U$
- (ii) $u_1, u_2 \in U \Rightarrow u_1 + u_2 \in U$ "U is closed under addition..."
- (iii) $u \in U$, any $\lambda \in \mathbb{F} \Rightarrow \lambda u \in U$ "...and scalar multiplication"

¹scalar multiplication

²Hint: Use the previous proposition

Exercise. If U is a subspace of V, then U is also an \mathbb{F} -vector space.

Example. Let $V = \mathbb{R}^{\mathbb{R}}$, then $f : R \to R$. The set of all continuous functions $C(\mathbb{R})$ are a subspace. An even smaller subspace is the set of all polynomials.

Exercise. Define $U \subseteq \mathbb{R}^3$ as:

$$\left\{ \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \quad a_1 + a_2 + a_3 = t \right\}$$

for some constant t. Check that this is a subspace of \mathbb{R}^3 if and only if t=0.

Proposition. Let V be an F-vector space, $U, W \leq V$. Then $U \cap W \leq V$.

Proof. (i)
$$0 \in U$$
, $0 \in W \Rightarrow 0 \in U \cap W$

(ii) Suppose $u, v \in U \cap W$, $\lambda, \mu \in F$. U is a subspace $\Rightarrow \lambda u + \mu v \in W$. Similarly $\lambda u + \mu v \in U \in W$, so it is in the intersection.

Example. $V = \mathbb{R}^3$, $U = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x = 0 \right\}$, $V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid y = 0 \right\}$ then $U \cap W = U = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x = 0, y = 0 \right\}$ (intersect along the z-axis)

Note: union of family of subspaces is almost never a subspace itself.

Definition. Let V be an F-vector space, $U, W \leq V$. The sum of U and W is the set:

$$U + W = \{u + w \mid u \in U, w \in W\}$$

Proposition. $U + W \leq V$

Proof. $\mathbf{0} \in U, W \Rightarrow \mathbf{0} + \mathbf{0} = \mathbf{0} \in U + W$ $u_1, u_2 \in U, w_1, w_2 \in W,$

$$(u_1 + w_1) + (u_2 + w_2) = \underbrace{(u_1 + u_2)}_{\in U} + \underbrace{(w_1 + w_2)}_{\in W}$$

Similarly for scalar multiplication (ex.)

Note: U + W is the smallest subspace containing both U and W. (This is because all elements of the form u + w as forced to be in such a subspace by the "closed under addition" axiom)

Definition. V is an \mathbb{F} -vector space, $U \leq V$. The quotient space³ V/U is the abelian group V/U equipped with scalar multiplication;

$$F \times V/U \to V/U$$

$$(\lambda, v + U) \mapsto \lambda v + U$$

 $^{^{3}}$ think of this as the collection of cosets of U in V

Proposition. This is well-defined, and V/U is an F-vector space.

Proof. Well-defined: Suppose $v_1 + U = v_2 + U \in V/U$. $\Rightarrow (v_2 - v_1) \in U \Rightarrow (\lambda v_2 - \lambda v_1) \in U \Rightarrow \lambda v_2 + U = \lambda v_1 + U \in V/U$

To show that it is an \mathbb{F} -vector space, we must show that the axioms hold. These follow from the axioms of V. $\lambda(\mu(v+U)) = \lambda(\mu v + U) = \lambda(uv) + U = (\lambda u)v + U = \lambda u(v \in U)$ (scalar multiplication on V/U).

Ex. Other axioms follow similarly from using vecton space axioms

1.2 Bases

Definition. V is an \mathbb{F} -vector space, $S \subset V$. The *span* of S is denoted by

$$\langle S \rangle = \left\{ \sum_{s \in S} \lambda_s s \mid \lambda_s \in \mathbb{F} \right\}$$

ie. the set of all finite linear combinations, all but finitely many of the λ_s are zero.

Remark: $\langle S \rangle$ is the smallest subspace of V which contains⁴ all of the elements of S

Convention: $\langle \emptyset \rangle = \{ \mathbf{0} \}.$

Example. $V = \mathbb{R}^3$,

$$S = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix}, \begin{pmatrix} 3\\-2\\-4 \end{pmatrix} \right\}$$
$$\langle S \rangle = \left\{ \begin{pmatrix} a\\b\\2b \end{pmatrix} \right\} \mid a, b \in \mathbb{R}$$

ie. we have took linear combinations of the first two. We don't need the third one.

Example. For X a set, define $\delta_x(y): X \to \mathbb{F}$ as

$$\delta_x(y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$$

 $<\delta_x \mid x \in X> = \{ f \in \mathbb{R}^X \mid f \text{ has finite support} \}$

$$= \langle x \in X \mid f(x) \neq 0 \rangle$$

Definition. S spans V if $\langle S \rangle = V$

Definition. V is finite dimensional over \mathbb{F} if it is spanned by a set that is finite.

⁴This is essentially a tautology

Definition. The vectors v_1, \dots, v_n are linearly independent over \mathbb{F} if

$$\sum_{i=1}^{n} \lambda_i v_i = 0 \Rightarrow \lambda_i \text{ for all } i$$

some coefficients $\lambda_i \in \mathbb{F}$. $S \subset V$ is linearly independent if every finite subset of it is.

Example. The first example, u, v, w are not linearly independent⁵, but the set $\{\delta_X \mid x \in X\}$ is linearly independent.

A lesson to be learnt from our example is that a linearly dependent spanning set contains redundant information. In a sense, a linearly independent spanning set is a minimal spanning set and hence represents the most efficient way of characterizing the subspace. This idea leads to the following definition.

Definition. \mathcal{B} is a basis of V if it is linearly independent and spans V

- \mathbb{F}^n standard basis: $\{e_1, e_2, \cdots, e_n\}$.

- $-V = \mathbb{C}$ over \mathbb{C} has natural basis $\{1\}$, over \mathbb{R} has natural basis $\{1,i\}$
- $-V = \mathcal{P}(\mathbb{R})$ space of all polynomials, has natural basis

$$\{1, x, x^2, x^3, \cdots\}$$

Exercise. Check this carefully

Lemma. V is an \mathbb{F} -vector space. The vectors v_1, \dots, v_n form a basis of V iff each vector $v \in V$ has a unique expression

$$v = \sum_{i=1}^{n} \lambda_i v_i$$
, with $\lambda_i \in \mathbb{F}$

Proof. (\Rightarrow) Fix $v \in V$. The v_i span, so

$$\exists \lambda_i \in \mathbb{F} \text{ s.t. } v = \sum \lambda_i v_i$$

Suppose also $v = \sum \mu_i v_i$ for some $\mu_i \in \mathbb{F}$. $\sum (\mu_i - \lambda_i) v_i = \mathbf{0}$. The v_i are linearly independent so $\mu_i - \lambda_i = 0$ for all $i, \lambda_i = \mu_i$

(\Leftarrow) The v_i span V, since any $v \in V$ is a linear combination of them. IF $\sum_{i=1}^{n} \lambda_i v_i = \mathbf{0}$. Note that $\mathbf{0} = \sum_{i=1}^{n} 0v_i$. By uniqueness (applied to $\mathbf{0}$), $\lambda_i = 0$

Lemma. If v_1, \dots, v_n span V (over \mathbb{F}), then some subset of v_1, \dots, v_n is a basis for V (over \mathbb{F}).

Proof. If v_1, \dots, v_n linearly independent, done. Otherwise for some l, there exist $\alpha_1, \cdots, \alpha_{l-1} \in \mathbb{F}$ such that

$$v_l = \alpha_1 v_1 + \dots + \alpha_{l-1} v_{l-1}$$

⁵If not linearly independent, say a set is linearly dependent.

(If $\sum \lambda_i v_i = \mathbf{0}$, not all $\lambda_i = 0$. Take l maximaml with $\lambda_i \neq 0$, just $\alpha_i = -\lambda_i/\lambda_l$).

Now $v_2, \dots, v_{l-1}, v_{l+1}, \dots, v_n$ still span V. Continue interatively until get linear independence.

Theorem. (Steinitz exchange lemma) Let V be a finite dimensional vector space over \mathbb{F} . Take v_1, \dots, v_m to be linearly independent w_1, \dots, w_n to span V.

Then $m \leq n$, and reordering the spanning set if needed,

$$v_1, \cdots, v_m, w_{m+1}, \cdots, w_n$$

span V.

Proof. (Induction) Suppose that we've replaced $l(\geq 0)$ of the w_i . Reordering the w_i if needed, $v_1, \dots, v_l, w_{l+1}, \dots, w_n$ span V.

If l = m, done.

If l < m, then

$$v_{l+1} = \sum_{i=1}^{l} \alpha_i v_i + \sum_{i>l} \beta_i w_i$$

 $\alpha_i, \beta_i \in \mathbb{F}$. As the v_i are lin. indep, $\beta_i \neq 0$ for some i. (After reordering, $\beta_{l+1} \neq 0$).

$$w_{l+1} = \frac{1}{\beta_{l+1}} \left(v_{l+1} - \sum_{i \le l} \alpha_i v_i - \sum_{i > l+1} \beta_i w_i \right)$$

This $v_1, \dots, v_{l+1}, w_{l+2}, \dots, w_n$ also spans V. After m steps, w_i will have replaced m of the w_i by v_i . Thus $m \leq n$.

Theorem. If V is a finite dimensional vector space over \mathbb{F} , then any two bases for V have the same number of elements. This is what we call the *dimension* of V, denoted $\dim_{\mathbb{F}} V$.

Proof. If $\{v_1, \dots, v_n\}$ is a basis and w_1, \dots, w_m is another basis, the $\{v_i\}$ span and $\{w_i\}$ is linearly independent' so by Steinitz $m \le n$. Likewise, $n \le m$.

Example. $\dim_{\mathbb{C}} \mathbb{C} = 1$, $\dim_{\mathbb{R}} \mathbb{C} = 2$

Theorem. V, finite dim, v-space over \mathbb{F} . If w_1, \dots, w_l is a linearly independent set of vectors, we can extend it to a basis $w_1, \dots, w_l, v_{l+1}, \dots, v_n$

Proof. Apply Steinitiz to w_1, \dots, w_l (lin indep) and any basis v_1, \dots, v_n .

Or directrly, if $V = \langle w_1, \dots, w_l \rangle$, stop.

Otherwise take $v_{l+1} \in V \setminus \langle w_1, \dots, w_l \rangle$, now w_1, \dots, w_l, v_{l+1} is linearly indep. iterate

Corollary. Suppose V is a finite dimensional vector space, with dimension n.

(i) Any linearly independent set of vectors has at most n elements with equality iff it's a basis

(ii) Any spanning set of vectors must have at least n elements, with equality if and only if it's a basis.

Slogan "Choose the best basis for the job"

Theorem. Let U, W be subspaces of V. If U, W are finite dim, so is U + W and $\dim(U + W) = \dim U + \dim W - \dim(U \cap W)$

Proof. Pick basis basis v_1, \dots, v_l of $U \cap W$. Extend it to basis $v_1, \dots, v_l, u_1, \dots, u_m$ of U. Extend it to basis $v_1, \dots, v_l, w_1, \dots, w_n$ of W.

Claim: $v_1, \dots, v_l, u_1, \dots, u_m, w_1, \dots, w_n$ is a basis for U + W.

(i) Span: $u \in U$, then $u = \sum_{i \in \mathcal{V}} \alpha_i v_i + \sum_{\beta_i u_i}, \ \alpha_i, \beta_i \in \mathbb{F} \ w \in W$, then $w = \sum_{i \in \mathcal{V}} \gamma_i v_i + \sum_{\delta_i w_i}, \ \gamma_i, \delta_i \in \mathbb{F}$

$$u+w=\sum (\alpha_i+\gamma_i)v_i+\sum (\beta_i+\delta_i)u_i$$

(ii) lin indep: $u = \sum \alpha_i v_i + \sum_{\beta_i u_i} + \sum \gamma_i w_i = \mathbf{0}$

$$\Rightarrow u = \underbrace{\sum \alpha_i v_i + \sum \beta_i u_i}_{\in U} = \underbrace{-\sum \gamma_i w_i}_{\in W} \in U \cap W$$

This is equal to $\sum \delta_i v_i$ for some $\delta_i \in \mathbb{F}$ because v_i are basis for $U \cap W$.

AS v_i and w_i are lin indep, $(*) \Rightarrow \gamma_i = \delta_i = 0$ for all i.

 $\Rightarrow \sum \alpha_i v_i + \sum \beta_i u_i = 0 \Rightarrow \alpha_i = \beta_i = 0$ because v_i and u_i rom a basis for U.

Theorem. Let V be a finite dim \mathbb{F} -vector space, $U \leq V$, then U and V/U are also of finite dim, and

$$\dim V = \dim U + \dim V/U$$

Proof.

Exercise. Show that U is finite dim.

Let u_1, \dots, u_l be a basis for U. Extend it to a basis for V. Say $u_1, \dots, u_l, w_{l+1}, \dots, w_n$ of V.

Exercise. Check: $w_{l+1} + U, \dots, w_m + U$ form a basis for V/U.

Corollary. If U is a proper subspace of V, V is finite dimensional, $\dim U < \dim V$.

Proof.
$$V/U \neq \{0\} \Rightarrow \dim V/U > 0 \Rightarrow \dim U < \dim V$$

Definition. Let V be an \mathbb{F} -vector space, $U, W \leq V$ Then $V = U + \oplus W$ (V is an internal direct sum of U and W) if every element of V can be written as $v = u + w, w \in W, u \in U$, uniquely.

W is a direct compliment of U in V

Lemma. $U, W \leq V$. The following are equivalent

- (i) $V = U \oplus W$, ie. every element of V can be written uniquely as u + w, for $u \in U, w \in W$
- (ii) V = U + W and $U \cap W = \{0\}$
- (iii) B_1 any basis of U, B_2 is any basis of W, then $B = B_1 \cup B_2$ is a basis of V.

Proof. (ii) \Rightarrow (i). Any $v \in V$ is u + w for some $u \in U$, winW. Suppose that

$$u_1 + w_1 = u_2 + w_2$$

Then

$$\Rightarrow u_1 - u_2 = -w_1 + w_2 \in U \cap W = \{0\} \Rightarrow w_1 = w_2, u_1 = u_2$$

Thus uniqueness of expressions.

(i) \Rightarrow (iii) B spans, any $v \in V$ is u + w, for some $u \in U$, $w \in W$, write u in terms of B_1 , w in terms of B_2 , Then u + w is a lin comb. of elements of B. B indep?

$$\sum_{v \in B} \lambda_v v = \mathbf{0} = \mathbf{0}_v + \mathbf{0}_w$$

$$\underbrace{\sum_{v \in B_1} \lambda_v v}_{\in II} + \sum_{v \in B_2} \lambda_v v$$

By uniqueness of expressions,

$$\sum_{v \in B_1} \lambda_v v = \mathbf{0}_U \qquad \sum_{v \in B_2} \lambda_v v = \mathbf{0}_W$$

AS
$$B_1$$
 and B_2 are basis, all of the λ_v are zero.
(iii) \Rightarrow (ii). If $v \in V$, $v = \sum_{x \in B} \lambda_x x = \underbrace{\sum_{u \in B} \lambda_u u}_{\in V} + \underbrace{\sum_{w \in B_2} \lambda_w w}_{\in W}$

If $v \in U \cap W$, $v = \sum_{u \in B_1} \lambda_u$, $u = \sum_{w \in B_2} \lambda_w w \Rightarrow \text{All } \lambda_u, \lambda_w$ are zero, because $B_1 \cup B_2$ is lin. indep.

Lemma. Let V be an f-dim vector space. $U \leq V$. Then there exists a direct compliment to U in V

Proof. Let u_1, \dots, u_l be a basis for U. Extend it to a basis for V,

$$u_1, \cdots, u_l, w_{l+1}, \cdots, w_n$$

Then $\langle w_{l+1}, \cdots, w_n \rangle$ is a direct compliment of U.

Note! Direct compliments are not at all unique. In general, if you pick different ways of extending this you will get different direct compliments.

Pick $V = \mathbb{R}^2$. Pick U as the y-axis, then any one of the following green lines are direct compliments.:

Definition. Def $v_1, \dots, v_l \leq V$,

$$\sum V_i = V_1 + \dots + V_l = \{v_1 + \dots + v_l \mid v_i \in V_i\}$$

The sum is direct if

$$v_1 + \cdots + v_l = v'_1 + \cdots + v'_l \Rightarrow v_i = v'_i$$
 for all l

("unique expressions")

Notation:

$$\bigoplus_{i=1}^{l} V_i$$

Exercise. $V_1, \cdot, V_l \leq V$. TFAE

- (i) The sum $\sum V_i$ is direct
- (ii) $V_i \cap \sum_{j \neq i} V_j = \{ \mathbf{0} \}$ for all i
- (iii) The B_i are pairwise disjoint and their union is a basis for $\sum V_i$

We also discuss external direct sums, though will not touch them much in this course. This is simply an internal direct sum $U_1 \oplus U_2$, except now the U_i 's are not subspaces of V, they can be any old vector space.

Definition. Let U, W be \mathbb{F} -vector spaces. External direct sum

$$U \oplus V = \{(u, w) \mid u \in U, w \in W\}$$

with
$$(u, w) + (x, y) = (u + x, w + y)$$
,
 $\lambda(u, w) = (\lambda u, \lambda w)$

Note that when we talk about dimension in this course, we have not shown yet that the dimension of an infinite vector space is well defined⁶. We will come to this later.

⁶It is!

2 Linear Maps

2.1 Linear Maps

Definition. V, W are \mathbb{F} -vector spaces. A map $\alpha : V \to W$ is linear if

- (i) $\alpha(v_1 + v_2) = \alpha(v_1) + \alpha(v_2)$
- (ii) $\alpha(\lambda v) = \lambda \alpha(v)$

Can be combined concisely as:

$$\alpha(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \alpha(v_1) + \lambda_2 \alpha(v_2) \quad \lambda_i \in \mathbb{F}, v_i \in V$$

Example. A $n \times m$ matrix with coeff in \mathbb{F}

$$\alpha: \mathbb{F}^n \to \mathbb{F}^m$$
$$v \mapsto Av$$

Example. The set of all polynomials with real coefficients:

$$\mathcal{D}:\mathcal{P}(\mathbb{R})\to\mathcal{P}(\mathbb{R})$$

$$f \mapsto \frac{\mathrm{d}f}{\mathrm{d}x}$$

Example. The set of continuous functions over [0, 1]

$$I: \mathcal{C}[0,1] \to \mathcal{C}[0,1]$$

$$f \mapsto I(f)$$

where $I(f)(x) = \int_0^x f(t) dt$

Example. Fix $x \in [0,1]$

$$\mathcal{C}[0,1] \to \mathbb{R}$$

$$f \mapsto f(x)$$

Notes: If U, V, W are v spaces over \mathbb{F} , then

- (i) The identity map id: $V \to V$ is linear
- (ii) If $U \xrightarrow{\alpha} V \xrightarrow{\beta} W$ with α, β both linear, then $\beta \circ \alpha$ is linear.

Lemma. Let V, W be \mathbb{F} -vector spaces, and let \mathcal{B} is a basis for V. If $\alpha_0 : \mathcal{B} \to W$ is any map, then there exists a unique linear map⁷ $\alpha : V \to W$ extending α_0 , ie.

$$\alpha(v) = \alpha_0(v)$$

for any basis element $v \in \mathcal{B}$.

⁷ie. if I tell you any mapping of the basis vectors α_0 (it could be a non-linear mapping), then you have enough information to construct a linear map from this.

Proof. Let $v \in V$. Then $v = \sum \lambda_i v_i$, $v_i \in B$, $\lambda_i \in \mathbb{F}$, unique expression. Now Linearity forces

$$\alpha(v) = \alpha \left(\sum \lambda_i v_i \right)$$

$$= \sum \lambda_i \alpha(v_i)$$

$$= \sum \lambda_i \alpha_0(v_i)$$

linear, exists. expression forced to be unique.

Note

- (i) True for infinite dimensional vector space also
- (ii) Very often, to define a linear map, define it on a basis and 'extend linearly'
- (iii) Let $\alpha_1, \alpha_2 : V \to W$ be linear maps. If they agree on any basis, then they are equal.

Definition. (Isomorphism)

Let V,W be vector spaces over F. The map $\alpha:V\to W$ is an isomorphism if it is linear and bijective. Notation: $V\simeq W$

Lemma. \simeq is an equivalence notation on the set (score out set and write class) of all vector spaces over \mathbb{F} . That is,

- (i) $i_V: V \to V$ is an iso
- (ii) If $\alpha:V\to W$ is an iso, then the inverse map $\alpha^{-1}:W\to V$ is also linear, hence an iso.
- (iii) If

$$U \stackrel{\beta}{\longrightarrow} V \stackrel{\alpha}{\longrightarrow} W$$

then

$$U \xrightarrow{\beta \circ \alpha} W$$

is also an iso

Proof. (i) immediate

(ii) α bijective $\Rightarrow \alpha^{-1}$ exists. Check: linear. $w_2 \in W, w_2 = \alpha(v_2), v_2 \in V,$ unique. $\alpha^{-1}(w_1 + w_2) = \alpha^{-1}(\alpha(v_1) + \alpha(v_2) = \alpha^{-1}(\alpha(v_1 + v_2)) = v_1 + v_2 = \alpha^{-1}(w_1) + \alpha^{-1}(w_2).$

Similarly, $\lambda \in \mathbb{F}$, $w \in W$,

$$\alpha^{-1}(\lambda w) = \lambda \alpha^{-1}(w)$$

(iii) immediate

Theorem. If V vector space over \mathbb{F} of dimension n, then $V \simeq \mathbb{F}^n$.

Proof. Choose a basis \mathcal{B} for V, say v_1, \dots, v_n

$$V \to \mathbb{F}^r$$

$$\sum \lambda_i v_i \mapsto \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \text{ is an iso}$$

Remark: Choosing an iso $V \simeq F^n$ is equivalent to choosing a basis for V.

Theorem. V, W v spaces over \mathbb{F} , finite dim, are isomorphic iff they have the same dimension

Proof. (\Leftarrow) Both V and W are isomorphic

$$\mathbb{F}^{\dim V} = \mathbb{F}^{\dim W}$$

 (\Rightarrow) Let $\alpha: V \to W$ iso, \mathcal{B} a basis for V.

Claim: $\alpha(\mathcal{B})$ is a basis for W.

Exercise. $\alpha(\mathcal{B})$ spans W because of surjectivity of α .

Exercise. $\alpha(\mathcal{B})$ lin indep: follows from injectivity of α .

Definition. (Null space/Kernel of a linear map) Let $\alpha: V \to W$ be a linear map, the *null space* of α is given by

$$N(\alpha) = \ker \alpha = \{ v \in V \mid \alpha(v) = \mathbf{0} \} \le V$$

Definition. (Image of a linear map) Let $\alpha: V \to W$ be a linear map, the *image* of α is defined as:

$$\operatorname{Im}(\alpha) = \{ w \in W \mid w = \alpha(v), \text{ some } v \in V \} \leq W$$

Definition. (Injective map) α is injective if and only if $N(\alpha) = \{0\}$

Definition. (Surjective map)⁸ α is surjective if and only if $\text{Im}(\alpha) = W$

Example. Let $\alpha: \mathcal{C}^{\infty}(\mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R})$ be defined by

$$\alpha(f)(t) = f''(t) + 2f'(t) - 5f$$

 $\ker \alpha$ is solns to f'' + 2f' + 5f = 0

$$q \in \operatorname{Im} \alpha \text{ if } \exists \operatorname{soln} f \text{ to } f'' + 2f' + 5f = q$$

⁸I mean, all definitions are iff statements really. Sometimes we leave it out and just use 'if'

2.2 The First Isomorphism Theorem

Theorem. (First Isomorphism Theorem) Let $\alpha: V \to W$ be a linear map. It induces an iso :

$$V/\ker\alpha \xrightarrow{\overline{\alpha}} \operatorname{Im}(\alpha)$$

defined by

$$\overline{\alpha}(v + \ker \alpha) = \alpha(v)$$

Proof. (i) $\overline{\alpha}$ is well defined:

$$v + \ker \alpha = v' + \ker \alpha$$

$$\iff v - v' \in \ker \alpha \Rightarrow \alpha(v)$$

$$\Rightarrow \alpha(v) = \alpha(v')$$

- (ii) $\overline{\alpha}$ is linear; immediate from linearity of α .
- (iii) $\overline{\alpha}$ bijective?

$$\overline{\alpha}(v + \ker \alpha) = \mathbf{0}$$

 $\Rightarrow \alpha(v) = 0$
 $\Rightarrow v \in \ker \alpha$

(iv) surjective: by defin of $Im(\alpha)$.

Definition. (Rank and Nullity of a linear map) The rank of a linear map $r(\alpha) = rk(\alpha)$ is given by $\dim(\operatorname{Im} \alpha)$, and the $nullity\ n(\alpha)$ is likewise given as $\dim(N(\alpha))$

Theorem. (Rank-nullity theorem) Let U,V be vector spaces over \mathbb{F} , $\dim_{\mathbb{F}} U < \infty$. Let $\alpha: U \to V$ linear. Then:

$$\dim U = r(\alpha) + n(\alpha)$$

Proof.

$$U/\ker\alpha\simeq\operatorname{Im}(\alpha)\Rightarrow\dim(U)-\dim(\ker\alpha)=\dim(\operatorname{Im}(\alpha))$$

Lemma. Let V,W be v spaces over \mathbb{F} , of equal finite dim. Let $\alpha:V\to W$ linear.

TFAE

- (i) α injective
- (ii) α surjective

(iii) α isomorphism

Definition. The space of linear maps from V to W is denoted by

$$L(V, W) = \{\alpha : V \to W \text{ linear}\}\$$

Proposition. L(V, W) is a v-space over \mathbb{F} under operators

$$- (\alpha_1 + \alpha_2)(v) = \alpha_1(v) + \alpha_2 v \text{ for all } \alpha_i \in L(V, W)$$

-
$$(\lambda \alpha)(v) = \lambda(\alpha(v))$$
 for all $v \in V$, $\lambda \in \mathbb{F}$

If both V and W are finite dim, then so is L(V,W) and $\dim(L(V,W)) = \dim(V) \times \dim(W)$.

Proof. $\alpha_1 + \alpha_2$, $\lambda \alpha$ defined above are well-defined linear maps. The v-space axioms are satisfied.

Claim about finite dim: See later

2.3 Representation of Linear Maps by Matrices

Definition. An $m \times n$ matrix over \mathbb{F} is an array with m rows and n columns, entries in \mathbb{F} .

$$A = (a_{ij}), \quad a_{ij} \in F, \quad 1 \le i \le m, 1 \le j \le n$$

 $M_{m,n}(\mathbb{F})$ is the set of all such matrices

Proposition. $M_{m,n}(\mathbb{F})$ is an \mathbb{F} vector space, under operations

$$(a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})$$

$$\lambda(a_{ij}) = (\lambda a_{ij})$$

and $\dim(M_{m,n}(\mathbb{F})) = m \times n$

Proof. v-space okay, see 1.1. And dim? A standard basis for $M_{m,n}(\mathbb{F})$ is

$$E_{ij} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & 1 & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$

(ie a matrix of zeroes, with 1 in i^{th} row and j^{th} column)

 $(a_{ij}) = \sum_{ij} a_{ij} E_{ij}$, from which span and LI follows

This basis has cardinality mn

Definition. (Coordinate Vectors)

Let V, W be v-spaces over \mathbb{F} , of finite dim, with $\alpha: V \to W$, linear. Basis \mathcal{B} for V, v_1, \dots, v_n basis \mathcal{C} for W, w_1, \dots, w_n . If $v \in V, v = \sum \lambda_i v_i$, write

 $[v]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in \mathbb{F}$, called coordinate vector of v wrt \mathcal{B} . Similarly, $[w]_{\mathcal{C}} \in \mathbb{F}^m$.

Definition. (Matrix) $[\alpha]_{\mathcal{B},\mathcal{C}}$ matrix of α wrt \mathcal{B} and \mathcal{C}

$$[\alpha]_{\mathcal{B},\mathcal{C}} = ([\alpha(v_1)]_{\mathcal{C}} \mid [\alpha(v_2)]_{\mathcal{C}} \mid \cdots \mid [\alpha(v_n)]_{\mathcal{C}}) \in M_{m,n}(\mathbb{F})$$

= (a_{ij})

The notation says $\alpha(v_j) = \sum \alpha_{ij} w_i$

Lemma. For any $v \in V$,

$$[\alpha(v)]_{\mathcal{C}} = [\alpha]_{\mathcal{B},\mathcal{C}} \cdot [v]_{\mathcal{B}}$$

where the dot denotes matrix applied to vector

Proof. Fix
$$v \in V$$
, $v = \sum_{j=1}^{n} \lambda_{j} v_{j}$, so $[v]_{\mathcal{B}} = \begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{n} \end{pmatrix}$

$$\alpha(v) = \alpha(\sum_{j=1}^{n} \lambda_{j} v_{j}) = \sum_{j=1}^{n} \lambda_{j} \alpha(v_{j}) = \sum_{j=1}^{n} \lambda_{j} (\sum_{i=1}^{n} \alpha_{ij} w_{i})$$

$$= \sum_{i} \underbrace{\left(\sum_{j=1}^{n} \alpha_{ij} \lambda_{j}\right)}_{i \text{ th entry of } [\alpha]_{\mathcal{B}, \mathcal{C}}[v]_{\mathcal{B}}} w_{i}$$

Lemma. Let α , β be linear maps, with $U \xrightarrow{\beta} V \xrightarrow{\beta} W$ and $\alpha \circ \beta$ linear. Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be basis for U, W, V reps. Then

$$[\alpha \circ \beta]_{\mathcal{A},\mathcal{C}} = \underbrace{[\alpha]_{\mathcal{B},\mathcal{C}}}_{=(a_{ij})} \circ \underbrace{[\beta]_{\mathcal{A},\mathcal{B}}}_{=(b_{ji})}$$

Proof.

$$(\alpha \circ \beta) \underbrace{(u_i)}^{\text{in } \mathcal{A}} = \alpha(\beta(u_i)) = \alpha(\sum_j b_{ji} \underbrace{v_j}^{\text{in } \mathcal{B}})$$

$$= \sum_j b_{ji} \alpha(v_j)$$

$$= \sum_j b_{ji} \sum_i a_{ij} \underbrace{w_i}^{\text{in } C}$$

$$= \sum_i \underbrace{\left(\sum_j a_{ij} b_{ji}\right)}_{(i,j)^{\text{th entry of } [\alpha]_{\mathcal{B}, C}[\beta]_{\mathcal{A}, \mathcal{B}}}} w_i$$

Proposition. If V, W are v-spaces over \mathbb{F} with dim V = n, dim W = m, then $L(V, W) \simeq M_{m,n}(\mathbb{F})$

Proof. Fix bases

$$\mathcal{B}$$
 of $V: v_1, v_2, \cdots, v_n$

$$\mathcal{C}$$
 of $V: w_1, v_2, \cdots, v_n$

Claim:

$$L(v, w) \to M_{m,n}(\mathbb{F})$$

 $\alpha \mapsto [\alpha]_{\mathcal{B},\mathcal{C}}$

is an iso.

- θ linear $[\lambda_1 \alpha_1 + \lambda_2 \alpha_2]_{\mathcal{B},\mathcal{C}} = \lambda_1 [\alpha_1]_{\mathcal{B},\mathcal{C}} + \lambda_2 [\alpha_2]_{\mathcal{B},\mathcal{C}}$

- θ surjective: given $A = (a_{ij})$. Let $\alpha : v_j \mapsto \sum_{i=1}^m a_{ij} w_i$, and extend linearly. Then $\alpha \in L(V, W), b\theta(\alpha) = A$.

- θ injective, $[\alpha]_{\mathcal{B},\mathcal{C}} = 0$ matrix $\Rightarrow \alpha$ is zero-map from V to W.

Corollary.

$$\dim(L(V,W)) = (\dim V)(\dim W)$$

Example. $\alpha: V \to W, Y \leq V, Z \leq W$. Say $\alpha(Y) \subseteq Z$.

Basis of V:

$$\mathcal{B}: \underbrace{v_1, \cdots, v_k}_{\text{Basis for } Y, \mathcal{B}'}, v_{k+1}, \cdots, v_n$$

Basis of W:

$$C: \underbrace{w_1, \cdots, w_k}_{\text{Basis for } Z, C'}, w_{k+1}, \cdots, w_m$$

Then

$$[\alpha]_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} A & \cdots & B_1 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & C_1 \end{pmatrix}$$

because for $1 \leq j \leq k$, $\alpha(v_j)$ is a lin combo of w_i , where $1 \leq i \leq l$. And

$$[\alpha|_y]_{\mathcal{B}',\mathcal{C}'} = A_1$$

Claim: α induces

$$\overline{\alpha}: V/Y \to W/Z$$

$$v + Y \mapsto \alpha(v) + Z$$

Well defined?

$$v_1 + Y = v_2 + Y \Rightarrow v_1 - v_2 \in Y$$

$$\Rightarrow \alpha(v_1 - v_2) \in Z$$

$$\Rightarrow \alpha(v_1) + Z = \alpha(v_2) + Z$$

Exercise. Linear from linearity of α

Basis for Y/V,

$$\mathcal{B}'': v_{k+1} + Y, \cdots, v_n + Y$$

Basis for W/Z,

$$\mathcal{B}'': v_{k+1} + Y, \cdots, v_n + Y$$

Exercise. $[\overline{\alpha}]_{\mathcal{B}'',\mathcal{C}''}$

2.4 Change of Basis

Let V and W be v-spaces over \mathbb{F} with the following basis

$$V \qquad W$$

$$\mathcal{B} = \{v_1, \dots, v_n\} \quad C = \{w_1, \dots, w_m\}$$

$$\mathcal{B}' = \{v_1', \dots, v_n'\} \quad C' = \{w_1', \dots, w_m'\}$$

Definition. The change of basis matrix from \mathcal{B} to \mathcal{B}' is $P = (p_{ij})$ given by $v'_j = \sum p_{ij}v_i$.

Equivalently,

$$P = \left([v_1']_{\mathcal{B}} \mid [v_2']_{\mathcal{B}} \cdots \mid [v_n']_{\mathcal{B}} \right) = [\mathrm{id}]_{\mathcal{B}',\mathcal{B}}$$

Lemma. $[v]_{\mathcal{B}} = P[v]_{\mathcal{B}'}$

Proof.

$$P[v]_{\mathcal{B}'} = [\mathrm{id}]_{\mathcal{B}',\mathcal{B}}[v]_{\mathcal{B}'} = [v]_{\mathcal{B}}$$

Lemma. P is an invertible $n \times n$ matrix, and P^{-1} is the change of basis matrix from \mathcal{B} to \mathcal{B}'

Proof.

$$[\mathrm{id}]_{\mathcal{B},\mathcal{B}'}[\mathrm{id}]_{\mathcal{B}',\mathcal{B}} = [\mathrm{id}]_{\mathcal{B}',\mathcal{B}'} = I_n$$

$$[\mathrm{id}]_{\mathcal{B}',\mathcal{B}}[\mathrm{id}]_{\mathcal{B},\mathcal{B}'} = [\mathrm{id}]_{\mathcal{B},\mathcal{B}} = I_n$$

Let Q be the change of basis matrix from C' to C. Q also invertible $m \times m$.

Proposition. Let $\alpha: V \to W$ linear, $A = [\alpha]_{\mathcal{B},\mathcal{C}}, A' = [\alpha]_{\mathcal{B}',\mathcal{C}'}$. Then

$$A' = Q^{-1}AP$$

Proof.

$$Q^{-1}AP = [\mathrm{id}]_{\mathcal{C},\mathcal{C}'}[\alpha]_{\mathcal{B},\mathcal{C}}[\mathrm{id}]_{B',B}$$
$$= [\mathrm{id} \circ \alpha \circ \mathrm{id}]_{\mathcal{B}',\mathcal{C}'}$$
$$= A'$$

Definition. $A, A' \in M_{m,n}(\mathbb{F})$ are equivalent if $A' = Q^{-1}AP$ for some invertible $P \in M_{n,n}(\mathbb{F}), Q \in M_{m,m}(\mathbb{F})$

Note: this defines an equivalence relation on $M_{m,n}(\mathbb{F})$, eg. $A'=Q^{-1}AP$, $A''=(Q^{-1})^{-1}A'P'\Rightarrow A''=(QQ^{-1})^{-1}APP'$

Proposition. Let V, W be \mathbb{F} -vector spaces of dim n and m resp. Let $\alpha : V \to W$ be a linear map. Then there exists bases \mathcal{B} of V and \mathcal{C} of W, and some $r \leq m, n$ st.

$$[\alpha]_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} I_r & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$

where I_r is the identity matrix.

Note: $r = rank(\alpha) = r(\alpha)$

Proof. Fix r st. $N(\alpha)$ has dim n-r. Fix a basis for $N(\alpha)$, say $v_{r+1}, v_{r+2}, \cdots, v_n$. Extend this to a basis for V, say $\underbrace{v_1, \cdots, v_r}_{\mathcal{R}}, v_{r+1}, \cdots, v_n$. Now $\alpha(v_1), \cdots, \alpha(v_r)$

is a basis for $im(\alpha)$.

- span:
$$\alpha(v_1), \dots, \alpha(v_r), \underbrace{\alpha(v_{r+1})}_{=0}, \dots, \underbrace{\alpha(v_n)}_{=0}$$
 certainly span $\imath(\alpha)$

- LI:

$$\sum_{i=1}^{r} \lambda_{i} \alpha(v_{i}) = \mathbf{0} \Rightarrow \alpha \underbrace{\left(\sum_{i=1}^{r} \lambda_{i} v_{i}\right)}_{\in \ker(\alpha)} = \mathbf{0}$$

$$\Rightarrow \sum_{i=1}^{r} \lambda_{i} v_{i} = \sum_{j=r+1}^{n} \mu_{j} v_{j} \text{ some } \mu_{j} \in \mathbb{F}$$

$$\Rightarrow \text{ as } v_{1}, \dots, v_{n} \text{ LI }, \lambda_{i} = \mu_{j} = 0 \,\forall i, j$$

Extend $\alpha(v_1), \dots, \alpha(v_r)$ to a basis of W, say C. By construction,

$$[\alpha]_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} I_r & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$

Remark: didn't need to assume in the proof that $r = r(\alpha)$. Can think of this as giving a different proof of the r-n theorem.

Corollary. Any $m \times n$ matrix is equivalent to $\begin{pmatrix} I_r & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$ for some r.

Definition. Let $A \in M_{m,n}(\mathbb{F})$. The column rank of A is the dimension of the subspace of \mathbb{F}^m spanned by the columns of A. The row rank of A is the column rank of A^T (the dimension of the subspace of \mathbb{F}^n spanned by the row vectors of A).

Note: if α is a linear map represented by A wrt. any choice of basis, then $r(\alpha) = r(A)$, ie column rank = rank.

Proposition. Two $m \times n$ matrices A, A' are equivalent iff r(A') = r(A).

Proof. (
$$\Leftarrow$$
) Both A and A' are equivalent to $\begin{pmatrix} I_r & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$, $r = r(A') = r(A)$

(this is a transitive relation)

 (\Rightarrow) Let α be the linear map: $\alpha: \mathbb{F}^n \to \mathbb{F}^m$ represented by A wrt. the standard basis $A' = Q^{-1}AP$. P and Q invertible, so A' represents α wrt. two other bases. $r(\alpha)$ is defined in a basis invariant way, so $r = r(\alpha) = r(A) = r(A')$

Theorem. $r(A) = r(A^T)$ ("row rank = column rank").

Proof.
$$Q^{-1}AP = \begin{pmatrix} I_r & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}_{m,n}$$
 where Q, P invertible

Take transpose of whole equation:

$$\begin{pmatrix} I_r & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}_{n,m} = (Q^{-1}AP)^T$$
$$= P^T A^T (Q^T)^{-1}$$

so
$$A^T$$
 equiv to $\begin{pmatrix} I_r & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$. Thus $r(A) = r(A^T)$.

 $V=W,\,\mathcal{C}=\mathcal{B},$ other basis $\mathcal{B}'.$ P change of basis matrix form \mathcal{B} to $\mathcal{B}',$ $\alpha\in L(V,V).$

$$[\alpha]_{\mathcal{B}',\mathcal{B}'} = P^{-1}[\alpha]_{B,B}P$$

Definition. $A, A' \in M_{n,n}(\mathbb{F}), A, A'$ are similar (or conjugate) if $A' = P^{-1}AP$ for some invertible P.

2.5 Elementary Matrices and Operations

Definition. Elementary column operators on an $m \times n$ matrix A:

- (i) swap columns i and j (wlog $i \neq j$)
- (ii) replace column i by λ (column i), $\lambda \neq 0$
- (iii) add λ (column i) to column $j, i \neq j, \lambda \neq 0$.

Elementary row operators analogous (replace 'column' by 'row')

Note: all of these operations are reversible.

Corresponding elementary matrices: effect of performing the column operations on $I_n = n \times n$ id. For row operations, I_m .

The zeros appear in row i, row j.

$$(ii) \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & \lambda & & & \\ & & & & 1 & & \\ & & & & \ddots & \\ & & & & & 1 \end{pmatrix}$$

with λ in the i^{th} row

(iii) $I_n + \lambda E_{ij}$, where E_{ij} is defined as 1 in the (i, j) position and 0 everywhere else.

An elementary column operation on $A \in M_{m,n}(\mathbb{F})$ can be performed by multiplying A by the corresponding elementary matrix on the right.

Exercise.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$$

For row operations, multiply on the left

Exercise.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$$

Theorem. Any $m \times n$ matrix is equivalent to

$$\begin{pmatrix} I_r & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$

for some r

Proof. Start with A. If all entries of A are 0, we're done (r=0). If not, some $a_{ij} = \lambda \neq 0$.

- swap rows 1, i
- swap columns 1, j
- multiply column 1 by $\frac{1}{\lambda}$

to get 1 in position (1,1). Now

- add $(-a_{12})$ (column 1) to column 2.
- Similarly clear out all other entries in row 1.
- Also use row operations to clear out all other entries in column 1

Upshot: get

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \tilde{A} & \\ 0 & & & \end{pmatrix}, \ \tilde{A} \in M_{m-1,n-1}(\mathbb{F})$$

Now iterate, to get
$$\begin{pmatrix} I_r & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} = \underbrace{\underbrace{E'_1, \cdots, E'_k}_{Q^{-1}} A \underbrace{E_1, \cdots, E_k}_{\text{elem column}}}_{Q^{-1}}$$

Row/column ops are reversible \Rightarrow elem matrices are invertible. $Q:m\times m$ invertible, $P:n\times n$ invertible.

Variations:

If you use elementary row operations, can get the row echelon form of a matrix.

$$\begin{pmatrix} 1 & 0 & 0 & 0 & a \\ & & 1 & 0 & b \\ & & & 1 & c \end{pmatrix}$$

How? Assume $a'_{i1} = \lambda \neq 0$ some i.

- swap rows 1 and $i \Rightarrow \text{get } \lambda \text{ in } (1,1)$
- divide row 1 by $\lambda \Rightarrow 1$ in (1,1)
- use (iii)-type operation to clear out rest of column 1, then move on to second column etc.

Lemma. If A is $n \times n$ invertible, we can obtain I_n by using only elementary row operations (or elementary column operations).

Proof. Induction on number of rows Suppose we have

$$\begin{pmatrix}
1 & 0 & 0 & & & \\
& & 1 & & 0 & \\
& & & 1 & &
\end{pmatrix}$$

There exists j > k with $a_{k+1,j} = \lambda \neq 0$ If not,

 $\begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$

with 1 in the (k+1)th entry would not lie in the span of the column vectors, which would contradict invertability

- Swap columns k+1 and j
- Divide column k+1 by λ
- Use type 3 operators to clear the other entries of the (k+1)th row.
- now proceed inductively

Upshot

$$AE_1E_2\cdots E_l = I_n \Rightarrow A^{-1} = E_1E_2\cdots E_l$$

one recipe for inverses.

Proposition. Any invertible matrix can be written as a product of elementary matrices.

3 Dual Spaces and Dual Maps

3.1 Dual Vector Spaces

Definition. Let V be a vector space over \mathbb{F} . The dual vector space V^* of V

$$V^* = L(V, F) = \{\alpha : V \to F \text{ linear }\}$$

 V^* is a vector space over \mathbb{F} . Its elements are sometimes called linear functionals.

Example. $V = \mathbb{R}^3$,

$$\theta: V \to \mathbb{R}$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \to a - c \qquad \theta \in V^*$$

Example.

$$t_n: M_{m,n}(\mathbb{F}) \to \mathbb{F}$$

$$A \mapsto \sum_{i} A_{ii}, \quad t_n \in (M_{m,n}(\mathbb{F}))^*$$

Lemma. Let V be a vector space over \mathbb{F} with finite basis $\mathcal{B} = \{e_1, \dots, e_n\}$. Then there is a basis for V^* , given by $\mathcal{B}^* = \{\varepsilon_1, \dots, \varepsilon_n\}$ where

$$\varepsilon_j \underbrace{\left(\sum_{i=1}^m a_i e_i\right)}_{\in V} = a_j \qquad 1 \le j \le n$$

 \mathcal{B}^* is called the dual basis to \mathcal{B}

Proof. - LI

$$\sum_{j=1}^{n} \lambda_{j} \varepsilon_{j} = \mathbf{0} \Rightarrow \left(\sum_{j=1}^{n} \lambda_{j} \varepsilon_{j}\right) e_{i} = \mathbf{0}$$
$$= \sum_{j} \lambda_{j} \underbrace{\varepsilon_{j}(e_{i})}_{\delta_{ij}}$$

$$\Rightarrow \lambda_i = 0 \quad \forall i = 1, \cdots, n$$

– Span: If $\alpha \in V^*$, then $\alpha = \sum_{i=1}^n \alpha(e_i)\varepsilon_i$ ("linear maps are determined by their action on a basis")

Corollary. If V is finite dim, then dim $V = \dim V^*$

Remark: Someties useful to think about $(\mathbb{F}^n)^*$ as the space of row vectors of length n over \mathbb{F} . Suppose

$$V$$
 basis e_1, \dots, e_n

 V^* dual basis $\varepsilon_1, \dots, \varepsilon_n$

$$x = \sum x_i e_i \in V$$
$$\alpha = \sum a_i \varepsilon_i \in V^*$$

$$\alpha(x) = \sum_{i=1}^{n} \alpha_i x_i = \begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Definition. If $U \subseteq V$,

$$U^0 = \{ \alpha \in V^* \text{ st. } \alpha(u) = 0 \text{ for all } u \in U \}$$

is the annihilator of U

Lemma. (i) $U^0 \leq V^*$

(ii) If $U \leq V$ and dim $V = n < \infty$, then

$$\dim V = \dim U + \dim U^0$$

Proof. (i) $0 \in U^0$. If $\alpha, \alpha' \in U^0$, then $(\alpha + \alpha') = \alpha(u) + \alpha'(u) = 0 + 0 = 0$, for $u \in U$ thus $\alpha + \alpha' \in U^0$ Similarly, $\lambda \alpha \in U^0$ for any $\lambda \in \mathbb{F}$

(ii) Let e_1, \dots, e_k be a basis for U. Extend to a basis for V. $e_1, \dots, e_k, e_{k+1}, \dots, e_n$. Let \mathcal{B}^* be the dual basis to this. $\varepsilon_1, \dots, \varepsilon_n$

Claim: $\varepsilon_{k+1}, \varepsilon_{k+2}, \cdots, \varepsilon_n$ is a basis for U^0

- If i > k, $\varepsilon_i(e_i) = 0$ where $j \le k$, so ε_i (for i > k) is in U^0 .
- LI comes from the fact that \mathcal{B}^* is a basis. (So any subset of it is LI).
- Span? If $\alpha \in U^0$, then $\sum_{i=1}^n \alpha_i \varepsilon_i$, some $a_i \in \mathbb{F}$.

$$\left(\sum_{i=1}^{n} a_i \varepsilon_i\right) (e_j) = 0 \Rightarrow a_j = 0, \text{ any } j \le k$$

where e_j is a basis element for U, for $j \leq k$

$$\Rightarrow \alpha \in <\varepsilon_{k+1}, \cdots, \varepsilon_n$$

3.2 Dual Maps

Lemma. Let V, W be vector spaces over \mathbb{F} . Let $\alpha \in L(V, W)$. Then the map

$$\alpha^*:W^*\to V^*$$

 $\varepsilon \mapsto \varepsilon \circ \alpha$ is linear

$$V \xrightarrow{\alpha} W \xrightarrow{\varepsilon} F$$

We'll call α^* the dual of α .

Proof. $-\varepsilon \circ \alpha$ is linear, so in V^* .

- α^* linear? Fix $\theta_1, \theta_2 \in W^*$

$$\alpha^*(\theta_1 + \theta_2) = (\theta_1 + \theta_2)\alpha$$
$$= \theta_1 \circ \alpha + \theta_2 \circ \alpha$$
$$= \alpha^*\theta_1 + \alpha^*\theta_2$$

Similarly, $\alpha^*(\lambda\theta) = \lambda\alpha^*\theta$

Proposition. Let V, W be v-spaces over \mathbb{F} , with basis \mathcal{B}, \mathcal{C} respectively. Let $\mathcal{B}^*, \mathcal{C}^*$ be the dual basis. Consider $\alpha \in L(V, W)$ with dual α^* .

$$[\alpha^*]_{\mathcal{C}^*,\mathcal{B}^*} = [\alpha]_{\mathcal{B},\mathcal{C}}^T$$

Proof. Say
$$\mathcal{B} = \{b_1, \dots, b_n\}, \mathcal{C}\{c_1, \dots, c_n\}$$

 $\mathcal{B}^* = \{\beta_1, \dots, \beta_n\}, \mathcal{C}^* = \{\gamma_1, \dots, \gamma_n\}$
and $[\alpha]_{\mathcal{B},\mathcal{C}} = (a_{ij}) \quad m \times n$

$$\alpha^*(\gamma_r)(b_s) = \gamma_i \circ \alpha(b_s)$$

$$= \gamma_r(\alpha(b_s))$$

$$= \gamma_r \left(\sum_t a_{ts} c_t\right)$$

$$= \sum_t \alpha_{ts} \gamma_r(c_t)$$

$$= a_{rs}$$

$$= \left(\sum_i \alpha_{ri} \beta_i\right) (b_s)$$

$$\Rightarrow \alpha^*(\gamma_r) = \sum_i a_{ri} \beta_i$$

$$\Rightarrow [\alpha^*]_{\mathcal{C}^*, \mathcal{B}^*} = [\alpha]_{\mathcal{B}, \mathcal{C}}^T$$

Let V be a finite dim \mathbb{F} vector space.

Bases
$$\varepsilon = \{e_1, \dots, e_n\}, F = \{f_1, \dots, f_n\}$$

Bases
$$\varepsilon = \{e_1, \dots, e_n\}, F = \{f_1, \dots, f_n\}$$

Dual bases $\varepsilon^* = \{\varepsilon_1, \dots, \varepsilon_n\}, \mathcal{F} = \{\eta_1, \dots, \eta_n\}$
And let us condisder $P = [\mathrm{id}]_{\mathcal{F}\mathcal{E}}$

Lemma. Change of basis matrix from \mathcal{F}^* to \mathcal{E}^* is $(P^{-1})^T$

Proof.

$$[\mathrm{id}]_{\mathcal{F}^*,\mathcal{E}^*} = [\mathrm{id}]_{\mathcal{E}\mathcal{F}}^T = ([\mathrm{id}]_{\mathcal{F}\mathcal{E}}^{-1})^T$$

CAUTION: $V \simeq V^*$ only if V is finite dimensional. Let $V = \mathcal{P}$, the space of all real polynomials, with basis

$$p_i, j = 0, 1, 2, \cdots$$
 $p_i(t) = t^j$

Ex sheet 2 Q 9:

$$P^* \simeq \mathbb{R}^{\mathbb{N}}$$

$$\varepsilon \mapsto (\varepsilon(p_0), \varepsilon(p_1), \cdots$$

Ex sheet 1, Q3 g) $P \not\simeq \mathbb{R}^{\mathbb{N}}$ does NOT have a countable basis

Lemma. Let V, W be vector spaces over \mathbb{F} . Fix $\alpha \in L(V, W)$, let $\alpha^* \in L(V, W)$ $L(W^*, V^*)$ be the dual map. Then

- (i) $N(\alpha^*) = (\operatorname{Im}(\alpha))^0$ ie. α^* injective iff α is surjective
- (ii) $\operatorname{Im}(\alpha^*) \leq (N(\alpha))^0$, with equality if V and W are finite dimensional. ie. α^* surjective iff α is injective

Proof. (i) Let $\varepsilon \in W^*$. Then

$$\varepsilon \in N(\alpha^*) \iff \alpha^* \varepsilon = 0$$

$$\iff \varepsilon \circ \alpha = 0$$

$$\iff \varepsilon(\mu) = 0 \text{ for all } u \in \operatorname{Im} \alpha$$

$$\iff \varepsilon \in (\operatorname{Im}(\alpha))^0$$

(ii) Let $\varepsilon \in \operatorname{Im} \alpha^*$. Then $\varepsilon = \alpha^* \varphi$, for some $\varphi \in W^*$. For any $u \in N(\alpha)$,

$$\varepsilon(u) = (\alpha^* \varphi)(u)$$

$$= (\varphi \circ \alpha)(u)$$

$$= \varphi(\alpha(u))$$

$$= \varphi(0)$$

$$= \mathbf{0}$$

So $\varepsilon \in N(\alpha^0)$

Now use the fact that $\dim V$, $\dim W$ are finite.

$$\begin{aligned} \dim(\operatorname{Im}(\alpha^*)) &= r(\alpha^*) \\ &= r(\alpha) & \text{as } r(A) = r(A^T) \\ &= \dim V - \dim N(\alpha) & \text{by R-N} \\ &= \dim(N(\alpha))^0 \end{aligned}$$

3.3 Double Duals

Definition. Let V be an \mathbb{F} vector space, $V^* = L(V, \mathbb{F})$ dual of V. Then the double dual of V is the dual of V^* , given by

$$V^{**} = L(V^*, \mathbb{F})$$

Theorem. If V is a finite dimensional vector space over \mathbb{F} , then the map

$$\hat{} : V \to V^{**}$$

$$v \mapsto \hat{v}, \quad \hat{v}(\varepsilon) = \varepsilon(v)$$

is an isomorphism

Proof. Firstly, for $v \in V$, the map $\hat{v}: V^* \to \mathbb{F}$ is linear, so $\hat{}$ does indeed give a map from V to V^{**}

- $\hat{}$ is linear. If $v_1, v_2 \in V$, $\lambda_1, \lambda_2 \in \mathbb{F}, \varepsilon \in V^*$.

$$\widehat{(\lambda_1 v_1 + \lambda_2 v_2)}(\varepsilon) = \varepsilon (\lambda_1 v_1 + \lambda_2 v_2)
= \lambda_1 \varepsilon (v_1) + \lambda_2 \varepsilon (v_2)
= \lambda_1 \widehat{v_1}(\varepsilon) + \lambda_2 \widehat{v_2}(\varepsilon)$$

- $\hat{}$ is injective: Let $e \in V \setminus \{0\}$. Extend it to a basis of V, say e_1, e_2, \dots, e_n . Let $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ be the dual basis for V^* .

$$\hat{e}(\varepsilon) = \varepsilon(e) = 1$$
. So $\hat{e} \neq 0$.

Thus $N(\hat{\ }) = \{0\}$, so $\hat{\ }$ is injective.

- V is finite dim, so dim $V = \dim V^* = \dim V^{**}$.

Thus $\hat{\ }$ is an isomorphism

Lemma. Let V be a finite dim vector space over \mathbb{F} and $U \leq V$.

Then $\hat{U} = U^{00}$, so after identification of V with V^{**} , we have that $U^{00} = U$.

Proof. - First show $\hat{U} \leq U^{00}$.

$$u \in U \Rightarrow \varepsilon(u) = 0 \qquad \forall \ \varepsilon \in U^0$$

= $\hat{u}(\varepsilon) = 0$
 $\Rightarrow \hat{u} \in (U^0)^0 = U^{00}$

$$\dim U^{00} = \dim V^* - \dim U^0$$
$$= \dim V - \dim U^0$$
$$= \dim U$$

Thus $\hat{U} = U^{00}$

Lemma. Let V be a finite dim vector space of \mathbb{F} , Let $U_1, U_2 \leq V$. Then

(i)
$$(U_1 + U_2)^0 = U_1^0 \cap U_2^0$$

(ii)
$$(U_1 \cap U_2)^0 = U_1^0 + U_2^0$$

Proof. (i) Let $\theta \in V^*$

$$\theta \in (U_1 + U_2)^0 \iff \theta(u_1 + u_2) = 0 \text{ for all } u_1 \in U_1, u_2 \in U_2$$
$$= \theta(u) = 0 \text{ for all } u \in U_1 \cap U_2$$
$$\theta \in U_1^0 \cap U_2^0$$

(ii) Apply annihilator to (i).

$$w_i = U_i^0 \qquad u_i = W_i^0$$

$$(W_1^0 + W_2^0)^0 = W_1 \cap W_2$$
$$W_1^0 + W_2^0 = (W_1 \cap W_2)^0$$

4 Bilinear Forms I

Definition. Let U, V be vector spaces over \mathbb{F} .

$$\varphi: U \times V \to \mathbb{F}$$

is bilinear or a bilinear form if its linear in both arguments

$$\varphi(u,-):V\to\mathbb{F}\quad\in V^*\;\forall u\in U$$

$$\varphi(-,v):U\to\mathbb{F}\quad\in U^*\;\forall v\in V$$

Example. (i) $V \times V^* \to \mathbb{F}$ with $(v, \theta) \mapsto \theta(v)$

(ii)
$$U = V = \mathbb{R}^n$$
 with $\varphi(x, y) = \sum_{i=1}^n x_i y_i$ for $x \in U, y \in V$

(iii)
$$A \in M_{m,n}(\mathbb{F})$$
 with $\varphi : \mathbb{F}^m \times \mathbb{F}^n \to \mathbb{F}$, $(u,v) \mapsto u^T A v$

(iv) (infinite dim)
$$U=V=C([0,1],\mathbb{R})$$
 with $\varphi(f,g)=\int_0^1 f(t)g(t) \ \mathrm{d}t$ for $f\in U,g\in V$

Definition. $\mathcal{B} = \{e_1, \dots, e_m\}$ basis for U, $\mathcal{C} = \{f_1, \dots, f_n\}$ basis for V $\varphi : U \times V \to \mathbb{F}$ bilinear,

The matrix of φ wrt $\mathcal B$ and $\mathcal C$

$$[\varphi]_{\mathcal{B},\mathcal{C}} = (\varphi(e_i, f_j))$$

 $m \times n$, i, jth entry

Lemma.

$$\varphi(u,v) = [u]_{\mathcal{B}}^T[\varphi]_{\mathcal{B},\mathcal{C}}[v]_{\mathcal{C}}$$

Proof. Say $u = \sum \lambda_i e_i$, $v = \sum \mu_j f_j$

$$\varphi(u, v) = \varphi\left(\sum \lambda_i e_i, \sum \mu_j f_j\right)$$

$$= \sum_i \lambda_i \varphi(e_i, \sum_j \mu_j f_j)$$

$$= \sum_{i,j} \lambda_i \varphi(e_i, f_j) \mu_j$$

Note: $[\varphi]_{\mathcal{B},\mathcal{C}}$ is the unique representation with this property Note: $\varphi: U \times V \to \mathbb{F}$ bilinear, determines linear maps

$$\varphi_L: U \to V^*$$
 and $\varphi_R: V \to U^*$

$$\varphi_L(u)(v) = \varphi(u, v)$$
 and $\varphi_R(v)(u) = \varphi(u, v)$

Lemma. $\mathcal{B} = \{e_1, \dots, e_m\}$ basis for U, dual $\mathcal{B}^* = \{\varepsilon_1, \dots, \varepsilon_m\}$ basis for U^* . Similarly, $\mathcal{C} = \{f_1, \dots, f_n\}$ for V, $\mathcal{C}^* = \{\eta_1, \dots, \eta_n\}$ for V^* If $[\varphi]_{\mathcal{B},\mathcal{C}} = A$, then $[\varphi_R]_{\mathcal{C},\mathcal{B}^*} = A$, $[\varphi_L]_{\mathcal{B},\mathcal{C}^*} = A^T$

Proof.

$$\varphi_L(e_i)(f_j) = A_{ij} \Rightarrow \varphi_L(e_i) = \sum_j A_{ij}\eta_j$$

$$\varphi_R(f_j)(e_i) = A_{ij} \Rightarrow \varphi_R(f_j) = \sum_i A_{ij} \varepsilon_i$$

Definition. Left kernel of $\varphi = \ker \varphi_L$, Right kernel of $\varphi = \ker \varphi_R$

Definition. φ is non-degenerate if $\ker \varphi_L = 0$ and $\ker \varphi_R = 0$. Otherwise φ is degenerate

Lemma. Let $U, \mathcal{B}, V, \mathcal{C}$ as before,

$$\varphi: U \times V \to \mathbb{F}$$

$$A = [\varphi]_{\mathcal{B},\mathcal{C}}$$

assume $\dim U, \dim V$ finite. Then

 φ non-degenerate \iff A invertible

Proof.

$$\varphi$$
 non-degenerate $\iff \ker \varphi_L = \mathbf{0}$ and $\ker \varphi_R = \{\mathbf{0}\}$

$$\iff n(A^T) = 0 \text{ and } n(A) = 0$$

$$\iff r(A^T) = \dim V \text{ and } r(A) = \dim U$$

$$\iff A \text{ invertible} \qquad \text{(and neccessarily)} \text{ dim } U = \dim V$$

Corollary. If φ is non-degenerate and U and V are finite, then

$$\dim U = \dim V$$

Corollary. When U and V are finite dim, choosing a non-degenerate bilinear form $\varphi: U \times V \to \mathbb{F}$ is equivalent to picking an isomorphism $\varphi_L: U \to V^*$

Definition. For $T \subset U$, $T^{\perp} = \{v \in V \mid \varphi(t, v) = 0 \ \forall t \in T\} \leq V$ For $S \subset T$, $^{\perp}S = \{u \in U \mid \varphi(u, s) = 0 \ \forall s \in S\} \leq U$ (Generalisation of annihilators)

Proposition. U bases $\mathcal{B}, \mathcal{B}', P = [\mathrm{id}]_{\mathcal{B}', \mathcal{B}}$ V bases $\mathcal{C}, \mathcal{C}'$ with $Q = [\mathrm{id}]_{\mathcal{C}', \mathcal{C}}$ Let $\varphi : U \times V \to \mathbb{F}$ bilinear. Then

$$[\varphi]_{\mathcal{B}',\mathcal{C}'} = P^T[\varphi]_{\mathcal{B},\mathcal{C}}Q$$

 ${\it Proof.}$

$$\varphi_{u,v} = [u]_{\mathcal{B}}^T [\varphi]_{\mathcal{B},\mathcal{C}}[v]_{\mathcal{C}}$$

$$= (P[u]_{\mathcal{B}'})^T [\varphi]_{\mathcal{B},\mathcal{C}}(Q[v]_{\mathcal{C}'})$$

$$= [u]_{\mathcal{B}'}^T [\varphi]_{\mathcal{B},\mathcal{C}}[v]_{\mathcal{C}'}$$

Definition. The rank of φ , $r(\varphi)$ is the rank of any matrix representing it (well-def) by prev thm.

Note:
$$r(\varphi) = r(\varphi_L) = r(\varphi_R)$$

5 Determinant and Trace

5.1 Trace

Definition. For $A \in M_n(\mathbb{F})$ (this is $M_{n,n}(\mathbb{F})$), then

$$\operatorname{tr}(A) = \sum_{i} A_{ii}$$

is the trace of A. This is a linear map.

Lemma. For $A, B \in M_n(\mathbb{F})$,

$$tr(AB) = tr(BA)$$

Proof.

$$tr(AB) = \sum_{i} \sum_{j} a_{ij}b_{ji}$$
$$= \sum_{j} \sum_{i} b_{ji}a_{ij}$$
$$= tr(BA)$$

Lemma. Similar (= conjugate) matrices have the same trace.

Proof. $B = P^{-1}AP$, $A, B \in M_n(\mathbb{F})$.

$$tr(B) = tr(P^{-1}AP)$$
$$= tr(APP^{-1})$$
$$= trA$$

Definition. If $\alpha: V \to V$ linear, define tr $\alpha = \text{tr}[\alpha]_{\mathcal{B},\mathcal{B}}$. By the above, this is well defined.

Lemma. Let $\alpha: V \to V$ linear, and $\alpha^*: V^* \to V^*$ its dual. Then

$$\operatorname{tr} \alpha = \operatorname{tr} \alpha^*$$

Proof.

$$\operatorname{tr} \alpha = \operatorname{tr}[\alpha]_{\mathcal{B},\mathcal{B}}$$
$$= \operatorname{tr}[\alpha]_{\mathcal{B},\mathcal{B}}^{T}$$
$$= \operatorname{tr}[\alpha^{*}]_{\mathcal{B}^{*}}$$
$$= \operatorname{tr} \alpha^{*}$$

5.2 Determinants

 $S_n = \text{group of permutations of } \{1, \cdots, n\}$

Define $\varepsilon_n: S_n \to \{-1,1\}$ as

$$\varepsilon(\sigma) = \begin{cases} +1 & \text{if } \sigma \text{ product of even no. of transposes} \\ -1 & \text{if } \sigma \text{ product of odd no. of transposes} \end{cases}$$

Definition. Let $A \in M_n(\mathbb{F}), A = (a_{ij})$. Then

$$det(A) = \sum_{\sigma \in S} \varepsilon(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \cdots a_{\sigma(n)n}$$

There are n! summands, each is sign \times product of n elements (one for each row and each column).

Eg n=2,

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \underbrace{a_{11}a_{22}}_{\sigma = \mathrm{id}} - \underbrace{a_{12}a_{21}}_{\sigma = (12)}$$

Lemma. If $A = (a_{ij})$ is an upper triangular matrix (ie. $a_{ij} = 0$ if i > j) then $\det A = a_{11}a_{22}\cdots a_{nn}$. Similar for lower triangular matrices (ie. $a_{ij} = 0$ if i < j).

Proof.

$$\det(A) = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(n)n}$$

For a summand to be non-zero, need $\sigma(j) \leq j \; \forall \; j$. Thus $\sigma = \mathrm{id}$

Lemma.

$$\det(A) = \det(A^T)$$

Proof.

$$\det(A) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \times \prod_{i=1}^n a_{\sigma(i)i}$$

$$= \sum_{\sigma \in S_n} \underbrace{\varepsilon(\sigma)}_{=\varepsilon^{-1}} \prod_{i=1}^n a_{i\sigma^{-1}(i)}$$

$$= \sum_{\tau \in S_n} \varepsilon(\tau) \prod_{i=1}^n a_{i\tau(i)} \qquad (\sigma^{-1} = \tau)$$

$$= \det(A^T)$$

Definition. A volume form on \mathbb{F}^n is a function:

$$d: \underbrace{\mathbb{F}^n \times \mathbb{F}^n \times \cdots \times \mathbb{F}^n}_{n \text{ copies}} \to \mathbb{F}$$

such that

(i) d is multilinear: for any i and $v_1, \dots, v_{i-1}, v_i, v_{i+1}, \dots, v_n \in \mathbb{F}^n$,

$$d(v_1, v_2, \cdots, v_{i-1}, -, v_{i+1}, \cdots, v_n) \in (\mathbb{F}^n)^*$$

(ii) d is alternating: if $v_i = v_j$ for $i \neq j$, then $d(v_1, \dots, v_n) = 0$

Note that the notation we will use will look like

$$A = (a_{ij}) = (A^{(1)} \mid A^{(2)} \mid \cdots \mid A^{(n)})$$

If $\{e_i\}$ is the standard basis for \mathbb{F}^n then

$$I = (e_1 \mid \cdots \mid e_n)$$

Lemma.

$$\det: \underbrace{\mathbb{F}^n \times \cdots \times \mathbb{F}^n}_{n \text{ copies}} \to \mathbb{F}$$

$$(A^{(1)}, \cdots, A^{(n)}) \mapsto \det(A)$$
 is a volume form

- *Proof.* (i) Multilinear: For any fixed $\sigma \in S_n$, $\prod_{i=1}^n a_{\sigma(i)}$ contains exactly one term from each column, and so is multilinear. Now use the fact that the sum of multilinear functions is multilinear.
- (ii) Alternating: Suppose $A^{(k)} = A^{(J)}$, for $J \neq k$. Let $\tau = (kJ)$ transpo $a_{ij} = a_{i\tau(J)} \,\forall i, j \in \{1, \dots, n\}, \, S_n = A_n \sqcup \tau A_n$, where \sqcup is disjoint union.

$$\det(A) = \sum_{\sigma \in A_n} \prod a_{i\sigma(i)} - \sum_{\sigma \in A_n} \prod a_{i\tau(\sigma(i))}$$
$$= \sum_{\sigma \in A_n} \prod a_{i\sigma(i)} - \sum_{\sigma \in A_n} \prod a_{i\sigma(i)}$$
$$= 0$$

Lemma. Let d be a volume form. Then swapping two entries changes the sign.

$$d(v_1, \dots, v_i, \dots, v_i, \dots, v_n) = -d(v_1, \dots, v_i, \dots, v_i, \dots, v_n)$$

Proof.

$$0 = d(v_1, \dots, v_{i-1}, v_i + v_j, v_{i+1}, \dots, v_{j-1}, v_j + v_i, v_{j+1}, \dots, v_n)$$

$$= d(v_1, \dots, v_i, \dots, v_i, \dots, v_n) + d(v_1, \dots, v_j, \dots, v_i, \dots, v_n)$$

$$+ d(v_1, \dots, v_i, \dots, v_j, \dots, v_n) + d(v_1, \dots, v_j, \dots, v_j, \dots, v_n)$$

$$= d(v_1, \dots, v_i, \dots, v_i, \dots, v_n) + d(v_1, \dots, v_i, \dots, v_i, \dots, v_n)$$

Corollary. If $\sigma \in S_n$, $d(v_{\sigma(1)}, \dots, v_{\sigma(n)}) = \varepsilon(\sigma)d(v_1, \dots, v_n)$

Theorem. Let d be a volume form on \mathbb{F}^n . $A = (A^{(1)} \mid \cdots \mid A^{(n)})$. Then

$$d(A^{(1)}, \dots, A^{(n)}) = \det(A) \times d(e_1, \dots, e_n)$$

Proof.

$$d(A_1, \dots, A^n) = d\left(\sum_{i=1}^n a_{ij}e_i, A^{(2)}, \dots, A^{(n)}\right)$$

$$= \sum_{i=1}^n a_{i1}d(e_i, A^{(2)}, \dots, A^{(n)})$$

$$= \sum_i \sum_j a_{i1}a_{j2}d(e_i, e_j, A^{(3)}, \dots, A^{(n)})$$

$$= \sum_{i_1, \dots, i_n} \prod_{k=1}^n a_{ik} \underbrace{d(e_{i_1}, e_{i_2}, \dots, e_{i_n})}_{0 \text{ unless all of } i_k \text{ are distinct}}^9$$

$$= \sum_{i_1, \dots, i_n} \prod_{k=1}^n A_{\sigma(k)k} \underbrace{d(e_{\sigma(1)}, \dots, e_{\sigma(n)})}_{=\varepsilon(\sigma)d(e_1, \dots, e_n)}$$

Corollary. det is the unique volume form s.t.

$$d(e_1,\cdots,e_n)=1$$

Recall:

$$\det: \underbrace{\mathbb{F}^n \times \cdots \times \mathbb{F}^n}_{n \text{ copies}} \to \mathbb{F}$$

$$(v_1, \dots, v_n) \mapsto \det(v_1 \mid \dots \mid v_n)$$
 is a volume form

Proposition. Let $A, B \in M_n(\mathbb{F})$. Then $\det(AB) = \det(A) \det(B)$

Proof. Let
$$d_A : \underbrace{\mathbb{F}^n \times \cdots \times \mathbb{F}^n}_{n \text{ copies}} \to \mathbb{F},$$

$$(v_1, \cdots, v_n) \mapsto \det(Av_1 \mid \cdots \mid Av_n)$$

- d_A is multilinear: $v_i \mapsto Av_i$ linear, and d multilinear
- d_A is alternating: $v_i = v_j \Rightarrow Av_i = Av_j$ and d is alternating

Thus d_A is a volume form.

$$d_A(Be_1, \dots, Be_n) = \det Bd_A(e_1, \dots, e_n)$$
 (d_A a v.f.)
= $\det B \det A$

Also
$$d_A(Be_1, \dots, Be_n) = \det(ABe_1 | \dots | ABe_n) = \det(AB)$$
.

Definition. $A \in M_n(\mathbb{F})$ is singular if det A = 0. Otherwise A is non-singular.

Lemma. if A is invertible, then A is non-singular, $\det(A^{-1}) = \frac{1}{\det A}$ Proof.

$$1 = \det(I_n)$$

$$= \det(AA^{-1})$$

$$= \det(A) \det(A^{-1})$$

$$\Rightarrow \det(A) \neq 0, \det(A^{-1}) = (\det(A))^{-1}$$

Theorem. Let $A \in M_{m,n}(\mathbb{F})$. TFAE:

- (i) A is invertible
- (ii) A is non-singular
- (iii) r(A) = n

Proof. - (i) \Rightarrow (ii) done

- (ii) \Rightarrow (iii): Suppose that r(A) < n. By rank-nullity, n(A) > 0, so $\exists \lambda \in \mathbb{F}^n \setminus \{\mathbf{0}\}$ st. $A\lambda = \mathbf{0}$. Say $\lambda = (\lambda_i)$, say $\lambda_k \neq 0$. Have $\sum_{i=1}^n A^{(i)} \lambda_i = \mathbf{0}$. Let $B = (e_1 \mid \cdots \mid e_{k-1} \mid \lambda \mid e_{k+1} \mid \cdots \mid e_n)$.

$$AB$$
 has k^{th} column zero $\Rightarrow \det(AB) = 0$
$$= \det(A) \det(B)$$

$$= \det(A) \underbrace{\lambda_k}_{\neq 0}$$

Thus $\det A = 0$

- (iii) \Rightarrow (i) by rank-nullity

5.2.1 Determinants of Linear Maps

Lemma. Conjugate matrices have the same determinant.

Proof. Let $B = P^{-1}AP$. Then

$$\det B = \det(P^{-1}AP)$$

$$= \det(P^{-1})\det(A)\det(P)$$

$$= (\det P)^{-1}(\det A)(\det P)$$

$$= \det A$$

Definition. Let $\alpha: V \to V$, V a finite-dim v-space. Define det $\alpha = \det[\alpha]_{\mathcal{B},\mathcal{B}}$, where \mathcal{B} is any basis for V. This is well-defined by the previous lemma.

Theorem. det : $L(V, V) \to \mathbb{F}$ satisfies:

- (i) $\det(I_d) = 1$
- (ii) $det(\alpha \circ \beta) = det(\alpha) det(\beta)$
- (iii) $\det(\alpha) \neq 0 \iff \alpha$ invertible, and if α invertible then $\det(\alpha^{-1}) = (\det \alpha)^{-1}$

5.2.2 Determinants of Block Triangular Matrices

Lemma. $A \in M_k(\mathbb{F}), B \in M_l(\mathbb{F}), C \in M_{k,l}(\mathbb{F}).$

$$\det\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = \det A \det B$$

Proof. set n = k + l. Let $X = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \in M_n(\mathbb{F}), X = (x_{ij}).$

$$\det(X) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n x_{\sigma(i)i}$$

Note: $x_{\sigma(i)i} = 0$ if $i \leq k$ and $\sigma(i) > k$. Thus we're summing over all σ with

- (i) if $j \in [1, k], \sigma(j) \in [1, k]$ AND
- (ii) if $j \in [k+1, n], \ \sigma(j) \in [k+1, n]$

this means

- (i) get $x_{\sigma(i)i} = \underbrace{x_{\sigma_1(i)i}}_{=a_{\sigma_1(i)i}}$ where $\sigma_1 = \text{restriction of } \sigma \text{ to } [1, k]$
- (ii) get $x_{\sigma(i)i} = \underbrace{x_{\sigma_2(i)i}}_{=b_{\sigma_2(i)i}}$ where $\sigma_2 = \text{restriction of } \sigma \text{ to } [k+1, n].$

$$\sigma = \sigma_1 \sigma_2 \Rightarrow \varepsilon(\sigma) = \varepsilon(\sigma_1)\varepsilon(\sigma_2)$$

We get

$$\det X = \left(\sum_{\sigma_1 \in S_k} \varepsilon(\sigma_1) \prod_{j=1}^k a_{\sigma_1(j)j}\right) \left(\sum_{\sigma_2 \in S_l} \varepsilon(\sigma_2) \prod_{j=k+1}^n b_{\sigma_2(j)j}\right)$$
$$= \det A \det B$$

Corollary. For square matrices A_1, α, A_k , the upper-triangular matrix with A_1, α, A_k along the diagonal has determinant $= \prod_{i=1}^k \det A_i$.

Proof. Apply lemma immediately.

Caution: In general,

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} \neq \det A \det D - \det B \det C$$

Aside: Volume Interpretation of Determinants:

 $\mathbb{R}^2 \det(\mathbf{u}|\mathbf{v})$ is the signed area of parallelogram made by extending \mathbf{u} and \mathbf{v} .

 $\mathbb{R}^3 \det(\mathbf{u}|\mathbf{v}|\mathbf{w}) = \text{singed volume of parallelepiped.}$

There are analogous interpretations in higher dimensions.

5.2.3 Elementary Operations and Det

- (i) E_1 swaps 2 columns/rows. det $E_1 = -1$
- (ii) E_2 multiplies a column/row by $\lambda \neq 0$. det $E_2 = \lambda$
- (iii) E_3 add λ (column i) to column j (/rows). det $E_3 = 1$

One could prove properties of det (eg det(AB) = det A det B) by using the factorisation of matrices into products of E_i .

5.2.4 Column Expansion and Adjugate Matrices

Lemma. Let $A \in M_n(\mathbb{F})$, $A = (a_{ij})$. Define $A_{\hat{i}\hat{j}}$ by deleting row i and col j from A. Then

(i) for a fixed j,

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{\hat{i}\hat{j}}$$

'expansion in column j'

(ii) for a fixed i,

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{\hat{i}\hat{j}}$$

'expansion in row i'

Remark: could use 1) to define determinants iteratively, starting with det a = a for n = 1.

Example.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Proof. We will only prove (i), and get (ii) by transposition

$$\det(A) = \det(A^{(1)} | A^{(2)} | \cdots | \sum_{i=1}^{n} a_{ij} e_{i} | \cdots A^{(n)})$$

$$= \sum_{i=1}^{n} a_{ij} \det(A^{(1)} | \cdots e_{i} | A^{(ji)} | \cdots | A^{(n)})$$

$$= \sum_{i=1}^{n} \underbrace{a_{ij}(-1)^{(i-1)+(j-1)}}_{\text{row and col swaps}} \det\begin{pmatrix} 1 & 0 \\ 0 & A_{\hat{ij}} \\ & = \sum_{i=1}^{n} a_{ij}(-1)^{i+j} \det(A_{\hat{ij}}) \end{pmatrix}$$

Definition. Let $A \in M_n(\mathbb{F})$. The adjugate matrix of A, adj (A), is the $n \times n$ matrix

$$(\text{adj } A)_{ij} = (-1)^{i+j} \det(A_{\hat{ij}})$$

Theorem. (i)

$$(\operatorname{adj} A)A = (\det A)I = \begin{pmatrix} \det A & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \det A \end{pmatrix}$$

(ii) If A is invertible, then $A^{-1} = \frac{1}{\det A} \operatorname{adj}(A)$.

Proof. (i) det $A = \sum_{i} (\text{adj } A)_{ji} a_{ij} = j^{\text{th}}, j^{\text{th}}$ entry of (adj A) A. For $j \neq k$,

$$0 = \det(A^{(1)} \mid \cdots \underbrace{\mid A^{k} \mid}_{j^{\text{th}} \text{ col}} \cdots; \mid A^{k} \mid \cdots \mid A^{(n)}$$

$$= \sum_{i} (\text{adj } A)_{ji} a_{ik}$$

$$= j, k^{\text{th}} \text{ entry of } (\text{adj } A) A$$

(ii) If A invertible, then $\det A \neq 0$, so $I = \frac{\operatorname{adj}(A)}{\det A}A$

5.3 Systems of Linear Equations

- A**x** = **b** is m equations in n unknowns ($A : m \times n$ and **b** : $m \times 1$ known, **x** = (x_1, \dots, x_n) = $n \times 1$ unknown)
- A**x** = **b** has solution iff r(A) = r(A|b) where A|b is the augmented matrix: A with extra column b (ie. iff **b** is a linear combo of columns in A).
- The solution is unique iff r(A) = n
- Special case: m = n. If A is non-singular then there is a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

5.3.1 The Cramer Rule

If $A \in M_n(\mathbb{F})$ invertible, the system $A\mathbf{x} = \mathbf{b}$ has unique solution $\mathbf{x} = (x_i)$,

$$x_i = \frac{\det(A_{\hat{i}\hat{b}})}{\det A}$$

where $A_{\hat{i}\hat{b}}$ is obtained from A by deleting i^{th} column and replacing it with **b**.

Proof. Assume that \mathbf{x} is a solution of $A\mathbf{x} = \mathbf{b}$.

$$\det(A_{\hat{i}\hat{b}}) = \det(A^{(1)} \mid \cdots \mid A^{(i-1)} \mid b \mid A^{(i+1)} \mid \cdots \mid A^{(n)})$$

$$= \det(A^{(1)} \mid \cdots \mid A\mathbf{x} \mid \cdots \mid A^{(n)})$$

$$= \sum_{j=1}^{n} x_{j} \det(A^{(1)} \mid \cdots \mid A^{(i-1)} \mid A^{(j)} \mid A^{(i+1)} \mid \cdots \mid A^{(n)}) \text{ as } A\mathbf{x} = \sum_{j} A^{(j)} x_{j}$$

$$= x_{i} \det A$$

Corollary. If $A \in M_n(\mathbb{Z})$ ie. $(n \times n)$ with integer entries, with det $A = \pm 1$, then

 $-A^{-1} \in M_n(\mathbb{Z})$ also,

$$A^{-1} = \frac{\text{adj } A}{\pm 1} \qquad \text{with adj } A \text{ entries in } \mathbb{Z}$$

– $\mathbf{b} \in \mathbb{Z}^n$, can solve $A\mathbf{x} = \mathbf{b}$ for integer solution.