

Lecture 11 Density Estimation

Mahdi Roozbahani Georgia Tech

Outline

Overview

- Parametric Density Estimation
- Nonparametric Density Estimation

Continuous variable

Continuous probability distribution
Probability density function
Density value
Temperature (real number)
Gaussian Distribution

$$\int f_X(x)dx = 1$$

Discrete variable

Discrete probability distribution
Probability mass function
Probability value
Coin flip (integer)
Bernoulli distribution

$$\sum_{x \in A} f_X(x) = 1$$

Why Density Estimation?

Learn more about the "shape" of the data cloud

- Access the density of seeing a particular data point
 - Is this a typical data point? (high density valué)
 - Is this an abnormal data point / outlier? (low density value)
- Building block for more sophisticated learning algorithms
 - Classification, regression, graphical models ...
 - A simple recommendation system

Example: Test Scores

Histogram is an estimate of the probability distribution of a continuous variable

Example: Test Scores

Parametric Density Estimation

- Models which can be described by a fixed number of parameters
- rnoulli distribution $P(x|\theta) = \theta^{x}(1-\theta)^{1-x}$ $0 \rightarrow Tails$ Discrete case: eg. Bernoulli distribution

$$\begin{array}{c} 1 \rightarrow Head \\ 0 \rightarrow Tails \end{array}$$

one parameter, $X \in [0,1]$, which generate a family of models, $\mathcal{F} =$ $\{P(x|\theta) \mid x \in [0,1]\}, \quad \theta \text{ probability of possible outcome}$

• Continuous case: eg. Gaussian distribution in \mathbb{R}^n

$$p(x|\mu,\Sigma) = \frac{1}{|\Sigma|^{\frac{1}{2}}(2\pi)^{\frac{n}{2}}} exp\left(-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)\right)$$

Two sets of parameters $\{\mu, \Sigma\}$, which again generate a family of models, $\mathcal{F} = \{ p(x|\mu, \Sigma) \mid \mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n \times n} \text{ and } PSD \}$,

Nonparametric Density Estimation

- What are nonparametric models?
 - "nonparametric" does not mean there are no parameters
 - can not be described by a fixed number of parameters
 - one can think of there are many parameters
- Eg. Histogram
- Eg. Kernel density estimator

Parametric v.s. Nonparametric Density Estimation

Parametric v.s. Nonparametric Density Estimation

Outline

- Overview
- Parametric Density Estimation

Nonparametric Density Estimation

Estimating Parametric Models

- A very popular estimator is the maximum likelihood estimator (MLE), which is simple and has good statistical properties
- Assume that m data points $\mathcal{D} = \{x^1, x^2, ... x^n\}$ drawn independently and identically (iid) from some distribution $P^*(x)$

Using the parameters, we can estimate each data point

• Want to fit the data with a model $P(x|\theta)$ with parameter θ

$$\int_{\theta} -\theta = \operatorname{argmax}_{\theta} \log P(\mathcal{D}|\theta) = \operatorname{argmax}_{\theta} \log \prod_{i=1}^{n} P(x^{i}|\theta)$$

Example Problem

- Estimate the probability θ of landing in heads using a biased coin
- Given a sequence of m independently and identically distributed (iid) flips

• Eg.,
$$\mathcal{D} = \{x^1, x^2, \dots x^n\} = \{1, 0, 1, \dots, 0\}, x^i \in \{0, 1\}$$

$$P(x|\theta) = \begin{cases} 1 - \theta, for \ x = 0 \\ \theta, \quad for \ x = 1 \end{cases}$$

$$P(x^i|\theta) = \theta^{x^i}(1-\theta)^{1-x^i}$$

MLE for Biased Coin

Objective function, log likelihood

e function, log likelinood
$$l(\theta;\mathcal{D}) = \log P(\mathcal{D}|\theta) = \log \theta^{n_h} (1-\theta)^{n_t}$$

$$= n_h \log \theta + (n-n_h) \log (1-\theta)$$

 n_h : number of heads, n_t : number of tails

- Maximize $l(\theta; \mathcal{D})$ w.r.t. θ
- Take derivatives w.r.t. θ

$$\frac{\partial l}{\partial \theta} = \frac{n_h}{\theta} - \frac{(n - n_h)}{1 - \theta} = 0$$

$$\Rightarrow \hat{\theta}_{MLE} = \frac{n_h}{n} \text{ or } \hat{\theta}_{MLE} = \frac{1}{n} \sum_i x^i \xrightarrow{n_h = 50, n_t = 50} n_h = 0.5$$

Estimating Gaussian Distributions

Gaussian distribution in R

$$p(x|\mu,\sigma) = \frac{1}{(2\pi)^{\frac{1}{2}}\sigma} exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

- Need to estimate two sets of parameters μ , σ
 - N

Given iid samples

$$\mathcal{D} = \{x^1, x^2, \dots x^n\}, x^i \in R$$

Density of a data point:

$$p(x^i|\mu,\sigma) \propto exp\left(-\frac{1}{2\sigma^2}(x^i-\mu)^2\right)$$

Estimating Gaussian Distributions

Gaussian distribution in R

$$p(x|\mu,\sigma) = \frac{1}{(2\pi)^{\frac{1}{2}}\sigma} exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

Mean

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x^i$$

Variance

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{11} (x^i - \mu)^2$$

MLE for Gaussian Distribution

Objective function, log likelihood

$$l(\mu, \sigma; \mathcal{D}) = \log \prod_{i=1}^{n} \frac{1}{(2\pi)^{\frac{1}{2}\sigma}} exp\left(-\frac{1}{2\sigma^{2}}(x^{i} - \mu)^{2}\right)$$
$$= -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^{2} - \sum_{i=1}^{n} \frac{(x^{i} - \mu)^{2}}{2\sigma^{2}}$$

- Maximize $l(\mu, \sigma; \mathcal{D})$ with respect to μ, σ
- Take derivatives w.r.t. μ , σ^2

$$\frac{\partial l}{\partial \mu} = 0$$

$$\frac{\partial l}{\partial \sigma^2} = 0$$

MLE for Gaussian Distribution

INILE for Gaussian Distribution
$$\int_{c}^{a} = \sqrt{\frac{n}{2} \log 2\theta} = \frac{n}{2}$$

$$\frac{\partial l}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x^i - \mu) = 0$$

$$\Rightarrow \sum_{i}^{n} x^i = n \mu \Rightarrow \mu = \frac{1}{n} \sum_{i=1}^{n} x^i$$

$$\frac{\partial l}{\partial \sigma^2} = \left(-\frac{n}{2\sigma^2}\right) + \frac{1}{2\sigma^4} \sum_{i}^{n} (x^i - \mu)^2 = 0$$

$$\Rightarrow \sum_{i}^{n} (x^i - \mu)^2 = n \sigma^2 \Rightarrow \frac{1}{n} \sum_{i=1}^{n} (x^i - \mu)^2$$

Example

Outline

- Overview
- Parametric Density Estimation
- Nonparametric Density Estimation

Can be used for:

- Visualization
- Classification
- Regression

1-D Histogram

- One the simplest nonparametric density estimator
- Given $\mathcal{D} = \{x^1, x^2, ... x^n\}, x^i \in [0,1)$

Split [0,1) into m bins

$$B_1 = \begin{bmatrix} 0, \frac{1}{m} \end{bmatrix} B_2 = \begin{bmatrix} \frac{1}{m}, \frac{2}{m} \end{bmatrix}, \dots B_m = \begin{bmatrix} \frac{m-1}{m}, 1 \end{bmatrix}$$

- Count the number of points, c_1 within B_1 , c_2 within B_2 ...
- For a new test point x

Identity matrix
$$p(x) = \sum_{j=1}^{m} p(x) = \frac{\text{number of points in bin c}}{\text{total number of data points}} \times \text{bin width}$$

$$P = \int p(x) dx$$
 The probability that point x is drawn from a distribution p(x)

Why is Histogram Valid?

- Requirement for density p(x)
- $p(x) \ge 0$, $\int_{\Omega} p(x) dx = 1$

For histogram,

For histogram,
$$\int_{[0,1)} p(x) dx = \int_{[0,1)} \sum_{j=1}^{m} \frac{mc_j}{n} I(x \in B_j) dx$$

$$= \int_{0}^{\frac{1}{m}} \sum_{j=1}^{m} \frac{mc_j}{n} I dx + \dots + \int_{\frac{j-1}{m}}^{\frac{j}{m}} \sum_{j=1}^{m} \frac{mc_j}{n} I dx = \sum_{j=1}^{m} \int_{[\frac{j-1}{m}, \frac{j}{m}]} \frac{mc_j}{n} dx$$

$$= \sum_{j=1}^{m} \frac{mc_j}{n} I\left[\frac{j}{m} - \frac{j-1}{m}\right] = \sum_{j=1}^{m} \frac{c_j}{n} = 1$$

Example: Test Scores

What is missing if we want density?

Higher-Dimensional Histogram

- Given n iid samples $\mathcal{D} = \{x^1, x^2, ... x^n\}, x^i \in [0,1)^d$
- Split $[0,1)^d$ evenly into m^d bins
- Bin size is $h = \frac{1}{m}$

Two Dimensional data:

m = 10 (number of bins in each dimension)

 $m^2 = 100$ (total number of bins for two dimensional data)

Output Depends on Where You Put the Bins

Output Depends on Where You Put the Bins

Histogram with breaks at n.25 and n.75 binwidth=0.5

Kernel Density Estimation

Kernel density estimator

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x^{i} - x}{h}\right)$$

- Smoothing kernel function
 - $K(u) \geq 0$,
 - $\int K(u)du = 1$,
 - $\bullet \int uK(u) = 0,$
 - $\int u^2 K(u) du \le \infty$
- An example: Gaussian kernel $K(u) = \frac{1}{\sqrt{2\pi}}e^{-u^2/2}$

Smoothing Kernel Functions

• An example: Gaussian kernel $K(u) = \frac{1}{\sqrt{2\pi}}e^{-u^2/2}$

Example

Effect of the Kernel Bandwidth

50 datapoints are given to us

Let's implement 20 bins histogram

Let's create 200 uniform points to have a smoother density function **OR** simply you can just implement this on each datapoint

For **each** linearly spaced point, let's calculate the Gaussian kernel value over the given 50 points As an example, let's do it for the 0

Density value

200X50

Density value

Based on Gaussian kernel estimator

Numerical Example

Silverman's rule of thumb: If using the Gaussian kernel, a good choice for is $\frac{1}{2}$

$$h = \left(\frac{4\hat{\sigma}^2}{3n}\right)^{\frac{1}{5}} \approx 1.06\hat{\sigma}n^{-\frac{1}{5}}$$

```
h = std(data) * (4/3/numel(data)) ^ (1/5); % Bandwidth estimated by Silverman's Rule of Thumb
```

```
% Let's create apply density estimation over 1000 linearly spaced points
x = linspace(-25,+25,1000);
% Let's generate a "TRUE" density over all the bins given the "Ground Truth" information.

truepdf_firstnormal = exp(-.5*(x-10).^2)/sqrt(2*pi);
truepdf_secondnormal = exp(-.5*(x+10).^2)/sqrt(2*pi);
truepdf = truepdf_firstnormal/2 + truepdf_secondnormal/2;
% divided down by 2, because we are adding density value two times
```


% Let's calculate Gaussian kernel density for each linearly spaced point over 200 Given data points

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x^{i} - x}{h}\right) \qquad u = \frac{x^{i} - x}{h}$$

Gaussian kernel
$$K(u) = \frac{1}{\sqrt{2\pi}}e^{-u^2/2}$$

```
for i=1:size(x,1)
    u = (x(i)-data)./h; % length of u is 200
    Ku = exp(-.5*u.^2)/sqrt(2*pi);
    Ku = Ku./h;
    px(i) = mean(Ku);
end
```

plot(x,truepdf) plot(x,px)

Two-Dimensional Examples

- This example shows the product KDE of a bivariate <u>unimodal</u> Gaussian
 - 100 data points were drawn from the distribution
 - The figures show the true density (left) and the estimates using $h=1.06\sigma N^{-1/5}$ (middle) and $h=0.9AN^{-1/5}$ (right)

Choosing the Kernel Bandwidth

 Silverman's rule of thumb: If using the Gaussian kernel, a good choice for is

$$h \approx 1.06 \,\hat{\sigma} \, m^{-1/5}$$

where is the standard deviation of the samples

- A better but more computational intensive approach:
 - Randomly split the data into two sets
 - Obtain a kernel density estimate for the first
 - Measure the likelihood of the second set
 - Repeat over many random splits and average

Summary

- Parametric density estimation
 - Maximum likelihood estimation
 - Different parametric forms
- Nonparametric density estimation
 - Histogram
 - Kernel density estimation