HW5

Lei Xia (MML)

November 29, 2020

1. Nearest Neighbor and Metric Spaces:

- (a) Yes, from the symmetry of Nearest Neighbor: $d(X_1, X_2) = d(X_2, X_1)$, if X_1 is the nearest neighbor of X_2 , then X_2 is the nearest neighbor of X_1 .
- (b) $d(X_2, X_3) = d(X_2, X_1) + d(X_1, X_3) \ge d(X_2, X_1) + 0 \Longrightarrow d(X_2, X_1) \le d(X_2, X_3)$
- (c) From Triangle inequality, it is known that $d(X_2, X_3) \le d(X_2, X_1) + d(X_1, X_3)$. Equation 1 says $d(X_2, X_3) = d(X_2, X_1) + d(X_1, X_3)$, so X_1 is in $[X_2, X_3]$ and could be anywhere in between.
 - i. Possible, e.g. $[X_2, X_1, X_3, X_4]$
 - ii. Possible, e.g. $[X_4, X_2, X_1, X_3]$ and X_4 is very close to X_2 .
 - iii. Impossible, given $d(X_2, X_1) \leq d(X_2, X_3)$, when X_1 is not X_3 , X_1 is the 2nd nearest; when X_1 is X_3 , X_1 is still the 2nd nearest.
- (d) following the above deduction, when $d(X_1, X_4) = d(X_1, X_3) + d(X_3, X_4)$, X_3 is in $[X_1, X_4]$. Also, it is known that X_1 in $[X_2, X_3]$ so that the whole picture is like $[X_2, X_1, X_3, X_4]$.
 - i. Could be
 - ii. Couldn't be
 - iii. Couldn't be

2. Lipschitz functions:

- (a) $f(x) = x^{\frac{1}{3}}$: $f'(x) = 1/(3x^{-2/3})$: with x increases, f'(x) decreases. When x > 0, $f'(x) > \infty$, so:
 - i. f(x) is not Lipschitz on $[0, \infty)$ because $f'(x) \infty$ when x > 0.
 - ii. f(x) is not Lipschitz on [0,1] because $f'(x) > \infty$ when x > 0.
 - iii. f(x) is Lipschitz on $[2,\infty)$. $f'(x)_{max} = f'(2) = \frac{1}{3\sqrt[3]{4}}$ so the smallest constant is $\frac{1}{3\sqrt[3]{4}}$.
 - iv. f(x) is Lipschitz on [1,2]. $f'(x)_{max} = f'(1) = 1/3 = > L = 1/3$.
- (b) $f(x) = x^{\frac{4}{3}}$: $f'(x) = \frac{4}{3}x^{\frac{1}{3}}$.
 - i. $[0,\infty), [2,\infty)$: when $x->\infty, f(x)->\infty$ so f(x) is not Lipschitz.
 - ii. [0,1]: f(x) is Lipschitz. $f'(x)_{max} = f'(1) = \frac{4}{3} = L = \frac{4}{3}$
 - iii. [1,2]: f(x) is Lipschitz. $f'(x)_{max} = f'(2) = \frac{4}{3}2^{1/3} = L = \frac{4}{3}2^{1/3}$

(c)

$$f(x) = \begin{cases} 0, & \text{if } x \le 1\\ 2(x-1), & \text{if } x \in [1,2)\\ 1, & \text{if } x \ge 2 \end{cases}$$
 (1)

One thing to notice is that when x->2 from the left to when x=2, there is a plunge from 2 to 1, which means the derivative from the left to where x=2 is ∞ . No other places would find a $f'(x)->\infty$. As a result, intervals that include x=2 from left side are not Lipschitz. Other places are Lipschitz.

- i. $[0, \infty)$: not Lipschitz
- ii. [0,1]: f(x)=0: Lipschitz, constant is 0.
- iii. $[2,\infty)$: f(x)=1: Lipschitz, constant is 0.
- iv. [1, 2]: plunge included; not Lipschitz

(d)

$$f(x) = \begin{cases} 0, & \text{if } x \le 1\\ 2(x-1), & \text{if } x \in [1,2)\\ 2, & \text{if } x \ge 2 \end{cases}$$
 (2)

The only difference from (c) is that f(x) is continuous this time at x=2. f(x) is also bounded by [0,2]. As a result, f(x) is Lipschitz anywhere. Specifically, Lipschitz constant is 2 on $[0,\infty)$ and [1,2], but 0 on [0,1] and $[2,\infty)$ because f(x) is constant.

3. Hölder functions:

- (a) For f(0) = f(1) = f(2) = 0 case, if f(x) = 0 always holds, this function satisfies all following Hölder class. As a result, the 1st column are all checked.
- (b) For case f(0) = f(1) = 0 and f(2) = 1: the smoothest function would be

$$f(x) = \begin{cases} 0, & x \in [0, 1] \\ x-1, & x \in [1, 2] \end{cases}$$
 (3)

In that case, |f(x) - f(y)| = |x - y| if both $x, y \in [1, 2]$. When one variable is 0, i.e. x = 0 or y = 0, then f(x) = 0 or f(y) = 0.

- i. $\mathcal{F}^{(0,\frac{1}{2})} <=>$ if $|f(x)-f(y)| \leq \frac{1}{2}|x-y|$: Impossible, because the smoothest would be |x-y|, which is larger than $\frac{1}{2}|x-y|$.
- ii. $\mathcal{F}^{(0,1)}$: Possible, the given function above is exactly |x-y|.
- iii. $\mathcal{F}^{(0,2)}$: Possible, because $|x-y| \leq 2|x-y|$.
- iv. $\mathcal{F}^{(1,\frac{1}{2})}$: For f'(x)-f'(y), it is either 0 or 1. When f'(x)-f'(y)=0 x and y are both in [0,1] or [1,2]. Given the left hand side is 0, $f'(x)-f'(y)=0 \le \frac{1}{2}|x-y|$. When one variable in [0,1] and the other in [1,2], e.g. y in [0,1], then f(y)=0. Left hand side =f'(x)-0=1, right hand side $=\frac{1}{2}|x-y|$. When x=2,y=0, right hand side =1, so this is possible.
- v. $\mathcal{F}^{(1,1)}$: $\langle = \rangle f'(x) f'(y) \leq |x-y|$. Same analysis as above: When y=0 and right hand side is |x|, when $x \in [1,2]$, this always holds so it is possible.
- vi. $\mathcal{F}^{(1,2)}$: $f'(x) f'(y) \leq |x y|$ is possible, so $f'(x) f'(y) \leq 2|x y|$ is also possible.
- (c) For case f(0) = f(2) = 0 and f(1) = 1.

For $\mathcal{F}^{(0,x)}$, consider the function

$$f(x) = \begin{cases} x, & x \in [0, 1] \\ 2-x, & x \in [1, 2] \end{cases}$$
 (4)

- i. $\mathcal{F}^{(0,\frac{1}{2})}$: Impossible, f(x) f(y) = |x y|.
- ii. $\mathcal{F}^{(0,1)}$: Possible: f(x) f(y) = |x y|.
- iii. $\mathcal{F}^{(0,2)}$: Possible: $f(x) f(y) = |x y| \le 2|x y|$.

For $\mathcal{F}^{(1,x)}$, consider the function $f(x) = 1 - (x-1)^2$, then |f'(x) - f'(y)| = |2(1-x) - 2(1-y)| = 2|x-y|. Then:

- i. $\mathcal{F}^{(1,2)}$: Possible.
- ii. $\mathcal{F}^{(1,1)}$: Impossible.
- iii. $\mathcal{F}^{(1,0)}$: Impossible.

As a result, the table would be

f(0) =	0	0	0
f(1) =	0	0	1
f(2) =	0	1	0
$\mathcal{F}^{(0,rac{1}{2})}$	√		
$\mathcal{F}^{(0,1)}$	√	√	√
$\mathcal{F}^{(0,2)}$	√	√	√
$\mathcal{F}^{(1,rac{1}{2})}$	√	✓	
$\mathcal{F}^{(1,1)}$	√	√	
$\mathcal{F}^{(1,2)}$	√	√	√

- (d) If $f \in \mathcal{F}^{(p,C)}$, i.e. $|f^{(p)}(x) f^{(p)}(y)| \le C|x-y|$, then $|g^{(p)}(x) g^{(p)}(y)| = |(1-f(x))^{(p)} (1-f(y))^{(p)}| = |f^{(p)}(x) f^{(p)}(y)| \le C|x-y| = g(x)$ is always $\mathcal{F}^{(p,C)}$. The key is that constant addition/subtraction does not affect derivative operations.
- (e) g(x) = f(1-x) is not always $\mathcal{F}^{(p,C)}$ because f(x) can take many different forms of functions, in which case it cannot be guaranteed only $|f^{(p)}(x) f^{(p)}(y)|$ is enough.