

3D Computer Graphics for People in a Hurry

Rasterization Pipeline

Professor Eric Shaffer

Rasterization

Definitions: Pixel and Raster

A *pixel* is the smallest controllable picture element in an image A *raster* is a grid of pixel values

Typically rectangular grid of color values

(1.0, 0.0, 0.0), (0.0, 0.0, 1.0) (0.0, 0.0, 1.0), (1.0, 0.0, 0.0)

RGB Color Representation

A color is a triple (R,G,B) representing a mix of red, green, and blue light. Each color channel has a value in [0, 1] indicating how much light is emitted.

Rasterization

Primitives

Generate a raster image from a vector description

Pixels

Vector Graphics Representation

Is a purely mathematical representation of shape. For example, a line is y=mx+b. Typically, *vector graphics* refers to 2D shapes, but the idea applies to 3D as well.

3D Graphics Pipeline

Vertex Fragment
Processing Rasterization Processing

Fragments

Are like pixels...but they aren't necessarily the finalized pixels you see in an image. Each fragment has a 2D location in a raster and a color.

Final pixel value is typically found by applying *hidden surface removal* and possibly *compositing* to a set of fragments.

Rasterization is a Pipeline

- Data for objects in the scene usually in the form of polygonal meshes
- Most of the work to render an image is done on the Graphics Processing Unit (GPU)
- GPU code will have at least two parts
 - Vertex Shader
 - Fragment Shader

Vertex Shader

- Program that runs on the GPU
- Typically transforms vertex locations from one coordinate system to another
 - Transformations can be useful for placing objects in your scene
 - Also, some operations on the geometry are easier when done in specific coordinate system
- Change of coordinates usually equivalent to a matrix transformation
- Vertex shader can also compute vertex colors

Changing Coordinate Systems

Model Transformation:

Move a model from a local coordinate system to a position in the "world"

Camera Transformation:

Places camera at the origin and moves the objects in the world using the same transformation

Projection Transformation:

Change coordinates so that a 3D to 2D projection of the geometry is done correctly

Viewport Transformation:

Change from 2D coordinates in [-1,1] to pixel coordinates

Rasterization

Rasterizer produces a set of fragments for each triangle

Fragments are "potential pixels"

- Have a location in frame buffer
- Color and depth attributes

Vertex attributes are interpolated across fragments

What a Vertex Shader Does...

Taken from webglfundamentals.org

Can you guess what is slightly incorrect about this animation?

What a Fragment Shader Does...

