Project Title: Heart Disease Diagnostic Analysis

Project submission by: Nilesh Gaddapawar

A Data Analyst Intern at Unified Mentor Private Limited

- Technologies: Data Science
- Domain: Healthcare
- · Project Difficulties level:Intermediate

#importing libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

warnings.filterwarnings('ignore')

#importing Data set

hd=pd.read_csv('Heart Disease data.csv')

hd

		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
	1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
	2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
	3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
	4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0
	1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2	1
	1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3	0
	1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2	0
	1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2	1
	1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3	0

1025 rows × 14 columns

Null Value count

hd.isna().sum()

Attribute Information (Given by Unified Mentor)

```
# age
# sex
# chest pain type (4 values)
# resting blood pressure
\# serum cholestoral in mg/dl
# fasting blood sugar > 120 mg/dl
# resting electrocardiographic results (values 0,1,2)
# maximum heart rate achieved
# exercise induced angina
# oldpeak = ST depression induced by exercise relative to rest
# the slope of the peak exercise ST segment
# number of major vessels (0-3) colored by flourosopy
# thal: 0 = normal; 1 = fixed defect; 2 = reversable defect
# target= affected people 0=no,1=yes
hd.columns.to_list()
₹
    ['age',
       'sex',
      'cp',
      'trestbps',
      'chol',
      'fbs',
      'restecg',
      'thalach',
      'exang',
      'oldpeak',
      'slope',
      'ca',
      'thal',
      'target']
```

```
#Renaming column values
```

Confirnmed Heart disease column

hd.loc[hd['target']==1,'target']='Heart Disease'

hd.loc[hd['target']==0,'target']='No Heart Disease'

Gender

hd.loc[hd['sex']==1,'sex']='Male'
hd.loc[hd['sex']==0,'sex']='Female'

#Type of chest Pain

hd.loc[hd['cp']==0,'cp']='Type 0'

hd.loc[hd['cp']==1,'cp']='Type 1'

hd.loc[hd['cp']==2,'cp']='Type 2' hd.loc[hd['cp']==3,'cp']='Type 3'

#Fasting blood sugar

hd.loc[hd['fbs']==0,'fbs']='<125mg/dl'

hd.loc[hd['fbs']==1,'fbs']='>125mg/dl'

data head

hd.head()

₹	a	ge	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	0	52	Male	Type 0	125	212	<125mg/dl	1	168	0	1.0	2	2	3	No Heart Disease
	1	53	Male	Type 0	140	203	>125mg/dl	0	155	1	3.1	0	0	3	No Heart Disease
	2	70	Male	Type 0	145	174	<125mg/dl	1	125	1	2.6	0	0	3	No Heart Disease
	3	61	Male	Type 0	148	203	<125mg/dl	1	161	0	0.0	2	1	3	No Heart Disease
	4	62	Female	Type 0	138	294	>125ma/dl	1	106	0	1.9	1	3	2	No Heart Disease

Statistical info of the data

hd[['age','trestbps','chol','thalach']].describe()

₹		age	trestbps	chol	thalach	
	count	1025.000000	1025.000000	1025.00000	1025.000000	
	mean	54.434146	131.611707	246.00000	149.114146	
	std	9.072290	17.516718	51.59251	23.005724	
	min	29.000000	94.000000	126.00000	71.000000	
	25%	48.000000	120.000000	211.00000	132.000000	
	50%	56.000000	130.000000	240.00000	152.000000	
	75%	61.000000	140.000000	275.00000	166.000000	
	max	77.000000	200.000000	564.00000	202.000000	

#Coreation between the variables

hd[['age','trestbps','chol','thalach']].corr()

→ ▼		200	trestbps	chol	thalach
		age	ci escops	CIIOI	Cliazacii
	age	1.000000	0.271121	0.219823	-0.390227
	trestbps	0.271121	1.000000	0.127977	-0.039264
	chol	0.219823	0.127977	1.000000	-0.021772
	thalach	-0.390227	-0.039264	-0.021772	1.000000

```
# Calculate the counts for each sex and confirmed patients
target_count=hd['target'].value_counts()
sex_counts = hd['sex'].value_counts()

# creating plot area
plt.figure(figsize=(15,10))

#Deviding plot area and ploting confirmned cases
plt.subplot(1,2,1)
plt.pie(target_count, labels=target_count.index, autopct='%1.1f%%')
plt.title('Number of Confirmed Cases')

#Deviding plot area and showing Gender Distribution
plt.subplot(1,2,2)
plt.pie(sex_counts, labels=sex_counts.index, autopct='%1.1f%%')
plt.title('Gender Distribution')
plt.show()
```

_

Number of Confirmed Cases

Gender Distribution

#pair plot chart showing correlation and histogram (data distribution shape)

sns.pairplot(hd[['age','trestbps','chol','thalach']])


```
#Creating plot area
plt.figure(figsize=(15,5))
#deviding plot area and Maximum heart rate achieved
plt.subplot(1,3,1)
plt.scatter(hd['age'],hd['thalach'])
plt.xlabel('Age')
plt.ylabel('Maximum heart rate achieved')
plt.title('Age vs Maximum heart rate achieved')
#Deviding plot area and Resting blood pressure
plt.subplot(1,3,2)
plt.scatter(hd['age'],hd['trestbps'])
plt.xlabel('Age')
plt.ylabel('Resting blood pressure')
plt.title('Age vs Resting blood pressure')
# Boxplot to see outliers
plt.subplot(1,3,3)
hd[['age','trestbps','chol','thalach']].boxplot()
plt.title('Boxplot')
plt.show()
```



```
#Creating chart area
plt.figure(figsize=(15,3))

# Deviving the chart area Age vs Confiremd Case
plt.subplot(1,3,1)
b=hd.groupby('sex')['target'].count()
plt.bar(b.index,b.values,color='b',alpha=.5)
plt.xlabel('Sex')
plt.ylabel('Number of Cases')
plt.title('Age vs Confiremd Case')

# Deviving the chart area Chest pain type vs Confiremd Case
c=hd.groupby('cp')['target'].count()
plt.subplot(1,3,2)
plt.bar(c.index,c.values,color='r',alpha=.5)
plt.xlabel('Chest pain type')
#creating a line chart to see age-wise confirmed cases
```