Overview

Filter datasets based on a condition

Find a distinct set of values within a dataset

Find the top N records in input data

Filtering Data

Consider a dataset with user purchases

ID	Username	Category	Amount		
1	Janani	Books	200		
2	Swetha	Clothing	450		
3	Shreya	Electronics	300		
4	Jitu	Books	700		

ID	Username	Category	Amount
1	Janani	Books	200
2	Swetha	Clothing	450
3	Shreya	Electronics	300
4	Jitu	Books	700

Which users spent >300?

How many of them bought Books?

Selecting a specific set of records from a dataset

ID	Username	Category	Amount		
1	Janani	Books	200		
2	Swetha	Clothing	450		
3	Shreya	Electronics	300		
4	Jitu	Books	700		

Selecting a specific set of records

If this were a database table

An SQL query

select * from
where <condition>

ID	Username	Category	Amount		
1	Janani	Books	200		
2	Swetha	Clothing	450		
3	Shreya	Electronics	300		
4	Jitu	Books	700		

In Hadoop/Distributed Computing setups

MapReduce

Filtering Data

Filter users who spent >300

ID	Username	Category	Amount
1	Janani	Books	200
2	Swetha	Clothing	450
3	Shreya	Electronics	300
4	Jitu	Books	700

Output should contain the filtered rows

	Username	Category	Amount						
	Janani	Books	200		Key		\	/alue	
2	Swetha	Clothing	450	\rightarrow	Null	2	Swetha	Clothing	
3	Shreya	Electronics	300			4		David	
4	Jitu	Books	700		Null	4	Jitu	Books	

Output should contain the filtered rows

ID	Username	Category	Amount						
1	Janani	Books	200		Key		\	/alue	
2	Swetha	Clothing	450	\rightarrow	Null	2	Swetha	Clothing	450
3	Shreya	Electronics	300		Nivill	4	lia	Daalsa	700
4	Jitu	Books	700		Null	4	Jitu	Books	700

The output of the Map is the final output!

ID	Username	Category	Amount						
1	Janani	Books	200		Key		\	/alue	
2	Swetha	Clothing	450	\rightarrow	Null	2	Swetha	Clothing	450
3	Shreya	Electronics	300		Nivill	4	lia	Daalsa	700
4	Jitu	Books	700		Null	4	Jitu	Books	700

The Reducer doesn't need to do anything!

Filtering Data

Filtering Data

Demo

Implement a basic filter

Consider internal search data for a website

Search	Keyword		
1	Restaurants		
2	Movies		
3	Restaurants		
4	Restaurants		
5	Movies		
6	Restaurants		

Search	Keyword		
1	Restaurants		
2	Movies		
3	Restaurants		
4	Restaurants		
5	Movies		
6	Restaurants		

What are the distinct search terms from all searches?

Unique values from the keyword column

Search	Keyword		?	
1	Restaurants		_	Keyword
2	Movies			rey word
3	Restaurants	→ (M)→	\rightarrow (R) \rightarrow	Restaurants
4	Restaurants			Movies
5	Movies			THOVICS
6	Restaurants	1		

This is similar to the summarization pattern

Search	Keyword		?		1
1	Restaurants		_	Keyword	Count
2	Movies			Regirera	Count
3	Restaurants	→ (M)→	→ (R)→	Restaurants	4
4	Restaurants			Movies	2
5	Movies			1,10,162	
6	Restaurants				J

We need the group levels from the summarization output

Search	Keyword		?		
1	Restaurants		_	Keyword	Count
2	Movies			regional	Sound
3	Restaurants	→ (M)→	\rightarrow (R) \rightarrow	Restaurants	4
4	Restaurants			Movies	2
5	Movies			1,104162	2
6	Restaurants				

And are not interested in the summary

Search	Keyword		?	
1	Restaurants			Keyword
2	Movies			rtey word
3	Restaurants	→(M)	\rightarrow (R) \rightarrow	Restaurants
4	Restaurants			Movies
5	Movies			1.104162
6	Postaurants	1	i	

Kestaurants	d
Doc+211525+5	n
Movies	5
Restaurants	4
Restaurants	3
Movies	2
Restaurants	1
Keyword	Search

1	Restaurants
1	Movies
1	Restaurants
1	Restaurants
1	Movies
1	Restaurants
Count	Keyword

Grouping Summary
Column
Column

summarization pattern

Search	Keyword
1	Restaurants
2	Movies
3	Restaurants
4	Restaurants
5	Movies
6	Restaurants

Keyword	Count
Restaurants	1
Movies	1
Restaurants	1
Restaurants	1
Movies	1
Restaurants	1

Grouping Summary Column

grouping column = column for which we want distinct values

Search	Keyword
1	Restaurants
2	Movies
3	Restaurants
4	Restaurants
5	Movies
6	Restaurants

Keyword	Count	7		
Restaurants	1	•	Keyword	Count
Movies	1			
Restaurants	1	\rightarrow (R) \rightarrow	Restaurants	4
Restaurants	1		Movies	2
Movies	1] '		
Restaurants	1	1		

The reduce step combines values with the same key

Keyword	Count	7		
Restaurants	1	•	Keyword	Count
Movies	1			
Restaurants	1	$ \rightarrow (R) \rightarrow $	Restaurants	4
Restaurants	1		Movies	2
Movies	1			_
Restaurants	1			
		Γ		

The combining logic depends on the summary metric chosen

Keyword	Count	7		
Restaurants	1	•	Keyword	Count
Movies	1			
Restaurants	1	$\rightarrow (R) \rightarrow $	Restaurants	4
Restaurants	1		Movies	2
Movies	1]		
Restaurants	1			

In this case actual summarization can be ignored!

Output only the keys

Demo

Filter distinct set of search terms from a given search data set

Filtering Data

Consider a dataset with users of a social network

User	Followers
1	30
2	30000
3	20
4	40
5	50
6	6000

User	Followers
1	30
2	30000
3	20
4	40
5	50
6	6000

Which users are the most influential?

Get the top N records

User Followers 1 30 2 30000 3 20 4 40 5 50 6 6000

Get the top N records

This is a sorting problem

User	Followers	
1	30	
2	30000	
3	20	
4	40	
5	50	
6	6000	

Get the top N records

If this were a database table

An SQL query order by

select * from
where <condition>
order by <column name>

User	Followers		
1	30		
2	30000		
3	20		
4	40		
5	50		
6	6000		

Sort in parallel with MapReduce

Top N

,					
User	Followers		}	?	
1	30			_	Top 3 Users
2	30000				
3	20	$] \longrightarrow (\bigvee) \longrightarrow$		\rightarrow	
4	40				6
5	50				5
6	6000				

User	Followers		
1	30		
2	30000		
3	20	\rightarrow	
4	40		
5	50		
6	6000		

Each mapper works on a subset of the data

User	Followers		
1	30		
2	30000		
3	20	\rightarrow	
4	40		
5	50		
6	6000		

And can pick the top N only for that subset!

User	Followers		
1	30		
2	30000		
3	20	\rightarrow	
4	40		
5	50		
6	6000		

A mapper on one node has no idea what data exists on other nodes in the cluster

User	Followers			
1	30		Key	Value
2	30000			
3	20	\rightarrow	А	
4	40		<i>,</i> ,	
5	50	l		
6	6000			

All mappers should output the same key

User	Followers		Key	Va	lue
'	30				
2	30000				70000
3	20	→ ((((((((((А	2	30000
4	40			6	6000
5	50				
6	6000				

Assume "A" is the common key output by every Mapper process

User	Followers				\	,	
1	30		Key		Key Value		lue
2	30000				0	70000	
3	20	→ (M)	А	Ш	2	30000	
4	40				6	6000	
5	50			Н			
6	6000						

The value is a list of records of users who have the most followers

Top N

Top N

Top

?

Top 3 Users

A map with Top
N users in this data split

6

5

The reducer will collect the top N records from each mapper into one list

Sort the collection and pick the overall top N records

Top N for the whole dataset

Top N

A Caution with Top N

Use a single reducer

A Caution with Top N

Multiple reducers will not result in a global sort

The output will be top N records within each reducer

A Caution with Top N

The use of multiple reducers requires custom partitioning logic

Total Order Partitioning

Not covered in this class

Demo

Find the most influential users, in a social network

Summary

Filter datasets based on a condition

Find a distinct set of values within a dataset

Find the top N records in input data