(a): Reeall

$$\nabla f = \langle f_x, f_y \rangle,$$

then $\nabla Z_y = \langle y^2 - 1, x^2 y + \rangle$

and thus

 $\nabla f(2,1) = \langle 0, + \rangle = \langle 4, 8 \rangle = \langle 3, 8 \rangle$

(c): We let
$$A \times = 1.9 - 2 = -0.1$$
, $A = 1.1 - 1.5 = 0.1$; then, $Z = 0.3 - 0.1 + 8 \cdot 0.1 + f(2)1) = 2.5$

(d):
$$\frac{\langle 2,1\rangle \cdot \langle 2-1,1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$
 Let's do this using the right vector.
 $\langle 3,8\rangle \cdot \frac{\langle -1,1\rangle}{\sqrt{2}} = \frac{5}{\sqrt{2}}$

Exambly Problem 2

Exam 2, Problem 3

(a): To find the critical points, see that $w = -6x - 4y + 16 \stackrel{!}{=} 0 \longrightarrow 6x + 4y = 16$ $w = -4x - 2y - 12 \stackrel{!}{=} 0 \longrightarrow 4x + 2y = -12$ $w = -4x - 2y - 12 \stackrel{!}{=} 0 \longrightarrow 4x + 2y = -12$ $w = -4x - 2y - 12 \stackrel{!}{=} 0 \longrightarrow 4x + 2y = -12$ w = -2x - 4y = 24 w = -2x - 4y =

(b) the critical point is not in the first and rant, so to find the marking -un wy must consider the boundary and the points infinitely fan away! x=0, $y\geq0$: $W=-y^2-12y \Rightarrow vertex at <math>(-6,36)$, thus max at (0,0) y=0, $x\geq0$: $W=-3x^2$ mM + $16x\Rightarrow$ Vertex at $\left(\frac{8}{3},\frac{64}{3}\right)$ Now for the points if finitely fan away!

If $y\geq0$ and $x\rightarrow0$, then we must only consider $W\leq-3x^2$ file x, which tends to $-\infty$ as $x\rightarrow0$ If we let $x\in X\times X \geq 0$, and $y\rightarrow\infty$ then we must consider $W\leq-3x^2$ file x, which tends to $-\infty$ as $x\rightarrow0$ If we let $x\in X\times X \geq 0$, and $y\rightarrow\infty$ then we must consider $y<-y^2+16C$, which again goes to $-\infty$ as $y\rightarrow\pm\infty$

(c): Given W=v5, Wv=\$5v4 andthen 2v wv = 10v5 Exam 2, Problem 5

(a): We wish to find the formulas of $\nabla f = \lambda \nabla g$ where f(x,y,z) = x and $g(x,y,z) = x^4 + y^4 + z^4 + xy + y + z + z = \delta$, $f_x = 1 = \lambda (4x^3 + y + z)$

fz= 0 = 2 (423 + x+y)

fy=0= > > (4y3 + x+Z)

(b): If me have that at P= Cxo, to, Za) sand 220 than

1=2 gx

0=2gy => 2±0 and then <9x, 9y, 9z>=<1/2, 0,07

0=29z

and in turn that tangent plane is x= xo.

[9]: 2x dx + 3x2 dy - 4z3 dz = 0 · (z+y) dx + x dy + (3z2 + x 1)= 0 (1)(2) (b): We see by (2) that 3xy= (3z2+x)02 + then at Cloth 89=-(3+1) 12 + (1+1) 0x = 14=-412 -21x and but that since $\frac{dy - 4z^3}{dy} \frac{dz - 2x dx}{dx} = \frac{dy(|z|)}{3} = \frac{4}{3} dz$ $\frac{1}{3} \frac{3x^2}{2} = \frac{1}{3} \frac{1}{$