ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Ордена Трудового Красного Знамени федеральное государственное бюджетное образовательное учреждение высшего образования **Московский технический университет связи и информатики**

Кафедра Теории вероятностей и прикладной математики

Демин Д.Б.

Учебно-методическое пособие по курсу

Дополнительные главы алгебры

Часть 2

для студентов 2 курса дневного обучения направления 01.03.04 «Прикладная математика»

Учебно-методическое пособие по курсу

Дополнительные главы алгебры

Часть 2

для направления 01.03.04 «Прикладная математика»

Составитель: Д.Б. Демин, к.ф.-м.н., доцент

Предлагаемое учебное пособие по курсу «Дополнительные главы алгебры» включает в себя специальные разделы алгебры, касающиеся теории групп, колец и полей. Этот курс изучается студентами направления 01.03.04 «Прикладная математика» на 2-м курсе в четвертом семестре и является логическим продолжением курса «Линейная алгебра и аналитическая геометрия», изучаемого на 1-м курсе в первом и втором семестрах. В пособии приведены: тематика лекционных и практических занятий, список рекомендуемой литературы, краткое изложение основ курса, список вопросов и задания для самостоятельного решения.

Издание утверждено на заседании кафедры ТВиПМ. Протокол № <u>8</u> от «17» апреля 2018 г.

Рецензент: А.Г. Кюркчан, д.ф.-м.н., профессор

ВВЕДЕНИЕ

Предлагаемое учебно-методическое пособие по курсу «Дополнительалгебры», часть 2 является продолжением учебноные главы методического пособия «Дополнительные главы алгебры», часть 1, вышедшего в 2017 г. Оно включает в себя специальные разделы алгебры такие как прямое произведение групп, кольца и поля, факторкольца и расширения полей. Это пособие необходимо для изучения дисциплины «Дополнительные главы алгебры» студентами направления 01.03.04 «Прикладная математика» на 2-м курсе в четвертом семестре. Эта дисциплина является логическим продолжением дисциплины «Линейная алгебра и аналитическая геометрия», изучаемой на 1-м курсе в первом и втором семестрах. Целью пособия является познакомить студентов с основными понятиями и методами высшей алгебры и привить им соответствующий математический язык. В пособии приведены: тематика лекционных и практических занятий, список рекомендуемой литературы, краткое изложение основ курса, список вопросов и задания для самостоятельного решения.

Содержание курса

- 1. Введение в абстрактную алгебру. Алгебраические операции, их свойства. Таблица Кэли. Алгебраические структуры. Отношения. Отношение эквивалентности. Виды отображений. Группоид, полугруппа, моноид.
- 2. Группы. Примеры групп. Подгруппы. Порядок элемента группы. Циклические группы. Симметрическая группа подстановок. Теорема Кэли. Характеристика группы.
- 3. Изоморфизмы групп. Гомоморфизмы групп. Теоремы о изоморфизме и гомоморфизме. Примеры. Ядро гомоморфизма.
- 4. Смежные классы. Примеры. Индекс подгруппы в группе. Теорема Лагранжа. Отношение сопряженности.
- 5. Нормальные делители. Факторгруппа. Прямое произведение (прямая сумма групп).
- 6. Кольца и алгебры. Примеры колец. Кольцо целых чисел. Кольцо многочленов. Кольца классов вычетов. Подкольцо. Обратимые элементы кольца, делители нуля.
- 7. Идеалы. Главные идеалы. Максимальные и простые идеалы. Идеалы в кольцах многочленов. Факторкольцо.
- 8. Деление с остатком в кольцах целых чисел и многочленов над кольцом целых чисел. Евклидовы кольца. Идеалы в евклидовых кольцах.

9. Поля. Примеры полей. Поле рациональных дробей. Конечные поля. Поле классов вычетов. Характеристика поля. Подполе. Конечные и алгебраические расширения полей.

Список литературы

Основная литература:

- 1. Курош А.Г. Курс высшей алгебры. СПб.: Лань, 2008.
- 2. Кострикин А.И. Введение в алгебру. Т.1, Т.3. М.: МЦНМО, 2012.
- 3. Сборник задач по алгебре. Под ред. А.И.Кострикина. М.: МЦНМО, 2012.
- 4. Сборник задач по математике для втузов. Ч. 1. Под ред. А.В. Ефимова и А.С. Поспелова. М.: Физматлит, 2014.

Дополнительная литература:

- 5. Ван дер Варден Б.Л. Алгебра. СПб.: Лань, 2004.
- 6. Куликов Л.Я., Москаленко А.И., Фомин А.А. Сборник задач по алгебре и теории чисел. М.: Просвещение, 1993.
- 7. Глухов М.М., Елизаров В.П., Нечаев А.А. Алгебра. СПб.: Лань, 2015.
- 8. Винберг Э.Б. Курс алгебры. М.: Изд-во «Факториал Пресс», 2001.
- 9. Демин Д.Б. Учебно-методическое пособие по курсу «Дополнительные главы алгебры», часть 1. Для студентов 2 курса направления 010304 «Прикладная математика». М.: МТУСИ, 2017.

ПРЯМОЕ ПРОИЗВЕДЕНИЕ ГРУПП

Группа G раскладывается в *прямое произведение* своих подгрупп G_1 , G_2, \ldots, G_k , если:

- 1) каждый элемент $g \in G$ единственным образом представляется в виде $g = g_1 g_2 ... g_k$, где $g_i \in G_i$;
- 2) $g_i g_j = g_j g_i$ для $\forall g_i \in G_i$, $g_j \in G_j$, $i \neq j$ (т.е. элементы g_i и g_j коммутируют).

Для прямого произведения групп используется обозначение:

$$G = G_1 \times G_2 \times ... \times G_k$$
.

В случае аддитивной группы G вместо прямого произведения говорят о *прямой сумме* и обозначают ее так: $G = G_1 \oplus G_2 \oplus ... \oplus G_k$. Если группа G конечна, то очевидно, что $|G| = |G_1| \cdot |G_2| \cdot ... |G_k|$.

Из условия 1) следует, что $G_i \cap G_j = \{e\}$ при $i \neq j$, а из условия 2) получаем правило умножения элементов группы $G = G_1 \times G_2 \times ... \times G_k$:

$$(g_1g_2...g_k)(g_1'g_2'...g_k') = (g_1g_1')(g_2g_2')...(g_kg_k'), g_i, g_i' \in G_i.$$

Из определения прямого произведения видно, что каждая из подгрупп G_i нормальна в G, поэтому условие 2) можно заменить требованием, чтобы группы G_i , i=1,...,k были нормальны в G.

Теорема. Группа G раскладывается в прямое произведение своих подгрупп G_1 и G_2 , если:

- 1) подгруппы G_1 и G_2 нормальны в G;
- 2) $G_1 \cap G_2 = \{e\}$;
- 3) $G = G_1G_2$, т.е. каждый элемент $g \in G$ представляется в виде $g = g_1g_2$, где $g_1 \in G_1$, $g_2 \in G_2$.

Примеры прямых произведений.

- 1) Пусть $G = \{e, a, b, c\}$ нециклическая группа 4-го порядка, тогда в ней $a^2 = b^2 = c^2 = e$, а произведение любых двух элементов из a, b, c равно третьему. Таким образом, группа G содержит три циклические подгруппы 2-го порядка и раскладывается в прямое произведение любых двух из этих подгрупп, например: $G = \{e, a\} \times \{e, b\}$.
- 2) Возможность и единственность представления комплексного числа z, отличного от нуля, в тригонометрической форме означает, что:

$$C^* = R^* \times T$$
, где $T = \{z \in C^* : |z| = 1\}.$

Именно: $z = |z| \cdot (\cos \varphi + i \sin \varphi) = |z| e^{i\varphi}$, $\varphi = \arg z$.

Если G раскладывается в прямое произведение своих подгрупп G_1, G_2 , т.е. $G = G_1 \times G_2$, то такое произведение принято называть внутренним прямым произведением. Дадим определение внешнего прямого произведения групп.

Прямым произведением групп $G_1, G_2, ..., G_k$ называется совокупность последовательностей $(g_1, g_2, ..., g_k)$, где $g_i \in G_i$ (i = 1, ..., k) с покомпонентной операцией умножения элементов:

$$(g_1,g_2,...,g_k)\cdot(g'_1,g'_2,...,g'_k)=(g_1g'_1,g_2g'_2,...,g_kg'_k).$$

Очевидно, таким образом, получается группа $G = G_1 \times G_2 \times ... \times G_k$.

В частном случае, при k=2, прямым произведением групп G_1 и G_2 называется множество $G_1 \times G_2$ всех упорядоченных пар (g_1,g_2) , где

 $g_1 \in G_1, \ g_2 \in G_2$, с бинарной операцией $(g_1,g_2)*(g_1',g_2')=(g_1\cdot g_1',\ g_2\circ g_2'),$ где $*,\cdot,\circ$ — бинарные операции на $G_1\times G_2$, G_1 и G_2 .

При аддитивной записи групп, естественно говорить о прямой сумме групп $G_1 \oplus G_2$.

В $G_1 \times G_2$ содержатся подгруппы $G_1 \times e_2$, $e_1 \times G_2$, изоморфные соответственно G_1 и G_2 (e_1 и e_2 — нейтральные элементы в группах G_1 и G_2). Отображение $\varphi\colon G_1 \times G_2 \to G_2 \times G_1$, заданное равенством $\varphi(g_1,g_2)=(g_2,g_1)$, устанавливает изоморфизм групп $G_1 \times G_2$ и $G_2 \times G_1$.

Отождествляя каждый элемент $g \in G_i$ с последовательностью $(e,...,g,...,e) \in G_1 \times ... \times G_i \times ... \times G_k$, получим вложение группы G_i в группу $G_1 \times ... \times G_i \times ... \times G_k$ в виде подгруппы. Т.е. группа $G_1 \times ... \times G_i \times ... \times G_k$ есть прямое произведение таких подгрупп (см. первое определение). Внешнее прямое произведение групп отождествляется с декартовым произведением.

Если некоторая группа G раскладывается в прямое произведение своих подгрупп $G_1, ..., G_k$, то отображение $\varphi \colon G_1 \times ... \times G_k \to G$ (когда $(g_1,...,g_k) \to g_1...g_k$) является изоморфизмом групп. Доказательство этого утверждения из определения о разложении группы G в прямое (внутренне) произведение своих нормальных подгрупп $G_1, ..., G_k$.

Так, отображение $\varphi:G_1\times G_2\to G$, где $G_1,G_2\lhd G$, $G_1\cap G_2=\{e\}$, определяется следующим образом: $\varphi((g_1,g_2))=g$, $\forall g=g_1g_2$. Тогда

 $\varphi((g_1,g_2)(g_1',g_2'))=\varphi((g_1g_1',g_2g_2'))=g_1g_1'g_2g_2'=\text{ (в силу нормальности }G_1\text{ и }G_2)=g_1g_2g_1'g_2'=\varphi((g_1g_2,g_1'g_2'))=\varphi((g_1,g_2))\varphi((g_1',g_2'))=gg'.$

Далее, если $\varphi((g_1,g_2)(g_1',g_2'))=e_1e_2$, то $g_1g_1'=e_1$, $g_2g_2'=e_2$, т.е. Кег $\varphi=e$. Отсюда эпиморфность φ очевидна. Значит φ удовлетворяет всем условиям изоморфизма.

Теорема. Пусть $G = G_1 \times G_2$ и $G_1' \triangleleft G_1$, $G_2' \triangleleft G_2$. Тогда $G_1' \times G_2' \triangleleft G$ и $G/(G_1' \times G_2') \cong (G_1/G_1') \times (G_2/G_2')$. В частности $G/G_1 \cong G_2$.

Пример 1. Рассмотрим группу автоморфизмов группы G, которую обозначают как AutG. Для $\forall g \in G$ отображение $\varphi(g) \colon x \to gxg^{-1}$, $x \in G$ является автоморфизмом:

$$\varphi(g)(xy) = gxyg^{-1} = (gxg^{-1})(gyg^{-1}) = (\varphi(g)x)(\varphi(g)y).$$

Такой автоморфизм называется внутренним автоморфизмом, определяемым элементом g.

Отображение $f:g \to \varphi(g)$ является гомоморфизмом группы G в группу $AutG: \varphi(gh)x = ghx(gh)^{-1} = g(hxh^{-1})g^{-1} = \varphi(g)\varphi(h)x$. Его ядро $\operatorname{Ker} f$ есть центр $Z(G)\colon Z(G) = \{z \in G : zg = gz, \, \forall g \in G\}$. Его образ $\operatorname{Im} f$ есть подгруппа группы $\operatorname{Aut} G$, называемая группой внутренних автоморфизмов группы G и обозначаемая через $\operatorname{Int} G$. По теореме о гомоморфизме $\operatorname{Int} G \cong G/Z(G)$.

Пример 2. Покажем, что при $n \ge 3$ центр группы подстановок S_n тривиален, т.е. $Z(S_n) = \{e\}$ и следовательно $Int \, S_n \cong S_n$. Найдем сначала группу $Aut \, S_3$. Так как при любом изоморфизме групп порядки элементов сохраняются, то всякий автоморфизм φ группы S_n переводит транспозиции в транспозиции. Но любая группа S_n порождается транспозициями, поэтому автоморфизм φ определяется тем, как он переставляет транспозиции. Следовательно $|Aut \, S_3| \le |S_3| = 3! = 6$. Но группа $Int \, S_3 \cong S_3$, поэтому $|Int \, S_3| = |S_3| = 6$ и $Int \, S_3 \subseteq Aut \, S_3$. Тогда $Aut \, S_3 = Int \, S_3$.

Прямая сумма абелевых групп

Определение 1. Аддитивная абелева группа A разлагается в прямую сумму своих подгрупп A_1 , ..., A_k , если каждый элемент $a \in A$ единственным образом представляется в виде $a = a_1 + ... + a_k$. $a_i \in A_i$ $(i = \overline{1,k})$. Такую прямую сумму обозначают так: $A = A_1 \oplus ... \oplus A_k$.

В случае двух подгрупп A_1 , A_2 единственность представления $a\in A$ в виде $a=a_1+a_2$ ($a_1\in A_1,a_2\in A_2$) равносильна тому, что $A_1\cap A_2=0$.

Определение 2. Прямой суммой (аддитивных) абелевых групп A_1 , ..., A_k называется абелева группа $A_1 \oplus ... \oplus A_k$, составленная из всех последовательностей вида $(a_1,...,a_k)$, $a_i \in A_i$ с покомпонентной операцией сложения.

Прямая сумма в смысле определения 1 называется внутренней, а прямая сумма в смысле определения 2 – внешней.

Например,
$$\underline{Z \oplus ... \oplus Z} = Z^n$$
.

Отметим, что если группы A_1 , ..., A_k конечны, то $|A_1 \oplus ... \oplus A_k| = |A_1| \cdot ... |A_k|$.

Пример. Бесконечная циклическая абелева группа Z не может быть разложена в прямую сумму своих двух ненулевых подгрупп, так как ее собственными подгруппами являются группы nZ, $n \in N$, а их прямая сумма также будет подгруппой вида nZ (также: $mn \in mZ \cap nZ$, где $mn \neq 0$).

Теорема. Если число $n=k\cdot l$, где числа k и l взаимно простые, т.е. (k,l)=1, то $Z_n\cong Z_k\oplus Z_l$.

Для доказательства теоремы достаточно указать в группе $Z_k \oplus Z_l$ элемент порядка kl. Таким элементом, например, будет являться $(\overline{1}_k,\overline{1}_l)$. Действительно, пусть $Z_n = \langle a \rangle$. Из теории чисел известно, что если (k,l)=1, то найдутся такие числа u и v из Z_n , что ku+lv=1. Тогда a=uka+vla=ub+vc. Число ka имеет порядок l, так как lka=na=0. Аналогично, la имеет порядок k. Таким образом, любой элемент из $\langle a \rangle$ можно представить как сумму элементов из циклических подгрупп $\langle b \rangle$ и $\langle c \rangle$ порядков l и k.

Следствие. Если $n=p_1^{k_1}\cdot\ldots\cdot p_s^{k_s}$ (где p_i – простые числа, k_i - положительные целые числа), то $Z_n\cong Z_{p_i^{k_1}}\oplus\ldots\oplus Z_{p_s^{k_s}}$.

Группа G называется неразложимой группой, если ее нельзя разложить в прямую сумму двух или нескольких групп.

Конечная группа, порядок которой есть степень простого числа p, называется p или p -группой.

Таким образом, всякая конечная циклическая группа раскладывается в прямую сумму примарных циклических групп.

Теорема. Всякая примарная циклическая группа неразложима.

Итак, всякая прямая сумма $A_1 \oplus ... \oplus A_k$ циклических групп A_1 , ..., A_k взаимно простых порядков n_1 , ..., n_k является циклической группой порядка $n=n_1\cdot ...\cdot n_k$. В общем случае, если $HOK(n_1,...,n_k)\neq n_1\cdot ...\cdot n_k$, то абелева группа $A=A_1\oplus ...\oplus A_k$ не является циклической (так как в A нет элемента порядка $n=n_1\cdot ...\cdot n_k$).

Теорема. Всякая конечно порожденная абелева группа A разлагается в прямую сумму примарных и бесконечных циклических подгрупп, причем набор порядков этих подгрупп определен однозначно.

Если любой элемент $a \in A$ представить в виде линейной комбинации $a = a_1u_1 + ... + a_ku_k$. $a_i \in Z$, $u_i \in A$, то говорят, что группа A порождается совокупностью элементов $\{u_1,...,u_k\}$. Эта система называется порождаю-

щей системой. Тогда: $A\cong Z_{u_1}\oplus\ldots\oplus Z_{u_m}\oplus \underbrace{Z\oplus\ldots\oplus Z}_{k-m}$, где u_1,\ldots,u_m — натуральные числа $(m\leq k)$ и $u_i|u_{i+1}$, $i=1,\ldots,m-1$.

Замечание. если группа A конечна, то в ее разложении не может быть бесконечных слагаемых, т.е. она раскладывается в прямую сумму своих примарных циклических подгрупп (см. теорему выше).

- **Примеры.** 1. Так аддитивные группы Z и Q неразложимы, так как для любых двух ненулевых элементов в них существует ненулевое общее кратное, т.е. любые две ненулевые циклические подгруппы в этих группах обладают ненулевым пересечением.
- **2.** Мультипликативная группа R^* раскладывается в прямое произведение мультипликативной группы R_+^* и мультипликативной группы $C_2 = \{1, -1\}$. Действительно, в пересечении групп R_+^* и C_2 содержится только 1, так как это есть единичный элемент и в R_+^* . С другой стороны, всякое положительное действительное число есть произведения его самого на 1, а всякое отрицательное есть произведение его модуля на -1.
- **3.** Найти прообразы элементов $\overline{l}_3 \in Z_3$ и $\overline{l}_5 \in Z_5$ при изоморфизме $Z_{15} \cong Z_3 \oplus Z_5$, переводящем \overline{l}_{15} в $(\overline{l}_3, \overline{l}_5)$. $Z_3 = \{0,1,2\}$, $Z_5 = \{0,1,2,3,4\}$. Найдем $a,b \in Z_{15}$ такие, что $a \equiv 1 \pmod{3}$, $b \equiv 1 \pmod{5}$ и $a+b \equiv 1 \pmod{5}$. Такими числами будут a=10 и b=6. Рассмотрим подгруппы $5Z_3 = \{0,5,10\} = \left\langle 5 \right\rangle_3$, $3Z_5 = \{0,3,6,9,12\} = \left\langle 3 \right\rangle_5$. Так как $\overline{l}_{15} = \overline{l0}_{15} + \overline{6}_{15} = 16 = 1$, где $\overline{l0}_{15} \in 5Z_3$, $\overline{6}_{15} \in 3Z_5$, т.е. 1 = 5u + 3v, где u = -1, v = 2. Тогда $5u = -5 \equiv 10 \pmod{5}$ есть прообраз $\overline{l}_3 \in Z_3$, а 3v = 6 прообраз $\overline{l}_5 \in Z_5$. Из этого решения следует, что $Z_{15} = 5Z_{15} + 3Z_{15}$.
- **4.** Пусть $G=Z_{15}\oplus Z_{18}$. Так как $Z_{15}=5Z_{15}+3Z_{15}$, а $Z_{18}=9Z_{12}+2Z_{18}$, и $Z_{15}\cong Z_3\oplus Z_5$, а $Z_{18}\cong Z_2\oplus Z_9$, тогда $G\cong Z_2\oplus Z_3\oplus Z_5\oplus Z_9$.

Перечисление конечных абелевых групп

Совокупность всех абелевых групп разбивается отношением изоморфизма на непересекающиеся классы изоморфных групп. Для каждого $n \in N$ существует конечное число T(n) различных классов абелевых групп порядка n.

Теорема. Если $n = q_1^{m_1} \cdot ... \cdot q_r^{m_r}$ (где q_i – простые числа), то число T(n)

различных классов абелевых групп порядка n равно числу различных наборов $(q_1^{k_{11}},\dots,q_1^{k_{lt_1}},\dots,q_r^{k_{rt_r}})$ таких, что $m_i=k_{i1}+\dots+k_{it_i}$, $k_{i1}\geq \dots \geq k_{it_i}>0$, $i=\overline{1,r}$. Представление натурального числа m в виде суммы набора невозрастающих натуральных чисел назовем разбиением числа m и обозначим через R(m) число таких разбиений числа m. Тогда

$$T(n) = T(q_1^{m_1}) \cdot ... \cdot T(q_r^{m_r}) = R(m_1) \cdot ... \cdot R(m_r).$$

Пример. Пусть $n=36=3^2\cdot 2^2$. Тогда $T(n)=T(3^2)\cdot T(2^2)=R(2)\cdot R(2)$. Так как 2=2 и 2=1+1, то R(2)=2. Отсюда $T(36)=2\cdot 2=4$. т.е. число классов изоморфных абелевых групп порядка 36 равно 4. Вот эти группы:

$$G_1 = Z_9 \oplus Z_4 \cong Z_{36}, \ G_2 = Z_3 \oplus Z_3 \oplus Z_4, \ G_3 = Z_9 \oplus Z_2 \oplus Z_2,$$

 $G_4 = Z_3 \oplus Z_3 \oplus Z_2 \oplus Z_2.$

Среди абелевых групп порядка p^n , $n \in N$ (p — простое число) всегда содержится циклическая группа порядка p^n и группа экспоненты, т.е. группа типа $(\underbrace{p,...,p}_n)$, называемая элементарной p -группой.

Задания для самостоятельного решения

- 1. Разлагаются ли в прямое произведение неединичных подгрупп группы:
 - a) S_3 ; 6) A_4 ; B) S_4 .
- 2. Разложить в прямую сумму группы:
 - a) Z_8 ; б) Z_{24} ; в) Z_{60} .
- 3. Покажите, что порядок элемента $a = (a_1,...,a_n)$ группы $A_1 \times ... \times A_n$ равен НОК чисел $ord(a_i)$ $(i = \overline{1,n})$, т.е. $ord(a) = HOK(ord(a_1),...,ord(a_n))$.
- 4. Найти порядки каждого из элементов группы $Z_2 \oplus Z_2$.
- 5. Найти количество элементов порядка 10 в группе $Z_4 \oplus Z_4 \oplus Z_{25}$.
- 6. Найти число классов изоморфных абелевых групп порядка 54.
- 7. Изоморфны ли группы $Z_6 \oplus Z_{36}$ и $Z_{12} \oplus Z_{18}$?
- 8. Доказать, что
 - а) группа S_n порождается транспозицией (1 2) и циклом (1 2 3 ... n);
 - б) группа A_n порождается тройными циклами.

КОЛЬЦА

Кольцо в отличие от группы – это алгебраическая структура с двумя бинарными операциями, называемыми обычно сложением и умножением.

Аксиомы кольца подсказаны свойствами операций над вещественными числами.

Кольцом называется непустое множество K, на котором заданы две (бинарные алгебраические) операции "+" (сложение) "·" (умножение), удовлетворяющие следующим свойствам (аксиомы кольца):

- 1) относительно сложения K это абелева группа, называемая аддитивной группой кольца K:(K,+);
- 2) (K, \cdot) полугруппа;
- 3) операции сложения и умножения связаны дистрибутивными законами a(b+c) = ab + ac, (a+b)c = ac + bc, для $\forall a,b,c \in K$.

Замечание: в некоторых случаях рассматривают кольца, в которых операция ассоциативности относительно умножения не выполняется, т.е. (K, \cdot) не полугруппа, а только группоид. Такие кольца называют не ассоциативными. Мы будем в дальнейшем рассматривать только ассоциативные кольца.

Итак, алгебраическая структура $(K, +, \cdot)$ – кольцо. Если (K, \cdot) – моноид, то $(K, +, \cdot)$ называется кольцом с единицей.

Следствия из аксиом кольца:

- 1. $a \cdot 0 = 0 \cdot a = 0$, $\forall a \in K$ (0 это нейтральный (нулевой) элемент в абелевой группе (K, +);
- 2. $a \cdot (-b) = (-a)b = -ab$, $\forall a, b \in K$;
- 3. $a \cdot (b-c) = ab-ac$, (a-b)c = ac-bc, $\forall a,b,c \in K$.

Кольцо K называется *коммутативным*, если операция умножения в нем коммутативна, т.е. $a \cdot b = b \cdot a$, $\forall a, b \in K$.

Единицей кольца K называется элемент, обозначаемый 1 или e, для которого $a \cdot 1 = 1 \cdot a = a$, $\forall a \in K$. Как и в группах, в кольце не может быть двух различных единиц, но может не быть ни одной.

Замечание. Если 1=0, то $\forall a \in K$: $a=a \cdot 1=a \cdot 0=0$, т.е. кольцо K состоит из одного нуля. Поэтому, если кольцо содержит больше одного элемента, то $1 \neq 0$.

Примеры колец.

- 1. Числовые множества Z, Q, R это коммутативные кольца с единицей относительно обычных операций сложения и умножения. Множество $m\mathbf{Z}$ целых чисел, кратных m, будет в \mathbf{Z} подкольцом (без единицы при (m>1). Очевидны включения: $\mathbf{Z} \subset Q \subset R$.
- 2. Множество квадратных матриц $M_n(\mathbf{R})$ порядка n с операциями сложения и умножения матриц это кольцо с единицей, где 1=E.

- Оно называется полным матричным кольцом над R. Это кольцо некоммутативно. Можно рассматривать и кольцо квадратных матриц $M_n(K)$ порядка n над произвольным коммутативным кольцом K.
- 3. Множество функций f(x) ($x \in X, f(x) \in K$), определенных на заданном подмножестве числовой прямой, является коммутативным кольцом с единицей относительно обычных операций сложения и умножения функций
- 4. Множество \mathbb{R}^2 упорядоченных пар действительных чисел (a,b), $a,b \in \mathbb{R}$ является коммутативным кольцом с единицей: (a,b)+(c,d)==(a+c,b+d), (a,b) (c,d)=(ac,bd), нулевой элемент (0,0), единичный элемент (1,1), а противоположным элементом для (a,b) будет (-a,-b).
- 5. Множество многочленов f(x) произвольной степени с элементами из некоторого кольца K образует кольцо многочленов, которое принято обозначать как K[x]: $f(x) = \sum_{i=0}^{n} a_i x^i$, $a_i \in K$, $n = \deg f \ge 0$.
- 6. Множество векторов в трехмерном геометрическом пространстве с обычной операцией сложения векторов и векторным умножением $a \times b$ является некоммутативным не ассоциативным кольцом. Однако в нем выполняются следующие тождества: $a \times a = \theta$, $a \times b + b \times a = \theta$, $(a \times b) \times c + (b \times c) \times a + (c \times a) \times b = \theta$ (тождество Якоби), где θ нулевой вектор.
- 7. Пусть M произвольное множество, а 2^M множество всех его подмножеств. Можно показать, что 2^M ассоциативное коммутативное кольцо относительно операций симметрической разности $M\Delta N = (M \setminus N) \bigcup (N \setminus M)$ и пересечения $M \cap N$, взятых в качестве сложения и умножения соответственно.
- 8. Группа $Z_m = \{0,1,2,...,m-1\}$, $m \in N, m > 1$ образует коммутативное кольцо с единицей, которое принято называть кольцом (классов) вычетов. Операции сложения и умножения выполняются по модулю m: $\bar{k}_m \oplus \bar{l}_m = \bar{k} + l_m$, т.е. $k + l \equiv \bar{k} + l \pmod{m}$, аналогично $\bar{k}_m \otimes \bar{l}_m = \bar{k} \cdot l_m$ ($k, l \in Z_m$). Здесь элементы \bar{k} являются классами вычетов и их можно представить так: $\bar{k}_m = \bar{k} = \{k\}_m = \{k + mZ\}$, причем \bar{k} пробегает целые значения от 0 до m-1.

Элемент a кольца K называется обратимым, если для него существует такой элемент $b \in K$, что $a \cdot b = b \cdot a = e (e - единица (1) кольца <math>K$). Элемент b, обратный к a принято обозначать как a^{-1} : $aa^{-1} = a^{-1}a = 1$.

Множество K^* всех обратимых элементов кольца K образует группу по умножению. Например, в кольце целых чисел Z группой по умножению будет множество $Z^* = \{1, -1\}$, которое изоморфно группе корней из единицы C_2 . Другой пример: в кольце многочленов K[x] группа $(K[x])^* = K^*$, так как $f(x)g(x) = 1 \Leftrightarrow \deg f + \deg g = 0$, т.е. $\deg f = \deg g = 0$, а это означает, что обратимыми будут только элементы из K.

Подкольца

Подмножество L кольца K называется *подкольцом*, если L является кольцом относительно операций сложения и умножения, заданных в K.

Теорема (признак подкольца). Подмножество L кольца K является подкольцом тогда и только тогда, когда: 1. $\forall a,b \in L$: $a+b \in L$, $ab \in L$; 2. $\forall a \in L$: $-a \in L$.

Нулем подкольца L является нуль кольца K. Отметим, что не всегда единица подкольца совпадает с единицей кольца. Например, в кольце матриц второго порядка с рациональными элементами рассмотрим подкольцо

$$B = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix}, \ a \in Q \right\}$$
. Нетрудно заметить, что единицей в этом подкольце

является матрица $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$, тогда как единицей всего кольца является единичная матрица E .

Подкольцо коммутативного кольца является коммутативным кольцом. Само кольцо и нулевое подкольцо называются *тривиальными* (*несобственными*) подкольцами, остальные подкольца — *нетривиальными* (*собственными*) подкольцами. Если порядок кольца не превышает 2, то у него нет собственных подколец. Если кольцо L является подкольцом кольца K, то очевидно, что множество (L,+) является подгруппой группы (K,+). Отсюда следует, что порядок любого подкольца конечного кольца есть делитель порядка кольца. Если (K,+) является циклической группой простого порядка, то такое кольцо не имеет собственных подколец.

Например, в кольце целых чисел Z подмножества mZ (m = 0,1,2,3,...) образуют полный список подколец кольца Z .

Элементы кольца называются *перестановочными*, если ab = ba. Очевидно, что кольцо K коммутативно, когда любые его два элемента перестановочны. Обозначим через Z(K) подмножество элементов кольца K, перестановочных с любым его элементом, т.е. $Z(K) = \{a \in K : xa = ax, \forall x \in K\}$. Ясно, что $\{0\} \subseteq Z(K) \subseteq K$. Множество Z(K) называется *центром* кольца K и является его подкольцом. Кольцо, у которого $Z(K) = \{0\}$ называется кольцом без центра.

Целостные, факториальные и евклидовы кольца

Если $a \neq 0$, $b \neq 0$, а ab = 0, то элементы a и b кольца K называют ∂e лителями нуля.

Коммутативное кольцо с единицей $1 \neq 0$ и без делителей нуля называется *целостным кольцом* или *областью целостности*.

Например, множество целых чисел Z является областью целостности, также и множество $Z[i] = \{x+iy,x,y\in Z\}$ всех целых гауссовых чисел является целостным, а вот множество матриц порядка n с вещественными элементами является некоммутативным кольцом с единицей и с делителями нуля при $n \ge 2$. Также кольцо Z_4 является кольцом с делителями нуля, так как в нем $\overline{2} \cdot \overline{2} = \overline{0}$.

В целостных кольцах для $\forall a,b \in K : ab = 0$, если a = 0 или b = 0. Это аналогично свойству сокращения: ac = bc и $c \neq 0$, тогда a = b.

Отметим, что обратимые элементы кольца не могут быть делителями нуля. Именно, пусть $a \neq 0$: если ab = 0, тогда $a^{-1}(ab) = 0$, а отсюда $(a^{-1}a)b = b = 0$. Аналогично, если ba = 0, то b = 0.

Элементы a,b области целостности K называются accoциированны<math>mu, если существует $\varepsilon \in K^*$ такой, что $a = \varepsilon \cdot b$ (пишут $a \sim b$). Например, в кольце Z множество $Z^* = \{1,-1\}$, поэтому числа a и -a ассоциированны.

Пусть K — целостное кольцо. Если для $\forall a,b \in K,b \neq 0$ существует элемент $q \in K$ такой, что a = qb, то говорят, что a делится на b и пишут a : b (b делит a обозначают как $b \mid a$). Если a : b, то существует единственный элемент $q \in K$ такой, что a = qb, который принято называть частным.

Отношение делимости обладает многими свойствами, важными из которых являются следующие: **1.** если $a \neq 0$, то a:a; **2.** если a:b и b:c, то a:c; **3.** если a:b, то $a:\varepsilon b$, $\varepsilon \in K^*$; **4.** любой элемент из K делится на любой элемент из K^* ; **5.** если a:b и b:a, то $a=\varepsilon \cdot b$, где $\varepsilon \in K^*$.

Ненулевой необратимый элемент a кольца называется npocmыm, если он имеет лишь тривиальные делители, в противном случае элемент a называется составным. Tpuвиальными делителями a являются элементы ε и $\varepsilon \cdot a$. где $\varepsilon \in K^*$. В кольце многочленов K[x] простой элемент называется неприводимым многочленом.

Таким образом, область целостности разбивается на 4 класса: нулевой элемент, обратимые элементы, простые элементы, составные элементы. Простые и составные элементы кольца принято называть *регулярными*.

Если p — простой элемент из области целостности K , то элемент $\varepsilon \cdot p$ также является простым, где $\varepsilon \in K^*$.

Представление элемента $a \in K$ в виде произведения простых элементов: $a = p_1 p_2 ... p_n \ (n \ge 1)$, называется факторизацией элемента a.

Целостное кольцо K называется кольцом c факторизацией, если любой ее регулярный элемент допускает факторизацию.

Критерий кольца с факторизацией. Целостное кольцо K является кольцом с факторизацией, если на множестве его регулярных элементов a можно определить функцию $\theta(a)$ со значениями из N, обладающую свойством: $\theta(ab) > \theta(a)$.

Например, в кольце целых чисел Z функцию θ определяют следующим образом: $\theta(a) = |a|$, Тогда для $\forall a,b \in Z$, не равных 0 и ± 1 , $\theta(ab) = |ab| = |a| \cdot |b| > |a| = \theta(a)$.

В кольце многочленов K[x] положим $\theta(f(x)) = \deg f$, тогда, если $\deg f \ge 1$ и $\deg g \ge 1$, то $\theta(f(x)g(x)) = \deg f + \deg g > \deg f = \theta(f(x))$.

Если в кольце с факторизацией любой регулярный элемент обладает однозначной факторизацией, то оно называется факториальным кольцом.

Например, кольца Z, Q, R, Z[x], Q[x], R[x] являются факториальными кольцами. Гауссово кольцо Z[i] также факториально, хотя в нем число 5 имеет два разложения, именно: 5 = (1-2i)(1+2i) = (-2-i)(-2+i). Но, так как $Z[i]^* = \{\pm 1, \pm i\}$, а 1-2i = i(-2-i), 1+2i = -i(-2+i), поэтому обе факторизации числа 5 эквивалентны.

Теорема. Если в кольце с факторизацией K любой простой элемент, делящий произведение двух регулярных элементов, делит один из сомножителей, то это кольцо является факториальным.

Область целостности K называется eвклидовым кольцом, если на множестве $K \setminus \{0\}$ определена функция e со значениями из множества $N \setminus \{0\}$ такая, что: **1.** если a:b, то $e(a) \ge e(b)$; **2.** для $\forall a, b \ne 0$ существуют

q,r такие, что a = bq + r, где либо r = 0, либо e(r) < e(b). Функцию e принято называть евклидовой нормой.

Например, кольцо целых чисел Z является евклидовым. Достаточно положить e(a) = |a|, $\forall a \in Z$. Докажите, что и кольцо Z[i] является евклидовым, если в качестве e(a+bi) взять число a^2+b^2 .

Кольцо многочленов K[x], где K — поле, также является евклидовым. В нем евклидова норма $e(f(x)) = \deg f$.

Теорема. Евклидово кольцо факториально.

Гомоморфизм и изоморфизм колец

Пусть $(K, +, \cdot)$ и (K', \oplus, \otimes) – кольца. Отображение $f: K \to K'$ называется *гомоморфизмом*, если оно сохраняет все операции, т.е. если

$$f(a+b) = f(a) \oplus f(b), f(a \cdot b) = f(a) \otimes f(b).$$

Образ $\operatorname{Im} f$ гомоморфизма f является подкольцом кольца K', а ядро $\operatorname{Ker} f$ — подкольцом кольца K . При этом $\operatorname{Ker} f = \{a \in K : f(a) = 0'\}$ (0' — нуль в кольце K').

Гомоморфизм $f: K \to K'$ называется: мономорфизмом, если $\operatorname{Ker} f = 0$; эпиморфизмом, если $\operatorname{Im} f = K'$; изоморфизмом, если отображение $f: K \to K'$ мономорфно и эпиморфно (т.е. биективно). Изоморфизм колец K и K' обозначается так: $K \cong K'$.

Пример. отображение $f:Z\to Z_m,\ f(a)=\overline{a}$, $\overline{a}\in Z_m$ является эпиморфизмом с ядром $\mathrm{Ker} f=mZ$.

Нулю и противоположному элементу (-a) элемента a кольца K при гомоморфизме $f: K \to K'$ соответствуют нуль и противоположный элемент из кольца K'. Если K — кольцо с единицей, то при гомоморфизме $f: K \to K'$ единице из K соответствует единица из K'.

Изоморфные кольца тождественны по своим алгебраическим свойствам и математический интерес представляют собой только те свойства колец, которые сохраняются при изоморфизме.

Если кольцо K коммутативно, то при гомоморфизме $f: K \to K'$ кольцо K' также будет коммутативным. Если K — целостное кольцо, то кольцо K' не обязано быть целостным. При этом K' может быть целостным кольцом, даже когда K — не целостное кольцо.

Изоморфный образ целостного кольца есть целостное кольцо.

ПОЛЕ

Если в определении кольца аксиому 2 заменить на более сильное условие: множество $K \setminus \{0\}$ является мультипликативной группой, то получим класс колец с делением, которые принято называть *телом*.

Таким образом, *тело* – это кольцо без делителей нуля и каждый ненулевой элемент в нем обратим.

Поле P — это коммутативное кольцо с единицей $1 \neq 0$, в котором каждый ненулевой элемент обратим. Группа P^* называется мультипликативной группой поля, причем $P^* = P \setminus \{0\}$.

Кольцо, состоящее из одного нуля, не считается полем, поэтому поле минимально может состоять из двух элементов: нулевого и единичного.

Примерами полей являются множества Z,Q,R, а также Z_p (p – простое число). В дальнейшем будут показаны другие примеры полей.

В любом поле P: ab=0, если a=0 или b=0 (как и в целостном кольце). Поле представляет собой гибрид двух абелевых групп — аддитивной и мультипликативной, связанных законом дистрибутивности.

Произведение ab^{-1} в поле P принято записывать в виде дроби: a/b. Дробь a/b, имеющая смысл при $b \neq 0$, есть решение уравнения bx = a.

Действия с дробями, подчиняются следующим правилам:

1.
$$a/b = c/d \Leftrightarrow ad = bc, b, d \neq 0$$
;

2.
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
, $\frac{a}{b} \frac{c}{d} = \frac{ac}{bd}$, $b, d \neq 0$;

3.
$$-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}, b \neq 0; \left(\frac{a}{b}\right)^{-1} = \frac{b}{a}, a, b \neq 0.$$

Итак, частные a/b составляют некоторое поле, которое принято называть полем частных. Например, поле рациональных чисел Q есть поле частных кольца целых чисел Z.

Подмножество F поля P называется подполем, если 1) F является подкольцом кольца P; 2. $\forall a \in F, a \neq 0 \ \exists a^{-1} \in F$; 3. $1 \in F$. Всякое подполе F является полем относительно тех же операций, что и в самом поле P.

Поле P называется простым, если в нем нет других подполей, кроме самого поля P . Простыми полями являются множества Q и Z_p .

Теорема. В каждом поле P содержится одно и только одно простое поле P_0 . Это простое поле либо изоморфно Q, либо Z_n (p – простое).

В случае $F \subset P$ говорят также, что поле P является расширением своего подполя F .

Если взять в поле P пересечение F_1 всех его подполей, содержащих подполе F и некоторый элемент $a \in P$ и $a \notin F$, то F_1 будет минимальным подполем, содержащим множество $\{F,a\}$. В этом случае говорят, что расширение F_1 поля F получено присоединением к F элемента a и обозначают это так: $F_1 = F(a)$. Аналогично, можно говорить о подполе $F_1 = F(a_1,...,a_n)$ поля P, полученном присоединением к подполю F n элементов $a_1,...,a_n \in P$. Например, R(i) = C.

Пример. Множество $Q(\sqrt{2})$ чисел вида $a+b\sqrt{2}$, $a,b\in Q$ является полем. Здесь $(\sqrt{2})^2=2\in Q$ и $(a+b\sqrt{2})^{-1}=(a-b\sqrt{2})/(a+b\sqrt{2})(a-b\sqrt{2})=$ $=(a-b\sqrt{2})/(a^2-2b^2)=a/(a^2-2b^2)-b\sqrt{2}/(a^2-2b^2)\in Q(\sqrt{2})$.

Вообще, если целое число k отлично от 1 и не делится на квадрат простого числа, то $Q(\sqrt{k})$ является полем (при k<0, считать $\sqrt{k}=i\sqrt{|k|}$. При k=-1 получим $Q(\sqrt{-1})=Q(i)=\{a+bi,a,b\in Q\}$. Тогда $Z[i]\subset Q(i)$.

Рассмотрим кольца Z и Z_p (p — простое число). Очевидно, что $Z_p^* = \{1,2,...,p-1\}$ и $ord(Z_p^*) = p-1$. Тогда $\forall a \in Z \colon a^{p-1} \equiv 1 \pmod{p}$. Это утверждение называют *малой теоремой Ферма*. Справедливо и более общее утверждение.

Теорема Эйлера. $a^{\varphi(m)} \equiv 1 \pmod{m}$, где (a,m) = 1, а $\varphi(m)$ -функция Эйлера, которая равна числу всех взаимно простых чисел из множества 1, 2, ..., m-1 с числом m. Фактически, $\varphi(m)$ есть порядок группы Z_m^* . Если m=p, то $\varphi(p)=p-1$, а если $m=p_1^{k_1}...p_s^{k_s}$ (где p_i – простые числа), то $\varphi(m) = \left(p_1^{k_1} - p_1^{k_1-1}\right).\left(p_s^{k_s} - p_s^{k_s-1}\right)$.

Определим понятие характеристики поля. Характеристика поля P — это минимальное число p в равенстве $\underbrace{1+1+...+1}_{p}=0$ (1 — единица поля).

Если это равенство невозможно, то поле называют полем характеристики нуль, т.е. его простое подполе изоморфно Q. Поле P является полем простой (конечной) характеристики p, если его простое подполе P_0 изоморфно Z_p . Соответственно пишут: $\operatorname{char} P = p > 0$.

Обычно поле Z_p обозначают как F_p или GF(p) (поле Галуа). Отметим, что GF(q) — это конечное поле, состоящее из q элементов, где $q=p^n$ (p — простое число). Способы получения таких полей будут показаны в следующем разделе.

ИДЕАЛЫ КОЛЕЦ И ФАКТОРКОЛЬЦА

Обобщая конструкцию кольца вычетов Z_n , можно рассматривать отношения эквивалентности, согласованные с операциями, в произвольных кольцах. Так как кольцо состоит в основном из аддитивной группы, то такое отношение должно быть отношением сравнимости по модулю некоторой подгруппы. Выясним, какой должна быть эта подгруппа для того, чтобы отношение эквивалентности было согласовано с умножением.

Отношение сравнимости по модулю I (K – кольцо, $I \subset K$ – аддитивная подгруппа) согласовано с умножением тогда и только тогда, когда для $\forall x \in I$, $\forall a \in K$ имеют место включения $ax \in I$ и $xa \in I$. Аддитивная подгруппа I, удовлетворяющая этим условиям, называется (двусторонним) идеалом кольца K. То, что I – идеал K, обозначается так: $I \triangleleft K$. Соответственно, если подгруппа I удовлетворяет первому (второму) из этих условий, то она называется левым (правым) идеалом. В коммутативных кольцах нет разницы между левыми, правыми и двусторонними идеалами.

Понятие идеала кольца является аналогом понятия нормальной подгруппы в теории групп.

В любом ненулевом кольце K есть, по крайней мере, два идеала — нулевой и само кольцо K. Такие идеалы называют несобственными. Остальные идеалы называют собственными (нетривиальными) идеалами.

Отметим, что в любом поле нет собственных идеалов.

- Примеры. 1) Пусть K коммутативное кольцо и $a \in K$. Тогда подмножество aK есть идеал в K: $aK \triangleleft K$. Действительно, $\forall x, y \in K$ имеем: $ax + ay = a(x + y) \in aK$, $(ax)y = a(xy) \in aK$. Из этого примера следует, что все подмножества mZ в кольце целых чисел Z являются идеалами.
- 2) В кольце многочленов P[x] над полем P подкольца вида f(x)P[x] являются идеалами, а все ненулевые подкольца, содержащиеся в P, и, в частности само поле P, не являются идеалами. Идеал f(x)P[x] фактически состоит из многочленов, кратных многочлену f(x).
- 3) Рассмотрим гомоморфизм $f: K \to K'$ колец $(K, +, \cdot)$ и (K', \oplus, \otimes) . Покажем, что ядро этого гомоморфизма является идеалом. Действительно, $Ker\ f = \{a \in K: f(a) = 0'\} \subset K$ подкольцо. Если $J = Ker\ f \subset K$, то $J \cdot x \subseteq J$, т.к. $f(zx) = f(z) \otimes f(x) = 0' \otimes f(x) = 0'$ для $\forall z \in J, \forall x \in K$. Значит $zx \in J$, тогда $JK \subset J$ и $KJ \subset J$, т.е. $J = Ker\ f$ идеал в K.

4) В кольце $Z_4[x]$ подкольцо $2Z_4[x]$ многочленов, имеющих коэффициенты 0 и 2, является идеалом. Подкольцо $2Z_4$ является идеалом в $2Z_4[x]$. Но при этом подкольцо $2Z_4$ не является идеалом в $Z_4[x]$ (докажите это). Таким образом, отношение «быть идеалом» не транзитивно на множестве подколец какого-либо кольца.

Отметим некоторые свойства операций над идеалами.

- 1. Если I идеал, а L подкольцо кольца K, то I+L является подкольцом кольца K, а $I \cap L$ идеал кольца L.
- 2. Если I и J идеалы в кольце K, то I+J идеал кольца K.
- 3. Если $\{I_{\alpha}, \alpha \in A\}$ произвольное семейство идеалов кольца K , то $T = \bigcap_{\alpha \in A} I_{\alpha}$ идеал кольца K .

Пусть I — идеал кольца K и пусть для $\forall a,b \in K$: $a \equiv a' \pmod{I}$, $b \equiv b' \pmod{I}$, .т.е. a' = a + x, b' = b + y ($a',b',x,y \in I$). Тогда $a'b' = ab + ay + bx + xy \equiv ab \pmod{I}$.

Это означает согласованность отношения сравнимости по модулю I с умножением. Отсюда следует, что в факторгруппе K/I (K является аддитивной абелевой группой, а тогда I - нормальная подгруппа в K) можно определить операцию умножения по правилу: $(a+I)\otimes (b+I)=ab+I$.

Элементами факторгруппы K/I являются смежные классы a+I, которые принято называть классами вычетов по модулю идеала I, сложение которых определяется так: $(a+I) \oplus (b+I) = (a+b)+I$, -(a+I) = -a+I.

Для краткости записи положим: $a+I=\overline{a}$. Тогда $\overline{a}\oplus \overline{b}=\overline{a+b}$, $\overline{a}\otimes \overline{b}=\overline{ab}$. В частности, $\overline{0}=I=0+I$ (нулевой элемент в аддитивной группе K/I), $\overline{1}=1+I$ (1 — единица кольца K, если оно есть кольцо с единицей). Итак, факторгруппа $K/I=\overline{K}=\{\overline{a},a\in K\}$ наделена операциями \oplus и \otimes , для которых выполнены все аксиомы кольца, так как операции над классами вычетов в \overline{K} сводятся к операциям над элементами из K. Проверим выполнение дистрибутивности: $(\overline{a}\oplus \overline{b})\otimes \overline{c}=\overline{(a+b)c}=\overline{ac+bc}=\overline{ac+bc}$

 $=\overline{ac}\oplus \overline{bc}=\overline{a}\otimes \overline{c}\oplus \overline{b}\otimes \overline{c}$. Это означает, что отображение $f:K\to \overline{K}$, $f(a)=\overline{a}$ является эпиморфизмом колец K и \overline{K} с ядром $Ker\ f=I$. Таким образом, построенное множество $\overline{K}=K/I$ является кольцом, которое принято называть ϕ акторкольцом кольца K по идеалу I.

Из этого общего случая следует, что факторгруппа Z/mZ является факторкольцом, которое изоморфно кольцу Z_m ($m \in N, m > 1$).

Указанный выше эпиморфизм $f: K \to K/I$, $f(a) = \overline{a}$ принято называть каноническим гомоморфизмом кольца K на факторкольцо K/I.

Здесь имеет место теорема о гомоморфизме колец, аналогичная теореме о гомоморфизме групп.

Теорема. Пусть $f:K\to K'$ — гомоморфизм колец. Тогда образ гомоморфизма ${\rm Im}\, f\cong K/{\rm Ker}\, f$, причем ${\rm Ker}\, f=I$ является идеалом кольца K , т.е. $K/I\cong {\rm Im}\, f$.

Примеры. 1) Пусть K — поле и $c \in K$ — его произвольный элемент. Отображение $f:K[x] \to K, f(x) \to f(c)$ является гомоморфизмом. При этом f(x) = (x-c)q(x) + f(c) (теорема Безу). Тогда ядро этого гомоморфизма состоит из многочленов. делящихся на (x-c). Следовательно, $K[x]/(x-c)K[x] \cong K$.

2) Пусть $x^2 + px + q \in R[x]$ есть квадратный трехчлен с отрицательным дискриминантом и $c \in C$ — один из его комплексных корней. Отображение $f: R[x] \to C, f(x) \to f(c)$ является гомоморфизмом. Его образ совпадает со множеством C, а ядро состоит из многочленов, делящихся на $x^2 + px + q = (x - c)(x - \overline{c})$. Следовательно, $R[x]/(x^2 + px + q)R[x] \cong C$.

Пусть K — коммутативное кольцо с единицей. Для любого подмножества S кольца K совокупность линейных комбинаций $a_1x_1 + ... + a_mx_m$ ($x_i \in S, a_i \in K$) является наименьшим идеалом, содержащим S. Оно называется идеалом, порожденным подмножеством S, и обозначается как (S).

В частности, идеал I = aK = (a), порожденный одним элементом a, называется главным идеалом.

Целостное кольцо, в котором всякий идеал является главным, называется кольцом главных идеалов.

Докажите самостоятельно, что кольцо Z, любое поле P и кольцо многочленов P[x] являются кольцами главных идеалов.

Пусть выбраны многочлены $f(x), g(x) \in P[x]$, где P — поле. Тогда включение $f(x)P[x] \subset g(x)P[x]$ справедливо тогда и только тогда, когда g(x) делит f(x). Поэтому равенство (f(x)) = (g(x)) выполняется тогда и только тогда, когда многочлены f(x) и g(x) ассоциированы.

Не всякое коммутативное кольцо с единицей является кольцом главных идеалов. Так например, в кольце $Z_4[x]$ идеал, порожденный множеством $S=\{2,x\}$, не является главным.

Укажем несколько теорем, касающихся колец главных идеалов.

Теорема 1. Всякое евклидово кольцо является кольцом главных идеалов.

Докажем эту теорему. Пусть I — идеал кольца K, и $a \in I$ — наименьший по норме элемент I. Тогда для $\forall b \in I$: b = aq + r. Отсюда $r = b - aq \in I$. Но, так как $a,b \in I$ и r < a, то r = 0. Значит b = aq и I = (a) есть главный идеал.

Из этой теоремы следует, что кольца Z и P[x] (P – поле) являются кольцами главных идеалов. Отметим, что кольцо Z[x] не является кольцом главных идеалов и соответственно не евклидово, так как в нем при делении двух многочленов с целыми коэффициентами можно получить остаточный многочлен с рациональными коэффициентами.

В евклидовом кольце естественным образом вводится понятие наибольшего общего делителя (НОД) двух и более элементов кольца.

Определение. Элемент d евклидова кольца K называется наибольшим общим делителем элементов $a_1,...,a_n$ и обозначается $HOД(a_1,...,a_n)$, или коротко $(a_1,...,a_n)$, если a_i :d $(\forall i=\overline{1,n})$ и d делится на любой общий делитель элементов $a_1,...,a_n$.

Если существует $HOД(a_1,...,a_n)$, то он определяется с точностью до ассоциированности элементов $a_1,...,a_n$.

Теорема 2. В любом евклидовом кольце K (и соответственно кольце главных идеалов) для любой пары элементов $a,b \in K$ существует их НОД d, при этом d = ax + by, где $x, y \in K$.

Для доказательства этой теоремы достаточно рассмотреть в K идеал $I = (x, y) = \{ax + by, \ a, b \in K\}$, порожденный элементами x, y. Так как I является главным идеалом, то найдется такой элемент $d \in I$, что (x, y) = (d).

Теорема 3. Пусть a — ненулевой необратимый элемент кольца главных идеалов K. Факторкольцо K/(a) (по идеалу I=(a)) является полем тогда и только тогда, когда элемент a прост в K.

Действительно, пусть \overline{x} – смежный класс $x+(a)\in K/(a)$. Если a=bc, где b и c – необратимые элементы, то $\overline{b}\cdot\overline{c}=\overline{bc}=\overline{a}=0$. Но $b,c\neq 0$, значит в кольце K/(a) есть делители нуля, поэтому оно полем не является.

Обратно, если a – простой элемент в K, то для $\forall x \in (a)$, элементы x и a взаимно просты, т.е. HOД(x,a) = xu + av = 1. Отсюда, переходя к смежным классам, получим $\overline{xu} + \overline{av} = \overline{1}$. Значит $\overline{xu} \equiv \overline{1} \pmod{(a)}$, т.е. в кольце K/(a) существует смежный класс \overline{u} , обратный к \overline{x} . Поэтому K/(a) – поле.

Из теоремы 3 следует, что факторкольцо P[x]/(f(x)) (где P — поле) является полем тогда и только тогда, когда многочлен f(x) является неприводимым в P[x]. Неприводимые многочлены не могут быть разложены в произведение многочленов положительной степени.

Пусть $\deg f(x) = n$, тогда факторкольцо P[x]/(f(x)) = P[x]/f(x)P[x] состоит из смежных классов вида $\left\{a_{n-1}\bar{x}^{n-1} + ... + a_1\bar{x} + a_0, a_i \in P\right\}$, которые являются бесконечными множествами, если P — бесконечное поле. Так как идеал I = (f(x)) является нулевым элементом в кольце P[x]/(f(x)), то число \bar{x} есть корень полинома f(x): $f(\bar{x}) = \bar{0} = I$. Если при этом многочлен f(x) будет неприводимым в P[x], то по теореме 3 факторкольцо P[x]/(f(x)) будет полем $P' = P[x]/(f(x)) \cong P(\bar{x})$, которое является расширением поля P, в котором f(x) имеет хотя бы один корень.

Теорема 4. Факторкольцо K/I коммутативного кольца с единицей K по идеалу I является полем тогда и только тогда, когда идеал I является максимальным в K.

Идеал I является максимальным в кольце K, если не существует идеала I' такого, что $I \subset I' \subset K$ ($I \neq I'$), т.е. идеал I не содержится ни в каком другом идеале, кроме самого кольца K.

Теорема 5. Факторкольцо $F_p[x]/(f(x))$ является полем конечного порядка p^n , изоморфным полю Галуа $GF(p^n)$, тогда и только тогда, когда многочлен f(x) является неприводимым многочленом степени n в кольце $F_p[x]$. Здесь $F_p = GF(p) \cong Z_p$ — поле порядка p (p простое число из N).

Например, возьмем факторкольцо $Z_2[x]/(f(x))$ по неприводимому многочлену второго порядка. Коэффициентами всех многочленов в $Z_2[x]$ являются только числа 0 и 1, поэтому многочленами второго порядка в нем являются: $x^2, x^2+1, x^2+x, x^2+x+1$. Из них неприводимым является только многочлен x^2+x+1 (проверьте!). Тогда, в соответствии с теоремой 5, факторкольцо $Z_2[x]/(x^2+x+1)$ есть поле, изоморфное полю GF(4). Поле GF(4) состоит из элементов 0, 1, α и β , где $\alpha^2=\beta$, $\beta^2=\alpha$, $\alpha\beta=\beta\alpha=1$, $\alpha+\alpha=\beta+\beta=0$, $\alpha+\beta=\beta+\alpha=1$. Поле $Z_2[x]/(x^2+x+1)$ состоит из смежных классов $\overline{0}=I=f(\overline{x})$, $\overline{1}$, \overline{x} , $\overline{x}+\overline{1}$. Здесь $\overline{x}^2=\overline{x}+\overline{1}$ (так как $f(\overline{x})=\overline{x}^2+\overline{x}+\overline{1}=\overline{0}$), $(\overline{x}+\overline{1})(\overline{x}+\overline{1})=\overline{x}^2+\overline{1}\equiv \overline{x}$, $\overline{x}(\overline{x}+\overline{1})=\overline{1}$, $\overline{x}+\overline{x}=\overline{0}$, $(\overline{x}+\overline{1})+(\overline{x}+\overline{1})=\overline{0}$, $\overline{x}+(\overline{x}+\overline{1})=\overline{1}$. Таким образом, изоморфизм полей

 $Z_2[x]/(x^2+x+1)$ и GF(4) очевиден.

Можно легко показать, что факторкольцо $R[x]/(x^2+1)$ есть поле (так как x^2+1 неприводим в R[x]), изоморфное полю R(i). Здесь мнимая единица i есть один из корней многочлена x^2+1 , и она не принадлежит R, т.е. получили простое расширение поля R до поля R(i), которое в свою очередь изоморфно полю комплексных чисел C.

Задания для самостоятельного решения

- 1. Является ли факторкольцо $Q[x]/(x^2)$ областью целостности?
- 2. Докажите, что кольцо $Z[\sqrt{2}]$ евклидово.
- 3. Найти все идеалы кольца Z_{36} .
- 4. Опишите факторкольцо Z[i]/(2). Есть ли в нем делители нуля?
- 5. Найти все максимальные идеалы в кольцах $\, Z \,$ и $\, Z_{36} \, .$
- 6. Опишите факторкольцо $R[x]/(x^3-1)$. Является ли оно полем?
- 7. Постройте таблицы Кэли для операций сложения и умножения в кольцах $Z_2[x]/(x^2)$, $Z_2[x]/(x^2+1)$, $Z_2[x]/(x^2+x)$. Каким конечным кольцам они изоморфны?
- 8. Докажите изоморфность колец $Q[x]/(x^2-2)$ и $Q[\sqrt{2}]$.