NATHANIEL T. STEMEN

nate@stemen.email • Seattle, WA

SUMMARY

Research engineer experienced in quantum error mitigation, circuit compilation, and translating quantum research into practical tools for NISQ devices. Lead developer of mitiq, a widely-used open-source Python library for error mitigation. Passionate about building open-source tools that enable the next generation of quantum computers.

EDUCATION

University of Waterloo MMath in Applied Mathematics

2020-2022

• Thesis: Quantum Circuit Compilation from the Ground Up advised by Joel Wallman

New York University B.Sc. in Mathematics and Physics

2013-2017

• Thesis: An Investigation of Q-Balls advised by Luciano Medina

EMPLOYMENT

Member of Technical Staff Unitary Foundation

Mar 2022-

- Lead developer for the open-source Python package mitiq (250,000+ downloads, 130+ citations). Drive both technical innovation and strategic roadmap development to enhance performance and adoption of quantum error mitigation.
- Developed a calibration module to match error mitigation techniques and parameters to the characteristics of users' quantum hardware.
- Delivered talks on quantum error mitigation and resilience at conferences and seminars including PyData, SciPy, QuSoft, and IPN Mexico, as well as a tutorial at IEEE QCE.
- Led community-building efforts in quantum computing, including directing unitaryHACK 2023 (70 hackers, 99 issues closed, \$11,000+ distributed) and serving as chair organizer for the Workshop on Error Resilience in Quantum Computing (WERQ.SHOP), convening researchers to shape the roadmap for error-resilient quantum systems over the next 5 years.

Software Developer Overleaf

2017-2021

- Improved LATEX autocomplete using statistical analysis of open-source documents, enhancing user experience for 300,000+ daily users.
- Maintained and optimized large Rails and Node applications through bug fixes, performance improvements, and feature delivery.
- Monitored and supported data migration from PostgresQL to MongoDB.

Summer Researcher New York University

2016

Used Python to numerically solve nonlinear Schrödinger equations modeling electromagnetic pulse propagation in nonlinear media.

Summer Researcher Yale University (PROSPECT Experiment)

2014 & 2015

- Built an optical simulation in C++ to optimize detector design and study light collection and uniformity.
- Implemented pulse-shape discrimination techniques in **Python** to improve neutrino event selection.

July 2025 1 of 2

Publications

- 1. LaRose, R. et al. (Aug. 2022). Mitiq: A software package for error mitigation on noisy quantum computers. *Quantum* 6, p. 774. URL: https://doi.org/10.22331/q-2022-08-11-774.
- 2. McDonough, B. et al. (2022). "Automated quantum error mitigation based on probabilistic error reduction". In: 2022 IEEE/ACM Third International Workshop on Quantum Computing Software (QCS), pp. 83–93. arXiv: 2210.08611 [quant-ph].
- 3. Ashenfelter, J. et al. (2016). Background Radiation Measurements at High Power Research Reactors. *Nucl. Instrum. Meth.* A806, pp. 401–419. arXiv: 1506.03547 [physics.ins-det].
- 4. Ashenfelter, J. et al. (2015). Light Collection an Pulse-Shape Discrimination in Elongated Scintillator Cells for the PROSPECT Reactor Antineutrino Experiment. *JINST* 10.11, P11004. arXiv: 1508.06575 [physics.ins-det].

TEACHING

Fundamentals of University Teaching University of Waterloo

2020-2022

 Completed program designed to help graduate students learn evidence-based strategies for teaching through workshops and practice teaching sessions.

Mathematics Teacher NYU Metro Center College Prep Academy

2015-2017

- Independently planned and taught Pre-Calculus course for high school students.
- Facilitated numerous extra-curricular math courses of 30 students as a class assistant by providing additional guidance to students.

SERVICE

IEEE QCE 2025 Workshop organizer Quantum Software 2.1	2025
WERQSHOP Chair Organizer https://werq.shop	2025
SciPy 2025 Reviewer	2025
QED-C mentor	2023-2024
Equity, Diversity and Inclusion Committee University of Waterloo; IQC	2021-2022
Strategic Plan Implementation Working Group University of Waterloo	2021

CONTINUING

EDUCATION

CSE 599C: Quantum Learning Theory University of Washington (audit)	Jan–Mar 2025
CSE 534: Quantum info. and computation University of Washington (audit)	Sep–Dec 2024
Quantum Machine Learning Workshop QSciTech-QuantumBC	Jan–Feb 2022
Presenting Data and Information Edward Tufte	<i>Nov</i> 2019

Tools

Languages

• Python, JavaScript, SQL, Ruby, bash

Software

• git/GitHub, docker, Linux, MacOS, LATEX

Quantum

• SDKs: Cirq, Qiskit, pyQuil, Qibo

July 2025 2 of 2