Data Mining W4240 Section 001

Giovanni Motta

Columbia University, Department of Statistics

October 28, 2015

Outline

Reviewing Estimators

Cross Validation

Data Preprocessing

Outline

Reviewing Estimators

Cross Validation

Data Preprocessing

Some Estimators

Recall:

► kNN:

$$\hat{y} = \frac{1}{k} \sum_{i: x_i \in N_k(x)} y_i$$

▶ *k* controls the tradeoff between neighborhood size (bias) and estimator noise (variance)

Some Estimators

Recall:

► Polynomial regression:

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_m x^m$$

 Maximal degree m controls the tradeoff between estimator flexibility (bias) and estimator noise (variance)

Tunable Parameters

m and k are called **tunable parameters**

Their values affect how well a method works

- ▶ the "right" value should minimize the bias-variance tradeoff
- ...but the "right" value depends on the data

So how do we find the "right" value for a given dataset?

This problem is called model selection

Some More Estimators

Let's go back to kNN:

- suppose that I have chosen k and I now have an estimator
- ▶ I want to know how good this estimator is (i.e. what is the error on a new dataset?)

How would I estimate that?

This problem is called model assessment

Traditional Statistics

Ronald Aylmer Fisher (1890-1962)¹

- ▶ 1. study problem, 2. propose model, 3. fit model, 4. check assumptions, 5. go back to 2. if assumptions not met
- tunable parameters changed to meet assumptions (e.g. Gaussian residuals)
- ▶ if assumptions met, theoretical properties describe model behavior on new datasets (e.g. confidence intervals)

¹Photo credit: Wikipedia

Data Mining

Data Mining (Larry Page and Sergey Brin)²

- ▶ 1. look at data, 2. propose model, 3. select tunable parameters, 4. fit model, 5. assess model
- data most likely does not meet assumptions for parametric models
- usually care more about prediction than inference

²Photo credit: money.cnn.com

Generalization

Modeling for prediction:

- 1. get data
- 2. choose a model
- 3. fit the model
- 4. make predictions for new data

Generalization: making high quality predictions for new data

Expected Predictive Error

Tunable parameters α

Model with parameters α , $\hat{f}_{\alpha}(x)$

Goals for expected predictive error:

- ▶ **Model selection:** estimating the performance of different models in order to choose the best one (best α).
- ► Model assessment: having chosen a final model, estimating its prediction error (generalization error) on new data.

Expected Predictive Error

Training data: $\mathcal{T} = \{(x_1, y_1), \dots, (x_n, y_n)\}$

New data: X^0 , Y^0

Generalization error:

$$\operatorname{Err}_{\mathcal{T}} = \mathbb{E}_{X^0, Y^0} [L(Y^0, \hat{f}(X^0)) \mid \mathcal{T}]$$

Here, L(Y, f(X)) is a **loss function**

for regression: usually, the loss is the squared error

$$L(Y, f(X)) = (Y - f(X))^2$$

 for classification: usually, the loss is the Hamming distance (misclassification)

$$L(Y, f(X)) = \mathbf{1}_{\{Y \neq f(X)\}}$$

Outline

Reviewing Estimators

Cross Validation

Data Preprocessing

Validation Sets

We could use a **validation set**³. Here n = 392 = 196 + 196

- randomly divide the data into a training set (blue) and a validation set (beige)
- ightharpoonup fit model on training set with differing values of lpha
- evaluate models performance on the validation set, and pick the best
- fit model on entire dataset

Doesn't use data twice!

³Some images from *An Introduction to Statistical Learning* by James, Witten, Hastie and Tibshirani

Validation Sets

Auto data set. Left: validation error for a single split. Right: validation error repeated 10 times (different random splits)

there are two problems:

- estimates depend heavily on the validation set (<u>high variance</u>)
- estimate of error is probably higher than error for full model

Both of these problems get worse with small n

What if we use the data twice?

- ▶ introduce a lot of bias if we fit model on (x_i, y_i) and then use $L(y_i, \hat{f}_{\alpha}(x_i))$ to estimate error
- ▶ introduce a *little* bias if we don't fit model on (x_i,y_i) , use $L(y_i,\hat{f}_{\alpha}(x_i))$ to select α , and then fit \hat{f}_{α} on training <u>and</u> validation sets

Let's try:

- use only **one** element as a validation set (all the rest as a training set)
- do this for all elements
- average results

Leave-One-Out-Cross-Validation

1 2 3		n
	1	
1 2 3		n
1 2 3		n
1 2 3		n
	:	
1 2 3		n

$$\operatorname{Err}_{\mathcal{T}} = \mathbb{E}_{X^{0}, Y^{0}}[L(Y^{0}, \hat{f}_{\alpha}(X^{0})) \mid \mathcal{T}]$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} L(y_{i}, \hat{f}_{\alpha}^{(-i)}(x_{i}))$$

Leave-One-Out-Cross-Validation

Model Selection:

1. For all values of α , estimate generalization error with <u>LOOCV</u>:

$$\operatorname{Err}_{\alpha}^{LOOCV} = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}_{\alpha}^{(-i)}(x_i))$$

- 2. Choose α with lowest $\mathrm{Err}_{\alpha}^{LOOCV}$ (if many are similar, choose one in the middle of the range): let's call it α^*
- 3. Fit \hat{f}_{α^*} to $(x_1, y_1), \dots, (x_n, y_n)$

Model Assessment:

- 1. For a fixed value of α , estimate $L_{\alpha}^{(-i)} = L(y_i, \hat{f}_{\alpha}^{(-i)}(x_i))$
- 2. Can use $\{L_{\alpha}^{(-i)}\}_{i=1}^n$ to approximate distribution of predictive loss for given model

Generalized Cross-Validation

<u>Super fun fact</u>: for *ordinary least squares linear regression* we actually only need to fit the model once

$$\operatorname{Err}^{LOOCV} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{f}^{(-i)}(x_i) \right)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{f}(x_i)}{1 - H_{ii}} \right)^2$$
$$\approx \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{f}(x_i)}{1 - \operatorname{trace}(\mathbf{H})/n} \right)^2$$

where $\hat{y} = \mathbf{H}y$, so $\mathbf{H} = X(X^TX)^{-1}X^T$. Note that $H_{ii} = h_i$, the leverage statistic.

Leave-One-Out-Cross-Validation

LOOCV sounds great! What could go wrong?!?

- suppose that I am training f on the entire Wikipedia corpus (> 3 million articles). I am a good coder, but it still takes about 30 hours to do one fit. Would LOOCV work? How could we fix it?
- ▶ suppose that $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$. How would LOOCV change? Would it work, and if not, how could we fix it?

k-Fold Cross-Validation (here k = 5)

- 1. separate training set into K different, equally sized sets (folds)
- 2. for each tunable parameter value $\alpha = \alpha_1, \dots, \alpha_M$:
 - for k = 1, ..., K:
 - use all of the data except fold k as a training set to fit the function with parameter α
 - ightharpoonup use fold k as a testing set
 - ightharpoonup estimate squared error on fold k
 - average errors to approximate expected predictive error
- 3. compare error values; pick parameter with lowest error

k-Fold Cross-Validation

Auto data set: predicting mpg using polynomial functions of horsepower. Left: The LOOCV error curve (k=n). Right: 9 (slightly different) CV error curves, obtained with a 10-fold $(\underline{k=10})$ CV which was run 9 separate times, each with a different random split of the data into ten parts.

It turns out that K-fold CV is almost as good as LOOCV

k-Fold Cross-Validation

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_{i}$$

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_{i}$$

K-Fold Cross-Validation

How big should K be?

- lacktriangle need to do computation K times
- ▶ ...but larger K is more accurate estimator

K-Fold Cross-Validation

Why is 10-fold CV so close to LOOCV?

Intuition: Central Limit Theorem

- ▶ n iid random variables, $\mathbb{E}[X_i] = \mu$, $Var(X_i) = \sigma^2 < \infty$
- $\bar{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- ▶ By CLT, $\bar{\mu} \sim N(\mu, \sigma^2/n)$
- So that means

$$|\bar{\mu} - \mu| \approx C \frac{1}{\sqrt{n}}$$

It turns out that $\frac{C}{\sqrt{n}}$ is the fastest we can expect an estimator to converge

- ▶ n = 500: Expected error for 5-fold CV is 0.05, for 10-fold CV is 0.047 and for LOOCV is 0.045
- ▶ n = 5,000: Expected error for 5-fold CV is 0.016, for 10-fold CV is 0.015 and for LOOCV is 0.014

Cross-Validation on Classification Problems

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} Err_{i}$$

$$ERR_{(i)} = \mathbf{1}_{\{u_{i} \neq \hat{u}_{i}\}}$$

For example, fit a quadratic logistic regression model

$$\log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_2 + \beta_4 X_2^2$$

Cross-Validation on Classification (simulated data)

Test errors rates: 0.2, 0.197, 0.160, 0.612. Bayes error rate: 0.133. In practice, for real data, the Bayes decision boundary and the test error rates are unknown. So how might we decide between the four logistic regression models? We can use cross-validation!

Cross-Validation on Classification Problems

True Test error (brown), training error (blue), and 10-fold CV error (black) on the two-dimensional classification data displayed before. Left: Logistic regression using polynomial functions of the predictors. Right: The $k{\rm NN}$ classifier with different values of k, the number of neighbors used in the KNN classifier.

Outline

Reviewing Estimators

Cross Validation

Data Preprocessing

Data Preprocessing

Common data problems:

- missing data: not all data has all values
- high dimensional: p is too large to effectively use most methods

To deal with these problems, we often do preprocessing

- missing data: remove or impute values
- high dimensional: reduce dimensionality

Data Preprocessing

Ways to reduce dimensionality:

- select a set of covariates that are "highly predictive"
 - highly correlated with response
 - have large marginal information gains/variance reductions
- ▶ make some combination(s) of the covariates (like $0.7X_1 3.8X_2$) that is "highly predictive"

Finding a set of predictors before fitting an estimator is called **screening**.

The simplest method is selecting the K covariates that are the most correlated with Y.

Consider a problem with many predictors (ex: microarray data). A possible strategy:

- 1. Screen the predictors to find a "good" subset (e.g. choose the best subset based on data)
- 2. Using this set of predictors, build a multivariate classifier
- 3. Use cross-validation to select tunable parameters and estimate model error

Is this the right way to use cross-validation?

Consider this classification problem:

- n = 50, p = 5000
- $X \sim N_{5000}(0, I), Y \sim Bernoulli(0.5)$
- ▶ true error rate: 50% (labels independent from covariates)

Let's screen to select 100 most predictive covariates and then use 1-nn prediction.

What happens?

Right way to do cross-validation:

- 1. Divide samples into K cross-validation folds at random
- 2. For each fold $k = 1, \ldots, K$
 - a. Reserve fold k for test, use other folds for training
 - b. Find a subset of "good" predictors from training
 - Using this subset of predictors, build a multivariate classifier on training set
 - d. Use the classifier to predict labels on fold k

Your screening method is a part of your model!

See ESL, Ch. 7.10.2 on page 245

