Properties of Materials

Theme: Structure

Lecture 1: Atoms and Bonding

Professor Steve Eichhorn

s.j.eichhorn@bristol.ac.uk

Room 0.115, Queen's Building

Scale

Continuum
Mechanics
Perfect
material with
uniform
properties

Macroscopic
Distinct regions with varying properties

Grain Structure Real materials composed of many crystals stuck together

Crystal Structure

Arrangement of atoms (or lack of it)

Atomic Model

- Nucleus
 - Positive protons
 - Uncharged neutrons

"Protons give an atom its identity, electrons its personality"

- Electrons
 - Negatively charged
 - Same number as protons
 - Outermost layer govern interactions with other atoms (valence)

Bonding

Covalent Bonding

- Between 2 non-metals
- **Share** valence electrons
 - Strong, directional bond between two atoms
- Breaking bond means fracturing material
 - brittle
- Electrons bound up
 - Poor electrical conductivity

Ionic Bonding

- Between metal + nonmetal
- Exchange valence electrons
 - Unbalanced charges
 - Ordered structure with mutual attraction between opposite ions
 - Non directional bonds
- Ions immobile charge carriers
 - Poor electrical conductivity

Metallic Bonding

 Relatively electropositive atoms give up valance electrons

 Form a sea of nonlocalised electrons

- Positive ions attracted to negative sea
- Electrons are charge/heat carriers
 - Excellent conductivity

Conductivity

Cohesive energy – heat energy needed to turn solid to gas

More difficult if bonds are stronger (deeper potential well)

Force to displace atoms

$$F = \frac{dE}{da}$$

Stiffness of 'spring'

$$S = \frac{dF}{da} = \frac{d^2E}{da^2}$$

Thermal Expansion

- Thermal energy = more atomic vibration
 - Atoms still at absolute zero
- Potential well not really symmetric
 - A bit harder to compress than extend
 - Vibrating more means moving up-down potential well
 - Shift in origin = expansion

Cohesive energy and properties

Energy U

Cohesive energy

Atom spacing, a

Cohesive energy = thermal energy needed to break all bonds

$$\alpha = \frac{1.6 \times 10^{-3}}{F}$$

Higher melting point

lower thermal expansion

Summary

- Aim of these lectures is to introduce the science of material behaviour
 - Atomic bonding alters many properties
 - Metals vs Non-metals (continues later)
 - Strong atomic bonds correlate with melting point,
 high modulus, low thermal expansion
- Next
 - Examine how the way in which packing in crystals is described

Scale

Continuum
Mechanics
Perfect
material with
uniform
properties

bonding

Macroscopic
Distinct regions with varying properties

Crystal Structure

Arrangement of atoms (or lack of it)

Grain Structure

Real materials composed of many crystals stuck together

Properties of Materials

Theme: Structure

Lecture 2: Crystals

Professor Steve Eichhorn
s.j.eichhorn@bristol.ac.uk
Room 0.115, Queen's Building

Scale

Continuum
Mechanics
Perfect
material with
uniform
properties

MacroscopicDistinct regions with varying properties

Orbital electron

Nucleus

Atoms
Intrinsic properties and bonding

Crystal StructureArrangement of atoms

Real materials composed of many crystals stuck together

Order

2D packing

- 3D crystals are made up of 2D crystal planes
 - These built up of densely packed atoms
 - Essentially problem of equal circle packing in (infinite) plane
- Square vs. hexagonal (triangular) lattice

Unit Cell

Smallest block of a crystal that contains all information required to create crystal

Reconstruct crystal by repeated translation of unit cell (no rotation, etc) e.g. building a wall with bricks

Unit Cell

Smallest block of a crystal that contains all information required to create crystal

Reconstruct crystal by repeated translation of unit cell (no rotation, etc) e.g. building a wall with bricks

Often quite complex but we limit to

Cubic (
$$a = b = c$$
, $\alpha = \beta = \gamma = 90^{\circ}$)

Hexagonal (
$$a=b\neq c$$
, $\alpha=\beta=90^\circ, \gamma=120^\circ$)

Atomic Packing Factor

How efficient are crystals?

Volume of spherical atoms (hard-sphere model) within unit cell

 $APF = \frac{volume\ of\ atoms\ in\ cell}{volume\ of\ total\ cell}$

Volume of unit cell (cubic for now)

Dictates the density of crystalline materials

(1/2 atom per cell)

Primitive cubic

$$APF = \frac{volume\ of\ atoms\ in\ cell}{volume\ of\ total\ cell}$$

Atomic radius

Primitive cubicSimple layers of square lattice

Number of atoms in cell

$$APF = \frac{1 \times \frac{4}{3} \pi r^3}{(2r)^3} = \frac{\pi}{6}$$

1 atom per cell (8 corners x 1/8 atom per corner)

Close Packing

- Simple stacking of square lattice not efficient
 - Stagger so that atoms sit in dimples of lower layer

Face centred cubic

Face Centred Cubic

There are 4 atoms per unit cell

8 corner atoms = 1

6 face atoms = 3

Line of contact = 4r

$$(4r)^2 = a^2 + a^2$$
$$a = 2r\sqrt{2}$$

$$V_{\text{cell}} = a^3 = (2r\sqrt{2})^3 = 16r^3\sqrt{2}$$

Number of atoms

$$APF = \frac{4 \left[\frac{4}{3} \pi r^3 \right]}{a^3} =$$

volume of 1 atom

$$=\frac{4 \left[\frac{4}{3}\pi r^3\right]}{a^3} = \frac{\frac{16}{3}\pi r^3}{16r^3\sqrt{2}} = \frac{\pi}{3\sqrt{2}} = 0.74$$

Very efficient packing

volume of cell

Hexagonal Close Packed (HCP)

6 atoms per hexagonal unit12 corner atoms shared with 6 cells2 face atoms shared with 2 cells3 internal atoms

2 atoms per unit cell
8 corner atoms shared with 8 cells
1 internal atom
(There are 3 of these cells per hexagonal unit)

Close Packing

HCP – obtained by stacking hexagonal lattice

APF = 0.74

For both FCC and HCP

Most dense and so most common

Hexagonal lattice Closest packed 2D structure

FCC – obtained by stacking square lattice or hexagonal lattice

Close Packing

ABA and ABC Packing

Body Centred Cubic

- Composed of square lattices with simple translation
- No close packed planes

$$V_{cell} = \frac{64}{3\sqrt{3}}r^3$$

$$APF = \frac{\sqrt{3}\pi}{8} = 0.68$$
 (tutorial question)

- Less densely packed
 - Only occurs due to bonding

Line of contact

Common examples

Metal	Crystal Structure ^a	Atomic Radius ^b (nm)	Metal	Crystal Structure	Atomic Radius (nm)
Aluminum	FCC	0.1431	Molybdenum	BCC	0.1363
Cadmium	HCP	0.1490	Nickel	FCC	0.1246
Chromium	BCC	0.1249	Platinum	FCC	0.1387
Cobalt	HCP	0.1253	Silver	FCC	0.1445
Copper	FCC	0.1278	Tantalum	BCC	0.1430
Gold	FCC	0.1442	Titanium (α)	HCP	0.1445
Iron (α)	BCC	0.1241	Tungsten	BCC	0.1371
Lead	FCC	0.1750	Zinc	HCP	0.1332

^a FCC = face-centered cubic; HCP = hexagonal close-packed; BCC = body-centered cubic.

 FCC and HCP are the most closely packed structures – most common

^b A nanometer (nm) equals 10^{-9} m; to convert from nanometers to angstrom units (Å), multiply the nanometer value by 10.

Theoretical Density

Density =
$$\rho = \frac{\text{Mass of atoms in cell}}{\text{Volume of cell}}$$

Theoretical Density

50000

500

Approximations

$$V_c \approx r^3$$
$$n = 2$$

$$n=2$$

$$\rho = \frac{nA}{V_c N_A}$$

1000

2000

Real elemental density

Density at 300K (kg/m^3)

5000

10000

Copper (Cu)

20000

Density

Density dictated by atoms and crystal structure – little possibility of altering density of metals and

ceramics

Quench cracking

- Blades are quenched (quick cool) to make hard
- Thermal stresses + transformation stress
 - Results in cracking
- Common when welding old structural steels

Scale

Continuum
Mechanics
Perfect
material with
uniform
properties

Macroscopic
Distinct regions with varying properties

Atoms
Intrinsic properties and bonding

Grain Structure
Real materials
composed of many
crystals stuck together

Arrangement of atoms (or lack of it)

Scale

Continuum **Mechanics** Perfect material with uniform properties

Macroscopic Distinct regions with varying properties

Grain Structure Real materials composed of many crystals stuck together

Atoms

Intrinsic properties and bonding

Crystal Structure

Arrangement of atoms (or lack of it)

Properties of Materials

Theme: Structure

Lecture 3: Crystal Directions and Planes

Professor Steve Eichhorn

s.j.eichhorn@bristol.ac.uk

Room 0.115, Queen's Building

Scale

Continuum **Mechanics** Perfect material with uniform properties

Macroscopic Distinct regions with varying properties

Atoms Intrinsic properties and bonding

Crystal Structure

Arrangement of atoms (or lack of it)

Grain Structure Real materials composed of many crystals stuck together

Scale

Continuum **Mechanics** Perfect material with uniform properties

Macroscopic Distinct regions with varying properties

Grain Structure Real materials composed of many crystals stuck together

Atoms

Intrinsic properties and bonding

Crystal Structure

Arrangement of atoms (or lack of it)

Introduction

Growth of single crystals occurs on specific planes

Diamond fractured along specific planes (cleavage)

Unit Cell Directions and Planes

Directions and planes given in terms of basis vectors

For the cubic systems this matches Cartesian – more complex for hexagonal but we ignore that here

Directions

Directions join lattice points (atoms)

Simply vectors with weird notation *e.g.* [111]

	X	У	Z	
Projections	a/2	b	0c	
Projections (in terms of a, b, c)	1/2	1	0	
Reduction*	1	2	0	
Enclosure	[120]			

^{*} Reduction is accompanied by a multiplication by 2 (common factor) to reduce to lowest integer

Directions

Drawing directions just works in reverse

	x	y	Z
Enclosure		[120]	
Reduction	1	2	0
Projections (in terms of a, b, c)	1/2	1	0
Projections	a/2	b	0c

Directions

Negative directions use bar:

These two vectors are identical!

Examples

Planes

HCP (Hexagonal Close Packing) – obtained by stacking hexagonal lattice

Hexagonal latticeClosest packed 2D structure

Face Centred Cubic (FCC) – obtained by stacking square lattice or hexagonal lattice

From last lecture

Unit cell constructed from planes – 2D arrays of periodic atoms

Planes

- Direction of plane normal
 - Read off intercepts of plane with axes in terms of a, b, c
 - Take reciprocals of intercepts
 - Reduce to smallest integer values
 - Enclose in parentheses, no commas

(hkl)

Next

- We now have basic language for talking about crystals
- Use this to understand mechanical behaviour
 - Fracture
 - Plastic slip
 - Strengthening mechanisms
 - Estimating strength