

REGRESSION

Linear Regression-III

Dr. Ramesh Anbanandam

DEPARTMENT of Management Studies

Learning Objectives

- **Understanding Coefficient of Determination**
- Test statistical hypotheses and construct confidence intervals on regression model parameters

Relationship Among SST, SSR, SSE

$$\sum (y_i - \overline{y})^2 = \sum (\hat{y}_i - \overline{y})^2 + \sum (y_i - \hat{y}_i)^2$$

$$SS_{yy} = \left(\frac{SS_{xy}^{2}}{SS_{xx}}\right) + \left(SS_{yy} - \frac{SS_{xy}^{2}}{SS_{xx}}\right)$$

where:

SST = total sum of squares

SSR = sum of squares due to regression

SSE = sum of squares due to error

■ The coefficient of determination is:

$$r^2 = SSR/SST$$

where:

SSR = sum of squares due to regression

SST = total sum of squares

$$r^2 = SSR/SST = 100/114 = .8772$$

The regression relationship is very strong; 88% of the variability in the number of cars sold can be explained by the linear relationship between the number of TV ads and the number of cars sold.

Jupyter code

```
In [5]: t= tbl['TV Ads']
    c= tbl['car Sold']

In [8]: import statsmodels.api as s
    t = s.add_constant(t)
    model1 = sm.OLS(c,t)
    result1 = model1.fit()
    print(result1.summary())
```

OLS Regression Results

Dep. Variab Model: Method:	le:	-	LS Adj.	R-squared:		0.877 0.836
		Least Squar				0.0400
Date:	'	ri, 30 Aug 20		•	.):	0.0190
Time:		08:31:		ikelihood:		-9.6687 23.34
No. Observations:				AIC:		
Df Residual	s:		<pre>3 BIC:</pre>			22.56
Df Model:			1			
Covariance	Type:	nonrobu	st			
	coef	std err	t	P> t	[0.025	0.975]
const	10.0000	2.366	4.226	0.024	2.469	17.531
TV Ads	5.0000	1.080	4.629	0.019	1.563	8.437
Omnibus:	=======	 n	an Durbi	n-Watson:		 1.214
Prob(Omnibus):		n	an Jarqu	e-Bera (JB):		0.674
Skew:	•	0.2	56 Prob(JB):		0.714
Kurtosis:		1.2	•	,		6.33

$$r^2 = SSR/SST = 100/114 = .8772$$

The regression relationship is very strong; 88% of the variability in the number of cars sold can be explained by the linear relationship between the number of TV ads and the number of cars sold.

Sample Correlation Coefficient

$$r_{xy} = (\text{sign of } b_1) \sqrt{\text{Coefficient of Determination}}$$

 $r_{xy} = (\text{sign of } b_1) \sqrt{r^2}$

$$\hat{y} = b_0 + b_1 x$$

where:

 b_1 = the slope of the estimated regression equation

Sample Correlation Coefficient

$$r_{xy} = (\text{sign of } b_1) \sqrt{r^2}$$

The sign of b_1 in the equation $\hat{y} = 10 + 5x$ is "+".

$$r_{xy} = +\sqrt{.8772}$$

$$r_{xy} = +.9366$$

Assumptions About the Error Term e

- 1. The error *e* is a random variable with mean of zero.
- 2. The variance of e, denoted by e^2 , is the same for all values of the independent variable.
- 3. The values of *e* are independent.
- 4. The error *e* is a normally distributed random variable.

Testing for Significance

- To test for a significant regression relationship, we must conduct a hypothesis test to determine whether the value of β_1 is zero.
- Two tests are commonly used:

t Test and F Test

• Both the t test and F test require an estimate of s^2 , the variance of e in the regression model.

Estimate of s

 An Estimate of s The mean square error (MSE) provides the estimate of s^2 , and the notation s^2 is also used.

$$s^2 = MSE = SSE/(n - 2)$$

where:

SSE =
$$\sum (y_i - \hat{y}_i)^2 = \sum (y_i - b_0 - b_1 x_i)^2$$

Testing for Significance

- An Estimate of s
 - To estimate s we take the square root of s^2 .
 - The resulting *s* is called the <u>standard error of</u> the <u>estimate</u>.

$$s = \sqrt{\text{MSE}} = \sqrt{\frac{\text{SSE}}{n-2}}$$

Testing for Significance

 S_e =Standard error of the estimate (σ^2)

$$=\frac{SSE}{n-2}=\frac{S_{yy}-\frac{S_{xy}^{2}}{S_{xx}}}{n-2}$$

Hypotheses

$$H_0: \beta_1 = 0$$

$$H_a: \beta_1 \neq 0$$

Test Statistic

$$t=rac{b_1}{s_{b_1}}$$

Case 1

$$H_0: \beta_1 = 0$$

In this case hypothesis is not rejected

Case 2

$$H_a: \beta_1 \neq 0$$

In this case hypothesis is rejected

The Standard Deviation of the Regression Slope

 The standard error of the regression slope coefficient (b₁) is estimated by

$$s_{b_1} = \frac{s_{\epsilon}}{\sqrt{\sum (x - \overline{x})^2}} = \frac{s_{\epsilon}}{\sqrt{\sum x^2 - \frac{(\sum x)^2}{n}}}$$

where:

 S_{b_1} = Estimate of the standard error of the least squares slope

$$s_{\epsilon} = \sqrt{\frac{SSE}{n-2}}$$
 = Sample standard error of the estimate

■ Rejection Rule

Reject
$$H_0$$
 if p -value $\leq \alpha$ or $t \leq -t_{\alpha/2}$ or $t \geq t_{\alpha/2}$

where:

 $t_{\alpha/2}$ is based on a t distribution with n - 2 degrees of freedom

1. Determine the hypotheses.

$$\frac{H_0: \beta_1 = 0}{H_a: \beta_1 \neq 0}$$

2. Specify the level of significance.

$$\alpha$$
 = .05

3. Select the test statistic.

$$t = \frac{b_1}{s_{b_1}}$$

4. State the rejection rule.

Reject H_0 if p-value \leq .05 or |t| > 3.182 (with 3 degrees of freedom)

5. Compute the value of the test statistic.

$$t = \frac{b_1 - \beta_1}{s_{b_1}} = \frac{5}{1.08} = 4.63$$

6. Determine whether to reject H_0 .

t = 4.541 provides an area of .01 in the upper tail. Hence, the *p*-value is less than .02. (Also, t = 4.63 > 3.182.) We can reject H_0 .

Hypothesis Tests for the Slope of the Regression Model

$$H_0$$
: $\beta_1 = 0$

$$H_1: \beta_1 \neq 0$$

$$H_0: \beta_1 \leq 0$$

$$H_1: \beta_1 > 0$$

$$H_0: \beta_1 \geq 0$$

$$H_1: \beta_1 < 0$$

$$t = \frac{b_1 - \beta_1}{S_b}$$

where:
$$S_b = \frac{S_e}{\sqrt{SSxx}}$$

$$S_e = \sqrt{\frac{SSE}{n-2}}$$

$$SS_{XX} = \sum_{n} X^{2} - \frac{\left(\sum_{n} X\right)^{2}}{n}$$

$$\beta_1$$
 = the hypothesized slope

$$df = n - 2$$

Confidence Interval for β_1

- We can use a 95% confidence interval for β_1 to test the hypotheses just used in the t test.
- lacksquare H_0 is rejected if the hypothesized value of eta_1 is not included in the confidence interval for β_1 .

Confidence Interval for β_1

• The form of a confidence interval for β_1 is:

Confidence Interval for β_1

Rejection Rule

Reject H_0 if 0 is not included in the confidence interval for β_1 .

• 95% Confidence Interval for β_1

$$b_1 \pm t_{\alpha/2} s_{b_1} = 5 + /-3.182(1.08) = 5 + /-3.44$$

or 1.56 to 8.44

Conclusion

0 is not included in the confidence interval.

Reject H_0

Hypotheses

$$H_0: \beta_1 = 0$$

$$H_a: \beta_1 \neq 0$$

Test Statistic

$$F = MSR/MSE$$

F-Test for Significance

F Test statistic:

$$F = \frac{MSR}{MSE}$$

where

$$MSR = \frac{SSR}{k}$$

$$MSE = \frac{SSE}{n-k-1}$$

where F follows an F distribution with k numerator degrees of freedom and (n - k - 1) denominator degrees of freedom (k = the number of independent variables in the regression model)

Rejection Rule

Reject
$$H_0$$
 if p -value $\leq \alpha$ or $F \geq F_{\alpha}$

where:

 F_{α} is based on an \emph{F} distribution with

1 degree of freedom in the numerator and

n - 2 degrees of freedom in the denominator

1. Determine the hypotheses.

$$\frac{H_0: \beta_1 = 0}{H_a: \beta_1 \neq 0}$$

- 2. Specify the level of significance. $\alpha = .05$
- 3. Select the test statistic. F = MSR/MSE
- 4. State the rejection rule. Reje

Reject H_0 if p-value $\leq .05$ or $F \geq 10.13$ (with 1 d.f. in numerator and 3 d.f. in denominator)

Jupyter Code

```
In [2]: import numpy as np
import matplotlib.pyplot as plt

In [3]: import seaborn as sns

In [4]: import pandas as pd
import matplotlib as mpl
import statsmodels.formula.api as sm
from sklearn.linear_model import LinearRegression
from scipy import stats
In [5]: tbl = pd.read_excel('C:/Users/Somi/Documents/regr.xlsx')
```


Jupyter code

Dep. Variable:

Covariance Type:

Model:

Method:

```
In [5]: t= tbl['TV Ads']
        c= tbl['car Sold']
In [8]: import statsmodels.api as s
        t = s.add constant(t)
        model1 = sm.OLS(c,t)
         result1 = model1.fit()
        print(result1.summary())
```

car Sold	R-squared:
OLS	Adj. R-squared:
Least Squares	F-statistic:

21.43 Fri, 30 Aug 2019 Prob (F-statistic): 0.0190 Date: Time: Log-Likelihood: -9.6687 No. Observations: AIC: 23.34 22.56 Df Residuals: BTC: Df Model:

nonrobust

OLS Regression Results

coef std err P>|t| [0.025 0.975] 2.469 const 10.0000 2.366 4.226 0.024 17.531 1.080 4.629 1.563 TV Ads 5.0000 0.019 8.437

Omnibus:	nan	Durbin-Watson:	1.214				
Prob(Omnibus):	nan	Jarque-Bera (JB):	0.674				
Skew:	0.256	Prob(JB):	0.714				
Kurtosis:	1.276	Cond. No.	6.33				

0.877

0.836

5. Compute the value of the test statistic.

$$F = MSR/MSE = 100/4.667 = 21.43$$

6. Determine whether to reject H_0 .

F = 17.44 provides an area of .025 in the upper tail. Thus, the p-value corresponding to F = 21.43 is less than 2(.025) = .05. Hence, we reject H_0 .

The statistical evidence is sufficient to conclude that we have a significant relationship between the number of TV ads aired and the number of cars sold.

Some Cautions about the **Interpretation of Significance Tests**

- Rejecting H_0 : $\beta_1 = 0$ and concluding that the relationship between x and y is significant does not enable us to conclude that a cause-and-effect relationship is present between x and y.
- Just because we are able to reject H_0 : $\beta_1 = 0$ and demonstrate statistical significance does not enable us to conclude that there is a <u>linear relationship</u> between x and y.

Thank You

