

Du kan bruke Matlab eller Excel til å tegne kurver.

Oppgave 1 (frivillig oppgave, men fortsatt pensum)

a) Figuren under viser et generelt blokkskjema av et målesystem. Forklar hva disse blokkene er, og hvilke oppgaver de har.

- b) Forklar forskjellen mellom statisk og dynamisk målenøyaktighet. Forklar hvordan du kan bestemme disse to former for målenøyaktighet til en måleomformer.
- c) Hvorfor kalibrerer man måleomformere? Hvordan gjøres dette i praksis?
- d) Hva menes med forsterknings- og nullpunktinfluens? Hvordan vil disse påvirke kalibreringskarakteristikken til en måleomformer? Nevn noen metoder for å redusere innvirkningen fra disse.
- e) Hva menes med måleomformerens:
 - Kalibreringskarakteristikk
 - Referansekarakteristikk:
 - o Uavhengig referansekarakteristikk
 - Absolutt referansekarakteristikk
 - o Endepunktbasert referansekarakteristikk
 - Nullpunktbasert referansekarakteristikk

Ta gjerne med skisser.

- f) Forklar hva som menes med følgende begreper i forbindelse med måleomformere:
 - o linearitet
 - o hysterese
 - o repeterbarhet og reproduserbarhet
 - o oppløsning
 - o forsterkning (følsomhet)
 - o øvre og nedre målegrense
 - o høyeste og laveste målegrense
 - o måleområde
 - o måleomfang

Oppgave 2

En måleomformer som måler forskyvninger har et måleområde [0,00 - 3,00]cm. Under kalibreringen måles følgende verdier:

Forskyvning, x[cm]	0,00	0,50	1,00	1,50	2,00	2,50	3,00
Måleverdi, y[mV]	0,00	16,5	32,0	44,0	51,5	55,5	58,0

- a) Tegn kurven for kalibreringskarakteristikk fra kalibreringsdata.
- b) Finn et matematisk uttrykk for endepunktbasert referansekarakteristikk. Tegn endepunktbasert referansekarakteristikk på samme figur fra punkt a.
- c) Tegn avvikskurve som en differanse mellom kalibreringskarakteristikk og endepunktbasert referansekarakteristikk på samme figur fra punkt a. Bestem maksimal endepunktbasert ulinearitet i prosent av målesignalomfanget.

Oppgave 3

En trykktransmitter har et måleområde [0 - 10]bar og et nominelt målesignalområde [4 - 20]mA. Den kalibrert i laboratoriet under følgende forhold:

- Omgivelsestemperatur: 20°C, forsyningsspenning: 10V (nominelt forhold)

- Omgivelsestemperatur: 20°C, forsyningsspenning: 12V

- Omgivelsestemperatur: 25°C, forsyningsspenning: 10V

		Målesignal, O[mA]						
Måleserie	Trykk, I[bar]	0,00	2,00	4,00	6,00	8,00	10,0	
1	$t_a = 20.0 {}^{\circ}\text{C}, V_s = 10.0 V$	4,00	7,20	10,4	13,6	16,8	20,0	
2	$t_a = 20.0 \text{ °C}, V_s = 12.0 \text{ V}$	4,00	8,40	12,8	17,2	21,6	26,0	
3	$t_a = 25.0 ^{\circ}\text{C}, V_s = 10.0 \text{V}$	6,00	9,20	12,4	15,6	18,8	22,0	

a) Bestem parametrene i måleomformermodellen:

$$O(I) = (K + K_M \cdot I_M) \cdot I + K_I \cdot I_I + a$$
 hvor I_M og I_I er influens

b) Hva blir målesignalet dersom I = 5.0bar, $V_s = 12.0V$ og $t_a = 25.0$ °C?

Oppgave 4

En trykktransmitter har et måleområde [0 - 8]bar og et nominelt målesignalområde [4 - 20]mA. Den er kalibrert i laboratoriet under følgende forhold:

• Forsyningsspenning: 24V (nominelt forhold)

• Forsyningsspenning: 28V

		Målesignal, O[mA]					
Måleserie	Trykk, I[bar]	0,00	2,00	4,00	6,00	8,00	
1	$V_s = 24.0 \text{ V}$	4,00	8,00	12,0	16,0	20,0	
2	$V_{s} = 28.0 \text{ V}$	6,00	11,6	17,2	22,8	28,4	

a) Bestem parametrene i måleomformermodellen for trykktransmitteren:

$$O(I) = (K + K_M \cdot I_M) \cdot I + K_I \cdot I_I + a$$
 hvor I_M og I_I er influens

b) Hva blir målesignalet dersom I = 5.0bar, $V_S = 26.0V$?

Oppgave 5

Figuren under viser et blokkskjema (statisk) av et analogt voltmeter. Når spenning påtrykkes dreiespolen, vil strømmen sette opp et dreiemoment T på akselen. Dreiemomentet utbalanseres av en torsjonsfjær slik at ved et gitt moment vil dreiespolen (koblet til viseren) dreie en gitt vinkel θ . Dvs. at θ (og T) er proporsjonal med spenningen V.

Nå viser det seg at ettergivenheten (G_s) kan variere med inntil \pm 10% av nominell verdi. Dette medfører at voltmeteret får for dårlig nøyaktighet. Du må derfor modifisere voltmeteret slik at det blir mindre følsomt for variasjoner i ettergivenheten (fjærstivhet: K_s , ettergivenhet: $G_s = 1/K_s$).

Du har følgende komponenter tilgjengelige: En summasjonsenhet, en spenningsforsterker med K = 1000 og en vinkelmåler med $K_m = 100 V/\text{rad}$.

- a) Skisser et blokkskjema hvor du bruker tilbakekobling (motkobling/kompensasjonsmåling) for å redusere virkningen av variasjoner i fjærstivheten.
- b) Hva blir virkningen av en 10% økning i G_s på det modifiserte systemet?

Oppgave 6

Under en repeterbarhetstest av en vorteks strømningsmåler (mer om det senere), er det foretatt 35 målinger av frekvens ved en konstant strømningsrate:

Måling, i	1	2	3	4	5	6	7	8	9	10
Målt frekvens, f[Hz]	208,6	208,3	208,7	208,5	208,8	207,6	208,9	209,1	208,2	208,4
Måling, i	11	12	13	14	15	16	17	18	19	20
Målt frekvens, f[Hz]	208,1	209,2	209,6	208,6	208,5	207,4	210,2	209,2	208,7	208,4
Måling, i	21	22	23	24	25	26	27	28	29	30
Målt frekvens, f[Hz]	207,7	208,9	208,7	208,0	209,0	208,1	209,3	208,2	208,6	209,4
Måling, i	31	32	33	34	35	-	-	-	-	-
Målt frekvens, f[Hz]	207,6	208,1	208,8	209,2	209,7	-	-	-	-	-

Bruk MATLAB eller Excel til å:

- tegne et histogram og en normalfordelingsfunksjon for målingene.
- beregne middelverdien og standardavviket til målingene.

Nyttige kommandoer i Matlab: histfit, normfit

Fasit:	
2b	19,3 · x
2c	25,9%
3a	$(1.6 + 0.3 \cdot I_{M}) \cdot I + 0.4 \cdot I_{I} + 4.0$
3b	17,0mA
4a	$(2.0 + 0.2 \cdot I_{M}) \cdot I + 0.5 \cdot I_{I} + 4.0$
4b	17,0mA
5b	0,009991rad/V
6	$208,6 \pm 0,6$