Homework 2

Aiden Kenny STAT GR5205: Linear Regression Models Columbia University

Octover 23, 2020

Question 1

We are considering the linear regression model

$$y = \beta_0 + \beta_1 x + \epsilon,$$

where \hat{y} is the estimated service time for a call, x is the number of copiers being serviced, and $\epsilon \sim N(0, \sigma^2)$. The least-squares estimator model is given by

$$\hat{y} = -0.5802 + 15.0352x \tag{1}$$

Throughout this question, we will be using a variety of base R functions to easily obtain the desired measurements.

(a) The 95% confidence interval for the mean service time when there are six copiers is given by

$$E[y] \in (86.8152, 92.44746).$$

Intuitively, this means that there are six copiers being serviced, we are 95% sure that the average service time for all service times falls within this range.

(b) The 95% prediction interval for the next service time when there are six copiers is

$$\hat{y} \in (71.43628, 107.8264).$$

As expected, we notice that the prediction interval is significantly wider than the confidence interval.

(c)

- (d) The ANOVA table has been printed in Table 1.
- (e) To determine if there is any linear relationship between x and y, we conduct an F-test, where $H_0: \beta_1 = 0$ against $H_a: \beta_1 \neq 0$. From Table 1, we see that the associated p-value is well below the significance level $\alpha = 0.05$, and so we reject H_0 . The data seems to indicate that there is in fact a linear relationship between X and Y.
- (f) The total variance explained by the model is known as the R^2 value, and is given by

$$R^2 = \frac{\text{SSR}}{\text{SST}} = \frac{76960}{80376} \approx 0.9575.$$

That is, bout 95.7% of Y's variation is explained by model (1), quite a significant reduction.

Source of Variation	df	Sum of Squares	Mean Square	f	$\Pr(>f)$
Copiers	1	76960	76960	968.66	$< 2.2 \times 10^{-16}$
Residuals	43	3416	79	_	_
Total	44	80376	_	_	_

Table 1: The ANOVA table for model (1).

Figure 1: The scatterplot matrix for Age, Severity, and Anxiety.

Question 2

- (a) The scatterplot matrix has been printed in Figure 1. We can see that there does seem to be a positive correlation between all three of the variables.
- (b) Let $\mathbf{y}, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbb{R}^n$ denote Patient Satisfaction, Age, Severity, and Anxiety, respectively, and let $\mathbf{X} = \begin{bmatrix} \mathbf{1} & \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix} \in \mathbb{R}^{n \times 4}$. The multiple regression model is given by

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},\tag{2}$$

where $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3)^T$ and $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$. It is worth emphasizing that $\boldsymbol{\epsilon}$ and \mathbf{y} are random vectors, while \mathbf{X} and $\boldsymbol{\beta}$ are fixed. The least-squares estimate for $\boldsymbol{\beta}$ (where each entry is rounded to two decimal places) is given by

$$\mathbf{b} = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 158.49 \\ -1.14 \\ -0.44 \\ -13.47 \end{bmatrix},$$

and our estimated model is given by $\hat{\mathbf{y}} = \mathbf{X}\mathbf{b}$. What this means is that, when holding all other variables constant, increasing Severity by one unit will cause Satisfaction to decrease by 0.44.

(c)