Tutorial Modul 4

AE3220 Dinamika Terbang 15 April 2021

Parameter Konfigurasi Bidang-bidang Kendali

Parameter Konfigurasi Bidang-bidang Kendali

AILERON	RUDDER				
Chord Inboard (Cfi):	[m]	Chord Inboard (Cfi):	[m]		
Chord Outboard (Cfo):	[m]	Chord Outboard (Cfo):	[m]		
Chord rata-rata (<i>C</i>):	[m]	Chord rata-rata (C):	[m]		
Semispan Inboard (<i>bfi</i>):	[m]	Semispan Inboard (b_{fi}):	[m]		
Semispan Outboard (<i>bfo</i>):	[m]	Semispan Outboard (<i>bfo</i>):	[m]		
Axis Hor-pos (C_b):	[m]	Axis Hor-pos (C_b):	[m]		
Tebal airfoil pos. axis (t _b):	[m]	Tebal airfoil pos. axis (<i>t_b</i>):	[m]		
Tebal airfoil 90% chord (\overline{t}_{90}):	[-]	Tebal airfoil 90% chord (\overline{t}_{90}):	[-]		
Tebal airfoil 95% chord (\overline{t}_{95}):	[-]	Tebal airfoil 95% chord (\overline{t}_{95}):	[-]		
Tebal airfoil 99% chord (\overline{t}_{99}):	[-]	Tebal airfoil 99% chord (\overline{t}_{99}):	[-]		
Kemiringan profil airfoil antara 90% - 99% →	Kemiringan profil airfoil antara 90% - 99% →				
$\tan\left(\frac{\phi_{TE}}{2}\right) = \frac{1}{2} \left[\frac{\overline{t_{90}} - \overline{t_{99}}}{0.09}\right]$:		$\tan\left(\frac{\phi_{TE}}{2}\right) = \frac{1}{2} \left[\frac{\overline{t}_{90} - \overline{t}_{99}}{0.09}\right]$:			
Kemiringan profil airfoil antara 95% - 99% →	Kemiringan profil airfoil antara 95% - 99% →				
$\tan\left(\frac{\phi_{TE}}{2}\right) = \frac{1}{2} \left[\frac{\overline{t}_{95} - \overline{t}_{99}}{0.04}\right]:$		$\tan\left(\frac{\phi_{TE}}{2}\right) = \frac{1}{2} \left[\frac{\overline{t_{95}} - \overline{t_{99}}}{0.04}\right]$:			

AILERON

Tipe aileron: plain flap (STYPE=4.0)

Hapus: namelist HTPLNF; variabel XH, ZH, ALIH pada namelist SYNTHS; serta control card NACA-H-; dan SYMFLP

Kode	Arti
<pre> \$ASYMFLP CHRDFI=1.17, CHRDFO=0.63, SPANFI=23.8, SPANFO=29.3, STYPE=4.0, NDELTA=9.0, DELTAL=-20.0, -15.0, -10.0, -5.0, 0.0,</pre>	 Namelist Asymmetric Flap Chord inboard bidang kendali aileron Chord outboard bidang kendali Semispan chord inboard bidang kendali Semispan chord outboard bidang kendali Tipe bidang kendali Jumlah sudut defleksi yang akan dihitung Sudut defleksi aileron kiri yang akan dihitung Sudut defleksi aileron kanan yang akan dihitung (sinkron dengan aileron kiri)

AILERON

$$\delta_{a} = \frac{\delta_{left}}{\left|\delta_{left}\right|} \left(\frac{\left|\delta_{left}\right| + \left|\delta_{right}\right|}{2}\right)$$

1	AUTOMATED STABILITY AND CONTROL METHODS PER APRIL 1976 VERSION OF DATCOM							TCOM
CHARACTERISTICS OF HIGH LIFT AND CONTROL DEVICES								
WING PLAIN TRAILING-EDGE FLA							ON	
					77kw_13601011			
		FLIGHT COND	OITIONS				R	EFERENCE DIN
MACH	ALTITUDE VELO	OCITY PRES	SSURE TEMP	ERATURE	REYNOLDS	REF	. REFER	ENCE LENGTH
CENTER								
NUMBER						ARE		
	M M/	SEC N/	M**2 D	EG K	1/ M	M**		
	11000.00 20							
0					ENT, CN, DUE TO			
	-DELTAR) = 40.0	30.0	20.0	10.0	0.0	-10.0	-20.0	-30.0
OALPHA O								
-4.0	3.582E-04	3 2025 04	2 1065 04	1 0025 04	0 0005100	-1.093E-04	2 1065 04	3 2025 04
-2.0	6.803E-05			2.076E-05		-1.093E-04 -2.076E-05		
0.0	-2.236E-04			-6.825E-05		6.825E-05		
2.0	-5.131E-04			-1.566E-04		1.566E-04		
4.0	-7.978E-04			-2.435E-04		2.435E-04		
6.0	-1.075E-03			-3.282E-04		3.282E-04		
8.0	-1.343E-03	-1.200E-03	-8.197E-04	-4.098E-04	0.000E+00	4.098E-04	8.197E-04	
10.0	-1.555E-03		-9.491E-04	-4.746E-04	0.000E+00	4.746E-04	9.491E-04	
12.0	-1.719E-03			-5.244E-04				
14.0	-1.825E-03							
16.0	-1.902E-03							
18.0	-1.961E-03					5.984E-04	1.197E-03	1.753E-03
20.0	-1.919E-03	-1.715E-03	-1.171E-03	-5.855E-04	0.000E+00	5.855E-04	1.171E-03	1.715E-03
0								
0			DELT	AL	DELTAR	(CL) ROLL		
0								
			20.	0	-20.0	1.5990E	-02	
			15.	0	-15.0	1.4291E	-02	
			10.	0	-10.0	9.7577E	-03	

AILERON

RUDDER

Tipe rudder: plain flap (STYPE=4.0)

Hapus: namelist HTPLNF dan WGPLNF berikut variabel-variabel didalamnya; variabel XW, ZW, ALIW, XH, ZH, ALIH pada namelist SYNTHS; serta serta control card NACA-H-; dan NACA-W-;

Ganti: VTPLNF menjadi WGPLNF; variabel XV dan ZV menjadi XW dan ZW; dan NACA-V- menjadi NACA-W-.

Kode	Arti
SOPTINS SREF=418.8, CBARR=8.127, BLREF=60.0, \$SYMFLP CHRDFI=2.77, CHRDFO=0.9, SPANFI=3.71, SPANFO=13.64, CB=0.33, TC=0.16, PHETE=0.13, PHETEP=0.14, FTYPE=1.0, NTYPE=1.0, NTYPE=1.0, NDELTA=9.0, DELTA=-20.0,-15.0,-10.0,-5.0,0.0, 5.0,10.0,15.0,20.0\$ SAVE NEXT CASE \$ASYFLP CHRDFI=2.77, CHRDFO=0.9, SPANFI=3.71, SPANFO=13.64, STYPE=4.0, NDELTA=9.0, DELTAR=-20.0,-15.0,-10.0,-5.0,0.0, 5.0,10.0,15.0,20.0, DELTAR=-20.0,-15.0,-10.0,-5.0,0.0, -5.0,-10.0,-15.0,-20.0\$	 Namelist Options – referensi panjang dan luas Luas planform sayap referensi (S) Panjang chord mac sayap referensi (c) Panjang span sayap referensi (b) Namelist Symmetric Flap Chord inboard bidang kendali Chord outboard bidang kendali Semispan chord inboard bidang kendali Semispan chord outboard bidang kendali Posisi horizontal sumbu putar bidang kendali Tebal profil airfoil pada posisi sumbu putar Kemiringan profil airfoil (90% -99%) Kemiringan profil airfoil (95% -99%) Tipe bidang kendali Bentuk leading edge bidang kendali Jumlah sudut defleksi yang akan dihitung Sudut defleksi yang akan dihitung ControlCard SAVE – menyimpan data sebelumnya ControlCard NEXT – Memulai perhitungan baru Namelist Asymmetric Flap (SYMFLP tertimpa) Chord inboard bidang kendali Semispan chord inboard bidang kendali Semispan chord outboard bidang kendali Tipe bidang kendali Jumlah sudut defleksi yang akan dihitung Sudut defleksi aileron kiri yang akan dihitung Sudut defleksi aileron kanan yang akan dihitung Sudut defleksi aileron kanan yang akan dihitung

RUDDER

$$\Delta C_n = \frac{\Delta C_m^*}{2} \frac{\overline{c}}{b}, \qquad \Delta C_\ell = \frac{\Delta C_\ell^*}{2}$$

dcl dr

dcn dr

		_		INCR	EMENTS	S DUE	ТО	DEE	FLECTI	ON		
	DELTA		D(CI	٦)	D(CM)	D	(CL	MAX	()	D (CI	O MIN)	
	-20.0		-0.06	53	0.237	4	0.	089		0.00	752	
	-15.0		-0.06	52	0.235	5	0.	072	(0.00)485	
	-10.0		-0.04	15	0.171	5	0.	052		0.00	269	
	-5.0		-0.02	23	0.085	7	0.	027	(0.00)134	
	0.0		0.00	00 -	0.0002	2	0.	000		0.00	0000	
	5.0		0.02	23 -	0.085	7	0.	027		0.00)134	
	10.0		0.04	15 -	0.171	5	0.	052	(0.00	269	
	15.0		0.06	52 -	0.235	5	0.	072		0.00)485	
	20.0		0.06	53 -	0.2420	0	0.	089	(0.00	752	
**	* NOTE	*	HINGE	MOMENT	DERIV	VATIVE	ES I	ARE	BASED	ON	TWICE	THE

DELTAL	DELTAR	(CL) ROLL
20.0	-20.0	7.0126E-03
15.0	-15.0	6.8905E-03