DeepSched: A Deep Representation Of Scheduling Policies For Heterogeneous Distributed Systems

Team #10

Mohamed Shawky Zaky, Sec: 2, BN: 16

Remonda Talaat, Sec: 1, BN: 20

Mahmoud Osman Adas, Sec: 2, BN: 21

Evram Youssef, Sec: 1, BN: 9

DeepSched Team 10

Demonstration Audio

DeepSched: A Deep Representation Of Scheduling Policies For Heterogeneous Distributed Systems

Mohamed Shawky
Computer Engineering
Cairo University
Email: mohamed.sabae99@eng-st.cu.edu.eg

Remonda Talaat
Computer Engineering
Cairo University

Email: Remonda.Bastawres99@eng-st.cu.edu.eg

Mahmoud Adas
Computer Engineering
Cairo University
Email: mahmoud.ibrahim97@eng-st.cu.edu.eg

Evram Youssef
Computer Engineering
Cairo University

Email: evram.narouz00@eng-st.cu.edu.eg

Introduction

- Task scheduling is a very critical factor to the performance of all systems.
- Heterogeneity of the systems adds extra layers of complexity to the scheduling problem.
- Heterogeneous task scheduling is divided into
 Heuristic and Approximate methods.

Introduction

- We study the approximation of heuristic methods using predictive models, specifically neural networks.
- We use HEFT as our heuristic baseline, genetic
 algorithms as our approximate baseline.

Proposed network

The network consists of 4 main blocks:

- 1. Task Encoder.
- 2. Machine Encoder.
- 3. Classification Module.
- Regression Module.

The network dimensions are adjusted on the **maximum** number of tasks and resources.

Full network code is available at:

https://github.com/DarkGeekMS/deepsched

Training Framework

- A database of tasks and resources is provided to both **DeepSched** network and **HEFT**.
- The network is trained on the loss between its predicted schedules and the schedules produced by HEFT.

Training Framework

The **network loss** is mainly composed of two parts:

- Classification loss of the running machine for each task.
- Regression loss for actual start and finish time of each task (to add some constraints on the loss function).

The **summation** of these two losses is used to train the network.

Evaluation Framework

- A database of both seen and unseen data is provided to the three discussed methods.
- The output schedules of the three methods are passed to a **simulation stub** that runs the schedules and calculates the **average turnaround time**.
- This is repeated on **multiple input sizes**.

Results Discussion

Our results are divided into two parts:

- 1) **Performance** analysis:
 - The opposite graph shows the average turnaround time for different input sizes.
 - We can see that the network can offer the same performance as HEFT on seen data and slightly lower performance on unseen data. However, it still outperforms GA.

Results Discussion

Our results are divided into two parts:

- 2) **Time** analysis:
 - We can see in the opposite table that the
 execution time of the network is constant over
 different input sizes, while the execution time of
 HEFT and GA grows rapidly.

Input Size	HEFT	GA	NN
486	31.5	67.5	0.125
10000	305.5	602.5	0.125
84654	670.0	3967.0	0.125

Future work and limitations

- This work can be improved in two possible ways:
- Approximation of other scheduling algorithms, where we can go with some optimal algorithms.
- 2) Dealing with dynamic scenarios through online network optimization or reinforcement learning environments, because static scenarios and maximum predefined input size are the main drawbacks of the proposed method.