```
1 . do "/Users/imisiaiyetan/Documents/My Econometrics Assignment 3.do"
 2.
 3 . * Name: Imisi Raphael Aiyetan
 4 . * Course: Econometrics 512
 5 . * Topic:Impact of capital accumulation and Human capital on Economic Growth
 8 . * Let's load the data from download folder
9 . clear
10 . set more off
11 . webuse auto
  (1978 Automobile Data)
12 .
13 . use "/Users/imisiaiyetan/Downloads/Table2 1.dta"
  (Production data for the USA, 2005)
15 . * Problem 1a: Run the multiple regression
17 . reg lnoutput lnlabor lncapital
        Source
                       SS
                               df
                                        MS
                                                       Number of obs = 51
                                                       F(2, 48) = 645.93
                                                                    = 0.0000
                  91.9246133
                                2 45.9623067
         Model
                                                       Prob > F
      Residual
                  3.41551772
                                48 .071156619
                                                        R-squared
                                                                     = 0.9642
                                                        Adj R-squared = 0.9627
                   95.340131
                               50 1.90680262
                                                        Root MSE
         Total
                                                                         .26675
      lnoutput
                     Coef. Std. Err.
                                           t P>|t|
                                                          [95% Conf. Interval]
                                          4.73
       lnlabor
                   .4683318
                              .0989259
                                                 0.000
                                                            .269428
                                                                       .6672357
     lncapital
                   .5212795
                               .096887
                                          5.38
                                                 0.000
                                                            .326475
                                                                       .7160839
                              .3962281
                                          9.81
                   3.887599
                                                 0.000
                                                           3.090929
                                                                       4.684269
        _cons
19 . * problem 1b: Regress lnoutput on lncapital to predict the first residual.
20 . *Similarly, regress Inlabour on Incapital to predict the second residual
22 . reg lnoutput lncapital
        Source
                                df
                                        MS
                                                        Number of obs =
                                                        F(1,
                                                                  49) = 883.41
         Model
                  90.3298259
                                1 90.3298259
                                                        Prob > F
                                                                    = 0.0000
      Residual
                   5.0103051
                                49 .102251124
                                                        R-squared
                                                                        0.9474
                                                        Adj R-squared =
                                                                         0.9464
         Total
                   95.340131
                                50 1.90680262
                                                        Root MSE
                                                                         .31977
      lnoutput
                      Coef.
                              Std. Err.
                                            t P>|t|
                                                           [95% Conf. Interval]
```


1.026825

.8967674

.0323595

lncapital

.9617962

29.72 0.000

User: Imisi Aiyetan

_cons 3.391633 .458073 7.40 0.000 2.471101 4.312165 23 . predict el, residuals 25 . reg lnlabor lncapital 51 Source df Number of obs = MS F(1, 49) = 582.21Model 86.3937937 1 86.3937937 Prob > F = 0.0000 Residual 7.27102154 49 .148388195 R-squared = 0.9224 Adj R-squared = 0.920893.6648153 50 1.87329631 Root MSE Total .38521 lnlabor Coef. Std. Err. t P>|t| [95% Conf. Interval] lncapital .9406082 .0389823 24.13 0.000 .8622704 1.018946 _cons -1.059006 .5518237 -1.92 0.061 -2.167937 .0499254 26 . predict e2, residuals 27 . 28 . reg e1 e2 Source df Number of obs = SS MS 51 F(1, 49) = 22.881 1.59478739 = 0.0000 Model 1.59478739 Prob > F Residual 3.41551769 49 .069704443 R-squared 0.3183 Adj R-squared = 0.30445.01030508 Total 50 .100206102 Root MSE = .26402 Std. Err. [95% Conf. Interval] e 1 Coef. t P>|t| .4683318 .0979112 4.78 0.000 .2715719 .6650918 e2 _cons -9.90e-10 .0369696 -0.00 1.000 -.0742933 .0742933 29 . 31 . * problem 1c: The next procedure is to regress lnoutput on the second residual 32 . 33 . reg lnoutput e2 Number of obs = Source SS df MS 51 F(1, 49) = 0.83 Model 1.59478745 1 1.59478745 Prob > F = 0.3657 Residual 49 1.91317028 93.7453436 R-squared 0.0167 Adj R-squared = -0.0033Total 95.340131 50 1.90680262 Root MSE = 1.3832 Std. Err. P>|t| [95% Conf. Interval] Coef. t lnoutput

e2 .4683318 .5129548 0.91 0.366 -.5624894 1.499153
_cons 16.94139 .1936831 87.47 0.000 16.55217 17.33061

34 .

35 .

36 .

37 . * problem 2: IV regression

38.

39 .

40 . * problem 2a: Instrumental Variable regression. lnoutlab is used as an

41 . *instrument in this regression. In that case, we replace Incapital with

42 . *Inoutlab and Inoutput is regressed on Inlabor Inoutlab

43 .

44 . ivregress gmm lnoutput lnlabor (lncapital = lnoutlab)

Instrumental variables (GMM) regression

Number of obs = 51 Wald chi2(2) = 335.04 Prob > chi2 = 0.0000 R-squared = 0.9048

.42193

Root MSE

GMM weight matrix: Robust

lnoutput	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
lncapital	1.385655	.4317705	3.21	0.001	.5394005	2.23191
lnlabor	3792855	.4425238	-0.86	0.391	-1.246616	.4880453
_cons	2.044667	1.018963	2.01	0.045	.0475363	4.041798

Instrumented: lncapital

45.

46.

47 . reg l
noutput l
nlabor l
noutlab

Source	ss	df	MS	Number of obs = 51
Model	95.340131	2	47.6700655	F(2, 48) = . Prob > F = 0.0000
Residual	2.0810e-11	48	4.3354e-13	R-squared = $1.0000Adj R-squared = 1.0000$
Total	95.340131	50	1.90680262	Root MSE = 6.6e-07

lnoutput	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnlabor	1		1.5e+07	0.000	.9999999	1
lnoutlab	1		3.6e+06	0.000	.9999996	1.000001
_cons	-6.02e-07		-0.37	0.715	-3.89e-06	2.69e-06

48 .

49 . * problem 2b: To perform two stage least squares, predict lncapital_hat

50 . *and thereafter regress lnoutput on lnlabour and lncapital_hat

51 .

52 . predict lncapital_hat
 (option xb assumed; fitted values)

STATA

53 .
54 . reg lnoutput lnlabor lncapital_hat

Source	ss	df	MS	Number of obs = 51
Model Residual	95.340131 4.0460e-11		47.6700655 8.4292e-13	F(2, 48) = . Prob > F = 0.0000 R-squared = 1.0000
Total	95.340131	50	1.90680262	Adj R-squared = 1.0000 Root MSE = 9.2e-07

lnoutput	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnlabor	2.09e-07	3.96e-07	0.53	0.600	-5.87e-07	1.01e-06
lncapital_hat	.999998	3.92e-07	2.5e+06	0.000	.999999	1.000001
_cons	1.38e-06	2.28e-06	0.60	0.548	-3.21e-06	5.96e-06

55 .

56 . * problem 2c: Regress lnoutput on lnlabor and lnoutlab and generate the

57 . *first coefficient. Similarly, Regress lncapital on lnlabor and lnoutlab and

58 . *generate the second coefficient

59 .

60 . reg lnoutput lnlabor lnoutlab

Source	SS	df	MS		Number of obs		51	
Model Residual	95.340131 2.0810e-11	2 48	47.6700655 4.3354e-13		F(2, 48) Prob > F R-squared	=		
Total	95.340131	50	1.90680262		Adj R-squared Root MSE		1.0000 6.6e-07	
lnoutput	Coef.	Std.	Err. t	P> t	[95% Conf.	In	terval]	

lnoutput	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnlabor	1	6.83e-08		0.000	.9999999	1
lnoutlab	1	2.81e-07		0.000	.9999996	1.000001
_cons	-6.02e-07	1.64e-06		0.715	-3.89e-06	2.69e-06

 $61 \cdot mat beta = e(b)$

62 . svmat beta, names(matcol)

63 .

64 . reg lncapital lnlabor lnoutlab

Source	ss	df	MS	5		Number of obs		51
Model Residual	92.9197874 4.72858879	2 48	46.4598			Prob > F R-squared	=	471.62 0.0000 0.9516
Total	97.6483762	50	1.95296	5752		Adj R-squared Root MSE		0.9496
lncapital	Coef.	Std.	Err.	t	P> t	[95% Conf.	Int	erval]

User: Imisi Aiyetan

lnlabor	.9954032	.0325471	30.58	0.000	.9299629	1.060843
lnoutlab	.7216804	.1341345	5.38	0.000	.4519849	.9913759
_cons	-1.475596	.7796798	-1.89	0.064	-3.043248	.0920548

- $65 \cdot \text{mat gamma} = e(b)$
- 66 . svmat gamma, names(matcol)
- 67 .
- 68 . * Take the ratio of the two coefficients derived
- 69.
- 70 . scalar alpha_hat1 = betalnoutlab/gammalnoutlab
- 71 . display alpha_hat1
 - 1.3856551
- 72 .
- 73 . * problem 2d: Check using another approach, if we will arrive at the same
- 74 . * alpha_hat1. The procedure is as follows
- 75 .
- 76 . * regress lnoutlab on lnlabor and predict the first residuals
- 77 .
- 78 . reg lnoutlab lnlabor

Source	SS	df	MS		Number of obs	= 51
Model Residual	.039343945	1 49	.039343945		F(1, 49) Prob > F R-squared Adj R-squared	= 0.5557 = 0.0071
Total	5.51466099	50	.11029322		Root MSE	= .33428
lnoutlab	Coef.	Std. E	Err. t	P> t	[95% Conf.	Interval]
lnlabor _cons	0204951 4.999017	.03453		0.556 0.000	0899052 4.14754	.048915 5.850494

- 79 . predict e_z, residuals
- 80.
- 81 . * regress lnoutput on lnlabor and predict the second residuals
- 82.
- 83 . reg lnoutput lnlabor

Source	SS	df	MS		Number of obs		51
 Model Residual	89.8648125 5.47531855	1 49	89.864812		F(1, 49) Prob > F R-squared	=	804.22 0.0000 0.9426
Total	95.340131	50	1.90680262	_ 2	Adj R-squared Root MSE	=	0.9414
lnoutput	Coef.	Std.	Err.	P> t	[95% Conf.	In	terval]
lnlabor _cons	.9795049 4.999017	.0345			.9100948 4.14754		.048915

```
84 . predict e_y, residuals
```

85 .

86 . * regress lnoutlab on lnlabor and predict the third residuals

87 .

88 . reg lncapital lnlabor

	Source	SS	df	MS		Number of obs F(1, 49)	=	51 582.21
	Model Residual	90.0681184 7.5802578	1 49	90.0681184		Prob > F R-squared	=	0.0000 0.9224
-	Total	97.6483762	50	1.95296752		Adj R-squared Root MSE		0.9208
_	lncapital	Coef.	Std.	Err. t	P> t	[95% Conf.	Ιn	terval]

24.13 0.000

0.000

4.28

.8989427

1.130229

1.062282

3.133964

```
89 . predict e_t, residuals
```

lnlabor

_cons

90 .

91 . * Estimate the first covariance using the second and the first residuals

.0406402

.4985469

.9806122

2.132096

92

93 . corr e_y e_z, covariance (obs=51)

	e_y	e_z
е_у	.109506	
e z	.109506	.109506

$$94 \cdot \text{scalar scov1} = r(\text{cov } 12)$$

95 .

96 . * Estimate the second covariance using the third and the first residuals

97.

98 . corr e_t e_z, covariance (obs=51)

	e_t	e_z
e_t	.151605	
e z	.079029	.109506

```
99 . scalar scov2 = r(cov_12)
```

100 .

101 . * Finally, divide the first covariance by the second covariance.

102.

103 . scalar alpha_hat2 = scov1/scov2

User: Imisi Aiyetan

