0.1 H31 数学必修

$$\boxed{1} \ (1) \ ^tAA = \begin{pmatrix} 1 & 0 \\ 0 & a^2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & a^2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a^4 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
である. よって固有値は $0,1,a^4$ である.

$$(2)P = [p_{ij}] \quad (p_{ij} = p_{ji})$$
 とする. $AP = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ a^2p_{21} & a^2p_{22} & a^2p_{23} \end{pmatrix} = \begin{pmatrix} 0 & a & a \\ a^3 & a^4 & -a^4 \end{pmatrix}$ より

$$P = egin{pmatrix} 0 & a & a \ a & a^2 & -a^2 \ a & -a^2 & b \end{pmatrix} \quad (b \in \mathbb{R})$$
 である.

(3)P が直交行列なら列ベクトル全体は正規直交基底をなすから, $a^2-a^4-a^2b=0,-a^3+ab=0$ である. よって $a=0,\pm 1/\sqrt{2}$ である. a=0 なら一列目が零ベクトルとなるから基底をなさない. よって $a\neq 0$ である. $a=\pm 1/\sqrt{2}$ とすると b=1/2 である. このとき正規直交基底をなすことが確認できる. よって $a=\pm 1/\sqrt{2}$

(4)(3) より $a=\pm 1/\sqrt{2}$ である. AP=B より $^t(AP)AP=^tBB$ である. tAA の固有値 λ とその固有ベクトル v に対して $^tBB(P^{-1}v)=^tP^tAAv=P^{-1}\lambda v=\lambda(P^{-1}v)$ である. よって tBB の固有値は 0,1,1/4 である.

(2) 単位行列を E とする。 $B^4=E$ であるから B の位数は 4. $A^n=\begin{pmatrix} \omega_p^n & 0 \\ 0 & (-1)^n\omega_p^n \end{pmatrix}$ である。 ω_p は 1 の原始 p 乗根であり p は奇数であるから,A の位数は 2p である。

(3)G は A,B で生成されるから G の任意の元は $P=A^{i_1}B^{j_1}A^{i_2}\dots A^{i_n}B^{j_n}$ $(i_1,j_1,\dots,i_n,j_n\in\mathbb{Z})$ と表せる. A,B は共に位数が有限であるから $i_k,j_k\geq 0$ と仮定して一般性を失わない. $BA=AB^3$ より $B^{j_{k-1}}A^{i_k}=B^{j_{k-1}-1}AB^3A^{i_k-1}=AB^{3j_k}A^{i_k-1}=A^2B^{9j_k}A^{i_k-2}=\dots=A^{i_k}B^{3^{i_k}j_k}$ である. P に繰り返しこれを適用することで A^iB^j $(i,j\geq 0)$ とできる.

 $(4)A^i$ は対角成分以外が 0 であるから $A^i=B^j\neq E$ とすると,j=2 である. $\omega_p^i=-1$ なら $\omega_p^{2i}=1$ より 2i=pq なる整数 q が存在する.2 は p を因数にもたないから i は p の倍数である.これは $\omega_p^p=1$ に矛盾.よって $H_1\cap H_2=\{E\}$ である.

 $(5)A^iB^j \in G, B^n \in H_2$ を任意にとると, $(A^iB^j)^{-1}B^n(A^iB^j) = B^{4-j}A^{2p-i}B^nA^iB^j = B^{4-j}A^{2p-i}A^iB^{3n}B^j = B^{3n} \in H_2$ より H_2 は G の正規部分群である. $H_2H_1 = G$ も明らかである. したがって $G \cong H_2 \rtimes H_1$ である. すなわち G の位数は $2p \cdot 4 = 8p$ である.

 $A^iB^j=A^sB^t$ とすると、 $A^{i-s}=B^{t-j}$ であり、(4) より i=s,j=t である.よって $G=\{A^iB^j\mid 0\leq i\leq 2p-1,0\leq j\leq 3\}$ である.よって G の位数は 8p である.

 $\boxed{3}$ $(1)(x,y)=(r\cos\theta,r\sin\theta)$ と極座標変換する.ヤコビアンはrである.積分領域は $D'=\{(r,\theta)\mid 0\leq r\leq 1,-\pi/4\leq \theta\leq \pi/4\}$ である.

$$\iint_{D} \frac{x}{1+x^{2}+y^{2}} dx dy = \iint_{D'} \frac{r \cos \theta}{1+r^{2}} r dr d\theta = \int_{-\pi/4}^{\pi/4} \cos \theta d\theta \int_{0}^{1} 1 - \frac{1}{1+r^{2}} dr$$
$$= [\sin \theta]_{-\pi/4}^{\pi/4} [r - \arctan r]_{0}^{1} = \sqrt{2} (1 - \frac{\pi}{4})$$

(2)

$$\begin{split} f_x &= 2xe^{-x^2-y^2} + (x^2-y^2)(-2x)e^{-x^2-y^2} = 2(-x^3+xy^2+x)e^{-x^2-y^2} \\ f_y &= -2ye^{-x^2-y^2} + (x^2-y^2)(-2y)e^{-x^2-y^2} = 2(y^3-x^2y-y)e^{-x^2-y^2} \\ f_{xx} &= 2(-3x^2+y^2+1)e^{-x^2-y^2} + 2(-x^3+xy^2+x)(-2x)e^{-x^2-y^2} = 2(2x^4-5x^2-2x^2y^2+y^2+1)e^{-x^2-y^2} \\ f_{yy} &= 2(3y^2-x^2-1)e^{-x^2-y^2} + 2(y^3-x^2y-y)(-2y)e^{-x^2-y^2} = 2(-2y^4+5y^2+2x^2y^2-x^2-1)e^{-x^2-y^2} \\ f_{xy} &= 2(xy)e^{-x^2-y^2} + 2(-x^3+xy^2+x)(-2y)e^{-x^2-y^2} = 4(x^3y-xy^3)e^{-x^2-y^2} \end{split}$$

である. $f_x(x,y)=f_y(x,y)=0$ とすると, $(x,y)=(0,0),(0,\pm 1),(\pm 1,0)$ である. 各点におけるヘッシアンを考える. (0,0) において $\begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$ で,行列式が負であるから鞍点. $(0,\pm 1)$ において $\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$ で,行列式が

正で 1,1 成分が正であるから極小点. $(\pm 1,0)$ において $\begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix}$ で,行列式が正であり,1,1 成分が負であるから極大点である.

 $(3)|a_n| \leq |a_{n-1}|/c \leq |a_{n-2}|/c^2 \leq \cdots \leq |a_0|/c^n$ である.よって $\sum\limits_{n=0}^\infty |a_nx^n| \leq |a_0| \sum\limits_{n=0}^\infty (\frac{|x|}{c})^n$ である.右辺は |x|/c < 1 で収束するから |x| < c で収束する.よって絶対収束するから収束する.

4 $(1)p,q \in X,p \neq q$ を任意にとる。d(p,q) > 0 である。r = d(p,q)/2 とする。 $x \in X$ に対して $B(x,\varepsilon) = \{y \in X \mid d(x,y) < \varepsilon\}$ とすると, $B(x,\varepsilon)$ は開集合である。 $y \in B(p,r) \cap B(q,r)$ とすると,d(p,y) < r,d(q,y) < r であるが,d(p,q) < d(p,y) + d(y,q) = 2r = d(p,q) となり矛盾。よって $B(p,r) \cap B(q,r) = \emptyset$ であるからハウスドルフ。

 $(2)n \in \mathbb{Z}$ に対して開集合 (-1/2+n,n+1/2) に対して $(-1/2+n,n+1/2) \cap \mathbb{Z} = \{n\}$ であるから離散位相.

(3)f(A) の開被覆 $S=\{U_{\lambda}\mid \lambda\in\Lambda\}$ を任意にとる. $A\subset\bigcup_{\lambda\in\Lambda}f^{-1}(U_{\lambda})$ より有限部分集合 $\Lambda'\subset\Lambda$ が存在して $A\subset\bigcup_{\lambda\in\Lambda'}f^{-1}(U_{\lambda})$ である. よって $f(A)\subset\bigcup_{\lambda\in\Lambda'}U_{\lambda}$ であるからコンパクト.