Partition Scheduling in Distributed Integrated Modular Avionics

João Miguel Fonseca Gonçalves

joaomfgoncalves@tecnico.ulisboa.pt

Instituto Superior Técnico

November 29, 2019

Outline

1 Motivation

Avionic Architectures Partition Schedules Objectives

2 Partition Scheduling Model

Variables
Distribution Constraints
Communication Constraints
Timing Constraints
Optimization

3 Methodology

Mixed Integer Linear Programming Heuristic optimization Global Optimization

- 4 Results
 - Algorithmic Performance Scheduling Tool
- **5** Conclusions

Avionic Architectures

Federated Avionics

 Dedicated hardware for each application

SW HW HW<

Federated Avionics

IMA

- Resource sharing between unrelated applications
- · Active research area

Integrated Modular Avionics

Distributed Integrated Modular Avionics

Benefits:

- · Maintains safety
- Efficient usage of resources
- Reduced space, weight and power
- Uses open standards
- Enables the involvement of smaller players

Distributed IMA

Strong Partitioning

How is this achievable?

Space Partitioning

Statically isolated memory for each application

Time Partitioning

- Guaranteed processor time for each application
- Deterministic scheduling

Arinc 653

Avionics Application Software Standard Interface

Core Processing Module

Partition Schedules

Characteristics

- Static
- Strictly periodic
- Functional requirements:
 - Inter-partition communication
 - Access to resources
 - Redundancy configuration

Status

- Manual, iterative process
- In-house solutions

Major Time Frame

Partition Schedules - Examples

Objectives

Challenges:

- NP-completeness
- Defining the system requirements
- Reconfiguration is lengthy and expensive

Objectives:

- Comprehensive mathematical description
- · Automate schedule generation and validation
- Find flexible solutions

Partition Scheduling Model

- 1 Motivation
- 2 Partition Scheduling Model
- 3 Methodology
- 4 Results
- 5 Conclusions

The Partition Scheduling Problem

Schedule N_p partitions:

 T_i - partition i period

 e_i – partition i execution time (WCET)

 \boldsymbol{s}_i – partition i memory requirement

Find, for each partition i:

 f_i - assigned module

 t_i – starting offset

in $N_{\it c}$ modules:

 S_m – module m memory capacity

Distribution Constraints

- Domain partitions can be scheduled in only some modules
- Exclusion some partitions must be scheduled in distinct modules
- Inclusion some partitions must be scheduled in the same module
- Memory a module's memory must not be exceeded
- Uniqueness a partition can only be scheduled in one module

Inter-partition Communication

- $E_{i,j}$ communication 'chains'
- $\tau_{m,n}$ inter-module communication delay
- Synchronous communication

 $E_{1,2}$

Timing Constraints

No temporal overlap between two partitions in the same module

Theorem [1]:

$$\begin{split} g_{i,j} &= gcd \left\{ T_i, T_j \right\} \\ e_i &\leq mod \left\{ t_j - t_i, g_{i,j} \right\} \leq T_j - e_j \end{split}$$

Timing Constraints

- Multiple windows of execution require an execution penalty, arepsilon
- Response time, r_i , is bounded

Optimizing Potential Execution

Partition 1 cannot increase its execution

It is possible to increase execution times without rescheduling

Optimizing Potential Execution

Objective: maximize α

lpha – 'Minimum factor that scales all execution windows without overlaps'

Partition Scheduling Model

- 1 Motivation
- 2 Partition Scheduling Model
- 3 Methodology
- 4 Results
- 5 Conclusions

Mixed Integer Linear Program

- Optimization problem with both integer and real-valued variables
- Branch and bound / branch and cut algorithms
- Yields an optimal solution

Best Response Algorithm [3]

- Based on the Game Theory algorithm of the same name
- Partitions sequentially move to the best available offset
- ullet When no partition can improve its lpha value, equilibrium is reached
- Optimality dependant on the starting point
- Time complexity: $\mathcal{O}(N \cdot T^{N-1})$

Global Optimization

Explore different distributions of partitions among modules

- Optimize each module's schedule using the previous algorithms
- Change the distribution and repeat

Stochastic Optimization Algorithms

Operators:

- Move partitions between two modules
- Swap partitions between two modules
- Shuffle partition offsets
- Add/remove execution windows

Meta-heuristic algorithms:

- Simulated Annealing
- Tabu Search
- Genetic Algorithm

Partition Scheduling Model

- 1 Motivation
- 2 Partition Scheduling Model
- 3 Methodology
- 4 Results
- 5 Conclusions

Best Response Algorithm

Test Cases

Designation	Modules	Partitions	Chains	α_{best}
2M6P	2	6	0	5.5*
4M10P	4	10	3	6.403
4M20P	4	20	8	2.875
8M40P	8	40	15	2.984
20M100P	20	100	40	2.325
3 <i>M</i> 15 <i>P-S</i>	3	15	3	1.26

$$T \in \{100, 200, 500, 1000\}$$

Feasible Solution

Instance	t_{MILP}	$t_{heuristic}$ (median)
2 <i>M</i> 6 <i>P</i>	1.00 s	0.593 s
4M10P	$1.34\mathrm{s}$	0.595s
4M20P	$6.29\mathrm{s}$	0.830s
8M40P	310.7s	1.155 s
20M100P	$> 24 \mathrm{h}$	23.32 s
3 <i>M</i> 15 <i>P-S</i>	NA	74.53 s

Improved solution

MILP solver does not converge in under $24 \, \text{h}$, except for 2M6P.

Improved solution

Improved solution

Achievements

- A scheduling tool and framework that supports a variety of constraints
- Capable of producing flexible solutions in moderate amounts of time
- A mathematical model that yields optimal solutions when time is not an issue

Recommendations for Future Work

Integration with other (D)IMA configuration or V&V frameworks

Partition scheduling in multicore (D)IMA systems

Selected Bibliography

- [1] J.H.M. Korst. 'Periodic multiprocessor scheduling'. English.
 PhD thesis. Technische Universiteit Eindhoven, Department of
 Mathematics and Computer Science, 1992. DOI: 10.6100/IR388787.
- [2] Slawomir Samolej. 'ARINC Specification 653 Based Real-Time Software Engineering.' In: *e-Informatica* 5.1 (2011), pp. 39–49.
- [3] Ahmad Al Sheikh, Olivier Brun, Pierre-Emmanuel Hladik and Balakrishna J Prabhu. 'Strictly periodic scheduling in IMA-based architectures'. In: *Real-Time Systems* 48.4 (2012), pp. 359–386. DOI: 10.1007/s11241-012-9148-y.
- [4] Clément Pira and Christian Artigues. 'Line search method for solving a non-preemptive strictly periodic scheduling problem'. In: *Journal of Scheduling* 19.3 (2016), pp. 227–243. DOI: 10.1007/s10951-014-0389-6.