Lesson 3

Dynamical Systems

Math 574 - Topics in Logic Penn State, Spring 2014

Jan Reimann

2-2

Subshifts

Tops logical Dynamical System Compact metric space T: X -, X Shift system: $X = A^{N} A$ finite

T: $A^{N} \rightarrow A^{N}$ shift

T: $X \rightarrow T(X)$ $T: X \mapsto T(x)$ $T(x)_n = X_{n+1}$

$$T(x)_{n} = X_{n+1}$$

$$X = X_{0} X_{1} X_{2} ...$$

$$T_{X} = X_{1} X_{2} X_{3} ...$$

$$T_{NO} = 0.000 \text{ shift} : T : A^{Z} \rightarrow A^{Z}$$

$$T(x)_{n} = X_{n+1} \qquad n \in Z$$

(A^N, T) Full shift (our-nded)

(A^N, T) Full shift

Subshift:
$$S \subseteq A^N$$
 (A^N) S.L.

1) S closed (topologically)

2) one sided: $T(S) \subseteq S$ (closed under shift)

the sided: $T(S) \subseteq S$ (shift-invariant)

$$EXA$$
: $S = A^{N}$

$$S = \{0,0\}$$

$$S = \{0,0\}$$

Prop: SEAM is a subshift

Exercise III Nue exist WEASIN

fortilder words S = { x: no weW is a substime

 EXA: Given $W \subseteq A$ white $S(W) = \{ x : x \text{ has no subtring in } W \}$ $\{ x \in A : x \text{ has no subtring in } W \}$

• $W = \{11, 101, 1001, ... \}$ $S(W) = \{x: x has at most one 1\}$

 $W = \left\{ \left[\left[\left(\frac{2n+1}{n} \right) : n \right\} \right] \right\}$ $\leq \left(\left[\left(\frac{1}{n} \right) \right] = \left\{ \left[\left(\frac{1}{n} \right) : n \right] \right\}$ $\leq \left(\left[\frac{1}{n} \right] \right] = \left\{ \left[\left(\frac{1}{n} \right) : n \right] \right\}$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right] \right\}$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right] \right\}$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right] \right\}$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right] \right\}$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right] \right]$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right] \right\}$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right] \right]$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right] \right]$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right] \right]$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right] \right]$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right] \right]$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right]$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right] \right]$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left(\frac{1}{n} \right) : n \right] \right]$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left[\frac{1}{n} \right] : n \right]$ $\leq \left(\left[\frac{1}{n} \right] : n \right]$ $\leq \left(\left[\frac{1}{n} \right] = \left[\left[\frac{1}{n} \right] : n \right]$ $\leq \left(\left[\frac{1}{n} \right] : n \right]$ \leq

Clames of Subshifts

- · clanified via complexity of set W (forbiddun words)
- · Shifts of finite type (SFT)

 White
- · Sofic shifts

 W regular + add: tional condition