SEQUENCE LISTING

- <110> MACIAG, Thomas ZIMRIN, Ann SMALL, Deena PRUDOVSKY, Igor
- <120> THERAPEUTIC AND DIAGNOSTIC METHODS AND COMPOSITIONS BASED ON JAGGED/NOTCH PROTEINS AND NUCLEIC ACIDS
- <130> 053689-5002-01
- <140> 09/579,536
- <141> 2000-05-24
- <150> US 09/199,865
- <151> 1998-11-25
- <150> PCT/US97/09407
- <151> 1997-05-30
- <150> US 60/018,841
- <151> 1996-05-31
- <160> 56
- <170> PatentIn version 3.1
- <210> 1
- <211> 1218
- <212> PRT
- <213> Homo sapiens
- <400> 1
- Met Arg Ser Pro Arg Thr Arg Gly Arg Ser Gly Arg Pro Leu Ser Leu 1 5 10 15
- Leu Leu Ala Leu Leu Cys Ala Leu Arg Ala Lys Val Cys Gly Ala Ser 20 25 30
- Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly Glu 35 40 45
- Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp Arg 50 55 60
- Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu Lys 65 70 75 80
- Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly Ser 85 90 95
- Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala Ser 100 105 110
- Arg Gly Asn Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala Trp

		115					120					125			
Pro	Arg 130	Ser	Tyr	Thr	Leu	Leu 135	Val	Glu	Ala	Trp	Asp 140	Ser	Ser	Asn	Asp
Thr 145	Val	Gln	Pro	Asp	Ser 150	Ile	Ile	Glu	Lys	Ala 155	Ser	His	Ser	Gly	Met 160
Ile	Asn	Pro	Ser	Arg 165	Gln	Trp	Gln	Thr	Leu 170	Lys	Gln	Asn	Thr	Gly 175	Val
Ala	His	Phe	Glu 180	Tyr	Gln	Ile	Arg	Val 185	Thr	Cys	Asp	Asp	Tyr 190	Tyr	Tyr
Gly	Phe	Gly 195	Суз	Asn	Lys	Phe	Cys 200	Arg	Pro	Arg	Asp	Asp 205	Phe	Phe	Gly
His	Tyr 210	Ala	Cys	Asp	Gln	Asn 215	Gly	Asn	Lys	Thr	Cys 220	Met	Glu	Gly	Trp
Met 225	Gly	Pro	Glu	Cys	Asn 230	Arg	Ala	Ile	Cys	Arg 235	Gln	Gly	Cys	Ser	Pro 240
Lys	His	Gly	Ser	Cys 245	Lys	Leu	Pro	Gly	Asp 250	Cys	Arg	Cys	Gln	Tyr 255	Gly
Trp	Gln	Gly	Leu 260	Tyr	Cys	Asp	Lys	Cys 265	Ile	Pro	His	Pro	Gly 270	Cys	Val
His	Gly	Ile 275	Cys	Asn	Glu	Pro	Trp 280	Gln	Cys	Leu	Cys	Glu 285	Thr	Asn	Trp
Gly	Gly 290	Gln	Leu	Cys	Asp	Lys 295	Asp	Leu	Asn	Tyr	Cys 300	Gly	Thr	His	Gln
Pro 305	Cys	Leu	Asn	Gly	Gly 310	Thr	Суѕ	Ser	Asn	Thr 315	Gly	Pro	Asp	Lys	Tyr 320
Gln	Cys	Ser	Суѕ	Pro 325	Glu	Gly	Tyr	Ser	Gly 330	Pro	Asn	Cys	Glu	Ile 335	Ala
Glu	His	Ala	Cys 340	Leu	Ser	Asp	Pro	Cys 345	His	Asn	Arg	Gly	Ser 350	Cys	Lys
Glu	Thr	Ser 355	Leu	Gly	Phe	Glu	Cys 360	Glu	Суѕ	Ser	Pro	Gly 365	Trp	Thr	Gly
Pro	Thr 370	Cys	Ser	Thr	Asn	Ile 375	Asp	Asp	Cys	Ser	Pro 380	Asn	Asn	Cys	Ser
1				_		_	_		_			_	_		_

His Gly Gly Thr Cys Gln Asp Leu Val Asn Gly Phe Lys Cys Val Cys

Pro Pro Gln Trp Thr Gly Lys Thr Cys Gln Leu Asp Ala Asn Glu Cys

Glu Ala Lys Pro Cys Val Asn Ala Lys Ser Cys Lys Asn Leu Ile Ala

390

2

395

420 425 430

Ser	Tyr	Tyr 435	Cys	Asp	Cys	Leu	Pro 440	Gly	Trp	Met	Gly	Gln 445	Asn	Cys	Asp
Ile	Asn 450	Ile	Asn	Asp	Cys	Leu 455	Gly	Gln	Cys	Gln	Asn 460	Asp	Ala	Ser	Cys
Arg 465	Asp	Leu	Val	Asn	Gly 470	Tyr	Arg	Суѕ	Ile	Cys 475	Pro	Pro	Gly	Tyr	Ala 480
Gly	Asp	His	Cys	Glu 485	Arg	Asp	Ile	Asp	Glu 490	Суѕ	Ala	Ser	Asn	Pro 495	Cys
Leu	Asn	Gly	Gly 500	His	Cys	Gln	Asn	Glu 505	Ile	Asn	Arg	Phe	Gln 510	Cys	Leu
Cys	Pro	Thr 515	Gly	Phe	Ser	Gly	Asn 520	Leu	Cys	Gln	Leu	Asp 525	Ile	Asp	Tyr
Cys	Glu 530	Pro	Asn	Pro	Cys	Gln 535	Asn	Gly	Ala	Gln	Cys 540	Tyr	Asn	Arg	Ala
Ser 545	Asp	Tyr	Phe	Cys	Lys 550	Суѕ	Pro	Glu	Asp	Tyr 555	Glu	Gly	Lys	Asn	Cys 560
Ser	His	Leu	Lys	Asp 565	His	Cys	Arg	Thr	Thr 570	Pro	Суѕ	Glu	Val	Ile 575	Asp
Ser	Cys	Thr	Val 580	Ala	Met	Ala	Ser	Asn 585	Asp	Thr	Pro	Glu	Gly 590	Val	Arg
Tyr	Ile	Ser 595	Ser	Asn	Val	Cys	Gly 600	Pro	His	Gly	Lys	Cys 605	Lys	Ser	Gln
Ser	Gly 610	Gly	Lys	Phe	Thr	Cys 615	Asp	Cys	Asn	Lys	Gly 620	Phe	Thr	Gly	Thr
Tyr 625	Cys	His	Glu	Asn	Ile 630	Asn	Asp	Cys	Glu	Ser 635	Asn	Pro	Cys	Arg	Asn 640
Gly	Gly	Thr	Cys	Ile 645	Asp	Gly	Val	Asn	Ser 650	Tyr	Lys	Cys	Ile	Cys 655	Ser
Asp	Gly	Trp	Glu 660	Gly	Ala	Tyr	Cys	Glu 665	Thr	Asn	Ile	Asn	Asp 670	Суѕ	Ser
Gln	Asn	Pro 675	Cys	His	Asn	Gly	Gly 680	Thr	Cys	Arg	Asp	Leu 685	Val	Asn	Asp
Phe	Tyr 690	Cys	Asp	Cys	Lys	Asn 695	Gly	Trp	Lys	Gly	Lys 700	Thr	Cys	His	Ser
Arg 705	Asp	Ser	Gln	Cys	Asp 710	Glu	Ala	Thr	Cys	Asn 715	Asn	Gly	Gly	Thr	Cys 720
Tvr	Asp	Glu	Glv	Asp	Ala	Phe	Lvs	Cvs	Met	Cvs	Pro	Glv	Gl v	Trp	Glu

725 730 735

Gly Thr Thr Cys Asn Ile Ala Arg Asn Ser Ser Cys Leu Pro Asn Pro 740 745 750

Cys His Asn Gly Gly Thr Cys Val Val Asn Gly Glu Ser Phe Thr Cys
755 760 765

Val Cys Lys Glu Gly Trp Glu Gly Pro Ile Cys Ala Gln Asn Thr Asn 770 780

Asp Cys Ser Pro His Pro Cys Tyr Asn Ser Gly Thr Cys Val Asp Gly 785 790 795 800

Asp Asn Trp Tyr Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro Asp 805 810 815

Cys Arg Ile Asn Ile Asn Glu Cys Gln Ser Ser Pro Cys Ala Phe Gly 820 825 830

Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr Arg Cys Val Cys Pro Pro 835 840 845

Gly His Ser Gly Ala Lys Cys Gln Glu Val Ser Gly Arg Pro Cys Ile 850 855 860

Thr Met Gly Ser Val Ile Pro Asp Gly Ala Lys Trp Asp Asp Asp Cys 865 870 875 880

Asn Thr Cys Gln Cys Leu Asn Gly Arg Ile Ala Cys Ser Lys Val Trp 885 890 895

Cys Gly Pro Arg Pro Cys Leu Leu His Lys Gly His Ser Glu Cys Pro 900 905 910

Ser Gly Gln Ser Cys Ile Pro Ile Leu Asp Asp Gln Cys Phe Val His 915 920 925

Pro Cys Thr Gly Val Gly Glu Cys Arg Ser Ser Leu Gln Pro Val 930 935 940

Lys Thr Lys Cys Thr Ser Asp Ser Tyr Tyr Gln Asp Asn Cys Ala Asn 945 950 955 960

Ile Thr Phe Thr Phe Asn Lys Glu Met Met Ser Pro Gly Leu Thr Thr 965 970 975

Glu His Ile Cys Ser Glu Leu Arg Asn Leu Asn Ile Leu Lys Asn Val 980 985 990

Ser Ala Glu Tyr Ser Ile Tyr Ile Ala Cys Glu Pro Ser Pro Ser Ala 995 1000 1005

Asn Asn Glu Ile His Val Ala Ile Ser Ala Glu Asp Ile Arg Asp 1010 1015 1020

Asp Gly Asn Pro Ile Lys Glu Ile Thr Asp Lys Ile Ile Asp Leu

	1025					1030					1035				
Val	Ser 1040	Lys	Arg	Asp	Gly	Asn 1045	Ser	Ser	Leu	Ile	Ala 1050	Ala	Val	Ala [.]	
Glu	Val 1055	Arg	Val	Gln	Arg	Arg 1060	Pro	Leu	Lys	Asn	Arg 1065	Thr	Asp	Phe	
Leu	Val 1070	Pro	Leu	Leu	Ser	Ser 1075	Val	Leu	Thr	Val	Ala 1080	Trp	Ile	Cys	
Cys	Leu 1085	Val	Thr	Ala	Phe	Tyr 1090	Trp	Cys	Leu	Arg	Lys 1095	Arg	Arg	Lys	
Pro	Gly 1100	Ser	His	Thr	His	Ser 1105	Ala	Ser	Glu	Asp	Asn 1110	Thr	Thr	Asn	
Asn	Val 1115	Arg	Glu	Gln	Leu	Asn 1120	Gln	Ile	Lys	Asn	Pro 1125	Ile	Glu	Lys	
His	Gly 1130	Ala	Asn	Thr	Val	Pro 1135	Ile	Lys	Asp	Tyr	Glu 1140	Asn	Lys	Asn	
Ser	Lys 1145	Met	Ser	Lys	Ile	Arg 1150	Thr	His	Asn	Ser	Glu 1155	Val	Glu	Glu	
Asp	Asp 1160	Met	Asp	Lys	His	Gln 1165	Gln	Lys	Ala	Arg	Phe 1170	Gly	Lys	Gln	
Pro	Ala 1175	Tyr	Thr	Leu	Val	Asp 1180	Arg	Glu	Glu	Lys	Pro 1185	Pro	Asn	Gly	
Thr	Pro 1190	Thr	Lys	His	Pro	Asn 1195	Trp	Thr	Asn	Lys	Gln 1200	Asp	Asn	Arg	
Asp	Leu 1205	Glu	Ser	Ala	Gln	Ser 1210	Leu	Asn	Arg	Met	Glu 1215	Tyr	Ile	Val	
<21: <21: <21:	2> DI 3> H	657 NA omo :	sapi	ens											
<40		cc c	acgg	acrc	g cg	gccgg	tcc (gggc	gaac	cc ta	aagcci	tcct	gcto	egecetg	60
ctc	tgtgc	cc t	gcga	gcca	a gg	tgtgt	ggg (geet	cgggt	tc a	gttcga	agtt	gga	gateetg	120
tcc	atgca	ga a	cgtg	aacg	g gg	agctg	cag a	aacg	ggaa	ct g	ctgcg	gcgg	cgc	ccggaac	180
ccg	ggaga	cc g	caag	tgca	c cc	gcgac	gag	tgtga	acaca	at a	cttcaa	aagt	gtg	cctcaag	240
gag	tatca	gt c	ccgc	gtca	c gg	ccggg	ggg (ccct	gcag	ct t	cggct	cagg	gtc	cacgcct	300
gtc	atcgg	gg g	caac	acct	t ca	acctc	aag (gcca	gccg	cg g	caacg	accg	caad	ccgcatc	360

gtgctgcctt tcagtttcgc ctggccgagg tcctatacgt tgcttgtgga ggcgtgggat 420 480 tocagtaatg acaccgttca acctgacagt attattgaaa aggettetca etegggeatg atcaacccca gccggcagtg gcagacgctg aagcagaaca cgggcgttgc ccactttgag 540 tatcagatcc gcgtgacctg tgatgactac tactatggct ttggctgyaa taagttctgc 600 660 cgccccagag atgacttctt tggacactat gcctgtgacc agaatggcaa caaaacttgc atggaaggct ggatgggccc cgaatgtaac agagctattt gccgacaagg ctgcagtcct 720 780 aagcatgggt cttgcaaact cccaggtgac tgcaggtgcc agtayggctg gcaaggcctg 840 tactgtgata agtgcatccc acacceggga tgcgtccacg gcatctgtaa tgagccctgg 900 cagtgcctct gtgagaccaa ctggggcggc cagctctgtg acaaagatct caattactgt gggactcatc agccgtgtct caacggggga acttgtagca acacaggccc tgacaaatat 960 1020 cagtgttcct gccctgaggg gtattcagga cccaactgtg aaattgctga gcacgcctgc 1080 ctctctgatc cctgtcacaa cagaggcagc tgtaaggaga cctccctggg ctttgagtgt 1140 gagtgttccc caggctggac cggccccaca tgctctacaa acattgatga ctgttctcct 1200 aataactgtt cccacggggg cacctgccag gacctggtta acggatttaa gtgtgtgtgc 1260 cccccacagt ggactgggaa aacgtgccag ttagatgcaa atgaatgtga ggccaaacct 1320 tgtgtaaacg ccaaatcctg taagaatctc attgccagct actactgcga ctgtcttccc ggctggatgg gtcagaattg tgacataaat attaatgact gccttggcca gtgtcagaat 1380 1440 gacgcctcct gtcgggattt ggttaatggt tatcgctgta tctgtccacc tggctatgca ggcgatcact gtgagagaga catcgatgaa tgtgccagca acccctgttt gaatgggggt 1500 1560 cactgtcaga atgaaatcaa cagattccag tgtctgtgtc ccactggttt ctctggaaac 1620 ctctgtcagc tggacatcga ttattgtgag cctaatccct gccagaacgg tgcccagtgc 1680 tacaaccgtg ccagtgacta tttctgcaag tgccccgagg actatgaggg caagaactgc tcacacctga aagaccactg ccgcacgacc ccctgtgaag tgattgacag ctgcacagtg 1740 1800 gccatggctt ccaacgacac acctgaaggg gtgcggtata tttcctccaa cgtctgtggt cctcacggga agtgcaagag tcagtcggga ggcaaattca cctgtgactg taacaaaggc 1860 1920 ttcacgggaa catactgcca tgaaaatatt aatgactgtg agagcaaccc ttgtagaaac 1980 ggtggcactt gcatcgatgg tgtcaactcc tacaagtgca tctgtagtga cggctgggag 2040 ggggcctact gtgaaaccaa tattaatgac tgcagccaga acccctgcca caatgggggc 2100

2160 acctgccact cacgtgacag tcagtgtgat gaggccacgt gcaacaacgg tggcacctgc tatgatgagg gggatgcttt taagtgcatg tgtcctggcg gctgggaagg aacaacctgt 2220 2280 aacatagccc gaaacagtag ctgcctgccc aacccctgcc ataatggggg cacatgtgtg 2340 gtcaacggcg agtcctttac gtgcgtctgc aaggaaggct gggaggggcc catctgtgct cagaatacca atgactgcag ccctcatccc tgttacaaca gcggcacctg tgtggatgga 2400 2460 gacaactggt accggtgcga atgtgccccg ggttttgctg ggcccgactg cagaataaac 2520 atcaatgaat gecagtette acettgtgee tttggagega eetgtgtgga tgagateaat 2580 ggctaccggt gtgtctgccc tccagggcac agtggtgcca agtgccagga agtttcaggg agacettqca teaceatggg gagtgtgata ceagatgggg ceaaatggga tgatgaetgt 2640 aatacctgcc agtgcctgaa tggacggatc gcctgctcaa aggtctggtg tggccctcga 2700 cettqcetqc tecacaaaqq qeacaqeqaq tqceecaqeq qqcaqaqetq catececate 2760 ctggacgacc agtgcttcgt ccacccctgc actggtgtgg gcgagtgtcg gtcttccagt 2820 ctccagccgg tgaagacaaa gtgcacctct gactcctatt accaggataa ctgtgcgaac 2880 atcacattta cctttaacaa ggagatgatg tcaccaggtc ttactacgga gcacatttgc 2940 agtgaattga ggaatttgaa tattttgaag aatgtttccg ctgaatattc aatctacatc 3000 3060 gettgegage etteceette agegaacaat gaaatacatg tggecattte tgetgaagat atacgggatg atgggaaccc gatcaaggaa atcactgaca aaataatcga tcttgttagt 3120 aaacgtgatg gaaacagetc getgattget geegttgeag aagtaagagt teagaggegg 3180 cctctgaaga acagaacaga tttccttgtt cccttgctga gctctgtctt aactgtggct 3240 3300 tggatctgtt gcttggtgac ggccttctac tggtgcctgc ggaagcggcg gaagccgggc agecacaeae acteageete tgaggacaae accaecaaea acgtgeggga geagetgaae 3360 cagatcaaaa accccattga gaaacatggg gccaacacgg tccccatcaa ggattacgag 3420 aacaagaact ccaaaatgtc taaaataagg acacacaatt ctgaagtaga agaggacgac 3480 atggacaaac accagcagaa agcccggttt ggcaagcagc cggcgtatac gctggtagac 3540 agagaagaga agcccccaa cggcacgccg acaaaacacc caaactggac aaacaaacag 3600 gacaacagag acttggaaag tgcccagagc ttaaaccgaa tggagtacat cgtatag 3657

<210> 3 <211> 22

<212> DNA

<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>		
gcgcaag	gett ttttttttt eg	22
<210>	4	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	4	
	ytga agatactt	18
gagacce	gega agacaccc	10
<210>	5	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	PCR primer	
12207	Tor primer	
<400>	5	
ccgacto	gcag aataaacatc	20
<210×		
<210> <211>		
<211>		
<213>		
	•	
<220>		
<223>	PCR primer	
<100>		
<400>		20
ccgyact	ctgg ttcagctgct	20
<210>	7	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
Z2205		
<220> <223>	PCR primer	
\ 4437	FOW DITIMET	
<400>	7	
	gacg gccactgtga	20

<210>	8	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
12137	militaria bequence	
40005		
<220>		
<223>	PCR primer	
<400>	8	
	catg aagtgcagct	20
ou og cu	augustus au	
<210>	9	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	9	
tgagtag	gget ccatecagte	20
J J .		
<210>	10	
	10	
	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	PCR primer	
~2237	rek primer	
	· ·	
<400>	10 .	
tggtgtd	cagg tagggatgct	20
<210>	11	
<211>	24	
<211>		
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	.11	
		<u> </u>
ccaccca	atgg caaattccat ggca	24
<210>	12	
<211>	24	
<212>		
\ 213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	12	
	,	

tctagad	egge aggteaggte cace	24
<210><211><211><212><213>	13 36 DNA Artificial Sequence	
<220>		
<223>	PCR primer	
<400> gactate	13 goga attoggatoo gtogaogooa ooatgg	36
<210> <211> <212> <213>	14 20 DNA Artificial Sequence	
<220>		
<223> <400>	PCR primer 14	
caagtto	ccc cgttgagaca	20
.040.		
<210> <211>	15 65	
<212> <213>		
<220> <223>	PCR primer	
<400>	15	
	cot ogagitacaa giotiotica gaaataagoi titgitotao gaigtactoo	60
attcg	,	65
<210> <211>	16 20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	16	
atggaca	aaac accagcagaa	20
<210>	17	
<211>	3201	
<212>	DNA	
<213>	Homo sapiens	

60 atgogttccc cacggacreg cggccggtcc gggcgccccc taagcctcct gctcgccctg ctctgtgccc tgcgagccaa ggtgtgtggg gcctcgggtc agttcgagtt ggagatcctg 120 tccatgcaga acgtgaacgg ggagctgcag aacgggaact gctgcggcgg cgcccggaac 180 ccgggagacc gcaagtgcac ccgcgacgag tgtgacacat acttcaaagt gtgcctcaag 240 300 gagtatcagt cccgcgtcac ggccgggggg ccctgcagct tcggctcagg gtccacgcct gtcatcgggg gcaacacctt caacctcaag gccagccgcg gcaacgaccg caaccgcatc 360 420 gtgctgcctt tcagtttcgc ctggccgagg tcctatacgt tgcttgtgga ggcgtgggat 480 tocagtaatg acaccgttca acctgacagt attattgaaa aggettetca ctegggeatg atcaacccca geeggeagtg geagaegetg aagcagaaca egggegttge ceactttgag 540 600 tatcagatcc gcgtgacctg tgatgactac tactatggct ttggctgyaa taagttctgc cgccccagag atgacttctt tggacactat gcctgtgacc agaatggcaa caaaacttgc 660 720 atggaagget ggatgggeee egaatgtaac agagetattt geegacaagg etgeagteet aagcatgggt cttgcaaact cccaggtgac tgcaggtgcc agtayggctg gcaaggcctg 780 840 tactgtgata agtgcatccc acacceggga tgcgtccacg gcatctgtaa tgagccctgg cagtgcctct gtgagaccaa ctggggcggc cagctctgtg acaaagatct caattactgt 900 gggactcatc agccgtgtct caacggggga acttgtagca acacaggccc tgacaaatat 960 cagtgttcct gccctgaggg gtattcagga cccaactgtg aaattgctga gcacgcctgc 1020 ctctctgatc cctgtcacaa cagaggcagc tgtaaggaga cctccctggg ctttgagtgt 1080 gagtgttccc caggctggac cggccccaca tgctctacaa acattgatga ctgttctcct 1140 aataactgtt cccacggggg cacctgccag gacctggtta acggatttaa gtgtgtgtgc 1200 cccccacagt ggactgggaa aacgtgccag ttagatgcaa atgaatgtga ggccaaacct 1260 tgtgtaaacg ccaaatcctg taagaatetc attgccagct actactgcga ctgtcttccc 1320 ggctggatgg gtcagaattg tgacataaat attaatgact gccttggcca gtgtcagaat 1380 gacgcctcct gtcgggattt ggttaatggt tatcgctgta tctgtccacc tggctatgca 1440 ggcgatcact gtgagagaga catcgatgaa tgtgccagca acccctgttt gaatgggggt 1500 cactgtcaga atgaaatcaa cagattccag tgtctgtgtc ccactggttt ctctggaaac 1560 ctctgtcagc tggacatcga ttattgtgag cctaatccct gccagaacgg tgcccagtgc 1620 tacaaccgtg ccagtgacta tttctgcaag tgccccgagg actatgaggg caagaactgc 1680

<400> 17

1740 tcacacctga aagaccactg ccgcacgacc ccctgtgaag tgattgacag ctgcacagtg gccatggctt ccaacgacac acctgaaggg gtgcggtata tttcctccaa cgtctgtggt 1800 cctcacggga agtgcaagag tcagtcggga ggcaaattca cctgtgactg taacaaaggc 1860 ttcacgggaa catactgcca tgaaaatatt aatgactgtg agagcaaccc ttgtagaaac 1920 ggtggcactt gcatcgatgg tgtcaactcc tacaagtgca tctgtagtga cggctgggag 1980 2040 ggggcctact gtgaaaccaa tattaatgac tgcagccaga acccctgcca caatgggggc 2100 acctgccact cacgtgacag tcagtgtgat gaggccacgt gcaacaacgg tggcacctgc 2160 2220 tatgatgagg gggatgettt taagtgeatg tgtcetggeg getgggaagg aacaacetgt 2280 aacataqccc gaaacagtag ctgcctgccc aacccctgcc ataatggggg cacatgtgtg 2340 gtcaacggcg agtcctttac gtgcgtctgc aaggaaggct gggaggggcc catctgtgct cagaatacca atgactgcag ccctcatccc tgttacaaca gcggcacctg tgtggatgga 2400 gacaactggt accggtgcga atgtgccccg ggttttgctg ggcccgactg cagaataaac 2460 2520 atcaatgaat gccagtcttc accttgtgcc tttggagcga cctgtgtgga tgagatcaat ggctaccggt gtgtctgccc tccagggcac agtggtgcca agtgccagga agtttcaggg 2580 2640 agacettgca teaceatggg gagtgtgata ecagatgggg ceaaatggga tgatgaetgt aatacctgcc agtgcctgaa tggacggatc gcctgctcaa aggtctggtg tggccctcga 2700 ccttgcctgc tccacaaagg gcacagcgag tgccccagcg ggcagagctg catccccatc 2760 ctggacgacc agtgcttcgt ccaccctgc actggtgtgg gcgagtgtcg gtcttccagt 2820 2880 ctccagccgg tgaagacaaa gtgcacctct gactcctatt accaggataa ctgtgcgaac atcacattta cctttaacaa ggagatgatg tcaccaggtc ttactacgga gcacatttgc 2940 3000 agtgaattga ggaatttgaa tattttgaag aatgtttccg ctgaatattc aatctacatc gcttgcgagc cttccccttc agcgaacaat gaaatacatg tggccatttc tgctgaagat 3060 3120 atacgggatg atgggaaccc gatcaaggaa atcactgaca aaataatcga tcttgttagt aaacgtgatg gaaacagctc gctgattgct gccgttgcag aagtaagagt tcagaggcgg 3180 3201 cctctgaaga acagaacaga t

<210> 18

<211> 1067 <212> PRT

<213> Homo sapiens

<400> 18

Met Arg Ser Pro Arg Thr Arg Gly Arg Ser Gly Arg Pro Leu Ser Leu 1 5 10 15

Leu Leu Ala Leu Leu Cys Ala Leu Arg Ala Lys Val Cys Gly Ala Ser 20 25 30

Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly Glu 35 40 45

Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp Arg 50 55 60

Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu Lys 65 70 75 80

Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly Ser 85 90 95

Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala Ser 100 105 110

Arg Gly Asn Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala Trp

Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn Asp 130 135 140

Thr Val Gln Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly Met
145 150 155 160

Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly Val

Ala His Phe Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr Tyr

Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe Gly

His Tyr Ala Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly Trp 210 215 220

Met Gly Pro Glu Cys Asn Arg Ala Ile Cys Arg Gln Gly Cys Ser Pro 225 230 235

Lys His Gly Ser Cys Lys Leu Pro Gly Asp Cys Arg Cys Gln Tyr Gly

Trp Gln Gly Leu Tyr Cys Asp Lys Cys Ile Pro His Pro Gly Cys Val 260 265 270

His Gly Ile Cys Asn Glu Pro Trp Gln Cys Leu Cys Glu Thr Asn Trp 275 280 285

Gly	Gly 290	Gln	Leu	Cys	Asp	Lys 295	Asp	Leu	Asn	Tyr	Cys 300	Gly	Thr	His	Gln
Pro 305	Cys	Leu	Asn	Gly	Gly 310	Thr	Cys	Ser	Asn	Thr 315	Gly	Pro	Asp	Lys	Tyr 320
Gln	Cys	Ser	Cys	Pro 325	Glu	Gly	Tyr	Ser	Gly 330	Pro	Asn	Cys	Glu	Ile 335	Ala
Glu	His	Ala	Cys 340	Leu	Ser	Asp	Pro	Cys 345	His	Asn	Arg	Gly	Ser 350	Cys	Lys
Glu	Thr	Ser 355	Leu	Gly	Phe	Glu	Суs 360	Glu	Cys	Ser	Pro	Gly 365	Trp	Thr	Gly
Pro	Thr 370	Cys	Ser	Thr	Asn	Ile 375	Asp	Asp	Cys	Ser	Pro 380	Asn	Asn	Cys	Ser
His 385	Gly	Gly	Thr	Cys	Gln 390	Asp	Leu	Val	Asn	Gly 395	Phe	Lys	Суз	Val	Cys 400
Pro	Pro	Gln	Trp	Thr 405	Gly	Lys	Thr	Cys	Gln 410	Leu	Asp	Ala	Asn	Glu 415	Cys
Glu	Ala	Lys	Pro 420	Cys	Val	Asn	Ala	Lys 425	Ser	Cys	Lys	Asn	Leu 430	Ile	Ala
Ser	Tyr	Tyr 435	Cys	Asp	Cys	Leu	Pro 440	Gly	Trp	Met	Gly	Gln 445	Asn	Суѕ	Asp
Ile	Asn 450	Ile	Asn	Asp	Cys	Leu 455	Gly	Gln	Cys	Gln	Asn 460	Asp	Ala	Ser	Cys
Arg 465	Asp	Leu	Val	Asn	Gly 470	Tyr	Arg	Cys	Ile	Cys 475	Pro	Pro	Gly	Tyr	Ala 480
Gly	Asp	His	Cys	Glu 485	Arg	Asp	Ile	Asp	Glu 490	Cys	Ala	Ser	Asn	Pro 495	Cys
Leu	Asn	Gly	Gly 500	His	Cys	Gln	Asn	Glu 505	Ile	Asn	Arg	Phe	Gln 510	Cys	Leu
Cys	Pro	Thr 515	Gly	Phe	Ser	Gly	Asn 520	Leu	Cys	Gln	Leu	Asp 525	Ile	Asp	Tyr
Cys	Glu 530	Pro	Asn	Pro	Cys	Gln 535	Asn	Gly	Ala	Gln	Cys 540	Tyr	Asn	Arg	Ala
Ser 545	Asp	Tyr	Phe	Cys	Lys 550	Cys	Pro	Glu	Asp	Tyr 555	Glu	Gly	Lys	Asn	Cys 560
Ser	His	Leu	Lys	Asp 565	His	Cys	Arg	Thr	Thr 570	Pro	Cys	Glu	Val	Ile 575	Asp
Ser	Cys	Thr	Val 580	Ala	Met	Ala	Ser	Asn 585	Asp	Thr	Pro	Glu	Gly 590	Val	Arg

Tyr Ile Ser Ser Asn Val Cys Gly Pro His Gly Lys Cys Lys Ser Gln Ser Gly Gly Lys Phe Thr Cys Asp Cys Asn Lys Gly Phe Thr Gly Thr Tyr Cys His Glu Asn Ile Asn Asp Cys Glu Ser Asn Pro Cys Arg Asn Gly Gly Thr Cys Ile Asp Gly Val Asn Ser Tyr Lys Cys Ile Cys Ser Asp Gly Trp Glu Gly Ala Tyr Cys Glu Thr Asn Ile Asn Asp Cys Ser Gln Asn Pro Cys His Asn Gly Gly Thr Cys Arg Asp Leu Val Asn Asp 680 Phe Tyr Cys Asp Cys Lys Asn Gly Trp Lys Gly Lys Thr Cys His Ser 690 700 Arg Asp Ser Gln Cys Asp Glu Ala Thr Cys Asn Asn Gly Gly Thr Cys 710 Tyr Asp Glu Gly Asp Ala Phe Lys Cys Met Cys Pro Gly Gly Trp Glu Gly Thr Thr Cys Asn Ile Ala Arg Asn Ser Ser Cys Leu Pro Asn Pro 740 Cys His Asn Gly Gly Thr Cys Val Val Asn Gly Glu Ser Phe Thr Cys 760 Val Cys Lys Glu Gly Trp Glu Gly Pro Ile Cys Ala Gln Asn Thr Asn Asp Cys Ser Pro His Pro Cys Tyr Asn Ser Gly Thr Cys Val Asp Gly 785 790 Asp Asn Trp Tyr Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro Asp 810 Cys Arg Ile Asn Ile Asn Glu Cys Gln Ser Ser Pro Cys Ala Phe Gly 820 825 Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr Arg Cys Val Cys Pro Pro 840 Gly His Ser Gly Ala Lys Cys Gln Glu Val Ser Gly Arg Pro Cys Ile Thr Met Gly Ser Val Ile Pro Asp Gly Ala Lys Trp Asp Asp Asp Cys 870 Asn Thr Cys Gln Cys Leu Asn Gly Arg Ile Ala Cys Ser Lys Val Trp 885 -890

Cys Gly Pro Arg Pro Cys Leu Leu His Lys Gly His Ser Glu Cys Pro Ser Gly Gln Ser Cys Ile Pro Ile Leu Asp Asp Gln Cys Phe Val His 920 925 Pro Cys Thr Gly Val Gly Glu Cys Arg Ser Ser Leu Gln Pro Val Lys Thr Lys Cys Thr Ser Asp Ser Tyr Tyr Gln Asp Asn Cys Ala Asn 950 955 Ile Thr Phe Thr Phe Asn Lys Glu Met Met Ser Pro Gly Leu Thr Thr 965 Glu His Ile Cys Ser Glu Leu Arg Asn Leu Asn Ile Leu Lys Asn Val 980 985 Ser Ala Glu Tyr Ser Ile Tyr Ile Ala Cys Glu Pro Ser Pro Ser Ala 1000 Asn Asn Glu Ile His Val Ala Ile Ser Ala Glu Asp Ile Arg Asp 1010 1015 Asp Gly Asn Pro Ile Lys Glu Ile Thr Asp Lys Ile Ile Asp Leu 1025 1030 Val Ser Lys Arg Asp Gly Asn Ser Ser Leu Ile Ala Ala Val Ala 1040 1045 Glu Val Arg Val Gln Arg Arg Pro Leu Lys Asn Arg Thr Asp 1055 1060 <210> 19 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 19 gactatgcga attcggatcc gtcgacgcca ccatgggttc cccacggaca cgcg 54 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 20 20

caagttcccc cgttgagaca

```
<210> 21
<211> 20
<212>
     DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 21
                                                            20
atggacaaac accagcagaa
<210> 22
<211> 65
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 22
60
                                                            65
ttcag
<210> 23
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 23
                                                            44
tttggatttg ctggtgcagt acaactaggc ttaataggga catg
<210> 24
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 24
                                                            37
tecetattaa geetagttgt aetgeaceag caaatee
<210> 25
<211> 42
<212> DNA
<213> Artificial Sequence
```

<220>	DCD primor	
<2237	PCR primer	
<400>	25	
tttctgc	etcg aattcaagct tctaacgatg tacggggaca tg	42
	26	
<211>	35	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	26	
tccccgt	aca togttagaag ottgaattog agoag	35
<210>	27	
<211>	23	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	27	
ggatttg	gctg gtgcagtaca act	23
<210>	28	
	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	28	
	gaat tcaagcttct aac	23
orgorog	aut todayettet aut	20
<210>	29	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Jagged antisense oligomer	
<400>	29	
tggggad	ecgc ategetge	18
<210>	30	
<211>	18	

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Jagged sense oligomer
<400> 30
gcagcgatgc ggtcccca
                                                                   18
<210> 31
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> 3' Jagged antisense oligomer
<400> 31
gaatcaaggc tcccctag
                                                                   18
<210> 32
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Mutated 5' Jagged antisense oligomer
<400> 32
tgcggtcccc aacggtgg
                                                                   18
<210> 33
<211> 4
<212> PRT
<213> Homo sapiens
<400> 33
Pro Glu Ser Thr
<210> 34
<211> 10
<212> DNA
<213> Mus musculus
<400> 34
                                                                   10
tggatcagtc
<210> 35
<211> 10
<212> DNA
```

	<2137	Mus	Musculus	
	<400>	35		
	taaaga			
	caaaya	ggcc		
	<210>	36		
	<211>			
	<212>			
			musculus	
	\213/	Mus	Muscurus	
	<400>	36		
	cctgat			·
	cccgac			
	<210>	37		•
	<211>			
	<212>			
			musculus	
	(2137	Mus	Musculus	
	<400>	37		
	tgtaac			
	cgcaac	agga		
	<210>	38		
	<211>			
	<212>			
			musculus	
	\C1J/	rius	muscurus	
	<400>	38		
	tctgtg			
	, ,			
	<210>			
- *				
	<212>			
			musculus	
	<400>	39		
	ccaaat	aaaa		
	<210>	40		
	<211>	10		
	<212>	DNA		
	<213>	Mus	musculus	
	<400>	40		
	ctaata	aaag		
	<210>	41		
	<211>	10		
	<212>	DNA		
	<213>	Mus	musculus	
				•
	<400>	41		

gccaag	ggtc	
<210>	42	
<211>	10	
<212>	DNA	
<213>	Mus	musculus
<400>	42	
gtctgc	tgat	
<210>	43	
<211>	10	
<212>	DNA	
<213>		musculus
<400>	43	
aaggaa	gaga	
<210>	44	ı
<210>	10	
<212>	DNA	
<213>		musculus
(400>	44	
gaaata	aaac	
<210>	45	
<211>	10	
<212>	DNA	
<213>	Mus	musculus
<400>	45	
caccac	caca	
<210>	46	
<211> <212>	10 DNA	
<212> <213>		musculus
<400>	46	
ctcag		
	9	
<210>	47	
<211>	10	
<212>	DNA	
<213>	Mus	musculus
<400>	47	
ctctga	ctta	

<210> <211> <212> <213>	48 10 DNA Mus	musculus	
<400> gtgggcg	48 Jtgt	. 1	. 0
<210> <211> <212> <213>	49 10 DNA Mus	musculus .	
<400> teettgg	49 1999	1	.0
<210> <211> <212> <213>	50 10 DNA Mus	musculus	
<400> cgcctgd	50 ctag		.0
<210> <211> <212> <213>	51 10 DNA Mus	musculus	
<400> aaaaaaa	51 aaaa	1	.0
<210> <211> <212> <213>	52 10 DNA Mus	musculus	
<400> aagcaga	52 aagg		.0
<210><211><211><212><213>	53 10 DNA Mus	musculus	
<400>	53	·	.0
<210> <211> <212>	54 10 DNA		

<213>	Mus	musculus			
<400>	54	•	•		
gaagca	ggac				
<211>					
<212> <213>		musculus			
\Z13 \	rius	Muscurus			
<400>	55				
ggatat	gtgg				
			•		
<210>	56				
<211>	10				
<212>	DNA			*	•
<213>	Mus	musculus			
<400>	56				
attata	ratto				