San José State University Math 253: Mathematical Methods for Data Visualization

Lecture 4: Rayleigh Quotients

Dr. Guangliang Chen

Outline

- Quadratic forms
- Positive (semi)definite matrices
- Rayleigh quotients

Recall

... that we have reviewed linear algebra up to symmetric matrices, which are square matrices ${\bf A}$ satisfying ${\bf A}^T={\bf A}$.

Symmetric matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$ have many nice properties:

- All their eigenvalues are real numbers (no complex eigenvalues)
- They are orthogonally diagonalizable, i.e., there exist an orthogonal matrix ${\bf Q}$ and a diagonal matrix ${\bf \Lambda}$, both of the same size as ${\bf A}$, such that

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T \qquad \longleftarrow \text{spectral decomposition of } \mathbf{A}$$

We also know that Λ consists of the eigenvalues of A along the diagonal, and Q has the corresponding orthonormal eigenvectors in columns.

Another use of symmetric matrices is to define the so-called quadratic forms.

Def 0.1. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. A quadratic form corresponding to \mathbf{A} is a function $Q: \mathbb{R}^n \mapsto \mathbb{R}$ with

$$Q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}, \quad \text{for all} \quad \mathbf{x} \in \mathbb{R}^n$$

Remark. A quadratic form is a polynomial with terms all of second order:

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

For example, if
$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix}$$
 and $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, then
$$Q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = x_1^2 + 2x_2^2 + 6x_1x_2$$

Positive (semi)definite matrices

Def 0.2. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be **positive semidefinite** (PSD) if the corresponding quadratic form $Q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$.

If the equality holds true only for $\mathbf{x} = \mathbf{0}$ (i.e., $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$), then \mathbf{A} is said to be **positive definite (PD)**.

Theorem 0.1. A symmetric matrix is positive definite (semidefinite) if and only if all of its eigenvalues are positive (nonnegative).

Example 0.1. Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix}$. According to the theorem, \mathbf{A} is positive definite, \mathbf{B} is positive semidefinite, and \mathbf{C} is neither.

The following result will be needed later.

Theorem 0.2. For any rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, both $\mathbf{A}\mathbf{A}^T \in \mathbb{R}^{m \times m}$ and $\mathbf{A}^T\mathbf{A} \in \mathbb{R}^{n \times n}$ are square, symmetric, and positive semidefinite.

Proof. It is obvious that $\mathbf{A}^T \mathbf{A}$ is square $(n \times n)$ and symmetric:

$$(\mathbf{A}^T \mathbf{A})^T = \mathbf{A}^T (\mathbf{A}^T)^T = \mathbf{A}^T \mathbf{A}$$

To show that it is positive semidefinite, consider the quadratic form: For any $\mathbf{x} \in \mathbb{R}^n$,

$$\mathbf{x}^T(\mathbf{A}^T\mathbf{A})\mathbf{x} = (\mathbf{x}^T\mathbf{A}^T)(\mathbf{A}\mathbf{x}) = (\mathbf{A}\mathbf{x})^T(\mathbf{A}\mathbf{x}) = \|\mathbf{A}\mathbf{x}\|^2 \ge 0.$$

The proof for the other product $\mathbf{A}\mathbf{A}^T$ is similar.

Matrix square roots

Problem: Let $A \in \mathbb{R}^{n \times n}$ be a PSD matrix. Find another matrix B of the size such that $A = B^2$. We call B the square root of A and denote it by $B = A^{1/2}$.

Solution. Since \mathbf{A} is symmetric and PSD, there exist an orthogonal matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\mathbf{\Lambda} = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$ with all $\lambda_i \geq 0$ such that $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T$.

Define
$$\Lambda^{1/2} = \operatorname{diag}(\lambda_1^{1/2}, \dots, \lambda_n^{1/2})$$
. Clearly, $\Lambda^{1/2}\Lambda^{1/2} = \Lambda$.

Let $\mathbf{B} = \mathbf{Q} \mathbf{\Lambda}^{1/2} \mathbf{Q}^T$. Then

$$\mathbf{B}^2 = (\mathbf{Q} \boldsymbol{\Lambda}^{1/2} \mathbf{Q}^T) (\mathbf{Q} \boldsymbol{\Lambda}^{1/2} \mathbf{Q}^T) = \mathbf{Q} \underbrace{\boldsymbol{\Lambda}^{1/2} \boldsymbol{\Lambda}^{1/2}}_{\bullet} \mathbf{Q}^T = \mathbf{A}.$$

Answer. $\mathbf{B} = \mathbf{A}^{1/2} = \mathbf{Q} \mathbf{\Lambda}^{1/2} \mathbf{Q}^T \leftarrow \text{still a PSD matrix!}$

Example 0.2. Let $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$, which is PSD because it has two nonnegative eigenvalues $\lambda_1 = 5, \lambda_2 = 0$. To find the matrix square root of \mathbf{A} , we need to find its orthogonal diagonalization:

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} 5 \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}^T$$

It follows that

$$\mathbf{A}^{1/2} = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{5} \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}^T = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{4}{\sqrt{5}} \end{pmatrix}$$

Problem (constrained optimization). (Illustration when n=2) Given a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, find the extreme values of the associated quadratic form over the unit sphere in \mathbb{R}^n :

$$\max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^T \mathbf{A} \mathbf{x} \quad \text{subject to } \|\mathbf{x}\|^2 = 1$$

Equivalent problem (unconstrained):

$$\max_{\mathbf{x} \neq \mathbf{0} \in \mathbb{R}^n} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \leftarrow \text{scaling invariant}$$

Def 0.3. For a fixed symmetric matrix A, the normalized quadratic form $\frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$ is called a **Rayleigh quotient**.

Given a positive definite matrix ${\bf B}$ of the same size, the quantity $\frac{{\bf x}^T{\bf A}{\bf x}}{{\bf x}^T{\bf B}{\bf x}}$ is called a generalized Rayleigh quotient.

Rayleigh quotients have many applications:

- PCA: $\max_{\mathbf{v} \neq \mathbf{0}} \frac{\mathbf{v}^T \mathbf{\Sigma} \mathbf{v}}{\mathbf{v}^T \mathbf{v}}$ ($\mathbf{\Sigma}$: covariance matrix)
- LDA: $\max_{\mathbf{v}\neq\mathbf{0}} \frac{\mathbf{v}^T\mathbf{S}_b\mathbf{v}}{\mathbf{v}^T\mathbf{S}_w\mathbf{v}}$ (S_b: between-class scatter matrix, S_w: within-class scatter matrix)
- Spectral clustering: $\max_{\mathbf{v} \neq \mathbf{0}} \frac{\mathbf{v}^T \mathbf{L} \mathbf{v}}{\mathbf{v}^T \mathbf{D} \mathbf{v}}$ (L: graph Laplacian, D: degree matrix)

Theorem 0.3. For any given symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$\max_{\mathbf{x} \in \mathbb{R}^n: \mathbf{x} \neq \mathbf{o}} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \lambda_{\max} \quad \text{(when } \mathbf{x} = \text{``largest'' eigenvector of } \mathbf{A}\text{)}$$

$$\min_{\mathbf{x} \in \mathbb{R}^n: \mathbf{x} \neq \mathbf{o}} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \lambda_{\min} \quad \text{(when } \mathbf{x} = \text{``smallest'' eigenvector of } \mathbf{A}\text{)}$$

Example 0.3. For the matrix ${\bf A}$ in the preceding example,

- The maximum of the Rayleigh quotient is 5, achieved when $\mathbf{x} = \frac{1}{\sqrt{5}}(1,2)^T$,
- The minimum is 0, achieved when $\mathbf{x} = \frac{1}{\sqrt{5}}(-2,1)^T$

The overall range of the Rayleigh quotient $Q(\mathbf{x})=\frac{x_1^2+4x_2^2+4x_1x_2}{x_1^2+x_2^2}$ is thus [0,5].

We prove the theorem on the preceding slide in two ways.

(1) Linear algebra approach:

$$\max_{\mathbf{x} \neq \mathbf{0} \in \mathbb{R}^n} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

Since the Rayleigh quotient is scaling invariant, we only need to focus on the unit sphere:

$$\max_{\mathbf{x} \in \mathbb{R}^n: \, \|\mathbf{x}\| = 1} \mathbf{x}^T \mathbf{A} \mathbf{x}$$

(2) Multivariable calculus approach:

$$\max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^T \mathbf{A} \mathbf{x} \quad \text{subject to } \|\mathbf{x}\|^2 = 1$$

Linear algebra approach

Proof. Let $\mathbf{A} = \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^T$ be the spectral decomposition, where $\mathbf{Q} = [\mathbf{q}_1, \dots, \mathbf{q}_n]$ is orthogonal and $\boldsymbol{\Lambda} = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$ is diagonal with sorted diagonals from large to small. Then for any unit vector \mathbf{x} ,

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T (\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^T) \mathbf{x} = (\mathbf{x}^T \mathbf{Q}) \boldsymbol{\Lambda} (\mathbf{Q}^T \mathbf{x}) = \mathbf{y}^T \boldsymbol{\Lambda} \mathbf{y}$$

where $\mathbf{y} = \mathbf{Q}^T \mathbf{x}$ is also a unit vector:

$$\|\mathbf{y}\|^2 = \mathbf{y}^T \mathbf{y} = (\mathbf{Q}^T \mathbf{x})^T (\mathbf{Q}^T \mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{Q}^T \mathbf{x} = \mathbf{x}^T \mathbf{x} = 1.$$

So the original optimization problem becomes the following one:

$$\max_{\mathbf{y} \in \mathbb{R}^n: \, \|\mathbf{y}\| = 1} \mathbf{y}^T \underbrace{\boldsymbol{\Lambda}}_{\text{diagonal}} \mathbf{y}$$

To solve this new problem, write $\mathbf{y} = (y_1, \dots, y_n)^T$. It follows that

$$\mathbf{y}^T \mathbf{\Lambda} \mathbf{y} = \sum_{i=1}^n \underbrace{\lambda_i}_{\text{fixed}} y_i^2$$
 (subject to $y_1^2 + y_2^2 + \dots + y_n^2 = 1$)

Because $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, when $y_1^2 = 1, y_2^2 = \cdots = y_n^2 = 0$ (i.e., $\mathbf{y} = \pm \mathbf{e}_1$), the objective function attains its maximum value $\mathbf{y}^T \mathbf{\Lambda} \mathbf{y} = \lambda_1$.

In terms of the original variable x, the maximizer is

$$\mathbf{x}^* = \mathbf{Q}\mathbf{y}^* = \mathbf{Q}(\pm \mathbf{e}_1) = \pm \mathbf{q}_1.$$

In conclusion, when $\mathbf{x} = \pm \mathbf{q}_1$ (largest eigenvector), $\mathbf{x}^T \mathbf{A} \mathbf{x}$ attains its maximum value λ_1 (largest eigenvalue).

Multivariable calculus approach

Proof. Alternatively, we can use the Method of Lagrange Multipliers to prove the theorem. First, we form the Lagrangian function

$$L(\mathbf{x}, \lambda) = \mathbf{x}^T \mathbf{A} \mathbf{x} - \lambda (\|\mathbf{x}\|^2 - 1).$$

Next, we need to compute the partial derivatives $\frac{\partial L}{\partial \mathbf{x}} = (\frac{\partial L}{\partial x_1}, \dots, \frac{\partial L}{\partial x_n})^T, \frac{\partial L}{\partial \lambda}$ and set them equal to zero (in order to find its critical points).

For this goal, we need to know how to differentiate functions like $\mathbf{x}^T \mathbf{A} \mathbf{x}, \|\mathbf{x}\|^2$ with respect to the vector-valued variable \mathbf{x} .

We present a few formulas of such kind on next slide.

Proposition 0.4. For any fixed symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, fixed rectangular matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ and fixed vector $\mathbf{a} \in \mathbb{R}^n$, we have

$$\begin{split} \frac{\partial}{\partial \mathbf{x}}(\mathbf{a}^T \mathbf{x}) &= \mathbf{a}, & \frac{\partial}{\partial \mathbf{x}}(\|\mathbf{x}\|^2) &= 2\mathbf{x} \\ \frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^T \mathbf{A} \mathbf{x}) &= 2\mathbf{A} \mathbf{x}, & \frac{\partial}{\partial \mathbf{x}}(\|\mathbf{B} \mathbf{x}\|^2) &= 2\mathbf{B}^T \mathbf{B} \mathbf{x} \end{split}$$

Proof. Each of the top two identities can be verified by direct calculation of the kth partial derivative, for each $1 \le k \le n$:

$$\frac{\partial}{\partial x_k} (\mathbf{a}^T \mathbf{x}) = \frac{\partial}{\partial x_k} \left(\sum a_i x_i \right) = a_k$$
$$\frac{\partial}{\partial x_k} (\|\mathbf{x}\|^2) = \frac{\partial}{\partial x_k} \left(\sum x_i^2 \right) = 2x_k.$$

For the third identity involving $\mathbf{x}^T \mathbf{A} \mathbf{x}$,

$$\frac{\partial}{\partial x_k} (\mathbf{x}^T \mathbf{A} \mathbf{x}) = \frac{\partial}{\partial x_k} \left(\sum_i \sum_j a_{ij} x_i x_j \right)$$

$$= \frac{\partial}{\partial x_k} \left(\sum_{\substack{j \neq k \\ i = k}} a_{kj} x_k x_j + \sum_{\substack{i \neq k \\ j = k}} a_{ik} x_i x_k + a_{kk} x_k^2 \right)$$

$$= \sum_{\substack{j \neq k \\ j \neq k}} a_{kj} x_j + \sum_{\substack{i \neq k \\ i \neq k}} a_{ik} x_i + 2a_{kk} x_k$$

$$= \sum_j a_{kj} x_j + \sum_i x_i a_{ik}$$

$$= \mathbf{A}(k, :) \mathbf{x} + \mathbf{x}^T \mathbf{A}(:, k)$$

$$= 2\mathbf{A}(k, :) \mathbf{x} \quad \text{(since } \mathbf{A} \text{ is symmetric)}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University

Collectively, we have

$$\frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^T \mathbf{A} \mathbf{x}) = \begin{bmatrix} \frac{\partial}{\partial x_1} (\mathbf{x}^T \mathbf{A} \mathbf{x}) \\ \vdots \\ \frac{\partial}{\partial x_n} (\mathbf{x}^T \mathbf{A} \mathbf{x}) \end{bmatrix} = \begin{bmatrix} 2\mathbf{A}(1,:)\mathbf{x} \\ \vdots \\ 2\mathbf{A}(n,:)\mathbf{x} \end{bmatrix} = 2\mathbf{A}\mathbf{x}$$

The last identity can then be verified by writing

$$\|\mathbf{B}\mathbf{x}\|^2 = (\mathbf{B}\mathbf{x})^T(\mathbf{B}\mathbf{x}) = \mathbf{x}^T(\mathbf{B}^T\mathbf{B})\mathbf{x}$$

and applying the third identity.

Now, applying the formulas obtained previously, we have

$$\frac{\partial L}{\partial \mathbf{x}} = 2\mathbf{A}\mathbf{x} - \lambda(2\mathbf{x}) = 0 \longrightarrow \mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$
$$\frac{\partial L}{\partial \lambda} = \|\mathbf{x}\|^2 - 1 = 0 \longrightarrow \|\mathbf{x}\|^2 = 1$$

This implies that \mathbf{x}, λ must be an eigenpair of \mathbf{A} . For any solution $\lambda = \lambda_i, \mathbf{x} = \mathbf{v}_i$, the objective function takes the value

$$\mathbf{v}_i^T \mathbf{A} \mathbf{v}_i = \mathbf{v}_i^T (\lambda_i \mathbf{v}_i) = \lambda_i ||\mathbf{v}_i||^2 = \lambda_i.$$

Therefore, the eigenvector \mathbf{v}_1 (corresponding to largest eigenvalue λ_1 of \mathbf{A}) is the global maximizer, and it yields the absolute maximum value λ_1 . Similarly, the eigenvector \mathbf{v}_n corresponding to the smallest eigenvalue λ_n is the global minimizer with absolute minimum λ_n .

The generalized Rayleigh quotient problem

Corollary 0.5. For a fixed symmetric matrix ${\bf A}$, and a fixed positive definite matrix ${\bf B}$ of the same size, the extreme values λ of the generalized Rayleigh quotient ${\bf x}^T {\bf A} {\bf x} \over {\bf x}^T {\bf B} {\bf x}$ (and the corresponding vectors ${\bf v}$) satisfy

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{B}\mathbf{v} \qquad \Longleftrightarrow \qquad \mathbf{B}^{-1}\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

Remark. The left equation is called a generalized eigenvalue problem, which can be solved easily in MATLAB:

- ullet E=eig(A,B) produces a column vector E containing the generalized eigenvalues of square matrices A and B.
- [V,D]=eig(A,B) produces a diagonal matrix D of generalized eigenvalues and a full matrix V whose columns are the corresponding eigenvectors.

Proof. There are two ways to prove this result:

• **Substitution method**: Since ${\bf B}$ is PD, it has a square root, denoted as ${\bf B}^{1/2}$ (which is also PD and thus invertible). Let ${\bf y}={\bf B}^{1/2}{\bf x}$. Then the denominator can be written as

$$\mathbf{x}^T \mathbf{B} \mathbf{x} = \mathbf{x}^T \mathbf{B}^{1/2} \mathbf{B}^{1/2} \mathbf{x} = \mathbf{y}^T \mathbf{y}$$

Substitute $\mathbf{x} = (\mathbf{B}^{1/2})^{-1}\mathbf{y} \stackrel{\mathrm{denote}}{=} \mathbf{B}^{-1/2}\mathbf{y}$ into the numerator to rewrite it in terms of the new variable \mathbf{y} . This will convert the generalized Rayleigh quotient problem back to a regular Rayleigh quotient problem, which has been solved. The rest of the proof is left as homework.

 Method of Lagrange multipliers: The optimization of the generalized Rayleigh quotient

$$\max_{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{B} \mathbf{x}}$$

is equivalent to the following constrained optimization problem:

$$\max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^T \mathbf{A} \mathbf{x} \quad \text{subject to } \mathbf{x}^T \mathbf{B} \mathbf{x} = 1$$

Now, we can apply the method of Lagrange multipliers with the Lagrangian function

$$L(\mathbf{x}, \lambda) = \mathbf{x}^T \mathbf{A} \mathbf{x} - \lambda (\mathbf{x}^T \mathbf{B} \mathbf{x} - 1).$$

The remaining steps are also left as homework.

