Overview

- [[Vektor]] as numeric, non-symbolic representation of complex entities
 - complex entity becomes a set of finite numbers
 - no longer express general knowledge
 - * hidden within choice of entities and features
- relevant characteristics have to be chosen
 - representable as real numbers
 - ideally easily computable
 - feature/knowledge-engineering
 - * know what is actually relevant
 - * what questions do we want to ask?
- vector operations
 - identify useful operations in a given use case
 - vector operations can be used to reason over knowledge
- vector representation is easy after feature engineering is done
 - depending on computational complexity
 - can be created automatically
- vector is centered if
 - mean value of vector elements = 0

Useful questions for Feature Engineering

- what are similar entities?
- which group does an entity belong to?
 - classification
- what are meaningful sub-groups?
 - clustering
- is there a correlation between entity characteristics?
 - [[Correlation]]
- does a characteristic cause another one?
 - causation
- is there a more compact representation?
 - factor analysis
 - which variables carry most information?

Similarity

- useful for
 - [[Recommender Systems]]

- [[Information Retrieval]]
- [[Classification]]
- clustering
- many types of similarity measures
- cosine similarity
 - similarity = angle between two vectors
 - * length independent
 - lacktriangle normalized vectors
 - * direction dependent
 - $*\ cos: [0, 360] --> [-1, 1]$
 - * $sim(a,b) = cos(\phi) = \frac{a*b}{||a||*||b||}$
 - angles
 - * $0^{\circ} ==>$ extremely similar
 - ♦ no equality
 - * $90^{\circ} ==>$ orthogonal, not similar at all
 - * $180^{\circ} ==>$ opposite direction, inverse

[[Knowledge Representation]]