EX1. QUANTUM CIRCUIT

 Consider the following quantum circuit defined on 3 qubits. Compute the probability of measuring each possible state at the end of the circuit.

The S gate is as follows:

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

= Cz, q, q, 1 (510>@ 210>@ 510> @ 510> @ 211> @ 511> - 511> @ 211> @ 510> - 511> @ 210> @ 511>)

Important: Motivate your answer by showing all stages of the computation.

$$|\psi_0\rangle = |1\rangle \otimes |0\rangle \otimes |0\rangle$$

 $|\psi_1\rangle = |\zeta_{x,q_1q_2}|(\zeta_{x,q_1q_2}|(H\otimes I\otimes H))|\psi_0\rangle$

$$= C_{x, q_3 q_2} C_{x, q_4 q_2} \left(\frac{(0 > -1 + 2)}{\sqrt{2}} \right) \otimes (0 > 0 + 2)$$

$$= C_{x, q_3 q_1} \frac{1}{\sqrt{2}} \left((0 > 0 | 0 > 0 | + 2 - 1 + 2) \otimes (1 > 0 | + 2) \right)$$

$$= C_{x,4342} \stackrel{\mathcal{I}}{=} (10 > 0 | 0 > 0 | (10 > + 14 > 0 | 1 > 0 | (10 > + 14 > 0 | 1 > 0 | (10 > + 14 > 0 | 1 > 0 | (10 > + 14 > 0 | 1 > 0 | (10 > + 14 >))))))))$$

$$= \frac{1}{2} (|000\rangle + |011\rangle - |410\rangle - |401\rangle)$$

$$|\psi_2\rangle = C_{2,q,q} C_{1,q,q} (5 \otimes 2 \otimes 5) |\psi_4\rangle$$

$$= C_{2}, q_{1}q_{1} C_{1}, q_{2}q_{3} \frac{1}{2} (1000 > + |0> 0 - |1> 0 : |1> + i|1> 0 |1> 0 |0> -i|1> 0 |0> 0 : |1>)$$

$$= C_{2}, q_{1}q_{1} \frac{1}{2} (1000 > - i|01> 0 |1> + i|11> 0 |10> + |101>)$$

$$= C_{Z,4;4,\frac{1}{2}} \left(|000\rangle - |010\rangle - |111\rangle + |101\rangle \right)$$

$$= \frac{1}{2} \left(|000\rangle - |20\rangle + |10\rangle - |21\rangle + |101\rangle + |101\rangle \right)$$

$$= \frac{1}{2\sqrt{2}} \left(|090\rangle + |010\rangle - |090\rangle + |010\rangle - i |101\rangle + i |149\rangle - i |101\rangle - i |141\rangle \right)$$

$$- \frac{1}{2} \left(|010\rangle - |010\rangle - |010\rangle - i |101\rangle - i |101\rangle - i |111\rangle - i |11$$

$$= \frac{1}{2\sqrt{2}} \left(2|010\rangle - 2i|101\rangle \right)$$
$$= \frac{1}{\sqrt{2}} \left(|010\rangle - i|101\rangle \right)$$

$$|P(q_1=0, q_2=1, q_3=0) = |\frac{1}{\sqrt{2}}|^2 = 0,5 \qquad |P(q_1=1, q_2=0, q_3=1) = |-\frac{i}{\sqrt{2}}|^2 = 0,5 \qquad |P(\text{combinations}) = 0$$

ΕX		ТН	FORY																								
		Qυ																									
													ing SAT								ariable	s					
						and	spin va	riables,	compu	ite the	Problei	n Ham	iltonian \bar{x}_1	and us $\forall x_2$	se it to	identify	which	is the	best sol	ution.							
						- Com	nuto tl	he OUE	00 form		of the	Mon (Cut pro	hlom no	loted t	o thio m	manh (Cl. om it		olout m	otnin i	_					
	_												circuit i									n _					
	+											(2		-4)							_					
												(1		(5))							_					
						I.m.	tort.	Motion	to w	0.00	bur -1		ll ot-			stati						_					
					Important: Motivate your answer by showing all stages of the computation.																						
			OBL																								
	min		(x)=	X+>	(₂	1 -	1		,	2	_ x; =	- <u>1</u> 5i	+ 1/2 ,	۲ _۱ Χ _۱	= <u>4</u> Si S	5; - 4 5	5; - 1	5; + 4]								
	min		(5) =	÷ 5	452-	± 5,	- + 5	2 + -	7																		
	Q=	Γo	1], c=0	,	5=	ã = [-0,25 0	0,2	57,	c= 0, 2:	5															
		L	0	1				θ	-0,	"]"																	
	Hc.	= C,	٠ Σ١	n; S; +	ΣΣ	i; 5; 5	;		_	COE	FFICIEN	TS															
		C=	0,25	h ₁	=h ₂ =-	0,25	J.,	₂ = 0,2	5 _	ARE FROM	OBTAI 1 E(s)	WED															
	H _c =	ΣĮ	h; σ _z (i)	+ Σ ie)	τ _{ι;} σ _ε	(ව _ල ())																					
		{	DIAG ((o _z ⁽¹⁾) - Z	?øI	= (1,	1,-1,	-1)	DI	AG (C) <u>=</u>	Ιø	Z = (1,-1,	1,-1)	1	DIAG(O	(1) Oz (2)) = DII	16 (σ <u>.</u> (1) • DIAG	$(\sigma_{\!\scriptscriptstyle z}^{\scriptscriptstyle (2)})$	=(1,-	1,-1,1,	}	
	<u> </u>	-0,	,25 σ,	⁽⁴⁾ - 0,	,25 σ	(z) +	2,25	$\sigma_{z}^{(1)}\sigma_{z}$	(1)																		
	_											_	0	2	. 7												
	-	-0	,25 L	,25 0	0 0	+	0	0,25	0,25	0	+ 6	-0	0),25 D -0),25	0												
									0 0,	25	L	7	0	0 0,	25												
	-	DI	16(-0	,25	-0,25	, - 0,2	5, 0,	75)																			
							H _c																				
								= -0,	,25																		
					×:			1, 10																			
			10N = E(o: (υ, ο	7, 70																			
		- (^)	- L(J - U																							

•	MAX	- cv	T f	ROBLE	5M																			
	min			+X3 -		(₃) - (X ₂ + X	3-2×	, ×,) -	(X2+)	(4-2X	×4)-	(x3+X	,-2×,	X5)-(X ₄ +X ₅	- 2×	(X5)						
	min			- X ₃ +																				
	min			- ×												(5								
	min		(-1/2)	2/2/	-2(-	1/2 52 -	1/2)-	3(-1	S3 + 1 2,) - 2	(- ½ 54	+칼).	2 (-	1 Ss+1)									
		+2	(1/4 S45	,-4 sa.	1 S3 +	1/4)+2	(1/4 S2	53 - 4	S2 - 1/4	53 + 4) +2(4 52	54-4	52-45	4 + 4	+2(4 53 5	5-4	53-45	5 + 4)			
	min	E(s) = ·	- 2 -	1/2 5	4 + 1/2	S ₅ +	1/2 Sas	3 + 1/2	5,5,	+ 1/2	5254	+ 1/2 5	355										
		_			0.7			Г	0.0	0.5 0	P	7												
	Q	= -	0 -2	2 0 2 2 -3 0 0 -2	0 2		ã=	5=	000	0,5 0,5	0,5													
			0 0	0 - 2 0 <i>0</i> -	2				00	0 0	0,5													
	91	[+	- (R×	(B1)					
	92	[[fx	(B1)					
	43	— <u>—</u> [Rz(C	7,584)	<u></u>	b-{	Rz (0,	5 84)								-		(B1)					
	94		R2								Rxll	,584)	Ø-				-		(β1)					
	95	- Е	R2	(0,584)										× P	z(0,98	1) [}	P×(β4)					