universität innsbruck

```
if ( verbose ) cat("foehnix.family) ) {
  else if ( inherits(family, "character") ) {
    family <- match.arg(family, c("gaussian", "logistic"))
    if (! all(is.infinite(c(left, right))) ) {
        # Take censored version of "family" using the censoring
        # thresholds left and right.
        if (! truncated) {
            family <- get(sprintf("foehnix_c%s", family))(left = left, right = right)
            # Else take the truncated version of the "family"
        } else {
            family <- get(sprintf("foehnix_t%s", family))(left = left, right = right)
            family <- get(sprintf("foehnix_t%s", family))(left = left, right = right)
            family <- get(sprintf("foehnix_t%s", family))(left = left, right = right)
            family <- get(sprintf("foehnix_t%s", family))(left = left, right = right)</pre>
```


Regression Models for [0,1] Responses Using betareg

Ioannis Kosmidis, Achim Zeileis

https://www.zeileis.org/

Motivation

Goal: Model limited response variables in unit interval.

Examples: Fractions or proportions (not from independent Bernoulli trials).

Illustration: Reading accuracy of 44 primary school children, explained by dyslexia status and iq score.

Motivation

Goal: Model limited response variables in unit interval.

Examples: Fractions or proportions (not from independent Bernoulli trials).

Illustration: Reading accuracy of 44 primary school children, explained by dyslexia status and iq score.

Parameters: Mean μ , precision ϕ .

Regression: Link both parameters to predictors.

Advantage: Flexible shape, full likelihood.

Parameters: Mean μ , precision ϕ .

Regression: Link both parameters to predictors.

Advantage: Flexible shape, full likelihood.

Parameters: Mean μ , precision ϕ .

Regression: Link both parameters to predictors.

Advantage: Flexible shape, full likelihood.

Parameters: Mean μ , precision ϕ .

Regression: Link both parameters to predictors.

Advantage: Flexible shape, full likelihood.

Parameters: Mean μ , precision ϕ .

Regression: Link both parameters to predictors.

Advantage: Flexible shape, full likelihood.

Parameters: Mean μ , precision ϕ .

Regression: Link both parameters to predictors.

Advantage: Flexible shape, full likelihood.

Zero-and/or-one-inflated beta distribution

Parameters: Mean μ , precision ϕ , point masses π_0 , π_1 .

Regression: Link all four parameters to predictors.

Advantage: Keep flexibility, accomodate boundaries.

Disadvantage: Many parameters, separate determinants for boundaries.

Parameters: Mean μ , variance σ^2 .

Regression: Link both parameters to predictors.

Advantage: No additional determinants for boundaries.

Parameters: Mean μ , variance σ^2 .

Regression: Link both parameters to predictors.

Advantage: No additional determinants for boundaries.

Parameters: Mean μ , variance σ^2 .

Regression: Link both parameters to predictors.

Advantage: No additional determinants for boundaries.

Parameters: Mean μ , variance σ^2 .

Regression: Link both parameters to predictors.

Advantage: No additional determinants for boundaries.

Parameters: Mean μ , precision ϕ , exceedence ν .

Regression: Link only μ and ϕ to predictors.

Advantage: Single parameter ν links normal and beta.

Parameters: Mean μ , precision ϕ , exceedence ν .

Regression: Link only μ and ϕ to predictors.

Advantage: Single parameter ν links normal and beta.

Parameters: Mean μ , precision ϕ , exceedence ν .

Regression: Link only μ and ϕ to predictors.

Advantage: Single parameter ν links normal and beta.

Parameters: Mean μ , precision ϕ , exceedence ν .

Regression: Link only μ and ϕ to predictors.

Advantage: Single parameter ν links normal and beta.

Parameters: Mean μ , precision ϕ , exceedence ν .

Regression: Link only μ and ϕ to predictors.

Advantage: Single parameter ν links normal and beta.

Parameters: Mean μ , precision ϕ , exceedence ν .

Regression: Link only μ and ϕ to predictors.

Advantage: Single parameter ν links normal and beta.

R packages

```
R> crch(accuracy1 ~ dyslexia * iq | dyslexia + iq, data = ReadingSkills,
+ left = 0, right = 1)
R> betareg(accuracy1 ~ dyslexia * iq | dyslexia + iq, data = ReadingSkills)
```

R packages

```
R> crch(accuracy1 ~ dyslexia * iq | dyslexia + iq, data = ReadingSkills,
+ left = 0, right = 1)
R> betareg(accuracy1 ~ dyslexia * iq | dyslexia + iq, data = ReadingSkills)
```


References

Cribari-Neto F, Zeileis A (2010). "Beta Regression in R." *Journal of Statistical Software*, **34**(2), 1–24. doi:10.18637/jss.v034.i02

Messner JW, Mayr GJ, Zeileis A (2016). "Heteroscedastic Censored and Truncated Regression with crch." The R Journal, 8(1), 173–181. doi:10.32614/RJ-2016-012

Kosmidis I, Zeileis A (2024). "Extended-Support Beta Regression for [0, 1] Responses." arXiv.org E-Print Archive, Forthcoming.

Software:

https://CRAN.R-project.org/package=crch (Version 1.1-2) https://CRAN.R-project.org/package=betareg (Version 3.2-0)

Mastodon: @zeileis@fosstodon.org

X: @AchimZeileis

Web: https://www.zeileis.org/