SU1137698

Publication Title:

PROCESS FOR PREPARING CIS-DIAMINODICHLORODIHYDROXOPLATINUM(IV)

Abstract:

Abstract not available for SU1137698 Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

⁽¹⁹⁾ SU ⁽¹¹⁾ 1 137 698 ⁽¹³⁾ A1

(51) MПK⁶ C 01 G 55/00

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ СССР

(21), (22) Заявка: 3651749/26, 17.10.1983

(46) Дата публикации: 27.09.1996

(56) Ссылки: Черняев И.И., Красовская Н.Н., О геометрической изометрии дигидроксодиамминохлоридов четырехвалентной платины. - Неорганическая химия, 1958, т.3, с.2025.

(71) Заявитель: **МГУ им. М.В.Ломоносова**

(72) Изобретатель: **Желиговская** Н.Н., **К**расовская Е.П.

(54) СПОСОБ ПОЛУЧЕНИЯ ЦИС-ДИАММИНДИХЛОРОДИГИДРОКСОПЛАТИНЫ (IY)

(57)
Способ получения
цис-диамминдихлородигидроксоплатины (IV),
включающий обработку суспензии
цис-диамминдихлороплатины (II) 25 - 30%-ной
перекисью водорода с последующим
отделением твердого остатка, растворением
его в минеральной кислоте и осаждением

CO

целевого продукта, отличающийся тем, что, с целью повышения чистоты целевого продукта, отработку цис-диамминдихлорплатины (II) ведут при 60 - 80°С, в качестве минеральной кислоты используют серную или фосфорную кислоту и осаждают целевой продукт щелочью.

-1-

⁽¹⁹⁾ SU ⁽¹¹⁾ 1 137 698 ⁽¹³⁾ A1

(51) Int. Cl.⁶ C 01 G 55/00

STATE COMMITTEE FOR INVENTIONS AND DISCOVERIES

(12) ABSTRACT OF INVENTION

(21), (22) Application: 3651749/26, 17.10.1983

(46) Date of publication: 27.09.1996

(71) Applicant: MGU im. M.V.Lomonosova

(72) Inventor: Zheligovskaja N.N., Krasovskaja E.P.

(54) PROCESS FOR PREPARING CIS- DIAMINODICHLORODIHYDROXOPLATINUM(IV)

(57) Abstract:

ဖ

FIELD: medicine. SUBSTANCE: process for preparing cisdiaminodichlorodihydroxoplatinum (IV) comprises treating cis-diaminodichloroplatinum (II) suspension with 25-30 hydrogen peroxide, separating solid residue, dissolving it in mineral acid and precipitating the desired product. Cis-diaminodichloroplatinum (II) is treated at 60-80 C. Mineral acid is sulfuric or phosphoric acid and the desired product is precipitated with alkali. EFFECT: improved purity of the desired product.

Изобретение относится к способам получения соединений платины, в частности цис-диамминдихлородигидроксоплатины (IV) [Pt(NH₃Cl)₂(OH)₂] проявляющей противоопухолевую активность.

Известен способ получения цис-диамминдихлородигидроксоплатины (IV), включающий обработку суспензии цис-диамминдихлороплатины (II) [Pt(NH₃CI)₂] избытком 10 20% -ной перекиси водорода при 40°C с последующим выделением целевого продукта кристаллизацией [1] Выход 40 80%

Недостатками способа являются низкий выход и низкая чистота целевого продукта.

Наиболее близким по технической сущности и достигаемому результату является способ, включающий обработку суспензии цис-диамминдихлороплатины (II) 25 30%-ной перекисью водорода при комнатной температуре с последующим отделением твердого остатка, растворением его в азотной кислоте и осаждением целевого продукта раствором аммиака [2] Выход 75 80%

Использование азотной кислоты приводит к тому, что часть аквагрупп в условиях высокой концентрации аквакомплекса замещается на NO ₃-ионы с образованием нитратокомплекса [$Pt(NH_3Cl)_2(NO_3)_2$] Добавление NH₄OH во второй переосаждения приводит к тому, что NO 3_чоны легко замещаются образом происходит NH 3-группы. Таким загрязнение целевого продукта нитратом тетрамминдихлороплатины (IV) [Pt(NH 3Cl)2(NH3)2](NO3)2.

Проведение процесса при комнатной температуре не приводит к полному окислению большой навески исходного вещества. Оставшийся комплекс двухвалентной платины, далее окисляясь в азотной кислоте, приводит к образованию нитратокомплекса [Pt(NH₃Cl)₂(NO₃)₂] который при растворении в аммиаке также переходит в тетраамминдихлороплатину (IV) [Pt(NH₃Cl)₂NH₃)₂] загрязняющую целевой продукт (таблица).

Целью изобретения является повышение чистоты целевого продукта.

достигается Поставленная цель способом описываемым получения цис-диамминдихлородигидроксоплатины (IV), включающим обработку суспензии цис-диамминдихлороплатины (II) 25 30%-ной перекисью водорода при 60 - 80°C с последующим отделением твердого остатка. растворением его в серной или фосфорной кислоте и осаждением целевого продукта щелочью.

Отличие предложенного способа заключается в том, что обработку цис-диамминдихлороплатины (II) ведут при 60 80 °C, в качестве минеральной кислоты используют серную или фосфорную кислоты и осаждают целевой продукт щелочью.

co

Сущность способа заключается в следующем. При обработке водной суспензии цис-диамминдихлороплатины (II) 25 30%-ной перекисью водорода при 60 - 80°С протекает быстрее и количественное окисление исходного вещества по реакции

с образованием цис-диамминдихлородигидроксоплатины (IV), выделяющейся в виде мелкокристаллического осадка при охлаждении раствора. Полученный продукт загрязнен перекисными соединениями платины, для очистки от которых к нему добавляют серную или фосфорную кислоту до полного растворения осадка. При этом происходит образование хорошо

и разрушение примесей пергидроксокомплексов. Далее к полученному раствору приливают водный раствор гидроксида натрия или калия до рН 8 9, что приводит к нейтрализации кислоты $[Pt(NH_3CI)_2(H_2O)_2]^{2+}$ и выделению в осадок чистой

цис-диамминдихлородигидроксоплатины (IV). По сравнению с азотной кислотой, применяемой в способе-прототипе, серная и фосфорная кислоты обладают следующими преимуществами. Сульфат- и фосфат-ионы слабыми очень комплексообразователями и получение координационных соединений платины с HSO_4^- , SO_4^{-2} , $H_2PO_4^-$, внутрисферными HPO_4^{-2} , PO_4^{-3} -ионами требует условий. Нами было показано методами изомолярных серий и молярных отношений, что эти ионы оксокислот не вступают во внутреннюю сферу цис-диамминдихлородигидроксоплатины (IV),

поэтому не происходит загрязнения целевого продукта сульфатными и фосфатными комплексами платины. Применение других кислот (кроме серной и фосфорной) приводит к снижению выхода и чистоты целевого продукта: в растворе соляной кислоты происходит быстрое И необратимое замещение ОН⁻-групп на СГ-ионы; муравьиная, уксусная, щавелевая кислоты являются слабыми кислотами и обладают восстанавливающим действием.

Применение водного раствора щелочи вместо раствора аммиака исключает

25

30

35

возможность образования тетраамминкомплексов, а возможность доведения рН реакционной смеси до 8 9 способствует более полному выделению цис-диамминдихлородигидроксоплатины (IV). Таким образом, замена аммиака на щелочь позволяет повысить не только чистоту, но и выход целевого продукта.

При проведении реакции окисления при 60°C температуре ниже комплекс двухвалентной платины окисляется не полностью, при этом целевой продукт загрязняется исходным веществом. реакционной Нагревание смеси до температуры выше 80°C приводит К образованию значительного количества оловых соединений (Pt O Pt), которые не растворяются в кислоте, что также приводит к снижению чистоты целевого продукта.

Пример 1. 10 г [Pt(NH₃Cl)₂] (3,3 • 10⁻² моль) в 30 мл воды смешивают с 15 мл 30% -ной H_2O_2 (14,5• 10^{-2} моль). Реакционную смесь помещают в высокий стакан и нагревают на водяной бане при 60°C. температуре периодически перемешивая. Через 40 мин реакция полностью заканчивается. Смесь охлаждают до комнатной температуры. Выделившийся мелкокристаллический осадок желтого цвета [Pt(NH₃Cl)₂(OH)₂] отфильтровывают промывают водой. К суспензии осадка в 20 мл воды при помешивании приливают 0,5 н H₂SO₄ до полного растворения осадка. К отфильтрованному сернокислому раствору комплекса по каплям добавляют свежеприготовленный концентрированный раствор NaOH до рН 8 9. При этом выпадает ярко-желтый осадок цис-диамминдихлородигидроксоплатины (IV). Выход вещества 9.7 г. что составляет 87% от теории. Чистота 99,6%

2. Пример 20 [Pt(NH₃Cl)₂] (6,6 • 10⁻² моль) в 40 мл воды смешивают с 20 мл 30% -ной H_2O_2 (19,4•10⁻² моль). Реакционную смесь помещают в высокий стакан и нагревают на водяной бане при 80 °C, периодически ее помешивая. Через 30 мин реакция заканчивается. Смесь охлаждают до комнатной температуры. Выделившийся мелкокристаллический осадок [Pt(NH₃Cl)₂(OH)₂] желтого цвета отфильтровывают и промывают водой. К суспензии осадка в 30 мл воды при помешивании приливают 1 н. H₂SO₄ до растворения полного осадка. отфильтрованному раствору по каплям добавляют концентрированный раствор NaOH до рН 8 9. При этом выпадает ярко-желтый осадок

цис-диамминдихлородигидроксоплатины (IV). Выход вещества 18,8 г, что составляет 84% от теории. Чистота 99,4%

ဖ

Пример 3. 20 г [Pt(NH₃Cl)₂] (6,6•10⁻² моль) в 40 мл воды смешивают с 20 мл 30% -ной Н ₂O₂ (13,4• 10⁻² моль). Реакционную смесь помещают в высокий стакан и нагревают на кипящей водяной бане при 80 °C, периодически ее перемешивая. Через 30 мин реакция заканчивается. Смесь охлаждают до комнатной температуры. Выделившийся мелкокристаллический осадок желтого цвета [Pt(NH₃Cl)₂(OH)₂] отфильтровывают и

промывают водой. К суспензии осадка в 30 мл воды приливают фосфорную кислоту до полного растворения осадка. К отфильтрованному раствору по каплям добавляют концентрированный раствор КОН до рН 8 9. При этом выпадает ярко-желтый осадок цис-диамминдихлородигидроксоплатины (IV). Выход 18,6 г, что составляет 83% от теории.

Чистота 99,0% Пример 4. 10 г [$Pt(NH_3CI)_2$] (3,3•10⁻² моль) в 30 мл воды смешивают с 15 мл 30% -ной Н ₂O₂ (14,5• 10⁻² моль). Реакционную смесь помещают в высокий стакан и нагревают на водяной бане при 40 °C, периодически ее перемешивая. Через 1,5 ч реакцию заканчивают. Выделившийся осадок желтого цвета $[Pt(NH_3CI)_2(OH)_2]$ отфильтровывают и промывают водой. К суспензии осадка в 20 мл воды при перемешивании приливают 0,5 н. H ₂SO₄. Осадок с трудом растворяется через несколько часов. К отфильтрованному сернокислому раствору комплекса по каплям добавляют концентрированный раствор NaOH до рН 8 9. При этом выпадает зеленовато-желтый осадок цис-диамминдихлородигидроксоплатины (IV).

цис-диамминдихлородигидроксоплатины (IV). Выход вещества 7,7 г, что составляет 69% от теории. Согласно рентгенофазовому и хроматографическому анализу цис-диамминдихлородигидроксоплатина (IV) содержит соль Пейроне.

Пример 5. 20 г $Pt(NH_3Cl)_2$ (6,6•10⁻² моль) в 40 мл воды смешивают с 20 мл 30% -ной $H_{2}O_{2}$ (19,4• 10⁻² моль). Реакционную смесь помещают в высокий стакан и нагревают на кипящей водяной бане при температуре 95°C, периодически ее перемешивая. Реакция проходит очень бурно, происходит вспенивание и разбрызгивание раствора. Через 20 мин реакция заканчивается. Выделившийся зеленовато-желтый осадок отфильтровывают и промывают водой. К суспензии осадка в 30 мл воды приливают 0,5 н. H₂SO₄. Осадок с трудом растворяется через несколько часов. К отфильтрованному раствору по каплям добавляют концентрированный раствор NaOH до рН 8 9. При этом выпадает желтый осадок цис-диамминдихлородигидроксоплатины (IV). Выход вещества составляет 8,0 г, что соответствует 72% от теории. Чистота 99,2%

Чистота целевого продукта подтверждена данными физико-химических исследований (см. таблицу), а также методом газожидкостной хроматографии (УФ-детектор, χ = 220 нм), согласно которому единственной химической формой в образцах является цис-диамминодихлородигидроксоплатина (IV).

Технико-экономическая эффективность предложенного способа обусловлена повышением чистоты получаемого целевого продукта, что гарантирует воспроизводимость результатов при биологических испытаниях и делает возможным его применение в медицине в качестве противоопухолевого препарата. ТТТ1 ТТТ2

Формула изобретения:

Способ получения цис-диамминдихлородигидроксоплатины (IV), включающий обработку суспензии цис-диамминдихлороплатины (II) 25 30%-ной перекисью

ယ

698

водорода с

отделением твердого остатка, растворением

последующим

продукта, отработку

цис-диамминдихлорплатины (II) ведут при 60

Физико-химические характеристики целевого продукта, полученного описываемым способом

Внешний вид под мик-	Данные эламент-	ламент-	Поведение при	Поведение в	Электр, спект-	Полосы по-	Рентгенострук-	струк-	Хромотогра-
роскопом	ного анализа	ализа	нагревании по	водном рас-	ры поглоще-	глощения в	турный а	нализ	турный анализ фические хар-
	найдено	вычисл.	дериватографи-	творе	ВИН	ИК-спектре	٥٩٥	_	Ž
			ческим данным			(ν, cм ⁻¹)	<u>:</u>		
Однородные, хорошо	Pt. %	Pt, %	Разложение на-	Раствори-	λ=220 нм	v (OH)3515	6,12	6,0	Rf ≠ 0,26
сформированные кри-	58,7	58.5	чинается при	мость в воде		v (NH)3260	5,64	1,0	в системе н-
сталлы желтого цвета;	58,3		160 град. С;	идп			5,15	1,0	бутанол-
по форме правильно			присутствуют	20°C	$\varepsilon = 1.7 \cdot 10^4$	ð (NH)1590	4,46	2,0	уксусная к-та
образованные квадраты	S S	CJ.	пики, соответст-	0,1 Mac. %		ð (NH)1360	3,81	6,0	-вода
Крупность кристаллов:	21,2	21,0	вующие термиче-						
основная фракция	20,8		ским эффектам						
0,1-0,4 MK	% z	× z	160°-эндо-	10 ⁻³ м/л		δ (OH)1240	3,65	6,0	50:10:15
			250°-эндо-	растворы		A(NH)3910	3,47	0,2	
небольшое количество	Š,1	8,4	310°-экзо-	pH=5,8		v (PtO)560	3,14	0,2	бумага
0,01-0,1 MK	8,6		350°-эндо-	μ =3.2 om ⁻¹ cm ²		v (PtN)450			FILTRAK
						v (PtCI)330			FN18
						δ (PtN)270			детекция па-
									рами иода

SU 1137698 A1

Продолжение таблицы

ый Хромотог-	рафические	хар-ки					1									
труктурнь	анализ				пý		1		ame .							
Рентгеноструктурный	ане	o d' b		`	обу-прототи		ı									
Полосы по-	спектры по-	ИК-спектре	(ν, cм])		нога по спос		1						:			
Электр.	спектры по-	глощения			цукта, получен		•						:			
Поведение	в водном	растворе			елевого прод		Раствори-	MOCTh B BO-	ие при	20°C	0,5 Mac. %					
Поведение	при нагревании	по дериватогра-	фи-	ческим данным	Физико-химические характеристики целевого продукта, полученного по способу-прототипу		Разложение на-	чинается при	120°C							
аментно-	го анализа	вычисл.			имические	эц 1	3e	82	≈	<u>د</u> ر	≫	6'	зец 2	Pt, % 55,2	CI, % 17,6	N, % 9,2
Данные эламентно-		найдено			Физико-х	образец	Pt, %	57,78	CI, %	19,3	z, Z	8'8	образец	Pt. %	C.,	ž
Внешний вид под	микроскопом					Смесь кристаллов	желтого и белого цве-	тов переменного со-	става							

SU 1137698 A1