Spis treści

1.	Wybór danych	3
2.	Dobór zmiennych do modelu	6
3.	Estymacja	10
4.	Weryfikacja i testy	11
5.	Wnioski	26

1. Wybór danych

Dane jakie wybraliśmy to Energy Efficiency Dataset pochodzą z platformy Kaggle i dotyczą analizy energetycznej przy użyciu 12 różnych kształtów budynków symulowanych w Ecotect. Budynki różnią się między innymi powierzchnią przeszklenia, rozkładem powierzchni przeszklenia i orientacją. Symulujemy różne ustawienia jako funkcje wyżej wymienionych cech, aby uzyskać 768 kształtów budynków. Zbiór danych obejmuje 768 próbek i 8 cech, których celem jest przewidzenie dwóch rzeczywistych odpowiedzi. Jako zmienną zależną wybraliśmy ilość energii cieplnej wymaganej do ogrzania budynku. Zmienna objaśniające to: X1 - Względna zwartość, X2 - Powierzchnia, X3 - Powierzchnia Ścian, X4 - Powierzchnia Dachu, X5 - Całkowita Wysokość, X6 - Orientacja, X7 - Powierzchnia przeszklenia oraz X8 - Rozkład powierzchni przeszklenia.

X1	▼ X2	▼ X3	▼ X4	▼ X5	▼ X6	▼ X7	▼ X8	▼ Y1	~
	0,98	514,5	294	110,25	7	2	0	0	15,55
	0,98	514,5	294	110,25	7	3	0	0	15,55
	0,98	514,5	294	110,25	7	4	0	0	15,55
	0,98	514,5	294	110,25	7	5	0	0	15,55
	0,9	563,5	318,5	122,5	7	2	0	0	20,84
	0,9	563,5	318,5	122,5	7	3	0	0	21,46
	0,9	563,5	318,5	122,5	7	4	0	0	20,71
	0,9	563,5	318,5	122,5	7	5	0	0	19,68
	0,86	588	294	147	7	2	0	0	19,5
	0,86	588	294	147	7	3	0	0	19,95
	0,86	588	294	147	7	4	0	0	19,34
	0,86	588	294	147	7	5	0	0	18,31
	0,82	612,5	318,5	147	7	2	0	0	17,05
	0,82	612,5	318,5	147	7	3	0	0	17,41
	0,82	612,5	318,5	147	7	4	0	0	16,95
	0,82	612,5	318,5	147	7	5	0	0	15,98
	0,79	637	343	147	7	2	0	0	28,52
	0,79	637	343	147	7	3	0	0	29,9
	0,79	637	343	147	7	4	0	0	29,63
	0,79	637	343	147	7	5	0	0	28,75
	0,76	661,5	416,5	122,5	7	2	0	0	24,77
	0,76	661,5	416,5	122,5	7	3	0	0	23,93
	0,76	661,5	416,5	122,5	7	4	0	0	24,77
	0,76	661,5	416,5	122,5	7	5	0	0	23,93
	0,74	686	245	220,5	3,5	2	0	0	6,07
	0,74	686	245	220,5	3,5	3	0	0	6,05
	0,74	686	245	220,5	3,5	4	0	0	6,01
	0,74	686	245	220,5	3,5	5	0	0	6,04
	0,71	710,5	269,5	220,5	3,5	2	0	0	6,37
	0,71	710,5	269,5	220,5	3,5	3	0	0	6,4
	0,71	710,5	269,5	220,5	3,5	4	0	0	6,37
	0,71	710,5	269,5	220,5	3,5	5	0	0	6,4
	0,69	735	294	220,5	3,5	2	0	0	6,85
	0,69	735	294	220,5	3,5	3	0	0	6,79
	0,69	735	294	220,5	3,5	4	0	0	6,77
	0,69	735	294	220,5	3,5	5	0	0	6,81

Wczytanie danych do Excela z pliku CSV pobranego z Kaggle.

x1	x2	x3	x4	x5	х6	x7	x8	у
0,98	514,5	294	110,25	7	2	0	0	15,55
0,98	514,5	294	110,25	7	3	0	0	15,55
0,98	514,5	294	110,25	7	4	0	0	15,55
0,98	514,5	294	110,25	7	5	0	0	15,55
0,9	563,5	318,5	122,5	7	2	0	0	20,84
0,9	563,5	318,5	122,5	7	3	0	0	21,46
0,9	563,5	318,5	122,5	7	4	0	0	20,71
0,9	563,5	318,5	122,5	7	5	0	0	19,68
0,86	588	294	147	7	2	0	0	19,5
0,86	588	294	147	7	3	0	0	19,95
0,86	588	294	147	7	4	0	0	19,34
0,86	588	294	147	7	5	0	0	18,31
0,82	612,5	318,5	147	7	2	0	0	17,05
0,82	612,5	318,5	147	7	3	0	0	17,41
0,82	612,5	318,5	147	7	4	0	0	16,95
0,82	612,5	318,5	147	7	5	0	0	15,98
0,79	637	343	147	7	2	0	0	28,52
0,79	637	343	147	7	3	0	0	29,9
0,79	637	343	147	7	4	0	0	29,63
0,79	637	343	147	7	5	0	0	28,75
0,76	661,5	416,5	122,5	7	2	0	0	24,77
0,76	661,5	416,5	122,5	7	3	0	0	23,93
0,76	661,5	416,5	122,5	7	4	0	0	24,77
0,76	661,5	416,5	122,5	7	5	0	0	23,93
0,74	686	245	220,5	3,5	2	0	0	6,07
0,74	686	245	220,5	3,5	3	0	0	6,05
0,74	686	245	220,5	3,5	4	0	0	6,01
0,74	686	245	220,5	3,5	5	0	0	6,04
0,71	710,5	269,5	220,5	3,5	2	0	0	6,37
0,71	710,5	269,5	220,5	3,5	3	0	0	6,4
0,71	710,5	269,5	220,5	3,5		0	0	6,37
0,71	710,5			3,5			0	6,4
0,69	735	294		3,5			0	-
0,69	735	294	220,5	3,5	3	0	0	6,79
0,69	735	294	220,5	3,5		0	0	6,77
0,69	735	294	220,5	3,5	5	0	0	6,81

Fragment wczytanych danych w Excel

	x1	x2	x3	x4	<i>x</i> 5	х6	x7	x8	у
x1	1	-0,9919	-0,20378	-0,86882	0,827747	0	1,28E-17	1,76E-17	0,622272
x2	-0,9919	1	0,195502	0,88072	-0,85815	0	1,32E-16	-3,6E-16	-0,65812
x3	-0,20378	0,195502	1	-0,29232	0,280976	0	-8E-19	0	0,455671
x4	-0,86882	0,88072	-0,29232	1	-0,97251	0	-1,4E-16	-1,1E-16	-0,86183
x5	0,827747	-0,85815	0,280976	-0,97251	1	0	1,86E-18	0	0,889431
х6	0	0	0	0	0	1	0	0	-0,00259
x7	1,28E-17	1,32E-16	-8E-19	-1,4E-16	1,86E-18	0	1	0,212964	0,269841
x8	1,76E-17	-3,6E-16	0	-1,1E-16	0	0	0,212964	1	0,087368
у	0,622272	-0,65812	0,455671	-0,86183	0,889431	-0,00259	0,269841	0,087368	1

Korelacja między zmiennymi.

2. Dobór zmiennych do modelu

• Metoda eliminacji Quasi

		Eliminacja x1,x2,x3,x4							
V	13,83%	13,11%	13,69%	25,56%	33,33%	31,94%	56,80%	55,11%	45,20%
Odchylenie stand.	0,105709	88,02875	43,59807	45,13654	1,75	1,118034	0,133134	1,54995	10,08362
Średnia	0,764167	671,7083	318,5	176,6042	5,25	3,5	0,234375	2,8125	22,3072
	0,62	808,5	367,5	220,5	3,5	5	0,4	5	16,64
	0,62	808,5	367,5	220,5	3,5	4	0,4	5	16,48
	0,62	808,5	367,5	220,5	3,5	3	0,4	5	16,44
	0,62	808,5	367,5	220,5	3,5	2	0,4	5	16,54
	0,64	784	343	220,5	3,5	5	0,4	5	17,88
	0,64	784	343	220,5	3,5	4	0,4	5	18,16

Metoda eliminacji Quasi – stałych z obraną wartością krytyczną równą 30%. Wyeliminowane zostały zmienne, których współczynnik zmienności jest mniejszy wartość krytyczna. Są nimi x1, x2, x4 oraz x4.

Metoda Hellwiga (metodą wskaźników pojemności informacji)

	_	_	_	_		
	x5	хб	<i>x</i> 7	x8	у	
x5	1					
х6	0	1				
x7	1,86142E-18	0	1			
x8	0	0	0,212964	1		
y	0,889430674	-0,00259	0,269841	0,087368	1	
Macierze: R	iR					
	0,889430674		1,0000	0	1,861E-18	0
R ₀₌	-0,002586534	R=	0	1,0000	0	0
	0,269840996		1,86E-18	0	1,0000	0,212964
	0,087367594		0	0	0,2129642	1,0000

Zmienn	e	Indywidualne		Integralne		
Nr kombinacji występując	ce w		nności		mności	
C danej			ników	nośnikóv	v informacji	
kombina	cji		nacji h		Н	
1 {X5}		h ₁₁	0,791	H ₁	0,791	
2 {X6}		h	0.000	u.	0.000	
2 {X6}		h ₂₂	0,000	H ₂	0,000	
3 {X7}		h ₃₃	0,073	H ₃	0,073	
4 {X8}		h ₄₄	0,008	H4	0,008	
5 {X5, X6	}	h ₅₁	0,791	H5	0,791	
	_	h ₅₂	0,000			
		h ₈₁	0,791			
6 {X5, X7	}	h ₆₃	0,731	H6	0,86	
		******	3,575			
7 (95 90	{X5, X8}	h ₇₁	0,791		0.700	
7 {X5, X8	}	h ₇₄	0,008	H7	0,799	
8 {X6, X7	,	h ₈₂	0,000	H8	0,073	
ξλο, λί	,	h ₈₃	0,073	110	-,,,,,	
9 {X6, X8	}	h ₉₂	0,000	Н9	0,008	
		h ₉₄	0,008			
	h ₁₀₃ 0,060					
10 {X7, X8	}	h ₁₀₄	0,006	H10	0,066	
		h ₁₁₁	0,791		0,86	
11 {X5, X6, X	(7)	h ₁₁₂	0,000	H11		
	_	h ₁₁₃	0,073			
	_	L .	0.704			
12 {X5, X7,)	(81	h ₁₂₁	0,791 0,060	H12	0,857	
λο, λι, λ	rol	h ₁₂₃ h ₁₂₄	0,000	1 112	0,031	
	\dashv	11124	0,000			
		h ₁₃₁	0,791			
13 {X5, X6, X	(8)	h ₁₃₂	0,000	H13	0,799	
		h ₁₃₄	0,008			
		h ₁₄₂	0,000			
14 {X6, X7, X	(8)	h ₁₄₃	0,060	H14	0,066	
	_	h ₁₄₄	0,006			
	\dashv	here	0,791			
	-	h ₁₅₁ h ₁₅₂	0,000	1		
	{X5, X6, X7, X8}	11102	0,000	H15	0,857	
15 {X5, X6, X7	, X 8}	h ₁₅₃	0,060	H15	0,057	

Wybieramy te zmienne dla których kombinacja daje maksymalną wartość Integralnego wskaźnika pojemności informacyjnej H_I. Kombinacje 6 oraz 11 dają podobny wskaźnik. Zdecydowaliśmy na wybór kombinacji 6 {X5, X7}, ponieważ występują w niej 2 zmienne.

Otrzymany model to: Y = ax5 + bx7 + c

Wyniki uzyskane w R za pomocą skryptu z zajęć

3. Estymacja

Beta	-9,38898685	С
	5,124962798	а
	20,43789945	b

Otrzymanie konkretnych wartości liczbowych i zastąpienie nimi parametrów równania

20,4379	5,124962798	-9,38898685
1,010241	0,076855548	0,486782796
0,863901	3,727295998	#N/D
2427,956	765	#N/D
67461,9	10627,94263	#N/D

Wyniki funkcji REGLINP

PODSUMOWAN	IIE - WYJŚCIE							
Statysty	ki regresji							
Wielokrotność	0,929462795							
R kwadrat	0,863901087	> 0,72						
Dopasowany R	0,863545273							Wyrazistość
Błąd standardo	3,727295998							17%
Obserwacje	768							
ANALIZA WARIA	ANCJI							
	df	SS	MS	F	Istotność F			
Regresja	2	67461,89966	33730,95	2427,955958	0	< 0.05		
Resztkowy	765	10627,94263	13,89274					
Razem	767	78089,84228						
				< 0.05				
	Współczynniki	Błąd standardowy	t Stat	Wartość-p	Dolne 95%	Górne 95%	olne 95,0%	iórne 95,0%
Przecięcie	-9,38898685	0,486782796	-19,2878	7,42197E-68	-10,34457547	-8,4334	-10,3446	-8,4334
x5	5,124962798	0,076855548	66,68306	0	4,97408999	5,275836	4,97409	5,275836
x7	20,43789945	1,010240876	20,23072	3,16479E-73	18,45472607	22,42107	18,45473	22,42107

Zastosowanie Dane > Analiza danych > Regresja w Excelu

4. Weryfikacja i testy

t	x5	x7	у	y^	e	e^2		
1	7	0	15,55	26,48575	-10,9358	119,5907	14,22966	51,31617
2	7	0	15,55	26,48575	-10,9358	119,5907	14,22966	51,31617
3	7	0	15,55	26,48575	-10,9358	119,5907	14,22966	51,31617
4	7	0	15,55	26,48575	-10,9358	119,5907	14,22966	51,31617
5	7	0	20,84	26,48575	-5,64575	31,87452	2,303649	51,31617
6	7	0	21,46	26,48575	-5,02575	25,25819	4,570094	51,31617
7	7	0	20,71	26,48575	-5,77575	33,35932	1,925927	51,31617
8	7	0	19,68	26,48575	-6,80575	46,31827	0,128005	51,31617
9		0	19,5	26,48575	-6,98575	48,80074	0,031605	51,31617
10		0	19,95	26,48575	-6,53575	42,71606	0,394105	51,31617
11	7	0	19,34	26,48575	-7,14575	51,06178	0,000316	51,31617
12	7	0	18,31	26,48575	-8,17575	66,84293	1,024594	51,31617
13	7	0	17,05	26,48575				
14	7	0	17,41	26,48575				
15	7	0	16,95	26,48575				
16		0	15,98	26,48575	-10,5058			
17		0	28,52	26,48575				51,31617
18		0	29,9	26,48575	3,414247	11,65708		51,31617
19		0	29,63	26,48575	-		_	
20	7	0	28,75	26,48575	2,264247	-	-	-
21	7	0	24,77	26,48575	-1,71575	-		-
22	7	0	23,93	26,48575				
23		0	24,77	26,48575				
24	7	0	23,93		-		-	_
25			6,07					
26	3,5	0	6,05					
27	3,5	0	6,01	8,548383	-			
28	3,5	0	6,04	8,548383	-2,50838			
29	3,5	0	6,37	8,548383	-2,17838		-	116,0756
30	3,5 3,5	0	6,4 6,37	8,548383 8,548383	-2,14838 -2,17838		-	_
32	3,5	0	6,4	8,548383	-2,17838			
33	3,5	0	6,85				-	
34	3,5			8,548383		3,091911		116,0756
35			6,77					
36		0						
37	3,5	0		8,548383				
38	3,5	0	7,1			2,097813		
39	3,5	0	7,1		-1,44838	-	-	-
40	3,5	0	7,1		-1,44838	-		
41	3,5	0		8,548383		-	_	
42				8,548383		-	-	-
766	3,5	0,4	16.44	16,72354	-0,28354	0,080396	8,307205	6,753135
767	3,5	0,4	16,48				8,078227	
768	3,5	0,4	16,64	16,72354			7,194316	
			-	-	-	10627,94		74304,85
						SSE		SSR

Obliczenie miar dopasowania SSE, SST oraz SSR.

• Test T współczynnika korelacji

Test T współczynnika korelacji							
t obl	69,68437						
t	1,96307						

• Błąd oszacowania parametrów

	Se^2=	13,89274	
Błąd oszacow	ania para	metru	
Se * (XTX)^-1	0,236957	-0,03101	-0,2392
	-0,03101	0,005907	6,28E-15
	-0,2392	6,3E-15	1,020587
błędy	0,486783	0,076856	1,010241

 $S_{\rm e}$ określa na ile dany parametr może się zmieniać w różnych badaniach tego samego zjawiska.

• Wyrazistość modelu

Wyrazistość modelu			
V	16,71%		

Powinien być mniejszy niż 30%, informuje jaką część średniej wartości zmiennej prognozowanej y stanowi odchylenie standardowe reszt dla danego modelu.

• Współliniowość zmiennych objaśniających (VIF)

VIF								
PODSUMO	WANIE - W	/YJŚCIE						
Statystyki	regresji			VIF	1	Brak wsp	ółliniowoś	ci predyjtor
Wielokro	1,39E-08							
R kwadra	1,93E-16							
Dopasow	-0,00131							
Błąd stan	1,752283							
Obserwad	768							
ANALIZA V	VARIANCJI							
	df	SS	MS	F	lstotność F			
Regresja	1	4,55E-13	4,55E-13	1,48E-13	1			
Resztkow	766	2352	3,070496					
Razem	767	2352						
W	spółczynni:	d standarde	t Stat	Wartość-p	Dolne 95%	Górne 95%	olne 95,0%	iórne 95,0%
Przecięcie	5,25	0,128018	41,00978	2E-195	4,998692	5,501308	4,998692	5,501308
x7	7,16E-15	0,474936	1,51E-14	1	-0,93233	0,932331	-0,93233	0,932331

Jest to cecha nie pożądana, ponieważ może prowadzić do zaniżenia wartości statystyki t-Studenta w ocenie istotności parametrów. W naszym przypadku VIF jest równe 1 co oznacza brak współliniowości predyktorów.

Koincydencja – niezgodność znaków

	x5	х7	у		
x5	1				
x7	1,86E-18	1			
у	0,889431	0,269840996	1		-9,38899
Brak koincydencji					5,124963
znaki korerlacji i znaki współczynników są takie same			20,4379		

MSE

Średni błąd kwadaratowy			
MSE	13,83847		

• Mierniki stopnia dopasowania modelu do danych

```
> mae <- mean(abs(Y_values$y - Y_values$`y^`))
> print(paste("MAE:", mae))
[1] "MAE: 2.90854633795797"
> # Root Mean Squared Error (RMSE)
> rmse <- sqrt(mean((Y_values$y - Y_values$`y^`)^2))
> print(paste("RMSE:", rmse))
[1] "RMSE: 3.7200089999296"
> # Mean Absolute Percentage Error (MAPE)
> mape <- mean(abs((Y_values$y - Y_values$`y^`) / Y_values$y)) * 100
> print(paste("MAPE:", mape))
[1] "MAPE: 13.0844642658981"
> # Root Mean Squared Percentage Error (RMSPE)
> rmspe <- sqrt(mean(((Y_values$y - Y_values$`y^`) / Y_values$y)^2)) * 100
> print(paste("RMSPE:", rmspe))
[1] "RMSPE: 16.2497060618352"
```

MAE, RMSE: o ile przeciętnie mylimy się, prognozując z modelu (w jednostkach pomiaru zmiennej)

MAPE,RMSPE: o ile procent przeciętnie mylimy się, prognozując z modelu

• AIC i AICC

```
> aic_value <- AIC(model)
> aicc_value <- AIC(model) + 2 * (length(coef(model)) + 1) * (nobs(model) / (nobs(model) - length(coef(model)) - 1))
> print(paste("AIC:", aic_value))
[1] "AIC: 4205.37285760984"
> print(paste("AICC:", aicc_value))
[1] "AICC: 4213.41474242659"
```

Badanie symetrii skł. Losowego

```
# Badanie symetrii skł. losowego
model \leftarrow lm(y \sim x5 + x7, data = Dane)
summary(model)
residuals <- residuals(model)
hist(residuals, main = "Histogram Reszt", xlab = "Reszty")
qqnorm(residuals)
qqline(residuals)
shapiro.test(residuals)
> model <- lm(y \sim x5 + x7, data = Dane)
> summary(model)
lm(formula = y \sim x5 + x7, data = Dane)
Residuals:
             1Q Median
    Min
                              3Q
                                      Max
-10.9358 -2.2540 -0.4472
                           2.1403
                                   8.7305
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
0.07686
                              66.68
                                      <2e-16 ***
x5
            5.12496
x7
                                20.23 <2e-16 ***
           20.43790
                      1.01024
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.727 on 765 degrees of freedom
Multiple R-squared: 0.8639, Adjusted R-squared: 0.8635
F-statistic: 2428 on 2 and 765 DF, p-value: < 2.2e-16
```


Badanie losowości skł. Losowego

```
# Badanie losowości skł. losowego
acf(residuals)
Box.test(residuals, lag = 20, type = "Ljung-Box")
plot(residuals)
ks.test(residuals, "pnorm")
```


Na wykresie, ACF jest dodatni dla pierwszych kilku opóźnień. Sugeruje to, że w resztach modelu występuje dodatnia autokorelacja.

Wyniki te sugerują, że składniki losowe nie mają rozkładu normalnego.

• Badanie heteroskedastyczności/homoskedastyczności

```
# Badanie heteroskedastyczności/homoskedastyczności
fitted_values <- fitted(model)
plot(fitted_values, residuals, main = "wykres reszt", xlab = "Przewidywane wartości", ylab = "Reszty")
plot(residuals, type = "l", main = "wykres losowości wariancji", ylab = "Reszty")
library(lmtest)
# Test Breuscha-Pagana bptest(model)
# Test Goldfelda-Quandta gqtest(model)</pre>
```

Wykres reszt

Wykres losowości wariancji

> bptest(model)

studentized Breusch-Pagan test

data: model

BP = 196.56, df = 2, p-value < 2.2e-16

- > # Test Goldfelda-Quandta
- > gqtest(model)

Goldfeld-Quandt test

data: model

GQ = 0.88644, df1 = 381, df2 = 381, p-value = 0.8801

alternative hypothesis: variance increases from segment 1 to 2

Badanie autokorelacji skł. Losowego

```
# Badanie autokorelacji skł. losowego
acf(residuals)
Box.test(residuals, lag = 20, type = "Ljung-Box")
plot(residuals)
cor(residuals[-length(residuals)], residuals[-1])
library(lmtest)
# Test Breuscha-Godfreya
bgtest(model)
# Statystyka Durbin-Watsona
durbinWatsonTest(model)
# Eliminacja autokorelacji poprzez dodanie lagów do modelu
model\_with\_lags <- lm(y \sim x5 + x7 + lag(residuals, 1), data = Dane)
#Badanie autokorelacji skł. losowego
# Test Breuscha-Godfreya
bgtest(model_with_lags)
# Statystyka Durbin-Watsona
durbinWatsonTest(model_with_lags)
> cor(residuals[-length(residuals)], residuals[-1])
[1] 0.7706075
> bgtest(model)
        Breusch-Godfrey test for serial correlation of order up to 1
data: model
LM test = 451.56, df = 1, p-value < 2.2e-16
> # Statystyka Durbin-Watsona
> durbinWatsonTest(model)
 lag Autocorrelation D-W Statistic p-value
         0.7662537 0.4562394
Alternative hypothesis: rho != 0
```

Wyniki testu wskazują na wystąpienie autokorelacji w modelu

Eliminacja autokorelacji z modelu poprzez zmianę opóźnień

Wykresy dla reszt po eliminacji autokorelacji:

Histogram Reszt

Normal Q-Q Plot

Series residuals_new

Badanie normalności skł. Losowego

```
# Badanie normalności skł. losowego|
result <- shapiro.test(residuals)
result
p_value <- result$p.value
if (p_value < 0.05) {
   cat("Odrzucamy hipotezę zerową - dane nie pochodzą z rozkładu normalnego.")
} else {
   cat("Nie ma podstaw do odrzucenia hipotezy zerowej - dane mogą pochodzić z rozkładu normalnego."
}</pre>
```

Dane nie pochodzą z rozkładu normalnego

5. Wnioski

Na podstawie danych z Energy Efficiency Dataset, przeprowadziliśmy analizę energetyczną, koncentrując się na 12 różnych kształtach budynków symulowanych w programie Ecotect. Zbiór danych obejmuje 768 próbek, z których każda opisuje unikalne kombinacje cech. Zmienna objaśniające to: X1 - Względna zwartość, X2 - Powierzchnia, X3 - Powierzchnia Ścian, X4 - Powierzchnia Dachu, X5 - Całkowita Wysokość, X6 - Orientacja, X7 - Powierzchnia przeszklenia oraz X8 - Rozkład powierzchni przeszklenia.

Współczynniki regresji dla zmiennych objaśniających x5 i x7 są statystycznie istotne, co sugeruje, że obie te zmienne mają istotny wpływ na zmienną zależną y. Reszty modelu wydają się być dobrze rozłożone wokół zera na wykresach rozrzutu reszt. Brak widocznych wzorców w resztach może świadczyć o tym, że model jest adekwatny. Wnioski te sugerują, że zbudowany model regresji może być użyteczny do prognozowania zmiennych zależnych na podstawie wartości zmiennych objaśniających.

Dzięki tym wynikom możemy wnioskować, że efektywność energetyczna budynków może być istotnie związana z ich całkowitą wysokością i powierzchnią przeszklenia. To z kolei może być przydatne dla projektantów i architektów, ponieważ mogą oni dostosować te cechy w celu poprawy efektywności energetycznej planowanych budynków.

Analiza dodatkowych zmiennych lub zastosowanie różnych modeli mogą wpłynąć na lepsze zrozumienie związków między cechami budynków a ich efektywnością energetyczną.