WAVE PROPAGATION IN LOSSY DIELECTRICS

Introduction

➤Our goal is to derive EM wave motion in the following media:

- 1. Free space $(\sigma = 0, \varepsilon = \varepsilon_o, \mu = \mu_o)$
- 2. Lossless dielectrics ($\sigma = 0$, $\varepsilon = \varepsilon_r \varepsilon_o$, $\mu = \mu_r \mu_o$ or $\sigma \ll \omega \varepsilon$)
- 3. Lossy dielectrics ($\sigma \neq 0$, $\varepsilon = \varepsilon_r \varepsilon_o$, $\mu = \mu_r \mu_o$)
- **4.** Good conductors $(\sigma \approx \infty, \varepsilon = \varepsilon_o, \mu = \mu_r \mu_o \text{ or } \sigma \gg \omega \varepsilon)$
- \triangleright where ω is the angular frequency of the wave
- Case 3, for lossy dielectrics, is the most general case and will be considered first
- ▶ Remaining cases derived by changing the values of σ , ε , and μ

Introduction

- ➤ Wave propagation in lossy dielectrics is a general case from which wave propagation in other types of media can be derived as special cases
- A lossy dielectric is a medium in which an EM wave loses power as it propagates due to partial conduction
- In other words, a lossy dielectric is a partially conducting medium (imperfect dielectric or imperfect conductor) with $\sigma \neq 0$
- We will consider a linear, isotropic, homogeneous, lossy dielectric medium that is charge free $(\rho_v = 0)$

- The wave equation will be obtained from Maxwell's equations for time-varying fields
- Maxwell's equations in the phasor form will be used by removing the time-varying quantity
- Once we have the solution of the vector wave equation, the time varying quantity will be added back

ightharpoonup A sinusoidal current $I(t) = I_0 \cos(wt + \theta)$, for example, equals the real part of $I_0 e^{j\theta} e^{jwt}$

In performing mathematical operations, we must be consistent in our use of either the real part or the imaginary part of a quantity

The current $I'(t) = I_0 \sin(wt + \theta)$, which is the imaginary part of $I_0 e^{j\theta} e^{jwt}$, can also be represented as the real part of $I_0 e^{j\theta} e^{jwt} e^{-j90}$ because $\sin \propto = \cos(\propto -90^\circ)$

The complex term $I_o e^{j\theta}$, which results from dropping the time factor e^{jwt} in I(t) is called the phasor current, denoted by I_s :

$$I_s = I_0 e^{j\theta} = I_0 \underline{/\theta}$$

Thus $I(t) = I_0 \cos(wt + \theta)$, the instantaneous form, can be expressed as:

$$I(t) = \operatorname{Re} \left(I_s e^{j\omega t} \right)$$

If a vector $\mathbf{A}(x, y, z, t)$ is a time-harmonic field, the phasor form of \mathbf{A} is $\mathbf{A}_{s}(x, y, z)$; the two quantities are related as:

$$\mathbf{A} = \operatorname{Re} \left(\mathbf{A}_{s} e^{j\omega t} \right)$$

For example, if $\mathbf{A} = A_o \cos(wt - \beta x) \mathbf{a_y}$, we can write \mathbf{A} as:

$$\mathbf{A} = \operatorname{Re} \left(A_{o} e^{-j\beta x} \, \mathbf{a}_{y} e^{j\omega t} \right)$$

➤Therefore, the phasor form of A is:

$$\mathbf{A}_s = A_{\rm o} e^{-j\beta x} \, \mathbf{a}_y$$

>From the previous discussion:

$$\frac{\partial \mathbf{A}}{\partial t} = \frac{\partial}{\partial t} \operatorname{Re} \left(\mathbf{A}_s e^{j\omega t} \right)$$
$$= \operatorname{Re} \left(j\omega \mathbf{A}_s e^{j\omega t} \right)$$

>Therefore:

$$\frac{\partial \mathbf{A}}{\partial t} \rightarrow j\omega \mathbf{A}_s$$

➤Similarly:

$$\int \mathbf{A} \ \partial t \to \frac{\mathbf{A}_s}{j\omega}$$

>We shall now apply the phasor concept to time-varying EM fields

- The fields quantities $\mathbf{E}(x, y, z, t)$, $\mathbf{D}(x, y, z, t)$, $\mathbf{H}(x, y, z, t)$, $\mathbf{B}(x, y, z, t)$, $\mathbf{J}(x, y, z, t)$, and $\rho_v(x, y, z, t)$ and their derivatives can be expressed in phasor form
- In phasor form, Maxwell's equations for time-harmonic EM fields in a linear, isotropic, and homogeneous medium can be written as:

$$\mathbf{\nabla \cdot E}_{s}=0$$

$$\nabla \cdot \mathbf{H}_s = 0$$

$$\nabla \times \mathbf{E}_s = -j\omega \mu \mathbf{H}_s$$

$$\nabla \times \mathbf{H}_s = (\sigma + j\omega \varepsilon) \mathbf{E}_s$$

Taking curl on both sides of the Maxwell's equation, we get:

$$\nabla \times \nabla \times \mathbf{E}_s = -j\omega\mu \ \nabla \times \mathbf{H}_s$$

>We have the vector identity:

$$\nabla \times \nabla \times \mathbf{A} = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

Applying the vector identity to the left side of the equation and by substituting Maxwell's remaining equations, we get:

$$\nabla (\nabla / \mathbf{E}_s) - \nabla^2 \mathbf{E}_s = -j\omega \mu (\sigma + j\omega \varepsilon) \mathbf{E}_s$$

>Or:

$$\nabla^2 \mathbf{E}_s - \gamma^2 \mathbf{E}_s = 0$$

Where: $\gamma^2 = j\omega\mu(\sigma + j\omega\varepsilon)$

- The quantity γ is called the propagation constant (in per meter) of the medium
- ▶By a similar procedure, it can be shown that for the **H** field:

$$\nabla^2 \mathbf{H}_s - \gamma^2 \mathbf{H}_s = 0$$

- These equations for **E** and **H** are known as homogeneous vector Helmholtz 's equations or simply vector wave equations
- In Cartesian coordinates, the wave equation for E, for example, is equivalent to three scalar wave equations, one for each component of E along a_x , a_y , and a_z

 \triangleright Since γ is a complex quantity, we may write it as:

$$\gamma = \alpha + j\beta$$

We obtain α and β from the previous equations as:

$$-\operatorname{Re} \gamma^2 = \beta^2 - \alpha^2 = \omega^2 \mu \varepsilon$$

>And:

$$|\gamma^2| = \beta^2 + \alpha^2 = \omega \mu \sqrt{\sigma^2 + \omega^2 \varepsilon^2}$$

>From the above equations we obtain:

$$\alpha = \omega \sqrt{\frac{\mu \varepsilon}{2} \left[\sqrt{1 + \left[\frac{\sigma}{\omega \varepsilon} \right]^2} - 1 \right]}$$

$$\beta = \omega \sqrt{\frac{\mu \varepsilon}{2}} \left[\sqrt{1 + \left[\frac{\sigma}{\omega \varepsilon} \right]^2} + 1 \right]$$

 \triangleright For simplicity, we assume that the wave propagates along $+a_{7}$ and that \mathbf{E}_{s} has only an x-component, then:

$$\mathbf{E}_s = E_{xs}(z)\mathbf{a}_x$$

>Substituting the above into the wave equation, we get:

$$(\nabla^2 - \gamma^2)E_{xs}(z)$$

Therefore:
$$\frac{\partial^2 E_{xs}(z)}{\partial x^2} + \frac{\partial^2 E_{xs}(z)}{\partial y^2} + \frac{\partial^2 E_{xs}(z)}{\partial z^2} - \gamma^2 E_{xs}(z) = 0$$

>0r:

$$\left[\frac{d^2}{dz^2} - \gamma^2\right] E_{xs}(z) = 0$$

This is a scalar wave equation, a linear homogeneous differential equation, with solution:

$$E_{xs}(z) = E_{o}e^{-\gamma z} + E'_{o}e^{\gamma z}$$

- \triangleright where E_o and E'_o are constants
- The fact that the field must be finite at infinity requires that $E'_{o} = 0$
- Alternatively, because $e^{\gamma z}$ denotes a wave traveling along $-\mathbf{a}_z$ whereas we assume wave propagation along \mathbf{a}_z , => E_o' = 0
- Inserting the time factor e^{jwt} into the above equation and using value of γ , we obtain:

$$\mathbf{E}(z, t) = \operatorname{Re}\left[E_{xs}(z)e^{j\omega t}\mathbf{a}_{x}\right] = \operatorname{Re}\left(E_{o}e^{-\alpha z}e^{j(\omega t - \beta z)}\mathbf{a}_{x}\right)$$

>Or:

$$\mathbf{E}(z,t) = E_0 e^{-\alpha z} \cos(\omega t - \beta z) \mathbf{a}_x$$

A sketch of |E| at times t = 0 and $t = \Delta t$ is shown, where it is evident that E has only an x-component and it is traveling along the +z-direction

Problem-1

The equation of $\mathbf{E}(z,t)$ for an EM wave in a lossy dielectric medium is given below. Determine the equation for $\mathbf{H}(z,t)$ for the same EM wave.

$$\mathbf{E}(z,t) = \operatorname{Re}\left[E_{xs}(z)e^{j\omega t}\mathbf{a}_{x}\right] = \operatorname{Re}\left(E_{o}e^{-\alpha z}e^{j(\omega t - \beta z)}\mathbf{a}_{x}\right)$$

Problem-1

we will use the phosor form of Maxwell's equations: So E = Re[Ens(2)eintail \Rightarrow $\vec{E}_{1S} = E_0 \vec{e}^{(\alpha + \beta \beta) E_1}$ of $\vec{E}_S = E_{XS} \vec{G}_{1A}$ From Maxwell's equation, we have FXERS = - JULITS ON HS = FXES $\nabla X E_S = \begin{vmatrix} a_X & a_Y & a_{YZ} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = 0 \overrightarrow{a_{11}} - \overrightarrow{a_{11}} \left(-\frac{\partial E_{11S}}{\partial z} \right)$ $= \begin{vmatrix} E_{11S} & 0 & 0 \end{vmatrix} + \overrightarrow{a_{12}} \left(-\frac{\partial E_{11S}}{\partial z} \right)$

Problem-1

$$\overrightarrow{T} \times \overrightarrow{E} S = \underbrace{\partial \mathcal{E}_{NS}}_{\partial \mathcal{Z}} \overrightarrow{G} \overrightarrow{J} = -\mathcal{E}_{O}(A+j\beta) \cdot \underbrace{\partial \mathcal{E}_{O}}_{\partial \mathcal{Z}} \overrightarrow{G} \overrightarrow{J}$$

$$\overrightarrow{H} S = \underbrace{\left(\frac{A+j\beta}{j} \right)}_{j u u u} \mathcal{E}_{O} = \underbrace{\left(\frac{A+j\beta}{j} \right)}_{u u} \mathcal{E}_{O} = \underbrace{\left(\frac{A+j\beta}{j} \right)}_{u u} \mathcal{E}_{O} = \underbrace{\left(\frac{A+j\beta}{$$

 \triangleright Since η is a complex quantity, it may be written as:

$$\eta = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}} = |\eta| \underline{/\theta_{\eta}} = |\eta| e^{j\theta_{\eta}}$$

>With:

$$|\eta| = \frac{\sqrt{\mu/\varepsilon}}{\left[1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2\right]^{1/4}}, \quad \tan 2\theta_{\eta} = \frac{\sigma}{\omega\varepsilon}$$

>Where:

$$0 \le \theta_n \le 45^\circ$$

➤ Therefore, using the above quantities, H may be written as:

$$\mathbf{H} = \operatorname{Re} \left[\frac{E_{o}}{|\eta| e^{j\theta_{\eta}}} e^{-\alpha z} e^{j(\omega t - \beta z)} \mathbf{a}_{y} \right] \quad \text{OR} \quad \mathbf{H} = \frac{E_{o}}{|\eta|} e^{-\alpha z} \cos(\omega t - \beta z - \theta_{\eta}) \mathbf{a}_{y}$$