Theorem on Backward Substitution

Theorem: For the recurrence equation of the form,

$$t_n = rt_{n-1}$$
 , $n > 0$

$$t_0 = \alpha$$

the solution is given as $t_n = \alpha r^n$.

Proof:

This is a geometric sequence and r is called a ratio.

Let us apply the substitution method for the equation:

$$t_n = r \times t_{n-1}$$
 $= r \times [rt_{n-2}] = r^2t_{n-2}$
 $= r^2 \times [rt_{n-3}] = r^3t_{n-3}$
.
.
.
.
.
.
.
.
.
.

Since $t_0 = \alpha$, substituting this in the solution yields the following: $t_n = \alpha r^n$

We could rewrite the above proof as: -

$$T(n) = r \times T(n-1)$$
, $n > 0$

$$T(0) = \alpha$$

the solution is given as $T(n) = \alpha r^n$.

Proof:

This is a geometric sequence and r is called a ratio.

Let us apply the substitution method for the equation:

$$T(0) = r \times T(n-1)$$

= $r \times [rT(n-2)] = r^2T(n-2)$
= $r^2 \times [rT(n-3)] = r^3T(n-3)$

•

$$=r^nT(0)$$

Since $T(0) = \alpha$, substituting this in the solution yields the following: $T(n) = \alpha r^n$
