Técnicas de Clustering - 2

Métodos jerárquicos

Introducción

- Hay problemas con jerarquías naturales
 - Taxonomía natural: Reinos, phyla, clases, familias...
- Datos donde hay estructuras a distintos "niveles"
 - Cluster dentro de los clusters, iterativamente
- Más que una división "plana" en muchos clusters, es interesante reconstruir la jerarquía a partir de los datos

Objetivo

- El clustering jerárquico busca organizar los datos en una serie de particiones anidadas
- En cada nivel, los datos agrupados son más similares entre sí que si se los compara con los de otros grupos

Representación: Dendrogramas

Un dendrograma es un diagrama de divisiones que representa una jerarquía de categorías, basado en general en el grado de similitud o número de características compartidas entre los elementos - Wikipedia

Otras representaciones

Diagrama de Venn mostrando los mismos datos que el dendrograma anterior. Puede ser menos evidente la distancia entre los grupos.

Cantidad de clusters

Cortando el arbol al nivel deseado se obtiene un clustering de los datos.

Los sub-árboles conectados a ese nivel forman los clusters

Estrategias

- Top-Down o divisiva
 - Muy poco usada
 - Comienza con todos los puntos en un cluster
 - A cada paso divide todos los clusters en dos partes de acuerdo a un criterio a optimizar
 - Termina con todos los puntos separados
 - Mejor para pocos clusters

Estrategias

- Bottom-Up o aglomerativa
 - Comienza con todos los puntos separados (clusters individuales)
 - A cada paso busca los dos clusters más similares (de acuerdo a algún criterio) y los une
 - Termina con todos los puntos en un solo cluster

Ésta es la que usamos de aquí en más

Criterios de similitud

- A cada paso tenemos que evaluar qué clusters juntar.
- Necesitamos una medida de similitud entre clusters (no es lo mismo que entre datos).
- Distintas medidas dan como resultado distintas jerarquías (distintas soluciones).

Single Linkage

- Medida de distancia: distancia mínima entre pares de puntos, uno en cada cluster.
- Agrupa "vecinos de vecinos"
- Busca "alta conectividad", no grupos compactos.

$$d_{min}(\mathcal{D}_i, \mathcal{D}_j) = \min_{x_t \in \mathcal{D}_i} \min_{x_s \in \mathcal{D}_j} \bar{d}(x_s, x_t)$$

Single Linkage es...

- Juntar cada grupo con el punto más cercano, empezando de puntos separados...Suena a algo?
- SL produce el Minimum spanning tree de los datos
 - Algoritmo de Prim
- Cortando las conexiones más largas se encuentran los clusters

Single linkage

- Problemas
 - Muy dependiente de outliers
 - Ineficiente: O(n²) como mínimo
 - No puede corregir errores previos, malas asignaciones

Complete Linkage

- Medida de distancia: distancia máxima entre pares de puntos, uno en cada cluster.
- Agrupa "conjuntos completamente vecinos"
- Busca grupos compactos, estilo kmeans.

$$d_{max}(\mathcal{D}_i, \mathcal{D}_j) = \max_{x_t \in \mathcal{D}_i, x_s \in \mathcal{D}_j} d(x_s, x_t)$$

Complete linkage

- Dependiente de outliers (pero diferente)
- Determinista
- Pero:
 - Ineficiente: O(n²) como mínimo
 - No puede corregir errores previos, malas asignaciones
 - No tiene el poder de SL de formar clusters con formas arbitrarias.

Average Linkage

- Medida de distancia: media de la distancia entre pares de puntos, uno en cada cluster.
- Intermedia entre las dos anteriores
- Busca grupos conectados y compactos.

$$d_{average}(\mathcal{D}_i, \mathcal{D}_j) = average_{x_t \in \mathcal{D}_i, x_s \in \mathcal{D}_j} d(x_s, x_t)$$

Otro criterio

- Criterio de Ward
 - Busca los cluster que al juntarlos dan el menor aumento en la suma de distancia cuadrada entre sus componentes
 - Equivalente a k-means

Práctica

- Ver códigos en R.
- Hay problemas para comparar con k-means y todos los linkages entre sí.

Resumen

- Vimos los dos métodos de clustering más comunmente usados:
 - K-means (PAM): divisivo, clusters compactos
 - Single/Aver/Complete linkage: construyen dendogramas con distintos criterios
- En el 95% de las aplicaciones reales se usa uno de los dos.
- Ambos son:
 - Heurísticas simples, sin gran teoría detrás
 - Fáciles de implementar
 - En la práctica los dos dan resultados "razonables" muchas veces
- Son base de métodos más elaborados

Mensaje hasta acá

- No existe "el mejor" método de clustering
- Todos parten de imponer una estructura
- Si aciertan, entonces el resultado es bueno

No hay algoritmos que puedan resolver estos dos problemas eficientemente

Otros métodos

SOM

- Self-Organizing Map. Desarrollado por T. Kohonen en los '80
- Basado en el mapeo que hace la corteza visual del cerebro
- Idea: Tengo un "mapa", un conjunto de centros con una topología dada (generalmente una grilla equiespaciada en 1, 2 o hasta 3 dimensiones).

SOM

- Trata de ajustar el mapa a los datos, respetando la topología (que se deforme lo menos posible)
- Los nodos del mapa son centros de clusters que compiten entre sí para estar cerca de los datos.

SOM

- Algoritmo simple:
 - Tomo un punto al azar
 - Busco el nodo más cercano
 - Muevo el nodo (y sus vecinos directos en la grilla) un paso dado en la dirección del punto
 - Itero

SOM Ejemplo bi-dimensional

SOM - Análisis

- Una vez que se ajusto la grilla a los datos, se suele analizar el resultado inversamente:
 - Se grafica el mapa en su estructura original
 - Se muestran en el gráfico los puntos del problema analizado que quedaron asignados a cada nodo
 - Se usa un codigo de grises para indicar distancias entre los nodos???? Ideas de vacio????

Model-based methods

- Propone un modelo funcional para los datos
 - Por ejemplo, una mezcla de distribuciones Gaussianas.
- Busca ajustar los parámetros del modelo a los datos
 - Típicamente, usando Expectation-Maximization
- Se regula la complejidad del modelo propuesto de acuerdo a la cantidad de datos
 - Iguales o distintas covarianzas, etc

Métodos de ensamble

- Propone juntar la información de un montón de soluciones de clustering diversas.
 - Juntar evidencia: Si un par de puntos están siempre juntos, dejarlos así. Y lo contrario.
 - Usa una matriz de evidencias como nueva matriz de distancias y clusterizarla
 - Distintas formas de crear las soluciones de clustering
 - Distintos métodos para clusterizarla

Métodos espectrales

- Pensar el problema como el de encontrar componentes disjuntas en un grafo
 - Construir la matriz de similaridad del grafo
 - Grafo de k-vecinos
 - Medida de similaridad apropiada (gausiana)
 - Calcular una proyección PCA de esa matriz en bajas dimensiones
 - Buscar clusters en ese espacio
 - Muy efectivo!