Search

Professor Marie Roch Chapter 3, Russell & Norvig

Solving problems through search

- State atomic representation of world
- Goal formulation
 - What objective(s) are we trying to meet?
 - Can be represented as a set of states that meet objectives: goal states
- Problem formulation
 - Decide actions and states to reach a goal

Search

- Assume environment is
 - observable
 - discrete (finite # of actions)
 - deterministic actions
- Search process returns a plan: set of states & actions to reach a goal state
- Plan can be executed

Search problem components

• Initial state

Search problem components

- Initial state
- Actions
 - function that returns set of possible decisions from a given state
 - actions(in(arad)) → {go(sibiu), go(Timisoara), go(zerind)}

Abstract view of Romanian roads

Note: Abstractions are valid when we can map them onto a more detailed world

Search problem components

- Initial state
- Cost
 - Each action has a step cost: cost(in(arad), go(zerind), in(zerind)) = 75
 - A path has a cost which is the sum of its step costs:

path: in(arad), in(zerind), in(Oradea) has cost: 146 (75+71)

Abstract view of Romanian roads (Russel and Norvig 2010, Fig 3.2)

Search problem components

- Initial state
- Actions
- Cost
- Transition model Function that reports the result of an action applied to a state:

result(in(arad),go(zerind) →in(zerind)

Zerind

or bust!

Search problem components

- Initial state
- Actions
- Cost
- Transition model
- Goal predicate Is the new state a member of the goal set? goal: {in(bucharest)}

Any path that reaches a goal is a solution, the lowest cost path is an optimal solution.

Sample toy problem

• n-puzzle

8-puzzle and one possible goal state [Figure 3.4 R&N 2010]

• n-queens

8-queens state [Figure 3.5 R&N 2010]

Constructing a problem: n-queens

- States
 - 1. complete-state:
 - n-queens on board
 - move until no queen can capture another.
 - 2. Incrementally place queens
 - initial empty board
 - add one queen at a time

Incremental n-queens

- state: Any arrangement of [0,n] queens
- initial state: empty board
- actions: add queen to empty square
- transition model: new state with additional queen
- goal test: n queens on board, none can attack one another

Incremental n-queens

- A well-designed problem restricts the state space
 - Naïve 8 queens
 1st queen has 64 possibilities
 2nd queen has 63 possibilities...

$$64 \times 63 \times 62 ... \approx 1.8 \times 10^{14}$$

- Smarter:
 - Actions only returns positions that would not result in capture
 - State space reduced to 2057 states.

Classic real-world problems

- route-finding problem
 - transportation (car, air, train, boat, ...)
 - networks
 - operations planning
- touring problem
 Visit a set of states ≥1 time
- traveling salesperson Visit a set of state 1 time

 Others: VLSI layout, autonomous vehicle navigation & planning, assembly sequencing, pharmaceutical discovery

Search tree

- Frontier set consists of leaf nodes
- Redundant paths occur when
 - \exists more than 1 path between a pair of states
 - cycles in the search tree (loops) are a special case

Redundant paths

"Those who cannot remember the past are condemned to repeat it"

George Santayana, Spanish-American philosopher 1863-1952

- Sometimes, we can define are our problem to avoid cycles e.g. n-queens: queen must be placed in the leftmost empty column
- Otherwise: Explored set
 - Track states that have been investigated
 - Don't add any actions that have already occurred

Tree Search

```
function tree-search(problem)
  frontier = problem.initial_state()
  done = found = False
  while not done
    node = frontier.get_node() # remove state
    if node in problem.goals()
        found = done = True
    else
        frontier.add_nodes(results from actions(node))
        done = frontier.is_empty()
  return solution if found else return failure
```


Graph Search

```
function graph-search(problem)
  frontier = problem.initial_state()
  done = found = False
  explored = {} # keep track of nodes we have checked
  while not done
    node = frontier.get_node() # remove state
    explored = union(explored, node)
    if node in problem.goals()
        found = done = True
    else
        # only add novel results from the current node
        nodes = setdiff(results from actions(node), union(frontier,explored))
        frontier.add_nodes(nodes)
        done = frontier.is_empty()
    return solution if found else return failure
```


Search architecture

- Node representation
 - state
 - parent ancestor in tree allows us to find the solution from a goal node by chasing pointers and reversing the path
 - action Which action was used on parent to generate this node
 - path-cost What is the cost to reach this node from the tree's root. Usually denoted g(n).

Search architecture

```
function child-node(problem, node, action)
  child.state = problem.result(node.state, action)
  child.parent = node
  child.path_cost = node.path_cost +
    problem.cost(node.state, action, child.state)
  return child
```


Search architecture

- frontier set is usually implemented as a queue
 - FIFO traditional queue
 - LIFO stack
 - priority

We will develop a way such that it can always be a priority queue.

- Explored set Need to make states easily comparable
 - · hash the state or
 - store in canonical form (e.g. sort visited cities for traveling salesperson problem)

A generic graph search algorithm

```
{\tt function\ tree-search(problem)}
   frontier = problem.initial_state() # priority queue based on lowest cost
   done = found = False
   explored = {} # keep track of nodes we have checked
    while not done
        node = frontier.get_node() # remove state
        explored = union(explored, node)
        if node in problem.goals()
            found = done = True
            # only add novel results from the current node
            nodes = setdiff(results from actions(node), union(frontier,explored))
            for n in nodes
                estimate a cost g'(n) + h'(n)
            frontier.add_nodes(nodes) # merge new nodes in by estimated cost
            done = frontier.is_empty()
    return solution if found else return failure
```


Uninformed (blind) search

- No awareness of whether or not a state is promising
- Strategies depend on order of node expansion
 - breadth-first
 - uniform-cost
 - depth-first
 - variants: depth-limited, iterative deepening, bidirectional
- Note: Text uses different queue types for frontier, with generic search algorithm everything is a priority queue, smallest values first.

Breadth-first search

• $\forall n \ g'(n) = \text{depth}(n) \text{ and } h'(n) = k \text{ (e.g. } k=0)$

Breadth-first search

- Guarantees
 - completeness will find a solution
 - best path if cost is a nondecreasing f(depth)
- How can we measure performance?
 - Time complexity
 - Space complexity

Complexity (CS 310 material)

- Measure of the number of operations (time) or memory (space) required
- Analysis of performance as the number of items n grows:
 - worst case
 - average case
- Example:

```
x = 0

for i in xrange(n):

for j in xrange(n):

x = x + i*i + j*j

ions

x = x + i*i + j*j
```

def foobar(n):

There are T(n)=4n²+1 arithmetic operations

Complexity

• We define "big oh" of n as follows:

$$T(n)$$
 is $O(f(n))$ if $T(n) \le kf(n)$ for some $k \& \forall n > n_0$

- \bullet Role of k and n_0 Coefficients of highest order polynomial aren't relevant.
- Implications:
 - $T(n) = 4n^2 + 1 \rightarrow O(n^2)$
 - $T'(n) = 500n + 8 \rightarrow O(n)$

For some small values of n, T(n) is better, but as n increases T(n) will be worse. Using the big-oh notation abstracts this away and we know in general that the second algorithm is better.

Search complexity

Measured with respect to search tree:

- Complexity is a function of
 - Branch factor max # of successors
 - Depth of the shallowest goal node
 - Maximum length of a state-space path
- Time measurement: # nodes expanded
- Space measurement: maximum # nodes in memory

Search complexity

- "Search cost" time complexity
- "Total cost" time and space complexity Problematic to fuse the metrics...

Breadth-first search performance

- Assume branch factor b
- Time complexity: $b + b^2 + b^3 + \dots + b^d = O(b^d) *$
- Space complexity
 - Every generated node remains in memory, $O(b^{d-1})$ in explored and $O(b^d)$ in frontier.

* See text for discussion of $\mathit{O}\left(b^{d}\right)$ vs. $\mathit{O}\left(b^{d+1}\right)$

Uniform-cost search

- Similar to breadth-first, g'(n) uses edge costs
- $\forall n \ g'(n) = g(n) \text{ and } h'(n) = k$
- Nodes are expanded in order of optimal cost → optimal solution
- Complexity function of minimum cost for all actions

Depth-first search

- Deepest node is expanded first
- $\forall n \ g'(n) = k \ \text{and} \ h'(n) = -depth(k)$
- Non-optimal
- Incomplete search
- Why bother?

Depth-first search (DFS)

- DFS will explore other paths when there are no successors.
- Fast! If you hit the right path... but the average case analysis is $O(b^m)$ where m is maximum depth.
- Space complexity is better: O(bm)

Iterative deepening

- Prevents infinite loops of depth-first search
- Basic idea
 - Depth-first search with a maximum depth
 - If the search fails, repeat with a deeper depth

Uninformed search

- Other variants exist
- For large search spaces, it is generally a bad idea

Informed, or heuristic, search

• General idea: Can we guess the cost to a goal based on the current state?

Heuristic

- h(n) Actual cost from a search graph node to a goal state *along the cheapest path*.
- h'(n) An estimate of h(n), known as a heuristic.

Note that your text does not make a notational distinction between the actual cost and the estimated one and always uses h(n), so we will frequently follow suit.

Heuristic

- h(n) is always ≥ 0
- h(n) is problem specific
- Estimators of h(n) are similar.
- One can think of a heuristic as an educated guess. We will look at how to construct these later...

Greedy best-first search

- g(n) = 0, h(n) is heuristic value
- Example h(n) for Romania example:

as the bird flies distance

A* Search

- "A-star" search uses:
 - g(n) = cost incurred to n
 - h(n) = estimate to goal

A* is the estimated cost form start to goal through state n

Heuristic properties

 admissible – h'(n) is admissible if it never overestimates the cost to goal

One can think of it as optimistic: h'(n)

Naptine I suppose.

O hyla Stantingen 2014

 consistency (aka monotonicity) h'(n) is consistent if

PIT IF consistency: cost(n, act) $h'(n) \le cost(n, action, n') + h'(n')$

n'

Note: We are being careful about distinguishing the heuristic estimator h'(n) from the actual distance h(n)

Heuristic properties

- Every consistent heuristic is also admissible.
- A* is guaranteed to be:
 - for trees
 A* optimal if h'(n) is admissible
 - for graphs
 A* optimal if h'(n) is consistent

Understanding A* optimality

Consistency revisited: the ▲ inequality – the sum of any two sides ≥ third side

 $h'(n) \le c(n,action,n')+h'(n')$

If h' consistent and costs are nonnegative, values of f(n) along any path are nondecreasing.

Understanding A* optimality

- Suppose we pick node n
- Is the path to node n's state optimal?

Proof by contradiction

Suppose a better path to the same state is in node b. As b and n have the same state, so h(n) = h(b). Relative position in queue will be driven by g(n) and g(b). If b is better, g(b) < g(n) and we would have picked b first

Understanding A* optimality

- When h(n) is consistent, the properties of:
 - nondecreasing values of f(n)
 - guarantee that we pick the best path to n

ensure that the first goal node we find is optimal.

 Completeness holds when there are a finite number of nodes with f(n) < the optimal cost

Limitations of A*

- Need to find a heuristic
- Show it is consistent (for graph search) if optimal goal is required.
- Show the graph is finite for nodes with cost lower than the optimal one if completeness is required
- Note: expanded set requires nodes in memory and is a frequent limitation of A*

A* variants

- iterative deepening A*
 Same idea as iterative depth-first search, but we limit on f(n)
- SMA* simplified memory A*
 - When memory is full
 - drops worst frontier node (highest f(n))
 - stores that value in parent, and will only reconsider branch when everything looks worse than the stored value
 - Details beyond our scope

Heuristic search summary

- A* can still have problems with space complexity
 - iterative deepening A*
 - other alternatives listed in text
- Complexity of A* search is tricky, but is related to
 - the error in the heuristic, h(n)-h'(n)
 - · and solution depth

Developing heuristics

- Requires
 - knowledge of problem domain
 - thinking a bit (usually)
- Effort to show that heuristic is
 - admissible
 - consistent

Start State

• What heuristics could we use for the N-puzzle

N-puzzle heuristics

- Common heuristics
 - h₁(n) Number of misplaced tiles
 - h₂(n) Sum of Manhattan¹ distance of tiles to solution

- Are these
 - admissible? (never overestimates)
 - consistent? (non-decreasing path cost)

¹ Also known as city-block distance, the sum of vertical and horizontal displacement.

Heuristics and performance

- Branching factor
 - Measured against a complete tree of solution depth d
 - Suppose A* finds a solution at
 - depth 5
 - 52 nodes expanded (53 with root)
 - A complete tree of depth 5 would have $52 + 1 = b^* + (b^*)^2 + (b^*)^3 + (b^*)^4 + (b^*)^5$ where b* is the branch factor
 - Using a root finder for $1(b^*)^5 + 1(b^*)^4 + 1(b^*)^3 + 1(b^*)^2 + 1(b^*)^1 53(b^*)^0 = 0$ we see b*≈1.92

Heuristics and performance

• 8-puzzle example averaged over 100 instances

d	Search Cost (nodes generated)			Effective Branching Factor		
	IDS	$A^{*}(h_{1})$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	-	539	113	-	1.44	1.23
16	-	1301	211	-	1.45	1.25
18	-	3056	363	-	1.46	1.26
20	-	7276	676	_	1.47	1.27
22	-	18094	1219	-	1.48	1.28
24	-	39135	1641	-	1.48	1.26

• branch factors closer to one are better

Finding heuristics

- Okay, developing a heuristic is hard
- Can we make it easier?

Relaxed problem heuristics

- Let's return to the N-puzzle
- Suppose we allowed
 - A tile to move onto the next square regardless of whether or not it was empty.
 - A tile to move anywhere.
- These are relaxations of the rules

Relaxed problems

We can think of these as expanding the state space graph.

Relaxed problem heuristics

- The original state space is a subgraph of the new one.
- Heuristics on relaxed state space
 - Frequently easier to develop
 - If admissible/consistent properties hold in relaxed space, they also hold in the problem state space.

Relaxation

- Can specify problem in a formal language, e.g.
 - move(A,B) if
 - verticalAdjacent(A,B) and
 - horizontalAdjacent(A,B) and
 - isempty(B)
- Possible relaxations
 - move(A,B) if adjacent(A,B)
 - move(A,B) if isempty(B)
 - move(A,B)

Automatically generated heuristics

With a formal specification of the problem there exist algorithms to find heuristics (beyond our scope, e.g. ABSOLVER)

Machine Learning, 12, 117-141 (1993) © 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Machine Discovery of Effective Admissible Heuristics

ARMAND E. PRIEDITIS PRIEDITIS@cs.UCDAVIS.EDU
Department of Computer Science, University of California, Davis, CA 95616

Multiple heuristics

- Regardless of how generated, one may develop multiple heuristics for a problem
- We can merge them

$$h'(n) = \max \left(h'_1(n), h'_2(n), \dots, h'_i(n)\right)$$
 why maximum?

Pattern database heuristics

• Can we solve a subproblem?

• If we can, we can store its h(n)

Pattern database heuristics

- Cost usually found by searching back from goal nodes.
- Worth it if the search will be executed many times.
- Sometimes patterns are disjoint. If so, the heuristic costs may be added (doesn't work for 8 puzzle)

Learning heuristics

- Use experience to learn heuristics
- Beyond our reach for now... (machine learning)

