Autoware

Introduction
Localization
Detection
Tracking and Prediction
Planning
Tutorial
Test localization

Introduction

Autoware.Al is **ROS-based open-source software**, enabling self-driving vehicles to be tested in private areas, urban roads, and highways. Another variant of Autoware, *a.k.a.*, <u>Autoware.Auto</u>,

is also under development for the purpose of commercial deployment of self-driving vehicles with functional safety capabilities.

Refer to Autoware Wiki for Users Guide and Developers Guide.

The current version of Autoware. All provides the functional modules described below.

Localization

Localization depends on **3D high-definition map** data and the **NDT** algorithm. The result of Localization is complemented by the **Kalman Filter** algorithm, using odometry information obtained from **CAN** messages and **GNSS/IMU** sensors.

Detection

Detection is empowered by **camera** and **LiDAR** devices in combination with **3D high-definition map** data. The *Detection* module uses **deep learning** and **sensor fusion** approaches.

Tracking and Prediction

Tracking and Prediction are realized with the **Kalman Filter** algorithm and the lane network information provided by **3D high-definition map** data.

Planning

Planning is based on **probabilistic robotics** and **rule-based systems**, partly using **deep learning** approaches as well.

Control defines motion of the vehicle with a twist of **velocity** and **angle** (also **curvature**). The Control module falls into both the Autoware-side stack and the vehicle-side interface (**PID** variants).

Tutorial

There are two ways to install Autoware: Docker or build from source. I recommend building from source which is more straightforward and no need some external drivers.

https://github.com/Autoware-Al/autoware.ai/wiki/Source-Build

System Variables:	
☐ Autoware version: 1.12.0	
ROS Version: Melodic 18.04	
☐ Cuba: 10.0 (important**,only support ≤10.0)	

☐ Autoware working directory: /home/autoware.ai

```
# check nvidia system/cuba version:
nvidia-smi
```

Launch Autoware (Runtime Manager)

```
$ cd autoware.ai
$ source install/setup.bash
$ roslaunch runtime_manager runtime_manager.launch
```

Follow the steps to test Rosbag in autoware:

https://github.com/Autoware-Al/autoware.ai/wiki/ROSBAG-Demo

*As the runtime manger has overlapping problem, we use terminal to directly access autoware.

Run Autoware from terminal commands

```
$ roscore
# Open another terminal
$ cd autoware.ai
$ source install/setup.bash
# Run specific packages
$ roslaunch lidar_localizer ndt_matching.launch
# Run GUI rViz
$ rviz
# Run specific packages and see avaiable nodes
$ roslaunch /home/erian/autoware.ai/src/(go to that package)
```

Even through we cannot use Runtime manager to directly interface, we still can make use of it as references.

For example, the package is gnss_localizer and there are two nodes under it: fix2tfpose & nmea2tfpose.

Set bash file

```
#( bash file will automatically run for very new terminal)
$ export EDITOR="gedit"
$ cd home
$ gedit ./.bashrc
```

```
.bashrc
          Ð
 Open ▼
                                                      Save
fi
# Ros terminal
source /opt/ros/melodic/setup.bash
export ROS MASTER URI=http://localhost:11311/
export ROS HOSTNAME=172.21.77.129
export ROS_IP=172.21.77.129
export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}
source ~/autoware.ai/install/setup.bash
                               Tab Width: 8 ▼
                           sh ▼
                                                  Ln 115, Col 27
                                                                     INS
```

Test localization

```
Runtime
Quick Start | Setup | Map | Sensing | Computing | Interfac
Localization
  ▼ gnss_localizer
       ☐ fix2tfpose [ sys ] [ app ]
       □ nmea2tfpose [ sys ] [ app ]

    lidar localizer

       □ ndt_mapping [ sys ] [ app ]
       □ approximate_ndt_mapping [ sys ] [ app ]
       □ ndt_matching [ sys ] [ app ]
       □ ndt_matching_monitor [ sys ] [ app ]
       □ icp_matching [ sys ] [ app ]
  fusion_localizer
       □ ekf_localizer [ sys ] [ app ]
  ▼ twist_generator
       □ vehicle_status_converter [ sys ] [ app ]
    autoware_connector
       □ can2odom [ sys ]
       □ vel_pose_connect [ svs ] [ app ]
```

```
# Run specific packages
$ roslaunch lidar_localizer ndt_matching.launch
# Check perception
$ rqt_graph
```


