1 Notes

Figure 1: Analytical Placement

Figure 2: Two terminals

Figure 3: More than two terminals

- Suppose that we have to route from some source node S, to two destination nodes D_1 and D_2 .
- Assume that we route to D_1 first, and there \exists two equally optimal paths p_1 and p_2 which route S to D_1
- Then, it is **not true** that utilizing utilizing p_1 to route to D2 is always as optimal as utilizing p_2 to route to D_2

Figure 4: Connection required from P1 to P2, P3 to P4

Figure 5: Graph

- Criticality of connection from source (S) to target (T) given by ...
 - $Crit(S,T) = 1 \frac{Slack(S,T)}{D_{max}}$
 - Slack(S,T) is amount of delay that can be added to connection, before it affects critical path delay
 - $-D_{max}$ is delay of circuit's critical path
- Cost of using routing resource node n, as part of connection (S,T) given by ...

- $-\ Cost(n) = Crit(S,T) \cdot delay(n) + (1 Crit(S,T)) \cdot (delay(n) + h(n))p(n)$
- $-\ h(n)$ is historic congestion (eg. moving average of past three iterations)
- -p(n) is present congestion of node (ie. how many nets using node)