${\bf Vorlesung\ Rechnerorganisation\ Wintersemester\ 2020/21}$

- Übungsblatt 4 -

Tutoriumsnummer

Name, Vorname: Slavov, Velislav

Matrikelnummer: 2385786

Matrikelnummer: 2385786

Studiengang: Informatik BsC

Name des Tutors: Jonas Heinle

/25 Punkte

P 1	1. Eine SRAM Speicherzelle besteht aus 6 Transistoren und Daten werden gespeichert sobald der Speicher mit Strom versorgt ist.
	Eine DRAM Speicherzelle besteht aus 1 Transistor
	und 1 Kondensator. Es muss eine Auffrischung stattfinden, veil der Kondensator Beim Lesen und durch Strom Leaks
	entladen wird.
	2. SRAM bietet schnellere Zugriffszeiten und ist weniger dicht (wegen die Anzahl an Transistoren pro Zelle).
	DRAM ist dagegen lang samer und dichter somit bietet
	DRAM ist dagegen lang samer und dichter somit bietet größere Kapazitäten.
	3. Registersatz = SRAM
	3. Registersatz = SRAM Cache = SRAM Hauptspeicher = DRAM
	Hauptspeicher = DRAM

A3	1. Zugjiffszeit = die maximale Zeitdauer Zwischen das Kommunizieren einer Adresse an den Speicher und die eigentliche Ausgabe der Daten.
	Zykluszeit = die minimale Zeitdauer zwischen zwei racherna nder Folgenden Speicherzugriffe.
	2. Beim Lesen/Schreiben werden die Bits in SRAM-Zellen der Leze-Kechreibnerstärners eingelesen und wieder in die
	des Lese-Schreibverstärkers eingelesen und wieder in die DRAM-Speicherzellen geschrieben(dieses mal verstärkt). Dies ist notwendig veil der Kondensator Beim Lesen
	und durch Strom Leaks entladen wird.

$$2.ii)$$
 $4096 = 2^{12} = 5$ $Z = 5 = 2^{6} = 64$

- 1. Es müssen 512 Speicherstellen adressiert werden. 512 = 29 somit werden 9 Adressleitungen gebraucht.
 - 2. 8Kx2=2Kx8 8 *2K=16K=> wir branchen 8 Bausteine
 - $3.2^9 = 512$ Speicherstellen die adressiert werden 8192/512 = 16
 - => Organisation: 512×16
 - 4. Wortbreite: 64 bit Kapazität: 64 M Byte Chips: 2Mx8 bit
 - $2M_X8 = 2^{21}X8 = 2^{18}X64$
 - $64M \times 64 = 2^{8} \times 64 = 2^{8} \times 2^{18} \times 64 = 2$ Wir branchen $2^{8} = 256$ Chips

Ich würde die Chips in 16 Zeilen und 16 Spalten anordnen. (16x16 = 256)