

Applicazione (livello 7)

Modello OSI, Layer 7, supporta i processi dell'applicazione e dell'utente finale. Vengono identificati i partner di comunicazione, viene identificata la qualità del servizio, vengono prese in considerazione l'autenticazione dell'utente e la privacy e vengono identificati eventuali vincoli sulla sintassi dei dati. Tutto a questo livello è specifico dell'applicazione. Questo livello fornisce servizi applicativi per trasferimenti di file, e-mail e altri servizi software di rete. Telnet e FTP sono applicazioni che esistono interamente a livello di applicazione. Le architetture applicative a livelli fanno parte di questo livello.

Esempi di applicazioni includono browser WWW, NFS, SNMP, Telnet, HTTP, FTP

Attravero i protocolli DHCP, DNS, HTTP inviamo i file dall'Host sorgente all'Host destinatario tramite lo schermo.

Presentazione (livello 6)

Questo livello offre indipendenza dalle differenze nella rappresentazione dei dati (ad es. Crittografia) mediante la conversione dall'applicazione al formato di rete e viceversa. Il livello di presentazione funziona per trasformare i dati nel modulo che il livello dell'applicazione può accettare. Questo livello formatta e crittografa i dati da inviare attraverso una rete. A volte viene chiamato livello di sintassi.

Gli esempi di presentazione includono crittografia, ASCII, EBCDIC, TIFF, GIF, JPEG, MPEG

Il file viene convertito in un formato comune e si gestiscono le differenze di codifica per enderlo comprensibileal destinatario. Il tipo di decriptazione è stabilito da mittente e destinatario.

Sessione (Livello 5)

Questo livello stabilisce, gestisce e termina le connessioni tra le applicazioni. Il livello di sessione imposta, coordina e termina conversazioni, scambi e dialoghi tra le applicazioni a ciascuna estremità. Si occupa del coordinamento delle sessioni e delle connessioni.

Esempi di sessioni includono NFS, nomi NetBios, RPC, SQL.

Stabilisce la sessione tra i 2 PC consentendo e garantendo la continuità di connessione.

Trasporto (livello 4)

Il modello OSI, Layer 4, fornisce un trasferimento trasparente di dati tra sistemi o host, ed è responsabile del recupero degli errori end-to-end e del controllo del flusso. Garantisce il trasferimento completo dei dati.

Gli esempi di trasporto includono SPX, TCP, UDP. Garantisce la ricezione dei file e i pacchetti sono segmentati per garantire l'arrivo integro dei file. Si stabilisce il tipo di protocollo per la trasmissione (TCP).

Rete (livello 3)

Il livello 3 fornisce tecnologie di commutazione e routing, creando percorsi logici, noti come circuiti virtuali, per la trasmissione di dati da nodo a nodo. Il routing e l'inoltro sono funzioni di questo livello, nonché indirizzamento, internetworking, controllo della congestione e sequenziamento dei pacchetti.

Gli esempi di rete includono AppleTalk DDP, IP, IPX. Lo switch capisce le informazioni ricevute, invia una ARP REQUEST Broadcast a tutti i Pc in Rete e attende che un Pc confermi di avere l'IP ricercato, a quel punto lo switch li mette in connessione. In pratica i dati vengono suddivisi in pacchetti, ogni pacchetto ha un indirizzo IP (se si tratta di 2 pc) o altro (se devo caricare un CV su una pagina Web). l'IP destinatario viene associato al MAC destinatario attraverso il protocollo ARP.

Collegamento dati (livello 2)

Nel Modello OSI, Livello 2, i pacchetti di dati sono codificati e decodificati in bit. Fornisce conoscenza e gestione del protocollo di trasmissione e gestisce gli errori a livello fisico, controllo del flusso e sincronizzazione dei frame. Il livello collegamento dati è diviso in due livelli secondari: il livello Media Access Control (MAC) e il livello Logical Link Control (LLC). Il sottostrato MAC controlla il modo in cui un computer in rete ottiene l'accesso ai dati e le autorizzazioni per trasmetterli. Il livello LLC controlla la sincronizzazione dei frame, il controllo del flusso e il controllo degli errori.

Gli esempi di collegamento dati di livello 2 includono PPP, FDDI, ATM, IEEE 802.5 / 802.2, IEEE 802.3 / 802.2, HDLC, Frame Relay. L'impulso elettrico cioè i dati vengono suddivisi in frame in uno switch che esamina l' HEADER del frame per vedere dove deve andare. Nell'HEADER troviamo l'IP del destinatario e IP e MAC della sorgente.

Fisico (livello 1)

Modello OSI, Layer 1 trasmette il flusso di bit – impulso elettrico, segnale luminoso o radio – attraverso la rete a livello elettrico e meccanico. Fornisce i mezzi hardware per l'invio e la ricezione di dati su un corriere, compresa la definizione di cavi, fibra ottica, schede e aspetti fisici. Il Bit è trasformato in impulso elettrico che passa nel cavo

	OSI (Open Source Interconnection) 7 Layer Mo	del			
Layer	Application/Example	Central Device/ Protocols			DOD4 Model
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	Use Applicat	ions		
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation	JPEG/ASCII EBDIC/TIFF/GIF PICT		G A T E W A Y	Process
Session (5)	Synch & send to ports (logical ports)	Logical Ports			
Allows session establishment between processes running on different stations.	Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.	RPC/SQL/NFS NetBIOS names			
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control Message segmentation • Message acknowledgement • Message traffic control • Session multiplexing	TCP/SPX/UDP Routers IP/IPX/ICMP			Host to Host
Network (3) Controls the operations of the subhet, deciding which physical path the data takes.	Packets ("letter", contains IP address) Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting				Internet
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame eror checking • Media access control	Switch Bridge WAP PPP/SLIP Land Based			Network
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique • Baseband or Broadband • Physical medium transmission Bits & Votts	Hub	Layers		NetWORK