Machine learning

Decision Trees – Part 2

Exercise IV

פיתוח: ד"ר יהונתן שלר משה פרידמן

עצי החלטה – משמעות וקריאת עץ החלטה - תזכורת

<u>עץ החלטה</u>: סדרת השאלות שמביאה אותנו להחלטה

צומת שורש: השאלה הראשונה בעץ ההחלטה

> צמתי ביניים: שאלות המשך

> צמתי עלים: ההחלטה המתקבלת

עץ החלטה: כיצד נבחר את התכונה הבאה - תזכורת

העיקרון הבסיסי

- ענסה לייצר את "המסלול" הקצר ביותר
- * הרעיון: בכל רמה בעץ ננסה לשאול את השאלה שתשפר לנו בצורה הטובה ביותר את רמת הוודאות בחיזוי

נתרגל 2 פונקציות לבחירת מאפיין לצומת:

- אנטרופיה
- Information gain •

אנטרופיה - entropy - תזכורת

* נתבונן במקרה הכללי בו נתונות לנו הסתברויות:

$$P(X=\alpha 1) = p1, P(X=\alpha 2) = p2, \dots P(X=\alpha n) = pn$$

(Entropy) X כאנטרופיה של H(X) נגדיר (Entropy)

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_n \log_2 p_n$$

$$= -\sum_{j=1}^{n} p_j \log_2 p_j$$

אנטרופיה גבוהה, משמעותה, שההתפלגות יותר דומה לאחידה.

אנטרופיה מותנית - תזכורת

האנטרופיה מותנית (Y|X| הינה ממוצע H(Y|X) משוקלל של האנטרופיות ה"ספציפיות" של Y

$$H(Y \mid X) = \sum_{j} P(X = \alpha_{j}) H(Y \mid X = \alpha_{j})$$

תזכורת - Information Gain

עפ"י עפ"י Gain(Y | X) הינה ההפחתה הצפויה באנטרופיה של Y בגלל מיון עפ"י הכונה X

$$Gain(Y \mid X) = H(Y) - H(Y \mid X)$$

בניית עצי החלטה (אלגוריתם ID3) - תזכורת

לולאה:

- את המאפיין הטוב ביותר Xi שים אותו בצומת.
- שור ממנה Xi צור אפשרות וצומת היוצאת ממנה 💠
- (מהשלב הקודם) לצמתים החדשים (מהשלב הקודם) * מיין את הדוגמאות ב-train-set
- ⇒ אם שילוב המאפיין והערך שלו, מוביל להחלטה טובה מספיק, צומת זה הוא עלה ומייצג החלטה.
 - אם לא נוכל לקבל "החלטה טובה", נשאיר צומת זה כעלה
 - אחרת, בצע את אותו תהליך עבור הצומת הזה

תרגיל 5 - בחירת התכונה לצומת

(התרגיל הופיע בשבוע שעבר)

צבע	גיל גדול מ-30	סיווג
שחור	כן	YES
לבן	לא	NO
צהוב	לא	NO
שחור	сן	YES
צהוב	р	YES
לבן	сј	YES
צהוב	р	YES
שחור	לא	NO
שחור	לא	NO
לבן	כן	YES
לבן	cl	YES
שחור	לא	NO
צהוב	cl	YES
שחור	לא	NO
צהוב	כן	YES
שחור	לא	NO
צהוב	כן	YES
לבן	כן	YES
לבן	כן	YES
צהוב	לא	NO
צהוב	לא	NO

נתון ה-train-set הבא,
עם 2 מאפיינים:
צבע (שחור/לבן/צהוב)
גיל (גדול מ-30/קטן או
שווה ל-30)
וקטגוריה: סיווג
(Yes/No)

תרגיל 5 - בחירת התכונה לצומת

- 🎄 נתונה קבוצת האימון בה 12 דוגמאות מסווגות כחיובי ו-9 דוגמאות כשלילי.
 - : מייצגת "גיל") לה שני פיצולים אפשריים 🎄
- אם גדול מ-30" הסיווג הוא YES, "אם קטן/שווה ל-30" הסיווג הוא ↔
 - (12+, 0-)-ו (0+,9-) א נסמן זאת (+9-) ו-(-12+
 - בתונה תכונה B ("צבע") לה שלושה פיצולים אפשריים:
 - אם שחור אנו נשארים עם קבוצה של 2חיוביים וחמישה שליליים", ₪
 - "אם לבן נשארים עם קבוצה של 5 חיוביים ואחד שלילי" 🎄
 - "אם צהוב נשארים עם קבוצה של חמישה חיוביים ושלושה שליליים" 🧇
 - (5+, 3-)-1 (5+,1-),(2+,5-) *

?איזו תכונה עדיפה כצומת הבא בעץ

תרגיל 5 - בחירת התכונה לצומת – פתרון בעזרת IG

נחשב את ההסתברויות ...

$$p(a) = Yes | age \le 30) = \frac{0}{9} = 0$$
 $p(age \le 30) = \frac{9}{9} = 1$
 $p(age \le 30) = \frac{9}{9} = 1$
 $p(age \ge 30) = \frac{12}{12} = 1$
 $p(age \ge 30) = \frac{0}{12} = 0$

ראשית נחשב הסתברויות ...

$$p(\alpha) = Yes = \frac{12}{21} \approx 0.57$$
 $p(\alpha) = No) = \frac{9}{21} \approx 0.43$

תרגיל 5 - בחירת התכונה לצומת – פתרון בעזרת IG

נחשב את האנטרופיה של המחלקה ...

$$H(S) = -p^{+} \log_{2} p^{+} - p^{-} \log_{2} p^{-}$$

$$p($$
סיווג $)pprox Yes)pprox 0.57$

$$p(v) = No) \approx 0.43$$

חישבנו:

נחשב את האנטרופיה של המחלקה...

$$H(Y) \approx -0.57 \cdot \log_2(0.57) - 0.43 \cdot \log_2(0.43) =$$

= $-0.57 \cdot (-0.807) - 0.43 \cdot (-1.22) = 0.4611 + 0.5228 = \mathbf{0.98}$

וG תרגיל 5 - בחירת התכונה לצומת – פתרון בעזרת

חישבנו:

$$p(a) = No|color = white) \approx 0.166$$
 $p(a) = Yes|color = white) \approx 0.166$
 $p(a) = Yes|color = yellow) = 0.625$
 $p(a) = No|color = yellow) = 0.375$

$$p(\alpha) = Yes|color = black) \approx 0.286$$
 $p(\alpha) = No|color = black) \approx 0.714$
 $p(\alpha) = Yes|color = white) \approx 0.833$

$\dots H(Y|B)$ נחשב את האנטרופיה המותנת

$H(Y|B = black) \approx -0.286 \cdot \log_2(0.286) - 0.714 \cdot \log_2(0.714) \approx 1.002$

$$H(Y|B = white) \approx -0.833 \cdot \log_2(0.833) - 0.166 \cdot \log_2(0.166) \approx 0.645$$

$$H(Y|B = yellow) \approx -0.625 \cdot \log_2(0.625) - 0.375 \cdot \log_2(0.375) \approx 0.954$$

$$P(B = black) = \frac{7}{21} \approx 0.333$$
 $P(B = white) = \frac{6}{21} \approx 0.286$ $P(B = yellow) = \frac{8}{21} \approx 0.381$

$$H(Y|B) \approx 0.333 \cdot 1.002 + 0.286 \cdot 0.645 + 0.381 \cdot 0.954 \approx 0.882$$

$\dots H(Y|A)$ נחשב את האנטרופיה המותנת

$$H(Y|A > 30) = -1 \cdot \log_2(1) - 0 \cdot \log_2(0) = 0$$

$$H(Y|A \le 30) = -0 \cdot \log_2(0) - 1 \cdot \log_2(1) = 0$$

$$H(Y|A) = p(A \le 30) \cdot 0 + p(A > 30) \cdot 0 = 0$$

$$H(Y|X) = \sum_{j} P(X = \alpha_j) H(Y|X = \alpha_j)$$

וG תרגיל 5 - בחירת התכונה לצומת – פתרון בעזרת

$$Gain(Y \mid X) = H(Y) - H(Y \mid X)$$

$$H(Y|A) = 0$$
 : הישבנו

$$H(Y|B) \approx 0.882$$

$$H(Y) = 0.98$$

... IG(Y|B) נחשב את האנטרופיה המותנת

$$IG(Y|B) = H(Y) - H(Y|B) \approx 0.98 - 0.882 = 0.098$$

 $\dots IG(Y|A)$ נחשב את האנטרופיה המותנת

$$IG(Y|A) = H(Y) - H(Y|A) = 0.98$$

ולכן <u>נבחר ב-A</u> כתכונה בצומת הבא

Day	Outlook	Temp.	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

שמציג נתוני עבר training-set - 🎄

המאפיינים:

שם – Outlook ↔

שמפרטורה − Temp *

הות − Humidity ♦

- Wind *

המחלקה: Play - האם התחזית אפשרה משחק או לא

שאלה: האם (מבחינת מזג האוויר) מתאים לשחק מחר טניס?

Day	Outlook	Temp.	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

שלב 1: עבור כל מאפיין ועבור כל ערך נבדוק את התפלגות המחלקה (כמה דוגמאות חיוביות וכמה שליליות) – בצורה זו:

$$Values(Outlook) = Sunny, Overcast, Rain$$

 $S = [9+, 5-]$
 $S_{Sunny} = [2+, 3-]$
 $S_{Overcast} = [4+, 0-]$
 $S_{Rain} = [3+, 2-]$

Day	Outlook	Temp.	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

וחfo - שלב 2: עבור כל מאפיין, נחשב את ה- gain ₪ מותנה של המחלקה במאפיין

```
Gain(S, Outlook) = Entropy(S)
- (5/14)Entropy(S_{Sunny})
- (4/14)Entropy(S_{Overcast})
- (5/14)Entropy(S_{Rain})
= .940 - (5/14).971 - (4/14)0 - (5/14).971
= .247
Gain(S, Temperature) = Entropy(S)
- (4/14)Entropy(S_{Hot})
- (6/14)Entropy(S_{Mild})
- (4/14)Entropy(S_{Cool})
= .940 - (4/14)1 - (6/14).811 - (4/14).971
= .029
```

Day	Outlook	Temp.	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

עבור כל מאפיין, נחשב את שלב 2 (המשך): עבור כל מאפיין, נחשב את Info gain המחלקה במאפיין

```
Gain(S, Humidity) = Entropy(S)
- (7/14)Entropy(S_{High})
- (7/14)Entropy(S_{Normal})
= .940 - (7/14).985 - (7/14).592
= .152
Gain(S, Wind) = Entropy(S)
- (8/14)Entropy(S_{Weak})
- (6/14)Entropy(S_{Strong})
= .940 - (8/14).811 - (6/14)1
= .048
```

,outlook נבחר את המאפיין עבור הצומת הבא

נניח שברשותי שלושה מטבעות: מטבע של 10 שקלים, מטבע של חמישה שקלים ומטבע של שקל. אני זורק את שלושת המטבעות בו-זמנית ורושם את תוצאות הזריקה ("עץ" או "פלי"). נתונה טבלת המאורעות:

	"שקל"	10 ש"ח	סיווג - 5ש"ח
1	"עץ"	"עץ"	"פלי"
2	"עץ"	"פלי"	"עץ"
3	"פלי"	"עץ"	"עץ"
4	"עץ"	"פלי"	"פלי"
5	"פלי"	"פלי"	"פלי"
6	"עץ"	"פלי"	"עץ"

חשבו עץ החלטה המסווג תוצאת זריקת מטבע של חמישה ₪ על סמך ידיעת הטלת מטבע שקל ומטבע של 10 ₪

האם בכלל ניתן לחזות תוצאת הטלת מטבע 5 ₪ על בסיס ידע של הטלות של מטבעות אחרים???

נניח שברשותי שלושה מטבעות: מטבע של 10 שקלים, מטבע של חמישה שקלים ומטבע של שקל.
 אני זורק את שלושת המטבעות בו-זמנית ורושם את תוצאות הזריקה ("עץ" או "פלי"). נתונה טבלת המאורעות:

	A: "שקל"	10 :B	ר סיווג - 5ש"ח - Y
1	"עץ"	"עץ"	"פלי"
2	"עץ"	"פלי"	"עץ"
3	"פלי"	"עץ"	"עץ"
4	"עץ"	"פלי"	"פלי"
5	"פלי"	"פלי"	"פלי"
6	"עץ"	"פלי"	"עץ"

ב-B. ב-B. והטלת מטבע 10 ש ב-Y, הטלת מטבע "שקל" ב-A והטלת מטבע 5 ש ב-Y. נחשב InformationGain(Y \mid B) נחשב InformationGain(Y \mid B) נחשב בראש העץ

נניח שברשותי שלושה מטבעות: מטבע של 10 שקלים, מטבע של חמישה שקלים ומטבע של שקל.
 אני זורק את שלושת המטבעות בו-זמנית ורושם את תוצאות הזריקה ("עץ" או "פלי"). נתונה טבלת המאורעות:

	"שקל" :A	10 :B	ר סיווג - 5ש"ח - Y
1	"עץ"	"עץ"	"פלי"
2	"עץ"	"פלי"	"עץ"
3	"פלי"	"עץ"	"עץ"
4	"עץ"	"פלי"	"פלי"
5	"פלי"	"פלי"	"פלי"
6	"עץ"	"פלי"	"עץ"

נחשב את האנתרופיה של מטבע 5 ₪ H(Y) עבור ששת הזריקות:

$$P(ets) = 3/6 = 0.5$$

$$P(Pali) = 3/6 = 0.5$$

$$H(Y) = -0.5\log_{0.5} - 0.5\log_{0.5} = 0.5 + 0.5 = 1$$

		'"שקל" :A	10 :B	ר סיווג - 5ש"ח - Y
		"עץ"	"עץ"	"פלי"
2	2	"עץ"	"פלי"	"עץ"
(3	"פלי"	"עץ"	"עץ"
4	1	"עץ"	"פלי"	"פלי"
į	5	"פלי"	"פלי"	"פלי"
(6	"עץ"	"פלי"	"עץ"

נחשב את האנטרופיה הספציפית של מטבע 5 ₪ בהינתן שתוצאת הטלת מטבע "שקל" הינה "עץ".

$$P(Y = ets | A = ets) = 0.5$$

 $P(Y = pali | A = ets) = 0.5$
 $H(Y | A = ets) = 1$

	'"שקל":A	10 :B	ר סיווג - 5ש"ח - Y
1	"עץ"	"עץ"	"פלי"
2	"עץ"	"פלי"	"עץ"
3	"פלי"	"עץ"	"עץ"
4	"עץ"	"פלי"	"פלי"
5	"פלי"	"פלי"	"פלי"
6	"עץ"	"פלי"	"עץ"

נחשב את האנתרופיה הספציפית של מטבע 5 ₪ בהינתן שתוצאת הטלת מטבע "שקל" הינה "פלי".

$$P(Y = ets | A = pali) = 0.5$$

 $P(Y = pali | A = pali) = 0.5$
 $H(Y | A = pali) = 1$

	'"שקל":A	10 :B ש"ח	ר סיווג - 5ש"ח - Y
1	"עץ"	",,,,,"	"פלי"
	עץ	"עץ"	. 79
2	"עץ"	"פלי"	"עץ"
3	"פלי"	"עץ"	"עץ"
4	"עץ"	"פלי"	"פלי"
5	"פלי"	"פלי"	"פלי"
6	"עץ"	"פלי"	"עץ"

"נחשב את האנתרופיה הספציפית של מטבע 5 ₪ בהינתן הטלת מטבע

$$H(Y \mid A) = \sum_{j} P(A = \alpha_{j}) H(Y \mid A = \alpha_{j})$$

$$= p(A = ets) H(Y \mid A = ets) + p(A = pali) H(Y \mid A = pali)$$

$$= \frac{2}{3} \times 1 + \frac{1}{3} \times 1 = 1$$

	'"שקל":A	10 :B	ר סיווג - 5ש"ח - Y
1	"עץ"	"עץ"	"פלי"
2	"עץ"	"פלי"	"עץ"
3	"פלי"	"עץ"	"עץ"
4	"עץ"	"פלי"	"פלי"
5	"פלי"	"פלי"	"פלי"
6	"עץ"	"פלי"	"עץ"

נחשב את האנתרופיה הספציפית של מטבע 5 ₪ בהינתן הטלת מטבע "10 שקל

$$P(Y = ets \mid B = pali) = 0.5$$
 $P(Y = ets \mid B = ets) = 0.5$ $P(Y = pali \mid B = pali) = 0.5$ $P(Y = pali \mid B = ets) = 0.5$ $P(Y = pali \mid B = ets) = 0.5$ $P(Y \mid B = pali) = 1$ $P(Y \mid B = ets) = 1$

$$H(Y \mid B) = \sum_{j} P(B = \alpha_{j}) H(Y \mid B = \alpha_{j})$$

$$= p(B = ets) H(Y \mid B = ets) + p(B = pali) H(Y \mid B = pali)$$

$$= \frac{1}{3} \times 1 + \frac{2}{3} \times 1 = 1$$

	A: "שקל"	10 :B	ר - 5ש"ח - Y
1	"עץ"	"עץ"	"פלי"
2	"עץ"	"פלי"	"עץ"
3	"פלי"	"עץ"	"עץ"
4	"עץ"	"פלי"	"פלי"
5	"פלי"	"פלי"	"פלי"
6	"עץ"	"פלי"	"עץ"

$$IG(Y | A) = H(Y) - H(Y | A) = 1 - 1 = 0$$

$$IG(Y | B) = H(Y) - H(Y | B) = 1 - 1 = 0$$

שתי התכונות שוות ב"איכות" שלהן. כפי שראינו בהרצאה unfoGain=0 זו לא סיבה להפסיק בבניית העץ. נבחר את התכונה 10 ₪ לשורש של העץ

מתי הופך צומת לעלה (כלומר מתי לא לפצל)?

מקרה בסיסי 1 (Base Case 1): לא לפצל את הצומת (כלומר הצומת תהפוך לעלה), אם כל הדוגמאות שמוינו מה-training-set בעלי אותה קטגוריה

מקרה בסיסי 2 (Base Case 2): לא לפצל את הצומת (כלומר הצומת תהפוך לעלה), אם ערכי המאפיינים בדוגמאות שנותרו זהה.

במקרה זה נסווג את קטגוריית הרוב

חזרה לתרגיל 7 – בניית עץ החלטה

שיערוך

Confusion matrix:

	Predicted Yes	Predicted No
Actual Yes	True Positive (TP)	False Negative (FN)
Actual No	False Positive (FP)	True Negative (TN)

$$accuracy = \frac{\#correct\ predictions = \#TP + \#TN}{\#test\ instances = \#TP + \#TN + \#FP + \#FN}$$

Error (rate) = 1- accuracy =
$$\frac{\#incorrect\ predictions = \#FP + \#FN}{\#test\ instances = \#TP + \#TN + \#FP + \#FN}$$

חזרה לתרגיל 7 – בניית עץ החלטה

```
PALI = +
ETS = -
```

FP- ואת ה-TP | Positive = PALI, Negative = ETS | P = 3, P = 3

האם זה אומר שאני נביא שיכול לחזות ע"י הטלת מטבעות של 1 ₪ ושל 10 ₪ את תוצאת הטלת מטבע 5 ₪ בהסתברןת יותר טובה ממקרית?

תשובה: וודאי שלא. זה אומר שקבוצת האימון קטנה מדי. לאחר מספר חזרות רב של הניסוי הטעות שלנו גם על קבוצת האימון תגדל (יהיו שורות עם ערך זהה עבור הטלת 1 ₪ והטלת 10 ₪ אבל ערכים שונים עבור הטלת מטבע 5 ₪)

?שאלות