Acids and Base

Objective 1: Define Acids and bases according to the Bronsted-Lowry and Lewis Theories

- ** $Br\phi nsted$ -Lowry Acids: Substances that donate H^+ (protons) in aqueous solution**
- ** $Br\phi nsted$ -Lowry Bases: Substances that accept H^+ (protons) in aqueous solution**
- *'Lewis Acid*: Substance that accepts an e^- pair''
- *'Lewis Base*: Substance that donates an e^- pair''
- Lewis Acids and Bases mustn't include Hydrogen
- **= Big in General Chem
- ''= Big in O-Chem

Examples of Lewis bases:

- *NH*₃ (lone pair on the N is readily donated)
- BF_3 (Actually a Lewis Acid but reacts with NH_3 to form NH_3BF_3)
- *CN*⁻ and the unbonded pair on the C is readily donated (due to Carbon having a lower electronegativity than Nitrogen so it more readily shares electrons)
- $Fe^{3+} + 6NH_3 \rightarrow [Fe(NH_3)_6]^{3+}$ Where Fe³⁺ is a Lewis Acid and NH₃ a Lewis Base
- Metal Ions with charges of 2⁺ or more, are Lewis Acids

Objective 2: Deduce the formula of the conjugate acid (or base) of any Brønsted-Lowry Base or Acid

- Example: $HCO_2H + H_2O \leftrightarrow HCO_2^- + H_3O^+$!! H_3O^+ is called Hydronium!!
 - o HCO_2H is the B. L. Adic
 - o H_2O is the B. L. Base
 - o HCO₂ is conj Base
 - o H_3O^+ is conjucid
- Example: $NH_3 + H_2S \leftrightarrow NH_4^+ + HS^-$
 - NH₃ is BL Base
 - o H_2S is BL Acid
 - o NH_4^+ is conj Acid
 - HS⁻ is Conj Base
- $HSO_4^- + OH^- \leftrightarrow SO_4^{2-} + H_2O$
 - o HSO4- is BL Acid
 - o OH-BL Base
 - SO4 Conj Base
 - H2O Conj Acid

Acid	Conj Base
HCN	H ⁺ + CN ⁻
HSO ₄	$H^{+} + SO_{4}^{2-}$
HF	$H^+ + \overline{F^-}$
CH_3CH_2COOH	$H^+ + \frac{CH_3CH_2C00^-}{}$
$HC_3H_5O_2$	$H^{+}\frac{C_{3}H_{5}O_{2}^{-}}{}$

Base	Conj Acid
$NH_3 + H^+$	NH_4^+
$HCO_3^- + H^+$	H_2CO_3
$Br^- + H^+$	<u>HBr</u>

Objective 3: Outline the characteristics of acids and bases in aqueous solutions.

ACIDS

- 1. @ 25° C the pH of an acid solution is < 7
- 2. An acid will turn litmus red. Phenolphthalein is colorless and methyl orange
- 3. Acids taste sour
- 4. Acids react with Hydroxides in neutralization reactions to produce salts and water

$$HCl + NaOH \rightarrow NaCl + H_2O$$

$$Ca(OH)_2 + 2HCl \rightarrow 2H_2O + CaCl_2$$

$$Al(OH)_3 + 3HBr \rightarrow 3H_2O + AlBr_3$$

$$2KOH + H_2SO_4 \rightarrow H_2O + K_2SO_4$$

$$LiOH + HNO_3 \rightarrow H_2O + LiNO_3$$

5. Acids react with metal oxides to form a Salt and H_2O

$$\begin{array}{c} CaO + 2HCl \rightarrow H_{2}O + CaCl_{2} \\ BaO + 2HCl \rightarrow H_{2}O + BaCl_{2} \\ Na_{2}O + H_{2}SO_{4} \rightarrow H_{2}O + Na_{2}SO_{4} \\ MgO + H_{2}S \rightarrow H_{2}O + MgS \\ Na_{2}O + 2H_{3}PO_{4} \rightarrow 3H_{2}O + 2Na_{3}PO_{4} \end{array}$$

6. Acids react with Carbonates and Hydrogen Carbonates to make Water, Carbon Dioxide, and a salt.

$$NaHCO_3 + HCl \rightarrow H_2O + CO_2 + NaCl$$

 $Na_2CO_3 + 2HBr \rightarrow H_2O + CO_2 + 2NaBr$
 $CaCO_3 + 2HNO_3 \rightarrow H_2O + CO_2 + Ca(NO_3)_2$
 $K_2CO_3 + H_2SO_4 \rightarrow H_2O + CO_2K_2SO_4$

7. Acids react with active metals to produce a salt and $H_2(\text{Except }HNO_3)$

$$Mg + 2HCl \rightarrow H_2 + MgCl_2$$

BASES

- Most bases are Metal Oxides, Hydroxides, Carbonates, Hydrogen Carbonates, and Amines (Primary, Secondary, or Tertiary)
- Solutions of Bases are called alkalis

Properties of Bases

- 1. They feel Slippery
- 2. Taste Bitter
- 3. They form Aqueous Solutions @ 25°C with pH>7
- 4. Bases will turn Litmus Blue, will also turn Phenolphthalein pink.
- 5. Metal Oxides react with Dihydrogen Monoxide to form Metal Hydroxides

$$CaO + H_2O \rightarrow Ca(OH)_2$$

6. Amines and NH_3 react with Dihydrogen Monoxide to form OH^- and appropriate Cations

a.
$$NH_3(aq) + H_2O(l) \leftrightarrow OH^-(aq) + NH_4^+(aq)$$

i. BL Base: NH₃

ii. BL Acid: H_2O

iii. Conj Base: OH-

iv. Conj Acid: NH₄⁺

b.
$$CH_3NH_2(aq) + H_2O(l) \leftrightarrow OH^-(aq) + CH_3NH_3^+$$

i. Hydrogen Ions must be shown with Nitrogen not Carbon

ii. BL Base: CH_3NH_2

iii. BL Acid: H₂O

iv. Conj Base: OH-

v. Conj Acid: $CH_3NH_3^+$

Objective 4: Distinguish between strong and weak acids, strong acids completely in H_2O

•
$$HCl \rightarrow H^+(aq) + Cl^-(aq)$$

- Strong Acids: HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄
- Weak Acids Ionize reversibly. The equilibrium favors the reactants

$$\circ \quad \mathit{CH}_3\mathit{COOH}(\mathit{aq}) \leftrightarrow \mathit{CH}_3\mathit{COO}^-(\mathit{aq}) + \mathit{H}^+(\mathit{aq}) \qquad \quad \mathsf{K_a} \text{ is very small}$$

$$\circ \quad K_a = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]}$$

• Solutions of strong acids are excellent electrical conductors. Weak acids are weak electrical conductors.

- Acids (strong)
 - Are good electrical conductors
 - o Reaction with H_2O to form H_3O^+ and the anions of the Acids
 - (acids are the only molecular compounds to ionize in water)
 - o Ionization of Acids is shown 2 ways: Strong and Weak
 - o Strong:
 - $HCl(aq) \rightarrow H^+(aq) + Cl^-(aq)$
 - $\operatorname{HBr}(aq) \to H^+(aq) + \operatorname{Br}^-(aq)$
 - $HNO_3(aq) \rightarrow H^+(aq) + NO_3(aq)$
 - $H_2SO_4 \to H^+ + HSO_4^-$
 - Weak:
 - $HSO_4^-(aq) \leftrightarrow H^+(aq) + SO_4^{2-}$
 - Strong (with Dihydrogen Monoxide)
 - $HCl(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$
 - $HBr(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Br^-(aq)$
 - $HNO_3(aq) + H_2O(l) \rightarrow H_3O^+(aq) + NO_3^-(aq)$
 - Weak (with Dihydrogen Monoxide)
 - $HSO_4^-(aq) + H_2O(l) \leftrightarrow H_3O^+(aq) + SO_4^{2-}(aq)$
- Acids (weak)
 - o Ionize very sparingly with H₂O
 - o Equilibrium Arrow is used
 - o Equilibrium Constant is usually much less than 1 (favors reactants)($K_a \ll 1$)
 - o They are poor conductors of Electricity (not insulators)
- Bases (strong)
 - Dissociate completely in water to form metal cations and OH⁻ to limits of solubility (@ least 0.1 M)
 - Do not react with H₂O
 - Excellent electrical conductors
 - o Strong Bases: LiOH, NaOH, KOH, Ca(OH)₂, Ba(OH)₂, Sr(OH)₂
 - $LiOH(aq) \rightarrow Li^+(aq) + OH^-(aq)$
 - $Ca(OH)_2(aq) \rightarrow Ca^{2-} + 2OH^{-}$
- Bases (weak)
 - React with H₂O to from OH⁻
 - o Only a small fraction of the base molecules react
 - o Equilibrium Arrow is used for ionization reactions
 - o Equilibrium Constant is much less than 1 (favors reactants) ($K_b \ll 1$)
 - Conduct electricity poorly
 - o pH @ $25^{\circ}C > 7$
 - $NH_3(aq) + H_2O(l) \leftrightarrow NH_4^+(aq) + OH^-(aq)^{**}$
 - $F^-(aq) + H_2O(l) \leftrightarrow HF(aq) + OH^-(aq)^{**}$

- $CH_3COO^-(aq) + H_2O(l) \leftrightarrow CH_3COOH(aq) + OH^-(aq)^{**}$
- $HS^-(aq) + H_2O(l) \leftrightarrow H_2S(aq) + OH^-(aq)^{**}$
- ** = Atom and Charge must be balanced
- H₂O must be shown

Objective 5: Calculate pH, pOH and K_w

- $pH = -log[H^+]$
- Examples:

$$0.0051 \frac{mol}{L} \rightarrow -log[0.0051] = pH = 2.29$$

$$\circ \quad 0.0125 \; mol \; L^{\text{--}1} \; H^{\text{+--}} \; pH \text{=-} 1.903$$

• $pOH = -log[OH^-]$

$$0.015 \frac{mol}{L} KOH \rightarrow -log[0.015] \rightarrow pOH = 1.82$$

- pH + pOH = 14.00 @ 25°C
 - \circ 14.00-1.82 = 12.18 is the pH
 - \circ pK_w is the negative log of the equilibrium constant
- $K_w@25^{\circ}C = 1.0 \times 10^{-14} = [H^+] \cdot [OH^-]$

$$\circ \quad \frac{1.0 \times 10^{-14}}{[H^+]} = [OH^-]$$

$$\circ \quad \frac{1.0 \times 10^{-14}}{[OH^-]} = [H^+]$$

- $H_2O + H_2O \leftrightarrow H_3O^+ + OH^-$
 - \circ $H_2O \leftrightarrow H^+ + OH^-$
 - o Reactants are heavily favored
- Example: A 0.10 mol/L solution of a weak acid. The pH is 4.26. What is the % Ionization?

$$0 10^{-4.26} = [H^+] = 5.5 \times 10^{-5} \frac{mol}{L}$$

$$\circ \quad \frac{5.5 \times 10^{-5}}{0.10} \times 100 = 0.055\%$$

Objective 6: Predict the direction and magnitude of the change in [H⁺] when pH changes by an integer value.

PH VALUE	H ⁺ Concentration
pH = 1.00	$[H^+] = 1.0 \times 10^{-1} M$
pH = 2.00	$[H^+] = 1.0 \times 10^{-2} M$
pH = 3.00	$[H^+] = 1.0 \times 10^{-3} \mathrm{M}$
pH = 14.00	$[H^+] = 1.0 \times 10^{-14} \mathrm{M}$

- Ex Quest: The pH of a Solution increases from 2.00 to 5.00. By what factor has the [H⁺] changed and in what direction?
 - o Went up in pH by 3.00
 - $0.010^3 = 1000$

o [H⁺] decreased by factor of 100

Objective 7: Know some facts about Acid Deposition in the environment.

- Acids: H_2SO_3 and H_2SO_4 are the results of volcanic activity and the burning of fossil fuels.
 - \circ $S(s) + O_2(g) \rightarrow SO_2(g)$
 - $\circ SO_2(g) + \frac{1}{2}O_2(g) \rightarrow (Sunlight\ Catalyst) \rightarrow SO_3(g)$
 - $\circ SO_2(g) + H_2O(l) \rightarrow H_2SO_3(aq)$
 - $\circ SO_3(g) + H_2O(l) \rightarrow H_2SO_4(aq)$
- HNO₂ and HNO₃ are associated with electrical storms, bacterial action, and jet/internal combustion engines
 - O $N_2(g) + O_2(g) \rightarrow (heat \ catalyst) \rightarrow 2NO(g)$
 - $\circ \quad 2NO(g) + O_2(g) \rightarrow 2NO_2(g)$
 - $2NO_2(g) + H_2O(l) \rightarrow HNO_3(aq) + HNO_2(aq)$ OR $4NO_2(g) + O_2(g) + H_2O(l) \rightarrow 4HNO_3(aq)$
- pH of unpolluted rain: 5.65 due to CO₂
 - o Acid Rain: pH<5.6
 - \circ $CO_2 + H_2O \leftrightarrow H_2CO_3(aq)$