Chapter 4

Coupled Microstrip Line

National Taiwan University of Science and Technology

Chun-Long Wang

Outline

- Literature Examples
- Motivations
- Coupled Microstrip Line
- Coupled Microstrip Line Using Front-End Decoupling Capacitor
- Coupled Microstrip Line Using Distributed Decoupling Capacitors
- Conclusions

- Coupled Microstrip Line Using Guard Trace [1]
 - Advantages
 - Easy Implementation with the PCB process
 - Disadvantages
 - Slight reduction of the far-end crosstalk noise

- Coupled Microstrip Line Using Grounded Guard Trace [2]
 - Advantages
 - Efficient reduction of the far-end crosstalk noise
 - Disadvantages
 - Layout areas are limited due to via placement

[2] L. Zhi, W. Qiang, and S. Changsheng, "Application of guard traces with vias in the rf pcb layout," in *Proc. IEEE 3rd International Symposium on Electromagnetic Compatibility*, pp. 771-774, May, 2002.

- Coupled Microstrip Line Using Grounded Guard Trace and Dielectric Overlay [3]
 - Advantages
 - Efficient reduction of far-end crosstalk noise with only two vias
 - Disadvantages
 - Additional cost of the dielectric overlay

- Coupled Microstrip Line Using Serpentine Guard Trace [4]
 - Advantages
 - Efficient reduction of far-end crosstalk noise without using any vias and dielectric overlay
 - Disadvantages
 - Large area are needed for the serpentine guard trace

- Coupled Microstrip Line Using Alternately Open-Circuited Stubs [5]
 - Advantages
 - Efficient reduction of the areas spent by the serpentine guard trace
 - Disadvantages
 - Large reflection

Motivations

- To Save the Cost
 - Elimination of the Need of Dielectric Overlay
- To Increase the Routing Flexibility
 - Elimination of the Need of Vias
- To Save the Area
 - Elimination of the Need of Serpentine Guard
 Trace
- To Reduce the Reflection
 - Elimination of the Need of Alternately Open-Circuited Stubs

- Topology
 - FR4 Substrate with $\varepsilon r=4.4$ and $\tan \delta=0.02$

3-D view

Equivalent circuit

w (mm)	s (mm)	h (mm)	l (mm)
1.42	0.7	0.8	40

Cross-sectional view

Dimensions

Even- and Odd-Mode Equivalent Circuits

Even-mode equivalent circuit

$$TD_{even} = l\sqrt{(L_s + L_m)(C_s)}$$

Odd-mode equivalent circuit

$$TD_{odd} = l\sqrt{(L_s - L_m)(C_s + 2C_m)}$$

- FEXT and NEXT
 - Even-and Odd-mode Decomposition

FEXT and NEXT

Ideal Coupled Line

TD _{even} (ps)	$TD_{odd}(ps)$	T_d (ps)
253.614	229.202	24.412

Far-end crosstalk noise (volt) 0.076

FEXT: $V_4(t)$

FEXT: $V_{4e}(t)$ and $V_{4o}(t)$

- FEXT and NEXT
 - Ideal Coupled Line

- FEXT and NEXT
 - Estimation Equations
 - Peak of NEXT occurs at $t=t_r$

$$V_2(t_r) = V_{2e}(t_r) + V_{2o}(t_r)$$

$$V_{2e}(t_r) = \frac{V_s}{2} (\frac{Z_{even}}{Z_{even} + Z_0})$$

$$V_{2o}(t_r) = -\frac{V_s}{2} (\frac{Z_{odd}}{Z_{odd} + Z_0})$$

• Peak of FEXT occurs at *t*=*TD*_{even}

$$V_4(t) = V_{4o}(t) + V_{4e}(t)$$

$$|V_4(TD_{even})| = V_{max} \min(\frac{T_d}{t_r}, 1)$$

$$V_{max} = \frac{Z_0}{Z_{even} + 2Z_0 + Z_{odd}} V_s$$

- FEXT and NEXT
 - Lossless Coupled Microstrip Line

- FEXT and NEXT
 - Lossless Coupled Microstrip Line

FEXT and NEXT

Lossy Coupled Microstrip Line

TD _{even} (ps)	$TD_{odd}(ps)$	T_d (ps)
258.814	238.202	20.612

Far-end crosstalk	Simulation	0.063	
noise (volt)	Measurement	0.055	

17

- FEXT and NEXT
 - Lossy Coupled Microstrip Line

Near-end crosstalk

Simulation

Real circuit

0.0180

- Eye Diagram
 - Simulation Setup
 - Source V_S : pseudo random bit sequence (PRBS)
 - Observation V_3

- Eye Diagram
 - Using Various Bit Rate and Rise Time (BR/10)

Bit rate=2 Gbps, t_r =50 ps

Bit rate=8 Gbps, t_r =12.5 ps

Bit rate=4 Gbps, t_r =25 ps

Bit rate=16 Gbps, t_r =6.25 ps

- Eye Diagram
 - Eye Height, Width, and Jitter

	Eye High (%)	Eye Width (%)	Jitter (%)
$BR = 2 \text{ Gbps}, t_r = 50 \text{ ps}$	97.2	99.6	4.44
BR = 4 Gbps, t_r = 25 ps	95.2	99.6	4.44
BR = 8 Gbps, t_r = 12.5 ps	94	99.76	4.432
BR = 16 Gbps, t_r = 6.25 ps	79.6	99.2	13.36

- Topology
 - FR4 Substrate with ε_r =4.4 and $\tan \delta$ =0.02

w (mm)	s (mm)	h (mm)	l (mm)
1.42	0.7	0.8	40

Even- and Odd-Mode Equivalent Circuits

Even-mode equivalent circuit

$$TD_{even} = l\sqrt{(L_s + L_m)(C_s)}$$

Odd-mode equivalent circuit

$$TD^{c}_{odd} = l\sqrt{(C_s + 2C_m + \frac{2C_f}{l})(L_s - L_m)}$$

- Design Concept
 - Make TD_{even} and TD_{odd} Equal through Adding the Front-End Decoupling Capacitor C_f

$$T_d = TD_{even}$$
- $TD_{odd} = TD_{odd}^c$ - TD_{odd}

$$T_{d} = l\sqrt{L_{s} - L_{m}} \left(\sqrt{C_{s} + 2C_{m} + \frac{2C_{f}}{l}} - \sqrt{C_{s} + 2C_{m}} \right)$$

 TD_{even} : even - mode time delay with or without the front - end decoupling capacitor TD_{odd} : odd - mode time delay without the front - end decoupling capacitor TD_{odd}^c : odd - mode time delay with the front - end decoupling capacitor T_d : time difference between the odd - mode and even - mode time delays

- FEXT and NEXT
 - Even-and Odd-mode Decomposition

- FEXT and NEXT
 - Ideal Coupled Line

- FEXT and NEXT
 - Ideal Coupled Line

NEXT: $V_2(t)$

- FEXT and NEXT
 - Estimation Equations
 - Peak of NEXT of the odd-mode excitation

$$V_s(t) = \frac{V_s}{t_r} [tu(t) - (t - t_r)u(t - t_r)]$$

$$V_{oc}(t) = V_{oc}[tu(t)-(t-t_r)u(t-t_r)]$$

$$V_{oc} = -\frac{V_s}{2t_r} (\frac{Z_{odd}}{Z_0 + Z_{odd}})$$
 $R_t = \frac{Z_0 Z_{odd}}{Z_0 + Z_{odd}}$

$$V_{2o}(t) = V_{oc}\tau[(e^{-t/\tau} - 1)u(t) - (e^{-(t-t_r)/\tau} - 1)u(t-t_r)] + V_{oc}(t)$$

- FEXT and NEXT
 - Estimation Equations
 - Peak of NEXT occurs at $t=t_r$

$$V_2(t_r) = V_{2e}(t_r) + V_{2o}(t_r)$$

$$V_{2e}(t_r) = \frac{V_s}{2} (\frac{Z_{even}}{Z_{even} + Z_0})$$

$$V_{2o}(t_r) = V_{oc}\tau(e^{-t_r/\tau} - 1) + V_{oc}t_r$$

$$V_{2}(t_{r}) = \frac{V_{s}}{2} \left(\frac{Z_{even}}{Z_{even} + Z_{0}} \right) + V_{oc} \tau (e^{-t_{r}/\tau} - 1) + V_{oc} t_{r}$$
 $\tau = 2R_{t} C_{f}$

• Peak of FEXT occurs at $t=TD_{odd}+T_d+t_r$

$$V_4(t) = V_{4o}(t) + V_{4e}(t)$$

$$V_{4o}(t) = (\frac{2Z_0}{Z_0 + Z_{odd}})V_{2o}(t - TD_{odd})$$

$$V_4(TD_{odd} + T_d + t_r) = (\frac{2Z_0}{Z_0 + Z_{odd}})[V_{oc}\tau(e^{-(t_r + T_d)/\tau} - e^{-T_d/\tau}) + V_{oc}t_r] + V_{max}$$

FEXT and NEXT

T_d (ps)	C_f (pF)
20.412	0.5

Lossless Coupled Microstrip Line

- FEXT and NEXT
 - Lossless Coupled Microstrip Line

FEXT and NEXT

 T_d (ps) $C_f(pF)$ 20.612 0.5

Lossy Coupled Microstrip Line

- FEXT and NEXT
 - Lossy Coupled Microstrip Line

Near-end crosstalk

Simulation

Real circuit

0.0710

- Eye Diagram
 - Simulation Setup
 - Source V_S : pseudo random bit sequence (PRBS)
 - Observation V_3

- Eye Diagram
 - Using Various Bit Rate and Rise Time (BR/10)

Bit rate=2 Gbps, t_r =50 ps

Bit rate=4 Gbps, t_r =25 ps

Bit rate=16 Gbps, t_r =6.25 ps

- Eye Diagram
 - Eye Height, Width, and Jitter

	Eye High (%)	Eye Width (%)	Jitter (%)
$BR = 2 \text{ Gbps}, t_r = 50 \text{ ps}$	97.2	99.6	4.44
BR = 4 Gbps, t_r = 25 ps	88.8	99.6	4.44
BR = 8 Gbps, t_r = 12.5 ps	86	99.2	8.88
BR = 16 Gbps, t_r = 6.25 ps	64.4	97.44	31.2

- S-Parameters
 - Reflection and Near-End Coupling Coefficients

Reflection coefficient

Near-end coupling coefficient

- S-Parameters
 - Transmission andCoefficients

Coupling

Transmission coefficient

Far-end coupling coefficient

- FEXT and NEXT
 - Lossy Coupled Microstrip Line $C_f = 0.5 \,\mathrm{pF}$

$\lambda = \frac{3 \times 10^{\circ}}{10^{\circ}}$	1
$\lambda = f_{3dB}$	$\sqrt{\mathcal{E}_{\mathit{eff}}}$
$_{f}$ $_{-}$ 0.3	35
$f_{3dB} = \frac{}{t}$	

$\Delta l (\mathrm{mm})$	Number of distributed decoupling capacitor	Value of distributed decoupling capacitor (pF)
9.2 (λ /2)	4	0.1250
$4.6 (\lambda/4)$	8	0.0625
$1.9 (\lambda/10)$	20	0.0250

- FEXT and NEXT
 - Lossy Coupled Microstrip Line

- S-Parameters
 - Reflection and Near-End Coupling Coefficients

Reflection coefficient

Near-end coupling coefficient

- S-Parameters
 - Transmission andCoefficients

Far-End Coupling

Conclusions

FEXT and NEXT

	FEXT (volt)		NEXT (volt)	
	Measurement	Simulation	Measurement	Simulation
Conventional	0.0550	0.0630	0.0163	0.0180
Front-end capacitor	0.0268	0.0257	0.0636	0.0710
Distributed capacitors	X	0	X	0.0280

Eye Diagram

 Performance Degraded Due to Adoption of Decoupling Capacitor

• S-Parameters

Performance Restored While Using Distributed
 Capacitors