DATA 606: Statistical Methods in Data Science

---- Generalized linear model

Wenjun Jiang

Department of Mathematics & Statistics The University of Calgary

Lecture 10

In a simple linear regression model

$$Y = \alpha + \beta \cdot x + \epsilon$$
,

usually, $\epsilon \sim N(0, \sigma^2)$.

- Y: response variable.
- x: covariate or explanatory variable.
- \blacktriangleright β catches the linear relationship between X and Y.
- ▶ When $\beta = 0$, there is no linear relationship between X and Y.

2 / 24

▶ Given data (x_i, y_i) , i = 1, 2, ..., n, how to estimate α and β ?

3 / 24

▶ Given data (x_i, y_i) , i = 1, 2, ..., n, how to estimate α and β ? We apply the so-called *least square* method:

$$\min \sum_{i=1}^{n} (y_i - \alpha - \beta \cdot x_i)^2 \implies (\hat{\alpha}, \hat{\beta}).$$

► An graphical illustration:

▶ Under the condition (or assumption) $\epsilon \sim N(0, \sigma^2)$, our linear model in fact can be rewritten as

$$Y \sim N(\alpha + \beta \cdot x, \sigma^2).$$

4 / 24

▶ Under the condition (or assumption) $\epsilon \sim N(0, \sigma^2)$, our linear model in fact can be rewritten as

$$Y \sim N(\alpha + \beta \cdot x, \sigma^2).$$

▶ The above distribution reminds us to use MLE (maximum likelihood estimation) to estimate α and β .

▶ Under the condition (or assumption) $\epsilon \sim N(0, \sigma^2)$, our linear model in fact can be rewritten as

$$Y \sim N(\alpha + \beta \cdot x, \sigma^2).$$

- ▶ The above distribution reminds us to use MLE (maximum likelihood estimation) to estimate α and β .
- ▶ The above simple linear model can be extended to multiple linear model

$$Y = \alpha + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \cdots + \beta_n \cdot x_n + \epsilon,$$

where $\epsilon \sim N(0, \sigma^2)$. Equivalently, we have

$$Y \sim N(\mu(x), \sigma^2), \quad \mu(x) = \alpha + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \cdots + \beta_n \cdot x_n.$$

Basics about GLM

Three components of GLM: random component, systematic component and link function.

- \triangleright Y: response variable; $\{x_i, i=1,2,\ldots,n\}$ are explanatory variables.
- ▶ Random component: Y is random.
- ► Systematic component: the predictive linear combination

$$\alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n.$$

Basics about GLM

Question: how we bridge Y and $\{x_i, i = 1, 2, ..., n\}$?

- ▶ Denote $\mu = \mathbf{E}[Y]$.
- ▶ With a function $g(\cdot)$, we relate μ and the systematic component via

$$g(\mu) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n.$$

- ▶ This function $g(\cdot)$ is called *link function*.
- ▶ In simple (or multiple) linear regression, the link function

$$g(\mu) = \mu$$
.

Difference between GLM and data transformation

▶ Data transformation: in practice, in order to explore the relationship between Y and $\{x_i, i = 1, 2, ..., n\}$, sometimes we would apply

$$g(Y) = \alpha + \beta_1 x_1 + \cdots + \beta_n x_n$$
.

This method transforms the response variable Y.

▶ DO note that the data transformation method is NOT generalized linear regression!

▶ When the response Y is binary (1/0, 1=success, 0=failure):

$$\mu = \mathbf{E}[Y] = 1 \times \mathbf{P}(Y = 1) + 0 \times \mathbf{P}(Y = 0) = \pi.$$

▶ With link function $g(\cdot)$, we have

$$g(\mu) = g(\pi) = \alpha + \beta x.$$

▶ Understandably, different *g* will result in different GLM.

Linear probability model

▶ If we choose the link function g to be identity function: $g(\pi) = \pi$, then

$$\pi = \alpha + \beta x$$
.

Linear probability model

▶ If we choose the link function g to be identity function: $g(\pi) = \pi$, then

$$\pi = \alpha + \beta x$$
.

▶ NOTE: linear probability model is reasonable only if $\alpha + \beta x \in [0, 1]$

Linear probability model

▶ If we choose the link function g to be identity function: $g(\pi) = \pi$, then

$$\pi = \alpha + \beta x$$
.

- ▶ NOTE: linear probability model is reasonable only if $\alpha + \beta x \in [0, 1]$
- ▶ In the linear probability model, the coefficient β has a nice interpretation:

$$\beta = \pi(x+1) - \pi(x).$$

Linear probability model

► Inference for the risk difference in a 2 × 2 table can be achieved using the linear probability model

- Let $\pi_1 = \mathbf{P}(Y = 1|x = 1)$ and $\pi_0 = \mathbf{P}(Y = 1|x = 0)$ and we would like to make inference of $\phi = \pi_1 \pi_0$.
- We can fit the linear probability model to the above table

$$\pi = \alpha + \beta x$$

and
$$\beta = \phi$$
.

An example

▶ Snoring and heart disease example

		Heart disease		
	X	Yes	No	n
Snoring	0 (never)	24	1355	1379
	2 (occasionally)	35	605	640
	4 (nearly every night)	21	192	213
	5 (every night)	30	224	254

An example

Snoring and heart disease example

		Heart disease		
	X	Yes	No	n
Snoring	0 (never)	24	1355	1379
	2 (occasionally)	35	605	640
	4 (nearly every night)	21	192	213
	5 (every night)	30	224	254

▶ After assigning scores x_i : 0,2,4,5 to snoring, we can calculate the sample proportions p_i for each snoring level and plot p_i against x_i to check whether the linearity relationship is significant.

Log linear probability model

▶ For binary response, if we take the link function to be

$$g(\pi) = \log(\pi) = \alpha + \beta x.$$

▶ Given x and α, β , we have

$$\pi = e^{\alpha + \beta x}$$
.

▶ The model is reasonable if the model produces a π which is between 0 and 1.

Log linear probability model

Interpretation of β :

- $\beta = \log \pi(x+1) \log \pi(x) = \log \frac{\pi(x+1)}{\pi(x)}.$

 β is the logarithm of relative risk.

Log linear probability model

Inference for the risk difference in a 2×2 table can be achieved using the linear probability model

$$\begin{array}{c|cccc} & & & & Y & & \\ & & 1 & & 0 & & \\ X & 1 & y_1 & n_1 - y_1 & n_1 \\ & 0 & y_2 & n_2 - y_2 & n_2 \end{array}$$

- Let $\pi_1 = \mathbf{P}(Y=1|x=1)$ and $\pi_0 = \mathbf{P}(Y=1|x=0)$ and we would like to make inference of $RR = \pi_1/\pi_0$.
- ▶ We could fit the following log-linear model

$$\log \pi = \alpha + \beta x.$$

▶ Test H_0 : $\beta = 0$ is equivalent to H_0 : X and Y are independent.

Logistic regression

▶ For binary response, if we take the link function g to be

$$g(\pi) = \operatorname{logit}(\pi) = \operatorname{log}(\frac{\pi}{1 - \pi}) = \alpha + \beta x,$$

then we have a logistic regression model.

Logistic regression

▶ For binary response, if we take the link function g to be

$$g(\pi) = \operatorname{logit}(\pi) = \operatorname{log}(\frac{\pi}{1 - \pi}) = \alpha + \beta x,$$

then we have a logistic regression model.

Now the probability π is of form

$$\pi = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}.$$

Logistic regression

Figure 3.2. Logistic regression functions.

Logistic regression

Interpretation of β :

- At $x = x_1$, we have π_1 : $\log \frac{\pi_1}{1-\pi_1} = \alpha + \beta x_1$.
- At $x = x_1 + 1$, we have π_2 : $\log \frac{\pi_2}{1 \pi_2} = \alpha + \beta (x_1 + 1)$.
- ▶ Now we take the difference of above two

$$\begin{split} \beta &= \log \frac{\pi_2}{1 - \pi_2} - \log \frac{\pi_1}{1 - \pi_1} \\ &= \log \left(\frac{\pi_2 (1 - \pi_1)}{\pi_1 (1 - \pi_2)} \right). \end{split}$$

That's the log of odds ratio!

► Inference for the risk difference in a 2 × 2 table can be achieved using the linear probability model

$$\begin{array}{c|cccc} & & & & Y & & \\ & & 1 & & 0 & & \\ X & 1 & y_1 & n_1 - y_1 & n_1 & \\ & 0 & y_2 & n_2 - y_2 & n_2 \end{array}$$

- ▶ We are interested in the odds ratio $\theta = \frac{\pi_2(1-\pi_1)}{\pi_1(1-\pi_2)}$. If $\theta = 1$ then Y and X are independent.
- We could use logistic regression

$$\log \frac{\pi}{1-\pi} = \alpha + \beta x,$$

we know $\beta = 0 \iff \theta = 1$.

Poisson regression

▶ The response *Y* follows Poisson distribution:

$$\mathbf{P}(Y=y)=\frac{\lambda^y}{y!}e^{-\lambda}.$$

- ▶ The mean of Y is $\mu = \mathbf{E}[Y] = \lambda$.
- ightharpoonup Suppose x is explanatory variable, with link function g, we have

$$g(\mu) = g(\lambda) = \alpha + \beta x.$$

▶ Since $\lambda > 0$, we usually use log function as link function

$$\log \lambda = \alpha + \beta x.$$

An example

Horseshoe crabs and their satellites (see R notebook).

An example

The count data

Carapace width (x)	Num. of Obs.
≤ 23.25	14
23.25 - 24.25	14
24.25 - 25.25	28
25.25 - 26.25	39
26.25 - 27.25	22
27.25 - 28.25	24
28.25 - 29.25	18
> 29.25	14

For convenience, we use explanatory variable X: 22.125, 23.750, 24.750, 25.750, 26.750, 27.75, 28.750,31.375.

21 / 24

Negative binomial regression

▶ The response Y follows negative binomial distribution

$$\mathbf{P}(Y=y) = \binom{y+k-1}{y} (1-\pi)^y \pi^k.$$

▶ The mean and variance of Y are

$$\mathbf{E}[Y] = \frac{k(1-\pi)}{\pi} = \mu, \quad \text{Var}(Y) = \frac{k(1-\pi)}{\pi^2} = \mu + \frac{\mu^2}{r}.$$

 \blacktriangleright Suppose x is explanatory variable, with link function g, we have

$$g(\mu) = \alpha + \beta x$$
.

▶ Since $\mu > 0$, we usually use log function as the link function:

$$\log \mu = \alpha + \beta x.$$

GLM for rate data

- ▶ When the response Y represents the number of events over a time window with length T or over a population with size T. It may be more meaningful to model the rate data $R = \frac{Y}{T}$
- ▶ Let $\mu = \mathbf{E}[Y]$, then the expected rate $r = \mathbf{E}[R] = \frac{\mu}{T}$.
- Now we use a log-linear model for the rate

$$\log(r) = \alpha + \beta x,$$

which is equivalent to

$$\log(\mu) = \log(T) + \alpha + \beta x.$$

The term log(T) is called an *offset*.

GLM for rate data

Table 3.4. Collisions Involving Trains in Great Britain

Year	Train-km	Train Collisions	Train-road Collisions	Year	Train-km	Train Collisions	Train-road Collisions
2003	518	0	3	1988	443	2	4
2002	516	1	3	1987	397	1	6
2001	508	0	4	1986	414	2	13
2000	503	1	3	1985	418	O	5
1999	505	1	2	1984	389	5	3
1998	487	0	4	1983	401	2	7
1997	463	1	1	1982	372	2	3
1996	437	2	2	1981	417	2	2
1995	423	1	2	1980	430	2	2
1994	415	2	4	1979	426	3	3
1993	425	0	4	1978	430	2	4
1992	430	1	4	1977	425	1	8
1991	439	2	6	1976	426	2	12
1990	431	1	2	1975	436	5	2
1989	436	4	4				

Source: British Department of Transport.

Figure 1: British train accidents over time.

GLM for rate data

Now regarding this dataset, we consider

- y is yearly number of train accidents with road vehicles.
- ► T is the length of rail.
- ▶ x the number of years since 1975.

Consider the log-rate GLM

$$\log(\mu) = \log T + \alpha + \beta x.$$