Übung 03

Zentrenproduktion & Qualitätsmanagement

Aufgabe 1 - Zentrenproduktion

Die folgende Tabelle zeigt den Zusammenhang zwischen Erzeugnissen und den zu ihrer Erstellung notwendigen Maschinen:

Maschine	1	2	3	4	5	6	
Erzeugnis A		Χ			Χ		
Erzeugnis B	Χ		Χ	Χ		Χ	
Erzeugnis C				Χ		Χ	
Erzeugnis D		Χ			Χ	Χ	

a) Bilden Sie geeignete Erzeugnisfamilien für die Produktionsinseln! Welche Probleme ergeben sich bei den Maschinen 1 und 6? Welche alternativen Organisationsformen bieten sich in diesem Fall an?

Aufgabe 2 - Leistungsanalyse

Leistungsanalyse von Flexiblen-Fertigungssystemen

Gegeben sei ein geschlossenes Warteschlangennetzwerk mit 3 Bearbeitungsstationen (je eine gleichartige Maschine) und einem verbindenden Transportsystem. Die mittleren Bearbeitungszeiten der Maschinen betragen $b_1=50, b_2=70$ und $b_3=30$, die mittlere Transportzeit beträgt $b_4=12$. Die Routingwahrscheinlichkeiten für die einzelnen Maschinen seien $p_1=0,4, p_2=0,25$ und $p_3=0,35$. Das Transportsystem wird nach jeder Bearbeitung benötigt. Es sind genügend Palletten im System, um eine Engpassauslastung von 100% zu gewährleisten. Ein Werkstück wird durchschnittlich 8 mal bearbeitet.

- a) Bestimmen Sie die mittlere Arbeitsbelastung der Maschinen und des Transportsystems .
- b) Bestimmen Sie den Engpass.
- c) Bestimmen Sie die Auslastung der Maschinen und des Transportsystems, die Produktionsraten der Stationen sowie die Produktionsrate des Systems .
- d) Ist das Ergebnis weiterhin realistisch, wenn die Anzahl an Palletten begrenzt ist?

Aufgabe 3 - Statistische Qualitätskontrolle

Eine alteingesessene Duisburger Spirituosenfabrik produziert den Schnaps "Studentenglück" mit einem Soll-Alkoholgehalt von 40%, welcher im Durchschnitt auch erreicht wird. Da die Duisburger Studenten neuerdings besonders großen Wert darauf legen,

dass die Angabe des Alkoholgehalts stimmt sollen die bisher jährlich durchgeführten Stichproben (Umfang n=5 Proben pro Stichprobe) intensiviert werden. Die Stichproben der letzten 4 Jahre ergaben folgende Werte:

Stichprobe	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	
2007	39,9	40,5	39,2	40,3	40,6	
2008	41,1	40,1	39,8	40,1	40,1	
2009	39,3	40,4	39,7	40,5	39,9	
2010	40,1	40	39,4	39,5	39,5	

- a) Berechnen Sie die Mittelwerte und Spannweiten der einzelnen Stichproben. Wie groß sind die mittlere Spannweite und der Mittelwert aller Stichproben?
- b) Wie müssten die Kontrollgrenzen definiert werden? Gehen Sie davon aus, dass der Faktor A für eine Stichprobengröße von n=5 einen Wert von 0,577 annimmt.
- c) Die nächste Stichprobe liefert folgende Werte:

Stichprobe	Probe 1	Probe 2	Probe 3	Probe 4	Probe 5
2011	38,2	40,5	39,3	39,9	41,4

Liegt der Stichprobenmittelwert innerhalb des Toleranzbereichs? Verdeutlichen Sie dies anhand einer geeigneten Grafik.