0.1 Power Functions

Given $x, k, b \in \mathbb{R}$. A function of the form

$$f(x) = kx^m \tag{1}$$

is then a **power function** with **coefficient** k and **exponent** m.

0.2 Polynomial Functions

A **polynomial function** is one of the following:

- a power function with an integer exponent greater than or equal to 0.
- the sum of several power functions with integer exponents greater than or equal to 0.

Polynomial functions are categorized by the highest exponent in the function expression. For the constants $a,\,b,\,c,$ and d, and a variable x, we have

function expression		
	1st-degree function/polynomial (linear)	
$ax^2 + bx + c$	2nd-degree function/polynomial (quadrati	c)
	3rd-degree function/polynomial (cubic)	

Example 1

 $4x^7 - 5x^2 + 4$ is a 7th-degree polynomial.

 $\frac{2}{7}x^5 - 3$ is a 5th-degree polynomial.

0.3 Exponential Functions

Given $x, a, b, c, d \in \mathbb{R}$, where b > 0. A function f given as

$$f(x) = a \cdot b^{cx+d}$$

is then an exponential function.