Final (7pm-10pm)

Started: Mar 16 at 7pm

Quiz Instructions

Question 1		3 pts
The following LISP function is designested) list. Match the items into coproperly.		
(defun F(x)		
(cond ([1] 0) ; returns 0 ([2] 1) ; returns 1 (t (+ (F (car x)) (F [3])) ;else))		
[1]	(not x)	~
[2]	(atom x)	
[3]	(cdr x)	

Question 2 1 pts

As shown in the picture, a driver in Manhattan can only drive along two directions, either drive along a street or along an avenue. Suppose you are at (x_1, y_1) , and you want to go to (x_2, y_2) , please formulate this as a search problem.

Suppose each state in this problem is a crossroad (U-turn allowed), what is the branching factor of this search problem?

1	١.	

	_	_
()	- /

	_
١.	- 4

	9	4
•	9	

Question 3 1 pts

As shown in the previous question, the blue line is an example of the heuristic of L_2 distance.

Is this an admissible heuristic?

Yes			
○ No			

Question 4	1 pts
As shown in the previous question, the red line is an example of the heuristic of L distance. Is this an consistent heuristic?	1
Yes	
○ No	

Question 5	1 pts
Any consistent heuristic is also admissible.	
True	
○ False	

Question 6 9 pts

You are given a search tree with one node **A** labeled as a start state and another node **F** labeled as a goal state. Number the nodes in the tree according to the order in which they will be **expanded** (not the order in which they are generated). The goal test is applied when the node is expanded. When the order of expansion is arbitrary, assume that nodes are expanded from left to right.

Breadth First Search

Question 7

You are given a search tree with one node **A** labeled as a start state and another node **F** labeled as a goal state. Write the order of node **expansion** (not the order in which they are generated). The goal test is applied when the node is expanded. When the order of expansion is arbitrary, assume that nodes are expanded from left to right.

Iterative Deepening Search: For example, we first limit the search depth to 1, which means the 1st node expanded is A; then we limit the search depth to 2, again the first node expanded is A, which means the 2nd node in the sequence is also A. You are required to filling the rest of the expansion sequence.

1st

Question 8	1 pts

Uniform-cost search with a cost function $g(n) = depth(n)$ is equivalent to breadth first search. Assume the goal test of both algorithms is performed at node expansion.
True
○ False

Question 9	1 pts
If the branching factor is finite and step costs are all identical, optimal but incomplete search strategy.	breadth first search is an
○ True	
False	

Question 10	1 pts
One of the main advantages of hill climbing search is its small space requirements	S.
True	
○ False	

Question 11 1 pts

Consider the tree-structured constraint satisfaction problem. We have already obtained a topological sorting of the tree, shown in picture (b).

In what order should we perform value elimination (maintain arc consistency) between each node and its parent?

- From F to A
- From A to F

Question 12 1 pts

Same as the previous question, after maintaining arc consistency, in what order should we perform value assignment?

- From A to F
- From F to A

Question 13 1 pts

Suppose we have n nodes in a tree-structured CSP graph, and the domain of each node is at most of size d. What is the time complexity of solving such a CSP problem? Choose the most precise one.			
 O(nd²) 			
○ O(nd)			
○ O(d ⁿ)			
○ O(n ^d)			

Question 14	1 pts
The minimax procedure is guaranteed to compute an optimal move if the other palso plays optimally.	layer
True	
○ False	

Question 15 1 pts

Suppose the EXPECT-MINIMAX algorithm encounters such a node shown in the picture. This node has 3 possible child nodes, each has its utility values 1,3,10 respectively. The MAX player has three actions to choose from, each will lead to a distribution over possible successors. According to the EXPECT-MINIMAX algorithm, which action will be chosen?

	A1	A2	АЗ	
1	1/3	0	1/2	
3	1/3	1	0	
10	1/3	0	1/2	

- A1
- A3

Given the above search tree, suppose we are using alpha-beta pruning to help with the search. Indicate each leaf node that will be pruned by Alpha-Beta Pruning.

Α	Not Pruned	~
В	Not Pruned	~
С	Not Pruned	~
D	Pruned	~
E	Not Pruned	~
F	Not Pruned	~
G	Pruned	~
Н	Pruned	~
I	Pruned	~
J	Pruned	~
К	Not Pruned	~
L	Not Pruned	~
М	Not Pruned	~
N	Pruned	~

Question 17	ts
What is the initial value of alpha in alpha-beta pruning?	
Negative Infinity	
O Positive Infinity	
○ 0	
<u> </u>	

Question 18	1.5 pts
A computer technician notes that 1/2 of computers fail because of the hard d because of the microprocessor and 1/6 fails because of both. What is the prothe microprocessor fails given that the hard drive has failed?	
1/3	
O 1/2	
O 1/6	
○ Non above	

Question 19		8 pts
Match the following probability co	ncepts with their definitions or formulae	
Probability	Assigns each sentence a d	
Conditional independence	$P(a \land b \mid c) = P(a \mid c) P(b \mid c) \checkmark$	

Independence	$P(a \land b) = P(a) P(b)$
Product rule (chain rule)	$P(a \land b \land c) = P(a \mid b \land c) P(b \mid \checkmark)$
Conditional probability	Degree of belief accorded : 🗸
Unconditional probability	Degree of belief accorded · 🗸
Bayes' rule	$P(a \mid b) = P(b \mid a) P(a) / P(b)$
Joint probability distribution	Gives probability of all com 🗸

Question 21
$$Pr(\alpha \vee \neg \beta) = Pr(\alpha) + Pr(\neg \beta) \text{ for any events } \alpha \text{ and } \beta.$$

$$\bigcirc \text{ True}$$

$$\bigcirc \text{ False}$$

Question 22	1.5 pts
If $lpha \models eta$, then $Pr(lpha) \leq Pr(eta)$	
True	
○ False	

Question 24	1.5 pts
$(Xee Y)\wedge (eg Xee eg Y)$ is a disjunctive normal form $(X,Y$ are variables).	
○ True	
False	

Question 25 1.5 pts

$A \lor B \lor \lnot C$ is a Horn clause (A, B and C are variables).				
○ True				
False				

Question 26	1.5 pts
$\Delta \models lpha$ if and only if $\Delta \land \lnot lpha$ is not valid.	
○ True	
False	

Question 27	1.5 pts
A sentence $lpha$ is valid if and only if $ eglpha$ is unsatisfiable.	
True	
○ False	

Question 28	1.5 pts
Consider the knowledge base $\Delta=\{A\Rightarrow B, \neg C\Rightarrow \neg B, A\Rightarrow \neg C\}$. Which following sentences is entailed by Δ : (and means \land , or means \lor , not means \lnot .)	
○ A and C	
○ A or B	
o not A	
○ not A and B	

 \bigcirc None of the others

Question 29	1.5 pts
The following two sentences:	
$\exists t \; time(t) \land (\forall x \; person(x) \implies fooled(x,t))$	
$\forall x \ person(x) \implies (\exists t \ time(t) \land fooled(x,t))$	
are:	
○ Equivalent.	
The first implies the second.	
○ The second implies the first.	
○ None of the others.	

Question 30	1.5 pts
$orall x \exists y Likes(x,y)$ is equivalent to $\exists x orall y Likes(x,y)$	
○ True	
False	

Question 31 1.5 pts

The CNF of $\neg(\forall x \; \exists y \; (P(x) \Rightarrow Q(x,y)))$ is: (A is the Skolemization constant)

- A. $P(F(A)) \vee \neg Q(F(A), y)$.
- В. $P(F(A)) \wedge \neg Q(F(A), y)$.
- C. $P(A) \vee \neg Q(A,y)$.
- D. $P(A) \wedge
 eg Q(A,y)$.
- \bigcirc A
- \bigcirc B
- \bigcirc C
- \bigcirc D
- None of the others

Question 32 1.5 pts

Any sentence in first-order logic can be expressed without using the universal \forall quantifier.

- True

Question 33 1.5 pts

Given two propositional sentences Δ and α , if we have $\Delta \models \alpha$, then Δ must have at least a single model (satisfied by at least one world).

- True
- False

Question 34	1.5 pts
A unifier exists for $P(F(B),F(G(w)),w)$ and $P(F(y),F(y),B)$.	
○ True	
False	

Question 35	1.5 pts
If α can be derived from a knowledge base Δ using some inference rules, then be derived from Δ' using the same inference rules, where Δ' is a larger knowledge base that includes every sentence in Δ .	
True	
○ False	

A sibling is another child of one's parent (not necessarily all parents). Which of the following sentences reflects this fact: A. $\forall x, y \ Sibling(x, y) \Leftrightarrow (x \neq y \land \forall p \ Parent(p, x) \land Parent(p, y))$. B. $\exists x, y \ Sibling(x, y) \Leftrightarrow (x \neq y \land \exists p \ Parent(p, x) \land Parent(p, y))$. C. $\forall x, y \ Sibling(x, y) \Leftrightarrow (x \neq y \land \exists p \ Parent(p, x) \land Parent(p, y))$. D. $\forall x, y \ Sibling(x, y) \Leftrightarrow (\exists p \ Parent(p, x) \land Parent(p, y))$.

\bigcirc D	
○ None of the others	

Question 37	1.5 pts
Which of the following is equivalent to the sentence $orall x\exists y \neg Friends(x,y)$?	
A. $\exists x orall y \lnot Friends(x,y)$	
B. $ eg \exists x orall y Friends(x,y)$	
C. $ eg \forall x \exists y Friends(x,y)$	
D. $ eg \exists x eg \forall y eg Friends(x,y)$	
○ A	
○ C	
○ D	

Question 38	1.5 pts
$lpha \models eta$ if and only if $\lnot(lpha \implies eta)$ is not valid.	
○ True	
False	

Question 39 1.5 pts

The result of dropping quantifiers from $\forall x \exists y Friends(x,y)$ during the process of converting to Conjunctive Normal Form (CNF), gives (A is the Skolemization constant, F

is the Skolemization function)	
○ Friends(x,y)	
○ Friends(F(x), y)	
○ Friends(x, F(y))	
○ Friends(x, A)	
None of the others	

Question 40	1.5 pts
Consider a Bayesian network with structure $(X \leftarrow Z ightarrow Y)$ (X and Y are child Then $Pr(x,y,z)$ is equal to:	dren of Z).
○ Pr(x) Pr(y) Pr(z).	
\bigcirc Pr(x z) Pr(y z).	
○ Pr(x) Pr(y) Pr(z xy).	
O None of the others.	

Question 41	1.5 pts
If a student scores an A+ on CS111 (X), then that student must be excand, hence, will most probably score an A on CS161 (Y). If we want to repscenario using a Bayesian network, which of the following causal structure '<-' and '->' indicate arrows in Bayesian networks.	present this
○ None of the others.	
○ X <- E, Y <- E	
○ X <- E, Y -> E	

X → E, Y ← E

○ X -> E, Y -> E

Question 42 1.5 pts

Given the above the Bayesian network, state whether the following arguments are true or false

A and B are conditionally dependent if C or D or E have been given

$\overline{}$	T
()	11111

Question 43 1.5 pts

Following the same Bayesian network, state whether the following arguments are true or false

E is conditionally independent of A, B and D if C is not given

○ True

False

Question 44	1.5 pts
Following the same Bayesian network, state whether the following arguments false	are true or
D is conditionally independent of A, B and E if C is given	
True	
○ False	

Question 45	1.5 pts
Following the same Bayesian network, state whether the following arguments a false D and E are dependent if C is not given	are true or
True	
○ False	

Quiz saved at 8:06pm

Submit Quiz