Macular GCIPL Thickness Map Prediction Via Time-Aware Convolutional LSTM

Zhiqi Chen^{1,2}, Yao Wang², Gadi Wollstein¹, Maria de los Angeles Ramos-Cadena¹, Joel Schuman¹, Hiroshi Ishikawa¹

¹ Department of Ophthalmology, NYU Langone Health, New York, NY, USA. ² Department of Electrical and Computer Engineering, New York University, NY, USA.

BACKGROUND

- Longitudinal progression monitoring of glaucoma is essential.
- Biomarker for diagnosis and monitoring of glaucoma: macular ganglion cell inner plexiform layer (GCIPL) thickness measured on optical coherence tomography (OCT) scans.
- Prior clinical progression analysis on GCIPL uses only summarized numbers (e. g. global measurements).
- 2D GCIPL thickness maps often reveal subtle abnormalities.
- Spatial patterns of GCIPL is also useful to understand the extent and magnitude of localized damages.
- Therefore, projection of 2D GCIPL maps may allow clinicians to fine tune their treatment strategy case by case.
- In this study, we aim to predict the next-visit 2D GCIPL thickness map based on the current and past maps (Figure 1).

METHODS

- Time-aware convolutional LSTM (TC-LSTM, Figure 2):
- Time penalty function (Eq. (12) (14)):

Figure 2. Architecture of (left) Standard convolutional LSTM (cLSTM) cell (Eq. (1) - (4)) and (right) TC-LSTM cell (Eq. (5) - (11)).

Figure 1. Example of a GCIPL thickness map sequence with irregular sampling interval.

Figure 3. Histogram of intervals between 2 sequential visits.

EXPERIMENTS

- **Dataset**: 346 eyes from 191 patients (avg. number of visits: 9.5 ± 3.4 , avg. follow-up period: 5.9 ± 2.0 years, avg. GCIPL thinning: $0.8 \ \mu m/y$ ear, sampling intervals: Figure 3).
- **Data Augmentation**: 576 progressing sequences were simulated according to GCIPL thinning patterns of glaucoma (Figure 4) because 83.2% of patients are under stable states (avg. GCIPL thinning < 2 μm/year).
- Compared methods: Linear regression (LR) and standard cLSTM.
- Quantitative evaluation metrics: Peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM).

Figure 4. Examples of GCIPL thinning patterns. *Top:* hemifield damage. *Bottom:* diffuse damage.

RESULTS

• Quantitative results (Table 1):

	Method	PSNR	SSIM
	Copy last	30.27	0.947
	LR	32.52	0.967
	cLSTM (L2)	33.93	0.939
→	TC-LSTM (L2 & Eq(13))	34.08	0.966
	TC-LSTM (L1 & Eq(13))	34.18	0.973
	TC-LSTM (L1+L2 & Eq(13))	34.45	0.972
→	TC-LSTM (L2 & Eq(12))	33.83	0.972
→	TC-LSTM (L2 & Eq(14))	34.10	0.965

 Rater
 TC-LSTM
 LR

 Rater 1
 92.8%
 7.2%

 Rater 2
 93.4%
 6.6%

 Rater 3
 94.8%
 5.2%

Table 2. Subjective Rating Results. Numbers in columns indicates percentages of maps predicted by a particular method is rated the best.

Table 1. Method comparison.

• Subjective evaluation (Table 2, Figure 5):

Figure 5. Examples results. Left: a stable case with advanced glaucoma. Right: a progressing case with moderate glaucoma.

CONCLUSIONS

- Our model was able to handle irregularly sampled spatiotemporal sequence modeling.
- The next-visit GCIPL thickness maps were successfully generated using TC-LSTM with higher accuracy compared to LR and cLSTM both quantitatively and subjectively.
- This prediction model may help clinicians in fine tuning individual treatment plans with projections not only for the global summarized number but also for potential spatial GCIPL thinning pattern.