Assignment 5 MATH 667 Quantum Information Theory

Mark Girard

12 April 2016

Problem 1 (Quantum Compression with Ensemble Fidelity)

Problem 1 (Exercise 12.8, p. 546 in Nielsen and Chuang). Suppose that instead of adopting the definition of a quantum source based on a single density matrix ρ and the entanglement fidelity, we instead adopted the following *ensemble* definition, that an (i.i.d.) quantum source is specified by an ensemble $\{p_j, |\psi_j\rangle\}$ of quantum states, and that consecutive uses of the source are independent and produce a state $|\psi_j\rangle$ with probability p_j . A compression-decompression scheme $(\mathcal{C}^n, \mathcal{D}^n)$ is said to be reliable in this definition if the *ensemble average fidelity* approaches 1 as $n \to \infty$:

$$\bar{F}_n = \sum_J p_{j_1} \cdots p_{j_n} \left[F(\rho_J, \mathcal{D}^n \circ \mathcal{C}^n(\rho_J)) \right]^2$$

where $J = (j_1, \ldots, j_n)$ and $\rho_J = |\psi_{j_1}\rangle\langle\psi_{j_1}|\otimes\cdots\otimes|\psi_{j_n}\rangle\langle\psi_{j_n}|$. Define $\rho = \sum_j p_j |\psi_j\rangle\langle\psi_j|$ and show that provided $r > S(\rho)$ there exists a reliable compression scheme of rate r with respect to this definition of fidelity.

Solution. Here, ρ is an operator on a space $\mathcal{H} = \mathbb{C}^d$ and each pure state $|\psi_j\rangle$ of the ensemble is a vector $|\psi_j\rangle \in \mathcal{H}$. Let $\rho = \sum_x q_x |x\rangle\langle x|$ be the spectral decomposition of ρ . For every positive integer n and real number $\varepsilon > 0$, let $P(n,\varepsilon)$ be the projection operator onto the ε -typical subspace of $\mathcal{H}^{\otimes n}$ with respect to the probabilities $\{q_x\}$ and orthonormal basis $\{|x\rangle\}$ of \mathcal{H} (i.e., it is the typical subspace in the standard sense as in Schumacher's compression theorem).

Proof. Let $r > S(\rho)$ and let $\varepsilon > 0$ such that $r - \varepsilon > S(\rho)$. From Schumacher's theorem, there is a (Schumacher-)reliable compression-decompression scheme $(\mathcal{C}^n, \mathcal{D}^n)$ of rate r for the state ρ , and this composite compression-decompression channel can have the form

$$(\mathcal{D}^n \circ \mathcal{C}^n)(\sigma) = P(n, \varepsilon)\sigma P(n, \varepsilon) + \text{Tr}[(I - P(n, \varepsilon))\sigma]|\phi_0\rangle\langle\phi_0|$$

for all σ , where $|\phi_0\rangle \in \mathcal{H}^n$ is some arbitrary normalized pure state. Recall that the fidelity of a pure state $|u\rangle$ and any operator A reduces to

$$F(|u\rangle\langle u|, A) = \sqrt{\langle u|A|u\rangle}.$$

Hence, computing ensemble average fidelity yields

$$\begin{split} \bar{F}_n &= \sum_J p_J \left[F(\rho_J, \mathcal{D}^n \circ \mathcal{C}^n(\rho_J)) \right]^2 \\ &= \sum_J p_J \langle \psi_J | \left(\mathcal{D}^n \circ \mathcal{C}^n(|\psi_J\rangle \langle \psi_J|) \right) |\psi_J\rangle \\ &= \sum_J p_J \langle \psi_J | \left(P(n, \varepsilon) |\psi_J\rangle \langle \psi_J | P(n, \varepsilon) + \text{Tr} \left[(I - P(n, \varepsilon)) |\psi_J\rangle \langle \psi_J | \right] |\phi_0\rangle \langle \phi_0| \right) |\psi_J\rangle \end{split}$$

$$\begin{split} &= \sum_{J} p_{J} |\langle \psi_{J} | P(n,\varepsilon) | \psi_{J} \rangle|^{2} + \mathrm{Tr} \Big[(I - P(n,\varepsilon)) |\psi_{J} \rangle \langle \psi_{J} | \Big] |\langle \psi_{J} | \phi_{0} \rangle|^{2} \\ &\geq \sum_{J} p_{J} |\langle \psi_{J} | P(n,\varepsilon) | \psi_{J} \rangle|^{2} \\ &\geq \sum_{J} p_{J} \left(2 \langle \psi_{J} | P(n,\varepsilon) | \psi_{J} \rangle - 1 \right), \end{split}$$

where in the final line we use the fact that $a^2 \geq 2a - 1$ holds for all real numbers a. Continuing, we have

$$\begin{split} \bar{F}_n &\geq \sum_J p_J \left(2 \langle \psi_J | P(n, \varepsilon) | \psi_J \rangle - 1 \right) \\ &= 2 \operatorname{Tr} \left[\underbrace{\sum_J p_J | \psi_J \rangle \langle \psi_J |}_{\rho^{\otimes n}} P(n, \varepsilon) \right] - \underbrace{\sum_J p_J}_{=1} \\ &= 2 \operatorname{Tr} [\rho^{\otimes n} P(n, \varepsilon)] - 1. \end{split}$$

Furthermore, recall from the theory of typical sequences that

$$\lim_{n\to\infty} \operatorname{Tr}[\rho^{\otimes n} P(n,\varepsilon)] = 1,$$

and thus

$$\lim_{n \to \infty} \bar{F}_n \ge 2 \lim_{n \to \infty} \left(\text{Tr}[\rho^{\otimes n} P(n, \varepsilon)] \right) - 1 = 1.$$

Since it is clear that $\bar{F}_n \leq 1$ for every n, it follows that $\bar{F}_n \to 1$, as desired.

Problem 2 (Operational interpretation for the entropy of entanglement)

Problem 2. Let $|\psi\rangle$ and $|\phi\rangle$ be two entangled pure bipartite states in $\mathbb{C}^{d_A}\otimes\mathbb{C}^{d_B}$. For each integer n, define an integer m (depending on n) such that m(n) is the maximal integer for which the transformation

$$|\psi\rangle^{\otimes n} \to |\phi\rangle^{\otimes m}$$

is possible by LOCC. Show that

$$\lim_{n \to \infty} \frac{m}{n} = \frac{E(|\psi\rangle)}{E(|\phi\rangle)}$$

where $E(\cdot)$ is the entropy of entanglement, i.e. $E(|\psi\rangle) = S(\rho_A)$ with $S(\cdot)$ being the von-Neumann entropy and $\rho_A = \text{Tr}_B |\psi\rangle\langle\psi|$.

Solution. The fact that the optimal rate for converting copies of $|\psi\rangle$ into copies of $|\phi\rangle$ is $\frac{E(|\psi\rangle)}{E(|\phi\rangle)}$ will be shown by putting together the following to propositions.

Proposition 2.1. The rate $r = \frac{E(|\psi\rangle)}{E(|\phi\rangle)}$ is achievable.

Proof. From the analysis of asymptotic entanglement manipulation that was done in the lecture, we know that it is possible to convert

$$|\psi\rangle^{\otimes n} \xrightarrow{\text{LOCC}} \approx |\text{Bell}\rangle^{\otimes nE(\psi)}$$

for n sufficiently large. Similarly, we can convert

$$|\text{Bell}\rangle^{\otimes mE(\phi)} \xrightarrow{\text{LOCC}} \approx |\phi\rangle^{\otimes m}$$

for m large enough. Hence, for sufficiently large n, one can convert

$$|\psi\rangle^{\otimes n} \xrightarrow{\text{LOCC}} \approx |\phi\rangle^{\otimes n \frac{E(\psi)}{E(\phi)}},$$

and thus the rate $r = \frac{E(\psi)}{E(\phi)}$ is achievable.

Proposition 2.2. Any rate r above $\frac{E(|\psi\rangle)}{E(|\phi\rangle)}$ is not achievable.

Proof. Suppose that there is an achievable rate $r > \frac{E(\psi)}{E(\phi)}$. This means that it is possible to convert

$$|\psi\rangle^{\otimes n} \xrightarrow{\text{LOCC}} \approx |\phi\rangle^{\otimes nr}$$

for sufficiently large n (up to some small error). Using optimal protocols for entanglement cost and distillation, for sufficiently large n it is possible to convert

$$|\mathrm{Bell}\rangle^{\otimes nE(\psi)} \xrightarrow{\mathrm{LOCC}} \approx |\psi\rangle^{\otimes n} \xrightarrow{\mathrm{LOCC}} \approx |\phi\rangle^{\otimes nr} \xrightarrow{\mathrm{LOCC}} \approx |\mathrm{Bell}\rangle^{\otimes nrE(\phi)}$$

via LOCC (up to some small error). However,

$$\lim_{n\to\infty}\frac{nrE(\phi)}{nE(\psi)}=r\frac{E(\phi)}{E(\psi)}>1.$$

Hence for sufficiently large n it holds that

$$\lceil nE(\psi) \rceil < \lfloor nrE(\phi) \rfloor.$$

Since the protocol implies that $\lceil nE(\psi) \rceil$ copies of a Bell state can be converted into $\lfloor nrE(\phi) \rfloor$ copies of a Bell state, this implies that it would be possible to produce more Bell states than were started with. This is clearly impossible and thus $r > \frac{E(\psi)}{E(\phi)}$ is not an achievable rate.

Problem 3 (Relative entropy of entanglement)

Problem 3. The relative entropy of entanglement is a measure of entanglement for mixed bipartite states defined by

$$E_R(\rho_{\mathsf{AB}}) = \min_{\sigma_{\mathsf{AB}} \in \mathfrak{D}_{\mathsf{AB}}} \left\{ S(\rho_{\mathsf{AB}} \| \sigma_{\mathsf{AB}}) \right\}$$

where $S(\rho_{\mathsf{AB}} \| \sigma_{\mathsf{AB}})$ is the relative entropy of entanglement defined by

$$S(\rho \| \sigma) = \text{Tr}(\rho \log \rho) - \text{Tr}(\rho \log \sigma)$$

and $\mathfrak{D}_{\mathsf{AB}}$ is the convex set of all separable density operators on $\mathbb{C}^{d_{\mathsf{A}}} \otimes \mathbb{C}^{d_{\mathsf{B}}}$.

- (a) Show that $S(\rho \| \sigma) \ge 0$ with equality if and only if $\rho = \sigma$.
- (b) Show that the relative entropy of entanglement of ρ_{AB} is an entanglement monotone. To prove it use the fact that $S(\mathcal{E}(\rho)||\mathcal{E}(\sigma)) \leq S(\rho||\sigma)$ for any CPTP map \mathcal{E} .
- (c) Show that if ρ_{AB} is a pure state then $E_R(\rho_{AB}) = S(\rho_A)$, where $\rho_A = \text{Tr}_B \rho_{AB}$ and $S(\cdot)$ is the von-Neumann entropy. That is, for pure states the relative entropy of entanglement is equal to the entropy of entanglement.
- (d) Define the function

$$\tau_{R}(\rho_{\mathsf{A}\mathsf{B}}) = \min_{\sigma_{\mathsf{A}\mathsf{B}} \in \mathfrak{D}_{\mathsf{A}\mathsf{B}}} \left\{ \tilde{D}\left(\rho_{\mathsf{A}\mathsf{B}} \| \sigma_{\mathsf{A}\mathsf{B}}\right) \right\},$$

where $\tilde{D}(\rho \| \sigma) = 1 - [F(\rho, \sigma)]^2$ and $F(\rho, \sigma)$ is the fidelity. Prove that τ_R is an entanglement monotone. Bonus: Find what it equals to fore pure states.

Solution. .

(a) We first prove the inequality for the classical relative entropy.

Proposition 3.1. For all probability distributions p and $\{q_i\}$, it holds that $H(\{p_i\}||\{q_i\}) \geq 0$ with equality if and only if $p_i = q_i$ for all i.

Proof. First suppose that $\sup(\{p_i\}) \not\subset \sup(\{q_i\})$. It follows that $H(\{p_i\} | \{q_i\}) = +\infty$ and the inequality is trivially satisfied.

If it holds that supp($\{p_i\}$) \subset supp($\{q_i\}$), then $p_i = 0$ whenever $q_i = 0$. Taking the sum of the q_i over all i such that $p_i \neq 0$ yields

$$\sum_{\{i|p_i\neq 0\}} q_i \le 1.$$

The desired inequality now follows, since

$$D(\lbrace p_{i}\rbrace || \lbrace q_{i}\rbrace)) = \sum_{\lbrace i \mid p_{i} \neq 0 \rbrace} p_{i} \log \frac{p_{i}}{q_{i}} = -\frac{1}{\ln 2} \sum_{\lbrace i \mid p_{i} \neq 0 \rbrace} p_{i} \ln \frac{q_{i}}{p_{i}}$$

$$\geq \frac{1}{\ln 2} \sum_{\lbrace i \mid p_{i} \neq 0 \rbrace} p_{i} \left(1 - \frac{q_{i}}{p_{i}}\right)$$

$$= \frac{1}{\ln 2} \sum_{\lbrace i \mid p_{i} \neq 0 \rbrace} (p_{i} - q_{i})$$

$$= \frac{1}{\ln 2} \left(1 - \sum_{\lbrace i \mid p_{i} \neq 0 \rbrace} q_{i}\right) \geq 0,$$
(3.1)

where the inequality in (3.1) is due to the fact that $\ln x \le x - 1$ for all x > 0, which we prove as follows. Define the function f by $f(x) = \ln x + 1 - x$ for all x > 0. Then f achieves a global maximum at x = 1, since $f'(x) = \frac{1}{x} - 1$ with f'(1) = 0 and $f''(x) = -\frac{1}{x^2} \le 0$, and thus $\ln x + 1 - x \ge 0$ for all x > 0.

Proposition 3.2. For all density operators ρ and σ , it holds that $S(\rho||\sigma) \geq 0$ with equality if and only if $\rho = \sigma$.

Proof. Denote the distinct eigenvalues of ρ and σ by $\{p_i\}$ and $\{q_j\}$ respectively such that we can decompose ρ and σ as

$$\rho = \sum_{i} p_i P_i \quad \text{and} \quad \sigma = \sum_{j} q_j Q_j,$$

where P_i and Q_j are the projection operators onto the eigenspaces whose corresponding eigenvalues are p_i and q_j respectively. The collections of projection matrices, $\{P_i\}$ and $\{Q_j\}$, are orthogonal in the sense that

$$P_i P_{i'} = P_{i'} P_i = \delta_{ii'} P_i$$
 and $Q_j Q_{j'} = Q_{j'} Q_j = \delta_{jj'} Q_j$

for all i, i', j, j', and satisfy

$$\sum_{i} P_i = I = \sum_{j} Q_j.$$

Let $m_i = \operatorname{Tr} P_i$ and $n_j = \operatorname{Tr} Q_j$ denote the multiplicity of the eigenvalues p_i and q_j respectively. Note that

$$\log \rho = \sum_{i} \log p_i P_i$$
 and $\log \sigma = \sum_{j} \log q_j Q_j$.

Define the quantities $D_{ij} = \frac{1}{n_i} \operatorname{Tr}[P_i Q_j]$ for each i and j. It is clear that each $D_{ij} \geq 0$ is nonnegative and that

$$\sum_{j} D_{ij} = \frac{1}{n_i} \sum_{j} \text{Tr}[P_i Q_j] = \frac{1}{n_i} \text{Tr}[P_i] = 1$$

for each i. Since the logarithm is a concave function, it holds that

$$\sum_{i} D_{ij} \log q_j \ge \log \left(\sum_{i} D_{ij} q_j \right) = \log r_i \tag{3.2}$$

for all i, where we define the quantities $r_i = \sum_j D_{ij}q_j$. Then

$$S(\rho \| \sigma) = \sum_{i} p_{i} \log p_{i} \operatorname{Tr}[P_{i}] - \sum_{i,j} p_{i} \log q_{j} \operatorname{Tr}[P_{i}Q_{j}]$$

$$= \sum_{i} n_{i} p_{i} \log p_{i} - \sum_{i,j} n_{i} p_{i} \log q_{j} D_{ij}$$

$$= \sum_{i} n_{i} p_{i} \log p_{i} - \sum_{i} n_{i} p_{i} \sum_{j} D_{ij} \log q_{j}$$

$$\geq \sum_{i} n_{i} p_{i} \log p_{i} - \sum_{i} n_{i} p_{i} \log \left(\sum_{j} D_{ij} q_{j}\right)$$

$$(3.3)$$

$$= \sum_{i} n_{i} p_{i} \log \frac{n_{i} p_{i}}{n_{i} r_{i}}$$

$$= H(\{n_{i} p_{i}\} | \{n_{i} r_{i}\})$$

$$\geq 0$$
(3.4)
$$\geq 0$$
(3.5)

where we note that $\{n_i p_i\}$ and $\{n_i r_i\}$ are probability distributions since

$$\sum_i n_i p_i = \sum_i p_i \operatorname{Tr}[P_i] = \operatorname{Tr}[\rho] = 1 \quad \text{and} \quad \sum_i n_i r_i = \sum_{i,j} n_i D_{ij} q_j = \sum_{i,j} q_j \operatorname{Tr}[P_i Q_j] = \operatorname{Tr}[\sigma] = 1.$$

Hence positivity of $S(\rho \| \sigma)$ reduces to the positivity of the classical relative entropy (3.4) of the distributions $\{n_i p_i\}$ and $\{n_i r_i\}$.

To prove conditions for equality, note that, from the classical relative relative entropy, equality in (3.5) holds if and only if $p_i = r_i$ for all i. Since each q_j is distinct, equality in both (3.2) and (3.3) holds if and only if for all i there exists a j_i such that

$$D_{ij} = 1$$
 if $j = j_i$ and $D_{ij} = 0$ if $j \neq j_i$.

(That is, for each i there is exactly one j such that $D_{ij} = 1$ and $D_{ij} = 0$ for all other j.)

Suppose $S(\rho||\sigma) = 0$. Then $p_i = r_i = q_{j_i}$ for each i. Finally, we will show that $Q_{j_i} = P_i$ for all i as well. For the sake of obtaining a contradiction, suppose that $Q_{j_i} \neq P_i$ for some i. Since P_i and Q_{j_i} are projection operators, it holds that $\text{Tr}[P_iQ_{j_i}] < \text{Tr}[P_i] = n_i$. Hence

$$1 = D_{ij_i} = \frac{1}{n_i} \operatorname{Tr}[P_i Q_{j_i}] < \frac{1}{n_i} \operatorname{Tr}[P_i] = 1$$

a contradiction. Hence

$$\rho = \sum_{i} p_i P_i = \sum_{i} q_{j_i} Q_{j_i} = \sum_{i} q_j Q_j = \sigma$$

as desired. \Box

(b) If σ_{AB} is a separable density operator, then $\mathcal{E}(\sigma_{AB})$ is also separable for any LOCC channel \mathcal{E} . To show that E_R is an entanglement monotone, it suffices to show that $E_R(\rho) \geq E_R(\mathcal{E}(\rho))$ for any LOCC channel \mathcal{E} .

Let \mathcal{E} be an LOCC channel from AB to A'B' and denote the image of the separable density operators under the channel \mathcal{E} as

$$\mathcal{E}(\mathfrak{D}_{\mathsf{AB}}) = \{ \mathcal{E}(\sigma_{\mathsf{AB}}) \, | \, \sigma_{\mathsf{AB}} \in \mathfrak{D}_{\mathsf{AB}} \}.$$

It follows that $\mathcal{E}(\mathfrak{D}_{AB}) \subseteq \mathfrak{D}_{A'B'}$. For an arbitrary density operator $\rho = \rho_{AB}$, we have

$$E_{R}(\rho) = \min_{\sigma \in \mathfrak{D}_{AB}} S(\rho \| \sigma) \ge \min_{\sigma \in \mathfrak{D}_{AB}} S(\mathcal{E}(\rho) \| \mathcal{E}(\sigma))$$

$$= \min_{\tau \in \mathcal{E}(\mathfrak{D}_{AB})} S(\mathcal{E}(\rho) \| \tau)$$

$$\ge \min_{\tau \in \mathfrak{D}_{A'B'}} S(\mathcal{E}(\rho) \| \tau) = E_{R}(\mathcal{E}(\rho)),$$
(3.6)

where the inequalities in the above equations hold due to the following observations:

- the inequality in (3.6) follows from the fact that $S(\mathcal{E}(\rho)||\mathcal{E}(\sigma)) \geq S(\mathcal{E}(\rho)||\mathcal{E}(\sigma))$ holds for any states ρ and σ and any channel \mathcal{E} ;
- and the inequality in (3.7) follows from the fact that $\mathcal{E}(\mathfrak{D}_{AB}) \subseteq \mathfrak{D}_{A'B'}$.
- (c) Note that $S(\cdot||\cdot)$ is strictly convex in the second argument, i.e. for all states ρ, σ , and τ and all $t \in [0, 1]$ it holds that

$$S(\rho || (1-t)\sigma + t\tau) < (1-t)S(\rho || \sigma) + tS(\rho || \tau).$$

A separable density operator σ is said to be **optimal** for another density operator ρ if and only if $E_R(\rho) = S(\rho \| \sigma)$. Hence σ is optimal for ρ if and only if $S(\rho \| \sigma) \leq S(\rho \| \tau)$ holds for all separable density operators τ . The optimality conditions can be restated as follows.

Proposition 3.3. Let ρ and σ be bipartite density operators and let σ be separable. It holds that σ is optimal for ρ if and only if the directional derivative

$$\frac{d}{dt}S(\rho||(1-t)\sigma + t\tau) = \lim_{t \to 0^+} \frac{S(\rho||(1-t)\sigma + t\tau)}{t} \ge 0$$

is non-negative for all other separable states τ .

Proof. See (Girard 2014)¹.

Let $\rho = |\psi\rangle\langle\psi|$ be a pure state. Without loss of generality we may write $|\psi\rangle$ in Schmidt form as

$$|\psi\rangle = \sum_{i} \sqrt{p_i} |ii\rangle,$$

where $\{p_i\}$ are the Schmidt coefficients. Let σ be the separable state defined by

$$\sigma = \sum_{i} p_i |ii\rangle\langle ii|.$$

We will show that σ is optimal for ρ . Let τ be an arbitrary density operator. From (Girard 2014) it follows that the directional derivative can be written as

$$\lim_{t \to 0^{+}} \frac{S(\rho \| (1-t)\sigma + t\tau)}{t} = 1 - \text{Tr} \left[D_{\sigma}(\rho)\tau \right]$$
 (3.8)

where

$$D_{\sigma}(\rho) = \sum_{i,j} \sqrt{p_i p_j} \Delta(p_i, p_j) |ii\rangle\langle jj|$$

and $\Delta(p,q)$ are the so-called 'divided differences'

$$\Delta(p,q) = \begin{cases} \frac{\log p - \log q}{p - q} & p \neq q\\ \frac{1}{p} & p = q. \end{cases}$$

Note that $\Delta(p,p) = \frac{1}{p}$ and thus $\sqrt{pq}\Delta(p,q) = 1$ if p = q. If $p \neq q$, note that

$$\sqrt{pq}\Delta(p,q) = \sqrt{pq}\frac{\log\frac{p}{q}}{p-q} = \sqrt{\frac{p}{q}}\frac{\log\frac{p}{q}}{\frac{p}{q}-1} = f\left(\frac{p}{q}\right)$$

where f is the function defined by $f(t) = \frac{\sqrt{t} \log t}{t-1}$ for all positive t with $t \neq 1$. We may also define f(1) = 1 to make f continuous.

Proposition 3.4. For all t > 0 it holds that $0 < f(t) \le 1$, where f is the function defined by f(1) = 1 and $f(t) = \frac{\sqrt{t} \log t}{t-1}$ for t > 0 with $t \ne 1$.

Proof. The inequalities hold trivially for t=1, so suppose $t \neq 1$. Since $f(t^{-1}) = f(t)$, we may assume without loss of generality that t > 1. Define the function $g(t) = \sqrt{t} - \frac{1}{\sqrt{t}} - \log t$ for all t > 0. Note that g(1) = 0, and that g is monotonically increasing on the interval $(1, \infty)$, since

$$\frac{dg}{dt} = \frac{1}{2\sqrt{t}} + \frac{1}{2t\sqrt{t}} - t = \frac{1}{t\sqrt{t}} \left(\frac{t+1}{2} - \sqrt{t}\right) \ge 0$$

where we use the fact that $\frac{t+1}{2} \ge \sqrt{t}$ holds for all t > 0. Therefore $0 \le g(t) = \sqrt{t} - \frac{1}{\sqrt{t}} - \log t$ holds for all t > 1. This is equivalent to $f(t) \le 1$ for all t > 1, as desired.

The inequality 0 < f(t) is obvious, since $0 < \frac{\log t}{t-1}$ holds for all t > 0 with $t \neq 1$.

¹M Girard, G Gour, S Friedland. 2014. On convex optimization problems in quantum information theory. Journal of Physics A: Mathematical and Theoretical 47 505302.

From the above proposition, we see that $0 \le \sqrt{p_i p_j} \Delta(p_i, p_j) \le 1$ holds for all $p_i, p_j \ge 0$. Consider an arbitrary separable pure state of the form $\tau = |u\rangle\langle u| \otimes |v\rangle\langle v|$ with

$$|u\rangle = \sum_i \alpha_i |i\rangle$$
 and $|v\rangle = \sum_i \beta_i |i\rangle$.

Then τ can be written as

$$\tau = \sum_{i,j} \alpha_i \beta_i \overline{\alpha}_j \overline{\beta}_j |ii\rangle\langle jj|$$

and we have that $1 - \text{Tr} [D_{\sigma}(\rho)\tau] \ge 0$ since

$$\left| \operatorname{Tr} \left[D_{\sigma}(\rho) \tau \right] \right| = \left| \sum_{i,j} \sqrt{p_i p_j} \Delta(p_i, p_j) \alpha_i \beta_i \overline{\alpha}_j \overline{\beta}_j \right|$$

$$\leq \sum_{i,j} |\alpha_i| |\beta_i| |\overline{\alpha}_j| |\overline{\beta}_j|$$

$$= \left(\sum_i |\alpha_i| |\beta_i| \right)^2$$

$$\leq \sum_i |\alpha_i|^2 \sum_i |\beta_i|^2 = \langle u|u\rangle \langle v|v\rangle = 1.$$

From (3.8) and Proposition 3.3, it follows that $S(\rho \| \sigma) \leq S(\rho \| \tau)$ for all arbitrary bipartite pure separable states τ . Any arbitrary separable state τ can be written as a convex combination of separable pure states

$$\tau = \sum_{x} t_x \tau_x$$

where each τ_x is pure and $t_x \geq 0$ and $\sum_x t_x = 1$. By convexity of the relative entropy, it follows that

$$S(\rho \| \tau) = S\left(\rho \left\| \sum_{x} t_x \tau_x \right) \le \sum_{x} t_x S(\rho \| \tau_x) \le S(\rho \| \sigma),$$

and thus $E_R(\rho) = \min_{\tau \in \mathfrak{D}} S(\rho \| \tau) = S(\rho \| \sigma)$.

Finally, computing the relative entropy of ρ and σ , we find

$$S(\rho||\sigma) = -\langle \psi|\log \sigma|\psi\rangle = -\sum_{i} p_i \log p_i = S(\rho_{\mathsf{A}}),$$

as desired.

(d) Recall that F is monotonic under CPTP maps, i.e. for all CPTP maps $\mathcal E$ and all density operators ρ and σ it holds that $F(\mathcal E(\rho),\mathcal E(\sigma)) \geq F(\rho,\sigma)$ and thus

$$\tilde{D}(\mathcal{E}(\rho)||\mathcal{E}(\sigma)) = 1 - [F(\mathcal{E}(\rho), \mathcal{E}(\sigma))]^2 \le 1 - [F(\rho, \sigma)]^2 = \tilde{D}(\rho||\sigma). \tag{3.9}$$

Let ρ be an arbitrary bipartite density operator and let \mathcal{E} be a LOCC channel. As in part (b), we have

$$\begin{split} \tau_R(\rho) &= \min_{\sigma \in \mathfrak{D}_{\mathsf{AB}}} \tilde{D}(\rho \| \sigma) \geq \min_{\sigma \in \mathfrak{D}_{\mathsf{AB}}} \tilde{D}(\mathcal{E}(\rho) \| \mathcal{E}(\sigma)) \\ &= \min_{\tau \in \mathcal{E}(\mathfrak{D}_{\mathsf{AB}})} \tilde{D}(\mathcal{E}(\rho) \| \tau) \\ &\geq \min_{\tau \in \mathfrak{D}_{\mathsf{AB}'}} \tilde{D}(\mathcal{E}(\rho) \| \tau) = \tau_R(\mathcal{E}(\rho)), \end{split}$$

and thus $\tau_R(\rho) \geq \tau_R(\mathcal{E}(\rho))$. Hence τ_R is an entanglement monotone.

Recall that the fidelity of a pure state $\rho = |\psi\rangle\langle\psi|$ with an arbitrary state σ reduces to

$$F(\rho, \sigma) = F(|\psi\rangle\langle\psi|, \sigma) = \sqrt{\langle\psi|\sigma|\psi\rangle}.$$

Proposition 3.5. Let $\rho = |\psi\rangle\langle\psi|$ be a bipartite pure state. Then $\tau_R(\rho) = 1 - p_{\text{max}}$, where p_{max} is the largest Schmidt coefficient of $|\psi\rangle$.

Proof. Let $\rho = |\psi\rangle\langle\psi|$ be an arbitrary pure state. Without loss of generality, we may consider $|\psi\rangle$ is Schmidt form as

$$|\psi\rangle = \sum_{i} \sqrt{p_i} |ii\rangle,$$

where the Schmidt coefficients are in decreasing order $p_1 \geq p_2 \geq \cdots$. Define $\sigma = |ii\rangle\langle ii|$. We will show that $[F(\rho,\sigma)]^2 \geq [F(\rho,\tau)]^2$ for all separable states τ . Note that $[F(\rho,\sigma)]^2 = |\langle \psi|11\rangle|^2 = p_1 = p_{\text{max}}$. If τ is pure, we can write it as $\tau = |u\rangle\langle u| \otimes |v\rangle\langle v|$ for some pure states

$$|u\rangle = \sum_i \alpha_i |i\rangle$$
 and $|v\rangle = \sum_i \beta_i |i\rangle$.

Then

$$[F(\rho,\tau)]^2 = \langle \psi | \tau | \psi \rangle = \left| \sum_i \sqrt{p_i} \alpha_i \beta_i \right|^2 \le p_{\max} \left| \sum_i \alpha_i \beta_i \right|^2 \le p_{\max} \underbrace{\sum_i |\alpha_i|^2}_{\langle u | u \rangle = 1} \underbrace{\sum_i |\beta_i|^2}_{\langle v | v \rangle = 1} = p_{\max}.$$

If τ is not pure, it can be written as a convex combination of separable pure states

$$\tau = \sum_{x} t_x \tau_x$$

where each τ_x is pure and $t_x \ge 0$ and $\sum_x t_x = 1$. Hence

$$[F(\rho,\tau)]^2 = \langle \psi | \tau | \psi \rangle = \sum_x t_x \langle \psi | \tau_x | \psi \rangle \le p_{\text{max}}$$

and thus $1 - [F(\rho, \sigma)]^2 = 1 - p_{\text{max}} \le 1 - [F(\rho, \tau)]^2$ holds for all separable states τ , as desired. \Box

Problem 4 (Strong sub-additivity of the Shannon entropy)

Problem 4. Prove the strong sub-additivity of the Shannon entropy. That is, prove that

$$H(X\colon Z|Y) \ge 0 \tag{4.1}$$

with equality if and only if $Z \to Y \to X$ forms a Markov chain.

Solution. Proof. From the last homework assignment, we used the fact that

$$H(X: Z|Y) = \sum_{y} p(y)H(X|_{Y=y}: Z|_{Y=y})$$

to prove that $H(X:Z|Y) \ge 0$. We now show the conditions for equality in (4.1). Since $p(y) \ge 0$ and $H(X|_{Y=y}:Z|_{Y=y}) \ge 0$ for all y, it suffices to show that

$$H(X|_{Y=y} \colon Z|_{Y=y}) = 0$$

for all y if and only if $Z \to Y \to X$ forms a Markov chain. Since $H(X|_{Y=y}: Z|_{Y=y}) = 0$ if and only if $X|_{Y=y}$ and $Z|_{Y=y}$ independent random variables, we need to show that p(xz|y) = p(x|y)p(z|y) for all y if and only if $Z \to Y \to X$ forms a Markov chain. This is indeed true, since

$$p(xz|y) = p(x|y)p(z|y) \quad \Leftrightarrow \quad \frac{p(xyz)}{p(y)} = \frac{p(xy)}{p(y)} \frac{p(yz)}{p(y)} \quad \Leftrightarrow \quad \frac{p(xyz)}{p(yz)} = \frac{p(xy)}{p(y)} \quad \Leftrightarrow \quad p(x|yz) = p(x|y),$$

as desired. \Box