

From Page No. ....

see page 16

A simple N-Vinyl crosslinkers, shown below may act as accelerators for nitroxy applications are shown below.



N-vinyl maleimide



N-Vinyl maleimide

A sample of maleimide  was given to M. Burkhardt to test as an accelerator for nitroxy forming.

Witnessed &amp; Understood by me,

Date

Invented by

Date

To Page No. ....



Recorded by



TITLE Idea

From Page No. ....

Ron Ofsted suggested converting N-Vinyl-malimide to  
N-Vinyl sulfosuccinimide



To Page No. ....

Witnessed &amp; Understood by me,

Date

Invented by

Date

Recorded by

**Exhibit 2**

## Vvinyl-Maleimide

Project No. TIP40100  
Book No. 2706

21

From Page No.

596

## Vinyl-Maleimide.SK2

D)



In a 100 ml RB flask with magnetic stir bar & reflux condenser were placed 10.00075 g maleic anhydride (Cat # 90009337), 0.24900 g Na<sub>2</sub>PdCl<sub>4</sub> & 35.5 g vinylacetate (Cat # 10221 DS). Rxn & heat to refluxing. Refluxing started at 8:50 a.m. Boil point of vinyl acetate = 72-73°C. At 1:30 p.m. - Rx turned to dark red with some solid. Continue refluxing to total 17 hours.

Refluxing stop at 1:50 p.m. - should be about 7 a.m. - Rx was still refluxing.

Remove heating & let cool. Filter off Rx, remove excess of vinylacetate on a rotovap at T = 40°C under air bleeding into the flask. We got ~15 g. residue in the flask. Add 45 ml Et<sub>2</sub>O, stir in 3PA-dry ice bath at T = -20°C for 30 min. Filter off solid, dry at RT under water aspirator to give 5.2 g. yellow crystals /2706-21/

To Page No. 22

Witnessed &amp; Understood by me,

Dan Liao

Date

Invented by

Recorded by

Date

R. Etchbury

## Exhibit 3

the Sulfo-N-Vinyl Maleimide

Project No. TIPM 0100  
Book No. 2706

26

From Page No. -

Rx #1 similar, as Rx #3 in NMR tube, but using N-Vinyl Maleimide 2706-21.



F.W. = 123.11

104.06

225.15

50 mg

50.8 mg

91.41 mg

0.406 mmole

0.483 mmole

0.406 mmole

We couldn't prepare solution 50 mg N-Vinyl Maleimide in 1.0 ml  $\text{D}_2\text{O}$ . No.

In a NMR tube was placed 50 mg N-Vinyl Maleimide & add solution of 516 mg NaHSO<sub>3</sub> in 1.0 ml  $\text{D}_2\text{O}$ . Vortex & heat at 55°C water bath for 10 min, almost all was dissolved, filter off through pipet filter to another NMR tube. & submit for NMR.

Results see p. 25 back side.

Rx at RT very slow.

Rx #2 1 g N-Vinyl Maleimide 2706-21 + solution 102 g NaHSO<sub>3</sub> in 20 ml  $\text{D}_2\text{O}$  (0.0098 M)  
Shake at 55°C from 4 p.m. over weekend.

Rx had very small amount of solid; Rx was filtered off & water was removed with 2 x 20 ml CHCl<sub>3</sub> (at 60°C under water aspirator).

Got 1.71 g. yellowish residue (2706-26-1) or 93.4% from theory-theory yield 1.829 g.

Prepare 30 mg (0.7 mL  $\text{D}_2\text{O}$ ) for NMR (see p. 26 back side)

To Page No. 27

Witnessed & Understood by me,

Date

Invented by

Date

Dab Jawa

Recorded by G. Oehlmann

Exhibit 4

From Page No. 26

Product 2706-26-1 has some impurities, need be purified.

1.71 g 2706-26-1 was dissolved in 5.1 mL  $\text{H}_2\text{O}$ , then was added 3 mL  $\text{CH}_3\text{OH}$ , heat at  $60^\circ\text{C}$  water bath. All was dissolved, cool solution in ice-water bath. Filter off solid dry at  $60^\circ\text{C}$  to give 430 mg of offwhite crystals / 2706-26-2/.

From filtrate we got 520 mg. offwhite crystals / 2706-26-3/.

Prepare NMR samples.

2706-26-3 cleaner than 2706-26-1; 2706-26-2 - impurity.

2706-26-3 was given to UFB for testing.



Witnessed &amp; Understood by me,

*Dab. Dava*

Date

Invented by

Date

Recorded by *S. G. Schleicher*

Total Page No. Ref. 2706-24

S&amp;S

## Vinyl-succinimide.SK2

S&amp;S



In a 25 ml RB flask, with magnetic stir bar were placed all ingredients & heat to refluxing. Refluxing from 3.30 p.m.

7.10 a.m. - cool Rx. Filter off through pipet filter & wash with 2x5 ml.  $\text{CH}_2\text{Cl}_2$ . Remove solvent on a Rotovap at 40°C under water aspirator with air bleeding in a flask. Got 1.3 g. yellow liquid. Add 4.5 ml.  $\text{Et}_2\text{O}$  & stir in ~~an~~ dry ice bath. Filter off solid, dry to give 1.0 g. brownish solid / 2706-301.

Prepare 30 mg/0.75 mL  $\text{D}_2\text{O}$  for NMR (see p. 29 back side).

Product looks good by NMR.  
TLC was developed in  $\text{CH}_3\text{OH}/\text{CHCl}_3 = 1/99$  (see p. 29B) &  $\text{CH}_3\text{OH}/\text{CHCl}_3 = 10/90$ . We have one spot.

To Page No. 32

Witnessed &amp; Understood by me,

Date

Invented by

Date

Dan Swan

Recorded by S. Gittman

TITLE Sulfo-N-Vinyl Maleimide

Project No. TIPM0100  
Book No. 2706

31

From Page No.

Ref. 2706-21



123.11

1.0 g

0.00812 M

104.06

1.02 g

0.0098 M

225.15

1.826 g (theory)

0.00812 M (-4%)

To 1.0 g N-Vinyl Maleimide (#2706-21) was added solution 1.2 g NaHSO<sub>3</sub> in 20 mL b-H<sub>2</sub>O, vortexed for 5 min then placed at 55°C oven on a GRS shaker & shaken from 2.15 p.m.

Prepare TLC, comparing Rx & starting material.

Filter off Rx-solution was slightly cloudy. Remove water with 2 x 20 mL CH<sub>2</sub>Cl<sub>2</sub>, dry on a Rotovap at 60°C to give 1.67 g. Light yellow crystals (#2706-3).

Prepare 3.0 mg/0.75 mL D<sub>2</sub>O for NMR (see p.30 back side).

Product is good.

500 mg was given to UGB for testing.

30 mg of #2706-3 was dissolved in 300 μL b-H<sub>2</sub>O. Added 6.0 mL of Et<sub>2</sub>O solution - no precipitation.

③ 30 mg of #2706-3 was dissolved in 300 μL b-H<sub>2</sub>O. Added 20 mL soot. K<sub>2</sub>CO<sub>3</sub> - no precipitation.

1 mL Methanol +  
1 mL of Et<sub>2</sub>O soln  
- NaCl precipitate

Witnessed & Understood by me,

Date

Invented by

Date

To Page No.

Dab Jawan

Recorded by S. Ottman

Succinimide  
Title: Gullo-N-Vinyl Maleimide Project No. ITPM0100  
Book No. 2706

37

From Page No. Ref. 2706-31

To 1.75 g Vinyl-Maleimide (2706-21) was added ~~50 ml~~ 35 ml  $\text{Bi}-\text{Hg} + 2.1 \text{ g NaHSO}_3$ , vortex for 5 min, then shake on at  $55^\circ\text{C}$  oven from 3.30 p.m.

Filter off from insoluble.  
Remove water with 2x35 mL  $\text{CHCl}_3$ , dry on a rotovap at  $60^\circ\text{C}$  to give 3.0 g, light yellow crystals (2706-37) (theory yield 3.2 g).

Product looks good. Was given to KJL for testing.

D 8

Succinimide  
2706-37

SEC



From Page No. Ref. 2706-21

SSG

B8

SSG

## Vinyl-Maleimide, SK2



In a 100 mL RB flask with magnetic stir bar & reflux condenser were placed 10.00 ~~15~~ g maleimide (Lot # 90009887), 0.24969 g.  $\text{Na}_2\text{PdCl}_4$  & 35.5 g. vinylmaleimide (Lot # 10224 DS). Stir & heat to refluxing. Refluxing started at 13.50 p.m. Boil point of vinyl maleimide = 85°C. Total oil bath = 85°C. SSG acetone = 72-73°C.

7.15 a.m. (~17.5 hours of refluxing) - remove oil bath, let cool, filter off from solid, remove excess of vinylmaleimide at 40°C with air, bleeding in a flask. We got ~ 14.5 g. residue in the flask. Add 45 mL  $\text{Et}_2\text{O}$ , stir in YPA-dry ice bath at  $T = -20^\circ\text{C}$  for 30 min.

Filter off solid, dry at RT under water aspirator to give 5.50 g. yellow crystals (2706-39). Filtrate was stirred for 30 min more in YPA-dry ice bath at  $T = -20^\circ\text{C}$ . Filter off, dry to give 1.4 g. yellow crystals (39-1). Ether was removed to give 3.0 g. yellow (2706-39).

Witnessed &amp; Understood by me.

Date

Invented by

Dated

To Page No. 2706-39

Dab Iwan

S. Stetman

Recorded by

BPK side.

From p. 39.

solids (2706-39-3). Seems that product started to polymerize.

Redissolve solid (39-3) in 25 mL CHCl<sub>3</sub> by shaking on an Orbit Shaker for 20 min, filter off solids that didn't dissolve.

Remove CHCl<sub>3</sub> on a Rotovap at RT under water aspirator with air bleeding into a few traces of solvent were removed by sweeping on with air, to give 1.41 g. yellow solid

/2706-39-3A/



Exhibit 10

From Page No. ....

see page 16-19

Purpose: To determine if N-formamide would be a solvent for the reaction of N-vinylformamide and the potassium salt of sulfopropyl acrylate.

**NVF rx 2.3k2**



1.614 g/mol

N-vinylformamide  
 (N VF)

71.08 g/mol

1.41 g (1.40 ml)

20.0 minutes

Sulfopropylacrylate

232.38 g/mol

4.646 g

20.0 minutes

Calcium hydride

43.09 g/mol

0.038 g

0.713 mmole

363.38 g/mol

6.07 g (theory)

21.6 mmole (theory)

Procedure: The ingredients were stirred at an unknown temperature (23 to 90°C most likely). After 20 hours 0.1 ml was treated with 0.5 ml methanol and 0.5 ml chloroform. Removal of the volatiles gave 99 mg residue 2683-30-1 (mainly formamide mix product?). The residue was washed with a second portion of methanol 0.5 ml and chloroform 0.5 ml. The clear liquid was again removed and evaporated to give 2683-30-2 (12.9 mg). The residue after two washings was dried to give 2683-30-3 (6.4 mg). Three samples were made for NMR comparison: potassium sulfopropylate 2683-30-4, formamide 2683-30-5, and N-vinyl formamide 2683-30-6. A final reaction sample 0.1 ml worked up with methanol and chloroform was labeled 2683-30-7. Sample 1,2 and 7 appeared to show a new four lined NMR peak at ~6.95 ppm. This new NMR peak may be evidence for the presence of the desired product.

10/2

To Page No. ....

Witnessed & Understood by me.

Date

Invented by

Date

Recorded by

Dab Swan

# SurModics Intellectual Property and Proprietary Product Idea Form

(4)

Originator(s)

Date

Ron Ofsted and Dale Swan

## Title/Key Words

N-vinylamides as accelerators in matrix formation

## Reference (Personal Notes/Notebook Number and Pages)

2683-16,20,26

## Brief Description

Cells can be covered with a protective hydrogel coating. The polymerization of PEG-triacrylate around the cells is accelerated by the addition of N-vinylamides. In addition the presence of sulfonate containing monomers (ie AMPS) have been useful in improving biocompatibility. The idea was to synthesize reagents containing N-vinylamides and sulfonate functionality. The attachment of figures 1 to 4 show the reactions used to make N-vinyl amides.

## Advantages and Features

The materials proposed can be made in one or two steps from available materials. Preliminary tests indicated firm gels resulted from the cyclic products synthesized.

## Reduced to Practice (Date/Notebook Number and Pages)

2706-21, 26, 30, 31, 37, 39 from

| Submitted by<br>Signature | Printed Name             | Originator(s) | Date |
|---------------------------|--------------------------|---------------|------|
| Dale Swan<br>R. Ofstedal  | DALE SWAN<br>R. Ofstedal |               |      |

| Read and Understood by<br>Signature | Printed Name                       | Witness | Date |
|-------------------------------------|------------------------------------|---------|------|
| Anthony Dallmier<br>Jesse A. Behre  | Anthony Dallmier<br>Jesse A. Behre |         |      |

**PROPRIETARY**  
**SurModics, Inc.**

**Exhibit 12**

S. Salk - Animal supervisor

Project No. \_\_\_\_\_  
Book No. \_\_\_\_\_

73

on Page No. 33

Give us the two greater batches made (#1 heated glass; #2 either break or heat system)

Format (not) desired - several experiments to test the synthesis of the acetone.  
Same as 50 ml water @ 0.05M each  
as salt-triethylbenzylammonium.

Ld # E703-K-(23,4,45)

Received ~ 50g of Cu(OH)<sub>2</sub>. Added ~ 5g of CuO to 3% Na, 0.23L NaOH solution, & let mix for 1 hour on a 37°C shaker (Amber walls labeled 1-5, for repeat visual - see previous page for visual reasoning)

Note: mixing using 75µl to make better and p/ illustrate for 48hrs:

- 1) Soft, no bubbling
- 2) Soft, mixing, no bubbling
- 3) Hard, firm material,
- 4)
- 5)

r solutions art 0/M @ room temperature, all solutions were filtered, heated under an infrared

shaker mixed 0/M @ 37°C shaker - when dissolved, solution looks cloudy; #3 very dense  
been a lot solid, just hard to tell.

Received & Understood by me:

Date

Entered by

Date

Page No.