

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Plan de Estudios

Ingeniería en Computación Aprendizaje Automático Clave Semestre Créditos Área sugerido Interacción Hombre-Máquina 9 8.0 Módulo de salida Todos los módulos Modalidad Curso Teórico Tipo Carácter Optativo **Horas** Semana Semestre **Teóricas** 4.0 Teóricas 64.0 **Prácticas** 0.0 **Prácticas** 0.0 Total 4.0 **Total** 64.0

Seriación indicativa		
Asignatura antecedente	Ninguna	
Asignatura subsecuente	Ninguna	

Objetivo general: Conocer el aprendizaje automático y las técnicas comúnmente utilizadas para resolver problemas teóricos y prácticos.

Na	-		Horas Semestre	
No.	Tema	Teóricas	Prácticas	
1	INTRODUCCIÓN AL APRENDIZAJE AUTOMÁTICO	4.0	0.0	
2	CLASIFICACIÓN LINEAL	10.0	0.0	
3	MÁQUINAS DE VECTORES DE SOPORTE	12.0	0.0	
4	CLUSTERING	10.0	0.0	
5	CADENAS OCULTAS DE MARKOV	8.0	0.0	
6	REDES BAYESIANAS	12.0	0.0	
7	REDES NEURONALES	8.0	0.0	
	Total	64.0	0.0	
	Suma total de horas	6	4.0	

Contenido Temático

1. INTRODUCCIÓN AL APRENDIZAJE AUTOMÁTICO

Objetivo: Revisar de manera introductoria el aprendizaje automático y los problemas que puede resolver.

- 1.1 Introducción.
- 1.1.1 ¿Qué es el aprendizaje automático?
- 1.1.2 Problemas que resuelve el aprendizaje automático.
- 1.2 Breve recorrido histórico.
- 1.3 Métodos de aprendizaje supervisado y no supervisado.

2. CLASIFICACIÓN LINEAL

Objetivo: Conocer los métodos de clasificación lineal y reconocer cuando utilizarlos para resolver determinados problemas.

- 2.1 ¿Qué es la clasificación lineal?
- 2.2 Características de los datos.
- 2.2.1 Errores en la clasificación.
- 2.3 Perceptrón.
- 2.3.1 Reglas de actualización.
- 2.3.2 Convergencia.
- 2.3.3 Generalización.
- 2.4 Regresión lineal.

3. MÁQUINAS DE VECTORES DE SOPORTE

Objetivo: Utilizar máquinas de vectores de soporte, para resolver problemas de clasificación en diferentes dimensiones.

- 3.1 ¿Qué son las máquinas de vectores de soporte?
- 3.1.1 Características.
- 3.2 Kernels.
- 3.2.1 Selección de kernels.
- 3.2.2 Optimización de kernels.
- 3.3 Solución a problemas reales.

4. CLUSTERING

Objetivo: Conocer métodos de agrupamiento (clustering) para la solución de problemas.

- 4.1 ¿Qué es el clustering?
- 4.2 Características de los datos.
- 4.3 Mixture Models.
- 4.4 K-means.
- 4.5 Distancia.
- 4.6 Aplicaciones.

5. CADENAS OCULTAS DE MARKOV

Objetivo: Conocer el funcionamiento de las cadenas ocultas de Markov para resolver problemas de reconocimiento en tiempo real.

- 5.1 ¿Qué son las cadenas ocultas de Markov?
- 5.2 Cadenas de Markov Homogéneas.
- 5.3 Predicción de estados.
- 5.3.1 Estimación.
- 5.4 Cadenas ocultas de Markov.
- 5.4.1 Modelos de probabilidad.
- 5.4.2 Solución de problemas.
- 5.4.3 Alineamiento múltiple.

6. REDES BAYESIANAS

Objetivo: Construir redes de probabilidad bayesiana para resolver problemas de clasificación.

- 6.1 ¿Qué son las redes bayesianas?
- 6.2 Independencia marginal.
- 6.3 Dependencia inducida.
- 6.4 Construcción de una red.
- 6.5 Independencia condicional.
- 6.6 Distribuciones de probabilidad.
- 6.7 Aplicaciones a problemas reales.

7. REDES NEURONALES

Objetivo: Construir redes neuronales para resolver problemas de decisiones múltiples.

- 7.1 Del perceptrón a las redes neuronales.
- 7.2 Redes neuronales.
- 7.3 Reglas de aprendizaje.
- 7.4 Propagación hacia atrás.
- 7.5 Generalización.
- 7.6 Solución de problemas.

Estrategias didácticas		Evaluación del aprendizaje		Recursos	
Exposición	(X)	Exámenes parciales	(X)	Aula interactiva	()
Trabajo en equipo	(X)	Examen final	(X)	Computadora	(X)
Lecturas	()	Trabajos y tareas	(X)	Plataforma tecnológica	(X)
Trabajo de investigación	(X)	Presentación de tema	()	Proyector o Pantalla LCD	(X)
Prácticas (taller o laboratorio)	()	Participación en clase	(X)	Internet	(X)
Prácticas de campo	()	Asistencia	()		
Aprendizaje por proyectos	(X)	Rúbricas	()		
Aprendizaje basado en problemas	(X)	Portafolios	()		
Casos de enseñanza	()	Listas de cotejo	()		
Otras (especificar)		Otras (especificar)		Otros (especificar)	

Perfil profesiográfico		
Título o grado	 Poseer un título a nivel licenciatura en Ingeniería en Computación, Ciencias de la Computación, Matemáticas Aplicadas a la Computación o carreras cuyo perfil sea afín al área de Interacción Hombre-Maquina. 	
Experiencia docente	 Poseer conocimientos y experiencia profesional relacionados con los contenidos de la asignación a impartir. Tener la vocación para la docencia y una actitud permanentemente educativa a fin de formar íntegramente al alumno: Para aplicar recursos didácticos. Para motivar al alumno. Para evaluar el aprendizaje del alumno, con equidad y objetividad. 	
Otra característica	 Poseer conocimientos y experiencia pedagógica referentes al proceso de enseñanza-aprendizaje. Tener disposición para su formación y actualización, tanto en los conocimientos de su área profesional, como en las pedagógicas. Identificarse con los objetivos educativos de la institución y hacerlos propios. Tener disposición para ejercer su función docente con ética profesional: Para observar una conducta ejemplar fuera y dentro del aula. Para asistir con puntualidad y constancia a sus cursos. Para cumplir con los programas vigentes de sus asignaturas. 	

Bibliografía básica	Temas para los que se recomienda
Alpaydin, E. (2014).	
Introduction to machine learning.	1, 2, 4, 5, 6
Cambridge, Massachussets: MIT Press.	
Khosrowpour, M. (2012).	
Machine learning: concepts, methodologies, tools and	1, 2, 3, 4, 6, 7
applications.	1, 2, 3, 4, 0, 7
Hershey, Pennsylvania: Information Science Reference. IRMA.	
Marsland, S. (2015).	
Machine learning: an algorithmic perspective.	1,2,3,4,5,6 y 7
Boca Ratón, Florida: Chapman & Hall/CRC.	
Quiñonero, C. J. (2009).	
Dataset Shift in Machine Learning.	1, 2, 3, 6, 7
Cambridge, Massachussets: MIT Press.	

Bibliografía complementaria	Temas para los que se recomienda
Abe, S. (2005).	
Support vector machines for pattern classification.	3
Londres: Springer Verlag.	
Ao, Sio-long (2010).	
Machine learning and systems engineering.	3 y 7
Dordrecht, Paises bajos: Springer Verlac.	
Mandic, D. (2001).	
Recurrent Neural Networks for Prediction.	7
Chichester, Inglaterra: WILEY.	
Moreno, R. A. (1994).	
Aprendizaje Automático.	1, 7
Barcelona, España: Universidad Politécnica de Cataluña.	

