Genome sequencing data analysis

Genetic causes of Parkinson's disease and hypertrophic cardiomyopathy

Introduction and work plan

- Parkinson's disease (PD)
 - disorder of the central nervous system
 - affects the motor system[1]
 - O both **genetic** and **environmental** factors

- Hypertrophic cardiomyopathy (HCM)
 - \bigcirc a portion of the **myocardium is thickened**[2, 3, 4, 5, 6]
 - O cause of sudden cardiac death
 - inherited as an autosomal dominant trait, or come from a de novo mutation

Study

- O 30 patients (with PD or HCM)
- O DNA sequencing with Illumina HiSeq machines
- O **preprocessing** (filtering, trimming)
- O mapping with a reference genome
- variant discovery
- O annotation and analysis

I- Preprocessing

Formating of the reads before mapping

- 1. Quality check

 Quality distribution, k-mer content...
- 2. Filtering

 "Bad reads" removal
- 3. Trimming
 "Bad bases" removal
- 4. Pairing

 Partition paired-end / orphans

I. 1 - Quality check[7]

fastqc <*.fastq>

I. 2 - Filtering

fastq_quality_filter -q 20 -p 80 -i <i.fastq> -o <o.fastq> -Q33

I. 3 - Trimming

fastq_quality_trimmer -t 30 -l 20 -i <i.fastq> -o <o.fastq> -Q33

I. 4 - Pairing

II- Mapping

Read-alignments against a reference genome

1. Indexing Genome preprocessing for faster queries

- 2. Alignment

 Approximate matching against reference
- 3. Visualization

 First approach with IGV
- 4. Benchmarking

 Softs comparison and mapping

II. 1 - Indexing

• Burrows-Wheeler Aligner (BWA)[9]

bwa index hg38.fasta

- → hg38.fasta.pac
- → hg38.fasta.bwt
- → hg38.fasta.sa
- → hg38.fasta.amb
- → hg38.fasta.ann

• Bowtie2[10]

bowtie2-build hg38.fasta hg38

- → hg38.1.bt2
- → hg38.2.bt2
- → hg38.3.bt2
- → hg38.4.bt2
- → hg38.rev.1.bt2
- → hg38.rev.2.bt2

II. 2 - Alignment

- Burrows-Wheeler Aligner (BWA)
 - O Paired reads : forward (\rightarrow) read and backward (\leftarrow) read

○ Single reads : forward (\rightarrow) read or backward (\leftarrow) read

- Bowtie2
 - O Paired reads: forward (\rightarrow) read and backward (\leftarrow) read

bowtie2 --phred33 -a -x <ref prefix> -1
 <r1.fastq> -2 <r2.fastq> -S <o.sam>

○ Single reads : forward (\rightarrow) read or backward (\leftarrow) read

II. 3 - Visualization

- Preprocessing[14]
 - Conversion

samtools view -b <i.sam> > <o.bam>

Sorting

samtools sort -o <o.bam> <i.bam>

Indexing

samtools index <o.bam>

• Integrative Genomics Viewer (IGV)[12, 13]

II. 4 - Benchmarking

Statistics of BWA and Bowtie2 for the first patient (ID: as1017)

Soft	% aligned	% proper pairs	% reversed	% supplementary or not primary	% alignment on different chromosome
BWA (paired-end)	99.997	97.534	50.045	8.300×10 ⁻²	2.182
Bowtie2 (paired-end)	99.836	96.550	50.005	0^1	2.045
BWA (singles)	99.981		51.007	8.587×10 ⁻²	
Bowtie2 (singles)	99.786		50.960	01	

¹ this result is due to Bowtie2 default parametrization; that is why it is difficult to say that Bowtie2 is "better" with regard to multimaps.

III- Variant discovery

Research of polymorphisms, annotation and analysis

1. Preprocessing

Genome indexing, sequence maps conversion

- 2. Variant calling

 Mutation discovery with the GATK
- 3. Annotation

 Mutation identification with Annovar
- 4. KEGG mapping

 Final graphic results

III. 1 - Preprocessing

- Reference genome preprocessing
 - O Sequence dictionary generation[18]

Genome indexing

samtools faidx hg38.fasta

- Sequence maps (.sam) conversion
 - O Paired-end (**pe**) and singles (**s**) merging and conversion

samtools merge <o.sam> <pe.sam> <s.sam>

Conversion

samtools view -b <i.sam> > <o.bam>

O Header addition, sorting, indexing

java -jar picard.jar...

III. 2 - Variant calling [15, 16, 17]

Use of HaplotypeCaller

```
java -jar GenomeAnalysisTK.jar -nct 30 \
                                -T HaplotypeCaller \
                                -R hg38.fasta \
                                -I <i.bam> \
                                --genotyping mode DISCOVERY \
                                -stand emit conf 10 \
                                -stand call conf 30 \
                                -0 <0.vcf>
```

• .vcf merging

```
bgzip <i.vcf> > <i.vcf.gz>
  tabix -p vcf <i.vcf.gz>
vcf-merge *.vcf.gz > <o.vcf>
```

III. 3 - Annotation[19]

• Basic stats

	PD (%)	HCM (%)
% exonic (& splicing) mutations	6.172	6.171
% non-synonymous mutations	3.169	3.184
# genes with non-synonymous mutations	40 885	40471

Stats for "critical" genes

	"critical" genes (# non-synonymous mutations)			
PD	LRRK2 (8) VPS35 (1) ATP13A2 (5) PINK1 (4) PLA2G6 (1)			
HCM	MYBPC3 (5) MYL2 (1) MYH7 (4) ACTC1 (1)	TTR (1) CAV3 (1) GLA (1) LAMP2 (1)		

III. 4 - KEGG mapping[20]

• PD

(navy blue for "critical" mutations, tan for not synonymous mutations)

\bullet HCM

(navy blue for "critical" mutations, tan for not synonymous mutations)

References

- [1] NINDS, Parkinson's Disease Information Page, http://www.ninds.nih.gov/disorders/parkinsons_disease, [Online; accessed 30-June-2016; retrieved 10-July-2016].
- [2] B. J. Maron, Hypertrophic cardiomyopathy: a systematic review, JAMA287 (10) (2002) 13081320.
- [3] P. Richardson, W. McKenna, M. Bristow, B. Maisch, B. Mautner, J. O'Connell, E. Olsen, G. Thiene, J. Goodwin, I. Gyarfas, I. Martin, P. Nordet, Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and classfication of cardiomyopathies, Circulation 93 (5) (1996) 841-842.
- [4] M. V. Sherrid, F. A. Chaudhry, D. G. Swistel, Obstructive hypertrophic cardiomyopathy: echocardiography, pathophysiology, and the continuing evolution of surgery for obstruction, Ann. Thorac. Surg. 75 (2) (2003) 620-632.
- [5] E. D. Wigle, Z. Sasson, M. A. Henderson, T. D. Ruddy, J. Fulop, H. Rakowski, W. G. Williams, Hypertrophic cardiomyopathy. The importance of the site and the extent of hypertrophy. A review, Prog Cardiovasc Dis 28 (1) (1985) 1-83.
- [6] E. D. Wigle, H. Rakowski, B. P. Kimball, W. G. Williams, Hypertrophic cardiomyopathy. Clinical spectrum and treatment, Circulation 92 (7) (1995) 1680-1692.

- [7] H. Lab, FASTX-Tollkit, http://hannonlab.cshl.edu/fastx_toolkit/, [Online; accessed 16-August-2016].
- [8] E. Normandeau, GitHub repository for the pairing script, https://github.com/enormandeau/Scripts, [Online; accessed 16-July-2016].
- [9] H. Li, R. Durbin, Fast and accurate long-read alignment with burrows-wheeler transform (2010).
- [10] B. Langmead, S. L. Salzberg, Fast gapped-read alignment with bowtie2, Nat Meth 9 (4) (2012) 357-359, brief Communication. URL http://dx.doi.org/10.1038/nmeth.1923
- [11] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, T. R. Gingeras, Star: ultrafast universal rna-seq aligner, Bioinformatics 29 (1) (2013) 15-21, 23104886[pmid]. doi:10.1093/bioinformatics/bts635. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530905/
- [12] J. T. Robinson, H. Thorvaldsdottir, W. Winckler, M. Guttman, E. S. Lander, G. Getz, J. P. Mesirov, Integrative genomics viewer, Nat Biotech 29 (1) (2011) 24-26. doi:10.1038/nbt.1754. URL http://dx.doi.org/10.1038/nbt.1754

References

[13] H. Thorvaldsdóttir, J. T. Robinson, J. P. Mesirov, Integrative genomics viewer (igv): high-performance genomics data visualization 30 and exploration, Briengs in Bioinformatics 14 (2) (2013) 178-192.

 $\begin{array}{lll} arXiv: & \underline{http://bib.oxfordjournals.org/content/14/2/178.full.pdf+\underline{html}}\\ , & \underline{doi:10.1093/bib/bbs017.} & \underline{URL}\\ \underline{http://bib.oxfordjournals.org/content/14/2/178.abstract} \end{array}$

[14] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, . G. P. D. P. Subgroup, The sequence alignment/map format and samtools, Bioinformatics 25 (16) (2009) 2078-2079, btp352[PII]. doi:10.1093/bioinformatics/btp352. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002/

[15] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A. Philippakis, G. del Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fennell, A. M. Kernytsky, A. Y. Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler, M. J. Daly, A framework for variation discovery and genotyping using next-generation dna sequencing data, Nat Genet 43 (5) (2011) 491-498. doi:10.1038/ng.806. URL

 $\underline{\text{http://dx.doi.org/10.1038/ng.806}}$

[16] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M. A.

DePristo, The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res. 20 (9) (2010) 1297-1303.

[17] G. A. Van der Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. del Angel, A. Levy-Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault, E. Banks, K. V. Garimella, D. Altshuler, S. Gabriel, M. A. DePristo, From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline, John Wiley & Sons, Inc., 2002. doi:10.1002/0471250953.bi1110s43. URL http://dx.doi.org/10.1002/0471250953.bi1110s43

[18] B. Institute, Picard, http://picard.sourceforge.net, [Online; accessed 15-August-2016].

[19] K. Wang, M. Li, H. Hakonarson, Annovar: functional annotation of genetic variants from high-throughput sequencing data, Nucleic Acids Research 38 (16) (2010) e164. arXiv: $\frac{http://nar.oxfordjournals.org/content/38/16/e164.full.pdf+html,}{31doi:10.1093/nar/gkq603.} URL$

 $\underline{http://nar.oxfordjournals.org/content/38/16/e164.abstract}$

[20] M. Kanehisa, S. Goto, Kegg: Kyoto encyclopedia of genes and genomes, Nucleic Acids Res 28 (1) (2000) 2730, gkd027[PII]. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC102409/

Special thanks

Yuri, my superviser, Nikolaï, who helped by mapping the reads with STAR[11], Dmitry, without whom I wouldn't have been there, and Denis, for the early (and friendly) coffee cup!