

RISC-V处理器嵌入式生态实践与思考

RISC-V processor embedded ecosystem: practice and thinking

主讲人: ALLAN HE/何小庆

The paper discusses the status of RISC-V processors and embedded system ecosystem. It focuses on sharing the author and his team's experience of MCU software and IoT OS development based on RISC-V architecture and the practical experience of RISC-V book writing and course construction. The paper shares the author's thinking on RISC-V ecosystem construction

1	RISC-V与嵌入式系统
2	RISC-V 生态现状
3	RISC-V MCU 开发实践
4	RISC-V 生态建设思考

什么是RISC-V? - 嵌入式系统视角

- 1. RISC-V 是一种开源的指令集架构,它不是处理器核,更不是一款处理器芯片。
- 2. 任何企业、高校和个人都可以遵循 "RISC-V架构指南" 设计自己的处理器。
- 3. RISC-V 起源于加州大学伯克利分校,是Krste Asanovic 教授和他的学生 Andrew Waterman 以及 Yunsup Lee 2010年创建项目,指令集在学术界开始出名了,为了推动这个指令集在市场和商业上的发展,他们做了两件事情,①成立RISC-V基金会(国际协会) --发展和维护指令集架构,保持完整性和防止碎 片化。②2015年成立 SiFive公司,推动RISC-V的商业落地。

The RISC-V Instruction Set Manual Volume I: Unprivileged ISA Document Version 20191213

Editors: Andrew Waterman¹, Krste Asanović^{1,2}
¹SiFive Inc.,

²CS Division, EECS Department, University of California, Berkeley andrew@sifive.com, krste@berkeley.edu

December 13, 2019

什么是嵌入式系统?

- 写给RISC-V 爱好者们

- 嵌入式系统无处不在,小到心脏起搏器和温控器、中间有路由器和智能音箱, 大到轮船和高铁。
- 2. 多数人将嵌入式系统理解为 "专用的计算机系统"。
- 3. 嵌入式系统是芯片(处理器)与产品/应用对接的"纽带"— 粘合剂!
- 4. 嵌入式系统不是一个学科/专业,是在各学科/专业下的一个专业方向, 高校有 许多嵌入式系统课程(高职-本科-研究生)。
- 5. 学习嵌入式 = 单片机 = Linux + ARM , 不是 ! 嵌入式重要是 软 + 硬 结合 !
- 6. 掌握嵌入式系统开发技术: (Dr. Jim Cooling)
 - ①具备相关的基础知识
 - ②掌握特定设计的方法和开发技能

RISC-V为嵌入式系统带来什么?

1. RISC-V最大的优势是开源和免费

开源是新的经济方式,是成功的商业之道、是学习的最好途径。 ISA开源意味着开发者可以针对特定应用场景,创造自己的芯片架构。 免费可以降低入门的门槛,让草根开发者进入芯片设计。

2. RISC-V 第二个优势是简单和灵活

基础的指令集有47条,模块化的4个基本指令集让设计者开发出很简化的RISC-V CPU, 功耗可以很小,代码密度低,覆盖8051-ARM A系列 处理器。

3. RISC-V 第三个优势是高效和安全

通过预留编码空间和用户指令,支持扩展的指令集. 通过指令集扩展实现运算加速,通过RISC-V架构提供安全保护机制。

Software define hardware

RISC-V: 嵌入式开发者选择难

RISC-V 架构灵活,处理器核和芯片种类繁多,嵌入式开发者面临选择难

- 1. 芯片设计者可选择RISC-V Core 和SoC Platform 构建自己的芯片 比如,使用 PULPino 平台开发 SoC 芯片,内核使用 RI5CY, Zero-risky
- 2. 嵌入式和物联网系统开发者可以使用 RISC-V SoC 芯片 比如,选择GD32VF103系列芯片做嵌入式项目开发,功耗优于同类ARM MCU
- 3. 高端嵌入式开发可以选择RISC-V 64 位单核/多核处理器芯片 比如,全志基于C906 的 D1 芯片配合Linux OS
- 4. 高校和研究机构可以选择开源RISC-V Core 在FPGA 平台上进行计算机体系架构、OS 和编译技术教学和研究工作

比如,可在Arty FPGA 平台上实现一个 SiFive 开源Freeedom E310 并有相应软件工具链支持

- 1 RISC-V与嵌入式系统
- 2 RISC-V 生态现状
- 3 RISC-V MCU 开发实践
- 4 RISC-V 生态建设思考

RISC-V International CEO Calista Redmond said that 10 billion RISC-V cores have already www.esof.org been delivered to the market

RISC-V生态-开源软件

全场景分布式智慧操作系统

RISC-V 生态-图书和论文

₩ 目录 ※

- 1 RISC-V与嵌入式系统
- **RISC-V** 生态现状
- 3 RISC-V MCU 开发实践
- 4 RISC-V 生态建设思考

我与RISC-V 的不解之缘

2019

最中RISC-V内核的32位通用MCU GD32V正式发布 CigoDevice 東京IIIsh

《深入理解RISC-V程序开发》写作过程

图书目录

第1章 了解RISC-V

第2章 RISC-V 处理器芯片 第3章 RSIC-V 软件开发工具

第4章 认识RISC-V内核

第5章 RISC-V软件开发

第6章 GD32VF103微控制器

第7章 GD32VF103中断系统及应用

第8章 深入RISC-V程序开发

第9章 嵌入式实时操作系统

第10章 物联网操作系统及其应用

第11章 基于RISC-V的电磁车设计

第12章 高性能RISC-V处理器

序号	名称	说明	章节
1	5_4_asm	汇编程序示例	5.4节
2	5_6_hello	打印 "Hello risc-v"	5.6节
3	6_2_rcu_clock	系统时钟控制示例	6.2节
4	6_3_timer	定时器应用示例	6.3节
5	6_4_gpioled	GPIO应用示例	6.4节
6	6_5_uart_echo	串口示例	6.5节
7	6_6_i2c_eeprom	访问I2C接口存储器示例	6.6节
8	7_3_intkey	按键中断示例	7.3节
9	7_4_dma_adc	DMA中断示例	7.4节
10	7_5_exmc_tc	触屏中断示例	7.5节
11	chart9	2个FreeRTOS示例	第9章
12	chart10	rt-thread 和 TencentOS tiny示例	第10章
13	11_smart_car	智能电磁车示例	第11章

调研-内核-芯片-工具和软件-应用开发 (2019.12-2021.3)

GD32VF103通用RISC-V MCU

- RV32IMAC指令子集。
- 2级变长流水线微架构,配备精简的指令预取单元和动
- 态分支预测单元。
- 增强的内核中断控制器 (ECLIC)。
- 外设:定时器、U(S)ART、I2C、SPI/I2S、CAN、USBFS、ADC、DAC、EXMC、GPIO
- 支持标准JTAG接口和RISC-V调试标准,硬件断点。
- 特权模式和用户模式。
- 支持WFI与WFE进入休眠模式,支持两级休眠模式。
- 。在108MHz主频下性能达153 DMIPS,相比GD32 Cortex-M3性能提升15%,同时动态功耗降低了50%, 待机功耗降低了25%
- 。GD32VF103是兆易创新RISC-V内核的32位通用MCU, 适用于工业控制、消费电子、新兴IoT等嵌入式市场应用。
- GD32VF103 有四种封装14款芯片, SARM :6-32K FLASH:16-128

GD32V 系列MCU: 一站式开发平台

O 芯来科技 NUCLEI

Bumblebee 处理器 内核指令架构手册

GD32V Library

NMSIS

IDE

Program & Debug Tool

Nuclei Studio

RT-Thread Studio

SEGGER Embedded Studio

IAR Embedded

Workbench for RISC-V

MounRiver Studio

卡姆派乐IDE

GD-Link

SEGGER J-Link V10

IAR I-Jet

OPENOCD

Embedded OS

μC/OS II

FreeRTOS

RT-Thread

LiteOS

TencentOS Tiny

OneOS

Cloud Link

AWS

Tencent Cloud

Huawei Cloud

选择GD32V RISC-V MCU: 生态开放、开源和国际化

物联网操作系统公开课

- ・ GD32V RISC-V MCU和TencentOS tiny 简明教程- 共4节课和5个实验
- ①物联网与物联网操作系统简述
- ②RISC-V 与GD32VF103 MCU
- ③物联网操作系统内核与组件
- ④TencentOS Tiny 应用实例

第四讲使用了腾讯TencentOS-Tiny 团队制作的
"GD32V-RISC-V物联网操作系统TencentOS-Tiny案例实践指南"实验文档和配套的5个实验, 帮助读者从0开始学习GD32V-RISC-V和 TencentOS-Tiny

RISC-V 线上课程和应用大赛

第二期嵌入式与物联网讲座课程

首届RISC-V MCU 创新应用邀请赛

"玄铁杯"第二届RISC-V应用创新大赛

2022春季賽 (04.18-09.15)

- 1 RISC-V与嵌入式系统
- **RISC-V** 生态现状
- **RISC-V MCU 开发实践**
- 4 RISC-V 生态建设思考

RISC-V 嵌入式开发的技术工作

- 1. RISC-V 处理器芯片评估。
 - <u>-E310,RV32M1,GD32VF</u>103,CH2601,CH32V103/307,ESP32-C3,K210,D1,HPM6750,ROBEI RAC102
- 2. 软件开发工具评估。
 - IAR , SES (Segger Embedded Studio) 和 卡姆派乐IDE
 - Freedom Studio, Nuclei Studio 和 Mounriver Studio(MRS)
 - 系统分析工具 Tracelyzer 和 Systemview
- 3. 嵌入式与物联网操作系统。
 - FreeRTOS (3个), RT-Thread (1个-RTT), Tencent Tiny (5个-TecentOS Tiny 团队完成),
 - LiteOS, 和 Linux 评估工作
- 4. 软件库和实验代码。
 - GD32VF103V EVAL Demo Suites (10个实验)- 林金龙老师完成
 - Nuclei SDK (NMSIS Core) 4个实验

RISC-V 中断处理机制

- 中断系统是MCU的很重要的一个特性,当中断产生时CPU中断当前执行的流程而去执行中断服务程序 当中断服务程序执行完之后,返回到之前被中断的位置继续执行。
- NVIC,即嵌套向量中断控制器,是Cortex-M内核的一部分 CortexM3/M4/M7共支持 1 至 240 个外部 中断输入(IRQ), 1 个不可屏蔽中断(NMI)、1 个 Systick(滴答定时器)定时器中断和多个系统异常。
- RISC-V定义了一个平台级别中断控制器PLIC和一个局部中断CLINT,PLIC可用于多个外部中断源的优先 级仲裁和处理。RISC-V 目前实现了一个比较简洁高效,不支持嵌套的中断机制。

RISC-V 处理器的中断系统实现是各有不同:

- FE310 (E31) 、HPM 6750 (D45) 和 D1(C906) 使用的是PLIC
- o GD32VG103 (BumbleBee) ECLIC
- CH32V307 (青稞V4F) FPLIC

一种RISC-V架构的快速可编程中断控制器

- 标准RISC-V PLIC中断控制器是一种集中式管理的中断系统,每种特权模式提供单独的中断信号给内核, 在单个模式的MCU应用中,采用PLIC中断控制器就无法做到中断抢占功能。
- 。一个MCU的中断源个数从几个到几十个不等,如果采用PLIC统一入口管理的方式,会增加进一步判断的 时间,从而增加了中断响应延迟。
- 沁恒微电子设计了快速可编程中断控制器(FPLIC),包含了硬件压栈(HPE)、免表(VTF)中断技术,与PLIC相比,FPIC减少了中断向量表查表动作、免去软件压栈操作。

RISC-V FreeRTOS的移植与应用

- FreeRTOS内核绝大部分都采用 C语言编写,只有与处理器相关的上下文切换采用汇编语言实现,目的是保证上下文 切 换 的 效 率。将 FreeRTOS 移 植 到 RISC-V MCU 上的关键要点是实现以下4个步骤:
- 1) 中断管理和临界区实现
- 2) 系统时钟节拍支持
- 3) 实现上下文切换
- 4) 移植文件修改和验证
- Tracealyzer和Systemview 分析工具应用
- 1) 移植跟踪库和应用分析

```
/* Set interrupt mask and return current interrupt enable register */
int xPortSetInterruptMask()
{
    int int mask=0;
    int_mask=eclic_get_mth();
    eclic_set_mth ((configMAX_SYSCALL_INTERRUPT_PRIORITY)<<4);
    return int_mask;
}</pre>
```

```
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "portmacro.h"

#include "n200_func.h"
#include "n200_timer.h"
#include "n200_eclic.h"
#include "riscv_encoding.h"
```

中断机制的不同让移植工作变动复杂

```
The code that tailors the kernel's RISC-V port to a specific RISC-V chip is implemented in freertos_risc_v_chip_specific_extensions.h. There is one freertos_risc_v_chip_specific_extensions.h that can be used with any RISC-V chip that both includes a standard CLINT and does not add to the base set of RISC-V registers. There are additional freertos_risc_v_chip_specific_extensions.h files for RISC-V implementations that do not include a standard CLINT or do add to the base set of RISC-V registers.
```

选择RISC-V MCU 考虑因素?

	CH32VF307	HPM6750/6400	FE310	GD32VF103
RISC-V 内核	青稞V4F(自研)	Andes D45 (双/单)	E3	BumbleBee (芯来)
支持指令集	RV32-IMAFC	RV32-IMAFDCP	RV32-IMAC	RV32-IMAC
指令扩展		P 扩展指令		
处理器模式	M/S/U	M/S/U	M/S	M/U
内存保护	PMP	PMP+安全处理器	PMP	
芯片外设特点	外设丰富 连接性好	外设丰富 (图像和摄像接口)	基本外设(少)	标准外设
软件开发工具	MRS	SES (SEGGER)	IAR/Freedom Studio	Nuclei StudioIAR/SES
中断机制	FPLIC	PLIC (硬件和软件)	PLIC CLINT	ECLIC
操作系统	各种RTOS和IOT OS	FreeRTOS 等	各种RTOS	各种RTOS和IOT OS
仿真和编程器	WCH-LINK/PW-400	J-LINK/J-FLASH	J-LINK/J-FLASH	J-LINK/J-FLASH/PW-400
芯片品种和封装	5 /LQFP64/LQFP100	4/BGQ 196/289	很少/工程样片	10/QFN36 /LQFP48 /LQFP64 /LQFP100

高性能嵌入式RV64 MPU处理器进展

- 。 K210是AloT SoC芯片,采用台积电28nm 工艺,采用双核64位处理器,具有更好的 功耗性能、稳定性和可靠性,。
- K210 是 双RV64 GC Core, MAFD ISA 指令标准扩展。
- 内置KPU 通用神经网络处理器,内置卷积、可以对人脸或物体进行实时检测。

○ D1 全志首款RISC-V芯片,集成了平头哥64位C906核心, 支持RVV (RISCV V-extension),1GHz主频,支持 Linux和RTOS 双系统。支持最高4K的H.265/H.264解码, 内置一颗HiFi4 DSP,可外接2GB DDR3,可应用于音视频 多媒体和教育。

品名	哪吒计算条/Nezha CM
主控	全志D1, 平头哥玄铁C906核心,1GHz
内存	512MB/1GB DDR3
存储	TF卡启动,预留SD NAND焊盘
显示	可选 1.14英寸 135x240 SPI LCD显示
接口	USB-C OTG 接口,2.54mm 4Pin 系统串口
引脚引出	双M.2 B-Key 金手指连接器,67x2Pin
系统支持	RTOS, Linux (Tina/Debian)
大寸	46x25mm
适用场景	工业/商业 批量使用,RISC-V系统教学

2021

2018

RISC-V与Arm 的生态比较

嵌入式与物联网应用

Arm 阵营

- ISA+CPU IP- Arm
- 处理器芯片: 意法, 恩智浦, 高 通, 联发科、瑞萨、兆易、国民
- 技术、航顺、爱特梅尔.....
- •工具和软件: Arm +开源+商业
- ·应用:移动/嵌入式/IOT/服务器 CITM

- •ISA- RVV +CPU IP 主要来自四家
- •处理器芯片: 一些......
- •工具和软件- 开源为主+ 一点商业
- · 应用: 重点IoT/AIOT/专用领域

RISC-V 产业生态建设思考

- RISC-V 嵌入式与物联网开发与应用渐入佳境,通用和高性能计算处于爬坡阶段。
 - ⊙MCU具备集成度高,设计简单编程方便,工艺节点集中在40 nm 及以上的成熟制程,国内代工厂已经具备相应的制造能力,在打压高端芯片制造环境下,尤为值得重视,RISC-V MCU 大有可为!
 - ○RISC-V 在一些行业应用中有巨大发展潜力,如AloT和汽车芯片 等"弱生态需求"市场
- RISC-V 处理器核种类繁多,芯片处理器架构不标准,而每家芯片品种太少 制约大众选择和应用。
 - ○芯片企业应改变"备胎"心态, 制订可持续发展的RISC-V 发展计划
- 行业对RISC-V 技术有畏难情绪 ① 为什么要用 ②好不好用 ③ 感觉很麻烦。
 - ○高校基于RISC-V 嵌入式课程不多,嵌入式与物联网大赛RISC-V 作品不多
- RISC-V 碎片化现象依然严峻,产业界需在以下几个方面努力:
 - ○制订针对终端市场的处理器参考规范: 嵌入式、物联网、AI 和边缘计算
 - ○制订软件开发架构规范: IDE/SDK /RTOS/Linux 基础版本
 - ○鼓励芯片公司推出标准芯片、使用标准软件和工具,发展通用性系列化芯片产品
 - o建议基金会组织RISC-V 开发者大会,繁荣RISC-V 生态和应用发展
- ○中国:RISC-V 发展既要解决卡脖子的问题,也要关注产业和教育的需求,顺势而为!

结语

RISC-V 在参与国际大循环的背景下,可解锁指令集架构 -芯片-OS-生态-终端产品之间的捆绑关系,更是重建产业生态的良机! 戮力同心、为RISC-V 生态建设添砖加瓦!

With RISC-V entering the global supply chain, it can break the bundling of ISA, chip, OS, ecosystem, and end product, as well as offer an opportunity to rebuild the industrial ecosystem in China.

