

Advanced Dynamics (wb2630-T1)

Q1 2014

Homework No. 4

Main Instructor: Dr.-Ing. Heike Vallery

Homework Coordinator: Dr. ir. Arend L. Schwab

Date: 22-Sept-2014 Deadline: Before lecture on Sept 29.

Instructions:

- Show all work, clearly and in order, if you want to get full credit.
- Follow the homework rules as published on Blackboard.
- Justify your answers algebraically whenever possible to ensure full credit. Sketch all relevant graphs.
- Circle or otherwise indicate your final answers.
- Clearly distinguish between scalars and vectors, for example by underlining vectors (\underline{x}) and not underlining scalars (x). If you use another notation, define it like this: A vector will be written as, a scalar will be written as
- Success!

1. (15 points) KINETIC ENERGY 3D

Do problem 3.16(a) from Greenwood (without finding the mass matrix).

2. (25 points) INERTIA DYAD

A brick with mass m and length 2a, width 2b, and height 2c, has its centre of mass located at the origin and is initially orientated with its length along the X-axis and its height along the Z-axis. The body-fixed frame x'y'z' is initially aligned with the space-fixed frame XYZ.

- **a.** (10 pts) Determine the inertia dyad (mass moments of inertia) of the brick in the body-fixed frame.
- **b.** (10 pts) The brick is rotated by the Euler type I angles $\psi = \pi/2$, $\theta = 0$, and $\phi = \pi/2$. Determine the inertia dyad of the brick after rotation expressed in the space-fixed frame.
- **c.** (5 pts) Draw the brick in the initial configuration and next to it the brick in the rotated configuration and check your result.

3. (30 points) ROLLING DISK

Figure 1: Rolling Disk

A thin disk of mas m, made of homogeneous material, is supported by a stiff arm of negligible mass via a ball bearing B, and it rotates around this arm with angular velocity of magnitude $\dot{\psi}$. The arm rotates around the Z-axis by means of ball bearing A, with angular velocity of magnitude $\dot{\phi}$. The directions X,Y, and Z are defined in an inertial frame, with Z pointing vertical. The directions of the unit vectors $\mathbf{e}_{x'}$, $\mathbf{e}_{y'}$, and $\mathbf{e}_{z'}$ are considered fixed to the disk. The disk rolls on the ground without slipping, which implies that $\dot{\psi} = -(\frac{2R+r}{2r})\dot{\phi}$. No particular relationship is assumed between R and r.

- a. (15 pts) Find the kinetic energy contained in the disk, as a function of the precession rate $\dot{\phi}$ and the given constants.
- **b.** (2 pts) What is the number of independent degrees of freedom of the disk in this system (Explain your answer)?
- **c.** (13 pts) Derive the equation(s) of motion for the disk, in terms of the precession acceleration $\ddot{\phi}$.

4. (30 points) MODEL PLANE

Figure 2: A model plane suspended from the ceiling.

A model plane of mass m is suspended from the ceiling of a room by a spring with linear characteristics. The spring has a resting length of l_0 and a spring constant k. The attachment point A at the ceiling is the origin of the fixed $\mathcal{N}(XYZ)$ coordinate system. The coordinates of the attachment point P on the plane are given as $(p_x, 0, p_z)$ in the local $\mathcal{B}(xyz)$ coordinate system that is fixed to the plane. The origin of the plane's local frame \mathcal{B} is at the plane's center of mass location S, with coordinates s_X , s_Y , and s_Z in the global \mathcal{N} frame. Gravity g points in positive Z-direction.

The plane is released at a time t_0 , with point P originally at the location ${}^{\mathcal{N}}\boldsymbol{p} = \begin{pmatrix} 0 & 0 & -2l_0 \end{pmatrix}^T$ (components expressed in the space-fixed frame \mathcal{N}), with the plane having an initial translational speed v_0 and no angular velocity.

At a time t_e , point P is at the location ${}^{\mathcal{N}}\boldsymbol{p} = \begin{pmatrix} l_0 & 0 & -l_0 \end{pmatrix}^T$, the center of mass of the plane is momentarily at rest, and the plane is rotating only about its local y-axis. The body-fixed coordinate directions coincide with the space-fixed coordinate directions at the moment of release, t_0 , and again at the considered instant t_e . Assume the plane's mass distribution is symmetric about the body-fixed axes, and the mass moments of inertia about these axes are Ixx, Iyy, Izz. Find the magnitude ω of the angular velocity vector of the plane, as a function of the given parameters.