Last class, we saw that S_3 , the symmetric group on 3 letters, has elements

$$\rho_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad \mu_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$\rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad \mu_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$\rho_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad \mu_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

We also noted that this group is NOT abelian, since $\rho_1\mu_1=\mu_3$, but $\mu_1\rho_1=\mu_2$. In fact S_3 is the smallest nonabelian group.

You may be wondering why we labeled the elements of the group in the way that we did. It is because the group S_3 can alternatively be viewed as the dihedral group D_3 , the **group of symmetries of** an equilateral triangle! In this context, it is possible to interpret D_3 as "acting on" the vertices of the triangle, resulting in familiar geometric transformations.

What familiar geometric transformation is this? Why does the use of the letter ρ ('r' in Greek) make sense?

$$\rho_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad \rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad \rho_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}
\mu_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad \mu_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \qquad \mu_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

Compute the remaining transformations, and describe them in words.

Description:

Compute the following actions, then check yourself algebraically. Remember, permutation multiplication is read from "right to left".

 $\mu_1\mu_2 =$

 $\mu_3 \rho_2 \rho_1 =$

$$\rho_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad \rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad \rho_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}
\mu_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad \mu_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \qquad \mu_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

To complete our study of $S_3 = D_3$, find all of the subgroups of S_3 and draw its subgroup diagram.

The Dihedral Group D_4

Now that we have covered D_3 in laborious detail, let's consider the dihedral group D_4 . This is the group of symmetries of an equilateral 4-sided polygon, that is, a square.

List the elements of D_4 below. Drawing pictures may help. Hint: D_4 has 8 elements in total.

The elements of D_4 have a similar standard labeling to D_3 . There are four rotations, two mirror images, and two diagonal flips. The standard labeling is

$$\rho_0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \qquad \rho_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \qquad \rho_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \qquad \rho_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$

$$\mu_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \qquad \mu_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \qquad \delta_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \qquad \delta_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

The elements ρ_i are rotations, μ_i are mirror images, and δ_i are diagonal flips.

In the space below, find all of the **cyclic** subgroups of D_4 . Thinking about the geometry will make this considerably less work than direct computation.

Below are some	questions about	D_4 . Answer	r as specifically	as you can	with proper	justification.
1. Is D_4 abelian	? Why or why ne	ot?				

2. Before we have found that the symmetries of the triangle D_3 is the same group as the symmetric group on 3 letters, S_3 . Is $D_4 = S_4$? How can you tell?

3. Is the set $\{\rho_0, \rho_2, \delta_1\}$ a subgroup of D_4 ? If not, what elements must be added to the set to form a group?

4.	Now that you know the or	der of D_3 and D_4	, make a conjecture	about the order	of D_N ,	the symmet	ries
	of the N sided polygon.						

5. There are two proper subgroups of D_4 that aren't cyclic. They are $\{\rho_0, \rho_2, \mu_1, \mu_2\}$ and $\{\rho_0, \rho_2, \delta_1, \delta_2\}$. Use this information and your earlier findings to draw a subgroup diagram for D_4 .