SHIWA NETWORK

Пространственно-временная синхронизация на пикосекундном уровне

Стандартизация и определение

«Беспроводная пространственно-временная синхронизация» входит в число будущих технологических тенденций IMT 2030.

Наше определение:

Пространственно-временная синхронизация — это коллективное состояние, в котором часы всех устройств синхронизированы, а взаимное расположение является общим.

Ключевое преимущество

Позволяет всем устройствам использовать универсальные часы через беспроводную связь.

Технологическое значение

Создает основу для точной координации устройств в пространстве и времени на пикосекундном уровне.

Путь к пространственно-временной синхронизации

01

~2025

Неточная синхронизация

Логические часы

Облачная синхронизация

Сеть

Масштабирование

02

~2030

Инфраструктура для синхронизации

Справочные базовые станции

Координаты положения

Синхронизация времени

Вертикальный поток данных

30

~2035 Органичное взаимодействие

03

Верхний уровень синхронизации ST

Запуск сервиса

Аутентификация, безопасность, конфиденциальность

Взаимодействие вещей

Беспроводная двусторонняя интерферометрия (WiWi)

Двусторонняя спутниковая передача времени и частоты (TWSTFT)

Традиционная технология для измерения разницы во времени и передачи времени через спутниковую связь.

Высокая точность, но дорогостоящая инфраструктура

(†) Требует специализированного оборудования

Беспроводная двусторонняя интерферометрия (Wi-Wi)

Наша инновационная технология для измерения времени и расстояния с помощью беспроводной связи.

Низкая стоимость и компактные размеры

Высокая точность на пикосекундном уровне

Ключевое достижение:

Мы внедрили спутниковую технологию для синхронизации времени (точностью пикосекунды) и измерения расстояния (точностью в миллиметрах) с чрезвычайно низкой стоимостью и небольшим размером.

Математическое доказательство концепции

Основные формулы синхронизации Wi-Wi

$$P = \frac{\Delta T_G + \Delta T_J}{2}$$

Где Р — сумма обоих измерений, $\Delta T_{\rm G}$ и $\Delta T_{\rm J}$ — измерения разницы во времени между устройствами.

$$T_{J} - T_{G} = \frac{\Delta T_{G} - \Delta T_{J}}{2}$$

Где T_J - T_G — разница во времени между устройствами J и G.

Практическое применение: Данный метод позволяет достичь точности синхронизации до 35 нс с джиттером 16 пс.

Математическое доказательство

- 1 Пусть T_G и T_J истинное время на устройствах G и J.
- 2 При двустороннем обмене сигналами, устройство G отправляет сигнал в момент t $_{1}$, устройство J принимает его в момент t $_{2}$.
- 3 Затем J отправляет ответный сигнал в момент t_3 , который G получает в момент t_4 .
- 4 Тогда $\Delta T_G = t_4 t_1$ и $\Delta T_J = t_3 t_2$.
- 5 Если время распространения сигнала в обоих направлениях одинаково, то разница между часами устройств может быть вычислена как ($\Delta T_G \Delta T_I$)/2.

Результат: Технология обеспечивает прорыв в точности синхронизации для беспроводных систем.

Модуль Wi-Wi

Сравнение технологий

Прототип: SDR+Rb часы (~\$15k)

Новый модуль: RF chip + TCXO + MPU + Rb часы

Улучшение: Удешевление платформы FPGA

Ключевые преимущества

\$ Низкая стоимость

📕 Небольшой размер

Низкое энергопотребление

🦖 Высокая точность синхронизации

Прототип и характеристики

Модуль Wi-Wi

Технические характеристики

- (🕆 Модуль беспроводной связи 920 МГц ЗГГц
- Ополная совместимость с IEEE 802.15.4
- Диапазон 100 м (20 мВт) / 5 км (250 мВт)
- О Точность синхронизации: 35 нс с джиттером 16 пс
- Низкое энергопотребление благодаря отказу от FPGA

Сравнение производительности

Практическое применение

MINIOH

Мониторинг инфраструктуры

Проблема:

Не существует другого способа отследить небольшое изменение расстояния (мм) в долгосрочной перспективе.

Решение Wi-Wi:

Дешевая и удобная система контроля расстояния с возможностью обнаружения небольшого наклона здания.

Точность измерения отклонения

1

миллиметр

Синхронизация сетей датчиков

Обеспечение точной синхронизации между распределенными датчиками для сбора согласованных данных.

Координация автономных систем

Точная координация движения и действий автономных роботов и транспортных средств.

Промышленная автоматизация

Синхронизация производственных процессов с высокой точностью для повышения эффективности.

Будущее развитие

Qantum-PCIe × Wi-Wi

Мы разрабатываем модуль пространственно-временной синхронизации Wi-Wi в форм-факторе карты Qantum-PCI. Это позволит интегрировать нашу технологию в существующие серверные и вычислительные системы, обеспечивая высокоточную синхронизацию для критически важных приложений.

План развития технологии

Выводы

Ключевые достижения:

Мы показали реализуемость и экономическую эффективность технологии «Пространственно-временная синхронизация» на пикосекундном уровне.

Небольшие, недорогие модули с низким энергопотреблением необходимы для реализации синхронизации пространства-времени

Достигнута точность синхронизации 35 нс с джиттером 16 пс при измерении расстояния с точностью до 1 мм

Технология совместима с существующими стандартами IEEE 802.15.4 и имеет широкий диапазон применения

Перспективы развития: