UNIVERSIDAD EAFIT

ESTRUCTURA DE DATOS Y ALGORITMOS 2

INFORME PROGRAMACIÓN DE AERONAVE

KRISTIAN RESTREPO OSORIO

ID: 1000257630

El problema 11208 del juez en línea de la Universidad de Valladolid (Valladolid, s.f.) llamado Airlplane Scheduling fue en sí mismo un reto importante para cada uno de los estudiantes de la asignatura, ya que, debido a su alta dificultad, se reforzaron conocimientos necesarios para abordar cualquier problema en el ámbito de la programación, y a su vez, permitió dar desarrollo a los temas del curso planteados por el docente Juan G. Lalinde-Pulido (EAFIT, s.f.).

Se puede representar la solución al problema en el siguiente pseudocódigo, resumido en 3 funciones:

1. Función que almacena los distintos tipos de datos necesarios para abordar el problema e imprime la solución:

Mientras que el usuario desee conocer una solución factible a un aeropuerto dado:

Se asigna el número del caso actual.

Se le pide al usuario que ingrese el numero de aviones, las filas y columnas del aeropuerto.

Se le pide al usuario que ingrese el aeropuerto (los símbolos correspondientes a cada coordenada de la matriz).

Se le pide al usurario ingresar los eventos relacionado con las salidas/entradas de los aviones.

Se obtiene la matriz de pesos y los parqueaderos alcanzables desde los puntos de inicio/salida a partir de los datos ingresados. (2)

Se verifica si existe una solución factible al aeropuerto y la lista de eventos ingresada, y en caso de existir una solución, la imprime. (3)

2. Función que le asigna un peso a cada casilla del aeropuerto, y guarda los parqueaderos accesibles desde los puntos de entrada/salida:

Se crea la matriz de pesos correspondiente a cada una de las casillas de la matriz original.

Se guardan las coordenadas de los puntos entrada/salidas desde los cuales se va a empezar a recorrer y así ponderar la matriz.

Mientras existan casillas a las cuales hay que mirar sus vecinos para ponderar:

Se observa los adyacentes de la coordenada actual que se está evaluando Si el adyacente se encuentra dentro de los limites y aún no se ha ponderado:

Si ese adyacente es un bloqueo, se marca la casilla como -11 y ponderada.

Si ese adyacente es una casilla blanca (camino), este tendrá el mismo peso de la casilla actual, se agregan las coordenadas de la casilla adyacente a las casillas por evaluar a sus vecinos (se agrega al principio de la estructura en donde vamos a almacenar estos datos), y finalmente, se marca como ponderada.

Si ese adyacente es un parqueadero, ese tendrá el peso de la casilla actual + 1, se agregan las coordenadas de la casilla adyacente a las casillas por evaluar a sus vecinos (se agrega al final de la estructura en donde se guardarán los datos), y la casilla se marca como ponderada. Además, se guarda la coordenada del parqueadero en la estructura en donde se almacenarán todos los parqueaderos accesibles.

Finalmente, se devuelve la matriz ponderada y los parqueaderos accesibles desde los puntos entradas/salidas.

3. Función que utiliza un algoritmo de backtracking para determinar si existe una solución factible al aeropuerto y la lista de eventos ingresada:

Si la lista de eventos ingresada se recorrió completamente:

Se devuelve que existe una solución.

Si hay más entradas de aviones consecutivas que parqueaderos:

Se devuelve que no existe una solución.

Si el evento es un aterrizaje:

Se recorren los parqueaderos disponibles, y para cada uno de ellos:

Se añade el parqueadero actual a la solución.

Se guarda la coordenada y el numero del parqueadero que tiene ese lugar donde se estableció el avión.

La casilla se marca como ocupada y se vuelve a ponderar la matriz, ya que algunos caminos se ven afectados.

Se hace el llamado recursivo para evaluar el siguiente evento, si el llamado recursivo devuelve verdadero, significa que cada avión pudo despegar y aterrizar satisfactoriamente, por lo tanto, se devuelve verdadero al anterior llamado con lo que se concluye que esa posición fue la adecuada para establecer el avión. De lo contrario, se deshace todo lo hecho anteriormente para el aterrizaje, y se prueba la posibilidad de una solución factible parqueando el evento actual en el siguiente parqueadero disponible

Si se recorrió toda la lista de parqueaderos y el avión no se ubicó satisfactoriamente, se debe volver a evaluar los anteriores posicionamientos de los llamados recursivos para que me generen una solución factible para ubicar el avión actual. Por lo tanto, se devuelve falso, y se reevalúan los eventos.

Si es un despegue:

Se ubica la casilla en la que el avión esta parqueado y se mira cada uno de sus vecinos:

Si el vecino está ponderado, significa que existe un camino desde un punto de salida hacia el mismo, por lo tanto, la casilla actual también tiene salida por este mismo camino, de esto:

Se libera nuevamente el parqueadero del evento actual.

Se vuelve a ponderar la matriz para los caminos que se veían afectados por el avión que despegó y se guardan los parqueaderos disponibles gracias a que este evento se llevase a cabo.

Se hace el llamado recursivo para evaluar el siguiente evento con los nuevos parqueaderos disponibles. Si el llamado recursivo es verdadero, significa que todo evento posterior al actual se llevó a cabo satisfactoriamente, por lo tanto, se devuelve verdadero a los anteriores llamados recursivos. De lo contrario, se para de evaluar si alguno de los vecinos puede salir, ya que se comprobó que la manera en que se establecieron los aviones no es una solución factible.

Si al recorrerse todos los vecinos de la casilla actual, ninguno de ellos tiene una conexión con la salida, o se encontraron eventos posteriores que no generan una solución factible, se deshace todos los pasos mencionados anteriormente en el despegue, y se devuelve falso para cambiar la solución planteada en anteriores llamados recursivos, reevaluando los eventos.

Es importante entender a la hora de la implementación del algoritmo la noción del tipo de dato que se está utilizando. Para comprender claramente como se ven estos reflejados, se construye las siguientes tablas donde se le da la especificación correspondiente a cada dato de entrada y salida:

Nombre del dato	Número de aviones
Descripción del dato	Dato que busca almacenar el número de
	aviones que ingresarán al aeropuerto, y
	serán evaluados en el algoritmo.
Representación del dato en la entrada o	El dato en la entrada se representa como un
salida	numero entero encargado de simbolizar la
	cantidad de aviones que entrarán al
	aeropuerto.
Representación del dato en el algoritmo	En el algoritmo, el dato es una variable de
	tipo INT donde se almacena dicha cantidad
	de aviones.
Conversión	El dato en la entrada es texto escrito por el
	usuario (por defecto como lo recibe el
	lenguaje), y en el algoritmo al recibirlo se

convierte dicho valor en un entero con la
función INT para almacenarlo finalmente.

Nombre del dato	Número de filas
Descripción del dato	Dato que busca almacenar el número de
	filas que tiene el aeropuerto, ya que el
	mismo se representa como una matriz, lo
	cual permite definir la cantidad de filas que
	tendrá esta cuando se cree en el algoritmo.
Representación del dato en la entrada o	El dato en la entrada se representa como un
salida	numero entero encargado de simbolizar la
	cantidad de filas que tendrá la matriz de
	símbolos/aeropuerto.
Representación del dato en el algoritmo	En el algoritmo, el dato es una variable de
	tipo INT donde se almacena dicha cantidad
	de filas.
Conversión	El dato en la entrada es texto escrito por el
	usuario (por defecto como lo recibe el
	lenguaje), y el algoritmo al recibirlo lo
	convierte en un valor entero finalmente por
	medio de la función INT, para almacenarlo.

Nombre del dato	Número de columnas
Descripción del dato	Dato que busca almacenar el número de
	columnas que tiene el aeropuerto, ya que el
	mismo se representa como una matriz, lo
	cual permite definir la cantidad de
	columnas que tendrá esta cuando se cree en
	el algoritmo.

Representación del dato en la entrada o	El dato en la entrada se representa como un
salida	numero entero encargado de simbolizar la
	cantidad de columnas que tendrá la matriz
	de símbolos/aeropuerto.
Representación del dato en el algoritmo	En el algoritmo, el dato es una variable de
	tipo INT donde se almacena dicha cantidad
	de columnas.
Conversión	El dato en la entrada es texto escrito por el
	usuario (por defecto como lo recibe el
	lenguaje), y el algoritmo al recibirlo lo
	convierte en un valor entero finalmente por
	medio de la función INT, para almacenarlo.

Nombre del dato	Matriz de símbolos o aeropuerto
Descripción del dato	Dato que busca almacenar el aeropuerto
	que va a contener los parqueaderos, los
	caminos, los bloqueos y los puntos de
	entrada/salida. Este será fundamental a la
	hora de asignar parqueaderos, ya que es el
	"tablero" en el que se mueve todo el
	algoritmo buscando soluciones factibles.
Representación del dato en la entrada o	El dato se ingresa como texto separado por
salida	espacios, donde por cada espacio hay un
	conjunto de símbolos, ya sea bloqueo
	("##"), camino ("") o parqueadero (el
	número del parqueadero). Por línea de
	texto habrá tantos conjuntos de dos
	símbolos separados por espacios como el
	numero de columnas que se ingresó, y se
	repetirá este proceso por la cantidad de

	filas que se ingreso en un principio,
	estando los símbolos en el orden en que el
	usuario desee "armar" el aeropuerto,
	generando así la representación de una
	matriz.
Representación del dato en el algoritmo	El dato se representa en el algoritmo como
	una lista de listas, o, en otras palabras, una
	matriz, donde cada fila es la lista que se
	genera al partir la línea de texto por los
	espacios, y cada columna es el conjunto de
	dos símbolos que había entre los espacios.
Conversión	Los datos como tal se siguen manejando de
	la misma manera, no se genera ninguna
	conversión en cuanto a los símbolos que se
	proponían inicialmente, simplemente el
	algoritmo se encarga de partir cada línea de
	texto ingresada por espacios, y, la lista que
	genera el proceso anterior se guarda en una
	posición de la lista externa, representando
	así una matriz con filas y columnas.

Nombre del dato	Eventos
Descripción del dato	Dato que busca almacenar la actividad con
	la que los aviones entran y salen del
	aeropuerto. Este es determinante a la hora
	de aplicar el algoritmo ya que permite
	saber que se hace con el evento. Un
	aterrizaje se representa con un numero
	positivo, y un despegue con un numero
	negativo.

Representación del dato en la entrada o	El dato en la entrada se representa como
salida	una línea de texto con eventos de
	aterrizaje, simbolizados de la forma +1, +2,
	+3etc. Y eventos de despegue,
	simbolizados de la forma -1,-2,-3etc.
Representación del dato en el algoritmo	En el algoritmo, el dato se ve representado
	por una lista de números enteros, tanto
	positivos como negativos, que simbolizan
	de igual forma tanto los aterrizajes como
	los despegues.
Conversión	Se parte por espacios la línea de texto, y a
	cada valor de la lista resultante por medio
	de la función INT se convierte a un entero,
	transformando así una lista de textos, a una
	lista de enteros.

Nombre del dato	Número del caso
Descripción del dato	Dato que almacena cual es el caso actual al
	que se le esta evaluando si existe una
	solución con el algoritmo planteado.
Representación del dato en la entrada o	La representación del dato en la salida se
salida	acompaña del resultado en si se llegó a una
	solución factible o no. A la hora de
	devolver el resultado, se devuelve como un
	texto enfatizando el número del caso y la
	respectiva respuesta del algoritmo.
Representación del dato en el algoritmo	En el algoritmo, el dato se representa como
	un contador que almacena un número
	entero, el cual se va sumando a medida que

	se va ingresando casos para hallar una
	solución.
Conversión	Como tal el dato no cambia, pero a la hora
	de devolver el mismo, se convierte el
	entero a texto para que este se pueda
	concatenar con el resto de información.

Nombre del dato	Solución parqueaderos
Descripción del dato	Dato que busca almacenar la ubicación en
	la que se debe establecer cada uno de los
	aviones para que se lleve a cabo
	satisfactoriamente la lista de eventos en el
	aeropuerto dado.
Representación del dato en la entrada o	La representación en la salida es una línea
salida	de texto que contiene el parqueadero en el
	que se debe establecer cada avión para
	llegar a dicha solución factible, separado
	por espacios. Cabe recalcar que los mismos
	se almacenan en orden, es decir, al avión
	uno, le corresponde el primer parqueadero,
	etc.
Representación del dato en el algoritmo	En el algoritmo, el dato se ve representado
	en una lista en la cual, en cada posición se
	almacena el parqueadero correspondiente
	al avión evaluado (el símbolo del
	parqueadero).
Conversión	El dato no cambia como tal su
	representación entre ambas partes,
	únicamente se imprime cada posición de la
	lista sin salto de línea, y con un espacio

entre cada parqueadero que se imprime en
la solución.

Una vez mencionado lo anterior, se podría considerar que una de las partes mas importantes del algoritmo se centra en la asignación de parqueaderos y en la validación de los despegues, por lo tanto, se entrará en detalle sobre como el algoritmo se encarga de hacer estos dos procesos.

En el caso de la asignación de los parqueaderos, el criterio para seleccionar cual es el siguiente avión al cual se le va a realizar este proceso, radica en que el evento a evaluar sea positivo (de aterrizaje), y para asignarle un parqueadero a el mismo, se debe almacenar los lugares de estacionamiento alcanzables desde los puntos de entrada/salida para así ser considerados lugares adecuados para establecer el avión, pero ¿Cómo se sabe que dicho parqueadero es alcanzable desde una entrada/salida?, aquí entra en juego el algoritmo que se encarga de ponderar cada una de las casillas, puesto que, al recorrer cada uno de los puntos alcanzables y asignarle un peso, se está definiendo que si la casilla se ponderó, existe un camino al punto de salida y es el más corto, por lo tanto, todo parqueadero que esté en la estructura donde se almacenan los mismos a la hora de hacer el proceso de ponderación, son parqueaderos alcanzables y disponibles para la ubicación de un evento. De esto, se justifica el porque se debe estar reevaluando la ponderación cada que el avión aterriza o despega, ya que la presencia de este puede generar un impacto en el camino a los demás aviones, y, por lo tanto, se debe verificar que parqueaderos están disponibles después de que alguno despega o aterriza. El algoritmo se encarga de posicionar el avión en el primer parqueadero que está en la estructura y hace el llamado recursivo para los siguientes eventos, y si no se llegó a una solución factible, el algoritmo deshace el lugar donde parqueó el avión (lo marca nuevamente como disponible), y prueba en el siguiente parqueadero alcanzable, y en el caso en que no hayan mas parqueaderos disponibles para establecer el avión, devuelve falso para una reubicación de los eventos anteriores a él, o en el caso de que no existan mas llamados recursivos, se concluye que no existe una solución para el aeropuerto y la lista de eventos dada.

Para la validación de los despegues, una vez identificado que el evento a realizar es negativo, lo que se hace es encontrar en que coordenada está el parqueadero en el que se ubicó el avión

actual. Cabe recalcar, que una vez se parquea el avión, siempre se guarda el lugar en donde se estableció el mismo, lo cual facilita el proceso a la hora de verificar su posición en el despegue. Una vez encontrada la posición, se observa cada uno de los adyacentes a la misma (arriba, derecha, abajo, izquierda), y por cada una de ellas se pregunta si está ponderada, esto, en otras palabras, quiere decir si alguno de sus vecinos tiene un camino hacía la salida, y en caso de que esto sea correcto, donde está ubicado el avión actualmente también tiene un camino hacía dicha salida, por lo tanto, se marcar como disponible el parqueadero del evento, se vuelve a ponderar la matriz y se almacena los nuevos parqueaderos disponibles, para hacer el llamado recursivo de la función y calcular los siguientes eventos. Si no se llegó a una solución factible en el llamado recursivo, se debe devolver falso a los anteriores llamados para que se reubiquen los aviones establecidos en el aeropuerto y se pueda reevaluar los eventos.

Finalmente, una vez explicado el funcionamiento del algoritmo para la solución del problema, se entra en detalle de algunos componentes técnicos sobre la implementación del mismo, empezando por el lenguaje de programación utilizado, el cual fue para este caso Python. La razón del porque se escogió este radica principalmente en la facilidad de uso que brinda el lenguaje al programador, destacando su sintaxis clara y legible, como también sus estructuras de control y expresiones concisas las cuales facilitan la implementación y comprensión de algoritmos que tienen una gran dificultad. También, una razón importante para escoger el mismo se centra en la amplia documentación existente para aquellos obstáculos que se presenten en el camino.

Por otro lado, es importante especificar la definición de cada función, que se puede ver a continuación con las siguientes tablas:

Nombre de la función	"casilla_es_valido".
Parámetros que recibe	La función recibe cuatro parámetros: la
	cantidad de filas y columnas de la matriz,
	como también la coordenada en x y en y a
	la que se quiere acceder.
Tipo de dato que retorna	BOOL.
Excepciones que produce	No tiene.

Descripción corta de qué hace	Devuelve si la posición a la que se quiere
	acceder se encuentra dentro de los límites
	de la matriz.

Nombre de la función	"casilla_es_negra".
Parámetros que recibe	Recibe tres parámetros: la matriz de
	símbolos o aeropuerto, y la coordenada en
	x y en y que se pretende evaluar.
Tipo de dato que retorna	BOOL.
Excepciones que produce	No tiene.
Descripción corta de qué hace	Verifica si la matriz de símbolos en la
	coordenada ingresada a la función es un
	bloqueo ("##").

Nombre de la función	"casilla_es_blanca".
Parámetros que recibe	Recibe tres parámetros: la matriz de
	símbolos o aeropuerto, y la coordenada en
	x y en y que se pretende evaluar.
Tipo de dato que retorna	BOOL.
Excepciones que produce	No tiene.
Descripción corta de qué hace	Verifica si la matriz de símbolos en la
	coordenada ingresada a la función es un
	camino ("").

Nombre de la función	"casilla_es_parqueadero".
Parámetros que recibe	Recibe tres parámetros: la matriz de
	símbolos o aeropuerto, y la coordenada en
	x y en y que se pretende evaluar.
Tipo de dato que retorna	BOOL.

Excepciones que produce	No tiene.
Descripción corta de qué hace	Verifica si la matriz de símbolos en la
	coordenada ingresada a la función es un
	parqueadero (un digito).

Nombre de la función	"ponderar".
Parámetros que recibe	Recibe 6 parámetros: la matriz de símbolos
	o aeropuerto, la cual contiene todos los
	símbolos correspondientes ingresados por
	el usuario; la matriz a ponderar, la cual
	contiene en cada casilla el peso que le
	corresponde a las posiciones de la matriz
	de símbolos; la cola doblemente terminada,
	en este caso llamada 'pesos', la cual
	contiene las coordenadas a evaluar; la lista
	de movimientos, la cual al recorrer la
	misma se permite evaluar a cada uno de los
	vecinos; el numero de filas de la matriz y el
	numero de columnas de la matriz.
Tipo de dato que retorna	TUPLE. (matriz ponderada, parqueaderos
	alcanzables)
Excepciones que produce	No tiene.
Descripción corta de qué hace	La función se encarga de darle un peso a
	cada una de las casillas partiendo desde los
	puntos de entrada/salida, según si es un
	parqueadero, un camino, o un bloqueo, lo
	cual permite deducir si existe ruta a una
	casilla, y también permite identificar que
	ese es el camino más corto. Además, a
	medida que recorre la matriz, almacena los

parqueaderos alcanzables para recorrerlos
en la función de backtracking.

Nombre de la función	"matriz_pesos".
Parámetros que recibe	Recibe 2 parámetros: el numero de filas y
	el número de columnas.
Tipo de dato que retorna	LIST.
Excepciones que produce	No tiene.
Descripción corta de qué hace	Crea una matriz idéntica a la matriz de
	símbolos original, pero cada elemento de la
	matriz es el peso asociado a cada casilla de
	la matriz original. Inicialmente como no se
	ha ponderado, todos los valores están en
	"None" por defecto.

Nombre de la función	"pre_ponderacion".
Parámetros que recibe	Recibe 3 parámetros: la matriz de símbolos
	o aeropuerto, la cantidad de filas y la
	cantidad de columnas de la matriz
Tipo de dato que retorna	TUPLE. (matriz ponderada, parqueaderos
	alcanzables).
Excepciones que produce	No tiene.
Descripción corta de qué hace	Se encarga de encontrar los puntos de
	entrada/salida de la matriz, almacenar la
	coordenada de estos en la cola doblemente
	terminada, y darle un valor en esa
	coordenada a la matriz de ponderación de
	0. También se define la lista de
	movimientos y se llama a la función
	ponderar. Básicamente se encarga de dejar

las cosas listas para que el algoritmo de
ponderación se pueda llevar a cabo.

Nombre de la función	"resolver_problema".
Parámetros que recibe	Recibe 8 parámetros: la matriz de
	símbolos, la cual se va a modificar a la
	hora del aterrizaje o despegue de un avión;
	la matriz ponderada, la cual define si existe
	un camino desde el punto entrada/salida a
	cualquier casilla accesible; la lista de
	eventos, la cual se recorre para determinar
	si realizar un aterrizaje o un despegue; el
	numero de filas de la matriz; el numero de
	columnas de la matriz; la lista de solución,
	que es donde se almacenará el parqueadero
	en donde se ubico cada uno de los aviones;
	el diccionario de posicionamientos, el cual
	almacena en que coordenada de la matriz
	se establecieron los aviones para poder
	ubicarlos en el despegue de los mismos y
	la lista de parqueaderos, la cual almacena
	los estacionamientos disponibles en los que
	algún evento de aterrizaje se puede
	establecer en ese momento.
Tipo de dato que retorna	BOOL.
Excepciones que produce	No tiene.
Descripción corta de qué hace	Función de backtracking, que se encarga de
	probar todas las posibilidades existentes
	para realizar la lista de eventos en un
	aeropuerto dado.

Nombre de la función	"principal".
Parámetros que recibe	Ninguno
Tipo de dato que retorna	NONE.
Excepciones que produce	No tiene.
Descripción corta de qué hace	Función que se encarga de pedir los datos
	al usuario de cada uno de los casos que el
	mismo desee evaluar, en base a un
	aeropuerto y su lista de eventos. Esta
	función almacena todos los datos
	respectivos, realizará la primera
	ponderación, creará la lista donde se
	almacenará la solución de los parqueaderos
	en caso de existir, llamará a la función que
	determina si existe una solución o no,
	pasándole todos los datos necesarios, para
	finalmente imprimir el número del caso, la
	respuesta del algoritmo, y en caso de que
	exista un posicionamiento de los aviones
	correcto, se imprima el parqueadero para
	cada uno de los aviones.

Nombre de la función	"casilla_es_aeropuerto".
Parámetros que recibe	Recibe tres parámetros: la matriz de
	símbolos o aeropuerto, y la coordenada en
	x y en y que se pretende evaluar.
Tipo de dato que retorna	BOOL.
Excepciones que produce	No tiene.
Descripción corta de qué hace	Verifica si la matriz de símbolos en la
	coordenada ingresada a la función es un
	punto de entrada/salida ("==").

Una vez dada la especificación de cada función, se entra en detalle de la definición de cada una de las variables:

Nombre de la variable	"numero_caso".
Tipo de dato	INT.
Para que se utiliza	Determina el caso actual al que se le busca una solución factible.
Visibilidad	La variable se define en la función "principal"
Ciclo de vida	Desde que se inicia la ejecución del programa, hasta que ya no se desea conocer la solución de mas aeropuertos, dicho en otras palabras, hasta que finaliza el programa.

Nombre de la variable	"numero_aviones".
Tipo de dato	INT.
Para que se utiliza	Almacena el numero de aviones ingresado
	por el usuario, y permite verificar si se
	debe seguir ejecutando el programa o no.
Visibilidad	La variable se define en la función
	"principal".
Ciclo de vida	Su ciclo de vida es la iteración actual del
	bucle, es decir, desde que se pretende
	buscar una solución a un caso, hasta que se
	determina si existe o no una solución de
	este.

Nombre de la variable	"numero_filas".

Tipo de dato	INT.
Para que se utiliza	Determina el número de filas que tendrá el
	aeropuerto dado por el usuario, también
	sirve para generar la matriz de pesos y para
	verificar si dada una coordenada, esta se
	encuentra dentro de los límites de la
	matriz.
Visibilidad	La variable se define en la función
	"principal", y las funciones
	"casilla_es_valido", "ponderar",
	"matriz_pesos", "pre_ponderacion" y
	"resolver_problema" tienen acceso a ella.
Ciclo de vida	Su ciclo de vida es la iteración actual del
	bucle, es decir, desde que se pretende
	buscar una solución a un caso, hasta que se
	determina si existe o no una solución de
	este.

Nombre de la variable	"numero_columnas".
Tipo de dato	INT.
Para que se utiliza	Determina el número de columnas que
	tendrá el aeropuerto dado por el usuario,
	también sirve para generar la matriz de
	pesos y para verificar si dada una
	coordenada, esta se encuentra dentro de los
	límites de la matriz.
Visibilidad	La variable se define en la función
	"principal", y las funciones
	"casilla_es_valido", "ponderar",

	"matriz_pesos", "pre_ponderacion" y
	"resolver_problema" tienen acceso a ella.
Ciclo de vida	Su ciclo de vida es la iteración actual del
	bucle, es decir, desde que se pretende
	buscar una solución a un caso, hasta que se
	determina si existe o no una solución de
	este.

Nombre de la variable	"lista_solucion".
Tipo de dato	LIST.
Para que se utiliza	Almacena los parqueaderos en los que cada
	uno de los aviones se debe ubicar para que
	exista una solución factible, junto a el
	evento correspondiente a ese parqueadero.
Visibilidad	La variable se define en la función
	"principal" y la función
	"resolver_problema" tiene acceso a ella.
Ciclo de vida	Su ciclo de vida es la iteración actual del
	bucle, es decir, desde que se pretende
	buscar una solución a un caso, hasta que se
	determina si existe o no una solución de
	este.

Nombre de la variable	"diccionario".
Tipo de dato	DICT.
Para que se utiliza	Se utiliza para almacenar en que posición
	se estableció cada avión y poder desmarcar
	o marcar la casilla como ocupada. Se
	guarda como llave el evento (positivo), y
	como valor la coordenada en donde esta

	ubicado el avión y el símbolo que tenía
	originalmente.
Visibilidad	La variable se define en la función
	"principal" y la función
	"resolver_problema" tiene acceso a ella, ya
	que esta realiza modificaciones en la
	misma cada que se establece un evento, o
	se necesita deshacer una acción realizada
	anteriormente.
Ciclo de vida	Su ciclo de vida es la iteración actual del
	bucle, es decir, desde que se pretende
	buscar una solución a un caso, hasta que se
	determina si existe o no una solución de
	este.

Nombre de la variable	"matriz_simbolos".
Tipo de dato	LIST.
Para que se utiliza	En esta variable se almacena la matriz
	relacionada con cada uno de los símbolos
	del parqueadero, la cual se modificará a la
	hora de que un avión aterrice o despegue, y
	la misma permitirá realizar la ponderación
	respectiva cada que sucede un evento así
	logrando encontrar los parqueaderos
	disponibles en cada caso.
Visibilidad	La variable se define en la función
	"principal", y las funciones
	"resolver_problema", "ponderar",
	"pre_ponderacion",
	"casilla_es_aeropuerto",

	"casilla_es_parqueadero",
	"casilla_es_blanca", "casilla_es_negra" y
	"casilla_es_valido" tienen acceso a ella.
Ciclo de vida	Su ciclo de vida es la iteración actual del
	bucle, es decir, desde que se pretende
	buscar una solución a un caso, hasta que se
	determina si existe o no una solución de
	este. Cabe recalcar que está variable se va
	modificando en el proceso de la asignación
	de los parqueaderos.

Nombre de la variable	"eventos".
Tipo de dato	DEQUE (cola doblemente terminada)
Para que se utiliza	Almacena cada uno de los eventos a
	realizarse en el aeropuerto.
Visibilidad	La variable se define en la función
	"principal" y la función
	"resolver_problema" tiene acceso a ella.
Ciclo de vida	Su ciclo de vida es la iteración actual del
	bucle, es decir, desde que se pretende
	buscar una solución a un caso, hasta que se
	determina si existe o no una solución de
	este. Cabe recalcar que esta lista se va
	modificando a medida que se va
	procesando cada evento (se va expulsando
	los mismos al ser procesados, o en caso de
	que se deshace una acción, lo vuelve a
	agregar).

Nombre de la variable	"resultado".

Tipo de dato	BOOL.
Para que se utiliza	Variable que almacena si se llegó a una
	solución factible o no, para imprimir la
	respuesta correspondiente más adelante.
Visibilidad	La variable se define en la función
	"principal".
Ciclo de vida	Su ciclo de vida es la iteración actual del
	bucle, es decir, desde que se pretende
	buscar una solución a un caso, hasta que se
	determina si existe o no una solución de
	este.

Nombre de la variable	"lista_solucion_organizada".
Tipo de dato	LIST.
Para que se utiliza	Almacena los estacionamientos
	organizados de forma que el parqueadero
	numero uno, le corresponda al avión
	número uno, y así sucesivamente con cada
	uno de los aviones del caso.
Visibilidad	La variable se define en la función
	"principal".
Ciclo de vida	Su ciclo de vida es la iteración actual del
	bucle, es decir, desde que se pretende
	buscar una solución a un caso, hasta que se
	determina si existe o no una solución de
	este.

Nombre de la variable	"matriz_ponderar".
Tipo de dato	LIST.

Para que se utiliza	Se almacena una matriz idéntica a la de
	símbolos, pero en cada casilla se guarda el
	peso que existe desde un punto
	inicio/salida. Esto permite identificar si
	existe un camino hacia la casilla que se
	pretenda evaluar.
Visibilidad	La variable se define en la función
	"principal", y las funciones
	"pre_ponderacion", "ponderar" y
	"resolver_problema", tienen acceso a ella.
Ciclo de vida	Su ciclo de vida es la iteración actual del
	bucle, es decir, desde que se pretende
	buscar una solución a un caso, hasta que se
	determina si existe o no una solución de
	este. Cabe recalcar que está variable se
	somete a modificaciones cada que se
	procesa un evento en la función recursiva,
	debido a que se vuelve a ponderar y se
	sobre escribe el valor de la variable.

Nombre de la variable	"parqueaderos".
Tipo de dato	SET.
Para que se utiliza	Sirve para almacenar los parqueaderos alcanzables desde los puntos inicio/salida.
Visibilidad	Se define en la función "principal" al hacer el llamado a la función "pre_ponderacion", y la función "resolver_problema" tiene acceso a ella.
Ciclo de vida	Su ciclo de vida es la iteración actual del bucle, es decir, desde que se pretende

buscar una solución a un caso, hasta que se
determina si existe o no una solución de
este. Cabe recalcar que está variable se
somete a modificaciones cada que se
procesa un evento en la función recursiva.
Ya que, según el evento, se desocupan o se
ocupan nuevos parqueaderos.

Nombre de la variable	"pesos".
Tipo de dato	DEQUE (cola doblemente terminada).
Para que se utiliza	Permite almacenar las coordenadas de las
	casillas a las cuales hay que evaluarle sus
	vecinos, para así generar toda la
	ponderación del aeropuerto.
Visibilidad	Se define en la función "pre_ponderacion"
	y la función "ponderar" tiene acceso a ella.
Ciclo de vida	Se crea cuando se busca obtener la
	ponderación de la matriz, y se destruye
	cuando se realiza la ponderación a toda esa
	matriz.

Nombre de la variable	"movimientos".
Tipo de dato	LIST.
Para que se utiliza	Esta lista define los movimientos con el
	funcionamiento de observar los vecinos de
	la casilla actual, observado arriba, derecha,
	abajo, e izquierda.
Visibilidad	Se define en las funciones
	"resolver_problema", cuando un avión
	despega, y también en "pre_ponderacion",

	para el movimiento a través de la matriz y
	la ponderación de cada casilla.
Ciclo de vida	Se crea cuando se hace el llamado de la
	función para un evento de despegue, y se
	destruye cuando finaliza el llamado, es
	decir, cuando se devuelve un resultado. O
	también, se crea cuando se busca obtener la
	ponderación de la matriz, y se destruye
	cuando se realiza la ponderación a toda esa
	matriz.

т

Nombre de la variable	"evento_actual".
Tipo de dato	INT.
Para que se utiliza	Almacena el evento a procesar, el cual
	sirve para comparar si este es un despegue
	o un aterrizaje, para hacer lo
	correspondiente a cada caso.
Visibilidad	Se define en la función
	"resolver_problema".
Ciclo de vida	El ciclo de vida de esta es desde que
	empieza el llamado de la función, hasta
	que el llamado a la función devuelve un
	resultado (si existen llamados recursivos,
	es hasta que el llamado recursivo devuelva
	un resultado).

Nombre de la variable	"contador"
Tipo de dato	INT.
Para que se utiliza	Se encarga de almacenar el valor de
	cuantos eventos de aterrizajes hay

	consecutivos, lo cual permite minimizar los
	casos a la hora de determinar que hay más
	eventos consecutivos positivos que
	parqueaderos disponibles.
Visibilidad	Se define en la función
	"resolver_problema".
Ciclo de vida	El ciclo de vida de esta es desde que
	empieza el llamado de la función, hasta
	que el llamado a la función devuelve un
	resultado (si existen llamados recursivos,
	es hasta que el llamado recursivo devuelva
	un resultado).

El algoritmo presentado cumple los casos pertenecientes a la plataforma de uDebug (uDebug, s.f.), pero, este no es validado por el jurado de la Universidad de Valladolid por límite de tiempo.

Referencias

EAFIT. (s.f.). *Docentes e investigadores EAFIT*. Obtenido de https://www.eafit.edu.co/docentes-investigadores/Paginas/juan-lalinde.aspx

uDebug. (s.f.). uDebug. Obtenido de https://www.udebug.com

Valladolid, U. d. (s.f.). *THEONLINEJUDGE*. Obtenido de 11208 - airplane scheduling: https://onlinejudge.org/index.php?option=com_frontpage<emid=1