Лабораторная работа №1 (весна) – ступень 1

РЕШЕНИЕ ЗАДАЧИ ДИРИХЛЕ ДЛЯ УРАВНЕНИЯ ПУАССОНА (метод верхней релаксации, погрешность/точность заданы)

Выполния (a): <u>Петрова Гонина, Томагинс</u>ные Винборие, Тинова Группа: <u>381903-3</u> Вариант: <u>4</u> Hung, Cennisa Justa Anna

1. Постановки задач

Основная задача

$$\Delta u(x, y) = \underbrace{e^{-xy^2}}_{\text{при } x \in (1, 2), y \in (2, 3)};$$

$$u(\underline{1, y}) = \underbrace{(y-x)(y-3)}_{y \in [2, 3]} u(\underline{2, y}) = \underbrace{y(y-x)(y-3)}_{y \in [2, 3]};$$

$$u(x, \underline{2}) = \underbrace{(x-x)(x-2)}_{x \in [1, 2]} u(x, \underline{3}) = \underbrace{x(x-x)(x-2)}_{x \in [1, 2]}.$$

Форма пластины: «lagat [4,2] × [2,3] Функция температуры (обозначение): ч (чсу)

Функция плотности источников и стоков тепла (обозначение): f(x,y) Какую функцию нужно искать (запишите): y(x,y) $y \in [x,y] \in [x,y]$

Тестовая задача
$$\Delta u(x, y) = \frac{\pi^2 \sin(\pi xy)(x^2y)}{\pi^2 \sin(\pi xy)(x^2y)} \pi p u(x \in (1, 2), y \in (2, 3);$$

$$u(\underline{\lambda}, y) = \underline{\sin y} \quad u(\underline{\lambda}, y) = \underline{\sin x},$$

$$y \in [2, 3];$$

$$u(x, \underline{\lambda}) = \underline{\sin x} \quad u(x, \underline{\lambda}) = \underline{\sin x}.$$

$$x \in [1, 2];$$

Решение тестовой задачи

$$u^*(x, y) = \underline{\Im(\pi(xy))}$$

2. Сетка и разностная схема (общий вид)

Приведите описание сетки (рисунок и формулы).

Запишите разностную схему как систему разностных уравнений (для сетки произвольной размерности), укажите диапазоны изменения индексов.

Cerma (4,4): Boero 25 y 3 20 b US mu 16-rpamirune, 2-bry sper- [Vxx]; -[Vy5]; =-f; i=&,n-1 mue (neus becomme 3 marenne)

H pashocthoro oneparopa.

Washou:

Certura (
$$n$$
, m)

 $A(k^2)$
 $h = \frac{b-a}{n} - \frac{b-a}{x}$
 $h = \frac{b-a}{n} - \frac{b-a}{n}$
 $h = \frac{b$

1 Voj = M((y)), j = 5, m-1 Vnj = M2(yi), j = I,m-1 Vio= M3(xi), i= 1,n-1 Vim= M4(Xi), i= 1,n-1

3. Разностная схема как СЛАУ $\mathcal{AV} = \mathcal{F}$

Размерность матрицы $A_{(n-1)(m-1)} \times (n-1)(m-1)$ Свойства матрицы A:

3) A= AT

4) unlet guar-ын базис из собстве

Минимальное по модулю собственное число = 4/h²sin² (Тъп) + 4/k² sin² (тът) - 18.246 Максимальное по модулю собственное число = $\frac{4}{n^2} \cdot \frac{2}{3} \cdot \frac{n^2 \left(\frac{m(n-1)}{2n}\right) + \frac{4}{n^2} \cdot \frac{2}{3} \cdot \frac{n^2 \left(\frac{m(m-1)}{2m}\right) = 109.254}{(2m)^2 \cdot 109.254}$ Число обусловленности $\frac{MA}{MA} = \frac{Max(\lambda(A))}{min(\lambda(A))} = \frac{109.254}{(2m)^2 \cdot 109.254} = 5.82.843$

4. Запись схемы в виде $\mathcal{AV} = \mathcal{F}$ или — $\mathcal{AV} = -\mathcal{F}$ на сетке размерности ($\underline{\mathcal{U}}$, $\underline{\mathcal{U}}$)

(должны быть указаны все элементы матрицы, вектора и правой части на сетке конкретной размерности, использовать альбомный разворот или вклеить свой рисунок)

pusinephoetii, i	icionibiobuib	surposition pusseper and account of the pusses,
1 = (4/2=16 1 = (4/2=16 1 = (1/2)=16	Q =	VII V21 V21 V22 V22 V23 V23 V23 V23 V23 V23 V23 V23
A=-2(16116)=-64	< =	V32 V13 V23 V33 O O O O O O O O O O O O O O O O O O
	T =	- fu - 2/2 million - 2/2 ma(xi) - fai - 1/2 ma(xi) - fai - 1/2 ma(xi) - fai - 1/2 ma(xi) - faz - 4/2 ma(xi) - 2/2 ma(xi) - faz - 2/2 mu(xi) - 2/2 million - faz - 2/2 mu(xi) - faz - 2/2

5. Описание итерационного метода

- 1) Запишите итерационный метод в каноническом виде (т.е. для решения произвольных СЛАУ вида Ax = b, $A = A^T > 0$), укажите диапазон значений параметра;
- 2) Запишите итерационный метод для решения схемы AV = -F, а именно:
- формулы для расчета каждой компоненты искомого вектора ${\mathcal V}$ на очередной итерации (исходный вариант и оптимизация):
- формулы для расчета невязки \mathcal{R} (исходный вариант и оптимизация).

Укажите, зачем проведена замена знаков в системе $\mathcal{A}\mathcal{V} = \mathcal{F}$.

MBP nomes lug. $(D+DL)\frac{x+4}{x}$ $+Ax^{S}=b$ $(S+1)\frac{1}{aii}\left[-D\sum_{j=1}^{N}aijx_{j}^{S}+(1-D)aiix_{i}^{S}+Db\right]$

2) Bentop Visi) pacrutan nan

$$V_{ij}^{S+1} = -\frac{1}{A} \left((1-9) \cdot (-A) \cdot V_{ij}^{S} + \mathcal{O} \left(\frac{1}{h^{2}} V_{i-1j}^{S+1} + \frac{1}{K^{2}} V_{ij+1}^{S+1} \right) + \\ + \mathcal{O} \left(\frac{1}{h^{2}} V_{i+1j}^{S} + \frac{1}{K^{2}} V_{ij+1}^{S} \right) + \mathcal{O} \cdot \hat{f}_{ij} \right)$$

Pacrem nebes me ha morre 8 gne (4,4) $\Gamma_{11}^{(5)} = -A \vee_{11}^{(5)} - \frac{1}{h^2} (V_{01}^{(5)} + V_{21}^{(5)}) - \frac{1}{k^2} (V_{10}^{(5)} + V_{12}^{(5)}) - f_{11}$ $\Gamma_{21}^{(5)} = -A \vee_{21}^{(5)} - \frac{1}{h^2} (V_{11}^{(5)} + V_{31}^{(5)}) - \frac{1}{k^2} (V_{20}^{(5)} + V_{22}^{(5)}) - f_{21}$ $V_{31}^{(5)} = -A \vee_{31}^{(5)} - \frac{1}{h^2} (V_{21}^{(5)} + V_{41}^{(5)}) - \frac{1}{k^2} (V_{30} + V_{32}^{(5)}) - f_{31}$

 $\Gamma_{12}^{(5)} = -AV_{12}^{(6)} - \frac{1}{h^2} \left(V_{02}^{(5)} + V_{22}^{(5)} \right) - \frac{1}{k^2} \left(V_{11}^{(5)} + V_{13}^{(5)} \right) - f_{12}$ $\Gamma_{22}^{(5)} = -AV_{22}^{(5)} - \frac{1}{h^2} \left(V_{12}^{(5)} + V_{22}^{(5)} \right) - \frac{1}{k^2} \left(V_{21}^{(5)} + V_{23}^{(5)} \right) - f_{22}$ $\Gamma_{32}^{(5)} = -AV_{30}^{(5)} - \frac{1}{h^2} \left(V_{22}^{(5)} + V_{12}^{(5)} \right) - \frac{1}{k^2} \left(V_{31}^{(5)} + V_{33}^{(5)} \right) - f_{32}$ $\Gamma_{13}^{(6)} = -AV_{13}^{(6)} - \frac{1}{h^2} \left(V_{03}^{(5)} + V_{23}^{(6)} \right) - \frac{1}{k^2} \left(V_{12}^{(5)} + V_{11}^{(5)} \right) - f_{13}$ $\Gamma_{23}^{(5)} = -AV_{23}^{(5)} - \frac{1}{h^2} \left(V_{13}^{(5)} + V_{33}^{(6)} \right) - \frac{1}{k^2} \left(V_{22}^{(5)} + V_{31}^{(5)} \right) - f_{23}$ $\Gamma_{32}^{(5)} = -AV_{33}^{(5)} - \frac{1}{h^2} \left(V_{23}^{(5)} + V_{13}^{(6)} \right) - \frac{1}{k^2} \left(V_{32}^{(5)} + V_{34}^{(5)} \right) - f_{33}$ Takun obpason bugun to: $\Gamma_{ij}^{(5)} = -AV_{ij}^{(5)} - \frac{1}{h^2} \left(V_{i-j}^{(5)} + V_{i+j}^{(5)} \right) - \frac{1}{k^2} \left(V_{ij-1}^{(5)} + V_{ij+1}^{(5)} \right) - f_{ij}$ 3auleng zuanob b eucheme of V = Fnpou 3 begens gue toro, to obs npuneuse.

undu metog exogunce $T \times T$ Teopeurs:

Ecru mentinga A=AT>0 u napament De(0,2)
MBP exogracia

6. Анализ структуры погрешности

Запишите обозначения и определения всех типов (компонент) погрешностей, возникающих при решении основной и тестовой задачи с помощью разностных схем итерационными методами.

Запишите утверждения, необходимые для оценки погрешностей, и фор-

мулировку теоремы о сходимости итерационного метода.

Obigale noopeninoemis: — ceromale ϕ . $Z^{obig}\tilde{u} - \tilde{v}(s)$ rge \tilde{u} - Fornoe peni. Jagarn e greton norpinu erema. $\tilde{v}^{(s)}$ - penienne paznoemnoù exembi na mare 3 e greton norpinu crema.

hour exemps - pazuocais mengy rozum pemennen Ay a rozum pemennen exemps: Z=u-v

U- Tormoe permenne zorganne V- Tormoe permenne exemps

Boi rucauteubune norpenmoents penenne: 2 bois (5) (5) Torpenmoents penenne exerusi e nomonsono meroga:

Tropennocurs zaganna recobort p.: 2000=4-4

Tropernoction pernenna CNAY na mare 8 monno ogenimo no nebiesne na mare 8, nanono 3 yne mopuy espatuato martipuyos: $112^{(5)}11 \leq 114^{-1}||1|\Gamma^{(5)}||$ (mopum eoznac-nos) $||A^{-1}|| = \frac{1}{\min(J(H))} = \frac{1}{4^{1/2} \cdot \sin^2(T/2n) + 4^{1/2} \cdot \sin^2(T/2m)}$

о быть пешена с заданном погрешность

Teopong: Earn marques A ammerpurus a nonomirenous on pegeneus a napamer De (0,2) merog bepaneus perak conjun (MBP) exogence.

$$||Z^{(s)}||_{2} \leq \frac{1}{\min|\lambda_{i}(A)|} ||C^{(s)}||_{2} \sqrt{r_{2}}$$

7. Численное решение тестовой задачи с заданной погрешносты	0
Тестовая задача должна быть решена с заданной погрешностью $\varepsilon = 0.5 \cdot 10$	
Тестовая задача решена с погрешностью $\varepsilon_1 = 4,03706.10^{-6}$	
Максимальное отклонение точного и численного решений в узле	
x = 1,6725 $y = 2,3$	
Для решения тестовой задачи использована сетка	
число разбиений по x $n = 400$ число разбиений по y $m = 400$	
метод верхней релаксации с параметром ω = 1,984	
Значения критериев остановки метода:	
по точности $\varepsilon_{\text{мет}} = 0.5 10^{-9}$ по числу итераций $N_{\text{max}} = 5000$	2
На решение СЛАУ затрачено $N = 1603$ итерации	
Достигнута точность метода $\varepsilon^{(N)} = 458429 \cdot 10^{-10}$	
	казать)
AND THE COURT OF THE PROPERTY	казать)
погрешность решения СЛАУ $\ Z^{(N)} \ _{\infty} \le \ Z^{(N)} \ _{2} \le \ A^{-1} \ _{2} \ R^{(N)} \ _{2} = (6)$ $= \frac{1}{m_{1}n_{1}} \ A^{(N)} \ _{2} = 0.050660854 \cdot 0.000524974 = 2.644349.155$ Начальное приближение итерационного метода	ценить)
V.1.1000	казать)
использована норма z = мосу Z \ \ C Q	оценить)
Общая погрешность решения тестовой задачи с учетом ее компонент $ z_{0644} _{\infty} \le \frac{ Z^{(N)} _{\infty} + Z _{\infty}}{ Z _{\infty}} \le 2.64434945^{5} + 9000645148 = 6445936666666666666666666666666666666666$	2 - (б
использована норма $ z_{oбщ} _{\alpha} = \max Z_{oбщ} _{i=0,n} = 0,m$	
1. Если не удалось решить тестовую задачу с заданной погреш $\varepsilon = 0.5 \cdot 10^{-6}$, решите ее с <i>минимально возможной</i> погрешностью. На те, что нужно сделать, чтобы погрешность не превышала $\varepsilon = 0.5 \cdot 10^{-6}$, и не получилось это сделать,	носты апиши почем
2 . В любом случае сравните оценку общей погрешности, оценки ее компорактическую погрешность ε_l . Сформулируйте выволы.	онент

 $M_{1} = \frac{1}{12} \max \left| U_{xyxx}^{\overline{W}} (x,y) \right| 6 \min \left| \lambda(A) \right| = \left| \frac{1}{h^{2}} \sin^{2}(\frac{1}{2n}) \right| + \left| \frac{1}{h^{2}} \sin^{2}(\frac{1}{2n}) \right| + \left| \frac{1}{h^{2}} \sin^{2}(\frac{1}{2n}) \right|$

$$\max\{\left|\pi^4\ y^4\sin(\pi\ x\ y)\right|\ \left|\ 1\leq x\leq 2\ \land\ 2\leq y\leq 3\right\}=81\ \pi^4\ \ {\rm at}\ (x,\,y)=\left(\frac{11}{6},\,3\right)$$

Global maximum

$$\max\{\left|\pi^4\,x^4\sin(\pi\,x\,y)\right|\,\Big|\,1\leq x\leq 2\,\wedge\,2\leq y\leq 3\}=16\,\pi^4\ \text{ at }(x,\,y)=\left(2,\,\frac{11}{4}\right)$$

$$M_{1} = \frac{1}{12} \cdot 81\pi^{4}$$

$$M_{2} = \frac{1}{12} \cdot 16\pi^{4}$$

$$\|Z\|_{\infty} \leq \frac{(M_{1} \cdot N^{2} + M_{2} \cdot N^{2})}{16} ((b-a)^{2} + (d-c)^{2}) =$$

$$= \frac{81\pi^{4}}{12} \frac{1}{400^{2}} + \frac{16\pi^{4}}{12} \frac{1}{400^{2}}$$

$$= \frac{81\pi^{4}}{16} \cdot ((e-b)^{2} + (3-2)^{2}) = 0,000616149$$

Jergannoù Tornoctus vo E.

Dre guenomenne norpennoctur hetroguns
uenonozobaras Sonsunyo cethy ore recepe
Interny norpennoctus CMAY a norpennocto
cranor bygym menome. No us-3a poema
vantrecinsa umepayañ (mnoro apa puretrurecunx genembano) byget nevenumberto
che bornemtens ne norpennoctus, to
Mu ymensurem egnoù merpennoctus,

gpyrae pacinen.

Значения и (х,у)

		i	0	1	2	3	4	5	^
15	j	YX	1	1,01	1,02	1,03	1,04	1,05	
	0	2	0	0,063	0,125	0,187	0,249	0,309	(
	1	2,01	0.031	0.094	0,157	0,219	0.28	0.34	C
	2	2,02	0,063	0,126	0,189	0,251	0,311	0,371	(
	3	2,03	0,094	0,157	0,22	0,282	0,342	0.401	(
	4	2.04	0,125	0,189	0,251	0,313	0,373	0,431	C
	5	2,05	0,156	0,22	0,282	0,343	0,403	0,461	(
	6	2,06	0,187	0,251	0,313	0,373	0,433	0.49	(
	7	2.07	0,218	0,281	0,343	0,403	0.462	0,518	C
	8	2,08	0,249	0,311	0,373	0,433	0.491	0.546	(
	9	2.09	0,279	0,341	0,402	0,462	0,519	0.574	(
	10	2,1	0,309	0,371	0,431	0.49	0,546	0,6	(
	11	2,11	0,339	0.4	0.46	0,518	0,573	0,626	(
	12	2,12	0,368	0,429	0,488	0,545	0,6	0,652	(
	13	2.13	0.397	0.458	0.516	0.572	0.626	0.676	(~

Значения $V^{\wedge}(N)$ (x,y)

	i	0	1	2	3	4	5	^
j	Y∖X	1	1,01	1,02	1,03	1,04	1,05	1
0	2	0	0,063	0,125	0,187	0,249	0,309	(
1	2,01	0,031	0,094	0,157	0,218	0,279	0,338	(
2	2,02	0,063	0,126	0,189	0,25	0,31	0,368	(
3	2,03	0,094	0,158	0,221	0,282	0,341	0,398	(
4	2,04	0,125	0.19	0,253	0,314	0,373	0.429	(
5	2,05	0,156	0,222	0,285	0,346	0.404	0,461	(
6	2,06	0.187	0,253	0,317	0,378	0,436	0,492	(
7	2,07	0,218	0,285	0,349	0.409	0.467	0,522	(
8	2,08	0,249	0,316	0.38	0.44	0.498	0,553	(
9	2,09	0,279	0,347	0.41	0,471	0,528	0,582	(
10	2,1	0,309	0,377	0.44	0,5	0,557	0,61	(
11	2,11	0,339	0,406	0.47	0,529	0,584	0,637	(
12	2,12	0,368	0,435	0.498	0,556	0,611	0,662	(
13	2.13	0.397	0.463	0.525	0.582	0.635	0.685	(~

Значения |U(x,y) - V(x,y)|

	1	0	1	2	3	4	5	
j	Y\X	1	1,01	1,02	1,03	1,04	1,05	•
0	2	0	0	0	0	0	0	(
1	2,01	0	1,554912935991	0,000300222130	0,000805293785	0,001482366527	0,002284977079	(
2	2,02	0	0,000237756684	6.442382045970	0,000807386537	0,001894624368	0.003233773491	(
3	2,03	0	0,000711564317	0,000612219212	0,000147305269	0,001421952345	0,003073913710	(
4	2,04	0	0,001354118876	0,001628898378	0,001027687760	0,000255843811	0,002038513913	(
5	2,05	0	0,002111267134	0.002881302465	0,002566287352	0,001408588314	0,000364080120	(
6	2,06	0	0,002927951082	0,004263617415	0,004315889563	0,003375000363	0,001712163901	(
7	2.07	0	0,003748935876	0,005670126135	0,006124132908	0,005447790888	0,003954285520	(
8	2,08	0	0,004519540685	0,006996139284	0,007840339090	0,007433761400	0,006130068942	(
9	2,09	0	0,005186181889	0,008139117460	0,009317092946	0,009144541877	0,008013583206	(
10	2,1	0	0,005696813568	0,008999689750	0.010412053479	0,010398704658	0.009387432582	(
11	2,11	0	0,006001726638	0,009483222154	0,010989996443	0,011023902810	0,010045307636	(
12	2,12	0	0,006054216223	0,009501054571	0,010924165915	0,010858801642	0,009794499117	(
13	2.13	0	0.005811315587	0.008971514752	0.010098039339	0.009755399083	0.008458392762	1

График $u^*(x,y) = \sin(pi^*x^*y)$

8. Численное решение основной задачи с заданной точностью

or thereinge pemente out-	
Основная задача должна быть решена с	заданной точностью $\varepsilon = 0.5 \cdot 10^{-6}$
Основная задача решена с точностью ε_2	= 4,079.10+
Максимальное отклонение численных р ловинным шагом в узле	ешений на основной сетке и сетке с по
x = 19 $y = 29$	
Для решения основной задачи использов	вана сетка
число разбиений по $x n = \underline{100}$	число разбиений по $y m = 100$
метод верхней релаксации с параметром	$\omega = 1.93$
Значения критериев остановки метода:	
по точности $\varepsilon_{mem} = 5 \cdot 10^{-7}$	по числу итераций $N_{max} = \sqrt{500}$
На решение СЛАУ затрачено $N =$	
Достигнута точность метода	$\varepsilon^{(N)} = 41,86705.167$
СЛАУ решена с невязкой $ R^{(N)} = 0$	01896973 (указать)
для невязки использована норма	ишдова (указать)
погрешность решения СЛАУ $\ Z^{(N)} \ _{\infty} \le \ Z^{(N)} \ _{\infty}$	$ Z^{(N)} _2 \le 0.0506648 \cdot 0.01896973$ (оценить)
Начальное приближение итерационного	метода = 9.6109758.10-4
wynlkoe	(указать)
7	
Для контроля точности использована	
число разбиений по $x 2n = 200$	
метод верхней релаксации с параметром	$1 \omega 2 = 1.9 \times 44$
Значения критериев остановки метода:	
по точности $\varepsilon_{\text{мет-2}} = 50$	по числу итераций $N_{max-2} = 5000$
На решение СЛАУ затрачено	$N2 = 2567$ итерации _47
Достигнута точность метода	ε ^(N2) = 4,991307·10
СЛАУ решена с невязкой $ R^{(N2)} = Q_0$	
для невязки использована норма е	вишдова (указать)
погрешность решения СЛАУ $\ \mathbf{Z}^{(N2)}\ _{\infty} \le$	7 ^(N2) 8
Начальное приближение итерационного	
nyrebae	
9	(указать)
0	S 0.0506648.0,074548=

= 3.775439.10-3

Требования к точности

Если не удается решить основную задачу с заданной точностью $\varepsilon = 0.5 \cdot 10^{-6}$, решите ее с максимально высокой точностью.

Вопросы

- 1. Погрешность решения СЛАУ на контрольной сетке не должна быть существенно хуже погрешности (СЛАУ) на основной сетке: при заполнении справки для отчета нужно сравнить оценки погрешности решения СЛАУ на основной и контрольной сетке. Сформулируйте выводы.
- 2. Сравните погрешности решения СЛАУ на основной и контрольной сетке с точностью решения основной задачи ε_2 . Сформулируйте выводы.
- 3. Если не удалось решить основную задачу с заданной точностью $\varepsilon = 0.5 \cdot 10^{-6}$, напишите, что нужно сделать, чтобы достичь указанной точности, и почему не получилось это сделать.
- 1) Tropeminocitis na kontromonioù cethe ne cumono segme, rem na austroa, no rythis Sonsine. Into npionexoget us-za Sonsinoro kommerciba apriometricux birmerenni u zagannoù tornocitin
 brixaga meroga (510¹³), enegolativembro brimenatenbure mirpeminocitis sonsine
- 2) E2- pezinsente nochegunx 2-x nputurskente ug acustuoti cenive, oue mentine obenx notpeninocieti CNAY Totpeniusento na ocuobroti cenive mentine norbeninocitur ne controlopuoli Moi menonosyen ynythe ogenim u ne zuem Torno penienul pynym u (xy)
- 3) Ocnobuyo zagary ygances permis e zagamon

Значения v(x,y)

		i	0	1	2	3	4	5 /
•	j	Y∖X	1	1,01	1,02	1,03	1,04	1,05
	0	2	0	-0,01	-0,02	-0,029	-0,038	-0,048
	1	2,01	-0,01	-0,019	-0,028	-0.036	-0.045	-0.054
	2	2,02	-0,02	-0,028	-0,036	-0.044	-0,052	-0,06
	3	2,03	-0,029	-0,036	-0,044	-0,051	-0,059	-0,066
	4	2.04	-0,038	-0,045	-0,052	-0,059	-0,065	-0,072
	5	2,05	-0.047	-0,054	-0,06	-0,066	-0.072	-0,079
	6	2,06	-0,056	-0,062	-0,068	-0,073	-0,079	-0,085
	7	2,07	-0,065	-0,07	-0,075	-0,08	-0,086	-0,091
	8	2,08	-0,074	-0,078	-0,083	-0,088	-0.093	-0,098
	9	2,09	-0,082	-0,086	-0,09	-0,095	-0.099	-0,104
<	10	21	-0 09	-0 094	-0 098	-0 102	-0 106	-0 11

Значения v2(x,y)

		i	0	1	2	3	4	5 /
)	j	Y∖X	1	1,01	1,02	1,03	1,04	1,05
	0	2	0	-0,01	-0,02	-0,029	-0,038	-0,048
	1	2,01	-0,01	-0,019	-0,028	-0,036	-0,045	-0,054
	2	2,02	-0,02	-0,028	-0,036	-0.044	-0,052	-0,06
	3	2,03	-0,029	-0,036	-0,044	-0,051	-0,059	-0,066
	4	2.04	-0,038	-0,045	-0,052	-0,059	-0,065	-0,072
	5	2,05	-0,047	-0,054	-0,06	-0,066	-0,072	-0,079
	6	2,06	-0,056	-0,062	-0,068	-0,073	-0.079	-0,085
	7	2,07	-0,065	-0,07	-0,075	-0,08	-0,086	-0,091
	8	2,08	-0,074	-0,078	-0,083	-0,088	-0.093	-0,098
	9	2,09	-0,082	-0,086	-0.09	-0,095	-0.099	-0,104
	10	21	-0 09	-0 094	-0.098	-0 102	-0 106	-0 11
<								>

Значения |V2(x,y) - V(x,y)|

		i	0	1	2	3	4	5	^
•	j	Y∖X	1	1,01	1,02	1,03	1,04	1,05	
	0	2	0	0	0	0	0	0	
	1	2.01	0	6,602122560782	5,957108659096	4,634597943524	3,685947094281	2,980	
	2	2,02	0	5,957803026829	7,506119270639	7,105447160114	6,239858019251	5,419	
	3	2,03	0	4,638157273230	7,107084082649	7,703860949809	7,482097399709	6,886	1
	4	2.04	0	3,685864795890	6,240853767450	7,479851504919	7,792059040417	7,643	
	5	2.05	0	2,987881098197	5,425290090788	6,889318091882	7,647814231792	7,866	
	6	2,06	0	2,534978696087	4,721285014122	6,302327178575	7,289490121867	7,832	
	7	2.07	0	2,157476497621	4,177706960484	5,737920154874	6,891217759777	7,629	!
	8	2.08	0	1,923987574731	3,755230972388	5,296482652975	6,500334133532	7,373	
	9	2,09	0	1,726395231521	3,439109154873	4,917018098044	6,145447524821	7,091	
<	10	21	n	1 595065999157	3 182533152665	4 599880451414	5 809741897483	6 791 >	~

9. Проверка программы: контроль «порядка сходимости»

Проверка убывания погрешности \mathcal{E}_1 при решении тестовой задачи и проверка убывания величины \mathcal{E}_2 (рост точности) при решении основной задачи показывают следующее:

Тестовая задача

n	m	\mathcal{E}_{Mem}	$\mathcal{E}^{(s)}$	Тестовая задача, величина $max \mid u^*(x_i y_j) - v^{(N)}(x_i y_j) \mid$	Отношение значений погрешности
10	10	5.100	4,573.15	9,065658314	~ 11
20	20	5.10	4,623-107	0,016087905	~ 4
40	40		4,909.10	0,004038639	24
				y : x j) = /	100 11 2
				Порядок 2	Mark of

Основная задача

n	m	Емет	€ ^(N)	\mathcal{E}_{M2}	ε ^(N2)	Основная задача, величина $\max v ^{(N)}(x_iy_j) - v2 ^{(N2)}(x_{2i}y_{2j}) $	Отношение значений точности
20	20	5.106	4,9.10	5.10	49.00 4 9.00 4 9.00 4 9.800	0.0028127	≈4 ≈4
						Порядок 2	

На сетке (n, m) использованы значения ω = На сетке (2n, 2m) использованы значения ω_2 =

(перечислить)

Вопрос: Сходимость и порядок сходимости есть свойства схемы. Ни одно из значений — ни ε_1 , ни ε_2 , не является погрешностью схемы. Опираясь на теоретический материал, объясните, почему результаты работы программы должны подтвердить динамику величин ε_1 и ε_2 с каким-либо порядком.

Примечания

- 1. Значения критерия выхода по числу итераций (N_{max} и N_{max-2}) в каждом из расчетов должны быть таковы, чтобы выход состоялся по точности.
 - 2. Если «порядок сходимости» не подтверждается, ошибку следует искать

Quiletre la Compos:

No onto

E=max[u*-v"s"] ~ max[u-u*+u*-vs] - norperencents

3aganne reemober fynnym narg

max[u-u*+u*-v"s"] = max[u-v"s"] = max [zoos]=1z10

Cyngeetibennin bunag b norperincents & busent

norperincents exems. No the exeguncent exems

E uneen buropois nopegor exeguncenti.

&= ((2n) v(n) | = ((u-v(2n)) - (u-v(n)) | = (1 2002 - 2002 |) <

< 11 208y. 11 + 11 208y 11

tro yns gre E, 1/2003. 11 ≈ 11 Zex 11; 11 Zosy. 11 ≈ 11 Zex 11

En = 11 fox 11 + 11 fox 11 = M(M2 + M2(x2) + M2(x1) + M2(x1) = 4