ENECO610

TAREA I

1. **MWG**

Resuelva los problemas 1.B.3, 1.B.4, 1.B.5, 2.D.1, 2.D.2, 2.D.3, 2.E.1, 2.E.4, 2.E.6, 2.E.7 y 2.E.8.

- 2. Para cada una de las siguientes preferencias en $X = \mathbb{R}^2_+$, determinar si estas son: completas, transitivas, monótonas, l.n.s., convexas y homotéticas:
 - i. $\mathbf{x} \gtrsim \mathbf{y} \Leftrightarrow \sum_{\ell} x_{\ell} \leq \sum_{\ell} y_{\ell}$
 - ii. $\mathbf{x} \gtrsim \mathbf{y} \Leftrightarrow \max\{x_\ell\} \ge \max\{y_\ell\}$
 - iii. $\mathbf{x} \gtrsim \mathbf{y} \Leftrightarrow \min\{x_\ell\} \ge \min\{y_\ell\}$

3. Preferencias Lexicográficas

Sean \gtrsim_{lex} preferencias lexicográficas definidas en clase. Consideraremos 2 variaciones respecto al conjunto de consumo. Denotaremos por \mathbb{Z}_+ el conjunto de enteros no-negativos $\mathbb{Z} = \{0, 1, 2, \ldots\}$. La idea es capturar bienes que son indivisibles

- (a) Sea el conjunto de consumo $X^1 = \{(x_1, x_2) \in \mathbb{R}^2_+ : x_1 \in \mathbb{Z}_+\}$, i.e., el bien 1 es indivisible. Pueden \gtrsim_{lex} ser representadas por una función de utilidad?
- (b) Sea el conjunto de consumo $X^2 = \{(x_1, x_2) \in \mathbb{R}^2_+ : x_2 \in \mathbb{Z}_+\}$, i.e., el bien 2 es indivisible. Pueden \gtrsim_{lex} ser representadas por una función de utilidad?

4. Preferencias Localmente no Saciadas

Asuma que el conjunto de consumo $X \subseteq \mathbb{R}^L_+$ y que las preferencias \gtrsim son completas y transitivas. Discuta la posibilidad de que \gtrsim sean l.n.s.

5. Preferencias Monótonas

Si \gtrsim son semi-continuas superiores y monótonas en \mathbb{R}^L_+ , entonces $\mathbf{x} \ge \mathbf{y}$ implica $\mathbf{x} \gtrsim \mathbf{y}$.

6. Preferencias en Compactos

Sean \geq preferencias definidas sobre X. Para un subconjunto $M \subset X$, definiremos $x \in M$ como el elemento preferido de M si $x \geq y$ para todo $y \in M$.

Demuestre que, si \gtrsim es continua y M es compacto, M contiene un elemento preferido y que el conjunto de elementos preferidos es compacto.

7. Preferencias Convexas

Sean \geq convexas en *X* y sea *M* ⊂ *X* un conjunto convexo.

- (a) El conjunto de elementos preferidos en M (definidos en pregunta anterior) es un conjunto convexo.
- (b) Si \gtrsim son estríctamente convexas, entonces el conjunto de elementos preferidos en M es un singleton. En particular, existe un único punto de saciación en X.
- 8. Sea Z un conjunto finito y $X = \mathcal{P}(Z) \setminus \{\emptyset\}$ el conjunto potencia de Z excluyendo el conjunto vacío. Definiremos \gtrsim sobre X con las siguientes propiedades
 - i. $A \geq B$ y C disjunto de A y B, entonces $A \cup C \geq B \cup C$ (para > lo mismo se cumple).
 - ii. $x \in Z$ y $\{x\} > \{y\}$ para todo $y \in A$, entonces $A \cup \{x\} > A$.
 - iii. $x \in Z$ y $\{y\} > \{x\}$ para todo $y \in A$, entonces $A > A \cup \{x\}$.
 - (a) De una interpretación a cada una de las propiedades anteriores.
 - (b) Muestre que si existen $x, y, z \in Z$ tal que $\{x\} > \{y\} > \{z\}$ entonces no existe \geq que cumpla las 3 propiedades simultáneamente.

9. Función de Utilidad Separable I

Sea la función de utilidad $u : \mathbb{R}_+^L \to \mathbb{R}$ separable, i.e., $u(\mathbf{x}) = \sum_{\ell=1}^L f_\ell(x_\ell)$, con $f'_\ell > 0$, $f''_\ell < 0$, para todo $\mathbf{x} \in \mathbb{R}_+^L$ y $\ell \in L$.

- (a) Demuestre que para $(\mathbf{p}, \omega) \in \mathbb{R}^{L+1}_{++}$, el problema del consumidor tiene solución única.
- (b) Asuma que las demandas walrasianas son estrictamente positivas y diferenciables. Demuestre que los bienes son normales.

10. Función de Utilidad Separable II

Sea la función $\phi : \mathbb{R}_{++} \to \mathbb{R}$ con $\phi(x_1) > 0$, $\phi'(x_1) > 0$ y $\phi''(x_1) < 0$, para todo $x_1 > 0$. Considere la función de utilidad $u : \mathbb{R}_{++}^2 \to \mathbb{R}$

$$u(x_1, x_2) = \phi(x_1) + \ln(x_2)$$

Restringimos el análisis al conjunto de precios y riqueza tal que la solución al problema del consumidor es estrictamente positiva. Asumiremos también que la demanda walrasiana es diferenciable. Muestre que $\frac{\partial x_1(\mathbf{p},\omega)}{\partial p_2}=0$.

11. Matriz de Slutsky

Demuestre que si la demanda walrasiana es diferenciable, homogénea de grado 0 y satisface la ley de Walras, entonces para L = 2 la matriz de Slutsky es simétrica.

12. Axióma Débil de Preferencias Reveladas

Demuestre que la demanda Walrasiana satisface el axioma débil de preferencias reveladas.

13. Demanda Walrasiana I

Considere la relación de preferencias \gtrsim sobre un conjunto de consumo $X = \mathbb{R}^2_+$ representada por la función de utilidad $u: X \to \mathbb{R}$

$$u(x_1, x_2) = x_1 x_2 + \gamma x_2$$
, donde $\gamma > 0$.

- (a) Es u cóncava? estrictamente cóncava? quasi-cóncava? estrictamente quasi-cóncava?
- (b) Son ≥ convexas? estrictamente convexa?
- (c) Compute la demanda Walrasiana asumiendo precios $\mathbf{p} \in \mathbb{R}_{++}^{L}$ e ingreso de $\omega > 0$. Dibuje las curvas de Engel para los bienes 1 y 2.

14. Demanda Walrasiana II

Sea $\mathbf{b} \in \mathbb{R}_{++}^L$ y $X = \{\mathbf{x} \in \mathbb{R}^L : \mathbf{x} \geq \mathbf{b}\}$. Las preferencias están representadas por la siguiente función de utilidad $u : X \to \mathbb{R}$:

$$u(\mathbf{x}) = \min\{x_1 - b_1, \dots, x_L - b_L\}$$

- (a) Son estas preferencias convexas? estríctamente convexas? monótonas? estríctamente monótonas? l.n.s.?
- (b) Tiene el problema del consumidor una solución única? Encuentre la demanda Walrasiana y su dominio.
- (c) Para un bien $\ell \in L$, es éste normal? superior? (hint: vea el caso L = 2).
- (d) Obtenga la función de utilidad indirecta. Chequee la identidad de Roy.
- (e) Obtenga la función de gasto y chequee que sus propiedades se cumplen.
- (f) Obtenga la demanda Hicksiana.
- (g) Obtenga la matriz de Slutsky y chequee que es definida seminegativa y simétrica.