Sistemas Distribuídos Comunicação

Disciplina: Sistemas Distribuídos

Prof.: Edmar Roberto Santana de Rezende

Faculdade de Engenharia de Computação Centro de Ciências Exatas, Ambientais e de Tecnologias Pontifícia Universidade Católica de Campinas

Comunicação

- Sistema centralizado x Sistema distribuído
 - Principal diferença: IPC (Interprocess Communication)
- Sistemas Centralizados
 - Assumem a existência de uma memória compartilhada
 - IPC ocorre através da memória compartilhada
 Ex: Problema do Produtor-Consumidor
- Sistemas Distribuídos
 - Não há memória compartilhada
 - Comunicação entre processos deve ocorrer através da rede
 - Surgem diferentes questões, exemplos e problemas

Comunicação

- Protocolos de comunicação
 - Processos devem seguir regras para se comunicarem
 - Geralmente são projetados em camadas
 Ex: Modelo OSI, ATM, TCP/IP
- Modelo Cliente-Servidor
- Chamada remota de procedimento (RPC)
- Comunicação em grupo

- Devido à ausência de memória compartilhada:
 - Toda comunicação em sistemas distribuídos é baseada em passagem de mensagens
 - Processo A deseja se comunicar com Processo B:
 - A constrói a mensagem
 - 2. A executa uma chamada de sistema para enviar a mensagem
 - a mensagem é enviada através da rede para B
 - Detalhes:
 - A e B devem ter combinado o significado dos bits sendo enviados Ex: Que tensão (em volts) representa o bit 0? Como o receptor identifica o último bit da mensagem? Como detectar se uma mensagem foi danificada ou perdida?

- Vários níveis de detalhes na comunicação
 - Baixo nível: detalhes de transmissão de um bit
 - Alto-nível: detalhes de como expressar informações
- ISO (International Standards Organization)
 - Desenvolveu um modelo de referência: Modelo OSI
 - identifica claramente os vários níveis
 - atribui nomes padronizados a esses níveis
 - aponta que níveis devem realizar que tarefas
 - Objetivo: tornar fácil o tratamento dos vários níveis e questões envolvidos na comunicação

- Modelo OSI
 - Dividido em 7 níveis ou camadas:
 - Aplicação
 - Apresentação
 - Sessão
 - Transporte
 - Rede
 - Enlace
 - Física

Protocolos de comunicação

Camada Física

- Somente envia bits
- Questões:
 - Quantos volts usar para 0 e 1?
 - Quantos bits/s podem ser enviados?
 - Quando a transmissão pode ser realizada em ambas as direções simultaneamente?

Camada de Enlace

- Comunicações reais em rede estão sujeitas a erros
 - Objetivo: detectar ou corrigir erros de transmissão
- Questões:
 - Quando se inicia e termina uma transmissão?
 - Houve erro na transmissão dos bits?

- Camada de Rede
 - O emissor precisa enviar dados para o receptor
 - Questões:
 - Como identificar o receptor?
 - Como enviar dados para um receptor distante?
 - Oual o melhor caminho?
- Camada de Transporte
 - Pacotes podem se perder entre o emissor e o receptor
 - Objetivo: oferecer um serviço de entrega de mensagens
 - Questões:
 - Que tipo de serviço de entrega é necessário?
 - Com ou sem confiabilidade?
 - Com ou sem conexão?

- Camada de Sessão
 - É essencialmente uma melhoria da camada de transporte
 - Provê o controle do diálogo, mantendo registros dos participantes da conversa
 - Provê facilidades de sincronização
- Camada de Apresentação
 - Se preocupa com o significado dos bits transmitidos
 - Mensagens:
 - não consistem de bits aleatórios
 - normalmente são informações estruturadas
 - Objetivo: facilitar a conversa entre máquinas com diferentes representações internas (arquiteturas)

- Camada de Aplicação
 - Consiste em uma miscelânea de protocolos para atividades comuns:
 - correio eletrônico
 - transferência de arquivos
 - conexão remota
 - serviços web