1.导入数据填补方法

```
In [ ]:
         import pandas as pd
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
          from sklearn.impute import KNNImputer
          from myPackage import module
In [ ]:
          def mean_imputer(data, missing_index):
              pm25 mean = data
              for i in missing index:
                  hour=data.loc[i,'hour']
                  day=data. loc[i, 'day']
                  month=data.loc[i, 'month']
                  index = data[(data. hour==hour)&(data. day==day)&(data. month==month)]. index. tolist()
                  exist index = [j \text{ for } j \text{ in index if not } (j==i)]
                  pm25 mean. loc[i, 'pm2.5']=np. mean(data.loc[exist index, 'pm2.5'])
             return pm25_mean
In [ ]:
          def knn imputer(data):
              knn imputer=KNNImputer(n neighbors=40)
              pm25 knn = knn imputer. fit transform(data)
             return pm25 knn
In [ ]:
          import xgboost as xgb
          from sklearn.metrics import mean_squared_error
          from sklearn import preprocessing
```

平均填补

2.1 用平均填补法补全原数据

```
pm25_data = pd. read_csv('pm25_data.csv')
missing_index=np. where(np. isnan(pm25_data['pm2.5']))[0]
```

```
pm25_mean = mean_imputer(pm25_data, missing_index)
         #检查是否还有数据缺失
         pm25 mean[np.isnan(pm25 mean['pm2.5']).values==True]
Out[ ]:
                 No year month day hour pm2.5 DEWP TEMP
                                                                PRES Iws Is Ir cbwd NE cbwd NW cbwd SE cbwd cv
                                                                                                                         date
        18946 18947 2012
                               2 29
                                        10
                                             NaN
                                                      -6
                                                            3.0 1022.0 1.79 0 0
                                                                                                                  0 2012-02-29
        18947 18948 2012
                               2
                                  29
                                        11
                                             NaN
                                                            4.0 1022.0 1.79
                                                                          0 0
                                                                                       1
                                                                                                 0
                                                                                                         0
                                                                                                                  0 2012-02-29
                                                      -6
         18948 18949 2012
                                                                                                         1
                                                                                                                  0 2012-02-29
                                  29
                                        12
                                             NaN
                                                      -6
                                                            5.0 1021.0 1.79
        18949 18950 2012
                                  29
                                        13
                                             NaN
                                                      -5
                                                           7.0 1020.0 3.58 0 0
                                                                                                 0
                                                                                                         1
                                                                                                                 0 2012-02-29
        18950 18951 2012
                                  29
                                                           8.0 1019.0 5.37 0 0
                                                                                       0
                                                                                                 0
                                                                                                                  0 2012-02-29
                                        14
                                             NaN
                                                      -5
                                                                                       0
                                                                                                 0
         18951 18952 2012
                               2 29
                                                      -5
                                                           8.0 1019.0 7.16 0 0
                                                                                                         1
                                                                                                                  0 2012-02-29
                                        15
                                             NaN
         # 我们发现2012年2月29日也缺了数据,所以决定用2012年2月28日和3月1日的数据取平均作为2012年2月29日的数据
         index1 = pm25_mean[(pm25_mean.day==28)&(pm25_mean.month==2)&(pm25_mean.year==2012)].index.tolist()
         index2 = pm25 mean[(pm25 mean.day==29)&(pm25 mean.month==2)&(pm25 mean.year==2012)].index.tolist()
         index3 = pm25 mean \lceil (pm25 mean. day==1) \& (pm25 mean. month==3) \& (pm25 mean. year==2012) \rceil. index. tolist()
         data1=pm25 mean. loc[index1, 'pm2.5']. reset index(drop=True)
         data3=pm25 mean. loc[index3, 'pm2.5']. reset index(drop=True)
         pm25 mean. loc[index2, pm2.5] = [1/2*(data1[i]+data3[i]) for i in range (24)]
         # 对数化
         pm25 mean=module.log(pm25 mean)
         # 得到week
         week list=[]
         for date in pm25 mean['date']:
             week list. append (pd. to datetime (date). weekday ())
         pm25 mean['week']=week list
```

2.2 与task1类似,用xgboost预测模型拟合填补后的数据,并通过xgb.plot_importance进行特征选择

```
var=['year','month','day','hour','DEWP','TEMP','PRES','Iws','Is','Ir','cbwd_NE','cbwd_NE','cbwd_SE','cbwd_cv']
X_train = train_data[var]
X_test = test_data[var]
y_train = train_data['pm2.5_log']
```

存为csv文件

得到 train data & test data

pm25 mean. to csv("pm25 data mean.csv", index=False)

test data, train data=module, train test split(pm25 mean)

```
y_test = test_data['pm2.5']

XGB_model=xgb. XGBRegressor(learning_rate=0.1, n_estimators=900, max_depth=5)

XGB_model. fit(X_train, y_train)
y_pred = XGB_model. predict(X_test)
y_pred = np. round(np. exp(y_pred))

# 归一化
y_pred=preprocessing. minmax_scale(y_pred)
y_test=preprocessing. minmax_scale(y_test)
print("Mean squared error of test data for mean imputed data: %.4f" % mean_squared_error(y_pred, y_test))
print("R2 score: %.4f" % XGB_model. score(X_test, test_data['pm2.5_log']))

# 特征选择
xgb. plot_importance(XGB_model)
```

Mean squared error of test data for mean imputed data: 0.0076
R2 score: 0.6848

<AxesSubplot:title={'center': Feature importance'}, xlabel='F score', ylabel='Features'>

得到平均填补法补全的数据集的预测结果为R^2=0.6848, 略低于原数据

筛选后day仍是最重要的特征;气象因素中仍是DEWP,lws,PRES,TEMP最重要,但各个因素的重要程度有所改变,重要性依次为DEWP,lws,PRES,TEMP

2.2 与task1类似,用相关系数矩阵进行特征筛选

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

- -0.6

- -0 8

-0.011 -0.022 0.083 -0.024 0.16 -0.091 -0.043 -0.24 0.019 -0.052 -0.031 -0.21 0.092 0.15 pm2.5 - 1 -7.2e-14 -6e-14 2e-15 0.0011 0.046 -0.013 -0.064 -0.017 -0.024 0.011 -0.058 0.019 0.036 year - -0.011 month - -0.022 -7.2e-14 1 0.011 -4.7e-06 0.23 0.17 -0.062 0.003 -0.062 0.037 -0.0081 0.032 -0.073 0.055 0.083 -6e-14 0.011 1 -9.2e-06 0.029 0.015 -0.0071 -0.0091 -0.037 0.0027 -0.0051 -0.017 0.014 0.0073 hour - -0.024 2e-15 -4.7e-06-9.2e-06 1 -0.021 0.15 -0.042 0.057 -0.0024 -0.0063 -0.064 -0.13 0.16 0.0011 0.23 0.029 -0.021 0.82 -0.3 -0.034 0.13 -0.037 -0.34 -0.78 TEMP - -0.091 0.046 0.17 0.015 0.15 0.82 1 -0.83 -0.15 -0.093 0.049 -0.064 -0.27 0.31 -0.0047 PRES - -0.043 -0.013 -0.062 -0.0071 -0.042 -0.78 -0.83 1 0.19 0.069 -0.08 0.066 0.23 -0.25 -0.022 lws - -0.24 -0.064 0.003 -0.0091 0.057 -0.3 -0.15 0.022 -0.01 -0.12 0.36 -0.08 -0.23 ls - 0.019 -0.017 -0.062 -0.037 -0.0024 -0.034 -0.093 0.069 0.022 1 -0.0095 -0.0083 -0.022 0.04 -0.015 Ir - -0.052 -0.024 0.037 0.0027 -0.0063 0.13 0.049 -0.08 -0.01 -0.0095 1 0.034 0.034 -0.04 -0.019 cbwd NE - -0.031 0.011 -0.0081 -0.0051 -0.064 -0.037 -0.064 0.066 -0.12 -0.0083 0.034 1 -0.25 -0.26 -0.19 cbwd NW - -0.21 -0.058 0.032 -0.017 -0.13 -0.34 -0.27 0.23 0.36 -0.022 0.034 -0.25 -0.51 -0.36 cbwd SE - 0.092 0.019 -0.073 0.014 0.21 0.28 0.31 -0.25 -0.08 0.04 -0.38 dowd_NE dowd_SE dbwd_cv

筛选后结果发生变化,与pm2.5相关性较高的因素: DEWP、lws、cbwd_NW、cbwd_cv

2.3 与task1类似, 通过PCA.explained_variance_ratio_选择特征并尝试降维

```
In [ ]:
          from sklearn. decomposition import PCA
          pca=PCA(). fit (X. drop('pm2.5', axis=1))
          plt. plot(np. cumsum(pca. explained_variance_ratio_))
          plt. xlabel ('number of components')
          plt. ylabel('cumulative explained variance')
          np. cumsum(pca. explained_variance_ratio_)
         array([0.81476227, 0.93698415, 0.96192403, 0.97877016, 0.98886732,
Out[ ]:
                0.99506625, 0.99835893, 0.99899759, 0.99962027, 0.99980266,
                0.99988853, 0.99995792, 1.
                                                    , 1.
           1.000
           0.975
           0.950
           0.925
           0.900
           0.875
            0.850
           0.825
                                        6
                                               8
                                                      10
                                                             12
                                  number of components
```

PCA给出的结果与原数据类似,取前3个主成分作为特征,其中第一主成分主要反映了对pm2.5的影响

- 2.4 用由平均填补法得到的新数据进行task2的运行
- 2.4.1 与task2类似,用折线图记录每年一天24小时pm2.5的变化趋势,取每年每小时的平均浓度作为当年该小时的对应值

```
In []: ## PM2.5在一天内的波动值
Year=[2010, 2011, 2012, 2013, 2014]
```

```
Hour=range (24)
day_of_year1=[[],[],[],[],[]]
variation_of_day1=pd. DataFrame()
for index, year in enumerate (Year):
    pm25_year=pm25_mean[pm25_mean.year==year]
    for hour in Hour:
        pm25_hour_year=pm25_year[pm25_year.hour==hour]
        mean=np. mean(pm25_hour_year['pm2.5'])
        day of year1[index].append(mean)
variation_of_day1=variation_of_day1. append(day_of_year1)
variation_of_day1.index=Year
plt. figure (figsize= (16, 12))
for i in range (5):
    plt. subplot (2, 3, i+1)
    plt. plot (Hour, variation_of_day1. iloc[i,:])
    plt. title ('days of %d' % Year[i])
    plt. xlabel('hour')
    plt.ylabel('ave pm2.5')
```


In []: | variati

variation_of_day1

折线图结果与原数据task2的基本一样,5年间pm2.5每天的变化趋势均相似,0点至15点浓度下降,15点至24点浓度上升

2.4.2 与task2类似,用折线图记录每年一周每天pm2.5的变化趋势,取每年每星期一天的平均浓度作为当年该天的对应值

```
# PM2.5在一周的波动值
Week=range(7)
week of year1=[[],[],[],[],[]]
variation_of_week1=pd. DataFrame()
for index, year in enumerate (Year):
    pm25 year=pm25 mean[pm25 mean.year==year]
    for week in Week:
        pm25 week year=pm25 year[pm25 year.week==week]
        mean=np. mean (pm25 week year ['pm2.5'])
        week of year1[index]. append (mean)
variation_of_week1=variation_of_week1. append (week_of_year1)
variation of week1.index=Year
plt. figure (figsize= (16, 12))
Week str=['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
for i in range (5):
    plt. subplot (2, 3, i+1)
    plt. plot (Week_str, variation_of_week1. iloc[i,:])
    plt. title ('weeks of %d' % Year[i])
    plt. ylabel ('ave pm2.5')
```


	U	1	2	3	4	5	6
201	95.338742	105.918536	106.729033	98.925414	102.214164	109.861111	102.506343
201	97.559495	105.625000	109.712607	92.901309	90.614650	96.398257	97.242521
201	96.468553	87.264824	82.237847	98.340278	97.659109	92.293470	85.851350
201	96.339076	100.180490	94.268029	84.635083	106.253072	112.237580	117.731771
201	4 83.591947	86.352230	97.055031	112.972289	105.044471	109.700321	90.300881

与task2原数据结果相比,除少数数值外,填充的数据结果基本不变,每年每星期pm2.5平均浓度变化趋势完全不同

2.4.3 与task2类似,用折线图记录每年每月pm2.5的变化趋势,取每年每月的平均浓度作为当年该月的对应值

```
In [ ]:
         ## PM2.5在一年内数月的波动值
         Month=range (1, 13)
         month_of_year1=[[],[],[],[],[]]
         variation of month1=pd. DataFrame()
         for index, year in enumerate (Year):
             pm25 year=pm25 mean[pm25 mean.year==year]
             for month in Month:
                 pm25 month year=pm25 year[pm25 year.month==month]
                 mean=np. mean (pm25 month year ['pm2.5'])
                  month of year1[index]. append (mean)
          variation of month1=variation of month1. append (month of year1)
          variation of month1.index=Year
         plt. figure (figsize= (16, 12))
         for i in range(5):
             plt. subplot (2, 3, i+1)
             plt. plot (Month, variation of month1. iloc[i,:])
             plt. title ('months of %d' % Year[i])
             plt. ylabel ('ave pm2.5')
```


	0	1	2	3	4	5	6	7	8	9	10	11
2010	87.761761	97.388393	93.854839	79.989583	86.964830	107.040278	123.647849	94.872200	113.060532	119.005712	136.120833	97.333333
2011	49.615255	150.321429	64.755712	91.427083	65.452285	108.553356	107.421819	95.677419	95.231944	141.711694	109.501736	108.552083
2012	120.815076	85.515805	96.941196	87.472222	90.203629	96.900694	83.878136	80.656250	60.760446	94.843414	90.346181	107.530130
2013	192.628584	123.714658	122.705645	66.231250	85.434588	111.308681	69.354839	62.318660	90.753935	107.476142	91.113542	97.484543
2014	118.788306	174.454613	110.514785	95.004514	72.143817	60.632060	89.510081	63.229167	70.360764	140.540323	106.270486	78.343974

结果与原数据的类似,每年每月pm2.5平均浓度变化趋势不同,但从2011年后,基本从2月到10月浓度维持在相对较低水平,而其余月份基本维持在相对较高水平

2.4.4 与task2类似,用折线图记录每年四季pm2.5的变化趋势,取每年每个季度的平均浓度作为当年该季度的对应值

```
In [ ]:
         ## PM2.5在四季的波动值
         season of vear1=[[],[],[],[],[]]
         variation of season1=pd. DataFrame()
         for index, year in enumerate (Year):
             pm25 year=pm25 mean[pm25 mean.year==year]
             mean spring=(variation of month1.loc[year, 2]+variation of month1.loc[year, 3]+variation of month1.loc[year, 4])/3
              mean_summer = (variation_of_month1.loc[year, 5] + variation_of_month1.loc[year, 6] + variation_of_month1.loc[year, 7])/3
             mean fall=(variation of monthl.loc[year, 8]+variation of monthl.loc[year, 9]+variation of monthl.loc[year, 10])/3
              mean winter=(variation of month1.loc[year, 11]+variation of month1.loc[year, 0]+variation of month1.loc[year, 1])/3
             season of year1[index].append(mean spring)
             season of year1[index].append(mean summer)
             season of year1[index]. append (mean fall)
             season of year1[index].append(mean winter)
         variation of season1=variation of season1. append (season of year1)
          variation of season1.index=Year
         plt. figure (figsize= (16, 12))
         Seasons=['spring', 'summer', 'fall', 'winter']
         for i in range(5):
             plt. subplot (2, 3, i+1)
             plt. plot (Seasons, variation_of_season1.iloc[i,:])
             plt. title ('seasons of %d' % Year[i])
             plt. ylabel ('ave pm2.5')
```


Out[]: 0 1 2 3

	0	1	2	3
2010	86.936417	108.520109	122.729026	94.161162
2011	73.878360	103.884198	115.481791	102.829589
2012	91.539016	87.145027	81.983347	104.620337
2013	91.457161	80.994060	96.447873	137.942595
2014	92.554372	71.123769	105.723858	123.862298

结果与原数据类似,除少量数值变化外,浓度变化趋势基本相同,2010年和2011年,秋季达到平均浓度最高值,浓度从春夏秋上升,秋冬下降。2012、2013、2014年夏季平均浓度最低,夏秋冬三季依次上升,浓度在冬季最高,之后下降

2.4.5 与task2类似,用折线图记录每年pm2.5的变化趋势,取每年平均浓度作为当年的对应值

Out[]: Text(0, 0.5, 'ave pm2.5')

90. 57314497716895, 91. 4420879829955, 101. 65952245053273, 97. 85739155251144]

与原数据结果类似,除平均浓度数值范围有细微变化外,基本趋势不变。这五年间2012年平均浓度最低,2010至2012年连续下降,2013年达到较高水平后2014年再次下降至2011年水平

2.4.6 与task2类似,对于填补后的数据,利用上述与时间有关的pm2.5平均浓度信息,分别使用每条数据的时间信息和天气信息,运用task1中提出的xgboost模型、训练集和测试集,实现对pm2.5浓度的预测,同时使用score作为预测结果好坏的测量标准,认为越接近1预测效果越好

2.4.6.1 与task2类似,分别使用每年一天24小时数据的时间信息和天气信息,对每小时pm2.5平均浓度进行预测,将两种方法下每年每小时的预测score用折线图分别绘出

```
In [ ]:
         ## 基于PM2.5在一天内的波动值,用xgboost进行预测
         Year=[2010, 2011, 2012, 2013, 2014]
         Hour=range (24)
         day of year train1=[[],[],[],[],[]]
         day of year test1=[[],[],[],[],[]
         score of year_time1 = [[], [], [], [], []]
         score of year weather1 = [[], [], [], []]
         var time = ['year', 'month', 'day', 'hour', 'week']
         var weather = ['DEWP', 'TEMP', 'PRES', 'Iws', 'Is', 'Ir', 'cbwd NE', 'cbwd NW', 'cbwd SE', 'cbwd cv']
         variation of day time1=pd. DataFrame()
         variation of day weather1=pd. DataFrame()
         for index, year in enumerate (Year):
             train data vear=train data[train data.vear==vear]
             test data year=test data[test data.year==year]
             for hour in Hour:
                 train data hour year=train data year[train data year.hour==hour]
                 test data hour year=test data year [test data year.hour==hour]
                 ## Only use time to predict
                 X train data hour year time = train data hour year [var time]
                 X test data hour year time = test data hour year[var time]
                 y train data hour year = train data hour year ['pm2.5 log']
                 y test data hour year = test data hour year ['pm2.5']
                 XGB model time=XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
                 XGB model time. fit(X train data hour year time, y train data hour year)
                 y pred hour year time = XGB model time.predict(X test data hour year time)
                 y pred hour year time = np. round(np. exp(y pred hour year time))
                 y pred hour year time = preprocessing. minmax scale(y pred hour year time)
                 y_test_data_hour_year = preprocessing.minmax_scale(y_test_data_hour_year)
                 score of year time1[index]. append(XGB model time. score(X test data hour year time, test data hour year['pm2.5 log']))
                 ## Only use weather to predict
                 X train data hour year weather = train data hour year [var weather]
                 X test data hour year weather = test data hour year var weather
                 XGB model weather = XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
                 XGB model weather. fit(X train data hour year weather, y train data hour year)
```

```
y_pred_hour_year_weather = XGB_model_weather.predict(X_test_data_hour_year_weather)
        y pred hour year weather = np. round(np. exp(y pred hour year weather))
        y pred hour year weather = preprocessing. minmax scale(y pred hour year weather)
        y_test_data_hour_year = preprocessing.minmax_scale(y_test_data_hour_year)
        score of year weather1[index]. append(XGB model weather. score(X test data hour year weather, test data hour year['pm2.5 log']))
variation of day time1=variation of day time1. append (score of year time1)
variation of day weather1=variation of day weather1. append (score of year weather1)
plt. figure (figsize= (20, 12))
for i in range(5):
    plt. subplot (2, 3, i+1)
    plt. plot (Hour, variation of day time1. iloc[i,:])
    plt. title('score of xgboost of days of %d predicted by time' % Year[i])
    plt. xlabel('hour')
    plt. vlabel ('score')
plt. figure (figsize= (20, 12))
for i in range(5):
    plt. subplot (2, 3, i+1)
    plt. plot (Hour, variation_of_day_weather1. iloc[i,:])
    plt. title ('score of xgboost of days of %d predicted by weather' % Year[i])
    plt. xlabel('hour')
    plt. ylabel('score')
```


	3	-0.059887	-0.04667	9 -0.02420	0.0430	65 -0.179	843 -0.093	3903 -0.0	07505 -0.	067677 -	0.141005	-0.10	8929	-0.287272	-0.341617	-0.284081	-0.329644	-0.37892	6 -0.201
	4	0.322958	0.29422	9 0.13522	28 0.1102	96 0.198	284 0.15	1557 0.1	93695 0.	060686	0.152116	0.18	4293	0.103525	0.000232	-0.005142	-0.023669	0.00800	0 -0.004
	5 ro	ows × 24 c	columns																
	4																		•
In []:	V	ariation_	of_day_w	eather1															
Out[]:		0	1	2	3	4	5	6	7	8	3	9	14	15	16	17	18	19	20
	0	0.463175	0.355465	0.439692	0.148601	0.397043	0.430741	0.360435	0.427003	0.457629	0.65764	2	0.609773	0.489238	0.498087	0.554335	0.634018	0.540722	0.512537
	1	0.242600	0.254181	0.360900	0.185756	0.281189	0.241897	0.350279	0.302937	0.381670	0.27647	'8	0.405547	0.263135	0.320861	0.222468	0.349365	0.364949	0.353239
	2	0.371615	0.401322	0.329053	0.269312	0.318278	0.165299	0.158079	0.179637	0.324204	0.46685	3	0.501327	0.361530	0.321893	0.391892	0.305935	0.358253	0.424301
	3	0.463262	0.668284	0.601897	0.486143	0.564541	0.581808	0.663416	0.522434	0.561725	0.59672		0.611388	0.621423	0.670615	0.549894	0.603153	0.425058	0.266684
	4	0.417926	0.567925	0.413405	0.413795	0.442679	0.473672	0.607768	0.631547	0.602882	0.55348	1	0.558511	0.644679	0.649985	0.443518	0.324492	0.514093	0.497325
	5 ro	ows × 24 c	columns																
	4																		•

0.068575 -0.162571 -0.168071 -0.065697 ...

0.227275

0.234499

0.114063 -0.011080

0.098768

0.028920

15

0.086183

0.163616

16

0.166446

17

0.252472

18

0.179

0.174080

相比于原数据,两种方法给出的预测分数变化趋势均与原来的相似,运用天气信息的预测准度明显更高。但这个精度相对于原数据明显下降,最高低于使用原先所有训练集得到的预测模型的准度

2.4.6.2 与task2相似,分别使用填补后每年每月数据的时间信息和天气信息,对每月pm2.5平均浓度进行预测,将两种方法下每年每月的预测score用折线图分别绘出

```
## 基于PM2.5在一年内数月的波动值, 用xgboost进行预测
Month = range(1, 13)
week of year1=[[],[],[],[],[]]
score_of_month_weather1 = [[],[],[],[],[]]
score of month time1 = [[],[],[],[],[]]
variation_of_month_time1=pd. DataFrame()
variation of month weather1=pd. DataFrame()
for index, year in enumerate (Year):
```

```
train data year=train data train data.year==year
    test data vear=test data[test data.vear==vear]
    for month in Month:
        train data month year=train data year train data year. month==month
        test data month year=test data year[test data year.month==month]
        ## Only use time to predict
        X_train_data_month_year_time = train_data month year[var time]
        X test data month year time = test data month year [var time]
        y train data month year = train data month year ['pm2.5 log']
        y test data month year = test data month year ['pm2.5']
        XGB model time=XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
        XGB model time. fit (X train data month year time, y train data month year)
        v pred month year time = XGB model time.predict(X test data month year time)
        y pred month year time = np. round(np. exp(y pred month year time))
        v pred month year time = preprocessing. minmax scale(v pred month year time)
        y test data month year = preprocessing. minmax scale(y test data month year)
        score of month timel[index]. append(XGB model time. score(X test data month year time, test data month year['pm2.5 log']))
        ## Only use weather to predict
        X train data month year weather = train data month year [var weather]
        X test data month year weather = test data month year var weather
        XGB model weather = XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
        XGB model weather. fit (X train data month year weather, y train data month year)
        y pred month year weather = XGB model weather.predict(X test data month year weather)
        y pred month year weather = np. round(np. exp(y pred month year weather))
        y pred month year weather = preprocessing. minmax scale (y pred month year weather)
        y test data month year = preprocessing.minmax scale(y test data month year)
        score of month weather1[index]. append(XGB model weather. score(X test data month year weather, test data month year['pm2.5 log']))
variation of month time1=variation of month time1. append (score of month time1)
variation of month weatherl=variation of month weatherl. append (score of month weatherl)
plt. figure (figsize=(20, 12))
for i in range (5):
    plt. subplot (2, 3, i+1)
    plt. plot (Month, variation of month time1. iloc[i,:])
    plt. title ('score of xgboost of months of %d predicted by time' % Year[i])
    plt. ylabel ('score')
plt. figure (figsize=(20, 12))
for i in range (5):
    plt. subplot (2, 3, i+1)
    plt. plot (Month, variation of month weather1. iloc[i,:])
```


		0	1	2	3	4	5	6	7	8	9	10	11
	2	-4.389388	-1.788590	-0.663142	0.205786	-0.572387	0.436812	0.326685	0.288677	-0.954663	0.218447	-1.469489	-1.911884
	3	-0.060734	-0.158978	-0.167026	-1.865168	-1.890642	-1.698227	0.443398	-0.271695	-0.770374	-0.034501	-0.438089	-1.429977
	4	-0.160527	0.319677	0.460526	0.583537	-0.770967	-3.055540	0.657222	-0.270041	-0.264434	0.350737	-0.009396	-0.792763
In []:	Vá	ariation_o	of_month_v	weather1									
Out[]:		0	1	2	3	4	5	6	7	8	9	10	11
Out[]:	0	0	1 0.521514		3 0.572718		5 0.344922	6 0.713370	7 0.423196	8 0.382643	9 0.701248	10 0.660548	0.822447
Out[]:					0.572718		0.344922		0.423196	0.382643	0.701248	0.660548	
Out[]:	1	0.485421 0.344355		0.505635 0.540712	0.572718	0.108402 0.279292	0.344922	0.713370 0.666909	0.423196	0.382643	0.701248	0.660548	0.822447
Out[]:	1	0.485421 0.344355	0.346419	0.505635 0.540712 0.646563	0.572718 -0.716010 0.595400	0.108402 0.279292	0.344922	0.713370 0.666909	0.423196	0.382643	0.701248	0.660548 -0.021116 0.437697	0.822447 0.722236

相比于原数据,两种方法给出的预测分数变化趋势和数值均与原来的相似,用每月平均浓度预测时只用天气信息可以达到更高精度,但预测准度同样更加不稳定

2.4.6.3 与task2类似,分别使用填补后每年每季数据的时间信息和天气信息,对每季pm2.5平均浓度进行预测,将两种方法下每年每季的预测score用折线图分别绘出

```
In[]: ## 基于PM2.5在一年內四季的波动值,用xgboost进行预测 season_of_yearl=[[], [], [], [], [], []] score_of_season_weather1 = [[], [], [], []] score_of_season_time1 = [[], [], [], []] score_of_season_time1 = [[], [], [], []] wriation_of_season_time1 = pd. DataFrame() variation_of_season_weather1 = pd. DataFrame() for index, year in enumerate(Year):

train_data_year=train_data[train_data.year=year]

test_data_year=test_data[test_data.year=year]

train_data_spring_year=pd.concat([train_data_year[train_data_year.month==3], train_data_year[train_data_year.month==4], train_data_year[train_data_year]

test_data_spring_year=pd.concat([test_data_year[test_data_year.month==3], test_data_year[test_data_year.month==4], test_data_year[test_data_year.month==4], train_data_year[test_data_year.month==6], train_data_year[train_data_year.month==7], train_data_year[train_data_year[train_data_year[train_data_year], train_data_year.month==7], train_data_year[train_data_year[train_data_year], train_data_year[train_data_year], train_data_year.month==7], train_data_year[train_data_year], train_data_year[train_data_ye
```

```
test data summer year=pd. concat([test data year[test data year.month==6], test data year[test data year.month==7], test data year[test data year]
   sort=False)
train data fall year=pd.concat([train data year[train data year.month==9], train data year[train data year.month==10], train data year[train data year]
   sort=False)
test data fall vear=pd.concat([test data vear[test data vear.month==9], test data vear[test data vear.month==10], test data vear[test data vear[test data vear]]
   sort=False)
train data winter year=pd. concat([train data year[train data year. month==12], train data year[train data year. month==1], train data year[train data year]
   sort=False)
test data winter year=pd.concat([test data year[test data year.month==12], test data year[test data year.month==1], test data year[test data year]
   sort=False)
## Only use time to predict for spring
X train data spring year time = train data spring year var time
X test data spring year time = test data spring year[var time]
y_train_data_spring_year = train_data_spring_year['pm2.5_log']
v test data spring year = test data spring year ['pm2.5']
XGB model time spring=XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
XGB model time spring fit (X train data spring year time, v train data spring year)
y pred spring year time = XGB model time spring. predict(X test data spring year time)
y pred spring year time = np. round(np. exp(y pred spring year time))
y pred spring year time = preprocessing. minmax scale(y pred spring year time)
y test data spring year = preprocessing. minmax scale(y test data spring year)
score of season timel[index]. append(XGB model time spring, score(X test data spring year time, test data spring year['pm2.5 log']))
## Only use weather to predict for spring
X train data spring year weather = train data spring year [var weather]
X test data spring year weather = test data spring year var weather
XGB model weather spring = XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
XGB model weather spring fit (X train data spring year weather, y train data spring year)
y pred spring year weather = XGB model weather spring.predict(X test data spring year weather)
y pred spring year weather = np. round(np. exp(y pred spring year weather))
y pred spring year weather = preprocessing. minmax scale(y pred spring year weather)
y test data spring year = preprocessing. minmax scale(y test data spring year)
score of season weather1[index]. append(XGB model weather spring. score(X test data spring year weather, test data spring year['pm2.5 log']))
## Only use time to predict for summer
X train data summer year time = train data summer year[var time]
X test data summer year time = test data summer year [var time]
y train data summer year = train data summer year ['pm2.5 log']
y test data summer year = test data summer year ['pm2.5']
XGB model time summer=XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
XGB model time summer. fit(X train data summer year time, y train data summer year)
y pred summer year time = XGB model time summer.predict(X test data summer year time)
y pred summer year time = np. round(np. exp(y pred summer year time))
y pred summer year time = preprocessing. minmax scale(y pred summer year time)
y test data summer year = preprocessing. minmax scale(y test data summer year)
```

```
score of season time1[index]. append(XGB model time summer. score(X test data summer year time, test data summer year['pm2.5 log']))
## Only use weather to predict for summer
X train data summer year weather = train data summer year [var weather]
X test data summer year weather = test data summer year [var weather]
XGB model weather summer = XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
XGB model weather summer fit (X train data summer year weather, y train data summer year)
y pred summer year weather = XGB model weather summer.predict(X test data summer year weather)
y pred summer year weather = np. round(np. exp(y pred summer year weather))
y pred summer year weather = preprocessing. minmax scale(y pred summer year weather)
y test data summer year = preprocessing. minmax scale(y test data summer year)
score_of_season_weather1[index].append(XGB_model_weather_summer.score(X_test_data_summer year weather, test data summer year['pm2.5 log']))
## Only use time to predict for fall
X train data fall year time = train data fall year [var time]
X test data fall vear time = test data fall vear var time
y train data fall year = train data fall year ['pm2.5 log']
y test data fall year = test data fall year ['pm2.5']
XGB model time fall=XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
XGB model time fall. fit(X train data fall year time, y train data fall year)
v pred fall vear time = XGB model time fall.predict(X test data fall vear time)
y pred fall year time = np. round(np. exp(y pred fall year time))
y pred fall year time = preprocessing. minmax scale(y pred fall year time)
y test data fall year = preprocessing. minmax scale(y test data fall year)
score of season timel[index]. append(XGB model time fall. score(X test data fall year time, test data fall year['pm2.5 log']))
## Only use weather to predict for fall
X train data fall year weather = train data fall year [var weather]
X test data fall year weather = test data fall year[var weather]
XGB model weather fall = XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
XGB model weather fall. fit (X train data fall year weather, v train data fall year)
y pred fall year weather = XGB model weather fall.predict(X test data fall year weather)
y pred fall year weather = np. round(np. exp(y pred fall year weather))
y pred fall year weather = preprocessing. minmax scale(y pred fall year weather)
y test data fall year = preprocessing. minmax scale(y test data fall year)
score of season weather [index]. append (XGB model weather fall. score (X test data fall year weather, test data fall year ['pm2.5 log']))
## Only use time to predict for winter
X train data winter year time = train data winter year [var time]
X test data winter year time = test data winter year [var time]
y train data winter year = train data winter year 'pm2.5 log'
y test data winter year = test data winter year ['pm2.5']
XGB model time winter=XGBRegressor(learning rate=0.03, n_estimators=300, max_depth=5)
XGB model time winter.fit(X train_data_winter_year_time, y_train_data_winter_year)
```

```
v pred winter year time = XGB model time winter predict(X test data winter year time)
  y pred winter year time = np. round(np. exp(y pred winter year time))
  y pred winter year time = preprocessing. minmax scale(y pred winter year time)
   y test data winter year = preprocessing. minmax scale (y test data winter year)
   score_of_season_time1[index].append(XGB_model_time_winter.score(X_test_data_winter_year_time, test_data_winter_year['pm2.5 log']))
   ## Only use weather to predict for winter
   X train data winter year weather = train data winter year [var weather]
  X test data winter year weather = test data winter year [var weather]
   XGB model weather winter = XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
   XGB model weather winter fit (X train data winter year weather, y train data winter year)
  y_pred_winter_year_weather = XGB_model_weather_winter.predict(X_test_data_winter_year_weather)
   v pred winter vear weather = np. round(np. exp(v pred winter vear weather))
   y pred winter year weather = preprocessing. minmax scale(y pred winter year weather)
   v test data winter year = preprocessing. minmax scale(v test data winter year)
   score_of_season_weather1[index].append(XGB_model_weather_winter.score(X_test_data_winter year weather, test data winter year['pm2.5 log']))
variation of season time1=variation of season time1. append (score of season time1)
variation of season weather1=variation of season weather1, append (score of season weather1)
plt. figure (figsize=(20, 12))
Seasons=['spring', 'summer', 'fall', 'winter']
for i in range (5):
    plt. subplot (2, 3, i+1)
    plt. plot (Seasons, variation of season timel. iloc[i,:])
    plt. title ('score of xgboost of seasons of %d predicted by time' % Year[i])
    plt. ylabel ('score')
plt. figure (figsize=(20, 12))
for i in range(5):
    plt. subplot (2, 3, i+1)
    plt. plot (Seasons, variation of season weather1. iloc[i,:])
    plt. title('score of xgboost of seasons of %d predicted by weather' % Year[i])
    plt. vlabel ('score')
```


Out[]: 0 1 2 3 0 -0.157600 0.182988 0.191778 -0.211233 1 0.112579 -0.255533 -0.371047 0.174395

		0		I	2	3
	2	0.318417	0.51799	5 0.03429	90 -0.15	52796
	3	-0.214718	-0.05569	0.39892	23 -0.31	13043
	4	0.161678	0.02324	4 0.29126	54 0.17	70026
In []:	V	ariation_	_of_seaso	n_weather	·1	
0						•
		Λ.	1	2		
Out[]:		0	1	2		
-	0	0.345091				
-			0.455237	0.486230	0.62184	19
-	1	0.345091	0.455237 0.101059	0.486230 0.061360	0.62184	19 19
-	1	0.345091 0.332456	0.455237 0.101059 0.190327	0.486230 0.061360 0.359321	0.62184 0.64934 0.61253	19 19 37
	1 2 3	0.345091 0.332456 0.515616	0.455237 0.101059 0.190327 0.460768	0.486230 0.061360 0.359321 0.511830	0.62184 0.64934 0.61253 0.70585	19 19 37

与原数据相比,两种方法给出的预测分数变化趋势均有较大变化,尤其是2010年、2013年和2014年用时间因素得到的预测分数变化趋势和2011年和2013年用天气因素得到的预测分数变化趋势。但总体上,我们仍应该用天气信息进行预测,且这五年间冬天均达到最高准度,后四年夏秋两季均为最低

2.4.7 与task2类似,用折线图记录填补后数据每年周一早晨(6点至9点)每小时平均pm2.5的变化趋势,取每年每星期一每小时的平均浓度作为当年该天该小时的对应值

```
day_of_year_Mon1[index]. append(mean)

variation_of_day_Mon1=variation_of_day_Mon1. append(day_of_year_Mon1)
variation_of_day_Mon1. index=Year

plt. figure(figsize=(20, 12))

for i in range(5):
    plt. subplot(2, 3, i+1)
    plt. plot(Hour_Mon, variation_of_day_Mon1. iloc[i,:])
    plt. title('Monday morning of %d' % Year[i])
    plt. xlabel('hour')
    plt. ylabel('ave pm2.5')
```


 92.937500 91.447115 88.336538 96.187500 99.764423 101.254808 100.307692 100.099359

2		'	U	
330	89.4528	89.726415	88.943396	2012
000	94.3750	92.860577	91.043269	2013
179	81.4871	81.730769	85.942308	2014

与原数据结果相比,平均浓度数值有所变化,但变化趋势与原数据的大致相当。每年星期一早晨每小时pm2.5平均浓度变化趋势不同,但除2013和2014年外均在8点取得最低值

2.4.8 与task2类似,用折线图记录填补后数据每年12月周末(周六周日)晚上(18点至24点)每小时平均pm2.5的变化趋势,取每年12月周末每天每小时的平均浓度作为当年该天该小时的对应值

```
In [ ]:
         ## PM2.5在12月周末夜晚的波动值
         from pandas.core.frame import DataFrame
         Hour even=range (18, 24)
         week dec=range(5,7)
         month dec=range(12, 13)
         weekend_Dec_2010=['2010-12-04', '2010-12-05', '2010-12-11', '2010-12-12', '2010-12-18', '2010-12-19', '2010-12-25', '2010-12-26']
         weekend_Dec_2011=['2011-12-03', '2011-12-04', '2011-12-10', '2011-12-11', '2011-12-17', '2011-12-18', '2011-12-24', '2011-12-25', '2011-12-31']
         weekend_Dec_2012=['2012-12-01', '2012-12-02', '2012-12-08', '2012-12-09', '2012-12-15', '2012-12-16', '2012-12-22', '2012-12-23', '2012-12-29', '2012-12-29', '2012-12-10']
         weekend_Dec_2013=[ '2013-12-07', '2013-12-08', '2013-12-14', '2013-12-15', '2013-12-21', '2013-12-28', '2013-12-29']
         weekend Dec 2014=['2014-12-06', '2014-12-07', '2014-12-13', '2014-12-14', '2014-12-20', '2014-12-21', '2014-12-27', '2014-12-28']
         day of year Dec1=[[],[],[],[],[]]
         variation of day dec1=pd. DataFrame()
          for index, year in enumerate (Year):
             pm25 year=pm25 mean[pm25 mean.year==year]
             for month in month dec:
                 pm25 dec year=pm25 year[pm25 year.month==month]
                 pm25 weekend dec year=pd.concat([pm25 dec year[pm25 dec year.week==5], pm25 dec year[pm25 dec year.week==6]], sort=False)
                 for hour in Hour even:
                      pm25 even weekend dec vear=pm25 weekend dec vear[pm25 weekend dec vear.hour==hour]
                      mean=np. mean (pm25 even weekend dec year ['pm2.5'])
                      day of year Decl[index]. append (mean)
         variation of day dec1=variation of day dec1. append (day of year Dec1)
          variation of day dec1.index=Year
         plt. figure (figsize=(20, 12))
         for i in range (5):
             plt. subplot (2, 3, i+1)
```

```
plt.plot(Hour_even, variation_of_day_dec1.iloc[i,:])
plt.title('Evening of the weekend in December of %d' % Year[i])
plt.xlabel('hour')
plt.ylabel('ave pm2.5')
```


n []: variation_of_day_dec1

与原数据相比,2012年和2013年的数值有所变化,但变化趋势基本一样,平均浓度基本均为上升 趋势

2.4.9 与task2类似,用折线图记录填补后数据每年春节期间(除夕前两天、除夕、正月初一至初七、初七后两天)每小时平均pm2.5的变化趋势,取每年春节每小时的平均浓度作为当年春节该小时的对应值

```
In [ ]:
                                                                   ## PM2.5在春节每小时的波动值
                                                                  Spr=range (12)
                                                                    sprfest 2010 = ['2010-02-11', '2010-02-12', '2010-02-13', '2010-02-14', '2010-02-15', '2010-02-16', '2010-02-17', '2010-02-18', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', 
                                                                   sprfest_2011 = ['2011-01-31', '2011-02-01', '2011-02-02', '2011-02-03', '2011-02-04', '2011-02-05', '2011-02-06', '2011-02-07', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', 
                                                                   sprfest 2012 = ['2012-01-20', '2012-01-21', '2012-01-22', '2012-01-23', '2012-01-24', '2012-01-25', '2012-01-26', '2012-01-27', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', 
                                                                   sprfest_2013 = ['2013-02-07', '2013-02-08', '2013-02-09', '2013-02-10', '2013-02-11', '2013-02-12', '2013-02-13', '2013-02-14', '2013-02-15', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', 
                                                                   sprfest 2014 = ['2014-01-28', '2014-01-29', '2014-01-30', '2014-01-31', '2014-02-01', '2014-02-02', '2014-02-03', '2014-02-04', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', 
                                                                  hour of sprfest1=[[],[],[],[],[]]
                                                                   variation of hour sprfest1 = pd. DataFrame()
                                                                  pm25 sprfest 2010=pd. DataFrame()
                                                                   for sprday 2010 in sprfest 2010:
                                                                                              pm25 sprfest 2010 date=pm25 mean[pm25 mean.date==sprday 2010]
                                                                                              pm25_sprfest_2010=pd.concat([pm25_sprfest_2010, pm25_sprfest_2010_date], sort=False)
                                                                    for hour in Hour:
                                                                                                                           pm25 hour sprfest 2010=pm25 sprfest 2010[pm25 sprfest 2010.hour==hour]
                                                                                                                           mean spr 2010=np. mean (pm25 hour sprfest 2010 ['pm2.5'])
                                                                                                                           hour of sprfest1[0]. append (mean spr 2010)
                                                                   pm25 sprfest 2011=pd. DataFrame()
                                                                    for sprday 2011 in sprfest 2011:
                                                                                              pm25 sprfest 2011 date=pm25 mean[pm25 mean.date==sprday 2011]
                                                                                              pm25 sprfest 2011=pd.concat([pm25 sprfest 2011, pm25 sprfest 2011 date], sort=False)
                                                                      for hour in Hour:
                                                                                                                           pm25 hour sprfest 2011=pm25 sprfest 2011[pm25 sprfest 2011.hour==hour]
```

```
mean_spr_2011=np. mean(pm25_hour_sprfest_2011['pm2.5'])
        hour of sprfest1[1].append(mean_spr_2011)
pm25 sprfest 2012=pd. DataFrame()
for sprday 2012 in sprfest 2012:
    pm25 sprfest 2012 date=pm25 mean[pm25 mean.date==sprday 2012]
    pm25 sprfest 2012=pd.concat([pm25 sprfest 2012, pm25 sprfest 2012 date], sort=False)
for hour in Hour:
        pm25 hour sprfest 2012=pm25 sprfest 2012[pm25 sprfest 2012.hour==hour]
        mean spr 2012=np. mean (pm25 hour sprfest 2012['pm2.5'])
        hour of sprfest1[2]. append (mean spr 2012)
pm25 sprfest 2013=pd. DataFrame()
for sprday_2013 in sprfest_2013:
    pm25 sprfest 2013 date=pm25 mean[pm25 mean.date==sprday 2013]
    pm25 sprfest 2013=pd.concat([pm25 sprfest 2013, pm25 sprfest 2013 date], sort=False)
for hour in Hour:
        pm25 hour sprfest 2013=pm25 sprfest 2013[pm25 sprfest 2013. hour==hour]
        mean spr 2013=np. mean (pm25 hour sprfest 2013 ['pm2.5'])
        hour of sprfest1[3]. append (mean spr 2013)
pm25_sprfest_2014=pd. DataFrame()
for sprday 2014 in sprfest 2014:
    pm25_sprfest_2014_date=pm25_mean[pm25_mean.date==sprday_2014]
    pm25 sprfest 2014=pd.concat([pm25 sprfest 2014, pm25 sprfest 2014 date], sort=False)
for hour in Hour:
        pm25 hour sprfest 2014=pm25 sprfest 2014[pm25 sprfest 2014.hour==hour]
        mean spr 2014=np. mean (pm25 hour sprfest 2014['pm2.5'])
        hour_of_sprfest1[4].append(mean_spr_2014)
variation of hour sprfest1=variation of hour sprfest1. append (hour of sprfest1)
plt. figure (figsize= (20, 12))
for i in range (5):
    plt. subplot (2, 3, i+1)
    plt. plot (Hour, variation of hour sprfestl. iloc[i,:])
    plt. title ('days of spring festival of %d' % Year[i])
    plt. xlabel('hour')
    plt. ylabel ('ave pm2.5')
```


	U	1	2	3	4	5	6	/	8	9	•••	14	15	16	17	
2	134.166667	171.250000	144.916667	92.583333	74.916667	77.416667	79.750000	67.916667	51.500000	47.083333		40.916667	47.916667	49.166667	49.916667	57.9166
3	109.833333	137.750000	109.166667	101.416667	86.750000	83.666667	85.583333	91.416667	92.666667	86.583333		88.500000	84.916667	85.333333	89.250000	96.1666
4	102.416667	126.583333	122.500000	108.416667	104.083333	97.250000	99.250000	96.583333	93.833333	93.916667		72.750000	74.333333	75.833333	76.416667	79.3333

5 rows × 24 columns

与原数据相比,平均浓度的数值大小和变化趋势均基本一样,每天每小时的变化趋势与全年相似,均为15点后上升,凌晨1点后慢慢下降

2.4.10 与task2类似,用折线图记录填补数据的每年春节期间(除夕前两天、除夕、正月初一至初七、初七后两天,以除夕前第二天为第0天)每天平均pm2.5的变化趋势,取每年春节每天的平均浓度作为当年春节该天的对应值

```
In [ ]:
         ## PM2.5在春节每天的波动值
         days of sprfest1=[[],[],[],[],[]]
         variation of days sprfest1 = pd. DataFrame()
         for sprday_2010 in sprfest_2010:
             pm25 day sprfest 2010=pm25_sprfest_2010[pm25_sprfest_2010.date==sprday_2010]
             mean_spr_2010=np. mean(pm25_day_sprfest_2010['pm2.5'])
             days of sprfest1[0]. append (mean spr 2010)
         for sprday 2011 in sprfest 2011:
             pm25 day sprfest 2011=pm25 sprfest 2011[pm25 sprfest 2011.date==sprday 2011]
             mean spr 2011=np. mean(pm25 day sprfest 2011['pm2.5'])
             days of sprfest1[1]. append (mean spr 2011)
         for sprday 2012 in sprfest 2012:
             pm25 day sprfest 2012=pm25 sprfest 2012[pm25 sprfest 2012.date==sprday 2012]
             mean_spr_2012=np. mean(pm25_day_sprfest_2012['pm2.5'])
             days of sprfest1[2], append (mean spr 2012)
         for sprday 2013 in sprfest 2013:
             pm25 day sprfest 2013=pm25 sprfest 2013[pm25 sprfest 2013. date==sprday 2013]
             mean spr 2013=np. mean (pm25 day sprfest 2013['pm2.5'])
             days of sprfest1[3]. append (mean spr 2013)
         for sprday 2014 in sprfest 2014:
```

```
pm25_day_sprfest_2014=pm25_sprfest_2014[pm25_sprfest_2014. date==sprday_2014]
mean_spr_2014=np. mean(pm25_day_sprfest_2014['pm2.5'])
days_of_sprfest1[4]. append(mean_spr_2014)

variation_of_days_sprfest1=variation_of_days_sprfest1. append(days_of_sprfest1)

plt. figure(figsize=(20,12))

for i in range(5):
    plt. subplot(2, 3, i+1)
    plt. plot(Spr, variation_of_days_sprfest1. iloc[i,:])
    plt. title('Spring festival of %d' % Year[i])
    plt. ylabel('ave_pm2.5')
```


	0	1	2	3	4	5	6	7	8	9	10	11
2	58.666667	15.458333	48.041667	199.875000	21.375000	61.500000	109.750000	73.625000	86.750000	46.583333	117.916667	76.375000
3	12.416667	56.458333	190.125000	60.500000	64.791667	113.708333	306.916667	84.427083	39.791667	136.833333	134.541667	22.791667
4	43.916667	142.875000	75.166667	164.291667	156.833333	74.375000	7.416667	25.750000	102.375000	145.250000	102.250000	60.041667

与原数据相比,平均浓度的数值大小和变化趋势均基本一样,平均浓度基本均出现3个高峰,分别在除夕前后,初三前后和初七前后

knn填补

3.1 用k近邻法填补数据,设定k=40

```
In [ ]:
         pm25 data = pd. read csv('pm25 data.csv')
          date=pm25 data.date
         pm25 knn = pd. DataFrame (knn imputer (pm25 data. drop ('date', axis=1)))
         pm25 knn['date']=date
         pm25_knn.columns = pm25_data.columns
         # 对数化
         pm25 \text{ knn} = module. log(pm25 \text{ knn})
         # 得到week
         week list=[]
         for date in pm25 knn['date']:
             week list. append (pd. to datetime (date). weekday ())
         pm25 knn['week']=week list
         # 存为csv文件
         pm25 knn. to csv("pm25 data knn.csv", index=False)
         # 得到 train data & test data
          test data2, train data2 = module.train test split (pm25 knn)
```

3.2 与task1类似,用xgboost预测模型拟合填补后的数据,并通过xgb.plot_importance进行特征选择

```
var=['year','month','day','hour','DEWP','TEMP','PRES','Iws','Is','Ir','cbwd_NE','cbwd_NE','cbwd_SE','cbwd_cv']
X_train2 = train_data2[var]
X_test2 = test_data2[var]
y_train2 = train_data2['pm2.5_log']
y_test2 = test_data2['pm2.5']
```

```
XGB_model2=xgb. XGBRegressor(learning_rate=0.1,n_estimators=485,max_depth=5)
XGB_model2.fit(X_train2, y_train2)
y_pred2 = XGB_model2.predict(X_test2)
y_pred2 = np. round(np. exp(y_pred2))

# 归一化
y_pred2=preprocessing.minmax_scale(y_pred2)
y_test2=preprocessing.minmax_scale(y_test2)
print("Mean squared error of test data for knn imputed data: %.4f" % mean_squared_error(y_pred2, y_test2))
print("R2 score: %.4f" % XGB_model2.score(X_test2, test_data2['pm2.5_log']))

# 特征选择
xgb. plot_importance(XGB_model2)
```

Mean squared error of test data for knn imputed data: 0.0088
R2 score: 0.6817
Out[]:
AxesSubplot:title={'center':'Feature importance'}, xlabel='F score', ylabel='Features'>

得到平均填补法补全的数据集的预测结果为R^2=0.6817, 略低于原数据

筛选后day仍是最重要的特征;气象因素中仍是DEWP,lws,PRES,TEMP最重要,各个因素的重要程度不变,重要性依次为DEWP,PRES,lws,TEMP

3.3 与task1类似,用相关系数矩阵进行特征筛选

```
corrmatrix = X2.corr()
plt.subplots(figsize=(14, 14))
sns.heatmap(corrmatrix, vmax=0.8, square=True, annot=True)
plt.show()
```

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

- -0.6

- -0.8

pm2.5 -	. 1	-0.016	-0.025	0.083	-0.023	0.17	-0.089	-0.047	-0.25	0.019	-0.049	-0.031	-0.21	0.094	0.16
year -	-0.016	1	-7.2e-14	-6e-14	2e-15	0.0011	0.046	-0.013	-0.064	-0.017	-0.024	0.011	-0.058	0.019	0.036
month -	-0.025	-7.2e-14	1	0.011	-4.7e-06	0.23	0.17	-0.062	0.003	-0.062	0.037	-0.0081	0.032	-0.073	0.055
day -	0.083	-6e-14	0.011	1	-9.2e-06	0.029	0.015	-0.0071	-0.0091	-0.037	0.0027	-0.0051	-0.017	0.014	0.0073
hour -	-0.023	2e-15	-4.7e-06	-9.2e-06	1	-0.021	0.15	-0.042	0.057	-0.0024	-0.0063	-0.064	-0.13	0.21	-0.049
DEWP -	0.17	0.0011	0.23	0.029	-0.021	1	0.82	-0.78	-0.3	-0.034	0.13	-0.037	-0.34	0.28	0.091
TEMP -	-0.089	0.046	0.17	0.015	0.15	0.82	1	-0.83	-0.15	-0.093	0.049	-0.064	-0.27	0.31	-0.0047
PRES -	-0.047	-0.013	-0.062	-0.0071	-0.042	-0.78	-0.83	1	0.19	0.069	-0.08	0.066	0.23	-0.25	-0.022
lws -	-0.25	-0.064	0.003	-0.0091	0.057	-0.3	-0.15	0.19	1	0.022	-0.01	-0.12		-0.08	-0.23
ls -	0.019	-0.017	-0.062	-0.037	-0.0024	-0.034	-0.093	0.069	0.022	1	-0.0095	-0.0083	-0.022	0.04	-0.015
lr -	-0.049	-0.024	0.037	0.0027	-0.0063	0.13	0.049	-0.08	-0.01	-0.0095	1	0.034	0.034	-0.04	-0.019
cbwd_NE -	-0.031	0.011	-0.0081	-0.0051	-0.064	-0.037	-0.064	0.066	-0.12	-0.0083	0.034	1	-0.25	-0.26	-0.19
cbwd_NW -	-0.21	-0.058	0.032	-0.017	-0.13	-0.34	-0.27	0.23	0.36	-0.022	0.034	-0.25	1	-0.51	-0.36
cbwd_SE -	0.094	0.019	-0.073	0.014	0.21	0.28	0.31	-0.25	-0.08	0.04	-0.04	-0.26	-0.51	1	-0.38
cbwd_cv -	0.16	0.036	0.055	0.0073	-0.049	0.091	-0.0047	-0.022	-0.23	-0.015	-0.019	-0.19	-0.36	-0.38	1
	pm2.5 -	year -	month -	day -	hour -	DEWP -	TEMP -	PRES -	- SWI	<u>s</u>	<u>-</u>	cbwd_NE -	- MN_bwdp	cbwd_SE -	- co_bwd_cv

筛选后结果发生变化,与pm2.5相关性较高的因素: DEWP、lws、cbwd_NW、cbwd_cv

3.4 与task1类似, 通过PCA.explained_variance_ratio_选择特征并尝试降维

```
In [ ]:
          from sklearn. decomposition import PCA
          pca2=PCA(). fit (X2. drop('pm2.5', axis=1))
          plt. plot (np. cumsum (pca2. explained variance ratio ))
          plt. xlabel ('number of components')
          plt. ylabel('cumulative explained variance')
          np. cumsum (pca2. explained_variance_ratio_)
         array([0.81476227, 0.93698415, 0.96192403, 0.97877016, 0.98886732,
Out[ ]:
                0.99506625, 0.99835893, 0.99899759, 0.99962027, 0.99980266,
                0.99988853, 0.99995792, 1.
                                                     , 1.
           1.000
           0.975
            0.950
            0.925
            0.900
            0.875
            0.850
            0.825
                                        6
                                                8
                                                      10
                                                             12
                                  number of components
```

PCA给出的结果与原数据类似,取前3个主成分作为特征,其中第一主成分主要反映了对pm2.5的影响

- 3.5 用由k近邻法得到的新数据进行task2的运行
- 3.5.1 与task2类似,用折线图记录每年一天24小时pm2.5的变化趋势,取每年每小时的平均浓度作为当年该小时的对应值

```
In [ ]: ## PM2.5在一天内的波动值
Year=[2010, 2011, 2012, 2013, 2014]
```

```
Hour=range (24)
day_of_year2=[[],[],[],[],[]]
variation_of_day2=pd. DataFrame()
for index, year in enumerate (Year):
    pm25_year=pm25_knn[pm25_knn.year==year]
    for hour in Hour:
        pm25_hour_year=pm25_year[pm25_year.hour==hour]
        mean=np. mean(pm25_hour_year['pm2.5'])
        day of year2[index].append(mean)
variation_of_day2=variation_of_day2. append(day_of_year2)
variation_of_day2.index=Year
plt. figure (figsize= (16, 12))
for i in range (5):
    plt. subplot (2, 3, i+1)
    plt. plot (Hour, variation_of_day2. iloc[i,:])
    plt. title ('days of %d' % Year[i])
    plt. xlabel('hour')
    plt.ylabel('ave pm2.5')
```


In []: | var

variation_of_day2

折线图结果与原数据task2的基本一样,5年间pm2.5每天的变化趋势均相似,0点至15点浓度下降,15点至24点浓度上升

3.5.2 与task2类似,用折线图记录每年一周每天pm2.5的变化趋势,取每年每星期一天的平均浓度作为当年该天的对应值

```
# PM2.5在一周的波动值
Week=range(7)
week of year2=[[],[],[],[],[]]
variation of week2=pd. DataFrame()
for index, year in enumerate (Year):
    pm25 year=pm25 knn[pm25 knn.year==year]
    for week in Week:
        pm25 week year=pm25 year[pm25 year.week==week]
        mean=np. mean (pm25 week year ['pm2.5'])
        week of year2[index]. append (mean)
variation_of_week2=variation_of_week2. append (week_of_year2)
variation of week2.index=Year
plt. figure (figsize= (16, 12))
Week str=['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
for i in range (5):
    plt. subplot (2, 3, i+1)
    plt. plot (Week_str, variation_of_week2. iloc[i,:])
    plt. title ('weeks of %d' % Year[i])
    plt. ylabel ('ave pm2.5')
```


	0	1	2	3	4	5	6
2010	96.538762	107.088622	108.089764	100.867308	104.147091	110.604607	104.194071
2011	95.107151	104.830929	112.074780	96.214443	91.644611	94.679383	96.645292
2012	95.868082	88.035276	82.030849	97.310236	96.934691	92.446214	87.579383
2013	96.274299	99.764092	94.272155	84.844151	105.780669	112.652023	118.055609
2014	83.837901	87.589704	97.243829	113.106030	104.659375	108.516967	90.150040

与task2原数据结果相比,除少数数值外,填充的数据结果基本不变,每年每星期pm2.5平均浓度变化趋势完全不同

3.5.3 与task2类似,用折线图记录每年每月pm2.5的变化趋势,取每年每月的平均浓度作为当年该月的对应值

```
In [ ]:
         ## PM2.5在一年内数月的波动值
         Month=range(1, 13)
         month_of_year2=[[],[],[],[],[]]
         variation of month2=pd. DataFrame()
         for index, year in enumerate (Year):
             pm25 year=pm25 knn[pm25 knn.year==year]
             for month in Month:
                 pm25 month year=pm25 year[pm25 year.month==month]
                 mean=np. mean (pm25 month year ['pm2.5'])
                 month of year2[index]. append (mean)
         variation of month2=variation of month2. append (month of year2)
          variation of month2.index=Year
         plt. figure (figsize= (16, 12))
         for i in range(5):
             plt. subplot (2, 3, i+1)
             plt. plot (Month, variation of month2. iloc[i,:])
             plt. title ('months of %d' % Year[i])
             plt. ylabel('ave pm2.5')
```


	0	1	2	3	4	5	6	7	8	9	10	11
2010	89.613374	97.234524	98.674630	79.928681	86.979805	106.057431	123.647849	100.191364	122.033889	118.838172	133.563924	97.333333
2011	44.203730	150.321429	59.801075	94.358194	67.329704	108.126632	107.353360	104.489247	95.507083	140.301714	109.977743	108.418347
2012	130.567372	85.218139	96.708535	87.484931	93.561727	96.424028	79.840659	78.844892	59.963092	94.783065	88.869583	103.675605
2013	194.263911	123.747954	123.332023	66.079097	85.334207	111.346215	69.013441	61.853595	90.829375	106.259073	91.156736	97.295833
2014	118.634543	174.781771	110.383401	95.451319	72.326882	58.922118	88.777419	63.373589	70.219097	140.591566	105.881840	80.574630

结果与原数据的类似,每年每月pm2.5平均浓度变化趋势不同,但从2011年后,基本从2月到10月浓度维持在相对较低水平,而其余月份基本维持在相对较高水平

3.5.4 与task2类似,用折线图记录每年四季pm2.5的变化趋势,取每年每个季度的平均浓度作为当年该季度的对应值

```
In [ ]:
         ## PM2.5在四季的波动值
         season of vear2=[[],[],[],[],[]]
         variation of season2=pd. DataFrame()
         for index, year in enumerate (Year):
             pm25_year=pm25_knn[pm25_knn.year==year]
             mean spring=(variation of month2.loc[year, 2]+variation of month2.loc[year, 3]+variation of month2.loc[year, 4])/3
              mean_summer = (variation_of_month2.loc[year, 5]+variation_of_month2.loc[year, 6]+variation_of_month2.loc[year, 7])/3
             mean fall=(variation of month2.loc[year, 8]+variation of month2.loc[year, 9]+variation of month2.loc[year, 10])/3
             mean winter=(variation of month2. loc[year, 11]+variation of month2. loc[year, 0]+variation of month2. loc[year, 1])/3
             season of year2[index].append(mean spring)
             season of year2[index].append(mean summer)
             season of year2[index]. append (mean fall)
             season of year2[index].append(mean winter)
         variation of season2=variation of season2. append (season of year2)
          variation of season2.index=Year
         plt. figure (figsize= (16, 12))
         Seasons=['spring', 'summer', 'fall', 'winter']
         for i in range(5):
             plt. subplot (2, 3, i+1)
             plt. plot (Seasons, variation_of_season2.iloc[i,:])
             plt. title ('seasons of %d' % Year[i])
             plt. ylabel ('ave pm2.5')
```


Out[]: 0 1 2 3

```
        2010
        88.527705
        109.965548
        124.811995
        94.727077

        2011
        73.829658
        106.656413
        115.262180
        100.981168

        2012
        92.585064
        85.036526
        81.205247
        106.487039

        2013
        91.581776
        80.737751
        96.081728
        138.435899

        2014
        92.720534
        70.357709
        105.564168
        124.663648
```

结果与原数据类似,除少量数值变化外,浓度变化趋势基本相同,2010年和2011年,秋季达到平均浓度最高值,浓度从春夏秋上升,秋冬下降。2012、2013、2014年夏季平均浓度最低,夏秋冬三季依次上升,浓度在冬季最高,之后下降

3.5.5 与task2类似,用折线图记录每年pm2.5的变化趋势,取每年平均浓度作为当年的对应值

```
In []: ## PM2.5在5年内的波动值
varaition_of_year2=[]
for year in Year:
    pm25_year=pm25_knn[pm25_knn.year==year]
    mean=np.mean(pm25_year['pm2.5'])
    varaition_of_year2.append(mean)

plt.figure(figsize=(8,8))
plt.plot(Year, varaition_of_year2)
plt.xlabel('year')
plt.ylabel('ave pm2.5')
```

Out[]: Text(0, 0.5, 'ave pm2.5')

91. 4580249373719, 101. 65808219178086, 97. 87025684931508

与原数据结果类似,除平均浓度数值范围有细微变化外,基本趋势不变。这五年间2012年平均浓度最低,2010至2012年连续下降,2013年达到较高水平后2014年再次下降至2011年水平

3.5.6 与task2类似,对于填补后的数据,利用上述与时间有关的pm2.5平均浓度信息,分别使用每条数据的时间信息和天气信息,运用task1中提出的xgboost模型、训练集和测试集,实现对pm2.5浓度的预测,同时使用score作为预测结果好坏的测量标准,认为越接近1预测效果越好

3.5.6.1 与task2类似,分别使用每年一天24小时数据的时间信息和天气信息,对每小时pm2.5平均浓度进行预测,将两种方法下每年每小时的预测score用折线图分别绘出

```
In [ ]:
         ## 基于PM2.5在一天内的波动值,用xgboost讲行预测
         Year=[2010, 2011, 2012, 2013, 2014]
         Hour=range (24)
         day_of_year_train2=[[],[],[],[],[]]
         day of year test2=[[],[],[],[],[]]
         score of year time2 = [[],[],[],[],[]]
         score of year weather2 = [[], [], [], [], []]
         var time = ['year', 'month', 'day', 'hour', 'week']
         var_weather = ['DEWP', 'TEMP', 'PRES', 'Iws', 'Is', 'Ir', 'cbwd_NE', 'cbwd_NW', 'cbwd_SE', 'cbwd_cv']
         variation of day time2=pd. DataFrame()
         variation of day weather2=pd. DataFrame()
         for index, year in enumerate (Year):
             train data year=train data2[train data2.year==year]
             test data year=test data2[test data2.year==year]
             for hour in Hour:
                 train data hour year=train data year[train data year.hour==hour]
                 test data hour vear=test data vear [test data vear.hour==hour]
                 ## Only use time to predict
                 X train data hour year time = train data hour year var time
                 X test data hour year time = test data hour year [var time]
                 v train data hour year = train data hour year ['pm2.5 log']
                 y test data hour year = test data hour year ['pm2.5']
                 XGB model time=XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
                 XGB model time. fit (X train data hour year time, y train data hour year)
                 y pred hour year time = XGB model time.predict(X test data hour year time)
                 y pred hour year time = np. round(np. exp(y pred hour year time))
                 y pred hour year time = preprocessing. minmax scale(y pred hour year time)
                 y test data hour year = preprocessing. minmax scale(y test data hour year)
                 score of year time2[index]. append(XGB model time. score(X test data hour year time, test data hour year['pm2.5 log']))
                 ## Only use weather to predict
                 X_train_data_hour_year_weather = train_data_hour_year[var weather]
                 X test data hour year weather = test data hour year [var weather]
                 XGB_model_weather = XGBRegressor(learning_rate=0.03, n_estimators=300, max_depth=5)
                 XGB model weather, fit (X train data hour year weather, y train data hour year)
                 y pred hour year weather = XGB model weather.predict(X test data hour year weather)
                 y pred hour year weather = np. round(np. exp(y pred hour year weather))
                 y pred hour year weather = preprocessing. minmax scale(y pred hour year weather)
                 y test data hour year = preprocessing. minmax scale(y test data hour year)
```

```
score_of_year_weather2[index]. append(XGB_model_weather.score(X_test_data_hour_year_weather, test_data_hour_year['pm2.5_log']))
variation of day time2=variation of day time2. append (score of year time2)
variation_of_day_weather2=variation_of_day_weather2. append (score_of_year_weather2)
plt. figure (figsize= (20, 12))
for i in range (5):
   plt. subplot (2, 3, i+1)
    plt. plot (Hour, variation_of_day_time2.iloc[i,:])
   plt. title('score of xgboost of days of %d predicted by time' % Year[i])
    plt. xlabel('hour')
   plt. ylabel('score')
plt. figure (figsize= (20, 12))
for i in range(5):
    plt. subplot (2, 3, i+1)
   plt. plot (Hour, variation_of_day_weather2. iloc[i,:])
   plt. title('score of xgboost of days of %d predicted by weather' % Year[i])
   plt. xlabel('hour')
   plt. ylabel('score')
```


	3	-0.069416	-0.01757	9 -0.03950	0.0250	77 -0.149	895 -0.06	3474 -0.0	14924 -0.	099955 -	0.163678	-0.073	3301	-0.225019	-0.251604	-0.282250	-0.250448	-0.34535	7 -0.300
	4	0.320581	0.28456	5 0.12979	0.1558	50 0.201	590 0.20	6948 0.2	39477 0.	074240	0.079499	0.203	3500	0.063750	-0.037770	0.031337	0.028261	0.01842	4 -0.100
	5 ro	ows × 24 c	columns																
	4																		•
In []:	V	ariation_	of_day_w	eather2															
Out[]:		0	1	2	3	4	5	6	7	8	3 !	9	14	15	16	17	18	19	20
	0	0.503621	0.354045	0.450868	0.200670	0.453587	0.432782	0.354191	0.393227	0.492946	0.65733	1	0.573352	0.498873	0.478360	0.594724	0.656329	0.498465	0.498157
	1	0.310714	0.234868	0.319344	0.256147	0.357542	0.321090	0.383959	0.343957	0.409442	0.23261	6	0.338845	0.240443	0.220094	0.152536	0.374915	0.439147	0.416230
	2	0.369886	0.323870	0.349245	0.243991	0.345243	0.221078	0.151526	0.316070	0.376392	0.50355	9	0.515204	0.434201	0.322156	0.346095	0.251074	0.374850	0.377132
	3	0.482106	0.663538	0.625160	0.526347	0.538263	0.592868	0.658733	0.471866	0.585175	0.57554	3	0.662318	0.645985	0.694179	0.598410	0.637126	0.427483	0.271280
	4	0.457594	0.570431	0.440739	0.413439	0.471536	0.521032	0.599462	0.588849	0.58543	0.57916	2	0.613005	0.689071	0.664421	0.480511	0.330553	0.564468	0.491822
	5 ro	ows × 24 c	columns																
	4																		•

2 0.282053 0.202859 0.157611 0.108741 0.072315 0.086950 0.052803 -0.123821 -0.034006 -0.126264 ... 0.186325

15

16

0.044662 0.222202 0.172540

17

18

0.196390

0.222

相比于原数据,两种方法给出的预测分数变化趋势均与原来的相似,运用天气信息的预测准度明显更高。但2010年和2011年的这个精度相对于原数据明显下降,最高相似于原先所有训练集得到的预测模型的准度

3.5.6.2 与task2相似,分别使用填补后每年每月数据的时间信息和天气信息,对每月pm2.5平均浓度进行预测,将两种方法下每年每月的预测score用折线图分别绘出

```
In []: ## 基于PM2.5在一年内数月的波动值, 用xgboost进行预测 Month = range(1,13) week_of_year2=[[],[],[],[],[]] score_of_month_weather2 = [[],[],[],[]] score_of_month_time2 = [[],[],[],[]] variation_of_month_time2=pd. DataFrame()
```

```
variation of month weather2=pd. DataFrame()
for index, year in enumerate (Year):
    train data year=train data2[train data2.year==year]
    test data year=test data2[test data2.year==year]
    for month in Month:
        train data month year=train data year train data year. month==month
        test data month year=test data year[test data year.month==month]
        ## Only use time to predict
        X train data month year time = train data month year[var time]
        X test data month year time = test data month year [var time]
        y train data month year = train data month year ['pm2.5 log']
        y test data month year = test data month year ['pm2.5']
        XGB model time=XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
        XGB model time, fit (X train data month year time, y train data month year)
        v pred month year time = XGB model time.predict(X test data month year time)
        y pred month year time = np. round(np. exp(y pred month year time))
        y pred month year time = preprocessing. minmax scale(y pred month year time)
        y test data month year = preprocessing. minmax scale(y test data month year)
        score of month time2[index]. append(XGB model time. score(X test data month year time, test data month year['pm2.5 log']))
        ## Only use weather to predict
        X train data month year weather = train data month year [var weather]
        X test data month year weather = test data month year [var weather]
        XGB model weather = XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
        XGB model weather. fit(X train data month year weather, y train data month year)
        y pred month year weather = XGB model weather.predict(X test data month year weather)
        y pred month year weather = np. round(np. exp(y pred month year weather))
        y pred month year weather = preprocessing. minmax scale(y pred month year weather)
        y test data month year = preprocessing.minmax scale(y test data month year)
        score of month weather2[index]. append(XGB model weather, score(X test data month year weather, test data month year['pm2.5 log']))
variation of month time2=variation of month time2. append (score of month time2)
variation of month weather2=variation of month weather2. append (score of month weather2)
plt. figure (figsize=(20, 12))
for i in range(5):
    plt. subplot (2, 3, i+1)
    plt. plot (Month, variation of month time2. iloc[i,:])
    plt. title ('score of xgboost of months of %d predicted by time' % Year[i])
    plt. vlabel ('score')
plt. figure (figsize= (20, 12))
for i in range (5):
    plt. subplot (2, 3, i+1)
```

```
plt. plot (Month, variation_of_month_weather2. iloc[i,:])
plt. title('score of xgboost of months of %d predicted by weather' % Year[i])
plt. ylabel('score')
```


		0	1	2	3	4	5	;	6	7 8	3	9 1	10 1
	2	-4.422078	-1.832618	-0.663807	0.211765	-0.728722	0.706680	0.35305	2 0.311376	6 -0.794487	7 0.21570	0 -1.48038	37 -1.83997
	3	-0.053715	-0.161439	-0.152277	-1.903679	-1.940888	-1.725076	0.44498	7 -0.015174	4 -0.768663	3 -0.01089	4 -0.43631	16 -1.39835
	4	-0.149640	0.325802	0.472821	0.580061	-0.788092	-3.101852	0.64126	8 -0.411844	4 -0.281440	0.35556	5 -0.02234	19 -0.83191
In []:	Vá	ariation_c	of_month_v	weather2									
Ou+[]•		0	1	2	3	4	5	6	7	8	9	10	11
Out[]:		0	1	2	3	4	5	6	7	8	9	10	11
Out[]:	0	0 0.512649	1 0.530265		3 0.594032		5 0.372670		7 0.348342	8 0.036332		10 0.652492	11 0.822447
Out[]:					0.594032	0.171647		0.713370		0.036332	0.687681		
Out[]:	1	0.512649	0.346419	0.539606 0.679294	0.594032	0.171647 0.356129	0.372670	0.713370 0.679380	0.348342 -0.484138	0.036332	0.687681	0.652492	0.822447
Out[]:	1	0.512649 0.489040	0.346419	0.539606 0.679294 0.708596	0.594032 -1.689407 0.605793	0.171647 0.356129 0.158368	0.372670	0.713370 0.679380 0.016524	0.348342 -0.484138	0.036332	0.687681	0.652492 0.009812 0.453076	0.822447 0.740472

相比于原数据,除2011年外,两种方法给出的预测分数变化趋势和数值均与原来的相似,用每月平均浓度预测时只用天气信息可以达到更高精度,但预测准度同样更加不稳定

3.5.6.3 与task2类似,分别使用填补后每年每季数据的时间信息和天气信息,对每季pm2.5平均浓度进行预测,将两种方法下每年每季的预测score用折线图分别绘出

```
test data summer year=pd. concat([test data year[test data year.month==6], test data year[test data year.month==7], test data year[test data year]
   sort=False)
train data fall year=pd.concat([train data year[train data year.month==9], train data year[train data year.month==10], train data year[train data year]
   sort=False)
test data fall vear=pd.concat([test data vear[test data vear.month==9], test data vear[test data vear.month==10], test data vear[test data vear[test data vear]]
   sort=False)
train data winter year=pd. concat([train data year[train data year. month==12], train data year[train data year. month==1], train data year[train data year]
   sort=False)
test data winter year=pd.concat([test data year[test data year.month==12], test data year[test data year.month==1], test data year[test data year]
   sort=False)
## Only use time to predict for spring
X train data spring year time = train data spring year var time
X test data spring year time = test data spring year[var time]
y_train_data_spring_year = train_data_spring_year['pm2.5_log']
v test data spring year = test data spring year ['pm2.5']
XGB model time spring=XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
XGB model time spring fit (X train data spring year time, v train data spring year)
y pred spring year time = XGB model time spring. predict(X test data spring year time)
y pred spring year time = np. round(np. exp(y pred spring year time))
y pred spring year time = preprocessing. minmax scale(y pred spring year time)
y test data spring year = preprocessing. minmax scale(y test data spring year)
score of season time2[index] append(XGB model time spring, score(X test data spring year time, test data spring year['pm2.5 log']))
## Only use weather to predict for spring
X train data spring year weather = train data spring year [var weather]
X test data spring year weather = test data spring year var weather
XGB model weather spring = XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
XGB model weather spring fit (X train data spring year weather, y train data spring year)
y pred spring year weather = XGB model weather spring.predict(X test data spring year weather)
y pred spring year weather = np. round(np. exp(y pred spring year weather))
y pred spring year weather = preprocessing. minmax scale(y pred spring year weather)
y test data spring year = preprocessing. minmax scale(y test data spring year)
score of season weather2[index]. append(XGB model weather spring. score(X test data spring year weather, test data spring year['pm2.5 log']))
## Only use time to predict for summer
X train data summer year time = train data summer year[var time]
X test data summer year time = test data summer year [var time]
y train data summer year = train data summer year ['pm2.5 log']
y test data summer year = test data summer year ['pm2.5']
XGB model time summer=XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
XGB model time summer. fit(X train data summer year time, y train data summer year)
y pred summer year time = XGB model time summer.predict(X test data summer year time)
y pred summer year time = np. round(np. exp(y pred summer year time))
y pred summer year time = preprocessing. minmax scale(y pred summer year time)
y test data summer year = preprocessing. minmax scale(y test data summer year)
```

```
score of season time2[index]. append(XGB model time summer. score(X test data summer year time, test data summer year['pm2.5 log']))
## Only use weather to predict for summer
X train data summer year weather = train data summer year [var weather]
X test data summer year weather = test data summer year [var weather]
XGB model weather summer = XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
XGB model weather summer fit (X train data summer year weather, y train data summer year)
y pred summer year weather = XGB model weather summer.predict(X test data summer year weather)
y pred summer year weather = np. round(np. exp(y pred summer year weather))
y pred summer year weather = preprocessing. minmax scale(y pred summer year weather)
y test data summer year = preprocessing. minmax scale(y test data summer year)
score of season weather2[index].append(XGB model weather summer.score(X test data summer year weather, test data summer year['pm2.5 log']))
## Only use time to predict for fall
X train data fall year time = train data fall year [var time]
X test data fall vear time = test data fall vear var time
y train data fall year = train data fall year ['pm2.5 log']
y test data fall year = test data fall year ['pm2.5']
XGB model time fall=XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
XGB model time fall. fit(X train data fall year time, y train data fall year)
v pred fall vear time = XGB model time fall.predict(X test data fall vear time)
y pred fall year time = np. round(np. exp(y pred fall year time))
y pred fall year time = preprocessing. minmax scale(y pred fall year time)
y test data fall year = preprocessing. minmax scale(y test data fall year)
score of season time2[index]. append(XGB model time fall. score(X test data fall year time, test data fall year['pm2.5 log']))
## Only use weather to predict for fall
X train data fall year weather = train data fall year [var weather]
X test data fall year weather = test data fall year[var weather]
XGB model weather fall = XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
XGB model weather fall. fit (X train data fall year weather, v train data fall year)
y pred fall year weather = XGB model weather fall.predict(X test data fall year weather)
y pred fall year weather = np. round(np. exp(y pred fall year weather))
y pred fall year weather = preprocessing. minmax scale(y pred fall year weather)
y test data fall year = preprocessing. minmax scale(y test data fall year)
score of season weather2[index]. append(XGB model weather fall.score(X test data fall year weather, test data fall year['pm2.5 log']))
## Only use time to predict for winter
X train data winter year time = train data winter year [var time]
X test data winter year time = test data winter year [var time]
y train data winter year = train data winter year 'pm2.5 log'
y test data winter year = test data winter year ['pm2.5']
XGB model time winter=XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
XGB model time winter.fit(X train_data_winter_year_time, y_train_data_winter_year)
```

```
v pred winter year time = XGB model time winter predict(X test data winter year time)
  y pred winter year time = np. round(np. exp(y pred winter year time))
  y pred winter year time = preprocessing. minmax scale(y pred winter year time)
   y test data winter year = preprocessing. minmax scale (y test data winter year)
   score_of_season_time2[index].append(XGB_model_time_winter.score(X_test_data_winter_year_time, test_data_winter_year['pm2.5 log']))
   ## Only use weather to predict for winter
   X train data winter year weather = train data winter year [var weather]
  X test data winter year weather = test data winter year [var weather]
   XGB model weather winter = XGBRegressor(learning rate=0.03, n estimators=300, max depth=5)
   XGB model weather winter fit (X train data winter year weather, y train data winter year)
  y_pred_winter_year_weather = XGB_model_weather_winter.predict(X_test_data_winter_year_weather)
   v pred winter vear weather = np. round(np. exp(v pred winter vear weather))
   y pred winter year weather = preprocessing. minmax scale(y pred winter year weather)
   v test data winter year = preprocessing. minmax scale(v test data winter year)
   score_of_season_weather2[index].append(XGB_model_weather_winter.score(X_test_data_winter year weather, test data winter year['pm2.5 log']))
variation of season time2=variation of season time2. append (score of season time2)
variation of season weather2=variation of season weather2. append (score of season weather2)
plt. figure (figsize= (20, 12))
Seasons=['spring', 'summer', 'fall', 'winter']
for i in range (5):
    plt. subplot (2, 3, i+1)
    plt. plot (Seasons, variation of season time2. iloc[i,:])
    plt. title ('score of xgboost of seasons of %d predicted by time' % Year[i])
    plt. ylabel ('score')
plt. figure (figsize=(20, 12))
for i in range(5):
    plt. subplot (2, 3, i+1)
    plt. plot (Seasons, variation of season weather 2. iloc[i,:])
    plt. title('score of xgboost of seasons of %d predicted by weather' % Year[i])
    plt. vlabel ('score')
```


Out[]: variation_of_season_time2

Out[]: 0 1 2 3

0 -0.053397 0.250622 0.034900 -0.231000

1 0.206036 -0.304031 -0.419166 0.208167

		0		1	2
-	2	0.293157	0.53288	5 0.0866	12 -0.200
	3	-0.212515	0.01363	1 -0.45597	76 -0.2537
	4	0.224382	-0.02096	6 0.2894	19 0.1470
In []:	Vá	ariation_	of_seaso	n_weather	2
Out[]:		0	1	2	3
-	0	0 0.423770			0.625654
-		0.423770	0.431937		0.625654
-	1	0.423770	0.431937 0.128335	0.462179	0.625654
-	1	0.423770 0.330039	0.431937 0.128335 0.214293	0.462179 -0.033568 0.332253	0.625654 0.653581

与原数据相比,两种方法给出的预测分数变化趋势均有较大变化,尤其是2013年用时间因素得到的预测分数变化趋势和2011年和2013年用天气因素得到的预测分数变化趋势。但总体上,我们仍应该用天气信息进行预测,且这五年间冬天均达到最高准度,后四年夏秋两季均为最低

3.5.7 与task2类似,用折线图记录填补后数据每年周一早晨(6点至9点)每小时平均pm2.5的变化 趋势,取每年每星期一每小时的平均浓度作为当年该天该小时的对应值

```
variation_of_day_Mon2=variation_of_day_Mon2. append(day_of_year_Mon2)
variation_of_day_Mon2. index=Year

plt. figure(figsize=(20, 12))

for i in range(5):
    plt. subplot(2, 3, i+1)
    plt. plot(Hour_Mon, variation_of_day_Mon2. iloc[i,:])
    plt. title('Monday morning of %d' % Year[i])
    plt. xlabel('hour')
    plt. ylabel('ave pm2.5')
```


96.302404 97.373558 96.163942 95.769231

```
      2012
      87.656132
      88.510377
      87.979245
      89.158491

      2013
      91.625000
      93.421154
      94.781731
      84.046154

      2014
      83.258654
      79.332212
      79.667308
      83.098558
```

与原数据结果相比,平均浓度数值和变化趋势与原数据的大致相当。每年星期一早晨每小时pm2.5平均浓度变化趋势不同,但除2013年外均在8点取得最低值

3.5.8 与task2类似,用折线图记录填补后数据每年12月周末(周六周日)晚上(18点至24点)每小时平均pm2.5的变化趋势,取每年12月周末每天每小时的平均浓度作为当年该天该小时的对应值

```
In [ ]:
         ## PM2.5在12月周末夜晚的波动值
         from pandas.core.frame import DataFrame
         Hour even=range (18, 24)
         week dec=range(5,7)
         month dec=range(12, 13)
         weekend_Dec_2010=['2010-12-04', '2010-12-05', '2010-12-11', '2010-12-12', '2010-12-18', '2010-12-19', '2010-12-25', '2010-12-26']
         weekend_Dec_2011=['2011-12-03', '2011-12-04', '2011-12-10', '2011-12-11', '2011-12-17', '2011-12-18', '2011-12-24', '2011-12-25', '2011-12-31']
         weekend_Dec_2012=['2012-12-01', '2012-12-02', '2012-12-08', '2012-12-09', '2012-12-15', '2012-12-16', '2012-12-22', '2012-12-23', '2012-12-29', '2012-12-29', '2012-12-10']
         weekend_Dec_2013=[ '2013-12-07', '2013-12-08', '2013-12-14', '2013-12-15', '2013-12-21', '2013-12-28', '2013-12-29']
         weekend Dec 2014=['2014-12-06', '2014-12-07', '2014-12-13', '2014-12-14', '2014-12-20', '2014-12-21', '2014-12-27', '2014-12-28']
         day of year Dec2=[[],[],[],[],[]]
          variation of day dec2=pd. DataFrame()
          for index, year in enumerate (Year):
             pm25 year=pm25 knn[pm25 knn.year==year]
             for month in month dec:
                  pm25 dec year=pm25 year[pm25 year.month==month]
                  pm25 weekend dec year=pd.concat([pm25 dec year[pm25 dec year.week==5], pm25 dec year[pm25 dec year.week==6]], sort=False)
                  for hour in Hour even:
                      pm25 even weekend dec vear=pm25 weekend dec vear[pm25 weekend dec vear.hour==hour]
                      mean=np. mean (pm25 even weekend dec year ['pm2.5'])
                      day of year Dec2[index]. append (mean)
          variation of day dec2=variation of day dec2. append (day of year Dec2)
          variation of day dec2.index=Year
         plt. figure (figsize=(20, 12))
         for i in range (5):
             plt. subplot (2, 3, i+1)
```

```
plt. plot (Hour_even, variation_of_day_dec2. iloc[i, :])
plt. title ('Evening of the weekend in December of %d' % Year[i])
plt. xlabel ('hour')
plt. ylabel ('ave pm2.5')
```


n []: variation_of_day_dec2

Out[]:

与原数据相比,2013年的数值有较大变化,但变化趋势基本一样,平均浓度基本均为上升趋势

3.5.9 与task2类似,用折线图记录填补后数据每年春节期间(除夕前两天、除夕、正月初一至初七、初七后两天)每小时平均pm2.5的变化趋势,取每年春节每小时的平均浓度作为当年春节该小时的对应值

```
In [ ]:
                                                                ## PM2.5在春节每小时的波动值
                                                               Spr=range (12)
                                                                sprfest_2010 = ['2010-02-11', '2010-02-12', '2010-02-13', '2010-02-14', '2010-02-15', '2010-02-16', '2010-02-17', '2010-02-18', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', '2010-02-19', 
                                                                sprfest 2011 = ['2011-01-31', '2011-02-01', '2011-02-02', '2011-02-03', '2011-02-04', '2011-02-05', '2011-02-06', '2011-02-07', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', '2011-02-08', 
                                                                sprfest_2012 = ['2012-01-20', '2012-01-21', '2012-01-22', '2012-01-23', '2012-01-24', '2012-01-25', '2012-01-26', '2012-01-27', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', '2012-01-28', 
                                                                sprfest_2013 = ['2013-02-07', '2013-02-08', '2013-02-09', '2013-02-10', '2013-02-11', '2013-02-12', '2013-02-13', '2013-02-14', '2013-02-15', '2013-02-15', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', '2013-02-16', 
                                                                sprfest 2014 = ['2014-01-28', '2014-01-29', '2014-01-30', '2014-01-31', '2014-02-01', '2014-02-02', '2014-02-03', '2014-02-04', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', '2014-02-05', 
                                                               hour of sprfest2=[[],[],[],[],[]]
                                                                variation of hour sprfest2 = pd. DataFrame()
                                                               pm25 sprfest 2010=pd. DataFrame()
                                                                for sprday 2010 in sprfest 2010:
                                                                                          pm25 sprfest 2010 date=pm25 knn[pm25 knn.date==sprday 2010]
                                                                                          pm25 sprfest 2010=pd.concat([pm25 sprfest 2010, pm25 sprfest 2010 date], sort=False)
                                                                 for hour in Hour:
                                                                                                                     pm25 hour sprfest 2010=pm25 sprfest 2010[pm25 sprfest 2010.hour==hour]
                                                                                                                     mean spr 2010=np. mean(pm25 hour sprfest 2010['pm2.5'])
                                                                                                                     hour_of_sprfest2[0]. append (mean_spr_2010)
                                                               pm25 sprfest 2011=pd. DataFrame()
                                                                 for sprday 2011 in sprfest 2011:
                                                                                          pm25 sprfest 2011 date=pm25 knn[pm25 knn.date==sprday 2011]
                                                                                          pm25_sprfest_2011=pd.concat([pm25_sprfest_2011, pm25_sprfest_2011_date], sort=False)
                                                                 for hour in Hour:
                                                                                                                     pm25 hour sprfest 2011=pm25 sprfest 2011[pm25 sprfest 2011.hour==hour]
                                                                                                                     mean spr 2011=np. mean (pm25 hour sprfest 2011 ['pm2. 5'])
                                                                                                                     hour of sprfest2[1]. append (mean spr 2011)
```

```
pm25 sprfest 2012=pd. DataFrame()
for sprday 2012 in sprfest 2012:
    pm25 sprfest 2012 date=pm25 knn[pm25 knn.date==sprday 2012]
    pm25 sprfest 2012=pd.concat([pm25 sprfest 2012, pm25 sprfest 2012 date], sort=False)
for hour in Hour:
        pm25 hour sprfest 2012=pm25 sprfest 2012[pm25 sprfest 2012.hour==hour]
        mean_spr_2012=np. mean(pm25_hour_sprfest_2012['pm2.5'])
        hour_of_sprfest2[2]. append (mean_spr_2012)
pm25 sprfest 2013=pd. DataFrame()
for sprday 2013 in sprfest 2013:
    pm25 sprfest 2013 date=pm25 knn[pm25 knn.date==sprday 2013]
    pm25 sprfest 2013=pd.concat([pm25 sprfest 2013, pm25 sprfest 2013 date], sort=False)
for hour in Hour:
        pm25 hour sprfest 2013=pm25 sprfest 2013[pm25 sprfest 2013.hour==hour]
        mean spr 2013=np. mean (pm25 hour sprfest 2013 ['pm2.5'])
        hour of sprfest2[3]. append (mean spr 2013)
pm25 sprfest 2014=pd. DataFrame()
for sprday 2014 in sprfest 2014:
    pm25_sprfest_2014_date=pm25_knn[pm25_knn.date==sprday 2014]
    pm25 sprfest 2014=pd. concat([pm25 sprfest 2014, pm25 sprfest 2014 date], sort=False)
for hour in Hour:
        pm25 hour sprfest 2014=pm25 sprfest 2014[pm25 sprfest 2014.hour==hour]
        mean_spr_2014=np. mean(pm25_hour_sprfest_2014['pm2.5'])
        hour of sprfest2[4]. append (mean spr 2014)
variation_of_hour_sprfest2=variation_of_hour_sprfest2. append(hour_of_sprfest2)
plt. figure (figsize= (20, 12))
for i in range(5):
    plt. subplot (2, 3, i+1)
    plt. plot (Hour, variation of hour sprfest2. iloc[i,:])
    plt. title ('days of spring festival of %d' % Year[i])
    plt. xlabel ('hour')
    plt. ylabel ('ave pm2.5')
```


	U	1	2	3	4	5	6	/	8	9	•••	14	15	16	17	
2	134.166667	171.250000	144.916667	92.583333	74.916667	77.416667	79.750000	67.916667	51.500000	47.083333		40.916667	47.916667	49.166667	49.916667	57.9166
3	109.833333	137.750000	109.166667	101.416667	86.750000	83.666667	85.583333	91.416667	92.666667	86.583333		88.500000	84.916667	85.333333	89.250000	96.1666
4	102.416667	126.583333	122.500000	108.416667	104.083333	97.250000	99.250000	96.583333	93.833333	93.916667		72.750000	74.333333	75.833333	76.416667	79.3333

5 rows × 24 columns

与原数据相比,平均浓度的数值大小和变化趋势均基本一样,每天每小时的变化趋势与全年相似,均为15点后上升,凌晨1点后慢慢下降

3.5.10 与task2类似,用折线图记录填补数据的每年春节期间(除夕前两天、除夕、正月初一至初七、初七后两天,以除夕前第二天为第0天)每天平均pm2.5的变化趋势,取每年春节每天的平均浓度作为当年春节该天的对应值

```
In [ ]:
         ## PM2.5在春节每天的波动值
         days_of_sprfest2=[[],[],[],[],[]]
         variation of days sprfest2 = pd. DataFrame()
         for sprday 2010 in sprfest 2010:
             pm25 day sprfest 2010=pm25_sprfest_2010[pm25_sprfest_2010.date==sprday_2010]
             mean_spr_2010=np. mean(pm25_day_sprfest_2010['pm2.5'])
             days of sprfest2[0]. append (mean spr 2010)
         for sprday 2011 in sprfest 2011:
             pm25 day sprfest 2011=pm25 sprfest 2011[pm25 sprfest 2011.date==sprday 2011]
             mean spr 2011=np. mean(pm25 day sprfest 2011['pm2.5'])
             days of sprfest2[1]. append (mean spr 2011)
         for sprday 2012 in sprfest 2012:
             pm25 day sprfest 2012=pm25 sprfest 2012[pm25 sprfest 2012.date==sprday 2012]
             mean_spr_2012=np. mean(pm25_day_sprfest_2012['pm2.5'])
             days of sprfest2[2]. append (mean spr 2012)
         for sprday 2013 in sprfest 2013:
             pm25 day sprfest 2013=pm25 sprfest 2013[pm25 sprfest 2013. date==sprday 2013]
             mean spr 2013=np. mean (pm25 day sprfest 2013['pm2.5'])
             days of sprfest2[3]. append (mean spr 2013)
         for sprday 2014 in sprfest 2014:
```

```
pm25_day_sprfest_2014=pm25_sprfest_2014[pm25_sprfest_2014. date==sprday_2014]
mean_spr_2014=np. mean(pm25_day_sprfest_2014['pm2.5'])
days_of_sprfest2[4]. append(mean_spr_2014)

variation_of_days_sprfest2=variation_of_days_sprfest2. append(days_of_sprfest2)

plt. figure(figsize=(20,12))

for i in range(5):
    plt. subplot(2, 3, i+1)
    plt. plot(Spr, variation_of_days_sprfest2. iloc[i,:])
    plt. title('Spring festival of %d' % Year[i])
    plt. ylabel('ave_pm2.5')
```


	0	1	2	3	4	5	6	7	8	9	10	11
2	58.666667	15.458333	48.041667	199.875000	21.375000	61.500000	109.750000	73.625000	86.750000	46.583333	117.916667	76.375000
3	12.416667	56.458333	190.125000	60.500000	64.791667	113.708333	306.916667	85.359375	39.791667	136.833333	134.541667	22.791667
4	43.916667	142.875000	75.166667	164.291667	156.833333	74.375000	7.416667	25.750000	102.375000	145.250000	102.250000	60.041667

与原数据相比,平均浓度的数值大小和变化趋势均基本一样,平均浓度基本均出现3个高峰,分别在除夕前后,初三前后和初七前后

综上所述,显然k近邻法填补数据更能模拟原数据结构