

Advanced Business Modeling CIS 418

Assignment Project Exam Help

Line https://eduassistpro.github.io/ming:
Add WeChat edu_assist_pro
Production lems

Why Linear Programming?

- Linear programming (LP) is a tool to solve decision problems where
 - relationships between decision variables and the objective are linear
 - relationships between decision variables and constraints are linear

Assignment Project Exam Help

• Widely used in for a

- xample:
- production plan https://eduassistpro.github.io/
- Portfolio optimi
- Scheduling Add WeChat edu_assist_pro
- Algorithms exist to find globally opti

Linear vs. Non-linear

• Linear: sum of variables, multiple by scalar (coefficient)

$$x_1$$

$$5x_1$$

$$5x_1 + 3x_2$$

Assignment. Project Bram. Help

• Non-linear: $x_1^2 \sqrt[3]{x_1}$ https://eduassistpro.github.io/

Add WeChat edu_assist_pro

This formulation is linear

$$X_1 + X_3 \ge X_2$$

$$(x_1 + x_3)/x_2 \ge 1$$

LP: constraints and objective are linear functions

Example: Desks or Tables?

A manufacturer makes wooden desks and tables.

Each desk requires 4 hours to cut and 2 hours to assemble.

Each table requires 3 hours to cut and 5 hours to assemble.

The manufacturer can do only up to 12 hours of cutting and 10 hours of assembling per day. I gnment Project Exam Help

Profit is 15\$ per desk https://eduassistpro.github.jo/the profit?

Formulate the problem

Variables: Desks $-X_1$ Tables $-X_2$

Constraints:

Cutting: $4x_1 + 3x_2 \le 12$ Assignment Project Exam Help $2x_1 + 5x_2 \le 10$

Non-negative produc https://eduassistpro.github.io/

Objective: max profit Add We Chat edu_assist_pro

Graphic Solution

Feasible area and optimal solution

- Feasible area the set of all possible variable combinations.
- Binding constraints constraints that define the edges of the feasible set.
- Not all constraints are binding. For example:

 \mathcal{X}_1

• If we relax a constraint (if we have more resources), the feasible area might change and so is the solution.

Solution properties

- An LP problem could have either:
 - A unique solution only if the feasible set is bounded and has no holes.
 - Multiple solutions if the isoprofit line is parallel to a binding constraint line.
 - No solution Afor example if the feasible set is null.

Solution properties - Summary

- Isoprofit line the line that represents the objective function.
- The isoprofit lines are parallel to each other
- A unique solution would be found on the intersection between binding constraints.
- The solution can seignment Project Exam Help
 - A binding constrai
 - Another constraint https://eduassistpro.github.io/
 - The profitability ratios between variable erefore the objective function changes). Add WeChat edu_assist_pro

Example: Go-Green!

- Go-Green! company provides all the ingredients plus the recipes for cooking your own meals at home. Customers can choose between Organic, Vegan and Green meals.
- Each meal is built from a mix of ingredients in inventory:
 - Peppers
 - Kale Assignment Project Exam Help
 - Tomatoes
 - Butternut squashttps://eduassistpro.github.io/
 - Arugula
- Your goal is to produce the wixe the the inventory.

All parameters are detailed in the excel file <u>LP problems.xlsx</u>

Formulate the problem

1. What are the **variables**? Name them $(x_1, x_2, ...)$

2. What are the constraints? Write them in a mathematical form (inequalities)

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

3. What is the **objective function**? Write it in a mathematical form.

4. Do we **maximize** or **minimize** the objective?

Formulate the problem

1. What are the **variables**? Name them $(x_1, x_2, ...)$

Organic- X_1 Vegan- X_2 Green- X_3

2. What are the **constraints**? Write them in a mathematical form (inequalities)

• Peppers $x_1 + x_2 \le 450$ • Kale $x_1 \le 250$ Project Exam Help

- https://eduassistpro.github.io/ • Tomatoes

• Butternut squash $X_1 + X_2 \le 450$ Add WeChat edu_assist_pro

- Arugula
- $2x_1 + x_2 + x_3 \le 600$
- Non-negative production: $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$

3. What is the **objective function**? Write it in a mathematical form.

Profit: $75x_1 + 50x_2 + 35x_3$

4. Do we **maximize** or **minimize** the objective? **Maximize**

Feasibility

- Build a **spreadsheet** to **calculate the profit** from a mix of
 - ✓200 Organic meals,
 - ✓200 Vegan meals, and
 - ✓10 Green meals. Assignment Project Exam Help
- Is it **feasible** to build t https://eduassistpro.gittowolog/bu know?

Add WeChat edu_assist_pro

Feasibility check

PARAME ^T	TERS									
							f Materials			ŀ
	Profit Mar	gin			Peppe		matoes	Butternut squash	Arugula	ŀ
Organic dinner	\$ 75.00			Organic dinner	1		2	1	2	i
Vegan dinner	\$ 50.00			Vegan dinner	1		2	1	1	ŀ
Green dinner	\$ 35.00			Green dinner	0	0	1	0	1	
							Inventory			l
		Λ (cciar	ment	Deppers (A Kaley o	To na oes	Butternut squash 450	Arugula	i
			ooigi		1 450	1 2501 Cl	111 800	450	600	ŀ
										ı
										1
1							+			

https://eduassistpro.github.io/

Decision va			Objective			
	A 113	T 7	1 4 -		<u> </u>	
Organic dinner	AC 200	wec	nat e	Odanic athors	} \$	15,00000
Vegan dinner	200			Vegan dinner	\$	10,000.00
Green dinner	10			Green dinner	\$	350.00
				Total Drafit	φ	25 250 00

Calculations			
	Used		Avaliable
Peppers	400	<	450
Kale	200	<	250
Tomatoes	810	>	800
Butternut squash	400	<	450
Arugula	610	>	600

Solving the optimization problem

- The problem has more than two variables therefore it is more difficult to solve on paper (we would need to draw a 3D graph...)
- Therefore we solve it by using Excel Solver.

When we solve an optimization problem using excel we do the following:

• Choose arbitrary variables (Guess!)

- Calculate the https://eduassistpro.github.lo/
- Calculate the
- Use solver and define the cariable edu_assiste constraints
- Let solver find the solution for y

LP using vector and matrix notation

n decision variables as a column vector

$$\begin{bmatrix} X_1 \\ X_2 \\ X_n \end{bmatrix}$$

Product of a row vector and a column vector as the objective Assignment Project Exam Help

https://eduassistpro.github.io/

variables

$$\begin{bmatrix} a_{11} & a_{12} & a_{1n} \\ a_{21} & a_{22} & a_{2n} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} \leq \begin{bmatrix} b_1 \\ b_2 \\ b_m \end{bmatrix}$$

Very brief review of matrix (array) multiplication

Array dimensions are denoted as [number of rows x number of columns]

[n x 1] [1 x n] [m x n]
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
Assignment Project Exam Help

https://eduassistpro.github.io/

Two matrices can be multiplied whether the du_assistent protect. The result has the same number of rows as ix and the same number of columns as the second.

[1 x n] x [n x 1] = [1 x 1]
[
$$c_1$$
 c_2 ... c_n] x $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ = $c_1x_1 + c_2x_2 + \dots + c_nx_n$

A very brief review of how to multiply matrices

Matrix multiplication is not commutative: AxB ≠ BxA

$$\begin{bmatrix} \mathbf{n} \times \mathbf{1} \end{bmatrix} \times \begin{bmatrix} \mathbf{1} \times \mathbf{n} \end{bmatrix} = \begin{bmatrix} \mathbf{n} \times \mathbf{n} \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_1 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_1 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_1 \end{bmatrix}$$

https://eduassistpro.github.io/

[
$$c_1$$
 c_2 c_n] \times Chat edu_assist_pro
$$\begin{bmatrix} c_1 & c_2 & c_n \end{bmatrix} \times \begin{bmatrix} x_1 & x_2 & x_2 & \cdots & x_n \\ x_n & x_n & \cdots & x_n \end{bmatrix}$$

The element in row **r** and column **m** of the **result** is the **matrix product** of

- row r of the first matrix and
- column m of the second matrix.

Useful excel functions

• SUMPRODUCT – sum the product of two arrays.

The dimension of the two arrays must be equal!

- Array1 = [1 2 3 5]
- Array2 = [4 5 6 2]

Sumproduct(Array1, Array2)=1*4+2*5+3*6+5*2=42

• Array
$$1 = [1 \ 2]$$

• Array1 = [1 2 https://eduassistpro.github.io/

If you are using the TRANSPOSE function, you must enter the formula in as an array formula, i.e. use **<CTRL><SHIFT><ENTER>**

Useful excel functions (cont.)

• Mmult – the product of two matrices.

The inner dimensions of the two matrices must be equal!

Mmult(Matrix1, Ma https://eduassistpro.github.io/ in this case)

Add WeChat edu_assist_pro t stap is to select the ve the correct

- For array operations the first step is to **select the**ve the **correc**dimensions for the **result.**
- After entering the function use <<u>CTRL><SHIFT></u><ENTER> instead of just <<u>ENTER></u> to let Excel know that you want to use an array function. You will see curly brackets around your function.
- Use MMULT(\mathbf{A} , \mathbf{B}) to multiply two matrices: \mathbf{A} and \mathbf{B} . Remember MMULT(\mathbf{A} , \mathbf{B}) \neq MMULT(\mathbf{B} , \mathbf{A}). To multiply more than two matrices, you can nest MMULT() operations.

Setting up decision variables as a row vector

PARAME [®]	TERS								
						f Materials			
	Profit Margi	in		Peppe		matoes	Butternut squash	Arugula	
Organic dinner	\$ 75.00		Organic dinner	1		2	1	2	
/egan dinner	\$ 50.00		Vegan dinner	1		2	1	1	
Green dinner	\$ 35.00		Green dinner	0	0	1	0	1	
		_				Inventory			
		Λο	signment	DReppers	← Kaley o	Tolna ces	Butternut squash	Arugula	
			Significati	1 450		1111 800 CI	450	600	
								_	

Objective: profit https://eduassistpro.github.io/
$$\begin{bmatrix} x_{Organic} & x_{Veg} & X_{Green} \\ x_{Veg} & X_{Green} \end{bmatrix} = \text{edu_assist} \begin{bmatrix} x_{V} & y_{FO} \\ y_{Green} \end{bmatrix}$$

Constraints: inventory

$$\begin{bmatrix} x_{Organic} & x_{Vegan} & x_{Green} \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 2 & 1 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} =$$

$$= \begin{bmatrix} (x_{Or} + x_V) & (x_{Or}) & (2x_{Or} + 2x_V + x_G) & (x_{Or} + x_V) & (2x_{Or} + x_V + x_G) \end{bmatrix}$$

Setting up decision variables as a column vector

PARAME	TERS									•
							f Materials			
	Profit Marg	jin			Peppe		matoes	Butternut squash	Arugula	
Organic dinner	\$ 75.00			Organic dinner			2	1	2	
Vegan dinner	\$ 50.00			Vegan dinner	1		2	1	1	
Green dinner	\$ 35.00			Green dinner	0	0	1	0	1	
							Inventory			
			•		Peppers	, Ka le	Tomatoes ₁	Butternut squash	Arugula	
		A	SS191	ıment	P14501 C	25,0X 2	Tomatoes 800C 1	450	600	
			5-6-		J			-		
				<u> </u>			†			

Objective: profit https://eduassistpro.github.io/
$$[75 \quad 50 \quad 35] \times \begin{array}{c} x_{yegan} \\ Ada_{Green} \end{array} = \begin{array}{c} -75x \\ Chat \ edu_assist_pro \end{array}$$

Constraints: inventory

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & 2 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} x_{Organic} \\ x_{Vegan} \\ x_{Green} \end{bmatrix} = \begin{bmatrix} x_{Organic} + x_{Vegan} \\ x_{Organic} \\ 2x_{Organic} + 2x_{Vegan} + x_{Green} \\ x_{Organic} + x_{Vegan} \\ 2x_{Organic} + x_{Vegan} + x_{Green} \end{bmatrix}$$

Robustness

- Problem: if something changes in the data, the solution might change
- If you are running a business, you want to make sure that small changes in prices would not drag you into a completely different production setting.
- · Would the current signment Project Exam Help
- How robust is the s https://eduassistpro.github.io/
- Answer: by sensitivity analysis.

 Add WeChat edu_assist_pro
- Go back to the spreadsheet, in risk solver choose

Reports ->Optimization -> Sensitivity

Sensitivity Report

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

What happens if the profit margins change?

Decision Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$C\$18	Organic dinner Profit Margin	200	0	75	(25.0000002)	5.0000002
\$C\$19	Vegan dinner Profit Margin	200	0	50	25.0000001	12.5000001
\$C\$20	Green dinner Profit Margin gnment	Projec	t Exan	n Help	2.5	1E+30

These capture a ch

As long as profit ma https://eduassistpro.github.jo/ solution does not change.

solution does not change.

Add WeChat edu_assist_pro

If the Organic dinner profit margin rose dinner or fell
to \$70 per dinner (while other profit margins did not change), it
would still be optimal to produce 200 Organic dinners and 200
Vegan dinners.

The optimal mix would change if the Organic dinner profit margin increased past \$100, or decreased below \$70.

What is the reduced cost?

Decision Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$C\$18 C	Organic dinner Profit Margin	200	0	75	25.0000002	5.0000002
\$C\$19 V	egan dinner Profit Margin	200	0			12.5000001
\$C\$20 G	Green dinner Profit A Signment	Projec	t Exam	n Help	2.5	1E+30

https://eduassistpro.github.io/ Holding all else con n dinners will have to increase by \$2.50 before we we we do not producing any Green dinners out of our inventory.

Shadow prices

Non-zero shadow prices (aka dual variables) are associated with binding constraints.

Assignment Project Exam Help

https://eduassistpro.github.jo/

Add WeChat edu_assist_pro

Just ONE more tomato would increase profits by \$12.50, one extra arugula would increase profits by \$25.

If the supply of arugula increases past 650 units, or decreases past 400 units, the shadow price associated with the arugula changes.

Shadow prices

Lets assume we do not have the sensitivity report. How can we figure out the shadow price of tomatoes?

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Shadow prices

Lets assume we do not have the sensitivity report. How can we figure out the shadow price of tpmatoes?

Solution:

- · We add one mor Atsmittenty Proviect Exam Help
- We keep everything else fixed.
- We calculate the opti
 The shadow price of a https://eduassistpro.github.io/profit and the
- The shadow price of a Thips://eduassistpio.ghe new profit and the previous profit.
- If the profit did not change the what edu_assist the constraint over tomatoes is not binding.