STAT0041: Stochastic Calculus

Lecture 5 - Continuous-time Martingale

Lecturer: Weichen Zhao Fall 2025

Key concepts:

• 鞅收敛定理:

• 连续时间鞅。

建立连续时间鞅论一个基本想法是利用离散时间鞅的结果,本节课我们建立离散时间鞅的收敛定理,从而能将离散时间的结果推广到连续时间。

5.1 Doob下鞅收敛定理

在介绍定理之前,需要先介绍一个重要引理,先给出一些记号。设 (ξ_n) 是一个 (\mathscr{F}_n) 适应过程,设a < b,我们定义停时序列:

$$\tau_{0} = 0$$

$$\tau_{1} = \inf\{n \geq 0, \xi_{n} \leq a\},$$

$$\tau_{2} = \inf\{n \geq \tau_{1}, \xi_{n} \geq b\},$$

$$\tau_{3} = \inf\{n \geq \tau_{2}, \xi_{n} \leq a\},$$

$$\tau_{4} = \inf\{n \geq \tau_{3}, \xi_{n} \geq b\},$$

$$\dots$$

$$\tau_{2m-1} = \inf\{n \geq \tau_{2m-2}, \xi_{n} \leq a\},$$

$$\tau_{2m} = \inf\{n \geq \tau_{2m-1}, \xi_{n} \geq b\}.$$

定义 ξ_n 在N之前的上穿次数为:

$$U_N[a,b] \triangleq \begin{cases} 0, & \tau_2 > N, \\ \max\{m, \tau_{2m} \le N\}, & \tau_2 \le N. \end{cases}$$

Lemma 5.1 (Doob 上穿不等式) 设 (ξ_n) 是一个 \mathscr{F}_n 下鞅,那么对于所有的 $N \geq 1$

$$\mathbb{E}U_N[a,b] \le \frac{\mathbb{E}(\xi_N - a)^+}{b - a}.$$

Proof: 由于(ξ_n)在区间[a,b]的上穿次数等于下鞅(($\xi_n - a$)⁺, \mathscr{F}_n)在区间[0,b - a]的上穿次数 (请自行验证下鞅性质),我们不妨考虑(ξ_n)为非负下鞅。

定义

$$\phi_i \triangleq \begin{cases} 1 & \tau_m < i \le \tau_{m+1}, \text{ 且 } m \text{ 为奇数} \\ 0 & \tau_m < i \le \tau_{m+1}, \text{ 且 } m \text{ 为偶数} \end{cases}$$

那么

$$\begin{split} \{\phi_i = 1\} &= \bigcup_{m \text{为奇数}} \left\{ \{\tau_m < i\} \cap \{\tau_{m+1} \ge i\} \right\} \\ &= \bigcup_{m \text{为奇数}} \left\{ \{\tau_m < i\} \setminus \{\tau_{m+1} < i\} \right\} \\ &= \bigcup_{m \text{为奇数}} \left\{ \{\tau_m \le i - 1\} \setminus \{\tau_{m+1} \le i - 1\} \right\} \in \mathscr{F}_{i-1}, \end{split}$$

也就是说 ϕ_i 是可料序列。考虑 m 是满足 $2m \leq N$ 的最大正整数,由于只有 $\xi_{\tau_{2k}} - \xi_{\tau_{2k-1}} \geq b$ 时才会上穿区间(0,b),那么有

$$U_N[0,b] \le \frac{\xi_{\tau_2} - \xi_{\tau_1}}{b} + \frac{\xi_{\tau_4} - \xi_{\tau_3}}{b} + \dots + \frac{\xi_{\tau_{2m}} - \xi_{\tau_{2m-1}}}{b}$$
$$= \frac{1}{b} \sum_{i=1}^{N} \phi_i(\xi_i - \xi_{i-1})$$

设

$$\eta_n \triangleq \sum_{i=1}^n \phi_i(\xi_i - \xi_{i-1}), \quad \eta_0 = 0$$

注意到 $\xi_n = \sum_{i=1}^n (\xi_i - \xi_{i-1}) + \xi_0$, $1 - \phi_i \ge 0$, 那么有

$$\xi_n - \eta_n = \sum_{i=1}^n (1 - \phi_i)(\xi_i - \xi_{i-1}) + \xi_0(1 - \phi_0)$$

是 \mathscr{F}_n 下鞅。

(留作作业: 若 (X_n) 是非负 \mathscr{F}_n 下鞅列, C_n 是 \mathscr{F}_n 非负可料随机序列,且对任意的 $n \ge 0$, $\mathbb{E}|C_n|<\infty$,则鞅变换 $Y_n=C_0X_0+\sum_{k=1}^n C_k(X_k-X_{k-1})$ 是 \mathscr{F}_n 下鞅。)

因此

$$\mathbb{E}[\xi_n - \eta_n] \ge \mathbb{E}[\xi_0 - \eta_0] = \mathbb{E}\xi_0 \ge 0$$

那么

$$\mathbb{E}U_{N}[0,b] \leq \frac{1}{b}\mathbb{E}[\sum_{i=1}^{N} \phi_{i}(\xi_{i} - \xi_{i-1})] = \frac{1}{b}\mathbb{E}\eta_{N} \leq \frac{1}{b}\mathbb{E}\xi_{N}.$$

Theorem 5.2 (Doob 下鞅收敛定理) 设 (ξ_n) 是一个 \mathscr{F}_n 下鞅,满足 $\sup_n \mathbb{E}|\xi_n| < \infty$,那么

$$\xi_{\infty} \triangleq \lim_{n \to \infty} \xi_n, \ a.s.$$

存在,并且 $\mathbb{E}|\xi_{\infty}|<\infty$.

Proof: 反证法,假设 $\lim_{n\to\infty} \xi_n$, a.s. 不存在,即

$$P(\{\omega \in \Omega : \limsup_{n \to \infty} \xi_n(\omega) > \liminf_{n \to \infty} \xi_n(\omega)\}) > 0$$

由于

$$\{\limsup_{n\to\infty}\xi_n>\liminf_{n\to\infty}\xi_n\}=\bigcup_{a< b,a \not\equiv b \neq 2}\{\limsup_{n\to\infty}\xi_n>b>a>\liminf_{n\to\infty}\xi_n\},$$

所以存在有理数a < b, 使得

$$P(\limsup_{n\to\infty}\xi_n > b > a > \liminf_{n\to\infty}\xi_n) > 0.$$

这意味着 (ξ_n) 以正概率在区间[a,b]有无穷次上穿,即以正概率, $U_{\infty}[a,b] = \infty$ 。

另一方面,定义 $U_{\infty}[a,b] = \lim_{N \to \infty} U_N[a,b]$ 表示 $\xi_0, \dots, \xi_n, \dots$ 上穿(a,b)的次数。由上穿不等式和Lebesgue单调收敛定理、

$$\mathbb{E}U_{\infty}[a,b] = \lim_{N \to \infty} \mathbb{E}U_N[a,b] \le \frac{\mathbb{E}(\xi_N - a)^+}{b - a} \le \frac{\mathbb{E}\xi_N^+ + |a|}{b - a}.$$

由于 $\sup_n \mathbb{E}|\xi_n| = \sup_n \mathbb{E}[\xi_n^+ + \xi_n^-] < \infty$,因此

$$\mathbb{E}U_{\infty}[a,b]<\infty.$$

这意味着 $U_{\infty}[a,b]<\infty$ a.s.成立,矛盾!

所以 $\lim_{n\to\infty} \xi_n$, a.s.存在,记为 ξ_∞ , 进一步由Fatou引理,

$$\mathbb{E}|\xi_{\infty}| \leq \sup_{n>1} \mathbb{E}|\xi_n| < \infty.$$

注. 上鞅的收敛定理:参考《测度论讲义(第3版)》,严加安,P188,定理8.2.1

5.2 连续时间鞅

首先介绍连续时间情形的一些基本概念,并假设本节带滤子流的概率空间都满足通常的条件。

Definition 5.3 (连续时间鞅) 设 $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, P)$ 是一个带流的概率空间, $X = (X_t)$ 是 其上的一个适应过程,满足 $\mathbb{E}[|X_t|] < \infty$,称X是

- (1) 一个 \mathscr{F}_t 鞅,如果 $\forall 0 \leq s < t$, $\mathbb{E}[X_t|\mathscr{F}_s] = X_s$;
- (2) 一个 \mathcal{F}_t 上鞅,如果 $\forall 0 \leq s < t, \mathbb{E}[X_t|\mathcal{F}_s] \leq X_s;$
- (3) 一个 \mathcal{F}_t 下鞅,如果 $\forall 0 \leq s < t$, $\mathbb{E}[X_t | \mathcal{F}_s] \geq X_s$.

Definition 5.4 (随机过程的连续性) 我们称一个随机过程是连续的,如果它的所有样本轨道几乎必然是连续的,即

$$P(\{\omega|t\mapsto X_t(\omega)$$
 是连续的 $\})=1.$

左连续和右连续是相似定义的。

Definition 5.5 (右连左极过程) 称一个随机过程是右连左极(cadlag, continue à droite, limite à gauche)过程,如果它的所有样本轨道几乎必然是右连左极的。

有时我们并不清楚一个过程是否是右连左极的,下面我们说明,只要稍微修正一下过程, 我们就可以确保样本轨道是右连左极的,所以之后我们总可以假设过程是右连左极。

首先我们先给出"修正"的概念:

Definition 5.6 (修正) 设 $(X_t)_{t\in T}$ 和 $(\tilde{X}_t)_{t\in T}$ 是两个取值于同一个状态空间的随机过程, 我们称过程 \tilde{X} 是过程 X 的一个修正(Modification), 如果

$$\forall t \in T, \quad P(\tilde{X}_t = X_t) = 1.$$

下面的引理说明每个鞅都存在右连左极修正。

Lemma 5.7 (Theorem 3.18 of [1]) 设 $(X_t)_{t\in T}$ 是一个上鞅,满足函数 $t\mapsto \mathbb{E}[X_t]$ 是右连续的,那么X存在一个右连左极的修正,且这个修正也是 \mathscr{F}_t -上鞅。特别地,每个鞅都一定存在右连左极修正,因为 $\mathbb{E}[X_t]$ 是一个常数。

注. 之后我们总可以假设鞅是右连左极的。

Definition 5.8 (停时) 设 $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, P)$ 是一个带流的概率空间,随机变量 $\tau: \Omega \to [0, \infty]$ 称为一个 \mathscr{F}_t 停时,如果对于所有 t>0

$$\{\tau \leq t\} \in \mathscr{F}_t.$$

τ前事件域定义为

$$\mathscr{F}_{\tau} \triangleq \{A \in \mathscr{F}_{\infty} : \forall t \geq 0, A \cap \{\tau \leq t\} \in \mathscr{F}_t\}.$$

Example 5.9 (First hitting time) $\Diamond(X_t)$ 是一个状态空间为E的右连续 \mathcal{F}_t 适应过程,对于 $A \subset E$, 首次到达A的时间

$$\tau_A(\omega) = \inf\{t > 0 : X_t(\omega) \in A\}$$

为一个停时。

Example 5.10 ϕ_{τ} 为一个停时, σ 为一个取值于 $[0,\infty]$ 的 \mathscr{F}_{τ} 随机变量,使得 $\sigma \geq \tau$. 则 σ 为一个停时。特别地,定义

$$\tau_n \triangleq \sum_{k=0}^{\infty} \frac{k+1}{2^n} \mathbf{1}_{\{k2^{-n} < \tau \le (k+1)2^{-n}\}} + \infty \cdot \mathbf{1}_{\{\tau = \infty\}}, \quad n = 0, 1, 2, \dots$$

为一个趋于7的停时序列。

Proof: 由于 σ 是 \mathscr{F}_{τ} 可测的,所以

$$\{\sigma \leq t\} \cap \{\tau \leq t\} \in \mathscr{F}_t$$

又 $\sigma \ge \tau$, 那么 $\{\sigma \le t\} = \{\sigma \le t\} \cap \{\tau \le t\}$, 故 $\{\sigma \le t\}$ 是 \mathcal{F}_t 可测的, 故为一个停时。

特别地, τ_n 为 τ 的函数,所以 τ_n 是 \mathscr{F}_{τ} 可测的,又 $\tau_n \geq \tau$,故 τ_n 为停时。

5.3 连续时间鞅的一些基本结论

Proposition 5.11 (Doob鞅不等式) 设 (X_t) 为一个右连续下鞅, 那么对于所有 c>0 和 $T<\infty$,

$$c \cdot P(\sup_{0 \le t \le T} X_t \ge c) \le \mathbb{E}[X_T^+].$$

设 (X_n) 为一个右连续鞅, 且对某个 $p \geq 1$, $\mathbb{E}|X_t|^p < \infty$. 那么对于所有的 c > 0和 $T < \infty$,

$$P(\sup_{0 \le t \le T} |X_t| \ge c) \le \frac{\mathbb{E}|X_t|^p}{c^p}.$$

Proof: 通过离散时间的结论证明,参考 Proposition 3.15 of [1].

Theorem 5.12 (鞅收敛定理) 设X为一个右连续上鞅,且 $(X_t)_{t\geq 0}$ 是 L^1 有界的。那么存在一个随机变量 $X_\infty\in L^1$ 使得

$$\lim_{t \to \infty} X_t = X_{\infty}, \quad a.s.$$

Proof: 通过上穿不等式证明,参考 Theorem 3.19 of [1].

Theorem 5.13 (Doob停止定理) 设 $(X_t)_{t\geq 0}$ 为一个右连续鞅, $\sigma \leq \tau < \infty$ 为两个有界停时,那么

$$[X_{\tau}|\mathscr{F}_{\sigma}] = X_{\sigma}.$$

Proof: 参考 Corollary 3.23 of [1].

Theorem 5.14 (Doob选样定理) 设 (X_t) 为一个右连续鞅, τ 为一个停时,那么停止过程 $X^{\tau}:=X_{\tau\wedge t}$ 为一个鞅。进一步,如果停时 τ 是有界的,则有 $\mathbb{E}[X_{\tau}]=\mathbb{E}[X_0]$.

Proof: Doob停止定理的推论,参考 Corollary 3.24 of [1].

参考文献

[1] Le Gall, Jean-François. Brownian motion, martingales, and stochastic calculus. Springer International Publishing Switzerland, 2016.