nlmixr2: an open-source package for pharmacometric modelling in R

Course material nlmixr2 PMxAfrica 2025

Rik Schoemaker, PhD 07 August 2025

Simulation of a single (warfarin concentration) curve with a single dose

...and simulating three additional infusions in the central compartment

Central compartment concentrations

...adding a transit compartment between depot and central

...adding 5 transit compartments between depot and central and giving 4 bolus doses in the 1st compartment

Our warfarin data file: a ggplot to provide an impression

Change the x-axis from hours to days and add a proper label using the xgx helper xgx_scale_x_time_units(units_dataset = "hours", units_plot = "days")

The data set has two types of profiles

Switch to semi-log scale using xgx helper xgx_scale_y_log10() Any clues to what model we should use?

xgx can also add nice summary information if data has nominal times: summaries of mean plus 95% CI xgx_geom_ci(aes(x = TIME, color = NULL, group = NULL, shape = NULL), conf_level = 0.95)

On linear scale this would result in a CI crossing zero because CIs are assumed symmetrical

...so perhaps a median and 95% of the data would be more suitable xgx_geom_pi(aes(x = TIME, color = NULL, group = NULL, shape = NULL)

Traceplot for SAEM parameter estimates using nlmixr2 command

NPDE vs PRED plot using ggPMX ctr %>% pmx_plot_npde_pred or pmx_plot_npde_pred(ctr)

