CS 577: Introduction to Algorithms	Homework 2
Out: 02/09/21	Due: 02/16/21
Name: W	Visc ID:
Ground Rules	
 Answer the questions in the boxes provided on the questions page to the end of the document. 	sheets. If you run out of room for an answer, add a
• The homework is to be done and submitted individually. Yo section but you must write up the solution <i>on your own</i> .	u may discuss the homework with others in either
• You are not allowed to consult any material outside of assigne course websites. In particular, consulting the internet will be	
• The homework is due at 11:59 PM CST on the due date. No circumstances.	extensions to the due date will be given under any
• Homework must be submitted electronically on Gradescope.	
Problem	
You have a backpack that can hold up to k pounds and can be filled bounds of pixie dust is determined by the non-decreasing sequence s determined by the non-decreasing sequence s . Given a weight light is to calculate the maximum value you can obtain by filling that dragon scales. Note that in some cases the rate of increase in an item's value of s_i is called s_i and satisfies that $s_i - s_{i-1}$ is a decreasing function.	e a_i , while the value of j pounds of dragon scales limit k and sequences $a_0 \ldots a_n$ and $b_0 \ldots b_n$, your he backpack with some combination of pixie dust decreases the more you have of it. Such a sequence
Part 1:	
For the first part of this question we will assume that both sequence (a) Prove that for any k , the sequence $y_i = a_i + b_{k-i}$ for $0 \le i \le k$	

Part 2:

In the second part we will consider the scenario where only sequence b is concave and a is not.

Note: In such a situation computing v_k for a fixed value of k takes $\Omega(k)$ time in the worst-case. This can be seen by noting that the corresponding function $y_i = a_i + b_{k-i}$ can result in an arbitrary unsorted sequence and that finding the maximum element in an unsorted list of length k takes $\Omega(k)$ time as one needs to look at all the elements.

However, even though it takes $\Omega(k)$ time to compute the value of v_k , you will show that the whole sequence for all $k \in [0, n]$ can be computed significantly faster than the naive algorithm which runs in $O(n^2)$ time.

Part 3:

Provide an algorithm to compute v_k for all k = 0, 1, ..., n running in time $O(n^{1.99})$ or faster.

This is a major open problem in computer science. There is no existing solution and we do not expect you to come up with one.