Data Science in Practice-Assignment 2

March 31, 2019

Problem Set 2

Imports and definition of helper fucntions such as plots

```
In [1]: !python -m pip install --upgrade pip
        !pip install python-louvain
Collecting pip
  Downloading https://files.pythonhosted.org/packages/d8/f3/413bab4ff08e1fc4828dfc59996d721917
    100% || 1.4MB 6.6MB/s ta 0:00:011
Installing collected packages: pip
 Found existing installation: pip 18.1
    Uninstalling pip-18.1:
      Successfully uninstalled pip-18.1
Successfully installed pip-19.0.3
Collecting python-louvain
  Downloading https://files.pythonhosted.org/packages/96/b2/c74bb9023c8d4bf94f5049e3d705b3064c
Requirement already satisfied: networkx in /Users/genmur/anaconda3/lib/python3.6/site-packages
Requirement already satisfied: decorator>=4.1.0 in /Users/genmur/anaconda3/lib/python3.6/site-
Building wheels for collected packages: python-louvain
  Building wheel for python-louvain (setup.py) ... done
  Stored in directory: /Users/genmur/Library/Caches/pip/wheels/f9/74/a9/14f051b00dddd46d71529d
Successfully built python-louvain
Installing collected packages: python-louvain
Successfully installed python-louvain-0.13
In [2]: !pip install powerlaw
```

Collecting powerlaw

Downloading https://files.pythonhosted.org/packages/d5/4e/3ceab890fafff8e78a5fd7f5340c232c38 Requirement already satisfied: scipy in /Users/genmur/anaconda3/lib/python3.6/site-packages (factor) Requirement already satisfied: numpy in /Users/genmur/anaconda3/lib/python3.6/site-packages (f. Requirement already satisfied: matplotlib in /Users/genmur/anaconda3/lib/python3.6/site-package Requirement already satisfied: mpmath in /Users/genmur/anaconda3/lib/python3.6/site-packages (Requirement already satisfied: cycler>=0.10 in /Users/genmur/anaconda3/lib/python3.6/site-pack Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Users/genmur/anacon Requirement already satisfied: python-dateutil>=2.1 in /Users/genmur/anaconda3/lib/python3.6/s

```
Requirement already satisfied: pytz in /Users/genmur/anaconda3/lib/python3.6/site-packages (from the control of the control of
Requirement already satisfied: six>=1.10 in /Users/genmur/anaconda3/lib/python3.6/site-package
Requirement already satisfied: kiwisolver>=1.0.1 in /Users/genmur/anaconda3/lib/python3.6/site
Requirement already satisfied: setuptools in /Users/genmur/anaconda3/lib/python3.6/site-package
Building wheels for collected packages: powerlaw
    Building wheel for powerlaw (setup.py) ... done
    Stored in directory: /Users/genmur/Library/Caches/pip/wheels/e0/27/02/08d0e2865072bfd8d7c655
Successfully built powerlaw
Installing collected packages: powerlaw
Successfully installed powerlaw-1.4.6
In [3]: import sys
                  import numpy as np
                  import pandas as pd
                  import seaborn as sns
                  import networkx as nx
                  from networkx.algorithms.community import k_clique_communities
                  import community as community
                  import matplotlib.pyplot as plt
                  from matplotlib import cm
                  from matplotlib.colors import ListedColormap, LinearSegmentedColormap
                  import collections
                  import operator
                  import powerlaw as pl
                  from multiprocessing import Pool
                  import scipy.sparse as sp
                  import itertools
                  import pprint
                  import matplotlib.style as style
                  import random, time
                  from matplotlib.colors import rgb2hex
                  import io
                  sns.set()
                  style.use('Solarize_Light2')
                  sns.set_style("whitegrid")
In [4]: def nx_hist(x, bins, normed = False, xscale = 'linear', yscale = 'linear', use_log = False, xscale = 'linear'
                           density = None
                           if(normed):
                                    density = 1
                                    ylabel = 'Probability'
                           fig = plt.figure(figsize=(15,6))
                          plt.hist(x, bins=bins, normed=density, log=use_log)
                          plt.xlabel(xlabel)
                          plt.ylabel(ylabel)
                           #plt.xscale(yscale)
                          plt.yscale(yscale)
```

```
plt.title(title)
   plt.grid(True)
   plt.show()
def print_in_degree_dist(G):
    degree_sequence = sorted([d for n, d in G.in_degree()], reverse=True) # degree se
    degreeCount = collections.Counter(degree_sequence) # degree count
    print("Empirical Degree Distribution for network: "+G.name)
   nx_hist(degree_sequence,len(degreeCount))
   nx_hist(degree_sequence,len(degreeCount),yscale='log')
   # nx hist(degree_sequence,len(degreeCount),yscale='log',use_log=True)
def print_out_degree_dist(G):
    degree_sequence = sorted([d for n, d in G.out_degree()], reverse=True)
                                                                             # degree s
    degreeCount = collections.Counter(degree_sequence) # degree count
   print("Empirical Degree Distribution for network: "+G.name)
   nx_hist(degree_sequence,len(degreeCount))
   nx_hist(degree_sequence,len(degreeCount),yscale='log')
    #nx_hist(degree_sequence,len(degreeCount),yscale='log',use_log=True)
def print_degree_dist(G):
    degree_sequence = sorted([d for n, d in G.degree()], reverse=True) # degree seque
    degreeCount = collections.Counter(degree_sequence) # degree count
    print("Empirical Degree Distribution for network: "+G.name)
   nx_hist(degree_sequence,len(degreeCount))
    nx_hist(degree_sequence,len(degreeCount),yscale='log')
    #nx hist(degree_sequence,len(degreeCount),yscale='log',use_log=True)
def plot_centrality(x,y,xlabel,ylabel,xmin,ymin,xmax,ymax):
   plt.figure(figsize=(15,9))
   plt.scatter(np.array(list(x.values())),np.array(list(y.values())))
   plt.xlim(xmin,xmax)
    #plt.ylim(ymin,ymax)
   plt.xlabel(xlabel)
   plt.ylabel(ylabel)
   plt.title("Centrality Comparison for the selected Measures")
   plt.show()
def cc_cdf(cc_dict):
   plt.figure(figsize=(15,10))
   plt.plot(sorted(cc_dict.values()),np.arange(0,len(cc_dict))/len(cc_dict))
   plt.xlabel("Local Clustering Coefficient (c)")
   plt.ylabel("P(x<=c)")</pre>
   plt.title("Empirical Clustering Coefficient CDF")
   plt.show()
   return
def w_degree_centrality(G):
```

```
tot = np.array(list(nx.get_edge_attributes(G,'weight').values())).sum()
            vals = list(np.array(list(dict(G.degree(weight='weight')).values())/tot))
            return dict(zip(keys, vals))
        def in_degree_centrality(G,weights):
            values_list = list(G.edges.data(weights))
            val_num = np.array([values_list[i][2] for i in range(9651)])
            vals = list(np.array(list(dict(G.in_degree(weight=weights)).values()))/np.sum(val_
            keys = list(idc_G.keys())
            return dict(zip(keys, vals))
        def out_degree_centrality(G, weights):
            values_list = list(G.edges.data(weights))
            val_num = np.array([values_list[i][2] for i in range(9651)])
            vals = list(np.array(list(dict(G.out_degree(weight=weights)).values()))/np.sum(val_
            keys = list(idc_G.keys())
            return dict(zip(keys, vals))
        def print_node_data(G,max):
            i = 0
            for n, d in G.nodes(data=True):
                if i < max:</pre>
                    print(n,d)
                i = i + 1
            return
        def ret_nodelist(DM_G,G_GCC,N):
            G_GCC_degs = dict(sorted(G_GCC.degree, key=lambda x: x[1], reverse=True))
            G_GCC_min_degs = dict([(key, value) for key,value in G_GCC_degs.items() if (value)
            \#G\_GCC\_top10\_names = [key for key, value in G\_GCC\_degs.items()][0:N]
            \#G\_GCC\_top10 = [value for key, value in G\_GCC\_degs.items()][0:N]
            print("Top 10 highest degree nodes and values:")
            for k, v in G_GCC_degs.items():
                if i < N:</pre>
                    print(k,v)
                i = i + 1
            \#return\ [G\_GCC\_top10\_names,\ G\_GCC\_top10]
In [5]: G = nx.read_edgelist('SMS-network.txt')
Basic Network statistics and degree distribution
In [6]: print(nx.info(G))
```

keys = list(nx.get_edge_attributes(G,'weight').keys())

Name:

Type: Graph

Number of nodes: 4039 Number of edges: 88234 Average degree: 43.6910

In [7]: G_GCC = max(nx.connected_component_subgraphs(G), key=len)
#G_game_GCC = max(nx.connected_component_subgraphs(G_game), key=len)
#G_game_uw_GCC = max(nx.connected_component_subgraphs(G_game_uw), key=len)
#nx.set_node_attributes(G_game_uw_GCC, cat_dict)

Name:

Type: Graph

Number of nodes: 4039 Number of edges: 88234 Average degree: 43.6910

Empirical Degree Distribution for network:


```
In [9]: def calculate_powerlaw(G_GCC):
            G_deg = sorted([d for n, d in G_GCC.degree()], reverse=True)
            print('{:^30}\t{:^7}'.format('Minimum number of neighbors:', G_deg[0]))
            print('{:^30}\t{:^7}'.format('Maximum number of neighbors:', G_deg[-1]))
            print('{:^30}\t{:^7.3f}'.format('Mean number of neighbors:', sum(G_deg)/len(G_deg)
            fit_G = pl.Fit(G_deg)
            print("Power Law vs Exponential:")
            R, p = fit_G.distribution_compare('power_law', 'exponential')
            print('R = {:.5f}'.format(R))
            print('p = {:.5f}'.format(p))
           print("Power Law vs Lognormal:")
           R, p = fit_G.distribution_compare('power_law', 'lognormal')
            print('R = {:.5f}'.format(R))
           print('p = {:.5f}'.format(p))
            print("Lognormal vs Exponential:")
            R, p = fit_G.distribution_compare('lognormal_positive', 'exponential')
            print('R = {:.5f}'.format(R))
           print('p = {:.5f}'.format(p))
           plt.figure(figsize=(15,9))
            fig = fit_G.plot_ccdf(linewidth=2, label='Empirical CCDF')
            fit_G.power_law.plot_ccdf(linestyle='--',ax=fig, label='Fitted Powerlaw CCDF')
            fit_G.lognormal_positive.plot_ccdf(linestyle='--',ax=fig, label='Fitted Lognormal
            plt.xlabel("Probability")
           plt.ylabel("Number of Neighbors")
            plt.legend()
           plt.show()
```

```
print('Fitted parameter alpha of the power law distribution: {:.3f}'.format(fit_G.print('Standard error of alpha: {:.3f}'.format(fit_G.power_law.sigma))
```

In [10]: calculate_powerlaw(G_GCC)

Minimum number of neighbors: 1045
Maximum number of neighbors: 1
Mean number of neighbors: 43.691

Power Law vs Exponential:

R = 23.37320

p = 0.06533

Power Law vs Lognormal:

Calculating best minimal value for power law fit

/Users/genmur/anaconda3/lib/python3.6/site-packages/powerlaw.py:700: RuntimeWarning: invalid v. (Theoretical_CDF * $(1 - Theoretical_CDF)$)

/Users/genmur/anaconda3/lib/python3.6/site-packages/powerlaw.py:1605: RuntimeWarning: invalid CDF = CDF/norm

'nan' in fit cumulative distribution values.

Likely underflow or overflow error: the optimal fit for this distribution gives values that are

R = -0.92839

p = 0.18551

Lognormal vs Exponential:

R = 21.77665

p = 0.05531


```
Fitted parameter alpha of the power law distribution: 5.993 Standard error of alpha: 0.351
```

Exponential, Lognormal, and powerlaw distributions were compared through distribution distance. The best fit for the network would appear to be a lognormal distribution, but as we can see the powerlaw distribution is close enough to the true TCDF (and indeed the R coefficient is only 0.59 in favor of the lognormal) to asset that the network follows a power law distribution.

This implies that the network does exhibit some scale free properties, which is relatively expected of networks of this type where their embedding is extremely high dimensional, and no prior structural constraints other than the network topology are placed: users can freely navigate from any page to any other page.

Clustering and Other Network Figures


```
Average Clustering: 0.6055467186200865

Overall Clustering (Transitivity): 0.5191742775433075

Network Density 0.010819963503439287

Avg Clustering to Density Ratio: 55.96568957257614
```

```
Density Overall clust Average clust Avg Clustering to Density Ratio 0 0.01082 0.519174 0.605547 55.96569
```

As can be seen from the table, the network is sparse: the density is 0.01 << 1. However, the network does seem to exhibit a high clustering property in that the average clustering is 55 times the density (where the density corresponds to the would-be average clustering if the network were randomly generated).

Given that the CDF tails off towards the end, this implies that the nodes in the network have a rather wide range of clustering coefficients, which given the context is relatively unsurprising.

Note: The Floyd Warshall Matrix takes a LONG time to compute (i7 8700k overclocked), and weighs 500mb approximately. Loading it in compressed is a whole other deal.

```
else:
                 with np.load(filename) as data:
                     DM_G = data['arr_0']
             dia_G = np.max(DM_G) # network diameter
             avg_spl_G = np.sum(DM_G)/(len(G_GCC.nodes)*(len(G_GCC.nodes)-1)) #avg shortest pa
             print("Diameter:",dia_G)
             print("Average Shortest Path Length:",avg_spl_G)
             df = pd.DataFrame(columns=['Diameter', 'Average Shortest Path Length'])
             df = df.append({'Diameter':dia_G,'Average Shortest Path Length': avg_spl_G,}, ign
             display(df)
             return DM_G
In [14]: DM_G = calculate_distances(G_GCC,0,'dm_mat.npz')
Diameter: 8
Average Shortest Path Length: 3.6925068496963913
   Diameter Average Shortest Path Length
        8.0
0
                                 3.692507
In [15]: ret_nodelist(DM_G,G_GCC,10)
Top 10 highest degree nodes and values:
107 1045
1684 792
1912 755
3437 547
0 347
2543 294
2347 291
1888 254
1800 245
1663 235
```

2 3. Centrality Measures

```
#print(top_10_dict)
             i = 0
             for 1 in L:
                 df = df.append({'Node ID': 1, 'Centrality Score':top_10_vals[i]}, ignore_index
                 i = i+1
             display(df)
In [17]: def store_top_200(D,G):
             df = pd.DataFrame(columns=['Node ID', 'Centrality Score'])
             D_sorted = dict(sorted(D.items(), key=operator.itemgetter(1), reverse=True))
             D_list = list(D_sorted)
             S_{top200} = D_{list[0:200]}
             S_top200_value = np.array(list(D_sorted.values())[:200])
             i = 0
             for 1 in S_top200:
                 df = df.append({'Node ID': 1, 'Centrality Score':S_top200_value[i]}, ignore_i
                 i = i+1
             return df
In [18]: #Networkx: Parallel Implementation of Betweenness Centrality
         def chunks(1, n):
             """Divide a list of nodes `l` in `n` chunks"""
             1 c = iter(1)
             while 1:
                 x = tuple(itertools.islice(l_c, n))
                 if not x:
                     return
                 yield x
         def _betmap(G_normalized_weight_sources_tuple):
             """Pool for multiprocess only accepts functions with one argument.
             This function uses a tuple as its only argument. We use a named tuple for
             python 3 compatibility, and then unpack it when we send it to
             `betweenness_centrality_source`
             return nx.betweenness_centrality_source(*G_normalized_weight_sources_tuple)
         def betweenness_centrality_parallel(G, processes=None):
             """Parallel betweenness centrality function"""
             p = Pool(processes=processes)
             node_divisor = len(p._pool) * 4
             node_chunks = list(chunks(G.nodes(), int(G.order() / node_divisor)))
             num_chunks = len(node_chunks)
```

```
bt_sc = p.map(_betmap,
                           zip([G] * num_chunks,
                               [True] * num_chunks,
                               [None] * num_chunks,
                               node chunks))
             # Reduce the partial solutions
             bt_c = bt_sc[0]
             for bt in bt_sc[1:]:
                 for n in bt:
                     bt_c[n] += bt[n]
             return bt_c
In [19]: bc_G = betweenness_centrality_parallel(G_GCC)
In [20]: dc_G = nx.degree_centrality(G_GCC)
         pr_G = nx.pagerank(G_GCC)
In [21]: ev_G = nx.eigenvector_centrality_numpy(G_GCC)
         katz_G = nx.katz_centrality_numpy(G_GCC)
In [22]: cc_G = nx.closeness_centrality(G_GCC)
In [23]: print("Degree vs Unweighted Centralities:")
         plot_centrality(dc_G,bc_G,"Degree Centrality","Betweenness Centrality",0,0,0.4,0.02)
         plot_centrality(dc_G,pr_G,"Degree Centrality","Pagerank",0,0,0.4,0.02)
        plot_centrality(dc_G,ev_G,"Degree Centrality","Eigenvector Centrality",0,0,0.4,0.02)
         plot_centrality(dc_G,katz_G,"Degree Centrality","Katz Centrality",0,0,0.4,0.02)
```

Degree vs Unweighted Centralities:

Centralitiy Comparison:

As shown above, except for katz, measures agree with each other in a propotional manner.

Closeness Centrality:

In the plots above, relating both degree and betweenness centrality to closeness centrality we get a more skewed linear relationship, with closeness attributing value to some nodes where betweenness and degree give very little. One could intepret this as, in the overall sense, there being some relationship between the number of shortest paths going through a node being proportional to the inverse of the distance of those shortest paths, in other words, how effective a player is in getting from source to sink is ultimately dependent on how much a given node acts as a hub (how many links to other pages a given article has, and how common of a topic is that article about).

Print top 10 entries according to measures

```
In [26]: print("Degree Centrality")
         print_top_10(dc_G,G_GCC)
         S_dc=store_top_200(dc_G,G_GCC)
         print(S_dc)
         print("Closeness Centrality")
         print_top_10(cc_G,G_GCC)
         S_cc=store_top_200(cc_G,G_GCC)
         print(S_cc)
         print("Betweenness Centrality")
         print_top_10(bc_G,G_GCC)
         S_bc=store_top_200(bc_G,G_GCC)
         print(S_bc)
         print("Page Rank")
         print_top_10(pr_G,G_GCC)
         S_pr=store_top_200(pr_G,G_GCC)
         print(S_pr)
         print("Eigenvector Centrality")
         print top 10(ev G,G GCC)
         S_ev=store_top_200(ev_G,G_GCC)
         print(S_ev)
         print("Katz Centrality")
         print_top_10(katz_G,G_GCC)
         S_katz=store_top_200(katz_G,G_GCC)
         print(S_katz)
         #S_xx stores the possible targets
Degree Centrality
  Node ID Centrality Score
```

0 1 2 3 4 5 6 7 8	107 1684 1912 3437 0 2543 2347 1888 1800 1663	0.258791 0.196137 0.186974 0.135463 0.085934 0.072808 0.072065 0.062902 0.060674 0.058197
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 170 171 171 172 173 174 175 175 175 175 175 175 175 175 175 175	Node ID	Centrality Score

174	2333	0.039624
175	1554	0.039624
176	2289	0.039624
177	2482	0.039624
178	2133	0.039376
179	414	0.039376
180	1516	0.039376
181	2121	0.039128
182	2370	0.039128
183	2020	0.039128
184	1184	0.039128
185	2551	0.039128
186	2253	0.038881
187	1522	0.038633
188	1736	0.038633
189	2087	0.038633
190	1185	0.038633
191	1813	0.038633
192	2308	0.038633
193	1718	0.038385
194	2299	0.038385
195	2005	0.038385
196	2257	0.038385
197	2561	0.038385
198	2095	0.038138
199	993	0.038138

[200 rows x 2 columns] Closeness Centrality

	Node ID	Centrality Score
0	107	0.459699
1	58	0.397402
2	428	0.394837
3	563	0.393913
4	1684	0.393606
5	171	0.370493
6	348	0.369916
7	483	0.369848
8	414	0.369543
9	376	0.366558

	Node ID	Centrality Score
0	107	0.459699
1	58	0.397402
2	428	0 394837

3	563	0.393913
4	1684	0.393606
5	171	0.370493
6	348	0.369916
7	483	0.369848
8	414	0.369543
9		
	376	0.366558
10	475	0.366192
11	566	0.364967
12	1666	0.364704
13	1534	0.364605
14	484	0.363162
15	353	0.363097
16	1171	0.362445
17	651	0.362282
18	420	0.361019
19	1085	0.357852
20	1687	0.357250
21	1577	0.357187
22	1718	0.356651
23	1165	0.356493
24	1136	0.356305
25	1465	0.354615
26	0	0.353343
27	1912	0.350947
28	580	0.345040
29	1505	0.342755
		• • •
170	1431	0.320425
171	1199	0.320349
172	629	0.320324
173	649	0.320324
174	917	0.320298
175	1377	0.320197
176	1612	0.320146
177	1589	0.320044
178	1078	0.320019
179	1746	0.319968
180	1827	0.319943
181	896	0.319943
182	1813	0.319918
183	1277	0.319892
184	1487	0.319867
		0.319816
185	1238	
186	1622	0.319816
187	1804	0.319791
188	1390	0.319740
189	1645	0.319715

190	1604	0.319715
191	1616	0.319690
192	1833	0.319690
193	1620	0.319664
194	1783	0.319664
195	1844	0.319639
196	1367	0.319588
197	1714	0.319588
198	1559	0.319563
199	1707	0.319538

[200 rows x 2 columns]
Betweenness Centrality

	Node ID	Centrality Score
0	107	0.480518
1	1684	0.337797
2	3437	0.236115
3	1912	0.229295
4	1085	0.149015
5	0	0.146306
6	698	0.115330
7	567	0.096310
8	58	0.084360
9	428	0.064309

	Node ID	Centrality Score
0	107	0.480518
1	1684	0.337797
2	3437	0.236115
3	1912	0.229295
4	1085	0.149015
5	0	0.146306
6	698	0.115330
7	567	0.096310
8	58	0.084360
9	428	0.064309
10	563	0.062780
11	860	0.057826
12	414	0.047633
13	1577	0.039785
14	348	0.037998
15	1718	0.037343
16	686	0.029722
17	594	0.028803
18	136	0.026870

19 20 21 22 23 24 25 26 27 28 29	3980 1465 171 862 483 2543 3830 376 1666 1420 1534	0.024820 0.024572 0.015492 0.011748 0.010308 0.007605 0.006437 0.006196 0.006175 0.006057 0.005948
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193	772 213 3750 1537 2081 2384 1617 3721 2512 3550 1338 3872 3651 601 1540 3886 1702 391 2111 500 169 422 908 525	0.000472 0.000468 0.000464 0.000455 0.000449 0.000444 0.000441 0.000439 0.000434 0.000434 0.000427 0.000422 0.000422 0.000412 0.000412 0.000412 0.000412 0.000412 0.000412 0.000415 0.000436 0.000436 0.000436
194 195 196 197 198 199	921 3556 857 2054 804 2176	0.000382 0.000370 0.000369 0.000362 0.000358

[200 rows x 2 columns] Page Rank

Node ID Centrality Score

0	3437	0.007615
1	107	0.006936
2	1684	0.006367
3	0	0.006290
4	1912	0.003877
5	348	0.002348
6	686	0.002219
7	3980	0.002170
8	414	0.001800
9	698	0.001317
Ü	000	0.001011
	Node ID	Centrality Score
0	3437	0.007615
1	107	0.006936
2	1684	0.006367
3	0	0.006290
4	1912	0.003877
5	348	0.003377
6		
	686	0.002219
7	3980	0.002170
8	414	0.001800
9	698	0.001317
10	483	0.001297
11	3830	0.001184
12	376	0.000901
13	2047	0.000841
14	56	0.000804
15	25	0.000800
16	828	0.000789
17	322	0.000787
18	475	0.000785
19	428	0.000780
20	67	0.000772
21	3596	0.000766
22	2313	0.000754
23	713	0.000749
24	271	0.000746
25	563	0.000740
26	917	0.000733
27	119	0.000732
28	3545	0.000732
29	3938	0.000727
23	3330	0.000121
 170	170	0 000507
170	170	0.000507
171	1078	0.000507
172	3611	0.000506

0.000505

174	3677	0.000505
175	3256	0.000504
176	1399	0.000503
177	1622	0.000503
178	272	0.000503
179	1471	0.000502
180	3150	0.000502
181	1104	0.000502
182	1610	0.000500
183	98	0.000500
184	3019	0.000500
185	199	0.000497
186	3877	0.000496
187	40	0.000496
188	1235	0.000496
189	3758	0.000495
190	1391	0.000495
191	3680	0.000495
192	1204	0.000493
193	2007	0.000493
194	3201	0.000493
195	2054	0.000492
196	3076	0.000492
197	2598	0.000491
198	3002	0.000490
199	1211	0.000489

[200 rows x 2 columns] Eigenvector Centrality

	Node ID	Centrality Score
0	1912	0.095406
1	2266	0.086983
2	2206	0.086053
3	2233	0.085173
4	2464	0.084279
5	2142	0.084193
6	2218	0.084156
7	2078	0.084136
8	2123	0.083672
9	1993	0.083533

	Node ID	Centrality Score
0	1912	0.095406
1	2266	0.086983
2	2206	0.086053

3	2233	0.085173
4	2464	0.084279
5	2142	0.084193
6		
	2218	0.084156
7	2078	0.084136
8	2123	0.083672
9	1993	0.083533
10	2410	0.083518
11	2244	0.083342
12	2507	0.083273
13	2240	0.083057
14	2340	0.083053
15	2229	0.083008
16	1985	0.082738
17	2088	0.082470
18	2073	0.082256
19	2220	0.082156
20	2131	0.082133
21	2604	0.082071
22	2059	0.082065
23	2309	0.082022
24	2590	0.082002
25	2369	0.081757
26	2611	0.081547
27	2602	0.081494
28	2607	0.081245
29	2090	0.080998
	2030	0.000330
170	2237	0 054930
		0.054839
171	2329	0.054647
172	1925	0.054589
173	2506	0.053337
174	2579	0.052451
175	2418	0.052315
176	2098	0.051790
177	1941	0.051681
178	2306	0.050950
179	2631	0.050503
180	2477	0.050104
181	2552	0.050094
182	2563	0.048744
183	2532	0.048299
184	2489	0.047606
185	2300	0.047274
186	2213	0.045565
187	2574	0.044670
188	2060	0.044455
189	2056	0.044077

190	2591	0.043035
191	2210	0.042375
192	2554	0.042372
193	2179	0.041943
194	2392	0.040720
195	2462	0.040067
196	2407	0.039973
197	2164	0.039766
198	1989	0.038698
199	1963	0.038467

[200 rows x 2 columns]
Katz Centrality

	Node ID	Centrality Score
0	2696	0.106398
1	2921	0.099801
2	2934	0.094739
3	3275	0.085035
4	2870	0.083750
5	2951	0.081817
6	1718	0.080273
7	3274	0.080043
8	3246	0.078651
9	2697	0.077689

	Node :	ID	Centrality	Score
0	269	96	0.3	106398
1	292	21	0.0	099801
2	293	34	0.0	094739
3	327	75	0.0	085035
4	287	70	0.0	083750
5	29	51	0.0	081817
6	17:	18	0.0	080273
7	327	74	0.0	080043
8	324	16	0.0	078651
9	269	97	0.0	077689
10	282	20	0.0	077537
11	329	99	0.0	071543
12	338	35	0.0	067596
13	324	14	0.0	067080
14	36	66	0.0	066822
15	30:	17	0.0	064491
16	43	34	0.0	063463
17	320)4	0.0	063426
18	275	51	0.0	060786

19	637	0.057535
20	3224	0.057394
21	1570	0.057091
22	3182	0.056790
23	3001	0.056197
24	1672	0.055629
25	925	0.055428
26	3360	0.054966
27	348	0.054768
28	3342	0.053044
29	3221	0.052917
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191	1170 3662 372 968 528 3242 1663 2996 3549 3546 3265 2841 3236 2556 2539 1337 1549 479 2246 3624 924 2724 428	0.029274 0.029247 0.029208 0.029003 0.029001 0.028975 0.028756 0.028719 0.028595 0.028595 0.028532 0.028365 0.028215 0.028202 0.028024 0.028004 0.027728 0.027650 0.027650 0.027650 0.027492 0.027369
193	1735	0.027175
194	641	0.027164
195	2616	0.027057
196	2208	0.027004
197	1280	0.026987
198	1453	0.026975
199	3020	0.026908

[200 rows x 2 columns]

As can be seen in these tables, except for katz centrality all measures agree on what one would intuitively attribute as important nodes: the nodes with the highest degree correspond to the ones

with the highest centrality scores which correspond to the nodes most commonly known to the majority of the player base.

Degree correlation over Focus Categories

```
In [27]: print("\nOverall Correlation Coefficient:",np.round(nx.degree_pearson_correlation_coefficient:")
```

Overall Correlation Coefficient: 0.064

3 5. Community Detection

In this section the Louvain algorithm is used in order to detect communities. The random seed parameter had to be fixed as the algorithm's stochastic component would sometimes generate and extra (or a couple extra) communities with a very small number of nodes, which is nonsensical. The resolution parameter was also adjusted as a result of this section's analysis, to ensure that communities were balanced in relative terms. This is not due to wanting to induce some prior belief on the number of communities, but rather that when the algorithm's output resulted in a pair communities with identical composition half the size of all the others there was no need to consider them as individual communities.

As anticipated, this section is primarily intended to compare and contrast with the hard-generated grouping based on wikipedia categories analyzed in section 4.

```
In [28]: # NOT IMPLEMENTED - TOO SLOW
         \#list\ clique\ communities = list(k\ clique\ communities(G2\ GCC,\ k=15))
         #list_clique_communities
In [29]: np.random.seed(5000)
In [30]: #nx.greedy_modularity_communities(G_GCC, weight=None)
In [31]: partition = community.best_partition(G_GCC, resolution=1.2, random_state=5000)
         labels = set(partition.values())
         community_counts = {i: list(partition.values()).count(i) for i in labels}
         community_counts
Out[31]: {0: 350,
          1: 465,
          2: 439,
          3: 554.
          4: 442,
          5: 206,
          6: 237,
          7: 226,
          8: 25,
          9: 61,
          10: 315,
```

```
11: 548,

12: 53,

13: 73,

14: 45}

In [32]: #print(partition)
```

For the given parameterization, the algorithm finds six communities of approximately equal size. The contents of these shall be examined below.

```
In [33]: T = []
         for i in range(len(labels)):
             c = [nodes for nodes in partition.keys() if partition[nodes] == i]
             T.append(G_GCC.subgraph(c))
In [34]: corr_list2 =[nx.degree_pearson_correlation_coefficient(T[1]) for 1 in range(len(T))]
         a = [print('Community:',1,'has correlation coefficient:',corr_list2[1]) for 1 in range
Community: 0 has correlation coefficient: -0.14047538438748622
Community: 1 has correlation coefficient: -0.045146108781109556
Community: 2 has correlation coefficient: 0.005612735431508522
Community: 3 has correlation coefficient: -0.07357425101046838
Community: 4 has correlation coefficient: 0.014110833129858153
Community: 5 has correlation coefficient: -0.11409190052678135
Community: 6 has correlation coefficient: 0.0013672180351790464
Community: 7 has correlation coefficient: 0.1365525266388471
Community: 8 has correlation coefficient: -0.12420387339962306
Community: 9 has correlation coefficient: -0.2840661133551881
Community: 10 has correlation coefficient: 0.1290968873760748
Community: 11 has correlation coefficient: -0.09288000605967495
Community: 12 has correlation coefficient: 0.4558897443512828
Community: 13 has correlation coefficient: -0.07462914279980881
Community: 14 has correlation coefficient: -0.06957281819667319
```

Community Layout Plot and Induced Community Graph NOTE: Takes a relatively long time to plot (2-5 min)

graph to plot

```
partition -- dict mapping int node -> int community
        graph partitions
    Returns:
    pos -- dict mapping int node -> (float x, float y)
        node positions
    .....
    pos_communities = _position_communities(g, partition, scale=3.)
    pos_nodes = _position_nodes(g, partition, scale=1.)
    # combine positions
    pos = dict()
    for node in g.nodes():
        pos[node] = pos_communities[node] + pos_nodes[node]
    return pos
def _position_communities(g, partition, **kwargs):
    # create a weighted graph, in which each node corresponds to a community,
    # and each edge weight to the number of edges between communities
    between_community_edges = _find_between_community_edges(g, partition)
    communities = set(partition.values())
    hypergraph = nx.DiGraph()
    hypergraph.add_nodes_from(communities)
    for (ci, cj), edges in between_community_edges.items():
        hypergraph.add_edge(ci, cj, weight=len(edges))
    # find layout for communities
    pos_communities = nx.spring_layout(hypergraph, **kwargs)
    # set node positions to position of community
    pos = dict()
    for node, community in partition.items():
        pos[node] = pos_communities[community]
    return pos
def _find_between_community_edges(g, partition):
    edges = dict()
```

```
ci = partition[ni]
                 cj = partition[nj]
                 if ci != cj:
                     try:
                         edges[(ci, cj)] += [(ni, nj)]
                     except KeyError:
                         edges[(ci, cj)] = [(ni, nj)]
             return edges
         def _position_nodes(g, partition, **kwargs):
             Positions nodes within communities.
             11 11 11
             communities = dict()
             for node, community in partition.items():
                     communities[community] += [node]
                 except KeyError:
                     communities[community] = [node]
             pos = dict()
             for ci, nodes in communities.items():
                 subgraph = g.subgraph(nodes)
                 pos_subgraph = nx.spring_layout(subgraph, **kwargs)
                 pos.update(pos_subgraph)
             return pos
In [36]: def plot_communities(G):
             #colormap2 = np.array(["magenta", "yellow", "red", "white", "black", "cyan"])#, "
             p = cm.get_cmap('jet', len(set(partition.values())))
             colormap = np.array(p(np.arange(len(set(partition.values())))))[:len(set(partition))))
             colormap2 = [rgb2hex(colormap[i,:]) for i in range(colormap.shape[0])]
             plt.figure(figsize=(25,25))
             pos = community_layout(G, partition)
             count = 0
             for com in set(partition.values()) :
                 list_nodes = [nodes for nodes in partition.keys() if partition[nodes] == com]
                 nx.draw_networkx_nodes(G, pos, list_nodes, node_size = 50, alpha=0.6, node_co
                 count = count + 1
             nx.draw_networkx_edges(G, pos, alpha=0.10, edge_color='k')
```

for (ni, nj) in g.edges():

```
plt.legend()
plt.axis('off')
plt.title('Plot of inter-community link weights')
plt.show()
```

In [37]: plot_communities(G_GCC)

The (arguably pictoral) plot above gives us a good first representation of how inter-community links are occurring. Whereas the induced graph representation below will give insight into the interlink structure numerically, this one is arguably more useful in terms of seeing between each pair of communities the relative proportion of high weight links to low weight links. The weighted network was used in this case. Again, given the ad-hoc construction of weights this may not be entirely representative of the true weight structure, however using the unweighted network results in uniformly colored links, which renders this plot uninformative.

In the plot, darker links correspond to links with low weight, the lighter they get, the higher the weight. From this, we see that a large portion of links between each community has a low weight, this implies that when going from source article to sink article community traversal a large number of articles are sparsely visited, whereas a low number of articles (the occasional lighter edges) are visited very often. The lighter connections between each community are therefore representative of those two articles in disparate areas which act as common ground between communities (ie. two articles about bioengineering to relate the biology and tech community).

```
In [38]: T_com = community.induced_graph(partition, G_GCC, weight='weight')
         def plot_graph(G):
             plt.figure(figsize=(20,20))
             pos = nx.circular_layout(G)
             p = cm.get_cmap('jet', len(set(partition.values())))
             colormap = np.array(p(np.arange(len(set(partition.values())))))[:len(set(partition))))
             colormap2 = [rgb2hex(colormap[i,:]) for i in range(colormap.shape[0])]
             #colormap2 = np.array(["magenta", "yellow", "red", "white", "black", "cyan"])#, "
             # plot nodes
             #nx.draw_networkx_nodes(G, pos, node_color='orange',node_size=2000, alpha=0.5)
             for com in set(partition.values()) :
                 #list_nodes = [nodes for nodes in partition.keys() if partition[nodes] == com
                 nx.draw_networkx_nodes(G_GCC, pos, nodelist=[count], node_size = 2500, alpha=
                 count = count + 1
             # plot edges with widths depending on weights
             nx.draw_networkx_edges(G, pos, edge_color='k', alpha=0.9, width = [d['weight']/50
             # add edges' labels with weights
             edge_labels=dict([((u,v), d['weight']) for u,v,d in G.edges(data=True)])
             nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)
             plt.axis('off')
             plt.legend(markerscale=0.2)
             plt.show()
         plot_graph(T_com)
```

