PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-345708

(43) Date of publication of application: 14.12.2001

(51)Int.Cl.

H03M 7/30 G10L 19/00 G11B 20/10 H04L 12/28 H04N 7/08 HO4N- 7/081

(21)Application number: 2000-299069

(22)Date of filing:

29.09.2000

(71)Applicant: VICTOR CO OF JAPAN LTD

(72)Inventor: TANAKA YOSHIAKI

UENO SHOJI

(30)Priority

Priority number: 11275963

Priority date: 29.09.1999

Priority country: JP

11275964

29.09.1999

JP

11279708

30.09.1999 31.03.2000 JP JP

2000097413

(54) SIGNAL PROCESSING APPARATUS AND TRANSMITTING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To accurately decode and control contents.

SOLUTION: A disk player 100 of a transmitter is connected to a recorder 200 of a receiver via two serial interfaces 188-1 and 188-2 or the like of IEEE 1394 standards to form a predetermined data stream including, for example, an audio pack. Identification information indicating a predetermined compression technology audio data of the predetermined compression technology stored in the pack is stored in a predetermined area provided in real data in the data stream, converted into a packet corresponding to a serial interface of the IEEE 1394 standards, and transmitted via the serial interface.

LEGAL STATUS

[Date of request for examination]

28.03.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3659486

[Date of registration]

25.03.2005

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-345708 (P2001-345708A)

(43)公開日 平成13年12月14日(2001.12.14)

(51) Int.Cl.7	識別記号	FI	テーマコート*(参考)
H 0 3 M 7/30		H03M 7/30	Z 5C063
G10L 19/00		G11B 20/10	D 5D044
G11B 20/10		G10L 9/18	A 5D045
H04L 12/28		H04L 11/00	310Z 5J064
H04N 7/08		H 0 4 N 7/08	Z 5 K 0 3 3
	審査請求	未請求 請求項の数3 OL (全 28 頁) 最終頁に続く
(21)出願番号	特願2000-299069(P2000-299069)	(71)出顧人 000004329	
		日本ピクター株	式会社
(22)出顧日	平成12年9月29日(2000.9.29)	神奈川県横浜市	神奈川区守屋町3丁目12番
		地	
(31)優先権主張番号	特願平11-275963	(72)発明者 田中 美昭	
(32)優先日	平成11年9月29日(1999.9.29)	神奈川県横浜市	神奈川区守屋町3丁目12番
(33)優先権主張国	日本 (JP)	地 日本ピクタ・	一株式会社内
(31)優先権主張番号	特顧平11-275964	(72)発明者 植野 昭治	
(32) 優先日	平成11年9月29日(1999.9.29)	神奈川県横浜市	神奈川区守屋町3丁目12番
(33)優先権主張国	日本 (JP)	地 日本ピクタ・	一株式会社内
(31)優先権主張番号	特願平11-279708		
(32)優先日	平成11年9月30日(1999.9.30)		
(33)優先権主張国	日本 (JP)	·	
			最終頁に続く
		1	

(54) 【発明の名称】 信号処理装置、伝送方法

(57) 【要約】

【課題】 コンテンツの復号管理を正確に行えるようにする。

【解決手段】 送信装置であるディスクプレーヤ100と受信装置である記録装置200が2本のIEEE1394規格のシリアルインタフェース188-1、188-2等を介して接続し、例えば、オーディオパックを合んで所定のデータストリームが形成され、そのデータストリーム内のリアルデータの内部に設けられる所定の領域に、前記パック内に格納される所定圧縮方式のオーディオデータの前記所定の圧縮方式を示す識別情報を格納し、IEEE1394規格のシリアルインタフェースに対応したパケットに変換して前記シリアルインタフェースを通じて伝送するようにする。

【特許請求の範囲】

【請求項1】もともとオーディオデータを含んで所定のデータストリームが形成されたデータからパケット化するに際し、そのパケット内のリアルデータの内部に設けられる所定の領域に、前記パック内に格納される所定圧縮方式のオーディオデータの前記所定の圧縮方式を示す識別情報を格納すると共に所定プロトコルのフォーマットでパケット化するパケット化処理手段を有することを特徴とする信号処理装置。

【請求項2】もともとオーディオデータを含んで所定のデータストリームが形成されたデータからパケット化するに際し、そのパケット内のリアルデータの内部に設けられる所定の領域に、前記パック内に格納される所定圧縮方式のオーディオデータの前記所定の圧縮方式を示す識別情報を格納すると共に所定プロトコルのフォーマットでパケット化されて伝送されたデータを受倡し、少なくとも前記情報をデコードする手段を有することを特徴とする倡号処理装置。

【請求項3】もともとオーディオデータを含んで所定のデータストリームが形成され、所定規格のシリアルインターフェースに対応したパケットに変換するに際し、そのパケット内のリアルデータの内部に設けられる所定の領域に、前記パック内に格納される所定圧縮方式のオーディオデータの前記所定の圧縮方式を示す識別情報を格納し、所定規格のシリアルインタフェースに対応したパケットに変換して前記所定規格のシリアルインタフェースを通じて伝送するようにしたことを特徴とする伝送方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、DVD (Digital Versatile Disc) オーディオなどの多重化されたデータストリーム (Data Stream) を、シリアルインタフェース (Serial Interface) を介して伝送するためのパケット (Packet) の倡号処理装置及び伝送方法に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】従来からデジタルコンテンツデータ (Digital Contents Data)をデジタルインタフェース (Digital Interface) (特に、シリアルインタフェース (Serial Interface) ともいう)を介して伝送する技術が知られている。例えば、特開平10-285234号公報、特開平11-45512号公報に開示されるようにコンテンツは分割されたMPEG (Moving Picture Experts Group)トランスポートストリーム (Transport Stream) 毎にヘッダ (Header)を付加して伝送される。上記のコンテンツは分割して伝送されるとパケット抜けを生じるおそれがある。そのためヘッダの情報を用いてパケット抜けを処理することが必要になる。ところで、近年、DVDオーディオフォーマット (Audio Format)のようにAパック、RTI (Real Time

Information)パック、SPCT (静止画信号) パック を含むオーディオファイル(Audio File)とDVD(ビデ オ) ファイル(DVD(Video) File)とが多重化されたファ イル構造をもつコンテンツを伝送することが求められる ようになった。このように多重化されたファイル構造を 持つデータストリームを転送する場合には、特に、デジ タルインタフェースの段階で圧縮方式を特定できるよう にフォーマット処理を行ってどのような復号処理が必要 か予め通告することにより「選択的に」受信できるよう にしたり、効率よく再生できることが望まれている。例 えば、復号できないデータである場合、受信を中止する などの対応を可能にしたり、予め、圧縮データであるか を検出して効率よく再生することである。そこで、本発 明は、上記の問題点に鑑み、これらの問題点を解決した 音声信号などを含むDVDオーディオフォーマットやD VDビデオフォーマットなどに基づく多重化されたコン テンツを、デジタルインタフェースを介して伝送するた めの信号処理装置及び伝送方法を提供するものである。

[0003]

【課題を解決するための手段】本発明は、上記課題を解決するために、以下の1)乃至3)に記載の手段からなる。すなわち、

【0004】1)もともとオーディオデータを含んで所定のデータストリームが形成されたデータからパケット化するに際し、そのパケット内のリアルデータの内部に設けられる所定の領域に、前記パック内に格納される所定圧縮方式のオーディオデータの前記所定の圧縮方式を示す識別情報を格納すると共に所定プロトコルのフォーマットでパケット化するパケット化処理手段を有することを特徴とする信号処理装置。

2) もともとオーディオデータを含んで所定のデータストリームが形成されたデータからパケット化するに際し、そのパケット内のリアルデータの内部に設けられる所定の領域に、前記パック内に格納される所定圧縮方式のオーディオデータの前記所定の圧縮方式を示す識別情報を格納すると共に所定プロトコルのフォーマットでパケット化されて伝送されたデータを受信し、少なくとも前記情報をデコードする手段を有することを特徴とする信号処理装置。

3) もともとオーディオデータを含んで所定のデータストリームが形成され、所定規格のシリアルインターフェースに対応したパケットに変換するに際し、そのパケット内のリアルデータの内部に設けられる所定の領域に、前記パック内に格納される所定圧縮方式のオーディオデータの前記所定の圧縮方式を示す識別情報を格納し、所定規格のシリアルインタフェースに対応したパケットに変換して前記所定規格のシリアルインタフェースを通じて伝送するようにしたことを特徴とする伝送方法。

[0005]

【発明の実施の形態】以下、本発明の実施の形態につ

き、好ましい実施例により説明する。図1は、その実施例に係る信号処理装置及び伝送方法の第1の実施例を示すブロック図、図2は図1のディスクプレーヤの処理を示すフローチャートである。

【0006】図1の例では、家庭内情報ネットワークの センターを担う送信装置であるディスクプレーヤ100 と1つの受信端末装置である記録再生装置200がそれ ぞれデータ転送インタフェース(I/F)200a、2 00bを有し、データ転送 I / F200a、200bが 2本の I E E E 1 3 9 4 規格のシリアルインタフェース 188-1、188-2を介して接続されている。ディ スクプレーヤ100は、例えばDVDオーディオ・ディ スクに記録されているオーディオ信号Aと静止画(スチ ルピクチャ)信号SPCTを読み出し、これをデータ転 送 I / F 2 0 0 a、シリアルインタフェース 1 8 8 -1、188-2を介して記録再生装置200に送信す る。記録再生装置200はこのオーディオ信号Aと静止 画倡号SPCTをシリアルインタフェース188-1、 188-2、データ転送 1/F200bを介して受信し て、再生する。このとき、一方のシリアルインタフェー ス188-1は受信又は送信用に選択的に使用され、他 方のシリアルインタフェース188-2は送信専用に使 用される。

【0007】図2を参照して図1のディスクプレーヤ100の動作を説明する。まず、データ転送 I / F200 aと一方のシリアルインタフェース188-1とを受 I / F200 a、2本のシリアルインタフェース188-1、188-2を介して記録再生装置200との間でアルインタフェース188-1を受信モードから送を行う(ステップS2)。次いで一方のシリアルインタフェース188-1を受信モードから送「アルインタフェース188-1を受信モードから送アルインタフェース188-1を受信を介して、転送によりである。すなわち、この例では他方のシリアルインタフェース188-2は常に送信モードに設定し、ステップS4)。すなわち、この例では他方のシリアルインタフェース188-2は常に送信モードに設定される。

【0008】送信データの具体例としては、DVDオーディオディスクにはオーディオ信号Aの他にリアルタイムインフォメーション信号RTI(例えばテキストデータ)と静止画信号SPCTが記録されているので、オーディオ信号Aをシリアルインタフェース188-188-18年間号SPCTをシリアルインタフェース188-18年間号SPCTをシリアルインタフェース188-2を介して伝送する方法が考えられる。この者とに分散することにより前者のオーディオ信号Aと辞止画信号SPCTが同期再生される場合にはバッファ容量の制限を回避できるので多数の静止画、例えば、80枚から99枚、を同期再生させることができる。なお、一方を

受信モードに設定したステップS1において行う具体的な通信の例は、再生端末からのディスクの指定(リクエスト)、プレイコマンド等の操作指示である。

【0009】なお、シリアルインタフェースは2本に限定されず、例えば、図3、図4に示すように4本のシリアルインタフェース188-4(及びデータ転送インタフェース1/F200a′、200b′)を用いてもよい。すなわち、まず、シリアルインタフェース188-4の中の1本を受信モードに設定し(ステップS11)、次いで上記の受信モードのインタフェース188-1を双方向伝送を行う(ステップS12)。次いで上記の受信モードのインタフェース188-1を双方向モードに設定し(ステップS13)、次いで3本のシリアルインタフェース188-2~188-4を介して、転送レートが比較的高い信号を分散して記録再生装置200に送信する(ステップS14)。

【0010】すなわち、この場合には例えば1本のシリアルインタフェース188-1を受信又は送信に選択的に使用し、他の3本のシリアルインタフェース188-2~188-4を送信専用に使用するようにしても良い。この場合には、例えば、オーディオ信号Aとリアルタイムインフォメーション信号RTIと静止画信号SPCTをそれぞれ3本のシリアルインタフェース188-2~188-4を介して伝送し、再生端末との操作に関するデータを1本のシリアルインタフェース188-1を介して相互に伝送する方法が考えられる。

【0011】本実施例ではまた、「EEE1394規格の伝送方式に代えて「EC958規格のオーディオ対応フォーマットにも適用することができる。「EC958規格は、本実施例の「EEE1394規格のように双方向への伝送方式と異なり、一方方向のみの伝送方式であり、本実施例のように複数のシリアルインタフェースを用いて双方向に伝送する場合には適用し易いものとなる。更に、上記「EC958規格のオーディオ対応フォーマットとは、「EEE1394規格における「EC958モードオーディオ対応フォーマットであってもよく、「EEE1394規格の様々なモードにも適用できる。

【〇〇12】次に、図5を用いて後述する図12のデータフィールドに格納される課金フラグ、ゼロフラグ(ZeroFlag)、ミュートフラグ(Mute Flag)、パックフラグ(Back Flag)、コピーフラグ(Copy Flag)及びコピー付帯情報(ダウンサンプリングフラグ(Down-sampling Flag)Fa、ダウンミックスフラグ(Down-mix Flag)Fb、デクオンタイズフラグ(De-quantize Flag)Fc、コピー回数)の説明を行う。まず、送信側から受信側に対してデータの圧縮方式がDVDオーディオのロスレス方式であるか否かのフラグを送る。例えば、このフラグは、図13で示すようなデータフィールドの管理情報内に格納さ

れるフラグである。もし、このロスレス方式が復号できない場合、受信を中止することができる。また、同時に送信側から受信側に対して送られた認証データを受信し、その応答を行い、受信側がコピーを行う資格があるか否かがチェックされ、そのチェック条件を満足す予め合、スタートする。コピーフラグと送信側において予め、コンテンツに施された処理を示すコピー付帯情報を受け取り、すなわち、サンプリング周波数Fsが半分に変りされている処理が施されていればダウンミクスで、20ビット)から16ビットにデクオンタイズ(de-quantiz e)処理が施されていれば、デクオンタイズ(de-quantiz e)処理が施されていれば、デクオンタイズ(de-quantiz e)処理が施されていれば、デクオンタイズでもが "1"にセットされ、また、コピー回数がセットされたコピー付帯情報を受け取る。また、コンテンツの種類に応じた「有料」、「無料」を示す課金フラグを見て、

「有料」の場合、コピー回数情報に応じて課金料金を決定し、装置内に具備される電子財布から課金を行う課金 管理を行う(ステップS21)。

【0013】次に、複数本のシリアルインタフェースの内、いくつかが不使用の場合やデータが「0」の場合には、送信側から受信側に対してそのシリアルインタフェースを介してゼロフラグを送信するので、受信側ではこのフラグを見て(ステップS22)、、また、音声信号 A以外のデータ、例えば静止画信号SPCTやリアルインフォメーションRTIをあるシリアルインタフェースを介して送信する場合には受信側においいて音に、送信側から受信側に対してそのシリアルインタフェースを介してミュートフラグを送信し、受信側ではこのフラグを見て(ステップS24)、Yであればミュート処理するようにする(ステップS25)。

【0014】また、音声信号A、静止画信号SPCT、リアルタイムインフォメーション(Real Time Information) RTI、ビデオ信号Vをあるシリアルインタフェースを介して送信する場合には受信側においてそれを即座にデコードして同期を取り易いように、送信側から受信側に対してそのシリアルインタフェースを介して信号種類別フラグを送信し、受信側ではこのフラグを見て受信し(ステップS26)、終了であれば(ステップS27でY)終了する。送信側では、コピーの完了によってコピー回数情報をカウントアップして書き換える。

【0015】図6にステップS26の具体的一例を示す。すなわち、個号種類別フラグがオーディオ倡号(DVDオーディオディスクのAパック)であるかを見て(ステップS31)、YであればAパックバッファに供給し(ステップS32)、パックフラグがビデオ倡号(DVDオーディオディスクのビデオパック)であるかを見て(ステップS33)、YであればVパックバッファに供給し(ステップS34)、パックフラグがRTI

信号(DVDオーディオディスクのRTIパック)であるかを見て(ステップS35)、YであればRTIパックバッファに供給し(ステップS36)、パックフラグがSPCT信号(DVDオーディオディスクのSPCTパック)であるか見て(ステップS37)、YであればSPCTパックパッファに供給し(ステップS38)、その他(管理データ)であればデコーダバッファに供給する(ステップS39)。

【OO16】また、上述したID、管理情報、及びフラグ情報は、次のようなMPEGプロトコルのデータ内に収納して送信されるようになっている。図7は、その送信を行うためのIEEE1394規格のアイソクロナス(Isochronous) 転送方式を説明するための図で、図7(a)はトランスポート・ストリームを示す。トランスポート・ストリームは、188パイトの固定パケットで、ここではDVDオーディオ規格によるオーディオデータのビット列(Aパック)やDVDビデオ規格による歯像データやオーディオデータ(ビデオのAパック)など(Vパック)、あるいはまたSACD規格(スーパーオーディオ(Super Audio) CD規格)によるオーディオデータのビット列が配列される。

【0017】図8から図11に、ここに配列される前述のAパック、Vパック、RTIパック、及びSPCTパックのデータ構造を示す。図8(A)に示すリニアPCMのAパックはDVDオーディオディスクのデータエリア内に配録されているものである。このPCMのAパックは、2048バイト以下で構成され、その内訳は14バイトのパックへッダとAパケットにより構成されている。Aパケットは17、9又は14パイトのパケットへッダ(Packet Header)と、プライベートへッダ(Private Header)と、1ないし2011バイトのオーディオデータ(Audio Data)により構成されている。

【0018】プライベートヘッダは、

- ・8 ビットのサブストリーム IDと、
- ・UPC、EAN、ISRC内の3ビットの保留領域と、
- ・UPC、EAN、ISRC内の5ビットのUPC/E AN/ISRC番号と、
- ・UPC、EAN、ISRC内の8ビットのUPC/EAN/ISRCデータと、
- ・8 ビットのプライベートヘッダ長と、
- ・16ビットの第1アクセスユニットポインタと、
- ·8パイトのオーディオデータ情報 (ADI) と、
- ・ロ~フパイトのスタッフィングパイトと、

により構成されている。

【0019】ADI (オーディオデータ情報部) は、

- ・1 ビットのオーディオ・エンファシス・フラグと、
- ・1ビットの保留領域と、
- ・1 ビットのステレオ再生モードと、
- ・1ピットのダウンミクスコード有効性と、

- ・4ビットのダウンミクスコードと、
- ・4 ビットのグループ「1」の量子化ワード長「1」 と
- ・4 ビットのグループ「2」の量子化ワード長「2」 と、
- ・4 ビットのグループ「1」のオーディオ・サンプリン グ周波数 f s 1 と、
- ・4 ビットのグループ「2」のオーディオ・サンプリング周波数 fs2と、
- ・4ビットの保留領域と、
- ・4ビットのマルチチャンネルタイプと、
- ・3ビットのグループ「2」のビットシフトと、
- ・5ビットのチャンネル割り当て情報と、
- ・8ビットのダイナミックレンジ制御情報と、
- ・16ピットの保留領域と、

により構成されているものである。

【0020】また、図8(B)にロスレス圧縮したパックド(圧縮)PCM(Packed PCM)のAパックの構造が示され、このパックは2048バイト以下で構成され、その内訳は14バイトのパックヘッダとAパケットにより構成されている。Aパケットは17、22、9、14又は19バイトのパケットヘッダと、プライベートヘッダと、1ないし2015バイトの圧縮されたオーディオデータにより構成されている。プライベートヘッダは、

- ・8ビットのサブストリームIDと、
- ・UPC、EAN、ISRC内の3ビットの保留領域と、
- ・UPC、EAN、ISRC内の5ビットのUPC/EAN/ISRC番号と、
- ・UPC、EAN、ISRC内の8ピットのUPC/E AN/ISRCデータと、
- ・8 ビットのプライベートヘッダ長と、
- ・16ビットの第1アクセスユニットポインタと、
- 4パイトのオーディオデータ情報(ADI)と、
- · 0~7パイトのスタッフィングパイトと、

により構成されている。ADI (オーディオデータ情報) は、

- ・8ビットの前方サーチポインタと、
- ・8ピットの後方サーチポインタと、
- ・16ビットの保留領域と、

により構成されている。

【0021】図9に示すVパックはDVDオーディオ又はDVDビデオディスクのデータエリア内に記録されているものである。このVパックは、2048バイト以下で構成され、その内訳は14バイトのパックヘッダとユーザデータパケットにより構成されている。パックヘッダは4バイトのパックスタートと、6バイトのSCRと、3バイトのMUXレート(多重転送レート)と、1パイトのスタッフィングにより構成されている。

【0022】図10に示すRTIパックはDVDオーデ

ィオディスクのデータエリア内に記録されているものである。このRTIパックは、2048バイト以下で構成され、その内訳は14バイトのパックヘッダとRTIパケットにより構成されている。RTIパケットは17、9又は14バイトのパケットヘッダと、RTIプライベートヘッダと、1ないし2015バイトのRTIデータにより構成されている。

【0023】RTIプライベートヘッダは、

- ·8ビットのサブストリームIDと、
- ・2パイトの保留領域と、
- ・8 ビットのプライベートヘッダ長と、
- ・4ビットの保留領域と、
- ・4ピットのRTI情報IDと、
- · 0~7パイトのスタッフィングパイトと、

により構成されている。

【0024】図11に示すSPCTパックはDVDオーディオディスクのデータエリア内に記録されているものである。このSPCTパックは、2048パイト以下で構成され、その内訳は14パイトのパックヘッダとSPCTパケットにより構成されている。SPCTパケットは22、19又は9パイトのパケットヘッダと、1ないし2025パイトのSPCTデータにより構成されている。

【0025】再び、図7において、上述の188パイトよりなる固定パケットは、その先頭にソース・パケット・ヘッダと呼ばれるタイムスタンプが付けられる [図7(b)]。受信側では、このタイムスタンプの時刻に合わせて音声や動画が再生されるようになっている。そして、これらのデータはそれぞれ48パイトの複数のデータ・ブロックに分割される [図7(c)]。その分割方法は、192パイト×1ブロック、96パイト×2ブロック、48パイト×4ブロック、24バイト×8ブロックの4通りである。

【0026】次に、複数のデータ・ブロックがまとめられて、一つのアイソクロナス転送パケットが作られる。このまとめられ方は、125 μ sを1サイクルとし、この1サイクル毎に収まる数のブロックに順次まとめられ、そのブロックの先頭に後述する1EEE1394用のパケットヘッダが付加される。図7(d)に48パイトづつに分割されたデータが3ブロック及び2ブロックにまとめられた状態が示されている。

【0027】そして、このデータ転送を行う時には、図 12に示すように、先頭にアービトレイションが付加され、これに続いてサイクルスタートパケットが配列され、更に、このサイクルスタートパケットに続いて所定間隔毎に125 μ sのパケットが繰り返し配列されて転送されるようになっている。

【0028】この125 μs毎のパケットは、パケットヘッダと、データフィールドと、32ビットのデータエラー検出符号とにより構成されている。パケットヘッ

ダは、

- ・16ビットのデータ長情報と、
- ・2 ビットの後述する CIP (Common Isochronous Packet) ヘッダの有無を示すタグと、
- ・6 ビットのパケットが伝送されるチャンネル割り当て 情報と、
- ・4 ピットの処理コードを示すトランザクションコード (Transaction Code)と、
- ・4 ビットの同期コードと、
- ・32ビットのパケットへッダエラー検出符号と、

より構成される。

【0029】データフィールドは、32ビットのCIP ヘッダと32ビットのリアルデータのヘッダとリアルデ ータと32ビットのリアルデータのテールから構成され る。8ビットのIDは、

- ・4ビットのシリアルインタフェースの総数と、
- ・4ビットのシリアルインタフェースの番号と、

により構成される。16ビットの応用情報は、

- ・4ビットのパックフラグと、
- ・1 ビットのゼロフラグと、
- ・1 ビットのミュートフラグと、
- ・8 ビットの課金フラグと、
- ・2 ビットのコピーフラグと、

により構成される。

【0030】8ビットのコピー付帯情報は、

- ・1 ビットのダウンサンプリングフラグ Faと、
- ·1ビットのダウンミクスフラグFbと、
- ·1ビットのデクオンタイズフラグFcと、
- ・5ビットのコピー回数と、

により構成される。

【 0 0 3 1 】リアルデータのテール内の管理情報には、図 1 3 に示すように 1 パイト (8 ビット)のアドレス 0 0 hからアドレス F F h (2 5 6 種類)に相当する情報(1 6 ビット)が順に記録され、これを繰り返すように構成される。このアドレス 0 0 h から F F h は リアルデータのテール内の I D (8 ビット)に記録されるようになっている。すなわち、

00h~07h; ISRC,

O8h~OBh; UPC/EAN/JAN ⊐- ₺、

OCh;SDCM(コピー管理情報)、

ODh~2 Fh;暗号化の附属情報、

30h~3Fh;使用許可期間、

40h;コンテンツID、

41h~46h; 著作権保護期間、

47h~4Ah;プレーヤに関する情報、

4Bh~72h;テキストデータ、

73h~7Fh;ユーザID、

80h;DVDオーディオのロスレス圧縮フラグ(パックドPCMフラグ)、

81h~BFh;保留領域、

COh~C7h;ディスク管理データ、

C8h~CEh;マスターテープ管理データ、

CFh~FFh;ソフトウエア生産の基本情報、

により構成される。このようにして16ビットの領域を 用いて256番地の多数の情報を収納できる。

【0032】また、リアルデータに格納されるマルチチャンネルデータであるAM824データは、図14に示すように、32ビットからなり、先頭識別子(011)と、チャンネルコード(5ビット)と、PCMオーディオ(24、20、又は16ビット;但し、20、又は16ビットの場合、LSB側にゼロを埋める)から構成される。

【0033】チャンネルコードは、図15に示すように、

Oh:Lf:マルチチャンネルのレフトフロント

1 h: Rf: マルチチャンネルのライトフロント

2h:S:マルチチャンネルのサラウンド

3 h: Ls: マルチチャンネルのレフトサラウンド

4 h: Rs: マルチチャンネルのライトサラウンド

5h:C:マルチチャンネルのセンター

6 h: LFE: マルチチャンネルのLow Frequency Effect

7-1Fh:保留 により規定される。

【0034】図16は、上記規定による具体的なリアルデータの例である。また、前記のチャンネルコード情報は、前記のリアルデータ内に入れる代わりに、図17に示すように16ビットの情報を前記の図12におけるテール内のID及びリザーブ領域に入れるようにしても良い。この16ビット情報は、グループのサンプリング周波数FS2(4ビット)と、マルチチャンネルのタイプを示す情報 [周波数とビット数(4ビット)]と、チャンネルアサインメント(割当て)を示す情報(5ビット)と1ビットの保留、1ビットのダウンサンプルフラグ(Down-sampling Flag)、及び1ビットのディクオンタイズフラグ(De-quantize Flag)の計3ビットの情報部と、とから構成するようにしても良い。図17は、図13の変形の実施例で、チャンネルアサイメント(Channel Assig

【0035】図18は、そのチャンネルアサインメントに基づく詳細を示したものである。同図は1チャンネル(モノラル)から6チャンネルまでのグループ「1」、「2」のチャンネル割り当て情報を示している。同図におけるLf、Rf、S、Ls…の各符号は、前記の図15と同様に各対応するチャンネルを表し、L、Rは2チャンネルステレオを意味する。また、その場合、前記のリアルデータ内のマルチチャンネルデータは、例えば、図19のように配列され、各チャンネルは前記図17のチャンネルアサイメント及び図18のチャンネル順(ACH0~ACH5)により確定されるようになっている。つまり、前記の図14のCHコード5ビットの代わ

nment) はチャンネル情報の一例である。

りにビットフラグを格納するようにする。ビットフラグの上位2ビットはビット情報として、例えば(OO; 24ビット)、(10; 16ビット)、(11; その他ビット)を表し、ビットフラグの下位2ビットはダウンサンプリング情報として、例えば、(O10)はダウンサンプリングあり、というふうに表すようにしている。ダウンサンプリングは、例えば、1/2のサンプリング問波数に変更することを意味する。

【0036】次に、図20はディスクプレーヤ100の 具体的な実施例を示し、DVDオーディオディスクとD VDビデオディスクなどを再生可能なユニパーサルプレーヤを示している。ユニパーサルプレーヤでは制御部1 4の制御及び操作部15、リモコン16の操作に基づいてDVDオーディオディスク、DVDビデオディスク、DVDビデオディスク、DVDボーディスクなどのディスク1に記録されているデータがドライブ装置2により再生されて復調やDVDデオビデオディスクから再生されたビデオ(V)パックとDVDオーディオディスクから再生されたビデオに静止 画パックは、静止画/Vパック・デコーダ3によりDVDデコードされてビデオストリームに変換される。

【0037】そして、図1に示すモニター用の出力端子 55を介して外部の表示器 (不図示) に表示させ、ある いはオーディオ出力として取り出す場合には、このビデ オストリームが伸長/画像変換部4により伸長、デスク ランブルなどされ、次いでD/A変換部5を介してVパ ックは、ビデオ信号/サブピクチャ信号/オーディオ信 号として出力され、静止画SPCTパックは、ビデオ信 号として出力される。他方、図1に示す記録再生装置2 00に転送する場合には2通りあり、第1の方法では、 伸長/画像変換部4により伸長、デスクランブルなどさ れたデータがデータ配列部6によりパック方式でデータ 配列され、次いで2本のデータ転送1/F7-1、7-**2及び! EEE1394又は! EC958のシリアルイ** ンタフェースを介して記録再生装置200に転送され る。第2の方法では、静止画/ソパック・デコーダ3に よりデコード (デパック) されたスクランブルなしのビ デオストリームがデータ転送 1 / Fフー 1、フー 2 及び **IEEE1394又はIEC958のシリアルインタフ** ェースを介して記録再生装置200に転送される。

【〇〇38】また、DVDオーディオディスク、DVDーRAMディスクから再生されたオーディオAパックと、RTIパックは、Aパック/RTIパックデコーダ8によりDVDデコードされてDVDオーディオストリームに変換され、また表示信号生成部11を介して文字情報/リアルタイムテキスト情報RTIに変換される。【〇〇39】そして、オーディオ信号を図1の出力端子55を介して取り出し外部のスピーカ(不図示)に供給

する場合には、このオーディオストリームはPCM変換

/オーディオ信号処理部9によりPCM変換、デスクラ ンブル (De-scramble) などされてPCM信号に変換さ れ、次いでD/A変換部10を介して出力される。ま た、RTIを外部の表示器(不図示)に表示させる場合 には、表示信号生成部18により変換された出力信号が 供給される。他方、図1の記録再生装置200に転送す る場合にもビデオの場合と同様に2通りあり、第1の方 法では、PCM変換/オーディオ信号処理部9によりP CM変換、デスクランブルなどされたPCMデータが、 必要に応じてダウンサンプリング部10でサンプリング 周波数を低く変更され、必要に応じてダウンミクス部1 1でマルチチャンネル信号の場合に2チャンネルステレ オ信号にダウンミクスされ、データ配列部12によりデ ータ配列され、次いで2本のデータ転送 I / F 13-1、13-2及びIEEE1394又はIEC958の シリアルインタフェースを介して記録再生装置200に 転送される。

【0040】第2の方法では、Aパック/RTIパックデコーダ8によりデコードされてスクランブルなしのDVDオーディオストリームがデータ転送I/F13ー1、13-2及びIEEE1394又はIEC958のシリアルインタフェースを介して記録再生装置200に転送される。

【0041】また、図21は受信装置である記録再生装置200の他の例で、図20に示すユニバーサルプレーヤ100により転送されたデータを再生する装置として示し、ユニバーサルプレーヤ100によりシリアルインタフェースを介して転送されたデータは、データ転送エノF21-1、21-2を介して受信される。データ転送エノF21-1、21-2は、ユニバーサルプレーヤ100により転送されたヘッダのフラグに基づいて制御部32によりDVDデコーダ22のバッファ22V、Aパック再生部23のバッファ23V、Vパック再生部24のパッファ24V、RTIパック再生部25のバッファ25V、及びSPCTパック再生部26のバッファ26Vのいずれかに分配する。

【0042】すなわち、図12に示す、上述したリアルデータのヘッダ32ビットの応用情報の4ビットのパックフラグによりAパックと識別した場合は、Aパック再生部23のパッファ23Vに、Vパックと識別した場別は、RTIパックを識別した場合は、RTIパック再生部25のパッファ24Vに、RTIパックと識別した場合は、RTIパック再生部25のパッファ26Vにそれぞれソファ25Vに、SPCTパックと識別した場合は、SPCTパック声生部26のパッファ26Vにそれぞれ場合は、アイック再生部26のパッファ26Vに供給される。サンロデコーダ22のパッファ22Vに供給される。場で部33は、プレイなどの操作を行うためのものでよりである。また、図13に示すリアルデータ内のアドレス40トに記録されているコンテンツIDによりコンテンツを識別して課金処理が行われる。また、アドレス73ト~

7Fhに記録されているユーザ I Dは、特定のユーザに のみ供給されるときに使用され、ユーザを照合するため に使用される。

【0043】前記のパッファ23Vに格納されていたデ ータがユーザの指示により再生状態にされた場合、前記 のパックドPCM(圧縮)フラグを見て、フラグがつい ている場合には、伸長処理される。従って、このフラグ により全部のデータを見てから伸長処理する必要がな く、予めフラグを見れば良く、再生効率がよくなると共 に、パッファ容量が少なくてすむ。また、前述したよう に本装置が伸長処理できない装置である場合には、制御 部32においてデータの受信を中止することができる。 【0044】また、リアルデータのヘッダ32ビットに パックIDを設けることにより、音声信号A、静止画信 号SPCT、リアルタイムインフォメーションRTI、 ビデオ信号Vを受信する場合には受信側においてそれを 即座にデコードできるため、例えば静止画SPCTと音 声Aの同期を取るために予め多量の静止画信号を静止画 パッファに取り込む必要がなくなり、従来パッファ容量 により制限されていた静止画の同期再生の制限が低減さ れる。また、ビデオ動画V(音声付き)とオーディオA が同時に取り出せ、同時に再生できるようになり、それ ぞれが別々に再生しなければならない再生の制限が解消 される。また、ゼロフラグと、ミュートフラグと、課金 フラグと課金情報(使用許可期間)を参照するようにし ている。課金フラグと課金情報は、コンテンツのIDと 共に課金管理部34で処理される。コピー管理情報SD CMはこの場合、使用されない。

【OO45】また、更に、前記の図21において、Aパ ック再生部23内の動作について図22のフローチャー トを用いて詳述するに、このAパック再生部23では入 来データの先頭の3ピットに「0 1 1」が付与されている かのチェックが行われる(ステップS40)。イエス (Y) であれば、このデータはPCMオーディオデータ として後述のステップへと移行し、ノー(N)であれば この処理プログラムが終了処理され(ステップS5 2)、他のチャンネルオーディオデータであるとして処 理される。マルチチャンネルオーディオデータである場 合には、ステップS41でCH(チャンネル)コードが 見られ、各CHコードがそれぞれのステップS42、S 44, S46, S48, S50において、それぞれL f, Rf, Ls, Rs, Cであるかのチャンネルが検出 され、その検出された各チャンネルのデータがそれぞれ Aパック再生部23内の対応するラッチ回路23a, … でラッチされ(ステップS43、S45、S47、S4 9、S51)、同期がとられて出力されようになってい る。

【0046】また、前述の図17のように各チャンネルに対応した周波数情報を入れるようにした場合には、更に図19に示すダウンサンプリング情報を参照して図2

3に示すようにステップ61で各チャンネルに対応した 周波数情報を見るようにし、ステップ80~84は、それぞれ各チャンネルに対応した周波数に設定するように する。すなわち、前記ステップ80~84では、ダウン サンプリング情報により、ダウンサンプリングありの場合にはそのサンプリング周波数Fsを半分に設定するようにする。

【0047】更に、別の動作につき、図24、図25及び図1、図20を併せ参照して説明する。まず、図1のディスクプレーヤ100の動作を説明する。データ転送 I / F200aと一方のシリアルインタフェース188ー1とを受信モードに設定し(ステップS41)、記録再生装置200からの伝送要求が有るかチェック(ステップS42)、有ればその伝送要求を受信し(ステップS43)、後述のようにダウンサンプリング及びデクオンタイズの処理に設定し(ステップS44)、マルチチャンネルの場合はダウンミクスするためにダウンミクスの処理に設定する(ステップS45,46)。

【0048】そして、次いでデータ転送 I / F200 a、2本のシリアルインタフェース 188-1、188-2を介して受信装置である記録装置 200との間で双方向伝送を行う(ステップS47)。次いで一方のシリアルインタフェース 188-1を受信モードから送信モードに設定し(ステップS48)、次いで2本のシリアルインタフェース 188-1、188-2を介して、転送レートが比較的高い信号を分散して再生装置すなわち記録装置 200に送信する(ステップS49)。すなわち、この例では他方のシリアルインタフェース 188-2は常に送信モードに設定される。

【〇〇49】送信データの具体例としては、DVDオーディオディスクにはオーディオ信号Aの他にリアルタームインフォメーション信号RTI(例えばテキストデータ)と静止画信号SPCTが記録されているので、オーディオ信号Aをシリアルインタフェース188-188-18日子で伝送し、リアルタイムインフォメーション信号RTIと静止画信号SPCTをシリアルインタフェースらいます。このようにより前者のオーディオ信号Aと後手を受ける方法が考えられる。この者ではよりであることにより前者のオーディオ信号RTIと静止画に伝送できる。なお、一方を受信してアルタイムインフォメーション信号RTIと静止画信号に設するようできる。なお、一方を受信にしたステップS1において行う具体的な通信の例は、再生端末からのディスクや曲の指定(リクエスト)、プレイコマンド等の伝送供給指示である。

【 O O 5 O 】図 2 O に示すようにダウンサンプリング (D own-sampling) の処理はダウンサンプリング部 1 O で行い、デクオンタイズ (De-quantize) の処理は P C M 変換 /オーディオ信号処理部 9 で行う。また、ダウンミクス (Down-mix) の処理はダウンミクス部 1 1 で行う。

【0051】次に、図25を用いて記録再生装置200 におけるコピーフラグ(Copy Flag)、コピー付帯情報

(ダウンサンプリングフラグ(Down-sampling Flag) F a、ダウンミクスフラグ(Down-mix Flag) F b 、デクオ ンタイズフラグ (De-quantize Flag) Fc、コピー回 数)、課金フラグ、ゼロフラグ(Zero Flag)、ミュート フラグ(Mute Flag)、及びパックフラグ(Back Flag)の説 明を行う。また、ダウンミクスフラグや、デクオンタイ ズフラグは、前記の別実施例としてあげた図17に示し たデータ内から得るようにしても良い。まず、図1のデ 一タ転送!/F200bと一方のシリアルインターフェ ース 188-1とを送信モードに設定し (ステップS 51)、ディスクプレーヤ100に伝送要求を行う(ス テップS52)。次いで一方のシリアルインターフェー ス188-1を送信モードから受信モードに設定し(ス テップS53)、次いで2本のシリアルインターフェー ス188-1、188-2を介して受信する(ステップ S54)。次いで、送信側から受信側に対して送られた 認証データを受信し、その応答を行い、受信側がコピー を行う資格があるか否かがチェックされ、そのチェック 条件を満足する場合、スタートする。コピーフラグと送 信側において予めコンテンツ施された処理を示すコピー 付帯情報を受け取り、すなわち、ダウンサンプルの処理 が施されていればダウンミクスフラグFbが"1"にセ ットされ、もとのビット(例えば、20ビット)から1 6 ビットにデクオンタイズ処理が施されていれば、デク オンタイズフラグFcが"1"にセットされ、また、コ ピー回数がセットされたコピー付帯情報を受け取る。ま た、コンテンツの種類に応じた「有料」、「無料」を示 す課金フラグを見て、「有料」の場合、コピー回数情報 に応じて課金料金を決定し、電子財布から課金を行う課 金管理を行う(ステップS55)。

【0052】次に、複数本のシリアルインタフェースの内、いくつかが不使用の場合やデータが「0」の場合には、送信側から受信側に対してそのシリアルインタフェースを介してゼロフラグを送信するので、受信側ではこのフラグを見て(ステップS56)、Yであれば受信型しないようにし(ステップS57)、また、音声信号 A以外のデータ、例えば静止画信号SPCTやリアルインタコンRTIをあるシリアル、で音声によりないようにより報音が発生しないように、送信側から受信側に対してそのシリアルインタフェースを介してミュートフラグを送信し、受信側ではコートフラグを見て(ステップS59)。

【0053】また、音声信号A、静止画信号SPCT、リアルタイムインフォメーションRTI、ビデオ信号Vをあるシリアルインタフェースを介して送信する場合には受信側においてそれを即座にデコードして同期を取り易いように、送信側から受信側に対してそのシリアルインタフェースを介して信号種類別フラグを送信し、受信

側ではこのフラグを見て受信し(ステップS60)、終 了であれば(ステップS61でY)終了する。送信側で は、コピーの完了によってコピー回数情報をカウントア ップして書き換える。

【0054】ステップ60の具体例は前述の図6に示し たステップと同様である。すなわち、パックフラグがオ ーディオ信号(DVDオーディオディスクのAパック) であるか見て(ステップS31)、YであればAパック パッファに供給し(ステップS32)、パックフラグが ビデオ信号(DVDオーディオディスクのビデオパッ ク) であるか見て (ステップS33)、YであればVパ ックパッファに供給し(ステップS34)、パックフラ グがRTI信号(DVDオーディオディスクのRTIパ ック)であるか見て(ステップS35)、YであればR TIパックパッファに供給し(ステップS36)、パッ クフラグがSPCT信号(DVDオーディオディスクの SPCTパック)であるか見て(ステップS37)、Y であればSPCTパックバッファに供給し(ステップS 38)、その他であればデコーダバッファに供給する (ステップS39)。

【OO55】また、前配の実施例ではDVDオーディオ 規格に基づいて処理された信号処理を想定して説明した が、この符号化方式と1ビットDSD符号化方式を再生 できる兼用装置について説明する。例えば、1ビットD SD符号化方式の場合、そのデータ構造は、SDCD (スーパーオーディオCD) のものであっても良いが、 ここではそのデータ構造は、前記の図8に示される構造 とほぼ同様で、オーディオデータエリアにDSD符号化 データが格納されるものとして説明する。また、伝送 時、図12のリアルデータ内は、例えば、図26のよう に配列される。すなわち、先頭識別子3ビット(11 1:1ビットDSD符号化方式を示す)と、その符号化 にエンコードが付与されているか否かを示すエンコード 有り無しフラグ1ビットと、チャンネル及びビット数フ ラグ4ビット(上位2ビットはチャンネル情報として、 例えば、「00:2CH」、「01:3CH」、「1 O:6CH」、「11:その他チャンネル」を表し、下 位2ビットはビット数情報として、例えば、「00:2 **4ピット」、「01;20ピット」、「10;16ピッ** ト」、「11:その他ピット」を表す)と、1ビットオ ーディオデータとから構成される。上記のエンコード は、例えばハフマン符号のようなロスレス圧縮を表す。 また、このとき、前記の1ビットDSD符号化方式を示 すフラグは、図13で示す管理情報内の保留領域に新た に設けるようにしても良い。

【0056】そして、前述の図6に対応した再生動作として、図27のフローチャートで説明すれば、ステップ31において、信号識別フラグがAパックと判断された場合には、ステップ32において、1ビット符号化方式のフラグがあるか否かが検出され、YであればDSD用

バッファに供給し(ステップS33)、フラグが見あたらない場合には、PCM用バッファに供給する(ステップS34)。

【0057】また、このような符号化方式のディスク再生するプレーヤとしては、例えば、図28に示すプレーヤが提供される。このプレーヤは前配の図20に対応した構成で、特に、DSD/PCM変換信号処理部9'が設けられた点が異なり、前記の1ビットDSD符号化方式のフラグの有り無しに応じてDSD変換、又はPCM変換などされたDSDデータ又はPCMデータが出力されるようになっている。

【0058】また更に、図29は、前配の図21に対応 した図で、特に、この場合には、図12に示す、前述し たリアルデータのヘッダ32ビットの応用情報の4ビッ トのパックフラグによりAパックと識別し、そして、図 26に示す先頭識別子(111)により1ビットDSD 符号化方式のデータであるかのチェックして、それに応 じてAパック再生部23のDSD用のパッファ23V-1 又はPCM用のパッファ23V-2に供給し、再生時には Aパック再生部23を介してPCM—DSD変換部28 aよりPCM信号又はDSD信号として出力される。特 に、1ビットDSD符号化方式であると判断された場合 には、図30のフローチャートに示すようにエンコード フラグの有り無しがチエックされ(ステップS15 O) 、有りの場合には、PCM-DSD変換部28aに おいてロスレス圧縮をデコード処理し(ステップS16 O)、図示しないD/Aコンパータに供給することにな

【〇〇59】以上説明した実施例において、インタフェースは複数接続可能なインタフェースであり、多量のデータをより高速に転送させることを念頭におき、複数のインタフェースを接続した構成で説明したが、それほど多量のデータを高速転送することを望まないならば、双方向転送可能なIEEE1394規格のインタフェースを一個用いるようにしても良い。また、ディスクプレーヤは、光ディスクに限らず、ハードディスク(HDD)等の記録媒体であっても良い。また、記録再生装置は、携帯端末であっても良い。

っている(ステップS170)。

[0060]

【発明の効果】以上説明したように、本発明によれば、シリアル伝送する場合に、DVDオーディオ等の所定のASIDコンテンツの圧縮方式を識別する情報をリアルデータの所定の領域に格納してIEEE1394等のパケットに変換して、転送するようにしたので、コンテンツの復号管理が正確に行えるなど、の効果を奏する。

【図面の簡単な説明】

【図1】本発明に係る伝送方法、信号処理装置(送信装置、受信装置)の第1の実施例を示すブロック図である。

【図2】図1のディスクプレーヤの処理を示すフローチ

ャートである。

【図3】第2の実施形態の伝送方法、信号処理装置(送信装置、受信装置)を示すブロック図である。

【図4】図3のディスクプレーヤの処理を示すフローチャートである。

【図5】図1、図3の受信装置<u>の処理を示</u>すフローチャートである。

【図6】図5の詳細フローチャートである。

【図7】IEEE1394規格におけるアイソクロナス 転送方式を説明するための図である。

【図8】DVDオーディオ規格によるオーディオデータ のAパックのデータ構造である。

【図9】DVDビデオ規格によるデータのデータ構造である。

【図10】DVDオーディオ規格によるのRTIパック のデータ構造である。

【図11】DVDオーディオ規格によるのSPCTパックのデータ構造である

【図12】転送時のデータ配列の詳細図である。

【図13】リアルデータのヘッダ内の管理情報エリアに 格納される情報の詳細図である。

【図14】リアルデータ内の配列フォーマットを示す図である。

【図15】チャンネルコードを示す図である

【図16】リアルデータ内の詳細図である。

【図17】チャンネル情報の別実施例である。

【図18】チャンネルアサイメントとの例である。

【図19】図14に対応したリアルデータ内の別の実施 例である。

【図20】図1のプレーヤ100の詳細ブロックであ

【図21】記録再生装置の別の実施例である。

【図22】図1の別の動作モードを示すフローチャート である。

【図23】図17に対応した情報が格納される場合の動作フローである。

【図24】ダウンサンプルフラグや、ダウンミクスフラグを得た場合の動作フローである。

【図25】ゼロフラグや、ミュートフラグを得た場合の 動作フローである。

【図26】1ビット符号化方式のデータが配列される場合の図20に対応した図である。

【図27】1ビット符号化方式の場合の図6に対応した図である。

【図28】DVDオーディオ方式及び1ビット符号化方式の兼用型のプレーヤのブロック図である。

【図29】DVDオーディオ方式及び1ビット符号化方式の兼用型の図22に対応した受信側の記録再生装置のブロック図である。

【図30】図29における1ビット符号化方式の信号の

デコード処理を示すフローチャートである。 【符号の説明】

100 ディスクプレーヤ(送信装置)

200 記録再生装置(受信装置)

188-1~188-4 シリアルインタフェース

【図1】

【図14】

マルチチャンネルオーディオデータ (32ピット) CHコード PCMオーディオ・ 1 1 (5) (24, 20又は16ピット)

MSB LSB (20又は16ピットのとき、LSB側はゼロとする)

7-1~7-2、13-1~13-2、200a、20 0a´ データ転送インタフェース(送信手段) 21-1~21-2、200b、200b´ データ 転送インタフェース(受信手段)

【図2】

[図3]

[図11]

フピー可能である場合

スタート

S21

コンデンアルシルマ (受信管理)

S22

Vロフラグア Y 受信しない

N S24

S25

N S25

N S27

メンド

【図5】

【図9】

· ·		VITY	2048パイト	<u> </u>
バック スタート (4)	SCR (6):	Mux rate (3)	スタッフィング (1)	ユーザデータ (パケット) (2034)
	パックヘッ			(2034)

【図6】

【図26】

【図30】

【図7】

[図8]

•	-				1-7.PCM	んくック -	· ··		
•					· 7=7 рсма	んくケット	.		
(A)	A)								
<i>(///</i>	パック	パケット ヘッダ	サブ ストリーム ID	UPC. EAN ISRO	プライベート ヘッダ長	第1 アクセス ユニット ポインタ	オーディオ データ情報 (ADI)	スタッフィング	オーディオ データ (y= 7 PCM)
	14/11	17.9又位	1/541	2/5/1-	1/54F .	2/4/	יולין י	0~7/5-41	1~2011/54}

	-				月 為程 РОМО	んくラク -	 		
/ p \	l L	-	<u> </u>		ДЫВ РОМО ДАЯ РОМО	•	+~2& —		· •
		•	カブ ストリーム ロ	•	1 .			スタッフィング パイト	オーディオ データ (<u>凡</u> 6階 PCM)
	14/47	17. 22 9 ,14 8 14 19/5/1	11/4-41-	2141	11844	241	4,511	0~7/{4}	1-2015/14

[図10]

【図12】

【図13】

アドレス	情 報 (16ビット)	アドレス	情 報
7 F	ユーザID	FF	III TA
73	1 2 910		ソフトウエア <u>生産</u> の
			基本情報
72	テキストデータ	CF	
	7+217-9	· CE	マスターテープ管理データ
4 B			
		د8	
4 A 4 7	プレーヤに関する情報	C7	
		co	ディスク管理データ
4 6 4 1	著作権保護與別		İ
. 40	コンテンツID	BF	
3 F	使用許可期間		
30			
2 F			保留領域
•	暗号化の付属情報		
O D		-	
. OC	SDCM	•	,
ОВ	UPC/EAN/JAN ⊐ - ド		•
08			
07	ISRC	81	
00		80	18:31 PCM 777"

【図15】

CHコード	CH
Oh .	Lf (ND左)
1	Rf (前右)
2	S
3	Le
4	Ra
5	C (センター)
6 .	LFE
7-1 Fh	保管

【図16】

リアルデータの例

	321-1									
0	1	1.	0	Lf (24)						
0	1	1	1	Rf (24)						
0	1	1	3	Ls (20)	0 (4)					
0	1	1	4	Ra (20)	(4)					
0	1	1	5	C (24)··						
0	1	1-	0	Lf (24)						
0	1.	1	1	R# (24)	-					

【図17】

【図19】

(24.20又は16ピリ)

<u>上位2ビット</u> 00:24ビット 01:20ビット 10:16ビット 11:その他

(5)

ダウンサンプリング情報 0 1 0 : ダウンサンプリングなし 0 1 1 : ダウンサンプリングあり

【図18】

チャネル 割当情報		グル	グループ 「1」の	グループ. 「2」の				
(パターン)	ACHO	ACHI	ACH2	ACH3	. ACH4	ACHS	チャネル数	チャネル数
00000Ъ	C(mono)	none	ROTE	none	none	nane	1	0 ·
00001b	L	R	none	none	none	Done	2	.0
00010ъ	u	RÍ	S	none	none	none	2	1
00011Ь	u	Rf .	La	Rs .	none	DODE	2	2
00100Ъ	L	Rf	LIFE	none	none	none	2	1
001016	u	Rf	LFE	2	none	none	2	2
00110b	u	Rf	LFE	Ls	Rs	none	2	3
00111Ь	Ľ	Rf	С	none	none	none	2	1
010005	L	Rſ	С	S	none	none	2	2
010016	и	Rſ	С	Ls	Rs	none	2	3
010109	П	Rf	С	LFE	none	none	2	2
010116	u	Rf	С	LFE	S	none	2	3
01100ъ	и	Rf	С	LFE	Ls	Rs	2	4
01101Ъ	ц	Rf	Ċ	9	none	none	3	1
01110ъ	и	Rf	С	Ls	Rs	none	3	2
01111Ь	u	Rf	C	LPE	none	none	3	ŀ
100006	Ц	Rf	C	LFE	S	попе	3	2
10001Ь	L	Rf	С	LFB	Ls	Ra	3	3
10010ь	u	Rf	Ls	Rs	LFE	none	4	1
10011P	L	Rf	Ls	Rs	С	0000	4	1
101000	Ц	Rf	La	Rs	С	LRE	4	2
その他				保	827			

チャネルグループ1

チャネルグループ2

【図21】

【図22】

【図23】

【図24】

[図25]

【図27】

4

【図29】

フロントページの続き

(51) Int. CI. 7

識別記号

FΙ

テーマコード(参考) 101

HO4N 7/081

HO4N 7/08

(31) 優先権主張番号 特願2000-97413 (P2000-97413)

(32) 優先日

平成12年3月31日(2000. 3. 31)

(33)優先権主張国

日本(JP)

Fターム(参考) 50063 AA01 AB03 AB07 AC02 AC05

CA20 CA23 CA36 DA02 DA05

DA07 DA13 DB09

5D044 BC02 CC06 DE28 DE49 DE60

DE96 EF03 EF05 GK12 HH02

HL08

5D045 DA20

5J064 AA01 BA01 BB09 BC02 BC07

BD02 BD03

5K033 AA03 AA05 BA15 CB02 CC01

DB10 DB16