EAS 5830: BLOCKCHAINS

Zero-Knowledge Sudoku

Professor Brett Hemenway Falk

Sudoku

- Every cell has a number 1-9
- Every row has distinct entries
- Every column has distinct entries
- Each 3x3 subgrid has distinct entries

		7		8	
	1				
2			7		
	3				
				4	

Sudoku is NP complete

(Generalized) Sudoku is NP complete

Zero-Knowledge Sudoku

Prove you know a solution to a sudoku board without revealing any information about the solution

Prover

- Prover gets 9 decks of playing cards
 - Extract all the numerical hearts (suit doesn't matter)

- Prover knows a solution
- For each square:
 - Choose a card with that value
 - Place card face down on the square
 - Don't reveal card to verifier

- Prover knows a solution
- For each square:
 - Choose a card with that value
 - Place card face down on the square
 - Don't reveal card to verifier
 - Verifier cuts off three corners of the card (three copies of the number 2) and leaves them in the cell

	2		7		8	
		1				
2				7		
		3				
					4	

- Prover knows a solution
- For each square:
 - Choose a card with that value
 - Place card face down on the square
 - Don't reveal card to verifier
 - Verifier cuts off three corners of the card (three copies of the number 2) and leaves them in the cell

# #		##	# #	## ##		##	##	# #
	##		##		:			
	2			7			8	##
		1						## ##
	III III						##	
2	 				7			
	III III							
		3						
						## ## ##		
	III III						4	

- Prover knows a solution
- For each square:
 - Choose a card with that value
 - Place card face down on the square
 - Don't reveal card to verifier
 - Verifier cuts off three corners of the card (three copies of the number 2) and leaves them in the cell
 - Same procedure for pre-filled squares
 - These are done face-up

- At the end of this procedure:
 - Three card scraps in each square
 - Verifier knows all three have the same value
 - (They came from same card)
 - Three scraps in pre-filled entries are seen by verifier, and match pre-filled values

- For each row
 - Take one scrap of paper from each cell, and put it in an envelope for that row
- For each column
 - Take one scrap of paper from each cell, and put it in an envelope for that column
- For each **3x3 block**
 - Take one scrap of paper from each cell, and put it in an envelope for that block

- Prover has 27 envelopes
 - o 9 for rows
 - o 9 for columns
 - o 9 for 3x3 blocks
- Prover shakes envelopes and gives them to the verifier
- If solution is valid, every envelope contains exactly the numbers 1-9

		7		8	
	1				
2			7		
	3				
				4	

Sudoku verifier

 Verifier checks every envelope contains exactly the numbers 1-9

Cryptographic tools

- Prover "commits" to the number in each cell
 - Face down is commitment
- Prover "shuffles" the commitments
 - Places them in an envelope

Cryptographic tools

- Prover "commits" to the number in each cell
 - Face down is commitment
- Prover "shuffles" the commitments
 - Places them in an envelope
- Many "proofs of shuffle" exist