Álgebra I. Ejercicios adicionales sobre grupos Universidad de El Salvador, ciclo impar 2019

Algunos de los ejercicios de abajo son fáciles y aburridos, pero otros requieren un poco de trabajo y reflexión. En cualquier caso, todos son estándar.

Ejercicio 1. Demuestre que para una familia de subgrupos normales $H_i \subseteq G$ la intersección $\bigcap_i H_i$ es también un subgrupo normal.

Ejercicio 2. Sea ϕ : $G \rightarrow H$ un homomorfismo de grupos.

- a) Demuestre que si $G' \subseteq G$ es un subgrupo, entonces $\phi(G')$ es un subgrupo de H. Además, si ϕ es sobreyectivo y G' es un subgrupo normal, entonces $\phi(G')$ es también normal.
- b) Demuestre que si $H' \subseteq H$ es un sugrupo, entonces $\phi^{-1}(H')$ es un subgrupo de G. Además, si H' es normal, entonces $\phi^{-1}(H')$ es también normal.
- **Ejercicio 3.** Demuestre que todo grupo de orden 4 es cíclico, o es isomorfo a $V \subset A_4$.
- **Ejercicio 4.** Demuestre que todo grupo de orden 6 es cíclico, o es isomorfo a S_3 .
- **Ejercicio 5.** Demuestre que A_4 es el único subgrupo de índice 2 en S_4 .
- **Ejercicio 6.** Sean G un grupo y $H, K \subseteq G$ dos subgrupos. Definamos su **producto** como el subconjunto

$$HK := \{ hk \mid h \in H, k \in K \}.$$

- a) Demuestre que HK es un subgrupo si y solo si HK = KH.
- b) Demuestre que si *H* y *K* son subgrupos normales, entonces *HK* es también un subgrupo normal.

Ejercicio 7. Sean G un grupo finito y $H, K \subset G$ dos subgrupos tales que mcd(|H|, |K|) = 1. Demuestre que $H \cap K = 1$.

Ejercicio 8. Sean G un grupo y $g \in G$ un elemento tal que $g^n = 1$. Demuestre que

$$\phi: \mathbb{Z}/n\mathbb{Z} \to G$$
, $[1] \mapsto g$

es un homomorfismo. ¿Cuándo es inyectivo?

Ejercicio 9. Consideremos el grupo diédrico D_n y $m \mid n$.

- a) Demuestre que $\langle r^m \rangle$ es un subgrupo normal de D_n .
- b) Demuestre que $D_n/\langle r^m\rangle \cong D_m$.

Ejercicio 10. Para un cuerpo k, consideremos

$$H(k) := \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in k \right\}.$$

- a) Demuestre que H(k) es un subgrupo de $GL_3(k)$. ¿Es normal?
- b) Demuestre que $Z(H(k)) \cong k$.
- c) Encuentre un isomorfismo $H(\mathbb{F}_2) \cong D_4$.

Ejercicio 11. Sea *G* un grupo.

- a) Demuestre que si el cociente G/Z(G) es cíclico, entonces G es un grupo abeliano.
- b) Demuestre que si G es un grupo finito de orden pq donde p y q son primos, entonces Z(G) = 1 o G es abeliano.

Ejercicio 12. Consideremos

$$\Gamma := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \mid a, d \equiv 1 \pmod{3}, b, c \equiv 0 \pmod{3} \right\}.$$

- a) Demuestre directamente que Γ es un subgrupo normal de $SL_2(\mathbb{Z})$.
- b) Demuestre que la aplicación

$$\operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}/3\mathbb{Z}), \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} [a]_3 & [b]_3 \\ [c]_3 & [d]_3 \end{pmatrix}$$

es un homomorfismo sobreyectivo.

- c) Demuestre que $SL_2(\mathbb{Z})/\Gamma \cong SL_2(\mathbb{Z}/3\mathbb{Z})$.
- d) Calcule el índice $|SL_2(\mathbb{Z}):\Gamma|$.

Ejercicio 13. Sea G un grupo y $g \in G$ un elemento fijo.

- a) Demuestre que la aplicación $\phi_g \colon x \mapsto gxg^{-1}$ define un automorfismo $G \to G$.
- b) Demuestre que $g \mapsto \phi_g$ define un homomorfismo $G \to \operatorname{Aut} G$. ¿Cuál es su núcleo? Demuestre que la imagen es un subgrupo normal de $\operatorname{Aut} G$.

Sea G un grupo. Digamos que dos elementos $g,h\in G$ son **conjugados** si $g=k\,h\,k^{-1}$ para algún $k\in G$. Escibamos en este caso $g\sim h$.

Ejercicio 14. Demuestre que \sim es una relación de equivalencia sobre G.

Las clases de equivalencia correspondientes se llaman las **clases de conjugación**.

Ejercicio 15. Demuestre que un subgrupo $H \subseteq G$ es normal si y solamente si H es una unión de clases de conjugación en G.

Ejercicio 16. Describa las clases de conjugación

- a) en un grupo abeliano,
- b) en el grupo Q_8 ,
- c) en S_4 y A_4 ,
- d) en S_5 y A_5 ,
- e) en el grupo diédrico D_n para cualquier n.