	History	У	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	B. Singh, A. Negret, and K. Zuber	NDS 110,2815 (2009)	30-Sep-2009

 $Q(\beta^{-})=-6756\ 5$; $S(n)=11923\ 7$; $S(p)=8868\ 3$; $Q(\alpha)=-5181.2\ 15$ 2012Wa38

Note: Current evaluation has used the following Q record -6757 5 11923 7 8867.5 27-5181.6 16 2009AuZZ.

Additional information 1.

Values in 2003Au03 are: Q=-6490 90, S(n)=11920 11, S(p)=8858 7, Q(α)=-5176 4.

Theory/calculations:

Additional information 2.

1997Su08: energies of ground state and γ band members, IBA.

1989Sa38: collective bands.

1989Co02: octupole excitation.

1986Ga04, 1979Bu20: nuclear deformation and potential energy surfaces.

1985Na02: microscopic study of high-spin states.

1982De05, 1983Bu09, 1984He07: interacting-boson model.

1971Ki16,1973Og01: shell-model calculations.

Other experiments:

Atomic mass measurements using Penning-trap system: 2007Ke09.

Measurements of isotope shift and mean square charge radius: 1992Ba55, 1990Bu12, 1988Si06, 1987An02, 1986An39, 1986Ea01, 1986Ma43, 1985Bu20, 1983El04, 1983Bo35, 1983Lo13.

⁸⁴Sr Levels

Cross Reference (XREF) Flags

		B 84 Y ε α C 84 Y ε α D 51 V(36)	decay (32.82 d) decay (39.5 min) decay (4.6 s) S,p2nγ) S,2p2nγ)	F G H I J	59 Co(28 Si,3p γ) 76 Ge(12 C,4n γ), 81 Br(6 Li,3n γ) 82 Kr(3 He,n) 82 Kr(α ,2n γ) 84 Sr(p,p $'$),(p,p $'\gamma$)	K L M N O	84 Sr(d,d') 84 Sr(α,α'),($\alpha,\alpha'\gamma$) Coulomb excitation 85 Rb(p,2n γ) 86 Sr(p,t)
E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF			Comr	ments
0.0&	0+	stable	ABCDEFGHIJKLMN	0	H.J. Kim, presented at 16th In Unification of Fundamental In	ouble ble β / it. Conteraction on β	β decay). Other:> 10^{17} y ε decay, preliminary result from f. on Supersymmetry and the ions, Seoul, June 2008 April 16, 2009 revealed that the
793.22 ^{&} 6	2+	3.23 ps <i>35</i>	BCDEFG IJKLMN	0	also 2005St24 compilation. T _{1/2} : weighted average of 3.19 ₁ (1980Ek03). Other: 6.2 ps 21	easured ps 35 (1982	
1453.93 ^d 10	2+		BC G IJ L N	0	J^{π} : M1+E2 γ to 2 ⁺ ; $\gamma(\theta)$ not con $L(p,t)=(2)$.	nsister	at with $\Delta J=1$ and δ . Also

⁸⁴Sr evaluated by B. Singh, A. Negret, and K. Zuber.

⁸⁴Sr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF	Comments
1504.2 10	0+		BC J L O	J^{π} : L(p,t)=0.
1767.69 ^{&} 9	4+	1.4 ps <i>4</i>	B DEFG IJ L NO	J^{π} : ΔJ =2, E2 to 2 ⁺ . L(p,t)=(4) is consistent. T _{1/2} : unweighted average of 1.73 ps 21 (1982De05) and 0.97 ps 28 (1980Ek03). Other: 4.16 ps 14 (1982De05 value reanalyzed by 1994Ch28).
2056.07 ^d 11 2071.6 8 2297.93 14	$(3)^+$ 0^+		B GIN C JLO G	J^{π} : $\Delta J=1$, M1+E2 γ to 2 ⁺ ; γ to 4 ⁺ ; band member. J^{π} : L(p,t)=0.
2390 5	2		0	J^{π} : L(p,t)=2.
2448.11 ^c 11	3-		B G IJKL O	J ^{π} : L(p,t)=L(d,d')=3. Configuration=($g_{9/2}$, $f_{5/2}^{-1}$) or ($g_{9/2}$, $p_{3/2}^{-1}$) (1982De05). B(E3)(\uparrow)=0.043 <i>18</i> (2002Ki06 evaluation, data from 1973Re01). Deduced B(E3)(W.u.)=15 6.
2525 5	(0^{+})		0	J^{π} : $L(p,t)=(0)$.
2598.23 ^d 22	(4+)		B GIJL O	XREF: B(?). J^{π} : 2 ⁺ or 4 ⁺ from 1145 $\gamma(\theta)$ indicating ΔJ =0 or 2; J=4 favored by excitation function and band assignment.
2735.25 ^d 20	(5^{+})		B G J O	J^{π} : $\Delta J=1 \gamma$ to 4^{+} ; excitation function; band member.
2769.03 10	(5 ⁻)	9.5 [@] ps 6	B DEFG IJ L NO	μ =+8.0 10 (1989Ku11,2005St24) μ : transient-field integral perturbed-angular correlation in 74 Ge(12 C,2n γ) (1989Ku11). J ^{π} : ΔJ=1, DIPOLE G TO 4 ⁺ ; L(p,t)=(5).
2807.87 ^{&} 11	6+	1.01 ps <i>21</i>	B DEFG IJ L N	J^{π} : ΔJ=2, E2 γ to 4 ⁺ . $T_{1/2}$: weighted average of 1.04 ps 21 (1982De05), 0.97 ps 28 (1994Ch28). Other: 2.6 ps 4 from (1982BrZO).
2886.99 <i>14</i> 3041.25 ^c <i>13</i>	2 ⁺ (5 ⁻)		B J L O FG J L O	J^{π} : L(p,t)=2. XREF: J(?)L(?). J^{π} : ΔJ=(0), dipole γ to (5 ⁻); γ to 3 ⁻ ; L(p,t)=(4,5).
3098.67 <i>13</i>	6(+)		B G	J^{π} : $\Delta J = 2 \gamma$ to 4^+ ; γ to 6^+ .
3157.05 ^d 22	(7^{+})		G	J^{π} : $\Delta J=2 \gamma$ to (5^{+}) ; excitation function.
3175 5	(2^{+})		J L 0	J^{π} : L(p,t)=(2).
3255 30	3-		J L 0	J^{π} : L(p,t)=3.
3270.58 <i>17</i>	$(4,5,6)^+$		B G	J^{π} : γ to 4 ⁺ ; M1,E2 γ to 6 ⁺ . The β feeding from (6 ⁺) disfavors 4.
3279.15 ^c 14 3330 30	(6 ⁻)		FG I H J L	J^{π} : $\Delta J=1 \ \gamma$ to (5 ⁻); band member. J^{π} : $L(^{3}\text{He,n})=0$.
3331.91 ^b 13	8+	157 ps 5	DEFG I	μ =-1.2 6 (1981Br20,1989Ra17)
				J ^π : ΔJ=2, E2 γ to 6 ⁺ . μ: from g factor=-0.15 7 from spin precession in polarized hyperfine fields of a tilted multi-foil target (1981Br20). Other: -0.8 16 from g=-0.1 2 (1989Ku11, transient-field integral perturbed-angular correlation in ⁷⁴ Ge(¹² C,2nγ)) See also 2005St24 compilation.
2455 20			11.0	J ^{π} : Configuration=($vg_{9/2}$) ⁻² ₈₊ ⊗(g.s. of ⁸⁶ Sr core) (1982De05). T _{1/2} : from 1982De05. Others: 163 ps 3 (1982De05 value reanalyzed by 1994Ch28), 170 ps 7 (1982BrZO).
3455 <i>30</i> 3487.92 ^c <i>12</i>	(7-)	4.4 [@] ps 5	J L O DEFG IJ	v=+4.2 I4 (1000Vv11 2005S+24)
3487.92° 12	(7-)	4.4 ° ps 3	DEFG 13	μ =+4.2 <i>14</i> (1989Ku11,2005St24) μ : transient-field integral perturbed-angular correlation in 74 Ge(12 C,2n γ) (1989Ku11). J ^{π} : ΔJ=2, E2 γ to (5 ⁻); ΔJ=1 γ to 6 ⁺ .
3511.77 16	$(4^+,5^-)$		B J L	XREF: L(3520).
				J^{π} : γ' s to 3 ⁻ and 6 ⁺ ; β feeding from (6 ⁺) favors 5 ⁻ .

⁸⁴Sr Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF	7		Comments
3578.23? 25 3650.15 ^c 13 3679.94 ^a 13	(7 ⁻) 8 ⁺	3.33 [@] ps <i>14</i>	B G DEFG I	L		J ^π : $\Delta J(2)$ γ to (5 ⁻); $\Delta J=1$ γ to 6 ⁽⁺⁾ ; band member. μ =+7.2 δ (1989Ku11,2005St24) J ^π : configuration= π g _{9/2} =2 $_{8+}$ \otimes ⁸² Kr core (1982De05). μ : transient-field integral perturbed-angular correlation in ⁷⁴ Ge(¹² C,2n γ) (1989Ku11).
3749.07 24 3750 30 3819.58? 15 3918.08? 16 3960 30	(7) (3 ⁻ ,4 ⁺)		G B B	L	0	J^{π} : $\Delta J = 1 \ \gamma \text{ to } 6^{+}$. J^{π} : $L(p,t)=(3,4)$.
4028.78 ^{&} 23 4062.78 17	(8 ⁺) 4 ⁺		G B	L	0	J^{π} : ΔJ=2 γ to 6 ⁺ . XREF: L(?)O(4080). J^{π} : L(p,t)=4. Note that 4 ⁺ is inconsistent with β feeding from (6 ⁺).
4260 <i>30</i> 4268.05 ^c <i>16</i>	(8-)		FG	L	0	XREF: F(?). J^{π} : $\Delta J=2 \gamma$ to (6 ⁻); γ to (7 ⁻); band member.
4365.95 18	(4 ⁺)		В	L		XREF: L(4360). J^{π} : γ' s to 2 ⁺ and 6 ⁺ . Note that (4 ⁺) is inconsistent with β feeding from (6 ⁺).
4370.4 ^d 3 4447.61 ^b 14	(9 ⁺) 10 ⁺	2.22 [@] ps 35	G DEFG I			J^{π} : ΔJ=(2) γ to (7 ⁺); excitation function; band member. μ =+2.0 10 (1989Ku11,2005St24) J^{π} : ΔJ=2, E2 γ to 8 ⁺ . configuration=(ν g _{9/2}) ₈₊ ⁻² ⊗(2 ⁺ of ⁸⁶ Sr core) (1982De05). μ : transient-field integral perturbed-angular correlation in ⁷⁴ Ge(¹² C,2n γ) (1989Ku11).
4534.06 ^a 15 4540 30	10 ⁺	1.66 [@] ps <i>14</i>	DEFG I	L	0	μ =+8.0 20 (1989Ku11,2005St24) μ : transient-field in ⁷⁴ Ge(¹² C,2n γ) (1989Ku11). J $^{\pi}$: Δ J=2, E2 γ to 8 ⁺ .
4540 50 4636.13 ^c 14	(9-)	2.5 [@] ps 4	DEFG I	L	U	μ =0.00 36 (1989Ku11,2005St24) J ^π : ΔJ=2, E2 γ to (7 ⁻). Configuration= $\nu g_{9/2}^{-2} \otimes (3^{-})$ (1982De05). μ : transient-field integral perturbed-angular correlation in 74 Ge(12 C,2nγ) (1989Ku11).
4660 <i>30</i> 4740 <i>30</i> 4745.72 <i>24</i>	(8,9,10+)		G	L L		E(level): γ to 8 ⁺ . It is unlikely that this level is same as 4740 in (α, α') .
5150.7? <i>3</i> 5444.48 ^c <i>15</i> 5653.25 ^a <i>16</i>	(11 ⁻) 12 ⁺	7.5 [@] ps 10 0.61 ps 21	B DEFG DEFG			J ^π : ΔJ=2, E2 γ to (9 ⁻); γ to 10 ⁺ . J ^π : ΔJ=2, E2 γ to 10 ⁺ . T _{1/2} : weighted average of 0.83 ps 28 (1982De05), 0.49 ps 21 (1994Ch28).
5891.6 ^b 10 6069.43 ^c 17 6484.34 ^c 21 6739.65 ^a 19 6916.8 ^c 4 7822.8 7	(12 ⁺) (12 ⁻) (13 ⁻) 14 ⁺ (14 ⁻) (15 ⁺)	0.24 [#] ps 10 0.42 [#] ps 14 0.62 [#] ps 28 0.42 [#] ps 14	D F EFG F DEFG F D			J^{π} : γ to 10^+ ; band member. J^{π} : ΔJ =1, dipole γ to (11^-) ; band member. J^{π} : γ to (12^-) ; possible γ' s to 12^+ and (11^-) ; band member. J^{π} : ΔJ =2, E2 γ to 12^+ ; band member. J^{π} : γ to (13^-) ; band member. J^{π} : γ to 14^+ and a low-energy γ from 16^+ .
8006.4 ^a 5	16 ⁺	0.21 [#] ps 7	DEF			J^{π} : γ to 14 ⁺ ; band member.

⁸⁴Sr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
9098.4 8	$\overline{(17^+)}$		D	J^{π} : γ' s to 16 ⁺ and (15 ⁺).
9424.9 ^a 10	18 ⁺	0.14 [#] ps 6	DEF	J^{π} : γ to 16^+ ; band member.
11059.9 ^a 22	20^{+}	<0.18 ps	DEF	J^{π} : γ to 18 ⁺ ; band member.
				$T_{1/2}$: 0.14 ps 4, effective half-life from 1994Ch28, not corrected for
				side feeding.
12920 ^a 3	22+		DE	J^{π} : γ to 20^{+} ; band member.
15080? ^a 4	(24^{+})		E	J^{π} : possible γ to 22 ⁺ ; band member.

[†] Level energies with $\Delta E < 5$ keV are deduced from least-square fit to the adopted gammas. The others are from (p,t), (α,α') , or weighted averages from (p,t), (α,α') , and (p,p').

[‡] From Doppler-shift attenuation method (DSAM) and/or recoil-distance Doppler shift (RDDS) methods. Measurements are from 1994Ch28 using line-shape analysis in DSA in ⁵⁹Co(²⁸Si,3py) reaction for levels above 5600 keV. For levels up to 5700 keV, measurements are from 1982De05 using recoil-distance Doppler-shift method in ⁷⁶Ge(¹²C,4ny) reaction. For the 5653.5 level, values are measured in both studies. Values from recoil-distance method are also available from 1980Ek03 for 793 and 1768 levels using $(\alpha, 2n\gamma)$ reaction and from 1982BrZO for 2808 and 3331 levels using 76 Ge(12 C,4n γ) reaction.

[#] From 1994Ch28. @ From 1982De05.

[&]amp; Band(A): g.s. band. ^a Band(B): $\pi(g_{9/2}^2)_{8+} \otimes (^{82}\text{Kr core})$. ^b Band(C): $\nu(g_{9/2}^{-2})_{8+} \otimes (^{86}\text{Sr core})$.

^c Band(D): Octupole band.

^d Band(E): quasi γ band.

γ(84 Sr)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.a	δ^{b}	α^{d}	Comments
793.22	2+	793.22 6	100	0.0 0+	E2		0.00106	B(E2)(W.u.)=26 3
1453.93	2+	660.85 9	100 3	793.22 2+	M1+E2	+0.59 5	0.00145	
1504.0	0+	1453.9 <i>3</i> 711 [#]	13.3 9	$0.0 0^{+}$				
1504.2 1767.69	0 · 4+	974.48 <i>7</i>	100	793.22 2 ⁺ 793.22 2 ⁺	E2 ^c			B(E2)(W.u.)=21 6
2056.07	(3) ⁺	288.3 [#] 5	8.3# 21	1767.69 4 ⁺	LZ			D(E2)(W.d.)-21 0
2030.07	(3)	602.3 1	100# 5	1453.93 2 ⁺	M1+E2 ^c	+0.24 8		
		1262.6 2	28 [#] 3	793.22 2+	$D+Q^{c}$. 0.2 . 0		I_{γ} : others: 11.3 14 in (${}^{6}Li,3n\gamma$); 57 in (p,2n γ).
2071.6	0^{+}	617 [@]		1453.93 2 ⁺				-y
		1279 [@]		793.22 2 ⁺				
2297.93		844.0 <i>I</i>	100	1453.93 2 ⁺				
2448.11	3-	994.4 <i>4</i>	100 [#] 10	1453.93 2+	D^{c}			
		1654.6 [#] 2	63 [#] 5	793.22 2+				A 679 γ with an intensity 3 times that of 994 γ is reported only in $(\alpha, 2n\gamma)$.
2598.23	(4^{+})	1144.3 2	100 9	1453.93 2 ⁺				
		1805.0 [#] <i>e</i> 10	5 5	793.22 2 ⁺				
2735.25	(5 ⁺)	680.6 [#] 4	100 [#] 8	2056.07 (3)+				E_{γ} : poor fit, level-energy difference=679.2. Additional information 3.
		967.2 [#] 2	31 [#] 3	1767.69 4+	D+Q ^c			Additional information 4.
2769.03	(5^{-})	321.0 <i>I</i>	2.8 ^{&} 5	2448.11 3-	[E2]		0.0153	B(E2)(W.u.)=22 5
		1001.28 7	100 ^{&} 9	1767.69 4+	(E1)			B(E1)(W.u.)=3.6×10 ⁻⁵ 5 Mult.: $\Delta J=1$, dipole from $\gamma(\theta)$; ΔJ^{π} requires E1.
2807.87	6+	1040.11 9	100	1767.69 4 ⁺	E2			B(E2)(W.u.)=21 5
2886.99	2+	1119.6 <mark>#</mark> 2	100 <mark>#</mark> <i>10</i>	1767.69 4+				
		2093.3 [#] 2	45 [#] 15	793.22 2+				
3041.25	(5^{-})	272.2 1	100 & 3	2769.03 (5 ⁻)	(D) ^C			
	(.)	593.3 2	27 ^{&} 3	2448.11 3-				
3098.67	6 ⁽⁺⁾	290.8 <i>I</i>	37 ^{&} 3	2807.87 6+				
2157.05	(7 ⁺)	1331.0 2	100 ^{&} 6 100	1767.69 4 ⁺	Q			
3157.05	` ′	421.8 <i>I</i> 462.8 [#] 2	100 100 [#] 5	2735.25 (5 ⁺) 2807.87 6 ⁺	Q M1 E2			
3270.58	$(4,5,6)^+$	462.8" 2 1502.8 [#] 2	62 [#] 6	2807.87 6* 1767.69 4 ⁺	M1,E2			I_{γ} : other: 30 10 in 76 Ge(12 C,4n γ), 81 Br(6 Li,3n γ).
3279.15	(6-)	237.9 <i>1</i>	62" 6 17 <mark>&</mark> 2	3041.25 (5 ⁻)	D			1γ. outer: 50 10 iii · Ge(C,411γ), · Br(L1,511γ).
3417.13	(0)	510.1 [‡] 5	≈100 ^{‡&}	2769.03 (5 ⁻)	ט			
		210.1. 2	~100.	4107.03 (J)				

5

γ (84Sr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. ^a	Comments
3487.92	(7-)	680.0 2	21.1 21	2807.87	6+	(E1) ^c	B(E1)(W.u.)=4.4×10 ⁻⁵ 7
		718.9 <i>1</i>	100 5	2769.03	(5-)	Е2 ^с	Mult.: $\Delta J=1$, dipole for a doublet (680.0+679.1); E1 from ΔJ^{π} . B(E2)(W.u.)=25 4
3511.77	$(4^+,5^-)$	241.2 [#] 5	5.1 [#] 34	3270.58			
	()-)	703.6 [#] 2	100 [#] 10	2807.87			
		1063.5 [#] 3	13 [#] 4	2448.11			
		1744.4 <mark>#</mark> 2	38 [#] 4	1767.69			
3578.23?		980.2 ^{#e} 10	82 [#] 45	2598.23			
		1129.6 [#] e 4	36 [#] 18	2448.11			
		1810.8 [#] e 3	100 [#] 45	1767.69			
3650.15	(7-)	162.2 ^{&} 2	91& 4	3487.92			
0000110	(,)	371.0 ^{&} 1	22 ^{&} 4	3279.15		D^{C}	
		551.5 ^{&} 2	39 ^{&} 4	3098.67	. ,	D^{C}	
		608.9 ^{&} 1	100 & 4	3041.25		Ъ	
		881.1 ^{&} 2	52 ^{&} 4	2769.03		(Q) ^c	
3679.94	8+	348.0 <i>I</i>	29.2 9	3331.91		$(M1+E2)^{C}$	
		581.3 2	4.4 9	3098.67		()	
		872.1 <i>I</i>	100 <i>3</i>	2807.87		E2 ^c	B(E2)(W.u.)=11.5 7
3749.07	(7)	650.4 2	100	3098.67		D+Q ^c	
3819.58?		932.2 [#] e 2	60 [#] 5	2886.99	2+		
		1370.8 [#] e 3	21 [#] <i>11</i>	2448.11	3-		
		1763.6 [#] e 2	100 [#] <i>11</i>	2056.07	$(3)^{+}$		
		2052.9 [#] e 3	26 [#] 13	1767.69	4+		E_{γ} : poor fit, level-energy difference=2051.9.
3918.08?		1110.3 [#] e 2	100 [#] <i>10</i>	2807.87	6+		
		1469.9 [#] e 2	29 # 10	2448.11	3-		
		2150.9 [#] e 5	17 [#] 8	1767.69			
4028.78	(8^{+})	1220.9 2	100	2807.87		Q	
4062.78	4+	1255.0 [#] 2	100 [#] 10	2807.87	6+		
		1463.3 [#] e 2	6 [#] 3	2598.23			
		1614.5 [#] 2	27 [#] 3	2448.11	3-		
		2006.7 [#] e 5	4.5 [#] <i>30</i>	2056.07	$(3)^{+}$		
		2295.3 [#] 4	33 [#] 5	1767.69	4+		
4268.05	(8^{-})	780.1 ^{&} 2	48 & 4	3487.92	(7^{-})		
		988.9 <mark>&</mark> 1	100 <mark>&</mark> 4	3279.15		Q^{c}	

6

γ (84Sr) (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4636.13 (9 ⁻) 1148.2 I 100 3487.92 (7 ⁻) E2 c B(E2)(W.u.)=5.2 g B(E2)(W.u.)=7.7 g B(E2)(W.u.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4745.72 (8,9,10 ⁺) 1413.8 2 100 3331.91 8 ⁺ 5150.7? 1232.9 ^{#e} 3 38 [#] 3 3918.08? 1330.7 ^{#e} 4 100 [#] 10 3819.58? 1638.6 ^{#e} 7 12 [#] 9 3511.77 (4 ⁺ ,5 ⁻) 5444.48 (11 ⁻) 808.35 10 100 4 4636.13 (9 ⁻) E2 ^c 996.9 1 30 4 4447.61 10 ⁺
1330.7 ^{#e} 4 100 [#] 10 3819.58? 1638.6 ^{#e} 7 12 [#] 9 3511.77 (4 ⁺ ,5 ⁻) 5444.48 (11 ⁻) 808.35 10 100 4 4636.13 (9 ⁻) E2 ^C B(E2)(W.u.)=7.7 12 996.9 1 30 4 4447.61 10 ⁺
1330.7 ^{#e} 4 100 [#] 10 3819.58? 1638.6 ^{#e} 7 12 [#] 9 3511.77 (4 ⁺ ,5 ⁻) 5444.48 (11 ⁻) 808.35 10 100 4 4636.13 (9 ⁻) E2 ^C B(E2)(W.u.)=7.7 12 996.9 1 30 4 4447.61 10 ⁺
1638.6 ^{#e} 7 12 [#] 9 3511.77 (4 ⁺ ,5 ⁻) 5444.48 (11 ⁻) 808.35 10 100 4 4636.13 (9 ⁻) E2 ^c B(E2)(W.u.)=7.7 12 996.9 1 30 4 4447.61 10 ⁺
5444.48 (11 ⁻) 808.35 <i>10</i> 100 <i>4</i> 4636.13 (9 ⁻) E2 ^C B(E2)(W.u.)=7.7 <i>12</i> 996.9 <i>1</i> 30 <i>4</i> 4447.61 10 ⁺
996.9 <i>I</i> 30 <i>4</i> 4447.61 10 ⁺
JUJJ.4J 14 1117.4 I 100 4 4JJ4.00 10 E4 D(E4)(W.U.)=10 /
1205.6 2 35 4 4447.61 10^+ $E2^{C}$ B(E2)(W.u.)=4.3 16
5891.6 (12 ⁺) 1444 <i>I</i> 100 4447.61 10 ⁺ [E2] B(E2)(W.u.)=17 8
6069.43 (12 ⁻) 625.0 I 100 5444.48 (11 ⁻) (M1) $^{\mathcal{C}}$ 0.00157 B(M1)(W.u.)=0.21 8
Mult.: $\Delta J=1$, dipole from $\gamma(\theta)$, ΔJ^{π} requires M1.
6484.34 (13 ⁻) 415.1 2 100 13 6069.43 (12 ⁻) [M1] 0.00407 B(M1)(W.u.)=0.44 22
830.9 2 <12 5653.25 12 ⁺ [E1] B(E1)(W.u.)=5.E-5 +6-5 1040 1 <12 5444.48 (11 ⁻) [E2] B(E2)(W.u.)=1.8 +21-18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
6916.8 (14 ⁻) 432.5 3 100 6484.34 (13 ⁻)
7822.8 (15 ⁺) 1084 6739.65 14 ⁺
8006.4 16^+ 184 7822.8 (15^+) [M1] 0.0314 E _y : from $(^{36}S,p2ny)$ only.
1266.5 5 100 17 6739.65 14 ⁺ [E2] B(E2)(W.u.)<54
9098.4 (17 ⁺) 1092 8006.4 16 ⁺
$7822.8 (15^+)$
9424.9 18^+ 327 9098.4 (17^+) E_{γ} : from $(^{36}S,p2n\gamma)$ only.
1418 <i>I</i> 100 25 8006.4 16 ⁺ [E2] B(E2)(W.u.)<50
11059.9 20 ⁺ 1635 2 100 9424.9 18 ⁺ [E2] B(E2)(W.u.)>12
12920 22 ⁺ 1860 2 100 11059.9 20 ⁺
15080? (24^{+}) 2160 e 100 12920 22 $^{+}$ E _{γ} : A 2125 γ is tentatively assigned in $(^{36}S, p2n\gamma)$ from a 24 $^{+}$ to 22 $^{+}$.

$\gamma(^{84}Sr)$ (continued)

- † From weighted averages of all available data. Energies from $(\alpha, 2n\gamma)$ have not been used in the averaging procedure due to consistently low values.
- [‡] Doublet. Approximate intensity given.
- # From 84 Y ε decay (39.5 min). [@] From 84 Y ε decay (4.6 s).
- & From 1982De05 in 81 Br(6 Li,3n γ) reaction.
- ^a From ce data in ⁸⁴Y ε decay (39.5 min) unless otherwise stated. ^b From $\gamma\gamma(\theta)$ in ⁸⁴Y ε decay (39.5 min), unless otherwise stated.
- ^c From $\gamma(\theta)$ data in in-beam γ -ray studies. From RUL, $\Delta J=2$, quadrupole transitions are assigned as E2.
- ^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^e Placement of transition in the level scheme is uncertain.

 ∞

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{84}_{38}\mathrm{Sr}_{46}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{84}_{38}\mathrm{Sr}_{46}$

