Linear Algebra [KOMS120301] - 2023/2024

11.2 - Fundamental spaces: row, column, and null spaces

Dewi Sintiari

Program Studi Ilmu Komputer Universitas Pendidikan Ganesha

Week 11 (November 2022)

Vektor baris dan vektor kolom

Diberikan matriks $m \times n$ A:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- Vektor baris: vektor yang dibentuk dari baris A
- Vektor kolom: vektor yang dibentuk dari kolom A

Vektor baris dan vektor kolom

Vektor baris A adalah:

$$\mathbf{r}_{1} = [a_{11} \ a_{12} \ \cdots \ a_{1n}]$$
 $\mathbf{r}_{2} = [a_{21} \ a_{22} \ \cdots \ a_{2n}]$
 $\vdots = \vdots$
 $\mathbf{r}_{m} = [a_{m1} \ a_{m2} \ \cdots \ a_{mn}]$

Vektor kolom A adalah:

$$\mathbf{c}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \ \mathbf{c}_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, \ \mathbf{c}_1 = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Misalkan A adalah matriks $(m \times n)$.

- Subruang dari \mathbb{R}^n yang dibentuk oleh vektor baris A disebut ruang baris dari matriks A.
- Subruang dari \mathbb{R}^m yang dibentuk oleh vektor kolom A disebut ruang kolom dari matriks A.
- Ruang solusi sistem linier homogen $A\mathbf{x} = \mathbf{0}$ (yang merupakan subruang dari \mathbb{R}^n) disebut spasi nol dari matriks A.

Keterkaitan

Pertanyaan 1. Hubungan apa yang ada antara solusi sistem linier $A\mathbf{x} = \mathbf{b}$ dan ruang baris, ruang kolom, dan ruang nol matriks koefisien A?

Pertanyaan 2. Hubungan apa yang ada antara ruang baris, ruang kolom, dan ruang nol suatu matriks?

Ruang kolom

Misalkan sistem $A\mathbf{x} = \mathbf{b}$ dimana:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Misalkan $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n$ adalah vektor kolom dari A. Sistem dapat ditulis sebagai:

$$A\mathbf{x} = \mathbf{b}$$

$$\Leftrightarrow x_1\mathbf{c}_1 + x_2\mathbf{c}_2 + \dots + x_n\mathbf{c}_n = \mathbf{b}$$

Oleh karena itu, sistem mempunyai solusi jika dan hanya jika ${\bf b}$ dapat dinyatakan sebagai kombinasi linier dari vektor kolom A.

Teorema

Suatu sistem persamaan linier $A\mathbf{x} = \mathbf{b}$ konsisten jika dan hanya jika \mathbf{b} berada dalam ruang kolom A.

Contoh ruang kolom

Diketahui sistem linier $A\mathbf{x} = \mathbf{b}$:

$$\begin{bmatrix} -1 & 3 & 2 \\ 1 & 2 & -3 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & -9 & -3 \end{bmatrix}$$

Tunjukkan bahwa \mathbf{b} berada dalam ruang kolom A dengan menyatakannya sebagai kombinasi linier dari vektor kolom A.

Solusi:

Tahapan:

• Selesaikan sistem dengan eliminasi Gaussian:

$$x_1=2, \ x_2=-1, \ x_3=3$$

Hal ini menghasilkan

$$2\begin{bmatrix} -1\\1\\2\end{bmatrix} - \begin{bmatrix} 3\\2\\1\end{bmatrix} + 3\begin{bmatrix} 2\\-3\\-2\end{bmatrix} = \begin{bmatrix} 1\\-9\\-3\end{bmatrix}$$

dengan kata lain,

$$x_1\mathbf{c}_1 + x_2\mathbf{c}_2 + x_3\mathbf{c}_3 = \mathbf{b}$$

Ruang null

Diberikan matriks

$$A = \begin{bmatrix} 2 & 2 & -1 & 0 & 1 \\ -1 & 1 & 2 & -3 & 1 \\ 1 & 1 & -2 & 0 & -1 \end{bmatrix}$$

Untuk menentukan ruang nol A, selesaikan sistem linear homogen $A\mathbf{x} = \mathbf{0}$:

$$A = \begin{bmatrix} 2 & 2 & -1 & 0 & 1 \\ -1 & 1 & 2 & -3 & 1 \\ 1 & 1 & -2 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Memecahkan sistem dengan eliminasi Gauss, kita memperoleh:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -s - t \\ s \\ -t \\ 0 \\ t \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

Penyelesaian sistem dapat dituliskan dalam persamaan matriks:

$$\mathbf{x} = s\mathbf{v}_1 + t\mathbf{v}_2$$

dimana $s, t \in \mathbb{R}$, $\mathbf{v}_1 = (-1, 1, 0, 0, 0)$ dan $\mathbf{v}_2 = (-1, 0, -1, 0, 1)$.

Tentukan basis ruang nul

Properti ruang baris/kolom dan spasi nol

Teorema

Operasi baris dasar tidak mengubah ruang baris suatu matriks.

Teorema

Operasi baris dasar tidak mengubah ruang null matriks.

Bagaimana cara menentukan basis spasi baris, spasi kolom, dan spasi nol?

Misalkan A adalah matriks $(m \times n)$. Bagaimana cara menentukan basis ruang baris, ruang kolom, dan ruang nol matriks A?

- Lakukan operasi baris dasar untuk mendapatkan matriks bentuk eselon baris tereduksi *R*;
- Basis ruang baris A pada semua vektor baris yang memuat 1 di depan * dari matriks R;
- Sasis ruang kolom A adalah semua vektor kolom matriks A yang bersesuaian dengan vektor kolom matriks R yang memuat awalan 1.

^{*}Bagian depan 1 adalah entri di depan pada setiap baris bukan nol adalah 🗓 🛭 🔈 🤄 🤈

Intuisi di balik algoritma

Contoh 1: menentukan basis ruang baris dan ruang kolom

Tentukan basis ruang baris, ruang kolom, dan ruang kosong matriks:

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$$

Solusi:

$$\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix} \sim ERO \sim \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = R$$

Basis ruang baris adalah:

$$\mathbf{r}_1 = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \end{bmatrix}$$

 $\mathbf{r}_2 = \begin{bmatrix} 0 & 0 & 1 & 3 & -2 & -6 \end{bmatrix}$
 $\mathbf{r}_3 = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 5 \end{bmatrix}$

Contoh 1 (cont.)

$$\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = R$$

Jadi, dasar ruang kolom adalah:

$$\mathbf{c}_1 = \begin{bmatrix} 1\\2\\2\\-1 \end{bmatrix} \quad \mathbf{c}_2 = \begin{bmatrix} 4\\9\\9\\-4 \end{bmatrix} \quad \mathbf{c}_3 = \begin{bmatrix} 5\\8\\9\\-5 \end{bmatrix}$$

Contoh 2: menentukan basis spasi nol

Untuk menentukan basis ruang nol, selesaikan persamaan $A\mathbf{x} = \mathbf{0}$.

$$\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 & 0 \\ 2 & -6 & 9 & -1 & 8 & 2 & 0 \\ 2 & -6 & 9 & -1 & 9 & 7 & 0 \\ -1 & 3 & -4 & 2 & -5 & -4 & 0 \end{bmatrix} \sim \textit{ERO} \sim \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 & 0 \\ 0 & 0 & 1 & 3 & -2 & -6 & 0 \\ 0 & 0 & 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Sistem linier yang sesuai dengan matriks yang diperbesar terakhir adalah:

$$\begin{cases} x_1 - 3x_2 + 4x_3 - 2x_4 + 5x_5 + 4x_6 = 0 \\ x_3 + 3x_4 - 2x_5 - 6x_6 = 0 \\ x_5 + 5x_6 = 0 \end{cases}$$

dari situ kita dapat mengambil yang berikut ini:

$$x_5 = -5x_6$$

$$x_3 = -3x_4 + 2x_5 + 6x_6 = -3x_4 + 2(-5x_6) + 6x_6 = -3x_4 - 4x_6$$

$$x_1 = -3x_2 - 4x_3 + 2x_4 - 5x_5 - 4x_6$$

$$= -3x_2 - 4(-3x_4 - 4x_6) + 2x_4 - 5(-5x_6) - 4x_6$$

$$= -3x_2 + 14x_4 + 22x_6$$

Contoh 2 (cont.)

Misalkan $x_2 = r$, $x_4 = s$, dan $x_6 = t$, maka penyelesaian $A\mathbf{x} = \mathbf{0}$ adalah:

$$x_1 = -3x_2 + 14x_4 + 22x_6 = -3r + 14s + 22t$$

 $x_3 = -3x_4 - 4x_6 = -3s - 4t$
 $x_5 = -5t$

Ini dapat ditulis sebagai vektor:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} -3r + 14s + 22t \\ r \\ -3s - 4t \\ s \\ -5t \\ t \end{bmatrix} = \begin{bmatrix} -3r \\ r \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 14s \\ 0 \\ -3s \\ s \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 22t \\ 0 \\ -4t \\ 0 \\ -5t \\ t \end{bmatrix} = r \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 14 \\ 0 \\ -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 22 \\ 0 \\ -4 \\ 0 \\ -5 \\ 1 \end{bmatrix}$$

Basis dari spasi nol adalah:

$$\mathbf{v}_1 = (-3, 1, 0, 0, 0, 0), \ \mathbf{v}_2 = (14, 0, -3, 1, 0, 0), \ \mathbf{v}_3 = (22, 0, -4, 0, -5, 0)$$

Rank dan nulitas

Pada Contoh 1, kita menemukan bahwa ruang baris dan ruang kolom matriks:

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$$

keduanya mengandung tiga vektor. Oleh karena itu, keduanya adalah ruang tiga dimensi.

Apakah ini berlaku untuk matriks lain?

Dimensi ruang baris dan ruang kolom

Teorema

Ruang baris dan ruang kolom matriks A mempunyai dimensi yang sama.

Proof.

- Operasi baris dasar tidak mengubah dimensi ruang baris dan ruang kolom suatu matriks.
- Misalkan R berupa sembarang baris eselon dari A, maka:

```
dim(row space of A) = dim(row space of R)
dim(column space of A) = dim(column space of R)
```

- dim(spasi baris R) = jumlah baris bukan nol di R; Dan
- $\dim(\text{ruang kolom } R) = \text{jumlah angka } 1 \text{ di depan } R$.

Karena pada R, jumlah baris bukan nol = jumlah baris 1 di depan, maka dim(spasi baris A) = dim(spasi kolom A).

Definisi

Dimensi ruang baris (dan ruang kolom) matriks A disebut rank of A, dan dilambangkan dengan rank(A).

Dimensi *null space* dari A disebut nullity of A, dan dilambangkan dengan nullity(A).

Teorema (Teorema Dimensi Matriks)

Jika A adalah matriks dengan kolom n, maka:

$$rank(A) + nullity(A) = n$$

Contoh

Temukan rank dan nullitas matriks (ukuran (4×6) :

$$A = \begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}$$

Solusi:

Rank

Bentuk eselon baris tereduksi dari A adalah (verifikasi!):

Karena ada dua baris dengan awalan 1, maka:

$$dim(row space of A) = dim(column space of A) = 2$$

Contoh (cont.)

Nulitas

Untuk mencari nullitas, selesaikan sistem linier: $A\mathbf{x} = \mathbf{0}$.

Dari bentuk eselon tereduksi A, kita peroleh sistem linier berikut:

$$\begin{cases} x_1 - 4x_3 - 28x_4 - 37x_5 + 13x_6 = 0 \\ x_2 - 2x_3 - 12x_4 - 16x_5 + 5x_6 = 0 \end{cases}$$

Menyelesaikan persamaan berikut untuk *variabel utama* akan menghasilkan:

$$x_1 = 4x_3 + 28x_4 + 37x_5 - 13x_6$$
$$x_2 = 2x_3 + 12x_4 + 16x_5 - 5x_6$$

Jadi solusi sistemnya adalah:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = r \begin{bmatrix} 4 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 28 \\ 12 \\ 0 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 37 \\ 16 \\ 0 \\ 0 \\ 1 \end{bmatrix} + u \begin{bmatrix} -13 \\ -5 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Contoh (cont.)

Oleh karena itu, vektornya:

$$\begin{bmatrix} 4 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 28 \\ 12 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 37 \\ 16 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \text{ and } \begin{bmatrix} -13 \\ -5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

bentuk basis untuk ruang solusi, lalu:

$$nullity(A) = 4$$

Catatan. Mengamati bahwa:

$$rank(A) + nullity(A) = n$$

 $2 + 4 = 6$

Kesimpulan

Teorema

Jika A adalah matriks $(m \times n)$, maka:

- $\operatorname{rank}(A) = \operatorname{jumlah} \operatorname{variabel} \operatorname{terdepan} \operatorname{dalam} \operatorname{solusi} \operatorname{umum} A\mathbf{x} = \mathbf{0}.$
- 2 $\operatorname{nullity}(A) = \operatorname{jumlah} \operatorname{parameter} \operatorname{dalam} \operatorname{solusi} \operatorname{umum} \operatorname{A} \mathbf{x} = \mathbf{0}.$

Contoh:

Temukan rank dan nulitas matriksnya:

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$$

Solusi latihan

Bentuk matriks eselon tereduksi adalah sebagai berikut:

$$R = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Ada tiga baris bukan nol dalam matriks, jadi rank(A) = 3.

Berdasarkan "Teorema Dimensi", nullity(A) = n - rank(A) = 6 - 3 = 3.

Solusi latihan (cont.)

Untuk membuktikan bahwa nullity(A) = 5, kita menyelesaikan sistem linier: A**x** = **0**.

$$\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 & 0 \\ 2 & -6 & 9 & -1 & 8 & 2 & 0 \\ 2 & -6 & 9 & -1 & 9 & 7 & 0 \\ -1 & 3 & -4 & 2 & -5 & -4 & 0 \end{bmatrix} \sim \textit{ERO} \sim \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 & 0 \\ 0 & 0 & 1 & 3 & -2 & -6 & 0 \\ 0 & 0 & 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Dari matriks tereduksi yang diperbesar, kita memperoleh sistem linier:

$$\begin{cases} x_1 - 3x_2 + 4x_3 - 2x_4 + 5x_5 + 4x_6 = 0 \\ x_3 + 3x_4 - 2x_5 - 2x_6 = 0 \\ x_5 + 5x_6 = 0 \end{cases}$$

Menyelesaikan sistem untuk hasil 1 terdepan:

$$x_5 = -5x_6$$

$$x_3 = -3x_4 - 8x_6$$

$$x_1 = 3x_2 + 14x_4 + 57x_6$$

Solusi latihan (cont.)

Oleh karena itu, solusi sistem dapat ditulis sebagai:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 3r + 14s + 57t \\ s \\ -3s - 8t \\ s \\ -5t \\ t \end{bmatrix} = r \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 \\ 1 \\ -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 57 \\ 0 \\ -8 \\ 0 \\ -5 \\ 1 \end{bmatrix}$$

dimana $r, s, t \in \mathbb{R}$.

Oleh karena itu, dasar dari ruang nol A adalah:

$$\left\{ \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -3 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 57 \\ 0 \\ -8 \\ 0 \\ -5 \\ 1 \end{bmatrix} \right\}$$

yang berarti nullity(A) = 3.

Pernyataan yang setara

Jika A adalah matriks $(n \times n)$, maka pernyataan berikut ini ekuivalen.

- A dapat dibalik.
- 2 Ax = 0 hanya memiliki solusi sepele.
- **3** Bentuk eselon baris tereduksi dari A adalah I_n .
- 4 dapat dinyatakan sebagai produk matriks dasar.
- **5** $A\mathbf{x} = \mathbf{0}$ konsisten untuk setiap $(n \times 1)$ matriks b.
- **6** $A\mathbf{x} = \mathbf{0}$ memiliki tepat satu solusi untuk setiap $(n \times 1)$ matriks b.
- $0 \det(A) \neq 0.$
- Vektor kolom A bebas linier.
- Vektor baris A bebas linier.
- **10** Vektor kolom A span \mathbb{R}^n .
- **1** Vektor baris A span \mathbb{R}^n .
- **1** Vektor kolom A membentuk basis untuk \mathbb{R}^n .
- \square Vektor baris A membentuk basis untuk \mathbb{R}^n .
- A memiliki peringkat n.
- 4 memiliki nullitas 0.

bersambung...