Microsoft Malware Prediction

Can you predict if a machine will soon be hit with malware?

Wenyu Pan

- Problem & Motivation
- Approach
- Implementation
- Evaluation & Results
- Future Directions

Problem & Motivation

Problem:

Predict a Windows machine's probability of getting infected by various families of malware, based on different properties of that machine.

Motivation:

This predictive analysis is crucial as it enables users and system administrators to take proactive measures to enhance their security. A proactive stance in this domain can significantly reduce disruptions, financial losses, and maintain user trust, thereby contributing to a more secure cyber environment.

Approach

• In my project, I utilized the Microsoft Malware Prediction dataset from Kaggle, applying a unified approach to data processing and modeling.

DataSet size: DataFrame has 7,853,253 rows and 83 columns.

• I split the data into training and testing sets, then experimented with various models to optimally predict malware occurrences.

Introduction to Microsoft Malware Prediction dataset

HasDetections is the ground truth and indicates that Malware was detected on the machine.

Each row in the dataset corresponds to a machine, uniquely identified by a Machineldentifier

027 v : X v fv 53																											
A B C D E F		G H	1	ı	J	K I	L	M	N	0	Р	Q	R S T	U	V	w x	Y Z	AA	AB AC	AD	AE AF	AG	AH AI	AJ	AK	AL	AM
1 Machine Ic Product Na Engine Vei App Versic Av Sig Vers Is Beta	a R	tpStateB IsSxs	Passi Def	aultBr A	AVProduc AVP	Produc AVPr	roduc H	asTpm Co	ountryld (Cityldenti Or	ganizati Ge	oName Lo	caleEng Platform Proces	sor OsVer	OsBuild Os	Suite OsPlat	fori OsBuildLa SkuEditior	IsProtecte Au	toSamr PuaMoo	de SMode	leVerIden SmartScre	Firewall U	JacLuaen: Census	M Census_D	Census_O C	ensus_O Ce	nsus_Pi
2 000002898 win8defei 1.1.15100. 4.18.1807. 1.273.1735	0	7	0		53447	1	1	1	29	128035	18	35	171 windows1x64	10.0.0.0	17134	256 rs4	17134.1.ar Pro	1	0	0	137	1	1 Desktop	Windows.	2668	9124	4
3 D00007535 win8detei 1.1.14600. 4.13.1713/1.263.48.0	0		0		53447	-1	-1	- 1	93	1482	18	119	64 windows1x64	10.0.0.0	1/134	256 rs4	1/134.1.ar Pro	1	0	0	13/	- 1	1 Notebo	ok Windows.	2668	91656	4
4 000007905 win8defei 1.1.15100. 4.18.1807. 1.273.1341	0	7	0		53447	1	1	1	86	153579	18	64	49 windows1x64	10.0.0.0	17134	768 rs4	17134.1.ar Home	1	0	0	137 RequireAc	1	1 Desktop	Windows.	4909	317701	4
5 00000b115win8defei 1.1.15100. 4.18.1807. 1.273.1527	0	7	0		53447	1	1	1	88	20710		117	115 windows1x64	10.0.0.0	17134	256 rs4	17134.1.ar Pro	1	0	0	137 ExistsNots	1	1 Desktop	Windows.	1443	275890	4
6 000014a5f win8defei 1.1.15100. 4.18.1807. 1.273.1375	0	7	0		53447	1	1	1	18	37376		277	75 windows1x64	10.0.0.0	17134	768 rs4	17134.1.ar Home	1	0	0	137 RequireAc	1	1 Notebo	ok Windows.	1443	331929	4
7 000016191win8defei 1.1.15100. 4.18.1807. 1.273.1094	0	7	0		53447	1	1	1	97	13598	27	126	124 windows1x64	10.0.0.0	17134	256 rs4	17134.1.ar Pro	1	0	0	137 RequireAc	1	1 Desktop	Windows.	3799	340727	2
0000161eEwin8defei 1.1.15100. 4.18.1807. 1.273.845.	0	7	0		43927	2	1	1	78	81215		89	88 windows1x64	10.0.0.0	17134	768 rs4	17134.1.ar Home	1	0	0	137	1	1 Notebo	ok Windows.	3799	207404	2
000019515 win8defe 1.1.15100. 4.18.1807. 1.273.1395	0	7	0		53447	1	1	1	97	150323	27	126	124 windows1x64	10.0.0.0	14393	768 rs1	14393.0.ar Home	1	0	0	94 RequireAc	1	1 Notebo	ok Windows.	5682	338896	2
0 00001a027 win8defei 1.1.15200. 4.18.1807. 1.275.988.	0	7	0		53447	1	1	1	164	155006	27	205	172 windows1x64	10.0.0.0	17134	256 rs4	17134.1.ar Pro	1	0	0	137 RequireAc	1	1 Notebo	ok Windows.	2206	240688	4
1 00001a18c win8defe 1.1.15100. 4.18.1807. 1.273.973.	0	7	0		46413	2	1	1	93	98572	27	119	64 windows1x64	10.0.0.0	16299	768 rs3	16299.431 Home	1	0	0	RequireAc	1	1 Notebo	ok Windows.	585	189457	4
2 00001b3b; win8defei 1.1.15100. 4.18.1807. 1.273.869.	0	7	0		53447	1	1	1	107	133897	46	138	134 windows1arm64	10.0.0.0	17134	256 rs4	17134.1.ar Pro	1	0	0	137	1	1 Detacha	abl Windows.	4143	227191	8
3 00001b924win8defei 1.1.15100. 4.18.1807. 1.273.1826	0	7	0		47238	2	1	1	164	120983	27	205	172 windows1x64	10.0.0.0	17134	768 rs4	17134.1.ar Home	1	0	0	137	1	1 Notebo	ok Windows.	2668	172079	2
4 00001f26e win8defei 1.1.15100. 4.18.1807. 1.273.1372	0	7	0		36429	2	1	1	80	7198	27	101	107 windows1x64	10.0.0.0	17134	256 rs4	17134.1.ar Pro	1	0	0	137	1	1 Desktop	Windows.	2102	250496	4
5 000024872 win8defei 1.1.15200. 4.18.1807. 1.275.895.	0	7	0		53447	1	1	1	171	124736		211	182 windows1x64	10.0.0.0	17134	256 rs4	17134.1.ar Pro	1	0	0	137 RequireAc	1	1 Desktop	Windows.	4589	313586	2
6 0000258d; win8defei 1.1.15100. 4.18.1807. 1.273.925.	0	7	0		7945	2	1	1	169	141516	27	209	74 windows1x64	10.0.0.0	17134	768 rs4	17134.1.ar Home	1	0	0	137 Off	1	1 Notebo	ok Windows.	525	225830	8
7 000027c68 win8defei 1.1.15200. 4.18.1807. 1.275.130.	0	7	0		47238	2	1	1	157	114477	27	199	75 windows1x64	10.0.0.0	17134	256 rs4	17134.1.ar Pro	1	0	0	137 ExistsNot5	1	1 Notebo	ok Windows.	1443	256567	4
8 000028150 mse 1.1.15200. 4.9.218.0 1.275.300.	0	7	0		29199	1	1	0	80	7198	27	101	107 windows7x64	6.1.1.0	7601	768 windo	ws7 7601.1840 Invalid	1	0	0	290	1	0 Notebo	ok Windows.	1781	185880	2
9 00002a7fd win8defei 1.1.15100. 4.18.1806. 1.273.466.	0	0	1		39	1	1	1	93	64168	18	277	75 windows1x64	10.0.0.0	16299	256 rs3	16299.431 Pro	1	0	0	117	1	1 Notebo	ok Windows.	2668	171199	4
0 00002b745 win8defei 1.1.15300. 4.18.1809. 1.277.48.0	0	7	0		53447	1	1	1	178	136271	27	230	71 windows1x64	10.0.0.0	17134	768 rs4	17134.1.ar Home	1	0		137	1	1 Notebo	ok Windows.	666	264568	4
1 00002c6cc win8defe 1.1.15100. 4.18.1807. 1.273.1795	0	7	0		47238	2	1	1	158	79230	18	202	70 windows1x64	10.0.0.0	16299	768 rs3	16299.15.a Home	1	0	0	111 RequireAc	1	1 Notebo	ok Windows.	2668	171331	4
22 0000309dcwin8defei 1.1.15100. 4.10.209.0 1.273.781.	0	7	0		53447	1	1	1	93		27	119	64 windows8 x86	6.3.0.0	9600	256 windo	ws8 9600.1906 Pro	1	0	0	333 RequireAc	1	1 Notebo	ok Windows.	2668	35125	2
3 000033565 win8defei 1.1.15100. 4.8.10240. 1.273.356.	0	7	0		53447	1	1	1	43	12607	27	53	42 windows1x64	10.0.0.0	10240	256 th1	10240.179 Enterprise	1	0	0	65 RequireAc	1	1 Notebo	ok Windows.	666	264571	4
4 000037881 win8defer 1.1.15200. 4.18.1807. 1.275.488.	0	7	0		53447	1	1	1	147	77794		187	74 windows1x64	10.0.0.0	17134	256 rs4	17134.1.ar Pro	1	0	0	137 RequireAc	1	1 Notebo	ok Windows.	2102	249943	4
5 000037f84 win8defei 1.1.15200. 4.18.1807. 1.275.173.	0	7	0		7945	2	1	1	12	110781	27	15	58 windows1x64	10.0.0.0	17134	768 rs4	17134.1.ar Home	1	0	0	137 RequireAc	1	1 Notebo	ok Windows.	2653	304618	4
6 000038f24 win8defei 1.1.15200. 4.18.1806. 1.275.879.	0	7	0		53447	1	1	1	203	143782	27	255	46 windows1x86	10.0.0.0	17134	256 rs4	17134.1.xEPro	1	0	0	137 ExistsNots	1	1 Desktop	Windows.	585	189698	4
7 000039104win8defei 1.1.15200. 4.18.1807. 1.275.91.0	0	7	0	1950	53447	1	1	1	43	37357	27	53	42 windows1x86	10.0.0.0	16299	256 rs3	16299.15.) Pro	1	0	0	117 RequireAc	1	1 Desktop	Windows.	4589	313586	2
8 000039c28 win8defer1.1.15100. 4.18.1807. 1.273.1376	0	7	0		53447	1	1	1	205	11382		274	266 windows1x64	10.0.0.0	17134	256 rs4	17134.1.ar Pro	1	0	0	137	1	1 Desktop	Windows.	2206	251773	4
9 00003ad6: win8defer1.1.15300. 4.13.17134 1.277.25.0	0	7	0		53447	1	1	1	171	110673		211	182 windows1x64	10.0.0.0	17134	768 rs4	17134.1.ar Home	1	0	0	137	1	1 Notebo	ok Windows.	525	331297	4
0 00003e5e(win8defer1.1.15200, 4.18.1807, 1.275.26.0	0	7	0		53447	1	1	1	199	150207	27	266	75 windows1x64	10.0.0.0	17134	256 rs4	17134.1.ar Pro	1	0	0	137	1	1 PCOthe	r Windows.	2102	230160	4
1 0000422df win8defer1.1.15100. 4.18.1807. 1.273.1561	0	7	0		53447	1	1	1	9	20805	27	10	214 windows1x64	10.0.0.0	16299	256 rs3	16299.15.a Pro	1	0	0	111	1	1 Desktop	Windows.	1980	227527	8
2 00004348c win8defe 1.1.15200. 4.18.1807. 1.275.1025	0	7	0		53447	1	1	1	68	59605	27	276	74 windows1x86	10.0.0.0	14393	256 rs1	14393.576 Pro	1	0	0	94 RequireAc	1		ok Windows.	4730	311910	2
33 000043b6c win8defer 1.1.13504. 4.13.17134 1.237.607.	0	7	0	146	36505	2	1	1	201		27	267	251 windows1x64	10.0.0.0	17134	768 rs4	17134.1.ar Home	0	0	0	137 RequireAc	1	1 Notebo	ok Windows.	2206	244755	4
4 000046e55 win8defe 1.1.15200, 4.18.1807, 1.275.511.	0	7	0	- 1	46669	2	1	1	141	60626	27	240	233 windows1x64	10.0.0.0	15063	768 rs2	15063.0.ar Home	1	0	0	108	1		ok Windows.	2668	171476	2

Before Data Cleaning...EDA

Data Cleaning

Count NaNs in each feature and find its frequency. We considered NaN frequency over 0.5 as invalid feature and ignore the feature.

1. Deleting features with too much NaN-values

```
nan_count = df.isnull().sum().to_frame('count')
nan_count['count'] = nan_count['count'].div(8921483).round(2)
irrelevant_feature = nan_count[nan_count['count'] > 0.5]
irrelevant_feature
```

```
def assess_balance(df, column):
    value_counts = df[column].value_counts()
    max_count = value_counts.max()
    balance_ratio = max_count / len(df)
    return balance_ratio

[ ] unbalanced_df = balance_ratios_df[balance_ratios_df['balance_ratio'] > 0.98]

[ ] change_to_irrelevant(output_df, unbalanced_df)
```

2. Deleting features that are highly unbalanced

Define a function to calculate if the target feature is balanced. Here, we calculate a balance ratio between max count input and total input count. Ratio close to 1 indicates more imbalance.

3.

Features were then separate into three categories:

Numerical (replace NaN values with "-1")

Categorical (rename NaN-Values as '-1' in all features with tpye 'not category')

Binary(Reassign all NaN-Values to the most fequent feature)

This action ensures numerical features have no missing values, enhancing model accuracy and allowing similar preprocessing for test data.

Now that we are done with data cleaning...

- We move on to data encoding:
- **1. Label Encoding**: Transforms categorical values into a numerical range, where each unique label gets a unique integer.
- **2. Frequency Encoding**: A variant of Label Encoding where values are encoded based on their frequency, assigning numbers based on the frequency of occurrence.
- This process ensures smooth processing and modeling with machine learning algorithms that typically require numerical input

Implementation

To predict the data, I implemented three model:

- Logistic Regression Model
- Random Forest
- LightGBM/Keras

Logistic Regression Model

Split the dataset into training and testing.

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import logisticRegression
from sklearn.metrics import accuracy_score
from imblearn.over_sampling import SMOTE

# Define your target and data ID columns
target_column = "HasDetections"
data_id = 'MachineIdentifier'

X = df.drop([target_column, data_id], axis=1)
y = df[target_column]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# SMOTE for class imbalance on training data
sm = SMOTE(random_state=42)
X_train_res, y_train_res = sm.fit_resample(X_train, y_train)
```

Delete the loaded whole dataset to save memory.

```
[ ] del df
gc.collect()
6775
```

Train random forest model.

```
# Initialize the Logistic Regression model
model = LogisticRegression()

# Train the model
model.fit(X_train, y_train)
```

Make prediction on testing dataset and find accuracy.

```
# Make predictions
predictions = model.predict(X_test)

# Evaluate the model
accuracy = accuracy_score(y_test, predictions)
print(f"Model Accuracy: {accuracy}")
print(classification_report(y_test, predictions))
```

```
Model Accuracy: 0.5083472510228101
             precision recall f1-score
                                             support
                            0.05
                                      0.09
                                              222980
                            0.97
                                      0.66
                                              223095
                                      0.51
                                              446075
   accuracy
                  0.55
                            0.51
                                              446075
   macro avg
weighted avg
                            0.51
                                              446075
```

Random Forest

```
Load encoded dataset
[ ] df = pd.read_csv('./drive/MyDrive/train_encoded.csv')
     # df = pd.read_csv('./data/train_encoded.csv')
Split the dataset into training and testing.
from sklearn.model_selection import train_test_split
     from imblearn.over_sampling import SMOTE
     # Your original columns and data splitting
     target_column = "HasDetections"
     data_id = 'MachineIdentifier'
     X = df.drop([target_column, data_id], axis=1)
     y = df[target_column]
     # Split data into training and testing sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
     # Apply SMOTE only on training data to handle class imbalance
     sm = SMOTE(random_state=42)
     X_train_res, y_train_res = sm.fit_resample(X_train, y_train)
Delete the loaded whole dataset to save memory.
[ ] del df
     gc.collect()
Train random forest model.
[ ] # Initialize the Random Forest model
     model = RandomForestClassifier(random_state=42) # Use RandomForestRegressor for regression
     # Train the model
     model.fit(X_train, y_train)
```

Make prediction on testing dataset and find accuracy.

```
[ ] # Make predictions
predictions = model.predict(X_test)

# Evaluate the model
accuracy = accuracy_score(y_test, predictions)
print(f"Model Accuracy: {accuracy}")
```

Model Accuracy: 0.6485097797455585

LightGBM

```
+ Code
[ ] from sklearn.model_selection import train_test_split
                                                                                                                  [ ] gbm = lgb.train(params, train_data, valid_sets=[test_data])
     from imblearn.over_sampling import SMOTE
     # Your original columns and data splitting
                                                                                                                       /usr/local/lib/python3.10/dist-packages/lightgbm/engine.py:172: UserWarning: Found `num iterations` in params. Will use it instead of argument
     target column = "HasDetections"
                                                                                                                         log warning(f"Found `{alias}` in params. Will use it instead of argument")
     data id = 'MachineIdentifier'
                                                                                                                       [LightGBM] [Info] Number of positive: 892084, number of negative: 892212
    X = df.drop([target_column, data_id], axis=1)
                                                                                                                       [LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 1.016717 seconds.
     y = df[target_column]
                                                                                                                       You can set `force_row_wise=true` to remove the overhead.
     # Split data into training and testing sets
                                                                                                                       And if memory is not enough, you can set `force_col_wise=true`.
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
                                                                                                                       [LightGBM] [Info] Total Bins 5313
                                                                                                                       [LightGBM] [Info] Number of data points in the train set: 1784296, number of used features: 66
     # Apply SMOTE only on training data to handle class imbalance
                                                                                                                       [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.499964 -> initscore=-0.000143
     sm = SMOTE(random_state=42)
     X_train_res, y_train_res = sm.fit_resample(X_train, y_train)
                                                                                                                       [LightGBM] [Info] Start training from score -0.000143
                                                                                                                  Predict on the test set
Delete the loaded whole dataset to save memory.
[ ] del df
                                                                                                                  [ ] y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration)
     gc.collect()
     30
                                                                                                                  Convert probabilities to binary output
Create the LightGBM data containers
[ ] train_data = lgb.Dataset(X_train, label=y_train)
                                                                                                                  [ ] y_pred_binary = [1 if x > 0.5 else 0 for x in y_pred]
     test_data = lgb.Dataset(X_test, label=y_test, reference=train_data)
                                                                                                                  Evaluate the model
Define the parameters
[ ] params = {
                                                                                                                  [ ] accuracy = accuracy_score(y_test, y_pred_binary)
         'objective': 'binary',
         'metric': 'binary_logloss',
                                                                                                                       print(f"Accuracy: {accuracy}")
         'num leaves': 31,
         'learning_rate': 0.05,
                                                                                                                       Accuracy: 0.6446673765622373
         'num iterations': 100
```

Train the model

Evaluation & Results

Model Evaluation Metric:

• Accuracy was used as the primary metric for classification effectiveness.

Logistic Regression Model:

- Achieved 50.83% accuracy.
- Struggled with class imbalances and complex features.

Random Forest Model:

- Reached 64.85% accuracy.
- Benefited from regularization and ensemble methods.

LightGBM and Keras Models:

- LightGBM achieved 64.4% accuracy.
- Keras achieved 63.61% accuracy.
- Comparable performance to Random Forest.
- Advanced techniques showed potential but didn't significantly outperform traditional methods.

Future Directions

Model Evaluation Considerations:

Accuracy alone may not fully capture model performance.

Imbalanced datasets necessitate a cautious interpretation.

Recommended Future Metrics:

Incorporate F1 score, precision, recall, and AUC-ROC.

These metrics provide a more nuanced performance assessment.

Benefits of a Comprehensive Approach:

Facilitates deeper insights into each model's strengths and limitations.

Future Directions for Malware Detection

- Exploring Additional Data Sources: Integrating more diverse datasets to cover a wider range of malware signatures and attack vectors.
- Deep Learning Techniques: Experimenting with deep neural networks, such as convolutional neural networks (CNNs) or recurrent neural networks (RNNs), to capture complex patterns in data.
- **Ensemble Methods:** Combining predictions from multiple models to improve accuracy and robustness against diverse malware threats.