

Table des matières

	0.1	Clôture algébrique
	0.2	Bases normales
1		éorie de Galois
	1.1	Plongements et séparabilité
		1.1.1 Cadre
		1.1.2 Existence de prolongements
		1.1.3 Nombre de plongements
	Qu	ielques notes et notes de lecture sur le Douady!

0.1 Clôture algébrique

C'est sombre m
dr dans le Douady. Y'a une construction explicite dans le pdf de Benois par induction sur des gros anne
aux de polynomes. En gros prendre $K[X_f]$

0.2 Bases normales

Représentations régulière isomorphe à représentation de Gal(L/K) naturelle, i.e. dans GL(L). Théorème de Krull-Schmidt sur les modules indécomposables.

0.2 Bases normales

Chapitre 1

Théorie de Galois

Y'a plusieurs points où j'suis pas au clair. Le nombre de plongements et la séparabilité. Les extensions successives et la séparabilité/normalité.

1.1 Plongements et séparabilité

En gros faut considérer les morphismes induits de $\varphi \colon K \to L$ à

$$K[X] \to L[X]$$

naturellement.

1.1.1 Cadre

Maintenant si $L = K[\alpha]/K$ est monogène, $K \to E$ et $f: E \to M$ des extensions. Y'a la bij pour P annulateur minimal de α :

 $\{\text{extensions de } f \text{ en } L \to M\} \leftrightarrow \{\text{racines simples de } f(P) \text{ dans } M\}$

donné par $\hat{f} \mapsto \hat{f}(\alpha)$. L'injectivité est claire. La surjectivité on prends $f(P)(\beta) = 0$ et on déf

$$\hat{f}(x) = \hat{f}(Q(\alpha)) = f(Q)(\beta)$$

pour $Q(\alpha) = x$. L'écriture est unique vue que Q est vu modulo P(X).

Remarque 1. C'est là qu'on utilise P irréductible. Ca explique que si on regarde \hat{L}/\hat{K} via $L = K[\alpha]$ et $P = \mu_{\alpha}$ sur K alors le nombre de plongements qui étendent K, $\hat{L} \to (\hat{K})^c$ est pas [L:K], y faut un générateur.

1.1.2 Existence de prolongements

Quand on a juste $K-L=K(\alpha)$ monogène et K-E. On peut étendre $K\to L$ en $E\to F$ simplement en prenant F= un corps de rupture pour μ_{α} .

1.1.3 Nombre de plongements