Delayed recycle Axial Reactor xxx

Behrad Moadeli*

Author Two[†]

August 8, 2024

Abstract

This is a brief summary of the paper, usually around 150-250 words. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1 Introduction

Many chemical, petrochemical, and biochemical unit operation processes are modeled as distributed parameter systems (DPS). When these processes are described using first-principle modeling, they result in a class of partial differential equations (PDEs) to effectively capture diffusion, transport, and reaction phenomena, leading to infinite-dimensional state space representations.^{1,2} This characteristic presents significant challenges, making the control and estimation of DPS inherently more complex than finite-dimensional systems. Two primary methods have emerged for addressing DPS control. One is early lumping, which approximates the infinite-dimensional system with a finite-dimensional model.^{3,4} While this method enables the use of standard regulator design techniques, mismatches between the dynamical properties of the original DPS and the approximate lumped parameter model can occur, negatively affecting the performance of the designed regulator.⁵ The second method is late lumping, which directly tackles the infinite-dimensional system before applying numerical solutions. This approach introduces a challenging yet fertile direction of research, leading to many meaningful contributions that address various aspects of control and estimation of infinite-dimensional systems;⁶⁻¹⁰ to cite a few.

^{*}Ualberta, Address. Email: moadeli@ualberta.ca

[†]Affiliation, Address. Email: author2@example.com

2 Methodology

3 Results

4 Conclusion

References

- (1) Ray, W. H., Advanced process control; McGraw-Hill: New York, NY, USA: 1981.
- (2) Christofides, P. D. Chemical Engineering Science 1998, 53, 2949–2965.
- (3) Davison, E. IEEE transactions on Automatic Control 1976, 21, 25–34.
- (4) Francis, B. A. SIAM Journal on Control and Optimization 1977, 15, 486–505.
- (5) Moghadam, A. A.; Aksikas, I.; Dubljevic, S.; Forbes, J. F. Journal of Process Control 2012, 22, 1655–1669.
- (6) Dubljevic, S.; Christofides, P. D. Chemical Engineering Science 2006, 61, 6239–6248.
- (7) Dubljevic, S.; El-Farra, N. H.; Mhaskar, P.; Christofides, P. D. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal 2006, 16, 749–772.
- (8) Xu, X.; Dubljevic, S. European Journal of Control 2016, 29, 51–61.
- (9) Ozorio Cassol, G.; Ni, D.; Dubljevic, S. AIChE Journal 2019, 65, e16623.
- (10) Cassol, G. O.; Koch, C. R.; Dubljevic, S. *Journal of Process Control* **2024**, *138*, 103223.