UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

TESI IN MATEMATICA:

"I SISTEMI DI LOGICA MODALE T, S4, S5: SINTASSI E SEMANTICA"

Relatore:

Ch.mo Prof.

ULDERICO DARDANO

Candidato:

FRANCESCO MAGLIOCCA

N87/1032

Calcolo Proposizionale

Introduciamo un sistema formale per il Calcolo Proposizionale che chiameremo CP.

Calcolo Proposizionale: L'alfabeto

Sia A insieme numerable disgiunto da $\{\neg, \lor, (,)\}$ e contenente almeno tre elementi che indicheremo con p, q, r.

Chiamiamo l'insieme $\Sigma = A \cup \{\neg, \lor, (,)\}$ alfabeto e gli elementi di A variabili proposizionali.

Calcolo Proposizionale: Il linguaggio

L'insieme delle formule ben formate (fbf) L_{CP} è il più piccolo sottoinsieme di $\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$ tale che:

- \triangleright $x \in A \Rightarrow x \in L_{CP}$;

Calcolo proposizionale: Connettivi aggiuntivi

Se $\alpha \in L_{CP}$ e $\beta \in L_{CP}$, allora diamo le seguenti definizioni:

- $(\alpha) \wedge (\beta) := \neg (\neg (\alpha) \vee \neg (\beta));$
- $(\alpha) \leftrightarrow (\beta) := ((\alpha) \to (\beta)) \land ((\beta) \to (\alpha)).$

Calcolo Proposizionale: Gli assiomi

- ▶ HPD: $p \rightarrow (q \rightarrow p)$
- ► HPMP: $(r \rightarrow (p \rightarrow q)) \rightarrow (r \rightarrow p) \rightarrow (r \rightarrow q)$
- $ightharpoonup \lor -11: p \rightarrow (p \lor q)$
- $ightharpoonup \lor -12: q \rightarrow (p \lor q)$
- $\blacktriangleright \lor -\mathsf{E} \colon (p \to r) \to (q \to r) \to (p \lor q \to r)$
- $ightharpoonup \land -1: p \rightarrow q \rightarrow p \land q$
- $ightharpoonup \wedge$ -E1: $p \wedge q \rightarrow p$
- $ightharpoonup \land$ -E2: $p \land q \rightarrow q$
- ightharpoonup \neg -I: $(p o q) \wedge (p o \neg q) o \neg p$
- ightharpoonup TER: $p \lor \neg p$

Calcolo Proposizionale: Le regole di deduzione

1. Modus Ponens:

$$\frac{\alpha \to \beta \ \alpha}{\beta}$$

2. Regola di sostituzione:

Se $\alpha \in L_{CP}$, $x \in A$ e $\beta \in L_{CP}$, allora la formula $\alpha[x/\beta]$ ottenuta sostituendo uniformente β al posto di x all'interno di α è una conseguenza di α .

Calcolo Proposizionale: Dimostrazioni

Una dimostrazione è una sequenza finita D di fbf tale che ogni termine D_i della sequenza soddisfa una delle seguenti condizioni

- \triangleright D_i è un assioma;
- ▶ esistono D_h , D_k , con h < i, k < i, tali che D_i è derivato per *Modus Ponens* da D_h e D_k .
- esiste D_h , con h < i, tale che D_i è derivato tramite la regola di sostituzione a partire da D_h .

Se $\alpha \in L_{CP}$ ed esiste una dimostrazione D il cui ultimo termine è α , diciamo che α è un teorema e scriviamo $\vdash \alpha$.

Calcolo Proposizionale: Semantica

Chiamiamo *interpretazione* una funzione $I:A \to \{0,1\} \subset \mathbb{N}$ Data un'interpretazione I definiamo la funzione $V_I:L_{CP} \to \{0,1\} \subset \mathbb{N}$ come segue:

- $V_I(x) = I(x), \forall x \in A$
- $V_I((\alpha) \vee (\beta)) = \max\{V_I(\alpha), V_I(\beta)\}$
- $V_I(\neg(\alpha)) = 1 V_I(\alpha)$

Tutti i connettivi presenti in CP sono interpretati come operatori vero-funzionali. Sia $\alpha \in L_{CP}$, diciamo che α è *valida* e scriviamo $\models \alpha$ se $V_I(\alpha) = 1$, per ogni interpretazione I.

Calcolo Proposizionale: Semantica

Logica Modale

Estendiamo il sistema CP in modo da introdurre due nuovi connettivi, \square e \lozenge corrispondenti alle nozioni di *necessità* e *possibilità*.

Logica Modale: Sulla vero-funzionalità di □ e ◊

 \square e \lozenge non possono essere operatori vero-funzionali.

Infatti non basta sapere che "Vincenzo è ricco" è vera per potersi esprimere sul valore di verità da associare alla proposizione "È necessario che Vincenzo sia ricco".

Logica Modale: Sulla vero-funzionalità di □ e ◊

È noto che qualsiasi operatore vero-funzionale sia definibile in termini di negazione e disgiunzione. Quindi se \square e \lozenge fossero stati interpretabili come operatori vero-funzionali, avremmo potuto semplicemente aggiungerli come connettivi derivati in CP senza bisogno di fare altro.

Logica Modale: I Sistemi

Non c'è un unico sistema per la logica modale, anzi ce ne sono molti. Ne presentiamo tre:

- 1. Sistema T
- 2. Sistema S4
- 3. Sistema S5

Sistema T: L'alfabeto

Estendiamo l'alfabeto di CP aggiungendo il simbolo \square , quindi chiamiamo l'insieme $\Sigma_1 = A \cup \{\neg, \lor, \square, (,)\}$ alfabeto

Sistema T: Il linguaggio

L'insieme delle formule ben formate (fbf) L è il più piccolo sottoinsieme di $\Sigma_1^* = \bigcup_{n \in \mathbb{N}} \Sigma_1^n$ tale che:

- \triangleright $x \in A \Rightarrow x \in L$;
- $ightharpoonup \alpha \in L \Rightarrow \neg(\alpha) \in L;$

Sistema T: Connettivi aggiuntivi

Se $\alpha \in L$, allora diamo la seguente definizione:

$$\Diamond(\alpha) := \neg(\Box(\neg(\alpha)))$$

Sistema T: Regole di deduzione

1. Modus Ponens:

$$\frac{\alpha \to \beta \ \alpha}{\beta}$$

- 2. Regola di sostituzione: Se $\alpha \in L$, $x \in A$ e $\beta \in L$, allora la formula $\alpha[x/\beta]$ ottenuta sostituendo uniformente β al posto di x all'interno di α è una conseguenza di α .
- 3. Regola di necessitazione:

Sistema T: Assiomi

Gli assiomi del Sistema T sono tutti gli assiomi di *CP* più i seguenti:

- ightharpoonup T: $\Box p \rightarrow p$
- $\blacktriangleright \mathsf{K} \colon \Box(p \to q) \to (\Box p \to \Box q)$

Sistema S4

Il Sistema S4 è ottenuto aggiungendo al Sistema T l'assioma S4:

$$\Box p
ightarrow \Box \Box p$$

Sistema S5

Il Sistema S5 è ottenuto aggiungendo al Sistema T l'assioma S5:

$$\Diamond p \to \Box \Diamond p$$

Logica Modale: Dimostrazioni

Una dimostrazione in un sistema S ($\in \{T, S4, S5\}$) è una sequenza finita D di fbf tale che ogni termine D_i della sequenza soddisfa una delle seguenti condizioni

- $ightharpoonup D_i$ è un assioma di S;
- esistono D_h , D_k , con h < i, k < i, tali che D_i è derivato per *Modus Ponens* da D_h e D_k .
- esiste D_h , con h < i, tale che D_i è derivato tramite la regola di sostituzione a partire da D_h .
- ▶ esiste D_h , con h < i, tale che D_i è derivato tramite la regola di *necessitazione* a partire da D_h .

Se $\alpha \in L$ ed esiste una dimostrazione D in un sistema S il cui ultimo termine è α , diciamo che α è un teorema e scriviamo $\vdash_S \alpha$.

Relazioni tra i sistemi T, S4, S5

Definizione

Diciamo che un sistema formale è meno forte di un altro se tutti i teoremi del primo sono teoremi anche del secondo.

Nota

È ovvio che CP è meno forte del Sistema T, che è meno forte sia del sistema S4 che del sistema S5.

Teorema

 $\vdash_{S5} \Box p \rightarrow \Box \Box p$, ovvero il Sistema S4 è meno forte del Sistema S5.

Logica Modale: Semantica

Un modello di Kripke è una terna (W, R, I) costituita da:

- W insieme non vuoto i cui elementi sono detti *mondi*;
- ▶ R relazione binaria su W detta relazione di accessibilità;
- ▶ $I: A \times W \rightarrow \{0,1\} \subset \mathbb{N}$ detta *interpretazione*.

Logica Modale: Semantica II

Dato un modello di Kripke K = (W, R, I) definiamo la funzione $V_K : L \times W \to \{0, 1\}$ come segue. Fissato $w \in W$:

- $V(x, w) = I(x, w), \forall x \in A$
- $V(\neg(\alpha), w) = 1 V(\alpha, w)$
- $V((\alpha) \vee (\beta), w) = \max\{V(\alpha, w), V(\beta, w)\}$
- $V(\Box(\alpha), w) = min\{V(\alpha, w') : w' \in W \text{ e } wRw'\}$

Sistema T: Semantica

Chiamiamo T-modello un modello di Kripke in cui la relazione di *accessibilità* sia **riflessiva**.

Se $\alpha \in L$, diciamo che α è T-valida e scriviamo $\vDash_{\mathcal{T}} \alpha$ se per ogni T-modello K = (W, R, I) si ha $\forall w \in W.V_K(\alpha, w) = 1$.

Sistema S4: Semantica

Chiamiamo S4-modello un modello di Kripke in cui la relazione di *accessibilità* sia **riflessiva** e **transitiva**.

Se $\alpha \in L$, diciamo che α è S4-valida e scriviamo $\vDash_{S4} \alpha$ se per ogni S4-modello K = (W, R, I) si ha $\forall w \in W.V_K(\alpha, w) = 1$.

Sistema S5: Semantica

Chiamiamo S5-modello un modello di Kripke in cui la relazione di accessibilità sia la relazione binaria totale su W.

Se $\alpha \in L$, diciamo che α è S5-valida e scriviamo $\vDash_{S5} \alpha$ se per ogni S5-modello K = (W, R, I) si ha $\forall w \in W.V_K(\alpha, w) = 1$.

T, S4, S5: Teorema di adeguatezza

Per tutti e tre i sistemi vale il teorema di adeguatezza che afferma:

Per ogni formula $\alpha \in L$:

$$\vdash \alpha \Rightarrow \vDash \alpha$$

Collasso nel calcolo proposizionale

In nessun sistema è dimostrabile la formula $p \to \Box p$ quindi non è un teorema la formula $p \leftrightarrow \Box p$ in nessun sistema.

Collasso nel calcolo proposizionale

Basta costruire un S5-modello come segue:

- $V = \{w_1, w_2\};$
- ightharpoonup R = WxW;
- $I(x, w_1) = \begin{cases} 1 & \text{se } x = p \text{ e } w = w_1 \\ 0 & \text{altrimenti} \end{cases}$

Data $\alpha \in L$, cerchiamo un T-modello che falsifichi α , ovvero un T-modello K in cui esista un mondo w tale che:

$$V_K(\alpha, w) = 0$$

.

Rappresentiamo graficamente questo procedimento con dei diagrammi detti T-diagrammi

$$w_1 \mid \diamond (p \land \diamond q) \xrightarrow{0} (\Box \diamond p \rightarrow \diamond \Box q)$$

$$w_1 \left[egin{array}{c} \Diamond (p \wedge \Diamond q) &
ightarrow (egin{array}{c} ^* \Diamond p &
ightarrow \Diamond 0 & 0 \end{array} \Box q)
ight]$$

$$w_1 \left[egin{array}{c} \Diamond(p \wedge \Diamond q) &
ightarrow \begin{pmatrix} st & \Diamond p &
ightarrow lpha & \square q \ 1 & 1 & 0 & 0 & 0 \ st & st & st \end{pmatrix}
ight]$$

Data una formula $\alpha \in L$, una volta seguita tutta la procedura diciamo che abbiamo ottenuto un sistema completo di T-diagrammi per α .

Sistema T: Teorema di completezza

Se $\alpha \in L$, si può sfruttare la procedura di decisione definita per dimostrare che ogni formula T-valida è anche un teorema di T. Quindi, ricordando anche il Teorema di Adeguatezza otteniamo:

$$\vdash_{\mathcal{T}} \alpha \Leftrightarrow \vDash_{\mathcal{T}} \alpha$$

Conclusioni

Le semantiche di Kripke si sono rivelate uno strumento molto utile per analizzare le differenze tra i vari sistemi di logica modale introdotti.

Lo studio effettuato ci porta a considerare questi sistemi non tanto come antagonisti tra di loro, ma piuttosto come rappresentazioni di sfumature diverse dei concetti di necessità e possibilità.

Grazie per l'attenzione.