

ELTE TTK

DINAMIKUS NANO- ÉS MIKROKEMÉNYSÉG MÉRÉSE

Olar Alex

Tartalomjegyzék

I.	Elméleti összefoglaló, mérési eszközök	2
II.	Kiértékelés	2

I. Elméleti összefoglaló, mérési eszközök

A mérés során egy keménységmérő eszközt ismertünk meg, amely Vickers-fejjel végezte el a méréseket. Ezek során tiszta anyagok (Ni, Cu, Al, Ag) keménységét mértük meg, valamint Al, Mg különböző ötvözeteit vizsgáltuk. Feladatunk volt még a plasztikus instabilitás kvalitatív vizsgálata is a kiértékelés utolsó részében.

II. Kiértékelés

A Vickers-fej mellett a minta keménysége az alkalmazott erő és a hatékony felület hányadosa, $HV = \frac{F}{A}$. A mérés során dinamikus mérést végzünk, hiszen egy F - h, azaz erő-benyomódás görbét vizsgálunk. A görbe alatti terület lehetőséget ad a disszipált energia kiszámítására, valamint a görbéből folyáshatárra, Young-modulusra és a mért anyagok egyéb rugalmas tulajdonságaira következtethetünk.

A maximális erőhöz tartozó benyomódás h_{max} szükséges a további számolásokhoz. A szükséges korrigált mélységet az alábbi egyenlet adja:

$$h_c = h_m - 0.75 \frac{F_m}{\frac{dF}{dh}|_{h_m}}$$

, amit azért kell alkalmazni, mert a statikus és dinamikus esetben a benyomódás eltér és a következő korrekció szükséges annak visszanyeréséhez.

A kiértékelés során a terheletlen szakaszra egyenest illesztettünk és annak meredekségét használtuk $\frac{dF_m}{dh}|_{h_m}$ kiszámításához. Míg F_{max} -ot az adatsorból meghatározva a hozzá tartozó h_{max} -al automatikusan adott volt. Így:

Anyag	$h_{max}[\mu]$	$F_{max}[mN]$
Al	5.186	0.191
Cu	2.233	0.192
Ni	1.604	0.192
Ag	3.298	0.191
acél	2.364	0.191
Al - 0.47% Mg	4.156	0.192
Al - 0.93% Mg	4.056	0.191
Al - 1.25% Mg	3.743	0.192
Al - 1.45% Mg	3.481	0.191
Al - 2.7% Mg	3.416	0.191
Al - 4.5% Mg	2.878	0.191
Al - 7.3% Mg	2.484	0.192

 h_{max} hibáját 0.05 μm -re becsültem, mivel ez sokkal nagyobb volt, mint h_c -nek az illesztésből származó hibája, így $\delta h_c = \delta h_{max}$.

Anyag	$h_c[\mu m]$	$\Delta h_C[\mu m]$
Al	5.19	0.16
Cu	2.24	0.10
Ni	1.61	0.10
Ag	3.30	0.10
acél	2.36	0.10
Al - 0.47% Mg	4.16	0.05
Al - 0.93% Mg	4.06	0.02
Al - 1.25% Mg	3.75	0.11
Al - 1.45% Mg	3.48	0.13
Al - 2.7% Mg	3.42	0.06
Al - 4.5% Mg	2.88	0.07
Al - 7.3% Mg	2.48	0.01

Jól látható, hogy a korrekció olyan kicsi, hogy a benyomódás csak nagyon kis mértéken belül változott.

A Vickers-fej tulajdonsága, hogy az érintkező felület pedig:

$$A = 24.5h_c^2$$

A felületek kiszámolva h_c -ből:

Anyag	$A[\mu m^2]$	$\Delta A[\mu m^2]$
Al	659.159	32.350
Cu	122.16	0.722
Ni	63.024	2.836
Ag	266.478	0.712
acél	137.393	0.25.775
Al - 0.47% Mg	423.219	9.677
Al - 0.93% Mg	403.038	2.575
Al - 1.25% Mg	343.334	19.453
Al - 1.45% Mg	297.045	14.756
Al - 2.7% Mg	285.921	10.088
Al - 4.5% Mg	203.027	9.737
Al - 7.3% Mg	151.155	0.753

A redukált modulus E_r egyből számolható a korábbiak ismeretében, ugyanis:

$$E_r = \frac{\sqrt{pi} \frac{dF}{dh}|_{h_m}}{2\beta\sqrt{A}}$$

Ahol $\beta=1.012$, és a fentebbire azért van szükség egyáltalán, mivel maga a mérőfej is rugalmas anyag, így deformálódik. Azonban innen, a mért anyag Poisson-számának ismeretében már származtatható annak Young-modulusa.

$$\frac{1}{E_r} = \frac{1 - \nu^2}{E} + \frac{1 - \nu_i^2}{E_i}$$

Ahol $E_i=1070GPa$ a fej Young-modulusa, $\nu_i=0.17$ szintén a fejre jellemző Poisson-szám.

Ebből a megfelelő ν paramétert helyettesítve már egyből az anyagok Young-modulusát számoltam:

Anyag	E[GPa]	$\Delta E[GPa]$
Al	38.284	0.247
Cu	108.596	1.243
Ni	146.456	1.61
Ag	72.55	0.997
acél	59.323	0.674
Al - 0.47% Mg	54.592	1.384
Al - 0.93% Mg	33.18	0.272
Al - 1.25% Mg	65.824	1.149
Al - 1.45% Mg	59.421	0.71
Al - 2.7% Mg	76.486	1.275
Al - 4.5% Mg	81.084	0.744
Al - 7.3% Mg	59.394	0.363

A továbbiakban az Al, Mg ötvözetek keménységének meghatározása volt a cél. Erre:

$$HV = HV_0 + Bc^m$$

ahol m kitevő modellfüggő. Ezen kívül még vizsgálnunk kellett a plasztikus instabilitást, melyhez alacsony sebességű benyomásnál az F-h görbe 'fogazottságát' kell figyelmesebben megvizsgálnunk.

A keménységet $\frac{F}{A}$ -ból származtatva az összes anyagra:

Anyag	HV[MPa]	$\Delta HV[MPa]$
Al	290.238	14.497
Cu	1568.648	18.718
Ni	3041.951	149.04
Ag	717.532	5.875
acél	1412.266	13.109
Al - 0.47% Mg	452.789	12.470
Al - 0.93% Mg	473.894	4.664
Al - 1.25% Mg	559.97	32.060
Al - 1.45% Mg	643.526	32.490
Al - 2.7% Mg	670.051	26.632
Al - 4.5% Mg	944.04	42.294
Al - 7.3% Mg	1266.943	14.024

Ebből az Al, Mg ötvözetekre $HV = HV_0 + Bc^m$ görbét illesztve:

Ahol az illesztési paraméterek értékei a következők:

$$HV_0 = (5967.56 \pm 1631.03) \ MPa$$
 $B = (295.00 \pm 22.76) \ MPa$ $m = 0.72 \pm 0.08$

Ezután a különböző sebességeknél való benyomást vizsgálva, kivonva a mért erőt az illesztettből a fogazottság a következőképpen alakult:

Jól látható, hogy ahogy vártuk, a fogazottság legnagyobb mértékben kis sebességeknél jelenik meg. Az illesztett görbék $(f(h) = A \cdot h^m)$ paraméterei a következők:

- 1 mN/s: $A = (29.52 \pm 0.13) \ mN/(\mu m)^m, \ m = 1.311 \pm 0.004$
- 2 mN/s: $A = (34.99 \pm 0.10) \ mN/(\mu m)^m, \ m = 1.362 \pm 0.003$
- 20 mN/s (1): $A = (31.64 \pm 0.21) \ mN/(\mu m)^m, \ m = 1.457 \pm 0.006$
- 20 mN/s (2): $A = (28.70 \pm 0.21) \ mN/(\mu m)^m, \ m = 1.489 \pm 0.007$