



Europäisches Patentamt

European Patent Office Office européen des brevets



(1) Publication number: 0 526 206 A1

(12)

## **EUROPEAN PATENT APPLICATION**

(21) Application number: 92306960.3

(61) Int. Cl.5: A01N 43/653, A01N 43/50

- (22) Date of filing: 30.07.92
- (3) Priority: 31.07.91 GB 9116557
- Date of publication of application : 03.02.93 Bulletin 93/05
- Designated Contracting States:
   AT BE CH DE DK ES FR GB GR IT LI LU NL PT
- (i) Applicant: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. Carel van Bylandtlaan 30 NL-2596 HR Den Haag (NL)
- (72) Inventor: Grayson, Basil Terence Highlands, Hackington Close Canterbury, Kent CT2 7BB (GB)

- (54) Fungicidal compositions.
- (57) A fungicidal composition which comprises a compound of general formula:

$$\begin{array}{c}
A \\
N \\
N
\end{array}$$

$$\begin{array}{c}
CH_2 \\
CH_2
\end{array}$$

$$\begin{array}{c}
CH_2 \\
T
\end{array}$$

$$\begin{array}{c}
T
\end{array}$$

$$\begin{array}{c}
T
\end{array}$$

or acid addition salts or metal complexes thereof, wherein  $\mathbb{R}^1$  and  $\mathbb{R}^2$  each independently represents a  $\mathbb{R}^1$  and  $\mathbb{R}^2$  each independently represents a halogen atom, a  $\mathbb{C}_{1-5}$  alklyl group or a phenty group;  $\mathbb{R}^1$  is  $\mathbb{R}^1$  in  $\mathbb{R}$ 

BEST AVAILABLE COPY

The invention relates to fungicidal compositions, to their use in combating undesired fungal organisms, and to their preparation

The invention concerns,in particular, novel fungicidal compositions which incorporate benzyl triazolyl cyclopentane compounds as disclosed in GB-A-2180236 and EP-A-267778.

It has now been discovered that the fungicidal activity of the aforementioned compounds is enhanced to a supristing and significant extent by the co-application to a plant to be treated, of an adjuvant selected from a particular class, namely aliphatic alcohol alkoxylates. Testing has revealed that, whilst adjuvants of various classes cause some enhancement of activity, the enhancement of activity caused by aliphatic alcohol alkoxylates as a class appear, surprisingly, to stand apart from other adjuvants, providing very high enhancement of activity, consistently over a wide range of adjuvant and active ingredient application rates, whilst being substantially non-phytotoxic. Moreover, they are very suitable for the development of practical formulations.

In accordance with a first aspect of the present invention, there is provided a fungicidal composition which comprises a compound of general formula:

15

20

30

35

$$R^{1}$$
 $CH_{2}$ 
 $CH_{2}$ 
 $CH_{2}$ 
 $CH_{3}$ 
 $CH_{2}$ 
 $CH_{3}$ 
 $CH_{3}$ 
 $CH_{3}$ 
 $CH_{3}$ 
 $CH_{4}$ 
 $CH_{5}$ 
 $CH$ 

or acid addition salts or metal complexes thereof, wherein R1 and R2 each independently represents a  $C_{1-9}$  alkyl group or a hydrogen atom; X represents a halogen atom, a  $C_{1-9}$  alkyl group or a phenyl group; n is 0, 1 or 2 and A represents a nitrogen atom or CH; and an alkoxylate of an aliphatic alcohol.

In accordance with a second aspect of the present invention, there is provided a method of combating a fungus at a locus, comprising treating the locus with a composition of the invention.

In the method according to the invention, the locus may be an agricultural or horticultural locus, for example, plants subject to fungal attack, seeds of such plants or the medium in which plants are growing or are to be grown. The method may comprise combating a fungus already present at a locus and/or prophylactic fungicidal treatment at a locus. Preferably, the method according to the invention involves the foliar treatment of plants with the composition. The composition may be used to control a large number of fungal diseases of plants. Reference is made to the list on pages 36 to 37 of EP 267778, which list in incorporated herein by reference. In perticular, the plants may suitably be cereals, especially wheat or barley plants, because of the high level of control achieved by the method of the invention against infestations of the fungi Erysiphe graminis (powdery midlew) and Lepiosphaeria nodorum (septoria).

Preferably, the method of the invention comprises treating the locus with an aqueous composition which comprises a compound of general formula I and an alkoxylate of an aliphatic alcohol.

A preferred alkoxylate of an aliphatic alcohol is based on alkoxy units having 2 carbon atoms, thus being an ethoxylate, or 2 and 3 carbon atoms, thus being a mixed ethoxylate/propoxylate. An ethoxylate is preferred. Such alcohol alkoxylates are available from various sources or may be prepared by alkoxylating a suitable aliphatic alcohol under known conditions.

In preferred aliphatic alcohol alkoxylates for use in the present invention, the alkoxylate chain may have at least 5 alkoxy moieties, suitably from 5 to 25 alkoxy moieties, preferably from 5 to 15, and most preferably from 5 to 9.

In preferred alcohol alkoxylates for use in the present invention, the alcohol moiety is derived from a C<sub>2-16</sub> aliphatic alcohol, preferably a C<sub>2-16</sub> aliphatic alcohol. As is well known, such alcohols are normally available in the form of mixtures. However, it may be stated that, in the context of the present invention, preferred

alcohols are primary or predominantly primary, straight chain or predominantly straight-chain, alcohols and with one hydroxy group or predominantly with one hydroxy group. They may be saturated or unsaturated but the highest activity has been shown by saturated alcohol alkoxylates, or alcohol alkoxylates in which saturated alcohol moleties predominate. The terms "predominate" and "predominantly" denote "more than 50% by weight" and, preferably, "at least 80% by weight".

Good results have been obtained using alcohol alkoxylates in which the alcohol is of vegetable or animal oil origin. Good results have also been obtained using alcohol alkoxylates in which the alcohol is of mineral oil

origin.

In the method of the invention, the presence of an alkoxylate of an aliphatic alcohol may substantially reduce the quantity of a compound of general formula I which needs to be applied to a locus to obtain a given level of activity. In practice, a compound of general formula I may suitably be applied to a locus in an amount in the range of from 20 to 600 g/ha, preferably 50 to 300 g/ha. The adjuvant may suitably be applied to a locus in an amount in the range of from 80 to 2000 g/ha, preferably 300 to 1500 g/ha.

Whilst a composition comprising an aliphatic alcohol alkoxylate and a compound of general formula I may have other fungicidal indications, it is likely to be of primary benefit for therapeutic foliar applications. Activity can be enhanced or broadened by oc-application of a further fungicidal compound, suitable examples being dithianon, othorothalonil and fenpropimorph. Preliminary tests have indicated that the enhancement effect which the alkoxylate adjuvant has on a compound of general formula I remains, when such a compound is also applied. Such a compound, when co-applied, may suitably be co-applied in an amount in the range of from 20 to 1200 g/ha, preferably 100 to 800 g/ha.

It may be desirable to co-apply further compound(s) to a sald locus, for example an insecticide, acaricide, herbicide or nematocide, or a fertilizer.

In accordance with a fur ther aspect of the present invention, there is provided an aqueous composition for use in the method of the invention, to be applied to a said locus. Such a composition may be prepared by mixing an alliphatic alcohol ethoxylate and a composition containing a compound of general formula I, taken from separate sources, in water in a tank; or, preferably, by adding, to water in a tank, a pre-mixed "one-pack" for mulation containing both an aliphatic alcohol alkoxylate and a compound of general formula I. Such a pre-mixed formulation may most conveniently be a liquid or a wettable powder, the manufacture of each of which is entirely standard.

An antifoaming agent may be employed, if desired, in accordance with standard practice. An antifoaming agent may be a constituent of a "one-pack" formulation. When the aqueous composition is to be prepared by mixing an aliphatic alcohol ethoxylate, and a composition containing a compound of general formulat in a tank, mixing an antifoaming agent is desired, the antifoaming agent may conveniently be formulated with the ethoxylate component.

Conventionally, antifoaming agents are selected on the basis of compatibility with the formulation to be prepared; thus, for example, solubility of the antifoamer in the formulation has to be checked. Selection on such a basis is entirely routine in formulation technology. It was expected that, if needed, for the compositions of the present invention, and especially for the "one-pack" formulations, compatible, conventional antifoaming agents, including silicone-based products, would be suitable. However, it has been found that conventional agents such as silicone-based products are in fact not suitable for use with the compositions of the present invention.

Surprisingly, it has now been found that certain paraffinic oils, which are not conventional antifoaming agents, are not only compatible with compositions of the present invention but also provide useful antifoaming apents, are not only composition of the present invention is used in conproperties, where needed, it is therefore preferred that the composition of the present invention is used in conjunction with a paraffinic oil as antifoaming agent, e.g. as an ingredient of the composition or by addition with the formulation ingredients when prepared in a tank mix with water.

. Usually, paraffinic oils are derived from petroleum sources and are composed of paraffinic and aromatic, usually naphthenic, hydrocarbons. Suitable paraffinic oils for use as antifoaming agent with a composition of the present invention, have a molecular weight in the range of from 140 to 180 and contain in the range of from 45 to 100%, preferably 50 to 100% paraffinic hydrocarbons.

The concentration of the components in the aqueous composition may be calculated from the amount of a compound of general formula I and of alkoxylate it is desired to supply, and the rate of application of the composition may be in the range position (that is, the volume applied). Typically the rate of application of the composition as to be 1000 l/ha, and that of from 100 to 1000 l/ha. Thus, when the rate of application of the composition is to be 1000 l/ha, and that of a compound of general formula I and of the alkoxylate, 100 g/ha and 400 g/ha, respectively, the aqueous composition will contain 0.1 glv of a compound of general formula I and 0.4 g/l of alkoxylate. Generally, the aqueous composition may contain from 0.02 to 6.0 g/l of a compound of general formula I and form 0.08 to 20 g/l alkox-

50

In accordance with a further aspect of the present invention, there is provided a concentrate formulation

containing an alkoxylate of an aliphatic alcohol and of a compound of general formula I, for dispersion or dissolution in water. Such a concentrate formulation may suitably contain from 5 to 200 g/kg, preferably 30 to 120 g/kg, of a compound of general formula I and from 100 to 1000 g/kg, preferably 400 to 700 g/kg, of adjuvant, the balance of the concentrate formulation being the usual types of further materials. Useful for mulations arise from a weight ratio of in the range of from 5:1 to 20:1, preferably 400 to 10:1, of alkoxylate adjuvant to compound of general formula I.

With reference to compounds of general formula I, it will be appreciated that these will have optical isomers; three optical centres can be present, or two when R¹ and R² are identical. The method of the invention may employ a compound of general formula I in the form of a single isomer, or in the form of a racemic mixture, or in the form of any other mixture of optical isomers.

For example, when R1 and R2 are identical, the following isomers may be present:

15

20

30

35

45

Forms Ia and Ib are hereinafter referred to as the "cis" isomers. Forms Ic and Id are hereinafter referred to as the "trans" isomers. In using the terms "cis" and "trans", reference is thus being made to the relative positions of the hydroxy and halobenzyl groups.

Most preferably, a compound of general formula I is in the form of the "cis" isomers or a mixture of "cis" and "trans" isomers, in which "cis" isomers predominate. For the preparation thereof, reference is made to EP-A-357404 and EP-A-267778, respectively.

Preferably, R1 in a compound of general formula I represents a hydrogen atom or a C<sub>1-4</sub> alkyl group, and R2 represents a hydrogen atom or a C<sub>1-4</sub> alkyl group. Most preferably, each of R1 and R2 represents a methyl group.

Preferably, A in a compound of general formula I represents a nitrogen atom. Preferably,  $X_n$  in a compound of general formula I represents a halogen atom at the 4-position of the beneficially.

zene ring.

Preferably, X in a compound of general formula I represents a fluorine, chlorine or bromine atom, most

preferably a chlorine atom. n preferably is 1.

The invention extends to a method for the preparation of a composition as described herein.

The invention will now be further described with reference to the accompanying Examples.

#### Example Set 1

15

20

25

30

#### a) Materials

55

The following emulsifiable concentrate (EC) and suspension concentrate (SC) formulations of a compound of general formula I were prepared, the EC by blending the components and the SC by blending and milling the components in a bead mill.

The active ingredient (a.i.) used for Trials 1-5, described hereafter, of Example Set 1, was an 80/20 mixture of the "cis" isomers and the "trans" isomers (i.e. thought to be a 40/40/10/10 mixture of form la, lb, lc and Id) of the compound 1-(4-chlorobenzyl)-3,3-dimethyl-2-hydroxy-2-(1,2.4-triazoi-1-yl)methylcyclopentane (i.e. compound of general formula I wherein R¹ = R² = CHs,  $X_n = 4$ -Cl, A = N).

The active ingredient (a.i.) used for Trials 6-7, described hereafter, of Example Set 1, was substantially the "cis" isomers, (thought to be a 50/50 mixture of forms la and lb) of the same compound.

| , | Emulsifiable con | centrate | Suspension concentrate |         |  |  |  |  |
|---|------------------|----------|------------------------|---------|--|--|--|--|
|   | a.i.             | 100 g    | a.i.                   | 188 g   |  |  |  |  |
|   | TENSIOFIX XN6    | 18 g     | VANISPERSE             | 25 g    |  |  |  |  |
| 5 | TENSIOFIX XN10   | · 42 g   | KELZAN                 | 2.5 g   |  |  |  |  |
|   | SURFADONE LP100  | 60 g     | BEVALOID 642           | 1.0 g   |  |  |  |  |
|   | N-butanol        | 40 g     | PROXEL GXL             | 1.5 g   |  |  |  |  |
|   | SHELLSOL A       | to 11    | propylene glycol       | 120 kg  |  |  |  |  |
| 0 |                  |          | water (tap)            | to 1 kg |  |  |  |  |

TENSIOFIX surfactants are emulsifiers, from Omnichem Belgium.

SURFADONE LP100 is an n-octyl pyrrolidone solvent, from GAF Ltd.

SHELLSOL A is a solvent, trimethyl benzene, from Shell VANISPERSE is a dispersant, a fractionated sodium salt of oxylignin, from Trafford Chemicals.

KELZAN is an industrial grade xanthan gum, from Merck & Co. or Kelco International.

BEVALOID 642 is an antifoaming agent, from Bevaloid Ltd.

PROXEL GXL is an aqueous dipropylene glycol solution of the preservative 1,2-benzisothiazolin-3-one, from ICI.

The following adjuvants were employed:

- GENAPOL C-050, C-080, C-100 and C-200 - alcohol ethoxylate adjuvants from Hoechst in which the alcohol molety is derived from coconut oil, and the ethoxylate molety has an average 5, 8, 10 or 20 ethylene
oxide units per molecule, respectively.

Alcohols derived from coconut oil typically comprise the following components (ref. E. W. Eckey "Vegetable Fat & Oils", published by Reinhold Publishing Corp. 1954, N.Y.)

caprylic (C<sub>8</sub>) - 9.0 %

5

10

15

20

25

45

55

capric (C<sub>10</sub>) - 6.8 %

lauric (C<sub>12</sub>) - 46.4 %

myristic (C<sub>14</sub>) - 18.0 %

palmitic (C<sub>16</sub>) - 9.0 %

- GENAPOL O series adjuvants, from Hoechst. Corresponding to GENAPOL C series but having oleyl/C<sub>16-18</sub> unsaturated alcohol moieties.

- ATLAS G-1281 a polyoxyethylene fatty glyceride, from ICI.
- ARKOPAL N-060, N-100 and N-230 C<sub>9</sub> alkyl phenol adjuvants from Hoechst, in which the ethoxylate molety has an average 6, 10 and 23 ethylene oxide units per molecule, respectively.
- motery has an average 6, 10 and 22 entries and 50 miles of the control of the con
- DOBANOL 91, 23, 25 and 45 ethoxylates have  $C_{b-11}$ ,  $C_{12-15}$ ,  $C_{12-15}$  and  $C_{14-15}$  primary alcohol moleties, whilst the number after the hyphen denotes the average number of ethoxy units per molecule.

#### b) Plants

10

30

35

Wheat plants (<u>Triticum aestivum</u> ov Hornet and ov Norman) were grown to the 2-3 leaf stage under normal glasshouse propagation conditions (top watering; temperature, 20-25°C; lighting, 16 h photoperiod of daylight supplemented by mercury vapour/sodium lamps).

The variety (cv Hornet) was inoculated with dry <u>Erysiphe graminis fsp tritici</u> (powdery mildew) from diseased plants 1 day before spraying and held under glasshouse conditions until sprayed. The variety (cv Norman) was inoculated with <u>Leptosphaeria nodorum</u> (septoria; glume blotch) using an aqueous suspension of spores washed from agar plates also 1 day before spraying. The inoculated plants were held at 21°C under high humidity conditions for 18 h. They were then brought to glasshouse conditions and allowed to dry before being sprayed.

#### c) Preparation and application of spray solutions

Two series of adjuvants were tested in two trials, each conducted in the same manner. Aliquots (1.25, 0.63, 0.32, 0.16, 0.08, 0.31) of the EC formulation and amounts (1.33, 0.66, 0.33, 0.16, 0.08, 0.9) of the SC formulation were each dispersed in tap water (250 ml). Amounts (2.5 g) of each adjuvant were also dispersed in tap water (250 ml). An aliquot (20 ml) of each formulation dispersion was mixed with an equal aliquot of adjuvant solution to give arrays of dispersions for each formulation type.

These dispersions were sprayed onto pairs of pots of each variety of wheat plants at a volume rate of 400 I/ha. At this rate and at the concentrations used, the applications were equivalent to 100, 50, 25, 12.5, 6.3 and 0 g/ha of a.i. for the EC formulation and 200, 100, 50, 25, 12.5 and 0 g/ha of a.i. for the SC formulation. The application rate of adjuvant was equivalent to 1 kg/ha.

#### d) Assessment

The sprayed plants were allowed to dry and returned to the glasshouse conditions given above, except that the watering was by automated sub-irrigation. Assessment of disease was by visual assay at 6-8 days (powdery mildew) or 8-10 days (septoria) after spraying. For septoria the extent of infection was assessed on a scale 0-9 (0 = no infection, 9 = sporulating lesions and necrotic tissue completely covering inoculated foliage). The assessment for powdery mildew was on a 0-9 scale, as for septoria, or was an estimate of the % area covered by sporulating lesions on the inoculated foliage.

The 0-9 scale is referred to in the Results as the "Infection Score".

#### e) Results

A series of seven trials were carried out as described above and Tables 1 to 17 contain the mean results of the two independent assessments of the leaves inoculated and sprayed for each treatment.

It will be observed that, whilst all adjuvants tested gave some enhancement of activity of at least one combination of adjuvant application rate and active ingredient application rate, that the only adjuvants which gave good enhancement at all combinations tested were the GENAPOL and DOBANOL alcohol ethoxylates.

55

50

# <u>Trial 1</u> - Effect of adjuvants on the therapeutic control of 1 day old infections of powdery mildew on wheat

## a) EC formulation. Table 1

| ADJUVANT               |    | % LEAF AREA SPORULATING LESIONS |      |    |    |     |  |  |  |
|------------------------|----|---------------------------------|------|----|----|-----|--|--|--|
| appln. rate<br>1 Kg/ha |    | a.i. application rate, g/ha     |      |    |    |     |  |  |  |
|                        | 0  | 6.3                             | 12.5 | 25 | 50 | 100 |  |  |  |
| none                   | 73 | 58                              | 40   | 28 | 13 | 7   |  |  |  |
| GENAPOL C-050          | 70 | 38                              | 25   | 5  | 5  | 5   |  |  |  |
| GENAPOL C-080          | 65 | 40                              | 10   | 9  | 6  | 10  |  |  |  |
| GENAPOL C-100          | 68 | 20                              | 20   | 6  | 5  | 5   |  |  |  |
| GENAPOL C-200          | 55 | 30                              | 23   | 9  | 6  | 5   |  |  |  |

## b) SC formulation. Table 2

| ADJUVANT               | % LEAF AREA SPORULATING LESIONS |                             |    |    |    |    |  |  |  |
|------------------------|---------------------------------|-----------------------------|----|----|----|----|--|--|--|
| appln. rate<br>l Kg/ha |                                 | a.i. application rate, g/ha |    |    |    |    |  |  |  |
|                        | 0                               | 0 12.5 25 50 100 200        |    |    |    |    |  |  |  |
| none                   | 65                              | 53                          | 53 | 40 | 35 | 25 |  |  |  |
| GENAPOL C-050          | 75                              | 20                          | 13 | 10 | 7  | 10 |  |  |  |
| GENAPOL C-080          | 48                              | 10                          | 6  | 7  | 5  | 5  |  |  |  |
| GENAPOL C-100          | 68                              | 20                          | 15 | 9  | 9  | 6  |  |  |  |
| GENAPOL C-200          | 63                              | 28                          | 23 | 10 | 6  | 6  |  |  |  |

# <u>Trial 1</u> - Effect of adjuvants on the therapeutic control of 1 day old infections of septoria on wheat

# a) EC formulation. Table 3

| ADJUVANT               | INFECTION SCORE |                             |      |     |     |     |  |  |  |
|------------------------|-----------------|-----------------------------|------|-----|-----|-----|--|--|--|
| appln. rate<br>1 Kg/ha |                 | a.i. application rate, g/ha |      |     |     |     |  |  |  |
|                        | 0               | 6.3                         | 12.5 | 25  | 50  | 100 |  |  |  |
| none                   | 3.5             | 5                           | 3.5  | 1.5 | 1   | ū   |  |  |  |
| GENAPOL C-050          | 5.5             | 2                           | 1    | 6   | h h | 0   |  |  |  |
| GENAPOL C-080          | 6               | 1.5                         | 0.5  | 1   | 0.5 | 1   |  |  |  |
| GENAPOL C-100          | 6               | 2                           | 0.5  | 1   | 0.5 | 1.5 |  |  |  |
| GENAPOL C-200          | 6.5             | 3                           | 2.5  | 1.5 | 1   | 1   |  |  |  |

## b) SC formulation. Table 4

|   | ADJUVANT  appln. rate 1 Kg/ha |                    | INFECTION SCORE  a.i. application rate, g/ha |     |     |     |     |  |  |  |
|---|-------------------------------|--------------------|----------------------------------------------|-----|-----|-----|-----|--|--|--|
|   | 1 kg/ma                       | 0 12.5 25 50 100 2 |                                              |     |     |     |     |  |  |  |
|   | none                          | 4.5                | 3                                            | 2.5 | 2   | 2.5 | 1   |  |  |  |
| 1 | GENAPOL C-050                 | 4                  | 1.5                                          | 0.5 | 0   | 0   | 0   |  |  |  |
| 1 | GENAPOL C-080                 | 3.5                | 0.5                                          | 1   | 0   | 0   | 0.5 |  |  |  |
|   | GENAPOL C-100                 | 5                  | 1                                            | 1   | 0.5 | 0   | 1   |  |  |  |
|   | GENAPOL C-200                 | 6                  | 2                                            | 0.5 | 0   | 0.5 | 0.5 |  |  |  |

55

10

15

20

30

# Trial 2 - Effect of adjuvants on the therapeutic control of 1 day old infections of powdery mildew on wheat

## a) EC formulation. Table 5

| ADJUVANT appln. rate 1 Kg/ha | 1    | % LEAF AREA SPORULATING LESIONS  a.i. application rate, g/ha |      |    |    |     |  |  |  |
|------------------------------|------|--------------------------------------------------------------|------|----|----|-----|--|--|--|
|                              | 0    | 6.3                                                          | 12.5 | 25 | 50 | 100 |  |  |  |
| none                         | 97.5 | 75                                                           | 65   | 48 | λ  | 2   |  |  |  |
| ARKOPAL N-060                | 78   | 50                                                           | 23   | 8  | 5  | 0   |  |  |  |
| ARKOPAL N-100                | 88   | 28                                                           | 13   | 3  | 1  | 2   |  |  |  |
| ARKOPAL N-230                | 90   | 33                                                           | 20   | 10 | 4  | 1_  |  |  |  |
| emulsified<br>paraffin oil   | 90   | 38                                                           | 11   | 2  | 2  | 0   |  |  |  |

b) SC formulation. Table 6

| THAVULDA                   |    | % LEAF A | AREA SI | PORULAT | ING LESI | ONS |
|----------------------------|----|----------|---------|---------|----------|-----|
| appln. rate<br>1 Kg/ha     |    | a.i. a   | applica | tion ra | ate, g/h | ıa  |
|                            | 0  | 12.5     | 25      | 50      | 100      | 200 |
| поле                       | 88 | 20       | 68      | 65      | 45       | 55  |
| ARKOPAL N-060              | 75 | 28       | 5       | 0       | 1        | 0   |
| ARKOPAL N-100              | 83 | 2.0      | 4       | •       | 1        | 2   |
| ARKOPAL N-230              | 93 | 28       | 10      | 1       | 1        | 1   |
| emulsified<br>paraffin oil | 93 | 9        | 3       | 1       | 0        | 0   |

# Trial 2 - Effect of adjuvants on the therapeutic control of 1 day old infections of septoria on wheat

# a) SC formulation. Table 7

| ADJUVANT                | INFECTION SCORE             |     |      |     |     |     |  |  |  |
|-------------------------|-----------------------------|-----|------|-----|-----|-----|--|--|--|
| appln. rate<br>1 Kg/ha  | a.i. application rate, g/ha |     |      |     |     |     |  |  |  |
| 1 kg/na                 | 0                           | 6.3 | 12.5 | 25  | 50  | 100 |  |  |  |
| none                    | 8                           | 7 . | 6.5  | 5   | 1.5 | 0.5 |  |  |  |
| ARKOPAL N-060           | 8.3                         | 6   | 4 .  | 4.5 | 1.3 | 3   |  |  |  |
| ARKOPAL N-100           | 8.5                         | 5   | 2.8  | 3   | 2   | 3   |  |  |  |
| ARKOPAL N-230           | 8                           | 4.3 | 3.5  | 2.8 | 2.5 | 3.3 |  |  |  |
| emulsified paraffin oil | 8                           | 3.3 | 1.5  | 1.3 | 1   | 1   |  |  |  |

b) SC formulation. Table 8

| ADJUVANT                   |     | INFECTION SCORE             |     |     |     |     |  |  |  |
|----------------------------|-----|-----------------------------|-----|-----|-----|-----|--|--|--|
| appln. rate<br>1 Kg/ha     |     | a.i. application rate, g/ha |     |     |     |     |  |  |  |
| I kg/lla                   | 0   | 12.5                        | 25  | 50  | 100 | 200 |  |  |  |
| none                       | 7.8 | 6.3                         | 3.5 | 3.5 | 3.3 | 3.3 |  |  |  |
| ARKOPAL N-060              | 7.8 | 2.5                         | 1.3 | 1   | 0.5 | 0.3 |  |  |  |
| ARKOPAL N-100              | 8.8 | 2.3                         | 1.3 | 1   | 0.8 | 0.8 |  |  |  |
| ARKOPAL N-230              | 8.5 | 3.8                         | 2.3 | 2   | 1   | 1.3 |  |  |  |
| emulsified<br>paraffin oil | 6.5 | 3                           | 0.8 | 1.5 | 0.5 | 0.8 |  |  |  |

# Trial 3 - Effect of adjuvants on the therapeutic control of 1 day old infections of powdery mildew on wheat

#### a) EC formulation. Table 9

10

15

20

55

| GENAPOL C-080       |    | % LEAF AREA SPORULATING LESIONS a.i. application rate, g/ha |      |    |    |     |  |  |  |
|---------------------|----|-------------------------------------------------------------|------|----|----|-----|--|--|--|
| appln. rate<br>g/ha |    |                                                             |      |    |    |     |  |  |  |
| 37                  | 0  | 6.3                                                         | 12.5 | 25 | 50 | 100 |  |  |  |
| 0                   | 80 | 43                                                          | 33   | 15 | 4  | 2   |  |  |  |
| 187                 | 70 | 23                                                          | 10   | 1  | 0  | 0   |  |  |  |
| 375                 | 65 | 15                                                          | 7    | 2  | 0  | 0   |  |  |  |
| 750                 | 58 | 11                                                          | 7    | 1  | 0  | 0   |  |  |  |
| 1500                | 55 | 11                                                          | 6    | 0  | 0  | 0   |  |  |  |

#### b) SC formulation. Table 10

| GENAPOL C-080       |      | % LEAF                      | AREA SP | ORULAT | ED LESI | ONS |  |  |
|---------------------|------|-----------------------------|---------|--------|---------|-----|--|--|
| appln. rate<br>g/ha |      | a.i. application rate, g/ha |         |        |         |     |  |  |
|                     | 0    | 6.3                         | 12.5    | 25     | .50     | 100 |  |  |
| 0                   | 83   | 68                          | 40      | 35     | 25      | 38  |  |  |
| 187                 | 73 - | 15                          | 5       | 3      | 1       | 0   |  |  |
| 375                 | 55   | 12                          | 5       | 2      | 0       | 0   |  |  |
| 750                 | 55   | 14                          | 2       | 1      | 0       | 0   |  |  |
| 1500                | 60   | 15                          | 4       | 1      | 0       | 0   |  |  |

# Trial 3 - Effect of adjuvants on the therapeutic control of 1 day old infections of septoria on wheat

# a) EC formulation. Table 11

5

10

15

20

45

50

| GENAPOL C-080 |     | INFECTION SCORE  a.i. application rate, g/ha |      |     |     |     |  |  |  |
|---------------|-----|----------------------------------------------|------|-----|-----|-----|--|--|--|
| appln. rate   |     |                                              |      |     |     |     |  |  |  |
| g/ha          | 0   | 6.3                                          | 12.5 | 25  | 50  | 100 |  |  |  |
| 0             | 7.5 | 8                                            | 5    | 3   | 2   | 2   |  |  |  |
| 187           | 7   | 3.3                                          | 3    | 2   | 0.8 | 1.3 |  |  |  |
| 375           | 1.5 | 3                                            | 2.5  | 1.3 | 1.5 | 0.8 |  |  |  |
| 750           | 6.3 | 3.3                                          | 2.5  | 1.8 | 0.8 | 1.0 |  |  |  |
| 1500          | 6.3 | 2.5                                          | 2.3  | 2   | 1   | 1.5 |  |  |  |

# b) SC formulation. Table 12

|   | GENAPOL C-080       |                             |     | INFECT | ON SCO | RE  |      |  |  |
|---|---------------------|-----------------------------|-----|--------|--------|-----|------|--|--|
|   | appln. rate<br>g/ha | a.i. application rate, g/ha |     |        |        |     |      |  |  |
|   | g/na                | 0                           | 6.3 | 12.5   | 25     | 50  | 1.00 |  |  |
|   | 0                   | 7                           | 6.5 | 6.3    | 6.3    | 6.5 | 5.8  |  |  |
|   | 187                 | 7                           | 3.3 | 3      | 1.5    | 1   | 1.8  |  |  |
| 7 | 375                 | 6.8                         | 3.8 | 3      | 2      | ●.8 | 1.3  |  |  |
|   | 750                 | 7.5                         | 4.5 | 1.8    | 1.5    | 0.5 | 1    |  |  |
|   | 1500                | 4.8                         | 1.5 | 1.3    | 1      | 0.5 | 0.5  |  |  |

# Trial 4 - Effect of adjuvants on the therapeutic control of 1 day old infections of powdery mildew on wheat

## EC formulation. Table 13

| ADJUVANT        | ADJUVANT    | % LE | AF AREA | SPORUL  | ATING L | ESIONS |
|-----------------|-------------|------|---------|---------|---------|--------|
|                 | appln. rate | а.   | i. appl | ication | rate,   | g/ha   |
|                 | g/ha        | 0    | 6.3     | 12.5    | 25      | 50     |
| none            | -           | 80   | 38      | 16      | 6       | 3      |
| GENAPOL         | 250         | -    | 13      | 6       | 2       | 0      |
| C-080           | 500         |      | 7       | 4       | 0       | 0      |
|                 | 1000        | -    | 13      | 4       | 3       | 0      |
|                 | 1500        | 50   | 19      | 8       | 1       | 0      |
| ARKOPAL         | 250         | -    | 15      | 6       | 4       | 2      |
| N-100           | 500         | Ī-   | 15      | 5       | 4       | 1      |
|                 | 1000        | -    | 15      | 5       | 3       | 2      |
|                 | 1500        | 50   | 13      | 8       | 3       | 0      |
| emulsified      | 250         | -    | 38      | 5       | 1       | 0      |
| paraffin<br>oil | 500         | -    | 20      | 6       | 1       | 0      |
|                 | 1000        | -    | 23      | 6       | 2       | 0      |
|                 | 1500        | 53   | 15      | 1       | 1       | 0      |

# <u>rrial 4</u> - Effect of adjuvants on the therapeutic control of 1 day old infections of septoria on wheat

# EC formulation. Table 14

10

| ADJUVANT         | ADJUVANT    | INFECTION SCORE             |     |      |     |     |  |  |
|------------------|-------------|-----------------------------|-----|------|-----|-----|--|--|
|                  | appln. rate | a.i. application rate, g/ha |     |      |     |     |  |  |
|                  | g/ha        | 0                           | 6.3 | 12.5 | 25  | 50  |  |  |
| none             | -           | 7.3                         | 6   | 3.3  | 1.5 | 0.5 |  |  |
| GENAPOL          | 250         | -                           | 1.8 | 1    | 0.5 | 0   |  |  |
| C-080            | 500         | -                           | 1.3 | 0.8  | 0.8 | 0   |  |  |
|                  | 1000        | -                           | 1.3 | •    | 0   | 0.3 |  |  |
|                  | 1500        | -                           | 1.3 | 0.5  | 0.8 | 0.5 |  |  |
| ARKOPAL<br>N-100 | 250         | -                           | 6.3 | 2    | 1.3 | 0.5 |  |  |
|                  | 500         | -                           | 3.5 | 1.3  | 0.5 | 0.3 |  |  |
|                  | 1000        | 1-                          | 3   | 1.5  | 0.8 | 0.5 |  |  |
|                  | 1500        | 9                           | 3.5 | 1.5  | 1   | 0.5 |  |  |
| emulsified       | 250         | 1-                          | 3.5 | 1    | 0.8 | 0.5 |  |  |
| paraffin<br>oil  | 500         | -                           | 5   | 1    | 0.8 | 0.5 |  |  |
|                  | 1000        | -                           | 3.5 | 1.3  | 0.5 | 0.3 |  |  |
|                  | 1500        | е                           | 4.5 | 0.8  | 0.8 | 0.5 |  |  |

# <u>Trial 5</u> - Effect of adjuvants on the therapeutic control of 1 day old infections of powdery mildew on wheat

EC Formulation. Table 15

10

30

35

| ADJUVANT appln. rate 500g/ha |          |      |      |        |       |      |       |
|------------------------------|----------|------|------|--------|-------|------|-------|
|                              |          | a.i. | appl | cation | rate, | g/ha |       |
|                              |          | 0    | 6.3  | 12.5   | 25    | 50   | MEAN* |
|                              |          | 8.2  | 7    | 5.5    | 3.5   | 2.5  | 4.6   |
| DOBANOL                      | 91-5     | 7    | 2    | 2      | 1.7   | 0.7  | 4.6   |
| DOBANOL                      | 91-8     | 7    | 4.2  | 1.7    | 0.6   | 0.1  | 1.4   |
| DOBANOL                      | 23-6.3   | 6.5  | 2.2  | 2.2    | 1.7   | 0.2  | 1.6   |
| DOBANOL                      | 25-7     | 7.5  | 3    | 1.7    | 0.5   | 0.5  | 1.4   |
| DOBANOL                      | 25-9     | 7    | 5    | 1.7    | 0.2   | 0.1  | 1.8   |
| DOBANOL.                     | 45-7     | 6.5  | 1.7  | 2.2    | 1     | 0.4  | 1.3   |
| GENAPOL                      | C-050    | 7    | 2.5  | 1.7    | 0.6   | 0.4  | 1.3   |
| GENAPOL                      | C-080    | 7.5  | 3    | 2.5    | 0.6   | 0.5  | 1.7   |
| emulsified                   | paraffin | 8    | 4.2  | 2.5    | 1.4   | 0.5  | 2.2   |
| ATLAS G128                   | 1        | 7.5  | 4.2  | 3.5    | 3.7   | 1    | 3.1   |

\* Mean value of all doses

. .

Trial 6 - Effect of different DOBANOL adjuvants on the therapeutic control of 1 day old infections of powdery mildew on wheat

SC formulation. Table 16

10

15

20

25

35

45

| ADJU            | TNAV         |      | INFECTION SCORE |        |       |      |       |
|-----------------|--------------|------|-----------------|--------|-------|------|-------|
| NAME            | appln.       | a.i. | appli           | cation | rate, | g/ha |       |
|                 | rate<br>g/ha | ,0   | 6.3             | 12.5   | 25    | 50   | MEAN* |
| none            | -            | 8.8  | 8.5             | 8.5    | 9     | 9    |       |
| DOBANOL<br>91-8 | 250          | -    | 6.5             | 4.5    | 1.5   | 1    | 2.6   |
|                 | 500          | -    | 5.5             | 2      | 1.3   | 0    |       |
|                 | 1000         | -    | 5               | 2      | 1.3   | 0    |       |
|                 | 1500         | 8    | 5.5             | 2      | 2     | 0    |       |
| DOBANOL         | 250          | -    | 7               | 4.3    | 1.1   | 1.2  | 2.7   |
| 25-7            | 500          | -    | 7               | 4      | 0.1   | 0    | ]     |
|                 | 1000         | -    | 5.5             | 4.5    | 0.7   | 0    |       |
|                 | 1500         | 8    | 3.5             | 2.5    | 0.1   | 0    |       |
| DOBANOL         | 250          | -    | 6               | 4      | 0.8   | 0.3  | 1.9   |
| 45-7            | 500          | T-   | 6               | 1.5    | 0.1   | 0    | 1     |
|                 | 1000         | -    | 4               | 0.8    | 0.1   | 0    | _     |
|                 | 1500         | 7.5  | 5.5             | 1.5    | 0.3   | 0.1  |       |

Over all a.i. concentrations and adjuvant application rates

Trial 7 - Effect of different adjuvants on the therapeutic control of 1 day old infections of powdery mildew on what

sc formulation. Table 17

| ADJUVANI      | ADJUVANT |              |              | INFECTION SCORE |              |              |  |  |  |
|---------------|----------|--------------|--------------|-----------------|--------------|--------------|--|--|--|
| NAME          | appln.   | а.           | i. appli     | cation :        | rate, g/     | ha           |  |  |  |
|               | g/ha     |              | 6.3          | 12.5            | 25           | 50           |  |  |  |
| none          |          | 9<br>(0)     | 9 -<br>(0)   | 8.6<br>(0.5)    | 8.6<br>(0.5) | 8.8<br>(0.3) |  |  |  |
| DOBANOL 91-6  | 250      | -            | 7.8<br>(0.5) | 7.3<br>(0.9)    | 5.9<br>(0.9) | 3<br>(0)     |  |  |  |
| DOBANOL 91-6  | 500      | -            | 5.9<br>(0.6) | 4<br>(2.4)      | 1<br>(0.3)   | 0.3          |  |  |  |
| DOBANOL 91.6  | 750      | 8.8<br>(0.3) | 6<br>(1.2)   | 2.9<br>(2)      | 0.4 (0.2)    | 0.1          |  |  |  |
| DOBANOL 91-8  | 250      | -            | 7.4<br>(0.5) | 5.5<br>(1)      | 2.6 (1.1)    | 1.1 (1.8)    |  |  |  |
| DOBANOL 91-8  | 500      | -            | 7.4<br>(0.9) | 3.8<br>(1.5)    | 1.8          | (0)          |  |  |  |
| DOBANOL 91-8  | 750      | 9 (0)        | 7.5<br>(0.6) | 3.5<br>(0.6)    | 1.1          | 0.1          |  |  |  |
| DOBANOL 23-63 | 250      | -            | 6.5<br>(0.6) | 4.5<br>(0.6)    | 5.3<br>(1)   | 2.6          |  |  |  |
| DOBANOL 23-63 | 500      | -            | 6.8          | 3.6<br>(1.5)    | 0.6          | 0.5          |  |  |  |
| DOBANOL 23-63 | 750      | 8.9<br>(0.3) | 6.9<br>(1.0) | 3.8<br>(1.5)    | 0.9          | 0.1          |  |  |  |
| DOBANOL 45-7  | 250      | -            | 7.5<br>(0.4) | 4.8<br>(0.5)    | 1.8          | 0.3          |  |  |  |
| DOBANOL 45-7  | 500      | -            | 5.9<br>(1.3) | 3.8 (1.3)       | 0.6 (0.3)    | 0.1 (0.1)    |  |  |  |
| DOBANOL 45-7  | 750      | 8.9<br>(0.3) | 7.3<br>(0.3) | 5.5<br>(1.7)    | 1.1          | 0.1          |  |  |  |
| GENAPOL 0-050 | 250      | - /          | 8.6<br>(0.5) | 8.4<br>(0.6)    | 7.5<br>(0.6) | 7<br>(0)     |  |  |  |
| GENAPOL 0-050 | 500      | -            | 8.B<br>(0.3) | 8<br>(0)        | 7 (0.8)      | 5<br>(0.2)   |  |  |  |
| GENAPOL 0-050 | 750      | 9 (0)        | 8.8 (0.3)    | 7.8<br>(0.3)    | 6.8          | 3 (0.8)      |  |  |  |

<sup>() -</sup> standard deviations

N.B. In this trial results are the means of four replicate pots of plants.

#### Example Set 2

#### a) Materials

10

15

20

3/1

35

40

A suspension concentrate (SC) was prepared, corresponding to that described above in Example Set 1. An emulsifiable concentrate (EC) similar to that described above in Example Set 1, was prepared, having the following composition.

#### Emulsifiable Concentrate

| a.i.            | 100  | g |
|-----------------|------|---|
| TENSIOFIX NS    | 64   | 9 |
| TENSIOFIX GS    | 16   | g |
| SURFADONE LP100 | 70   | g |
| N-butanol       | 40   | g |
| SHELLSOL A      | to 1 | 1 |

In each case the active ingredient consisted essentially of the "cis" isomers, as used for Trials 6 to 7 of Example Set 1.

The SC and EC formulations used in Example Set 2 were used as such, for comparison purposes, and emixed with adjuvants including alcohol ethoxylates. In some cases, the SC or EC formulation, and the adjuvant(s), were separately added to water in a spray tank to form "tank-mix" formulations. In other cases the SC or EC formulation and the adjuvant(s) were mixed together to form pre-mixed "one-pack" formulations, to be added to water in a spray tank.

"One pack" soluble liquid (SL) compositions were prepared, having the following compositions:

| Ingredient     | SL (1) | SL (2) | SL (3) | SL (4) |
|----------------|--------|--------|--------|--------|
| a.i.           | 100    | 80     | 60     | 40     |
| DOBANOL 91-6   | -      | 600    | 600    | 600    |
| DOBANOL 23-6.5 | 500    | -      | -      | ÷-     |
| NMP *          | . 300  | -      | -      | -      |
| amyl alcohol   | to 11. | to 11. | to 11. | to 11. |

#### \* NMP: N-methyl pyrrolidone

In other, comparative SL compositions, the DOBANOL adjuvants were replaced with other adjuvants. Most of the adjuvants used have already been described in Example Set 1. Other adjuvants described in

- this Example Set 2 are:
   corn oil emulsifiable concentrate
  - ARMOBLEN 557, an alkylamine ethoxylate/propoxylate, from Akzo.

Further "tank-mix" formulations were prepared by adding a second active ingredient to "tank-mix" formulations containing the SC composition described above and an alcohol ethoxylate adjuvant. The second active ingredients were dithianon (available from Shell under the Trade Mark DELAN), fenpropimorph (available from B.A.S.F. under the Trade Mark CORBEL) and chlorothalonil (available from B.A.S.F. under the Trade Mark BRAVO).

#### b) Plants

Winter wheat seeds, cv Hornet, were sown in 7 cm square pots. This resulted in establishment of 20 to 25 plants per pot. After 12 days, under normal glasshouse conditions as described above, by which time the seedings were at the 1-2 leaf stage, the plants were incoulated with <u>Erysphe grammins fsp tritici</u> from a stock infection. Treatments were applied on day 13, usually about 28 hours after incoulation. Plants were then laid out in a controlled environment compartment of a greenhouse using a randomised double-block design to reduce variation due to placement. Watering was carried out by means of an automated sub-irrigation matting system.

## c) Preparation and application of spray solutions

All test solutions were sprayed at four doses, the difference between doses being a factor of x2, usually 12.5, 25, 50 and 100 g/ha of ai. A single quantity of each product was weighed out for all of the doses of that product. When adjuvant was added as a single ai.: adjuvant ratio, the whole batch was prepared for the highest dose, then appropriate aliquots diluted with tap water to the correct concentrations for the lower doses. When adjuvant was added at a single dose per hectare for all treatments, the base formulation was made up at double the required concentration and then each dose diluted to the correct concentration using a stock solution of the adjuvant. All applications were made using a moving track sprayer fitted with a single flat-fan nozzle calibrated to give 400 l/ha of spray. Four pots (replicates) were sprayed with each treatment.

#### d) Assessment

20

30

Estimates of infection were made, in some cases after about one week, then after about two weeks if the results were of further interest. Usually the initial assessment was a score on a 0 to 9 scale, where 0 = no infection and 9 = very high infection of inoculated leaves. Later assessments were usually of percentage of leaf area infected by the mildew.

#### e) Results

The results are presented in graphical form in the following pages and information particular to the particular test is presented above the appropriate graph.

#### (i) Example Set 2, Results 1

Graph 1 below presents the mean results of three series of tests intended to test the comparative efficacies of the adjuvants GENAPOL 0-050, GENAPOL 0-080, ATLAS G1281, and HVI 60 paraffinic oil containing 100 g/I EMULSOGEN M. The SC and EC lines relate to the efficacy of spray compositions derived from the SC and EC formulations described above, without adjuvants.

The first series of tests employed a "tank-mix" with the SC. The second series of tests employed a "tank-mix" with the EC. The third series of tests employed "one-pack" formulations. In each case the adjuvant: active inpredient ratio was 10:1 (w:w).

Assessment was made 7 days after treatment.



#### (ii) Example Set 2, Results 2

5

10

30

35

55

Graph 2 below presents the mean results of a series of tests showing the comparative efficacies of various adjuvants. The spray compositions were derived from "one-pack" formulations, coded as follows:

- a EC described above
- b EC containing corn oil adjuvant
- c EC containing HVI 60
- d EC containing ARMOBLEN 557
- e SL containing DOBANOL 91-6
- f SL containing GENAPOL C-080.
- In each case the adjuvant: active ingredient ratio was 10:1 (w:w) Assessement was made 7 days after treatment.





## (iii) Example Set 2, Results 3

Graphs 3(a) and 3(b) below present the mean results of a series of tests intended to test the efficacy of HVI-60 paraffinic oil adjuvant and DOBANOL 91-6 alcohol ethoxylate adjuvant over a range of active ingredient and adjuvant application rates. The formulations to be diluted for spraying were prepared as "one-pack" formulations, the HVI-60 with the EC formulation, and the DOBANOL 91-6 with the SL formulation. Assessment was made 7 days after treatment.

## Graph 3(a)

5

10

15

25

35



a = EC, b = 5:1, c = 10:1, d = 20:1 EC compositions (HVI : a.i. - w : w)



a = EC, e = 5:1, f = 10:1, g = 20:1 SL compositions (DOBANOL: a.i. (w: w)

## 55 (iv) Example Set 2, Results 4

Graphs 4(a) and 4(b) below present the mean results, 7 days after treatment and 14 days after treatment, respectively, following testing of various "tank-mix" compositions, employing the SL formulations with an ad-

juvant : a.i. ratio of 10 : 1 (w : w).

15

20

25

35

55



S = SL, d = DELAN, b = BRAVO, c = CORBEL. S + c is near 0 throughout.



S = SL, C = CORBEL, b = BRAVO, d = DELAN

#### (v) Example Set 2, Results 5

Graph 5 below presents the mean results, 7 days after treatment, of testing various spray compositions, with different a.i. and adjuvant application rates, derived from "one-pack" SL formulations of DOBANOL 91-6. Assessment was made 7 days after treatment.

#### Graph 5

10

15

20

25

30

35

45

50

55



It should be noted that the use of capital letters in this specification to denote terms for materials indicates that those terms are, or are thought to be, trade marks.

It should be noted that the information which has been provided about the chemical constitution of the various materials designated by trade marks has been provided on the basis of common knowledge, and, where available, manufacturers' or distributors' information.

#### Claims

A fungicidal composition which comprises a compound of general formula:

$$R^{1}$$
 $CH_{2}$ 
 $CH_{2}$ 
 $CH_{3}$ 
 $CH_{3}$ 
 $CH_{3}$ 
 $CH_{4}$ 
 $CH_{5}$ 
 $CH_{5}$ 
 $CH_{7}$ 
 $CH_{1}$ 
 $CH_{2}$ 
 $CH_{3}$ 
 $CH_{4}$ 
 $CH_{5}$ 
 $CH_{5}$ 
 $CH_{5}$ 
 $CH_{5}$ 
 $CH_{5}$ 
 $CH_{7}$ 
 $CH$ 

or acid addition salts or metal complexes thereof, wherein R1 and R2 each independently represents a  $C_{1.5}$  alkyl group or a hydrogen atom; X represents a halogen atom, a  $C_{1.5}$  alkyl group or a phenyl group; n is 0.1 or 2 and A represents a nitrogen atom or CH; and an alkoxylate of an aliphatic alcohol.

2. A composition as claimed in claim 1, wherein the alkoxylate comprises 5 to 25 alkoxy moleties.

15

- 3. A composition as claimed in claim 2, wherein the alkoxylate comprises 5 to 9 alkoxy moleties.
- A composition as claimed in any preceding claim, wherein the alkoxylate is an ethoxylate or a mixed ethoxylate/propoxylate.
  - 5. A composition as claimed in any preceding claim, wherein the aliphatic alcohol is a C<sub>9-18</sub> aliphatic alcohol.
  - 6. A composition as daimed in any preceding claim, wherein a) the alcohol moiety is a primary alcohol moiety or, when there is a mixture of alcohol moieties, they are predominantly primary; b) the alcohol moiety is straight-chain or, when there is a mixture of alcohol moieties, they are predominantly straight-chain; c) the alcohol moiety has only one hydroxy group or, when there is a mixture of alcohol moieties, alcohol moieties with only one hydroxy group predominate, or d) the alcohol moiety is saturated or, when there is a mixture of alcohol moieties, saturated alcohol moieties predominate.
    - A composition as claimed in any one of the preceding claims, further comprising a compound selected from dithianon, chlorothalonil and fenpropimorph.
  - A composition as claimed in any one of the preceding claims, wherein R¹ and R² both represent a methyl
    group, A represents a nitrogen atom and Xn represents a 4-chloro atom.
    - A composition as claimed in claim 8, wherein the active ingredient consists of or predominantly comprises isomers in which the hydroxy and the halobenzyl moieties are arranged "cis" to each other.
- 10. A fungicidal composition as claimed in any one of the preceding claims, being a concentrate formulation for addition to water, and containing in the range of from 5 to 200 gkg of a compound of general formula I, and in the range of from 100 to 500 gkg of an alkoxylate of an aliphatic alcohol.
- A method of combating a fungus at a locus, which method comprises treating the locus with a composition
  which contains a compound of general formula i, as defined in claim 1, and an alkoxylate of an allphatic
  alcohol.
  - 12. A method as claimed in claim 15, wherein a compound of general formula I is applied to the locus in an amount in the range of from 50 to 300 g/ha, and the alkoxylate, in an amount in the range of from 300 to 1500 g/ha.
  - 13. Use as a fungicide of a composition as claimed in any of claims 1 to 10.



## EUROPEAN SEARCH REPORT

Application Number

EP 92 30 6960

|                                             | DOCUMENTS CONS                                                                                                                                          | IDERED TO BE RELEVAN                                                                                | T                                                                  |                                                  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|--|--|
| Category                                    | Citation of document with<br>of relevant p                                                                                                              | indication, where appropriate,                                                                      | Relevant<br>to claim                                               | CLASSIFICATION OF THE<br>APPLICATION (Int. Cl.5) |  |  |
| Y                                           | EP-A-0 158 374 (JA<br>* page 5, line 18<br>* page 7, line 30                                                                                            |                                                                                                     | 1-13                                                               | A01N43/653<br>A01N43/50                          |  |  |
| D,Y                                         | GB-A-2 180 236 (KUI<br>* page 15, line 14                                                                                                               | REGA KAGAKU KOGYO)<br>- line 21 *                                                                   | 1-13                                                               |                                                  |  |  |
| Y                                           | FR-A-2 588 724 (RHG<br>* page 1, line 24 -<br>* page 1, line 30 -<br>* claims *                                                                         | DNE-POULENC AGR.)<br>- line 25 *<br>- line 35 *                                                     | 1-13                                                               |                                                  |  |  |
| ο, Υ                                        | EP-A-0 267 778 (KUF<br>* page 42, line 19                                                                                                               | REGA KAGAKU KOGYO)<br>- line 23 *                                                                   | 1-13                                                               |                                                  |  |  |
| ۱.                                          | EP-A-0 394 847 (BAS                                                                                                                                     | SF)                                                                                                 |                                                                    | *                                                |  |  |
| ),A                                         | EP-A-0 357 404 (KUF                                                                                                                                     | REA KAGAKU KOGYO)                                                                                   |                                                                    |                                                  |  |  |
|                                             |                                                                                                                                                         |                                                                                                     |                                                                    |                                                  |  |  |
| .                                           | •                                                                                                                                                       |                                                                                                     |                                                                    | TECHNICAL FIELDS<br>SEARCHED (Int. Cl.5 )        |  |  |
|                                             |                                                                                                                                                         |                                                                                                     |                                                                    | A01N                                             |  |  |
|                                             |                                                                                                                                                         |                                                                                                     |                                                                    |                                                  |  |  |
|                                             |                                                                                                                                                         | •                                                                                                   |                                                                    |                                                  |  |  |
|                                             |                                                                                                                                                         |                                                                                                     |                                                                    |                                                  |  |  |
|                                             |                                                                                                                                                         |                                                                                                     |                                                                    |                                                  |  |  |
|                                             |                                                                                                                                                         | •                                                                                                   |                                                                    |                                                  |  |  |
|                                             | The property county and the b                                                                                                                           | Annua de finalità de la constantina                                                                 | -                                                                  |                                                  |  |  |
|                                             | The present search report has b                                                                                                                         | Date of completion of the search                                                                    | Ц                                                                  | Francisco                                        |  |  |
| Т                                           | HE HAGUE                                                                                                                                                | 10 NOVEMBER 1992                                                                                    |                                                                    | DALKAFOUKI A.                                    |  |  |
| X : parti<br>Y : parti<br>docu<br>A : techs | ATEGORY OF CITED DOCUME<br>cularly relevant if taken alone<br>cularly relevant if combined with an<br>ment of the same category<br>sological background | E : earlier patent do<br>after the filling d<br>other D : document cited i<br>L : document cited if | cument, but publi<br>ate<br>in the application<br>or other reasons | ished on, or                                     |  |  |
|                                             | written disclosure<br>mediate document                                                                                                                  | & : member of the s<br>document                                                                     | d: member of the same patent family, corresponding document        |                                                  |  |  |

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

| Defects in the images include but are not limited to the items checked: |
|-------------------------------------------------------------------------|
| BLACK BORDERS                                                           |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                                 |
| FADED TEXT OR DRAWING                                                   |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                                  |
| ☐ SKEWED/SLANTED IMAGES                                                 |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                                  |
| ☐ GRAY SCALE DOCUMENTS                                                  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                                   |
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY                   |
| OTHER:                                                                  |

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.