Formulas Sheet for Final Exam

Sheet 1. Vectors and the Geometry of Space. Vector-Valued Functions and Motion in Space.

Unit tangent vector:	$\mathbf{T} = \frac{\mathbf{v}}{ \mathbf{v} }$	
Principal unit normal vector:	$\mathbf{N} = \frac{d\mathbf{T}/dt}{ d\mathbf{T}/dt }$	
Binormal vector:	$\mathbf{B} = \mathbf{T} \times \mathbf{N}$	
Curvature:	$\kappa = \left \frac{d\mathbf{T}}{ds} \right = \frac{ \mathbf{v} \times \mathbf{a} }{ \mathbf{v} ^3}$	
Torsion:	$\tau = -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N} = \frac{\begin{vmatrix} \dot{x} & \dot{y} & \dot{z} \\ \ddot{x} & \ddot{y} & \ddot{z} \\ \vdots \ddot{x} & \ddot{y} & \ddot{z} \end{vmatrix}}{ \mathbf{v} \times \mathbf{a} ^2}$	
Tangential and normal scalar components of acceleration:	$\mathbf{a} = a_{\mathrm{T}}\mathbf{T} + a_{\mathrm{N}}\mathbf{N}$ $a_{\mathrm{T}} = \frac{d}{dt} \mathbf{v} $	

The graph y = f(x) in the xy-plane automatically has the parametrization x = x, y = f(x), and the vector formula $\mathbf{r}(x) = x\mathbf{i} + f(x)\mathbf{j}$. If f is a twice-differentiable function of x, then its curvature $\kappa(x)$ can be expressed by

$$\kappa(x) = \frac{|f''(x)|}{\left[1 + (f'(x))^2\right]^{3/2}}.$$

Sheet 2. Partial Derivatives.

THEOREM 8-A Formula for Implicit Differentiation

Suppose that F(x, y) is differentiable and that the equation F(x, y) = 0 defines y as a differentiable function of x. Then at any point where $F_y \neq 0$,

$$\frac{dy}{dx} = -\frac{F_x}{F_y}. (1)$$

THEOREM 9-The Directional Derivative Is a Dot Product

If f(x, y) is differentiable in an open region containing $P_0(x_0, y_0)$, then

$$\left(\frac{df}{ds}\right)_{\mathbf{u},P_0} = \nabla f|_{P_0} \cdot \mathbf{u},\tag{4}$$

the dot product of the gradient ∇f at P_0 with the vector ${\bf u}$. In brief, $D_{\bf u}f=\nabla f\cdot {\bf u}$.

Sheet 3. Multiple Integrals. Integrals and Vector Fields

Coordinate Conversion Formulas

CYLINDRICAL TO RECTANGULAR	SPHERICAL TO RECTANGULAR	SPHERICAL TO CYLINDRICAL
$x = r\cos\theta$	$x = \rho \sin \phi \cos \theta$	$r = \rho \sin \phi$
$y = r \sin \theta$	$y = \rho \sin \phi \sin \theta$	$z = \rho \cos \phi$
z = z	$z = \rho \cos \phi$	$\theta = \theta$

Corresponding formulas for dV in triple integrals:

$$dV = dx dy dz$$

$$= dz r dr d\theta$$

$$= \rho^2 \sin \phi d\rho d\phi d\theta$$

THEOREM 4—Green's Theorem (Circulation-Curl or Tangential Form)

Let C be a piecewise smooth, simple closed curve enclosing a region R in the plane. Let $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ be a vector field with M and N having continuous first partial derivatives in an open region containing R. Then the counterclockwise circulation of **F** around C equals the double integral of (curl **F**) \cdot **k** over R.

$$\oint_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \oint_{C} M \, dx + N \, dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy$$
Counterclockwise circulation

Curl integral

THEOREM 5—Green's Theorem (Flux-Divergence or Normal Form)

Let C be a piecewise smooth, simple closed curve enclosing a region R in the plane. Let $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ be a vector field with M and N having continuous first partial derivatives in an open region containing R. Then the outward flux of F across C equals the double integral of div \mathbf{F} over the region R enclosed by C.

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \oint_{C} M \, dy - N \, dx = \iint_{R} \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} \right) dx \, dy$$
Outward flux

Divergence integral

Sheet 4. Infinite Sequences and Series.

THEOREM 13-The Ratio Test

Let $\sum a_n$ be any series and suppose that

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho.$$

Then (a) the series *converges absolutely* if $\rho < 1$, (b) the series *diverges* if $\rho > 1$ or ρ is infinite, (c) the test is *inconclusive* if $\rho = 1$.

THEOREM 14-The Root Test

Let $\sum a_n$ be any series and suppose that

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \rho.$$

Then (a) the series *converges absolutely* if $\rho < 1$, (b) the series *diverges* if $\rho > 1$ or ρ is infinite, (c) the test is *inconclusive* if $\rho = 1$.

THEOREM 15-The Alternating Series Test

The series

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \cdots$$

converges if the following conditions are satisfied:

- **1.** The u_n 's are all positive.
- **2.** The u_n 's are eventually nonincreasing: $u_n \ge u_{n+1}$ for all $n \ge N$, for some integer N.
- **3.** $u_n \to 0$.
- **1. The** *n***th-Term Test for Divergence:** Unless $a_n \rightarrow 0$, the series diverges.
- **2. Geometric series:** $\sum ar^n$ converges if |r| < 1; otherwise it diverges.
- **3.** *p*-series: $\sum 1/n^p$ converges if p > 1; otherwise it diverges.
- **4. Series with nonnegative terms:** Try the Integral Test or try comparing to a known series with the Direct Comparison Test or the Limit Comparison Test. Try the Ratio or Root Test.
- 5. Series with some negative terms: Does $\sum |a_n|$ converge by the Ratio or Root Test, or by another of the tests listed above? Remember, absolute convergence implies convergence.
- **6. Alternating series:** $\sum a_n$ converges if the series satisfies the conditions of the Alternating Series Test.