Course Information

CS 6355: Structured Prediction

Building up structured output prediction

- Refresher of binary classification and introduction to multiclass classification
- Simple structures
 - Multiclass is really a trivial kind of a structure
- Sequence labeling problems
 - HMM, inference, Conditional Random Fields, Structured variants of SVM and Perceptron
- Conditional models: How previous algorithms extend to general structures
- Complexity of inference and inference algorithms
- Different training regimes
 - Training with/without inference
 - Constraint driven learning, posterior regularization
- Deep learning and structures
- Learning without full supervision
 - Latent variables, semi-supervised learning, indirect supervision

Class focus

- To see different examples of structures
 - Sequence labeling, eg. Part-of-speech tagging
 - Predicting trees, eg Parsing
 - More complex structures, eg: relation extraction, object recognition,
 - And most importantly,

Your favorite domain/problem...

- To understand underlying concepts
 - Defining models, training, inference
 - Using domain knowledge to
 - Define features
 - Define models
 - Make better predictions

Course objectives

- 1. To be able to define structured models for new applications
- 2. To identify or design training and inference algorithms for a new problem
- To be able to critically read current literature in structured prediction and its applications

Course mechanics

Course website: https://svivek.com/teaching/structured-prediction

- Course structure
 - Lectures by me initially and gradually, presentations by you
- No text book
 - Some useful background reading on course website
- Machine learning is a pre-requisite
- Assignments (due dates on schedule page of website)
 - 1. Three paper reviews (not hand written, please!)
 - 2. One class presentation
 - 3. One class project in groups of size at most two
 - 4. No midterm/final. Instead, project proposal, intermediate checkpoints, final report <u>and</u> presentation

Questions?

What assistance is available for you?

Course website: https://svivek.com/teaching/structured-prediction

We will use

Canvas for:

- 1. Announcements and communication
- Discussion board
- 3. All submissions

Course website for:

- 1. Lecture slides
- 2. Notes and readings

Staff

Email: svivek at cs.utah.edu

Office hours:

Wed 2:00 PM, 3126 MEB, or by appointment

TA: Jie Cao

Email: jcao at cs.utah.edu

Office hours:

Tue 1:30 PM – 2:30 PM

Please prefix subjects of all emails with course number

Policies (see website for details)

Collaboration vs. Cheating

- Collaboration is strongly encouraged, cheating will not be tolerated
- The School of Computing policy on academic misconduct
 - If you haven't already done this, read and sign the SoC policy acknowledgement form within two weeks
- Acknowledge sources and discussions in all deliverables

Late policy

10 % penalty if submitted one day late, no further extensions

Access and assistance

If you need any assistance, please contact me as soon as possible

Course expectations

This is an advanced course aimed at helping you navigate recent research.

I expect you to

- Participate in the class
- Complete the readings for the lectures
- And most importantly, demonstrate independence and mathematical rigor in your work

- No readings for next lecture
- For questions about registration, please meet me now