### CSCI 190 Discrete Mathematics Applied to Computer Science Final Exam

Last 4 digits of your Student ID #:

### Read these instructions before proceeding.

- Closed book. Closed notes. You can use calculator.
- You have **100 minutes** to complete this exam.
- No questions will be answered during the exam or immediately afterwards. Answer each question as best you can. Partial credit will be awarded for reasonable efforts. If a question contains an ambiguity or a misprint, then say so in your answer, providing the answer to a reasonable interpretation of the question; give your assumptions.
- Answer the problems on the blank spaces provided for each problem.
- Box your answers.

| Q1   | Q2   | Q3   | Q4  | Q5   | Q6  | Q7  | Q8  | Q9  | Q10 | Q11 | Q12 | Q13 | Total |
|------|------|------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| (11) | (12) | (12) | (8) | (12) | (8) | (6) | (6) | (6) | (6) | (4) | (5) | (4) | (100) |
|      |      |      |     |      |     |     |     |     |     |     |     |     |       |
|      |      |      |     |      |     |     |     |     |     |     |     |     |       |
|      |      |      |     |      |     |     |     |     |     |     |     |     |       |

1. (11 pts)

A -> P

a) (3 pts) Write the converse of the following: If you are postive, then you will be sunny.

It you are sunny, then you are positive.

b) (4 pts) Convert (9FA5)<sub>16</sub> to base 4.

9. 
$$16^{3} + 15 \cdot 16^{2} + 10 \cdot 16^{1} + 5 \cdot 16^{0} = 40869$$

40869 mad  $4 = 1$ 

638 mod  $4 = 2$ 

2 mod  $4 = 2$ 

10217 mod  $4 = 1$ 

159 mod  $4 = 3$ 

2554 mod  $4 = 2$ 

2 mod  $4 = 2$ 

(9FA5)<sub>16</sub> = (21332211)<sub>4</sub>

c) (4 pts) A message has been *encrypted* using the function  $f(x) = (x + 7) \mod 26$ .

If the message in coded form is OVE decode the message

If the message in coded form is QVF, decode the message.

A B C D E F G H I J K L M N O P Q R S T U V N X Y Z  
D | Z 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
Q = (1b - 7) mod 
$$zb = J$$
  
V = (21 - 7) mod  $zb = J$   
F = (5 - 7) mod  $zb = J$ 

a) (5 pts) Use the Principle of Mathematical Induction to prove that  $2 + 4 + 6 + 8 + \cdots + 2n = n(n+1)$  for all  $n \ge 1$ . Show all the steps

b) (4 pts) Give a recursive definition with initial condition for the following function.

$$G_{1} = 1^{3}$$
,  $n = 1, 2, 3, ...$ 
 $G_{2} = 1^{3}$  = 1

 $G_{3} = 1^{3}$  = 1

 $G_{2} = 1^{3}$  = 1

 $G_{3} = 1^{3}$  = 1

 $G_{4} = 1^{3}$  = 1

 $G_{5} = 1^{3}$  = 1

 $G_{7} = 1^{3$ 

c) **(3 pts)** In a certain lottery game you choose a set of seven numbers out of 38 numbers. Find the probability that exactly one of your numbers match the seven winning numbers.

$$\frac{\binom{7}{1} \cdot \binom{31}{4-1}}{\binom{38}{7}} = \frac{\frac{7!}{1! \cdot 6!} \cdot \frac{31!}{6! \cdot 25!}}{\frac{38!}{7! \cdot 31!}} = \frac{\frac{31 \cdot 30 \cdot 29 \cdot 28 \cdot 27 \cdot 26}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}}{\frac{38 \cdot 37 \cdot 36 \cdot 35 \cdot 34 \cdot 33 \cdot 32}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}} = \frac{7 \cdot (736781)}{17 \cdot 620756} = 0.4084$$

- 3. (12 pts) Determine whether the following binary relation is:(1) reflexive, (2) symmetric, (3) antisymmetric, (4) transitive.No justifications needed.
  - a) (4 pts) The relation **R** on Z where **aRb** means **a** = **b**. Circle your answers.

| R is | Reflexive? | Symmetric? | Antisymmetric? | Transitive? |
|------|------------|------------|----------------|-------------|
|      | Yes or No  | Yes or No  | Yes or No      | Yes or No   |

b) (4 pts) The relation **R** on the set of all people where **aRb** means that **a** is shorter than **b**. Circle your answers.

| R is | Reflexive? | Symmetric? | Antisymmetric? | Transitive? |
|------|------------|------------|----------------|-------------|
|      | Yes or No  | Yes or No  | Yes or No      | Yes or No   |

c) (4 pts) If 
$$\mathbf{M}_R = \begin{pmatrix} 0.100 \\ 1.110 \\ 1.110 \\ 0.001 \end{pmatrix}$$

determine if  $\boldsymbol{R}$  is: (a) reflexive (b) symmetric (c) antisymmetric (d) transitive. Circle your answers.

| R is | Reflexive? | Symmetric? | Antisymmetric? | Transitive? |  |
|------|------------|------------|----------------|-------------|--|
|      | Yes or No  | Yes or No  | Yes or No      | Yes or No   |  |

#### 4. (8 pts)

a) (4 pts)Suppose **R** is the relation on **N** where **aRb** means that **a** ends in the same digit in which **b** ends.

Determine whether **R** is an **equivalence relation** on N. Justify your answer.

aka both a starts in the same digit it is reflexive Reflexivity = a starts in the same digit as b and b starts in the same aRb

digit as a = it is symmetric,

a starts in the same digit as b and b starts in the same aRb digit as a then a starts in the same digit as a

is an equivalence relation on N

b) (4 pts) Suppose the relation R is defined on the set Z where aRb means that ab < 0. Determine whether **R** is an **equivalence relation** on **Z**. Justify your answer.

Reflexivity =

of must be greater than or  $\alpha \cdot \alpha < \circ$ aRa means it is not reflexive. Zero

an equivalence relation

#### 5. (12 pts)

a) (4 pts) Draw these four graphs.  $K_4$ ,  $C_5$ ,  $W_4$  and  $K_{3,4}$ 

Ku



CS





K3,4



b) (4 pts)

 $\frac{n(n-1)}{2} = 6$  edges and n = 4 vertices.

 $K_{mn}$  has  $M \cdot N = 12$  edges and M + N = 12 vertices.

 $W_n$  has  $2 \cap = 8$  edges and 1 + 1 = 5 vertices.

 $C_n$  has N = 5 edges and N = 5 vertices.

c) (4 pts) Draw the *digraph* with adjacency matrix

0



### 6. (8 pts)

a) (6 pts) Are these two graphs isomorphic?

If yes, give the mapping of vertices from the first graph to the second graph.

If no, explain why not.







$$A = 7$$
  $E = 5$   $C = 3$   $E = 4$   $E = 4$   $E = 4$ 

b) (2 pts) Circle **Yes** or **No**. No justifications needed.

Determine whether the graph is strongly connected? Yes or (No.

Determine whether the graph is **weakly connected**. Yes or No



- 7. (6 pts) Circle TRUE or FALSE. No justifications needed.
  - If T is a tree with 9 vertices, then there is a simple path in T of length 10.
  - (T)/FEvery tree is bipartite.
  - T / F There is a tree with degrees 4, 3, 6, 2, 2, 1, 1.
  - There is a tree with degrees 1, 1, 3, 3, 3, 3.
  - If T is a tree with 30 vertices, the largest degree that any vertex can have is 31.
  - If two trees are isomorphic, then the two trees have the same number of vertices.

8. (6 pts) Refer to the following tree.



γουτ left fight a) (2 pts) Find the **preorder** traversal.



νωτι κτις h t b) (2 pts) Find the *inorder* traversal.



right root c) (2 pts) Find the **postorder** traversal.



9. (6 pts) Refer to the following graph..



a) (3 pts) Using **alphabetical ordering**, **draw a spanning tree** (starting from vertice **B**) for this graph by using DFS, **depth-first search**.



b) (3 pts) Using **alphabetical ordering**, **draw a spanning tree** (starting from vertice **B**) for this graph by using BFS, **breadth-first search**.



BCEHDAFA

# **10. (6 pts)** Using a table to show that F(x,y,z) = xyz + xy + x has a valle of 1 if and only if variable x has a value of 1.

| $\propto$  | y | 2 | XYZ | XY         | XYZ + XY + X |
|------------|---|---|-----|------------|--------------|
|            |   |   |     |            |              |
| (          |   | 0 | Ó   |            | 1            |
| (          | 0 |   | Ď   | $\bigcirc$ |              |
| i          | 0 | Ò | D   | Ö          |              |
|            |   |   | Ñ   | 0          | $\Box$       |
| $\bigcirc$ |   | 0 | Ď   | 0          | 0            |
|            | 0 |   | 0   | $\bigcirc$ | D            |
| Ď          | J | 0 | 0   | Ŏ          | 0            |

: F(x,y,z) = xyz + xy + x has value of 1 if and only if x has a value of 1 is true.

#### 11. (4 pts) Find the duals of these Boolean expressions.

a) (2 pts) 0 + y + z

b)  $(2 pts) x \overline{y} z$ 

# 12. (5 pts) Draw a logic gate diagram for the Boolean function $F(x, y, z) = \overline{(x \overline{y})} + x \overline{z}$ .



## 13. (4 pts) Use NOR gates (only) to construct circuits with these outputs.

a)  $(2 pts) \overline{x}$ 



b) (2 pts) y z

