

- life on earth evolved in water (3/4 of the earth is covered in water)
- most abundant molecule in living organisms
- 2/3 of human body is water
- · 80% of cytoplasm is water
- · 95% of jellyfish

- water is the only substance that naturally occurs in all three physical states of matter- solid, liquid and gas.
- water's unusual properties are emergent from the structure and molecular interactions of water.

POLARITY

- Water is a polar molecule.
 - Oxygen has a higher electronegativity than hydrogen and attracts the electrons more than hydrogen.
- Oxygen's side of the molecule then has a negative charge. Hydrogen's side is positive. (Covalent bonds are holding these together.)

 Triangular shaped like a Mickey Mouse hat (each water molecule can form a maximum of four hydrogen bonds with neighboring water molecules).

Polarity contributes to its properties

- Cohesion: attraction of water molecules to each other.
- Adhesion: attraction to water to other charged molecules.
- Surface tension: related to cohesion the surface of water has more tension than most other liquids.

- Because of cohesion, adhesion and osmotic pressure together form capillary action in which water can travel from the roots of plants to the top of the plant.
- Because of surface tension (causes beading), some animals can walk on water

Water has a high specific heat

- (amount of heat that must be absorbed or lost for 1 g of that substance to change by 1 °C)
- water is 1 calorie per gram per degree Celsius
- because of hydrogen bonding (initial heat absorbed goes into breaking hydrogen bonds) water changes its temperature less as it absorbs or releases heat.

Water has a high specific heat

- water can be used as insulator against frost because as the water freezes it releases heat which prevents the fruit from becoming frozen.
- water can be used as a heat sink (think of nuclear power plants).
- water in ocean stays stable allowing life (same in land organisms).

Water allows for evaporative cooling

 if molecules of water have enough kinetic energy to overcome the hydrogen bonds then they can transform from a liquid to a gas (vaporization).

Water allows for evaporative cooling

- evaporative cooling occurs because as the water molecules leave the liquid they take their "heat" (highest kinetic energy) with them causing the remaining liquid to be "cooler (lower kinetic energy)."
- Ex. sweating allows organisms to maintain homeostasis through evaporative cooling.

 Water has a high heat of vaporization (the amount of heat a liquid must absorb for 1 g to be converted to a gas).

Ice Floats

- water is one of the few substances that are less dense as a solid then a liquid.
- hydrogen bonds (causes regular spacing among water molecules) causes water to be less dense as a solid.

- Ex. Prevents bodies of water from freezing solid from bottom to top.
- Ex. Transitions between seasons are less abrupt because in the winter the water freezing releases heat and in the spring the water melting absorbs the heat.

Water as a solvent

- water is polar causing it to dissolve or break apart certain substances.
- closest to universal solvent

Hydrophilic

- means water loving.
- charged regions of water will be attracted to other polar or ionic compounds.
 Therefore in general polar compounds are water-soluble.
- Ex. Important in cell transport across the cell membrane.

Hydrophobic

- · means water fearing.
- non-polar compounds or nonelectronegative substances are NOT water-soluble.
- Ex. Also important in cell transport due to phospholipids in the cell membrane.

Solution Concentration

- solute concentration is determined by calculating how many moles are dissolved in the aqueous solution.
- moles are determined by calculating the molecular weight of a substance.
- molarity is equal to the number of moles of solute per liter of solution.

pΗ

- Water dissociates partially into hydrogen ion (H+) and hydroxide ions (OH-)
- H2O ↔ H+ + OH-
- at equilibrium most of the H2O is not ionized.
- The concentration of H+ and OH- in pure water is equal.
- pH of pure water is M= 10-7

Acids

- solutions become acidic when a substance is added that increases the H+ concentration.
- · Ex. HCI
- also removes OHbecause it tends to combine with H+ to form H2O.
- strong acids completely disassociate in water, weak do not.

Bases

- solutions become basic when a substance is added that decreases the concentration of H+.
- Ex. NH₃ (directly because it absorbs H+ from solution to form ammonia).
- strong bases completely disassociate in water, weak do not.

Calculating pH

- [H+][OH-] = 1.0 x 10 -14
- in a neutral solution [H+]= 10⁻⁷ and [OH-]= 10⁻⁷
- if you know the concentration of H+ then you know the concentration of OH-
- use logarithms to calculate pH. The pH =- log [H+].
- Ex. pH 5 = 10⁻⁵ moles H+/L
- pH 5 is 10x more acidic than pH 6 (so difference between a pH of 3 and 6 is thousand).

Buffers

- substance that keeps the pH constant by releasing H+ or OH- as they enter or leave the fluid.
- main buffer in living organisms is the bicarbonate ion (HCO₃).
- it takes up excess H+ or OH-
- Ex. H+ + HCO₃ → H₂CO₃

 Bicarbonate Carbonic

 lon acid

- Drop in pH will cause formation of carbonic acid.
- Rise in pH will cause formation of bicarbonate ion, which is weak base.