

Trabalho 2- Mecânica dos Fluidos Computacional - Parte 2

Programa de Pós Graduação em Modelagem Computacional

Autor: Rodrigo Perobeli Silva Costa Professor: Iury Higor Aguiar da Igreja

Juiz de Fora, 28 de Agosto de 2020

Conteúdo

1	Introdução	-		
2	Exercício 1			
	2.1 Validação do programa			
3	Exercicio 2	;		
	3.1 Reynolds 1000			
	3.2 Reynolds 1500			
	3.3 Reynolds 500			
4	Conclusão	ļ		

1 Introdução

O presente relatório é um método de avaliação para a disciplina Mecânica dos Fluidos Computacional, do Programa de Pós-Graduação em Modelagem Computacional (PPGMC) da UFJF. O trabalho consiste em 2 etapas:

- Considerar o problema da cavidade e usar o método ADI para resolvê-lo, validando-o com os dados de Ghia et al. Para Re=1000.
- Plotar para diferentes Reynolds os resultados da função corrente e vorticidade.

2 Exercício 1

2.1 Validação do programa

Para validar o programa, foi escolhida uma malha 32×32 elementos devido a maior agilidade para alterações de código e Re = 1000 e $dt = h^2/10$. Uma vez finalizado, os resultados obtidos foram:

• $\Psi_{max} = 0.0699 \text{ contra } \Psi_{Ghia} = 0.069855;$

e as figuras 1 e 2:

Figura 1: Função Corrente.

Figura 2: Vorticidade.

A figura 2, apesar de estranha, é aceitável, pois depende-se da vorticidade para calcular a função corrente e vice-versa, logo, se a corrente convergiu

para valores sólidos, a vorticidade também está aceitável. Notam-se também oscilações uma vez que não houve utilização de upwind para tratamento de oscilações.

3 Exercicio 2

A seguir há outros plots para diferentes Reynolds e diferentes malhas

3.1 Reynolds 1000

Para os plots de Re=1000 temos que os valores adquiridos para psi são muito muito próximos dos apresentados na tabelas de referência.

(a) Corrente para malha 64x64 e dt= (b) Vorticidade para malha 64x64 e $h^2/2$ $dt=h^2/2$

(a) Corrente para malha 128x128 e (b) Vorticidade para malha 128x128 $dt = h^2/2$ e $dt = h^2$

3.2 Reynolds 1500

Modificando o Reynolds para cima, ocorre que os efeitos viscosos diminuem, logo o fluido próximo das bordas pode se locomover melhor e deveria haver maior corrente, no entanto nota-se que o que acontece é justamente o contrário, para um Reynolds maior, o valor absoluto máximo da função corrente diminui.

(a) Corrente para malha 64x64 e dt= (b) Vorticidade para malha 64x64 e $h^2/10$ $dt=h^2/10$

(a) Corrente para malha 128x128 e (b) Vorticidade para malha 128x128 $dt = h^2/2$ e $dt = h^2$

3.3 Reynolds 500

Diferentemente do anterior que aparentemente a função corrente se comportou tendo correlação com o Reynolds, para o Reynolds de 500 houve uma contradição, se o Reynolds aumentasse, então era esperado, pelo exercício anterior que a função corrente diminuísse e portanto, quando o reynolds diminuísse, a função corrente aumentasse. Ocorre que para uma malha menos refinada, a função corrente aumenta como esperado, só que, para uma malha

mais refinada, e portanto mais confiável, o valor da corrente também diminui.

(a) Corrente para malha 64x64 e dt= (b) Vorticidade para malha 64x64 e $h^2/2$ $dt=h^2/2$

(a) Corrente para malha 128x128 e (b) Vorticidade para malha 128x128 $dt=h^2/2$ e $dt=h^2/2$

4 Conclusão

Foi fixado a malha de 128x128 e testado diferentes Reynolds para verificar a relação da função corrente, os passos temporais não foram fixados pois nem sempre há convergência. Os testes são apresentados na tabela 1, e pela figura 9, onde mostram a tendência de um valor máximo para a função corrente para reynolds de valor 1000.

δt	Re	Ψ
h^2/10	100	0.10332
h^2/2	500	0.11384
h^2/2	1000	0.11547
h^2/10	1500	0.11495
h^2/10	2000	0.11376
h^2/10	4000	0.10721

Tabela 1: Tabela de corrente para vários Reynolds.

Figura 9: Gráfico referente à tabela 1