

مذكرة وقع 7: الحدوديات مع تمارين وأمثلة محلولة

الأهداف القدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
- ينبغي تجنب إعطاء أي بناء نظري لمفهوم الحدودية	- التمكن من تقنية القسمة الإقليدية على	- تقديم حدودية، تساوي حدوديتين؛
ويمكن تقديمها، مع الإشارة إلى العناصر المميزة لها	x-a وإدراك قابلية القسمة على $x-a$	- جمع وضرب <mark>حدو دیتین؛</mark>
(الحد، الدرجة، المعامل)، من خلال أمثلة بسيطة؛		- جذر حدودية، القسمة على x - a ؛
- إذا كانت تقنية القسمة لحدودية على x-a تلعب دورا		- تعميل حدودية.
في تعميل حدودية أحد جذورها هو a فإنه ينبغي		
الاهتمام بباقي التقنيات التي تؤدي إلى هذا التعميل.		

$d^{\circ}P=0$ حدودية. و O(x)

حدودية. E(x)

 $a \neq 1$ يعنى a = 1 + 0 الحالة $a \neq 1$ يعنى $a \neq 1$ يعنى $a \neq 1$

 $d^{\circ}P = 4$

تعریف: الحدودیة المنعدمة هي الحدودیة التي جمیع معاملاتها تساوي صفر ا.

 \mathbb{R} اکی P(x) = 0 لکل P(x)

ملحوظة: الحدودية المنعدمة ليست لها درجة.

3) تساوي حدوديتين:

نشاط: نعتبر الحدوديتين التاليتين:

$$Q(x) = 2x^{2}(x-2) + (x-1)(2x+3)$$
 $\Rightarrow P(x) = 2x^{3} - 2x^{2} + x - 3$

Q(x) و P(x) و ديتبن P(x)

2. ماذا تلاحظ؟

 $d^{\circ}P=3$ (1: الجواب على النشاط

لا بعد النشر والتبسيط Q(x) الا بعد النشر والتبسيط

$$Q(x) = 2x^{2}(x-2) + (x-1)(2x+3) = 2x^{3} - 4x^{2} + 2x^{2} + 3x - 2x - 3$$

$$d^{\circ}Q = 3$$
 ومنه $Q(x) = 2x^3 - 2x^2 + x - 3$

2) نلاحظ أيضا أن معاملات الحدود من نفس الدرجة متساوية

Q(x) = P(x): نقول ان

خاصية: تكون حدوديتان متساويتين اذا و فقط اذا كانت لهما نفس الدرجة و كانت معاملات الحدود من نفس الدرجة متساوية.

P(x) و Q(x) بحيث: تمرين : نعتبر الحدوديتين

$$P(x) = (a-1)x^3 + 2ax^2 + 5x + 6$$

$$Q(x) = 2x^3 + 4x^2 + (3+a)x + 3a$$

P(x) حيث a عدد حقيقي يخالف 1. لنحدد قيمة العدد الحقيقي a بحيث تكون

و Q(x) متساویتین.

الجواب:

 $d^{\circ} O = 3$ اذن : $a = 1 \neq 0$ ومنه : $a = 1 \neq 0$ اذن $a \neq 1$

 $d^{\circ}P = d^{\circ}Q$: إذن

$$a = 2$$
 يعني أن : $\begin{cases} a - 1 = 1 \\ 2a = 4 \end{cases}$ يعني $Q(x) = P(x)$ $3 + a = 5$ $3a = 6$

تمرين 3: أدرس تساوي الحدوديتين في الحالات التالية:

$$Q(x) = x^2(3x-2) + x$$
 $g(x) = x^3 + 2x^2(x-1) + x$.1

$$Q(x) = x^3 - 3x^2 - 3x + 1$$
 $\Rightarrow P(x) = (x-1)^3$.2

[تقديم حدودية و تساوي حدوديتين: 1] تقديم حدودية :أمثلة و تعاريف: مثال 1:

التعبير
$$P(x) = \frac{1}{2}x^3 - \sqrt{2}x^2 + x - \frac{1}{3}$$
يسمى حدودية

يسمى حد الحدودية من الدرجة 3. $\frac{1}{2}x^3$

يسمى حد الحدودية من الدرجة2. $-\sqrt{2}x^2$

يسمى حد الحدودية من الدرجة 1. $\frac{1}{2}$ يسمى حد الحدودية من الدرجة 0 x

الحد الأكبر درجة هو $\frac{1}{2}x^3$, العدد 3 يسمى درجة الحدودية. و نكتب

مثال 2: كل حدودية من الدرجة الأولى تسمى حدانية و تكتب على

 $a \in \mathbb{R}^*$ حيث ax + b

مثال 3:التعبير 5 + $2\sqrt{x}$ + 2 ليس بحدودية لأنها تحتوي على x^2

4. درجتها $P(x) = 3x^4 + x^3 - 7x + \sqrt{3}$ درجتها 4. الحدودية:

0 هو معامل الحد من الدرجة 0 . 1 هو معامل الحد من الدرجة 0 ، 0 هو معامل الحد من الدرجة .2

 $\sqrt{3}$. هو معامل الحد من الدرجة $\sqrt{3}$, $\sqrt{3}$ هو معامل الحد من الدرجة $\sqrt{3}$

S(x) أو Q(x) أو Q(x) أو Q(x) أو مادة لحدودية بأحد الرموز:

. $P(x) = 4x^2 - x^3 + x^4 + 3 + x$ نعتبر الحدودية:

يمكن كتابة الحدودية P(x) على شكل:

$$P(x) = x^4 - x^3 + 4x^2 + x + 3$$

نقول إننا رتبنا P(x) تبعا للقوى التزايدية.

تمرین : حدد من بین التعابیر التالیة الحد ودیات و درجتها ان أمکن :حیث

$$Q(x) = 2x^2 - x - \sqrt{x}$$
 s $P(x) = \frac{1}{4}x^3 + \frac{\sqrt{2}}{2}x^2 - \sqrt{3}$

$$M(x) = \frac{5}{3}x^2 + x + 2 - 7x^4$$
 o $R(x) = 5|x^2| + 4|x| - 5$

$$E(x) = (a-1)x^4 + x^2 + x + 1$$
 $g(x) = 4$ $g(x) = x^2 + \frac{1}{x} + 3$

الجواب: P(x) حدودية. و P=3 و Q(x) ليست بحدودية.

و R(x) ليست بحدودية.

 $d^{\circ}P = 4$ حدودية. و M(x)

(-2 و 3 نقول 1 جذر للحدودية P(x) نقس الجواب بالنسبة ل 3 و $P(x) = x^3 + 2x^2(x-1) + x = x^3 + 2x^3 - 2x^2 + x = 3x^3 - 2x^2 + x$ 1) جذر حدودية: تعریف: لتکن P(x) حدودیة و α عددا حقیقیا $Q(x) = x^{2}(3x-2) + x = 3x^{3} - 2x^{2} + x = P(x)$ $P(\alpha) = 0$: نقول أن α جذر للحدودية P(x) إذا كان $P(x) = (x-1)^3 = x^3 - 3x^2 + 3x - 1$ (2) P(x)يسمى أيضا صفرا للحدودية lpha $(3 \neq -3)$ لأن معاملات الحد من الدرجة 1 غير متساوية $Q(x) \neq P(x)$ إذن: $P(x) = 2x^2 - x - 1$ بحيث: P(x) بعتبر الحدودية II. جمع و ضرب حدودیتین: نشاط : أحسب مجموع الحدوديتين P(x) و Q(x) حيث: P(x) بين أن 1 جذر للحدودية. 1 P(x) = (x-1)(2x+1) : نأکد أن $Q(x) = x^3 - x^2 + 2$ $P(x) = x^2 + x + 1$ $d^0(P+Q).....d^0P+d^0Q$: ثم قارن P(x) اذن 1 جذر للحدودية $P(1) = 2 \times 1^2 - 1 - 1 = 0$ الجواب $P(x)+Q(x)=(x^2+x+1)+(x^3-x^2+2)=x^3+x+3$ الجواب: لدينا: $(x-1)(2x+1) = 2x \times x + x - 2x - 1 = 2x^2 - x - 1 = P(x)$ (2) $d^{0}(P+Q) \leq d^{0}P+d^{0}Q$: اذن P(x) = (x-1)(2x+1) اذن خاصية 1:مجموع حدوديتين P(x) و Q(x) هو حدودية نرمز لها x-1نقول P(x) تقبل القسمة على $x - \alpha$ قابلية القسمة على (2 P(x)+Q(x)بالرمز تعریف: اتکن P(x) حدودیة درجتها n حیث $n \ge 1$ و α عددا حقیقیا. خاصية 2: لتكن P(x) و Q(x) حدوديتين غير منعدمتين. لدينا: n-1 تقبل القسمة على x-lpha إذا وجدت حدودية P(x)في حالة P(x)+Q(x) حدودية غير منعدمة. $d^{0}(P+Q) \leq d^{0}P+d^{0}Q$ $P(x) = (x - \alpha)Q(x)$ بحیث: تمرين 4: نعتبر الحدوديتين التاليتين: $Q(x) = -2x^3 + 5x^2 - 2x - 1$ $\int P(x) = 5x^3 - 2x^2 + 3x + 1$ خاصية: اتكن P(x) حدودية درجتها n حيث $1 \ge n$ و عددا حقيقيا. P(x)-Q(x) \circ P(x)+Q(x): P(x) تقبل القسمة على x-lpha إذا و فقط إذا كان جذر اللحدودية P(x) $P(x)+Q(x) = 5x^3-2x^2+3x+1-2x^3+5x^2-2x-1$: $P(x) = x^3 + 3x^2 - 2x - 6$ بحيث: P(x) بحيث الحدودية $P(x)+Q(x) = 3x^3 + 3x^2 + x$ P(x) بين أن 3- جذر للحدودية. 1 $P(x)-Q(x) = (5x^3-2x^2+3x+1)-(-2x^3+5x^2-2x-1)$ P(x) = (x+3)Q(x) :حدد حدودیة Q(x) بحیث: 2 $P(x)-Q(x) = 5x^3-2x^2+3x+1+2x^3-5x^2+2x+1$ P(-3) = 0الجواب: الأن 3 - جذر للحدودية: الأن 1 $P(x)-Q(x) = 7x^3-7x^2+5x+2$ بحيث: Q(x) بخن Q(x) بحيث بغنا القسمة على x+3 بخيل القسمة على Q(x) بحيث بخين الخيا نشاط2: أحسب جذاء الحدوديتين P(x) و Q(x) حيث: درجتها 1 درجتها P(x) = x+3 درجتها 3. درجتها P(x) = (x+3)Q(x) $Q(x) = x^3 - x^2 + 2$ $g(x) = x^2 + x + 1$ إذن Q(x) درجتها 2 و بالتالي Q(x) تكتب على شكل: $d^{0}(P \times Q)....d^{0}P + d^{0}Q$: ثم قارن $(a \neq 0)$ $Q(x) = ax^2 + bx + c$ $P(x) \times Q(x) = (x^2 + x + 1) \times (x^3 - x^2 + 2)$ الجواب :البينا: :Q(x)تحدید $= x^5 - x^4 + 2x^2 + x^4 - x^3 + 2x + x^3 - x^2 + 2$ $P(x) = x^3 + 3x^2 - 2x - 6$ الطريقة 1:لدينا: $= x^5 + x^2 + 2x + 2$ $d^{0}(P(x)\times Q(x)) = d^{0}P(x) + d^{0}Q(x)$: \dot{U} $P(x) = (x+3)(ax^2 + bx + c)$ خاصیة 3: جذاء حدودیتین P(x) و Q(x) هو حدودیة نرمز لها $x^3 + 3x^2 - 2x - 6 = (x+3)(ax^2 + bx + c)$ يعني أن: $P(x) \times Q(x)$ بالرمز $=ax^3+(b+3a)x^2+(c+3b)x+3c$ خاصیة 4: لتكن P(x) و Q(x) حدودیتین غیر منعدمتین. لدینا: $=ax^3+bx^2+cx+3ax^2+3bx+3c$ $d^{0}(P(x)\times Q(x)) = d^{0}P(x) + d^{0}Q(x)$ حسب خاصية تساوي حدوديتين لدينا: a=1 و b+3a=3 $x-\alpha$ القسمة الاقليدية لحدودية على. III 3c = -6 c + 3b = -2 $P(x) = x^3 - 2x^2 - 5x + 6$ بحيث: P(x) بعتبر الحدودية $Q(x) = x^2 - 2$ اذن: a = 0 و b = 0 و a = 1P(-2) و P(3) و P(2) و أحسب أحسب $=(x+3)(x^2-2)$:2 الطريقة $P(1) = 1^3 - 2 \times 1^2 - 5 \times 1 + 6 = 1 - 2 - 5 + 6 = 0$: الجواب $P(x) = x^3 + 3x^2 - 2x - 6 = x^2(x+3) - 2(x+3)$ $P(2) = 2^3 - 2 \times 2^2 - 5 \times 2 + 6 = 8 - 8 - 10 + 6 = -4 \neq 0$ $Q(x) = x^2 - 2$ $P(3)=3^3-2\times 3^2-5\times 3+6=27-18-15+6=0$ الطريقة 3: انجاز القسمة الاقليدية $P(2) = (-2)^3 - 2 \times (-2)^2 - 5 \times (-2) + 6 = -8 - 8 + 10 + 6 = 0$

ومنه $Q(x)$ تقبل القسمة على $Q(x)$ ومنه $Q(x)$ ومنه $Q(x)$ ومنه على $Q(x)$	x	
$x-3$ $P(x) = (x+2) \times (x^2 - 4x + 3)$ وجدنا حسب السؤال (3	_	
$x-3$ وجدنا حسب السؤال $Q\left(x\right)$ تقبل القسمة على وجدنا		
ننجز القسمة الاقليدية للحدودية $Q\left(x\right)$ على $x{-}3$ على		
$Q(x) = (x-3) \times (x-1)$:		
$P(x) = (x+2) \times (x-3) \times (x-1)$ ومنه:		
P(x) المعرفة بما يلي: الحدودية المعرفة بما يلي:		
$P(x) = 2x^4 - 9x^3 + 14x^2 - 9x + 2$		
$P\left(x ight)$. تحقق من أن 0 ليس جذر اللحدودية.	D()	
يين أنه إذا كانت $oldsymbol{lpha}$ جذر اللحدودية ($P\left(x ight)$ فان $rac{1}{lpha}$ هو أيضا جذر $lpha$	P(x)	
للحدودية $P(x)$.		
$P\left(x\right)$. بين أن العدد 2 جذر للحدودية.	le ä	
$Q\left(x\right)$ على , $x-2$ حدد الحدودية الحدودية بانجاز القسمة الاقليدية للحدودية .	لة على	
P(x) = (x-2)Q(x)		
$Q\left(\frac{1}{2}\right)=0$.5 استنتج أن: 3		
$Q(x) = \left(x - \frac{1}{2}\right) (ax^2 + bx + c)$ عداد الأعداد الحقيقية a و b و a		
7. استنتج تعميلا للحدودية $P\left(x ight)$ إلى جذاء حدوديات من الدرجة الأولى.		
$P(x) = 2 \neq 0$ (1: الجواب $P(0) = 2 \neq 0$ ومنه 0 ليس جذر اللحدودية		
: يعني $P(\alpha) = 0$ يعني $P(x)$ يعني جذر للحدودية $P(x)$		
$2\alpha^4 - 9\alpha^3 + 14\alpha^2 - 9\alpha + 2 = 0$)	
$P\left(\frac{1}{\alpha}\right) = \mathfrak{l} : P\left(\frac{1}{\alpha}\right)$		
$P\left(\frac{1}{\alpha}\right) = 2\left(\frac{1}{\alpha}\right)^4 - 9\left(\frac{1}{\alpha}\right)^3 + 14\left(\frac{1}{\alpha}\right)^2 - 9\left(\frac{1}{\alpha}\right) + 2$		
$P\left(\frac{1}{\alpha}\right) = 2\left(\frac{1}{\alpha^4}\right) - 9\left(\frac{1}{\alpha^3}\right) + 14\left(\frac{1}{\alpha^2}\right) - 9\left(\frac{1}{\alpha}\right) + 2$		
$P\left(\frac{1}{\alpha}\right) = \left(\frac{2}{\alpha^4}\right) + \left(\frac{-9\alpha}{\alpha^4}\right) + \left(\frac{14\alpha^2}{\alpha^4}\right) + \left(\frac{-9\alpha^3}{\alpha^4}\right) + 2\frac{\alpha^4}{\alpha^4}$		
$P\left(\frac{1}{\alpha}\right) = \frac{2-9\alpha+14\alpha^2-9\alpha^3+2\alpha^4}{\alpha^4}$		
$2lpha^4-9lpha^3+14lpha^2-9lpha+2=0$: وبما أنه لدينا فان $P\left(rac{1}{lpha}\right)=rac{0}{lpha^4}=0$	(1:	
ومه $\frac{1}{x}$ هو أيضا جذر للحدودية $P(x)$.		
$R(2) = 2 \times 2^4 - 9 \times 2^3 + 14 \times 2^2 - 9 \times 2 + 2 = 32 - 72 + 56 - 18 + 2$ (3)		
$P(2) = 2 \times 2^4 - 9 \times 2^3 + 14 \times 2^2 - 9 \times 2 + 2 = 32 - 72 + 56 - 18 + 2 = 0$		
ومه العدد 2 جذر للحدودية ($P(x)$).		
$x\!-\!2$ ننجز القسمة الاقليدية للحدودية $P(x)$ على 4		
$P(x) = (x-2) \times (2x^3 - 5x^2 + 4x - 1)$:		
وجدنا حسب سؤال سابق أن 2 جذر للحدودية $P(x)$ اذن حسب السؤال السؤال السؤال)		
$P\left(\frac{1}{2}\right)=0$ يعني: $P\left(x\right)$ هو أيضا جذر للحدودية $P\left(x\right)$ يعني:		
\2/		

$$x^3 + 3x^2 - 2x - 6$$
 $x + 3$ $x + 3$

$$P(x) = (x-3) \times Q(x)$$
 :حدد حدودیة $Q(x) = Q(x)$.2

الجواب :1) 3 جذر للحدودية: لأنP(3) = 0 ومنه P(x) تقبل القسمة

: على x-3 فنجد انجر القسمة الاقليدية للحدودية العلى P(x)

$$P(x) = (x-3) \times (2x^2 + x - 1)$$

 $P(x) = 2x^2 + x - 3$ بحيث: $P(x) = 2x^2 + x - 3$ بحيث:

x-1 بين أن P(x) تقبل القسمة على 1.

P(x) عمل الحدودية

الجواب:

x-1 ومنه P(x) عقبل القسمة على P(1)=0 ومنه ويقبل القسمة على 1 (1

: ننجز القسمة الاقليدية للحدودية P(x) على x-1 فنجد (2

$$P(x)$$
 ومنه نجد تعميلا للحدودية $P(x) = (x-1) \times (2x+3)$

بحيث: Q(x) و P(x) بحيث: تمرين يعتبر الحدوديتين

$$P(x) = x^3 - 2x^2 - 5x + 6$$

$$Q(x) = x^2 - 4x + 3$$

. x+2 على P(x) على 1. أنجز القسمة الاقليدية للحدودية

$$x-3$$
 . وبين أن $Q\left(x
ight)$ تقبل القسمة على 2.

3. استنتج تعميلا للحدودية P(x) إلى جذاء حدوديات من الدرجة الأولى.

$$x^3 - 2x^2 - 5x + 6$$
 $-x^3 - 2x^2$
 $-4x^2 - 5x + 6$
 $4x^2 + 8x$
 $3x + 6$
 $-3x - 6$
 0
 $x + 2$
 $x^2 - 4x + 3$

