# Péndulo Simple

Modelado, simulación y resultados

E. Benavides I. Ayala S. Campos L. Almanza Y. Casas

Centro de Investigación y de Estudios Avanzados del IPN Robótica y Manufactura Avanzada

RyMA 2019

#### Contenido

- Introducción
  - Objetivos
- 2 Modelo matemático
  - Ecuaciones de movimiento
- Simulación
  - Resultados
- Modelo físico
  - LEGO Mindstorms

Introducción

## Outline

- 1 Introducción
  - Objetivos
- 2 Modelo matemático
  - Ecuaciones de movimiento
- 3 Simulación
  - Resultados
- 4 Modelo físico
  - LEGO Mindstorms

Introducción

## Objetivos del proyecto

- Desarrollar el modelo matemático del péndulo simple.
- Implementar un simulador del sistema en MATLAB.
- Comparar la simulación con un modelo físico.

## Outline

- - Objetivos
- 2 Modelo matemático
  - Ecuaciones de movimiento
- - Resultados
- - LEGO Mindstorms

Ecuaciones de movimiento

# Diagramas de cuerpo libre



Figura 1: Péndulo simple.

Ecuaciones de movimiento

# Diagramas de cuerpo libre



Figura 2: Péndulo simple.

Modelo físico

#### Mecánica Newtoniana

Se aplica la segunda ley de Newton para movimiento rotacional

$$\sum_{\tau} \tau = I \cdot F_{mg\perp} + I \cdot F_f$$

$$(ml^2)\ddot{\theta} = -lmg\sin(\theta) + kl^2\dot{\theta}$$
(1)

#### Mecánica Newtoniana

 $\blacksquare$  Se resuelve para  $\ddot{\theta}$ 

$$\ddot{\theta} = -\frac{g}{I}\sin(\theta) + \frac{k}{m}\dot{\theta} \tag{2}$$

Se plantean las coordenadas del péndulo

$$\begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix} = \begin{pmatrix} I \operatorname{sen}(\theta) \\ I(1 - \cos(\theta)) \end{pmatrix}$$
 (3)

Se obtiene la energía cinética y potencial del sistema

$$T = \frac{1}{2}ml^2\dot{\theta}^2\tag{4}$$

$$V(\theta) = mgl(1 - \cos(\theta)) \tag{5}$$

Se expresa el Lagrangiano del sistema

$$L = \frac{1}{2}ml^2\dot{\theta}^2 - mgl(1 - \cos\theta) \tag{6}$$

Se desarrolla la ecuación de Euler-Lagrange para el mecanismo

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} = 0$$

$$ml^2 \ddot{\theta} + mgl\sin(\theta) = 0$$
(7)

 $\blacksquare$  Se resuelve para  $\ddot{\theta}$ 

$$\ddot{\theta} = -\frac{g}{I}\sin(\theta) \tag{8}$$

Simulación

•00000

#### **Outline**

- - Objetivos
- - Ecuaciones de movimiento
- Simulación
  - Resultados
- - LEGO Mindstorms

Simulación

000000

#### **MATLAB**

| Longitud (/)                                | 0.3 [m]                   |
|---------------------------------------------|---------------------------|
| Masa ( <i>m</i> )                           | 0.12166 [kg]              |
| Coeficiente de fricción (k)                 | $\{0,0.1\}\ [N\cdot s/m]$ |
| Posición angular inicial $(\theta_0)$       | $0.5\pi$ [rad]            |
| Velocidad angular inicial $(\dot{	heta}_0)$ | 0 [rad/s]                 |

Tabla 1: Condiciones de simulación del sistema.

## Caso sin fricción

Resultados



Figura 3: Comportamiento de  $\theta(t)$  y  $\dot{\theta}(t)$  en el tiempo sin fricción.

Resultados

# Caso sin fricción



Figura 4: Diagrama de fase de  $\theta(t)$  y  $\dot{\theta}(t)$  sin fricción.



Figura 5: Comportamiento de  $\theta(t)$  y  $\dot{\theta}(t)$  en el tiempo.



Figura 6: Diagrama de fase de  $\theta(t)$  y  $\dot{\theta}(t)$ .

#### **Outline**

- - Objetivos
- - Ecuaciones de movimiento
- - Resultados
- 4 Modelo físico
  - LEGO Mindstorms

#### Mediciones



Figura 7: Mediciones de  $\theta$ .

#### Análisis de video



Figura 8: Análisis de movimiento - Prueba de concepto.



Figura 9: Diagrama de fase de x y  $\dot{x}$  del modelo físico.

## Análisis de video



Figura 10: Diagrama de fase de y y y del modelo físico.