Inférence statistique (UGA M1 S1) MODÈLES DE RÉGRESSION

Michal W. Urdanivia*

*Université de Grenoble Alpes, Faculté d'Économie, GAEL, e-mail: michal.wong-urdanivia@univ-grenoble-alpes.fr

8 novembre 2022

Aujourd'hui : Mise en oeuvre des méthodes statistiques des cours précédants dans

le modèle de régression

Présentation des modèles de régression

Méthodes d'estimation en régression

Tests et sélection de variables

Données: publicités et ventes d'un même produit sur 200 marchés

fichier Advertising.csv

id-market	TV	Radio	Newspaper	Sales
1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	9.3
4	151.5	41.3	58.5	18.5
5	180.8	10.8	58.4	12.9
200	232.1	8.6	8.7	13.4

Questions:

- 1. Quelle est l'influence des campagnes "TV" sur les "Sales"?
- 2. Etant donné un budget publicité, où faut-il investir? et combien de "Sales" peut-on espérer en retirer?

Présentation des modèles de régression

Expliquer une variable Y par une autre X

Principe : on part de l'observation de *n* couples

$$(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)$$
 où $Y_i \in \mathbb{R}$ et $\mathbf{X}_i \in \mathbb{R}^k$

Exemple : sur le i-ième marché,

- ► *Y_i* = "Sales"
- $lacksquare X_i = ("TV", "Radio", "Newspaper") \in \mathbb{R}^3$

<u>Idée</u>: On pense que X_i peut expliquer la "majeure partie de la variabilité des Y_i "; càd que Y_i est "presque" fonction de X_i (à quelque chose près).

Modélisation de "l'influence"

▶ Si X_i contient toute la variabilité de Y_i , alors Y_i est fonction de X_i : il existe $r : \mathbb{R}^k \to \mathbb{R}$ telle que

$$Y_i = r(\mathbf{X}_i)$$

mais peu réaliste (ou alors problème d'interpolation numérique).

► Alternative : on modèlise ces données avec le modèle

$$Y_i = r(\mathbf{X}_i) + \xi_i$$

où ξ_i est un terme aléatoire qui explique le reste de la variabilité de Y_i et $r(\cdot)$ une fonction qu'on va estimer. On suppose que $\mathbb{E}\,\xi_i=0$ (pour l'identifiabilité).

prédiction et influence des features

Dans le modèle

$$Y_i = r(\mathbf{X}_i) + \xi_i$$

pour $\mathbf{X}_i \in \mathbb{R}^k$, les coordonnées des \mathbf{X}_i sont appelées les features

Exemple : "TV", "Radio" et "Newspaper" sont les features du problème.

- Si $\hat{r}(\cdot)$ est un estimateur de $r(\cdot)$ alors la variabilité de $\hat{r}(\cdot)$ en la j-ième coordonnée $(1 \le j \le k)$ mesure l'influence de la feature j sur la variable à expliquer Y
- ▶ Si $x \in \mathbb{R}^k$ alors $\hat{y} = \hat{r}(x)$ prédit la valeur de la variable expliquée associée à x.

Motivation : meilleure approximation L^2

Meilleure approximation L^2 : si $\mathbb{E}\left[Y^2\right] < +\infty$, la meilleure approximation de Y par une variable aléatoire \mathbf{X} -mesurable est donnée par l'espérance conditionnelle $\mathbb{E}\left[Y|\mathbf{X}\right]$:

$$\mathbb{E}\left[\left(Y - r(\mathbf{X})\right)^{2}\right] = \min_{h} \mathbb{E}\left[\left(Y - h(\mathbf{X})\right)^{2}\right]$$

οù

$$r(\mathbf{x}) = \mathbb{E}\left[Y|\mathbf{X} = \mathbf{x}\right], \ \mathbf{x} \in \mathbb{R}^k$$

▶ On appelle $r(\cdot)$ fonction de régression de Y sachant X.

Régression

On définit :

$$\xi = Y - \mathbb{E}[Y|X] \implies \mathbb{E}[\xi] = 0$$

On a alors naturellement la représentation désirée

$$Y = r(\mathbf{X}) + \xi, \quad \mathbb{E}\left[\xi\right] = 0$$

en posant

$$r(\mathbf{x}) = \mathbb{E}\left[Y|\mathbf{X} = \mathbf{x}\right], \ \mathbf{x} \in \mathbb{R}^k$$

▶ On observe alors *n* couples

$$(\mathbf{X}_1, Y_1), \ldots, (\mathbf{X}_n, Y_n)$$

οù

$$Y_i = r(\mathbf{X}_i) + \xi_i, \ \mathbb{E}\left[\xi_i\right] = 0$$

avec comme paramètre la fonction de régression $r(\cdot)+$ un jeu d'hypothèses sur la loi des ξ_i .

Modèle de régression à design aléatoire

Définition

Modèle de <u>régression paramétrique</u> à design aléatoire = observation d'un n-échantillon de couples

$$(\mathbf{X}_1, Y_1), \ldots, (\mathbf{X}_n, Y_n)$$

avec $(\mathbf{X}_i, Y_i) \in \mathbb{R}^k \times \mathbb{R}$ i.i.d. $\sim (\mathbf{X}, Y)$, et

$$Y = r(\theta, \mathbf{X}) + \xi, \ \mathbb{E}\left[\xi | \mathbf{X}\right] = 0, \ \theta \in \Theta \subset \mathbb{R}^d.$$

- ▶ $\mathbf{x} \mapsto r(\theta, \mathbf{x})$ fonction de régression de Y sachant \mathbf{X} (inconnue, car θ est inconnu : paramètre du modèle)
- ▶ X_i : variables explicatives, co-variables, input
- \blacktriangleright (X_1, \ldots, X_n) : design
- ► Y_i : variables expliquées, output

Régression à design déterministe

▶ Principe : sur un exemple. On observe

$$Y_i = r(\theta, \frac{i}{n}) + \xi_i, \quad i = 1, \dots, n$$

où $r(\theta, \cdot) : [0, 1] \to \mathbb{R}$ est une fonction connue au paramètre $\theta \in \Theta \subset \mathbb{R}^d$ près, et les ξ_i sont i.i.d., $\mathbb{E}\left[\xi_i\right] = 0$.

- ▶ But : reconstruire $r(\theta, \cdot)$ c'est-à-dire estimer θ .
- ▶ Plus généralement, on observe $(Y_i)_{i=1}^n$ où

$$Y_i = r(\theta, \mathbf{x}_i) + \xi_i, i = 1, \ldots, n$$

et x_1, \ldots, x_n sont des points de \mathbb{R}^k déterministes.

Modèle de régression à design déterministe

Définition

Modèle de régression à design déterministe = donnée de l'observation

$$(\mathbf{x}_1, Y_1), \dots, (\mathbf{x}_n, Y_n)$$
 ou plus simplement Y_1, \dots, Y_n

avec $Y_i \in \mathbb{R}, \mathbf{x}_i \in \mathbb{R}^k$, et

$$Y_i = r(\theta, \mathbf{x}_i) + \xi_i, \ \mathbb{E}\left[\xi_i\right] = 0, \ \theta \in \Theta \subset \mathbb{R}^d.$$

- x_i déterministes, donnés (ou choisis) : plan d'expérience, points du "design".
- Hypothèses sur les ξ_i : par exemple: i.i.d., gaussien, etc.
- ► Attention! Les Y; ne sont pas identiquement distribuées.

Régression linéaire

On parle de modèle de régression linéaire quand la fonction de régression $r(\theta,\cdot)$ est supposée linéaire : pour tout $x\in\mathbb{R}^d$

$$r(\theta,x) = \langle \theta, x \rangle$$

On a alors pour les modèles :

- $Y_i = \langle \theta, \mathbf{X}_i \rangle + \zeta_i$: modèle linéaire à design aléatoire,
- $Y_i = \langle \theta, \mathbf{x}_i \rangle + \zeta_i$: modèle linéaire à design déterministe,

et pour un bruit gaussien : $g_i \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$,

- $Y_i = \langle \theta, \mathbf{X}_i \rangle + \sigma g_i$: modèle linéaire gaussien à design aléatoire (on suppose de plus que les g_i sont indépendants des \mathbf{X}_i),
- $Y_i = \langle \theta, \mathbf{x}_i \rangle + \sigma g_i$: modèle linéaire gaussien à design déterministe,

Méthodes d'estimation en régression à design déterministe et bruit gaussien

EMV en régression gaussienne à design déterministe

Modèle de régression gaussienne à design déterministe :

$$Y_i = r(\theta, \mathbf{x}_i) + \sigma g_i, \ \theta \in \Theta \subset \mathbb{R}^d$$

où $g_i \sim \mathcal{N}(0,1)$, i.i.d..

Problème : estimer θ ?

<u>Idée</u>: Expliciter la loi de l'observation $Z = (Y_1, \dots, Y_n)$ et appliquer le principe du maximum de vraisemblance.

La loi de $Y_i: \mathbb{P}_{Y_i} = f_{\mathbf{x}_i}(\theta, \cdot).\lambda$ où $\forall y \in \mathbb{R}$

$$f_{\mathbf{x}_i}(\theta, y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (y - r(\theta, \mathbf{x}_i))^2\right)$$

 $\underline{\text{Loi de } (Y_1,\ldots,Y_n)}: \mathbb{P}_{(Y_1,\ldots,Y_n)}=f(\theta,\cdot).\lambda^n \text{ où }$

$$f(\theta,(y_1,\ldots,y_n)) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y_i - r(\theta,\mathbf{x}_i))^2\right)$$

On travail alors dans le modèle $\{\mathbb{P}^n_{\theta} = \mathbb{P}_{(Y_1,...,Y_n)} : \theta \in \mathbb{R}^d\}$, dominé par $\mu = \lambda^n$, ayant pour densités

$$\frac{d \mathbb{P}_{\theta}^{n}}{d \mu}(y_{1}, \dots, y_{n}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}}(y_{i} - r(\theta, \mathbf{x}_{i}))^{2}\right)$$
$$= \frac{1}{(2\pi\sigma^{2})^{n/2}} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - r(\theta, \mathbf{x}_{i}))^{2}\right) := f(\theta, (y_{i})_{i=1}^{n})$$

La fonction de vraisemblance vaut en $\theta \in \mathbb{R}^d$,

$$\left| \mathcal{L}_n(\theta, Y_1, \dots, Y_n) \propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(Y_i - r(\theta, \mathbf{x}_i)\right)^2\right) \right|$$

Estimateur des moindres carrés

Maximiser la vraisemblance en régression gaussienne

Minimiser la somme des carrés : trouver les $\theta \in \mathbb{R}^d$ minimisant

$$heta \in \mathbb{R}^d \longrightarrow \sum_{i=1}^n \big(Y_i - r(\theta, \mathbf{x}_i)\big)^2$$

Définition

Estimateur des moindres carrés (EMC) : tout estimateur $\widehat{\theta}_n^{\,mc}$ tel que $\widehat{\theta}_n^{\,mc} \in \arg\min_{\theta \in \mathbb{R}^k} \sum_{i=1}^n \big(Y_i - r(\theta, \mathbf{x}_i)\big)^2$

En régression Gaussienne : $\underline{\mathsf{EMV}} = \underline{\mathsf{EMC}}$

Droite de régression (k = 1)

Modèle le plus simple : on suppose que la fonction de régression est une fonction affine de la forme

$$r(\theta,x)=a+bx$$

alors le modèle de régression à design déterministe s'écrit ici :

$$Y_i = a + bx_i + \xi_i, \quad i = 1, \ldots, n$$

où les x_1, \ldots, x_n sont des réels donnés et ξ_1, \ldots, ξ_n sont i.i.d. centrées et de variances finies.

- ▶ on paramétrise par $\theta = (a, b)^T \in \Theta = \mathbb{R}^2$; a est appelé l'intercept.
- L'estimateur des moindres carrés :

$$\widehat{\boldsymbol{\theta}}_{\mathsf{n}}^{\,\mathsf{mc}} = \left(\begin{array}{c} \hat{a} \\ \hat{b} \end{array}\right) = \arg\min_{(a,b)^{\top} \in \mathbb{R}^2} \sum_{i=1}^{n} \left(Y_i - a - bx_i\right)^2$$

Estimateur des moindres carrés (1/2)

On peut réécrire la fonction objectif sous forme matricielle :

$$F(a,b) = \sum_{i=1}^{n} (Y_i - a - bx_i)^2 = \left\| \mathbb{Y} - \mathbb{X} \begin{pmatrix} a \\ b \end{pmatrix} \right\|_2^2$$

οù

$$\mathbb{X} = \left(egin{array}{ccc} 1 & x_1 \\ dots & dots \\ 1 & x_n \end{array}
ight) \ \ ext{et} \ \ \mathbb{Y} = \left(egin{array}{c} Y_1 \\ dots \\ Y_n \end{array}
ight)$$

et comme

$$\nabla F(a,b) = -2\mathbb{X}^{\top}(\mathbb{Y} - \mathbb{X}(a,b)^{\top}) \text{ et } \nabla^2 F(a,b) = 2\mathbb{X}^{\top}\mathbb{X} \succeq 0$$

l' (ou les) EMC est (sont) solution(s) de

$$\mathbb{X}^{\top}\mathbb{X}\,\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}} = \mathbb{X}^{\top}\mathbb{Y}$$

Estimateur des moindres carrés (2/2)

▶ Unique solution quand X^TX est inversible :

$$\boxed{\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}} = \left(\begin{array}{c} \hat{\boldsymbol{a}} \\ \hat{\boldsymbol{b}} \end{array}\right) = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbb{Y}}$$

▶ Résidu : si $\widehat{\theta}_n$ est un estimateur de θ alors $\widehat{y}_i = r(\widehat{\theta}_n, x_i)$ est la valeur prédite par l'estimateur au point x_i et

$$Y_i - \hat{y}_i$$
: résidu au point i

► <u>RSS</u> : (Residual Sum of Squares)

$$RSS := \sum_{i=1}^{n} (Y_i - \hat{y}_i)^2$$

Régression linéaire simple sur les données Advertising.csv

http://localhost:8888/notebooks/linear_regression.ipynb

Régression linéaire multiple (=Modèle linéaire)

La fonction de régression est $r(\theta, \mathbf{x}_i) = \langle \theta, \mathbf{x}_i \rangle$. On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

sous le modèle

$$Y_i = \langle \theta, \mathbf{x}_i \rangle + \xi_i, \quad i = 1, \dots, n$$

où
$$\theta \in \Theta = \mathbb{R}^k$$
, $\mathbf{x}_i \in \mathbb{R}^k$.

- ▶ Problème : estimer θ
- ▶ l'analyse des estimateurs pour un design aléatoire est un plus délicate

Ecriture matricielle des données

Matriciellement, on réécrit ces données comme

$$\mathbb{Y} = \frac{\mathbb{X}\theta}{+\xi}$$

οù

$$\mathbb{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} \in \mathbb{R}^n, \mathbf{X} = \begin{pmatrix} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_n^\top \end{pmatrix} \in \mathbb{R}^{n \times k} \text{ et } \boldsymbol{\xi} = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix} \in \mathbb{R}^n$$

On parle de régression linéaire avec intercept quand

$$\mathbf{X} = \begin{pmatrix} 1 & \mathbf{x}_1^\top \\ \vdots & \vdots \\ 1 & \mathbf{x}_n^\top \end{pmatrix} \in \mathbb{R}^{n \times (k+1)}$$

EMC en régression linéaire multiple

Estimateur des moindres carrés en régression linéaire multiple : tout estimateur $\widehat{\theta}_n^{\,\text{mc}}$ minimisant

$$\theta \in \mathbb{R}^k \mapsto F(\theta) := \min_{\theta \in \mathbb{R}^k} \sum_{i=1}^n (Y_i - \langle \theta, \mathbf{x}_i \rangle)^2$$

► En notation matricielle :

$$\|\mathbb{Y} - \mathbb{X}\,\widehat{\theta}_{\mathbf{n}}^{\,\mathrm{mc}}\,\|^2 = \min_{\theta \in \mathbb{R}^k} \|\mathbb{Y} - \mathbb{X}\theta\|^2 = \min_{\nu \in V} \|\mathbb{Y} - \nu\|^2$$

où $V = \operatorname{Im}(\mathbb{X}) = \{ v \in \mathbb{R}^n : v = \mathbb{X}\theta, \ \theta \in \mathbb{R}^k \}$. Donc $\mathbb{X} \widehat{\theta}_n^{\,\mathrm{mc}}$ est la projection orthogonale de \mathbb{Y} sur V.

Géométrie de l'EMC

▶ L'EMC vérifie

$$\mathbb{X}\widehat{ heta}_{\mathsf{n}}^{\,\mathtt{mc}} = P_V \mathbb{Y}$$

où P_V est le projecteur orthogonal sur V.

▶ Mais $\mathbb{X}^{\top} P_V = \mathbb{X}^{\top} P_V^{\top} = (P_V \mathbb{X})^{\top} = \mathbb{X}^{\top}$. On en déduit les équations normales des moindres carrés :

$$\mathbb{X}^{\top} \mathbb{X} \widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}} = \mathbb{X}^{\top} \mathbb{Y}$$
 (1)

- ► Remarques.
 - ▶ L'EMC est un Z-estimateur (bonnes propriétés quand (1) a une unique solution càd $\mathbb{X}^{\top}\mathbb{X} \succ 0$).
 - ▶ Pas d'unicité de $\widehat{\theta}_n^{\,\mathrm{mc}}$ si la matrice $\mathbb{X}^{\top}\mathbb{X}$ n'est pas inversible.
 - (1) est équivalente à $\nabla F(\widehat{\theta}_n^{\text{mc}}) = 0$

Géométrie de l'EMC

Proposition

 $Si \ \mathbb{X}^{\top} \mathbb{X} \ (\textit{matrice } k \times k) \ \textit{est inversible, alors} \ \widehat{\theta}_n^{\ \textit{mc}} \ \textit{est unique} \ \textit{et}$

$$\widehat{\boldsymbol{\theta}_{\mathsf{n}}^{\,\mathsf{mc}}} = \left(\mathbb{X}^{\top}\mathbb{X}\right)^{-1}\!\mathbb{X}^{\top}\mathbb{Y}$$

- ► Contient le cas précédent de la droite de régression simple.
- Résultat géometrique, non stochastique.
- ▶ on a toujours $X^TX \succeq 0$; de plus :

$$\mathbb{X}^{\top}\mathbb{X}$$
 inversible $\Leftrightarrow \mathbb{X}^{\top}\mathbb{X} \succ 0 \Leftrightarrow \operatorname{rang}(\mathbb{X}) = k \Leftrightarrow \operatorname{dim}(V) = k$

En particulier, $\mathbb{X}^{\top}\mathbb{X}\succ 0 \implies n\geq k$ (statistiques en petites dimensions)

Régression linéaire gaussienne = Modèle linéaire gaussien

On suppose que le vecteur bruit est tel que

$$\boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathrm{Id}_n)$$

dans le modèle (sous forme matricielle)

$$\mathbb{Y} = \mathbb{X}\theta + \boldsymbol{\xi}$$

On a alors plusieurs propriétés remarquables :

- ▶ l'EMC $\widehat{\theta}_{n}^{mc}$ = EMV (dans le modèle à variance connue)
- ▶ On sait expliciter la loi (non-asymptotique!) de $\widehat{\theta}_n^{mc}$

Cadre gaussien : loi des estimateurs

- ▶ Hyp. 1 : $\boldsymbol{\xi} \sim \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$
- ▶ Hyp. $2: \mathbb{X}^{\top}\mathbb{X} \succ 0$

Proposition (2)

- (i) $\widehat{\theta}_{n}^{\,\text{mc}} \sim \mathcal{N}(\theta, \sigma^{2}(\mathbb{X}^{\top}\mathbb{X})^{-1})$
- (ii) $\|\mathbb{Y} \mathbb{X} \widehat{\theta}_{\mathsf{n}}^{\,\mathrm{mc}}\|_{2}^{2} \sim \sigma^{2} \chi^{2} (n-k)$
- (iii) $\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}}$ et $\mathbb{Y} \mathbb{X} \, \widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}}$ sont indépendants

<u>Preuve</u>: Thm. de Cochran: Si $\xi \sim \mathcal{N}(0, \mathrm{Id}_n)$ et P_j matrices $n \times n$ de projection t.q. $P_j P_i = 0$ pour $i \neq j$, alors:

- 1. $P_j \boldsymbol{\xi} \sim \mathcal{N}(0, P_j)$ sont indépendants,
- 2. $||P_i\xi||_2^2 \sim \chi^2(\text{Rang}(P_i))$

Preuve de la proposition 2 (directe, sans Cochran)

- (i) $\widehat{\theta}_{\mathbf{n}}^{\,\mathrm{mc}} = \theta + \left(\mathbb{X}^{\top}\mathbb{X}\right)^{-1}\mathbb{X}^{\top}\boldsymbol{\xi}$ est une transformation affine d'un vecteur Gaussien donc $\widehat{\theta}_{\mathbf{n}}^{\,\mathrm{mc}}$ est aussi un vecteur Gaussien; sa moyenne et matrice de covariance sont :
- 1. $\mathbb{E}[\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}}] = \theta$
- 2. $\operatorname{Cov}(\widehat{\theta}_{\mathsf{n}}^{\operatorname{mc}}) = \mathbb{E}\left[\left(\mathbb{X}^{\top}\mathbb{X}\right)^{-1}\mathbb{X}^{\top}\boldsymbol{\xi}\left(\left(\mathbb{X}^{\top}\mathbb{X}\right)^{-1}\mathbb{X}^{\top}\boldsymbol{\xi}\right)^{\top}\right] = \sigma^{2}\left(\mathbb{X}^{\top}\mathbb{X}\right)^{-1}$
- (ii) pour $P_V = \mathbb{X}(\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{X}^\top$: matrice de projection sur $V = \operatorname{Im}(\mathbb{X})$ et $\boldsymbol{\xi}' = \sigma^{-1} \boldsymbol{\xi} \sim \mathcal{N}(0, \operatorname{Id}_n)$

$$\begin{split} \mathbb{Y} - \mathbb{X} \, \widehat{\theta}_{\mathsf{n}}^{\, \mathsf{mc}} &= \mathbb{X} \big(\theta - \widehat{\theta}_{\mathsf{n}}^{\, \mathsf{mc}} \, \big) + \boldsymbol{\xi} \\ &= - \mathbb{X} \big(\mathbb{X}^{\top} \mathbb{X} \big)^{-1} \mathbb{X}^{\top} \boldsymbol{\xi} + \boldsymbol{\xi} = \sigma (\mathsf{Id}_{n} - P_{V}) \boldsymbol{\xi}' \end{split}$$

(iii) le vecteur $(\widehat{\theta}_n^{\,\mathrm{mc}}, \mathbb{Y} - \mathbb{X}\,\widehat{\theta}_n^{\,\mathrm{mc}})$ est gaussien (transformation linéaire de $\boldsymbol{\xi}$). On calcule sa matrice de covariance.

Modèle linéaire Gaussien - variance inconnue

Dans le modèle linéaire Gaussien

$$\mathbb{Y} = \mathbb{X}\theta + \sigma \mathcal{N}(0, I_n)$$

où θ et σ sont inconnus on a :

$$\mathrm{EMV} = \left(\begin{array}{c} \widehat{\theta}_{\mathsf{n}}^{\,\mathrm{mc}} \\ \widehat{\sigma}_{\mathsf{n}}^{\,2} \end{array} \right) \text{ où } \widehat{\sigma}_{\mathsf{n}}^{\,2} = \frac{\|\mathbb{Y} - \mathbb{X}\,\widehat{\theta}_{\mathsf{n}}^{\,\mathrm{mc}}\,\|_2^2}{n}$$

car la log-vraisemblance

$$\ell_n(\theta, \sigma^2) = \frac{-n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \left\| \mathbb{Y} - \mathbb{X}\theta \right\|_2^2$$

est maximale en ce point

Propriétés de l'EMV : cadre gaussien variance inconnue (1/2)

$$EMV = \begin{pmatrix} \widehat{\theta}_{n}^{\,mc} \\ \widehat{\sigma}_{n}^{\,2} \end{pmatrix}$$

οù

$$\widehat{\theta}_{\mathbf{n}}^{\,\mathrm{mc}} = \left(\mathbb{X}^{\top}\mathbb{X}\right)^{-1}\!\mathbb{X}^{\top}\mathbb{Y} \text{ et } \widehat{\sigma}_{n}^{2} = \frac{\|\mathbb{Y} - \mathbb{X}\,\widehat{\theta}_{\mathbf{n}}^{\,\mathrm{mc}}\,\|_{2}^{2}}{n}$$

D'après Proposition 2 :

- $ightharpoonup \widehat{\sigma}_n^2$ est indépendant de $\widehat{\theta}_n^{\,\mathrm{mc}}$
- $\blacktriangleright \ \widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}} \sim \mathcal{N} \big(\theta, \sigma^2 \big(\mathbb{X}^\top \mathbb{X} \big)^{-1} \big)$

Propriétés de l'EMV : cadre gaussien variance inconnue (2/2)

Lois des coordonnées de $\widehat{\theta}_{n}^{\,mc}$:

$$(\widehat{ heta}_{\mathsf{n}}^{\,\mathtt{mc}})_{j} - heta_{j} \sim \mathcal{N}ig(0, \sigma^{2}b_{j}ig)$$

où b_j est le jème élément diagonal de $\left(\mathbb{X}^{\top}\mathbb{X}\right)^{-1}$ et

$$\frac{(\widehat{\theta}_{\mathbf{n}}^{\,\mathrm{mc}})_{j} - \theta_{j}}{\widetilde{\sigma}_{n} \sqrt{b_{j}}} \sim \mathbf{t}_{n-k} \text{ pour } \widetilde{\sigma}_{n} = \frac{\|\mathbb{Y} - \mathbb{X} \, \widehat{\theta}_{\mathbf{n}}^{\,\mathrm{mc}} \|_{2}^{2}}{n - k}$$

Définition

La loi de Student à n - k degrés de liberté est la loi de

$$t_{n-k} = \frac{g}{\sqrt{\eta/(n-k)}}$$

où g $\sim \mathcal{N}(0,1)$, $\eta \sim \chi^2(n-k)$ et g indépendant de η .

Tests et sélection de variables dans le modèle linéaire Gaussien

Features selection = Sélection de variables

<u>Problème</u>: On cherche à expliquer une variable $Y \in \mathbb{R}$ en fonction d'une autre variable $X \in \mathbb{R}^k$. Certaines coordonnées de X n'ont peut-être aucun intérêt pour ce problème (elles n'expliquent en rien la variablité de Y).

Exemple : peut-être que la variable "Newspaper" n'explique en rien $\overline{"Sales"}$ (?)

<u>Problème</u> : on ne veut garder que les variables pertinantes, c'est le problème de <u>features selection</u>

Features selection via backward elimination

- 1. On retire la j-ième feature (= on retire la j-ième colonne de $\mathbb{X} \to \mathbb{X}_{-j}$) et on construit $\widehat{\theta}_{\mathbf{n}}^{\,\mathrm{mc}}(-j)$ à partir de \mathbb{Y} et \mathbb{X}_{-j}
- 2. on choisi j_1 pour lequel

$$RSS(\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}}(-j_1)) = \min_{1 \leq j \leq k} RSS(\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}}(-j)) := RSS_{k-1}$$

3. on réitère jusqu'à la stabilisation de RSS :

$$RSS_m \approx RSS_{m-1}$$

4. à la fin, seules les colonnes restantes de $\mathbb X$ sont des features pertinantes : ceux sont celles qui expliquent le plus la variabilité de Y

<u>Autres idées</u> : Forward procédures, critères AIC et BIC, LASSO, tests, etc.

Feature selection via test (1/2)

<u>Cadre</u>: Modèle linéaire gaussien (à design déterministe)

$$\mathbb{Y} = \mathbb{X}\theta + \boldsymbol{\xi}, \ \boldsymbol{\xi} \sim \mathcal{N}(0, \sigma^2 \mathrm{Id}_n),$$

où $\theta = (\theta_1, \dots, \theta_k)^T \in \mathbb{R}^k$, $\mathbb{X} \in \mathbb{R}^{n \times k}$ et $\mathbb{X}^T \mathbb{X} \succ 0$. Problème de test : $a \in \mathbb{R}$, $j \in \{1, \dots, k\}$ donné

$$H_0: \theta_j = a \text{ contre } H_1: \theta_j \neq a$$

On a vu que, sous \mathbb{P}_{θ} ,

$$\frac{\left(\widehat{\theta}_{n}^{\,\text{mc}}\right)_{j}-\theta_{j}}{\widetilde{\sigma}_{n}\sqrt{(\mathbb{X}^{\top}\mathbb{X})_{jj}^{-1}}}\overset{d}{=}\operatorname{Student}(n-k)\ \text{où}\ \widetilde{\sigma}_{n}=\frac{\|\mathbb{Y}-\mathbb{X}\,\widehat{\theta}_{n}^{\,\text{mc}}\|_{2}^{2}}{n-k}$$

Feature selection via test (2/2)

On peut alors construire un test de niveau lpha par :

$$arphi_{lpha} = \left\{ egin{array}{ll} H_0 & ext{ quand } t_n \leq q_{1-lpha/2}^{Student(n-k)} \ H_1 & ext{ sinon} \end{array}
ight.$$

pour la t-statistique (de la feature j)

$$t_n := \frac{\left|\left(\left.\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}}\right)_j - a\right|}{\widetilde{\sigma}_n \sqrt{(\mathbb{X}^\top \mathbb{X})_{jj}^{-1}}}$$

En particulier, pour a=0, on test si le coefficient associè à la j-ième feature est nul. Si on rejete le test (petite p-value), alors cette feature sera <u>sélectionnée</u> (avec un niveau de confiance de $1-\alpha$ ou $\alpha=p-value$). On répète la procédure de test pour les k features : pour chaque feature, on calcul sa t-statistique et la p-value associée

Sélection de groupes de variables

 $\underline{\mathsf{Cadre}}$: modèle linéaire Gaussien (à design déterministe) et paramètre $\theta \in \mathbb{R}^k$

<u>Problème de test</u> : $1 \le k_0 < k$ fixé. On souhaite savoir si au moins une des $k - k_0$ dernières features a une influence.

On choisit alors les hypothèses :

$$H_0: \theta_\ell = 0, \quad \forall \ell = k_0, \ldots, k$$

contre

$$H_1$$
: il existe $\ell \in \{k_0,\ldots,k\}$ t.q. $heta_\ell
eq 0$

(choix des hypothèses tel que le rejet répond à la question : "rejet" = "oui il y a au moins une feature influente")

Formulation plus générale du problème : F-tests

Soit $\mathbb{G} \in \mathbb{R}^{m \times k}$ et $\mathbf{b} \in \mathbb{R}^m$ donné. On considère le problème de test :

$$H_0: \mathbb{G}\theta = \mathbf{b}$$

contre

$$H_1: \mathbb{G} heta
eq \mathbf{b}$$

Ici: on prend

$$\mathbb{G} = \left(\begin{array}{cccc} 0 & \dots & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 1 \end{array}\right) \in \mathbb{R}^{k_0 \times k} \text{ et } \mathbf{b} = \mathbf{0} \in \mathbb{R}^{k_0}$$

F-tests (1/2)

Sous H_0 (càd pour θ t.q. $\mathbb{G}\theta = \mathbf{b}$) on a (cf. Proposition 2)

$$\mathbb{G}\,\widehat{ heta}_{\mathsf{n}}^{\,\mathsf{mc}} \sim \mathcal{N}ig(\mathbf{b}, \sigma^2 \mathbb{G}(\mathbb{X}^{ op}\mathbb{X})^{-1} \mathbb{G}^{ op}ig)$$

et donc en posant $\mathbf{U} = \sigma^2 \mathbb{G}(\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{G}^\top$ (et si \mathbf{U} est inversible), on a

$$(\mathbb{G}\,\widehat{\theta}_{\mathsf{n}}^{\,\mathtt{mc}} - \mathbf{b})^{\top} \mathbf{U}^{-1} (\mathbb{G}\,\widehat{\theta}_{\mathsf{n}}^{\,\mathtt{mc}} - \mathbf{b}) \sim \chi^{2}(\mathit{m})$$

Si σ^2 est inconnue, on pose $\widetilde{\sigma}_n^2 = \frac{\|\mathbf{Y} - \mathbb{X} |\widehat{\theta}_n^{\, \text{inc}}\|_2^2}{n-k}$ et $\widehat{\mathbf{U}} = \widetilde{\sigma}_n^2 \mathbb{G}(\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{G}^\top$, alors, la loi de

$$\frac{(\mathbb{G}\,\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}}\!-\!\mathbf{b})^{\top}\widehat{\mathsf{U}}^{-1}(\mathbb{G}\,\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}}\!-\!\mathbf{b})}{m}$$

ne dépend pas de θ ni de σ^2 sous H_0 et suit la loi de Fisher-Snedecor à (m, n - k) degrés de liberté.

F-tests (2/2)

Définition

Si $X \sim \chi^2(m)$, $Y \sim \chi^2(n-k)$ et X est indépendante de Y alors

$$\frac{X/m}{Y/(n-k)} \sim \textit{Fisher} - \textit{Snedecor}(m,n-k) := F(m,n-k)$$

On a alors un test de niveau α pour le problème de test

$$H_0: \mathbb{G}\theta = \mathbf{b} \text{ contre } H_1: \mathbb{G}\theta \neq \mathbf{b}$$

donné par

$$\varphi_{\alpha} = \begin{cases} H_0 & \text{si } T_n \leq q_{1-\alpha}^{F(m,n-k)} \\ H_1 & \text{sinon} \end{cases}$$

οù

$$T_n = \frac{(\mathbb{G}\,\widehat{\theta}_n^{\,\text{mc}} - \mathbf{b})^T \widehat{\mathbf{U}}^{-1} (\mathbb{G}\,\widehat{\theta}_n^{\,\text{mc}} - \mathbf{b})}{m} \text{ et } \widehat{\mathbf{U}} = \widetilde{\sigma}_n^2 \mathbb{G}(\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{G}^\top$$

Information de Fisher dans le modèle linéaire Gaussien

Information de Fisher et régression (1/3)

 $\underline{\mathsf{Cadre}} : \mathcal{E}^n$ expérience engendrée par $(\mathbf{x}_1, Y_1), \dots, (\mathbf{x}_n, Y_n)$ avec

$$Y_i = r(\theta, \mathbf{x}_i) + \xi_i,$$

où les ξ_i sont i.i.d. admettant une densité g par rapport à la mesure de Lebesgue et $\mathbf{x}_1, \dots, \mathbf{x}_n$ sont déterministes.

 $\underline{\text{Observation}}: Z^n = (Y_1, \dots, Y_n)$ de densité (par rapport à Lebesgue sur \mathbb{R}^n)

$$f_n(\theta, Z^n) = \prod_{i=1}^n g(Y_i - r(\theta, \mathbf{x}_i))$$

Information de Fisher:

$$\mathbb{I}(\theta|\mathcal{E}^n) = -\mathbb{E}_{\theta}[\nabla_{\theta}^2 \log f_n(\theta, Z^n)]$$

Information de Fisher et régression (2/3)

Quand le bruit est Gaussien :

$$g(t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-t^2}{2\sigma^2}\right)$$

et donc, pour le problème d'estimation de θ à σ connue, on a

$$\boxed{\mathbb{I}(\theta|\mathcal{E}^n) = \sigma^{-2}\mathbb{X}^\top\mathbb{X}}$$

On a $\mathbb{I}(\theta|\mathcal{E}^n) \succ 0$ si et seulement si $\mathbb{X}^\top \mathbb{X} \succ 0$. Dans ce cas, l'EMV qui est ici l'EMC $\widehat{\theta}_n^{\,\mathrm{mc}}$, est Gaussien de matrice de covariance $\mathbb{I}(\theta|\mathcal{E}^n)^{-1}$:

$$oxed{\widehat{ heta}_{\mathsf{n}}^{\,\mathtt{mc}} \sim \mathcal{N}ig(heta, \mathbb{I}(heta|\mathcal{E}^n)^{-1}ig)}$$

Ce résultat est non-asymptotique. D'une autre côté, c'est le comportement qu'on obtient asymptotiquement pour les EMV dans les modèles d'échantillonnage réguliers.

Information de Fisher et régression (3/3)

Dans le modèle linéaire Gaussien avec variance inconnue (et design déterministe), on peut calculer l'information de Fisher pour le problème d'estimation du paramètre (θ, σ^2) . On a

$$\nabla^2_{(\theta,\sigma^2)} \ell_n \left(\begin{array}{c} \theta \\ \sigma^2 \end{array} \right) = \left(\begin{array}{cc} \frac{-\mathbb{X}^\top \mathbb{X}}{\sigma^2} & \frac{-\mathbb{X}(\mathbb{Y} - \mathbb{X}\theta)}{\sigma^4} \\ \left[\frac{-\mathbb{X}(\mathbb{Y} - \mathbb{X}\theta)}{\sigma^4} \right]^\top & \frac{n}{2\sigma^4} - \frac{\|\mathbb{Y} - \mathbb{X}\theta\|_2^2}{\sigma^6} \end{array} \right)$$

alors

$$\boxed{\mathbb{I}((\theta,\sigma^2)|\mathcal{E}^n) = \left(\begin{array}{cc} \frac{\mathbb{X}^\top\mathbb{X}}{\sigma^2} & 0 \\ 0 & \frac{n}{2\sigma^4} \end{array}\right)}$$

Rem. : la covariance de l'EMV est ici :

$$\operatorname{cov}\left(\begin{array}{c} \widehat{\theta}_{\mathsf{n}}^{\;\mathsf{mv}} \\ \widehat{\sigma}_{\mathsf{n}}^{2} \end{array}\right) = \left(\begin{array}{c} \sigma^{2}(\mathbb{X}^{\top}\mathbb{X})^{-1} & 0 \\ 0 & \frac{2\sigma^{4}}{\mathsf{n}} \frac{\mathsf{n}}{\mathsf{n}-\mathsf{k}} \end{array}\right) \neq \mathbb{I}((\theta, \sigma^{2})|\mathcal{E}^{n})^{-1}$$

Prévision dans le modèle linéaire Gaussien

Prévision

Modèle linéaire Gaussien

$$Y_i = r(\theta, \mathbf{x}_i) + \xi_i, \quad i = 1, \dots, n$$

où $r(\theta, \mathbf{x}_i) = \langle \theta, \mathbf{x}_i \rangle$ et $\xi_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$.

Exemple : **x**_i vecteur de 3 variables explicatives (TV, RADIO, Newspaper) pour le marché i.

- ▶ Problème de prévision : On investit dans un nouveau marché avec $\mathbf{x}_0 \in \mathbb{R}^3$. On souhaite estimer les "SALES" attendus, càd <u>prédire</u> la valeur de la fonction de régression en $\mathbf{x}_0 : r(\theta, \mathbf{x}_0) = \langle \theta, \mathbf{x}_0 \rangle$
- Soit $\widehat{\theta}_n$ un estimateur de θ . Prévision par substitution : $\widehat{\mathbf{y}} = r(\widehat{\theta}_n, \mathbf{x}_0)$
- Question statistique : quelle est la qualité de la prévision ? Intervalle de confiance pour $r(\theta, \mathbf{x}_0)$ basé sur \hat{y} ?

Prévision : modèle linéaire gaussienne

- $\blacktriangleright \ \, \text{On prend} \,\, \widehat{\theta}_n = \widehat{\theta}_{\,\mathrm{n}}^{\,\mathrm{mc}} \,\, \text{alors la prédiction est} \,\, \boxed{\widehat{y} = \left\langle \mathbf{x}_0, \widehat{\theta}_{\,\mathrm{n}}^{\,\mathrm{mc}} \right\rangle}$
- ▶ Hyp. 1 : $\boldsymbol{\xi} \sim \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$
- ▶ Hyp. $2: \mathbb{X}^{\top}\mathbb{X} \succ 0$

Proposition

- (i) $\widehat{\mathbf{y}} \sim \mathcal{N}(\langle \mathbf{x}_0, \theta \rangle, \sigma^2 \mathbf{x}_0^T (\mathbb{X}^\top \mathbb{X})^{-1} \mathbf{x}_0)$
- (ii) $\widehat{y} \left\langle \mathbf{x}_0, \theta \right\rangle$ et $\mathbb{Y} \mathbb{X} \, \widehat{\theta}_{\mathsf{n}}^{\, \mathsf{mc}}$ sont indépendants

 $\underline{\mathsf{Rem.}}$: $\langle \mathbf{x}_0, \theta \rangle = r(\theta, x_0)$ est la quantité qu'on cherche à prédire

Prévision : modèle linéaire gaussienne

D'après Proposition 2,

$$\eta := rac{\widehat{y} - \left\langle \mathbf{x}_0, heta
ight
angle}{\sqrt{\sigma^2 \mathbf{x}_0^T ig(\mathbb{X}^ op \mathbb{X}ig)^{-1} \mathbf{x}_0}} \sim \mathcal{N}(0, 1)$$

- ▶ On remplace σ^2 inconnu par $\widetilde{\sigma}_n^2 = \|\mathbb{Y} \mathbb{X} \widehat{\theta}_n^{\,\mathrm{mc}}\|^2/(n-k)$.
- t-statistique :

$$t := \frac{\widehat{y} - \langle \mathbf{x}_0, \theta \rangle}{\sqrt{\widehat{\sigma}_n^2 \mathbf{x}_0^T (\mathbb{X}^\top \mathbb{X})^{-1} \mathbf{x}_0}} \sim \frac{g}{\sqrt{\frac{\chi(n-k)}{n-k}}} \sim \text{Student}(n-k),$$

Prévision : intervalle de confiance

Pour $q_{1-\frac{\alpha}{2}}^{t_{n-k}}$, le quantile d'ordre $1-\alpha/2$ d'une Student(n-k) et la t-statistique

$$t := \frac{\widehat{y} - \left\langle \mathbf{x}_0, \theta \right\rangle}{\sqrt{\widehat{\sigma}_n^2 \mathbf{x}_0^\top \left(\mathbb{X}^\top \mathbb{X} \right)^{-1} \mathbf{x}_0}}$$

on a

$$\mathbb{P}\left[|t| \leq q_{1-\frac{\alpha}{2}}^{t_{n-k}}\right] = 1 - \alpha$$

On obtient ainsi un intervalle de confiance de niveau $1 - \alpha$ (non-asymptotique) pour $r(\theta, \mathbf{x}_0) = \langle \mathbf{x}_0, \theta \rangle$:

$$r(\theta, \mathbf{x}_0) \in \left[\hat{y} \pm q_{1-rac{lpha}{2}}^{t_{n-k}} \sqrt{\widehat{\sigma}_n^2 \mathbf{x}_0^T \left(\mathbb{X}^\top \mathbb{X} \right)^{-1} \mathbf{x}_0}
ight]$$

avec probabilité $1-\alpha$.

Prévision : bande de confiance

On peut encadrer la droite de régression par **deux arcs d'hyperboles** donnant ainsi une région de confiance pour la droite de régression. Sous les hypothèses :

- ▶ Hyp. 1 : $\boldsymbol{\xi} \sim \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$
- ▶ Hyp. 2 : $\mathbb{X}^{\top}\mathbb{X} \succ 0$

La Proposition 2 assure que

$$\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}} \sim \mathcal{N}\big(\theta, \sigma^2\big(\mathbb{X}^{\top}\mathbb{X}\big)^{-1}\big)$$

De plus $\widehat{\sigma}_n^2 \stackrel{\mathbb{P}}{\to} \sigma^2$, on en déduit que

$$\frac{\left\| \left(\mathbb{X}^{\top} \mathbb{X} \right)^{1/2} (\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}} - \theta) \right\|_{2}^{2}}{\widehat{\sigma}_{\mathsf{n}}^{2}} \stackrel{d}{\longrightarrow} \chi^{2}(k).$$

Prévision : bande de confiance

On obtient ainsi une zone de confiance asymptotique de niveau $1-\alpha$ pour θ donnée par $\widehat{\theta}_{\mathbf{n}}^{\,\mathrm{mc}}+\widehat{\mathcal{E}_{\alpha}}$ où

$$\widehat{\mathcal{E}_{\alpha}} := \left\{ x \in \mathbb{R}^{k} : \left\| \left(\mathbb{X}^{\top} \mathbb{X} \right)^{1/2} x \right\|_{2} \leq \widehat{\sigma}_{n} \sqrt{q_{1-\alpha}^{\chi^{2}(k)}} \right\}$$

et $q_{1-\alpha}^{\chi^2(k)}$ est le quantile d'ordre $1-\alpha$ d'une $\chi^2(k)$. $\widehat{\theta_n}^{\text{mc}} + \widehat{\mathcal{E}_{\alpha}}$ est une ellipsoide centrée en $\widehat{\theta_n}^{\text{mc}}$ d'axes et rayons donnés par la

 $\widehat{\theta}_{\mathsf{n}}^{\,\,\mathrm{mc}} + \widehat{\mathcal{E}}_{\alpha}$ est une ellipsoide centrée en $\widehat{\theta}_{\mathsf{n}}^{\,\,\mathrm{mc}}$ d'axes et rayons donnés par la décomposition spectrale de $(\mathbb{X}^{\top}\mathbb{X})$.

A chaque point $\hat{\theta} \in \widehat{\theta}_n^{\, mc} + \widehat{\mathcal{E}}_{\alpha}$, on peut associer la droite de régression $x \to \left\langle \hat{\theta}, x \right\rangle$. Ainsi en traçant l'ensemble de toutes ses droites, on obtient une bande de confiance autour de la droite de régression.

Prévision : bande de confiance

Régression linéaire non-gaussienne

Régression linéaire non-gaussienne

Modèle de régression linéaire

$$Y_i = \langle \theta, \mathbf{x}_i \rangle + \xi_i, \quad i = 1, \ldots, n.$$

- ▶ Hyp. 1': ξ_i i.i.d., $\mathbb{E}[\xi_i] = 0$, $\mathbb{E}[\xi_i^2] = \sigma^2 > 0$
- ► Hyp. 2': $\mathbb{X}^{\top}\mathbb{X} > 0$, $\lim_{n} \max_{1 \leq i \leq n} \mathbf{x}_{i}^{T} (\mathbb{X}^{\top}\mathbb{X})^{-1} \mathbf{x}_{i} = 0$

Proposition (Normalité asymptotique de l'EMC)

Quand $n \to \infty$,

$$\sigma^{-1}\big(\mathbb{X}^{\top}\mathbb{X}\big)^{1/2}\big(\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}}-\theta\big)\overset{d}{\longrightarrow}\mathcal{N}\big(0,\mathrm{Id}_{k}\big).$$

A comparer avec le cadre gaussien : pour tout n,

$$\sigma^{-1}(\mathbb{X}^{\top}\mathbb{X})^{1/2}(\widehat{\theta}_{\mathsf{n}}^{\,\,\mathsf{mc}}-\theta)\sim\mathcal{N}(0,\mathrm{Id}_{\mathit{k}})$$

Théorème de Gauss-Markov

<u>Cadre</u>: modèle linéaire (notation matricielle)

$$\mathbb{Y} = \mathbb{X}\theta + \boldsymbol{\xi}$$

où
$$\mathbb{E}\boldsymbol{\xi} = 0$$
, $\mathbb{E}\boldsymbol{\xi}\boldsymbol{\xi}^{\top} = \sigma^2 \boldsymbol{I}_n$ et $\mathbb{X}^{\top}\mathbb{X} \succ 0$.

Théorème (Gauss-Markov)

L'estimateur des moindres carrés $\widehat{\theta}_n^{\,\mathrm{mc}}$ est optimal (au sens du risque quadratique) parmi tous les estimateurs linéaires sans biais : si $\widehat{\theta}_n$ est un estimateur de la forme $\widehat{\theta}_n = A\mathbb{Y}$ tel que $A \in \mathbb{R}^{n \times k}$ et $\mathbb{E} \, \widehat{\theta}_n = \theta$ alors

$$\mathbb{E} \left\| \widehat{\theta}_{\mathbf{n}}^{\, \mathrm{mc}} - \boldsymbol{\theta} \right\|_{2}^{2} \leq \mathbb{E} \left\| \widehat{\theta}_{n} - \boldsymbol{\theta} \right\|_{2}^{2}$$

Régression non-linéaire

Régression non-linéaire

On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n),$$

οù

$$Y_i = r(\theta, \mathbf{x}_i) + \xi_i, \quad i = 1, \ldots, n$$

avec

$$\mathbf{x}_i \in \mathbb{R}^k$$
, et $\theta \in \Theta \subset \mathbb{R}^d$.

▶ Si $\xi_i \sim_{\text{i.i.d.}} \mathcal{N}(0, \sigma^2)$,

$$\mathcal{L}_n(\theta, Y_1, \dots, Y_n) \propto \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (Y_i - r(\theta, \mathbf{x}_i))^2\right)$$

et l'estimateur du maximum de vraisemblance est obtenu en minimisant la fonction

$$\theta \mapsto \sum_{i=1}^n (Y_i - r(\theta, \mathbf{x}_i))^2.$$

Moindre carrés non-linéaires

Définition

▶ M-estimateur associé à la fonction de contraste $\psi: \Theta \times \mathbb{R}^k \times \mathbb{R} \to \mathbb{R}$: tout estimateur $\widehat{\theta}_n$ satisfaisant

$$\sum_{i=1}^{n} \psi(\widehat{\theta}_n, \mathbf{x}_i, Y_i) = \max_{\mathbf{a} \in \Theta} \sum_{i=1}^{n} \psi(\mathbf{a}, \mathbf{x}_i, Y_i).$$

- Estimateur des moindres carrés non-linéaires : associé au contraste $\psi(a, \mathbf{x}, y) = -(y r(a, \mathbf{x}))^2$.
- Extension des résultats dans le modèle d'échantillonnage dominé au cas cas de v.a. indépendantes non-équidistribuées.

Modèle à réponse binaire

On observe

$$(\mathbf{x}_1, Y_1), \dots, (\mathbf{x}_n, Y_n), Y_i \in \{0, 1\}, \mathbf{x}_i \in \mathbb{R}^k.$$

Modélisation via la fonction de régression

$$\mathbf{x}\mapsto
ho_{\mathbf{x}}(heta)=\mathbb{E}_{ heta}\left[\left.Y
ight|\mathbf{X}=\mathbf{x}\left.
ight]=\mathbb{P}_{ heta}\left[\left.Y=1
ight|\mathbf{X}=\mathbf{x}\left.
ight]$$

Représentation

$$Y_i = p_{\mathbf{x}_i}(\theta) + (Y_i - p_{\mathbf{x}_i}(\theta))$$

= $r(\theta, \mathbf{x}_i) + \xi_i$

avec
$$r(\theta, \mathbf{x}_i) = p_{\mathbf{x}_i}(\theta)$$
 et $\xi_i = Y_i - p_{\mathbf{x}_i}(\theta)$.

▶ $\mathbb{E}_{\theta} \left[\xi_i \right] = 0$ mais structure des ξ_i compliquée (dépendance en θ).

Modèle à réponse binaire

Y_i v.a. de Bernoulli de paramètre $p_{x_i}(\theta)$. Vraisemblance

$$\mathcal{L}_n(\theta, Y_1, \dots, Y_n) = \prod_{i=1}^n p_{\mathbf{x}_i}(\boldsymbol{\theta})^{Y_i} (1 - p_{\mathbf{x}_i}(\boldsymbol{\theta}))^{1 - Y_i}$$

- → méthodes de résolution numérique.
- Régression logistique (très utile dans les applications)

$$p_{\mathbf{x}}(\theta) = \psi(\langle \mathbf{x}, \theta \rangle),$$

$$\psi(t) = \frac{e^t}{1 + e^t}, \ t \in \mathbb{R}$$
 fonction logistique

Régression logistique et modèles latents

Représentation équivalente de la régression logistique : on observe

$$Y_i = I(Y_i^* > 0), \quad i = 1, \ldots, n$$

(les x_i sont donnés), et Y_i^* est une variable latente ou cachée,

$$Y_i^* = \langle \theta, \mathbf{x}_i \rangle + U_i, \quad i = 1, \dots, n$$

avec $U_i \stackrel{i.i.d.}{\sim} F$, où

$$F(t)=rac{1}{1+e^{-t}},\,\,t\in\mathbb{R}\,.$$

car, pour la fonction logistique ψ ,

$$\mathbb{P}_{\theta}\left[Y_{i}^{\star}>0\right]=\psi(\left\langle \mathbf{x}_{i},\theta
ight
angle)=\mathbb{P}[Y_{i}=1]$$

Modèle à réponse discrète multiples : modèle de Poisson

On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n), Y_i \in \mathbb{N}, \mathbf{x}_i \in \mathbb{R}^k.$$

▶ Modélisation via la densité de Y|X = x:

$$k \in \mathbb{N} \mapsto p_{\mathbf{x}}(\theta, k) = \mathbb{P}_{\theta} \left[Y = k | \mathbf{X} = \mathbf{x} \right]$$

▶ Modèle de Poisson $Y|X = x \sim \mathcal{P}oisson(\exp(\langle \theta, x \rangle))$: pour tout $k \in \mathbb{N}$,

$$\mathbb{P}_{\theta}[Y = k | X = x] = \frac{\lambda^k}{k!} \exp(-\lambda) \text{ où } \lambda = \exp(\langle \theta, x \rangle).$$

 $\blacktriangleright \mathbb{E}_{\theta}[Y|X=x] = \exp(\langle \theta, x \rangle), \, \operatorname{var}(Y|X=x) = \exp(\langle \theta, x \rangle).$

Test empirique pour le modèle linéaire

Le Rainbow test

Idée : Même si la vrai relation entre Y et les covariables n'est pas linéaire, localement on peut imaginer qu'elle l'est (approximation d'ordre de 1 de Taylor). Si on construit une estimateur par moindre carré à partir d'un sous-ensemble de données autour de \bar{X}_n alors cette régression devrait être assez bonne.

Par exemple : $Y = X^2 + \mathcal{N}(0,1)$

Le Rainbow test

On note θ l'estimateur construit à partir de m données d'indices $I\subset\{1,\ldots,n\}$ autour de \bar{X}_n et par $\tilde{y}_i=\left\langle X_i,\widetilde{\theta}\right\rangle$ la valeur prédite en X_i . On a donc un R^2 (coefficient de détermination) donné par

$$ilde{R_I^2} = 1 - rac{\sum_{i \in I} (y_i - \tilde{y}_i)^2}{\sum_{i \in I} (y_i - \bar{y}_I)^2}$$

Idée: L'idée centrale du *Rainbow test* est que si le modèle est vraiment linéaire alors l'ajout de données au sous-échantillon $(y_i, X_i)_{i \in I}$ ne devrait pas trop modifier le R^2 . Par contre, si le modèle n'est pas linéaire alors l'ajout de donnée loin de \bar{X}_n devrait dégrader le R^2 . La comparaison entre le R^2 local autour de \bar{X}_n : \tilde{R}_I^2 ; et le R^2 de tout l'échantillon est à la base du *Rainbow test*.

Statistic de test du Rainbow test :

$$T = \frac{(R^2 - \tilde{R}_I^2)}{\tilde{R}_I^2} \frac{(m-k)}{(n-m)}.$$

Sous hypothèse de linéarité (modèle linéaire gaussien), on a

$$T \sim F(n-m, m-k)$$

(loi de Fisher de degrès (n - m, m - k)).

Le Rainbow test

Le choix du sous-échantillon pour le Rainbow test se fait généralement en prenant les m>k données les plus proche de \bar{X}_n pour la **distance de Mahalanobis** :

$$d(x,y) = \sqrt{(x-y)^{\top} (\mathbb{X}^{\top} \mathbb{X})(x-y)} = \|\mathbb{X}(x-y)\|_{2}.$$

On choisit donc pour sous-ensemble de données $(y_i, X_i)_{i \in I}$ l'ensemble de m données telles que $d(X_i, \bar{X}_n)$ est la plus petite.

Autre tests

- Ramsey's RESET test: "Regression Specification Error Test"
- Harvey and Collier test : for a convex or concave alternative
- ► Test de Breusch-Pagan sur l'homoscédasticité du terme d'erreur.
- ▶ test de Durbin-Watson : tester l'autocorrélation des résidus dans un modèle de régression linéaire.
- ► F-test (ou test de Fisher) et ANOVA : test d'égalité de variance et de fit du modèle.