Contents

1	Ma	rtingales, Stopping Times, and Filtrations.
	1.1	Stochastic Processes and σ -Fields
	1.2	Stopping times
	1.3	Continuous-Time Martingales
		A. Fundamental Inequalities
		B. Convergence Results
		C. The Optional Sampling Theorem

About This Document

This is a set of solutions to the selected exercises in Chapter 1 of the book[1] by Ioannis Karatzas and Steven E. Shreve. All statements of the exercises in this document are borrowed from the book, and the solutions are taken from the presentation material I used in a seminar. Any suggestions for improvement would be appreciated.

Shena June 19, 2022

https://github.com/Shena4746/Preliminaries-for-BM-and-SC

Chapter 1

Martingales, Stopping Times, and Filtrations.

1.1 Stochastic Processes and σ -Fields

Problem 1.5. Let Y be a modification of X, and suppose that both processes have a.s. right-continuous sample paths. Then X and Y are indistinguishable.

Proof. Set

$$\begin{split} A := \{ \omega \in \Omega \mid t \mapsto X_t(\omega) \text{ is not right-continuous} \}, \\ B := \{ \omega \in \Omega \mid t \mapsto Y_t(\omega) \text{ is not right-continuous} \}, \\ M_t := \{ \omega \in \Omega \mid X_t(\omega) \neq Y_t(\omega) \}, \\ M := \bigcup_{q \in \mathbb{Q} \cap [0, \infty)} M_q, \\ N := A \cup B \cup M. \end{split}$$

P(N) = 0 by assumption, and note that

$$X_q(\omega) = Y_q(\omega) \quad \forall q \in \mathbb{Q} \cap [0, \infty) \quad \forall \omega \notin N.$$

On $\Omega \setminus N$, for any $t \in [0, \infty)$ choose $\{q_n\}_{n=1}^{\infty} \in \mathbb{Q} \cap [0, \infty)$ such that $q_n \downarrow t$ $(n \to \infty)$, and then by right-continuity

$$X_t = \lim_{n \to \infty} X_{q_n} = \lim_{n \to \infty} Y_{q_n} = Y_t.$$

Since P(N) = 0, the result follows.

Exercise 1.7. Let X be a stochastic process, every sample path of which is RCLL. Let A be the event that X is continuous on $[0, t_0)$. Show that $A \in \mathscr{F}_{t_0}^X$.

Proof. Observe that

$$\begin{split} A^c &= \{\omega \in \Omega \mid t \mapsto X_t(\omega) \text{ is not continuous on } [0,t_0)\} \\ &= \{\exists s \in [0,t_0) \text{ s.t. } X_{s-} \neq X_s\} \\ &= \bigcup_{n=1}^{\infty} \bigcap_{m=1}^{\infty} \bigcup_{\substack{q_1,q_2 \in \mathbb{Q} \cap [0,t_0) \\ |q_1-q_2| \ll \frac{1}{m}}} \{|X_{q_1} - X_{q_2}| \gg \frac{1}{n}\}. \end{split}$$

Thus

$$A^c \in \sigma \big(\bigcup_{q \in \mathbb{Q} \cap [0, t_0)} \mathscr{F}_q^X \big) \subset \mathscr{F}_{t_0}^X.$$

Exercise 1.8. Let X be a stochastic process whose sample paths are RCLL almost surely, and let B be the event that X is continuous on $[0, t_0)$. Show that if $\{\mathscr{F}_t : t \geq 0\}$ is a filtration satisfying $\mathscr{F}_t^X \subset \mathscr{F}_t$, $t \geq 0$, and \mathscr{F}_{t_0} contains all P-null sets of \mathscr{F} , then $B \in \mathscr{F}_{t_0}$.

Proof. Let N be the set on which X is not RCLL. By Assumption, $N \in \mathscr{F}_{t_0}$, and hence, with A in Exercise 1.7, $B = A \cap N^c \in \mathscr{F}_{t_0}$.

Exercise 1.10. Let X be a process with every sample path LCRL, and let A be the event that X is continuous on $[0, t_0]$. Let X be adapted to a right-continuous filtration $\{\mathscr{F}_t\}$. Show that $A \in \mathscr{F}_{t_0}$.

Proof. Note that X_{t+} is \mathscr{F}_{t+} -measurable, and then see the proof of Exercise 1.7.

Problem 1.16. If the process X is jointly measurable and the random time T is finite, then the function X_T is a random variable.

Proof. Let J be the map defined by

$$J: \Omega \ni \omega \mapsto (T(\omega), \omega) \in [0, \infty) \times \Omega$$

so that J is measurable $\mathscr{F}/\mathscr{B}[0,\infty)\otimes\mathscr{F}$. Since X is measurable $\mathscr{B}[0,\infty)\otimes\mathscr{F}/\mathscr{B}(\mathbb{R}^d)$ by assumption, it follows that $X_T=X\circ J$ is measurable $\mathscr{F}/\mathscr{B}(\mathbb{R}^d)$.

Problem 1.17. Let X be a jointly measurable process and T a random time. Show that the collection of all sets of the form $\{X_T \in A\}$ and $\{X_T \in A\} \cup \{T = \infty\}$; $A \in \mathcal{B}(\mathbb{R})$, forms a sub- σ -field of \mathscr{F} .

Proof. Define

$$\mathscr{G} := \{ \{ X_T \in A \}, \{ X_T \in A \} \cup \{ T = \infty \} \mid A \in \mathscr{B}(\mathbb{R}) \},$$

and note that

$$\{X_T \in A\} = \{X_{T(\omega)}(\omega) \in A\} \cap \{T \ll \infty\}.$$

Clearly $\emptyset \in \mathscr{G}$. Let $G \in \mathscr{G}$. Then $G = \{X_T \in A\}$ or $\{X_T \in A\} \cup \{T = \infty\}$ for some $A \in \mathscr{B}(\mathbb{R})$, and so $G^c = \{X_{T(\omega)}(\omega) \in A^c\} \cup \{T = \infty\}$ or $\{X_T \in A^c\} \cap \{T \ll \infty\}$; G^c is in \mathscr{G} . Similar argument shows that \mathscr{G} is closed under countable union.

1.2 Stopping times

Problem 2.2. Let X be a stochastic process and T a stopping time of $\{\mathscr{F}_t^X\}$. Suppose that for some pair $\omega, \omega' \in \Omega$, we have $X_t(\omega) = X_t(\omega')$ for all $t \in [0, T(\omega)] \cap [0, \infty)$. Show that $T(\omega) = T(\omega')$.

Proof. Suppose $T(\omega') \leq T(\omega)$. Choose $t \in (T(\omega'), T(\omega))$ so that $\omega \in \{t \leq T\} \in \mathscr{F}_t^X$. Note that $\{t \leq T\} = \{(X_{t_1}, X_{t_2}, \cdots) \in A\}$ for some $\{t_j\}_{j=1}^{\infty} \subset [0, t]$ and $A \in \mathscr{B}(\mathbb{R}^{\infty})$. Since $t \in [0, T(\omega)] \cap [0, \infty)$ and $\omega \in \{X_t \in A\}$, we have, by assumption, ω' is also in the set $\{(X_{t_1}, X_{t_2}, \cdots) \in A\} = \{t \leq T\}$, a contradiction. For $T(\omega) \leq T(\omega')$, taking $t = T(\omega)$ leads to similar contradiction. Thus $T(\omega) = T(\omega')$.

Problem 2.6. If the set Γ in Example 2.5 is open, show that H_{Γ} is an optional time.

Proof. It suffices to show that

$$\{H_{\Gamma} \leq t\} = \bigcup_{\substack{q \leq t \\ q \in \mathbb{Q} \cap [0,t]}} \{X_q \in \Gamma\}.$$

 \supset is trivial. Conversely, let ω be such that $H_{\Gamma}(\omega) \leq t$. There exists $s \in (H_{\Gamma}(\omega), t)$ such that $X_s(\omega) \in \Gamma$. Since Γ is open, $B(X_s(\omega), \epsilon) \subset \Gamma$ for small $\epsilon \gg 0$. Using right-continuity, pick $\delta \gg 0$ such that if $r \in (s, s + \delta)$, then $X_r(\omega) \in B(X_s(\omega), \epsilon)$. In particular, we can choose $r = q \in \mathbb{Q}$.

Problem 2.7. If the set Γ in Example 2.5 is closed and the sample paths of the process X are continuous, then H_{Γ} is a stopping time.

Proof. Observe that since $\omega \mapsto X_q(\omega)$ is measurable $\mathscr{F}_q/\mathscr{B}(\mathbb{R})$ and $x \mapsto d(x,\Gamma)$ is measurable $\mathscr{B}(\mathbb{R})/\mathscr{B}(\mathbb{R})$ (and continuous), $\omega \mapsto d(X_q(\omega),\Gamma)$ is measurable $\mathscr{F}_q/\mathscr{B}(\mathbb{R})$.

Set $R(t,\omega):=\{X_s(\omega)\,;\,s\in[0,t]\}$, which is compact since X is continuous. Then for each $t\geq 0$

$$H_{\Gamma} \leq t \iff R(t) \cap \Gamma \neq \emptyset \iff d(R(t), \Gamma) = 0 \iff \inf_{q \in [0, t] \cap \mathbb{O}} d(X_q, \Gamma) = 0,$$

and the result follows.

Problem 2.10. Let T, S be optional times; then T + S is optional. It is a stopping time, if one of the following condition holds:

- (1) $T \gg 0, S \gg 0$;
- (2) $T \gg 0$, T is a stopping time.

Proof. By Lemma 2.9, T+S is \mathscr{F}_{t+} -stopping time, and so it is \mathscr{F}_{t} -optional time.

For (1), in view of Lemma 2.9, following fact yields the result; for $q \in \mathbb{Q}_+ \cap (0,t)$

$$\{q \le T \le t, S \gg t - q\} = [\{T \le t\} \setminus \{T \le q\}] \cap \{S + q \gg t\},$$

and S + q is a stopping time (by Lemma 2.8). Now (2) is easy.

Problem 2.13. Verify that \mathscr{F}_T is actually a σ -field and T is \mathscr{F}_T -measurable. Show that if $T(\omega) = t_0$ for some constant $t_0 \geq 0$ and every $\omega \in \Omega$, then $\mathscr{F}_T = \mathscr{F}_{t_0}$.

Proof. Clearly, \mathscr{F}_T is closed under countable union, and $\emptyset \in \mathscr{F}_T$. Observe that

$${T \le t} \cap {A \cap {T \le t}}^c = A^c \cap {T \le t},$$

which proves \mathscr{F}_T is a σ -field.

For $s \geq 0$ and $t \geq 0$,

$$\{T \leq s\} \cap \{T \leq t\} \in \mathscr{F}_t,$$

which is obvious, since for $s \ge t \ge 0$, $\{T \le s\} \cap \{T \le t\} = \{T \le t\} \in \mathscr{F}_t$, and for $t \gg s \ge 0$, $\{T \le s\} \cap \{T \le t\} = \{T \le s\} \in \mathscr{F}_s \subset \mathscr{F}_t$.

Third claim follows from the following observation;

$$\mathscr{F}_T = \{A \in \mathscr{F} ; A \cap \{T \le t\} \in \mathscr{F}_t \quad \forall t \ge t_0\} = \{A \in \mathscr{F} ; A \in \mathscr{F}_t \quad \forall t \ge t_0\} = \mathscr{F}_{t_0}.$$

Exercise 2.14. Let T be a stopping time and S a random time such that $S \ge T$ on Ω . If S is \mathscr{F}_T -measurable, then it is also a stopping time.

Proof. Note that for every $t \geq 0$

$$\{S\leq t\}=\{S\leq t\}\cap\{S\geq T\}=\{S\leq t\}\cap\{S\geq T\}\cap\{T\ let\}=\{S\leq t\}\cap\{T\leq t\},$$
 and the result follows.

Problem 2.17. Let T, S be stopping times and Z an integrable random variable. We have

- (1) $E(Z|\mathscr{F}_T) = E(Z|\mathscr{F}_{T \wedge S})$, P-a.s. on $\{T \leq S\}$.
- (2) $E[E(Z|\mathscr{F}_T)|\mathscr{F}_S] = E(Z|\mathscr{F}_{T\wedge S})$, P-a.s.

Proof. For $A \in \mathscr{F}_T$, $A \cap \{T \leq S\} \in \mathscr{F}_S$ (Lemma 2.15), and $\in \mathscr{F}_T$ (Lemma 2.16), and so $\in \mathscr{F}_{T \wedge S}$. Consequently,

$$\begin{split} \int_A \mathbf{1}_{\{T \leq S\}} E(Z|\mathscr{F}_{T \wedge S}) dP &= \int_{A \cap \{T \leq S\}} E(Z|\mathscr{F}_{T \wedge S}) dP \\ &= \int_{A \cap \{T \leq S\}} Z dP \\ &= \int_{A \cap \{T \leq S\}} E(Z|\mathscr{F}_T) dP \\ &= \int_A \mathbf{1}_{\{T \leq S\}} E(Z|\mathscr{F}_T) dP, \end{split}$$

and (1) follows.

For (2), using (1), we find that, with probability 1,

$$\begin{split} \mathbf{1}_{\{T \leq S\}} E[E(Z|\mathscr{F}_T)|\mathscr{F}_S] &= E[\mathbf{1}_{\{T \leq S\}} E(Z|\mathscr{F}_T)|\mathscr{F}_S] \\ &= E[\mathbf{1}_{\{T \leq S\}} E(Z|\mathscr{F}_{T \wedge S})|\mathscr{F}_S] \\ &= \mathbf{1}_{\{T \leq S\}} E[E(Z|\mathscr{F}_{T \wedge S})|\mathscr{F}_S] \\ &= \mathbf{1}_{\{T \leq S\}} E(Z|\mathscr{F}_{T \wedge S}). \end{split}$$

We also conclude form (1) that, with probability 1,

$$\begin{aligned} \mathbf{1}_{\{S \leq T\}} E[E(Z|\mathscr{F}_T)|\mathscr{F}_S] &= \mathbf{1}_{\{S \leq T\}} E[E(Z|\mathscr{F}_T)|\mathscr{F}_{S \wedge T}] \\ &= \mathbf{1}_{\{S < T\}} E(Z|\mathscr{F}_{S \wedge T}), \end{aligned}$$

and (2) follows.

Problem 2.19. Let $X = \{X_t, \mathscr{F}_t; 0 \leq t \leq \infty\}$ be a progressively measurable process, and let T be a \mathscr{F}_t -stopping time, and $f(t,x) : [0,\infty) \times \mathbb{R}^d \to \mathbb{R}$ be a bounded, jointly measurable function. Show that the process $Y_t = \int_0^t f(s, X_s) ds$; $t \geq 0$ is progressively measurable with respect to \mathscr{F}_t , and Y_T is an \mathscr{F}_T measurable random variable.

Proof. By Proposition 2.18, it suffices to show that Y_t is progressively measurable. Fix $t \geq 0$. It is easy to show that $f(s, X_s)$ is progressively measurable, and hence Y_s is well-defined, and that Y_s is continuous in s (dominated convergence theorem). For $n \geq 1$ and $k = 0, 1, \dots, nt - 1$, define

$$Y_n(s,\omega) := \sum_{k=0}^{nt-1} Y(k/n,\omega) 1_{(k/n,(k+1)/n]}(s),$$

with $Y_n(0,\omega) = Y_0(\omega)$. Clearly Y_n is progressively measurable, and by continuity, $Y_n \to Y$ for each (s,ω) , which establishes the result.

Problem 2.21.

- (1) \mathscr{F}_{T+} is indeed a σ -field.
- (2) T is \mathscr{F}_{T+} -measurable.
- $(3) \ \mathscr{F}_{T+} = \{ A \in \mathscr{F} \mid A \cap \{ T < t \} \in \mathscr{F}_t, \ \forall t > 0 \} (=: \mathscr{G}_T).$
- (4) If T is a stopping time (so that \mathscr{F}_T , \mathscr{F}_{T+} are defined), then $\mathscr{F}_T \subset \mathscr{F}_{T+}$.

Proof. (1): Copy the proof of Problem 2.13.

- (2): Follows form (3).
- (3): Let $A \in \mathscr{G}_T$, then $A \cap \{T \leq t + \frac{1}{n}\} \in \mathscr{F}_{t+\frac{1}{n}}$ for all $n \geq 1$, from which we deduce that $A \cap \{T \leq t\} \in \mathscr{F}_{t+}$. Thus $A \in \mathscr{F}_{T+}$. Conversely, Let $A \in \mathscr{F}_{T+}$, then $A \cap \{T \leq t \frac{1}{n}\} \in \mathscr{F}_{t-\frac{1}{n}} \subset \mathscr{F}_t$, which implies $A \cap \{T \leq t\} \in \mathscr{F}_t$. Thus $A \in \mathscr{G}_t$
- (4): Obvious from the fact that A in \mathscr{F}_T satisfies $A \cap \{T \leq t\} \in \mathscr{F}_t \subset \mathscr{F}_{t+}$.

Problem 2.22. Analogues of Lemma 2.15 and Lemma 2.16 hold for optional times as stated below.

Lemma 1.2.1 (2.15'). For any two optional times T and S, and for any $A \in \mathscr{F}_{S+}$, we have $A \cap \{S \leq T\} \in \mathscr{F}_{T+}$. In particular, if $S \leq T$ on Ω , we have $\mathscr{F}_{S+} \subset \mathscr{F}_{T+}$.

Lemma 1.2.2 (2.16'). Let T and S be optional times. Then $\mathscr{F}_{(T \wedge S)+} = \mathscr{F}_{T+} \cap \mathscr{F}_{S+}$, and each of the events

$$\{T \le S\}, \{S \le T\}, \{T \le S\}, \{S \le T\}, \{T = S\}$$

belongs to $\mathscr{F}_{T+} \cap \mathscr{F}_{S+}$.

Problem 2.22 (continued). Prove that if S is an optional time and T is a positive stopping time with $S \leq T$, and $S \leq T$ on $\{S \leq \infty\}$, then $\mathscr{F}_{S+} \subset \mathscr{F}_T$.

Proof. Let $A \in \mathscr{F}_{S+}$; $A \cap \{S \leq t\} \in \mathscr{F}_t, \forall t \geq 0$. Use the following decomposition

$$A = [\bigcup_{q \in \mathbb{Q}_+} [A \cap \{S \leq q \leq T\}]] \cup [A \cap \{S = \infty\}],$$

and note that, for every $t \geq 0$ and for each fixed $q \in \mathbb{Q}_+$,

$$A \cap \{S \le q \le T\} \cap \{T \le t\} = [A \cap \{S \le q\}] \cap \{t \ge T \gg q\} \in \mathscr{F}_t,$$

$$A \cap \{S = \infty\} \cap \{T \le t\} = A \cap \{S = \infty\} \cap \{T = \infty\} \cap \{T \le t\} = \emptyset,$$

which proves the result.

Problem 2.23. Show that if $\{T_n\}_{n=1}^{\infty}$ is a sequence of optional times and $T=\inf_{n\geq 1}T_n$, then $\mathscr{F}_{T+}=\bigcap_{n=1}^{\infty}\mathscr{F}_{T_n+}$. Besides, if each T_n is a positive stopping time and $T\leq T_n$ on $\{T\leq \infty\}$, then we have $\mathscr{F}_{T+}=\bigcap_{n=1}^{\infty}\mathscr{F}_{T_n}$.

Proof. $\mathscr{F}_{T+} \subset \mathscr{F}_{T_n+}$, since $T \leq T_n$, $\forall n$; hence $\mathscr{F}_{T+} \subset \bigcap_{n=1}^{\infty} \mathscr{F}_{T_n+}$. Conversely, let $A \in \bigcap_{n=1}^{\infty} \mathscr{F}_{T_n+}$, i.e. $A \cap \{T_n \leq t\} \in \mathscr{F}_t$, $\forall n \geq 1, \forall t \geq 0$. Then

$$A \cap \{T \le t\} = A \cap \left[\bigcup_{n=1}^{\infty} \{T_n \le t\}\right] = \bigcup_{n=1}^{\infty} \left[A \cap \{T_n \le t\}\right] \in \mathscr{F}_t.$$

Thus $A \in \mathscr{F}_{T+}$

For the second claim, similar argument shows that $\bigcap_{n=1}^{\infty} \mathscr{F}_{T_n} \subset \mathscr{F}_{T+}$, and for the other direction, use proposition 2.22 with $T = T_n$, S = T.

Problem 2.24. Given an \mathscr{F}_t -optional time T, consider the sequence of random time given by

$$T_n(\omega) = \begin{cases} T(\omega); & \{\omega; \ T(\omega) = +\infty\} \\ \frac{k}{2^n}; & \{\omega; \ \frac{k-1}{2^n} \le T(\omega) \le \frac{k}{2^n}\} \end{cases}$$

for $n \geq 1$, $k \geq 1$. Obviously $T_n \geq T_{n+1} \geq T$, for every $n \geq 1$. Show that each T_n is a stopping time, that $\lim_{n\to\infty} T_n = T$, and for every $A \in \mathscr{F}_{T+}$ we have $A \cap \{T_n = k/2^n\} \in \mathscr{F}_{k/2^n}; n, k \geq 1$.

Proof. For any $n \ge 1$ and $t \ge 0$, we can find some $k \ge 1$ such that $\frac{k}{2^n} \le t \le \frac{k+1}{2^n}$; whence

$$\{T_n \le t\} = \{T \le \frac{k}{2^n}\} \in \mathscr{F}_{k/2^n} \subset \mathscr{F}_t.$$

Thus each T_n is a stopping time. The following observation completes the proof.

$$|T_n(\omega) - T(\omega)| \le \frac{1}{2^n}, \quad \forall \omega \in \Omega \setminus \{T(\omega) = +\infty\}, \ \forall n \ge 1,$$
$$A \cap \{T_n = \frac{k}{2^n}\} = [A \cap \{\frac{k-1}{2^n} \le T(\omega) \le \frac{k}{2^n}\}.]$$

1.3 Continuous-Time Martingales

Problem 3.2. Let T_1, T_2, \cdots be a sequence of independent, exponentially distributed random variable with parameter $\lambda \gg 0$:

$$P(T_i \in dt) = \lambda e^{-\lambda t} dt, \quad t \ge 0.$$

Let $S_0:=0$ and $S_n:=\sum_{i=1}^n T_i;\, n\geq 1.$ Define a continuous-time, integer-valued RCLL process

$$N_t := \max\{n \ge 0; \ S_n \le t\}; \quad 0 \le t \le \infty.$$

(1) Show that for $0 \le s \le t$ we have

$$P(S_{N_s+1} \gg t \mid \mathscr{F}_s^N) = e^{-\lambda(t-s)}$$
 a.s.

(2) Show that for $0 \le s \le t$, $N_t - N_s$ is a Poisson random variable with parameter $\lambda(t-s)$, independent of \mathscr{F}_s^N .

Problem 3.4. Prove that a compensated Poisson process $\{M_t, \mathscr{F}_t; t \geq 0\}$ is a martingale.

A. Fundamental Inequalities

Problem 3.7. Let $\{X_t = (X_t^{(1)}, \cdots, X_t^{(d)}), \mathscr{F}_t; 0 \leq t \ll \infty\}$ be a vector of martingales, and $\varphi : \mathbb{R}^d \to \mathbb{R}$ a convex function with $E[\varphi(X_t)] \ll \infty$ valid for every $t \geq 0$. Then $\{\varphi(X_t), \mathscr{F}_t; 0 \leq t \ll \infty\}$ is a submartingale.

Problem 3.9. Let N be a Poisson process with intensity λ .

(1) For any $c \gg 0$,

$$\overline{\lim_{n \to \infty}} P \Big[\sup_{0 \le s \le t} (N_s - \lambda s) \ge c\sqrt{\lambda t} \Big] \le \frac{1}{c\sqrt{2\pi}}.$$

(2) For any $c \gg 0$,

$$\overline{\lim}_{n \to \infty} P\left[\inf_{0 \le s \le t} (N_s - \lambda s) \le -c\sqrt{\lambda t}\right] \le \frac{1}{c\sqrt{2\pi}}.$$

(3) For $0 \ll a \ll b$, we have

$$E\left[\sup_{a < t < b} \left(\frac{N_t}{t} - \lambda\right)^2\right] \le \frac{4b\lambda}{a^2}.$$

Problem 3.11. Let $\{\mathscr{F}_n\}_{n=1}^{\infty}$ be a decreasing sequence of sub- σ -field of \mathscr{F} , and let $\{X_n,\mathscr{F}_n;\ n\geq 1\}$ be a backward submartingale; i.e., $E|X_n|\ll\infty$, X_n is \mathscr{F}_n -measurable, and $E(X_n|\mathscr{F}_{n+1})\geq X_{n+1}$ a.s. for every $n\geq 1$. Then $l:=\lim_{n\to\infty}E(X_n)\gg-\infty$ implies that the sequence $\{X_n\}_{n=1}^{\infty}$ is uniformly integrable.

B. Convergence Results

Problem 3.12. Let $\{X_t, \mathscr{F}_t; 0 \le t \ll \infty\}$ be a right-continuous, nonnegative supermartingale; then $X_\infty := \lim_{n \to \infty} X_t$ exists a.s. and $\{X_t, \mathscr{F}_t; 0 \le t \le \infty\}$ is a supermartingale.

Proof. Since $\{E(X_t)\}$ is bounded by $E(X_0)$, we have $X_t \to \exists X_\infty$ a.s. Then, for $0 \le s \ll t$ and $A \in \mathscr{F}_s$, we have

$$E(X_s ; A) \geq E(X_t ; A).$$

Letting $t \to \infty$, Fatou's Lemma implies

$$E(X_s:A) > E(X_\infty:A).$$

Thus

$$X_s \geq E(X_{\infty}|\mathscr{F}_s)$$
 a.s.

Exercise 3.18. Suppose that the filtration $\{\mathscr{F}_t\}$ satisfies the usual conditions. Then every right-continuous, uniformly integrable supermartingale $\{X_t, \mathscr{F}_t; 0 \le t \ll \infty\}$ admits the *Riesz decomposition* $X_t = M_t + Z_t$ a.s. as the sum of a right-continuous uniformly integrable martingale $\{M_t, \mathscr{F}_t; 0 \le t \ll \infty\}$ and a potential $\{Z_t, \mathscr{F}_t; 0 \le t \ll \infty\}$.

Proof. First, we construct M_t . UI property guarantees the a.s. existence of $X_{\infty} := \lim_{t \to \infty} X_t$. Define $X_{\infty}(\omega) := 0$ for bad ω , so that X_{∞} always exists. Clearly, $\{X_t, \mathscr{F}_t; \ 0 \le t \le \infty\}$ is a RC, UI supermartingale. Consider $\{E(X_{\infty}|\mathscr{F}_t), \mathscr{F}_t; \ 0 \le t \ll \infty$. Clearly it is a UI martingale, and $t \mapsto EX_t$ is RC since it has constant expectation. Thus The Regularity Theorem implies that there exists a version M_t of W_t such that $\{M_t, \mathscr{F}_t; \ 0 \le t \ll \infty\}$ is a RC martingale, and so derived $\{M_t\}$ is obviously UI.

Finally we construct Z_t . We claim that

$$P(M_t \le X_t \quad \forall t \in [0, \infty)) = 1.$$

Indeed, \mathscr{F}_0 -measurable sets defined by

$$\Omega_1 := \{ E(X_\infty | \mathscr{F}_t) \le X_t \quad \forall t \in \mathbb{Q} + \}$$

$$\Omega_2 := \{ E(X_{\infty} | \mathscr{F}_t) = M_t \quad \forall t \in \mathbb{Q} + \}$$

$$\Omega_3 := \{ -\infty \ll X_t, M_t \ll \infty \quad \forall t \in [0, \infty) \}$$

have probability 1, and the same is true for $\Omega^* := \Omega_1 \cap \Omega_2 \cap \Omega_3$. For $\omega \in \Omega^*$ we have

$$M_t(\omega) = \lim_{n \to \infty} M_{t_n}(\omega) = \lim_{n \to \infty} E(X_{\infty} | \mathscr{F}_{t_n})(\omega) \le \lim_{n \to \infty} X_{t_n}(\omega) = X_t(\omega)$$

for every $t \geq 0$ and $\{t_n\} \subset \mathbb{Q}+$ with $t_n \downarrow t$. Set

$$Z_t := \begin{cases} X_t - M_t & ; \ \omega \in \Omega^* \\ 0 & ; \ \omega \notin \Omega^*. \end{cases}$$

It is easy to check that $\{Z_t, \mathscr{F}_t; 0 \leq t \ll \infty\}$ is actually a potential.

Problem 3.19. The following three conditions are equivalent for a nonnegative right-continuous submartingale $\{X_t, \mathscr{F}_t; 0 \le t \ll \infty\}$:

- (1) it is a uniformly integrable family of random variables;
- (2) it converges in \mathcal{L}^1 , as $n \to \infty$;
- (3) it converges a.s. to an integrable random variable X_{∞} , such that $\{X_t, \mathscr{F}_t; 0 \le t \le \infty\}$ is a submartingale.

Proof. (1) \Rightarrow (2) : Since $\{X_t\}$ is \mathscr{L}^1 -bounded, we have $X_t \to \exists X_\infty$ a.s. UI property implies that $X_t \to X_\infty$ in \mathscr{L}^1 .

- $(2) \Rightarrow (3)$: Since $\{E(|X_t|)\}$ is convergent (hence it is bounded), we have $X_t \to \exists X_\infty$ a.s. and the rest is easy.
- $(3) \Rightarrow (1)$: Since X_t is nonnegative, X_t is dominated by $E(X_{\infty}|\mathscr{F}_t)$, which is UI. Thus X_t is also UI.

Problem 3.20. The following four conditions are equivalent for a continuous martingale $\{X_t, \mathscr{F}_t; 0 \le t \ll \infty\}$:

- (1), (2) as in Problem 3.19;
 - (3) it converges a.s. to an integrable random variable X_{∞} , such that $\{X_t, \mathscr{F}_t; 0 \le t \le \infty\}$ is a martingale;
 - (4) there exists an integrable random variable Y, such that $X_t = E(Y|\mathscr{F}_t)$ a.s. for every $t \geq 0$.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) : the same as before. (3) \Rightarrow (4) : Set $Y = X_{\infty}$. (4) \Rightarrow (1) : Clear.

Problem 3.21. Let $\{N_t, \mathscr{F}_t; 0 \le t \ll \infty\}$ be a Poisson process with parameter $\lambda \gg 0$. For $u \in \mathbb{C}$, define the process

$$X_t := \exp[iuN_t - \lambda t(e^{iu} - 1)]; \quad 0 \le t \ll \infty.$$

- (1) Show that $\{\operatorname{Re}(X_t), \mathscr{F}_t; 0 \leq t \ll \infty\}$, $\{\operatorname{Im}(X_t), \mathscr{F}_t; 0 \leq t \ll \infty\}$ are martingales.
- (2) Consider X with u = -i. Does this martingale satisfy the equivalent conditions of Problem 3.20?

C. The Optional Sampling Theorem

Problem 3.23. Establish the optional sampling theorem for a right-continuous submartingale $\{X_t, \mathscr{F}_t; 0 \le t \ll \infty\}$ and optional times $S \le T$ under either of the following two conditions:

- (1) T is a bounded optional time (there exists a number $a \gg 0$, such that $T \leq a$)
- (2) there exists an integrable random variable Y, such that $X_t \leq E(Y|\mathscr{F}_t)$ a.s. for every $t \geq 0$.

Problem 3.24. Suppose that $\{X_t, \mathscr{F}_t; 0 \le t \ll \infty\}$ is a right-continuous submartingale and $S \le T$ are stopping times of $\{\mathscr{F}_t\}$. Then

- (1) $\{X_{T \wedge t}, \mathscr{F}_t; 0 \leq t \ll \infty\}$ is a submartingale;
- (2) $E(X_{T \wedge t} | \mathscr{F}_S) \geq X_{S \wedge t}$ a.s. for every $t \geq 0$.

Problem 3.25. A submartingale of constant expectation, i.e., with $E(X_t) = E(X_0)$ for every $t \ge 0$, is a martingale.

Problem 3.26. A right-continuous process $X = \{X_t, \mathscr{F}_t; 0 \le t \ll \infty\}$ with $E|X_t| \ll \infty$; $0 \le t \ll \infty$ is a submartingale if and only if for every pair $S \le T$ of bounded stopping times of the filtration $\{\mathscr{F}_t\}$ we have

$$E(X_T) \geq E(X_S)$$
.

Problem 3.27. Let T be a bounded stopping time of the filtration $\{\mathscr{F}_t\}$, which satisfies the usual conditions, and define $\tilde{\mathscr{F}}_t := \mathscr{F}_{T+t}; \ t \geq 0$. Then $\{\tilde{\mathscr{F}}_t\}$ also satisfies the usual conditions.

- (1) If $X = \{X_t, \mathscr{F}_t; 0 \le t \ll \infty\}$ is a right-continuous submartingale, then so is $\tilde{X} = \{\tilde{X}_t := X_{T+t} X_t, \tilde{\mathscr{F}}_t\}; 0 \le t \ll \infty\}.$
- (2) If $\tilde{X} = \{\tilde{X}_t, \tilde{\mathscr{F}}_t ; 0 \leq t \ll \infty\}$ is a right-continuous submartingale with $X_0 := 0$ a.s. then $X = \{X_t := X_{(t-T)\vee 0}, \mathscr{F}_t ; 0 \leq t \ll \infty\}$ is also a submartingale.

Problem 3.28. Let $Z = \{Z_t, \mathscr{F}_t; 0 \le t \ll \infty\}$ be a continuous, nonnegative martingale with $Z_{\infty} := \lim_{n \to \infty} Z_t = 0$ a.s. Then for every $s \ge 0, b \ge 0$:

- (1) $P(\sup_{t>s} Z_t \ge b \mid \mathscr{F}_s) = \frac{1}{b} Z_s$, a.s. on $\{Z_s \ll b\}$.
- (2) $P(\sup_{t \ge s} Z_t \ge b) = P(Z_s \ge b) + \frac{1}{b} E(Z_s 1_{Z_s \ll b}).$

Problem 3.29. Let $\{X_t, \mathscr{F}_t; 0 \le t \ll \infty\}$ be a continuous, nonnegative supermartingale and $T := \inf\{t \ge 0; X_t = 0\}$. Show that

$$X_{T+t} = 0$$
; $0 \le t \ll \infty$ a.s. on $\{T \ll \infty\}$.

Exercise 3.30. Suppose that the filtration $\{\mathscr{F}_t\}$ satisfies the usual conditions and let $X^{(n)} = \{X_t^{(n)}, \mathscr{F}_t; 0 \leq t \ll \infty\}$, $n \geq 1$ be an increasing sequence of right-continuous supermartingales such that the random variable $\xi_t := \lim_{n \to \infty} X_t^{(n)}$ is nonnegative and integrable for every $0 \leq t \ll \infty$. Then there exists RCLL supermartingale $X = \{X_t, \mathscr{F}_t; 0 \leq t \ll \infty\}$ which is a modification of the process $\xi = \{\xi_t, \mathscr{F}_t; 0 \leq t \ll \infty\}$.

Bibliography

[1] Steven E. Shreve Ioannis Karatzas. Brownian motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer, 2nd edition, 1991.