1 公式

1.1 函数

取整函数

y = [x] 向左取整: $x - 1 < [x] \le x$ 一般搭配夹逼准则

1.2 极限

要分左右极限的情况

- 1、分段函数的分段点处
- 2、e 的无穷大型,如 $\lim_{x\to 1} e^{\frac{1}{x-1}}$
- 3、 $arctan\infty$ 型,如 $arctan \frac{1}{x-1}$

极限的四则运算

设 $\lim f(x) = A \lim g(x) = B$,则:

- 1, $\lim [f(x) \pm g(x)] = A \pm B$
- $2, \lim[f(x)g(x)] = AB$
- 3. $\lim \frac{f(x)}{g(x)} = \frac{A}{B} (B \neq 0)$

若 $\lim f(x)$ 存在 $\lim g(x)$ 不存在,则 $\lim [f(x) \pm g(x)]$ 不存在,其他情况都没有结论

多项式除多项式求极限

$$\lim_{x \to \infty} \frac{a_0 x^m + \dots + a_m x^0}{b_0 x^n + \dots + b_n x^0} = \begin{cases} \frac{a_0}{b_0}, & m = n \\ 0, & m < n \\ \infty, & m > n \end{cases}$$

例:

$$\lim_{x \to \infty} \frac{3x^3 + 4x^2 + 2}{7x^3 + 5x^2 - 3} = \frac{3}{7}$$

复合函数求极限

如果 f(x) 连续,且 g(x) 有极限 A,则:

$$\lim_{x\to x_0}f[g(x)]=f[\lim_{x\to x_0}g(x)]=f(A)$$

例:

$$\lim_{x \to 3} \sqrt{\frac{x-3}{x^2-9}} = \sqrt{\lim_{x \to 3} \frac{x-3}{x^2-9}} = \sqrt{\frac{1}{6}}$$

幂指函数求极限

若 $\lim f(x) = A > 0$ 且 $\lim g(x) = B$,则: $\lim f(x)^{g(x)} = A^B$

1.3 重要极限

夹逼准则

函数 A > B > C,函数 A 的极限是 X,函数 C 的极限也是 X,那 么函数 B 的极限就一定是 X

单调有界准则

单调递增且有上界,则有极限,单调递减且有下界,则有极限

重要极限

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

$$\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$$

1.4 无穷小

无穷小:极限为 0, (0 也是无穷小) 有界函数 × 无穷小仍是无穷小

设 α 和 β 是无穷小,且 $\alpha \neq 0$,若 $\lim \frac{\beta}{\alpha} = 0$,则 β 是比 α 的高阶无穷小,记为: $\beta = o(\alpha)$

$$o(x^{2}) \pm o(x^{2}) = o(x^{2})$$

$$o(x^{2}) \pm o(x^{3}) = o(x^{2})$$

$$x^{2}o(x^{3}) = o(x^{5})$$

$$o(x^{2})o(x^{3}) = o(x^{5})$$

$$o(2x^{2}) = o(x^{2})$$

1.5 常用的等价

若 $\lim \frac{\beta}{\alpha} = 1$, 则 β 与 α 是等价无穷小,记为: $\beta \sim \alpha$

 $\beta \sim \alpha \Leftrightarrow \beta = \alpha + o(\alpha)$ x 的高次方 $\pm x$ 的低次方 $\sim x$ 的低次方 例: $x^3 + 3x \sim 3x$

若 $\alpha \sim \alpha_1$ 且 $\beta \sim \beta_1$,则 $\lim \frac{\beta}{\alpha} = \lim \frac{\beta_1}{\alpha_1}$

当 $x \to 0$ 时, $\sin x \sim x$

当 $x \to 0$ 时, $\arcsin x \sim x$

当 $x \to 0$ 时, $\tan x \sim x$

当 $x \to 0$ 时, $\arctan x \sim x$

当 $x \to 0$ 时, $ln(1+x) \sim x$

当 $x \to 0$ 时, $e^x - 1 \sim x$

1.6 连续

若 f(x) 在 x_0 处连续,则 $\lim_{x \to x_0} f(x) = f(x_0)$

连续 $\pm \times \div$ 连续 = 连续 连续 \pm 不连续 = 不连续 若 f(x) 连续 g(x) 也连续,则 f[g(x)] 连续

单调连续函数的反函数也连续,且单调性相同

闭区间内连续函数必有界

推广:

f(x) 在 $(a\ b)$ 内连续,且 $\lim_{x\to a^+}f(x)$ 和 $\lim_{x\to b^-}f(x)$ 都存在,则 f(x) 在 $(a\ b)$ 内有界

零点定理

f(x) 在 $(a\ b)$ 内连续,且 $\lim_{x\to a^+}f(x)$ 和 $\lim_{x\to b^-}f(x)$ 异号,则 $\exists \xi\in(a\ b)$,使得 $f(\xi)=0$

1.7 间断点

第一类间断点

1、可去间断点:左右极限均存在且相等

2、跳跃间断点:左右极限均存在且不相等

第二类间断点

左右极限至少一个不存在

1、无穷间断点: $x \to x_0^-$ 或 $x \to x_0^+$ 时, $f(x) \to \infty$

2、振荡间断点: $x \to x_0^-$ 或 $x \to x_0^+$ 时, f(x) 上下振荡

1.8 高中基础

根式有理化

若分母(或分子)是两个无理数相加(或相减),则把分子和分母同乘 这两个无理数的和(或差),分母(或分子)就变成了有理数 例:

$$\sqrt{x^2 + 1} - x = \frac{\sqrt{x^2 + 1} - x}{1}$$

$$= \frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{\sqrt{x^2 + 1} + x}$$

$$= \frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} + x} = \frac{1}{\sqrt{x^2 + 1} + x}$$

立方差公式

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

例:

$$\begin{split} &\frac{1}{1-x} - \frac{3}{1-x^3} \\ &= \frac{1+x+x^2}{(1-x)(1+x+x^2)} - \frac{3}{1-x^3} \\ &= \frac{1+x+x^2-3}{1-x^3} \\ &= \frac{x+x^2-2}{1-x^3} \end{split}$$

因式分解

$$x^2 + (a+b)x + ab = (x+a)(x+b)$$
 例:
$$x^2 - x - 2 = x^2 + (2-1)x + (2 \times (-1)) = (x+2)(x-1)$$

2 题目

2.1
$$\mathcal{E} f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| = 1 \ g(x) = e^x, \\ -1, & |x| > 1 \end{cases}$$

求 f[g(x)] 和 g[f(x)]

所有的 x 都换成 g(x):

$$f[g(x)] = \begin{cases} 1, & |e^x| < 1 \text{ } \mathbb{P}x < 0 \\ 0, & |e^x| = 1 \text{ } \mathbb{P}x = 0 \\ -1, & |e^x| > 1 \text{ } \mathbb{P}x > 0 \end{cases}$$

所有的 x 都换成 f(x):

$$g[f(x)] = e^{f(x)} = \begin{cases} e, & |x| < 1\\ 1, & |x| = 1\\ e^{-1}, & |x| > 1 \end{cases}$$

2.2 没
$$f(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0, \\ x+1, & x > 0 \end{cases}$$

证明当 $x \to 0$ 时, f(x) 的极限不存在

$$\lim_{x \to 0^{-}} f(x) = x - 1 = -1$$

$$\lim_{x \to 0^{+}} f(x) = x + 1 = 1$$

由于左右极限不相等, 所以极限不存在

2.3 $y = x \cos x$ 在 $(-\infty + \infty)$ 是否有界? 是否为 $x \to +\infty$ 的无穷大?

取 $x = 2k\pi \in (-\infty + \infty)$ 时, $y = 2k\pi$ 大于任意的常数 M, 所以函数无界

取 $x = \frac{\pi}{2} + 2k\pi \in (x + \infty)$ 时, y = 0, 所以不是无穷大

2.4 求极限 $\lim_{x\to 2} \frac{x^3-1}{x^2-5x+3}$

函数连续,则函数值与极限相等,直接代入极限

$$\lim_{x \to 2} \frac{x^3 - 1}{x^2 - 5x + \sqrt{3}} = \frac{2^3 - 1}{2^2 - 5 \times 2 + 3} = \frac{7}{-3}$$

2.5 求极限 $\lim_{x\to 3} \frac{x-3}{x^2-9}$

代入极限发现这是 $\frac{0}{0}$ 型的极限则需要先消去 0 因子,再代入极限

$$\lim_{x \to 3} \frac{x-3}{x^2 - 9} = \lim_{x \to 3} \frac{x-3}{(x+3)(x-3)} = \lim_{x \to 3} \frac{1}{x+3} = \frac{1}{3+3} = \frac{1}{6}$$

2.6 求极限 $\lim_{x\to\infty} \frac{3x^3+4x^2+2}{7x^3+5x^2-3}$

代入极限发现这是 ∞ 型的极限

则需要先消去 ∞ 因子,再代入极限

$$\lim_{x \to \infty} \frac{3x^3 + 4x^2 + 2}{7x^3 + 5x^2 - 3}$$

分子分母同除以最高次方

$$= \lim_{x \to \infty} \frac{3 + \frac{4}{x} + \frac{2}{x^3}}{7 + \frac{5}{x} - \frac{3}{x^3}}$$

代入极限

$$= \frac{3+0+0}{7+0-0} = \frac{3}{7}$$

由此可推出多项式除多项式求极限的公式

2.7 求极限 $\lim_{x\to\infty} x(\sqrt{x^2+1}-x)$

代入极限发现这是 $0\cdot\infty$ 型的极限

则需要先化成 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 型的极限,再继续求

$$\lim_{x \to \infty} x(\sqrt{x^2 + 1} - x)$$

根式有理化

$$= \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1} + x}$$

此时已变成 ∞ 型的极限

在 $x \to \infty$ 时, $x^2 + 1$ 中的常数 1 对整体 $x^2 + 1$ 的影响微乎其微,所以常数 1 可以忽略

$$= \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{x}{x + x} = \frac{1}{2}$$

2.8 求极限 $\lim_{x\to 1} (\frac{1}{1-x} - \frac{3}{1-x^3})$

代入极限发现这是 $\infty - \infty$ 型的极限则需要先化成 $\frac{0}{0}$ 或 $\frac{\infty}{0}$ 型的极限,再继续求 $\lim_{x\to 1}(\frac{1}{1-x}-\frac{3}{1-x^3})$ 使用立方差公式化简 $\lim_{x\to 1}(\frac{x+x^2-2}{1-x^3})$ 此时已变成 $\frac{0}{0}$ 型的极限

因式分解

$$= \lim_{x \to 1} \frac{(x+2)(x-1)}{(1-x)(1+x+x^2)}$$
$$= -\frac{1+2}{1+1+1} = -1$$

2.9 求极限 $\lim_{x\to 3} \sqrt{\frac{x-3}{x^2+9}}$

$$\lim_{x \to 3} \sqrt{\frac{x-3}{x^2+9}}$$
 $f = \sqrt{u}$ 是连续函数,且 $u = \frac{x-3}{x^2+9}$ 有极限,则
$$= \sqrt{\lim_{x \to 3} \frac{x-3}{x^2+9}}$$

$$= \sqrt{\frac{1}{6}}$$

2.10 求极限 $\lim_{x\to\infty} \frac{\sin x}{x}$

$$\lim_{x \to \infty} \frac{\sin x}{x}$$

$$= \lim_{x \to \infty} \sin x \frac{1}{x}$$
有界函数 × 无穷小 = 无穷小

=0

2.11 求极限 $\lim_{x\to 0} (1+2x)^{\frac{3}{sinx}}$

代人极限发现这是 1^{∞} 型的极限

则需要凑重要极限

凑
$$(1+x)^{\frac{1}{x}}$$

$$\lim_{x\to 0} (1+2x)^{\frac{3}{\sin x}}$$

$$= \lim_{x\to 0} (1+2x)^{\frac{1}{2x}} \frac{6x}{\sin x}$$
幂指函数求极限
$$= \lim_{x\to 0} (1+2x)^{\frac{1}{2x}} \lim_{x\to 0} \frac{6x}{\sin x}$$

$$= e^{6}$$

2.12 求极限 $\lim_{x\to 0^+} x[\frac{1}{x}]$

使用取整函数的性质 $x-1 < [x] \le x$

$$\Rightarrow \frac{1}{x} - 1 < \left[\frac{1}{x}\right] \le \frac{1}{x}$$
由于 $x \to 0^+$, 知 $x > 0$

$$\Rightarrow 1 - x < x\left[\frac{1}{x}\right] \le 1$$
由于 $\lim_{x \to 0^+} (1 - x) = 1$, 且 $\lim_{x \to 0^+} 1 = 1$
由夹逼准则可得

$$\lim_{x \to 0^+} x[\frac{1}{x}] = 1$$

2.13 证明数列 $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2}}$ 有极限,并求极限

设
$$x_{n+1}=\sqrt{2+x_n},\ x_1=\sqrt{2}$$
 由 $x_1<\sqrt{2}<2,\$ 设 $x_k<2,\$ 则 $x_{k+1}=\sqrt{2+x_k}<\sqrt{2+2}=2$ 可知 $x_n<2,\$ 即数列有上界 2

判断单调性:

$$x_{n+1} - x_n$$

$$= \sqrt{2 + x_n} - x_n$$
根式有理化
$$= \frac{x_n + 2 - x_n^2}{\sqrt{x_n + 2} + x_n}$$

$$= \frac{(2 - x_n)(1 + x_n)}{\sqrt{x_n + 2} + x_n}$$

由于 $1+x_n, \sqrt{x_n+2}, x_n$ 都大于 0,此时整个式子的正负由 $2-x_n$ 决定

由于 x_n 的上界为 2,则 $2-x_n>0$

$$x_{n+1} - x_n > 0 \text{ pr } x_{n+1} > x_n$$

则数列单调递增

由单调有界准则知,数列有极限

令
$$\lim_{x \to \infty} x_n = A$$

在 $x_{n+1} = \sqrt{2 + x_n}$ 两端取极限
$$\lim_{x \to \infty} x_{n+1} = \lim_{x \to \infty} \sqrt{2 + x_n}$$
 $\lim_{x \to \infty} x_{n+1} = \sqrt{2 + A}$

 x_{n+1} 可以看作是 x_n 的子列 子列与数列极限相同,则 $\lim_{x\to\infty}x_{n+1}=A$ 即 $A=\sqrt{2+A}$ A=2 或 A=-1由于数列大于 0,则 A=2