

Shanghai Hailichuang Microelectronics Co., Ltd. **Hynitron Microelectronics**

CST816D

High-performance self-capacitive touch chip

V1.0

Overview

CST816D self-capacitive touch chip, using high-speed MCU core and embedded DSP circuit, combined with its own fast self-capacitive sensing technology, can widely support a variety of self-capacitive patterns including triangles, on which single-point gestures and real two-point operations are realized, achieving extremely high sensitivity and low standby power.

Chip Features

- \ddot{y} Built-in fast self-capacitance detection circuit and high-performance DSP module
 - ÿ Support online programming; ÿ
 - Built-in watchdog; ÿ Support
 - multiple buttons; ÿ Support standby
 - gesture wake-up function;
- ÿ Capacitive screen support
 - ÿ Supports up to 13 sensing channels; ÿ Supports
 - channel suspension/pull-down design; ÿ Automatic
 - adjustment of module parameters;
- ÿ Performance indicators
 - ÿ Refresh rate > 100Hz; ÿ Single-point
 - gesture and real two-point operation;

- ÿ Power consumption index
 - ÿ Typical power consumption in dynamic mode is 4mA;
 - ÿ Typical power consumption in sleep mode is 8uA;
- ÿ Communication interface
 - \ddot{y} I2C master/slave communication interface, rate 10Khz~400Khz
 - Configurable;
 - ÿ Compatible with 1.8V/3.3V interface levels.
- ÿ Power supply
 - ÿ Single power supply 2.8V ~ 3.6V, power ripple <=
 - 50mvÿ
- ÿ Package type: QFNWB3*3-20L(P0.4T0.55ÿ

Application

For products such as bracelets and watches, the TP size is recommended to be within 1.8 inches.

References

figure 1.

Reference Circuit Diagram

Precautions:

 $\ddot{\text{y}}$ CMOD filter capacitors use NPO/COG material capacitors with at least 10% accuracy

ÿ The selection range of CMOD capacitance value is between 1nF and 5.6nF, and 1nF is generally selected. The specific optimal value is related to the corresponding body capacitance.

ÿ The CMOD filter capacitor must be placed close to the corresponding pin of the chip, and the trace between the capacitor and the chip should be as short as possible.

Hynitron Microelectronics

CST816D

Ordering Information

Part No	Encapsulation	Surface printing	Package
CST816D	QFNWB3*3-20L(P0.4T0.55ÿ	CST816D XXXXXXXXX (Production tracking code)	Taping (5000)

surface 1: Ordering Information

Pinout/Description

figure 2. Pin Description

name		Remark	
S01~S13	Description Sensing channel		
VDDA	power supply	2.8V~3.6V, connect 2.2uF~10uF capacitor	
CMOD0/CMOD1 voltage stabi	izing capacitor	Connect 1nF~5.6nF voltage stabilizing capacitor	
IRQ	Interrupt output	Rising/falling edge selectable	
SCL/SDA	I2C	Selectable internal pull-up/open-drain mode	
RST	Reset input	Low effective	

surface 2: Pin Description Table

Remark:

1. CMOD0/CMOD1 must be connected to a voltage stabilizing capacitor with a value between 1nF and 5.6nF;

Functional Description

CST816D self-capacitive touch chip, through its built-in fast self-capacitive sensing module, does not require any external devices (except circuit bypass capacitors).

It can realize single-point gesture and real two-point function on patterns such as triangles; while achieving fast response, it has extremely excellent noise and anti-

Power on and reset

The chip has a built-in power-on reset circuit, so there is no need to connect a dedicated reset circuit externally.

The built-in power-on reset module will keep the chip in reset state until the voltage is normal. When the voltage is lower than a certain threshold, the chip will also be reset.

- 5 -

Figure 4.

External reset timing diagram

CST816D

symbol	describe	Minimum Ma	ximum Unit	
Tpor Chip in	itialization time after power-on	100		mS
Tpr	RST pin high delay time	5		mS
Tron Chip re	initialization time after reset 100			mS
Trst reset pu	lse time	0.1	·	mS

surface 3: Power-on and reset timing description

Operating mode

ÿ Dynamic Mode

When there are frequent touch operations, it is in this mode; in this mode, the touch chip quickly scans the self-capacitance of the touch screen and detects Detect touch and report to the host.

After no touch for 2S, it will automatically enter standby mode. The function of automatically entering standby mode can be controlled by registers.

ÿ Sleep mode

After receiving the sleep command, it is in this mode; in this mode, the touch chip is in a deep sleep state to save power consumption to the maximum extent. It can be switched to dynamic mode via the reset pin.

Hynitron Microelectronics

CST816D

Channel/Node Configuration

Each channel of the CST816D self-capacitive touch chip can support self-capacitive scanning without external devices.

The self-capacitance range supported by each channel is: 1pF ~ 400pF

I2C Communication

The chip supports the standard I2C communication protocol and can achieve configurable communication rates from 10Khz to 400Khz.

The two I2C pins SCL and SDA support both open-drain mode and internal pull-up mode for flexible selection.

Interrupt mode

The touch chip will notify the host to read valid data through the IRQ pin only when it detects a valid touch and needs to report it to the host.

High efficiency, reducing CPU burden;

The interrupt edge can be configured as rising edge or falling edge as needed;

The IRQ pin is also used to wake up the host when matching a predefined gesture in standby mode

IIC Interface Description

The chip itself supports IIC operation, and can also use IIC pins to implement simple IO operations. Specific functions can be automatically configured by software according to specific projects. definition.

a) IIC address of the device

The 7-bit device address of the chip is generally 0x15, that is, the device write address is 0x2A and the read address is 0x2B.

The device addresses of some projects may be different, please consult the corresponding projects and engineering personnel.

b) IIC communication speed

In order to ensure the reliability of communication, a maximum communication rate of 400 Kbps is recommended.

c) Write a single byte

d) Write multiple bytes continuously

Figure 7. Past 0x1E = 0x1F Write separately 0x20 = 0x01

e) Read a single byte

Figure 8. from 0x21 Reading a single byte

f) Read multiple bytes continuously

Figure 9. from 0x21 , 0x22 , 0x23 Read 3 Bytes

Hynitron Microelectronics

CST816D

g) Timing Description

symbol	illustrate	Min Typ	Max Unit		
F SCLI2C	I2C Clock Frequency	10		400	kHz
t HDSTAI2C	Hold time (repeated) START condition. After this period of time, the first Clock pulses	0.6			us
t LOWI2C	The low period of the SCL clock	1.3			us
t HIGHI2C	High period of SCL clock	0.6			us
tSUSTAI2C Repeated START condition setup time 0.6 tSUDATI2C Data se		tup time			us
		100			ns
t SUSTOI2C	STOP condition setup time	0.6		- 1	us
t BUFI2C	The total time between STOP and START conditions Line Idle Time	4.5			us

IIC Timing Description

Hynitron Microelectronics

CST816D

Application Design Specifications

Power supply decoupling capacito

Generally, a 0.1uF and 10uF ceramic capacitor connected in parallel to the VDD and VSS terminals of the chip can play the role of decoupling and bypassing. The decoupling capacitor should be placed as close to the chip as possible to minimize the current loop area.

CMOD filter capacitor

The filter capacitor uses NPO/COG material capacitors with at least 10% accuracy. The capacitance value range is between 1nF and 5.6nF, and 1nF is generally selected. The specific optimal value is related to the corresponding body capacitance. The CMOD filter capacitor must be placed close to the corresponding pin of the chip, and the trace between the chip should be as short as possible.

Waterproof precautions

There should not be large solid areas around the sensor and its wiring. Large areas of ground must be broken up.

ESD Considerations

The design of FPC will directly affect the effect of ESD. When designing, the following points must be noted: ÿ FPC should be fully shielded with magnetic film as much as possible, and the magnetic film must be grounded. ÿ The pressure and position of FPC and Sensor should be as far away from the gap of the assembly mechanism as possible to reduce the impact of ESD. ÿ Consider adding a TVS tube to the ground at the power supply access point to enhance the anti-ESD interference performance.

star grounding is difficult to achieve, the user should also try to separate the ground of the high-current device from the ground of the touch chip.

Electromagnetic Interference Considerations

Sensor routing must be isolated from lines that may cause interference, such as power routing, audio lines, LCD driver lines, Bluetooth antennas, RF antennas, etc. In particular, when TP adopts a full-fit design, it may be interfered by LCD, and the parameters of TP need to be specially debugged.

Ground

The high-precision detection circuit inside the touch chip is sensitive to the ground line. If possible, the user should use star grounding to isolate the noise of other chips. At the same time, insert magnetic beads in the grounding as much as possible to enhance the anti-interference ability. If

Hynitron Microelectronics

CST816D

Electrical characteristics

Absolute Maximum Parameters

symbol	illustrate	Min Typ Max Ur	it		
TSTG storage	temperature	-40	25	125	ÿ
Ta Operating e	nvironment temperature when powered on	-20		85	ÿ
Vdd supply v	oltage relative to Vss	-0.3		+3.6	IN
Vio DC input	voltage	VSS-0.3		VDD+0.3	IN
LU Latch-up	Current		200		mA

Absolute Maximum Parameters

AC electrical properties

Ambient temperature 25

ÿCÿVDDA=3.3V

(symbols	illustrate	Min Typ Max l	Jnit		
Fcpu CPU fro	equency	-2%	20	+2%	MHz
F32k interna	low-speed clock frequency	-5%	32	+5%	kHz
txRST extern	al reset pulse width		0.1		mS
tPOWERUP tim	e from POR end to CPU code execution		4		mS
FGPIO GPIO	switching frequency		2		MHz
tRISE pin lev	el rise time, Cload=50pF tFAIL pin level fall time,		32		nS
Cload=50pF			11.2		nS

AC electrical characteristics

DC electrical properties Ambient temperature 25

ÿCÿVDDA=3.3V

(symbols	illustrate	Min Typ Max l	Init		
Vdd supply	voltage	2.8	3.0	3.6	IN
Rpu pull-up	resistor		5		Кÿ
Voh high lev	el output voltage	0.7*Vdd			IN
Vol low leve	output voltage			0.3*Vdd	IN
loh high lev	el output current		2.0		mA
Iol low level	sink current		20.0		mA
Vil input low	level voltage			0.3*Vdd	IN
Vih input hiç	h level voltage	0.7*Vdd			IN
lil input leak	age current		10		nA
Idd1 operati	ng current (dynamic mode)		4.0		mA
Idd3 operati	ng current (sleep mode)		8.0		uA
Vddp progra	nming voltage	2.8		3.6	IN

surface 7:

DC electrical characteristics

Product Packaging

QFN20 外形图

SYMBOL	Min.	NAME.	MAX.	
А	0.50	0.50 0.55		
A1	0	0.02	0.05	
A3		0.152 REF	-	
b	0.15	0.20	0.25	
D		3.00BSC		
AND		3.00BSC		
D2	1.60	1.70	1.80	
E2	1.60	1.60 1.70 1.8		
It is		0.40BSC		
L	0.25	0.25 0.30 0.35		
К	0.20	0.20		
aaa		0.10		
bbb	0.07			
ccc	0.10			
ddd	0.05			
eee	0.08			
fff	0.10			

surface 8: QFN20 Dimensions

Hynitron Microelectronics

CST816D

revise history

版本	修订内容
V1.0	初始发行

Hynitron Microelectronics

CST816D

statement

Shanghai Haili Chuang Microelectronics Co., Ltd. is not responsible for the use of any circuits other than our products, nor does it provide patent licenses.

Microelectronics Corporation reserves the right to modify product information and specifications at any time without notice.

