Aufgabe 1: CPM-Netzplantechnik

Gegeben ist das nachfolgende CPM-Netz. Gestrichelte Linien zwischen Ereignissen stellen Scheinvorgänge mit einer Dauer von 0 dar.

(a) Begründen Sie, welche Scheinvorgänge aus dem Netzplan ohne Informationsverlust gestrichen werden könnten.

Die Scheinvorgänge zwischen den Ereignissen 1 und 4 bzw. zwischen 6 und 9 können jeweils gestrichen werden, da Ereignis 4 schon auf 1 wartet (über 3) und 9 wartet auf 6 (über 7).

(b) Berechnen Sie für jedes Ereignis den *frühesten Termin*, den *spätesten Termin* sowie die *Gesamtpufferzeiten*.

i	Nebenrechnung	FZ_i
1		0
2		2
3		3
4		7
5	$\max(3_{(\to 3)} + 3, 7_{(\to 4)} + 1)$	8
6	$\max(3_{(\to 3)} + 3, 7_{(\to 4)} + 0)$	7
7	$\max(8_{(\to 5)} + 3, 7_{(\to 6)} + 3)$	11
8	$8_{(\to 5)} + 2$	10
9	$\max(7_{(\to 6)} + 0, 11_{(\to 7)} + 2)$	13
10	$\max(10_{(\to 7)} + 1, 8_{(\to 8)} + 0, 13_{(\to 9)} + 3)$	16

i		Ne	eben	recl	าทน	ng	SZ_i					
1							0	Ī				
2	$\max(8_{(\to 5)} - 4$						4	1				
3	$\max(8_{(\to 6)} - 3, 7_{(\to 4)} - 4)$						3					
4	$\max(8_{(\to 5)} - 1, 8_{(\to 6)} - 0)$					7						
5	$\max(16_{(\to 8)} - 2, 11_{(\to 7)} - 3)$						8					
6	$\max(11_{(\to 7)} - 3, 13_{(\to 9)} - 0)$						8					
7	$\min(16_{(\to 10)} - 1, 13_{(\to 9)} - 2)$						11					
8	$16_{(\to 10)} - 0$						16					
9	$16_{(\to 10)} - 3$						13					
10	siehe FZ ₁ 0						16					
i	1	2	3	4	5	6	7	8	9	10		
FZ_i	0	2	3	7	8	7	11	10	13	16		
SZ_i	0	4	3	7	8	8	11	16	13	16		
GP	0	2	0	0	0	1	0	6	0	0		

(c) Bestimmen Sie den kritischen Pfad.

