Tous documents papier et appareils électroniques interdits.

Durée: 1H00

Le barème est donné à titre indicatif.

 $[\mathbf{Q1} - \mathbf{6} \mathbf{pts}]$ Soit l'automate M_1 suivant :

- a) Déterminisez l'automate M₁.
- b) Donnez une expression rationnelle correspondant au langage accepté par M₁.

[Q2 – 6 pts] Soit L₂ le langage défini par l'expression rationnelle (aab \cup ab)*.

- a) Calculez les classes d'équivalence de la relation ≈_{L2}.
- b) Déterminez l'automate standard correspondant à L₂.

 $[\mathbf{Q3} - \mathbf{3} \ \mathbf{pts}]$ Soit L un langage rationnel. Soit M un automate à états finis déterministe tel que L(M) = L. Soit p le nombre d'états de M.

Montrez que L est un langage infini si et seulement si L contient un mot w tel que $p \le |w| \le 2p - 1$.

[Q4 – 3 pts] Soit le langage $L_4 = \{a^nb^mc^{n+m} \mid n \ge 0, m \ge 0\}$. L_4 est-il rationnel? Non rationnel? Prouvez votre réponse.

[Q5 – 3 pts] Soit le langage $L_5 = \{w = a^n b^m \mid n, m \in \mathbb{N}, n \neq m\}$. Montrez que L_5 est algébrique.

Annexe

On rappelle le lemme de l'étoile :

Soit L un langage rationnel. L est donc reconnu par un automate M à k états.

 $\forall z \in L, |z| \ge k, \exists u, v, w \in \Sigma^* \text{ tels que } z = uvw, |uv| \le k, |v| > 0 \text{ et pour tout } i \ge 0, uv^i w \in L.$