Laborator 11

Petculescu Mihai-Silviu

Laborator 11

Petculescu Mihai-Silviu
Legea Numerelor Mari și Teorema de Limită Centrală
Ilustrarea Legii Numerelor Mari
Ilustrarea Teoremei de Limită Centrală

Legea Numerelor Mari și Teorema de Limită Centrală

Ilustrarea Legii Numerelor Mari

Utilizați Legea Numerelor Mari pentru a aproxima integrala următoare:

$$I=\int_0^1 e^x sin(2x)cos(2x)\mathrm{d}x$$

```
> myfun = function(x) {
    y = exp(x) * sin(2*x) * cos(2*x);
    return(y);
}

# Calculul integralei cu metode numerice
> I = integrate(myfun,0,1)

# Raspunsul este o lista si oprim prima valoare
> I = I[[1]]

# Calculul integralei cu ajutorul metodei Monte Carlo
> n = 10000
> u = runif(n) # generarea sirului U_n
> z = myfun(u) # calcularea sirului g_n
> I2 = sum(z)/n # aproximarea MC
```

Obţinem că valoarea numerică a lui I este 0.2662 iar cea obţinută cu ajutorul metodei Monte Carlo este 0.2673. Avem următoarea ilustrare grafică a convergentei metodei Monte Carlo

Ilustrarea Teoremei de Limită Centrală

Teorema afirmă că dacă n este mare atunci v.a.

$$rac{S_n - n \mu}{\sqrt{n} \sigma}$$

are aproximativ aceeași distribut ie ca și legea normală N(0,1).

```
> N = 1000 # Alegem numarul de repetitii ale experimentului
> n = 1000 # Alegem n pentru care folosim aproximarea normala
> lambda = 1 # Parametrul legii E(1)
> mu = 1/lambda # Media
> sigma = 1/lambda # Abaterea standard
> s = rep(0,N) # Initializam sirul sumelor partiale
> for (i in 1:N) {
    x = rexp(n, rate = lambda) # Generam variabilele exponentiale
    s[i] = (sum(x)-n*mu)/(sigma*sqrt(n)) # Calculam raportul
}
```

Continuăm prin trasarea histogramei cerute și adăugăm la grafic densitatea legii normale N(0,1)

