DATA ANALYSIS

HOUSING PRICING

Part I

1.

scatter plot with smoothing line

piecewise SLR model

We choose the predictor named Total bsmt.SF and the graph of the scatter plot looks pretty similar to the piecewise SLR model. There is no extreme value or outlier in the piecewise SLR model and the points follow the line well. We add an additional explanatory variable that will add a constant to the slope whenever TBSF is greater than 1200 so the two pieces in the piecewise model are different since the slopes and intercepts change when TBSF = 1200.

a) We sum up the predictors GLA and GA.

		Paramete	er Estimates					Paramete	r Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-4121035	640804	-6.43	<.0001	Intercept	1	-3604390	728327	-4.95	<.0001
LA	1	-2.54919	1.64645	-1.55	0.1303	LA	1	-1.64442	1.74293	-0.94	0.3519
OQ	1	15124	3651,22954	4.14	0.0002	SUM	1	27.42533	19.23394	1.43	0.1628
OC	1	12589	5296.13748	2.38	0.0229	OQ	1	12983	3900.57625	3.33	0.0021
YB	1	1054.39994	969.68429	1.09	0.2841	oc	1	10507	5422.09735	1.94	0.0608
YRA	1	963.65698	943.08075	1.02	0.3137	YB	1	1095.63975	956.50001	1.15	0.2598
						YRA	1	670.93610	952.22555	0.70	0.4857
BFSF	1	14.82042	7.93553	1.87	0.0700	BFSF	1	17.39922	8.03036	2.17	0.0372
TBSF	1	103.14799	14.91642	6.92	<.0001	TBSF	1	85.09982	19.40376	4.39	0.0001
FB	1	-13156	8464.55227	-1.55	0.1289	FB	1	-12335	8365.51226	-1.47	0.1493
НВ	1	30350	7962.40211	3.81	0.0005	НВ	1	21000	10229	2.05	0.0476
BAG	1	17729	6114.41337	2.90	0.0063	BAG	1	12145	7189.07060	1.69	0.1000
TRAG	1	-3591.42298	3460.46303	-1.04	0.3063	TRAG	1	-3782.63641	3414.48653	-1.11	0.2755
FP	1	19669	6236.22983	3.15	0.0032	FP	1	16225	6605.88568	2.46	0.0191
GC	1	-8614.31709	7174.48128	-1.20	0.2377	GC	1	-13185	7765.99210	-1.70	0.0984

Using all the explanatory variables:

$$SP = -4121035 - 2.54919*LA + 15124*OQ + 12589*OC + 1054.39994*YB +$$

963.65698*YRA + 14.82042*BFSF + 103.14799*TBSF - 13156*FB + 30350*HB + 103.14799*TBSF - 13156*FB + 103.14799*TBSF - 103.14799*TBSF

17729*BAG -3591.42298*TRAG + 19669*FP -8614.31709*GC

Using all the explanatory variables including SUM:

$$SP = -3604390 - 1.64442*LA + 27.42533*SUM + 12983*OQ + 10507*OC +$$

1095.63975*YB + 670.93610*YRA + 17.39922*BFSF + 85.09982*TBSF - 12335*FB + 1235*FB + 123

21000*HB + 12145*BAG - 3782.63641*TRAG + 16225*FP - 13185*GC

		Analysis of \	/ariance					Analysis of \	/ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	Source	DF	Sum of Squares	1,000,000	F Value	Pr > F
Model	13	1.638048E11	12600370715	47.58	<.0001	Model	14	1.643282E11	11737729852	45.60	<.0001
Error	36	9533580374	264821677			Error	35	9010181740	257433764		
Corrected Total	49	1.733384E11				Corrected Total	49	1.733384E11			

without SUM with SUM

Extra sum of squares =
$$SSE(R) - SSE(F) = 9533580374 - 9010181740$$

$$F = \{[SSE(R) - SSE(F)] / [dfE(R) - dfE(F)]\} / [SSE(F) / dfE(F)]\}$$

- = 523398634 / (36 35) / (9010181740 / 35)
- = 2.033139033

Degree of freedom: numerator = number of extra variables = 1

denominator = dfE for the larger model = 35

b)

Test 1 Resu	lts fo	or Depender	nt Variable	e SP
Source	DF	Mean Square	F Value	Pr > F
Numerator	1	523398634	2.03	0.1628
Denominator	35	257433764		

H₀: the coefficient of the SUM variable is zero

Ha: the coefficient of the SUM variable is not zero

From the SAS output, df and F-value are the same as in part (a).

Since p-value is 0.1628 which is large, we are not confident enough to reject the null hypothesis and there is evidence showing that the SUM variable has no linear relationship with SP when all other variables are included in the model.

c)

Test 1 Resu	lts fo	or Depender	nt Variable	e SP
Source	DF	Mean Square	F Value	Pr > F
Numerator	1	523398634	2.03	0.1628
Denominator	35	257433764		

		Parameter	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
SUM	1	27.42533	19.23394	1.43	0.1628

test statement: F = 2.03, p = 0.1628

individual t-test: t = 1.43, p = 0.1628

 $(1.43)^2 \approx 2.04$ which is consistent with definition that $F = t^2$, and p-values for the two are the same. We get such a result because the two tests are testing the same null hypothesis that the coefficient of SUM is equal to zero when all other variables are included in the model.

3.

				Analy	sis	of Vai	iar	ice				
	Sourc	20	DF		um			Mean Square	F Valu	o Pr	> F	
	Mode		15				loo	3565726	45.1		0001	
		1							45.1	6 <.0	1001	
-	Error		34				24	3673935				
	Corre	cted Total	49	1.7333	84E	11						
		Root M	ISE		1	5610	R-	Square	0.9522			
		Depen	der	nt Mean	17	1350	Ad	lj R-Sq	0.9311			
		Coeff \	/ar		9.11007							
Parameter Estimates												
Variable	DF	Paramete Estimat		Standa Err		t Valu	ıe	Pr > t	Туре	ISS	Тур	e II S
Intercept	t 1	-370226	7	7108	63	-5.	21	<.0001	1.468034E12		6609	956980
LA	1	-2.7172	0	1.806	13	-1.	50	0.1417	174955	50955	551	151545
GLA	1	4.3978	9	22.985	38	0.	19	0.8494	81274915544		8	392059
GA	1	117.2670	0	55.335	56	2.	12	0.0415	231276	74534	1094	133937
OQ	1	1200	1 :	3837.334	37	3.	13	0.0036	1279620	08647	2383	322795
ОС	1	8076.9624	1	5459.976	36	1.4	48	0.1483	703	37892	533	324117
YB	1	1314.4675	3	939.191	04	1.4	40	0.1707	44216	99911	477	731042
YRA	1	512.8572	8	930.948	08	0.	55	0.5853	54740	09708	73	395221
BFSF	1	18.1884	3	7.826	19	2.	32	0.0262	159523	70472	1316	313120
TBSF	1	88.1438	9	18.960	35	4.	65	<.0001	42012	77535	5266	24035
FB	1	-8502.5685	2	8436.562	40	-1.	01	0.3207	11292	45970	247	750177
НВ	1	2147	4	9955.746	23	2.16 0.0382		7706	37620	1133	370002	
BAG	1	1368	1	7050.778	01	1.	94	0.0607	1453	58494	917	745293
TRAG	1	-2441.5193	3	3411.722	16	-0.	72	0.4791	1140	76101	124	179066
FP	1	1928	3	6666.823	20	2.	89	0.0066	16368	10152	2038	352430
GC	1	-3076	0	126	83	-2.	43	0.0208	14332	12347	1433	321234

From the SAS output:

Type I sums of squares:

17495550955 + 81274915544 + 23127674534 + 12796208647 + 7037892 + 4421699911 +

547409708 + 15952370472 + 4201277535 + 1129245970 + 770637620 + 145358494 +

114076101 + 1636810152 + 1433212347 = 165053485882

Type II sums of squares:

551515452 + 8920599 + 1094339373 + 2383227953 + 533241174 + 477310428 + 73952217

 $+\ 1316131209 + 5266240352 + 247501771 + 1133700029 + 917452931 + 124790665 +$

2038524303 + 1433212347 = 17600060803

The Type I SS is equal to the model SS.

From definition, SSM(LA) + SSM(GLA|LA) + SSM(GA|LA,GLA) +

SSM(OG|LA,GLA,GA) + SSM(OC|LA,GLA,GA,OQ) + SSM(YB|LA,GLA,GA,OQ,OC) +

SSM(YRA|LA,GLA,GA,OQ,OC,YB) +

SSM(BFSF|LA,GLA,GA,OQ,OC,YB,YRA) +

SSM(TBSF|LA,GLA,GA,OQ,OC,YB,YRA,BFSF) +

SSM(FB|LA,GLA,GA,OQ,OC,YB,YRA,BFSF,TBSF) +

SSM(HB|LA,GLA,GA,OQ,OC,YB,YRA,BFSF,TBSF,FB) +

SSM(BAG|LA,GLA,GA,OQ,OC,YB,YRA,BFSF,TBSF,FB,HB) +

SSM(TRAG|LA,GLA,GA,OQ,OC,YB,YRA,BFSF,TBSF,FB,HB,BAG) +

SSM(GC|LA,GLA,GA,OQ,OC,YB,YRA,BFSF,TBSF,FB,HB,BAG,TRAG,FP)

= SSM(LA,GLA,GA,OQ,OC,YB,YRA,BFSF,TBSF,FB,HB,BAG,TRAG,FP,GC) which is exactly the model SS.

The SS of GC in the two types are the same, since the GC is the last predictor and its SS for both types equals to

SSM(GC|LA,GLA,GA,OQ,OC,YB,YRA,BFSF,TBSF,FB,HB,BAG,TRAG,FP).

4.

Predictor (s)	R^2	Adjusted R^2
GLA	0.5166	0.5065
GA	0.5579	0.5487
GLA, GA	0.6700	0.6560
SUM	0.6438	0.6364
YB	0.4254	0.4134
YRA	0.4691	0.4580
BFSF	0.3705	0.3574
TBSF	0.7211	0.7153
GC	0.3943	0.3817
TBSF, SUM	0.8452	0.8386

Part II

1.

Scatter Plot

Correlation Matrix

						Pear	rson Corre	elation Co	efficients,	N = 50						
	LA	GLA	GA	OQ	oc	YB	YRA	BFSF	TBSF	FB	НВ	BAG	TRAG	FP	GC	SP
LA	1.00000	0.12351	0.17550	0.24322	-0.12705	0.21886	0.21693	0.06362	0.37610	0.05842	-0.27688	-0.09719	0.17697	0.53880	0.09808	0.31770
GLA	0.12351	1.00000	0.60554	0.54325	-0.27325	0.49578	0.51169	0.24133	0.56078	0.56412	0.05700	0.19146	0.54612	0.18905	0.47699	0.71875
GA	0.17550	0.60554	1.00000	0.72980	-0.26823	0.66869	0.70478	0.35696	0.56430	0.34594	-0.17924	-0.26765	0.08967	0.21367	0.90331	0.74696
OQ	0.24322	0.54325	0.72980	1.00000	-0.11500	0.48688	0.52650	0.35696	0.67564	0.33690	-0.31534	-0.44220	0.01907	0.34913	0.61538	0.78841
OC	-0.12705	-0.27325	-0.26823	-0.11500	1.00000	-0.44437	-0.40934	-0.06436	-0.17452	-0.13023	-0.21418	0.06693	-0.14666	-0.03473	-0.38154	-0.21117
YB	0.21886	0.49578	0.66869	0.48688	-0.44437	1.00000	0.97884	0.27669	0.45500	0.49131	-0.17278	-0.27094	0.07638	0.04919	0.71339	0.65223
YRA	0.21693	0.51169	0.70478	0.52650	-0.40934	0.97884	1.00000	0.30863	0.47001	0.46290	-0.19281	-0.30999	0.05878	0.12031	0.73180	0.68488
BFSF	0.06362	0.24133	0.35696	0.35696	-0.06436	0.27669	0.30863	1.00000	0.59870	-0.04898	-0.44643	-0.31938	-0.04469	0.40751	0.38347	0.60873
TBSF	0.37610	0.56078	0.56430	0.67564	-0.17452	0.45500	0.47001	0.59870	1.00000	0.30389	-0.62387	-0.36249	0.24554	0.45301	0.50920	0.84919
FB	0.05842	0.56412	0.34594	0.33690	-0.13023	0.49131	0.46290	-0.04898	0.30389	1.00000	-0.09958	0.34408	0.39528	-0.17855	0.37302	0.34927
нв	-0.27688	0.05700	-0.17924	-0.31534	-0.21418	-0.17278	-0.19281	-0.44643	-0.62387	-0.09958	1.00000	0.37470	0.08432	-0.40278	-0.24750	-0.36238
BAG	-0.09719	0.19146	-0.26765	-0.44220	0.06693	-0.27094	-0.30999	-0.31938	-0.36249	0.34408	0.37470	1.00000	0.51768	-0.34794	-0.26433	-0.32449
TRAG	0.17697	0.54612	0.08967	0.01907	-0.14666	0.07638	0.05878	-0.04469	0.24554	0.39528	0.08432	0.51768	1.00000	0.09081	0.07729	0.20249
FP	0.53880	0.18905	0.21367	0.34913	-0.03473	0.04919	0.12031	0.40751	0.45301	-0.17855	-0.40278	-0.34794	0.09081	1.00000	0.16699	0.45711
GC	0.09808	0.47699	0.90331	0.61538	-0.38154	0.71339	0.73180	0.38347	0.50920	0.37302	-0.24750	-0.26433	0.07729	0.16699	1.00000	0.62792
SP	0.31770	0.71875	0.74696	0.78841	-0.21117	0.65223	0.68488	0.60873	0.84919	0.34927	-0.36238	-0.32449	0.20249	0.45711	0.62792	1.00000

As the scatter plots shown above, most predictors have either strong or weak linear relationships with the response variable except for the full bathroom and the half bathroom. These two predictors could be categorical variables due to their behavior.

Also, according to the correlation matrix, larger absolute values show stronger linear relationships with the response variable, and some of the predictors including GLA, GA, OQ, YB, YRA, BFSF (labeled with blue), and TBSF which has the highest correlation coefficient with SP (labeled with red) each have a relative strong relationship with SP, whereas LA, OC, FB, HB, BAG, and TRAG (labeled with green) which are categorized by their low absolute correlation coefficient have weaker relationship with SP than others.

2.

According to SAS output (scatter plots and residual plots for each variable), we find that lot areas' (LA) scatterplots does not imply a linear relationship between LA itself and sale price. Also the residual plot of lot areas shows a cluster pattern which indicates that it does not follow constant variance principle, thus we need to transform this variable.

As shown in the graphs below, there is an additional variables need taking into account-BFSF. Recall its scatter plot, BFSF has a relative strong linear relationship with SP, so it is not necessary to transform BFSF in spite of its residual plot. We don't need to transform other variable since the rest shares a linear pattern with sales price and does not violate constant variance principle.

3. Original:

Transformed:

According to the tables shown above, the R Square of all subsets are close to 1.

The best subset of variables for original data is the first one shown in the first table shown above:

It has 10 predictors with C(p) = 9.6139, R-square = 0.9471

The best subset of variables for transformed data is the first one shown in the second table shown above:

It has 10 predictors with C(p) = 9.5070, R-square = 0.9483

In comparison, the best subset of variables for transformed data has a relative smaller C(p) and higher R-square. Thus, we choose the transformed one as our best model.

Linear regression model: Selling Price = -3100833 + -14696*logLA + 176.81981*GA + 11529*OQ + 1601.25353*YB + 22.98070*BFSF + 73.66908*TBSF + 13781*HB + 9034.5405*BAG + 20272*FP + -41461*GC

4.

The stepwise option to report the best subset of variables for your data:

According to SAS output, we can easily find that transformed data has lower Cp value rather than original data. Therefore, we will use logLA as variable in our linear regression model. Linear regression model:

5.

Model: Selling Price = -3100833 + -14696*logLA + 176.81981*GA + 11529*OQ + 1601.25353*YB + 22.98070*BFSF + 73.66908*TBSF + 13781*HB + 9034.5405*BAG + 20272*FP + -41461*GC

Prob 5 Check assumption of this best model using all the usual plots

Transformed data

The REG Procedure Model: MODEL1 Dependent Variable: SP

a. Linear relationship

From problem 1, we could know SP has a linearly relationship with most of the variables individually except FB & HB. Therefore, the linear relationship is somewhat satisfied.

b. Constant Variance

According to the residuals plots, there is no obvious pattern in each plots and each has a constant variance. Therefore, there is no violation of the constant variance assumption.

c. Residual Normally Distributed

As shown in the histogram, the residual looks approximately normally distributed. Our qq plot also verifies the assumption.

d. Independence

According to the SAS output, the predictors are independent. Therefore, the independence assumption is satisfied.

6.Examining other diagnostics of the same "best" model:

The partial residual plots for the predictors (logLA, GA, OQ, YB, BFSF, TBSF, HB, BAG, FP, and GC) are shown in the figures below. There are no obvious outlier, but one point exist as a potential outlier, so we further check with Cook's D method.

Cook'sD:

								8	imple Lir	near Regr	ession v	vith Dia	gnostic	Plots										
										M	REG Proc idel: BIOD dent Varia	ELT												
										0	riput Statis	tics												
			Std Error															D	FBETAS					
Obs	Dependent Variable	Predicted Value	Mean Predict	Residual	Std Error Residual	Student Residual	-2-1 0 1 3		Cook's D	RStudent	Hat Ding H		DEFITS	Intercept	logLA	GA	OQ.	78	BESE	TRSF	на	BAG	FP	G
1	234250	246064	4753	-11814	14402	-0.820	1 -1	1	0.007	-0.8168	0.0982	1.2185	-0.2695	0.1220	4.0404	-0.0609	-0.0898	-0.1105	-0.0751	0.9748	0.0809	-0.1099	-0.0122	0.115
2	246578	222961	6895	23627	13508	1.749	1 1***	.1	0.072	1,7985	0.2067	0.6829	0.9180	0.1339	-0.1715	-0.1133	-0.3090	-0.1136	0.0287	0.1261	-0.0062	0.1202	0.2088	0.450
3	147110	154062	5573	-6962	14105	-0.493	1 1	1	0.003	-0.4861	0.1350	1.4363	-0.1929	0.0675	0.0334	-0.0046	-0.0642	-0.0679	-0.0194	0.1019	-0.0124	-0.0020	0.0028	0.004
4	225000	219691	6837	5309	13637	0.392	1 1	1	0.004	0.3679	0.2032	1.5991	0.1959	-0.0716	40746	-0.1207	0.0314	0.0752	0.0107	0.0463	0.0140	0.0559	0.0678	0.079
5	212000	202280	4977	9720	14326	0.678	1 1*	1	0.006	0.6737	0.1077	1.3067	0.2340	0.1067	0.0913	-0.0778	0.0854	0.1142	0.0718	-0.0051	0.0321	-0.0923	-0.0670	0.077
6	179400	170336	6518	9064	13693	0.662	1 1*	1	0.009	0.6571	0.1847	1.4415	0.3128	-0.0629	-0.0379	-0.1413	0.1690	0.0578	0.0886	-0.0569	0.0843	0.1609	-0.0111	0.109
7	120000	119125	9136	875.0150	12106	0.072	T. E.	. 1	0.000	0.0714	0.3629	2.0867	0.0539	0.0047	0.0405	-0.0109	0.0109	-0.0091	0.0066	-0.0001	0.0181	0.0098	-0.0057	0.002
	224000	225945	4522	-1945	14476	0.134	1 1	1	0.000	-0.1327	0.0009	1.4532	0.0414	0.0242	-0.0051	0.0055	0.0055	-0.0228	0.0004	-0.0070	0.0031	-0.0106	-0.0077	0.001
. 9	196000	197594	6707	-1554	13602	-0.117	1 1	-	0.000	-0.1157	0.1966	1.6479	-0.0570	0.0049	0.0062	-0.0138	0.0181	-0.0057	0.0349	-0.0289	0.0121	0.0032	0.0149	0.008
10	320000	314686	7727	5314	13043	0.407	1 1.	-	0.006	0.4028	0.2596	1,7150	0.2385	-0.0476	0.0064	0.0954	0.0194	0.0427	-0.0163	0.0839	-0.0001	0.0652	-0.0139	-0.129
11	185000	196300	7001	-11380	13453	-0.846	1 *1	1	0.018	-0.6428	0.2131	1.3796	-0.4306	-0.0849	0.0303	-0.2774	-0.0474	0.0761	-0.0789	0.2432	0.2002	0.0990	-0.0118	0.197
12	164500	150925	6230	13575	13827	0.982	1 1*	-	0.018	0.9813	0.1688	1.2157	0.4422	-0.1653	0.0532	0.1627	4.1651	0.1608	-0.0730	-0.0758	0.0583	-0.0999	-0.0427	-0.101
13	183900	168573	5979	15327	13937	1.100	1 1**	1	0.020	1.1027	0.1554	1.1142	0.4730	-0.0505	0.1563	-0.0321	0.1963	0.0241	0.1933	-0.1981	0.0892	0.2194	-0.1416	0.028
14	137900	147914	7979	-10014	12097	-0.776	(*)	1	0.021	-0.7724	0.2768	1.5502	-0.4778	-0.1873	0.1469	0.1096	0.0746	0.1703	0.0919	-0.1479	-0.2017	-0.1275	0.2213	-0.244
15	235000	201676	6701	46676	13605	-3.431	[******]	.1	0.260	4.0530	0.1963	0.0318	-1.9964	0.6131	0.0066	-0.1272	-0.4290	-0.5702	-1.3632	0.0715	0.0016	-0.6646	0.0909	0.588
16	310090	275667	6557	34423	13675	2.517	[]		0.132	2,7151	0.1869	0.2328	1.3018	0.3429	4 0943	0.0515	0.4896	0.3155	4.4772	0.3994	-0.0816	0.4228	0.1294	-0.321
17	130000	156742	7154	-26742	13372	-2.000	1 ***)	1	0.104	-2.0837	0.2225	0.5206	-1.1147	-0.4511	-0.1510	0.3942	-0.4907	0.4675	0.4452	-0.1850	0.1793	-0.0502	6.4716	-0.458

.

There are 50 observations in total, and according to the fomulation, 2*p/n=11/50=0.22 Only 15th observation has cook's D larger than 0.2.

Observation #15 (0.26) seems to have a lot of influence.

Summary of Tests

Diagnostic Test	Significant Values	Conclusion
Partial Residual Plots	No outlier	All predictors are of value
Cook's D	Observation 15 is an outlier with a lot of influence	Need to take further investigate for that outlier

7.

I. Equation of the regressional model

Selling Price = -3100833 + -14696*logLA + 176.81981*GA + 11529*OQ + 1601.25353*YB + 22.98070*BFSF + 73.66908*TBSF + 13781*HB + 9034.5405*BAG + 20272*FP + -41461*GC

II. 90% confidence interval for the mean of the response variable

The 1st fifteen observations are shown below:

III. 90% prediction interval for individual observations The 1st fifteen observations are shown below:

Part 2 Problem7 Confidence interval and Prediction interval alpha=0.1

The REG Procedure Model: MODEL1 Dependent Variable: SP

			Outp	ut Statist	ics			
Obs	Dependent Variable	Predicted Value	Std Error Mean Predict	90% CI	_ Mean	90% CL	Predict	Residual
1	92000	82204	11445	62882	101527	48605	115803	9796
2	79500	82208	10193	64999	99418	49778	114638	-2708
3	137500	151435	9561	135294	167577	119559	183312	-13935
4	97000	98646	6972	86875	110418	68744	128548	-1646
5	89000	88503	7399	76011	100995	58310	118696	496.9408
6	79400	71053	10117	53973	88133	38691	103414	8347
7	75000	68522	7637	55629	81415	38161	98883	6478
8	99500	102883	9444	86939	118827	71106	134660	-3383
9	143000	113400	10486	95695	131104	80704	146095	29600
10	120000	140162	11268	121138	159186	106733	173591	-20162
11	129500	117890	11757	98040	137740	83985	151795	11610
12	128000	137354	9798	120812	153895	105273	169435	-9354
13	145000	139401	8006	125885	152917	108770	170032	5599
14	190000	180721	9041	165458	195985	149280	212162	9279
15	148500	136825	8319	122780	150871	105957	167693	11675

IV. 90% confidence intervals for the regression coefficients

			Paramete	er Estima	tes		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	90% Confide	ence Limits
Intercept	1	-4054961	628719	-6.45	<.0001	-5116427	-2993496
logLA	1	-11542	7512.32386	-1.54	0.1332	-24225	1140.62706
OQ	1	15042	3650.16613	4.12	0.0002	8879.72159	21205
ос	1	12634	5298.02237	2.38	0.0225	3689.60867	21579
YB	1	1057.42935	971.07221	1.09	0.2834	-582.02964	2696.88834
YRA	1	968.83899	943.19376	1.03	0.3112	-623.55287	2561.23086
BF SF	1	15.00658	7.90286	1.90	0.0656	1.66420	28.34896
TBSF	1	103.15117	14.92946	6.91	<.0001	77.94580	128.35655
FB	1	-12911	8441.78136	-1.53	0.1349	-27163	1341.38350
НВ	1	29590	8023.39947	3.69	0.0007	16044	43136
BAG	1	17698	6115.12803	2.89	0.0064	7374.27282	28023
TRAG	1	-3880.83061	3487.56083	-1.11	0.2732	-9768.87159	2007.21038
FP	1	19825	6308.23122	3.14	0.0033	9174.88468	30475
GC	1	-6677.37014	7041.62286	-0.95	0.3493	-18566	5210.98563

```
APPENDIX
PART I
data HPD;
infile 'W:\STAT512\data\HPD.DAT';
input LA GLA GA OQ OC YB YRA BFSF TBSF FB HB BAG TRAG FP GC SP;
1.
proc sort data=HPD;
      by TBSF;
title1'Part1 Problem1 Piecewise';
title2'Sales price vs TBSF';
axis1 label=('Gr.Liv.Area');
axis2 label=(angle=90 'Sales Price');
symbol1 v=square i=sm70;
proc gplot data=HPD;
      plot SP*TBSF/haxis=axis1 vaxis=axis2;
run;
data pie;
      set HPD;
      if TBSF le 1200
      then cslope=0;
      if TBSF gt 1200
      then cslope = TBSF-1200;
proc print data=pie;
run;
proc reg data=pie;
      model SP=TBSF cslope;
      output out=pieceout p=costhat;
symbol1 v=circle i=none c=black;
symbol2 v=none i=join c=red;
proc sort data=pieceout;
      by TBSF;
proc gplot data=pieceout;
      plot (sp costhat)*TBSF/overlay;
run;
2.
a)
data HPD;
      set HPD;
      SUM = GLA + GA;
proc reg data = HPD;
      model SP = LA OQ OC YB YRA BFSF TBSF FB HB BAG TRAG FP GC;
proc reg data = HPD;
```

```
model SP = LA SUM OQ OC YB YRA BFSF TBSF FB HB BAG TRAG FP GC;
run;
b)
data HPD;
      set HPD;
      SUM = GLA + GA;
proc reg data = HPD;
      model SP = LA SUM OQ OC YB YRA BFSF TBSF FB HB BAG TRAG FP GC;
      test SUM;
run;
3.
proc reg data = HPD;
      model SP = LA GLA GA OQ OC YB YRA BFSF TBSF FB HB BAG TRAG FP GC
/ SS1 SS2;
run;
4.
data HPD;
      set HPD;
      SUM = GLA + GA;
proc reg data = HPD;
      model SP = GLA / ADJRSQ;
      model SP = GA / ADJRSQ;
      model SP = GLA GA / ADJRSQ;
      model SP = SUM / ADJRSQ;
      model SP = YB / ADJRSQ;
      model SP = YRA / ADJRSQ;
      model SP = BFSF / ADJRSQ;
      model SP = TBSF / ADJRSQ;
      model SP = GC / ADJRSQ;
      model SP = TBSF SUM / ADJRSQ;
run;
PARTII
1.
data HPD;
infile 'W:\STAT512\data\HPD.DAT';
input LA GLA GA OQ OC YB YRA BFSF TBSF FB HB BAG TRAG FP GC SP;
/*LA*/
proc sort data=HPD;
by LA;
title1'Part2 Problem1 Smooth line sm70';
```

```
title2'Sales price vs Lot area';
axis1 label=('Lot Area');
axis2 label=(angle=90 'Sales Price');
symbol1 v=square i=sm70;
proc gplot data=HPD;
plot SP*LA/haxis=axis1 vaxis=axis2;
proc reg data=HPD;
/*GlA*/
proc sort data=HPD;
by GlA;
title1'Part2 Problem1 Smooth line sm70';
title2'Sales price vs Gr.Liv.Area';
axis1 label=('Gr.Liv.Area');
axis2 label=(angle=90 'Sales Price');
symbol1 v=square i=sm70;
proc gplot data=HPD;
plot SP*GlA/haxis=axis1 vaxis=axis2;
run;
Same pattern for the other variables.
/*Correlation Matrix*/
proc corr data = HPD noprob;
       var LA GLA GA OQ OC YB YRA BFSF TBSF FB HB BAG TRAG FP GC SP;
run;
data trans; set HPD;
logLA = log(LA);
rsLA = LA**(-0.5);
proc print data = trans;
run;
2.
title1'Part 2 Problem2 Transformed Variable';
title2'Transformed Variable: LA';
title1'Log Transformation';
proc reg data = trans;
model logLA = SP;
output out = logtrans r = logresid;
symbol1 i=rl;
proc gplot data = logtrans;
plot logLA * SP;
3.
title1'Prob 3 Original Cp criterion to select the best subset of variables';
```

```
title2'explanatory variables: LA GLA GA OQ OC YB YRA BFSF TBSF FB HB BAG
TRAG FP GC':
proc reg data=HPD;
model SP = LA GLA GA OQ OC YB YRA BFSF TBSF FB HB BAG TRAG FP GC/
selection = cp b;
run;
title1'Prob 3 transformed Cp criterion to select the best subset of variables';
title2'explanatory variables: logLA GLA GA OQ OC YB YRA BFSF TBSF FB HB BAG
TRAG FP GC';
proc reg data=trans;
model SP = logLA GLA GA OQ OC YB YRA BFSF TBSF FB HB BAG TRAG FP GC/
selection = cp b;
run;
4.
title1'Part 2 Problem4 Stepwise Option';
title2'Original';
proc reg data = HPD;
model SP = LA OQ OC YB YRA BFSF TBSF FB HB BAG TRAG FP GC/selection =
stepwies;
run;
title1'Part 2 Problem4 Stepwise Option';
title2'Transformed';
proc reg data = trans;
model SP = logLA OQ OC YB YRA BFSF TBSF FB HB BAG TRAG FP GC/selection =
stepwies;
run;
5.
title1'Prob 5 Check assumption of this best model using all the usual plots';
title2'Transformed data':
proc reg data=trans;
model SP = logLA GLA GA OQ OC YB YRA BFSF TBSF FB HB BAG TRAG FP GC/
selection = cp b;
run;
6.
title1 'partial residual plot - question 5';
title2 'logLA partial residual plot';
proc reg data=trans;
model SP = logLA GA OQ YB BFSF TBSF HB BAG FP GC;
output out = plLA r=residSP;
symbol1 v=circle i=rl;
axis1 label=('logLA');
```

```
axis2 label=(angle=90 'rSP');
proc gplot data=plLA;
plot residSP*logLA/ haxis = axis1 vaxis=axis2 vref=0;
title1 'partial residual plot - question 5';
title2 'GA partial residual plot';
proc reg data=trans;
model SP = logLA GA OQ YB BFSF TBSF HB BAG FP GC;
output out = pGA r=residSP;
symbol1 v=circle i=rl;
axis1 label=('GA');
axis2 label=(angle=90 'rSP');
proc gplot data=pGA;
plot residSP*GA/ haxis = axis1 vaxis=axis2 vref=0;
Run:
title1 'partial residual plot - question 5';
title2 'OQ partial residual plot';
proc reg data=trans;
model SP = logLA GA OQ YB BFSF TBSF HB BAG FP GC;
output out = pOQ r=residSP;
symbol1 v=circle i=rl;
axis1 label=('OQ');
axis2 label=(angle=90 'rSP');
proc gplot data=pOO:
plot residSP*OQ/ haxis = axis1 vaxis=axis2 vref=0;
Run:
title1 'partial residual plot - question 5';
title2 'YB partial residual plot';
proc reg data=trans;
model SP = logLA GA OQ YB BFSF TBSF HB BAG FP GC;
output out = pYB r=residSP;
symbol1 v=circle i=rl;
axis1 label=('YB');
axis2 label=(angle=90 'rSP');
proc gplot data=pGA;
plot residSP*YB/ haxis = axis1 vaxis=axis2 vref=0;
Run;
title1 'partial residual plot - question 5';
title2 'BFSF partial residual plot';
proc reg data=trans;
model SP = logLA GA OQ YB BFSF TBSF HB BAG FP GC;
output out = pBFSF r=residSP;
symbol1 v=circle i=rl;
axis1 label=('BFSF');
```

```
axis2 label=(angle=90 'rSP');
proc gplot data=pBFSF;
plot residSP*BFSF/ haxis = axis1 vaxis=axis2 vref=0;
title1 'partial residual plot - question 5';
title2 'TBSF partial residual plot';
proc reg data=trans;
model SP = logLA GA OQ YB BFSF TBSF HB BAG FP GC;
output out = pTBSF r=residSP;
symbol1 v=circle i=rl;
axis1 label=('TBSF');
axis2 label=(angle=90 'rSP');
proc gplot data=pTBSF;
plot residSP*TBSF/ haxis = axis1 vaxis=axis2 vref=0;
Run:
title1 'partial residual plot - question 5';
title2 'HB partial residual plot';
proc reg data=trans;
model SP = logLA GA OQ YB BFSF TBSF HB BAG FP GC;
output out = pHB r=residSP;
symbol1 v=circle i=rl;
axis1 label=('HB');
axis2 label=(angle=90 'rSP');
proc gplot data=pHB;
plot residSP*HB/ haxis = axis1 vaxis=axis2 vref=0;
Run:
title1 'partial residual plot - question 5';
title2 'BAG partial residual plot';
proc reg data=trans;
model SP = logLA GA OQ YB BFSF TBSF HB BAG FP GC;
output out = pBAG r=residSP;
symbol1 v=circle i=rl;
axis1 label=('BAG');
axis2 label=(angle=90 'rSP');
proc gplot data=pBAG;
plot residSP*BAG/ haxis = axis1 vaxis=axis2 vref=0;
Run;
title1 'partial residual plot - question 5';
title2 'FP partial residual plot';
proc reg data=trans;
model SP = logLA GA OQ YB BFSF TBSF HB BAG FP GC;
output out = pFP r=residSP;
symbol1 v=circle i=rl;
axis1 label=('FP');
```

```
axis2 label=(angle=90 'rSP');
proc gplot data=pHB;
plot residSP*FP/ haxis = axis1 vaxis=axis2 vref=0;
title1 'partial residual plot - question 5';
title2 'GC partial residual plot';
proc reg data=trans;
model SP = logLA GA OQ YB BFSF TBSF HB BAG FP GC;
output out = pGC r=residSP;
symbol1 v=circle i=rl;
axis1 label=('GC');
axis2 label=(angle=90 'rSP');
proc gplot data=pGC;
plot residSP*GC/ haxis = axis1 vaxis=axis2 vref=0;
Run:
proc reg data=trans;
model SP = LA GA OQ YB BFSF TBSF HB BAG FP GC/r influence;
run;
proc reg data=trans;
model SP = logLA GA OQ YB BFSF TBSF HB BAG FP GC/r influence;
run;
7.
title1'Part 2 Problem7 Confidence interval and Prediction interval';
title2'alpha=0.1';
proc reg data = trans alpha = 0.1;
model SP = logLA OQ OC YB YRA BFSF TBSF FB HB BAG TRAG FP GC/clb cli clm;
run;
Notation:
Abbreviation of variables
Lot.Area= LA
Gr.Liv.Area=GLA
Garage.Area=GA
Overall.Qual=OQ
Overall.Cond=OC
Year.Built=YB
Year.Remod.Add=YRA
BsmtFin.SF.1=BFSF
Total.Bsmt.SF=TBSF
Full.Bath=FB
Half.Bath=HB
Bedroom.AbvGr=BAG
TotRms.AbvGrd=TRAG
```

Fireplaces=FP Garage.Cars=GC SalePrice=SP