Informatik im Kontext (IKON-1) 3. Vorlesung

Neurone und neuronale Systeme

- Neurone und neuronale Systeme
 - Aufbau und Funktionsweise von neuronalen Systemen (im Grossen)
 - Informationsfluss in neuronalen Systemen
 - Brain-Computer Interfaces (Ein Exkurs)
 - Aufbau und Funktionsweise von Neuronen und neuronalen Systemen (im Kleinen)
 - Natürliche und künstliche Neurone

Nervensystem & Gehirn

- Nervensystem:
 - CNS (central nervous system)
 - Gehirn
- Rückenmark
- PNS (peripheral nervous system)
- Das menschliche Gehirn
 - Masse (Gewicht) / Volumen: ≈ 1500 gr. / ≈ 1,7 l
 - Anzahl der Neuronen: 10¹² 10¹³
 - Energieverbrauch (bei physischer Ruhe): 20 % der Sauerstoffzufuhr
- Nervensystem des Rückenmarks
 - Axonlänge bis zu 1000 mm

WS 2008/09

Descartes 1664

Reflexbewegung

• sensorische Wahrnehmung

• Weiterleitung zum Gehirn

Verarbeitung im Gehirn

• Rückleitung über die Nerven

• Bewegung der Muskeln

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 - 3 WS 2008/09

Neurone: Typen & Aufgaben

Sensor-Neurone

setzen physikalische Signale (Licht, mechanische Deformation, etc.) oder chemische Signale in elektrische Signale um.

- Afferente Neurone (afferre herbeitragen)
- Motor-Neurone

enden in den Muskeln, wo sie Kontraktionen auslösen

- Efferente Neurone (efferre wegtragen)
- Interneurone

"vermitteln zwischen Neuronen".

 Spezialisierung von Neuronen (Arbeitsteilung) ist bei niederen Lebewesen wenig(er) ausgeprägt.

Ch. Habel 3 – 4

Neurone: Von der Wahrnehmung zur Bewegung

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 - 5 WS 2008/09

Sensor-Neurone Spezialisierung der Rezeptorzellen

Neurone: Funktionsweise

Die funktionelle Aufgabe von Interneuronen:

- Integration von Eingabe-Aktivität (Eingabe-Information)
- Weiterleitung der integrierten Eingabe-Aktivität (= Ausgabe-Aktivität / Ausgabe-Information) an andere Neurone.
 - Sensorneurone erhalten ihre Eingabeaktivität nicht von anderen Neuronen.
 - Motoneuronen leiten ihre Ausgabeaktivität nicht an andere Neurone weiter.
 - Integration und Weiterleitung basieren auf biochemischen Prozessen.

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 – 7

WS 2008/09

Wahrnehmung: Die Schnittstelle zur menschlichen Kognition

Zur Arbeitsteilung der Neurone

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 – 9 WS 2008/09

Informationsfluss in neuronalen Systemen: Gehirnareale und ihre Funktionalität

- "Spezialisierung von Regionen"
 - ≈ gewisse Gehirnareale sind an der Erbringung gewisser kognitiver Leistungen massgeblich beteiligt.
 - ist bei allen Tieren zu finden (bei höheren in stärkerem Masse)
 - ist ein "large grain feature" von Regionen, d.h.
 - Basiert auf statistischen Verteilungen von Zellverhaltenseigenschaften
 - Nicht alle Zellen einer "spezialisierten Region" bearbeiten die entsprechende Aufgabe
 - Die Grenzen zwischen Regionen sind unscharf. Insbesondere existieren – in gewissem Umfang – individuelle Unterschiede.
 - Trotz Ausbildung von Spezialisierung liegt in gewissem Umfang – eine Plastizität des Gehirns vor.

Ch. Habel 3 – 10

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

WS 2008/09

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 - 13 WS 2008/09

Verbindungen zwischen den Arealen des visuellen Cortex

- Modellierung empirischer Befunde über die Aktivationsausbreitung (Informationsfluss) im Gehirn von Makaken
- Ähnliche Grundstruktur beim Menschen
- neuroinformatische Verschaltungsanalyse

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 - 15 WS 2008/09

Informatik im Kontext (IKON-1) 3. Vorlesung

Neurone und neuronale Systeme

- Neurone und neuronale Systeme
 - Aufbau und Funktionsweise von neuronalen Systemen
 - Informationsfluss in neuronalen Systemen
 - Brain-Computer Interfaces (Ein Exkurs)
 - → Basisidee: Lokalisierung neuronaler Aktivität wird über das Interface interpretiert
 - Aufbau und Funktionsweise von Neuronen und neuronalen Systemen (im Kleinen)
 - Natürliche und künstliche Neurone

Brain-Computer Interfaces

- Die Zielsetzung: direkte Verbindung von Mensch und Computer, z.B.
 - zur Unterstützung von schwerstbehinderten Personen
 - zur Unterstützung von Personen, deren Motorik oder Kommunikation anderweitig ausgelastet ist
- nicht- invasive Schnittstellen, z.B.
 - Elektroenzephalographie (EEG) misst die summierte elektrischen Aktivität des Gehirns durch Aufzeichnung der Spannungsschwankungen an der Kopfoberfläche.

Abb aus: Krepki et al, 2007

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 – 17 WS 2008/09

EEG

Anordnung der Elektroden auf eine EEG-Kappe

Abb aus: Krepki et al, 2007

BCI

Verteiltes Design des BBCI

Abb aus: Krepki et al, 2007

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 - 19 WS 2008/09

BBCI - Hex-o-spell

- Buchstabieren durch Imagination von Bewegungen
 - der rechten Hand (drehen des Pfeils) und
 - des rechten Fusses (vergrössern der Pfeils = auswählen)

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

Abb aus: Blankerts et al, 2007 3 - 20 WS 2008/09

Informatik im Kontext (IKON-1)

3. Vorlesung

Neurone und neuronale Systeme

- Neurone und neuronale Systeme
 - Aufbau und Funktionsweise von neuronalen Systemen
 - Informationsfluss in neuronalen Systemen
 - Brain-Computer Interfaces
 - Aufbau und Funktionsweise von Neuronen und neuronalen Systemen (im Kleinen)
 - Natürliche Neurone
 - Künstliche neuronale Netze
 - Beispiele der Verarbeitung: Kantenerkennung

Generic biological neuron

- Dendriten sammeln
 Informationen von anderen
 Neuronen
- Zellkörper integriert die von den Dendriten – eingehenden Signale und konvertiert diese zu Ausgabesignalen
- Das Axon leitet das Ausgabesignal weiter
- In den Terminalen findet eine Konversion in chemische Signale statt.
- Synapsen sind der Bereich zwischen Terminalen eines Neurons und Dendriten eines anderen Neurons.

Ch. Habel
IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

WS 2008/09

Informationsverarbeitung in Neuronen

- Eingabe in ein Neuron ist analog ("kontinuierlich")
- Ausgabe eines Neurons wird als diskret angesehen ("all-or-none")
 - Elektrische Potentiale, feuern von Neuronen, Nervenimpulse, Spikes
- Ausgabe erfolgt, wenn ein Schwellwert (threshold) überschritten ist.
 - Ausgabe ist ein Prozess mit zeitlicher Ausdehnung.
- Zwei Arten von Synapsen (Konnektionen zwischen Neuronen)
 - Exzitatorische: Das empfangende Neuron wird mit grösserer Wahrscheinlichkeit feuern.
 - Inhibitorische: Das empfangende Neuron wird mit geringerer Wahrscheinlichkeit feuern.

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

Beispiel: On-center cells

Zellen

- im Bereich der frühen visuellen Wahrnehmung
- werden (indirekt) stimuliert, d.h. sind den Rezeptoren (in der Retina) nach geschaltet
- treten in zwei Typen (on vs. off) auf.

Aktivationsverhalten bei unterschiedlicher Beleuchtung des rezeptiven Feldes

Veränderte Aktivation "signalisiert" Vorhandensein eines Ereignisses Gleichförmige Aktivation "signalisiert" Nicht-Ereignis

Ch. Habel 3 - 24

3 - 23

WS 2008/09

Künstliche Neuronale Netze

- Systeme / Modellierungen der Informatik
 (Neuroinformatik), die auf Prinzipien der
 Informationsverarbeitung in Nervensystemen basieren.
- Perspektiven auf Neuronale Netze:
 - Entwicklung leistungsfähiger Systeme für spezifische Aufgaben,
 - z.B. Mustererkennung
 - Modellierung natürlicher neuronaler Systeme
 - Diese Forschungsrichtung beginnt mit den Arbeiten von McCulloch & Pitts (1943)
 - Zentraler Forschungsbereich der Cognitive Neuroscience

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 – 25

WS 2008/09

Generic neural network computing unit

- Ein- / Ausgabe wird durch numerische Werte / Aktivationen modelliert.
- Exzitatorische vs. inhibitorische Konnektion wird durch Positivität bzw. Negativität der Aktivationen bzw. der Gewichte repräsentiert.
- Berechnung erfolgt in zwei Stufen.

Ch. Habel 3 – 26

Integration der Eingabewerte

- Die Eingabeverbindungen (connections) werden durch Bildung des Inneren Produktes integriert. $\sum a_i w_i$
- Jede Konnektion geht mit einem Gewicht, das die Verbindungsstärke repräsentiert, in die Berechnung des Ausgabewertes ein.

Ch. Habel 3 – 27
IKON-1: Neuronale Systeme | Wahrnehmung (Überblick) WS 2008/09

Berechnung des Ausgabewertes (alternative Ausgabefunktionen)

Simple network computation

Parameter des Netzwerkes:

- Struktur des Netzwerks, d.h. Verbindungen
- Gewichte der eingehenden Konnektionen (betr. 1. Schritt)
- Berechnung des Ausgabewertes (2. Schritt)

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 - 29 WS 2008/09

Konnektivität von Neuronen

- Menschliches Nervensystem:
 ca. 10¹² Neurone und 10¹⁵ Synapsen
 - Mittlere Anzahl der Synapsen je Neuron: 10³ 10⁵
- Neuronale Verbindungen im Cortex:
 Jedes Neuron ist etwa mit 3% der Neuronen verbunden, die in der 1 mm² Nachbarschaft liegen.
 - spärliche Verbindungen in der Nachbarschaft
 - Verbindungen zu anderen Zellklassen
 - Vorwärts- und Rückwärtsprojektionen

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 – 31 WS 2008/09

Neuronale Struktur des visuellen Cortex

Schichten 1 - 3

Das Auge

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick) 3 – 33 WS 2008/09

Überlappung rezeptiver Felder

rezeptive Felder

Rezeptorzellen Bipolarzellen Ganglienzellen

Rezeptive Felder von Ganglienzellen: On-center cells – Off-center-cells

- Rezeptives Feld = Bereich der Rezeptoren, die über ein oder mehrere Synapsen zu einem Neuron führen.
- Zwei Typen von Ganglienzellen in Bezug auf ihre rezeptiven Felder:
 - On-center cells
 - Off-center-cells

Stimuli

Center

Surround

Center & Surround

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 - 35 WS 2008/09

On-center cells - Off-center-cells

On-center

cell

Stimulus

an aus

Center

-

Surround

+

Center & Surround

Linien- und Kantendetektoren im visuellen Cortex

- Spezifische Zellen in der Area V1, die auf Linien bzw. Kanten reagieren.
- ,Visuelle Atome' für die weitere visuelle Perzeption

Ch. Habel 3 - 37IKON-1: Neuronale Systeme | Wahrnehmung (Überblick) WS 2008/09

Neuronale Verschaltung von "Einfachen Zellen" der Area V1

Kanten- und Liniendetektion basiert auf der Verschaltung von LGN-Zellen, deren rezeptive Felder aligniert sind.

3 - 38WS 2008/09 IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

Computationelle Modelle der Kantenerkennung

Kantenerkennung in der natürlichen Perzeption

- Vorbereitung durch Ganglienzellen und Zellen im LGN, die Kontrastinformation verrechnen. (Center-Surround-Zellen)
- Eigentliche Kanten- und Linienerkennung in V1 ("Einfache Zellen")
- Zusätzlich in V1 Zellen für die Erkennung von sich bewegenden Linien.

Computationelle Modelle

- mathematische Methoden zur Berechnung von Kontrastinformation und zur Kantenerkennung. Realisierbar
 - · durch Differenzen- und Differentialgleichungen
 - durch neuronale Netze

Ch. Habel 3 - 39IKON-1: Neuronale Systeme | Wahrnehmung (Überblick) WS 2008/09

Kantendetektion mit lokalen Operatoren (1)

- "Kantenoperatoren": Lokalisierung von Kontrastkonstellationen
 - Anwendung von lokalen Operatoren auf Pixel-Konstellationen (Matrizen)
 - Kantenoperatoren werden auf jedes Paar von Pixeln angewandt, das die für den Operator spezifische Gestalt hat.
 - Anwendung der Kantenoperatoren ist eine Faltung.

Kantendetektion mit lokalen Operatoren (2)

Graubild

Matrix der Bildintensitäten

Anwendung des vertikalen Kantenoperators

-8 -8

Anwendung des horizontalen Kantenoperators

Ch. Habel

IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 - 41 WS 2008/09

Kantendetektion mit einem Neuronalen Netzwerk

- Bildintensität
- Retinales Bild

Ebene der Rezeptoren

 Exzitatorische (+1) und inhibitorische (-1)
 Verbindungen realisieren einen vertikalen
 Kantenoperator

Ebene der Faltung: Kontrastrepräsentation →Kantenrepräsentation

Second-order Edge Operators

- Operatoren zweiter Stufe berücksichtigen Nachbarschaften zu mehreren Zellen.
- Hierdurch können Differenzen von Differenzen berücksichtigt werden
- Summe aller Zellen eines Kantendetektors ist NULL.

10	10	02	02	10	10
10	10	02	02	10	10
02	02	02	02	02	02
02	02	02	02	02	02
10	10	02	02	10	10
10	10	02	02	10	10

-1	+2	-1

vertikal

-1	-1	-1
-1	+8	-1
-1	-1	-1

omnidirektional

40	-16	-16	40	
-16	-8	-8	-16	
-16	-8	-8	-16	
40	-16	-16	40	

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 – 43 WS 2008/09

Kontur- und Kontrastillusionen (1)

- Herrmann-Gitter Illusion:
 - Welche Prozesse produzieren den Eindruck von "grauen Flecken" im Kreuzungsbereich?
 - Warum gelingt keine Unterdrückung dieses Eindrucks?

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 - 45 WS 2008/09

VV3 2000/09

Chevreul Streifen

Ch. Habel IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)

3 - 47 WS 2008/09

Luminanzkanten & Luminanzprofile

 Berechnung des Nulldurchgangs der 2. Ableitung (zero crossing) ist das differentialanalytische Analogon zur Anwendung von Kantenoperatoren.

Informatik im Kontext (IKON-1) Neurone und neuronale Systeme Wahrnehmung

- 3. Neurone und neuronale Systeme
 - Neuronale Systeme: Aufbau, Funktionsweise und Informationsfluss
 - Brain-Computer Interfaces
 - Natürliche Neurone & künstliche neuronale Netze
- 4. Wahrnehmung
 - Visuelle Wahrnehmung
 - Farbwahrnehmung, Gestaltprinzipien, Objekterkennung
 - Haptische Wahrnehmung

Vier Stufen der visuellen Wahrnehmung

- Retinal image: 2-D Projektion der Umwelt
- Image based processing: Erkennen von Bildatomen, z.B. Kanten
- Surface based processing: 2-D-Primitive: Regionen,...
- Object based processing: 3-D-Primitive,
- Category based processing: Erkennen, Beziehung zum Wissen

Ch. Habel 3 - 50WS 2008/09 IKON-1: Neuronale Systeme | Wahrnehmung (Überblick)