1st Row Hydrides

- Draw only outer electrons
- · Points represent e- in orbitals

How about F?

Three possible states

Bonding?

Oxygen (He+2s²2p⁴)

Consider a hydrogen atom approaching

Now consider a second hydrogen atom approaching

We expect a bond angle of:

The real angle in H₂O is:

Bond angle in H₂O

Why is the angle 104.5°?

What would happen to H₂S, H₂Se, H₂Te?

	H2O	H2S	H2Se	Н2Те
Bond distance	0.96 Å	1.3 Å	1.5 Å	1.7 Å
Bond angle	104.5°	92.2°	91 °	90.2 °

Nitrogen

NH2	PH2	AsH2	SbH2
103.3°	91.7°	90.2°	90.3°
NH3	PH3	AsH3	SbH3
106.7°	93.3°	92.1°	91.6°

We expect CH₂ angle to be: ~103° Experimentally it is:

- SiH₂ angle is 92°
- · We failed to take something into account in carbon
- CH₄ is very stable
- We assumed 2s² was part of the core

Carbon and hybrid orbitals

To make four bonds I need to promote one electron:

From configuration:

 $1s^2 2s^2 2p_x^{-1} 2p_y^{-1} 2p_z^{-0}$

To electronic configuration:

 $1s^2 2s^1 2p_x^1 2p_y^1 2p_z^1$

I would expect CH₄ to make three bonds like NH₃ plus a weaker one with the 2s¹ electron

Experimentally all four bonds are the same

Hybrid orbitals: 2s and 2p orbitals combine to make new hybrid orbitals

Carbon: sp hybridization

sp¹ sp² sp³

2s orbital & 1 2p orbital 2s orbital & two 2p orbitals 2s orbital & three 2p orbitals 12p orbitals 2s orbital & three 2p orbitals 12p orbitals 12

Carbon: bonds with sp orbitals

Ethyne (acetylene)

Ethylene

Ethane

Molecular geometries: summary

The oxygen column

	H2O	H2S	H2Se	Н2Те
Bond distance	0.96 Å	1.3 Å	1.5 Å	1.7 Å
Bond angle	104.5 °	92.2°	91 °	90.2 °

The nitrogen column

NH2	PH2	AsH2	SbH2
103.3	91.7	90.2	(90.3)*
ИНЗ	PH3	AsH3	SbH3
106.7	93.3	92.1	91.6

The carbon column

$$\mathfrak{sp}^{1}$$

$$\chi_{sp}^{(1)} = \frac{1}{\sqrt{2}} (\psi_{2s} + \psi_{2pz})$$

$$\chi_{sp}^{(2)} = \frac{1}{\sqrt{2}} (\psi_{2s} - \psi_{2pz})$$

$$sp^{2}$$

$$\chi_{sp2}^{(1)} = \frac{1}{\sqrt{3}} \psi_{2s} + \sqrt{\frac{2}{3}} \psi_{2pz}$$

$$\chi_{sp2}^{(2)} = \frac{1}{\sqrt{3}} \psi_{2s} - \frac{1}{\sqrt{6}} \psi_{2px} + \frac{1}{\sqrt{2}} \psi_{2py}$$

$$\chi_{sp2}^{(2)} = \frac{1}{\sqrt{3}} \psi_{2s} - \frac{1}{\sqrt{6}} \psi_{2px} - \frac{1}{\sqrt{2}} \psi_{2py}$$

$$sp^{3}$$

$$\chi_{sp3}^{(1)} = \frac{1}{\sqrt{4}} (\psi_{2s} + \psi_{2px} + \psi_{2py} + \psi_{2pz})$$

$$\chi_{sp3}^{(2)} = \frac{1}{\sqrt{4}} (\psi_{2s} - \psi_{2px} - \psi_{2py} + \psi_{2pz})$$

$$\chi_{sp3}^{(3)} = \frac{1}{\sqrt{4}} (\psi_{2s} + \psi_{2px} - \psi_{2py} - \psi_{2pz})$$

$$\chi_{sp3}^{(4)} = \frac{1}{\sqrt{4}} (\psi_{2s} - \psi_{2px} + \psi_{2py} - \psi_{2pz})$$

Bonding: a more quantitative view

- Consider a collection of atoms far away from each other
 - Electronic states is the collection of atomic states
- Bring atoms together so wavefunctions overlap
 - The wavefunctions will change
 - The energy of the states will change

- Consider a di-atomic molecule with like atoms (homopolar bond)
 - •Approximate molecular orbital: a linear combination of atomic orbitals:

$$\psi(\vec{r}) = a_L \psi_L(\vec{r}) + a_R \psi_R(\vec{r})$$

Bonding: a more quantitative view at LCAO

$$H\psi(\vec{r}) = E\psi(\vec{r})$$
 with $\psi(\vec{r}) = a_L\psi_L(\vec{r}) + a_R\psi_R(\vec{r})$

Multiply by Y_I from left and integrate over all space:

$$H(a_L \psi_L + a_R \psi_R) = E(a_L \psi_L + a_R \psi_R)$$

$$a_L \int \psi_L H \psi_L d^3 r + a_R \int \psi_L H \psi_R d^3 r = E\left[\int \psi_L^2 d^3 r + \int \psi_L \psi_R d^3 r\right]$$

$$a_L H_{LL} + a_R H_{LR} = E\left[1 + S_{LR}\right]$$

Multiply by Y_R from left and integrate over all space:

$$a_L H_{RL} + a_R H_{RR} = E \big[1 + S_{RL} \big] \ \, \bigcap_{\mathbf{R}}$$

$$H_{LL} = H_{RR} = h_0 \qquad \text{Neglect Overlap}$$

$$H_{RL} = H_{LR} = -V_2 \qquad S_{RL} = S_{LR} = 0$$

Bonding in homopolar diatomic molecule

In matrix form:

$$\begin{vmatrix} a_L h_0 - a_R V_2 = E a_L \\ -a_L V_2 + a_R h_0 = E a_R \end{vmatrix} = \begin{bmatrix} h_0 & -V_2 \\ -V_2 & h_0 \end{bmatrix} \begin{bmatrix} a_L \\ a_R \end{bmatrix} = E \begin{bmatrix} a_L \\ a_R \end{bmatrix}$$

Eigenvalue Problem

$$\begin{vmatrix} h_0 - E & -V_2 \\ -V_2 & h_0 - E \end{vmatrix} = 0 = (h_0 - E)^2 - V_2^2$$

Eigenvalues (energies)

Eigenvectors (wavefunction)

$$E_1 = h_0 - V_2 \qquad \qquad \qquad a_L = a_R$$

$$E_2 = h_0 + V_2 \qquad \qquad a_L = -a_R$$

Bonding in homopolar diatomic molecule

We can use the H₂+ solution to obtain a qualitative picture of diatomic H and He

H₂ molecule: strong bond (~4.5eV)

He₂ molecule: very weak bond

Let's bring to Li-row atoms together

Heteropolar diatomic molecule

$$\begin{bmatrix} h_0^{(1)} & -V_2 \\ -V_2 & h_0^{(2)} \end{bmatrix} \begin{bmatrix} a_L \\ a_R \end{bmatrix} = E \begin{bmatrix} a_L \\ a_R \end{bmatrix}$$

Polar energy:
$$V_3 = \frac{h_0^1 - h_0^2}{2}$$

Average energy of cation and anion:

$$\overline{h} = \frac{h_0^1 + h_0^2}{2}$$

Energies:

$$E_b = \overline{h} - \sqrt{V_2^2 + V_3^2}$$

$$E_a = \overline{h} + \sqrt{V_2^2 + V_3^2}$$

