好题分享

liuziao

2025.4.28

AGC040E Prefix Suffix Addition

题目描述

你有一个长为 N 的序列 x_1, x_2, \ldots, x_N ,一开始全部为 0,你现在可以以任意顺序进行任意次以下两种操作:

- 1. 选定整数 $k(1 \le k \le N)$ 与不下降非负序列 c_1, c_2, \ldots, c_k ,对所有 $1 \le i \le k$,令 x_i 加上 c_i 。
- 2. 选定整数 $k(1 \le k \le N)$ 与不上升非负序列 $c_1, c_2, ..., c_k$,对所有 $1 \le i \le k$,令 x_{N-k+i} 加上 c_i 。

问最少进行多少次操作使得最后对任意 i 有 $x_i = A_i$ 。 $1 \le N \le 2 \times 10^5, 1 \le A_i \le 10^9$ 。

AGC040E Prefix Suffix Addition

首先如果只能做 1 操作,答案就是极长不降段的个数。只有 2 操作答案就是极长不升段的个数。

这启发我们将每个 A_i 拆成 a_i 和 b_i ,分别表示来自 1 操作和 2 操作的 贡献,答案即为: $\sum_{i=1}^{N+1} ([a_i < a_{i-1}] + [b_i > b_{i-1}])$ 。

AGC040E Prefix Suffix Addition

考虑 dp。

设 $f_{i,j}$ 表示考虑了前 i 个数,满足 $a_i=j, b_i=A_i-j$ 的最小操作数。 直接转移是 O(nV) 的,但是注意到 $f_{i,j}$ 不升,且 $f_{i,a_i} \geq f_{i,0}-2$,所以记录一下三种 dp 值对应的区间即可。 时间复杂度: $O(n)/O(n\log V)$ 。

题目描述

给定一个长度为 n 的整数序列 $a_1 \sim a_n$,其中的元素两两互不相等。有 q 次询问,每次询问给定一个区间 [l,r],你要选择三个区间内互不相等的下标 x,y,z,最大化 $(a_x \bmod a_y) + (a_y \bmod a_z) + (a_z \bmod a_x)$ 的值。

只需要输出这个最大值。

 $3 \le n \le 2 \times 10^6$, $1 \le q \le 8 \times 10^5$, $1 \le a_i \le 10^{18}$, $a_1 \sim a_n$ **互不相等**。强制在线。

不妨设 $a_x > a_y > a_z$, 那么对于 (x, y, z) 只有两种贡献:

- 1. $a_x \mod a_y + a_y \mod a_z + a_z$
- $2. \ a_x \bmod a_z + a_z + a_y$

对于一组询问 [l,r],手玩后可发现 [l,r] 内的区间最大值和次大值都必须选。

证明

先把区间的数拿出来并排序,使得 $a_1 < a_2 < \ldots < a_m$,则选择 (m-2,m-1,m) 可以得到一个答案下界为 $a_{m-1} + a_{m-2}$ 。

- **> 如果最终答案为** $a_x \mod a_y + a_y \mod a_z + a_z$, 由于 $a_x \mod a_y + a_y \mod a_z + a_z \le \min\{a_x, 2 \cdot a_y 1\}$, 则 $x \le m 1$ 或 $y \le m 2$ 一定没上面那个优,所以 x = m 且 y = m 1。
- ▶ 如果最终答案为 $a_x \bmod a_z + a_z + a_y$,由于 $a_x \bmod a_z + a_z + a_y \le a_x + a_y$,当 $x \ne m$ 一定达不到最优解,又 因为 a_y 只出现了一次,所以 y 一定尽量取到 m-1。

于是 x 和 y 就固定了,设 F(x, l, r) 表示将 [l, r] 中的 x 和把剩下的最大值去掉后的所有 k, $a_x \bmod a_k + a_k$ 的最大值。

那么答案就是 $\max\{F(x,l,r)+a_y,F(y,l,r)+a_x \bmod a_y\}$, 由于 x,y已 经确定,所以我们只需要求出 F(x,l,r) 的值即可。

考虑将 F(x,l,r) 拆成 F(x,l,x-1) 和 F(x,x+1,r)。对于 F(x,l,x-1),让 l 从 x 枚举到 1 可以得到一个 $O(n^2)$ 的做法。

又有个结论是如果扫到了某个 l, 存在至少两个 $a_i > \frac{a_v}{2}$ 就可以停止扫描。

证明

不妨设这两个数是 a_i, a_j 且 $a_i < a_j$ 。

- ▶ 如果 $a_i > a_x$,与 x 为区间最大值/次大值矛盾,这个区间一定不会被询问到。
- ▶ 如果 $\frac{a_x}{2} < a_i < a_x$, 则 $a_i \mod a_x + a_x = a_i$, 已经到了最大值, 前面的一定不会更优。

基于这个做法暴力枚举 l 可以做到 $O(n \log V + q \log n)$, 但过不了。

注意到扫描到 a_i 时,如果已经存在两个数 $\geq 2 \cdot a_i$,则 a_i 就可以删掉。这是因为如果 $a_i \geq 2 \cdot a_i$,则

 $a_x \mod a_j + a_j \ge a_j \ge 2 \cdot a_i > a_x \mod a_i + a_i$, 所以 a_i 一定不会对答案 造成贡献。

于是可以在从小到大枚举x的过程中,维护一个栈表示目前还没删掉的数和这些数的删除标记。然后在扫描l的过程中,维护二号标记表示 $> \frac{a_0}{2}$ 的个数。

如果当前 $a_i \leq \frac{a_x}{2}$ 就将 i 的删除标记加 1,否则将二号标记加一。如果二号标记到了 2 就停止扫描,把栈里面删除标记为 2 的数删掉,并将 x 加到栈里。

容易证明上面那个做法的预处理复杂度为 O(n)。

时间复杂度: $O(n + q \log n)$ 。

谢谢大家!