

캡스톤 프로젝트 6조 Lit 곽상열 양교워

Introduction

- Expressing nature's beauty in a real-time is still challenging issues.
- Global Illumination effect is major component to achieve high quality rendering results.
- Implement renderer to synthesize realistic image in a real-time.

Methods

Framework

Low Level APIs

Platforms

Linux

Implementation (Renderer)

Cone Tracing Pass

- Gathering Indirect Lights using Cone Tracing
 - Direct Diffuse: Lambertian DRDFs Direct Specular : Cook-Torrance BRDFs

 - Indirect Diffuse: Trace 6 Cones
 - 60° per cone
 - Also compute ambient occlusion
 - Indirect Specular : GGX Importance Sampling
 - Aperture of cone is vary on material roughness
 - 2 ~ 4 Samples to achieve real-time performance
 - Linear Attenuation (Light Energy $\propto \frac{1}{Distance}$)

Visualize Diffuse Cone's Directions

Results

Emissive + Direct Diffuse Reflection

Final Result w/ Indirect Specular Reflection

Conclusion

- With our renderer we can achieve our goal to implement Global Illumination effect.
- But we still can extend indirect light bounces and improve voxelization method.
- Also, we can implement post-process effect and find more flexible and physically plausible BSDFs.