Detection of the kinematic dipole with the large-scale structure of the Universe

Trabajo Fin de Grado

Ixaka Labadie Garcia

Facultad de Ciencias, UC

24 septimbre 2020

Contents

- 1. Introduction
- 2. Simulations
- 3. Optimization
- 4. Results
- 5. Conclusions

1. Introduction: Standard Cosmological model

Cosmological observables: Cosmic microwave background (CMB) and large-scale structure (LSS)

Standard model of the universe (ACDM): Flat geometry and accelerated expansion

The expansion produces cosmological redshift

Composition: Dark energy (69%), CDM (26%), baryonic (5%)

Inflation: Initial perturbations leading to LSS

1. Introduction: Standard Cosmological model

Cosmological principle: Homogeneous and isotropic Universe at large scales

Kinematic dipole: Due to the motion of the Solar System with respect to the rest frame of the CMB

Our goals:

- Determine the capability of radio catalogues (SKA) to measure the kinematic dipole
- Provide a reasonable optimization approach and analyze its behaviour for different cases

1. Introduction: CMB dipole

CMB: black body radiation of mean $T=(2.72548\pm0.00057)$ K Fluctuations of order $\Delta T/T \approx 10^{-5}$ **Dipole modulation of CMB monopole:**

 $v = (369.82 \pm 0.11) \text{ km/s}, (l,b) = (264.021 \pm 0.011, 48.253 \pm 0.005)^{\circ}$

From modulation in fluctuations:

$$v = (384\pm78) \text{ km/s}, (1,b) = (264, 48)^{\circ}, \Delta\phi \sim 20^{\circ}$$

Recent anomalies in the CMB at large angular scales, anisotropic Universe

1. Introduction: Dipole from LSS

$$d_{radio} = d_{motion} + d_{structure} + d_{foregrounds} + d_{noise}$$

Structure dipole dominates at $z \ll 1$, radio surveys $z \gtrsim 1$

Foregrounds (Milky Way) and noise (shot noise) negligible

Motion, Doppler shift: $v_{\text{obs}} = v_{\text{rest}} \delta$; $\delta \approx [1 + (v/c) \cos \theta]$

$$\left(\frac{dN}{d\Omega}(S>,\boldsymbol{n})\right)_{obs} = \left(\frac{dN}{d\Omega}(S>,\boldsymbol{n})\right)_{rest} \left[1 + \left[2 + x(1+\alpha)\right] \left(\frac{\upsilon}{c}\right) \cos(\theta)\right]$$

With x=1, $\alpha=0.75$, v=369 km/s: amplitude A=0.00462

With NVSS and other surveys results not always consistent with those of the CMB, usually overestimation of $\cal A$

1. Introduction: Square Kilometer Array

International project, 14 member countries (Spain in 2018)

Two phases: SKA1 (2028) and SKA2

Locations: South Africa (SKA-MID) and Australia (SKA-LOW)

Will detect synchrotron emission and HI 21 cm line

Spiral interferometer arrays of dishes and antennas

Collecting area of 10⁶ m

Wide Band 1 Survey: 22.8 μ Jy flux threshold at 10σ

 $0.35 < \nu < 1.05 \text{ GHz}$, 0 < z < 6

observable sky area $f_{\rm sky} \sim 0.63$

After removal of galactic plane $f_{\rm skv} \sim 0.50$

2. Simulations

Angular power spectra from CAMB, 12 redshift bins
Parameters from best-fit ΛCDM model by *Planck* 2018
Redshift distribution with polynomial fit (*Jarvis et al.* 2015)
Bias and magnification bias from *SKA Cosmology Group*

2. Simulations

Simulations following multivariate log-normal distribution FLASK gives source count HEALPix maps ($N_{\rm side}$ =64) $12N_{\rm side}$ pixels of same area

100 simulations for four flux thresholds (1, 5, 10, 22.8 µJy) Each simulation divided in **12 bins**, from there **4 samples**

3. Optimization

Quadratic estimator (Bengaly et al. 2018):

Variate parameters to obtain minimum of function

$$\min \sum_{p} \left(\frac{\left[N_{p} - \overline{N} \left(1 + A \cos \theta_{p} \right) \right]^{2}}{\overline{N} \left(1 + A \cos \theta_{p} \right)} \right)$$

Three methods:

- Nelder-Mead, variations of a simplex
- Newton's conjugate gradient (NCG), exact Hessian
- L-BFGS-B, updated approximation of Hessian

Estimation of amplitude and direction coordinates: Pixel, cartesian (x,y,z) or galactic (l,b)

3. Optimization: Our approach

Only **pixel number** estimation works for masked-sky Only method with pixel number is Nelder-Mead **Degrade** maps to N_{side} =32, less calculation time Cartesian $\{x,y,z\}$ estimation more accurate

3. Optimization: Validation

Full-sky (left): highest errors in random position
Masked-sky (right): highest error shifted to center
Deviations from true direction, bigger with mask
There is a systematic effect in the method for masked-sky

4. Results

Masked maps									
$S > /\mu \mathrm{Jy}$	Sample	$A/10^{3}$	$l/{ m deg}$	$b/{ m deg}$	$ heta/\mathrm{deg}$	$N_{gal}/10^7$			
	full	4.68 ± 0.51	266.41 ± 9.81	43.53 ± 6.34	9.35 ± 11.54	135.35			
1	z > 0.5	4.67 ± 0.18	267.11 ± 3.97	44.19 ± 2.20	$5.37 {\pm} 6.21$	123.98			
	no Mod	4.29 ± 0.50	266.62 ± 10.56	43.23 ± 6.41	10.01 ± 12.72	135.35			
	structure	$0.86 {\pm} 0.41$	_	_	_	135.35			
	full	4.83 ± 0.67	267.75 ± 13.49	43.54 ± 9.67	12.97 ± 15.17	44.13			
5	z > 0.5	4.76 ± 0.24	$266.86{\pm}4.35$	43.17 ± 2.96	6.43 ± 7.56	38.62			
	no Mod	4.26 ± 0.67	268.17 ± 15.23	$42.84{\pm}10.9$	14.64 ± 17.46	44.13			
	structure	1.25 ± 0.56	_	_	_	44.13			
	full	4.94 ± 0.92	267.46 ± 15.95	39.11 ± 10.74	16.51 ± 20.02	24.62			
10	z > 0.5	4.82 ± 0.23	268.47 ± 5.84	40.93 ± 3.41	9.0 ± 10.81	21.08			
	no Mod	4.28 ± 0.91	267.72 ± 17.92	37.55 ± 12.46	18.96 ± 22.92	24.62			
	structure	1.61 ± 0.65	_	_	_	24.62			
	full	4.91 ± 0.99	270.6 ± 18.16	39.73 ± 11.97	17.74 ± 21.22	11.53			
22.8	z > 0.5	4.87 ± 0.34	269.73 ± 5.19	38.84 ± 3.49	11.0 ± 12.44	9.67			
	no Mod	4.17 ± 1.00	271.59 ± 21.18	38.2 ± 13.69	20.64 ± 25.58	11.52			
	structure	1.78 ± 0.77	_	_	_	11.53			
CMB		4.62	264.02	48.25	_	_			

4. Results

The amplitude estimations have a **symmetric distribution**, shifted from the CMB

Full (red) narrow, structure (green) very wide Directions scattered near CMB, small shift Structure dipole in random directions

no Mod z>0.5 full structure

5. Conclusions

Results in general show good agreement with CMB

Systematic errors due to reduced observable sky (mask)

SKA data is expected to produce **better** or similar results than other galaxy surveys

Better than from CMB dipole modulation

After removing the local structure they are very accurate

Lower flux threshold improves results to a certain point

SKA is a **promising tool** to corroborate the standard cosmological model and to provide further insight into the CMB anomalies

5. Conclusions

We have identified several points that could be extended in a **future work:**

- Correct systematics from the mask
- Deeper analysis of structure dipole
- Estimator based on likelihood and explore with MCMC

The code I wrote to obtain the galaxy maps and to obtain the results presented in this work can be found in the GitHub repository **Radio-Dipole**:

BACK-UP SLIDES

Full-sky maps									
$S > /\mu \mathrm{Jy}$	Sample	$A/10^{3}$	$l/{ m deg}$	$b/{ m deg}$	$ heta/\mathrm{deg}$	$N_{gal}/10^7$			
	full	4.60 ± 0.42	263.59 ± 4.89	48.01 ± 3.94	3.93 ± 4.57	268.67			
1	z > 0.5	4.60 ± 0.12	264.11 ± 1.15	48.16 ± 0.87	0.83 ± 1.22	246.10			
	no Mod	4.23 ± 0.42	262.8 ± 6.03	47.83 ± 4.41	$4.87 {\pm} 6.23$	268.67			
	structure	0.66 ± 0.28	_	_	_	268.67			
	full	4.68 ± 0.60	263.86 ± 9.54	48.08 ± 5.44	6.54 ± 7.23	87.60			
5	z > 0.5	4.64 ± 0.16	264.16 ± 2.16	48.62 ± 1.51	1.71 ± 2.18	76.66			
	no Mod	4.09 ± 0.59	264.5 ± 10.05	48.23 ± 7.48	$8.13{\pm}10.32$	87.60			
	structure	0.99 ± 0.37	_	_	_	87.60			
	full	4.74 ± 0.76	263.03 ± 10.86	47.08 ± 6.24	$8.22{\pm}10.57$	48.88			
10	z > 0.5	4.63 ± 0.18	264.03 ± 2.82	48.14 ± 1.75	2.12 ± 2.86	41.84			
	no Mod	4.10 ± 0.80	262.49 ± 14.66	46.52 ± 8.57	11.41 ± 15.13	48.88			
	structure	1.17 ± 0.49	_	_	_	48.88			
	full	4.73 ± 0.80	263.7 ± 13.18	48.0 ± 8.65	10.04 ± 11.47	22.86			
22.8	z > 0.5	4.65 ± 0.22	263.53 ± 3.01	48.24 ± 1.83	2.24 ± 2.97	19.19			
	no Mod	3.97 ± 0.77	262.92 ± 15.39	$48.52 {\pm} 10.40$	12.28 ± 14.29	22.86			
	structure	1.30 ± 0.58	_	_	_	22.86			
CMB		4.62	264.02	48.25	_	_			

