CÁC TIÊU CHUẨN VÀ ĐỊNH LÝ VỀ CHUỖI

LATEX by Trần Thành Luân - CLB Hỗ trợ học tập

Định lý 1. (Điều kiện cần để chuỗi hội tụ)

Nếu chuỗi số $\sum_{n=1}^{\infty}$ là hội tụ thì $\lim_{n\to\infty} a_n = 0$

I Chuỗi số dương

1 Tiêu chuẩn tích phân

Định lý 2. Cho f(x) là một hàm số liên tục, dương, giảm trên đoạn $[1,\infty)$ và $a_n=f(n)$. Khi chuỗi số $\sum_{n=1}^{\infty}a_n$ và tích phân suy rộng $\int_{-\infty}^{\infty}f(x)\mathrm{d}x$ có cùng tính chất hội tụ hoặc phân kỳ. Nói cách khác,

• Nếu
$$\int_{1}^{\infty} f(x) dx$$
 là hội tụ thì $\sum_{n=1}^{\infty} a_n$ cũng là hội tụ.

• Nếu
$$\int_{1}^{\infty} f(x) dx$$
 là phân kỳ thì $\sum_{n=1}^{\infty} a_n$ cũng là phân kỳ.

2 Các tiêu chuẩn so sánh

Định lý 3. Cho hai chuỗi số dương $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$ có $a_n \le b_n$ với mọi n hoặc kể từ một số n nào đó. Khi đó

• Nếu
$$\sum_{n=1}^{\infty} b_n$$
 là hội tụ thì $\sum_{n=1}^{\infty} a_n$ cũng là hội tụ.

• Nếu
$$\sum_{n=1}^{\infty} a_n$$
 là phân kỳ thì $\sum_{n=1}^{\infty} b_n$ cũng là phân kỳ.

Định lý 4. Cho hai chuỗi số dương $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$ thoả mãn

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c>0$$

Khi đó $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$ có cùng tính chất hội tụ hoặc phân kỳ.

3 Tiêu chuẩn d'Alambert

Định lý 5. Giả sử tốn tại $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$. Khi đó

- Nếu L < 1 thì chuỗi đã cho hôi tu.
- Nếu L > 1 thì chuỗi đã cho phân kỳ.

4 Tiêu chuẩn Cauchy

Định lý 6. Giả sử tốn tại $\lim_{n\to\infty} \sqrt[n]{a_n} = L$. Khi đó

- Nếu L < 1 thì chuỗi đã cho hội tụ.
- Nếu L > 1 thì chuỗi đã cho phân kỳ.

II Chuỗi với số hạng có dấu bất kỳ

1 Chuỗi hội tụ tuyệt đối, bán hội tụ

Định lý 7. Nếu $\sum_{n=1}^{\infty} |a_n|$ là hội tụ thì $\sum_{n=1}^{\infty}$ cũng là hội tụ.

Định nghĩa 1. Hội tụ tuyệt đối, bán hội tụ Chuỗi $\sum_{n=1}^{\infty} a_n$ được gọi là

- Hội tụ tuyệt đối nếu $\sum_{n=1}^{\infty} |a_n|$ là hội tụ.
- Bán hội tụ nếu $\sum_{n=1}^{\infty} a_n$ hội tụ còn $\sum_{n=1}^{\infty} |a_n|$ phân kỳ.

2 Chuỗi đan dấu $\left(\sum_{n=1}^{\infty} (-1)^n a_n\right)$

Định lý 8. Xét chuỗi đan dấu $\sum_{n=1}^{\infty} (-1)^n a_n$,

Nếu $\{a_n\}_1^\infty$ là một dãy số dương, giảm và $\lim_{n\to\infty}a_n=0$ thì $\sum_{n=1}^\infty(-1)^na_n$ hội tụ, và $\sum_{n=1}^\infty(-1)^na_n< a_1$.

2

3 Chuỗi đặc biệt $\left(\sum_{n=1}^{\infty} a_n b_n\right)$

Tiêu chuẩn 1. (Tiêu chuẩn Dirichlet) Nếu

- Dãy các tổng riêng của chuỗi $\sum_{n=1}^{\infty} a_n$ bị chặn
- b_n là dãy đơn điệu hội tụ đến 0

thì
$$\sum_{n=1}^{\infty} a_n b_n$$
 hội tụ.

Tiêu chuẩn 2. (Tiêu chuẩn Abel) Nếu

- $\sum_{n=1}^{\infty} a_n$ hội tụ
- b_n là một dãy đơn điệu bị chặn

thì chuỗi số $\sum_{n=1}^{\infty} a_n b_n$ hội tụ.

III Chuỗi hàm số $\left(\sum_{n=1}^{\infty} u_n(x)\right)$

1 Chuỗi hàm số hội tụ

Định nghĩa 2. Cho dãy các hàm số $\{a_n(x)\}\$,

- Chuỗi hàm số $\sum_{n=1}^{\infty}u_n(x)$ được gọi là hội tụ tại $x=x_0$ nếu chuỗi số $\sum_{n=1}^{\infty}u_n(x_0)$ hội tụ.
- Chuỗi hàm số $\sum_{n=1}^{\infty}u_n(x)$ được gọi là phân kỳ tại $x=x_0$ nếu chuỗi số $\sum_{n=1}^{\infty}u_n(x_0)$ phân kỳ.

Tập hợp các điểm hội tụ của $\sum_{n=1}^{\infty} u_n(x)$ được gọi là miền hội tụ.

2 Chuỗi hàm số hội tụ đều

Định nghĩa 3. Chuỗi hàm số $\sum_{n=1}^{\infty} u_n(x)$ hội tụ đều đến S(x) trên tập X nếu $\forall \varepsilon > 0, \exists n(\varepsilon) \in \mathbb{N}$:

$$|S_n(x) - S(x)| < \varepsilon, \forall n > n(\varepsilon), \forall x \in X$$

- $n(\varepsilon)$ chỉ phụ thuộc vào ε mà không phụ thuộc vào x.
- Ý nghĩa hình học: với n đủ lớn thì $S_n(x)$ nằm hoàn toàn trong dải $(S(x) \varepsilon, S(x) + \varepsilon), x \in X$

Định lý 9. (**Tiêu chuẩn Cauchy**). Cho chuỗi hàm số $\sum_{n=1}^{\infty} u_n(x)$ hội tụ đều trên tập X nếu $\forall \varepsilon > 0, \exists n(\varepsilon) \in \mathbb{N}$:

$$|S_p(x) - S_q(x)| < \varepsilon, \forall p, q > n, \forall x \in X$$

Định lý 10. (Tiêu chuẩn Weierstrass). Nếu:

- $|u_n(x)| \le a_n, \forall n \in \mathbb{N}, \forall x \in X$
- chuỗi số $\sum_{n=1}^{\infty} a_n$ hội tụ

thì chuỗi hàm số $\sum_{n=1}^{\infty} u_n(x)$ hội tụ tuyệt đối và đều trên X.

3 Các tính chất của chuỗi hàm số hội tụ đều

Định lý 11. (Tính liên tục). Nếu

- $u_n(x)$ liên tục trên X với mọi n
- chuỗi $\sum_{n=1}^{\infty} u_n(x)$ hội tụ đều về S(x) trên X

thì S(x) liên tục trên X, ví dụ:

$$\lim_{x \to \infty} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to \infty} u_n(x)$$

Đinh lý 12. (Tính khả vi). Nếu

- $u_n(x)$ khả vi liên tục trên (a,b) với mọi n
- chuỗi $\sum_{n=1}^{\infty} u_n(x)$ hội tụ về S(x) trên (a,b)
- chuỗi $\sum_{n=1}^{\infty} u_n'(x)$ hội tụ đều trên (a,b)

thì S(x) khả vi trên (a,b) và

$$S'(x) = \left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{n=1}^{\infty} u'_n(x)$$

IV Chuỗi luỹ thừa $\left(\sum_{n=1}^{\infty} a_n x^n\right)$

Định lý 13. (**Định lý Abel).** Nếu chuỗi luỹ thừa $\sum_{n=1}^{\infty} a_n x^n$ hội tụ tại $x \neq 0$, thì nó cũng hội tụ tại mọi điểm mà $|x| < |x_0|$.

Đinh lý trên dẫn tới các hê quả:

Hệ quả 1. Nếu chuỗi luỹ thừa $\sum_{n=1}^{\infty} a_n x^n$ phân kỳ tại $x_0 \neq 0$, thì nó cũng phân kỳ tại mọi điểm x mà $|x| < |x_0|$

Hệ quả 2. Với mỗi chuỗi luỹ thừa $\sum_{n=1}^{\infty} a_n x^n$ cho trước, chỉ có 3 khả năng sau có thể xảy ra:

- Chuỗi hội tụ tại điểm duy nhất x = 0
- Chuỗi hội tụ tại mọi điểm $x \in \mathbb{R}$
- Tồn tại một số thực R sao cho chuỗi đã cho hội tụ nếu |x| < R và phân kỳ nếu |x| > R.

Chú ý. Về cách tìm bán kính nội tụ R ta áp dụng tiêu chuẩn d'Alambert hoặc tiêu chuẩn Cauchy để giải.

Các tính chất của chuỗi luỹ thừa.

Định lý 14. Giả sử rằng chuỗi luỹ thừa $\sum_{n=1}^{\infty} a_n x^n$ có bán kính hội tụ bằng R > 0 và đặt $f(x) = \sum_{n=1}^{\infty} a_n x^n$ với |x| < R. Khi đó

- Chuỗi luỹ thừa hội tụ đều trên mọi đoạn $[a,b]\subset (-R,R)$.
- f(x) là hàm số liên tục trên (-R,R).
- f(x) là hàm số khả vi (và do đó liên tục) trên khoảng (-R,R) và

$$f'(x) = \sum_{n=0}^{\infty} \left(\frac{d}{dx} a_n x^n dx \right) = a_1 + 2a_2 x + \dots + na_n x^{n-1} + \dots$$

4

• f(x) là hàm số khả tích trên mọi đoạn $[a,b]\subset (-R,R)$ và

$$\int_0^x f(t)dt = a_0x + a_1\frac{x^2}{2} + \dots + a_n\frac{x^{n+1}}{n+1} + \dots$$