Assessed Coursework 2

- Available from 13:00, April 17th to 13:00, April 24th
- Please submit your work in PDF format directly on Blackboard
- This exam counts for \%7.5 of your final course mark
- Feel free to discuss Q1 with each other, but I expect the solutions to Q2 to Q5 to be the outcome of your sole effort
- Please justify your answers in detail
- Q1. (a) (10 marks) Find all the elements of $\max \operatorname{Spec}(\mathbb{C}[x])$ and $\max \operatorname{Spec}(\mathbb{C}[x,1/x])$, respectively.
 - (b) (10 marks) Consider the isomorphism $\varphi: \mathbb{A}^1 \setminus \{0\} \longrightarrow \mathbb{A}^1 \setminus \{0\}, \ a \longmapsto b = 1/a$, and the pullback map on the coordinate rings $\varphi^*: \mathbb{C}[x,1/x] \longmapsto \mathbb{C}[y,1/y]$. Compute $\varphi^*(1/x), \ \varphi^*(2x^2 + \frac{2x^3 + 4x}{x^5}), \ \varphi^*(2-x)$.
- Q2. Consider the affine algebraic hypersurface $V := \mathbb{V}(y ux) \subseteq \mathbb{A}^3$.
 - (a) (10 marks) Prove that the projection $\mathbb{A}^3 \longrightarrow \mathbb{A}^2$, $(x, y, u) \longmapsto (x, u)$ restricts to an isomorphism between V and \mathbb{A}^2 .
 - (b) (10 marks) Prove that the projection $\mathbb{A}^3 \longrightarrow \mathbb{A}^2$, $(x, y, u) \longmapsto (x, u)$ does not restrict to isomorphism between V and \mathbb{A}^2 .
 - (c) (10 marks) Find $\mathcal{O}_V(D(u))$.
- Q3. (20 marks) Prove that if V is an irreducible affine variety, then so is its projective closure \overline{V} .
- Q4. (10 marks) What is the projective closure of the $\mathbb{V}(y \sin(x))$ in \mathbb{P}^2 ? Would this contradict the Chow Lemma?
- Q5. (20 marks) Consider the family of algebraic varieties, with parameter $t \in \mathbb{C}$, given by

$$V_t := \mathbb{V}(xy^2 - t) \subseteq \mathbb{A}^2$$
.

Sketch the variety of V_0, V_1 , and V_2 in \mathbb{R}^2 . Which one of these varieties are smooth? Which one of these varieties are irreducible?