

CS115 - Math for Computer Science

TS. Lương Ngọc Hoàng TS. Dương Việt Hằng

September 9, 2023

From Discrete to Continuous Labels

Y = Topic

Classification

X = Document

8

0

X = Cell Image

Y = Diagnosis

Regression

Regression Tasks

Weather Prediction

Estimating Contamination

Supervised Learning

Goal: Construct a **predictor** $f: X \rightarrow Y$ to minimize a risk (error measure) err(f).

Typical Error Measures

Classification:

$$err(f) = P(f(X) \neq Y)$$

Probability of Error

Regression:

$$err(f) = E[(f(X) - Y)^2]$$

Mean Squared Error

House Price Prediction

Feature	Label	
area	price	
6.7	8.1	
4.6	5.6	
3.5	4.3	
5.5	6.7	

House Price Prediction

Training data error_i

 $error_i = distance(\hat{y}_i, y_i)$

Find w and b whose models has the smallest error

$$error = \sum_{i} error_{i}$$

House Price Prediction

 $error_i = distance(\hat{y}_i, y_i)$

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

Training data

Find w and b whose models has the smallest error

$$error = \sum_{i} error_{i}$$

			7	
area	price	predicted	error	
6.7	9.1	-2.238	128.55	
4.6	5.9	-1.524	55.11	
3.5	4.6	-1.15	33.06	
5.5	6.7	-1.83	72.76	

$$w = -0.34$$

 $b = 0.04$

area	price	predicted	error
6.7	9.1	8.099	1.002
4.6	5.9	5.642	0.066
3.5	4.6	4.355	0.06
5.5	6.7	6.695	0.00002

w =	1.17
b =	0.26

How to change w and b so that $L(\hat{y}_i, y_i)$ reduces

Understand Loss Function

Linear equation

$$\hat{y} = wx + b$$

where \hat{y} is a predicted value,

w and **b** are parameters

and x is input feature

Error (loss) computation

Idea: compare predicted values \hat{y} and label values y Squared loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

Understand Loss Function

$$\hat{y}_i = wx_i + b$$
$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

Gradient Descent-Based Optimization

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

Definition: Function Gradient

- Gradient of a function indicates how strong the function increases.
 - For 1-dimension function: $f(x) = x^2$

$$Grad(x) = \frac{\partial f(x)}{\partial (x)} = 2x$$

- Grad(2)=4 indicates the the increasing direction of the function is to the right.
- Grad(-1)=-2 indicates the increasing direction of the function is to the left.

Definition: Function Gradient

- Let f(x,y) be a 2D function
- Gradient: Vector whose direction is in direction of maximum rate of change of f and whose magnitude is maximum rate of change of f

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]^T$$

• magnitude =
$$\left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{1/2}$$

• direction =
$$\tan^{-1}(\frac{\partial f}{\partial y})$$

Optimization

Gradient Descent

$$\frac{d}{dx}J(x) = \lim_{\Delta x \to 0} \frac{J(x + \Delta x) - J(x)}{\Delta x}$$

$$\mathbf{x}_{new} = \mathbf{x}_{old} - \eta \frac{\mathbf{d}}{\mathbf{dx}} J(\mathbf{x}_{old})$$
 Derivate at \mathbf{x}_{old}

learning rate

Optimization

Gradient Descent

Square function

$$f'(x_1) = 112.0$$

$$x_2 = x_1 - \eta f'(x_1) = 44.8$$

$$f'(x_2) = 89.6$$

 $x_3 = x_2 - \eta f'(x_2) = 35.84$

 $x_4 = x_3 - \eta f'(x_3) = 28.672$

 $x_1 = x_0 - \eta f'(x_0) = 56.0$

 $f'(x_0) = 140.0$

 $f'(x_3) = 71.68$

 $\eta = 0.1$

$$\hat{f}_{n}^{L} = \arg\min_{f \in F_{L}} \frac{1}{n} \sum_{i=1}^{n} (f(X_{i}) - Y_{i})^{2}$$
 Least Squares Estimator

F_I - Class of Linear functions

Uni-variate case:

$$f(X) = \beta_1 + \beta_2 X$$

 β_1 - intercept

Multi-variate case:

$$f(X) = f(X^{(1)}, ..., X^{(p)}) = \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}$$

$$= X\beta \text{ where } X = [X^{(1)} ... X^{(p)}], \qquad \beta = [\beta_1 ... \beta_p]^T$$

Least Squares Estimator

$$\hat{f}_{n}^{L} = \arg\min_{f \in F_{L}} \frac{1}{n} \sum_{i=1}^{n} (f(X_{i}) - Y_{i})^{2}$$

$$\hat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (X_i \beta - Y_i)^2$$

$$= arg \min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\mathbf{A} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} X_1^{(1)} & \dots & X_1^{(p)} \\ \vdots & \ddots & \vdots \\ X_n^{(1)} & \dots & X_n^{(p)} \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$$

$$\hat{f}_n^L(X) = X\hat{\beta}$$

$$\mathbf{Y} = \begin{vmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{vmatrix}$$

Least Squares Estimator

$$\hat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^{\mathrm{T}} (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

$$J(\beta) = (\mathbf{A}\beta - \mathbf{Y})^{\mathrm{T}} (\mathbf{A}\beta - \mathbf{Y})$$

$$\frac{\partial J(\beta)}{\partial \beta}\Big|_{\widehat{\beta}} = 0$$

Normal Equations

$$(\mathbf{A}^{\mathrm{T}}\mathbf{A})\widehat{\boldsymbol{\beta}} = \mathbf{A}^{\mathrm{T}}\mathbf{Y}$$

$$p \times p \quad p \times 1 \qquad p \times 1$$

If $(\mathbf{A}^{\mathrm{T}}\mathbf{A})$ is invertible,

$$\hat{\beta} = (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{Y} \qquad \hat{\mathbf{f}}_{\mathrm{n}}^{\mathrm{L}}(\mathbf{X}) = \mathbf{X} \hat{\beta}$$

Geometric Interpretation

$$\hat{\mathbf{f}}_{n}^{L}(\mathbf{X}) = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{Y}$$

Difference in prediction on training set:

$$\hat{\mathbf{f}}_{\mathbf{n}}^{\mathbf{L}}(\mathbf{A}) - \mathbf{Y} =$$

$$\mathbf{A}^{\mathrm{T}}(\hat{\mathbf{f}}_{n}^{\mathrm{L}}(\mathbf{A}) - \mathbf{Y}) = 0$$

 $\widehat{f}_n^L(A)$ is the orthogonal projection of \boldsymbol{Y} onto the linear subspace spanned by the columns of $\boldsymbol{A}.$

Revisiting Gradient Descent

Even when $(\mathbf{A}^T \mathbf{A})$ is invertible, might be computationally expensive if \mathbf{A} is huge.

$$\boldsymbol{\hat{\beta}} = \text{arg} \min_{\boldsymbol{\beta}} \, \frac{1}{n} (\boldsymbol{A} \boldsymbol{\beta} - \boldsymbol{Y})^T \, (\boldsymbol{A} \boldsymbol{\beta} - \boldsymbol{Y}) = \text{arg} \min_{\boldsymbol{\beta}} \, J(\boldsymbol{\beta})$$

Gradient Descent since $J(\beta)$ is convex

Update:
$$\beta^{t+1} = \beta^t - \frac{\alpha}{2} \frac{\partial J(\beta)}{\partial \beta} \Big|_t$$
$$= \beta^t - \alpha \mathbf{A}^T (\mathbf{A} \beta^t - \mathbf{Y})$$
$$0 \text{ if } \beta^t = \hat{\beta}$$

Stop: when some criterion met, e.g. fixed # iterations, or $\left. \frac{\partial J(\beta)}{\partial \beta} \right|_{\beta^t} < \varepsilon$

Effect of step-size α

Large $\alpha \Rightarrow$ Fast convergence but larger residual error Also possible oscillations

Small $\alpha \Rightarrow$ Slow convergence but small residual error

Least Squares and MLE

Intuition: Signal plus (zero-mean) Noise model

$$\begin{split} Y &= f^*(X) + \varepsilon = X\beta^* + \varepsilon & \varepsilon \sim N(0, \sigma^2 \mathbf{I}) \\ Y &\sim N(X\beta^*, \sigma^2 \mathbf{I}) \\ \widehat{\beta}_{MLE} &= \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n \mid \beta, \sigma^2, X) \\ &\log \text{likelihood} \end{split}$$

$$=\arg\min_{\beta}\sum_{i=1}^{n}(X_{i}\beta-Y_{i})^{2}=\widehat{\beta}$$

Least Square Estimate is same as Maximum Likelihood Estimate under a Gaussian model!

Regularized Least Squares and MAP

$$\widehat{\beta}_{MAP} = \arg \max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n \mid \beta \sigma^2) + \log p(\beta)$$

$$\log \text{ likelihood}$$

$$\log \text{ prior}$$

I) Gaussian Prior

Ridge Regression

Prior belief that β is Gaussian with zero-mean biases solution to "small" β

$$\widehat{\beta}_{MAP} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n \mid \beta\sigma^2) + \log p(\beta)$$

$$\log \text{ likelihood } \log \text{ prior}$$

$$\text{II) Laplace Prior}$$

$$\beta_i \sim \text{Laplace}(0, t) \text{ [iid] } p(\beta_i) \propto e^{-|\beta_i|/t}$$

$$\widehat{\beta}_{MAP} = \arg\min_{\beta} \sum_{i=1}^n (Y_i - X_i\beta)^2 + \lambda ||\beta||_1 \text{ Lasso}$$

$$\downarrow \text{constant}(\sigma^2, t)$$

Prior belief that β is Laplace with zero-mean biases solution to "small" β