Chapter Three (1/2)

1

Arithmetic for Computers

- Where we've been:
 - Abstractions:

Instruction Set Architecture Assembly Language and Machine Language

- What's up ahead:
 - Implementing the Architecture

Numbers

- Bits are just bits (no inherent meaning)
 - conventions define relationship between bits and numbers
- Binary numbers (base 2)

0000 0001 0010 0011 0100 0101 0110 0111

MSB(most significant bit)

LSB(least significant bit)

Of course it gets more complicated:

numbers are finite (overflow)

fractions and real numbers

negative numbers

e.g., no MIPS subi instruction; addi can add a negative number)

How do we represent negative numbers?

i.e., which bit patterns will represent which numbers?

CE, KWU Prof. S.W. LEE 3

Binary-to-Hexadecimal Conversion

_		\sim	۸ (0	C /	120	
•	_	. ,,	41	ים	20	120	

• E - 1110

C - 1100

A - 1010

8 - 1000

6 - 0110

4 - 0100

2 - 0010

0 - 0000

1110 1100 1010 1000 0110 0100 0010 0000

Hex Binary 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 A (10) 1010 B (11) 1011 C (12) 1100 D (13) 1101 E (14) 1110 F (15) 1111		
1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 A (10) 1010 B (11) 1011 C (12) 1100 D (13) 1101 E (14) 1110	Hex	Binary
2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 A (10) 1010 B (11) 1011 C (12) 1100 D (13) 1101 E (14) 1110	0	0000
3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 A (10) 1010 B (11) 1011 C (12) 1100 D (13) 1101 E (14) 1110	1	0001
4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 A (10) 1010 B (11) 1011 C (12) 1100 D (13) 1101 E (14) 1110	2	0010
5 0101 6 0110 7 0111 8 1000 9 1001 A (10) 1010 B (11) 1011 C (12) 1100 D (13) 1101 E (14) 1110	3	0011
6 0110 7 0111 8 1000 9 1001 A (10) 1010 B (11) 1011 C (12) 1100 D (13) 1101 E (14) 1110	4	0100
7 0111 8 1000 9 1001 A (10) 1010 B (11) 1011 C (12) 1100 D (13) 1101 E (14) 1110	5	0101
8 1000 9 1001 A (10) 1010 B (11) 1011 C (12) 1100 D (13) 1101 E (14) 1110	6	0110
9 1001 A (10) 1010 B (11) 1011 C (12) 1100 D (13) 1101 E (14) 1110	7	0111
A (10) 1010 B (11) 1011 C (12) 1100 D (13) 1101 E (14) 1110	8	1000
B (11) 1011 C (12) 1100 D (13) 1101 E (14) 1110	9	1001
C (12) 1100 D (13) 1101 E (14) 1110	A (10)	1010
D (13) 1101 E (14) 1110	B (11)	1011
E (14) 1110	C (12)	1100
	D (13)	1101
F (15) 1111	E (14)	1110
	F (15)	1111

Possible Representations

•	Sign Magnitude	1's Complement	2's Complement
	000 = +0	000 = +0	000 = +0
	001 = +1	001 = +1	001 = +1
	010 = +2	010 = +2	010 = +2
	011 = +3	011 = +3	011 = +3
	100 = -0	100 = -3	100 = -4
	101 = -1	101 = -2	101 = -3
	110 = -2	110 = -1	110 = -2
	111 = -3	111 = -0	111 = -1

- Issues: balance, number of zeros, ease of operations
- Sign-magnitude
 - Where to put the sign bit? To the left? To the right?
 - Extra step to set the sign in arithmetic operations
 - Two zeros (positive zero, negative zero)???
- Which one is best?

CE, KWU Prof. S.W. LEE 5

Two's Complement Operations

- Negating a two's complement number: invert all bits and add 1
 - remember: "negate" and "invert" are quite different!
- $4 \rightarrow -4$
 - 4 = 0000 0100
 - -4 = 1111 1011 + 1
 - = 1111 1100
- $-4 \rightarrow 4$
 - **-4 = 1111 1100**
 - 4 = 0000 0011 + 1
 - = 0000 0100

MIPS

32 bit signed numbers:

The value of a 32-bit number represented in 2's complement is:

```
(x31 * -2^{31}) + (x30 * 2^{30}) + (x29 * 2^{29}) + ... + (x1 * 2^{1}) + (x0 * 2^{0})
```

- The value of a 8-bit number (1111 1000) in 2's complement?

CE, KWU Prof. S.W. LEE 7

Signed Comparison

- slt \$t0, \$s0, \$s1 # signed comparison
 sltu \$t1, \$s0, \$s1 # unsigned comparison
- \$t0 = ?\$t1 = ?
- \$s0 = 4294967295 or -1

Sign Extension

- Converting *n* bit numbers into numbers with more than *n* bits:
 - MIPS 16 bit immediate gets converted to 32 bits for arithmetic
 - copy the most significant bit (the sign bit) into the other bits

"sign extension" (lbu vs. lb)

\$t0, 0(\$s0) lb

\$t0 1111 ...1 1000 0001 lbu \$t0, 0(\$s0)

0000 ...0 1000 0001 \$t0

CE, KWU Prof. S.W. LEE 9

Addition & Subtraction

- Two's complement operations easy
 - subtraction using addition of negative numbers (9-6)

$$x - y = x + (-y)$$

0111 0111
 $- 0110 + 1010$

- $-6 = 0110 \rightarrow -6 = 1010$
- Overflow (result too large for finite computer word):
 - e.g., adding two n-bit numbers does not yield an n-bit number 0111

+ 0001	note that overflow term is somewhat misleading,
1000	it does not mean a carry "overflowed"

Overflow

- When adding or subtracting numbers, the sum or difference can go beyond the range of representable numbers.
- This is known as overflow. For example, for two's complement numbers,

Overflow creates an incorrect result that should be detected.

CE, KWU Prof. S.W. LEE 11

Overflow Conditions

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:

	Α	В	Overflow if
A + B	>= 0	>= 0	Result < 0
A + B	< 0	< 0	Result >= 0
A – B	>= 0	< 0	Result < 0
A – B	< 0	>= 0	Result >= 0

- Consider the operations A + B, and A B
 - Can overflow occur if B is 0?
 - Can overflow occur if A is 0?

2's Comp - Detecting Overflow

- When adding two's complement numbers, overflow will only occur if
 - the numbers being added have the same sign
 - the sign of the result is different
- If we perform the addition

Overflow can be detected as

$$V = a_{n-1} \cdot b_{n-1} \cdot \overline{s_{n-1}} + \overline{a_{n-1}} \cdot \overline{b_{n-1}} \cdot s_{n-1}$$

Overflow can also be detected as

$$V = c_n \otimes c_{n-1}$$

where c_{n-1} and c_n are the carry in and carry out of the most significant bit.

CE, KWU Prof. S.W. LEE 13

Unsigned - Detecting Overflow

For unsigned numbers, overflow occurs if there is carry out of the most significant bit.

$$V = c_n$$

For example,

- With the MIPS architecture
 - Overflow exceptions occur for two's complement arithmetic
 - · add, sub, addi
 - Overflow exceptions do not occur for unsigned arithmetic
 - addu, subu, addiu

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

CE, KWU Prof. S.W. LEE 15

An ALU (arithmetic logic unit)

- Let's build an ALU to support the and, or, add, sub, beq instructions
 - we'll just build a 1 bit ALU, and use 32 of them

1-Bit and 32-Bit ALU

Adding a NOR & SLT

- Choose to invert a to get "a NOR b"
- Need to support the set-on-less-than instruction (slt)

Supporting SLT

CE, KWU Prof. S.W. LEE

19

Test for equality

- Need to support test for equality (beq \$t5, \$t6, \$t7)
 - Use comparison: xor all corresponding bits
 - Or use subtraction: (a-b) = 0 implies a = b
- Checking if zero costs a lot.
- **Notice control lines:**

000 = and001 = or010 = add110 = subtract

111 = slt

•Note: zero is a 1 when the result is zero!

ALU Summary

- We can build an ALU to support MIPS addition
- Our focus is on comprehension, not performance
- Real processors use more sophisticated techniques for arithmetic
- Where performance is not critical, hardware description languages allow designers to completely automate the creation of hardware!

```
module MIPSALU (ALUctl, A, B, ALUOut, Zero);
   input [3:0] ALUctl;
                                                                                      ALU operation
   input [31:0] A.B;
  output reg [31:0] ALUOut;
output Zero;
   assign Zero = (ALUOut=0); //Zero is true if ALUOut is 0; goes anywhere
   always @(ALUctl, A, B) //reevaluate if these change
      case (ALUct1)
                                                                                                       → 7ero
         0: ALUOut <= A & B;
                                                                                             ALU
                                                                                                       → Result
        1: ALUOut <= A | B;
                                                                                                        Overflow
        2: ALUOut <= A + B;
        6: ALUOut <= A - B:
        7: ALUOut <= A < B ? 1:0;
        12: ALUOut <= ~(A | B); // result is nor
        default: ALUOut <= 0; //default to 0, should not happen;
                                                                                          CarryOut
endmodule
```

FIGURE B.4.3 A Verilog behavioral definition of a MIPS ALU. This could be synthesized using a module library containing basic arithmetic

CE, KWU Prof. S.W. LEE

21

Problem: ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
 - two extremes: ripple carry & sum-of-products

Can you see the ripple? How could you get rid of it?

$$c_{1} = b_{0}c_{0} + a_{0}c_{0} + a_{0}b_{0}$$

$$c_{2} = b_{1}c_{1} + a_{1}c_{1} + a_{1}b_{1}$$

$$c_{2} = b_{1}(b_{0}c_{0} + a_{0}c_{0} + a_{0}b_{0}) + a_{1}(b_{0}c_{0} + a_{0}c_{0} + a_{0}b_{0}) + a_{1}b_{1}$$

$$c_{3} = b_{2}c_{2} + a_{2}c_{2} + a_{2}b_{2}$$

$$c_{4} = b_{3}c_{3} + a_{3}c_{3} + a_{3}b_{3}$$

$$c_{4} = ????$$

Not feasible! Why?

Carry Logic Equation

The carry logic equation is

$$c_{i+1} = a_i b_i + (a_i + b_i) c_i$$

We define a propagate signal

$$p_i = a_i + b_i$$

and a generate signal

$$g_i = a_i b_i$$

This allows the carry logic equation to be rewritten as

$$c_{i+1} = g_i + p_i c_i$$

CE, KWU Prof. S.W. LEE 23

Carry-lookahead adder*

- An approach in-between our two extremes
- Goal: To produce sum and carryout for n-th bit without waiting for a carry over from (n-1)th bit.
- How???
 - For each bit position, we look into
 - whether a carry will be generated by itself? $(g_i = a_i b_i)$
 - whether a carryin could be propagated to the next bit position? $(p_i = a_i + b_i)$
 - At each bit, CarryOut is now computed based on g_i and p_i , not on c_i

$$C_{i+1} = g_i + p_i c_i$$

$$c_1 = g_0 + p_0c_0$$
 $c_1 = g_0 + p_0c_0$ $c_2 = g_1 + p_1c_1$ $c_2 = g_1 + p_1g_0 + p_1p_0c_0$ $c_3 = g_2 + p_2c_2$ $c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$ $c_4 = g_3 + p_3c_3$ $c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0$

Feasible! Why?

Various Adders

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8 -bit, 4×16 -bit, or 2×32 -bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

SIMD

- SIMD (single instruction multiple data) architecture performs the same operation on multiple data elements in parallel
- PADDW MM0, MM1

27 CE, KWU Prof. S.W. LEE

Conclusion

- We can build an ALU to support the MIPS instruction set
 - key idea: use multiplexor to select the output we want
 - we can efficiently perform subtraction using two's complement
 - An n-bit ALU can be designed by concatenating n 1-bit ALUs
- Important points about hardware
 - all of the gates are always working
 - the speed of a gate is affected by the number of inputs to the gate
 - the speed of a circuit is affected by the number of gates in series (on the "critical path" or the "deepest level of logic")
 - Carry lookahead logic can be used to improve the speed of the computation.
 - A variety of design options exist for implementing the ALU.
- The best design depends on area, delay, and power requirements, which vary based on the underlying technology.