区域管理

文件标识: RK-SYS1-MPI-RGN

发布版本: V0.1.0

日期: 2021.1

文件密级:□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2021 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概试

用户一般都需要在视频中叠加 OSD 用于显示一些特定的信息(如:通道号、时间戳等),必要时还会填充色块。这些叠加在视频上的 OSD 和遮挡在视频上的色块统称为区域。REGION 模块,用于统一管理这些区域资源。

区域管理可以实现区域的创建,并叠加到视频中或对视频进行遮挡。例如,实际应用中,用户通过创建一个区域,通过RK MPI RGN AttachToChn,将该区域叠加到某个通道(如 VENC 通道)中。在通道进行调度时,则会将 OSD 叠加在视频中。一个区域支持通过设置通道显示属性接口指定到多个通道中(如:多个 VENC 通道),且支持在每个通道的显示属性(如位置、层次、透明度等)都不同。

产品版本

芯片名称	内核版本
RK356X	4.19

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

版本号	作者	修改日期	修改说明
v0.1.0	许丽明	2021-2-2	初始版本

目录

区域管理

目录

重要概念

表1-1 RK356X region 支持的模块信息 表1-2 RK356X region 支持的功能

举例

API 参考

RK_MPI_RGN_Create

RK_MPI_RGN_Destroy

RK MPI RGN GetAttr

RK MPI RGN SetAttr

RK_MPI_RGN_SetBitMap

RK_MPI_RGN_AttachToChn

 $RK_MPI_RGN_DetachFromChn$

RK_MPI_RGN_SetDisplayAttr

RK_MPI_RGN_GetDisplayAttr

数据类型

RGN_MIN_WIDTH

RGN_MIN_HEIGHT

RGN_COVER_MIN_X

RGN_COVER_MIN_Y

RGN_COVER_MAX_X

RGN_COVER_MAX_Y

RGN_COVER_MAX_WIDTH

RGN_COVER_MAX_HEIGHT

RGN_OVERLAY_MIN_X

RGN_OVERLAY_MIN_Y

RGN_OVERLAY_MAX_X

RGN_OVERLAY_MAX_Y

RGN_OVERLAY_MAX_WIDTH

RGN_OVERLAY_MAX_HEIGHT

RGN_MOSAIC_MIN_X

RGN_MOSAIC_MIN_Y

RGN_MOSAIC_MAX_X

RGN_MOSAIC_MAX_Y

RGN_MOSAIC_MIN_WIDTH

RGN_MOSAIC_MIN_HEIGHT RGN_MOSAIC_MAX_WIDTH RGN_MOSAIC_MAX_HEIGHT **RGN_ALIGN** RGN_HANDLE_MAX **RGN HANDLE** RGN TYPE E RGN COORDINATE E OVERLAY_ATTR_S OVERLAY_CHN_ATTR_S COVER CHN ATTR S MOSAIC BLK SIZE E MOSAIC_CHN_ATTR_S RGN_ATTR_U RGN CHN ATTR U **RGN ATTR S** RGN CHN ATTR S 错误码

表1-3 区域管理 API 错误码

重要概念

• 区域类型

o OVERLAY:视频叠加区域,其中区域支持位图的加载、背景色更新等功能。

。 COVER: 视频遮挡区域, 其中区域支持纯色块遮挡。

。 MOSAIC: 马赛克遮挡区域, 支持精度调节。

• 区域层次

区域层次表示区域的叠加级别,层次值越大,表示区域的显示级别越高。当发生重叠时,层次值大的将会覆盖层次值小的。目前仅在VO中支持区域层次管理。

• 位图填充(针对 OVERLAY 有效)

位图填充是指将位图的内存值填充到区域内存空间中,位图将会从区域的左上角开始填充。当位图 小于区域时,只能填充一部分内存,剩余部分保持原有值;位图大小等于区域时,将刚好全部填充;当位图大于区域时,位图只能将自身和区域一样大小的内存信息填充到区域中。

● 区域公共属性 (RGN ATTR S)

用户创建一个区域时,需要设置该属性信息,它包含公共的资源信息。例如,OVERLAY 包含像素格式,大小。

● 通道显示属性 (RGN CHN ATTR S)

通道显示属性表明区域在某通道的显示特征。例如,OVERLAY的通道显示属性包含显示位置,层次,前景 Alpha,背景 Alpha等。当通道显示属性中的区域是否显示(is_show)为 TRUE 时,表示显示在该通道中;反之,表示在该通道中存在,但处于隐藏状态。

表1-1 RK356X region 支持的模块信息

类型	支持模 块	设备号取值范围	通道号取值范围
OVERLAY	VENC	0	[0, RK_VENC_MAX_CHN_NUM - 1]
OVERLAY	VO	[0, RK_VO_MAX_LAYER_NUM - 1]	[0, RK_VO_MAX_CHN_NUM - 1]
COVER	VENC	0	[0, RK_VENC_MAX_CHN_NUM - 1]

• 区域支持的功能

目前各种类型的区域支持的功能如表1-2所示。

表1-2 RK356X region 支持的功能

支持的功能	OVERLAY	OVERLAY	COVER	COVER
支持的模块	VO	VENC	VO	VENC
像素格式	BGRA8888、 BGRA5551	BGRA8888、 BGRA5551	RGB888	RGB888
叠加层次	支持	N/A	支持	N/A
位图填充	支持	支持	N/A	N/A
叠加透明度	支持	N/A	N/A	N/A
前景alpha范 围	支持	N/A	N/A	N/A
背景alpha范 围	支持	N/A	N/A	N/A
反色	N/A	N/A	N/A	N/A

举例

```
coverHandle = 0;
stCoverAttr.enType = COVER_RGN;
s32Ret = RK_MPI_RGN_Create(coverHandle, &stCoverAttr);
if (RK_SUCCESS != s32Ret) {
    RK_LOGE("failed with %#x!", s32Ret);
    return RK_FAILURE;
}
stCoverChn.enModId = RK_ID_VENC;
stCoverChn.s32ChnId = 0;
stCoverChn.s32DevId = vencChn;

stCoverChnAttr.bShow = RK_TRUE;
stCoverChnAttr.enType = COVER_RGN;
stCoverChnAttr.unChnAttr.stCoverChn.enCoverType = AREA_RECT;
stCoverChnAttr.unChnAttr.stCoverChn.stRect.s32X = pstRgnCtx->stRegion.s32X;
```

```
stCoverChnAttr.unChnAttr.stCoverChn.stRect.s32Y = pstRgnCtx->stRegion.s32Y;
stCoverChnAttr.unChnAttr.stCoverChn.stRect.u32Width = pstRgnCtx-
>stRegion.u32Width:
stCoverChnAttr.unChnAttr.stCoverChn.stRect.u32Height = pstRgnCtx-
>stRegion.u32Height;
stCoverChnAttr.unChnAttr.stCoverChn.u32Color = 0xfffffffff;
stCoverChnAttr.unChnAttr.stCoverChn.u32Layer = 0;
s32Ret = RK_MPI_RGN_AttachToChn(coverHandle, &stCoverChn, &stCoverChnAttr);
if (RK_SUCCESS != s32Ret) {
    RK_LOGE("failed with %#x!", s32Ret);
    goto AttachCover_failed;
}
stCoverChnAttr.unChnAttr.stCoverChn.stRect.s32X = 64;
stCoverChnAttr.unChnAttr.stCoverChn.stRect.s32Y = 64;
stCoverChnAttr.unChnAttr.stCoverChn.stRect.u32Width = 256;
stCoverChnAttr.unChnAttr.stCoverChn.stRect.u32Height = 256;
stCoverChnAttr.unChnAttr.stCoverChn.u32Color = 0x00f800;
stCoverChnAttr.unChnAttr.stCoverChn.u32Layer = 1;
s32Ret = RK_MPI_RGN_SetDisplayAttr(coverHandle, &stCoverChn, &stCoverChnAttr);
if (RK_SUCCESS != s32Ret) {
    RK_LOGE("failed with %#x!", s32Ret);
    goto exit;
}
RK_MPI_RGN_DetachFromChn(coverHandle, &stCoverChn);
RK_MPI_RGN_Destroy(coverHandle);
```

【注意事项】

• 输入区域均需要16位对齐。

API 参考

区域管理模块主要提供区域资源的控制管理功能,包括区域的创建、销毁,获取与设置区域属性,获取与设置区域的通道显示属性等。

该功能模块为用户提供以下API:

```
• RK MPI RGN Create: 创建区域。
```

- RK MPI RGN Destroy: 销毁区域。
- RK MPI RGN GetAttr: 获取区域属性。
- RK MPI RGN SetAttr: 设置区域属性。
- RK MPI RGN SetBitMap: 设置区域位图。
- RK MPI RGN AttachToChn: 将区域叠加到通道上。
- RK MPI RGN DetachFromChn: 将区域从通道中撤出。
- RK MPI RGN SetDisplayAttr:设置区域的通道显示属性。
- RK MPI RGN GetDisplayAttr: 获取区域的通道显示属性。

RK MPI RGN Create

【描述】

创建区域。

【语法】

RK_S32 RK_MPI_RGN_Create(RGN_HANDLE Handle, const RGN_ATTR_S *pstRegion);

参数名称	描述	输入/输出
Handle	区域句柄号。 必须是未使用的 handle 号。 取值范围:[0, <u>RGN_HANDLE_MAX</u>)。	输入
pstRegion	区域属性指针。	输入

【返回值】

返回值	描述
0	成功。
≢ E0	失败,参见 <u>错误码</u> 。

【需求】

• 头文件: rk_comm_rgn.h、rk_mpi_rgn.h

• 库文件: librockit.so

【注意】

- 该句柄由用户指定, 意义等同于 ID 号。
- 不支持重复创建。
- 区域属性必须合法,具体约束参见RGN ATTR S。
- 区域属性指针不能为空。
- 创建 COVER、MOSAIC时,只需指定区域类型即可。其它的属性,如区域位置,层次等信息在调用 RK MPI RGN AttachToChn接口时指定。
- 创建区域时,本接口只进行基本的参数的检查,譬如:最小宽高,最大宽高等;当区域 attach 到通道上时,根据各通道模块支持类型的约束条件进行更加有针对性的参数检查,譬如支持的像素格式等。

【相关主题】

- RK MPI RGN Destroy
- RK MPI RGN GetAttr
- RK MPI RGN SetAttr

RK_MPI_RGN_Destroy

【描述】

销毁区域。

【语法】

RK_S32 RK_MPI_RGN_Destroy(RGN_HANDLE Handle);

【参数】

参数名称	描述	输入/输出
Handle	区域句柄号。 必须是未使用的 handle 号。 取值范围:[0, <u>RGN HANDLE MAX</u>)。	输入

【返回值】

返回值	描述
0	成功。
∃‡ 0	失败,参见 <u>错误码</u> 。

【需求】

• 头文件: rk_comm_rgn.h、rk_mpi_rgn.h

• 库文件: librockit.so

【注意】

• 区域必须已创建。

• 调用该接口的过程中,不允许同时调用 RK MPI RGN SetAttr/ RK MPI RGN SetBitMap。

【相关主题】

• 无

RK_MPI_RGN_GetAttr

【描述】

获取区域属性。

【语法】

RK_S32 RK_MPI_RGN_GetAttr(RGN_HANDLE Handle, RGN_ATTR_S *pstRegion);

【参数】

参数名称	描述	输入/输出
Handle	区域句柄号。 必须是未使用的 handle 号。 取值范围:[0, <u>RGN_HANDLE_MAX</u>)。	输入
pstRegion	区域属性指针。	输出

【返回值】

返回值	描述
0	成功。
∃E 0	失败,参见 <u>错误码</u> 。

【需求】

• 头文件: rk_comm_rgn.h、rk_mpi_rgn.h

• 库文件: librockit.so

【注意】

• 区域必须已创建。

• 区域属性指针不能为空。

【相关主题】

• 无

RK MPI RGN SetAttr

【描述】

设置区域属性。

【语法】

RK_S32 RK_MPI_RGN_SetAttr(RGN_HANDLE Handle, const RGN_ATTR_S *pstRegion);

【参数】

参数名称	描述	输入/输出
Handle	区域句柄号。 必须是未使用的 handle 号。 取值范围:[0, <u>RGN_HANDLE_MAX</u>)。	输入
pstRegion	区域属性指针。	输入

【返回值】

返回值	描述
0	成功。
∃‡ 0	失败,参见 <u>错误码</u> 。

【需求】

• 头文件: rk_comm_rgn.h、rk_mpi_rgn.h

• 库文件: librockit.so

【注意】

- 区域必须已创建。
- 区域属性指针不能为空。
- 调用该接口的过程中,不允许同时调用 RK MPI RGN Destroy。
- COVER、MOSAIC不支持此接口。
- 当调用RK MPI RGN SetBitMap后调用该接口,如果设置新的区域小于原有区域,原有区域将会被销毁,需要重新调用RK MPI RGN SetBitMap设置位图。

【相关主题】

• 无

RK_MPI_RGN_SetBitMap

【描述】

设置区域位图,即对区域进行位图填充。

【语法】

RK_S32 RK_MPI_RGN_SetBitMap(RGN_HANDLE Handle, const BITMAP_S *pstBitmap);

【参数】

参数名称	描述	输入/输出
Handle	区域句柄号。 必须是未使用的 handle 号。 取值范围:[0, <u>RGN_HANDLE_MAX</u>)。	输入
pstBitmap	位图属性指针。详细参见"系统控制"章节。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,参见 <u>错误码</u> 。

【需求】

• 头文件: rk_comm_rgn.h、rk_mpi_rgn.h

• 库文件: librockit.so

【注意】

- 区域必须已创建。
- 支持位图的大小和区域的大小不一致。
- 位图从区域的(0,0)点开始加载。当位图比区域大时,将会自动将图像剪裁成区域大小。
- 位图的像素格式必须和区域的像素格式一致。
- 位图属性指针不能为空。
- 支持多次调用。
- 此接口只对 OVERLAY有效。
- 调用该接口的过程中,不允许同时调用 RK MPI RGN Destroy。

【相关主题】

• 无

RK_MPI_RGN_AttachToChn

【描述】

将区域叠加到通道上。

【语法】

RK_S32 RK_MPI_RGN_AttachToChn(<u>RGN_HANDLE</u> Handle, const MPP_CHN_S *pstChn, const <u>RGN_CHN_ATTR_S</u> *pstChnAttr);

【参数】

参数名称	描述	输入/输出
Handle	区域句柄号。 必须是未使用的 handle 号。 取值范围:[0, <u>RGN_HANDLE_MAX</u>)。	输入
pstChn	通道结构体指针。具体描述请参见系统控制章节。	输入
pstChnAttr	区域通道显示属性指针。	输入

【返回值】

返回值	描述
0	成功。
∃‡ 0	失败,参见 <u>错误码</u> 。

【需求】

• 头文件: rk_comm_rgn.h、rk_mpi_rgn.h

• 库文件: librockit.so

【注意】

• 区域必须已创建。

• 通道结构体指针不能为空。

• 区域通道显示属性指针不能为空。

【相关主题】

• 无

RK_MPI_RGN_DetachFromChn

【描述】

将区域从通道中撤出。

【语法】

RK_S32 RK_MPI_RGN_DetachFromChn(RGN_HANDLE Handle, const MPP_CHN_S *pstChn);

【参数】

参数名称	描述	输入/输出
Handle	区域句柄号。 必须是未使用的 handle 号。 取值范围:[0, <u>RGN_HANDLE_MAX</u>)。	输入
pstChn	通道结构体指针。具体描述请参见系统控制章节。	输入

【返回值】

返回值	描述
0	成功。
∃‡ 0	失败,参见 <u>错误码</u> 。

【需求】

• 头文件: rk_comm_rgn.h、rk_mpi_rgn.h

• 库文件: librockit.so

【注意】

- 区域必须已创建。
- 诵道结构体指针不能为空。

【相关主题】

• 无

RK_MPI_RGN_SetDisplayAttr

【描述】

设置区域的通道显示属性。

【语法】

RK_S32 RK_MPI_RGN_SetDisplayAttr(<u>RGN_HANDLE</u> Handle, const MPP_CHN_S *pstChn, const <u>RGN_CHN_ATTR_S</u> *pstChnAttr);

【参数】

参数名称	描述	输入/输出
Handle	区域句柄号。 必须是未使用的 handle 号。 取值范围:[0, <u>RGN_HANDLE_MAX</u>)。	输入
pstChn	通道结构体指针。具体描述请参见系统控制章节。	输入
pstChnAttr	区域通道显示属性指针。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,参见 <u>错误码</u> 。

【需求】

• 头文件: rk_comm_rgn.h、rk_mpi_rgn.h

• 库文件: librockit.so

【注意】

- 区域必须已创建。
- 建议先获取属性,再设置。
- 通道结构体指针不能为空。
- 区域通道显示属性指针不能为空。
- 区域必须先叠加到通道上。

【相关主题】

• 无

RK_MPI_RGN_GetDisplayAttr

【描述】

获取区域的通道显示属性。

【语法】

RK_S32 RK_MPI_RGN_GetDisplayAttr(<u>RGN_HANDLE</u> Handle, const MPP_CHN_S *pstChn, <u>RGN_CHN_ATTR_S</u> *pstChnAttr);

【参数】

参数名称	描述	输入/输出
Handle	区域句柄号。 必须是未使用的 handle 号。 取值范围:[0, <u>RGN_HANDLE_MAX</u>)。	输入
pstChn	通道结构体指针。具体描述请参见系统控制章节。	输入
pstChnAttr	区域通道显示属性指针。	输出

【返回值】

返回值	描述
0	成功。
非0	失败,参见 <u>错误码</u> 。

【需求】

• 头文件: rk_comm_rgn.h、rk_mpi_rgn.h

• 库文件: librockit.so

【注意】

• 区域必须已创建。

• 通道结构体指针不能为空。

• 区域通道显示属性指针不能为空。

【相关主题】

• 无

数据类型

RGN_MIN_WIDTH

【说明】

定义区域最小宽度。

【定义】

RK356X:

#define	RGN_MIN_	_WIDTH	1	6
---------	----------	--------	---	---

【注意】

• 无

RGN_MIN_HEIGHT

【说明】

定义区域最小高度。

【定义】 RK356X:		
#define RGN_MIN_HEIGHT	16	
【注意】		
• 无		
RGN_COVER_MIN_X		
【说明】		
定义遮挡区域最小水平X。		
【定义】		
RK356X:		
#define RGN_COVER_MIN_X	0	
【注意】		
• 无		
RGN_COVER_MIN_Y		
【说明】		
定义遮挡区域最小垂直Y。		
【定义】		
RK356X:		
#define RGN_COVER_MIN_Y	0	
【注意】		
• 无		
RGN_COVER_MAX_X		
【说明】		
定义遮挡区域最大水平X。		
【定义】		
RK356X:		
#define RGN_COVER_MAX_X	8192	

【注意】

• 无

RGN_COVER_MAX_Y

【说明】

定义遮挡区域最小垂直Y。

【定义】

RK356X:

#define RGN_COVER_MAX_Y

8192

【注意】

• 无

RGN_COVER_MAX_WIDTH

【说明】

定义遮挡区域最大宽度。

【定义】

RK356X:

#define RGN_COVER_MAX_WIDTH

8192

【注意】

• 无

RGN_COVER_MAX_HEIGHT

【说明】

定义遮挡区域最大高度。

【定义】

RK356X:

#define RGN_COVER_MAX_HEIGHT

8192

【注意】

• 无

RGN_OVERLAY_MIN_X

【说明】

定义OVERLAY区域起始位置X坐标最小值。

【定义】

RK356X:

#define RGN_OVERLAY_MIN_X

(

【注意】

RGN_OVERLAY_MIN_Y

【说明】

定义OVERLAY区域起始位置Y坐标最小值。

【定义】

RK356X:

#define RGN_OVERLAY_MIN_Y

Λ

【注意】

• 无

RGN_OVERLAY_MAX_X

【说明】

定义OVERLAY区域起始位置X坐标最大值。

【定义】

RK356X:

#define RGN_OVERLAY_MAX_X

8192

【注意】

• 无

RGN_OVERLAY_MAX_Y

【说明】

定义OVERLAY区域起始位置Y坐标最大值。

【定义】

RK356X:

#define RGN_OVERLAY_MAX_Y

8192

【注意】

• 无

RGN_OVERLAY_MAX_WIDTH

【说明】

定义OVERLAY区域最大宽度。

【定义】

RK356X:

【注意】

• 无

RGN_OVERLAY_MAX_HEIGHT

【说明】

定义OVERLAY区域最大高度。

【定义】

RK356X:

#define RGN_OVERLAY_MAX_HEIGHT

8192

【注意】

• 无

RGN_MOSAIC_MIN_X

【说明】

定义马赛克区域起始位置X坐标最小值。

【定义】

RK356X:

#define RGN_MOSAIC_MIN_X

(

【注意】

• 无

RGN_MOSAIC_MIN_Y

【说明】

定义马赛克区域起始位置Y坐标最小值。

【定义】

RK356X:

#define RGN_MOSAIC_MIN_Y

C

【注意】

• 无

$RGN_MOSAIC_MAX_X$

【说明】

定义马赛克区域起始位置X坐标最大值。

▛	_	111	4
		\'/	- 1
	1 -	×	

RK356X:

#define RGN_MOSAIC_MAX_X

8192

【注意】

• 无

RGN_MOSAIC_MAX_Y

【说明】

定义马赛克区域起始位置Y坐标最大值。

【定义】

RK356X:

#define RGN_MOSAIC_MAX_Y

8192

【注意】

• 无

RGN_MOSAIC_MIN_WIDTH

【说明】

定义马赛克区域最小宽度。

【定义】

RK356X:

#define RGN_MOSAIC_MIN_WIDTH

32

【注意】

• 无

RGN_MOSAIC_MIN_HEIGHT

【说明】

定义马赛克区域最小高度。

【定义】

RK356X:

#define RGN_MOSAIC_MIN_HEIGHT

32

【注意】

• 无

RGN_MOSAIC_MAX_WIDTH

【说明】

定义马赛克区域最大宽度。

【定义】

RK356X:

#define RGN_MOSAIC_MAX_WIDTH

8192

【注意】

• 无

RGN_MOSAIC_MAX_HEIGHT

【说明】

定义马赛克区域最大高度。

【定义】

RK356X:

#define RGN_MOSAIC_MAX_HEIGHT

8192

【注意】

• 无

RGN_ALIGN

【说明】

定义区域对齐方式。

【定义】

RK356X:

#define RGN_ALIGN

16

【注意】

• 无

RGN_HANDLE_MAX

【说明】

定义最大的RGN句柄个数。

【定义】

#define RGN_HANDLE_MAX

128

【注意】

• 无

RGN_HANDLE

【说明】

定义区域句柄。

【定义】

```
typedef RK_U32 RGN_HANDLE;
```

【注意】

• 无

RGN_TYPE_E

【说明】

定义区域类型。

【定义】

```
typedef enum rkRGN_TYPE_E {
   OVERLAY_RGN = 0,
   COVER_RGN,
   MOSAIC_RGN,
   RGN_BUTT
} RGN_TYPE_E;
```

【成员】

成员名称	描述
OVERLAY_RGN	视频叠加区域。
COVER_RGN	视频遮挡区域。
MOSAIC_RGN	MOSAIC 视频区域。

【注意】

• 无

RGN_COORDINATE_E

【说明】

定义坐标类型。

【定义】

```
typedef enum rkrGN_COORDINATE_E {
    RGN_ABS_COOR = 0,
    RGN_RATIO_COOR
} RGN_COORDINATE_E;
```

成员名称	描述
RGN_ABS_COOR	坐标类型为绝对坐标。
RGN_RATIO_COOR	坐标类型为相对坐标。

【注意】

- 默认类型为绝对坐标。
- 目前相对坐标,只支持区域类型为 COVER 且叠加在 VO 上的相对坐标配置。

OVERLAY_ATTR_S

【说明】

定义通道叠加区域属性结构体。

【定义】

```
typedef struct rkOVERLAY_ATTR_S {
    PIXEL_FORMAT_E enPixelFmt;
    SIZE_S stSize;
} OVERLAY_ATTR_S;
```

【成员】

成员名称	描述
enPixelFmt	像素格式。具体描述请参见"系统控制"章节。 取值范围: 当 overlay 绑定到 VENC 通道时,RK356X支持: - RK_FMT_ARGB8888 - RK_FMT_BGRA5551
stSize	区域的高宽。 取值范围: 当 overlay 绑定到 VENC 通道时,支持: 宽度: [RGN_MIN_WIDTH, RGN_OVERLAY_MAX_WIDTH],要求以 16 位对齐。 高度: [RGN_MIN_HEIGHT, RGN_OVERLAY_MAX_HEIGHT],要求以 16 位对齐。

【注意】

• 无

OVERLAY_CHN_ATTR_S

【说明】

定义通道叠加区域的通道显示属性。

【定义】

```
typedef struct rkOVERLAY_CHN_ATTR_S {
   POINT_S stPoint;
   RK_U32 u32FgAlpha;
   RK_U32 u32BgAlpha;
   RK_U32 u32Layer;
} OVERLAY_CHN_ATTR_S;
```

【成员】

成员名称	描述
stPoint	区域位置。 取值范围: 水平坐标X: [RGN OVERLAY MIN X, RGN OVERLAY MAX X]。 垂直坐标Y: [RGN OVERLAY MIN Y, RGN OVERLAY MAX Y]。
u32FgAlpha	Alpha 位为 1 的像素点的透明度。也称前景 Alpha。 取值范围: [0, 255]。 取值越小,越透明。图像高度。
u32BgAlpha	Alpha 位为 0 的像素点的透明度。也称背景 Alpha。 取值范围: [0, 255]。 取值越小,越透明。图像宽度。
u32Layer	区域层次。取值范围: [0,7]。值越大,层次越高。

【注意】

- 区域内存信息为 RRK_FMT_BGRA5551 格式时,将会扩展 Alpha 值。当 Alpha 位为 1时,使用 u32FgAlpha 进行透明度叠加;当 Alpha 位为 0 时,使用u32BgAlpha 进行透明度叠加。(VENC 不支持Alpha值设定)
- 0 表示全透明; 255 表示不透明。

COVER_CHN_ATTR_S

【说明】

定义遮挡区域的通道显示属性。

【定义】

```
typedef struct rkCOVER_CHN_ATTR_S {
    RECT_S stRect;
    RK_U32 u32Color;
    RK_U32 u32Layer;
    RGN_COORDINATE_E enCoordinate;
} COVER_CHN_ATTR_S;
```

【成员】

成员名称	描述
stRect	区域位置,宽高。 位置取值范围: 水平位置X: [RGN COVER MIN X, RGN COVER MAX X], 要求以 16 位对齐。 垂直位置Y: [RGN COVER MIN Y, RGN COVER MAX Y], 要求以 16 位对齐。 宽高取值范围: 宽度: [RGN MIN WIDTH, RGN COVER MAX WIDTH], 要求以 16 位对齐。 高度: [RGN MIN HEIGHT, RGN COVER MAX HEIGHT], 要求以 16 位对齐。 动态属性。
u32Color	区域颜色。以RGB888定义颜色值。
u32Layer	区域层次。取值范围: [0, 7]。 动态属性。
enCoordinate	区域坐标类型。

【注意】

• 无

MOSAIC_BLK_SIZE_E

【说明】

定义 mosaic 类型的块大小。

【定义】

```
typedef enum rkMOSAIC_BLK_SIZE_E {
   MOSAIC_BLK_SIZE_8 = 0,
   MOSAIC_BLK_SIZE_16,
   MOSAIC_BLK_SIZE_32,
   MOSAIC_BLK_SIZE_64,
   MOSAIC_BLK_SIZE_BUTT
} MOSAIC_BLK_SIZE_E;
```

【成员】

成员名称	描述
MOSAIC_BLK_SIZE_8	8*8 大小。
MOSAIC_BLK_SIZE_16	16*16 大小。
MOSAIC_BLK_SIZE_32	32*32 大小。
MOSAIC_BLK_SIZE_64	64*64 大小。

【注意】

• 无

MOSAIC_CHN_ATTR_S

【说明】

定义马赛克区域的通道显示属性。

【定义】

```
typedef struct rkMOSAIC_CHN_ATTR_S {
   RECT_S stRect;
   MOSAIC_BLK_SIZE_E enBlkSize;
   RK_U32 u32Layer;
} MOSAIC_CHN_ATTR_S;
```

【成员】

成员名称	描述
stRect	马赛克区域。
enBlkSize	马赛克显示类型。
u32Layer	区域层次。

【注意】

• 无

RGN_ATTR_U

【说明】

定义区域属性联合体。

【定义】

```
typedef union rkRGN_ATTR_U {
   OVERLAY_ATTR_S stOverlay;
} RGN_ATTR_U;
```

【成员】

成员名称	描述
stOverlay	通道叠加区域属性。

【注意】

• 无

RGN_CHN_ATTR_U

【说明】

定义区域通道显示属性联合体。

【定义】

```
typedef union rkRGN_CHN_ATTR_U {
   OVERLAY_CHN_ATTR_S stOverlayChn;
   COVER_CHN_ATTR_S stCoverChn;
   MOSAIC_CHN_ATTR_S stMosaicChn;
} RGN_CHN_ATTR_U;
```

【成员】

成员名称	描述
stOverlayChn	通道叠加区域通道显示属性。
stCoverChn	遮挡区域通道显示属性。
stMosaicChn	马赛克显示属性。

【注意】

• 无

RGN_ATTR_S

【说明】

定义区域属性结构体。

【定义】

```
typedef struct rkRGN_ATTR_S {
    RGN_TYPE_E enType;
    RGN_ATTR_U unAttr;
} RGN_ATTR_S;
```

【成员】

成员名称	描述
enType	区域类型。
unAttr	区域属性。

【注意】

• 无

RGN_CHN_ATTR_S

【说明】

定义马赛克区域的通道显示属性。

【定义】

【成员】

成员名称	描述
bShow	区域是否显示。 取值范围:RK_TRUE 或者 RK_FALSE。 动态属性。
enType	区域类型。 静态属性。
unChnAttr	区域通道显示属性。

【注意】

• 无

错误码

区域管理 API 错误码如表 1-3所示。

表1-3 区域管理 API 错误码

错误代码	宏定义	描述
0xA0038001	RK_ERR_RGN_INVALID_DEVID	设备 ID 超出合法范围
0xA0038002	RK_ERR_RGN_INVALID_CHNID	通道组号错误或无效区域句柄
0xA0038003	RK_ERR_RGN_ILLEGAL_PARAM	参数超出合法范围
0xA0038004	RK_ERR_RGN_EXIST	重复创建已存在的设备、通道或资源
0xA0038005	RK_ERR_RGN_UNEXIST	试图使用或者销毁不存在的设备、通道或者 资源
0xA0038006	RK_ERR_RGN_NULL_PTR	函数参数中有空指针
0xA0038007	RK_ERR_RGN_NOT_CONFIG	模块没有配置
0xA0038008	RK_ERR_RGN_NOT_SUPPORT	不支持的参数或者功能
0xA0038009	RK_ERR_RGN_NOT_PERM	该操作不允许,如试图修改静态配置参数
0xA003800C	RK_ERR_RGN_NOMEM	分配内存失败,如系统内存不足
0xA003800D	RK_ERR_RGN_NOBUF	分配缓存失败,如申请的数据缓冲区太大
0xA003800E	RK_ERR_RGN_BUF_EMPTY	缓冲区中无数据
0xA003800F	RK_ERR_RGN_BUF_FULL	缓冲区中数据满
0xA0038010	RK_ERR_RGN_NOTREADY	系统没有初始化或没有加载相应模块
0xA0038011	RK_ERR_RGN_BADADDR	地址非法
0xA0038012	RK_ERR_RGN_BUSY	系统忙