2023 年软件测试课程

AlOps 项目回归测试报告

教 师: _____ 杜庆峰_____

时间: 2023年6月19日

2051488	韩可欣
2051494	戴秋璐
2053300	胡锦晖
2053677	于然

目录

1	└ 测试情况概述	3
	1.1 评价标准	3
	1.2 测试环境	3
	1.3 测试记录	3
2	2 前端	4
	算法管理子系统:	
	源数据管理子系统:	5
3	8 后端	6
	源数据管理子系统	
	用户管理子系统	8
	异常/故障信息管理子系统	

1 测试情况概述

AlOps 智能运维系统在 V1.0 版本的第一轮测试(单元测试、集成测试、系统测试)中共发现 17 个缺陷,所有发现的问题已经记录到缺陷跟踪工具 PingCode 上,并分配给相关的开发人员进行更改。现在对更改完成的 bug 进行了确认,所有 bug 状态都是关闭。因此,我们进行了第二轮的回归测试。

在对整个系统的第一轮测试中,发现的缺陷数量较少,说明功能点比较稳定。所以在进行回归测试的时候,我们重点测试了出现 bug 的功能点,同时也把重要的功能点、常用的功能点、与缺陷相关联的功能点的测试用例又执行了一遍。考虑到杀虫剂效应,我们还设计了新的测试用例来保证软件的质量。

1.1 评价标准

● 1级错误: 致命错误, 造成系统崩溃或者无法继续使用该软件

● 2级错误:严重错误,系统出现明显错误,无法通过替代方法实现指定功能

● **3**级错误:一般错误,界面文字错误或者模块错误但是可以通过其它方法实现指定的功能。

● 4级错误:软件改进,不影响用户正常使用。

● 5级建议:对软件提出的建议,非 bug 项。

软件合格的标准为软件中不存在 1、2、3 级错误, 4 级错误不超过软件 bug 总数的 5%。

1.2 测试环境

硬件需求: 可运行 window10 及以上版本的计算机 **软件需求:** IntelliJ IDEA 2021.2.2 x64 版本及以后

测试工具: ApiFox, GitHub, PingCode

1.3 测试记录

缺陷类型	数量	不同错误等级 缺陷				
吹阳天至	数里	1级	2级	3级	4级	5级
500 错误	0					

程序逻辑错误	0				
页面逻辑错误	0				
易用性	2			2	
页面	2		2		
合计	4				

可以看到,回归测试中较多问题出现在前端,通过问题分析可以看出,本次测试提出了较多易用性和页面方面的建议;后端并没有出现新的缺陷,可见上一轮的缺陷被成功修复了,同时,为修复 bug 而改动的代码、为适应需求变更而改动的代码,也没有引入新的缺陷。

2 前端

算法管理子系统:

1. 新增功能触发按钮过小;

2. 编辑不改变参数,依然记录一次更新;

更新次数	更新人员	操作
2	张诚	编辑 删除

源数据管理子系统:

- 1. 新增功能的按钮过小;
- 2. 新增功能文件上传使用本地路径,上传错误无错误提示;

3后端

源数据管理子系统

使用 ApiFox 的自动化测试工具,设置了 5 个步骤,覆盖了源数据管理子系统中最重要的功能点。首先添加一批次的源数据,然后更新这一条记录的 dataSample 字段的值,接着用两种方法获取源数据,最后再删除该批次的数据。

该脚本总共执行了 3 次,分别代表"正常输入-单循环-单线程"、"正常输入-单循环-多线程"、"异常情况-多循环-多线程",结果如下所示,全部执行成功。

正常输入-单循环-单线程

正常输入-单循环-多线程

异常情况-多循环-多线程

综上,源数据管理子系统的功能满足了需求规约,对合法输入与不合法输入都能运行正常,有较为优秀的性能表现。

用户管理子系统

第一轮集成测试结果

第一轮集成测试之后,对于用户管理部分,对于需求分析有部分内容更改。此外,还增加了一些功能,因此我们手动挑选部分测试用例(优先级为高以及我们推测可能会受到影响的测试用例)来进行回归测试。

此外,我们还进行了部分性能测试,在多轮次接口请求的情况下依然可以通过所有回归测试用例。

异常/故障信息管理子系统

第一轮集成测试结果

第一轮集成测试之后,对于异常/故障信息管理部分,同样手动挑选部分测试用例(优 先级为高以及我们推测可能会受到影响的测试用例)来进行回归测试。

同样,进行部分性能测试,在多轮次接口请求的情况下依然可以通过所有回归测试用例。

