Solution to Quiz#4

1.
$$P(441 \angle x < 446)$$

= $P(441 \angle x < 446)$
= $P(441 - 448 \angle z < \frac{446 - 448}{21/49})$ [$z = x - n$]
= $P(-2.33 < z < -0.667)$
= $\varphi(-0.67) - \varphi(-2.33)$

$$= 0.2574 - 0.0099 = 0.2415$$

2. A B
$$n_1 = 16$$
 $n_2 = 9$ $M_{\overline{X_1} - \overline{X_2}} = M_1 - M_2 = 5$
 $\sigma_1 = 8$ $\sigma_2 = 12$ $\sigma_3 = 70$ $\sigma_4 = 70$ $\sigma_4 = 70$ $\sigma_5 = 70$

$$= P \left(\frac{(\bar{x}_1 - \bar{x}_2) - \mathcal{N}_{\bar{x}_1 - \bar{x}_2}}{\delta_{\bar{x}_1 - \bar{x}_2}} \right) \frac{4 - 5}{\sqrt{20}} = P(\bar{z} - 0.224)$$

$$= 1 - \phi(-0.224)$$

3. Middle 957. on segment = 1-0.4129 = 0.5871

A M B X

A M B X

$$\frac{1}{0} = \frac{1}{5 - 10} = \frac{1}{10} = \frac{1}{1$$

$$= 6.503 + 1.96 \times \frac{.504}{5}$$

$$= 0.5046 \simeq 6.505$$

Solution to quit 4

4. Given P(-2.977 < T(K) = 0.045 for df = v = n - 1 = 14Let $K = t_{\infty}$ $Alm, -2.977 = -t_{0.05} = t_{0.995}$

Then, $P(t_{0.995} < T < t_{\alpha}) = 0.045$ $\Rightarrow (1-\alpha) - (1-0.995) = 0.045$ $t_{995}t_{\alpha}$ $\Rightarrow 0.995 - 0.045 = \alpha$ $\Rightarrow \alpha = 0.95$ $k = t_{\alpha} = t_{0.95} = -t_{0.05} = -1.761$

5. M = 3 yrs, $\delta = 2.646 \text{ months}$, $\delta^2 = 6.6713 \text{ month}^2$, n = 5Let, $S^2 = A \text{ random variable representing sample variance}$

$$P(s^{2}) = 0.05$$

$$P(s^{2}) =$$

6. $P(3.463 < S^2 < 10.745)$ $= P\left[\frac{3.463 \times (N-1)}{S^2} < \chi^2 < \frac{10.745 \times (N-1)}{S^2}\right] \qquad \begin{array}{c} \chi^2 dishibution \\ f \in P = 2A \\ \hline 2P\left[\frac{3.463 \times 24}{6.0725} < \chi^2 < \frac{10.745 \times 24}{6.075}\right] \qquad \begin{array}{c} \chi^2 dishibution \\ f \in P = 2A \\ \hline \chi^2 (95-0) \end{array}$ $= P\left[\frac{3.463 \times 24}{6.0725} < \chi^2 < \frac{10.745 \times 24}{6.075}\right] = P\left[\chi^2 (95-0)\right] \qquad \begin{array}{c} \chi^2 dishibution \\ f \in P = 2A \\ \hline \chi^2 (95-0) \end{array}$ $= P\left[\frac{3.463 \times 24}{6.0725} < \chi^2 < 42.98\right] = P\left[\chi^2 (95-0)\right] \qquad \begin{array}{c} \chi^2 dishibution \\ \chi^2 (95-0) \end{array}$ $= P\left[\frac{3.463 \times 24}{6.0725} < \chi^2 < 42.98\right] = P\left[\chi^2 (95-0)\right] \qquad \begin{array}{c} \chi^2 dishibution \\ \chi^2 (95-0) \end{array}$ $= P\left[\frac{3.463 \times 24}{6.0725} < \chi^2 < 42.98\right] = P\left[\chi^2 (95-0)\right] \qquad \begin{array}{c} \chi^2 dishibution \\ \chi^2 (95-0) \end{array}$ $= P\left[\frac{3.463 \times 24}{6.0725} < \chi^2 < 42.98\right] = P\left[\chi^2 (95-0)\right] \qquad \begin{array}{c} \chi^2 (95-0) \\ \chi^2 (95-0) \end{array}$ $= \left[\frac{3.463 \times 24}{6.0725} < \chi^2 < 42.98\right] = P\left[\chi^2 (95-0)\right] \qquad \begin{array}{c} \chi^2 (95-0) \\ \chi^2 (95-0) \end{array}$ $= \left[\frac{3.463 \times 24}{6.0725} < \chi^2 < 42.98\right] = P\left[\chi^2 (95-0)\right] \qquad \begin{array}{c} \chi^2 (95-0) \\ \chi^2 (95-0) \end{array}$