Name: _____

Answer the questions on the worksheet and not on a separate sheet of paper. Please circle your answers and show your work for full credit.

Fill In the Blank. Read Section 15.1 in Strang's book to answer these questions.

1. A vector field assigns a ______ to each point $\{x,y\}$ or $\{x,y,z\}$. In two dimensions $\mathbf{F}(x,y) =$ ______ $\mathbf{i} +$ ______ \mathbf{j} . An example is the position field $\mathbf{R} =$

_____. Its magnitude is $|\mathbf{R}| =$ _____ and its direction is _____. IT

is the gradient field for f = ______, and the are

 $\underline{\hspace{1cm}}$ to the vectors \mathbf{R} .

2. Reversing this picture, the spin field is $\mathbf{S} =$ ______. Its magnitude is $|\mathbf{S}| =$ ______ and its direction is ______. It is not a gradient field, because no function has $\partial f/\partial x =$ ______ and $\partial f/\partial y =$ ______. \mathbf{S} is the velocity field for flow going ______.

The streamlines or _____ lines or integral _____ are ____.

3. A gravity field from the origin is proportional to $\mathbf{F} = \underline{\hspace{1cm}}$ which has $|\mathbf{F}| = \underline{\hspace{1cm}}$. This is Newton's $\underline{\hspace{1cm}}$ square law. It is a gradient field, with potential $f = \underline{\hspace{1cm}}$. The equipotential curves f(x,y) = c are $\underline{\hspace{1cm}}$ to the field lines which are $\underline{\hspace{1cm}}$. This illustrates that the $\underline{\hspace{1cm}}$ of a function f(x,y)

is ______ to its level curves.

True or False. No work is necessary.

- 4. The constant field $\mathbf{i} + 2\mathbf{k}$ is a gradient field
- 5. grad f is a scalar field.
- 6. curl **F** is a vector field.
- 7. $\nabla \times (\nabla f) = \mathbf{0}$ for all function $f : \mathbb{R}^3 \to \mathbb{R}$.
- 8. if \mathbf{F} and \mathbf{G} are gradient fields, then $\mathbf{F} \times \mathbf{G}$ is incompressible.

Short Answer.

9. Write down the the vector field $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ that points radially away from origin with magnitude 5.

10. Sketch the vector field $\mathbf{F} = x^2 \mathbf{i} + x \mathbf{j}$ on \mathbb{R}^2 .

11. Calculate the flow line $\mathbf{x}(t)$ of the vector field $\mathbf{F}(x, y, z) = 2\mathbf{i} + 3y\mathbf{j} + z^3\mathbf{k}$ that passes through $\mathbf{x}(0) = (3, 5, 7)$.

12. Show the vector field $\mathbf{F} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ is a gradient field and describe the equipotential surfaces of \mathbf{F} in words.

13. The **circulation** of a vector field on a closed curve is given by $\int_C \mathbf{F} \cdot d\mathbf{s}$. Find the circulation of $\mathbf{F} = (x^2 - y)\mathbf{i} + (xy + x)\mathbf{j}$ along the circle $x^2 + y^2 = 16$, oriented counterclockwise.

14. Let C be a level curve of the function f(x,y). Show that $\int_C \nabla f \cdot d\mathbf{s} = 0$.

15. Let **B** be a uniform (constant) vector field and $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. If we let

$$\mathbf{A}(\mathbf{r}) = -\frac{1}{2}(\mathbf{r} \times \mathbf{B}),$$

show that $\nabla \cdot \mathbf{A} = 0$ and $\nabla \times \mathbf{A} = \mathbf{B}$. (You can thank Dr. Matt Wright for this problem.)