# Лекция 4 **Метод опорных векторов**

# Машинное обучение Сергей Муравьёв / Андрей Фильченков

- Линейно разделимый случай
- Линейно неразделимый случай
- Ядерный трюк
- Выбор и синтез ядер
- Регуляризация для метода опорных векторов
- В презентации используются материалы курса «Машинное обучение» К.В. Воронцова
- Слайды доступны: shorturl.at/ltVZ3 Видео доступны: shorturl.at/hjyAX

- Линейно разделимый случай
- Линейно неразделимый случай
- Ядерный трюк
- Выбор и синтез ядер
- Регуляризация для метода опорных векторов

### Основная идея

Если мы предполагаем, что классификатор должен быть линейным, как лучше всего его определить?

**Основная идея:** поиск поверхности, наиболее удаленной от классов (классификация с большим запасом).

### Линейно разделимый случай

Основная гипотеза: выборка является линейно разделимой:

$$\exists w, w_0 : M_i(w, w_0) = y_i(\langle w, x_i \rangle - w_0) > 0, i = 1, ..., |\mathcal{D}|.$$

Может существовать несколько разделительных гиперплоскостей, поэтому среди них можно выделить ту, которая имеет максимальное расстояние от обоих классов.



### Разделяющая полоса

Нормализуем величину отступа:

$$\min_i M_i(w, w_0) = 1.$$

Уравнение разделяющей полосы:

$$\{x: -1 \le \langle w, x \rangle - w_0 \le 1\}.$$

Ширина полосы:

$$\frac{\langle \bar{x}_{+} - x_{-}, w \rangle}{||w||} = \frac{(\langle x_{+}, w \rangle - w_{0}) - (\langle x_{-}, w \rangle - w_{0})}{||w||} = \frac{2}{||w||}.$$

Формализуем задачу оптимизации:

$$\begin{cases} ||w||^2 \to \min_{w,w_0}; \\ M_i(w,w_0) \ge 1, i = 1, \dots, |\mathcal{D}|. \end{cases}$$

- Линейно разделимый случай
- Линейно неразделимый случай
- Ядерный трюк
- Выбор и синтез ядер
- Регуляризация для метода опорных векторов

## Линейно неразделимый случай

**Основная гипотеза:** выборка не является линейно разделимой:

$$\forall w, w_0 \ \exists x_d : M_d(w, w_0) = y_d(\langle w, x_d \rangle - w_0) < 0$$

Такой разделительной гиперплоскости не существует.

Мы все еще можем попытаться найти гиперплоскость с наименьшими значениями отступов для каждого объекта.

### Линейно неразделимый случай

В случае линейной неразделимости заданной выборки:

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{|\mathcal{D}|} \xi_i \to \min_{w, w_0, \xi}; \\ M_i(w, w_0) \ge 1 - \xi_i, i = 1, ..., |\mathcal{D}|; \\ \xi_i \ge 0, \qquad i = 1, ..., |\mathcal{D}|. \end{cases}$$

Эквивалентная задача безусловной оптимизации:

$$\sum_{i=1}^{|\mathcal{D}|} \left(1 - M_i(w, w_0)\right)_+ + \frac{1}{2C} ||w||^2 \to \min_{w, w_0},$$

где 
$$(x)_+ = (x + |x|)/2$$
.

Данная формула является аппроксимацией эмпирического риска.

### Анализ константы С



# Задача нелинейного программирования

#### Задача математического программирования:

$$\begin{cases} f(x) \to \min_{x} \\ g_{i}(x) \leq 0, \\ h_{j}(x) = 0. \end{cases} \qquad i = 1, \dots, m; j = 1, \dots, k.$$

#### Лагранжиан:

$$\mathcal{L}(x; \mu, \lambda) = f(x) + \sum_{i=1}^{m} \mu_i g_i(x) + \sum_{j=1}^{k} \lambda_j h_j(x)$$

#### Условие Каруша – Куна – Таккера:

$$\frac{\delta \mathcal{L}}{\delta x}(x^*; \mu, \lambda) = 0.$$

$$\begin{cases}
g_i(x^*) \le 0; \\
h_j(x^*) = 0; \\
\mu_i \ge 0; \\
\mu_i g_i(x^*) = 0.
\end{cases}$$
 $i = 1, ..., m; j = 1, ..., k.$ 

### Условия ККТ в задаче опорных векторов

Лагранжиан

$$\mathcal{L}(w, w_0, \xi; \alpha, \beta) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{|\mathcal{D}|} \alpha_i (M_i(w, w_0) - 1) - \sum_{j=1}^{|\mathcal{D}|} \xi_j (\alpha_j + \beta_j - C)$$

 $\alpha_i$  — переменные, двойственные для ограничений  $M_i \geq 1 - \xi_i$ ;

 $\beta_i$  — переменные, двойственные для ограничений  $\xi_i \geq 0$ .

Условия минимума:

$$\begin{cases} \frac{\delta \mathcal{L}}{\delta w} = 0; \frac{\delta \mathcal{L}}{\delta w_0} = 0; \frac{\delta \mathcal{L}}{\delta \xi} = 0; \\ \xi_i \geq 0; \alpha_i \geq 0; \beta_i \geq 0; \\ \alpha_i = 0 \text{ или } M_i(w, w_0) = 1 - \xi_i; \\ \beta_i = 0 \text{ или } \xi_i = 0; \end{cases}$$

$$i = 1, ..., |\mathcal{D}|.$$

### Опорные вектора

#### Типы объектов:

1. 
$$\alpha_i = 0$$
;  $\beta_i = C$ ;  $\xi_i = 0$ ;  $M_i > 1$  периферийные объекты.

2. 
$$0 < \alpha_i < C$$
;  $0 < \beta_i < C$ ;  $\xi_i = 0$ ;  $M_i = 1$  опорные пограничные объекты.

3. 
$$\alpha_i = C$$
;  $\beta_i = 0$ ;  $\xi_i > 0$ ;  $M_i < 1$  опорные нарушители.

Объекты  $x_i$  — **опорные объекты,** если  $\alpha_i \neq 0$ .

# Задача нелинейного программирования

$$\begin{split} -\mathcal{L}(\alpha) &= -\sum_{i=1}^{|\mathcal{D}|} \alpha_i + \frac{1}{2} \sum_{i=1}^{|\mathcal{D}|} \sum_{j=1}^{|\mathcal{D}|} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \to \min_{\alpha} \\ \left\{ 0 \leq \alpha_i \leq C, i = 1 \dots \ell; \\ \sum_{j=1}^{\ell} \alpha_i y_i = 0. \right. \end{split}$$

Решение задачи может быть выражено следующим образом:

$$\begin{cases} w = \sum_{i=1}^{|\mathcal{D}|} \alpha_i y_i x_i; \\ w_0 = \langle w, x_i \rangle - y_i. \end{cases} \forall i: \alpha_i > 0, M_i = 1.$$

Линейный классификатор:

$$a(x) = \operatorname{sign}\left(\sum_{i=1}^{|\mathcal{D}|} \alpha_i y_i \langle x_i, x \rangle - w_0\right).$$

- Линейно разделимый случай
- Линейно неразделимый случай
- Ядерный трюк
- Выбор и синтез ядер
- Регуляризация для метода опорных векторов

# Плохой случай линейной неразделимости



### Ядерный трюк

**Основная идея**: найти отображение в многомерное пространство, такое, что точки в новом пространстве будут линейно разделимы.

**Суть:** пусть разделяющая поверхность хорошо аппроксимируется суммой функций, зависящих от  $x_1, ..., x_n$ :  $c_1x_1 + \cdots + c_nx_n + f_1(x_1, ..., x_n) + \cdots + f_k(x_1, ..., x_n)$  Если мы добавим признаки  $f_1(x_1, ..., x_n), ..., f_k(x_1, ..., x_n),$  тогда у нас будет новое пространство над переменными  $x_1, ..., x_n, x_{n+1}, ..., x_{n+k},$  точки которых будут линейно разделимы.

# Разделимость в пространстве большей размерности



# Как это выглядит в оригинальном пространстве



Машинное обучение. Лекция 4. Метод опорных векторов. 25.09.2020

### Результирующая разделяющая поверхность



### Почему ядра?

Мы можем построить дистанционный классификатор для опорных объектов (векторов). Использование функции ядра равносильно использованию определенного отображения.

Основная проблема — найти ядро, которое переводит исходное пространство в линейно разделимое.

- Линейно разделимый случай
- Линейно неразделимый случай
- Ядерный трюк
- Выбор и синтез ядер
- Регуляризация для метода опорных векторов

### Функции ядра

Функция  $K: X \times X \to \mathbb{R}$  — функция ядра, если её можно представить как  $K(x, x') = \langle \psi(x), \psi(x') \rangle$  с отображением  $\psi: X \to H$ , где H — пространство со скалярным произведением.

### Теорема (Мерсер)

Функция K(x, x') — ядерная функция, если она симметричная, K(x, x') = K(x', x), и неотрицательно определена на  $\mathbb{R}$ :

$$\int_{X} \int_{X} K(x, x') g(x) g(x') dx dx' \ge 0$$

для любой функции  $g:X \to \mathbb{R}$ .

## Примеры функций ядра

Квадратичное:

$$K(x, x') = \langle x, x' \rangle^2$$

Многочлен с мономиальной степенью, равной d:

$$K(x, x') = \langle x, x' \rangle^d$$

Многочлен с мономиальной степенью  $\leq d$ :

$$K(x, x') = (\langle x, x' \rangle + 1)^d$$

Нейронные сети:

$$K(x, x') = \sigma(\langle x, x' \rangle)$$

Радиально-базисный:

$$K(x, x') = \exp(-\beta ||x - x'||^2)$$

### Синтез ядер

- $K(x,x') = \langle x,x' \rangle$  функция ядра;
- константа K(x, x') = 1 функция ядра;
- $K(x,x') = K_1(x,x')K_2(x,x')$  функция ядра;
- $\forall \psi: X \to \mathbb{R} \ K(x, x') = \psi(x) \psi(x') функция ядра;$
- $K(x,x') = \alpha_1 K_1(x,x') + \alpha_2 K_2(x,x')$  при  $\alpha_1,\alpha_2 > 0$  функция ядра;
- $\forall \phi: X \to X$  если  $K_0$  функция ядра, тогда  $K(x, x') = K_0(\phi(x), \phi(x'))$  также является функцией ядра;
- если  $s: X \times X \to \mathbb{R}$  симметричная и интегрируемая, тогда

$$K(x,x')=\int_X s(x,z)s(x',z)dz$$
 — функция ядра.

### Анализ метода опорных векторов

### Преимущество:

- Задача выпуклого квадратичного программирования имеет единственное решение
- Любая разделяющая поверхность
- Небольшое количество опорных объектов, используемых для обучения

#### Недостатки:

- Чувствителен к шуму
- Нет общих правил выбора функций ядра
- Константу С требуется выбирать
- Нет возможности выбора признаков

- Линейно разделимый случай
- Линейно неразделимый случай
- Ядерный трюк
- Выбор и синтез ядер
- Регуляризация для метода опорных векторов

### Регуляризация (напоминание)

**Ключевая гипотеза**: *w* «скачет», что и вызывает переобучение

Основная идея: ограничим норму w.

Добавим штраф регуляризации для нормы весов:

$$\mathcal{L}_{\tau}(a_w, \mathcal{D}) = \mathcal{L}(a_w, \mathcal{D}) + \frac{\tau}{2} ||w||^2 \to \min_w.$$

Задача оптимизации для метода опорных векторов:

$$\sum_{i=1}^{|\mathcal{D}|} \left(1 - M_i(w, w_0)\right)_+ + \frac{1}{2C} \|w\|^2 \to \min_{w, w_0}$$

## Другие функции штрафов

Вектор релевантности:

$$\frac{1}{2} \sum_{i=1}^{|\mathcal{D}|} \left( \ln \lambda_i + \frac{\alpha_i^2}{\lambda_i} \right)$$

LASSO SVM:

$$\mu \sum_{i=1}^{|\mathcal{D}|} |w_i|$$

Машина опорных признаков (Support feature machine):

$$\sum_{i=1}^{|\mathcal{D}|} R_{\mu}(w_i),$$

где 
$$\mu$$
 — параметр селективности,  $R_{\mu} = \begin{cases} 2\mu |w_i|, & \text{если } |w_i| < \mu, \\ \mu^2 + w_i^2, & \text{иначе.} \end{cases}$