第3届SAChO · 第36届中国化学奥林匹克(初赛)模拟试题样卷

答案与评分细则

第1题 (8分) 根据所给条件按照要求书写化学反应方程式(要求系数之比为最简整数比)。

- 1-1 在缺少催化剂时, 氯酸钾加热至 360℃ 熔化时仍不会产生气体。
- 1-2 分析化学中, 常在含 NH4+的溶液中, 加入过量甲醛, 然后使用氢氧化钠溶液滴定以测定 NH4+的浓度。
- **1-3** 单质 Nb 有着极强的抗酸能力,甚至加热条件下与常见的氧化性酸也几乎不反应。但在 HNO₃-HF 组合下, Nb 剧烈反应,放出大量红棕色气体并生成一含 Nb 40.77%的强酸。
- **1-4** pH = 2.12 时,工业上常通过无极电镀的方式用 P(I)还原 Ni²⁺进行镀镍处理,P(I)转变为 P(III),反应中 Ni²⁺与 P(I)的反应系数比为 1:2,已知 H₃PO₂ 的 pKa = 1.2,H₃PO₃ 的 pKa₁ = 1.29,pKa₂ = 6.74,试写出反应方程式。

统一说明:

- 1)每个正确的方程式2分;
- 2) 可以采用等号代替箭头。
- 3) 可以采用化学式(书写正确)表示反应物和生成物。
- 4) 如果方程式未配平,不得分。

1-1	$4KClO_3 \rightarrow 3KClO_4 + KCl$	(2分)
1-2	$4NH_4^+ + 6HCHO \rightarrow (CH_2)_6N_4H^+ + 3H^+ + 6H_2O$	(2分)
1-3	$Nb + 5HNO_3 + 7HF \rightarrow H_2NbF_7 + 5NO_2 + 5H_2O$	(2分)
1-4	$Ni^{2+} + 2H_2PO_2^- + 2H_2O \rightarrow Ni + 2H_2PO_3^- + H_2 + 2H^+$	(2分)
	如磷的含氧酸主要形式有误,本题得0分。	

第2题 (8分) 阿莫西林的相关性质

Amoxicilin 是一种常用的广谱β-内酰胺类抗生素,具有溶菌作用,主治易感微生物所引起的细菌性感染。该药被列入世界卫生组织基本药物标准清单,为医疗系统必备药物之一。Amoxicilin 的活性取决于其结构。Lipinski 总结了大量具有成药特性的口服化合物的主要理化性质的性质,归纳出了著名的五规则。五规则涉及氢键供体(HBD)和受体(HBA)、相对分子质量(M)、脂水分

配系数(P)和极性表面积(PSA)。以下为 amoxicilin 在 T = 310.2K 时的部分信息:

 $pK_{a1} = 2.67$, $pK_{a2} = 7.11$, $pK_{a3} = 9.55$ 。半衰期为 61.3min,分子量为 365.40, $\log P = 0.87$

- 2-1 标出 amoxicillin 的所有手性碳的绝对构型。
- 2-2 计算 amoxicillin 代谢的表观速率常数。
- 2-3 脂水分配系数定义为化合物在生物非水相(一般用正辛醇替代)浓度和其在水相的浓度比。
- 2-3-1 指出用正辛醇测定亲脂性(logP)的原因。
- **2-3-2** 计算 amoxicillin 不带电型体的分布分数(即 δ_2)取最大时溶液的 pH。
- **2-3-3** 因 P 与 pH 无关,不能体现药物亲脂性随 pH 的变化,故定义**分配系数** D 为某 pH 下溶解于有机非水相的各型体总浓度与水相各型体总浓度之比(而 P 只关注原型体浓度)。一般认为多数药物吸收、代谢等过程发生在 pH = 7.40 的体液中。计算此时 amoxicillin 的 logD。

1分		
2-3-2	Amoxicillin 中性型体附近的 pKa 分别为 pKa ₁ 和 pKa ₂ , 所以所求	
1分	$pH = (pKa_1 + pKa_2)/2 = 4.89$ (1 $\frac{1}{2}$)	
2-3-3	不妨设 amoxicillin 不带电型体为 H ₂ A, 其在有机非水相浓度为[H ₂ A] ₀ , 则有	
3 分	$P = [H_2A]_0 / [H_2A] (0.5 \%)$ $D = [H_2A]_0 / ([H_2A] + [HA^-] + [A^2] + [H_3A^+]) (0.5 \%)$	
	$\delta_2 = [H_2A]/([H_2A] + [HA^-] + [A^2] + [H_3A^+]) (0.5 \%)$	
	= $[H^+]^2 K_{a1} / ([H^+]^3 + [H^+]^2 K_{a1} + [H^+]^2 K_{a1} K_{a2} + K_{a1} K_{a2} K_{a3}) = 0.34 (0.5 \%)$	
	$\log D = \log(P\delta_2) = 0.40 \ (1 \ \%)$	

第3题 (11分) 蓝色:天空和大海,智慧、未来和希望的象征

- **3-1** 在低温下,将元素 **A** 的高价态化合物溶液,与氢氧化钾和亚硫酸钾混合溶液按一定比例混合后搅拌,溶液变蓝,此时溶液中含有钾盐 **X**,**X** 由元素 **A**,K,O 组成,且氧的质量分数为 27.09%,之后溶液迅速由蓝色转变为深绿色,并伴随有黑色固体 **Y** 生成,已知黑色固体 **Y** 为 **A** 的氧化物。
- 3-1-1 请写出 A 的元素符号、X 和 Y 的化学式。
- 3-1-2 请写出生成 Y 的化学反应方程式。
- **3-2** 取无水含氟铵盐 **B** 7.302g,在 500°C 下加热充分分解,残留固体 **C** 3.598g,收集生成的气体,导入 1L 蒸馏水中,溶液增重 3.704g,已知溶液中[F⁻]+[HF]的和为 0.1000 mol/L,将残留固体 **C** 置于 HF 和 H_2 的混合气流中,在 115°C 条件下充分反应,生成 2.965g 蓝色固体 **D**。已知 **B**,**C** 和 **D** 中都含有金属元素 **E**,**C** 和 **D** 均为氟化物。
- 3-2-1 通过计算推断出金属元素 E 的元素符号。
- 3-2-2 请写出 B, C 和 D 的化学式。

	7 - 7 - 17 - 17 - 17 - 17 - 17 - 17 - 1	
3-1-1	Mn K ₃ MnO ₄ MnO ₂ (3分,每个1分)	
3分		
3-1-2	$2K_3MnO_4 + 2H_2O \rightarrow 4KOH + K_2MnO_4 + MnO_2$ (2 分)	
2分	正确使用沉淀号亦可得分。	
3-2-1	由题可得收集的气体全可溶于水,而其中含 HF 0.1000 × 1 × 20.01 = 2.001g	(0.5分)
3分	剩余气体质量为 3.704-2.001= 1.703g,恰为 0.1 mol NH ₃	(0.5分)
	由题干知 C 和 D 都是氟化物,设 B 化学式为 $NH_4F \cdot xEF_y$, C 化学式为 EF_y , D 化学式为 EF_z	
	则有 $0.1x \times (19.00y + A(\mathbf{E})) = 3.598$, $m(\mathbf{C}) - m(\mathbf{D}) = 0.633g = 0.1x \times (y - z) \times 19.00 = 19.00/3$ g	(0.5分)
	得到 <i>x(y - z)</i> =1	(0.5分)
	当 $x = 1$,则 y 和 $A(\mathbf{E})$ 均无合理解;当 $x = 2$,则 y 和 $A(\mathbf{E})$ 均无合理解;	
	当 $x = 3$, $y = 1$, $A(\mathbf{E}) = 88.94$, \mathbf{E} 是 Y, 但化合价不合理,舍去; $y = 2$, $A(\mathbf{E}) = 69.94$, 无对应元素,舍去;	
	y = 3, $A(E) = 50.94$, E 是 V ,化合价合理,保留;	(0.5分)
	$y>3$, $A(\mathbf{E})$ 无合理解;当 $x>3$, $A(\mathbf{E})$ 均无合理解。综上 \mathbf{E} \mathbf{E} \mathbf{V} 。	(0.5分)
3-2-2	(NH ₄) ₃ VF ₆ VF ₃ VF ₂ (3分,每个1分)	
3分		

第 4 题 (14 分) Schlippe 盐的结构

Schlippe 盐(\mathbf{X} ·9H₂O)是一种亮黄色晶体,可由硫化物 \mathbf{A} 、硫磺和 NaOH 溶液制备。过去常用于作纺织工业的 媒染剂和着色剂,不过后来发现其潜在的离子导体性能而备受关注。

X理论密度 D=2.776 g/cm³,溶于水后只电离出两种离子,其中一种为正四面体离子 **B**。**X** 的结构正可看作 是 **B** 作体心立方堆积,另一种离子填入其形成的所有变形八面体空隙。沿 **X** 正当晶胞对角线存在 C_3 轴,且 1 个 S 原子的坐标为(0.3115, 0.3115, 0.3115)。

- **4-1** 已知制备 Schlippe 盐还可得到副产品元明粉。理论上制备 10.00g Schlippe 盐硫磺的理论最小用量为 2.000g,且硫磺利用率(转化为 Schlippe 盐的分数)理论最大值为 5/6。计算 **X** 的化学式,并写出制备过程的方程式。
- 4-2 指出 X 的点阵型式和所属晶系,并画出其正当晶胞。
- 4-3 通过计算和推理,写出 X 的所有晶胞参数。

4-4 直接写出 X 正当晶胞所有 S 原子的原子坐标。

```
由题设 A 为 MS_x,则有 MS_x + 6kS + (3+2k)NaOH \rightarrow Na_3MS_4 + kNa_2SO_4 + (3+2k)/2 H_2O (0.5 分)
4-1
4分
       由元素守恒有x + 6k = 4 + k, 3 + 2k = (3 + 2k)/2 + 4k 解得k = 0.5 (0.5 分) x = 1.5 (0.5 分)
       有 2.000/(6k \times 32.07) = 10.00/(4 \times 32.07 + 3 \times 22.99 + M(\mathbf{M}) + 18 \times 1.008 + 9 \times 16.00) (0.5 分)
       解得 M(\mathbf{M}) = 121.7 \text{g/mol} (0.5 分), X 的化学式为 Na<sub>3</sub>SbS<sub>4</sub> (0.5 分)
       方程式为 Sb<sub>2</sub>S<sub>3</sub> + 6S + 8NaOH → 2Na<sub>3</sub>SbS<sub>4</sub> + Na<sub>2</sub>SO<sub>4</sub> + 4H<sub>2</sub>O (1分)
       点阵型式:体心立方(cl) (1分) 所属晶系:立方晶系 (1分)
4-2
4分
       要求图例,不写图例不得分。[该图从大到小依次为 Na Sb S]
4-3
       由题,X的晶胞是以立方晶胞为基础上变化的。而沿正当晶胞的 C_3轴未被破坏,得 X 仍为立方晶系,得
3分
       \alpha = \beta = \gamma = 90^{\circ} (1 \beta)
                                  而 a = b = c = (ZM/DN_A)^{1/3} = 725.4pm (2分)
       没有推理过程扣 0.5 分,不倒扣。
       (0.3115, 0.3115, 0.3115)
                                    (0.6885, 0.6885, 0.3115)
                                                                   (0.3115, 0.6885, 0.6885)
4-4
3分
       (0.6885, 0.3115, 0.6885)
                                                                   (0.1885, 0.1885, 0.8115)
                                     (0.8115, 0.8115, 0.8115)
       (0.8115, 0.1885, 0.1885)
                                     (0.1885, 0.8115, 0.1885)
                                                                   (3分)
       错 1~2 个扣 1 分, 错 3~6 个扣 2 分, 错 7~8 个扣 3 分
```

第 5 题 (10 分) Schlippe 盐的分析

Schlippe 盐不是非常稳定,产品中常混有各种杂质(如 Na_2S 和 $Na_2S_x(x \ge 2, x \in N)$)。为确定产品纯度,可基于经典碘量法进行定量分析:准确称取 3.5300g 样品,溶解后配置成 250.0 mL 试液。

取 25.00mL 试液于 250 mL 烧杯,加 50 mL 水和 2 g 无水亚硫酸钠,在低温电炉上微沸 15 min,冷却后加入 4mL 100g /L NaOH 溶液,再加入 25 mL 新配制的碳酸锌悬浮液。过滤后,于滤液中加入 5mL 甲醛溶液和 2 滴酚 酞乙醇溶液,用 200 g/L 酒石酸溶液中和至溶液变色后再滴加 5 mL,随后加入 5 mL 淀粉溶液,用 0.01455 mol/L I_2 标准溶液滴至溶液呈蓝色,消耗 I_2 标准溶液 31.74 mL。同样取 25 mL 试液于 250 mL 烧杯,滴加 NH4Cl-[Cr(en)₃]Cl₃ 溶液 5 mL,静置 2 min,滤入交换柱中,并用 50 mL 水分数次洗涤烧杯和沉淀,和滤液一起通过交换柱以除去过量的 Cr。 收集液按上述方法处理并滴定,消耗 I_2 标准溶液 10.24 mL。

- 5-1 指出加入碳酸锌悬浮液和[Cr(en)3]Cl3的作用。
- 5-2 指出甲醛的作用,在此基础上指出滴入稍过量酒石酸的原因。
- 5-3 写出滴定反应中所有氧化还原反应的方程式。
- **5-4** 计算样品中 Schlippe 盐的含量(以 **X**·9H₂O 计)。

	11	
5-1	碳酸锌悬浮液:作为沉淀剂沉淀 Na ₂ S 和 Na ₃ SbS ₃ 。	(1分)
2 分	[Cr(en) ₃]Cl ₃ : 作为沉淀剂 沉淀 Na₃SbS ₄ 。	(1分)
	不要求写出沉淀 Na ₂ SbS ₃ ,但写错扣 0.5 分。	
5-2	加入甲醛是和 Na ₂ SO ₃ 反应得到 NaOSO ₂ CH ₂ OH 而掩	歷蔽 后者, 使其不与 I₂反应 而干扰滴定。(1 分)
2 分	而稍过量酒石酸加入后的 pH 下可以抑制 NaOSO2C	H ₂ OH 的分解,稳定滴定终点。
	每个关键字/句 0.5 分,抑制分解答有利于加合物的形	形成亦可,答 掩蔽其 它杂质阳离子不得分。
5-3	$Na_3SbS_4 + Na_2SO_3 \rightarrow Na_3SbS_4 + Na_2S_2O_3$	(1分)
3分	$2Na_2S_2O_3 + I_2 \rightarrow 2NaI + Na_2S_4O_6$	(1分)
	$Na_2S_x + (x-1)Na_2SO_3 \rightarrow Na_2S + (x-1)Na_2S_2O_3$	(1分)
5-4	由 2-3 可得比例关系: Na ₃ SbS ₄ ~Na ₂ S ₂ O ₃ ~1/2 I ₂ (0	0.5 分)

3 分 $M_{(\mathbf{X}.9\text{H2O})} = 32.07 \times 4 + 22.99 \times 3 + 1.008 \times 18 + 16.00 \times 9 + 121.8 = 481.19 \text{ (g/mol)}$ (0.5 分) $\omega_{(\mathbf{X}.9\text{H2O})} = 481.19 \times (31.74 - 10.24) \times 0.01455 \times 2 \times 10 \times 10^{-3} \div 3.5300 \times 100\% = 85.29\%$ (2 分)

第6题 (7分) 乙烯基醚的电化学聚合

乙烯基醚的电化学控制阳离子聚合在康奈尔大学的林松所发表的论文首次被提出,该反应具有深远的实用意义。一种电化学控制阳离子聚合反应操作如下:

6-1 第一步是合成试剂 **B** 即 *S*-(1-isobutoxy ethyl)-*N*,*N*-diethyl dithiocarbamate。实验步骤是将氯化氢乙二醇溶液逐滴加入异丁基乙烯基醚溶液中,在-78 °C 下反应 10 分钟以上,随后在氮气下搅拌 1.5 小时得到 **A**。将此溶液加入至 N,N-二乙基二硫代氨基甲酸钠的 Et_2O 溶液,再经一系列后续操作制得 **B**。请给出产物 **A** 和 **B** 的结构。

O/Bu
$$\xrightarrow{\text{HCl (1.2 eq.)}}$$
 A $\xrightarrow{\text{NaS}}$ $\xrightarrow{\text{NEt}_2 (1.3 eq.)}$ **B**

6-2 第二步是电聚合。当 E 电池冷却至室温后,将 1 当量 TEMPO 添至阳极室,并将 TBAP 添至阳极室和阴极室。通过三次抽真空和氮气回填,建立氮气气氛。通过注射器向阳极室注入 100 当量异丁基乙烯基醚,适量 **B** 和 DCM。阴极室用 DCM 充电,恒电位仪引线连接到 E 电池盖上。搅拌并施加氧化电位 6 小时。画出该聚合产物的结构。**6-3** 具体分析 TEMPO 和试剂 **B** 在此聚合反应中的机制和作用。

第 7 题 (12 分) 低价铀-伞形配体配合物的合成和反应

伞形配体可以诱导形成各种有趣的配合物,调节辅助基团种类和大小可以让配合物实现不同功能。低价铀-伞形胺配合物(**A**)有着丰富的化学活性,其合成方法如下:

在单颈 Schlenk 瓶中加入 6.4 mmol 2-(1-金刚烷基)-4-甲基苯酚、9.8 mmol 乌洛托品和 3.4 mmol TsOH· H_2O 。在向外氮气流动下,通过注射器注入无水 1-丙醇。安装冷凝器,让反应混合物在 115° C 下回流 1 周。加入乙醇-乙醚混合物,过滤得白色沉淀物,并用 10 mL 乙醇洗涤三次,真空干燥即得伞形胺配体 H_3 X。

取 0.83mmol U[N(TMS)₂]₃ 和 8mL 乙二醇二甲醚(DME)配置溶液,滴入 0.80mmol H₃**X** 和 8mL DME 混合溶液。在室温下搅拌反应物,3h 后过滤,用 5mL 冷 DME 洗涤沉淀两次,真空干燥即得 **A**。计算得 **A** 元素质量分数:C 63.03% N 1.27% H 6.93%

7-1 已知 A 含有 1 个五元环。通过计算和推理,画出 H_3X 和 A 的结构。

[注: 1-金刚烷基可缩写为 Ad,如果仍觉得配合物结构复杂,X3-后续可自行简化。]

7-2 A 可以和 Se 单质发生反应得到不同产物。当 Se 分别为 0.5、1.0 和 2.0 当量时分别得到双核配合物 **B**、**C** 和 **D**,含碳量依次为 60.86%、59.04%和 55.29%且 U 的配位数和价态不变。**C** 和 **D** 中所有 Se 配位数均相同。试画出 **B**、**C** 和 **D** 最合理的结构。

7-3 A 还可以和二当量 CO_2 经中间体 E(结构类似 B) 反应得到 F,而 A 的类似物 A'(用-tBu 取代-Ad)则得到 G。有趣的是,F 和 G 中 U 的配位情况不同。G 的两个 U 原子配位数相同,而 F 的两个 U 原子配位数不同。已知 F 含碳量为 57.66%,且含有一种常见酸根离子。试画出 F 和 G 最合理的结构。

7-1 由题可知 H₃X 是由取代苯酚、氨和甲醛按照 3:1:3 缩合得到的 (1 分)

第8题 (8分) 新戊基骨架上的亲核取代反应

8-1 有研究者试图进行如下反应,但是他们并没有得到目标产物,而是得到了一种分子式为 $C_6H_{12}O_2$ 的产物,请画出该产物的结构简式。(不要求立体化学)

- 8-2 研究者研究了不同因素对新戊基化合物亲核取代的影响。
- 8-2-1 请将化合物 A~C 在 DMSO 中与 NaN3 反应的速率由快到慢进行排序。

第 5 页 共 10 页

- **8-2-2** 如果将 NaN₃ 换成 CsN₃, 你认为反应速率会有明显改变吗?如果会,请指出变化趋势并解释原因;如果不会,请给出理由。
- **8-2-3** 研究者认为,基于新戊基结构的空间位阻,反应可能经过了前端(frontside)过渡态。该过渡态中碳仍形成三条较强共价键和两条较弱共价键,试以化合物 $\mathbb C$ 和 NaN₃ 反应为例画出该过渡态结构。

第9题 (11分) 高价碘试剂的过去、现在和未来

9-1 高价碘试剂(如 PhI(OAc)₂,即 PIDA)氧化构造螺环是有机合成中的重要策略。下为一例:

思考上述反应的反应机理,注意试剂的当量和条件,写出下列反应的产物。(不要求立体化学)

9-1-1

9-1-2 当 PIDA 氧化与四元环耦合时可发生表观上的扩环反应,得到不一样的产物。

9-1-3 思考 Pd 催化剂的作用位点和作用机理,完成以下反应。

- **9-2** 经典的有机高价碘试剂按价态可分为+III 价(如 PIDA)和+V 价两种(如 DMP),但其它类型试剂鲜有报道。近来我国科学家成功制备出一种新型有机碘氧化剂 **X**,有趣的是,**X** 含有两个不同价态的高价碘元素,而且具有其它高价碘试剂所没有的反应性。
- **9-2-1** 将 2-硝基碘苯与 m-CPBA 在乙酸中于 60° C 下回流反应 3h,可以得到 X。已知 X 中碘的质量分数为 46.48%,除苯环外不含其他环结构,请画出 X 的结构。
- 9-2-2 X 可发生以下反应,得到主产物 B 时还检测到了 2-硝基碘苯。研究人员在此条件下只加入 2-硝基亚碘酰苯和 DCE 也得到了 2-硝基碘苯。于是提出以下机理:
- A 进攻 X,得到 B 和仍不含有非苯环系的 Y;另一分子进攻 Y 得到 B 和两个有机副产物。已知 X 和 Y 的氧化反

应都含分子内攫氢和脱水。试画出 3 个含 N 和 I 的关键电中性中间体。

9-1-1	Me
2分	$0 \Rightarrow \stackrel{N}{\longrightarrow} 1$
	CI
	Me (2 分)
	Me (2 分)
9-1-2	O
2分	
	(2分)
9-1-3	
2 分	iPr Ts
2 /3	N N
	Me (2分)
9-2-1	$NO_2 \oplus O_{0} O$
2分	
	(2分)
9-2-2	CO ₂ Me CO ₂ Me CO ₂ Me
3分	
377	Ph N Ph N Ph N
	$NO_2 \oplus O$ OH $NO_2 \oplus O$ OH $NO_2 \oplus O$ OH $NO_2 \oplus O$ OH $NO_2 \oplus O$
	O_2N O_2N O_2 O_2N O_2 O_3 O_3 O_3 O_4 O_2 O_3 O_4 O_5 O
	画出3个即可,每个1分;若第1个和第3个结构分别画作以下结构亦可得分,其他结构不得分。
	CO ₂ Me CO ₂ Me
	Ph´ `N´–H Ph´ `N´–H
	$NO_2 \oplus O \bigcirc O$ $O \ominus NO_2$
	O_2N NO_2

第10题 (11分) 有机大厦的构建: 含氮芳杂环的引入和转化

杂环在有机合成中是一类重要的官能团,其中吡咯环和吡啶环是最为常见的建筑模块。

10-1 研究人员在研究某吡啶盐在碱性溶液的化学行为时意外得到了以下结果:

该底物在不同条件下反应得到的两种产物 **A** 和 **B** 的产率变化和 ¹H NMR 化学位移数据分别在上图和下方给出。已知两者的吡啶环均已破坏且转化为两个不同的新芳环,试画出两个产物结构。

A 化学位移数据: ¹H NMR (400 MHz, CDCl₃): δH 1.87 (s, 3H), 2.73 (s, 3H), 7.30–7.35 (m, 2H), 7.43–7.50 (m, 3H), 10.56 (br.s, 1H, NH).

B 化学位移数据: ¹H NMR (400 MHz, DMSO-*d*₆): δH 2.31 (s, 3H), 2.82 (d, 3H), 6.37 (q, 1H), 6.79 (s, 1H), 6.92–7.01 (m, 1H), 7.13–7.33 (m, 9H), 10.00 (s, 1H).

10-2 以下是吡咯环和吡啶环的引入和转化在麦角生物碱成员 elymoclavine 的合成中的运用。已知 MS 是分子筛(用于除去体系中的水),In 为铟粉,**D** 不含 Si 和 Br,**H** 的化学式为 $C_{24}H_{26}N_2O_3$ 。请画出 **A-H** 的结构。(8%)

$$\begin{array}{c} \text{OH} & \text{1.Ac}_2\text{O}, \text{ then} \\ \text{K}_2\text{CO}_3, \text{ MeOH}, 83\% \\ \text{2.MnO}_2, \text{ THF} \\ 3.\text{Ph}_3\text{P=CH}(\text{OMe}), \text{KO}^t\text{Bu} \\ \text{THF}, 71\% \ (2 \text{ steps}) \\ \end{array} \\ \textbf{C} & \begin{array}{c} \text{NBu}_4\text{F}, \text{THF} \\ \text{then K}_2\text{CO}_3 \\ \text{MeOH}, 91\% \end{array} \\ \textbf{D} & \begin{array}{c} \text{1.8H}_3 \cdot \text{THF} \\ \text{2.BzCI}, \text{NEt}_3 \\ 87\% \ (2 \text{ steps}) \\ \end{array} \\ \textbf{E} & \begin{array}{c} \text{1.9CC}, \\ \text{CH}_2\text{CI}_2, 80\% \\ \text{2.pyrrolidine}, 4 \text{ Å MS} \\ \text{CHCI}_3, 25 \text{ °C}, 3 \text{ h} \\ \text{CHCI}_3, 25 \text{ °C}, 3 \text{ h} \\ \end{array} \\ \textbf{G} & \begin{array}{c} \text{1.MeI}, 80 \text{ °C}, 10 \text{ h} \\ \text{2.NaCNBH}_3, \text{ AcOH}, 25 \text{ °C}, 18 \text{ h} \\ \text{58\%} \ (3 \text{ steps}) \\ \end{array} \\ \textbf{D} & \begin{array}{c} \text{1.6M HCI/CH}_3\text{COCH}_3 \ (1:1) \\ \text{0 to 25°C,2h} \\ \hline \text{2.In, BrCH}_2\text{-C=C-TMS, THF} \\ \text{reflux, 2.5 h, 82\%} \ (2 \text{ steps}) \\ \hline \end{array} \\ \textbf{DMF}, 130 \text{ °C} \\ \text{3 h, 90\%} \\ \hline \begin{array}{c} \text{1.PCC}, \\ \text{CH}_2\text{CI}_2, 80\% \\ \text{2.pyrrolidine}, 4 \text{ Å MS} \\ \text{CHCI}_3, 25 \text{ °C}, 3 \text{ h} \\ \hline \end{array} \\ \textbf{75\%} \ (2 \text{ steps}) \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_2\text{CI}_2, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 8 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_2\text{CI}_2, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 3 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_2\text{CI}_2, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 8 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_2\text{CI}_3, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 3 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_2\text{CI}_3, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 8 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_2\text{CI}_3, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 8 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_2\text{CI}_3, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 8 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_2\text{CI}_3, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 8 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_3\text{CI}_3, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 8 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_2\text{CI}_3, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 8 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_3\text{CI}_3, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 8 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_3\text{CI}_3, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 8 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_3\text{CI}_3, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 8 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_3\text{CI}_3, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 8 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_3\text{CI}_3, 80\% \\ \text{CHCI}_3, 25 \text{ °C}, 8 \text{ h} \\ \hline \end{array} \\ \textbf{D} & \begin{array}{c} \text{CH}_3\text{CI}_3, 80\% \\ \text{CHCI}_3, 25 \text{ °C$$

Ref ([]中数字为题号,输入doi.org/doi号即可查询出版网站)

1.[1]潘卫东,洪鹤,次亚磷酸钠作为还原剂的化学镀镍,《沈阳工业大学学报》,1997年,总第76期

2.[2]Int. J. Pharm. Pharm. Sci. 3 (3) (2011) 30-37. **||DOI NOT FOUND**

3.[2]尤启冬, 药物化学(第四版)

4.[5]王文,碱性溶液中硫代锑酸钠的测定, 《河南化工》, 2001年第4期

5.[6]J. Am. Chem. Soc. 2018, 140, 2076-2079

6.[7] Chem. Commun., 2010,46, 3137-3139

7.[7]Chem. Sci., 2011,2, 1538-1547

8.[7] Chem. Sci., 2014,5, 942-950

9.[8] *Acta Chemica Scandinavica*, **1992**, 46,.278–282.

10.[8]ACS Omega 2022, 7, 20137-20144

11.[9]Beilstein J. Org. Chem. 2018, 14, 1778–1805.

12.[9]Chem. Sci., 2020, 11, 947

13.[10A]*Arkivoc*, **2016**(5), 434–447.

14.[10A] Tetrahedron 2015, 71, 5897–5905.

[Other]Wikipedia、MaterialProject

|| DOI:10.1021/jacs.8b00173

|| DOI:10.1039/b927142b

|| DOI:10.1039/c1sc00151e

||DOI:10.1039/c3sc52799a

||DOI:10.3891/acta.chem.scand.46-0278

||DOI:10.1021/acsomega.2c01965|

||DOI:10.3762/bjoc.14.152

||DOI:10.1039/c9sc05536c

||DOI:10.24820/ark.5550190.p009.810

||DOI:10.1016/j.tet.2015.05.093

说明:本次试卷提供改卷服务,将答题卡扫描为PDF发送给镓酸以外的命题人即可也欢迎各位讨论题目内容并提出建议! 后续视频解析可能会出现在 bilibili 上(关注 SAChO 团队)

命题人名单:

第一题 苏 22 铊酸

第二题 闽 22 高铼酸

第三题 苏 22 钒酸

第四题 闽 22 高铼酸

第五题 闽 22 高铼酸

第六题 苏 22 镓酸

第七题 闽 22 高铼酸

第八题 苏 22 砷酸

第九题 苏 22 砷酸 闽 22 高铼酸

第十题 闽 22 高铼酸

其他相关工作人员 (排名不分先后)

排版与答题卡制作: 苏 22 砷酸

闽 22 高铼酸

粤 23 Li

答案制作: 闽 22 高铼酸

审核: 苏 22 calcium carbonate

苏 23 NaNO4

苏 23 西湖湖主

闽 23 XeF6

等

感谢各位的辛勤工作!

SAChO 命题组预祝大家在 36 届国初中取得理想成绩!