Hilbert Spaces

Metric

A metric is a way of measuring distance between two points.

Definition 2.1. A metric space (\mathcal{M}, d) is a set \mathcal{M} together with a function $d : \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M}$

 \mathbb{R} called a metric satisfying four conditions:

- 1. $d(x,y) \ge 0$ for all $x,y \in \mathcal{M}$.
- 2. d(x,y) = 0 if and only if x = y.
- 3. d(x,y) = d(y,x) for all $x, y \in \mathcal{M}$.
- 4. $d(x,y) \leq d(x,z) + d(z,y)$ for all $x, y, z \in \mathcal{M}$.

ball

Definition 2.2. Let (\mathcal{M}, d) be a metric space. The open r-ball centered at x is the set $B_r(x) = \{y \in \mathcal{M} : d(x,y) < r\}$ for any choice of $x \in \mathcal{M}$ and r > 0. A closed r-ball centered at x is the set $\overline{B}_r(x) = \{y \in \mathcal{M} : d(x,y) \leq r\}$.

norm

Definition 2.3. A (complex) normed linear space $(\mathcal{V}, \|\cdot\|)$ is a (complex) linear space \mathcal{V} together with a function $\|\cdot\|: \mathcal{V} \to \mathbb{C}$ called a norm satisfying the following conditions:

- 1. $||v|| \ge 0$ for all $v \in \mathcal{V}$.
- 2. ||v|| = 0 if and only if v = 0.
- 3. $\|\lambda v\| = |\lambda| \|v\|$ for all $v \in \mathcal{V}$ and $\lambda \in \mathbb{C}$.
- 4. $||v + w|| \le ||v|| + ||w||$ for all $v, w \in \mathcal{V}$.

Inner product

Definition 2.4. A (complex) inner product space $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ is a (complex) linear space together with a function $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{C}$ called an inner product satisfying the following conditions:

- 1. $\langle v, v \rangle \geq 0$ for all $v \in \mathcal{V}$.
- 2. < v, v >= 0 if and only if v = 0.
- 3. $\langle \lambda v, w \rangle = \lambda \langle v, w \rangle$ for all $v, w \in \mathcal{V}$ and $\lambda \in \mathbb{C}$.
- 4. $\langle v, \lambda w \rangle = \overline{\lambda} \langle v, w \rangle$ for all $v, w \in \mathcal{V}$ and $\lambda \in \mathbb{C}$.
- 5. $\langle v, w \rangle = \langle \overline{w, v} \rangle$ for all $v, w \in \mathcal{V}$.
- 6. < v, w + u > = < v, w > + < v, u > for all $u, v, w \in \mathcal{V}$.
- 7. < v + u, w > = < v, w > + < u, w > for all $u, v, w \in \mathcal{V}$.

Hilbert space

Definition 2.5. A Hilbert space is a vector space H with an inner product $\langle f, g \rangle$ such that the norm defined by $||f|| = \sqrt{\langle f, f \rangle}$ turns H into a complete metric space. Complete means that the Cauchy sequences converge.

Fourier Series

Definition 2.7. The Fourier Series for a function f on the interval $[-\pi, \pi]$ is

$$f(t) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left(a_m \cos mt + b_m \sin mt \right)$$

Where

$$a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) cos(mt) dt$$

and

$$b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) sin(mt) dt.$$

Inner Product

Definition 2.8. [Kat76] $L^2(D)$, is the set of complex valued functions f(t) on the real number line with $\int_{-\infty}^{\infty} |f(t)|^2 dt < \infty$. $L^2(D)$ is known as the space of square integrable functions. Its inner product is defined as: $\langle f, g \rangle = \int_{-\infty}^{\infty} f(t) \overline{g(t)} dt$.

Convergence of sequence

Definition 2.9. Let f_n , n = 1, 2, ... and f be complex valued functions on a set D. The sequence (f_n) converges pointwise (on D) to the function f if for every $x \in D$, the sequence $(f_n(x))_{n=1}^{\infty}$ converges to f(x) i.e.

$$f_n(x) \longrightarrow f(x) \ as \ n \to \infty.$$

Uniformly convergence

Definition 2.10. Let f_n , n = 1, 2, ... and f be complex valued functions on a set D. The sequence (f_n) converges uniformly (on D) to the function f if for every $\varepsilon > 0$, the closed ball $\overline{B}_{\varepsilon}(f)$ absorbs the sequence (f_n) . i.e. For all $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n \geq N$ and all $x \in D$, we have:

$$|f_n(x) - f(x)| \le \varepsilon.$$

In mean convergence

Definition 2.11. Convergence in the norm ("in mean" convergence)

Let f_n , n = 1, 2, ..., and f be functions in $L^2(D)$. We say that the sequence (f_n) converges in norm if:

$$\lim_{n\to\infty} ||f_n - f||_2 = 0.$$

In the case of the Fourier series of f, we have that the Fourier series of f converges to f in mean if:

$$\lim_{n \to \infty} \left[\int_{-\pi}^{\pi} \left[f(x) - \left(\frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos(kx) + \sum_{k=1}^{n} b_k \sin(kx) \right) \right]^2 dx \right] = 0.$$

Parallelogram identity

Generalization of the Pythagorean theorem

-> way to determine whether or not the norm is induced by an inner product

Definition 2.12. Let V be a normed linear space and x, y be elements of V. We say that x and y satisfy the parallelogram identity if

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$$
.

Examples of Hilbert Spaces

Euclidean space = real Hilbert space

Example 3.1. The first example of a Hilbert space is \mathbb{R}^n with the inner product, $\langle (x_1, x_2,, x_n), (y_1, y_2, ..., y_n) \rangle = x_1 y_1 + x_2 y_2 + \cdots x_n y_n$. This inner product induces the norm $\|(x_1, x_2, ...x_n)\|$ and the metric $d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \ldots + (x_n - y_n)^2}$.

Complex linear spaces

Example 3.4. Another example of a Hilbert space is $L^2(\mathbb{R})$, as defined in Definition 2.8, is the set of complex valued functions f(t) on the real number line with $\int_{-\infty}^{\infty} |f(t)|^2 dt < \infty$ (that is, f is square integrable). $L^2(\mathbb{R})$ is known as the space of square integrable functions. Its inner product is defined as f is f in f

Types of Convergence

When does a Fourier series converge to its function? If it does converge, what type of convergence?

Uniform and Pointwise convergence

Proposition 4.1. Let D be a subset of \mathbb{R} , and $f_n, n = 1, 2, ...$ and f be complex valued functions on D. If $f_n \to f$ uniformly, then $f_n \to f$ pointwise.

Mean Convergence

Proposition 4.2. Let $f_n, f \in L^2(D)$. If $f_n \to f$ uniformly, then $f_n \to f$ in mean.

Definition 4.1. [PZ97] The space E is the space of piecewise continuous functions on the interval $[-\pi, \pi]$.

Definition 4.2. [PZ97] The space E' is the space of of all functions $f(x) \in E$ such that the right-hand derivative, $D_+f(x)$, exists for all $-\pi \le x < \pi$ and the left-hand derivative, $D_-f(x)$, exists for all $-\pi \le x < \pi$.

Every continuous function is a piecewise continuous function i.e belonging to E. Every function which is differentiable on $[-\pi, \pi]$ belongs to E'. All functions in E belong to $L^2([-\pi, \pi])$

Theorem 4.3. [PZ97] If $f \in E'$ and

$$f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k cos(kx) + b_k sin(kx))$$

then the series converges pointwise to

$$\frac{f(x_+)+f(x_-)}{2}.$$

That is

$$S_N(x) \to \frac{f(x_+) + f(x_-)}{2} \text{ as } N \to \infty.$$

In particular, we have

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$$

at every point $x \in [-\pi, \pi]$ where f(x) is continuous.

Example 4.4. Given the function:

$$f(x) = \begin{cases} 1 & : -\pi \le x < 0 \\ 0 & : 0 \le x < \pi \end{cases}$$

Show that its Fourier series is:

$$\frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx)$$

Recall the Fourier series is given by:

$$f(t) = \frac{a_0}{2} + \sum_{m=1}^{\infty} (a_m cos(mt) + b_m sin(mt))$$

Proof

The Fourier coefficients of f for $k \geq 1$ are given by:

$$a_k = \frac{\langle f, \cos(kt) \rangle}{\langle \cos(kt), \cos(kt) \rangle}$$
 and $b_k = \frac{\langle f, \sin(kt) \rangle}{\langle \sin(kt), \sin(kt) \rangle}$

where $\langle cos(kt), cos(kt) \rangle = \pi$ and $\langle sin(kt), sin(kt) \rangle = \pi$

To see why this is true, let k = 1 and therefore

$$\langle cost, cost \rangle = \int_{-\pi}^{\pi} cos^2 t dt$$

Since, $cos^2t = \frac{1}{2}cos(2t) + \frac{1}{2}$, we have,

$$\int_{-\pi}^{\pi} \frac{1}{2} cos(2t) + \frac{1}{2} = \left[\frac{1}{4} sin(2t) + \frac{1}{2}t \right]_{-\pi}^{\pi} = \pi$$

Similarly, this is also true for $\langle sin(kt), sin(kt) \rangle$.

When k = 0,

$$\frac{a_0}{2} = \frac{\langle f, \cos 0 \rangle}{\langle \cos 0, \cos 0 \rangle} = \frac{\langle f, 1 \rangle}{\langle 1, 1 \rangle} = \frac{\pi}{2\pi} = \frac{1}{2}$$

Therefore the first term in the Fourier series is $\frac{a_0}{2} = \frac{1}{2}$.

When $k \geq 1$, then,

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) cos(kt) dt$$
 and $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) sin(kt) dt$

For $k \geq 1$, we have

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{0} f(t)cos(kt)dt + \frac{1}{\pi} \int_{0}^{\pi} f(t)cos(kt)dt$$
$$= \frac{1}{\pi} \int_{-\pi}^{0} cos(kt)dt + \frac{1}{\pi} \int_{0}^{\pi} 0dt$$
$$= \left[\frac{1}{kt}sin(kt)\right]_{-\pi}^{0} + 0 = 0$$

Thus, $a_k = 0$ for all $k \ge 1$ since $sin(k\pi) = 0$

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{0} f(t) \sin(kt) dt + \frac{1}{\pi} \int_{0}^{\pi} f(t) \sin(kt) dt$$
$$= \frac{1}{-\pi} \int_{-\pi}^{0} \sin(kt) dt + \frac{1}{\pi} \int_{0}^{\pi} 0 dt$$
$$= \left[\frac{-1}{k\pi} \cos(kt) \right]_{-\pi}^{0}$$

 $= \frac{-1}{k\pi} \left[\cos 0 + \cos(k\pi) \right] = \frac{-1}{k\pi} \left[1 \pm \cos(k\pi) \right]$ depending on the value of k.

$$\cos(k\pi) = \begin{cases} -1 & : \text{k is even} \\ 1 & : \text{k is odd} \end{cases}$$

When k is odd, $b_k = 0$. When k is even, then b_k is the series:

$$\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n} sin(nx).$$

Hence, the Fourier Series for f(x) is:

$$\frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx)$$

If we assume this series converges in mean to f, we should have:

$$\lim_{n \to \infty} \left[\int_{-\pi}^{\pi} \left[f(x) - \left(\frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx) \right) \right]^2 dx \right] = 0$$

We will first evaluate:

$$\left| f(x) - \left(\frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx) \right) \right|^2 = \left| \left\langle f(x) - \left(\frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx) \right), f(x) - \left(\frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx) \right) \right\rangle$$

$$= \left\langle f, f \right\rangle - 2 \left\langle f, \frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx) \right\rangle$$

$$+ \left\langle \frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx), \frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx) \right\rangle$$

$$= \langle f, f \rangle - \left\langle f, 1 + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx) \right\rangle$$

$$+ \left\langle \frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx), \frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx) \right\rangle =$$

$$\langle f, f \rangle - \langle f, 1 \rangle - \left\langle f, \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx) \right\rangle + \int_{-\pi}^{\pi} \left| \frac{1}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx) \right|^2 dx$$

$$= -\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n} \int_{-\pi}^{0} sin(nx) dx$$

$$+ \int_{-\pi}^{\pi} \left(\frac{1}{4} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{n} sin(nx) + \frac{1}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{(-1)^n - 1}{n} \right)^2 sin^2(nx) \right) dx$$

$$(\text{Since } \langle f, f \rangle = \langle f, 1 \rangle = \pi.)$$

$$= -\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n} \left[\frac{-1}{n} cos(nx) \right]_{-\pi}^{0} + \frac{1}{4} (2\pi) + \frac{1}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{(-1)^n - 1}{n} \right)^2 \int_{-\pi}^{\pi} sin^2(nx) dx$$

(Since $\int_{-\pi}^{\pi} \sin(nx) dx = 0$).

$$= \frac{-2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n} \left(\frac{-1}{n} + \frac{1}{n} (-1)^n \right) + \frac{\pi}{2} + \frac{1}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{-1)^n - 1}{n} \right)^2 \cdot \pi$$

$$= \frac{-2}{\pi} \sum_{n=1}^{\infty} \left(\frac{2}{2n+1} \right)^2 + \frac{\pi}{2} + \frac{1}{\pi} \sum_{n=1}^{\infty} \left(\frac{2}{2n+1} \right)^2$$

Thus,

$$\frac{\pi}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \left(\frac{2}{2n+1} \right)^2 = 0$$

And,

$$\frac{\pi}{2} = \frac{4}{\pi} \sum_{n=1}^{\infty} \left(\frac{1}{2n+1} \right)^2$$

$$\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \left(\frac{1}{2n+1}\right)^2$$

Hence, the series converges in mean.

The Projection Theorem

Theorem 5.2. (The Projection Theorem) [RS80] Let \mathcal{H} be a Hilbert space, \mathcal{M} a closed subspace. Then every $x \in \mathcal{M}$ can be uniquely written x = z + w where $z \in \mathcal{M}$ and $w \in \mathcal{M}^{\perp}$

<u>Proof.</u> Let x be in \mathcal{H} . Then by the lemma, there is a unique element $z \in \mathcal{M}$ closest to x. Define w = x - z, then we have x = z + w. Let $y \in \mathcal{M}$ and $t \in \mathbb{R}$. If d = ||x - z||, then

$$d^{2} \le ||x - (z + ty)||^{2} = ||w - ty||^{2} = d^{2} - 2tRe(w, y) + t^{2}||y||^{2}$$

Thus, $-2tRe(w,y) + t^2 ||y||^2 \ge 0$ for all t, and Re(w,y) = 0. Similarly, substituting ti instead of t produces Im(w,y) = 0. Hence, $w \in \mathcal{M}^{\perp}$.

To show uniqueness, we need to show that we have a unique z and w. Choose $z_1 \in \mathcal{M}$ and $w_1 \in \mathcal{M}^{\perp}$. We have $x = z + w = z_1 + w_1$. Thus, $x = z - z_1 = w_1 - w$. Since $z - z_1 \in \mathcal{M}$ and $w_1 - w \in \mathcal{M}^{\perp}$, the only element in both \mathcal{M} and \mathcal{M}^{\perp} is 0. Hence, $z - z_1 = 0$ and $w_1 - w = 0$, so $z = z_1$ and $w = w_1$.

The projection theorem contends that the closest function of in the span of the orthogonal set $\{f_k\}$ is the orthogonal projection onto the space spanned by this set

Convergence of the Fourier Series in the L^2-norm

Theorem 7.1. [Sax01] Assume that

- 1. $\{d_k\}_{k=1}^{\infty}$ is a sequence of real numbers such that $\sum_{k=1}^{\infty} d_k^2$ converges, and
- 2. V is a Hilbert space with complete orthonormal sequence $\{f_k\}_{k=1}^{\infty}$.

Then there is an element $f \in \mathcal{V}$ whose Fourier coefficients with respect to $\{f_k\}_{k=1}^{\infty}$ are the numbers d_k and

$$||f||^2 = \sum_{k=1}^{\infty} d_k^2$$

Proof. Define $s_n = \sum_{k=1}^n d_k f_k$. For m > n, the square of the distance between s_n and s_m is as follows:

$$||s_n - s_m||^2 = \sum_{j=n+1}^m \sum_{k=n+1}^m d_j d_k \langle f_j, f_k \rangle = \sum_{k=n+1}^m d_k^2.$$

This is true since when j = k, $\langle f_j, f_k \rangle = 1$. Hence, $s_n = \sum_{k=1}^n d_k f_k$ is Cauchy. By assumption, if $f \in \mathcal{V}$, which is a Hilbert space, then there is an $f \in \mathcal{V}$ such that

$$\lim_{n\to\infty} ||s_n - f|| = 0.$$

Therefore, $f = \sum_{k=1}^{\infty} d_k f_k$ and $d_k = \langle f, f_k \rangle$. Since Parseval's theorem states $\sum_{k=1}^{\infty} |\langle f, f_k \rangle|^2 = ||f||^2$, it follows that $||f||^2 = \sum_{k=1}^{\infty} d_k^2$.

The sum of squares of the Fourier coefficients (d_k) is finite.

Convergence of the Fourier Series in the L^2-norm

Theorem 7.2. [Sax01] For an orthonormal sequence $\{f_k\}_{k=1}^{\infty}$ in $L^2([-\pi, \pi], m)$, the following are equivalent:

- 1. $\{f_k\}_{k=1}^{\infty}$ is a complete orthonormal sequence.
- 2. For every $f \in L^2$ and $\epsilon > 0$ there is a finite linear combination

$$g = \sum_{k=1}^{n} d_k f_k$$

such that $||f - g|| \le \epsilon$

3. If the Fourier coefficients with respect to $\{f_k\}_{k=1}^{\infty}$ of a function in L^2 are all 0, then the function is equal to 0 almost everywhere.

Relationship between Fourier series and Hilbert spaces

The space of periodic L^2 functions (say with period 2π) forms a Hilbert space. (Here L^2 means that $\int_0^{2\pi} f(x)^2 dx$ exists.)

The inner product of two functions is given by $\int_0^{2\pi} f(x)g(x)dx$. (Here and above I am thinking of real-valued functions; for complex valued functions the formulas are similar.)

Now we consider two facts, one about L^2 -functions, and one about Hilbert space

- Every L^2 -function can be expanded as a Fourier series.
- Every Hilbert space admits an orthonormal basis, and each vector in the Hilbert space can be
 expanded as a series in terms of this orthonormal basis.

It turns out that the first of these facts is a special case of the second: we can interpret the trigonometric functions as an orthonormal basis of the space of L^2 -functions, and then the Fourier expansion of an arbitrary L^2 -function is the same thing as its Hilbert space-theoretic expansion in terms of the orthonormal basis.

References

- [1] Harris, Terri Joan. "HILBERT SPACES AND FOURIER SERIES." (2015)
- [2] Relationship of Fourier series and Hilbert spaces?

https://math.stackexchange.com/questions/184390/relationship-of-fourier-series-and-hilbert-spaces