## محدرسة دلهس الخاصة ذ.م.م LHI PRIVATE SCHOOL L.L.C.

Affiliated to C.B.S.E., DELHI

(Approved & Recognized By Ministry of Education - United Arab Emirates)

16-NOV-2021 041/1/6

### PREBOARD EXAMINATION (2021-22) TERM I -SET A

**Subject: MATHEMATICS** Max. Marks: 40 Grade: 12 Time: 90 minutes

Name: **Section: Roll No:** 

### General Instructions:

This question paper contains three sections – A, B and C. Each part is compulsory.
 Section - A has 20 MCQs, attempt any 16 out of 20.

Section - B has 20 MCQs, attempt any 16 out of 20
 Section - C has 10 MCQs, attempt any 8 out of 10.

5. There is no negative marking.6. All questions carry equal marks.

**SECTION-A** 

25 M

1. Let  $f: R \to R$  defined as f(x) = 3x, choose the correct answer

> f is one- one onto a.

b f is many one onto

f is one -one but not onto

d. f is neither one – one nor onto

2. Objective function of an LPP is

> A constraint a.

b A function to be optimized

A relation between the variables c.

None of these d.

3. Which of the following is the principal value branch of  $\cos^{-1} x$ 

> $\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$ a.

 $\left[0,\frac{\pi}{2}\right]$ 

c.  $[0,\pi]$  d.  $(0,\pi) - \{\frac{\pi}{2}\}$ 

4. If  $\begin{bmatrix} 2x + y & 4x \\ 5x - 7 & 4x \end{bmatrix} = \begin{bmatrix} 7 & 7y - 13 \\ y & x + 6 \end{bmatrix}$  then the value of x and y

x = 3, y = 1a.

x = 2, y = 3b.

x = 2, y = 4

d. x = 3, y = 3

5. Let R be the relation defined on the set of N natural numbers by the rule xRy iff x + 2y = 8, then the domain of R is

a. {2,4,8} b. {2,4,6}

c. { 2,4,6,8} d. { 1,2,3,4}

What is the value of  $Sec^2$  (tan<sup>-1</sup>2) 6.

a.

b. 4

5 c.

d. 3

```
7.
       Which of the following is true for the function f(x) = 9x - 5
               f(x) is strictly increasing on R
                                                           b.
                                                                 f(x) is strictly decreasing on R
       a.
               Both(a) and (b) are false
                                                                 f(x) is decreasing on R
                                                           d.
```

8. If 
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 1 \\ 5 & 6 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 1 & 2 \\ 6 & 4 \\ 7 & 3 \end{bmatrix}$ , then  $(A - B)^T$ 

a. 
$$\begin{bmatrix} 0 & 0 \\ -2 & -3 \\ -2 & 3 \end{bmatrix}$$
 b.  $\begin{bmatrix} 0 & -2 & -2 \\ 0 & -3 & 3 \end{bmatrix}$ 

None of these

c. 
$$\begin{bmatrix} -2 & 3 & -3 \\ 0 & 0 & 2 \end{bmatrix}$$
 d. None of 
$$Consider the matrices A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & -2 & 1 \\ -1 & 0 & 1 \end{bmatrix} and B = \begin{bmatrix} 1 & -2 \\ 2 & 1 \\ 4 & 3 \end{bmatrix}$$

and  $C = \begin{bmatrix} 1 & 2 & 6 \end{bmatrix}$  then which of the following is not defined

10. If 
$$\begin{vmatrix} 2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1 \end{vmatrix} + 3 = 0$$
, then the value of  $x$ 

11. 
$$f(x) = x + |x|$$
 is continuous for  
a.  $x \in (-\infty, \infty)$  b.  $x \in (-\infty, \infty) - \{0\}$ 

c. Only 
$$x > 0$$
 d. No value of x

12. If 
$$\Delta = \begin{bmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{bmatrix}$$
, then the minor  $M_{31}$  is

a. 
$$-c(a^2-b^2)$$
 b.  $c(b^2-a^2)$ 

c. 
$$c(b^2 + a^2)$$
 d.  $c(a^2 - b^2)$ 

13. For the curve 
$$\sqrt{x} + \sqrt{y} = 1$$
 find  $\frac{dy}{dx}$  at  $\left(\frac{1}{4}, \frac{1}{4}\right)$ 

14. The function 
$$f: Z \to Z$$
 defined by  $f(x) = x^2$   
a. Neither injective nor surjective b. Injective

15. If 
$$y = log(cos e^x) then \frac{dy}{dx} is$$

a. 
$$\cos e^{x-1}$$
 b.  $e^{-x}\cos e^x$  c.  $e^x\sin e^x$  d.  $-e^x\tan e^x$ 

16 The corner points of the feasible region of a LPP are (0,0), (0,8), (0,8), (2,7), (5,4) and (6,0)The maximum profit Z = 3x + 2y occurs at the point

b. (2, 7)

c. 
$$(5, 4)$$

d. (6,0)

Derivative of  $\sqrt{\tan \sqrt{x}}$  with respect to x is

a. 
$$\frac{\sec^2\sqrt{x}}{4\sqrt{x}\tan\sqrt{x}}$$

b. 
$$\frac{\sec^2\sqrt{x}}{2\sqrt{x}\tan\sqrt{x}}$$

c. 
$$\frac{secx}{4\sqrt{xtan\sqrt{x}}}$$

d. None of these

The least value of the function  $f(x) = ax + \underline{b}$  ( a > 0, b > 0, x > 0)

a. 
$$2\sqrt{ab}$$

b. 
$$\sqrt{ab}$$

c. 
$$\sqrt{\frac{a}{h}}$$

1. 
$$2\sqrt{\frac{a}{b}}$$

19 The absolute maximum value of a function f given by

$$f(x) = 12 x^{4/3} - 6 x^{1/3}$$
 whre  $x \in [-1,1]$ 

The tangent to the curve  $y = e^{2x}$  at the point (0,1) meets x- axis at

a. 
$$(0,1)$$

b. 
$$(-1/2,0)$$

c. 
$$(2,0)$$

### Section B

In this section, attempt any 16 questions out of the questions 21 - 40.

### Each Question is of 1 mark weightage

Let N be the set of natural numbers and the function  $f: N \to N$  be defined by f(x) = 2x + 3 for evry  $x \in N$ . Then f is

a. Surjective

b. Injective

c. Bijective

d. None of these

If x is real, then the minimum value of  $x^2 - 8x + 17$  is

23 If  $y = \sin^{-1}x + \sin^{-1}\sqrt{1 - x^2}$ , x < 1 then

$$\frac{dy}{dx}$$
 =

Find x if  $A = \begin{bmatrix} 1 & 2 & x \\ 1 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}$  is singular

Which of the following is correct for the function  $f(x) = x^3 \sin x$ 

It has local maximum at x = 0b. It has local minimum at x = 0a. It is neither maximum nor minimum at It has maximum value as 1 d. c. The angle between the curve  $y^2 = x$  and  $x^2 = y$  at (1,1) is a.  $tan^{-1}\frac{4}{3}$ The equation of normal to the curve  $3x^2 - y^2 = 8$  which is parallel to the line x + 3y = 8, is 3x - y = 83x+y + 8 = 0a. d. x + 3y = 0 $3x + 3y \pm 8 = 0$ It is given that at x = 1 the function  $f(x) = x^4 - 62x^2 + ax + 9$  attains its maximum value, on the interval [0, 2]..Find the value of a a. 20 -120 b. 120 d 52 The normal to the curve  $x^2 = 4$  y passing (1,2) is x + y = 3b. x-y = 3x + y = 1x-y=1d. The greatest integer function  $f: R \to R$  is given by f(x) = [x] where [x] denotes the greatest integer less than or equal to x a. Onto One-one b. Both one -one and onto d. Neither one-one nor onto Find the value of  $Sin \left[ \frac{\pi}{3} - sin^{-1} \left( \frac{-1}{2} \right) \right]$ 1/3 b. 1/4 c. d 1 If  $f(x) = \begin{cases} mx + 1, for \ x < \frac{\pi}{2} \\ sinx + n, for \ x > \frac{\pi}{2} \end{cases}$ is continues at  $x = \frac{\pi}{2}$  then m=1, n=0c.  $n = \frac{m\pi}{2}$ If  $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$  then det(adjA) = $a^{27}$ a.

26

27

28

29

30

31

32

33

34

1/2

2

a.

c.

d.

None of these

Derivative of cot  $^{-1}$   $\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right]$ ,  $0 < x < \frac{\pi}{2}$ 

Differentiate 
$$\frac{x^3}{1-x^3}$$
 with respect to  $x^3$ 

a. 
$$\frac{3x^2}{(1-x^3)^2}$$

b. 
$$3x^2$$

$$c. \qquad \frac{1}{(1-x^3)^2}$$

d 
$$\frac{1}{(1-x^3)^3}$$

If 
$$f(x) = x^x$$
 then find the value of  $\frac{d^2y}{dx^2}$ 

a. 
$$x^{x}\left\{(1+\log x)^{2}-\frac{1}{x}\right\}$$

b. 
$$x^x \left\{ (1 + log x)^2 + \frac{1}{x} \right\}$$

$$d. \qquad x^x \left\{ (1 - \log x)^2 - \frac{1}{x} \right\}$$

37 If A and B are two matrices such that 
$$AB = B$$
 and  $BA = A$ , then  $A^2 + B^2 =$ 

a. 
$$A + A$$

c. 
$$A'A$$

d. 
$$A - A'$$

If 
$$\alpha = \tan^{-1}\left\{\tan\left(\frac{5\pi}{4}\right)\right\}$$
 and  $\beta = \tan^{-1}\left\{-\tan\left(\frac{2\pi}{3}\right)\right\}$  then

a. 
$$4\alpha = 3 \beta$$
  
c.  $\alpha = \beta$ 

b. 
$$3\alpha = 4\beta$$

c. 
$$\alpha = \beta$$

b. 
$$3\alpha = 4 \beta$$
  
d. None of these

40 The value of 
$$\sin^{-1}\left[-\left(\frac{1}{2}\right)\right] + \cos^{-1}\left[-\left(\frac{1}{2}\right)\right] + \cot^{-1}\left(-\sqrt{3}\right) + \csc^{-1}\left(\sqrt{2}\right) + \tan^{-1}(-1)$$

a. 
$$\frac{5\pi}{3}$$
 c.  $\pi$ 

b. 
$$\frac{4\pi}{3}$$

b. 
$$\frac{4\pi}{3}$$
d. 
$$\frac{-4\pi}{3}$$

In this section, attempt any 8 questions out of the questions.

### Each Question is of 1 mark weightage. Questions 46-50 are based on case study

### 41 Find the non zero values of x, satisfying the matrix equation

$$x\begin{bmatrix} 2x & 2\\ 3 & x \end{bmatrix} + 2\begin{bmatrix} 8 & 5x\\ 4 & 4x \end{bmatrix} = 2\begin{bmatrix} x^2 + 8 & 24\\ 10 & 6x \end{bmatrix}$$

a. 
$$x = 2$$

b. 
$$x = 4$$

c. 
$$x = 7$$

The function  $f(x) = \frac{4-x^2}{4x-x^3}$  is

- a. Discontinuous at only one point
- a. Discontinuous at only one point
- c. Discontinuous at exactly three points
- The value of  $\tan \left[ \frac{1}{2} \cos^{-1} \left( \frac{\sqrt{5}}{3} \right) \right]$ 
  - a.  $\frac{3+\sqrt{5}}{2}$
  - $\frac{c.}{2}$

- b. Discontinuous at exactly two points
- d. None of these

# b. $\frac{3-\sqrt{5}}{2}$

 $d. \qquad \frac{-3 - \sqrt{5}}{2}$ 

44



The feasible region for an LPP is shown in the figure. Then the maximum value of Z = 0.7x + y

a. 45

b. 40

c. 50

d. 41

b.

d.

Which of the following is an equivalence relation

- a.  $R = \{ (a,b); 2 \text{ divides a-b, a, b belongs to } Z \}$
- c.  $R = \{ (x,y) : y = x+5 \text{ and } x < 4, x, y \text{ belongs to } N \}$
- $R = \{(a,b): a \le b, where \ a,b \in R\}$

 $R = \{(a, b): 3a - b = 0\}$ Where R is defined on the set  $\{1, 2, 3, \dots 14\}$ 

## **Case Study**

Ram is stunt driver. He is showing stunt by driving in a globe of metallic sphere .One day he planned to install a metallic conical shape inside the metallic sphere .He was thinking about a right circular cone of maximum volume that can be inscribed in a sphere of radius r. Based on the above information answer the following questions



46 What is the volume of the cone V

a. 
$$\frac{1}{3}\pi(-h^3+2h^2r)$$

b. 
$$\frac{1}{2}\pi(-h^3 + 2h^2r)$$

a. 
$$\frac{1}{3}\pi(-h^3 + 2h^2r)$$
  
c.  $\frac{1}{4}\pi(-h^3 + 2h^2r)$ 

b. 
$$\frac{1}{2}\pi(-h^3 + 2h^2r)$$
  
d.  $\frac{1}{5}\pi(-h^3 + 2h^2r)$ 

47

a. 
$$\frac{1}{2}\pi(-3h^2+4hr)$$

b. 
$$\frac{1}{5}\pi(-3h^2+4hr)$$

c. 
$$\frac{1}{4}\pi(-3h^2+4hr)$$

d. 
$$\frac{1}{3}\pi(-3h^2+4hr)$$

48 What is the value of h for which the volume is maximum

b. 
$$\frac{4r}{3}$$

c. 
$$\frac{r}{2}$$

What is the value of  $\frac{d^2v}{dh^2}$  in terms of r 49

a. 
$$\frac{-4\pi r^2}{3}$$

b. 
$$-4\pi r^3$$

a. 
$$\frac{-4\pi r^2}{3}$$
c. 
$$\frac{-4\pi r}{3}$$

d. 
$$\frac{-4\pi r}{3}$$

50 What is the value of OD

c. 
$$r-h/2$$

d. 
$$h-r/2$$

\*\*\*