DIGISIM-PS-1

Combinational Approach

<u>Input</u>

Permutation

- ightarrow In this part multiplexer is used for Swapping purpose of R4 and L4 In decryption .
- ightarrow In encryption the Sel bit will be 0 and in Decryption Sel bit will be 1 .
- \rightarrow Then the output going forward with permutations given in PS .

Permuted text data

ightharpoonup This is four step xor of left four bits with the output of function of right four bit and 6 bit generated round Key .

This is combinational circuit for the function in between LSB 4 bits and 6 bit round key .

 \rightarrow This is four step round key generation

- ightarrowThis part of the circuit is for multiplexing the 4 round keys according to decryption and encryption .
- → Bit 0 for encryption and bit 1 for decryption

 \rightarrow Output with permutations

Sequential Approach

 \rightarrow The Input for both sequential and combinational circuit is same .

 \rightarrow This part is for the function between the 6 bit round key and 4 bit LSB .

→This is for clk . And for running the sequential circuit we have to toggle rising 3 times after running the simulation

 \rightarrow This part is for round key generating

ightarrow This part is for to get every round of 8 bit text data

 \rightarrow This is output after three clock cycles

 \rightarrow This part is for generating control signals to get desired shifting of bits

 \rightarrow This is a kind of Barrel shifter which shifts differently in different cycles .