Name:			Period:	
Instructor:	Mr.	Rodriguez	Course:	Conceptual Physics A

Term: Winter 2024-25

Midterm Exam Review

Be sure to show your work, include units when appropriate, and box your answers.

Learning Standard 1		
Scientific Measurement and Estimation	Score: /10	Grade:

Topics include:

- The metric system
- Scientific notation
- Significant figures
- Averages
- Percent Error

Prefix	Symbol	Meaning	Expanded Form	Scientific Form		
giga-	G	one billion	1,000,000,000	$\times 10^9$		
mega-	${ m M}$	one million	1,000,000	$\times 10^6$		
kilo-	k	one thousand	1,000	$\times 10^3$		
hecto-	h	one hundred	100	$\times 10^2$		
_	-	one	1	$\times 10^0$		
centi-	\mathbf{c}	one hundredth	0.01	$\times 10^{-2}$		
milli-	\mathbf{m}	one thousandth	0.001	$\times 10^{-3}$		
micro-	μ	one millionth	0.000001	$\times 10^{-6}$		
nano-	n	one billionth	0.000000001	$\times 10^{-9}$		

Table 1: Metric Prefixes Conversion Chart

LS 1 Sample Questions

1.	In	your	own	words,	provide	at	least	\mathbf{two}	reasons	as	to	why	the	metric	system	is	useful	to
	scie	entist	s.															

Ω	D1	• . 1		_		•		.1	11 1
2.	Place	either	a < 0	>,	or =	sign	$^{\mathrm{1n}}$	the	blank.

- (a) 1 kg _____ 10 g
- (b) 500 g _____ 1 kg
- (c) 2 m _____ 200 cm
- (d) 1 mm _____ 0.1 m
- (e) 1 L _____ 1000 mL
- (f) 1 cm _____ 10 mm
- 3. Fill in the blank with the correct number.
 - (a) $1 \text{ kg} = \underline{\hspace{1cm}} g$
 - (b) $5 \text{ kg} = \underline{\hspace{1cm}} \text{g}$
 - (c) $250 \text{ g} = \underline{\qquad} \text{kg}$
 - (d) $1 \text{ m} = \underline{\hspace{1cm}} \text{cm}$
 - (e) $1 \text{ km} = \underline{\hspace{1cm}} \text{m}$
 - (f) $15 \text{ mm} = \underline{\qquad} \text{ cm}$
- 4. Express each of the following in scientific notation:
 - (a) 500 =_____
 - (b) 0.00000012 =
 - (c) 7500 =_____
 - (d) 0.02 =_____
 - (e) 123000 =
- 5. Express each of the following in decimal (expanded) form:
 - (a) $4.56 \times 10^2 =$
 - (b) $7.5 \times 10^{-3} =$
 - (c) $3.14 \times 10^5 =$ _____
 - (d) $9.8 \times 10^{-8} =$
 - (e) $1.2 \times 10^1 =$ _____
 - (f) $8.25 \times 10^3 =$

Learning Standard 2

Linear Motion Score: ______/10 Grade:

Topics include:

- Position (x), time (t), displacement (Δx) , speed $(v = \frac{\Delta x}{\Delta t})$, velocity (\mathbf{v}) , and acceleration $(a = \frac{\Delta v}{\Delta t})$.
- Interpreting ticker tape data.
- Interpreting graphs of motion (position vs. time, speed vs. time).
- Converting frequency in Hertz to periods of time in seconds or microseconds.
- Free fall due to gravity $(g = 9.8 \,\mathrm{m/s^2})$
- Kinematics equations:

1D Kinematics Equations

$$x(t) = \frac{1}{2}at^2 \tag{po}$$

(position as a function of time)

$$v(t) = at$$

(velocity as a function of time)

LS 2 Sample Questions

- 6. Speed represents a change in an object's ______ divided by its change .
- 7. Acceleration represents a change in an object's ______ divided by its change in _____.
- 8. The difference between speed and velocity is that speed is a _____ quantity whereas velocity is a _____ quantity.

						. 0
9	You drop your	phone from a	height of 10 m	Take the acceleration	of gravity to be	$a = 10 \mathrm{m/s^2}$
σ .	Tou drop your	phone nom a	indigite of 10 iii.	Take the acceleration	of gravity to be	q - 10 m/s

- (a) How long does it take to hit the floor?
- (b) How fast is it going once it hits the floor?

- 10. The above image shows samples from four different ticker tape trials of an object's motion. The starting point of each is on the left-hand side. Fill in the blank below:
 - (a) Sample _____ represents an object accelerating.
 - (b) Sample _____ represents an object decelerating.
 - (c) Samples _____ and ____ represent an object moving with constant speed.
 - (d) Of the samples that represent constant speed, sample _____ represents an object moving with a higher speed than sample _____.

15.	Newton's Third Law says that every	has an equal and opposite
16.	Give two examples of action-reaction	pairs.
17.	Is your mass the same on Earth as swhy not?	it is on the Moon? What about your weight ? Why or
18.	A book is sitting on your desk. It hat to be $g = 10 \mathrm{m/s^2}$. (a) What is the weight of the book	s a mass of $m=0.5\mathrm{kg}$. Take the acceleration of gravity
	(b) What is the normal force (\mathbf{F}_N from moving downwards?) that must be provided by the table to keep the book
	• •	friction between the book and the surface of the table ould you need to push with to get the book to begin to
	(d) Once the book is moving, you fine speed. Why?	d that you require less force to push it along at a constant

Learning Standard 4	
Momentum	Score:/10 Grade:
Topics include:	
• Momentum ($\mathbf{p} = m\mathbf{v}$)	
• The law of conservation of momentum	1
• Elastic and inelastic collisions	
• Solving for unknown masses and veloci	cities in collision problems
LS 4 Sample Problems	
1. Define momentum in your own words a	and explain what factors influence it.
2. Write the equation for momentum (p) momentum?	and define each variable. What are the units of

4. A 1,500 kg car is traveling at 15 m/s. What is its momentum? Show your calculations and

5. A 2 kg object moving at 3 m/s collides with a stationary 4 kg object. After the collision, the objects stick together. What is their final velocity? (Assume a perfectly inelastic collision

3. State the Law of Conservation of Momentum.

and conservation of momentum.)

include units.

6. Describe the difference between elastic and inelastic collisions. Provide a real-world example of each.
7. A 3 kg ball moving at 6 m/s strikes a 1 kg ball at rest. After the collision, the 3 kg ball moves at 2 m/s. What is the velocity of the 1 kg ball after the collision? (Assume the collision is elastic.)
8. Two objects of different masses have the same momentum. What can you conclude about their velocities? Explain your reasoning.