Essay for the specialised integration theory course, VT23

The Pfeffer integral

Theo Koppenhöfer

Lund

May 26, 2023

Introduction

Given a suitable set $A \subseteq \mathbb{R}^n$ the divergence theorem states that

$$\int_{A} \operatorname{Div} w \, d\mathscr{L}^{n} = \int_{\partial A} w \cdot v_{A} \, d\mathscr{H}^{n-1}$$

holds for each $w \in C^1(\mathbb{R}^n; \mathbb{R}^n)$. Here $v_A : \partial A \to S^{n-1} \subseteq \mathbb{R}^n$ is the exteriour unit normal and

$$\mathrm{Div}\,w=\sum_{i}\partial_{i}w_{i}$$

is the divergence. One of the major motivations of the Pfeffer integral is to generalise the integral on the Lebesgue-integral on the left-hand-side in such a way that the divergence theorem holds for *w* with fewer regularity conditions.

Definition of the integral

Definition 1 (essential interiour, exteriour, boundary). We define the essential interiour $\operatorname{int}_* A$ to be the set of density points of A. The essential exteriour $\operatorname{ext}_* A = \operatorname{int}_* A^{\complement}$ is the essential interiour of the complement of A. The essential boundary is given by

$$\partial_* A = \mathbb{R}^n \setminus (\operatorname{int}_* A \cup \operatorname{ext}_* A)$$
.

Definition 2 (relative perimiter). We define the relative perimiter of a measurable set E to be

$$P(E, in A) = \mathcal{H}^{n-1}(\partial_* E \cap int_* A)$$
.

where \mathcal{H}^{n-1} denotes the (n-1)-dimensional Hausdorff-measure. We write $P(E) = P(E, \text{in } \mathbb{R}^n)$.

Definition 3 (BV-sets). A measurable set $A \subseteq \mathbb{R}^n$ is called a BV-set if $|A| + P(A) < \infty$. We denote by \mathscr{BV} the set of all BV-sets and by \mathscr{BV}_c the set of all bounded BV-sets.

The reason for looking at BV-sets is the following. Given a BV-set A there exists an exteriour normal $v_A: \partial_* A \to S^{n-1} \subseteq \mathbb{R}^n$ which is unique up to \mathscr{H}^{n-1} -nullsets.

Definition 4 (Regularity of BVc-sets). For $E \in \mathcal{BV}_c$ we define the regularity

$$r(E) = \begin{cases} \frac{|E|}{\operatorname{diam}(E)P(E)} & \text{if } |E| > 0\\ 0 & \text{else} \end{cases}$$

Definition 5 (isoparametric). We call $E \in \mathcal{BV}_c$ ε -isoparametric if for all $T \in \mathcal{BV}$

$$\min\{P(E\cap T),P(E\setminus T)\}\leq \frac{P(T,\operatorname{in} E)}{\varepsilon}\,.$$

We now show that cubes are in fact ε -isoparametric for some small ε which only depends on the dimension n.

Proposition 6 (Cubes are ε -isoparametric). Every cube $C \subseteq \mathbb{R}^n$ is ε -isoparametric for $\varepsilon < \kappa$ for some κ which depends only on the dimension.

Proof. Let
$$T \in \mathscr{BV}$$

Definition 7 (Gauge). We call a set thin if it is σ -finite w.r.t. \mathcal{H}^{n-1} . A mapping $\delta \colon \mathbb{R}^n \to \mathbb{R}^n_{>0}$ for which $\{\delta = 0\}$ is called a gauge.

Definition 8 (Partitions). Let δ be a gauge and $\varepsilon > 0$. We call a partition

$$\{(E_1,x_1),\ldots,(E_p,x_p)\}$$

with disjoint sets $E_i \in \mathcal{BV}_c$ and points $x_i \in \mathbb{R}^n$

- ε -regular if $r(E_i \cup \{x_i\}) > \varepsilon$ for all i
- strongly ε -regular if it is ε -regular, E_i is ε -isoperimetric and $x_i \in \operatorname{cl}_* E_i$ for all i
- δ -fine if $E_i \subseteq B_{\delta(x_i)}(x_i)$ for all i

Definition 9 (Topology on \mathcal{BV}_c). We say a sequence $A : \mathbb{N} \to \mathcal{BV}_c$ converges to A_* if there exists a compact $K \subseteq \mathbb{R}^n$ such that $A_k \subseteq K$, $\sup_k P(A_k) < \infty$ and $|A_* \triangle A_k| \to 0$ where Δ denotes the symmetric difference.

Definition 10 (Charge). A function $F: \mathcal{BV}_c \to \mathbb{R}$ is called

- finitely additive if $F(A \sqcup B) = F(A) + F(B)$ for all $A, B \in \mathscr{BV}_c$ disjoint.
- continuous if $A_k \to A_*$ implies that $F(A_k) \to F(A_*)$.
- a Charge if it is finitely additive and continuous

One sees from the definition that charges form a linear space. We now give some examples of charges.

Claim (Volume integrals as charges). Let $f \in L^1_{loc}(\mathbb{R}^n)$ then the indefinite integral of f

$$F:A\mapsto \int_A f\,\mathrm{d}\mathscr{L}^n$$

is a charge.

Proof. F is finitely additive. Let $A_k \to A_*$ then we have by the dominated convergence theorem with majorant $\mathbb{1}_K f$ that

$$\int_{A_k} f \, \mathrm{d} \mathscr{L}^n \xrightarrow{k \to \infty} \int_{A_k} f \, \mathrm{d} \mathscr{L}^n$$

and hence F is a charge.

In particular it follows from this example that every measure which is absolutely continuous w.r.t. the Lebesgue measure is a charge. A further example is given by

Claim (Fluxes are charges). For $E \in \mathcal{BV}$ and $w \in C(\operatorname{cl}(E); \mathbb{R}^n)$ we have that the flux of w

$$F: A \mapsto \int_{\partial_{*}(A \cap E)} w \cdot v_{A \cap E} \, d\mathscr{H}^{n-1}$$

is a charge. Here $v_{A \cap E} : \partial_*(A \cap E) \to S^{n-1} \subseteq \mathbb{R}^n$ denotes the outer unit normal.

Proof. We have that F is finitely additive.

Definition 11. A function $f: \mathbb{R}^n \to \mathbb{R}$ is called R^* -integrable with respect to a charge G if there is a charge F, s.t. for all $\varepsilon > 0$ there exists a gauge δ such that

$$\sum_{i=1}^{p} |f(x_i)G(E_i) - F(E_i)| < \varepsilon$$

for each strongly ε -regular δ -fine partition $\{(E_1, x_1), \dots, (E_p, x_p)\}$. We call F an indefinite integral of f with respect to G and write

$$F = \int_{-\infty}^{\infty} f \, \mathrm{d}G.$$

We now would like to prove the uniqueness of the integral. For this we require

Lemma 12 (Density of cubes). Let F be a charge such that F(C) = 0 for all cubes $C \subseteq \mathbb{R}^n$. Then F = 0.

Proof. See [1, Lemma 2.4].

Lemma 13. Let C be a cube $F \ge 0$ be a charge, $\varepsilon > 0$ and δ be a gauge. Then there exist disjoint dyadic cubes C_i and points $x_i \in C_i$ such that $\operatorname{diam}(C_i) < \delta(x_i)$ for all i and

$$f\left(A\setminus\bigcup_iC_i\right)<\varepsilon$$

Proof. See [3, Lemma 2.6.4].

Claim. The integral is unique.

Proof. We follow [1, Proposition 3.4]. Let F_1 and F_2 be R_* -integrals of f w.r.t. G. We set $H = |F_1 - F_2|$. Now choose a cube $C \subseteq \mathbb{R}^n$ and $0 < \varepsilon$ s.t. C is ε -isoparametric. By Lemma 13 there exist pairwise disjoint dyadic cubes $E_i \subseteq C$ such that

$$H\left(C\setminus\bigcup_{i}E_{i}\right)$$

and diam $(E_i) < \delta(x_i)$ for $x_i \in E_i$ and $i \in \{1, ..., q\}$. It then follows that

$$\begin{split} H(C) &\leq H\Big(C \setminus \bigcup \mathscr{P}\Big) + H\Big(\bigcup \mathscr{P}\Big) \\ &\leq \varepsilon + \left| \sum_{i} (F_1(E_i) - F_2(E_i)) \right| \\ &\leq \varepsilon + \sum_{i} |F_1(E_i) - f(x_i)G(E_i)| + \sum_{i} |f(x_i)G(E_i) - F_2(E_i)| \\ &\leq 3\varepsilon \xrightarrow{\varepsilon \to 0} 0 \end{split}$$

and thus H(C) = 0. Since C was an arbitrary cube it follows from Lemma ?? on the density of cubes that H = 0 and hence $F_1 = F_2$.

Claim (Linearity of the integral). Let f_1, f_2 be R^* -integrable and $a \in \mathbb{R}$. Then f + ag is also integrable and

$$\int f_1 d^*G + \int f_2 d^*G = \int f_1 + \alpha f_2 d^*G.$$

Proof. We write $F_i = \int f_i d^*G$. then we have that for all $\varepsilon > 0$ there exist gauges δ_i such that

$$\sum_{i} |f_i(x_j)G(E_j) - F_i(E_j)| < \varepsilon$$

for each strongly ε -regular δ -fine partition $\{(E_1, x_1), \ldots, (E_p, x_p)\}$. Since the space of charges is a linear space we have that also $F_1 + \alpha F_2$ is a charge. If we now set $\delta = \min_i \delta_i$ then we obtain that

$$\sum_{j} |(f_{1} + \alpha f_{2})(x_{j})G(E_{j}) - (F_{1} + \alpha F_{2})(E_{j})|
\leq \sum_{j} |f_{1}(x_{j})G(E_{j}) - F_{1}(E_{j})| + |\alpha| \sum_{j} |f_{2}(x_{j})G(E_{j}) - F_{2}(E_{j})|
\leq (1 + |\alpha|)\varepsilon$$

for every strongly ε -regular δ -fine partition $\{(E_1, x_1), \dots, (E_p, x_p)\}$. Thus $f_1 + \alpha f_2$ is integrable with integral $F_1 + \alpha F_2$.

What this integral is good for?

In [1, Proposition 3.5] it is stated that integral generalises the Lebesgue integral on \mathbb{R}^n .

Proposition 14 (Generalisation of the Lebesgue integral on \mathbb{R}^n). *Each Lebesgue-integrable function is also* R_* -integrable and the integrals conincide.

The integral generalises the Henstock-Kurzweil integral on \mathbb{R} . It is shown in [1, Proposition 3.6] that

Proposition 15 (Generalisation of the Henstock-Kurzweil integral on \mathbb{R}). *A function* $f: \mathbb{R} \to \mathbb{R}$ *is Denjoy-Perron integrable on a compact* $A \subseteq \mathbb{R}$ *if it is* R^* -integrable and the two integrals coincide on A.

We now turn back to the divergence theorem. For this we need some additional conditions on our sets.

Definition 16 (Admissable sets). We call a set admissable if $\operatorname{int}_* A \subseteq A \subseteq \operatorname{cl}_* A$ and ∂A is compact. The set of admissible BV-sets is denoted by \mathscr{ABV} .

It is shown in [1, Corollary 3.18] that for admissable sets the R_* -integral and the classical Pfeffer integral which is defined in **c**oincide. That is

Proposition 17 (Generalisation of the Pfeffer-Integral on \mathbb{R}^n). Let $A \in \mathscr{ABV}$. Then each Pfeffer-integrable function is also R_* -integrable and the integrals coincide on A.

Since a very general version of the divergence theorem holds for Pfeffer-integrals one can obtain that

Theorem 18 (Divergence theorem). Let $A \in \mathscr{ABV}$, $S \subseteq A$ a thin set and $w \in C(\operatorname{cl}(A); \mathbb{R}^n)$ a continuous vector field which is pointwise Lipshitz on $A \setminus S$. Then Div w is R_* -integrable and

$$\int_{A}^{*} \operatorname{Div} w \, d\mathscr{L}^{n} = \int_{\partial_{*}A} w \cdot v_{A} \, d\mathscr{H}^{n-1}$$

where $v_A: \partial_* A \to S^{n-1} \subseteq \mathbb{R}^n$ is the unit normal to A.

Bibliography

- J. Malý and W. F. Pfeffer, "Henstock-Kurzweil integral on BV sets," Math. Bohem., vol. 141, no. 2, pp. 217-237, 2016, ISSN: 0862-7959. DOI: 10.21136/MB.2016.
 [Online]. Available: https://doi-org.ludwig.lub.lu.se/10.21136/MB.2016.16.
- [2] W. F. Pfeffer, "A Riemann type definition of a variational integral," *Proc. Amer. Math. Soc.*, vol. 114, no. 1, pp. 99–106, 1992, ISSN: 0002-9939. DOI: 10.2307/2159788. [Online]. Available: https://doi-org.ludwig.lub.lu.se/10.2307/2159788.
- [3] —, *Derivation and integration*, ser. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2001, vol. 140, pp. xvi+266, ISBN: 0-521-79268-1. DOI: 10.1017/CB09780511574764. [Online]. Available: https://doi-org.ludwig.lub.lu.se/10.1017/CB09780511574764.