第七章・无穷级数

第四节・幂级数

4.1 函数项级数的概念

定义 2 在收敛域上, 函数项级数的和是 x 的函数 S(x), 称它为级

数的和函数, 并写成 $S(x) = \sum_{n=0}^{\infty} u_n(x)$

若用 $S_n(x)$ 表示函数项级数前 n 项的和, 即

 $S_n(x)$ ஆருது ஆஆன் n ஆறுக்கு $S_n(x) = \sum_{i=1}^n u_k(x)$

令余项 $R_n(x)=S(x)-S_n(x)$,则在收敛域上有 $\lim_{n\to\infty}S_n(x)=S(x),\qquad \lim_{n\to\infty}R_n(x)=0$

有收敛点的全体称为其收敛域。 若常数项级数 $\sum\limits_{n=1}^{\infty}u_n\left(x_0\right)$ 发散, 称 x_0 为其发散点, 所有发散点的 全体称为其发散域。

 $\sum_{n=0}^{\infty} u_n(x) = u_1(x) + u_2(x) + \dots + u_n(x) + \dots$

对 $x_0 \in I$, 若常数项级数 $\sum\limits_{i=1}^{\infty}u_n\left(x_0\right)$ 收敛, 称 x_0 为其收敛点, 所

第四节·幂级数 ▷ 函数项级数的概念

为定义在区间 I 上的函数项级数.

/20 7

第四节·幂级数 ▷ 函數項級數的概念

例 1 等比级数
$$\sum_{n=0}^{\infty} x^n \begin{cases} \exists |x| < 1$$
时, 收敛于 $\frac{1}{1-x}$; $\exists |x| \ge 1$ 时, 发散.

在区间 (-1,1) 内. 等比级数收敛. 所以 (-1,1) 内任意一点都是该 级数的收敛点, 其收敛域为 (-1,1).

因此当 $x \in (-1,1)$ 时, 有和函数

$$S(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

它的发散域是 $(-\infty, -1] \cup [1, +\infty)$, 或写作 |x| > 1.

定义 3 形如
$$\sum\limits_{n=0}^{\infty}c_{n}(x-a)^{n}$$
 的级数,即

$$n=0$$

 $c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n + \dots$

称为
$$x-a$$
 的幂级数. 其中数列 c_n 称为幂级数的系数.

特别地, 当 a=0 时, 级数 $\sum_{n=0}^{\infty} c_n x^n$, 即

$$c_0 + c_1x + c_2x^2 + \cdots + c_nx^n + \cdots$$

$$c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

称为 x 的幂级数.

4.2 幂级数及其收敛性

例 2 下列幂级数在
$$x$$
 取何值时收敛?
$$\sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$$

根据比值判别法

$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u} \right| = \lim_{n\to\infty} \left| \frac{x^{n+1}}{v+1} \cdot \frac{n}{x^n} \right| = \lim_{n\to\infty} \frac{n}{v+1} |x| = |x|$$

当 |x| < 1 时, 级数收敛: 当 |x| > 1 时, 级数发散: 当 x = 1 时, 交

错调和级数收敛: 当 x = -1 时, 调和级数发散,因此当 -1 < x < 1时, 级数收敛.

(1)

例3 下列幂级数在 x 取何值时收敛?

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$$

根据比值判别法

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \frac{2n-1}{2n+1} x^2 = x^2$$

当 $x^2 < 1$ 时, 级数收敛; 当 $x^2 > 1$ 时, 级数发散; 当 x = 1 时, 由 莱布尼茨判别法得, 交错级数 $1-1/3+1/5-1/7+\cdots$ 收敛; 当

x = -1 时, 同理得交错级数 $-1 + 1/3 - 1/5 + 1/7 + \cdots$ 收敛, 因 此当 -1 < x < 1 时. 级数收敛.

下列幂级数在 x 取何值时收敛?

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

根据比值判别法

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n \to \infty} \frac{|x|}{n+1} = 0 < 1$$

因此当 $-\infty < x < +\infty$ 时, 级数收敛.

例 5

$$\sum_{n=0}^{\infty} n! x^n = 1 + x + 2! x^2 + 3! x^3 + \cdots$$

根据比值判别法

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!x^{n+1}}{n!x^n} \right|$$
$$= \lim_{n \to \infty} (n+1)|x|$$

所以当 x=0. 极限趋近于 0. 目小于 1. 级数绝对收敛: 当 $x\neq 0$. 极限趋近于无穷, 且大于 1, 级数发散,

$$\longleftrightarrow x$$

定理 (幂级数收敛定理:Abel 定理)

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \cdots$$

在 $x = \alpha \neq 0$ 收敛, 则满足不等式 $|x| < \alpha$ 的一切 x 幂级数都绝对 收敛, 反之, 若当 $x = \beta$ 时发散, 则对满足不等式 $|x| > \beta$ 的一切 x. 该幂级数发散.

注 由 Abel 定理可以看出, $\sum_{n=0}^{\infty} c_n x^n$ 的收敛域是以原点为中心 的区间.

若已知 R. 可知级数收敛范围, 这里称 R 为收敛半径, 如何求 R?

对于幂级数 $\sum_{n=0}^{\infty} c_n x^n$, 形如例2, 4, 5, 根据比值判别法

$$\begin{vmatrix} u_{n+1} \\ u_n \end{vmatrix} = \begin{vmatrix} c_{n+1}x^{n+1} \\ c_nx^n \end{vmatrix} = \begin{vmatrix} c_{n+1} \\ c_n \end{vmatrix} \cdot \begin{vmatrix} x^{n+1} \\ x^n \end{vmatrix} = \begin{vmatrix} c_{n+1} \\ c_n \end{vmatrix} \cdot |x|$$

$$\bigotimes \lim_{n \to \infty} \begin{vmatrix} c_{n+1} \\ c_n \end{vmatrix} = \rho. \quad \text{Mf} \lim_{n \to \infty} \begin{vmatrix} u_{n+1} \\ u \end{vmatrix} = \rho|x|.$$

当 $\rho \neq 0$ 时:

1 如果 $\rho |x| < 1$. 即 $|x| < 1/\rho$ 时. 幂级数绝对收敛:

2 如果 $\rho|x| > 1$, 即 $|x| > 1/\rho$ 时, 幂级数发散;

3 如果 $\rho|x|=1$. 即 $|x|=1/\rho$ 时. 敛散性不定. 设 $R=1/\rho$. 则级数在 (-R,R) 必收敛. 如例2

对于任意 ρ . 设 $R=1/\rho$ 时. 级数在 (-R,R) 必收敛. 我们称 R为收敛半径.

当 $0 < R < +\infty$ 时, (-R, R) 端点处的敛散性则不定. 确定点

 $R_{-} = R$ 敛散性后, 我们有幂级数收敛域,

第四节·幂级数 ▷ 幂级数及其收敛性

-R, R)

[-R, R)

■ (-R, R]

[-R, R]

若 R=0, 则收敛域为 $\{0\}$; 若 $R=+\infty$, 则收敛域为 $(-\infty,+\infty)$.

当 $\rho = 0$ 时: $\rho|x| = 0 < 1$, 幂级数对任何 x 都绝对收敛.

取 $R = 1/\rho$, 则级数在 $(-\infty, +\infty)$ 必收敛. 如例4

则级数在(0,0)必收敛,如例5

定理 1 对幂级数 $\sum_{n=0}^{\infty} c_n x^n$, 设 $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = \rho$, 若 $\rho \neq 0, \infty$, 则

当 $\rho = \infty$ 时: $\rho|x| = +\infty$, 幂级数只在 x = 0 处收敛. 取 $R = 1/\rho$,

 $R = \frac{1}{2}$ 存在, 使得

■ 当 |x| < R 时、级数绝对收敛:

2 当 |x| > R 时, 级数发散;

3 当 |x| = R 时,级数的敛散性未定。

幂级数及其收敛性

第四节・幕級数 ▶

定理2 如果幂级数

 $\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + \dots + c_n x^n + \dots$

幂级数收敛半径的求法

的系数满足
$$\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = \rho$$
.

$$|c_n| - \rho$$

$$\begin{cases} \frac{1}{\rho}, & 0 < \rho < +\infty \\ +\infty, & \rho = 0 \end{cases}$$

则其收敛半径为
$$R=\left\{ egin{array}{ll} rac{1}{\rho}, & 0<\rho<+\infty \\ +\infty, & \rho=0 \\ 0, & \rho=+\infty \end{array}
ight.$$
 说明 据此定理, $\sum\limits_{n=+\infty}^{\infty} c_{n+1} \left[\frac{c_n}{c_{n+1}} \right] \left[\frac{c_n}{c_n} \right] \left[\frac{c_n}{$

例7 求幂级数
$$\sum_{i=1}^{\infty} (-1)^{n-1} x^{n-1}$$
 的收敛域及和函数.

$$|\mathbf{R}| \lim_{n \to \infty} \left| \frac{c_{n+1}}{c} \right| = \lim_{n \to \infty} \left| \frac{(-1)^n}{(-1)^{n-1}} \right| = 1, R = 1.$$

当
$$x = -1$$
 时,幂级数成为 $\sum_{n=1}^{\infty} (-1)^{2n-2}$,级数发散.

当
$$x = -1$$
 时, 幂级数成为 $\sum_{n=1}^{\infty} (-1)^{2n-2}$, 级数发散.

当
$$x = 1$$
 时,幂级数成为 $\sum_{n=1}^{\infty} (-1)^{n-1}$,级数发散. 所以幂级数收敛域为 $(-1,1)$.

当
$$x = 1$$
 时, 幂级数成为 $\sum_{n=1}^{\infty} (-1)^{n-1}$, 级数发散.

$$\rho = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n \to \infty} \left| \frac{2^{n+1}}{(n+1)^2 + 1} \cdot \frac{n^2 + 1}{2^n} \right| = 2$$

例6 求幂级数 $\sum_{n=2}^{\infty} \frac{2^n}{n} x^n$ 的收敛域.

收敛半径 $R = \frac{1}{2}$

当 $x = -\frac{1}{2}$ 时,原级数 = $\sum_{n=1}^{\infty} \frac{2^n}{n^2+1} \left(-\frac{1}{2}\right)^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2+1}$,级数收

当
$$x=\frac{1}{2}$$
 时,原级数 = $\sum\limits_{n=1}^{\infty}\frac{2^{n}}{n^{2}+1}\left(\frac{1}{2}\right)^{n}=\sum\limits_{n=1}^{\infty}\frac{1}{n^{2}+1}$. 级数收敛.

所以幂级数收敛域为 $\left[-\frac{1}{2},\frac{1}{2}\right]$.

例 8 求幂级数
$$\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2^n}$$
 的收敛域.

第四节·幂级数 ▷ 幂级数及其收敛性

解 级数缺少偶次幂项,不能应用定理1 故由比值审敛法求收敛半径.

当 $\frac{1}{5}x^2 > 1$, 即 $|x| > \sqrt{2}$ 时, 级数发散;

$$\psi$$
收敛半径.
 $\psi_{n+1}(x)$,

軍敏法求收敛半径.
$$\lim_{n\to\infty} \left| \frac{u_{n+1}(x)}{u_{n}(x)} \right| = \lim_{n\to\infty} \left| \frac{x^{2n+1}/2^{n+1}}{x^{2n-1}/2^n} \right| = \frac{1}{2} |x|^2$$

当
$$\frac{1}{2}x^2 < 1$$
,即 $|x| < \sqrt{2}$ 时,级数收敛;得 $R = \sqrt{2}$. 当 $x = \sqrt{2}$ 时,级数为 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{2}}$. 发散;

当
$$x = -\sqrt{2}$$
 时,级数为 $\sum_{n=1}^{\infty} \frac{-1}{\sqrt{2}}$,发散;
所以级数的收敛域为 $(-\sqrt{2}, \sqrt{2})$.

Δ 20/39 V

例 9 求幂级数
$$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} x^{2n}$$
 的收敛域.

级数缺少奇次幂项,不能应用定理1

$$\lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \lim_{n \to \infty} \left| \frac{[2(n+1)]!}{[(n+1)!]^2} x^{2(n+1)} \cdot \frac{(n!)^2}{(2n)! \cdot x^{2n}} \right|$$

$$= \lim_{n \to \infty} \frac{(2n+2)(2n+1)}{(n+1)^2} \cdot |x|^2 = 4|x|^2$$

当
$$4x^2 < 1$$
, 即 $|x| < \frac{1}{2}$ 时, 级数收敛;

当
$$4x^2 < 1$$
,即 $|x| < \frac{1}{2}$ 时, 级数收敛; 当 $4x^2 > 1$,即 $|x| > \frac{1}{5}$ 时, 级数发散;

所以幂级数收敛半径为
$$R=\frac{1}{2}$$
.

或令 $t=x^2$, 原级数变为 $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} t^n$.

4.3 幂级数的性质

例 10 求幂级数 $\sum_{n=0}^{\infty} \frac{(x-1)^n}{2^n}$ 的收敛域.

解 通项为复合式,不能应用定理1.

令
$$t = x - 1$$
, 则幂级数变为 $\sum_{n=1}^{\infty} \frac{t^n}{2^{n} \cdot n}$

令
$$t = x - 1$$
, 则幂级数变为 $\sum_{n=1}^{\infty} \frac{\epsilon}{2^n}$

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \frac{\frac{2^{n}n}{2^{n}+1}}{\frac{1}{2^{n}+1}(n+1)} = \lim_{n \to \infty} \frac{2^{n+1}(n+1)}{2^{n}n} = 2. \stackrel{\text{if }}{=} t = 2.$$

$$-2$$
 时,幂级数成为 $\sum_{n=1}^{\infty} \frac{(-2)^n}{2^n \cdot n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$,收敛; 当 $t=2$ 时,幂级数成为 $\sum_{n=1}^{\infty} \frac{2^n}{2^n \cdot n} = \sum_{n=1}^{\infty} \frac{1}{n}$,发散;

所以幂级数的收敛域为
$$[-2,2)$$
, 原级数的收敛域为 $-2 \le x-1 < 2$, 即 $-1 \le x < 3$ 或 $[-1,3)$.

幂级数的运算

两个幂级数在公共收敛区间内可讲行加、减与乘法运算

定理 设 $\sum\limits_{n=0}^{\infty}c_nx^n$ 和 $\sum\limits_{n=0}^{\infty}b_nx^n$ 的收敛半径分别为 R_1 和 R_2 , R= $\min\{R_1, R_2\}$,则有

$$\left(\sum_{n=0}^{\infty}c_nx^n\right)\pm\left(\sum_{n=0}^{\infty}b_nx^n\right)=\sum_{n=0}^{\infty}(c_n\pm b_n)x^n,\quad |x|< R$$

其中等式在 (-R,R) 中成立.

第四节・幕級数 ▶ 幂级数的性质 第四节·幂级数 ▷ 幂级数的性质

幂级数的运算

定理 设 $\sum_{n=0}^{\infty} c_n x^n$ 和 $\sum_{n=0}^{\infty} b_n x^n$ 的收敛半径分别为 R_1 和 R_2 , R=

 $\min\{R_1, R_2\}$,则有

$$\lambda \cdot \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} \lambda \cdot c_n x^n, |x| < R_1$$

其中 λ 为常数.

$$\left(\sum_{n=0}^{\infty} c_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} c_n x^n, \quad |x| < R$$

其中 $c_n = \sum_{k=0}^{n} a_k b_{n-k}$, 等式在 (-R, R) 中成立.

性质 3 若幂级数 $\sum\limits_{n=0}^{\infty}c_{n}x^{n}$ 收敛, 和函数 $S(x)=\sum\limits_{n=0}^{\infty}c_{n}x^{n}$ 在收敛 区间上可导,则有逐项求导公式

在其收敛域上可积, 日有逐项积分公式

$$\int_0^x S(x) dx = \int_0^x \sum_{n=0}^\infty c_n x^n dx$$
$$= \sum_n^\infty \int_0^x c_n x^n dx = \sum_{n=-1}^\infty \frac{c_n}{n+1} x^{n+1}$$

性质 2 幂级数 $\sum_{n=0}^{\infty} c_n x^n$ 的收敛半径为 (-R, R), 其和函数 S(x)

逐项积分后得到的幂级数和原级数有相同的收敛半径.

 $S'(x) = \left(\sum_{n=0}^{\infty} c_n x^n\right)' = \sum_{n=0}^{\infty} \left(c_n x^n\right)' = \sum_{n=0}^{\infty} n c_n x^{n-1}$

性质 1 幂级数 $\sum\limits_{n=0}^{\infty} c_n x^n$ 的和函数 S(x) 在其收敛域上连续.

$$S''(x) = \sum_{n=2}^{\infty} n(n-1)c_n x^{n-2}$$

逐项求导后得到的幂级数 $\sum_{n=0}^{\infty} nc_n x^{n-1}, \cdots$ 和原级数有相同的收 敛半径.

逐项求导或积分时, 运算前后端点处的敛散性可能改变,

第四节·幂级数 ▷ 幂级数的性质

第四节·幂级数 ▷ 幂级数的性质

和

$$\mathbf{H}$$
 \mathbf{H} $\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n \to \infty} \left| \frac{n+1}{n} \right| = 1,$

 $S(x) = \sum_{n=0}^{\infty} nx^{n-1} = \left(\sum_{n=0}^{\infty} x^n\right)' = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}.$

 $\sum_{n=0}^{\infty} \frac{n}{2^n} = \sum_{n=0}^{\infty} n \left(\frac{1}{2}\right)^n = \frac{1}{2} \sum_{n=0}^{\infty} n \left(\frac{1}{2}\right)^{n-1} = \frac{1}{2} \times 4 = 2$

解 由 $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n\to\infty} \left| \frac{(-1)^n}{n+1} \cdot \frac{n}{(-1)^{n-1}} \right| = 1$ 得收敛半径 R = 1.

 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (-1)^n = -\sum_{n=1}^{\infty} \frac{1}{n}$ 级数发散;

例 12 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$ 的收敛域及和函数.

得收敛半径 R=1.

和函数
$$S(x)$$
 的解法 2: 两边积分得

当
$$x = 1$$
 时, 幂级数成为 $\sum_{n=1}^{\infty} n$, 级数发散; 所以幂级数收敛域为 $(-1, 1)$.

 $\int_{0}^{x} S(x)dx = \sum_{n=0}^{\infty} \int_{0}^{x} nx^{n-1}dx = \sum_{n=0}^{\infty} x^{n} = \frac{1}{1-x}$

 $S(x) = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}, |x| < 1.$

当 x = -1 时, 幂级数成为 $\sum_{n=1}^{\infty} (-1)^{n-1} n$, 级数发散;

求幂级数 $\sum_{n=0}^{\infty} nx^{n-1}$ 的和函数 S(x), 并求级数 $\sum_{n=0}^{\infty} \frac{n}{2n}$ 的

所以

故当 $x \in (-1, 1)$ 时,

当 x = -1 时,幂级数成为

当
$$x=1$$
 时, 幂级数成为, 7.3 例 $1(1)$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$
 级数收敛 所以幂级数收敛域为 $(-1,1]$.

设和函数 $S(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$, $(-1 < x \le 1)$ 两边求导得 $S'(x) = \sum_{n=0}^{\infty} \left(\frac{(-1)^{n-1}}{n}x^n\right)'$

$$=\sum_{n=1}^{\infty} (-1)^{n-1} x^{n-1} = \frac{1}{1+x}, |x| < 1$$

 $=\int_{0}^{x} \frac{1}{1+t} dt = \ln(1+x)$

因
$$S(0) = 0$$
, 所以 $S(x) = \ln(1+x)$, $|x| < 1$ 又 $x = 1$ 时, 幂级数收敛:

所以和函数 $S(x) = \ln(1+x), (-1 < x \le 1)$

两边积分得 $S(x) - S(0) = \int_0^x S'(t)dt$

 $\overline{\mathbf{m}} x = 0$ 时.

第四节・幕級数 ▶

S(x) 收敛于 1.

因此由和函数的连续性得:

 $S(x) = \begin{cases} -\frac{1}{x} \ln(1-x), & x \in [-1,0) \cup (0,1) \\ 1 & x = 0 \end{cases}$

 $\lim_{x\to 0} \left(-\frac{\ln(1-x)}{x} \right) = 1$

例 13 求级数 $\sum_{i=1}^{\infty}$ 的和函数 S(x).

解 易求出幂级数的收敛半径为 1.

x = -1 时级数收敛, x = 1 时级数发散. 则在 [-1, 1) 中, 有

$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n+1} = \frac{1}{x} \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} = \frac{1}{x} \sum_{n=0}^{\infty} \int_0^x x^n dx$$
$$= \frac{1}{x} \int_0^x \left(\sum_{n=0}^{\infty} x^n \right) dx = \frac{1}{x} \int_0^x \frac{1}{1-x} dx$$
$$= -\frac{1}{x} \ln(1-x), \quad x \neq 0.$$

∴
$$\triangleq x \neq 0$$
 时, $S(x) = -\frac{1}{x}\ln(1-x)$, $x \in [-1,0) \cup (0,1)$

4.4 内容小结

Δ 34/39 5

第四节・幕級数 ▶

内容小结

■ 求幂级数收敛域的方法

- 对非标准型幂级数 (缺项或通项为复合式):
 求收敛半径时直接用比值法或根值法.(例8,9)
 也可通过换元化为标准型再求.(例10)

2 幂级数的性质

- 两个幂级数在公共收敛区间内可进行加、减与乘法运算.
- 在收敛区间内幂级数的和函数连续;
- 幂级数在收敛区间内可逐项求导和求积分.
- 3 求和函数的常用方法-利用幂级数的性质. (例11,12,13)

pm 古・裏級動 p 内変小6

37/39 ♥

第四节・幕級数 ▷ 内容小

本节完!

第四节·幂级数 ▷ 内容小结 Δ 39/39 ▽