Institute of Information Technology (IIT)

Jahangirnagar University

Lab Report: 05

Submitted by:

Name: MD Zuleyenine Ibne Noman

Roll No: 2002

Lab Date: 10 August, 2023

Submission Date: 18 August,2023

Import Libraries here.

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
```

Load the dataset

```
import pandas as pd
df=pd.read_csv('/content/framingham.csv')
```

df.hist(bins=30,figsize=(20,40),layout=(15,4));

df.head()

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	to.
0	1	39	4.0	0	0.0	0.0	0	0	0	
1	0	46	2.0	0	0.0	0.0	0	0	0	
2	1	48	1.0	1	20.0	0.0	0	0	0	
3	0	61	3.0	1	30.0	0.0	0	1	0	
4	0	46	3.0	1	23.0	0.0	0	0	0	

```
df.shape
(4238, 16)
```

for i in df_all_column:
 if i not in discrete_cols:

```
df_all_column=list(df.columns)
discrete_cols=list(df.columns[df.round(decimals=0).isin([0,1]).all()])
discrete_cols.append('education')
discrete_cols.append('BPMeds')
continuous_cols=list()
```

```
if i not in ['education', 'BPMeds']:
      {\tt continuous\_cols.append(i)}
print('Discrete_cols:',discrete_cols),
print('Continuous cols:',continuous_cols)
     Discrete_cols: ['male', 'currentSmoker', 'prevalentStroke', 'prevalentHyp', 'diabetes', 'TenYearCHD', 'education', 'BPMeds'] Continuous cols: ['age', 'cigsPerDay', 'totChol', 'sysBP', 'diaBP', 'BMI', 'heartRate', 'glucose']
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
array_scaled=scaler.fit_transform(df[continuous_cols])
df_scaled_cols=pd.DataFrame(array_scaled,columns=[df[continuous_cols]])
df_scaled=df[df_all_column]
\tt df\_scaled[continuous\_cols] = df\_scaled\_cols[continuous\_cols]
df[continuous_cols].hist(bins=30,figsize=(20,40),layout=(15,4))
     array([[<Axes: title={'center': 'age'}>,
              <Axes: title={'center': 'cigsPerDay'}>,
              <Axes: title={'center': 'totChol'}>,
            <Axes: title={'center': 'sysBP'}>],
[<Axes: title={'center': 'diaBP'}>,
              <Axes: title={'center': 'BMI'}>,
<Axes: title={'center': 'heartRate'}>,
              <Axes: title={'center': 'glucose'}>],
             [<Axes: >, <Axes: >, <Axes: >],
              <Axes: >, <Axes: >, <Axes: >],
             [<Axes: >, <Axes: >, <Axes: >]], dtype=object)
                                            cigsPerDay
                  age
                                 2000
                                 1500
      200
                                                              400
                                 1000
      100
                                  500
                                              ВМ
      600
      200
```

df_scaled[continuous_cols].hist(bins=30,figsize=(20,40),layout=(15,4))

df_scaled.drop_duplicates()

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diab€
0	1	0.184211	4.0	0	0.000000	0.0	0	0	
1	0	0.368421	2.0	0	0.000000	0.0	0	0	
2	1	0.421053	1.0	1	0.285714	0.0	0	0	
3	0	0.763158	3.0	1	0.428571	0.0	0	1	
4	0	0.368421	3.0	1	0.328571	0.0	0	0	
4233	1	0.473684	1.0	1	0.014286	0.0	0	1	
4234	1	0.500000	3.0	1	0.614286	0.0	0	0	
4235	0	0.421053	2.0	1	0.285714	NaN	0	0	
4236	0	0.315789	1.0	1	0.214286	0.0	0	0	
4237	0	0.526316	2.0	0	0.000000	0.0	0	0	

4238 rows × 16 columns

```
df_scaled.isnull().sum()
df_scaled.isnull().sum().sum()
```

645

import missingno as msno
msno.matrix(df_scaled)

msno.heatmap(df_scaled,figsize=(20,5))

#As we confirm that our missing value is MCAR, we will use iterative imputing to fill in NA value from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer

```
#iterative imputer module, impute on the scaled dataset
imputer = IterativeImputer()
df_impute = imputer.fit_transform(df_scaled)
```

#impute dataframe
df_impute = pd.DataFrame(data=df_impute, columns=df.columns)

```
#double check for missing value
df_impute.isnull().values.any()
```

False

#visualize to see if there are still missing data
msno.matrix(df_impute);


```
from scipy.stats.mstats import winsorize
from scipy.stats import mstats
#Winzorize the 'totChol', 'sysBP', 'diaBP', 'BMI', 'heartRate', 'glucose', 'cigPerDay' columns
totChol_wins = mstats.winsorize(X_train['totChol'], limits=[0.02, 0.009])
sysBP_wins = mstats.winsorize(X_train['sysBP'], limits=[0.02, 0.03])
diaBP_wins = mstats.winsorize(X_train['diaBP'], limits=[0.02, 0.01])
BMI_wins = mstats.winsorize(X_train['BMI'], limits=[0.02, 0.01])
heartRate_wins = mstats.winsorize(X_train['heartRate'], limits=[0.03, 0.01])
glucose_wins = mstats.winsorize(X_train['glucose'], limits=[0.02, 0.02])
cigsPerDay_wins = mstats.winsorize(X_train['cigsPerDay'], limits=[0.02, 0.01])
# Add the winsorized 'totChol', 'sysBP', 'diaBP', 'BMI', 'heartRate', 'Glucose' columns back to the train DataFrame
X_train['totChol'] = totChol_wins
X_{train['sysBP']} = sysBP_wins
X_train['diaBP'] = diaBP_wins
X_train['BMI'] = BMI_wins
X_train['heartRate'] = heartRate_wins
X_train['glucose'] =glucose_wins
X_train['cigsPerDay'] =cigsPerDay_wins
# visualize outlier (after winsorization)
plt.boxplot(x=X_train[continuous_cols]);
plt.xticks(ticks=range(1,9), labels=np.array(continuous_cols));
```


#SMOTE-tomek (SMOTE-Tomek is a combination of oversampling (SMOTE) and undersampling (Tomek links) techniques) from imblearn.combine import SMOTETomek

```
#Create the SMOTE-tomek variable
smote_tomek = SMOTETomek(random_state=42)
```

#Applie SMOTE-tomek to train data
X_train_resampled, y_train_resampled = smote_tomek.fit_resample(X_train, y_train)

#Original train dataset

X_train.count(), y_train.value_counts()

(male	3390
age	3390
education	3390
currentSmoker	3390
cigsPerDay	3390
BPMeds	3390
prevalentStroke	3390
prevalentHyp	3390
diabetes	3390
totChol	3390
sysBP	3390
diaBP	3390

BMI 3390 heartRate 3390 glucose 3390 dtype: int64, 0.0 2875 1.0 515

Name: TenYearCHD, dtype: int64)

#visualize original imbalanced data
y_train.hist(figsize=(20,10))

#Resample train dataset

 ${\tt X_train_resampled.count(),\ y_train_resampled.value_counts()}$

(male 5674 5674 age education 5674 currentSmoker 5674 cigsPerDay 5674 5674 **BPMeds** ${\tt prevalentStroke}$ 5674 ${\tt prevalentHyp}$ 5674 diabetes 5674 totChol 5674 sysBP 5674 diaBP 5674 BMI 5674 5674 heartRate glucose 5674 dtype: int64,

dtype: int64, 0.0 2837 1.0 2837

Name: TenYearCHD, dtype: int64)

#visualize balanced data after SMOTE-tomek
y_train_resampled.hist(figsize=(20,10))

import seaborn as sns

4

diabetes

#visualize features
corrmat= X_train_resampled.corr()
top_corr_features = corrmat.index
plt.figure(figsize=(20,10))

 ${\tt g=sns.heatmap}({\tt X_train_resampled[top_corr_features].corr(),annot=True,\ cmap='RdYlGn')}$


```
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
# remove label column from bianry(categorical) list
discrete_cols.remove('TenYearCHD')
#calculating chi2 score for CATEGORICAL variables
bestfeature = SelectKBest(score_func=chi2, k=7)
fit = bestfeature.fit(X_train_resampled[discrete_cols], y_train_resampled)
# Pass the result into a dataframe
dfp_values = pd.DataFrame(fit.pvalues_)
dfscores = pd.DataFrame(fit.scores_)
dfcolumns = pd.DataFrame(X_train_resampled[discrete_cols].columns)
featureScores = pd.concat([dfcolumns,dfscores,dfp_values],axis=1)
featureScores.columns = ['Specs','Score','p-value']
featureScores_largest = featureScores.nlargest(7,'Score')
print(featureScores.nlargest(7,'Score'))
                  Specs
                                          p-value
                              Score
                         184.841856 4.249348e-42
     3
           prevalentHyp
     0
                          39.217340 3.791580e-10
                   male
                 BPMeds
     6
                          37.083337
                                     1.131868e-09
```

29.810652 4.763675e-08

```
17.420154 2.996321e-05
     2
        prevalentStroke
                          16.942421 3.853083e-05
                          1.450073 2.285162e-01
     1
          currentSmoker
#my feature list
feature_list = list(X_train_resampled.columns)
feature_list.remove('education')
feature_list.remove('currentSmoker')
feature_list.remove('glucose')
import seaborn as sns
# visulize top features
plt.figure(figsize=(20,15))
g=sns.heatmap(X_train_resampled[feature_list].corr(),annot=True, cmap='RdYlGn')
```



```
#create GridSearchCV model
grid_search = GridSearchCV(lr,hyperparameters, cv=5, scoring='roc_auc')
#fit data into grid_search
grid_search.fit(X_train_resampled[feature_list] , y_train_resampled),
#print best hyperparameters results and model score
print(grid_search.best_params_, grid_search.best_score_)
y_proba = grid_search.predict_proba(X_test[feature_list])[:,1]
# Threshold value can be adjusted to prioritize certain types of errors over others.
# ex: customize threshold to increase sensitivity to patience with the disease (reduce false negative)
y_pred = (y_proba>0.5).astype(int)
     {'C': 1, 'penalty': 'l2'} 0.7373267278020903
#print out coef
grid_search.best_estimator_.coef_
     array([[ 0.40216613, 3.10916699, 1.70271742, 0.31034245, 0.70605131, 0.19107497, 0.54695945, 1.40280327, 1.95876344, 0.52917696, -0.31850974, -0.39486146]])
#print out intercept
grid_search.best_estimator_.intercept_
     array([-2.76354946])
from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, classification_report, auc
#Confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(10,5))
sns.heatmap(conf\_matrix/np.sum(conf\_matrix), \ annot=True, \ fmt='.1\%', \ cmap='Oranges', \ linewidths=5, \ annot\_kws=\{"fontsize":16\})
                                                                                              0.5
                                                                                              0.4
                         50.2%
                                                               34.6%
      0
                                                                                              0.3
                                                                                             - 0.2
                         4.5%
                                                               10.7%
```


#classification report (#Precision & Recall & F1 score) c=classification_report(y_test, y_pred, output_dict=True) pd.DataFrame(c)

		0.0	1.0	accuracy	macro avg	weighted avg	\blacksquare
preci	sion	0.918103	0.236979	0.60967	0.577541	0.814489	ıl.
rec	all	0.592490	0.705426	0.60967	0.648958	0.609670	
f1-sc	ore	0.720203	0.354776	0.60967	0.537489	0.664613	
supp	ort	719.000000	129.000000	0.60967	848.000000	848.000000	

```
#Roc curve
#pass value in to roc_curve variable: fpr, tpr, thresholds
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
roc_auc = auc(fpr, tpr)

#plot it
plt.figure(figsize=(10,5))
plt.plot(fpr, tpr, lw=1, label='ROC curve (AUC = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], '--', color='gray', lw=2)
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```

