Minimal HW

Problem 1: Sigma Notation

$$S = 5 + 9 + 13 + \dots + 89$$

$$a_1=5$$
 and difference $d=4$

$$a_n = a_1 + d(n-1)$$

Let's fit a_1 and d values into equation:

$$89 = 5 + 4n - 4$$

$$88 = 4n \to n = 22$$

Answer:
$$S=\sum_{k=1}^{22}5+4(k-1)$$

Problem 2: Shifting Index in Sigma Notation

$$\sum_{k=3}^{15} (2k+1)$$

start at
$$k=1$$
 then $\sum_{k=3-2}^{15-2}(2(k+2)+1)$

Answer:
$$S = \sum_{k=1}^{13} 2k + 5$$

Problem 3: Recursive Notation

$$a_1=12$$
 and $a_n=a_{n-1}+d$.

if
$$a_{10}=57$$
 then $d=rac{57-12}{10-1}=5$

Answer:
$$a_{25} = 12 + 5(25 - 1) = 132$$

Problem 4: Applied Problem

if we check the first and last $\,$ multiples of 7 then we can easily find d and the sum.

The first multiple above 100 is 105 where 7×15 since 100...104 are not multiples of 7.

The last multiple below 1000 is 994 where 7×142 since 1000, 999, 998, 997, 996, 995 are not multiples of 7.

$$n = \frac{a_n - a_1}{d} + 1 o \frac{994 - 105}{7} + 1 = 127 + 1 = 128$$

Answers:
$$S = rac{a_1 + a_n}{2} imes n = rac{105 + 994}{2} imes 128 = 1099 imes 64 = 70336$$

Problem 5: Sigma notation

$$2650 = \sum_{k=1}^{n} (3k+2)$$

$$S=rac{a_1+a_n}{2} imes n$$
 and $a_1=3 imes 1+2=5$, $a_n=3n+2$

$$S=rac{5+3n+2}{2} imes n
ightarrow 5300=n imes (3n+7)$$

$$3n^2 + 7n - 5300 = 0 \Rightarrow D = 49 + 4 \times 3 \times 5300 = 63649$$

$$n=rac{-7\pm\sqrt{63649}}{6}pprox41$$

Check if n satisfies the S=2650

$$S=rac{5+3 imes41+2}{2} imes41 o41 imes65=2665$$
 slight larger than S

Check if n=40 satisfies the $\,S=2650\,$

$$S = rac{5+3 imes40+2}{2} imes40
ightarrow 20 imes127 = 2540$$
 less than S

Answer: there is no n such that S=2650

Problem 6: Mean Formula

$$a_{10}=a_1+9d$$
 . Let's find a_1 and d

$$a_5=a_1+4d$$
 and $a_{15}=a_1+14d$

$$a_{15}-a_{5}=10d
ightarrow 60-20=10d
ightarrow d=4$$

Answer:
$$a_{10} - a_5 = 5d \rightarrow a_{10} = 20 + 20 = 40$$

Problem 7: Applied Problem

$$a_{20} = a_1 + 19d
ightarrow a_{20} = 5 + 19 imes 0.5 = 29/2$$

Answer:
$$S = rac{a_{20} + a_1}{2} imes n o S = rac{29/2 + 5}{2} imes 20 = 10 imes (14.5 + 5) = 195$$

Problem 8: Sum of the First N terms

$$a_1=11$$
 and $d=3$

$$1000 = rac{11 + a_n}{2} imes n
ightarrow 2000/n = 11 + a_n
ightarrow 2000/n = 11 + a1 + 3 imes (n-1)$$

$$2000/n = 22 + 3n - 3 \rightarrow 2000/n = 19 + 3n$$

$$3n^2 + 19n - 2000 > 0$$

Answer:
$$n=rac{-19\pm\sqrt{19^2-4 imes3 imes-2000}}{2 imes3}pproxrac{-19+156}{6}pprox23$$

Problem 9: Shifting Index in Sigma Notation

$$\sum_{k=3}^{12} 4(rac{1}{2})^k$$
 find S starting from $k=0$

$$\sum_{k=3}^{12-3} 4(\frac{1}{2})^{k+3} \to \sum_{k=0}^{9} 4(\frac{1}{2})^k (\frac{1}{8})$$

Answer: $\sum_{k=0}^{9} (\frac{1}{2})^k (\frac{1}{2})$

Problem 10: N-th Term Formula of geometric sequence

$$a_2=a_1r$$
 and $a_5=a_1r^4$

$$rac{48}{-6}=r^3
ightarrow r=-2$$

Answer:
$$\frac{a_{10}}{a_2}=r^8 o a_{10}=-6*(-2)^8=-1536$$

Problem 11: Finding Common Ratio

Answer:
$$rac{a_7}{a_4}=r^3
ightarrowrac{1458}{54}=r^3
ightarrow r=3$$

Problem 12: Sum of the First N terms

$$S_n=a_1rac{1-r^n}{1-r}$$

Answer:
$$S_{15} = 8 imes rac{1 - (3/4)^{15}}{1 - 3/4} pprox 8 imes 4 = 32$$