

Low-lying spectroscopy of ^{19,20}O

M. Lozano-González, B. Fernández-Domínguez, J. Lois-Fuentes, F. Delaunay

USC-IGFAE and LPC-Caen

March 2025

Experimental setup

E796 was performed at LISE (GANIL) back in March 2022 under these experimental conditions:

- Beam: ²⁰O @ 35 AMeV
- Gas: 90 %D₂ and 10 % iC₄H₁₀
- Silicons: two front layers and one left. 500 µm-thick

(In)elastic $^{20}O(p,p)$ $^{20}O(d,d)$

 $\begin{array}{c} \textbf{p and n} \\ \textbf{removal} \\ ^{20}\text{O}(\text{d},\,^{3}\text{He}) \\ ^{20}\text{O}(\text{d},t) \\ ^{20}\text{O}(\text{p},\text{d}) \end{array}$

Physics case

Transfer: spectroscopy on ²⁰O(d,t),(p,d)¹⁹O

$$\left. \frac{d\sigma}{d\Omega} \right|_{\rm exp} = C^2 S \cdot \left. \frac{d\sigma}{d\Omega} \right|_{\rm s,p}, \quad \sum C^2 S = (2j+1)$$

Two goals:

- Study of the ²⁰O gs wave-function
- 2 Behaviour of $\mathcal{N}=8$ gap

A glance at the analysis

Independent analyis from Juan: same general idea but different execution and (I hope) some improvements.

Good PID after vetoing punchthrough

Only p and d for side silicons

Results: (in)elastic scattering

These are the excitation energy spectra for protons and deuterons.

Only 1st excited state

Up to 7 $E_x > 0$ states observed!

Angular distributions for the **ground state** and first excited states:

Remaining states: low stats. Coming soon.

For the proton scattering:

Issue: gs not reproduced by any OMP!

1st excited seems fine

About normalizations

Just to recall the xs formula:

$$\frac{d\sigma}{d\Omega} = \frac{N}{N_{\rm beam}N_{\rm targets}\epsilon\Delta\Omega} = \frac{N}{\alpha\epsilon\Delta\Omega}$$

- $N_{\text{beam}} \leftarrow \text{CFA counter}$
- $ightharpoonup N_{\mathsf{targets}} \leftarrow \mathsf{Gas}\;\mathsf{mixture}.$ Sensitive to p.

Theo. lines need scaling (α) to match experimental data α in agreement with Juan's \Rightarrow Not likely ϵ issue

Protons are more "reliable" 🤔

Excited states are populated up to $\sim 15\,\mathrm{MeV}$:

In and 2n **phase spaces** are included in the fit. Small (p,d) contamination at $\sim 16\,\mathrm{MeV}$ under control.

Fresco DWBA with OMPs: Daehnick (d), Pang (t)

Agreement with already known assignments.

Fresco DWBA with OMPs: Daehnick (d), Pang (t)

Almost all are $\Delta L = 1!$

 $\begin{array}{c} {\rm SFO\text{-}tls~and~YSOX} \\ \Rightarrow 0p_{1/2} \end{array}$

About ESPEs

Effective single-particle energies (ESPEs) are needed to locate the $0p_{1/2}$ and $0d_{5/2}$ orbits: **Baranger's formula**

$$\mathrm{ESPE}_{nlj} = \frac{\sum_{i+} (2j+1) \mathrm{SF}_{i+}(E_{i+} - E_0) + \sum_{i-} \mathrm{SF}_{i-}(E_0 - E_{i-})}{\sum_{i+} (2j+1) \mathrm{SF}_{i+} + \sum_{i-} \mathrm{SF}_{i-}}$$

Removal (—) from our (d,t) or (p,d) channels.

Adding (+) from ²⁰O(d,p)²¹O by B. Fernández-Domínguez et al. PRC 84 (2011)

All $\Delta L=1$ states below $E_x=10\,\mathrm{MeV}$ are $p_{1/2}$ based on YSOX and SFO-tls

Smaller experimental gap than predicted!

Higher $0p_{1/2}$ occupation according to exp.

Note: *p-norm* refers to absolute SFs with (p,p) normalization, whereas *d-norm* to (d,d) data

Fewer states are populated in this channel:

Strong (d,d) background since we only identify the outgoing deuteron!

OMPs: CH89 (p), ADWA (d). Not so encouraging results:

Either Fresco or ZR
Twofnr fail to reproduce
gs 😕

Yet 1st excited state seems well-reproduced!

Future work

Detailed study of inelastic channels

Solve normalization issue or find it an explanation

Ask theoreticians if interactions can be tuned for our data

Continue to investigate (p,p) and (p,d)