Tests basés sur la fonction de répartition empirique et sur les rangs

C. Maugis-Rabusseau
B. Laurent - Bureau 126, GMM
beatrice.laurent@insa-toulouse.fr

4MODIA, 2023-2024

- Rappels
 - Fonction de répartition et quantiles
 - Fonction de répartition empirique
- Test de Kolmogorov de comparaison ou d'adéquation
- Tests de comparaison de deux échantillons
 - Tests de Kolmogorov-Smirnov
 - Test de Wilcoxon- Mann-Whitney
 - Test de la médiane
- Tests de normalité
 - Méthode graphique : droite de Henry
 - Test de normalité de Kolmogorov-Smirnov (de Lilliefors)
 - Test de Shapiro-Wilk

- Rappels
 - Fonction de répartition et quantiles
 - Fonction de répartition empirique
- Test de Kolmogorov de comparaison ou d'adéquation
- Tests de comparaison de deux échantillons
 - Tests de Kolmogorov-Smirnov
 - Test de Wilcoxon- Mann-Whitney
 - Test de la médiane
- Tests de normalité
 - Méthode graphique : droite de Henry
 - Test de normalité de Kolmogorov-Smirnov (de Lilliefors)
 - Test de Shapiro-Wilk

Fonction de répartition et quantiles

• X v.a.r. de fonction de répartition F :

$$\forall t \in \mathbb{R}, \ F(t) = \mathbb{P}(X \leq t).$$

• La fonction quantile (ou inverse généralisée) F^{-1} de F est définie par

$$\forall p \in [0,1], \ F^{-1}(p) = \inf \{ t \in \mathbb{R}; \ F(t) \ge p \}.$$

- Si F est une bijection, F^{-1} est la bijection réciproque.
- Exo : Calculez F^{-1} pour la loi de Bernoulli de paramètre θ .

Fonction de répartition et quantiles

Soit $t \in \mathbb{R}$ et $p_0 \in]0, 1[$.

- F croissante, continue à droite, $\lim_{t\to -\infty} F(t) = 0$, $\lim_{t\to +\infty} F(t) = 1$
- P^{-1} est croissante
- **③** $F \circ F^{-1}(p_0) \ge p_0$ avec égalité si F est continue
- **5** Si $U \sim \mathcal{U}([0,1])$, $F^{-1}(U)$ a pour fonction de répartition F
- § Si X a pour fonction de répartition F et si F est continue, alors $F(X) \sim \mathcal{U}([0,1])$.

- Rappels
 - Fonction de répartition et quantiles
 - Fonction de répartition empirique
- Test de Kolmogorov de comparaison ou d'adéquation
- Tests de comparaison de deux échantillons
 - Tests de Kolmogorov-Smirnov
 - Test de Wilcoxon- Mann-Whitney
 - Test de la médiane
- Tests de normalité
 - Méthode graphique : droite de Henry
 - Test de normalité de Kolmogorov-Smirnov (de Lilliefors)
 - Test de Shapiro-Wilk

Fonction de répartition empirique

- $(X_1, X_2, ... X_n)$ v.a.r i.i.d. de fonction de répartition F.
- La fonction de répartition empirique associée :

$$\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i \le t} = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_{(i)} \le t}$$

avec les statistiques d'ordre $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$

Fonction de répartition empirique

- \widehat{F}_n croissante, continue à droite, $\lim_{t\to -\infty}\widehat{F}_n(t)=0$, $\lim_{t\to +\infty}\widehat{F}_n(t)=1$
- $\forall t \in \mathbb{R}, \, n\widehat{F}_n(t) \sim \mathcal{B}(n, F(t))$
- $\forall t \in \mathbb{R}, \mathbb{E}\left[\widehat{F}_n(t)\right] = F(t)$
- $\forall t \in \mathbb{R}$

$$\operatorname{Var}(\widehat{F}_n(t)) = \frac{F(t)(1 - F(t))}{n} \underset{n \to +\infty}{\longrightarrow} 0$$

- $\forall t \in \mathbb{R}, \ \widehat{F}_n(t) \xrightarrow[n \to +\infty]{\mathbb{P}} F(t)$
- On déduit du TLC que pour tout $t \in \mathbb{R}$ tel que $F(t)(1 F(t)) \neq 0$,

$$\sqrt{n}(\widehat{F}_n(t) - F(t)) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0, F(t)(1 - F(t)))$$

Glivenko-Cantelli (admis)

$$\sup_{t\in\mathbb{R}}|\widehat{F}_n(t)-F(t)|\underset{n\to+\infty}{\overset{p.s}{\longrightarrow}}0$$

- Rappels
 - Fonction de répartition et quantiles
 - Fonction de répartition empirique
- Test de Kolmogorov de comparaison ou d'adéquation
- Tests de comparaison de deux échantillons
 - Tests de Kolmogorov-Smirnov
 - Test de Wilcoxon- Mann-Whitney
 - Test de la médiane
- Tests de normalité
 - Méthode graphique : droite de Henry
 - Test de normalité de Kolmogorov-Smirnov (de Lilliefors)
 - Test de Shapiro-Wilk

Contexte

- X_1, \ldots, X_n v.a.r. i.i.d. de même loi que X, de fonction de répartition F supposée continue sur \mathbb{R}
- ullet Une fonction de répartition F_0 donnée, supposée continue sur ${\mathbb R}$
- On souhaite construire un test de \mathcal{H}_0 : "X a pour fonction de répartition F_0 : ($F=F_0$)" contre:

 - 2 \mathcal{H}_1^+ : X a tendance à prendre des valeurs plus petites qu'une variable aléatoire de fonction de répartition F_0 ($F \ge F_0$)
 - 3 $\mathcal{H}_1^-: X$ a tendance à prendre des valeurs plus grandes qu'une variable aléatoire de fonction de répartition F_0 ($F \le F_0$)

Contexte

Figure – Fonction de répartition (à gauche) et densité (à droite) pour la loi $\mathcal{N}(0,1)$ et $\mathcal{N}(3,1)$

Exemple

On mesure les durées de vie de 20 ampoules d'un même type. Les résultats, en heures, sont :

673,389,1832,570,522,2694,3683,644,1531,2916

Est-ce que l'on peut affirmer, au risque 5%, que la durée de vie d'une ampoule de ce type ne suit pas la loi exponentielle $\mathcal{E}(1/1500)$?

On modélise donc la durée de vie de la *i*ème ampoule par X_i , F est sa fonction de répartition inconnue F_0 est la fonction de répartition de la loi $\mathcal{E}(1/1500)$.

Test de Kolmogorov

- \mathcal{H}_0 : $F = F_0$ contre \mathcal{H}_1 : $F \neq F_0$
- Statistique de test :

$$D_n = \sup_{t \in \mathbb{R}} |\hat{F}_n(t) - F_0(t)|.$$

• Région de rejet au niveau α

$$\mathcal{R}_{\alpha} = \{ D_n \geq d_{n,1-\alpha} \}$$

- La loi de D_n sous l'hypothèse H_0 ($F=F_0$) est indépendante de F_0 .
- Autre écriture de la statistique de test :

$$D_n = \max_{i=0,\dots,n} \left\{ \max \left(\left| \frac{i}{n} - F_0(X_{(i)}) \right| ; \left| \frac{i}{n} - F_0(X_{(i+1)}) \right| \right) \right\},$$

Test de Kolmogorov

• \mathcal{H}_0 : $F = F_0$ contre \mathcal{H}^+ : $F \ge F_0$, on utilise

$$D_n^+ = \sup_{t \in \mathbb{R}} (\widehat{F}_n(t) - F_0(t))$$

et la région de rejet de niveau α est de la forme

$$\mathcal{R}_{\alpha} = \{ D_n^+ > d_{n,1-\alpha}^+ \}$$

• \mathcal{H}_0 : $F = F_0$ contre \mathcal{H}^- : $F \leq F_0$, on utilise

$$D_n^- = \sup_{t \in \mathbb{R}} (F_0(t) - \widehat{F}_n(t))$$

et la région de rejet de niveau α est de la forme

$$\mathcal{R}_{\alpha} = \{ \textit{D}_{\textit{n}}^{-} > \textit{d}_{\textit{n},1-\alpha}^{-} \}$$

Propriétés (admises)

- $\forall \lambda > 0$, $\mathbb{P}_{\mathcal{H}_0}(\sqrt{n}D_n^+ \geq \lambda) \xrightarrow[n \to +\infty]{} \exp(-2\lambda^2)$ (Smirnov, 1942)
- $\forall \lambda > 0, \mathbb{P}_{\mathcal{H}_0}(\sqrt{n}D_n \ge \lambda) \xrightarrow[n \to +\infty]{} 2\sum_{k=1}^{\infty} (-1)^{k+1} \exp(-2k^2\lambda^2)$ (Kolmogorov, 1933)
- $\forall \lambda > 0$, $\mathbb{P}_{\mathcal{H}_0}(\sqrt{n}D_n \ge \lambda) \le 2 \exp(-2\lambda^2)$ (Massart, 1990)

Exemple : Durée de vie des ampoules

```
\mathcal{H}_0: F = F_0 contre \mathcal{H}_1: F \neq F_0,
```

où F_0 est la fonction de répartition de $\mathcal{E}(1/1500)$

```
> Ampoule = c(673, 389, 1832, 570, 522, 2694, 3683, 644, 1531, 2916)
> ggplot(data.frame(Ampoule), aes(Ampoule)) +
    stat_ecdf(geom = "step") +
    stat_function(fun = pexp, args = list(rate = 1/1500), col="red")
> ks.test(Ampoule, pexp, 1/1500, alternative="two.sided")
One-sample Kolmogorov-Smirnov test

data: Ampoule
D = 0.22843, p-value = 0.597
alternative hypothesis: two-sided
```

Exemple : Durée de vie des ampoules

- Rappels
 - Fonction de répartition et quantiles
 - Fonction de répartition empirique
- Test de Kolmogorov de comparaison ou d'adéquation
- Tests de comparaison de deux échantillons
 - Tests de Kolmogorov-Smirnov
 - Test de Wilcoxon- Mann-Whitney
 - Test de la médiane
- Tests de normalité
 - Méthode graphique : droite de Henry
 - Test de normalité de Kolmogorov-Smirnov (de Lilliefors)
 - Test de Shapiro-Wilk

Contexte

- On considère deux échantillons indépendants
 - X_1, \ldots, X_n i.i.d. de fonction de répartition F
 - Y_1, \ldots, Y_m i.i.d. de fonction de répartition G
- N = n + m
- Dans le cas de deux échantillons gaussiens -> cf cours MIC3
- Ici, cadre non paramétrique : les lois des variables X_i et Y_j ne sont pas supposées connues

- Rappels
 - Fonction de répartition et quantiles
 - Fonction de répartition empirique
- Test de Kolmogorov de comparaison ou d'adéquation
- Tests de comparaison de deux échantillons
 - Tests de Kolmogorov-Smirnov
 - Test de Wilcoxon- Mann-Whitney
 - Test de la médiane
- Tests de normalité
 - Méthode graphique : droite de Henry
 - Test de normalité de Kolmogorov-Smirnov (de Lilliefors)
 - Test de Shapiro-Wilk

Test de Kolmogorov-Smirnov

- \mathcal{H}_0 : F = G contre \mathcal{H}_1 : $F \neq G$
- \hat{F}_n fonction de répartition empirique de (X_1, \dots, X_n)
- \widehat{G}_m fonction de répartition empirique de (Y_1, \dots, Y_m)
- Statistique de test

$$D_{n,m} = \sup_{t \in \mathbb{R}} |\widehat{F}_n(t) - \widehat{G}_m(t)|.$$

• Région de rejet au niveau α

$$\mathcal{R}_{\alpha} = \{ D_{n,m} \geq d_{n,m,1-\alpha} \}$$

• Si F est continue, la loi de $D_{n,m}$ sous \mathcal{H}_0 est indépendante de F.

Test de Kolmogorov-Smirnov

Pour faire un test unilatéral

$$\mathcal{H}_0: F = G \text{ contre } \mathcal{H}_1: F \geq G$$

on utilise la statistique de test

$$D_{n,m}^+ = \sup_{t \in \mathbb{R}} (\widehat{F}_n(t) - \widehat{G}_m(t)).$$

La région de rejet au niveau α est de la forme

$$\mathcal{R}_{\alpha} = \{ D_{n,m}^+ \ge d_{n,m,1-\alpha}^+ \}$$

Exemple : Comparaison de deux médicaments

On souhaite comparer deux médicaments pour soulager la douleur post-opératoire.

On a observé 16 patients :

- 8 ont pris le médicament A habituel
- les 8 autres un médicament B expérimental

Dans le tableau suivant sont reportés les temps (en heures) entre la prise du médicament et la sensation de soulagement.

médicament A	6,8	3,1	5,8	4,5	3,3	4,7	4,2	4,9
médicament B	4,4	2,5	2,8	2,1	6,6	1,5	4,8	2,3

Exemple : Comparaison de deux médicaments

Test d'une différence d'efficacité entre les deux médicaments

```
\mathcal{H}_0: F_A = F_B \text{ contre } \mathcal{H}_1: F_B \neq F_A
```

Two-sample Kolmogorov-Smirnov test

```
data: mB and mA
D = 0.625, p-value = 0.08702
alternative hypothesis: two-sided
```

Tester si le médicament B est plus efficace que A $\mathcal{H}_0: F_A = F_B$ contre $\mathcal{H}_1: F_B \ge F_A$:

Two-sample Kolmogorov-Smirnov test

```
data: mB and mA D^+ = 0.625, p-value = 0.04394 alternative hypothesis: the CDF of x lies above that of
```


- Rappels
 - Fonction de répartition et quantiles
 - Fonction de répartition empirique
- Test de Kolmogorov de comparaison ou d'adéquation
- Tests de comparaison de deux échantillons
 - Tests de Kolmogorov-Smirnov
 - Test de Wilcoxon- Mann-Whitney
 - Test de la médiane
- Tests de normalité
 - Méthode graphique : droite de Henry
 - Test de normalité de Kolmogorov-Smirnov (de Lilliefors)
 - Test de Shapiro-Wilk

Test de Mann-Whitney

- \mathcal{H}_0 : F = G contre \mathcal{H}_1 : $F \geq G$
- On suppose que F et G sont continues
- Le principe du test consiste à déterminer le nombre de couples (X_i, Y_j) pour lesquels $Y_i > X_i$
- Statistique de test :

$$MW_{X < Y} = \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{1}_{Y_j > X_i}$$

• La région de rejet au niveau α est de la forme

$$\mathcal{R}_{\alpha} = \{ MW_{X < Y} \ge u_{(n,m),1-\alpha} \}$$

Test de Mann-Whitney

- La loi de MW_{X<Y} sous H₀ peut être établie par récurrence (cf Caperaa Van Cutsem, p 126)
- On peut aussi utiliser un résultat asymptotique (Hajek, 1968) : Sous \mathcal{H}_0 , quand $n \to +\infty$, $\frac{n}{n+m} \to \lambda \in]0,1[$,

$$\frac{\textit{MW}_{X < Y} - \mathbb{E}_{\mathcal{H}_0}[\textit{MW}_{X < Y}]}{\sqrt{\text{Var}_{\mathcal{H}_0}(\textit{MW}_{X < Y})}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

On utilise ce résultat en pratique si $n, m \ge 8$. On a, sous l'hypothèse nulle, que

$$\mathbb{E}_{\mathcal{H}_0}[MW_{X < Y}] = \frac{mn}{2} \text{ et } \mathsf{Var}_{\mathcal{H}_0}(MW_{X < Y}) = mn\left(\frac{n+m+1}{12}\right).$$

Test de Mann-Whitney

• Tester \mathcal{H}_0 : F = G contre \mathcal{H}_1 : $F \leq G$:

$$MW_{X>Y} = \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{1}_{X_i>Y_j}.$$

La région de rejet au niveau α est de la forme

$$\mathcal{R}_{\alpha} = \{MW_{X>Y} \geq \tilde{u}_{(n,m),1-\alpha}\}.$$

• Tester \mathcal{H}_0 : F = G contre \mathcal{H}_1 : $F \neq G$:

$$MW_{X,Y} = \max(MW_{X < Y}, MW_{X > Y}).$$

La région de rejet au niveau α est de la forme

$$\mathcal{R}_{\alpha} = \{ MW_{X,Y} \geq v_{(n,m),1-\alpha} \}.$$

Test des rangs de Wilcoxon

- Ech. complet : $Z = (Z_1, ..., Z_N) = (X_1, ..., X_n, Y_1, ..., Y_m)$
- Tester \mathcal{H}_0 : F = G contre \mathcal{H}_1 : $F \ge G$
 - R_j le rang de Y_j dans $Z_{(.)}: R_j = \sum_{k=1}^N \mathbb{1}_{Z_k < Y_j} + 1$.
 - La statistique de Wilcoxon :

$$W_Y = \sum_{j=1}^m R_j$$

Relation entre Wilcoxon et Mann-Whitney :

$$MW_{X < Y} = W_Y - \frac{m(m+1)}{2}$$
 donc ils conduisent au même test.

- Tester \mathcal{H}_0 : F = G contre \mathcal{H}_1 : $F \leq G$
 - R_i le rang de X_i dans $Z_{(.)}$
 - La statistique de Wilcoxon : $W_X = \sum_{i=1}^n R_i$.
- Remarque : $W_X + W_Y = \sum_{k=1}^{N} k = \frac{N(N+1)}{2}$

Exemple

On reprend l'exemple des médicaments.

On veut tester \mathcal{H}_0 : $F_A = F_B$ contre \mathcal{H}_1 : $F_B \ge F_A$

$$z_{(.)} = (1.5, 2.1, 2.3, 2.5, 2.8, 3.1, 3.3, 4.2, 4.4, 4.5, 4.7, 4.8, 4.9, 5.8, 6.6, 6.8)$$

= $(mB_6, mB_4, mB_8, mB_2, mB_3, mA_2, mA_5, mA_7, mB_1, mA_4, mA_6, mB_7, mA_8, mA_3, mB_5, mA_1, mA_8, mA_8$

Les rangs observés pour les valeurs de B valent donc

$$R_1 = 9, R_2 = 4, R_3 = 5, R_4 = 2, R_5 = 15, R_6 = 1, R_7 = 12, R_8 = 3$$

ce qui donne $W_B=51$ et $W_A=(16\times 17)/2-51=85$.

On a également que

$$MW_{B < A} = \sum_{i=1}^{8} \sum_{j=1}^{8} \mathbb{1}_{B_i < A_j} = 5 + 5 + 5 + 6 + 6 + 7 + 7 + 8 = 49 = W_A - (8 \times 9)/2$$

et

$$MW_{B>A} = \sum_{i=1}^{8} \sum_{j=1}^{8} \mathbb{1}_{B_i>A_j} = 3+3+3+2+2+1+1+0 = 15 = W_B - (8\times 9)/2.$$

Exemple

```
On reprend l'exemple des médicaments. On veut tester \mathcal{H}_0: F_A = F_B contre \mathcal{H}_1: F_B \geq F_A
```

```
> wilcox.test(mB,mA,alternative="less")
Wilcoxon rank sum test
data: mB and mA
W = 15, p-value = 0.04149
alternative hypothesis: true location shift is less than 0
```

Traitement des ex-aequos

Nous avons supposé les lois continues, donc la probabilité d'avoir des ex-aequos est nulle. En pratique, soit parce que les lois ne sont pas continues, soit parce qu'on a des mesures arrondies, on peut avoir des ex-aequos.

Correction des statistiques de test de Mann-Whitney :

$$\tilde{MW}_{X < Y} = \sum_{i=1}^{n} \sum_{j=1}^{m} \left\{ \mathbb{1}_{X_{i} < Y_{j}} + \frac{1}{2} \mathbb{1}_{X_{i} = Y_{j}} \right\}$$

et

$$\tilde{MW}_{X>Y} = \sum_{i=1}^{n} \sum_{j=1}^{m} \left\{ \mathbb{1}_{X_i > Y_j} + \frac{1}{2} \mathbb{1}_{X_i = Y_j} \right\}$$

Rem : $\tilde{MW}_{X < Y} + \tilde{MW}_{X > Y} = nm$.

 Test de Wilcoxon : On corrige les rangs R_j en utilisant les rangs moyens. Le rang de tous les éléments d'un groupe d'ex-aequos est la moyenne des rangs des éléments du groupe.

Exemple

On considère les valeurs observées suivantes pour les deux échantillons :

$$\underline{x} = (5, 3, 6, 8, 1, 6)$$
 avec $n = 6$ et $\underline{y} = (5, 7, 9, 5, 2)$ avec $m = 5$.

X _(.)	1		3		5		6	6		8	
<i>y</i> _(.)		2		5		5			7		9
\tilde{R}_{i}	1		3		5		7.5	7.5		10	
$ ilde{R}_{j}$		2		5		5			9		11

Ainsi

$$\left(\tilde{M}W_{X
$$\left(\tilde{W}_Y\right)^{obs} = \sum_{i=1}^{5} \tilde{R}_i = 2 + 5 + 5 + 9 + 11 = 32$$$$

et on retrouve bien que $\left(\tilde{M}W_{X<Y}\right)^{obs} = \tilde{W}_Y^{obs} - \frac{5\times6}{2}$.

- Rappels
 - Fonction de répartition et quantiles
 - Fonction de répartition empirique
- Test de Kolmogorov de comparaison ou d'adéquation
- Tests de comparaison de deux échantillons
 - Tests de Kolmogorov-Smirnov
 - Test de Wilcoxon- Mann-Whitney
 - Test de la médiane
- Tests de normalité
 - Méthode graphique : droite de Henry
 - Test de normalité de Kolmogorov-Smirnov (de Lilliefors)
 - Test de Shapiro-Wilk

Test de la médiane

- \mathcal{H}_0 : F = G contre \mathcal{H}_1 : $F \ge G$, F et G sont continues.
- Statistique de test :

$$M_{X,Y} = \frac{1}{m} \sum_{j=1}^{m} \mathbb{1}_{R_j > \frac{N+1}{2}}.$$

- Région de rejet au niveau α : $\mathcal{R}_{\alpha} = \{M_{X,Y} \geq m_{n,m,1-\alpha}\}$.
- Loi de $M_{X,Y}$ sous \mathcal{H}_0 :
 - Si N pair, $mM_{X,Y} \sim \mathcal{H}(N, \frac{N}{2}, m)$ $\Longrightarrow \mathbb{E}_{\mathcal{H}_0}[M_{X,Y}] = \frac{1}{2}$ et $Var_{\mathcal{H}_0}(M_{X,Y}) = \frac{n}{4m(N-1)}$
 - Si N est impair, $mM_{X,Y} \sim \mathcal{H}(N, \frac{N-1}{2}, m)$ $\Longrightarrow \mathbb{E}_{\mathcal{H}_0}[M_{X,Y}] = \frac{N-1}{2N}$ et $Var_{\mathcal{H}_0}(M_{X,Y}) = \frac{n(N+1)}{4mN^2}$
- Pour $n, m \ge 30$, sous \mathcal{H}_0 ,

$$M_{X,Y} \stackrel{\mathcal{L}}{\simeq} \mathcal{N}(\mathbb{E}_{\mathcal{H}_0}[M_{X,Y}], \mathsf{Var}_{\mathcal{H}_0}(M_{X,Y}))$$

- Rappels
 - Fonction de répartition et quantiles
 - Fonction de répartition empirique
- Test de Kolmogorov de comparaison ou d'adéquation
- Tests de comparaison de deux échantillons
 - Tests de Kolmogorov-Smirnov
 - Test de Wilcoxon- Mann-Whitney
 - Test de la médiane
- Tests de normalité
 - Méthode graphique : droite de Henry
 - Test de normalité de Kolmogorov-Smirnov (de Lilliefors)
 - Test de Shapiro-Wilk

Contexte

- (X_1, \ldots, X_n) i.i.d. de fonction de répartition F
- \hat{F}_n la fonction de répartition empirique associée à cet échantillon
- Pour illustration des méthodes : trois échantillons de taille n = 200 :

Ech1: un échantillon simulé selon la loi $\mathcal{N}(2,1)$

Ech2: un échantillon simulé selon la loi uniforme sur l'intervalle [2,4]

Ech3: un échantillon simulé selon la loi de Cauchy de paramètre 1

Plan

- Rappels
 - Fonction de répartition et quantiles
 - Fonction de répartition empirique
- Test de Kolmogorov de comparaison ou d'adéquation
- Tests de comparaison de deux échantillons
 - Tests de Kolmogorov-Smirnov
 - Test de Wilcoxon- Mann-Whitney
 - Test de la médiane
- Tests de normalité
 - Méthode graphique : droite de Henry
 - Test de normalité de Kolmogorov-Smirnov (de Lilliefors)
 - Test de Shapiro-Wilk

Méthode graphique : droite de Henry

- Droite de Henry = "Normal Probability Plot" = "Q-Q Plot"
- On représente les points $(X_{(i)}, \Phi^{-1} \circ \widehat{F}_n(X_{(i)}))$, où Φ fonction de répartition de $\mathcal{N}(0,1)$.
- Sous l'hypothèse que les X_i sont i.i.d. de loi normale, les points $(X_{(i)}, \Phi^{-1} \circ \hat{F}_n(X_{(i)}))$ sont pratiquement alignés.

Plan

- Rappels
 - Fonction de répartition et quantiles
 - Fonction de répartition empirique
- Test de Kolmogorov de comparaison ou d'adéquation
- Tests de comparaison de deux échantillons
 - Tests de Kolmogorov-Smirnov
 - Test de Wilcoxon- Mann-Whitney
 - Test de la médiane
- Tests de normalité
 - Méthode graphique : droite de Henry
 - Test de normalité de Kolmogorov-Smirnov (de Lilliefors)
 - Test de Shapiro-Wilk

Test de normalité de K.-S. (de Lilliefors)

- \mathcal{H}_0 : "les X_i suivent une loi normale" \mathcal{H}_1 : "les X_i ne suivent pas une loi normale".
- Statistique de test

$$D\mathcal{N}_n = \sup_{t \in \mathbb{R}} |\hat{F}_n(t) - \Phi_{(\bar{X}, S_X^2)}(t)|$$

où
$$\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i},\,S_{X}^{2}=\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}$$
 et $\Phi_{(\bar{X},S_{X}^{2})}(.)$ f.d.r. de $\mathcal{N}(\bar{X},S_{X}^{2})$

- La région de rejet au niveau α : $\mathcal{R}_{\alpha} = \{D\mathcal{N}_n > d_{n,1-\alpha}\}$
- Sous \mathcal{H}_0 (i.e $X_i \sim \mathcal{N}(\mu, \sigma^2)$), la loi de $D\mathcal{N}_n$ ne dépend pas des paramètres inconnus (μ, σ^2) . Il s'agit de la loi de

$$KS\mathcal{N}_n = \sup_{t \in \mathbb{R}} \left| \hat{\Phi}_n(t) - \Phi_{(\bar{Z}, S_Z^2)}(t) \right|$$

où $\mathcal{Z}=(Z_1,\ldots,Z_n)$ i.i.d de loi $\mathcal{N}(0,1)$, $\hat{\Phi}_n$ la fonction de répartition empirique de \mathcal{Z} , \bar{Z} la moyenne empirique et S_Z^2 la variance empirique de \mathcal{Z} .

Exemples

On applique le test de normalité de Kolmogorov-Smirnov sur les trois échantillons simulés :

```
> library(nortest)
> lillie.test(Ech1)
Lilliefors (Kolmogorov-Smirnov) normality test
data: Ech1
D = 0.041892, p-value = 0.532
> lillie.test(Ech2)
Lilliefors (Kolmogorov-Smirnov) normality test
data: Ech2
D = 0.083624, p-value = 0.001691
> lillie.test(Ech3)
Lilliefors (Kolmogorov-Smirnov) normality test
data: Ech3
D = 0.34735, p-value < 2.2e-16
```

Plan

- Rappels
 - Fonction de répartition et quantiles
 - Fonction de répartition empirique
- Test de Kolmogorov de comparaison ou d'adéquation
- Tests de comparaison de deux échantillons
 - Tests de Kolmogorov-Smirnov
 - Test de Wilcoxon- Mann-Whitney
 - Test de la médiane
- Tests de normalité
 - Méthode graphique : droite de Henry
 - Test de normalité de Kolmogorov-Smirnov (de Lilliefors)
 - Test de Shapiro-Wilk

Test de Shapiro-Wilk

- Il s'agit d'un test basé sur les L-statistiques (combinaison linéaire des statistiques d'ordre), qui se base sur une comparaison de la variance empirique avec un estimateur de la variance des X_i qui a de bonnes propriétés sous l'hypothèse de normalité.
- Il se base sur une mesure de corrélation (au carré) entre les quantiles empiriques et les quantiles théoriques d'une loi normale centrée réduite.

- X_1, \ldots, X_n i.i.d, $\mu = \mathbb{E}[X_i]$ et $\sigma^2 = \text{Var}(X_i)$
- La loi de $Y_i = (X_i \mu)/\sigma$ est supposée symétrique
- ullet $(Y_{(1)},\ldots,Y_{(n)})$ l'échantillon des Y_i ordonné : $Y_{(i)}=(X_{(i)}-\mu)/\sigma$
- ullet On cherche "le meilleur estimateur linéaire" de μ et σ

- Pour $i, j \in \{1, ..., n\}$, on pose $\alpha_i = \mathbb{E}[Y_{(i)}]$ et $B_{i,j} = \text{Cov}(Y_{(i)}, Y_{(j)})$ Rq : Sous l'hypothèse de normalité, ceci peut se calculer.
- Soit

$$X_{(i)} = \mu + \alpha_i \sigma + \varepsilon_i$$

Ecriture matricielle :

$$\underbrace{\begin{pmatrix} X_{(1)} \\ \vdots \\ X_{(n)} \end{pmatrix}}_{X_{(.)}} = \underbrace{\begin{pmatrix} 1 & \alpha_1 \\ 1 & \alpha_2 \\ \vdots & \vdots \\ 1 & \alpha_n \end{pmatrix}}_{\boldsymbol{\alpha}_n} \underbrace{\begin{pmatrix} \mu \\ \sigma \end{pmatrix}}_{\boldsymbol{\theta}} + \underbrace{\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}}_{\boldsymbol{\varepsilon}}$$

Ecriture matricielle :

$$X_{(.)} = A\theta + \varepsilon$$

donc

$$B^{-1/2}X_{(.)}=B^{-1/2}A\ \theta+B^{-1/2}\varepsilon$$

• L'estimateur des moindres carrés pondérés de (μ, σ) :

$$\begin{pmatrix} \hat{\mu}_n \\ \hat{\sigma}_n \end{pmatrix} = (A'B^{-1}A)^{-1}A'B^{-1}X_{(.)}$$

avec

$$A'B^{-1}A = \begin{pmatrix} 1'_nB^{-1}1_n & 1'_nB^{-1}\alpha \\ \alpha'B^{-1}1_n & \alpha'B^{-1}\alpha \end{pmatrix}.$$

- Lorsque la loi des Y_i est symétrique, $\mathbf{1}'_n B^{-1} \alpha = \mathbf{0}$, la matrice $A'B^{-1}A$ est donc diagonale.
- Il en résulte que

$$\hat{\mu}_n = \frac{1_n' B^{-1} X_{(.)}}{1_n' B^{-1} 1_n}, \quad \hat{\sigma}_n = \frac{\alpha' B^{-1} X_{(.)}}{\alpha' B^{-1} \alpha}.$$

• Idée du test de Shapiro-Wilk : comparer l'estimateur $\hat{\sigma}_n^2$ (bon estimateur de la variance quand loi normale donc symétrique) avec l'estimateur usuel $\frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X}_n)^2$.

Test de Shapiro-Wilk

- $Y_1, \ldots Y_n$ i.i.d. de loi $\mathcal{N}(0,1)$
- $\alpha = (\mathbb{E}[Y_{(1)}], \dots \mathbb{E}[Y_{(n)}])'$ et B la matrice de covariance de $(Y_{(1)}, \dots, Y_{(n)})$.
- Statistique de test :

$$SW_n = \frac{(\alpha' B^{-1} \alpha)^2}{(\alpha' B^{-2} \alpha)} \frac{\hat{\sigma}_n^2}{\sum_{i=1}^n (X_i - \bar{X}_n)^2} = \frac{\left(\sum_{i=1}^n a_i X_{(i)}\right)^2}{\sum_{i=1}^n (X_i - \bar{X}_n)^2},$$

avec
$$(a_1, \ldots, a_n) = \frac{\alpha' B^{-1}}{(\alpha' B^{-1} B^{-1} \alpha)^{1/2}}$$
.

• La région de rejet est de la forme $\{SW_n \leq c_{n,\alpha}\}$.

Exemples

```
> shapiro.test(Ech1)
Shapiro-Wilk normality test
data: Ech1
W = 0.99268, p-value = 0.4201
> shapiro.test(Ech2)
Shapiro-Wilk normality test
data: Ech2
W = 0.95826, p-value = 1.289e-05
> shapiro.test(Ech3)
Shapiro-Wilk normality test
data: Ech3
W = 0.45775, p-value < 2.2e-16
```