SUPPORT VECTOR MACHINES

Applied Analytics: Frameworks and Methods 1

Outline

- Intuition behind support vector machines
- Linear classifiers
- Feature expansion to accommodate non-linear decision boundaries
- Polynomial and Radial Basis Function kernels
- SVM vs. logistic regression
- Implementation of SVM in R

Support Vector Machines

- Constructs a hyperplane or set of hyperplanes in a high dimensional space which can be use for both classification and regression.
- It is not that statistical!
- Flexible and powerful method for making predictions but models are not easy to interpret.

- Begins with trying to find a plane that separates classes in feature space
- Which is great if the classes are linearly separable as seen in the figure.

- Fitting a Classifier or Hyperplane to linearly separable classes
- But, these classes can be separated by a very large number of hyperplanes

■ The decision boundary chosen is the one that has the biggest margin and is accordingly called Maximum Margin Classifier.

■ In practice, classes are seldom linearly separable

- Therefore, the requirement of a hard margin is relaxed in favor of a soft margin
- The soft margin used is determined by a cost parameter
- Higher cost narrower margins

High Cost

Low Cost

Support Vector Machines

- Begins with trying to find a plane that separates classes in feature space
- Since, in practice this is difficult, the technique
 - Looks for a soft margin boundary that separates classes
 - Enriches and enlarges the features space to make separation possible

What is a Hyperplane?

- A hyperplane in p dimensions is a flat affine subspace of dimension p-1.
- In general the equation for a hyperplane has the form
- $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p = 0$
- In p = 2 dimensions a hyperplane is a line
- If β_0 = 0, the hyperplane goes through the origin, otherwise not.
- The vector $\beta = (\beta_1, \beta_2, \dots, \beta_p)$ is called the normal vector it points in a direction orthogonal to the surface of a hyperplane

Separating Hyperplanes

- If $f(X) = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$, then f(X) > 0 for points on one side of the hyperplane, and f(X) < 0 of points on the other
- If we code the colored points as Y_i = +1 for blue, say, and $Y_i = -1$ for mauve, then if $Y_i \cdot f(X_i) > 0$ for all i, f(X) = 0 defines a *separating* hyperplane

Maximum Margin Classifier

Among all separating hyperplanes, find the one that makes the biggest gap or margin between the two classes

Source: James et al (2017)

Non-separable Data

- But, most data is not linearly separable
 - Exception being when n < p

Noisy Data

- Noisy data can lead to a poor solution for the maximal-margin classifier.
- The support vector classifier maximizes a soft margin.

Support Vector Classifier

Cost, c, is a Regularization Parameter

But, Linear Boundary can Fail

- Sometimes a linear boundary fails, no matter how high the value of C.
- Here is an example.

Feature Expansion

- Enlarge the space of features by including transformations, e.g., X_1^2 , X_1^3 , X_1^3 , X_2^2 . By doing so, we go from a p-dimensional space to an M>p dimensional space.
- Fit a support-vector classifier in the enlarged space
- This results in non-linear decision boundaries in the original space
- E.g., if we use a vector space of $(X_1, X_2, X_1^2, X_2^2, X_1X_2)$ instead of (X_1, X_2)
- Then the decision boundary would be of the form

$$- \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 = 0$$

■ This leads to nonlinear decision boundaries in the original space (quadratic conic sections).

Cubic Polynomials

- Basis Expansion of Cubic Polynomials from 2 variables to 9
- The support-vector classifier in the enlarged space solves the problem in the lower-dimensional space

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 + \beta_6 X_1^3 + \beta_7 X_2^3 + \beta_8 X_1 X_2^2 + \beta_9 X_1^2 X_2 = 0$$

Source: James et al (2017)

Linear vs. Polynomial Kernel

Nonlinearities and Kernels

- Polynomials (especially high-dimensional ones) get wild rather fast.
- There is a more elegant and controlled way to introduce nonlinearities in support-vector classifiers through the use of kernels.
- If we can compute inner products between observations, we can fit a support vector classifier.
- This is made possible by some simple kernel functions like a Radial Basis Kernel

Radial Kernel

Polynomial vs. Radial Kernel

SVM for more than 2 classes

- SVM can be extended to a situation with more than two classes. There are two approaches to this
 - One versus all: Fit k different 2 class SVM classifiers
 - One versus One: Fit all pairwise classifiers. Use if k is not too large.

SVM vs. Logistic Regression

- When classes are (nearly) separable, SVM does better than LR. So does LDA.
- When not, LR (with ridge penalty) and SVM very similar.
- If you wish to estimate probabilities, LR is the choice.
- For nonlinear boundaries, kernel SVMs are popular. Can use kernels with LR and LDA as well, but computations are more expensive.

Illustration

See svm.html

Conclusion

- In this session, we
 - Examined the intuition behind support vector machines
 - Discussed linear classifiers
 - Looked at feature expansion to accommodate non-linear decision boundaries
 - Examined polynomial and radial kernels
 - Compared SVM to logistic regression
 - Looked at implementation of SVM in R