МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет» (ФГБОУ ВО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Лабораторная работа №3

ИССЛЕДОВАНИЕ ДИСЦИПЛИНЫ ЦИКЛИЧЕСКОГО ПЛАНИРОВАНИЯ RR (ROUND-ROBIN)

Отчет по лабораторной работе дисциплины «Моделирование»

Выполнил студент группы ИВТ-32	/Рзаев А. Э./
Проверил преподаватель	/Старостин П.А./

1 Задание

При выполнении задания необходимо выполнить математическое моделирование функционирования однопроцессорной системы с целью исследования характеристик дисциплины RR (Round-Robin) циклического планирования обслуживания потоков процессов в ресурсах системы.

2 Модель

1. В первом случае при построении модели функционирования системы все ресурсы системы рассматриваются как единый ресурс с длительностью обслуживания потоков процессов равной сумме длительностей их обслуживания в каждом ресурсе системы.

При этом подразумевается, что любой из процессов при его обслуживании в системе последовательно и однократно обслуживается в каждом из ее ресурсов – в процессоре, подсистемах внешней памяти ВЗУ1 и ВЗУ2.

В качестве дисциплины планирования запуска процессов на обслуживание в систему при построении математической модели принимается дисциплина циклического планирования RR.

Таким образом, первая модель является максимально упрощенной и представляет макромодель процесса функционирования системы.

2. Во втором варианте однопроцессорная система представляется в виде сети одноканальных СМО с циклическими очередями, запуск процессов из которых на обслуживания в ресурс выполняется по правилам дисциплины обслуживания RR.

3 Вычисления

Алгоритм решения задачи аналогичен вычислению времени ожидания в предыдущих заданиях.

Для вычисления среднего времени ожидания заявок на обслуживание используется формула

$$\omega_m^i = m_i q \rho / (1 - \rho),$$

где m_i — количество квантов времени, необходимых для полного обслуживания і-го процесса, q — длительность кванта времени обслуживания процесса, ρ — коэффициент загрузки системы равный $\sum_{1}^{M} (\vartheta si \ \lambda i)$, $\vartheta si = \vartheta_{np}{}^{i} + \vartheta_{взу1}{}^{i} + \vartheta_{взу2}{}^{i}$.

Во второй системе среднее время обслуживания і-го потока получается из суммы времени обслуживания всех членов системы.

4 Результаты

4.1 Первая система

Зависимость времени ожидания от производительности процессора при различных значениях кванта времени:

4.2 Вторая система

Зависимость времени ожидания от производительности процессора при различных значениях кванта времени:

5 Вывод

В дисциплине RR при увеличении значения кванта увеличивается время ожидания. В случае рассматривания трехкомпонентной системы результаты получаются более точные, а время ожидания больше по сравнению с системой, представленной единым ресурсом.

6 Исходные таблицы с данными

Таблица 1 — Интенсивности поступления потоков обслуживаемых процессов.

№ потока	Интенсивность потока
3	0,20
9	0,05
10	0,05
11	0,55
16	0,10

Таблица 2 – Параметры обслуживаемых процессов

	Среднее количество	Cpe	цнее ч	исло о	пераці	ий обра	ащени	я к фаі	йлам д	анных	при
вычислительных			обслуживании процесса (N_{ij})								
№	операций,	Номера файлов, к которым выполняется обращение					e				
процесса	выполняемых при										
	обслуживании	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
	процесса [Мфлоп]										
3	300	-	-	20	-	10	-	-	-	-	4
9	900	20	10	-	18	-	-	-	-	-	3
10	1000	-	30	-	-	-	20	6	-	8	-
11	100	24	-	16	20	-	_	_	4	4	2
16	600	-	30	50	12	8	-	6	-	4	-

Таблица 3 – Характеристики операций обращения к файлам данных.

№ файлов данных	Объем данных, передаваемых при выполнении одной операции обращения к файлу данных V_{FI} [Мбайт]	Средний объем данных, передаваемых при выполнении одной операции ввода/вывода ${\it G}_{FI}$ [Кбайт]
F1	0.5	5
F2	1.0	8
F3	1.0	15
F4	1.5	6
F5	1.5	14
F6	2.0	18
F7	2.5	10
F8	3.0	15
F9	4.0	20
F10	3.5	11

Таблица 4 – Характеристики накопителей внешней памяти

№ файла	Среднее время выполнения одной операции ввода/вывода данных $oldsymbol{artheta_{FI}}$ [мкс/оп.]				
данных	Тип накопителя ВЗУ, на котором размещены файлы данных				
	НМД 1	НМД 2			
F 1	1,0	-			
F 2	-	0,10			
F 3	2,0	-			
F 4	-	0,05			
F 5	3,0	-			
F 6	-	0,06			
F 7	2,5	-			
F 8	-	0,13			
F 9	2,5	-			
F 10	-	0,12			