Es01B: Misure di tensione, corrente, tempi, frequenza.

Gruppo 1G.BT Lorenzo Cavuoti, Francesco Sacco

4 Ottobre 2018

2 Misure di tensione e corrente

2.b Partitore con resistenze da circa 1 k Valori misurati R_1 e R_2 e valore atteso di A_{exp} :

$$R_1 = (1182 \pm 9) \Omega$$
, $R_2 = (971 \pm 7) \Omega$, $A_{\text{exp}} = (0.452 \pm 0.004)$

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN
1,928	0,009	0,868	0,004	0.450	0.005
5,94	0,03	2,68	0,02	0.451	0.005
4,24	0,02	1,91	0,01	0.450	0.005
2,65	0,02	1,194	0,006	0.451	0.005
6,19	$0,\!17$	2,80	0,02	0.452	0.005
7,28	0,03	3,29	0,02	0.452	0.005
8,41	0,04	3,80	0,02	0.452	0.005
9,79	0,04	4,42	0,02	0.451	0.005
0,868	0,004	0,392	0,002	0.452	0.005

Tabella 1: (2.b) Partitore di tensione con resistenze da circa 1k. Tutte le tensioni in V.

Figura 1: (2.b) Grafico V_{out} vs. V_{in} con resistenze di circa 1k

Risolvendo il circuito considerando un voltmetro ideale ci aspettiamo $V_{out}/V_{in}=R_2/(R_1+R_2)$ quindi facendo il grafico di V_{out} vs V_{in} ci aspettiamo una retta passante per l'origine con coefficiente angolare $R_2/(R_1+R_2)=0.451\pm0.006$. Eseguendo il fit con la funzione curve-fit di scipy e lasciando absolute-sigma=False in quando gli errori non sono statistici otteniamo un coefficiente angolare $a=0.4514\pm0.0004$ e un intercetta $b=0.0004\pm0.0008$, entrambi compatibili con le aspettative.

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN
0,754	0,003	0,347	0,002	0.460	0.005
1,825	0,009	0,839	0,004	0.460	0.005
2,89	0,02	1,332	0,007	0.461	0.005
4,150	0,02	1,910	0,010	0.460	0.005
5,26	0,03	2,42	0,01	0.460	0.005
7,02	0,04	3,24	0,02	0.461	0.005
8,13	0,04	3,74	0,02	0.460	0.005
9,23	0,05	4,25	0,02	0.460	0.005
6,17	0,03	2,48	0,02	0.460	0.005

Tabella 2: (2.c) Partitore di tensione con resistenze da circa 4M. Tutte le tensioni in V.

Figura 2: (2.c) Grafico V_{out} vs. V_{in} con resistenze da circa 4M

2.c Partitore con resistenze da circa 4M Valori misurati R_1 e R_2 e valore atteso di A_{exp} :

$$R_1 = (3,80 \pm 0,04) \,\mathrm{M}\Omega, \quad R_2 = (4,81 \pm 0,05) \,\mathrm{M}\Omega, \quad A_{\mathrm{exp}} = (0.559 \pm 0.005)$$

Anche in questo caso, considerando un voltmetro ideale, ci aspettiamo $V_{out}/V_{in} = R_2/(R_1 + R_2)$, facendo il grafico di V_{out} vs V_{in} ci aspettiamo una retta passante per l'origine con coefficiente angolare $R_2/(R_1 + R_2) = 0.557 \pm 0.007$. Abbiamo eseguito il fit con la funzione curve-fit di scipy e lasciando absolute-sigma=False in quando gli errori non sono statistici ottenendo un coefficiente angolare $a = 0.4605 \pm 0.0003$ e un intercetta $b = 0.0003 \pm 0.0005$. Nonostante l'intercetta sia compatibile con le aspettative il coefficiente angolare è molte barre di errore all'infuori del valore misurato. Ciò potrebbe essere dovuto al fatto che il nostro voltmetro non sia ideale e di conseguenza ha resistenza interna molto grande ma finita.

2.d Resistenza di ingresso del tester Usando il modello mostrato nella scheda si ottiene

$$\frac{R_1}{R_T} = \frac{V_{IN}}{V_{OUT}} - (1 + \frac{R_1}{R_2})$$

Con i dati del punto 2.b si ottiene

$$R_1/R_T = 0.00 \pm 0.01 \rightarrow R_T > 100k\Omega$$

Con i dati del punto 2.c si ottiene

$$R_1/R_T = 0.38 \pm 0.01 \rightarrow R_T = (9.9 \pm 0.3)M\Omega$$

Usando resistenze da circa $1k\Omega$ il rapporto R_1/R_T risulta compatibile con 0, tuttavia, sappiamo che R_1/R_T è un numero strettamente maggiore di 0, e minore di 0.01, di conseguenza si può porre un limite inferiore alla resistenza del tester, $R_T > 100k\Omega$. Aumentando i valori delle resistenze nell'ordine dei $4M\Omega$ si ottiene $R_1/R_T = 0.38 \pm 0.01$, non più compatibile con 0, questo ci permette di stimare $R_T = (9.9 \pm 0.3)M\Omega$ con un errore relativo del 3%

3 Uso dell'oscilloscopio

3.b Misure di tensione Vengono ripetute le misure del punto 2.c ma con pochi punti e senza grafico

VIN	σ VIN	VOUT	σ VOUT	VOUT/VIN	σ VOUT/VIN
1,68	0,07	0,30	0,01	0.17	0.01
3,72	0,15	0,68	0,03	0.18	0.01
7,44	0,3	1,28	0,05	0.17	0.01
9,8	0,4	1,76	0,07	0.18	0.01

Tabella 3: (3.b) Partitore di tensione con resistenze da circa 4M, misura con oscilloscopio. Tutte le tensioni in V.

3.d Impedenza di ingresso dell'oscilloscopio Si ripete l'analisi del punto 2.d

$$R_1/R_{IN} = 3.86 \pm 0.01 \rightarrow R_{IN} = (0.98 \pm 0.01)M\Omega$$

4 Misure di frequenza e tempo

4.b Misure di frequenza Misure con onda sinusoidale

	Periodo T (s)	$\sigma T (s)$	Frequenza f (Hz)	σ f (Hz)	Misura oscilloscopio (Hz)	Differenza (Hz)
Ī	$1,01 \times 10^{-3}$	0.01×10^{-3}	997	10	997	7
	$1,02 \times 10^{-4}$	0.01×10^{-4}	9.8×10^{3}	0.1×10^{3}	$9,9 \times 10^{3}$	10^{2}
	$1,00 \times 10^{-5}$	0.01×10^{-5}	1.0×10^{5}	0.01×10^{5}	$9,99{\times}10^{3}$	10^{2}
	$1,01 \times 10^{-6}$	0.01×10^{-6}	$9,90 \times 10^{5}$	0.01×10^{5}	$1,00 \times 10^6$	$1,4 \times 10^4$

Tabella 4: (4.b) Misura di frequenza di onde sinusoidali e confronto con misurazione interna dell'oscilloscopio

5 Trigger dell'oscilloscopio

5.b Segnale pulse Misure con segnale pulse del generatore di onde

Figura 3: (5.b) Relazione temporale tra il segnale pulse e l'onda principale

6 Conclusioni e commenti finali

Nel caso di resistenze da 1k il valore del coefficiente angolare misurato è in accordo con quello atteso, mentre per resistenze più elevate questo non è valido. Tuttavia questa discrepanza può essere giustificata considerando

la resistenza interna del voltmetro, e permette di stimarne la resistenza interna, e con il nostro esprimento l'abbiamo verificato

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.