

Study Material

Downloaded from Vedantu

Vedantu is India's largest **LIVE online teaching platform** with best teachers from across the country.

Vedantu offers Live Interactive Classes for **JEE, NEET,** KVPY, NTSE, Olympiads, **CBSE, ICSE,** IGCSE, IB & State Boards for Students Studying in **6-12th Grades** and Droppers.

Awesome Master Teachers

Anand Prakash B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna B.Tech, IIT Bombay Co-Founder, Vedantu

My mentor is approachable and **guides me** in my future aspirations as well.

Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

10,04,600+ Hours of LIVE Learning

9,49,900+ Happy Students

95% Top Results **95**% Students of Regular Tuitions on Vedantu scored above **90**% in exams!

Vedantu

FREE MASTER CLASS SERIES

- Learn from the Master Teachers India's best

Register for FREE

Limited Seats!

Vedantu

DownloadVedantu's App & Get

LIVE Doubt Solving

FREE Tests and Reports

DOWNLOAD THE APP

JEE Main - 2018 (CBT) Exam Test Date: 16/04/2018

Part - B (Chemistry)

- 1. For standardizing NaOH solution, which of the following is used as a primary standard?
 - (1) Sodium tetraborate

(2) Ferrous Ammonium Sulfate

(3) Oxalic acid

(4) dil. HCl

Ans. (3)

Sol. Oxalic acid is used as a primary standard for NaOH standardizing.

2. Products A and B formed in the following reactions are respectively:

$$\begin{array}{c} \overset{\oplus}{\text{NH}_3\text{CH}_3\text{COO}} \\ \\ & + \text{HNO}_2 \longrightarrow \text{A} \xrightarrow{C_6\text{H}_5\text{NH}_2} \rightarrow \text{B} \\ \\ & \text{SO}_3\text{H} \end{array}$$

$$N=N-O-CCH_3$$
 $N=N-O-CCH_3$
 $N=N-C-CCH_3$
 $N=N-C-CCH_3$

$$(2) \begin{array}{|c|c|} O & H \\ N=N-OCCH_3 & N=N-N-\\ \hline \\ SO_3H & SO_3H \\ \end{array}$$

$$(4) \begin{array}{|c|c|c|c|}\hline N=NCOCH_3\\ & \text{and} & HO_3S \\\hline & SO_3H\\ & & \end{array}$$

VedantuStudy Materials

NCERT Solutions for Class 6 to 12 (Math & Science)
Revision Notes for Class 6 to 12 (Math & Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 & 10 Mathematics
Important Questions for Class 6 to 12 (Math & Science)
CBSE Sample Papers for Class 9, 10 & 12 (Math & Science)
Science)

Important Formula for Class 6 to 12 Math CBSE Syllabus for Class 6 to 12 Lakhmir Singh Solutions for Class 9 & 10

Previous Year Question Paper

CBSE Class 12 Previous Year Question Paper

CBSE Class 10 Previous Year Question Paper

JEE Main & Advanced Question Paper

NEET Previous Year Question Paper

Ans. (1)

- 3. When XO₂ is fused with an alkali metal hydroxide in presence of an oxidizing agent such as KNO₃; a dark green product is formed which disproportioates in acidic solution to afford a dark purple solution. X is:
 - (1) Mn
- (2) Cr
- (3) V
- (4) Ti

Ans. (1)

Sol.
$$MnO_2 + KOH \longrightarrow K_2MnO_4$$
 \xrightarrow{Acidic} $\xrightarrow{solution}$ $\xrightarrow{KMnO_4}$ $\xrightarrow{(dark purple)}$

4. The major product B formed in the following reaction sequence is :

$$(1) \xrightarrow{(i) C_2H_8MgBr} A \xrightarrow{HCI} B$$

$$(2) \xrightarrow{MeO} CI$$

$$(3) \xrightarrow{MeO} (4) \xrightarrow{MeO} (4)$$

Ans. (4

Sol.
$$CH_3O \xrightarrow{\text{(i) } C_2H_5MgBr} CH_3O \xrightarrow{\text{(ii) } H_2O} CH_3O \xrightarrow{\text{CH}_3O} CH_3O$$

5. In a complexometric titration of metal ion with ligand

M (Metal ion) + L (Ligand) \rightarrow C (Complex) end point is estimated spectrophotometrically (through light absorption). If 'M' and 'C' do not absorb light and only 'L' absorbs, then the titration plot between absorbed light (A) versus volume of ligand 'L' (V) would look like:

Ans. (1)

Sol. Initially ligand consumed by metal due to formation of complex. So absorbed light (A) remain constant, after complex formation is completed, extra volume of ligand solution increases ligand concentration and also increases absorbed light.

6. The major product of the following reaction is :

$$CH=CHCH_3$$

$$CH_2CH_2CH_2Br$$

$$BrCHCH_2CH_3$$

$$CH_2CHCH_3$$

$$CH_2CHCH_3$$

$$CH_2CHCH_3$$

$$CH=CHCH_3$$

$$CH=CHCH_3$$

$$CH=CHCH_3$$

$$CH=CHCH_3$$

$$CH=CHCH_3$$

$$CH=CHCH_3$$

$$CH=CHCH_3$$

$$CH=CHCH_3$$

Ans. (2)

7. Among the following, the **incorrect** statement is:

- (1) Cellulose and amylose has 1,4-glycosidic linkage.
- (2) Lactose contains β -D-galactose and β -D-glucose.
- (3) Maltose and lactose has 1,4-glycosidic linkage.
- (4) Sucrose and amylose has 1,2-glycosidic linkage.

Ans. (4)

Sol. In amylose 1,4-glycosidic linkage is present.

- **8.** In the extraction of copper from its sulphide ore, metal is finally obtained by the oxidation of cuprous sulphide with :
 - $(1) SO_2$
- (2) Fe₂O₃
- (3) Cu₂O
- (4) CO

Ans. (3)

- **Sol.** $Cu_2S + 2Cu_2O \longrightarrow 6Cu + SO_2$
- **9.** Among the oxides of nitrogen:

N₂O₃, N₂O₄ and N₂O₅; the molecule(s) having nitrogen-nitrogen bond is/are:

- (1) N_2O_3 and N_2O_4
- (2) N_2O_4 and N_2O_5
- (3) N_2O_3 and N_2O_5
- (4) Only N₂O₅

Ans. (1)

Sol. 0 N—N

- N₂O₄
- 10. Which of the following conversions involves change in both shape and hybridisation?
 - (1) $H_2O \rightarrow H_3O^{\dagger}$
- $(2) BF_3 \rightarrow BF_4^-$
- $(3) CH_4 \rightarrow C_2H_6$
- $(4) NH_3 \rightarrow NH_4^+$

Ans. (2)

Sol. $BF_3 \longrightarrow BF_4^-$

F/B F

Triangle planar

Tetrahedral

11. The most polar compound among the following is :

(2) F

(3) F

Ans. (3)

Sol. In

, the bond dipole vector of C-F bond is not subtractive.

- 12. In Wilkinson's catalyst, the hybridization of central metal ion and its shape are respectively:
 - (1) sp³d, trigonal bipyramidal

(2) d²sp³, octahedral

(3) dsp², square planar

(4) sp³, tetrahedral

- **Ans.** (3)
- Sol. Wilkinson catalyst

[RhCl(PPh₃)₃]

- At 320 K, a gas A_2 is 20 % dissociated to A(g). The standard free energy change at 320 K and 1 atm in $J \text{ mol}^{-1}$ is approximately : (R = 8.314 $J \text{K}^{-1} \text{ mol}^{-1}$; In 2 = 0.693; In 3 = 1.098)
 - (1) 1844
- (2)2068
- (3)4281
- (4) 4763

- Ans. (3)
- Alls. (5)
- Sol. $A_2(g) \rightleftharpoons 2A(g)$
 - 1
- 0

$$1-1\times\frac{20}{100}$$
 $2\times\frac{20}{100}$

- 0.8
- 0.4

$$K_p = \frac{(p_A)^2}{(p_{A_2})} = \frac{0.4 \times 0.4}{0.8} = 0.2$$

$$\Delta G^{\circ} = -2.303 \times 8.314 \times 320 \log_{10} 0.2 = 4281 \text{ J/mole}$$

- 14. Which of the following complexes will show geometrical isomerism?
 - (1) Potassium tris(oxalato)chromate(III)
 - (2) Pentaaquachlorochromium(III)chloride
 - (3) Aquachlorobis(ethylenediamine)cobalt(II) chloride
 - (4) Potassium amminetrichloroplatinate(II)
- **Ans.** (3
- **Sol.** [Co(H₂O)Cl(en)₂]Cl

(Geometrical Isomer)

- **15.** Which of the following statements is **false**?
 - (1) Splitting of spectral lines in electrical field is called Stark effect.
 - (2) Frequency of emitted radiation from a black body goes from a lower wavelength of higher wavelength as the temperature increases.
 - (3) Photon has momentum as well as wavelength.
 - (4) Rydberg constant has unit of energy.
- Ans. (2) and (4) [both are false]
- Sol. When temperature is increased, black body emit high energy radiation, from higher wavelength to lower wavelength.

Rydberg constant has unit length⁻¹ (i.e. cm⁻¹)

- 16. When 9.65 ampere current was passed for 1.0 hour into nitrobenzene in acidic medium, the amount of p-aminophenol produced is :
 - (1) 109.0 g
- (2) 98.1 g
- (3) 9.81 g
- (4) 10.9 g

Ans. (3

Sol.
$$C_6H_5NO_2 \longrightarrow \bigvee_{NH_2}^{OH}$$

$$4e^{-} + 4H^{+} + C_{6}H_{5}NO_{2} \longrightarrow C_{6}H_{4}(OH)(NH_{2}) + H_{2}O$$
_{M.W. = 109 g}

W = ZIt =
$$\frac{E}{F} \times I \times t$$
 $\left(E = \frac{M}{4}\right)$

$$W = \frac{109 \times 9.65 \times 60 \times 60}{4 \times 96500}$$

$$W = 9.81 q$$

- **17.** For which of the following processes, ΔS is negative?
 - (1) $C(diamond) \rightarrow C(graphite)$
- (2) $N_2(g, 1 \text{ atm}) \rightarrow N_2(g, 5 \text{ atm})$
- (3) $N_2(g, 273 \text{ K}) \rightarrow N_2(g, 300 \text{ K})$
- $(4) H_2(g) \rightarrow 2H(g)$

- Ans. (2)
- **Sol.** N_2 (g, 1 atm) \longrightarrow N_2 (g, 5 atm)

$$\Delta S = \left(nC_p \ln \frac{T_2}{T_1} \right) + nR \ln \frac{V_2}{V_1} \qquad \text{for isothermal process } T_1 = T_2 \text{ and } \frac{V_2}{V_1} = \frac{P_1}{P_2}$$

= 0 + nR ln
$$\frac{P_1}{P_2}$$
 = nR ln $\frac{1}{5}$

 $\Delta S < 0$

18. An unknown chlorohydrocarbon has 3.55 % of chlorine. If each molecule of the hydrocarbon has one chlorine atom only; chlorine atoms present in 1 g of chlorohydrocarbon are:

(Atomic wt. of CI = 35.5 u; Avogadro constant = $6.023 \times 10^{23} \text{ mol}^{-1}$)

- $(1) 6.023 \times 10^9$
- $(2) 6.023 \times 10^{23}$
- $(3) 6.023 \times 10^{21}$
- $(4) 6.023 \times 10^{20}$

Ans. (4)

Sol. C_xH_yCI

Weight of CI =
$$1 \times \frac{3.55}{100}$$

$$n_{CI^-} = \frac{1 \times 3.55}{100 \times 35.5}$$

No of Cl⁻ion =
$$\frac{1 \times 3.55}{100 \times 35.5} \times 6.023 \times 10^{23}$$

= 6.023 × 10²⁰

- 19. The incorrect statement is :
 - (1) Cu²⁺ ion gives chocolate coloured precipitate with potassium ferrocyanide solution.
 - (2) Cu²⁺ and Ni²⁺ ions give black precipitate with H₂S in presence of HCl solution.
 - (3) Ferric ion gives blood red colour with potassium thiocyanate.
 - (4) Cu²⁺ salts give red coloured borax bead test in reducing flame.

Ans. (2)

- **Sol.** Due to common ion effect, sufficient S²⁻ concentration not produce and not formed ppt of NiS.
- 20. The mass of a non-volatile, non-electrolyte solute (molar mass = 50 g mol⁻¹) needed to be dissolved in 114 g octane to reduce its vapour pressure to 75 %, is:
 - (1) 37.5 g
- (2) 75 g
- (3) 150 g
- (4) 50 g

Ans. (Bonus)

Sol.
$$\frac{P^{\circ} - P_{s}}{P_{s}} = \frac{n}{N}$$

$$\frac{100P - 75P}{75P} = \frac{\frac{W}{50}}{1}$$

$$\frac{25}{75} = \frac{W}{50}$$

$$W = \frac{50}{3} g$$

- 21. The incorrect geometry is represented by :
 - (1) NF₃ trigonal planar

- (2) BF₃ trigonal planar
- (3) AsF₅ trigonal bipyramidal
- (4) H₂O bent

Ans. (1)

Sol. NF_3

- 22. Assuming ideal gas behaviour, the ratio of density of ammonia to that of hydrogen chlroide at same temperature and pressure is: (Atomic wt. of Cl 35.5 u)
 - (1) 1.46
- (2) 1.64
- (3) 0.46
- (4) 0.64

(3)Ans.

 $d = \frac{P(M.w.)}{RT}$ Sol.

$$\frac{d_{NH_3}}{d_{HCI}} = \frac{(M.w.)_{NH_3}}{(M.w.)_{HCI}} = \frac{17}{36.5} = 0.46$$

23. The correct match between items of List-I and List-II is:

List-I

Phenelzine

List-II

(A)

(P) **Pyrimidine**

(B) Chloroxylenol (Q) **Furan**

(C) Uracil

- (R) Hydrazine
- Ranitidine (D)
- Phenol (S) (2) (A)-(R), (B)-(S), (C)-(P), (D)-(Q)
- (1) (A)-(S), (B)-(R), (C)-(Q), (D)-(P)
- (4) (A)-(S), (B)-(R), (C)-(P), (D)-(Q)
- (3) (A)-(R), (B)-(S), (C)-(Q), (D)-(P)
- Ans. (2)
- Sol. → Phenelzine contains hydrazine
 - → Chloroxylenol contains phenol
 - → Uracil is the pyrimidine base
 - → Ranitidine contains furan ring
- 24. The gas phase reaction $2NO_2(g) \rightarrow N_2O_4(g)$ is an exothermic reaction. The decomposition of N_2O_4 , in equilibrium mixture of NO₂(g) and N₂O₄(g), can be increased by :
 - (1) addition of an inert gas at constant pressure.
 - (2) lowering the temperature
 - (3) increasing the pressure
 - (4) addition of an inert gas at constant volume.
- Ans.
- (1)
- Sol. $2NO_2(g) \longrightarrow N_2O_4(g)$
- $\Delta H = (-)$

By addition of an inert gas at constant pressure, volume increases, so reaction moving in backward direction and decomposition of N₂O₄ increases.

- 25. Which one of the following is not a property of physical adsorption?
 - (1) Higher the pressure, more the adsorption
 - (2) Greater the surface area, more the adsorption
 - (3) Lower the temperature, more the adsorption
 - (4) Unilayer adsorption occurs
- **Ans.** (4)
- **Sol.** Physical adsorption is multilayer adsorption.
- A group 13 element 'X' reacts with chlorine gas to produce a compound XCl₃. XCl₃ is electron deficient and easily reacts with NH₃ to form Cl₃X ← NH₃ adduct; however, XCl₃ does not dimerize. X is :
 - (1) B
- (2) AI
- (3) In
- (4) Ga

- Ans. (1)
- Sol. BCl₃

$$B + Cl_2 \longrightarrow BCl_3 \xrightarrow{NH_3} Cl \xrightarrow{H} N$$
[not dimerise due to (p\pi-p\pi) back bonding]

27. The major product of the following reaction is :

Br
$$NH_2$$
 NH_2 NH_2

Ans. (3)

Sol.
$$NH_2 \xrightarrow{KOH} OH$$
 $S_{N^2} \xrightarrow{N} NH_2 OF$ H_2N

Inversion takes place at the carbon containing bromine atom.

- If 50 % of a reaction occurs in 100 second and 75 % of the reaction occurs in 200 second, the order of 28. this reaction is:
 - (1)2(4)

- (2) 3
- (3) Zero
- (4) 1

Ans.

First order reaction as half life is constant.

29. The major product of the following reaction is:

Ans.

Sol.
$$CH_3O$$
 OH CH_3O CH_3O CH_3O CH_3O CH_3O $C=O$ CH_3O CH_3

- 30. Which of the following compounds will most readily be dehydrated to give alkene under acidic condition?
 - (1) 4-Hydroxypentan-2-one

(2) 3-Hydroxypentan-2-one

(3) 1-Pentanol

(4) 2-Hydroxycyclopentanone

(1) Ans.

- Sol.
- will most readily be dehydrated to give conjugated alkene.

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

- Learn from the Master Teachers India's best

Register for FREE

Limited Seats!