MATHEMATICS 271 WINTER 2015 Solutions to Practice Problems 2

1. $\forall x, y \in \mathbb{R}$, if x and y are irrational then x + y is irrational.

Solution. This statement is **false**, and we will prove this by proving that its negation is true. Its negation is

 $\exists x, y \in \mathbb{R}$ such that x and y are irrational, and x + y is rational.

Proof. Let $x = \sqrt{2}$, and let $y = -\sqrt{2}$. Then x is irrational, and it is an easy proof by contradiction to show that y is irrational.

Suppose $-\sqrt{2}$ is rational. Then there exist $a, b \in \mathbb{Z}$ such that $b \neq 0$ and $-\sqrt{2} = \frac{a}{b}$. This implies that $\sqrt{2} = -\frac{a}{b} = \frac{-a}{b}$. Since $-a, b \in \mathbb{Z}$ and $b \neq 0$, $\sqrt{2}$ is rational, contradicting the fact that $\sqrt{2}$ is irrational. Therefore, $-\sqrt{2}$ is irrational.

We now have $x=\sqrt{2}$ and $y=-\sqrt{2}$ irrational, but $x+y=\sqrt{2}+(-\sqrt{2})=0,$ and 0 is rational.

2. $\forall x, y \in \mathbb{R}$, if x and y are irrational then xy is irrational.

Solution. This statement is **false**, and we will prove this by proving that its negation is true. Its negation is

 $\exists x, y \in \mathbb{R}$ such that x and y are irrational, and xy is rational.

Proof. Let $x = \sqrt{2}$, and let $y = \frac{1}{\sqrt{2}}$. Then x is irrational, and it is an easy proof by contradiction to show that y is irrational.

Suppose $\frac{1}{\sqrt{2}}$ is rational. Then there exist $a, b \in \mathbb{Z}$ such that $b \neq 0$ and $\frac{1}{\sqrt{2}} = \frac{a}{b}$. Note that since $\frac{1}{\sqrt{2}} \neq 0$, we also have $a \neq 0$. This implies that $\sqrt{2} = \frac{b}{a}$. Since $a, b \in \mathbb{Z}$ and $a \neq 0$, $\sqrt{2}$ is rational, contradicting the fact that $\sqrt{2}$ is irrational. Therefore, $\frac{1}{\sqrt{2}}$ is irrational.

We now have $x = \sqrt{2}$ and $y = \frac{1}{\sqrt{2}}$ irrational, but $xy = \sqrt{2}(\frac{1}{\sqrt{2}}) = 1$, and 1 is rational.

3. $2 - \sqrt{2}$ is irrational.

Solution. This statement is **true**, and we will use proof by contradiction.

Proof. Suppose that $2-\sqrt{2}$ is rational. Then there exist $a,b\in\mathbb{Z}$ with $b\neq 0$ such that $2-\sqrt{2}=\frac{a}{b}$. This implies that

$$\sqrt{2} = 2 - \frac{a}{b} = \frac{2b - a}{b}.$$

Since $2b - a, b \in \mathbb{Z}$ and $b \neq 0, \sqrt{2}$ is rational, contradicting the fact that $\sqrt{2}$ is irrational. Therefore, $2 - \sqrt{2}$ is irrational.

4. $3\sqrt{2}$ is irrational.

Solution. This statement is true, and we will use proof by contradiction.

Proof. Suppose that $3\sqrt{2}$ is rational. Then there exist $a,b\in\mathbb{Z}$ with $b\neq 0$ such that $3\sqrt{2}=\frac{a}{b}$. This implies that

$$\sqrt{2} = \frac{a}{3b}.$$

Now $a, 3b \in \mathbb{Z}$, and since $b \neq 0$, $3b \neq 0$, implying that $\sqrt{2}$ is rational. This contradicts the fact that $\sqrt{2}$ is irrational. Therefore, $3\sqrt{2}$ is irrational.

5. $\forall x, y \in \mathbb{R}, \ \lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor.$

Solution. This statement is **false**, and we will prove this by proving that its negation is true. Its negation is

$$\exists x, y \in \mathbb{R} \text{ such that } |x+y| \neq |x| + |y|$$

Proof. Let $x = y = \frac{2}{3}$. Then $x + y = \frac{4}{3}$, so

$$\lfloor x + y \rfloor = \left\lfloor \frac{4}{3} \right\rfloor = 1,$$

while

$$\lfloor x \rfloor + \lfloor y \rfloor = \left\lfloor \frac{2}{3} \right\rfloor + \left\lfloor \frac{2}{3} \right\rfloor = 0 + 0 = 0.$$

Therefore for $x = y = \frac{2}{3}$, $\lfloor x + y \rfloor \neq \lfloor x \rfloor + \lfloor y \rfloor$.

6. $\exists a \in \mathbb{R} \text{ so that } a \notin \mathbb{Z}, \ a > 2015, \text{ and } |a^2| = |a|^2.$

Solution. This statement is true.

Proof. Let a = 2015.0001. Then $\lfloor a \rfloor = 2015$, and $\lfloor a \rfloor^2 = 2015^2 = 4,060,225$. Also, $a^2 = 4,060,225.40300001$, so $\lfloor a^2 \rfloor = 2015^2 = 4,060,225$.

Therefore, for
$$a = 2015.0001$$
, $|a^2| = |a|^2$.

7. $\forall n \in \mathbb{Z}^+, \exists a \in \mathbb{R} \text{ so that } a \notin \mathbb{Z}, a > n \text{ and } |a^2| = [a]^2.$

Solution. This statement is true.

Proof. Let $n \in \mathbb{Z}$, $n \ge 1$, and let $a = n + \frac{1}{3n}$. Then a > n, $\lfloor a \rfloor = n$, and $\lfloor a \rfloor^2 = n^2$. Also,

$$a^2 = \left(n + \frac{1}{3n}\right)^2 = n^2 + \frac{2}{3} + \frac{1}{9n^2}.$$

Now, since $n \ge 1$, $n^2 \ge 1$ and $9n^2 \ge 9$. It follows that

$$\frac{1}{9n^2} \le \frac{1}{9} < \frac{1}{3}.$$

Therefore,

$$n^2 + \frac{2}{3} + \frac{1}{9n^2} < n^2 + \frac{2}{3} + \frac{1}{3} = n^2 + 1,$$

implying that $a^2 < n^2 + 1$. Also, a > n > 0 implies $a^2 > n^2$, so $n^2 < a^2 < n^2 + 1$, and thus $\lfloor a^2 \rfloor = n^2$.

Therefore, for $a = n + \frac{1}{3n}$, $\lfloor a^2 \rfloor = \lfloor a \rfloor^2$.

8. For all real numbers x, there exists a real number y so that x + y is rational.

Solution. This statement is true.

Proof. Let $x \in \mathbb{R}$ and let y = -x. Then x + y = 0, which is rational.

9. For all real numbers x, there exists a real number y so that x + y is irrational.

Solution. This statement is true.

Proof. Let $x \in \mathbb{R}$ and let $y = -x + \sqrt{2}$. Then $x + y = x + (-x + \sqrt{2}) = \sqrt{2}$ which is irrational. Thus we have proved that for each $x \in \mathbb{R}$ there is a $y \in \mathbb{R}$ such that x + y is irrational. \square

10. For all real numbers x, there exists a real number y so that xy is irrational.

Solution. This statement is **false**, and we will prove this by proving that its negation is true. Its negation is

 $\exists x \text{ such that for all } y \in \mathbb{R}, xy \text{ is rational.}$

Proof. Let x = 0. Then for all $y \in \mathbb{R}$, xy = (0)y = 0 which is rational.

11. For all real numbers x, if x is irrational then \sqrt{x} is irrational.

Solution. This statement is **true**, and we will prove it by contradiction.

Proof. Suppose that $x \in \mathbb{R}$ is irrational and \sqrt{x} is rational. Then there exist $a, b \in \mathbb{Z}$ such that $b \neq 0$ and $\sqrt{x} = \frac{a}{b}$, and

$$x = (\sqrt{x})^2 = \left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2}.$$

Since $a^2, b^2 \in \mathbb{Z}$ and $b \neq 0, b^2 \neq 0$ so x is rational, contradicting the assumption that x is irrational.

Therefore, \sqrt{x} is irrational.