Exercícios de Geometria Riemanniana

Índice

1	Exe	rcicios do do Carmo	1
	1.1	Capítulo 0	1
	12	Capítulo 1	3
	1.2	Capítulo III	6
	1.5		
		1.3.1 maximum principle!	6
2	Exercícios de aulas.pdf		
	2.1	Pullback and torsion	9
	2.2	Minimizante ⇒ geodésica	11
		First variation formula explained	
	2.4	Duas geodésicas	12
3	Monitorias		14
	3.1	Abril 25	14
4	Lista 1		
		Revisão	15
	4.2	Métricas Riemannianas	16
5	List	a 2	18
Lista 3		19	
т.:	-1- 1		28
Lista 4			
	Can	npos de Killing	33

1 Exercícios do do Carmo

1.1 Capítulo 0

Exercise 2 Prove que o fibrado tangente de uma variedade diferenciável M é orientável (mesmo que M não seja).

Solution. Es porque la diferencial de los cambios de coordenadas está dada por la identidad y una matriz lineal. Sí, porque por definición las trivializaciones locales de TM preservan la primera coordenada y son isomorfismos lineales en la parte del espacio

vectorial. Entonces queda que

$$d(\phi_U \circ \phi_V^{-1}) = \begin{pmatrix} Id & 0 \\ \hline 0 & \xi \in \mathsf{GL}(n) \end{pmatrix}$$

pero no estoy seguro de por qué ξ preservaría orientación, i.e. que tenga determinante positivo... a menos de que...

Exercise 5 (Mergulho de $P^2(\mathbb{R})$ em \mathbb{R}^4) Seja $F: \mathbb{R}^3 \to \mathbb{R}^4$ dada por

$$F(x,y,z)=(x^2-y^2,xy,xz,yz), \qquad (x,y,z)=p\in\mathbb{R}^3.$$

Seja $S^2 \subset \mathbb{R}^3$ a esfera unitária com centro na origem $0 \in \mathbb{R}^3$. Oberve que a restrição $\phi := F|_{S^2}$ é tal que $\phi(p) = \phi(-p)$, e considere a aplicação $\tilde{\phi} : \mathbb{R}P^2 \to \mathbb{R}^4$ dada por

$$\tilde{\varphi}([p]) = \varphi(p)$$
, $[p]$ =clase de equivalência de $p = \{p, -p\}$

Prove que

- (a) φ̃ é uma imersão.
- (b) $\tilde{\phi}$ é biunívoca; junto com (a) e a compacidade de $\mathbb{R}P^2$, isto implica que $\tilde{\phi}$ é um mergulho.

Solution.

(a) Considere a carta $\{z = 1\}$. A representação coordenada de $\tilde{\varphi}$ vira

$$(x,y) \longmapsto (x^2 - y^2, xy, x, y)$$

cuja derivada como mapa $\mathbb{R}^2 \to \mathbb{R}^4$ é

$$\begin{pmatrix} 2x & -2y \\ y & x \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

que é injetiva. Agora pegue a carta $\{x=1\}$. Então a representão coordenada de $\tilde{\phi}$ vira

$$(y,z) \longmapsto (1-y^2,y,z,yz)$$

e tem derivada

$$\begin{pmatrix} -2y & 0\\ 1 & 0\\ 0 & 1\\ z & y \end{pmatrix}$$

que também é injetiva. Seguramente algo análogo acontece na carta $\{y = 1\}$.

(b) $\tilde{\varphi}$ é injetiva. Pegue dois pontos $p_1 := [x_1 : y_1 : z_1]$ e $p_2 := [x_2 : y_2 : z_2]$ e suponha que $\tilde{\varphi}(p_1) = \tilde{\varphi}(p_2)$. I.e.,

$$x_1^2 - y_1^2 = x_2^2 - y_2^2$$
, $x_1y_1 = x_2y_2$, $x_1z_1 = x_2z_2$, $y_1z_1 = y_2z_2$

Suponha primeiro que $z_1 \neq 0$. Segue que

$$x_1 = \frac{z_2}{z_1} x_2$$
, $y_1 = \frac{z_2}{z_1} y_2$

logo

$$x_2^2 - y_2^2 = x_1^2 - y_1^2 = \left(\frac{z_2}{z_1}\right)^2 (x_2^2 - y_2^2) \implies z_2 = z_1 \implies x_1 = x_2, \quad y_1 = y_2$$

Em fim, uma imersão injetiva com domínio compacto é um mergulho porque é fechada: pegue um fechado no domínio, vira compacto, imagem é compacta, que é fechado. Pronto. .

Exercício 8 $\varphi: M_1 \to M_2$ difeo local. Se M_2 é orientável, então M_1 é orientável.

Solução. Defina: uma base $\beta \subset T_pM$ é orientada se $\phi_*\beta$ é orientada em $T_{\phi(p)}M$. Tá bem definida porque ϕ é um difeomorfismo em p, i.e. ϕ_* é isomorfismo. Para mostrar que é contínua à la Lee, qualquer vizinhança de um ponto $p \in M_1$, a correspondente carta coordenada em $\phi(p)$, um marco coordenado nela e puxe (pushforward baix ϕ^{-1}) de volta para U. Difeomorfismo e muito bom: o pushforward the campos vetoriais está bem definido. E por construção está orientado.

1.2 Capítulo 1

Exercise 1 Prove que a aplicação antípoda $A: S^n \to S^n$ dada por A(p) = -p é uma isometria de S^n . Use este fato para introduzir uma métrica Riemanniana no espaço projetivo real $\mathbb{R}P^n$ tal que a projeção natural $\pi: S^n \to \mathbb{R}P^n$ seja uma isometria local.

Solution. Lembre que a métrica de S^n é a induzida pela métrica euclidiana, onde pensamos que $T_pS^n \hookrightarrow T_p\mathbb{R}^{n+1}$. É claro que A é uma isometría de \mathbb{R}^n , pois ela é a sua derivada (pois ela é linear), de forma que $\langle \nu, w \rangle_p = \langle -\nu, -w \rangle_{A(p)} = \langle \nu, w \rangle_{-p}$.

É um fato geral que se as transformações de coberta preservam a métrica, obtemos uma métrica no quociente de maneira natural, i.e. para dois vetores $v,w \in T_p\mathbb{R}P^n$ definimos $\langle v,w \rangle_p^{\mathbb{R}P^n} := \langle \tilde{v},\tilde{w} \rangle_{\tilde{p}\in\pi^{-1}(p)}$.

Para ver que a projeção natural é uma isometria local basta ver que a diferencial de A é um isomorfismo em cada ponto. Mas como ela é -A, isso é claro.

Exercício 7 Seja G um grupo de Lie compacto e conexo (dim(G) = n). O objetivo do exercício é provar que G possui uma métrica bi-invariante. Para isto, prove as seguintes etapas:

- (a) Seja ω uma n-forma diferencial em G invariante à esquerda, isto é, $L_x^*\omega = \omega$, para todo $x \in G$. Prove que ω é invariante à direita.
 - Sugestão: Para cada $\alpha \in G\alpha$, $R_\alpha^*\omega$ é invariante à esqueda. Decorre daí que $R_\alpha^*\omega = f(\alpha)\omega$. Verifique que $f(\alpha b) = f(\alpha)f(b)$, isto é, $f: G \to \mathbb{R}\setminus\{0\}$ é um homomorfismo (contínuo) de G no grupo multiplicativo dos números reais. Como f(G) é um subgrupo compacto compacto e conexo, conclui-se que f(G) = 1. Logo $R_\alpha^*\omega = \omega$.
- (b) Mostre que existe uma n-forma diferencial invariante à esquerda ω em G.
- (c) Seja $\langle \cdot, \cdot \rangle$ uma métrica invariante à esquerda em G. Seja ω uma n-forma diferencial positiva invariante à esqueda em G, é defina uma nova métrica Riemanniana $\langle \langle \cdot, \cdot \rangle \rangle$ em G por

$$\begin{split} \left\langle \left\langle u,v\right\rangle \right\rangle _{p} &= \int_{G} \left\langle (dR_{x})_{y}u,(dR_{x})_{y}v\right\rangle _{yx}\omega,\\ x,y\in G,\qquad u,v\in T_{y}G \end{split}$$

Prove que $\langle \langle \cdot, \cdot \rangle \rangle$ é bi-invariante.

Solução.

- (a)
- (b)
- (c) Vou usar outra notação. Suponha que g é uma métrica invariante à esquerda em G. Definimos

$$\tilde{g} := \int_{x \in G} (R_x^* g) \omega$$

como operador $\mathfrak{X}(\mathsf{G}) \times \mathfrak{X}(\mathsf{G}) \longrightarrow \mathcal{F}(\mathsf{G})$.

Lance final Essa definição tá errada! Para que R_x^*g seja uma função que acompanhe ω em cada ponto, **também temos que puxar** ω . Ou seja, a definição correta é:

$$\tilde{g} := \int_{x \in G} R_x^*(g\omega)$$

E ai entra que tem que considerar $R_x^* \omega$, que por definição é invariante à esquerda, mas tu já provou que também é invariante à direita então beleza: $R_x^* \omega = \omega$.

A partir daqui contas confusamente mexidas entre a primeira vez que escrevi e depois... mas a definição acima deve ser suficiente para provar em um par de linhas...

Agora vamos ver que \tilde{g} é invariante à esquerda, i.e. queremos ver que para todo $\alpha \in G$,

$$\tilde{g} \stackrel{\text{quero}}{=} L_{\alpha}^* \tilde{g} \stackrel{\text{def}}{=} L_{\alpha}^* \int_G (R_x^* g) \omega.$$

Vamos ver que o pullback L_{α}^* pode "entrar na integral" e trocar de lugar com R_x^* , daí o resultado segue porque g é L_{α} -invariante. As contas acabam sendo que

$$\begin{split} L_{\alpha}^* \int_G (R_x^* g) \omega &= \int_G L_{\alpha}^* R_x^* g \omega = \int_G (L_{\alpha} \circ R_x)^* g \omega = \int_G (R_x \circ L_{\alpha})^* g \omega \\ &= \int_G R_x^* L_{\alpha}^* g \omega = \int_G R_x^* g \omega = \tilde{g} \end{split}$$

Para ver que g também é invariante à direita fazemos:

$$\tilde{g} \stackrel{\text{quero}}{=} R_{\alpha}^* \tilde{g} \stackrel{\text{def}}{=} R_{\alpha}^* \int_G (R_{x}^*) g \omega = \int_G R_{\alpha}^* R_{x}^* g \omega = \int_G R_{\alpha x}^* g \omega = \int_G R_{x}^* g \omega = \tilde{g}$$

porque estamos integrando em todo G e G \curvearrowright G transitivamente. Catch! Como é o pullback? $F^*(f\omega) = F^*f \land F^*\omega$ então temos

$$R_{\alpha}^*(R_x^*g\omega) = R_{\alpha}^*(R_x^*g)R^*\omega$$

Então beleza só que: para que essa forma ai seja invariante à direita, não é suficiente que $R_{\alpha}^*(R_x^*g)$ seja invariante à direita: também o pullback de ω ! É ai que entra o inciso (a): você provou que ω invariante à esquerda é invariante à direita, i.e. $R^*\omega = \omega$.

Para todo aquele que tem dúvida, aqui estão as contas da invarianza à esquerda super explicitas:

Fixe $y \in G$ e $u, v \in T_uG$. Temos que

$$\begin{split} (L_{\alpha}^* \tilde{g})(u,\nu) &= L_{\alpha}^* \left(\int_g (R_x^* g) \omega \right) (u,\nu) \\ &= \left(\int_G (R_x^* g) \omega \right) \left((L_{\alpha})_{*,\alpha^{-1}y} u, (L_{\alpha})_{*,\alpha^{-1}y} \nu \right) \\ &= \int_G (R_x^* g) \left((L_{\alpha})_{*,\alpha^{-1}y} u, (L_{\alpha})_{*,\alpha^{-1}y} \nu \right) \omega \\ &= \int_G g \left((R_x)_{*,\alpha^{-1}yx^{-1}} (L_{\alpha})_{*,\alpha^{-1}y} u, (R_x)_{*,\alpha^{-1}yx^{-1}} (L_{\alpha})_{*,\alpha^{-1}y} \nu \right) \omega \\ &= \int_G g \left((R_x \circ L_{\alpha})_{*,\alpha^{-1}yx^{-1}} u, (R_x \circ L_{\alpha})_{*,\alpha^{-1}yx^{-1}} \nu \right) \omega \\ &= \int_G g \left((L_{\alpha} \circ R_x)_{*,\alpha^{-1}yx^{-1}} u, (L_{\alpha} \circ R_x)_{*,\alpha^{-1}yx^{-1}} \nu \right) \omega \\ &= \int_G g \left((L_{\alpha})_{*,\alpha^{-1}yx^{-1}} (R_x)_{*,yx^{-1}} u, (L_{\alpha})_{*,\alpha^{-1}yx^{-1}} (R_x)_{*,yx^{-1}} \nu \right) \omega \\ &= \int_G \left((L_{\alpha})_{*,\alpha^{-1}yx^{-1}} (R_x)_{*,yx^{-1}} u, (R_x)_{*,yx^{-1}} \nu \right) \omega \\ g \text{ invariante à esquerda} &= \int_G g \left((R_x)_{*,yx^{-1}} u, (R_x)_{*,yx^{-1}} \nu \right) \omega \\ &\stackrel{\text{def}}{=} \tilde{\mathfrak{g}}(u,\nu). \end{split}$$

onde $R_x \circ L_\alpha = L_\alpha \circ R_x$ por associatividade de produto no grupo.

1.3 Capítulo III

1.3.1 maximum principle!

Maximum principle (E. Hopf) (Minimal surface course statement.) For any (M,g), harmonic functions satisfy *maximum principle*: any harmonic function $f:U\to \mathbb{R}$ for U connected and open, if $\exists p\in U$ that is a local maximum or local minimum, then f is constant on U.

We shall show Do Carmo's version that f *subharmonic*, i.e. $\Delta f \ge 0$, on M compact connected \implies f constant. (This is Exercise 12, Chapter III.)

Demostração.

Step 1 (Exercise 7, Chapter III of [dC79].) Make sure you can pick a referencial geodésico about every point of M. This is an orthonormal frame $\{E_i\} \subset \mathfrak{X}(U)$, where $\mathfrak{p} \in U$ such that $\left(\nabla_{E_i}E_j\right)_{\mathfrak{p}}=0$. This frame can be obtained by taking geodesic coordinates at the point, an orthonormal base $\{e_i\}$ of $T_\mathfrak{p}M$, and taking parallel transport of the vectors e_i along radial geodesics emanating from \mathfrak{p} . This immediately ensures that E_i is orthonormal since parallel transport preserves angles.

To check that Christoffel symbols vanish at p we do as follows. (This is actually a basic fact about geodesic coordinates, see [Lee19] Prop. 5.24.) Take a random vector $v \in T_pM$ and its geodesic $\gamma_v(t) = \exp_p(tv)$. I drop the subindex v for the next computations for the next computations. Then (this is Florit way of using covariant derivative along a curve; it's the *pullback* or *induced connection* ∇^{γ}):

$$0 = \nabla^{\gamma}_{\frac{d}{d\,t}} \gamma' = \nabla^{\gamma}_{\frac{d}{d\,t}} \nu^{i}(\mathsf{E}_{\mathfrak{i}} \circ \gamma)$$

where the $\nu = (\nu^1, \dots, \nu^n)$. Indeed: this is very silly but, since the coordinate chart of geodesic coordinates is \exp_p^{-1} , the coordinate representation of γ in this chart is as simple as

$$\hat{\gamma}(t) = (\underbrace{\phi}_{\text{chart}} \circ \gamma)(t) = exp_p^{-1} \exp_p(t\nu) = t\nu.$$

And the composition $E_i \circ \gamma$ just means that we take our local frame *along* γ . Continue:

$$\begin{split} &= \nu^i \nabla_{\frac{d}{dt}}^{\gamma} E_i \circ \gamma = \nu^i \nabla_{\gamma_{\nu, *} \frac{d}{dt}} E_i \\ &= \nu^i \nabla_{\nu^j E_j} E_i = \nu^i \nu^j \nabla_{E_j} E_i \\ &= \nu^i \nu^j \Gamma_{ji}^k E_k \end{split}$$

along γ . Now choose $\nu=e_1$. You get $\Gamma^k_{11}=0$ for all k along γ_{e_1} . Now choose $\nu=e_2$, then $\Gamma^k_{22}=0$ along γ_{e_2} , so at least at p they both vanish. And now choose

 $v = e_1 + e_2$. You get

$$0 = (v^{1})^{2} \Gamma_{11}^{k} + v^{1} v^{2} \Gamma_{12}^{k} + v^{2} v^{1} \Gamma_{21}^{k} + (v^{2})^{2} \Gamma_{22}^{k}$$

So $\Gamma_{12}^k=0$ since Levi-Civita is torsion-free, i.e. symmetric. And so on. So the all Christoffel symbols vanish at the same time at p.

Step 2 (Exercise 11, Chapter III of [dC79].) Prove that

$$di_X Vol = div X Vol$$

To do this first recall that divergence and trace are

$$\operatorname{div} X := \operatorname{tr}(v \mapsto \nabla_v X)$$

$$tr(T) := \sum_i \left\langle \mathsf{TE}_i, \mathsf{E}_i \right\rangle, \qquad \mathsf{T} \in End(V), \mathsf{E}_i \text{ orthonormal frame}$$

Now pick a Geodesic frame E_i and its dual coframe ϵ^i , i.e. satisfying $\epsilon^i(E_j) = \delta_{ij}$. Then $Vol = \epsilon^1 \wedge \ldots \wedge \epsilon^n$. Then for any $X = X^i E_i \in \mathfrak{X}(U)$,

$$i_X \text{ Vol} = \varepsilon^1 \wedge \ldots \wedge \varepsilon^n (X^i E_i, \dots, \dots) = X^i \varepsilon^1 \wedge \ldots \wedge \varepsilon^n (E_i, \dots, \dots)$$

How to compute that? Recall that for top-forms we have

$$\epsilon^1 \wedge \ldots \wedge \epsilon^n(Z_1,\ldots,Z_n) = det(\epsilon^i(Z_j))$$

so for example if n = 3

$$\begin{split} \epsilon^1 \wedge \epsilon^2 \wedge \epsilon^3(E_1, Z_2, Z_3) &= \begin{vmatrix} \epsilon^1(E_1) & \epsilon^1(Z_2) & \epsilon^1(Z_3) \\ \epsilon^2(E_1) & \epsilon^2(Z_2) & \epsilon^2(Z_3) \\ \epsilon^3(E_1) & \epsilon^3(Z_2) & \epsilon^3(Z_3) \end{vmatrix} = \begin{vmatrix} 1 & \epsilon^1(Z_2) & \epsilon^1(Z_3) \\ 0 & \epsilon^2(Z_2) & \epsilon^2(Z_3) \\ 0 & \epsilon^3(Z_2) & \epsilon^3(Z_3) \end{vmatrix} \\ &= \epsilon^2(Z_2)\epsilon^3(Z_3) - \epsilon^2(Z_3)\epsilon^3(Z_2) = \epsilon^2 \wedge \epsilon^3(Z_2, Z_3), \\ \epsilon^1 \wedge \epsilon^2 \wedge \epsilon^3(E_2, Z_2, Z_3) &= \begin{vmatrix} 0 & \epsilon^1(Z_2) & \epsilon^1(Z_3) \\ 1 & \epsilon^2(Z_2) & \epsilon^2(Z_3) \\ 0 & \epsilon^3(Z_2) & \epsilon^3(Z_3) \end{vmatrix} = -\epsilon^1 \wedge \epsilon^3(Z_2, Z_3) \end{split}$$

and so on. When we sum over all i, we get

$$X^i\epsilon^1\wedge\ldots\wedge\epsilon^n(E_i,\cdot,\ldots,\cdot)=\sum_i(-1)^{i+1}X^i\epsilon^1\wedge\ldots\wedge\widehat{\epsilon^i}\wedge\ldots\wedge\epsilon^n.$$

Now take exterior derivative of that, we get

$$\begin{split} d\mathfrak{i}_X \, Vol &= \sum_{\mathfrak{i}} (-1)^{\mathfrak{i}+1} (dX^{\mathfrak{i}}) \, \wedge \, \epsilon^1 \wedge \ldots \wedge \, \widehat{\epsilon^{\mathfrak{i}}} \, \wedge \ldots \wedge \, \epsilon^n \\ &+ \sum_{\mathfrak{i}} (-1)^{\mathfrak{i}+1} X^{\mathfrak{i}} \, \wedge \, d(\epsilon^1 \wedge \ldots \wedge \, \widehat{\epsilon^{\mathfrak{i}}} \, \wedge \ldots \wedge \, \epsilon^n) \end{split}$$

And then the first term actually is

$$\sum_i (-1)^{i+1} E_j X^i \epsilon^j \wedge \epsilon^1 \wedge \ldots \wedge \widehat{\epsilon^i} \wedge \ldots \wedge \epsilon^n = E_i X^i \text{ Vol}$$

while the second term vanishes because look,

$$\begin{split} d\epsilon^{i}(E_{j},E_{k}) &= E_{j}\epsilon^{i}(E_{k}) - E_{k}\epsilon^{i}(E_{j}) - \epsilon^{i}([E_{j},E_{k}]) \\ &= -\epsilon^{i}(\nabla_{E_{j}}E_{k} - \nabla_{E_{k}}E_{j}) & torsion! \end{split}$$

which vanishes at p because we said that this geodesic frame would have vanishing Christoffel symbols at p. So we conclude:

$$di_X Vol = E_i X^i Vol$$

Now you just have to think what is divergence:

$$\begin{split} \operatorname{div} X &= \sum_{i} \left\langle \nabla_{E_{i}} X^{j} E_{j}, E_{i} \right\rangle = \sum_{i} \left\langle E_{i} X^{j} E_{j}, E_{i} \right\rangle + X^{j} \left\langle \nabla_{E_{i}} E_{j}, E_{i} \right\rangle \\ &= \sum_{i} \left\langle E_{i} X^{j} E_{j}, E_{i} \right\rangle = \sum_{i} E_{i} X^{j} \left\langle E_{j}, E_{i} \right\rangle = E_{i} X^{i} \end{split}$$

again using that we are a geodesic frame with vanishing covariant derivative at p.

Step 3 (Exercise 9(b), Chapter III of [dC79].) You realise that

$$\Delta(fg) = f\Delta g + g\Delta f + 2 \langle \nabla f, \nabla g \rangle.$$

Recall that Laplacian is

$$\Delta f := \operatorname{div} \nabla f$$

This is just a computation no problem, I'll say how it starts. For any $X \in \mathfrak{X}(M)$,

$$\langle \nabla(fg), X \rangle = X(fg) = fXg + gXf = f \langle \nabla g, X \rangle + g \langle \nabla f, X \rangle.$$

which says that

$$\nabla(fq) = f\nabla q + q\nabla f$$

So, for an orthonormal frame E_i

$$\Delta(fg) = div \, \nabla(fg) = \sum_{i} \left\langle \nabla_{E_{\mathfrak{i}}} (f \nabla g + g \nabla f), E_{\mathfrak{i}} \right\rangle$$

Then use Leibniz rule and definition of gradient, you get there.

Step 4 (Exercise 12, Chapter III of [dC79].) To prove the theorem for subharmonic functions first we show that in fact they are harmonic via step 2 on $X := \nabla f$ and Stokes:

$$\int_{\mathcal{M}} \Delta f \, Vol = \int_{\mathcal{M}} \operatorname{div} X \, Vol = \int_{\mathcal{M}} \operatorname{d}(i_X \, Vol) = \int_{\partial \mathcal{M}} i_X \, Vol = 0$$

meaning that the non-negative function Δf is in fact 0, i.e. f is harmonic. Now we do it again for $X := \nabla (f^2/2)$:

$$\int_{M} \Delta(f^{2}/2) \, Vol = \int_{M} d(i_{X} \, Vol) = \int_{\partial M} i_{X} \, Vol = 0$$

And then apply step 3:

$$0 = \int_{M} \Delta(f^{2}/2) \text{ Vol} = \int_{M} f\Delta f \text{ Vol} + \int_{M} \langle \nabla f, \nabla f \rangle \text{ Vol}$$

First one vanishes because f is harmonic, so second one is zero which says f is constant!

2 Exercícios de aulas.pdf

2.1 Pullback and torsion

Exercício Para $f: M \to \tilde{M}$ defina

$$T_{\nabla^f}(X,Y) = \nabla^f_X f_* Y - \nabla^f_Y f_* X - f_* [X,Y]$$

que é uma seção do fibrado pullback. Avaliada em $p \in M$, obtemos um vetor em T \tilde{M} . Agora pegue dois campos \tilde{X} e \tilde{Y} que estendem $f_{*,p}X_p$ e $f_{*,p}Y_p$. Mostre que $(T_{\nabla^f}(X,Y))(p)$ é o mesmo vetor que o campo

$$(f^*T)(X,Y) := \nabla_{\tilde{X}} \tilde{Y} - \nabla_{\tilde{Y}} \tilde{X} - [\tilde{X},\tilde{Y}]$$

avaliado em f(p).

Solution. Primeiro suponha que f é uma imersão em p, de modo que f_*X e f_*Y são campos vetoriais em algum aberto de \tilde{M} . Então, como sabemos, os colchetes estão f-relacionados. Os termos com derivada covariante também coincidem por causa da seguinte sutileza:

$$\nabla_X^f f_* Y \quad \text{na verdade \'e} \quad \nabla_X^f (f_* Y \circ f)$$

simplesmente porque f_*Y é um campo de \tilde{M} , então para ter uma seção do fibrado pullback devemos compor. Então fica que

$$\nabla_X^f f_* Y = \nabla_{f_* X} f_* Y$$

como queriamos.

Agora se f não é imersão em p faço a conta do Florit. Pegue coordenadas ∂_i de M e $\tilde{\partial_i}$ de M. Primeiro lembre que

$$f_*\partial_i = \partial_i f^k \partial_k \circ f$$

onde abusando de notação $f=(f^1,\dots,f^{\tilde{n}})$ são as funções coordenadas de f naquelas cartas.

A conta presentada em aula é:

$$\begin{split} \nabla^f_{\partial_i} f_* \partial_j &= \nabla^f_{\partial_i} \partial_j f^k \tilde{\partial_k} \circ f \\ &= \partial_i \partial_j f^k \tilde{\partial_k} \circ f + \partial_j f^k \nabla^f_{\partial_i} \tilde{\partial_k} \circ f \\ &= \partial_i \partial_j f^k \tilde{\partial_k} \circ f + \partial_j f^k \nabla_{f_* \partial_i} \tilde{\partial_k} \circ f \\ \text{all I know.} \, . \, &= \partial_i \partial_j f^k \tilde{\partial_k} \circ f + \partial_j f^k \nabla_{f_* \partial_i} \tilde{\partial_k} \\ &= \partial_i \partial_j f^k \tilde{\partial_k} \circ f + \partial_j f^k \nabla_{\partial_i f^\ell \tilde{\partial}_\ell \circ f} \tilde{\partial_k} \\ &= \partial_i \partial_j f^k \tilde{\partial} \circ f + \partial_j f^k \partial_i f^\ell \nabla_{\tilde{\partial}_\ell \circ f} \tilde{\partial_k} \\ &= \partial_i \partial_j f^k \tilde{\partial} \circ f + \partial_j f^k \partial_i f^\ell \left(\nabla_{\tilde{\partial}_\ell} \tilde{\partial_k} \right) \circ f \end{split}$$
 tensorial embaixo
$$= \partial_i \partial_j f^k \tilde{\partial} \circ f + \partial_j f^k \partial_i f^\ell \left(\nabla_{\tilde{\partial}_\ell} \tilde{\partial_k} \right) \circ f \end{split}$$

O que faço com isso? Mmm...

$$\nabla^f_{\partial_i} f_* \partial_i = \partial_j \partial_i f^k \tilde{\partial} \circ f + \partial_i f^k \partial_j f^\ell \left(\nabla_{\tilde{\partial}_\ell} \tilde{\partial}_k \right) \circ f$$

Parece que

$$\nabla_{\partial_i}^f f_* \partial_j - \nabla_{\partial_i}^f f_* \partial_i = 0$$

porque as parciais comutam mas... é isso o que queremos?

attempt of texing the solution by GPT

After several mails with Ivan and two visits with Prof. Florit, I finally could write the solution. But that was by hand so I just passed the screenshot to ChatGPT. So this isn't completely right but OK maybe later I put it right.

Solution. Queremos calcular o torsor da conexão pullback:

$$T_{\nabla^f}(X,Y) = \nabla_X^f(f_*Y) - \nabla_Y^f(f_*X) - f_*([X,Y]).$$

Expandindo:

$$\begin{split} &\nabla_X^f(f_*Y) = X(f^i) \widetilde{\partial}_i + f^i \nabla_X^f(\widetilde{\partial}_i), \\ &\nabla_Y^f(f_*X) = Y(f^i) \widetilde{\partial}_i + f^i \nabla_Y^f(\widetilde{\partial}_i), \end{split}$$

e

$$f_*([X,Y]) = [X,Y](f^i)\tilde{\partial}_i$$
.

Então:

$$\begin{split} T_{\nabla^f}(X,Y) &= \left(X(f^i)\tilde{\partial}_i + f^i\nabla_X^f(\tilde{\partial}_i)\right) - \left(Y(f^i)\tilde{\partial}_i + f^i\nabla_Y^f(\tilde{\partial}_i)\right) - [X,Y](f^i)\tilde{\partial}_i \\ &= \left(X(f^i) - Y(f^i) - [X,Y](f^i)\right)\tilde{\partial}_i + f^i\left(\nabla_X^f(\tilde{\partial}_i) - \nabla_Y^f(\tilde{\partial}_i)\right). \end{split}$$

Agora, usando o fato que o pullback da conexão satisfaz

$$\nabla_X^f(\tilde{\partial}_i) = (f^*\nabla)_X(\tilde{\partial}_i) = (f^*\nabla)(X)(\tilde{\partial}_i),$$

e observando que

$$[X,Y](f^{\mathfrak i})=X(Y(f^{\mathfrak i}))-Y(X(f^{\mathfrak i})),$$

concluímos que:

$$X(f^{i}) - Y(f^{i}) - [X, Y](f^{i}) = 0.$$

Portanto, sobra:

$$T_{\nabla^f}(X,Y) = f^{\mathfrak{i}}\left(\nabla_X^f(\tilde{\partial}_{\mathfrak{i}}) - \nabla_Y^f(\tilde{\partial}_{\mathfrak{i}})\right).$$

Finalmente, usando que

$$T(\tilde{\partial}_{i},\tilde{\partial}_{j}) = \nabla_{\tilde{\partial}_{i}}\tilde{\partial}_{j} - \nabla_{\tilde{\partial}_{i}}\tilde{\partial}_{i} - [\tilde{\partial}_{i},\tilde{\partial}_{j}],$$

concluímos que:

$$T_{\nabla^f}(X,Y) = T(f_*X, f_*Y),$$

como queríamos.

2.2 Minimizante \implies geodésica

Exercício 8 (Curvas minimizantes)

(a) Seja γ uma curva suave por partes parametrizada por comprimento de arco (this is important, velocity is 1) conectando p a q. Mostre que se $d(p,q) = \ell(\gamma)$ então γ é uma geodésica.

Solution. Imagino que podemos só usar a primeira fórmula da variação:

$$S'(0) = -\int_a^b \langle V, \gamma'' \rangle dt.$$

(na página que segue anexo uma prova dela, mas isso é extra.)

É claro que se γ é minimizante, estamos num ponto crítico do funcional de distância S, é se cumple a primeira fórmula da variação.

Pergunta Para mim parece que daí segue que $\gamma''=0$, porque a métrica é não degenerada. Porém, [Lee19], thm. 6.4 afirma que devemos usar $V=\gamma''$ para concluir esse exercício. Isso não entendo por que.

2.3 First variation formula explained

Explanation of first variation formula. Não precisa ler :)

Consider a *variation* of γ , which is like a homotopy:

$$\Gamma: (\mathfrak{a}, \mathfrak{b}) \times (-\varepsilon, \varepsilon) \longrightarrow M$$
$$\Gamma(t, s) = \gamma(t) + sV(\gamma(t))$$

where $V \in \mathfrak{X}_{\gamma}$ is a vector field along γ called the *variation field*, and it has to vanish on the endpoints. Then there's the *length functional*

$$S(s) := \ell(\Gamma(t,s)) = \int_{0}^{b} |\nabla_{\frac{d}{dt}} \Gamma(t,s)| dt.$$

Because $\gamma = \Gamma(t,0)$ is minimizing, we know that S'(0) = 0. Then we compute that and hope that it will say $\gamma'' = 0$.

$$\begin{split} S'(0) &= \int_{a}^{b} \frac{d}{ds} \bigg|_{s=0} \left\langle \nabla_{t} \Gamma(t,s), \nabla_{t} \Gamma(t,s) \right\rangle^{1/2} dt \\ &= \int_{a}^{b} \frac{2}{2 |\Gamma(s,t)|^{-1}} \left\langle \nabla_{s} \nabla_{t} \Gamma(t,s), \nabla_{t} \Gamma(t,s) \right\rangle dt \\ &\stackrel{symmetry}{\underset{lemma}{=}} \int_{a}^{b} \left\langle \nabla_{t} \underbrace{\nabla_{s} \Gamma(t,s)}, \nabla_{t} \Gamma(t,s) \right\rangle dt \\ &= \int_{a}^{b} \frac{d}{dt} \bigg|_{t=0} \left\langle V, \nabla_{t} \Gamma(t,s) \right\rangle - \int_{a}^{b} \left\langle V, \underbrace{\nabla_{t} \nabla_{t} \Gamma(t,s)}_{V''} \right\rangle dt \end{split}$$

and the first one vanished out fundamental theorem of calculus and the fact that V is zero on the endpoints.

So we get that if γ minimizes distance, this integral is zero for any variation of γ .

Remarks

- Symmetry lemma basically follows from commutativity of partial derivatives in \mathbb{R}^n . Florit used pullback connection (as in the previous exercise!) and [Lee19] used Christoffel symbols.
- The true version of the variation formula admits that Γ is only piecewise smooth. The formula becomes less nice and the proof a little more involved, I won't do it, but something nice comes out of that: the fact that you realise that geodesics can't have corners because:

so it would be nice to understand that precisely but OK.

2.4 Duas geodésicas

Mais um:

Exercício 8 (Curvas minimizantes)

(b) Suponha que γ , σ : $[0,2] \to M$ são geodésicas distintas e satisfazem: $\gamma(0) = \sigma(0) := p$, $\gamma(1) = \sigma(1) := q$, γ e σ realizam a distância entre p e q. Mostre que γ não realiza a distância entre p e $\gamma(1+s)$ para nenhum s>0.

Demostração. Argumentamos na monitoria que teriamos um problema de diferenciabilidade. Pela explicação dada em [Lee19] sobre a suavização de quinas, sabemos que as geodésicas devem ser suaves. Porém, que não poderia acontecer algo assim?

Exercício Show that for a bi-invariant metric on a Lie Group, it holds that $\exp_e = \exp^G$.

Solution. After delving into the abyss of definitions, I think it boils down to showing that $\nabla_{X_{\nu}}X_{\nu}=0$, where $\nu\in\mathfrak{g}$. So we have to use that the metric is bi-invariant. But it's not necessarily Levi-Civita connection...

3 Monitorias

3.1 Abril 25

Exercício 3 $f: M \to M$ isometria. Prove que cada componente conexa do conjunto dos pontos fixos de f é uma subvariedade totalmente geodésica.

Exercício 2 (Petersen) $F: (M, g) \rightarrow (M, g)$ conexa, F isometria, $p \in M$. Prove que

$$DF_{\mathfrak{p}} = -\operatorname{Id}|_{T_{\mathfrak{p}}M} \iff \begin{cases} F^2 = \operatorname{Id}_M \\ \mathfrak{p} \text{ \'e ponto fixo isolado} \end{cases}$$

Exercício 3 (Petersen) $N_1, N_2 \subset M$ totalmente geodésicas. Prove que cada componente conexa de $N_1 \cap N_2$ é uma subvariedade totalmente geodésica.

Exercício 4 Que se tem uma superfície (dimensão 2 só!) com um plano de simetria no sentido de que pode reflexar nela, então a curva que essa reflexão fixa é geodésica. Ou seja: se tem uma isometria que não é a identidade

Exercício 0 Curvatura negativa implica que...?

4 Lista 1

4.1 Revisão

Exercício 1 Dada uma subvariedade $M \subseteq \tilde{M}$ uma subvariedade mergulhada e $X \in \mathfrak{X}(M)$. Mostre que existe um aberto $U \subset \tilde{M}$ contendo M e um campo $\tilde{X} \in \mathfrak{X}(U)$ tal que $\tilde{X}|_{M} = X$. Caso M seja subconjunto fechado de \tilde{M} , prove que U pode ser tomado igual a \tilde{M} . Se M não é subconjunto fechado de \tilde{M} , pode não existir extensão de X definida em todo \tilde{M} .

Solução. Acho que a prova canônica é tomar coordenadas de subvariedade de $M \subset \tilde{M}$, i.e. onde M está dada localmente como o lugar onde se anulam as últimas n-m funções coordenadas.

Pegamos uma vizinhança rectificante U de X em $p \in M$, i.e. $X = \partial_1$ em U. Daí pega para cada vetor normal a exponencial, que percorre pela geodésica um pouqinho. Isso da uma vizinhança em \tilde{M} ...

Exercício 2 Seja $f: M^n \to N^m$ um mapa suave. Os campos $X \in \mathfrak{X}(M)$ e $\tilde{X} \in \mathfrak{X}(N)$ são ditos f-relacionados se $df_p X_p = \tilde{X}_{f(p)}$, $\forall p \in M$. Mostre que se os campos $X, Y \in \mathfrak{X}(M)$ são, respetivamente, f-relacionados com $\tilde{X}, \tilde{Y} \in \mathfrak{X}(N)$ então [X, Y] é f-relacionado com $[\tilde{X}, \tilde{Y}]$.

Solução. Intento 2. $s_1 \in \Gamma(\tau_N)$ está f-relacionado com $s \in \Gamma(\tau_M)$ se $s = s_1 \oplus s^{\perp}$ para algum $s^{\perp} \in \nu$. Queremos ver que se $s \stackrel{f}{\sim} s_1$ e t $\stackrel{f}{\sim} t_1$, $[s,t] \stackrel{f}{\sim} [s_1,t_1]$, ou seja $[s,t] = [s_1,t_1] \oplus [s,t]^{\perp}$ onde $[s,t]^{\perp}$ é um vetor em ν cuja cara não é muito importante.

$$\left[s,t\right]=\left[s_1\oplus s^\perp,t_1\oplus t^\perp\right]=\left[s_1,t_1\right]+\underbrace{\left[s_1,t^\perp\right]}_{=0}+\underbrace{\left[s^\perp,t_1\right]}_{\in\nu}+\underbrace{\left[s^\perp,t^\perp\right]}_{\in\nu}$$

Falta un argumentín para ver que esos colchetes se anulan...

Intento 1 (incompleto). Pegue $p \in M$. Queremos ver que

$$(f_*[X,Y])_p \stackrel{\text{quero}}{=} [\tilde{X},\tilde{Y}]_{f(p)}.$$

Pegue $g \in \mathcal{F}(N)$.

$$\begin{split} [\tilde{X}, \tilde{Y}]_{f(p)} &\stackrel{\text{def}}{=} \tilde{X}_{f(p)}(\tilde{Y}g) - \tilde{Y}_{f(p)}(\tilde{X}g) \\ &\stackrel{\text{hip}}{=} f_{*,p}(X_p)(\tilde{Y}g) - f_{*,p}(Y_p)(\tilde{X}g) \\ &= X_p \Big((\tilde{Y}g) \circ f \Big) - Y_p \Big((\tilde{X}g) \circ f \Big) \\ &\stackrel{\text{hip}}{=} X_p \Big(\big(f_{*,p}(Y) \big) g \circ f \big) \Big) - Y_p \Big(\big(f_{*,p}(X_p) \big) g \circ f \Big) \end{split}$$

Exercício 3 Seja $\pi: M \to N$ uma submersão sobrejetiva. Dado $Y \in \mathfrak{X}(N)$, mostre que existe $X \in \mathfrak{X}(M)$ tal que $X \notin \pi$ -relacionado com Y.

Solução. O resultado segue de que $\tau_M \cong \pi^* \tau_N \oplus \nu$, tomando $X := Y \oplus 0$.

Exercício 4 (Fibrado pullback) Suponha que M^n , N^m são variedades suaves, $\pi: E \to M$ é um fibrado vetorial suave de posto k e f : $N \to M$ é um mapa suave. Considere o espaço

$$f^*E = \{(p, e) \in N \times E : f(p) = \pi(e)\},\$$

e $\tilde{\pi}: E \to N$ a projeção na primeira coordenada. Mostre que f*E tem uma estrutura de variedade suave de forma que a tripla $\tilde{\pi}: f^*E \to N$ é um fibrado vetorial suave de posto k.

Solução. Para mostrar que $\tilde{\pi}$ é um fibrado vetorial devemos dar trivializações locais. Pegue um ponto $p \in M$ e uma vizinhança trivializante de E perto de f(p), i.e. um aberto $U \ni f(p)$ e um difeomorfismo $h : \pi^{-1}(U) \xrightarrow{\cong} U \times \mathbb{R}^k$. Pegue também um aberto $V \ni p$ tal que $f(V) \subset U$. Defina

$$\begin{aligned} h_1: \tilde{\pi}^{-1}(V) &\longrightarrow V \times \mathbb{R}^k \\ (q, \nu) &\longmapsto (q, \pi_2 \circ h(f(q), \nu)) \end{aligned}$$

Como estamos usando a estrutura de fibrado vetorial de E, segue imediatamente a coleção de funções desse tipo formam um atlas trivializante de f*E.

4.2 Métricas Riemannianas

Exercício 6 Seja (N^n, g) uma variedade Riemanniana e $M^m \subset N$ uma subvariedade mergulhada. Mostre que para todo $p \in M$ existe uma vizinhança aberta $U \subset N$ de p e campos vetoriais E_1, \ldots, E_n em U tal que $E_1(q), \ldots, E_n(q)$ é uma base ortonormal de T_qN para todo $q \in U$ e $E_1(r), \ldots, E_m(r)$ são tangentes a M para todo $r \in U \cap M$.

Solução. (Intento 1.)Pegue $p \in M$ e uma vizinhança aberta de $U \subset N$ de p tal que $U \cap M$ é suficientemente pequeno como para ter um marco ortonormal $\{E_i\}_{i=1}^n$. Considere esses campos como campos tangentes a N. Usando o exercício 1 podemos estender esses campos a uma vizinhança de $U \subset N$. Aplicando Gram-Schmidt obtemos um marco ortonormal de $\mathfrak{X}(U)$.

(Intento 2, [MS74] thm. 3.3, p. 36.) Take orthonormal frames $\{E_i\}_{i=1}^m \subset \mathfrak{X}(U \cap M)$ and $\{E_i'\}_{i=1}^n \subset \mathfrak{X}(U)$. Notice that the matrix $(E_i \cdot E_j')$ has rank m at p. (I think that two orthonormal frames are related up to an orthogonal matrix.) Suppose that the first m columns are linearly independent at p. Then there is an open neighbourhood V of p where the first m columns of this matrix are linearly independent. Then a slightly confusing part arguing that $E_1, \ldots, E_m, E_{m+1}', \ldots, E_n'$ are linearly independent in V. Then apply Gram-Schmidt. And that's it.

Then Milnor shows that this is a vector bundle called the *orthogonal bundle*. The lance is that the orthonormal frame we have found gives the local trivialization. For a subbundle

 $\xi \subset \eta$ define the fiber of the orthogonal complement of ξ by $F_b(\xi^{\perp}) := F_b(\xi)^{\perp}$ with respect to the metric of η . Define local trivializations by

$$\begin{split} \overline{h} : \overline{\pi}^{-1}(U) &\longrightarrow U \times \mathbb{R}^{n-m} \\ \left(q, \sum x_i E_i \right) &\longmapsto (q, x_{m+1}, \dots, x_m) \end{split}$$

Definição 1 Sejam (M^m, g_M) e (N^n, g_N) variedades Riemannianas. Seja $F: M \to N$ uma submersão. Dizemos que F é uma *submersão Riemanniana* quando para todo $p \in M$, $DF: \ker(DF)^{\perp} \to T_{F(p)}N$ é uma isometría linear. Em outras palavras, sempre que $v, w \in T_pM$ são perpendiculares ao núcleo de DF, vale

$$q_{M}(v, w) = q_{N}(DF(v), DF(w)).$$

Exercício 7 Seja (M^n,g) uma variedade Riemanniana. Suponha que existe um grupo de Lie G agindo por isometrias em (M,g) de tal forma que M/G admite uma estrutura de variedade suave, onde a projeção $\pi: M \to M/G$ é uma submersão. Mostre que existe uma métrica Riemanniana \overline{g} em M/G tal que $\pi: (M,g) \to (M/G,\overline{g})$ é uma submersão Riemanniana.

Solução. (Seguindo notação e ideias de [MS74].) Fazemos assim para definir a métrica em G/M. Primeiro lembre que $\tau_{G/M} \cong \pi^*\tau_{M/G}$. Considere o fibrado ν normal a $\pi^*\tau_{M/G}$, que é um fibrado sobre M satisfazendo $\pi^*\tau_{G/M} \oplus \nu \cong \tau_M$. Então qualquer vetor tangente a M/G pode ser pensado como um vetor tangente a M se anulamos a parte normal dele, mostrando que podemos usar a mesma métrica em M para introduzir uma métrica em G/M.

Para resolver o exercício devemos analisar como age π_* em τ_M quando este es visto como soma direita $\pi^* \oplus \nu$: $\pi_*(\nu_1 \oplus \nu^\perp) = \nu_1$. Daí segue trivialmente que $\ker \pi := \kappa \subset \nu$. Conversamente se $\nu_1 \oplus \nu^\perp \in \kappa$, fazemos para $w \in \pi^*$

$$(v_1 \oplus v^{\perp}) \cdot w = v_1 \cdot w + v^{\perp} \cdot w = 0.$$

Então $\kappa = \nu$, então $\kappa^{\perp} \cong \pi^* \cong \tau_{M/G}$ isometricamente.

Intento 1 (errado). Defina a seguinte métrica em M/G:

$$g_{M/G} := g_M|_{\pi * \tau_{M/G}}$$

i.e. a restrição da métrica em M ao fibrado pullback de $\tau_{M/G} := T(G/M)$, que sabemos que é isomorfo (como fibrado) a $\tau_{M/G}$.

Para ver que $\pi: M \to M/G$ é uma submersão Riemanniana devemos mostrar que o complemento ortogonal de $\kappa_\pi := \ker(\pi)$ é isomorfo (como fibrado Riemanniano, i.e. isométrico como fibrado) a $\tau_{M/G}$.

Como M é Riemanniana, o fibrado pullback tem um complemento ortogonal $(\pi^*\tau_{M/G})^\perp:=\nu$. Basta mostrar que $\nu\cong\kappa$ isometricamente.

5 Lista 2

Exercício 1 Mostre que todo fibrado vetorial admite uma conexão.

Exercício 3 Exercício 2 do Capítulo 2 do livro do professor Manfredo:

Sejam X e Y campos de vetores numa variedade Riemanniana M. Sejam $p \in M$ e $\gamma: I \to M$ uma curva integral de X por p, i.e. $\gamma(t_0) = p$ e $\frac{d\gamma}{dt} = X(\gamma(t))$. Prove que a conexão Riemanniana de M é

$$(\nabla_{X}Y)(p) = \frac{d}{dt} \left(P_{\gamma,t_{0},t}^{-1}(Y(\gamma(t))) \right) \Big|_{t=t_{0}}$$
(1)

onde $P_{\gamma,t_0,t}:T_{\gamma(t_0)M\to T_{\gamma(t)}M}$ é o transporte paralelo ao longo de γ de t_0 a t.

Solução. Primeiro devemos escrever o lado direito da eq. (1) em termos do fibrado pullback ao longo de γ :

$$\left. \frac{d}{dt} \Big(P_{\gamma,t_0,t}^{-1} \big(Y(\gamma(t) \big) \big) \right) \right|_{t=t_0} \leftrightsquigarrow \nabla_{\frac{d}{d\,t}}^{\gamma}$$

Lista 3

Exercício 4 Exemplo: esfera.

- (a) Determine as geodésicas da esfera Sⁿ com sua métrica canônica.
- (b) Determine o grupo de isometrias da esfera \mathbb{S}^n com sua métrica canônica.

Solution.

(a) **Ideia essencial.** Suponha que $\gamma: I \to \mathbb{S}^n \subset \mathbb{R}^{n+1}$ é uma geodésica. Podemos pensar que $\gamma': I \to T\mathbb{S}^n \subset T\mathbb{R}^{n+1} = \mathbb{R}^{n+1}$ e analogamente $\gamma'': I \to \mathbb{R}^{n+1}$. Espaço tangente à esfera é perpendicular ao vetor posição, i.e. $\gamma \perp \gamma'$. Também $\gamma'' \perp \gamma'$; isso é porque $\gamma'' = (\gamma'')^\top + (\gamma'')^\perp$, e como γ é geodésica sabemos que $(\gamma'')^\top = 0$. Por fim, $\gamma'' = \lambda \gamma$, então concluímos que γ está dada por senos e cosenos.

Para escrever isso formalmente precisamos de uma expressão experta para γ . Em [Lee19] Prop. 5.27 achamos inspiração: damos a volta ao problema e começamos propondo uma curva que vai acabar sendo geodésica. Pegue um ponto $\mathfrak{p} \in \mathbb{S}^n$ e um vetor unitário $\mathfrak{v} \in T_\mathfrak{p} \mathbb{S}^n$. Considere

$$\gamma(t) = \cos tp + \sin tv$$

Derivando como uma simples curva em \mathbb{R}^{n+1} , vemos que $\gamma'' = -\gamma$, o que significa que $(\gamma'')^{\top} = 0$, i.e. γ é uma geodésica de \mathbb{S}^n . Mais precisamente,

$$\gamma''(t) = \left(\nabla_{\frac{d}{dt}}^{i\circ\gamma}\gamma'\right)_t \in (i\circ\gamma)^*T\mathbb{R}^{n+1} \cong \gamma^*(T\mathbb{S}^n \oplus N)$$

não tem componente tangente, e portanto

$$0 = \nabla^{\gamma}_{\frac{d}{d+1}} \gamma' \in \gamma^* T \mathbb{S}^n.$$

Sendo essa uma geodésica partindo de um ponto arbitrário numa direção arbitrária, concluimos por unicidade das geodésicas e *rescaling lemma* que todas as geodésicas de \mathbb{S}^n são como γ .

Note que a geodésica γ é uma parametrização do círculo unitário no plano gerado pelos vetores p e ν , i.e. um círculo máximo. Em conclusão, as geodésicas são os círculos máximos de \mathbb{S}^n .

(b) Afirmo que $\text{Isom}\,\mathbb{S}^n=O(n+1)\stackrel{\text{def}}{=}\{A\in GL(n+1):AA^T=Id\}$. É claro que $O(n+1)\subset I\text{som}\,\mathbb{S}^n$, pois as transformações $A\in O(n+1)$ preservam o produto interno euclideano:

$$\begin{split} AA^T &= Id \iff \sum_k A_{ik} A_{jk} = \delta_{ij} \iff Ae_i \cdot Ae_j = \delta_{ij} \\ &\iff A\nu \cdot Aw = A\left(\nu^i e_i\right) \cdot A\left(w^j e_j\right) = \nu^i w^j e_i \cdot e_j = \nu \cdot w. \end{split}$$

Para ver que Isom $\mathbb{S}^n \subset \mathsf{O}(n+1)$ suponha que $A: \mathbb{S}^n \to \mathbb{S}^n$ é uma isometria. Vamos mostrar que A é a restrição de uma função $\tilde{A} \in \mathsf{O}(n+1)$. Defina

$$\tilde{A}: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^{n+1}$$
$$(r, \theta) \longmapsto rA(1, \theta)$$
$$0 \longmapsto 0$$

Se mostramos que \tilde{A} é uma isometria linear, é claro que ela é um elemento de O(n+1) pela conta anterior. De fato, basta mostrar que \tilde{A} é uma isometria, pois toda isometria de espaços de Banach que fixa a origem é linear ([?] Teo. 7.11).

Para ver que \tilde{A} é uma isometria de \mathbb{R}^{n+1} , **afirmo** que a distância de p a q está totalmente determinada pelas normas $\|p\|$ e $\|q\|$, e pela distancia esférica entre $\frac{p}{\|p\|}$ e $\frac{q}{\|q\|}$. Note que essa afirmação é na verdade um problema de geometria plana, pois todas essas quantidades podem ser descritas dentro do único plano que contém 0, p e q.

Figure 1: Intento de prova

Acabou que essa afirmação é simplesmente a lei dos cosenos, já que a distância esférica entre $\frac{p}{\|p\|}$ e $\frac{q}{\|q\|}$ é exatamente o angulo entre p e q (poque essa distância é um segmento de círculo máximo!):

lei dos cosenos:
$$d(p,q)^2 = \|p\|^2 + \|q\|^2 - 2\|p\|\|q\|\cos\angle(p,q)$$

Em fim, \tilde{A} é uma isometria porque $d_{\mathbb{R}^{n+1}}(p,q)=d_{\mathbb{R}^{n+1}}(\tilde{A}p,\tilde{A}q)$ pelo argumento anterior.

Exercício 12 Seja (G, g) um grupo de Lie munido de uma métrica bi-invatiante e ∇ sua conexão de Levi-Civita.

(a) Mostre que

$$\nabla_{\mathbf{u}} \mathbf{v} = \frac{1}{2} [\mathbf{u}, \mathbf{v}],$$

para cada $u, v \in \mathfrak{g} \subset \mathfrak{X}(G)$.

(b) Seja $\overline{\nabla}$ uma conexão agim simétrica em G. Mostre que $\overline{\nabla}=\nabla$ se e somente se $\overline{\nabla}_{\mathfrak{u}}\mathfrak{u}=0$ para todo $\mathfrak{u}\in\mathfrak{g}.$

Solution.

(a) Como ∇ é Levi-Civita, temos Koszul, i.e. $\forall u, v, w \in \mathfrak{g}$,

$$2 \langle \nabla_{\mathbf{u}} \mathbf{v}, \mathbf{w} \rangle = \mathbf{u} \langle \mathbf{v}, \mathbf{w} \rangle + \mathbf{v} \langle \mathbf{u}, \mathbf{w} \rangle - \mathbf{w} \langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{u}, [\mathbf{v}, \mathbf{w}] \rangle + \langle \mathbf{v}, [\mathbf{w}, \mathbf{u}] \rangle + \langle \mathbf{w}, [\mathbf{u}, \mathbf{v}] \rangle$$

Como $\langle\cdot,\cdot\rangle$ é invariante à esquerda, é constante quando avaliamos em elementos de $\mathfrak g$, e portanto os primeiros três termos se anulam. Então o exercício acaba quando mostramos que

$$\langle v, [w, u] \rangle = \langle u, [v, w] \rangle = -\langle u, [w, v] \rangle.$$

Seguindo [dC79], p. 45., a ideia é usar o fluxo $\phi: \mathbb{R} \times G \to G$ de w para expressar o colchete de Lie. Primeiro precisamos de

Afirmação O fluxo φ de um campo invariante à esquerda w comuta com a traslação à esquerda, i.e.,

$$\phi_t(e) \circ L_h = L_h \circ \phi_t(e) \qquad \forall t \in \mathbb{R} \forall h \in G.$$

Prova da afirmação. Derivamos de ambos lados. Por um lado,

$$\frac{d}{dt}\Big|_{t=0}\phi_t(e)\circ L_h = \frac{d}{dt}\Big|_{t=0}\phi_t(h) = \nu_h$$

Por outro lado.

$$\frac{d}{dt}\Big|_{t=0} L_h \circ \phi_t(e) = (L_h)_{*,\phi_t(e)} \frac{d}{dt}\Big|_{t=0} \phi_t(e) = (L_h)_{*,e} \nu_e = \nu_h.$$

Por unicidade das soluções de EDOs, acabou.

Então repare:

$$\varphi_{\mathsf{t}}(\mathsf{h}) = (\varphi_{\mathsf{t}} \circ \mathsf{L}_{\mathsf{h}})(e) = (\mathsf{L}_{\mathsf{h}} \circ \varphi_{\mathsf{t}})(e) = \mathsf{h}\varphi_{\mathsf{t}}(e) = \mathsf{R}_{\varphi_{\mathsf{t}}(e)}\mathsf{h},$$

ou seja, qualquer curva integral de *w* é simplesmente a curva integral que passa por e trasladada.

Agora lembre que o colchete de Lie pode ser expressado como

$$[w,v]_{\varepsilon} = \frac{d}{dt}\Big|_{t=0} \Big(\phi_{-t}\Big)_{*,\phi_{\mathfrak{t}}(\varepsilon)} \nu_{\phi_{\mathfrak{t}}(\varepsilon)}.$$

(Onde fixamos o parámetro -t e deixamos livre o outro para ver ϕ_{-t} como um difeomorfismo de G.)

Juntando com a discussão anterior obtemos

$$[w,v]_{e} = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \Big(\mathsf{R}_{\varphi_{-t}(e)} \Big)_{*,\varphi_{t}(e)} \nu_{\varphi_{t}(e)}.$$

Agora repare: como a métrica é bi-invariante,

$$\begin{split} \langle u, \nu \rangle &= \left\langle \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \left(L_{\phi_{t}(e)} \right)_{*,e} u_{e\prime} \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \left(L_{\phi_{t}(e)} \right)_{*,e} \nu_{e} \right\rangle \\ &= \left\langle \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} u_{\phi_{t}(e)\prime} \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \nu_{\phi_{t}(e)} \right\rangle \end{split}$$

Agora derivemos como funções de t (dentro de T_eG , i.e. não precisamos derivada covariante), e avaliemos em t=0. (Note que quando avaliamos em t=0 o factor que não derivamos não muda—estamos trasladando à direita e à esquerda por $\varphi_0(e)$!) Obtemos:

$$\begin{split} 0 &= \frac{d}{dt} \Big|_{t=0} \left\langle \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} u_{\phi_{t}(e)}, \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \nu_{\phi_{t}(e)} \right\rangle \\ &= \left\langle \frac{d}{dt} \Big|_{t=0} \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} u_{\phi_{t}(e)}, \left[\left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \nu_{\phi_{t}(e)} \right]_{t=0} \right\rangle \\ &+ \left\langle \left[\left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} u_{\phi_{t}(e)} \right]_{t=0}, \frac{d}{dt} \Big|_{t=0} \left(R_{\phi_{-t}(e)} \right)_{*,\phi_{t}(e)} \nu_{\phi_{t}(e)} \right\rangle \\ &= \left\langle \left[w, u \right]_{e}, \nu_{e} \right\rangle + \left\langle u_{e}, \left[w, \nu \right]_{e} \right\rangle. \end{split}$$

Pelo inciso (a), é claro que se $\overline{\nabla} = \nabla$, $\overline{\nabla}_{\mathfrak{u}}\mathfrak{u} = 0$. Para a implicação contrária, vejamos que

$$\overline{\nabla}_{\mathbf{u}} \mathbf{v} = \frac{1}{2} [\mathbf{u}, \mathbf{v}], \qquad \mathbf{u}, \mathbf{v} \in \mathfrak{g}$$

que é conveniente porque sabemos que isso é igual a $\nabla_{\mathfrak{u}} v$ pelo inciso (a). É só fazer:

$$0 = \overline{\nabla}_{u+v} u + v = \overline{\nabla}_{u} u + \overline{\nabla}_{v} v + \overline{\nabla}_{v} u + \overline{\nabla}_{v} v + \overline{\nabla}_{$$

Lembre que $\overline{\nabla}$ é simétrica, i.e. $\overline{\nabla}_{\mathfrak{u}} v - \overline{\nabla}_{v} \mathfrak{u} = [\mathfrak{u}, v]$. Somando com a equação anterior:

$$\overline{\nabla}_{\mathbf{u}} \mathbf{v} - \overline{\nabla}_{\mathbf{v}} \mathbf{u} + \overline{\nabla}_{\mathbf{u}} \mathbf{v} + \overline{\nabla}_{\mathbf{v}} \mathbf{u} = [\mathbf{u}, \mathbf{v}]$$

como queríamos. Para concluir é só ver que ∇ e $\overline{\nabla}$ também coincidem em campos vetoriais que não são invariantes à esquerda. Então pegue uma base $\{u_i\} \subset \mathfrak{g}$ e dois campos $X = X^i u_i, Y = Y^j u_i$ quaisquer. Então:

$$\overline{\nabla}_X Y = \overline{\nabla}_{X^i u_i} Y^j u_j = X^i u_i Y_j u_j + Y^j \overline{\nabla}_{u_i} u_j = X^i u_i Y_j u_j + Y^j \nabla_{u_i} u_j = \nabla_X Y.$$

Pergunta Tem algum argumento super simples para argumentar essa última parte sem pegar uma base de g?

Exercício 13 (Exercício 3, Cap. III, [dC79]) Sejam G um grupo de Lie, $\mathfrak g$ sua álgebra de Lie, $\mathfrak e$ $\mathfrak X \in \mathfrak g$. As trajetórias de $\mathfrak X$ determinam uma aplicação $\phi:(-\varepsilon,\varepsilon)\to \mathsf G$ com $\phi(0)=e,\phi'(t)=\mathsf X(\phi(t)).$

- (a) Prove que $\varphi(t)$ está definida para todo $t \in \mathbb{R}$ e que $\varphi(t+s) = \varphi(t) \cdot \varphi(s)$, $(\varphi : \mathbb{R} \to G$ é então chamado um *subgrupo a 1-parâmetro de* G.
- (b) Prove que se G tem uma métrica bi-invariante $\langle \cdot, \cdot \rangle$ então as geodésicas de G que partem de e são os subgrupos a 1-parâmetro de G.

Solution.

(a) Lembre que no exercício anterior mostramos que

$$\phi_t(h) = R_{\phi_+(e)}(h) = h \cdot \phi_t(e), \qquad \forall t \in (-\epsilon, \epsilon), \ \forall h \in G.$$

Fixe um $t_0 \in (-\varepsilon, \varepsilon)$ e pegue $h = \varphi_{t_0}(e)^{-1}$. Obtemos que

$$\varphi_{t}(\varphi_{t_{0}}(e)^{-1}) = \varphi_{t_{0}}(e)^{-1}\varphi_{t}(e).$$

Ou seja, $\phi_{t_0}(e)^{-1}\phi_t(e)$ é uma curva integral de X que passa por e no tempo $t=t_0$. Como também $\phi_{t-t_0}(e)$ é uma curva integral de X que passa por e no tempo $t=t_0$, por unicidade de EDOs obtemos

$$\varphi_{t_0}(e)^{-1}\varphi_t(e) = \varphi_{t-t_0}(e)$$
 (2)

Avaliando o lado esquerdo em $t'=t-t_0$, do lado direito chegamos até $\phi_{t-2t_0}(e)$. Repetindo esse processo cobrimos todo $\mathbb R$.

Para confirmar a segunda propriedade avaliamos eq. (2) em t=0 para obter $\phi_{t_0}(e)^{-1}=\phi_{-t_0}(e)$. Para concluir pegue $t,s\in\mathbb{R}$ quaisquer e escreva:

$$\varphi_{t+s}(e) = \varphi_{t-(-s)}(e) = \varphi_{-s}^{-1}\varphi_{t}(e) = \varphi_{s}(e)\varphi_{t}(e).$$

(b) Pegue $X \in \mathfrak{g}$ e considere a curva integral que passa por e, ϕ . Pelo exercício anterior,

$$0 = \nabla_X X = \nabla_{\phi * \frac{d}{dt}} X = \nabla_{\frac{d}{dt}}^{\phi} X \circ \phi = \nabla_{\phi'} \phi'$$

Então as curvas integrais de X que passam por *e* são geodésicas. Como isso é para qualquer vetor em g, por unicidade das soluções a EDOs, acabou.

Exercício 14 Dada uma variedade Riemanniana (M^n, g) denotamos por d_g a distância induzida por g.

- (a) Sejam g, h duas métricas Riemannianas em M^n . Mostre que se $d_g = d_h$ então q = h.
- (b) Seja (M,g) uma variedade Riemanniana e $F:M\to M$ um difeomorfismo. Mostre que F é uma isometria se e somente se $d_g(F(\cdot),F(\cdot))=d_g(\cdot,\cdot)$.

Demostração.

(a) Prova por contrapositiva.

Afirmação Se $g \neq h$, existem um aberto $U \subset M$ e um marco $\{E_i\} \subset \mathfrak{X}(U)$ tais que

$$g(E_{i_0},E_{i_0}) \neq h(E_{i_0},E_{i_0}) \qquad \text{para algum } i_0 \in \{1,\dots,n\}.$$

Prova da afirmação. Se $g(E_i, E_i) = h(E_i, E_i)$ para todo marco em todo aberto de M, é claro que

$$g(X,Y) = g(X^i E_i, Y^j E_i) = X^i Y^j g(E_i, E_i) = h(X,Y)$$

para quaisquer $X, Y \in \mathfrak{X}(M)$.

Então pegue um marco $\{E_i\} \in \mathfrak{X}(U)$ tal que $g(E_{i_0}, E_{i_0}) \neq h(E_{i_0}, E_{i_0})$ em U. Sendo a diferença dessas quantidades uma função distinta da constante zero, podemos supô-la estritamente positiva dentro de U. Pegue $p \in U$ e uma vizinhança geodésica contendo p, que renomeamos U por simplicidade. Dentro de uma vizinhança geodésica, a distância de p aos outros pontos dentro de U está realizada por geodésicas, então podemos pegar $q \in U$ e γ geodésica ligando p e q.

Considere uma extensão de $\gamma' \in \mathfrak{X}_{\gamma}$ dentro de U, digamos $G = G^{i}E_{i}$. Então:

$$\begin{split} d_g(p,q) &= \int_{\mathfrak{a}}^{b} g(G^{\mathfrak{i}} E_{\mathfrak{i}}, G^{\mathfrak{i}} E_{\mathfrak{i}}) \circ \gamma dt = \int_{\mathfrak{a}}^{b} (G^{\mathfrak{i}} \circ \gamma)^2 g(E_{\mathfrak{i}}, E_{\mathfrak{i}}) \circ \gamma dt \\ &\neq \int_{\mathfrak{a}}^{b} (G^{\mathfrak{i}} \circ \gamma)^2 h(E_{\mathfrak{i}}, E_{\mathfrak{i}}) \circ \gamma dt = d_h(p,q). \end{split}$$

(b) Primeiro suponha que $F^*d_g = d_g$. Para mostrar que F é uma isometria usamos o inciso anterior: consideramos as métricas g e F^*g em M. Basta mostrar que $d_g = d_{F^*g}$. Por um tempo pensei que era para usar um câmbio de variáveis, mas acabei pensando assim: Pegue uma curva γ ligando p e q. Note que

$$\underbrace{\int_{\alpha}^{b} F^{*}g(\gamma'(t), \gamma'(t))dt}_{\ell(\text{curva de p a q})} = \underbrace{\int_{\alpha}^{b} g(F_{*,\gamma(t)}\gamma'(t), F_{*,\gamma(t)}\gamma'(t))dt}_{\ell(\text{curva de F(p) a F(q)})}$$

Ou seja, do lado esquerdo estamos medindo o comprimento (respeito à métrica F^*g) de uma curva ligando p a q, enquanto que do lado direito estamos medindo o comprimento (respeito à métrica g) da curva $F \circ \gamma$, que liga F(p) a F(q).

Pegando o ínfimo de ambas quantidades, concluímos que a distância d_{F^*g} coincide com a distância F^*d_g , que por hipótese é igual a d_g . A implicação contrária também fica clara: supondo que $F^*g = g$, levando em conta a igualdade das integrais acima e pegando o ínfimo, concluímos que $F^*d_g = d_g$.

Exercício 15 Suponha que (M^n, g) é uma variedade Riemanniana conexa.

- (a) (M, g) simétrica $\implies (M, g)$ homogênea.
- (b) (M, q) 2-homogênea $\implies (M, q)$ isotrópica.

Solution.

(a) **Ideia.** Pegamos dois pontos $q, q' \in M$. Para usar que M é simétrica buscamos o "ponto meio". Esse deve ser $p \in M$ que esteja no meio do caminho de uma curva minimizante γ ligando q e q'. Daí, pegamos $F \in Iso_p := \{$ isometrias de M que fixam $p\}$ com a propriedade de que $d_pF = -Id$. Daí devemos provar que F preserva γ e não fixa q. Daí, só existem dois pontos em γ que guardam a mesma distância com p: q e q'. Como $F(q) \neq q$ também guarda essa distância, concluímos que F(q) = q'.

Infelizmente fui incapaz de levar minha ideia até uma prova sem ajuda externa. Primeiramente me pareceu improvável a possibilidade de construir a geodésica minimizante (pode não existir para variedades não completas; mostrar que a propriedade de simetria implica a existência de curvas minimizantes parecia muito forte).

Conjectura Para quaisquer $q, q' \in M$ existe uma curva minimizante γ ligando q e q'.

Supondo que existe γ , podemos pegar $F \in Iso_p$ tal que $d_pF = -Id$ onde p é ponto meio sobre γ respeito q e q'.

Tentei mostrar que F preserva γ perto de p usando um marco geodésico, onde a geodésicas são curvas integrais de linhas, mas depois descobri que minha prova estava errada (pois dF só age como - Id em p):

Afirmação Perto de p, $F(\gamma(t)) \in \text{img } \gamma$.

Prova da afirmação. Pegue coordenadas geodésicas centradas em p, de modo que as curvas minimizantes como γ são imagens de retas em T_pM baixo a exponencial. Agora derivamos: $F \circ \gamma$:

$$\frac{d}{dt}\Big|_{t} F \circ \gamma = F_{*,\gamma(t)} \gamma'(t) = -\gamma'(t).$$

Portanto, a derivada da curva $F \circ \gamma$ coincide com a derivada de γ . Por unicidade de soluções de EDOs, concluímos que $F \circ \gamma(t) \in \text{img } \gamma$ dentro desta bola geodésica. \square

Depois desse ponto comecei a buscar ajuda em livros, internet e ChatGPT. Rapidamente reparei que minhas ideias eram boas, e consegui:

Prova da afirmação reforçada. Pegue coordenadas geodésicas centradas em p, de modo que as curvas minimizantes como γ são imagens de retas em T_pM baixo a exponencial. Agora derivamos: $F \circ \gamma$ em t=0 (supondo que $\gamma(0)=p$):

$$\frac{\mathrm{d}}{\mathrm{dt}}\Big|_{\mathrm{t=0}}\mathsf{F}\circ\gamma=\mathsf{F}_{*,p}\gamma'(0)=-\gamma'(0).$$

Portanto, a derivada da curva $(F \circ \gamma)(t)$ coincide com a derivada de $\gamma(-t)$. Por unicidade de soluções de EDOs, concluímos que $F \circ \gamma(t) \in \operatorname{img} \gamma$ dentro desta bola geodésica.

Seguindo com esse raciocínio, $F\circ\gamma$ é uma curva definida em todo o domínio de γ , e portanto deve coincidir com $\gamma(-t)$ ao longo desse domínio. Ou seja, $F\circ\gamma$ é γ percorrida em sentido oposto. Isso significa, por definição de p como ponto meio, e desde que supomos que $\gamma(0)=p$, que, se $\gamma(t_0)=q$, necessariamente $q'=\gamma(-t_0)=(F\circ\gamma)(t_0)=F(q)$, como queríamos. (Note que meu desejo inicial de mostrar que $F(q)\neq q'$ não foi necessário.)

Então tudo fica resolvido se mostramos a conjetura. O motivo inicial para conjeturar isso foi notar que $\mathbb{R}^2\setminus\{0\}$, onde os pontos antípodas (entre outros) não podem ser ligados por curvas minimizantes, parece perder a propriedade de ser um espaço simétrico (que \mathbb{R}^2 tem). Com efeito, a intuição mostra que $\mathrm{Iso}(\mathbb{R}^2\setminus\{0\})=\mathrm{O}(2)$, de modo que o grupo de isotropia Iso_p é trivial para todo ponto.

A inspiração final chega de MathOverflow: parece que, com efeito, toda variedade simétrica é completa:

"Consider a local geodesic and use the symmetry to flip it, effectively doubling the length of the geodesic, ad infinitum"

A ideia nos lembra do exercício que fizemos com grupos de Lie. Pegamos uma geodésica definida perto de p. Pegamos q \neq p dentro da bola geodésica centrada em p. Agora considere F \in Iso $_q$ tal que F $_q$ == Id. Sabemos que γ está definida entre p e q, e, pela afirmação mostrada acima, compondo com F obtemos γ reparametrizada em sentido oposto. Isso permite chegar a um ponto sobre a curva original que fica à mesma distância de q que p, só que no sentido oposto. Repetindo esse processo, vemos que a geodésica pode ser estendida infinitamente.

De fato, isso parece mostrar a conjetura via teorema de Hopf-Rinow, por exemplo em [Lee19], Lemma 6.18 e Coro. 6.20. Tem uma prova sem usar esse teorema?

(b) Queremos ver que $\forall p \in M$ e $\forall v, w \in T^1_pM$ existe $F \in Iso_p(M)$ tal que $F_{*,p}v = w$. Para usar a propriedade de ser 2-homogênea, defina $p_1 := q_1 := p$, e $p_2 := exp_p(v)$, $q_2 := exp_p(w)$. (Isto é, supondo por enquanto que exp_p está definida em vetores de norma 1.) Então existe $F \in Iso(M)$ tal que $F(p_1) = F(q_1)$, i.e. $F \in Iso_p(M)$, e tal que $F(p_2) = F(q_2)$.

Para ver que $F_{*,p}\nu=w$, note que $(F\circ\gamma_{\nu})(1)=F(\gamma_{\nu}(1))=F(p_2)=q_2$. Então $F\circ\gamma_{\nu}$ é uma curva ligando p e q. Pelo exercício 14(b) dessa lista, como F é uma isometria, sabemos que preserva a distância, de modo a $F\circ\gamma_{\nu}$ é minimizimante e portanto uma geodésica. Daí $F\circ\gamma_{\nu}$ é uma reparametrização de γ_{w} ; mas como F é isometria,

preserva a norma dos vetores velocidade e portanto as curvas coincidem. Isso significa que $w=\gamma_w'(0)=(\mathsf{F}\circ\gamma_\nu)'(0)=\mathsf{F}_{*,p}\gamma_\nu'(0)=\mathsf{F}_{*,p}\nu.$

Por último só note que se \exp_p não está definida em vetores de norma 1, podemos fazer a mesma construção em vetores que estejam dentro do domínio dela, obtendo uma função cuja diferencial envia um múltiplo pequeno de ν em um múltiplo de igual proporção respeito a w. A diferencial dessa função também envia ν em w, pois é uma isometria linear.

Lista 4

Exercício 1 (Cap. IV Exer. 1, [dC79]) Seja G um grupo de Lie com uma métrica $\langle \cdot, \cdot \rangle$ bi-invariante. Seja X, Y, Z $\in \mathfrak{X}(G)$ campos unitários e invariantes à esquerda em G.

- (a) Mostre que $\nabla_X Y = \frac{1}{2}[X, Y]$. (Feito na lista 3.)
- (b) Conclua de (a) que $R(X,Y)Z = \frac{1}{4}[[X,Y],Z]$.
- (c) Prove que, se X e Y são ortonormais, a curvatura seccional $K(\sigma)$ de G segundo o plano σ gerado por X e Y é dada por

$$K(\sigma) = \frac{1}{4} \|[X,Y]\|$$

Portanto, a curvatura seccional $K(\sigma)$ de um grupo de Lie com métrica bi-invariante é não negativa e é zero se e só se σ é gerado por vetores X, Y tais que [X, Y] = 0.

Solution.

(b)

$$\begin{split} R(X,Y)Z &= \nabla_{X}\nabla_{Y}Z - \nabla_{y}\nabla_{X}Z - \nabla_{[X,Y]}Z \\ &= \frac{1}{2}\nabla_{X}[Y,Z] - \frac{1}{2}\nabla_{Y}[X,Z] - \frac{1}{2}[[X,Y],Z] \\ &= \frac{1}{4}[X,[Y,Z] - \frac{1}{4}[Y,[X,Z]] - \frac{1}{2}[[X,Y],Z] \\ &= \frac{1}{4}\Big([X,[Y,Z]] + [Y,[Z,X] + [Z,[X,Y]]\Big) + \frac{1}{4}[Z,[X,Y]] \\ &= \frac{1}{4}[Z,[X,Y]] \end{split}$$
 acobi
$$= \frac{1}{4}[Z,[X,Y]]$$

identidade de Jacobi

que é exatamente o que queríamos a menos de um signo que muda com a convenção de [dC79] para R.

(c)

$$\begin{split} \mathsf{K}(\mathsf{X},\mathsf{Y}) &= \frac{\mathsf{R}(\mathsf{X},\mathsf{Y},\mathsf{Y},\mathsf{X})}{\langle \mathsf{X},\mathsf{X}\rangle\,\langle \mathsf{Y},\mathsf{Y}\rangle - \langle \mathsf{X},\mathsf{Y}\rangle^2} \\ &= \mathsf{R}(\mathsf{X},\mathsf{Y},\mathsf{Y},\mathsf{X}) = \langle \mathsf{R}(\mathsf{X},\mathsf{Y})\mathsf{Y},\mathsf{X}\rangle \qquad \mathsf{X},\mathsf{Y} \text{ ortonormais} \\ &= \frac{1}{4}\,\langle [[\mathsf{X},\mathsf{Y}],\mathsf{Y}],\mathsf{X}\rangle \qquad \text{inciso (b) (convenção [dC79])} \end{split}$$

Agora lembre que na lista 3 provei que

$$\langle [w, u], v \rangle = - \langle u, [w, v] \rangle \quad \forall u, v, w \in \mathfrak{g}$$

Pegue u = [X, Y], v = X e w = Y para obter

$$\langle [Y, [X, Y]], X \rangle = - \langle [X, Y], [Y, X] \rangle = \langle [X, Y], [X, Y] \rangle$$

a por outra parte

$$\langle [Y, [X, Y]], X \rangle = - \langle [[X, Y], Y], X \rangle$$

Então parece de novo que tá errado por um signo mas resulta que a definição de K também é outra em [dC79], então por antisimetria de R nas últimas duas entradas o signo vira e tudo tá certo.

Exercício 2 Seja (M, g) uma variedade Riemanniana.

- (a) Se (M, g) é homogênea, então M possui curvatura escalar constante.
- (b) Se (M, g) é 2-homogênea, então M é Einstein.
- (c) Se (M, g) é 3-homogênea, então M possui curvatura seccional constante.

Solução.

- (a) (Começarei com o inciso (b), pois foi o que consegui fazer melhor.)
- (b) (Intento sem ajuda externa. Com pouco de pena mas da para mostrar, pode poular.) Queremos ver que existe $\lambda \in \mathbb{R}$ tal que $\lambda \operatorname{Ric} = g$. Como tanto Ric quanto g são tensores, basta mostrar o resultado numa base do espaço tangente a qualquer ponto. Usamos o exercício 15(b) da lista 3 para obter que M é isotrópica, i.e. $\forall u, v \in T_p^1 M$ existe $f \in \operatorname{Iso}(M)$ tal que $f_{*,p}u = v$.

Para uma base ortonormal E_i de T_pM temos que

$$\begin{aligned} Ric(E_{i}, E_{j}) &= \sum_{k} \langle R(E_{k}, E_{i}) E_{j}, E_{k} \rangle \\ &= \sum_{k} \langle R(E_{i}, E_{k}) E_{k}, E_{j} \rangle \\ &= \sum_{k} \langle R(E_{i}, E_{k}) E_{k}, f_{*} E_{i} \rangle \end{aligned}$$

onde existe $f \in I$ so tal que $f_*E_i = E_j$ porque M é isotrópica. Daí (aqui começo a ter dúvida) usamos que $f^*R = R$, ou seja

$$R(f_*E_i, f_*E_k)f_*E_k = R(E_i, E_k)E_k$$

isso é porque f é uma isometria e R depende da métrica e suas derivadas. Então a

equação acima vira

$$\begin{split} Ric(E_i, E_j) &= \sum_k \left\langle R(f_* E_i, f_* E_k) f_* E_k, f_* E_i \right\rangle \\ &= \sum_k \left\langle R(E_i, E_k) E_k, E_i \right\rangle \\ &= \sum_k K(E_i, E_k) \end{split}$$

que não faz sentido.

(Solução depois de consultar o professor + ChatGPT.) A observação central feita pelo professor é considerar o endomorfismo associado a Ric, que definimos como Ric satisfazendo

 $\left\langle \widehat{Ric}(v), w \right\rangle = Ric(v, w)$

A observação central feita pelo ChatGPT é que para uma isometria f temos que

$$f^* Ric = Ric \implies f_* \circ \widehat{Ric} = \widehat{Ric} \circ f_*$$

De fato, para $v, w \in T_p M$,

$$\begin{split} \left\langle \widehat{Ric}(f_*v), w \right\rangle &= Ric(f_*v, w) = f^* Ric(v, f_*^{-1}w) = Ric(v, f_*^{-1}w) \\ &= \left\langle \widehat{Ric}v, f_*^{-1}w \right\rangle = \left\langle f_*\widehat{Ric}v, w \right\rangle \end{split}$$

Agora mostramos que $\hat{Ric} = \lambda \, \text{Id}$. Então como Ric é simétrico, \hat{Ric} é diagonalizável e da para calcular o seus eigenvalores. Vamos ver todos eles coincidem. Pegue ν , w eigenvetores de norma 1. Como M é 2-homogênea, sabemos que é isotrópica e existe f isometria tal que $f_*w = \nu$.

$$\lambda_{\nu}\nu = \widehat{Ric}\nu = \widehat{Ric}(f_*w) = f_*\widehat{Ric}(w) = f_*\lambda_w w = \lambda_w f_*w = \lambda_w \nu$$

então $\lambda_{\nu} = \lambda_{w}$ como queríamos. E isso mostra que em cada ponto,

$$\operatorname{Ric}(v, w) = \left\langle \widehat{\operatorname{Ric}}v, w \right\rangle = \left\langle \lambda v, w \right\rangle = \lambda \left\langle v, w \right\rangle$$

ou seja, λ é na verdade uma função em M. Para ver que ela é constante, note que a condição de 2-homogeneidade implica homogeneidade, então Iso age transitivamente em M. Ou seja para $p \neq q$ pontos em M existe f isometria tal que f(p) = q. Como essa isometria preserva tanto o tensor de Ricci quanto a métrica, obtemos que

$$\begin{split} \lambda(q)g_q &= Ric_q = Ric_{f(p)} = (f^*Ric)_p = Ric_p \\ &= \lambda(p)g_p = \lambda(p)(f^*g)_p = \lambda(p)g_{f(p)} = \lambda(p)g_q. \end{split}$$

- (c) (Sem ajuda externa nem muito tempo para aprofundar!) Minha ideia é assim: para controlar a curvatura seccional a partir da 3-homogeneidade realizamos dois vetores arbitrários v, w ∈ T_pM como sendo as derivadas de duas curvas: uma ligando p a q, e outra ligando p a q'. Agora nos perguntamos como é a curvatura em outro ponto p̂. Transportamos a terna (p, q, q') com uma isometria a alguma terna (p̂, q̂, q̂'). Essa segunda terna pode ser escolhida de maneira que as correspondentes derivadas sejam quaisquer outros vetores v̂ e ŵ tangentes a p̂. As curvaturas seccionais coincidem porque f é uma isometria.
- (a) (Sem ajuda externa nem muito tempo para aprofundar!) Uma isometria preserva a curvatura escalar. Como para todo $p \neq q$ em M existe isometria f tal que f(p) = q, obtemos que

$$Scal(q) = Scal(f(p)) = (f^*Scal)(p) = Scal(p).$$

Exercício 5 (Exer. 4, Cap IV, [dC79]) Seja M uma variedade Riemanniana com a seguinte propriedade: dados dois pontos quaisquer p, $q \in M$, o transporte paralelo de p a q não depende da curva que liga p a q. Prove que a curvatura de M é identicamente nula, isto é, para todo $X, Y, Z \in \mathfrak{X}(M)$, R(X, Y)Z = 0.

Demostração. Parece que a sugestão é a prova quase por completo. Começarei explicando os pontos que achei que era necessário destrinchar para chegar a uma prova formal, e depois escrevo o argumento completo (que é basicamente uma copia da sugestão).

Concluir o exercício só depende de duas coisas:

1. **(Mostrar que** f **sempre existe.)** A prova formalmente começa pegando três vetores X(p), Y(p), Z(p) no espaço tangente a um ponto arbitrário $p \in M$. Primeiro devemos mostrar que existe $f: U \to M$ tal que $\partial_s|_{(0,1)} = X(p), \partial_t|_{(0,1)} = Y(p)$, e que f(s,0) = f(0,0).

Primeiro usamos a exponencial $\exp_{\mathfrak{p}}$ de M para definir a superfície como a imagem do subespaço vetorial gerado por $X(\mathfrak{p})$ e $Y(\mathfrak{p})$. A exponencial fica determinada numa bola aberta $B_{\epsilon}(0) \subset T_{\mathfrak{p}}M$. Note $X(\mathfrak{p})$ e $Y(\mathfrak{p})$ podem não estar contidos em $B_{\epsilon}(0)$, mas podemos consertar isso redefinindo a exponencial avaliando as geodésicas em valores menores do que 1. Agora compomos com uma função suave $g: U \to B_{\epsilon}(0)$ tal que

- g(0,1) = (0,0), de modo que $p = (\widetilde{\exp}_p^{-1} \circ g)(0,1)$.
- g(s,0) = g(0,0).
- $g_{*,(0,1)}e_1 = X(p)$.
- $g_{*,(0,1)}e_2 = Y(p)$.

Então $f = \widetilde{exp}_p^{-1} \circ g.$ (Faltou: por que sempre existe g?)

2. (Mostrar que Z(p) pode ser atingido como o transporte paralelo de V(0,0).) Isso é simples: definimos V(0,0) como o transporte paralelo de Z(p) a f(0,0). Por unicidade do transporte paralelo, acabou.

Agora escrevo a prova completa. Como R é um tensor, basta mostrar o resultado num ponto só. R depende de três vetores.

Para escolher os primeiros dois consideramos a superfície dada como a imagem do mapa $f:U\subset\mathbb{R}^2\to M$ construído acima, cujo domínio U é um quadrado aberto contendo o quadrado unitário:

$$U := \{(s,t) \in \mathbb{R}^2; -\varepsilon < t < 1 + \varepsilon, -\varepsilon < s < 1 + \varepsilon, \varepsilon > 0\}$$

Definimos um campo vetorial pegando um vetor arbitrário $V_0 \in T_{f(0,0)}M$ e transportamos paralelamente ao longo das curvas verticais $t \mapsto (s,t)$. Isso significa que $\nabla_{\partial_t} V = 0$, e concluimos que

$$\nabla_{\partial_s} \nabla_{\partial_t} = 0 = \nabla_{\partial_t} \nabla_{\partial_s} V + R(\partial_t, \partial_s) V$$

onde todos os campos são seções ao longo de f e R realmente é $R_{\nabla^f} = f^*R$.

Agora notamos que V(1,0) deve ser, além do transporte paralelo de V(0,0) ao longo de $t\mapsto (0,t)$, o transporte paralelo de V(0,0) ao longo de $t\mapsto (s,t)$ seguido de $s\mapsto (s,1)$ para qualquer s. Concluímos que $\nabla_{\partial_s}V(s,1)=0$. Isso significa que $R_{f(0,1)}=0$.

Campos de Killing

Exercício 11 (Exer. 5, Cap. III, [dC79]) Sejam M uma variedade Riemanniana e $X \in \mathfrak{X}(M)$. Seja $\mathfrak{p} \in M$ e sejam $U \subset M$ uma vizinhança de \mathfrak{p} , e $\mathfrak{p} : (-\varepsilon, \varepsilon-) \times U \to M$ uma aplicação diferenciável tais que para todo $\mathfrak{q} \in U$ a curva $\mathfrak{t} \mapsto \mathfrak{p}(\mathfrak{t},\mathfrak{q})$ é a trajetória de X passando por \mathfrak{q} em $\mathfrak{t} = 0$. X é chamado um *campo de Killing* (ou uma *isometria infinitesimal*) se, para todo $\mathfrak{t}_0 \in (-\varepsilon, \varepsilon)$ a aplicação $\mathfrak{p}(\mathfrak{t}_0) : U \subset M \to M$ é uma isometria. Prove que

- (a) Um campo linear em \mathbb{R}^n , definido por uma matriz A é um campo de Killing se e só se A é anti-simétrica.
- (b) Seja X um campo de Killing em M, $p \in M$ e U uma vizinhança normal de p em M. Admita que p é o único ponto de U que satisfaz X(p) = 0. Então, em U, X é tangente às esferas geodésicas centradas em p.
- (c) Sejam X um campo diferenciável de vetores em M e f : $M \to N$ uma isometria. Seja Y o campo de vetores em N definido por $Y(f(p)) = df_p(X(p))$, $p \in M$. Então Y é um campo de Killing se e somente se X também o for.
- (d) X é de Killing $\iff \langle \nabla_Y X, Z \rangle + \langle \nabla_Z X, Y \rangle = 0$ para todo $Y, Z \in \mathfrak{X}(M)$ (a equação acima é chamada *equação de Killing*).
- (e) Seja X um campo de Killing em M com $X(q) \neq 0$, $q \in M$. Então existe um sistema de coordenadas (x_1, \ldots, x_n) em uma vizinhança de q, de modo que os coeficientes g_{ij} da métrica neste sistema de coordenadas não dependem de x_n .

Solução.

(d) Seguimos a sugestão usando [Lee13].

Observação Note que X é de Killing $\iff \mathcal{L}_X g = 0$. A ida da para escrever com a definição de derivada de Lie de campos tensoriales covariantes:

$$(\mathcal{L}_X g)_p(Y, Z) = \frac{d}{dt}\Big|_{t=0} g_{\phi_t(p)}(\phi_{*,p}^t Y_p, \phi_{*,p}^t Z_p) = \frac{d}{dt}\Big|_{t=0} g_p(Y_p, Z_p) = 0$$

onde escrevo o fluxo como ϕ_t ou ϕ^t a vontade para facilitar notação. A volta também é simples usando Thm 12.37 [Lee13]: $(\phi_t^*g)_p = g_p \iff L_Xg = 0$.

Usando essa observação o inciso (d) pode ser resolvido assim: X killing \iff $L_Xg=0$. Desenrolamos essa definição usando Prop. 12.32(d) [Lee13]:

$$\begin{aligned} 0 &= (L_X g)(Y, Z) = L_X(g(Y, Z)) - g(L_X Y, Z) - g(Y, L_X Z) \\ &= X \langle Y, Z \rangle - \langle [X, Y], Z \rangle - \langle Y, [X, Y] \rangle \end{aligned}$$

Como $\langle \cdot, \cdot \rangle$ é simétrica,

$$\begin{split} X\left\langle Y,Z\right\rangle &=\left\langle \nabla_{X}Y,Z\right\rangle -\left\langle \nabla_{Y}X,Z\right\rangle \\ &+\left\langle \nabla_{X}Z,Y\right\rangle -\left\langle \nabla_{Z}X,Y\right\rangle \end{split}$$

Como $\langle \cdot, \cdot \rangle$ é métrica, acabou.

(a) Noto que para todo $p = (p^1, ..., p^n) \in \mathbb{R}^n$,

$$\frac{d}{dt}\Big|_{t=0}\phi(t,p)=X_p=A(p).$$

Consegui escrever

$$\frac{d}{dt}\Big|_{t=0}\phi(t,p)^{i}=\alpha_{ij}p^{j}$$

pensando nas funções coordenadas de $\phi(t,p)$. Porém, não vi que isso é um sistema de equações diferenciais! Divaguei um tempo sem chegar a nada. Consultando ChatGPT, da para escrever

$$\begin{cases} \dot{\varphi}(t,p) = A\varphi(t,p) \\ \varphi(0,p) = p \end{cases}$$

que tem solução

$$\phi(t,p) = e^{tA}\phi(0,p).$$

Isso faz sentido pelas propriedades da exponencial de matrizes, en particular o fato que que

$$\frac{d}{dt}e^{tA} = Ae^{tA}$$
 [Hal15], Prop. 2.4

que implica que efetivamente a função $e^{tA}\phi(0,t)$ é solução do sistema dado acima. (Explorei outras formas de resolver o sistema, mas achei essa explicação mais familiar.)

Então concluímos que o fluxo é um mapa linear (a exponencial de matrizes é uma matriz). Como além disso é uma isometria, segue que é um elemento de O(n). Agora lembre que a exponencial de grupos de Lie, que coincide com a exponencial de matrizes nesse caso, é um mapa da álgebra de Lie ao grupo. Como $exp(tA) \in O(n)$, concluímos que $A \in \mathfrak{o}(n)$. Para concluir só devemos confirmar que $\mathfrak{o}(n)$ consta das matrizes antisimetricas. Note que

$$0 = \frac{d}{dt}\Big|_{t=0} \langle \exp(tA)x, \exp(tA)y \rangle = \langle Ax, y \rangle + \langle x, Ay \rangle$$

onde $\langle\cdot,\cdot\rangle$ é o produto ponto euclidiano. De fato, podemos reescrever as parcelas como

$$\langle Ax,y\rangle = (Ax)^Ty = x^TA^Ty, \qquad \qquad \langle x,Ax\rangle = x^T(Ay)$$

obtendo que

$$0 = \boldsymbol{x}^T(\boldsymbol{A}^T + \boldsymbol{A})\boldsymbol{y}$$

ou seja, $A^T + A = 0$. (Argumento do Misha; também era natural pegar uma curva em O(n) e derivar.)

(b) Note que ϕ_t é uma isometria de $B_\epsilon(p)$. Isso segue de que $\phi_t(p)=p$ para todo t. Isso segue de que a curva constante p satisfaz a equação do fluxo $0=X_p=\frac{d}{dt}\Big|_{t=0}\phi_t(p)$ e a mesma condição inicial. Daí segue que, como ϕ preserva a métrica

riemanniana e portanto a distância riemanniana, ele manda esferas geodésicas em esferas geodésicas. Segue que as derivadas do fluxo, i.e. vetores de X são tangentes às esferas geodésicas.

(c) Parece que segue da "Propriedade de naturalidade dos fluxos", uma proposição em [Lee13]. Vejamos se posso escrever o essencial: basta mostrar que o fluxo de $\tilde{X} := f_*X$ é dado por $f \circ \phi$ onde ϕ é o fluxo de X. Basta diferenciar $f \circ \phi$ e comprovar que sua derivada coincide com \tilde{X} em cada ponto. Por unicidade de EDOs, acabou. E sim: $(f \circ \phi_p)'(0)$ é, por definição de vetores como velocidades de curvas, $f_*(\phi_p'(0)) = f_*X$.

Seja $\tilde{\phi}$ o fluxo de \tilde{X} . Para ver que $\tilde{\phi}_t$ é uma isometria para todo t, note que para todo $\tilde{p}=f(p)\in \tilde{M}$ temos que

$$\tilde{\phi}_{t}(\tilde{p}) = \tilde{\phi}_{\tilde{p}}(t) = (f \circ \phi_{p})(t) = f(\phi_{t}(p))$$

é isometria porque f e ϕ_t são isometrias. (A troca do subíndice no fluxo me serve para pensar o fluxo como curva ou como isometria.)

(e) Queremos mostrar que $\frac{\partial}{\partial x^n} g_{ij} = 0$ para todo i, j naquele sistema coordenado. A escolha natural é o sistema coordenado onde $X = \partial_n$. Como X é Killing vemos que:

$$0 = L_{\partial_n}(g_{ij}dx^idx^j) = (\partial_n g_{ij})dx^idx^j + g_{ij}L_{\partial_n}dx^idx^j$$

de novo pelas propriedades da derivada de Lie para campos tensoriais em [Lee13]. Lembre que $dx^i dx^j$ denota a simetrização de $dx^i \otimes dx^j \in \Gamma(T^*M \otimes T^*M)$, que é igual a $\frac{1}{2}(dx^i \otimes dx^j + dx^j \otimes dx^i)$ (quase) por definição—é uma conta pequena com a definição de simetrização de tensores. Basta argumentar que a segunda parcela da equação anterior se anula. Então temos que

$$\begin{split} 2L_{\partial_{\mathfrak{n}}}(dx^{i}dx^{j}) &= (L_{\partial_{\mathfrak{n}}}dx^{i}) \otimes dx^{i} + dx^{i} \otimes (L_{\partial_{\mathfrak{n}}}dx^{j}) \\ &+ (L_{\partial_{\mathfrak{n}}}dx^{j}) \otimes dx^{i} + dx^{j} \otimes (L_{X}dx^{i}) \end{split}$$

Lembremos a definição da derivada de Lie de campos tensoriais:

$$L_{\partial_n} dx^i := \frac{d}{dt}\Big|_{t=0} \phi_t^* dx^i$$

onde para $V \in \mathfrak{X}(M)$ o pullback de campos tensoriais é definido por

$$(\phi_t^* dx_i)_p := (dx^i)_{\phi(t,p)} (\phi_{*,p}^t V_p)$$

Minha intuição é que o fluxo de ∂_n não modifica as coordenadas de V distintas de V^n , mas talvez essa última sim. No caminho para comprovar isso descobri que de fato o pushforward é a identidade. Vamos calcular o fluxo de $X=\partial_n$ (aqui usei ChatGPT):

$$x\circ\phi_p(t)=\left((x^1\circ\phi_p)(t),\ldots,(x^n\circ\phi_p)(t)\right):=(\phi^1(t),\ldots,\phi^n(t))$$

obtemos o sistema

$$\dot{\phi}^{i}(t) \begin{cases} 0 & i \neq n \\ 1 & i = n \end{cases}$$

que implica que

$$\phi^{\mathfrak{i}}(t) = \begin{cases} x(p) & \quad \mathfrak{i} \neq n \\ x(p) + t & \quad \mathfrak{i} = n \end{cases}$$

dada a condição inicial $x\circ \phi(0)=x(p)$. Então aqui, para minha surpresa, acaba que, dado t fixo, a derivada do fluxo ϕ_t é a identidade. E sim, porque como difeomorfismo de M vemos em coordenadas que trata-se do mapa

$$(x^1(p),\ldots,x^n(p))\longmapsto (x^1(p),\ldots,x^n(p)+t),$$

e quando derivamos, como t é fixo, obtemos a matrix identidade. Concluimos que ϕ_t^*V é constante respeito a t, de modo que a derivada de Lie é zero. Note que o fato de que a derivada do fluxo é a identidade não significa que $L_{\partial_n}\omega=0$ para outros campos tensoriais, pois embora o pushforward dos campos vetoriais não é modificado por ϕ , outros campos tensoriais podem variar de ponto a ponto, de modo que o pullback não é constante.

Exercício 14 (Exer. 12, Cap. VI, [dC79], Singularidades de um campo de Killing) Seja X um campo de Killing em uma variedade Riemanniana M. Seja $N = \{p \in M; X(p) = 0\}$. Prove que

- (a) Se $p \in N$, $V \subset M$ é uma vizinhança normal de p, e $q \in N \cap V$, então o segmento de geodésica radial γ ligando p a q está contido em N. Conclua que $\gamma \cap V \subset N$.
- (b) Se $p \in N$, existe uma vizinhança $V \subset M$ de p tal que $V \cap N$ é uma subvariedade de M (Isto implica que toda componente conexa de N é uma subvariedade de M).
- (c) A codimensão, como subvariedade de M, de uma componente conexa N_k de N é par. Admita o seguinte fato: se uma esfera possui um campo diferenciável não nulo então sua dimensão é ímpar.

Solução.

(a) Suponha que existe um ponto $\gamma(t_0)$ sobre γ onde X não é nulo. Como X é de Killing, o fluxo preserva a distância, i.e. sabemos que para qualquer s,

$$\epsilon_1 := d(\gamma(t_0), \mathfrak{p}) = d(\phi_s(\gamma(t_0)), \phi_s(\mathfrak{p})) = d(\phi_s(\gamma(t_0)), \mathfrak{p})$$

de modo que $\phi_s(\gamma(t_0))$ está na esfera de raio ϵ_1 centrada em p. Porém, o mesmo acontece com q, i.e. $\phi_s(\gamma(t_0))$ está na esfera de raio $\epsilon_2 := d(\gamma(t_0), q)$ centrada em q. Essas duas esferas se intersectam tangencialmente em $\gamma(t_0)$ pelo lema de Gauss, e portanto o ponto de interseção é único numa vizinhança dele. Isso significa que o fluxo é constante em $\gamma(t_0)$ e portanto $X(\gamma(t_0)) = 0$.

(b) (Solução seguindo a sugestão.) Devemos mostrar que para todo $t \in \mathbb{R}$, a restrição da diferencial do fluxo ϕ_*^t a $Q := span(exp_p^{-1}(q_1), exp_p^{-1}(q_2))$ é a identidade. Isso resulta claro pelo exercício 3 da lista 3: como ϕ^t é uma isometria,

$$\varphi^{t} \circ exp_{\mathfrak{p}} = \varphi^{t}_{*} \circ exp_{\mathfrak{p}}$$

Defina $v_1 = \exp^{-1}(q_1)$. Como q_1 é um ponto fixo de φ_t ,

$$\varphi^{t}(\exp_{\mathfrak{p}}(v_{1})) = \exp_{\mathfrak{p}}(v_{1})$$

Pela observação da lista 3, esse ponto também é

$$\exp_n(\varphi_*^t(v_1)) = \exp_n(v_1)$$

Então, como exp_p é bijetiva,

$$\phi_*^t(\nu_1)=\nu_1$$

Agora defina $v_2 = \exp^{-1}(q_2)$; o mesmo argumento funciona. E mesmo para qualquer $v := av_1 + bv_2 \in \text{span}(v_1, v_2)$. Segue que em qualquer ponto de $N_2 := \exp\left(\text{span}(v_1, v_2)\right)$ o fluxo tem derivada zero e portanto X se anula. O procedimento funciona igual em dimensões maiores.

(c) (Seguindo a sugestão.) A ideia é construir um campo vetorial diferenciável não nulo em alguma esfera contida no espaço N[⊥]. Isso significa que a dimensão da esfera é ímpar, e portanto a dimensão de N[⊥] deve ser par.

A prova acaba sendo bem parecida ao argumento que eu dei para o inciso (a), onde mostrei que os vetores não nulos de um campo de Killing num ponto q perto de $p \in N$ devem ser tangentes a alguma esfera centrada em p. Além disso, o campo X não pode se anular em pontos dessa esfera **(por que? :()**. Portanto, a restrição de X a essa esfera é um campo que não se anula.

Além disso, como ϕ^t é uma isometria, notamos que preserva o espaço normal $E_p:=(T_pN)^{\perp}$. Isso implica **(por que?)** que todo vetor de um campo de Killing que não seja zero deve ser tangente a N^{\perp} .

Exercício 15 (Fórmula de Bochner para campos de Killing) Seja (M, g) uma variedade Riemanniana, $X \in \text{Kil}(M, g)$ e f := $\frac{1}{2}|X|^2 \in C^{\infty}(M)$. Mostre que

$$\Delta f = |\nabla X|^2 - Ric(X, X)$$

onde $|\nabla X|(p)$ denota a norma do operador $T_pM \ni v \mapsto \nabla_v X \in T_pM$.

Ideias. Certamente não consegui resolver esse exercício. Aqui vão algumas ideias e perguntas:

0. A "norma do operador $T_pM\ni \nu\mapsto \nabla_\nu X\in T_pM$ " é

$$|X| := \sup_{|\nu|=1} \nabla_{\nu} X \qquad ?$$

1. Tentei fazer algumas contas:

$$\Delta f = \Delta \left(\frac{1}{2}|X|^2\right) = \frac{1}{2}\nabla \langle X, X \rangle$$

Onde, para $Y \in \mathfrak{X}(M)$, sabemos que

$$\langle \nabla \langle X, X \rangle, Y \rangle = Y \langle X, X \rangle = 2 \langle \nabla_Y X, X \rangle.$$

Agora pegue um marco ortonormal E_i, de modo que

$$\Delta f = \sum_{i} \langle \nabla_{E_i} \nabla f, E_i \rangle$$

Agora tendo em mente a conta anterior, estou motivado a calcular

$$E_{i} \langle \nabla f, E_{i} \rangle = \langle \nabla_{E_{i}} \nabla f, E_{i} \rangle + \langle \nabla f, \nabla_{E_{i}} E_{i} \rangle$$

Ou seja, podemos expressar o Laplaciano de f como

$$\Delta f = \sum_{i} \Big(E_{i} \langle \nabla f, E_{i} \rangle - \langle \nabla f, \nabla_{E_{i}} E_{i} \rangle \Big).$$

Em que momento aparece uma segunda derivada do tipo $\nabla\nabla$ i.e. ∇^2 ?

2. Outra ideia foi usar a notação de índices para os tensores em coordenadas. Consultando [Lee19],

$$\begin{split} \nabla f &= g^{ij} E_i f E_j & \text{(quase consegui escrever sem consultar o livro)} \\ div X &= \frac{1}{\sqrt{\det g}} \partial_i (X^i \sqrt{\det g}) \\ \Delta f &= \frac{1}{\sqrt{\det g}} \partial_i \left(g^{ij} \sqrt{\det g} \partial_j f \right) \end{split}$$

De modo que estou interessado em calcular as derivadas parciais de f:

$$\begin{split} \partial_{i}f &= \partial_{i}\left(\frac{1}{2}g(X,X)\right) \\ &= \frac{1}{2}\partial_{i}(g_{jk}X^{j}X^{k}) \\ &= \frac{1}{2}\left(X^{j}X^{k}\partial_{i}g_{jk} + g_{jk}\partial_{i}X^{j}X^{k}\right) \\ &= \frac{1}{2}\left(X^{i}X^{k}\partial_{i}g_{jk} + g_{jk}(X^{i}\partial_{i}X^{k} + X^{k}\partial_{i}X_{j})\right) \end{split}$$

Depois teria que calcular os as derivadas disso multiplicado com $g^{ij}\sqrt{\det g}$. A dificuldade maior seria identificar onde aparecem os coeficientes do tensor de Ricci.

3. Finalmente consultei [dC79] e [Lee19] em busca de alguma ajuda. Em [dC79] não encontrei nada, quanto em [Lee19] aparece uma fórmula extremamente parecida na questão 7-7: para $u \in C^{\infty}(M)$,

$$\Delta\left(\frac{1}{2}|\nabla u|^2\right) = |\nabla^2 u|^2 + \langle \nabla \Delta u, \Delta u \rangle + \text{Ric}(\nabla u, \nabla u).$$

que a principio não tem a ver com campos de Killing. Então uma expetativa obvia é que no caso de ∇u ser um campo de Killing,

$$\langle \nabla \Delta \mathbf{u}, \nabla \mathbf{u} \rangle = 0$$

mas não é claro o que Δu nesse caso. Consultando os resultados indicados para resolver o problema em [Lee19], reparei nas fórmulas que parecem generalizar o resultado de que

$$\nabla_{\partial_t} \nabla_{\partial_s} V - \nabla_{\partial_s} \nabla_{\partial_t} V = R(f_* \partial_t, f_* \partial_s) V$$

para tensores em geral: são as *Ricci identities*, Thm. 7.14. Em particular, a fórmula para 1-formas é a sugestão para provar a fórmula de Bochner.

References

- [dC79] M.P. do Carmo. *Geometria Riemanniana*. Escola de geometria diferencial. Instituto de Matemática Pura e Aplicada, 1979.
- [Hal15] Brian Hall. *Lie Groups, Lie Algebras, and Representations: An Elementary Introduction*. Springer International Publishing, Cham, 2015.
- [Lee13] John M. Lee. Introduction to Smooth Manifolds. Second edition edition, 2013.
- [Lee19] John M. Lee. *Introduction to Riemannian Manifolds*. Graduate Texts in Mathematics. Springer International Publishing, 2019.
- [MS74] John W. Milnor and James D. Stasheff. *Characteristic Classes. (AM-76)*. Princeton University Press, 1974.