PROYECTOS PROFESIONALES Y ACADEMICOS

DANIEL BELLO

DIC 2024

Desarrollo de una herramienta en Excel con VBA para la planta Acetilos

Gráfico 1. Comparación de valores entre rutina analítica y estimaciones del reactor R-3301 durante un año.

TAG	ECUACIONES DE REGRESIÓN	% DE R ²			
R-3301	1.0536X ₁ +0.341X ₂ -3.185	94.26			
R-3302	-0.660+0.9091X ₁	91.35			
R-3303S	-1.831+0.8474X ₁ +4.43X ₃				
R-3303I	R-3303I -9.34+1.3322X ₁ +0.2560X ₂ +2.113X ₃				
R-3304S	-5.81+3.578X ₁ -4.89X ₂ -0.1252X ₁ ² +0.699X ₂ ²	92.81			
R-3304I	-18.83+3.645x ₁ +15.21X ₃ -0.1174X ₁ ² -15.91X ₃ ²	93.94			
R-3305S	-4.942+1.168X ₁ +6.219X ₃ -0.02787X ₁ ²				
R-3305I	-224.7+12.59X ₁ +1.601X ₂ +274.7X ₃ -0.1102X ₂ ² -66.6X ₃ ² -10.68X ₁ X ₃				
R-3306S	-0.731+0.8617X ₁ +0.4507X ₂	96.98			
R-3306I	-37.44+6.344X ₁ +0.433X ₂ +19X ₃ +75X ₃ ² -9.51X ₁ X ₃	91.40			
R-3307S	0.360+0.8813X ₁	94.68			
R-3307I	133.4-16.29X ₁ +1.083X ₂ -76.2X ₃ +0.533X ₁ ² -0.0757X ₂ ² +5.47X ₁ X ₃	91.82			
Modelos	obtenidos de datos de planta				

Imagen 5. Captura de datos de capa acuosa del FT-3301

REACTORES DE DAA CON T-3300							
TAG	TEMP.DOMO	TEMP.ENTRADA	DT	%CONVERSION	ESPACIO VELOCIDAD	FLUJO	CONVERSIO
R-3301	33.03	3.17	29.86	0.00	0.11	975.53	F/OP
R-3302	13.15	3.17	9.98	8.41	0.74	7000.32	BAJA
R-3303S	17.03	3.17	13.86	12.50	0.72	5510.53	ACEPTABLE
R-3303I	17.96	3.17	14.79	13.48	0.91	5500.40	ACEPTABLE
R-3304S	12.82	3.17	9.65	8.06	0.77	5497.56	BAJA
R-3304I	17.07	3.17	13.91	12.55	0.77	5500.42	ACEPTABLE
R-3306S	9.68	3.17	6.51	4.75	0.73	5513.97	BAJA
R-3306I	29.30	3.17	26.13	0.00	0.00	0.00	F/OP

AJUSTAR DELTAS DE TEMPERATURA: Disminuir el flujo de alimentación hacia los reactores con mala conversión Notificar al ingeniero de producción para enviarlo a regeneración

REACTORES DE DAA CON T-3350								
R-3305S	26.14	35.37	-9.23	0.00	0.00	0.00	F/OP	
R-3305I	25.61	35.37	-9.76	0.00	0.00	0.00	F/OP	
R-3307S	26.73	35.37	-8.63	0.00	0.14	1176.08	F/OP	
R-33071	25.85	35.37	-9.52	0.00	0.00	0.00	F/OP	

Imagen 3. Estado de la conversión de los reactores

Desarrollo de una herramienta en Excel con VBA

Imagen 1. Menú principal

Imagen 2. Estado de la conversión de los reactores

Ajuste del modelo de energía (KPI'S) en la planta de OM

Ajuste del modelo de energía (KPI'S) en la planta de OM

Resolución de Ecuaciones Diferenciales Ordinarias (EDO) por Series de Taylor.

Si la función representa el comportamiento de un sistema y se expresa en términos de un punto central x_i , entonces:

$$f(x) = \sum_{n=i}^{\infty} \frac{f^{(n)}(x_i)}{n!} (x_{n+1} - x_i)^n$$
 (6)

Cuyo desarrollo de la expresión es:

$$f(x_{n+1}) = f(x_i) + \frac{f'(x_i)}{1!}(x_{n+1} - x_i) + \frac{f''(x_i)}{2!}(x_{n+1} - x_i)^2 + \frac{f'''(x_i)}{3!}(x_{n+1} - x_i)^3 + \cdots$$
 (7)

Resolución de Ecuaciones Diferenciales Ordinarias (EDO) por Series de Taylor en Python.

```
import sympy as sp
import numpy as np
# Limpiar pantalla
print("\n" * 100)
# Declarar las variables simbólicas
x, y = sp.symbols('x y')
# Solicitar la función al usuario
f = sp.sympify(input('Ingresar f(x): '))
# Leer número de soluciones deseadas
ns = int(input('Ingrese el número de soluciones deseadas (ns): '))
x0 = float(input('Ingrese el valor inicial de x (x0): '))
y0 = float(input('Ingrese el valor inicial de y (y0): '))
x1 = float(input('Ingrese el valor final de x (x1): '))
n = int(input('Ingrese el orden máximo de derivadas (n): '))
d3 = [f]
# Calcular derivadas hasta el orden n+1
for j in range(n):
    d = sp.diff(d3[j], x)
    d2 = sp.diff(d3[j], y)
    d3.append(d + d2 * f)
for s in range(1, ns + 1):
    p = 10 + 5 * s
   h = (x1 - x0) / p \# Tamaño de paso h
    xi = np.linspace(x0, x1, p + 1) # Vector x con un incremento h
    M = len(xi) - 1 # Número de iteraciones
```

```
yi = np.zeros(M + 1) # Vector para almacenar los valores de y
    yi[0] = y0
    print(f'*******Número de pasos {p}******* con h={h:.4f}*******')
    print('i \txi \tyi \terror relativo \terror local truncado')
    for i in range(M):
       deval = 0 # Variable para almacenar la evaluación de las derivadas
       a = sp.N(f.subs({x: xi[i], y: yi[i]})) * h # Primera derivada evaluada
       yi[i + 1] = yi[i] + a # yi con la primera derivada
       for k in range(1, n): # Evaluar derivadas desde orden 2 hasta N
           deval += sp.N(d3[k + 1].subs({x: xi[i], y: yi[i]})) * h**(k + 1) /
sp.factorial(k + 1)
       c = sp.N(d3[n].subs({x: xi[i], y: yi[i]})) * h**(n + 1) / sp.factorial(n)
+ 1) # Derivada de orden n+1
       yi[i + 1] += deval
       relative error = abs(a + deval) / 100
       local_truncation_error = abs(c)
       print(f'{i} \t{xi[i + 1]:.4f} \t{yi[i + 1]:.7f} \t{relative_error:.7f}
\t{local truncation error:.10f}')
# Fin del programa
```

Diseño de un reactor de lecho fijo para el reformado de gas metano con vapor de agua (SMR) para producir gas hidrógeno.

Catalizador $NiO/\alpha - Al_2O_3$

T= 675 K

Deducción de las ecuaciones LHHW

Gráficos de la velocidad de reacción

Diseño pseudohomogeneo – 336 tubos

Modelación:

- Isotérmico
- Adiabático
- Caída de presión
- Sistema de enfriamiento
- Trayectoria óptima curvas de equilibrio

Se han considerado un gran seria de reacciones que representan el proceso de reformado, dichas ecuaciones son necesarias para poder interpretar y describir de una manera más precisa los fenómenos químicos y físicos del sistema, tal es el caso de la cinética de la reacción

Equipo de la reacción

Características y propiedades:

Reactor de lecho empacado

• Material: Tubo de cuarzo

Longitud: 49.5 cm

• Diámetro interno: 1.2 cm

• Catalizador: 18 wt. % NiO soportado en α —

 Al_2O_3

• Masa de catalizador: 5 gramos

No.	Reacciones	$-\Delta H_{298}$, KJ/mol
1	$CH_4 + H_2O \leftrightarrow CO + 3H_2$	-206.1
II	$CO + H_2O \leftrightarrow CO_2 + H_2$	+41.15
III	$CH_4 + 2H_2O \leftrightarrow CO_2 + 4H_2$	-165.0
IV	$CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$	-247.3
V	$CH_4 + 3 \leftrightarrow 4CO + 2H_2O$	-330.0
VI	$CH_4 \leftrightarrow C + 2H_2$	-74.82
VII	$2CO \leftrightarrow C + CO_2$	+173.3
VIII	$CO + H_2 \leftrightarrow C + H_2O$	+131.3
IX	$CO_2 + 2H_2 \leftrightarrow C + 2H_2O$	+90.13
Х	$CH_4 + 2CO = 3C + 2H_2O$	+187.6
XI	$CH_4 + CO_2 = 2C + 2H_2O$	+15.3

Modelo adiabático

Modelo con intercambio de calor

Caracterización de fracciones del petróleo con la ecuación de estado PC-SAFT.

Fig. 2.3. Representación de PC-SAFT. (Pedersen et al., 2015).

$$\tilde{a}^{res} = \tilde{a}^{cd} + \tilde{a}^{disp} + \tilde{a}^{asoc}$$

Esta variante de la ecuación de estado SAFT fue propuesta por Gross & Sadowski, la energía de Helmholtz para el término de dispersión viene dada como:

$$\frac{a^{disp}}{kTN} = \frac{A_1}{kTN} + \frac{A_2}{kTN}$$

Donde:

$$\frac{A_1}{kTN} = -2\pi\rho m^2 \left(\frac{\varepsilon}{kT}\right) \sigma^3 \int_1^\infty \tilde{u}(x) g^{hc}(m; x\sigma/d) x^2 dx$$

$$\frac{A_2}{kTN} = -\pi \rho m \left(1 + Z^{hc} + \rho \frac{\partial Z^{hc}}{\partial \rho} \right)^{-1} m^2 \left(\frac{\varepsilon}{kT} \right)^2 \sigma^3 \frac{\partial}{\partial \rho} \left[\rho \int_1^{\infty} \tilde{u}(x)^2 g^{hc}(m; x\sigma/d) x^2 dx \right]$$

donde $x=r/\sigma$ y $\tilde{u}(x)=u(x)/\varepsilon$ es el potencial intermolecular reducido

$$\left(1 + Z^{hc} + \rho \frac{\partial Z^{hc}}{\partial \rho}\right) = \left(1 + m \frac{8\eta - 2\eta^2}{(1 - \eta)^4} + (1 - m) \frac{20\eta - 27\eta^2 + 12\eta^3 - 2\eta^4}{((1 - \eta)(2 - \eta))^2}\right)$$

Donde:

 σ el diámetro del segmento

 ε/k el parámetro de energía del segmento

m el número de segmentos

Las dos integrales se obtienen a partir de las siguientes expresiones:

$$I_1 = \int_1^\infty \tilde{u}(x)g^{hc}(m; x\sigma/d)x^2 dx = \sum_{i=0}^6 a_i \eta^i$$

$$I_2 = \frac{\partial}{\partial \rho} \left[\rho \int_1^\infty \tilde{u}(x)^2 g^{hc}(m; x\sigma/d)x^2 dx \right] = \sum_{i=0}^6 b_i \eta^i$$

con la serie de potencias en densidad reducida dada por las ecuaciones:

$$a_i = a_{0i} + \frac{m-1}{m}a_{1i} + \frac{m-1}{m}\frac{m-2}{m}a_{2i}$$

$$b_i = b_{0i} + \frac{m-1}{m}b_{1i} + \frac{m-1}{m}\frac{m-2}{m}b_{2i}$$

La tabla 2.1 proporciona los coeficientes para llevar a cabo los cálculos de los parámetros anteriores.

i	a_{0i}	a_{Ii}	a_{2i}	b_{Oi}	b_{Ii}	b_{2i}
0	0.910 563 144 5	- 0.308 401 691 8	-0.0906148351	0.724 094 694 1	- 0.575 549 807 5	0.097 688 311 6
1	0.636 128 144 9	0.186 053 115 9	0.4527842806	2.238 279 186 1	0.699 509 552 1	-0.2557574982
2	2.686 134 789 1	- 2.503 004 725 9	0.5962700728	- 4.002 584 948 5	3.892 567 339 0	- 9.155 856 153 0
3	- 26.547 362 491 0	21.4197936290	- 1.724 182 913 1	- 21.003 576 815 0	- 17.215 471 648 0	20.642 075 974 0
4	97.759 208 784 0	-65.255 885 330 0	-4.130 211 253 1	26.855 641 363 0	192.672 264 470 0	- 38.804 430 052 0
5	- 159.591 540 870 0	83.318 680 481 0	13.776 631 870 0	206.551 338 410 0	- 161.826 461 650 0	93.6267740770
6	91.297 774 084 0	-33.7469229300	- 8.672 847 036 8	- 355.602 356 120 0	- 165.207 693 460 0	- 29.666 905 585 0

Tabla 2.1. Constantes del modelo universal [16] para las ec. 2.63 y 2.64.

Implementación de PC-SAFT en Fortran 90

```
rho = dense/z3t
                                                                                             rhomolar=rho !linea nueva
                                                                                              z0 = z0t*rho
SUBROUTINE PHIEOS (phi,x,t,p,parame,kij,ncomp,densta,dense,rhomolar)
                                                                                             z1 = z1t*rho
                                                                                              z2 = z2t*rho
IMPLICIT NONE
                                                                                              z3 = z3t*rho
                                                                                              zms = 1.d0 - dense
                                                                                              m_mean = z0t/(PI/6.d0)
PARAMETER (nc=16)
INTEGER ncomp
                                                                                              zges = (pges * 1.d-30)/(KBOL*t*rho)
DOUBLE PRECISION phi(nc), valor
                                                                                              zres = zges - 1.d0
DOUBLE PRECISION kij(nc,nc),parame(nc,25)
DOUBLE PRECISION h_res,s_res,g_res
                                                                                       !----calcul. the derivatives of f to mole fraction x ( d(f)/d(x) )----
DOUBLE PRECISION pges,pgesdz,gij(nc, nc),zges
                                                                                             DO 1 k = 1.ncomp
DOUBLE PRECISION fres
DOUBLE PRECISION x(nc),t,p,mseg(nc)
DOUBLE PRECISION densta, dense, dap_dx(nc,7), dbp_dx(nc,7), rhomolar!se a@ade nueva variable rhomolar
                                                                                              z0dx = rho*PI/6.d0*mseg(k)
DOUBLE PRECISION order1, order2, apar(7), bpar(7)
                                                                                              z1dx = rho*PI/6.d0*mseg(k)*sig_t(k)
DOUBLE PRECISION z0t,z1t,z2t,z3t,z0,z1,z2,z3
                                                                                              z2dx = rho*PI/6.d0*mseg(k)*sig_t(k)*sig_t(k)
DOUBLE PRECISION PI, RGAS, NA, KBOL, TAU
                                                                                              z3dx = rho*PI/6.d0*mseg(k)*sig_t(k)**3.d0
DOUBLE PRECISION dij_ab(nc,nc),uij(nc,nc),sig_ij(nc,nc),sig_t(nc)
                                                                                              m_m dx(k) = mseg(k)
DOUBLE PRECISION zms, rho, m_mean
                                                                                              fhs_sg = (3.d0*z1*z2/zms + z2**3.d0/z3/zms/zms &
DOUBLE PRECISION mhs(nc), mhc(nc), mdsp(nc), mpart(nc), &
                                                                                                     + (z2**3.d0/z3/z3-z0)*DLOG(zms) )/z0
             myres(nc), myresq, lnphi(nc)
                                                                                              fhs_sx = -z0dx/z0*fhs_sg &
DOUBLE PRECISION dgijdx(nc, nc, nc)
                                                                                              +( 3.d0*(z1dx*z2+z1*z2dx)/zms + 3.d0*z1*z2*z3dx/zms/zms &
DOUBLE PRECISION zres, zgs
                                                                                                  + 3.d0*z2*z2*z2dx/z3/zms/zms &
DOUBLE PRECISION fhs_sg, fhs_sx
                                                                                                  + z2**3.d0*z3dx*(3.d0*z3-1.d0)/z3/z3/zms**3.d0 &
DOUBLE PRECISION z0dx,z1dx,z2dx,z3dx,m_mndx(nc)
                                                                                                   + ((3.d0*z2*z2*z2dx*z3-2.d0*z2**3.d0*z3dx)/z3**3.d0-z0dx) &
DOUBLE PRECISION II, I2, I1_dx, I2_dx, c1_con,c2_con,c1_dx, &
                                                                                                                                                           *DLOG(zms) &
                                                                                                   +(z0-z2**3.d0/z3/z3)*z3dx/zms )/z0
                                                                                              mhs(k) = m_mndx(k)* fhs_sg + m_mean*fhs_sx
CALL PERTPAR (kij, parame, &
   ncomp,x,t,p,mseg,densta,dense,dap_dx,dbp_dx, &
                                                                                                DO i = 1, nc
   order1,order2,apar,bpar,z0t,z1t,z2t,z3t,dij_ab, &
                                                                                                  DO j = 1, nc
                                                                                                     dgijdx(i,j,k) = z3dx/zms/zms &
   PI,RGAS,NA,KBOL,TAU,sig_t,uij,sig_ij)
                                                                                                        +3.d0*dij_ab(i,j)*(z2dx+2.d0*z2*z3dx/zms)/zms/zms &
                                                                                                        +dij_ab(i,j)**2.d0*z2/zms**3.d0 &
CALL DENSITR (pges,pgesdz,gij, &
                                                                                                                               *(4.d0*z2dx+6.d0*z2*z3dx/zms)
   ncomp,x,t,p,mseg,densta,dense,dap_dx,dbp_dx, &
                                                                                                  END DO
   order1,order2,apar,bpar,z0t,z1t,z2t,z3t,dij ab, &
                                                                                                END DO
   PI,RGAS,NA,KBOL,TAU,sig_t,uij,sig_ij,valor)
                                                                                                mhc(k) = 0.d0
                                                                                                  mhc(k) = mhc(k) + x(i) * (1.d0-mseg(i)) &
                                                                                                               * (1.d0/gij(i,i)) * dgijdx(i,i,k)
                                                                                                FND DO
                                                                                                mhc(k) = mhc(k)+(1.d0-mseg(k))*DLOG(gij(k,k))
```


Programa principal de PC-SAFT EOS

Análisis de sensibilidad en Excel con Vba y Fortran 90.

Envolvente de fases Presión-Temperatura

```
Subroutine PT(gammaV,parame,zi,P0)
INTEGER(KIND=4) i,j,k,ite,Imax,inic,V_F,l
gammaV(5),error,zi(nc),P0,x(nc),y(nc),Pnueva,Tnueva,parame(nc,3),rhoph(nph)
Real(DP):: DPT,DT,DP,T0,phi(nph,nc),pmtot(nph),tiempo
DT= 10.00 !DELTA TEMP. 10 KELVIN
DP=10.D5 !INCREMENTO DE PRESION EN PASCALES IGUAL A 10 BAR
call PAREOS(gammaV, parame) !obtiene parámetros moleculares de pseudos con gammaV
!se calcularon las composiciones de los pseudos y se normalizaron Ci
Do 1=1,1
error=0.d0
P=P0 !en Bar, se asigna presion inicial
if (1==1) then
  TF=1
 X=Ci
  v_f=0
  IE=2 !SE SELECCIONA PUNTOS DE ROCIO
```

```
write(3,'(2(2x,f12.4),2x,A7,8(4x,f12.6))')
T,P/1.d5, comp(k), x(k), y(k), phi(1,k), phi(2,k), rhoph, pmtot
  write(3,*) ' '!Salto de linea que divide cada punto de burbuja
  Do j=1, nc
     Error= error+dabs(y(j)-x(j))
  End do
  Write(7, '(2X, I3, 2x, I2, 4X, 4(3x, f12.4))') i, V_F, T, P/1.D5, DPT, Error
  write(9, '(I2,2X,4(3x,f12.4))') V_F,T,P/1.D5,DPT,Error
  IF (ERROR, LT. 0.1) THEN
     write (*,*) 'LA SUMA DE LA DIFERENCIAS DE COMPOSICIONES L-V ES MENOR A 0.1'
  END IF
END DO
write(7,*) 'PUNTOS DE ROCIO '!salto de linea para separar puntos de burbuja con
rocio
End Do
End Subroutine
```

```
P=180.D0
  dt=10.d0
  imax=25
  v_f=1
end if
write(5,*) T,P
write(9,'(A7,10(f6.4,2x))') 'Gamma=',gammaV,kij(4,nc-4),kij(4,nc-3),kij(4,nc-4)
2),kij(4,nc-1),kij(4,nc)
CALL PRERB(x,y,inic,ite,pnueva,gammaV,rhoph,phi,pmtot) !última línea ocultada el
write(9, '(I2,2X,4(3x,f12.4))') V_F,T,P/1.D5,DPT,Error
T=T+DT!SE CALCULA SEGUNDO PUNTO
!P=75d5 !Presión inicial supuesta
CALL PRERB(x,y,1,ite,pnueva,gammaV,rhoph,phi,pmtot)
DPT= (P/1.d5-P0)/(T-T0) !P0 ESTABA EN BAR DESDE QUE SE INGRESÓ COMO DATO INICIAL,
POR LO QUE SE CONVIERTE P EN BAR
write(9, '(I2,2X,4(3x,f12.4))') V_F,T,P/1.D5,DPT,Error
!Write(3,'(2(3x,f12.8))') DPT !Primer DeltaPT de los dos primeros puntos
write(3, '(A122)')
      T(K)
                     P(Bar)
                              Comp.
                                          x(1)
                                                                        phi_liq(
i)
       phi_vap(i)
                        RhoLiq
                                    RhoVap'
Write(7,*)
' i V/F
               Temperatura(K)
                                  Presión(Bar)
                                                                   Error
!write(9, '(A7,3(f6.4,2x))') 'Gamma= ',gammaV
Do i=1, Imax
  Error=0.d0
  TO=T
! IF (DPT.LT.0.5) THEN
      T=T+DT!SE CALCULA PRIMER PUNTO
      IF (DABS(376.05D0-T).LT.8.D0) T=376.05D0 !PARA CALCULAR LA P. DE BURBUJA A
      CALL PRERB(x,y,1,ite,pnueva,gammaV,rhoph,phi,pmtot) !1 es para que no se
llame a la rutina de inicialización de P en este caso
    FLSE
       P=(P+DP)/1.d5 !se convierte en Bar
       CALL TERB(x,y,1,ite,tnueva,gammaV,rhoph,phi,pmtot) !SE CALCULA SEGUNDO
PUNTO
  DPT= (P-P0)/1.D5/(T-T0) !Se convierten a bar las presiones para tener similitud
 numérica con la temperatura.
```


Gráfico 4.1. Envolvente de fases Presión—Temperatura del crudo 1.

Gráfico 4.24. Envolvente de fases Presión—Temperatura del crudo 5.

Algoritmo del CCE y rutina en Fortran 90.

Código:

```
Subroutine CCE(intervaloP,gammaV,parame,x,y,zi)
INTEGER(KIND=1) i,j,inic,ite
Real(DP)::IntervaloP(18),parame(nc,3),x(nc),y(nc),zi(nc),gammaV(5),rhoph(nph),phi
(nph,nc)
real(dp):: Vtot(18), vsat, VR
ite=20
inic=0
X=0
y=0
T=102.9+273.15d0 !en Kelvin
j=size(IntervaloP)
DO i=1,j
  P=IntervaloP(i)*1d5 !se convierte a Pa, para que funcione correctamente la
rutina del flash
  Call FLASH(zi,x,y,inic,ite,rhoph,gammaV)
  IF (BIN.LT.0) BIN=0 !BIN ES LA V/F
  VTOT(i)=BIN/RHOPH(2)+(1-BIN)/rhoph(1) !SE SUMAN LOS VOL. DE LIQ Y VAPOR, SE
CONSIDERA 1 KMOL COMO BASE DE CALCULO
 IF (I.EQ.9) VSAT= VTOT(i) !7 es la posicion de la presión de burbuja a la T de
Yacimiento.
End Do
DO I=1,j
  VR=Vtot(i)/vsat
  write (5,'(2(3x,f8.4))') intervaloP(i),VR
END DO
End Subroutine
```


Gráfico 4.13. Volumen relativo en la expansión del crudo 3.

Gráfico 4.19. Volumen relativo en la expansión del crudo 4.

Algoritmo del DLE y rutina en Fortran 90.

Código:

```
Subroutine DLE(intervaloP,gammaV,parame,x,y,zi)
INTEGER(KIND=1) i,j,k,inic,ite
Real(DP):: IntervaloP(11),parame(nc,3),x(nc),y(nc),zi(nc),gammaV(5),rhoph(nph)
Real(DP):: N,Nvap(11),Nliq(11),Vgas(11),Vliq(11),Vsto,RGA(11),Nlib !Vsto volumen
stock tank oil
ite=20
inic=0
k=size(IntervaloP)
T=102.9d0+273.15d0!en Kelvin, T de yacimiento
N=1000 !N número base de moles
nliq(1)=N
nvap(1)=0
! P= 1.01325d5
Call PAREOS(gammaV,parame)
Write(4,*) 'RESULTADOS DLE'
P=IntervaloP(1)*1d5 !Se convierte en Pa
Call FLASH(zi,x,y,inic,ite,rhoph,gammaV)
Do i=2,k
  P=intervaloP(i)*1d5
```

```
Call FLASH(zi,x,y,inic,ite,rhoph,gammaV)
  If (BIN.lt.0) bin=0
  !write(5,*)BIN
  Nvap(i)=Nliq(i-1)*bin
  Nliq(i)=Nliq(i-1)-Nvap(i)
  zi=x
End Do
T=15.56d0+273.15d0
Do i=1,k-1
  Nlib=0
  do j = i+1, k
    Nlib=Nlib+Nvap(j) !Nlib moles liberados
Vgas(i)=(Nlib*8.314*T/101325)*35.3147 !unidad en m3, si se quiere en pies cúbicos
multiplicar por 35.3147
End Do
Call FLASH(zi,x,y,inic,ite,rhoph,gammaV)
Vsto=Nliq(k)/1000/rhoph(1)*6.2898 !6.2898 factor de conv. de m3 a barriles
write(5,*) 'P(Bar) NVapor Nliq Vgas RGA'
Do i=1,k
  write (5,'(5(3x,f10.4))') intervalop(i),Nvap(i),Nliq(i),Vgas(i),RGA(i)
!write (5,'(7(3x,f10.4))') P/1.d5,gammaV,rhoph(1)
End Subroutine
```


Gráfico 4.22. Factor volumétrico (Bod) en cada expansión del experimento DLE del crudo 4.

Gráfico 4.16. Factor volumétrico (Bod) en cada expansión del experimento DLE del crudo 3.