Introduction to Visual Analytics

What is Visual Analytics and why it is needed

Visual Analytics

- Is the science of analytical reasoning <u>facilitated by interactive visual</u> <u>interfaces</u>
- Has an analytical reasoning process carried out by human to derive a decision
- Involves Interaction with visual representation of data that changes the course of action.
- Aims to reach <u>the best/a good decision fast</u>.

Visual Analytics

- Is needed in many areas such as
 - Security (Physical, Cyber, Bio, etc)
 - Health
 - Financial
 - Environment
 - Education
- Is needed when the decision makers need to make a good/the best decision fast.

Visual Analytics needs Interactive Visualization

- Visualization:
 - converting data to pictures/images
- Interaction :
 - methos to alter/enhance the visual representation based on a new query

Both need to be

- driven by theory-based computational tools :
 - Data Types, Semiology of Graphics
- based on cognitive, design and perceptual principles
 - Human Visual Systems, Human-Computer Interaction, Gestalt Theory

Elements of Visual Analytics

- Analytical Reasoning
- Visual Representation & Interaction
- Data Representations & Transformations
- Production, Presentation & Dissemination

Visual Analytics Pipeline

Conclusion

- Visual Analytics
 - Interactive visual interfaces guides analytical reasoning process
 - Encompasses:
 - Analytical reasoning process
 - Visual Representations and Interactions
 - Data Representations and Transformations
 - Production, Presentation and Dissemination

Analytical Reasoning

Methods to obtain deep insights

Analytical tasks

- Understand past and present situation (including trends/events lead to the current situation) <u>quickly</u>
- Ascertain the sign of alternative futures and warning signs
- Monitoring of emerging events (including <u>unexpected</u> events)
- Etc. (other tasks which influence the decision making process)

Role of Visualization in Analytical Reasoning

Conclusion

- Analytical Reasoning
 - Assessment past & present
 - Forecast future
 - Develop hypotheses / options
- Visualization facilitate the analytical reasoning process

Visual Representation & Interaction

Allows to see/explore/understand a lot at once

Principles for depicting information

- · Appropriateness Principle
 - The visual representation should provide neither more nor less information than that needed for the task at hand
- · Naturalness Principle
 - Experiential cognition is most effective when the properties of the visual representation most closely match the information being represented
- Matching Principle
 - Effective visual representations should present affordances suggestive of the appropriate action
- Principle of Congruence
 - the visual representation should represent the important concepts in the domain of interest.
- Principle of Apprehension
 - The structure and content of a visualization should be readily and accurately perceived and comprehended

Designing Visualization

- Bertin (French cartographer) developed a system for characterizing visual representations (Semiology of Graphics)
- Semiology of Graphics has been used to define various design space
 - Mackinlay (1986), MacEachren (1995), etc.
- Taxonomies of visual techniques
 - Shneiderman (1996), Spence (2000), Ware (2000)

Interaction in Visualization

- Filtering: modifying data transformation through interaction
- Visual mapping: modifying visual representation through interaction
- Navigation: moving through data space through interaction
 - Selection, panning, zooming, etc.
- Human-info discourse: analytical process through interaction
 - Interactions for comparing, categorizing, extracting, recombining data,
 - Creating/testing hypotheses, annotating data

Conclusion

• Theoretically founded visual representation and Interaction design leads to the effective analysis.

Data Representations & Transformations

Convert data into forms that facilitate analytical process

Data Representations

- Structured forms suitable for computer-based transformations
- Original structures might not be easily mapped to visual representations
 - May require transformation
- Data representation may influence the design of interactive visualization

Characteristics of Data Representations

- Data type :
 - numeric (numbers) vs non-numeric (text/language)
- Levels of structure:
 - structured (easy to computationally represent) vs unstructured (human usually interpret)
 - Text, image, video
- Geospatial:
 - georeferenced numeric (physical measurement) vs non-numeric data (e.g. political boundaries)
- Temporal: data may change over time

Data Transformations

- When the original data representation is not appropriate for visualization
- Data may need to be converted into different representations
 - To Structured
 - So that they are easily mapped to visual representations
 - Based on a mathematically defined conversion process

Examples:

- High-dimensional data to Low-dimensional data (easy to display on the screen/paper)
- Derive statistical characteristics of the data
- · Applying computational linguistic analysis, etc.

Conclusion

- If it's necessary, the original data should be transformed into different representations so that:
 - Easily mapped to better visual representations,
 - Suitable to be manipulated through interactive interfaces.

Production, Presentation & Dissemination

Present and consume Visual Analytic results

Production

- Is the process of summarizing the results obtained through the analytical processes.
- All the processes and configuration of tools/applications are finalized
 - You can repeatedly produce the same result by applying the same process.

Presentation

 All the results produced by the "Production" process are packaged together to form an contextualized artifact meaningful to the target audience

Dissemination

 Packaged presentation needs to be efficiently shared and circulated among all the relevant parties.

Conclusion

 Production, Presentation and Dissemination aim to inform a wide variety of audiences (including decision makers and even public) the analytical results in efficient manner.

THE UNIVERSITY OF SYDNEY