CSE 6643 Homework 5

Schäfer, Spring 2023

Deadline: March 30 Thursday, 8:00 am

- There are 2 sections in grade scope: Homework 5 and Homework 5 Programming. Submit your answers as a PDF file to Homework 5 (report the results that you obtain using programming by using plots, tables, and a description of your implementation like you would when writing a paper.) and also submit your code in a zip file to Homework 5 Programming.
- Programming questions are posted in Julia. You are allowed to use basic library functions like sorting, plotting, matrix-vector products etc, but nothing that renders the problem itself trivial. Please use your common sense and ask the instructors if you are unsure. You should never add additional packages to the environment.
- Late homework incurs a penalty of 20% for every 24 hours that it is late. Thus, right after the deadline, it will only be worth 80% credit, and after four days, it will not be worth any credit.
- We recommend the use of LaTeX for typing up your solutions. No credit will be given to unreadable handwriting.
- List explicitly with whom in the class you discussed which problem, if any. Cite all external resources that you were using to complete the homework. For details, consult the collaboration policy in the class syllabus on canvas.

1 Power Method [30 pts]

We consider a matrix \boldsymbol{A} such that

$$\mathbf{Q}^T \mathbf{A} \mathbf{Q} = \operatorname{diag}(\lambda_1, \dots, \lambda_m), \tag{1}$$

where Q is orthogonal. We denote by q_i the *i*th column of Q.

We now consider the power method and the sequence $\boldsymbol{\nu}^{(k)}$ defined as

$$\boldsymbol{z}^{(k)} = \boldsymbol{A} \boldsymbol{\nu}^{(k-1)} \tag{2}$$

$$\boldsymbol{\nu}^{(k)} = \boldsymbol{z}^{(k)} / \|\boldsymbol{z}^{(k)}\|_2, \tag{3}$$

where we assume that $\|\boldsymbol{\nu}^{(0)}\|_2 = 1$. Assume that we have θ_k such that

$$\cos(\theta_k) = \mathbf{q}_1^T \mathbf{\nu}^{(k)} \tag{4}$$

with $\cos(\theta_0) \neq 0$. Prove that

$$1 - \cos(\theta_k)^2 \le \frac{1}{a_1^2} \sum_{i=2}^m a_i^2 \left(\frac{\lambda_i}{\lambda_1}\right)^{2k}, \quad a_i = \mathbf{q}_i^T \mathbf{\nu}^{(0)}$$
 (5)

2 The LU iteration algorithm [30 pts]

We consider the following iteration, starting with some full rank $G_0 \in \mathbb{C}^{m \times m}$:

$$Z_k = AG_{k-1}, (6)$$

$$G_k R_k = Z_k$$
, LU factorization with no pivoting, (7)

where G_k is lower-triangular and R_k is upper-triangular. We define

$$T_k = G_k^{-1} A G_k. (8)$$

Find an algorithm that computes the sequence T_k in a manner similar to the QR iteration. This algorithm is a variant of the QR iteration. The eigenvalues of A appear on the diagonal of T_k .

3 Convergence of Orthogonal Iteration [40 pts]

In this problem, you will explore the convergence behavior of the orthogonal iteration algorithm. In the problems below, only the asymptotic convergence will match the theoretical estimates. For small k, you may see deviations. To simplify grading, please use the provided (empty) file HW4_your_code.jl for your code. Please also attach all results to your report, both plots and print statements. The TAs should be able to grade your homework without running your code.

(a) [10 pts]

Write Julia code to create a matrix in $\mathbb{R}^{m \times m}$ of size m = 8 with eigenvalues $1, 3, 9, \dots, 3^{m-1}$. Explain your code (as comments *and* in your report) and describe what it does.

(b) [10 pts]

Implement the orthogonal iteration algorithm. Print the values along the diagonal of \mathbf{R}_k at each iteration k for $k = 1, \dots, 5$. Print each number using at most four significant digits.

(c) [10 pts]

Considering entry p along the diagonal, plot the convergence of the pth eigenvalue. Choose p=1, 2, and 3. Compare with the theoretical rate of convergence at step k for entry p, which is given by

$$\max(|\lambda_{p+1}/\lambda_p|^k, |\lambda_p/\lambda_{p-1}|^k), \quad 1$$

$$|\lambda_2/\lambda_1|^k, \quad p = 1 \tag{10}$$

$$|\lambda_m/\lambda_{m-1}|^k, \quad p = m. \tag{11}$$

Use a semi-log plot (meaning that the y-axis of your plot should be logarithmic).

(d) [10 pts]

Consider the block (p + 1 : m, 1 : p) in the matrix

$$\boldsymbol{A}_k = \boldsymbol{Q}_k^T \boldsymbol{A} \boldsymbol{Q}_k. \tag{12}$$

Plot the 2-norm of this block as a function of k for p=4. Compare with the analytical estimate, which states that it should decay like $|\lambda_{p+1}/\lambda_p|^k$.

4 LU and QR iteration [20 bonus pts]

We consider the LU iteration applied to a symmetric matrix. Assume that $A_0 \in \mathbb{R}^{m \times m}$ is symmetric and positive-definite. We produce a sequence of matrices A_i using the following algorithm:

$$\mathbf{A}_i = \mathbf{G}_i^T \mathbf{G}_i, \quad \mathbf{A}_{i+1} = \mathbf{G}_i \mathbf{G}_i^T, \tag{13}$$

where G_i are upper-triangular matrices.

Consider now A', the matrix obtained after one step of the QR iteration, that is,

$$A_0 = QR, \quad A' = RQ. \tag{14}$$

We assume that the diagonal of R is positive.

(a) [10 bonus pts]

Use A_0^2 to show that

$$\mathbf{R} = \mathbf{G}_1 \mathbf{G}_0 \tag{15}$$

(b) [10 bonus pts]

Show that

$$A' = A_2 \tag{16}$$

5 Sensitivity of Eigenvalues [20 bonus pts]

We are interested in determining the sensitivity of eigenvalues with respect to perturbations in the matrix.

Prove that if $A \in \mathbb{C}^{m \times m}$ is diagonalizable with $A = V \Lambda V$, and if μ is an eigenvalue of A + E,

$$\min_{\lambda \in \lambda(\mathbf{A})} |\mu - \lambda| \le \kappa_p(\mathbf{V}) \|\mathbf{E}\|_p. \tag{17}$$

Here $\|\cdot\|_p$ denotes the *p*-norm and $\kappa_p(\mathbf{V}) \coloneqq \|\mathbf{V}\|_p \|\mathbf{V}^{-1}\|_p$ is the condition number associated with the *p*-norm.

Hint: assume that $\mathbf{I} + \mathbf{F}$ is singular. Then, there is an $\mathbf{x} \neq \mathbf{0}$ such that $\mathbf{x} + \mathbf{F}\mathbf{x} = \mathbf{0}$. Therefore, $\mathbf{F}\mathbf{x} = -\mathbf{x}$ and $\|\mathbf{F}\|_p \geq 1$. For the proof, identify the proper singular matrix and use this result.