AUA CS108, Statistics, Fall 2020 Lecture 21

Michael Poghosyan

14 Oct 2020

Contents

► Convergence Types of R.V. Sequences, Examples

Example: We have a sequence of infinitely many (independent) tosses of a fair coin, and let X_n be the result of the n-th trial (Head = 1, Tail = 0). So the Distribution of X_n is

 $X_n \sim$

Example: We have a sequence of infinitely many (independent) tosses of a fair coin, and let X_n be the result of the n-th trial (Head = 1, Tail = 0). So the Distribution of X_n is

 $X_n \sim Bernoulli(0.5)$.

Example: We have a sequence of infinitely many (independent) tosses of a fair coin, and let X_n be the result of the n-th trial (Head = 1, Tail = 0). So the Distribution of X_n is

$$X_n \sim Bernoulli(0.5)$$
.

▶ Is X_n convergent in the sense of Distributions?

Example: We have a sequence of infinitely many (independent) tosses of a fair coin, and let X_n be the result of the n-th trial (Head = 1, Tail = 0). So the Distribution of X_n is

$$X_n \sim Bernoulli(0.5)$$
.

- ▶ Is X_n convergent in the sense of Distributions?
- ls X_n convergent in the Probability sense?

Example: We have a sequence of infinitely many (independent) tosses of a fair coin, and let X_n be the result of the n-th trial (Head = 1, Tail = 0). So the Distribution of X_n is

$$X_n \sim Bernoulli(0.5)$$
.

- ▶ Is X_n convergent in the sense of Distributions?
- ightharpoonup Is X_n convergent in the Probability sense?
- ▶ Is X_n convergent in the MS sense?

Example: We have a sequence of infinitely many (independent) tosses of a fair coin, and let X_n be the result of the n-th trial (Head = 1, Tail = 0). So the Distribution of X_n is

$$X_n \sim Bernoulli(0.5)$$
.

- ▶ Is X_n convergent in the sense of Distributions?
- ls X_n convergent in the Probability sense?
- ▶ Is X_n convergent in the MS sense?
- ls X_n convergent in the a.s. sense?

Example: Assume X_n is a Discrete r.v. with the following PMF, defined on the same Probability Space:

$$\frac{X_n \mid 3 + \frac{1}{n^2} \mid n}{\mathbb{P}(X_n = x) \mid 1 - \frac{1}{n} \mid \frac{1}{n}.}$$

Example: Assume X_n is a Discrete r.v. with the following PMF, defined on the same Probability Space:

$$\begin{array}{c|c} X_n & 3 + \frac{1}{n^2} & n \\ \hline \mathbb{P}(X_n = x) & 1 - \frac{1}{n} & \frac{1}{n}. \end{array}$$

Which of the followings are true (use only the definitions):

- $X_n \stackrel{\mathbb{P}}{\longrightarrow} 3;$
- \longrightarrow $X_n \xrightarrow{qm} 3$;
- $X_n \xrightarrow{D} 3$?