2.2. Эквивалентные преобразования схем

2.2.А. **Цель работы**: исследование условий эквивалентности преобразований схем линейных электрических цепей.

В работе студенты экспериментально исследуют основные виды эквивалентных преобразований схем линейных цепей: последовательное соединение резистивных ветвей (резисторов), параллельное, смешанное, "звезду", "треугольник", преобразование источников.

Виртуальные эксперименты проводятся на базе пакета *MultiSim 10.0.1*. Используются библиотечные модели контрольно-измерительных приборов и компонент.

Создаются схемы для проведения виртуальных экспериментов. Анализируются результаты моделирования.

Рабочее задание

2.2.Б. ПОСЛЕДОВАТЕЛЬНОЕ, ПАРАЛЛЕЛЬНОЕ И СМЕШАННОЕ СОЕДИНЕНИЯ РЕЗИСТИВНЫХ ВЕТВЕЙ (ЭЛЕМЕНТОВ)

- 2.2.Б.1. Сформировать схемы для проведения виртуальных экспериментов согласно схемам, представленным на рис. 2.10.
- 2.2.Б.2. Выбрать модель нерегулируемого резистора, активизировать ее, перевести на поле и зафиксировать (см. п.1.2.Б.4).

Повторить п. 2.2.Б.2. нужное количество раз согласно схемам рис.2.10, либо копировать модель вызванного резистора, используя окно меню команд редактирования изображений (см.п.1.2.Б.10).2.2.Б.3.

Рис.2.10. Схемы виртуальных экспериментов: a – последовательное, δ – параллельное, ϵ – смешанное соединения

Нажатием кнопки \square на вертикальной линейке в правой части экрана активизировать модель мультиметра XMM...(Multimeter-XMM...), перевести ее на поле и зафиксировать.

2.2.Б.4. Выбрать модель заземления, активизировать, перевести на поле и зафиксировать (см.п.1.2.Б.3).

Повторить п.2.2.Б.4, или копировать модель заземления согласно схемам рис.2.10.

- 2.2.Б.5. Соединить все элементы согласно схемам рис.2.10 (см.п.1.2.Б.13).
- 2.2.5.6. Значения сопротивлений резисторов R1, ..., R12 задаются преподавателем. Занести эти значения в табл.2.1.

Согласно этим значениям задать параметры соответствующих резисторов (см.п.1.2.Б.15).

2.2.Б.7. Настроить мультиметры *XMM*... . Для этого необходимо активизировать модель соответствующего мультиметра, вызвав его лицевую панель. Расположить панели мультиметров в удобном месте на поле.

Задать режим измерения сопротивления постоянному току (режим омметра) нажатием на лицевой панели кнопки \square . Внутренние параметры мультиметра оставить по умолчанию.

При необходимости можно изменить параметры мультиметра, используя окно настройки параметров *Multimeter Settings*, которое вызывается кнопкой set... на передней панели.

- 2.2.Б.8. Провести виртуальный эксперимент измерения входных сопротивлений исследуемых соединений рис.2.10.
 - Запустить модели переключателем .
- Зафиксировать показания мультиметров XMM... . Данные занести в табл.2.1. в строку "эксперимент".
 - Отключить модели переключателем .

Таблица 2.1

Данные соединения элементов

Соединение		После	едоват	ват Параллельное		Смешанное							
Резистор)Ы	<i>R1</i>	<i>R2</i>	<i>R3</i>	<i>R4</i>	<i>R5</i>	<i>R6</i>	<i>R7</i>	<i>R8</i>	<i>R9</i>	R10	R11	R12
Парамет	р (Ом)												
Входное	экспер.												
сопрот. (Ом)	расчет												

- 2.2.5.9.По заданным значениям R1, ..., R12 рассчитать входные сопротивления исследуемых соединений, используя выражения (2.14) и (2.15). Результаты расчета занести в табл.2.1. в строку "расчет".
- 2.2.Б.10. Сравнить результаты эксперимента и расчета. Сделать выводы.

2.2.В. ЭКВИВАЛЕНТНЫЕ ПРЕОБРАЗОВАНИЯ ТРЕХЛУЧЕВОЙ ЗВЕЗДЫ РЕЗИСТИВНЫХ ВЕТВЕЙ (ЭЛЕМЕНТОВ) И ТРЕУГОЛЬНИКА ВЕТВЕЙ

2.2.В.1. Сформировать схемы для проведения виртуальных экспериментов согласно схемам, представленным на рис.2.11.

Рис.2.11. Схемы виртуальных экспериментов: a — соединение "звезда", δ — соединение "треугольник"

- 2.2.B.2. Модели нерегулируемых резисторов R1, R2, R3, R12, R23, R31, мультиметров XMM и заземлений выбираются и размещаются на поле аналогично п.п.2.2.E.2, 2.2.E.3 и 2.2.E.4.
- 2.2В.3. Модели трехполюсных переключателей *(SPDT) J1*, *J2*, *J3*, *J4* выбираются и размещаются на поле аналогично п.1.2.Б.9. Операции, описанные в п.1.2.Б.9, либо повторяются в необходимом количестве согласно схеме рис.2.11, либо применяются операции копирования (см.п.1.2.Б.10).
 - 2.2.В.4. Соединить все элементы согласно схемам рис.2.11.
- 2.2.В.5. <u>Преподавателем задаются</u> значения сопротивлений либо для резисторов R1, R2 и R3 (соединение "звезда"), либо для резисторов R12, R23 и R31 (соединение "треугольник").

Заданные значения сопротивлений резисторов заносятся в табл.2.2.

Таблица 2.2 Данные эквивалентного преобразования

Соединение		"звезда"			"треугольник"		
Резисторы		<i>R1</i>	R2	R3	R12	R23	R31
Параметры (Ом)							
Входные узлы		1-2	2-3	3-1	1-2	2-3	3-1
Входное	эксперимент						
сопротивление	расчет						

(O _M)

- 2.2.В.б. Рассчитываются сопротивления резисторов эквивалентного соединения:
- *R12*, *R23*, *R31* по выражениям (2.19)... (2.21), если задавались значения *R1*, *R2*, *R3*;
- R1, R2, R3 по выражениям (2.16) ... (2.18), если задавались значения R12, R23, R31.

Результаты расчетов заносятся в табл.2.2.

- 2.2.В.7. Задать параметры всем резисторам схем рис.2.11 согласно соответствующим значениям табл.2.2 (см.п.1.2.Б.15).
- 2.2.B.8. Задать параметры переключателей J1, J2, J3, J4 аналогично п.1.2.Б.16.
 - 2.2.В.9. Настроить мультиметры XMM... аналогично п.2.2.Б.7.
- 2.2.В.10. Провести виртуальные эксперименты измерения входных сопротивлений исследуемых соединений рис.2.11.
- Подключить мультиметры *XMM*... к соответствующим входным узлам, поставив переключатели в нужные положения, согласно табл.2.3.

Таблица 2.3

Положения переключателей

Входное	$R_{\mathrm{BX.12}}$	$R_{ ext{BX.23}}$	$R_{\text{BX.31}}$
сопротивление			
Входные узлы	1-2	2-3	3-1
Положения	<i>J1</i> и <i>J3</i> к узлу 1	<i>J1</i> и <i>J3</i> к узлу 2	<i>J1</i> и <i>J3</i> к узлу 1
переключателей	<i>J2</i> и <i>J4</i> к узлу 2	<i>J2</i> и <i>J4</i> к узлу 3	<i>J2</i> и <i>J4</i> к узлу 3

- Запустить модели переключателем .
- Показания мультиметров занести в табл. 2.2 в строку "эксперимент".
- Отключить модели переключателем .
- 2.2.В.11. Рассчитать значения входных сопротивлений $R_{{}_{\mathrm{Bx}.jk}}$ согласно следующим выражениям:
 - для соединения "звезда" $R_{\text{вх. }jk} = R_j + R_k$ Ом;
 - для соединения "треугольник"

$$\begin{split} R_{\rm BX.12} &= R_{12}(R_{23} + R_{31})/(R_{12} + R_{23} + R_{31}) \ \ {\rm Om}, \\ R_{\rm BX.23} &= R_{23}(R_{12} + R_{31})/(R_{12} + R_{23} + R_{31}) \ \ {\rm Om}, \\ R_{\rm BX.31} &= R_{31}(R_{12} + R_{23})/(R_{12} + R_{23} + R_{31}) \ \ {\rm Om}. \end{split}$$

Результаты расчета занести в табл.2.2 в строку "расчет".

2.2.B.12. Сравнить результаты эксперимента и расчета. Сделать выводы.

2.2.Г. ЭКВИВАЛЕНТНЫЕ ВЗАИМНЫЕ ПРЕОБРАЗОВАНИЯ ЛИНЕЙНЫХ ИСТОЧНИКОВ НАПРЯЖЕНИЯ И ТОКА

- 2.2.Г.1. Сформировать схемы для проведения виртуальных экспериментов согласно схемам, представленным на рис.2.12.
- $2.2.\Gamma.2.$ Модели идеального источника постоянного напряжения V1, заземлений, нерегулируемых резисторов R1 и R2, идеального источника постоянного тока I1, амперметров A1 и A2, вольтметров U1 и U2, двухполюсных переключателей (SPST) U1 и U2 выбираются и размещаются на поле аналогично п.п. 1.2.5.2, 1.2.5.3, 1.2.5.4, 1.2.5.2, 1.2.5.8, 1.2.5.9, 1.2.5.10 соответственно.

Рис.2.12. Схемы виртуальных экспериментов эквивалентных преобразований источников: a – источника напряжения, δ – источника тока

- $2.2.\Gamma.3$. Соединить все элементы согласно схемам рис.2.12 (см. $\pi.1.2.Б.13$).
- $2.2.\Gamma.4.$ <u>Преподавателем задаются</u> значения напряжения источника VI и сопротивления резистора RI, либо значения тока источника II и сопротивления (проводимости) резистора R2, которые заносятся в табл.2.4.
- 2.2.Г.5. Рассчитываются значения параметров эквивалентного соединения:
- ток источника II = VI/RI и проводимость (сопротивление) резистора $g_2 = 1/RI$;
- напряжение источника $V1=I1/g_2$ и сопротивление резистора $R1=1/g_2$, если задавались параметры I1 и $g_2(R2)$.

Результаты расчета заносятся в табл.2.4.

Таблица 2.4 Эквивалентные преобразования источников

Соединение	Линейный источ	ник напряжения	Линейный источник тока		
Параметры	<i>V1</i> , B	<i>R1</i> , Om	<i>II</i> , A	$g_2 = 1/R2$, Сим	
элементов					
Холостой	<i>u</i> ₀ , B	i_0 , A	u_0 , B	i_0 , A	
режим		0		0	
Режим	$u_{\scriptscriptstyle m K}$, B	$i_{\scriptscriptstyle m K}$, A	u_{κ} , B	$i_{\scriptscriptstyle \mathrm{K}}$, A	
короткого	0		0		
замыкания					

- $2.2.\Gamma.6.$ Задать параметры резисторов R1 и R2 схем рис.2.12 согласно значениям табл.2.4 (см.п.1.2.Б.15).
- $2.2.\Gamma.7.$ Задать параметры источника постоянного напряжения V1 и источника постоянного тока I1 согласно значениям табл.2.4 (см.п.п. $1.2.\Gamma.5$).
 - 2.2.Г.8. Задать параметры переключателей *J1* и *J2* (см.п.1.2.Б.16).
- $2.2.\Gamma.9.$ Задать параметры вольтметров UIи U2 (см.п.1.2.Б.18) и параметры амперметров AI и A2 (см.п.1.2.Б.19).
- $2.2.\Gamma.10$. Провести виртуальные эксперименты измерения напряжений u_0 и токов i_0 при холостом режиме в обеих схемах.
 - Разомкнуть переключатели *J1* и *J2*.
 - Запустить модели переключателем .
- Зафиксировать показания вольтметров и амперметров и занести результаты в табл.2.4.
 - Отключить модели переключателем .
- $2.2.\Gamma.11$. Провести виртуальные эксперименты измерения напряжений u_{κ} и токов i_{κ} в режиме короткого замыкания.
 - Замкнуть переключатели *J1* и *J2*.
 - Запустить модели переключателем .
- Зафиксировать показания вольтметров и амперметров и занести результаты в табл.2.4.
 - Отключить модели переключателем
- 2.2.Г.12. По данным экспериментов построить вольтамперные характеристики (BAX) линейных источников на одной координатной сетке. Сравнить характеристики и сделать выводы об эквивалентности исследуемых схем.

2.3. Эквивалентность линейных резистивных цепей

- **2.3.А. Цель работы**: исследование условий эквивалентности и основных теорем линейных резистивных цепей.
- В работе студенты экспериментально исследуют условия эквивалентности линейных резистивных цепей и практическую суть основных теорем линейных цепей: метод Тевенена, метод Нортона (теорем об эквивалентных активных двухполюсниках).

Виртуальные эксперименты проводятся на базе пакета *MultiSim* 10.0.1. Используются библиотечные модели контрольно-измерительных приборов и компонент.

Создаются схемы для проведения виртуальных экспериментов. Анализируются результаты моделирования.

Рабочее задание

2.3.Б. ИССЛЕДОВАНИЕ УСЛОВИЙ ЭКВИВАЛЕНТНОСТИ ЛИНЕЙНЫХ РЕЗИСТИВНЫХ ЦЕПЕЙ

- 2.3.Б.1. Сформировать схему для проведения виртуального эксперимента согласно схеме, представленной на рис.2.13.
- 2.3.Б.2. Модели идеального источника постоянного напряжения V1, заземления, нерегулируемых резисторов R1,...,R6, двухполюсных переключателей (SPST) J1, J2, J3, амперметра A1 и вольтметра U1 выбираются и размещаются на поле аналогично п.п.1.2.Б.2, 1.2.Б.3, 1.2.Б.4, 1.2.Б.9, 1.2.Б.10, 1.2.Б.8 соответственно.
- 2.3.Б.3. Соединить все элементы согласно схеме рис.2.13 (см.п.1.2.Б.13).

Рис.2.13. Схема виртуального эксперимента определения условий эквивалентности линейных резистивных цепей

1.3. Исследование топологических свойств электрических цепей

1.3.А. **Цель работы:** исследование топологических свойств электрических цепей с сосредоточенными параметрами.

В работе студенты исследуют основные топологические свойства контуров и сечений (узлов) на примере широко используемых в технике резистивных делителей напряжения и сумматоров токов.

Виртуальные эксперименты проводятся на базе пакета *Multisim* 10.0.1. Используются библиотечные модели контрольно-измерительных приборов и компонент (элементов).

Создаются схемы для проведения виртуальных экспериментов. Анализируются результаты моделирования.

Рабочее задание

- 1.3.Б. ИССЛЕДОВАНИЕ РЕЗИСТИВНОГО ДЕЛИТЕЛЯ НАПРЯЖЕНИЯ
- 1.3.Б.1. Сформировать схему для проведения виртуальных экспериментов согласно рис.1.14.

Схема делителя напряжения представляет собой замкнутый контур, образованный источником опорного напряжения VI и последовательным соединением резисторов RI, R2, R3, R4. На вход делителя подается с источника VI опорное (входное) напряжение $u_{\rm BX}(t) = u_5(t)$. В данной работе используется источник постоянного напряжения.

Опорное напряжение делится соответствующим образом на падения напряжений u_1, u_2, u_3, u_4 на резисторах R1, ..., R4.

Резисторы могут подключаться к цепи делителя размыканием или отключаться замыканием соответствующего ключа.

Контурное уравнение соединений для этой схемы имеет вид:

$$u_1 + u_2 + u_3 + u_4 - u_5 = 0. (1.18)$$

В качестве выхода (результата деления) в данной схеме выбрано напряжение u_1 (резистор RI). Следовательно, результат деления определяется, как

$$u_{\text{вых}} = u_{\text{вх}} - u_2 - u_3 - u_4. \tag{1.19}$$

- 1.3.Б.2. Вызвать модель источника постоянного напряжения V1 аналогично п.1.2.Б.2.
 - Вызвать модель заземления аналогично п.1.2.Б.3.
 - 1.3.Б.3. Вызвать модели резисторов R1, ..., R4 аналогично п.1.2.Б.4.
- 1.3.Б.4. Вызвать модели двухполюсных переключателей (SPST): J2, J3, J4 аналогично п.п.1.2.Б.9 и 1.2.Б.10.
 - 1.3.Б.5. Вызвать модели вольтметров U1, ..., U5 аналогично п.1.2.Б.8.
- 1.3.Б.6.Расположить все элементы схемы, согласно рис.1.14 (см.п.1.2.Б.12).
- 1.3.Б.7. Соединить все элементы между собой согласно схеме рис.1.14 (см. п.1.2.Б.13).

Рис. 1.14. Схема виртуального эксперимента для исследования резистивного делителя напряжения

- 1.3.5.8. Задать параметры источника постоянного напряжения V1, аналогично п.1.2.5.14.
- <u>По заданию преподавателя</u> установить значение напряжения источника в диапазоне 10 ... 100 В.
 - 1.3.Б.9. Задать параметры резисторов R1, ..., R4 аналогично п.1.2.Б.15.
- <u>По заданию преподавателя</u> установить значения сопротивлений резисторов в диапазоне 100 ... 1000 Ом.
- 1.3.Б.10. Задать параметры переключателей J2, J3 и J4 аналогично п.1.2.Б.16.
- Установить для каждого ключа соответствующую цифру для управления переключателем, согласно схеме рис.1.14.
- 1.3.Б.11. Задать параметры вольтметров $U1, \ldots, U5$ аналогично п.1.2.Б.18.
- 1.3.Б.12. Провести виртуальный эксперимент определения рабочих состояний делителя напряжения.
 - Отключить резисторы R2, R3, R4, замкнув ключи J2, J3 и J4.
 - Запустить модель переключателем .
- Зафиксировать показания вольтметров $U1,...,\ U5.$ Данные занести в табл.1.13.
 - Отключить модель переключателем .
- Поэтапно включая резисторы делителя размыканием ключей J2, J3 и J4, фиксировать показания вольтметров U1,...,U5. Данные заносить в табл. 1.13.
- Определить для каждого рабочего состояния коэффициент деления $k\!=\!u_{\!\scriptscriptstyle ex}/u_{\!\scriptscriptstyle \rm BMX}$ и занести его значения в табл.1.13.

- По данным виртуальных экспериментов (табл.1.13) проконтролировать корректность контурного уравнения (1.18).

Таблица 1.13 **Рабочие состояния делителя напряжения**

Положения ключей и, В	Все ключи замкнуты	<i>J2</i> - разомк.	J2 - разомк.J3 – разомк.	<i>J2</i> - разомк. <i>J3</i> - разомк. <i>J4</i> - разомк.
$u_{\text{BX}} = u_5$, B				1
$u_{\text{\tiny BMX}} = u_1, B$				
u_2 , B				
<i>u</i> ₃ , B				
<i>u</i> ₄ , B				
k				

1.3.В. ИССЛЕДОВАНИЕ РЕЗИСТИВНОГО СУММАТОРА ТОКОВ

1.3.В.1. Сформировать схему для проведения виртуальных экспериментов согласно рис.1.15.

Схема резистивного сумматора токов представляет собой параллельно-последовательное соединение резисторов.

В параллельную ветвь включаются резисторы, по которым протекают токи-слагаемые: по R2 - ток $i_2(t)$, по R3 - $i_3(t)$ и по R4 - $i_4(t)$. В последовательную ветвь включается суммирующий резистор R1, по которому протекает суммарный ток $i_1(t)$.

На вход сумматора подается с источника V1 опорное напряжение, которое обуславливает появление токов-*слагаемых* в параллельных ветвях. В данной работе используется источник постоянного напряжения.

Резисторы в параллельных ветвях могут подключаться к цепи сумматора замыканием или отключаться размыканием соответствующего ключа.

Рис.1.15. Схема виртуального эксперимента для исследования резистивного сумматора токов

Узловое уравнение соединений для этой схемы имеет вид:

$$-i_1 + i_2 + i_3 + i_4 = 0. (1.20)$$

Выходом сумматора является резистор R1 с током $i_1 = i_{\text{вых}}$.

Результат суммирования определяется выражением

$$i_{\text{BMX}} = i_2 + i_3 + i_4. \tag{1.21}$$

- 1.3.В.2. Вызвать модели источника постоянного напряжения V1, заземления, резисторов R1, ..., R4 двухполюсных переключателей (SPST): J2, J3, J4 аналогично разделу 1.3.Б.
 - 1.3.В.3. Вызвать модели амперметров A1, ..., A4 аналогично п.1.2.Б.8.
- 1.3.В.4. Расположить все элементы схемы согласно рис.1.15 (см.п.1.2.Б.12).
- 1.3.В.5. Соединить все элементы согласно схеме рис.1.15. (см.п.1.2.Б.13).
- 1.3.B.6. Задать параметры источника напряжения V1 аналогично п.1.2.Б.14.
- <u>По заданию преподавателя</u> установить значение напряжения источника в диапазоне $10 \dots 100 \text{ B}$.
 - 1.3.В.7. Задать параметры резисторов R1, ..., R4 аналогично п.1.2.Б.15.
- <u>По заданию преподавателя</u> установить значения сопротивлений резисторов R2, R3, R4 в диапазоне $100 \dots 1000$ Ом.
- Установить значение сопротивления суммирующего резистора R1 << R2, R3, R4 в диапазоне $0,01 \dots 0,1$ Ом.
- 1.3.B.8. Задать параметры переключателей $J2,\ J3,\ J4$ аналогично п.1.2.Б.16.
 - 1.3.В.9. Задать параметры амперметров A1,...,A4 аналогично п.1.2.Б.19.
- Установить при задании параметров на закладке *Value* в строке *Resistance* (R) значение внутреннего сопротивления для каждого амперметра равным 10^{-10} Ом (1e-10 *Ohm*).
- 1.3.В.10. Провести виртуальный эксперимент определения рабочих состояний сумматора токов.
 - Подключить все резисторы R2, R3 и R4, замкнув ключи J2, J3 и J4.
 - Запустить модель переключателем .
- Зафиксировать показания амперметров A1,...,A4. Данные занести в табл.1.14.
 - Отключить модель переключателем .

Таблица 1.14

Рабочие состояния сумматора токов

Положения ключей <i>i</i> , A	Все ключи замкнуты	<i>J2</i> - разомк.	<i>J2</i> - разомк. <i>J3</i> – разомк.	J2 - разомк.J3 - разомк.J4 - разомк.
i_2 , A				
<i>i</i> ₃ , A				
<i>i</i> ₄ , A				

$i_{\text{DVW}} = i_1$ A		
ι_{BMX} ι_{I} , Λ		

- Поэтапно отключая резисторы сумматора размыканием ключей J2, J3 и J4, фиксировать показания амперметров A2, A3, A4 и A1. Данные заносить в табл.1.14.
- 1.3.В.11. По данным виртуальных экспериментов (табл.1.14) проконтролировать корректность узлового уравнения соединений (1.20).

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что такое электрическая цепь с сосредоточенными параметрами?
- 2. Что описывают уравнения соединений?
- 3. В чем заключается понятие электрического контура для напряжений и токов?
 - 4. Какими законами определяются уравнения соединений?
- 5. Каким образом определяются знаки токов при алгебраическом суммировании в уравнениях соединений?
- 6. Как определяются знаки напряжений при алгебраическом суммировании в уравнениях соединений?
- 7. Какие электротехнические устройства, принцип действия которых основан на законах Кирхгофа, Вам известны?

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какую электрическую цепь можно считать резистивной?
- 2. Какие процессы моделируются резистивными цепями?
- 3. Что такое линейная резистивная цепь?
- 4. В чем заключается общий алгоритм составления математической модели цепи с сосредоточенными параметрами?
 - 5. Что такое уравнения цепи?
- 6. В чем заключается понятие главного контура, главного сечения (узла), ветви?
- 7. Что представляет собой в общем случае математическая модель линейной резистивной цепи?
- 8. Какое соединение элементов является последовательным, параллельным, смешанным?
- 9. Какое соединение элементов (ветвей) является "трехлучевой звездой", "треугольником"?
- 10.В чем заключается основной принцип преобразования соединений элементов (ветвей)?
- 11.В чем смысл простейших эквивалентных преобразований соединений элементов (схем) последовательного, параллельного, "звезды", "треугольника"?
 - 12.В чем заключается практическое использование основных свойств линейных цепей?

- 13. В чем заключается основной смысл метода наложения?
- 14. В чем заключается основной смысл методов эквивалентного источника напряжения (метода Тевенена), источника тока (метода Нортона)?
- 15. Что такое активный двухполюсник?
- 16. Какие общие варианты простейших схем линейных активных двухполюсников отражены в методах Тевенена и Нортона?
- 17. Каким образом определяются параметры активных двухполюсников в соответствии с методами Тевенена и Нортона?
- 18. В чем основной практический смысл уравнения баланса мощностей?