

Environmental systems and societies Standard level Paper 1

Friday 18	November	2016	(morning)	۱
-----------	----------	------	-----------	---

Candidate session number								

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all questions.

1 hour

- Write your answers in the boxes provided.
- A calculator is required for this paper.
- The maximum mark for this examination paper is [45 marks].

1. Figure 1: Three projections for world population from the present day to 2100. The three lines indicate the high, medium and low projections for population size.

[Source: From World Population Prospects: the 2015 Revision, by UN Department of Economic and Social Affairs, Population Division, ©2015 United Nations. Reprinted with the permission of the United Nations.]

(0)	Calculate the	ranga hatwaan	the highest	and lawart	projected	nonulation	0170 for 2100	[4]
(a)	Calculate ine	range berween	The manest a	ano iowesi	projected	bobulation	Size for Z Tuu.	. 111

•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
• •		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		

Question	1 (continued	I)
Quoction.	•	00111111400	•,

(b)		tify two factors that could explain the variation in the projected population growth ne world.	[2]
(c)	(i)	Outline one economic implication of the highest projection for world population being realised.	[1]
	(ii)	Outline one environmental implication of the highest projection for world population being realised.	[1]
(d)	(i)	Outline one advantage of modelling future human population sizes.	[1]
	(ii)	Outline one disadvantage of modelling future human population sizes.	[1]
			$\overline{}$

[2]

2. Figure 2: A graph showing past mass extinctions.

[Source: adapted from https://ontherocksgeoblog.files.wordpress.com]

(a)	State two	possible causes	of these n	ast mass	extinctions
	\sim	Oldio tilo	poddibio daaddd	OI LIIOOO P	act mace	OKUI IOUOI IO.

(Question 2 continued)

(b)	Identify two ways in which the current extinction differs from mass extinctions in the past.	[2]
(c)	Explain one factor that may make a species less prone to extinction.	[2]
(d)	Outline how the process of natural selection is a mechanism for evolution.	[2]

-5-

Turn over

3. Figure 3: The number of plant species present on the slopes of two volcanoes, which erupted in the 1880s. Measurements were taken in 1930, 1975 and 2015.

Volcano	Latitude	Eruption date	Type of surface	Number of species (plants recorded in three separate years		nree
				1930	1975	2015
Krakatau, Indonesia	6 degrees south	1883	Ash and lava	24	243	397
Tarawera, New Zealand	38 degrees south	1886	Lava	2	63	74

[Source: adapted from http://faculty.washington.edu]

(a)	State the ecological processes illustrated by the data in Figure 3 .	[1]
(b)	Describe a method for measuring the abundance of plant species in volcanic areas.	[3]
		[0]

(Question 3 continued)

(c)	Suggest two reasons why there are differences in the number of plant species found on Krakatau and Tarawera.	[4]

Turn over

4. Figure 4: The gross and net productivity at different trophic levels within the Silver Springs, Florida, ecosystem.

[Source: adapted from http://users.rcn.com]

(a)	State the process represented in the box labelled X .	[1]

(Question 4 continued)

(b)	Define net primary productivity.	[1]
(c)	Describe how the second law of thermodynamics operates in relation to the transfer of energy within the Silver Springs ecosystem.	[2]
(d)	Distinguish between a pyramid of numbers and a pyramid of productivity.	[2]

5. China has large reserves of coal and has used this to enable rapid economic development. This has led to environmental problems including acid deposition.

Figure 5: The average pH value of precipitation (acid deposition) for China in 2009.

[Source: adapted from http://english.mep.gov.cn]

(a)	S	tat	e	0	n	е	g	a	S	٧	vł	ηi	С	h	C	C	or	nt	ril	b	ui	te	S	; 1	tc)	a	С	ic	b	d	le	ş)()5	Sİ	tic	OI	n.																[1]
																																																_	-							_	

(Question 5 continued)

	(D)	identify two possible reasons for the pattern of acid deposition in China.	[4.
	(c)	Outline two possible environmental effects of acid deposition on the areas with a pH of 5.0 or below.	[2]

Turn over

[3]

(Question 5 continued)

- (d) In 2014:
 - China led the world in renewable energy production
 - China became the world's leading importer of oil.

By 2020 the Chinese government's aim is to have 20 percent of their energy supplied by renewable energy sources.

Suggest why China is investing so heavily in renewable energy resources.

6. Figure 6: The effects of organic pollution (raw sewage discharged from a pipe) on a stream ecosystem.

[Source: Dr. Mel Zimmerman, Professor of Biology and Director of Clean Water Institute at Lycoming College]

(a)	Define biochemical oxygen demand (BOD).	[1]
(b)	Outline how turbidity changes after the raw sewage discharge point in Graph B .	[2]
(c)	Suggest how the population growth curve for algae in Graph C would appear if the	
(c)	Suggest how the population growth curve for algae in Graph C would appear if the pollutant had been nitrates and phosphates from fertilizer run-off.	[3]
(c)		[3]
	pollutant had been nitrates and phosphates from fertilizer run-off.	[3]
	pollutant had been nitrates and phosphates from fertilizer run-off.	[3]
	pollutant had been nitrates and phosphates from fertilizer run-off.	[3]
	pollutant had been nitrates and phosphates from fertilizer run-off.	[3]
	pollutant had been nitrates and phosphates from fertilizer run-off.	[3

(Question 6 continued)

(a)	pc				у	þ	OI	11	ιs	SO	u	ıc	e	þ	O	IIC	ווג	OI	11	15	U	יוני	ΞI	16	30	151	eı	·	O	11	Ia	H	19	С	LI	ıa	11	П	ווכ	ト	JO	1111	ι :	SU	Ju	IC	Е		
	 •	 •	•	 •	•	•		•	•			•	•		•	•	•			•			•			•		•	•		•	•	•	•		•	•	•	•		•	•		•	•		•	 •	•
	 •	 -	•	 •	•	•		٠	•			•	•		•	•	•			•			•			•		•	•		•	•	•	•		•		•	•		•	•		•	•		•	 •	•
	 •				٠			٠	•						•								•									-	•	•		•		•	-		•	-		•					
		 -																								-						-							-			-							
	 -																															-		-					-										
		 -																														-	-					-	-			-							

Please do not write on this page.

Answers written on this page will not be marked.

