UNIAVAN - Centro Universitário Avantis Curso: Engenharia Elétrica Disciplina: Análise de Sistemas Lineares

Classificação de Sistemas

Prof. Luiz Fernando M. Arruda, Me. Eng.

Sumário

- Sinais Analógicos e Sinais Digitais
- Sinais Periódicos e Não Periódicos
- Se Energia e Potência
- Sinais Determinísticos e Aleatórios
- Funções Par e Ímpar
- 6 Funções Especiais

Sinais Analógicos e Sinais Digitais

Embora muita gente confunda um sinal contínuo com um sinal analógico, e um sinal discreto com um sinal digital. As correlações são um pouco diferentes. Nas figuras (a) e (b) ambos os sinais são contínuos, porém na alternativa (a) o sinal é analógico e na letra (b) o sinal é digital. Nas alternativas (c) e (d) ambos os sinais são discretos, observe a descontinuidade do sinal. ao qual na alternativa (c) o sinal é analógico e em (d) digital. Um sinal analógico pode ser convertido em um sinal digital através do uso de ADC's

Sinais Periódicos e Não Periódicos

Um sinal é considerado periódico para:

$$x(t) = x(t + T_0)$$
 para todo t

Ao qual o menor valor de T_0 que satisfaz a periodicidade é o período fundamental de x(t). Outra característica é que um sinal periódico deve começar em $t=-\infty$.

unia lan 🕾

Sinais Periódicos e Não Periódicos

Além disso, outra propriedade importante de um sinal periódico x(t) é que x(t) pode ser gerado pela extensão periódica de qualquer segmento de x(t) com duração T_0 (o período). Ao também, a área de um sinal periódico considerando o intervalo T_0 é sempre a mesma.

$$\int_{\alpha}^{\alpha+T_0} x(t)dt = \int_{\beta}^{\beta+T_0} x(t)dt$$

Energia e Potência

$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$

$$P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^{2} dt$$

Figure 1.1 Examples of signals: (a) a signal with finite energy and (b) a signal with finite power.

A energia é calculada para sinais que possuem uma energia finita, ou seja, sinais que eventualmente "desaparecem"com o tempo, como pulsos ou transientes. Já potência de um sinal é uma medida da taxa média de transferência de energia ao longo do tempo, e é apropriada para sinais que persistem indefinidamente no tempo.

Classifique e calule o valor de potência ou energia do sinal abaixo:

Classificação = Sinal de Energia Finita;

$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$

$$E_{x} = \int_{-1}^{0} |2|^{2} dt + \int_{0}^{\infty} |2e^{-t/2}|^{2} dt$$

$$E_{x} = \int_{-1}^{0} 4 dt + \int_{0}^{\infty} 4e^{-t} dt$$

$$E_{x} = 4 \cdot \int_{0}^{0} dt + 4 \cdot \int_{0}^{\infty} e^{-t} dt$$

$$E_x = 4 \cdot (0 - (-1)) + 4 \cdot \left(\lim_{T \to \infty} \left(-e^{-t} \right) - \left(-e^{-0} \right) \right)$$

$$E_x = 4 + 4 \cdot (0 - (-1))$$

$$E_x = 4 + 4$$

$$E_x = 8$$

Classificação = Sinal de Potência Finita;

Classificação = Sinal de Potência Finita;

$$P_{x} = \frac{1}{\alpha - \beta} \int_{\beta}^{\alpha} |x(t)|^{2} dt$$

$$P_{x} = \frac{1}{1 - (-1)} \int_{-1}^{1} t^{2} dt$$

$$P_{x} = \frac{1}{2} \left[\frac{t^{3}}{3} \right]_{-1}^{1}$$

$$P_x = \frac{1}{2} \cdot \frac{1^3 - (-1^3)}{3}$$

$$P_x = \frac{1}{2} \cdot \frac{2}{3}$$

$$P_x = \frac{2}{6}$$

$$P_x = \frac{1}{2}$$

Exercícios

Classifique e calule o valor de potência ou energia do sinal abaixo:

- $2 x(t) = C_1 cos(\omega_1 t + \theta_1) + C_2 cos(\omega_2 t + \theta_2) \omega_1 \neq \omega_2$
- \odot $De^{j\omega_0 t}$

Sinais Deterministicos e Aleatórios

De acordo com (HSU, 2019), Um sistema determinístico é aquele cuja descrição da forma matemática ou forma gráfica é completamente conhecido, e o sinal aleatório são conhecidos apenas por meio de valores médio, ou médio quadrático.

Atenção

Nesta disciplina, abordaremos apenas sinais determinísticos durante operações matemáticas. Modelo aleatório será abordado somente como classificação.

Função Par e Ímpar

e t > 0. Um sinal x(t) ou x[n] é considerado ímpar(odd). par quando sua reversão temporal apresenta o mesmo valor.

$$x(-t) = x(t)$$

$$x(-n) = x(n)$$

E. é considerado ímpar quando:

$$x(-t) = -x(t)$$
$$x(-n) = -x(n)$$

Todas as funções são classificadas entre função Qualquer sinal, x(t) ou x[n], pode ser expressado ímpar ou par de acordo com a relação entre t < 0 pela soma de dois sinais, um par(even) e outro

$$x(t) = x_e(t) + x_o(t)$$

$$x[n] = x_o[n] + x_o[n]$$

Ao qual,

$$x_e(t) = \frac{1}{2} \{x(t) + x(-t)\} \qquad x_o(t) = \frac{1}{2} \{x(t) - x(-t)\}$$

$$x_e[n] = \frac{1}{2} \{x[n] + x[-n]\} \qquad x_o[n] = \frac{1}{2} \{x[n] - x[-n]\}$$

Função Par e Ímpar

Função Par e Ímpar

Algumas propriedades das funções:

$$x_e(t) + x_o(t) = x_o(t)$$

$$x_o(t) + x_o(t) = x_e(t)$$

$$x_e(t) + x_e(t) = x_e(t)$$

$$x_e[n] + x_o[n] = x_o[n]$$

$$x_o[n] + x_o[n] = x_e[n]$$

$$x_e[n] + x_e[n] = x_e[n]$$

Atenção

Lembrar da matemática básica.

Exercício

Determine as componentes pares e ímpares de $x(t) = e^{it}$.

Funções Especiais

As funções especiais desempenham um papel fundamental em diversas áreas da matemática aplicada e engenharia, particularmente no campo da teoria de sinais e sistemas. Entre essas funções, destacam-se:

- degrau unitário
- impulso unitário
- exponencial

Degrau unitário

A função degrau unitário u(t) expressa um sinal cujo valor inicial é 0 quando t < 0, e muda para 1 em t > 0.

$$x(t) = \begin{cases} 0 & \text{se } t < 0 \\ 1 & \text{se } t \ge 0 \end{cases}$$

Aplicação do degrau unitário em uma função exponencial

Aplicação do degrau unitário com deslocamento temporal

Próxima Aula Classificação de Sinais

Obrigado!!!

Referencial Bibliográfico I

DISTEFANO, Joseph J; STUBBERUD, Allen J; WILLIAMS, Ivan J. Schaum's outline of feedback and control systems. New York: McGraw-Hill Professional, 2013.

HAYES, Monson H. Schaum's outlines Digital Signal Processing. New York: McGraw-Hill Professional, 2011.

HSU, Hwei P. Schaum's outlines signals and systems, 4th Edition. New York: McGraw-Hill Professional, 2019. v. 4.

LATHI, Bhagwandas Pannalal; GREEN, Roger A. Linear systems and signals. New York: Oxford University Press, 2004. v. 2.