We write μ_{δ} to denote the Bernoulli distribution, where outcome 1 occurs with probability δ and 0 with probability $1 - \delta$ where $0 \le \delta \le 1$. Moreover, we use μ_{δ}^k to denote a probability distribution over k-tuples, where each bit of a k-tuple is drawn independently according to μ_{δ} . Finally, let $u \leftarrow \mu_{\delta}^k$ denote that a k-tuple u is chosen according to μ_{δ}^k .

The protocol execution between two probabilistic algorithms A and B is denoted by $\langle A, B \rangle$. The output of A in such a protocol execution is denoted by $\langle A, B \rangle_A$ and of B by $\langle A, B \rangle_B$. Finally, let $\langle A, B \rangle_{\text{trans}}$ denote the transcript of communication between $\langle A, B \rangle_{\text{trans}}$.

We define a two phase algorithm $A := (A_1, A_2)$ as an algorithm where in the first phase an algorithm A_1 is executed and in the second phase an algorithm A_2 .

We say that an event happens almost surely or with high probability if its has probability at least $1 - 2^{-n} poly(n)$.

Definition 1.1 (Dynamic weakly verifiable puzzle.) A dynamic weakly verifiable puzzle (DWVP) is defined by a probabilistic algorithm P called a problem poser. A problem solver $S := (S_1, S_2)$ for P is a probabilistic two phase algorithm. We write $P_n(\pi)$ to denote the execution of P with the randomness fixed to $\pi \in \{0,1\}^n$, and $(S_1, S_2)(\rho)$ to denote the execution of both S_1 and S_2 with the randomness fixed to $\rho \in \{0,1\}^*$.

In the first phase, the poser $P_n(\pi)$ and the solver $S_1(\rho)$ interact. As the result of the interaction $P_n(\pi)$ outputs a verification circuit Γ_V and a hint circuit Γ_H . The algorithm $S_1(\rho)$ produces no output. The circuit Γ_V takes as input $q \in Q$, an answer $y \in \{0,1\}^*$, and outputs a bit. We say that an answer (q,y) is a correct solution if and only if $\Gamma_V(q,y) = 1$. The circuit Γ_H on input $q \in Q$ outputs a hint such that $\Gamma_V(q,\Gamma_H(q)) = 1$.

In the second phase, S_2 takes as input $x := \langle P_n(\pi), S_1(\rho) \rangle_{trans}$, and has oracle access to Γ_V and Γ_H . The execution of S_2 with the input x and the randomness fixed to ρ is denoted by $S_2(x,\rho)$. The queries of S_2 to Γ_V and Γ_H are called verification queries and hint queries respectively. The algorithm S_2 asks at most h hint queries, v verification queries, and succeeds if and only if it makes a verification query (q,y) such that $\Gamma_V(q,y) = 1$, and it has not previously asked for a hint query on q.

Definition 1.2 (k-wise direct-product of DWVPs.) Let $g:\{0,1\}^k \to \{0,1\}$ be a monotone function and $P^{(1)}$ a problem poser as in Definition 1.1. The k-wise direct product of $P^{(1)}$ is a DWVP defined by a probabilistic algorithm $P^{(g)}$. We write $P^{(g)}_{kn}(\pi^{(k)})$ to denote the execution of $P^{(g)}$ with the randomness fixed to $\pi^{(k)} := (\pi_1, \dots, \pi_k)$ where for each $1 \le i \le n : \pi_i \in \{0,1\}^n$. Let $(S_1, S_2)(\rho)$ be a solver for $P^{(g)}$ as in Definition 1.1. In the first phase, the algorithm $S_1(\rho)$ sequentially interacts in k rounds with $P^{(g)}_{kn}(\pi^{(k)})$. In the i-th round $S_1(\rho)$ interacts with $P^{(1)}_n(\pi_i)$, and as the result $P^{(1)}_n(\pi_i)$ generates circuits Γ^i_V, Γ^i_H . Finally, after k rounds $P^{(g)}_{kn}(\pi^{(k)})$ outputs a verification circuit

$$\Gamma_V^{(g)}(q, y_1, \dots, y_k) := g(\Gamma_V^1(q, y_1), \dots, \Gamma_V^k(q, y_k))$$

and a hint circuit

$$\Gamma_H^{(k)}(q) := (\Gamma_H^1(q), \dots, \Gamma_H^k(q)).$$

If it is clear from a context, we omit the parameter n, and write $P(\pi)$ instead of $P_n(\pi)$ where $\pi \in \{0,1\}^n$.

A verification query (q, y) of a solver S for which a hint query on this q has been asked before can not be a verification query that succeeds. Therefore, without loss of generality, we make the assumption that S does not ask verification queries on q for which a hint query has been asked before. Furthermore, we assume that once S asked a verification query that succeeds, it does not ask any further hint or verification queries.

Let C be a circuit that corresponds to a solver S as in Definition 1.1. Similarly as for a two phase algorithm, we write $C(\rho) := (C_1, C_2)(\rho)$ to denote that C in the first phase uses a circuit

 C_1 and in the second phase a circuit C_2 . Additionally, the randomness in both phases is fixed to $\rho \in \{0,1\}^*$.

```
Experiment Success^{P,C}(\pi,\rho)

Oracle: A problem poser P, a solver circuit C = (C_1, C_2).

Input: Bitstrings \pi \in \{0,1\}^n, \rho \in \{0,1\}^*.

Output: A bit b \in \{0,1\}.

run \langle P(\pi), C_1(\rho) \rangle
\langle \Gamma_V, \Gamma_H \rangle := \langle P(\pi), C_1(\rho) \rangle_P
x := \langle P(\pi), C_1(\rho) \rangle_{\text{trans}}

run C_2^{\Gamma_V, \Gamma_H}(x, \rho)
if C_2^{\Gamma_V, \Gamma_H}(x, \rho) asks a verification query (q, y) such that \Gamma_V(q, y) = 1 then return 1

return 0
```

We define the success probability of C in solving a puzzle defined by P as

$$\Pr_{\pi,\rho}[Success^{P,C}(\pi,\rho)=1]. \tag{0.0.1}$$

Furthermore, we say that C succeeds for π , ρ if $Success^{P,C}(\pi,\rho)=1$.

Theorem 1.3 (Security amplification for a dynamic weakly verifiable puzzle.) Let $P^{(1)}$ be a fixed problem poser as in Definition 1.1, and $P^{(g)}$ be a poser for the k-wise direct product of $P^{(1)}$. There exists a probabilistic algorithm Gen with oracle access to: a solver circuit C for $P^{(g)}$, a monotone function $g: \{0,1\}^k \to \{0,1\}$ and problem posers $P^{(1)}$, $P^{(g)}$. Additionally, Gen takes as input parameters ε , δ , n, k the number of verification queries v and hint queries v as solver circuit v for v for v as in Definition 1.1 such that the following holds:

If C is such that

$$\Pr_{\substack{\pi^{(k)} \in \{0,1\}^{kn} \\ \rho \in \{0,1\}^*}} \left[Success^{P^{(g)},C}(\pi^{(k)},\rho) = 1 \right] \ge 16(h+v) \left(\Pr_{\substack{u \leftarrow \mu_{\delta}^k \\ \rho \in \{0,1\}^*}} \left[g(u) = 1 \right] + \varepsilon \right)$$

then D satisfies almost surely

$$\Pr_{\substack{\pi \in \{0,1\}^n \\ \rho \in \{0,1\}^*}} \left[Success^{P^{(1)},D}(\pi,\rho) = 1 \right] \geq (\delta + \frac{\varepsilon}{6k}).$$

Additionally, D requires oracle access to g, $P^{(1)}$, C, and asks at most $\frac{6k}{\varepsilon} \log \left(\frac{6k}{\varepsilon}\right) h$ hint queries and one verification query. Finally, $Size(D) \leq Size(C) \cdot \frac{6k}{\varepsilon}$ and $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n, v, h)$.

Let $hash: Q \to \{0, 1, \dots, 2(h+v)-1\}$, the idea is to partition Q such that the set of preimages of 0 for hash contains $q \in Q$ on which C is not allowed to ask hint queries, and the first successful verification query (q, y) of C is such that hash(q) = 0. Therefore, if C makes a verification query (q, y) such that hash(q) = 0, then we know that no hint query is ever asked on this q.

We denote the *i*-th query of C by q_i if it is a hint query, and by (q_i, y_i) if it is a verification query. We define now an experiment CanonicalSuccess in which we partition Q using a function

hash. We say that a solver circuit C succeeds in the experiment C anonical S uccess if it asks a successful verification query (q_j, y_j) such that $hash(q_j) = 0$, and no hint query q_i is asked before (q_i, y_i) such that $hash(q_i) = 0$.

```
Experiment CanonicalSuccess^{P,C,hash}(\pi,\rho)

Oracle: A problem poser P, a solver circuit C = (C_1, C_2), a function hash: Q \to \{0, \dots, 2(h+v)-1\}.

Input: Bitstrings \pi \in \{0,1\}^n, \rho \in \{0,1\}^*.

Output: A bit b \in \{0,1\}.

run \langle P(\pi), C_1(\rho) \rangle
(\Gamma_V, \Gamma_H) := \langle P(\pi), C_1(\rho) \rangle_P
x := \langle P(\pi), C_1(\rho) \rangle_{\text{trans}}

run C_2^{\Gamma_V, \Gamma_H}(x, \rho)
if C_2 does not succeed for any verification query then return 0
Let (q_j, y_j) be the first verification query of C_2 such that \Gamma_v(q_j, y_j) = 1.

If (\forall i < j : hash(q_i) \neq 0) and (hash(q_j) = 0) then return 1 else return 0
```

We define the *canonical success probability* of a solver C for P with respect to a function hash as

$$\Pr_{\pi,\rho}[CanonicalSuccess^{P,C,hash}(\pi,\rho)=1]. \tag{0.0.2}$$

For fixed hash and a problem poser P a canonical success of C for π, ρ is a situation where $CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1$.

Let \mathcal{H} be the family of pairwise independent functions $Q \to \{0, 1, \dots, 2(h+v)-1\}$. We write $hash \leftarrow \mathcal{H}$ to denote that hash is chosen from \mathcal{H} uniformly at random. We show that if a solver circuit C for P often succeeds in the experiment Success, then there exists a function $hash \in \mathcal{H}$ such that C also often succeeds in the experiment CanonicalSuccess.

Lemma 1.4 (Success probability in solving DWVP with respect to a function hash.) For fixed P let C be a solver for P with the success probability at least γ , asking at most h hint queries and v verification queries. There exists a probabilistic algorithm FindHash that takes as input: parameters γ , n, the number of verification queries v and hint queries h, and has oracle access to C and P. Furthermore, FindHash runs in time poly $(h, v, \frac{1}{\gamma}, n)$, and with high probability outputs a function hash $\in \mathcal{H}$ such that the canonical success probability of C with respect to hash is at least $\frac{\gamma}{16(h+v)}$.

Proof. We fix a problem poser P and a solver C for P in the whole proof of Lemma 1.4. For all $m, n \in \{1, \ldots, (h+v)\}$ and $k, l \in \{0, 1, \ldots, 2(h+v)-1\}$ by the pairwise independence property of \mathcal{H} , we have

$$\forall q_m, q_n \in Q, q_m \neq q_n : \Pr_{hash \leftarrow \mathcal{H}}[hash(q_m) = k \mid hash(q_n) = l] = \Pr_{hash \leftarrow \mathcal{H}}[hash(q_m) = k] = \frac{1}{2(h+v)}.$$
(0.0.3)

 $^{^{1}}$ It is possible to implement a random function hash efficiently by for example building its function table on the fly.

Let $\mathcal{P}_{Success}$ be a set containing all (π, ρ) for which $Success^{P,C}(\pi, \rho) = 1$. We fix $(\pi^*, \rho^*) \in \mathcal{P}_{Success}$, and are interested in the probability over a choice of function hash of the event $CanonicalSuccess^{P,C,hash}(\pi^*, \rho^*) = 1$. Let (q_j, y_j) denote the first query such that $\Gamma_V(q_j, y_j) = 1$. We have

$$\Pr_{hash \leftarrow \mathcal{H}}[CanonicalSuccess^{P,C,hash}(\pi^*, \rho^*) = 1]$$

$$= \Pr_{hash \leftarrow \mathcal{H}}[hash(q_j) = 0 \land (\forall i < j : hash(q_i) \neq 0)]$$

$$= \Pr_{hash \leftarrow \mathcal{H}}[\forall i < j : hash(q_i) \neq 0 \mid hash(q_j) = 0] \Pr_{hash \leftarrow \mathcal{H}}[hash(q_j) = 0]$$

$$\stackrel{(0.0.3)}{=} \frac{1}{2(h+v)} \left(1 - \Pr_{hash \leftarrow \mathcal{H}}[\exists i < j : hash(q_i) = 0 \mid hash(q_j) = 0]\right)$$

$$\stackrel{(0.0.3)}{=} \frac{1}{2(h+v)} \left(1 - \Pr_{hash \leftarrow \mathcal{H}}[\exists i < j : hash(q_i) = 0]\right)$$

$$\stackrel{(u.b)}{\geq} \frac{1}{2(h+v)} \left(1 - \sum_{i < j} \Pr_{hash \leftarrow \mathcal{H}}[hash(q_i) = 0]\right)$$

$$\stackrel{(0.0.3)}{\geq} \frac{1}{4(h+v)}.$$

$$(0.0.4)$$

We denote the set of those (π, ρ) for which $CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1$ by $\mathcal{P}_{Canonical}$. If for π , ρ the circuit C succeeds canonically, then for the same π , ρ we also have $Success^{P,C}(\pi, \rho) = 1$. Hence, $\mathcal{P}_{Canonical} \subseteq \mathcal{P}_{Success}$, and we conclude

$$\Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}} \left[Canonical Success^{P,C,hash}(\pi, \rho) = 1 \right] \\
= \Pr_{\substack{hash \leftarrow \mathcal{H} \\ (\pi, \rho) \in \mathcal{P}_{Success}}} \left[hash(q_j) = 0 \land (\forall i < j : hash(q_i) \neq 0) \right] \\
= \underset{(\pi, \rho) \in \mathcal{P}_{Success}}{\mathbb{E}} \left[\Pr_{hash \leftarrow \mathcal{H}} [hash(q_j) = 0 \land (\forall i < j : hash(q_i) \neq 0)] \right] \\
\stackrel{(0.0.4)}{\geq} \frac{\gamma}{4(h+v)}. \tag{0.0.5}$$

Algorithm: FindHash (γ, n, h, v)

Oracle: A problem poser P, a solver circuit C for P.

Input: Parameters γ , n. The number of h hint and v verification queries.

Output: A function $hash: Q \rightarrow \{0, 1, \dots, 2(h+v) - 1\}.$

$$\begin{aligned} & \textbf{for } i = 1 \textbf{ to } 32n(h+v)^2/\gamma^2 \textbf{ do:} \\ & hash \leftarrow \mathcal{H} \\ & count := 0 \\ & \textbf{for } j := 1 \textbf{ to } 32n(h+v)^2/\gamma^2 \textbf{ do:} \\ & \pi \xleftarrow{\$} \{0,1\}^n \\ & \rho \xleftarrow{\$} \{0,1\}^* \\ & \textbf{ if } CanonicalSuccess^{P,C,hash}(\pi,\rho) = 1 \textbf{ then} \\ & count := count + 1 \end{aligned}$$

$$\begin{array}{c} \textbf{if} \ \ count \geq \frac{\gamma}{12(h+v)} \frac{32(h+v)^2}{\gamma^2} n \ \ \textbf{then} \\ \textbf{return} \ \ hash \end{array}$$

We show that FindHash chooses $hash \in \mathcal{H}$ such that the canonical success probability of C with respect to hash is at least $\frac{\gamma}{16(h+v)}$ almost surely. Let \mathcal{H}_{Good} denote a family of functions $hash \in \mathcal{H}$ for which

$$\Pr_{\pi,\rho} \left[Canonical Success^{P,C,hash}(\pi,\rho) = 1 \right] \ge \frac{\gamma}{8(h+v)}, \tag{0.0.6}$$

and \mathcal{H}_{Bad} be the family of functions $hash \in \mathcal{H}$ such that

$$\Pr_{\pi,\rho} \left[Canonical Success^{P,C,hash}(\pi,\rho) = 1 \right] \le \frac{\gamma}{16(h+v)}. \tag{0.0.7}$$

Let N denote the number of iterations of the inner loop of FindHash. For a fixed hash, we define independent, identically distributed binary random variables X_1, \ldots, X_N such that

$$X_i = \begin{cases} 1 & \text{if in the } i\text{-th iteration of the inner loop } count \text{ is increased} \\ 0 & \text{otherwise.} \end{cases}$$

We show now that FindHash is unlikely to return $hash \in \mathcal{H}_{Bad}$. For $hash \in \mathcal{H}_{Bad}$ by (0.0.7) we have $\mathbb{E}_{\pi,\rho}[X_i] \leq \frac{\gamma}{16(h+v)}$. Therefore, for any fixed $hash \in \mathcal{H}_{Bad}$ using the Chernoff bound we get ²

$$\Pr_{\pi,\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \ge \frac{\gamma}{12(h+v)} \right] \le \Pr_{\pi,\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \ge (1+\frac{1}{3}) \mathbb{E}[X_i] \right] \le e^{-\frac{\gamma}{16(h+v)}N/27} \le e^{-\frac{2}{27} \frac{(h+v)}{\gamma} n}.$$

The probability that $hash \in \mathcal{H}_{Good}$, when picked, is not returned amounts

$$\Pr_{\pi,\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \le \frac{\gamma}{12(h+v)} \right] \le \Pr_{\pi,\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \le (1-\frac{1}{3}) \mathbb{E}[X_i] \right] \le e^{-\frac{\gamma}{8(h+v)}N/18} = e^{-\frac{2}{9} \frac{(h+v)}{\gamma} n},$$

where we once more used the Chernoff bound. We show now that the probability of picking $hash \in \mathcal{H}_{Good}$ is at least $\frac{\gamma}{8(h+v)}$. We prove this statement by contradiction. Let assume us that

$$\Pr_{hash \leftarrow \mathcal{H}}[hash \in \mathcal{H}_{Good}] < \frac{\gamma}{8(h+v)}.$$
 (0.0.8)

We have

$$\begin{aligned} &\Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}}[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1] \\ &= \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}}[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid hash \in \mathcal{H}_{Good}] \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \mu_{Good}}}[hash \in \mathcal{H}_{Good}] \\ &+ \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}}[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid hash \notin \mathcal{H}_{Good}] \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \mu_{Good}}}[hash \notin \mathcal{H}_{Good}] \\ &\leq \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}}[hash \in \mathcal{H}_{Good}] + \Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi, \rho}}[CanonicalSuccess^{P,C,hash}(\pi, \rho) = 1 \mid hash \notin \mathcal{H}_{Good}] \\ &\stackrel{(0.0.6)}{\leq 0} \frac{\gamma}{8(h+v)} + \frac{\gamma}{8(h+v)} = \frac{\gamma}{4(h+v)}, \end{aligned}$$

²For independent, identically distributed binary random variables $X = \sum_{i=1}^{N} X_i$ and $0 < \delta \le 1$ we use the Chernoff bounds in the form $\Pr[X \ge (1+\delta)\mathbb{E}[X]] \le e^{-\mathbb{E}[X]\delta^2/3}$ and $\Pr[X \le (1-\delta)\mathbb{E}[X]] \le e^{-\mathbb{E}[X]\delta^2/2}$.

but this contradicts (0.0.5). Therefore, we know that the probability of choosing a $hash \in \mathcal{H}_{Good}$ amounts at least $\frac{\gamma}{8(h+v)}$ where the probability is taken over a choice of hash.

We show that FindHash picks in one of its iteration $hash \in \mathcal{H}_{Good}$ almost surely. Let K be the number of iterations of the outer loop of FindHash and Y_i be a random variable for the event that in the i-th iteration of the outer loop $hash \notin \mathcal{H}_{Good}$ is picked. We conclude using $\Pr_{hash \leftarrow \mathcal{H}}[hash \in \mathcal{H}_{Good}] \ge \frac{\gamma}{8(g+v)}$ and $K \le \frac{32(h+v)^2}{\gamma^2}n$ that

$$\Pr_{hash \leftarrow \mathcal{H}} \left[\bigcap_{1 \le i \le K} Y_i \right] \le \left(1 - \frac{\gamma}{8(h+v)} \right)^{\frac{32(h+v)^2}{\gamma^2} n} \le e^{-\frac{\gamma}{8(h+v)} \frac{32(h+v)^2}{\gamma^2} n} \le e^{-\frac{4(h+v)}{\gamma} n}. \quad \Box$$

```
Circuit \widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)
Oracle: A hint circuit \Gamma_H, a circuit C_2,
            a function hash : Q \to \{0, 1, \dots, 2(h+v) - 1\}.
Input: Bitstrings x \in \{0, 1\}^*, \rho \in \{0, 1\}^*.
Output: A tuple (q, y).
run C_2^{(\cdot,\cdot)}(x,\rho)
      if C_2^{(\cdot,\cdot)}(x,\rho) asks a hint query on q then
            if hash(q) = 0 then
                  return \perp
            else
                  answer the query of C_2^{(\cdot,\cdot)}(x,\rho) using \Gamma_H(q)
      if C_2^{(\cdot,\cdot)}(x,\rho) asks a verification query (q,y) then
            if hash(q) = 0 then
                  return (q, y)
                  answer the verification query of C_2^{(\cdot,\cdot)}(x,\rho) with 0
return \perp
```

Given $C = (C_1, C_2)$ we define a circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$. Every hint query q asked by \widetilde{C} is such that $hash(q) \neq 0$. Furthermore, \widetilde{C} asks no verification queries, instead it returns \bot or (q, y) such that hash(q) = 0.

We say that for a fixed π , ρ , hash the circuit \widetilde{C} succeeds if for $x := \langle P(\pi), C_1(\rho) \rangle_{\text{trans}}$, $(\Gamma_V, \Gamma_H) := \langle P(\pi), C_1(\rho) \rangle_P$, we have

$$\Gamma_V(\widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)) = 1.$$

Lemma 1.5 For fixed P, C and hash the following statement is true

$$\Pr_{\pi,\rho}[CanonicalSuccess^{P,C,hash}(\pi,\rho)=1] \leq \Pr_{\pi,\rho} \left[\Gamma_V(\widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)) = 1 \right] \underset{(\Gamma_V,\Gamma_H) := \langle P(\pi),C_1(\rho) \rangle_P}{\underset{\tau := \langle P(\pi),C_1(\rho) \rangle_P}{\Pr_{\pi,\rho}}} \left[\Gamma_V(\widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)) = 1 \right]$$

Proof. If for some fixed π , ρ and hash the circuit C succeeds canonically, then for the same π , ρ and hash also \widetilde{C} succeeds. Using this observation, we conclude that

$$\begin{split} \Pr_{\pi,\rho} \left[Canonical Success^{P,C,hash}(\pi,\rho) = 1 \right] \\ &= \underset{\pi,\rho}{\mathbb{E}} \left[Canonical Success^{P,C,hash}(\pi,\rho) = 1 \right] \\ &\leq \underset{\pi,\rho}{\mathbb{E}} \left[\Gamma_V(\widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)) = 1 \right] \\ &\stackrel{x:=\langle P(\pi),C_1(\rho)\rangle_{\text{trans}}}{(\Gamma_V,\Gamma_H):=\langle P(\pi),C_1(\rho)\rangle_P} \\ &= \underset{\pi,\rho}{\Pr} \left[\Gamma_V(\widetilde{C}_2^{\Gamma_H,C_2,hash}(x,\rho)) = 1 \right] \\ &\stackrel{x:=\langle P(\pi),C_1(\rho)\rangle_{\text{trans}}}{(\Gamma_V,\Gamma_H):=\langle P(\pi),C_1(\rho)\rangle_P} \end{split}$$

Lemma 1.6 (Security amplification of a dynamic weakly verifiable puzzle with respect to hash.) For fixed $P^{(1)}$ there exists an algorithm Gen that takes as input parameters $\varepsilon, \delta, n, k$ has oracle access to $P^{(1)}$, $P^{(g)}$, \widetilde{C} , functions hash : $Q \to \{0, 1, \dots, 2(h + v - 1)\}$, $g: \{0, 1\}^k \to \{0, 1\}$, and outputs a circuit $D:=(D_1, D_2)$ such that the following holds: If $\widetilde{C}:=(C_1, \widetilde{C}_2)$ has oracle access to hash and a solver circuit $C:=(C_1, C_2)$ for $P^{(g)}$, which asks at most h hint queries and v verification queries, is such that

$$\Pr_{\substack{\pi^{(k)} \in \{0,1\}^{kn}, \rho \in \{0,1\}^* \\ x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{trans} \\ (\Gamma_H^{(k)}, \Gamma_V^{(g)}) := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}}} \left[\Gamma_V^{(g)}(x, \rho) = 1 \right] \ge \Pr_{\substack{u \leftarrow \mu_\delta^k \\ p \in \{0,1\}^k \\ v := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}}} \left[\Gamma_V^{(g)}(x, \rho) \right] \ge \Pr_{\substack{u \leftarrow \mu_\delta^k \\ p \in \{0,1\}^k \\ v := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}}} \left[\Gamma_V^{(g)}(x, \rho) \right] \ge \Pr_{\substack{u \leftarrow \mu_\delta^k \\ p \in \{0,1\}^k \\ v := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}}} \left[\Gamma_V^{(g)}(x, \rho) \right] \ge \Pr_{\substack{u \leftarrow \mu_\delta^k \\ p \in \{0,1\}^k \\ v := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}}} \left[\Gamma_V^{(g)}(x, \rho) \right] \ge \Pr_{\substack{u \leftarrow \mu_\delta^k \\ p \in \{0,1\}^k \\ v := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}} \left[\Gamma_V^{(g)}(x, \rho) \right] \ge \Pr_{\substack{u \leftarrow \mu_\delta^k \\ p \in \{0,1\}^k \\ v := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}}} \left[\Gamma_V^{(g)}(x, \rho) \right] = 1$$

then D satisfies almost surely

$$\Pr_{\substack{\pi \in \{0,1\}^n, \rho \in \{0,1\}^* \\ x := \langle P^{(1)}(\pi), D_1^{\tilde{C}}(\rho) \rangle_{trans} \\ (\Gamma_H, \Gamma_V) := \langle P^{(1)}(\pi), D_1^{\tilde{C}}(\rho) \rangle_{P^{(1)}, \tilde{C}}(\rho) \rangle_{P^{(1)}}}} \Pr_{\substack{T \in \{0,1\}^* \\ P^{(1)}(\pi), D_1^{\tilde{C}}(\rho) \rangle_{P^{(1)}, \tilde{C}}(\rho) \rangle_{P^{(1)}}}} |P^{(1)}(\pi), P^{(1)}(\pi), P^{(2)}(\pi), P^{(2)}($$

Furthermore, D has oracle access to a hint circuit, $P^{(1)}$, $P^{(g)}$, \tilde{C} , hash, g, and asks at most $\frac{6k}{\varepsilon}\log\left(\frac{6k}{\varepsilon}\right)h$ hint queries and no verification queries. Finally, $Size(D) \leq Size(C)\frac{6k}{\varepsilon}$ and $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n, v, h)$.

Before proving Lemma 1.6 we define additional algorithms that are later used by Gen. First, we are interested in the probability that for $u \leftarrow \mu_{\delta}^k$ and a bit $b \in \{0,1\}$ the function g with the first input bit set to b takes value 1. The estimate of this probability is calculated by the algorithm EstimateFunctionProbability.

Algorithm: EstimateFunctionProbability $^g(b, k, \varepsilon, \delta, n)$

Oracle: A function $g : \{0, 1\}^k \to \{0, 1\}$.

Input: A bit $b \in \{0,1\}$, parameters $k, \varepsilon, \delta, n$.

Output: An estimate \widetilde{g} of $\Pr_{u \leftarrow \mu_s^k}[g(b, u_2, \dots, u_k) = 1]$.

for
$$i := 1$$
 to $\frac{64^2}{\varepsilon^2}n$ do: $u \leftarrow \mu_{\delta}^k$

7

$$egin{aligned} g_i &:= g(b, u_2, \dots, u_k) \ \mathbf{return} \ rac{arepsilon^2}{64^2 n} \sum_{i=1}^{rac{64^2}{arepsilon^2} n} g_i \end{aligned}$$

Lemma 1.7 The algorithm **EstimateFunctionProbability**^g $(b, k, \varepsilon, \delta)$ outputs an estimate \widetilde{g} of $\Pr_{u \leftarrow \mu_{\delta}^{k}}[g(b, u_{2}, \dots, u_{k}) = 1]$ where $b \in \{0, 1\}$ such that $|\widetilde{g} - \Pr_{u \leftarrow \mu_{\delta}^{k}}[g(b, u_{2}, \dots, u_{k}) = 1]| \leq \frac{\varepsilon}{8k}$ almost surely.

Proof. We define independent, identically distributed binary random variables $K_1, K_2, \ldots, K_{\frac{64k^2}{\varepsilon^2}n}$ such that for each $1 \le i \le \frac{64k^2}{\varepsilon^2}n$ the random variable K_i takes value g_i . We use the Chernoff bound to obtain ³

$$\Pr\left[\left|\left(\frac{\varepsilon^2}{64k^2n}\sum_{i=1}^{\frac{64k^2}{\varepsilon^2}n}K_i\right) - \mathbb{E}[K_i]\right| \ge \frac{\varepsilon}{8k}\right] \le 2 \cdot e^{-n/3}.$$

The next algorithm **EvalutePuzzles** $P^{(1)}, P^{(g)}, \tilde{C}, hash(\pi^{(k)}, \rho, n, k)$ evaluates which of k puzzles of the k-wise direct product defined by $P^{(g)}$ are solved successfully by $\tilde{C}(\rho) := (C_1, \tilde{C}_2)(\rho)$. To decide whether the i-th puzzle of the k-wise direct product is solved successfully we need to gain access to the verification oracle for the puzzle generated in the i-th round of the interaction between $P^{(g)}$ and \tilde{C} . Therefore, in the algorithm **EvalutePuzzles**, we use $P^{(1)}$, and invoke it k times to simulate the interaction with $C_1(\rho)$. Let us introduce some additional notation. We denote by $\langle P^{(1)}(\pi_i), C_1(\rho) \rangle^i$ the execution of the i-th round of the simulation, and by $\langle P^{(1)}(\pi_i), C_1(\rho) \rangle^i_{P^{(1)}}$ the output of $P^{(1)}(\pi_i)$ in the i-th round. Furthermore, we write $\langle P^{(1)}(\pi_i), C_1(\rho) \rangle^i_{trans}$ to denote a transcript of communication in the i-th round. To make the notation easier in the code excerpts of circuits C_2 , D_2 and EvalutePuzzles we

To make the notation easier in the code excerpts of circuits C_2 , D_2 and EvalutePuzzles we omit some oracle signatures writing for example $\widetilde{C}_2^{\Gamma_H^{(k)},hash}$ instead of $\widetilde{C}_2^{\Gamma_H^{(k)},C,hash}$ where the access to oracle circuit C is omitted. We make sure that it is clear from a context which circuit C is used by \widetilde{C}_2 .

```
Algorithm: EvaluatePuzzles P^{(1),P^{(g)},\widetilde{C},hash}(\pi^{(k)},\rho,n,k)

Oracle: Problem posers P^{(1)},P^{(g)}, a circuit \widetilde{C}=(C_1,\widetilde{C}_2), a function hash:Q\to\{0,1,\dots,2(h+v)-1\}.

Input: Bitstrings \pi^{(k)}\in\{0,1\}^{kn},\,\rho\in\{0,1\}^*,\, parameters n,k.

Output: A tuple (c_1,\dots,c_k)\in\{0,1\}^k.

for i:=1 to k do: //simulate k rounds of interaction (\Gamma^i_V,\Gamma^i_H):=\langle P^{(1)}(\pi_i),C_1(\rho)\rangle^i_{P^{(1)}} x_i:=\langle P^{(1)}(\pi_i),C_1(\rho)\rangle^i_{trans} x:=(x_1,\dots,x_k) \Gamma^{(k)}_H:=(\Gamma^1_H,\dots,\Gamma^k_H) (q,y_1,\dots,y_k):=\widetilde{C}^{\Gamma^{(k)}_H,hash}_2(x,\rho) (c_1,\dots,c_k):=(\Gamma^1_V(q,y_1),\dots,\Gamma^k_V(q,y_k)) return (c_1,\dots,c_k)
```

For independent Bernoulli distributed random variables X_1, \ldots, X_n with $X := \sum_{i=1}^n X_i$ and $0 \le \delta \le 1$ we use the Chernoff bound in the form $\Pr[|X - \mathbb{E}[X]| \ge \delta \mathbb{E}[X]] \le 2e^{-\mathbb{E}[X]\delta^2/3}$.

All puzzles used by the algorithm **EvalutePuzzles** are generated internally. Thus, the algorithm can answer itself all queries of \widetilde{C}_2 to the hint oracle.

We are interested in the success probability of C with the bitstring π_1 fixed to π^* when the fact whether \widetilde{C} succeeds in solving the first puzzle defined by $P^{(1)}(\pi_1)$ is neglected, and instead a bit $b \in \{0,1\}$ is used. More formally, we define the surplus $S_{\pi^*,b}$ as

$$S_{\pi^*,b} = \Pr_{\pi^{(k)},\rho} [g(b, c_2, \dots, c_k) = 1 \mid \pi_1 = \pi^*] - \Pr_{u \leftarrow \mu_\delta^k} [g(b, u_2, \dots, u_k) = 1].$$
 (0.0.9)

The algorithm **EstimateSurplus** returns an estimate $\widetilde{S}_{\pi^*,b}$ for $S_{\pi^*,b}$.

Algorithm: EstimateSurplus $P^{(1)}, P^{(g)}, \widetilde{C}, g, hash(\pi^*, b, k, \varepsilon, \delta, n)$

Oracle: Problem posers $P^{(1)}$, $P^{(g)}$, a circuit \widetilde{C} , a function $g: \{0,1\}^k \to \{0,1\}$ a function $hash: Q \to \{0,1,\ldots,2(h+v)-1\}$.

Input: A bistring $\pi^* \in \{0,1\}^n$, a bit $b \in \{0,1\}$, parameters $k, \varepsilon, \delta, n$.

Output: An estimate $S_{\pi^*,b}$ for $S_{\pi^*,b}$.

 $\begin{aligned} & \text{for } i := 1 \text{ to } \frac{64k^2}{\varepsilon^2} n \text{ do:} \\ & (\pi_2, \dots, \pi_k) \overset{\$}{\leftarrow} \{0, 1\}^{(k-1)n} \\ & \rho \overset{\$}{\leftarrow} \{0, 1\}^* \\ & (c_1, \dots, c_k) := \mathbf{EvalutePuzzles}^{P^{(1)}, P^{(g)}, \widetilde{C}, hash}((\pi^*, \pi_2, \dots, \pi_k), \rho) \\ & \widetilde{s}^i_{\pi^*, b} := g(b, c_2, \dots, c_k) \\ & \widetilde{g}_b := \mathbf{EstimateFunctionProbability}^g(b, k, \varepsilon, \delta, n) \\ & \mathbf{return} \left(\frac{\varepsilon^2}{64k^2n} \sum_{i=1}^{\frac{64k^2}{\varepsilon^2}n} \widetilde{s}^i_{\pi^*, b} \right) - \widetilde{g}_b \end{aligned}$

Lemma 1.8 The estimate $\widetilde{S}_{\pi^*,b}$ returned by **EstimateSurplus** differs from $S_{\pi^*,b}$ by at most $\frac{\varepsilon}{4k}$ almost surely.

Proof. We use the union bound and similar argument as in Lemma 1.7 which yields that $\frac{\varepsilon^2}{64k^2n}\sum_{i=1}^{\frac{64k^2}{2}n}\widetilde{s}_{\pi^*,b}^i$ differs from $\mathbb{E}[g(b,c_2,\ldots,c_k)]$ by at most $\frac{\varepsilon}{8k}$ almost surely. Together, with Lemma 1.7 we conclude that the surplus estimate returned by **EstimateSurplus** differs from $S_{\pi^*,b}$ by at most $\frac{\varepsilon}{4k}$ almost surely.

Circuit $C_1^{\prime \widetilde{C},P^{(1)}}(\rho)$

Oracle: A circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$, a poser $P^{(1)}$.

Input: A bitstring $\rho \in \{0,1\}^*$

Hard-coded: A bitstring $\pi^* \in \{0,1\}^n$

Simulate $\langle P^{(1)}(\pi^*), C_1(\rho) \rangle^1$

Use $C_1(\rho)$ for the remaining k-1 rounds of interaction.

Circuit $\widetilde{C}_2^{'\Gamma_H^{(k-1)},\widetilde{C},hash}(x^{(k-1)},\rho)$

Oracle: A hint oracle $\Gamma_H^{(k-1)} := (\Gamma_H^2, \dots, \Gamma_H^k)$, a circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$,

```
a function hash: Q \to \{0, 1, \dots, 2(h+v)-1\}
Input: A tuple x^{(k-1)} := (x_2, \dots, x_k) \in \{0, 1\}^*, a bitstring \rho \in \{0, 1\}^*
Hard-coded: A bitstring \pi^* \in \{0, 1\}^n

Simulate \langle P^{(1)}(\pi^*), C_1(\rho) \rangle^1
(\Gamma_H^*, \Gamma_V^*) := \langle P^{(1)}(\pi^*), C_1(\rho) \rangle^1_{P^{(1)}}
x^* := \langle P^{(1)}(\pi^*), C_1(\rho) \rangle^1_{\text{trans}}
\Gamma_H^{(k)} := (\Gamma_H^*, \Gamma_H^2, \dots, \Gamma_H^k)
x^{(k)} := (x^*, x_2, \dots, x_k)
(q, y_1, \dots, y_k) := \widetilde{C}_2^{\Gamma_H^{(k)}, hash}(x^{(k)}, \rho)
return (q, y_2, \dots, y_k)
```

We are ready to define the circuit $D = (D_1, D_2)$ and the algorithm Gen.

Input: A tuple $r := (\rho, \sigma)$ where $\rho \in \{0, 1\}^*$ and $\sigma \in \{0, 1\}^*$.

Circuit $D_1^{\widetilde{C}}(r)$

Oracle: A circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$.

```
Interact with the problem poser \langle P^{(1)}, C_1(\rho) \rangle^1.
Circuit D_2^{P^{(1)},P^{(g)},\widetilde{C},hash,g,\Gamma_H^*}(x^*,\rho)
Oracle: A poser P^{(1)}, a solver circuit \widetilde{C}=(C_1,\widetilde{C}_2),
                functions hash: Q \to \{0, 1, \dots, 2(h+v)-1\}, g: \{0, 1\}^k \to \{0, 1\},
                a hint circuit \Gamma_H^* for P^{(1)}.
Input: Bitstrings x^* \in \{0,1\}^*, \rho := (\tau,\sigma) such that \tau \in \{0,1\}^* and \sigma \in \{0,1\}^*
Output: A tuple (q, y^*).
for at most \frac{6k}{\varepsilon}\log(\frac{6k}{\varepsilon}) iterations do:
        (\pi_2, \dots, \pi_k) \leftarrow \text{read next } (k-1) \cdot n \text{ bits from } \sigma
        for i := 2 to k do:
                run \langle P^{(1)}(\pi_i), C_1(\rho) \rangle^i
                        (\Gamma_V^i, \Gamma_H^i) := \langle P^{(1)}(\pi_i), C_1(\tau) \rangle_{P^{(1)}}^i
                       x_i := \langle P^{(1)}(\pi_i), C_1(\tau) \rangle_{\text{trans}}^i
       \Gamma_{H}^{(k)}(q) := (\Gamma_{H}^{*}(q), \Gamma_{H}^{2}(q), \dots, \Gamma_{H}^{k}(q))
(q, y^{*}, y_{2}, \dots, y_{k}) := \widetilde{C}_{2}^{\Gamma_{H}^{(k)}, hash}((x^{*}, x_{2}, \dots, x_{k}), \tau)
        (c_2,\ldots,c_k):=(\Gamma_V^2(q,y_2),\ldots,\Gamma_V^k(q,y_k))
        if g(1, c_2, ..., c_k) = 1 and g(0, c_2, ..., c_k) = 0 then
                return (q, y^*)
return \perp
```

```
for i := 1 to \frac{6k}{\varepsilon}n do:
\pi^* \overset{\$}{\leftarrow} \{0,1\}^n
\widetilde{S}_{\pi^*,0} := \mathbf{EstimateSurplus}^{P^{(1)},P^{(g)},\widetilde{C},g,hash}(\pi^*,0,k,\varepsilon,\delta,n)
\widetilde{S}_{\pi^*,1} := \mathbf{EstimateSurplus}^{P^{(1)},P^{(g)},\widetilde{C},g,hash}(\pi^*,1,k,\varepsilon,\delta,n)
if \exists b \in \{0,1\} : \widetilde{S}_{\pi^*,b} \geq (1-\frac{3}{4k})\varepsilon then
\mathbf{Let} \ C_1' \ \text{have oracle access to } \widetilde{C}, \ \text{and have hard-coded } \pi^*
\mathbf{Let} \ \widetilde{C}_2' \ \text{have oracle access to } \widetilde{C}, \ \text{and have hard-coded } \pi^*.
\widetilde{C}' := (C_1',\widetilde{C}_2')
g'(b_2,\ldots,b_k) := g(b,b_2,\ldots,b_k)
\mathbf{return} \ Gen^{P^{(1)},P^{(g)},\widetilde{C}',g',hash}(\varepsilon,\delta,n,v,h,k-1)
// all estimates are lower than (1-\frac{3}{4k})\varepsilon
\mathbf{return} \ D^{P^{(1)},P^{(g)},\widetilde{C},hash,g}
```

Proof (Lemma 1.6). First let us consider the case where k = 1. The function $g : \{0, 1\} \rightarrow \{0, 1\}$ is either the identity or a constant function. If g is the identity function, then the circuit D returned by Gen directly uses \widetilde{C} to find a solution. From the assumptions of Lemma 1.6 we know that \widetilde{C} succeeds with probability at least $\delta + \varepsilon$. Hence, D trivially satisfies the statement of Lemma 1.6. If g is a constant function the statement is vacuously true.

The general case is more involved. We distinguish two possibilities. If Gen manages to find in one of the iterations π^* such that an estimate $\widetilde{S}_{\pi^*,b} \geq (1-\frac{3}{4k})\varepsilon$, then we define a new monotone function $g'(b_2,\ldots,b_k):=g(b,b_2,\ldots,b_k)$ and a circuit $\widetilde{C}'=(C_1',\widetilde{C}_2')$ with oracle access to $\widetilde{C}:=(C_1,\widetilde{C}_2)$, where C_1' first internally simulates the interaction between C_1 and $P^{(1)}(\pi^*)$, and then use C_1 to interact with $P^{(g')}$. The circuit \widetilde{C}_2' uses \widetilde{C} to obtain a solution (q,y_1,\ldots,y_k) for the k-wise direct product with π_1 fixed to π^* , and returns (q,y_2,\ldots,y_k) . We know that one of the surplus estimates $\widetilde{S}_{\pi^*,b}$ is greater or equal $1-\frac{3}{4k}\varepsilon$, and using Lemma 1.8 we conclude that $S_{\pi^*,b} \geq \widetilde{S}_{\pi^*,b} - \frac{\varepsilon}{4k} \geq \varepsilon - \frac{\varepsilon}{k}$ almost surely. Therefore, the circuit \widetilde{C}' succeeds in solving the (k-1)-wise direct product of puzzles with probability at least $\Pr_{u \leftarrow \mu_\delta^{k-1}}[g'(u_1,\ldots,u_{k-1})] + \varepsilon$. We see that in this case \widetilde{C}' satisfies the conditions of Lemma 1.6 for the (k-1)-wise direct product of puzzles, and we recurse using g' and \widetilde{C}' .

If all estimates are less than $(1-\frac{3}{4k})\varepsilon$, then intuitively C does not succeeds on the remaining k-1 puzzles with much higher probability than an algorithm that correctly solves each puzzle with probability δ . However, from the assumption we know of Lemma 1.6 that on all k puzzles the success probability of \widetilde{C} is higher. Therefore, it is likely that the first puzzle is correctly solved unusual often. It remains to prove that this intuition is indeed correct. Let $\mathcal{G}_b := \{b_1, b_2, \ldots, b_k : g(b, b_2, \ldots, b_k) = 1\}$ then we have

$$\Pr_{u \leftarrow \mu_{\delta}^{k}}[u \in G_{b}] = \Pr_{u \leftarrow \mu_{\delta}^{k}}[g(b, u_{2}, \dots, u_{k}) = 1]$$

$$\Pr_{\pi^{(k), \rho}}[c \in G_{b}] = \Pr_{\pi^{(k), \rho}}[g(b, c_{2}, \dots, c_{k}) = 1].$$
(0.0.10)

We fix π^* and use (0.0.9), (0.0.10) to obtain

$$\Pr_{u \leftarrow \mu_{\delta}^{k}}[u \in G_{1}] - \Pr_{u \leftarrow \mu_{\delta}^{k}}[u \in G_{0}] = \Pr_{\pi^{(k)}, \rho}[c \in G_{1} \mid \pi_{1} = \pi^{*}] - \Pr_{\pi^{(k)}, \rho}[c \in G_{0} \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0})$$

$$(0.0.11)$$

Since g is monotone, we have that $\mathcal{G}_0 \subseteq \mathcal{G}_1$, and can write (0.0.11) as

$$\Pr_{u \leftarrow \mu_{\delta}^{k}} [u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}] = \Pr_{\pi^{(k)}, \rho} [c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0}).$$
 (0.0.12)

Still fixing $\pi_1 = \pi^*$ we multiply both sides of (0.0.12) by

$$\Pr_{\rho} \left[\Gamma_{V}(D_{2}(x,\rho)) = 1 \right] / \Pr_{u \leftarrow \mu_{\delta}^{k}} \left[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \right].$$

$$x := \langle P^{(1)}(\pi^{*}), D_{1}(\rho) \rangle_{\text{trans}}$$

$$(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(\rho) \rangle_{P^{(1)}}$$

which yields

$$\Pr_{\rho} \left[\Gamma_{V}(D_{2}(x,\rho)) = 1 \right] \\
x := \langle P^{(1)}(\pi^{*}), D_{1}(\rho) \rangle_{\text{trans}} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(\rho) \rangle_{P^{(1)}} \\
= \Pr_{\rho} \left[\Gamma_{V}(D_{2}(x,\rho)) = 1 \right] \Pr_{\pi^{(k)}, \rho} \left[c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \mid \pi = \pi^{*} \right] \frac{1}{\Pr_{u \leftarrow \mu_{\delta}^{k}} \left[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \right]} \\
x := \langle P^{(1)}(\pi^{*}), D_{1}(\rho) \rangle_{\text{trans}} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(\rho) \rangle_{P^{(1)}} \\
- \Pr_{\rho} \left[\Gamma_{V}(D_{2}(x,\rho)) = 1 \right] \left(S_{\pi^{*},1} - S_{\pi^{*},0} \right) \frac{1}{\Pr_{u \leftarrow \mu_{\delta}^{k}} \left[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \right]} \\
x := \langle P^{(1)}(\pi^{*}), D_{1}(\rho) \rangle_{\text{trans}} \\
(\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(\rho) \rangle_{P^{(1)}}$$
(0.0.13)

We make use of the facts that $\Gamma_V(D(x,\rho)) = 1$ implies that $c_1 = 1$ and $D_2(x,\rho) \neq \bot$, and that the event $D_2(x^*,\rho) \neq \bot$ implies $c \in \mathcal{G}_1 \setminus \mathcal{G}_0$, which let us write the numerator of the first summand of (0.0.13) as

$$\Pr_{\substack{x := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{\text{trans}} \\ (\Gamma_V, \Gamma_H) := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{\text{prans}} \\ (\pi_V, \Gamma_H) := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{P^{(1)}}} \\
&= \Pr_{\substack{\rho \\ x := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{\text{trans}}}} [D_2(x, \rho) \neq \bot] \Pr_{\substack{\pi^{(k)}, \rho}} [c_1 = 1 \mid c \in \mathcal{G}_1 \setminus \mathcal{G}_0, \pi_1 = \pi^*] \Pr_{\substack{\pi^{(k)}, \rho}} [c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^*] \\
&= \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{\text{trans}}} (0.0.14)$$

Now we consider two cases: if $\Pr_{\pi^{(k)},\rho}[c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^*] \leq \frac{\varepsilon}{6k}$ then

$$\Pr_{\pi^{(k)}}[c_1 = 1 \mid c \in \mathcal{G}_1 \setminus \mathcal{G}_0, \pi_1 = \pi^*] \Pr_{\pi^{(k)}}[c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^*] \le \frac{\varepsilon}{6k}, \tag{0.0.15}$$

for $\Pr_{\pi^{(k)},\rho}[c \in \mathcal{G}_1 \setminus \mathcal{G}_0 \mid \pi_1 = \pi^*] > \frac{\varepsilon}{6k}$ the circuit D_2 outputs \bot if and only if it fails in all $\frac{6k}{\varepsilon} \log(\frac{6k}{\varepsilon})$ iterations to find $\pi^{(k)}$ such that $g(1,c_2,\ldots,c_k) = 1 \land g(0,c_2,\ldots,c_k) = 0$ (i.e. in none of the iterations $c \in \mathcal{G}_1 \setminus \mathcal{G}_0$) which happens with probability

$$\Pr_{\rho} \left[D_2(x, \rho) = \bot \right] \le \left(1 - \frac{\varepsilon}{6k} \right)^{\frac{6k}{\varepsilon} \log\left(\frac{\varepsilon}{6k}\right)} \le \frac{\varepsilon}{6k}.$$

$$x := \langle P^{(1)}(\pi), D_1(\rho) \rangle_{\text{trans}}$$

$$(0.0.16)$$

We conclude that in both cases:

$$\Pr_{\rho} \left[D_{2}(x,\rho) \neq \bot \right] \Pr_{\pi^{(k)},\rho} \left[c_{1} = 1 \mid c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}, \pi_{1} = \pi^{*} \right] \Pr_{\pi^{(k)},\rho} \left[c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \mid \pi_{1} = \pi^{*} \right] \\
& \geq \Pr_{\pi^{(k)},\rho} \left[c_{1} = 1 \mid c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}, \pi_{1} = \pi^{*} \right] \Pr_{\pi^{(k)},\rho} \left[c \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \mid \pi_{1} = \pi^{*} \right] - \frac{\varepsilon}{6k} \\
&= \Pr_{\pi^{(k)},\rho} \left[c_{1} = 1 \wedge c \in \mathcal{G}_{0} \setminus \mathcal{G}_{1} \mid \pi_{1} = \pi^{*} \right] - \frac{\varepsilon}{6k} \\
&= \Pr_{\pi^{(k)},\rho} \left[g(c_{1}, c_{2}, \dots, c_{k}) = 1 \wedge g(0, c_{2}, \dots, c_{k}) = 0 \mid \pi_{1} = \pi^{*} \right] - \frac{\varepsilon}{6k} \\
&= \Pr_{\pi^{(k)},\rho} \left[g(c) = 1 \mid \pi_{1} = \pi^{*} \right] - \Pr_{\pi^{(k)},\rho} \left[c \in \mathcal{G}_{0} \mid \pi_{1} = \pi^{*} \right] - \frac{\varepsilon}{6k} \\
&= \Pr_{\pi^{(k)},\rho} \left[g(c_{1}, c_{2}, \dots, c_{k}) = 1 \mid \pi_{1} = \pi^{*} \right] - \Pr_{u \leftarrow u^{(k)}} \left[u \in \mathcal{G}_{0} \right] - S_{\pi^{*},0} - \frac{\varepsilon}{6k}. \quad (0.0.17)$$

For the second summand of (0.0.13) we show that if we do not recurse, then the majority of the estimates is low almost surely. Let us assume that

$$\Pr_{\pi,\rho}\left[\left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon\right) \land \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon\right)\right] < 1 - \frac{\varepsilon}{6k},\tag{0.0.18}$$

then the algorithm recurses almost surely. Therefore, under the assumption that *Gen* does not recurse, we have with high probability

$$\Pr_{\pi,\rho} \left[\left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon \right) \wedge \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon \right) \right] \ge 1 - \frac{\varepsilon}{6k}. \tag{0.0.19}$$

Let us define a set

$$W = \left\{ \pi : \left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon \right) \land \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon \right) \right\}$$
 (0.0.20)

and use \mathcal{W}^c to denote the complement of \mathcal{W} . We bound the second summand in (0.0.13)

$$\mathbb{E}_{\pi^*}[S_{\pi^*,0} + \Pr_{\rho} [\Gamma_V(D_2(x,\rho)) = 1](S_{\pi^*,1} - S_{\pi^*,0})]$$

$$x:=\langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{\text{trans}}$$

$$(\Gamma_V, \Gamma_H):=\langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{P^{(1)}}$$

$$= \mathbb{E}_{\pi^* \in \mathcal{W}^c}[S_{\pi^*,0} + \Pr_{\rho} [\Gamma_V(D_2(x,\rho)) = 1](S_{\pi^*,1} - S_{\pi^*,0})]$$

$$x:=\langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{\text{trans}}$$

$$(\Gamma_V, \Gamma_H):=\langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{P^{(1)}}$$

$$+ \mathbb{E}_{\pi^* \in \mathcal{W}}[S_{\pi^*,0} + \Pr_{\rho} [\Gamma_V(D_2(x,\rho)) = 1](S_{\pi^*,1} - S_{\pi^*,0})]$$

$$x:=\langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{\text{trans}}$$

$$(\Gamma_V, \Gamma_H):=\langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{P^{(1)}}$$

$$\leq \frac{\varepsilon}{6k} + \mathbb{E}_{\pi^* \in \mathcal{W}^c}[S_{\pi^*,0} + \Pr_{\rho} [\Gamma_V(D_2^{\widetilde{C}}(x,\rho)) = 1]((1 - \frac{1}{2k})\varepsilon - S_{\pi^*,0})]$$

$$x:=\langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{\text{trans}}$$

$$(\Gamma_V, \Gamma_H):=\langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{P^{(1)}}$$

$$\leq \frac{\varepsilon}{6k} + 1 - \frac{\varepsilon}{2k} = 1 - \frac{\varepsilon}{3k}.$$

$$(0.0.21)$$

We observe that

$$\Pr_{u \leftarrow \mu_{\delta}^{k}}[g(u) = 1] = \Pr[u \in \mathcal{G}_{0} \lor (u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0} \land u_{1} = 1)]$$

$$= \Pr[u \in \mathcal{G}_{0}] + \Pr[u \in \mathcal{G}_{1} \setminus \mathcal{G}_{0}] \Pr[u_{1} = 1].$$
(0.0.22)

Finally, we insert (0.0.17) and (0.0.21) into equation (0.0.13) and use (0.0.22) to obtain

$$\Pr_{\substack{x := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{\text{trans}} \\ (\Gamma_V, \Gamma_H) := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{P^{(1)}}}} \left[\frac{\Pr_{\pi^{(k)}, \rho}[g(c) = 1 \mid \pi_1 = \pi^*] - \Pr_{u \leftarrow \mu_{\delta}^k}[u \in G_0] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0]} \right].$$

From the assumptions of Lemma 1.6 we know that $\Pr_{\pi^{(k)},\rho}[g(c)=1] \ge \Pr_{u \leftarrow \mu_{\delta}^{(k)}}[g(u)=1]$, thus we get

$$\Pr_{\substack{x := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{\text{trans}} \\ (\Gamma_V, \Gamma_H) := \langle P^{(1)}(\pi^*), D_1(\rho) \rangle_{P^{(1)}}}} = \frac{\Pr_{u \leftarrow \mu_{\delta}^k}[g(u) = 1] + \varepsilon + \Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_0] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0]}$$

$$\geq \frac{\varepsilon + \delta \Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{u \leftarrow \mu_{\delta}^k}[u \in \mathcal{G}_1 \setminus \mathcal{G}_0]} \geq \delta + \frac{\varepsilon}{6k}$$

$$(0.0.23)$$

Proof (Theorem 1.3). We show that Theorem 1.3 follows from Lemma 1.4 and Lemma 1.6. For fixed $P^{(1)}$, g, $P^{(g)}$ given a solver circuit $C = (C_1, C_2)$ such that

$$\Pr_{\pi^{(k)},\rho} \left[Success^{P^{(g)},C}(\pi^{(k)},\rho) = 1 \right] \ge 16(h+v) \left(\Pr_{u \leftarrow \mu_{\delta}^{k}} \left[g(u) = 1 \right] + \varepsilon \right)$$

we apply Lemma 1.4 to find a function hash such that

$$\Pr_{\pi^{(k)},\rho}\left[CanonicalSuccess^{P^{(g)},C,hash}(\pi^{(k)},\rho)=1\right] \geq \Pr_{u \leftarrow \mu_{\delta}^{k}}\left[g(u)=1\right] + \varepsilon.$$

By Lemma 1.5 we know that it is possible to create a circuit $\widetilde{C} = (C_1, \widetilde{C}_2)$ with oracle access to hash and C such that

$$\Pr_{\substack{\pi,\rho\\ \pi,\rho}} \left[\Gamma_V^{(g)} (\widetilde{C}_2^{\Gamma_H^{(k)},C_2,hash}(x,\rho)) = 1 \right] \ge \Pr_{\substack{u \leftarrow \mu_\delta^k\\ (\Gamma_V^{(g)},\Gamma_H^{(k)}) := \langle P(\pi),C_1(\rho) \rangle_P}} \left[g(u) = 1 \right] + \varepsilon.$$

Now, we apply Lemma 1.6 for the function hash and $\widetilde{C} = (C_1, \widetilde{C}_2)$ and obtain a circuit $D = (D_1, D_2)$ such that

$$\Pr_{\substack{x := \langle P^{(1)}(\pi), D_1(\rho) \rangle_{\text{trans}} \\ (\Gamma_H, \Gamma_V) := \langle P^{(1)}(\pi), D_1(\rho) \rangle_{P^{(1)}}}} [\Gamma_V(D_2(x, \rho)) = 1] \ge (\delta + \frac{\varepsilon}{6k}). \tag{0.0.24}$$

Finally, we build a circuit $\widetilde{D} = (D_1, \widetilde{D}_2)$ that in the first phase uses D_1 , and in the second phase uses D_2 to find (q, y), with which it makes a verification query to the oracle.

Circuit: $\widetilde{D}_{2}^{D,P^{(1)},P^{(g)},hash,g,\Gamma_{v}}(x,\rho)$

Oracle: A circuit D, problem posers $P^{(1)}$, $P^{(g)}$,

function $hash: Q \to \{0, 1, \dots, 2(h+v)-1\}, g: \{0, 1\}^k \to \{0, 1\}$

a verification oracle Γ_V , a hint oracle Γ_H

Input: Bitstrings $x \in \{0,1\}^*, \rho \in \{0,1\}^*$

 $(q,y):=D_2^{P^{(1)},P^{(g)},\widetilde{C},hash,g,\Gamma_H}(x,\rho)$

Make a verification query to Γ_V using (q, y)

We know that the probability that the verification query (q, y) succeeds amounts at least $(\delta + \frac{\varepsilon}{6k})$. Therefore, we have

$$\Pr_{\pi,\rho}\left[Success^{P^{(1)},\widetilde{D}}(\pi,\rho)=1\right] \geq (\delta + \frac{\varepsilon}{6k}).$$

Algorithm: $\widetilde{Gen}^{P^{(1)},P^{(g)},g,C}(n,\varepsilon,\delta,k,h,v)$

Oracle: Problem posers $P^{(1)}$, $P^{(g)}$, a function $g: \{0,1\}^k \to \{0,1\}$,

a solver circuit C for $P^{(g)}$.

Input: Parameters n, ε , δ , k, h, v.

 $hash := FindHash((h + v)\varepsilon, n, h, v)$

Let $\widetilde{C} = (C_1, \widetilde{C}_2)$ be as in Lemma 1.5 with oracle access to C, hash.

$$D := Gen^{P^{(1)}, P^{(g)}, \widetilde{C}, hash, g}(\varepsilon, \delta, n, k)$$

return $\widetilde{D} := (D_1, \widetilde{D}_2)$

Finally, we conclude that the Theorem 1.3 holds with the algorithm \widetilde{Gen} used to generate the solver circuit \widetilde{D} ,