PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-120014

(43) Date of publication of application: 06.05,1997

(51)Int.CI.

G02B 6/24

GO2B 6/40

(21)Application number: 08-193234

(71)Applicant: NGK INSULATORS LTD

(22)Date of filing: 23.07.1996 (72)Inventor: OTA TAKASHI

FUKUYAMA CHIYOUJI KURIMOTO HIRONORI

(30)Priority

Priority number: 07215777

Priority date : 24.08.1995

Priority country: JP

(54) OPTICAL FIBER ARRAY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an optical fiber array having high reliability by uniformly curing an

SOLUTION: Either one of the V-groove substrate 4 and fiber fixing substrate 5 of the optical fiber array 1 consisting of the V-groove substrate 4 having Vgrooves 3 for placing optical fibers 2, and the fiber fixing substrate 5 for fixing the optical fibers 2 placed in the V-grooves 3 is composed of a recessed member having the flanks larger in the thickness direction than the surfaces 6 in contact with the optical fibers 2. The optical fiber array is constituted so that the inner base of the recessed part of this recessed member and the front surface of another substrate come into contact directly with each other or via the optical fibers 2 and that the inner flanks of the recessed member and the flanks of another substrate have a taper shape spreading gradually toward the open end of the recessed member.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

rest available C

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-120014

(43)公開日 平成9年(1997)5月6日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ		技術表示箇所
G 0 2 B	6/24			G 0 2 B	6/24	
	6/40				6/40	

審査請求 未請求 請求項の数7 OL (全 7 頁)

(21)出願番号	特願平 8-193234	(71)出顧人	000004064	
			日本碍子株式会社	
(22)出顧日	平成8年(1996)7月23日		愛知県名古屋市瑞穂区須田町2番56号	
		(72)発明者	太田 隆	
(31)優先権主張番号	特願平7-215777		愛知県名古屋市瑞穂区須田町2番56号	日
(32)優先日	平7 (1995) 8 月24日		本碍子株式会社内	
(33)優先権主張国	日本(JP)	(72)発明者	福山 暢青	
			爱知県名古屋市瑞穂区須田町2番56号	日
			本碍子株式会社内	
		(72)発明者	栗本 宏訓	
			愛知県名古屋市瑞穂区須田町2番56号	Ħ
			本碍子株式会社内	
		(74)代理人	弁理士 杉村 暁秀 (外9名)	

(54)【発明の名称】 光ファイパアレイ

(57)【要約】

【課題】従来構造の光ファイバアレイに比べて信頼性の 高い光ファイバアレイを提供する。

【解決手段】光ファイバ2を載置するためのV溝3を有するV溝基板4と、V溝3に載置した光ファイバ2を固定するためのファイバ固定基板5とからなる光ファイバアレイ1において、V溝基板4およびファイバ固定基板5のいずれか一方が、その側面が光ファイバ2と接する面6より厚み方向に大きい凹部材からなり、この凹部材の凹部の内側底面ともう一方の基板の上面が直接または光ファイバ2を介して当接するとともに、凹部材の内側側面およびもう一方の基板の側面が凹部材の開放端に向かって徐々に広がるテーパ形状を有するよう構成する。

【特許請求の範囲】

【請求項1】光ファイバを載置するためのV溝を有する V溝基板と、V溝に載置した光ファイバを固定するため のファイバ固定基板とからなる光ファイバアレイにおい て、前記V溝基板およびファイバ固定基板のいずれか一 方が、その側面が光ファイバと接する面より厚み方向に 大きい凹部材からなり、この凹部材の凹部の内側底面と もう一方の基板の上面が直接または光ファイバを介して 当接するとともに、前記凹部材の内側側面およびもう一 方の基板の側面が凹部材の開放端に向かって徐々に広が るテーパ形状を有することを特徴とする光ファイバアレ イ。

【請求項2】前記V溝基板およびファイバ固定基板が、 セラミックスまたはガラスからなる請求項1記載の光ファイバアレイ。

【請求項3】前記 V 溝基板およびファイバ固定基板が、 粉末プレスまたはガラス溶融成形で作られた物である請 求項2記載の光ファイバアレイ。

【請求項4】前記一方の凹部材からなる V 溝基板または ファイバ固定基板の凹部内面の角部に逃がし溝を設ける 請求項1記載の光ファイバアレイ。

【請求項5】前記もう一方のV溝基板またはファイバ固 定基板のファイバ当接面の角部に面取り部を設ける請求 項1記載の光ファイバアレイ。

【請求項6】前記もう一方のV溝基板またはファイバ固定基板のテーパ形状のテーパ角度が、1.4°以上である請求項1~5のいずれか1項に記載の光ファイバアレイ。

【請求項7】前記一方の凹部材からなるV溝基板またはファイバ固定基板のテーパ形状のテーパ角度が、1.4°以上である請求項6項に記載の光ファイバアレイ。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光ファイバを載置するためのV溝を有するV溝基板と、V溝に載置した光ファイバを固定するためのファイバ固定基板とからなる光ファイバアレイに関するものである。

[0002]

【従来の技術】従来から、信頼性の高い光コネクタを構成する部材として、光ファイバを載置するためのV溝を有するV溝基板と、V溝に載置した光ファイバを固定するためのファイバ固定基板とからなる光ファイバアレイは種々のものが知られている。

【0003】図8は従来から知られている光ファイバアレイの一例の構成を示す図である。図8において、光ファイバアレイ21は、光ファイバ22を載置するための V溝23を有するV溝基板24と、V溝23に載置した 光ファイバ22を固定するためのファイバ固定基板25 とから構成されている。V溝基板24とファイバ固定基 板25とは、ファイバ当接面26において接着剤等を使 用して接続されている。

【0004】V溝23は光ファイバアレイ21の長手方向Aの一定距離のみに設けられており、このV溝23の端部から光ファイバアレイ21の端部までには、V溝基板24およびファイバ固定基板25内に図示しない凹部を設けている。そのため、所定本数例えば図8では4本の光ファイバ22を被覆層で固定して一体化したテープファイバ27において、その先端の被覆層を除去した光ファイバ22をV溝23に固定するとともに、テープファイバ27を上述した凹部に固定することができる。

【0005】上述した従来の光ファイバアレイ21では、V溝基板24とファイバ固定基板25とを、直線状のファイバ当接面26で接合している。そのため、この光ファイバアレイ21に対して湿熱試験を実施すると、ファイバ当接面26の露出した側面から水分が浸透し、V溝基板24とファイバ固定基板25との間の剥がれ等の劣化が発生する問題があった。そのため、限定された高信頼性接着剤を使用する必要等製造上の制約が大きかった。

[0006]

【発明が解決しようとする課題】上記問題を解消するために、光ファイバアレイ21の構成を、実開平4-101504号公報で開示されているように、V溝基板24およびファイバ固定基板25のいずれか一方を、その側面が光ファイバ22と接する面より厚み方向に大きい凹部材から構成し、この凹部材の凹部の内側底面ともう一方の基板の上面が直接または光ファイバ22を介して当接させるよう構成することが考えられる。その一例を図9に示す。

【0007】図9に示す例では、V溝基板24とファイバ固定基板25との固定を紫外線硬化型の接着剤を使用して行っている。そのため、以下のような問題が発生していた。

(1) 図9において紫外線(UV光)を上方から照射すると、凹部材からなるV溝基板24の内側の側面とファイバ固定基板25との間の接着剤31には、紫外線がV溝基板24の光ファイバと接する面まで到達せず、未硬化部が発生する(図10(a)参照)。そして、未硬化部の存在が、光ファイバアレイ21の信頼性を悪くする要因となる。

(2) 紫外線は多少の広がりをもって接着剤31に照射されるが、未硬化接着剤の屈折率がV溝基板24の屈折率と差が有るので反射していまい、接着剤31の内部に到達しにくく、均一に硬化しない(図10(b)参照)。そして、硬化の不均一が、光ファイバアレイ21の信頼性を悪くする要因となる。

【0008】(3)接着剤31の収縮によってV溝基板24の凹溝部が歪みV溝23が歪むため、光ファイバが動いてしまい損失が増加するとともに、上記歪み応力は凹溝角部に集中するため、ここから割れる危険性が高い

(図10(c))。

- (4)接着面積が垂直なので小さいため強度が弱い。
- (5)組立時にファイバ固定基板25をV溝基板24に 入れ難い。

【0009】本発明の目的は上述した課題を解消して、 従来構造の光ファイバアレイに比べて信頼性の高い光ファイバアレイを提供しようとするものである。

[0010]

【課題を解決するための手段】本発明の光ファイバアレイは、光ファイバを載置するためのV溝を有するV溝基板と、V溝に載置した光ファイバを固定するためのファイバ固定基板とからなる光ファイバアレイにおいて、前記V溝基板およびファイバ固定基板のいずれか一方が、その側面が光ファイバと接する面より厚み方向に大きい凹部材からなり、この凹部材の凹部の内側底面ともう一方の基板の上面が直接または光ファイバを介して当接するとともに、前記凹部材の内側側面およびもう一方の基板の側面が凹部材の開放端に向かって徐々に広がるテーパ形状を有することを特徴とするものである。

【〇〇11】上述した構成の光ファイバアレイでは、V 溝基板またはファイバ固定基板の一方を凹部材より構成 し、他方のファイバ固定基板またはV溝基板を凹部材よ り構成したV溝基板またはファイバ固定基板の凹部に固 定することで、光ファイバをV溝に固定して光ファイバ アレイを構成している。そのため、V溝基板とファイバ 固定基板との接合面が凹部材の凹部の内面に沿ったが なり、光ファイバを載置したV溝の存在するファイバ 接面と光ファイバアレイの上記接合面の端部が露出する 位置とは直線状にならず凹形状となる。その結果、V溝 基板とファイバ固定基板との接合面を通じての水分の浸 透が進行せず、水分はファイバ当接面まで浸入しない。 そのため、水分によるファイバ当接面の劣化は発生しに くくなり、信頼性の高い光ファイバアレイを得ることが できる。

【0012】また、上述した構成の光ファイバアレイで は、V溝基板およびファイバ固定基板のうち凹部材とな る部材の内側側面およびもう一方の基板の側面を、凹部 材の開放端に向かって徐々に広がるテーパ形状としてい る。そのため、テーパ形状の部分に紫外線硬化型の接着 剤を設けてV溝基板とファイバ固定基板とを固定する 際、紫外線をこのテーパ形状の部分に存在する接着剤に 均一照射できるため、従来問題となっていた、接着剤の 未硬化部分の排除、V溝および凹部角部の歪み防止、強 度の向上および組立性の向上を達成することができる。 【0013】なお、V溝基板および光ファイバ固定基板 とがセラミックスまたはガラスからなる場合、特に、セ ラミックスを使用する際は粉末プレスにより作られた物 である場合、およびガラスを使用する際はガラス溶融成 形により作られた物である場合は、複雑形状のV溝基板 およびファイバ固定基板を比較的容易にかつ高精度に得 ることができるため好ましい。

【0014】また、研削加工でV溝基板またはファイバ 固定基板のうち凹部材からなる物を加工した場合、研削 用砥石の摩耗等で凹部材の凹部内面の角部がR形状となり、V溝基板とファイバ固定基板とを接合した際、接合面に隙間が発生しし、光ファイバを固定できないことが ある。このような場合、前記凹部内面の角部に逃がし溝を設けるか、または凹部材にはめ込まれるV溝基板またはファイバ固定基板のファイバ当接面の角部に面取り部を設けると、上記問題を解消できるため好ましい。

【0015】さらに、凹部材の凹部を塞ぐもう一方の基板側面のテーパ形状のテーパ角度、すなわち V 溝基板の V 溝形成面に垂直な面に対する上記テーパ面のなす角度を、1.4°以上とすると、さらにまた凹部材のテーパ形状のテーパ角度を1.4°以上とすると、真上からの紫外線照射でも、凹部材の凹部を塞ぐもう一方の基板を透過した光がこの基板のテーパ面で全反射せず透過して接着剤に到達するため好ましい。

[0016]

【発明の実施の形態】図1は本発明の光ファイバアレイの一例の構成を示す図である。図1において、光ファイバアレイ1は、光ファイバ2を載置するためのV溝3を有するV溝基板4と、V溝3に載置した光ファイバ2を固定するためのファイバ固定基板5とから構成されている。本実施例において重要な点は、V溝基板4のV溝3を設けた中央部分に対して両側面に、光ファイバ2と接するファイバ当接面6の存在する部分より厚み方向に厚い突出部4-1、4-2を一体に設け、V溝基板4を凹部材から構成した点と、凹部材からなるV溝基板4の内側側面8-1、8-2およびファイバ固定基板5の側面9-1、9-2を、凹部材の開放端に向かって徐々に広がるテーパ形状とした点である。そして、V溝基板4の凹部にファイバ固定基板5をはめ込んで接合し、光ファイバ2をV溝3内に固定している。

【0017】本例でも、従来例と同様に、V溝3は光ファイバアレイ1の長手方向Aの一定距離のみに設けられており、このV溝3の端部から光ファイバアレイ1の端部までには、V溝基板4およびファイバ固定基板5内に図示しない凹部を設けている。そのため、所定本数例えば図1に示す例では4本の光ファイバ2を被覆層で固定して一体化したテープファイバ7において、その先端の被覆層を除去した光ファイバ2をV溝3に固定するとともに、テープファイバ7を上述した凹部に固定することができる。

【0018】上述した構成の本発明の光ファイバアレイ 1では、ファイバ当接面6が直接外側に剥き出しになら ない構造、すなわちV溝基板4とファイバ固定基板5と の接合面が、ファイバ当接面6と、このファイバ当接面 6から突出する突出部4-1および4-2とファイバ固 定基板5との接合面6-1および6-2とからなる凹形 状をとっているため、水分等は上の面すなわち接合面6 -1、6-2の露出する端部から浸入し劣化が進むが、 ファイバ当接面6まで水分は浸入しにくく、劣化は進行 しにくくなる。

【0019】また、接合面6-1および6-2を構成するV溝基板4の内側側面8-1、8-2およびファイバ固定基板5の側面9-1、9-2を、V溝基板4の開放端に向かって徐々に広がるテーパ形状、好ましくはそのテーパ角度が1.4°以上のテーパ形状としているため、接合面6-1、6-2に設けられた紫外線硬化型接着剤に対して真上から紫外線を照射しても、凹部材の凹部を塞ぐファイバ固定基板5を透過した光がファイバ固定基板5のテーパ面となる側面9-1、9-2で全反射せず透過して接着剤に到達する。

【0020】図2および図3はそれぞれ本発明の光ファイバアレイ1を組み立てる際の状態を示す図である。図2に示す例では図1に示す例のようにV溝基板4を凹部材とした例を、また図3に示す例ではファイバ固定基板5に突出部5-1、5-2を設け凹部材とした例を、それぞれ示している。図2および図3において、図1と同一の部材には同一の符号を付し、その説明を省略する。図2および図3においては、図1では図示できなかった、被覆層を有するテープファイバ7を挿入するための凹部11および12を、それぞれV溝基板4およびファイバ固定基板5に形成している。なお、図3に示す例では、8-1、8-2がV溝基板4の側面を形成し、9-1、9-2がファイバ固定基板5の内側側面を形成している。

【0021】いずれの例においても、ファイバアレイ1の組立は、凹部材からなる基板の凹部の底面上に光ファイバ2を載せ、もう一方の基板を、いずれかの基板に設けたV溝に光ファイバ2が入るように位置させ、荷重を加え確実に両基板を固定する。その後、接着用の紫外線硬化型の樹脂をV溝3およびファイバ当接面6、接合面6-1、6-2に流し込み、紫外線を照射させることで接着固定する。この際、ファイバ固定基板5に樹脂流し込み用の穴を設けておくと良い。

【0022】また、図4に示すように、凹部材からなる基板上に光ファイバ2を載せるため、凹部の底面の幅方向の寸法Bを、使用する光ファイバ2からなるテープファイバ7の幅に合わせることが好ましく、さらに凹部11または12の厚さ方向の寸法を、光ファイバ2の中心の位置からテープファイバ7の外形が一致する深さに設定することが好ましい。この場合、V溝3の位置もテープファイバ7内の光ファイバ2の位置に合わせ、適切な位置に設けることが好ましい。例えば、市販のテープファイバ7を用いる場合、テープファイバ7の側面から第1の光ファイバ2までの距離が約0.1mmなので、V清3も凹部内側側面から0.1mmの距離に設けることが好ましい。

【0023】凹部材からなる基板の凹部の幅は、その凹部にもう一方の基板が入るため、入り込む基板の幅より大きい必要がある。その際、凹部材の凹部とそこに入り込む基板とのクリアランスは、そのクリアランスがそのまま接着剤の接着層となるため、極力小さい方が好ましい。しかし、クリアランスが0.1mm以下程度であれば、問題無いレベルといえる。加工精度等を考えると、クリアランスの最適な設定値は20μm程度である。

【0024】本発明の光ファイバアレイ1において、凹部材を研削加工で形成した場合は、凹部材の凹部の角が R形状になるため、もう一方の基板をはめ込んでも両基板を密着できず、基板が光ファイバ2と接しない可能性がある。その場合は、図5に示すように、凹部材の凹部の角部に逃がし溝15を設けるか、またははめ込まれる基板のファイバ当接面6の両側面に面取り部ここではC取り部16を設けることが好ましい。

【0025】以上のようにして光ファイバ2を光ファイ バアレイ1に組み込んだ後、光ファイバアレイ1の端面 を所望の角度例えば直角に研磨する必要がある。そのた め、図1 (図2) に示す例の場合、凹部材であるV溝基 板4のいずれか一方の側面はV溝の延在する方向と平行 になっており、V溝の延在する方向を基準に研磨すると 所望の角度を得やすい。また、図3に示す例の場合、V 溝基板4の側面は光ファイバアレイ1の外側に出ないた め、まず凹部材であるファイバ固定基板5のテーパ形状 の凹部内側側面と外側側面とのV溝の延在する方向にお ける平行を確保し、かつV溝基板4のテーパ形状の側面 とV溝3とのV溝の延在する方向における平行も確保し ておく。そして、ファイバ固定基板5のテーパ形状の凹 部内側側面とV溝基板4のテーパ形状の側面とを当接さ せることで、ファイバ固定基板5の側面とV溝3との平 行を確保する。これにより、ファイバ固定基板5の側面 を基準に研磨すれば所望の角度を得ることができる。上 述した例において、各平行度は0.01°以下であるこ とが好ましい。

【0026】図8に示す構造の従来の光ファイバアレイでは、側面にV溝基板とファイバ固定基板との接合面が存在するため、組立に使用した接着剤が側面にはみ出てくる。そのため、研磨時の基準面が確保出来ず、組立後にこれを除去する作業が必要であった。本発明では側面に接合面が存在しないため、側面をそのまま基準面とすることができ、この問題を解決することができる。

【0027】本発明においては、凹部材を形成するV溝基板4またはファイバ固定基板5の凹部内側側面と、もう一方のファイバ固定基板5またはV溝基板4の側面とを、凹部材の開放端に向かって徐々に広がるテーパ形状としている。そして、このテーパ形状の側面と側面との間、および凹部材の底面ともう一方の部材の底面との間のV溝3以外の部分に、紫外線(以下、UVとも記載する)硬化型接着剤を配し、その後紫外線を上方から照射

して接着剤を硬化させ、V溝基板4とファイバ固定基板5とを固定している。このとき、通常上方からのUV光はV溝基板4またはファイバ固定基板5を透過するため、凹部材の底面ともう一方の基板の底面との間のV溝3以外の部分では、接着剤の硬化が良好に行われる。しかし、テーパ形状の凹部材側面ともう一方の部材の側面との間の接着剤に対して上方からUV光を照射すると、UV光の入射角度とテーパ角度との関係によっては、未硬化の接着剤層が存在することがある。

【0028】以下、このテーパ形状のテーパ角度、すなわちテーパ形状の側面とV溝3が存在する面と垂直な面とのなす角度について、図6を使用して説明する。なお、図6の例において、θ1はUV光の入射角度を、θ2はテーパ形状のテーパ角度を、n1は基板の屈折率を、n2は接着剤の硬化前の屈折率を、それぞれ示して

いる。まず、図6(a)において、高いUV透過を得るために必要なテーパ角度 θ 2は、UV光の入射角度 θ 1と基板材質に依存する基板の屈折率n1と接着剤の硬化前の屈折率n2とで決定される。UV光の入射角度 θ 1はUV照射の条件に依存するが、図6(b)に示すようにテーパ形状の開口幅が4.5mm程度必要なので、その幅に当たるUV光の入射角度 θ 1は、図6(c)に示すように凹部材の凹部を塞ぐ基板の材質がパイレックス(商品名)の場合は θ 1=8.1°となる。次に、凹部材の凹部を塞ぐ基板と接着剤の屈折率とから透過に必要なすなわち全反射しないために必要な角度 θ 3をスネルの法則を利用して求めると、以下の表1の結果となる。

[0029]

【表1】

石英(UY 入射角7.7°)			BK-7(UV入射角 7.9°)			バルックス (UV入射角8.1°)			
n 1	n 2	θЗ	п 1	n 2	θЗ	n 1	n 2	θ 3	
1.55	1. 43	22. 7°	1.51	1. 43	18. 5°	1. 47	1. 43	13. 4°	
1. 55	1. 45	20. T°	1.51	1. 45	16. 2°	1. 47	1.45	9. 5°	
1. 55	1. 47	18.5°	1.51	1. 47	13. 2°	1.47	1. 47	0°	

【0030】UV光が凹部材の凹部を塞ぐ基板の側面を透過するのに必要な条件は、 θ 3< θ 1+ θ 2なので、上記表3の全ての条件を満たすには、 θ 3の最大値である石英の場合の22.7°を考えることで、22.7<7.7+ θ 2となり、 θ 2>15.0°となる。ただし、一般的に基板材料としてはパイレックスが広く使用されており、この場合を考えるとテーパ角度 θ 2は最低で1.4°(9.5-8.1)あれば、屈折率1.45以下の接着剤と組み合わせることで、UV光が全反射すること無く接着剤に到達する。これより、テーパ角度の好ましい範囲は1.4°以上となる。

【0031】次に、製法について説明する。本発明にお いて、V溝基板4およびファイバ固定基板5の製法につ いては、特に限定するものでなく、従来から知られてい る製法のいずれも利用することができる。しかし、例え ば図1および図2に示す例を研磨加工で製作する場合、 通常幅数mmのダイヤモンド砥石を使用するため、例え ば凹部材の凹部の深さが2mmでV溝角度が70°であ ると、砥石側面が凹部内側側面に当たらないようにする には、図7に示すように、凹部側面のV溝が存在する面 との接点から1.4mmの距離が必要となる。この場 合、上述した凹部内側側面から0.1mmにV溝を位置 させることが不可能となる。もちろん、砥石幅が0.2 mm以下の砥石であれば可能であるが、この程度薄い砥 石であると砥石の剛性が低く、V溝加工精度に悪影響を 及ぼす危険性がある。また、図3に示す例の場合、凹部 材の凹部の上段面がファイバ固定面となるため、面の粗 さが細かいことが必要である。これを研削加工で得よう

とするとかなり細かい砥石で時間を掛けて加工するか、 加工後に研磨が必要となる。

【0032】この製法上の問題は、材料がセラミックスの場合は粉末プレス法、また材料がガラスの場合はガラス溶融成形法等の転写技術を用いて、V溝基板およびファイバ固定基板を作製することで解決することができる。このうち、ガラス溶融成形法は、例えば本出願人による特開平4-296802号公報に示された技術を利用することができる。また、粉末プレス法は、以下の通り行うことができる。

【0033】まず、原料として純度99.8%のアルミナ粉末を使用し、これにバインダーとしてポリビニルアルコール(PVA)を3%とポリエチレングリコール(PEG)を1%とを添加して、スプレードライヤーで造粒して成形用原料を得る。次に得られた成形用原料を所定の金型に充填し、2000kg/cm²の圧力でプレス成形し、その後酸化雰囲気中で1600℃で焼成して、V溝基板4およびファイバ固定基板5を得ることができる。

[0034]

【発明の効果】以上の説明から明かなように、本発明によれば、V溝基板またはファイバ固定基板の一方を凹部材より構成し、他方のファイバ固定基板またはV溝基板を凹部材より構成したV溝基板またはファイバ固定基板の凹部に固定しているため、水分はファイバ当接面まで浸入しない。また、凹部材となるV溝基板またはファイバ固定基板の凹部内側側面と他方のファイバ固定基板またはV溝基板の側面とをテーパ形状としているため、テ

ーパ形状の部分に紫外線硬化型の接着剤を設けてV溝基 板とファイバ固定基板とを固定する際、従来問題となっ ていた、接着剤の未硬化部分の排除、V溝および凹部角 部の歪み防止、強度の向上および組立性の向上を達成す ることができる。そのため、本発明によれば、信頼性の 高い光ファイバアレイを得ることができる。

【図面の簡単な説明】

【図1】本発明の光ファイバアレイの一例の構成を示す 図である。

【図2】本発明の光ファイバアレイを組み立てる際の状 態を示す図である。

【図3】本発明の光ファイバアレイを組み立てる際の状 態を示す図である。

【図4】本発明の光ファイバアレイにおける凹部材の好 ましい形状を説明するための図である。

【図5】本発明の光ファイバアレイの好適例における逃 がし溝および面取り部を説明するための図である。

【図6】本発明の光ファイバアレイにおける好適なテー パ角度を説明するための図である。

【図7】本発明の光ファイバアレイを製造する一例を示 す図である。

【図8】従来の光ファイバアレイの一例の構成を示す図 である。

【図9】 従来の光ファイバアレイの他の例の構成を示す 図である。

【図10】従来の光ファイバアレイにおける問題を説明 するための図である。

【符号の説明】

1 光ファイバアレイ、2 光ファイバ、3 V溝、4 V溝基板、5 ファイバ固定基板、6 ファイバ当接 面、7 テープファイバ、4-1、4-2、5-1、5 -2 突出部、6-1、6-2 接合面、8-1、8-2、9-1、9-2 側面

【図10】

