مطالعه همگامی در شبکههای عصبی مهاری

محسن مهراني - استاد راهنما: دكتر سامان مقيمي عراقي

فهرست مطالب

2																																	ت	فسد	, نح	خن	w	١
2	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•		•	•	. 4	قدم	مأ	١.	١	
/																														عا	انه	ساما	س ر	ازي	برس	صوي	ته	۲
1 3																					c	اده	سد	ی	که;	ب	ے ش	لەي	ادا				•	ای	• • •	لاش	تا	٣
۲١																			(بان	ير د	بحر	بح	ے ت	Sa	ىاد	ساه	، (ر	نو	ی از	ازي	ب	۲	٠.	٣			

۴ فهرست مطالب

فصل ١

سخن نخست

مطالعه فعالیت شبکههای عصبی برای تحقیق و بررسی کارکردهای مغز اهمیت زیادی دارد. همه بر این باوریم که مغز محمل اندیشه و تفکر است. ما کنجکاو هستیم که چگونه همکاری بین نورونهای آن باعث می شود تا حافظه، کشف و پردازش صورت گیرد. هر کدام از نورونهای مغز می تواند در حالت فعال [روشن] یا غیرفعال [خاموش] قرار گیرد. هم اکنون شواهدی وجود دارد که کارکردهایی طلایی یاد شده مغز در زمانهایی رخ می دهند که الگوی خاموش و روشن شدن نورونهای آن باهم «هم گامی» دارند. هم گامی به این معناست که جمعیت بزرگی از نورونها هم باهم خاموش و روشن می شوند و یک الگوی تکرار شوندهای را دنبال می کنند. تو گویی که باهم هم آهنگ یا هم گام شده اند.

بی تردید دستیابی به تمام جزییات مغز برای ما میسّر نیست و به آن به عنوان یک «جعبهی سیاه» نگاه می کنیم که مدتهاست به دنبال ارائه مدلی هستیم که رابطهی بین ورودیها و خروجیهای ثبت شده را بازتولید کند. کاری که در این پژوهش انجام خواهیم داد تلاشی است برای پیشنهاد دادن یک مدل برای این جعبهی سیاه که رفتار نسبتا مشابهی را میان ورودی و خروجیهای این جعبه سیاه و یا مغز ایجاد می کند.

۱.۱ مقدمه

مدلهای زیادی برای شبکههای عصبی ارائه شده است که توانایی تولید رفتار همگام شدن نورونها را در آنها میتوانیم جستجو کنیم. یکی از این مدلها که در تمام فصول شبیهسازی از آغاز تا کنون از آن بهره برده شده است؛ مدل انباشت و شلیک است[۱]. در این جستار ابتدا با مدل انباشت و شلیک شروع می کنیم و سپس مدلی توسعه یافته که آن را «چرخنده» صدا خواهیم کرد؛ می پردازیم.

متن اصلی این جستار شامل معرفی این مدلها و پویایی آنها در زمان و نتایج ضبط شده از نشانگرهایی است که برای آشکارسازی همگامی تعبیه شدهاند.

فصل ۲

تصويرسازى سامانهها

از آنچه که اشکال صفحهی قبل در مورد سامانه روایت میکنند؛ میتوان تنها «حدس» زد که در پس پرده [جعبه سیاه] چه میگذرد. به همین دلیل برآن شدم تا روشی برای به تصویر کشیدن سامانه ابداع کنم تا از لحظه لحظه ی سامانه با خبر شوم. شکل ۱.۲

شکل (۱.۲) تصویر فضای فاز سامانه نورونی انباشت وشلیک

پویایی شکل ۱.۲ به ما نشان خواهد داد که چگونه سامانه در زمان متحول می شود. هر نقطه در این صفحه نمایانگر حالت یک نورون است. محور افقی نشان دهنده ی جریان ثابت خارجی است که به هر نورون در ابتدا متصل کردهایم و محور عمودی نشان دهنده ی پتانسیل نورون است.

طبق توصیفی که از پویایی سامانهی خود داریم؛ توقع داریم که نورونهایی که از آستانه عبور کردند؛ مجددا از محور صفر پیدا شوند.

فرصتی برای مدلهای دیگر نورونی

در بخش قبل به بررسی ویژگیهای مدل انباشت_شلیک پراختیم. اگر چه این مدل بسیار ساده توانست رفتارهای آشنایی را برای ما بازتولید کند اما شامل محدودیتهایی است. این محدودیتها باعث می شود تا ما به سراغ مدلهای نورونی دیگری مانند نورونهای چرخنده برویم.

این مدل نسبت به مدل قبلی شامل ویژگیهای مثبتی است. یکی از ویژگیهای خوب آن این است که پس از بازنشانی فاز نورون تیزه زده، فاز آن به زاویهای برده می شود که دارای خواص مثلثاتی مشابهی است. به این معنا که دیگر شاهد گسستگی در اندازه ی جملاتی که تحول نورون را توصیف می کنند؛ نیستیم.

فصل ۳

تلاش برای توصیف

از آنجا که شبیهسازی این سامانه شامل تعریف فرآیندهای متفاوتی بود؛ بدیهی است که نوشتن معادلهی تحلیلی برای توصیف کامل آن آسان نباشد. اما در این بخش تلاش میکنیم که با کنار هم قرار دادن معادلات اصلی چارچوب مسئله ی خود را مشخص کنیم.

هر نورون که از حالت $\pi=\pi$ عبور می کند [تیزه می زند] باعث می شود تا سهمی از جریان با کیفیت $\theta=\pi$ عبور به جریان درونی کل سامانه E(t) اضافه شود.

$$E(t) = \frac{1}{N} \int_{-\infty}^{\infty} \int J_a(\pi, t - d - u) da \cdot \alpha^{\mathsf{T}} u \, e^{-\alpha u} du \tag{1.7}$$

اما جریان برای هر نورون با ورودی a به طریق زیر است:

$$J_a(\theta, t) = n_a(\theta, t) \cdot \dot{\theta}_a \tag{(Y.7)}$$

این رفتار به خوبی نشان می دهد جریان فقط در ناحیه ی $\pi \leq \theta$ وجود دارد. زیرا ورود نورون به ناحیه ی مثبت تر را ممنوع کرده ایم. بی تردید برای فهمیدن چگونگی تغییر جریان در ناحیه های میانی باید از معادله ی پخش استفاده کنیم.

$$\frac{\partial n_a}{\partial t} = -\frac{\partial J_a}{\partial \theta} \tag{\text{r.r}}$$

$$= -\frac{\partial n_a}{\partial \theta} \cdot \dot{\theta}_a \tag{f.7}$$

۱.۰.۳ حل معادلهی شبکهی ساده

اجازه بدهید تا اولین تلاش خود را از سادهترین نوع شبکهها شروع کنیم. شبکهای که به جز جریان داخلی و جریان تصادفی اولیه ورودی دیگری ندارد. پس خواهیم داشت:

$$\begin{cases} E(t) = \frac{1}{N} \int_{\cdot}^{\infty} \int n_a(\pi, t - d - u) \cdot \left[a - gE(t - d - u) \right] da \cdot \alpha^{\mathsf{T}} u \, e^{-\alpha u} du \\ \frac{\partial n_a}{\partial t} = -\frac{\partial n_a}{\partial \theta} \cdot (a - gE(t)) \end{cases} \tag{2.7}$$

چند پیشنهاد می شود برای ادامه ی راه حل داشت. (درون یک جعبه قرار گیرد با این عنوان که پیشنهادات من چه بود و استاد چه گفت.)

۱. از آنجا که میدان به گونهای متناوب عمل می کند؛ یک پیشنهاد خوب می تواند آن باشد که بسط فوریهی آن را بنویسیم.

$$E(t) = \sum c_i \cdot \cos(\omega_i t) \tag{9.7}$$

که اگر ثابت کنیم c_1 از بقیه ضرایب بزرگتر است؛ مسالهی ما حل می شود.

- ۲. دشواری مساله از در هم تنیدگی معادلات برآمده است. اگر به تقریب در معادلهی پخش میدان را یک نوفه درنظر بگیریم و پاسخ را در معادلهی اول قرار دهیم.
 - ۳. انتگرال اول را به صورت بازگشتی در خودش جاگذاری کنیم.
- ۴. مسئله را در حالت آماری بررسی کنیم و حالت پایستار آن را پیدا کنیم و بپرسیم در چه حالتی است که حالت پایستار داریم.

روش بازگشتی

نکتهای که برای ما حل معادلات را دشوار می کند تبعیت E از خودش است. بگذارید به شیوهای که خود معادله درخواست دارد عمل کنیم. یعنی E را مجددا در سمت راست معادله جاگذاری کنیم. برای راحت تر شدن محاسبات ابتدا دو متغیر کمکی زیر را تعریف می کنیم:

$$\mathcal{J}(\pi, t - d - u) \equiv \int n_a(\pi, t - d - u)a \cdot da \tag{V.T}$$

$$\mathcal{N}(\pi, t - d - u) \equiv \int n_a(\pi, t - d - u) \cdot da \tag{A.7}$$

$$\mathcal{P}(u) \equiv \alpha^{\mathsf{T}} u \, e^{-\alpha u} \tag{9.7}$$

عبارت (π, π, π) به معنای جمع جریان تصادفی نورونهایی است که در زمان π در آستانه قرار دارند. همچنین عبارت $\mathcal{N}(\pi, \pi, \pi)$ به معنای تعداد همین نورونهاست.

حال با نمادهای بالا شروع به بازنویسی جملات پیشین می کنیم:

$$E(t) = \frac{1}{N} \int_{\cdot}^{\infty} \mathcal{J}(\pi, t - d - u_1) \cdot \mathcal{P}(u_1) du_1 - \frac{g}{N} \int_{\cdot}^{\infty} \mathcal{N}(\pi, t - d - u_1) \cdot \mathcal{P}(u_1) E(t - d - u_1) du_1$$
(1.7)

حال جملهی اول را نیز با عبارت دیگری خلاصه سازی می کنیم:

$$\mathcal{A}(t) \equiv \frac{1}{N} \int_{1}^{\infty} \mathcal{J}(\pi, t - d - u_1) \cdot \mathcal{P}(u_1) du_1 \tag{11.7}$$

در خصوص جمله ی دوم نیز مشابها عبارت مربوط به E را در آن جاگذاری می کنیم.

$$E(t - d - u_1) = \frac{1}{N} \int_{.}^{\infty} \mathcal{J}(\pi, t - Yd - u_1 - u_2) \cdot \mathcal{P}(u_1) du_1$$

$$- \frac{g}{N} \int_{.}^{\infty} \mathcal{N}(\pi, t - Yd - u_1 - u_2) \cdot \mathcal{P}(u_1) E(t - Yd - u_1 - u_2) du_2$$

$$(1Y.Y)$$

این عبارت جمع تعداد همهی تیزههایی است که تا گام t-d زده شدهاند و درنتیجه جملهای انباشتی است. پس خواهیم داشت:

 $(\Upsilon \cdot .\Upsilon)$

حال اگر عمر این سامانه کراندار باشد؛ تعداد جملات بالا محدود می شوند. پس اگر سامانه پیش از یک زمانی کاملا خاموش بوده باشد E=؛ آنگاه می توان میدان کنونی را بر اساس جملات ضربی بین شدت جریان و تعداد نورون های تیزه زده پیدا کرد.

روش اختلال

به نمودار ؟؟ دقت کنید. در زمانی که تعداد نورونها بینهایت باشد؛ در فاز ناهم گام انحراف معیار میدان صفر خواهد شد. این به این معنی است که جریان در زمان ثابت خواهد ماند. پس بگذارید با علم بر این موضوع یک جواب معادله ی 0.7 را در حالت حدی میدان ثابت E معرفی کنیم.

با فرض ثابت بودن میدان، اندازهی آن را محاسبه می کنیم. سپس مجدد به معادلات برمی گردیم و میپرسیم که در صورت جمع با یک جملهی اختلالی کوچک این انحراف رشد خواهد کرد یا خیر. به عبارت دیگر آیا این جواب جاذب است.

$$\begin{cases} E. = \frac{1}{N} \int_{-\infty}^{t-d} \int n_a(\pi, u) \cdot \left[a - gE. \right] da \cdot \alpha^{\mathsf{T}} u \, e^{-\alpha u} du \\ \frac{\partial n_a}{\partial t} = -\frac{\partial n_a}{\partial \theta} \cdot (a - gE.) \end{cases}$$
(Y1.7)

یک راه خوب برای پیشبرد سطر اول معادلات آن است که از دو طرف آهنگ تغییرشان با زمان را بپرسیم. از آنجا که سمت چپ معادله ثابت است؛ سمت راست هم باید جوابی مشابه را حکایت کند.

$$\boldsymbol{\cdot} = \frac{dE.}{dt} = \frac{\alpha^{\mathsf{Y}}(t-d)e^{-\alpha(t-d)}}{N} \cdot \left[-gE. \cdot \int n_a(\pi,t-d) da + \int n_a(\pi,t-d) \cdot a \, da \right] \ (\mathsf{YY.Y})$$

مشخص است که کدام جمله از جملات ضربی بالا صفر است. پس برای E خواهیم داشت:

$$E. = \frac{1}{g} \cdot \frac{\int n_a(\pi, t - d) \cdot a \, da}{\int n_a(\pi, t - d) da}$$
 (YY.Y)

حال برای ادامه ی فرآیند نیاز داریم تا عبارت حاکم بر $n_a(\pi,t-d)$ را بدست آوریم. جواب پیشنهادی ما برای سطر دوم معادلات از جنس تابع دلتاست:

$$n_a(\theta, t) = \delta(\theta - \theta_a(t)) \tag{YF.T}$$

$$= \delta(\theta + \theta \cdot - (a - gE \cdot)t + \mathbf{Y} \mid K_a^{(t)} \mid \pi) \tag{YQ.Y}$$

$$= \delta(\theta - (a - gE.)t + \mathbf{Y} \left| K_a^{(t)} \right| \pi + \theta.) \tag{Y9.Y}$$

$$\Rightarrow n_a(\pi, t) = \delta((\mathbf{Y} \mid K_a^{(t)} \mid + \mathbf{1})\pi - (a - gE.)t + \theta.) \tag{YV.Y}$$

 $(\Upsilon \Lambda. \Upsilon)$

که در این معادلات $K_a^{(t)}$ کسری است که تعداد دور هر نورون را از آغاز تا کنون روایت می کند و ما مجبور به عقب کشیدن π فاز کامل پس از تیزه زدن آن به تعداد $\left|K_a^{(t)}\right|$ شده ایم. اقابل محاسبه است که عبارت

 $⁽a-gE.)> \cdot$ دقت کنیم که معادلهی ذکر شده برای نورونaایی درست است که

كامل آن به صورت زير است.

$$K_a^{(t)} = \frac{(a - gE.)t + \pi + \theta.}{\Upsilon\pi} \tag{79.7}$$

برای محاسبهی انتگرالهایی که شامل این دلتای دیراک هستند؛ لازم است تا صفرهای آرگومان آن را محاسبه کنیم.

$$\mathbf{Y}\pi \times \left(\left\lfloor \frac{(a-gE.)t + \pi + \theta.}{\mathbf{Y}\pi} \right\rfloor - \frac{(a-gE.)t + \pi + \theta.}{\mathbf{Y}\pi} \right) = \mathbf{Y}\pi$$
 (٣١.٣)

$$\mathbf{Y}\pi \times \left(\left\lfloor K_a^{(t)} \right\rfloor - K_a^{(t)} \right) = \mathbf{\cdot}$$
 (٣٢.٣)

این رابطه کاملا یک تابع تناوبی را توصیف میکند. یک تابع مقطع که در مکانی که آرگومان آن صحیح می شود؛ مقدار صفر به خود می گیرد. پس روشن است که توقع داشته باشیم. تعداد صفرهای این معادله به اندازه ی تعداد تناوبی است که در هر زمان در بازه ی جریانهای داده شده دارد.

$$\Delta K_a^{(t)} = \mathbf{1} \tag{TT.T}$$

$$\Delta K_a^{(t)} = \frac{t}{\mathbf{Y}\pi} \Delta a \tag{TY.T}$$

$$\Delta a = \frac{\mathbf{r}\pi}{t} \tag{\mathbf{r}0.$°}$$

این دوره ی تناوب با افزایش زمان کوچکتر می شود. اگر تعداد نورون ها را به صورتی ترمودینامیکی بزرگ بگیریم؛ آنگاه به ازای هر دوره ی تناوب یک نورون حتما هست که روی محور آستانه قرار گرفته است. حال که دوره ی تناوب Δa را بدست آوردیم؛ می دانیم که ریشه های رابطه ی ۳۲.۳ چه زمانی رخ می دهند. فرض کنیم که اولین صفر در جریانی مثل a_m رخ می دهد. توجه کنید حتما اندازه ی این جریان به گونه ای است که نورون را به صورت فعال نگه دارد. پس باید حتما $(a_m - gE) > 1$ باشد. حال می توانیم انتگرال های مورد نظر خود را این چنین بسط دهیم.

$$\int n_a(\pi, t - d)a \, da = \int \delta \left(\mathbf{Y} \pi \left(\left\lfloor K_a^{(t)} \right\rfloor - K_a^{(t)} \right) \right) a \, da \tag{\mathbf{Y}.}$$

$$= \frac{1}{7\pi} \cdot \sum_{K_a^{(t)} \in Z} a_i \tag{TV.T}$$

$$= \frac{1}{\mathbf{Y}\pi} \cdot \sum_{m=1}^{M} a_m + m \cdot \Delta a \tag{TA.T}$$

$$=\frac{M+1}{\mathbf{Y}\pi}\cdot(\frac{a_m+a_{max}}{\mathbf{Y}})\tag{\mathbf{Y9.Y}}$$

(4.4)

و از طرفي:

$$\int n_a(\pi,t-d)\,da = \int \delta\bigg(\mathrm{Y}\pi\big(\big\lfloor K_a^{(t)} \big\rfloor - K_a^{(t)} \big) \bigg) a\,da \tag{\mathfrak{Y}1.$}$$

$$=\frac{1}{7\pi}\cdot\sum_{K^{(t)}\in Z}1\tag{*7.7}$$

$$=\frac{1}{7\pi}\cdot\sum_{m=1}^{M}1\tag{57.7}$$

$$=\frac{M+1}{7\pi} \tag{*f.7}$$

حال اگر به محاسبهی میدان ثابت خود برگردیم و تکههای پازل را کنار هم بگذاریم؛ خواهیم داشت:

$$E. = \frac{1}{g} \cdot \frac{\int n_a(\pi, t - d) \cdot a \, da}{\int n_a(\pi, t - d) da}$$
 (40.7)

$$= \frac{1}{g} \cdot \frac{\frac{M+1}{7\pi} \cdot \left(\frac{a_m + a_{max}}{7}\right)}{\frac{M+1}{7\pi}}$$
 (49.47)

$$=\frac{1}{q}(\frac{a_m+a_{max}}{Y}) \tag{{\tt fv.T}}$$

این میدان معادل است با جریان میانگین بین نورونهایی که آنها را روشن خطاب کرده بودیم. این نتیجه صحیح نیست زیرا اگر میدان در میانهی این جریانها قرار گیرد؛ آنگاه نورونهای با جریان پاییندست $a < \frac{1}{g}(\frac{a_m + a_{max}}{\gamma})$ را خاموش خواهد کرد و اصلا روشن نخواهند ماند.

روش آماری

در این روش فرض می کنیم که برای هر جریان تصادفی اولیه، نورونهای زیادی را به اختیار گرفته ایم. در حالت پایا ، در یک حالت خاص تغییری در چگالی جمعیت مشاهده نمی شود پس در معادله ی ۵.۳ خواهیم داشت:

$$\frac{\partial n_a}{\partial t} = \cdot \tag{$f \Lambda. \Upsilon$}$$

همچنین در حالت پایا که در واقع از نگاه ما حالت ناهمگام است؛ جریان بین نورونها - که کمیتی بزرگ مقیاس است - در زمان تغییری نمیکند. پس به این ترتیب:

$$\begin{cases} \frac{\partial n_a}{\partial t} = -\frac{\partial J_a(t)}{\partial \theta} = \star \\ J_a(\theta, t) = n_a(\theta, t) \cdot [a - gE] \end{cases} \Rightarrow J_a(\theta, t) = J_a(t) \tag{4.7}$$

$$\Rightarrow n_a(\theta, t) = n_a \qquad (\Delta \cdot . \Upsilon)$$

(۵۱.۳)

پس توزیع جمعیت نورونها مستقل از زمان و حالت آنها خواهد شد. اگر توزیع را در ابتدا یکنواخت میان جریانهای مختلف توزیع کرده باشیم؛ برای همهی زمانها و حالتها داریم:

$$n = \frac{N}{\operatorname{Y}\pi(a_{Max} - a_{min})} \tag{2.7}$$

برای جریان بین نورونها هم خواهیم داشت:

$$E = \frac{1}{N} \int_{-\infty}^{t-d} \int n \cdot \left[a - gE \right] da \cdot \alpha^{\mathsf{T}} u \, e^{-\alpha u} du \tag{3\text{T.T}}$$

$$= \int \frac{n}{N} \cdot \left[a - gE \right] da \tag{24.7}$$

دقت کنیم که انتگرال رابطهی ۵۴.۳ روی نورونهایی است که مستعد تیزه زدن هستند. ^۲

اولین جریانی که نورون را مستعد تیزه زدن می کند a_* نام گذاری می کنیم. وقتی جریان مهاری حاصل از تیزه زدنها کوچک است؛ همه ی نورونها فعال هستند و در نتیجه $a_*=a_{min}$ می شود. اما در حالتی که جریان مهاری زیاد می شود؛ این مقدار از کمترین جریان تصادفی اولیه سامانه بزرگتر می شود. محاسبات را ادامه می دهیم:

$$E = \int \frac{n}{N} \cdot \left[a - gE \right] da \tag{2.7}$$

$$= \frac{n}{N} \cdot \left[\frac{a_{Max}^{\mathsf{Y}} - a_{*}^{\mathsf{Y}}}{\mathsf{Y}} - gE(a_{Max} - a_{*}) \right] \tag{39.7}$$

$$\Rightarrow E = n \cdot \left[\frac{a_{Max}^{\mathsf{Y}} - a_{*}^{\mathsf{Y}}}{\mathsf{Y}}\right] / \left[N + gn(a_{Max} - a_{*})\right] \tag{av.T}$$

شاید بنظر این یک معادله ی درجه یک ساده باشد که میدان را گزارش می کند اما در واقع خود a^* هم به میدان وابسته است و باید وابستگی آن را لحاظ کنیم. به تقریب: gE با اضافه کردن این معادله و حل معمول یک معادله ی درجه ی دو برای میدان صراحتا خواهیم داشت:

$$E = \left(\frac{a_{Max}}{g} + \frac{N}{ng^{\mathsf{T}}}\right) \pm \left[\left(\frac{N}{ng^{\mathsf{T}}} + \frac{a_{Max}}{g}\right)^{\mathsf{T}} - \frac{a_{Max}}{g^{\mathsf{T}}}\right]^{\frac{1}{\mathsf{T}}} \tag{6A.T}$$

نتیجه می دهد که a_* هم باید به صورت زیر باشد:

$$a_* = \left(a_{Max} + \frac{N}{na}\right) \pm \left[\left(\frac{N}{na} + a_{Max}\right)^{\mathsf{Y}} - a_{Max}^{\mathsf{Y}}\right]^{\frac{1}{\mathsf{Y}}} \tag{69.7}$$

$$= \left(a_{Max} + \frac{N}{ng}\right) \pm \left[\frac{N^{\mathsf{Y}}}{n^{\mathsf{Y}}g^{\mathsf{Y}}} + \frac{\mathsf{Y}a_{Max}N}{ng}\right]^{\frac{1}{\mathsf{Y}}} \tag{9..4}$$

 $\overline{(a-gE)} > \cdot$

اجازه بدهید علامت مثبت را کنار بگذاریم زیرا مقدار a_* را خارج بازه ی جریانهای سامانه گزارش می کند. پس هم برای میدان و هم جریان a_* خواهیم داشت:

$$\begin{cases} a_* = \left(a_{Max} + \frac{N}{ng}\right) - \left[\frac{N^{\Upsilon}}{n^{\Upsilon}g^{\Upsilon}} + \frac{\Upsilon a_{Max}}{ng}\right]^{\frac{1}{\Upsilon}} \\ E = \left(\frac{a_{Max}}{g} + \frac{N}{ng^{\Upsilon}}\right) - \left[\frac{N^{\Upsilon}}{n^{\Upsilon}g^{\Upsilon}} + \frac{\Upsilon Na_{Max}}{ng^{\Upsilon}}\right]^{\frac{1}{\Upsilon}} \end{cases}$$
 (\$1.7)

حال اگر نتایج بدست آمده را با دادههای شبیه سازی تطبیق دهیم؛ خواهیم دید که تطابق خوبی با یک دیگر دارند.

در ضریب تاثیرهای بسیار بزرگ داریم:

$$E \cong \frac{a_{Max}}{g} + \frac{N}{ng^{\mathsf{T}}} - \left(\frac{\mathsf{T}Na_{Max}}{ng^{\mathsf{T}}}\right)^{\frac{1}{\mathsf{T}}} \left[\mathsf{T} + \frac{N}{\mathsf{T}nga_{Max}}\right]^{\frac{1}{\mathsf{T}}} \tag{7.5^{T}}$$

$$=\frac{a_{Max}}{q} + \frac{N}{nq^{\mathsf{T}}} - \left(\frac{\mathsf{T}Na_{Max}}{nq^{\mathsf{T}}}\right)^{\frac{1}{\mathsf{T}}} \left[\mathsf{I} + \frac{N}{\mathsf{T}nqa_{Max}}\right] \tag{97.7}$$

$$= \frac{a_{Max}}{g} - \left(\frac{\mathbf{Y}Na_{Max}}{ng^{\mathbf{Y}}}\right)^{\frac{1}{\mathbf{Y}}} + \frac{N}{ng^{\mathbf{Y}}} - \left(\frac{N}{\mathbf{Y}n}\right)^{\frac{\mathbf{Y}}{\mathbf{Y}}} \cdot \frac{\mathbf{Y}}{a_{Max}^{\frac{1}{\mathbf{Y}}}g^{\frac{\delta}{\mathbf{Y}}}} \tag{9^{\mathbf{Y}.\mathbf{Y}}$}$$

حل اختلالي ميدان

همان طور که مشخص است؛ حل دقیق میدان بسیار کار دشواری است اما میتوان از طریق ترفندهای اختلالی به جواب آن نزدیک شد. یکی از روشهای معمول حل زنجیری و تودرتوی دستگاه معادلات است. به این ترتیب که ابتدا از معادله پاسخ حالت پایا (مرتبهی صفرم) را در معادلهی پخش جاگذاری می کنیم تا توزیع آماری وابسته به زمان نورونها بدست آید. سپس مجددا از توزیع بدست آمده؛ میدان مرتبهی اول را که وابسته به زمان است؛ محاسبه می کنیم.

از آنجا که توزیع سامانه رفتاری دورهای به طول 7π دارد؛ می توانیم آن را به صورت زیر بسط دهیم:

$$\rho(\theta,a,t) = \rho. + \sum_{k} A_k(t)e^{ik\theta}, \quad k \in \mathcal{Z} \tag{$\it Fa.T}$$

$$\frac{\partial \rho}{\partial t} = \sum \dot{A}_k e^{ik\theta} \tag{99.7}$$

$$\frac{\partial \rho}{\partial \theta} = \sum A_k \cdot ik \cdot e^{ik\theta} \tag{9V.T}$$

(۶۸.٣)

حال آن را در معادلهی پخش قرار میدهیم تا بتوانیم معادلهی حاکم بر ضرایب را محاسبه کنیم.

$$\sum \dot{A}_k e^{ik\theta} = -\sum A_k \cdot ik(a - gE(t)) \cdot e^{ik\theta} \tag{99.7}$$

$$\Rightarrow \dot{A}_k = -A_k \cdot ik(a - gE(t)) \tag{V...}$$

(آ) نسخهای که کمینهی جریان را از حل محاسبات درنظر می گیرد

(ب) نسخهای که همهی نورونها را فعال تصور میکند.

(ج) نسخه ساخته شده از اتصال دوتای دیگر شکل (۱.۳) تطابق جریان پایای بدست آمده از حل عددی و تحلیلی

در تقریب مرتبهی اول برای توزیع داریم:

$$\dot{A}_k = -A_k \cdot ik(a - gE.) \tag{V1.7}$$

$$\Rightarrow A_k(t) = A_k(\cdot)e^{-ik(a-gE\cdot)t} \tag{VY.Y}$$

$$\Rightarrow \rho(\theta, a, t) = \rho \cdot + \sum_{k} A_{k}(\cdot) e^{ik\theta - ik(a - gE.)t} \tag{VT.T}$$

پس برای نورونهای روی آستانه خواهیم داشت:

$$\rho(\pi, a, t) = \rho. + \sum_{k} A_k(\cdot) e^{ik\pi - ik(a - gE.)t} \tag{Vf.T}$$

حال از نتیجهی بدست آمده استفاده میکنیم و همان طور که اشاره شد به محاسبهی مرتبهی بعدی میدان میرویم:

$$E(t) = \int \int_{-\infty}^{\infty} \rho(\pi, a, t - d - v) \cdot \dot{\theta} \cdot \alpha^{\mathsf{T}} v e^{-\alpha v} dv da \tag{V0.T}$$

$$=E.$$
 (V9.T)

$$+ \int \int_{\cdot}^{\infty} \sum_{k} A_{k}(\cdot) e^{ik\pi - ik(a - gE.)(t - d - v)} \cdot (a - gE.) \alpha^{\mathsf{Y}} v e^{-\alpha v} dv da \tag{VV.\Upsilon}$$

$$=E.+\sum_{k}\int\int_{\cdot}^{\infty}A_{k}(\cdot)e^{ik\pi-ik(a-gE.)(t-d-v)}\cdot(a-gE.)\alpha^{\mathsf{Y}}ve^{-\alpha v}dvda \quad (\mathsf{VA.Y})$$

اجازه بدهید سهم مدهای متفاوت از میدان را به صورت جداگانه محاسبه کنیم و سپس مجددا در کنار یکدیگر قرار دهیم.

$$E_{k,a}(t) = -\alpha^{\mathsf{Y}} A_k(\boldsymbol{\cdot}) (a - gE.) e^{ik\pi} \int_{\boldsymbol{\cdot}}^{\infty} v e^{-[\alpha - ik(a - gE.)]v - ik(a - gE.)(t - d)} dv \qquad (\mathsf{VA.Y})$$

با با تغییر متغیر متغیر $\beta \equiv \alpha - ik(a-gE.)$ با با تغییر متغیر متغیر

$$= \alpha^{\mathsf{T}} A_k(\cdot) (a - gE.) e^{ik\pi} e^{-ik(a - gE.)(t - d)} \cdot \int_{\cdot}^{\infty} v e^{-\beta v} dv \tag{(A.7)}$$

$$=\alpha^{\mathsf{T}}A_k(\bullet)(a-gE.)e^{ik\pi}e^{-ik(a-gE.)(t-d)}\cdot\frac{\mathsf{T}}{\beta^{\mathsf{T}}} \tag{A1.7}$$

$$=A_k(\cdot)(a-gE.)e^{ik[\pi-(a-gE.)(t-d)]}\cdot(\frac{\alpha}{\alpha-ik(a-gE.)})^{\mathsf{T}} \tag{AT.7}$$

حال قدم به قدم به محاسبات پیشین خود برمی گردیم. ابتدا میپرسیم میدان همهی نورونهای با مد یکسان چه جریانی را تولید میکنند.

$$E_k(t) = \int E_{k,a} da$$
 (AT.T)

$$= \int A_k(\cdot)(a - gE.)e^{ik[\pi - (a - gE.)(t - d)]} \left(\frac{\alpha}{\alpha - ik(a - gE.)}\right)^{\mathsf{T}} da \qquad (\Lambda \mathsf{T}.\mathsf{T})$$

. با تغییر متغیر $h\equiv a-gE$ تلاش می کنیم انتگرال را ادامه دهیم

$$E_k(t) = A_k(\cdot)e^{ik\pi} \int_{\cdot}^{a_M - gE_{\cdot}} he^{-ikh(t-d)} \left(\frac{1}{1 - ikh/\alpha}\right)^{\Upsilon} dh \tag{A0.7}$$

نرمافزارهای محاسباتی همچون ابزار ولفرم به ما امکان میدهد تا پاسخ آن را به صورت زیر بیان کنیم:

$$\begin{split} E_k(t) &= -A_k(\:\raisebox{1pt}{\text{\bullet}}\:) \frac{\alpha^{\:\raisebox{3pt}{\text{\bullet}}}}{k^{\:\raisebox{3pt}{\text{\bullet}}}} e^{ik\pi} \Bigg[\frac{e^{-i(\xi_{(h)} + k(t-d)h)}}{\sqrt{1 + h^{\:\raisebox{3pt}{\text{\bullet}}} k^{\:\raisebox{3pt}{\text{\bullet}}} / \alpha^{\:\raisebox{3pt}{\text{\bullet}}}}}{\sqrt{1 + h^{\:\raisebox{3pt}{\text{\bullet}}} k^{\:\raisebox{3pt}{\text{\bullet}}} / \alpha^{\:\raisebox{3pt}{\text{\bullet}}}}} \\ &+ e^{-\alpha(t-d)} (\alpha(t-d) + 1) Ei[(\alpha - ikh)(t-d)] \Bigg] \Bigg|_{\bullet}^{a_M - gE}. \end{split} \tag{A9.7}$$

Ei[z]=به صورتی که $e^{-i\xi_{(h)}}=rac{1+ikh/lpha}{\sqrt{1+h^{\dagger}k^{\dagger}/lpha^{\dagger}}}$ است و Ei همان تابع انتگرال نمایی است که به صورت $e^{-i\xi_{(h)}}=rac{1+ikh/lpha}{\sqrt{1+h^{\dagger}k^{\dagger}/lpha^{\dagger}}}$ به صورتی که $e^{-i\xi_{(h)}}=rac{1+ikh/lpha}{\sqrt{1+h^{\dagger}k^{\dagger}/lpha^{\dagger}}}$ به صورت $e^{-i\xi_{(h)}}=e^{-i\xi_{(h)}=e^{-i\xi_{(h)}=e^{-i\xi_{(h)}}=e^{-i\xi_{(h)}}=e^{-i\xi_{(h)}}=e^{-i\xi_{(h)}}=e^{-i\xi_{(h)}}=e^{-i\xi_{(h)}}=e^{-i\xi_{(h)}}=e^{-i\xi_{(h)}=e^{-i\xi_{(h)}}=e^{-i\xi_{(h)}}=e^{-i\xi_{(h)}=e^{-i\xi_{(h)}}=e^{-i\xi_{(h)}=e^{-i\xi_{(h)}=e^{-i\xi_{(h)}=e^{-i\xi_{(h)}=e^{-i\xi_{(h)}=e^{-i\xi_{(h)}=e^{-i\xi_{(h)}=e^{-i\xi_{(h)}=e^{-i\xi_{(h)}=e^{-i$

$$E_k(t) = -A_k(\cdot) \frac{\alpha^{\mathsf{Y}}}{k^{\mathsf{Y}}} e^{ik\pi} \left[\frac{e^{-i(\xi_{(a_M - gE.)} + k(t - d)(a_M - gE.))}}{\sqrt{1 + (a_M - gE.)^{\mathsf{Y}} k^{\mathsf{Y}}/\alpha^{\mathsf{Y}}}} \right] \tag{AA.Y)}$$

$$+e^{-\alpha(t-d)}(\alpha(t-d)+1)Ei[(\alpha-ik(a_M-gE.))(t-d)] \tag{A9.7}$$

$$-e^{-ik(t-d)(a_M-gE.)} (9.7)$$

$$-e^{-\alpha(t-d)}(\alpha(t-d)+1)Ei[\alpha(t-d)]$$
(41.7)

$$= -A_k(\cdot) \frac{\alpha^{\mathsf{Y}}}{k^{\mathsf{Y}}} e^{ik\pi} \left[e^{-ik(t-d)(a_M - gE.)} \left(\frac{e^{-i(\xi_{(a_M - gE.)})}}{\sqrt{1 + (a_M - gE.)^{\mathsf{Y}}k^{\mathsf{Y}}/\alpha^{\mathsf{Y}}}} + 1 \right) \right]$$
(47.7)

$$+e^{-\alpha(t-d)}(\alpha(t-d)+1)\bigg(Ei[(\alpha-ik(a_M-gE.))(t-d)]-Ei[\alpha(t-d)]\bigg)\bigg]$$

پس یک جمله ی نوسانی دارد و جملهای که شامل تکینگی است. خبر خوب یا بد این است که این راه هم دارای ایراد است. زیرا در محاسبه ی مرتبه ی اول میدان اشتباهی رخداده است - رابطه ی ۷۵.۳. در این رابطه باید ضرب مرتبه ی صفرم چگالی در مرتبه ی اول میدان جا

مانده است. يعنى بايد مىنوشتيم:

$$E(t) = \int \int_{\cdot}^{\infty} (\rho_{\cdot} + \rho_{\cdot})(a - g(E_{\cdot} + E_{\cdot})) \cdot \alpha^{\mathsf{T}} v e^{-\alpha v} dv da \tag{9.4.7}$$

$$= \int \int_{\cdot}^{\infty} [\rho.(a - gE.) + \rho_1(a - gE.)] \cdot \alpha^{\mathsf{T}} v e^{-\alpha v} dv da \tag{40.7}$$

$$+ \int \int_{1}^{\infty} -gE_{1}\rho_{1} \cdot \alpha^{\mathsf{T}} v e^{-\alpha v} dv da \tag{9.7}$$

$$+ \int \int_{-\infty}^{\infty} -gE_{1}\rho \cdot \alpha^{2}ve^{-\alpha v}dvda$$
 (4V.7)

(9.1.7)

در واقع جملهی آخر رابطهی بالا جامانده بود و باعث می شود بخشی از جواب در پشت آن پنهان بماند. البته با در نظر گرفتن آن جمله پیچیدگی اصلی مسئله دوباره به صفحهی بازی برمی گردد.

۲.۰.۳ بازی از نو (سامانهی تکجریان)

بنظر نمی آید که معادلات ما از این طریق حل شوند. بیاید یک طریق دیگر در پیش گیریم.

ديدار

استاد: محسن! بیا مسئله را باز هم ساده تر کنیم. به جای آن که یک پهنای جریان بگیریم؛ فقط و فقط یک جریان را در سامانه قرار دهیم. آنگاه ببینیم باز هم همگامی خواهیم دید؟

پیشنهاد بعدی این که تیزهها را باریک و بدون پهنا درنظر بگیر ($\alpha \to \infty$) امیدوارم در این حالت مسئله حل شود.

محسن: مسئله شاید کمی عوض شود. زیرا جریان مهاری برآمده از نورونهایی با جریان بالا روی پتانسیل نورونهای پایینتر هم تاثیر میگذارد.

استاد: میدانم. اما از همین سامانه تکجریانی باید دربیاید. وقتی یکی را حل کنیم بقیه را میتوانیم از کنار هم قرار دادن این زیرسامانه محاسبه کنیم.

محسن: خيلي هم خوب! 'چشم انجام ميشود.

استاد: فردا مى توانى بيايى و حضورى باهم جلسه داشته باشيم؟

محسن: بله حتما خدمت خواهم رسيد.

(اتاق انجمن علمي، سهشنبه عصر ۳۰ فروردين)

خروجی این مکالمات و چند جلسه پشت سرهم در ادامهی این بخش خواهد آمد.

بیاید مجدد رابطهی ۵.۳ که جریان را در سامانه گزارش میداد برای سامانهی جدید بازنویسی کنیم. با

این تفاوت که α را به بینهایت سوق دادهایم و تیزهها کاملا باریک هستند.

$$E(t) = \frac{n(\pi, t - d)}{N} \cdot \left[a - gE(t - d) \right] \tag{99.7}$$

حالتيايا

برای این سامانه میدان حالت پایا به صورت زیر قابل توصیف است:

$$E. = \frac{n}{N} \cdot \left[a - gE. \right] = \frac{1}{2\pi} \left[a - gE. \right] \tag{1...7}$$

$$\Rightarrow E. = \frac{a}{\mathbf{Y}\pi + g} \tag{1.1.7}$$

اختلال از حالت یایا

حال فرض کنیم که جریان به اندازهای کوچک از حالت پایای خود منحرف شود. $E=E,+\epsilon$ علاقه مندیم که سامانه در زمانهای بعدی چگونه رفتار خواهد کرد. آیا این اختلال به طریقی هضم خواهد شد و یا بزرگتر می شود و هماره سامانه را از حالت پایا دور خواهد کرد؟

$$E(t+d) = \frac{1}{2\pi} [a - gE(t)]$$
 (1.7.7)

$$= \frac{1}{2\pi} [a - g(E_{\bullet} + \epsilon)] \tag{1.7.7}$$

$$= \frac{1}{7\pi} \left[a - gE. \right] - \frac{g\epsilon}{7\pi} \tag{1.4.7}$$

$$=E.-\frac{g\epsilon}{\mathbf{r}\pi}\tag{1.0.7}$$

با ادامهی همین روند می توانیم به این نتیجه برسیم که در گامهای بعدی سامانه چگونه رفتار خواهد کرد (شکل ۲۷.

$$E(t+nd) = \frac{1}{2\pi} \left[a - gE(t+(n-1)d) \right]$$
 (1.9.7)

$$=E. + \epsilon \sum_{n} (\frac{-g}{\mathbf{Y}\pi})^{n} \tag{1.4.7}$$

پرواضح است که که اگر ضریب تاثیر از مقدار 7π کمتر باشد؛ این مجموع همگراست و اختلال در سامانه هضم خواهد شد. در صورتی اگر بیشتر باشد؛ واگرا خواهد بود. این مقدار بنظر همان گذرفاز است که مدتهاست به دنبال آن می گردیم. پس موفق شدیم که برای سامانه ی تکجریان نقطه ی گذرفاز را محاسبه کنیم. کمتر باشد؛ این مجموع همگراست و اختلال در سامانه هضم خواهد شد. در صوتی اگر بیشتر باشد؛ واگرا خواهد بود.

شکل (۲.۳) تحول میدان سامانهای تکجریان و با تیزههای پهن از اختلالی کوچک از حالت پایا

شبیهسازی سامانهی تکجریان

حدس می زنیم که برای سامانه یی یاد شده در قسمت قبل گذر فاز در $q= au\pi$ رخ دهد. پس شبیه سازی را بار دیگر با تنظیمات زیر راهاندازی می کنیم:

- $\alpha = \bigvee s^{-} *$
- * جریان خارجی متصل به همهی نورونها یکسان و برابر ۵.۹ است.
 - $N = \cdots *$
 - $t_d = \cdot / \ s *$
 - * کل زمان شبیهسازی ۱۰۰ ثانیه در نظرگرفته شده
 - * هر گام زمانی برابر ۰/۰۱ ثانیه است.

به این ترتیب نتیجه ی شبیه سازی به شکل زیر در آمد: متاسفانه این شکستی برای امید به محقق شدن توصیف تحلیلی این سامانه است. زیرا نقطه ی گذر فاز کاملا دور از همسایگی عدد ۶ و در همسایگی نزدیکی حول ۵.۳ پیدا شده است. سوالی که ما در این بخش با آن تنها خواهیم ماند این است که راه حل

شکل (۳.۳) مشخصهی نظم سامانه ده هزار نورونی تکجریان

پیشین ما از چه جزئیاتی چشم پوشی کرده است؟!

ديدار

محسن: استاد! شكل به اين صورت درآمد.

استاد: خوب اشكال ندارد! بايد بررسي كنيم ببينيم مشكل از كجاست. (لحظاتي پيش از شروع جلسهي برخط مقالهخواني روز چهارشنبه ٧ ارديبهشت)

صندوق پيامها

محسن: اوركا!

سلام استاد! فكر كنم فهميدم مشكل چيه.

اگر خاطرتون باشه ما باید ضرب سرعت در چگالی روی آستانه را به عنوان محرکهی میدان E در نظر می گرفتیم. چون سامانه کمی با حالت پایا فرق داشت؛ چگالی را یکنواخت و ثابت در نظر می گرفتیم به طوری که در همسایگی این حالت هم همچنان چگالی ثابت است.

اما این تقریب صحیح نیست! به محض این که علامت سرعت منفی می شود (V < V) چگالی روی مرز به صورت پلهای تغییر می کند و صفر می شود. این به این معنی است که اگر برای محاسبه ی میدان اکنون در به تاریخچه ی سامانه رجوع می کنیم؛ باید در نظر داشته باشیم که سهم این رخداد صفر است.

ما سهامهای رخدادهایی که در آنها ($V< \cdot$) است را زیاد شمردهایم و باید حذف شوند.

این نکته به نظر بخشی از مشکل ماست هنوز روی بقیه استدلال دارم کار میکنم، ارادتمند شما

محسن

استاد: سلام

اگر شرایط اولیه رو این طوری بدیم که مکان همه تصادفی و تاریخچه هم این طور که تا قبل ۱۰ + سرعتها همه مثل هم و یه کم متفاوت با سرعت تعادل، اون وقت چی؟

صحبتی که با استاد مطرح کردم؛ صحیح بود اما نه کاملا صحیح! حدس استاد این است که اگر محور آستانه حول نقطه ی گذرفاز خالی شده است به دلیل نامیزان بودن شرایط اولیه است. من حدس خودم و ایشان را مورد بررسی قرار دادم و به این نتیجه رسیدم که گذرفاز در نقطه ای رخ می دهد که صرفا نورون ها کند می شوند و برنمی گردند؛ یعنی سرعتشان همچنان مثبت است و اندازه ی آن کمتر می شود اما منفی نمی شود. پس حدس من صحیح نبود.

پس کنجکاو میشویم که نمایش تمام عیاری از صفحهی فاز داشته باشم و بتوانیم شمایل آنچه را که در سامانه رخ داده؛ به تصویر بکشیم.

چنان که در شکل $\ref{mathered}$ میبینیم در حالتی که تیزهها تقریبا باریک هستند (lpha=1 بخییر فاز همان است که پیش بینی کردیم؛ یعنی در نزدیکی نقطه ی $g=7\pi$ رخ میدهد و به ازای تمام زمانهای تاخیر ممکن، همین مقدار میماند اما در تیزههای پهن این گذرفاز رفتاری دیگر دارد. زمانهایی که تاخیر بسیار بزرگتر از زمان ویژهی تاثیر تیزههاست ($d>lpha^{-1}$) گذرفاز در همان نقطه رخ میدهد.

پس بهتر است این طور جمع بندی کنیم که راه حل ۱۰۷.۳ برای حالتی درست است که زمان ویژه تیزهها در مقایسه با زمان تاخیر نسبتا کم باشد. $\alpha >> \alpha$

حال که مسئله در حالت بسیار ساده حل شد؛ کم کم گامهایی رو به سمت پیچیده شدن برمی داریم. اولین گام آن است که کمیت α را به مجددا به محاسبات خود بازگردانیم تا رابطه ی متناظر با α برای آن

 $lpha = (\dot{0})$ صفحه فاز نورون تک جریان با پهنای تیزه $lpha = (\dot{0})$ صفحه فاز نورون تک جریان با پهنای تیزه که دار آ

بدست آوریم. حدس میزنیم که تغییر میدان دیگر مانند شکل ۲.۳ تیز نباشد و لبههایی نرمتر به خود گیرند.

که در این رابطه $\mathcal{K}_{a,g}(t)$ همان پاسخ معادله در حالتی است که تیزهها کاملا باریک هستند. این روند تو در تو تا زمانی ادامه می یابد که انتگرال ده ما به زمانی که ما آن را به صورت دستی مقید کرده ایم نرسد. زیرا از آن گام به بعد رابطه ی میدان از دینامیک گام پیشین خود بدست نمی آید. آخرین گام این رابطه در زمانی است که بخشی از آن در حالت مقید قرار دارد و بخشی از آن در حالت پویا. پس برای آن که معادلات را ساده تر کنیم؛ تغییر متغیر s_i تغییر متغیر متغی

$$\int_{\cdot}^{\infty} \int \dots \int E(t-nd-s_1-s_1-\ldots-s_n)\alpha^{\mathsf{Y}n}s_1s_1\dots s_n e^{-\alpha(s_1+s_1+\ldots+s_n)}ds_1ds_1\dots ds_n$$

$$=\int_{\cdot}^{\infty} \int \dots \int E(t-nd-r)\alpha^{\mathsf{Y}n}e^{-\alpha(r)}s_1s_1\dots s_nds_1ds_1\dots ds_n\delta(r-\sum s_i)dr$$

$$=\int_{\cdot}^{\infty} \int \dots \int E(t-nd-r)\alpha^{\mathsf{Y}n}e^{-\alpha(r)}s_1s_1\dots s_nds_1ds_1\dots ds_n\delta(r-\sum s_i)dr$$

$$=\int_{\cdot}^{\infty} \int \dots \int E(t-nd-r)\alpha^{\mathsf{Y}n}e^{-\alpha(r)}s_1s_1\dots s_nds_1ds_1\dots ds_n\frac{e^{ip(r-\sum s_i)}}{\mathsf{Y}\pi}drdp$$

$$=\int_{\cdot}^{\infty} \int \dots \int E(t-nd-r)\alpha^{\mathsf{Y}n}e^{-\alpha(r)}s_1s_1\dots s_nds_1ds_1\dots ds_ne^{-ip\sum s_i}\frac{e^{ipr}}{\mathsf{Y}\pi}drdp$$

$$=\int_{\cdot}^{\infty} \int \dots \int E(t-nd-r)\alpha^{\mathsf{Y}n}e^{-\alpha(r)}s_1s_1\dots s_nds_1ds_1\dots ds_ne^{-ip\sum s_i}\frac{e^{ipr}}{\mathsf{Y}\pi}drdp$$

$$=\int_{\cdot}^{\infty} \int E(t-nd-r)\alpha^{\mathsf{Y}n}e^{-\alpha(r)}\frac{e^{ipr}}{\mathsf{Y}\pi}[\int_{\cdot}^{\infty}se^{-ips}ds]^ndrdp$$

(179.7)

(17.7)

عبارت p در جمله ی نهایی باید حتما باید قسمت موهومی منفی داشته باشد تا انتگرال ما قابل تعریف باشد.

$$\begin{split} &=\int_{\cdot}^{\infty}\int E(t-nd-r)\alpha^{\mathsf{Y}n}e^{-\alpha r}\frac{e^{ipr}}{\mathsf{Y}\pi}(-p)^{-\mathsf{Y}n}dpdr \\ &=\int_{\cdot}^{\infty}E(t-nd-r)\alpha^{\mathsf{Y}n}e^{-\alpha r}\frac{\mathsf{Y}\pi}{\mathsf{Y}\pi(\mathsf{Y}n-\mathsf{Y})!}i\cdot\frac{\partial^{\mathsf{Y}n-\mathsf{Y}}e^{ipr}}{\partial p^{\mathsf{Y}n-\mathsf{Y}}}|_{p=\cdot}dr \\ &=\frac{1}{(\mathsf{Y}n-\mathsf{Y})!}\int_{\cdot}^{\infty}E(t-nd-r)\alpha^{\mathsf{Y}n}e^{-\alpha r}i\cdot(ir)^{\mathsf{Y}n-\mathsf{Y}}dr \\ &=\frac{(-\mathsf{Y})^n}{(\mathsf{Y}n-\mathsf{Y})!}\int_{\cdot}^{\infty}E(t-nd-r)\alpha^{\mathsf{Y}n}e^{-\alpha r}r^{\mathsf{Y}n-\mathsf{Y}}dr \\ &=\frac{(-\mathsf{Y})^n}{(\mathsf{Y}n-\mathsf{Y})!}\int_{t-nd}^{\infty}E(t-nd-r)\alpha^{\mathsf{Y}n}e^{-\alpha r}r^{\mathsf{Y}n-\mathsf{Y}}dr + \frac{(-\mathsf{Y})^n}{(\mathsf{Y}n-\mathsf{Y})!}\int_{\cdot}^{t-nd}E(t-nd-r)\alpha^{\mathsf{Y}n}e^{-\alpha r}r^{\mathsf{Y}n-\mathsf{Y}}dr \\ &=\frac{(-\mathsf{Y})^n}{(\mathsf{Y}n-\mathsf{Y})!}\int_{t-nd}^{\infty}(E.+\epsilon)\alpha^{\mathsf{Y}n}e^{-\alpha r}r^{\mathsf{Y}n-\mathsf{Y}}dr + \frac{(-\mathsf{Y})^n}{(\mathsf{Y}n-\mathsf{Y})!}\int_{\cdot}^{t-nd}(E.-g\epsilon/\mathsf{Y}\pi)\alpha^{\mathsf{Y}n}e^{-\alpha r}r^{\mathsf{Y}n-\mathsf{Y}}dr \\ &=\frac{(-\mathsf{Y})^n}{(\mathsf{Y}n-\mathsf{Y})!}(E.+\epsilon)\int_{\cdot}^{\infty}\alpha^{\mathsf{Y}n}e^{-\alpha r}r^{\mathsf{Y}n-\mathsf{Y}}dr + \frac{(-\mathsf{Y})^n}{(\mathsf{Y}n-\mathsf{Y})!}(-\epsilon-g\epsilon/\mathsf{Y}\pi)\int_{\cdot}^{t-nd}\alpha^{\mathsf{Y}n}e^{-\alpha r}r^{\mathsf{Y}n-\mathsf{Y}}dr \\ &=\frac{(-\mathsf{Y})^n}{(\mathsf{Y}n-\mathsf{Y})!}(E.+\epsilon)(\mathsf{Y}n-\mathsf{Y})! + \frac{(-\mathsf{Y})^n}{(\mathsf{Y}n-\mathsf{Y})!}(-\epsilon-g\epsilon/\mathsf{Y}\pi)\int_{\cdot}^{t-nd}\alpha^{\mathsf{Y}n}e^{-\alpha r}r^{\mathsf{Y}n-\mathsf{Y}}dr \\ &=\frac{(-\mathsf{Y})^n}{(\mathsf{Y}n-\mathsf{Y})!}(E.+\epsilon)(\mathsf{Y}n-\mathsf{Y})! + \frac{(-\mathsf{Y})^n}{(\mathsf{Y}n-\mathsf{Y})!}(-\epsilon-g\epsilon/\mathsf{Y}\pi)\int_{\cdot}^{t-nd}\alpha^{\mathsf{Y}n}e^{-\alpha r}r^{\mathsf{Y}n-\mathsf{Y}}dr \\ &=(-\mathsf{Y})^n(E.+\epsilon)+\frac{(-\mathsf{Y})^n}{(\mathsf{Y}n-\mathsf{Y})!}(-\epsilon-g\epsilon/\mathsf{Y}\pi)\mathsf{Y}(\mathsf{Y}n,\alpha(t-nd)) \end{aligned}$$

پس در نهایت برای میدان خواهیم داشت:

$$E(t) = \mathcal{K}_{a,q}(t) \tag{171.7}$$

$$+\left(\frac{-g}{\mathbf{Y}\pi}\right)^n(-1)^n(E.+\epsilon) \tag{177.7}$$

$$+\left(\frac{-g}{\mathbf{Y}\pi}\right)^{n}\frac{(-1)^{n}}{(\mathbf{Y}n-1)!}(-\epsilon-g\epsilon/\mathbf{Y}\pi)\gamma(\mathbf{Y}n,\alpha(t-nd)) \tag{17.7}$$

$$=\mathcal{K}_{a,a}(t) \tag{174.7}$$

$$+\left(\frac{g}{\mathbf{Y}\pi}\right)^n(E.+\epsilon) \tag{170.7}$$

$$+\left(\frac{g}{\mathsf{Y}\pi}\right)^{n}(-\epsilon-g\epsilon/\mathsf{Y}\pi)\frac{\gamma(\mathsf{Y}n,\alpha(t-nd))}{(\mathsf{Y}n-\mathsf{V})!}\tag{189.8}$$

$$=\mathcal{K}_{a,g}(t)$$
 (177.7)

$$+\left(\frac{g}{\mathbf{Y}\pi}\right)^{\lfloor t/d \rfloor}(E,+\epsilon)$$
 (17%.)

$$+\left(\frac{g}{\mathsf{Y}\pi}\right)^{\lfloor t/d\rfloor}(-\epsilon-g\epsilon/\mathsf{Y}\pi)\frac{\gamma(\mathsf{Y}\lfloor t/d\rfloor,\alpha d(t/d-\lfloor t/d\rfloor))}{(\mathsf{Y}n-\mathsf{Y})!}\tag{189.7}$$

(14.7)

نتیجهی بدست آمده شامل نکات قابل توجهی است و تا حدودی با شواهد بدست آمده از شبیهسازی سازگاری دارد.

۱. در گامهای مضرب، d تابع گامای ناقص ما به صورت $\gamma(\Upsilon n, \bullet) = \gamma(\Upsilon n, \bullet)$ درمیآید. این باعث می شود که فارغ از باریک یا تیزه بودن تیزههای ما میدن در این لحظات مطابق عبارت زیر باشد:

۲. این عبارت با معادلاتی که برای تیزههای باریک بدست آوردیم سازگاری دارد. زیرا اگر کمیت α را به بینهایت میل دهیم؛ بیشینهی تابع گامای ناقص ما به صورت $\gamma(\Upsilon n,\infty)=(\Upsilon n-1)!$ درمی آید. در این حالت میدان نهایی عبارتی شبیه توصیف کنندهی سامانهی تیزههای باریک می دهد.

$$=a\big[\mathbf{1}-\frac{g}{\mathbf{7}\pi}+(\frac{g}{\mathbf{7}\pi})^{\mathbf{7}}+...+(\frac{-g}{\mathbf{7}\pi})^{\lfloor t/d\rfloor-\mathbf{1}}\big]+(\frac{g}{\mathbf{7}\pi})^{\lfloor t/d\rfloor}(E.-g\epsilon/\mathbf{7}\pi) \ \ (\mathbf{1}\mathbf{7}\mathbf{7}.\mathbf{7}\mathbf{7})$$

كتابنامه

[1] Luccioli, Stefano and Politi, Antonio. Irregular collective behavior of heterogeneous neural networks. *Phys. Rev. Lett.*, 105:158104, Oct 2010. 5