Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Группа	К работе допущен
Студент <u>Лагулин Владимир Михайлович</u>	Работа выполнена
Преподаватель <i>Мишов В. А.</i>	Отчет принят
Рабочий прото	кол и отчет по
	ой работе № <i>5.02</i>
Исандование внешней	ODOMO SOPODEKTOL
Banuarym v 6	(16/10)
2 Sangula pollisomi lo fina pi fiorillata pof	ARBYLLO HAUPSMEPULL OM WYNOTH CBETA. ARBPEKMA GIR 3 MAMEPUANOB AHKCI.

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	BOULMINETP	unappoboto	0-5B	0,0005B
2	Aurepuerp	циарровой	0-16A	0,005 A
3	Переключаты динн волн	yuappoboti	200-780 Hu	1404
4		0 1/		

1) Опеделение конформилентов методом наименьших квадратов. Пример вычисления для натрия:

 $a = \frac{\underline{\leq U_i \cdot \leq V_i - n \cdot \underline{\leq U_i \cdot \leq V_i}}}{(\underline{\leq V_i})^2 - n \cdot (\underline{\leq V_i})^2} = \frac{18 \cdot 2,51 \cdot 10^{16} - 20 \cdot 5,4 \cdot 10^{15}}{(251 \cdot 10^{16})^2 - 20 \cdot 2,51 \cdot 10^{32}} = 4,14 \cdot 10^{-15}(Bc)$

 $\beta = \frac{\sum v_i v_i \cdot \sum v_i \cdot \sum v_i^2 \cdot \sum v_i}{(\sum v_i)^2 - 1 \cdot \sum v_i^2} = \frac{5.4 \cdot 10^{15} \cdot 2.51 \cdot 10^6 - 2.5 \cdot 10^{32} \cdot 18}{(2.51 \cdot 10^6)^2 - 20 \cdot 2.5 \cdot 10^{32}} = -227(38)$

Постаянная манка h= a= 4,14.10 3B.c

Работа выхода: AB =- В = 2,27 эВ

Anasournois Eurucienus gus Casen

h=a= 414.10-15 3B.c

AB = - B = 5,10 >B

Аналошчые выписления для ртуть:

h= a = 4/4·10⁻⁵ 3B.c Ab=-β= 4,49 3B

Д вышими порешность для постоянной Планка:

Пример вычислений для намия

 $\nu_{cp} = \frac{1}{h} \ge \nu_i = \frac{1}{20} \cdot 1,68 \cdot 10^{16} = 8,4 \cdot 10^{14} \sqrt{y}$

Vep = 1 & Vi = 1 . 24,126 = 1,2 B

gase no 14th $D = \sum (\lambda_{cp} - \lambda_{i})^{2} = [8, 4 \cdot 10^{4} - 5, 5 \cdot 10^{14}]^{2} [8, 4 \cdot 10^{14} - 5,68 \cdot 10^{14}]^{2} + [8, 4 \cdot 10^{14} - 6,07 \cdot 10^{14}]^{2} + [8, 4 \cdot 10^{14} - 6,28 \cdot 10^{14}]^{2} + [8, 4 \cdot 10^{14} - 6,37 \cdot 10^{14}]^{2} + [8, 4$

 $\leq d_i^2 = \leq (V_i - (\beta + \alpha \cdot \lambda_i))^2 = 2,88 \cdot 10^4 (98)$

Mobigath rapper the El Madewitho

Схема установки

Результат тестирования

Полученные таблицы измерений

1.Натрий (_{\(\lambda\kp\)} = 545 нм)

Pacuet mara no guerre nouth

$$\Delta \lambda = \left[\frac{\lambda \mu - \lambda_{min}}{20}\right] = \left[\frac{545 - 200}{20}\right] = \left[\frac{17,25}{17,25}\right] = 17 \text{ HM}$$

Trial	Metal	Voltage (V)	Current (pA)	Frequency (Hz)	Wavelength (nm)
1	Sodium	0.010	0.00	5.5046E14	545.00
2	Sodium	0.080	0.02	5.6818E14	528.00
3	Sodium	0.159	0.01	5.8708E14	511.00
4	Sodium	0.240	-0.01	6.0729E14	494.00
5	Sodium	0.328	0.01	6.2893E14	477.00
6	Sodium	0.432	0.01	6.5217E14	460.00
7	Sodium	0.530	-0.01	6.7720E14	443.00
8	Sodium	0.639	-0.01	7.0423E14	426.00
9	Sodium	0.761	0.02	7.3350E14	409.00
10	Sodium	0.889	0.01	7.6531E14	392.00
11	Sodium	1.038	-0.01	8.0000E14	375.00
12	Sodium	1.199	-0.02	8.3799E14	358.00
13	Sodium	1.380	0.01	8.7977E14	341.00
14	Sodium	1.562	0.02	9.2593E14	324.00
15	Sodium	1.769	0.01	9.7720E14	307.00
16	Sodium	2.010	-0.01	10.3448E14	290.00
17	Sodium	2.278	0.02	10.9890E14	273.00
18	Sodium	2.582	0.00	11.7188E14	256.00
19	Sodium	2.919	0.03	12.5523E14	239.00
20	Sodium	3.321	0.02	13.5135E14	222.00

2.Селен (\(\lambda\) кр = 243 нм)

Pacyet war no guerre nount
$$A = \left[\frac{\lambda + p - \lambda_{min}}{20} \right] = \left[\frac{243 - 200}{20} \right] = \left[2,15 \right] = 2 + M$$

Trial	Metal	Voltage (V)	Current (pA)	Frequency (Hz)	Wavelength (nm)
1	Selenium	0.012	0.02	12.3457E14	243.00
2	Selenium	0.049	-0.01	12.4481E14	241.00
3	Selenium	0.099	-0.01	12.5523E14	239.00
4	Selenium	0.139	0.02	12.6582E14	237.00
5	Selenium	0.182	0.00	12.7660E14	235.00
6	Selenium	0.230	0.00	12.8755E14	233.00
7	Selenium	0.280	0.00	12.9870E14	231.00
8	Selenium	0.320	-0.01	13.1004E14	229.00
9	Selenium	0.371	-0.02	13.2159E14	227.00
10	Selenium	0.422	0.00	13.3333E14	225.00
11	Selenium	0.471	-0.01	13.4529E14	223.00
12	Selenium	0.521	0.00	13.5747E14	221.00
13	Selenium	0.571	0.00	13.6986E14	219.00
14	Selenium	0.618	0.00	13.8249E14	217.00
15	Selenium	0.679	-0.02	13.9535E14	215.00
16	Selenium	0.729	0.00	14.0845E14	213.00
17	Selenium	0.790	0.00	14.2180E14	211.00
18	Selenium	0.840	-0.01	14.3541E14	209.00
19	Selenium	0.899	-0.01	14.4928E14	207.00
20	Selenium	0.958	0.02	14.6341E14	205.00

3.Ртуть (λ кр = 276 нм)

Pacyet war no guille Nouth
$$A = \left[\frac{\lambda \mu - \lambda_{min}}{20} \right] = \left[\frac{276 - 200}{20} \right] = \left[\frac{3,8}{3} \right] = 3_{HM}$$

Trial	Metal	Voltage (V)	Current (pA)	Frequency (Hz)	Wavelength (nm)
1	Mercury	0.010	0.02	10.8696E14	276.00
2	Mercury	0.061	-0.01	10.9890E14	273.00
3	Mercury	0.109	0.01	11.1111E14	270.00
4	Mercury	0.160	0.02	11.2360E14	267.00
5	Mercury	0.211	-0.01	11.3636E14	264.00
6	Mercury	0.268	0.02	11.4943E14	261.00
7	Mercury	0.319	0.00	11.6279E14	258.00
8	Mercury	0.379	0.02	11.7647E14	255.00
9	Mercury	0.441	0.02	11.9048E14	252.00
10	Mercury	0.499	0.00	12.0482E14	249.00
11	Mercury	0.559	0.00	12.1951E14	246.00
12	Mercury	0.618	0.00	12.3457E14	243.00
13	Mercury	0.679	0.00	12.5000E14	240.00
14	Mercury	0.751	0.02	12.6582E14	237.00
15	Mercury	0.821	-0.02	12.8205E14	234.00
16	Mercury	0.890	-0.01	12.9870E14	231.00
17	Mercury	0.961	-0.01	13.1579E14	228.00
18	Mercury	1.030	0.01	13.3333E14	225.00
19	Mercury	1.100	-0.01	13.5135E14	222.00
20	Mercury	1.180	-0.01	13.6986E14	219.00

График зависимости запирающего напряжения от частоты

$$y = ax + \theta$$
, $x = 0$, $y = \theta$