Algorithm assignment II

Question 1: Heap Sort

assume the heap is Max heap

When a[1]<a[2]<a[3]<....<a[n]

Build the heap:from n/2 to n assume $n=2^k$, $k=log_2(n)$

Then the Tree has k+1 layers. We will have to exchange the elements for $1+2+3+\ldots+k$ times to build the initial Max-heap.

Generally, we will need to exchange $for\Theta(log_2(n)^2)$ times to build the initial Heap.

Then we have to maintain the Max-heap.

final result is $\Theta(n \times log_2(n))$

When a[1]>a[2]>a[3]>...>a[n]

It is already a MAX-heap, so it takes no time to build the MAX-heap

Then it will take $O(nlog_2(n))$ to maintain the Max_heap

Question2:quick sort

(a)

assume the H is the max-height of the Tree and h is the minimize height of the Tree.

We have following relationships:

$$1 \div \alpha^h = n$$

$$a \div (1 - \alpha)^H = n$$

The result is $h = -lgn \div lg\alpha$

$$H = -lgn \div lg(1 - \alpha)$$

(b)

假设产生两个不同的1划分 α , $1-\alpha$ 和 θ , $1-\theta$ 的概率相同

那么比 α , $1 - \alpha$ 更好的划分必须更加接近中心1/2

概率为
$$(1 \div 2 - \alpha) \div (1 \div 2) = (1 - 2 \times \alpha)$$