المادة: الكيمياء – اللغة الفرنسية الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم: 2 / 2019 المدة: ساعتان

لهيئة الأكاديمية المشتركة قسم: العلوم

Cette épreuve est constituée de trois exercices. Elle comporte 4 pages numérotées de 1 à 4. Traiter les trois exercices suivants:

Exercice 1 (7 points) Cinétique de la réaction d'acide éthanoïque avec l'ion hydrogénocarbonate

L'acide éthanoïque réagit avec l'ion hydrogénocarbonate suivant une réaction lente. L'équation de la réaction considérée comme totale est:

$$CH_3COOH_{(aq)} + HCO_3^-_{(aq)} \rightarrow CO_{2(g)} + H_2O_{(\ell)} + CH_3COO^-_{(aq)}$$

L'objectif de cet exercice est d'étudier la cinétique de cette réaction.

Données : - Masse molaire de l'hydrogénocarbonate de sodium: M _{NaHCO3} = 84 g.mol⁻¹.

- Volume molaire gazeux dans les conditions de l'expérience: V_m = 24 L.mol⁻¹.

1. Préparation de la solution (S) d'acide éthanoïque

On prépare une solution (S) d'acide éthanoïque de concentration $C = 1 \text{ mol.L}^{-1}$ à partir d'une solution commerciale (S_0).

Sur l'étiquette de la solution commerciale (S_0) d'acide éthanoïque, on lit les indications données dans le **document-1**.

Pourcentage massique: 90% Masse volumique : $\rho = 1,05 \text{ g.mL}^{-1}$ Masse molaire en g.mol⁻¹: $M_{(CH_3COOH)} = 60$ **Document-1**

- **1.1.** En se référant au **document-1**, montrer que la concentration de la solution (S_0) en acide éthanoïque est $C_0 = 15,75 \text{ mol.L}^{-1}$.
- **1.2.** Pour préparer un volume V_S = 100 mL de la solution (S). On dispose trois ensembles de verreries donnés dans le **document-2**. Choisir, en effectuant le calcul nécessaire, l'ensemble le plus convenable et précis pour réaliser cette préparation.

Ensemble-1	Ensemble-2	Ensemble-3	
Eprouvette graduée 10 mL	Pipette jaugée 10 mL	Pipette graduée 10 mL	
Fiole jaugée 100 mL	Fiole Jaugée 100 mL	Fiole jaugée 100 mL	
Bécher	Bécher	Bécher	
Document-2			

2. Etude cinétique

On introduit dans un ballon maintenu à température T constante un volume V = 60 mL de la solution (S) d'acide éthanoïque CH_3COOH de concentration C = 1 mol. L^{-1} .

On y ajoute rapidement à l'instant t = 0, une masse m = 1,25 g d'hydrogénocarbonate de sodiumNaHCO_{3(s)}, puis on ferme le ballon et on mesure à l'aide d'une méthode appropriée le volume du dioxyde de carbone

CO₂ dégagé à différents instants t. On groupe les valeurs obtenues dans le tableau du **document-3**.

$n_{CO_2} \times 10^{-3} \text{ (mol)}$	3,3	6	7,5	8,3	9	9,5	a	10,29	10,7	10,9
V _{CO2} (mL)	79,2	144	180	199	216	228	240	247	257	262
Temps (s)	33	66	100	133	167	200	233	266	333	400

- 2.1. Calculer la valeur de a qui manque dans le tableau du document-3.
- **2.2.** Tracer la courbe $n_{CO_2} = f(t)$ dans l'intervalle de temps [0 400s]. Prendre pour échelles: Abscisses: $1 \text{cm} \rightarrow 60 \text{ s}$ et ordonnées: $1 \text{cm} \rightarrow 1.10^{-3} \text{ mol}$.
- **2.3.** Vérifier si l'ion hydrogénocarbonate HCO₃⁻ est le réactif limitant.
- **2.4.** On donne les trois propositions suivantes. En cas où la proposition est fausse la corriger et en cas où elle est correcte la justifier.
 - **2.4.1.** La vitesse de formation de CO_2 à t = 0 s est supérieure que celle à t = 200 s.
 - **2.4.2.** Le temps t = 400 s représente la fin de la réaction.
 - **2.4.3.** Si on répète la même expérience avec une seule modification T' > T. Le volume du gaz CO_2 dégagé à l'instant t = 100 s est $V'_{(CO_2)} < 180$ mL.
- **3.** Déterminer le temps de demi réaction $t_{1/2}$.

Exercice 2 (7 points)

L'acidité d'un beurre

L'acide butyrique, est un acide qui se trouve dans le beurre rance, le parmesan, où il dégage une odeur forte et désagréable.

Le but de cet exercice est d'étudier quelques propriétés de l'acide butyrique et de vérifier son pourcentage en masse dans le beurre.

Données : Masse molaire de l'acide butyrique : $M = 88 \text{ g.mol}^{-1}$. pKa $(H_2O / HO^-) = 14$

1. Quelques propriétés de l'acide butyrique

- L'acide butyrique est un acide carboxylique saturé, non cyclique et à chaîne linéaire de formule moléculaire C₄H₈O₂.
- L'acide butyrique est soluble dans l'eau.
- À 25° C, une solution aqueuse (S) d'acide butyrique de concentration C = 3.10^{-2} mol.L⁻¹ possède un pH = 3.18.

Document-1

- **1.1.** Identifier, en se référant au **document-1**, l'acide butyrique.
- **1.2.** Ecrire, en utilisant les formules semi-développées, l'équation de la réaction de l'acide butyrique avec l'eau.
- **1.3.** En se référant au **document-1**, justifier les propositions suivantes:
 - **1.3.1.** L'acide butyrique est un acide faible.
 - **1.3.2.** Le degré de dissociation de cet acide dans l'eau est $\alpha = 0.022$.
 - **1.3.3.** Le pKa du couple acide / base de cet acide vaut 4,82 à 25° C.
 - **1.3.4.** L'acide butyrique prédomine sa base conjuguée dans la solution (S).

2. Analyse d'un beurre.

Un beurre est rance si le pourcentage en masse d'acide butyrique qu'il contient est supérieur ou égal à 4 %, c'est-à-dire qu'il y a 4 g ou plus d'acide butyrique dans 100 g de beurre.

Document-2

Pour doser l'acide butyrique contenu dans un beurre, on introduit dans un erlenmeyer une masse m=8 g de beurre fondu auquel on ajoute un volume d'eau distillée. On agite afin de dissoudre dans l'eau la totalité de l'acide butyrique présent dans le beurre. On verse une solution d'hydroxyde de sodium $(Na^+ + HO^-)$ de concentration $C_b = 0.4$ mol.L⁻¹. L'équivalence est atteint pour un volume de base versé $V_{bE} = 7.5$ mL.

L'équation de la réaction du dosage est:

$$C_4H_8O_2$$
 (aq) + HO^- (aq) $\rightarrow H_2O_{(\ell)} + C_4H_7O_2^-$ (aq)

- **2.1.** Nommer l'ion $C_4H_7O_2^-$.
- **2.2.** Déterminer la constante de réaction K_R associée à l'équation de la réaction du dosage. En déduire que cette réaction est totale.
- **2.3.** Deux autres propriétés doivent caractériser la réaction du dosage. Choisir des propositions données ci-dessous celle qui convient à la réaction du dosage :
 - **a.** lente et unique.
 - **b.** rapide et unique.
 - c. rapide et limitée.
- **2.4.** Le même titrage réalisé par pH métrie montre que la valeur de pH à l'équivalence pH_E = 8,7. Choisir, l'indicateur le plus convenable du **document-3** à utiliser pour réaliser ce dosage. Justifier.

Rouge de méthyle (4,2 - 6,2) Bleu de bromophénol (3,0 - 4,6) Rouge de crésol (7,2 - 9,0) **Document-3**

- **2.5.** Déterminer le nombre de mole d'acide butyrique contenue dans la masse m = 8 g de beurre dosé.
- **2.6.** En déduire la masse d'acide butyrique contenu dans cet échantillon de beurre.
- **2.7.** En se référant au **document-2**. Vérifier si le beurre analysé est rance.

Exercice 3 (6 points)

Esters à odeurs fruités

Les esters ont souvent une odeur agréable. On les trouve naturellement dans les fruits dont ils sont souvent responsables de l'arôme. Ces esters sont obtenus par extraction ou par synthèse.

Le but de cet exercice est d'identifier quelques esters à odeurs fruités et d'étudier leur synthèse.

Ester	Formule moléculaire	Odeur		
(E_1)	$C_5H_{10}O_2$	Melon		
(E_2)	$C_6H_{12}O_2$	Fraise		
Document-1				

 $\label{eq:Données: MC = 12 g.mol - 1 g.mol -$

1. Etude de l'alcool utilisé dans la synthèse de l'ester (E₁)

L'alcool utilisé dans la synthèse de l'ester (E_1) à odeur de melon est noté (A). Pour identifier l'alcool (A), on effectue les tests du **document-2**.

Test chimique	Résultat
(A) + Solution acidifiée de permanganate de potassium	Composé organique (B)
(B) + 2,4-DNPH	précipité jaune-orangé
(B) + Réactif de Schiff	Aucun changement n'est observé
Document-2	

- **1.1.** En se référant au **document-2**, identifier la famille du composé (B).
- **1.2.** En déduire la classe de l'alcool (A).
- **1.3.** Une analyse quantitative de l'alcool (A) montre que le pourcentage massique en carbone est 60 %.
 - **1.3.1.** Montrer que la formule moléculaire de l'alcool (A) est C₃H₈O.
 - **1.3.2.** Ecrire la formule semi-développée des composés (A) et (B).

2. Identification des esters E_1 et E_2

- **2.1.** En se référant au **document-1** et à la formule moléculaire de l'alcool (A). Choisir l'acide carboxylique utilisé dans la synthèse de l'ester (E₁). Justifier.
 - a. HCOOH
 - **b.** CH₃ COOH
 - $\mathbf{c.}$ CH₃ CH₂ COOH
- **2.2.** Identifier l'ester (E_1) .
- **2.3.** Le nom systématique de l'ester (E_2) est le 2-méthylpropanoate d'éthyle. Ecrire la formule semi-développée de (E_2) .

3. Synthèse des esters

En cas d'un mélange des réactifs équimolaire le rendement de l'estérification à l'équilibre est 66 % si l'alcool est primaire et 60% si l'alcool est secondaire.

Document-3

La synthèse d'un ester s'effectue en général entre un acide carboxylique et un alcool en chauffant à reflux le mélange pendant un certain temps. L'équation d'estérification est donnée par :

$$R - COOH + HO - R' \rightleftharpoons R - COO - R' + H_2O$$

- **3.1.** Expliquer l'importance du chauffage à reflux.
- **3.2.** Corriger les propositions suivantes. Justifier.
 - **3.2.1.** En mélangeant le même nombre de mole d'alcool et d'acide carboxylique dans la synthèse des esters (E_1) et (E_2) , soit $n_{alcool} = n_{acide} = 0,1$ mol, la quantité de chaque ester obtenu à l'équilibre est $n_{(E_1)} = 0,066$ mol et $n_{(E_2)} = 0,06$ mol.
 - **3.2.2.** Pour synthétiser un ester, l'utilisation d'un dérivé anhydride d'acide à la place de l'acide carboxylique ne modifie pas le rendement à la fin de la réaction mais augmente la vitesse de la réaction.
 - **3.2.3.** L'addition d'une faible quantité d'acide sulfurique concentré augmente le rendement de l'estérification à l'équilibre.

المادة: الكيمياء – اللغة الفرنسية الشهادة: الثانوية العمة الفرع: علوم الحياة نموذج رقم: 2 / 2019 المدّة: ساعتلن

الهيئة الأكاديميّة المشتركة قسم: العلوم

أسس التصحيح:

Partie de la question	Exercice 1 (7 points) Cinétique de la réaction d'acide éthanoïque avec l'ion hydrogénocarbonate	Note			
question	Réponse attendues				
1.1	Masse de 1L solution (S ₀) : $m_{S_0} = \rho \times V_{S_0} = 1,05 \times 1000 = 1050 \text{ g}$				
1.1	Masse de CH ₃ COOH dans 1 L solution (S ₀): $m_{CH_3COOH} = 0.9 \times 1050 = 945g$	0,75			
	, , , ,	0,75			
	$n_{\text{CH}_3\text{COOH}} = \frac{m_{\text{CH}_3\text{COOH}}}{M_{\text{CH}_3\text{COOH}}} = \frac{945}{60} = 15,75 \text{ mol et } C_0 = \frac{n_{\text{CH}_3\text{COOH}}}{V_s} = 15,75 \text{ mol.L}^{-1}.$				
1.2	Dans une dilution le nombre de mole du soluté apporté se conserve:				
	$n_0 = n_f$; $C_0 \times V_0 = C_f \times V_f$;				
	Le volume V_0 qu'il faut prélever de la solution (S_0) pour préparer la solution (S) :	0,75			
	$V_0 = \frac{C_f V_f}{C_0} = \frac{1 \times 0.1}{15.75} = 0.0063 Lou 6.3 mL$.				
	Ensemble-3 est le plus convenable, car on a besoin:				
	- une pipette graduée de 10 mL pour prélever V_0 .				
	- une fiole jaugée de 100 mL pour préparer V _f .				
2.1	A t = 233 s on a:				
	$V_{CO_{2(t=233)}}$ 240x10 ⁻³	0,5			
	$n_{CO_{2(t=233)}} = \frac{V_{CO_{2(t=233)}}}{V_{cos}} = \frac{240x10^{-3}}{24} = 10.10^{-3} mol$				
2.2	m				
	n CO ₂ x 10 ⁻³ mol 12 11 10 9 8 7 6 5 4 3 2 11 0 6 6 5 12 12 13 14 15 16 16 17 18 18 18 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	1			
2.3	$n (CH_3COOH)_0 = C \times V = 1 \times 0.06 = 0.06 \text{ mol.}$				
2.0					
	$n(\text{NaHCO}_3)_{\text{initial}} = \frac{m}{M} = \frac{1,25}{84} = 0,015 \text{mol} = n_{HCO_3^-}$				
	Rapport: $R_{CH_3COOH} = \frac{0.06}{1} = 0.06 > R_{HCO_3^-} = \frac{0.015}{1} = 0.015$	1			
	Alors HCO_3^- est le réactif limitant.				
2.4.1	Vrai. La vitesse de formation de CO_2 commence maximale au départ et diminue au cours du temps. A $t=0$ s, la vitesse de formation de CO_2 est supérieure que celle à $t=200$ s.	0,75			

2.4.2	Faux.	
	D'après le R.S.	0,75
	$\frac{n(HCO_3^-)_{\text{réagit}}}{1} = \frac{n_{CO_2(produità t = \infty)}}{1} = 0,015 mol;$	
	$n_{CO_{2(\infty)}} = 15x10^{-3} mol > n_{CO_{2(t=400s)}} = 10,9x10^{-3} mol$	
	Alors $t = 400$ s ne re présente pas la fin de la réaction.	
2.4.3	Faux. Si on augmente la température qui est un facteur cinétique, la pente de la tangente	0,75
	à chaque point de la courbe augmente (la vitesse augmente) et le volume de CO_2 à $t =$	
	$100 \text{ s sera V'}_{CO_2} > 180 \text{ mL}.$	
3	Le temps de demi-réaction $t_{1/2}$ est le temps nécessaire au bout duquel la quantité du produit CO_2 devient égale à la moitié de sa valeur maximale.	
	produit CO ₂ devient egale à la mottle de sa valeur maximale.	0.75
	A la fin de la reaction: $\frac{n_{CO_{2(\infty)}}}{2} = 7.5 \cdot 10^{-3} \text{ mol}$	0,75
	Graphiquement $t_{1/2} = 100$ s.	

Partie	Exercice 2 (7 points) L'acidité d'un beurre	
de la		Note
question	Réponse attendues	
1.1	$CH_3 - CH_2 - COOH$ acide butanoïque	0,5
1.2	$CH_3 - CH_2 - CH_2 - COOH + H_2O \rightleftharpoons CH_3 - CH_2 - CH_2 - COO^- + H_3O^+$ $[H_3O^+] = 10^{-pH} = 10^{-3,18} = 6,6.10^{-4} \text{ mol.L}^{-1} < C = 3.10^{-2} \text{ mol.L}^{-1}$	0,5
1.3.1		0,5
	L'acide butyrique est un acide faible.	
1.3.2	$\alpha = \frac{n_{(acidebutyrique)reagi}}{}$	
	$lpha = rac{n_{(acide butyrique)initial}}{n_{(acide butyrique)initial}}$	0.5
	A volume constant:	0,5
	$\alpha = \frac{[Acide\ butyrique]_{reagi}}{[Acide\ butyrique]_{initial}} = \frac{[H_3O^+]}{C} = \frac{6.6x10^{-4}}{3x10^{-2}} = 0.022$	
1.3.3	$CH_3 - CH_2 - COOH + H_2O \rightleftharpoons CH_3 - CH_2 - COO^- + H_3O^+$	
	$\dot{A} t = 0$ C excès $\dot{C} \alpha$ $\dot{C} \alpha$	1
	equinore	1
	$pH = pKa + \log \frac{[C_4 H_7 O_2^-]}{[C_4 H_8 O_2]} = pKa + \log \frac{C\alpha}{C(1-\alpha)};$	
	$pKa = pH - \log \frac{\alpha}{1 - \alpha} = 3.18 - \log \frac{0.022}{1 - 0.022} = 4.82$	
1.3.4	pH = 3.18 < 4.82 - 1 = 3.82 Alors l'acide butyrique prédomine dans la solution (S).	0,5
2.1	L'ion butanoate.	0,25
2.2	$K_R = \frac{[C_4 H_7 O_2^-]}{[C_4 H_8 O_2][HO^-]} x \frac{[H_3 O^+]}{[H_3 O^+]} = \frac{Ka}{Ke} = \frac{10^{-4.82}}{10^{-14}} = 1,51.10^9$	0,75
	$K_R > 10^4$. Réaction totale.	
2.3	b. Rapide et unique.	0,25
2.4	Rouge de crésol $(7,2 - 9,0)$ car pH _E = 8,7 est inclus dans sa zone de virage.	0,5
2.5	A l'équivalence :	
	$\frac{n_{acide(pr\acute{e}sentdansl\acute{e}chantillon)}}{1} = \frac{n_{HO^-(vers\acute{e}dansVbE)}}{1}; n_{acide} = C_b \ xV_{bE} = 0.4 \ x7.5.10^{-3} = 0.003 \ mol$	0,75

2.6	$m_{acide} = n \times M = 0,003 \times 88 = 0,264 g$	0,5
2.7	% massique d'acide butyrique = $\frac{0,264}{8}$ x100 = 3,3% < 4%	0,5
	Le beurre analysé n'est pas rance.	

Partie	Exercice 3 (6 points) Esters à odeurs fruités	
de la		Note
question	Réponse attendues	
1.1	(B) donne un test positif avec 2,4-DNPH donc le composé (B) est un composé	0,25
	carbonylé (aldéhyde ou cétone) et un test négatif avec le réactif de Schiff alors (B) est	
4.0	une cétone.	0.05
1.2	Puisque (B) est une cétone, alors (A) est un alcool secondaire.	0,25
1.3.1	D'après la loi des proportions définies:	
	$\frac{12n}{\%C} = \frac{M_A}{100} alors \frac{12n}{60} = \frac{14n+18}{100}$	0,75
		0,73
	$n = 3$ d'où la formule moléculaire de (A) est C_3H_8O .	
1.3.2	(A): $CH_3 - CHOH - CH_3$ (B): $CH_3 - CO - CH_3$	0,5
2.1	b. CH ₃ – COOH.	0.55
	La formule moléculaire ($C_5H_{10}O_2$) de l'ester (E_1) satisfait la formule générale d'un ester à chaine saturée ouverte.	0,75
	L'ester est formé 5 atomes de carbone et l'alcool (A) est formé de 3 atomes de carbone	
	(C ₃ H ₈ O), il reste pour l'acide carboxylique, $5 - 3 = 2$ atomes de carbone.	
2.2	$(E_1): CH_3 - COO - CH - CH_3$	
	Ethanoate de 1-méthyléthyle.	0,5
	ĊH ₃	
2.3	$(E_2): CH_3 - CH - COO - CH_2 - CH_3$	
		0,5
2.1	CH ₃	
3.1	- Le chauffage est pour accélérer la réaction	0.5
	- Le reflux sert à condenser les vapeurs qui s'échappent, dans le réfrigérant et les ramène au mélange réactionnel. Et ceci pour conserver la masse des réactifs et des	0,5
	produits durant le chauffage.	
3.2.1	Pour synthetiser E_1 et E_2 . Le mélange initial des réactifs est équimolaire alors il n'y a	
	pas un excès.	
	- Pour l'ester (E ₁), l'alcool utilisé est un alcool secondaire, alors le rendement de cette	
	synthèse doit être 60 %. Alors $n_{acide} = n_{ester(th\acute{e}orique)} = 0,1$ mol.	
	$n(\text{ester E}_1)_{\text{obtenu}} = \text{rendement x } n(\text{ester})_{\text{th\'eorique}} = 0.6 \text{ x } 0.1 = 0.06 \text{ mol.}$	1
	- Pour l'ester (E ₂), l'alcool utilisé est un alcool primaire, alors le rendement de cette	
	synthèse doit être 66 %. Alors $n_{acide} = n_{ester(th\acute{e}orique)} = 0.1 \text{ mol.}$	
3.2.2	n(ester E ₂) _{obtenu} = rendement x n(ester) _{théorique} = 0,66 x 0,1 = 0,066 mol. Si on utilise le dérivé anhydride d'acide à la place de l'acide carboxylique, la réaction	
3,4,4	d'estérification sera totale et plus rapide, alors le rendement augmente.	0,5
3.2.3	L'acide sulfurique concentré en faible quantité joue le rôle d'un catalyseur qui accélère	0,5
0.2.0	la vitesse de la réaction sans modifier le rendement.	٠,٠
	in the same and in the control of th	