Problem 5

I.

Consider an electron in a solid, for which the Schrödinger equation can be given by

$$i\hbar \frac{\partial}{\partial t} \Psi = H\Psi,$$
 (i)

where t is the time, Ψ is the wave function of the electron, H is the Hamiltonian for the electron, i is the imaginary unit, and \hbar is the reduced Planck constant (given by the Planck constant divided by 2π). Answer the following questions. Here, $\omega = E/\hbar$, E is the energy of the electron, and k is the wavenumber of the electron (real number).

- (1) Suppose $H = -A \frac{\partial^2}{\partial x^2}$, where A is a real positive constant, and x is the position. Assume that the wave function is given by $\Psi = Ce^{i(kx-\omega t)}$, where C is a constant.
 - (1-i) Derive the dispersion relationship between E and k.
 - (1-ii) An electron in this solid can be expressed as a free electron with an effective mass m. Derive m. Note that the momentum of an electron can be given by $\hbar k$.
 - (1-iii) Consider a one-dimensional solid with a length L. Find the possible values of k in this solid. Here, assume a periodic boundary condition with a period L.
 - (1-iv) Using the result of Question (1-iii), derive the density of states of an electron at an energy E in this one-dimensional solid.
- (2) Suppose $H = -A\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)$, where A is a real positive constant, and x, y, and z are positions. Assume that the wave function is given by $\Psi = Ce^{i(k_x x + k_y y + k_z z \omega t)}$, where C is a constant, and k_x , k_y , and k_z are the wavenumber components in the x-, y-, and z-direction, respectively. Derive the density of states of an electron at an energy E in this three-dimensional solid.
- (3) Suppose $H = \begin{pmatrix} 0 & Bk \\ Bk & 0 \end{pmatrix}$, where B is a positive real number. In this case, the Schrödinger equation for an electron can be given by

$$i\hbar \frac{\partial}{\partial t} |\Psi\rangle = H |\Psi\rangle,$$
 (ii)

where $|\Psi\rangle$ is the state vector of the electron.

- (3-i) Suppose $|\Psi\rangle = \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix} e^{-i\omega t}$, where φ_1 and φ_2 are time-independent values. Derive the dispersion relationship between E and k.
- (3-ii) Derive the propagation speed of this electron given by dE/dk, and discuss the difference between this electron and a free electron.

II.

Consider a silicon (Si) p-n junction biased with a voltage V as shown in Fig. 1. An n-type Si and a p-type Si are uniformly doped with phosphorus (P) and boron (B), respectively. The doping concentrations of the n-type Si and the p-type Si are N_D and N_A , respectively. The activation rate of the dopants is 100%. Here, x is the position, and the interface between the n-type Si and the p-type Si is located at x = 0. The edges of the depletion layer are at $x = -l_n$ and $x = l_p$. Here, k_B is the Boltzmann constant, q is the elementary charge, T is the temperature of the p-n junction, ε_S is the permittivity of Si, and n_i is the intrinsic carrier density of Si. Answer the following questions, assuming that T is at room temperature.

- (1) Draw the band diagram of the p-n junction when V = 0. The Fermi level E_F and the intrinsic Fermi level E_i must be indicated in the band diagram.
- (2) Derive the built-in potential of the p-n junction V_{bi} . Here, the electron density at the thermal equilibrium condition can be given by $n_i e^{(E_F E_i)/k_B T}$, and the hole density by $n_i e^{(E_l E_F)/k_B T}$.
- (3) Derive and sketch the electro-static potential and electric field in the depletion layer using l_n and l_p when V = 0. Here, the electric field can be assumed to be zero in the n-type and p-type neutral regions.
- (4) Derive the depletion layer width $W = l_n + l_p$ using V_{bi} when V = 0.
- (5) Draw the band diagram under a forward bias (V > 0), and explain the reason why a current increases exponentially with respect to V using the energy distribution of electrons in the conduction band.
- (6) Under a reverse bias ($V \ll 0$), there is a voltage range where a constant, non-zero current flows. Explain this reason using the distributions of minority carriers in the neutral regions.
- (7) Suppose crystal defects uniformly distribute in Si. Such crystal defects can be generation centers or recombination centers of electrons and holes. The effective recombination rate at the crystal defects per a unit volume is given by $\frac{np-n_i^2}{n+p+2n_i} \cdot \frac{1}{\tau}$, where n is the electron density, p is the hole density, and τ is the carrier lifetime. Derive the generation current density using the depletion layer width W under a reverse bias.

