H3: linear operators and eigenvalues	
3.1 powers and polynomials	
rators	
for n \in N is given by: $\hat{A}^n = \underbrace{\hat{A} \circ \hat{A} \circ \cdots \circ \hat{A}}_{n \text{ times}}$ with in particular for $n=0$ $\hat{A}^0 = \hat{1}_V.$	
For a linear operator $\hat{\mathbf{A}} \in \mathrm{End}(V)$ on a vector space V over \mathbb{F} For a polynomial of degree s with coefficients $p_{k} \in \mathbb{F}$: $p(x) = p_s x^s + p_{s-1} x^{s-1} + \ldots + p_1 x + p_0$ > We define $p(\hat{\mathbf{A}})$ as: $p(\hat{A}) = p_s \hat{A}^s + p_{s-1} \hat{A}^{s-1} + \ldots + p_1 \hat{A} + p_0 \hat{1}_V$	
For p,q \in F[x] two arbitrary univariate polynomials For $\hat{A}\in$ End(V) a linear operator on V > we have: $[p(\hat{A}),q(\hat{A})]=\hat{0}$	
For $p \in \mathbb{F}[x]$ an arbitrary univariate polynomial For $\hat{A} \in \text{End}(V)$ a linear operator For $^G \in \text{GL}(V)$ an invertible linear operator $ > \text{we have:} p(\hat{G}^{-1}\hat{A}\hat{G}) = \hat{G}^{-1}p(\hat{A})\hat{G} $	
= operators that satisfy $\hat{p}^2 \equiv \hat{p}$	
Let \hat{P} be an idempotent operator on V , then $V = \operatorname{im}(\hat{P}) \oplus \operatorname{ker}(\hat{P})$.	
For a direct sum decomposition $V = V_1 \oplus V_2$ > now ^P = the projection operator on V_1 parallel to V_2 > then ^P maps any vector $v \in V$ into its sum components: $v_1 = \hat{P}v \in V_1$ and $v_2 = v - v_1 = (\hat{1} - \hat{P})v \in V_2$.	
For a linear operator $\hat{A} \in End(V)$ For a polynomial $p \in \mathbb{F}[x]$ > p is annihilating if $p(\hat{A}) = 0$	
For a linear operator Â∈End(V) For a polynomial p(x) = x ⁵ > Â is nilpotent if p is the annihilating polynomial for Â	
For a linear operator Â∈End(V) > the minimal annihilating polynomial m _Â (x) = x ^s + is the unique monic polynomial of lowest degree s that annihilates Â	
For a linear operator $\hat{A} \in End(V)$ For $p,q \in \mathbb{F}[x]$ For $m_{\hat{A}}(x)$ the minimal annihilating polynomial of \hat{A} > if $p(x)$ annihilates \hat{A} , then $p(x) = m_{\hat{A}}(x)q(x)$ for $q(x)$ some other polynomial	

3.2 eigenvalues and (generalized) eigenspaces	
3.2.1 eigenvalues, eigenvectors and e	eigenspaces
def: eigenvector and eigenvalue	For a linear operator $\hat{A} \in End(V)$ on a vector space V over a scalar field $\mathbb F$
	> a nonzero vector v∈V is a eigenvector if there exists a scalar λ∈F for which:
	$\hat{A}v = \lambda v \qquad \Longleftrightarrow \qquad (\hat{A} - \lambda)v = o.$
	Then $\boldsymbol{\lambda}$ is the eigenvalue for \boldsymbol{v}
def: eigenspace V_{λ}	For a linear operator $\hat{A} \in End(V)$ on a vector space V over a scalar field $\mathbb F$
	> the eigenspace associated with the scalar $\boldsymbol{\lambda}$ is given by:
	$V_{\lambda} = \{v \in V \hat{A}v = \lambda v\} = \ker(\hat{A} - \lambda).$
def: geometric multiplicity	= the dimension of V_{λ} : $r_{\lambda} = \dim(V_{\lambda}) = \nu(\hat{A} - \lambda)$
def: spectrum of a linear operator $\sigma_{\hat{A}}$	For a linear operator Â∈End(V)
	> the spectrum $\sigma_{\hat{A}}$ of \hat{A} is:
	$\sigma_{\hat{A}} = \{\lambda \in \mathbb{F} (\hat{A} - \lambda) \text{ does not have a 'well defined' inverse} \}$
def: resolvent $\hat{R}_{\hat{A}}(z)$	= the inverse operator for which:
	$\hat{R}_{\hat{A}}(z) = (z - \hat{A})^{-1}$
	> defined for values $z \in \mathbb{C} \setminus \sigma_{\hat{A}}$
prop: polynomials and eigenvalues	For a linear operator Â∈End(V) For an eigenvalue-eigenvector pair (λ,ν)
	For a polynomial $p \in \mathbb{F}[x]$
	> it follows that: $p(\hat{A})v = p(\lambda)v.$
> prop: roots of p and annihilating polynomials	if $p \in \mathbb{F}[x]$ is an annihilating polynomial for \hat{A} , any eigenvalue λ of \hat{A} is a root of $p > ie$: $p(\lambda) = 0$
prop: linear independence and eigenvalues	For a linear operator Â
eigenvalues	For a set of eigenvectors $\{v_i; i = 1,,k\}$ with mutually distinct eigenvalues λ_i , for $i = 1,,k$
	> the set is linearly independent
	And the sum:
prop: sum of eigenspaces	For a linear operator \hat{A} For a set of eigenspaces $\{V_{\lambda_i}; i=1,\ldots,k\}$ with mutually distinct eigenvalues λ_i , for $i=1,\ldots,k$
	> the sum $\sum_{i=1}^k V_{\lambda_i}$ is actually a direct sum $\bigoplus_{i=1}^k V_{\lambda_i}$.
> prop: sum and dimension	For V a finite-dimensional vector space
	For \hat{A} a linear operator on V For eigenvalues on \hat{A} $\sigma_{\hat{A}} = \{\lambda_1, \dots, \lambda_m\}$ and corresponding eigenspaces V_{λ_i} for $i = 1, \dots, m$.
	> because $\bigoplus_{\lambda \in \sigma_{\hat{A}}} V_{\lambda} \preceq V$, we find
	$\sum_{\lambda \in \sigma_{\hat{A}}} r_{\lambda} \leq \dim(V).$
prop: eigenvalues of two maps	For two linear maps $\hat{A} \in \operatorname{Hom}(V,W)$ and $\hat{B} \in \operatorname{Hom}(W,V)$ For two vector spaces V and W, which can be equal
	> any nonzero eigenvalue λ of $\hat{B}\hat{A}$ with eigenspace V_{λ} is also an eigenvalue of:
	$\hat{A}\hat{B}$ with eigenspace $W_{\lambda} = \hat{A}V_{\lambda}$, and with $\dim(V_{\lambda}) = \dim(W_{\lambda})$.
	ı

def: characteristic polynomial	For a linear operator on a finite-dimensional vector space V
	> the characteristic polynomial is:
	$k_{\hat{A}}(z) = \det(z - \hat{A}) = z^n + c_{n-1}z^{n-1} + \ldots + c_0.$
	with thus in particular: $c_{n-1} = -\operatorname{tr}(\hat{A})$ and $c_0 = (-1)^n \det(\hat{A})$.
def: algebraic multiplicity	since every eigenvalue is the root of a polynomial > we can decompose the characteristic polynomial as:
	$k_{\hat{A}} = (z - \lambda_1)^{q_{\lambda_1}} (z - \lambda_2)^{q_{\lambda_2}} \dots (z - \lambda_m)^{q_{\lambda_m}} = \prod_{\lambda \in \sigma_{\hat{A}}} (z - \lambda)^{q_{\lambda}}$
	with: $\sigma_{\tilde{A}} = \{\lambda_1, \lambda_2, \dots, \lambda_m\}$ and $\sum_{\lambda \in \sigma_{\tilde{A}}} q_{\lambda} = n$. and $\dim(V) = n$.
	Now we define the algebraic multiplicity of an eigenvalue as the exponent q_{λ}
prop: companion matrix	For $p(z) = z^n + p_{n-1}z^{n-1} + \ldots + p_0$ be a monic polynomial of degree n .
	> the companion matrix $C_p \in \mathbb{F}^{n \times n}$ associated with p is given by:
	$C_p = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ -p_0 & -p_1 & -p_2 & \dots & -p_{n-2} & -p_{n-1} \end{bmatrix}$
	and satisfies $k_{C_n}(z) = \det(zI - C_p) = p(z)$.
theorem: Cayley-Hamilton theorem	
3.2.3 diagonalisation and spectral	
def: diagonalisable operator Â	For V a finite-dimensional vector space For \hat{A} a linear operator on V For eigenvalues $\sigma_{\hat{A}} = \{\lambda_1, \dots, \lambda_m\}$ and corresponding eigenspaces V_{λ_i} for $i = 1, \dots, m$.
	> the operator is diagonalisable if:
	$\bigoplus_{\lambda \in \sigma_{\hat{A}}} V_{\lambda} = V$
	or thus, equivalently, if $\sum_{\lambda \in \sigma_{\!\!\!\!A}} r_\lambda = \dim(V).$
def: defective operator Â	= an operator that isn't diagonalisable, thus
•	
·	$\sum_{\lambda \in \sigma_{\lambda}} r_{\lambda} < \dim(V).$
def: diagonal matrix	$\sum_{\lambda \in \sigma_A} r_\lambda < \dim(V).$ If an operator is diagonalisable, we can span V with a basis $B = \{v_1, v_2, \dots, v_n\}$ of eigenvectors $v_n > 0$ the resulting matrix representation D is given by:
·	If an operator is diagonalisable, we can span V with a basis $B = \{v_1, v_2, \dots, v_n\}$ of eigenvectors
·	If an operator is diagonalisable, we can span V with a basis $B = \{v_1, v_2, \dots, v_n\}$ of eigenvectors $v_n > 0$ the resulting matrix representation D is given by:
def: diagonal matrix def: eigendecomposition	If an operator is diagonalisable, we can span V with a basis $B = \{v_1, v_2, \dots, v_n\}$ of eigenvectors > the resulting matrix representation D is given by: $D = \begin{bmatrix} \lambda_{i_1} & 0 & \cdots & 0 \\ 0 & \lambda_{i_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{i_n} \end{bmatrix}$ If A is diagonalisable there exists a transform V such that:

def: spectral projector	For Â \in End(V) a diagonalisable operator with $V=\bigoplus_{\lambda\in\sigma_A}V_\lambda$
	> the spectral projector \hat{P}_{λ} corresponds to the projector onto V_{λ} parallel with $\bigoplus_{\lambda' \neq \lambda} V_{\lambda'}$.
	P can be found via: $\hat{P}_{\lambda} = \prod_{\substack{\lambda' \in \sigma_{\hat{A}} \\ \lambda \neq \lambda'}} \frac{(\hat{A} - \lambda')}{(\lambda - \lambda')}.$
def: resolution of the identity	the spectral projectors associated with a diagonalisable operator \hat{A} can be used to decompose any vector $v \in V$ uniquely into a linear combination of eigenvectors: $v = \sum_{\lambda \in \sigma_A} \hat{P}_{\lambda} \hat{v} = \sum_{\lambda \in \sigma_A} v_{\lambda}$ with $v_{\lambda} \in V_{\lambda}$, and thus satisfy
	$\hat{P}_{\lambda}^2=\hat{P}_{\lambda}, \qquad \qquad \hat{P}_{\lambda}\hat{P}_{\lambda'}=0 \; (ext{if} \; \lambda eq \lambda'), \qquad \qquad \sum_{\lambda \in \sigma_{\hat{A}}}\hat{P}_{\lambda}= ext{id}_V .$
	The last relation is often referred to as a resolution of the identity .
extra: spectral decomposition	The spectral projectors result in the equality: $\hat{A} = \sum_{\lambda \in \sigma_{\hat{A}}} \lambda \hat{P}_{\lambda}$
theorem:	For $\hat{A}, \hat{B} \in \text{End}(V)$ be diagonalisable operators that satisfy $[\hat{A}, \hat{B}] = \hat{0}$.
	> they admit a common spectral decomposition ie: there exists a set of projectors $\{\hat{P}_i; i \in I\}$ with I some indexing set, such that:
	$\hat{P}_i\hat{P}_j = \delta_{i,j}\hat{P}_i, \qquad \qquad \sum_{i \in I}\hat{P}_i = \hat{1}_V \ \hat{A} = \sum_{i \in I}\lambda_i\hat{P}_i \qquad \qquad \hat{B} = \sum_{i \in I}\mu_i\hat{P}_i$
	$\hat{A} = \sum_{i \in I} \lambda_i \hat{P}_i$ $\hat{B} = \sum_{i \in I} \mu_i \hat{P}_i$
3.2.4 invariant subspaces and general	lised eigenspaces
def: invariant subspace	a subspace U≼V is an <i>invariant subspace</i> with respect to the lin. op. Â∈End(V)
	> if: it is mapped into itself: $\hat{A}U = \{\hat{A}u u\in U\} \preccurlyeq U.$
lemma: invariant subspace of $\hat{A} + a\hat{1}$	If U \leq V is an invariant subspace of $\hat{A}\in$ End(V, it is also a subspace of: $\hat{A}+a\hat{1}$ for any $a\in\mathbb{F}$.
prop: sequence of subspaces	For any operator on a finite-dimensional space V
	> any subspace in the following two sequences of nested subspaces is an invariant subspace for any scalar a∈F:
	subspace for any scalar $a \in \mathbb{F}$: $\{o\} = \ker((\hat{A} - a\hat{1})^0) \preccurlyeq \ker(\hat{A} - a\hat{1}) \preccurlyeq \ker((\hat{A} - a\hat{1})^2) \preccurlyeq \ldots \preccurlyeq \ker((\hat{A} - a\hat{1})^k) \preccurlyeq \ldots$
	subspace for any scalar $a \in \mathbb{F}$: $\{o\} = \ker((\hat{A} - a\hat{1})^0) \preccurlyeq \ker(\hat{A} - a\hat{1}) \preccurlyeq \ker((\hat{A} - a\hat{1})^2) \preccurlyeq \ldots \preccurlyeq \ker((\hat{A} - a\hat{1})^k) \preccurlyeq \ldots$ $V = \operatorname{im}((\hat{A} - a\hat{1})^0) \succcurlyeq \operatorname{im}(\hat{A} - a\hat{1}) \succcurlyeq \operatorname{im}((\hat{A} - a\hat{1})^2) \succcurlyeq \ldots \succcurlyeq \operatorname{im}((\hat{A} - a\hat{1})^k) \succcurlyeq \ldots$ The dimension of the spaces $\ker((\hat{A} - a\hat{1})^k)$ is strictly increasing up to a value k=s > after this the dimension remains constant

def: generalised eigenspace U_{λ}	For a linear operator $\hat{A} \in End(V)$ For one of its eigenvalues $\lambda \in \sigma_{\hat{A}}$
	Tot one of its eigenvalues heog
	> define the generalised eigenspace:
	$U_{\lambda} = \ker((\hat{A} - \lambda \hat{1})^s)$
	here s is the index for which the sequence $\ker((\hat{A}-\lambda\hat{1})^k)$ for $k=0,1,2,\ldots$ stabilises
theorem: decomposition of V	For a linear operator on a finite-dimensional vector space V
,	
	> we can construct a direct sum decomposition of V as:
	$V=igoplus_{\lambda\in\sigma_{\hat{\lambda}}}U_{\lambda}=U_{\lambda_{1}}\oplus U_{\lambda_{2}}\oplus\ldots\oplus U_{\lambda_{m}}$
	in terms of generalised eigenspaces $U_{\lambda} = \ker((\hat{A} - \lambda \hat{1})^{s_{\lambda}})$
	> with s_{λ} is the exponent of the factor (z- λ) in the minimal annihilating polynomial $m_{\hat{A}}(z)$
	Each component U_{λ} is an invariant subspace of \hat{A}
	> has dimension: $dim(U_{\lambda}) = q_{\lambda}$, the algebraic multiplicity
	$>q_{\lambda}$ is the exponent of (z- λ) in the characteristic polynomial $k_{\hat{A}}(z)$
	The restriction of \hat{A} to U_{λ} takes the form:
	$\hat{A} _{U_{\lambda}} = \lambda \hat{1}_{U_{\lambda}} + \hat{N}_{\lambda}$
	with \hat{N}_{λ} a nilpotent operator on U_{λ} with index s_{λ} .
3.2.5 Jordan normal form	
prop: sum of ^N	For ^N a nilpotent operator of index s on subspace U with dim(U) = q
	> there exists a basis B for U such that:
	$N = \Phi_B(\hat{N}) = igoplus_{k=1}^s igoplus_{i=1}^{p_k} N_k$
	Where the kxk matrices N_k take the canonical form:
	[0 1 0 0 0]
	$N_k = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$
	and are nilpotent with index k, i.e. they satisfy $(N_k)^k = 0$.
def: Jordan block	Define the canonical Jordan block of order k associated with eigenvalue $\boldsymbol{\lambda}$ as:
	$\begin{bmatrix} \lambda & 1 & 0 & \dots & 0 \end{bmatrix}$
	$\begin{bmatrix} 0 & \lambda & 1 & \dots & 0 \end{bmatrix}$
	$J^{(\kappa)}(\lambda) = \lambda I_k + N_k = \left[\vdots \ddots \vdots \right] \in \mathbb{C}^{\kappa \times \kappa}.$
	$J^{(k)}(\lambda) = \lambda I_k + N_k = egin{bmatrix} \lambda & 1 & 0 & \dots & 0 \ 0 & \lambda & 1 & \dots & 0 \ dots & \ddots & \ddots & dots \ 0 & \dots & \lambda & 1 \ 0 & \dots & \lambda & \lambda \end{bmatrix} \in \mathbb{C}^{k imes k}.$
theorem: Jordan decomposition	For a linear operator $\hat{A} \in End(V)$ on a finite-dimensional space V over \mathbb{C} For a choice of basis B , the Jordan basis
	> it acquires a block diagonal matrix representation, the Jordan canonical form:
	$J_{\hat{A}} = \Phi_B(\hat{A}) = igoplus_{\lambda \in \sigma_{\hat{A}}} igoplus_{k=1}^{s_{\lambda}} igoplus_{i=1}^{p_{\lambda}^{(\lambda)}} J^{(k)}(\lambda)$
	$\lambda \in \sigma_{\hat{A}} = 1$
def: Jordan decomposition	For any matrix $A \in \mathbb{C}^{n \times n}$
	> there exists a basis transform V∈GL(,ℂ) that bring A into the Jordan canonical form:
	$s_{\lambda} p_{k}^{(\lambda)}$
	$A = VJ_{A}V^{-1} = V \left[\bigoplus_{\lambda \in \sigma_{A}} \bigoplus_{k=1}^{s_{\lambda}} \bigoplus_{i=1}^{p_{k}^{(\lambda)}} J^{(k)}(\lambda) \right] V^{-1},$
	L "
	`

prop: Vandermonde matrix	For a companion matrix $C_p \in \mathbb{C}^{nxn}$ associated with an nth degree monic polynomial $p \in \mathbb{C}[z]$
prop. vandermonde matrix	> thus this C_p has the form:
	> every root λ of p defines a one-dimensional eigenspace > also defines a Jordan block of order q _λ > the generalised eigenvectors take the form:
	$(\boldsymbol{u}_{\lambda,k})^i = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}\lambda^k} \lambda^{i-1} = \begin{cases} \binom{i-1}{k} \lambda^{i-1-k}, & k < i \\ 0, & k \ge i \end{cases} $ (3)
	for $i=1,\ldots,n$ and $k=0,\ldots,q_{\lambda}-1$ with $\binom{i-1}{k}=\frac{(i-1)!}{k!(i-k-1)!}$ the binomial coefficients.
	In particular: $v_{\lambda} = u_{\lambda,0} = (1,\lambda,\lambda^2,\dots,\lambda^{n-1})$ corresponds to the eigenvector. > if p has n distinct roots $\{\lambda_1,\dots,\lambda_n\}$, C_p is thus diagonalised by a matrix $V(\lambda_1,\dots,\lambda_n)$ with entries
	$V(\lambda_{1},,\lambda_{n}) = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ \lambda_{1} & \lambda_{2} & \lambda_{3} & \dots & \lambda_{n} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \dots & \lambda_{n}^{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \lambda_{3}^{n-1} & \dots & \lambda_{n}^{n-1} \end{bmatrix}$
	The Vandermonde matrix
3.2.7 related eigenvalue problems	
related eigenvalue problems	Consider an eigenvalue problem $\hat{A}v = \lambda v$ with $A \in \mathbb{C}^{n \times n}$ and $\mathbf{v} \in \mathbb{C}^n$
	1: we also know: $\overline{A}\overline{v}=\overline{\lambda}\overline{v}$,
	2: since $det(A) = det(A^T)$ and $p(A^T) = p(A)^T$ for any polynomial p , We can also know:
	$\boldsymbol{w}^T A = \lambda \boldsymbol{w}^T \iff A^T \boldsymbol{w} = \lambda \boldsymbol{w}$
	3.3 Functions of linear operations
properties of functions on linear op.	Consider a function f: f(\hat{A}) > this has to satisfy: • For v an eigenvector of \hat{A} with eigenvalue λ , we expect $f(\hat{A})v = f(\lambda)v$. In particular, this shows that f will need to include $\sigma_{\hat{A}}$ in its domain of definition in order to be able to define $f(\hat{A})$.
	• For any linear transformation $\hat{T} \in GL(V)$, we expect $f(\hat{T}\hat{A}\hat{T}^{-1}) = \hat{T}f(\hat{A})\hat{T}^{-1}$. This property should even hold for a general vector space isomorphism $\hat{T} \in End(V, W)$.
	• For two operators $\hat{A} \in \text{End}(V)$ and $\hat{B} \in \text{End}(W)$, we expect $f(\hat{A} \oplus \hat{B}) = f(\hat{A}) \oplus f(\hat{B})$.
	• For two operators $\hat{A}, \hat{B} \in \text{End}(V)$ that satisfy $[\hat{A}, \hat{B}] = \hat{0}$, and two functions $f, g: C \to C$ such that $f(\hat{A})$ and $g(\hat{B})$ are defined, we expect $[f(\hat{A}), g(\hat{B})] = \hat{0}$.
def1: function for decomposable matrices	For $\hat{A} \in End(V)$ a diagonalisable linear operator For $f: \mathbb{C} \to \mathbb{C}$ a scalar function that is defined for any $\lambda \in \sigma_{\hat{A}}$
	> using the spectral decomposition of $\hat{A} = \sum_{\lambda} \lambda \hat{P}_{\lambda}$ with \hat{P}_{λ} the spectral projectors, we define
	$f(\hat{A}) = \sum_{\lambda} f(\lambda) \hat{P}_{\lambda}.$
def2: function for non-diagonalisable matrices	Consider the Taylor expansion of the function f(z): $f(z) = \sum_{n=0}^{+\infty} f_n z^n$
	which converges for $z \in \mathbb{C}$ > we can then define a function on a matrix \hat{A} as:
	$f(\hat{A}) = \sum_{n=0}^{+\infty} f_n \hat{A}^n.$

def3: function without Taylor series around z=0	= definition valid for all operators on a finite-dimensional vector space V
4.04.14 2	consider a function that has a Taylor-expansion around z=λ > this series should have a finite radius of convergence a:
	$f(z) = \sum_{n=0}^{+\infty} \tilde{f}_n (z - \lambda)^n$, $\forall z \text{ with } z - \lambda < a$, for some $a > 0$
	where $f_n = f^{(n)}(\lambda)/n!$, and this for any $\lambda \in \sigma_A$.
	calculate the Jordan decomposition of A > now the properties of f(A):
	$f(A) = V \left[\bigoplus_{\lambda \in \sigma_{A}} \bigoplus_{k=1}^{s_{\lambda}} \bigoplus_{i=1}^{p_{\lambda}^{(\lambda)}} f\left(J^{(k)}(\lambda)\right) \right] V^{-1}.$
	We now have to define the application of f to the Jordan blocks $J^{(k)}(\lambda) = \lambda I_k + N_k$.
> f on Jordan blocks	Use the Taylor expansion around $z=\lambda$ > we know that $(J^{(k)}(\lambda) - \lambda I)^n = (N_k)^n$ will vanish for $n \ge k$ > Taylor series reduces to finite sum for first k terms $n = 0,1,,k-1$ > for $n=0,1,,k-1$ we have: $[(N_k)^n]^i_{\ j} = \delta^{i+n,j}$ thus:
	$\left[f(\lambda) f^{(1)}(\lambda) \frac{f^{(2)}(\lambda)}{2} \frac{f^{(3)}(\lambda)}{3!} \dots \frac{f^{(k-2)}(\lambda)}{(k-2)!} \frac{f^{(k-1)}(\lambda)}{(k-1)!} \right]$
	$f(J^{(k)}(\lambda)) = \begin{bmatrix} f(\lambda) & f^{(1)}(\lambda) & \frac{f^{(2)}(\lambda)}{2} & \frac{f^{(3)}(\lambda)}{3!} & \dots & \frac{f^{(k-2)}(\lambda)}{(k-2)!} & \frac{f^{(k-1)}(\lambda)}{(k-1)!} \\ 0 & f(\lambda) & f^{(1)}(\lambda) & \frac{f^{(2)}(\lambda)}{2} & \dots & \frac{f^{(k-3)}(\lambda)}{(k-3)!} & \frac{f^{(k-2)}(\lambda)}{(k-2)!} \\ 0 & 0 & f(\lambda) & f^{(1)}(\lambda) & \dots & \frac{f^{(k-4)}(\lambda)}{(k-4)!} & \frac{f^{(k-3)}(\lambda)}{(k-3)!} \\ 0 & 0 & 0 & f(\lambda) & \dots & \frac{f^{(k-5)}(\lambda)}{(k-5)!} & \frac{f^{(k-4)}(\lambda)}{(k-4)!} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & f(\lambda) & f^{(1)}(\lambda) \\ 0 & 0 & 0 & 0 & \dots & 0 & f(\lambda) \end{bmatrix}$
	$f(J^{(k)}(\lambda)) = \begin{vmatrix} 0 & 0 & f(\lambda) & f^{(k)}(\lambda) & \dots & \frac{k}{(k-4)!} & \frac{k}{(k-3)!} \\ 0 & 0 & f(\lambda) & \dots & \frac{f^{(k-5)}(\lambda)}{(k-5)!} & \frac{f^{(k-4)}(\lambda)}{(k-4)!} \end{vmatrix}$
	$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$
3.3.1 matrix exponential	
exponential of a matrix	We can Taylor-expand the exponential: $\lim_{n \to \infty} u_n(x) = u_n(x)$
	$e^{tz} = e^{t\lambda} \exp t(z - \lambda) = e^{t\lambda} \sum_{n=0}^{+\infty} \frac{t^n (z - \lambda)^n}{n!}$
	Thus we obtain:
	$\begin{bmatrix} 1 & t & \frac{t^2}{2} & \frac{t^3}{3!} & \dots & \frac{t^{k-2}}{(k-2)!} & \frac{t^{k-1}}{(k-1)!} \\ 0 & 1 & t & \frac{t^2}{2} & \frac{t^{k-3}}{2!} & \frac{t^{k-2}}{2!} \end{bmatrix}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\exp(t)^{(\kappa)}(\lambda)) = e^{t/\lambda} \left(1 + t N_k + \frac{1}{2} (N_k)^{-1} + \dots \right) = e^{t/\lambda} \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\exp(tJ^{(k)}(\lambda)) = e^{t\lambda} \left(\mathbf{I} + t \mathbf{N}_k + \frac{t^2}{2} (\mathbf{N}_k)^2 + \ldots \right) = e^{t\lambda} \begin{bmatrix} 1 & t & \frac{t^2}{2} & \frac{t^3}{3!} & \dots & \frac{t^{k-2}}{(k-2)!} & \frac{t^{k-1}}{(k-1)!} \\ 0 & 1 & t & \frac{t^2}{2} & \dots & \frac{t^{k-3}}{(k-3)!} & \frac{t^{k-2}}{(k-2)!} \\ 0 & 0 & 1 & t & \dots & \frac{t^{k-4}}{(k-4)!} & \frac{t^{k-3}}{(k-3)!} \\ 0 & 0 & 0 & 1 & \dots & \frac{t^{k-5}}{(k-5)!} & \frac{t^{k-4}}{(k-4)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & t \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$
properties of the exponential	1: $det(exp(\hat{A})) = exp(tr(\hat{A}))$
	2: $\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{e}^{t\hat{A}} = \hat{A}\mathrm{e}^{t\hat{A}} = \mathrm{e}^{t\hat{A}}\hat{A}.$
	> however there is NOT a relation between: $\frac{d}{dt}e^{A(t)}$, $\frac{dA(t)}{dt}e^{A(t)}$, and $e^{A(t)}\frac{dA(t)}{dt}$
	3: the exp() of a real matrix is also real

logarithm of a matrix	log(z) isn't Taylor-expandable for z=0
106antinin of a matrix	> define a λ≠0 so that:
	$\log(z) = \log(\lambda + (z - \lambda)) = \log(\lambda) + \log\left(1 + \frac{z - \lambda}{\lambda}\right)$
	$= \log(\lambda) + \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{(z-\lambda)^n}{n\lambda^n}$
	n=1 to define
	$\log\left(J^{(k)}(\lambda)\right) = \log(\lambda)I_k + \sum_{n=1}^{k-1} (-1)^{n+1} \frac{\left(N_k\right)^n}{n\lambda^n}$
power of a matrix	isn't Taylor-expandable for z=0 > define a λ≠0 so that:
	$z^{\alpha} = \lambda^{\alpha} \left(1 + \frac{z - \lambda}{\lambda} \right)^{\alpha} = \lambda^{\alpha} \sum_{n=0}^{+\infty} \frac{\alpha(\alpha - 1) \cdots (\alpha - n + 1)}{n!} \left(\frac{z - \lambda}{\lambda} \right)^{n}$
	thus: $J^{(k)}(\lambda)^\alpha=\lambda^\alpha\sum_{n=0}^{k-1}\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!\lambda^n}(N_k)^n$
	3.4 application: dynamical systems
def: dynamical system	= consists of 3 building blocks: 1: state space 2: a set T
4	3: evolution rule φ _t
1: state space	= set S which describes the possible states of the system at any given point in time > has additional structure that makes it a manifold or vector space
2: time set	 = set T with t∈T over which the system can be evolved > - different evolution times t₁ and t₂ can be added to a total evolution time t₁+t₂ - there exists a zero time 0 for no evolution
	>> time cant move backwards > T is a monoid
3: evolution rule ϕ_t	for every $t \in T$ there is a $\phi_t: S \rightarrow S$
	these have the properties: $\phi_0 = id_S$ $\phi_{t1} \circ \varphi_{t2} = \varphi_{t1+t2}$
def: equilibrium point	For a given dynamical system (S,T,φ)
/fixed point/steady state	> a equilibrium point is a point x* \in S such that: $\Phi(t,x^*)=x^*$ for all $t\in T$.
def: orbit / trajectory O _x	For a given dynamical system (S,T,φ)
	> the orbit O_x of a state $x \in S$ is the set of states given by:
	$O_x = \{\Phi(t,x); \forall t \in T\}.$
3.4.1 recurrence relations	
> in 3.4.1 we discuss <i>discrete</i> dynar	nical systems
def: discrete dynamical system	= dynamical system for which T = N > denote t as n
evolution of dds	denote: $\phi = \Phi_1: S o S$,
	then: $\Phi_n(x) = (\Phi_{n-1} \circ \phi)(x) = \underbrace{\phi \circ \phi \circ \cdots \circ \phi}_{}(x) = \phi^n(x)$

def: recurrence relation	Denote the state of a system after n steps as x _n
/difference equation /iterative map	> we start from an initial state x ₀ > the evolution of the system is defined as the recurrence relation:
, ,	$x_{n+1} = \phi(x_n).$
def: affine dds	= dds for which some $A \in \mathbb{R}^{mxm}$ and $b \in \mathbb{R}^{m}$ exist such that:
	$\phi(x) = Ax + b$
	, , ,
def: autonomous recurrence relation /time homogeneous	= a recurrence relation that doesn't depend on time n
	> if a r.r. is NOT autonomous, it takes the form: $x_{n+1} = \phi(n, x_n)$
def: kth order recurrence relation	= autonomous recurrence relation that takes the form:
	$x_{n+k} = \boldsymbol{\phi}(x_n, \dots, x_{n+k-2}, x_{n+k-1})$
	> depends on previous states
theorem: solutions of a kth order r.r	Theorem 3.21. Consider a scalar-valued, linear, kth order recurrence relation
	$x_{n+k} = a_0 x_n + a_1 x_{n+1} + \dots + a_{k-2} x_{n+k-2} + a_{k-1} x_{n+k-1}. $ (3.98)
	A general solution can be written as a linear combination of k elementary solutions, where with every root λ of multiplicity q_{λ} of the polynomial
	$p(z) = z^{k} - a_{k-1}z^{k-1} - a_{k-2}z^{k-2} - \dots - a_{1}z - a_{0} $ (3.99)
	gives rise to q_{λ} elementary solutions of the form
	$x_n = n^j \lambda^n, j = 0, \dots, q_{\lambda} - 1.$ (3.100)
	The expansion coefficients of a general trajectory in terms of these elementary solutions are completely fixed by specifying k initial values $(x_{-k+1}, x_{-k+2}, \dots, x_0)$.
3.4.2 initial value problems	
> 3.4.2 discusses continuous dynamica	al systems
def: continuous dynamical system	= dynamical system for which $T=\mathbb{R}_{\geq 0}$ > there is no smallest step
changes in cds	We can define a derivative in the state space S of a cds > the state of a system after an evolution with t as $x: T \to \mathbb{R}^m: t \mapsto x(t)$, starting from $x(0) = x_0$, then we have $x(t) = \Phi(t, x_0)$ and thus 16
	$\dot{\boldsymbol{x}}(t) = \lim_{\epsilon \to 0} \frac{\boldsymbol{\Phi}(t+\epsilon,\boldsymbol{x}_0) - \boldsymbol{\Phi}(t,\boldsymbol{x}_0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{\boldsymbol{\Phi}(\epsilon,\boldsymbol{\Phi}(t,\boldsymbol{x}_0)) - \boldsymbol{\Phi}(0,\boldsymbol{\Phi}(t,\boldsymbol{x}_0))}{\epsilon} = \frac{\partial \boldsymbol{\Phi}}{\partial t}(0,\boldsymbol{x}(t)).$
def: affine cds	=cds for which $\dot{x}(t) = Ax(t) + b$
def: linear/homogeneous cds	= affine cds for which b=0
def: initial value problem	= kth order differential equation: $m{x}^{(k)}(t) = m{arphi}(t,m{x}(t),m{x}(t),\dots,m{x}^{(k-1)}(t)).$
def: autonomous differential eq.	= if ϕ is time independent on the first argument of t
theorem: kth order diff. eq.	Theorem 3.22. Consider a scalar-valued, linear, kth order differential equation
	$x^{(k)}(t) = a_0 x(t) + a_1 \dot{x}(t) + \dots + a_{k-2} x^{(k-2)}(t) + a_{k-1} x^{(k-1)}(t). $ (3.108)
	A general solution can be written as a linear combination of k elementary solutions, where with every root λ of multiplicity q_{λ} of the polynomial
	$p(z) = z^{k} - a_{k-1}z^{k-1} - a_{k-2}z^{k-2} - \dots - a_{1}z - a_{0} $ (3.109)
	gives rise to q_{λ} elementary solutions of the form
	$x(t) = t^{j} e^{\lambda t}, j = 0, \dots, q_{\lambda} - 1.$ (3.110)
	The expansion coefficients of a general solution are completely fixed by specifying k initial values $(x(0), \dot{x}(0), \ddot{x}(0), \dots, x^{(k-1)}(0))$.