MA 1-21

- 1. Jakou výšku má nejvyšší bod na ploše $z=(x+1)^2+y^2$ uvažované nad elipsou $4x^2+y^2=1$?
- 2. Přepište následující integrál

$$\int_{-1}^{0} \int_{1+x}^{\sqrt{1-x^2}} f \, dy \, dx$$

nejprve v opačném pořadí integrace a pak v polárních souřadnicích se středem v počátku v pořadí $d\varrho \, d\varphi$.

- 3. Najděte těžiště kužele $P = \{(x, y, z) \in \mathbb{R}^3 \mid \sqrt{x^2 + y^2} \le z \le h\}$, je-li hustota v bodě (x, y, z) rovna jeho vzdálenosti od roviny xy.
- 4. Zjistěte, je-li pole $\vec{F} = (e^x \sin y + xy, e^x \cos y + \lambda x^2)$ potenciální pro nějakou hodnotu $\lambda \in \mathbb{R}$ a v kladném případě najděte jeho potenciál.
- 5. Nalezněte Fourierovu řadu $2\pi\text{-periodick\'e},$ po částech konstantní funkce, pro kterou platí

$$f(x) = \begin{cases} 0, & \text{pro } x \in \langle -\pi, 0 \rangle, \\ -1, & \text{pro } x \in \langle 0, \pi \rangle. \end{cases}$$

Zjistěte, ve kterých bodech řada reprezentuje funkci f.

Řešení.

1. Lagrangeova funkce má tvar $L=(x+1)^2+y^2-\lambda(4x^2+y^1-1)$. Rovnice pro stacionární body funkce L jsou

$$2(x+1) = \lambda 8x$$
, $2y^2 = \lambda 2y$, $4x^2 + y^2 = 1$.

Dostaneme 4 stacionární body: $(\pm \frac{1}{2}, 0)$ a $(0, \pm \frac{1}{3}\sqrt{5})$. Porovnáním hodnot funkce z zjistíme, že nejvyšší bod má výšku 7/3.

2. Opačné pořadí je $\int_0^1 \int_{-\sqrt{1-y^2}}^{y-1} f \ dx \, dy,$ v polárních souřadnicích

$$\int_{\frac{1}{2}\pi}^{\pi} \int_{1/(\sin\varphi-\cos\varphi)}^{1} f\varrho \, d\varrho d\varphi.$$

3. Ze symetrie plyne, že $x_t=y_t=0.$ Zbývá vypočíta
tz-tovou souřadnici.

$$\iiint_{P} z\sqrt{x^{2} + y^{2}} = \int_{0}^{h} \int_{0}^{z} \int_{0}^{2\pi} z \varrho^{2} d\varphi d\varrho dz = \frac{2\pi}{15} h^{5},$$
$$\iiint_{P} \sqrt{x^{2} + y^{2}} = \int_{0}^{h} \int_{0}^{z} \int_{0}^{2\pi} \varrho^{2} d\varphi d\varrho dz = \frac{\pi}{6} h^{4}.$$

Odtud
$$z_t = \frac{4}{5} h$$
.

- 4. Pole je potenciální pro $\lambda=1/2$ s potenciálem $f=e^x\sin y+\frac{1}{2}x^2y+K.$
- 5. $f(x)=-\frac{1}{2}+2\sum_{n=0}^{\infty}\frac{\sin(2n+1)x}{(2n+1)\pi}$ pro $x\in\mathbb{R}$ různá od $k\pi,\ k\in\mathbb{Z}$. V bodech $x=k\pi$ má řada hodnotu průměru $-\frac{1}{2}$.