Show all work clearly and in order. Please box your answers. 10 minutes.

1. Fill in the following table with the missing classification information:

DE	order	linear/nonlinear
xy'' - y' + 2y = x	2	linear
$\tan(x)y^{(10)} + \ln(x)y'' = \cot(x)$	10	linear
$\frac{d^5y}{dx^5} + xy^4 = \sin(x)$	5	nonlinear

2. Verify that $y = \sin(3x)$ is a solution to the differential equation y'' + 9y = 0.

$$y = \sin(3x)$$
 $y' = 3\cos(3x)$
 $y'' = -9\sin(3x)$
 $y'' = -9\sin(3x)$
 $y'' = -9\sin(3x)$

3. Find the value(s) of m so that $y = x^m$ is a solution to the differential equation xy'' + 2y' = 0.

$$y' = m \times^{m-1}$$

 $y'' = m(m-1) \times^{m-2}$
 $\times y'' + 2y' = 0$

$$\times m(m-1) \times^{m-2} + 2 m \times^{m-1} = 0$$

 $m(m-1) \times^{m-1} + 2 m \times^{m-1} = 0$
 $(m^2 - m + 2 m) \times^{m-1} = 0$
 $(m^2 + m) \times^{m-1} = 0$ if $x \neq 0$ then
 $m^2 + m = 0$
 $m(m+1) = 0$ $m = 0$ $m = -1$

$$m^2 + m = 0$$

$$m(m+1) = 0$$