Computer Architecture Homework #4

Verilog RISC-V controller

TA: Chi-Hung Weng (<u>r08943010@ntu.edu.tw</u>)

Due 2020/12/15 13:00 Tuesday (CEIBA, no late homework is allowed.)

1. Introduction

In this exercise, we follow the work done in HW3, using Verilog to design the controller in the RISC-V architecture. The controller generates control signals for registers, memory, ALU and PC(program counter) to do the correct operations based on the instructions decoded.

Control Signals are mainly based on the instruction type, so we make use of the output from the module you finished in HW3. After connecting the decoder and the controller, you almost finish the half of the implementation of the RISC-V architecture.

You have to rename the Verilog filename and the module name "CHIP" in HW3 to "HW3" for the use in this HW.

(Please use your HW3 module directly instead of doing this HW from scratch.)

We ask you to generate control signals from the classified results from HW3. The control signals format in this exercise is as below, where ALUOp is a 4-bit signal.

{ JAL, JALR, Branch, MemRead, MemWrite, MemtoReg, RegWrite, ALUSrc, ALUOp}

ALUOp for different operations assigned in this HW are listed in the table below:

ADD	0000	SUB	1000	SLL	0001
SLT	0010	XOR	0100	SRL	0101
SRA	1101	OR	0110	AND	0111

Since we skipped the immediate decoding in HW3, we also ask you to decode immediate in this HW. The immediate for different type of instructions stored in different bits of the instructions, you have to refer to the green sheet to finish this part. (Note: For convenience, the immediate should also delay one cycle to output with other signals at the same time.)

2. Specification

The input/output pins are defined in the table below:

Signal name	1/0	Bit width	Description
clk	1	1	Clock signal.
			Positive edge trigger.
rst_n	1	1	Active low asynchronous reset signal.
mem_addr_I	0	30	Output address of the instruction
			memory
mem_rdata_I	1	32	Instruction read from instruction
			memory
ctrl_signal	0	12	Controller output
immediate	0	32	Immediate decode from the instructions

3. Waveform

The design waveform is shown as below.

Since the instruction type/format delay one cycle in HW3, the required outputs in this HW also delay one cycle. (For the Single Cycle RISC-V implementation, this delay should be removed if you want to use these modules directly in your final project)

4. Simulation Scripts

4.1 RTL Simulation

ncverilog tb_HW4.v +define+RTL +access+r

4.2 Gate-level Simulation

ncverilog tb_HW4.v +define+SYN +access+r

4.3 Debug

nWave &

5. Files

- The deadline for this exercise is 13:00, Dec. 15th. Your work should be submitted in a compressed file following the naming convention,
 HW4_yourlD.zip (for example, HW4_b07901999.zip). The file should look like:
 (5% penalty for wrong format) There's a 10% penalty for incorrect upload format. No late submission is accepted.
- HW4_yourlD.zip
 - HW4_yourID/

• HW4.v (RTL file)

HW4_syn.v (synthesized gate-level netlist)

 HW4_syn.ddc (Design database generated by Synopsys Design Compiler)

• HW4_syn.sdf (Pre-layout gate-level sdf)

• yourID.pdf (Report)

• cycle.txt (cycle time that you can pass tb)

6. Grading Criteria

Item	Description	
RTL correctness(25%)	Your HW4.v should pass RTL simulation.	
Using HW3 module (15%)	Connect to your previous design.	
Gate-level correctness (20%)	Your HW4_syn.v should pass Gate-level simulation	
	and without latches	
Hidden tb (10%+10%)	Should pass simulations of the hidden tb.	
Report (20%)	Snapchat:	
	1. RTL(Pass)	
	2. SYN(Pass)	
	3. no latch	
	4. Timing report → report_timing	
	5. Area report → report_area	
	6. Cycle time in cycle.txt	

If you cannot use your own HW3 file(something wrong), we can provide you HW3 answer, but the grade in "Using HW3 module" is at most 10pts.

Ref:

RTL:

SYN:

No latch:

```
Inferred memory devices in process
in routine CHIP line 76 in file
'/home/raid7_2/user08/r08016/Test_HW3/v1_2/CHIP.v'.
        Register Name
                                      Type
                                                | Width | Bus | MB | AR
                                                                                 AS | SR |
                                                                                              SS
                                                                                                     ST |
  instruction_type_reg
instruction_format_reg
                                   Flip-flop
                                                    23
                                                                    N
                                                                                                     Ν
                                   Flip-flop
                                                     5
                                                                    N
                                                                                 N
                                                                                        N
                                                                                              N
                                                                                                     Ν
             PC_reg
                                   Flip-flop
                                                    32
                                                                    Ν
                                                                                 Ν
                                                                                              N
                                                                                                     Ν
Presto compilation completed successfully.
Current design is now '/home/raid7_2/user08/r08016/Test_HW3/v1_2/CHIP.db:CHIP'
Loaded 1 design.
Current design is 'CHIP'.
Current design is 'CHIP'.
```

Timing report:

CHIP	tsmc13_wl10	slow	
Point		Incr	Path
clock CLK (rise ed clock network dela input external del mem_rdata_I[3] (in U65/Y (CLKINVX8) U69/Y (AND3X8) U43/Y (NOR3BX4) U66/Y (BUFX16) U121/Y (NAND3X8)	y (ideal) ay	0.50 0.10 0.02 0.03 0.09 0.11 0.09	0.66 r 0.75 r 0.86 r
U175/Y (NOR3X1) instruction_type_r data arrival time	eg_10_/D (DFFRX1)	0.20 0.00	1.25 r 1.25 r 1.25
clock CLK (rise ed clock network dela clock uncertainty instruction_type_r library setup time data required time	y (ideal) eg_10_/CK (DFFRX1)		1.40
data required time data arrival time slack (MET)			1.25 -1.25 0.00

Area report:

Area report.				
***********	*****			
Report : area				
Design : CHIP				
Version: N-2017.09-SP2				
Date : Fri Nov 13 23:57:26 2020				

Library(s) Used:				
typical (File: /home/raid7_2,	/course/cvsd/Cl			
Number of ports:	153			
Number of nets:	438			
Number of cells:	354			
Number of combinational cells:	290			
Number of sequential cells:	63			
Number of macros/black boxes:	0			
Number of buf/inv:	134			
Number of references:	48			
Combinational area:	3376.128590			
Buf/Inv area:	1363.012206			
Noncombinational area:	2393.333981			
Macro/Black Box area:	0.000000			
Net Interconnect area:	32993.498932			
	5760 4605 74			
Total cell area:	5769.462571			
Total area:	38762.961503			

Cycle time: