

Background

Importance of Analyzing Customer Churn

Benefits for Telecom Providers:

Identifying patterns in service quality, pricing, and customer satisfaction

Proactive issue resolution and improved customer retention

Enhanced overall service delivery

Staying competitive by adapting to customer preferences

+

0

Overview of Presentation

Objectives

Data Management

Exploratory Data Analysis

Model Development

Model Evaluation Best Model Selection

Conclusion

Objectives

- Analyze 'Customer Churn' and understand the factors associated with it.
- 2. Develop Churn Prediction Model.
- Implement Machine Learning Algorithms and select the best method for Churn Prediction.
- 4. Practical implementation of the project was segmented into 4 Phases (Data Management, Exploratory Data Analysis, Model Development w/Binary Logistical Regression, Model Evaluation Methods and Comparing w/BLR).

Column Name	Data Type	гуре
customerID	object	Categorical
gender	object	Categorical
SeniorCitizen	int84	Numerical
Partner	object	Categorical
Dependents	object	Categorical
tenure	int64	Numerical
PhoneService	object	Categorical
MultipleLines	object	Categorical
InternetService	object	Categorical
OnlineSecurity	object	Categorical
OnlineBackup	object	Categorical
DeviceProtection	object	Categorical
rechSupport	object	Categorical
StreamingTV	object	Categorical
StreamingMovies	object	Categorical
Contract	object	Categorical
PaperlessBilling	object	Categorical
PaymentMethod	object	Categorical
MonthlyCharges	float64	Numerical
FotalCharges	object	Categorical
Churn	object	Categorical

Data Management

- Overview of Dataset:
 - Data source:Customer_Analytics_Telecom_Master.xlsx
- Key variables:
 - Tenure, SeniorCitizen
 - Partner, Dependents, etc.
- Initial Data Cleaning and Preparation:
 - Handling missing values
 - Data type conversion

Data Management

Column Name

customerID

SeniorCitizen

gender

Partner

tenure

Dependents

PhoneService

MultipleLines

InternetService

OnlineSecurity

OnlineBackup

TechSupport

StreamingTV

Contract

StreamingMovies

PaperlessBilling

PaymentMethod

MonthlyCharges

TotalCharges

Churn

DeviceProtection

Data Type

object

object

int64

object

object

int64

object

float64

object

object

Гуре

Categorical

Categorical

Numerical

Categorical

Categorical

Numerical

Categorical

Numerical

Categorical

Categorical

- The Column lists the names of the variables in the dataset.
- The Data type indicates the data type for each column, such as object for categorical data, int64 for integer numerical data, and float64 for floating-point numerical data.
- <u>Churn</u> is identified as the dependant variable.

Data Management

snapshot of Dataset structure

- Detailed
- Dataset contains various features related to customer information and service usage, including both numerical and categorical data.
- 22 variables present in the master dataset.
- 'CID' variable is a unique identifier and a dummy variable which was eventually dropped from future analysis.
- Variable Churn was identified as the dependant (target) variable, while the rest were treated as independent variables. The target variable 'Churn' indicating whether a customer has churned, which is crucial for our predictive modeling tasks.

Independent variables

Target Variable (Dependant variable)

\$ CID : chr "CI-01" "CI-02" "CI-03" "CI-04" ... \$ gender : Factor w/ 2 levels "Female", "Male": 1 2 2 1 1 2 1 1 1 2 ... \$ SeniorCitizen : Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 2 1 1 ... \$ Partner : Factor w/ 2 levels "No", "Yes": 1 2 2 1 1 2 1 1 2 ... : Factor w/ 2 levels "No", "Yes": 1 2 1 1 2 2 1 1 1 ... \$ Dependents \$ tenure : num 18 60 44 72 69 27 72 20 1 ... : Factor w/ 3 levels "Month-to-month",..: 1 2 1 3 3 1 3 1 1 1 ... \$ Contract \$ PaperlessBilling : Factor w/ 2 levels "No", "Yes": 2 2 2 2 2 1 2 2 2 2 ... : Factor w/ 4 levels "Bank transter (automatic)",..: 4 2 1 3 4 4 3 4 4 3 . \$ PaymentMethod \$ MonthlyCharges : num 52.2 118.8 95.1 56.4 69.1 ... \$ PhoneService : Factor w/ 2 levels "No", "Yes": 2 2 2 1 2 2 2 2 2 2 ... \$ MultipleLines : Factor w/ 2 levels "No", "Yes": 2 1 1 2 1 1 2 1 2 ... \$ InternetService : Factor w/ 3 levels "DSL", "Fiber optic", ..: 1 2 2 1 1 3 1 1 2 2 ... \$ OnlineSecurity : Factor w/ 2 levels "No", "Yes": 1 2 1 1 2 1 2 1 1 1 ... : Factor w/ 2 levels "No", "Yes": 1 2 1 2 2 1 2 1 1 1 ... \$ OnlineBackup \$ DeviceProtection : Factor w/ 2 levels "No", "Yes": 2 2 2 2 1 1 2 1 1 2 ... \$ TechSupport : Factor w/ 2 levels "No", "Yes": 2 1 1 2 1 2 1 1 1 ... : Factor w/ 2 levels "No", "Yes": 2 2 2 1 1 1 1 1 2 ... \$ StreamingTV \$ StreamingMovies : Factor w/ 2 levels "No", "Yes": 2 2 2 1 1 2 2 1 1 ... \$ numAdminTickets : num 00000000000... \$ numTechTickets \$ Churn : num 0001000110...

Key Factors Influencing Churn:

• Distribution of tenure by Churn status

Visualizations:

• Histogram of tenure with Churn

Key Factors Influencing Churn:

• Distribution of Payment method by Churn status

Visualizations:

• Bar chats of Payment method with Churn

BLR Model Summary

summary() generates a detailed description of the model.

			2 0 0		
Coefficients	Estimate	Std. Error	z value	<u>Pr(> z)</u>	Significance
(Intercept)	1.727979	0.225309	7.669	1.73e-14	***
genderMale	-0.10287	0.015581	-6.603	4.04e-11	***
SeniorCitizenYes	0.274804	0.021264	12.924	< 2e-16	***
PartnerYes	-0.068832	0.01921	-3.583	0.000339	***
DependentsYes	-0.072561	0.022031	-3.294	0.000989	***
tenure	-0.082224	0.000796	-103.3	< 2e-16	***
ContractOne year	-0.853694	0.03198	-26.694	< 2e-16	***
ContractTwo year	-2.392295	0.060708	-39.407	< 2e-16	***
PaperlessBillingYes	0.334508	0.017424	19.198	< 2e-16	***
PaymentMethodCredit card (automatic)	-0.209419	0.029178	-7.177	7.11e-13	***
PaymentMethodElectronic check	0.13631	0.02409	5.658	1.53e-08	***
PaymentMethodMailed check	-0.249314	0.027278	-9.14	< 2e-16	***
MonthlyCharges	-0.039183	0.00819	-4.784	1.72e-06	***
PhoneServiceYes	0.28021	0.166762	1.68	0.092899	
MultipleLinesYes	0.503598	0.045002	11.191	< 2e-16	***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 195862 on 169031 degrees of freedom

Residual deviance: 102454 on 169007 degrees of freedom

AIC: 102504

Number of Fisher Scoring iterations: 7

Interpretation :

- > Accepts null hypothesis that the following variables are significant and have a p-value <0.05
- \Rightarrow All variables except "StreamingMoviesYes" are significant (p-values < 0.05 or better)
- > "StreamingMoviesYes" is not significant (p-value: > 0.05 i.e. 0.0992678)

Model Development

ML Models Used:

- Logistic Regression
- Decision Tree (DT)
- Naïve Bayes
- Random Forest

Feature Selection and Engineering:

- Conversion of categorical variables to factors
- Splitting data into training and test sets

Model Development

Binary Logistic Regression

- Classifier is relatively effective in distinguishing between the positive and negative classes.
- The curve then moves towards the top-right corner (1,1), but not as steeply as a perfect model would.
- The AUC value (92.4%) indicates excellent performance of the BLR model in distinguishing between the classes. This also means that the model has a high true positive rate and a relatively low false positive rate across different threshold level.

Model Development

Decision Tree Method

- Classifier is relatively effective in distinguishing between the positive and negative classes.
- The curve then moves towards the top-right corner (1,1), but not as steeply as a perfect model would.
- The AUC value of 88.3% indicates good performance of the Decision Tree algorithm in distinguishing between the classes.
- This also suggest that the model has a high true positive rate and a relatively low false positive rate across different threshold levels.

Model Development

Naïve Bayes Classifier

- Classifier is relatively effective in distinguishing between the positive and negative classes.
- The curve then moves towards the top-right corner (1,1), but not as steeply as a perfect model would.
- The AUC value of 88.6% indicates good performance of the Naïve Bayes Method in distinguishing between the classes. This also means that the model has a high true positive rate and a relatively low false positive rate across different threshold levels.

- Classifier is very effective in distinguishing between the positive and negative classes, especially at lower false positive rates.
- The model's performance with an AUC of 96.6% indicates a significantly better than random guessing, which would be represented by the diagonal line.

Confusion Matrix - Random Forest

Model Evaluation

- Metrics for Evaluation:
 - Accuracy, Precision, Recall, F1 Score
- Comparison of Model Performance:
 - **Confusion Matrix for** each model

Binary Logistic Regression / Confusion Matrix

```
Confusion Matrix and Statistics
         Reference
Prediction
               0
        0 113224 12699
           10825 32284
              Accuracy : 0.8608
                95% CI : (0.8592, 0.8625)
   No Information Rate: 0.7339
   P-Value [Acc > NIR] : < 2.2e-16
                 Kappa: 0.6389
Mcnemar's Test P-Value : < 2.2e-16
           Sensitivity: 0.9127
           Specificity: 0.7177
        Pos Pred Value: 0.8992
        Neg Pred Value: 0.7489
            Prevalence: 0.7339
        Detection Rate: 0.6698
  Detection Prevalence: 0.7450
     Balanced Accuracy: 0.8152
       'Positive' Class: 0
```

- Overall accuracy of the model is 86.08%, indicating that the model correctly predicts the outcome of in 86.08% of the cases.
- Kappa statistic accounts for agreement occurring by chance. A Kappa of 0.6389 suggests moderate agreement beyond chance.
- Sensitivity is 91.27%, meaning the model correctly identifies 91.27% of the actual positive cases.
- The Specificity is 71.77%, indicating the model correctly identifies 71.77% of the actual negative cases.

Accuracy Formula:

(TP+TN)/(TP+TN+FP+FN)

Specificity Formula: Sensitivity Formula: TN/(TN+FP) TP/(TP+FN)


```
Confusion Matrix and Statistics
          Reference
Prediction
         0 99795 8137
         1 24254 36846
              Accuracy: 0.8084
                95% CI: (0.8065, 0.8102)
    No Information Rate: 0.7339
    P-Value [Acc > NIR] : < 2.2e-16
                 Kappa: 0.5597
Mcnemar's Test P-Value : < 2.2e-16
           Sensitivity: 0.8045
           Specificity: 0.8191
         Pos Pred Value: 0.9246
         Neg Pred Value : 0.6030
             Prevalence: 0.7339
         Detection Rate: 0.5904
   Detection Prevalence: 0.6385
      Balanced Accuracy: 0.8118
       'Positive' Class: 0
```

- Overall accuracy of the model is 80.84%, indicating that the model correctly predicts the outcome of in 80.84% of the cases.
- Kappa statistic accounts for agreement occurring by chance. A Kappa of 0.5597 suggests moderate agreement beyond chance.
- Sensitivity is 80.45%, meaning the model correctly identifies 80.45% of the actual positive cases.
- The Specificity is 81.91%, indicating the model correctly identifies 81.91% of the actual negative cases.

Accuracy Formula:

(TP+TN)/(TP+TN+FP+FN)

Decision Tree / Confusion Matrix Specificity Formula: TN/(TN+FP)

Sensitivity Formula:

TP/(TP+FN)

Naïve Bayes / Confusion Matrix

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 97553 7814 1 26496 37169

Accuracy: 0.797

95% CI: (0.7951, 0.7989)

No Information Rate : 0.7339 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.5411

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity: 0.7864 Specificity: 0.8263 Pos Pred Value: 0.9258 Neg Pred Value: 0.5838 Prevalence: 0.7339 Detection Rate: 0.5771

Detection Prevalence: 0.6234
Balanced Accuracy: 0.8063

'Positive' Class : 0

Overall accuracy of the model is 79.7%, indicating that the model correctly predicts the outcome of in 79.7% of the cases.

Kappa statistic accounts for agreement occurring by chance. A Kappa of 54.11% suggests moderate agreement beyond chance.

Sensitivity is 78.64%, meaning the model correctly identifies 78.64% of the actual positive cases.

The Specificity is 82.63%, indicating the model correctly identifies 82.63% of the actual negative cases.

Accuracy Formula:

(TP+TN)/(TP+TN+FP+FN)

Specificity Formula: TN/(TN+FP)

Sensitivity Formula: TP/(TP+FN)

Random
Forest /
Confusion
Matrix

Random Forest Method/Confusion Matrix

Model Development

Confusion Matrix and Statistics Reference Prediction 0 112433 3030 1 11616 41953 Accuracy: 0.9134 95% CI: (0.912, 0.9147) No Information Rate: 0.7339 P-Value [Acc > NIR] : < 2.2e-16 Kappa: 0.7909 Mcnemar's Test P-Value : < 2.2e-16 Sensitivity: 0.9064 Specificity: 0.9326 Pos Pred Value: 0.9738 Neg Pred Value : 0.7832 Prevalence: 0.7339 Detection Rate: 0.6652 Detection Prevalence : 0.6831 Balanced Accuracy: 0.9195 'Positive' Class : 0

- Accuracy of the model is 91.34%, indicating that the model correctly predicts the outcome of in 91.34% of the cases.
- Kappa statistic accounts for agreement occurring by chance. A Kappa of 79.09% suggests substantial agreement beyond chance.
- Sensitivity is 90.64%, meaning the model correctly identifies 90.64% of the actual positive cases.
- The Specificity is 93.26%, indicating the model correctly identifies 93.26% of the actual negative cases.

Accuracy Formula:

(TP+TN)/(TP+TN+FP+FN)

Specificity Formula: Sensitivity Formula:

TN/(TN+FP) TP/(TP+FN)

Best Model Selection

- Detailed Analysis of Best Performing Model:
 - Summary of model performances using resamples
 - Confusion Matrix and ROC Curve

ROC Curves for Different Models

- The Random Forest model has the highest AUC value, indicating the best performance among the four models.
- The ROC curve for the Random Forest model is closest to the top-left corner, showing high true positive rates and low false positive rates across different thresholds
- The Binary Logistic Regression model also performs very well, with a high AUC value of 0.924. The curve is slightly below the Random Forest curve but still indicates strong discriminatory power.
- The Decision Tree model has the lowest AUC value of 0.882 among the four models

Conclusion

Summary of Findings:

- Key factors influencing churn:
 - Tenure
 - Gender
 - Contract
 - Payment Method
- Initial Data Cleaning and Preparation:
 - Handling missing values
 - Data type conversion
- Best model for predicting churn
 - Random Forest Classifier (96%)

Future Work and Potential Improvements:

- Further parameter tuning of models
- Incorporation of additional data sources

THANK YOU!