Feedback design Design trade-off Example: Damping of a pendulum

Pole-placement design

Outline

- Feedback design
 - The polynomial equation
 - Pre-chosen factors
 - Pole-placement versus IMC
- 2 Design trade-off
 - Avoid model matching formulation
 - Speed versus noise sensitivity
- 3 Example: Damping of a pendulum
 - Cascade feedback design
 - Reference feedforward design

Outline

- Feedback design
 - The polynomial equation
 - Pre-chosen factors
 - Pole-placement versus IMC
- 2 Design trade-off
 - Avoid model matching formulation
 - Speed versus noise sensitivity
- 3 Example: Damping of a pendulum
 - Cascade feedback design
 - Reference feedforward design

Feedback can change stability properties

Process

$$Ay = Bu$$

Characteristic polynomial *A* determines stability Feedback controller

$$Ru = -Sy$$

Closed-loop system

$$ARy = BRu = -BSy \rightarrow \underbrace{(AR + BS)}_{A_c} y = 0$$

Closed-loop characteristic polynomial A_c determines stability

The pole-placement problem

Given process model polynomials A and B Given (chosen) closed-loop poles $\lambda_1, \ldots, \lambda_n$

$$\to A_c(q^{-1}) = (1 - \lambda_1 q^{-1}) \dots (1 - \lambda_n q^{-1}) = 1 + a_{c_1} q^{-1} + \dots + a_{c_n} q^{-n}$$

Calculate controller polynomials R and S

$$AR + BS = A_c \rightarrow \begin{cases} R \\ S \end{cases}$$

Cancel common factors

Assume A and B coprime (no common factors) Study common factors between A_c and A or B

$$(A_1A_2)R + (B_1B_2)S = A_{c1}A_{c2}$$

Same factors must be on left and right hand side:

Cancel common factors

Assume A and B coprime (no common factors) Study common factors between A_c and A or B

$$(A_1A_2)R + (B_1B_2)S = A_{c1}A_{c2}$$

Same factors must be on left and right hand side:

• $A_{c2} = A_2 \Rightarrow S = S_1 A_2$. Cancel common factor A_2

$$A_1R + BS_1 = A_{c1} \rightarrow \left\{ \begin{array}{l} R \\ S_1 \end{array} \right.$$

Cancel common factors

Assume A and B coprime (no common factors) Study common factors between A_c and A or B

$$(A_1A_2)R + (B_1B_2)S = A_{c1}A_{c2}$$

Same factors must be on left and right hand side:

• $A_{c2} = A_2 \Rightarrow S = S_1 A_2$. Cancel common factor A_2

$$A_1R + BS_1 = A_{c1} \rightarrow \left\{ \begin{array}{l} R \\ S_1 \end{array} \right.$$

•
$$A_{c2} = B_2 \Rightarrow R = R_1 B_2$$

$$AR_1 + B_1S = A_{c1} \rightarrow \left\{ \begin{array}{l} R_1 \\ S \end{array} \right.$$

An equivalent equation system

Assume A, B and A_c coprime Identify coefficient of q^{-k} :

$$\sum_{i+j=k} a_i r_j + \sum_{i+j=k} b_i s_j = a_{c_k}, \qquad k = 0, \dots, n$$

In matrix form

$$n+1\left\{egin{array}{cccccc} a_0 & \ldots & 0 & b_0 & \ldots & 0 \ a_1 & \ddots & dots & b_1 & \ddots & dots \ a_2 & \ddots & a_0 & b_2 & \ddots & b_0 \ dots & \ddots & dots & dots & dots \ \end{array}
ight. egin{array}{c} r_0 \ dots \ s_0 \ dots \ \end{array}
ight. = \left(egin{array}{c} a_{c_0} \ a_{c_1} \ dots \ a_{c_n} \end{array}
ight)$$

Unique solution if $n + 1 = \deg R + \deg S + 2$

Degree conditions for unique solution

To solve

$$AR + BS = A_c \rightarrow \begin{cases} R \\ S \end{cases}$$

choose

$$\left\{ egin{array}{l} \deg A_c \leq \deg A + \deg B - 1 \ \deg R = \deg B - 1 \ \deg S = \deg A - 1 \end{array}
ight.$$

Example

Process model

$$\frac{B}{A} = \frac{b_1 q^{-1} + b_2 q^{-2}}{1 + a_1 q^{-1} + a_2 q^{-2}}$$

Degree conditions give

$$\begin{split} \deg A_c & \leq \deg AB - 1 = 3, \quad A_c = 1 + a_{c_1} \mathrm{q}^{-1} + a_{c_2} \mathrm{q}^{-2} + a_{c_3} \mathrm{q}^{-3} \\ \deg R & = \deg B - 1 = 1, \qquad R = r_0 + r_1 \mathrm{q}^{-1} \\ \deg S & = \deg A - 1 = 1, \qquad S = s_0 + s_1 \mathrm{q}^{-1} \end{split}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ a_1 & 1 & b_1 & 0 \\ a_2 & a_1 & b_2 & b_1 \\ 0 & a_2 & 0 & b_2 \end{pmatrix} \begin{pmatrix} r_0 \\ r_1 \\ s_0 \\ s_1 \end{pmatrix} = \begin{pmatrix} 1 \\ a_{c_1} \\ a_{c_2} \\ a_{c_3} \end{pmatrix} \longrightarrow \begin{pmatrix} r_0 \\ r_1 \\ s_0 \\ s_2 \end{pmatrix}$$

Example: simplifications

Use that $r_0 = 1$ and eliminate first row and column

$$\left(\begin{array}{ccc}1&b_1&0\\a_1&b_2&b_1\\a_2&0&b_2\end{array}\right)\left(\begin{array}{c}r_1\\s_0\\s_1\end{array}\right)=\left(\begin{array}{c}a_{c_1}-a_1\\a_{c_1}-a_2\\a_{c_3}\end{array}\right)\longrightarrow\left(\begin{array}{c}r_1\\s_0\\s_2\end{array}\right)$$

Alternatively:

Evaluate at roots
$$A(p_1) = A(p_2) = B(z_1) = 0$$

$$B(p_1)S(p_1) = A_c(p_1) B(p_2)S(p_2) = A_c(p_2)$$
 \rightarrow $\begin{pmatrix} s_0 \\ s_1 \end{pmatrix}$ $A(z_1)R(z_1) = A_c(z_1)$ $\rightarrow r_1$

Outline

- Feedback design
 - The polynomial equation
 - Pre-chosen factors
 - Pole-placement versus IMC
- Design trade-off
 - Avoid model matching formulation
 - Speed versus noise sensitivity
- 3 Example: Damping of a pendulum
 - Cascade feedback design
 - Reference feedforward design

Pre-chosen fixed factors in R and S

Closed-loop disturbance response $d \rightarrow y$

$$y = \frac{RC}{A_c}d$$

Constant (low frequency) disturbance eliminated if R(1) = 0 Closed-loop disturbance response $d \rightarrow u$

$$u = -\frac{SC}{A_c}d$$

Noise (high frequency) disturbance eliminated if S(-1)=0

Pre-chosen fixed factors in R and S

Closed-loop disturbance response $d \rightarrow y$

$$y = \frac{RC}{A_c}d$$

Constant (low frequency) disturbance eliminated if R(1) = 0 Closed-loop disturbance response $d \rightarrow u$

$$u = -\frac{SC}{A_c}d$$

Noise (high frequency) disturbance eliminated if S(-1) = 0

Pre-chosen factors R_f and S_f

Find solution $AR + BS = A_c$ such that $R = R_1R_f$ and $S = S_1S_f$

Polynomial equation with fixed factors

Associate fixed factors to process $A' = AR_f$, $B' = BS_f$

$$A'R_1 + B'S_1 = A_c, \rightarrow \left\{ egin{array}{l} R_1 \ S_1 \end{array} \right.$$

with degree conditions

$$\deg A_c \leq \deg A'B'-1 \ \deg R_1 = \deg B'-1 \ \deg S_1 = \deg A'-1$$

Associate fixed factors back to controller

$$\begin{cases} R = R_1 R_f \\ S = S_1 S_f \end{cases}$$

Example: Ignition control of a car engine

For an optimal performance the pressure peak position (PPP) should be kept constant at a given crank angle.

Example: ignition control...

Model

$$y(k) = b_1 u(k-1) + d$$

$$\begin{cases} k & \text{combustion cycle} \\ y & PPP \\ u & \text{ignition crank angle} \\ d & \text{low frequency disturbance} \end{cases}$$

Controller design with integral action
$$R_f=1-{
m q}^{-1}$$
 Model $A=1,\ B=b_1{
m q}^{-1}$ and $A'=AR_f$

$$\deg A_c \leq \deg A' + \deg B - 1 = 1, \quad A_c = 1 - \lambda q^{-1}$$
 $\deg R_1 = \deg B - 1 = 0, \qquad R_1 = 1, \quad R = R_f = 1 - q^{-1}$
 $\deg S = \deg A' - 1 = 0, \qquad S = s_0$

Example: ignition control...

Polynomial equation

$$A'R_1 + BS = (1 - q^{-1}) + b_1 q^{-1} s_0 = 1 - (1 - b_1 s_0) q^{-1} = A_c = 1 - \lambda q^{-1}$$

Design by choosing closed-loop pole λ

$$s_0=(1-\lambda)/b_1$$

Choose T for steady-state gain 1

$$\frac{BT}{A_c}(1) = 1 \rightarrow T = \frac{A_c}{B}(1) = \frac{A(1)R(1) + B(1)S(1)}{B(1)} = S(1) = s_0$$

Integral controller $(Ru = -Sy + Tr = s_0e)$

$$u = \frac{s_0}{1 - \alpha^{-1}}e$$

Example: experimental results

- PPP Pressure peak position, y and setpoint (red)
- IGN Ignition before top dead center, -u
- MAP Manifold air pressure, (low frequency) disturbance d

Example: ignition control—why not PI?

PI-control structure

$$\frac{S}{R} = \frac{s_0 + s_1 q^{-1}}{1 - q^{-1}}$$

Closed-loop characteristic polynomial

$$AR + BS = (1 - q^{-1}) + b_1 q^{-1} (s_0 + s_1 q^{-1}) = 1 + (b_1 s_0 - 1) q^{-1} + b_1 s_1 q^{-2}$$

Compare with

$$A_c = (1 - \lambda_1 q^{-1})(1 - \lambda_2 q^{-1}) = 1 - (\lambda_1 + \lambda_2)q^{-1} + \lambda_1 \lambda_2 q^{-2}$$

With backward-difference approximation $s_1 = -K$

$$\lambda_1\lambda_2 = b_1s_1 = -b_1K < 0 \Rightarrow \lambda_1 > 0, \quad \lambda_2 < 0$$

Example: ignition control—why not PI?

PI-control structure

$$\frac{S}{R} = \frac{s_0 + s_1 q^{-1}}{1 - q^{-1}}$$

Closed-loop characteristic polynomial

$$AR + BS = (1 - q^{-1}) + b_1 q^{-1} (s_0 + s_1 q^{-1}) = 1 + (b_1 s_0 - 1) q^{-1} + b_1 s_1 q^{-2}$$

Compare with

$$A_c = (1 - \lambda_1 q^{-1})(1 - \lambda_2 q^{-1}) = 1 - (\lambda_1 + \lambda_2)q^{-1} + \lambda_1 \lambda_2 q^{-2}$$

With backward-difference approximation $s_1 = -K$

$$\lambda_1\lambda_2 = b_1s_1 = -b_1K < 0 \Rightarrow \lambda_1 > 0, \quad \lambda_2 < 0$$

Why not PI for this problem?

One nasty oscillating pole on negative real axis!

Example: Plate and fan

Plate and fan: PID design (Ziegler-Nichols)

PID (sampling h = 0.01s)

Estimate: steady-state gain

$$\frac{\Delta y}{\Delta u} \approx \frac{0.6}{0.8} = b_1$$

Plate and fan: Discrete-time design—tuned slow

Discrete model (h = 1s)

$$y(k) = b_1 u(k-1)$$

I-controller

$$u(k) = \frac{s_0}{1 - q^{-1}}e(k)$$

gives closed-loop response

$$y(k) = \frac{(1-\lambda)q^{-1}}{1-\lambda q^{-1}}r(k)$$

Design
$$\lambda = 1 - b_1 s_0 = 0.5$$

Plate and fan: Discrete-time design—tuned faster

Faster design $\lambda = 0.25$

Plate and fan: Discrete-time design—tuned fastest

Fastest design (dead-beat)
$$\lambda = 0 \Rightarrow y(k) = r(k-1)$$

Plate and fan: Discrete-time design—tuned fastest

Fastest design (dead-beat)
$$\lambda = 0 \Rightarrow y(k) = r(k-1)$$

Discrete design compared to discretized continuous design

Same performance but with 100 times slower sampling

Example: Magnetic suspension system

Dynamics of suspending ball

$$m\ddot{x} = F_g - F_m$$

$$\begin{cases} F_g = mg & \text{gravitational force} \\ F_m = -\frac{1}{2}\frac{dL}{dx}i^2 & \text{magnetic force} \end{cases}$$

Example: Magnetic suspension system—PD-control

Example: Magnetic suspension system—Discrete design

Linearized dynamics

$$G(s) = \frac{b}{s^2 - a}$$

Zero-order-hold sampling

$$\frac{B(q^{-1})}{A(q^{-1})} = \gamma \frac{q^{-1} + q^{-2}}{1 - \beta q^{-1} + q^{-2}}, \qquad \beta > 0$$

Controller design with integral action $R_f = 1 - q^{-1}$ Controller structure

$$\begin{aligned} \deg A_c &\leq \deg A'B - 1 = 4, & A_c &= (1 - \lambda_1 q^{-1}) \dots (1 - \lambda_4 q^{-1}) \\ \deg R_1 &= \deg B - 1 = 1, & R &= R_1 R_f = (1 + r_1 q^{-1})(1 - q^{-1}) \\ \deg S &= \deg A' - 1 = 2, & S &= s_0 + s_1 q^{-1} + s_2 q^{-2} \end{aligned}$$

Pole placement $\lambda_k = 0.95, 0.54, 0.33, 0.21, k = 1, \dots, 4$

Example: Magnetic suspension system—Discrete design

Example: Magnetic suspension system—Discrete design

Reduce noise feedback by choosing $S_f=1+{
m q}^{-1}$ $(S_f(-1)=0)$ Keep integral action $R_f=1-{
m q}^{-1}$ Controller structure

$$\begin{split} \deg A_c &\leq \deg A'B'-1=5, \quad A_c = (1-\lambda_1 q^{-1})\dots (1-\lambda_5 q^{-1}) \\ \deg R_1 &= \deg B'-1=2, \qquad R_1 = 1+r_1 q^{-1}+r_2 q^{-2} \\ \deg S_1 &= \deg A'-1=2, \qquad S_1 = s_0+s_1 q^{-1}+s_2 q^{-2} \end{split}$$

Higher complexity: $R = R_1 R_f$, $S = S_1 S_f$ both of degree 3

Example: Discrete design with reduced noise feedback

Compare trade-off between tracking

and control effort		
S_f	$std(e_u)$ $[\mu]$	$\max \Delta u $
1	10	0.45
$1 + q^{-1}$	15	0.12

Outline

- Feedback design
 - The polynomial equation
 - Pre-chosen factors
 - Pole-placement versus IMC
- 2 Design trade-off
 - Avoid model matching formulation
 - Speed versus noise sensitivity
- 3 Example: Damping of a pendulum
 - Cascade feedback design
 - Reference feedforward design

IMC design

Process with input-disturbance and badly damped poles

$$y(k) = \frac{q^{-1}}{(1 - \lambda_1 q^{-1})(1 - \lambda_2 q^{-1})} [u(k) + d(k)], \quad \lambda_{1,2} = 0.1 \pm i0.99$$

IMC design

$$A_c = ABq = A$$

 $R = Bq(1 - q^{-1}) = (1 - q^{-1})$
 $S = T = A$

Closed-loop response

$$y = \frac{BT}{A_c}r + \frac{BR}{A_c}d = q^{-1}r + \frac{q^{-1}(1 - q^{-1})}{A}d$$

Pole-placement design

Polynomial equation

$$AR + BS = A_c$$

Integral action $R_f = 1 - q^{-1}$ $(A' = AR_f, R = R_1R_f)$

$$\deg A_c = \deg A'B - 1 = 3$$
 $\deg R_1 = \deg B - 1 = 0, \quad R = R_1R_f = 1 - q^{-1}$
 $\deg S = \deg A' - 1 = 2$

Same reference response as IMC if $T = A_c$

$$y = \frac{BT}{A_c}r + \frac{BR}{A_c}d = q^{-1}r + \frac{q^{-1}(1 - q^{-1})}{A_c}d$$

Pole-placement design versus IMC

Reference r (dashed) and step disturbance d at 20

IMC response

$$y = q^{-1}r + \frac{(1 - q^{-1})}{A}d$$

Pole-placement $A_c = 1$

$$y = q^{-1}r + q^{-1}(1 - q^{-1})d$$

Outline

- Feedback design
 - The polynomial equation
 - Pre-chosen factors
 - Pole-placement versus IMC
- ② Design trade-off
 - Avoid model matching formulation
 - Speed versus noise sensitivity
- 3 Example: Damping of a pendulum
 - Cascade feedback design
 - Reference feedforward design

Model matching

Sometimes pole placement design is presented as *model matching*: Given desired reference model

$$y = Hr, \quad H = \frac{B_H}{A_H}$$

Matching to closed-loop reference response

$$\frac{B_H}{A_H} = \frac{BT}{A_c} \Rightarrow \left\{ \begin{array}{l} T = B_H A_o \\ A_c = A_H A_o B \end{array} \right.$$

Pole placement: A_HA_o chosen freely but not B Misleading design approach!

Better to choose A_c than B_H

Example

A DC motor with transfer function

$$G(s)=\frac{4}{s(s+2)}$$

is sampled (h = 0.025s) to discrete-time model

$$\frac{B}{A} = \frac{1.23 \cdot 10^{-3} q^{-1} (1 + 0.98 q^{-1})}{(1 - q^{-1})(1 - 0.95 q^{-1})}$$

Study three design choices:

- a) Choose reference model $H = \frac{0.2 \mathrm{q}^{-1}}{1 0.8 \mathrm{q}^{-1}}$
- b) Choose pole placement $A_c = 1 0.8q^{-1}$
- c) Choose pole placement at 0.95, 0.93 and 0.9

Example: problem a)

Pole placement includes factor $B_2 = 1 + 0.98q^{-1}$

$$A_c = (1 - 0.8q^{-1})(1 + 0.98q^{-1}) \Rightarrow R = R_1 B_2$$

Cancel common factor B_2

$$AR_1 + B_1S = A_{c1} \quad \left\{ \begin{array}{l} \deg R_1 = \deg B_1 - 1 = 0, \qquad R = R_1B_2 = B_2 \\ \deg S = \deg A - 1 = 1, \qquad S = s_0 + s_1q^{-1} \end{array} \right.$$

Evaluate at poles $(A(1) = A(0.95^{-1}) = 0)$

$$B(1)S(1) = A_c(1) B(0.95^{-1})S(0.95^{-1}) = A_c(0.95^{-1})$$
 $\Rightarrow S = 935 - 772q^{-1}$

Adjust steady-state gain $T = A_c(1)/B(1) = 163$

Example: a)

Response without and with measurement noise

$$A_c = (1 - 0.8q^{-1})\underbrace{(1 + 0.98q^{-1})}_{B_2}$$

$$y = \frac{BT}{A_c}r + \frac{RA}{A_c}d$$
$$u = \frac{AT}{A_c}r - \frac{SA}{A_c}d$$

Pole at -0.98 not canceled in control signal response

 \rightarrow Rippling of control signal

Example: b)

Response without and with measurement noise

$$A_c = 1 - 0.8q^{-1}$$
$$y = \frac{BT}{A_c}r + \frac{RA}{A_c}d$$
$$u = \frac{AT}{A_c}r - \frac{SA}{A_c}d$$

Well damped pole at 0.8 → No rippling of control signal

Example: c)

Response without and with measurement noise

$$A_c(\lambda^{-1}) = 0,$$

 $\lambda = 0.95, 0.93, 0.9$

$$y = \frac{BT}{A_c}r + \frac{RA}{A_c}d$$
$$u = \frac{AT}{A_c}r - \frac{SA}{A_c}d$$

Noise gain $\left|\frac{SA}{A_c}(-1)\right| \approx 3$ Compare **a)** $2 \cdot 10^5$, **b)** 2000

Outline

- Feedback design
 - The polynomial equation
 - Pre-chosen factors
 - Pole-placement versus IMC
- ② Design trade-off
 - Avoid model matching formulation
 - Speed versus noise sensitivity
- 3 Example: Damping of a pendulum
 - Cascade feedback design
 - Reference feedforward design

Servo control designs

Discrete model

$$y(k) = y(k-1) + u(k-1), \quad A = 1 - q^{-1}, B = q^{-1}$$

Study designs with integral action $R_f = 1 - q^{-1}$

R and S

Degree conditions $(A' = AR_f)$

$$\deg A_c = \deg A'B - 1 = 2, \quad A_c = (1 - \lambda_1 q^{-1})(1 - \lambda_2 q^{-1})$$
 $\deg R_1 = \deg B - 1 = 0, \quad R = R_1 R_f = (1 - q^{-1})$
 $\deg S = \deg A' - 1 = 1, \quad S = s_0 + s_1 q^{-1}$

Since R known, S is solved directly as

$$\begin{split} A_c &= 1 + a_{c_1} \mathbf{q}^{-1} + a_{c_2} \mathbf{q}^{-2} \\ AR &= (1 - \mathbf{q}^{-1})^2 = 1 - 2\mathbf{q}^{-1} + \mathbf{q}^{-2} \\ S &= B^{-1} (A_c - AR) = (a_{c_1} + 2) + (a_{c_2} - 1)\mathbf{q}^{-1} \end{split}$$

Since
$$a_{c_1}=-\lambda_1-\lambda_2$$
 and $a_{c_2}=\lambda_1\lambda_2$
$$s_0=2-\lambda_1-\lambda_2 \\ s_1=\lambda_1\lambda_2-1$$

T=S (PI structure)

Choosing PI structure T = S:

$$u = \frac{S}{R}e = \frac{s_0 + s_1 q^{-1}}{1 - q^{-1}}e$$

Reference response with zero at $z_1 = -s_1/s_0$

$$y = \frac{BS}{A_c}r = \frac{s_0 + s_1q^{-1}}{(1 - \lambda_1q^{-1})(1 - \lambda_2q^{-1})}q^{-1}r$$

Pole-placement design

$$\left.\begin{array}{l}\lambda_1=0.7\\\lambda_2=0.8\end{array}\right\}\Rightarrow z_1=0.88$$

The zero causes overshoot!

PI structure

The zero causes overshoot!

T scalar

Choose instead $T = S(1) = s_0 + s_1$ scalar \rightarrow no zero introduced!

No overshoot, but slow!

Faster response

Faster response with pole placement $\lambda_1=0.7$, $\lambda_2=0$

But, unmodeled dynamics excited!

Faster response with less noise feedback

Measurement noise feedback to control signal

$$u = -\frac{AS}{A_c}d$$

Make this more low pass by the slow pole $\lambda_2 = 0.8$

$$A_c = (1 - 0.7q^{-1})(1 - 0.8q^{-1})$$

Fast response by canceling the slow pole

$$T = (1 - 0.8q^{-1})S(1)/0.2$$

Steady-state gain is one: $T(1) = A_c(1)/B(1) = S(1)$

Faster response with less noise feedback

Outline

- Feedback design
 - The polynomial equation
 - Pre-chosen factors
 - Pole-placement versus IMC
- 2 Design trade-off
 - Avoid model matching formulation
 - Speed versus noise sensitivity
- 3 Example: Damping of a pendulum
 - Cascade feedback design
 - Reference feedforward design

Damping of a pendulum

Cascade control

Trailer dynamics $A_x x = B_x u$ P controller u = Ke, e = v - xClosed loop $A_1 x = B_1 v$

$$\begin{cases}
A_1 = A_x + KB_x \\
B_1 = KB_x
\end{cases}$$

Pendulum dynamics $A_y y = B_y x$ Outer loop model

$$\begin{cases} A_2 = A_1 A_y & \begin{cases} A_1 \text{ well damped} \\ A_y \text{ badly damped} \end{cases} \\ B_2 = B_1 B_y \end{cases}$$

Trailer control

Step response for inner loop (modeled and measured response)

$$x = \frac{B_1}{A_1}v$$

Pendulum model

Pendulum dynamics $A_y y = B_y x$

$$\begin{cases} A_y = (1 - \lambda q^{-1})(1 - \lambda^* q^{-1}) \\ B_y = b_0(1 - q^{-1})^2 \end{cases}$$

complex poles λ , $\lambda^* = \operatorname{conj}[\lambda]$ close to unit circle

Outer loop feedback design

Keep A_1 (well damped) in pole placement

$$\begin{cases} A_c = A_1 A_{c1} \\ S = A_1 S_1 \end{cases}$$

Polynomial equation (cancel common factor A_1)

$$A_y R + S_1 B_2 = A_{c1}$$

$$\begin{cases} \deg A_{c1} \leq \deg A_y + \deg B_2 - 1 = 6 \\ \deg R = \deg B_2 - 1 = 4 \\ \deg S_1 = \deg A_y - 1 = 1 \end{cases}$$

Chosen well damped poles

$$A_{c1} = \prod_{k=1}^{6} (1 - \lambda_k q^{-1})$$

 $\lambda_k = 0.85, 0.8, 0.75, 0.7, 0.65, 0.6$

Outline

- 1 Feedback design
 - The polynomial equation
 - Pre-chosen factors
 - Pole-placement versus IMC
- Design trade-off
 - Avoid model matching formulation
 - Speed versus noise sensitivity
- 3 Example: Damping of a pendulum
 - Cascade feedback design
 - Reference feedforward design

Reference to trailer position

Reference to trailer position x

$$v(\infty) = \frac{A_2 T}{A_c}(1) r(\infty), \quad \rightarrow T = \frac{A_c}{A_2}(1) = R(1)$$

