HLS Final Project Presentation

Hardware Desgin of Ciphers via HLS: The Case of PRESENT

Team #3

Github: https://github.com/ANIIIII/HLS final project.git

Outline

- Abstract
- PRESENT
- Cipher Design via HLS
 - sBox Layer
 - Permutation Layer
 - Optimizations
- Experiment Results
- Conclusion

Abstract

Our goal is to demonstrate the feasibility of using HLS in optimizing hardware design of ciphers by implementing several architectures in [2].

The point is how we replace conventional method by HLS design. So we will focus on the general method to design a cipher with HLS.

PRESENT

lightweight block cipher

64 bits block size

80/128 bits key size

dedicated for hardware

generateRoundKeys()

for i = 1 to 31 do

addRoundKey(STATE, K_i)

sBoxLayer(STATE)

pLayer(STATE)

end for

addRoundKey(STATE, K_{32})

PRESENT: iterative / serial / 16-bit / proposed

Cipher Design via HLS

A cipher is a loop where each round performs several operations.

Typically each round executes a single cycle.

Then we illustrate design perspectives to some common components in ciphers:

- sBox Layer
- Permutation Layer
- Optimization

sBox Layer

A function mapping input to the output $f:X \to Y$ sBox is typically lookup table in hardware implementation.

sBox Layer - Lookup Table Implementation

register style

```
ap uint<4> S[] = {0xC, 0x5, 0x6, 0xb, 0x9, 0x0,
0xa, 0xd, 0x3, 0xe, 0xf, 0x8, 0x4, 0x7, 0x1,
0x2};

ap_uint<4> sbox(ap uint<4> out){
    return S[out];
}
```

software style

but it costs 1 cycle in reading register value

if style

```
ap uint<4> sbox(ap uint<4> out){
       switch(out){
       case 0: out = 0xc; break;
       case 1: out = 0x5; break;
       case 2: out = 0x6; break;
       case 3: out = 0xb; break;
       case 4: out = 0x9; break;
       case 5: out = 0x0; break;
       case 6: out = 0xa; break;
       case 7: out = 0xd; break;
       case 8: out = 0x3; break;
       case 9: out = 0xe; break;
       case 10: out = 0xf; break;
       case 11: out = 0x8; break;
       case 12: out = 0x4; break;
       case 13: out = 0x7; break;
       case 14: out = 0x1; break;
       case 15: out = 0x2; break;}
       return out;
```

Permutation Layer

Permute the input bits.

Permutation is simply wire connection in the hardware implementation.

Permutation

register style

```
ap_uint<2> P[] = {0x3, 0x2, 0x1, 0x0};
ap_uint<4> permutation(ap_uint<4> in){
    ap uint<4> out;
    out[P[0]] = in[0];
    out[P[1]] = in[1];
    out[P[2]] = in[2];
    out[P[3]] = in[3];
    return out;
}
```


compiler automatically generate correct hardware directly using software style

if style

Optimizations

- Loop Unrolling / Loop Pipelining ...
 - Implemented by simply adding #pragma .

Cipher Optimizations

- There are several implementation of sBox mapping function :
 - LookupTable
 - Bitslicing
 - Fixslicing
- Each of them have its own advantages.

$$S_{1} \leftarrow S_{1} \oplus (S_{0} \wedge S_{2})$$

$$S_{0} \leftarrow S_{0} \oplus (S_{1} \wedge S_{3})$$

$$S_{2} \leftarrow S_{2} \oplus (S_{0} \vee S_{1})$$

$$S_{3} \leftarrow S_{3} \oplus S_{2}$$

$$S_{1} \leftarrow S_{1} \oplus S_{3}$$

$$S_{3} \leftarrow \neg S_{3}$$

$$S_{2} \leftarrow S_{2} \oplus (S_{0} \wedge S_{1})$$

$$\{S_{0}, S_{1}, S_{2}, S_{3}\} \leftarrow \{S_{3}, S_{1}, S_{2}, S_{0}\},$$

Experiment Results

iterative serial 16bit

proposed

iterative serial 16bit

proposed

iterative serial 16bit

iterative serial 16bit

proposed

RE	ESOURCE U	JSAGE AND	PERFOR	RMANC	E RESUL	TS FOR T	HE FIVE A	RCHITECT	ures Undi	er Evalua	TION
Work	Design	STATE (bit)	KEY (bit)	FF	LUT	SLC	FMAX (MHz)	LAT (cycles)	Thr (Mbps)	Thr* (Mbps)	Thr*/SLC (Kbps/Slice)
				xc6slx16-3cs g324							
[18]	C1	64	128	200	202	58	160.21	55	186.42	15.78	272.05
[18]	C2	64	128	203	157	44	164.23	303	34.69	2.86	65.09
[20]	C3	64	128	73	147	48	206.40	132	100.07	6.57	136.97
	-	•	•		•	•		•	•	-	
This work.	C5	64	128	201	220	61	210.66	136	99.13	6.38	104.61
				xc3s200-5ft256							
[18]	C1	64	128	200	381	191	179.95	55	209.40	15.78	82.61
[18]	C2	64	128	203	258	131	177.34	303	37.46	2.86	21.86
[20]	C3	64	128	73	280	153	120.71	132	58.53	6.57	42.97
		•	•		•				•	•	•
This work.	C5	64	128	201	264	151	194.63	136	91.59	6.38	42.26
					xc5v	1x50t-3f	1136				
[18]	C1	64	128	200	283	88	271.67	55	316.12	15.78	179.31
[18]	C2	64	128	203	237	72	289.69	303	61.19	2.86	39.78
[20]	C3	64	128	73	182	75	321.96	132	156.10	6.57	87.66
			,					,			,
This work.	C5	64	128	201	239	73	431.78	136	203.19	6.38	87.41
					xc4v	1x25-12	f668	*			
[18]	C1	64	128	200	382	192	284.33	55	330.86	15.78	82.18
[18]	C2	64	128	203	258	131	288.52	303	60.94	2.86	21.86
[20]	C3	64	128	73	279	151	223.51	132	108.37	6.57	43.54
	-	-			-	-		1	-	-	1
This work	C5	64	128	201	265	152	364.56	136	171.56	6.38	41.98
* Using a fr	equency of	13.56 MH	Z.								

Our Results

Platform: Vivado HLS 2019.2 / PYNQ-Z2

	key bits	FF	LUT	SLC
iterative	128	210	316	87
serial	128	220	267	76
16-bit	128	74	288	80
proposed	128	202	314	87

Results are comparable with conventional method!

Conclusion

This project is actually a proof-of-concept to the feasibility of HLS:

HLS is able to generate comparable results compared with conventional method.

- It is good for people with software background to design hardware.

HLS has high scalarbility in optimizations.

- It simplifies the process to reach more dedicated design.

Reference

[1] S. Feizi, A. Nemati, A. Ahmadi and V. A. Makki, "A high-speed FPGA implementation of a Bit-slice Ultra-Lightweight block cipher, RECTANGLE," 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE), 2015, pp. 206-211, doi: 10.1109/ICCKE.2015.7365828.

[2] C. A. Lara-Nino, A. Diaz-Perez and M. Morales-Sandoval, "Lightweight Hardware Architectures for the Present Cipher in FPGA," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2544-2555, Sept. 2017, doi: 10.1109/TCSI.2017.2686783.