

## CMOS 门电路测试

#### 1. 实验目的

- ▶ 熟悉 CMOS 门电路功能测试的方法;
- > 学会 CMOS 门电路外特性的测试方法;
- ▶ 比较 CMOS 门和 TTL 门的特点。

#### 2. 预习要求

- ▶ 复习门电路工作原理及相应逻辑表达式;
- ▶ 阅读本实验所用各门电路 IC 的数据手册;
- ▶ 熟悉所用集成电路的引线位置及各引线用途;
- ▶ 了解 CMOS 门与 TTL 门电路的差异。

#### 3. 实验器材

| 序号 | 名 称     | 型号与规格                    | 数量 | 备 注 |
|----|---------|--------------------------|----|-----|
| 1  | 直流稳压电源  | DP1308A                  | 1  |     |
| 2  | 数字示波器   | TDS2012C                 | 1  |     |
| 3  | 函数信号发生器 | DG1022                   | 1  |     |
| 4  | 面包板     |                          | 1  |     |
| 5  | 元器件     | CD4001 1片,<br>CD4069 1片, | 2  |     |

#### 4. 实验内容

#### 4.1 CMOS 芯片 CD4001 功能测试

CMOS 集成电路 4000 系列芯片具有较宽的电源电压使用范围,在+3~+18V都可以使用。

CMOS 门电路的逻辑高、低电平取值和 TTL 门电路略有不同,通常高电平为



 $V_{DD}$ , 低电平为 0V, 本实验电源电压 $V_{DD} = +5V$ 。

按照表 1.1 在输入端加不同的输入逻辑电平,用电压表测试相应的输出值,完成下列真值表。

注意: CMOS 门电路的多余输入端不允许悬空。



表 1.1 CD4001 逻辑功能测试

|   |   |   | 输出 |   |   |    |    |            |           |                     |           |  |
|---|---|---|----|---|---|----|----|------------|-----------|---------------------|-----------|--|
| 1 | 2 | 5 | 6  | 8 | 9 | 12 | 13 | 3          | 4         | 10                  | 11        |  |
| 0 | 0 | 0 | 1  | 1 | 0 | 1  | 1  | 4.3261     | 8.053mV 🔿 | 0. 224mV <i>(</i> ) | 0.243mV 🕤 |  |
| 0 | 1 | 1 | 1  | 1 | 1 | 1  | 1  | 8, 019mV 1 | /         | /                   | /         |  |
| 1 | 0 | 0 | 0  | 0 | 0 | 0  | 0  | 0. 478mV 0 | /         | /                   | /         |  |
| 1 | 1 | 1 | 1  | 1 | 1 | 1  | 1  | 0.023mV O  | /         | /                   | /         |  |

#### 4.2 CMOS 门电路 CD4069 电压、电流传输特性测试



图1.2 CD4069电压传输特性测试

1) 按图 1.2 所示接线,调节电位器  $R_p$  的阻值,使  $V_I$  在  $0 \sim V_{DD}$  变化,测量  $V_O$  随  $V_I$  变化的特性曲线。



记录实验数据,画出电压传输特性曲线 $V_o = f(V_I)$ 。

| Vi | 160 mV | 488mV | Boomy  | 1.520  | 1.760 | 2.240 | 2.32V | 2.48v | 2640  | 2.720  | 2.960 | 3.12V | 3.36V | 4.24 V  | 5. 20 V |
|----|--------|-------|--------|--------|-------|-------|-------|-------|-------|--------|-------|-------|-------|---------|---------|
| Vo | 4.8V   | 4.88V | 4.96 V | 4. % V | 4.80V | 4.640 | 4.32V | 4.1bV | 1.687 | ibo mV | οv    | 80 ml | עס ע  | -160 mV | - 80mV  |

电压传输特性曲线:



2) 在Vi处接入5Vpp的正弦波(最小值为0V,最大值为5V),用示波器观察输入输出波形,并利用XY显示得到电压传输曲线,将截图附于下方。







图1.3 CD4069电流传输特性测试

3) 按图 1.3 所示接线,测量 VR 随 VI 变化的特性曲线。



4) 为什么 3) 中的电压关系曲线反映了 CD4069 的电流传输特性?

Ve = i × P2.

VR-Vi 曲线反映了 i-Vi 的形状 能够反映电流传输 特性

## 数字电路实验报告



### 4.3 CD4001平均传输时间 $T_{PD}$ 的测量



图 1.4 CD4001 平均传输时间的测量

按图1.4所示接线,图中 $V_{\scriptscriptstyle DD}$  = +5V , $V_{\scriptscriptstyle I}$ 输入连续脉冲,观察 $V_{\scriptscriptstyle I}$ 与 $V_{\scriptscriptstyle O}$ 的异同,

用双踪示波器观察并记录 $V_I$ , $V_o$ 的波形,测出CD4001芯片的 $T_{PD}$ 值  $V_D$  4



图 1.5 CD4069 平均传输时间的测量

按图 1. 5 所示接线,将 CD4001 芯片换成 CD4069 芯片,测出 CD4069 芯片的  $T_{PD}$ 

值  $\frac{48.6 \text{ ns}}{6}$ .6 (附上测量延时所用的波形图)



#### 5. 思考题

1. CMOS门电路多余的输入端在使用时不允许悬空, 其理由是什么?

# 悬空使电位不稳定.且输入阻抗高易干扰电路使电路产生设动作

2. 一般的CMOS门电路能否进行"线与"?请画出两个CMOS"线与"的示意图, 并回答为什么一般的CMOS不可以进行"线与"?什么门电路可以方便的进行 "线与"?

CMOS 不能线与. TTL. OCi) 可以线与.

Vi,=0. Viz=1. T..T4导通,输出 Voo/2

Vi,=1. Viz=0. Tz.T3 导通, 输出 Voo/2





附录: IC引脚图



