WHITEHEAD PRODUCT

YANNIS BÄHNI

Abstract. Aim of this paper is to give a short overview of the definition and the basic properties of the non-generalized *Whitehead product*.

Contents

1	Introduction	1
2	Definition of the Whitehead Product	2
3	The Whitehead Product and the Conjugation Action	4
4	Grading	6
Re	eferences	7

1. Introduction

In the category of *compactly generated spaces*, suppose G is an H-group, i.e. a space satisfying the group axioms up to homotopy, then [X, G] is a group for any space X. This group need not be abelian. Thus a natural question is, if [X, G] is *nilpotent*. As the notion of nilpotence is based on the behaviour of *commutators*, it is natural to consider certain related products: First of all the *commutator product* or *Samelson product* defined as follows: If $[\alpha] \in [X, G]$ and $[\beta] \in [Y, G]$, define $\gamma : X \times Y \to G$ by

$$\gamma(x, y) := \alpha(x)\beta(y) \left(\alpha(x)\right)^{-1} \left(\beta(y)\right)^{-1}.$$

Then $\gamma|_{X\vee Y}$ is nullhomotopic and thus yields a map $\gamma:X\wedge Y\to G$, whose homotopy class is defined to be the product of $[\alpha]$ and $[\beta]$. When $X=\mathbb{S}^n$, $Y=\mathbb{S}^m$ and $G=\Omega X$, then $[\mathbb{S}^n,G]$ is identified with $\pi_n(G)$ since the π_1 action is trivial for H-spaces, and the Samelson product

$$\pi_n(G) \otimes \pi_m(G) \to \pi_{n+m}(G)$$

translates to a pairing

$$\pi_{n+1}(X) \otimes \pi_{m+1}(X) \to \pi_{n+m+1}(X),$$

the Whitehead product, since $\pi_n(G) \cong \pi_{n+1}(X)$ (see [Whi78, pp. 456–457]).

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

2. Definition of the Whitehead Product

Notice, that for any $(X, x_0), (Y, y_0) \in \mathsf{Top}_*$, their coproduct is given by

$$X \mid \mid Y = (X \times \{y_0\}) \cup (\{x_0\} \times Y) \subseteq X \times Y,$$

with basepoint (x_0, y_0) .

Lemma 2.1. Let $n, m \in \omega$, $n, m \ge 1$. The space $\mathbb{S}^n \times \mathbb{S}^m$ can be obtained from $\mathbb{S}^n \vee \mathbb{S}^m$ by attaching an n + m-cell.

Proof. Observe, that $\mathbb{D}^{n+m} \cong \mathbb{D}^n \times \mathbb{D}^m$ and hence

$$\mathbb{S}^{n+m-1} = \partial \mathbb{D}^{n+m} \cong (\partial \mathbb{D}^n \times \mathbb{D}^m) \cup (\mathbb{D}^n \times \partial \mathbb{D}^m) = (\mathbb{S}^{n-1} \times \mathbb{D}^m) \cup (\mathbb{D}^n \times \mathbb{S}^{m-1}).$$

Let

$$f_1: \mathbb{S}^{n-1} \times \mathbb{D}^m \to (\mathbb{S}^{n-1} \times \mathbb{D}^m)/(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}) \cong * \times \mathbb{S}^m$$

and

$$f_2: \mathbb{D}^n \times \mathbb{S}^{m-1} \to (\mathbb{D}^n \times \mathbb{S}^{m-1})/(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}) \cong \mathbb{S}^n \times *$$

be the quotient maps. An application of the gluing lemma thus yields a map

$$f: \mathbb{S}^{n+m-1} \to \mathbb{S}^n \vee \mathbb{S}^m$$
.

Moreover, define

$$q:\mathbb{D}^n\times\mathbb{D}^m\to\mathbb{D}^n/\mathbb{S}^{n-1}\times\mathbb{D}^m/\mathbb{S}^{m-1}\cong\mathbb{S}^n\times\mathbb{S}^m$$

to be the product of the two quotient maps

$$\mathbb{D}^n \to \mathbb{D}^n/\mathbb{S}^{n-1}$$
 and $\mathbb{D}^m \to \mathbb{D}^m/\mathbb{S}^{m-1}$.

Hence by [Mun00, p. 186], q itself is a quotient map, and we get a commutative diagram

$$\mathbb{S}^{n+m-1} \xrightarrow{f} \mathbb{S}^n \vee \mathbb{S}^m$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{D}^{n+m} \xrightarrow{q} \mathbb{S}^n \times \mathbb{S}^m$$

Suppose (X, g, h) is another cocone in Top for the pushout diagram:

Then g is constant on the fibers of q. Indeed, we have that q(x, y) = q(x', y) for all $x, x' \in \mathbb{S}^{n-1}$ and $y \in \mathbb{D}^m$, as well as q(x, y) = q(x, y') for all $x \in \mathbb{D}^n$ and $y, y' \in \mathbb{S}^{m-1}$. We compute

$$g(x, y) = (h \circ f)(x, y) = (h \circ f)(x', y) = g(x', y),$$

and similarly for the other case. Thus g passes to the quotient by [Lee11, p. 72] to yield a unique map

$$\tilde{g}: \mathbb{S}^n \times \mathbb{S}^m \to X$$
,

such that $g = \tilde{g} \circ q$. Finally, it is easy to check that

commutes.

For $n, m \in \omega$, $n, m \ge 1$, consider the map f from lemma 2.1 and note that this is actually a pointed map. Let $(X, p) \in \mathsf{Top}_*$. If $[\alpha] \in \pi_n(X, p)$ and $[\beta] \in \pi_m(X, p)$, we get two pointed maps

$$\alpha: (\mathbb{S}^n, *) \to (X, p)$$
 and $\beta: (\mathbb{S}^m, *) \to (X, p)$.

Forming their wedge $\alpha \vee \beta : (\mathbb{S}^n \vee \mathbb{S}^m, (*, *)) \to (X, p)$, defined by

$$(\alpha \vee \beta)(x, y) := \begin{cases} \alpha(x) & y = *, \\ \beta(y) & x = *, \end{cases}$$

and precomposing with f, yields a pointed map

$$(\alpha \vee \beta) \circ f : (\mathbb{S}^{n+m-1}, *) \to (X, p).$$

Explicitely, if we consider

$$\alpha: (\mathbb{D}^n, \mathbb{S}^{n-1}) \to (X, p)$$
 and $\beta: (\mathbb{D}^m, \mathbb{S}^{m-1}) \to (X, p)$,

we get that

$$((\alpha \vee \beta) \circ f)(x, y) = \begin{cases} \alpha(x) & x \in \mathbb{D}^n, y \in \mathbb{S}^{m-1}, \\ \beta(y) & x \in \mathbb{S}^{n-1}, y \in \mathbb{D}^m. \end{cases}$$
(1)

Hence if $F: \alpha \simeq_{\mathbb{S}^{n-1}} \alpha'$ and $F': \beta \simeq_{\mathbb{S}^{m-1}} \beta'$, we get that

$$H: ((\alpha \vee \beta) \circ f) \simeq_* ((\alpha' \vee \beta') \circ f),$$

where $H: \mathbb{S}^{n+m-1} \times I \to X$ is defined by

$$H(x,y,t) := \begin{cases} F(x,t) & x \in \mathbb{D}^n, y \in \mathbb{S}^{m-1}, \\ F'(y,t) & x \in \mathbb{S}^{n-1}, y \in \mathbb{D}^m. \end{cases}$$

Thus we get a well defined map [-,-]: $\pi_n(X) \times \pi_m(X) \to \pi_{n+m-1}(X)$, defined by

$$[\alpha, \beta] := [(\alpha \vee \beta) \circ f].$$

Definition 2.1 (Whitehead Product). Let $n, m \in \omega$, $n, m \ge 1$, and $(X, p) \in \mathsf{Top}_*$. The product

$$[-,-]:\pi_n(X,p)\times\pi_m(X,p)\to\pi_{n+m-1}(X,p)$$

defined by

$$[\alpha, \beta] := [(\alpha \lor \beta) \circ f],$$

is called the **Whitehead product** and [-,-] is called the **Whitehead bracket**.

3. The Whitehead Product and the Conjugation Action

In this section, we want to have a closer look at [-,-]: $\pi_1(X) \times \pi_n(X) \to \pi_n(X)$. If n=1, the definition of the Whitehead product in equation (1) results in figure 1a and using that \mathbb{S}^1 is parametrized by $\theta \mapsto e^{i\theta}$, i.e. oriented counter clockwise, we get that

$$[\alpha, \beta] = [\alpha][\beta][\alpha]^{-1}[\beta]^{-1},$$

since any reparametrization of a path is homotopic relative to ∂I to the original path (a reparametrization of a path f in X is just a path $f \circ \varphi$, where $\varphi : I \to I$ is continuous and $\varphi|_{\partial I} = \mathrm{id}_{\partial I}$). Thus $[\alpha, \beta]$ coincides with the notation of a commutator in $\pi_1(X)$. Let n > 1. Let us briefly introduce the notion of *cellular homology*. If X is a cell complex with skeleton filtration $\mathcal{F} : \varnothing =: X^{-1} \subseteq X^0 \subseteq \cdots \subseteq X$, we have for all $n \in \omega$ that $H_n(X^n, X^{n-1})$ is free abelian with a basis in one-to-one correspondence with the n-cells if X. Define a chain complex $C_{\bullet}(X, \mathcal{F}) \in \mathrm{Ch}_{\geq 0}(\mathbb{Z}\mathrm{Mod})$, the *cellular chain complex of* X, by

$$C_n(X,\mathcal{F}) := H_n(X^n,X^{n-1}),$$

for all $n \in \omega$. Moreover, for $n \geq 1$, define $\partial_n : C_n(X, \mathcal{F}) \to C_{n-1}(X, \mathcal{F})$ to be the composition

$$H_n(X^n, X^{n-1}) \longrightarrow H_{n-1}(X^{n-1}) \longrightarrow H_{n-1}(X^{n-1}, X^{n-2}).$$

Define an *orientation of* \mathbb{D}^n to be a choice of a generator of $H_n(\mathbb{D}^n, \mathbb{S}^{n-1}) \cong \mathbb{Z}$ (this isomorphism follows from the long exact sequence axiom). In what follows, we fix an orientation of \mathbb{D}^n .

By [Hat01, p. 269], the boundary map in the cellular chain complex $C_{\bullet}(X \times Y, \mathcal{F}_{X \times Y})$,

for another cell complex Y, is determined by the boundary maps in the cellular chain complexes $C_{\bullet}(X, \mathcal{F}_X)$ and $C_{\bullet}(Y, \mathcal{F}_Y)$ via the formula

$$\partial(e^n \times e^m) = \partial e^n \times e^m + (-1)^n e^n \times e^m. \tag{2}$$

If e^1 denotes the single 1-cell in I and e^n the single n-cell in \mathbb{D}^n , we thus obtain

$$\partial(e^1 \times e^n) = 1 \times e^n - 0 \times e^n - e^1 \times \partial e^n.$$

from formula (2). Now the definition of the Whitehead product in equation (1) results in figure 1b. Thus using lemma 3.1 below yields

$$[\alpha, \beta] = [\alpha \cdot \beta] - [\beta],$$

where $\alpha \cdot \beta$ denotes the *conjugation action*, i.e. the action of $\pi_1(X)$ on $\pi_n(X)$, since the boundary of the cylinder $I \times \mathbb{D}^n$ is oriented coherently with $1 \times \mathbb{D}^n$ and discoherently with $0 \times \mathbb{D}^n$, as above calculation suggests.

Lemma 3.1. Let $n \in \omega$, n > 1, $[\alpha] \in \pi_n(X)$ and $h : (\mathbb{D}^n, \mathbb{S}^{n-1}) \to (\mathbb{D}^n, \mathbb{S}^{n-1})$ an orientation reversing homeomorphism, i.e. h is a homeomorphism and $H_n(h)e^n = -e^n$. Then $[\alpha \circ h] = -[\alpha]$.

Proof. Following [Whi78, p. 166], let $\rho : \pi_n(Y, A) \to H_n(Y, A)$ denote the *Hurewicz homomorphism* defined by

$$\rho[f] := H_n(f)e^n,$$

where e^n denotes an orientation of \mathbb{D}^n . Using that

$$\rho: \pi_n(\mathbb{D}^n, \mathbb{S}^{n-1}) \to H_n(\mathbb{D}^n, \mathbb{S}^{n-1})$$

is an isomorphism for n > 1 (see [Whi78, p. 168]), we compute

$$[\alpha \circ h] = \pi_n(\alpha)[h]$$

$$= \pi_n(\alpha)\rho^{-1}\rho[h]$$

$$= \pi_n(\alpha)\rho^{-1}(H_n(h)e^n)$$

$$= -\pi_n(\alpha)\rho^{-1}e^n$$

$$= -\pi_n(\alpha)[\mathrm{id}_{\mathbb{D}^n}]$$

$$= -[\alpha].$$

In the above argument, We implicitly used the observation that the sum $[\alpha] + [\beta]$ in $\pi_n(X)$ is given by the pointed homotopy class of the composition

$$\mathbb{S}^n \xrightarrow{c} \mathbb{S}^n \vee \mathbb{S}^n \xrightarrow{\alpha \vee \beta} X$$

where $c: \mathbb{S}^n \to \mathbb{S}^n \vee \mathbb{S}^n$ denotes the mapping which collapses the equatorial \mathbb{S}^{n-1} in \mathbb{S}^n to a point, depicted in figure 2 (see [Hat01, p. 341]).

FIGURE 1. Whitehead bracket and the conjugation action.

Figure 2. The collapsing map $c: \mathbb{S}^n \to \mathbb{S}^n \vee \mathbb{S}^n$.

4. Grading

Let $(X, p) \in \mathsf{Top}_*$. For $n \in \omega$ let $L^n := \pi_{n+1}(X, p)$ and define

$$L:=\bigoplus_{n\in\omega}L^n.$$

Moreover, define $[-,-]:L\times L\to L$ by

$$\left[\sum_{i} \alpha_{i}, \sum_{j} \beta_{j}\right] := \sum_{i,j} [\alpha_{i}, \beta_{j}].$$

Then clearly $L^nL^m \subseteq L^{n+m}$ holds. It also turns out, that we have a Lie algebra-like structure on L, i.e. the bracket is bilinear, alternating and there is a Jacobi identity (for more details see [Whi78, pp. 474–478]).

Proposition 4.1. *Let*
$$n, m \in \omega, n \geq 1, [\alpha_1], [\alpha_2] \in \pi_{n+1}(X)$$
 and $[\beta] \in \pi_{m+1}(X)$. *Then* $[\alpha_1 + \alpha_2, \beta] = [\alpha_1, \beta] + [\alpha_2, \beta]$ *and* $[\beta, \alpha_1 + \alpha_2] = [\beta, \alpha_1] + [\beta, \alpha_2].$

Recall, that for $n \geq 1$ we have that $H_n(\mathbb{S}^n) \cong \mathbb{Z}$. Thus if we are given any continuous map $f: \mathbb{S}^n \to \mathbb{S}^n$, the induced map $H_n(f)$ is simply a multiplication by a unique integer. This integer is defined to be the *degree of* f, written deg f. Observe that lemma 3.1 stays true if we consider a homeomorphism $h: (\mathbb{S}^n, *) \to (\mathbb{S}^n, *)$ with deg h = -1. Indeed, this basically follows from the relative homeomorphism theorem which states that

$$H_k(q): H_k(\mathbb{D}^n, \mathbb{S}^{n-1}) \to H_k(\mathbb{S}^n, *) \cong \widetilde{H}_k(\mathbb{S}^k)$$

is an isomorphism for all $k \in \omega$.

Proposition 4.2. *Let* $n, m \in \omega$, $[\alpha] \in \pi_{n+1}(X)$ *and* $[\beta] \in \pi_{m+1}(X)$. *Then* $[\beta, \alpha] = (-1)^{(n+1)(m+1)} [\alpha, \beta]$.

Proof. Consider the *permutation map* $\sigma: \mathbb{S}^{n+m+1} \to \mathbb{S}^{n+m+1}$ defined by

$$(y_1,\ldots,y_{m+1},x_1,\ldots,x_{n+1})\mapsto (x_1,\ldots,x_{n+1},y_1,\ldots,y_{m+1}).$$

Then clearly $\deg \sigma = (-1)^{(n+1)(m+1)}$, since σ is the composition of permutations and hence orthogonal transformations. An application of lemma 3.1 yields

$$[\beta,\alpha] = [(\beta \vee \alpha) \circ f] = [(\alpha \vee \beta) \circ f \circ \sigma] = (-1)^{(n+1)(m+1)} [\alpha,\beta].$$

Proposition 4.3. Let $n, m, r \in \omega$, $n, m, r \geq 1$, $[\alpha] \in \pi_{n+1}(X)$, $[\beta] \in \pi_{m+1}(X)$ and $[\gamma] \in \pi_{r+1}(X)$. Then

$$(-1)^{r(n+1)}[\alpha, [\beta, \gamma]] + (-1)^{n(m+1)}[\beta, [\gamma, \alpha]] + (-1)^{m(r+1)}[\gamma, [\alpha, \beta]] = 0$$

References

[Hat01] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[Lee11] John M. Lee. *Introduction to Topological Manifolds*. Second Edition. Springer Science+Business Media, 2011.

[Mun00] James R. Munkres. *Topology*. Second edition. Prentice Hall, 2000.

[Whi78] George W. Whitehead. *Elements of Homotopy Theory*. Graduate Texts in Mathematics. Springer-Verlag, 1978.