- 1 A Crooke's Tube (a tube containing rarefied gas through which a current is passed between a cathode and an anode) was used in the discovery of the electron by:
 - OA R. A. Millikan
 - B J. J. Thomson
 - OC J. S. Townsend
 - O D M. Planck
 - OE A. H. Compton

ə :

- 3 The charge on an electron is represented by "e." Which of the following charges can exist?
 - ○A 2.0 e
 - ○B 2.5 e
 - ○C 3.6 e
 - ○D 5.2 e
 - **○**E 5.5 e

4 X-rays are created when:			
OA protons strike a metal target.			
OB neutrons strike a metal target.			
OC photons are incident on a surface.			
OD electrons strike a metal target.			

○ E photons strike electrons.

5 The spontaneous decay of nuclei is called:		
OA Absorption		
OB Ultraviolet Explosion		
OC Permittivity		
OD Photoelectric Effect		
○ E Radiation		

6 Which of the following are emitted by the nucleus during radioactive decay?
○ A Alpha particles
○B Beta particles
○ C Gamma rays
OD All of the above
○ E None of the above

7 Which of the following colors is associated with the lowest temperature of a black body radiator?
OA Violet
OB Blue
OC Green
OD Yellow
○E Red

8 Classical physics could not explain the behavior of a black body radiator at very short wavelengths. What was this problem called?
○ A Absorption failure
○ B Ultraviolet Explosion
OC Wavelength decrease
OD Photoelectric Effect
○ E Radiation

9	What did Max Planck propose to solve the black body radiator problem?
	OA Radiation is made up of waves.
	○ B Light changes its speed in different media.
	OC Light comes in packets of energy.
	OD Light has a continuous energy profile.
	OE Objects do not radiate energy.

10 Which of the following photons has the greatest energy?
OA Infrared
OB Blue light
○ C X-ray
OD Gamma ray
○E Ultraviolet

11 The energy of a photon depends on its:
OA Amplitude
○B Speed
○ C Temperature
OD Pressure
○E Frequency

12	How does the energy	of a photo	on change if	f the waveler	ngth is
	doubled?				

- O A Doubles
- OB Quadruples
- OC Stays the same
- OD Is cut to one-half
- E Is cut to one-fourth

13	How does the momentum of a photon change if the wavelength is
	doubled?

O A Doubles

OB Quadruples

OC Stays the same

OD Is cut to one-half

○ E Is cut to one-fourth

14	The photoelectric effect was explained by Albert Einstein by	y
	assuming that:	

○ A light is a wave.

OB light is a particle.

OC an electron behaves as a wave.

O D an electron behaves as a particle.

○ E light does not interact with matter.

15 The kinetic energy of photoelectrons depends on the:
OA speed of light.
○B angle of illumination.
OC intensity of the light.
OD number of incident photons.
○E photon frequency.

- 16 The maximum kinetic energy of photoelectrons depends on which of the following?
 - I. The light intensity II. The frequency of the light
 - III. The material of the photoelectric cell

- OA Only I
- B Only II
- OC Only III
- OD Only I and II
- OE Only II and III

17	Rutherford's Gold Foil experiment caused a modification of which
	of the following?

- A Plum-pudding model of the atom
- B Planetary model of the atom
- OC de Broglie hypothesis
- O D Wave nature of light
- E Quantum theory of light

- 18 In Rutherford's Gold Foil experiment, most of the alpha particles passed through the foil undeflected. Which of the following properties of the atom can be explained from this observation?
 - A The atom's negative charge is concentrated in the nucleus.
 - B The nucleus has electrons and protons.
 - O C The atomic mass is distributed evenly throughout the atom.
 - O D The alpha particles can't be deflected by electrons.
 - E The size of the nucleus is much less than the size of the atom.

19	Which of the following statement(s) can be associated with Bohr's theory of the
	atom?

- I. An electron orbiting the nucleus can change its energy continuously.
- II. An electron orbiting the nucleus emits energy and falls into the nucleus.
- III. An electron orbits the nucleus without radiating energy and can change its energy only by a specific, quantized amount, when it moves between the orbits.
- IV. Electrons can only orbit the nucleus in specific circular orbits with fixed angular momentum and energy.

- OB II and IV
- OC II and III
- O D III and IV
- E I, II, III and IV

20	When a	n electron	falls from	an orbit where	n = 2 to n:	= 1.
	vviicii ai		Tallo Holli	an orbit wile c	,	

- O A A photon is emitted.
- B A photon is absorbed.
- OC No change in atomic energy.
- O D The atomic energy decreases to zero.
- E The atomic energy increases.

- 21 When an electron jumps from an orbit where n = 1 to n = 4, its energy in terms of the energy of the ground level (E_1) is:
 - \bigcirc A E₁/9
 - **○** B E₁/16
 - OC 2 E₁
 - D 4 E₁
 - ○E 16 E₁

22	Which of the following is a limitation of the Bohr Model of the
	atom?

- A It does not explain atomic spectra.
- B It successfully predicts the intensity of the photons emitted when electrons change energy levels.
- OC The model only applies to Hydrogen like atoms.
- O D The model only applies to light atoms.

23 The Compton Effect supports which of the following theories?
○ A Special Theory of Relativity.
○B Light is a wave.
OC Thomson model of the atom.
OD Light is a particle.
OE The Coulomb force.

24	Neutrons	have	a:
\angle +	TACULIOLIS	Have	a .

- A positive charge and a mass approximately equal to a proton.
- B positive charge and a mass approximately equal to an electron.
- C neutral charge and a mass approximately equal to a proton.
- O D neutral charge and a mass approximately equal to an electron.
- E negative charge and a mass approximately equal to a proton.

Which of the following formulas can be used to determine the de Broglie wavelength?

- \bigcirc A $\lambda = hmv$
- \bigcirc B $\lambda = h/mv$
- \bigcirc C $\lambda = mv/h$
- \bigcirc D $\lambda = \text{hm/c}$
- \bigcirc E λ = mc/h

26	Which one of the following objects, moving at the same speed, has
	the greatest de Broglie wavelength?

OA Neutron

○ B Electron

OC Tennis ball

OD Bowling ball

○ E Alpha particle

27 Heisenberg's Uncertainty Principle sta	ates:
---	-------

- A The more precise a particle's energy can be measured, the less precise its position can be measured.
- OB A particle's position can be measured exactly.
- OC A particle's energy can be measured exactly.
- O D The more precise a particle's momentum can be measured, the less precise its position can be measured.
- E The more precise a particle's momentum can be measured, the less precise its energy can be measured.

- 28 Knowledge of the wave function of a particle enables the probabilities of the particle's position, momentum, energy and other characteristics to be calculated. In classical physics, what is the analogue of the wave function?
 - A The particle's momentum.
 - B The particle's energy.
 - O C The particle's mass.
 - O D The particle's size.
 - OE The sum of the forces on the particle.

29	Which theory explains the interaction of photons with matte	er
	(electrons)?	

- A Quantum Chromodynamics.
- OB The Standard Model.
- C String Theory.
- O D The Grand Unified Theory.
- E Quantum Electrodynamics.

30	Which theory	explains	the	attraction	between	protons	and
	neutrons?						

- A Quantum Chromodynamics.
- OB The Standard Model.
- C String Theory.
- O D The Grand Unified Theory.
- E Quantum Electrodynamics.

31	Which theory integrates the explanation of the strong nuclear
	force, the weak nuclear force and electromagnetism?

- A Quantum Chromodynamics.
- OB The Standard Model.
- C String Theory.
- O D The Grand Unified Theory.
- E Quantum Electrodynamics.

32 How much of the universe is comprised of matter and energy that is explained by current Physics theory?

- OA 95%
- ○B 75%
- OC 50%
- OD 25%
- ○E 5%

