Öffentliche Lösungsvorschläge zum 6. Tutorium – Logik

Aufgabe 1

Seien $\sigma_1 = \{+,0\}$ und $\sigma_2 = \{\subseteq,\emptyset\}$ zwei Signaturen, wobei \emptyset und 0 Konstantensymbole sind, \subseteq ein zweistelliges Relationssymbol ist und + ein zweistelliges Funktionssymbol ist.

- (i) Geben Sie eine σ_1 -Struktur \mathcal{A} an, welche die natürlichen Zahlen mit der Addition und dem neutralen Element der Addition¹ darstellt.
- (ii) Geben Sie eine σ_1 -Struktur \mathcal{B} an, welche die natürlichen Zahlen mit der Multiplikation und dem neutralen Element der Multiplikation darstellt.
- (iii) Geben Sie eine σ_2 -Struktur \mathcal{D} an, welche die Teilmengenrelation auf $\mathcal{P}(\mathbb{N})$ darstellt.
- (iv) Geben Sie eine σ_2 -Struktur \mathcal{E} an, welche die Kleiner-Gleich Relation über \mathbb{N} darstellt.
- (v) Bonusfrage: Geben Sie eine Formel $\varphi \in FO[\sigma_1]$ an, sodass $\varphi(\mathcal{B})$ genau die Primzahlen enthält.

Lösung zu Aufgabe 1

- (i) $\mathcal{A} = (\mathbb{N}, +^{\mathcal{A}}, 0^{\mathcal{A}})$, wobei $0^{\mathcal{A}} = 0$ und für alle $a, b \in \mathbb{N}$, definieren wir $a +^{\mathcal{A}} y = x + y$.
- (ii) $\mathcal{B} = (\mathbb{N}, +^{\mathcal{B}}, 0^{\mathcal{B}})$, wobei $0^{\mathcal{B}} = 1$ und für alle $a, b \in \mathbb{N}$, definieren wir $a +^{\mathcal{B}} y = x \cdot y$.
- (iii) $\mathcal{D} = (\mathcal{P}(\mathbb{N}), \subseteq^{\mathcal{D}}, \emptyset^{\mathcal{D}})$, wobei $\emptyset^{\mathcal{D}} = \emptyset$ und für alle $X, Y \in \mathcal{P}(\mathbb{N})$, setzen wir $(X, Y) \in \subseteq^{\mathcal{D}}$ genau dann, wenn $X \subseteq Y$.
- (iv) $\mathcal{E} = (\mathbb{N}, \subset^{\mathcal{E}}, \emptyset^{\mathcal{E}})$, wobei $\emptyset^{\mathcal{E}} = 0$ und für alle $a, b \in \mathbb{N}$, setzen wir $(a, b) \in \subset^{\mathcal{E}}$ genau dann, wenn a < b.
- (v) $\varphi(x) = \forall y \forall z (x = y + z \rightarrow (y = 0 \land z = x) \lor (y = x \land z = 0))$

Aufgabe 2

Sei $\sigma = \{E\}$ eine Signatur mit dem zweistelligen Relationssymbol E. Ungerichtete Graphen werden als σ -Strukturen aufgefasst, wobei E als die Kantenrelation interpretiert wird.

Betrachten Sie die folgenden Graphen:

Geben Sie für jeden der Graphen an ob sie die folgenden Formeln erfüllen.

- (i) $\varphi_1 = \exists x \forall y E(x,y)$
- (ii) $\varphi_2 = \exists x \exists y (x \neq y \land \neg E(x, y))$
- (iii) $\varphi_3 = \forall x (\exists y (E(x,y) \land \exists z (y \neq z \land E(x,z))))$

¹Das neutrale Element e einer Operation * ist das Element für das x*e=e*x=x für alle x aus der Grundmenge gilt.

Sei \mathcal{G} die σ -Struktur zu einem ungerichteten Graphen G. Finden Sie Formeln, sodass die folgenden Aussagen erfüllt sind.

- (iv) $\mathcal{G} \models \varphi_4$ genau dann, wenn G genau zwei Knoten enthält, sodass jeder Knoten der nicht einer dieser beiden Knoten ist, ein Nachbar von einem dieser beiden Knoten ist.
- (v) $\varphi_5 \in FO[\sigma]$ mit $\mathcal{G}_1 \not\models \varphi_5$, $\mathcal{G}_2 \models \varphi_5$ und $\mathcal{G}_3 \not\models \varphi_5$.

Lösung zu Aufgabe 2

- (i) $\mathcal{G}_1 \not\models \varphi_1$, $\mathcal{G}_2 \not\models \varphi_1$ und $\mathcal{G}_3 \not\models \varphi_1$.
- (ii) $G_1 \models \varphi_2, G_2 \models \varphi_2 \text{ und } G_3 \not\models \varphi_2.$
- (iii) $\mathcal{G}_1 \models \varphi_3, \mathcal{G}_2 \not\models \varphi_3 \text{ und } \mathcal{G}_3 \not\models \varphi_3.$
- (iv) $\varphi_4 = \exists x \exists y (x \neq y \land \forall z (z \neq x \land z \neq y \rightarrow E(x, z) \lor E(y, z)))$

(v)
$$\varphi_5 = \exists x_1 \exists x_2 \exists x_3 (\bigwedge_{\substack{i,j \in [3] \\ i \neq j}} x_i \neq x_j \land \forall y \bigvee_{i=1}^3 y = x_i) \text{ oder}$$

$$\varphi_5 = \exists x \exists y \exists z (E(x,y) \land E(x,z) \land y \neq z \land \neg \exists a (a \neq y \land a \neq z \land E(x,a))).$$

Aufgabe 3

Sei $\sigma = \{R, f\}$ eine Signatur mit einem zweistelligen Relationssymbol R und einem einstelligen Funktionssymbol f. Geben Sie für die folgenden Formeln in $FO[\sigma]$ die Menge der freien Variablen an. Geben Sie außerdem an, welche Variablen durch welche Quantoren gebunden werden.

(i)
$$\varphi_1 := (\forall x \exists y \ R(x,y) \land \neg x \neq y) \lor \neg \exists z \forall y (R(y,z) \leftrightarrow \forall y \ y = y)$$

(ii)
$$\varphi_2 := \exists x \forall x \ f(x) = x$$

Lösung zu Aufgabe 3

(i) frei(φ_1) = {x, y}

Farblich markieren wir, welche Variablen durch welche Quantoren gebunden sind (freie bleiben schwarz)

$$(\forall x \exists y \ R(x, y) \land \neg x \neq y) \lor \neg \exists z \forall y \ (R(y, z) \leftrightarrow \forall y \ y = y)$$

(ii) frei(
$$\varphi_2$$
) = {}

$$\exists x \forall x \ f(x) = x$$

Aufgabe 4

Sei σ die Signatur aus Aufgabe 2 und seien

$$\psi_1(x) = \exists y \exists z (E(x,y) \land E(y,z) \land E(z,x)), \ \psi_2(x) = \forall y (x \neq y \rightarrow E(x,y)) \ \text{und} \ \psi_3(x,y) = \neg E(x,y).$$

Ermitteln Sie $\psi_i(\mathcal{G}_i)$ für alle $i, j \in [3]$.

Anmerkung: $\varphi(\mathcal{A}) = \{(a_1, \dots, a_k) \in A^k \mid \mathcal{A} \models \varphi[a_1, \dots, a_k]\}$ für $\varphi(x_1, \dots, x_k)$, wobei A das Universum von \mathcal{A} ist.

Lösung zu Aufgabe 4

- (i) $\psi_1(\mathcal{G}_1) = \{u_1, u_2, u_3, u_4, u_5\}, \ \psi_1(\mathcal{G}_2) = \emptyset \text{ und } \psi_3(\mathcal{G}_3) = \emptyset.$
- (ii) $\psi_2(\mathcal{G}_1) = \{u_4\}, \ \psi_1(\mathcal{G}_2) = \{v_2\} \text{ und } \psi_3(\mathcal{G}_3) = \{w_1, w_2\}.$
- (iii) $\psi_3(\mathcal{G}_1) = \{(u_1, u_3), (u_3, u_1), (u_2, u_5), (u_5, u_2)\} \cup \{(u_i, u_i) \mid i \in [5]\}, \ \psi_1(\mathcal{G}_2) = \{(v_1, v_3), (v_3, v_1)\} \cup \{(v_i, v_i) \mid i \in [3]\} \ \text{und} \ \psi_3(\mathcal{G}_3) = \{(w_1, w_1), (w_2, w_2)\}.$