Entanglement in Featureless Mott Insulators

Brayden Ware ¹

Itamar Kimchi ² Siddarth Parameswaran ³ Bela Bauer ⁴

 1 UC Santa Barbara 2 UC Berkeley 3 UC Irvine 4 Microsoft Station Q

March 6th 2014

Outline

1 Motivation

2 Construction of Honeycomb FBI

3 Entanglement Edge of Honeycomb FBI

4 Symmetry Protection of Edge

Motivation

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

- Unique ground state:
- $E_1 E_0 \ge const.$

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Unique ground state:

$$E_1 - E_0 \ge const.$$

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Unique ground state:

$$E_1 - E_0 \ge const.$$

Gapless modes:

$$E_1 - E_0 \sim \frac{1}{L^z}$$

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

- Unique ground state:
 - $E_1 E_0 \ge const.$
- Spontaneous symmetry breaking:

$$E_1 - E_0 = 0$$

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

- Unique ground state:
 - $E_1 E_0 \ge const.$
 - Topological order: $E_1 E_0 \sim e^{-L/\xi}$ with nontrivial topology

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Free Fermion Featureless Insulators

Classical Insulators

Free fermion band insulator

Atomic picture

Topological Insulators

Band insulator with chiral edge ¹

Atomic picture breaks down

a (~

Honeycomb Bosonic Mott Insulators

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

Breaks rotational symmetry

'Classical cartoons and usual tricks' lead to symmetry breaking, as noticed by Parameswaran et al. (2013)

Honeycomb Bosonic Mott Insulators

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

Breaks translationally symmetry, unit cell is 3 times larger

'Classical cartoons and usual tricks' lead to symmetry breaking, as noticed by Parameswaran et al. (2013)

Honeycomb Bosonic Mott Insulators

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

Breaks point group symmetry D_6 to D_3

'Classical cartoons and usual tricks' lead to symmetry breaking, as noticed by Parameswaran et al. (2013)

Construction of Honeycomb FBI

Construction of 1D Featureless Insulators

Classical Insulators

Topological Insulators

1D Trivial Chain

1D Topological Chain

$$\begin{array}{c} \bullet \bullet = \circ \bullet + \bullet \circ \\ \hline \circ \circ = & \boxed{0} \end{array}$$

$$\bigcirc \bigcirc = \bigcirc$$

Entangled pairs and projectors used in state construction

Construction of 1D Featureless Insulators

Classical Insulators

1D Trivial Chain

Product state with one boson per site

1D Topological Chain

Haldane Insulator Phase Pollmann et al. (2010)

- Unitarily related to AKLT
- No SU(2) symmetry
- Symmetry protected 2-fold edge degeneracy

Construction of Honeycomb FBI

$$|\psi\rangle = \prod_{\bigcirc} \left(\sum_{i \in \bigcirc} b_i^\dagger\right) |\mathbf{0}\rangle$$

Entanglement Edge of Honeycomb FBI

Edge Geometry

Entanglement Spectrum

Entanglement Spectrum

Finite Size Analysis

Finite Size Analysis

Identification of Edge CFT

Conformal Charge

Identification of Edge CFT

Conformal Weights

We can match the rescaled entanglement energies to the conformal weights of a free bosonic CFT.

$$\mathbf{P} = \frac{2\pi}{L}(\mathbf{L_0} - \bar{\mathbf{L}_0}) = \frac{2\pi}{L}(em + n - \bar{n})$$

$$\mathbf{H} = \frac{2\pi}{L}(\mathbf{L_0} + \bar{\mathbf{L}_0}) = \frac{2\pi}{L}(\frac{\kappa e^2}{2} + \frac{m^2}{2\kappa} + \frac{n + \bar{n}}{2})$$

$$\mathbf{H} \propto e^2 + \frac{m^2}{\kappa^2} + \frac{1}{\kappa} (n + \bar{n})$$

Identification of Edge CFT

Conformal primary identification in entanglement spectra

Symmetry Protection of Edge

Symmetry Protection of Degenerate Edge

Future Work

Entanglement properties with different geometries

- Armchair cylinder edge
- Finite size clusters
- Explain results for arbitrary geometries with tensor network properties, e.g. 'MPO injectivity'

Find a 2D local Hamiltonian and confirm with numerics

$$H_{EBH} = \left(\sum_{i,j\in\mathcal{O}} \sum_{i,j\in\mathcal{O}} -tb_i^{\dagger}b_j + Vn_i n_j\right) + \mu N?$$

Physical properties of the phase

Can we constructan SU(2) symmetric FI?

Resources

- Hasan, M. Z. and Kane, C. L. (2010). *Colloquium*: Topological insulators. *Reviews of modern physics*, 82(4):3045–3067.
- Parameswaran, S. A., Kimchi, I., Turner, A. M., Stamper-Kurn, D. M., and Vishwanath, A. (2013). Wannier permanent wave functions for featureless bosonic mott insulators on the 1/3-filled kagome lattice. *Phys. Rev. Lett.*, 110:125301.
- Pollmann, F., Turner, A. M., Berg, E., and Oshikawa, M. (2010). Entanglement spectrum of a topological phase in one dimension. *Phys. Rev. B*, 81(6):064439.

Questions?

Brayden Ware brayden@physics.ucsb.edu

Bonus slides