

csinva

let's do good with models

csinva.io

n csinva

education

phd | machine learning

uc berkeley | '17-present research: interpretable ml advisor: bin yu gpa: 3.95

ms | data science

uc berkeley | '17-present research: statistical biology

bs | cs & math

university of virginia | '14-'17 double major: cs, math concentration: statistics

skills

machine learning

pytorch • scikit-learn • tensorflow aws ec2 • s3 • sagemaker keras • mllib • caffe2

languages

experienced
python • java • matlab
proficient
r • c/c++ • web basics
human languages
english • spanish • hindi

awards

berkeley grad slam semifinalist '19 outstanding teaching award '18 uva rader research award '17 uva undergrad symposium winner '17 raven honor society '16-'17 icpc regional qualification '14-'16 1st place microsoft code jam '16 3rd place google games uva '17 2nd place apt puzzle competition '17 intermediate honors '16 dean's list '14-'17

funding awards

pdsoros fellowship finalist '19 ircn workshop travel award '19 vidya shelat fund award '16 rodman scholarship '14-'17

experience

berkeley | ml research (bin yu lab %)

fall '17 - present

- developed interpretation methods for ml models (e.g. neural nets)
- created interpretable models in medicine, biology, and computer vision

aws | research internship (pietro perona lab %)

summer '20

- testing for bias with causal matching using GANs
- interpreting semantic directions in generative models

response4life | volunteer data scientist

spring '20

• helped develop, integrate, and deploy models to forecast covid-19 severity

pacmed ai | interpretable ml internship

summer '19

- developed techniques to interpret machine-learning models for healthcare
- integrated interpretability techniques for predicting icu re-admission

facebook | computer vision internship

summer '17

- investigated unsupervised deep learning for segmentation of satellite imagery
- implemented crfs for segmentation post-processing

uva | ml research (yanjun qi lab %)

fall '16 - spring '17

- developed novel weighted- ℓ_1 , multi-task gaussian graphical model
- analyzed large-scale functional brain connectivity with graphical models

hhmi | ml research (srini turaga lab %)

summer '15, winter '15, summer '16

- extended cnns and watershed algorithms for neural image segmentation
- implemented distributed random forests for image segmentation

uva | comp. neuroscience research (william levy lab %) fall '14 - fall '16

all 14 - Iall 10

- developed detailed biophysical models of neural computation
- analyzed energy efficiency, noise, and variability in stochastic neurons

hhmi scientific computing | comp. neuroscience research summer '14

• analyzed backpropagating action potentials via biophysical simulations

research innovations inc. | web dev + android internship summer '13 - spring '14

• developed web/mobile app for task coordination with gr codes

coursework

computation

machine learning computer vision structure learning algorithms artificial intelligence deep learning learning theory ai in graphics cs theory data structures software dev. I & II information retrieval computer architecture

stat/math

statistical models probability statistics optimization linear algebra info theory real analysis linear models stochastic processes chaos theory I & II multivariate calculus discrete mathematics differential equations abstract algebra

neuroscience

neural coding neural network models neurobiology visual neuroscience cognitive science

papers

interpretability

- interpretations are useful: penalizing explanations to align neural networks with prior knowledge: rieger, singh, murdoch, & yu, icml 2020 % </>>
- transformation importance with applications to cosmology: singh*, ha*, lanusse, boehm, liu & yu, iclr 2020 workshop (spotlight talk) % </>
- hierarchical interpretations for neural network predictions: singh*, murdoch*, & yu, iclr 2019 % </>
- interpretable machine learning: definitions, methods, and applications: murdoch*, singh*, kumbier, abbasi-asl, & yu, pnas 2019 %
- disentangled attribution curves for interpreting random forests and boosted trees: devlin, singh, & yu arXiv 2019 % </>>

interpretable data science projects

- curating a covid-19 data repository and forecasting county-level death counts in the united states: altieri et al. harvard data science review 2020 % </>
- an interpretable clinical-decision rule for intra-abdominal injury: kornblith, singh et al. in prep </>
- predicting successful clathrin-coated pits in clathrin-mediated endocytosis via auxilin: li*, singh* et al. in prep </>

statistical neuroscience

- large scale image segmentation with structured-loss-based deep learning for connectome reconstruction: funke et al. *tpami 2018* %</>
- a weighted- ℓ_1 , multi-task graphical model with applications to heterogeneous brain connectivity: singh, wang, & qi, neurips 2017 amlicd workshop % </>>
- linearized synaptic integration at no extra cost: morel, singh, & levy, journal of computational neuroscience 2018 %
- a consensus layer V pyramidal neuron can sustain interpulse-interval coding: singh & levy plos one 2017 % </>

machine learning misc

- revisiting complexity and the bias-variance tradeoff: dwivedi*, singh*, yu, & wainwright arXiv 2020 % </>
- matched sample selection in face datasets via GAN projections: singh, balakrishnan, & perona 2020 in submission </>

selected talks

- interpreting ml models: uc berkeley bair seminar, 2020 %
- uncovering brain connections underlying autism via graphical models: tom tom founder's machine learning conference, 2017

'14-'20

teaching

berkeley | student instructor

summer 2018 cs 189/289: machine learning (lectures to class of 80+ students %)

fall 2019

cs 188: artificial intelligence %

projects / activities

notes blog & slides & </>

riotes, biog, a silaes V 17	1120
imodels package %	'18-'20
covid-19 forecasting %	'20
hummingbird tracking %	'18
news balancer django app	'17
madison house volunteering	'15-'16
java mini-games	'14-'16

academic service

neurips ml4h reviewer	'20
basis education volunteering	'19-'20
bair undergrad mentoring	'18-'20