PROBABILIDADES Y ESTADÍSTICA (C)

Práctica 10

- 1. Se tiene Y variable respuesta y x covariable y se obtiene una muestra $(x_i; y_i)$, $1 \le i \le n$. Obtenga, para los siguientes modelos, los estimadores de cuadrados mínimos:
 - (a) $Y = \beta x + \varepsilon$
 - (b) $Y = \beta_0 + \beta_1 x + \varepsilon$
- 2. Se tiene en el archivo **autos.txt** una serie de modelos de autos de los que se conoce su precio y su calidad.
 - (a) Grafique un diagrama de dispersión. Tiene sentido asumir que hay una relación lineal entre precio y su calidad? En caso afirmativo, plantee un modelo lineal que describa esta relación, definiendo claramente las variables aleatorias involucradas en el modelo.
 - (b) Bajo el modelo de regresión lineal obtenga los estimadores de mínimos cuadrados. ¿Qué observa del coeficiente de determinación? Interprete.
 - (c) Estime la calidad de un auto de valor 50000.
 - (d) Dar un estimador de la varianza de los errores. ¿Cual es su valor con los datos observados?
 - (e) Suponiendo normalidad de los errores, ¿es la pendiente significativa? Escribir las hipótesis, el estadístico del test y su distribución bajo H_0 . ¿Cuál es la conclusión del test? Realice el cálculo del p-valor a mano y compárelo con lo obtenido con el R.
- 3. (a) Con el comando **rnorm**, genere 100 observaciones provenientes de una distribución normal estándar. Guarde esto en la variable x.
 - (b) Con el mismo comando, genere 100 observaciones provenientes de una N(0, 0.25), guarde esto en la variable eps.
 - (c) Usando x y eps, construya la variable dependiente y según el modelo $Y = -1 + 0.5x + \varepsilon$. ¿Quiénes serán los valores de β_0 y β_1 en este modelo?
 - (d) Efectúe un scatter plot entre las variables x e y.
 - (e) Efectúe un ajuste de cuadrados mínimos para obtener $\hat{\beta}_0$ y $\hat{\beta}_1$, compárelos con los valores verdaderos β_0 y β_1 .
 - (f) Grafique en un mismo plot el scatter plot, la verdadera recta de y vs x y la recta obtenida por cuadrados mínimos, en distinto color.
 - (g) Repetiremos el procedimiento de antes, pero ahora habrá aproximadamente un 10% de los datos contaminados. Para eso, ahora el modelo que usaremos es el siguiente, $Y = V(-1+0.5x+\varepsilon)+(1-V)W$ donde $\varepsilon \sim N(0,0.25), V \sim Bi(1,9/10)$ (es decir, vale 1 con probabilidad 9/10) y $W \sim N(50,1)$.
- 4. Se tiene en el archivo **girasol.txt** el rendimiento de diversas parcelas de girasol (en toneladas) según la cantidad de dinero invertida en fertilizantes (en miles de pesos).

- (a) Bajo un modelo de regresión lineal obtenga los coeficientes con mínimos cuadrados.
- (b) Grafique un diagrama de dispersión de los datos junto con la recta de regresión obtenida, ¿detecta algo sospechoso?
- (c) ¿Encuentra evidencia en estos datos de que la inversión en fertilizante influye en el rendimiento de las parecelas de girasol?
- (d) ¿Que proporción de la variabilidad en el rendimiento de las parecelas de girasol queda explicada por la inversión en fertilizante?
- (e) Efectúe una "limpieza" de los datos y repita el procedimiento. Sugerencia: utilice la instrucción identify.
- 5. Al observar el gráfico de dispersión de las variables metros vs precio de los datos **inmuebles.txt** observamos que los puntos parecen ajustarse mejor a una parábola que a una recta. Usar el comando **lm** para realizar un ajuste lineal adecuado. ¿Cuáles son los coeficientes de la cuadrática que describe la relación?