MAE 119: Homework 6

Due: Friday, Mar. 13, 2020

You must show all work for full credit. Joint submissions can be made in groups of two. All submissions and code must be uploaded to Canvas for full credit.

- 1. (55 points) A Darrieus H turbine will be installed at a site where the wind speed is 6 m/s at 10 m, pressure is 1.01 atm and ambient temperature is 16° C. This is a vertical axis wind turbine, with rotor height of 8 m and diameter of 6 m. The center of the turbine is at z = 20 m. Determine the following:
 - (a) Air density
 - (b) Wind speeds at heights of z = 16, 20, and 24 m using $\alpha = 1/7$.
 - (c) Wind power density using u(z = 20 m).
 - (d) Maximum turbine power output
 - (e) Realistic power of a Darrieus H turbine. Look for a power coefficient online. Cite your sources.
 - (f) At what angular speed will this turbine be spinning? How long does it take for a full rotation?
- 2. (30 points) Determine the Weibull parameters c and k for an average wind speed of 8 m/s and a standard deviation of 3.7 m/s. If these values are measured at a height of 20 m, estimate the Betz power for a 2-blade horizontal axis wind turbine of diameter 100 m located at a height of 100 m. You might need to use Eq. 24.4.5. Assume $\rho = 1.225 \text{ kg/m}^3$ at z = 100 m, and $\alpha = 1/7$. Assume that the SD grows proportionally in height at the same rate as the wind speed.
- 3. (15 points) Two anemometers installed on a tower have the following wind speed readings at z = 10 m and 30 m. Find the power law coefficient α by finding the slope of the best linear fit between the two sets of wind speed readings.

$u(z=10\ m)\ (\mathrm{m/s})$	$u(z = 30 \ m)(m/s)$
3.2	4
4.5	5.5
2.9	3.6
5.2	6.4
6.1	7.5
1.5	1.8
4.2	5.2