Data Science Workshop An Experiential Journey with Data to Inspire *Your* Work

George Stark Maureen Norton Neeraj Madan April 29, 2020

The Open Group Conference Digital First April 27th to 29th, 2020

Data Science Workshop An Experiential Journey with Data to Inspire Your Work

April 27, 2020

April 28, 2020

April 29, 2020

Data Science Workshop

10:15 - 01:15 US CT

Data Science Workshop: An Experiential Journey with Data to Inspire Your Work Online

The Data Science Virtual Workshop, "An Experiential Journey with Data to Inspire Your Work", will make you think differently about data and how it can solve problems! This workshop includes surprising use cases that will make you think differently about data, sometimes laugh and hopefully inspire your own work to discover actionable insights in the mounds of data available. The use cases and introductory material will be followed by a hands-on experiential journey addressing a common challenge across industries – how to improve the customer experience. The most valuable part of this workshop is that it is designed to help you gain experience and relate it to your work – so at the end you have a plan of action on how you can make data more useful in your organization to solve a key challenge.

"Improving Customer Experiences with Real-Time Insights", will be used as an example during the workshop. This experiential session will include a step by step journey based on how data science is helping IBM to predict the customer experience journey and proactively address the issues, leading to the improvement of Net Promoter Score. The session will also highlight the importance of using Al Canvas, CRISP-DM (Cross Industry Standard Process for Data Mining) and Agile in Data Science projects.

The methodology involves consuming historical NPS data; using machine learning and artificial intelligence to identify the most important features and creating an algorithm to predict the customer experience.

Pre-Workshop Setup Instructions

It is important to have the **setup done prior to the workshop** so that the time during the session is focused on the content and experiential journey. If you encounter difficulty during the set up, reach out to Neeraj Madan or George Stark with your questions at ds-workshop@opengroup.org.

Please note that while there are many tools that could be used for building predictive analytics and machine learning solutions, this workshop will be based on IBM Watson Studio for the experiential session.

Facilitators: George Stark, Maureen Norton, Neeraj Madan

The Open Group Conference Digital First April 27th to 29th, 2020

Agenda

Section

Time (US CT)

10:15 am - 11:00 am

Getting Started

- a. Session Introduction and Expectation Setting
- b. Data Science Introduction
- c. Predictive Analytics and Machine Learning Solutions
- d. Create a Project
- <<Break (10 mins)>>

Hands on Experiential Journey (Net Promoter Score Example)

- **a. Business understanding:** Exercise 1: Identify an opportunity in your business context and document
- **b. Data understanding:** Exercise 2: What data set would you gather to work the problem statement
- **c. Data preparation:** Exercise 3: How would you prepare the dataset and what challenges do you foresee?

<<Break (10 mins)>>

- **d. Modeling:** Exercise 4: What modeling techniques would you attempt and why?
- **e. Evaluation:** Exercise 5: What metrics would you use to evaluate your model performance?
- **f. Deployment:** Exercise 6: How do you plan to consume the outputs of the model?

11: 10 am - 01:15 pm

Let's talk about data

Is there a source of data that has information about

- ANY topic
- ANY where
- ANY time

Is there a source that has their finger on the pulse of what people think at any moment in time?

Twitter

Let's talk about data

What other types of data can be used to drive deeper insights?

WEATHER

Four Common Data Science Models

Risk Assessment

Create a "Screening Model"
to identify "threats". Threats
can be any sort of fraudulent
activity (e.g., credit
transaction, passenger
screening, ability to
purchase, altered
video/photo, Fake/Real news)

Quality/Defect Prediction

Identify problematic components, predict number of defects in a product (e.g., code, castings, compounds, raw materials, ATM Machines)

Business Value/Customer Satisfaction

Create a classification algorithm that accurately identifies which customers have the most potential business value based on their characteristics and activities. Which customers are likely to be happy? Which will be promoters?

Price/Cost/Value

Predict value (e.g., home/ rental prices, value of retail transaction, number of issues, etc)

Choosing the right analytic approach

Framework: Roadmap to Building Machine Learning System

"Essentially, all models are wrong, but some are useful."--- Box, George E. P.; Norman R. Draper (1987). Empirical Model-Building and Response Surfaces, p. 424, Wiley. ISBN 0471810339.

Predictive Analytics and Machine Learning Solutions

While there are many tools that could be used for building predictive analytics and machine learning solutions (see below for examples), this workshop will be based on IBM Watson Studio for the experiential learning session.

To name a few:

- 1. IBM Watson Studio
- 2. SAS Advanced Analytics
- 3. RapidMiner
- 4. Amazon SageMaker
- 5. Azure Machine Learning Studio (Microsoft)
- 6. Google Cloud AI Platform

Audience Poll

Create a Project Add a notebook

Create a Project Import a notebook from GitHub

Notebook URL: https://bit.ly/ogdf_test

Create a Project Let's get started!

Take away

Now, I am able to

- ✓ Create/ setup the Data Science environment on IBM Cloud
- ✓ Learn the Roadmap to Building a Machine Learning System

Behind the Scenes: Let us talk about Improving Customer Experience with Real-Time Insights

Assess Situation Methodology Senchmarks Subjectives Exercise Take-away

Assess Situation

Business understanding

In year 2019, **The Company** world-wide **supported 500,000 cases** which were created in multiple platforms.

The **Net Promoter Survey (NPS)** response rate was **15%**.

60% cases were non-promoters and 40% were promoters.

Note: The numbers highlighted above are crafted for this workshop.

Assess Situation Benchmarks Business Objectives Exercise Take-away

Methodology

Business understanding

Net Promoter has become the industry standard customer loyalty measurement. Businesses see customer experience as an imperative.

On a scale of 0-10, how likely would you recommend [brand/ support] to a friend or colleague?

Calculating NPS score is as simple as tallying up your responses and subtracting the percentage of detractors from the percentage of promoters. The score is a whole number that ranges from -100 to 100, and indicates customer happiness with our brand experience.

Benchmarks (Average NPS by Industry and Leaders)

Net Promoter Scores vary widely by industry, as you can see from the average scores for 23 industries.

Knowing what similar companies have achieved helps us to set realistic goals for improvement, and realism is key to the long-term success of your program.

Source: U.S. Consumer 2019 Net Promoter Benchmarks, Satmetrix

Business understanding

Benchmarks

Business Objectives

Methodology

Goal: Improve the Net Promoter Score by identifying potential non promoters ahead of time and proactively address customer issues

Approach: Consume historical NPS data; Use machine learning and artificial intelligence to identify the most important features and select an algorithm to predict the non promoters

Desired Result: Create a capability to share the top candidates for non-promoter surveys with The Company to proactively address customer issues.

Exercise

Take-away

Assess Situation

Assess Situation Methodology Benchmarks Business Objectives Exercise Take-away

Exercise

1. Identify a data science opportunity in your business context and document.

Consider using this template...

As a <role>, I would like to <direction> the <target variable> for <scope> by <amount> in <timeframe>.

Role = End User

Direction = improve/reduce or increase/decrease

Target Variable = fraud, risk, customer satisfaction, volume, effort, price, cost, availability, productivity, revenue, etc.

Scope = section of the business of interest

Amount = value or percent

Timeframe = weeks, months, years

Assess Situation Methodology Benchmarks Business Objectives Exercise Take-away

Take-away

Now, I am able to

- ✓ Setup the Data Science environment on IBM Cloud
- ✓ Learn the Roadmap to build a Machine Learning System
- ✓ Assess the situation, understand the methodology, identify the benchmarks, and define business objectives

Features Overview

TIME

Day of Week

Time Window (Prime or Non-Prime)

Age of Account

Meaningful Update

LOCATION

Country

Geography

Region

MONEY

Life Time Spent

Monthly Recurring Spend

SENTIMENT & EMOTIONS

Sentiment

Emotion (Anger, Disgust, Fear, Joy, and Sadness)

Other Features: Assignment Count, Support Plan, Account Type, Severity, Technology, Case Origination Source, Case Origination User Type, Tribe, Catalog

Business understanding Data understanding Data preparation Modeling Evaluation Deployment

Features Overview Data Quality Audit Lab Exercise Take-away

Data Quality Audit

Pandas-Profiling Report (Things to check)

- ☐ Number of observations, features and type
- ☐ Large Number of Distinct Values (High Cardinality)
- □ Correlation
- ☐ Missing values
- ☐ End goal is to review the data and improve Data Quality

Lab: Instructions

Run the following section in the notebook.

- 1. Introduction to Notebooks
- 2. Load packages and verify the version
- 3. Data Exploration
 - Load and read the files from GitHub
 - Explore the data and perform quality audit

Exercise

2. What data set would you gather to work on the problem statement?

Be sure to include the feature that you believe would influence the outcome, the definition, type, and range (e.g., weather, forecasted rain probability at 10 am, percent, 0.0 to 1.0) of that feature, and the data source that would provide it (weather.com).

Take away

Now, I am able to

- ✓ Setup the Data Science environment on IBM Cloud
- ✓ Learn the Roadmap to build a Machine Learning System
- ✓ Assess the situation, understand the methodology, identify the benchmarks, and define business objectives
- ✓ Introduction to Notebook, load packages, and verify the versions
- ✓ Explore the data set and perform quality audit

Lab Take-away Exercise

Extract, Scale, and Select Features

Feature Extraction

One Hot Encoding

Other Techniques:

- OrdinalEncoding
- LabelEncoder
- BinaryEncoder
- Hashing Encoder
- Target/Mean Encoding
- Autoencoders

Feature Scaling

Other Techniques:

- StandardScaler
- RobustScaler
- Normalizer

Feature Selection

Dimensionality Reduction

Percent **Missing** Value

Amount of Variation

Other Techniques:

- Pairwise Correlation
- Multi- collinearity
- Principal Component Analysis,
- Cluster Analysis, Correlation (with the target)
- Forward/ Backward/ Stepwise selection
- LASSO
- Tree-based selection

Business understanding Data understanding Data preparation Modeling Evaluation Deployment

Select

Lab: Instructions

Scale

- 4. Feature Extraction
- 5. Feature Scaling
- 6. Feature Selection

Take-away

Exercise

Extract

Exercise

3. How would you prepare the dataset and what challenges do you foresee?

Now, as you have shortlisted the input features to prepare a data model, document the transformation steps (extract, scale, and select) you would apply on features to prepare the data-set.

Lab

Exercise

Select

Take away

Extract

Now, I am able to

✓ Setup the Data Science environment on IBM Cloud

Scale

- ✓ Learn the Roadmap to build a Machine Learning System
- ✓ Assess the situation, understand the methodology, identify the benchmarks, and define business objectives
- ✓ Introduction to Notebook, load packages and verify the versions
- ✓ Explore the data set and perform quality audit
- ✓ Extract, scale, and select features for the data model

Business understanding Data understanding Data preparation Modeling Evaluation Deployment

Selection Performance Metrics Evaluation Demonstration Lab Exercise Take-away

Machine Learning Algorithm Selection (1 of 2)

CLASSICAL MACHINE LEARNING Data is not labeled Data is pre-categorized in any Way or numerical UNSUPERVISED SUPERVISED Divide Identify sequences by similarity Predict a category a number CLUSTERING CLASSIFICATION Find hidden «Split up similar clothing into stacks» dependencies «Divide the socks by color» ASSOCIATION «Find What clothes I often Wear together» REGRESSION «Divide the ties by length» 8-5+ 1 = de DIMENSION REDUCTION (generalization) «Make the best outfits from the given clothes»

Selection Performance Metrics Evaluation Demonstration Lab Exercise Take-away

Machine Learning Algorithm Selection (2 of 2)

Supervised Learning		Unsupervised Learning			
Classification	Regression	Clustering	Dimensionality Reduction	Association	

1. Spam filtering

5. House Price

2. Fraud detection

- 6. Topic modeling and similar document search
- 3. Customer Segmentation
- 7. To place the products on the shelves

4. Stock price forecasts

Selection Performance Metrics Evaluation Demonstration Lab Exercise Take-away

Machine Learning Algorithm Selection (2 of 2)

Supervised Learning		Unsupervised Learning			
Classification	Regression	Clustering	Dimensionality Reduction	Association	
Spam filtering Fraud detection	Stock price forecasts House Price	Customer Segmentation	Topic modeling and similar document search	To place the products on the shelves	

Business understanding Data understanding Data preparation Modeling Evaluation Deployment

Selection Performance Metrics Evaluation Demonstration Lab Exercise Exercise

Measure Model Performance

What is Confusion Matrix?

Describes the performance of a classification model on a set of test data for which true values are known.

• **Accuracy:** Overall, how often is the classifier correct? (TP+TN)/total = (100+50)/165 = 0.91

60

105

- **Precision**: When it predicts yes, how often is it correct? (TP/predicted yes = 100/110 = 0.91)
- **Recall:** When it's actually yes, how often does it predict yes? (TP/actual yes = 100/105 = 0.95)
- **F1**: harmonic mean of precision and recall: (2 * precision * recall) / (precision + recall)

Source: Simple guide to confusion matrix terminology

How many relevant

items are selected?

Recall =

How many selected

items are relevant?

Precision =

Selection Performance Metrics Evaluation Demonstration Lab Exercise Exercise

Model Evaluation

	Metrics					
Model Name	Accuracy		Precision	Recall	F1	Score
LogisticRegression	₽	65%	63%	59%	EV)	58%
SGDClassifier	€)	55%	59%	58%	Ð	55%
SVM	EN .	60%	59%	60%	EV)	59%
KNeighborsClassifier	EN .	56%	53%	53%	∌)	53%
GaussianProcessClassifier	₽	62%	57%	55%	Ð	53%
MultinomialNB	₽	62%	59%	57%	EV)	57%
DecisionTreeClassifier	EN .	56%	54%	54%	∌)	54%
RandomForestClassifier	EN.	60%	55%	54%	Ð	53%
GradientBoostingClassifier	ብ	67%	64%	62%	⑪	62%
VotingClassifier	₽ ·	63%	59%	55%	∌	52%
MLPClassifier	P	62%	31%	50%		38%

Selection Performance Metrics Evaluation Demonstration Lab Exercise Take-away

Demonstration

The algorithm consumes multiple signals (time, geography, spend, and sentiments) and gives the non promoter predictions. The objective is to proactively identify poor customer experience and address customer issues.

Lab: Instructions

Run the following section in the notebook.

- 7. Split data into train and test sets
- 8. Measure Model Performance
- 9. Evaluate and Select Model

Exercise

4. What modeling techniques would you attempt and metrics would you use to evaluate the model performance?

Consider the type of output you are generating and choose an appropriate technique for the model. Remember, accuracy, precision, recall, F1 and think about "explainability" of the model results.

Selection Performance Metrics Evaluation Demonstration Lab Exercise Take-away

Take away

Now, I am able to

- ✓ Setup the Data Science environment on IBM Cloud
- ✓ Learn the Roadmap to build a Machine Learning System
- ✓ Assess the situation, understand the methodology, identify the benchmarks, and define business objectives
- ✓ Introduction to Notebook, load packages and verify the versions
- ✓ Explore the data set and perform quality audit
- Extract, scale, and select features for the data model
- ✓ Split data into train & test sets, select model, evaluate performance metrics, and demonstrate

Solution Lab Exercise Take-away

Proposed Solution

The model developed as a part of the hack uses artificial intelligence and machine learning to predict Non Promoters on historical data pattern. Key aspects of approach includes,

- 1. Watson NLP to create additional features from customer conversation logs
- 2. Machine Learning algorithms to come up with the predictions

Data Collection Aggregation across multiple sources (DB1, DB2, & DB3) Batch/ real-time scoring on open support tickets to predict probability of being a non-promoter Scoring Workflow Integration Embedding predictions into support team's Interactive Dashboard Service Jupyter Jupyter

Solution Lab Exercise Take-away

Solution Integration

"Ideas are easy, Execution is everything." John Doerr

NPS Predictions Board

Note: This visual highlighted above is crafted for workshop purpose.

Business understanding \rightarrow Data understanding \rightarrow Data preparation \rightarrow Modeling \rightarrow Evaluation \rightarrow Deployment

Solution Lab Exercise Take-away

Lab: Instructions

Run the following section in the notebook.

- 10. Save the Model
- 11. Deploy the Model
- 12. Predict Cases

Business understanding λ Data understanding λ Data preparation λ Modeling λ Evaluation λ Deployment

Solution Lab Exercise Take-away

Exercise

5. How do you plan to consume the outputs of model?

Consider dashboards, reports, visualizations or automated decisions. Describe how the end user interacts with results.

Solution Sol

Take away

Now, I am able to

- ✓ Setup the Data Science environment on IBM Cloud
- ✓ Learn the Roadmap to build a Machine Learning System
- ✓ Assess the situation, understand the methodology, identify the benchmarks, and define business objectives
- ✓ Introduction to Notebook, load packages and verify the versions
- ✓ Explore the data set and perform quality audit
- ✓ Extract, scale, and select features for the data model
- ✓ Split data into train & test sets, select model, evaluate performance metrics, and demonstrate
- ✓ Generate ideas on how to consume the predictions and integrate solution in business systems

Acknowledgements

Mwai Kalengamaliro

Data Scientist

David Adeyemi
Entry Level Technical
Support Developer

Upkar Lidder Developer Advocate

Antonio Perrone Senior Software Architect -Master Inventor

Andy Ellis
Ex Chief Architect (Defense,
Govt, Finance sectors)

IBM Code Patterns

Link: https://developer.ibm.com/patterns/

Contact Us

Thank you

@marketoonist.com

