Residuos y cálculo de integrales

2015-05-08 7:00

1 Definición

2 Cálculo de integrales reales

Definición (Residuo)

Supongamos que f tiene una singularidad aislada en z_0 . Si la expansión de Laurent alrededor de z_0 es:

$$\cdots + \frac{b_2}{(z-z_0)^2} + \frac{b_1}{(z-z_0)} + a_0 + a_1(z-z_0) + \cdots$$

entonces b_1 se llama el residuo de f en z_0 , y se denota como

$$b_1=\operatorname{Res}(f,z_0).$$

Definición (Residuo)

Supongamos que f tiene una singularidad aislada en z_0 . Si la expansión de Laurent alrededor de z_0 es:

$$\cdots + \frac{b_2}{(z-z_0)^2} + \frac{b_1}{(z-z_0)} + a_0 + a_1(z-z_0) + \cdots$$

entonces b_1 se llama el residuo de f en z_0 , y se denota como

$$b_1=\operatorname{Res}(f,z_0).$$

Observación

Si $\lim_{z\to z_0}(z-z_0)f(z)$ existe, es igual a $\mathrm{Res}(f,z_0)$. En tal caso, f(z) tiene una singularidad removible en z_0 , o un polo de orden 1 (simple).

Teorema (Cálculo de residuos)

Sean g, h analíticas en z_0 , y supongamos que $g(z_0) \neq 0$, $h(z_0) = 0$, y $h'(z_0) \neq 0$. Entonces $f(z) = \frac{g(z)}{h(z)}$ tiene un polo simple en z_0 , y

$$\operatorname{Res}(f, z_0) = \frac{g(z_0)}{h'(z_0)}$$

Teorema (Cálculo de residuos)

Sean g, h analíticas en z_0 , y supongamos que $g(z_0) \neq 0$, $h(z_0) = 0$, y $h'(z_0) \neq 0$. Entonces $f(z) = \frac{g(z)}{h(z)}$ tiene un polo simple en z_0 , y

$$\operatorname{Res}(f, z_0) = \frac{g(z_0)}{h'(z_0)}$$

Teorema (Generalización)

Supongamos que g tiene un cero de orden k en z_0 y que h tiene un cero de orden k+1 en z_0 . Entonces $f(z)=\frac{g(z)}{h(z)}$ tiene un polo simple en z_0 , y

Res
$$(f, z_0) = (k+1) \frac{g^{(k)}(z_0)}{h^{(k+1)}(z_0)}$$

Teorema (Residuo en polo de orden dos)

Sean g, h analíticas en z_0 , y supongamos que $g(z_0) \neq 0$, $h(z_0) = h'(z_0) = 0$ y $h''(z_0) \neq 0$. Entonces $f(z) = \frac{g(z)}{h(z)}$ tiene un polo de orden dos en z_0 , y

Res
$$(f, z_0) = 2 \frac{g'(z_0)}{h''(z_0)} - \frac{2}{3} \frac{g(z_0)h'''(z_0)}{[h''(z_0)]^2}$$

Teorema (Teorema del residuo)

Sea $D \subseteq \mathbb{C}$ un dominio estrellado. Sean $z_1, z_2, \ldots, z_n \in D$. Sea f una función analítica en $D - \{z_1, z_2, \ldots, z_n\}$. Sea γ una curva cerrada en D. Entonces:

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{i=1}^{n} [\operatorname{Res}(f, z_0) n(f, z_0)].$$

Teorema (Cálculo de integral impropia)

Sea f analítica en \mathbb{C} , salvo por una cantidad finita de polos, ninguno en el eje real. Supongamos que existen M, R tales que:

$$|f(z)| \le \frac{M}{|z|^2}.$$

para $|z| \ge R$. Entonces $\int_{-\infty}^{\infty} f(x) dx$ es igual a:

 $2\pi i \sum [residuos\ de\ f\ en\ el\ semiplano\ superior]$

Teorema (Cálculo de integral impropia)

Sea f analítica en \mathbb{C} , salvo por una cantidad finita de polos, ninguno en el eje real. Supongamos que existen M, R tales que:

$$|f(z)| \le \frac{M}{|z|^2}.$$

para $|z| \ge R$. Entonces $\int_{-\infty}^{\infty} f(x) dx$ es igual a:

 $2\pi i \sum [residuos\ de\ f\ en\ el\ semiplano\ superior]$

Observación

Las hipótesis del teorema anterior se cumplen para $f = \frac{P}{Q}$, si P, Q son polinomios, el grado de Q es mayor que $2 + \operatorname{grado}(P)$, y Q no tiene ceros en el eje real.