Notas de Modelagem Matemática

Pedro A Tonelli

December 9, 2019

Chapter 1

Números Naturais

1.1 Axiomas de Peano

Quero destacar, neste capítulo, algumas propriedades do conjunto dos números naturais que o tornam essencial na modelagem matemática. Ele introduz a noção de ordem, enumeração e quantidade nos outros conjuntos de interesse. Em particular, o conjunto dos números naturais será nosso primeiro candidato para expressar matemáticamente a noção de tempo. A aritmética, presente de forma natural em $\mathbb N$ irá se generalizar para outros conjuntos numéricos.

No final do século XIX, o italiano Giuseppe Peano deu uma construção lógica do conjunto dos números naturais. Isto é, uma construção a partir de postulados. Estes axiomas são o resumo das propiedades fundamentais de $\mathbb N$

- A Existe um elemento especial em $\mathbb N$ que chamaremos de 0. (Em alguns casos este elemento é o 1).
- B Existe uma função injetora $S:\mathbb{N}\to\mathbb{N}$, que chamaremos função sucessor que satisfaz: S está definida para todo $x\in\mathbb{N}$ e o 0 não está na imagem de S.
- C (**Princípio da indução**) Se K é um subconjunto de \mathbb{N} que contém 0 e se $x \in K$ acarreta que $S(x) \in K$, então $K = \mathbb{N}$

1.2 Operações algébricas em $\mathbb N$

A brincadeira agora é tentar construir todas as propriedades e operações, com as quais estamos acostumados, do conjunto dos naturais usando apenas os axiomas \mathbf{A} , \mathbf{B} e \mathbf{C} .

Comecemos com a definição de soma:

Definição: Se a e b são números naturais então definimos:

$$a + 0 = a$$
 para todo a (1.1)

$$a+S(b)=S(a+b) \quad \text{ para todo } a \neq b \tag{1.2}$$

Esta é uma definição usando recorrência. A primeira coisa que precisamos entender é que esta soma está definida para todos os números naturais: Fazemos assim: Fixo um número natural n e defino $K_n = \{b \in \mathbb{N} : n+b \text{ está definido }\}$, este conjunto contém 0, direto da definição e se $b \in K_n$ então $S(b) \in K_n$ e assim pela propriedade \mathbf{C} $K_n = \mathbb{N}$