## **Implementation**

(4)

```
× q5_2.m × q6_2.m × hybrid.m × bisection.m × newtons.m
     function [zero, res, niter] = bisection(f,a,b,tol,nmax)
1
2
3 -
       x = [a (a+b)/2 b]; y = f(x); niter = 0; I = (b-a)/2;
 4 -
       if(y(1)*y(3)>0)
5 -
           error('The sign of the function at the extrema must be opposite');
 6 -
       elseif y(1) == 0
7 -
           zero = a; res = 0; return
       elseif y(3) == 0
8 -
9 -
           zero = b; res = 0; return
10 -
       end
11 -
     while (I>=tol && niter < nmax)
12 -
           if sign(y(1))*sign(y(2))<0
13 -
               x(3) = x(2); x(2) = (x(1)+x(3))/2;
14 -
               y = f(x); I = (x(2)-x(1))/2;
15 -
           elseif sign(y(3))*sign(y(2))<0
16 -
                x(1) = x(2); x(2) = (x(1)+x(3))/2;
17 -
                y = f(x); I = (x(2)-x(1))/2;
18 -
               x(2) = x(find(y==0)); I = 0;
19 -
20 -
21 -
           niter = niter + 1;
22 -
       end
23
24 -
       if(niter >= nmax)
25 -
            fprintf('bisection method exited without convergence');
26 -
       end
27 -
       zero = x(2); res = f(x(2));
28
29 -
       end
                                       bisection
                                                                       Ln 1
                                                                               Col 56
```

Figure 1: Bisection Method Code



Figure 2: Equation for (4)

```
× q5_2.m × q6_2.m × hybrid.m × bisection.m × newtons.m
 df.m
      function [zero, res, niter] = newtons(f, df, x0, tol, nmax)
 1
 2 -
       niter = 0;
       x = x0 - f(x0)/df(x0);
 3 -
 4
      \Box while abs (x0-x) >= tol && niter <= nmax
 5 -
            x0 = x;
            x = x0 - f(x0)/df(x0);
 8 -
           niter = niter + 1;
 9 -
       -end
10
11 -
       if niter > nmax
12 -
            fprintf('Newtons method stopped without convergence\n');
13 -
       end
15 -
       zero = x; res = f(x);
16
17
18 -
      ∟end
                         newtons
                                                         Ln 6
                                                                 Col 12
```

Figure 3: Newton's Method Code



Figure 4: Derived equation for (4)

```
Command Window

>> [zero,res,niter] = bisection (@f,0,10,10^(-8),100)

zero =

0.5671

res =

-1.6221e-08

niter =

28

fr >> |
```

Figure 5: Answer for (4)(a)

(b)

Figure 6: Answer for (4)(b)

(c)

```
df.m
       × q5_2.m
                  × q6_2.m
                             × hybrid.m
                                        × bisection.m
                                                         newtons.m
1
     function [zero,res,niter] = hybrid(f,df,a,b,tol,nmax)
2 -
           [a,b,c] = bisection(f,a,b,tol,2);
           [zero,res,niter] = newtons(f, df, a, tol, nmax);
3 -
       end
5
                  hybrid
                                                   Ln 5
                                                           Col 1
```

Figure 7: Hybrid Method Code

Figure 8: Answer for (4)(c)

(d)

| Method     | Bisection | Newton | Hybrid |
|------------|-----------|--------|--------|
| Number of  | 20        | 5      | 1      |
| iterations | 20        | 3      | 4      |

Fastest algorithm to solve this problem is the Hybrid algorithm.



Figure 9: Equation for (5)

Figure 10: Derived equation for (5)

Figure 11:Answer for (5)

In 5<sup>th</sup> question initial point was chosen by considering the alpha's characteristics. Alpha is an acute angle. Therefore minimum value was chosen as the initial point.

(6)



Figure 12: Equation for (6)

```
Command Window
  >> [zero, res, niter] = bisection(@f6,-100,100,10^(-12),100)
  zero =
      0.0427
  res =
    -3.1248e-04
  niter =
      46
fx >>
```

Figure 13: Answer for (6)