Prediction and Recommendation engine with Data crunching and Causal models for Demand Analysis of food grains

Project Coordinator-Sankaranarayanan.G

Project Members: Anjali Chauhan, Keerthana.S, Kasyap Varanasi, Nikunj Bansal, Praveen Malla (Members of Cord.Ai)

Food Security

Food Security

- Quantity of certain food grains copious
- Other aspects need to be considered
- The Health dimensions and Inclusive dimension
- Availability part has been met with volatility and procurement challenges
- Actual or Near Actual Demand Assessment essential.
- Intelligent market system design-Need of the hour
- Information sharing done between stakeholders and misinformation reduced.
- Policies considered- Doubling farmers income, National Logistics Policy

Working and Dynamics of Domestic Market

Effect of International Markets on Domestic Markets

- Fuel price dynamics and Energy Crisis
- Currency Value dynamics (Appreciation and Depreciation of exchange rate)
- Geopolitical changes
- Famines/Drought around the world and consequent demand variation.
- Climate change and volatility-El-nina, La-Nina Effects and intersection with minor oscillations.
- World food grain and commodity prices
- Demand for substitute products or economic alternatives
- Demand for food grain derivatives Eg. Atta, Other Consumables

APMC Maps

S.No.	Agro-climatic regions/zones	States represented
I	Western Himalayan region	Himachal Pradesh, Jammu & Kashmir, Uttarakhand
П	Eastern Himalayan region	Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, Tripura, West Bengal
ш	Lower Gangetic plain region	West Bengal
IV	Middle Gangetic plain region	Uttar Pradesh, Bihar
V	Upper Gangetic plain region	Uttar Pradesh
VI	Trans Gangetic plain region	Chandigarh, Delhi, Haryana, Punjab, Rajasthan
VII	Eastern plateau and hills region	Chhattisgarh, Jharkhand, Madhya Pradesh, Maharashtra, Odisha, West Bengal
VIII	Central plateau and hills region	Madhya Pradesh, Rajasthan, Uttar Pradesh
IX	Western plateau and hills region	Madhya Pradesh, Maharashtra
X	Southern plateau and hills region	Andhra Pradesh, Karnataka, Tamil Nadu
XI	East coast plains and hills region	Andhra Pradesh, Odisha, Puducherry, Tamil Nadu
XII	West coast plains and ghat region	Goa, Karnataka, Kerala, Maharashtra, Tamil Nadu
XIII	Gujarat plains and hills region	Gujarat, Dadra & Nagar Haveli, Daman & Diu
XIV	Western dry region	Rajasthan

Problems, Issues and Challenges-Supply

- Major market forces (Government or Government Allied Channel Pricing and Private/Open Market Channel Pricing)
- Yield Prediction
- Volatility in Yield, Produce and Procurement- Forced Imports to compensate for supply shortage.
- Climate related risks
- Labour related risks
- Soil related risks
- Water related risks
- Availability of raw materials

Problems, Issues and Challenges-Supply

- Disproportionate pricing of a crop
- Agro-climatic issues
- Destruction of Inventory due to inclement weather or natural calamities
- Loss of Land due to Urban Sprawl or Industrial encroachment
- Pest , Rodent attacks
- Leakages and Pilferages
- Spoilage
- Middle men

Problems, Issues and Challenges-Supply

- Cost-Increase in the cost of raw materials, labour, production and machinery cost and pricing further down the supply chain.
- Inventory Policies to balance between safety stocks, spoilage and maintain the inflation levels.
- Taxation policies, Fiscal Deficit, Fuel prices and Policies
- Information asymmetry, heteroscedasticities, Incompleteness.

Problems, Issues and Challenges - Supply

Problems, Issues and Challenges -Demand

- Population Dynamics.
- Poverty Level Estimation
- Free riding and Leakages
- Exports and Imports Policies
- Delay in trans-shipment
- Delay in last mile distribution
- Allocation to government officials
- Exclusion of poor due to non-availability of ration cards and Aadhar card
- Sudden increase in demand
- Spoilage due to weather
- Incomplete and Imperfect information.

Data Noises

Centre	Rice	Wheat	Atta (Wheat)	Gram Dal		Urad Dal	Moong Dal	Masoo r Dal	Sugar	Milk Gr @ nu		Must- ard Oil *	Vanas- pati *	Soya Oil	Sun- flowe		Gur	Tea Loose	Salt Pack (Iodised)	Potato	Onio n	Tomato
									NOI	RTH ZO	NE											
CHANDIGARH	20	13	14	42	65	55	58	60	32	25	90	82	62	66	79	55	NR	200	12	16	12	22
DELHI	22	14	17	39	87	69	79	71	38	21 102	2	61	51	54	65	NR	NR	148	12	23	28	15
HISAR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR	2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
KARNAL	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NE	2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
PANCHKULA	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NE	2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
GURGAON	NR	NR	NR	NR.	NR	NR	NR	NR	NR	NR NF	2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
SHIMLA	25	NR	17	35	82	64	73	NR	35	20	83	76	50	NR	NR	NR	NR	150	12	22	26	NR
MANDI	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR	2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
DHARAMSHALA	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR	2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
SOLAN	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR		NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
SRINAGAR	18	NR	15	46	55	NR	NR	NR	25	20 NR	2	72	68	NR	NR	NR	NR	192	10	14	12	NR
JAMMU	25	14	16	33	82	NR	NR	NR	35	22	85	73	53	NR	NR	NR	NR	300	12	21	22	NR
AMRITSAR	17	12	15	31	72	50	69	63	32	26	79	NR	50	68	80	NR	NR	240	12	14	21	11
LUDHIANA	18	12	1.3	30	78	58	60	60	34	25	99	71	49	60	85	46	NR.	180	12	16	11	10
BATHINDA	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR	2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
LUCKNOW	16	11	13	37	80	58	60	68	34	28	92	70	51	NR	93	NR	NR	215	11	20	25	18
KANPUR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR		NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
VARANASI	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR	2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
AGRA	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR	2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
JHANSI	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR		NR	NR	NR	NR	NR		NR	NR	NR	NR	NR
MEERUT	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR	2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
ALLAHABAD	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR	2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
GORAKHPUR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NF	2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
DEHRADUN	16	13	16	35	75	55	81	NR	35	22	80	55	49	55	NR	NR	NR	140	12	20	24	14
HALDWANI	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR		NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
RUDRAPUR	NR	NR	NR.	NR	NR	NR	NR	NR	NR	NR NR		NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
HARIDWAR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR	2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Source: State Note: 1. Difference				at differe	ent centr	es is no	artly attril	outed to	variety d	ifferences	In case	of Edih	le oils an	d Tea d	lifferenc			Reported				Packed)
Developed by:- Nat			The second second						North Control of Control	Continue.		111	TH	TIT			IIII				111	
Centre	Rice			Gram	Tur/	Urad	Moong	Masoc	Sugar	Milk G		- Must	Vanas	- Soy	Sun	Paln	Gui	Tea	Salt Pac	k Potate	Onio	Tomato
			(Wheat) Dal	Arha r Dal		Dal	r Dal			ut Oil		pati *			oil '		Loose	(Iodised)		n	
6	100	83				207			W	EST ZOI	NE	83			7.00	500			100		507	200
RAIPUR	19	19	21	32	71	63	65	58	34	22	76	69	55	54	58	NR	NR	180	10	20	22	NR
DURG	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR N	IR.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
AMBIKAPUR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR N	JR.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
BILASPUR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR N	IR.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
JAGDALPUR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR N	JR.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
DANTATI	2-0	12.70	12-50	1	2.70	1	12.70	2.77	2.70	12.00		2.70	2.70		2-70	12-0	12-00	12.70	12.00	12.77	2-5	12.70

Objectives

- Supply Side Strategizing and Planning to meet the Demand using Artificial Intelligence, tools and technological implements.
- Inventory and Logistical Management at Facility level using technological implements such as smart cards.
- Demand Prediction, Analysis Model, and Algorithms for different geographical locations in India.

Implementable, Deliverables-Problem Framework, Algorithm and Mechanisms

- Module 1: Numerical data analysis
- Module 2: Textual Data Analysis
- Module 3: GIS and Climate based Data analysis, Image Analysis
- Module 4: Data Cleaning Module
- Module 5: Synthetic Data Generation, test data generation and validation
- Module 6: Retrograde analysis of food grain policies and other policies in reality
- Module 7: Forecasting, Recommendation and Strategic Decision Making Module

Module Relationship Diagram

Module 1-Numerical Data Analysis-I Temporal Forecast

Module 1-Numerical Data Analysis-I-Spatial variation forecast

Module-2 Textual Data Analysis

Newspaper articles, Educational and Expert Videos

Audit Report, Policy reports, Memo Scans

> Budget, Economic Reports

Farmer's database, Soil Health Cards

Tweets, Youtube comments

Module 3: GIS and Climate based Data analysis, Image Analysis

Agro-climatic Zoning Physical map data

Crop Phenotype and effect of weather, climate on the phenotypes

Soil classification,
Urban Sprawl
Geographical
location, Irrigation
routes

Demand Points and market locations

Transportation routes approximation distance parameters and alternatives,

Module 4: Data Cleaning Module

Missing Data, Imperfect data, Data noises variation of data frequency

Accuracy Precision
Positional Labelling GIS
Errors

Fake News, Misinformation,
Online Opinions
(Unstructured Data)

Misclassification of Images and Spatial Accuracy Captured by Lidar Drone

Errors due to Format Conversion and Data Preprocessing Algorithms

Module 7: Forecasting, Recommendation and Strategic Decision Making Module Spatial Variation -1 Demand Forecast-1 Forecasting, Recommendation Module Spatial Personal Processing Prediction

Validated Synthetic Data

Pre-

processed

Clean Data

Analysis
Feedback
with
Learning

Spatial variation -2

Demand forecast -2

Deep Learning

Networks with Logic

and Reasoning

Forecasting, prediction and Analysis of Demand, Procuement, Produce, Yield Recommendation of Inventory levels and Allocation of Inventory at Each Echelon with Spatial Variation

- Anon Climate Dynamics | Scientific improvements in seasonal weather forecasting; and climate variability from ocean surface and sea ice | AER. Retrieved (March 25, 2015), https://www.aer.com/science-research/climate-weather/climate-dynamics.
- Anon Definition and Dimensions of Food Security. WOCATpedia. Retrieved https://wocatpedia.net/wiki/Definition_and_Dimensions_of_Food_Security.
- Azar PD, Kleinberg R, Weinberg SM (2019) Prior independent mechanisms via prophet inequalities with limited information. Games Econ. Behav. 118:511–532.
- Balseiro SR, Besbes O, Weintraub GY (2019) Dynamic mechanism design with budget-constrained buyers under limited commitment. Oper. Res. 67(3):711– 730.
- Benchekroun H, Martín-Herrán G (2016) The impact of foresight in a transboundary pollution game. Eur. J. Oper. Res. 251(1):300–309.

- Benchekroun H, Martín-Herrán G, Taboubi S (2009) Could myopic pricing be a strategic choice in marketing channels? A game theoretic analysis. J. Econ. Dyn. Control 33(9):1699–1718.
- Bergemann D, Välimäki J (2010) Information in mechanism design
- Bergemann D, Välimäki J (2019) Dynamic mechanism design: An introduction. J. Econ. Lit. 57(2):235–274.
- CAG (2013) Storage Management and Movement of Food Grains in Food Coporation of India
- Capps O, Tedford JR, Havlicek J (1985) Household Demand for Convenience and Nonconvenience Foods. Am. J. Agric. Econ. 67(4):862– 869.

- CGIAR/CCAFS (1988) How will climate change affect food security? (December):7.
- Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 4(4):287–291.
- Chatterjee S, Kapur D (2016) Understanding Price Variation in Agricultural Commodities in India: MSP, Government Procurement, and Agriculture Markets India Policy Forum. *India Policy Forum*.
- Chen F, Samroengraja R (2004) Order volatility and supply chain costs.
 Oper. Res. 52(5).
- ► Cho H (2016) The analysis of multivariate longitudinal data using multivariate marginal models. J. Multivar. Anal. 143:481–491.

- Drèze J, Khera R (2015) Understanding leakages in the public distribution system. Econ. Polit. Wkly. 50(7):39–42.
- ► Fiala P (2005) Information sharing in supply chains. Omega 33(5):419–423.
- Graves SC (1996) A multiechelon inventory model with fixed replenishment intervals. *Manage. Sci.* 42(1):1–18.
- Gulati A, Saini S (2015) Leakages from Public Distribution System (PDS) and the Way Forward. ICRIER Work. Pap. 294(January).
- ► Hanjra MA, Qureshi ME (2010) Global water crisis and future food security in an era of climate change. Food Policy 35(5):365–377.

- Hassanzadeh A, Jafarian A, Amiri M (2014) Modeling and analysis of the causes of bullwhip effect in centralized and decentralized supply chain using response surface method. Appl. Math. Model. 38(9–10).
- Huang Y, Wang Z (2017) Information sharing in a closed-loop supply chain with technology licensing. Int. J. Prod. Econ. 191:113–127.
- Information D (2019) Games of Incomplete 8 Dynamic
- Kumbhar VM (2012) Impact of MSP on Area Under Cultivation and Level of Production: A Study of Selected Crops in India. SSRN Electron. J.
- Lehrer E, Yariv L (1999) Repeated games with incomplete information on one side: The case of different discount factors. *Math. Oper. Res.* 24(1):204–218.

- Li C, Liu S (2013) A robust optimization approach to reduce the bullwhip effect of supply chains with vendor order placement lead time delays in an uncertain environment. *Appl. Math. Model.* 37(3).
- Liverman DM (1987) Forecasting the impact of climate on food systems: Model testing and model linkage. Clim. Change 11(1–2):267–285.
- Ma J, Bao B, Ma X (2014) Inherent complexity research on the bullwhip effect in supply chains with two retailers: The impact of three forecasting methods considering market share. Abstr. Appl. Anal. 2014.
- de Martí J, Zenou Y (2015) Network games with incomplete information. J. Math. Econ. 61:221–240.
- Martín-Herrán G, Taboubi S (2015) Price coordination in distribution channels: A dynamic perspective q. Eur. J. Oper. Res. 240(2):401–414.

- Meiselman, H.L; Macfie HJ. ed. (1996) Food Choice, Acceptance and Consumption First.
- Mitra S, Mookherjee D, Torero M, Visaria S (2018) Asymmetric information and middleman margins: An experiment with Indian potato farmers. Rev. Econ. Stat. 100(1):1–13.
- MLJ MOLAJ (2013) The National Food Security Act, 2013. (DI):18.
- Nath S, Zoeter O, Narahari Y, Dance CR (2015) Dynamic mechanism design with interdependent valuations. Rev. Econ. Des. 19(3):211−228.
- Oh S, Özer Ö (2012) Mechanism Design for Capacity Planning Under Dynamic Evolutions of Asymmetric Demand Forecasts. Manage. Sci.

- Ouyang Y, Daganzo C (2006) Characterization of the Bullwhip Effect in Linear, Time-Invariant Supply Chains: Some Formulae and Tests. Manage. Sci. 52(10):1544–1556.
- Raghunathan S, Tang C, Yue X (2016) Analysis of the Bullwhip Effect in a Multi-Product Setting with Interdependent Demands. Forthcom. Oper. Res. (February).
- Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat. Commun. 6.
- Schneider HE, Mazer SJ (2016) Geographic variation in climate as a proxy for climate change: Forecasting evolutionary trajectories from species differentiation and genetic correlations. Am. J. Bot. 103(1):140–152.
- Sourirajan K, Ramachandran B, An L (2008) Application of control theoretic principles to manage inventory replenishment in a supply chain. *Int. J. Prod. Res.* 46(21):6163–6188.

- Stocking B (2015) Working Paper 297 The National Food Security Act (NFSA) 2013. (March).
- Terelius H, Topcu U, Murray RM (2011) Decentralized multi-agent optimization via dual decomposition. *IFAC Proc. Vol.* (Elsevier), 11245–11251.
- Wang H, Guo M, Efstathiou J (2004) A game-theoretical cooperative mechanism design for a two-echelon decentralized supply chain. Eur. J. Oper. Res. 157(2):372–388.
- Wiebe K, Islam S, Mason-D'Croz D, Robertson R, Robinson S, Lotze-Campen H, Biewald A, et al. (2015) Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. *Environ. Res. Lett.* 10(8).
- Yazdani A, Jeffrey P (2011) Complex network analysis of water distribution systems. Chaos An Interdiscip. J. Nonlinear Sci. 21(1):016111.

- Zeballos LJ, Méndez CA, Barbosa-Povoa AP, Novais AQ (2014) Multi-period design and planning of closed-loop supply chains with uncertain supply and demand. Comput. Chem. Eng. 66:151–164.
- Zhang P, Xiong Y, Xiong Z, Yan W (2014) Designing contracts for a closedloop supply chain under information asymmetry. Oper. Res. Lett. 42(2).

Timeline

	Duration Activity	Oct 2022- Nov 2022	Nov 2022- Dec 2022	Dec 2022- Jan 2023	Jan 2023 – Feb 2023	Feb 2023- Mar 2023	Mar 2023- Apr 2023	Apr 2023- May 2023	May 2023- June 2023	Jun-July 2023	July- Aug 2023	Aug- Sept 2023
-												
	Literature survey											
	Module 1											
	Module 2											
	Module 3											
	Module 4											
	Module 5											
	Module 6											
	Module 7											
	Combining and Testing											

Budget

S.no	Resource	Amount (Rs)
1.	Members (Human Resource)	6, 00,000
1.	Indiastat District	14,514(for Single District under Regular Plan) with Limited no of tables, Plans could be customized accordingly
1.	LiDAR Drones	8,27,852.50 – 19,04,060.75 (\$10,000-
1.	Landbot (Optional)	23,000) Complex Drones (\$50,000- 3,00,000) 41,39,262.50-2,48,35,575.00
1.	Thermal Sensors (Optional)	1.2 Lakhs
1.	Google TPU (Computational Resource)	Free(for Individual non commercial research GPU), Check Table
1.	AWS (Computational Resource)	Needs Customized Plan
1.	ArcGIS	21,46,900 (ArcGIS pro/Advanced) 11,29,900 (ArcGIS Desktop Standard) 15,800/Year (ArcGIS Student)
1.	QGIS	Free (Open Source)
1.	Python , Java, C++, MongoDB with IDE	Free (Open Source)
	WW	

TPU v4 Pricing	Price per chip- hour	% discount from on-demand
on-demand / evaluation	\$3.22	
1Y CUD (committed use discount) reservation	\$2.03	37%
3Y CUD (committed use discount) reservation	\$1.45	55%
Preemptible	\$0.97	70%

Annexure-I

S.No.	Agro-climatic regions/zones	States represented
I	Western Himalayan region	Himachal Pradesh, Jammu & Kashmir, Uttarakhand
П	Eastern Himalayan region	Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, Tripura, West Bengal
Ш	Lower Gangetic plain region	West Bengal
IV	Middle Gangetic plain region	Uttar Pradesh, Bihar
V	Upper Gangetic plain region	Uttar Pradesh
VI	Trans Gangetic plain region	Chandigarh, Delhi, Haryana, Punjab, Rajasthan
VII	Eastern plateau and hills region	Chhattisgarh, Jharkhand, Madhya Pradesh, Maharashtra, Odisha, West Bengal
VIII	Central plateau and hills region	Madhya Pradesh, Rajasthan, Uttar Pradesh
IX	Western plateau and hills region	Madhya Pradesh, Maharashtra
X	Southern plateau and hills region	Andhra Pradesh, Karnataka, Tamil Nadu
XI	East coast plains and hills region	Andhra Pradesh, Odisha, Puducherry, Tamil Nadu
XII	West coast plains and ghat region	Goa, Karnataka, Kerala, Maharashtra, Tamil Nadu
XIII	Gujarat plains and hills region	Gujarat, Dadra & Nagar Haveli, Daman & Diu
XIV	Western dry region	Rajasthan
XV	Island region	Andaman & Nicobar Islands, Lakshadweep

Annexure-I Data Noise

Centre		Wheat	Atta (Wheat)	Gram	Tur/	Urad			Sugar	Milk @	Ground- nut Oil	Must- ard Oil *	Vanas- pati *	Soya Oil *	Sun- flowe r Oil		Gur		Salt Pack (Iodised)	Potato	-	Tomato
			0 50						NOI	RTH	ZONE			e 100					007 100		83 00	
CHANDIGARH	20	13	14	42	2200	55	58	60	32	25	90	82	62	66	79	55	NR	200	12	16	12	22
DELHI	22	14	17	39	87	69	79	71	38	21	102	61	51	54	65	NR	NR	148	12	23	28	15
HISAR	NR	NR	NR	NR	NR :	NR	NR	NR	NR	NR.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
KARNAL	NR	NR	NR	NR	NR :	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
PANCHKULA	NR	NR	NR	NR	NR :	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
GURGAON	NR	NR	NR	NR	25/25/25/25	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
SHIMLA	25	NR	17	35	27.176	64	73	NR	35	20	83	76	50	NR	NR	NR	NR	150	12	22	26	NR
MANDI	NR	NR	NR	NR	NR :	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
DHARAMSHALA	NR	NR	NR	NR	NR :	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
SOLAN	NR	NR	NR	NR	200000000	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
SRINAGAR	18	NR	15	46	55	NR	NR	NR	25	20	NR	72	68	NR	NR	NR	NR	192	10	14	12	NR
JAMMU	25	14	16	33	82	NR	NR		35	22	85	73	53	NR	NR	NR	NR	300	12	21	22	NR
AMRITSAR	17	12	15	31	72	50	69	63	32	26	79	NR	50	68	80	NR	NR	240	12	14	21	11
LUDHIANA	18	12	13	30	78	58	60	60	34	25	99	71	49	60	85	46	NR	180	12	16	11	10
BATHINDA	NR	NR	NR	NR	NR :	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
LUCKNOW	16	11	13	37	80	58	60	68	34	28	92	70	51	NR	93	NR	NR	215	11	20	25	18
KANPUR	NR	NR	NR	NR	NR :	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
VARANASI	NR	NR	NR	NR	NR :	NR	NR	NR.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
AGRA	NR	NR	NR	NR	NR :	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
JHANSI	NR	NR	NR	NR	NR :	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR.	NR	NR	NR	NR	NR	NR
MEERUT	NR	NR	NR	NR	NR :	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
ALLAHABAD	NR	NR	NR	NR	NR :	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
GORAKHPUR	NR	NR	NR	NR	NR :	NR	NR	NR.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR.	NR	NR	NR	NR
DEHRADUN	16	13	16	35	75	55	81	NR	35	22	80	55	49	55	NR	NR	NR	140	12	20	24	14
HALDWANI	NR	NR	NR	NR	NR :	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
RUDRAPUR	NR	NR	NR.	NR	NR :	NR	NR	NR.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
HARIDWAR	NR	NR	NR	NR	NR :	NR	NR	NR.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Source:- State	Civil S	Supplie	s Dept.	96	- 2			* **	. 9		109		5	96		NR ->	Not	Reported	@ -> (Rs	./Lt.)	*->0	Packed)
Note:- 1. Difference				at differen	nt centre	es is pa	rtly attrib	uted to	variety d	ifferenc	es. In case	of Edibi	le oils and	d Tea d	ifferenc							
Developed by:- Nat	ional Int	formatics	Centre(N	IC)						Contin	nue	111				TI	HT			111		
Centre		Wheat		Gram	Tur/	Urad	Moong	Masoc	Sugar	-		- Must-	Vanas	- Soya	Sun-	Palm	Gu	r Tea	Salt Pack	Potato	Onio	Tomato
			(Wheat	Dal .	Arha r Dal	Dal	Dal	r Dal	0.30	@	nut Oil *	ard Oil *	pati *	Oil *	flower Oil		÷	Loose	(Iodised)		n	
	100	83	00	200	28	007	200	00	W	EST Z	ONE	83	200		1436	507	200	1000	100	420	200	200
RAIPUR	19	19	21	32	71	63	65	58	34	22	76	69	55	54	58	NR	NR	180	10	20	22	NR
DURG	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
AMBIKAPUR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
BILASPUR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
JAGDALPUR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
PANAJI	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR

- Drones choice: The payload capacity of both a lidar sensor and RGB camera needs to be taken into consideration.
- About LIDAR Drones:
- Lidar Drone Full Solution Providers
- If you need a full lidar drone solution, then the below providers have packages and expertise to put a full solution together for you.
- OnyxScan Advanced Lidar Systems

- About Lidar DraganFly UAS
- Phoenix Lidar Systems
- LidarUSA
- Riegl Laser Measurement Systems
- Xena Sensor Technology

Lidar – Light Detection and Ranging or Lidar is a remote sensing technology where the environment is scanned with a pulsed laser beam and the reflection time of the signal from the object back to the detector is measured. The Time-of-Flight (ToF) reflection time measurement can be used over distances from one meter up to several kilometers. To increase the range of lidar systems, very short laser pulses in the invisible Near Infrared range are used. These enable a far higher laser power compared to continuous wave lasers, while still complying with eye safety requirements. During the scanning process, the lidar system will gather individual distance points within an aggregate of points, from which 3D images of the environment can be computed. The laser scanners deflect the laser beam using deflecting mirrors, which enable them to achieve very wide fields of vision (FoV). Most of the latest UAV lidar systems can rotate around their own axis and offer 360 degree visibility. Modern devices achieve very high data rates with over one million distance points per second.

- How Lidar Sensors Works In Brief
- 1. Emission of a laser pulse
- 2. Record of the back scattered signal
- 3. Distance measurement (time of flight x speed of light)
- 4. Retrieving plane position and altitude
- 5. Computation of precise echo position

- Lidar UAV Uses In Brief
- 1. Agriculture and forestry
- 2. Archaeology and cultural heritage documentation
- 3. Corridor mapping: power line, railway track, and pipeline inspection
- 4. Topography in open-cast mining
- 5. Construction site monitoring

- 1. Building and structural inspections
- 2. Surveying of urban environments
- 3. Resource management
- 4. Collision avoidance
- 5. Shoreline and storm surge modeling
- 6. Hydrodynamic modeling
- 7. Digital Elevation Models

S.no	Lidar Drones						
1	DJI M600 Pro lidar quadcopter						
2	Draganflyer Commander						
3	Riegl RiCopter Lidar UAV						
4	Harris H4 Hybrid HE UAV						
5	VulcanUAV Harrier Industrial						
6	VelosUAV helicopter						
7	Robota Eclipse fixed wing drone						
8	DJI Matrice 200 Series quadcopter						
9	OnyxStar Xena drone lidar						
10	OnyxStar Fox-C8 HD quadcopter						
11	GeoDrone X4L lidar quadcopter						
12	Tron F9 VTOL fixed wing lidar						
13	Boreal long range fixed wing drone						
14	Vapor 55 UAV helicopter						
15	DJI Matrice 600						
16	DJI Matrice 600 Pro						