Mathematics II (BSM 102)

Manju Subedi

Gandaki University Bachelor in Information Technology(BIT) BSM 102

manjusubedi.061@gmail.com

June 14, 2023

Convergence Test

Cauchy's Convergence Principle for Series:

A series $z_1+z_2+\cdots$ is convergent if and only if for every given $\epsilon>0$ (no matter how small) we can find an N (which depends on ϵ , in general) such that $|z_{n+1}+z_{n+2}+\cdots+z_{n+p}|<\epsilon$ for every n>N and $p=1,2,\cdots$ **Absolute Convergence:** A series $z_1+z_2+\cdots$ is called absolutely convergent if the series of the absolute values of the terms

$$\sum_{m=1}^{\infty} |z_m| = |z_1| + |z_2| + \cdots$$

is convergent.

If $z_1+z_2+\cdots$ converges but $|z_1|+|z_2|+\cdots$ diverges, then the series $z_1+z_2+\cdots$ is called, more precisely, **conditionally convergent.**

Example:

The series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$ converges, but only conditionally since the harmonic series diverges, as proved earlier.

P-series/ Comparison Test

P-series Test: The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$

Comparison Test:

- i. Suppose there exists an integer N such that $0 \le a_n \le b_n$ for all $n \ge N$,
- If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- ii. Suppose there exists an integer N such that $a_n \ge b_n \ge 0$ for all $n \ge N$,
- If $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

(Compare either with p-series: $\sum_{i=1}^{\infty} \frac{1}{n^p}$ or with geometric series: $\sum ar^{n-1}$)

Examples:

$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 3n + 1}$$
$$\sum_{n=1}^{\infty} \frac{1}{2^n + 1}$$

Limit Comparison Test:

Let $a_n, b_n \geq 0$ for all $n \geq 1$.

- If $\lim_{n\to\infty} a_n/b_n = L \neq 0$, then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge or both diverge.
- If $\lim_{n\to\infty} a_n/b_n=0$ and $\sum_{n=1}^\infty b_n$ converges, then $\sum_{n=1}^\infty a_n$ converges.
- If $\lim_{n\to\infty} a_n/b_n = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

Examples: Consider the two series $\sum_{n=1}^{\infty} 1/\sqrt{n}$ and $\sum_{n=1}^{\infty} 1/n^2$.

These series are both p-series with p=1/2 and p=2, respectively. Since p=1/2<1, the series $\sum_{n=1}^{\infty}1/\sqrt{n}$ diverges.

On the other hand, since p = 2 > 1, the series $\sum_{n=1}^{\infty} 1/n^2$ converges.

Manju Subedi Gandaki University June 14, 2023

Ratio Test:

Ratio Test If a series $z_1 + z_2 + \cdots$ with $z_n \neq 0 (n = 1, 2, \cdots)$ has the property that for every n greater than some N,

$$\left|\frac{z_{n+1}}{z_n}\right| \le q < 1$$

(where q < 1 is fixed), this series converges absolutely. If for every n > N,

$$\left|\frac{z_{n+1}}{z_n}\right| \ge 1$$

$$(n > N)$$

the series diverges.

5 / 10

Ratio Test: If a series $z_1+z_2+\cdots$ with $z_n\neq 0 (n=1,2,\cdots)$ is such that $\lim_{n\to\infty}\left|\frac{z_{n+1}}{z_n}\right|=L$, then:

- a) If L < 1, the series converges absolutely.
- b) If L > 1, the series diverges.
- c) If L=1, the series may converge or diverge, so that the test fails and permits no conclusion.

Manju Subedi Gandaki University June 14, 2023 6 / 10

Cauchy's Root Test

Root Test: If a series $z_1 + z_2 + \cdots$ is such that for every n greater than some N,

$$\sqrt[n]{|z_n|} \le q < 1$$

(n > N) (where q < 1 is fixed), this series converges absolutely. If for infinitely many n,

$$\sqrt[n]{|z_n|} \geq 1$$

the series diverges.

Root Test: If a series $z_1 + z_2 + \cdots$ is such that

$$\lim_{n\to\infty}\sqrt[n]{|z_n|}=L$$

then:

- (a) The series converges absolutely if L < 1.
- (b) The series diverges if L > 1.
- (c) If L = 1, the test fails; that is, no conclusion is possible.

Manju Subedi Gandaki University June 14, 2023 7 / 10

Properties of Convergence

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be convergent series. Then the following algebraic properties hold.

i. The series

$$\sum_{n=1}^{\infty} (a_n + b_n)$$

converges and

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

(Sum Rule)

ii. The series
$$\sum_{n=1}^{\infty} (a_n - b_n)$$
 converges and $\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$. (Difference Rule)

iii. For any real number c, the series $\sum_{n=1}^{\infty} ca_n$ converges and $\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$. (Constant Multiple Rule)

Exercise:

1. Test the absolute convergence of the following series:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+2}}{n^2}$

2. Test for convergence or divergence by ratio test:

(a)
$$\sum_{n=0}^{\infty} \frac{n!}{5^n}$$

(b)
$$a_n = \frac{(-10)^n}{4^{2n+1}(n+1)}$$

(c) $\sum_{n=2}^{\infty} \frac{n^2}{(2n-1)!}$

(c)
$$\sum_{n=2}^{\infty} \frac{n^2}{(2n-1)!}$$

Thank You