Расчетная работа № 2 по курсу «Алгебра и Геометрия» для ФИИТ 2 семестр 2024.

Буква а — последняя ненулевая цифра зачетной книжки/студенческого билета, буква b — предпоследняя, буква с — предпредпоследняя (все цифры ненулевые). Число d=a+b, число f=a-b.

1. Построить кривые второго порядка. Найти фокусы, эксцентриситеты, уравнения директрис и асимптот.

$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
$\frac{(x+d)^2}{a^2} + \frac{(y+f)^2}{b^2} = 1$
$\frac{(x+d)^{2}}{a^{2}} + \frac{(y+f)^{2}}{b^{2}} = 1$ $\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1$
$\frac{(x-d)^2}{a^2} - \frac{(y-f)^2}{b^2} = 1$
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$
$y^2 = 2ax$
$y^2 = -2ax$
$y^2 = d - ax$
$x^2 = -2by$
$x^2 = 2by$
$x^2 = f + 2by$

2. Определить тип поверхности второго порядка. Построить.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

$$\frac{(x-d)^2}{a^2} + \frac{(y-f)^2}{b^2} + \frac{(z-a)^2}{c^2} = 1$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$$

$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -2z$
$\frac{x^2}{a^2} + \frac{z^2}{c^2} = 2y$
$\frac{x^2}{a^2} + \frac{z^2}{c^2} = 2(y+f)$
$(x-f)^2 + (z-d)^2 = -2y$
$\frac{z^2}{a^2} + \frac{y^2}{b^2} = 1$
$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
$y^2 = 2az$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$
$\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$