K Nearest Neighbors

Sudipta Roy

KNN - Definition

KNN is a simple algorithm that stores all available cases and classifies new cases based on a similarity measure

KNN – different names

- K-Nearest Neighbors
- Memory-Based Reasoning
- Example-Based Reasoning
- Instance-Based Learning
- Case-Based Reasoning
- Lazy Learning

KNN – Short History

- Nearest Neighbors have been used in statistical estimation and pattern recognition already in the beginning of 1970's (non-parametric techniques).
- Dynamic Memory: A theory of Reminding and Learning in Computer and People (Schank, 1982).
- People reason by remembering and learn by doing.
- Thinking is reminding, making analogies.
- Examples = Concepts???

Different Learning Methods

- Eager Learning
 - Explicit description of target function on the whole training set
- Instance-based Learning
 - Learning=storing all training instances
 - Classification=assigning target function to a new instance
 - Referred to as "Lazy" learning

Different Learning Methods

Eager Learning

Instance-based Learning

1-Nearest Neighbor

3-Nearest Neighbor

K-Nearest Neighbor

- An arbitrary instance is represented by (a₁(x), a₂(x), a₃(x),..., a_n(x))
 - $-a_i(x)$ denotes features
- Euclidean distance between two instances
 d(x_i, x_i)=sqrt (sum for r=1 to n (a_r(x_i) a_r(x_i))²)
- Continuous valued target function
 - mean value of the k nearest training examples

Voronoi Diagram

Decision surface formed by the training examples

KNN Classification

Age	Loan	Default
25	\$40,000	N
35	\$60,000	N
45	\$80,000	N
20	\$20,000	N
35	\$120,000	N
52	\$18,000	N
23	\$95,000	Υ
40	\$62,000	Υ
60	\$100,000	Υ
48	\$220,000	Υ
33	\$150,000	Υ
48	\$142,000	j

KNN Classification — Distance

	Age	Loan	Default	Distance	
	25	\$40,000	N	102000	
	35	\$60,000	N	82000	
	45	\$80,000	N	62000	
	20	\$20,000	N	122000	
	35	\$120,000	N	22000	
	52	\$18,000	N	124000	
	23	\$95,000	Υ	47000	
	40	\$62,000	Υ	80000	
	60	\$100,000	Υ	42000	
	48	\$220,000	Υ	78000	
	33	\$150,000	Υ ←	8000	
			↓		
	48	\$142,000	?		
Euclid	$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$				

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

KNN Classification — Standardized Distance

Age	Loan	Default
0.125	0.11	N
0.375	0.21	N
0.625	0.31	N
0	0.01	N
0.375	0.50	N
0.8	0.00	N
0.075	0.38	Υ
0.5	0.22	Υ
1	0.41	Υ
0.7	1.00	Υ
0.325	0.65	Υ
0.7	0.61	?

$$X_{s} = \frac{X - Min}{Max - Min}$$

KNN Classification — Standardized Distance

Age	Loan	Default	Distance
0.125	0.11	N	0.7652
0.375	0.21	N	0.5200
0.625	0.31	N ←	0.3160
0	0.01	N	0.9245
0.375	0.50	N	0.3428
0.8	0.00	N	0.6220
0.075	0.38	Υ	0.6669
0.5	0.22	Υ	0.4437
1	0.41	Y	0.3650
0.7	1.00	Υ	0.3861
0.325	0.65	Y	0.3771
0.7	0.61	;	

$$X_{s} = \frac{X - Min}{Max - Min}$$

KNN Regression - Distance

Age	Loan	House Price Index	Distance
25	\$40,000	135	102000
35	\$60,000	256	82000
45	\$80,000	231	62000
20	\$20,000	267	122000
	· ,		
35	\$120,000	139	22000
52	\$18,000	150	124000
23	\$95,000	127	47000
40	\$62,000	216	80000
60	\$100,000	139	42000
48	\$220,000	250	78000
33	\$150,000	264	8000
		<u> </u>	
48	\$142,000	?	

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

KNN Regression — Standardized Distance

Age	Loan	House Price Index	Distance
0.125	0.11	135	0.7652
0.375	0.21	256	0.5200
0.625	0.31	231	0.3160
0	0.01	267	0.9245
0.375	0.50	139	0.3428
0.8	0.00	150	0.6220
0.075	0.38	127	0.6669
0.5	0.22	216	0.4437
1	0.41	139	0.3650
0.7	1.00	250	0.3861
0.325	0.65	264	0.3771
0.7	0.61	, i	

$$X_{s} = \frac{X - Min}{Max - Min}$$

KNN – Number of Neighbors

- If K=1, select the nearest neighbor
- If K>1,
 - For classification select the most frequent neighbor.
 - For regression calculate the average of K neighbors.

KNN - Applications

- Classification and Interpretation
 - legal, medical, news, banking
- Problem-solving
 - planning, pronunciation
- Function learning
 - dynamic control
- Teaching and aiding
 - help desk, user training

Summary

- KNN is conceptually simple, yet able to solve complex problems
- Can work with relatively little information
- Learning is simple (no learning at all!)
- Memory and CPU cost
- Feature selection problem
- Sensitive to representation

Questions?