Discussion 1C for CS 131 Assignment Project Exam Help Programming Languages

Add WeChat powcoder

Chi Zhang Week 6, Winter 2021

Today

- Prolog
- Homework 4

Assignment Project Exam Help

https://powcoder.com

Declarative Programing

- OCaml is for functional programing
- Java is for object Agriented programing m Help
- Prolog is for ...

https://powcoder.com

Declarative Programing

- Describe what we want to achieve not how
- Examples: SQL, Rrologment Project Exam Help

https://powcoder.com

Prolog

Logic programing

• Programs defined by Facts, Rules, Querieselp

Use GNU Prolog: https://www.gprolog.org/https://powcoder.com/

• Not SWI-Prolog

• SEASnet servers: commany sorrelesowcoder

Prolog

- Facts and rules written into a file filename.pl
- In an interactive session copy to the file by [filename]
- Run queries in the interactive session https://powcoder.com
- Use . to end a statement
- Control + D to exit Add WeChat powcoder
- Sounds like a database

Facts

- Facts define what is true in the database
- Start with lowercase letters Project Exam Help

https://powcoder.com

Relations

- Facts consisting of one or more terms
- Closed-world assumption Project Exam Help

https://powcoder.com

Variables and Unification

- Unification tries to find a way to fill the missing values
- No return values in Prolog
 Assignment Project Exam Help
 Variable is any string that starts with a Capital letter
- - My_variable, What, What, //powcoder.com
- Unification binds variables to atams wooder

Rules

- Rules allow us to make conditional statements
- Syntax: conclusion: premises ject Exam Help
 Conclusion is true if the premises are true
 - Conclusion is true if the premises are true https://powcoder.com

Rules

- Rules can contain multiple statements
 - , -> AND
 - ; -> OR

Assignment Project Exam Help

https://powcoder.com

Equality

- Equality operator: =, is, =:=
 - = tries unification directly, is evaluates the right-hand side and unifies, =:= evaluates both sides evaluates the right-hand side and unifies,

https://powcoder.com

Arithmetic

```
Arithmetic examples Prolog Notation
x < y
                      X < Y.
          https://powcoder.com
x \leq y
x = y
          Add WeChat powcoder v
x \neq y
                      X = = Y.
                       X >= Y
x > y
                       X > Y
```

Backtracking

- To understand the performance of Prolog, we need to understand how it solves queries

 Assignment Project Exam Help

 Prolog goes through facts/rules one-by-one in order
- If one choice of variables: falls, for backtracks and tries the next one Add WeChat powcoder
- Prolog visualizer: http://www.cdglabs.org/prolog/#/

Recursion

Assignment Project Exam Help

https://powcoder.com

Lists

- Syntax: [val1, val2, val3, ..., valn]
- We can do unification with head and tail: Help
 - [1, 2, 3, 4] = [A | B]
 - [1, 2, 3, 4] = [A, B | Chttps://powcoder.com]
 - [1, 2, 3, 4] = [A, B, C, Pld WeChat powcoder

List Searching

How to check if a specific element is in a list?

Assignment Project Exam Help

https://powcoder.com

Trace

- Used for debugging the code
- trace to turn on, notrace to turn on, notrace to turn on, notrace to turn on, not trace to turn on turn on, not trace to turn on turn

https://powcoder.com

List Functions

- Construction
- Removal

Assignment Project Exam Help

https://powcoder.com

Built-in

- Append: append(list1, list2, list12) concatenates two lists
- Member: member(elemnlist) rif elemnisa member of list
- Permutation: permutation(list1, list2) if list2 is a permutation of list 1
- Length: length(list, length length
- Nth: nth(n, list, elem) if the nth element of list is elem
- Maplist: maplist(cond, list) if every elem satisfies the condition

Cuts

- !, always succeeds but cannot be backtracked
- Why?
 Assignment Project Exam Help
 Pruning: Cutting off useless branches of the search tree
 - Pruning: Cutting off useless branches of the search tree https://powcoder.com

Fail

- fail is a special symbol that will immediately fail when Prolog encounters it as a goal

 Assignment Project Exam Help

 That may not sound too useful, but remember: when
- Prolog fails, it tries to the cktravkoder.com
- Thus fail can be viewed as an instruction to force backtracking
- When combined with cut ...

Generate a List with Constraints

 Let's say we want to find a list of length N where each element is a unique integer between 1 to N Assignment Project Exam Help

https://powcoder.com

Questions?

Assignment Project Exam Help

https://powcoder.com

Finite Domain Solver

- Finds variable values that fulfill given constraints
- Variable values are limited to a finite domain (non-negative int)
- Less code, optimized solution https://powcoder.com

Finite Domain Solver

 Let's say we want to find a list of length N where each element is a unique integer between 1 to N Assignment Project Exam Help

https://powcoder.com

Finite Domain Constraints

- Arithmetic constraints:

 - FdExp1 #= FdExp2: equal
 FdExp1 #\= FdExp2: different

 Project Exam Help
 - FdExp1 #< FdExp2: laga that own the following that the following that the following following the following following the following following following the following followi

 - FdExp1 #=< FdExp2: less than or equal to
 FdExp1 #> FdExp2: gleater than powcoder
 - FdExp1 #>= FdExp2: greater than or equal to
- Manual:

http://www.gprolog.org/manual/html_node/gprolog054.html

Sudoku with Finite Domain Solver

- 4x4 Sudoku
- fd_domain(List, MinsigMax)nt Project Exam Help
- fd_all_different(List)

https://powcoder.com

	2		
1			
			4
		1	

Questions?

Assignment Project Exam Help

https://powcoder.com

- KenKen Solver
- NxN square Assignment Project Exam Help
- Each row / column is filled with 1 to N, (no repeat) https://powcoder.com
- Additional constraints

- Two implementations: one with FD and one without

 - Compare performance
 Non-FD solver won't work will with large grids. Testing with 5x5 is enough https://powcoder.com
- Design a good application programming interface for no-op Kenken
 Add WeChat powcoder KenKen

- Statistics
- SinceStart = cputimesince pprolog was started
- SinceLast = cpu time since statistics was called https://powcoder.com

```
| ?- statistics(cpu_time, [SinceStart, SinceLast]).

SinceLast = 1
SinceStart = 42
yes
```

- plain_kenken and kenken work in "opposite" directions
 - plain_kenken sets some values to positions and checks if they work
 kenken first sets all constraints and finds values
- Try to make the code transport of the transport of the code transport of the code of the
 - Try not to run for more than 10min
 Consider how to fail early
- Do not use FD for your plain solution
- Do not use SWI-Prolog

Resources

 GNU Prolog manual: http://www.gprolog.org/manual/gprolog.html
Assignment Project Exam Help
Prolog wikibook: https://en.wikibooks.org/wiki/Prolog

https://powcoder.com

Questions?

Assignment Project Exam Help

https://powcoder.com