

Algorithms: Design and Analysis, Part II

Approximation Algorithms for NP-Complete Problems

Dynamic Programming for Knapsack, Revisited

Two Dynamic Programming Algorithms

Dynamic programming algorithm #1: (See earlier videos)

- (1) Assume sizes w_i and capacity W are integers
- (2) Running time = O(nW)

Dynamic programming algorithm #2: (This video)

- (1) Assume values v_i are integers
- (2) Running time = $O(n^2 v_{\text{max}})$, where $v_{\text{max}} = \max_i v_i$

The Subproblems and Recurrence

Subprolems: For $i=0,1,\ldots,n$ and $x=0,1,\ldots,nv_{\max}$ define $S_{i,x}=$ minimum total size needed to achieve value $\geq x$ while using only the first i items. (Or $+\infty$ if impossible)

```
Recurrence: (i \ge 1)
S_{i,x} = \min \begin{cases} S_{(i-1),x} & \text{Case 1, item } i \text{ not used in optimal solution} \\ w_i + S_{(i-1),(x-v_i)} & \text{Case 2, item } i \text{ used in optimal solution} \end{cases}
```

Interpret as 0 if $v_i > x$

The Algorithm

```
Let A = 2-D array
[indexed by i = 0, 1, \dots, n and x = 0, 1, \dots, nv_{max}]
Base case: A[0,x] = \begin{cases} 0 \text{ if } x = 0 \\ +\infty \text{ otherwise} \end{cases}
For i = 1, 2, \dots, n \longrightarrow n^2 v_{\text{max}} iterations
   For x = 0, 1, ..., nv_{max} Interpret as 0 if v_i > x
      A[i,x] = \min\{A[i-1,x], w_i + A[i-1,x-v_i]\}
      O(1) work per iteration
Return the largest x such that A[n,x] \leq W \leftarrow O(nv_{max})
Running time: O(n^2 v_{\text{max}})
```