

	STUDENT ID NO								

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2019/2020

EEM1026 – ENGINEERING MATHEMATICS II (ME/ TE/ RE)

22 OCTOBER 2019 9.00 a.m. – 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENT:

- 1. This exam paper consists of 4 pages (including cover page) with 4 Questions only.
- 2. Attempt all the questions. All questions carry equal marks and the distribution of marks for each question is given.
- 2. Please write all your answers in the Answer Booklet provided. Show all relevant steps to obtain maximum marks.
- 3. Only NON-PROGRAMMABLE calculator is allowed.

Question 1

(a) By using the method of undetermined coefficients, solve the following inhomogeneous differential equation.

$$y''-4y'+3y = 6e^{2x} + 10e^{3x}$$
 [12 marks]

(b) Consider the solution of $\frac{dy}{dx} + (2 - 5x)y = 0$ in the form of power series in x about $x_0 = 0$, i.e., $y = \sum_{n=0}^{\infty} c_n x^n$. Find the first four nonzero terms of this series solution. [13 marks]

Question 2

YS

- (a) The average age of students in Rieman college is 26 years with a standard deviation of 4 years. Find the probability that the mean age for a random sample of 36 students would be between 25 and 27 years. [7 marks]
- (b) The average zinc concentration recovered from a sample of measurements taken in 36 different locations in a river is found to be 2.6 grams per milliliter. Find the 99% confidence interval for the mean zinc concentration in the river. Assume that the population standard deviation is 0.3 gram per milliliter. [6 marks]
- (c) A past study claims that adults in city A spend an average of 18 hours on leisure activities per week. Recently, a researcher took a sample of 10 adults from city A and recorded their responds to amount of time (hours) they spend per week on leisure activities which is given as below:

Assume that the time spent on leisure activities by all adults is normally distributed. Using the 5% significance level, can you conclude that the average time spent on leisure activity is still the same (18 hours)?

[12 marks]

Continued...

Question 3

- (a) Set up the initial value problem for the vibration of an infinite string. Initial displacement of the string is $\cos x$ and the initial velocity is 2x. [6 marks]
- (b) Hence, solve (a) by using the D'Alembert's solution. Simplify your answer.

 [9 marks]
- (c) Consider the Laplace equation: PDE: $u_{xx} + u_{yy} = 0$ for $0 \le x \le a$, $0 \le y \le b$. Find all possible solutions for Case i: $\lambda = p^2$, Case ii: $\lambda = -p^2$ and Case iii: $\lambda = 0$. [10 marks]

Question 4

(a) Find the fourier cosine transform of $f(x) = \begin{cases} -1, & 0 \le x \le 1 \\ 1, & 1 < x \le 2 \\ 0, & otherwise \end{cases}$ [Hint: Formula of Fourier cosine transform is $F_c(w) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos \omega x \, dx$]

(b) Find the Fourier transform of

$$f(x) = \begin{cases} e^{ix}, & -1 < x < 1 \\ 0 & otherwise \end{cases}$$
 [6 marks]

[Hint: Formula of Fourier transform is $F(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\alpha x} dx$]

(b) Solve the following initial-value problem by Laplace transform.

$$y''+8y'+16y = 8e^{-2t}$$
, $y(0) = 2$ and $y'(0) = 0$. [13 marks]

Continued...

APPENDIX Table I: Laplace transform for some of function f(t)

f(t)	$F(s) = \mathcal{L}\{f(t)\}$
1	1/s
t	$\frac{1/s}{1/s^2}$
$t^{n}(n=1,2,3,)$ e^{at}	$n!/s^{n+1}$
e^{at}	_1_
	s-a
te ^{at}	1
	$(s-a)^2$
$t^{n-1}e^{at}$	(n-1)!
	$\frac{(n-1)!}{(s-a)^n}$, $n=1,2,$
cos at	S
	$\frac{s}{s^2 + a^2}$
sin at	
	$\frac{a}{s^2 + a^2}$
cosh at	S
	s^2-a^2
sinh at	a
	s^2-a^2
u(t-a)	e^{-as}
	$\frac{s}{s^2 - a^2}$ $\frac{a}{s^2 - a^2}$ $\frac{e^{-as}}{s}, a \ge 0$
f(t-a) u(t-a)	
$f(t-a) u(t-a)$ $f(t) \delta(t-a)$ $f'(t)$	$\frac{e^{-as}L(f)}{e^{-as}f(a)}$
f'(t)	$s\mathcal{L}(f)-f(0)$
f''(t)	$s\mathcal{L}(f) - f(0)$ $s^2\mathcal{L}(f) - sf(0) - f'(0)$

End of paper.