

CLAIMS

What is claimed is:

1 1. A method of selecting one of a plurality of queues for service, at least one of the plurality of
2 queues associated with a first traffic class, the method comprising the steps of:

3 (a) identifying each first traffic class (FTC) queue having at least one enqueued cell as an occupied
4 FTC queue wherein at least one FTC queue is provisioned for burst scheduling of multiple cells when
5 serviced;

6 (b) identifying an occupied FTC queue provisioned for burst scheduling as a super-occupied FTC
7 queue when the number of cells enqueued is greater than a specified number;

8 (c) setting as eligible for service each occupied FTC queue based on a FTC scheduling
9 algorithm; and

10 (d) selecting for service an eligible FTC queue based on a corresponding sub-priority of each
11 eligible FTC queue, wherein:

12 each FTC queue is assigned a sub-priority based on a service level of a connection associated with
13 enqueued cells; and

14 when the super-occupied queue is serviced, the number of cells dequeued is based on a burst size.

15 2. The invention of claim 1, wherein, for step (a) the first traffic class comprises traffic
16 having a provisioned guaranteed level of service.

17 3. The invention of claim 2, wherein, for step (a) the provisioned guaranteed level of service
18 is either a guaranteed bandwidth or a guaranteed effective bandwidth.

19 4. The invention of claim 1, wherein step (a) comprises the steps of:

20 (a1) identifying whether a queue having cells associated with unicast traffic is occupied; and

21 (a2) identifying whether a queue having cells associated with multicast traffic is occupied.

22 5. The invention of claim 1, wherein, for step (b), the FTC scheduling algorithm is a shaped
23 virtual clock algorithm.

24 6. The invention of claim 5, wherein, for step (c), each FTC queue has a corresponding down
25 counter and service period value, wherein step (c) further comprises the steps of, during a scheduling

3 interval, counting down from the service period value to a predefined value, and setting the corresponding
4 FTC queue as eligible when the down counter reaches the predefined value.

1 7. The invention of claim 6, wherein step (c) further comprises the step of continuing to count
2 from the predefined value to generate a service delay value, and for a subsequent scheduling interval
3 adjusting the service period value based on the service delay value.

1 8. The invention of claim 1, wherein step (c) further comprises the step of further setting an
2 occupied FTC queue as eligible based on congestion information.

1 9. The invention of claim 1, wherein step (d) comprises the step of, for each sub-priority,
2 addressing with a pointer the FTC queue having the highest priority value within those eligible FTC
3 queues assigned to the sub-priority, the sub-priority of an eligible FTC queue based on when the order in
4 which the eligible FTC queue is set as eligible.

1 10. The invention of claim 9, further comprising the steps of: ranking each sub-priority,
2 selecting the FTC queue within a sub-queue based on the pointer, and selecting for service the selected
3 FTC queue from among the sub-queues based on the corresponding sub-queue's rank.

1 11. The invention of claim 9, further comprising the steps of generating a bid when the FTC
2 queue selector selects a given FTC queue for service, and servicing the given FTC queue when the bid is
3 granted.

1 12. The invention of claim 1, wherein at least one of the plurality of queues is associated with
2 a second traffic class (STC), step (a) further comprises the step of identifying each STC queue having at
3 least one enqueued cell as an occupied STC queue, and the method further comprises the steps of:

4 (e) setting as eligible for service each occupied STC queue for based on a STC scheduling
5 algorithm;

6 (f) STC queue selector configured to select for service an eligible STC queue based on the
7 corresponding priority of the eligible STC queue; and

8 (g) scheduler /arbiter controller configured to select one of the FTC queue selected for service, if
9 present, and the STC queue selected for service, if present.

1 13. The invention of claim 12, further comprising the steps of assigning each FTC queue
2 priority over each STC queue, and selecting either the FTC queue or the STC queue based on the assigned
3 priority.

1 14. The invention of claim 12, wherein, for step (e), the STC scheduling algorithm is a
2 weighted round robin scheduling algorithm.

1 15. The invention of claim 12, wherein step (e) includes the step of accounting for delay in
2 service of each eligible STC queue.

1 16. The invention of claim 12, for step (e), the second traffic class is best effort traffic.

1 17. The invention of claim 1, wherein the method is embodied as program steps in a processor
2 of an integrated circuit.

1 18. A scheduler for selecting one of a plurality of queues for service, at least one of the
2 plurality of queues associated with a first traffic class (FTC), the scheduler comprising:

3 an occupancy processor configured to identify each FTC queue having at least one enqueued cell
4 as an occupied FTC queue, wherein:

5 1) at least one FTC queue may be provisioned for burst scheduling of multiple
6 cells when serviced, and

7 2) an occupied FTC queue provisioned for burst scheduling is also identified as a
8 super-occupied FTC queue when a number of cells enqueued is greater than a provisioned
9 number;

10 a FTC eligibility processor configured to set as eligible for service each occupied FTC queue
11 based on a FTC scheduling algorithm; and

12 a FTC queue selector configured to select for service an eligible FTC queue,

13 wherein each FTC queue is assigned a sub-priority based on a service level of a connection
14 associated with enqueued cells, the FTC queue selector selects an eligible FTC queue based on the
15 corresponding sub-priority of each eligible FTC queue, and when the super-occupied FTC queue is
16 serviced, the number of cells dequeued is based on a burst size.

1 19. The invention of claim 18, wherein the first traffic class comprises traffic having a
2 provisioned guaranteed level of service.

1 20. The invention of claim 19, wherein the provisioned guaranteed level of service is either a
2 guaranteed bandwidth or a guaranteed effective bandwidth.

1 21. The invention of claim 18, wherein the occupancy processor comprises:

2 a unicast occupancy processor configured to identify whether a queue having cells associated with
3 unicast traffic is occupied; and

4 a multicast occupancy processor configured to identify whether a queue having cells associated
5 with multicast traffic is occupied.

1 22. The invention of claim 18, wherein the FTC scheduling algorithm is a shaped virtual clock
2 algorithm.

1 23. The invention of claim 22, wherein the FTC eligibility processor comprises a plurality of
2 down counters, each FTC queue having a corresponding down counter and service period value, wherein
3 during a scheduling interval each down counter counts from the service period value to a predefined value,
4 and the corresponding FTC queue is set as eligible when the down counter reaches the predefined value.

1 24. The invention of claim 23, wherein, the down counter continues to count from the
2 predefined value to generate a service delay value, wherein for a subsequent scheduling interval the service
3 period value is adjusted based on the service delay value.

1 25. The invention of claim 18, wherein the FTC eligibility processor receives output port
2 congestion information, and the FTC eligibility processor sets an occupied FTC queue as eligible based on
3 the congestion information.

1 26. The invention of claim 18, wherein, for each sub-priority, the FTC queue selector
2 comprises a pointer addressing the FTC queue having the highest priority value within those eligible FTC
3 queues assigned to the sub-priority, the priority of an eligible FTC queue based on when the order in which
4 the eligible FTC queue is set as eligible by the FTC eligibility processor.

1 27. The invention of claim 26, wherein each sub-priority is ranked, and the FTC queue
2 selector selects the FTC queue within a sub-queue based on the pointer, and selects for service the selected
3 FTC queue from among the sub-queues based on the corresponding sub-queue's rank.

1 28. The invention of claim 26, wherein, when the FTC queue selector selects a given FTC
2 queue for service, a bid is generated and the given FTC queue is serviced when the bid is granted.

1 29. The invention of claim 18, wherein at least one of the plurality of queues is associated with
2 a second traffic class (STC), the occupancy processor is configured to identify each STC queue having at
3 least one enqueued cell as an occupied STC queue, and the scheduler further comprises:

4 a STC eligibility processor configured to set as eligible for service each occupied STC queue for
5 based on a STC scheduling algorithm;

6 a STC queue selector configured to select for service an eligible STC queue based on the
7 corresponding priority of the eligible STC queue; and

8 a scheduler /arbiter controller configured to select one of the FTC queue selected for service, if
9 present, and the STC queue selected for service, if present.

1 30. The invention of claim 29, wherein each FTC queue is assigned priority over each STC
2 queue, and the scheduler/arbiter controller selects either the FTC queue or the STC queue based on the
3 assigned priority.

1 31. The invention of claim 29, wherein the STC scheduling algorithm is a weighted round
2 robin scheduling algorithm.

1 32. The invention of claim 29, wherein the STC scheduling algorithm accounts for delay in
2 service of each eligible STC queue.

3 33. The invention of claim 29, wherein the second traffic class is best effort traffic.

1 34. The invention of claim 18, wherein the scheduler is embodied in a telecommunications
2 switch.

1 35. The invention of claim 34, wherein the telecommunications switch is a three stage switch,
2 the plurality of queues are associated with connections received at a plurality of input ports of the first
3 stage, and the scheduler is embodied in the first stage to transfer cells to a plurality of input links of the
4 second stage.

1 36. The invention of claim 35, wherein the telecommunications switch is a three stage switch,
2 the plurality of queues are associated with cells received from output links of the second stage, and the
3 scheduler is embodied in the third stage to transfer cells from the plurality of queues to a plurality of output
4 ports.

1 37. The invention of claim 18, wherein the scheduler is embodied in an integrated circuit.

1 38. A computer-readable medium having stored thereon a plurality of instructions, the plurality
2 of instructions including instructions which, when executed by a processor, cause the processor to
3 implement a method of selecting one of a plurality of queues for service, at least one of the plurality of
4 queues associated with a first traffic class, the method comprising the steps of:

5 (a) identifying each first traffic class (FTC) queue having at least one enqueued cell as an occupied
6 FTC queue wherein at least one FTC queue is provisioned for burst scheduling of multiple cells when
7 serviced;

8 (b) identifying an occupied FTC queue provisioned for burst scheduling as a super-occupied FTC
9 queue when the number of cells enqueued is greater than a specified number;

10 (c) setting as eligible for service each occupied FTC queue based on a FTC scheduling
11 algorithm; and

12 (d) selecting for service an eligible FTC queue based on a corresponding sub-priority of each
13 eligible FTC queue, wherein:

14 each FTC queue is assigned a sub-priority based on a service level of a connection associated with
15 enqueued cells; and

16 when the super-occupied queue is serviced, the number of cells dequeued is based on a burst size.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16