OPERATIONS RESEARCH - I

ASSIGNMENT -

HRISHITA BAPURAN 75252019004 BSC ASA SY

PECISION THEORY

(1) Mr. Sethi how 7 10,000 to inwest in our of there of thous:

A, B on C. The meturn on his investment depends on whiteen the scorousey experiences inflation, necession or no change at our the possible nations under season economic conditions and given below:

STATES	OF	NATURE	
AND THE RESERVE OF THE PARTY OF			

STRATE 6V	INFLATION	RECESSION	NO UMANGE
A	2000	1200	1500
g	3000	200	1000
ε	2500	1000	1800

what should he decide using the (1) Maximum (ii) Maximum (iii) Laplace (iv) Minimux night and (v) Huminiz (x=06) contona.

SOLUTION

(1) MAXIMAX CRITERION

	INFLATION	RECESSION	NO CHANGE	HAXIMOM
A	2000	1200	1500	2000
В	3000	100	1000	3000
C	2500	1000	18000	2500

. By Maniman criterion, B is the best option

(ii) MAXIMIN CRITERION

	INFLATION	RECESSION	NO CHANGE	MINIMUM
A	2000	1200	1500	12.00
В	8000	\$00	1000	\$00
4	2500	topo	1100	1000

. By Maximum Critorion, A is the Seest option.

MYYY	инн 💮	CHINADAKO MA				_
tiii)	LAPLAC	E CRITERIO	N			
	INFLAT	NON RECESS	ION NO	CHANGE	EXPEC	TED PAYOUF
A	200	0 120	o 1	500	18	66.67
B	300	0 80	₂ ι	000	16	000
c	250	0 1000	L	200	17	66.67
∴ By	4	M CONTONION	L.	u best	option	
	IN	FLATION	RECESSION	NO CH	IANGE	
		2000	1200		00	
	В	3000	800	lo	ου	
	C	2500	1000	181	00	
(OLU Max	MN	3000	1200	18	00	
RE6	RET TABL	LE:				
	11	NFLATION	RECESSION	NO	CHANGE	MAXIMUH
,	Ą	1000	o	41,45	300	1000
131 1 7 7	В	0 .	400		\$ <i>0</i> 0	800
C		Soo	200		0	500
i.	By mi	niman sug	quet conto	riou, L	ù tu	bust option
נטן	HURWIC	z (K=0.6) C	RITERION	Wo = (K	+ (XAM ×	(I—≪)×MIN
	INFLATION	N RECESSION		7. 24 34 37	MIN	Wo
A	2000	1200	1500	2000	1200	1680
2	3000	\$00	1000	3000	800	2120

1900 2500 1000 1800 looo

: By Hurwicz contourou, B is the best option.

(2) Pay offs of How acts X, Y, Z and the states of nature P, Q, R over given below:

PAY-OFFS (7)

STATES OF		ACTS		
NATURE	X	У	Z	
P	-120	-80	100	
Q	200	400	-300	
R	260	-260	600	

The probabilities of the states of nature are 0.3_0.3 and 0.4 suspectively. Find the dust action using:

i) EMV (ii) EOL witerious and also find EVPI

SOLUTION:

(1) EXPECTED MONETARY VALUE:

STATES	0 F	PROB.		ACTS		EXPE	CTED	VALUE
NATUR	ZE		x	У	Z	X ye	Y	Z
P	Pr 11 . U	6.3	-120	-80	100	-36	-24	30
9		0.3	200	400	-300	60	120	-90
R		6.4	260	-260	600	104	-104	240
		V 23. 3		1	EMV =	128	-8	[180]

Since z has the highest EMV, it seem is the best action.

LII) EXPECTED OPPORTUNITY LOSS:

STATES		PROB	3.		ACTS		COND.	OPP.	rosi	WEI6H	ITED O	PP. LOW
NATUR	(E), 14	7.4) :	X	y	Z	x	¥	Z	x	У	Z
P		6.3	βň	-120	-80	100	220	180	D	66	54	O
of Q		6.3		200	400	-300	200	0	700	60	0	210
R	a r	6.4	2	260	-260	600	340	860	0	136	344	0
										- 01		15.0

EOL = 262 398 210

Signe z has the lowest EOL, it is the best action. : EVPI **** EVPI = min (EOL) = 210

EPPT =
$$(100 \times 6.3) + (400 \times 0.3) + (600 \times 0.4)$$

= $30 + 120 + 240$
= 390
= $390 - 180$
= $210 = min (EOL)$

(3) Marketing staff of a writain industrial againization has submitted the yellowing payoff table, giving profits in million suspent, concurring a certain proposal depending upon the mate of technological advocuse.

TECH	PECISION				
ADVANCE	ACCEPT	REJECT			
Much	2	3			
vittle	5	2.			
nom	-)	4			

The probabilities are 0.7, 6.5 and 0.3 for nevels. With and none relinological advance suspectively. Find the aptimum decision board on ii) EMV (ii) EOL also find EVPI

SOLUTION:

() EMV:

TECH	PROB.	DECISI	DN	EXPECTED VALUE		
ADVANCE	I KUB.	ALCEPT	REJECT	A CCEPT	REJECT	
Much	6-2	2	3	6.4	0.6	
Little	6-5	S	2	2.5	1-0	
nom	6.3	-1	4	-0.3	1-2	
			FMV	- 2.6	2.9	

Since hax (EMV) = 2.8, to ouject is the optimum decision (ii) EOL:

TECH ADVANCE	Prob.	DECISION	ON REJECT	ACCEPT		WEIGHTED ACCEPT	OPP. LOW REJECT
Much	0.1	2	3	1	0	6.2	0
Little	6.5	5	2	0	3	O	1.5
nom	6.3	. 7	4	5	D	1-5	D

Since min (EOL)=15, to suject is the optimum declarous

ALO, EVPI = min (EOL) =1-5

```
EPPI = (3x0.2) + (5x0.5) + (4x0.3)

= 0.6 + 2.5 + 1.2

= 4.3

EVPI = EPPI - man(EMV)

= 4.3 - 2.8

\frac{1.5}{} = min(EOL)
```

(4) A producer of books how estimated the following distribution of demand for a particular kind of boot:

NO. DEMANDED O 1 2 3 4 5 6

PROBABILITY 0.14 0.27 0.27 0.18 0.09 0.04 0.01

Each badt costs him 2 7000 and he sells them for 210,000 each my boals left musold at the end of the season must be disposed off for 26000 each now many boals should be in stock so as to manimize his enjected peofit.

SOLUTION:

19 D denotes the demand and S, the member of books in supply stock, then the conditional topp profit values are computed as follows:

-PROFIT ? - MARGINAL PROFIT = 10000 - 7000 = 3000 FUNCTION] - MARGINAL 1055 = 7000 - 6000 = 1000

NA	TE TUP		PROB.		ω۱	NDITIONA		FIT (₹)	/cour	SE OF	ACTION
CDI	_	(UV)			0	1	2	3	4	5	6
	0		o·14		0	-1000	-2000	-3000	-4000	-5000	-6000
	١		0-27	¢	0	3000	2000	1000	o P	-1000	-2000
	2		6.27		0	3000	6000	5000	4000	3000	2000
	3		81.0		0	3000	6000	9000	8000	7000	6000
	4		0.09		0	3000	6000	9000	12000	14000	1000
g . E	5		6.64		0	3000	6000	9000	12000	15000	‡ 4000
	Ь		0.01		0	3000	6000	9000	18000	75000	\$6000
E	KPEC	red 1	PROFIT (emv):	0	2440	3800	4080	3640	2840	180
Nu	rufor	u, ku	produ	uu	M	would	etock	3 Noc	als.to	mani	wize Mos

(5) A doopston sells a particular book of tax laws for \$100 H purchases hu po book for \$80 pu copy. Since some of the tax laws change every year. He copies unsold at the end of a year decome outdated and can be disposed off for \$30 lack. According to last enjeritenes, the annual demand for this book is between 18 and 23 copies. Assuming that the order for his book can be placed only once in a year, the store's manager has to decide how many copies of the book should be purchased. (neate a pay-off matrix and hence find the dest cower of action using is maniman iii) manimum tiii) laplace (iv) himmax vegret and (v) Hurwicz (x=0.6) critoria.

(II) If he protochilities of occurrence of the various events one respectively 0.05,0.1,0.3,0.4,0.1 and 0.05, find the last cower.

g action wing i) EMV (ii) EOL nuthods. Also find EVP)

SOLUTION:

むは MM

501

Marginal host = $100 - 80 = \frac{220}{250}$ Marginal loss = $80 - 30 = \frac{250}{250}$

(1) MAXIMAX CRITERION

-	STRATEGIES	51	махімим					
	(COURSES OF ACTION)	E1 = 18	E ₂ = 19	E3 = 20	E4 = 21	Fg = 22	E ₆ = 23	1.00
-	A1 = 18	360	360	360	360	360	360	360
	A ₂ = 19	310	380	380	380	380	380	380
	A ₃ = 20	260	330	400	400	400	400	400
		210	280	350	420	420	420	420
	A4 = 21		230	300	370	440	440	440
	As = 22	160		250	320	390	460	460
1	A6 = 23	110	180	250	520			

(ii) MAXIMIN CRITERION : As in the best stronty

STRATEGI	23	I	STATES	OF N	ATURE			
(COUKSES ACTION)	OF	E1= 18	E2=19	E3 = 20	E4=21	F ₅₌₂₂	E6 = 23	MUMININ
A1 = 18		360	360	360	360	360	360	360
A2 = 19		310	380	380	380	380	380	310
A3 = 20	O.J	260	330	400	400	400	400	260
A + = 21	O e	210	280	350	420	420	420	210
As = 2Z	j -	160	230	300	370	440	440	160
/a N		120	200	250	320	390	460	110
$A_6 = 23$		110	180	250	021		62-23	

: As is the best strategy by maximum conforiou

(Til) LAPLACE CRITERION

STRATEGIES ((ODRSE) OF	517	EXPECTED					
ACTION)	E1 = 18	Ez= 19	F3 = 20	F4 = 21	E5 = 22	E ₄ = 23	PAYOFF
A1 = 18	360	360	360	360	360	340	360
A2 = 19	310	386	380	380	380	310	368-33
A3 = 20	260	330	400	400	400	400	365
A4 = 21	210	280	350	420	420	420	350
4 _{5 = 22}	160	2.30	300	370	440	440	323.33
Ac = 23	110	110	250	320	390	460	285

: By laplace witorion, Az is the dest option

(IV) HINIMAX REGRET (KITERION:

column	7	210	2 00	100	4	44-	110
column morninums	J	260	3 80	400	420	440	460

REGRET TABLE :

STRATEGIES (COUKSES OF ACTION)		E1= 18	E2=19	E3 = 20	E4 = 21	E5 = 22	E6 = 25	HAXIMUN
A1 = 18		O	20	10	60	\$0	100	100
A2 = 19		50	0	20	40	60	80	80
A3 = 20		100	So	D	20	40	60	LOO
A4 = 21		ISO	100	50	0	20	40	ISO
As = 22	W. 48.1	200	150	100	50	0	20	200
Ac = 23		250	200	150	100	So	0	250

By huniman sugret contonion, Az is the best option

(V)	HURWICZ (x=0.6)	CRITERION
-----	-----------------	-----------

WO = (KX MAX) + (1-x) x MI	Wa	-	(Kx	MAX)	+(1-0	()xMI
----------------------------	----	---	-----	------	-------	-------

STRATEGIES (COURSES OF ACTION)	Ε,	E ₂	E ₃	E ₄	Es	Ec	MAX	МІМ	Wo
A.	360	360	360	360	360	360	360	360	360
A	310	380	380	380	380	380	380	310	352
A_3	260	330	400	400	400	400	400	260	344
A 4	210	2.80	350	420	420	420	4 20	210	336
As						440		160	328
Ac						460		110	320

By Hurwicz contouron. A = 18 books is the best option

(II) (I) EXPECTED MONETARY VALUE :

STATES OF	58.00	COURSES OF ACTION CSTRATEGIES)							
NATURE (DEMAND)	PROB.	A1 = 18	A2 = 19	A3 = 20	A4 = 21	As = 22	A6 = 23		
E1 = 18	0.05	360	310	260	210	160	110		
E2 = 19	6.10	360	380	330	280	230	180		
E3 = 20	0 30	360	380	400	350	300	250		
E4 = 21	6.40	360	380	400	420	370	320		
Fs = 22	0.10	360	380	400	420	440	390		
E6 = 23	0.05	360	380	400	420	440	460		
EX PECTED VALUE	(EMV) :	360	376.5	386	374.5	335	288.5		
				22		. 11	J. Lane		

: By EMV nuthod, by= 20 has the wighest pay off and hund

maximum values of payoff under each state of nature:

$$E_1 = 18$$
 $E_2 = 19$ $E_3 = 20$ $E_4 = 21$ $E_5 = 22$ $E_6 = 23$
360 380 400 420 440 460

STATES OF P STRATEGIES (COURSES OF ACTION)

NATURE R (ONDITIONAL OPPORTUNITY LOSS

(DEMAND) B.
$$A_1 = 18$$
 $A_2 = 19$ $A_3 = 20$ $A_{4} = 21$ $A_{5} = 22$ $A_{6} = 23$
 $E_{1} = 18$ 6.05 0 SO 100 150 200 250

 $E_{2} = 19$ 0.10 20 0 50 100 150 200

 $E_{3} = 20$ 6.30 40 20 6 50 100 150

 $E_{4} = 21$ 0.40 60 40 20 0 50

 $E_{5} = 22$ 6.10 80 60 40 20 0 50

 $E_{6} = 23$ 0.05 100 80 60 40 20 0

 $E_{1} = 21$ 0.40 80 60 40 20 0

 $E_{2} = 21$ 0.40 80 60 40 20 0 50

 $E_{3} = 21$ 0.40 80 60 40 20 0 50

Thousand, using EOL nuthed, Az=20 is the best gotion.

$$\rightarrow \text{EPPT} = (0.05 \times 360) + (0.1 \times 380) + (0.3 \times 400) + (0.4 \times 420) + (0.1 \times 440) + (0.05 \times 460)$$

$$= 18 + 38 + 120 + 168 + 44 + 23 = 411$$

21/6