

FIGURE 1

ACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGACCTCGA
CCCACCGCGTCCGGGCCGGAGCAGCACGGCCGCAGGACCTGGAGCTCCGGCTGCGTCTTCCCG
CAGCGCTACCCGCCATGCGCCTGCCGCCGGCGCGCTGGGGCTCCTGCCGCTTCTGCTG
CTGCTGCCGCCGCCGGAGGCCAAGAAGCCGACGCCCTGCCACCGGTGCCGGGGGCT
GGTGGACAAGTTAACCAAGGGATGGTGACACCGCAAAGAAGAACTTGGCGGGGGAAACA
CGGCTTGGGAGGAAAAGACGCTGTCAAAGTACGAGTCCAGCGAGATTGCCCTGCTGGAGATC
CTGGAGGGCTGTGCAGAGCAGCAGTCGAATGCAATCAGATGCTAGAGGCGCAGGAGGA
GCACCTGGAGGCCTGGCTGCAGCTGAAGAGCGAATATCCTGACTTATTGAGTGGTTT
GTGTGAAGACACTGAAAGTGTGCTGCTCTCCAGGAACCTACGGTCCCAGTGTCTCGCATGC
CAGGGCGGATCCCAGAGGCCCTGCAGCGGAATGCCACTGCAGCGGAGATGGGAGCAGACA
GGCGACGGGTCTGCCGTGCCACATGGGTACCAGGGCCGCTGTGCACTGACTGCATGG
ACGGCTACTTCAGCTCGCTCCGAACGAGACCCACAGCATCTGCACAGCCTGTGACGAGTCC
TGCAAGACGTGCTCGGCCTGACCAACAGAGACTGCGGCAGTGTGAAGTGGCTGGTGCT
GGACGAGGGCGCCTGTGGATGTGGACGAGTGTGCGGCCGAGCCGCCTCCCTGCAGCGCTG
CGCAGTTCTGTAAGAACGCCAACGGCTCCTACACGTGCGAAGAGTGTGACTCCAGCTGTG
GGCTGCACAGGGGAAGGCCAGGAAACTGTAAAGAGTGTATCTCTGGCTACGCAGGGAGCA
CGGACAGTGTGCAGATGTGGACGAGTGTCACTAGCAGAAAAAACCTGTGTGAGGAAAAACG
AAAATGCTACAATACTCCAGGGAGCTACGTCTGTGTGCTGACGGCTTCGAAGAACG
GAAGATGCCTGTGTGCCGCCAGAGGCTGAAGCCACAGAAGGAGAAAGCCGACACAGCT
GCCCTCCCGCAAGACCTGTAATGTGCCGGACTTACCCTTAAATTATTAGAAGGATGTCC
CGTGGAAAATGTGGCCCTGAGGATGCCGTCTCCTGCAGTGGACAGCGGGGGAGAGGCTGC
CTGCTCTCTAACGGTGATTCTCATTGTCCTTAAACAGCTGCATTCTGGTTGTTCTTA
AACAGACTTGTATATTTGATACAGTTCTTGTAATAAAATTGACCATTGTAGGTAATCAGG
AGGAAAAAAAGGGCGCCGCGACTCTAGAGTCGACCTGCAGAACG
TTGGCCGCCATGGCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAGCAATAGCA
TCACAAATTCAAAATAAGCATTTCAGCTAGTTGTGGTTGTCCAAACTC
ATCAATGTATCTTATCATGTCGGATCGGAATTAAATTGCGCGCAGCACCATGGCCTGAAAT
AACCTCTGAAAGAGGAACTTGGTTAGGTACCTCTGAGGCGGAAAGAACCCAGCTGTGGAATG
TGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAGCATGC
ATCTCAATTAGTCAGCAACCCAGTTT

FIGURE 2

><subunit 1 of 1, 353 aa, 0 stop

><MW: 38192, pI: 4.53, NX(S/T): 2

MRLPRRAALGLPLLLLPPAPEAAKKPTPCHRGLVDKFNQGMVDTAKKNFGGGNTAEEKTLSKYESSEIRL
LEILEGLCESSDFECNQMLEAQEEHLEAWWLQLKSEYPDLFEWFCVKTLVCCSPGTYGPDCLACQGGSQRPCSG
NGHCGSGDGSRQGDGSCRCHMGYQGPLCTDCMDGYFSSLRNEHTSICTACDESCKTCSGLTNRDCGECEVGWVLDE
GACVDVDECAAEP PCSAAQFCKNANGSYTCEECDSSCVGCTGEGPGNCKECISGYAREHGQCADVDECSLAEKT
CVRKNENCYNTPGSYVCVCPDGFEETEDACVPPAEEATEGESPTQLPSREDL

Signal peptide:

amino acids 1-24

N-glycosylation sites.

amino acids 190-194 and 251-255

Glycosaminoglycan attachment sites.

amino acids 149-153 and 155-159

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 26-30

Casein kinase II phosphorylation sites.

amino acids 58-62, 66-70, 86-90, 197-201, 210-214, 255-259, 295-299, 339-343
and 349-353

Tyrosine kinase phosphorylation site.

amino acids 303-310

N-myristylation sites.

amino acids 44-50, 54-60, 55-61, 81-87, 150-156, 158-164, 164-170, 252-258 and
313-319

Aspartic acid and asparagine hydroxylation site.

amino acids 308-320

EGF-like domain cysteine pattern signature.

amino acids 166-178

Leucine zipper pattern.

amino acids 94-116

FIGURE 3

CAGGTCCAAC TGCACCTCGTTCTATCGATTGAATTCCCCGGGATCCTCTAGAGATCCCTC
GACCTCGACCCACGCGTCCGCCAGGCCGGAGGCAGCGGCCAGCGTCTAAACGGGAACA
GCCCTGGCTGAGGGAGCTGCAGCGCAGAGTATCTGACGGGCCAGGTTGCGTAGGTGCG
GCACGAGGAGTTTCCCGCAGCGAGGAGGTCTGAGCAGCAGCATGGCCGGAGGAGCGCCTTC
CCTGCCGCCGCTCTGGCTCTGGAGCATCCTCTGTGCCTGCTGGACTGCGGCCGGAGGC
CGGGCCGCCAGGAGGAGGCCTGTACCTATGGATCGATGCTCACCAGGCAAGAGTACTCA
TAGGATTGAAGAAGATATCCTGATTGTTAGAGGGAAAATGGCACCTTTACACATGAT
TTCAGAAAAGCGCAACAGAGAATGCCAGCTATTCTGTCAATATCCATTCCATGAATTTCAC
CTGGCAAGCTGCAGGGCAGGCAGAATACTTCTATGAATTCTCTGTGCCTGCGCTCCCTGGATA
AAGGCATCATGGCAGATCCAACCGTCAATGTCCCTCTGCTGGAAACAGTGCTCACAAGGCA
TCAGTTGTTCAAGTTGGTTCCATGTCTGGAAAACAGGATGGGTGGCAGCATTGAAGT
GGATGTGATTGTTATGAATTCTGAAGGCAACACATTCTCAAACACCTCAAATGCTATCT
TCTTAAACATGTCAACAAGCTGAGTGCCCAGGCGGGTGGCAAATGGAGGCTTTGTAAT
GAAAGACGCATCTGCGAGTGTCCCTGATGGGTTCCACGGACCTCACTGTGAGAAAGCCTTG
TACCCCACGATGTATGAATGGTGACTTGTGACTCCTGGTTCTGCATCTGCCACCTG
GATTCTATGGAGTGAACTGTGACAAAGCAAACCTGCTCAACCACCTGCTTAATGGAGGAGC
TGTTCTACCCCTGGAAAATGTATTGCCCTCAGGACTAGAGGGAGAGCAGTGTGAAATCAG
CAAATGCCACAACCTGCGAAATGGAGGTAATGCATTGGTAAAAGCAAATGTAAGTGT
CCAAGGTTACCAGGGAGACCTCTGTTCAAAGCCTGTGCGAGCCTGGCTGTTGCACAT
GGAACCTGCCATGAACCCAAACAAATGCCATGTCAAGAAGGTTGGCATGGAAGACACTGCAA
TAAAGGTACGAAGCAGCCTCATACATGCCCTGAGGCCAGCAGGCGCCAGCTCAGGCAGC
ACACGCCCTCACTTAAAGGCCAGGGAGCGGGATCCACCTGAATCCAATTACATCTGG
TGAACCTCGACATCTGAAACGTTTAAGTTACACCAAGTTCATAGCCTTGTAAACCTTCA
TGTGTTGAATGTTCAAATAATGTTCAATTACACTTAAGAATACTGGCCTGAATTATTAGCT
TCATTATAAAATCACTGAGCTGATATTACTCTCCTTTAAGTTCTAAGTACGTCTGTAG
CATGATGGTATAGATTCTTCACTGAGCTGATATTACTCTCCTTTAAGTTCTAAGTACGTCTGTAG
TCAGGTTAAATTTCACTGAGCTGATATTACTCTCCTTTAAGTTCTAAGTACGTCTGTAG
GTCTGGGGGCAGGGGAACATCAGAAAGGTTAAATTGGCAAAATGCGTAAGTCACAAGAAT
TTGGATGGTGCAGTTAATGTTGAAGTTACAGCATTCACTGAGGTTATTGTCAATTAGAT
GTTTGTACATTTTAAAAATTGCTCTAATTAAACTCTCAATACAATATATTGACC
TTACCAATTCCAGAGATTCACTGATTTAAACACAAATTACACTGTGGTAGTGGCATT
AAACAATATAATATTCTAAACACAATGAAATTAGGAATATAATGTATGAACTTTGCAT
TGGCTTGAAGCAATATAATTGTTAAACAAAACACAGCTTACCTAATAACATTTAT
ACTGTTGTATGTATAAAATAAGGTGCTGCTTAGTTTTGGAAAAA
AAAAAAAAAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGAAGCTTGGC
CGCCATGGCCAAC TTGTTATTGCAGCTTATAATG

FIGURE 4

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33094
><subunit 1 of 1, 379 aa, 0 stop
><MW: 41528, pI: 7.97, NX(S/T): 2
MARRSAFPAAALWLWSILLCLLALRAEAGPPQEEESLYLWIDAHQARVLIGFEEDILIVSEGK
MAPFTHDFRKAQQRMPAIPVNIHSMNFTWQAAGQAEYFYEFLSLRSLDKGIMADPTVNVPPLL
GTVPHKASVVQVGFPCLGKQDGVAAFEVDVIVMNSEGNTILQTPQNAIFFKTCQQAECPGGC
RNGGFCNERRICECPDGFHGPCEKALCTPRCMNGGLCVTPGFCICPPGFYGVNCDKANCST
TCFNGGTCFYPGKICPPGLEGEQCEISKCPQPCRNGGKIGKSCKCSKGYQGDLCSPKVC
EPGCGAHGTCHEPNKCQCQEGWHGRHCNKRYEASLIHALRPAGAQLRQHTPSLKKAEERRDP
PESNYIW
```

Signal peptide:

█ amino acids 1-28

█ **N-glycosylation site.**

█ amino acids 88-92, 245-249

█ **Casein kinase II phosphorylation site.**

█ amino acids 319-323

█ **Tyrosine kinase phosphorylation site.**

█ amino acids 370-378

N-myristoylation sites.

█ amino acids 184-190, 185-191, 189-195, 315-321

ATP/GTP-binding site motif A (P-loop).

█ amino acids 285-293

EGF-like domain cysteine pattern signature.

█ amino acids 198-210, 230-242, 262-274, 294-306, 326-338

FIGURE 5

CGGACGGCGGGCGTCCGGCGGTGCAGAGCCAGGAGGCCAGGGCGGAGGCCAGCCTGGG
CCCCAGCCCACACCTTCACCAGGGCCAGGAGCCACCATGTGGCGATGTCCACTGGGGCTAC
TGCTGTTGCTGCCGCTGGCTGGCCACTTGGCTCTGGGTGCCACAGGGCTGCGGGCG
GAGCTAGCACCGGGTCTGCACCTGCAGGGCATCCGGACGCCAGGGAGGCCGGTACTGCCAGGA
GCAGGACCTGTGCTGCCGCGGCCGTGCCACGACTGTGCCCTGCCACCTGGCGCCATCT
GTTACTGTGACCTCTTGCAACCGCACGGTCTCCGACTGCTGCCCTGACTTCTGGGACTTC
TGCCTCGGCGTGCCACCCCTTTCCCCGATCCAAGGATGTATGCATGGAGGTGCTATCTA
TCCAGTCTTGGGAACGTACTGGACAACGTGAACCGTGCACCTGCCAGGAGAACAGGCAGT
GGCATGGTGGATCCAGACATGATCAAAGCCATCAACCAGGGCAACTATGGCTGGCAGGCTGG
GAACCACAGCGCCTCTGGGGCATGCCATGAGGGCATTGCTACCGCCTGGGACCA
TCCGCCCACCTTCCTCGGTATGAACATGCATGAAATTTACAGTGCCTGAACCCAGGGAG
GTGCTTCCCACAGCCTTCGAGGCCTCTGAGAAGTGGCCAACCTGATTCATGAGCCTTTGA
CCAAGGCAACTGTGCAGGCTCTGGGCTTCTCCACAGCAGCTGTGGCATCCGATCGTGTCT
CAATCCATTCTCTGGGACACATGACGCCCTGTCCGTGCCAGAACCTGCTGTCTTGAC
ACCCACCAGCAGCAGGGCTGCCCGGTGGCGTCTCGATGGTGCCTGGTGGTTCTGCGTCG
CCGAGGGGTGGTGTCTGACCACTGCTACCCCTCTCGGGCGTGAACGAGACGAGGCTGGCC
CTGCGCCCCCTGTATGATGCACAGCCGAGCCATGGTCGGGCAAGCGCCAGGCCACTGCC
CACTGCCAACAGCTATGTTAAACAATGACATCTACCAGGTCACTCCTGTCTACCGCCT
CGGCTCCAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTCA
TGGAGGTGCATGAGGACTTCTTCTATACAAGGGAGGCATCTACAGCCACAGCCAGTGAGC
CTTGGGAGGCCAGAGAGATACGCCGGCATGGGACCCACTCAGTCAAGATCACAGGATGGGG
AGAGGAGACGCTGCCAGATGGAGGACGCTAAAAACTGGACTGCGGCCACTCCTGGGCC
CAGCCTGGGGCGAGAGGGCCACTTCCGCATCGTGCAGCGGTCAATGAGTGCACATCGAG
AGCTTGTGCTGGCGTCTGGGCGCGTGGGCATGGAGGACATGGGTCATCAGTGAGGCTG
CGGGCACCACGCCGGTCCGGCCTGGGATCCAGGCTAAGGGCCGGGAAGAGGCCCAATG
GGCGGTGACCCAGCCTGCCGACAGAGCCGGCGCAGGCCGGCAGGGCGCTAAT
CCCGCGCGGGTCTCGCTGACGCAGGCCCGCTGGGAGGCCGGCAGGCAGACTGGCG
GAGCCCCCAGACCTCCCAGTGGGAGGGCAGGGCTGGCTGGGAAGAGCACAGCTGCAG
ATCCCAGGCCCTGGGCCCCCCACTCAAGACTACCAAAAGCCAGGACACCTCAAGTCTCCAGC
CCCAATACCCACCCCAATCCGTATTTTTTTTTTTTAGACAGGGTCTTGCTCCG
TTGCCCAGGTTGGAGTGCAGTGGCCATCAGGCTCACTGTAACCTCCGACTCCTGGTTCA
AGTGACCCTCCACCTCAGCCTCTCAAGTAGCTGGACTACAGGTGCACCACACCTGGC
TAATTTTGATTTTGTAAAAGAGGGGGTCTCACTGTGTTGCCAGGCTGGTTCGAACT
CCTGGGCTCAAGCGGTCCACCTGCCTCCGCTCCAAAGTGTGGATTGCAGGCATGAGCC
ACTGCACCCAGCCCTGTATTCTTATTCAAGATATTTTTTCACTGTTTTAAAAA
TAAAACCAAAAGTATTGATAAAAAAA

FIGURE 6

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33223
><subunit 1 of 1, 164 aa, 1 stop
><MW: 18359, pI: 7.45, NX(S/T): 1
MWRCPLGLLLLPLAGHLALGAQQGRGRRELAPGLHLRGIRDAGGRYEQDLCCRGRADDC
ALPYLGAICYCDLFCNRRTVSDCCPDFWDFCLGVPPPFPIQGCMHGGRIYPVLGTYWDNCNR
CTCQENRQWHGGSRHDQSHQPGQLWLAGWEPORLLGHDPG
```

N-glycosylation site.

amino acids 78-82, 161-165

Casein kinase II phosphorylation site.

amino acids 80-84, 117-121, 126-130, 169-173, 205-209, 296-300,
411-415

N-myristoylation site.

amino acids 21-27, 39-45, 44-50, 104-110, 160-164, 224-230, 269-275, 378-384, 442-448

Amidation site.

amino acids 26-30, 318-322

Eukaryotic thiol (cysteine) proteases histidine active site.

amino acids 398-409

FIGURE 7

AGGCTCCTGGCCCTTTCCACAGCAAGCTNTGCNATCCGATTGTTGTCTCAAATCCA
ATTCTCTTGGGACACATNACGCCTGTCCTTNGCCCCAGAACCTGCTGTCTGTACACCCAC
CAGCAGCAGGGCTGCCCGNTGGCGTCTCGATGGTGCCTGGTGGTTCTCGCTGCCGAGG
GNTGGTGTCTGACCACTGCTACCCCTCTCGGGCGTGAACGAGACGAGGGCTGGCCCTGCGC
CCCCCTGTATGATGCACAGCCGAGCCATGGTCGGGGCAAGGCCAGGCCACTGCCACTGC
CCCAACAGCTATGTTAATAACAATGACATCTACCAAGGTCACTCCTGTCTACCGCCTCGGCTC
CAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTATGGAGG
TGCATGAGGACTTCTCCTATACAAGGGAGGCATCTACAGCCACAGCCAGTGAGCCTGGG
AGGCCAGAGAGATAACGCCGGCATGGGACCCACTCAG

FIGURE 8

GCTGCTTGCCTGTTGATGGCAGGCTTGGCCCTGCAGCCAGGCAGTGCCTGCTGTGCTACT
CCTGCAAAGCCCAGGTGAGCAACGAGGACTGCCTGCAGGTGGAGAACTGCACCCAGCTGGGG
GAGCAGTGCTGGACCGCGCGCATCCGCGCAGTTGGCCTCCTGACCGTCATCAGCAAAGGCTG
CAGCTTGAACTGCGTGGATGACTCACAGGACTACTACGTGGCAAGAAGAACATCACGTGCT
GTGACACCGACTTGTGCAACGCCAGCGGGGCCATGCCCTGCAGCCGGCTGCCGCATCCTT
GCGCTGCTCCCTGCACTCGGCCTGCTGCTCTGGGACCCGGCAGCTATAGGCTCTGGGGGG
CCCCGCTGCAGCCCACACTGGGTGTGGTCCCCAGGCCTCTGTGCCACTCCTCACAGACCTG
GCCCAGTGGGAGCCTGTCCTGGTTCTGAGGCACATCCTAACGCAAGTCTGACCATGTATGT
CTGCACCCCTGTCCCCCACCTGACCCCTCCATGGCCCTCTCCAGGACTCCCACCCGGCAGA
TCAGCTCTAGTGACACAGATCCGCCTGCAGATGGCCCTCCAACCCCTCTGCTGCTGTTTC
CATGGCCCAGCATTCTCCACCCCTTAACCCCTGTGCTCAGGCACCTCTTCCCCCAGGAAGCCTT
CCCTGCCCACCCCATCTATGACTTGAGCCAGGTCTGGTCCGTGGTCCCCGACCCAGCA
GGGGACAGGCACTCAGGAGGGCCCAGTAAGGCTGAGATGAAGTGGACTGAGTAGAACTGGA
GGACAAGAGTCGACGTGAGTTCTGGAGTCTCCAGAGATGGGCCTGGAGGCCTGGAGGAA
GGGGCCAGGCCTCACATTGTTGGGCTCCCTGAATGGCAGCCTGAGCACAGCGTAGGCCCTT
AATAAACACCTGTTGGATAAGCCAAAAAA

1000 200 100 50 25 12.5 6.25 3.125 1.5625 0.78125 0.390625 0.1953125 0.09765625 0.048828125 0.0244140625 0.01220703125 0.006103515625 0.0030517578125 0.00152587890625 0.000762939453125 0.0003814697265625 0.00019073486328125 0.000095367431640625 0.0000476837158203125 0.00002384185791015625 0.000011920928955078125 0.0000059604644775390625 0.00000298023223876953125 0.000001490116119384765625 0.0000007450580596923828125 0.00000037252902984619140625 0.000000186264514923095703125 0.0000000931322574615478515625 0.00000004656612873077392578125 0.000000023283064365386962890625 0.0000000116415321826934814453125 0.00000000582076609134674072265625 0.0000000029103830456733703613125 0.00000000145519152283668518065625 0.0000000007275957614183325903125 0.00000000036379788070916629515625 0.000000000181898940354583147578125 0.0000000000909494701772915737890625 0.00000000004547473508864578689453125 0.000000000022737367544322893447265625 0.00000000001136868377216144672363125 0.00000000000568434188608072336815625 0.000000000002842170943040361680828125 0.0000000000014210854715201808404140625 0.0000000000007105427357600904202078125 0.00000000000035527136788004521010390625 0.000000000000177635683940022605051953125 0.0000000000000888178419700113025259765625 0.00000000000004440892098500565126298828125 0.000000000000022204460492502825631494453125 0.0000000000000111022302462514128157472265625 0.000000000000005551115123125706407873613125 0.0000000000000027755575615628532039368078125 0.00000000000000138777878078142660196840390625 0.000000000000000693889390390713300983201953125 0.0000000000000003469446951953566504916009765625 0.00000000000000017347234759777832524580048828125 0.000000000000000086736173798889162622900244140625 0.0000000000000000433680868994445813114501220703125 0.00000000000000002168404344972229565572506110390625 0.000000000000000010842021724861147827862530551953125 0.0000000000000000054210108624305739139312515279765625 0.0000000000000000027105054312152869569656250763953125 0.00000000000000000135525271560764347832812503819765625 0.00000000000000000067762635780382173916406250190953125 0.0000000000000000003388131789019108695820312500954765625 0.00000000000000000016940658945095543499101562500477390625 0.0000000000000000000847032947254777219955078125002386765625 0.00000000000000000004235164736273886099775390625001193390625 0.000000000000000000021175823681369430498877656250005966953125 0.00000000000000000001058791184068471524943882812500029834765625 0.000000000000000000005293955920334257762474414062500014917390625 0.0000000000000000000026469779601671288812372078125000074586953125 0.0000000000000000000013234889800835644406186039062500003739228125 0.0000000000000000000006617444900417822203093019531250000186966453125 0.00000000000000000000033087224502089111015450097656250000093483215625 0.00000000000000000000016543612251044555507750048828125000004674160390625 0.00000000000000000000008271806125522277753875002441406250000023370401953125 0.000000000000000000000041359030627611388793875001193390625000011685160390625 0.00000000000000000000002067951531380569439693750005966953125000005842580390625 0.0000000000000000000000103397576569028471984787500029834765625000002931290390625 0.000000000000000000000005169878828451423594239375000149173906250000014753453125 0.00000000000000000000000258493941422571179719718750000745869531250000003729328125 0.00000000000000000000000129246970711285589859859375000023370401953125000000186966453125 0.000000000000000000000000646234853556427949299296875000009348321562500000005842580390625 0.0000000000000000000000003231174267782139746496484375000004674160390625000000023370401953125 0.0000000000000000000000001615587133891069873248242187500000149173906250000000074586953125 0.00000000000000000000000008077935669455349366241210937500000059669531250000000029834765625 0.0000000000000000000000000403896783472767468312055546875000000233704019531250000000014917390625 0.000000000000000000000000020194839173638373415522777343750000001491739062500000000074586953125 0.000000000000000000000000010097419586819186707763886718750000000596695312500000000029834765625 0.000000000000000000000000005048709793409593353891943359375000000233704019531250000000014917390625 0.0000000000000000000000000025243548967047966779459716793750000001491739062500000000074586953125 0.0000000000000000000000000012621774483523983389729858393750000000596695312500000000029834765625 0.0000000000000000000000000006310887241761991694864929196875000000233704019531250000000014917390625 0.00000000000000000000000000031554436208809958474434945968750000001491739062500000000074586953125 0.00000000000000000000000000015777218104404979237217472968750000000596695312500000000029834765625 0.00000000000000000000000000007888609052202498918608736496875000000233704019531250000000014917390625 0.0000000000000000000000000000394430452610124945930436824968750000001491739062500000000074586953125 0.0000000000000000000000000000197215226305062472965218412496875000000596695312500000000029834765625 0.0000000000000000000000000000098607613152531236482609206496875000000233704019531250000000014917390625 0.000000000000000000000000000004930380657626561824130490324968750000001491739062500000000074586953125 0.00000000000000000000000000000246519032881328091207024964968750000000596695312500000000029834765625 0.0000000000000000000000000000012325951644066404560351247496875000000023370401953125000000014917390625 0.000000000000000000000000000000616297582203320228017562374968750000000596695312500000000074586953125 0.00000000000000000000000000000030814879110166011400878118496875000000023370401953125000000014917390625 0.0000000000000000000000000000001540743955008300570043905924968750000000596695312500000000074586953125 0.0000000000000000000000000000000770371977500415028502195296496875000000023370401953125000000014917390625 0.000000000000000000000000000000038518598875002075140095781849687500000001491739062500000000074586953125 0.0000000000000000000000000000000192592994375010375700478909249687500000000596695312500000000029834765625 0.0000000000000000000000000000000096296497187505187850239454649687500000000233704019531250000000014917390625 0.00000000000000000000000000000000481482485937525939251197273249687500000000596695312500000000074586953125 0.00000000000000000000000000000000240741242968751297196559636649687500000000233704019531250000000014917390625 0.000000000000000000000000000000001203706214843756588829831832496875000000001491739062500000000074586953125 0.000000000000000000000000000000000601853107421875344444915916496875000000000596695312500000000029834765625 0.000000000000000000000000000000000300926553710937517222245798324968750000000059669531250000000014917390625 0.00000000000000000000000000000000015046327685546875861112299164968750000000002337040195312500000000074586953125 0.000000000000000000000000000000000075231638427733754305561495832496875000000001491739062500000000029834765625 0.0000000000000000000000000000000000376158192115668752152730237649687500000000059669531250000000014917390625 0.000000000000000000000000000000000018807909605783375107136511884968750000000002337040195312500000000074586953125 0.000000000000000000000000000000000009403954802951687553568255944968750000000001491739062500000000029834765625 0.00000000000000000000000000000000000470197740147583752728412777249687500000000059669531250000000014917390625 0.000000000000000000000000000000000002350988700737918751364206386496875000000000233704019531250000000074586953125 0.000000000000000000000000000000000001175494350368958756821003193249687500000000149173906250000000029834765625 0.000000000000000000000000000000000000587747175184479375340500196875000000000059669531250000000014917390625 0.000000000000000000000000000000000000293873587542239687517850098496875000000000233704019531250000000074586953125 0.000000000000000000000000000000000000146936793771119837589250298496875000000000149173906250000000029834765625 0.000000000000000000000000000000000000073468396885559918754625149249687500000000059669531250000000014917390625 0.0000000000000000000000000000000000000367341984427799587523125746496875000000000233704019531250000000074586953125 0.0000000000000000000000000000000000000183670992213899787511562531249687500000000149173906250000000029834765625 0.0000000000000000000000000000000000000091835496106949893755781257814968750000000059669531250000000014917390625 0.0000000000000000000000000000000000000045917748053474948752875625149687500000000233704019531250000000074586953125 0.00000000000000000000000000000000000000229588740267374743751437562514968750000000149173906250000000029834765625 0.00000000000000000000000000000000000000114794370133687372375718756251496875000000059669531250000000014917390625 0.00000000000000000000000000000000000000057397185066843687518756253124968750000000233704019531250000000074586953125 0.00000000000000000000000000000000000000028698592533421837593756253124968750000000149173906250000000029834765625 0.0000000000000000000000000000000000000001434929626671091875468756251496875000000059669531250000000014917390625 0.0071746481333554593752343756251496875000000233704019531250000000074586953125 0.0035873190666777237511787562514968750000000149173906250000000029834765625 0.0017936595333388618755875625312496875000000059669531250000000014917390625 0.00089682976666943093752937562514968750000000233704019531250000000074586953125 0.000448414883333715437514787562514968750000000149173906250000000029834765625 0.00022420744166685771875373756251496875000000059669531250000000014917390625 0.0001121037208334288587518756253124968750000000233704019531250000000074586953125 0.0056051860416671442875937562514968750000000149173906250000000029834765625 0.00280259302083352218754687562514968750000000059669531250000000014917390625 0.0014012965104167610875234375625149687500000000233704019531250000000074586953125 0.00070064825520833305437511787562514968750000000149173906250000000029834765625 0.0003503241276083315218753737562514968750000000059669531250000000014917390625 0.0001751620638083315187518756253124968750000000023370401953125000000074586953125 0.008758103190833151875187562514968750000000014917390625000000029834765625 0.004379051595083315187

FIGURE 9

MTHRTTTWARRTSRAVTPTCATPAGPMPCSRLPPSLRCSLHSACCSGDPASYRLWGAPLQPT
LGVVPQASVPLLTDLAQWEPVLVPEAHPNASLTMYVCTPVPHPDPPMALSRTPTRQISSLDT
DPPADGPSNPLCCCFHGPAGFSTLNPVLRHLFPQEAFPAHPIYDLSQVWSVSPAPSRGQALRRAQ

Signal peptide:

amino acids 1-47

N-glycosylation site.

amino acids 31-35, 74-78, 84-88

Casein kinase II phosphorylation site.

amino acids 22-26, 76-80

N-myristoylation site.

amino acids 56-60

Amidation site.

amino acids 70-74

FIGURE 10

CCCACGCGTCCGAACCTCTCCAGCGAGGGAGCCGCCCTGCTGCCAACCTCACTCTGT
GCTTACAGCTGCTGATTCTCTGCTGTCAAACACTCAGTACGTGAGGGACCAGGGGCCATGACC
GACCAGCTGAGCAGGCGGAGATCCCGAGTACCAACTCTACAGCAGGACCAGTGGCAAGCA
CGTCAGGTCAACGGCGTCCATCTCCGCCACGCCAGGGACGGCAACAAGTTGCCAAGC
TCATAGTGGAGACGGACACGTTGGCAGCCGGTTCGCATCAAAGGGCTGAGAGTGAGAAG
TACATCTGTATGAACAAGAGGGCAAGCTCATCGGAAGCCCAGCGGAAGAGCAAAGACTG
CGTGTTCACGGAGATCGTGTGGAGAACAACTATAACGGCCTTCCAGAACGCCGGCACGAGG
GCTGGTTCATGGCCTTCACGCGGAGGGCGGCCAGGCTTCCCGAGCCAGAAC
CAGCGCGAGGCCCACTTCATCAAGCGCTCTACCAAGGCCAGCTGCCCTCCCCAACACGC
CGAGAACGAGAACAGCAGTCGAGTTGTGGCTCCGCCACCCGCCAGAAC
GGCGGCCCAAGCCCTCACGTAGTCTGGGAGGCAGGGGCAGCAGCCCTGGCCGCTCCC
CACCCCTTCCCTTTAATCCAAGGACTGGGCTGGGTGGCGGGAGGGGAGCCAGATCCC
GAGGGAGGACCCCTGAGGGCCCGAAGCATCCGAGCCCCCAGCTGGGAAGGGCAGGCCGGTG
CCCCAGGGCGGCTGGCACAGTGCCCTTCCCGACGGTGGCAGGCCCTGGAGAGGAAC
GAGTGTCAACCTGATCTCAGGCCACCAGCCTCTGCCGCCCTCCAGCCGGCTCCTGAAGCC
CGCTGAAAGGTCAAGCGACTGAAGGCCTTGCAGACAACCGTCTGGAGGTGGCTGTCTCAAAA
TCTGCTTCTCGGATCTCCCTCAGTCTGCCCTCAGGAAACCTCTGGCTAGACTGTA
GGAAGGGACTTTGTTGTTGTTGTTCAAGAAAAAAAGAAAGGGAGAGAGAGGAAAATAG
AGGGTTGTCCACTCCTCACATTCCACGACCCAGGCCTGCACCCACCCCAACTCCAGCCC
CGGAATAAAACCATTTCCTGC

FIGURE 11

MGAARLLPNLTLCLQLLILCCQTQYVRDQGAMTDQLSRRQIREYQLYSRTSGKHVQVTGRRI
SATAEDGNKFAKLIVETDTFGSRVRIKGAESEKYICMNKRGKLIGKPSGKSKDCVFTEIVLE
NNYTAFQNARHEGWFMAFTRQGRPRQASRSRQNQREAHFIKRLYQGQLPFPNHAEKQKQFEF
VGSAPTRRTKRTRRPQPLT

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 9-13, 126-130

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 60-64

Casein kinase II phosphorylation site.

amino acids 65-69

Tyrosine kinase phosphorylation site.

amino acids 39-48, 89-97

N-myristoylation site.

amino acids 69-75, 188-194

Amidation site.

amino acids 58-62

HBGF/FGF family signature.

amino acids 103-128

FIGURE 12

ACTTGCCATCACCTGTTGCCAGTGTGGAAAATTCTCCCTGTTGAATTTCATGGAG
GACAGCAGCAAAGAGGGCAACACAGGCTGATAAGACCAAGACAGCAGGGAGATTATTTAC
CATACGCCCTCAGGACGTTCCCTCTAGCTGGAGTTCTGGACTTCAACAGAACCCCATCCAGT
CATTGGATTTGCTGTTATTTTTCTTTCTTTCCCACCAATTGTATTTAT
TTCCGTACTTCAGAA**AT**GGCCTACAGACCACAAAGTGGCCAGCCATGGGCTTTCT
GAAGTCTGGCTTATCATTCCCTGGGGCTCTACTCACAGGTGTCAAACCTCTGGCTGCC
CTAGTGTGTGCCGCTGCGACAGGAACCTTGTCTACTGTAATGAGCGAAGCTGACCTCAGTG
CCTCTGGGATCCCAGGGCGTAACCGTACTCTACCTCCACAACAAACAAATTAAATGC
TGGATTCCTGCAGAACTGCACAATGTACAGTCGGTGACACGGCTACCTGTATGGCAACC
AACTGGACGAATTCCCCATGAACCTTCCAAGAAATGTCAAGAGTTCTCCATTGCAAGGAAAC
AATATTCAAGACCAATTTCACGGCTGCTTGCCCCAGCTTGAAAGCTTGAAGAGCTGCACCT
GGATGACAACCTCCATATCCACAGTGGGGTGGAAAGACGGGCTTCCGGGAGGCTATTAGCC
TCAAATTGTTGTTGTCTAAGAATCACCTGAGCAGTGTGCCTGTTGGGCTTGTGGAC
TTGCAAGAGCTGAGAGTGGATGAAATCGAATTGCTGTCAATATCCGACATGGCCTCCAGAA
TCTCACGAGCTTGGAGCGTCTTATTGAGGGAACCTCCTGACCAACAAAGGTATGCCG
AGGGCACCTTCAGCCATCTCACCAAGCTCAAGGAATTTCATTTGACGTAATTGCTGTCC
CACCCCTCCTCCCGATCTCCAGGTACGCATCTGATCAGGCTCTATTGCAAGGACAACAGAT
AAACCACATTCTTGACAGCCTCTCAAATCTGCTAACGCTGGATATATCCA
ACAACCAACTGCGGATGCTGACTCAAGGGTTTGATAATCTCTCAACCTGAAGCAGCTC
ACTGCTCGGAATAACCCCTGGTTGTGACTGCAGTATTAAATGGGTACAGAAATGGCTCAA
ATATATCCCTTCATCTCAACGTGCGGGTTCATGTGCCAAGGTCTGAACAAAGTCCGG
GGATGGCCGTCAAGGAATTAAATATGAATCTTGTCCCTGCCCACACGACCCCCGGCCTG
CCTCTCTCACCCAGCCCCAAGTACAGCTTCTCGACCAACTCAGCCTCCCACCCCTCTAT
TCCAAACCTAGCAGAAGCTACAGCCTCCAACCTCCTACCACATCGAAACTTCCCACGATT
CTGACTGGGATGGCAGAGAAAGAGTGAACCCACCTATTCTGAACGGATCCAGCTCTATC
CATTGTTGAATGATACTTCAAGTCAGCTGGCTCTCTCTTCAACCGTGATGGCATA
CAAACTCACATGGGTAAAATGGCCACAGTTAGTAGGGGACATGTTCAAGGAGCGCATAG
TCAGCGGTGAGAAGCAACACCTGAGCCTGGTTAACTTAGAGCCCCGATCCACCTATCGGATT
TGTTAGTGCCACTGGATGTTAACTACCGCGCGGTAGAAGACACCATTGTTCAAGGGC
CACCACCCATGCCTCTATCTGAACAAACGGCAGCAACACAGCGTCCAGCCATGAGCAGACGA
CGTCCCACAGCATGGCTCCCCCTTCTGCTGGCGGGCTTGATGGGGCGCGGTGATATT
GTGCTGGTGGTCTTGCTCAGCGTCTTGCTGGCATATGCACAAAAGGGCGCTACACCTC
CCAGAAGTGGAAATACAACCGGGCGGAAAGATGATTATTGCGAGGCAGGCACCAAGA
AGGACAACCTCCATCCTGGAGATGACAGAAACCAAGTTTCAGATCGTCTCTTAAATAACGAT
CAACTCCTAAAGGAGATTCAGACTGCAGCCATTACACCCAAATGGGGCATTAATT
CACAGACTGCCATATCCCCAACACATGCGATACTGCAACAGCAGCGTGCCAGACCTGGAGC
ACTGCCATAC**TGAC**AGCCAGAGGCCAGCGTTATCAAGGCGGACAATTAGACTCTTGAGAA
CACACTCGTGTGACATAAAAGACACCGCAGATTACATTGATAAAATGTTACACAGATGCAT
TTGTCATTGAATACTCTGTAATTATACGGTGTACTATATAATGGGATTAAAAAGTG
CTATCTTCTATTCAAGTTAATTACAAACAGTTGTAACCTTGTCTTTAAATCTT

FIGURE 13

MGLQTTKWPShGaffLKSwlIISLGLySQVSKLLACPSVCRCDRNFVYCNERSLTSVPLGIP
EGVTvLYLHNNQINNAGFPaelHNvQSVHTVYLYGNQLDEFPMNLPKNVRVLHLQENNIQTI
SRAALAQLLKLEELHDDNSISTVGVEDGAFREAIISLKLFLSKNHLSVPVGLPVDLQELR
VDENRIAVISDMAFQNLTSLERLIVDGNLLTNKGlAEGTFSHTKLKEFSIVRNSLSHPPPD
LPGTHLIRLYLQDNQINHIPLTAFSNLRKLERLDISNNQRLMLTQGVFDNLNSNLKQLTARN
PWFCDCS1KWVTEWLKYIPSSLNVRGFMCGPEQVRGMAVRELMNLLSCPTTPGLPLFTP
APSTASPTTQPPTLSIPNPSRSYTPPTSKLPTIPDWDGRERVTppI SERIQLSIHFVND
TSIQVSWLSLFTVMAKLTWVKGHSIVGGIVQERIVSGEKQHLSLVNLEPRSTYRICLVPL
DAFNYRAVEDTICSEATTHASYLNNGSNTASSHEQTTSHSMGSPFLLAGLIGGAVIFVLLV
LSVFCWHMHKKGRYTSQKWKYNRGRRKDDYCEAGTKKDNSILEMTETSFQIVSLNNNDQLKG
DFRLQPIYTPNGGINYTDCHIPNNMRYCNSSVPDLEHCHT

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 542-561

N-glycosylation site.

amino acids 202-206, 298-302, 433-437, 521-525, 635-639, 649-653

Casein kinase II phosphorylation site.

amino acids 204-208, 407-411, 527-531, 593-597, 598-602, 651-655

Tyrosine kinase phosphorylation site.

amino acids 319-328

N-myristoylation site.

amino acids 2-8, 60-66, 149-155, 213-219, 220-226, 294-300,
522-528, 545-551, 633-639

Amidation site.

amino acids 581-585

Leucine zipper pattern.

amino acids 164-186

Phospholipase A2 aspartic acid active site.

amino acids 39-50

FIGURE 14

ACITGGAGCAAGCGCGGGCGGAGACAGAGGCAGAGGCAGAAGCTGGGCTCCGTCTCGCCTCCCACGAGCG
ATCCCCGAGGAAGGCCGGCCCTCGCGAGGCAGAGGCCAGAGGAAGACCCGGGTGGCTCGCAGGCC
TCGCTTCCCAGGCCGGCGCTGCAGCCTGCCCCTCTGCTCGCTTGAAATGGAAAAGATGCTCGCAGGCT
GCTTCTGCTGATCCTCGACAGATCGTCTCCTCCCTGCCAGGGCAGGGAGCGGTACGTGGGAGGTCCATCT
CTAGGGCAGACAGCTCGGACCCACCCGAGACGGCCCTCTGGAGAGTCTGTGAGAACACAAGCAGGCC
TGGTTTCATCATGACAGCTCTCGCAGTGTCAAACACCCATGACTATGCAAAGGTCAAGGAGTTCATCGTGGACA
TCITGCAATTCTTGACATTGGTCTGTGTCACCCGAGTGGGCTGCTCCAATATGGCAGCACTGTCAAGAACATG
AGTTCTCCCTCAAGACCTCAAGAGGAAGTCCGAGGTGGAGCTGTCAGAGGATGCCATCTGTCCACGG
GCACCATGACTGGGCTGGCATCCAGTATGCCCTGAACATCGCATTCTCAGAGCAGAGGGGGCCGGCC
GGGAGAATGTGCCACGGGCATAATGATCGTACAGATGGGAGACCTCAGGACTCCGTGGCCAGGTGGCTGCTGA
AGGCACGGGACACGGGCATCCTAATCTTGCCATTGGTGTGGCCAGGTAGACTCAACACCTTGAAGTCCATTG
GGAGTGAGCCCCATGAGGACCATGTCITCCTGTGGCCAATTTCAGCCAGATTGAGACGCTGACCTCCGTGTTCC
AGAAGAAGTTGTGACGGGCCACATGTGCAGCACCTGGAGCATACTGTGCCACTTCTGCATCAACATCCCTG
GCTCATACGTCTGCAGGTGCAAACAAGGCTACATTCTCAACTCGGATCAGACGACTTGCAGAATCCAGGATCTGT
GTGCCATGGAGGACCAACTGTGAGCAGCTGTGTGAATGTGCCGGCTCTCGTCTGCCAGTGCTACAGTG
GCTACGCCCTGGCTGAGGATGGGAAGAGGTGTGGCTGTGGACTACTGTGCCCTCAGAAAACCACGGATGTGAAC
ATGAGTGTGAAATGCTGATGGCTCTACCTTGCCAGTGCATGAAGGATTGCTCTTAACCCAGATGAAAAAA
CGTGACAAGGATCAACTACTGTGCACTGAACAAACCGGGCTGTGAGCATGAGTGCCTCAACATGGAGGAGAGCT
ACTACTGCCGCTGCCACCGTGGCTACACTCTGGACCCCAATGGAAAACCTGCAGCCAGTGGACACTGTGAC
AGCAGGACCATGGCTGTGAGCAGCTGTGTGAACACCGAGGATCCCTCGTCTGCCAGTGCTCAGAAGGCTTCC
TCATCAACGAGGACCTCAAGACCTGCTCCGGTGGATTACTGCCCTGCTGAGTGACCATGGTTGTGAATACTCCT
GTGTCAACATGGACAGATCCTTGCTCTGCACTGTGCTGAGGACACGTGCTCCGCAGCGATGGGAAGACGTGTG
CAAATGGACTCTTGTGCTCTGGGGACCACGGTTGTGAACATTGTGTGAAGCAGTGAAAGATTGTTGTGT
GCCAGTGTGTTGAAGGTTATATACTCCGTGAACATGGAAAACCTGCAGAAGGAAAGATGTCTGCCAGCTATAG
ACCATGGCTGTGAACACATTGTGTGAACAGTGCAGACTCATACACGTGCGAGTGTGCTTGAGGGATCCGGCTCG
CTGAGGATGGGAAACGCTGCCGAAGGAAGGATGTCTGCAATCAACCCACATGGCTGCCAACACATTGTGTTA
ATAATGGGAAATTCTACATCTGCAATGCTCAGAGGGATTGTTCTAGCTGAGGACGGAAGACGGTGTCAAGAAAT
GCACTGAAGGCCAACATGACCTGGCTTTGTGATGGATCCAAGAGTCTGGAGAAGAGAATTGAGGTG
TGAAGCAGTTGTCACTGAAATTATAGATTCTTGACAATTCCCCAACAGCCGCTCGAGTGGGCTGCTCCAGT
ATTCCACACAGGTCCACACAGAGTCACTCTGAGAAACTTCAACTCAGCCAAGACATGAAAAAACCGTGGCCC
ACATGAAATACATGGGAAAGGCTCTAGACTGGCTGGCCCTGAAACACATGTTGAGAGAAGTTTACCCAAG
GAGAAGGGGCCAGGCCCTTCCACAAGGGTGCCAGAGCAGCCATTGTTGACCGACGGACGGCTCAGGATG
ACGTCCTCGAGTGGGCCAGTAAAGCCAAGGCCATGGTATCACTATGTATGCTGTTGGGCTAGGAAAAGCCATG
AGGAGGAACATACAAGAGATTGCCCTGAGCCCACAAACAAGCATCTTCTATGCCAACAGACTCAGCACAATGG
ATGAGATAAGTAAAAACTCAAGAAAGGCATCTGTGAAGCTCTAGAAGACTCCGATGGAAGACAGGACTCTCCAG
CAGGGAACTGCCAACCGGCTAACAGCCAACAGAAATCTGAGCCAGTCACCATAAATATCCAAGACCTACTTT
CCTGTTCTAATTTCAGTGCAACACAGATATCTGTTGAAGAAGACAATCTTACGGTCTACACAAAAGCTT
CCCATTCAACAAACCTTCAGGAAGCCCTTGAAGAAAACAGCATCAATGCAAATGTGAAAACCTTATAATGT
TCCAGAACCTTGCAACAGAACAGTAAGAAAATTAACACAGCGCTTAGAAGAAATGACACAGAGAACGGCC
TGGAAAATGCCCTGAGATAACAGATGAAGATTAGAAATGCGACACATTGTTAGTCATTGTATCACGATTACAAT
GAACGCAGTGCAAGGCCAACAGCTCAGGCTATTGTTAAATCAATAATGTTGTGAAGTAAAACAATCAGTACTGA
GAAACCTGGTTGCCACAGAACAAAGACAAGAACAGTATACTACTAACTGTATAAATTATCTAGGAAAAAAATCCT
TCAGAATTCTAACAGATGAATTACCAAGGTGAGAACAGTATGCAAGGTATTGTTGAAATATACTGTGGACAC
AACTTGCTCTGCCCTACCTGCTTAGTGTGCAATCTCATTGACTATACGATAAAAGTTGACAGTCTTACTT
CTGTAGAACACTGCCATAGGAATGCTGTTTTGTACTGGACTTACCTTGATATGTATATGGATGTATG
CATAAAATCATAGGACATATGTACTTGGAACAAGTTGATTTTATAACATATTAAACATTCACCACTTCAG

FIGURE 15

MEKMLAGCFLLILGQIVLLPAEARERSGRSISRGRHARTHPOQTALLESSCENKRADLVFII
DSSRSVNTHDYAKVKEFIVDILQFLDIGPDVTRVGLLQYGSTVKNEFSLKTFKRKSEVERAV
KMRHLSTGTMGLAIQYALNIAFSEAEGLPLRENVPRVIMIVTDGRPQDSVAEVAAKARD
TGILIFAIQVGQVDFNTLKSIGSEPHEDHVFLVANFSQIETLTSVFQKKLCTAHMCSTLEHN
CAHFCINIPGSYVCRCKQGYILNSDQTTCRIQDLCAMEDHNCEQLCVNVPGSFVCQCYSGYA
LAEDGKRCVAVDYCASENHGCEHECVNADGSYLCQCHEGFALNPDEKTCTRINYCALNKGPGC
EHECVNMEESYYCRCHRGYTLDPNGKTCRSVDHCAQQDHGCEQLCLNTEDSFVCQCSEGFLI
NEDLKTCSRVDYCLLSDHGCEYSCVNMDRSFACQCPEGHVLRSRGKTCAKLDSCALGDHGCE
HSCVSSEDSFVCQCFCFGYILREDGKTCRRKDVCQAIDHGCEHI CVNSDDSYTCECLEGFRLA
EDGKRCRRKDVKSTHHGCEHICVNNNGNSYICKCSEGFLAEDGRRCKCTEGPIDLVFVID
GSKSLGEENFEVVVKQFVTGIIDSLTISPKAARVGLLQYSTQVHTEFTLRFNSAKDMKKA
HMKYMGKGSMTGLALKHMFERSFTQGEGARPLSTRVPRAAIVFTDGRAQDDVSEWASKAKAN
GITMYAVGVGKAIEEELQEIASEPTNHLFYAEDFSTMDEISEKLKKGICEALEDSDGRQDS
PAGELPKTVQQPTESEPVTINIQDLLSCSNFAVQHRYLFEEDNLLRSTQKLSHSTKPSGSPL
EEKHDQCKCENLIMFQNLANEEVRKLTQRLEEMTQRMEALENRLRYR

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 221-225

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 115-119, 606-610, 892-896

Casein kinase II phosphorylation site.

amino acids 49-53, 118-122, 149-153, 176-180, 223-227, 243-247,
401-405, 442-446, 501-505, 624-628, 673-677, 706-710, 780-784,
781-785, 819-823, 866-870

N-myristoylation site.

amino acids 133-139, 258-264, 299-305, 340-346, 453-459, 494-500,
639-645, 690-696, 752-758, 792-798

Amidation site.

amino acids 314-318, 560-564, 601-605

Aspartic acid and asparagine hydroxylation site.

amino acids 253-265, 294-306, 335-347, 376-388, 417-423, 458-464,
540-546, 581-587

FIGURE 16

GGAGCCGCCCTGGGTGTCAAGCGGCTCGGCTCCCGCGCACGCTCCGGCGTCGCAGGCCCG
GCACCTGCAGGTCCGTGCGTCCCGCGCTGGCGCCCGTACTCCGTCCCGCCAGGGAGGGC
CATGATTCCTCCCTCCCGGGCCCGTGGTACCAACTTGCTGCCTGGTTTTGTTCTGGGCTGA
GTGCCCTCGCGCCCCCTCGCGGGCCAGCTGCAACTGCACTTGCCGCCAACCGGTTGCAG
GCGGTGGAGGGAGGGAAAGTGGTCTTCCAGCGTGGTACACCTTGACACGGGAGGGTGTCTTC
ATCCCAGCCATGGGAGGTGCCCTTGATGTGGTCTTCAAACAGAAAGAAAAGGAGGATC
AGGTGTTGTCTACATCAATGGGTACAACAAGCAAACCTGGAGTATCCTGGTCTACTCC
ATGCCCTCCCGAACCTGTCCCTGCGGCTGGAGGGTCTCCAGGAGAAAGACTCTGGCCCTA
CAGCTGCTCCGTGAATGTGCAAGACAAACAAGGCAAATCTAGGGGCCACAGCATAAAACCT
TAGAACTCAATGTACTGGTCTCCAGCTCCTCCATCCTGCCGTCTCCAGGGTGTGCCCCAT
GTGGGGCAAACGTGACCCCTGAGCTGCCAGTCTCAAGGAGTAAGCCCCTGTCCAATACCA
GTGGGATCGGCAGCTTCCATCCTCCAGACTTCTTGACCCAGCATTAGATGTCATCCGTG
GGTCTTAAGCCTCACCAACCTTCGTCTTCCATGGCTGGAGTCTATGTCTGCAAGGCCAC
AATGAGGTGGGCAGTGCCAATGTAATGTGACGCTGGAAGTGAGCACAGGGCTGGAGCTGC
AGTGGTTGCTGGAGCTGTTGTTGACCTGGTGGACTGGGTTGCTGGCTGGCTGGTCC
TCTTGTACCAACGCCGGCAAGGCCCTGGAGGAGCCAGCCAATGATATCAAGGAGGATGCC
ATTGCTCCCCGGACCCCTGCCCTGGCCAAGAGCTCAGACACAATCTCAAGAATGGGACCC
TTCCTCTGTCACCTCCGCACGAGCCCTCCGGCCACCCATGGCCCTCCAGGCCTGGTGCAT
TGACCCCCACGCCAGTCTCTCCAGCCAGGCCCTGCCCTCACCAAGACTGCCACGACAGAT
GGGCCACCCCTCAACCAATATCCCCATCCCTGGTGGGTTCTCCTCTGGCTTGAGCCG
CATGGGTGCTGTGCCTGTGATGGTGCCTGCCAGAGTCAGACTGGCTCTGGTAT**TGATGAC**
CCCACCACTATTGGCTAAAGGATTGGGTCTCTCCTATAAGGGTCACCTCTAGCAC
AGAGGCCTGAGTCATGGAAAGAGTCACACTCCTGACCCCTAGTACTCTGCCAACCTCTC
TTTACTGTGGAAAACCCTCACTCAGTAAGACCTAAGTGTCCAGGAGACAGAAGGAGAAGAGGA
AGTGGATCTGGAATTGGAGGAGCCTCCACCCACCCCTGACTCCTCCTATGAAGGCCAGCTG
CTGAAATTAGCTACTCACCAAGAGTGAGGGCAGAGACTTCCAGTCAGTGAGTCTCCAGGC
CCCCCTGATCTGACCCACCCCTATCTAACACCACCCCTGGCTCCACTCCAGCTCCCTGT
ATTGATATAACCTGTCAGGCTGGCTGGTTAGGTTACTGGGCAGAGGATAGGAAATCTC
TTATTAAAACATGAAATATGTGTTGTTCTATTGCAAATTAAATAAGATACTAA
TGTTGTATGAAAAA

FIGURE 17

MISLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHL PANRLQAVEGGEVVLPAWYTLHGEVSS
SQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRLEGQEKDSGPY
SCSVNVQDKQGKSRGHSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRSKPAVQYQ
WDRQLPSFQTFFAPALDVIRGSLSLTNLSSSMAGVYVCKAHNEVGTACQCNVTLEVSTGPGAA
VVAGAVVGTIVGLGLLAGLVLLYHRRGKALEEPANDIKEDAIAPRTLWPWPKSSDTISKNGTL
SSVTSARALRPPHGPPRPGALTPTPSLSSQALPSPRLPTTDGAHPQPISPIPGGVSSSGLSR
MGAVPVMVPAQSQAGSLV

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 245-267

N-glycosylation site.

amino acids 108-112, 169-173, 213-217, 236-240, 307-311

N-myristoylation site.

amino acids 90-96, 167-173, 220-226, 231-237, 252-258, 256-262,
262-268, 308-314, 363-369, 364-370

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 164-175

FIGURE 18

CGCCACCACTCGGGCCACGCCAATGAAACGCCTCCGCTCTAGGGTTTTCCACTTG
TTGAATTGTCCTATACTCAAAATTGACCCAAGACACCTGTCTCCAAATGAAAATGTGA
AATACGCAATGGAATTGAAGCCTGCTATTGCAACATGGGATTTCAGGAAATGGTGTACAA
TTTGTGAAGATGATAATGAATGTGAAATTAACTCAGTCCTGTGGCAAATGCTAATTGC
ACTAACACAGAAGGAAGTTATTATTGTATGTGTACCTGGCTCAGATCCAGCAGTAACCA
AGACAGGTTTATCACTAATGATGGAACCGTCTGTATAGAAAATGTGAATGCAAATGCCATT
TAGATAATGTCTGTATAGCTGCAAATATTAATAAAAATTAAACAAAATCAGATCCATAAAA
GAACCTGTGGCTTGCTACAAGAAGTCTATAGAAATTCTGTGACAGATCTTCACCAACAGA
TATAATTACATATATAGAAATTAGCTGAATCATCTTCATTACTAGGTTACAAGAACAAACA
CTATCTCAGCCAAGGACACCCCTTCTAACTCAACTCTTACTGAATTGTAAAAACCGTGAAT
AATTGGTCAAAGGGATACATTGTAGTTGGACAAGTTATCTGTGAATCATAGGAGAAC
ACATCTTACAAAATCATGCACACTGTTGAACAAGCTACTTTAAGGATATCCCAGAGCTTCC
AAAAGACCACAGAGTTGATACAAATTCAACGGATATAGCTCTCAAAGTTTCTTTGAT
TCATATAACATGAAACATATTCACTCCATATGAATATGGATGGAGACTACATAAATATA
TCCAAAGAGAAAAGCTGCATATGATTCAAATGGCAATGTTGAGTTGCATTTCATTTATATA
AGAGTATTGGCCTTGCTTCATCATCTGACAACCTCTTATTGAAACCTCAAATTATGAT
AATTCTGAAGAGGAGGAAAGAGTCATATCTTCAGTAATTTCAGTCTCAATGAGCTCAAACCC
ACCCACATTATATGAACCTGAAAAATAACATTACATTAAGTCATGAAAGGTACAGATA
GGTATAGGAGTCTATGTGCATTGGAAATTACTCACCTGATACCATGAATGGCAGCTGGTCT
TCAGAGGGCTGTGAGCTGACATACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCT
GACACATTGCAATTGATGTCCTCTGGCCTTCATTGGTATTAAAGATTATAATATTC
TTACAAGGATCACTCAACTAGGAATAATTATTCACTGATTGCTTGCCATATGCATTTT
ACCTCTGGTCTTCAGTCAAAGCACCAGGACAACAATTCACAAAAATCTTGCTG
TAGCCTATTCTTGCTGAACTGTTTCTTGTGGATCAATACAAATACTAATAAGCTCT
TCTGTTCAATCATTGCCGACTGCTACACTACTCTTTAGCTGCTTGCATGGATGTGC
ATTGAAGGCATACATCTCATCTCATGTTGGGTGTCATCTACAACAAGGGATTTGCA
CAAGAATTTTATATCTTGCTATCTAACGCCAGCCGTGGTAGTTGGATTTCCGCAGCAC
TAGGATACAGATATTATGGACAAACAAAGTATGTTGGCTTAGCACCGAAAACAACATTATT
TGGAGTTTATAGGACCAAGCATGCCTAATCATTCTGTTAATCTCTGGCTTGGAGTCAT
CATATACAAAGTTTCGTACACTGCAGGGTGAAACCAGAAGTTAGTTGCTTGAGAAC
TAAGGTCTTGCAAGAGGAGCCCTCGCTCTCTGTTCTCGGCACCACCTGGATCTT
GGGTTCTCCATGTTGACCGCATCAGGTTACAGCTTACCTCTCACAGTCAGCAATGC
TTTCAGGGATGTTCATTTTATTCTGTGTTTATCTAGAAAGATTCAAGAAGAAT
ATTACAGATTGTTCAAAATGTCCTGTTGGATGTTAAGGTAAACATAGAGAATG
GTGGATAATTACAACGTGACAAAAATAAAATTCAAGCTGTGGATGACCAATGTATAAAA
TGACTCATCAAATTATCCAATTATTAACACTAGACAAAAAGTATTTAAATCAGTTTCT
GTTTATGCTATAGGAACGTAGATAATAAGGTTAAATTATGTATCATATAGATATACTATGT
TTTCTATGTGAAATAGTTCTGTCAAAATAGTATTGCAAGATATTGAAAGTAATTGGTT
CTCAGGAGTGTATCACTGCACCCAGGAAAGATTCTTCTAACACAGAGAAGTATATGAA
TGTCTGAAGGAAACCACTGGCTGATATTCTGTGACTCGTGTGCCTTGAAACTAGTCC
CCTACCACCTCGGTAAATGAGCTCATTACAGAAAGTGGAACATAAGAGAATGAAGGGCAGA
ATATCAAACAGTAAAAGGAATGATAAGATGTATTGAAACTGTTTCTGTAGAC
TAGCTGAGAAATTGTTGACATAAAATAAGAATTGAAGAAACACATTACCAATTGAA
TTGTTCTGAACCTAAATGTCCACTAAAACAACCTAGACTCTGTTGCTAAATCTGTTCTT
TTCTAATATTCTAAAAAAAGGTTACCTCCACAAATTGAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 19

MKRLPLLVFSTLLNCSYTQNCTKTPCLPNAKCEIRNGIEACYCNMGFSGNGVTICEDDNEC
GNLTQSCGENANCTNTEGSYYCMCVPGFRSSSNQDRFITNDGTVCIENVNANCHLDNVCIAA
NINKTLTKIRSIKEPVALLQEYVRNSVTDLSPTDIITYIEILAESSLLGYKNNTISAKDTL
SNSTLTFEVKTVNNFVQRDTFVVWDKLSVNHRRTLTKLMHTVEQATLRIQSFKTTEFDT
NSTDIALKVFVFFDSYNMKHIHPHMNMDGYINIFPKRKAAYDSGNVAVAFLYYKSIGPLLS
SSDNFLLPQNYDNSEEERVISSVISVSMSSNPPTLYELEKITFTLSHRKVTDRYRSLCAF
WNYSPDTMNGSWSSEGCELTYSNETHTSCRNCNLTHFAILMSSGSPSIGIKDYNILTRITQLG
IIISLICLAI CIFTFWFSEIQSTRTTIHKNLCCSLFLAELVFLVGINTNTNKLFC SIIAGL
LHYFFLAFAFWMCIEGIHLYLIVVGVIYNKGFLHKNFYIFGYLSPAVVVGFSAA LGYRYYGT
TKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFRHTAGLKPEVSCFENIRSCARGA
LALLFLLGTTWIFGVVLHVVHASVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNV
PCCFGCLR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 430-450, 465-486, 499-513, 535-549, 573-593, 619-636,

648-664

N-glycosylation site.

amino acids 15-19, 21-25, 64-68, 74-78, 127-131, 177-181,
188-192, 249-253, 381-385, 395-399

Glycosaminoglycan attachment site.

amino acids 49-53

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 360-364

Casein kinase II phosphorylation site.

amino acids 54-58, 68-72, 76-80, 94-98, 135-139, 150-154,
155-159, 161-165, 181-185, 190-194, 244-248, 310-314, 325-329,
346-350, 608-612

Tyrosine kinase phosphorylation site.

amino acids 36-44, 669-677, 670-678

N-myristoylation site.

amino acids 38-44, 50-56, 52-58, 80-86, 382-388, 388-394,
434-440, 480-486, 521-527

Aspartic acid and asparagine hydroxylation site.

amino acids 75-87

FIGURE 20

TGGAAACATATCCTCCCTCATATGAATATGGATGGAGACTACATAAATATTTCCAAAGNG
AAAAGCCGGCATATGGATTCAAATGGCAATGTTGCAGTTGCATTTTATATTATAAGAGTAT
TGGTCCCTTGCTTCATCATCTGACAACCTTATTGAAACCTCAAAATTATGATAATTCT
GAAGAGGAGGAAAGAGTCATATCTTCAGTAATTCAGTCTCAATGAGCTCAAACCCACCCAC
ATTATATGAACTTGAAAAATAACATTACATTAAGTCATCGAAAGGTACAGATAGGTATA
GGAGTCTATGTGGCATTGGAAACTCACCTGATACCATGAATGGCAGCTGGTCTTCAGAG
GGCTGTGAGCTGACATACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCTGACACA
TTTGCAATTGATGTCCTGGCCTTCCATTGGTATTAAAGATTATAATATTCTTACAA
GGATCACTCAACTAGGAATAATTATTCACTGATTGTCTGCCATATGCATTTTACCTC
TGGTTCTCAGTGAATTCAAAGCACCAGGA

FIGURE 21

GCTCCCAGCCAAGAACCTCGGGGCCGCTGCGCGTGGGGAGGAGTCCCCGAAACCCGGCCG
CTAAGCGAGGCCTCCCTCCCGCAGATCCGAACGGCTGGGCGGGTACCCCGCTGGGA
CAAGAAGCCGCCCTGCCTGCCGGGGGGAGGGGGCTGGGCTGGGCGGGAGGCAG
GGTGTGAGTGGGTGTGCGGGGGCGGAGGCTTGTGCAATCCGATAAGAAATGCTCGGG
TGTCTTGGGCACCTACCGTGGGCCGTAAGGCCTACTATATAAGGCTGCCGCCGGAG
CCGCCGCCGTCAAGAGCAGGAGCGCTGCCAGGATCTAGGGCACGACCATCCAAACCC
GGCACTCACAGCCCCCAGCGCATCCGGTCCGCCAGCCTCCGCACCCCCATGCCGG
AGCTGCGCCGAGAGCCCCAGGGAGGTGCCATGCGGAGCGGGTGTGGTGGTCCACGTATGG
ATCCTGGCCGGCCTCTGGCTGGCGTGGCCGGCGCCCCCTCGCTTCTCGGACGCCGGGCC
CCACGTGCACTACGGCTGGGCGACCCCATCCGCCTGCCACCTGTACACCTCCGGCCCC
ACGGGCTCTCCAGCTGCTTCTGCCATCCGTGCCAGGGCGTGTGGACTGCCGCCGG
CAGAGCGCGCACAGTTGCTGGAGATCAAGGCAGTCGCTCTGCCACCGTGGCATCAAGGG
CGTGCACACGGTGCACCTCTGCATGGGCCCGACGGCAAGATGCAGGGCTGCTTCAGT
ACTCGGAGGAAGACTGTGCTTCAGAGGAGGATCCGCCAGATGGCTACAATGTGTACCGA
TCCGAGAACGCCCTCCGGTCTCCCTGAGCAGTGCCAAACAGCGGAGCTGTACAAGAA
CAGAGGCTTCTTCACTCTCTCATTTCTGCCATGCTGCCATGGTCCCAGAGGAGCCTG
AGGACCTCAGGGGCCACTTGAATCTGACATGTTCTTCGCCCTGGAGACCGACAGCATG
GACCCATTGGCTTGTCAACGGACTGGAGGCCGTGAGGAGTCCAGCTTGAGAAGTAAC
GAGACCATGCCGGCCTTCACTGCTGCCAGGGCTGTGGTACCTGCAGCGTGGGGACG
TGCTTCTACAAGAACAGTCTGAGTCCACGTTCTGTTAGCTTAGGAAGAACATCTAGAA
GTTGTACATATTCAAGAGTTCCATTGGCAGTGCAGTTCTAGCCAATAGACTGTCTGAT
CATAAACATTGTAAGCCTGTAGCTTGCCTGCCAGCTGCTGCCCTGGGCCCTATTCTGCTCCCTCGA
GGTTGCTGGACAAGCTGCTGCACTGCTCTGAGTTCTGCTGAATACCTCCATCGATGGGGAAC
TCACCTCCTTGGAAAAATTCTTATGTCAAGCTGAAATTCTCTAATTTCCTCATCACTTC
CCCAGGAGCAGCCAGAACAGCAGGAGTAGTTTAATTTCAGGAACAGGTGATCCACTCTGTA
AAACAGCAGGTAAATTCACTCAACCCATGTGGAAATTGATCTATCTACTTCCAGGG
ACCATTGCCCTCCAAATCCCTCCAGGCCAGAACACTGACTGGAGCAGGCATGCCACCAG
GCTTCAGGAGTAGGGGAAGCCTGGAGCCCCACTCCAGCCCTGGACAACTTGAGAATTCCCC
CTGAGGCCAGTTGTCAATTGATGCTGCTGAGAATAACTTGCTGTCCGGTGTACCTGC
TTCCATCTCCAGGCCACCAGCCCTTGCCCACCTCACATGCCCTCCCATGGATTGGGCCT
CCCAGGCCCCCACCTTATGTCAACCTGCACTCTGTTCAAAAATCAGGAAAGAAAAGAT
TTGAAGACCCCAAGTCTGTCAATAACTTGCTGTGGAGCAGCGGGGGAGACCTAGAAC
CCTTCCCCAGCACTGGTTCAACATGATATTATGAGTAATTATTGATATGTACA
TCTCTTATTTCATTATGCCCCAAATTATATTATGATGTAGTAAAGTGAGGTTG
TTTGTATATTAAAATGGAGTTGTTGT

FIGURE 22

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWDPIRLRHLYTSGPHGLSSCFLRI
RADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEE
EIRPDGYNVYRSEKHLRPLVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESD
MFSSPLETDSMDPFGLVTGLEAVRSPSFEK

Signal peptide:

amino acids 1-22

Casein kinase II phosphorylation site.

amino acids 78-82, 116-120, 190-194, 204-208

N-myristoylation site.

amino acids 15-21, 54-60, 66-72, 201-207

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 48-59

© 2000 - 2001

FIGURE 23

CCCAGAAGTCAGGGCCCCGGCCTCCTGCCTGCCTGCCGCCGGACCCCTGACCTCCTCA
GAGCAGCCGGCTGCCGCCGGAAAGATGGCGAGGAGGAGCCGCCACCGCCTCCTGCTG
CTGCTGCCTACCTGGTGGTCGCCCTGGCTATCATAAGGCCTATGGGTTTCTGCCAA
AGACCAACAAGTAGTCACAGCAGTAGAGTACCAAGAGGCTATTTAGCCTGCAAAACCCAA
AGAAGACTGTTCTCCAGATTAGAGTGGAGAAACTGGTCGGAGTGTCTCCTTGTCTAC
TATCAACAGACTCTCAAGGTGATTTAAAAATCGAGCTGAGATGATAGATTCAATATCCG
GATCAAAATGTGACAAGAAGTGTGATGCCGGAAATATCGTTGTGAAGTTAGTGCCCCATCTG
AGCAAGGCCAAACCTGGAAGAGGATACAGTCAGTCACTCTGGAAAGTATTAGTGGCTCCAGCAGTT
CCATCATGTGAAGTACCCCTCTGCTCTGAGTGGAACTGTGGTAGAGCTACGATGTCAAGA
CAAAGAAGGGAAATCCAGCTCTGAATACACATGGTTAAGGATGGCATCCGTTGCTAGAAA
ATCCCAGACTGGCTCCAAAGCACCAACAGCTCATACACAATGAATAACAAAAACTGGAAC
CTGCAATTAAACTGTTCCAAACTGGACACTGGAGAATATTCTGTGAAGCCCGCAATT
TGTTGGATATCGCAGGTGTCTGGAAACGAATGCAAGTAGATGATCTAACATAAGTGGCA
TCATAGCAGCCGTAGTAGTTGTGGCCTTAGTGATTCCGTTGTGGCCTGGTGTATGCTAT
GCTCAGAGGAAAGGCTACTTTCAAAAGAAACCTCCTCCAGAAGAGTAATTCTCATCTAA
AGCCACGACAATGAGTGGAAAATGTGCAGTGGCTCACGCCGTAAATCCAGCACTTGGAGG
CCGGCGGGCGGATCACGAGGTCAAGGAGTTCTAGACCAGTCTGGCCAATATGGTGAACCC
CATCTCTACTAAAATACAAAAATTAGCTGGCATGGTGGCATGTCCTGCAGTTCCAGCTGC
TTGGGAGACAGGAGAATCACTGAACCCGGGAGGCGGAGGTTGCAGTGAGCTGAGATCACGC
CACTGCAGTCCAGCCTGGTAACAGAGCAAGATTCCATCTCAAAAATAAAATAAAATA
AATAAAATCTGGTTTACCTGTAGAATTCTTACAATAATAGCTTGATATT

FIGURE 24

MARRSRHRLLLLLLRLVVALGYHKAYGFSAPKDDQQVVTAVEYQEAILACKTPKTVSSRLE
WKKLGRSVSFVYYQQTLQGDFKNRAEMIDFNIRIKNVTRSDAGKYRCEVSAPSEQQNL
EEDTVTLEVLVAPAVPSCEVPSSALSGTVVELRCQDKEGNPAPEYTWFKD
GIRLLENPRLGSQSTNSSYTMNTKTGTLQFNTVSKLDTGEYSCEARN
SVGYRRCPGKRMQVDDLNISGIIAAVVVA
LVI
SVCGLGV
CYAQRKGYFSK
ETSFQKS
NSSSK
ATTMSE
NVQWL
TPV
IPALW
KAAAGGS
RGQEF

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 130-144, 238-258

N-glycosylation site.

amino acids 98-102, 187-191, 236-240, 277-281

Casein kinase II phosphorylation site.

amino acids 39-43, 59-63, 100-104, 149-153, 205-209, 284-288

N-myristoylation site.

amino acids 182-188, 239-245, 255-261, 257-263, 305-311

Amidation site.

amino acids 226-230

FIGURE 25

GACATCGGAGGTGGCTAGCACTGAAACTGCTTTCAAGACGAGGAAGAGGAGGAGAAAGAG
AAAGAAGAGGAAGATGTTGGCAACATTTATTAACATGCTCACAGCCGGACCCCTGGCAT
CATGCTGCTATTCTGCAAATACTGAAGAAGCATGGGATTAAATATTTACTCTAAATAA
ATGAATTACTCAATCTCTATGACCATCTATACATACTCCACCTCAAAAAGTACATCAATA
TTATATCATTAAGGAAATAGTAACCTCTTCTCAATATGCATGACATTTGGACAATG
CAATTGTGGCACTGGCACTTATTCAGTGAAGAAAAACTTGTGGTTATGGCATTCA
TTGACAAATGCAAGCATCTCCTATCAATCAGCTCTATTGAACTTACTAGCACTGACTG
TGGAATCCTAAGGGCCATTACATTCTGAAGAAGAAAGCTAAGATGAAGGACATGCCACT
CCGAATTCACTGTGCTACTTGGCCTAGCTATCACTACACTAGTACAAGCTGTAGATAAAAAG
TGGATTGTCCACGGTTATGTACGTGTGAAATCAGGCCTGGTTACACCCAGATCCATTAT
ATGGAAGCATCTACAGTGGATTGTAATGATTAGGTCTTTAACTTCCCAGCCAGATTGCC
AGCTAACACACAGATTCTCTCACAGACTAACAAATTGCAAAAATTGAATACTCCACAG
ACTTCCAGTAAACCTACTGGCCTGGATTATCTCAAAACAATTATCAGTCACCAAT
ATTAATGTAAGGAAAGATGCCTCAGCTCCTTCTGTGTACCTAGAGGAAACAAACTACTGA
ACTGCCTGAAAAATGTCGTCCGAACGTGAGCAACTACAAGAACTCTATATTAACTACA
TGCTTCTACAATTCACCTGGAGCCTTATTGGCCTACATAATCTTCTCGACTTCATCTC
AATTCAAATAGATTGCAGATGATCAACAGTAAGTGGTTGATGCTCTCAAATCTAGAGAT
TCTGATGATTGGGAAAATCCAATTATCAGAACTCAAAGACATGAACTTTAAGCCTTATCA
ATCTTCGAGCCTGGTTAGCTGGTATAAACCTCACAGAAATACAGATAACGCCCTGGTT
GGACTGGAAAACCTAGAAAGCATCTCTTTACGATAACAGGCTTATTAAAGTACCCCATGT
TGCTCTCAAAAGTGTAAATCTCAAATTGGATCTAAATTAAACCTATTAAATAGAA
TACGAAGGGGTGATTTAGCAATATGCTACACTAAAGAGTTGGGGATAAAATAATATGCCT
GAGCTGATTTCCATCGATAGTCTGCTGTGGATAACCTGCCAGATTAAAGAAAATAGAAGC
TACTAACACCCCTAGATTGTCTTACATTCAACCCCAATGCATTTCAGACTCCCCAAGCTGG
AATCACTCATGCTGAAACAGCAATGCTCAGTGCCTGTACCATGGTACCATGGTACCTG
CCAAACCTCAAGGAAATCAGCATACACAGTAACCCCATCAGGTGTGACTGTGTCATCCGTG
GATGAACATGAACAAAACCAACATTGGATTCAAGGAGCCAGATTCACTGTTTGCCTGGACC
CACCTGAATTCCAAGGTCAAATGTTGGCAAGTGCATTTCAGGGACATGATGGAAATTGT
CTCCCTCTTATAGCTCCTGAGAGCTTCTTCTAAATCTAAATGTAAGAGCTGGAGCTATGT
TTCCTTCACTGTAGAGCTACTGCAGAACACAGCCTGAAATCTACTGGATAACACCTCTG
GTCAAAAACCTTGCCTAATACCCGTACAGACAAGTTCTATGTCCATTCTGAGGGAAACACTA
GATATAATGGCGTAACTCCCAAAGAAGGGGTTATATACTTGTATAGCAACTAACCTAGT
TGGCGCTGACTTGAAGTCTGTTATGATCAAAGTGGATGGATCTTCCACAAGATAACAAATG
GCTCTTGAATATTAAGAGATATTCAAGGCAATTCACTGTTGGTGTCTGGAAAGCA
AGTTCTAAAATTCTCAAATCTAGTGTAAATGGACAGCCTTGTCAAGACTGAAAATTCTCA
TGCTCGCAAAGTGTGAAATACCATCTGATGTCAAGGTATATAATCTTACTCATCTGAATC
CATCAACTGAGTATAAAATTGTATTGATATTCCACCATCTATCAGAAAAACAGAAAAAAA
TGTGTAAATGTCACCACCAAGGTTGCACCCCTGATCAAAAAGAGTATGAAAAGAATAATAC
CACAAACACTTATGGCCTGTCTGGAGGCCTCTGGGGATTATTGGTGTGATATGTCTTATCA
GCTGCCTCTCCAGAAATGAACGTGATGGTGGACACAGCTATGTGAGGAATTACTTACAG
AAACCAACCTTGCATTAGGTGAGCTTATCCTCTGTATAAATCTCTGGAAAGCAGGAAA
AGAAAAAAAGTACATCACTGAAAGTAAAGCAACTGTTAGGTTACCAACAAATATGTCT
AAAAACCAAGGAAACCTACTCCAAAATGAAC

FIGURE 26

MKDMPLRIHVLLGLAITTLVQAVDKVDCPRLCTCEIRPWFTPRTSIYMEASTVDCNDLGLLT
FPARLPANTQILLQTNNIAKIEYSTDFTPVNLTGLDLSQNNLSSVTNINVKKMPQLLSVYLE
ENKLTELPEKCLSELSNLQELYINHNLLSTISPGAFIGLHNLLRLHLSNRQLQMINSKWFDA
LPNLEILMIGENPIIRIKDMNFKPLINLRSVIAGINLTEIPDNALVGLENLESISFYDNRL
IKVPHVALQKVVNLKFLLDNKNPINRIRRGDFSNMLHLKELGINNMPELISIDSLAVDNLPD
LRKIEATNNPRLSYIHPNAFFRLPKLESMLNSNALSAHYHTIESLPNLKEISIHSNPIRC
DCVIRWMNMNKTNIRFMEPDSDLFCVDPPEFQGQNRQVHFRDMMEICLPLIAPESFPSNLNV
EAGSYVSFHCRTAEPQPEIYWITPSGQKLLPNTLTDKFYVHSEGTLDINGVTPKEGGLYTC
IATNLVGAIDLKSVMIKVDGSFPQDNNGSLNIKIRDIQANSVLVSWKASSKILKSSVKWTAFV
KTENSHAAQSARI PSDVKVYNLTHLN PSTEYKICIDIPTIYQKNRKKCVNVTTKGLHPDQKE
YEKNNTTTLMACLGGLLGIIGVICLISCLSPEMNCDGGHSYVRNYLQKPTFALGELYPP LIN
LWEAGKEKSTSLKVKATVIGLPTNMS

Signal sequence:

amino acids 1-22

Transmembrane domain:

amino acids 633-650

N-glycosylation site.

amino acids 93-97, 103-107, 223-227, 382-386, 522-526, 579-583,
608-612, 624-628, 625-629

Casein kinase II phosphorylation site.

amino acids 51-55, 95-99, 242-246, 468-472, 487-491

Tyrosine kinase phosphorylation site.

amino acids 570-579

N-myristoylation site.

amino acids 13-19, 96-102, 158-164, 221-227, 352-358, 437-443,
491-497, 492-498, 634-640, 702-708

Cell attachment sequence.

amino acids 277-280

FIGURE 27

GCCCCGGACTGGCGCAAGGTGCCAAGCAAGGAAAGAAATAATGAAGAGACACATGTGTTAG
CTGCAGCCTTTGAAACACGCAAGAAGGAAATCAATAGTGTGGACAGGGCTGGAACCTTAC
CACGCTTGTGGAGTAGATGAGGAATGGCTCGTATTATGCTGACATTCCAGCATGAATCT
GGTAGACCTGTGGTTAACCGTTCCCTCCATGTGTCTCCTCCTACAAAGTTGTTCTTA
TGATACTGTGCTTCATTCTGCCAGTATGTGTCCCAAGGGCTGTCTTCTTCTG
GGTTAAATGTCACCTGTAGCAATGCAAATCTCAAGGAAATACCTAGAGATCTCCTCCTGA
AACAGTCTTACTGTATCTGGACTCCAATCAGATCACATCTATTCCAATGAAATTAAAGG
ACCTCCATCAACTGAGAGTTCTCAACCTGTCCAAAATGGCATTGAGTTATCGATGAGCAT
GCCTTCAAAGGAGTAGCTGAAACCTTGCAAGACTCTGGACTTGTCCGACAATCGGATTCAAAG
TGTGCACAAAATGCCTCAATAACCTGAAGGCCAGGGCCAGAATTGCCAACAAACCCCTGGC
ACTGCGACTGTACTCTACAGCAAGTTCTGAGGAGCATGGCGTCCAATCATGAGACAGCCCAC
AACGTGATCTGTAAAACGTCCGTGTTGGATGAACATGCTGGCAGACCATTCTCAATGCTGC
AACCGACGCTGACCTTGTAAACCTCCCTAAAAAAACTACCGATTATGCCATGCTGGTCACCA
TGTGGCTGGTTCACTATGGTGTCTCATATGTGGTATATTATGTGAGGCAAAATCAGGAG
GATGCCCGGAGACACCTCGAATAACTTGAAATCCCTGCCAAGCAGGCAGAAGAAAGCAGATGA
ACCTGATGATATTAGCACTGTGGTATAGTGTCCAAACTGACTGTCATTGAGAAAGAAAGAAA
GTAGTTTGCATTGCAGTAGAAATAAGTGGTTACTTCTCCATCCATTGTAAACATTTGAA
ACTTGTATTCAGTTTTTGAAATTATGCCACTGCTGAACCTTAACAAACACTACAACA
TAAATAATTGAGTTAGGTGATCCACCCCTTAATTGTACCCCCGATGGTATATTCTGAGT
AAGCTACTATCTGAACATTAGTTAGATCCATCTCACTATTAATAATGAAATTATTTTTT
AATTAAAAGCAAATAAAAGCTTAACTTGAACCAGGGAAAAAAAAAAAAAAACA

1000 900 800 700 600 500 400 300 200 100

FIGURE 28

MNLVDLWLTRSLSMC~~LLQSFVLMILCFHSASMC~~PKGCL~~SSGG~~LNVTCSNANLKEIPRDL
PPETVLLYLDSNQITSIPNEIFKDLHQLRVLNLSKNGIEFIDEHAFKGVAETLQTLDLSDNR
IQSVHKNAFNNLKARARIANNPWHCDCTLQQVLRSMASNHETAHNVICKTSVLDEHAGRPFL
NAANDADLCNL~~PKKTTDYAMLVTMFGWFTMV~~ISYVVYYVRQNQEDARRHLEYLKSLPSRQKK
ADEPDDISTVV

Signal sequence:

amino acids 1-33

Transmembrane domain:

amino acids 205-220

N-glycosylation site.

amino acids 47-51, 94-98

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 199-203

Casein kinase II phosphorylation site.

amino acids 162-166, 175-179

N-myristoylation site.

amino acids 37-43, 45-51, 110-116

FIGURE 29

FIGURE 30

MQVSKRMLAGGVRSMPSPLLACWQPILLLVLGSVLSGSATGCPRCECSAQDRAVLCHRKCF
VAVPEGIPETRLLDLGKNRIKTLNQDEFASFPHLEELNENIVSAVEPGAFNNLFNLRTL
GLRSNRLKLIPLGVFTGLSNLTKQDISENKIVILLDYMFDQLYNLKSLEVDNDLVYISHRA
FSGLNSLEQLTLEKCNLTSIPTEALSHLHGLIVLRLRHLNINAIRDYSFKRLYRLKVL
WPYLDTMTPNCLYGLNLTSLSITHCNLTAVPYLAVRHLVYLRFLNLSYNPISTIEGSM
LRLQEIQLVGGQLAVVEPYAFRGLNYLRVLNVSGNQLTTLEESVFHSVGNLETLL
CDCRLLWVFRRWRLNFRQQPTCATPEFVQGKEFKDFPDVLLPNYFTCRRARIRDRKA
FVDEGHTVQFVCRADGDPPPAILWLSPRKHLVSAKSNGRLTVFPDGTL
CIAANAGGNDNSMPAHLHVRSYSPDWPHQPNKTFAFISNQPGE
IATTMGFISFLGVVLFCVLFLWSRGKGNTHNIEIEYVPRKSDAGISSADAPRKFN
MKMI

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 556-578

N-glycosylation site.

amino acids 144-148, 202-206, 264-268, 274-278, 293-297, 341-345,
492-496, 505-509, 526-530, 542-546

Casein kinase II phosphorylation site.

amino acids 49-53, 108-112, 146-150, 300-304, 348-352, 349-353,
607-611

Tyrosine kinase phosphorylation site.

amino acids 590-598

N-myristoylation site.

amino acids 10-16, 32-38, 37-43, 113-119, 125-131, 137-143,
262-268, 320-326, 344-350, 359-365, 493-499, 503-509, 605-611

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 32-43

FIGURE 31

CCCACGCGTCCGACCTCGGCCCCGGGCTCCGAAGCGGCTCGGGGGGCCCTTCGGTCAAC
ATCGTAGTCCACCCCTCCCCATCCCCAGCCCCGGGATTCAAGGCTGCCAGGCCAGCC
AGGGAGCCGGCCGGGAAGCGCGATGGGGCCCCAGCCGCTCGCTCCTGCTCCTGCTCCTGC
TGTCGCTGCTGGCGCCGGGGCAACCTCTCCCAGGACGACAGCCAGCCCTGG
ACATCTGATGAAACAGTGGTGGCTGGTGGCACCGTGGTCAAGTGCCAAGTGAAAGATCA
CGAGGACTCATCCCTGCAATGGCTAACCTGCTCAGCAGACTCTACTTGGGAGAAGA
GAGCCCTCGAGATAATCGAATTCAAGCTGGTACCTCACGCCAACGAGCTCAGCATCAGC
ATCAGCAATGTGGCCTGGCAGACGAGGGCGAGTACACCTGCTCAATCTCACTATGCCCTGT
GCGAACTGCCAAGTCCCTCGTCACTGTGCTAGGAATTCCACAGAACGCCATCATCACTGGTT
ATAAAATCTTCATTACGGGAAAAAGACACAGCCACCCCTAAACTGTCAGTCTCTGGGAGCAAG
CCTGCAGCCGGCTCACCTGGAGAAAGGTGACCAAGAACCTCACGGAGAACCAACCGCAT
ACAGGAAGATCCCAATGGTAAAACCTTCACTGTCAGCAGCTCGTGACATTCCAGGTTACCC
GGGAGGATGATGGGGGAGCAGTCGTGCTCTGTGAACCATGAATCTCTAAAGGGAGCTGAC
AGATCCACCTCTCAACGCATTGAAGTTTATACACACCAACTGCGATGATTAGGCCAGACCC
TCCCCATCCTCGTGGAGGGCCAGAACGCTGTTGCTACACTGTGAGGGTCGCGGCAATCCAGTCC
CCCAGCAGTACCTATGGGAGAAGGAGGGCAGTGTGCCACCCCTGAAGATGACCCAGGAGAGT
GCCCTGATCTCCCTTCCTCAACAAAGAGTGAACAGTGGCACCTACGGCTGCACAGCCACCA
CAACATGGGAGCTACAAGGCCTACTACACCCCTCAATGTTAATGACCCAGTCCGGTGCCT
CCTCCTCCAGCACCTACCACGCCATCATCGTGGGATCGTGGCTTCATTGTCTCCTGCTG
CTCATCATGCTCATCTTCCCTGGCCACTACTTGATCCGGCACAAAGGAACCTACCTGACACA
TGAGGCAAAGGCTCCGACGATGCTCCAGACGCCAGCGGACAGGCCATCATCAATGCAGAAGGG
GGCAGTCAGGAGGGAGCACAAGAAGGAATATTCATTAGAGGGCGCTGCCACTCCTGC
GCCCCCCAGGGGCCCTGTGGGACTGCTGGGCCGTACCAACCCGGACTTGTACAGAGCAA
CCGCAGGGCCGCCCTCCGCTTGCTCCCCAGCCCACCCACCCCTGTACAGAAATGTCTGC
TTTGGGTGCGGTTTGACTCGGTTGGAATGGGGAGGGAGGAGGGCGGGGGAGGGAGGG
TTGCCCTCAGCCCTTCCGTGGCTCTGCATTGGTTATTATTATTTGTAACAATCC
CAAATCAAATCTGTCTCCAGGCTGGAGAGGCAGGAGCCCTGGGGTGAGAAAAGCAAAAAACA
AACAAAAAACAA

FIGURE 32

MGAPAASLLLLLFFACCWAPGGANLSQDDSQWPWTSDETVVAGGTVVLKCQVKDHEDSSLQW
SNPAQQTLYFGEKRALRDNRQLVTSTPHELYSISISNVALADEGEYTCISIFTMPVRTAKSLV
TVLGIHQKPIITGYKSSLREKDTATLNCQSSGSKPAARLTWRKGDQELHGEPTRIQEDPNGK
TFTVSSSVTFQVTREDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPDPPHPREGQ
KLLLHCEGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKS DSGTYGCTATSNMGSYKA
YYTLNVNDPSPVPSSSSTYHAIIGGIVAFIVFLLLIMLIFLGHYLIRHKGTYLTHEAKGSDD
APDADTAIINAEGGQSGGDDKKEYFI

Signal sequence:

amino acids 1-20

Transmembrane domain:

amino acids 331-352

N-glycosylation site.

amino acids 25-29, 290-294

Casein kinase II phosphorylation site.

amino acids 27-31, 35-39, 89-93, 141-145, 199-203, 388-392

N-myristoylation site.

amino acids 2-8, 23-29, 156-162, 218-224, 295-301, 298-304,
306-310, 334-340, 360-364, 385-389, 386-390

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 33

GGGGGTTAGGGAGGAAGGAATCCACCCCCACCCCCCAAACCCCTTTCTTCTCCTTCTGG
CTTCGGACATTGGAGCACTAAATGAACCTGAAATTGTGTCTGTGGCGAGCAGGATGGTCGCTG
TTACTTTGTGATGAGATCGGGGATGAATTGCTCGTTAAAAATGCTGCTTGGATTCTGTT
GCTGGAGACGTCTTTGTTGCCGCTGGAAACGTTACAGGGGACGTTGCAAAGAGAAGA
TCTGTTCTGCAATGAGATAGAAGGGGACCTACACGTAGACTGTGAAAAAAAGGGCTTCACA
AGTCTGCAGCGTTCACTGCCCGACTTCCCAGTTTACCAATTATTCTGCATGGCAATT
CCTCACTCGACTTTCCCTAATGAGTTGCTAACCTTATAATGCGGTTAGTTGCACATGG
AAAACAATGGCTTGCATGAAATCGTCCGGGGCTTTCTGGGGCTGCAGCTGGTAAAAGG
CTGCACATCAACAACAAGATCAAGTCTTTCGAAAGCAGACTTTCTGGGGCTGGACGA
TCTGGAATATCTCCAGGCTGATTTAATTATTACGAGATATAGACCCGGGGCTTCCAGG
ACTTGAACAAGCTGGAGGTGCTCATTAAATGACAATCTCATCAGCACCCCTACCTGCCAAC
GTGTTCCAGTATGTGCCCATACCCACCTCGACCTCCGGGTAACAGGCTGAAAACGCTGCC
CTATGAGGAGGTCTTGGAGCAAATCCCTGGTATTGCGGAGATCCTGCTAGAGGATAACCCT
GGGACTGCACCTGTGATCTGCTCTCCCTGAAAGAATGGCTGGAAAACATTCCAAGAATGCC
CTGATCGGCCAGTGGTCTGCGAAGCCCCCACCAGACTGCAGGGTAAAGACCTCAATGAAAC
CACCGAACAGGACTTGTGTCCTTGAAAAACCGAGTGGATTCTAGTCTCCGGCGCCCCCTG
CCCAAGAACAGAACCTTGCTCCTGGACCCCTGCCAACCTTCAAGACAAATGGCAAGAG
GATCATGCCACACCAGGGTCTGCTCCAAACGGAGGTACAAAGATCCCAGGCAACTGGCAGAT
CAAATCAGACCCACAGCAGCGATAGCGACGGTAGCTCCAGGAACAAACCTTAGCTAAC
GTTTACCCCTGCCCTGGGGCTGAGCTGCGACCACATCCCAGGGTGGGTTAAAGATGAAAC
TGCAACAAACAGGAACGTGAGCAGCTGGCTGATTGAAGCCCAAGCTCTAACGTGCAGGA
GCTTTCTACGAGATAACAAGATCCACAGCATCCGAAAATCGCACTTGTGGATTACAAGA
ACCTCATTCTGTTGGATCTGGCAACAATAACATCGCTACTGTAGAGAACACACTTTCAAG
AACCTTTGGACCTCAGGTGGCTACATGGATAGCAATTACCTGGACACGCTGTCCCAGGA
GAAATTGCGGGGCTGCAAAACCTAGAGTACCTGAACAGTGGAGTACAACGCTATCCAGCTCA
TCCTCCGGCACTTCAATGCCATGCCAAACTGAGGATCCTCATTCTCAACAAACAAACCTG
CTGAGGTCCCTGCCTGTGGACGTGTTCGCTGGGTCTCGCTCTAAACTCAGCCTGCACAA
CAATTACTCATGTACCTCCGGTGGCAGGGGTGCTGGACCAGTTAACCTCCATATCCAGA
TAGACCTCCACGGAAACCCCTGGGAGTGCTCTGCACAATTGTGCCTTCAAGCAGTGGGCA
GAACGCTGGGTTCCGAAGTGTGATGAGCGACCTCAAGTGTGAGACGCCGGTGAACCTCTT
TAGAAAGGATTTCATGCTCCTCTCCAATGACGAGATCTGCCCTCAGCTGTACGCTAGGATCT
CGCCCACGTTAACCTCGCACAGTAAAACAGCACTGGGTTGGCGAGACCGGACGCACCTC
AACTCCTACCTAGACACCAGCAGGGTGTCCATCTCGGTGTTGGCTCCGGACTGCTGCTGGT
GTTTGTACCTCCGCCTTCACCGTGGTGGCATGCTCGTGTATCCTGAGGAACCGAAAGC
GGTCCAAGAGACGAGATGCCAACTCCTCCCGTCCGAGATTAATTCCCTACAGACAGTCTGT
GAECTTCTACTGGCACAATGGCCTTACAACGCAGATGGGCCACAGAGTGTATGACTG
TGGCTCTACTCGCTCTCAGACTAAAGACCCAAACCCAAATAGGGAGGGCAGAGGGAAAGGCG
ATACATCCTCCCCACCGCAGGCACCCGGGGCTGGAGGGCGTGTACCCAAATCCCGCG
CCATCAGCCTGGATGGCATAAGTAGATAAAACTGTGAGCTCGCACAAACGAAAGGGCT
GACCCCTACTTAGCTCCCTCTTGAAACAAAGAGCAGACTGTGGAGAGCTGGAGAGCGCA
GCCAGCTCGCTTTGCTGAGAGGCCCTTTGACAGAAAGGCCAGCACGACCCCTGCTGGAAG
AACTGACAGTGCCCTGCCCTCGGCCCCGGGGCTGTGGGTTGGATGCCCGGGTTCTATAC
ATATATACATATATCCACATCTATATAGAGAGATAGATATCTATTTCCCTGTGGATTAG
CCCCGTGATGGCTCCCTGTTGGTACGCAGGGATGGCAGTTGCACGAAGGCATGAATGTAT
TGTAAATAAGTAACCTTGACTCTGAC

FIGURE 34

MLLWILLLETSLCFAAGNVTGVCCKEKCSCNEIEGDLHVDCEKKGFTSLQRFTAPTSQFYH
LFLHGNSLTRLFPNEFANFYNAVSLHMENNGLHEIVPG AFLGLQLVKRLHINNNKIKSFRKQ
TFLGLDDLEYLQADFNLLRDIDPGAFQDLSKLEVLIILNDNLISTLPANVFQYVPI THLDLRG
NRLKTL PYEVLEQI PGIAEILLEDNPWDCTCDLISLKEWLENIPKNALIGRVVCEAPTRLQ
GKDINNETTEQDLCPLKNRVDSL PAPPAQEETFAPGPLPTPKTNGQEDHATPGSAPNGGT
IPGNWQIKIRPTAAIATGSSRNKPLANSLPCPGCSDHIPGSGLKMNCCNRNVSSLADLKP
KLSNVQELFLRDNKIHSIRKSHFVDYKNLILLLDGNNNIATVENNTFKNLLDLRWLYMDSNY
LDTLSREKFAGLQNLEYLNVEYNIAIQILPGLTFNAMPKLRILILNNNLLRSLPVDVFAGVSL
SKLSLHN NYFMYLPVAGVLDQLTSIIQIDLHGNPWECSCTIVPFKQWAERLGSEVLMSDLKC
ETPVNFFRKDFMLLSNDEICPQLYARISPTLTSHSKNSTGLAETGTHNSYLDTSRVSISVL
VPGLL VFVTS AFTVVGMLV FILRNRKRSKRDANS SASEINSLQTVCDSSYWHNGPYNADG
AHRVYDCGSHSLSD

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 618-638

N-glycosylation site.

amino acids 18-22, 253-257, 363-367, 416-420, 595-599, 655-659

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 122-126, 646-650

Casein kinase II phosphorylation site.

amino acids 30-34, 180-184, 222-226, 256-260, 366-370, 573-577,
608-612, 657-661, 666-670, 693-697

N-myristoylation site.

amino acids 17-23, 67-73, 100-106, 302-308, 328-334, 343-349,
354-360, 465-471, 493-499, 598-604, 603-609

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 337-348

FIGURE 35

AGTCGACTGCGTCCCCTGTACCCGGGCCAGCTGTGTTCTGACCCCAGAATAACTCAGGGC
TGCACCGGGCTGGCAGCGCTCCGCACACATTCTGTGCGGGCTAAGGGAAACTGTTGGC
CGCTGGGCCCGGGGGGATTCTTGGCAGTTGGGGGTCCGTGGGAGCGAGGGCGGAGGGG
AAGGGAGGGGGAACCGGGTTGGGAAGCCAGCTGTAGAGGGCGGTGACCGCGCTCCAGACAC
AGCTCTGCGTCCTCGAGCGGACAGATCCAAGTTGGGAGCAGCTGTGCGTGCAGGGCCTCAG
AGAATGAGGCCGGCGTTGCCCTGTGCCCTCTGGCAGGCGCTCTGGCCCGGGCCGGCGG
CGGCGAACACCCCCACTGCCGACCGTGTGGCTCGGCTCGGCCCTGGGGCCTGCTACAGCCTGC
ACCAAGCTACCATGAAGCGGCAGGGCGCCGAGGAGGCTGCATCTGCGAGGTGGGGCGCTC
AGCACCGTGCCTGCAGCTGCGCCTGTGCTCGCCTCGCAGGGCCAGGCGCAGGCGCAGG
GCCCGGAGGGGGCTCAAAGACACTGCTGTTCTGGGTGCACGGCTGAGCGCAGGCAGGCGTCCCAGT
GCACCCCTGGAGAACGAGCCTTGCAGGGTTCTCTGGCTGTCTCCGACCCGGCGGTCTC
GAAAGCGACACGCTGCAGTGGGTGGAGGAGCCCCAACGCTCCTGCACCGCGGGAGATGCGC
GGTACTCCAGGCCACCGGTGGGTGAGGCCGAGGCTGGAAGGAGATGCGATGCCACCTGC
GCGCCAACGGCTACCTGTGCAAGTACCAAGTTGAGGTCTGTGCTCGCCGCGCCCCGGG
GCCGCCTCTAACTTGAGCTATCGCGCCCTTCCAGCTGCACAGCGCCGCTCTGGACTTCAG
TCCACCTGGGACCGAGGTGAGTGCCTCTGCCGGGACAGCTCCGATCTCAGTTACTTGCA
TCGCGGACGAAATCGCGCTCGCTGGACAAACTCTCGGGCGATGTGTTGTCCCTGCC
GGGAGGTACCTCCGTGCTGGCAAATGCGCAGAGCTCCCTAAC TGCCTAGACGACTTGGGAGG
CTTGCCTGCGAATGTGCTACGGCTTCAGCTGGGAAGGACGGCGCTTGTGACCA
GTGGGGAGGACAGCCGACCCCTGGGGGACCGGGGTGCCACCAGGCGCCGCCACT
GCAACCAGCCCCGTGCCGCAGAGAACATGGCAAATCAGGGTCGACGAGAACGCTGGGAGAGAC
ACCACTGTCCTGAACAAGACAATTCAAGTAACATCTATTCTGAGATTCTCGATGGGAT
CACAGAGCACGATGTCACCCCTCAAATGTCCCTCAAGCCGAGTCAGCTCCCTGCCACTCCTCAGGCTT
CCATCAGGGAGCGTGATTTCAAGTTAATTCTACGACTTCTCTGCCACTCCTCAGGCTT
CGACTCCTCCTCTGCCGTGGTCTTCATATTGTGAGCACAGCAGTAGTAGTGTGTTGATCT
TGACCATGACAGTACTGGGCTTGTCAAGCTCTGCTTCACGAAAGCCCTTCCAGCCA
AGGAAGGAGTCTATGGGCCGCCGGCTGGAGAGTGATCCTGAGGCCGCTGCTTGGGCTC
CAGTTCTGCACATTGCACAAACAATGGGGTGAAGTCGGGACTGTGATCTGCCGGACAGAG
CAGAGGGTGCCTTGCCTGGCGAGTCCCTCTGGCTCTAGTGATGCAT**AGGAAACAGGGGA**
CATGGGCACTCCTGTGAACAGTTTCACTTTGATGAAACGGGGAACCAAGAGGAACCTAC
TTGTGTAAGTACAATTCTGCAGAAATCCCCCTCTCAAATTCCCTTACTCCACTGAG
GAGCTAAATCAGAACTGCACACTCCTCCCTGATGATAGAGGAAGTGGAAAGTGCCTTAGGA
TGGTGTGATGACTGGGGACCGGGTAGTGTGCTGGGAGAGATATTCTTATGTTATTGGAGAA
TTTGGAGAAGTGATTGAACTTTCAAGACATTGGAAACAAATAGAACACAATATAATTACA
TTAAAAAATAATTCTACCAAAATGGAAAGGAAATGTTCTATGTTGTCAGGCTAGGAGTAT
ATTGGTTGAAATCCCAGGGAAAAAAATAAAAATTAAGGATTGTTGAT

FIGURE 36

MRPAFALCLLWQALWPGPGGGEHPTADRAGCSASGACYSLHHATMKRQAAEEACILRGGALS
TVRAGAELRAVLALLRAGPGPGGGSKDLLFWVALERRSHCTLENEPLRGFSWLSSDPGGLE
SDTLQWVEEPQRSCTARRCAVLQATGGVEPAGWKEMRCHLRANGYLCKYQFEVLCPAPRPGA
ASNLSYRAPFQLHSAALDFSPPGTEVSALCRGQLPISVTCIADEIGARWDKLSGDVLCPCPG
RYLRAGKCAELPNCLDDLGGFACECATGFELGKDGRSCVTSGEQPTLGGTGVPTRRPPATA
TSPVPQRTWPIRVDEKLGETPLVPEQDNSVTTSIPEIPRWGSQSTMSTLQMSLQAESKATITP
SGSVISKFNSTTSSATPQAFDSSSAVVFIFVSTAVVVLVILMTVLGLVKLCFHESPSSQPR
KESMGPPGLESDEPAALGSSSAHCTNNGVKVGCDLRDRAEGALLAESPLGSSDA

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 189-193, 381-385

Glycosaminoglycan attachment site.

amino acids 289-293

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 98-102, 434-438

Casein kinase II phosphorylation site.

amino acids 275-279, 288-292, 342-346, 445-449

N-myristoylation site.

amino acids 30-36, 35-41, 58-64, 59-65, 121-127, 151-157,
185-191, 209-215, 267-273, 350-356, 374-380, 453-459, 463-469,
477-483

Aspartic acid and asparagine hydroxylation site.

amino acids 262-274

FIGURE 37

CGGACGCGTGGATTCAAGCAGTGGCTGTGGCTGCCAGAGCAGCTCCTCAGGGAAACTAAG
CGTCGAGTCAGACGGCACATAATCGCCTTAAAAGTGCCTCCGCCCTGCCGGCGCGTATC
CCCCGGCTACCTGGGCCCGCCCGCGGGTGCAGCGCTGAGAGGGAGGCCGCCGGCAGCCGA
GCCGCCGGTGTGAGCCAGCGCTGCTGCCAGTGTGAGCGCGGTGTGAGCGCGGTGGTGCAGGA
GGGGCGTGTGTGCCGGCGCGCGCCGGTGGGTGCAAACCCCGAGCGTACGCTGCCATGA
GGGGCGCGAACGCCCTGGCGCCACTCTGCCTGCTGGCTGCCGCCACCCAGCTCGCGG
CAGCAGTCCCCAGAGAGACCTGTTTACATGTGGTGGCATTCTTACTGGAGAGTCTGGATT
TATTGGCAGTGAAGGTTTCTGGAGTGTACCCCTCAAATAGCAAATGTACTTGGAAAATCA
CAGTTCCCAGAGAAAAGTAGTCGTTCTCAATTCCGATTCAAGACCTCGAGAGTGACAAC
CTGTGCCGCTATGACTTTGTGGATGTGTACAATGGCCATGCCAATGCCAGCGCATTGGCCG
CTTCTGTGGCACTTCCGGCTGGAGCCCTGTGTCCAGTGGCAACAAGATGATGGTGCAGA
TGATTCTGATGCCAACACAGCTGGCAATGGCTTATGCCATGTTCTCGCTGTAACCA
AACGAAAGAGGGATCAGTATTGTGGAGGACTCCTGACAGACCTCCGGCTTTAAAAC
CCCCAACTGCCAGACCGGGATTACCCCTGCAGGAGTCACTTGTGTGGCACATTGTAGCCC
CAAAGAATCAGCTTATAGAATTAAAGTTGAGAAGTTGATGTGGAGCGAGATAACTACTGC
CGATATGATTATGTGGCTGTGTTAATGGCGGGAAAGTCAACGATGCTAGAAGAATTGGAAA
GTATTGTGGTGTAGTCCACCTGCGCCAATTGTGTCTGAGAGAAATGAACTTCTTATTAGT
TTTATCAGACTTAAGTTAATGCAGATGGGTTATTGGTCACTACATATTCAAGGCCAAA
AAACTGCCTACAACACTACAGAACAGCCTGTCACCACATTCCCTGTAACCACGGGTTAAA
ACCCACCGTGGCCTGTGTCACAAAAGTAGACGGACGGGACTCTGGAGGGCAATTATT
GTTCAAGTGACTTTGTTAGGCCGACTGTTATCACAACCACACTCGCGATGGAGTTG
CACGCCACAGTCTCGATCATCACACATCTACAAAGAGGGAAATTGGCGATTAGCAGGCAGG
CAAGAACATGAGTGCCAGGCTGACTGTCGTGCAAGCAGTGCCTCTCAGAACAGGTC
TAAATTACATTATTATGGGCAAGTAGGTGAAGATGGGCGAGGCAAAATCATGCCAACAGC
TTTATCATGATGTTCAAGACCAAGAACATCAGAACGCTCCTGGATGCCCTAAAAAATAAGCAATG
TTAACAGTGAACTGTGTCATTAAAGCTGATTCTGCCATTGCCCTTGAAAGATCTATGTC
TCTCAGTAGAAAAAAATACCTATAAAATTACATATTCTGAAAGAGGATTCCGAAAGATGG
GACTGGTTGACTCTCACATGATGGAGGTATGAGGCCTCCGAGATAGCTGAGGGAAAGTTCTT
TGCCTGCTGTCAGAGGAGCAGCTATCTGATTGAAACCTGCCGACTTAGTGCAGGTAGAGA
AGCTAAAAGTGTCAAGCGTTGACAGCTGGAAAGCGTTATTTATACATCTGTAAAAGGAT
ATTTAGAATTGAGTTGTGTGAAGATGTCAAAAAAAGATTTAGAAGTGCATATTATAGT
GTTATTGTTCACCTCAAGCCTTGCCTGAGGTGTACAATCTGCTTGCCTTCTA
AATCAATGCTTAATAAAATTAAAGGAAAAAA

FIGURE 38

MRGANAWAPLCLLLAAATQLSRQQSPERPVFTCGGILTGESFIGSEGFPGVYPPNSKCTWK
ITVPEGKVVVLNFRFIDLESDNLCRYDFVDVYNGHANGQRIGRFCGTFRPGALVSSGNKMMV
QMISDANTAGNGFMAMFSAAEPNERGDQYCGGLLDRPSGSFKTPNWPDRDYPAGVTCVWHIV
APKNQLIELKFEKFDVERDNYCRYDYVAVFNGEVNDARRIGKYCGDSPAPIVSERNELLI
QFLSDLSLTADGFIGHYIFRPKKLPTTTEQPVTTFPVTTGLKPTVALCQQKCRRGTLEGN
YCSSDFVLAGTVITTITRD GSLHATVSIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRR
GLNYIIMQVGEDGRGKIMPNSFIMMFKTKNQKLLDALKNKQC

Signal sequence:

amino acids 1-23

N-glycosylation site.

amino acids 355-359

Casein kinase II phosphorylation site.

amino acids 64-68, 142-146, 274-278

Tyrosine kinase phosphorylation site.

amino acids 199-208

N-myristoylation site.

amino acids 34-40, 35-41, 100-106, 113-119, 218-224, 289-295,
305-311, 309-315, 320-326, 330-336

Cell attachment sequence.

amino acids 149-152

FIGURE 39

CGGACGCGTGGCGGACGCGTGGCGCCACGGCGCCGCGGCTGGGGCGGTGCTTCTT
CCTTCTCCGTGGCCTACGAGGGTCCCCAGCCTGGTAAAGATGGCCCCATGGCCCCGAAGG
GCCTAGTCCCAGCTGTCTGGGCCTCAGCCTCTCCTCAACCTCCCAGGACCTATCTGG
CTCCAGCCCTCTCCACCTCCCCAGTCTTCTCCCCGCCTCAGCCCCATCCGTGTACACTG
CCGGGGACTGGTTGACAGCTTAACAAGGGCTGGAGAGAACCATCCGGACAACTTGGAG
GTGGAAACACTGCCTGGAGGAAGAGAATTGTCAAATACAAAGACAGTGAGACCCGCCTG
GTAGAGGTGCTGGAGGGTGTGCAGCAAGTCAGACTCGAGTGCCACCGCCTGGAGCT
GAGTGAGGAGCTGGTGGAGAGCTGGTGGTTACAAGCAGCAGGAGGCCCCGGACCTTTCC
AGTGGCTGTGCTCAGATTCCCTGAAGCTCTGCTGCCCGCAGGCACCTCGGGCCCTCCTGC
CTTCCCTGTCTGGGGAACAGAGAGGCCCTGGCTACGGCAGTGTGAAGGAGAAGG
GACACGAGGGGGCAGCGGGCACTGTGACTGCCAAGCCGGTACGGGGTGAGGCCTGTGGCC
AGTGTGGCCTGGCTACTTGAGGCAGAACGCAACGCCAGCATCTGGTATGTTGGCTTGT
TTTGGCCCTGTGCCGATGCTCAGGACCTGAGGAATCAAACGTGGCAATGCAAGAAGGG
CTGGGCCCTGCATCACCTCAAGTGTGAGACATTGATGAGTGTGGCACAGAGGGAGCCA
GTGGAGCTGACCAATTCTGCGTGAACACTGAGGGCTCCTATGAGTGCCGAGACTGTGCCAAG
GCCTGCCTAGGCTGCATGGGGCAGGCCAGGTGCTGTAAGAAGTGTAGCCCTGGCTATCA
GCAGGTGGCTCCAAGTGTCTCGATGTGGATGAGTGTGAGACAGAGGTGTCCGGAGAGA
ACAAGCAGTGTGAAAACACCGAGGGCGTTATCGCTGCATCTGTGCCGAGGGCTACAAGCAG
ATGGAAGGCATCTGTGTAAGGAGCAGATCCAGAGTCAGCAGGCTTCTCTCAGAGATGAC
AGAAGACGAGTTGGTGGTGCTGCAGCAGATGTTCTTGGCATCATCTGTGCACTGGCCA
CGCTGGCTGCTAAGGGCACTGGTGTACCGCCATCTCATTGGGCTGTGGCGGCCATG
ACTGGCTACTGGTGTCAAGAGCGAGTGAACGCTGGAGGGCTTCATCAAGGGCAGAT
ATCGCGGCCACCACCTGTAGGACCTCCTCCCACCCACGCTGCCCGAGAGCTTGGCTGCC
TCCTGCTGGACACTCAGGACAGCTGGTTATTTGAGAGTGGGTAAGCACCCCTACCTG
CCTTACAGAGCAGCCCAGGTACCCAGGCCGGCAGACAAGGCCCTGGGTAAAAAGTAGC
CCTGAAGGTGGATACCATGAGCTTCACTGGCGGGACTGGCAGGCTTCACAAATGTGTGA
ATTTCAAAAGTTTCTTAATGGTGGCTGCTAGAGCTTGGCCCTGCTTAGGATTAGGTG
GTCCTCACAGGGTGGGCCATCACAGCTCCCTGCCAGCTGCATGCCAGTTCTGT
TCTGTGTTCACACATCCCCACACCCATTGCCACTTATTATTCATCTCAGGAAATAAGA
AAGGTCTTGGAAAGTTAAAAAAAAAAAAAAAAAAAAAA

FIGURE 40

MAPWPPKGLVPAVLWGLSLFLNLPGPIWLQPSPPPQSSPPPQPHPCHTCRGLVDSFNKGLER
TIRDNFGGGNTAWEENLSKYKDSETRLVEVLEGVCSKSDFECHRLLELSEELVESWWFHKQ
QEAPDLFQWLCSDSLKLCGPAGTFGPSCLPAGTERPCGGYGCCEGEGTRGGSGHCDCQAG
YGEACGQCGLGYFEAERNASHLVCACFGPCARCSGPEESNCLQCKKGWALHHLKCVDIDE
CGTEGANCGADQFCVNTEGSYECRDCAKACLGCMGAGPGRCKCSPGYQQVGSKCLDVDECE
TEVCPGENKCENTEGGYRCICAEGYKQMEGICVKEQIPESAGFFSEMTEDELVVLQQMFFG
IIICALATLAAGDLVFTAIFIGAVAAMTGYWLSERSDRVLEGFIFKGR

Signal sequence:

amino acids 1-29

Transmembrane domain:

amino acids 372-395

N-glycosylation site.

amino acids 79-83, 205-209

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 290-294

Casein kinase II phosphorylation site.

amino acids 63-67, 73-77, 99-103, 101-105, 222-226, 359-363

N-myristylation site.

amino acids 8-14, 51-57, 59-65, 69-75, 70-76, 167-173, 173-179,
177-183, 188-194, 250-256, 253-259, 267-273, 280-286, 283-289,
326-332, 372-378, 395-401

Aspartic acid and asparagine hydroxylation site.

amino acids 321-333

EGF-like domain cysteine pattern signature.

amino acids 181-193

FIGURE 41

TGAGACCCTCCTGCAGCCTCTCAAGGGACAGCCCCACTCTGCCTCTGCTCCTCCAGGGCA
GCACCATGCAGCCCCCTGTGGCTCTGCTGGCACTCTGGGTGTTGCCCTGGCCAGCCCCGGG
GCCGCCCTGACCAGGGAGCAGCTCCTGGCAGCCTGCTGCCAGCTCAGCTCAAAGAGGT
GCCCACCCCTGGACAGGGCGACATGGAGGAGCTGGTCATCCCCACCCACGTGAGGGCCCAGT
ACGTGGCCCTGCTGCAGCGCAGCCACGGGACCGCTCCCGCGAAAGAGGTTAGCCAGAGC
TTCCGAGAGGTGGCCGGCAGGTTCTGGCGTTGGAGGCCAGCACACACCTGCTGGTGGTCTGG
CATGGAGCAGCGCTGCCGCCAACAGCGAGCTGGTCAGGCCGTGCTGCCCTTCCAGG
AGCCGGTCCCCAAGGCCGCGCTGCACAGGCACGGCGGCTGTCCCGCGCAGGCCCGGGCC
CGGGTGACCGTCGAGTGGCTGCGCGTCCCGCAGACGGCTCCAACCGCACCTCCCTCATCGA
CTCCAGGCTGGTGTCCGTCCACGAGAGCGGCTGGAAGGCCTTCGACGTGACCGAGGCCGTGA
ACTTCTGGCAGCAGCTGAGCCGGCCCGCAGCCGCTGCTGCTACAGGTGTCGGTGCAGAGG
GAGCATCTGGGCCCGCTGGCGTCCGGCGCCACAAGCTGGTCCGCTTGCCCTCGCAGGGGGC
GCCAGCCGGCTGGGGAGCCCCAGCTGGAGCTGCACACCCCTGGACCTGGGACTATGGAG
CTCAGGGCGACTGTGACCCCTGAAGCACCAATGACCGAGGGCACCCGCTGCTGCCGCCAGGAG
ATGTACATTGACCTGCAGGGATGAAGTGGGCCAGAACTGGGTGCTGGAGCCCCCGGGCTT
CCTGGCTTATGAGTGTGGCACCTGCCGGAGCCCCCGGAGGCCCTGGCCTTCAAGTGGC
CGTTCTGGGCCTCGACAGTCATGCCCTCGGAGACTGACTCGCTGCCATGATCGTCAGC
ATCAAGGAGGGAGGCAGGACCAGGCCAGGTGGTCAGCCTGCCAACATGAGGGTGCAGAA
GTGCAGCTGTGCCTCGGATGGTGCCTCGTGCAGGAGGCTCCAGCCATAGGCGCCTAGTG
TAGCCATCGAGGGACTTGACTTGTGTGTTCTGAAGTGTGAGGGTACCAAGGAGAGCTG
GCGATGACTGAAGTGCCTGATGGACAAATGCTCTGTGCTCTAGTGAGCCCTGAATTGCTT
CCTCTGACAAGTTACCTCACCTAATTTGCTCTCAGGAATGAGAACATTTGGCCACTGGA
GAGCCCTGCTCAGTTCTATTCTATTACTGCACTATATTCTAACGCACTTACAT
GTGGAGATACTGTAACCTGAGGGCAGAAAGCCANTGTGTCATTGTTACTTGTCCGTAC
TGGATCTGGCTAAAGTCCTCCACCACCACTCTGGACCTAACGACCTGGGGTTAAGTGTGGGT
TGTGCATCCCCAATCCAGATAATAAGACTTTGTAAAACATGAATAAACACATTATTCT
AAAA

FIGURE 42

MQPLWLCWALWVLPLASPGAAALTGEQLLGSLRLQLQLKEVPTLDRADMEELVPIPTHVRAQYV
ALLQRSHGDRSRGKRFQSFRREVAGRFLALEASTHLLVFGMEQRLPPNSELVQAVLRLFQEP
VPKAALHRHGRLSPRSARARVTVEWLRVRDDGSNRTSLIDSRLVSVHESGWKAFDVTEAVNF
WQQLSRPRQPLLQSVQREHLGPLASGAHKLVRFASQGAPAGLGEPQLELHTLDLGDYGAQ
GDCDPEAPMTEGTRCCRQEMYIDLQGMKWAENWVLEPPGFLAYECVGTCRQPPEALAFKWPF
LGPRQCIASETDSLPMIVSIKEGGRTRPQVVSLPNMRVQKCSCASDGALVPRRLQP

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 158-162

cAMP- and cGMP-dependent protein kinase phosphorylation site.

FIGURE 43

GTCTGTTCCCAGGAGTCCTCGCGGCTGTTGTCAGTGGCCTGATCGCGATGGGACAAA
GGCGCAAGTCGAGAGGAAACTGTTGTCCTCTTCATATTGGCGATCCTGTTGCTCCCTGG
CATTGGGCAGTGTACAGTGCACCTCTGAACCTGAAGTCAGAATTCTGAGAATAATCCT
GTGAAGTTGTCCTGTCCTACTCGGGCTTTCTTCTCCCCGTGAGTGGAGTGGAAAGTTGACCA
AGGAGACACCAACCAGACTCGTTGCTATAATAACAAGATCACAGCTCCTATGAGGACCGGG
TGACCTTCTGCCAACTGGTATCACCTCAAGTCCGTGACACGGGAAGACACTGGGACATAC
ACTTGTATGGTCTCTGAGGAAGGCGAACAGCTATGGGGAGGTCAAGGTCAAGCTCATCGT
GCTTGTGCCTCCATCCAAGCCTACAGTTAACATCCCCTCCTGCCACCATTGGGAACCGGG
CAGTGCTGACATGCTCAGAACAGATGGTCCCCACCTTCTGAATAACACCTGGTCAAAGAT
GGGATAGTGTGATGCCCTACGAATCCAAAAGCACCCGTGCCCTCAGCAACTCTCCTATGTCT
GAATCCCACACAGGAGAGCTGGTCTTGATCCCCTGTCAAGCTCTGATAACTGGAGAATACA
GCTGTGAGGCACGGAATGGGTATGGGACACCCATGACTTCAAATGCTGTGCGCATGGAAAGCT
GTGGAGCGGAATGTGGGGTCATCGTGGCAGCCGTCTGTAACCCCTGATTCTCCTGGGAAT
CTTGGTTTTGGCATCTGGTTGCCTATAGCCGAGGCCACTTGACAGAACAAAGAAAGGGA
CTTCGAGTAAGAAGGTGATTACAGCCAGCCTAGTGCCGAAGTGAAGGAGAATTCAAACAG
ACCTCGTCATTCTGGTGTGAGCCTGGTCGGCTCACCGCCTATCATCTGCATTGCCCTACT
CAGGTGCTACCGGACTCTGGCCCTGATGTCTGTAGTTCACAGGATGCCCTATTGTCTTC
TACACCCCACAGGGCCCCCTACTTCTCGGATGTGTTTAATAATGTCACTATGTGCC
ATCCTCCTTCATGCCCTCCCTTCCCTACCACTGCTGAGTGGCTGGAACCTGTTAAA
GTGTTATTCCCCATTCTTGAGGGATCAGGAAGGAATCCTGGGTATGCCATTGACTTCCC
TTCTAAAGTAGACAGAAAAATGGCGGGGTGCAAGGAATCTGCACTCAACTGCCACCTGGC
TGGCAGGGATCTTGAATAGGTATCTTGAGCTGGTCTGGCTCTTCCCTGTACTGAC
GACCAGGGCCAGCTGTTCTAGAGCGGAATTAGAGGCTAGAGCGGCTGAAATGGTTGTTGG
TGATGACACTGGGTCTTCCATCTCTGGGCCACTCTCTGTCTTCCATGGGAAGTG
CCACTGGGATCCCTCTGCCCTGCTCTGAATACAAGCTGACTGACATTGACTGTCTGT
GGAAAATGGGAGCTCTGTTGGAGAGCATAGTAAATTTCAAGAGAACTTGAAGCCAAAAG
GATTAAAACCGCTGCTCTAAAGAAAAGAAAAGCTGGAGGCTGGCGCAGTGGCTACGCC
TAATCCCAGAGGCTGAGGCAGGCAGGATCACCTGAGGTGGAGTTGGGATCAGCCTGACCA
ACATGGAGAAACCTACTGGAAATACAAAGTTAGCCAGGCATGGTGGTGCATGCCGTAGTC
CCAGCTGCTCAGGAGCCTGGCAACAAAGAGCAAAACTCCAGCTCAAAAAAAA

FIGURE 44

MGTKAQVERKLLCLFILAILLCSLALGSVTVHSSEPEVRIPENNPVKLSCAYSGFSSPRVEW
KFDQGDTTRLVCYNNKITASYEDRVTFLPTGITFKSVTREDTGTYTCMVSEEGGNSYGEVKV
KLIVLVPPSKPTVNIPSSATIGNRAVLTSEQDGSPPPSEYTWFKDGIVMPTNPKSTRAFSNS
SYVLNPTTGEVLFDPLSASDTGEYSCEARNGYGTPMTSNAVRMEAVERNVGVIVAAVLVTLLI
LLGILVFGIWFAYSRGHFDRTKKGTSSKKVIYSQPSARSEGEFKQTSSFLV

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 238-255

N-glycosylation site.

amino acids 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 270-274

Casein kinase II phosphorylation site.

amino acids 34-38, 82-86, 100-104, 118-122, 152-156, 154-158,
193-197, 203-207, 287-291

N-myristoylation site.

amino acids 105-111, 116-122, 158-164, 219-225, 237-243, 256-262

FIGURE 45

CAGCGCGTGGCCGGCGCCGTGGGGACAGCATGAGCGGCGGTTGGATGGCGCAGGTTGGA
GCGTGGCGAACAGGGCTCTGGCCTGGCGCTGCTGCTGCTCGGCCTCGGACTAGGCCT
GGAGGCCGCCGAGCCGCTTCCACCCGACCTCTGCCAGGCCAGGCCAGCTCAG
GCTCGTGCCACCCACCAAGTTCCAGTGCCGCACCAGTGGTTATGCGTGCCCTCACCTGG
CGCTGCGACAGGGACTTGGACTGCAGCGATGGCAGCGATGAGGAGGAGTGCAGGATTGAGCC
ATGTACCCAGAAAGGGCAATGCCACCGCCCCCTGGCCTCCCTGCCCTGCACCGCGTCA
GTGACTGCTCTGGGGAACTGACAAGAAACTGCGCAACTGCAGCCGCTGGCCTGCCTAGCA
GGCGAGCTCCGTTGCACGCTGAGCGATGACTGCATTCCACTCACGTGGCGCTGCGACGGCA
CCCAGACTGTCCCGACTCCAGCGACGAGCTGGCTGTGGAACCAATGAGATCCTCCGGAAG
GGGATGCCACAACCATGGGGCCCCCTGTGACCCCTGGAGAGTGTACCTCTCAGGAATGCC
ACAACCATGGGGCCCCCTGTGACCCCTGGAGAGTGTCCCTCTGTCGGAATGCCACATCCTC
CTCTGCCGGAGACCAGTCTGGAAGCCCAACTGCCTATGGGTTATTGCAGCTGCTGCC
TCAGTGCAAGCCTGGTCACCGCCACCCCTCCTCTTTGTCCCTGGCTCCGAGCCAGGAGCGC
CTCCGCCACTGGGTTACTGGTGGCCATGAAGGAGTCCCTGCTGTCAGAACAGAAC
CTCGCTGCCTGAGGACAAGCAACTGCCACCAACCGTCACTCACGCCCTGGCGTAGCCGGACA
GGAGGAGAGCAGTGATGCGGATGGGTACCCGGCACACCAGCCCTCAGAGACCTGAGTTCTT
CTGGCCACGTGGAACCTCGAACCCGAGCTCCTGCAGAAGTGGCCCTGGAGATTGAGGGTCCC
TGGACACTCCCTATGGAGATCCGGGAGCTAGGATGGGAACCTGCCACAGCCAGAAC
GGGCTGGCCCCAGGCAGCTCCAGGGGGTAGAACGCCCTGTGCTTAAGAACACTCCCTGCTG
CCCCGTCTGAGGGTGGCGATTAAAGTTGCTTC

1004

FIGURE 46

MSGGWMAQVGAWRTGALGLALLLGLGLGLEAAASPLSTPTSAQAAGPSSGSCPPTKFQCR
TSGLCVPLTWRCRDLDCSDGSDEEECRIEPCQKGQCPPPPGLPCPCTGVSDCSGGTDKKL
RNCsRLA CLAGELRCTLSDDCIPLTWRCDGHPDCPDSSDELGGTNEILPEGDATTMGPPVT
LESVTSLRNATTMGPPVTLESVPSVGNATSSSAGDQSGSPTAYGVIAAAAVLSASLVTATLL
LLSWLRAQERLRPLGLLVAMKESLLLSEQKTSLP

Signal sequence:

amino acids 1-30

Transmembrane domain:

amino acids 230-246

N-glycosylation site.
amino acids 126-130, 195-196

Casein kinase II phosphorylation site.
amino acids 84-88, 140-144

N-myristoylation site.
amino acids 3-9, 10-16, 26-27, 224-230, 230-236, 263-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 44-55

Leucine zipper pattern.

amino acids 17-39

FIGURE 47

CCACCGCGTCCGGTCTCGCTCGCTCGCGCAGCGGCGGAGCAGAGGTCGCGCACAGATGCGG
GTTAGACTGGCGGGGGAGGAGGAGGAGGAAGGAAGCTGCATGCATGAGACCCACAGA
CTCTTGCAGACTGGATGCCCTCTGTGGATGAAAGATGTATCATGGAATGAACCCGAGCAATG
GAGATGGATTCTAGAGCAGCAGCAGCAGCAGCAACCTCAGTCCCCCAGAGACTCTTG
GCCGTGATCCTGTGGTTTAGCTGGCGCTGTGCTTCGGCCCTGCACAGCTCACGGCGGGTT
CGATGACCTCAAGTGTGCTGACCCGGCATTCCGAGAATGGCTTCAGGACCCCCAGCG
GAGGGGTTTCTTGAGGCTCTGTAGCCGATTTCACTGCCAAGACGGATTCAAGCTGAAG
GGCGCTACAAAGAGACTGTGTTGAAGCATTAAATGGAACCTAGGCTGGATCCAAGTGAA
TAATTCCATCTGTGCAAGAAGATTGCCGTATCCCTCAAATCGAAGATGCTGAGATTCTATA
ACAAGACATATAGACATGGAGAGAACGCTAACATCACTTGTATGAAAGGATTCAAGATCCGG
TACCCGACCTACACAATATGGTTCTATTATGTCGCGATGATGGAACGTGGAATAATCTGCC
CATCTGTCAAGGCTGCCTGAGACCTCTAGCCTCTTAATGGCTATGTAACATCTCTGAGC
TCCAGACCTCCTCCGGTGGGACTGTGATCTCCTATCGCTGCTTCCGGATTAAACTT
GATGGGTCTGCGTATCTGAGTGCTTACAAAACCTTATCTGGTCGTCCAGCCCACCCGGTG
CCTTGCTCTGGAAGCCAAGTCTGTCCACTACCTCCAATGGTGAGTCACGGAGATTCGTCT
GCCACCCGGCCCTTGTGAGCGCTACAACCACGGAACGTGGTGAGTTACTGCGATCCT
GGCTACAGCCTCACCAAGCGACTAACAGTACATCACCTGCCAGTATGGAGAGTGGTTCTTC
TTATCAAGTCTACTGCATCAAATCAGAGCAAACGTGGCCAGCACCCATGAGACCCCTCTGA
CCACGTGGAAGATTGTGGCGTTCACGGCAACCAGTGTGCTGGTGCTGCTCGTCATC
CTGGCCAGGATGTTCCAGACCAAGTTCAAGGCCACTTCCCCCAGGGGCTCCCCGGAG
TTCCAGCAGTGACCTGACTTGTGGTAGACGGCGTCCCCGTATGCTCCGTCTATG
ACGAAGCTGTGAGTGGCGCTTGAGTGCCTAGGCCCGGGTACATGGCCTCTGTGGGCCAG
GGCTGCCCTTACCCGTGGACGACCAGAGCCCCCAGCATACCCGGCTCAGGGACACGGA
CACAGGCCAGGGAGTCAGAAACCTGTGACAGCGTCTCAGGCTCTGAGCTGCTCCAAA
GTCTGTATTCACCTCCAGGTGCCAAGAGAGACCCACCTGCTGGACAACCTGACATA
ATTGCCAGCACGGCAGAGGAGGTGGCATCCACCAGCCAGGCATCCATGCCACTGGGT
GTTGTTCTAAGAAACTGATTGATTAAAAATTCCAAAGTGTCTGAAGTGTCTCTCAA
ATACATGTTGATCTGTGGAGTTGATTCTTCTCTGGTTTAGACAAATGAAACAA
AGCTCTGATCCTAAAATTGCTATGCTGATAGAGTGGTGAGGGCTGGAAGCTGATCAAGTC
CTGTTCTTCTTGACACAGACTGATTAAAATTAAAAGNAAAAAA

FIGURE 48

MYHGMNPSNGDGFLEQQQQQQQQSPQRLLAVILWFQLALCFGPAQLTGGFDDLQVCADPGI
PENGFRTPSGVFFEGSVARFHQCQDGFKLKKGATKRLCLKHNGTLGWIPSDNSICVQEDCRI
PQIEDAEIHNKTYRHGEKLIITCHEGFKIRYPDLHNMVSLCRDDGTWNNLPICQGCLRPLAS
SNGYVNISELQTSFPVGTVISYRCFPGFKLDGSAYLECLQNLIWSSSPRCLALEAQVCPLP
PMVSHGDFVCHPRPCERYNHGTVEFYCDPGYSLTSDYKYITCQYGEWFPSYQVYCIKSEQT
WPSTHETLLTTWKIVAFATSVLLVLLVILARMFQTKFKAHFPPRGPPRSSSSDPDFVVVD
GVPVMLPSYDEAVSGGLSALGPGYMASVGQGCPLPVDDQSPPAYPGSGD'TDGPGESETCDS
VSGSELLQSLYSPPRCQESTHPASDNPDIIASTAEVASTSPGIHHAHWVLFLRN

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 325-344

N-glycosylation site.

amino acids 104-108, 134-138, 192-196

Casein kinase II phosphorylation site.

amino acids 8-12, 146-150, 252-256, 270-274, 313-317, 362-366,
364-368, 380-384, 467-471, 468-472

N-myristoylation site.

amino acids 4-10, 61-67, 169-175, 203-209, 387-393, 418-424,
478-484

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 394-405

FIGURE 49

CCACACGCGTCCGCTCCGCGCCCTCCCCCGCTCCCGTGCAGTCGGTCCGTGGTGGCCTAGAGA
TGCTGCTGCCCGGGTGCAGTTGTCGCACGCCTCTGCCCGCCAGCCCGCTCCACCGCCGT
AGCGCCCGAGTGTGGGGGGCCACCCGAGTCGGGCCATGAGGCCGGAAACCGCGCTACAGG
CCGTGCTGCCGTGCTGGTGGCTGCCGGCCGCACGGGTCGCCGTGAGTGCC
TCGGATTTGGACCTCAGAGGAGGGCAGCCAGTCTGCCGGGAGGGACACAGAGGCCTTGTAA
TAAAGTCATTTACTTCATGATACTTCTGAAGACTGAACACTTGAAGGAAAGCAAAGAACGCT
GCAGGAGGGATGGAGGCCAGCTAGTCAGCATCGAGTCTGAAGATGAACAGAAACTGATAGAA
AA~~TT~~TCATTGAAAACCTCTGCCATCTGATGGTACTTCTGGATTGGCTCAGGAGGCGTGA
GGAGAAACAAAGCAATAGCACAGCCTGCCAGGACCTTATGCTGGACTGATGGCAGCATA
CACAAATTAGGAAC~~T~~GGTATGTGGATGAGCCGTCTGCCAGCGAGGTCTCGTGGTCA
TACCATCAGCCATCGGCACCCGCTGGCATCGGAGGCCCTACATGTTCCAGTGGAAATGATGA
CCGGTGCAACATGAAGAACAA~~TT~~CATTGCAAATATTCTGATGAGAAACCAGCAGTTCC
CTAGAGAAGCTGAAGGTGAGGAAACAGAGCTGACAACACCTGTACTTCCAGAAGAAACACAG
GAAGAAGATGCCAAAAAAACATTAAAGAAAGTAGAGAACGCTGCCCTGAATCTGGCTACAT
CCTAATCCCCAGCATTCCCCTCTCCTCCTCTGTGGTCACCACAGTTGTATGTTGGTT
GGATCTGTAGAAAAAGAAAACGGGAGCAGCCAGACCCCTAGCACAAAGAACACACCAC
TGGCCCTCTCCTCACCAAGGAAACAGCCGGACCTAGAGGTCTACAATGTCATAAGAAAACA
AAGCGAAGCTGACTTAGCTGAGACCCGCCAGACCTGAAGAATATTCTCCGAGTGTGTT
CGGGAGAAGCCACTCCGATGACATGTCTGTGACTATGACAACATGGCTGTGAACCCATCA
GAAAGTGGTTGTGACTCTGGTGGAGAGTGGATTGTGACCAATGACATTATGA
GTTCTCCCCAGACAAATGGGAGGAGTAAGGAGTCTGGATGGTGGAAAATGAAATATATG
GTTATTAGGACATATAAAACTGAAACTGACAACAA~~T~~GGAAAAGAAATGATAAGCAAATC
CTCTTATTTCTATAAGGAAAATACACAGAACAGTCTATGAACAAAGCTTAGATCAGGTCTGT
GGATGAGCATGTGGTCCCCACGACCTCTGTGGACCCCCACGTTGGCTGTATCCTTAT
CCCAGCCAGTCATCCAGCTGACCTTATGAGAACGGTACCTGCCAGGTCTGGCACATAGTA
GAGTCTCAATAATGTCACTTGGTTGGTTGTATCTAACTTAAGGGACAGAGCTTACCTG
GCAGTGATAAAAGATGGGCTGTGGAGCTGGAAAACCACCTCTGTTTCTGCTATACAG
CAGCACATATTATCATACAGACAGAAAATCCAGAACATCTTCAAAGCCCACATATGGTAGCACAG
GTTGGCCTGTGCATGGCAATTCTCATATCTGTTTTCAAAGAATAAAATCAAATAAAGA
GCAGGAAAAAA

FIGURE 50

MRPGTALQAVLLAVLLVGLRAATGRLLSASDLRGGQPVCRGQTQRPCYKVIYFHDTSRRL
NFEEAKEACRRDGGQLVSIESEDEQKLIKEFIENLLPSDGDFWIGLRRREEKQSNSTACQDL
YAWTDGSISQFRNWYVDEPSCGSEVCVVMYHQPSAPAGIGGPyMFQWNDDRCNMKNFICKY
SDEKPAVPSREAEGEETELTPVLPETQEEDAKKTFKESREAALNLAYILIPSIPLLLLLV
VTTVVVCWVWICRKRKREQPDPSTKKQHTIWPSPHQGNSPDLEVYNVIRKQSEADLAETRPDL
KNISFRVCSGEATPDDMSCDYDNMAVNPSSEGFTLVSVESGFVTNDIYEFSQDQMGRSKES
GWVENEIYGY

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 117-121, 312-316

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 296-300

Casein kinase II phosphorylation site.

amino acids 28-32, 30-34, 83-87, 100-104, 214-218, 222-226,
299-303, 306-310, 323-327

N-myristoylation site.

amino acids 18-24, 37-43, 76-82, 146-152

FIGURE 51

GGGGTCTCCCTCAGGGCCGGGAGGCACAGCGGTCCCTGCTGAAGGGCTGGATGTACGC
ATCCGCAGGTTCCCGCGGACTTGGGGCGCCCGCTGAGCCCCGGCGCCCGCAGAAGACTTGT
GTTGCCTCCTGCAGCCTCAACCCGGAGGGCAGCGAGGGCCTACCACCATGATCACTGGTGT
GTTCAGCATGCGCTTGTGGACCCCAGTGGCGTCTGACCTCGCTGGCGTACTGCCTGCACC
AGCGGCGGGTGGCCCTGGCCGAGCTGCAGGAGGCCATGCCAGTGTCCGGTCGACCGCAGC
CTGCTGAAGTTGAAAATGGTGCAGGTGCTGTTGACACGGGGCTCGGAGTCCTCTCAAGCC
GCTCCCGCTGGAGGAGCAGGTAGAGTGGAACCCCCAGCTATTAGAGGTCCCACCCAAACTC
AGTTTGATTACACAGTCACCAATCTAGCTGGTGGTCCGAAACCATTCTCCTTACGACTCT
CAATACCATGAGACCACCCCTGAAGGGGGCATGTTGCTGGCAGCTGACCAAGGTGGCAT
GCAGCAAATGTTGCCTTGGGAGAGAGACTGAGGAAGAACTATGTGGAAAGACATTCCCTTC
TTTCACCAACCTTCAACCCACAGGAGGTCTTATTGTTCCACTAACATTTCGGAATCTG
GAGTCCACCGTTGTTGCTGGCTGGCTTTCCAGTGTCAAGAAAGAAGGACCCATCATCAT
CCACACTGATGAAGCAGATTAGAAGTCTTGTATCCAACTACCAAAGCTGCTGGAGCCTGA
GGCAGAGAACCAAGAGGCCGGAGGCAGACTGCCTCTTACAGCCAGGAATCTCAGAGGATTG
AAAAAGGTGAAGGACAGGATGGCATTGACAGTAGTGTAAAGTGGACTTCTCATCCTCCT
GGACAACGTGGCTGCCGAGCAGGCACACAACCTCCAAAGCTGCCCATGCTGAAGAGATTG
CACGGATGATCGAACAGAGAGACTGTGGACACATCCTGTACATACTGCCAAGGAAGACAGG
GAAAGTCTTCAGATGGCAGTAGGCCATTCCCTCACATCCTAGAGAGCAACCTGCTGAAAGC
CATGGACTCTGCCACTGCCCGACAAGATCAGAAAGCTGTATCTATGCGGCTCATGATG
TGACCTTCATACCGCTTTAATGACCCCTGGGATTTTGACCACAAATGCCACCGTTGCT
GTTGACCTGACCATGGAACCTTACCAAGCACCTGGAATCTAAGGAGTGGTTGTGCAGCTCTA
TTACCAACGGGAAGGAGCAGGTGCCAGAGGTTGCCCTGATGGCTCTGCCGCTGGACATGT
TCTTGAATGCCATGTCAGTTATACCTTAAGCCCAGAAAAATACCATGCACTCTGCTCTCAA
ACTCAGGTGATGGAAGTTGGAAATGAAGAGTAACTGATTATAAAAGCAGGATGTGTTGATT
TTAAAATAAGTGCCTTATACAATG

FIGURE 52

MITGVFSMRLWTPGVVLTSAYCLHQRRVALAELQEADGQCPVDRSLLKLKMVQVVFRHGAR
SPLKPLPLEEQVEWNPQLLEVPPQTQFDYTVTNLAGGPKPYSPYDSQYHETTLKGGMFAGQL
TKVGMQQMFALGERLRKNYVEDIPFLSPTFNQEVFIRSTNIFRNLESTRCLLAGLFQCQKE
GPIIIHTDEADSEVLYPNYQSCWSLRQRTRGRRQTASLQPGISEDLKKVKDRMGIDSSDKVD
FFILLDNVAAEQAHLPLSCPMLKRFARMIEQRAVDTSLYILPKEDRESLQMAVGPFHLILES
NLLKAMDSATAPDKIRKLYLYAAHDVTFIPLLMTLGIFDHKWPPFAVDLTMELYQHLESKEW
FVQLYYHGKEQVPRGCPDGLCP LDMLNAMS VYTLSPEKYHALCSQTQVM EVGNEE

Signal sequence:

amino acids 1-23

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 218-222

Casein kinase II phosphorylation site.

amino acids 87-91, 104-108, 320-324

Tyrosine kinase phosphorylation site.

amino acids 280-288

N-myristoylation site.

amino acids 15-21, 117-123, 118-124, 179-185, 240-246, 387-393

Amidation site.

amino acids 216-220

Leucine zipper pattern.

amino acids 10-32

Histidine acid phosphatases phosphohistidine signature.

amino acids 50-65

FIGURE 53

CTCCTCTAACATACTTGCAGCTAAACTAAATATTGCTGCTGGGGACCTCCTCTAGCCT
TAAATTCAAGCTCATCACCTCACCTGCCTGGTCATGGCTCTGCTATTCTCCTTGATCCTT
GCCATTGCACCAGACCTGGATTCCCTAGCGTCTCCATCTGGAGTGC~~GG~~CTGGTGGGGGCCT
CCACCGCTGTGAAGGGGGTGGAGGTGGAACAGAAAGGCCAGTGGGCACCGTGTGATG
ACGGCTGGGACATTAAGGACGTGGCTGTGTTGTGCCGGAGCTGGCTGTGGAGCTGCCAGC
GGAACCCCTAGTGGTATTTGTATGAGCCACCAGCAGAAAAAGAGCAAAGGTCTCATCCA
ATCAGTCAGTTGCACAGGAACAGAACAGATACTTGGCTCAGTGTGAGCAAGAAGAAGTTATG
ATTGTTCACATGATGAAGATGCTGGGCATCGTGTGAGAACCCAGAGAGCTTTCTCCCCA
GTCCCAGAGGGTGTCAAGGCTGGCTGACGGCCCTGGCATTGCAAGGGACGCGTGGAAAGTGAA
GCACCAAGAACCAAGTGGTATACCGTGTGCCAGACAGGCTGGAGCCTCCGGGCCGAAAGGTGG
TGTGCCGGCAGCTGGATGTGGAGGGCTGTACTGACTCAAAACGCTGCAACAAGCATGCC
TATGGCCGAAAACCCATCTGGCTGAGCCAGATGTCTGCTCAGGACGAGAACCAACCTTCA
GGATTGCCCTCTGGCCTGGGGAAAGAACACCTGCAACCATTGATGAAGACACGTGGTCG
AATGTGAAGATCCCTTGACTTGAGACTAGTAGGAGGAGAACACCTCTGCTCTGGCGACTG
GAGGTGCTGCACAAGGGGTATGGGCTCTGTGTGATGACAACACTGGGAGAAAAGGAGGA
CCAGGTGGTATGCAAGCAACTGGCTGTGGAAAGTCCCTCTCCCTCCTCAGAGACCGGA
AATGCTATGCCCTGGGTTGCCGCATCTGGCTGGATAATGTTGCTCAGGGAGGGAG
CAGTCCCTGGAGCAGTGCACAGCACAGATTGGGGTTTCACGACTGCACCCACCAGGAAGA
TGTGGCTGTCATCTGCTCAGTGTAGGTGGGCATCATCTAATCTGTTGAGTGCCTGAATAGAA
GAAAAACACAGAAGAAGGGAGCATTACTGTCTACATGACTGCATGGATGAACACTGATCT
TCTTCTGCCCTGGACTGGACTTAACTTGGTGCCTGATTCTCAGGCCTCAGAGTTGG
ATCAGAACTTACAACATCAGGTCTAGTTCTCAGGCCATCAGACATAGTTGGAACATACATCA
CCACCTTCCTATGTCTCACATTGCACACAGCAGATTCCAGCCTCCATAATTGTGTAT
CAACTACTTAAATACATTCTCACACACACACACACACACACACACACACACACACACATA
CACCAATTGTCCTGTTCTGTGAAGAACTCTGACAAAATACAGATTGGTACTGAAAGAGA
TTCTAGAGGAACGGAATTAAAGGATAAAATTCTGAATTGGTATGGGTTCTGAAATTG
GCTCTATAATCTAATTAGATATAAAATTCTGGTAACTTATTACAATAATAAGATAGCAC
TATGTGTTCAAA

FIGURE 54

MALLFSLILAICTRPGFLASPSGVRLVGGHLRCEGRVEEQKGQWGTVCDDGWDIKDVAVL
RELGCGAASGTPSGILYEPPAEKEQKVLIQSVSCTGTEDTLAQCEQEEVYDCSHDEDAGASC
ENPESSFSPVPEGVRLADGPGHCKGRVEVKHQNQWYTVQGTGWSLRAAKVVCRQLGCGRAVL
TQKRCNKHAYGRKPIWLSQMCSGREATLQDCPSGPWGKNTCNHDEDTWVECEDPFDLRLVG
GDNLCSRLEVHKGVWGSVCDDNWGEKEDQVVCKQLGCGKSLSPSFRDRKCYGPGVGRIDL
DNVRCSGEEQSLEQCQHRFWGFHDCTHQEDVAVICSV

Signal sequence:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 47-51, 97-101, 115-119, 209-213, 214-218, 234-238,
267-271, 294-298, 316-320, 336-340

N-myristoylation site.

amino acids 29-35, 43-49, 66-72, 68-74, 72-78, 98-104, 137-143,
180-186, 263-269, 286-292

Amidation site.

amino acids 196-200

Speract receptor repeated domain signature.

amino acids 29-67, 249-287

FIGURE 55

ACTGCACTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTGACCTCGAC
CCACCGCGTCCCGCGACCGCGTGGCGGACCGCGTGGGCCGGCTACCAGGAAGAGTCTGCCGAAG
GTGAAGGCCATGGACTTCATCACCTCCACAGCCATCCTGCCCTGCTGTTGGCTGCCCTGGG
CGTCTCGGCCCTTCCGGCTGCTGCAGTGGGTGCGCGGGAAAGGCCTACCTGCGGAATGCTG
TGGTGGTGATCACAGGCCACCTCAGGGCTGGCAAAGAATGTGAAAAGTCTTCTATGCT
GCGGGTGCTAAACTGGTGCTCTGTGGCCGGAATGGTGGGCCCTAGAAGAGCTCATCAGAGA
ACTTACCGCTTCTCATGCCACCAAGGTGCAGACACACAAGCCTACTTGGTGACCTCGACC
TCACAGACTCTGGGCCATAGTTGCAGCAGCTGAGATCCTGCAGTGCTTGCTATGTC
GACATACTTGTCAACAATGCTGGATCAGCTACCGTGGTACCATCATGGACACACCAGTGG
TGTGGACAAGAGGGTCATGGAGACAAACTACTTGGCCAGTTGCTCTAACGAAAGCACTCC
TGCCCTCCATGATCAAGAGGGAGGAAGGCCACATTGTCGCCATCAGCAGCATCCAGGGCAAG
ATGAGCATTCTTTGATCAGCATATGCAGCCTCCAAGCACGCAACCCAGGCTTCTTG
CTGTCTCGTGCCGAGATGGAACAGTATGAAATTGAGGTGACCGTCATCAGCCCCGGCTACA
TCCACACCAACCTCTGTAAATGCCATCACCAGGATGGATCTAGGTATGGAGTTATGGAC
ACCACACAGCCCAGGGCGAAGCCCTGTGGAGGTGGCCAGGATGTTCTGCTGCTGG
GAAGAAGAAGAAAGATGTGATCCTGGCTGACTTAAGCAGGAGGATGTTCTGCTGCTGG
CTCTGGCTCCTGGCTCTTCAGCCTCATGGCCTCCAGGGCAGAAAAGAGCGGAAATCC
AAGAACTCCTAGTACTCTGACCAGCCAGGGCAGGGCAGAGAACGACTCTTAGGCTTGC
TTACTCTACAAGGGACAGTTGCATTGAGACTTTAATGGAGATTGCTCTACAAGTGG
AAAGACTGAAGAAACACATCTGTGCAGATCTGCTGGCAGAGGACAATAAAAACGACAACA
AGCTTCTCCCAGGGTGAGGGAAACACTTAAGGAATAATGGAGCTGGGTTAACACT
AAAAACTAGAAATAAACATCTCAAACAGTAAAAAAAAAAAGGGCGCCGCGACTCTAG
AGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTGTTATTGCAGCTTATAATGGTTAC

FIGURE 56

MDFITSTAILPLLFGCLGVFGLFRLQQWVRGKAYLRNAVVIITGATSGLGKECAKVFYAAGA
KLVLICRNGGALEELIRELTASHATKVQTHKPYLVTFDLTDGAI
VAAAEEILQCFGYVDIL
VNNAGISYRGTIMDTTVVDKRVMETNYFGPVALTKALLPSMIKRRQGHIVAISSIQGKMSI
PFRSAYAASKHATQAFFDCLRAEMEQYEIEVTVISPGYIHTNLSVNAITADGSRYGVMDTT
AQGRSPVEVAQDVLAAGKKKDVLADLLPSLAVYLRTLAPGLFFSLMASRARKERKS KNS

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 104-120, 278-292

N-glycosylation site.

amino acids 228-232

Glycosaminoglycan attachment site.

amino acids 47-51

Casein kinase II phosphorylation site.

amino acids 135-139, 139-143, 253-257

Tyrosine kinase phosphorylation site.

amino acids 145-153, 146-153

N-myristoylation site.

amino acids 44-50, 105-111, 238-244, 242-248, 291-297

Amidation site.

amino acids 265-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 6-17

FIGURE 57

CCACCGCGTCCGCTGGTGTAGATCGAGCAACCCCTCTAAAAGCAGTTAGAGTGGTAAAAAA
AAAAAAAAACACACCAACGCTCGCAGCCACAAAAGGG**GATGAA**ATTCTCTGGACATCCTC
CTGCTTCTCCCGTTACTGATCGTCTGCTCCCTAGAGTCCTCGTGAAGCTTTATTCTAA
GAGGAGAAAATCAGTCACCGGCAGAACATCGTGTGATTACAGGAGCTGGCATGGAATTGGGA
GA**CTGACTGCCTATGA**ATTGCTAAACTAAAGCAAGCAGTGGTCTCTGGATATAAATAAG
CATGGACTGGAGGAAACAGCTGCCAAATGCAAGGGACTGGGTGCCAAGGTTACACTTGT
GGTAGACTGCAGCAACCGAGAAGATATTACAGCTCTGCAAAGAAGGTGAAGGCAGAAATTG
GAGATGTTAGTATTAGTAAATAATGCTGGTAGTCTATACATCAGATTGTTGCTACA
CAAGATCCTCAGATTGAAAAGACTTTGAAGTTAATGTACTTGACACATTCTGGACTACAAA
GGCATTCTCCTGCAATGACGAAGAATAACCATTGCCATATTGTCAGTGGCTCGGCAG
CTGGACATGTCGCGTCCCCTCTTACTGGCTACTGTTCAAGCAAGTTGCTGTTGGA
TTTCATAAAACTTGACAGATGAACTGGCTGCCTACAAATACTGGAGTC
AAAACAAACATG
TCTGTGCTTAATTGTAACACTGGCTTCATCAAAATCCAAGTACAAGTTGGACCCA
CTCTGGAACCTGAGGAAGTGGTAAACAGGCTGATGCATGGATTCTGACTGAGCAGAAGATG
ATTTTATTCCATCTTCTATAGCTTTTAACAACATTGAAAGGATCCTCCTGAGCGTTT
CCTGGCAGTTTAAAACGAAAATCAGTGTAAAGTTGATGCAGTTATTGGATATAAAATGA
AAGCGCA**AT**AAGCACCTAGTTCTGAAAATGATTACCAAGGTTAGGTTGATGTCATCTA
ATAGTGCAGAATTAAATGTTGAACCTCTGTTTTCTAATTATCCCCATTCTCAATA
TCATTTTGAGGCTTGGCAGTCTCATTACTACCACTGTTCTTAGCCAAAAGCTGATT
ACATATGATATAAACAGAGAAACCTTAGAGGTGACTTAAGGAAAATGAAGAAAAGAA
CCAAAATGACTTTATTAAAATAATTCCAAGATTATTGTTGGCTCACCTGAAGGCTTGCAA
AATTGTA**CCATAACCGTT**TTAACATATATTATTGATTGACTTAAATTGTTG
ATAATTGTTCTTTCTGTTCTACATAAAATCAGAAACTCAAGCTCTCAAATAAAA
TGAAGGACTATCTAGTGGTATTCAACATGAATATCATGAACACTCTCAATGGTAGGTT
ATCCTACCCATTGCCACTCTGTTCTGAGAGATACCTCACATTCAATGCCAAACATTCT
GCACAGGGAAAGCTAGAGGTGGATACACGTGTTGCAAGTATAAAAGCATCACTGGGATTAAAG
GAGAATTGAGAGAATGTACCCACAAATGGCAGCAATAATAATGGATCACACTTAAAAAAA
AA
AA

FIGURE 58

MKFLLDILLLPLLIIVCSLESFVKLFIPKRRKSVTGEIVLITGAGHGI
GRLTAYEFAKLKSK
LVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKVKAEIGDV
SILVNNAGVV
YTSDLFATQDPQIEKTFEVNVLAHFWTKAFLPAMTKNNHGHIVTVASAAGH
VSVPFLLAYC
SSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTGFIKNPSTS
LGPTLEPEEVVNRLMH
GILTEQKMFIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIGYKMKAQ

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-34, 283-287

Casein kinase II phosphorylation site

amino acids 52-56 95-99 198-203 267-271

N-myristoylation site

amino acids 43-49 72-78 122-128 210-216

FIGURE 59

CCACCGCGTCCGGACCGTGGGCGACTAGTTAGATCGCGAGCGGCCGCCGCGCTC
AGGGAGGAGCACCAGCTGCGCCGCACCCCTGAGAGATGGTTGGTGCCATGTGGAAGGTGATTG
TTTCGCTGGCCTGTTGATGCCTGGCCCTGTGATGGGCTGTTCGCTCCCTATACAGAAGT
GTTCCATGCCACCTAAGGGAGACTCAGGACAGCCATTATTCTCACCCCTTACATTGAAGC
TGGGAAGATCCAAAAGGAAGAGAATTGAGTTGGTCGGCCCTTCCCAGGACTGAACATGA
AGAGTTATGCCGGCTCCTCACCGTGAATAAGACTTACAACAGCAACCTCTCTGGTTC
TTCCCAGCTCAGATACAGCCAGAAGATGCCAGTAGTTCTCTGGCTACAGGGTGGGCCGGG
AGGTTCATCCATGTTGGACTCTTGTGGAACATGGCCCTATGTTGTACACAAGTAACATGA
CCTTGCCTGACAGAGACTTCCCCTGGACCACAACGCTCTCCATGCTTACATTGACAATCCA
GTGGGCACAGGCTTCAGTTACTGATGATACCCACGGATATGCAGTCATGAGGACGATGT
AGCACGGGATTATACAGTGCACTAATTCAAGTTTCAGATATTCTGAATAATAAAAATA
ATGACTTTATGTCACTGGGGAGTCTTATGCAGGGAAATATGTGCCAGCCATTGCACACCTC
ATCCATTCCCTCAACCCCTGTGAGAGAGGTGAAGATCAACCTGAACGGAATTGCTATTGGAGA
TGGATATTCTGATCCGAATCAATTATAGGGGCTATGCAGAATTCTGTACCAAATTGGCT
TGTGGATGAGAAGCAAAAAAGTACTTCCAGAAGCAGTGCCATGAATGCATAGAACACATC
AGGAAGCAGAACTGGTTGAGGCCTTGAAATACTGGATAAAACTACTAGATGGCAGTTAAC
AAAGTGTACCTCTTACTTCCAGAATGTTACAGGATGTAGTAATTACTATAACTTTGCCTG
GCACGGAACCTGAGGAATCAGCTTACTATGAAATTGGTCACTCCCAGAGGTGAGACAA
GCCATCCACGTGGGAATCAGACTTTAATGATGGAACATAGTTGAAAGTACTTGCAGA
AGATACAGTACAGTCAGTTAACCCATGGTTAACTGAAATCATGAATAATTATAAGGTTCTGA
TCTACAATGCCAACGGACATCATCGTGGCAGCTGCCCTGACAGAGCGCTCCTGATGGC
ATGGACTGGAAAGGATCCCAGGAATACAAGAAGGCAGAAAAAAAGTTGGAAGATCTTAA
ATCTGACAGTGAAGTGGCTGGTTACATCCGGCAAGCGGGTGACTTCCATCAGGTAATTATC
GAGGTGGAGGACATATTTCACCTATGACCAGCCTCTGAGAGCTTGACATGATTAATCGA
TTCATTATGGAAAAGGATGGATCCATTGTTGATAAAACTACCTCCAAAAGAGAACAT
CAGAGGTTTCATTGCTGAAAAGAAAATCGTAAAACAGAAAATGTCATAGGAATAAAAAAA
TTATCTTTCATATCTGCAAGATTTCATCAATAAAAATTATCCTGAAACAAGTGAGC
TTTGTTTTGGGGGAGATGTTACTACAAATTAAACATGAGTACATGAGTAAGAATTACA
TTATTTAACTAAAGGATGAAAGGTATGGATGATGTGACACTGAGACAAAGATGTATAATGA
AATTAAAGGGCTTGAATAGGAAGTTTAATTCTCTAAGAGTAAGTGAAGGAAAGTGCAGTTG
TAACAAACAAAGCTGTAACATCTTCTGCCAATAACAGAAGTTGGCATGCCGTGAAGGT
GTTGGAAATATTATGGATAAGAATAGCTCAATTATCCCAAATAATGGATGAAGCTATAA
TAGTTTGGGAAAAGATTCTCAAATGTATAAAGTCTTAGAACAAAAGAACATTCTTGAAATA
AAAATATTATATAAAAGTAAAAAA

FIGURE 60

MVGAMWKVIVSLVLLMPGCDGLFRSLYRSVSMPPKGDSGQPLFLTPYIEAGKIQKGREL
VGPFPGNMKSYAGFLTVNKTYNSNLFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEH
GPYVVTTSNMTLRDRDFPWTTLSMLYIDNPVGTGFSFTDDTHGYAVNEDDVARDLYSALIQF
FQIFPEYKNNDFYVTGESYAGKYVPAIAHЛИHSLNPVREVKINLNGIAIGDGYSDPESIIGG
YAEFLYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEAFFEILDKLLDGDLTSDPSYFQNV
CSNYYNFLRCTEPEDQLYYVKFLSLPEVRQAIHVGQTFNDGTIVEKYLREDTVQSVKPWLT
EIMNNYKVLIYNGQLDIIVAALTERSLMGMDWKGSQEYKKAEEKVWKIFKSDSEVAGYIRQ
AGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDPYVG

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 81-85, 132-136, 307-311, 346-350

Casein kinase II phosphorylation site.

amino acids 134-138, 160-164, 240-244, 321-325, 334-338, 348-352,
353-357, 424-428

Tyrosine kinase phosphorylation site.

amino acids 423-432

N-myristoylation site.

amino acids 22-28, 110-116, 156-162, 232-238

Serine carboxypeptidases, serine active site.

amino acids 200-208

Crystallins beta and gamma 'Greek key' motif signature.

amino acids 375-391

FIGURE 61

CGAGGGCTTCCGGCTCGGAATGGCACATGTGGGAATCCAGTCTGTTGGCTACAACATT
TTTCCCTTCTAACAGTCTAACAGCTTCTAACAGCTAGTGATCAGGGTTCTCTT
GCTGGAGAAGAAAGGGTGGAGGCAGAGCAGGGCACTCTCACTCAGGGTGACCAAGCTCCTT
CCTCTGTGGATAACAGAGCATGAGAAAGTGAAGAGATGCAGGGAGTGAGGTGATGGAAG
TCTAAAATAGGAAGGAATTGTGTGCAATATCAGACTCTGGGAGCAGTTGACCTGGAGAGC
CTGGGGAGGGCTGCTAACAAAGCTTCAAAAAACAGGAGCGACTCCACTGGGCTGGGAT
AAGACGTGCCGGTAGGATAGGGAAAGACTGGGTTAGTCCTAACATCAAATTGACTGGCTGGG
TGAACCTCAACAGCCTTTAACCTCTGGAGATGAAAACGATGGCTTAAGGGCCAGAAA
TAGAGATGCTTGTAAAATTTAAAAAAAGCAAGTATTATAGCATAAAGGCTAGA
GACCAAAATAGATAACAGGATTCCCTGAACATTCTAACAGAGGGAGAAAGTATGTTAAAATA
GAAAACCAAAATGCAGAAGGAGGAGACTCACAGAGCTAACCAAGGATGGGACCTGGT
AGGCCAGCCTCTTGCTCCTCCGGAAATTATTTGGTCTGACCACTCTGCCTTGTGTTT
GCAGAATCATGTGAGGGCAACCGGGGAAGGTGGAGCAGATGAGCACACACAGGAGCCGTCT
CCTCACCGCCGCCCTCTCAGCATGGAACAGAGGCAGCCCTGGCCCCGGCCCTGGAGGTGG
ACAGCCGCTCTGTGGTCTGCTCTCAGTGGCTGGGTGCTGGCCCCCAGCAGCCGGC
ATGCCTCAGTTCAGCACCTCCACTCTGAGAATCGTACTGGACCTCAACCAACTGACCCT
CCACCAAGGGACGGGGCGTCTATGTGGGGCATCAACCGGTCTATAAGCTGACAGGCA
ACCTGACCATCCAGGTGGCTCATAGACAGGGCAGAAGAGGACAACAAGTCTCGTACCCG
CCCCTCATCGTGCAGCCCTGCAGCGAAGTGTCTACCCCTACCAACAATGTCAACAAAGCTGCT
CATCATTGACTACTCTGAGAACCGCCTGCTGGCCTGTGGGAGCCTCTACCAAGGGGTCTGCA
AGCTGCTGCCGTGGATGACCTTTCATCCTGGTGGAGCCATCCCACAAGAAGGAGCACTAC
CTGTCCAGTGTCAACAAAGACGGCACCATGTACGGGTGATTGTGCGCTTGAGGGTGAGGA
TGGCAAGCTCTCATCGGCACGGCTGTGGATGGAAGCAGGATTACTTCCGACCCCTGTCCA
GCCGGAAAGCTGCCCGAGACCCCTGAGTCCTCAGCCATGCTGACTATGAGCTACACAGCGAT
TTTGTCTCTCTCATCAAGATCCCTCAGACACCCCTGGCCCTGGTCTCCACTTGACAT
CTTCTACATCTACGGCTTGCTAGTGGGGCTTGTCTACTTCTCACTGTCCAGCCGAGA
CCCCTGAGGGTGTGGCATCAACTCCGCTGGAGACCTCTACACCTCACGCATCGTGC
CTCTGCAAGGATGACCCAAGTCCACTCATACGTGCTCCCTGCCCTGGCTGCACCCGGG
CGGGGTGGAATACCGCCCTCTGCAGGCTGCTTACCTGGCCAAGCCTGGGACTCACTGGCC
AGGCCTCAATATCACCAGCCAGGACGATGTACTCTTGCCATCTCTCAAAGGGCAGAAG
CAGTATCACCAACCCGCCGATGACTCTGCCCTGTGCTGCCCTATCGGGCCATCAACTT
GCAGATCAAGGAGCGCCTGCAGTCCTGCTACCAAGGGCGAGGGCAACCTGGAGCTCAACTGGC
TGCTGGGAAGGACGTCAGTGCACGAAGGCGCTGTCCCCATCGATGATAACTCTGTGGA
CTGGACATCAACCAGGCCCTGGGAGGCTAACCTCAGTGGAGGGCTGACCCCTGTACACCAC
CAGCAGGGACCGCATGACCTCTGTGCCCTACGTTACAACGGCTACAGCGTGGTTTTG
TGGGGACTAAGAGTGGCAAGCTGAAAAAGGTAAAGAGTCTATGAGTTCAGATGCTCAAATGCC
ATTCACCTCCTCAGCAAAGAGTCCCTGTGGAGGTAGCTATTGGTGGAGATTAACTATAG
GCAACTTTATTTCTGGGAACAAAGGTGAAATGGGGAGGTAAGAAGGGTTAATTTGTG
ACTTAGCTTAGCTACTCCCTCAGCCATCAGTCATTGGGTATGTAAGGAATGCAAGCGTA
TTCAATATTCCTCAAACTTAAGAAAAACTTAAAGAAGGTACATCTGCAAAAGCAAA

FIGURE 62

MGTLGQASLFAPPGNYFWSDHSALCFAESCEGQPGKVEQMSTHRSRLLTAAPLSMEQRQPWP
RALEVDSRSVVLLSVVWVLLAPPAAGMPQFSTFHSENRDWTFNHLTVHQGTGAVYVGAINRV
YKLTGNLTIQVAHKTGPEEDNKSRYPPLIVQPCSEVLTLTNNVNKLLIIDYSENRLLACGSL
YQGVCKLLRLDDLFLILVEPSHKKEHYLSSVNKTGTMGVIVRSEGEDGKLFIGTAVDGKQDY
FPTLSSRKLPRDPESSAMLDYELHSDFVSSLIKIIPSDTLALVSHFDIFYIYGFASGGFVYFL
TVQPETPEGVAINSAGDLFYTSRIVRLCKDDPKFHSYVSLPFGCTRAGVEYRLLQAAYLAKP
GDSLQAQAFNITSQDDVLFAIFSKGQKQYHHPPDDSALCAFPIRAINLQIKERLQSCYQGEGN
LELNWLLGKDVQCTKAPVPIDDNFCGLDINQPLGGSTPVEGLTLYTTSRDRMTSVASYVYNG
YSVVFGTKSGKLKKVRVYEFRCSNAIHLLSKESLLEGSYWWRFNYRQLYFLGEQR

Signal sequence:

amino acids 1-32

Transmembrane domain:

amino acids 71-87

N-glycosylation site.

amino acids 130-134, 145-149, 217-221, 381-385

Casein kinase II phosphorylation site.

amino acids 139-143, 229-233, 240-244, 291-295, 324-328, 383-387,
384-388, 471-475, 481-485, 530-534

N-myristylation site.

amino acids 220-226, 319-325, 353-359, 460-466, 503-509

FIGURE 63

AGGCTCCCGCGCGCGGCTGAGTGGACTGGAGTGGAAACCGGGTCCCGCGCTTAGAGAACACCGCGATGACCA
CGTGGAGCCTCCGGCGGAGGCCGGCCCGACCGCTGGACTCCCTGCTGCTGGTCTTGGGCTTCCCTGGTCTCC
GCAGGCTGGACTGGAGCACCCCTGGTCCCTGCGGCTCCGCATCGACAGCTGGGCTGCAGGCCAAGGGCTGGA
ACTTCATGCTGGAGGATTCCACCTCTGGATCTCGGGGCTCCATCCACTATTCCTGCTGCCAGGGACTACT
GGAGGGACCGCTGCTGAAGATGAAGGCCTGGCTTGAAACACCCACCACCTATGTTCCGTGAAACCTGCATG
AGCCAGAAAGAGGCAAATTGACTTCTCTGGAACCTGGACCTGGAGGCTTCGTCCTGATGGCCAGAGATCG
GGCTGTGGTGAATTCTGCTCCAGGCCCTACATCTGCACTGAGATGGACCTGGGGCTTGCCAGCTGGCTAC
TCCAAGACCCCTGGCATGAGGCTGAGGACAACCTACAAGGGCTCACCGAAGCAGTGGACCTTATTGACCAC
TGATGTCAGGGTGGCCACTCCAGTACAAGCGTGGGGACCTATCATTGCGTGCAAGTGGAGAATGAATATG
GTTCTATAATAAAGACCCCGCATACATGCCCTACGTCAAGAAGGCACTGGAGGACCGTGGCATTGTGAACTGC
TCCTGACTTCAGACAACAAAGGATGGCTGAGCAAGGGATTGTCCAGGGACTCTGGCACCATCAACTTGCAGT
CAACACACGAGCTGCAGCTACTGACCACCTTCTCTAACGTCCAGGGACTCAGGCCAAGATGGTATGGAGT
ACTGGACGGGGTGGTTGACTCGTGGGAGGGCCCTCACAAATATCTGGATTCTCTGAGGTTTTGAAAACCGTGT
CTGCCATTGTGGACGCCGCTCTCCATCAACCTCTACATGTTCCACGGAGGGCACCAACTTGGCTTCATGAATG
GAGCCATGCACTTCATGACTACAAGTCAGATGTCACCGACTATGACTATGATGCTGTGACAGAACGCCGCG
ATTACACGGCAAGTACATGAAGACTTCGAGACTTCTGGCTCCATCTCAGGCATCCCTCCCTCCCCCACCTG
ACCTTCTTCCAAGATGCGTATGAGCCCTAACGCCAGTCTGTACCTGCTCTGTGGGACGCCCTCAAGTACC
TGGGGAGCCAATCAAGTCTGAAAAGCCATCAACATGGAGAACCTGCCAGTCATGGGGAAATGGACAGTCCT
TCGGGTACATTCTATGAGACCAGCATCACCTCGTCTGGCATCTCAGTGGCACGTGATGTCAGGGCAGG
TGTTGTGAACACAGTATCCATAGGATTCTGGACTACAAGACAACGAAGATGCTGTCCCCCTGATCCAGGGTT
ACACCGTGTGAGGATCTGGTGGAGAATCGTGGGCGACTCAACTATGGGAGAATATTGATGACCAAGCGCAAAG
GCTTAATTGGAAATCTATCTGAATGATTCAACCCCTGAAAAACTTCAGAATCTATAGCCTGGATATGAAGAAGA
GCTTCTTCAGAGGTTGCCCTGGACAAATGGNTTCCCTCCAGAAACACCCACATTACCTGCTTCTTCTTGG
GTAGCTTGTCCATCAGCTCCACGCCCTGTGACACCTTCTGAAGCTGGAGGGCTGGAGAAGGGGGTTGTATTCA
TCAATGCCAGAACCTGGACGTTACTGGAACATTGGACCCAGAACAGCCTTACCTCCAGGTCCCTGGTGA
GCAGCGGAATCAACCAGGTACGTTTGAGGAGACGATGGCGGCCCTGCATTACAGTCAGGAAACCCCCC
ACCTGGCAGGAACCAGTACATTAAGTGAGCGTGGCACCCCTCTGCTGGTGCCTGGGAGACTGCCGCTC
CTCTTGACCTGAAGCCTGGCTGCTGCCACCCCTCACTGCAAAAGCATCCTTAAGTAGCAACCTCAGGG
ACTGGGGCTACAGTCTGCCCTGCTCAGCTCAAACCTTAAGCCTGCAGGAAAGGTGGATGGCTCTGGGCC
TGGCTTTGTTGATGTCAGGCTTCTCAAGGCCCTGCTCTGTGCGCAGGCTGTCGGCTGTCTAGGGTGGAGC
AGCTAATCAGATGCCCAAGCCTTGGCCCTCAAGAAAAGTGTGAAACAGTGCCTTGCACCGGACGTACAGCCC
TGCAGCATCTGCTGGACTCAGCGTGTCTGGTGTCAACAGTGTAGAGGGTGGGAAGGGGTGTCACCTGAGCTGACTTTGTT
TTTATCCCCGAAATCCTGGGTGTGTCACAGTGTAGAGGGTGGGAAGGGGTGTCACCTGAGCTGACTTTGTT
CTTCCCTCACACCTCTGAGCCTTCTGGGATTCTGGAAAGGAACCTGGCGTGAGAAAATGTGACTTCCCCCTT
TCCCTCCCACTCGCTGCTTCCACAGGTGACAGGCTGGAGAAACAGAAATCCTCACCCCTGCGTCTTCC
CAAGTTAGCAGGTGTCTGGTGTCACTGAGTGGAGGACATGTGAGTCCCTGGCAGAACGCCATGGCCCATGTCTGCA
CATCCAGGGAGGAGGACAGAACAGGCCAGCTCACATGTGAGTCCCTGGCAGAACGCCATGGCCCATGTCTGCAACATCC
AGGGAGGAGGACAGAACAGGCCAGCTCACATGTGAGTCCCTGGCAGAACGCCATGGCCCATGTCTGCAACATCCAGGG
GGAGGACAGAACAGGCCAGCTCACATGTGAGTCCCTGGCAGAACGCCATGGCCCATGTCTGCAACATCCAGGGAGGAGG
ACAGAACAGGCCAGCTCAGTGGCCCCGCTCCCCACCCCCACGCCGAACAGCAGGGGAGGAGCAGGCCATGGCCCTTC
GAAGTGTGTCCAAGTCCGATTGAGCCTGTTCTGGGGCCAGCCAAACACCTGGCTTGGCTACTGTCTGA
GTTGCAGTAAAGCTATAACCTGAATCACAA

FIGURE 64

MTTWSLRRR PART LGLLL VV LGFLV LRR LDW STLVPL RL RHQ LQL QAK GWN FM LED STFW
I FGG SI HYFRV PREY WRD RLL KMK ACGL NT LTT YPV WNL HEP ERG KF DF SGN LD LEAF VL MA
AE IGL WVL R PGP YIC SEM DLG GLP SWL LD PG MRL RTT YKG FTE A VD LY FDH LMS RVV PLO
YKR GGPI IAV QVENEY GS YNK DPA YMP YV KKA LED RG IVE LLL TSDN KDG LSK GIV QGV LAT
INL QSTH EQL LTT F LFNV QGT QPK MVME YWT GWF DSW GGPH NILD S SEV LKT VSA IVD AGS
S IN LYMF HGGT NFG FMNGA MHF HDY KSD VTSY DYDA VL TEA GDY TAK YM KLR DFF GSI SGIP
L PPPP D L L P KMP YEPL TPV LYLS LWD ALK YLGE PIK SEK P INMEN LPV NGNG QSF GYI LY
TSIT SSG ILS GHV HD RGQV FVNT VSI GFL DYKTT KIA VPLI QGY TVL RIL VENR GRV NYGEN
ID DQR KGL IGL NLYL ND SPL K NFR IY S LDM KKS F QRF GLD KWX SLP ETPT LPAFF LG SLS IS
S TPC DTF LKLEG WEG VV FING QNL GRY WNI GPQ KTL YLPG PWL SSG INQ VIV FEET MAG PA
LQFTET PHL GRN QYIK

Signal sequence:
amino acids 1-27

Casein kinase II phosphorylation site.
amino acids 141-118, 253-257, 340-344, 395-399, 540-544, 560-564

N-myristylation site.
amino acids 146-152, 236-242, 240-246, 244-250, 287-293, 309-315,
320-326, 366-372, 423-429, 425-431, 441-447, 503-509, 580-586

FIGURE 65

GGGGACGCGGAGCTGAGAGGCTCCGGGCTAGCTAGGTGTAGGGGTGGACGGGTCCAGGAC
CTGGTGAGGGTTCTACTTGGCCTCGGTGGGGTCAAGACGCAGGCACCTACGCCAAGGG
GGAGCAAAGCCGGCTGGCCGAGGCCAGGACCTCCATCTCCAATGTTGGAGGAATC
CGACACGTGACGGTCTGTCGCGCTCAGACTAGAGGAGCGCTGTAAACGCCATGGCTCCC
AAGAAGCTGTCCTGCCTCGTCCCTGCTGCTGCCGCTAGCCTGACGCTACTGCTGCCCA
GGCAGACACTCGGTGTTGTAGTGGATAGGGGTATGACCGGTTCTCCTAGACGGGGCC
CGTTCGGCTATGTGTCTGGCAGCCTGCACTACTTTCGGTACCGGGTGGCTTGGCCGAC
CGGCTTTGAAGATGCGATGGAGCGGCCAACGCCATACAGTTATGTGCCCTGGAACTA
CCACGAGCCACAGCCTGGGGTCTATAACTTAATGGCAGCCGGACCTCATTGCCTTCTGA
ATGAGGCAGCTAGCGAACCTGTTGGTCATACTGAGACCAGGACCTTACATCTGTGCAGAG
TGGGAGATGGGGGTCTCCCATCTGGTGTGAAACCTGAAATTCACTAAGAACCTC
AGATCCAGACTCCTTGCCGAGTGGACTCTGGTTCAAGGTCTGCTGCCAAGATATATC
CATGGCTTATACAATGGGGCAACATCATTAGCATTAGGTGGAGAATGAATATGGTAGC
TACAGAGCCTGTGACTTCAGCTACATGAGGCACCTGGCTGGCTTCCGTGACTGCTAGG
AGAAAAGATCTGCTCTCACACAGATGGCCTGAAGGACTCAAGTGTGGCTCCCTCCGGG
GACTCTATACCACTGTAGATTGGCCAGCTGACAACATGACCAAAATTTACCCCTGCTT
CGGAAGTATGAACCCATGGCCATTGGTAAACTCTGAGTAACACAGGCTGGCTGGATT
CTGGGCCAGAATCACTCCACACGGTCTGTCAGCTGTAACCAAAGGACTAGAGAACATGC
TCAAGTTGGAGCCAGTGTGAACATGTACATGTTCCATGGAGGTACCAACTTGGATATTGG
AATGGTGCCTGATAAGAAGGGACGCTTCCCTCGATTACTACCAGCTATGACTATGATGCACC
TATATCTGAAGCAGGGACCCACACCTAACGTTTGCTCTTGAGATGTCATCAGCAAGT
TCCAGGAAGTCCCTTGGACCTTACCTCCCCGAGCCCCAAGATGATGCTTGGACCTGTG
ACTCTGCACCTGGTGGCATTACTGGCTTCTAGACTTGCTTGGCCCCGTGGCCCAT
TCATTCAATCTGCCAATGACCTTGAGGCTGTCAAGCAGGACCATGGCTCATGTTGTACC
GAACCTATATGACCCATACCATTGGAGCCAACACCATTGGTGCCTAACATGGAGTC
CATGACCGTGCCTATGTGATGGGGATGGGTGTTCCAGGGTGTGGAGCGAAATATGAG
AGACAAACTATTTGACGGGAAACTGGGTCAAACACTGGGATATCTGGTGGAGAACATGG
GGAGGCTCAGCTTGGGCTAACAGCAGTGACTTCAGGGCTGTGAAGCCACCAATTCTG
GGGCAAACAATCTTACCCAGTGGATGATGTTCCCTCTGAAAATTGATAACCTGTGAAGTG
GTGGTTCCCTCCAGTTGCCAAATGGCCATATCCTCAAGCTCCCTCTGGCCCCACATTCT
ACTCCAAAACATTCCAATTAGGCTCAGTGGGACACATTCTATATCTACCTGGATGG
ACCAAGGGCAAGTCTGATCAATGGTTAACCTGGCCGTACTGGACAAAGCAGGGGCC
ACAACAGACCCCTACGTGCCAAGATTCCCTGCTGTTCTAGGGGAGCCCTAACAAAATTA
CATTGCTGGAACTAGAAGATGTACCTCTCCAGCCCCAAGTCCAATTGGATAAGCCTATC
CTCAATAGCACTAGTACTTGCACAGGACACATATCAATTCCCTTCAGCTGATACACTGAG
TGCCTCTGAACCAATGGAGTTAAGTGGGCACTGAAAGGTAGGCCGGCATGGTGGCTCATGC
CTGTAATCCAGCACTTGGGAGGCTGAGACGGGTGGATTACCTGAGGTCAAGGACTTCAAGA
CCAGCCTGGCCAACATGGTAAACCCGCTCCACTAAAAATACAAAATTAGCCGGCGTG
ATGGTGGCACCTCTAACCTCCAGCTACTTGGGAGGCTGAGGGCAGGAGAATTGCTTGAATCC
AGGAGGGAGAGGTTGCAGTGAGTGGAGGTTGTACCACTGCACCTCAGCCTGGCTGACAGTGA
GACACTCCATCTCAAAAAAAAAAA

FIGURE 66

MAPKKLSCLRSLLLPLSLTLLPQADTRSFVVDRGHDRFLLDGAPFRYVSGSLHYFRVPRVL
WADRLLKMRWSGLNAIQFYVPWNYHEPQPGVYNFNGSRDLIAFLNEAALANLLVILRPGPYI
CAEWEMGGLPSWLLRKPEIHLRTSDPDFLAAVDSWFKVLLPKIYPWLYHNGGNIISIQVENE
YGSYRACDFSYMRHLAGLFRALLGEKILLFTTDGPEGLKCGSLRGLYTTVDFGPADNMTKIF
TLLRKYEPHGPLVNSEYYTGWLWQNHSTRSAVTKGLENMLKLGASVNMYMFHGGTNF
GYWNGADKKGRFLPITTSYDYDAPISEAGDPTPKLFALRDVISKFQEVPGLPPSPKML
GPVTLHLVGHLLAFLDLLCPRGPIHSILPMTFEAVKQDHGFMLYRTYMHTIFEPTFWVPN
NGVHDRAYVMVDGVFQGVVERNMRDKLFLTGKLGSKLDILVENMGRSLFGSNSSDFKGLLKP
PILGQTILTQWMMFPLKIDNLVKWWFPLQLPKWPYPQAPSGPTFYSKTFPILGSVGDTFLYL
PGWTKGQVWINGFNLGRYWTQOGPQQTLYVPRFLLFPRGALNKITLLELEDVPLQPQVQFLD
KPILNSTSTLHRTHINSLSAADTLSASEPMELSGH

09027580300
T90700

Signal sequence:

amino acids 1-27

N-glycosylation site.

amino acids 97-101, 243-247, 276-280, 486-490, 625-629

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 4-8

Casein kinase II phosphorylation site.

amino acids 148-152, 234-238, 327-331, 423-427, 469-473, 550-554,
603-607, 644-648

Tyrosine kinase phosphorylation site.

amino acids 191-198

N-myristoylation site.

amino acids 131-137, 176-182, 188-194, 203-209, 223-229, 227-233,
231-237, 274-280, 296-300, 307-313, 447-453, 484-490

FIGURE 67

GCTTGAAACACGTCTGCAAGCCCAAAGTTGAGCATCTGATTGGTTATGAGGTATTGAGTGC
ACCCACAATATGGCTTACATGTTGAAAAAGCTTCTCATCAGTTACATATCCATTATTTGTGT
TTATGGCTTATCTGCCTCTACACTCTCTGGTTATTCAGGATACCTTGAAGGAATATT
CTTCGAAAAAGTCAGAGAAGAGAGCAGTTAGTGACATTCCAGATGTCAAAAACGATTT
GCGTTCCCTTTCACATGGTAGACCAGTATGACCAGCTATATTCCAAGCGTTGGTGTGTT
CTTGTCAAGAGTTAGTGAAAATAACTTAGGAAATTAGTTGAACCATGAGTGGACATTG
AAAAACTCAGGCAGCACATTCAACGCCAGGACAAGCAGGAGTTGCATCTGTTCATG
CTGTCGGGGGTGCCGATGCTGTCTTGACCTCACAGACCTGGATGTGCTAAAGCTTGAAC
AATTCCAGAAGCTAAAATTCTGCTAACAGATTCTCAAATGACTAACCTCCAAGAGCTCCACC
TCTGCCACTGCCCTGCAAAAGTTGAACAGACTGCTTAGCTTCTCGCGATCACTTGAGA
TGCCTTCACGTGAAGTTCACTGATGTGGCTGAAATTCTGCCTGGGTGTATTGCTCAAAA
CCTTCGAGAGTTGACTTAATAGGCAATTGAACTCTGAAAACAATAAGATGATAGGACTTG
AATCTCTCCGAGAGTTGCGGCACCTTAAGATTCTCCACGTGAAGAGCAATTGACCAAAGTT
CCCTCCAACATTACAGATGTGGCTCCACATCTAACAAAGTTAGTCATTATAATGACGGCAC
TAAACTCTGGTACTGAACAGCCTTAAGAAAATGATGAATGTCGCTGAGCTGGAACCTCCAGA
ACTGTGAGCTAGAGAGAATCCCACATGCTATTTCAGCCTCTCTAACAGGAACACTGGAT
TTAAAGTCCAATAACATTGCACAATTGAGGAAATCATCAGTTCCAGCATTAAAACGACT
GACTTGTAAAATTATGGCATAACAAAATTGTTACTATTCCCTCCCTCTATTACCCATGTCA
AAAACTTGGAGTCACTTATTCTCTAACACAAGCTCGAACCTTACCACTGGCAGTATT
AGTTACAGAAAACTCAGATGCTTAGATGTGAGCTACAACAAACATTCAATGATTCCAATAGA
AATAGGATTGCTTCAGAACCTGCAGCATTGCATATCACTGGAACAAAGTGGACATTCTGC
CAAAACAATTGTTAAATGCATAAAGTTGAGGACTTGAATCTGGACAGAACTGCATCACC
TCACCTCCAGAGAAAAGTTGGTCAGCTCTCCAGCTCACTCAGCTGGAGCTGAAGGGAACTG
CTTGGACCGCCTGCCAGCCCAGCTGGCCAGTGTGGATGCTCAAGAAAAGCGGGCTTGTG
TGGAAGATCACCTTTGATAACCTGCCACTCGAACGTCAAAGAGGCATTGAATCAAGACATA
AATATTCCCTTGCAAATGGATTTAAACTAAGATAATATGACAGTGTGAGGAAAC
AACTCCTAGATTGCAAGTGCTACGTACAAGTTATTACAAGATAATGCATTAGGAGTAG
ATACATCTTTAAAACAGAGAGGATGCATAGAAGGCTGATAGAAGACATAACTGAAT
GTTCAATGTTGAGGGTTTAAGTCATTCAACATTTCAATCATTGTTTTCTTTGGGG
AAAGGGAAGGAAAATTATAATCACTAATCTGGTTCTTTAAATTGTTGTAACCTGGAT
GCTGCCGCTACTGAATGTTACAAATTGCTGCCTGCTAAAGTAAATGATTAAATTGACATT
TTCTTACTAAAAAAAAAAAAAA

FIGURE 68

MAYMLKKLLISYISIICVYGFICLYTLFWLFRIPLKEYSFEKVREESSFSDIPDVKNDFAFL
LHMVDQYDQLYSKRGVFLSEVSENKLREISLNHEWTFEKLQRQHISRNAQDKQELHLFMLSG
VPDAVFDLTDLDVLKLELIPAKEKIPAKISQMTNLQELHLCHCPAKVEQTAFSFLRDHLRCLH
VKFTDVAEIPAWVYLLKNLRELYLIGNLNSENNKMIGLESLRELRLKILHVKSNLTKVPSN
ITDVAPHLTKLVIHNDGKLLVLNSLKKMMNVAELELQNCELERIPHAIFSLSNLQELDLKS
NNIRTIEEIISFQHLKRLTCLKLWHNKIVTIPPSITHVKNLESLYFSNNKLESLPVAVFSLQ
KLRCLDVSYNNISMPIEIGLLQNLQHLHITGNKVDILPKQLFKCIKLRTLNLGQNCITSLP
EKVGQLSQLTQLELKGNCNDRLPAQLGQCRMLKKSGLVVEDHLFDTLPLEVKEALNQDINIP
FANGI

Signal sequence:

█ amino acids 1-20

█ **N-glycosylation site.**

█ amino acids 241-245, 248-252, 383-387

█ **cAMP- and cGMP-dependent protein kinase phosphorylation site.**

█ amino acids 326-330

█ **Casein kinase II phosphorylation site.**

█ amino acids 48-52, 133-137, 226-230, 315-319, 432-436, 444-448

Tyrosine kinase phosphorylation site.

█ amino acids 349-355, 375-381

N-myristoylation site.

█ amino acids 78-84, 124-130, 212-218, 392-398

FIGURE 69

CCACACGCGTCCGGCCTCTCTGGACTTGCATTCCATTGACAAACTGACTTTTTATTTCT
TTTTTTCCATCTCTGGGCCAGCTGGGATCCTAGGCCGCCCTGGGAAGACATTGTGTTTACACACATAAGGAT
CTGTGTTGGGTTTCTTCTTCCTCCCTGACATTGGCATTGCTTAGGTACATCGAAGTCTTGACCTCCACAGTATTGTC
GCTCAGTGCCTGCTTGCACTTATGCCTAGGTACATCGAAGTCTTGACCTCCACAGTATTGCTGTC
ATCGCTGGTGGTATCCTGGCGCTGCTCCTGCTGATAGTTGTCGTCTGTCTTACTTCAAATACACAAAC
GCGCTAAAAGCTGCAAAGAACCTGAAGCTGTTGCTGAAAAATACAACCCAGACAAGGTGTGGTGGGCCAAG
AACAGCCAGGCCAAACCATGGCACCGAGTCTGCTGCTGCCCTGCACTGCTGTAAGGATATAGAATGTGTGCC
AGTTTGATTCCCTGCCACCTTGCTGCTTGCGACATAATGAGGGCTCTGAGTTAGGAAGGCTCCCTCTCAA
GCAGAGCCCTGAAGACTTCAATGATGCAATGAGGCCACCTGTTGATGTCAGGCACAGAAGAAAGGCACAG
CTCCCCATCAGTTCATGAAAATAACTCAGTGCCTGCTGGGAAACAGCTGCTGGAGATCCCTACAGAGAGCTTC
CACTGGGGCAACCCCTTCAGGAAGGAGTGGGGAGAGAGAACCCCTACTGTTGGGAATGCTGATAAAACAGTCA
CACAGCTGCTCTATTCTCACACAAATCTACCCCTTGCGTGGCTGAACTGACGTTTCCCTGGAGGTGTCCAGAAA
GCTGATGTAACACAGAGCTATAAAAGCTGTCGGCTTAAGGCTGCCAGGCCCTGCCAAAATGGAGCTTGT
AGAAGGCTCATGCCATTGACCCCTTAATTCTCCTGTTGGCGAGCTGACAATGGGGAGGCTGAAGGCAAT
GCAAGCTGCACAGTCAGTCTAGGGGTGCAAATATGGCAGAGACCCACAAGGCATGATCTGCAACTCAATCCC
AGTGAGAACTGCACCTGGACAATAGAAAGACCAAGAAAACAGCATCAGAATTATCTTCTATGTCCAGTT
GATCCAGATGGAAGCTGTGAAAAGTCAAAGCTTGTGAGGAACTCCAGCAATGGGCTCTGCTAGGG
CAAGTCTGCAGTAAAAGCACTATGTTCTGTATTGAAATCATCATCCAGTACATTGACGTTCAAATAGTTACT
GAECTCAGCAAGAATTCAAAGAACTGTCTTGCTTCTACTACTTCTCTCTAACTCTCTATTCCAAACTGT
GGCGGTTACCTGGATACCTTGGAAAGGATCCTCACCGCCCAATTACCCAAAGCCGCATCCTGAGCTGGTTAT
TGTGTTGGCACATACAAGTGGAGAAAGATTACAAGATAAAACTCAAAGAGATTTCCTAGAAATAGAC
AAACAGTGCACATTGATTCTTGCATCTATGATGGCCCTCCACCAACTCTGGCTGATTGGACAAGTCTGT
GGCCGTGTGACTCCCACCTCGAATCGTCATCAAACCTCTGACTGTCGTGTTGCTACAGATTATGCCAATTCT
TACCGGGGATTTCTGCTCCTACACCTCAATTATGCAAGAAACATCAACACTACATCTTAACTTGCCT
GACAGGATGAGAGTTATTATAAGCAAATCCTACCTAGAGGTTAACTCTAATGGAATAACTTGCAACTAAA
GACCCAATTGCAAGACCAAAATTCAAATGTTGGAATTCTGTCCTCTTAATGGATGTGGTACAATCAGA
AAGGAGAAGTCAGTCATTACACCAATAATCACCTTCTGATCCTCTCAACTTCTGAAAGTGTACCC
CGTCAGAAACAACTCCAGATTATTGTAAGTGTGAAATGGGACATAATTCTACAGTGGAGATAATATAACATAACA
GAAGATGATGTAATCAAAGTCAAATGCACTGGGAAATATAACACCAGCATGGCTTTGAAATCCAATTCA
TTTGGAAAAGACTATACTTGAATCACCATATTATGTTGAGGTTGAAACCAACTCTTGTCAAGTTAGTCTGCAC
ACCTCAGATCAAATTGTTGGTCTTGTACCTGTAGAGCCTCTCCACCTCTGACTTTGCATCTCCAAACC
TACGACCTAATCAAGAGTGGATGTAGTCAGATGAAACTTGTAAAGGTGTATCCCTTATTGGACACTATGGGAGA
TTCCAGTTAATGCCTTAAATTCTGAGAAGTATGAGCTGTGTATCTGCACTGTAAGTTGATATGTGAT
AGCAGTGCACCAAGTCTCGCTGCAATCAAGGTTGTTCTCAGAAGCAAACAGAGACATTCTCATATAATGG
AAAACAGATTCCATCATAGGACCCATTGCTGAAAAGGGATGCAAGTGCAGTGGCAATTCAAGGATTTCAGCAT
GAAACACATGCCAAGAAACTCCAAACAGCCCTTCAACAGTGTGCACTGTTCTCATGGTTCTAGCTCTG
AATGTGGTACTGTAGCGACAATCACAGTGAGGCATTGAAATCAACGGGAGACTACAAATACCAGAAGCTG
CAGAACTATTAACTAACAGGTCCAACCTAAGTGAGACATGTTCTCCAGGATGCCAAAGGAAATGCTACCTCGT
GGCTACACATATTGAATAATGAGGAAGGGCCTGAAAGTGACACACAGGCCTGCATGAAAAAAA

FIGURE 70

MELVRLMPPTLLILSCLAEATMAEAEGNASCTVSLGGANMAETHKAMILQLNPSENCTWTI
ERPENKSIRIIIFSYVQLDPGSCESENIVFDGTSSNGPLLQVCSKNDYVPVFESSSTLT
FQIVTDSARIQRTVFVFFSPNISIPNCGGYLDTLEGSFTSPNYPKPHPELAYCVWHIQV
EKDYKIKLNFKEIFLEIDKQCKFDLAIYDGPSNTSGLIGQVCRVTPTFESSNSLTVVLS
TDYANSYRGFSASYTSIYAENINTTSLTCSSDRMRVIISKSYLEAFNSNGNNLQLKDPTCRP
KLSNVVEFSVPLNGCGTIRKVEDQSITYTNIITFSASSTSEVITRQKQLQIIVKCEMGNST
VEIIYITEDDVIQSQNALGKYNTSMALFESNSFEKTIILESPYYVQLNQTLFVQVSLHTSDPN
LVVFLDTCRASPTDFASPTYDLIKSGCSRDETCKVYPLFGHYGRFQFNFKFLRSMSSVYL
QCKVLICDSSDHQSRCNQGCVRSRSKRDISSYWKTDIIGPIRLKRDRSASGNSGFQHETHA
EETPNQPFNSVHLFSFMVLALNVVTVATITVRHFVNQRADYKYQKLQNY

Signal sequence:

amino acids 1-24

Transmembrane domain:

amino acids 571-586

N-glycosylation site.

amino acids 29-33, 57-61, 67-71, 148-152, 271-275, 370-374,
394-398, 419-423

Casein kinase II phosphorylation site.

amino acids 22-26, 108-112, 289-293, 348-352, 371-375, 379-383,
408-412, 463-467, 520-524, 556-560

Tyrosine kinase phosphorylation site.

amino acids 172-180, 407-415, 407-416, 519-528

N-myristoylation site.

amino acids 28-34, 38-44, 83-89, 95-101, 104-110, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 71

GACGGAAAGAACAGCGCTCCCGAGGCCGCGGGAGCCTGCAGAGAGGACAGCCGGCCTGCGCCG
GGACATGCGGCCCCCAGGAGCTCCCAGGCTCGCGTTCCCGTTGCTGCTGTTGCTGC
TGCTGCCGCCGCCGTGCCCTGCCACAGCGCCACGCCGCTCGACCCCACCTGGGAGTCC
CTGGACGCCGCCAGCTGCCCGCGTGGTTGACCAGGCAAGTCGGCATCTCATCCACTG
GGGAGTGTTCGCGCCAGCTCGGTAGCGAGTGGTCTGGGGTATTGGCAAAAGGAAA
AGATACCGAAGTATGTGAATTATGAAAGATAATTACCCCTCTAGTTCAAATATGAAGAT
TTGGACCACTATTACAGCAAAATTTTAATGCCAACAGTGGCAGATATTTCAGGC
CTCTGGTGCAAATACATTGTCTTAACCTCAAACATCATGAAGGCTTACCTGGGGGT
CAGAATATTGTGGAACGTGGAATGCCATAGATGAGGGGCCAAGAGGGACATTGTCAGGAA
CTTGAGGTAGCCATTAGGAACAGAACTGACCTGCGTTGGACTGTACTATTCCCTTTGA
ATGGTTCATCCGCTTCTGAGGATGAATCCAGTCATTCCATAAGCGGAATTCCAG
TTCTAAAGACATTGCCAGAGCTCTATGAGTTAGTGAACAACATCAGCCTGAGGTTCTGTGG
TCGGATGGTACGGAGGAGCACCGGATCAAACTGGAACAGCACAGGCTCTGGCCTGGTT
ATATAATGAAAGCCCAGTCCGGGCACAGTAGTCACCAATGATCGTTGGGAGCTGGTAGCA
TCTGTAAGCATGGTGGCTCTACCTGCAGTGATCGTTATAACCCAGGACATCTTGCCA
CATAAATGGAAAACGTGACATGACAATAGACAAACTGTCTGGGCTATAGGAGGAAAGCTGG
AATCTCTGACTATCTTACAATTGAAGAATTGGTGAAGCAACTTGTAGAGACAGTTCATGTG
GAGGAAATCTTGATGAATATTGGGCCACACTAGATGGCACCATTTCTGTAGTTTGAG
GAGCGACTGAGGCAAGTGGGTCCTGGCTAAAGTCATGGAGAAGCTATTATGAAACCTA
TACCTGGCGATCCCAGAATGACACTGTCACCCAGATGTGTGGTACACATCCAAGCCTAAAG
AAAAATTAGTCTATGCCATTCTAAATGGCCCACATCAGGACAGCTGTTCTGGCCAT
CCCAAAGCTATTCTGGGGCAACAGAGGTGAAACTACTGGGCCATGGACAGCCACTTAAC
GATTCTTGAGAAAATGGCATTATGGTAGAACTGCCACAGCTAACCATTCAGATGC
CGTGTAAATGGGGCTGGCTCTAGCCCTAACTAATGTGATCTAAAGTGCAGCAGAGTGGCTG
ATGCTGCAAGTTATGCTAAGGCTAGGAACATCAGGTGTCTATAATTGTAGCACATGGAGA
AAGCAATGTAACGGATAAGAAAATTATGGCAGTTCAAGGCTTCCCTTTCCCAC
AATTCTTAAATTACCCATGTAACCATTAACTCTCCAGTGCACTTGCCATTAAAGTC
TCTTCACATTGATTGTTCCATGTGTGACTCAGAGGTGAGAATTTCACATTAGTAG
CAAGGAATTGGTGGTATTATGGACCGAACTGAAAATTGTGAAGCCATATCCCCCATG
ATTATATAGTTATGCATCACTTAATATGGGATATTCTGGAAATGCATTGCTAGTCAT
TTTTTTGTGCCAACATCATAGAGTGTATTACAAACCTAGATGGCATAGCCTACTACA
CACCTAATGTGTATGGTATAGACTGTCCTAGGCTACAGACATATAAGCATGTTACTG
AATACTGTAGGCAATAGTAACAGTGGTATTGTATATCGAAACATATGGAAACATAGAGAAG
GTACAGTAAAATACTGTAAAATAATGGTGCACCTGTATAGGGCACTTACCCAGGAATGGAG
CTTACAGGACTGGAAGTTGCTCTGGGTGAGTCAGTGAGTGAATGTGAAGGCCTAGGACATTA
TTGAAACACTGCCAGACGTTATAAAACTGTATGCTTAGGCTACACTACATTATAAAAAAAA
GTTTTCTTCTTCAATTATAAAATTAAACATAAGTGTACTGTAACTTACAAACGTTTAATT
TTTAAACCTTTGGCTTTGTAATAACACTTAGCTAAACATAAAACTCATTGTGCAA
ATGTAA

FIGURE 72

MRPQELPRLAFPLLLLLLPPPPCAHSATRFDPTWESLDARQLPAWFDQAKFGIFIHG
VFSVPSFGSEWFWWYQKEKIPKYVEFMKDNYPPSFKYEDFGPLFTAKFFNANQWADIFQAS
GAKYIVLTSKHEGFTLWGSEYSWNNAIDEGPKRDIVKELEVAIRNRTDLRFGLYYSLFEW
FHPLFLEDESSSFHKRQFPVSKTLPELYELVNYYQPEVLWSDGDGGAPDQYWNSTGFLAWLY
NESPVVRGTVVTNDRGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDKLSWGYRREAGI
SDYLTIEELVKQLVETVSCGGNLLMNIGPTLDGTISVVFEERLRQVGSWLKVNGEAIYETYT
WRSQNDTVTPDVWYTSKPKEKLVYAIFLKWPTSGQLFLGHPKAILGATEVKLLGHGQPLNWI
SLEQNGIMVELPQLTIHQMPCKWGWALALTNVI

Signal sequence:

amino acids 1-28

□ N-glycosylation site.
□ amino acids 171-175, 239-243, 377-381

□ Casein kinase II phosphorylation site.
□ amino acids 32-36, 182-186, 209-213, 227-231, 276-280, 315-319,
375-375

□ Tyrosine kinase phosphorylation site.
□ amino acids 361-369, 389-397

N-myristoylation site.
amino acids 143-149, 178-184, 255-261, 272-278, 428-434

Leucine zipper pattern.
amino acids 410-432

Alpha-L-fucosidase putative active site.
amino acids 283-295

FIGURE 73

AGCAGGGAAATCCGGATGTCTCGGTTATGAAGTGGAGCAGTGAGTGTGAGCCTAACATAGT
TCCAGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAAGTGGCCATC
TGAGGTGTTCCCTGGCTCTGAAGGGTAGGCACGATGCCAGGTGCTTCAGCCTGGTGTG
CTTCTCACTCCATCTGGACCAACGAGGCTCTGGTCCAAGGCTCTTGCGTGAGAAGAGCT
TTCCATCCAGGTGTCACTGCAGAATTATGGGGATCACCCTGTGAGCAAAAGGCGAACAGC
AGCTGAATTTCACAGAAGCTAAGGAGGCCTGTAGGCTGCTGGACTAAGTTGGCCGGCAAG
GACCAAGTTGAAACAGCCTGAAAGCTAGCTTGAACACTGCAGCTATGGCTGGGTGGAGA
TGGATTCGTGGTCATCTCTAGGATTAGCCAAACCCCAAGTGTGGGAAAAATGGGGTGGGTG
TCCTGATTGGAAAGGTTCCAGTGAGCCGACAGTTGCAGCCTATTGTTACAACACTCATCTGAT
ACTTGGACTAACTCGTCATTCCAGAAATTATCACCAACCAAAGATCCCATAATTCAACACTCA
AACTGCAACACAAACAGAATTATTGTCACTGACAGTACCTACTCGGTGGCATCCCCCTT
ACTCTACAATACCTGCCCTACTACTACTCCTCCTGCTCCAGCTCCACTTCTATTCCACGG
AGAAAAAAATTGATTGTGTCAAGAAGTTTATGGAAACTAGCACCATGTCTACAGAAAC
TGAACCATTGTTGAAAATAAAGCAGCATTCAAGAATGAAGCTGCTGGGTTGGAGGTGTCC
CCACGGCTCTGCTAGTGCTTGCCTCCTCTTGGTGTGAGCTGGCTTGGATTTC
TATGTCAAAAGGTATGTGAAGGCCTCCCTTACAAACAAGAATCAGCAGAAGGAAATGAT
CGAAACCAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCTAATGAGGAATCAAAGA
AAACTGATAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACCTACCGTGCATGCCTGGAA
GCTGAAGTTTAGATGAGACAGAAATGAGGAGACACACCTGAGGCTGGTTCTTCATGCTCC
TTACCCCTGCCCTAGCTGGGAAATCAAAAGGCCAAAGAACCAAAGAACAGAAAGTCCACCCCTT
GGTTCTTAACGGAAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAGAACAGAAC
CCTTCTCCTTATTGTAACCCCTGTCTGGATCCTATCCTCCTACCTCCAAAGCTCCACGGCC
TTTCTAGCCTGGCTATGCTTAATAATATCCACTGGAGAAAGGAGTTTGCAAAGTGCAA
GGACCTAAACATCTCATCAGTATCCAGTGGTAAAAGGCCCTGGCTGTGAGGCTAGG
TGGGTTGAAAGCCAAGGAGTCACTGAGACCAAGGCTTCTACTGATTCCGAGCTCAGAC
CCTTCTCAGCTCTGAAAGAGAAACACGTATCCACCTGACATGTCCTCTGAGCCGGTA
AGAGCAAAAGAACGGAGAAAAGTTAGCCCTGAAAGCCATGGAGATTCTCATAACTTGAG
ACCTAATCTCTGTAAGCTAAAATAAAGAAATAGAACAAAGGCTGAGGATAACGACAGTACACT
GTCAGCAGGGACTGTAACACAGACAGGGTCAAAGTGTCTCTGAACACATTGAGTTGGA
ATCACTGTTAGAACACACACACTTACTTTCTGGTCTCTACCACTGCTGATATTCT
AGGAAATATACTTTACAAGTAACAAAATAAAACTCTTATAAATTCTATTCTATCTGA
GTTACAGAAATGATTACTAAGGAAGATTACTCAGTAATTGTTAAAAGTAATAAAATTCA
ACAAACATTGCTGAATAGCTACTATATGTCAAGTGCTGTGCAAGGTATTACACTCTGTAAT
TGAATATTATTCCCTCAAAAATTGCACATAGTAGAACGCTATCTGGGAAGCTATTCT
GTTTGATATTCTAGCTTACTTCCAAACTAATTCTATTGCTGAGACTAATCTT
ATTCACTTCTCTAATATGGCAACCATTATAACCTTAATTATTAAACATACCTAACAG
TACATTGTTACCTCTATATACCAAGCACATTAAAAGTGCCTAACAAATGTATCACTA
GCCCTCCTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATTGTGACAAAAATTAA
AGCATTAGAAAATT

FIGURE 74

MARCFSLVLLLTSIWTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACR
LLGLSLAGKDQVETALKASFETCSYGVGDGFVVISRISPNSPKCGKNGVGVLIWKVPVSRQF
AAYCYNSSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTTPP
APASTSIPRRKKLICVTEVFMETSTMSTETEPFVENKAASFKNAAAGFGGVPTALLVLALLFF
GAAAGLGFCYVKRYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKKTDKNPEESKSP
SKTTVRCLEAEV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

FIGURE 75

AGATGGCGGTCTTGGCACCTTAATTGCTCTCGTATTGGTGCACGACTTACGATGG
CTCGCCCAACCTTACTACCTTCTGTCGGCCCTGCTCTGCTGCCTCCTACTCGTGAGGAA
ACTGCCGCCGCTCTGCCACGGCTGCCACCCAACGCGAAGACGGTAACCGTGTGACTTTG
ACTGGAGAGAAGTGGAGATCCTGATGTTCTCAGTGCATTGTGATGATGAAGAACCGCAGA
TCCATCACTGTGGAGCAACATATAGGCAACATTTCATGTTAGTAAAGTGGCAAACACAAT
TCTTTCTTCCGCTTGGATATTGCATGGCCTACTTACATCACACTCTGCATAGTGTCC
TGATGACGTGCAAACCCCCCTATATATGGGCCCTGAGTATATCAAGTACTTCAATGATAAA
ACCATTGATGAGGAACTAGAACGGACAAGAGGGTCACTTGGATTGTGGAGTTCTTGCCAA
TTGGTCTAATGACTGCCAATCATTGCCCTATCTATGCTGACCTCTCCCTAAATACAAC
GTACAGGGCTAAATTTGGGAAGGTGGATGTGGACGCTACTGATGTTAGTACGGTAC
AAAGTGAGCACATCACCCCTACCAAGCAACTCCCTACCCGTACCTGTTCCAAGGTGGCAA
GGAGGCAATGCGCGGCCACAGATTGACAAGAAAGGACGGCTGTCTCATGGACCTCTCG
AGGAGAATGTGATCCGAGAATTAACTTAAATGAGCTATACCAGCGGCCAAGAAACTATCA
AAGGCTGGAGACAATATCCCTGAGGAGCAGCCTGTGGCTCAACCCCCACCAAGTGTCAATT
TGGGGAAAACAAGAAGGATAAAAGATCCTCACTTGGCAGTGCTCCTCTCCGTCAATT
CCAGGCTTTCCATAACCACAAGCCTGAGGCTGCAGCCTTNATTNATGTTCCCTTGG
CTGNGACTGGNTGGGCAGCATGCAGCTCTGATTAAAGAGGCATCTAGGGATTGTCAG
GCACCCCTACAGGAAGGCCTGCCATGCTGTGGCCAAGTGTGTTCACTGGAGCAAGAAAGAGATC
TCATAGGACGGAGGGGGAAATGGTTCCCTCCAAGCTGGTCAGTGTGTTACTGCTTATC
AGCTATTAGACATCTCCATGGTTCTCCATGAAACTCTGTGGTTCATCATTCCCTTTAG
TTGACCTGCACAGCTGGTAGACCTAGATTAAACCTAAGGTAAGATGCTGGGTATAGAA
CGCTAAGAATTTCCCCCAAGGACTCTGCTTCTTAAGCCCTCTGGCTTGTGTTATGGTC
TTCATTAAAAGTATAAGCCTAACCTTGTGCTAGTCCTAACGGAGAAACCTTAACCACAAAG
TTTTTATCATTGAAGACAATATTGAACAACCCCCCTATTGTGGGATTGAGAAGGGGTGAA
TAGAGGCTTGAGACTTCCCTTGTGGTAGGACTTGGAGGAGAAATCCCTGGACTTCAC
TAACCCCTTGACATACTCCCCACACCCAGTTGATGGCTTCCGTAATAAAAGATTGGGATT
TCCTTTG

FIGURE 76

MAVLAPLIALVYSPRLSRWLAQPYYLLSALLSAFLVRKLPPCHGLPTQREDGNPCDFDWREVEILMFLSAIVMMKNRRSITVEQHIGNIFMFSKVANTILFFRLDIRMGLLYITLCIVFLMTCKPPLYMGPEYIKYFNDKTIDEELERDKRVTWIVEFFANWSNDCQSFAPIYADLSLKYNC TGLNFGKVDVGRYTDVSTRYKVSTSPLTKQLPTLILFQGGKEAMRRPQIDKKGRAVSWTFSE ENVIREFNLNELYQRAKKLSAGDNIPEEOPVASTPTTVSDGENKKDK

Signal sequence:

amino acids 1-48

Transmembrane domain:

amino acids 111-125

N-glycosylation site.

amino acids 165-169, 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site

amino acids 154-158, 265-269

Casein kinase II phosphorylation site.

amino acids 51-55, 145-149, 245-249, 286-290, 288-292

N-myristoylation site.

amino acids 188-194, 225-231

Myb DNA-binding domain repeat signature 1.

amino acids 244-253

FIGURE 77

GGACAGCTCGCGCCCCGAGAGCTAGCCGTCGAGGAGCTGCCCTGGGACGTTGCCCTG
GGGCCAGCCTGGCCGGTCACCCCTGGCATGAGGAGATGGCCTGTTGCTCCTGGTCCA
TTGCTCCTGCTGCCCGCTCCTACGGACTGCCCTCTACAACGGCTTACTACTCCAACAG
CGCCAACGACCAGAACCTAGGCAACGGTACGGCAAAGACCTCTTAATGGAGTGAAGCTGG
TGGTGGAGACACCCGAGGAGACCCCTGTTCACCTACCAAGGGCCAGTGTGATCCTGCCCTGC
CGCTACCGCTACGAGCCGGCCCTGGTCTCCCCGGCGGTGTGCGTGTCAAATGGTGGAAAGCT
GTCGGAGAACGGGCCAGAGAGAAGGACGTGCTGGTGGCCATCGGCTGAGGCACCGCTCCT
TTGGGACTACCAAGGCCGGTGCACCTGCGGCAGGACAAAGAGCATGACGTCTCGCTGGAG
ATCCAGGATCTGCGGCTGGAGGACTATGGCGTTACCGCTGTGAGGTATTGACGGCTGGA
GGATGAAAGCGGTCTGGTGGAGCTGGAGCTGGGGGTGTGGTCTTCCTTACCAAGTCCCCA
ACGGCGCTACCAGTCAACTTCCACGAGGGCCAGCAGGTCTGTGCAGAGCAGGCTGCCGTG
GTGGCCTCTTGAGCAGCTCTCCGGGCCTGGGAGGGAGGGCTGGACTGGTGCAACGCCGG
CTGGCTGCAGGATGCTACGGTGCAGTACCCCATCATGTTGCCCGGCAGCCCTGCCGTGGC
CAGGCCTGGCACCTGGCGTGCAGCTACGGCCCCGCCACGCCGCTGCACCGCTATGAT
GTATTCTGCTCGCTACTGCCCTCAAGGGCGGGTGTACTACCTGGAGCACCTGAGAAGCT
GACGCTGACAGAGGCAAGGGAGGCCTGCCAGGAAGATGATGCCACGATGCCAAGGTGGAC
AGCTTTGCCGCCTGGAAGTCCATGGCCTGGACCGCTGCGACGCTGGCTGGCTGGCAGAT
GGCAGCGTCCGCTACCCGTGGTCACCCGCATCCTAACTGTGGGCCCCAGAGCCTGGGT
CCGAAGCTTGGCTCCCCGACCCGCAGAGCCGCTGTACGGTGTACTGCTACCGCCAGC
ACTAGGACCTGGGCCCTCCCTGCCGCATCCCTCACTGGCTGTATTGAGTGGTT
CGTTTCCCTGTGGTTGGAGCCATTAACTGTTTATACTTCTCAATTAAATTCT
TTAACATTTTTACTATTTTGAAAGCAAACAGAACCCATGCCCTCCCTTGCTCCTG
GATGCCCACTCCAGGAATCATGCTGCTCCCTGGGCCATTGCGGTTTGCTGGCTTCTG
GAGGGTCCCCGCCATCCAGGCTGGTCTCCCTCCCTTAAGGAGGTTGGTGGCCAGAGTGGC
GGTGGCCTGTCTAGAATGCCGCCGGAGTCCGGCATGGTGGCACAGTCTCCCTGCC
CAGCCTGGGGAAAGAAGAGGGCCTGGGGGCCCTCCGGAGCTGGCTTGGCCTCTGCC
CACCTCTACTCTGTGAAGCCGCTGACCCAGTCTGCCACTGAGGGCTAGGGCTGGAA
GCCAGTTCTAGGCTCCAGGCAGAACATGAGGAAGGAAGAAACTCCCTCCCCGTTCC
TCCCTCTCGGTTCAAAGAATCTGTTGTCATTGTTCTCCTGTTCCCTGTGTGG
GGAGGGGCCCTCAGGTGTGTACTTGGACAATAATGGTGCTATGACTGCCCTCGCCAA
AA
AA

FIGURE 78

MGLLLVPLLLPGSYGLPYNGFYYNSANDQNLGNHGKDLLNGVKLVVETPEETLFTYQ
GASVILPCRYRYEPALVSPRRVRVKWWKLSENGAPEKDVLVAIGLRHRSFGDYQGRVHLRQD
KEHDVSLEIQDLRLEDYGRYRCEVIDGLEDESGLVELELRGVVFVQSPNGRYQFNFHEGQQ
VCAEQAAVVASFEQLFRAWEEGLDWCNAGWLQDATVQYPIMLPRQPCGGPGLAPGVRSYGP
HRRLHRYDVFCFATALKGRVYYLEHPEKLTLTEAREACQEDDATIAKVGQLFAAWKFHGLDR
CDAGWLADGSVRYPVVHPHPNCGPPEPGVRSFGFPDPQSRLYGVYCYRQH

Signal sequence:

amino acids 1-17

Casein kinase II phosphorylation site.

amino acids 29-33, 53-57, 111-115, 278-282

Tyrosine kinase phosphorylation site.

amino acids 137-145

N-myristoylation site.

amino acids 36-42, 184-190, 208-214, 237-243, 297-303, 307-313

FIGURE 79

GGAGAGCGGAGCGAAGCTGGATAACAGGGGACCGGATGATGTGGCGACCATCAGTTCTGCTGC
TTCTGTTGCTACTGAGGCACGGGGCCAGGGGAAGCCATCCCCAGACGCAGGCCCTCATGGC
CAGGGGAGGGTGCACCAGGCGCCCCCTGAGCGACGCTCCCCATGATGACGCCACGGAA
CTTCCAGTACGACCATGAGGCTTCCTGGACGGGAAGTGGCAAGGAATTGACCAACTCA
CCCCAGAGGAAAGCCAGGCCGTCTGGGCGGATCGTGGACCGCATGGACCGCGGGGGAC
GGCGACGGCTGGGTGTCGCTGGCGAGCTCGCGCTGGATCGCGCACACGCAGCAGCGCA
CATACGGGACTCGGTGAGCGCGCCTGGACACGTACGACACGGACCGCGACGGCGTGTGG
GTTGGGAGGAGCTCGCAACGCCACCTATGCCACTACCGCCGGTGAAGAATTGAC
GTGGAGGATGCAGAGACCTACAAAAGATGCTGGCTCGGACGAGCGGCGTTCCGGGTGGC
CGACCAGGATGGGACTCGATGCCACTCGAGAGGAGCTGACAGCCTCCTGCACCCCGAGG
AGTCCCTCACATGCGGACATCGTATTGCTGAAACCCCTGGAGGACCTGGACAGAAACAAA
GATGGCTATGTCCAGGTGGAGGAGTACATCGCGGATCTGTACTCAGCCGAGCCTGGGAGGA
GGAGCCGGCGTGGGTGCAGACGGAGAGGCAGCAGTCCGGACTTCCGGATCTGAACAAGG
ATGGGCACCTGGATGGAGTGAGGTGGCCACTGGTGCTGCCCTGCCAGGACCAGCCC
CTGGTGGAAAGCCAACCACCTGCTGCACGAGAGCGACACGGACAAGGATGGCGGCTGAGCAA
AGCGGAAATCCTGGTAATTGAAACATGTTGTGGCAGTCAGGCCACCAACTATGGCGAGG
ACCTGACCCGGCACACGATGAGCTTGAGCCACCGCACCTGCCACAGCCTCAGAGGCCG
CACAATGACCGGAGGAGGGCCGCTGGTCTGCCCTCCCTGTCCAGGCCCGCAGGAG
GCAGATGCAGTCCCAGGCATCCTGCCCTGGCTCTCAGGGACCCCTGGGTCGGCTTC
TGTCCCTGTCACACCCCAACCCAGGGAGGGCTGTCATAGTCCCAGAGGATAAGCAATAC
CTATTCTGACTGAGTCTCCAGCCCAGACCCAGGGACCCCTGCCAGGAAAGCTCAGCTCTAA
GAACCGCCCCAACCCCTCCAGCTCAAATCTGAGCCTCCACCATAGACTGAAACTCCCT
GGCCCCAGCCCTCTGCCCTGGCCTGGACACCTCCTCTGCCAGGAGGAATAA
AAGCCAGCGCCGGACCTTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAA

FIGURE 80

MMWRPSVLLLLLRLHGAQGKPSPDAGPHQGRVHQAAPLSDAPHDDAHGNFQYDHEAFLGR
EVAKEFDQLTPEESQARLGRIVDRMDRAGDGWVSLAELRAWIAHTQQRHIRDSVSAAWDT
YDTDGRVGWEELRNATYGHYAPGEFHDVEDAETYKKMLARDERRFRVADQDGDSMATRE
ELTAFLHPEEFPHMRDIVIAETLEDLDRNKGYVQVEEYIADLYSAEPGEEEPAWVQTERQQ
FRDFRDLNKGHLDGSEVGHVLPPAQDQPLVEANHLLHESDTDKDGRSLKAEILGNWNMFV
GSQATNYGEDLTRHHDEL

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 140-144

Casein kinase II phosphorylation site.

amino acids 72-76, 98-102, 127-131, 184-188, 208-212, 289-293,
291-295, 298-302

N-myristoylation site.

amino acids 263-269, 311-317

Endoplasmic reticulum targeting sequence.

amino acids 325-330

FIGURE 81

GGGGCCTTGCCTCCGCACTCGGGCGCAGCCGGGTGGATCTCGAGCAGGTGC GGAGCCCCGG
GCGGCAGGGCGCGGGTGCAGGGGATCCCTGACGCCTCTGTCCCTGTTCTTGTGCTCCCAG
CCTGTCTGTCGTTGGCGCCCCGCTCCCCGCGGTGCGGGGTTGCACACCGATCCTG
GGCTTCGCTCGATTGGCGCCGAGGGCGCTCCCAGACCTAGAGGGCGCTGGCCTGGAGCAG
CGGGTCGTCGTTGTCCCTCTCCCTCTGCGCCGCCGGGATCCGAAGGGTGC GGGGGCTCT
GAGGAGGTGACCGCGGGGCCTCCCAGCACCCTGGCCTGCCCCTCCTCCCAG
GTGTGAGCAGCCTATCAGTCACCATGTCCGCAGCCTGGATCCGGCTCTGGCCTCGGTGTG
TGTCTGCTGCTGCCGGGCCCGGGCAGCGAGGGAGCCGCTCCCATTGCTATCACATG
TTTACAGAGGCTTGGACATCAGGAAAGAGAAAGCAGATGTCTCTGCCAGGGGGCTGCC
CTCTTGAGGAATTCTCTGTGTATGGGAACATAGTATATGCTCTGTATCGAGCATATGTGG
GCTGCTGTCACAGGGGAGTAATCAGCAACTCAGGGGACCTGTACGAGTCTATAGCCTACC
TGGTCGAGAAAACATTCCCTCAGTAGATGCCAATGGCATCCAGTCTCAAATGCTTCTAGAT
GGTCTGCTCTTCACAGTAACAAAGGCAAAGTAGTACACAGGAGGCCACAGGACAAGCA
GTGTCCACAGCACATCCACCAACAGGTAAACGACTAAAGAAAACACCCGAGAAGAAAACGG
CAATAAAGATTGTAAAGCAGACATTGCATTTGATTGATGGAAGCTTAATATTGGCAGC
GCCGATTTAATTACAGAAGAATTGGTGTGAAAGTGGCTCTAATGTTGGAAATTGGAACA
GAAGGACCACATGTGGCCTTGTCAAGCCAGTGAACATCCAAAATAGAATTACTTGAA
AAACTTACATCAGCAAAGATGTTGTTGCCATAAAGGAAGTAGGTTCAGAGGGGTA
ATTCCAATACAGGAAAAGCCTGAAAGCATACTGCTCAGAAATTCTCACGGTAGATGCTGGA
GTAAGAAAAGGGATCCCCAAAGTGGTGGTATTATTGATGTTGGCCTCTGATGACAT
CGAGGAAGCAGGCATTGTGGCAGAGAGTTGGTGTCAATGTATTAGTTCTGTGGCCA
AGCCTATCCCTGAAGAACTGGGATGGTCAGGATGTCACATTGTTGACAAGGCTGCTGT
CGGAATAATGGCTTCTCTTACCATGCCAACTGGTTGGCACCAAAATACGTAAA
GCCTCTGGTACAGAAGCTGTGCACTCATGAACAAATGATGTGCAAGCACCTGTTATAACT
CAGTGAACATTGCCCTTCTAATTGATGGCTCCAGCAGTGTGGAGATAGCAATTCCGCC
ATGCTTGAATTGTTCCAACATAGCCAAGACTTTGAAATCTCGGACATTGGTGCCAAGAT
AGCTGCTGTACAGTTACTTATGATCAGCGCACGGAGTTCACTGACTATAGCACCA
AAGAGAATGTCCTAGCTGTCACTAGAAACATCCGCTATATGAGTGGTGGAAACAGCTACTGG
GATGCCATTCTCACTGTTAGAAATGTGTTGGCCCTATAAGGGAGAGCCCCAACAGAA
CTTCCTAGTAATTGTCACAGATGGGCAGTCCTATGATGATGTCCAAGGCCCTGCAGCTGCTG
CACATGATGCAGGAATCACTATCTCTGTGGTGTGGCTGGCACCTCTGGATGACCTG
AAAGATATGGCTTCTAAACCGAAGGAGTCTCACGCTTCTTACAAGAGAGTTCACAGGATT
AGAACCAATTGTTCTGATGTCATCAGAGGCATTGAGAGATTCTTACAATCCCAGCAAT
ATGGTAACATTGACAACGTAAAGAAAAAGTACAAGGGGATCCAGTGTGTAATTGTATT
CTCATAACTGAAATGCTTACTGATGAGATCAGATAACAAACTATTAAGTATGTCAAC
AGCCATTTAGGCAAATAAGCACTCCTTAAAGCCGCTGCCTCTGGTTACAATTACAGTGT
ACTTTGTTAAAACACTGCTGAGGCTTCATAATCATGGCTTCTAGAAACTCAGGAAAGAGGA
GATAATGTGGATTAAAACCTTAAGAGTTCTAACCATGCCTACTAAATGTACAGATATGCAA
TTCCATAGCTCAATAAAAGAATCTGATACTTAGACCAAAAAAAA

FIGURE 82

MSAAWI PALGLGVCLLLLPGPAGSEGA APIA ITCFTRGLDIRKEKADVLCPGGC PLEEF SVY
GNIVYASVSSICGAAVHRGVISNSGGPVRVYSLPGRENYSSVDANGIQSQMLSRWSASFTVT
KGKSSTQEATGQAVSTAHPPTGKRLKKTPEKKTGNKDKCKADIAFLIDGSFNIGQRRFNLQKN
FVGKVALMLGIGTEGPHVGLVQASEHPKIEFYLNFTSAKDVLFAIKEVGFRGGNSNTGKAL
KHTAQKFFTVDAGVRKGIPKVVVVFIDGWPSSDIEEAGIVAREFGVNVFIVSVAKPIPEELG
MVQDVTFVDKAVCRNNNGFFSYHMPNWFGTTKYVKPLVQKLCTHEQMMCSKTCYNSVNIAFLI
DGSSSVGDSNFRLMLEFVSNIAKTFEISDIGAKIAAVQFTYDQRTESFTDYSTKENVLAVI
RNIRYMSGGTATGDAISFTVRNVFGPIRESPNKNFLVIVTDGQSYDDVQGPAAAHDAGITI
FSVGVAWAPLDDLKDMASKPKESHAFFTREFTGLEPIVSDVIRGICRDFLESQQ

Signal sequence:

amino acids 1-24

N-glycosylation site.

amino acids 100-104, 221-225

Casein kinase II phosphorylation site.

amino acids 102-106, 129-133, 224-228, 316-320, 377-381, 420-424,
425-429, 478-482, 528-532

N-myristoylation site.

amino acids 10-16, 23-29, 81-87, 135-141, 158-164, 205-211,
239-245, 240-246, 261-267, 403-409, 442-448, 443-449

Amidation site.

amino acids 145-149

FIGURE 83

CGCCCGCGCTCCCGCACCCGGCCCGCCACCAGCGCCGCTCCCGCATCTGCACCCGAGCCC
GGCGGCCTCCCGCGGGAGCAGCAGATCCAGTCCGGCCCGAGCGCAACTCGGTCCAGTCG
GGGCGGCGGCTGCGGGCGAGAGCGGAGATGCAGCGGCTTGGGCCACCCCTGCTGTGCCTGC
TGCTGGCGGCGGCGGTCCCCACGGCCCCCGCGCCCGCTCCGACGGCGACCTCGGCTCCAGTC
AAGCCCGGCCCGGCTCTCAGCTACCCGAGGAGGAGGCCACCCCTCAATGAGATGTTCCGCGA
GGTGAGGAAGTGTGGAGGACACGCAGCACAAATTGCGCAGCGCGGTGGAAGAGATGGAGG
CAGAAGAAGCTGCTGCTAAAGCATCATCAGAAGTGAACCTGGCAAACACTACCTCCCAGCTAT
ACAATGAGACCAACACAGACACGAAGGTTGAAATAATACCATCCATGTGCACCGAGAAAT
TCACAAGATAACCAACAACCAGACTGGACAAATGGTCTTTCAGAGACAGTTATCACATCTG
TGGGAGACGAAGAAGGCAGAAGGAGCCACGAGTCATCATCGACGAGGACTGTGGGCCAGC
ATGTACTGCCAGTTGCCAGTTCCAGTACACCTGCCAGCCATGCCGGGGCAGAGGATGCT
CTGCACCCGGGACAGTGGAGTCAGCTGTGGAGACCAGCTGTGTCTGGGTCACTGCACCAAAA
TGGCCACCAGGGGAGCAATGGGACCATCTGTGACAACCAGAGGGACTGCCAGCCGGGCTG
TGCTGTGCCTTCCAGAGAGGGCTGCTGTTCCCTGTGTCACACCCCTGCCGTGGAGGGCGA
GCTTGCCATGACCCGCCAGCCGGCTCTGGACCTCATCACCTGGAGCTAGAGCCTGATG
GAGCCTTGGACCGATGCCCTGTGCCAGTGGCCTCCTGCCAGCCCCACAGCCACAGCCTG
GTGTATGTGTGCAAGCCGACCTCGTGGGAGCCGTGACCAAGATGGGAGATCCTGCTGCC
CAGAGAGGTCCCCGATGAGTATGAAGTTGGCAGCTTCATGGAGGAGGTGCGCCAGGAGCTGG
AGGACCTGGAGAGGAGCCTGACTGAAGAGATGGCGCTGGGGAGCCTGCCGCTGCCGCCGCT
GCAGTGTGGAGGGAGAGATTAGATCTGGACCGAGGCTGTGGTAGATGTGCAATAGAA
ATAGCTAATTATTCCCCCAGGTGTGCTTGTGCTTGTGCTTGTGCTTGTGCTTGTGCTTGTGCT
TCTTCTTCCCAGTAAGTTCCCCTCTGGCTTGACAGCATGAGGTGTTGCTTGTGCTTGTGCT
TCCCCCAGGCTGTCTCCAGGCTTCACAGTCTGGCTGTGGAGAGTCAGGCAGGGTTAAC
TGCAGGAGCAGTTGCCACCCCTGTCCAGATTATTGGCTGCTTGCCTCTACCAAGTTGGCAG
ACAGCCGTTGTTCTACATGGCTTGATAATTGTTGAGGGAGGAGATGAAACAATGTGG
AGTCTCCCTGTGATTGGTTGGGAAATGTGGAGAAGAGTGCCTGCTTGTGCAAACATCAA
CCTGGCAAAATGCAACAAATGAATTTCACAGCAGTTCTTCCATGGCATAGGTAAGCTG
TGCCTTCAGCTGTTGCAGATGAAATGTTCTGTTCACTACATGTGTTATTGATCC
AGCAGTGTGCTCAGCTCCTACCTCTGTGCCAGGGCAGCATTTCATATCCAAGATCAATT
CCTCTCTCAGCACAGCCTGGGAGGGGTATTGTTCTCCTCGCCATCAGGATCTCAGAG
GCTCAGAGACTGCAAGCTGCTGCCAAGTCACACAGCTAGTGAAGACCAGAGCAGTTCAT
CTGGTTGTGACTCTAAGCTCAGTGTCTCTCCACTACCCACACCAGCCTTGGTGCCACCAA
AAAGTGTCCCCAAAAGGAAGGAGAATGGGATTCTTGAGGCATGCACATCTGGAATTAAG
GTCAAACATTCTCACATCCCTCTAAAGTAAACTACTGTTAGGAACAGCAGTGTCTCAC
AGTGTGGGGCAGCGTCCCTCTAATGAAGACAATGATATTGACACTGTCCCTCTTGGCAGT
TGCATTAGTAACCTTGAAAGGTATATGACTGAGCGTAGCATAACAGGTTAACCTGCAGAAACA
GTACTTAGTAATTGTAGGGCGAGGATTATAATGAAATTGCAAATCACTTAGCAGCAAC
TGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGCTGTGAAACATGGTT
GTAATATGCGACTGCCAACACTGAACACTACGCCACTCCACAAATGATGTTTCAGGTGTCA
TGGACTGTTGCCACCATGTATTGACACTGTCTTAAAGTTAAAGTTGACATGATTGTA
TAAGCATGCTTCTTGAGTTAAATTATGATAAACATAAGTTGCATTAGAAATCAAGC
ATAAATCACTCAACTGCAAAAAAAAAAAAAAA

FIGURE 84

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQ
HKLRSAVEEMEAEEAAKASSEVNLNLPPSYHNETNTDTKVGNNTIHVHREIHKITNNQTG
QMVFSETVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRSECCG
DQLCVWGHCTKMATRGSGNTICDNQRDCQPGLCCAFQRGLFPVCTPLPVEGELCHDPASRL
LDLITWELEPDGALDRPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGIELLPREVPDEYEV
GSFMEEVROELEDLERSLTEEMALGEPAAAAALLGGEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316,
327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

FIGURE 85

AAGGAGGGCTGGGAGGAAGAGGTAAGAAAGGTTAGAGAACCTACCTCACATCTCTGGCTCAGAAGGACTCTG
AAGATAACAATAATTCAAGCCCATCCACTCTCCTTCCCTCCAAACACACATGTGCATGTACACACACATACA
CACACATACACCTTCCTCTCCTTCACTGAAGACTCACAGTCACTCACTCTGTGAGCAGGTCAAGAAAAGGACAC
TAAAGCCTTAAGGCAGGGCTGGCATTACCTCTGCAGCTCTTGGCTTGTGAGTCAGAAAACATGGAGGG
CCAGGCACGGTCACTCACACCTGTAATCCCAGCATTGGAGACCGAGGTGAGCAGATCACTTGAGGTCAAGGAG
TTCGAGACGGCTGGCAGGAAACATGGAGAAACCCCCATCTACTAAACAAAATTAGCCAGGAGTGGTGGC
AGGTGCCTGTAATCCCAGCTACTCAGGTGGCTGAGCCAGGAGAATCGCTGAAATCCAGGAGGGAGGATGCCAGT
CAGCTGAGTCACCGCTGCACTCCAGCCTGGGAGCAGAATGAGACTCTGTCTCAAACAAAACACGGGAGGA
GGGGTAGATACTGCTTCTGCAACCTCTTAACCTCTGCACCTCTTCCAGGGCTGCCCCCTGATGGGGCCTG
GCAATGACTGAGCAGGCCAGCCCCAGAGGACAAGGAAGAGAACGGCATATTGAGGAGGGCAAGAAGTGACGCCG
GTGAGAATGACTGCCCTGGGAGGGTGGTCCCTGGGAGGGTGTGACCCCTACCCCTGCAAAACAC
AAGAGCAGGACTCCAGACTCTCCTGTGAATGGTCCCCCTGCCCCAGCTGAGCTCAGATGAGGCTTCTCGTGGCCCC
ACTCTGCTAGCTGGGGCTGGCTGGCACTGCCACTGTGCCAGCTGGTACCCCTGGCATGTTCCCTGCCCCCTCA
GTGTGCCTGCCAGATCCGGCCCTGGTATACGCCCGCTGCTCTACCGCGAGGCTACCAACTGTGGACTGCAATGA
CCTATTCTGACGGCAGTCCCCCGGCACTCCCCGAGGCACACAGACCCCTGCTGAGGCAACAGCAATTGT
CCGTGTGGACCAGAGTGAAGCTGGCTACCTGGCAATCTCACAGAGCTGGACTGTCCCAGAACAGCTTTGGA
TGCCCGAGACTGTGATTCCATGCCCTGCCAGCTGCTGAGCCTGACCTAGAGGAGAACAGCTGACCCGGCT
GGAGGACCACAGCTTGAGGGCTGGCAGCCATAGGAACACTATCTCAACCACAACCAGCTCACCGCATCGC
CCCCAGGGCCTTCTGGCCTCAGCAACTTGCTGCCGTGACCTCAACTCCAACCTCTGAGGGCATTGACAG
CCGCTGGTTGAAATGCTGCCAACCTGGAGATACTCATGATTGGGGCAACAGGTAGATGCCATCTGGACAT
GAACCTCCGGCCCTGGCCAACCTGCGTAGGCTGGTGTAGCAGGCATGAACCTGCCGGAGATCTCGACTATGC
CCTGGAGGGCTGCAAAGCCTGGAGAGCCTCTCCTTCTATGACAACCAAGCTGCCCGGGTGCCCAGGCGGGCACT
GGAACAGGTGCCGGCTCAAGTCTCTAGACCTCAACAAGAACCCGCTCCAGCGGGTAGGGCGGGGACTTGC
CAACATGCTGACCTTAAGGAGCTGGACTGAACAACATGGAGGAGCTGGCTCCATGACAAGTTGCCCCTGGT
GAACCTCCCCGAGCTGACAAGCTGGACATACCAATAACCCACGGCTGTCCTTCTATCCACCCCCCGCCTTCA
CCACCTGCCAGATGGAGAACCTCATGCTCAACAAACAGCTCTCAGTGCCCTGCACCCAGCAGACGGTGGAGTC
CCTGCCCAACCTGCAAGGGTAGGTCTCACGCCAACCCATCCGCTGTGACTGTGTCATCCGCTGGGCCATG
CACGGGACCCGTGTCGCCCTCATGAGCCGAATCCACCCCTGTGAGGCTCCAGCAGCGCCTCCC
GGTCCGTGAGGTGCCCTTCCGGAGATGACGGACCAGTGTGCCCCCTCATCTCCCAGAACAGCTTCCCCCAAG
CCTCAGGTAGCCAGTGGAGAGAGCATGGTGTGCAATTGCCGGCACTGGCCGAACCCGAACCCGAGATCTACTG
GGTCACTCCAGCTGGCTCGACTGACACCTGCCATGCAGGCAGGAGGTACGGGTGTACCCCGAGGGACCC
GGAGCTGCCGGAGGGTGACAGCAGAACAGGGCAGGGCTATACACCTGTGTGGCCAGAACCTGGTGGGGCTGACAC
TAAGACGGTTAGTGTGGTGTGGCCGTGCTCCTCCAGCCAGGAGGGCAGAACGGAGGACAGGGCTGGAGCTCCG
GGTGCAGGAGACCCACCCCTATCACATCTGCTATCTGGGTCAACCCACCCAACACAGTGTCCACCAACCTCAC
CTGGTCCAGTGCCCTCCCTCCGGGCCAGGGGCCACAGCTGGCCCTGCCTGGGGAACCCACAGCTA
CAACATTACCCGCTCCTCAGGCCACGGAGTACTGGCCCTGCCATGAGCTGGCCCTTGTGATGCCACACCC
GTTGGCTTGTGTATGGGCAGGACCAAAAGAGGCCACTCTTGCACAGAGCCTAGGGGATGTCCTGGCTCAT
TGCCATCTGGCTCGCTGTCTTCTCCGGCAGCTGGCTAGGGCCACCTGGCACAGGCCAACCCAGGAA
GGGTGTGGGTGGGAGGCGGCCCTCCCTCCAGCCTGGCTTCTGGGCTGGAGTGCCCTCTGTCCGGGTTGT
GTCTGCTCCCTCGTCTGGCCCTGGAAATCCAGGGAGGAAGCTGCCAGATCTCAGAACGGGAGACACTGTTGCC
ACCATTGTCTAAATTCTGAAGCTCAGCCTGTTCTCAGCAGTAGAGAAATCACTAGGACTACTTTACCAA
AGAGAACAGCTGGGCCAGATGCCCTGCCAGGAAGGGACATGGACCCACGTGCTGAGGGCTGGCAGCTGGC
CAAGACAGATGGGCTTGTGGCCCTGGGGGTCTCTGCAGCCTGAAAAAGTGTGCCCTTACCTCTAGGGTCA
CCTCTGCTGCCATTCTGAGGAACATCTCAAGGAACAGGAGGGACTTGGCTAGAGCCTCTGCCTCCCCATCTT
CTCTGCCCCAGGGCTCTGGCTTGTGCTCTGGCTTGTGCTCTGGCAAGGGCTGAAGGGAGGCCACTCCATCTCAC
TCTTCTCTGTACAGTCTCAGTTGCTTGTGCTCTGGCTTGTGCTCTGGCAAGGGCAGATCTGAAGGGACATTGGGAGGGATGCCAGGAA
CTCGGGGGCTGCCCTCAATGTGGGAGTGACCCAGCCAGATCTGAAGGGACATTGGCAATTGGTACCTTGTGAGGAA
CGCCTCATCTCAGCAGCTGGCTGGCATTCCGAAGCTGACTTTCTATAGGCAATTGGTACCTTGTGAGGAA
ATGTGTACACCTCCCCAACCCGATTCACTCTTCTCTGGTAAAAAATAAAATAACAATAAAA
AAAA

FIGURE 86

MRLLVAPLLLAWVAGATATVPVVPWHVPCPPQCACQIRPWYTPRSSYREATTVDCNDLFLTA
VPPALPAGTQTLLLQSNSIVRVDQSELGYLANLTELDLSQNSFSDARDCDFHALPQQLSLHL
EENQLTRLEDHSFAGLASLQELYLNHNQLYRIAPRAFSGLSNLLRLHLNSNLLRAIDSRWFE
MLPNLEILMIGGNKVDAILDMNFRPLANLRSILVLAGMNLREISDYALEGLQSLSLFYDNO
LARVPRRALEQVPGLKFLDLNKNPLQRVPGDFANMLHLKELGLNNMEELVSIKFALVNLP
ELTKLDITNNPRLSFIHPRAFHHLQPQMETLMLNNNALSALHQQTVESLPNLQEVGLHGNPIR
CDCVIRWANATGTRVRFIEPQSTLCAEPPDLQRLPVREVPFREMTDHCLPLISPRSFPPSLQ
VASGESMVLHCRALAEPEPEIYWVTPAGLRLTPAHGRRYRVYPEGTLELRRVTAAEAGLYT
CVAQNLVGADEKTVSVVGRALLQPGGRDEGQGLELRVQETHPYHILLSWTPNNTVSTNLTW
SSASSLRGQGATALARLPRGTHSYNITRLLQATEYWACLQVAFADAHTQLACVWARTKEATS
CHRALGDRPGLIAILALAVLLAAGLAAHLGTGQPRKGVGRRPLPPAWAFWGWSAPSVRVV
SAPLVLPWNPGRKLPSSGETLLPPLSQNS

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 629-648

N-glycosylation site.

amino acids 94-98, 381-385, 555-559, 583-587

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 485-489

Casein kinase II phosphorylation site.

amino acids 46-50, 51-55, 96-100, 104-108, 130-134, 142-146,
243-247, 313-317, 488-492, 700-704

Tyrosine kinase phosphorylation site.

amino acids 532-540

N-myristoylation site.

amino acids 15-21, 493-499, 566-572

Amidation site.

amino acids 470-474, 660-664, 692-696

FIGURE 87

GCAAGCCAAGGGCTGTTGAGAAGGTGAAGAAGTCCGGACCCATGTGGAGGAGGGGACATTGTGTACCGCCT
CTACATGCGGAGACCATCATCAAGGTGATCAAGTTCATCCTCATCATCTGCTACACCGCTACTACGTGCACAA
CATCAAGTTCGACGTGGACTGCACCGTGGACATTGAGAGCCTGACGGGCTACCGCACCTACCGCTGTGCCACCC
CCTGCCACACTCTTCAGATCCTGGCGTCTTCTACATCAGCTAGTCATCTTACGGCCTCATCTGCATGTA
CACACTGTGGTGGATGCTACGGCCTCCCTCAAGAAGTACTCGTTGAGTCGATCCGTGAGGAGAGCAGCTACAG
CGACATCCCCGACGTCAAGAACGACTTCGCCTTATGCTGCACCTCATTGACCAATACGACCCGCTACTCCAA
GCGCTTCGCCGCTTCTGCGGAGGTGAGTGAGAACAGCTGCGCAGCTGAACCTCAACAACGAGTGGAGCCT
GGACAAGCTCCGGCAGCGCCTACCAAGAACCGCAGGACAAGCTGGAGCTGCACCTGTCAGTGGCAT
CCCTGACACTGTGTTGACCTGGTGGAGCTGGAGGTCTCAAGCTGGAGCTGATCCCCGACGTGACCATCCGCC
CAGCATTGCCAGCTCACGGGCTCAAGGAGCTGTTGACCATCAAGGAGCTGACCTCATTGACCAATACGCGCCTGCC
GGCCTTCTGCGCAGAACCTGCGGGCGTGCACATCAAGTTCACCGACATCAAGGAGATCCCGCTGTGGATCTA
TAGCTGAAAGACACTGGAGGAGCTGCACCTGACGGGCAACCTGAGCGCGGAGAACAAACCGCTACATCGTCATCGA
CGGGCTGCCGGAGCTCAAACGCCCTCAAGGCTGCTGCCCTCAAGAGAACCTAACAGGAGCTGACAGGTGGTAC
AGATGTGGCGTGCACCTGAGCTGGAGCTGATCCGCTGCGACCTGGAGCGCATCCCCACTCCATTTCAAGCCTAA
GAAGATGGCGAACCTGACTGAGCTGGAGCTGACCTCAAGGACAACACCTCAAGACCATCGAGGAGATCATCAGCTCCAGCACCT
GCACCGCCTCACCTGCCTTAAGCTGGTACAACCACATCGCCTACATCCCCATCCAGATCGGCAACCTCACCAA
CCTGGAGGCCCTTACCTGAAACGCAACAAGATCGAGAACAGATCCCCACCCAGCTTCTACTGCCGCAAGCTGCG
CTACCTGGACCTCAGCCACAACACCTGACCTTCTCCCTGCCGACATCGGCTCTGCAAGAACCTCCAGAACCT
AGCATCACGGCAACCGGATCGAGACGCTCCCTCCGGAGCTTCCAGTGCAGGAGCTGCGGGCCCTGCACCT
GGGCAACAAACGTGCTGCAGTCAGTCACTGCCCTCCAGGGTGGCGAGCTGACCAACCTGACGCAAGATCGAGCTGCC
CAACCGGCTGGAGTGCCTGCTGTGGAGCTGGCGAGTGCCTACTGCTCAAGCGCAGCGCTTGGTGGAGGA
GGACCTGTTCAACACACTGCCACCCGAGGTGAAGGAGCGGCTGTGGAGGGCTGACAAGGAGCAGGCCCTGAGCGAG
GCCGCCAGCACAGCAAGCAGCAGGACCGCTGCCAGTCCTCAGGCCGGAGGGGAGGCCCTAGCTTCTCCAG
AACTCCCGGACAGCCAGGACAGCCTCGCGCTGGCAGGGCCTGGGAGCTGGGAGCTGAGTCAGGCCAGAGCGAGA
GGACAGTATCTGTGGGCTGGCCCTTCTCCCTGAGACTCACGTCCCCAGGGCAAGTGTCTGTGGAGGAG
AGCAAGTCTCAAGAGCGCAGTATTTGATAATCAGGGTCTCCTCCCTGGAGGCCAGCTCTGCCAGGGGCTGAG
CTGCCACCAGAGGTCTGGACCCCTCACTTAGTTCTGGTATTATTTCTCCATCTCCACCTCCTTCACTCC
AGATAACTTATACATCCCAAGAAAGTTGAGCCAGATGGAAGGTGTTCAAGGAAAGGTGGCTGCTTCTTCCCC
TTGCTCTTATTAGCGATGCCGCCGGCATTTAACACCCACCTGGACTTCAGCAGACTGTCAGGGCGAACCAG
CCATGGGACGGTCACCCAGCAGTGCCTGGCTCTGCCGCTGGGAGAGCAGGCCCTCAGCTGGA
AAGGCCAGGCCCTGGAGCTGCCCTTCAGTTTGTCAGGTTAGTTTTGTTTTTTTTTTTTAATCAA
AAACAATTTTTAAAAAAAGCTTGAAATGGATGGTTGGGTATTAAAAAGAAAAAAACTTAAAAAA
AAAAGACACTAACGCCAGTGAAGTGGAGTCTCAGGGCAGGGTGGCAGTTCCCTTGAGCAAAGCAGCCAGACGT
TGAACGTGTTCTTCCCTGGCGCAGGGTGCAGGGTGTCTTCCGGATCTGGTGTACCTTGGTCCAGGAGTT
CTATTGTTCTGGGAGGGAGGTTTTGTTGTTGGTTTTGGTGTCTTGTCTTCTCC
ATGTGTCTGGCAGGCACTCATTCCTGTTGCTGCGGCCAGAGGGAAATGTTCTGGAGCTGCCAAGGAGGGAGGAG
ACTCGGGTGGCTAATCCCGGATGAACGGTGTCCATTGCCACCTCCCTCGTGCCTGCCCTGCCCTCCA
CGCACAGTGTTAAGGAGCCAAGAGGAGCCACTCGCCAGACTTGTGTTCCCCACCTCCTGCCGATGGGTGTT
CCAGTGCCACCGCTGGCCTCCGCTGTTCCATCAGCCCTGTCGCCACCTGGTCTTCTAGAACAGAGCAGACACTTA
GAGGCTGGTGGGAATGGGAGGTGCCCTGGAGGGCAGGCCTGGTTCCAAGCCGGTCCCTGGCCTGCC
CTGGAGTGCACACAGCCAGTCGGCACCTGGTGGCTGGAGGCCAACCTGTTAGATCACTGGGCCCCACCTT
AGAAGGGTCCCCGCTTAGATCAATCACGTGGACACTAACGGCACGTTAGAGTCTTTGTCTTAATGATTATGT
CCATCCGTCTGTCGTCCATTGTTCTGCGTGTGTCATTGGATATAATCCTCAGAAATAATGCACACTAG
CCTCTGACAACCATGAAGAAAAATCCGTTACATGTGGGTCTGAACCTGTAGACTCGGTACAGTATCAAATAA
ATCTATAACAGAAAAAA

FIGURE 88

MRQTIKVIKFILIIICYTYYYVHNIKFVDVDCVDIESLTGYRTYRCAHPLATLFKILASFYI
SLVIFYGLICMYTLWWMLRRSLKKYSFESIREESSYSIDPDVKNDFAFMLHLIDQYDPLYSK
RFAVFLSEVSENKLRLQNLNNNEWTLDKLRQRLTKNAQDKLELHLFMLSGIPDTVFVFLVELEV
LKLELIPDVTIPPSIAQLTGLKELWLYHTAAKIEAPALAFLRENLRALHIKFDTIKEIPLWI
YSLKTLEELHLTGNLSAENNRYIVIDGLRELKRLKVLRLKSNLSKLPQVVTDVGVHLQKLSI
NNEGTKLIVLNSLKKMANLTELELIRCDLERIPHISIFSLHNLQEIDLKDNNLKTIEEIISFQ
HLHRLTCLKLWYNHIAYIPIQIGNLTNERLYLNRNKIEKIPQLFYCRKLRYLDLSHNNLT
FLPADIGLLQNLQNLAITANRIETLPPPELFQCRKLRALHGNVLQSLPSRVGELTNLTQIE
LRGNRLECLPVELGECPLLKRSGLVVEEDLFNTLPPEVKERLWRADKEQA

Transmembrane domain:

amino acids 51-75 (type II)

N-glycosylation site.

amino acids 262-266, 290-294, 328-332, 396-400, 432-436, 491-495

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 85-89

Casein kinase II phosphorylation site.

amino acids 91-95, 97-101, 177-181, 253-257, 330-334, 364-368,
398-402, 493-497

N-myristylation site.

amino acids 173-179, 261-267, 395-401, 441-447

FIGURE 89

GCCTGTTGCTGATGCTGCCGTGCGGTACTTGTCATGGAGCTGGCACTGCGGCGCTCTCCCGT
CCCGCGGTGGTTGCTGCTGCCGTGCTGGCCTGAACGCAGGAGCTGTCAATTGACT
GGCCCACAGAGGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCATACATG
TTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCTGGTCAT
GTGGCTTCAGGGCGGTCCAGGCAGGTTCTAGCACTGGATTGGAAACTTGAGGAAATTGGGC
CCCTTGACAGTGTCAAAACACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATT
GTGGATAATCCCCTGGGACTGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGA
CCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTCAGTTGCCACAAAG
AATTCCAGACAGTTCCATTCTACATTTCTCAGAGTCTATGGAGGAAAATGGCAGCTGGC
ATTGGTCTAGAGCTTATAAGGCCATTCAAGCGAGGGACCATCAAGTGCACACTTGCGGGGGT
TGCCTGGGTGATTCCCTGGATCTCCCTGTTGATTGGTGCCTCCTGGGACCTTACCTGT
ACAGCATGTCCTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGGTGCAGAGCAAGTA
CTGAATGCCGTAAATAAGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGAAAGCAGAAAT
GATCATTGAACAGAACACAGATGGGTGAACCTCTATAACATCTTAACACTAAAGCACTCCCA
CGTCTACAATGGAGTCGAGTCTAGAATTACACAGAGGCCACCTAGTTGTCTTGTAGCGC
CACGTGAGACACCTACAACGAGATGCCCTAACGCCAGCTCATGAATGGCCCCATCAGAAAGAA
GCTAAAATTATTCTGAGGATCAATCCTGGGAGGCCAGGCTACCAACGTCTTGTGAACA
TGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATC
AACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTAGGAGGCCTG
GGTGGAAACTGAAGTGGCCAGAACTGCCCTAAATTCAAGTCAGCTGAAGTGGAGGCCCTGT
ACAGTGACCCCTAAATCTTGGAAACATCTGCTTTGTCAAGTCCTACAAGAACCTTGCTTTC
TACTGGATTCTGAAAGCTGGTCAATGGTCCCTCTGACCAAGGGACATGGCTCTGAAGAT
GATGAGACTGGTGAECTCAGCAAGAATTGGATGGATGGGCTGGAGATGAGCTGGTTGGCCT
TGGGGCACAGAGCTGAGCTGAGGCCCTGAAGCTGTAGGAAGGCCATTCTCCCTGTATCT
AACTGGGGCTGTGATCAAGAAGGTTCTGACCAAGCTCTGCAGAGGATAAAATCATTGTCTCT
GGAGGCAATTGGAAATTATTCTGCTTCTAAAAAAACCTAAGATTTTAAAAAAATTGAT
TTGTTTGATCAAAATAAGGATGATAATAGATATTAA

FIGURE 90

MELALRRSPVPRWLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSC
KNFSELPLVMWLQGGPGGSSTGFGNFEIGPLSDLKPRKTTWLQAASLLFVDNPVGTGFSY
VNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQR
GTIKCNFAGVALGDSWISPVDVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYRE
ATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALS
QLMNGPIRKKLKIIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDL
IVDTMGQEAWRKLKWPELPKFSQLWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVP
SDQGDMALKMMRLVTQOE

Signal sequence:

amino acids 1-25

N-glycosylation site.

amino acids 64-68, 126-130, 362-366

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 101-105

Casein kinase II phosphorylation site.

amino acids 204-208, 220-224, 280-284, 284-288, 351-355, 449-453

N-myristoylation site.

amino acids 22-28, 76-82, 79-85, 80-86, 119-125, 169-175,
187-193, 195-201, 331-337, 332-338, 360-366

FIGURE 91

GGCCGCGGGAGAGGAGGCCATGGGCGCGCGGGCGCTGCTGCTGGCGCTGCTGCTGGCTC
GGGCTGGACTCAGGAAGCCGGAGTCGCAGGAGGCGGCCGTTATCAGGACCATGC GGCGA
CGGGTCATCACGTGCGCAGTCGTGGGTGGAGAGGACGCCGAACTCGGGCGTTGGCCGTGGCA
GGGGAGCCTGCGCCTGTGGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGG
CACTCACGGCGGCGCACTGCTTGAAACCTATAGTGACCTTAGTGATCCCTCCGGGTGGATG
GTCCAGTTGCCAGCTGACTTCCATGCCATCCTCTGGAGCCTGCAGGCCTACTACACCCG
TTACTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGAATTCACCTATGACATTG
CCTTGGTGAAGCTGTCTGCACCTGTACCTACACTAAACACATCCAGCCCATCTGTCTCCAG
GCCTCCACATTGAGTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGGGGTACATCAA
AGAGGATGAGGCACTGCCATCTCCCCACACCCCTCCAGGAAGTTCAAGTCGCCATCATAACA
ACTCTATGTGCAACCACCTCTCCTCAAGTACAGTTCCGCAAGGACATCTTGGAGACATG
GTTTGTGCTGGCAACGCCAACGGCGGGAGGATGCCTGCTCGGTGACTCAGGTGGACCCCTT
GGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGAGTGGCTGTG
GTCGGCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACCTTGAGTGGATCCAGAAG
CTGATGGCCCAAGAGTGGCATGTCCCAGCCAGACCCCTCCTGCCACTACTCTTTCCCTCT
TCTCTGGCTCTCCACTCCTGGGCCGGTCTGAGCCTACCTGAGCCCATGCAGCCTGGGC
CACTGCCAAGTCAGGCCCTGGTTCTTCTGTCTTGGTAATAAACACATTCCAGTTGA
TGCCTTGCAGGGCATTCTCAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 92

MGARGALLLALLLARAGLRKPESQEAPLSGPCGRRVITSRIVGGEDAELGRWPWQGSLRLW
DSHVCGVSLLSHRWALTAAHCFETYSDLSPSGWMQFGQLTSMPSFWSLQAYYTRYFVSNI
YLSPRYLGNSPYDIALVKLSAPVTYTKHIQPICLQASTFEFENRTDCWVTGWGYIKEDEALP
SPHTLQEJVQVIAIINNSMCNHLFLKYSFRKDIIFGDMVCAGNAQGGKDACFGDSGGPLACNKNG
LWYQIGVVSWGVGCGRPNRPGVYTNISHFEWIQKLMAQSGMSQPDPSWPLLFFPLLWALPL
LGPV

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 167-171, 200-204, 273-277

Casein kinase II phosphorylation site.

amino acids 86-90, 134-138, 161-165, 190-194, 291-295

N-myristoylation site.

amino acids 2-8, 44-50, 101-107, 225-231, 229-235, 239-245,
259-265, 269-275

Amidation site.

amino acids 33-37

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 252-263,

Serine proteases, trypsin family, histidine active site.

amino acids 78-84

FIGURE 93

CCACCGCGTCCGGACCGTGGGAAGGGCAGAATGGGACTCCAAGCCTGCCTCTAGGGCT
CTTGCCCTCATCCTCTGGCAAATGCAGTTACAGCCCAGCCGACCAGCGAGGACGC
TGCCCCCAGGCTGGGTGCCCCGGACCTGAGGAAGAGCTGAGTCTCACCTT
GCCCTGAGACAGCAGAATGTGAAAGACTCTCGGAGCTGGTGCAGGCTGTGAGGATCCCAG
CTCTCCTCAATAACGAAAATACCTGACCCCTAGAGAATGTGGCTGATCTGGTGGAGGCCATCCC
CACTGACCCCTCCACACGGTCAAAAATGGCTTGGCAGCCGGAGCCCAGAAGTGCATTCT
GTGATCACACAGGACTTCTGACTTGCTGGCTGAGCATCCGACAAGCAGAGCTGCTGCTCC
TGGGCTGAGTTCATCACTATGTGGGAGGACCTACGAAACCATGTTGTAAGGTCCCCAC
ATCCCTACCAGCTTCCACAGGCCTGGCCCCCATGTGGACTTGTGGGGGACTGCACCGT
TTTCCCCAACATCATCCCTGAGGCAACGTCTGAGCCGAGGTGACAGGGACTGTAGGCCT
GCATCTGGGGTAACCCCCTGTGATCCGTAAGCGATACAACCTGACCTACAAGACGTGG
GCTCTGGCACCAGCAATAACAGCCAAGCCTGTGCCAGTTCTGGAGCAGTATTTCCATGAC
TCAGACCTGGCTCAGTTCATGCGCCTTCTGGCAACTTGACATCAGGCATCAGTAGC
CCGTGTGGTGGACAACAGGGCCGGGGCCGGGATTGAGGCCAGTCTAGATGTGCAGT
ACCTGATGAGTGCTGGTGCACATCTCACCTGGGTCTACAGTAGCCCTGGCCGGCATGAG
GGACAGGAGCCCTTCCTGCAGTGGCTCATGCTGCTCAGTAATGAGTCAGCCCTGCCACATGT
GCATACTGTGAGCTATGGAGATGATGAGGACTCCCTCAGCAGCCCTACATCCAGCGGTCA
█ AACTGAGCTCATGAAGGCTGCCGCTGGGTCTCACCTGCTTCTGCCTCAGGTGACAGT
█ GGGGCCGGGTGTTGGTCTGTCTGGAAAGACACCAGTTCCGCCCTACCTTCCCTGCCTCCAG
█ CCCCTATGTCAACCACAGTGGAGGCACATCCTCCAGGAACCTTCCTCATCACAAATGAAA
█ TTGTTGACTATATCAGTGGTGGCTTCAGCAATGTGTTCCACGGCCTCATACCAGGAG
█ GAAGCTGTAACGAAGTTCCCTGAGCTCTAGCCCCCACCTGCCACCATCCAGTTACTTCAATGC
█ CAGTGGCGTGCCTACCCAGATGTGGCTGCACTTCTGATGGCTACTGGGTGGTCAGCAACA
█ GAGTGCCATTCCATGGGTGTCGGAACCTCGCCTCTACTCCAGTGGTTGGGGGATCCTA
█ TCCTTGATCAATGAGCACAGGATCCTTAGTGGCCCCCCCTTGGCTTCTCAACCCAAG
█ GCTCTACCAGCAGCATGGGCAGGTCTTTGATGTAACCGTGGCTGCCATGAGTCCTGTC
█ TGGATGAAGAGGTAGAGGGCCAGGGTTCTGCTCTGGCTGGATCCTGTAACAGGC
█ TGGGGAACACCAACTCCCAGTTGCTGAAGACTCTACTCAACCCCTGACCCTTCCATAC
█ AGGAGAGATGGCTTGTCCCCCTGCCCTGAAGCTGGCAGTTCACTCCCTTATTCTGCCCTGTTG
█ GAAGCCCTGCTGAACCCCTCAACTATTGACTGCTGAGACAGCTTATCTCCCTAACCCCTGAAA
█ TGCTGTGAGCTTGACTTCAACTCCACCCATGCTCCATCATACTCAGGTCTCCCTACT
█ CCTGCCCTAGATTCTCAATAAGATGCTGTAACTAGCATTTTGAAATGCCCTCCCTCCGC
ATCTCATCTTCTCTTCAATCAGGCTTTCAAAGGGTTGTATACAGACTCTGTGACTA
TTCACTTGATATTCAATTCCCCAATTCACTGCAAGGAGACCTCTACTGTCACCGTTACTCT
TTCCTACCCCTGACATCCAGAAACAATGGCCTCCAGTGCATACTCTCAATCTTGTGTTATG
GCCTTCCATCATAGTTGCCACTCCCTCTCCTACTTAGCTCCAGGTCTTAACCTCTG
ACTACTCTTGTCTTCCCTCTCATCAATTCTGCTTCTCATGGAATGCTGACCTTCATTG
TCCATTGAGATTTGCTCTCAGTTACTCATTGCCCCCTGGAACAAATCACTGACA
TCTACAACCATTACCATCTCACTAAATAAGACTTCTATCCAATAATGATTGATAACCTCAA
TGTAAAAAA

FIGURE 94

MGLQACLLGLFALILSGKCSYSPEPDQRTLPPGWVSLGRADPEEELSLTFALRQQNVERLS
ELVQAVSDPSSPQYGKYLTLENVADLVRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWL
SIRQAELLLPGAEFHYYVGGPTETHVVRSPHPYQLPQALAPHVDFVGGLHRFPPTSSLRQRP
EPQVTGTVGLHLGVTPSVIRKRYNLTSDVGSGTSNNSQACAQFLEQYFHDSDLAQFMRLFG
GNFAHQASVARVVGQQGRGRAGIEASLDVQYLMAGANISTWVYSSPGRHEGQEPFLQWML
LSNESALPHVHTVSYGDDEDSLSSAYIQRVNTELMKAAARGLTLFASGDSGAGCWSVSGRH
QFRPTFPASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQEEAVTKFLSSSP
HLPPSSYFNASGRAYPDVAALSDGYWVVSNRVPIPWVSGTSASTPVFGGILSLINEHRILSG
RPPLGFLNPRLYQQHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDPVTGWGTPTSQLC

Signal sequence:

amino acids 1-16

□

○

◊

N-glycosylation site.

amino acids 210-214, 222-226, 286-290, 313-317, 443-447

□

○

◊

Glycosaminoglycan attachment site.

amino acids 361-365, 408-412, 538-542

□

○

◊

Casein kinase II phosphorylation site.

amino acids 212-216, 324-328, 392-396, 420-424, 525-529

□

N-myristoylation site.

amino acids 2-8, 107-113, 195-201, 199-205, 217-223, 219-225,
248-254, 270-276, 284-290, 409-415, 410-416, 473-479, 482-488,
521-527, 533-539, 549-555

FIGURE 95

GCCGCGCGCTCTCTCCGGCGCCCACACCTGTCTGAGCGGCGAGCGAGCCGGCCGGC
GGGCTGCTCGCGCGGAACAGTGCTCGGCATGGCAGGGATTCCAGGGCTCCTCTTCCTTCTC
TTCTTCTGCTCTGTGCTGTGGCAAGTGAGCCCTACAGTGCCCCCTGGAAACCCACTTG
GCCTGCATACCGCCTCCCTGCGTCTGCCCAAGTCTACCCCTCAATTAGCCAAGCCAGACT
TTGGAGCCGAAGCAAATTAGAAGTATCTTCTCATGTGGACCCAGTGTCTAAGGGAACCT
CCACTGCCCACTTACGAAGAGGCCAAGCAATATCTGTCTTATGAAACGCTCTATGCCAATGG
CAGCCGCACAGAGACGCAGGTGGCATCTACATCCTCAGCAGTAGTGGAGATGGGGCCAAAC
ACCGAGACTCAGGGCTTCAGGAAAGTCTCGAAGGAAGCGGCAGATTATGGCTATGACAGC
AGGTTCAGCATTGGAGGACTTCCTGCTCAACTACCCCTTCTAACATCAGTGAAGTT
ATCCACGGGCTGCACCGCACCCCTGGTGGCAGAGAACATGTCCCTCACAGCTGCCACTGCA
TACACGATGAAAAACCTATGTGAAAGGAACCCAGAAGCTCGAGTGGCTTCTAAAGCCC
AAGTTAAAGATGGTGGTCGAGGGCCAACGACTCCACTTCAGCCATGCCAGAGCAGATGAA
ATTCAGTGGATCCGGGTGAAACGCACCCATGTGCCAAGGGTTGGATCAAGGGCAATGCCA
ATGACATCGGCATGGATTATGATTATGCCCTCCTGGAACCTCAAAAGCCCCACAAGAGAAAA
TTTATGAAGATTGGGGTGAGCCCTCCTGCTAACAGCAGTCCAGGCCAGGGCAGAACATTCACTTCTC
TGGTTATGACAATGACCGACCAGGAATTGGTGTATCGCTTCTGTGACGTCAAAGACGAGA
CCTATGACTTGCTCTACCAGCAATGCGATGCCAGCCAGGGCCAGGGCTGGGTCTAT
GTGAGGATGTGGAAGAGACAGCAGCAGAACATTATTGGCATTGGGCTTCAAGGAGGG
GCACCAAGTGGGTGGACATGAATGGTCCCCACAGGATTCAACGTGGCTGTCAAATCAGTC
CTCTCAAATATGCCAGATTGCTATTGGATTAAAGGAAACTACCTGGATTGTAGGGAGGG
TGACACAGTGTCCCTCCTGGCAGCAATTAAAGGTCTTCATGTTCTTATTTAGGAGAGGCC
AAATTGTTTGTCTTGCATTGGCGTGCACACGTGTGTGTGTGTGTGTGTGTAAAGGTGT
CTTATAATCTTACCTATTCTTACAATTGCAAGATGACTGGCTTACTATTGAAAATG
GTTTGTGTATCATATCATATCATTTAAGCAGTTGAAGGCATACTTTGCATAGAAATAA
AAAAAAACTGATTGGGCAATGAGGAATATTGACAATTAAAGTTAATCTTCACGTTTGT
CAAACTTGATTTCATCTGAACATTGTTCAAAGATTATTAATATTAAATATTGGCATA
CAAGAGATATGAAAAA

FIGURE 96

MAGIPGLLFLLFFLLCAVGQVSPYSAPWKPTWPAYRLPVVLPQSTLNLA
KPDFGAEAKLEVS
SSCGPQCHKGTPLPTYEEAKQYLSYETLYANGSRTETQVGIYILSSSGDGAQHRD
SGSSGKS
RRKRQIYGYDSRFSIFGKDFLLNYPFSTSVKLSTGCTGTLVAEKHVL
TAACIHDGKTYVKG
TQKLRVGFLKPKFKDGGRGANDSTS
AMPEQMKFQWIRVKRTHVPKGWIKGNANDIGMDYDYA
LLELKKPHKRKFMKIGVSPPAKQLPGGRIHFSGYDNDRPGNLVYRFCDV
KDETYDLLYQQCD
AQPGASGSGVYVRMWKRQQQKWERKIIGIFSGHQWVDMNGSPQDFNV
AVRITPLKYAQICYW
IKGNYLDCREG

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 93-97, 207-211

Glycosaminoglycan attachment site.

amino acids 109-113, 316-320

Casein kinase II phosphorylation site.

amino acids 77-81, 95-99, 108-112, 280-284, 351-355

N-myristoylation site.

amino acids 159-165, 162-168, 202-208, 205-211, 314-320, 338-344

Serine proteases, trypsin family, histidine active site.

amino acids 171-177

FIGURE 97

GCATGCCCTGGGTCTCTGAGCCTGCTGCCTGCTCCCCGCCCCACCAGCCATGGTGGTTT
CTGGAGCGCCCCAGCCCTGGGTGGGGCTGTCTCGGCACCTCACCTCCCTGCTGCTGCTG
GCGTCGACAGCCATCCTCAATGCGGCCAGGATACCTGTTCCCCAGCCTGTGGGAAGCCCCA
GCAGCTGAACC GGTTGTGGCGCGAGGACAGCACTGACAGCGAGTGGCCCTGGATCGTGA
GCATCCAGAAGAATGGGACCCACC ACTGCGCAGGTTCTGCTCACCAAGCCGCTGGGTGATC
ACTGCTGCCACTGTTCAAGGACAACCTGAACAAACCATACTGTTCTGTGCTGCTGGG
GGCCTGGCAGCTGGGAACCCCTGGCTCTGGTCCCAGAAGGTGGGTGTTGCCTGGGTGGAGC
CCCACCCCTGTGTATTCTGGAAAGGAAGGTGCCTGTGCAGACATTGCCCTGGTGCCTCGAG
CGCTCCATACAGTTCTCAGAGCGGGCCTGCCATCTGCCCTACCTGATGCCCTATCCACCT
CCCTCCAAACACCCACTGCTGGATCTCAGGCTGGGGAGCATCCAAGATGGAGTTCCCTTGC
CCCACCCCTCAGACCCTGCAGAACGCTGAAGGTTCTATCATCGACTCGGAAGTCTGCAGCCAT
CTGTACTGGCGGGAGCAGGACAGGGACCCATCACTGAGGAACATGCTGTGCCGGCTACTT
GGAGGGGGAGCGGGATGCTTGTCTGGCGACTCCGGGGCCCCCTCATGTGCCAGGTGGACG
GCGCCTGGCTGCTGGCCGGCATCATCAGCTGGGGCGAGGGCTGTGCCAGCGAACAGGCC
GGGGTCTACATCAGCCTCTGCGCACCGCTCTGGGTGGAGAACGATCGTCAAGGGGTGCA
GCTCCGGGGCGCCTCAGGGGGTGGGGCCCTCAGGGCACCGAGCCAGGGCTCTGGGGCG
CCGGCGCTCCTAGGGCGCAGCGGACCGGGCTCGGATCTGAAAGGCGGCCAGATCCACA
TCTGGATCTGGATCTGCGGCGGCCTCGGCGGTTCCCCCGCCGTAAATAGGCTCATCTACC
TCTACCTCTGGGGGCCGGACGGCTGCTGCGGAAAGGAAACCCCTCCCCGACCCGCCGAC
GGCCTCAGGCCCCCTCCAAGGCATCAGGCCCGCCAACGGCCTCATGTCCCCGCCCCAC
GACTTCCGGCCCCGCCCCGGGCCCCAGCGCTTTGTATATAATGTTAATGATTATTAT
AGGTATTTGTAACCCTGCCACATATCTTATTATTCCCTCCAATTCAATAATTATTATT
CTCCAAAAAAA

FIGURE 98

```
></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA43318
><subunit 1 of 1, 317 aa, 1 stop
><MW: 33732, pI: 7.90, NX(S/T): 1
MVVSGAPPALGGGCLGTFTSLLLLASTAILNAARI PVPPACGKPQQLNRVVGGEDSTDSEWP
WIVSIQKNGTHHCAGSLLTSRWVITAHCFKDNLNKPYLFVLLGAWQLGNPGSRSQKVGVA
WVEPHPVYSWKEGACADIALVRLERSIQFSERVLPICLPDASIHLPPNTHCWISGWGSIQDG
VPLPHPQTLQKLKVPIIDSEVC SHLYWRGAGQGPITEDMLCAGYLEGERDACLGDGGPLMC
QVDGAWLLAGIISWGEGCAERNRPGVYISLSAHRSWEKIVQGVQLRGRAQGGGALRAPSQG
SGAAARS
```

Signal sequence:

amino acids 1-32

N-glycosylation site.

amino acids 62-66, 96-100, 214-218, 382-386, 409-413, 455-459,
628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268,
314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,
671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,
1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534,
612-618, 623-629, 714-720, 873-879

FIGURE 99

GACGGCTGGCCACCATGCACGGCTCCTGCAGTTCTGATGCTCTGCTGCCGCTACTGCTA
CTGCTGGTGGCCACCACAGGGCCCGTTGGAGCCCTCACAGATGAGGAGAACGTTGATGGT
GGAGCTGCACAACCTCTACCGGGCCAGGTATCCCGACGGCCTCAGACATGCTGCACATGA
GATGGGACGAGGAGCTGGCCGCCTCGCCAAGGCCTACGCACGGCAGTGCCTGTGGGCCAC
AACAAAGGAGCGCGGGCGCCGGCGAGAACTGTTCGCCATCACAGACGAGGGCATGGACGT
GCCGCTGGCCATGGAGGAGTGGCACCACGAGCGTGAGCACTACAACCTCAGCGCCGCCACCT
GCAGCCCAGGCCAGATGTGGCCACTACACGCAGGTGGTATGGCCAAGACAGAGAGGATC
GGCTGTGGTCCCACCTCTGTGAGAAAGCTCCAGGGTGTGAGGAGACCAACATCGAATTACT
GGTGTGCAACTATGAGCCTCCGGGAACGTGAAGGGAAACGCCCTACCAAGGAGGGACTC
CGTGCTCCCAATGTCCCTCTGGCTACCACTGCAAGAACTCCCTCTGTGAACCCATCGGAAGC
CCGGAAGATGCTCAGGATTGCCTTACCTGGTAACTGAGGCCCATCCTCCGGCGACTGA
AGCATCAGACTCTAGGAAAATGGTACTCCTCTTCCCTAGCAACGGGATTCCGGTTTCT
TGGTAACAGAGGTCTCAGGCTCCCTGGCAACCAAGGCTCTGCCTGCTGTGAAACCCAGGCC
CCAACTTCCCTAGCAACGAAAGACCCGCCCTCCATGGCAACAGAGGCTCACCTGCGTAAC
AACTGAGGTCCCTTCCATTGGCAGCTCACAGCCTGCCCTCCTGGATGAGGAGCCAGTTA
CCTTCCCCAAATCGACCCATGTTCTATCCAAAATCAGCAGACAAAGTGACAGACAAAACA
AAAGTGCCCTCTAGGAGCCCAGAGAACTCTCTGGACCCCAAGATGTCCCTGACAGGGCAAG
GGAACCTCCTACCCCATGCCAGGAGGAGGCTGAGGCTGAGGCTGAGTTGCCTCCTCCAGTG
AGGTCTTGGCCTCAGTTTCCAGCCAGGACAAGCCAGGTGAGCTGCAGGCCACACTGGAC
CACACGGGCACACCTCCTCCAAGTCCCTGCCAATTCCCCAATACCTCTGCCACCGCTAA
TGCCACGGGTGGCGTGCCTGGCTCTGCAGTCGTCCCTGCCAGGTGCAGAGGCCCTGACA
AGCCTAGCGTTGTGTCAGGGCTGAACCTGGCCCTGGTCATGTGTGGGCCCTCCCTGGGA
CTACTGCTCCTGCCTCTGGTGTGGCTGGAATCTTCTGAATGGATACCAACTCAAAGGG
TGAAGAGGTAGCTGTCCTCTGTCACTTCCCCACCCCTGTCCCCAGGCCCTAAACAAGATA
CTTCTGGTTAAGGCCCTCCGAAGGGAAAGGCTACGGGCATGTGCCTCATCACACCCTCC
ATCCTGGAGGCACAAGGCCTGGCTGGCTGCGAGCTCAGGAGGCCCTGAGGACTGCACACC
GGGCCACACCTCTCCTGCCCTCCCTGAGTCCTGGGGTGGAGGATTGAGGGAGCT
CACTGCCTACCTGGCCTGGGCTGTCGCCACACAGCATGTGCCTCTCCCTGAGTGCCTG
TGTAGCTGGGATGGGATTCCCTAGGGCAGATGAAGGACAAGCCCCACTGGAGTGGGTTTC
TTTGAGTGGGGAGGCAGGGACGGAGGAAAGTAACCTGACTCTCCAATAAAACCT
GTCCAACCTGTGAAA

FIGURE 100

MHGSCSFLMLLLPLLLLVATTGPVGALTDEEKRLMVELHNLYRAQVSPTASDMLHMRWDEE
LAAFAKAYARQCVWGHNKERGRRGENLFAITDEGMDVPLAMEEWHHEREHYNLSAATCSPGQ
MCGHYTQVVWAKTERIGCGSHFCEKLQGVEETNIELLVCNYEPPGNVKGKRPYQEGTPCSQC
PSGYHCKNSLCEPIGSPEDAQDLPYLVTEAPSFRATEASDSRKMGTPSSLATGIPAFLVTEV
SGSLATKALPAVETQAPTSLATKDPPSMATEAPPCVTTEVPSILAHSLPSLDEEPVTFPKS
THVPIPKSADKVTDKVPSRSPENSMDPKMSLTGARELLPHAQEEAEAEALPPSSEVLAS
VFPAQDKPGELQATLDHTGHTSSKSLPNFPNTSATANATGGRALALQSSLPGAEGPDKPSVV
SGLNSGPGHVWGPLLGLLLPPLVLAGIF

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 114-118, 403-407, 409-413

 Glycosaminoglycan attachment site.

amino acids 439-443

 Casein kinase II phosphorylation site.

amino acids 29-33, 50-54, 156-160, 195-199, 202-206, 299-303

 N-myristoylation site.

amino acids 123-129, 143-149, 152-158, 169-175, 180-186, 231-237,
250-256

 Amidation site.

amino acids 82-86, 172-176

Peroxidases proximal heme-ligand signature.

amino acids 287-298

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 1.

amino acids 127-138

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 2.

amino acids 160-172

FIGURE 101

GTAACGTGAGTCAGGCTTTCAATTGGGAAGCCCCCTCAACAGAACCGTCACTTCTCCAAGTTATGGTGGACGT
ACTTCTGTTCTCCCTCTGCTTACATTAGCAGACCGGACTTAAGTCACAACAGATTATCTTCT
CAAGGCAAGTCCATGAGCCACCTTCAAAGCCTCGAGAAGTGAACAAACAAATGAATTGGAGACCATCC
AAATCTGGGACCAAGTCTCGGCAAATATTACACTTCTCTCCTGGCTGGAAACAGGATTGTTGAAATACTCCCTGA
ACATCTGAAAGAGTTCACTGAAACTTTGACCTTAGCAGCAACAATATTCAGAGCTCCAAACTGCATT
TCCAGCCCTACAGCTCAAATATCTGTATCTAACAGCAACCGAGTCACATCAATGGAACCTGGGTATTTGACAA
TTTGGCCAACACACTCCTGTGTTAAAGCTGAACAGGAACCGAATCTCAGCTATCCCACCCAAAGATGTTAAACT
GCCCAACTGCAACATCTGAATTGAACCGAAACAAGATTTAGATGGACTGACATTCCAAGGCCTGG
TGCTCTGAAAGTCTGAAATGCAAAGAAATGGAGTAACGAAACTATGGATGGAGCTTTGGGGCTGAGCAA
CATGAAATTTGAGCTGGACCATAACAAACCTAACAGAGATTACCAAGGCTGGCTTACGGCTTGCTGATGCT
GCAGGAACCTCATCTGACCCAAATGCCATAACAGGATCAGCCCTGATGCCCTGGGAGTTCTGCCAGAAGCTCAG
TGAGCTGGACCTAACCTCAATCACTTATCAAGGTTAGATGATTCAAGCTTCTGGCTTAAGCTTACTAAATAC
ACTGACATTTGGAACAAACAGAGTCAGCTACATTGCTATTGCGCTTCCGGGGCTTCCAGTTAAAGACTTT
GGATCTGAAAGAACATGAAATTTCTGGACTATTGAAAGACATGAATGGTCTTCTCTGGCTTGACAAACTGAG
GCGACTGATACTCCAAGGAAATCGGATCCGTTCTATTACTAAAAAGCCTTACTGGTTGGATGCAATTGGAGCA
TCTAGACCTGAGTGACACGCAATCATGTTACAAGGAATGCAATTTCACAAATGAAGAAACTGCAACAAATT
GCATTAAATACATCAAGCCTTGTGCGATTGCCAGCTAAATGGCTCCACAGTGGGTGGCGAAAACAACCT
TCAGAGCTTGTAAATGCCAGTTGTGCTGCTTACAGCTGCTAAAGGAAGAAGCATTGGCTGTTAGCCCAGA
TGGCTTGTGAGTGTGATGATTTCACAGGAGATCACGGTCAGCCAGAACACAGTCGGCAATAAAAGGTT
CAATTGAGTTCATCTGCTCAGCTGCCAGCAGTGAATTCCCAATGACTTTGCTTGGAAAAAAAGACAATGA
ACTACTGCATGATGCTGAAATGGAAATTATGCACACCTCCGGGCCAAGGTGGCAGGTGATGGAGTATACCAC
CATCCTCGGCTGCGCAGGTGGAATTGCCAGTGAGGGAAATATCAGTGTGTCATCTCAATCACCTGGTTC
ATCCTACTCTGTCAGGCAAGCTTACAGTAAATATGCTTCCCTCATTCAACAGACCCCCATGGATCTCACCAT
CCGAGCTGGGGCATGGCACGCTGGAGTGTGCTGCTGCTGGGGCACCCAGCCCCCAGATGCCCTGGCAGAAGGA
TGGGGCACAGACTTCCAGCTGCACGGAGAGACGATGCTGATGCCAGGATGACGTGTTCTTATCGT
GGATGTGAAGATAGAGGACATTGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTGAGCAAATGC
AACTCTGACTGCTCTAGAAACACCATCATTGGCGCCACTGTTGGACCGAAGTGAACCAAGGGAGAAACAGC
CGTCTACAGTGCATTGTGGAGGAAGCCCTCCCCCTAAACTGAACCTGGACCAAAGATGATAGCCCATTGGTGGT
AACCGAGAGGCACTTTGTGAGCAGGCAATCAGCTCTGATTATTGTGGACTCAGATGTCAGTGTGCTGGAA
ATACACATGTGAGATGTCACACCCCTGGCACTGAGAGAGGAAACGTCAGTGTGATCCCCACTCCAAC
CTGCGACTCCCCCTCAGATGACACCCCTCGTTAGACGATGACGGATGGCCACTGTTGGGTGTCAGTGTGATCATAGC
CGTGGTTGTGTTGGGACGTCACTCGTGTGGGTGTCATCATACACACAAAGGCGGAGGAATGAAGA
TTGCACTACCAACACAGATGAGACCAACTTGCCAGCAGATATTCTAGTTATTGTGTCATCTCAGGGAACGTT
AGCTGACAGGCAAGGATGGGTACGTGCTTCAAGAAAGTGAAGCCACCAACAGTTGTCACATCTCAGGTGCTGG
ATTTCCTTACACACATGACAGTAGTGGACCTGCCATTGACAATAGCAGTGAAGCTGATGTGAAAGCTGC
CACAGATCTGTTCTTGTCCGTTTGGGATCCACAGGCCATTGATTTGAAAGGAAATGTGATGGCTCAGA
TCCTTTGAAACATATCATACAGGTTGCACTGCCAGAACACAGTTTAAATGGACCAACTATGAGCCAGTT
CATAAAGAAAAGGAGTGCACCCATGTTCTCATCCTCAGAAGAACCTGCCAACGGAGCTTCAGTAATATAC
GTGGCCTTCACATGTGAGGAAGCTACTAACACTAGTTACTCTCACAAATGAAGGACCTGGAATGAAAATCTGTG
TCTAAACAAGTCTCTTAAAGTTAGTTAGTGCACATCCAGAGCCAGCGTCGGTGCCTCGAGTAATTCTTCATGGG
TACCTTGGAAAAGCTCTCAGGAGACCTCACCTAGATGCCATTCAAGCTTGGACAGCCATCAGATTGTCAAGC
AAGAGCCTTTATTGAAAGCTCATTCTCCCCAGACTGGACTCTGGGTCAAGGAGATGGGAAAGAAAGGAC
AGATTTCAAGGAAAGAACATCAGATTGACCTTAAACAGACTTTAGAAAATACAGGACTCCAAATTTCAAGC
TTATGACTGGACACATAGACTGAAAGACCAAGGAAAAGCTTAAACATACTACCTCAAGTGAACCTTATT
AAAGAGAGAGAAATCTTATGTTAAATGGAGTTATGAAATTAAAAGGATAAAATGCTTATTATACAGAT
GAACCAAAATTACAAAAAGTTATGAAAATTAAACTGGGAATGATGCTCATATAAGAATACCTTTAAACTA
TTTTTAAACTTGTGTTATGCAAAAAGTATCTTACGAAATTAAATGATATAAATCATGATTATTGTATT
TTATAATGCCAGATTCTTTATGAAAATGAGTTACTAAAGCATTAAATAACCTGCCATTGACCAATT
TTAAATAGAAGTTACTTCATTATATTGCACTTAAATAAAATGTGCAATTGAA

FIGURE 102

MVDVLLFSLCLLFHISRPDLSHNRLSFIKASSMSHLQLSLREVKLNNELETIPNLGPVSAN
ITLLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEP
GYFDNLANTLLVLKLNRRNRIASAIPPKMFKLPQLQHLELNRNKIKNVDGLTFQGLGALKSLKM
QRNGVTKLMGDGFWGSLSNMEILQLDHNNLTEITKGWLGYLLMLQELHLSQNAINRISPDAWE
FCQKLSLELDLTFNHLRLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRLSSLKTLDDLKNNE
ISWTIEDMNGAFSGLDKLRRRILQGNRIRSITKKAFTGDALEHLDLSDNAIMSLQGNAFSQ
MKKLQQLHLNTSSLLCDCQLKWLWPQWAENNQSFVNASCAPQLLKGRSIFAVSPDGFVCD
DFPKPQITVQPETQSAIKGSNLSFICSAASSSDSPMTFAWKKDNELLHDAEMENYAHLRAQG
GEVMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVAKLTNVMLPSFTKTPMDLTIRAGA
MARLECAAVGHPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCAQN
SAGSISANATLTVLETPSFLRPLLDRTVTKGETAVLQCIAGGSPPPQLNWTKDDSPLVVTER
HFFAAGNQLLIVDSDVSDAGKYTCMSNTLGERGNVRLSVIPTPTCDSPQMTAPSLEDDG
WATVGVIIIAVVCCVVGTSLVWVVIYHTRRNEDCSITNTDETNLPADIPSYLSSQGTLAD
RQDGYVSSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEATDLCFLCPFLGSTGP
MYLKGNVYGSDFETYHTGCPDPRTVLMHYEPSYIKKKECYPCHPSEESCERSFSNISW
PSHVRKLLNTSYSHNEPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDA
YSSFGQPSDCQPRAFYLKAHSSPDLDGSEEDGKERTDFQEENHICTFKQTLENYRTPNFQS
YDLDT

 Signal sequence:

 amino acids 1-19

 Transmembrane domain:

 amino acids 746-765

 N-glycosylation site.

 amino acids 62-66, 96-100, 214-220, 382-386, 409-413, 455-459,
628-632, 669-673, 845-849, 927-931, 939-943, 956-960

 Glycosaminoglycan attachment site.

 amino acids 826-830

 Casein kinase II phosphorylation site.

 amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268,
314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,
671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,
1013-1017, 1019-1023, 1021-1025

 Tyrosine kinase phosphorylation site.

 amino acids 607-615

 N-myristylation site.

 amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534,
612-618, 623-629, 714-720, 873-879

FIGURE 103

GGGGAGAGGAATTGACCATGTAAAAGGAGACTTTTTGGTGGTGGCTGTTGGGTGCCTTGCAAAAATG
AAGGATGCAGGACGCAGCTTCTCTGGAACCGAACGCAATGGATAAAACTGATTGTGCAAGAGAGAAGGAAGAAC
GAAGCTTTCTGTGAGCCCTGGATCTAACACAAATGTGTATATGTGACACAGGGAGCATTCAAGAATGAAA
TAAACCAGAGTTAGACCCGCGGGGTTGGTGTGTTCTGACATAAATAATCTTAAAGCAGCTGTTCCCCTCC
CCACCCCCAAAAAAAGGATGATTGGAATGAAGAACCGAGGATTCAAAGAAAAAGTATGTTCACTTCTC
TATAAAGGAGAAAGTGAAGCAAGGAGATATTGGATGAAAGTAAAGTTGGGCTTTTAGTAAAGTAAAGAAC
GGTGTGGTGGTGTCTTCTTGAATTCCCACAAAGAGGAGAGGAAATTAAATAACATCTGAAAGAAA
TTTCAGAGAAGAAAAGTTGACCGCGGAGATTGAGGCATTGATTGGGGAGAGAACACCAGCAGAGCACAGTTGA
TTTGTGCCATGTTGACTAAATTGACGGATAATTGCAAGTGGATTCTTCATCAAACCTCCTTTAAAT
TTTATTCTCTTGGTATCAAGATCATCGCTTCTCTGTTCTAACACCTGGATTTCATCTGGATGTTGCT
GTGATCAGTCTGAAATACAACGTGTTGAATTCCAGAACAGGACCAACACCAGATAAATTATGAATGTTGAACAAGAT
GACCTTACATCCACAGCAGATAATGATAGGTCCTAGGTTAACAGGGCCATTGACCCCTGCTGTGGTCT
GCTGGCTCTTCAACTTCTGTGGTGGCTGGCTGGTGGGGCTCAGACCTGCCCTCTGTGTGCTCTGCAGCAA
CCAGTTCAGCAAGGTGATTGTGTTGGAAAAACCTCGCTGGATGGCATCTCCACCAAACACAGGCT
GCTGAACCTCCATGAGAACCAAATCCAGATCATCAAAGTGAACAGCTCAAGCACTTGAGGCACTTGGAAATCCT
ACAGTTGAGTAGGAACCATATCAGAACCAATTGAAATTGGGGCTTCAATGGTCTGGCAACCTCAACACTCTGGA
ACTCTTGACAATCGTCTACTACCATCCGAATGGAGCTTGTATACTTGTCTAAACTGAAGGAGCTCTGGTT
GCGAAACAACCCATTGAAAGCATCCCTTATGCTTTAACAGAATTCCCTTGCCTGACTAGACTTAGG
GGAATTGAAAAGACTTCATACATCTCAGAAGGTGCCTTGAAGGTCTGCAACTTGAGGTATTGAACCTTGC
CATGTGCAACCTCGGGAAATCCCTAACCTCACACCGCTCATAAAACTAGATGAGCTGGATCTTCTGGGAAATCA
TTTATCTGCCATCAGGCCTGGCTTTCCAGGGTTGATGCACCTCAAAACTGTGGATGATACAGTCCCAGAT
TCAAGTGATTGAACGGAATGCCTTGACAACCTTCAGTCAGTCACTAGGGAGATCAACCTGGCACACAATAATCTAAC
ATTACTGCCTCATGACCTTCACTCCCTGCATCATCTAGAGCGGATACATTACATCACAACCCCTGGAACTG
TAACGTGACATACTGTGGCTCAGCTGGTGGATAAAAGACATGGCCCCCTGAAACACAGCTGTTGTGCCGGTG
TAACACTCCTCCAATCTAAAGGGAGGTACATTGGAGAGCTGACCAGAAATTACTCACATGCTATGCTCCGGT
GATTGTGGAGCCCCCTGCAGACCTCAATGTCAGTGAAGGCATGGCAGCTGAGCTGAAATGTCGGCCTCCACATC
CCTGACATCTGTATCTGGATTACTCCAAATGGAACAGTCAGTGCACATGGGGCGTACAAAGTGCAGATAGCTGT
GCTCAGTGTGTTGGTACGTTAAATTTCACAAATGTAACCTGTGCAAGATACAGGCATGTACACATGTATGGTGAGTAA
TTCCCTTGGAAACTACTGTGTTCAAGCCACCTGAATGTTACTGCAGCAACCAACTACTCTTCTTACTTTTCA
AACCGTCACAGTAGAGACTATGGAGACCACTGGGACCTCTCAGGATGAGGACGGACGACAGATAACATGTGGTCCCACTCC
AGTGGTCGACTGGGAGACCAATGTCAGGATGACCCAGGAAATTGATGAGGTCTGAAGACTACAAAATCATCAT
CACCACCCAGTGACTIONTAAACAGTGGATCCCAGGAAATTGATGAGGTCTGAAGACTACAAAATCATCAT
TGGGTGTTTGTGGCATCACACTCATGGCTGCAGTGTGCTGGTCTTACAAGATGAGGAAGCAGCACCA
TCGGCAAAACCATCACGCCAACAGGACTGTTGAAATTATTAAATGTGGATGATGAGATTACGGGAGACACACC
CATGGAAAGCCACCTGCCATGCCCTGCTATCGAGCATGAGCACCTAAATCACTATAACTCATCAAATCTCCCTT
CAACCACACAAACAGTTAACACAATAATTCAATACACAGTTCACTGCATGAACCGTTATTGATCCGAATGAA
CTCTAAAGACAATGTACAAGAGACTCAAATCTAAACATTACAGAGTTACAAAAACAAACAAATCAAAAAAA
GACAGTTATTAAAAATGACACAAATGACTGGCTAAATCTACTGTTCAAAAGTGTCTTACAAAAACAA
AAAAGAAAAGAAATTATTATTAAACATTCTATTGTGATCTAAAGCAGACAAAAA

FIGURE 104

MLNKMTLHPQQIMIGPRFNRALFDPLLVLLALQLLVAGLVRAQTCPSVCSCSNQFSKVIC
VRKNLREVPDGISTNTRLLNLHENQIQIIKVNSFKHLRHLEILQLSRNHIRTIEIGAFNGLA
NLNTLELFDNRLTTIPNGAFVYLSKLKELWLRNNPIESIPSYAFNRIPLSLRRLDGELKRLS
YISEGAFEGLSNLRYLNLCNLREIPNLTPLIKLDELDLSGNHLSAIRPGSFQGLMHLQKL
WMIQSQIQVIERNAFDNLQSLVEINLAHNNLTLLPHDLFTPLHHLERIHLHHNPWCNC
WLSWWIKDMAPSNTACCARCNTPPNLKGRYIGELDQNYFTCYAPVIVEPPADLN
TEGMAAE LKCRASTSLTSVSWITPNGTVMTHGAYKVRIAVLSDGTLNFTN
TVQDTGMYTCMVNSVGN TTASATLNVTAATTPFSYFSTVTVETMEPSQDEARTTDNNVG
PPTVVDWETTNVTTSLTPQ STRSTEKTFTIPVTDINSGIPGIDEVMKTTKIIIGCFV
AITLMAAVMLVIFYKMRKQHHRQN HHAPTRTVEIINV
DDEITGDTPMESHLPMPAIEHEHLNHNSYKSPFNHTTVNTINSIHSS
VHEPLLIRMN
SKDNVQETQI

- █ **Signal sequence:**
█ amino acids 1-44
- █
- █ **Transmembrane domain:**
█ amino acids 523-543
- █
- █ **N-glycosylation site.**
█ amino acids 278-282, 364-368, 390-394, 412-416, 415-419, 434-438,
█ 442-446, 488-492, 606-610
- █
- █ **cAMP- and cGMP-dependent protein kinase phosphorylation site.**
█ amino acids 183-187
- █
- █ **Casein kinase II phosphorylation site.**
█ amino acids 268-272, 417-421, 465-469, 579-583, 620-624
- █
- █ **N-myristoylation site.**
█ amino acids 40-46, 73-79, 118-124, 191-197, 228-234, 237-243,
█ 391-397, 422-428, 433-439, 531-537

FIGURE 105

AGCCGACGCTGCTCAAGCTGCAACTCTGTTGCAGTTGGCAGTTCTTTGGGTTCCCTCTGCTGTTGGGGCA
TGAAAGGGCTTCGCCGCCGGAGTAAAAGAAGGAATTGACCGGGCAGCGCAGGGAGGAGCGCAGCGACCGC
GAGGGCGGGCGTGCACCTCGGCTGGAAGTTGTGCCGGGCCCCGAGCGCGCAGCGCAGGGCTGGAGCTCGGGTAGA
GACCTAGGCCGCTGGACCAGGATGAGCGCAGGCCGCTCCGTGCGCGCAGCGCAGGGCTGGAGCTGCTGTC
GCGGTGCTGGGGCGCTGGCGCTGCCGCTGGACAGCGGGCGTGCAGGGAACTCGGGCAGCCCTCTGGGGTAGCGC
GAGCGCCCATGCCCAACTACCTGCGCTGCCCGGGACCTGCTGGACTGAGCTGTAAGCGGCTAGCGCTT
CCGAGCCACTCCGCTGGGTGCGCTGGACTTAAGTCACAAACAGATTATCTTCATCAAGGCAAGTTC
ATGAGCCACCTTCAAAGCCTCGAGAAGTGAACAAACATGAATTGGAGACCATTCAAATCTGGGACCA
GTCTCGGCAAATATTACACTCTCTCCTGGCTGGAAACAGGATTGTTGAATACTCCCTGAACATCTGAAAGAG
TTTCAGTCCCTGAAACCTTGGACCTTAGCAGGAACAATATTTCAGAGCTCCAAACTGCATTCCAGCCCTACAG
CTCAAATATCTGTATCTCAACAGCAACCAGTACATCAATGGAACCTGGTATTTGACAATTGGCCAACACA
CTCCTGTGTTAAAGCTGAACAGGAACCGAATCTCAGCTATCCACCCAAAGATGTTAAACTGCCCAACTGCAA
CATCTGAATTGAAACGAAACAAGATAAAAATGTAGATGGACTGACATTCCAAGGGCTTGGTCTGAGTCT
CTGAAAATGCAAAGAAATGGAGTAACGAAACTTATGGATGGAGCTTTTGGGGCTGAGCAACATGGAATTTTG
CAGCTGGACCATAACAACCTAACAGAGATTACCAAAGGCTGGCTTACGGCTTGTGATGCTGAGGAACCTCAT
CTCAGCCAAATGCCATCACAGGATCAGCCCTGATGCCCTGGAGTCTGCCAGAAGCTCAGTGAGCTGGACCTA
ACTTTCAATCACTTCAAGGTTAGATGATTCAAGCTTCCCTGGCCTAAGCTTACTAAATACACTGCACATTGGG
AAACAACAGAGTCAGCTACATTGCTGATTGTGCCCTCCGGGGCTTCCAGTTAAAGACTTTGGATCTGAAAGAAC
AATGAAATTCTCGGACTATTGAAGACATGAATGGTCTTCTCTGGGCTTGACAAACTGAGGCGACTGATACTC
CAAGGAAATCGGATCCGTTCTATTACTAAAAAGCCTCACTGGTTGGATGCACTGGAGCATCTAGACCTGAGT
GACAACGCAATCATGTTTACAAGGCAATTGCAATTTCACAAATGAAAGAAACTGCAACAAATTGCAATTAAATACA
TCAAGCCTTTGTGCGATTGCCAGCTAAATGGCTCCCACAGTGGTGGCGAAAACAAACTTCAAGGCTTGTG
AATGCCAGTTGTGCCCATCCTCAGCTCTAAAGGAAGAAGCATTTTGCTGTTAGCCAGATGGCTTGTG
GATGATTTCCAAACCCAGATCACGGTTCAGCCAGAAACACAGTCGGCAATAAAAGGTTCCAATTGAGTT
ATCTGCTCAGCTGCCAGCAGTGAATTCCCAATGACTTTGCTGGAAAAAAAGACAATGAAACTACTGCATGAT
GCTGAAATGAAAATTATGACACACCTCCGGGCCAAGGTGGCAGGTGATGGAGTATACCAACATCCTTCGGCTG
CGCAGGTTGAAATTGCCAGTGGGGAAATATCAGTGTGTCATCTCAACTTTGGTCACTCCTACTCTGTC
AAAGCCAAGCTTACAGTAAATATGCTCCCTCATCACCAAGACCCCCATGGATCTCACCATCCGAGCTGGGCC
ATGGCACGCTGGAGTGTGCTGGGGCACCCAGCCCCCAGATAGCCTGGCAGAAGGATGGGGCACAGAC
TTCCAGCTGCACGGAGAGACGCATGCACTGATGCCAGGGATGACGTGTTTATCGTGGATGTGAAGATA
GAGGACATTGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTTCAGCAAATGCAACTCTGACTGTC
CTAGAACACCATCATTTCGCGGCCACTGTTGACCGAATGTAACCAAGGGAGAACAGCCGCTTACAGTGC
ATTGCTGGAGGAAGCCCTCCCCCTAAACTGAACTGGACCAAGATGATAGCCATTGGTGGTAACCAGAGGGCAC
TTTTTGCAGCAGGCAATCAGCTCTGATTATTGTGGACTCAGATGTCAGTGATGCTGGAAATACACATGTGAG
ATGTCTAACACCCCTGGCACTGAGAGAGGAAACGTGCGCCTCAGTGTGATCCCACCTCAACCTGCACCTCC
CAGATGACAGCCCCATCGTAGACGATGACGGATGGGCCACTGTTGGGTGTCGTGATCATAGCCGTGGTTGCTGT
GTGGTGGGCCAGTCACTCGTGTGGGTGGTCATCATATACACACACAAGGGAGGAATGAAGATTGAGCATTAC
AACACAGATGAGACCAACTTGCAGCAGATATTCTAGTTATTGTGATCTCAGGGAACTGTTAGCTGACAGGAG
GATGGGTACGTGCTTCAGAAAAGTGGAAAGCACCACAGGTTGTCACATCTTCAGGTGCTGGATTTTCTTACCA
CAACATGACAGTGTGGACCTGCCATTGACAATAGCAGTGAAGCTGATGTGGAAGCTGCCACAGATCTGTT
CTTTGTCGTTTGGATCCACAGGGCTTATGTTGAAGGGAAATGTGATGGCTCAGATCCTTTGAAACAA
TATCATACAGGTTGCACTGCCAGGCAACAGTTTAATGGACCACTATGAGCCAGTTACATAAAAGAAAAAG
GAGTGTACCCATGTTCTCATCCTTCAGAAGAATCCTGCAACGGAGCTTCAGTAATATATCGTGGCCTTCACAT
GTGAGGAAGCTACTAACACTAGTTACTCTCACAAATGAAGGACCTGGAAATGAAAATCTGTCTAAACAAAGTCC
TCTTTAGATTGAGTGCACATCCAGAGCCAGCGTGGCTCGAGTAATTCTTCAGGGTACCTTGGAAAA
GCTCTCAGGAGACCTCACCTAGATGCCATTCAAGCTTGGACAGGCCATCAGATTGTCAGGCCAGAGGCC
TTGAAAGCTCATTCTCCCCAGACTTGGACTCTGGTCAGAGGAAGATGGAAAGAAAGGACAGATTTCAAGGAA
GAAAATCACATTGTACCTTAAACAGACTTTAGAAAACAGACTACAGGACTCCAAATTTCAGTCTTATGACTTGGAC
ACATAGACTGAATGAGACCAAGGAAAGCTTAAACATACACCTCAAGTGAACCTTTATTAAAGAGAGAGAAT
CTTATGTTTTAAATGGAGTTATGAAATTAAAAGGATAAAATGCTTATTATACAGATGAACCAAAATTAC
AAAAAGTTATGAAAATTTATACTGGGAATGATGCTCATATAAGAATACCTTTAAACTATTGTTAACTTTG
TTTATGCAAAAAGTACTTACGTTAAATTATGATATAAATCATGATTATTATGTTATGTTATAATGCCAGA
TTCTTTTATGGAAAATGAGTTACTAAAGCATTAAATAACCTGCCCTGTACCATTTAAATAGAAGT
ACTCATTATATTGCACTTATTTAAATAAAATGTCATTGAAAAAAAAAAAAAAAAAAAAAA

FIGURE 106

MSAPSLRARAAGLGLLCAVLGRAGRSDSGGRGELGQPSGVAERPCPTTCRCLGDLDCSR
KRLARLPEPLPSWVARLDLSHNRLSFIKASSMSHLQSLREVKLNNELETIPNLGPVSANIT
LLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLQLNSNRVTSMEPGY
FDNLANTLLVLKLNRRNRISSAIPPKMFKLPQLQHLELNRNKIKNVDGLTFQGLGALKSLKMQR
NGVTKLMGAFWGLSNMEILQLDHNNLTEITKGWLYGLLMLQELHLSQNAINRISPDAWEFC
QKLSLEDDLTNFNHLRSRLDDSSFLGLSILLNTLHIGNNRVSYIADCAFRLGSSLKTLNNEIS
WTIEDMNGAFSGLDKLRRLILQGNRIRSITKKAFTGLDALEHLDLSDNAIMSLQGNAFSQMK
KLQLQHLNTSSLCDCKWLQPQWVAENNQSFVNASCAPQLLKGRSIFAVSPDGVCDDF
PKPQITVQPETQSAIKGSNLSFICSAASSSDSPMTFAWKKDNELLHDAEMENYAHLRAQGGE
VMEYTTILRLREVEFASEGKYQCVISNHFGSSYVAKLTVNMLPSFTKTPMDLTIRAGAMA
RLECAAVGHPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCTAQNSA
GSISANATLTVLETPSFLRPLLRTVTKGETAVLQCIAGGSPPPKNWTKDDSPLVVTERHF
FAAGNQLLIIVDSDVSDAGKYTCMSNTLTERGNVRLSVIPTPTCDSPQMTAPSLLDDGWA
TVGVVIIAVVCCVVGTSLVWVVIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTLADRO
DGYVSSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATDLFLCPFLGSTGPMY
LKGNVYGSDPFETYHTGSPDPRTVLMHDYEPSYIKKKECYPCHPSEESCRSFSNISWPS
HVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDAYS
SFGQPSDCQPRAFYLKAHSSPDLDGSEEDGKERTDFQEENHICFKQTLENYRTPNFQSYDLDT

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 808-828

N-glycosylation site.

amino acids 122-126, 156-160, 274-278, 442-446, 469-473, 515-519, 688-692, 729-733, 905-909, 987-991, 999-1003, 1016-1020

Glycosaminoglycan attachment site.

amino acids 886-890

Casein kinase II phosphorylation site.

amino acids 99-103, 180-184, 263-267, 314-318, 324-328, 374-378, 383-387, 407-411, 524-528, 608-612, 692-696, 709-713, 731-735, 799-803, 843-847, 863-867, 907-911, 1003-1007, 1018-1022, 1073-1077, 1079-1083, 1081-1085

Tyrosine kinase phosphorylation site.

amino acids 667-675

N-myristoylation site.

amino acids 14-20, 36-42, 239-245, 257-263, 380-386, 427-433, 513-519, 588-594, 672-678, 683-687, 774-780, 933-939

Leucine zipper pattern.

amino acids 58-80, 65-87

FIGURE 107

CAAAACTTGCCTCGCGGAGACGCCAGCTGACTTGAATGGAAGGAGCCCAGGCCGGAGCGCAGCTGAGAC
TGGGGGAGCGCTTCGGCCTGTGGGCGCCGCTCGGCCGGGGCGCAGCAGGAAGGGAGCTGTGGTCTGCC
CTGCTCCACGAGGCGCCACTGGTGTGAACCGGGAGAGCCCTGGTGGTCCCGTCCCTATCCCTCTTATATA
GAAACCTTCCACACTGGGAAGGCAGCGGAGGGCTCATGGTGAGCAAGGAGGCCGCTGATCTGAG
GCGCACAGCATTGGAGTTACAGATTTACAGATACCAAATGGAAGGCGAGGAGGCAGAACAGCCTGCC
TCCATCAGCCCTGGCGCCAGGCGCATCTGACTCGGCACCCCTGCAGGCACATGGCCAGAGGCCGGTGTGC
TGCTCCTGCTGCTGCTGCCACAGCTGCACCTGGGACCTGTGCTTGCGTGAGGGCCCAAGGATTGGCCGAA
GTGGCGGCCACAGCCTGAGCCCCGAAGAGAACGAATTGCGGAGGGAGGCCGTGCTGTACTGAGCCCTGAGG
AGCCCGGGCTGGCCAGCCGGTCAGCTGCCCGAGACTGTGCTGTTCCAGGAGGGCGTCGGACTGTG
GCGGATTGACCTGCGTGAGAGTTCGGGGGACCTGCTGAGCACACCAACCACTATCTGCAGAACACCAGC
TGGAAAGATCTACCCCTGAGGAGCTCCCGGCTGCACCCGGCTGGAGAGACTGAACCTGCAAAACAAACCGCCTGA
CTTCCCAGGGCTCCAGAGAACGGCTTGAGCATCTGACCAACCTCAATTACCTGTACTTGGCCAATAACAAGC
TGACCTTGGCACCCGCTTCCCTGCCAAACGCCCTGATCAGTGGACTTGTGTCCCAACATCTCACCAAGATCT
ATGGGCTCACCTTGGCAGAACGCAAACTTGAGGTCTGTGACCTGCAACAAACAGCTGGCAGACGCCGGC
TGCCGGACACATGTTCAACGGCTCAGCAACGCTCAGGCTCTCATCCTGTCAGCAACTTCTGCCACGTGC
CCAAGCACCTGCCGCTGCCCTGTACAAGCTGCACCTCAAGAACAAACAGCTGGAGAAGATCCCCGGGGCCT
TCAGCGAGCTGAGCAGCTGCGAGCTATACTGCAGAACAAACTACCTGACTGACGAGGGCTGGACACGAGA
CCTTCTGGAAGCTCTCCAGCCTGGAGTACCTGGATCTGTCAGCAACACCTGTCGGTCCAGCTGGCTGC
CGCGCAGCCTGGTGTGCTGCACTTGGAGAAGAACGCCATCCGGAGCGTGGACGCGAATGTGCTGACCCCCATCC
GCAGCCTGGAGTACCTGCTGTCACAGCAACCAGCTGCCGGAGCAGGGCATCCACCAACTGGCCTTCCAGGGCC
TCAAGCGGTTGACACGGTGCACCTGTACAACACCGCTGGAGGCCGTGCCAGTGGCCTGCCACGTGGAGTGC
GCACCCCTCATGATCCTGCACAACCAGATCACAGGCAATTGGCGCGAAGACTTGGCACCACCTACTCCTGGAGG
AGCTCAACCTCAGCTACAACCGCATCACAGGCCACAGGTGCACCGCAGCCTCCGCAAGCTGCCCTGCTGC
GCTCGCTGGACCTGTGGCAACCCTGTCACACGCTGCCACCTGGCTGCCATGGCTGAAATGTCCATGTGCTGAAGG
TCAAGCGCAATGAGCTGGCTGCCATTGGCACAGAGGGCGCTGGCGGGCATGGCTCAGTGCGTGAGCTGACCTCA
CCAGCAACCGACTGCGCAGCCGAGCCCTGGGCCCGTGCCTGGTGGACCTGCCCATCTGCAGCTGCTGGACA
TCGCCGGGAATCAGCTCACAGAGATCCCCGAGGGCTCCCCGAGTCACTTGAGTACCTGCAGAACAAACA
AGATTAGTGGCTGCCGCAATGCTTCGACTCCACGCCAACCTCAAGGGATCTTCTCAGGTTAACAAAGC
TGGCTGTGGGCTCCGGTGGACAGTGCCTTCCGGAGGCTGAAGCACCTGCAGGTCTTGACATTGAAGGCAACT
TAGAGTTGGTGACATTCCAAAGGAGCGTGGCCCTTGGGAAGGAAAGGAGGAGGAGGAGGAGGAGGAGG
AGGAAGAGGAAACAAAGATAGTGACAAGGTGATGCAGGTGCAGATGTGACCTAGGATGATGGACCCGGACTTTCTGC
AGCACACGCCCTGTGTGCTGAGCCCCCCACTGCCGTGTCACACAGACACCCAGCTGCACACATGAGGCA
TCCCACATGACACGGCTGACACAGCTCATATCCCCACCCCTCCACGGCGTGTCCCACGCCAGACACATGC
ACACACATCACACCCCTAAACACCCAGCTGCCACACACAACTACCCCTCAAACACCACACAGTCTGTCACAC
CCCCACTACCGCTGCCACGCCCTGTAATCATGCAGGGAGGGCTGCCCTGGCACACACAGGCCAC
TTCCCTCCCCCTGCTGACATGTGATGCGTATGCCATACACACCACACACATGCACAGTCGTGCGAA
CAGCCCTCCAAAGCTATGCCACAGACAGCTTGGCCAGCAGAATGCCATAGCAGCTGCCGTGCC
GTCCATCTGCCGTCCGTTCCCTGGAGAAGACACAAGGGTATCCATGCTGTGGCCAGGTGCCACCC
GGAACTCACAAAGCTGGTTTATCCTTCCATCCTATGGGACAGGCCTCAGGACTGCTGCCCTGGCC
TGGCCACCCCTGCTCCTCCAGGTGCTGGCAGTCACTCTGCTAAGAGTCCCTCCCTGCCACGCCCTGGCAGGACA
CAGGCACTTTCCAATGGCAAGCCAGTGGAGGCAGGATGGAGAGGCCGGCTGGTGTGCTGGGGCCTGGGG
CAGGAGTGAAGCAGAGGTGATGGGCTGGCTGAGCCAGGGAGGAAGGACCCAGCTGCACCTAGGAGACACCTT
GTTCTCAGGCCTGTGGGGAGTCCGGGTGCCTTTATTTTATCTTCTAAGGAAAAAAATGATAAAAT
CTCAAAGCTGATTTCTTGTATAGAAAAACTAATATAAAAGCATTATCCCTATCCCTGCAAAAAAA

FIGURE 108

MEGEEAEQPAWFHQWPWRPGASDSAPPAGTMAQSRVLLLLLPPQLHLGPVLAVRAPGFGRS
GGHSLSPPEENEFAEEEPVLVLSPEEPGPGPAAVSCPRDCACSQEGVVDCGGIDLREFPGDLP
EHTNHLSLQNNQLEKIYPEELSRLHRLETNLQNNRLTSRGLPEKAFEHLTNLNYLYLANNK
LTLAPRFLPNALISVDFAANYLTKIYGLTFGQKPNLRSVYLHNNKLADAGLPDNMFNGSSNV
EVLILSSNFLRHPKHLPPALYKLHLKNNKLEKIPPGAFSELSSLRELYLQNNYLTDEGLDN
ETFWKLSSLEYLDLSSNNLSRVPAGLPRSLVLLHLEKNAIRSDANVLTPIRSLEYLLLHSN
QLREQGIHPLAFQGLKRLHTVHLYNNALERVPSGLPDRVRLMILHNQITGIGREDFATTYF
LEELNLSYNRITSQVHRDAFRKLRLRSLDLSGNRLHTLPPGLPRNVHVLKVKRNEALAALA
RGALAGMAQLRELYLTSNRLRSRALGPRAWVDLAHLQLLDIAGNQLTEIPEGLPESLEYLYL
QNNKISAVPANAFDSTPNLKIGIFLRFNKLAVGSVVDSAFRRLKHLQVLDIEGNLEFGDISKD
RGRLGKEKEEEEEEEEEEETR

- █ **Signal sequence:**
█ amino acids 1-48
- █ **N-glycosylation site.**
█ amino acids 243-247, 310-314, 328-332, 439-443
- █ **Casein kinase II phosphorylation site.**
█ amino acids 68-72, 84-88, 246-250, 292-296, 317-321, 591-595
- █ **N-myristoylation site.**
█ amino acids 19-25, 107-113, 213-219, 217-223, 236-242, 335-341,
477-483, 498-502, 539-545, 548-554
- █ **Leucine zipper pattern.**
█ amino acids 116-138, 251-273, 258-280, 322-344, 464-486, 471-493,
535-557

FIGURE 109

GGGAGGGGGCTCCGGGCGCCGCGCAGCAGACCTGCTCCGGCGCGCTGCCGCTGCTCTCCGGGAGCGGCAG
CAGTAGCCGGCGGCAGGGCTGGGGTCTCGAGACTCTCAGAGGGCGCTCCCATGGCGCCACCACCC
CAACCTGTTCTCGCGGCCACTGCGCTGCCAGGACCCGCTGCCAACATGGATTCTCTGGCGTGGT
GCTGGTATCCTCGCTCTACCTGCAGGCGGCCGAGTCAGCGGAGGTGGCCAGGCAAATAGTGTATCGAT
TGGCTATGCTTATGGGAGGATTGACTGCTGCTGGGCTGCCAGTCTGGGACAGTGTAGCC
TGTGTGCCAACACGATGCAAACATGGTAATGTATCGGCCAAACAAGTCAAGTGTACATCCTGGTTATGCTGG
AAAACCTGTAATCAAGATCTAAATGAGTGTGGCCTGAAGCCCAGGCCCTGTAAGCACAGGTGATGAACACTTA
CGGCAGCTACAAGTGTACTGCTCAACGGATATATGCTCATGCCGATGGTCTCTGCTCAAGTGCCCTGACCTG
CTCCATGGCAACTGTCAGTATGGCTGTGATGTTAAAGGACAAATACGGGCCAGTGCCATCCCTGGCCT
GCACCTGGCTCTGATGGGAGGACCTGTTGAGATGTTGATGAAATGTGCTACAGGAAGGCCCTGCCCTAGATT
TAGGCAATGTCACACTTTGGGAGGCTACATGTCAGTGTCACTGGTCACTGTCAGTGTATATTGGAGG
CAAATCAATGTCATGACATAGACGAATGTCACGGTCACTGTCAGTGTCACTGTCAGCAGCTTGCTCGATGTTAA
CGTAGTGGTCTACAAGTGCACAGGATACAGGGTGTGGACTGACTTGTGTATATCCAAA
AGTTATGATTGAAACCTCAGGTCCAATTGTCACAAAGGGAAATGGTACCATTTAAAGGGTACACAGGAAA
TAATAATTGGATTCTGATGTTGAAAGTACTTGGCTCCGAAGACACCATATATTCCCTATCATTACCAA
CAGGCCTACTCTAAGCAACAAGACCTACACCAAGCCAACCCAATTCTACTCCACCAACCCACCA
CCTGCCAACAGAGCTCAGAACACCTTACACCTACACCCAGAAAGGCCAACCAACGGACTGACAACATAGC
ACCAGCTGCCAGTACACCTCAGGGGATTACAGTTGACAACAGGGTACAGACAGACCCCTGAAACCCAGAGG
AGATGTGTCAGTGTCTGGTACACAGTTGTAATTGGACATGGACTTGTGGATGGATCAGGGAGAAAGACAA
TGACTTGCACTGGAACCAATCAGGGACCCAGCAGGTGACAATATCTGACAGTGTGGCAGCAAAGCCCCAGG
GGGAAAAGCTGCACGCTGGTGTACCTCTGGCCCTCATGCATTAGGGACCTGTGCCTGTCATTAGGCA
CAAGGTGACGGGCTGCACTCTGGCACACTCCAGGTGTTGTGAGAAAACAGGTGCCACGGAGCAGCCCTGTG
GGGAAGAAATGGTGGCCATGGCTGGAGGCAAACACAGATCACCTTGCAGGGGCTGACATCAAGAGCGAATCACA
AAGATGATTAAGGGTTGGAAAAAAAGATCTATGATGGAAATTAAAGGAACTGGATTATTGAGCCTGGAGAAG
AGAAGACTGAGGGCAAACCAATTGATGGTTTCAAGTATATGAAGGGTGGCACAGAGAGGGTGGCACCAGCTG
TTCTCCATATGCACTAAGAATAGAACAGAGGAAACTGGCTTAGACTAGAGTATAAGGGAGCATTCTGGCAGG
GCCATTGTTAGAATACTCTATAAAAAGAAGTGTGAAAATCTCAGTATCTCTCTCTCTTCTAAAAATTAGA
TAAAATTGCTTATTAAGATGGTAAAGATGTTCTACCAAGGAAAGTAACAAATTATAGAATTCCAAA
AGATGTTGATCCTACTAGTAGTGTGAAATCTTGAACATAATAATTGGACAAGGCTTAATTAGG
CATTTCCCTTGTGACCTCTAAATGGAGAGGGATTGAAAGGGGAGAGGCCACCAAATGCTGAGCTCACTGAAATA
TCTCTCCCTTATGGCAATCTTAGCAGTATTAAGAAAAAGGAAACTATTATCCAAATGAGAGTATGATGGAC
AGATATTGTTAGTATCTCAGTAATGTCCTAGTGTGGCGGTGGTTCAATGTTCTCATGGTAAAGGTATAAGCC
TTTCATTGTCATGGATGATGTTCAAGATTGGCTTCAAGGAAACAGTTCAAGGAGAG
ATTTCATGGGTGCAATTCTCTCTGCTCGTGTGACAAGTTATCTGGCTGCTGAGAAAGAGTGCCCTGG
ACACCCGGCAGACCTTCTTCACTCATCAGTATGATTGATTCTCTTATCAATTGGACTCTCCAGGTTCCAC
AGAACAGTAATATTTTGAAACAATAGGTACAATAGAAGGTCTCTGTCATTAAACCTGTAAGGGCTGG
AGGGGAAAATAATCATTAAGCCTTGAGTAACGGCAGAATATATGGCTGAGATCCATTAAATGGTTCATT
TCCTTATGGTCATATAACTGCACAGCTGAAGATGAAAGGGAAAATAATGAAAATTACTTTCGATGCCAA
TGATACATTGCACTAAACTGATGGAAGAAGTTATCCAAAGTACTGTATAACATCTGTTTATTATTAATGTTT
CTAAAATAAAATGTTAGTGGTTTCCAAATGGCTAATAAAAACAATTATGTAATAAAACACTGTTAGTAAT

FIGURE 110

MDFLLALVLVSSLYLQAAAEDGRWPRQIVSSIGLCRYGGRIDCCWGWARQSWGQCQPVCQP
RCKHGECIGPNKCKCHPGYAGKTCNQDLNECGLKPRPCKHRCMNTYGSYKCYCLNGYMLMPD
GSCSSALTCSMANCQYGCDVVKGQIRCQCPSPGLHLAPDGRTCDVDECATGRASCPRFRQC
VNTFGSYICKCHKGFDLMIYIGGKYQCHDIDECSLGQYQCSSFARCYNVRSYKCKCKEGYQG
DGLTCVYIPKVMIEPSGPIHVPKGNGTILKGDTGNNNWIPDVGSTWWPPKTPYIPPIITNRP
TSKPTTRPTPKPTPIPTPPPPPPTELRTPLPPTPERPTTGLTTIAPAASSTPPGGITVDN
RVQTDPQKPRGDVFSQLVHSCNFDHGLCGWIKEKDNDLHWEPIRDAGGQYLTVA
KAARLVLPLGRLMHSGDLCLSFRHKVTGLHSGTLQVFVRKHGAHGAALWGRNGGHGWRQTQI
TLRGADIKSESQR

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 273-277

Casein kinase II phosphorylation site.

amino acids 166-170, 345-349

Tyrosine kinase phosphorylation site.

amino acids 199-206

N-myristoylation site.

amino acids 109-115, 125-131, 147-153, 191-197, 221-227, 236-242,
421-427, 433-439, 462-468, 476-482

Aspartic acid and asparagine hydroxylation site.

amino acids 104-116, 186-198, 231-243

Cell attachment sequence.

amino acids 382-385

EGF-like domain cysteine pattern signature.

amino acids 75-87

FIGURE 111

CTTCTTGAAAAGGATTATCACCTGATCAGGTTCTCTGCATTGCCCTTAGATTGTGA
AATGTGGCTCAAGGTCTTCACAACTTCCCTTGCACAGGTGCTGCTGGGGCTGA
AGGTGACAGTGCCATCACACACTGTCCATGGCGTCAGAGGTCAAGGCCCTACCTACCGTC
CACTATGGCTTCCACACTCCAGCATCAGACATCCAGATCATATGGCTATTGAGAGACCCA
ACAATGCCAAATACTTACTGGGCTCTGTGAATAAGTCTGTGGTCTGACTTGAATACC
AACACAAGTCACCATGATGCCACCCAATGCATCTGCTTATCAACCCACTGCAGTCCCT
GATGAAGGCAATTACATCGTGAAGGTCAACATTCAAGGAAATGGAACATCTATCTGCCAGTCA
GAAGATAACAAGTCACGGTTGATGATCCTGTACAAAGCCAGTGGTCAGATTCACTCCCT
CTGGGGCTGTGGAGTATGTGGGAACATGACCCCTGACATGCCATGTGGAAGGGGCACTCGG
CTAGCTTACCAATGGCTAAAAAAATGGGAGACCTGTCCACACCAGCTCCACCTACTCCTTTC
TCCCCAAAACAATACCCCTCATATTGCTCAGTAACCAAGGAAGACATTGGGAATTACAGCT
GCCTGGTGAGGAACCCCTGTCAGTGAATGGAAAGTGTATCATTATGCCCATCATATTAT
GGACCTTATGGACTTCAAGTGAATTCTGATAAAAGGGCTAAAGTAGGGGAAGTGTACTGT
TGACCTTGGAGAGGCCATCCTATTGATTGTTCTGCTGATTCTCATCCCCCAACACCTACT
CCTGGATTAGGAGGACTGACAATACTACATATATCATTAAAGCATGGGCCTCGCTTAGAAGTT
GCATCTGAGAAAGTAGCCCAGAAGACAATGGACTATGTGTGCTGCTTACAACAACATAAC
CGGCAGGCAAGATGAAACTCATTCACAGTTACATCACTCCGTAGGACTGGAGAAGCTG
CACAGAAAGGAAATCATTGTCACCTTCAAGTATAACTGAATATCACTATTGGATT
ATATCCATGTGCTTCTCTTCCATGGAAAAAAATCAACCCCTACAAAGTTATAAAACAGAA
ACTAGAAGGCAGGCCAGAAACAGAATACAGGAAAGCTCAAACATTTCAGGCCATGAAGATG
CTCTGGATGACTTCGGAATATATGAATTGTTGCTTCCAGATGTTCTGGTGTTCAGG
ATTCCAAGCAGGTCTGTTCCAGCCTCTGATTGTGTATGGGCAAGATTGCACAGTACAGT
GTATGAAGTTATTCAAGCACATCCCTGCCAGCAGCAAGACCATTCCAGAGTGAACTTCA
GCTAACAGTACATTGAGTGAAGAAATTCTGAAGAAACATTAAAGGAAAACAGTGGAAAAGT
ATATTAAATCTGGAATCAGTGAAGAAACCAGGACCAACACCTCTACTCATTATTCC
TGCAGAATAGAGGCATTATGCAAATTGAAGTGCAGGTTTCAGCATATA
GTGCAACAGAAAAACATGTTGGGAAATATTCCCTCAGTGGAGAGTCGTTCTCATGCTGACGG
GGAGAACGAAAGTGACAGGGGTTCCCTCATAAGTTGTATGAAATATCT
ACAAACCTCA
ATTAGTTCTACTCTACACTTCACTATCAACACTGAGACTATCCTGCTCACCTACAAA
TGTGGAAACTTACATTGTTGATTTTCAGCAGACTTGTGTTTATTAAATT
TTAGTG
TTAAGAATGCTAAATTATGTTCAATTTCAGGAAATTTCTATCTTGTATTGTACAA
CAAAGTAATAAGGATGGTTGTCAACAAAACAAA
ACTATGCCTCTCTTTTTCAATCACC
AGTAGTATTGAGAAGACTTGTGAACACTTAAGGAAATGACTATTAAAGTCTTATT
TTTTTTCAAGGAAAGATGGATTCAAATAATTATTCTGTTTGCTTTAAAAAAA
AAAAAAA

FIGURE 112

MWLKVFTTFLSFATGACSGLKVTVPSPHTVHGVRGQALYLPVHYGFHTPASDIQIIWLFERPH
TMPKYLLGSVNKSVPDLEYQHKFTMMPPNASLLINPLQFPDEGNYIVKVNIQGNGTLSASQ
KIQVTVDDPVTKPVVQIHPPSGAVEYVGNMTLTCHVEGGTRLAYQWLKNGRPVHTSSTYSFS
PQNNTLHIAPVTKEDIGNYSCLVRNPVSEMESDIIMPIIYYGPYGLQVNNSDKGLKVGEVFTV
DLGEAILFDCSADSHPPNTYSWIRTDNTTYIIKHGPRLEVASEKVAQKMDYVCCAYNNIT
GRQDETHFTVIITSVGLEKLAQKGKSLSPLASITGISLFLIISMCLLFLWKKYQPYKVIKQK
LEGRPETEYRKAQTFSGHEDALDDFGIYEFVAFPDVSGVSRIPSRSPASDCVSGQDLHSTV
YEVIQHIPAQQQDHPE

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 341-359

N-glycosylation site.

amino acids 73-77, 92-96, 117-121, 153-157, 189-193, 204-208,
276-280, 308-312

Casein kinase II phosphorylation site.

amino acids 129-133, 198-202, 214-218, 388-392, 426-430, 433-437

Tyrosine kinase phosphorylation site.

amino acids 272-280

N-myristoylation site.

amino acids 15-21, 19-25, 118-124, 163-167, 203-209, 231-237,
239-245

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 113

GCAAGCGCGAAATGGCGCCCTCCGGGAGTCTGCAGTTCCCCTGGCAGTCCTGGTGTGTT
GCTTGGGGTGTCTCCCTGGACGCACGGCGGGAGCAACGTTCGCGTCATCACGGACGAGA
ACTGGAGAGAACTGCTGGAAGGAGACTGGATGATAGAATTTATGCCCCGTGGTGCCTGCT
TGTCAAAATCTCAACCGGAATGGGAAAGTTGCTGAATGGGAGAAGATCTTGAGGTTAA
TATTGCGAAAGTAGATGTCACAGAGCAGCCAGGACTGAGTGGACGGTTATCATAACTGCTC
TTCCTACTATTTATCATTGAAAGATGGTGAATTAGGCGCTATCAGGGTCCAAGGACTAAG
AAGGACTTCATAAAACTTATAAGTGATAAAAGAGTGGAAAGAGTATTGAGCCGTTCATCATG
GTTTGGTCCAGGTTCTGTTCTGATGAGTAGTATGTCAGCACTTTCAGCTATCTATGTGGA
TCAGGACGTGCCATAACTACTTATTGAAAGACCTGGATTGCCAGTGTGGGATCATATACT
GTTTTGCTTAGCAACTCTGTTCCGGACTGTTATTAGGACTCTGTATGATATTGTGCG
AGATTGCCTTGTCCTCAAAAAGGCGCAGACCAACAGCCATACCCATACCCCTCAAAAAAAT
TATTATCAGAACTGCACAAACCTTGAAAAAAGTGGAGGAGGAACAAGAGGCGGATGAAGAA
GATGTTCAGAAGAAGAGCTGAAAGTAAAGAAGGAACAAACAAAGACTTCCACAGAATGC
CATAAAGACAACGCTCTGGGTCCATCATTGCCACAGATAAATCCTAGTTAAATTATAG
TTATCTTAATATTATGATTTGATAAAACAGAAGATTGATCATTTGTTGGTTGAAGTG
AACTGTGACTTTTGAATATTGCAGGGTTCAGTCTAGATTGTCAATTAAATTGAAGAGTCTA
CATTCAGAACATAAAAGCACTAGGTATACAAGTTGAAATATGATTTAACAGTATGATG
GTTAAATAGTTCTAATTGGAAAAATCGGCCAAGCAATAAGATTATGTATATTGT
TTAATAATAAACCTATTCAAGTCTGAGTTGAAAATTACATTCCCAGTATTGCATTAT
TGAGGTATTTAAGAAGATTATTTAGAGAAAAATATTCTCATTTGATATAATTCTCTG
TTCACTGTGAAAAAAAGAAGATATTCCATAAATGGGAAGTTGCCATTGTCTCAAG
AAATGTGTTTCAAGTGCACATTCTGGTCTTTAGAGGTATATTCCAAATTCCCTTGT
ATTTTAGGTTATGCAACTAAACACTACCTTACATTAATTACAGTTCTACACA
TGGTAATACAGGATATGCTACTGATTTAGGAAGTTTAAGTTCATGGTATTCTCTTGATTC
CAACAAAGTTGATTTCTCTGTATTTCTTACTTACTATGGTTACATTTTATT
CAAATTGGATGATAATTCTGGAAACATTTTATGTTTAGAAACAGTATTGTTGTT
GTTTCAAACTGAAGTTACTGAGAGATCCATCAAATTGAACAACTGTTGAATTAAATT
TTGGCCACTTTTCAGATTTACATCATTCTGCTGAACCTCAACTGAAATTGTTTT
TTTCTTTGGATGTAAGGTGAACATTCTGATTTGTCATGTGAAAAAGCCTGGTA
TTTACATTGAAATTCAAAGAACGTTAATATAAAAGTTGCATTCTACTCAGGAAAAAG
CATCTTCTGTATATGCTTAAATGTATTTGTCCTCATATAACAGAAAGTTCTAATTGAT
TTACAGTCTGTAATGCTGATGTTAAAATAACATTATTTATATTGTTAAAAGACAA
ACTTCATATTATCCTGTGTTCTTCTGACTGGTAATATTGTGTTGGGATTCACAGGTAAA
GTCAGTAGGATGGAACATTAGTGTATTTACTCCTAAAGAGCTAGAATAACATAGTTT
CACCTTAAAGAAGGGGGAAATCATAAAACAAATGAATCAACTGACCATTACGTAGTAGAC
AATTCTGTAATGTCCTTCTTCTAGGCTCTGTTGCTGTGAATCCATTAGATTACAG
TATCGTAATATAACAGTTCTTAAAGCCCTCCTTGAATTTAAATATTGTACCA
AAAGAGTTGGATGTAATTGTGATGCCTTAGAAAATATCCTAAGCACAAATAACCT
TTCTAACCACTTCATTAAGCTGAAAAAA

FIGURE 114

MAPSGSLAVPLAVLVLLLWGPWTHGRRSNVRVITDENWRELLEGDWMIEFYAPWCPACQNL
QPEWESFAEWGEDLEVNIAKVDVTEQPGLSGRFIITALPTIYHCKDGEFRRYQGPRTKKDFI
NFISDKEWKSIEPVSSWFGPGSVLMSSMSALFQLSMWIRTCHNYFIEDLGLPVWGSYTVFAL
ATLFSGLLLGLCMIFVADCLCPSKRRRPQPYPPSKLLSESAQPLKKVEEEQEADEEDVSE
EEAESKEGTNKDFPQNAIRQRSLGPSLATDKS

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 182-201

Casein kinase II phosphorylation site.

amino acids 68-72, 119-123, 128-132, 247-251, 257-261

Tyrosine kinase phosphorylation site.

amino acids 107-115

N-myristoylation site.

amino acids 20-26, 192-198

Amidation site.

amino acids 25-29

FIGURE 115

GCGAGTGTCCAGCTCGGGAGACCCGTGATAATTGTTAACTAATTCAACAAACGGGACCCCTT
CTGTGTGCCAGAAACCGCAAGCAGTTGCTAACCCAGTGGGACAGGCAGGATTGGAAGAGCGGG
AAGGTCCCTGGCCCAGAGCAGTGTGACACTTCCCTCTGTGACCATGAAACTCTGGGTGTCTGC
ATTGCTGATGGCTGGTTGGTGTCTGAGCTGTGAGGCGAATTCTCACCTCTATTG
GGCACATGACTGACCTGATTATGCAGAGAAAGAGCTGGTGCAGTCTCTGAAAGAGTACATC
CTTGTGGAGGAAGCCAAGCTTCCAAGATTAAGAGCTGGGCCAACAAAATGGAAGCCTGAC
TAGCAAGTCAGCTGCTGATGCTGAGGGCTACCTGGCTCACCTGTGAATGCCTACAAACTGG
TGAAGCGGCTAACACACAGACTGGCCTGCGCTGGAGGACCTTGTCTGCAGGACTCAGCTGCA
GGTTTATGCCAACCTCTGTGAGCGGAGTTCTCCCCACTGATGAGGACGGAGATAGG
AGCTGCCAACGCCCTGATGAGACTTCAGGACACATACAGGCTGGACCCAGGCACAATTCCA
GAGGGGAACCTCAGGAACCAAGTACCAAGGCAATGCTGAGTGTGGATGACTGCTTGGATG
GGCGCTCGGCCTACAATGAAGGGGACTATTATCATACTGGTGTGTGGATGGAGCAGGTGCT
AAAGCAGCTTGATGCCGGGGAGGAGGGCACCACAACCAAGTCACAGGTGCTGGACTACCTCA
GCTATGCTGCTTCCAGTGGGTGATCTGCACCGTGCCCTGGAGCTCACCGCCGCTGCTC
TCCCTGACCCAAGCCACGAACGAGCTGGAGGGAACTGCGGTACTTGAGCAGTTATTGGA
GGAAGAGAGAGAAAAAACGTTAACAAATCAGACAGAACGCTGAGCTAGCAACCCCAGAAGGCA
TCTATGAGAGGCCTGTGGACTACCTGCCTGAGAGGGATGTTACGAGAGCCTGTGCTGG
GAGGGTGTCAAACGTACACCCGTAGACAGAACGAGGCTTCTGTAGGTACCAACATGGCAA
CAGGGCCCCACAGCTGCTATTGCCCTTCAAAGAGGAGGACAGTGGACAGCCCGCACA
TCGTCAGGTACTACGATGTCTGATGAGGAAATCGAGAGGATCAAGGAGATCGCAAAA
CCTAAACTTGACGAGCCACCGTTGTGATCCAAGAACAGGAGTCTCACTGTGCCAGCTA
CCGGGTTTCAAAGCTCCTGGCTAGAGGAAGATGATGACCTGTTGTGGCCCGAGTAAATC
GTGGATGCAGCATATCACAGGGTTAACAGTAAAGACTGCAGAATTGTTACAGGTTGCAAAT
TATGGAGTGGGAGGACAGTATGAACCGCACTCGACTTCTCTAGGCAGCCTTGTACAGCGG
CCTCAAAACAGAGGGAAATAGGTTAGCGACGTTCTTAACATGAGTGTAGAAGCTG
GTGGTGCACCGTCTCCCTGATCTGGGGCTGCAATTGGCTAAGAAGGGTACAGCTGTG
TTCTGGTACAACCTCTGCGGAGCGGGGAAGGTGACTACCGAACAGACATGCTGCC
TGTGCTTGTGGCTGCAAGTGGTCTCCAATAAGTGGTCCATGAACGAGGACAGGAGTTCT
TGAGACCTTGTGGATCAACAGAACGTTGACTGACATCCTTCTGTCTCCCTCCTGGTC
CTTCAGCCCATGTCACAGTGCAGACACACCTTGTATGTTCTTGTATGTTCTATCAGGCT
GATTTTGGAGAAATGAATGTTGTCTGGAGCAGAGGGAGACCATACTAGGGCGACTCCTGT
GTGACTGAAGTCCCAGCCCTTCATTAGCCTGTGCCATCCCTGGCCCCAAGGCTAGGATCA
AAGTGGCTGCAGCAGAGTTAGCTGTCTAGCGCCTAGCAAGGTGCCCTTGTACCTCAGGTGTT
TTAGGTGTGAGATGTTCACTGAACCAAAGTTCTGATACCTGTTACATGTTGTTTAT
GGCATTCTATCTATTGTGGCTTACCAAAAAAATGTCCCTACCAGAAAAAA

FIGURE 116

MKLWVSALLMAWFGVLSHVQAEFFTSIGHMTDLIYAEKELVQSLKEYILVEEAKLSKIKSWA
NKMEALTSKSAADAEGYLAHPVNAYKLVKRLNTDWPALEDLVLQDSAAGFIANLSVQRQFFP
TDEDEIGAAKALMRLQDTYRLDPGTISRGELPGTKYQAMLSVDDCFGMGRSAYNEGDDYYHTV
LWMEQVLKQLDAGEEATTKSQVLDYLSYAVFQLGDLHRAELTRRLSLDPSHERAGGNLR
YFEQLLEEEEREKTLTNQTEAELATPEGIYERPVDPYLPERDVYESLCRGEVKLTPRRQKRLF
CRYHHGNRAPQLLIAPFKEEDEWDSPHIVRYYDVMSEEEIERIKEIAKPKLARATVRDPKTG
VLTVASYRVSKSSWLEEDDPVVARVNRMQHITGLTVKTAELLQVANYGVGGQYEPHDFDS
RRPFDGKTEGNRLATFLNYMSDVEAGGATVFPDLGAAIWPKGTAVFWYNLLRSGEDYR
TRHAACPVLVGCKWVSNKWFHERGQEFLRPCGSTEVD

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 115-119, 264-268

Glycosaminoglycan attachment site.

amino acids 490-494

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 477-481

Casein kinase II phosphorylation site.

amino acids 43-47, 72-76, 125-129, 151-155, 165-169, 266-270,
346-350, 365-369, 385-389, 457-461, 530-534

Tyrosine kinase phosphorylation site.

amino acids 71-80, 489-496

N-myristoylation site.

amino acids 14-20, 131-137, 171-177, 446-452

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 8-19

Leucine zipper pattern.

amino acids 213-235

FIGURE 117

GCAGTATTGAGTTTACTCCTCCTTTAGTGGAAAGACAGACCATATCCCAGTGTGAGTGAAATTGATTGT
TTCATTTATTACCGTTTGGCTGGGGTTAGTTCGACACCTTCACAGTGAAGAGCAGGCAGAAGGAGTTGTGA
AGACAGGACAATCTTCTGGGGATGCTGGTCTGGAAAGCCAGCGGGCCTGCTCTGCTTGGCCTCATTGACCC
CAGGTCTCTGGTAAACACTGAAAGCCTACTACTGGCCTGGTCCCCATCAATCCATTGATCCTTGAGGCTGTGCC
CCTGGGCACCCACCTGGCAGGGCTACCACCATGCGACTGAGCTCCCTGTTGGCTCTGCTGCGGCAGCGCTTC
CCCTCATCTTAGGGCTGCTCTGGGGTGCAGCCTGAGCCTCTGGGGTTCTGGATCCAGGGGAGGGAGAAG
ATCCCTGTGTCGAGGCTGTAGGGGAGCGAGGAGGGCCACAGAATCCAGATTGAGAGCTCGGCTAGACCAAAGTG
ATGAAGACTTCAAACCCCGATTGTCCTACTACAGGGACCCACAAGCCCTACAAGAAGGTGTCAGGACTC
GGTACATCCAGACAGAGCTGGGCTCCGTGAGCGGTTGCTGGTGGCTGACCTCCGAGCTACACTGTCCA
CTTGGCCGTGGCTGTGAACCGTACGGTGGCCATCACTTCCCTCGGTTACTCTACTTCAGTGGCAGCGGGGG
CCCGGGCTCCAGCAGGGATGCGAGGTGGTGTCTCATGGGATGAGCGGCCGCTGGCTCATGTCAGAGACCCCTGC
GCCACCTTACACACACTTGGGGCCGACTACGACTGGTTCTCATGCAAGGATGACACATATGTGCAGGCC
CCCGCTGGCAGCCCTGCTGGCCACCTCAGCATCAACCAAGACCTGACTTAGGCCGGCAGAGGAGTTCATTG
GCGCAGGCAGCAGGGCCGGTACTGTCACTGGGGCTTTGGTACCTGGTGTACGGAGTCTCTGCTTCGTC
GGCCACATCTGGATGGCTGCCAGGGAGACATTCTCAGTGGCTGTGACGAGTGGCTGGACGCTGCCCTCATTG
ACTCTCTGGCGTGGCTGTCTCACAGCACCAGGGCAGCAGTATGCTCATTTGAACACTGGCCAAAAATAGGG
ACCTGAGAAGGAAGGGAGCTGGCTTCTGAGTGCCTTCGGCTGACCCCTGCTCTGGCAAGGTACCCCTATGT
ACCGCTCCACAAACGCTTCAGCGCTCTGGAGTTGGAGCGGCTTACAGTAAATAGAACAACTGAGGCTCAGA
TCCGGAACCTGACCGTGTGACCCCCGAAGGGGAGGAGGGCTGAGCTGGCCGTTGGCTCCCTGCTCCTTCA
CACACACACTCTGCTTGGAGGTGCTGGCTGGACTACTTCACAGAGCAGCACACCTCTCTGTCAGATGGG
CTCCAAGTGCCACTACAGGGGCTAGCAGGGCGACGGTGGGTGATGCGTTGGAGACTGCCCTGGAGCAGCTCA
ATCGCGCTATCAGCCCCGCTGCGCTTCCAGAACGCGACTGCTCAACGGCTATCGGCCCTCGACCCAGCAC
GGGGCATGGAGTACACCCCTGGACCTGCTTGGAAATGTTGACACAGCGTGGCACCGGGGGCCCTGGCTCGCA
GGGTCAGCCTGCTGCCACTGAGCCGGTGGAAATCTACCTATGCCCTATGTCAGTGGCCACCCGAGTGC
AGCTGGTGTGCCACTCTGGTGGCTGAAGCTGCTGAGCCCCGGTTCTGAGGCCAGGCTTGAGCCAATGTC
TGGAGCCACGAGAACATGCTTGTGACCCCTGTTGCTGGTCTACGGGCCACGAGAACGGTGGCCGTGGAGCTCCAG
ACCCATTCTGGGTGAAGGCTGAGCGAGGTTAGAGCAGGGTACCTGGACGAGGCTGGCTGGAGCTGGCTCG
CTGTCGAGCAGAGGCCCTTCCCAGGTGCGACTCATGGACGTGGTCTGAAGAACGACCCCTGTGGACACTCT
TCTTCTTACCAACCGTGTGGACAAGGCTGGCCGAAGTCTCAACCGCTGTCAGTGAATGCCATCTGGCT
GGCAGGCCCTTCCAGTCATTCAGGAGTTCAATCTGCCCTGTCACACAGAGATCACCCCCAGGGCCCC
CGGGGGCTGGCCCTGACCCCCCTCCCTGGTGTGACCCCTCCGGGGGCTCCATAGGGGGAGATTG
ACCGCAGGCTCTGGAGGGCTGCTTCTACACGCTGACTACCTGGCGGCCGAGCCCGCTGGCAGGTGAAC
TGGCAGGCCAGGAAGAGGAGGAAGCCCTGGAGGGGCTGGAGGTGATGGATTTCTCCCTGGAGACTGCA
ACCTCTTCGGCCGTAGAGCCAGGGCTGGTGCAGAACGTTCTCCCTGGAGACTGCAAGCCACGGCTCA
AACTCTACCAACCGCTGCCCTCAGAACCTGGAGGGCTAGGGGCCGTGCCAGCTGGCTATGGCTCTTTG
AGCAGGAGCAGCCAATAGCACTAGCCGCTGGGGCCCTAACCTCATTACCTTGTCTGCCAGCC
CCAGGAAGGGCAAGGCAAGATGGTGGACAGATAGAGAATTGTTGCTGTATTTAAATATGAAAATGTTATTAA
ACATGTCTTGTGCC

FIGURE 118

MRLSSLLALLRPALPLILGLSLGCSLSLLRVSWIQGEGEDPCVEAVGERGGPQNPDSRARLD
QSDEDFKPRIVPYYRDPNKPYKKVLRTRYIQTTELGSRERLLVAVLTSRATLSTLAVAVNRTV
AHHFPRLLYFTGQRGARAPAGMQVVSHGDERPAWLMSETLRHLHFGADYDWFFIMQDDTY
VQAPRLAALAGHLSINQDLYLGRAEEFIGAGEQARYCHGGFGYLLSRSLLLRLPHLDGCRG
DILSARPDEWLGRCLIDSLGVGCVSQHQGQQYRSFELAKNRDPEKEGSSAFLSAFAVHPVSE
GTLMYRLHKRFSALELERAYSEIEQLQAQIRNLTVLTPGEAGLSWPVGLPAPFTPNSRFEV
LGWDYFTEQHTFSCADGAPKCPLQGASRADVGDALETALEQLNRRYQPRLRFQKQRLLNGYR
RFDPARGMEYTL DLL ECVTQRGHRRALARRVSLLRPLSRVEILPMPYVTEATRVQLVPL
VAEAAAAPAFLEAFANVLEPREHALL TLL VYGPREGGRGAPDPFLGVKAAAELERRYPG
TRLAWLAVRAEAPSQVRLMDVSKKHPVDTLFFLTTWTRPGPEVLNRCRMNAISGWQAFFP
VHFQEFNPALSPQRSPPGPPGAGPDPPSPPGADPSRGAPIGGRFDRQASAEGCFYNADYLAA
RARLAGELAGQEEEALEGLEVMDVFLRFSGLHLFRAVEPGLVQKFSLRDCSPRLSEELYHR
CRLSNLEGLGGRAQLAMALFEQEANST

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 489-507

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-68, 150-154, 322-326, 331-337, 368-372, 385-389,
399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,
558-564, 651-657, 657-663, 672-678

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

FIGURE 119

CGGAGTGGTGCGCCAACGTGAGAGGAAACCGTGC CGGCTGC GCTT CCTGTCCCAGCC
GTTCTAGACGCCGGAAAAATGCTTCTGAAAGCAGCTCCTTTGAAGGGTGTGATGCTGG
AAGCATTCTGTGCTTGATCACTATGCTAGGACACATTAGGATTGGTATGGAAATAGAA
TGCACCACCATGAGCATCATCACCTACAAGCTCTAACAAAGAAGATATCTGAAAATTCA
GAGGATGAGCGCATGGAGCTCAGTAAGAGCTTCGAGTATACTGTATTATCCTGTAAAACC
CAAAGATGTGAGTCTTGGCTGCAGTAAAGGAGACTGGACAAACACTGTGACAAAGCAG
AGTTCTCAGTTCTGAAAATGTTAAAGTGTGAGTCAATTATGGACACAAATGACATG
TGGTTAATGATGAGAAAAGCTTACAAATACGCCCTTGATAAGTATAGAGACCAATACAAC
GTTCTCCTGCACGCCCACTACGTTGCTATCATTGAAAACCTAAAGTATTTTGTAA
AAAAGGATCCATCACAGCCTTCTATCTAGGCCACACTATAAAATCTGGAGACCTTGAATAT
GTGGGTATGGAAGGAGGAATTGTCTTAAGTGTAGAATCAATGAAAAGACTAACAGCCTCT
CAATATCCCAGAAAAGTGTCTGAACAGGGAGGGATGATTGGAAAGATATCTGAAGATAAAC
AGCTAGCAGTTGCCTGAAATATGCTGGAGTATTGCAGAAAATGCAGAAGATGCTGATGGA
AAAGATGTATTAATACAAATCTGTTGGCTTCTATTAAAGAGGCAATGACTTACACCC
CAACCAGGTAGTAGAAGGCTGTTGTCAGATATGGCTTTACTTTAATGGACTGACTCAA
ATCAGATGCATGTGATGTATGGGTATACCGCCTAGGGCATTGGCATATTTCAT
GATGCATTGGTTCTTACCTCCAAATGGTCTGACAATGACTGAGAAGTGGTAGAAAAGCG
TGAATATGATCTTGTATAGGACGTGTTGTCATTATTGTAGTAGTAACATACATATCAA
TACAGCTGTATGTTCTTTCTTTCTAATTGGTGGCACTGGTATAACCACACATTAAAG
TCAGTAGTACATTTAAATGAGGGTGGTTTTCTTTAAAACACATGAACATTGTAAATG
TGTTGGAAAGAAGTGTGTTAAGAATAATAATTGCAAATAACTATTAATAAAATTATAT
GTGATAAAATTCTAAATTATGAACATTAGAAATCTGTGGGCACATATTGCTGATTGGTT
AAAAAAATTAAACAGGTCTTAGCGTTCTAAGATATGCAAATGATATCTCTAGTTGTGAATT
TGTGATTAAAGTAAAACCTTCTAGCTGTGTTCCCTTACTCTAATACGTATTATGTTCT
AAGCCTCCCCAAGTTCCAATGGATTGCTTCTCAAAATGTACAACTAAGCAACTAAAGAAA
ATTAAAGTGAAAGTGTAAAAAT

FIGURE 120

MLSESSSFLKGVMLGSIFCALITMLGHIRIGHGNRMHHHEHHHLQAPNKEDILKISEDERME
LSKSFRVYCIILVKPKDVSLWAAVKETWTKHCDKAEFFSSENVKFESINMDTNMDWLMMRK
AYKYAFDKYRDQYNWFFLARPTTFAIIENLKYFLLKKDPSQPFYLGHТИKSGDLEYVGMEGG
IVLSVESMKRLNSLLNIPEKCPEQGGMIWKISEDKQLAVCLKYAGVFAENAEDADGKDVFNT
KSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQMHVMMYGVYRLRAFGHIFNDALVFL
PPNGSDND

Signal sequence:

amino acids 1-33

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-132, 150-154, 322-326, 331-335, 368-372, 385-389,
399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,
558-564, 651-657, 657-663, 672-672

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

FIGURE 121

CCACCGTCCGATCTTACCAACAAACACTCCTGAGGAGAAAGAAAGAGAGGGAGGGAGAG
AAAAAGAGAGAGAGAGAAACAAAAACCAAGAGAGAGAAAAATGAATTCATCTAAATCAT
CTGAAACACAATGCACAGAGAGAGGATGCTCTCTCCAAATGTTCTTATGGACTGTTGCT
GGGATCCCCATCCTATTCAGTGCCTGTTCATCACCAGATGTGTTGACATTCGCAT
CTTCAACCTGTGATGAGAAAAGTTCAGCTACCTGAGAATTTCACAGAGCTCTGCT
ACAATTATGGATCAGGTTCAGTCAGAATTGTTGTCATTGAACGGAAATTTCATCC
AGCTGCTACTTCTTTCTACTGACACCATTCCCTGGCGTTAAGTTAAAGAACTGCTCAGC
CATGGGGCTCACCTGGTGGTTATCAACTCACAGGAGGAGCAGGAATTCTTCTACAAGA
AACCTAAAATGAGAGAGTTTTTATTGGACTGTCAGACCAGGTTGTCGAGGGTCAGTGGCAA
TGGGTGGACGGCACACCTTGACAAAGTCTCTGAGCTCTGGATGTAGGGAGCCAAACAA
CATAGCTACCCCTGGAGGACTGTGCCACCATGAGAGACTCTCAAACCCAAGGCAAAATTGGA
ATGATGTAACCTGTTCTCAATTATTCGGATTGTGAAATGGTAGGAATAATCCTTG
AACAAAGGAAAATCTTTTAAGAACAGAACGGACAACCTCAAATGTGAAAGGAAGAGCA
AGAACATGCCACACCCACCGCCCCACACGAGAAATTGTGCGCTGAACCTCAAAGGACTTC
ATAAGTATTGTTACTCTGATACAAATAAAATAAGTAGTTAAATGTTAAAAAAAAAAAA
AAA
AAAAA

□ 500 500 500 500 500
■ 100 100 100 100 100

FIGURE 122

MNSSKSSETQCTERGCFSSQMFLWTVAGIPILFLSACFITRCVVTFRIFQTCDEKKFQLPEN
FTELSCNYGSGSVKNCCPLNWEYFQSSCYFFSTDТИWALSLKNCSAMGAHLVVINSQEEQ
EFLSYKKPKMREFFIGLSDQVVEGQWQWVDGTPLTKSLSFWDVGEPPNNIATLEDATMRDSS
NPRQNWNDVTCFLNYFRICEMVGINPLNKGKSL

Signal sequence:

amino acids 1-42

N-glycosylation site.

amino acids 2-6, 62-66, 107-111

Casein kinase II phosphorylation site.

amino acids 51-55, 120-124, 163-167, 175-179, 181-185

N-myristoylation site.

amino acids 15-21, 74-80, 155-161

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 27-38

FIGURE 123

GGGACTACAAGCCGCGCCCGCTGCCGCTGGCCCCCTCAGCAACCCCTCGACATGGCGCTGAGGCGGCCACCGCGAC
TCCGGCTCTGCGCTCGGCTGCCTGACTTCTTCTGCTGCTGCTTTCAAGGGCTGCCTGATAGGGGCTGTAAATC
TCAAATCCAGCAATCGAACCCCCAGTGGTACAGGAATTGAAAGTGTGGAACTGTCTTGCATCATTACGGATTGCG
AGACAAGTGAACCCAGGATCGAGTGGAAAGAAAATTCAAGATGAACAAACCACATATGTGTTTTGACAACAAAA
TTCAGGGAGACTTGGCGGGCTGAGAAATACTGGGAAAGACATCCCTGAAGATCTGGAATGTGACACGGAGAG
ACTCAGCCCTTATCGCTGTGAGGTCGTTGCTGAAATGACCGAAGGAAATTGATGAGATTGTGATCGAGTAA
CTGTGCAAGTGAAGCCAGTGAACCCCTGTCTGAGAGTGGCGAAGGCTGTACCAAGTAGGCAAGATGGCAACACTGC
ACTGCCAGGAGAGTGGAGGGCCACCCCCGGCCTCACTACAGCTGGTATCGCAATGATGTACCACTGCCACGGATT
CCAGAGCCAATCCCAGATTGCAATTCTTCTTCACTTAAACTCTGAAACAGGCACTTGGTGGTCACTGCTG
TTCACAAGGAGCAGTCTGGCAGTACTACTGCATTGCTTCCAATGACGCAGGCTCAGCCAGGTGTGAGGAGCAGG
AGATGGAAGTCTATGACCTGAACATTGGCGGAATTATTGGGGGGTTCTGGTTGTCCTTGTACTGGCCCTGA
TCACGTTGGGCATCTGCTGTGCATACAGACGGCTACTTCATCAACAATAACAGGATGGAGAAAGTTACAAGA
ACCCAGGAAACAGATGGAGTTAACATACATCCGCACTGACGAGGGCCACTTCAGACACAAGTCATGTTG
TGATCTGAGACCCGCGGTGCGCTGAGAGCGCACAGAGCGCACGTGCACATACTCTGCTAGAAAACCTCTGTC
GGCAGCGAGAGCTGACTCGGACAGAGCTAGACACTCATTAGAAGCTTTCAGGATGGACCCGGTAAATATAACCAA
CTACTCTTACTCTAACAGGCCATGAATAGAAGAATTTCAGGATGGACCCGGTAAATATAACCAA
GGAAGCGAAACTGGGTGGCTTCACTGAGTTGGGTTCTAATCTGTTCTGGCTGATTCCGCATGAGTTAGG
GTGATCTTAAAGAGTTGCTCACGAAACGCCGTGCTGGGCCCTGTGAAGCCAGCATGTTCAACTGGTCGTT
CAGCAGCCACGACAGCACCATGTGAGAGTGGCGAGGTGGTGGACAGCACCAGCAGCGCATCCGGGGAAACCA
GAAAAGGCTTCTACACAGCAGCCTTACTTCATGGCCACAGACACCACCGCAGTTCTTAAAGGCTCTGC
TGATCGGTGTTGCACTGTCATTGGAGAAGCTTTGGATCAGCATTTGTAACAAACAAATCAGGAAG
GTAAATTGGTTGCTGGAAGAGGGATCTTGCCTGAGGAACCCCTGTTGCTTCAACAGGGTGTCAAGGATTTAAGGAA
ACCTTCGCTTAAAGCTAAGTCTGAAATGGTACTGAAATATGCTTTCTATGGGCTTGTGTTATTAAACCA
TACATCTAAATTGGCTAACGGATGTATTGATTATTGAAAAGAAAATTCTATTTAAACTGTAATATATTGT
CATACATGTTAAATAACCTATTTTAAAGGTTAACCTAACGGTAGAAGTCAAGCTACTAGTGTAAAT
TGGAAAATATCAATAATTAGAGTATTGACAGGAACTCTCATGGAAAGTTACTGTGATGTTCTTCT
CACACAAGTTTACGCTTTTCAAAAGGAACCTACACTGTCTACACATCAGACCATAGTTGCTTAGGAAACCTT
TAAAATTCCAGTTAACGAAATGTTGAAATCAGTTGCTCTCTTCAAAAGAAACCTCTCAGGTTAGCTTGA
GCCTCTCTGAGATGACTAGGACAGTCTGTACCCAGAGGCCACCCAGAAGCCTCAGATGTACATACAGATG
CCAGTCAGCTCTGGGTGCGCCAGGCCAGCGCTAGCTCACTGTCCTCGCTGCTGCCAGGAGGCC
GCCATCCTGGCCCTGGCAGTGGCTGTGCTCCAGTGAGCTTACTCAGTGCCCTTGCTCATCCAGCACAGC
TCTCAGGTGGGCACTGCAGGGACACTGGTGTCTTCCATGCTAGCGTCCCAGCTTGGCTCTGTAA
TTTGTTATGGATGGCTCACAAAATAGGGCCCCAATGCTATTGTTAAAGTTGTTAATTATTGTT
AAGATTGCTAACGGCAAAGGCAATTGGAAATCAACTGTCAAGTACAATAACATTAAAAGAAAATGGAT
CCCACGTGTTCTTGCACAGAAGAACCCAGGCCACAGGCTCTGTCGCAATTCAAAACAAACCATGAT
GGAGTGGCGGCCAGTCCAGCCTTTAAAGAACGTCAAGGTGGAGCAGCCAGGTGAAAGGCTGGCGGGAGGAAAG
TGAAAAGCCTGAATCAAAGCAGTTCTAACATTGACTTTCAATTGACTTTCACTCCGAGACACTGCT
TGTGGGGGACATTGCAACATCACTCAGAACCTGTGTTCTCAAGAGCAGGTGTTCTCAGCCTCACATGCC
GCCGTGCTGGACTCAGGACTGAAGTGTGTAAGCAAGGAGCTGCTGAGAAGGAGCACTCCACTGTGCT
GAATGGCTCTCAACTCACCTGCTTTCAGCTTCACTGCTTGGGTTTTTAACTTGCACAGCTTTTT
AATTGCAACATGAGACTGTGTTGACTTTTTAGTTATGTGAAACACTTGCAGGCCCTGGCAGAGGCA
GGAAATGCTCCAGCAGTGGCTCAGTGCTCCCTGGTGTGCTGCATGGCATTCTGGATGCTTAGCATGCAAGT
CCTCCATCATTGCCACCTTGGTAGAGAGGGATGGCTCCCCACCCCTCAGCGTTGGGATTACGCTCCAGCCT
TCTTGGTTGTCAGTGATAGGGTAGCCTTATTGCCCCCTTCTTAACTCTAAACCTTCTACACTAGTGCA
TGGGAACCAAGTCTGAAAAGTAGAGAGAAGTGAAGTAGAGTCTGGGAAGTAGCTGCCTATAACTGAGACTAGA
CGGAAAAGGAATACTCGTGTTAGATGAATGTGACTCAAGACTCGAGGCCGATAACGGGCTGTGATTCT
GCCTTGGATGGATGTTGCTGTACACAGATGCTACAGACTTGTACTAACACACCGTAATTGGCATTGTTAAC
CTCATTATAAAAGCTTCAAAAAACCA

FIGURE 124

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77624
><subunit 1 of 1, 310 aa, 1 stop
><MW: 35020, pI: 7.90, NX(S/T): 3
MALRRPPRLRLCARLPDFLLLLFRGCLIGAVNLKSSNRTPVVQEFESELSCIITDSQTSD
PRIEWKKIQDEQTTYVFFDNKIQGDLAGRAEILGKTSKIKWNVRRDSALYRCEVVARNDRK
EIDEIVIELTVQVKPVTPVCRVPKAVPGKMATLHCQESEGHPRPHYSWYRNDVPLPTDSRA
NPRFRNSSFHLNSETGTLVFTAVHKDDSGQYYCIASNDAGSARCEEQEMEVYDLNIGGIIGG
VLVVLAVLALITLGICCAYRRGYFINNKQDGESYKNPGKPDGVNYIRTDEEGDFRHKSSFVI
```

Important features of the protein:

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 243-263

N-glycosylation sites.

amino acids 104-107, 192-195

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 107-110

Casein kinase II phosphorylation site.

amino acids 106-109, 296-299

Tyrosine kinase phosphorylation site.

amino acids 69-77

N-myristoylation sites.

amino acids 26-31, 215-220, 226-231, 243-248, 244-249, 262-267