The Physics of Baumgartner Skydiving

Formulas and Constant

Definitions

m: The mass of Baumgartner and his equipment.

A: The projected area of the Baumgartner.

C: The drag coefficient of Baumgartner.

g: The acceleration due to gravity.

\rho: the density of the atmosphere around Baumgartner.

v: The velocity of Baumgartner.

t: The time pass after Baumgartner began falling.

h: The distance between ground and Baumgartner.

T: The temperature of atmosphere around Baumgartner.

p: The pressure of atmosphere around Baumgartner.

dt: A very short time.

m = 110 kg $AC = 0.8395 \text{m}^2$ $g = -9.8 \text{m/s}^2$ dt = 0.001 s

Figure 1: Baumgartner and his equipment

Calculation of Constant

About 50 seconds after Baumgartner began falling, he reached the terminal velocity (1173 km/hr = 326 m/s) at a height of about 28000 meters.

We hypothesized that A, C, m, g, is constant. We found out m is about 110 kilogram and set $g = -9.8 \text{m/s}^2$. Reaching the terminal velocity signified that the resistance equals gravity, so we got $mg = \frac{1}{2}\rho v^2 CA$.

We substituted h=28000 meters into the function of density and got ρ . Then find AC = 0.8395 by $mg = \frac{1}{2}\rho v^2 CA$.

Simulation by Computer Program

Flow Path

Program (made by phthon)

Result and Discussion

References

Natalie Wolchover. (2012). The Physics of the First-Ever Supersonic Skydive. Retrieved from

https://www.livescience.com/23710-physics-supersonic-skydive.html (November 3, 2019)

Drag coefficient. (November 14, 2019). https://en.wikipedia.org/wiki/Drag_coefficient (November 3, 2019)

https://www.zhihu.com/question/59208808

https://www.youtube.com/watch?v=raiFrxbHxV0

 $\underline{https://www.youtube.com/watch?v=vvbN-cWe0A0}$