KOVÁCS HUNOR ÁDÁM SZAKDOLGOZAT

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

GÉPÉSZMÉRNÖKI KAR

MECHATRONIKA, OPTIKA ÉS GÉPÉSZETI INFORMATIKA TANSZÉK

SZAKDOLGOZATOK

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

GÉPÉSZMÉRNÖKI KAR

MECHATRONIKA, OPTIKA ÉS GÉPÉSZETI INFORMATIKA TANSZÉK

Kovács Hunor Ádám SZAKDOLGOZAT

Szálastakarmány felszedő adapter szenzortechnikai fejlesztése

Konzulens: Témavezető:

Vincze Bálint Haba Tamás Ügyvezető igazgató, HEVESGÉP Kft. PhD hallgató

Budapest, 2024.

Szerzői jog © Kovács Hunor Ádám, 2024.

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar

Mechatronika, Optika és Gépészeti Informatika Tanszék https://mogi.bme.hu

SZAKDOLGOZAT-FELADAT

NYILVÁNOS

TÁS	Név: Kovács Hunor Ádám				Azonosító: 71604575360	
	Képzéskód:	2N-AM0	Specializáció kódja:		Feladatkiírás azonosítója:	
osín	Szak: Mechati	2N-AM0-BI-2017 GEN		GEMI:2025-1:2N-AM0:P953MO		
ZONO	Szakdolgozatot	Záróvizsgát szervező tanszék:				
	Mechatronika,	Mechatronika, Optika és Gépészeti Informatika Tanszék				
A	Témavezető: Haba Tamás (78224838890), doktorandusz					

	Cím	Szálastakarmány felszedő adapter szenzortechnikai fejlesztése Sensor technology development for a forage harvester's collection header				
FELADAT	Részletes feladatok	Tárja fel a mezőgazdasági gépeken használatos szenzortechnikai, adatfeldolgozási és visszajelzési megoldásokat! Válasszon a szálastakarmány felszedő adapteren alkalmazható fordulatszám meghatározására alkalmazható szenzort! Tervezzen az adapterhez és a szenzorhoz megfelelő adatfeldolgozó és visszajelző rendszert! Vizsgálja meg a tervezett mérőrendszer alkalmazási lehetőségeit üzembiztonsági és diagnosztikai feladatok esetén! Foglalja össze a kapott eredményeket magyar és angol nyelven.				
	Hely	A szakdolgozat készítés helye: HEVESGÉP KFT. 3360 Heves, Munkácsy út 4. Konzulens: Vincze Bálint, Ügyvezető igazgató				

3A	1. záróvizsga tantárgy(csoport)	2. záróvizsga tantárgy(csoport)	3. záróvizsga tantárgy(csoport)	
ZÁRÓVIZSC	ZVEGEMIBMIE Irányításelmélet	ZVEGEMIBMBM Biomechatronika	ZVEGEGTBMRO Robotok orvosi alkalmazásai	

	Feladat kiadása: 2024. szeptember 2.			adási határidő:	2024. december 6.
	Összeállította:		Ellenőrizte:		Jóváhagyta:
	Haba Tamás (78224838890)		Dr. Kiss Rita Mária s.k.		Dr. Györke Gábor s.k.
ÉS	témavezető		tanszékvezető		dékánhelyettes
HITELESÍTÉS	Alulírott, a feladatkiírás átvételével egyúttal kijelenten dolgozat-készítés c. tantárgy előkövetelményeit mara	_	1962 C K (ES)		
	jesítettem. Tudomásul veszem, hogy jogosulatlan tantárgyfelvétel			L <u>.</u>	
	esetén a jelen feladatkiírás hatálytalan.			 F-L	
五				5	
				371	
	Kovács Hunor Ádám] \

NYILATKOZATOK

Nyilatkozat az önálló munkáról

Alulírott, *Kovács Hunor Ádám* (P953MO), a Budapesti Műszaki és Gazdaságtudományi Egyetem hallgatója, büntetőjogi és fegyelmi felelősségem tudatában kijelentem és sajátkezű aláírásommal igazolom, hogy ezt a szakdolgozatot meg nem engedett segítség nélkül, saját magam készítettem, és dolgozatomban csak a megadott forrásokat használtam fel. Minden olyan részt, melyet szó szerint vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a hatályos előírásoknak megfelelően, a forrás megadásával megjelöltem.

Budapest, 2024. november 16.		
	hallgató	-

Tartalomjegyzék

El	őszó			xi
Jel	lölése	ek jegyz	zéke	xiii
1.	Beve	ezetés		1
	1.1.	Felada	at bemutatása	1
	1.2.	Célkit	űzések	2
	1.3.	Átteki	ntés	3
2.	Szal	kirodal	mi áttekintés	5
	2.1.	Szenze	orok fajtái	5
		2.1.1.	Mérendő mennyiségek	5
		2.1.2.	Mérési elvek	5
		2.1.3.	Elmozdulás érzékelése	6
			2.1.3.1. Potenciométeres elmozdulásmérés	6
		2.1.4.	Szenzor kialakítások	6
	2.2.	Jelek f	eldolgozásának menete	6
	2.3.	Vissza	njelzés lehetőségei	6
	2.4.	Szabál	lyozás módszerei	6
3.	Mér	őrends	zer fejlesztése	7
	3.1.	Szenze	orok	8
		3.1.1.	Mérendő mennyiségek	8
		3.1.2.	Elhelyezés	8
		212	Czonnyoződósok	Q

		3.1.4.	Szervizelhetoseg	8
		3.1.5.	Kábelezés	8
	3.2.	Jelek .		8
		3.2.1.	Szenzorokból származó jelek	8
		3.2.2.	Jelekből adat	8
	3.3.	Szabál	lyozás	8
		3.3.1.	Szabályozás eszközei	8
		3.3.2.	Adatok összehasonlítása	8
		3.3.3.	Hibatűrő rendszer kialakítása	9
		3.3.4.	Szennyeződés kizárása	9
	3.4.	Vissza	njelzés	9
		3.4.1.	Visszajelzés eszközei	9
		3.4.2.	Human-Machine interface	9
		3.4.3.	Kommunikáció	9
4.	Össz	zefogla	lás	11
	4.1.	Alkalı	mazási lehetőségek	11
		4.1.1.	Feladat kivitelezésének lehetőségei	11
		4.1.2.	Üzembiztonsági megoldások	11
		4.1.3.	Diagnosztikai feladatok kivitelezése	11
	4.2.	Eredn	nények	11
	4.3.	Javasla	atok/Következtetések/Tanulságok	11
Ire	odalo	mjegyz	zék	12
Sı	ımma	ıry		15
Fü	iggelé	ék		17
M	ellék	letek		19
	M.1.			19
	MO			20

Előszó

~ ~ ~

Köszönetnyilvánítás

A köszönetnyilvánítás ide írható. Ez a sablon a Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék szakdolgozat és diplomaterv sablonja alapján készült. Köszönöm készítőinek és karbantartóinak a munkájukat.

Budapest, 2024. november 16.

Kovács Hunor Ádám

Jelölések jegyzéke

1. fejezet

Bevezetés

A mezőgazdasági fejlesztés hangsúlyosabb mint valaha, hiszen a világ népessége növekedését a meglévő földterületeinken kell ellássuk. A mezőgazdasági gépek biztonságát igyekszik elősegíteni jelen szakdolgozat, az egyes alkatrészek meghibásodásának megelőzésével, a veszélyes helyzetek jelzésével.

1.1. Feladat bemutatása

A szakdolgozatom a szálastakarmány felszedő adapter szenzortechnikai fejlesztése címet kapta. A szálastakarmány felszedő adapter a mezőgazdaságban alkalmazott szerkezet, amely a silózoknak hajtja végre a szálastakarmány összegyűjtését. A silózók olyan mezőgazdasági gépek, amelyek a szálastakarmány (pl.: lucerna, széna) begyűjtését, összevágását és rövidre darabolását ("szecskázását") végzik, mely állat tápként lesz felhasználva. Az adapter a silózóhoz van csatlakoztatva, ezáltal a működtetést a silózó végzi. Innen érkezik az irányító jel, az elektromos feszültség, a hidraulikus energia és a forgatónyomaték. Az felszedőn több tengely is található, a legfontosabb a felszedő, melyen fogakkal történik a szálastakarmány gyűjtése, felette egy csiga helyezkedik el, mely az adapter szélességében tereli a takarmányt a középtengely felé, ahol is a begyűjtés történik. A csigánál található tengelyen helyezkedik el egy nyomatékhatároló. A nyomatékhatároló feladata, hogy a túlzott terheléstől megvédje a felszedő adaptert, így ha túl nagy nyomaték érkezik a silózó felől, a nyomatékhatároló szétkapcsol és a felszedő roncsolódása elkerülhető. A nyomatékhatároló szétkapcsolások a benne található tárcsák tapadási súrlódása megszűnik, így elkezdenek csúszni egymáson, amely a tárcsák felületének súrládásához, hosszabb idő alatt roncsolódásához vezet. A nyomatékhatárolók védelme érdekében van szükség egy visszajelző rendszerre, amely a nagy terhelés esetén jelzi az irányítóknak, hogy a nyomatékhatároló megcsúszott. Az én feladatom ezt a rendszert megtervezni, amely a tengelyek fordulatszámának figyelésével érzékelni

tudja ha azok eltérnek a beérkező fordulatszámtól, majd a különbség fennmaradásával egy visszajelzést adjon a silózóban tartózkodó irányítónak. A visszajelzés történhet fény, hang vagy mindkettő formájában, a jelzőegységek lehetnek az adapter látható felületein, vagy akár az irányító fülkében is. Abban az esetben ha a fülkében egy kijelző elhelyezése és azzal való kommunikáció megoldható, a fordulatszámok aktuális értékei is megjelenítésre kerülhetnek.

1.2. Célkitűzések

A dolgozat célja, hogy bemutassa egy mezőgazdasági környezetben való rendszer kialakításának megfontolásait, valamint a tervezési folyamat megvalósítását. Ezen felül az elvárásoknak megfelelő rendszerre való javaslatot tegyen, amely egy termékként alkalmazhatóvá váljék a gyakorlatban is. A feladat során több olyan irányadó cél, elv mentén történt a tervezés, amely vagy felhasználói, környezeti igényeket elégít ki, vagy a fenntarthatóság, az életciklus növelését segíti.

- I. Környezettel, szennyeződésekkel való ellenálló képesség. A felszedő adapteren a két fő szennyező a por és az olaj, így olyan rendszert kell kialakítani, amely vagy szigetelve van kellő mértékben, vagy a szennyeződések nem károsítják a működését. Ez megköveteli az eszközök burkolatban, házban történő tárolását, a csatlakozók kellő szigetelését, illetve por- és olajmentes, vízálló eszközök használatát.
- II. Modularitás, cserélhetőség. A jelen kori gazdák egyik panasza a mezőgazdasági gépgyártók felé, a szerelhetőség jogának ("Right to repair") figyelmen kívül hagyása. Ez a gépek szétszedhetőségét, a felhasználó általi javítási lehetőségének csökkenését jelenti, ezáltal a gyártó szakszervizeiben való költséges, idő- és szállításigényes javításra kötelezi a gazdákat. A cél egy olyan rendszer kialakítása, amelynek minden alkatrésze cserélhető és hozzáférhető, így bármelyik elem meghibásodása során csak az szorul cserére. Ez a szenzorok csatlakozós, nem kábellel egybeépített változatában, a moduláris, egyszerűen szétköthető szabályozó eszközben, valamint, a vízálló csatlakozók szétszedhetőségében nyilvánul meg.
- III. Támogató tervezés csökkentése. A projekt tekintetében egyszerűségre, a mechanikai tervezés csökkentésére törekvés jellemző, a mechatronikai, rendszer tervezésének előnyben részesítése, valamint a felszedő adapter bonyolításának elkerülése végett. Ez az eszközök a meglévő geometriába való integrálásában, az adapter alkatrészeinek direkt mérésében, és a külön szigetelési és burkolási feladatok csökkentésében látható.

IV. Biztonság. A biztonságosság mind a rendszer kitartó működésére, mind a környezetének, üzemeltetőinek megóvására vonatkozik. A projekt során az elektromos berendezések szigetelésére és elzárására, valamint az eszközök külső hatásoktól védésére is hangsúly lett fektetve.

1.3. Áttekintés

A rendszernek 4 alapvető része van: érzékelés (szenzorok), szabályozás, visszajelzés és kommunikáció. Az érzékelés esetében bemutatásra kerül a különböző fordulatszám mérő mechanizmusok közötti különbség, az egyes mechanizmusok előnyei és hátrányai, valamint ezek alapján a célnak megfelelőek is kiderülnek. A szenzorok megvalósítása is tárgyalva lesz, a különböző rendszerekben alkalmazott szenzor kivitelezések, szabványok és megoldások. Ezen felül a szenzorok elhelyezkedése, kábelezése, a felszedő adapterre való alkalmazásuk is ábrázolva lesz. A szabályozás során az ipari eszközök lesznek bemutatva, amelyek a szenzorok adatait fel tudják dolgozni, valamint programkódokat, irányítási feladatokat kivitelezni tudnak. Lesz szó a különböző megoldások alkalmazásainak lehetőségéről, egymáshoz képesti összehasonlításuk is megtörténik, az egyes szabályozó eszközökkel járó rendszerbeli változtatás, valamint a rendszer igényei szerinti szabályozó eszköz változása is feltérképezésre kerül. Végül a szabályozás eszközeinek elhelyezése, biztonságtechnikai megfontolásai és időállóságának kialakítása is fényre derül. A visszajelzés a rendszer mindennapokban érzékelhető része, ugyanis ez az emberrel való kommunikációjának a platformja. A jelzésnek több módszere áll rendelkezésre, melyek között a rendszer adottságai valamint a felhasználó igényei választanak. Az egyszerű fényjelzések, hangjelzésektől egészen a kijelzőkön megjelenő részletes információkig bemutatásra kerül, melyiknek milyen igényei vannak, illetve melyik praktikus jelen felhasználásunkban. A kommunikáció fogja össze a projektet, biztosítja az egyes részek közötti információáramlást. A kommunikációs protokollok, metódusok meghatározzák a rendszer többi részének minden elemét, a szenzorok feldolgozásának sebességétől, a szabályozó elem kiválasztásán át, a visszajelzés platformjáig. A rendszerünk egészének tervezése során bemutatásra kerül a kommunikáció módszereinek hangsúlya, lehetőségei, valamint a környezeti hatásokkal szemben való védelem kritikus szerepe is.

2. fejezet

Szakirodalmi áttekintés

2.1. Szenzorok fajtái

A szenzorválasztás az alapja a folyamatnak. Meghatározza milyen technológiákkal, módszerekkel hajtjuk végre a méréseket, és ezáltal milyen kapacitású, programozású rendszert kell válasszunk. A szenzorokat érintő kutatómunka ezt a választási folyamatot segíti elő, hiszen az összes népszerű lehetőség tudatában lehet egy informált döntést hozni.

2.1.1. Mérendő mennyiségek

A feladatom során, a nyomatékhatároló csúszásának meghatározásához az azt megelőző és azutáni tengelyek fordulatszámának összehasonlítására van szükség. A harmadik fordulatszámmérés a felszedő tengelyen történik meg, kifejezetten az operátor informálása céljából.

2.1.2. Mérési elvek

Egy tengely fordulatszámának mérésére több megközelítés is létezik. Lehetséges a tengely elfordulásának közvetlen mérése, akár fordulatonként egyszer történő jeladás regisztrálása, vagy a tengely kerületén érzékelhető folyamatos változás. A fordulatszám más mért mennyiségekből is származtatható, például integrálás útján gyorsulásmérésből, vagy deriválással szögelfordulásból, azonban ezeknek a pontossága nem minden esetben megfelelő, valamint a számítási igénye is magasabb az ilyen módon származtatott jeleknek.

2.1.3. Elmozdulás érzékelése

Az elmozdulás mérése általában egy adott távolság, szögelfordulás tartományán belül alkalmazható, így folyamatos elfordulást mérni csak limitált fordulatszám mellett alkalmasak. A fordulatok mérésénél ezért általában a kerület mentén történő távolságbeli különbség mérése valósul meg. Erre a kerület menti geometriát (pl. fogaskerekek), egy segédlemezzel kialakított változást, vagy akár egy felhelyezett jeladó (pl. mágnes) érzékelés is mérhető.

2.1.3.1. Potenciométeres elmozdulásmérés

Az alapvető potenciométer egy lineáris vagy elfordulásmérésre alkalmas szenzor. Az elfordulást lehetséges 0-360° között mérni egy kör kerületén, vagy akár annak egy részletén is, azonban ha 360° fölötti mérésre van szükség egy spirális szalagot szokás alkalmazni, amelyek akár 60 fordulatot is képesek mérni. [1] A potenciométer működési mechanizmusa a vezetékek ellenállásán alapszik, amelyet egy beállítómechanizmus a hossz függvényében változtathat.

2.1.4. Szenzor kialakítások

2.2. Jelek feldolgozásának menete

2.3. Visszajelzés lehetőségei

2.4. Szabályozás módszerei

3. fejezet

Mérőrendszer fejlesztése

3.1. Szenzorok

- 3.1.1. Mérendő mennyiségek
- 3.1.2. Elhelyezés
- 3.1.3. Szennyeződések
- 3.1.4. Szervizelhetőség
- 3.1.5. Kábelezés

3.2. Jelek

- 3.2.1. Szenzorokból származó jelek
- 3.2.2. Jelekből adat

3.3. Szabályozás

- 3.3.1. Szabályozás eszközei
- 3.3.2. Adatok összehasonlítása

A 3.1 táblázat tartalmazza a programozható relék közül a megfelelő feszültséggel operálókat.

	Schneider Electric Zelio Logic	IDEC SmartRelay	Siemens LOGO!	Eaton Easy
Modellszám	SR2B121JD	FL1F-B12RCE	6ED1052-2MD08-0BA2	EASY-E4-UC-12RCX1
Feszültség	12V	12/24V	12/24V	12/24V
Bemenetek	4 DI + 4 AI	4 DI + 2 AI	4 DI + 4 DI/AI	4 DI + 4 DI/AI
Kimenetek	4 DO	8 DO	4 DO	4 DO
Számítási frekvencia	1 kHz	5 kHZ	5 kHz	5 kHz
Kommunikáció	N/A	N/A	Modbus TCP	MODBUS TCP/IP
Program felület	ZelioSoft 2	WingLGC	LOGO! Soft Comfort	EASYSOFT-SWLIC/easySoft7
r rogram terulet	(LD, FBD)	(LD, FBD)	(LD, FBD)	(EDP, LD, FBD, ST)
Internet csatlakozó	Nincs	Ethernet RJ45	Ethernet RJ45	Ethernet RJ45
SD memory	Nincs	MicroSD	MicroSD	Nincs
Méret	90x68x10	90x71.5x58	90x71.5x58	90x72x58
Költség	75 000	69 000	58 000	72 000

3.1. táblázat. Programozható relék összehasonlítása

3.3.3. Hibatűrő rendszer kialakítása

3.3.4. Szennyeződés kizárása

csatlakozók

3.4. Visszajelzés

- 3.4.1. Visszajelzés eszközei
- 3.4.2. Human-Machine interface
- 3.4.3. Kommunikáció

4. fejezet

Összefoglalás

4.1. Alkalmazási lehetőségek

- 4.1.1. Feladat kivitelezésének lehetőségei
- 4.1.2. Üzembiztonsági megoldások
- 4.1.3. Diagnosztikai feladatok kivitelezése

4.2. Eredmények

Az összefoglaló értékelés a három oldalt lehetőleg ne haladja meg! Az elvégzett munka és eredményeinek bemutatása egyes szám első személyben fogalmazva.

4.3. Javaslatok/Következtetések/Tanulságok

A feladat elkészítése során levont tanulságok összefoglalása. Javaslattétel, továbbfejlesztési lehetősége bemutatása, előretekintés a jövőbe stb.

Budapest, 2024. november 16.

Kovács Hunor Ádám

Irodalomjegyzék

[1] Alan S. Morris – Reza Langari: Chapter 20 - rotational motion transducers. In Alan S. Morris – Reza Langari (szerk.): *Measurement and Instrumentation (Second Edition*). Second edition. kiad. Boston, 2016, Academic Press, 599–632. p. ISBN 978-0-12-800884-3.

 $URL\ \texttt{https://www.sciencedirect.com/science/article/pii/B9780128008843000204}.$

Summary

Az elvégzett munka rövid, másfél oldalt meg nem haladó, de legalább 2/3 oldalnyi terjedelmű angol nyelvű összefoglalása.

Angol nyelven készített dolgozat esetén magyar nyelvű összefoglaló kell, ha a készítő magyar anyanyelvű. Nem angol vagy nem magyar nyelven készített dolgozat esetén kötelező az angol nyelvű összefoglaló, és ha a készítő magyar anyanyelvű, akkor a magyar nyelvű is.

Keywords mechatronika, szabályozástechnika, szálastakarmány, szenzor, mezőgazdaság

Függelék

Mellékletek

M.1.

M.2.