

If T is a random variable with a t distribution having df degrees of freedom, then the critical value t^* in the table is the value such that the shaded area is $p = P(T > t^*)$.

Critical Values for t distribution

	p					
$\overline{d}f$.10	.05	.025	.02	.01	.005
1	3.0777	6.3138	12.7062	15.8945	31.8205	63.6567
2	1.8856	2.9200	4.3027	4.8487	6.9646	9.9248
3	1.6377	2.3534	3.1824	3.4819	4.5407	5.8409
4	1.5332	2.1318	2.7764	2.9985	3.7469	4.6041
5	1.4759	2.0150	2.5706	2.7565	3.3649	4.0321
6	1.4398	1.9432	2.4469	2.6122	3.1427	3.7074
7	1.4149	1.8946	2.3646	2.5168	2.9980	3.4995
8	1.3968	1.8595	2.3060	2.4490	2.8965	3.3554
9	1.3830	1.8331	2.2622	2.3984	2.8214	3.2498
10	1.3722	1.8125	2.2281	2.3593	2.7638	3.1693
11	1.3634	1.7959	2.2010	2.3281	2.7181	3.1058
12	1.3562	1.7823	2.1788	2.3027	2.6810	3.0545
13	1.3502	1.7709	2.1604	2.2816	2.6503	3.0123
14	1.3450	1.7613	2.1448	2.2638	2.6245	2.9768
15	1.3406	1.7531	2.1314	2.2485	2.6025	2.9467
16	1.3368	1.7459	2.1199	2.2354	2.5835	2.9208
17	1.3334	1.7396	2.1098	2.2238	2.5669	2.8982
18	1.3304	1.7341	2.1009	2.2137	2.5524	2.8784
19	1.3277	1.7291	2.0930	2.2047	2.5395	2.8609
20	1.3253	1.7247	2.0860	2.1967	2.5280	2.8453
21	1.3232	1.7207	2.0796	2.1894	2.5176	2.8314
22	1.3212	1.7171	2.0739	2.1829	2.5083	2.8188
23	1.3195	1.7139	2.0687	2.1770	2.4999	2.8073
24	1.3178	1.7109	2.0639	2.1715	2.4922	2.7969
25	1.3163	1.7081	2.0595	2.1666	2.4851	2.7874
26	1.3150	1.7056	2.0555	2.1620	2.4786	2.7787
27	1.3137	1.7033	2.0518	2.1578	2.4727	2.7707
28	1.3125	1.7011	2.0484	2.1539	2.4671	2.7633
29	1.3114	1.6991	2.0452	2.1503	2.4620	2.7564
30	1.3104	1.6973	2.0423	2.1470	2.4573	2.7500
40	1.3031	1.6839	2.0211	2.1229	2.4233	2.7045
50	1.2987	1.6759	2.0086	2.1087	2.4033	2.6778
60	1.2958	1.6706	2.0003	2.0994	2.3901	2.6603
100	1.2901	1.6602	1.9840	2.0809	2.3642	2.6259
1000	1.2824	1.6464	1.9623	2.0564	2.3301	2.5808
∞	1.2816	1.6449	1.9600	2.0537	2.3263	2.5758