Predictive Parsing

LL(1)

חיסרון משמעותי – Recursive Descent

- הפרסר נכתב בהתאם לדקדוק: הדקדוק "צרוב" בקוד
 - כלומר: לכל דקדוק יש לכתוב פרסר ייחודי
- בפרט, אם יש שינוי בדקדוק- יש לשכתב את הפרסר עצמו

דוגמה

```
1.S \rightarrow 0S1
```

```
2.S \rightarrow #
```

Predictive Parsing

תזכורת על אופן פעולתו של פרסר

- בכל שלב במהלך ניתוח הקלט:
- מעדכן תחזית להמשך (מה מצפים לראות בהמשך) –
 בהתאם להיסטוריה (מה היה בקלט עד עכשיו ?)
- מוודא התאמה של המציאות (מה שמופיע בקלט) לתחזית
- רעיון חדש פרסר גנרי, כלומר לא מותאם לדקדוק ספציפי. אותו פרסר משמש לדקדוקים שונים. מידע על הדקדוק מגיע ממקור חיצוני.
 - LL(1) נראה אלגוריתם בשם •

:הרעיון

- נתחזק את התחזית באמצעות מחסנית שתכיל:
 - משתנים
 - אסימונים
- \$ ואח"כ לראות S -תחזית התחלתית: רוצים לקרוא משהו שנגזר מ
 - בהתאם, נתחיל ממחסנית כזו:

\$ \$

. "נטפל" ב\$ ונרוקן את המחסנית "לטפל" בגזירה מS "נטפל" ב

1.
$$S \rightarrow 0 S 1$$

2.
$$S \rightarrow \#$$

INPUT: 00#11\$

1.
$$S \rightarrow 0 S 1$$

2.
$$S \rightarrow \#$$

INPUT: 00#11\$

בראש המחסנית יש 0.

כלומר, התחזית : לראות בקלט 0.

התחזית היא **מיידית**.

0: נבדוק מה יש בקלט. אכן

.0 מהקלט ה-0 מהמחסנית עם ה-0 מהקלט \Leftarrow

1.
$$S \rightarrow 0 S 1$$

2.
$$S \rightarrow \#$$

INPUT: 00#11\$

S 1 \$.S בראש המחסנית יש

:כלומר

התחזית : לקרוא מהקלט משהו שנגזר מ-S.

0 : בקלט

S o 0S1 **נעדכן** את התחזית בהתאם לכלל \Leftarrow

1.
$$S \rightarrow 0 S 1$$

2.
$$S \rightarrow \#$$

INPUT: 00#11\$

0 S 1 1 \$

בראש המחסנית יש 0.

כלומר, התחזית : לראות בקלט 0.

התחזית היא **מיידית**.

0: נבדוק מה יש בקלט. אכן

.0 מהקלט ה-0 מהמחסנית עם ה-0 מהקלט \Leftarrow

1.
$$S \rightarrow 0 S 1$$

2.
$$S \rightarrow \#$$

INPUT: 00#11\$

S 1 1 \$.S בראש המחסנית יש

:כלומר

התחזית : לקרוא מהקלט משהו שנגזר מ-S.

: בקלט

S o # נעדכן את התחזית בהתאם לכלל \Leftarrow

1.
$$S \rightarrow 0 S 1$$

2.
$$S \rightarrow \#$$

INPUT: 00#11\$

1 1 \$ בראש המחסנית יש #.

כלומר, התחזית : לראות בקלט #.

התחזית היא **מיידית**.

#: נבדוק מה יש בקלט. אכן

. נקזז את ה-# מהמחסנית עם ה-# מהקלט. \Leftarrow

1.
$$S \rightarrow 0 S 1$$

2.
$$S \rightarrow \#$$

INPUT: 00#11\$

1 1 \$ בראש המחסנית יש 1.

כלומר, התחזית : לראות בקלט 1.

התחזית היא **מיידית**.

1: נבדוק מה יש בקלט. אכן

. נקזז את ה-1 מהמחסנית עם ה-1 מהקלט \Leftarrow

1.
$$S \rightarrow 0 S 1$$

2.
$$S \rightarrow \#$$

INPUT: 00#11\$

1 \$ בראש המחסנית יש 1.

כלומר, התחזית : לראות בקלט 1.

התחזית היא **מיידית**.

1: נבדוק מה יש בקלט. אכן

. נקזז את ה-1 מהמחסנית עם ה-1 מהקלט \Leftarrow

1.
$$S \rightarrow 0 S 1$$

2.
$$S \rightarrow \#$$

INPUT: 00#11\$

בראש המחסנית יש \$. כלומר, התחזית : לראות בקלט \$.

התחזית היא **מיידית**.

\$: נבדוק מה יש בקלט. אכן

. נקזז את ה-\$ מהמחסנית עם ה-\$ מהקלט \Leftarrow

5

1.
$$S \rightarrow 0 S 1$$

2.
$$S \rightarrow \#$$

INPUT: 00#11\$

המחסנית התרוקנה: סיימנו בהצלחה!!!

נשים לב: המחסנית יכולה להתרוקן רק אחרי קריאה של \$

מחסנית (תחזית)	(מה שנותר)	פעולה
S \$	00#11\$	הצבה לפי כלל 1
0 S 1 \$	00#11\$	השוואת אסימונים
S 1 \$	0#11\$	הצבה לפי כלל 1
0 S 1 1 \$	0#11\$	השוואת אסימונים
S 1 1 \$	#11\$	הצבה לפי כלל 2
#11\$	#11\$	השוואת אסימונים

מחסנית (תחזית)	(מה שנותר)	פעולה
11\$	11\$	השוואת אסימונים
1 \$	1\$	השוואת אסימונים
\$	\$	השוואת אסימונים
		ACCEPT

כאשר בראש המחסנית יש אסימון

- זו תחזית מיידית.
- בודקים האם המציאות תואמת את התחזית:
- משווים בין האסימון שבקלט והאסימון שבראש המחסנית.
 - אם יש שוויון: •
 - מוצאים את האסימון מהמחסנית Pop ullet
- $(Next_Token$ מוציאים את האסימון מהקלט (התקדמות בקלט ע"י \bullet
 - :אחרת
 - Error •

כאשר בראש המחסנית יש משתנה

- A בראש המחסנית מופיע משתנה ullet
- t -מציצים על האסימון הבא בקלט
- . מסתכלים בטבלה בתא Tab[A,t] ופועלים לפי מה שרשום שם
 - ??? מה רשום שם???
 - A
 ightarrow lpha כלל גזירה מתאים
 - :ואז מבצעים
 - (מוציאים את A מהמחסנית) Pop •
 - (lpha מעדכנים את התחזית להיות Push(lpha) •

עבור הדוגמא שראינו:

1.
$$S \rightarrow 0 S 1$$

$$2. S \rightarrow \#$$

	0	1	#	\$
S	$S \rightarrow 0S1$	ERROR	S o #	ERROR

:במקום לרשום "ERROR", אפשר להשאיר תא ריק

	0	1	#	\$
S	$S \rightarrow 0S1$		S → #	

:LL(1) אלגוריתם

:איתחול

אם X הוא אסימון

```
t == X בדוק האם • אם כן:
```

:אחרת

Error

Pop()

הוצאת ראש המחסנית //

 $Next_Token($) // התקדמות בקלט

אם X הוא משתנה

- Tab[X,t] בדוק מה כתוב ב \bullet
- "error" אם התא ריק/כתוב בו \bullet

Error

:בצע ." $X \rightarrow \alpha$ " אחרת, בהכרח כתוב בו

 $Pop(\)$ $Push(\alpha)$

כאשר דוחפים את כל מה שמופיע ב- α מימין לשמאל, כלומר מהסוף להתחלה, ואם $\alpha=\varepsilon$ לא דוחפים כלום.

אם X הוא משתנה

- Tab[X,t] בדוק מה כתוב ב \bullet
- "error" אם התא ריק/כתוב בו •

:צע: " $X \rightarrow \alpha$ " אחרת, בהכרח כתוב בו •

:אם $\alpha = x_1 x_2 x_3 \cdots x_n$ בצע

Error

Pop()

 $Push(x_n)$ $Push(x_{n-1})$

• • •

 $Push(x_1)$

```
Push(\$); Push(S); t = Peek(\ );
• Init:
• While NotEmpty(Stack):
          X = Top();
          t = Peek( );
          if X is a token:
                     if X == t:
                                 Pop( );
                                 Next_Token( );
                     else:
                                 Error
          if X is a variable:
                     if Tab[X, t] = "X \to x_1 x_2 \cdots x_{n-1} x_n";
                                Pop( );
                                Push(x_n);
                                 Push(x_{n-1});
                                 Push(x_1);
                     else (i.e., Tab[X, t] is empty):
                                 Error
```

• if IsEmpty(Stack): ACCEPT

דוגמא בקובץ נפרד

מבנה של טבלת הפיסוק

- שורות: משתנים
- עמודות: אסימונים (כולל האסימון \$)
 - בכל תא בטבלה: כלל-גזירה.
 - error :תא ריק
- $oldsymbol{X}
 ightarrow lpha$ בשורה של משתנה X יופיעו כללי גזירה מהצורה •
- נעבור על כל הכללים, ולכל כלל נחליט באיזה תא יש לרשום אותו
 - אם יש תא שמכיל יותר מאשר כלל אחד: הדקדוק פשוט לא מתאים לשיטה הזו

?איך מחשבים את טבלת הפיסוק

X o lpha נתבונן בכלל

- $X o t \ lpha_{1\dots} lpha_n$: מתחיל באסימון lpha מתחיל באסימון נכתוב את הכלל בתא Tab[X,t]
- $X o Y lpha_{1 \dots} lpha_n$: אם α מתחיל במשתנה Y מתחיל במשתנה $t \in First(Y)$ לכל $t \in First(Y)$
- אם α אפיס (כלומר $\alpha=\varepsilon$ או α היא סדרה של משתנים אפיסים) אפיסים $t\in Follow(X)$ לכל $t\in Follow(X)$

הכללה של Nullable ו- First

- עבור **משתנים**. First ואת קבוצות Nullable
- ניתן להכליל את שתי ההגדרות עבור מחרוזות של משתנים ואסימונים.
 - $: \alpha \in (V \cup T)^*$ עבור
 - arepsilon את lpha אפיסה אם ניתן לגזור מ-lpha את
 - היא קבוצת כל האסימונים שיכולים להופיע בתחילת משהו First(lpha) שנגזר מ- lpha

?איך מחשבים את טבלת הפיסוק

X o lpha נתבונן בכלל

- $\underline{Tab}[X,t]$ נכתוב את הכלל בתא : $\underline{t} \in First(\alpha)$ •
- $.\underline{Tab[X,t]}$ אם α אפיסה : לכל $\underline{t \in Follow(X)}$, נכתוב את הכלל בתא
 - קונפליקטים
- : אם מתקבל תא שמופיע בו יותר מאשר כלל גזירה אחד ullet אזי הדקדוק לא מתאים לשיטת ullet (ואומרים ש "הוא לא ullet (" ullet LL(1)).

Recursive Descent דמיון לשיטת

LL(1) (data driven)

- שורה של X בטבלה \bullet
- עמודה של t בטבלה •
- לכל $t \in First(X)$ עדכון התחזית דוחפים את צד ימין של *כלל* גזירה Tab[X,t] למחסנית
- אפיס: $t \in Follow(X)$ אפיס: $t \in Follow(X)$ לכל דוחפים למחסנית את כלל הגזירה $t \in Tab[X,t]$ שיגזור מ- $t \in Tab[X,t]$

Recursive Descent (code driven)

- $Parse_X$ פונקציה \bullet
- t עבור כל אסימון case t •
- ית $t \in First(X)$ עדכון התחזית $t \in First(X)$ עבור "case t:" עבור "match parse בהתאם לצד ימין של כלל גזירה הרלוונטי
 - אם X אפיס: $t \in Follow(X)$ לכל $t \in Follow(X) t \in Follow(X)$ ב " $case\ t$: "ב שיגזור מ-X את ε

עבור הדוגמא שראינו:

```
1. S \rightarrow 0 S 1
```

	0	1	#	\$
S	$S \rightarrow 0S1$		<i>S</i> → #	

<u>: עוד דוגמא</u>

```
1. S \rightarrow 0 S 1
```

2.
$$S \rightarrow \#$$

3.
$$S \rightarrow \varepsilon$$

	0	1	#	\$
S	$S \rightarrow 0S1$	$S \rightarrow \varepsilon$	<i>S</i> → #	S o arepsilon

(! חייבים לבצע את הסילוקים המוכרים LL(1) גם ב

$$S \rightarrow ABA \mid AC$$

$$A \rightarrow Aa \mid d$$

$$B \rightarrow bAb$$

$$C \rightarrow cC \mid \varepsilon$$

סִילוק רקורסיה שמאלית

$$S \rightarrow ABA \mid AC$$

 $A \rightarrow dA'$
 $A' \rightarrow aA' \mid \varepsilon$
 $B \rightarrow bAb$
 $C \rightarrow cC \mid \varepsilon$

⊍ סילוק גורמים שמאליים משותפים

$$S \to AS'$$

$$S' \to BA \mid C$$

$$A \to dA'$$

$$A' \to aA' \mid \varepsilon$$

$$B \to bAb$$

$$C \to cC \mid \varepsilon$$

1.	$S \rightarrow AS'$
<i>2.</i>	$S' \to BA$
3.	$S' \rightarrow C$
4.	$A \rightarrow dA'$
<i>5.</i>	$A' \rightarrow aA'$
6.	$A' \rightarrow \varepsilon$
<i>7.</i>	$B \rightarrow bAb$
8.	$C \rightarrow cC$

	Nullable	First	Follow
S	-	d	\$
S'	+	<i>b</i> , <i>c</i>	\$
A	-	d	b, c,\$
A '	+	а	b, c,\$
В	-	b	d
С	+	С	\$

	а	b	С	d	\$
S				1	
S'		2	3		3
A				4	
A'	5	6	6		6
В		7			
C			8		9

קונפליקט - דוגמא

•
$$S \rightarrow aA \mid bAc$$

•
$$A \rightarrow c \mid \varepsilon$$

	Nullable	First	Follow
S	-	a, b	\$
A	+	С	c,\$

	а	b	С	\$
S	$S \rightarrow aA$	$S \rightarrow bAc$		
A			$A \to c$ $A \to \varepsilon$	$A \to \varepsilon$

?? " *LL*(1) " למה

- קוראים את הקלט משמאל לימין L
 - הגזירה היא שמאלית-ביותר L •
- של אסימון אחד. כלומר, מציצים אסימון אחד קדימה lookahead 1•

על אפחה של אלגוריתמים כנ"ל כאשר טבלת הפיסוק מבוססת על – LL(k) • הצצה של k אסימונים קדימה.