Information Technology University of the Punjab SE201T Digital Logic Design – Fall 2024 Assignment 2 [CLO1, CLO2]

Deadline: 11th October, 2024 (Start of the Friday class)

Total Marks: 100

Instructions:

- 1. Use A4 size sheets to prepare the solution.
- 2. You must attempt all questions by hand. Use an ink pen or ball point. Word processors are not advised to prepare the solution.
- 3. Clearly label the start of all questions and their parts. Also, make sure to highlight the final answer in each part.
- 4. This is an individual assignment so every student must submit their own solution.
- 5. You can take help from the textbook/reference books. Discussion among peers without showing the solution is acceptable, but you must attempt individually. Plagiarism, if found, will be dealt with according to the ITU antiplagiarism policy.
- 6. Make sure to submit it by the deadline. Late submissions will not be accepted.

Q1 [CLO1: Number system basics and conversions]

a. List the binary, octal and hexadecimal numbers from $(12)_{10}$ to $(20)_{10}$.

[3]

[1]

Decimal	Binary	Octal	Henadecimal
12	1100	14	С
.1 3	101	15	D
14	1110	16	E
.15	1111	17	F
16	1 0000	20	10
13	10001	2.1	3.1
8)	loolo	22	12
19	10011	23	13
20	10100	24	14

b. What is the exact number of bits in a memory that contains (i) 128K bits; (ii) 32M bytes?

i)
$$128$$
 k bit
$$= 128 \times 2^{10}$$

$$= 128 \times 1024$$

$$= 131072 \text{ kit}$$

(ii)
$$32 \text{ Mbyles}$$

= $32 \times 2^{20} \times 8$
= 268435456 bit

[6]

d. What is the range of signed numbers that can be represented by a 16-bit binary number that is in (i) sign-magnitude form; (ii) 1's complement form; (iii) 2's complement form? [3]

e. Convert the following numbers from the given base to the other three bases listed in the table:

Decimal	Binary	Octal	Hexadecimal
369.3125	?	?	?
?	10111101.101	?	?
?	?	326.5	?
9	9	9	F3C7 A

Conversión to Leinary

Whole number

Fraction

-	0.625 - 0	١
2 ×		١
2 ×	0.25 - 1	1
2×	0.5 - 0	
	4.0 - 1	V

So,
$$(369.3120)_{10} = (101110001.0101)_{1}$$

$$\frac{101110001}{5} \cdot \frac{010}{4} \cdot \frac{010}{2} \cdot \frac{100}{4}$$
Octor: $(561.24)_{8}$

$$\frac{0010111}{7} \cdot \frac{0001}{1} \cdot \frac{0101}{5}$$

$$\frac{1}{7} \cdot \frac{1}{7} \cdot$$

$$(326.5)_{8} = (?)_{2} = (?)_{16} = (?)_{10}$$

$$\frac{3}{3} \stackrel{?}{=} (?)_{2} = (?)_{16} = (?)_{10}$$

$$(?)_{1} = (011010110.101)_{2}$$

$$\frac{006011010110.1010}{0} \stackrel{1010}{6} \stackrel{1}{.} \stackrel{1}{A}$$

$$(?)_{16} = (006.A)_{16}$$

$$(?)_{10} = 0 \times 16 + 6 \times 16^{\circ} + A \times 16^{-1}$$

$$= 208 + 6 + 0.620$$

$$= (214.620)_{10}$$

$$(?)_{2} = (11110011110001111.10100$$

$$(?)_{3} = (11110011110001111.10100$$

$$(?)_{6} = (171707.50)_{8}$$

$$(?)_{10} = F \times 16^{3} + 3 \times 16^{2} + C \times 16^{4} + 7 \times 16^{6} + A \times 16^{-1}$$

$$= 61440 + 768 + 192 + 7 + 0.620$$

$$= (62407.625)_{10}$$

f. Express each decimal number as an 8-bit number in the sign-magnitude, 1's complement and the 2's complement form: [4.5]

O17.

	Rigin - magnitude	1's complement	2's conflued
+101	01100101	01100101	01100101
-68	e 11 000100	10111011	10111100
-125	11111101	10000010	10000011

g. Determine the decimal value of the following 8-bit signed numbers in each case of sign-magnitude, 1's complement and 2's complement representation: [4.5]

i. 10011001

ii. 01110100

iii. 10111111

019.	Sign-may	11's comp	2's comp
10011001	-25	-102	-103
01110100	+116	+116	+116
10 mm	-63	-64	- 65

h. The following calculation was performed by a particular breed of unusually intelligent chicken. If the radix r used by the chicken corresponds to its total number of toes, how many toes does the chicken have? [2] $((34)_r + (24)_r) \times (21)_r = (1338)_r$

OTh.
$$((34)_{Y} + (24)_{Y}) \times (21)_{Y} = (1338)_{Y}$$

Convert L. N. S & decimal:
 $((3x + 4) + (2x + 4)) \times (2x + 1)$
 $= (5x + 8) (2x + 1)$
 $= 10x^{2} + 26x + 8$
Convert R. H. S & decimal
 $(1338)_{-} = 1x^{3} + 3x^{2} + 3x + 8$
L. H. S = RH. S

Q2 [CLO1: Number system arithmetic]

a. Perform the following arithmetic operations on unsigned binary numbers:

i. 11110011 + 11101111

ii. 1111001×1101

iii. 10101110 ÷ 1100

[3]

Quotient: 1110 Remainder: 110

- b. Perform the following operations on binary numbers in 2's complement form:
 - i. 00110011 00010000
 - ii. 01100101 11101000
 - iii. 01101010 × 11110001 (Give result in 16 bits)
 - iv. 10001100 + 00111001

Q2b; 00110011 - 00010000

= 00110011 + (-0001000)

Taking 2's complement.

00110011 + 11110000

00110011

11110000

Discard as there is no over flow, Result in 00100011

[4]

(ii) 01100101 - 11101000 = 01100101 + (-11101000) Taking 2's conflemed. 01100101 + (00011000) 01100101 00011000 001111101 No a overflow; Runt is 01111101 01101010 × 11110001 The multiplier 11110001 is negative due to 1 at MSB. Let's tom its 2's confly to obtain its toe so value. 23 conflut: 00001111 Now multiply 01101010 01101010 X 01101010XX OIIOIOIOKKK 11000110110 In 16 hits: 0000 0110 0011 0110 Take 2's complement to obtain

c. Perform the following subtractions:

i.
$$A5_{16} - 98_{16}$$

ii.
$$F1_{16} - A6_{16}$$

iii.
$$653_8 - 456_8$$

Q3 [CLO 1: Binary-coded decimal and other digital codes]

- a. Represent the decimal number 6,248 in the following codes:
 - i. BCD
 - ii. excess-3 code
 - iii. 2421 code
 - iv. 6311 code

[2]

(iii)
$$2421$$
:
 6248
 $0+4+2+0$ $0+0+2+0$ $0+4+0$ $0+4+2+0$
 0116 0010 0100 1110

(iv) 6311
 6248
 $6+0+0+0$ $0+0+1+1$ $0+3+0+1$ $6+0+1+1$
 1000 0011 0101 1011

- b. The following is a string of ASCII characters whose bit patterns have been converted into hexadecimal for compactness: 73 F4 E5 76 E5 4A EF 62 73. Of the eight bits in each pair of digits, the leftmost is a parity bit. The remaining bits are the ASCII code. [4]
 - i. Convert the string to bit form and decode the ASCII.
 - ii. Determine the parity used: odd or even?

```
 \begin{array}{lll} i. & & 01010001 + 01011000 \\ ii. & & 10011000 + 10010111 \end{array}
```

iii.
$$010101100001 + 011100001000$$

Q3c.

(iii)

Result: (0001 0010 0110 1001) BCD

d. Encode these Unicode code points in UTF-8. Show the binary and hexadecimal value for each encoding:

i. U+0040

ii. U+00A2

iii. U+1F6B2

is U+0040 is in range U+0000 0000 - U+ 0000 007F so encoding would be of this for DXXXXXXX 40 = (0100 0000)2 so, encoding in 0100 0000 (ii) 4+00AZ Rage: 3 4+00000080 - 4+000007FF A2 in king 00010100010 110 XXXXX 10 XXXXX 11000010 10100010 (iii) U+1F6B2 Range: U+00010000 - U+0010FFFF 1 F 6 B 2 = 20001 1111, 0110 1011 0010 Encoding template 11110xxx 10xxxxx 10xxxxxx 10xxxxx

e. List the binary-reflected hexadecimal Gray code.

D32.		Rinary	Caray code
A section	0	0000	0000
	The second	0001	0001
	2	0010	0011
	3	0011	0010
	4	0100	0110
	5	0101	0111
	6	0110	0101
	7	0111	0100
	8	1000	1100
	9	1001	1101
	10	1010	1111
Pictor.	11	1011	1110
	12	1100	1010
	13	1101	1011
	14	1110	1001
	.15	1111	1000

Q4 [CLO2: Combinational circuit analysis and design]

a. Consider the combinational circuit shown in the figure below:

- i. List the truth table for F_1 and F_2 .
- ii. From the truth table, find the Boolean equations for F_1 and F_2 .

[5]

	- w.						
i,	Α	B	C	D	F,	Fu	
	0	0	0	D	0	1	_
	0	0	0	1	1	D	_
-	D	D	1	0	1	1	-
	0	0	1	1	1	D	-
	D	1	D	0		1 7	-
200	0	1	D	1	0		
	0	1	1	0	1	1	
	0	1	1)	0	1	T
_	_1	D	0	0	1	1	
_	1	0	0	1	1	0	
_	_1	0	1	0		01 01	
_	1	0	1	- 1	1	0	_
_	1	1	0	0	1	1	- 1 Y Y
	1	1	0	1	1	D	-
. 11	1	1	1	D	1		-
	1	1	1		ı	0	·
FM	om ab	ove	table	-	= 2m (= 2(0,2	1,2,3,4,6,8	,9,10,11,12,12,14,15) 0,12,14)
_			-	12	2 2 0 1	, , , , , , , , , , , , , , , , , , , 	
(ii)	LD		F,	`		CD	
AB	1	60	01	11 10	7	AB 00	01 11 10
np			1	1)[1	1.1	00	111
	00	5		T		1	1111
	01	1		-11'	#	01	11111
	l p	TI		1 1		11/1	
		10	1		711	H 1	1 1 1 1

b. Design a combinational circuit that accepts a 4-bit number and generates a 3-bit binary number output that approximates the square root of the number. For example, if the square root is 3.5 or larger, give a result of 4. If the square root is < 3.5 and ≥ 2.5 , give a result of 3. [5]

Q4b.

um	A	B	C	D	Qz	Q	LC	0 !	Sept	Approx.
0	0	0	0	_0_	0	C		0	0	0
1	0	0	0_	1	0		2)	10	
2	0	0	1_	0	0		0	1	1.414	1
3	U220	0	1	1	0		1	0	1.73	2
4	0	-	0	0	0			D	2	2
	D		0	1	0	6	1	D	2.23	2
6	0		1	0	D		1	0	2.44	2
6	0			1	0		1	1	2.64	3
7	0			0		0	1	1	2.82	3
8	1	0		1				ST.	3	3
9	_1	0	0			0_			3.16	3
10	1	0		0		D		,	3.31	
11	1	D			-	0			3.40	
12	1	1	C	0	-	D	0	0	3.6	
13_	1	1		0 1			0	0	3.7	
14_	1	1		1 0	-	1_	0	0	3.8	
15	1	1		1_1		1				
		D2 =	EN	n(13,	14,15)	i v		1.		1
-	0	1= &	4 100	1	7 8-11	,10	1+7	11 13	1	
	-		Em	(1,2,	7,8,	9,_	10,	11712	1	

	LD		Q:	-	
AB	1	Do	DI	14	10
BU	06		1	1	L
	01			-	
	14		II	TU	1
	IP				

Q5 [CLO2: Adders]

a. The adder-subtractor circuit (see figure below) has the values of M and data inputs A and B given in this table:

Case	M	\boldsymbol{A}	\boldsymbol{B}	
(a)	0	0111	0110	
(b)	0	1000	1001	
(c)	1	1100	1000	
(d)	1	0101	1010	
(e)	1	0000	0001	

In each case, determine the values of the four SUM outputs, the carry C, and overflow V.

Since
$$M=0$$
, A and B will be added.
 $0 \cdot 0 \cdot 0 \cdot 0 \rightarrow C_0$ (as $M=C_0$)
 $0 \cdot 1 \cdot 1 \cdot 0$

1101

So,
$$S_3 S_1 S_1 S_0 = 1101$$

As, $C_3 = 1$ and $C_4 = 0$, $V = 100 = 1$
and $C = C_4 = 0$

Case(b)

$$S_3 S_1 S_0 = D O O I$$

$$C = C_4 = I$$

$$V = I \left(C_4 \oplus C_3 = I \oplus O = I \right)$$

Case (c)

M = Co = 1 so A, but's complement of B and Co will be added.

$$S_3S_2S_1S_0 = 0100$$
 $C = C_4 = 1$
 $V = 0 \left(C_4 \oplus C_3 \right) = 0$

Case (d)

M = Co = 1, so A, one's complement of B and Co will be added.

$$S_3 S_1 S_0 = |0||$$
 $C = C_4 = 0$
 $V = C_4 \oplus C_3 = |$

Caso (e)

b. If carry propagate and carry generate are defined as

$$P_i = A_i + B_i$$
$$G_i = A_i B_i$$

respectively, show that the output carry and output sum of a full adder becomes:

$$C_{i+1} = (C'_i G_i' + P'_i)'$$

$$S_i = (P_i G_i') \oplus C_i$$

[3]

In term of new definitions of & Pi and Gi, we are given have to prove that: Citt = (Ci Gi' + Pi') - 0

New from theory/book, we know that:

So, we can take equations 1 and 1 and substitute P; and Gi and try to obtain the equations 3 and 9.

$$C_{i+1} = \left[C_{i}'(A_{i}B_{i})' + (A_{i} + B_{i})'\right]'$$

$$= \left[C_{i}'(A_{i}' + B_{i}') + A_{i}' \cdot B_{i}'\right]'$$

$$= \left[C_{i}'(A_{i}' + C_{i}'B_{i}') + A_{i}' \cdot B_{i}'\right]'$$

$$= \left(A_{i}'C_{i}'\right)' \cdot \left(C_{i}'B_{i}'\right)' \cdot \left(A_{i}' \cdot B_{i}'\right)'$$

$$= \left(A_{i} + C_{i}\right) \left(C_{i} + B_{i}\right) \left(A_{i} + B_{i}\right)$$

$$= \left(A_{i} + C_{i}\right) \left(C_{i} + B_{i}\right) \left(A_{i} + B_{i}\right)$$

$$= \left(A_{i} \cdot C_{i} + A_{i} \cdot B_{i} + C_{i} + B_{i} \cdot C_{i}\right) \left(A_{i} + B_{i}\right)$$

$$= A_{i} \cdot C_{i} + A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + A_{i} \cdot B_{i} \cdot C_{i}$$

$$+ A_{i} \cdot B_{i} \cdot C_{i} + A_{i} \cdot B_{i} \cdot C_{i} + A_{i} \cdot B_{i} \cdot C_{i}$$

$$= A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$$

$$= A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$$

$$= A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$$

$$= A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$$

$$= A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$$

$$= A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$$

$$= A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$$

$$= A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$$

$$= A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$$

$$= A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$$

$$= A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$$

$$= A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$$

$$= A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$$

Now.

c. Each of the eight full-adders in an 8-bit ripple carry adder exhibits the following propagation delay:

A to S and Cout: 20 ns

B to S and Cout: 20 ns

Cin to *S*: 30 ns

Cin to Cout: 25 ns

Determine the maximum total time for the addition of two 8-bit numbers.

maximum total time for the addition of two o of indineers.

[2]

stage campout is: \$\frac{1}{25} \times Cin - \tau - Courty or last - stage campout is: \$\frac{1}{25} \times Cin - \tau - Court) \times Nonline of Angio

25 \times 8 = 200 ms

Maximum delay for last stage 8

would be equal \$\times delay for Courts

+ 8\frac{1}{2}:

25. \times 7 + 30 = 205 ns

so maximum botal time would be 205 ms.

Q6 [CLO2: Decoders and encoders]

a. Construct a 5-to-32-line decoder with four 3-to-8-line decoders with enable and a 2-to4-line decoder. Use block diagrams for the components. [5]

5-to-32-line decoder using 43-to-8-line decoder and one 2-to-4-line decoder.

- . The above is a 5×32 duodu.
- · It has 5 inputs Ao A4
- . It has 32 outputs Do D21

The following configuration implement 5x32 using form 3x8 and I one 2x4 decoder.

A combinational circuit is specified by the following three Boolean functions:

$$F_1(A, B, C) = \sum_{i=1}^{n} (1, 4, 6)$$

 $F_2(A, B, C) = \sum_{i=1}^{n} (3, 5)$

$$F_2(A, B, C) = \sum (3, 5)$$

$$F_3(A, B, C) = \sum (2, 4, 6, 7)$$

Implement the circuit with a decoder constructed with NAND gates and NAND or AND gates connected to the decoder outputs. Use a block diagram for the decoder. Minimize the number of inputs in the external gates. [5]

A decoder constructed with NAND gates has active low outputs, i.e. only one decoder input is 0 and lest are 1 at any grien time. So, were will use NAND instead of OR to implement freactions.

c. Design a four-input priority encoder with inputs as in the following table, with input D0 having the highest priority and input D3 the lowest priority. [5]

Inputs					Outputs			
\mathbf{D}_3	\mathbf{D}_2	\mathbf{D}_1	\mathbf{D}_0	X	\mathbf{y}	\mathbf{V}		
0	0	0	0	X	X	0		
1	0	0	0	0	0	1		
X	1	0	0	0	1	1		
X	X	1	0	1	0	1		
X	X	X	1	1	1	1		

a. Implement a full-subtractor (A-B-C) circuit with two 4×1 multiplexers.

• Full-subtractor truth table

Α	В	С	Borrow		D	iff
0	0	0	0	C	0	
0	0	1	1	C	1	C
0	1	0	1	1	1	C'
0	1	1	1	1	0	C
1	0	0	0	0	1	C'
1	0	1	0	U	0	C
1	1	0	0	C	0	C
1	1	1	1	C	1	C

 $F(A, B, C, D) = \sum (1, 2, 5, 7, 8, 10, 11, 13, 15)$

Connect inputs A and B to the selection lines. The input requirements for the four data lines will be a function of variables C and D. These values are obtained by expressing F as a function of C and D for each of the four cases when AB = 00, 01, 10, and 11. These functions may have to be implemented with external gates.

Α	В	С	D	F	F
0	0	0	0	0	
0	0	0	1	1	C'D + CD'
0	0	1	0	1	C D + CD
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	1	C'D + CD
0	1	1	0	0	= D
0	1	1	1	1	
1	0	0	0	1	C'D' + CD' + CD
1	0	0	1	0	= D' + CD
1	0	1	0	1	
1	0	1	1	1	= C + D'
1	1	0	0	0	
1	1	0	1	1	C'D + CD
1	1	1	0	0	= D
1	1	1	1	1	

c. Construct a 16 × 1 multiplexer with two 8 × 1 and one 2 × 1 multiplexers. Use block diagrams.