Inequalities

MinSeok Song

Markov Inequality

Start with $P(Z \ge a) \le \frac{E(Z)}{a}$ It follows that $P(Z > 1 - a) \ge \frac{\mu - (1 - a)}{a}$. The idea is that if you know that Z is less than or equal to 1, then you use Markov inequality to 1 - Z; then we get the opposite inequality direction from Markov inequality.

Hoeffding's inequality

Assume that Z_i 's are i.i.d. samples and $P[a \leq Z_i \leq b] = 1$ for every i. Further let us say $E(Z_i) = \mu$. Then we have $P(\bar{Z} - \mu) \leq 2 \exp(\frac{-2m\epsilon^2}{b}(b-a)^2)$.

Remark 1. Hoeffding's inequality provides a decay rate of deviation (it is exponentially fast).

Central limit theorem

Central limit theorem states that $\sqrt{n}(\bar{X_n} - \mu)$ converges in distribution to $\mathcal{N}(0,\sigma^2)$

Remark 2. CLT gives the rate of convergence of law of large number, which is $\frac{1}{\sqrt{n}}$.