

مفاتيح

صمم المهندس تموثي لعبة هروب (escape game) جديدة. يوجد في هذه اللعبة n غرفة مرقمة من 0 إلى n-1. يكون في كل غرفة مفتاحاً واحداً فقط. لكل مفتاح نوع، ممثل كرقم صحيح بين n و n-1 ضمناً. يكون نوع المفتاح في الغرفة رقم n مقتاحاً واحداً فقط لكل مفتاح نوع، ممثل كرقم صحيح بين n و n ضمناً. يكون نوع المفتاح في الغرفة رقم n لاحظ انه من الممكن لنفس النوع من المفاتيح أن تتواجد في أكثر من غرفة، اي قيم n ليست بالضرورة فريدة.

كما يوجد في اللعبة أيضاً m وصلة ث**نانية الاتجاه**، مرقمة من 0 إلىm-1 . تصل الوصلة m-1 وصلة m وصلة m ابين غرفتين مختلفتين m يمكن لنفس الغرفتين أن تكونا متصلتين بأكثر من وصلة.

j يلعب لاعب واحد هذه اللعبة ويقوم بجمع المفاتيح والتحرك بين الغرف عن طريق اجتياز الوصلات بينها. نقول أن اللاعب يجتاز الوصلة v[j] عندما يستخدم هذه الوصلة للتحرك من الغرفة v[j] إلى الغرفة v[j] ، أو بالعكس. لا يمكن للاعب أن يجتاز الوصلة v[j] مسبقاً.

في لحظة معينة من اللعبة، يستطيع اللاعب الموجود في غرفة x القيام بنوعين من الأفعال:

- التقاط المفتاح الموجود في الغرفة x ، والذي له النوع r[x] (إلا إذا كان قد التقطه مسبقاً).
- اجتياز الوصلة j ، حيث u[j]=x أو u[j]=x ، وذلك في حال كان اللاعب قد النقط مفتاحاً من النوع v[j]=x مسبقاً. لاحظ أن اللاعب لا يتخلص من أي مفتاح كان قد النقطه.

يبدأ اللاعب اللعبة من غرفة ما s وليس معه أي مفتاح. نعتبر أن الغرفة t قابلة للوصول من الغرفة s، إذا استطاع اللاعب بدء اللعبة من الغرفة s والوصول إلى الغرفة t عن طريق القيام بسلسلة من الأفعال حسب التعريف أعلاه.

. i من أجل كل غرفة i القابلة للوصول من الغرفة p[i] على أنه عدد الغرف القابلة للوصول من الغرفة

 $0 \leq i \leq n-1$ يريد تموثي معرفة ارقام الغرف i صاحبة أصغر p[i] من بين جميع الغرف

تفاصيل التتجيز

يجب عليك تتجيز الاجرائية التالية:

int[] find reachable(int[] r, int[] u, int[] v, int[] c)

- . r[i] مصفوفة من الطول n . لكل i ($i \leq i \leq n-1$)، المقتاح الموجود في الغرفة i من النوع i
- . v[j] و u[j] و u[j] عصفوفتين من الطول m . لكل j لكل j . الوصلة j نصل الغرفتين j ، الوصلة j . u
- . c[j] هو j هو المطلوب لاجتياز الوصلة j هو j هو j . m عصفوفة من الطول m . لكل j
- يجب أن تعيد هذه الأجرائية المصفوفة a من الطول n . لكل $i \leq i \leq n$ ، يجب أن تحتوي a[i] القيمة a الجل كل a[i] القيمة a[i] وإلا تحتوي a[i] والا تحتوي a[i] القيمة a[i] بالم

أمثلة

مثال 1

ليكن الاستدعاء التالي:

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

إذا بدء اللاعب اللعبة من الغرفة 0 ، يمكنه القيام بالسلسلة التالية من الأفعال:

الغرف الحالية	القعل
0	التقاط المفتاح من النوع 0
0	اجتياز الوصلة 0 إلى الغرفة 1
1	التقاط المفتاح من النوع 1
1	اجتياز الوصلة 2 إلى الغرفة 2
2	اجتياز الوصلة 2 إلى الغرفة 1
1	اجتياز الوصلة 3 إلى الغرفة 3

ولذلك تكون الغرفة $\, 2\,$ قابلة للوصول من الغرفة $\, 0\,$ وبنفس الأسلوب، يمكننا بناء سلاسل من الأفعال تظهر أن جميع الغرف قابلة للوصول بدءاً من الغرفة $\, 0\,$ ، مما يعني أن $\, p[0]=0\,$. يظهر الجدول التالي الغرف القابلة للوصول من أجل جميع غرف البدء في اللعبة:

غرفة البداية	الغرف القابلة للوصول	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1,2,3]	3

تكون أصغر قيمة p[i] من بين جميع الغرف هي 2، وتظهر هذه القيمة من أجل i=1 أو i=1 . لذلك يجب أن تعيد الاجرائية المصفوفة [0,1,1,0] .

مثال 2

يظهر الجدول التالي الغرف القابلة للوصول:

غرفة البداية	الغرف القابلة للوصول	p[i]
0	[0, 1, 2, 3, 4, 5, 6]	7
1	[1,2]	2
2	[1,2]	2
3	[3,4,5,6]	4
4	[4,6]	2
5	[3,4,5,6]	4
6	[4,6]	2

نكون أصغر قيمة p[i] من بين جميع الغرف هي 2، وتظهر هذه القيمة من أجل $\{1,2,4,6\}$. لذلك يجب أن تعيد الاجرائية المصفوفة [0,1,1,0,1,0,1] .

مثال 3

find_reachable([0, 0, 0], [0], [1], [0])

يظهر الجدول التالي الغرف القابلة للوصول:

غرفة البداية	الغرف القابلة للوصول	p[i]
0	[0, 1]	2
1	[0, 1]	2
2	[2]	1

تكون أصغر قيمة $\,p[i]\,$ من بين جميع الغرف هي 1، وتظهر هذه القيمة من أجل $\,i=2\,$. لذلك يجب أن تعيد الاجرائية المصفوفة $\,[0,0,1]\,$.

القيود

- $2 \leq n \leq 300\,000$ •
- $1 \le m \le 300\,000$ •
- $0 \leq i \leq n-1$ for all $0 \leq r[i] \leq n-1$ •
- $0 \leq j \leq m-1$ and u[j]
 eq v[j] for all $0 \leq u[j], v[j] \leq n-1$.
 - $0 \leq j \leq m-1$ for all $0 \leq c[j] \leq n-1$ •

المسائل الجزئية

- $n,m \leq 200$ و $0 \leq j \leq m-1$ من أجل c[j] = 0 و 9) .1
 - $n,m \leq 200$ (2. ال علامة) 2.
 - $n,m \leq 2000$ (3. ا $m,m \leq 2000$ علامة)

.4 (00 علامة) $c[j] \leq 29$ (من أجل m-1)، ($j \leq 29$) (من أجل $c[j] \leq 29$) (من أجل 30) .4 علامة) لا توجد قيود إضافية.

المصحح النموذجي

يكون الدخل للمصحح النموذجي على الشكل التالي:

- n m:1 السطر
- r[0] r[1] \dots r[n-1]:2 السطر •
- u[j] v[j] c[j] : $(0 \leq j \leq m-1)$ 3+j السطر •

يطبع المحصص النموذجي القيمة التي يردها find_reachable على الشكل التالي:

a[0] a[1] \dots a[n-1] : 1 السطر •