3.1: Derivatives of Polynomial and Exponential Functions

Constant Functions

The derivative of a constant function f(x) = c is

$$\frac{d}{dx}(c) = 0.$$

Example 1. Prove that $\frac{d}{dx}(c) = 0$ using (a) the definition of f' and (b) the geometric interpretation of f'.

Power Functions

Power Rule: The derivative of a power function $f(x) = x^n$ is

$$\frac{d}{dx}(x^n) = nx^{n-1}.$$

Example 2.

- (a) Prove that $\frac{d}{dx}(x) = 1$ using the geometric interpretation of f'.
- (b) Prove that $\frac{d}{dx}(x^n) = nx^{n-1}$ where n > 1 is an integer using the definition of f'.

Example 3. Complete the following equalities

(a) If
$$f(x) = x^6$$
, then $f'(x) =$

(c) If
$$y = t^4$$
, then $\frac{dy}{dt} =$

(b) If
$$y = x^{1000}$$
, then $y' =$

(d)
$$\frac{d}{dr}(r^3) =$$

Example 4. Differentiate

(a)
$$f(x) = \frac{1}{x^2}$$

$$(b) \ y = \sqrt[3]{x^2}$$

Example 5. Find equations of the tangent and normal line to the curve $y = x\sqrt{x}$ at the point (1,1).

Differentiation Rules

If f and g are differentiable functions and c is a constant, then the following are true

- $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x)$
- $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$
- $\frac{d}{dx}[f(x) g(x)] = \frac{d}{dx}f(x) \frac{d}{dx}g(x)$

Note that, in general, $\frac{d}{dx}[f(x)g(x)] \neq \frac{d}{dx}f(x) \cdot \frac{d}{dx}g(x)$ and $\frac{d}{dx}\frac{f(x)}{g(x)} \neq \frac{\frac{d}{dx}f(x)}{\frac{d}{dx}g(x)}$. We will see how to differentiate products f(x)g(x) and quotients $\frac{f(x)}{g(x)}$ in the next section.

Example 6. Prove the first two differentiation rules above using the definition of the derivative.

Example 7. Differentiate $x^8 + 12x^5 - 4x^4 + 10x^3 - 6x + 5$.

Example 8. Find the points on the curve $y = x^4 - 6x^2 + 4$ where the tangent line is horizontal.

Example 9. The equation of motion of a particle is $s = 2t^3 - 5t^2 + 3t + 4$, where s is measured in centimeters and t in seconds. Find the acceleration as a function of time. What is the acceleration after 2 seconds?

Exponential Functions

e is the number such that

Example 10. Show that the derivative of the exponential function $f(x) = a^x$ is $f'(x) = f'(0)a^x$.

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1 \quad \text{or} \quad e = \lim_{h \to 0} (1 + h)^{1/h}.$$

The derivative of the natural exponential function $f(x) = e^x$ is

$$\frac{d}{dx}(e^x) = e^x.$$

This means that the slope of the line tangent to each point (x, e^x) on the graph $y = e^x$ is the y-coordinate of the point.

Example 11. If $f(x) = e^x - x$, find f' and f''.

Example 12. At what point on the curve $y = e^x$ is the tangent line parallel to the line y = 2x?