Практикум на ЭВМ

Решение задачи классического вариационного исчесления

Прокашев Максим Павлович 411 группа

14 декабря 2021 г.

1 Условие задачи

$$\begin{cases} \int_0^1 x^2 + u^2 dt \to \inf \\ x(0) = 1 \\ \ddot{x} + \sqrt{2}xe^{-\alpha t} = u \end{cases}$$

$$\alpha = \{0.0, 0.01, 1.0, 10.0\}$$

2 Формализация задачи

Предположим, что $x_1(t) = x(t)$ и $x_2(t) = \dot{x}_1(t) = \dot{x}(t)$. Тогда система имеет вид:

$$\begin{cases} \int_0^1 x_1^2 + u^2 dt \to \inf \\ x_1(0) = 1 \\ \dot{x}_2 + \sqrt{2}x_1 e^{-\alpha t} = u \\ \dot{x}_1(t) = x_2(t) \end{cases}$$

Выпишем Лагранжиан:

$$L = p_1(\dot{x}_1 - x_2) + p_2(\dot{x}_2 - u + \sqrt{2}x_1e^{-\alpha t}) + \lambda_0(x_1^2 + u^2)$$

$$l = \lambda_1(x_1(0) - 1)$$

Уравнение **Эйлера-Лагранжа** $\frac{d}{dt}L_{\dot{x}_i}=L_{x_i}$:

$$\begin{cases} \frac{d}{dt}p_1 = \sqrt{2}p_2e^{-\alpha t} + 2\lambda_0 x_1\\ \frac{d}{dt}p_2 = -p_1 \end{cases}$$

Условия **Трансверсиальности** $L_{x_i}(t_j) = (-1)^j l_{x_i(t_j)}$:

$$\begin{cases} p_1(0) = \lambda_1 \\ p_1(1) = 0 \\ p_2(0) = 0 \\ p_2(1) = 0 \end{cases}$$

Условие Оптимальности:

$$\hat{u} = argmin(-p_2u + \lambda_0u^2)$$

Если $\lambda_0 = 0$, то:

$$p_2 = 0 \Rightarrow p_1 = 0 \Rightarrow \lambda_1 = 0 \Rightarrow neron$$

 $p_2 \neq 0 \Rightarrow u - is not limited$

Тогда, пусть $\lambda_0=1$, тогда $\hat{u}=argmin(u^2-p_2u)$, и минимум этой параболы достигается при $\hat{u} = \frac{p_2}{2}$ В итоге, получаем краевую задачу:

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = \frac{p_2}{2} - \sqrt{2}x_1e^{-\alpha t} \\ \dot{p}_1 = 2x_1 + \sqrt{2}p_2e^{-\alpha t} \\ \dot{p}_2 = -p_1 \\ x_1(0) = 1 \\ p_1(1) = 0 \\ p_2(0) = 0 \\ p_2(1) = 0 \end{cases}$$

Результаты 3

α	Step	$x_2(0)$	$p_1(0)$	min	norm
0.0	4	-1.2256528222525	-8.4810303829262	0.274772855	1.24737678e-15
0.01	3	-1.2259616030500	-8.4716882860246	0.274705890	5.18680126e-15
0.5	3	-1.2413207753833	-8.0757291823282	0.271650811	2.06187941e-15
1	3	-1.2568427330660	-7.7712687231997	0.268964556	5.26506416e-15
5	3	-1.3481839099619	-6.8304079309184	0.257446938	1.77067326e-15
10	3	-1.4026857970956	-6.6019584824634	0.252993172	5.40779574e-16