TA Session 4: Linear Panel Models

Shuowen Chen¹

EC708: PhD Econometrics I (Spring 2020)

¹Contents are based on Wooldridge (2010) and teaching slides by Manuel Arellano.

OUTLINE

- Different Exogeneity Assumptions
- ► Pooled OLS
- ► Linear Panel with Time-Invariant Individual Effects
 - Random Effects
 - Fixed Effects
- Hausman Test Revisited

LINEAR PANEL MODEL SET UP

$$y_{it} = x_{it}\beta + v_{it}, \quad i = 1, ..., N; t = 1, ..., T$$

Level of time:

$$y_t = x_t \beta + v_t, \quad t = 1, ..., T,$$

where $y_t = (y_{1t}, y_{2t}, ..., y_{Nt})'$

Level of individual:

$$y_i = x_i \beta + v_i, \quad i = 1, ..., N,$$

where $y_i = (y_{i1}, y_{i2}, ..., y_{iT})'$

EXOGENEITY ASSUMPTIONS OF ERRORS

1. Contemporaneous exogeneity

$$\mathbb{E}(v_t|x_t) = 0, \ t = 1, ..., T$$

2. Sequential exogeneity

$$\mathbb{E}(v_t|x_t, x_{t-1}, ..., x_1) = 0, t = 1, ..., T$$

3. Strict exogeneity

$$\mathbb{E}(v_t|x_T, x_{T-1}, ..., x_1) = 0, \ t = 1, ..., T$$

Fails if regressor includes lagged dependent variable

DYNAMIC PANEL

Consider having lagged dependent variable as the regressor

$$y_t = \beta_0 + \beta_1 y_{t-1} + v_t,$$

Strict exogeneity would require

$$\mathbb{E}(v_t|y_0, y_1, ..., y_{T-1}) = 0$$

When t = T,

$$\mathbb{E}(v_T|y_0, y_1, ..., y_{T-1}) = 0,$$

But when t = 1, ..., T - 1,

$$\mathbb{E}(v_t|y_0,y_1,...,y_{T-1})=y_t-\beta_0-\beta_1y_{t-1}\neq 0$$

POOLED OLS

$$y_t = x_t \beta + v_t$$

Assume that

- 1. $\mathbb{E}(x_t'v_t) = 0$, t = 1, ..., T
- 2. $rank(\sum_{t=1}^{T} \mathbb{E}(x_t'x_t)) = K$, no perfect linear dependencies

Ignore the panel structure and treat data as a giant cross section:

$$\widehat{\beta}_{POLS} = (X'X)^{-1}X'y$$

ERROR COMPONENT MODEL

$$y_{i,t} = x_{i,t}\beta + v_{i,t} \tag{1}$$

$$v_{i,t} = c_i + u_{i,t} \tag{2}$$

- $ightharpoonup c_i$ in equation (2) is called individual effects
- ▶ Depending on whether we assume c_i is correlated with $x_{i,t}$, either random effects or fixed effects
- Pooled OLS is consistent if $\mathbb{E}(x'_t(c_i\mathbf{1}_T + u_t)) = 0$, t = 1, ..., T. Since $c_i\mathbf{1}_T$ is in each time period, need to use robust variance estimator.

RANDOM EFFECTS MODEL

Assumption 1:

- ► Strict exogeneity: $\mathbb{E}(u_{i,t} \mid x_i, c_i) = 0$
- ▶ Orthogonality: $\mathbb{E}(c_i \mid x_i) = \mathbb{E}(c_i) = 0$ (KEY assumption)

Assumption 2: Equicorrelated random effect structure

$$\mathbb{E}(u_i u_i' \mid x_i, c_i) = \sigma_u^2 I_T, \quad \mathbb{E}(c_i^2 \mid x_i) = \sigma_c^2.$$

This implies $\mathbb{E}(v_i'v_i) = \Omega = \sigma_u^2 I_T + \sigma_c^2 \mathbf{1}_T \mathbf{1}_T'$

Assumption 3: $rank(\mathbb{E}(X_i'\Omega^{-1}X_i)) = K$

RE estimator:

$$\widehat{\beta}_{RE} = \left(\sum_{i=1}^{N} X_i' \Omega^{-1} X_i\right)^{-1} \left(\sum_{i=1}^{N} X_i' \Omega^{-1} y_i\right)$$

In practice we need to estimate Ω and thus use

$$\widehat{\beta}_{RE} = \Big(\sum_{i=1}^{N} X_i' \widehat{\Omega}^{-1} X_i\Big)^{-1} \Big(\sum_{i=1}^{N} X_i' \widehat{\Omega}^{-1} y_i\Big)$$

Estimating $\widehat{\Omega}$ in Random Effects Estimator

Recall $\Omega = \sigma_u^2 I_T + \sigma_c^2 \mathbf{1}_T \mathbf{1}_T'$, therefore it suffices to get $\widehat{\sigma}_u^2$ and $\widehat{\sigma}_c^2$.

1. Run POLS, obtain $\hat{v}_{i,t} = y_{i,t} - x_{i,t} \hat{\beta}_{POLS}$, calculate

$$\widehat{\sigma}_{v}^{2} = \frac{1}{NT - K} \sum_{t=1}^{I} \sum_{i=1}^{N} \widehat{v}_{i,t}^{2}.$$

2. Recall $\sigma_c^2 = \mathbb{E}(v_{i,t}v_{i,s}), t \neq s$. Use the T(T-1)/2 nonredundant off-diagnol terms to calculate

$$\widehat{\sigma}_{c}^{2} = \frac{1}{NT(T-1)/2 - K} \sum_{i=1}^{N} \sum_{t=1}^{T-1} \sum_{s=t+1}^{T} \widehat{\nu}_{i,t} \widehat{\nu}_{i,s}.$$

3. Compute $\widehat{\sigma}_u^2 = \widehat{\sigma}_v^2 - \widehat{\sigma}_c^2$.

FIXED EFFECTS MODEL

Assumption 1:

► Strict exogeneity: $\mathbb{E}(u_{i,t} \mid x_i, c_i) = 0$

FE transformation:

$$y_{i,t} - \overline{y}_i = (x_{i,t} - \overline{x}_i)\beta + u_{i,t} - \overline{u}_i$$

Define demean operator: $Q_T = I_T - \lambda (\mathbf{1}_T (\mathbf{1}_T' \mathbf{1}_T)^{-1} \mathbf{1}_T')$

Assumption 2:

 $ightharpoonup rank(\mathbb{E}(X_i'Q_TX_i)) = K$

FE estimator is

$$\widehat{\beta}_{FE} = \Big(\sum_{i=1}^{N} X_i' Q_T X_i\Big)^{-1} \Big(\sum_{i=1}^{N} X_i' Q_T y_i\Big)$$

BETWEEN AND WITHIN ESTIMATORS

- ► Fixed Effects estimator is also called within estimators as it exploits time variation within each cross section
- Between estimator is OLS applied to the following

$$\overline{y}_i = \overline{x}_i \beta + c_i + \overline{u}_i,$$

which exploits variation between the cross sections.

▶ Define $P = I_N \otimes \mathbf{1}_T (\mathbf{1}_T' \mathbf{1}_T)^{-1} \mathbf{1}_T'$ and $Q = I_{NT} - P$, POLS and RE are both linear combinations of between and within estimators

$$\widehat{\beta}_{POLS} = a\widehat{\beta}_{between} + (1 - a)\widehat{\beta}_{within}$$

$$\widehat{\beta}_{RE} = b\widehat{\beta}_{between} + (1 - b)\widehat{\beta}_{within}$$

where
$$a = (X'X)^{-1}(X'PX)$$
 and $b = \left[X'\left(P + \frac{T\sigma_c^2 + \sigma_u^2}{\sigma_u^2}Q\right)X\right]^{-1}X'PX$

VARIANCES UNDER EQUICORRELATED RANDOM STRUCTURE

Suppose that $E[c_i|x_i]=0$, $E[c_i^2|x_i]=\sigma_c^2$ and $E[u_iu_i'|x_i,c_i]=\sigma_u^2I_T$, then

$$Var(\widehat{\beta}_{FE}|X) = \sigma_u^2 \Big(\sum_{i=1}^N X_i' Q_T X_i\Big)^{-1}, \quad Var(\widehat{\beta}_{RE}|X) = \Big(\sum_{i=1}^N X_i' \widehat{\Omega}^{-1} X_i\Big)^{-1}$$

To estimate the two variances consistently, it suffices to estimate σ_u^2 and σ_c^2 consistently. See previous slide for details.

Quasi Demeaning Transformation of Random Effects

Denote $\lambda = 1 - \sqrt{1/\left[1 + T(\sigma_{\alpha}/\sigma_{u})^{2}\right]}$ and observe that

$$\Omega^{-1/2} = \frac{1}{\sigma_u} \Big[I_T - \lambda (\mathbf{1}_T (\mathbf{1}_T' \mathbf{1}_T)^{-1} \mathbf{1}_T') \Big]$$

Then the RE estimator is obtained by estimating the following

$$C_T y_i = C_T x_i \beta + C_T v_i,$$

where $C_T = I_T - \lambda (\mathbf{1}_T (\mathbf{1}_T' \mathbf{1}_T)^{-1} \mathbf{1}_T')$. Note $\mathbb{E}[(C_T u_i)(C_T u_i)'] = \sigma_u^2 I_T$. The t-th element of the previous regression is

$$y_{i,t} - \lambda \overline{y}_i = (x_{i,t} - \lambda \overline{x}_i)\beta + (v_{i,t} - \lambda \overline{v}_i),$$

where $\overline{y}_i = \frac{1}{T} \sum_{t=1}^{T} y_{i,t}$. Denote $\widetilde{y}_{i,t} \equiv y_{i,t} - \lambda \overline{y}_i$, then RE estimator is

$$\widehat{\beta}_{RE} = (\widetilde{X}'\widetilde{X})^{-1}\widetilde{X}'\widetilde{y}$$

RELATIONSHIP BETWEEN FE AND RE

- ▶ As $T \to \infty$ or $\frac{\sigma_u}{\sigma_v} \to 0$, $\lambda \to 1$ and RE coincides with FE.
- Under equicorrelated random effect structure,

$$Var(\widehat{\beta}_{FE}|X) = \sigma_u^2 \Big(\sum_{i=1}^N X_i' Q_T X_i\Big)^{-1} = \sigma_u^2 \Big(X' Q X\Big)^{-1}$$
$$Var(\widehat{\beta}_{RE}|X) = \Big(\frac{1}{\sigma_u^2} X' Q X + \frac{1}{T\sigma_c^2 + \sigma_u^2} X' P X\Big)^{-1}$$

RE is more efficient than FE

HAUSMAN TEST: FE VS RE

Under H_0 RE is efficient. Under H_1 only FE is consistent

$$H_0: \mathbb{E}(c_i|x_i) = 0, \quad H_1: \mathbb{E}(c_i|x_i) \ge 0$$

Hausman statistic:

$$H = (\widehat{\beta}_{RE} - \widehat{\beta}_{FE})' \Big[Var(\widehat{\beta}_{FE}) - Var(\widehat{\beta}_{RE}) \Big]^{-1} (\widehat{\beta}_{RE} - \widehat{\beta}_{FE})$$

Under the null: $H \xrightarrow{d} \chi_K^2$. Caveats²:

- Strict exogeneity is maintained under the null and alternative
- ► Failure of equicorrelated random effect structure leads to non-standard limiting distributions
- Cannot compare time-invariant coefficients as they are unidentified in FE
- ► Hausman pretest for selecting RE or FE leads to second stage (post model selection) size distortion

²Refer to Wooldridge (2010 p.329) and Guggenberger (2010, JoE) for details.