WHAT IS CLAIMED IS:

comprises:

1	1. A method for static load balancing, comprising:		
2	for each data path in a network adapter team, computing a load balancing value		
3	determining a maximum value of the computed load balancing values; and		
selecting a data path with the maximum value for use in routing data.			
1	2. The method of claim 1, further comprising:		
2	receiving a list of the data paths in the network adapter team, a total number of		
3	bytes transferred by the network adapter team, a load balancing share of each data path,		
4	and a number of bytes transferred on each data path.		
	-		
1	3. The method of claim 2, wherein computing the load balancing value for a		
2	data path further comprises:		
3	dividing the total number of bytes by the number of bytes transferred on the data		
4	path to generate a first value; and		
5	multiplying the first value by the load balancing share of the data path.		
1	4. The method of claim 2, wherein the load balancing share is provided by a		
2	user.		
1	5. A method for dynamic load balancing, comprising:		
2	computing an actual load balancing share for each data path in a network adapter		
3	team; and		
4	for each data path,		
5	determining whether a load balancing share for the data path is less than		
6	the actual load balancing share for the data path; and		
7	when the load balancing share is less than the actual load balancing share,		
8	adjusting the load balancing share of the data path.		
1	6. The method of claim 5, wherein adjusting the load balancing share further		

3	determining whether a difference between the load balancing share and the actual			
4	load balancing share is less than a change threshold; and			
5	when the difference between the load balancing share and the actual load			
6	balancing share is less than the change threshold,			
7	reducing the load balancing share of the data path; and			
8	increasing the load balancing share of another data path.			
1	7. The method of claim 6, wherein the load balancing share of the data path			
2	in the network adapter team with a lowest difference load balancing value is increased			
3	and wherein, if multiple data paths have the lowest difference load balancing value, a			
4	data path from the multiple data paths with a highest actual load balancing share is			
5	increased.			
1	8. The method of claim 5, further comprising:			
2	computing a difference load balancing value for each data path in the network			
3	adapter team.			
1	9. The method of claim 8, wherein the actual load balancing share and the			
2	difference load balancing value are computed when a timer fires.			
1	10. The method of claim 5, further comprising:			
2	receiving a timer interval value, a change threshold value, and a load balancing			
3	change percent value.			
1	11. The method of claim 5, further comprising:			
2	receiving a list of data paths in the network adapter team, a total number of bytes			
3	transferred by the network adapter team in a last time frame, a load balancing share of			
4	each data path in the last time frame, and a number of bytes transferred on each data pat			
5	in the last time frame.			
1	12. A method for failover processing comprising:			

2	determining whether a command may be routed through a first network adapter;		
3	routing the command through the first network adapter in response to determining		
4	that the command may be routed through the first network adapter; and		
5	routing the command through a second network adapter in response to		
6	determining that the command may not be routed through the first network adapter.		
1	13. The method of claim 12, wherein the determination of whether a		
2	command may be routed through a first network adapter determines whether an		
3	indication that the first network adapter failed was received.		
1	14. The method of claim 12, wherein routing the command further comprises:		
2	forwarding the command to a low level driver with an indication of the selected		
3	network adapter.		
1	15. The method of claim 12, further comprising:		
2	performing load balancing between the first network adapter and the second		
3	network adapter when both network adapters are available.		
1	16. A system for static load balancing, comprising:		
2	multiple data paths forming a network adapter team; and		
3	circuitry, in a load balancing component that is coupled to a bus, operable to:		
4,	for each data path in a network adapter team, compute a load balancing		
5	value;		
6	determine a maximum value of the computed load balancing values; and		
7	select a data path with the maximum value for use in routing data.		
1	17. The system of claim 16, wherein the circuitry is operable to:		
2	receive a list of the data paths in the network adapter team, a total number of		
3	bytes transferred by the network adapter team, a load balancing share of each data path,		
4	and a number of bytes transferred on each data path.		

1	18. The system of claim 17, wherein the circuitry operable to compute the		
2	load balancing value for a data path is operable to:		
3	divide the total number of bytes by the number of bytes transferred on the data		
4	path to generate a first value; and		
5	multiply the first value by the load balancing share of the data path.		
1	19. The system of claim 17, wherein the load balancing share is provided by a		
2	user.		
.1	20. A system for dynamic load balancing, comprising:		
2	multiple data paths forming a network adapter team; and		
3	circuitry, in a load balancing component that is coupled to a bus, operable to:		
4	compute an actual load balancing share for each data path in a network		
5	adapter team; and		
6	for each data path,		
7	determine whether a load balancing share for the data path is less		
8	than the actual load balancing share for the data path; and		
9	when the load balancing share is less than the actual load balancing		
10	share, adjust the load balancing share of the data path.		
1	21. The system of claim 20, wherein the circuitry operable to adjust the load		
2	balancing share is operable to:		
3	determine whether a difference between the load balancing share and the actual		
4	load balancing share is less than a change threshold; and		
5	when the difference between the load balancing share and the actual load		
6	balancing share is less than the change threshold,		
7	reduce the load balancing share of the data path; and		
8	increase the load balancing share of another data path.		
1	22. The system of claim 21, wherein the load balancing share of the data path		
2	in the network adapter team with a lowest difference load balancing value is increased,		

3	and wherein, if multiple data paths have the lowest difference load balancing value, a		
4	data path from the multiple data paths with a highest actual load balancing share is		
5	increased.		
1	23. The system of claim 20, wherein the circuitry is operable to:		
2	compute a difference load balancing value for each data path in the network		
3	adapter team.		
1	24. The system of claim 23, wherein the actual load balancing share and the		
2	difference load balancing value are computed when a timer fires.		
1	25. The system of claim 20, wherein the circuitry is operable to:		
2	receive a timer interval value, a change threshold value, and a load balancing		
3	change percent value.		
1	26. The system of claim 20, wherein the circuitry is operable to:		
2	, , , , , , , , , , , , , , , , , , ,		
3	receive a list of data paths in the network adapter team, a total number of bytes		
	transferred by the network adapter team in a last time frame, a load balancing share of		
4	each data path in the last time frame, and a number of bytes transferred on each data path		
5	in the last time frame.		
1	27. A system for failover processing, comprising:		
2	a first network adapter;		
3	a second network adapter; and		
4	circuitry, in a failover component coupled to a bus, operable to:		
5	determine whether a command may be routed through a first network		
6	adapter;		
7	route the command through the first network adapter in response to		
8	determining that the command may be routed through the first network adapter; and		
9	route the command through a second network adapter in response to		
10	determining that the command may not be routed through the first network adapter.		

1	28.	The system of claim 27, wherein the circuitry operable to determine		
2	whether the con	nmand may be routed through the first network adapter is operable to		
3	determine whether an indication that the first network adapter failed was received.			
1	29. Т	The system of claim 27, wherein the circuitry to route the command is		
2	operable to:			
3	forward	the command to a low level driver with an indication of the selected		
4	network adapter.			
1	30. Т	The system of claim 27, wherein the circuitry is operable to:		
2	perform load balancing between the first network adapter and the second netw			
3	adapter when both network adapters are available.			
1	31. A	an article of manufacture for static load balancing, wherein the article of		
2		manufacture is operable to:		
3	for each	data path in a network adapter team, compute a load balancing value;		
4		e a maximum value of the computed load balancing values; and		
5	select a c	lata path with the maximum value for use in routing data.		
1	32. T	he article of manufacture of claim 31, wherein the article of manufacture		
2	is operable to:			
3	receive a	list of the data paths in the network adapter team, a total number of		
4	bytes transferred by the network adapter team, a load balancing share of each data path,			
5	and a number of	bytes transferred on each data path.		
1	33. T	he article of manufacture of claim 32, wherein the article of manufacture		
2	operable to comp	pute the load balancing value for a data path is operable to:		
3		e total number of bytes by the number of bytes transferred on the data		
4	path to generate a first value; and			
5	multiply the first value by the load balancing share of the data path.			

I	34. The article of manufacture of claim 32, wherein the load balancing share		
2	is provided by a user.		
1	35. An article of manufacture for dynamic load balancing, wherein the article		
2	of manufacture is operable to:		
3	compute an actual load balancing share for each data path in a network adapter		
4	team; and		
5	for each data path,		
6	determine whether a load balancing share for the data path is less than the		
7	actual load balancing share for the data path; and		
8	when the load balancing share is less than the actual load balancing share		
9	adjust the load balancing share of the data path.		
1	36. The article of manufacture of claim 35, wherein the article of manufacture		
2	operable to adjust the load balancing share is operable to:		
3	determine whether a difference between the load balancing share and the actual		
4	load balancing share is less than a change threshold; and		
5	when the difference between the load balancing share and the actual load		
6	balancing share is less than the change threshold,		
7	reduce the load balancing share of the data path; and		
8	increase the load balancing share of another data path.		
1	37. The article of manufacture of claim 36, wherein the load balancing share		
2	of the data path in the network adapter team with a lowest difference load balancing		
3	value is increased, and wherein, if multiple data paths have the lowest difference load		
4	balancing value, a data path from the multiple data paths with a highest actual load		
5	balancing share is increased.		
1	38. The article of manufacture of claim 35, wherein the article of manufacture		
2	is operable to:		

3	compute a difference load balancing value for each data path in the network		
4	adapter team.		
1	39.	The article of manufacture of claim 38, wherein the actual load balancing	
2	share and the	difference load balancing value are computed when a timer fires.	
1	40.	The article of manufacture of claim 35, wherein the article of manufacture	
2	is operable to	:	
3	receive a timer interval value, a change threshold value, and a load balancing		
4 change percent value.		nt value.	
1	41.	The article of manufacture of claim 35, wherein the article of manufacture	
2	is operable to		
3	receive a list of data paths in the network adapter team, a total number of bytes		
4	transferred by	the network adapter team in a last time frame, a load balancing share of	
5	each data path in the last time frame, and a number of bytes transferred on each data pat		
6	in the last tim	e frame.	
1	42.	An article of manufacture for failover processing, wherein the article of	
2	manufacture i	s operable to:	
3	determine whether a command may be routed through a first network adapter;		
4	route the command through the first network adapter in response to determining		
5	that the command may be routed through the first network adapter; and		
6	route the command through a second network adapter in response to determining		
7	that the comn	nand may not be routed through the first network adapter.	
1	43.	The article of manufacture of claim 42, wherein the article of manufacture	
2	operable to de	etermine whether a command may be routed through a first network adapter	
3	is operable to	determine whether an indication that the first network adapter failed was	
4	received.		

The article of manufacture of claim 42, wherein the article of manufacture 1 44. 2 operable to route the command is operable to: forward the command to a low level driver with an indication of the selected 3 4 network adapter. 1 45. The article of manufacture of claim 42, wherein the article of manufacture 2 is operable to: 3 perform load balancing between the first network adapter and the second network 4 adapter when both network adapters are available.