Algorithm Abstraction - Exam 1

2023-09-27

Contents

1 Chapter 1: Representative Problems and Gale-Shapley		2
		2
1.2	Gale-Shapley	2
2 Chapter 2: Algorithm Analysis		2
2.1	Big O Notation	2
2.2	· ·	3
2.3	Big Theta (Θ) Notation	3
3 Chapter 3: Graphs		3
3.1	Graph Types and Definitions	3
3.2		4
3.3		4
3.4	DAGs and Topological Orderings	4
Cha	pter 4 - Greedy Algorithms (1)	4
		4
4.2		5
4.3		5
4.4		5
4.5		6
		6
4.7		7
	1.1 1.2 Cha 2.1 2.2 2.3 Cha 3.1 3.2 3.3 3.4 Cha 4.1 4.2 4.3 4.4 4.5 4.6	1.1 Stable Matching Definitions 1.2 Gale-Shapley

1 Chapter 1: Representative Problems and Gale-Shapley

1.1 Stable Matching Definitions

- Algorithm: A procedure that takes an input, transforms it, and then outputs the result
- **Unstable Matching**: A matching such that there exists a pair (x_1, y_1) in matching M where both x_1 and y_1 both prefer another partner to the one they currently have (unstable pair)
- Stable Matching: A matching such that there are NO unstable pairs
- **Perfect Matching**: A matching where every element of Set A is matched with exactly one element of set B

1.2 Gale-Shapley

Gale-Shapley: Algorithm that is guaranteed to find the same perfect matching and a stable matching every time

```
GALE {SHAPLEY (preference lists for hospitals and students)
    INITIALIZE M to empty matching.

WHILE (some hospital h is unmatched and hasn't proposed to every student)
    s + first student on h's list to whom h has not yet proposed.

IF (s is unmatched)
    Add h{s to matching M.

ELSE IF (s prefers h to current partner h')
    Replace h'-s with h-s in matching M.

ELSE
    s rejects h.

RETURN stable matching M.
```

2 Chapter 2: Algorithm Analysis

2.1 Big O Notation

- The upper bound of a function such that f(n) is O(g(n)) if there exists constants c>0 and $n_0\geq 0$ such that $0\leq f(n)\leq c*g(n)$ for all $n\geq n_0$
- Can be further expanded such that f(n) is O(g(n)) if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

- if f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then f_1f_2 is $O(g_1g_2)$
- if f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 + f_2$ is $O(\max\{g_1, g_2\})$

2.2 Big Omega(Ω) **Notation**

- The lower bound of a function such that f(n) is $\Omega(g(n))$ if there exists constants c > 0 and $n_0 \ge 0$ such that $0 \le c * g(n) \le f(n)$ for all $n \ge n_0$
- Can be further expanded such that f(n) is $\Omega(g(n))$ if

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$

2.3 Big Theta(Θ) Notation

- The tight bound of a function such that f(n) is $\Theta(g(n))$ if there exists constants $c_1>0$, $c_2>0$, and $n_0\geq 0$ such that $0\leq c_1*g(n)\leq f(n)\leq c_2*g(n)$ for all $n\geq n_0$
- Can be further expanded such that f(n) is $\Theta(g(n))$ if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$$

3 Chapter 3: Graphs

3.1 Graph Types and Definitions

- Undirected Graphs: Set of nodes (vertices) and bidirectional edges between nodes
- Directed Graphs: Set of nodes and directional edges between nodes
- Adjacency Matrix: n-by-n matrix where $A_{uv} = 1$ if (u,v) is an edge
- Adjacency Lists: Node-indexed array of lists with only edges in the list
- **Path**: There is a path between two nodes if there is a sequence of edges and nodes that go from one node to another
- Simple Path: All nodes in the path are distinct
- Connected Graph: A graph is connected if there is a path for every pair of nodes
- Cycles: A cycle is a path $v_1, v_2, ..., v_k$ in which $v_1 = v_k$ and $k \ge 2$
- **Tree**: An undirected graph is a tree if its connected and does not contain a cycle

3.2 Connectivity and Traversal

• **Breadth-First Search**: Explore outward from starting node s in all possible directions one layer at a time. Runs in O(m+n) if graph is given as adjacency list

3.3 Bipartite Graphs

- Bipartite Graphs: An undirected graph is bipartite if the nodes can be colored blue or white such that every edge has one white and one blue end
- If graph G is bipartite, it cannot contain an odd-length cycle

3.4 DAGs and Topological Orderings

- **Directed Acyclic Graph (DAG)**: A DAG is a directed graph that contains no directed cycles
- **Topological Order**: An ordering of a directed graph such that for nodes $v_1, v_2, ... v_n$ and every edge (v_i, j_2) , we have i < j

```
* Maintain the following information:
    - count(w) = remaining number of incoming edges
    - S = set of remaining nodes with no incoming edges
* Initialization: O(m + n) via single scan through graph.
* Update: to delete v
    -remove v from S
    - decrement count(w) for all edges from v to w;
         and add w to S if count(w) hits 0
    - this is O(1) per edge
```

• if G has a Topological Order, then G is a DAG

4 Chapter 4 - Greedy Algorithms (1)

4.1 Coin Change

- Given a currency, find a way for a cashier to give the customer the fewest possible number of coins
- Cashiers Algorithm: At each iteration, add coin of the largest value possible that does not take us past the remaining amount to be paid
- Cashiers Algorithm is not always optimal depending on the denomination of coins present

4.2 Interval Scheduling

- Job j starts at s_i and finishes at f_i
- Two jobs are compatible if they don't overlap
- Goal: Find maximum subset of mutually compatible jobs
- Earliest-Finish-Time-First

```
SORT jobs by finish times and renumber so that f1 <= f2 <= ... <= fn. S <- 0 .  
FOR j = 1 TO n  
    IF (job j is compatible with S)  
    S <- S U { j }.  
RETURN S
```

• Optimal algorithm that takes O(nlogn) time

4.3 Interval Partitioning

- Goal: find minimum number of classrooms to schedule all lectures so that no two lectures occur at the same time in the same room
- Earliest-Start-Time-First Algorithm

• Can be implemented in O(nlogn) time and is optimal

4.4 Minimize Lateness

- Single resource processes one job at a time
- Job j requires tj units of time and due at time dj
- if j starts at time sj, finishes at time fj = sj + tj
- Goal: Goal: schedule all jobs to minimize maximum lateness $L = max_i l_i$

• Earliest-Deadline-First

```
SORT jobs by due times and renumber so that d1 <= d2 <= ... <= dn. t <- 0.  
FOR j = 1 TO n  
Assign job j to interval [t, t + tj].  
sj <- t; fj <- t + tj.  
t <- t + tj.  
RETURN intervals [s1, f1], [s2, f2], ..., [sn, fn]
```

• Earliest-Deadine-First Schedule S is optimal

4.5 Optimal Caching

- Cache Hit: Item already in cache when requested
- Cache Miss: Item not already in cache when requested, must be brought into cache and evict some existing item if cache is full
- Goal: Eviction Schedule that minimizes number of cache misses
- A reduced schedule is a schedule that only inserts an item into the cache in a step in which that item is requested
- Farthest-in-Future is an optimal eviction algorithm in offline caching
- Offline Algorithm: Full sequence of request is known beforehand
- Online Algorithm: Full sequence of request is NOT known beforehand
- Some other caching methods are LIFO which evicts page brought in most recently and LRU which evicts page whose most recent access was earliest (FF with direction of time reversed)

4.6 Dijkstras Algorithm

• **Dijsktras Algorithm**: Algorithm to find the shortest possible path from starting point s to destination point t where the edge weights are greater than 0.

```
DIJKSTRA (V, E, \ell, s)

FOREACH v \neq s : \pi[v] \leftarrow \infty, pred[v] \leftarrow null; \pi[s] \leftarrow 0.

Create an empty priority queue pq.

FOREACH v \in V : \text{INSERT}(pq, v, \pi[v]).

WHILE (IS-NOT-EMPTY(pq))

u \leftarrow \text{DEL-MIN}(pq).

FOREACH edge e = (u, v) \in E leaving u:

IF (\pi[v] > \pi[u] + \ell_e)

DECREASE-KEY(pq, v, \pi[u] + \ell_e).

\pi[v] \leftarrow \pi[u] + \ell_e; pred[v] \leftarrow e.
```

4.7 Minimum Spanning Tree

- Cut: A partition of nodes into two nonempty subsets S and V-S
- Cutset: Cutset of a cut S is the set of edges with exactly one endpoint in S
- **Spanning Tree**: Let H=(V,T) be a subgraph of an undirected graph G=(V,E). H is a spanning tree of G is H is both acyclic and connected
- **Minimum Spanning Tree (MST)**: Given a connected, undirected graph G=(V,E) with edge costs c_e , a MST(V,T) is a spanning tree of G such that the sum of the edge costs in T is minimized