Assignment 3 Part 2

1001757299 Jiayun Zhang zhan1970

1. a.

LPR $^+$ = LPRQST, LPR is not a superkey and LPR \rightarrow Q violate BCNF. LR $^+$ = LRST, LR is not a superkey and LR \rightarrow ST violate BCNF.

 M^{+} = MLO, M is not a superkey and M \rightarrow LO violate BCNF.

 MR^+ = MRNLOST, MR is not a superkey and MR \rightarrow N violate BCNF.

All the FDs in W violate BCNF.

b.

- Decompose V using FD LPR \rightarrow Q, LPR $^+$ = LPRQST, so this yields to two relations: V₁ = LPQRST and V₂ = MNOLPR
- Project FDs onto V₁ = LPQRST

	roject 123 onto VI Li Quot						
L	Р	Q	R	S	Т	closure	FDs
•						$L^{+} = L$	nothing
	•					$P^+ = P$	nothing
		•				$Q^+ = Q$	nothing
			•			$R^+ = R$	nothing
				•		$S^+ = S$	nothing
					•	$T^{+} = T$	nothing
•	•					$LP^+ = LP$	nothing
•		•				$LQ^+ = LQ$	nothing
•			•			$LR^+ = LRST$	LR→ST, violate BCNF

We must decompose V₁ further.

- Decompose V_1 using LR \rightarrow ST. This yields two relationships: V_3 = LRST and V_4 = LRPQ.
- Project FDs onto V₃ = LRST

	-							
L	R	S	Т	closure	FDs			
•				$L^{+} = L$	nothing			
	•			$R^+ = R$	nothing			
		•		$S^+ = S$	nothing			
			•	$T^+ = T$	nothing			
•	•			$LR^+ = LRST$	LR \rightarrow ST, LR is the superkey of V ₃			
•		•		$LS^+ = LS$	nothing			
•			•	$LT^{+} = LT$	nothing			
	•	•		$RS^+ = RS$	nothing			
	•		•	$RT^+ = RT$	nothing			
		•	•	$ST^+ = ST$	nothing			
SU	superset of LR		_R	irrelevant				
•		•	•	LST ⁺ = LST	nothing			
				201 201	1100111116			

This relation satisfies BCNF.

• Project FDs onto V₄ = LRPQ

L	R	Р	q	closure FDs			
•				$L^{+} = L$	nothing		
	•			$R^+ = R$	nothing		
		•		$S^+ = S$	nothing		
			•	$T^+ = T$	nothing		
•	•			$LR^+ = LRST$	nothing		
•		•		$LP^+ = LP$	nothing		
•			•	$LQ^+ = LQ$	nothing		
	•	•		$RP^+ = RP$ nothing			
	•		•	$RQ^+ = RQ$	nothing		
		•	•	$PQ^{+} = PQ$	nothing		
•	•	•		$LPR^{+} = LPRQST$	LPR \rightarrow Q, LPR is the superkey of V ₄		
•	•		•	$LRQ^{+} = LRQST$	nothing		
					·		

This relation satisfies BCNF.

• Project FDs onto V₂ = MNOLPR

М	N	0	L	Р	R	closure	FDs
•						$M^+ = MLO$	M→LO, violate BCNF

We must decompose V₂ further.

Decompose V₂ using M→LO. This yields two relationships: V₅ = MLO and V₆ = MNPR.

Project FDs onto V₅ = MLO

М	L	0	closure	FDs			
•			$M^+ = MLO$	$M\rightarrow LO$, M is the superkey of V_5			
	•		$L^{+} = L$	nothing			
		•	$O^+ = O$	nothing			
supe	superset of M		irrelevant				
	•	•	$LO^+ = LO$	nothing			

This relation satisfies BCNF.

• Project FDs onto V₆ = MNPR

М	N	Р	R	closure	FDs	
•				$M^+ = MLO$	nothing	
	•			$N^+ = N$	nothing	
		•		$P^+ = P$	nothing	
			•	$R^+ = R$	nothing	
•	•			$MN^+ = MNLO$	nothing	
•		•		$MP^+ = MPLO$	nothing	
•			•	$MR^+ = MRNLOST$	MR→N, violate BCNF	

We must decompose V₆ further.

• Decompose V_6 using MR \rightarrow N. This yields two relationships: V_7 = MRN and V_8 = MRP.

Project FDs onto V₇ = MRN

М	R	N	closure	FDs	
•			$M^+ = MLO$	nothing	
	•		$R^+ = R$	nothing	
		•	$N^+ = N$	nothing	
•	•		$MR^+ = MRNLOST$	MR \rightarrow N, MR is the superkey of V ₇	
•		•	$MN^+ = MNLO$	nothing	
	•	•	$RN^+ = RN$	nothing	

This relation satisfies BCNF.

• Project FDs onto V₈ = MRP

М	R	Р	closure	FDs	
•			$M^+ = MLO$	nothing	
	•		$R^+ = R$	nothing	
		•	$P^+ = P$	nothing	
•	•		$MR^+ = MRLONST$	nothing	
•		•	$MP^+ = MPLO$	nothing	
	•	•	$RP^+ = RP$	nothing	

This relation satisfies BCNF.

• Final decomposition:

a) $V_5 = LMO$ with FD: $M \rightarrow LO$

b) $V_4 = LPQR$ with FD: $LPR \rightarrow Q$

c) $V_3 = LRST$ with FD: $LR \rightarrow ST$.

d) $V_7 = MNR$ with FD: $MR \rightarrow N$

e) $V_8 = MPR$ with no FDs.

2. a.

Step 1: Split the RHSs to get our initial set of FDs.

- 1) AB→C
- 2) AB→D
- 3) ACDE→B
- 4) ACDE→F
- 5) B→A
- 6) B→C
- 7) B→D
- 8) CD→A
- 9) CD→F
- 10) CDE→F
- 11) CDE→G
- 12) EB→D

Step 2: Try to minimize the LHS. (Same order as in step 1.)

- 1) $A^+ = A$, $B^+ = BACDF$, we can reduce LHS of FD $AB \rightarrow C$ to $B \rightarrow C$.
- 2) $A^+ = A$, $B^+ = BACDF$, we can reduce LHS of FD $AB \rightarrow D$ to $B \rightarrow D$.

- 3) Since no singleton LHS of ACDE yields anything, we need only consider two or more attributes. $AC^+ = AC$, $AD^+ = AD$, $AE^+ = AE$, $CD^+ = CDAF$, $CE^+ = CE$, $DE^+ = DE$, $ACD^+ = ACDF$, $ACE^+ = ACE$, $ADE^+ = ADE$, $CDE^+ = CDEAFBG$. So we can reduce the FD ACDE \rightarrow B to **CDE\rightarrowB**.
- 4) Since no singleton LHS of ACDE yields anything, we need only consider two or more attributes. $AC^+ = AC$, $AD^+ = AD$, $AE^+ = AE$, $CD^+ = CDAF$, $CE^+ = CE$, $DE^+ = DE$. So we can reduce the FD ACDE \rightarrow F to $CD\rightarrow$ F.
- 5) LHS only has one attribute, cannot reduce the FD B→A.
- 6) LHS only has one attribute, cannot reduce the FD B→C.
- 7) LHS only has one attribute, cannot reduce the FD $B \rightarrow D$.
- 8) $C^{\dagger} = C$, $D^{\dagger} = D$, we cannot reduce LHS of the FD CD \rightarrow A.
- 9) $C^+ = C$, $D^+ = D$, we cannot reduce LHS of the FD **CD** \rightarrow **F**.
- 10) Since no singleton LHS of CDE yields anything, $CD^+ = CDAF$, $CE^+ = CE$, $DE^+ = DE$. So we can reduce the FD CDE \rightarrow F to $CD\rightarrow$ F.
- 11) Since no singleton LHS of CDE yields anything, $CD^+ = CDAF$, $CE^+ = CE$, $DE^+ = DE$. We cannot reduce LHS of the FD **CDE** \rightarrow **G**.
- 12) $E^+ = E$, $B^+ = BACDF$. We can reduce the FD $EB \rightarrow D$ to $B \rightarrow D$.

So our new set of FDs T₂:

- 1) B→C
- 2) B→D
- 3) CDE \rightarrow B
- 4) CD→F
- 5) B→A
- 6) CD→A
- 7) CDE→G

Step 3: Try to eliminate each FD:

- a) Without T_21) B^+ = ABD, we need T_21).
- b) Without T_2 2) B^+ = ABC, we need T_2 2).
- c) Without T_23) CDE⁺ = ACDEFG, we need T_23).
- d) Without T_24) $CD^+ = ACDEG$, we need T_24).
- e) Without T_25) B^+ = BCDAF, we do not need to keep T_25).
- f) Without T_26) and T_25) $CD^+ = CDF$, we need T_26).
- g) Without T_27) and T_25) CDE⁺ = ABCDEF, we need T_27)

So, the final minimum basis for T is

 $T = \{B \rightarrow C, B \rightarrow D, CD \rightarrow A, CD \rightarrow F, CDE \rightarrow B, CDE \rightarrow G\}$

b. From the minimum basis we made in part a:

	Only in LHS	Only in RHS	On both side	Not on FDs	Note
Α		•			In no key
В			•		To be analyzed
С			•		To be analyzed
D			•		To be analyzed
Ε	•				In every key
F		•			In no key
G		•			In no key
Н				•	In every key

From the table above, we know that E and H must be in every key and we have to check for BCD.

BEH⁺ = ABCDEFGH. BEH is a key. All supersets of BEH are supersets.

 $CEH^{+} = CEH.$

 $DEH^{+} = DEH$.

CDEH⁺ = ABCDEFGH. CDEH is a key. All supersets of CDEH are supersets.

Therefore, {BEH, CDEH} are the keys.

c.

First step: combine the RHS.

 $B \rightarrow C$ and $B \rightarrow D$ becomes $B \rightarrow CD$.

 $CD \rightarrow A$ and $CD \rightarrow F$ become $CD \rightarrow AF$.

CDE \rightarrow B and CDE \rightarrow G becomes CDE \rightarrow BG.

So, the FDs are: $B \rightarrow CD$, $CD \rightarrow AF$, $CDE \rightarrow BG$.

Step 2: Make relations base on the FDs.

 $R_1(BCD)$, $R_2(ACDF)$, $R_3(BCDEG)$

because BEH and CDEH are keys, we should add a relation that contains the keys.

R₄(BEH)

So, the final relations are R₁(BCD), R₂(ACDF), R₃(BCDEG), R₄(BEH)

d.

 R_1 , R_2 , R_3 are formed by FDs, the LHS of the FDs are the superkey of them. R_4 is the key of the whole relation. However, there may other FDs that violate BCNF so the schema allows redundancy. For instance, project $B \rightarrow CD$ and $CD \rightarrow AF$ in R_3 , $B^+ = ABCDF$, B is not a superkey of R_3 . Therefore, the schema allow redundancy.