Notes - January 22nd $Math \ 32A$

Today we will learn how to use vectors to describe a curve.

Consider the following three parametric equations in \mathbb{R}^2 , $c_1(t)=(t,t^2)$, $c_2(t)=(2t,4t^2)$, $c_3(t)=(-t,t^2)$.

Vector-valued functions. Consider a particle moving in \mathbb{R}^3 with coordinates (x(t), y(t), z(t)) at time t. We can represent this path by the vector-valued function

$$\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$$

More precisely, a vector-valued function is a function from \mathbb{R} to the set of vectors of \mathbb{R}^3 . The variable t is called a parameter (and usually is referred as time). The vector-valued function $\mathbf{r}(t)$ defines a path in \mathbb{R}^3 as t varies.

We call the projections of the path to the restriction of the vector-valued function to the coordinate planes.

Example. Sketch the curve traced by $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$ for $t \geq 0$. Describe the projections to the coordinate planes.

Exercise. Find a parametrization of the intersection of the cylinder $(x-1)^2 + (y-1)^2 = 9$ and the pl	ane $2x-3y+z=2$.