TIMER/COUNTER

Timer/Counter

- 8051 có 2 Timer
 - Timer 0
 - Timer 1
- Mỗi Timer là một bộ đếm 16 bit
 - Phạm vi đếm: từ 0000h đến FFFFh
 - Cờ tràn (TF) được thiết lập bằng 1 khi đếm từ FFFFh về 0000H

Timer/Counter

- Có 3 chức năng:
 - Sử dụng để tạo thời gian trễ (khoảng thời gian giữa hai sự kiện):
 dùng xung Clock bên trong
 - Đếm sự kiện: sử dụng nguồn xung từ bên ngoài
 - ∘ Ví dụ:
 - Đếm số lượng người qua cửa
 - Đếm số vòng quay của động cơ
 - Hay bất cứ sự kiện nào làm thay đổi xung (từ thấp lên cao và ngược lại)
 - Tạo tốc độ Baud trong truyền thông nối tiếp

- Thanh ghi TH0, TL0
- Thanh ghi TH1, TL1
- Thanh ghi TMOD
- Thanh ghi TCON

■ Thanh ghi Timer 0 và Timer 1

Thanh ghi TMOD

- Gate 0: Timer/Counter chỉ hoạt động khi bit TRx được set
 - 1: Timer/Counter chỉ hoạt động khi bit TRx được set và chân INTx được đặt ở mức cao
- C/T 0: Timer/Counter hoạt động như một bộ định thời
 - 1: Timer/Counter hoạt động như một bộ đếm

Thanh ghi TMOD

MO	M1	Chế độ	Hoạt động
0	0	0	Chế độ timer 13 bit; 8 bit nạp cho thanh ghi THx và 5 bit nạp cho thanh ghi TLx
0	1	1	Chế độ timer 16 bit; 8 bit nạp cho thanh ghi THx và 8 bit nạp cho thanh ghi TLx
1	0	2	Chế độ 8 bit tự nạp lại ; THx sẽ chứa giá trị nạp, mỗi lần tràn giá trị nạp sẽ được chuyển sang TLx
1	1	3	Chế độ chia tách

- Thanh ghi TMOD
 - Ví dụ: tìm giá trị nạp cho TMOD, nếu muốn sử dụng timer 0 ở mode 2; sử dụng nguồn xung từ thạch anh của 8051 và sử dụng lệnh để khởi động/ dừng Timer

Thanh ghi TMOD

- Ví dụ:
 - o MOV TMOD,#0000001B; Timer 0 mode 1, hoạt động như bộ định thời
 - MOV TMOD,#20H; Timer 1 mode 2, hoạt động như bộ định thời
 - MOV TMOD,#12H; Timer 1 mode 1, Timer 0 mode 2,
 - MOV TMOD,#00000101B ; Timer 0 mode 1, hoạt động như bộ đếm
 - MOV TMOD,#00001001B; Timer 0 mode 1, dùng nguồn xung từ bên ngoài (GATE=1)

4 chế độ hoạt động Timer/Counter

Mode 3: two 8-bit counter the other counter will not output overflow (integrupt)

Thanh ghi TCON (thanh ghi điều khiến Timer)

 MSB)
 (LSB)

 TF1
 TR1
 TF0
 TR0
 IE1
 IT1
 IE0
 IT0

 Timer 1
 Timer0
 for Interrupt

- 4 bit thấp dùng điều khiển Ngắt
 - o ITO
 - o IEO
 - o IT1
 - o IE1
- 4 bit cao dùng điều khiển cho Timer
 - TR0: Bit khởi động/ dừng Timer 0
 - TR1: Bit khởi động/ dừng Timer 1
 - TRx=0: STOP
 - TRx=1: START

Thanh ghi TCON (thanh ghi điều khiến Timer)

 MSB)
 (LSB)

 TF1
 TR1
 TF0
 TR0
 IE1
 IT1
 IE0
 IT0

 Timer 1
 Timer0
 for Interrupt

- 4 bit cao dùng điều khiển cho Timer
 - TF0: Bit báo tràn cho Timer 0
 - TF1: Bit báo tràn cho Timer 1
 - TRx=0: STOP
 - TRx=1: START
 - o Khởi tạo TFx=0, khi Timer đếm từ FFFFh về 0000h, cờ tràn TFx=1

- Ví dụ 1: dùng Timer 1ở mode 1 để tạo khoảng thời gian trễ là 100µs, biết f_{xtal}=12MHz
 - f_{xtal} =12MHz $\rightarrow f_{timer}$ =12Mhz/12=1MHz & t_{timer} =1/1MHz
 - t_{delay}=100µs,
 - Giá trị nạp cho TH1 và TL1: 65536-100=65436=FF9Ch
 - →TH1=FFh và TL1=9Ch

- Ví dụ 1: dùng Timer 1ở mode 1 để tạo khoảng thời gian trễ là 100µs, biết f_{xtal}=12MHz
 - Viết chương trình tạo trễ 100µs

```
MOV TMOD, #00010000B; Timer 1, mode1
MOV TL1, #9CH; Initial count
MOV TH1, #0FFH; -100 = FF9CH
SETB TR1; start Timer 1
WAIT: JNB TF1, WAIT; wait for overflow
CLR TF1; clear overflow flag
CLR TR1; stop Timer 1
```

Chú ý: một số cách viết khác có thể sử dụng

```
MOV TL1,#9CH ⇔ MOV TL1,#LOW(-100)
MOV TH1,0FFH ⇔ MOV TH1,#HIGH(-100)
WAIT: JNB TF1, WAIT ⇔ JNB TF1,$
```

```
■ Ví dụ 1: dùng Timer 1ở mode 1 để tạo khoảng thời gian trễ là 5s, biết f<sub>xtal</sub>=12MHz

    Biết 1s=50ms*20

    Giá trị nạp cho TH1 và TL1 là; 65.536-50.000=15536=3CB0h

       →TH1=3Ch & TL1=B0h

    CODE

       MOV TMOD, #00010000B; Timer 1, mode1
DELAY1S:
      MOV R7, #20 ; 20 loops
LOOP: MOV TL1, #0B0h ;
       MOV TH1, #3Ch ;
       SETB TR1 ; start Timer 1
       JNB TF1, $ ; wait for overflow
       CLR TF1; clear overflow flag
       CLR TR1 ; stop Timer 1
       DJNZ R7, LOOP
```

RET

■ Ví dụ 1: dùng Timer 0 ở mode 1 để tạo xung vuông có tần số 10Hz trên chân, biết f_{xtal}=12MHz

• $f= 10Hz \rightarrow T=1/f=100.000 \mu s$

Vậy t_H=50.000μs & t_L=50,000μs

Code

```
MOV TMOD, #01H; Timer 0, mode 1(16-bit timer mode)
LOOP: MOV THO, #HIGH(-50000); high byte of -50,000
MOV TLO, #LOW(-50000); low byte of -50,000
SETB TRO; start timer

WAIT: JNB TFO, WAIT; wait for overflow
CLR TRO; stop timer
CLR TFO; clear timer overflow flag
CPL P1.0; toggle port bit

SJMP LOOP; repeat
```

■ Ví dụ 1: dùng Timer 0 ở mode 1 để tạo xung vuông có tần số 10Hz trên chân P1.0, biết f_{xtal}=12MHz

• f= $10Hz \rightarrow T=1/f=100.000\mu s$

Vậy t_H=50.000μs & t_L=50,000μs

Sử dụng Oscilloscope để quan sát

Viết chương trình để đếm số lần nhấn công tắc ở chân P3.4 và hiển thị trên 8 led đơn được kết nối ở chân P1.

- Viết chương trình để đếm số lần nhấn công tắc ở chân P3.4 và hiển thị trên 8 led đơn được kết nối ở chân P1.
- CODE

```
ORG 0000H
      MATN:
      MOV TMOD, #00000101B; Timer 0, 16 bit, external
clock
      ; (counter operation)
      ; Gate=0, C/T=1, M1 M0 = 01
      MOV THO, #0
      MOV TLO, #0
      SETB TRO ; Start Timer
LOOP: MOV A, TLO ; Read Timer
      MOV P1, A ; Display on Bar-LED
SJMP LOOP
END
```

Viết chương trình để đếm số lần nhấn công tắc ở chân P3.4 và hiển thị trên Led 7 thanh đơn được kết nối ở chân P1.

Viết chương trình để đếm số lần nhấn công tắc ở chân P3.4 và hiển thị trên Led 7 thanh đơn được kết nối ở chân P1.

CODE

```
ORG 0000H
MAIN: MOV TMOD, #00000101B
MOV THO, #0
MOV TLO, #0
SETB TRO
LOOP: MOV A, TLO
CJNE A, #10, NEXT
CLR A
MOV TLO, #0
NEXT: ACALL DISPLAY
SJMP LOOP
DISPLAY:
ACALL BCDTO7SEG
MOV P1, A
RET
```

```
BCDTO7SEG:
MOV DPTR, #MALED
MOVC A, @A+DPTR
RET
MALED: DB 40h, 79h, 24h, 30h, 19h
DB 12h, 02h, 78h, 00h, 10h
DONE: NOP
END
```

Timer/Counter