Handling Polynomial and Transcendental Functions in SMT via Unconstrained Optimisation and Topological Degree T<u>est</u>

Alessandro Cimatti¹, Alberto Griggio¹, Enrico Lipparini^{1,2}, Roberto Sebastiani³

> Fondazione Bruno Kessler, Trento, Italy DIBRIS, University of Genoa, Italy DISI, University of Trento, Italy

The 20th International Symposium on Automated Technology for Verification and Analysis

- 1 Introduction
- State-of-the-art
- Satisfiability of sets of constraints
- 4 From set of constraints to formulas
- **6** Experiments
- 6 Conclusion

Problem definition

Context: Satisfiability Modulo Theories (SMT)

Theories of interest:

- \mathcal{NRA} : Quantifier-free theory of non linear arithmetic over the reals
- \mathcal{NTA} : \mathcal{NRA} augmented with exponential and trigonometric functions

Example of formula in \mathcal{NTA} :

$$(b_1 \rightarrow (\sin(y)^2 = x^3 - 2x^2y + 1 \land y > 0.5)) \land (\neg b_1 \rightarrow (b_2 \rightarrow (y = \exp(0.1) \lor x = 0.1)))$$

where b_1, b_2 are Boolean variables and x, y are real-valued individual variables

Problem definition

Context: Satisfiability Modulo Theories (SMT)

Theories of interest:

- \mathcal{NRA} : Quantifier-free theory of non linear arithmetic over the reals
- \mathcal{NTA} : \mathcal{NRA} augmented with exponential and trigonometric functions

Example of formula in \mathcal{NTA} :

$$(b_1 \rightarrow (\sin(y)^2 = x^3 - 2x^2y + 1 \land y > 0.5)) \land (\neg b_1 \rightarrow (b_2 \rightarrow (y = \exp(0.1) \lor x = 0.1)))$$

where b_1, b_2 are Boolean variables and x, y are real-valued individual variables

Focus on: proving satisfiability for \mathcal{NTA} formulas

Strategy

- 1 Translate a satisfiability problem into a numerical minimization one (Logic-To-Optimisation)
- Use unconstrained optimisation to generate a set of candidate approximate solutions
- 3 Given a candidate approximate solution, restrict the original formula to a sub-formula in a specific form (variables are bounded, the number of equations is equal to the number of variables, ...)
- Apply a procedure based on the topological degree test and interval arithmetic to witness the existence of a solution for the sub-formula

- Introduction
- State-of-the-art

Proving satisfiability in SMT(NTA)
Solving systems of equations with the Topological degree

- 3 Satisfiability of sets of constraints
- From set of constraints to formulas
- 6 Experiments
- 6 Conclusion

- Introduction
- State-of-the-art Proving satisfiability in SMT(NTA) Solving systems of equations with the Topological degree
- Satisfiability of sets of constraints
- 4 From set of constraints to formulas
- 6 Experiments
- 6 Conclusion

 \mathcal{NTA} has been proved undecidable by Richardson (1969).

Existing methods:

- Interval Constrain Propagation (ICP): based on interval arithmetic, can prove "sat" if it finds a box in which every point is a solution
- Incremental Linearization: starts from an abstract model and tries to check whether the formula is satisfiable under all possible interpretations of the transcendental functions involved
- δ -satisfiability: based on ICP, tries to prove that there exists a δ -perturbation of the original formula that is satisfiable

 \mathcal{NTA} has been proved undecidable by Richardson (1969).

 \mathcal{NTA} has been proved undecidable by Richardson (1969).

Figure 1: Graph of $(exp(x) < 10y) \land (y < sin(x - 1/2))$

 \mathcal{NTA} has been proved undecidable by Richardson (1969).

Figure 2: Graph of $(exp(x) = 10y) \land (y = sin(x - 1/2))$

 \mathcal{NTA} has been proved undecidable by Richardson (1969).

Figure 3: Graph of $(exp(x) = 10y) \land (y = sin(x - 1/2))$

- Introduction
- State-of-the-art Proving satisfiability in SMT(NTA) Solving systems of equations with the Topological degree
- 3 Satisfiability of sets of constraints
- 4 From set of constraints to formulas
- 6 Experiments
- 6 Conclusion

Topological degree test

Theorem (Bolzano)

If a continuous function $f:[a,b]\subseteq\mathbb{R}\to\mathbb{R}$ is s.t. f(a)<0 and f(b)>0 (or vice-versa), then f has a zero in [a,b].

Proof.

Corollary of the Intermediate Value Theorem

Topological degree test

Theorem (Bolzano)

If a continuous function $f:[a,b]\subseteq\mathbb{R}\to\mathbb{R}$ is s.t. f(a)<0 and f(b)>0 (or vice-versa), then f has a zero in [a,b].

Proof.

Corollary of the Intermediate Value Theorem

Given a continuous function $f: B \subseteq \mathbb{R}^n \to \mathbb{R}^n$, the topological degree $\deg(f, B)$ is an integer that can be defined in several (very technical) ways.

Property (Topological degree test)

If $deg(f, B) \neq 0$, then the equation f = 0 has a solution in B.

The topological degree is computable if $0 \notin f(\partial B)$ (tool: TopDeg)

Limitations of the topological degree test

The topological degree test is applicable only for conjunctions of constraints in a specific form:

- there are only equations (no inequalities)
- (f) the number of equations is equal to the number of variables
- m all variables are bounded
- (empirical limitation) the bounds on the variables are "sufficiently small" for the practical effectiveness of the test.

Limitations of the topological degree test

The topological degree test is applicable only for conjunctions of constraints in a specific form:

- there are only equations (no inequalities)
- the number of equations is equal to the number of variables
- m all variables are bounded
- (empirical limitation) the bounds on the variables are "sufficiently small" for the practical effectiveness of the test.

Remember the example:

$$(b_1 \rightarrow (\sin(y)^2 = x^3 - 2x^2y + 1 \land y > 0.5)) \land (\neg b_1 \rightarrow (b_2 \rightarrow (y = \exp(0.1) \lor x = 0.1)))$$

Limitations of the topological degree test

The topological degree test is applicable only for conjunctions of constraints in a specific form:

- there are only equations (no inequalities)
- the number of equations is equal to the number of variables
- all variables are bounded
- (empirical limitation) the bounds on the variables are "sufficiently small" for the practical effectiveness of the test.

Remember the example:

$$(b_1 \rightarrow (\sin(y)^2 = x^3 - 2x^2y + 1 \land y > 0.5)) \land (\neg b_1 \rightarrow (b_2 \rightarrow (y = \exp(0.1) \lor x = 0.1)))$$

Limitation (i) has been tackled by Franek, Ratschan, and Zgliczynski (2016), who proposed a quasi-decidability (i.e. that always terminates on robust instances) procedure that pairs the topological degree test with interval arithmetic to deal with inequalities.

- Introduction
- State-of-the-art
- 3 Satisfiability of sets of constraints
- 4 From set of constraints to formulas
- 6 Experiments
- 6 Conclusion

Method

Can we use topological degree test, given a general formula with m variables, n equations, k inequalities?

Plan:

- Find candidate solutions through unconstrained optimisation
- Bound the variables in the formula to a box
- If n < m, try to instantiate m n variables
- Apply a procedure that uses interval arithmetic and the topological degree test

First, we work only with conjunctions of constraints. Then, we extend to full Boolean combinations.

Logic-to-Optimisation

Idea: try to find candidate solutions by translating a satisfiability problem into a numerical minimization problem (Logic-To-Optimisation)

We define an operator $\mathcal{L}2\mathcal{O}$ that maps a formula in m variables to a non-negative real function from \mathbb{R}^m to $\mathbb{R}^{\geqslant 0}$ as follows:

$$\mathcal{L}2\mathcal{O}(f\bowtie 0): \mathbf{x}\mapsto \begin{cases} 0 & \text{if }\bowtie\in\{\leqslant,=\} \text{ and } [f](\mathbf{x})\bowtie 0\\ \mathcal{L}2\mathcal{O}(f\leqslant 0) & \text{if }\bowtie\text{ is }<\\ [f]^2(\mathbf{x}) & \text{otherwise} \end{cases}$$

$$\mathcal{L}2\mathcal{O}(b)\equiv \mathcal{L}2\mathcal{O}(-x_b\leqslant 0)$$

$$\mathcal{L}2\mathcal{O}(\neg b)\equiv \mathcal{L}2\mathcal{O}(x_b+\epsilon\leqslant 0)$$

$$\mathcal{L}2\mathcal{O}(\phi_1\land\phi_2)\equiv \mathcal{L}2\mathcal{O}(\phi_1)+\mathcal{L}2\mathcal{O}(\phi_2)$$

$$\mathcal{L}2\mathcal{O}(\phi_1\lor\phi_2)\equiv \mathcal{L}2\mathcal{O}(\phi_1)*\mathcal{L}2\mathcal{O}(\phi_2),$$

Property: every model of ϕ is a zero of $\mathcal{L}2\mathcal{O}(\phi)$ (but not the vice-versa)

Logic-to-Optimisation

Example:
$$\phi = x^3 - 2x - exp(x) + 5 = 0$$

Figure 4: Graph of $x^3 - 2x - exp(x) + 5$

Logic-to-Optimisation

Example:
$$\phi = x^3 - 2x - exp(x) + 5 = 0$$

Figure 5: Graph of $\mathcal{L}2\mathcal{O}(\phi)$

Local search using L2O

$$\phi\to\mathcal{L}2\mathcal{O}+$$
 Unconstr. Opt. (basin-hopping) \to several local minima $\tilde{\bf x}_1,\cdots,\tilde{\bf x}_k$

Given a local minimum $\tilde{\mathbf{x}}$, we have 3 tactics:

- ① Check if it is a solution (just for \mathcal{NRA})
- **2** Reduce to a linear under-approximation in UFLRA by forcing all the multiplications to be linear (just for \mathcal{NRA})
- **3** Restrict to a sub-formula $\phi_{|B}$ by imposing that all the variables range over a box B containing $\tilde{\mathbf{x}}$.
 - Instantiate exceeding variables.
 - Apply the quasi-decidability procedure

Quasi-decidability procedure (Idea)

Input: A formula $\phi_{|B}$ in m variables, n equations, and k inequalities \leq s.t. n = m or n = 0.

Loop: We start with a grid that initially contains only *B*. At each iteration, we split each box of the grid into sub-boxes and:

- 1. Remove sub-boxes that cannot contain a solution (using interval arithmetic)
- 2. Try to find a sub-box in which the inequalities are satisfied everywhere and the topological degree test witnesses the existence of a solution for the equations

Output:

- False if at some point the grid is emptied
- **True** if at some point test 2 of the Loop succeeds

A general procedure

Figure 6: General procedure of UGOT (as in *Unconstrained Global Optimisation and Topological degree*)

- Introduction
- State-of-the-art
- 3 Satisfiability of sets of constraints
- 4 From set of constraints to formulas
- 6 Experiments
- **6** Conclusion

From constraints set to formulas

Let ϕ in CNF. Two approaches:

- Eager approach:
 - $\mathcal{L}2\mathcal{O}(\phi) \to \mathsf{Unconstr.}$ Opt. $\to \mathsf{several}$ local minima $\tilde{\mathbf{x}}_1, \cdots, \tilde{\mathbf{x}}_k$
 - Given $\tilde{\mathbf{x}}$, we try to *decide* the disjunctions through the insight given by $\tilde{\mathbf{x}}$

Example: $\tilde{\mathbf{x}} = 1$, we replace in ϕ the clause " $x < 3 \lor x > 5$ " with "x < 3"

Apply UGOT

From constraints set to formulas

Let ϕ in CNF. Two approaches:

- Eager approach:
 - $\mathcal{L}2\mathcal{O}(\phi) \to \mathsf{Unconstr.}$ Opt. $\to \mathsf{several}$ local minima $\tilde{\mathbf{x}}_1, \cdots, \tilde{\mathbf{x}}_k$
 - Given $\tilde{\mathbf{x}}$, we try to *decide* the disjunctions through the insight given by $\tilde{\mathbf{x}}$

```
Example: \tilde{\mathbf{x}} = 1, we replace in \phi the clause "x < 3 \lor x > 5" with "x < 3"
```

- Apply UGOT
- Lazy approach:
 - Integration of UGOT as a theory solver inside the DPLL(T)-based SMT-solver MATHSAT
 - Pair UGOT (good for proving sat) with Incremental Linearization (good for proving unsat)
 - Naive implementation. For each full Boolean assignment:
 - We call Incremental Linearization at most k times.
 - If it does not find a model or produce a conflict, we call UGOT

- Introduction
- State-of-the-art
- Satisfiability of sets of constraints
- 4 From set of constraints to formulas
- **5** Experiments
- Conclusion

Experiments

	Total	Sturm-MGC	ezsmt	Sturm-MBO	zankl	UltimateAut	Economics-M	meti-tarski	Heizmann	hycomp	kissing	LassoRanker
MathSAT	3193	0	32	0	32	31	85	2718	3	11	18	263
$UGOT_{EAGER}$	4388	0	0	1	52	32	68	4042	0	0	36	157
MATHSAT+UGOT	4441	0	32	0	63	27	84	3948	3	13	35	236
RASAT	4285	0	0	0	45	0	0	4225	0	0	15	0
Yices	4946	0	32	0	58	39	91	4369	0	227	10	120
CVC5	5108	0	32	0	63	36	89	4342	2	226	18	300
z3	5153	2	30	0	72	47	93	4391	6	280	35	198
DREAL	/(5021)	/(9)	/(0)	/(274)	/(153)	/(55)	/(126)	/(4079)	/(51)	/(45)	/(19)	/(210)

Fig. 2. Summary of results for SMT(NRA) sat cases. The results in parenthesis indicate "MAYBE SAT" answers.

	Total	dreal	bmc		Total	dreal	bmc
MATHSAT	94	39	57	MATHSAT	70	21	49
$UGOT_{EAGER}$	304	255	49	$UGOT_{EAGER}$	253	203	50
MATHSAT+UGOT	170	70	100	MathSAT+ugot	140	35	105
CVC5	94	40	54	CVC5	63	17	46
ISAT3	/	/		ıSAT3	38 (828)	7 (599)	31 (229)
DREAL	/ (578)	/ (423)	/ (155)	dReal	/ (137)	/ (36)	/ (101)

Fig. 3. Summary of results for SMT(NTA) sat cases. On the left the original instances; on the right the bounded instances. The results in parenthesis indicate "MAYBE SAT" answers.

Experiments (and what about unsat cases?)

	Total	Sturm-MGC	ezsmt	Sturm-MBO	zankl	UltimateAut	Economics-M	meti-tarski	Heizmann	hycomp	kissing	LassoRanker	hong
MATHSAT	5280	0	2	285	34	7	11	2251	1	2259	0	412	20
MATHSAT+UGOT	5043	0	2	163	32	5	11	2239	0	2253	0	323	20
RASAT	4094	0	0	2	14	0	0	2018	0	1950	0	0	20
YICES	5449	0	2	285	32	12	39	2587	12	2201	0	259	20
CVC5	5645	0	2	285	31	10	35	2581	7	2206	0	468	20
z3	5281	5	2	153	27	12	19	2578	3	2225	0	248	9
DREAL	3889	0	0	131	4	0	3	1784	0	1946	1	0	20

Fig. 4. Summary of results for SMT(NRA) unsat cases.

	Total	dreal	bmc
MATHSAT	533	85	448
MATHSAT+UGOT	522	85	437
CVC5	453	75	378
ISAT3	/	/	/
DREAL	468	184	284

	Total	dreal	bmc
MATHSAT	524	88	436
MATHSAT+UGOT	521	88	433
CVC5	465	85	380
ISAT3	449	63	386
DREAL	446	156	290

Fig. 5. Summary of results for SMT(NTA) unsat cases. On the left the original instances; on the right the bounded instances.

- Introduction
- State-of-the-art
- Satisfiability of sets of constraints
- 4 From set of constraints to formulas
- 6 Experiments
- 6 Conclusion

Conclusion and Discussion

Recap:

- Unconstrained optimisation to find candidate solutions
- Quasi-dec procedure with topological degree test to check if a region contains a solution
- Eager approach: candidate solution insight used to decide disjunctions
- Lazy approach: pair the new method with incremental linearization

Open questions:

- How to choose which candidate solution to test? Which variables to instantiate? How to determine the box?
- Extend to unsat (generate lemmas / conflict clauses)?
- Extend to solve problems involving differential equations?

Thank you

Thank you for your attention!

Questions?