2.10 Solution set of a quadratic inequality. Let $C \subseteq \mathbb{R}^n$ be the solution set of a quadratic inequality,

$$C = \{ x \in \mathbf{R}^n \mid x^T A x + b^T x + c \le 0 \},\$$

with $A \in \mathbf{S}^n$, $b \in \mathbf{R}^n$, and $c \in \mathbf{R}$.

- (a) Show that C is convex if $A \succeq 0$.
- (b) Show that the intersection of C and the hyperplane defined by $g^Tx + h = 0$ (where $g \neq 0$) is convex if $A + \lambda gg^T \succeq 0$ for some $\lambda \in \mathbf{R}$.

Are the converses of these statements true?

Solution:

(a) Prove convexity of $S = \{x | x^T A x + b^T + C \le 0, A \ge 0\}$

A set is convex if its intersection with arbitrary lines is convex, i.e. need to show

$$(x_0+tv)^TA(x_0+tv)+b^T(x_0+tv)+C\leq 0 \text{ is convex set over } t, \text{ i.e.,}$$

$$\alpha t^2 + \beta t + \gamma \leq 0, \text{where } \alpha = v^T A v, \beta = b^T v + 2 x_0^T A v, \gamma = C + b^T x_0 + x_0^T A x_0.$$

To prove $\alpha t^2 + \beta t + \gamma \le 0$ is convex set over t, take $t_1, t_2, 0 \le \theta \le 1$

$$\alpha(\theta t_1 + (1 - \theta)t_2)^2 + \beta(\theta t_1 + (1 - \theta)t_2) + \gamma$$

$$=\alpha(\theta^{2}t_{1}^{2}+2\theta(1-\theta)t_{1}t_{2}+(1-\theta)^{2}t_{2}^{2})+\beta\theta t_{1}+\beta(1-\theta)t_{2}+\theta\gamma+(1-\theta)\gamma$$

$$=\theta(\alpha\theta t_1^2+\beta t_1+\gamma)+(1-\theta)(\alpha(1-\theta)t_2^2+\beta t_2+\gamma)+2\alpha\theta(1-\theta)t_1t_2$$

$$= \theta(\alpha t_1^2 + \beta t_1 + \gamma) - \theta(\alpha(1-\theta)t_1^2) + (1-\theta)(\alpha t_2^2 + \beta t_2 + \gamma) - (1-\theta)(\alpha \theta t_2^2) + 2\alpha\theta(1-\theta)t_1t_2$$

Let $A=\theta(\alpha t_1^2+\beta t_1+\gamma)$, $B=(1-\theta)(\alpha t_2^2+\beta t_2+\gamma)$, then the above equation can be written as

$$A+B-2\alpha\theta(1-\theta)(t_1-t_2)^2$$

Since $A \le 0$, $B \le 0$ and $-2\alpha\theta(1-\theta)(t_1-t_2)^2 \le 0$ when $\alpha \ge 0$ we have

 $A+B-2\alpha\theta(1-\theta)(t_1-t_2)^2\leq 0. \ Therefore, when \ \alpha\geq 0, \\ \alpha t^2+\beta t+\gamma\leq 0 \ \text{give a convex set over t.}$

This is true for any v that $\alpha = v^T A v \ge 0$, when $A \ge 0$

The converse does not hold; for example, take A = -1, b = 0, c = -1. Then $A \not\succeq 0$, but $C = \mathbf{R}$ is convex.

2.12 Which of the following sets are convex?

- (a) A slab, i.e., a set of the form $\{x \in \mathbf{R}^n \mid \alpha \leq a^T x \leq \beta\}$.
- (b) A rectangle, i.e., a set of the form $\{x \in \mathbf{R}^n \mid \alpha_i \leq x_i \leq \beta_i, i = 1, \dots, n\}$. A rectangle is sometimes called a hyperrectangle when n > 2.
- (c) A wedge, i.e., $\{x \in \mathbf{R}^n \mid a_1^T x \leq b_1, \ a_2^T x \leq b_2\}.$
- (d) The set of points closer to a given point than a given set, i.e.,

$$\{x \mid ||x - x_0||_2 \le ||x - y||_2 \text{ for all } y \in S\}$$

where $S \subseteq \mathbf{R}^n$.

(e) The set of points closer to one set than another, i.e.,

$$\{x \mid \mathbf{dist}(x, S) \leq \mathbf{dist}(x, T)\},\$$

where $S, T \subseteq \mathbf{R}^n$, and

$$\mathbf{dist}(x, S) = \inf\{ ||x - z||_2 \mid z \in S \}.$$

- (f) [HUL93, volume 1, page 93] The set $\{x \mid x + S_2 \subseteq S_1\}$, where $S_1, S_2 \subseteq \mathbf{R}^n$ with S_1 convex.
- (g) The set of points whose distance to a does not exceed a fixed fraction θ of the distance to b, *i.e.*, the set $\{x \mid \|x-a\|_2 \leq \theta \|x-b\|_2\}$. You can assume $a \neq b$ and $0 \leq \theta \leq 1$.

Solution.

- (a) A slab is an intersection of two halfspaces, hence it is a convex set and a polyhedron.
- (b) As in part (a), a rectangle is a convex set and a polyhedron because it is a finite intersection of halfspaces.
- (c) A wedge is an intersection of two halfspaces, so it is convex and a polyhedron. It is a cone if $b_1 = 0$ and $b_2 = 0$.
- (d) This set is convex because it can be expressed as

$$\bigcap_{y \in S} \{x \mid ||x - x_0||_2 \le ||x - y||_2\},\$$

i.e., an intersection of halfspaces. (Recall from exercise 2.9 that, for fixed y, the set

$$\{x \mid ||x - x_0||_2 \le ||x - y||_2\}$$

is a halfspace.)

(e) In general this set is not convex, as the following example in **R** shows. With $S = \{-1, 1\}$ and $T = \{0\}$, we have

$$\{x \mid \mathbf{dist}(x, S) \le \mathbf{dist}(x, T)\} = \{x \in \mathbf{R} \mid x \le -1/2 \text{ or } x \ge 1/2\}$$

which clearly is not convex.

(f) This set is convex. $x + S_2 \subseteq S_1$ if $x + y \in S_1$ for all $y \in S_2$. Therefore

$${x \mid x + S_2 \subseteq S_1} = \bigcap_{y \in S_2} {x \mid x + y \in S_1} = \bigcap_{y \in S_2} (S_1 - y),$$

the intersection of convex sets $S_1 - y$.

(g) The set is convex, in fact a ball.

$$\{x \mid ||x - a||_2 \le \theta ||x - b||_2 \}$$

$$= \{x \mid ||x - a||_2^2 \le \theta^2 ||x - b||_2^2 \}$$

$$= \{x \mid (1 - \theta^2)x^T x - 2(a - \theta^2 b)^T x + (a^T a - \theta^2 b^T b) < 0 \}$$

2.16 Show that if S_1 and S_2 are convex sets in $\mathbb{R}^{m \times n}$, then so is their partial sum

$$S = \{(x, y_1 + y_2) \mid x \in \mathbf{R}^m, \ y_1, \ y_2 \in \mathbf{R}^n, (x, y_1) \in S_1, \ (x, y_2) \in S_2\}.$$

Solution. We consider two points $(\bar{x}, \bar{y}_1 + \bar{y}_2), (\tilde{x}, \tilde{y}_1 + \tilde{y}_2) \in S$, *i.e.*, with

$$(\bar{x}, \bar{y}_1) \in S_1, \qquad (\bar{x}, \bar{y}_2) \in S_2, \qquad (\tilde{x}, \tilde{y}_1) \in S_1, \qquad (\tilde{x}, \tilde{y}_2) \in S_2.$$

For $0 \le \theta \le 1$,

$$\theta(\bar{x}, \bar{y}_1 + \bar{y}_2) + (1 - \theta)(\tilde{x}, \tilde{y}_1 + \tilde{y}_2) = (\theta\bar{x} + (1 - \theta)\tilde{x}, (\theta\bar{y}_1 + (1 - \theta)\tilde{y}_1) + (\theta\bar{y}_2 + (1 - \theta)\tilde{y}_2))$$

is in S because, by convexity of S_1 and S_2 ,

$$(\theta \bar{x} + (1-\theta)\tilde{x}, \theta \bar{y}_1 + (1-\theta)\tilde{y}_1) \in S_1, \qquad (\theta \bar{x} + (1-\theta)\tilde{x}, \theta \bar{y}_2 + (1-\theta)\tilde{y}_2) \in S_2.$$

- **2.31** Properties of dual cones. Let K^* be the dual cone of a convex cone K, as defined in (2.19). Prove the following.
 - (a) K* is indeed a convex cone.

Solution. K^* is the intersection of a set of homogeneous halfspaces (meaning, halfspaces that include the origin as a boundary point). Hence it is a closed convex cone.

(b) $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$.

Solution. $y \in K_2^*$ means $x^T y \ge 0$ for all $x \in K_2$, which is includes K_1 , therefore $x^T y > 0$ for all $x \in K_1$.

2.32 Find the dual cone of $\{Ax \mid x \succeq 0\}$, where $A \in \mathbf{R}^{m \times n}$.

Solution.
$$K^* = \{y \mid A^T y \succeq 0\}.$$