

Dokumentacja Projektu grupowego

Harmonogram i specyfikacja wymagań

Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska

Nazwa i akronim projektu: {nazwa projektu, np: System zabezpieczenia portu przed zagrożeniami terrorystycznymi - SZP} Aplikacja wizualizująca zagadnienia związane z kodowaniem nadmiarowym	Zleceniodawca: {nazwa/nazwisko klienta} dr inż. Bartosz Czaplewski	
Numer zlecenia:	Kierownik projektu:	Opiekun projektu:
{numer zespołu projektowego w ramach Projektu grupowego	{kierownik zespołu	{opiekun projektu}
wg systemu SPG, np. 13@KSSR'2022}	projektowego}	dr inż. Bartosz
5@KSTI'2023/24	Bartosz Kołakowski	Czaplewski

Nazwa / kod dokumentu: Harmonogram i specyfikacja wymagań – HiSW	Nr wersji: {wersja dokumentu np. 1.00} 6.00
Odpowiedzialny za dokument: {nazwisko, imię} Kołakowski Bartosz	Data pierwszego sporządzenia: {data wykonania pierwszej wersji dokumentu} 31.10.2023
	Data ostatniej aktualizacji: {data wykonania aktualnej wersji dokumentu} 28.05.2024
	Semestr realizacji Projektu grupowego: {wpisać 1 lub 2} 2

Historia dokumentu

Wersja	Opis modyfikacji	Rozdział / strona	Autor modyfikacji	Data
1.00	{opis np. wstępna wersja}	{np. całość}	{nazwisko, imię}	{data zmiany}
	Wstępna wersja	całość	Kołakowski Bartosz	31.10.2023
2.00	(opis np. wstępna wersja)	(np. całość)	(nazwisko, imię}	{data zmiany}
	Dodanie dat do harmonogramu prac	pkt 2	Kołakowski Bartosz	8.11.2023
3.00	(opis np. wstępna wersja)	{np. pkt 2, 2.3}	(nazwisko, imię}	{data zmiany}
	Bardziej szczegółowe opisy etapów projektu	pkt 2.1	Kołakowski Bartosz	21.11.2023
4.00	{opis np. wstępna wersja} Zmiana dat w harmonogramie, uszczegółowienie punktu trzeciego	{np. pkt 2, 2.3} pkt 2 i 3	(nazwisko, imię} Jastrzębski Paweł	{data zmiany} 01.01.2024
5.00	{opis np. wstępna wersja}	{np. pkt 2, 2.3}	(nazwisko, imię}	{data zmiany}
	Dopisanie informacji w punkcie trzecim	pkt 3	Kołakowski Bartosz	04.01.2024
6.00	{opis np. wstępna wersja}	{np. pkt 2, 2.3}	{nazwisko, imię}	{data zmiany}
	Aktualizacja informacji	całość	Kołakowski Bartosz	28.05.2024
{wersja}	{opis np. dodanie etapu C}	{np. pkt 2, 2.3}	{nazwisko, imię}	{data zmiany}

{UWAGA: w II semestrze dokumentacja może być rozszerzeniem dokumentacji z semestru I (nowa wersja dokumentu), może być też nowym plikiem

UWAGA: harmonogram może być zaplanowany w I semestrze od razu na 2 semestry – należy jednak w drugim semestrze zaktualizować plik z I semestru; może on również zawierać dodatkowe postanowienia, ustalone po zakończeniu I semestru UWAGA: harmonogram utworzony w systemie SPG nie musi być taki sam, jak w niniejszym dokumencie}

Spis treści

1	Wpro	owadzenie - o dokumencie	4
	1.1	Cel dokumentu	4
	1.2	Odbiorcy	4
	1.3	Terminologia	4
2	Harm	nonogram prac zespołu projektowego	4
	2.1	Opis etapów wytwarzania (prowadzenia projektu)	
	stwo	rzenie bazy projektu	
		rzenie bazy GUI	
	imple	ementacja kodu Hamminga	5
	imple	ementacja kodu Reeda-Solomona	5
		alizacja kodu Hamminga	
	wizua	alizacja kodu Reeda-Solomona	5
	napis	sanie testów do kodu Hamminga	5
	napis	sanie testów do kodu Reeda-Solomona	5
		sanie tłumaczenia programu na język angielski	
3	Plano	owany podział zadań i ról w projekcie w zespole projektowym	6
		Opis zadań planowanych do realizacji ze wskazaniem osób odpowiedzialnych	
	Stwo	rzenie repozytorium na GitHub	6
		Review	
	Proje	ktowanie interfejsu użytkownika	6
		nie testów	
	Zarza	ądzenie zespołem	6
		ementacja kodu nadmiarowego	
		zenie wizualizacji kodu nadmiarowego	
		sanie tłumaczenia na język angielski	
		nie dokumentów	
		rzenie prezentacji	
4	Wym	agania dla produktu i kryteria akceptacji	
	4.1	Ogólny opis planowanego produktu	
	4.2	Wymagania minimalne dla produktu	7
	4.3	Warunki odbioru	7
5	Posta	anowienia	
	5.1	Postanowienia w zakresie zmian w stosunku do pierwotnego planu i zakresu prac	7
	5.2	Inne postanowienia	7

1 Wprowadzenie - o dokumencie

1.1 Cel dokumentu

{nie zmieniać}

Celem dokumentu udokumentowanie zaplanowanego harmonogramu realizacji projektu w semestrze, planowanego podziału zadań w zespole projektowym, wskazanie i opisanie zadań oraz ról osób odpowiedzialnych, a także wyspecyfikowanie wymagań dla projektu wraz z kryteriami akceptacji, nałożonych przez opiekuna i klienta.

1.2 Odbiorcy

{określenie adresatów dokumentu, może być to typ odbiorcy; tu: zleceniobiorca (Katedra), członkowie zespołu projektowego oraz wymienione z nazwiska osoby, do których dokument ma dotrzeć}

Zleceniodawca - dr inż. Bartosz Czaplewski (KSTI)

Członkowie zespołu:

Bartosz Kołakowski Michał Mróz Paweł Jastrzębski Maksym Nowak Piotr Noga

1.3 Terminologia

{wyjaśnienie używanych w dokumencie pojęć i skrótów, oznaczenia używane wewnątrz dokumentu np. oznaczenia wymagań} Skróty osób:

Bartosz Kołakowski - BK Michał Mróz - MM Paweł Jastrzębski - PJ Maksym Nowak - MN Piotr Noga – PN

GUI – Graphical User Interface – graficzny interfejs użytkownika

2 Harmonogram prac zespołu projektowego

{główne etapy, wykonawcy, początek, koniec - w formie tabeli; należy zdefiniować przynajmniej 3 główne etapy realizacji projektu w semestrze}

Stworzenie bazy projektu, implementacja kodu Hamminga, implementacja kodu Reda-Salomona, tworzenie bazy GUI, wizualizacja kodu Hamminga, wizualizacja kodu Reda-Salomona, napisanie testów do kodu Hamminga, napisanie testów do kodu R-S

Nazwa	BK	MM	PJ	MN	PN	Rozpoczęcie	Zakończenie
stworzenie bazy projektu		Χ				31.10.2023	5.11.2023
stworzenie bazy GUI		Χ			Χ	31.10.2023	15.11.2023
implementacja kodu Hamminga		Χ	Χ			03.11.2023	01.12.2024
implementacja kodu Reeda-Solomona			Χ	Χ		21.02.2024	30.04.2024
wizualizacja kodu Hamminga	Х	Χ		Χ	Χ	05.11.2023	10.01.2024
wizualizacja kodu Reeda-Solomona		Χ	Χ	Χ	Χ	01.03.2024	31.05.2024
napisanie testów do kodu Hamminga	Х	Χ				05.11.2023	22.11.2024
napisanie testów do kodu Reeda-Solomona	X		Χ	Χ		01.03.2024	31.05.2024
napisanie tłumaczenia na język angielski					X	01.04.2024	31.05.2024

2.1 Opis etapów wytwarzania (prowadzenia projektu)

{główne zadania w poszczególnych etapach)

stworzenie bazy projektu

{cele, produkty, kryteria akceptacji, główne zadania itp.}

Cele: Wybranie, technologii wstępne przygotowanie do użycia tej technologii, stworzenie projektu na

Produkty: repozytorium na githubie, do którego dostęp ma każdy członek grupy, do repozytorium wrzucona bazowa konfiguracja frameworka QT (c++)

Kryteria akceptacji: dostęp członków grupy do repozytorium z uprawnieniami do pusha (oprócz na branch main) i możliwość odpalenia projektu

stworzenie bazy GUI

{cele, produkty, kryteria akceptacji, główne zadania itp.}

Cele: Bazowy interfejs użytkownika, stworzenie opcji wyboru wizualizacji kodu, opcje wstawienia kodu Produkty: kod w QT prezentujący GUI, w którym można wybrać, jaki kod chce się zwizualizować (jeszcze bez implementacji tego etapu)

Kryteria akceptacji: estetyczne GUI, odpala się na komputerze każdego członka grupy, dostępne na Linuxie i Windowsie

implementacja kodu Hamminga

(cele, produkty, kryteria akceptacji, główne zadania itp.) Cele: Stworzenia algorytmu kodu Hamminga

Produkty: kod w c++ pozwalający na zakodowanie danych kodem Hamminga, funkcja do

zakodowania informacji oraz funkcja do zdekodowania

Kryteria akceptacji: algorytm poprawnie zaimplementowany, zgodny z teorią kodowania

implementacja kodu Reeda-Solomona

{cele, produkty, kryteria akceptacji, główne zadania itp.}

Cele: Stworzenia algorytmu kodu Reeda-Solomona

Produkty: kod w c++ pozwalający na zakodowanie danych kodem Reeda-Solomona, funkcja do

zakodowania informacji oraz funkcja do zdekodowania

Kryteria akceptacji: algorytm poprawnie zaimplementowany, zgodny z teorią kodowania

wizualizacja kodu Hamminga

{cele, produkty, kryteria akceptacji, główne zadania itp.}

Cele: Stworzenie wizualizacji kodu Hamminga z możliwościa inputu użytkownika

Produkty: kod w c++ (framework QT) pozwalający na wyświetlenie działania kodu Hamminga dla wprowadzonego inputu

Kryteria akceptacji: wizualizacja w GUI w sposób zrozumiały i estetyczny pokazuje działanie kodu Hamminga, poprawne przyjmowanie inputu użytkownika. Najpierw koduje wprowadzony ciąg bitów, następnie pozwala na zmianę wyniku kodowania, a następnie przeprowadza dekodowanie

wizualizacja kodu Reeda-Solomona

{cele, produkty, kryteria akceptacji, główne zadania itp.}

Cele: Stworzenie wizualizacji kodu Reeda-Solomona z możliwością inputu użytkownika

Produkty: kod w c++ (framework QT) pozwalający na wyświetlenie działania kodu Reeda-Solomona dla wprowadzonego inputu

Kryteria akceptacji: wizualizacja w GUI w sposób zrozumiały i estetyczny pokazuje działanie kodu Reeda-Solomona, poprawne przyjmowanie inputu użytkownika. Najpierw koduje wprowadzony ciąg bitów, następnie pozwala na zmianę wyniku kodowania, a następnie przeprowadza dekodowanie

napisanie testów do kodu Hamminga

{cele, produkty, kryteria akceptacji, główne zadania itp.}

Cele: Napisanie testów sprawdzających poprawność wykonania kodu Hamminga

Produkty: Wykonujące się automatycznie przy budowaniu aplikacji testy sprawdzające, czy funkcje do zakodowania i zdekodowania informacji poprawnie działają

Kryteria akceptacji: po minimum 5 testów zakodowania i zdekodowania

napisanie testów do kodu Reeda-Solomona

{cele, produkty, kryteria akceptacji, główne zadania itp.}

Cele: Napisanie testów sprawdzających poprawność wykonania kodu Reeda-Solomona

Produkty: Wykonujące się automatycznie przy budowaniu aplikacji testy sprawdzające, czy funkcje do zakodowania i zdekodowania informacji poprawnie działają

Kryteria akceptacji: po minimum 5 testów zakodowania i zdekodowania

napisanie tłumaczenia programu na język angielski

{cele, produkty, kryteria akceptacji, główne zadania itp.}

Cele: Napisanie tłumaczenia do istniejącej polskiej wersji programu na język angielski

Produkty: Treść programu przetłumaczona na język angielski i odpowiednio wkomponowana w treść programu

Kryteria akceptacji: W całości przetłumaczony program na zrozumiały język angielski

3 Planowany podział zadań i ról w projekcie w zespole projektowym

3.1 Opis zadań planowanych do realizacji ze wskazaniem osób odpowiedzialnych

{główne zadania w poszczególnych etapach, wykazanych w harmonogramie z punktu 2)

Stworzenie repozytorium na GitHub

{wyszczególnione zadania/role, osoba odpowiedzialna/wykonawca lub wykonawcy}

Stworzenie repozytorium, nadanie wszystkim członkom praw dostępu, dodanie opisu i typowych ustawień takich jak brak możliwości pushowania do brancha main, możliwość zaakceptowania Pull Request tylko po wykonanym code review. Dzięki temu jest możliwość kontroli wersji i przywrócenia poprzedniej, jeśli zajdzie taka konieczność. Michał Mróz

Code Review

{wyszczególnione zadania/role, osoba odpowiedzialna/wykonawca lub wykonawcy}

Wykonywanie code review do Pull Requestów na GitHubie – sprawdzenie czy kod zawiera jakieś błędy i czy wykonuje wszystkie ustalone funkcjonalności, zaakceptowanie Pull Request.

Paweł Jastrzębski, Michał Mróz, Piotr Noga

Projektowanie interfejsu użytkownika

{wyszczególnione zadania/role, osoba odpowiedzialna/wykonawca lub wykonawcy}

Stworzenie koncepcji ogólnego wyglądu aplikacji oraz implementacja tego wyglądu. Interfejsmusi spełniać wymagania estetyczne.

Michał Mróz. Piotr Noga

Pisanie testów

{wyszczególnione zadania/role, osoba odpowiedzialna/wykonawca lub wykonawcy}

Napisanie testów sprawdzających poprawność napisanych funkcji, testy dotyczą zarówno procesu kodowania jak i procesu dekodowania.

Bartosz Kołakowski, Michał Mróz, Paweł jastrzębski, Maksym Nowak

Zarządzenie zespołem

{wyszczególnione zadania/role, osoba odpowiedzialna/wykonawca lub wykonawcy}

Organizacja pracy, ustalanie terminów, dyskusja zmian w projekcie, organizowanie komunikacji grupowej, dbanie o pozytywne relacje w grupie.

Bartosz Kołakowski

Implementacja kodu nadmiarowego

{wyszczególnione zadania/role, osoba odpowiedzialna/wykonawca lub wykonawcy}

Rzeczywista implementacja kodów, zgodna z ich teoretycznymi algorytmami.

Bartosz Kołakowski, Michał Mróz, Paweł jastrzębski, Maksym Nowak

Tworzenie wizualizacji kodu nadmiarowego

{wyszczególnione zadania/role, osoba odpowiedzialna/wykonawca lub wykonawcy}

Stworzenie wizualizacji działania kodu, pokazanie rezultatu opiekunowi projektu i wykonanie poprawek wskazanych przez opiekuna.

Bartosz Kołakowski, Michał Mróz, Paweł jastrzębski, Maksym Nowak, Piotr Noga

Napisanie tłumaczenia na język angielski

{wyszczególnione zadania/role, osoba odpowiedzialna/wykonawca lub wykonawcy}

Przetłumaczenie programu tak, aby był zrozumiały dla osób, które posługują się językiem angielskim. Zakłada się, że funkcjonalność programu będzie tak samo dostępna zarówno w języku polskim jak i angielskim. Piotr Noga

Pisanie dokumentów

{wyszczególnione zadania/role, osoba odpowiedzialna/wykonawca lub wykonawcy}

Napisanie wszystkich dokumentów wymaganych do zaliczenia projektu grupowego; harmonogramu, dokumentacji, raportu, plakatu, informacji o projekcie

Bartosz Kołakowski, Paweł jastrzębski

Stworzenie prezentacji

{wyszczególnione zadania/role, osoba odpowiedzialna/wykonawca lub wykonawcy}

Stworzenie prezentacji na temat postępu projektu, która będzie zaprezentowana na seminarium katedralnym

Bartosz Kołakowski, Paweł Jastrzębski, Maksym Nowak

4 Wymagania dla produktu i kryteria akceptacji

4.1 Ogólny opis planowanego produktu

{sporządzić ogólną charakterystykę produktu, co to ma być, do czego służy, jakie główne funkcje ma realizować itp.; w semestrze 2 należy zaktualizować informacje, jeśli wystąpiły zmiany}

Celem projektu jest napisanie narzędzia wspomagającego proces dydaktyczny. Narzędziem ma być aplikacja wizualizująca zagadnienia związane z kodowaniem nadmiarowym. Aplikacja ma obrazowo prezentować klasyfikację kodów nadmiarowych, proces kodowania i dekodowania wybranych kodów nadmiarowych, zysk kodowania, różne zagadnienia związane z tematem, oraz pozwalać na przeprowadzanie eksperymentów. Aplikacja ma być dostępna w wielu językach.

4.2 Wymagania minimalne dla produktu

{opisać jakie są minimalne wymagania jakościowe dla produktu, spróbować określić metody zbadania wymagań minimalnych, podać metody weryfikacji; w semestrze II należy zweryfikować i zaktualizować informacje z semestru I, jeśli wystąpiły zmiany}

Trzeba wykonać wizualizację przynajmniej dwóch kodów nadmiarowych – kodu Hamminga i kodu Reeda-Solomona Aplikacja musi mieć estetyczny graficzny interfejs użytkownika i musi być uruchamiana w systemie MS Windows. Aplikacja musi być przetłumaczona na język angielski. Aplikacja musi zapewniać możliwość podania danych przez użytkownika.

4.3 Warunki odbioru

{z punktu widzenia umowy - kiedy uznamy, że projekt zakończył się sukcesem – testy kwalifikacyjne, spełnienie wymagań, (warunki techniczne, prawne, finansowe; w semestrze II należy zweryfikować i zaktualizować informacje z semestru I, jeśli wystąpiły zmiany}

Spełnienie wymagań projektu założonych przez opiekuna do końca czasu przeznaczonego na wykonanie, czyli końca drugiego semestru.

Akceptacja projektu przez opiekuna projektu.

5 Postanowienia

5.1 Postanowienia w zakresie zmian w stosunku do pierwotnego planu i zakresu prac

{jeżeli występują jakieś zmiany w stosunku do planu pierwotnego, to należy je wskazać, np. jeżeli harmonogram był utworzony w całości na I semestrze, ale od razu na 2 semestry i następują jakieś zmiany, to należy je wskazać, jeżeli nie ma postanowień to należy wpisać "nie dotyczy"}

Na początku kodowanie Reeda-Solomona (oraz wizualizacja i napisanie do nich testów) miały być zrealizowane w pierwszym semestrze, jednak ze względu na skupienie się na jakości wykonania kodowanie Reeda-Solomona zostało przełożone na drugi semestr.

5.2 Inne postanowienia

{jeżeli sa}