Chapitre 1

Continuité et limites

I. Langage de la continuité

1) Notion intuitive

Une fonction f est **continue** sur un intervalle I si elle est définie sur cet intervalle et si sa courbe C_f se trace d'un « trait continu », sans lever le crayon.

Interprétation:

Soit f une fonction **continue en a** (a étant dans l'intervalle I) :

Si x est un réel proche de a, alors f(x) est proche de f(a); ce que l'on écrit $\lim_{x \to a} f(x) = f(a)$.

Exemples:

• f et g sont continues sur [0;6].

• h et E ne sont pas continues sur [0;6].

E(x) est la fonction partie entière définie sur \mathbb{R} par : pour tout entier relatif $n \in \mathbb{Z}$,

$$\operatorname{si} x \in [n; n+1[\text{ alors} : E(x)=n$$

2) Fonctions continues

Propriété (admise) :

Les fonctions de référence (fonctions affines, carré, inverse, racine carrée) sont continues sur chaque intervalle de leur ensemble de définition.

- Les fonctions $f: x \mapsto x$, $g: x \mapsto x^2$ sont continues sur \mathbb{R} .
- $h: x \mapsto \frac{1}{x}$ est continue sur \mathbb{R}^* .
- $k: x \mapsto \sqrt[n]{x}$ est continue sur \mathbb{R}^+ .

Propriété (admise) :

Une fonction obtenue par opérations (somme, produit, quotient et composition) sur les fonctions de référence est continue sur chaque intervalle où elle est définie.

- Les fonctions polynômes sont continues sur R.
- Les fonctions rationnelles (quotients de fonctions polynômes) sont continues sur tout intervalle de leur ensemble de définition.

Propriété (admise):

Toute fonction dérivable sur un intervalle est continue sur cet intervalle.

Remarque:

Lorsque la fonction est définie par morceaux, sur deux intervalles [a;b[et [b;c[, il est nécessaire de regarder ce qui se passe en b (ligne brisée ou saut)

3) <u>Théorème des valeurs intermédiaires</u>

Propriété:

f est une fonction **continue** sur un intervalle [a;b].

Pour tout réel k compris entre f(a) et f(b) il existe **au moins** un réel c compris entre a et b, tel que f(c)=k.

Exemples:

• f est continue sur [a;b], toutes les valeurs comprises entre f(a) et f(b) sont prises au moins une fois.

• g n'étant pas continue sur [a;b], certaines valeurs comprises entre g(a) et g(b) ne sont pas atteintes par g.

Remarque:

La continuité permet de dire que des solutions existent.

Théorème:

Soit f une fonction **continue** et **strictement monotone** sur un intervalle [a;b] et k un nombre compris entre f(a) et f(b), alors l'équation f(x)=k admet une **unique solution** α située dans l'intervalle [a;b].

Exemples:

Remarques:

- Dans le cas particulier où 0 est compris entre f(a) et f(b), sous les hypothèses du théorème précédent, f prend une fois et une seule la valeur 0. Ceci signifie que l'équation f(x)=0 admet une solution unique sur a; b.
- Dans un tableau de variation les flèches obliques traduisent la continuité et la stricte monotonie d'une fonction sur un intervalle.

Exemple:

Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = -x^3 + 3x^2 + 1$$

$$f'(x) = -3x^2 + 6x = 3x(-x+2)$$

 $f'(x) = 0$ pour $x = 0$ et $x = 2$

x	$-\infty$		0		2		$+\infty$
f'(x)		-	0	+	0	_	
f(x)	+∞		~ 1	A	5		-∞

Sur [2;4], la fonction f est continue (c'est une fonction polynôme) et strictement décroissante. f(2)=5 Et f(4)=-15. Ainsi l'équation f(x)=0 possède une unique solution α dans l'intervalle [2;4].

II. <u>Limites et opérations</u>

1) <u>Limites de fonctions usuelles</u>

Remarque:

Lorsque a appartient à l'ensemble de définition de f, $\lim_{x \to a} f(x) = f(a)$.

2) <u>Limites par opérations</u>

Propriétés:

$ \operatorname{Si} \lim_{x \to \alpha} f(x) = $	L	L	L	+∞	-∞	+∞
$ \operatorname{et} \lim_{x \to \alpha} g(x) = $	L'	+∞	-∞	+∞	-8	-8
alors $\lim_{x \to \alpha} f(x) + g(x) =$	L+L'	+∞	-∞	+∞	∞	?

$\operatorname{Si} \lim_{x \to \alpha} f(x) =$	L	L non nul	0	+∞ ou -∞
$ \operatorname{et} \lim_{x \to \alpha} g(x) = $	L'	+∞ ou -∞	+∞ ou −∞	+∞ ou −∞
alors $\lim_{x \to \alpha} f(x) \times g(x) =$	$L \times L'$	±8	?	±∞

$\operatorname{Si} \lim_{x \to \alpha} f(x) =$	L	L≠0	L	±∞	0	±∞
$ \operatorname{et} \lim_{x \to \alpha} g(x) = $	L' non nul	0	$\pm\infty$	L'	0	$\pm\infty$
alors $\lim_{x \to \alpha} \frac{f(x)}{g(x)} =$	$\frac{L}{L}$,	$\pm \infty$	0	±8	?	?

Remarque:

En cas de **forme indéterminée** (?), on ne peut pas conclure par ces propriétés. Il faut alors utiliser d'autres techniques pour lever l'indétermination.

3) <u>Limites à l'infini de polynômes</u>

Propriétés:

- A l'infini, une fonction polynôme a même limite que son terme de plus haut degré.
- A l'infini, une fonction rationnelle a même limite que le quotient de ses termes de plus haut degré.

Exemple:

f est la fonction rationnelle définie sur $]-\infty;-1[\cup]-1;1[\cup]1;+\infty[$ par $f(x)=\frac{3-x^2}{2x^2-2}$.

On a done,
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{-x^2}{2x^2} = \lim_{x \to +\infty} -\frac{1}{2} = -\frac{1}{2}$$
.

III. Limites par composition et comparaison

1) Limite par composition

Définition:

g est une fonction définie sur un intervalle J.

u est une fonction définie sur un intervalle I telle que $u(x) \in I$.

La fonction composée u suivie de g, est la fonction f définie sur I par :

$$f(x) = g[u(x)]$$

$$\begin{array}{ccc}
I & J \\
x \mapsto & u(x) \mapsto g[u(x)] \\
x \vdash & \Rightarrow f(x)
\end{array}$$

Exemple:

u et g sont les fonctions définies sur \mathbb{R}^{+*} par $u(x)=9+\frac{1}{x}$ et $g(X)=\sqrt{X}$

La fonction u suivie de g est définie par :

pour tout
$$x \in]0; +\infty[, f(x)=(g \circ u)(x)=g[u(x)]=g(9+\frac{1}{x})=\sqrt{9+\frac{1}{x}}.$$

Propriété:

 α , k et l désignent des nombres réels, ou $+\infty$ ou $-\infty$.

Soit u et g deux fonctions telles que la composée $f = g \circ u$ existe sur un intervalle de borne α .

5

Si
$$\lim_{x \to \alpha} u(x) = k$$
 et si $\lim_{x \to k} g(x) = l$ alors $\lim_{x \to \alpha} f(x) = l$

Exemple:

Étude de la limite
$$\lim_{x\to 0^+} f(x)$$
 et $\lim_{x\to +\infty} f(x)$ avec $f(x) = \sqrt{9 + \frac{1}{x}}$.

- On a $\lim_{x \to 0^+} u(x) = \lim_{x \to 0^+} 9 + \frac{1}{x} = +\infty$ et $\lim_{x \to +\infty} \sqrt{x} = +\infty$. Donc, par composée, $\lim_{x\to 0^+} \sqrt{9+\frac{1}{x}} = +\infty$. D'où $\lim_{x\to 0^+} f(x) = +\infty$
- On a $\lim_{x \to +\infty} u(x) = \lim_{x \to +\infty} 9 + \frac{1}{x} = 9$ et $\lim_{x \to 9} \sqrt{X} = 3$. Donc, par composée, $\lim_{x \to +\infty} \sqrt{9 + \frac{1}{x}} = 3$. D'où $\lim_{x \to 0^+} f(x) = 3$

2) Limite par comparaison

Propriété:

S'il existe un réel A tel que :

pour tout $x \ge A$, on a $f(x) \ge g(x)$ avec $\lim_{x \to +\infty} g(x) = +\infty$ alors $\lim_{x \to +\infty} f(x) = +\infty$

Remarques:

- Sur $[A; +\infty[$, le point M de \mathcal{C}_f est toujours audessus du point P de \mathcal{C}_g de même abscisse.
- Il existe une propriété analogue pour étudier une limite en $-\infty$.

Exemple:

f est une fonction telle que pour tout $x \ge 1$, $f(x) \ge x^2$.

On sait que $\lim_{x \to +\infty} x^2 = +\infty$, on a donc, par comparaison, $\lim_{x \to +\infty} f(x) = +\infty$.

Théorème (des gendarmes):

S'il existe un réel A tel que :

pour tout $x \ge A$, on a $u(x) \le f(x) \le v(x)$ avec $\lim_{x \to +\infty} u(x) = l$ et $\lim_{x \to +\infty} v(x) = l$ alors $\lim_{x \to +\infty} f(x) = l$

Exemple:

f est une fonction telle que, pour tout x>0:

$$\frac{1}{2}x \leqslant f(x) + 3 \leqslant \frac{1}{x}$$

On sait que $\lim_{x \to +\infty} \frac{1}{x} = 0$ et $\lim_{x \to +\infty} \frac{1}{2x} = 0$ d'où $\lim_{x \to +\infty} f(x) + 3 = 0$ et donc $\lim_{x \to +\infty} f(x) = -3$

IV. **Droites asymptotes**

1) Asymptote verticale

Soit f une fonction définie sur un intervalle de borne ouverte c et C_f sa courbe représentative.

Propriété:

Si la limite de f(x) est infinie, quand x tend vers c, alors la droite d'équation x=c est asymptote verticale à \mathcal{C}_f .

Remarque:

Si $\lim_{x \to c} \bar{f}(x) = +\infty$ alors le nombre c est une valeur interdite pour la fonction f.

Exemple:

Soit $f(x)=x+3+\frac{1}{x-2}$ définie sur $]-\infty;2[$.

$$\lim_{x \to 2^{-}} x + 3 = 5$$
 et $\lim_{x \to 2^{-}} \frac{1}{x - 2} = -\infty$.

Donc, par somme, on a $\lim_{x\to 2^-} x+3+\frac{1}{x-2}=-\infty$

Ainsi la droite d'équation x=2 est asymptote verticale à \mathcal{C}_f .

2) Asymptote horizontale

Soit f une fonction, de courbe \mathcal{C}_f , définie sur un intervalle de borne $+\infty$ ou $-\infty$.

Propriété:

Si la limite de f(x) est un nombre b, quand x tend vers $+\infty$ (ou $-\infty$), alors la droite d'équation y=b est asymptote horizontale à \mathcal{C}_f en $+\infty$ (ou $-\infty$).

Exemple:

Soit $f(x) = \frac{3x^2 - 2}{x^2 + 1}$ définie sur \mathbb{R} .

$$f(x)$$
 est un quotient de polynômes, d'où :

$$\lim_{x \to +\infty} \frac{3x^2 - 2}{x^2 + 1} = \lim_{x \to +\infty} \frac{3x^2}{x^2} = 3$$

Ainsi la droite d'équation y=3 est asymptote horizontale à \mathcal{C}_f en $+\infty$.

On pourrait vérifier que y=3 est également asymptote horizontale à \mathcal{C}_f en - ∞ .

7

Asymptote oblique 3)

Soit f une fonction, de courbe \mathcal{C}_f , définie sur un intervalle de borne $+\infty$ ou $-\infty$ et \mathcal{D} une droite d'équation y = ax + b.

Propriété:

Si la limite de f(x)-(ax+b) est nulle, quand x tend vers $+\infty$ (ou $-\infty$), alors la droite d'équation y=ax+b est asymptote oblique à \mathcal{C}_f en $+\infty$ (ou $-\infty$).

Exemple:

Soit
$$f(x)=x+3+\frac{1}{x-2}$$
 définie sur $]-\infty;2[$ et

 \mathcal{D} une droite d'équation y=x+3.

$$\lim_{x \to -\infty} f(x) - (x+3) = \lim_{x \to -\infty} x + 3 + \frac{1}{x-2} - (x+3)$$

$$\lim_{x \to -\infty} f(x) - (x+3) = \lim_{x \to -\infty} x + 3 + \frac{1}{x-2} - (x+3)$$
et
$$\lim_{x \to -\infty} \frac{1}{x-2} = 0 \text{ donc } \lim_{x \to -\infty} f(x) - (x+3) = 0$$

Ainsi la droite \mathcal{D} d'équation y=x+3 est asymptote oblique à C_f en $-\infty$.

