VE401 Probabilistic Methods in Eng. RC 6

CHEN Xiwen

UM-SJTU Joint Institute

April 17, 2020

Table of contents

Test for Statistics

Comparison of Two Means Non-parametric Comparisons Paired Tests Correlation Coefficient

Categorical Data

Categorical Data and Multinomial Distribuiton
The Pearson Statistic

Test for Statistics

Comparison of Two Means

Non-parametric Comparisons
Paired Tests
Correlation Coefficient

Categorical Data

Categorical Data and Multinomial Distribuiton
The Pearson Statistic

Comparing Two Means

Basic distribution. Suppose sample means $\overline{X}^{(1)}$ and $\overline{X}^{(2)}$ are calculated from samples of sizes n_1 and n_2 respectively from normal populations with means μ_1, μ_2 and variances σ_1, σ_2 . Then since

$$\overline{X}^{(1)} \sim \mathsf{N}(\mu_1, \sigma_1^2/\mathsf{n}_1), \qquad \overline{X}^{(2)} \sim \mathsf{N}(\mu_2, \sigma_2^2/\mathsf{n}_2),$$

the statistic

$$Z = \frac{\overline{X}^{(1)} - \overline{X}^{(2)} - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$$

follows a standard normal distribution.

Variances Known

Variances known. Let $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$ with i=1,2 be samples of sizes n_1 and n_2 from normal distributions with unknown means μ_1, μ_2 and **known** variances σ_1^2, σ_2^2 . Then the test statistic is given by

$$Z = \frac{\overline{X}^{(1)} - \overline{X}^{(2)} - (\mu_1 - \mu_2)_0}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$$

We reject at significance level α

- $H_0: \mu_1 \mu_2 = (\mu_1 \mu_2)_0 \text{ if } |Z| > z_{\alpha/2},$
- $H_0: \mu_1 \mu_2 \le (\mu_1 \mu_2)_0$ if $Z > z_\alpha$,
- $H_0: \mu_1 \mu_2 \ge (\mu_1 \mu_2)_0$ if $Z < -z_\alpha$.

Variances Known

OC curve. We can use the OC curves for normal distributions with

$$d = \frac{|(\mu_1 - \mu_2) - (\mu_1 - \mu_2)_0|}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

with $n=n_1=n_2$. When $n_1\neq n_2$, we use the equivalent sample size

$$n = \frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2/n_1 + \sigma_2^2/n_2}.$$

Variances Equal but Unknown — Student's T-Test

Variances equal but unknown. Let $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$ with i=1,2 be samples of sizes n_1 and n_2 from normal distributions with unknown means μ_1, μ_2 and *equal* but *unknown* variances $\sigma^2 = \sigma_1^2 = \sigma_2^2$. Then the test statistic is given by

$$T_{n_1+n_2-2} = \frac{\overline{X}^{(1)} - \overline{X}^{(2)} - (\mu_1 - \mu_2)_0}{\sqrt{S_p^2(1/n_1 + 1/n_2)}},$$

with pooled estimator for variance

$$S_p^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}.$$

We reject at significance level α

- $H_0: \mu_1 \mu_2 = (\mu_1 \mu_2)_0$ if $|T_{n_1+n_2-2}| > t_{\alpha/2,n_1+n_2-2}$,
- $H_0: \mu_1 \mu_2 \le (\mu_1 \mu_2)_0$ if $T_{n_1+n_2-2} > t_{\alpha,n_1+n_2-2}$,
- \vdash $H_0: \mu_1 \mu_2 \ge (\mu_1 \mu_2)_0$ if $T_{n_1+n_2-2} < -t_{\alpha,n_1+n_2-2}$.

Variances Equal but Unknown — Student's *T*-Test

OC curve. We use the OC curves for the T-test in case of equal sample sizes $n=n_1=n_2$

$$d = \frac{|(\mu_1 - \mu_2) - (\mu_1 - \mu_2)_0|}{2\sigma}.$$

When reading the charts, we must use the modified sample size $n^* = 2n - 1$.

Variances Unequal and Unknown — Welch's T-test

Welch-Satterthwaite Relation. Let $X^{(1)}, \ldots, X^{(k)}$ be k independent normally distributed random variables with variances $\sigma_1^2, \ldots, \sigma_k^2$. Let s_1^2, \ldots, s_k^2 be sample variances based on samples of sizes n_1, \ldots, n_k from the k populations, respectively. Let $\lambda_1, \ldots, \lambda_k > 0$ be positive real numbers and define

$$\gamma := \frac{(\lambda_1 s_1^2 + \dots + \lambda_k s_k^2)^2}{\sum_{i=1}^k \frac{(\lambda_i s_i^2)^2}{n_i - 1}}.$$

Then

$$\gamma \cdot \frac{\lambda_1 s_1^2 + \dots + \lambda_k s_k^2}{\lambda_1 \sigma_1^2 + \dots + \lambda_k \sigma_k^2}$$

follows approximately a chi-squared distribution with γ degrees of freedom, where we round γ **down** to the nearest integer.

Variances Unequal and Unknown — Welch's *T*-test

Welch's T-test. Let $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$ with i=1,2 be samples of sizes n_1 and n_2 from normal distributions with unknown means μ_1, μ_2 and **unequal** and **unknown** variances σ_1^2, σ_2^2 . The test statistic is given by

$$T_{\gamma} = \frac{\overline{X}^{(1)} - \overline{X}^{(2)} - (\mu_1 - \mu_2)_0}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}, \qquad \gamma = \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{\frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}}$$

We reject at significance level α

- $H_0: \mu_1 \mu_2 = (\mu_1 \mu_2)_0 \text{ if } T_{\gamma} > t_{\alpha/2,\gamma}$
- $H_0: \mu_1 \mu_2 \le (\mu_1 \mu_2)_0$ if $T_{\gamma} > t_{\alpha,\gamma}$,
- $H_0: \mu_1 \mu_2 \ge (\mu_1 \mu_2)_0$ if $T_{\gamma} < -t_{\alpha,\gamma}$.

Test for Statistics

Comparison of Two Means

Non-parametric Comparisons

Paired Tests

Correlation Coefficient

Categorical Data

Categorical Data and Multinomial Distribuiton

The Pearson Statistic

Wilcoxon Rank-Sum Test

Wilcoxon rank-sum test. Let X and Y be two random populations following some continuous distributions.

Let X_1, \ldots, X_m and Y_1, \ldots, Y_n , where $m \leq n$, be random samples from X and Y and associate the rank R_i , $i=1,\ldots,m+n$, to the R_i th smallest among the m+n total observations. If ties in the rank occur, the mean of the ranks is assigned to all equal values. The test statistic is given by

$$W_m = \text{sum of the ranks of } X_1, \dots, X_m$$

We reject $H_0: P[X > Y] = 1/2$ at significance level α if W_m falls into the corresponding critical region.

Wilcoxon Rank-Sum Test

Wilcoxon rank-sum test. For large values of $m(m \ge 20)$, W_m is approximated normally distributed with

$$\mathsf{E}[W_m] = \frac{m(m+n+1)}{2}, \qquad \mathsf{Var}[W_m] = \frac{mn(m+n+1)}{12}.$$

In case of ties, the variance may be corrected by taking

$$\mathsf{Var}[W_m] = \frac{mn(m+n+1)}{12 - \sum_{\mathsf{groups}} \frac{t^3 + t}{12}},$$

where the sum is taken over all groups of t ties.

Test for Statistics

Comparison of Two Means Non-parametric Comparison

Paired Tests

Correlation Coefficient

Categorical Data

Categorical Data and Multinomial Distribuiton The Pearson Statistic

Variances Equal but Unknown — Paired *T*-Test

Paired T-test. Let $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$ with i=1,2 be samples of size $n=n_1=n_2$ from normal distributions with unknown means μ_1, μ_2 and **equal** but **unknown** variances $\sigma^2=\sigma_1^2=\sigma_2^2$. Then $D_i=X_i-Y_i$ follows normal distributions. Then the test statistic is given by

$$T_{n-1} = \frac{D - \mu_0}{\sqrt{S_D^2/n}}.$$

We reject at significance level α

- $H_0: \mu_D = \mu_0 \text{ if } |T_{n-1}| > t_{\alpha/2, n-1},$
- ► $H_0: \mu_D \le \mu_0$ if $T_{n-1} > t_{\alpha,n-1}$,
- ► $H_0: \mu_D \ge \mu_0$ if $T_{n-1} < -t_{\alpha,n-1}$.

Paired vs. Pooled T-Tests

With two populations X and Y with equal variances σ^2 , we want to test $H_0: \mu_X = \mu_Y$ using samples of equal size n. Then the statistics are

$$T_{
m pooled} = rac{\overline{X} - \overline{Y}}{\sqrt{2S_p^2/n}}, \qquad ext{critical value} = t_{lpha/2,2n-2}, \ T_{
m paired} = rac{\overline{X} - \overline{Y}}{\sqrt{S_D^2/n}}, \qquad ext{critical value} = t_{lpha/2,n-1}.$$

Preferring a more powerful test, we consider the following.

- ▶ $t_{\alpha/2,2n-2} < t_{\alpha/2,n-1}$, smaller critical values \Rightarrow easier to reject.
- ▶ $2S_p^2/n$ estimates $2\sigma^2/n$, while S_D^2/n estimates $\sigma_D^2/n = \sigma_{\overline{D}}^2$, where

$$\sigma_{\overline{D}}^2 = \frac{2\sigma^2}{n}(1 - \rho_{\overline{XY}}) = \frac{2\sigma^2}{n}(1 - \rho_{XY}).$$

When $\rho_{XY} > 0$, paired T-test would be more powerful.

Non-parametric Paired Test

Comparison of medians. Let X and Y be two independent random variables that follow the same distribution but differ only in their location, i.e., $X':=X-\delta$ and Y are independent and identically distributed. Then D=X-Y and $2\delta-D$ follow the same distribution. Therefore, D is symmetric about δ .

$$f_D(d-\delta)=f_D(\delta-d).$$

Then we can perform the Wilcoxon signed-rank test on D.

Test for Statistics

Comparison of Two Means Non-parametric Comparisons Paired Tests

Correlation Coefficient

Categorical Data

Categorical Data and Multinomial Distribuiton
The Pearson Statistic

Estimating Correlation

Estimator for correlation. The unbiased estimators for variance and covariance are given by

$$\widehat{\mathsf{Var}[X]} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2,$$

$$\widehat{\mathsf{Var}[Y]} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2,$$

$$\widehat{\mathsf{Cov}[X, Y]} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}),$$

giving

$$R := \widehat{\rho} = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2} \sqrt{\sum (Y_i - \overline{Y})^2}}.$$

Hypothesis Tests for the Correlation Coefficient

Distribution. Suppose (X,Y) follows a bivariate normal distribution with relation coefficient $\rho \in (-1,1)$. For large sample size n, the Fisher transformation of R

$$\frac{1}{2}\ln\left(\frac{1+R}{1-R}\right) = \mathsf{Artanh}(R)$$

is approximately normal with

$$\mu = \frac{1}{2} \ln \left(\frac{1+
ho}{1-
ho} \right) = \operatorname{Artanh}(
ho), \qquad \sigma^2 = \frac{1}{n-3}.$$

Hypothesis Tests for the Correlation Coefficient

Confidence interval. A $100(1-\alpha)\%$ confidence interval for ρ is given by

$$\left[\frac{1+R-(1-R)e^{2z_{\alpha/2}/\sqrt{n-3}}}{1+R+(1-R)e^{2z_{\alpha/2}/\sqrt{n-3}}}, \frac{1+R-(1-R)e^{-2z_{\alpha/2}/\sqrt{n-3}}}{1+R+(1-R)e^{-2z_{\alpha/2}/\sqrt{n-3}}}\right]$$

or

$$\tanh\left(\operatorname{Artanh}(R)\pm rac{z_{lpha/2}}{\sqrt{n-3}}
ight).$$

Hypothesis Tests for the Correlation Coefficient

Test for correlation coefficient. Suppose X_1, \ldots, X_n and Y_1, \ldots, Y_n are samples of size n from X and Y, where (X, Y) follows a bivariate normal distribution with relation coefficient $\rho \in (-1,1)$. The test statistic is given by

$$Z = \frac{\sqrt{n-3}}{2} \left(\ln \left(\frac{1+R}{1-R} \right) - \ln \left(\frac{1+\rho_0}{1-\rho_0} \right) \right)$$
$$= \sqrt{n-3} (\operatorname{Artanh}(R) - \operatorname{Artanh}(\rho_0)).$$

We reject at significance level α

- $H_0: \rho = \rho_0 \text{ if } |Z| > z_{\alpha/2}$,
- $H_0: \rho \leq \rho_0 \text{ if } Z > z_\alpha,$
- \blacktriangleright $H_0: \rho \geq \rho_0$ if $Z < -z_\alpha$.

Test for Statistics

Comparison of Two Means Non-parametric Comparisons Paired Tests

Categorical Data

Categorical Data and Multinomial Distribuiton

The Pearson Statistic

The Multinomial Distribution

Definition. A random vector $((X_1, ..., X_k), f_{X_1X_2...X_k})$ with

$$(X_1,\ldots,X_k): S \to \Omega = \{0,1,2,\ldots,n\}^k$$

and joint distribution function $f_{X_1X_2...X_k}:\Omega\to\mathbb{R}$

$$f_{X_1X_2\cdots X_k}(x_1,\ldots,x_k) = \frac{n!}{x_1!\cdots x_k!}p_1^{x_1}\cdots p_k^{x_k},$$

 $p_1, \ldots, p_k \in (0,1), n \in \mathbb{N} \setminus \{0\}$ is said to have a *multinomial distribution* with parameters n and p_1, \ldots, p_k . For $i = 1, \ldots, k$ and $1 \le i < j \le k$,

$$\mathsf{E}[X_i] = np_i, \quad \mathsf{Var}[X_i] = np_i(1-p_i), \quad \mathsf{Cov}[X_i, X_j] = -np_ip_j.$$

Test for Statistics

Comparison of Two Means Non-parametric Comparisons Paired Tests

Categorical Data

Categorical Data and Multinomial Distribuiton

The Pearson Statistic

The Pearson Statistic

Theorem. Let $((X_1, \ldots, X_k), f_{X_1 X_2 \cdots X_k})$ be a multinomial random variable with parameters n and p_1, \ldots, p_k . For large n the **Pearson** statistic

$$\sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} = \sum_{i=1}^{k} \frac{(X_i - np_i)^2}{np_i}$$

follows an approximate chi-squared distribution with k-1 degrees of freedom, where O_i are observed values and E_i are expected values. Cochran's rule. For good approximation, we require

$$\mathsf{E}[X_i] = np_i \ge 1, \qquad \text{for all } i = 1, \dots, k,$$
 $\mathsf{E}[X_i] = np_i \ge 5, \qquad \text{for 80\% of all } i = 1, \dots, k.$

Test for Multinomial Distribution

Pearson's chi-squared goodness-of-fit test. Let (X_1, \ldots, X_k) be a sample of size n from a categorical random variable with parameters p_1, \ldots, p_k satisfying Cochran's Rule. Let $(p_{1_0}, \ldots, p_{k_0})$ be a vector of null values. We want to test

$$H_0: p_i = p_{i_0}, \qquad i = 1, \ldots, k.$$

based on the test statistic

$$X_{k-1}^2 = \sum_{i=1}^k \frac{(X_i - np_{i_0})^2}{np_{i_0}}.$$

We reject H_0 at significance level α if $X_{k-1}^2 > \chi_{\alpha,k-1}^2$.

Goodness-of-Fit Test for a Discrete Distribution

Goodness-of-fit test. Dividing data into k categories to estimate m parameters of distributions, we have the statistic

$$\sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

which follows a chi-squared distribution with k-1-m degrees of freedom. This transforms the question of "whether a certain variable follows some specific distribution with parameters θ " to "whether the categorical variable follows the multinomial distribution with parameters p_1, \ldots, p_k determined by the specific distribution with parameters θ ".

Test for Independence of Categorizations

Overview.

1. Draw *contingency table* from data, and calculate the marginal row and column sums.

	cat.2.1		cat.2.c	
cat.1.1	n ₁₁		n_{1c}	n_1 .
:	:	٠.	:	:
cat.1.r	n_{r1}		n _{rc}	n _r .
	n.1		n _{·c}	n

Calculate Pearson statistic

$$X_{(r-1)(c-1)}^2 = \sum_{i=1}^r \sum_{i=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}, \quad \text{where } E_{ij} = \frac{n_i \cdot n_{\cdot j}}{n}.$$

3. Reject $H_0: p_{ij} = p_{i\cdot}p_{\cdot j}$ at significance level α if $X^2_{(r-1)(c-1)} > \chi^2_{\alpha,(r-1)(c-1)}$:

Test for Homogeneity

Overview.

1. Draw contingency table. (Suppose the marginal row sums are fixed.)

	cat.2.1		cat.2.c	
cat.1.1	n ₁₁		n_{1c}	n_1 . (fixed)
:	:	٠.	:	:
cat.1.r	n _{r1}		n _{rc}	n_{r} (fixed)
	n. ₁		n. _c	n (fixed)

2. Calculate Pearson statistic

$$X_{(r-1)(c-1)}^2 = \sum_{i=1}^r \sum_{i=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}, \quad \text{where } E_{ij} = \frac{n_i \cdot n_{\cdot j}}{n}.$$

3. Reject $H_0: p_{1j} = \cdots = p_{rj}$ at significance level α if $X^2_{(r-1)(c-1)} > \sum_{j=1}^{\infty} 2^{j}$

Thanks for your attention!