PROJECT FOLDER STRUCTURE

PROJECT:		Root folder
client	_app:	
	streamlit_app.py	
	streamlit_requirements.txt	
serve	r_app:	
	app_flask:	
	Dockerfile	1)
	•••••	
	app_detector:	
	Dockerfile	2) YOLOv5
ар	•••••	
	app_grouper:	
	Dockerfile	3) CLIP Image encoder("ViT-B/32")
	•••••	DBSCAN clustering, KNN
		classifier or Cosine similarity

HOSTING - SERVER SIDE SETUP(Localhost)

SYSTEM REQUIREMENTS:

- 1) Install docker: how to install docker
- 2) GPU host machine installed with nvidia-driver > 550
 - cd server_app

RUN FLASK APP:(1)

- cd app_flask
- sudo docker build -t flask_app:v1.
- sudo docker run -d --network="host" -p 127.0.0.1:7000:7000 -name flask_app_c1 flask app:v1

INSTALL NVIDIA CONTAINER TOOLKIT FOR GPU AVAILABILITY FOR MODELS:

Set up the package repository and GPG key:

- distribution=\$(./etc/os-release;echo \$ID\$VERSION_ID)
- curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
- curl -s -L https://nvidia.github.io/nvidia-docker/\$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

Update the package listing and install the toolkit:

- sudo apt-get update
- sudo apt-get install -y nvidia-container-toolkit

Configure the Docker daemon to recognize the NVIDIA runtime:

sudo nvidia-ctk runtime configure –runtime=docker

Restart the Docker daemon:

sudo systemctl restart docker

RUN DETECTOR APP:(2)

- cd app_detector
- sudo docker build -t detector_app:v1.
- sudo docker run --gpus all -d --*network*="*host*" -p 127.0.0.1:7001:7001 --name detector_app_c1 detector_app:v1

RUN GROUPER APP: (3)

- cd app_grouper
- sudo docker build -t grouper_app:v1.
- sudo docker run --gpus all -d --*network="host"* -p 127.0.0.1:7002:7002 --name grouper_app_c1 grouper_app:v1

TESTING - CLIENT SIDE SETUP

SETUP:

- cd client_app
- pip install -r streamlit_requirements.txt

RUN STREAMLIT APP:

• streamlit run streamlit_app.py

TO IMPROVE

Deployments:

- 1) Models hosting in TorchServe
- 2) Use dockercompose.yml

Model Performance:

- 1) Used YOLOv5, can use YOLOv11 for better OD.
- 2) Used DBSCAN clustering algo, that too clustered object only within a single image. But,

"Thought of using **DBSCAN** for initial clustering and save centroids or features.

- For new incoming objects:
- Extract features.
- Use **KNN**, **cosine similarity**, or a distance-based threshold to classify the object into an existing cluster or mark it as new.
- Dynamically update the database with new objects and clusters as needed."
- 3) Use OCR to extract the product names and other possible **text** content(keyword search) on the brand lables. **Both image and text vector** index with meta deta, and also trying out Hybrid search especially on the Azure search may give better similarity search.