Exercícios - Estatística I

Questão 1

Out[]

Os exercícios de 1 a 5 serão desenvolvidos utilizando o dataset Titanic.csv :

Calcule a frequência absoluta para os sobreviventes no Titanic.

Dica.: Utilize a função .value_counts()

Carregando as principais bibliotecas que iremos utilizar:

```
In []: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# sns.load_dataset('titanic')

In []: # Print carregando o dataset Titanic
# titanic = pd.read_csv("titanic.csv")
titanic = sns.load_dataset('titanic')

# Print das primeiras Linhas
titanic.head()
```

]:		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
	0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
	1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	C	Cherbourg	yes	False
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
	3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	C	Southampton	yes	False
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True

```
In []: # Print do Título
    print("Tabela de frequência ABSOLUTA da coluna 'Survived':")

# Print da Tabela de Frequencia absoluta
    display(titanic["survived"].value_counts())
```

Tabela de frequência ABSOLUTA da coluna 'Survived':

```
0 549
1 342
Name: survived, dtype: int64
```

Os exercícios de 1 a 5 serão desenvolvidos utilizando o dataset Titanic.csv:

Calcule a frequência relativa, relativa percentual e acumulativa para os sobreviventes no *Titanic*.

Dica.: Utilize a função .value counts()

```
In [ ]: # Print do Titulo
         print("Tabela de frequência RELATIVA da coluna 'Survived':")
        # Print da Tabela de Frequencia relativa
        display(titanic["survived"].value_counts(normalize=True))
        Tabela de frequência RELATIVA da coluna 'Survived':
             0.616162
             0.383838
        Name: survived, dtype: float64
In [ ]: # Print do Titulo
        print("Tabela de frequência PERCENTUAL da coluna 'Survived':")
        # Print da Tabela de Frequencia Percentual
        titanic["survived"].value counts(normalize=True).apply(lambda x: str(round(x*100, 2)) + "%")
        Tabela de frequência PERCENTUAL da coluna 'Survived':
             61.62%
Out[ ]:
             38.38%
        Name: survived, dtype: object
       # Print do Titulo
        print("Tabela de frequência Acumulada da coluna 'Survived':")
        # Print da Tabela de Frequencia Percentual
        titanic["survived"].value_counts(normalize=True).cumsum()
        Tabela de frequência Acumulada da coluna 'Survived':
             0.616162
Out[ ]:
             1.000000
        Name: survived, dtype: float64
```

Questão 3

Os exercícios de 1 a 5 serão desenvolvidos utilizando o dataset Titanic.csv :

Utilizando a coluna Age do dataset Titanic, defina as principais métricas estatísticas para essa variável tais como:

- Média;
- Desvio Padrão;
- Mínimo;
- · Primeiro Quartil;
- Segundo Quartil (Mediana);
- Terceiro Quartil;
- Distância Interquartil (IQR);
- Máximo;
- Skewness:
- Moda.

```
In [ ]: # Calculo das Metricas para Idade
        print("Média de idades:", titanic["age"].mean())
        print("Desvio padrão de idades:", titanic["age"].std())
        print("\nIdade minima:", titanic["age"].min())
        print("\nIdade Q1:", titanic["age"].quantile(0.25))
        print("Mediana de idades:", titanic["age"].median())
        print("Idade Q3:", titanic["age"].quantile(0.75))
        print("IQR das idades:", titanic["age"].quantile(0.75) - titanic["age"].quantile(0.25))
        print("\nIdade máxima:", titanic["age"].max())
        print("\nSkewness das idades:", titanic["age"].skew())
        print("\nIdade(s) mais comum(s):")
        display(titanic["age"].mode())
        Média de idades: 29.69911764705882
        Desvio padrão de idades: 14.526497332334044
        Idade mínima: 0.42
        Idade 01: 20.125
        Mediana de idades: 28.0
        Idade Q3: 38.0
        IQR das idades: 17.875
        Idade máxima: 80.0
        Skewness das idades: 0.38910778230082704
        Idade(s) mais comum(s):
        0 24.0
        dtype: float64
       titanic['age'].describe()
```

```
714.000000
count
          29.699118
mean
          14.526497
std
min
           0.420000
25%
          20.125000
50%
          28.000000
75%
          38.000000
          80,000000
max
Name: age, dtype: float64
```

Os exercícios de 1 a 5 serão desenvolvidos utilizando o dataset Titanic.csv:

Crie um gráfico de distribuição das idades dos passageiros do *Titanic* e identifique os pontos onde se encontram a média, mediana e moda das idades.

```
In [ ]: # Define o tamanho da figura
        plt.figure(figsize=(12, 6))
        # Define o Titulo
        plt.title("Distribuição de idades dos passageiros do Titanic", size=18)
        # Plot do Histograma
        sns.histplot(titanic["age"], kde=True, alpha=0.2)
        # plotando média
        plt.axvline(x=titanic["age"].mean(), color="red", label="média")
        # plotando a mediana
        plt.axvline(titanic["age"].median(), color="green", label="mediana")
        # Loop para plotar as modas
        for i in range(titanic["age"].mode().shape[0]):
            plt.axvline(titanic["age"].mode()[i], color="yellow", label="moda")
        # Cria uma Legenda
        plt.legend()
        # Mostra o Gráfico
        plt.show()
```


Os exercícios de 1 a 5 serão desenvolvidos utilizando o dataset Titanic.csv :

Ainda trabalhando com os valores das idades crie três Boxplots:

- Boxplot das idades para todos os passageiros;
- Boxplot das idades dos passageiros separados pelo sexo.
- Boxplot das idades dos passageiros separados pelo sexo e por sobreviventes.

```
In []: # Define o tamanho da figura
plt.figure(figsize=(8, 6))

# Cria um BoxPlot
sns.boxplot(data=titanic, x="age")

# Cria um titulo
plt.title("Boxplot das Idades")

#Mostra o gráfico
plt.show()
```

Boxplot das Idades


```
In []: # Define o tamanho da figura
plt.figure(figsize=(8, 6))

# Plot do Boxplot
sns.boxplot(data=titanic, y="age", x="survived", hue="sex")

# Cria um titulo
plt.title("Boxplot das Idades e Sexo por classe de sobreviventes")

# Mostra o gráfico
plt.show()
```

Boxplot das Idades e Sexo por classe de sobreviventes


```
In []: # Define o tamanho da figura
plt.figure(figsize=(8, 6))

# Plot do Boxplot
sns.boxplot(data=titanic, y="age", x="sex")

# Cria um titulo
plt.title("Boxplot das Idades e Sexo")

# Mostra o gráfico
plt.show()
```


Com o dataset penguins , responda as questões abaixo:

sns.load_dataset('penguins')

Questão 6

Classifique o tipo de dado de cada coluna

```
In [ ]: penguins = sns.load_dataset('penguins')
    penguins
```

Out[]:		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
	0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male
	1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female
	2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female
	3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
	4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female
	•••							
	339	Gentoo	Biscoe	NaN	NaN	NaN	NaN	NaN
	340	Gentoo	Biscoe	46.8	14.3	215.0	4850.0	Female
	341	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	Male
	342	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	Female
	343	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	Male

344 rows × 7 columns

```
In [ ]: penguins.info()
```

Data columns (total 7 columns): Column Non-Null Count Dtype -----344 non-null species object island 344 non-null object 1 bill length mm 342 non-null float64 bill depth mm 342 non-null float64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343

4 flipper_length_mm 342 non-null float64

5 body_mass_g 342 non-null float64 6 sex 333 non-null object

6 sex 333 non-null dtypes: float64(4), object(3)

memory usage: 18.9+ KB

Quantitativo contínuos: bill_length_mm, bill_depth_mm, flipper_length_mm, body_mass_g,

Qualitativos nominais: species, island, sex

Questão 7

Calcule a frequência absoluta para cada espécie de pinguim

Calcule a frequência relativa, relativa percentual e acumulativa de cada espécie de pinguim

```
print("Tabela de frequência RELATIVA da coluna 'species':")
        display(penguins["species"].value counts(normalize=True))
        Tabela de frequência RELATIVA da coluna 'species':
        Adelie
                     0.441860
        Gentoo
                     0.360465
        Chinstrap
                     0.197674
        Name: species, dtype: float64
In [ ]: print("Tabela de frequência PERCENTUAL da coluna 'species':")
        # Print da Tabela de Frequencia Percentual
        penguins["species"].value counts(normalize=True).apply(lambda x: str(round(x*100, 2)) + "%")
        Tabela de frequência PERCENTUAL da coluna 'species':
        Adelie
                     44.19%
Out[]
        Gentoo
                     36.05%
        Chinstrap
                     19.77%
        Name: species, dtype: object
       print("Tabela de frequência Acumulada da coluna 'species':")
        # Print da Tabela de Frequencia Percentual
        penguins["species"].value counts(normalize=True).cumsum().apply(lambda x: str(round(x*100, 2)) + "%")
        Tabela de frequência Acumulada da coluna 'species':
        Adelie
                     44.19%
Out[ ]:
                     80.23%
        Gentoo
        Chinstrap
                     100.0%
        Name: species, dtype: object
```

Questão 9

Utilizando a coluna body_mass_g do dataset Penguins, defina as principais métricas estatísticas para essa variável tais como:

- Média:
- Desvio Padrão:
- Mínimo;
- Primeiro Quartil;
- Segundo Quartil (Mediana);
- Terceiro Quartil;
- Distância Interquartil (IQR);
- Máximo;
- Skewness:
- Moda.

```
penguins['body_mass_g'].describe()
        count
                  342.000000
Out[ ]:
                 4201.754386
        std
                  801.954536
        min
                 2700,000000
        25%
                 3550.000000
        50%
                 4050.000000
        75%
                 4750.000000
                 6300.000000
        max
        Name: body_mass_g, dtype: float64
       print("IQR :", penguins["body_mass_g"].quantile(0.75) - penguins["body_mass_g"].quantile(0.25))
        print("\nSkewness das massas:", penguins["body_mass_g"].skew())
        print("\nIdade(s) mais comum(s):")
        display(penguins["body_mass_g"].mode())
        IQR : 1200.0
        Skewness das massas: 0.470329330480123
        Idade(s) mais comum(s):
            3800.0
        dtype: float64
```

Crie um gráfico da distribuição da massa dos pinguins e identifique os pontos onde se encontram a média, mediana e moda das idades.

```
In []: # Define o tamanho da figura
plt.figure(figsize=(12, 6))

# Define o Titulo
plt.title("Distribuição da massa dos pinguins", size=18)

# Plot do Histograma
```

```
sns.histplot(penguins["body_mass_g"], kde=True, alpha=0.2)

# plotando média
plt.axvline(x=penguins["body_mass_g"].mean(), color="red", label="média")

# plotando a mediana
plt.axvline(penguins["body_mass_g"].median(), color="green", label="mediana")

# Loop para plotar as modas
for i in range(penguins["body_mass_g"].mode().shape[0]):
    plt.axvline(penguins["body_mass_g"].mode()[i], color="yellow", label="moda")

# Cria uma Legenda
plt.legend()

# Mostra o Gráfico
plt.show()
```


Ainda trabalhando com os valores das massas dos pinguins crie três Boxplots:

- Boxplot da massa para todos os pinguins
- Boxplot da massas dos pinguins separados pelo sexo.
- Boxplot da massas dos pinguins separados pelo sexo e pela espécies.

In []:

sns.boxplot(data=penguins, x="body_mass_g")#, x="Survived", hue="Sex")

```
In [ ]: sns.boxplot(data=penguins, x="body_mass_g", y="sex")
```

body_mass_g

Out[]: <AxesSubplot:xlabel='body_mass_g', ylabel='sex'>


```
In [ ]: sns.boxplot(data=penguins, x="body_mass_g", y="sex", hue='species')
Out=[ ]: <AxesSubplot:xlabel='body_mass_g', ylabel='sex'>
```


In []:

In []: