1.
$$(1) C = ABS$$

$$16K = 4 * 64 * S$$

$$S = 64$$

Associativity (A): 4

Cache Size (C): 16K

Block Size (B): 64 bytes

Offset = log(B) = log(64) = 6 bits

 $Index = \log(S) = \log(64) = 6 bits$

Tag = 64 - Offset - Index = 64 - 6 - 6 = 52 bits

(2)

Size of tag array = (tag + dirty bit + valid bit) * number of blocks

Number of Blocks – cache size / block size = (16 * 1024) bytes / 64 bytes = 256

Size of tag array = (52 + 1 + 1) * 256 = 13824 bits

Data Array = 16 * 1024 * 8 = 131072 bits

Total bits needed for building cache = 13824 + 131072 = 144896 bits

2. (1) C = ABS (from number 1)

Offset = 6 bits

Index = 6 bits

Tag = 52 bits

Array	I	J	Address	Tag	Index	Offset	Hit/miss?
A	0	0	20000	00100000	000000	000000	Miss/com
В	0	0	40000	01000000	000000	000000	Miss
A	0	1	20400	00100000	010000	000000	Miss/com
В	0	1	40008	01000000	000000	001000	Hit
A	0	2	20800	00100000	100000	000000	Miss/com
В	0	2	40010	01000000	000000	010000	Hit
A	0	3	20C00	00100000	110000	000000	Miss/com
В	0	3	40018	01000000	000000	011000	Hit
A	0	4	21000	00100001	000000	000000	Miss/con
В	0	4	40020	01000000	000000	100000	Hit
A	0	5	21400	00100001	010000	000000	Miss/con
В	0	5	40028	01000000	000000	101000	Hit
A	0	6	21800	00100001	100000	000000	Miss/con

В	0	6	40038	01000000	000000	111000	Hit
A	0	7	21C00	00100001	110000	000000	Miss/con
В	0	7	40040	01000000	000001	000000	Miss
A	0	8	22000	00100010	000000	000000	Miss/con
В	0	8	40048	01000000	000001	001000	Hit
A	0	9	22400	00100010	010000	000000	Miss/con
В	0	9	40050	01000000	000001	010000	Hit

A will always miss so the miss rate for A is 1

B misses when j % 8 = 1 so 1/8 of the time

Therefore, we get that the cache miss rate = (1 + 1/8) / 2 = 0.5625

(2)

Array A and Array B are both accessed N * N times which is 128 * 128 For array A, it will have a compulsory miss: (128 / 8) * 128 = 2048 misses

For array B, every miss is a compulsory miss, and they happen 1/8 of the time, so 1/8 * (128*128) = 2048 misses

Adding those two together, get 2048 + 2048 = 4096

Conflict misses are all the other misses that aren't compulsory misses. Since all of array A's are misses and none of B are conflict misses we just calculate A total misses – compulsory so: (128 * 128) - 2048 = 14336

Compulsory Misses: 4096; Conflict Misses: 14336

3. (1)

25% load/store instructions

L1 I-Cache: 2% miss rate

L1 D-Cache: 5% miss rate (50% replaced are dirty)

L2 U-Cache: 12 ns access time; 20% miss rate (25% replaced are dirty)

Main memory access latency: 60 ns

Overall CPI = CPI_{base} + miss_rate*miss_penalty

60 ns * 2 GHz = 120 cycles if hit main memory

12 ns * 2 GHz = 24 cycles if hit L2

$$CPI = 1 + 100\%*(2\%*(24 + 20\%*((1 + 25\%) * 120))) + 25\%*(5\%*(1 + 50\%)*(24 + 20\%*((1 + 25\%) * 120))) = 3.0925$$

(2) 3 GHz instead of 2 GHz

60 ns * 3 GHz = 180 cycles

12 ns * 3 GHz = 36 cycles

CPI = 1 + 100%*(2%*(36 + 20%*((1 + 25%)*180))) + 25%*(5%*(1 + 50%)*(36 + 20%*((1 + 25%)*180))) = 4.13875

Assume IC is the same for both

ET = IC * CPI * CT

 $ET_{2GHz} = 3.0925 * 2 GHz = 1.5 * 10^9$

 $ET_{3GHz} = 4.13875 * 3 GHz = 1.3 * 10^9$

Speedup: $1.5 * 10^9 / 1.3 * 10^9 =$ **1.12x**