

Padrões 802.11 e 802.16

Professor
Wagner Gadêa Lorenz
wagnerglorenz@gmail.com

Disciplina: Redes de Computadores II Curso de Sistemas de Informação

Introdução

Como funciona uma Rede Wireless?

As WLANs utilizam sinais de RF ou infravermelho para a transmissão de dados, minimizando a necessidade de cabos de conexão dos usuários à rede.

Introdução

O que são as Wireless LAN?

Uma WLAN é uma rede local sem fio, implementada como extensão ou alternativa para redes convencionais. Dentre os padrões utilizados podemos encontrar:

- IEEE 802.11 (wi-fi)
- IEEE 802.16 (wi-max)
- Bluetooth

Exemplo de Rede Wireless

Princípios Básicos de Wireless LANs

- Oferecem conectividade em áreas difíceis ou impossíveis de se cabear
- Flexibilidade para expansões, mudanças e alteração de Layout
- Permite que aplicações e equipamentos móveis operem como em redes cabeada.

Grupo 802.11

Grupo criado pelo IEEE para desenvolver padrão para a comunicação em redes wireless.

O Projeto IEEE 802.11 tem, entre outras, as seguintes premissas:

- suportar diversos canais;
- · sobrepor diversas redes na mesma área de canal;
- apresentar robustez com relação a interferência;
- possuir mecanismos para evitar nós escondidos;
- oferecer privacidade e controle de acesso ao meio.

Grupo 802.11

Comparação do modelo OSI com o padrão 802.11

Wireless Network

Rede Cabeada Tradicional:

Transmissão de dados via Cabo Metálico e fibra óptica **Rede Sem Fio:**

Transmissão de dados através de rádio frequência.

Formas de operação

As formas de operação ou configuração são:

Ad Hoc Network.

A comunicação entre as estação é point-to-point.

Infrastructure Network.

A comunicação entre as estações é através de um Access Point, meio que permite acesso

das estações sem fio a rede cabeada

Modo de operação Ad Hoc Network

Comunicação entre estações sem uso de Access Points

Modo de operação Infrastructure Network

Comunicação entre estações usando Access Points

Topologia IEEE 802.11

Elementos da topologia:

- BSS Basic Service Set. Corresponde a uma célula de comunicação da rede sem fio.
- STA Wireless LAN Stations. São os diversos clientes da rede.AP Access PointÉ o nó que coordena a comunicação entre as STAs dentro da BSS. Funciona como uma ponte de comunicação entre a rede sem fio e a rede convencional.
- DS Distribution System. Corresponde ao backbone da WLAN, realizando a comunicação entre os APs.
- ESS Extended Service Set. Conjunto de células BSS cujos APs e s t ã o conectados a uma mesma rede convencional. Nestas condições u m a STA pode se movimentar de uma célula BSS para outra permanecendo conectada à rede. Este processo é denominado de Roaming.

Topologia IEEE 802.11

Elementos da topologia:

O mecanismo básico do controle de acesso DFWMAC é ilustrado abaixo, nela podemos observar que uma estação, com quadros para transmitir, deve sentir o meio livre por um período de silêncio mínimo, IFS (Inter Frame Space), antes de utiliza-lo. Utilizando valores diferentes para esse período. O DFWMAC define três prioridades de acesso ao meio

Distributed Inter Frame Spacing (DIFS) – espaço entre quadros da DCF (Função de Coordenação Distribuída), este parâmetro indica o maior tempo de espera, portanto a menor prioridade; ele monitora o meio, aguardando no mínimo um intervalo de silêncio para transmitir os dados.

- Priority Inter Frame Space (PIFS) espaço entre quadros da PCF (Função de Coordenação Pontual), um tempo de espera entre o DIFS e o SIFS (prioridade média), é usado para o serviço de acesso com retardo, ou seja um ponto de acesso controlando outros nós, so precisa esperar um tempo PIFS para acessar o meio.
- · Short Inter Frame Space (SIFS) é usado para transmissão de quadros carregando respostas imediatas (curtas), como ACK que possuem a mais alta prioridade.

Representa o método de acesso básico do protocolo DFWMAC. É uma função conhecida como CSMA/CA (Carrier Sense Multiple Access / Collision Avoidance) com reconhecimento.

A DCF trabalha semelhantemente a função CSMA/CD da tecnologia de rede local cabeada (Padrão Ethernet 802.3), apenas com uma diferença: o protocolo CSMA/CD do Ethernet controla as colisões quando elas ocorrem, enquanto que o protocolo CSMA/CA do padrão sem fio apenas tenta evitar as colisões.

A utilização dessa função distribuída é obrigatória para todas as estações e pontos de acesso (APs), nas configurações Ad Hoc e com infra-estrutura, e ela, a DCF, trabalha da seguinte maneira, quando uma estação deseja transmitir.

A DCF, trabalha da seguinte maneira, quando uma estação deseja transmitir:

- a estação sente o meio para determinar se outra estação já está transmitindo.
- se o meio estiver livre há pelo menos um intervalo de tempo DIFS, a estação transmite seu quadro imediatamente, caso contrário, ela aguarda DIFS novamente, cada estação escolhe um tempo aleatório de retirada (Back-off time) e atrasa esse tempo aleatório sua tentativa de acesso ao meio. Se ao terminar seu tempo de back-off a estação encontrar o meio livre, ela transmitirá.
- Esse tempo de back-off é escolhido por cada estação respeitando um limite máximo, que pode variar de acordo com a carga de utilização da rede. Se a rede está muito carregada, esse limite máximo para o tempo de retirada vai dobrando a cada colisão até chegar ao limite máximo de 255 ms. · após cada transmissão com ou sem colisão, a rede fica em um modo onde as estações só podem começar a transmitir em intervalos de tempo a elas pré-alocados.

A DCF, trabalha da seguinte maneira, quando uma estação deseja transmitir:

- ao findar uma transmissão, as estações alocadas ao primeiro intervalo têm o direito de transmitir. Se não o fazem, o direito passa as estações alocadas ao segundo intervalo, e assim sucessivamente até que ocorra uma transmissão, quando todo o processo reinicia.
- se todos os intervalos não são utilizados, a rede entra então no estado onde o CSMA comum é usado para acesso, podendo dessa forma ocorrer colisões.

- Para melhorar a transmissão de dados, o protocolo DFWMAC acrescenta ao método CSMA/CA com reconhecimento, um mecanismo opcional que envolve a troca de quadros de controle RTS (Request To Send) e CTS (Clear To Send) antes da transmissão de quadros de dados.
- Uma estação, após aguardar DIFS e seu tempo de retirada aleatório, antes de efetivamente transmitir o quadro de dados, transmite um quadro de controle RTS, que carrega uma estimativa da duração no tempo da futura transmissão do quadro de dados e o ACK associado a este, além do destinatário da transmissão de dados por vir..

- A estação de destino ao receber o quadro de controle RTS acerta o seu Vetor de Alocação de Rede (NAV). O NAV especifica quando uma estação tentará acessar o meio novamente. Em resposta ao RTS, o receptor envia um quadro de controle CTS avisando que está pronto para receber o quadro de dados. O CTS informa as demais estações sobre a transmissão que vai ocorrer, fazendo com que estas também acertem seus NAVs. Agora, todas as estações estão informadas sobre a transmissão e irão esperar para acessar o meio. Só então, a estação transmissora envia o quadro de dados após SIFS, que deve ser respondido com um reconhecimento (ack) enviado pela estação receptora.
- Neste caso, uma colisão so acontecerá se duas estações enviarem um RTS ao mesmo tempo. O RTS só deve ser usado quando temos um quadro maior, pois seu uso acarreta uma sobrecarga na rede (overhead).

Tecnologia Wi-fi

	Freqüências	Técnica de Modulação	Taxa de Dados
802.11b	2400-2483,5 MHz	BPSK, QPSK e CCK	até 11 Mbit/s
802.11g		OFDM, QPSK e QAM	até 54 Mbit/s
802.11a	5150-5350 MHz 5470-5725 MHz* 5725-5850 MHz	BPSK/QPSK, 16- QAM ou 64- QAM	até 54 Mbit/s

Tecnologia Wi-fi

Técnicas de Modulação

 DSSS (Direct Sequence Spread Spectrum) é o espalhamento espectral por sequência direta.

 OFDM (Orthogonal Frequency Division Multiplexing) ou Multiplexação Ortogonal por Divisão de Frequência é uma técnica de modulação mais eficiente que o DSSS.

Segurança

Múltiplos níveis de segurança

Nível 1

Tecnologia Spread Spectrum Codifica e espalha informação pela banda

Nível 2

Código de Rede (SSID / MAC)

Definido pelo administrador da rede

Nível 3

Login e senha

Acesso restrito IEEE 802.1x

Nível 4

Criptografia WEP (40 / 128 bits e 64 / 128 / 256 bits)

Barreiras

RF Barreira Criticidade Exemplos:

Ar Minima

Madeira Baixa Divisórias

Gessor Baixa Paredes Internas

Material Sintetico Baixa Divisórias

Asbestos Baixa Tetos

Vidros Baixa Janelas

Agua Media Madeiras Umidas, Aquarios

Tijolos Media Paredes Internas e Externas

Marmore Media Paredes Internas

Rolo de Papel Alta Rolos de papel

Concreto Alta Pisos. Paredes externas

Vidro a prova de balas Alta Salas de segurança

Metal Muito Alta Mesas, divisórias de metal

Desempenho em função do layout

- A situação dos Aps dependerá das características de construção da área.
- Paredes muito grossas ou com estrutura metálica.
- Os móveis do escritório, podem criar sombras dentro da área de cobertura.
- Interferência de RF na área de instalação dos APs.
- Mediante a utilização de ferramentas que mostrem a qualidade de enlace, é possível criar um mapa de cobertura.

Vantagens

Livre de Cabeamento – Elimina a necessidade de passar cabos por tetos e paredes

Redução do Custo Agregado – Menos necessidade de manutenção, fácil expansão e robustez, fatores que amenizam o tempo para recuperação de gastos empregados.

Alta Mobilidade – Roaming local e acesso imediato a outras redes durante visitas a clientes.

Flexibilidade - Permite que a rede alcance lugares onde os cabos metálicos não poderiam chegar

Escalabilidade – Diversas tecnologias de configurações facilmente alteradas.

O padrão IEEE 802.16, completo em outubro de 2001 e publicado em 8 de abril de 2002, especifica uma interface sem fio para redes metropolitanas (WMAN). Foi atribuído a este padrão, o nome WiMAX (Worldwide Interoperability for Microwave Access/Interoperabilidade Mundial para Acesso de Micro-ondas).

Este padrão é similar ao padrão Wi-Fi (IEEE 802.11), que já é bastante difundido, porém agrega conhecimentos e recursos mais recentes, visando uma melhor performance de comunicação.

A tecnologia foi desenvolvida por um pool de empresas, lideradas pela Intel e pela Nokia, com base na norma 802.16 da Institute of Electrical and Electronics Engineers (IEEE).

Além de operar em uma ampla faixa de freqüência – de 2 a 66 GHz – as principais vantagens estão no tripé banda larga, longo alcance e dispensa de visada, o que não ocorre com outras tecnologias sem-fio.

Prós

- Diminui custos de infra-estrutura de banda larga para conexão com o usuário final (last mile);
- Deverá ter uma aceitação grande por usuários, seguindo a tecnologia Wi-Fi (IEEE 802.11) e diminuindo ainda mais os custos da tecnologia;
- Possibilitará, segundo a especificação, altas taxas de transmissão de dados;
- Possibilitará a criação de uma rede de cobertura de conexão de Internet similar à de cobertura celular, permitindo acesso à Internet mesmo em movimento;
- Existe amplo suporte do desenvolvimento e aprimoramento desta tecnologia por parte da indústria.

Contras

- Nos testes atualmente realizados mostrou-se como grande frustração quanto à taxa de transmissão;
- Apesar das muitas iniciativas e pesquisas, essa tecnologia ainda tem um período de maturação a ser atingido;
- Pode, em alguns países, haver sobreposição de utilização de freqüência com algum serviço já existente;
- Nas faixas de frequência mais altas existem limitações quanto a interferências pela chuva, causando diminuição de taxas de transferências e dos raios de cobertura.

Contras

- Nos testes atualmente realizados mostrou-se como grande frustração quanto à taxa de transmissão;
- Apesar das muitas iniciativas e pesquisas, essa tecnologia ainda tem um período de maturação a ser atingido;
- Pode, em alguns países, haver sobreposição de utilização de freqüência com algum serviço já existente;
- Nas faixas de frequência mais altas existem limitações quanto a interferências pela chuva, causando diminuição de taxas de transferências e dos raios de cobertura.

Dúvidas

- Conteúdo
 - Moodle
 - (<u>http://wagnerglorenz.com/moodle/</u>)
- Dúvidas
 - wagnerglorenz@gmail.com

Referências Bibliográficas

- Tanembaum, A. S. Redes de Computadores, Tradução da 4ª Edição. Rio de Janeiro: Campus, 2003.
- Tanembaum, A. S. Redes de Computadores, Tradução da 5ª Edição. Rio de Janeiro: Pearson, 2011. http:// ulbra.bv3.digitalpages.com.br/users/publications/ 9788576059240/pages/-18
- Material Prof: Diovani Milhorim