Lecture Notes

Kyle Chui

2022-01-04

${\bf Contents}$

1	Lecture 1 1.1 Properties of Probability	3
2	Lecture 22.1 Inclusion-Exclusion Principle2.2 Mutual Independence	5 5 6
3	Lecture 3	7
4	Lecture 4 4.1 Distinguishable Permutations	9 9
5		11 11
6		13 13
7		1 5 15
8	8.1 Expected Value	18 18 18
9	9.1 Special Mathematical Expectations	20 20 21
10	10.1 Binomial Random Variables	23 23 24
11	11.1 Negative Binomial Distribution	27 27 29
12		31 32
13	13.1 Uniform Distribution on an Interval	34 34 34
14	14.1 The Exponential Distribution	36 36 38
15	15.1 The Gamma Distribution	39 39 40
16		42 42

17	Lecture 17 17.1 Bivariate Distributions of the Discrete Type	44 44
18	Lecture 18	46
19	Lecture 19 19.1 The Correlation Coefficient	48 48
20	Lecture 20 20.1 Conditional Expectation	50 50
21	Lecture 21 21.1 Bivariate Distributions of the Continuous Type	53 53
22	Lecture 22	5 5
23	Lecture 2323.1 Functions of Random Variables23.2 Functions of Two Random Variables	
24	Lecture 24 24.1 Several Random Variables	57 57
25	Lecture 25 25.1 Convergence of Real Numbers	58 58
	Lecture 26 26.1 The Central Limit Theorem	59

1 Lecture 1

The goal of this class is to quantify randomness. The main topics for the term are:

- 1. The fundamentals of probability theory, including conditional probability and enumeration arguments.
- 2. Discrete and continuous random variables.
- 3. Sequences of i.i.d. random variables, including the Weak Law of Large Numbers and the Central Limit Theorem.

1.1 Properties of Probability

Probability theory takes place inside a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition. Probability Space

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying:

- 1. A non-empty set Ω , called the *sample space*.
- 2. A set \mathcal{F} of subsets of Ω satisfying certain properties:
 - Elements of \mathcal{F} are called *events*.
 - Events A_1, A_2, \ldots, A_k are called mutually exclusive if they are pairwise disjoint, i.e. if $i \neq j$ then $A_i \cap A_j = \emptyset$.
 - Events A_1, A_2, \ldots, A_k are called *exhaustive* if their union is the sample space, i.e.

$$\bigcup_{j=1}^{k} A_j = \Omega.$$

- For this class you may ignore \mathcal{F} and assume that all subsets of Ω are events.
- 3. A function $\mathbb{P} \colon \mathcal{F} \to [0,1]$, called a *probability measure*, which satisfies:
 - $\mathbb{P}[\Omega] = 1$, or "the probability that something happens is 1".
 - If A_1, A_2, \ldots, A_n are mutually exclusive events, then

$$\mathbb{P}\left[\bigcup_{j=1}^{n} A_j\right] = \sum_{j=1}^{n} \mathbb{P}[A_j].$$

• If A_1, A_2, \ldots are mutually exclusive events, then

$$\mathbb{P}\left[\bigcup_{j=1}^{\infty} A_j\right] = \sum_{j=1}^{\infty} \mathbb{P}[A_j].$$

Example. Suppose I flip two fair coins. Then the sample space can be written as $\Omega = \{HH, HT, TH, TT\}$. The probability measure should be defined as

$$P[HH] = \frac{1}{4}$$

$$P[HT] = \frac{1}{4}$$

$$P[TH] = \frac{1}{4}$$

$$P[TT] = \frac{1}{4}$$

The probability of getting exactly one head is hence $\mathbb{P}[\{HT, TH\}] = \mathbb{P}[HT] + \mathbb{P}[TH] = \frac{1}{2}$.

Theorem. $\mathbb{P}[\varnothing] = 0$.

Proof. We know that Ω and \varnothing are mutually exclusive, since, $\Omega \cap \varnothing = \varnothing$. Thus

$$\begin{split} \mathbb{P}[\Omega] &= \mathbb{P}[\Omega \cup \varnothing] \\ &= \mathbb{P}[\Omega] + \mathbb{P}[\varnothing], \end{split}$$

and so $\mathbb{P}[\varnothing] = 0$.

Theorem. If $A \subseteq \Omega$ is an event and $A' = \Omega \setminus A$ then

$$\mathbb{P}[A] = 1 - \mathbb{P}[A'].$$

Proof. Since we have that $A' = \Omega \setminus A$, we know that $A' \cap A = \emptyset$, so they are mutually exclusive. Thus we have

$$\begin{split} \mathbb{P}[\Omega] &= \mathbb{P}[A \cup A'] \\ 1 &= \mathbb{P}[A] + \mathbb{P}[A'] \\ \mathbb{P}[A] &= 1 - \mathbb{P}[A']. \end{split}$$

Theorem. If $A \subseteq B$ then

$$\mathbb{P}[B \setminus A] = \mathbb{P}[B] - \mathbb{P}[A].$$

Proof. We know that $B = A \cup (B \setminus A)$ and $A \cap (B \setminus A) = \emptyset$. Hence

$$\mathbb{P}[B] = \mathbb{P}[A \cup (B \setminus A)] = \mathbb{P}[A] + \mathbb{P}[B \setminus A],$$

and the result follows.

Theorem. If $A \subseteq B$ then $\mathbb{P}[A] \leq \mathbb{P}[B]$.

Proof. From the previous theorem we have

$$\mathbb{P}[A] \le \mathbb{P}[A] + \mathbb{P}[B \setminus A] = \mathbb{P}[B].$$

2 Lecture 2

2.1 Inclusion-Exclusion Principle

Theorem — Inclusion-Exclusion Principle

If $A, B \subseteq \Omega$ are events, then

$$\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \cap B].$$

Proof. Observe that we may write

$$A \cup B = [A \setminus (A \cap B)] \cup [A \cap B] \cup [B \setminus (A \cap B)],$$

where $A \cap B$, $B \setminus (A \cap B)$, and $A \setminus (A \cap B)$ are mutually exclusive. Hence

$$\begin{split} \mathbb{P}[A \cup B] &= \mathbb{P}[A \setminus (A \cap B)] + \mathbb{P}[B \setminus (A \cap B)] + \mathbb{P}[A \cap B] \\ &= (\mathbb{P}[A] - \mathbb{P}[A \cap B]) + (\mathbb{P}[B] - \mathbb{P}[A \cap B]) + \mathbb{P}[A \cap B] \\ &= \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \cap B]. \end{split}$$

Theorem — Union Bound

If $A_1, A_2, \ldots, A_n \subseteq \Omega$ are events, then

$$\mathbb{P}\left[\bigcup_{j=1}^{n} A_j\right] \le \sum_{j=1}^{n} \mathbb{P}[A_j].$$

Proof. We proceed via proof by induction. Observe that for n = 1, we have $\mathbb{P}[A_1] \leq \mathbb{P}[A_1]$, which is obviously true. Suppose that this statements holds for some $k \geq 1$. Then

$$\begin{split} \mathbb{P}\left[\bigcup_{j=1}^{k+1}A_{j}\right] &= \mathbb{P}\left[\left(\bigcup_{j=1}^{k}A_{j}\right) \cup A_{k+1}\right] \\ &= \mathbb{P}\left[\bigcup_{j=1}^{k}A_{j}\right] + \mathbb{P}[A_{k+1}] - \mathbb{P}\left[\left(\bigcup_{j=1}^{k}A_{j}\right) \cap A_{k+1}\right] \\ &\leq \mathbb{P}\left[\bigcup_{j=1}^{k}A_{j}\right] + \mathbb{P}[A_{k+1}] \\ &\leq \sum_{j=1}^{k}\mathbb{P}[A_{j}] + \mathbb{P}[A_{k+1}] \\ &= \sum_{j=1}^{k+1}\mathbb{P}[A_{j}]. \end{split}$$

Hence the statement holds for k + 1, and so holds for all natural numbers n.

2.2 Mutual Independence

 $\textbf{Definition.}\ \ Independence$

We say that two events $A, B \subseteq \Omega$ are independent if

$$\mathbb{P}[A\cap B]=\mathbb{P}[A]\mathbb{P}[B].$$

If two events are not independent, then we say that they are dependent.

Definition. Mutual Independence

We say that events $A_1, \ldots, A_n \subseteq \Omega$ are mutually independent if, given any $1 \le k \le n$ and $1 \le j_1 < j_2 \cdots < j_k \le n$ we have

$$\mathbb{P}\left[\bigcap_{\ell=1}^k A_{j_\ell}\right] = \prod_{\ell=1}^k \mathbb{P}[A_{j_\ell}].$$

3 Lecture 3

Theorem — Multiplication Principle

Suppose I run r mutually independent experiments so that

- The 1st experiment has n_1 possible outcomes.
- The 2^{nd} experiment has n_2 possible outcomes.
- ...
- The r^{th} experiment has n_r possible outcomes.

The composite experiment then has $n_1 \cdot n_2 \cdot \cdots \cdot n_r$ outcomes.

In some experiments we care about taking samples of size r from a set of n objects.

- We can seek ordered or unordered samples.
- We can do this with or without replacement.

Theorem. There are n^r possible choices of an *ordered* sample of size r from a set of n objects with replacement.

Proof. We run r experiments corresponding to each choice. For each choice, we have n possible outcomes because we are performing the choices with replacement. The Multiplication Principle tells us that there are $n \cdot n \cdot \dots \cdot n = n^r$ outcomes.

Theorem. There are

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

ordered samples of size r from a set of n objects without replacement. The number ${}_{n}Pr$ is known as the number of permutations of n objects, taken r at a time.

Proof. Each choice is an independent experiment:

- 1st choice: n outcomes
- 2^{nd} choice: n-1 outcomes
- 3^{rd} choice: n-2 outcomes :
- r^{th} : n-(r-1) outcomes

Hence the composite experiment has

$$n \cdot (n-1) \cdot \dots \cdot (n-r+1) = {}_{n}P_{r}$$

outcomes.

Theorem. There are

$${}_{n}C_{r} = \frac{n!}{(n-r)!r!}$$

unordered samples of size r from a set of n objects without replacement.

Proof. From the previous theorem, there are ${}_{n}P_{r}$ ordered samples of size r from n objects without

replacement. However, we have over counted because our sample will show up r! times (in every possible permutation). Hence we divide by r! to get

$$_{n}C_{r} = \frac{_{n}P_{r}}{r!} = \frac{n!}{(n-r)!r!}.$$

Note. ${}_{n}C_{r} = {}_{n}C_{n-r}$.

4 Lecture 4

- There are n^r ordered samples of size r from n objects with replacement.
- There are ${}_{n}P_{r}$ ordered samples of size r from n objects without replacement.
- There are ${}_{n}C_{r} = \frac{n!}{r!(n-r)!}$ unordered samples of size r from n objects without replacement.
- There are $_{n+r-1}C_r = \frac{(n+r-1)!}{r!(n-1)!}$ unordered samples of size r from n objects with replacement.

4.1 Distinguishable Permutations

- Suppose we are given n objects, but some of them are identical.
- How many distinguishable permutations of the n objects are there?

Theorem. Suppose you have:

- n_1 objects of type 1,
- n_2 objects of type 2,
- ..
- n_r objects of type r.

Let $n = n_1 + n_2 + \cdots + n_r$. Then the number of distinguishable permutations is

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}.$$

Proof. We have n locations.

- First choose n_1 locations for type 1 objects: ${}_{n}C_{n_1}$ choices.
- Then choose n_2 locations for type 2 objects: $n_{-n_1}C_{n_2}$ choices.
- ...
- Finally we choose n_r locations for type r objects: $n_{-n_1-\cdots-n_{r-1}}C_{n_r}$ choices.

Using the multiplication principle to take the product of all of these combinations, we have

$$\binom{n}{n_1, \dots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}.$$

Note. An alternate way to think about this theorem is to first consider how many regular permutations of n objects there are (n!), and then divide by how many possible times we over count $(n_k!)$ for each $1 \le k \le r$.

4.2 The Binomial Theorem

Theorem — Binomial Theorem

If $n \geq 0$ then

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r},$$

where the binomial coefficient is

$$\binom{n}{r} = {}_{n}C_{r}.$$

Proof. If we multiply out $(x+y)^n = \underbrace{(x+y)\cdots(x+y)}_{n \text{ times}}$ without using the fact that multiplication is

commutative, we see that the number of times x^ry^{n-r} appears is equal to how many different ways there are to rearrange r "x" terms in n total terms.

Theorem. We have

$$\sum_{r=0}^{n} \binom{n}{r} = 2^{n}.$$

Theorem. If $n, r \geq 0$ then

$$(x_1 + x_2 + \dots + x_r)^n = \sum_{n_1 + \dots + n_r = n} \binom{n}{n_1, n_2, \dots, n_r} x_1^{n_1} x_2^{n_2} \cdots x_r^{n_r}.$$

Proof. Similar to the binomial theorem, we have that to get each term we just need to find the number of distinguishable permutations of n_1 terms of $x_1, ..., n_r$ terms of x_r , which is our multinomial coefficient from before.

5 Lecture 5

5.1 Conditional Probability

Suppose that $A, B \subseteq \Omega$ are events. If we know that the event B occurs, how does this affect the probability that A occurs?

We write $\mathbb{P}[A]$ for the probability of A, and $\mathbb{P}[A \mid B]$ for the probability of A conditioned on B.

Example.

- Suppose that 5% of UCLA students take a math class and 6% take a physics class.
- Suppose that 80% of UCLA students that take a math class also take a physics class.
- If we know that a randomly chosen student takes a math class, what is the probability they take a physics class?

Let us define

 $\Omega = \{ All \ UCLA \ students \},$

 $A = \{ \text{Students taking a physics class} \},$

 $B = \{ \text{Students taking a math class} \}.$

Then we want to find $\mathbb{P}[A \mid B]$. Thus we have

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$$
$$= \frac{0.05 \cdot 0.8}{0.05}$$
$$= 0.8.$$

Definition. Conditional Probability

Suppose A, B are events. Then the probability of A conditioned on B is given by

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}.$$

Theorem. If $B \subseteq \Omega$ is an event so that $\mathbb{P}[B] \neq 0$ then $\mathbb{P}[\cdot \mid B]$ is a probability measure. Precisely:

• $\mathbb{P}[\Omega \mid B] = 1$.

Proof. Observe that

$$\mathbb{P}[\Omega \mid B] = \frac{\mathbb{P}[\Omega \cap B]}{\mathbb{P}[B]} = \frac{\mathbb{P}[B]}{\mathbb{P}[B]} = 1.$$

• If A_1, A_2, \ldots, A_n are mutually exclusive events then

$$\mathbb{P}\left[\left.\bigcup_{j=1}^{n} A_{j} \middle| B\right] = \sum_{j=1}^{n} \mathbb{P}[A_{j} \mid B].$$

Proof. If A_1, \ldots, A_n are mutually exclusive, so are $A_1 \cap B, A_2 \cap B, \ldots, A_n \cap B$. Then

$$\mathbb{P}\left[\bigcup_{j=1}^{n} A_{j} \middle| B\right] = \frac{\mathbb{P}\left[\left(\bigcup_{j=1}^{n} A_{j}\right) \cap B\right]}{\mathbb{P}[B]}$$

$$= \frac{\mathbb{P}\left[\bigcup_{j=1}^{n} (A_{j} \cap B)\right]}{\mathbb{P}[B]}$$

$$= \sum_{j=1}^{n} \frac{\mathbb{P}[A_{j} \cap B]}{\mathbb{P}[B]}$$

$$= \sum_{j=1}^{n} \mathbb{P}[A_{j} \mid B].$$

• If A_1, A_2, \ldots, A_n are mutually exclusive events then

$$\mathbb{P}\left[\left|\bigcup_{j=1}^{\infty} A_j\right| B\right] = \sum_{j=1}^{\infty} \mathbb{P}[A_j \mid B].$$

Proof. The proof for this is very similar to the one above.

Theorem. If A and B are independent events so that $\mathbb{P}[B] \neq 0$ then

$$\mathbb{P}[A \mid B] = \mathbb{P}[A].$$

Proof. Observe that

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} = \frac{\mathbb{P}[A] \cdot \mathbb{P}[B]}{\mathbb{P}[B]} = \mathbb{P}[A].$$

6 Lecture 6

Theorem — The Law of Total Probability

Let $A \subseteq \Omega$ be an event and $B_1, B_2, \dots, B_n \subseteq \Omega$ be mutually exclusive events so that $\mathbb{P}[B_j] \neq 0$ and

$$A \subseteq \bigcup_{j=1}^{n} B_j.$$

Then

$$\mathbb{P}[A] = \sum_{j=1}^{n} \mathbb{P}[A \mid B_j] \mathbb{P}[B_j].$$

Proof. As $A \subseteq \bigcup_{j=1}^n B_j$ we have

$$A = A \cap \left[\bigcup_{j=1}^{n} B_j\right] = \bigcup_{j=1}^{n} (A \cap B_j).$$

As all of the B_j are mutually exclusive, so are $A \cap B_j$. Hence

$$\mathbb{P}[A] = \mathbb{P}\left[\bigcup_{j=1}^{n} (A \cap B_j)\right]$$
$$= \sum_{j=1}^{n} \mathbb{P}[A \cap B_j]$$
$$= \sum_{j=1}^{n} \mathbb{P}[A \mid B_j] \mathbb{P}[B_j].$$

Note. The same result is true if we have a countable number of events B_1, B_2, \ldots

6.1 Bayes' Theorem

Theorem — Bayes' Theorem

If $A, B \subseteq \Omega$ are events so that $\mathbb{P}[A], \mathbb{P}[B] \neq 0$ then

$$\mathbb{P}[B \mid A] = \frac{\mathbb{P}[A \mid B] \mathbb{P}[B]}{\mathbb{P}[A]}$$

Proof. By definition, we have

$$\begin{split} \mathbb{P}[B \mid A] &= \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[A]} \\ &= \frac{\mathbb{P}[A \mid B]\mathbb{P}[B]}{\mathbb{P}[A]}. \end{split}$$

Theorem — Bayes' Theorem (Improved Version)

If $A \subseteq \Omega$ is an event and $B_1, B_2, \dots, B_n \subseteq \Omega$ are mutually exclusive events so that $\mathbb{P}[A], \mathbb{P}[B_j] \neq 0$ and

$$A \subseteq \bigcup_{j=1}^{n} B_j,$$

then for any $1 \le k \le n$ we have

$$\mathbb{P}[B_k \mid A] = \frac{\mathbb{P}[A \mid B_k] \mathbb{P}[B_k]}{\sum_{j=1}^n \mathbb{P}[A \mid B_j] \mathbb{P}[B_j]}.$$

Proof. The Law of Total Probability tells us that

$$\mathbb{P}[A] = \sum_{j=1}^{n} \mathbb{P}[A \mid B_j] \mathbb{P}[B_j].$$

Hence by Bayes' Theorem we have

$$\mathbb{P}[B_k \mid A] = \frac{\mathbb{P}[A \mid B_k] \mathbb{P}[B_k]}{\mathbb{P}[A]}$$
$$= \frac{\mathbb{P}[A \mid B_k] \mathbb{P}[B_k]}{\sum_{j=1}^n \mathbb{P}[A \mid B_j] \mathbb{P}[B_j]}.$$

7 Lecture 7

7.1 Discrete Random Variables

Definition. Random Variable

Given a set S, a random variable is a function $X: \Omega \to S$ satisfying certain properties. For the sake of this class, we will assume that all functions $X: \Omega \to S$ are random variables. Some notation follows:

$$\begin{split} \mathbb{P}[X = x] &= \mathbb{P}\{\omega \in \Omega \mid X(\omega) = x\}, \\ \mathbb{P}[X \in A] &= \mathbb{P}\{\omega \in \Omega \mid X(\omega) \in A\}. \end{split}$$

Definition. Discrete Random Variable

Let $X : \Omega \to S$ be a random variable. We say that X is a discrete random variable if $S \subseteq \mathbb{R}$ is a countable set. We define the probability mass function (PMF) of X to be the function $p_X : S \to [0, 1]$ given by

$$p_X(x) = \mathbb{P}[X = x].$$

We define the *cumulative distribution function* (CDF) of X to be the function $F_X : \mathbb{R} \to [0,1]$ given by

$$F_X(x) = \mathbb{P}[X \le x].$$

We say that two random variables X, Y are identically distributed if they have the same CDF, and we write $X \sim Y$.

Definition. Uniform Distribution

Let $m \geq 1$. We say that a discrete random variable X is uniformly distributed on $\{1, 2, ..., m\}$ and write $X \sim \text{Uniform}(\{1, 2, ..., m\})$ if it has PMF

$$p_X(x) = \frac{1}{m}$$
 if $x \in \{1, 2, ..., m\}$.

If $X \sim \text{Uniform}(\{1, 2, \dots, m\})$, then it has CDF

$$F_X(x) = \begin{cases} 0 & \text{if } x < 1, \\ \frac{k}{m} & \text{if } k \le x < k+1 \text{ and } k \in \{1, 2, \dots, m-1\}, \\ 1 & \text{if } x \ge m. \end{cases}$$

If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$ and $A \subseteq \mathbb{R}$ is any set then

$$\mathbb{P}[X \in A] = \sum_{x \in A \cap S} p_X(x).$$

Proof. Since S is countable, we know that $A \cap S = \{a_1, a_2, \dots, a_n\}$ (or $\{a_1, a_2, \dots\}$). Hence

$$\mathbb{P}[X \in A] = \mathbb{P}[X \in \{a_1, \dots, a_n\}]$$

$$= \mathbb{P}\left[\bigcup_{j=1}^n \{X = a_j\}\right]$$

$$= \sum_{j=1}^n \mathbb{P}[X = a_j]$$

$$= \sum_{j=1}^n p_X(a_j)$$

$$= \sum_{x \in A \cap S} p_X(x).$$

If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$ then

$$F_X(x) = \sum_{\substack{y \le x \\ y \in S}} p_X(y).$$

Proof. Observe that

$$\begin{aligned} F_X(x) &= \mathbb{P}[X \leq x] \\ &= \mathbb{P}[X \in (-\infty, x]] \\ &= \sum_{y \in (-\infty, x] \cap S} p_X(y) \\ &= \sum_{\substack{y \leq x \\ y \in S}} p_X(y). \end{aligned}$$

If X is a discrete random variable and a < b then

$$\mathbb{P}[a < X < b] = F_X(b) - F_X(a).$$

Proof. Observe that

$$\begin{split} \mathbb{P}[a < X \leq b] &= \mathbb{P}[X \in (a,b]] \\ &= \sum_{x \in (a,b] \cap S} p_X(x) \\ &= \sum_{\substack{x \leq b \\ x \in S}} p_X(x) - \sum_{\substack{x \leq a \\ x \in S}} p_X(x) \\ &= F_X(b) - F_X(a). \end{split}$$

If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$ then

$$\sum_{x \in S} p_X(x) = 1.$$

Proof. Observe that

$$\sum_{x \in S} p_X(x) = \sum_{x \in \mathbb{R} \cap S}$$

$$= \mathbb{P}[X \in R]$$

$$= \mathbb{P}[\Omega]$$

$$= 1.$$

8 Lecture 8

8.1 Expected Value

Definition. Expected Value

If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$, we define its *expected value* to be

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot p_X(x)$$

provided the sum converges in a suitable sense.

Note. We often use the notation $\mu_X = \mathbb{E}[X]$ to denote the "mean" or "average" value.

8.1.1 Bernoulli Distribution

Definition. Bernoulli Random Variable

Let $p \in (0,1)$. We say that a discrete random variable X is a Bernoulli random variable and write $X \sim \text{Bernoulli}(p)$ if it has PMF

$$p_X(x) = \begin{cases} p & \text{if } x = 1, \\ 1 - p & \text{if } x = 0. \end{cases}$$

Then by definition we have

$$\mathbb{E}[X] = 0 \cdot p_X(0) + 1 \cdot p_X(1) = p.$$

Let X be a discrete random variable. If $a \in \mathbb{R}$ then $\mathbb{E}[a] = a$.

Proof. Let g(x) = a. Then

$$\mathbb{E}[a] = \mathbb{E}[g(X)]$$

$$= \sum_{x \in S} g(x)p_X(x)$$

$$= \sum_{x \in S} ap_X(x)$$

$$= a \sum_{x \in S} p_X(x)$$

$$= a,$$

since
$$\sum_{x \in S} p_X(x) = 1$$
.

Let X be a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$. If $a, b \in \mathbb{R}$ and $g, h \colon S \to \mathbb{R}$ then

$$\mathbb{E}[ag(X) + bh(X)] = a\mathbb{E}[g(X)] + b\mathbb{E}[h(X)].$$

Proof. By definition, we have

$$\mathbb{E}[ag(X) + bh(X)] = \sum_{x \in S} (ag(x) + bh(x))p_X(x)$$

$$= a\sum_{x \in S} g(x)p_X(x) + b\sum_{x \in S} h(x)p_X(x)$$

$$= a\mathbb{E}[g(X)] + b\mathbb{E}[h(X)].$$

Let X be a discrete random variable taking values in a countable set $S\subseteq \mathbb{R}$. If $g,h\colon S\to \mathbb{R}$ satisfy $g(x)\leq h(x)$ for all $x\in S$ then

$$\mathbb{E}[g(X)] \le \mathbb{E}[h(X)].$$

Proof. Observe that

$$\mathbb{E}[g(X)] = \sum_{x \in S} g(x) p_X(x)$$

$$\leq \sum_{x \in S} h(x) p_X(x) \qquad (g(x) \leq h(x), p_X(x) > 0)$$

$$= \mathbb{E}[h(X)].$$

9 Lecture 9

9.1 Special Mathematical Expectations

Definition. Moments

Let X be a discrete random variable taking values in a discrete set $S \subseteq \mathbb{R}$ and $b \in \mathbb{R}$. We define the r^{th} moment of X about b to be

$$\mathbb{E}[(X-b)^r] = \sum_{x \in S} (x-b)^r p_X(x).$$

When b = 0 we refer to this simply as the r^{th} moment of X.

Definition.

Let X be a discrete random variable. We define the *variance* of X to be

$$\operatorname{var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$$

whenever it converges. We use the notation $\sigma_X^2 = \text{var}(X)$. The standard deviation of X is $\sigma_X = \sqrt{\text{var}(X)}$.

Theorem. If X is a discrete random variable and $a, b \in \mathbb{R}$ then:

- $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- $\operatorname{var}(aX + b) = a^2 \operatorname{var}[X]$

Proof. Observe that

$$\begin{split} \mathbb{E}[aX+b] &= \sum_{x \in S} (ax+b) p_X(x) \\ &= a \sum_{x \in S} x \cdot p_X(x) + \sum_{x \in S} b \cdot p_X(x) \\ &= a \mathbb{E}[X] + b. \end{split}$$

Furthermore, we have

$$\operatorname{var}(aX + b) = \mathbb{E}\left[(aX + b - \mathbb{E}[aX + b])^{2}\right]$$

$$= \mathbb{E}\left[(aX + b - a\mathbb{E}[X] - b)^{2}\right]$$

$$= \mathbb{E}\left[(aX - a\mathbb{E}[X])^{2}\right]$$

$$= a^{2} \cdot \mathbb{E}\left[(X - \mathbb{E}[X])^{2}\right]$$

$$= a^{2} \operatorname{var}(X).$$

Theorem. If X is a discrete random variable then

$$var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

Proof. Let $\mu_X = \mathbb{E}[X]$, so then

$$var(X) = \mathbb{E} [(X - \mu_X)^2]$$

$$= \mathbb{E}[X^2 - 2\mu_X X + \mu_X^2]$$

$$= \mathbb{E}[X^2] - 2\mu_X \mathbb{E}[X] + \mu_X^2$$

$$= \mathbb{E}[X^2] - 2\mathbb{E}[X]^2 + \mathbb{E}[X]^2$$

$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Example. Let $m \ge 1$ and $X \sim \text{Uniform}(\{1, 2, ..., m\})$. What is var(X)? By using a Gaussian sum, we can see that $\mathbb{E}[X] = \frac{m+1}{2}$. To compute $\mathbb{E}[X^2]$, we have

$$\mathbb{E}[X^2] = \sum_{x=1}^m x^2 \cdot \frac{1}{m}$$

$$= \frac{1}{m} \cdot \frac{m \cdot (m+1) \cdot (2m+1)}{6}$$

$$= \frac{(m+1)(2m+1)}{6}.$$

Hence the variance is

$$\frac{1}{6}(m+1)(2m+1) - \left(\frac{m+1}{2}\right)^2 = \frac{m^2-1}{12}.$$

9.2 Moment Generating Functions

Definition. Moment Generating Function (MGF)

If X is a discrete random variable we define the *Moment Generating Function* (MGF) of X to be the function

$$M_X(t) = \mathbb{E}[e^{tX}],$$

whenever it exists.

Theorem. Let X be a discrete random variable with MGF $M_X(t)$ that is well-defined and smooth for $t \in (-\delta, \delta)$. Then

$$\frac{\mathrm{d}^r}{\mathrm{d}t^r} M_X|_{t=0} = \mathbb{E}[X^r].$$

Proof. Let S be the set of outputs of X. Then

$$M_X(t) = \mathbb{E}[e^{tX}]$$
$$= \sum_{x \in S} e^{tx} p_X(x).$$

Hence we have

$$\begin{split} \frac{\partial^r}{\partial t^r} M_X(t) &= \frac{\partial^r}{\partial t^r} \sum_{x \in S} e^{tx} p_X(x) \\ &= \sum_{x \in S} x^r e^{tx} p_X(x). \end{split}$$

Therefore

$$\frac{\partial^r}{\partial t^r} M_X(t)|_{t=0} = \sum_{x \in S} x^r p_X(x) = \mathbb{E}[X^r]$$

Theorem. Let X be a discrete random variable with MGF $M_X(t)$ that is well-defined and smooth for $t \in (-\delta, \delta)$.

- $\frac{\mathrm{d}}{\mathrm{d}t} \ln M_X|_{t=0} = \mathbb{E}[X].$
- $\frac{\mathrm{d}^2}{\mathrm{d}t^2} \ln M_X|_{t=0} = \mathrm{var}(X).$

10 Lecture 10

10.1 Binomial Random Variables

Definition. Binomial Random Variable

A Bernoulli trial is an experiment that has probability $p \in (0,1)$ of success and probability 1-p of failure.

- Suppose we run $n \geq 1$ independent, identical Bernoulli trials, and let X be the number of successes.
- Then we know that X is a discrete random variable taking values in the set $S = \{0, 1, \dots, n\}$.
- We say that X is a Binomial random variable with parameters n, p and write $X \sim \text{Binomial}(n, p)$.

Theorem. If $X \sim \text{Binomial}(n, p)$ then its PMF is

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 if $x \in \{0, 1, \dots, n\}$.

Proof. Recall that $p_X(x) = \mathbb{P}[X = x]$. We know that there are $\binom{n}{x}$ ways to arrange exactly x "successes" in a total of n trials. Since each trial has a "success" rate of p, and a "failure" rate of 1-p, and they are independent, each arrangement has a $p^x(1-p)^{n-x}$ probability of occurring. Hence the total probability of any of the arrangements occurring (as they are mutually independent) is

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

Note. By the Binomial Theorem we have

$$\sum_{x=0}^{n} p_X(x) = (p + (1-p))^n = 1.$$

Theorem. If $X \sim \text{Binomial}(n, p)$, its MGF is

$$M_X(t) = (1 - p + pe^t)^n$$
.

Proof. We compute

$$M_X(t) = \mathbb{E}[e^{tx}]$$

$$= \sum_{x=0}^n e^{tx} p_X(x)$$

$$= \sum_{x=0}^n e^{tx} \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \sum_{x=0}^n \binom{n}{x} (pe^t)^x (1-p)^{n-x}$$

$$= (1-p+pe^t)^n.$$

Note. Recall that $(1 - p + pe^t)$ is the MFG of the Bernoulli random variable.

Theorem. If $X \sim \text{Binomial}(n, p)$ its mean is

$$\mathbb{E}[X] = np.$$

Proof. Recall that $M_X(t) = (pe^t + 1 - p)^n$ so $M_X'(t) = n(pe^t + 1 - p)^{n-1} \cdot pe^t$. Hence

$$\mathbb{E}[X] = M_X'(0) = n(p+1-p)^{n-1} \cdot p = np.$$

Note. Recall that p is the expected value of the Bernoulli random variable.

Theorem. If $X \sim \text{Binomial}(n, p)$ its variance is

$$var(X) = np(1-p)$$

Proof. Recall that $var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbb{E}[X^2] - (np)^2$. Furthermore, we just showed that

$$M'_X(t) = n(pe^t + 1 - p)^{n-1} \cdot pe^t,$$

so

$$M_X''(t) = n(n-1)(pe^t + 1 - p)^{n-2} \cdot (pe^t)^2 + n(pe^t + 1 - p)^{n-1} \cdot pe^t.$$

Hence

$$\mathbb{E}[X^2] = M_X''(0)$$

$$= n(n-1)(p+1-p)^{n-2} \cdot p^2 + n(p+1-p)^{n-1} \cdot p$$

$$= n(n-1) \cdot p^2 + np.$$

Therefore

$$var(X) = n(n-1) \cdot p^{2} + np - (np)^{2}$$
$$= n^{2}p^{2} - np^{2} + np - n^{2}p^{2}$$
$$= np(1-p).$$

Note. Recall that p(1-p) is the variance of a regular Bernoulli random variable.

10.2 Geometric Random Variables

Definition. Geometric Random Variable

Suppose we repeatedly run independent, identical Bernoulli trials with probability $p \in (0,1)$ of success.

- Let X be the trial on which we first achieve success.
- X is a discrete random variable taking values in the set $S = \{1, 2, 3, \dots\}$.
- We say that X is a geometric random variable with parameter p and write $X \sim \text{Geometric}(p)$.

Note. Sometimes geometric random variables are defined differently, but this is the definition that we will use for this class.

Theorem. If $X \sim \text{Geometric}(p)$ then its PMF is

$$p_X(x) = (1-p)^{x-1}p$$
 if $x \in \{1, 2, 3, \dots\}$.

Proof. The probability that X=x is the probability that we have x-1 failures, followed by a success. Since the events are independent, this gives us the desired result.

Note. For the infinite series version of this, we have

$$\sum_{x=1}^{\infty} p_X(x) = \sum_{x=1}^{\infty} (1-p)^{x-1} p$$
$$= p \sum_{x=1}^{\infty} (1-p)^{x-1}$$
$$= p \cdot \frac{1}{1 - (1-p)}$$
$$= 1.$$

Theorem. If $X \sim \text{Geometric}(p)$ then its MGF is

$$M_X(t) = \frac{e^t p}{1 - (1 - p)e^t}$$
 if $t < -\ln(1 - p)$.

Proof. We have

$$M_X(t) = \mathbb{E}[e^{tX}]$$

$$= \sum_{x=1}^{\infty} e^{tx} p_X(x)$$

$$= \sum_{x=1}^{\infty} e^{tx} (1-p)^{x-1} p$$

$$= e^t p \sum_{x=1}^{\infty} (e^t (1-p))^{x-1}$$

$$= e^t p \cdot \frac{1}{1 - (e^t (1-p))}$$

$$= \frac{e^t p}{1 - (1-p)e^t},$$

as desired.

Note. The condition comes from the denominator, where

$$(1-p)e^t < 1.$$

Theorem. If $X \sim \text{Geometric}(p)$ then its mean is

$$\mathbb{E}[X] = \frac{1}{p}.$$

Proof. From the previous theorem, we showed that

$$M_X(t) = \frac{e^t p}{1 - e^t (1 - p)}.$$

Hence

$$\ln M_X(t) = \ln \left(\frac{e^t p}{1 - e^t (1 - p)} \right)$$
$$= \ln(e^t p) - \ln(1 - e^t (1 - p))$$
$$= t + \ln p - \ln(1 - e^t (1 - p)).$$

Thus we have that

$$(\ln M_X)' = 1 - \frac{1}{1 - e^t(1 - p)} \cdot (p - 1)e^t = \frac{1}{1 - e^t(1 - p)}.$$

Therefore

$$\mathbb{E}[X] = (\ln M_X)'(0) = \frac{1}{p}.$$

Theorem. If $X \sim \text{Geometric}(p)$ then its variance is

$$\operatorname{var}(X) = \frac{1 - p}{p^2}.$$

Proof. From the last problem we have that

$$(\ln M_X)' = \frac{1}{1 - e^t(1 - p)},$$

so

$$(\ln M_X)'' = -\frac{1}{(1 - e^t(1 - p))^2} \cdot (p - 1)e^t = \frac{e^t(1 - p)}{(1 - e^t(1 - p))^2}.$$

Therefore

$$var(X) = (\ln M_X)''(0) = \frac{1-p}{p^2},$$

as desired.

11 Lecture 11

11.1 Negative Binomial Distribution

Definition. Negative Binomial Distribution

Suppose we repeatedly run independent, identical Bernoulli trials with probability $p \in (0,1)$ of success.

- Let $r \ge 1$ and let X be the trial on which we first achieve the r^{th} success.
- X is a discrete random variable taking values in the set $S = \{r, r+1, r+2, \ldots\}$.
- We say that X is a negative binomial random variable with parameters r, p and write $X \sim \text{Negative Binomial}(r, p)$.

Note. If we ask about a negative binomial with parameter (1, p), we see that this should be the same as a Geometric random variable.

Theorem. If $X \sim \text{Negative Binomial}(r, p)$, then its PMF is

$$p_X(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}$$
 if $x \in \{r, r+1, \dots\}$

Proof. If we want to get our r^{th} success on the x^{th} trial, then we must have gotten r-1 successes in the last x-1 trials, and a success on the last trial. Notice that the former is similar to a binomial distribution. Hence the PMF should be

$$p_X(x) = {x-1 \choose r-1} p^{r-1} (1-p)^{(x-1)-(r-1)} \cdot p$$
$$= {x-1 \choose r-1} p^r (1-p)^{x-r}.$$

Theorem. If $r \ge 1$ is an integer and 0 < s < 1 then

$$\left(\frac{1}{1-s}\right)^r = \sum_{x=r}^{\infty} \binom{x-1}{r-1} s^{x-r}.$$

Proof. Let $g(s) = (1-s)^{-r}$ be the left hand side of the above. We apply Taylor's theorem:

$$g(s) = \sum_{\ell=0}^{\infty} \frac{1}{\ell!} \cdot \frac{\mathrm{d}^{\ell} g}{\mathrm{d} s^{\ell}}(0) s^{\ell}.$$

Observe that:

• If $\ell = 0$ then $\frac{d^{\ell}g}{ds^{\ell}}(0) = g(0) = 1$

• If $\ell = 1$ then $\frac{\mathrm{d}^{\ell} g}{\mathrm{d} s^{\ell}}(0) = g'(0) = r$

• If $\ell = 1$ then $\frac{d^{\ell}g}{ds^{\ell}}(0) = g'(0) = r(r-1)$

In general,

$$\frac{d^{\ell}g}{ds^{\ell}}(0) = r(r+1)\cdots(r+\ell-1) = \frac{(r+\ell-1)!}{(r-1)!}.$$

Hence

$$g(s) = \sum_{\ell=0}^{\infty} \frac{1}{\ell!} \cdot \frac{(r+\ell-1)!}{(r-1)!} \cdot s^{\ell}.$$

If we let $x = r + \ell$, we have $\ell = x - r$, so

$$g(s) = \sum_{x=r}^{\infty} \frac{1}{(x-r)!} \cdot \frac{(x-1)!}{(r-1)!} \cdot s^{x-r}$$
$$= \sum_{x=r}^{\infty} {x-1 \choose r-1} s^{x-r}.$$

Note. Recall that if $X \sim \text{Negative Binomial}(r, p)$ then

$$p_X(x) = \binom{x-1}{r-1} p^r (1-p)^{x-r}.$$

Hence

$$\sum_{x=r}^{\infty} p_X(x) = \sum_{x=r}^{\infty} {x-1 \choose r-1} p^r (1-p)^{x-r}$$

$$= p^r \sum_{x=r}^{\infty} {x-1 \choose r-1} (1-p)^{x-r}$$

$$= p^r \cdot (1-(1-p))^{-r}$$

$$= 1.$$

Theorem. If $X \sim \text{Negative Binomial}(r, p)$ then its MGF is

$$M_X(t) = \left(\frac{e^t p}{1 - (1 - p)e^t}\right)^r$$
 if $t < -\ln(1 - p)$.

Proof. We compute that the MGF is

$$M_X(t) = \mathbb{E}[e^{tX}]$$

$$= \sum_{x=r}^{\infty} e^{tx} p_X(x)$$

$$= \sum_{x=r}^{\infty} e^{tx} {x-1 \choose r-1} p^r (1-p)^{x-r}$$

$$= e^{tr} p^r \sum_{x=r}^{\infty} {x-1 \choose r-1} (e^t (1-p))^{x-r}$$

$$= e^{tr} p^r \cdot \frac{1}{(1-(e^t (1-p)))^r}$$

$$= \left(\frac{e^t p}{1-(1-p)e^t}\right)^r.$$

Theorem. If $X \sim \text{Negative Binomial}(r, p)$ then

$$\mathbb{E}[X] = \frac{r}{p},$$

$$var(X) = \frac{r(1-p)}{p^2}.$$

Proof. Let

$$h(t) = \ln\left(\frac{pe^t}{1 - e^t(1 - p)}\right).$$

Since X is a negative binomial random variable, its moment generating function is geometric. We know that for geometric random variables, $h'(0) = \frac{1}{p}$ and $h''(0) = \frac{1-p}{p^2}$. Hence if $X \sim \text{Negative Binomial}(r, p)$ then

$$\ln M_X(t) = \ln \left(\frac{pe^t}{1 - e^t(1 - p)} \right)^r$$
$$= r \cdot h(t).$$

Therefore

$$\mathbb{E}[X] = \frac{r}{p},$$
$$\operatorname{var}(X) = \frac{r(1-p)}{p^2}.$$

11.2 Poisson Distribution

Definition. Poisson Random Variable

We make the following assumptions about arrivals in a given time interval:

- If the time intervals $(a_1, b_1], (a_2, b_2], \ldots, (a_n, b_n]$ are disjoin then the number of arrivals in each time interval are independent.
- If h = b a is sufficiently small then the probability of exactly one arrival in the time interval (a, b] is λh .
- If h = b a then the probability of having more than one arrival in the time interval (a, b] converges to 0 as $h \to 0$.

An arrival process satisfying these assumptions is called an approximate Poisson process. If we take X to be the number of arrivals in a unit of time, then we call X a Poisson random variable and write $X \sim \text{Poisson}(\lambda)$.

Theorem. If $X \sim \text{Poisson}(\lambda)$ then it has PMF

$$p_X(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$
 if $x \in \{0, 1, 2, \dots\}$.

Proof. Let X be the number of arrivals in a unit interval with width $\frac{1}{n}$. As n gets very large, we can think of the number of arrivals in each interval to be either 0 or 1 (Bernoulli trial with success rate

 $\frac{\lambda}{n}$). Thus the overall setup looks like a Binomial distribution, so

$$X \approx \text{Binomial}\left(n, \frac{\lambda}{n}\right).$$

We now just need to take $n \to \infty$. Hence

$$p_X(x) = \lim_{n \to \infty} \binom{n}{x} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{x-n}$$

$$= \lim_{n \to \infty} \frac{\lambda^x}{x!} \cdot \frac{n \cdot (n-1) \cdots (n-x+1)}{n \cdot n \cdots n} \cdot \left(1 - \frac{\lambda}{n}\right)^{x-n}$$

$$= \lim_{n \to \infty} \frac{\lambda^x}{x!} \left(1 - \frac{\lambda}{n}\right)^{x-n}$$

$$= \frac{\lambda^x}{x!} \cdot e^{-\lambda}.$$

12 Lecture 12

To verify that the PMF that we found last lecture is valid, we observe that

$$\sum_{x=0}^{\infty} p_X(x) = \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} e^{-\lambda}$$
$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!}$$
$$= e^{-\lambda} e^{\lambda}$$
$$= 1.$$

Theorem. Consider an approximate Poisson process with rate $\lambda > 0$ per unit time. Let X be the number of arrivals in a time interval of length T > 0 units. Then $X \sim \text{Poisson}(\lambda T)$.

Proof. As before, we cut up our time interval T into n sub-intervals, so $X \approx \text{Binomial}(n, \frac{\lambda T}{n})$. When we take $n \to \infty$, then we have $p_X(x) = e^{-\lambda T} \frac{(\lambda T)^x}{x!}$, so $X \sim \text{Poisson}(\lambda T)$.

Example.

- I receive phone notifications according to an approximate Poisson process with rate $\frac{1}{15}$ notifications per minute.
- What is the probability that I receive at least one notification in an hour?

Let X be the number of notifications I receive in an hour. Hence $X \sim \text{Poisson}(4)$. Therefore $p_X(x \ge 1) = 1 - p_X(0) = 1 - e^{-4}$.

Theorem. If $\lambda > 0$ and $X \sim \text{Poisson}(\lambda)$ then its MGF is

$$M_X(t) = e^{\lambda(e^t - 1)}.$$

Proof. We compute

$$M_X(t) = \mathbb{E}[e^{tX}]$$

$$= \sum_{x=0}^{\infty} e^{tx} p_X(x)$$

$$= \sum_{x=0}^{\infty} e^{tx} e^{-\lambda} \cdot \frac{\lambda^x}{x!}$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^t)^x}{x!}$$

$$= e^{-\lambda} e^{\lambda e^t}$$

$$= e^{\lambda (e^t - 1)}.$$

Theorem. If $\lambda > 0$ and $X \sim \text{Poisson}(\lambda)$, then

$$\mathbb{E}[X] = \lambda$$
$$\operatorname{var}(X) = \lambda.$$

Proof. Observe that $\ln M_X(t) = \lambda(e^t - 1)$. Hence

$$\mathbb{E}[X] = (\ln M_X(t))'(0) = \lambda.$$

Furthermore,

$$var(X) = (\ln M_X(t))''(0) = \lambda.$$

12.1 Random Variables of the Continuous Type

Definition. Continuous Random Variable Let $X: \Omega \to \mathbb{R}$ be a random variable.

• We say that X is a continuous random variable if there exists a non-negative integrable function $f_X : \mathbb{R} \to [0, \infty)$ so that

$$F_X(x) = \int_{-\infty}^x f_X(t) \, \mathrm{d}t.$$

Note that this ensures that $F_X(x)$ is continuous.

• We call $f_X(x)$ a probability density function for X.

Theorem. If X is a continuous random variable with PDF $f_X : \mathbb{R} \to [0, \infty)$ then

$$\int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1.$$

Proof. As $F_X(x) = \int_{-\infty}^x f_X(x) dx$ and $\lim_{x \to +\infty} F_X(x) = 1$, then

$$1 = \lim_{x \to +\infty} F_X(x)$$
$$= \lim_{x \to +\infty} \int_{-\infty}^x f_X(x) dx$$
$$= \int_{-\infty}^{\infty} f_X(x) dx.$$

Note. This is analogous to

$$\sum_{x \in S} p_X(x) = 1$$

for a discrete random variable.

Theorem. If X is a continuous random variable with PDF $f_X : \mathbb{R} \to [0, \infty)$ and a < b then

$$\mathbb{P}[a < X \le b] = \int_a^b f_X(x) \, \mathrm{d}x.$$

Proof. Observe that we have

$$\mathbb{P}[a < X \le b] = \mathbb{P}[\{X \le b\} \setminus \{X \le a\}]$$

$$= \mathbb{P}[X \le b] - \mathbb{P}[X \le a]$$

$$= \int_{-\infty}^{b} f_X(x) dx - \int_{-\infty}^{a} f_X(x) dx$$

$$= \int_{a}^{b} f_X(x) dx.$$

Theorem. If X is a continuous random variable with PDF $f_X : \mathbb{R} \to [0, \infty)$ then for all $x \in \mathbb{R}$ we have

$$\mathbb{P}[X=x] = 0.$$

Proof. Let $\delta > 0$. Then

$$\mathbb{P}[X = x] \le \mathbb{P}[x - \delta \le X \le x]$$
$$\le \int_{x - \delta}^{x} f_X(t) dt.$$

As we take $\delta \to 0$, we find that $\mathbb{P}[X = x] \to 0$. Hence $\mathbb{P}[X = x] = 0$.

A consequence of the above fact (if X is a *continuous* random variable):

$$\bullet \ \mathbb{P}[a < X < b] = \mathbb{P}[a \leq X < b] = \mathbb{P}[a < X \leq b] = \mathbb{P}[a \leq X \leq b].$$

13 Lecture 13

13.1 Uniform Distribution on an Interval

Definition. Uniform Distribution

Let a < b. I pick a point X at random in the interval [a,b]. If I have an equal probability of picking every point in [a,b], we say that X is uniformly distributed on the interval [a,b]. We write $X \sim \text{Uniform}([a,b])$.

Theorem. If a < b and $X \sim \text{Uniform}([a, b])$ then it has PDF

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{if} \quad x \in (a,b) \\ 0 & \text{otherwise} \end{cases}$$

Proof. We know that $\mathbb{P}[X \leq x]$ should be 0 if $x \leq a$ and 1 if x > b. If $a < x \leq b$ then $\mathbb{P}[X \leq x] = \frac{x-a}{b-a}$. Hence

$$f_X(x) = F'_X(x) = \frac{1}{b-a}$$
 for $a < x < b$.

13.2 Expected Value of a Continuous Random Variable

Idea. In order to find the expected value of a continuous random variable, we first cut up the interval into n pieces, and then take the limit of the approximate discrete random variable as $n \to \infty$.

Let $n \geq 1$ and define X_n to be the discrete random variable taking values in the set $\{0, \pm \frac{1}{n}, \pm \frac{2}{n}, \dots\}$ with PMF

$$P_{X_n}(x) = \int_{\frac{j-1}{n}}^{\frac{j}{n}} f_X(x) dx \quad \text{if} \quad x = \frac{j}{n}.$$

We can see that this is well-defined because when we add up $p_{X_n}(x)$ for all $x \in S$, we get the integral over the reals of $f_X(x)$, which yields 1.

Theorem. We have

$$\mathbb{E}[X_n] \to \int_{-\infty}^{\infty} x f_X(x) \, \mathrm{d}x.$$

Proof. We compute that

$$\mathbb{E}[X_n] = \sum_{x \in S} x p_{X_n}(x)$$

$$= \sum_{j = -\infty}^{\infty} \frac{j}{n} p_{X_n} \left(\frac{j}{n}\right)$$

$$= \sum_{j = -\infty}^{\infty} \frac{j}{n} \int_{\frac{j-1}{n}}^{\frac{j}{n}} f_X(x) \, \mathrm{d}x.$$

Observe that if $x \in \left[\frac{j-1}{n}, \frac{j}{n}\right]$, then $x \leq \frac{j}{n} \leq x + \frac{1}{n}$. Hence

$$\sum_{j=-\infty}^{\infty} \int_{\frac{j-1}{n}}^{\frac{j}{n}} x f_X(x) \, \mathrm{d}x \le \sum_{j=-\infty}^{\infty} \int_{\frac{j-1}{n}}^{\frac{j}{n}} \frac{j}{n} f_X(x) \, \mathrm{d}x \le \sum_{j=-\infty}^{\infty} \int_{\frac{j-1}{n}}^{\frac{j}{n}} \left(x + \frac{1}{n}\right) f_X(x) \, \mathrm{d}x$$
$$\int_{-\infty}^{\infty} x f_X(x) \, \mathrm{d}x \le \mathbb{E}[X_n] \le \int_{-\infty}^{\infty} \left(x + \frac{1}{n}\right) f_X(x) \, \mathrm{d}x$$

If we take $n \to \infty$ and apply Squeeze Theorem, we have

$$\lim_{n \to \infty} \mathbb{E}[X_n] = \int_{-\infty}^{\infty} x f_X(x) \, \mathrm{d}x.$$

Definition. Expected Value

If X is a continuous random variable with PDF $f_X(x)$ we define its expected value to be

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, \mathrm{d}x.$$

We still use the notation $\mu_X = \mathbb{E}[X]$. More generally, if $g \colon \mathbb{R} \to \mathbb{R}$ is any function, we define

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, \mathrm{d}x.$$

Theorem. Let X be a continuous random variable.

• If $a \in \mathbb{R}$ is a constant then

$$\mathbb{E}[a] = a.$$

• If $a, b \in \mathbb{R}$ are constants and $g, h : \mathbb{R} \to \mathbb{R}$ then

$$\mathbb{E}[ag(X) + bh(X)] = a\mathbb{E}[g(X)] + b\mathbb{E}[h(X)].$$

• If $g(x) \leq h(x)$ for all $x \in \mathbb{R}$ then

$$\mathbb{E}[g(X)] \le \mathbb{E}[h(X)].$$

14 Lecture 14

We still use the same notation for variance,

$$var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2],$$

and the standard deviation is still defined by $\sigma_X^2 = \text{var}(X)$.

Theorem. If X is a continuous random variable then

$$var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

Proof. The exact same as for the discrete case!

Definition. Moment Generating Function

If X is a continuous random variable we define its moment generating function to be

$$M_X(t) = \mathbb{E}[e^{tX}],$$

for all $t \in \mathbb{R}$ for which this makes sense.

The properties that we have proved before for discrete variables still apply in this continuous case.

14.1 The Exponential Distribution

Example. Customers at a Coffee Shop

- Customers arrive at a coffee shop according to an approximate Poisson process with rate 1 customer per minute.
- Let X be the arrival time (in minutes) of the first customer.
- What is the probability that $X \leq \frac{1}{2}$?

Let N be the number of arrivals in half a minute, so $N \sim \text{Poisson}(\frac{1}{2})$. Then

$$\mathbb{P}[X \leq \frac{1}{2}] = \mathbb{P}[N \geq 1] = 1 - \mathbb{P}[N = 0] = 1 - e^{-\frac{1}{2}},$$

since $p_N(x) = (\frac{1}{2})^x \cdot \frac{1}{x!} e^{-\frac{1}{2}}$ for x = 0, 1, 2, ...

Definition. Exponential Distribution

Consider an approximate Poisson process with rate $\lambda > 0$ per unit time.

- Let X be the time of the first arrival.
- We say that X is exponentially distributed with mean waiting time $\theta = \frac{1}{\lambda}$ and write $X \sim \text{Exponential}(\theta)$.

Note. Some textbooks/authors use λ as the parameter instead of θ .

Theorem. If $\theta > 0$ and $X \sim \text{Exponential}(\theta)$ then its PDF is

$$f_X(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}$$
 if $x > 0$.

Proof. Consider an approximate Poisson process with rate $\lambda = \frac{1}{\theta}$. Clearly, there are no arrivals before time 0, so $F_X(x) = 0$ if x < 0. If x > 0, let N be the number of arrivals in time interval [0, x], so $N \sim \text{Poisson}(\lambda x)$. As in our example

$$F_X(x) = \mathbb{P}[X \le x]$$

$$= \mathbb{P}[N \ge 1]$$

$$= 1 - \mathbb{P}[N = 0]$$

$$= 1 - e^{-\lambda x}.$$

So we have

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$

Hence

$$f_X(x) = F_X'(x) = \lambda e^{-\lambda x},$$

and substituting $\lambda = \frac{1}{\theta}$ gives us the desired result.

Note. If we take $x \to \infty$ for the CDF $F_X(x)$, we see that $F_X(x) \to 1$.

Theorem. If $\theta > 0$ and $X \sim \text{Exponential}(\theta)$ then its MGF is

$$M_X(t) = \frac{1}{1 - \theta t}$$
 if $t < \frac{1}{\theta}$.

Proof. We compute

$$M_X(t) = \mathbb{E}[e^{tX}]$$

$$= \int_0^\infty e^{tx} \cdot \frac{1}{\theta} e^{-\frac{x}{\theta}} dx$$

$$= \frac{1}{\theta} \int_0^\infty e^{(t - \frac{1}{\theta})x} dx$$

$$= \frac{1}{\theta} \cdot -\frac{1}{t - \frac{1}{\theta}}$$

$$= \frac{1}{1 - \theta t}.$$

$$(t < \frac{1}{\theta})$$

Theorem. If $\theta > 0$ and $X \sim \text{Exponential}(\theta)$ then

$$\mathbb{E}[X] = \theta,$$
$$\operatorname{var}(X) = \theta^2.$$

Proof. We compute

$$\ln M_X(t) = -\ln(1 - \theta t)$$
$$(\ln M_X)'(t) = \frac{\theta}{1 - \theta t}$$
$$(\ln M_X)''(t) = \frac{\theta^2}{(1 - \theta t)^2}.$$

Substituting t = 0 into the above derivatives yields the desired results.

14.2 Random Processes

Definition. Random Process

A random process is a collection of random variables, indexed by a "time" parameter. For example:

- Approximate Poisson process
- Bernoulli process (repeated flips of an unfair coin)

15 Lecture 15

15.1 The Gamma Distribution

Definition. Gamma Distribution

Consider an approximate Poisson process with rate $\lambda > 0$ per unit time.

- Let $\alpha \geq 1$ be an integer and X be the time of the α^{th} arrival.
- We say that X is gamma distributed with parameters $\alpha, \theta = \frac{1}{\lambda}$ and write $X \sim \text{Gamma}(\alpha, \theta)$.

Note. By definition, we have that Exponential(θ) ~ Gamma(1, θ).

Theorem. Let $\alpha \geq 1$ be an integer and $\theta > 0$. If $X \sim \text{Gamma}(\alpha, \theta)$ then its PDF is

$$f_X(x) = \frac{1}{\theta^{\alpha}(\alpha - 1)!} x^{\alpha - 1} e^{-\frac{x}{\theta}}$$
 if $x > 0$.

Proof. Let X > 0 and N be the number of arrivals in the time interval [0, x]. Then we know that $N \sim \text{Poisson}(\lambda x)$, where $\lambda = \frac{1}{\theta}$. Hence

$$\begin{split} \mathbb{P}[X \leq x] &= 1 - \mathbb{P}[X > x] \\ &= 1 - \mathbb{P}[N \leq \alpha - 1] \\ &= 1 - \sum_{n=0}^{\alpha - 1} p_N(n) \\ &= 1 - \sum_{n=0}^{\alpha - 1} \frac{(\lambda x)^n}{n!} e^{-\lambda x}. \end{split}$$

Thus we have

$$\begin{split} f_X(x) &= F_X'(x) \\ &= -\sum_{n=1}^{\alpha - 1} \lambda \cdot \frac{(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} + \sum_{n=0}^{\alpha - 1} \frac{(\lambda x)^n}{n!} \lambda e^{-\lambda x} \\ &= -\lambda \sum_{n=0}^{\alpha - 2} \frac{(\lambda x)^n}{n!} e^{-\lambda x} + \lambda \sum_{n=0}^{\alpha - 1} \frac{(\lambda x)^n}{n!} e^{-\lambda x} \\ &= \lambda \frac{(\lambda x)^{\alpha - 1}}{(\alpha - 1)!} e^{-\lambda x} \\ &= \frac{x^{\alpha - 1}}{\theta^{\alpha} (\alpha - 1)!} e^{-\frac{x}{\theta}} \quad \text{if} \quad x > 0. \end{split}$$

Definition. Gamma Function We define

$$\Gamma(\alpha) := \int_0^\infty x^{\alpha - 1} e^{-x} \, \mathrm{d}x.$$

Theorem. We have that

• $\Gamma(1) = 1$

• For $\alpha > 1$ we have

$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$

• If $\alpha \geq 1$ is an integer then

$$\Gamma(\alpha) = (\alpha - 1)!$$

Proof. • Observe that

$$\Gamma(1) = \int_0^\infty e^{-x} \, \mathrm{d}x = 1.$$

• We compute

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$
$$= [-x^{\alpha - 1} e^{-x}]_0^\infty + \int_0^\infty (\alpha - 1) x^{\alpha - 2} e^{-x} dx$$
$$= 0 + (\alpha - 1) \Gamma(\alpha - 1).$$

• This is a direct consequence of the previous two properties.

Note. Using the gamma function, we may extend our definition of the Gamma distribution to be

$$f_X(x) = \frac{1}{\theta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\theta}}.$$

Theorem. Let $\alpha, \theta > 0$ and $X \sim \text{Gamma}(\alpha, \theta)$. Then X has MGF

$$M_X(t) = \frac{1}{(1 - \theta t)^{\alpha}}$$
 if $t < \frac{1}{\theta}$.

Theorem. Let $\alpha, \theta > 0$ and $X \sim \text{Gamma}(\alpha, \theta)$. Then

$$\mathbb{E}[X] = \alpha \theta,$$

$$\operatorname{cov}(Y) = \alpha \theta^2$$

$$var(X) = \alpha \theta^2$$
.

The Chi-Square Distribution

This is a special case of the Gamma distribution.

Definition. Chi-Square Distribution

If $r \in \{1, 2, 3, ...\}$ we call the $\Gamma(\frac{r}{2}, 2)$ distribution the *chi-square distribution* with r degrees of freedom. If $X \sim \chi^2(r)$ then it has PDF

$$f_X(x) = \frac{1}{2^{\frac{r}{2}}\Gamma(\frac{r}{2})} x^{\frac{r}{2}-1} e^{-\frac{x}{2}}$$
 if $x > 0$,

as well as

$$\mathbb{E}[X] = r$$
 and $\operatorname{var}(X) = 2r$.

Example. Suppose that X is a continuous random variable with PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$$

Then $X^2 \sim \chi^2(1)$.

Proof. Let $Z = X^2$. Then

$$F_{Z}(z) = \mathbb{P}[Z \le z]$$

$$= \mathbb{P}[X^{2} \le z]$$

$$= \mathbb{P}[-\sqrt{z} \le X \le \sqrt{z}]$$

$$= \int_{-\sqrt{z}}^{\sqrt{z}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

$$= 2 \int_{0}^{\sqrt{z}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{z} e^{-\frac{u}{2}} \cdot \frac{1}{2\sqrt{u}} du$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{z} e^{-\frac{u}{2}} \cdot u^{-\frac{1}{2}} du.$$
(if $z > 0$)

Therefore we have $f_Z(z) = \frac{1}{\sqrt{2\pi}} z^{-\frac{1}{2}} e^{-\frac{z}{2}}$ if z > 0, and $Z \sim \chi^2(1)$.

16 Lecture 16

16.1 The Normal Distribution

In general with large samples, we observe the same distribution over and over again.

Definition. Normal Distribution

We say a continuous random variable X is normally distributed with mean μ and variance σ^2 if it has PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 for $x \in \mathbb{R}$.

We write $X \sim \mathcal{N}(\mu, \sigma^2)$. If $\mu = 0$ and $\sigma^2 = 1$ we say that X is a standard normal random variable.

Theorem. We have

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} \, \mathrm{d}t = 1.$$

Proof. Let $x = \frac{t-\mu}{\sigma}$ so $dx = \frac{1}{\sigma}dt$. Then

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

Let's call the above I. Then we have

$$I^{2} = \left(\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx \right) \left(\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^{2}}{2}} dy \right)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}+y^{2}}{2}} dx dy$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{1}{2}r^{2}} r dr d\theta$$

$$= 1.$$

Therefore I = 1.

Theorem. If $X \sim \mathcal{N}(\mu, \sigma^2)$ then it has MGF

$$M_X(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}.$$

Proof. We compute

$$M_X(t) = \mathbb{E}[e^{tX}]$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} e^{tx} dx$$

$$= \text{a lot of computation}$$

$$= e^{\mu t + \frac{1}{2}\sigma^2 t^2}.$$

Theorem. If $X \sim \mathcal{N}(\mu, \sigma^2)$ then

$$\mathbb{E}[X] = \mu,$$
$$\operatorname{var}(X) = \sigma^2.$$

Proof. As with before, we compute $(\ln M_X)'$ and $(\ln M_X)''$ and evaluate them at 0 to get the desired results.

Theorem. If

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

is the CDF of the standard normal distribution then

$$\Phi(-x) = 1 - \Phi(x).$$

Theorem. If $X \sim \mathcal{N}(0,1)$, then $-X \sim \mathcal{N}(0,1)$.

Proof. Let Y = -X. Then

$$F_Y(y) = \mathbb{P}[Y \le y]$$

$$= \mathbb{P}[-X \le y]$$

$$= \mathbb{P}[-y \le X]$$

$$= 1 - \mathbb{P}[X < -y]$$

$$= 1 - \Phi(-y)$$

$$= \Phi(y).$$

Theorem. If $X \sim \mathcal{N}(\mu, \sigma^2)$ then $Z = \frac{1}{\sigma}(X - \mu) \sim \mathcal{N}(0, 1)$.

Proof. We compute

$$F_Z(z) = \mathbb{P}[Z \le z]$$

$$= \mathbb{P}\left[\frac{1}{\sigma}(X - \mu) \le z\right]$$

$$= \mathbb{P}[X \le \mu + \sigma z]$$

$$= \int_{-\infty}^{\mu + \sigma z} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x - \mu)} dx$$

$$= \Phi(z).$$

17 Lecture 17

17.1 Bivariate Distributions of the Discrete Type

Definition. Joint Probability Mass Function

Let X, Y be a pair of discrete random variables taking values in sets $S_X, S_Y \in \mathbb{R}$.

• We think of (X,Y) as being a random point in \mathbb{R}^2 taking values in the set

$$S = S_X \times S_y = \{(x, y) \mid x \in S_X \text{ and } y \in S_y\}.$$

• We define the joint probability mass function of X, Y to be the function $p_{X,Y}: S \to [0,1]$ by

$$p_{X,Y}(x,y) = \mathbb{P}[X = x, Y = y] = \mathbb{P}[(X,Y) = (x,y)].$$

Theorem. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$ and let $S = S_X \times S_Y$. If X, Y have a joint PMF $p_{X,Y}(x,y)$ and $A \subseteq \mathbb{R}^2$ then

$$\mathbb{P}[(X,Y) \in A] = \sum_{(x,y) \in A \cap S} p_{X,Y}(x,y).$$

Theorem. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$ and let $S = S_X \times S_Y$. If X, Y have joint PMF $p_{X,Y}(x,y)$ then

$$\sum_{(x,y)\in S} p_{X,Y}(x,y) = 1.$$

Proof. Observe that

$$1 = \mathbb{P}[(X,Y) \in \mathbb{R}^2] = \sum_{(x,y) \in S \cap \mathbb{R}^2} p_{X,Y}(x,y) = \sum_{(x,y) \in S} p_{X,Y}(x,y).$$

Definition. Marginal Probability Mass Function

Let X, Y be discrete random variables taking values in $S_X, S_Y \subseteq \mathbb{R}$.

• We define the marginal probability mass function of X to be the function $p_X : S_X \to [0,1]$ given by

$$p_X(x) = \mathbb{P}[X = x].$$

• We define the marginal probability mass function of Y to be the function $p_Y \colon S_Y \to [0,1]$ given by

$$p_Y(y) = \mathbb{P}[Y = y].$$

Theorem. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$. Let X, Y have joint PMF $p_{X,Y}(x,y)$. Then,

$$p_X(x) = \sum_{y \in S_Y} p_{X,Y}(x,y) \quad \text{and} \quad p_Y(y) = \sum_{x \in S_X} p_{X,Y}(x,y)$$

Definition. Independence

Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$ and let $S = S_X \times S_Y$.

- We say that random variables X,Y are independent if the events $\{X=x\}$ and $\{Y=y\}$ are independent for all $(x,y)\in S$.
- Equivalently, we have

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$
 for all $(x,y) \in S$.

18 Lecture 18

Definition. Expected Value

Let X, Y be a pair of discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$ and let $S = S_X \times S_Y$.

- Let X, Y have joint PMF $P_{X,Y}(x, y)$.
- If $g \colon S \to \mathbb{R}$ we define the $expected\ value\ of\ g(X,Y)$ to be

$$\mathbb{E}[g(X,Y)] = \sum_{(x,y)\in S} g(x,y)p_{X,Y}(x,y).$$

Theorem. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$ and let $S = S_X \times S_Y$.

• If $a, b \in \mathbb{R}$ are constants and $g, h \colon S \to \mathbb{R}$ then

$$\mathbb{E}[ag(X,Y) + bh(X,Y)] = a\mathbb{E}[g(X,Y)] + b\mathbb{E}[h(X,Y)].$$

• If $g(x,y) \le h(x,y)$ for all $(x,y) \in S$ then

$$\mathbb{E}[g(X,Y)] \le \mathbb{E}[h(X,Y)].$$

• If $a \in \mathbb{R}$ is a constant then $\mathbb{E}[a] = a$.

Theorem. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$. Let $g: S_X \to \mathbb{R}$ and $h: S_Y \to \mathbb{R}$. Then

$$\mathbb{E}[g(X)] = \sum_{x \in S_X} g(x) p_X(x) \quad \text{and} \quad \mathbb{E}[h(Y)] = \sum_{y \in S_Y} h(y) p_Y(y).$$

Proof. Let G(x,y) = g(x). Then G(X,Y) = g(X). Hence

$$\mathbb{E}[g(X)] = \mathbb{E}[G(X,Y)]$$

$$= \sum_{x \in S_X} \sum_{y \in S_Y} G(x,y) p_{X,Y}(x,y)$$

$$= \sum_{x \in S_X} \sum_{y \in S_Y} g(x) p_{X,Y}(x,y)$$

$$= \sum_{x \in S_X} g(x) \sum_{y \in S_Y} p_{X,Y}(x,y)$$

$$= \sum_{x \in S_X} g(x) p_X(x).$$

Theorem. Let X, Y be independent discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$. Let $g: S_X \to \mathbb{R}$ and $h: S_Y \to \mathbb{R}$. Then

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[h(Y)].$$

Proof. We compute

$$\mathbb{E}[g(X)h(Y)] = \sum_{x \in S_X} \sum_{y \in S_Y} g(x)h(y)p_{X,Y}(x,y)$$

$$= \sum_{x \in S_X} \sum_{y \in S_Y} g(x)h(y)p_X(x)p_Y(y)$$

$$= \sum_{x \in S_X} g(x)p_X(x) \sum_{y \in S_Y} h(y)p_Y(y)$$

$$= \mathbb{E}[g(X)]\mathbb{E}[h(Y)].$$
(X, Y independent)

Theorem — Cauchy-Schwarz Inequality

Let X, Y be discrete random variables. Then

$$|E[XY]| \le \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}.$$

Proof. If $\mathbb{E}[Y^2] = 0$ then Y = 0 so the statement holds. If $\mathbb{E}[Y^2] \neq 0$, define $f(t) = \mathbb{E}[(X - tY)^2] \geq \mathbb{E}[0] = 0$. Furthermore, we may expand this as

$$\begin{split} f(t) &= \mathbb{E}[X^2 - 2tXY + t^2Y^2] \\ &= \mathbb{E}[X^2] - 2tE[XY] + t^2\mathbb{E}[Y^2]. \end{split}$$

We know that the global value is achieved when $t = \frac{\mathbb{E}[XY]}{\mathbb{E}[Y^2]}$. Hence

$$0 \le f\left(\frac{\mathbb{E}[XY]}{\mathbb{E}[Y^2]}\right)$$

$$= \mathbb{E}[X^2] - 2\frac{\mathbb{E}[XY]^2}{\mathbb{E}[Y^2]} + \frac{\mathbb{E}[XY]^2}{\mathbb{E}[Y^2]}$$

$$= \mathbb{E}[X^2] - \frac{\mathbb{E}[XY]^2}{\mathbb{E}[Y^2]}.$$

Rearranging terms, we have

$$|\mathbb{E}[XY]| \leq \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}$$

19 Lecture 19

19.1 The Correlation Coefficient

Definition. Covariance

Let X, Y be a pair of (discrete) random variables.

• We define the *covariance* of X, Y to be

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$$

• We use the notation $\sigma_{XY} = \text{cov}(X, Y)$.

Note. The covariance can give us a rough idea of if two variables are "positively" or "negatively" correlated.

Theorem. If X, Y are random variables then

$$cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

Proof. Observe that

$$\begin{split} \operatorname{cov}(X,Y) &= \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] \\ &= \mathbb{E}[XY - \mathbb{E}[X]Y - \mathbb{E}[Y]X + \mathbb{E}[X]\mathbb{E}[Y]] \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] - \mathbb{E}[Y]\mathbb{E}[X] + \mathbb{E}[X]\mathbb{E}[Y] \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]. \end{split}$$

Theorem. If X is a random variable then cov(X, X) = var(X).

Proof. We have

$$\operatorname{cov}(X,X) = \mathbb{E}[X^2] - \mathbb{E}[X]\mathbb{E}[X] = \operatorname{var}(X).$$

Theorem. Let X, Y be independent discrete random variables. Then cov(X, Y) = 0.

Proof. We compute

$$cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = \mathbb{E}[X]\mathbb{E}[Y] - \mathbb{E}[X]\mathbb{E}[Y] = 0.$$

Note. Independence implies that the covariance is 0, but not vice versa.

Theorem. If X, Y are (discrete) random variables and $a, b \in \mathbb{R}$ then

$$cov(aX, bY) = ab cov(X, Y).$$

Proof. We compute

$$cov(aX, bY) = \mathbb{E}[(aX - \mathbb{E}[aX])(bY - \mathbb{E}[bY])]$$

$$= \mathbb{E}[(aX - a\mathbb{E}[X])(bY - b\mathbb{E}[Y])]$$

$$= \mathbb{E}[ab(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

$$= ab \operatorname{cov}(X, Y).$$

Definition. Correlation Coefficient

Let X, Y be a pair of (discrete) random variables. We define the correlation coefficient of X, Y to be

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X) \text{var}(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}.$$

Theorem. If X, Y are (discrete) random variables and a, b > 0 then

$$\rho(aX,bY) = \rho(X,Y).$$

Proof. We compute

$$\rho(aX, bY) = \frac{\operatorname{cov}(aX, bY)}{\sqrt{\operatorname{var}(aX)\operatorname{var}(bY)}} = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}} = \rho(X, Y).$$

Theorem. If X, Y are (discrete) random variables then

$$-1 \le \rho(X, Y) \le 1.$$

Proof. We estimate

$$\begin{split} |\mathrm{cov}(X,Y)| &= |\mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]| \\ &\leq \sqrt{\mathbb{E}[(X - \mathbb{E}[X])^2]\mathbb{E}[(Y - \mathbb{E}[Y])^2]} \\ &= \sqrt{\mathrm{var}(X)\,\mathrm{var}(Y)}. \end{split}$$

Hence

$$|\rho(X,Y)| = \frac{|\operatorname{cov}(X,Y)|}{\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}} \le 1.$$

20 Lecture 20

20.1 Conditional Expectation

Definition.

Let X, Y be a pair of discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$.

• If $y \in S_Y$, we define the random variable $X \mid y$ with PMF

$$p_{X|Y}(x \mid y) = \mathbb{P}[X = x \mid Y = y] \quad \text{for} \quad x \in S_X$$
$$= \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

• If $x \in S_X$, we define the random variable $Y \mid x$ with PMF

$$\begin{aligned} p_{Y|X}(y \mid x) &= \mathbb{P}[Y = y \mid X = x] \quad \text{for} \quad y \in S_Y \\ &= \frac{p_{X,Y}(x,y)}{p_X(x)} \end{aligned}$$

Theorem. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$.

• Given $y \in S_Y$ we have

$$\sum_{x \in S_X} p_{X|Y}(x \mid y) = 1.$$

• Given $x \in S_X$ we have

$$\sum_{y \in S_Y} p_{Y|X}(y \mid x) = 1.$$

Proof. We shall just prove the first case, computing that

$$\sum_{x \in S_X} p_{X|Y}(x \mid y) = \sum_{x \in S_X} \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

$$= \frac{1}{p_Y(y)} \sum_{x \in S_X} p_{X,Y}(x,y)$$

$$= \frac{1}{p_Y(y)} \cdot p_Y(y)$$

$$= 1.$$

Definition. Conditional Expectation

Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$.

• Define the function $g: S_X \to \mathbb{R}$ by

$$g(x) = \mathbb{E}[Y \mid x].$$

• We define the *conditional expectation* of Y conditioned on X to be the *random variable*

$$\mathbb{E}[Y \mid X] = g(X).$$

• We can define $\mathbb{E}[X \mid Y]$ in a similar fashion.

Theorem — Law of Iterated Expectation

Let X, Y be discrete random variables. Then

$$\mathbb{E}[\mathbb{E}[Y\mid X]] = \mathbb{E}[Y].$$

Proof. Let $g(x) = \mathbb{E}[Y \mid x]$ so $\mathbb{E}[Y \mid X] = g(X)$. Then

$$\begin{split} \mathbb{E}[\mathbb{E}[Y \mid X]] &= \mathbb{E}[g(X)] \\ &= \sum_{x \in S_X} g(x) p_X(x) \\ &= \sum_{x \in S_X} \left(\sum_{y \in S_Y} y \cdot \frac{p_{X,Y}(x,y)}{p_X(x)} \cdot p_X(x) \right) \\ &= \sum_{y \in S_Y} \sum_{x \in S_X} y p_{X,Y}(x,y) \\ &= \sum_{y \in S_Y} y \cdot p_Y(y) \\ &= \mathbb{E}[Y]. \end{split}$$

Definition. Conditional Variance

Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$.

• Define the function $h: S_X \to \mathbb{R}$ by

$$h(x) = var(Y \mid x).$$

 \bullet We define the *conditional variance* of Y conditioned on X to be the *random variable*

$$\operatorname{var}(Y \mid X) = h(X).$$

• We can define $var(X \mid Y)$ in a similar fashion.

Theorem — Law of Total Variance

Let X, Y be discrete random variables. Then

$$\mathbb{E}[\operatorname{var}(Y \mid X)] + \operatorname{var}(\mathbb{E}[Y \mid X]) = \operatorname{var}(Y).$$

Proof. Let $g(x) = \mathbb{E}[Y \mid x]$ and $h(x) = \text{var}(Y \mid x)$. We can think of these functions by the following:

$$g(x) = \sum_{y \in S_Y} y \cdot p_{Y|X}(y \mid x)$$
$$h(x) = \sum_{y \in S_Y} y^2 \cdot p_{Y|X}(y \mid x) - g(x)^2.$$

Hence we have

$$\begin{split} \mathbb{E}[\text{var}(Y\mid X)] &= \mathbb{E}[h(X)] \\ &= \sum_{x \in S_X} h(x) p_X(x) \\ &= \sum_{x \in S_X} \sum_{y \in S_Y} y^2 \cdot p_{Y\mid X}(y\mid x) p_X(x) - \sum_{x \in S_X} g(x)^2 p_X(x) \\ &= \sum_{x \in S_X} \sum_{y \in S_Y} y^2 p_{X,Y}(x,y) - \sum_{x \in S_X} g(x)^2 p_X(x) \\ &= \mathbb{E}[Y^2] - \mathbb{E}[g(X)^2]. \end{split}$$

Furthermore, we have

$$\begin{aligned} \operatorname{var}(\mathbb{E}[Y\mid X]) &= \operatorname{var}(g(X)) \\ &= \mathbb{E}[g(X)^2] - \mathbb{E}[g(X)]^2 \\ &= \mathbb{E}[g(X)^2] - \mathbb{E}[\mathbb{E}[Y\mid X]]^2 \\ &= \mathbb{E}[g(X)^2] - \mathbb{E}[Y]^2. \end{aligned}$$

Summing these two expressions, we get $\mathbb{E}[Y^2] - \mathbb{E}[Y]^2 = \text{var}(Y)$.

21 Lecture 21

21.1 Bivariate Distributions of the Continuous Type

All of this is basically the same as for the discrete case.

Definition. Joint Probability Density Function

Given two continuous random variables X, Y we may define a joint probability density function

$$f_{X,Y} \colon \mathbb{R}^2 \to [0,\infty)$$

so that for any $A \subseteq \mathbb{R}^2$ we have

$$\mathbb{P}[(X,Y) \in A] = \iint_A f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Theorem. If X, Y are continuous random variables with joint PDF $f_{X,Y}(x,y)$ then

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y = 1.$$

Definition. Marginal PDFs

We define

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y,$$

and similarly for y.

Theorem. Let X, Y be continuous random variables and f_X be the marginal PDF of X. If a < b then

$$\mathbb{P}[a < X \le b] = \int_a^b f_X(x) \, \mathrm{d}x.$$

Definition. Expected Value

Let X, Y be continuous random variables with joint PDF $f_{X,Y}(x,y)$. Given a function $g: \mathbb{R}^2 \to \mathbb{R}$ we define the *expected value* of g(X,Y) to be

$$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Our previous properties of expected values still hold.

Theorem. Let X, Y be continuous random variables with joint PDF $f_{X,Y}(x,y)$ and marginal PDFs $f_X(x), f_Y(y)$. Then if $g, h : \mathbb{R} \to \mathbb{R}$ we have

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, \mathrm{d}x,$$

$$\mathbb{E}[h(Y)] = \int_{-\infty}^{\infty} h(y) f_Y(y) \, \mathrm{d}y.$$

 $\textbf{Definition.}\ \ Independence$

Let X, Y be continuous random variables with joint PDF $f_{X,Y}(x,y)$ and marginal PDFs $f_X(x), f_Y(y)$. We say that X, Y are *independent* if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

for all $(x, y) \in \mathbb{R}^2$.

Theorem. Let X,Y be independent continuous random variables. Then if $g,h:\mathbb{R}\to\mathbb{R}$ we have

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[h(Y)].$$

22 Lecture 22

Definition. Covariance and Correlation Coefficient

Let X, Y be continuous random variables. We define the *covariance* of X and Y to be

$$cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

We define the *correlation coefficient* of X and Y to be

$$\rho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}}.$$

Furthermore, we have that $-1 \le \rho(X, Y) \le 1$.

Definition. Conditional Distribution

Let X, Y be continuous random variables with joint PDF $f_{X,Y}(x,y)$. Given $x \in \mathbb{R}$ so that $f_X(x) > 0$, we define the continuous random variable $Y \mid x$ with PDF

$$f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)}.$$

Definition. Conditional Expectation

Let X, Y be continuous random variables. Let $g(x) = \mathbb{E}[Y \mid x]$. We define the *conditional expectation* to be the random variable

$$\mathbb{E}[Y \mid X] = g(X).$$

We have the Law of Iterated Expectation:

$$\mathbb{E}[\mathbb{E}[Y \mid X]] = \mathbb{E}[Y].$$

Definition. Conditional Variance

Let X, Y be continuous random variables. Let $h(x) = \text{var}(Y \mid x)$. We define the conditional variance to be the random variable

$$var(Y \mid X) = h(X).$$

We have the Law of Total Variance:

$$\mathbb{E}[\operatorname{var}(Y \mid X)] + \operatorname{var}(\mathbb{E}[Y \mid X]) = \operatorname{var}(Y).$$

23 Lecture 23

23.1 Functions of Random Variables

Let X be a discrete or continuous random variable. Given a function $u: \mathbb{R} \to \mathbb{R}$, define a random variable by

$$Y = u(X).$$

Question. How does the distribution of Y depend on the distribution of X?

Theorem. Let X be a discrete random variable taking values in a set $S \subseteq \mathbb{R}$ with PMF $p_X(x)$ and let $u: S \to \mathbb{R}$. The PMF of Y = u(X) is then

$$p_Y(y) = \sum_{x \in \{x \in S | u(x) = y\}} p_X(x).$$

Theorem. Let X be a continuous random variable with PDF $f_X(x)$. Let $S \subseteq \mathbb{R}$ so that $f_X(x) = 0$ for all $x \in \mathbb{R} \setminus S$. Let $u : \mathbb{R} \to \mathbb{R}$ be a smooth function satisfying u'(x) > 0 or u'(x) < 0 for all $x \in S$. Then Y = u(X) has PDF

$$f_Y(y) = \left| \frac{\mathrm{d}}{\mathrm{d}y} u^{-1}(y) \right| f_X(u^{-1}(y)).$$

23.2 Functions of Two Random Variables

Let X, Y be a pair of discrete or continuous random variables. Given a function $u \colon \mathbb{R}^2 \to \mathbb{R}^2$ define random variables Z, W by

$$(Z, W) = u(X, Y).$$

Question. How does the distribution of Z, W depend on the distribution of X, Y?

Theorem. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$ and let $S = S_X \times S_Y$. Let $u : \mathbb{R}^2 \to \mathbb{R}^2$ and (Z, W) = u(X, Y). If X, Y have joint PMF $p_{X,Y}(x, y)$ then Z, W have joint PMF

$$p_{Z,W}(z,w) = \sum_{(x,y)\in\{(x,y)\in S|u(x,y)=(z,w)\}} p_{X,Y}(x,y).$$

Theorem. Let X, Y be continuous random variables. Let $u: \mathbb{R}^2 \to \mathbb{R}^2$ be smooth and invertible, with inverse v(z, w). If X, Y have joint PDF $f_{X,Y}(x, y)$ then (Z, W) = u(X, Y) have joint PDF

$$f_{Z,W}(z,w) = f_{X,Y}(v(z,w)) \left| \frac{\partial(x,y)}{\partial(z,w)} \right|,$$

where

$$\frac{\partial(x,y)}{\partial(z,w)} = \frac{\partial x}{\partial z} \frac{\partial y}{\partial w} - \frac{\partial x}{\partial w} \frac{\partial y}{\partial z}.$$

24 Lecture 24

24.1 Several Random Variables

Question. What happens when we have several random variables X_1, \ldots, X_n ?

There is a special case that we like to think about, where X_1, \ldots, X_n are independent and identically distributed (i.i.d.). In this special case, we may think of it as repeated independent trials of some experiment.

Note. Everything in the n variable case is basically the exact same as in the one or two-variable cases.

Theorem. Let X_1, \ldots, X_n be discrete or continuous random variables. Let $a_1, \ldots, a_n \in \mathbb{R}$ and let

$$Y = a_1 X_1 + \dots + a_n X_n.$$

Then

$$\mathbb{E}[Y] = a_1 \mathbb{E}[X_1] + \dots + a_n \mathbb{E}[X_n].$$

Theorem. Let X_1, \ldots, X_n be independent discrete or continuous random variables. Let $g_1, \ldots, g_n \colon \mathbb{R} \to \mathbb{R}$. Then

$$\mathbb{E}[g_1(X_1)\cdots g_n(X_n)] = \mathbb{E}[g_1(X_1)]\cdots \mathbb{E}[g_n(X_n)].$$

Theorem. Let X_1, \ldots, X_n be independent discrete or continuous random variables. Let $a_1, \ldots, a_n \in \mathbb{R}$ and let

$$Y = a_1 X_1 + \dots + a_n X_n.$$

Then

$$var(Y) = a_1^2 var(X_1) + \dots + a_n^2 var(X_n).$$

Definition. Sample Sum and Average

Let X_1, \ldots, X_n be independent and identically distributed. We define the sample sum to be

$$S_n = X_1 + \dots + X_n,$$

and the $sample\ average$ to be

$$\overline{X} = \frac{1}{n}(X_1 + \dots + X_n).$$

25 Lecture 25

25.1 Convergence of Real Numbers

Given a sequence of real numbers $(x_n) \subseteq \mathbb{R}$ and a real number $x \in \mathbb{R}$ we say that

$$x_n \to x$$
 as $n \to \infty$

if, given $\varepsilon > 0$ there exists some N such that for all $n \geq N$ we have

$$|x_n - x| < \varepsilon$$
.

Definition. Convergence of Random Variables

Let (X_n) be a sequence of random variables and X be another random variable.

• We say that $X_n \to X$ in probability as $n \to \infty$ if given any $\varepsilon > 0$ we have

$$\mathbb{P}[|X_n - X| \ge \varepsilon] \to 0 \text{ as } n \to \infty.$$

Theorem — The (Weak) Law of Large Numbers

Let X_1, X_2, \ldots be an i.i.d. sequence of random variables with $\mathbb{E}[|X|] < \infty$. Then,

$$\overline{X} = \frac{1}{n} \sum_{j=1}^{n} X_j \to \mu$$
 in probability as $n \to \infty$.

Theorem — Markov's Inequality

Let $X \ge 0$ be a non-negative random variable. Then, given a > 0 we have

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}[X]}{a}.$$

Theorem — Markov's Inequality v2

Let $X \geq 0$ be a non-negative random variable. Then, given a > 0 and an integer $k \geq 1$ we have

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}[X^k]}{a^k}.$$

Theorem — Chebyshev's Inequality

Let X be a random variable with mean μ and variance σ^2 . Then given a > 0 we have

$$\mathbb{P}[|X - \mu| \ge a] \le \frac{\sigma^2}{a^2}.$$

Theorem — The Chernoff Bound

Let X be a random variable. Then, given a > 0 we have

$$\mathbb{P}[X \ge a] \le \inf_{t>0} \left(e^{-ta} M_X(t) \right).$$

26 Lecture 26

Theorem. Let X_1, \ldots, X_n be a sequence of *independent* random variables and $a_1, \ldots, a_n \in \mathbb{R}$. Let

$$Y = \sum_{j=1}^{n} a_j X_j.$$

Then Y has MGF

$$M_Y(t) = \prod_{j=1}^n M_{X_j}(a_j t)$$

whenever it is well-defined.

Theorem. Let X, Y be random variables with MGFs $M_X(t)$ and $M_Y(t)$. Suppose that for some h > 0 and all $t \in (-h, h)$ we have

$$M_X(t) = M_Y(t).$$

Then X and Y are identically distributed.

Note. You can read the above as "same MGF if and only if same distribution".

Theorem. Let X_1, \ldots, X_n be independent, identically distributed random variables with common MGF M(t). Then

$$M_{S_n}(t) = [M(t)]^n$$

$$M_{\overline{X}}(t) = \left[M\left(\frac{t}{n}\right) \right]^n.$$

Definition. Convergence in Distribution

Let X_1, \ldots, X_n be a sequence of random variables. We say that $X_n \to X$ in distribution as $n \to \infty$ if the CDF

$$F_{X_n}(x) \to F_X(x)$$
 as $n \to \infty$

for all $x \in \mathbb{R}$ so that $F_X(x)$ is continuous at x.

Theorem. Let X_1, \ldots and X be random variables. Suppose that for some h > 0 and all $t \in (-h, h)$ we have

$$M_{X_n}(t) \to M_X(t)$$
 as $n \to \infty$.

Then $X_n \to X$ in distribution as $n \to \infty$.

26.1 The Central Limit Theorem

Let X_1, X_2, \ldots be an independent and identically distributed sequence of random variables with mean μ . Recall that the Weak Law of Large Numbers states that $\overline{X} \to \mu$ in probability as $n \to \infty$.

What can we say about the fluctuations of \overline{X} ? We already know that $var(\overline{X}) = \frac{var(X)}{n}$.

Theorem — The Central Limit Theorem

Let X_1, \ldots be an independent and identically distributed sequence of random variables with finite

mean μ and variance σ^2 . Then

$$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \to \mathcal{N}(0, 1) \quad \text{in distribution as} \quad n \to \infty.$$