Artificial Intelligence

Blai Bonet

Universidad Simón Bolívar, Caracas, Venezuela

Model for non-deterministic problems

State models with non-deterministic actions correspond to tuples $(S, A, s_{init}, S_G, F, c)$ where

- S is finite set of states
- A is finite set of actions where A(s), for $s \in S$, is the set of applicable actions at state s
- $-s_{init} \in S$ is initial state
- $S_G \subseteq S$ is set of goal states
- $F: S \times A \to 2^S \setminus \{\emptyset\}$ is **non-deterministic** transition function. For $s \in S$ and $a \in A(s)$, $F(s,a) \neq \emptyset$ is set of **possible successors**
- $-c: S \times A \to \mathbb{R}^{\geq 0}$ are **non-negative** action costs

Non-deterministic state model

© 2018 Blai Bonet

Solutions

Solutions cannot be linear sequences of actions that map s_{init} into a goal state because actions are **non-deterministic**

Solutions are strategies or policies that map s_{init} into a goal state

Policies are functions $\pi: S \to A$ that map states s into actions $\pi(s)$ to apply at s (implied constraint: $\pi(s) \in A(s)$)

Unlike acyclic solutions for AND/OR graphs, solutions may be cyclic

Example

Goal: reach lower right corner (n-1,0)

Actions: Right (R), Down (D), Right-Down (RD)

Dynamics: R and D are deterministic, RD is non-deterministic.

If RD is applied at (x, y), the possible effects are

 $(x+1 \mod n, y), (x+1 \mod n, y-1 \mod n), (x, y-1 \mod n)$

© 2018 Blai Bonet

Fairness

Let $\tau = \langle s_0, a_0, s_1, \ldots \rangle$ be a maximal execution starting at $s_0 = s$

We say that τ is **fair execution** if either

- au is finite, or
- if the pair (s, a) appears **infinitely often** in τ , then (s, a, s') also appears infinitely often in τ for every $s' \in F(s, a)$

Alternatively, τ is **unfair execution** iff

- τ is infinite, and
- there are s, a and $s' \in F(s,a)$ such that (s,a) appears i.o. in τ but (s,a,s') only appears a finite number of times

Executions

Given state s, a **finite execution** starting at s is interleaved sequence of states and actions $\langle s_0, a_0, s_1, a_1, \dots, a_{n-1}, s_n \rangle$ such that:

- $s_0 = s$
- $-s_{i+1} \in F(s_i, a_i) \text{ for } i = 0, 1, \dots, n-1$
- $-s_i \notin S_G$ for i < n (i.e. once goal is reached, execution ends)

Maximal execution starting at s is (possibly infinite) sequence $\tau = \langle s_0, a_0, s_1, a_1, \ldots \rangle$ such that:

- if τ is **finite**, it is a finite execution ending in a goal state
- if au is **infinite**, each finite prefix of au is a finite execution

Execution $(s_0, a_0, s_1, ...)$ is **execution for** π iff $a_i = \pi(s_i)$ for $i \ge 0$

© 2018 Blai Bonet

Example of fair and unfair executions

Policy π_1 given by

$$\pi_1(x,y) = \begin{cases} \text{Right} & \text{if } x < n-1 \\ \text{Down} & \text{if } x = n-1 \end{cases}$$

Example of fair and unfair executions

Policy π_2 given by

$$\pi_2(x,y) = \text{Right-Down}$$

© 2018 Blai Bonet

Example of fair and unfair executions

Policy π_2 given by

$$\pi_2(x,y) = \mathsf{Right} ext{-}\mathsf{Down}$$

Example of fair and unfair executions

Policy π_2 given by

$$\pi_2(x,y) = \text{Right-Down}$$

© 2018 Blai Bonet

Solution concepts

Let $P = (S, A, s_{init}, S_G, F, c)$ be non-det. model and $\pi : S \to A$

- $-\pi$ is a **strong solution** for state s iff all **maximal executions** for π starting at s are finite (and thus, by definition, end in a goal state)
- $-\pi$ is a **strong cyclic solution** for state s iff every maximal execution for π starting at s that does not end in a goal state is **unfair**

The following can be shown:

- if π is a ${\bf strong}$ ${\bf solution}$ for state s, there is bound M such that all maximal executions have length $\leq M$
- if π is a **strong cyclic solution** for state s but not a strong solution, the length of the executions ending at goal states is unbounded

Solutions for example

- $\pi_1(x,y)$ given by Right when x < n-1 and Down when x = n-1 is a **strong solution**
- $\pi_2(x,y) = \text{Right-Down is a strong cyclic solution}$
- $\pi_3(x,y)$ = Down is not a solution

© 2018 Blai Bonet

Characterizing solution concepts

Characterization of solutions using best/worst costs for π at s:

- π is strong solution for s_{init} iff $V_{worst}^{\pi}(s_{init}) < \infty$
- π is strong cyclic solution for s_{init} iff $V^\pi_{best}(s) < \infty$ for every state s that is reachable from s_{init} using π

Additionally, if we define $V_{\rm max}(s)$ at each state s by

$$V_{\max}(s) = \left\{ \begin{array}{ll} 0 & \text{if } s \in S_G \\ \min_{a \in A(s)} \left\{ c(s, a) + \max\{V_{\max}(s') : s' \in F(s, a)\} \right\} & \text{if } s \notin S_G \end{array} \right.$$

Then, there is strong policy starting at s iff $V_{\rm max}(s) < \infty$

Assigning costs to policies

If π is a strong solution for s_{init} , all maximal executions are bounded in length and a cost can be assigned

If π is a strong cyclic solution for s_{init} but not a strong solution, it is **not clear** how to assign cost to π

However, we can consider **best** and **worst** costs for π at s:

$$V_{best}^{\pi}(s) = \begin{cases} 0 & \text{if } s \in S_G \\ c(s, \pi(s)) + \min\{V_{best}^{\pi}(s') : s' \in F(s, \pi(s))\} & \text{if } s \notin S_G \end{cases}$$

$$V_{worst}^{\pi}(s) = \begin{cases} 0 & \text{if } s \in S_G \\ c(s, \pi(s)) + \max\{V_{worst}^{\pi}(s') : s' \in F(s, \pi(s))\} & \text{if } s \notin S_G \end{cases}$$

© 2018 Blai Bonet

AND/OR formulation for non-deterministic models

Given non-deterministic model $P = (S, A, s_{init}, S_G, F, c)$, we define two different AND/OR graphs:

- (Finite) AND/OR graph over states: "OR vertices" for states $s \in S$ and "AND vertices" for pairs $\langle s,a \rangle$ for $s \in S$ and $a \in A(s)$. Connectors $(s,\{\langle s,a \rangle\})$ with cost c(s,a) for $a \in A(s)$, and connectors $(\langle s,a \rangle, F(s,a))$ with zero cost
- (Infinite but acyclic) AND/OR graph over executions: "OR vertices" are finite executions starting at s_{init} and ending in states, and "AND vertices" are finite executions starting at s_{init} and ending in actions. Connectors $(\langle s_{init}, \ldots, s \rangle, \{\langle s_{init}, \ldots, s, a \rangle\})$ with cost c(s,a) for $a \in A(s)$, and connectors $(\langle s_{init}, \ldots, s, a \rangle, \{\langle s_{init}, \ldots, s, a, s' \rangle : s' \in F(s,a)\})$ with zero cost

Finding strong solutions

If there is a strong solution (i.e. if $V_{\rm max}(s_{init}) < \infty$), AO* finds one such solution when applied on the infinite and acyclic AND/OR graph

Conversely, if AO* solves the infinite and acyclic AND/OR graph, the solution found by AO* is a strong solution

Another method is to select actions greedily with respect to $V_{\rm max}$

Indeed, the policy π defined by

$$\pi(s) = \underset{a \in A(s)}{\operatorname{argmin}} \left\{ c(s, a) + \max\{V_{\max}(s') : s' \in F(s, a)\} \right\}$$

is a strong solution starting at s_{init} when $V_{\max}(s_{init}) < \infty$

© 2018 Blai Bonet

Finding strong cyclic solutions

Consider non-deterministic model $(S, A, s_{init}, S_G, F, c)$

Algorithm for finding a strong cyclic solution for s_{init} :

- 1. Start with S' = S and A' = A
- 2. Find V_{\min} for states in S' and actions in A' by solving the equations for V_{\min}
- 3. Remove from S' all states s such that $V_{\min}(s)=\infty$, and remove from A'(s), for all states s, the actions leading to removed states
- 4. Iterate steps 2–3 until reaching a fix point (# iterations bounded by |S|)
- 5. If state s_{init} is removed, then there is no strong cyclic solution for s_{init}
- 6. Else, the greedy policy with respect to last V_{\min} , given by

$$\pi(s) = \underset{a \in A'(s)}{\operatorname{argmin}} \left\{ c(s, a) + \min\{V_{\min}(s') : s' \in F(s, a)\} \right\},\,$$

is strong cyclic solution for s_{init}

Finding strong cyclic solutions

These solutions are more complex than strong solutions (and so, the algorithms are not straightforward)

Let's begin by definining V_{\min} in a similar way to V_{\max} :

$$V_{\min}(s) = \left\{ \begin{array}{l} 0 & \text{if } s \in S_G \\ \min_{a \in A(s)} \left\{ c(s, a) + \min\{V_{\min}(s') : s' \in F(s, a)\} \right\} & \text{if } s \notin S_G \end{array} \right.$$

For every policy π and state s, we have

$$0 \leq V_{\min}(s) \leq V_{best}^{\pi}(s) \leq V_{worst}^{\pi}(s) \leq V_{\max}(s) \leq \infty$$

© 2018 Blai Bonet

Solving equations for V_{\min} (and V_{\max})

Idea is to use the equation defining V_{\min} as **assignment** inside an iterative algorithm that **updates** initial iterate until **convergence**

Algorithm for finding V_{\min} over states in S' and actions in A':

- 1. Start with initial iterate $V(s) = \infty$ for every $s \in S'$
- 2. Update V at each state $s \in S'$ as:

$$V(s) := \left\{ \begin{array}{ll} 0 & \text{if } s \in S_G \\ \displaystyle \min_{a \in A'(s)} \left\{ c(s,a) + \min\{V(s') : s' \in F(s,a)\} \right\} & \text{if } s \notin S_G \end{array} \right.$$

3. Repeat step 2 until reaching a **fix point** (termination is guaranteed!)

At termination, the last iterate V satisfies $V=V_{\min}$ (for V_{\max} replace innermost \min by \max , and start with iterate V(s)=0 for all s)

Summary

- Non-deterministic state model
- Solution concepts: strong and strong cyclic policies
- Algorithms for computing solutions