UT Austin CSE 386D

Homework 9

Jonathan Zhang EID: jdz357

Unless otherwise stated, denote by (\cdot, \cdot) as the L^2 inner product, and $\|\cdot\|$ as $\|\cdot\|_{L^2(\Omega)}$.

Exercise (19). Let $\Omega \subset \mathbb{R}^4$ be a bounded domain with smooth boundary, $f \in L^2(\Omega)$. Consider the BVP

$$-\nabla^2 u + u^3 = f$$

with u=0 on $\partial\Omega$. We attempt to solve iteratively from $u_0=0$ by computing for each $n=1,2,\ldots$ the solutions to the linear BVP

$$-\nabla^2 u_n + u_{n_1}^2 u_n = f, \qquad u_n = 0 \text{ on } \partial\Omega.$$

- 1. Find appropriate variational problems for the linear BVP's and show that they are well deifned in $H_0^1(\mathbb{R}^4)$ provided that $u_{n-1} \in H_0^1(\mathbb{R}^4)$. (Hint: Sobolev Imbedding Theorem.)
- 2. Show that there is a unique solution $u_n \in H_0^1(\mathbb{R}^4)$ assuming that $u_{n-1} \in H_0^1(\mathbb{R}^4)$. Moreover, find a bound for the norm of u_n .
- 3. Show that the nonlinear BVP has a weak solution. Extract a subsequence of u_n that converges weakly to some u and show that u satisfied the weak form of the nonlinear BVP.

Exercise (21). $\Omega \subset \mathbb{R}^d$ bounded domain with Lipschitz $\partial \Omega$, define

$$H(\operatorname{div},\Omega) = \left\{ v \in (L^2(\Omega))^d : \nabla \cdot v \in L^2(\Omega) \right\}.$$

1. Show that $H(div, \Omega)$ is a Hilbert space with inner product

$$(u,v)_{H(\operatorname{div},\Omega)} = (u,v) + (\nabla \cdot u, \nabla \cdot v) \,.$$

2. The trace Theorem does not imply that $\partial_{\nu}v=v\cdot\nu$ exists on $\partial\Omega$. Nevertheless, show that $\partial_{\nu}:H\left(\operatorname{div},\Omega\right)\to H^{-1/2}\left(\partial\Omega\right)=\left(H^{1/2}(\partial\Omega)\right)^*$ is a well defined bounded linear operator in the sense that

$$\int\limits_{\partial\Omega} v \cdot \nu \phi d\sigma(x) = \int\limits_{\Omega} \nabla \cdot v \phi dx + \int\limits_{\Omega} v \cdot \nabla \phi dx.$$

3. Prove the following inf-sup condition: there exists $\gamma > 0$ such that

$$\inf_{w \in L^2} \sup_{v \in H(\operatorname{div},\Omega)} \frac{(w,\nabla \cdot v)}{\|w\| \|v\|_{H(\operatorname{div},\Omega)}} \geq \gamma > 0.$$

Hint solve $\Delta \varphi = w$ in $H_0^1(\Omega)$ and consider $v = \nabla \varphi$.

Exercise (25). Consider the finite element method.

- 1. Modify the method to account for nonhomogeneous Neumann conditions.
- 2. Modify the method to account for nonhomogeneous Dirichlet conditions.

Oden Institute 1

CSE 386D UT Austin

Exercise (27). Suppose $u \in H^1(\Omega)$ where $\Omega \subset \mathbb{R}^d$ is bounded connected. Recall the H^1 seminorm is $|u|_{H^1} = \left\{\sum_{|\alpha|=1} \|D^\alpha u\|^2\right\}^{1/2}$.

1. Show that there is a constant C_{Ω} such that

$$\inf_{c \in \mathbb{R}} \|u - c\| \le C_{\Omega} |u|_{H^1}.$$

2. Let $\Omega = (0,h)^d$ for h > 0. Show that there is a constant C independent of h and u such that

$$\inf_{c \in \mathbb{R}} \|u - c\| \le Ch|u|_{H^1}.$$

Change var. to integrate over $(0,1)^d$ and then use previous.

3. Let $\Omega=(0,1)^d$ and let P be the set of piecewise discontinuous constants over the grid of spacing h=1/N for some positive integer N. Show that there is a constant C independent of h, u, such that

$$\inf_{p \in P} \|u - p\| \le Ch|u|_{H^1}.$$

Exercise (29). Consider the problem

- 1. Find the Green's Function.
- 2. Instead impose Neumann BC's, and find the Green's function. Recall we now require $-\partial^2/\partial x^2 G(x,y)=\delta_y(x)-1$.

Oden Institute