GUIA MANGÁ DE CÁLCULO DIFERENCIAL E INTEGRAL

HIROYUKI KOJIMA SHIN TOGAMI BECOM CO., LTD.

novatec

Original Japanese-language edition Manga de Wakaru Bibun Sekibun ISBN 4-274-06632-0 © 2005 by Hiroyuki Kojima and Becom Co., Ltd., published by Ohmsha, Ltd.

English-language edition The Manga Guide to Calculus ISBN 978-1-59327-194-7 © 2009 by Hiroyuki Kojima and Becom Co., Ltd., co-published by No Starch Press, Inc. and Ohmsha, Ltd.

Portuguese-language rights arranged with Ohmsha, Ltd. and No Starch Press, Inc. for Guia Mangá de Cálculo Diferencial e Integral ISBN 978-85-7522-208-9 © 2009 by Hiroyuki Kojima and Becom Co., Ltd., published by Novatec Editora Ltda.

Edição original em japonês Manga de Wakaru Bibun Sekibun ISBN 4-274-06632-0 © 2005 por Hiroyuki Kojima e Becom Co., Ltd., publicado pela Ohmsha, Ltd.

Edição em inglês The Manga Guide to Calculus ISBN 978-1-59327-194-7 © 2009 por Hiroyuki Kojima e Becom Co., Ltd., copublicação da No Starch Press, Inc. e Ohmsha, Ltd.

Direitos para a edição em português acordados com a Ohmsha, Ltd. e No Starch Press, Inc. para Guia Mangá de Cálculo Diferencial e Integral ISBN 978-85-7522-208-9 © 2009 por Hiroyuki Kojima e Becom Co., Ltd., publicado pela Novatec Editora Ltda.

Copyright © 2010 da Novatec Editora Ltda.

Todos os direitos reservados e protegidos pela Lei 9.610 de 19/02/1998.

É proibida a reprodução desta obra, mesmo parcial, por qualquer processo, sem prévia autorização, por escrito, do autor e da Editora.

Editor: Rubens Prates Ilustração: Shin Togami Tradução: Edgard B. Damiani Revisão técnica: Peter Jandl Jr.

Editoração eletrônica: Camila Kuwabata e Carolina Kuwabata

ISBN: 978-85-7522-208-9

Histórico de impressões:

Fevereiro/2012 Segunda reimpressão Novembro/2010 Primeira reimpressão Março/2010 Primeira edição

NOVATEC EDITORA LTDA.

Rua Luís Antônio dos Santos 110 02460-000 – São Paulo, SP – Brasil

Tel.: +55 11 2959-6529 Fax: +55 11 2950-8869

E-mail: novatec@novatec.com.br

Site: www.novatec.com.br

Twitter: twitter.com/novateceditora Facebook: facebook.com/novatec LinkedIn: linkedin.com/in/novatec Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil)

> Kojima, Hiroyuki Guia mangá de cálculo : diferencial e integral / Hiroyuki Kojima, Shin Togami, Becom Co ; [ilutrações] Shin Togami ; [tradução Edgard B. Damiani]. -- São Paulo : Novatec Editora ; Tokyo : Ohmsha ; São Francisco : No Starch Press, 2010. -- (The manga guide)

Título original: The manga guide to calculus. ISBN 978-85-7522-208-9

1. Cálculo 2. Cálculo - Problemas, exercícios etc. 3. Cálculo diferencial 4. Cálculo integral 5. História em quadrinhos 6. Matemática - História em quadrinhos I. Togami, Shin. II. Becom Co.. III. Título. IV. Série.

10-01418 CDD-515

Índices para catálogo sistemático:

 Cálculo: Matemática em quadrinhos 51: PRL20120203

SUMÁRIO

xi
1
14
15
1627323435394040
43
48536272747575
77
82 83 84 85 88

Jsando o Teorema Fundamental do Cálculo	.91
Resumo	.93
Uma Explicação Rigorosa do Passo 5	
Usando Fórmulas de Integração	
Aplicando o Teorema Fundamental	101
Curva de Oferta	
Curva de Demanda	103
Revisão do Teorema Fundamental do Cálculo	110
Yórmula da Regra da Substituição para Integração	111
A regra da potência de integração	112
Exercícios	113
1	
AMOS APRENDER TÉCNICAS DE INTEGRAÇÃO!	
Jsando Funções Trigonométricas	
Jsando Integrais com Funções Trigonométricas	
Jsando Funções Exponenciais e Logarítmicas	
Generalizando as Funções Exponencial e Logarítmica	135
Resumo das Funções Exponencial e Logarítmica	140
Mais Aplicações do Teorema Fundamental	142
Integração por Partes	143
Exercícios	144
,	
AMOS APRENDER SOBRE EXPANSÕES DE TAYLOR!	145
Aproximando com Polinômios	147
Como Obter uma Expansão de Taylor	155
Expansão de Taylor de Várias Funções	160
Que a Expansão de Taylor Nos Diz?	161
Exercícios	178
5 /AMOS APRENDER SOBRE DERIVADAS PARCIAIS!	170
O Que São Funções Multivariáveis?	
D Básico das Funções Lineares Variáveis	
Derivação Parcial	
Definição da Derivação Parcial	
Derivadas Totais	
Condições de Extremidade	
Aplicando a Derivação Parcial na Economia	
Regra da Cadeia	
Derivadas de Funções Implícitas	
Exercícios	218

PÍLOGO: ARA QUE SERVE A MATEMÁTICA?
OLUÇÕES DOS EXERCÍCIOS225
rólogo
apítulo 1
apítulo 2
apítulo 3
apítulo 4
apítulo 5
apítulo 6
RINCIPAIS FÓRMULAS, TEOREMAS E FUNÇÕES APRESENTADOS NESTE LIVRO231
quações Lineares (Funções Lineares)231
Perivação
Perivadas das Funções mais Comuns
ntegrais
xpansão de Taylor
Perivadas Parciais

TABELA 1: CARACTERÍSTICAS DAS FUNÇÕES

A SS UNTO	CÁLCULO	GRÁFICO
Causalidade	A frequência do estridular de um grilo é determinada pela temperatura. Podemos expressar aproximadamente a relação entre y estrídulos por minuto de um grilo com a temperatura x °C como $y = g(x) = 7x - 30$	Quando desenhamos essas funções, o resul- tado é uma linha reta. É por isso que as chama- mos de funções lineares.
	$x = 27^{\circ} 7 \times 27 - 30$	/
	O resultado é 159 estrídulos por minuto.	
Mudanças	A velocidade do som y em metros por segundo (m/s) no ar a x °C é expressa como	
	y = v(x) = 0.6x + 331	
	A 15°C,	
	$y = v(15) = 0.6 \times 15 + 331 = 340 \text{ m/s}$	/
	A -5°C,	'
	$y = v(-5) = 0.6 \times (-5) + 331 = 328 \text{ m/s}$	0 x
Conversão de Unidade	Conversão de x graus Fahrenheit (°F) em y graus Celsius (°C)	
	$y = f(x) = \frac{5}{9}(x - 32)$	
	Então agora sabemos que 50°F equivalem a	
	$\frac{5}{9}(50-32)=10^{\circ}\mathrm{C}$	
	Computadores armazenam números	O gráfico é uma função
	usando um sistema binário (1s e 0s). um número binário com x bits (ou dígitos	exponencial.
	binários) tem o potencial de armazenar y	y↑
	números distintos.	1024
	$y = \mathbf{b}(x) = 2^x$	
	(Isso é descrito com mais detalhes na página 131.)	1 10 x

OS GRÁFICOS DE ALGUMAS FUNÇÕES NÃO PODEM SER EXPRESSOS POR LINHAS RETAS OU CURVAS COM FORMA REGULAR.

O preço P das ações da companhia A no mês x de 2009 é y = P(x)

P(x) não pode ser expressa por uma função conhecida, mas ainda assim é uma função.

Se conseguisse encontrar uma maneira de prever P(7), o preço das ações em julho, você poderia ter um grande lucro.

A COMBINAÇÃO DE DUAS OU MAIS FUNÇÕES É CHAMADA DE "COMPOSIÇÃO DE FUNÇÕES". A COMBINAÇÃO DE FUNÇÕES NOS PERMITE EXPANDIR O ESCOPO DE CAUSALIDADE.

EXERCÍCIO

1. Encontre uma equação que expresse a frequência de z estrídulos/minuto de um grilo a $x^{\circ}F$.

GENERALIZANDO FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS

APESAR DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA SEREM CONVENIENTES, A DEFINIÇÃO QUE FIZEMOS DELAS ATÉ AGORA PERMITE APENAS NÚMEROS NATURAIS PARA x EM $f(x) = 2^x$ E POTÊNCIAS DE 2 PARA y EM $g(y) = \log_2 y$. NÃO TEMOS UMA DEFINIÇÃO PARA A POTÊNCIA -8, A POTÊNCIA $\frac{7}{3}$ OU A POTÊNCIA $\frac{1}{3}$, $\log_2 5$, OU $\log_2 \pi$.

HMM, O QUE FAZEMOS, ENTÃO?

VOU LHE CONTAR COMO DEFINIMOS FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS EM GERAL, USANDO EXEMPLOS.

PRIMEIRO, USANDO O NOSSO EXEMPLO ANTERIOR, VAMOS MUDAR A TAXA DE CRESCIMENTO ECONÔMICO ANUAL PARA SUA TAXA DE CRESCIMENTO INSTANTÂNEA.

Valor após 1 ano – Valor atual

COMEÇAREMOS COM ESSA EXPRESSÃO.

Taxa de crescimento instantânea

- = Idealização de $\left(\frac{\text{Valor um pouco mais tarde} \text{Valor atual}}{\text{Valor atual}} \div \text{Tempo decorrido}\right)$
- = Resultado obtido usando $\varepsilon \to 0$ em $\left(\frac{f(x+\varepsilon)-f(x)}{f(x)}\right)\frac{1}{\varepsilon}$

$$=\lim_{x\to 0}\frac{1}{f(x)}\left(\frac{f(x+s)-f(x)}{s}\right)=\frac{1}{f(x)}f'(x)$$

ENTÃO, DEFINIMOS A TAXA DE CRESCIMENTO INSTANTÂNEA COMO $\frac{f'(x)}{f(x)}$

Agora, vamos considerar uma função que satisfaça a taxa de crescimento instantânea quando ela é constante, ou

$$\frac{f'(x)}{f(x)} = c$$
 em que c é uma constante.

Aqui assumimos que c = 1, e encontraremos f(x) que satisfaç

$$\frac{f'(x)}{f(x)} = 1$$

ENCONTRAR f(x)?
MAS COMO A
ENCONTRAREMOS?

1. Primeiro, chutamos que isso seja uma função exponencial.

$$\label{eq:como} \mathcal{C} OMO \ f'(x) = f(x), \ \textbf{0} \ f'(0) = f(0)$$
 AGORA, RECORDE QUE, QUANDO h ESTAVA PERTO O SUFICIENTE DE ZERO, TÍNHAMOS $f(h) = f'(0)(h-0) + f(0)$

De $\mathbf{0}$, temos que $\mathbf{f}[h] \approx \mathbf{f}[0]h + \mathbf{f}[0]$ e ficamos com

$$\Theta = f(h) = f(0)(h+1)$$

Se x estiver perto o suficiente de h, temos que

$$f(x) \otimes f^{\xi}(h)(x - h) + f(h)$$

substituindo x por 2h e usando f'(h) = f(h),

$$f(2h) = f'(h)(2h - h) + f(h)$$

Substituiremos então f(h) = f(0)(h+1) na nossa equação.

$$f(2h) = f(0)(h+1)(h+1)$$

$$f(2h) = f(0)(h+1)^2$$

Da mesma forma, substituímos 3h, 4h, 5h, ..., por x e fazemos mh = 1.

$$f(1) = f(mh) = f(0)(h+1)^m$$

De forma semelhante,

$$f(2) = f(2mh) = f(0)(h+1)^{2m} = f(0)((1+h)^m)^2$$

$$f(\beta) = f(3m h) + f(0) (h+1)^{\frac{m}{2}} = f(0) \{(1+h)^{\frac{m}{2}}\}^{\frac{m}{2}}$$

Então, ficamos com

$$f(n) = f(0)a^n$$
 em que usamos $a = (1 + h)^m$

que sugere uma função exponencial.*

^{*} Como mh = 1, $h = \frac{1}{m}$. Então, $f\{1\} = f\{0\} \left(1 + \frac{1}{m}\right)^m$. Se fizermos $m \to \infty$ aqui, $\left(1 + \frac{1}{m}\right)^m \to \varepsilon$, ou constante de Euler, um número que vale cerca de 2,718. Então, $f(1) = f(0) \times \varepsilon$, que é consistente com a discussão da página 141.

z. Em seguida descobriremos que f(x) existe com certeza e com o que ele se parece.

EXPRESSE A FUNÇÃO INVERSA DE y = f(x) COMO x = g(y).

DE ACORDO COM O f'(x) = f(x) INDICADO NA PÁGINA 136, A DERIVADA DE f(x) É ELA MESMA. MAS ISSO NÃO NOS AJUDA. ENTÃO, QUAL É A DERIVADA DE g(y)?

6 $g'(y) = \frac{1}{f'(x)}$

 $g'(y) = \frac{1}{f'(x)} = \frac{1}{f(x)} = \frac{1}{y}$

Agora, podemos usar o Teorema Fundamental do Cálculo:

$$\Theta = \int_{1}^{a} \frac{1}{y} dy = g(a) - g(1)$$

Como temos isso em geral,*

obtemos esse resultado, que mostra que a derivada da função inversa g(y) é explicitamente dada por $\frac{1}{y}$.

Como sabemos agora que $g'(y) = \frac{1}{y}$, descobrimos que a função $g(\alpha)$ é obtida integrando $\frac{1}{y}$ de 1 até α .

Se assumirmos que g(1) = 0 aqui . . .

OBTEMOS $q(\mu) = \tilde{\varphi} \frac{1}{2} dy$

ÓTIMO! AGORA, VAMOS DESENHAR O GRÁFICO DE $z = \frac{1}{y}$!

^{*} Como mostrado na página 75, se a função inversa de y=f(x) é x=g(y), f'(x) g'(y)=1.

1

VAMOS DEFINIR $g(\alpha)$ COMO A ÁREA ENTRE ESTE GRÁFICO E O EIXO Y NO INTERVALO DE 1 ATÉ α . ISSO É UMA FUNÇÃO BEM DEFINIDA. EM OUTRAS PALAVRAS, $g(\alpha)$ É DEFINIDA ESTRITAMENTE PARA QUALQUER α , SEJA UMA FRAÇÃO OU \blacksquare .

COMO $z = \frac{1}{2}$ É UMA FUNÇÃO EXPLÍCITA, A ÁREA PODE SER PRECISAMENTE DETERMINADA.

Como $g(\mathbf{k}) = \tilde{\mathbb{Q}} \frac{1}{\sqrt{2}} dy = 0 / \tilde{\mathbb{Q}} \frac{1}{\sqrt{2}} dy = g(\mathbf{k})$ $g(\mathbf{k})$ que satisfaz **6**.

Então, descobrimos a função inversa g(y), a área abaixo da curva, que também nos dá a função original f(x).

RESUMO DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

• $\frac{f'(x)}{f(x)}$ é vista como sendo a taxa de crescimento.

9 y = f(x) que satisfaz $\frac{f'(x)}{f(x)} = 1$ é a função que tem um crescimento constante de 1.

Isso é uma função exponencial que satisfaz

$$f'(x) = f(x)$$

Se a função inversa de y = f(x) é dada por x = g(y), temos

$$g'(y) = \frac{1}{y} + x$$

9 Se definimos $g(\alpha)$, podemos encontrar a área de $h(y) = \frac{1}{y}$,

$$g(a) = \int_a^a \frac{1}{y} \, dy$$

A função inversa de f(x) é a função que satisfaz \star e g(1) = 0.

6

e é um número irracional que vale cerca de 2,7178.

Definimos e (a base do logaritmo natural) como o y que satisfaça g(y) = 1. Ou seja, ele é o α para o qual a área entre a curva 1/y e o eixo y no intervalo de 1 a α é igual a 1.

Como f(x) é uma função exponencial, podemos escrever, usando a constante a_0 ,

$$f(x) = a_0 a^x$$

Como
$$f(g(1)) = f(0) = a_0 a^0 = a_0 e f(g(1)) = 1$$
, temos

$$f(g(1)) = 1 = a$$

E então sabemos que

$$f(x) = a^x$$

De forma semelhante, como

$$f(g(e)) = f(1) = a^1 - e$$

$$f(g(e)) = e$$

$$e = a^1$$

Então, temos que $f(x) = e^x$.

A função inversa g(y) disso é $\log_e y$, que pode ser escrito simplesmente como ln y (ln representa o logaritmo natural).

Agora, vamos reescrever de ② a ③ em termos de e^x e ln y.

$$\mathbf{6} \qquad f'(x) = f(x) \Leftrightarrow (e^x)' = e^x$$

$$\Theta - g\{a\} = \int_{1}^{a} \frac{1}{y} dy \Leftrightarrow \ln y = \int_{1}^{a} \frac{1}{y} dy$$

 $oldsymbol{9}$ Para definir 2^x , uma função dos bits, para qualquer número real x, fazemos

$$f(x) = e^{(\ln x)x}$$
 (x é qualquer número real)

A razão disso é mostrada a seguir. Como e^x e l
nysão funções inversas uma da outra,

$$e^{\ln 2} \equiv 2$$

Portanto, para qualquer número natural x, temos

$$f(x) = \left(e^{\tan x}\right)^x = 2^x$$

MAIS APLICAÇÕES DO TEOREMA FUNDAMENTAL

Outras funções podem ser expressas na forma $f(x) = x^{\alpha}$. Algumas delas são

$$\frac{1}{x} = x^{-1}, \frac{1}{x^2} = x^{-2}, \frac{1}{x^3} = x^{-3}, \dots$$

Para essas funções em geral, a fórmula que encontramos anteriormente mostra-se verdadeira.

FÓRMULA 4-2: REGRA DA POTÊNCIA PARA DERIVAÇÃO

$$f(x) = x^a \qquad f'(x) = ax^{a-1}$$

EXEMPLO:

Para
$$f(x) = \frac{1}{x^3}$$
, $f'(x) = (x^{-3})' = -3x^{-4} = -\frac{3}{x^4}$

Para
$$f(x) = \sqrt[4]{x}$$
, $f'(x) = \left(x^{\frac{1}{4}}\right)^{2} = \frac{1}{4}x^{-\frac{3}{4}} = \frac{1}{4\sqrt[4]{x^{3}}}$

PROVA:

Vamos expressar f(x) em termos de e. Percebendo que $e^{\ln x} = x$, temos que

$$\mathbf{f}(\mathbf{x}) = \mathbf{x}^a = \left[\mathbf{e}^{\mathbf{h} \times} \right]^a = \mathbf{e}^{a \cdot \mathbf{h} \times}$$

Então.

$$\ln f(x) = a \ln x$$

Derivando ambos os lados, lembrando que a derivada de ln $w = \frac{1}{w}$, e aplicando a regra da cadeia,

$$\frac{1}{|\mathbf{f}(\mathbf{x})|} \cdot |\mathbf{f}^{\xi}(\mathbf{x}) - \mathbf{d}| \cdot \frac{1}{|\mathbf{x}|}$$

Portanto,

$$f'(x) = a \times \frac{1}{x} \times f(x) = a \times \frac{1}{x} \times x^a = ax^{a-1}$$

INTEGRAÇÃO POR PARTES

Se h(x) = f(x) g(x), obtemos da regra do produto de derivadas,

$$h'(x) = f'(x)g(x) + f(x)g'(x)$$

Então, como a função (a antiderivada) que dá f'(x) g(x) + f(x) g'(x) após a derivação fica f(x) g(x), obtemos do Teorema Fundamental do Cálculo,

$$\int_{a}^{b} \{f'(x)g(x) + f(x)g'(x)\} dx = f\{b\}g\{b\} - f\{a\}g\{a\}$$

Usando a regra da soma de integração, obtemos a seguinte fórmula.

FÓRMULA 4-3: INTEGRAÇÃO POR PARTES

$$\int_{a}^{b} f'(x)g(x)dx + \int_{a}^{b} f(x)g'(x)dx = f(b)g(b) - f(a)g(a)$$

Como exemplo, vamos calcular:

$$\int_{0}^{x} x \operatorname{seno} x \, dx$$

Chutamos que a resposta da integral terá uma forma semelhante a $x \cos x$, então dizemos que f(x) = x e $g(x) = \cos x$. Então tentamos,

$$\int_{a}^{e} x' \cos x \, dx + \int_{a}^{e} x (\cos x)' \, dx = f(x)g(x)|_{a}^{e}$$

Podemos avaliar que

Substituindo em nossas funções originais de f(x) e g(x), descobrimos que

$$= \pi \cos \pi - 0 \cos 0 = \pi (-1) - 0 = -\pi$$

Podemos usar esse resultado em nossa primeira equação.

$$\frac{1}{2} \times \frac{1}{2} \cos x \cdot dx + \frac{1}{2} \times (\cos x)^{\frac{1}{2}} dx = \pi$$

Então obtemos:

$$\int_0^{\pi} \cos x \, dx + \int_0^{\pi} x \left(-\operatorname{seno} x\right) \, dx = -\pi$$

Rearranjando mais ainda, resolvendo os sinais, descobrimos que:

$$\int_0^{\pi} \cos x \, dx - \int_0^{\pi} x \operatorname{seno} x \, dx = -\pi$$

E você pode ver aqui que temos a integral original, mas agora atemos em termos que podemos realmente resolver! Resolvendo para nossa função original:

$$\int_0^{\pi} x \operatorname{seno} x \, dx = \int_0^{\pi} \cos x \, dx + \pi$$

Lembre-se que $\int \cos x \, dx = \text{seno } x$, e você pode ver que

$$\int_0^{\pi} x \operatorname{seno} x \, dx = \operatorname{seno} x \Big|_0^{\pi} + x$$

$$=$$
 seno π - seno $0 + \pi$

$$= 0 - 0 + \pi = \pi$$

Aqui está.

EXERCÍCIOS

- 1. $\tan x$ é uma função definida como seno x / $\cos x$. Obtenha a derivada de $\tan x$.
- z. Calcule

$$\int_a^{\frac{x}{4}} \frac{1}{\cos^2 x} \, \mathrm{d}x$$

- 3. Obtenha x tal que $f(x) = xe^x$ seja mínimo.
- 4. Calcule

Uma dica: suponha que $f(x) = x^2$ e $g(x) = \ln x$, e use a integração por partes.

CONDIÇÕES DE PONTOS EXTREMOS

Os extremos de uma função com duas variáveis f(x, y) está no ponto em que seu gráfico equivale ao topo de uma montanha ou à base de um vale.

Como o plano tangente ao gráfico no ponto P ou Q é paralelo ao plano x-y, devemos ter

$$f(x,y) = p(x-a) + q(y-b) + f(a,b)$$

com p = q = 0 na função linear de aproximação. Como

$$p = \frac{\partial f}{\partial x} \left\{ = f_x \right\} \quad q = \frac{\partial f}{\partial y} \left\{ = f_g \right\}$$

a condição de extremidade \acute{e} , caso f(x, y) tenha um extremo em (x, y) = (a, b),

$$f_{\mathbf{x}}(\mathbf{a}, \mathbf{b}) = f_{\mathbf{g}}(\mathbf{a}, \mathbf{b}) = \mathbf{0}$$

ou

$$\frac{\partial f}{\partial x}\{a,b\} = \frac{\partial f}{\partial y}\{a,b\} = 0$$

^{*} O oposto disso não é verdadeiro. Em outras palavras, mesmo que $f_x(a, b) = f_y(a, b) = 0$, f nem sempre terá um extremo em (x, y) = (a, b). Então, essa condição apenas escolhe os candidatos a ponto extremo.

NOS EXTREMOS DE UMA FUNÇÃO COM DUAS VARIÁVEIS, AS DERIVADAS PARCIAIS TANTO NA DIREÇÃO DE x QUANTO NA DIREÇÃO DE y SÃO IGUAIS A ZERO.

EXEMPLO

Vamos encontrar o mínimo de $f(x, y) = (x - y)^2 + (y - 2)^2$. Primeiro, vamos encontrá-lo algebricamente.

Como

$$(x-y)^2 \ge 0 \quad (y-2)^2 \ge 0$$

$$f(x,y) = (x-y)^2 + (y-2)^2 \ge 0$$

Se substituirmos x = y = 2 aqui,

$$f(2,2) = (2-2)^2 + (2-2)^2 = 0$$

Disso, $f(x, y) \ge f(2, 2)$ para todo (x, y). Em outras palavras, f(x, y) tem um mínimo igual a zero em (x, y) = (2, 2).

Por outro lado, $\frac{\partial f}{\partial x} = 2\{x - y\} = \frac{\partial f}{\partial y} = 2\{x - y\}\{-1\} + 2\{y - 2\} = -2x + 4y - 4$. Se fizermos

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} = 0$$

e resolvermos esse sistema de equações,

$$\begin{cases}
2x - 2y = 0 \\
-2x + 4y - 4 = 0
\end{cases}$$

descobrimos que (x, y) = (2, 2), tal como descobrimos acima.

AS SOLUÇÕES SÃO IGUAIS!

EPÍLOGO: PARA QUE SERVE A MATEMÁTICA?

