LAB Experiment 9 Boolean Function using Universal Gates

S.V.Harshith EE19BTECH11018

November 20,2020

1 Aim

Implement the below logic function in NgSpice using NOR gates using subcircuits.

Inp	ut1	Input 2	Output1	Output2
	0	0	0	0
	0	1	1	0
	1	0	1	0
	1	1	0	1

2 Procedure

Write the script for the above circuit in NgSpica and plot nodes A,B,O,E as V_{in1} , V_{in2} , V_{out1} , V_{out2} respectively

3 Results

4 Understanding

From the circuit diagram we can see that -

•
$$C = \overline{A + A} = \overline{A}$$
 and $D = \overline{B + B} = \overline{B}$

• So
$$E = \overline{\overline{A} + \overline{B}} = A.B = AND(A,B)$$

• O =
$$\overline{E+F}$$
 = $\overline{A.B+\overline{A+B}}$ = $\overline{A.B+\overline{A+B}}$ = $\overline{A.B}.\overline{\overline{A+B}}$ = $A.\overline{B}+\overline{A.B}$
 = $(\overline{A}+\overline{B}).(A+B)$ = XOR(A,B)

And we can check that the above plot follows the below truth table

$A = V_{in1}(Green)$	$B, V_{in2}(Red)$	$O, V_{out1}(Blue)$	$E, V_{out2}(Yellow)$
0	0	0	0
0	1	1	0
1	1	0	1
1	0	1	0

5 Conclusion

We can see that Output1 corresponds to a XOR gate and Output2 to AND gate.

Both of these gates can be combined to construct a half adder circuit which is used to add two binary digits.

XOR gate gives the sum and AND gate gives the carry.