Ejercicios I Física Contemporánea Relatividad Especial FIS312/LFIS313

- 1. ¿Es la ecuación $m\ddot{\mathbf{r}} k\mathbf{r} = 0$ (oscilador armónico) invariante bajo traslaciones?
- 2. ¿Es $m\ddot{\mathbf{r}} = f(x)\mathbf{r}$ invariante bajo rotaciones?
- 3. Demuestre que el Laplaciano es invariante bajo rotaciones, es decir, que se cumple

$$\frac{\partial^2}{\partial x^i \partial x_i} = \frac{\partial^2}{\partial x^{i\prime} \partial x_{i\prime}}$$

- 4. Muestre que la inversa de una transformación de Lorentz es a su vez una transformación de Lorentz.
- 5. En un sistema en movimiento K' una barra esta en reposo, con un ángulo ϕ' con respecto al eje x'. ¿Cuál es el ángulo que forma la barra medida con respecto al eje x?
- 6. Demuestre que la suma de dos vectores tipo tiempo, ambos apuntando hacia el futuro (es decir, con componentes tipo tiempo positivas) es a su vez tipo tiempo y apunta hacia el futuro.
- 7. Demuestre que un vector ortogonal a un vector tipo tiempo es tipo espacio.
- 8. Demuestre que (como se verá en clase) el observador K' no determina la posición de los extremos de la barra simultáneamente desde el punto de vista de K.
- 9. Demuestre que el operador de la ecuación de onda \square es invariante de Lorentz.
- 10. Calcule las componentes de la aceleración \dot{u}^{μ} y demuestre que $\dot{u}^{\mu}\dot{u}_{\mu}=m_{0}^{2}g^{2}$ se cumple.