





## **Introduction (cont.)**

- Another early bird,
  - Sir William Rowan Hamilton (1805-1865)
  - In 1859, developed a toy based on finding a path visiting all cities in a graph exactly once and sold it to a toy maker in Dublin
  - never was a big success...







CS2413: Data Structures, Fall 2021

3





## **Introduction (cont.)**

- Tracs
  - quite flexible, but inherent limitation -- only express hierarchical structures
- Graphs
  - a collection of nodes and the connections between them
  - generalize a tree

CS2413: Data Structures, Fall 2021



5



#### **Terminologies**

- A simple graph
  - G = (V, E) consists of a (finite) set denoted by V, and a collection E, of unordered pairs {u, v} of distinct elements from V
  - V, called a vertex or a point or a node
  - E, called an edge or a line or a link
  - The number of vertices, |V|, and edges, |E|







#### **Terminologies** (cont.)



Figure 13.1

Figure 13.2 Directed graph

- A directed graph, digraph
  - G = (V, E), (v\_i, v\_j) != (v\_j, v\_i)
  - In a simple graph (undirected graph),  $(v_i, v_j) = (v_j, v_i)$



- two vertices can be joined by multiple edges
- A pseudograph
  - a multigraph allowing for loops
  - a vertex can be joined with itself by an edge





Undirected

graph



pseudograph



CS2413: Data Structures, Fall 2021

7

## **Terminologies** (cont.)



- a sequence of edges, edge(v1, v2), edge(v2, v3), ..., edge( $v_{n-1}$ ,  $v_n$ )
- denoted as path v1, v2, v3, ...,  $v_{n-1}$ ,  $v_n$
- if  $vI = v_n$  and no edge is repeated,
- If the vertices in a circuit are different,
  - cycle



circuit in a digraph



cycle in the digraph





#### **Terminologies** (cont.)

- A weighted graph
  - an assigned number (e.g., weight, cost, distance, length, etc.) on each edge
- A complete graph
  - exactly one edge between each pair of distinct vertices





(c) Weighted graph

complete graph

CS2413: Data Structures, Fall 2021





## **Terminologies (cont.)**

- A subgraph G' of graph G = (V, E),
  - G' = (V', E'), where  $V' \in V$  and  $E' \in E$
- V\_i and V\_j are adjacent,
  - if the edge(V\_i, V\_j) is in E
  - such an edge is called incident with the vertices V\_i and V\_j
- The **degree** of a vertex v,
  - deg(v), the number of edges incident with v
  - if deg(v) = 0, v is an isolated vertex











# **Graph Representation (cont.)**

- An incidence matrix
  - a |V| x |E| binary matrix where,
  - a i j = I if edge e\_j is incident with vertex v\_i, otherwise 0



|     | ac | ad | af | bd | be | cf | de | df |
|-----|----|----|----|----|----|----|----|----|
| a [ | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  |
| b   | 0  | 0  | 0  | 1  | 1  | 0  | 0  | 0  |
| c   | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| d   | 0  | 1  | 0  | 1  | 0  | 0  | 1  | 1  |
| e   | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 0  |
| f   | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 1  |
| 3   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

