ECE269: Linear Algebra and Applications Fall 2021

Homework # 1 Solutions

1. (a) No it is not a subspace since the set is not closed under scalar multiplication. For example, suppose $\mathbf{x} \in S = {\mathbf{x} \mid x_i \geq 0}$ and $\alpha = -1$. Then

$$\alpha \mathbf{x} \notin S$$

(b) The set $S = \{\mathbf{x} \mid x_1 = 0\}$ is a subspace. Suppose $\mathbf{x}_1, \mathbf{x}_2 \in S$. Then

$$\mathbf{y} = \mathbf{x}_1 + \mathbf{x}_2; \quad y_1 = 0 \implies \mathbf{y} \in S$$

and let $\alpha \in \mathbb{R}$

$$\mathbf{z} = \alpha \mathbf{x}_1; \quad z_1 = 0 \implies \mathbf{z} \in S$$

Since the set is closed under addition and scalar multiplication, it is a subspace of \mathbb{R}^n .

(c) The set $S = \{\mathbf{x} \mid x_1 x_2 = 0\}$ is not a subspace since it is not closed under addition. To see this let $\mathbf{e}_1 = [1, 0, 0, \dots, 0] \in S$ and $\mathbf{e}_2 = [0, 1, 0, \dots, 0] \in S$. But

$$\mathbf{e}_1 + \mathbf{e}_2 \notin S$$

(d) The set $S = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b} \text{ where } \mathbf{b} \neq \mathbf{0} \}$ is not a subspace since it is not closed under addition. Suppose $\mathbf{x}_1, \mathbf{x}_2 \in S$. Then

$$\mathbf{A}(\mathbf{x_1} + \mathbf{x_2}) = \mathbf{A}\mathbf{x_1} + \mathbf{A}\mathbf{x_2} = 2\mathbf{b} \neq \mathbf{b}$$

Note that, this set is neither closed under scalar multiplication.

(e) Let set
$$S = \{[x_1, x_2, x_3, x_4] \in \mathbb{R}^4 \mid x_3 = x_1 + x_2, \ x_4 = x_1 - x_2\}$$
. Let $\mathbf{y}_1 = \begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{14} \end{bmatrix} \in S$. First we check the addition $\mathbf{y}_1 + \mathbf{y}_2 = \begin{bmatrix} y_{11} + y_{21} \\ y_{12} + y_{22} \\ y_{13} + y_{23} \\ y_{14} + y_{24} \end{bmatrix}$, where $y_{13} + y_{23} = (y_{11} + y_{12}) + (y_{21} + y_{22}) = (y_{11} + y_{21}) + (y_{12} + y_{22})$, and $y_{14} + y_{24} = (y_{11} - y_{12}) + (y_{21} - y_{22}) = (y_{11} + y_{21}) - (y_{12} + y_{22})$. Thus $\mathbf{y}_1 + \mathbf{y}_2 \in S$. Let $\alpha \in \mathbb{R}$, $\alpha \mathbf{y}_1 = \begin{bmatrix} \alpha y_{11} \\ \alpha y_{12} \\ \alpha y_{13} \\ \alpha y_{14} \end{bmatrix}$, where $\alpha y_{13} = \alpha y_{11} + \alpha y_{12}$ and $\alpha y_{14} = \alpha y_{11} - \alpha y_{12}$. So clearly $\alpha \mathbf{y}_1 \in S$. Thus, we conclude set S is closed under both addition and scalar multiplication.

$$S, \mathbf{y}_2 = \begin{bmatrix} y_{21} \\ y_{22} \\ y_{23} \\ y_{24} \end{bmatrix} \in S.$$
 First we check the addition $\mathbf{y}_1 + \mathbf{y}_2 = \begin{bmatrix} y_{11} + y_{21} \\ y_{12} + y_{22} \\ y_{13} + y_{23} \\ y_{14} + y_{24} \end{bmatrix}$, where

$$y_{13} + y_{23} = (y_{11} + y_{12}) + (y_{21} + y_{22}) = (y_{11} + y_{21}) + (y_{12} + y_{22})$$
, and $y_{14} + y_{24} = (y_{11} - y_{12}) + (y_{21} - y_{22}) = (y_{11} + y_{21}) - (y_{12} + y_{22})$. Thus $\mathbf{y}_1 + \mathbf{y}_2 \in S$. Let $\alpha \in \mathbb{R}$,

$$\alpha \mathbf{y}_1 = \begin{bmatrix} \alpha y_{11} \\ \alpha y_{12} \\ \alpha y_{13} \\ \alpha y_{14} \end{bmatrix}$$
, where $\alpha y_{13} = \alpha y_{11} + \alpha y_{12}$ and $\alpha y_{14} = \alpha y_{11} - \alpha y_{12}$. So clearly $\alpha \mathbf{y}_1 \in S$.

Thus, we conclude set S is closed under both addition and scalar multiplication.

(f) Let
$$S = \{[x_1, x_2, x_3] \in \mathbb{R}^3 \mid x_1 \leq x_2 \leq x_3\}$$
. Let $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in S$ and let $\alpha = -1 \in \mathbb{R}$, clearly $\alpha \mathbf{x} \notin S$. Thus, S is not a subspace.

- (g) Let $S = {\mathbf{A} \in \mathbb{R}^{3 \times 3} \mid [1, 0, 4]^T \in \mathcal{N}(\mathbf{A})}$. Let $\mathbf{A}_1, \mathbf{A}_2 \in S$, such that $\mathbf{A}_1[1, 0, 4]^T = \mathbf{0}$ and $\mathbf{A}_2[1, 0, 4]^T = \mathbf{0}$. First check $(\mathbf{A}_1 + \mathbf{A}_2)[1, 0, 4]^T = \mathbf{A}_1[1, 0, 4]^T + \mathbf{A}_2[1, 0, 4]^T = \mathbf{0}$, so the addition closure is satisfied. Then let $\alpha \in \mathbb{R}$, clearly $(\alpha \mathbf{A}_1)\mathbf{x} = \alpha(\mathbf{A}_1\mathbf{x}) = \mathbf{0}$, so that $[1, 0, 4]^T \in \mathcal{N}(\alpha \mathbf{A}_1)$. Thus, subset S is a subspace.
- (h) The set $S = \{ \mathbf{B} \in \mathbb{R}^{n \times n} | \mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} \}$ is a subspace. Let $\mathbf{B}_1, \mathbf{B}_2 \in S$, Then,

$$A(B_1 + B_2) = AB_1 + AB_2 = B_1A + B_2A = (B_1 + B_2)A$$

Thus, $\mathbf{B_1} + \mathbf{B_2} \in S$.

Let, $\alpha \in \mathbb{R}$

$$A(\alpha B_1) = \alpha(AB_1) = \alpha(B_1A) = (\alpha B_1)A$$

Hence, $\alpha \mathbf{B_1} \in S$.

Since S is closed under addition and scalar multiplication, it is a subspace.

(i) No the set $S = \{ \mathbf{X} \in \mathbb{R}^{n \times n} | \mathbf{X}^2 = \mathbf{X} \}$ is not a subspace. Let, $\alpha \in \mathbb{R}$ and $\mathbf{X} \in S$ where $\alpha \neq 0, 1$ and $\mathbf{X} \neq \mathbf{0}$

$$(\alpha \mathbf{X})^2 = \alpha^2 \mathbf{X}^2 = \alpha^2 \mathbf{X} \neq \alpha \mathbf{X}$$

Since the set is not closed under scalar multiplication, it is not a subspace. This set is also not closed under addition.

(j) The set $S = \{ \mathbf{X} \in \mathbb{R}^{n \times n} | \mathbf{trace}(\mathbf{X}) = \mathbf{0} \}$ is a subspace. Let $\mathbf{X}_1, \mathbf{X}_2 \in S$, Then,

$$trace(\mathbf{X_1} + \mathbf{X_2}) = trace(\mathbf{X_1}) + trace(\mathbf{X_2}) = 0 + 0 = 0$$

Thus, $X_1 + X_2 \in S$.

Let, $\alpha \in \mathbb{R}$

$$trace(\alpha \mathbf{X_1}) = \alpha \; trace(\mathbf{X_1}) = 0$$

Hence, $\alpha \mathbf{X_1} \in S$.

Since S is closed under addition and scalar multiplication, it is a subspace.

- 2. $\mathbb{P}_n(\mathbb{R}) = \{ f(x) = \sum_{k=0}^n c_k x^k, c_k \in \mathbb{R}, k \in \{0, ..., n\} \}.$
 - (a) We show that the 10 vector space axioms hold. In the following, denote $f_1(x) = \sum_{k=0}^n a_k x^k$, $f_2(x) = \sum_{k=0}^n b_k x^k$, $f_3(x) = \sum_{k=0}^n c_k x^k$. $a_k, b_k, c_k, \alpha, \beta, \gamma \in \mathbb{R}$. $f_1(x), f_2(x), f_3(x) \in \mathbb{P}_n(\mathbb{R})$.
 - A1. For $f_1(x)$, $f_2(x)$: $f_1(x) + f_2(x) = \sum_{k=0}^{n} (a_k + b_k) x^k$, $a_k + b_k \in \mathbb{R} \to f_1(x) + f_2(x) \in \mathbb{P}_n(\mathbb{R})$.
 - A2. For $f_1(x), f_2(x), f_3(x)$: $(f_1(x) + f_2(x)) + f_3(x) = \sum_{k=0}^{n} (a_k + b_k + c_k) x^k = \sum_{k=0}^{n} a_k x^k + \sum_{k=0}^{n} (b_k + c_k) x^k = f_1(x) + (f_2(x) + f_3(x)).$

A3. For
$$f_1(x)$$
, $f_2(x)$: $f_1(x) + f_2(x) = \sum_{k=0}^{n} (a_k + b_k) x^k = \sum_{k=0}^{n} b_k x^k + \sum_{k=0}^{n} a_k x^k = f_2(x) + f_1(x)$.

A4. Denote the zero polynomial as
$$\mathbf{0} = \sum_{k=0}^{n} 0 \cdot x^{k}$$
, so: $f_{1}(x) + \mathbf{0} = \sum_{k=0}^{n} (a_{k} + 0)x^{k} = \sum_{k=0}^{n} a_{k}x^{k} = f_{1}(x)$.

A5. For any
$$f_1(x) = \sum_{k=0}^n (a_k) x^k \in \mathbb{P}_n(\mathbb{R})$$
, let $f_I(x) = \sum_{k=0}^n (-a_k) x^k \in \mathbb{P}_n(\mathbb{R}) \implies f_1(x) + f_I(x) = \mathbf{0}$

M1.
$$\alpha \cdot f_1(x) = \sum_{k=0}^n (\alpha a_k) x^k \in \mathbb{P}_n(\mathbb{R}), \alpha a_k \in \mathbb{R}.$$

M2.
$$(\alpha \beta) f_1(x) = \sum_{k=0}^{n} (\alpha \beta a_k) x^k = \alpha (\beta \sum_{k=0}^{n} a_k x^k) = \alpha (\beta f_1(x)).$$

M2.
$$(\alpha\beta)f_1(x) = \sum_{k=0} (\alpha\beta a_k)x^k = \alpha(\beta \sum_{k=0} a_k x^k) = \alpha(\beta f_1(x)).$$

M3. $\alpha(f_1(x) + f_2(x)) = \sum_{k=0}^n \alpha(a_k + b_k)x^k = \sum_{k=0}^n (\alpha a_k + \alpha b_k)x^k = \alpha \sum_{k=0}^n a_k x^k + \alpha \sum_{k=0}^n b_k x^k = \alpha f_1(x) + \alpha f_2(x).$

M4.
$$(\alpha + \beta)f_1(x) = \sum_{k=0}^{n} (\alpha + \beta)a_k x^k = \alpha \sum_{k=0}^{n} a_k x^k + \beta \sum_{k=0}^{n} a_k x^k = \alpha f_1(x) + \beta f_1(x)$$
.

M5.
$$1 \cdot f_1(x) = \sum_{k=0}^{n} 1 \cdot a_k x^k = \sum_{k=0}^{n} a_k x^k = f_1(x)$$

Thus $\mathbb{P}_n(\mathbb{R})$ is a vector space.

It is easy to see that the set $\{1, x, ..., x^n\}$ is a basis for $\mathbb{P}_n(\mathbb{R})$. By definition of spanning set, $\mathbb{P}_n(\mathbb{R})$ is spanned by this set. Also, by definition of linear independence, $\sum_{k=0}^{n} c_k x^k = 0, c_i \in \mathbb{R}, i \in \{0, ..., n\}$ if and only if $c_k = 0, \forall k \in \{0, ..., n\}$ by equating polynomial coefficients. Thus the set $\{1, x, ..., x^n\}$ is also linearly independent, therefore it is a basis for $\mathbb{P}_n(\mathbb{R})$. Clearly there are n+1 elements in this set, so the dimension of $\mathbb{P}_n(\mathbb{R})$ is n+1.

(b) The union $\bigcup_{n=1}^{m} \mathbb{P}_n$ is a vector space. Consider $f(x) = \sum_{i=0}^{n} \alpha_i x^i \in \mathbb{P}_n$, so for $n \leq m, f(x) = \sum_{i=0}^{n} \alpha_i x^i + \sum_{i=n+1}^{m} 0 \cdot x^i \in \mathbb{P}_m$ thus $\mathbb{P}_n \subseteq \mathbb{P}_m$ so the union is a vector

In class we learned that a union of subspaces is a subspace, only when one of the subspaces is contained in another. So, our result settles with the claim made in class.

- (c) The standard basis for \mathbb{P}_4 is given by $\{1, x, x^2, x^3, x^4\}$. Notice that $x^2 = \frac{1}{2}((x^2+1) + x^2)$ (x^2-1) , $1=\frac{1}{2}((x^2+1)-(x^2-1))$. It is clear that the rest of the standard basis is independent of the set elements as they are polynomials of different degrees, thus a possible basis would be $\{x, x^2 + 1, x^2 - 1, x^3, x^4\}$.
- (d) Consider the set 1 + x, $x + x^2$, $2x + 3x^2$.

Consider $a(1+x) + b(x+x^2) + c(2x+3x^2) = 0$

Rewriting, $(a)1 + (a+b+2c)x + (b+3c)x^2 = 0$

Hence a = 0, (a + b + 2c) = 0, and (b + 3c) = 0

Solving the equations, a = b = c = 0. Hence the 3 elements from the set are linearly independent. Now we know that a basis for \mathbb{P}_2 will contain 3 elements, hence a set of 3 linearly independent elements from \mathbb{P}_2 will make a basis. Hence the set $1 + x, x + x^2, 2x + 3x^2$ is a basis.

i. Yes. We will prove it by contradiction. It is given that $\mathbf{x}_1,...,\mathbf{x}_n$ are linearly 3. (a) independent, so by definition

$$\sum_{i=1}^{n} \alpha_i \mathbf{x}_i = 0 \implies \alpha_i = 0, \ i = 1, \dots, n.$$

Now let us assume that $\mathbf{z}_1, ..., \mathbf{z}_n$ are linearly dependent, meaning there exists some constants, β_i , not all zero, such that $\sum_{i=1}^n \beta_i \mathbf{z}_i = 0$. So:

$$\mathbf{0} = \sum_{i=1}^{n} \beta_i \mathbf{z}_i = \sum_{i=1}^{n} \beta_i (\mathbf{x}_i, \mathbf{y}_i)^T = (\sum_{i=1}^{n} \beta_i \mathbf{x}_i, \sum_{i=1}^{n} \beta_i \mathbf{y}_i)^T \implies \sum_{i=1}^{n} \beta_i \mathbf{x}_i = 0.$$

This contradicts the fact that linear independence assumption.

- ii. No. Consider the counterexample $n = 2, x_1 = x_2 = 1, y_1 = 1, y_2 = 0$. Clearly x_1, x_2 are linearly dependent as they are the identical, but $z_1 = (1, 1)^T, z_2 = (1, 0)^T$ are linearly independent.
- (b) No, $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ forming a basis for \mathcal{V} over an arbitrary field does not always imply $\{\mathbf{x} + \mathbf{y}, \mathbf{y} + \mathbf{z}, \mathbf{z} + \mathbf{x}\}$ is also a basis for \mathcal{V} over that field. Consider $\mathcal{V} = \mathbb{F}_2^3$, where \mathbb{F}_2 is the binary field $\{0, 1\}$. Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ be a basis of \mathcal{V} over field \mathbb{F}_2 ,

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{z} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Then,

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{y} + \mathbf{z} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \quad \mathbf{z} + \mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

We observe that $\{z + x\}$ can be written as a linear combination of $\{x + y\}$ and $\{y + z\}$, i.e.,

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Hence, $\{x + y, y + z, z + x\}$ are not linearly independent and therefore not a basis of \mathcal{V} .

4. (a) $AB = 0 \implies A = 0 \text{ or } B = 0$

Consider

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
 then $\mathbf{AB} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{0}$

(b) $A^2 = 0 \implies A = 0$ Consider

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 then $\mathbf{A}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{0}$

(c) $\mathbf{A}^T \mathbf{A} = \mathbf{0} \implies \mathbf{A} = \mathbf{0}$

Note that $\mathbb{F} = \mathbb{R}$. Consider the *j*th diagonal element of **A**.

$$(\mathbf{A}^T \mathbf{A})_{jj} = \sum_{i=1}^n \mathbf{a}_{ij} \mathbf{a}_{ij} = \sum_{i=1}^n \mathbf{a}_{ij}^2 = 0$$

Since $\mathbf{a}_{ij} \in \mathbb{R}$, $\sum_{i=1}^{n} \mathbf{a}_{ij}^{2} = 0 \implies \mathbf{a}_{ij} = 0$, i = 1, ..., n. Since $(\mathbf{A}^{T}\mathbf{A})_{jj} = 0$ for j = 1, ..., n; we conclude that $\mathbf{a}_{ij} = 0$, i, j = 1, ..., n. In other words, $\mathbf{A} = \mathbf{0}$.