

Projekt: MSS60 Modul: LLSync

Seite 1 von 7

MSS54

<u>Leerlaufsync</u>hronisation

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-52	10.11.2005		7.04

Projekt: MSS60 Modul: LLSync

Seite 2 von 7

1 Leerlaufsynchronisation:

Bedingt durch Montage- und Fertigungsschwankungen ist die Leckluft der Einzeldrosselklappen unterschiedlich. Dadurch unterscheidet sich bei gleicher Einspritzmenge je Zylinder der jeweilige λ -Faktor und somit das abgegebene Drehmoment je Zylinder; der λ -Faktor der gesamten Bank liegt in Summe weiterhin bei 1. Diese Zylinderungleichverteilung schlägt sich in einer Laufunruhe nieder.

Durch gezieltes Anfetten bzw. Abmagern des Gemisches der einzelnen Zylinder können die sich unterscheidenden Drehmomente, die sich in voneinander abweichenden Segmentlaufzeiten je Zylinder auswirken, aneinander angepaßt werden.

Dieses Verfahren funktioniert nur innerhalb einer Bank. Weicht die Summe des abgegebenen Drehmomentes von Bank 1 und Bank 2 bei jeweils $\lambda_{\text{Bank}} = 1$ voneinander ab, so ist kein Ausgleich über Einspritzzeitkorrekturen möglich, da im Fahrbetrieb die Lambda-Regelung die durch LLSYNC veränderten Einspritzzeiten wieder anpaßt. Die Leerlaufsynchronisation arbeitet deshalb bankselektiv, und versucht nur, die Laufzeitunterschiede der Zylinder einer Bank zu minimieren.

Dies kann zu unterschiedlichen mittleren Laufzeiten von Bank1 und Bank2 führen. Übersteigt der Laufzeitunterschied eine vorgegebene Maximaldifferenz, wird der Synchronisationsvorgang gestoppt.

1.1 AKTIVBEDINGUNGEN:

Die Leerlaufsynchronisation wird nicht nur einmalig in der Werkstatt durchgeführt, sondern arbeitet permantent während eines jedes Motorlaufes. Die Freigabe des Sychronisationsvorgangs ist allerdings an eine Reihe von Bedingungen geknüpft, die in einzelne Bedingungsblöcke zusammengefaßt sind. Um eine größtmögliche Flexibilität während der Applikationsphase bzw. im Feld zu erhalten, können diese Bedingungsblöcke über einen Konfigurationsparameter aktiviert bzw. stillgelegt werden.

Aktivierungsbedingungen für die LLSync:

Block 1: Detektion des Betriebspunktbereiches

Bedingungen nicht erfüllt: Bit0 in llsync_st gesetzt

Bedingungen don't care: Bit0 in K_LL_AKTIV_CONTROL gelöscht

Aktivierungsbedingung:

Betriebszustand Leerlauf

und K LL TMOT MIN \leq tmot \leq K LL TMOT MAX

und $K_{LL}TAN_{MIN} \le tan \le K_{LL}TAN_{MAX}$

und !B_MD_RF_MIN Füllung nicht am Minimalanschlag und | n - llr_nsoll | ≤ K_LL_DN_MAX im Bereich um Leerlaufdrehzahl

und $v \leq K_LL_V_MAX$

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-52	10.11.2005		7.04

Projekt: MSS60 Modul: LLSync

Seite 3 von 7

Block 2: Sperren LLSync, wenn Lambdaregelung inaktiv

Bedingungen nicht erfüllt: Bit1 in llsync_st gesetzt

Bedingungen don't care: Bit1 in K_LL_AKTIV_CONTROL gelöscht

Aktivierungsbedingung:

Lambdaregelung muß aktiv sein

Block 3: Berücksichtigen des Einflusses der Tankentlüftung

Bedingungen nicht erfüllt: Bit2 in llsync_st gesetzt

Bedingungen don't care: Bit2 in K_LL_AKTIV_CONTROL gelöscht

Aktivierungsbedingung:

tea1_f \geq K_LL_TEA_MIN keine zu starke Spülrate der TE

und tea2_f \geq K_LL_TEA_MIN

und ! B_TEV_FEHLER kein Fehler TE

Block 4: Berücksichtigen der Eigendiagnose wichtiger Komponenten

Bedingungen nicht erfüllt: Bit3 in llsync_st gesetzt

Bedingungen don't care: Bit3 in K_LL_AKTIV_CONTROL gelöscht

Aktivierungsbedingung:

kein HFM-Fehler

und kein ZWD-Fehler und kein TMOT-Fehler und kein TAN-Fehler

und kein Einspritzventilfehler und kein Zündkanalfehler und kein Vanosfehler

Block 5: Sperren LLSync, wenn Katheizen aktiv

Bedingungen nicht erfüllt: Bit4 in llsync_st gesetzt

Bedingungen don't care: Bit4 in K_LL_AKTIV_CONTROL gelöscht

Aktivierungsbedingung:

Katheizfunktion muß inaktiv sein

Block 6: Sperren LLSync, bei ZW-Eingriffen KR/KA

Bedingungen nicht erfüllt: Bit5 in llsync_st gesetzt

Bedingungen don't care: Bit5 in K_LL_AKTIV_CONTROL gelöscht

Aktivierungsbedingung:

keine ZW-Spätverstellung aus Klopfregelung und Klopfadaption

	Abteilung	Datum	Name	Filename
Bearbeiter	7S-M-52	10 11 2005		7 04

Projekt: MSS60 Modul: LLSync

Seite 4 von 7

Block 7: Sperren LLSync bei Klimakompressoraufschaltung

Bedingungen nicht erfüllt: Bit6 in llsync_st gesetzt

Bedingungen don't care: Bit6 in K_LL_AKTIV_CONTROL gelöscht

Aktivierungsbedingung:

Klimakompressor inaktiv

Block 8: Sperren LLSync, bei Fehler im Egas-System

Bedingungen nicht erfüllt: Bit7 in llsync_st gesetzt

Bedingungen don't care: Bit7 in K_LL_AKTIV_CONTROL gelöscht

Aktivierungsbedingung:

keine Egas-Notprogramm aktiv

In einer Serienabstimmung sollten die Bedingungsblöcke 1, 2, 4, und 8 auf alle Fälle ausgewertet werden, d.h die entsprechenden Bits in K_LL_AKTIV_CONTROL sollten gesetzt sein.

Sind alle freigeschalteten Aktivierungsbedingungen erfüllt, startet eine Wartezeit von K_LL_SYNC_SPERRZEIT, nach deren Ablauf ein neuer Synchronisationsvorgang gestartet wird. Ist innerhalb eines Synchronisationsschritts eine der Bedinungen nicht mehr erfüllt, wird der Vorgang sofort abgebrochen und alle Meßwerte des Synchronisationsschrittes verworfen.

1.2 MESSUNG:

Unter der Voraussetzung, daß die Laufunruhemessung aktiv ist, werden die Segmentlaufzeiten der Einzelzylinder über K_LL_N_ANZ Arbeitsspiele aufaddiert.

$$ll_t_z[lu_zyl] = \left[\sum_{ll_nzyl'_anz} lu_ts \right]$$

Da die Summationsvariablen nur ein Zwischenergebnis darstellen, sind sie über das MCS nicht sichtbar.

	Abteilung	Datum	Name	Filename
Bearbeiter	7S-M-52	10.11.2005		7 04

Projekt: MSS60 Modul: LLSync

Seite 5 von 7

1.3 BERECHNUNG:

Wenn die Summation der Einzelsegmentlaufzeiten abgeschlossen ist, werden die Summen der Einzelsegmentlaufzeiten durch K_LL_N_ANZ geteilt (einfache Mittelwertbildung) und somit eine mittlere Segmentlaufzeit pro Zylinder bestimmt:

$$ll_t_z[x] = ll_t_z[x] / K_LL_N_ANZ$$

Anschließend wird eine mittlere Banksegmentlaufzeit je Zylinderbank bestimmt:

$$\begin{split} ll_t_bank1 = & \begin{bmatrix} ll_bank-1 \\ \sum ll_t_z[i] \end{bmatrix} / (ll_bank) & 6-Zyl.: ll_bank = 3 \\ ll_t_bank2 = & \begin{bmatrix} cfg_zylinderanzahl-1 \\ \sum ll_t_z[i] \end{bmatrix} / (ll_bank) & 4-, 8-Zyl.: ll_bank = 4 \\ i=ll_bank & \end{bmatrix} \end{split}$$

Die Segmentlaufzeiten eines jeden Zylinders werden nun in ein Verhältnis zu der mittleren Segmentlaufzeit der Zylinderbank gesetzt und in Form einer prozentualen Abweichung davon in der Variablen II_abw[Zylnr - 1] abgelegt. Ein positiver Wert bedeutet hierbei, daß die Segmentlaufzeit größer dem Mittelwert ist und damit der Zylinder langsamer, d.h daß erzeugte Zylindermoment zu gering ist.

1.4 AUSWERTUNG:

Eine Einspritzzeitkorrektur wird nur durchgeführt, wenn die prozentualen Abweichungen aller Segmentlaufzeiten einer Zylinderbank innerhalb eines Toleranzbandes K_LL_ABW_MAX liegen.

Die Korrektur der Einspritzzeit erfolgt mittels eines zylinderselektiven Offsetwertes ti_ll_z1 bis ti_ll_z8, welcher bei jedem Synchronisationsvorgang incrementell vergößert bzw. verkleinert wird. Diese Werte werden als Adaptionsdatum abgespeichert und gehen somit auch im Nachlauf nicht verloren. Die Werte können über DS2 ausgelesen, gelöscht, bzw auf beliebige (zulässige) Werte initialisiert werden.

Der Sychronisationsvorgang läuft im Prinzip in folgenden Einzelschritten ab.

- Suchen des langsamsten Zylinders einer Bank
- Berechnen eines Abmagerungsoffsets II_ti_dec für die Einspritzzeit für alle anderen, schnelleren Zylinder aus der Kennlinie KL_LL_TI_T in Abhängigkeit von II_abw des langsamsten Zylinders.
- Berechnen eines Anfettungsoffsets Il_ti_inc für den langsamten Zylinder ti_Il_inc = (Zylinder pro Bank - 1) * Il_ti_dec
 Damit ist sichergestellt, daß es zu keinen Rundungseffekten bei der Berechnung kommt, und daß die Summeneinspritzzeit einer Zylinderbank durch die LLSync nicht verändert wird.
- Überprüfung, ob der Synchronisationsschritt dazu führt, daß die Korrekturwerte ti_Il_zx den gültigen Wertebereich K_TI_LL_MIN ≤ ti_Il_zx ≤ K_TI_LL_MAX verlassen. Ist dies der Fall, wird der Vorgang abgebrochen und die Änderungen nicht übernommen.

Е					
		Abteilung	Datum	Name	Filename
Ī	Bearbeiter	ZS-M-52	10.11.2005		7.04

Projekt: MSS60 Modul: LLSync

Seite 6 von 7

- Übernahme der Einspritzzeitänderungen II_ti_dec bzx. LI_ti_inc in die Korrekturwerte ti_II_zx

Durch die Werte der Kennlinie KL_LL_TI_T für die Berechnung der Korrekturoffsets muß sichergestellt werden, daß die LLSync bei einem ausreichend synchronisierten Motor keinen Einfluß mehr auf die Einspritzung nimmt. Dazu muß unterhalb einer Grenzabweichung (idealerweise die 1. Stützstelle im Kennfeld) ein Einspritzzeitoffset von 0µs stehen. Dies führt dazu, daß sowohl II_ti_dec als auch II_ti_inc Null sind.

1.5 Sonstiges:

Das komplette Modul Leerlaufsynchronisation kann über den Kontrollparameter K_LL_SYNC_CONTROL deaktiviert werden.

Die Korrekturwerte ti_ll_zx für die Einspritzung werden nach jedem Rücksetzen der Adaption, bzw bei einem neuen Steuergerät mit den Werte aus K_LL_TI_FAC[x] vorinitialisiert. Damit können mittels Daten konstruktionsbedingte, motorunabhängige Unterschiede bereits ab Werk korrigiert werden.

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-52	10.11.2005		7.04

Projekt: MSS60 Modul: LLSync

Seite 7 von 7

1.6 DATEN DER LLSYNC:

Beschreibung der Variablen:

Variable	Bedeutung
Il_bank	Anzahl der Zylinder einer Bank
Il_ada_anz	Anzahl der bisher durchgeführten Synchronisationsvorgänge
Il_case	Ablaufzustand der LLSync
	Initialisierung - Messsung - Auswertung - Inaktiv
llsync_st	Status LLSync
	akiv - inaktiv
llsync_st_m	Status Aktivierungsbedingungen
	= 0 : alle Bedingungen erfüllt
	!= 0 : je nach gesetzten Bits ist die entsprechende Bedingung nicht erfüllt
II_t_bank1/2 mittlere Segmentlaufzeit Bank1 bzw. Bank2	
II_n_anz Anzahl der aktuell erfassten Segmente innerhalb eines Sync.vorg	
II_nzyI_anz	
II_abw_bank prozentuale Abweichung Bank1 zu Bank2	
Il_abw[x]	prozentuale Abweichung des Zylinders vom Bankmittelwert

Beschreibung der Applikationsdaten:

Konstante	Bedeutung
K_LL_TI_FAC[x]	Werksvorgabe der Einspritzzeitkorrektur
K_LL_ABW_MAX	max. zulässige Abweichung eines Zylinders vom Bankmittelwert
K_LL_SYNC_CONTROL	Kontrollparatmeter für die LLSync
K_LL_AKTIV_CONTROL	Konfigurationsparameter für Aktiverungsbedingungen
K_LL_TAN_MIN	min. Ansauglufttemperatur
K_LL_TAN_MAX	max. Ansauflufttemperatur
K_LL_TMOT_MIN	min. Motortemperatur
K_LL_TMOT_MAX	max. Motortemperatur
K_LL_V_MAX	max. Fahrzeuggeschwindigkeit
K_LL_N_ANZ	Anzahl der Arbeitsspiele pro Synchronisationsvorgang
K_LL_DN_MAX	max. Drehzahlabweichung von der Leerlauf-Solldrehzahl
K_LL_TEA_MIN	min. Korrekturfaktor der Tankentlüftungsadaption
K_LL_SYNC_SPERRZEIT	Wartezeit bis Start LLSync
KL_LL_TI_T	Korrekturkennlinie Einspritzzeit in Abh. der Abweichung des langsamsten Zyl.

	Abteilung	Datum	Name	Filename
Bearbeiter	7S-M-52	10 11 2005		7 04