Sprawozdanie 2

Rozważamy testy na poziomie istotności $\alpha = 0.05$ do testowania

- H_0 : p = 0.5, przeciwko
- H_1 : $p \neq 0.5$.

Będziemy wykonywać sprawdzenie tej hipotezy, stosując wprost trzy testy:

- 1. testu opartego o przedział Wilsona,
- 2. testu opartego o przedział Cloppera-Pearsona,
- 3. testu opartego o przedział Jeffreysa.

Zadanie 1

Zaobserwowaliśmy $S \sim \mathcal{B}(7, p)$. Korzystając z symulacji Monte Carlo wykonaj wykres funkcji mocy w zależności od p na przedziale (0, 1) dla wszystkich trzech testów. Czy istnieje test jednostajnie najmocniejszy spośród nich?

Zadanie 2

Zaobserwowaliśmy $S \sim \mathcal{B}(35, p)$. Korzystając z symulacji Monte Carlo wykonaj wykres funkcji mocy w zależności od p na przedziale (0, 1) dla wszystkich trzech testów. Czy istnieje test jednostajnie najmocniejszy spośród nich?

Zadanie 3

Zaobserwowaliśmy $S \sim \mathcal{B}(250, p)$. Korzystając z symulacji Monte Carlo wykonaj wykres funkcji mocy w zależności od p na przedziale (0, 1) dla wszystkich trzech testów. Czy istnieje test jednostajnie najmocniejszy spośród nich?