SUMMARY OF THE SURVEY TALK AT 2ND 3J SEMINAR: TOPICS ON HYPERPLANE ARRANGEMENTS

YE LIU

A hyperplane arrangement \mathcal{A} over a field K is simply a finite collection of (affine) hyperplanes in K^{ell} . The intersection poset $\mathcal{L}(\mathcal{A})$ is the set of nonempty intersections of subarrangements of \mathcal{A} , partially ordered by reverse inclusion. One theme of the study of hyperplane arrangements is to explore what can be said about \mathcal{A} by looking at only $\mathcal{L}(\mathcal{A})$. For example, if \mathcal{A} is an arrangement in a complex vector space, then the cohomology ring of the complement $\mathcal{M}(\mathcal{A})$ to the union of hyperplanes in \mathcal{A} is completely determined by $\mathcal{L}(\mathcal{A})$, known as the Orlik-Solomon algebra. On the other hand, the fundamental group of $\mathcal{M}(\mathcal{A})$ is not determined solely by $\mathcal{L}(\mathcal{A})$, known from Rybnikovs counterexample. Ye Liu's survey addresses the following long-standing open problems.

Question 1. If \mathcal{A} is an arrangement in a real vector space V, then \mathcal{A} yields a stratification of V. The strata are also called faces of \mathcal{A} . Among the faces, the ones of codimension 0 are called chambers. The face post $\mathcal{F}(\mathcal{A})$ is the set of all faces partially ordered by reverse inclusion (of closures). By M. Salvettis work, $\mathcal{F}(\mathcal{A})$ determines the homotopy type of $\mathcal{M}(\mathcal{A}_{\mathbb{C}})$, where $\mathcal{A}_{\mathbb{C}}$ is the complexification of \mathcal{A} . So for a real hyperplane arrangement \mathcal{A} , $\mathcal{F}(\mathcal{A})$ contains more information than $\mathcal{L}(\mathcal{A})$. Rybnikovs counterexample is a pair of complex hyperplane arrangements which are not the complexification of any real arrangements. Thus the following question is still open. Can one find a pair of real arrangements, with isomorphic intersection posets, but non-isomorphic face posets?

Question 2. For a central complex arrangement \mathcal{A} , we fix for each hyperplane H in \mathcal{A} a linear form whose kernel is H and let Q be the product of these forms. Then Q defines the *Milnor fibration* $\mathcal{M}(\mathcal{A}) \to \mathbb{C}^*$. The *Milnor fiber* $F = Q^{-1}(1)$ is a rather less known space compared to $\mathcal{M}(\mathcal{A})$. What topological information of F is determined by $\mathcal{L}(\mathcal{A})$? This question is widely open in dimension greater than 2. Even for the first Betti number of F, it is unknown if it is determined by $\mathcal{L}(\mathcal{A})$.

Question 3. Using Tits representation, every Coxeter group is faithfully realized as a reflection group acting on a real vector space. The collection of reflection hyperplanes forms the reflection arrangement, which can be infinite. Take a chamber as the fundamental chamber and collect the Coxeter group action orbit of the closure of the fundamental chamber. The result is a convex cone in the original real vector space. Consider the complexification and remove the reflection hyperplanes, we obtain an interesting space M. The celebrated $K(\pi,1)$ conjecture, due to Arnold, Pham and Thom, asserts that M is an Eilenberg-MacLane space, for every Coxeter group. Among others, Deligne proved this conjecture for finite Coxeter groups. Charney-Davis proved for FC type, and 2-dimensional cases. Recently, Paolini-Salvetti proved for affine Coxeter groups. The space M admits a free and properly discontinuous action of the Coxeter group W, and the orbit space has

Date: Dec. 24, 2019.

 $2 \hspace{3cm} \text{YE LIU}$

fundamental group exactly the Artin group associated to W, due to Van der Lek. Proving the $K(\pi, 1)$ conjecture is then of great importance in the study of Artin groups.

Reference:

- 1. P. Orlik, H. Terao, Arrangements of hyperplanes.
- $2.\,$ A. Dimca, Hyperplane arrangements, an introduction.
- 3. L. Paris, $K(\pi, 1)$ conjecture for Artin groups.