幾何数理工学ノート

位相空間:連結性と弧状連結性

平井広志

東京大学工学部 計数工学科 数理情報工学コース 東京大学大学院 情報理工学系研究科 数理情報学専攻

hirai@mist.i.u-tokyo.ac.jp

協力:池田基樹(数理情報学専攻 D1)

3 連結性と弧状連結性

3.1 連結性

定義 3.1. 位相空間 (X,\mathfrak{O}) が連結 $\stackrel{\text{def}}{\Longleftrightarrow} \mathfrak{O} \cap \mathfrak{A} = \{\emptyset, X\}.$

すなわち、自明な \emptyset, X 以外には開かつ閉の集合が存在しないという意味である. X が非連結とは、 $O \neq \emptyset, X$ なる開集合 $O \in \mathfrak{O}$ が存在して $X - O \in \mathfrak{O}$ を満たすことと同値である. このとき、X は(部分位相空間)O と X - O の直和と同相となる.

演習 3.1. これを証明せよ.

定義 3.2. 部分集合 $A\subseteq X$ が連結 $\stackrel{\mathrm{def}}{\Longleftrightarrow} A$ が X の部分位相空間(相対位相)として連結.

次の命題は、連結性は連続写像によって不変な性質(すなわち位相的性質(同相写像によって不変))であることを意味する.

命題 3.3. X,Y を位相空間とする.写像 $f:X\to Y$ を連続, $A\subseteq X$ を連結とすると f(A) は連結.

証明. f のかわりに $f|_A$ を考えることで,A=X と仮定してよい. $B\subseteq f(X)$ を (f(X)) の相対位相で)開かつ閉集合にとる. $B=\emptyset$ か B=f(X) が成り立つことを示せばよい. 相対位相の定義より,Y の開集合 G,閉集合 F が存在して $B=G\cap f(X)=F\cap f(X)$ と書ける. すると

$$f^{-1}(B) = f^{-1}(G) \cap f^{-1}(f(X)) = f^{-1}(F) \cap f^{-1}(f(X))$$

で, $f^{-1}(f(X)) = X$ より,

$$f^{-1}(B) = f^{-1}(G) = f^{-1}(F)$$

となる. f の連続性より $f^{-1}(G)$, $f^{-1}(F)$ はそれぞれ X において開,閉であるから, $f^{-1}(B)$ は開かつ閉である. X の連結性より $f^{-1}(B) = \emptyset$ か $f^{-1}(B) = X$ が成り立つ. 前者の場合, $B = \emptyset$ である. 後者の場合,B = f(X) である.

命題 **3.4.** $A, B \subseteq X$ が共に連結で $A \cap B \neq \emptyset$ ならば $A \cup B$ は連結.

証明. $N\subseteq A\cup B$ を $(A\cup B)$ の相対位相で 開かつ閉集合にとる. すると X の開集合 G,閉集合 F で $N=G\cap (A\cup B)=F\cap (A\cup B)$ を満たすものが存在する. このとき

$$N \cap A = G \cap A = F \cap A$$

であるから, $N \cap A$ は A で開かつ閉.A の連結性より $N \cap A = \emptyset$ か $N \cap A = A$ となる.同様に $N \cap B$ も $N \cap B = \emptyset$ か $N \cap B = B$ を満たす.もし $N \cap A = \emptyset$ なら, $A \cap B \neq \emptyset$ より $N \cap B = B$ はありえない.よって $N \cap B = \emptyset$ が成り立つ. $N \cap B = \emptyset$ ならば $N \cap A = \emptyset$ が成り立つことも同様に言える.したがって $N \cap A = N \cap B = \emptyset$ か, $N \cap A = A$ かつ $N \cap B = B$ のどちらかが成り立ち,前者の場合は $N = \emptyset$,後者の場合は $N = A \cup B$ となる.

同様に次の命題も示せる.

命題 3.5. A_{λ} $(\lambda \in \Lambda)$ が全て連結で $\bigcap_{\lambda \in \Lambda} A_{\lambda} \neq \emptyset$ ならば、 $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ は連結.

連結な集合で位相空間を分割することができる.

定義 3.6 (連結成分). X 上の二項関係 \sim を

$$x \sim y \stackrel{\text{def}}{\Longleftrightarrow} \exists A \subseteq X : 連結, \ x \in A, \ y \in A$$

と定義すると、 \sim は同値関係になる.実際、反射律 $x\sim x$ は $\{x\}$ が連結であることから従う.推移律は、 $x\sim y$ ならば $x,y\in A$ なる連結集合 A、 $y\sim z$ ならば $y,z\in B$ なる連結集合 B が存在し、 $A\cap B\ni \{y\}$ より命題 3.4 が使えて $x,z\in A\cup B$ なる

連結集合 $A \cup B$ が得られる.この同値関係 \sim による同値類を X の連結成分という. $x \in X$ を含む連結成分を C_x で表す.

命題 3.7. C_x は x を含む最大の連結部分集合.

証明. x を含む任意の連結集合 A について,任意の $y \in A$ は $x \sim y$ を満たすので $A \subseteq C_x$ となる.よって $\bigcup \{A \mid x \in A, A$ は連結 $\} \subseteq C_x$ である.逆に,任意の $y \in C_x$ について $x,y \in A$ なる連結集合 A が存在するので,結局 $C_x = \bigcup \{A \mid x \in A, A$ は連結 $\}$ が成り立つ.命題 3.5 より C_x は連結だから,命題が成り立つ.

注意 3.8. $X = \bigcup_x C_x$ (非交差和) となるが, $X = \coprod_x C_x$ (直和) となるとは限らない. 有理数の集合 $\mathbb Q$ に $\mathbb R$ からの相対位相をいれてえられる位相空間を考えてみよ.

命題 3.9 (中間値の定理). X が連結, $f: X \to \mathbb{R}$ が連続で, $x,y \in X$ が f(x) < f(y) を満たすとすると, $f(x) < \alpha < f(y)$ を満たす任意の α について, $f(z) = \alpha$ なる $z \in X$ が存在.

証明. $f^{-1}(\alpha)=\emptyset$ と仮定して矛盾を導く. f の連続性から $M:=f^{-1}((-\infty,\alpha))$ は開集合である. また, $f^{-1}(\alpha)=\emptyset$ より $M=f^{-1}((-\infty,\alpha])$ なので, M は閉集合でもある. $x\in M\not\ni y$ は X の連結性に矛盾する.

3.2 弧状連結性

弧状連結性に入るまえに次の(明らかに見える)性質に注意する.

図1: 弧状連結性.

補題 **3.10.** [a,b] (a < b) は \mathbb{R} で連結.

証明・空でない \mathbb{R} の開集合 O,O' が $O\cap O'=\emptyset$, $[a,b]=(O\cap [a,b])\cup (O'\cap [a,b])$ を満たすとする. 一般性を失わず $a\in O$ を仮定する. $O'\cap [a,b]\neq\emptyset$ として矛盾を導く. $c:=\sup\{x\mid [a,x]\subseteq O\}$ とすると,O と O' は開集合なので a< c< b である.また

- (i) 任意の $\epsilon > 0$ について $c \epsilon \notin O'$ $(c \epsilon \in O \ \texttt{より})$.
- (ii) 任意の $\epsilon > 0$ について $c + \epsilon \notin O$.

となる. すると, $c \in O$ ならば (ii) より O が開集合であることに矛盾し, $c \in O'$ ならば (i) より O' が開集合であることに矛盾する.

定義 3.11. 位相空間 X が弧状連結 $\stackrel{\text{def}}{\Longleftrightarrow} \forall x,y\in X,\ \exists f:[0,1]\to X:$ 連続, $f(0)=x,\ f(1)=y.$

上の定義で、[0,1] には $\mathbb R$ の部分集合としての通常の位相が入っているものとする。 f あるいは f の像をパスと呼ぶ(図 1)。

命題 3.12. X が弧状連結ならば X は連結.

証明. 命題 3.3 と補題 3.10 より f([0,1]) は連結なので、任意の $x,y \in X$ についてそれを含む連結集合が存在. すなわち $x \sim y$ なので、結局 $C_x = X$.

一般には、Xが連結だからといって弧状連結とは限らない。

演習 3.2. そのような例を与えよ.

定義 3.13. 部分集合 $A\subseteq X$ が弧状連結 $\stackrel{\mathrm{def}}{\Longleftrightarrow} A$ が X の部分位相空間として弧状連結.

命題 **3.14.** $A \subset \mathbb{R}^n$ を開集合とすると,

A が弧状連結 \iff A が連結.

証明. \Leftarrow だけ示せばよい. $x \in A$ を任意に取る. $O \subseteq A$ を x とパスで結ばれる点全体と定義する. まず O は開であることが分かる. 実際, A が開集合なので, 任意の $y \in O$ に対して $\delta > 0$ が存在して $N(y;\delta) \subseteq A$ となる. $N(y;\delta)$ 内の点 z と y は $(N(y;\delta)$ が凸集合なので) パスで結ぶことができ, pasting lemma より, x と z を結ぶパスが存在する(図 2). よって $N(y;\delta) \subseteq O$ が成り立つ.

さらに,A-O が開であることも言える.任意の $y\in A-O$ を取ると $\delta>0$ が存在して $N(y;\delta)\subseteq A$ となる. $O\cap N(y;\delta)\neq\emptyset$ なら, $z\in O\cap N(y;\delta)$ を経由して x から y までのパスが作れる.これは $y\in A-O$ に反するので,結局 $N(y;\delta)\subseteq A-O$ であり,A-O は開である.

図 2: パスの延長.

A は連結で O は非空なので A=O となる. すなわち全ての A の点同士は x を経由してパスで結ばれるので,A が弧状連結であることが言えた.

命題 **3.15.** \mathbb{R} と \mathbb{R}^k (k > 2) は同相でない.

証明. もしも同相写像 $\varphi: \mathbb{R} \to \mathbb{R}^k$ が存在したとする. すると、任意の $a \in \mathbb{R}$ に対して、 φ は、 $\mathbb{R} \setminus \{a\}$ から $\mathbb{R}^k \setminus \{\varphi(a)\}$ への同相写像を誘導する. しかし、 $\mathbb{R} \setminus \{a\} = (-\infty, a) \cup (a, \infty)$ は、連結ではない. 一方、 $\mathbb{R}^k \setminus \{\varphi(a)\}$ は、弧状連結で、特に連結である. これは、連続写像が連結性を保存するという性質に矛盾する. \square

3.3 その他の性質

命題 3.16. X,Y が連結ならば $X \times Y$ は(直積位相で)連結.

証明. 任意の $(x,y),(x',y')\in X\times Y$ について $C_{(x,y)}=C_{(x',y')}$ が成り立つことを示せばよい. Y と $\{x\}\times Y$ は同相である. 同相写像は, $y\mapsto (x,y)$ で与えられる $(\{x\}\times Y$ の開集合と Y の開集合は一対一に対応するので). よって, Y の連結性から $\{x\}\times Y$ も連結になる. 同様に, X の連結性から $X\times \{y'\}$ も連結である. し

たがって $(x,y) \sim (x,y') \sim (x',y')$ より $(x,y) \sim (x',y')$ が帰結される.

命題 3.17. $A,B\subseteq X$ に対し $A\subseteq B\subseteq \overline{A}$ を仮定する. このとき, A が連結ならば B は連結. 特に、連結集合の閉包は連結.

証明. $B'\subseteq B$ を (B の相対位相で)開かつ閉集合にとる. $B'=\emptyset$ か B'=B が成り立つことを示せばよい. すると X の開集合 G, 閉集合 F で $B'=G\cap B=F\cap B$ を満たすものが存在する. $A\subseteq B$ より

$$A \cap B' = G \cap A = F \cap A$$

となるから, $A\cap B'$ は A において開かつ閉である.A の連結性より $A\cap B'=\emptyset$ か $A\cap B'=A$ となる.前者の場合は $G\cap A=\emptyset$ より $X-G\supseteq A$ となり,X-G が 閉なので $X-G\supseteq \overline{A}$ を得る.よって

$$B' = G \cap B \subseteq G \cap \overline{A} = \emptyset$$

より $B'=\emptyset$ となる.後者の場合は $F\supseteq A$ であり,F が閉なので $F\supseteq \overline{A}\supseteq B$ を得る.よって

$$B' = F \cap B = B$$

となる.

系 3.18. 連結成分 C_x は閉集合.

開集合とはかぎらないという点に注意する.

命題 3.19.~X,Y が弧状連結ならば $X \times Y$ が弧状連結.

証明. 任意の 2 点 $(x,y), (x',y') \in X \times Y$ について,(x,y) と (x,y') を結ぶ $\{x\} \times Y$ 内のパス,(x,y') と (x',y') を結ぶ $X \times \{y'\}$ 内のパスを繋ぐことで,(x,y) と (x',y') を結ぶパスが得られる.

演習 3.3. 上のいくつかの命題の「連結」を「弧状連結」に変えても成立するかどうか議論せよ.