

Outline

Learning Goals

Introduction

Generative Adversarial Networks (GANs)

Summary

Source Material

- Some of the contents of these slides are based on the book
- Other parts were developed by TA Abbas Mahbod

Learning Goals

- Introduce Generative Adversarial Networks
 - What they do
 - How they work

Introduction

- GANs are unsupervised deep learning methods
- GANs are considered one of the greatest deep learning breakthroughs in recent years
- There are many types of GANs
 - Wasserstein GAN
 - Cycle-GAN
- They all operate under the same principle of having modules with adversarial (i.e., competing objectives)

What are GANs?

- GANs are generative models. What is a generative model?
- We have two different models in machine learning:
 - 1) Discriminative models

2) Generative models

distribution

Machine Learning Models

- Generative Models
 - Generate realistic representation for each class.

- Discriminative Models
 - Used for classification problem

Generative Adversarial Networks

To distinguish real images from fake ones (produced by generator) To produce Realistic Presentation of different classes Generative Model Discriminative Model Fake/ Real There is a competition here! Generator tries to make fakes that look real Discriminator learns how to distinguish and fool the discriminator reals from fakes

GANs are generative models where the data distribution is learned implicitly!

GAN

GANs Problems

- Non-convergence: the model parameters oscillate and the model does not converge
- Mode collapse: the generator collapses and produces a limited number of different samples
- **Diminished gradient**: the discriminator is too good that the generator gradient vanishes and learns nothing,
- Highly sensitive to the hyperparameter selections.

Summary

- GANs are unsupervised techniques
- They can be used to generate synthetic data that can potentially be used to train other deep learning models
- There are different GAN types, but they are all based on the principle of having two competing objectives
- GANs often face instabilities during training

Thank you!

