定理 1: 设 f(x) 在区间 I 上有定义,则 f(x) 在 I 上一致连续的充分必要条件是:对任何点列 $\{x'_n\}(x'_n \in I)$ 和 $\{x''_n\}(x''_n \in I)$,只要满足 $\lim_{n \to \infty} (x'_n - x''_n) = 0$,就成立 $\lim_{n \to \infty} (f(x'_n) - f(x''_n)) = 0$.

例 1. $f(x) = \frac{1}{x}$ 在(0,1)上非一致连续 但在(a,1)(a>0)上一致连续.

证: 只需取
$$x'_n = \frac{1}{2n}$$
, $x''_n = \frac{1}{n}$, 就有 $\lim_{n \to \infty} (x'_n - x''_n) = \lim_{n \to \infty} (-\frac{1}{2n}) = 0$

但
$$\lim_{n\to\infty} (f(x'_n) - f(x''_n)) = \lim_{n\to\infty} (2n-n) = \infty$$
.

故知 $f(x) = \frac{1}{x} \mathbf{E}(0,1)$ 上非一致连续.

在
$$(a,1)(a>0)$$
上,对 $\forall \varepsilon > 0$,由于

$$\left| \frac{1}{x_1} - \frac{1}{x_2} \right| = \left| \frac{x_1 - x_2}{x_1 x_2} \right| \le \frac{1}{a^2} \left| x_1 - x_2 \right| < \varepsilon$$

只要取 $\delta = a^2 \varepsilon$, 当 $|x_1 - x_2| < \delta$ 时, 就有

$$|f(x_1) - f(x_2)| = \left| \frac{1}{x_1} - \frac{1}{x_2} \right| = \left| \frac{x_1 - x_2}{x_1 x_2} \right| \le \frac{1}{a^2} |x_1 - x_2| < \varepsilon$$

所以 $f(x) = \frac{1}{x}$ 在(a,1)(a>0) 上一致连续.

例 2. $f(x) = x^2 \div (0, +\infty)$ 上非一致连续, 但是在 [0, A] 上一致连续. (A 为任意有限正数).

证: 只需取 $x'_n = \sqrt{n+1}$, $x''_n = \sqrt{n}$, 就有

$$\lim_{n\to\infty} (x'_n - x''_n) = \lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n}) = 0$$

$$\operatorname{III}_{n\to\infty} \left(f(x'_n) - f(x''_n) \right) = \lim_{n\to\infty} (n+1-n) = 1$$

故 $f(x) = x^2$ 在 $[0, +\infty)$ 上非一致连续.

在[0,A]上,对 $\forall \varepsilon > 0$,由于

$$|x_1^2 - x_2^2| = |(x_1 + x_2)(x_1 - x_2)| \le 2A |x_1 - x_2| < \varepsilon$$

只要取 $\delta = \frac{\varepsilon}{2A}$, 当 $|x_1 - x_2| < \delta$ 时, 就有

$$|f(x_1) - f(x_2)| = |x_1^2 - x_2^2| = |(x_1 + x_2)(x_1 - x_2)| \le 2A|x_1 - x_2| < \varepsilon$$

所以 $f(x) = x^2$ 在[0,A]上一致连续.

定理 2: f(x) 在(a,b) 上连续,则 f(x) 在(a,b) 上一致连续的充要条件是: f(a+0) 与 f(b-0) 存在.

证明:(1)某区间上两个一致连续函数之和必定一致连续.

(2) 某区间上两个一致连续函数之积不一定一致连续.

证明: 若函数 f(x) 在 $[a, +\infty)$ 上连续, 且 $\lim_{x \to +\infty} f(x) = A$ (有限数),则函数 f(x) 在 $[a, +\infty)$ 上一致连续.

按一致连续的定义可得:

(1). $\sin \frac{1}{x}$ 在(0,1)上不一致连续,但在(a,1)(a>0)上一致连续.

证: 只需取
$$x'_n = \frac{1}{2n\pi + \frac{\pi}{2}}$$
, $x''_n = \frac{1}{2n\pi - \frac{\pi}{2}}$, 就有

$$\lim_{n \to \infty} (x'_n - x''_n) = \lim_{n \to \infty} \left(\frac{1}{2n\pi + \frac{\pi}{2}} - \frac{1}{2n\pi - \frac{\pi}{2}} \right) = 0$$

但
$$\lim_{n\to\infty} (f(x'_n) - f(x''_n)) = \lim_{n\to\infty} (\sin(2n\pi + \frac{\pi}{2}) - \sin(2n\pi - \frac{\pi}{2})) = 2$$
.

故知 $\sin \frac{1}{x} \mathbf{E}(0,1)$ 上不一致连续.

(2). $\sin x^2$ 在($-\infty$, $+\infty$) 上不一致连续, 但在[0, A] 上一致连续

证: 只需取
$$x'_n = \sqrt{2n\pi + \frac{\pi}{2}}$$
, $x''_n = \sqrt{2n\pi - \frac{\pi}{2}}$, 就有

$$\lim_{n\to\infty} \left(x_n' - x_n''\right) = \lim_{n\to\infty} \left(\sqrt{2n\pi + \frac{\pi}{2}} - \sqrt{2n\pi - \frac{\pi}{2}}\right) = 0$$

但
$$\lim_{n\to\infty} (f(x'_n) - f(x''_n)) = \lim_{n\to\infty} (1 - (-1)) = 2$$

故 $\sin x^2$ 在($-\infty$,+ ∞)上不一致连续.

- (3). \sqrt{x} 在[1,+ ∞) 上一致连续.
- <mark>(4)</mark>. ln*x*在[1,+∞)上一致连续.

若 f(x) 的导函数 f'(x) 在区间 I 上有界,则 f(x) 在区间 I 上一致连续

2010 级期末考试试题

以下结论中错误的是:(D)

- (A). $f(x) = \arctan x$ 在(-1,1)上一致连续.
- (B). $f(x) = \arctan x$ 在 $(-\infty, +\infty)$ 上一致连续.
- (C). $f(x) = x^2 \pm (-1,1)$ 上一致连续.
- (D). $f(x) = x^2 \div (-\infty, +\infty)$ 上一致连续.

2019 级期中考试试题

设 f(x)、g(x) 都在**R**上一致连续,则 f(g(x))在**R**上 (A)

- (A) 连续且一致连续.
- (B). 连续但不一致连续.
- (C). 一致连续但不连续.
- (D). 无法判别.

2019 级期末考试试题

以下四个函数中,在指定的区间上不一致连续的是(B).

A.
$$f(x) = \sin x$$
在 $(-\infty, +\infty)$ 上.

B.
$$f(x) = \sin \frac{1}{x}$$
在(0,1)上.

- C. $f(x) = \arctan x \, 在(-\infty, +\infty) \, \bot$.
- D. $f(x) = \ln x \, \text{在}(1,2)$ 上.

2020 级期末考试试题(校本部)

以下命题中错误的是(B)

- (A) 若 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b] 上一致连续.
- (B) 若 f(x) 在 (a,b) 内连续且有界,则 f(x) 在 (a,b) 内一致连续.

如: $\sin \frac{1}{x}$ 在(0,1)上连续且有界,但 $\sin \frac{1}{x}$ 在(0,1)上不一致连续.

- (C) 若 f(x) 在 (a,b) 内连续,且 $\lim_{x\to a^+} f(x)$ 和 $\lim_{x\to b^-} f(x)$ 都存在,则 f(x) 在 (a,b) 内一致连续.
- (D) 若 f(x) 在 (a,b) 内可导,且 f'(x) 有界,则 f(x) 在 (a,b) 内一致连续.

2020 级期末考试试题(开发区)

函数 $f(x) = \cos \frac{1}{x}$ 在以下哪个区间不一致连续? (A)

(A) (0,1). (B) (1,2). (C) [2,3].

(D) $[3,+\infty)$).