Aussagenlogik: Äquivalenz - Normalformen - Formelklassen

Algorithmische Verfahren zur Prüfung von

Allgemeingültigkeit, Erfüllbarkeit, Unerfüllbarkeit

- existieren,
- können aber sehr aufwendig sein.
- → Die Lösung des Erfüllbarkeitsproblems ('Ist diese Formelmenge erfüllbar?') erfordert exponentielle Rechenzeit
- → Komplexitätstheoretische Untersuchungen → spätere Kapitel von FGI-1

Formeln spezifischer Form: Normalformen

- Normalformen
 - sind Formeln mit bestimmter Form, also Elemente einer systematisch festgelegten Teilmenge von \mathcal{L}_{AL}
 - ermöglichen Verfahren, die einfach(er) zu entwerfen und programmieren sind.
- Ersetzungsregeln erzeugen zu gegebenen Formeln äquivalente Formeln in Normalform.

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik–Normalformen [1]

Vergleich alternativer Beschreibungen

Logische Äquivalenz

Definition 4.1

Zwei Formeln F und G heißen genau dann (logisch / semantisch) äquivalent, falls jede Belegung \mathcal{A} beiden Formeln denselben Wahrheitswert zuordnet ($\mathcal{A}(F) = \mathcal{A}(G)$) Dies wird als $F \equiv G$ geschrieben.

- → Formeln sind genau dann äquivalent, wenn sie denselben Wahrheitswertverlauf haben.
- → Zwei Formeln F und G sind genau dann äquivalent, wenn sie dieselben Modelle besitzen (also für alle Belegungen gilt $\mathcal{A}(F) = 1$ GDW. $\mathcal{A}(G) = 1$).
- \rightarrow Beispiel: Die Formeln ($\neg A \lor B$) und ($A \Rightarrow B$) sind äquivalent. (s. S. 3-[18])

Satz 4.2: Äquivalenz mit Tautologien

Ist eine Formel F äquivalent mit einer Tautologie G, dann ist F auch eine Tautologie.

Voraussetzungen: Def. 3.1, 3.5, 4.1

Bew.: Es sei G eine Tautologie und F eine zu G äquivalente Formel.

Da G eine Tautologie ist, sind alle Belegungen Modelle von G.

Da F und G äquivalent sind, sind dann auch alle Belegungen Modelle von F.

Also ist F eine Tautologie.

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik–Normalformen [3]

Zum Selbststudium

Satz 4.3: Äquivalenz mit Kontradiktionen

Ist eine Formel F äquivalent mit einer Kontradiktion G, dann ist F auch eine Kontradiktion.

Bew.: Analog zum Beweis von Satz 4.2 unter Bezug auf Def. 3.4.

Satz 4.4: Äquivalenz von Tautologien

Alle Tautologien sind äquivalent. ($\models F$ und $\models G$, dann auch $F \equiv G$)

Voraussetzungen: Def. 3.1, 3.5, 4.1

Bew.: Es seien F und G zwei Tautologien

Damit ist jede Belegung Modell beider Formeln.

Also haben F und G dieselben Modelle und sind damit äquivalent.

Satz 4.5: Äquivalenz von Kontradiktionen

Alle Kontradiktionen sind äquivalent.

Bew.: Analog zum Beweis von Satz 4.4 unter Bezug auf Def. 3.4.

Bemerkung

Kontingente Formeln können äquivalent miteinander sein, müssen aber nicht.

Äquivalenz und Biimplikation

Das Symbol für Äquivalenz ≡ ist kein Junktor, aber eng mit der Biimplikation verwandt.

Satz 4.6: F und G sind genau dann äquivalent, wenn $F \Leftrightarrow G$ allgemeingültig ist $F \equiv G$ GDW. $\models F \Leftrightarrow G$.

```
Voraussetzungen: Def. 3.1, 3.5, 4.1

Bew.: Es seien F und G zwei Formeln.

F und G sind äquivalent (F \equiv G)

GDW. Für alle Belegungen \mathcal{A} gilt: \mathcal{A}(F) = \mathcal{A}(G)

GDW. (s. Verknüpfungstafel für \Leftrightarrow)

alle Belegungen \mathcal{A} Modelle von (F \Leftrightarrow G) sind,

d.h. \mathcal{A}((F \Leftrightarrow G)) = \mathbf{1}

GDW. F \Leftrightarrow G ist allgemeingültig (\models F \Leftrightarrow G)
```

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik-Normalformen [5]

Zum Selbststudium

Wozu nützen uns die obigen Sätze?

- Die Definitionen von Allgemeingültigkeit, (Un-)Erfüllbarkeit und Äquivalenz suggerieren drei verschiedene Verfahren, um zu überprüfen, ob eine Formel F allgemeingültig oder unerfüllbar ist, bzw. ob zwei Formeln F und G äquivalent sind.
- Die Sätze 3.2 und 4.6 zeigen aber, dass es ausreichend ist, ein Verfahren zu haben, mit dem man Allgemeingültigkeit einer Formel H prüft.
 - Will man wissen, ob F (un-)erfüllbar ist,
 dann wendet man das Verfahren einfach auf H = ¬F an.
 - Will man wissen, ob F und G äquivalent ist,
 dann wendet man das Verfahren einfach auf H = F ⇔ G an
- Die Sätze 3.1 und 4.6 reduzieren entsprechend die Frage nach Allgemeingültigkeit und Äquivalenz auf die Frage der Unerfüllbarkeit.
- Die Sätze 4.2 und 4.3 zeigen, dass es ausreichend ist, eine Tautologie und eine Kontradiktion zu kennen und ein Verfahren zu haben, mit dem man Äquivalenz von zwei Formeln prüft.
- Die Unerfüllbarkeit von **unendlichen** Formelmengen ist mit Verfahren für Tautologie- und Äquivalenzprüfung aber nicht erfassbar.

Wichtige Äquivalenzen (Satz 4.7)

Es seien F, G und H beliebige Formeln:

Elimination von ⇔	$(F \Leftrightarrow G) \equiv (F \Rightarrow G) \land (G \Rightarrow F)$						
	$(F \Leftrightarrow G) \equiv (F \wedge G) \vee (\neg G \wedge \neg F)$						
Elimination von ⇒	$(F \Rightarrow G) \equiv (\neg F \vee G)$						
doppelte Negation	¬¬F≡F						
Assoziativität	$((F \land G) \land H) \equiv (F \land (G \land H))$))					
	$((F \lor G) \lor H) \equiv (F \lor (G \lor H))$						
Distributivität	$(F \wedge (G \vee H)) \equiv ((F \wedge G) \vee (F \wedge H))$						
	$(F \lor (G \land H)) \equiv ((F \lor G) \land ($	F ∨ H))					
Kommutativität	$(F \wedge G) \equiv (G \wedge F)$	$(F \vee G) \equiv (G \vee F)$					
de Morgansche Regeln	$\neg(F\wedgeG)\equiv(\negF\vee\negG)$	$\neg(F \vee G) \equiv (\negF \wedge \negG)$					
Absorption	$(F \land (F \lor G)) \equiv F$	$(F \lor (F \land G)) \equiv F$					
Idempotenz	(F ∧ F) ≡ F	(F ∨ F) ≡ F					
Tautologieregeln	$(F \land G) \equiv G$ $(F \lor G) \equiv F$						
wenn F eine Tautologie							
Unerfüllbarkeitsregeln	(F ∧ G) ≡ F	(F ∨ G) ≡ G					
wenn F unerfüllbar	. ,	,					

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik–Normalformen [7]

Beweise zu 4.7: Beispiele

Anwendung der Wahrheitstafelmethode

• Distributivität: $(F \lor (G \land H)) \equiv ((F \lor G) \land (F \lor H))$

	F	G	Н	G ∧ H	$F \vee (G \wedge H)$	F ∨ G	F ∨ H	$(F \lor G) \land (F \lor H)$
\mathcal{A}_1	0	0	0	0	0	0	0	0
\mathcal{A}_2	0	0	1	0	0	0	1	0
\mathcal{A}_3	0	1	0	0	0	1	0	0
\mathcal{A}_4	0	1	1	1	1	1	1	1
\mathcal{A}_5	1	0	0	0	1	1	1	1
\mathcal{A}_6	1	0	1	0	1	1	1	1
\mathcal{A}_7	1	1	0	0	1	1	1	1
\mathcal{A}_8	1	1	1	1	1	1	1	1

• Tautologie
regeln: Falls F eine Tautologie, dann (F \wedge G) \equiv G und (F \vee G) \equiv F

	F	G	$F \wedge G$	$F \vee G$
\mathcal{A}'_1	1	0	0	1
\mathcal{A}'_2	A_2 1		1	1

Äquivalenzregeln dienen der syntaktischen Vereinfachung

"Überflüssige" Teilformeln

• Mehrfach auftretende Teilformeln können in bestimmten Fällen reduziert werden

→ Idempotenz:

$$(\mathsf{F} \wedge \mathsf{F}) \equiv \mathsf{F},$$

$$(F \vee F) \equiv F$$

→ Absorption:

$$(\mathsf{F} \wedge (\mathsf{F} \vee \mathsf{G})) \equiv \mathsf{F},$$

$$(F \land (F \lor G)) \equiv F,$$
 $(F \lor (F \land G)) \equiv F$

• Allgemeingültige oder unerfüllbare Teilformeln machen bestimmte Teilformeln überflüssig:

→ Tautologieregel:

Falls F eine Tautologie:
$$(F \lor G) \equiv F, (F \land G) \equiv G$$

→ Unerfüllbarkeitsregel:

$$(F \vee G) \equiv G, (F \wedge G) \equiv F$$

Weitere Klammerersparnisregel: Nutzung der Assoziativität

• Die interne Klammerung bei mehrfache Konjunktion und mehrfache Disjunktion drückt keine Wahrheitswert-relevanten Unterschied aus (→ Assoziativität) $(F \land G \land H)$ können wir verwenden, wenn $((F \land G) \land H)$ und $(F \land (G \land H))$

gleichermaßen gemeint sind.

Aber: $(F \Rightarrow G \Rightarrow H)$ und $(F \Leftrightarrow G \Leftrightarrow H)$ sind weiterhin keine Formeln.

Der nächste Schritt

• Wir zeigen, dass die Äquivalenzen auch für Teilformeln relevant sind.

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik-Normalformen [9]

Ersetzung von Formeln

Definition 4.8 (Ersetzung)

Seien F und G zwei Formeln und sei H eine Formel mit der Teilformel F und H' eine Formel mit Teilformel G. Wenn der einzige Unterschied zwischen H und H' darin besteht, dass an einer oder mehreren Positionen, an denen in H die Teilformel F steht in H' die Teilformel G steht, dann heißt H' durch Ersetzung von F durch G aus H hervorgegangen.

• Beispiel:

Ersetzungen von $F := \neg A$ durch $G := (B \lor C)$

$$(0) (\neg A \land D) \Rightarrow (\neg A \lor A) = H$$

(1)
$$((B \lor C) \land D) \Rightarrow (\neg A \lor A) = H'1$$

(2)
$$(\neg A \land D) \Rightarrow ((B \lor C) \lor A) = H'2$$

(3)
$$((B \lor C) \land D) \Rightarrow ((B \lor C) \lor A) = H'3$$

! Ersetzung von zwei Vorkommen von ¬A!

• Keine Ersetzung von F durch G:

$$(4) \ (\neg A \land D) \Rightarrow (\neg A \lor \neg (B \lor C))$$

Ersetzbarkeitstheorem

Satz 4.9

Es seien F und G äquivalente Formeln.
 Wenn H eine Formel mit Teilformel F ist und H' eine Formel ist, die durch Ersetzung von F durch G aus H hervorgeht, dann sind H und H' äquivalent.

Voraussetzungen: Def. 2.2, 2.3, 3.1, 4.1, 4.8; Satz 2.10; F und G sind äquivalente Formeln **Bew.:** (folgt dem Prinzip der strukturellen Induktion über den Aufbau von H)

Induktionsanfang

Ist H eine atomare Formel und H' eine Formel, die durch Ersetzung von F durch G aus H hervorgeht, dann muss F = H und H' = G sein (Def. 2.3, 4.8).

Es gilt $H \equiv H'$, wegen $H = F \equiv G = H'$.

Induktionsannahme

Wir nehmen an, dass H1 und H2 Formeln sind, für die gilt:

Für jede Formel H1' bzw. H2', die aus H1 bzw. H2 durch Ersetzung von F durch G hervorgegangen ist, gilt: H1 \equiv H1' bzw. H2 \equiv H2'.

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik-Normalformen [11]

Ersetzbarkeitstheorem – Der Induktionsschritt (1)

Induktionsschritt

Zu zeigen: Wenn H eine der Formeln $\neg H1$, (H1 \vee H2), (H1 \wedge H2), (H1 \Rightarrow H2) oder (H1 \Leftrightarrow H2) ist und H' eine Formel ist, die durch Ersetzung von F durch G aus H hervorgeht, dann sind H und H' äquivalent.

Wenn F = H, dann gilt, wie beim Induktionsanfang, $H = F \equiv G = H'$.

Für alles weitere betrachten wir den Fall, dass F ist eine echte Teilformel von H ist.

Ist $H = \neg H1$,

- dann ist F eine Teilformel von H1 und gibt es eine Formel H1', die aus H1 durch Ersetzung von F durch G hervorgegangen ist, so dass H' = ¬H1' (Def. 4.8)
- Nach Induktionsannahme gilt H1 ≡ H1'
 - Sei \mathcal{A} eine beliebige Belegung. Dann gilt: $\mathcal{A}(H1') = \mathcal{A}(H1)$, und wegen Def. 3.1: $\mathcal{A}(\neg H1') = \mathcal{A}(\neg H1)$ also auch $\mathcal{A}(H') = \mathcal{A}(\neg H1') = \mathcal{A}(\neg H1) = \mathcal{A}(H)$
- und damit $H' \equiv H$. (Def. 4.1)

Ersetzbarkeitstheorem – Der Induktionsschritt (2)

Ist $H = (H1 \vee H2)$,

- dann ist F eine Teilformel von H1 oder von H2 (oder beiden) und es gibt Formeln H1' und H2', die durch Ersetzung von F durch G aus H1 bzw. H2 hervorgegangen oder mit H1 bzw. H2 identisch sind, so dass H' = (H1' V H2') (Def. 4.8)
- Nach Induktionsannahme gilt $H1 \equiv H1'$ und $H2 \equiv H2'$
 - Sei \mathcal{A} eine beliebige Belegung. Dann gilt: $\mathcal{A}(H1') = \mathcal{A}(H1)$ und $\mathcal{A}(H2') = \mathcal{A}(H2)$, und wegen Def. 3.1 gilt: $\mathcal{A}(H') = \mathcal{A}((H1' \vee H2')) = \mathcal{A}((H1 \vee H2)) = \mathcal{A}(H)$
- also gilt insgesamt $H' \equiv H$. (Def. 4.1)

Die Beweise für Formeln mit den Hauptoperatoren \land , \Rightarrow , \Leftrightarrow laufen entsprechend.

Resümee: Nach dem Prinzip der strukturellen Induktion gibt es also: Wenn F und G äquivalente Formeln sind, H eine Formel ist und H' eine Formel ist, die aus H durch Ersetzung von F durch G hervorgeht, dann sind H und H' äquivalent.

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik–Normalformen [13]

Elimination von \Leftrightarrow

Satz 4.10

Zu jeder Formel gibt es eine äquivalente Formel, in der der Junktor ⇔ nicht vorkommt.

Vor.: Def. 2.1, 2.2, Satz 2.10, 4.7, 4.9

Bew.: (folgt dem Prinzip der strukturellen Induktion)

Induktionsanfang

In atomaren Formeln kommt ⇔ nicht vor. Also erfüllen atomare Formeln die Bedingung automatisch selbst.

Induktionsannahme

F und G sind Formeln, zu denen es äquivalente Formeln F' bzw. G' ohne ⇔ gibt.

Induktionsschritt

Gemäß Ersetzbarkeitstheorem (Satz 4.9) gelten die folgenden Äquivalenzen:

$$\neg F \equiv \neg F', (F \lor G) \equiv (F' \lor G'), (F \land G) \equiv (F' \land G'), (F \Rightarrow G) \equiv (F' \Rightarrow G')$$

und die jeweils rechts stehende Formel enthält den Junktor ⇔ nicht.

Nach Satz 4.7 gilt weiterhin: $(F \Leftrightarrow G) \equiv ((F \Rightarrow G) \land (G \Rightarrow F))$, mit dem

Ersetzbarkeitstheorem gilt $(F \Leftrightarrow G) \equiv ((F' \Rightarrow G') \land (G' \Rightarrow F'))$ und in der letzten Formel kommt \Leftrightarrow nicht vor.

Resümee: Nach dem Prinzip der strukturellen Induktion gibt es also zu jeder Formel eine äquivalente Formel, in der ⇔ nicht vorkommt.

Zum Selbststudium

Äquivalenz bedeutet semantische Gleichwertigkeit

- d.h. äquivalente Formeln verhalten sich immer gleich, wenn es um Fragen geht, die allein durch die Betrachtung der Wahrheitswertverläufe beantwortet werden können.
- Andere Eigenschaften müssen äquivalente Formeln nicht teilen.

Satz 4.10: Elimination von ⇔

- ist ein Beispiel dafür, dass man die logische Sprache einschränken kann, ohne dadurch (logische / semantische) Ausdruckskraft zu verlieren. Was man verliert sind eher stilistische Variationsmöglichkeiten.
- Mögliche Einschränkungen betreffen die Wahl der Junktorenbasis, oder auch die Struktur der Formeln, wie z.B. bei den konjunktiven und disjunktiven Normalformen.

Satz 4.10.1

Zu jeder Formel gibt es eine äquivalente Formel, in der die Junktoren \Leftrightarrow und \Rightarrow nicht vorkommen.

Bew.: s. übernächste Seite, Einbettung in einen induktiven Beweis zur Übung

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik–Normalformen [15]

Übersetzung / Umformung von Formeln

Minimale Inventare für zweistellige Junktoren

$$(F \Leftrightarrow G) \equiv (F \Rightarrow G) \land (G \Rightarrow F)$$

• Der Junktor \Leftrightarrow ist <u>durch</u> die Junktoren \Rightarrow und \land <u>ausdrückbar</u>.

Entsprechend kann z.B. auch der Junktor ⇒ eliminiert werden:

$$(F \Rightarrow G) \equiv (\neg F \lor G)$$

• Der Junktor ⇒ ist durch die Junktoren ¬ und ∨ ausdrückbar.

Welche Junktoren können durch welche Junktorenbasis ausgedrückt werden?

- Jeder zweistellige Junktor ist durch {¬, ∨} ausdrückbar.
- Jeder zweistellige Junktor ist durch {¬, ∧} ausdrückbar.
- Jeder zweistellige Junktor und auch ¬ ist durch {↑} (NAND) ausdrückbar.
- Jeder zweistellige Junktor und auch ¬ ist durch {↓} (NOR) ausdrückbar.
- → Es gilt sogar: Jeder Junktor mit endlich vielen Stellen ist durch jede dieser vier Mengen ausdrückbar.
- → Unsere Junktorenbasis beschränkt die Ausdrückbarkeit nicht, wir könnten sogar noch einige Junktoren streichen.
- → Normalformbildung durch Beschränkung der Junktorenbasis

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik-Normalformen [17]

Strukturbäume von konjunktiven und disjunktiven Normalformen

Einschränkung der Junktorenbasis

1. Es kommen als Junktoren nur \land , \lor , \neg vor.

Einschränkung der Bildungsregeln (Grammatik), Strukturbäume

- 2. Kein Negationsknoten steht über einem Junktorknoten.
- 3. KNF: Kein Disjunktionsknoten steht über einem Konjunktionsknoten.
- 4. DNF: Kein Konjunktionsknoten steht über einem Disjunktionsknoten.

Beispiel: KNF

Literale

Definition 4.11 (Literal)

Atomare Formeln und ihre Negationen werden als Literale bezeichnet.

- Atomare Formeln heißen positive Literale, negierte atomare Formeln negative Literale.
- Die Symbole L, L₁, L₂, ..., L_i, L_k, ... verwenden wir als Variablen, die Literale als Wert haben können.
- Beispiele: Literale: A, ¬B

keine Literale: $\neg \neg A$, $(A \lor B)$

Zwei Literale heißen genau dann *komplementär*, wenn sie positives und negatives Literal bezüglich der gleichen atomaren Formel sind;

- z.B. A und ¬A sind komplementäre Literale.
- Wir sagen auch ¬A ist das komplementäre Literal zu A und A ist das komplementäre Literal zu ¬A
- Der Balken über einem Literal zeigt, dass das komplementäre Literal gemeint ist: $\overline{A} = \neg A$ und $\overline{\neg A} = A$

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik-Normalformen [19]

Abkürzende Schreibweisen: Konjunktionen und Disjunktionen

Es sei $n \in \mathbb{N}$ und es seien $F_1, F_2 \dots F_n$ Variablen, die Formeln als Wert haben.

Kurzschreibweisen für die Konjunktion und die Disjunktion der Fi

	Konjunktionen	Disjunktionen			
n (^ F _i)	$((\ (F_1 \wedge F_2) \wedge) \wedge F_n)$	n (v F _i) i=1	$(((F_1 \vee F_2) \vee) \vee F_n)$		
3 (^ F _i)	$((F_1 \wedge F_2) \wedge F_3)$	3 (v F _i)	$((F_1 \vee F_2) \vee F_3)$		
2 (^ F _i)	(F ₁ ∧ F ₂)	2 (v F _i)	(F ₁ ∨ F ₂)		
1 (^ F _i)	F ₁	1 (v F _i)	F ₁		

Aufgrund der Assoziativgesetze ist die interne Klammerung eigentlich unerheblich.

Klauseln

Definition 4.12 (Klausel)

Literale und Disjunktionen von Literalen werden als (nicht leere) Klauseln bezeichnet.

- Allgemeine Form einer Klausel: $\binom{n}{v} L_i = (L_1 \vee ... \vee L_n)$
- Zu beachten: Ist n = 1, dann ist $\begin{pmatrix} 1 \\ v \\ i=1 \end{pmatrix} = L_1$
- Die Symbole K, K₁, ..., K_i, ... verwenden wir als Variablen, die Klauseln als Wert haben können.

Satz 4.13: Jede (nicht-leere) Klausel K ist erfüllbar.

Beweis: Jedes Literal ist erfüllbar (Bsp. 3.4.1) und Disjunktionen von erfüllbaren Formeln sind (Def. 3.1) auch erfüllbar.

Satz 4.14: Eine (nicht-leere) Klausel ist genau dann allgemeingültig, wenn in ihr mindestens ein Paar von komplementären Literalen vorkommt. (Beweis zur Übung)

- → Tautologieprüfung von Klauseln ist als Prüfung der Existenz komplementärer Literale realisierbar.
- → Ein rein syntaktisches Verfahren ohne Aufbau der Wahrheitstafel.

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik–Normalformen [21]

Duale Klauseln

Definition 4.15 (Duale Klausel)

Literale und Konjunktionen von Literalen werden als (nicht leere) Duale Klauseln bezeichnet.

- Zu beachten: Ist n = 1, dann ist $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = L_1$

Satz 4.16: Jede (nicht-leere) duale Klausel ist falsifizierbar. (Keine (nicht-leere) duale Klausel ist gültig.)

Beweis: Jedes Literal ist falsifizierbar (Bsp. 3.4.1) und Konjunktionen von falsifizierbaren Formeln sind auch falsifizierbar (Def. 3.1).

Satz 4.17: Eine (nicht-leere) duale Klausel ist genau dann unerfüllbar, wenn in ihr mindestens ein Paar von komplementären Literalen vorkommt. (Beweis zur Übung)

→ Unerfüllbarkeitsprüfung von dualen Klauseln ist als Prüfung der Existenz komplementärer Literale realisierbar.

Konjunktive Normalformen

Definition 4.18

Eine Formel F ist genau dann in konjunktiver Normalform (KNF), wenn

- Keine Junktoren außer ∧, ∨ und ¬ in F vorkommen,
- jede Teilformel von F mit Hauptoperator ¬ als (echte) Teilformel genau eine atomare Formel hat,
- keine Teilformel von F mit Hauptoperator ∨ ein ∧ enthält.
- → Eine Formel F ist in KNF, wenn sie folgende Form hat:

$$F = \begin{pmatrix} n & mi \\ \wedge & (\vee & L_{i,k}) \end{pmatrix}$$

wobei $n, m_1, ..., m_n \in \mathbb{N}$ und $L_{1,1}, ..., L_{n,m_i}$ Literale sind.

- Vereinfachend (aber nicht immer ganz korrekt) sagen wir dann auch:
 - F ist eine Konjunktion von Klauseln.
 - F ist eine Konjunktion von Disjunktionen von Literalen.

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik–Normalformen [23]

Beispiele KNF

$$(\neg A \lor B) \land C \land D$$

 $n = 3, m_1 = 2, m_2 = 1, m_3 = 1$
 $L_{1,1} = \neg A, L_{1,2} = B$
 $L_{2,1} = C$
 $L_{3,1} = D$

C $n = 1, m_1 = 1$ $L_{1,1} = C$

Disjunktive Normalformen

Definition 4.19

Eine Formel F ist genau dann in disjunktiver Normalform (DNF), wenn

- Keine Junktoren außer ∧, ∨ und ¬ in F vorkommen,
- jede Teilformel von F mit Hauptoperator ¬ als (echte) Teilformel genau eine atomare Formel hat,
- keine Teilformel von F mit Hauptoperator ∧ ein ∨ enthält.
- → Eine Formel F ist in DNF, wenn sie folgende Form hat:

$$F = \begin{pmatrix} n & mi \\ \vee (\bigwedge_{i=1}^{\wedge} L_{i,k}) \end{pmatrix}$$

- Vereinfachend (aber nicht immer ganz korrekt):
 - F ist eine Disjunktion von dualen Klauseln.
 - F ist eine Disjunktion von Konjunktionen von Literalen.

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik-Normalformen [25]

Ergänzung: Grammatik für Konjunktive Normalformen

Vokabular der terminalen Symbole

(Symbole, die in der Formel vorkommen):

$$\Sigma_{\text{KNF}} = \mathcal{A}s_{\text{AL}} \cup \{ \neg, \land, \lor,), (\}$$

nicht-terminales Symbol

(Symbole, die für die Erzeugung der Formeln benötigt werden, aber nicht in der Formel vorkommen):

$$N_{KNF} = \{KNF, KI, L, As\}$$

Startsymbol: KNF

KNF: Konjunktive Normalform

Kl: Klausel L: Literal

As: Aussagesymbol

Regeln (Produktionen):

Nutzen von Normalformen: Beispiel

Beobachtung 4.20

- Eine KNF ist genau dann gültig, wenn alle ihre Klauseln gültig sind.
- Eine KNF ist genau dann gültig, wenn in allen ihren Klauseln mindestens ein Paar von komplementären Literalen vorkommt.
- → Tautologieprüfung von KNF ist als Prüfung der Existenz komplementärer Literale realisierbar.
- → Resolution (Logische Basis von PROLOG / SE-3) ist ein Verfahren, das Unerfüllbarkeit auf der Basis von KNF überprüft. [Wird ausführlich in Kap 8. (Aussagenlogik) und Kap. 12 Prädikatenlogik behandelt.]

Beobachtung 4.21

- Eine DNF ist genau dann unerfüllbar, wenn alle ihre dualen Klauseln unerfüllbar sind.
- Eine DNF ist genau dann unerfüllbar, wenn in allen ihren dualen Klauseln mindestens ein Paar von komplementären Literalen vorkommt.
- → Unerfüllbarkeitsprüfung von DNF ist als Prüfung der Existenz komplementärer Literale realisierbar.
- → Grundlage des Tableau-Verfahrens (vertieft im Masterstudium: FGI-3)

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik–Normalformen [27]

Normalformtheorem

Definition 4.22

- Eine Formel F' ist genau dann eine *konjunktive Normalform zu einer Formel* F, wenn F' in konjunktiver Normalform und äquivalent zu F ist.
- Eine Formel G' ist genau dann eine disjunktive Normalform zu einer Formel G, wenn G' in disjunktiver Normalform und äquivalent zu G ist.

Satz 4.23

Zu jeder Formel F gibt es (mindestens) eine konjunktive Normalform und (mindestens) eine disjunktive Normalform

So geht es weiter

- Beweis der Existenz von Normalformen
- Algorithmus für die Erstellung von Normalformen durch Umformung
- Erstellung von Normalformen auf der Basis der Wahrheitswertverläufe

Beweis des Normalformtheorems

Vor.: Def. 2.2, 4.11, 4.18, 4.19, 4.22; Satz 2.10, 4.7, 4.10, 4.10.1

Beweis (von Satz 4.23)

- Gemäß der Eliminationsregeln für ⇔ (Satz 4.10) und ⇒ (Satz 4.10.1) gibt es zu jeder Formel eine äquivalente Formel, in der die Junktoren ⇔ und ⇒ nicht vorkommen.
 Entsprechend reicht es zu zeigen, dass es zu jeder Formel, in der nur die Junktoren ⟨¬, ∨, ∧⟩ vorkommen, eine KNF und eine DNF gibt.
- Die Beweise für KNF und DNF verlaufen weitgehend analog und miteinander verzahnt nach dem Prinzip der strukturellen Induktion.
- *Induktionsanfang*: Jede atomare Formel ist ein positives Literal und damit in konjunktiver und in disjunktiver Normalform.
- *Induktionsannahme*: Es seien G und H Formeln, zu denen es konjunktive Normalformen G_K bzw. H_K und disjunktive Normalformen G_D bzw. H_D gibt.
- Induktionsschritt: Wir haben zu zeigen, dass es zu den Formeln ¬G, (G ∨ H) und
 (G ∧ H) konjunktive und disjunktive Normalformen gibt.

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik-Normalformen [29]

Beweis NF-Theorem – Induktionsschritt für ¬G [DNF]

Zu zeigen: Es gibt eine DNF zu ¬G.

• Nach Induktionsannahme ist G_K eine KNF von G:

$$\begin{split} G &\equiv G_K = (\bigwedge_{i=1}^n \binom{mi}{k=1} L_{i,k})) & [\operatorname{Def.KNF}] \\ \operatorname{also:} \neg G &\equiv \neg G_K = \neg (\bigwedge_{i=1}^n \binom{mi}{k=1} L_{i,k})) & [\operatorname{Ersetzungstheorem}] \\ &\equiv (\bigwedge_{i=1}^n \neg \binom{mi}{k=1} L_{i,k})) & [\operatorname{de Morgansche Regel bzgl.} \wedge \operatorname{und Ersetzungstheorem}] \\ &\equiv (\bigwedge_{i=1}^n \binom{mi}{k=1} \neg L_{i,k})) & [\operatorname{de Morgansche Regel bzgl.} \vee \operatorname{und Ersetzungstheorem}] \\ &\equiv (\bigwedge_{i=1}^n \binom{mi}{k=1} \neg L_{i,k})) & [\operatorname{Doppelte Negation und Ersetzungstheorem}] \\ &\equiv (\bigwedge_{i=1}^n \binom{mi}{k=1} \overline{L_{i,k}})) & [\operatorname{Doppelte Negation und Ersetzungstheorem}] \\ &= \begin{cases} A_j, \operatorname{falls} L_{i,k} = \neg A_j \\ \neg A_j, \operatorname{falls} L_{i,k} = A_j \end{cases} \end{split}$$

→ dies ist eine DNF

[Def. DNF]

• entsprechend kann aus Gp eine KNF zu ¬G erstellt werden.

Beweis NF-Theorem – Induktionsschritt für (G ∧ H) [KNF]

Zu zeigen: Es gibt eine KNF zu (G \wedge H).

• Nach Induktionsannahme ist GK eine KNF von G und HK eine KNF von H:

$$G \equiv G_K = \begin{pmatrix} n' \\ \uparrow = 1 \end{pmatrix} K'_i \qquad H \equiv H_K = \begin{pmatrix} n'' \\ \uparrow = 1 \end{pmatrix} K''_j \qquad \text{, wobei } K'_i \text{ und } K''_j \text{ Klauseln sind}$$
 also:
$$(G \land H) \equiv (G_K \land H_K) = (\begin{pmatrix} n' \\ \uparrow = 1 \end{pmatrix} K'_i) \land \begin{pmatrix} n'' \\ \uparrow = 1 \end{pmatrix} K''_j) \qquad \text{[Ersetzungstheorem]}$$

- → Linksklammerung ist gemäß Assoziativgesetz möglich.
- Die gewünschte Form erkennen wir dann mit der folgenden Zuordnung:

$$(G \land H) \equiv F_{K} := (\underset{i=1}{\overset{n}{\wedge}} K_{i}) \qquad \text{mit } n := n' + n'' \quad \text{und} \quad K_{i} := \begin{cases} K'_{i}, \text{ für } 1 \leq i \leq n' \\ K''_{i-n'}, \text{ für } n' < i \leq n \end{cases}$$

• entsprechend kann aus Gp und Hp eine DNF zu (G V H) erstellt werden.

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik-Normalformen [31]

Beweis NF-Theorem – Induktionsschritt für (G ∨ H) [KNF]

Zu zeigen: Es gibt eine KNF zu (G V H).

• Nach Induktionsannahme ist GK eine KNF von G und HK' eine KNF von H:

$$G \equiv G_{K} = \begin{pmatrix} n' \\ \uparrow = 1 \end{pmatrix} \quad H \equiv H_{K} = \begin{pmatrix} n'' \\ \uparrow = 1 \end{pmatrix} \quad \text{, wobei K'}_{i} \text{ und K''}_{j} \text{ Klauseln sind}$$

$$\text{also: } (G \lor H) \equiv (G_{K} \lor H_{K}) = (\begin{pmatrix} n' \\ \uparrow = 1 \end{pmatrix} \lor \begin{pmatrix} n'' \\ \uparrow = 1 \end{pmatrix} \lor \begin{pmatrix} n$$

• Die gewünschte Form erkennen wir dann mit der folgenden Zuordnung:

$$(\mathsf{G} \vee \mathsf{H}) \equiv \mathsf{F}_{\mathsf{K}} := (\bigwedge_{i=1}^{n} \mathsf{K}_{i}) \quad \text{ mit } \mathsf{n} := \mathsf{n}' * \mathsf{n}'' \quad \text{ und } \quad \mathsf{K}_{\mathsf{N}''*(i-1)+j} := \quad (\mathsf{K}'_{i} \vee \mathsf{K}''_{j})$$

- → Linksklammerung in den neuen Klauseln ist gemäß Assoziativitätsgesetz möglich.
- entsprechend kann aus Gp und Hp eine DNF zu (G ∧ H) erstellt werden.

Resümee: Nach dem Prinzip der strukturellen Induktion gibt es also zu jeder Formel eine äquivalente Formel in KNF und eine äquivalente Formel in DNF.

Verfahren für die Erstellung von Normalformen

Gegeben: eine Formel F

0) Ersetze alle Teilformeln der Form

```
 \begin{array}{ll} (G \Leftrightarrow H) & \text{durch} & (\neg G \vee H) \wedge (\neg H \vee G) \text{ [Elimination} \Leftrightarrow] \\ (G \Rightarrow H) & \text{durch} & (\neg G \vee H) & \text{[Elimination} \Rightarrow] \end{array}
```

1) Ersetze alle Teilformeln der Form

["Treibe Negationen nach innen, zu den atomaren Formeln."]

2a) Um die KNF zu bilden: Ersetze alle Teilformeln der Form

$$(F \lor (G \land H))$$
 durch $((F \lor G) \land (F \lor H))$ [Distributivität] $((F \land G) \lor H)$ durch $((F \lor H) \land (G \lor H))$ [Distributivität]

["Treibe Disjunktionen nach innen und Konjunktionen nach außen."]

2b) Um die DNF zu bilden: Ersetze alle Teilformeln der Form

```
(F \land (G \lor H)) durch ((F \land G) \lor (F \land H)) [Distributivität] ((F \lor G) \land H) durch ((F \land H) \lor (G \land H)) [Distributivität]
```

["Treibe Konjunktionen nach innen und Disjunktionen nach außen."]

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik-Normalformen [33]

Erstellung der konjunktiven Normalform – Ein Beispiel

$$(A \land (B \Rightarrow C)) \Rightarrow D \qquad [Elimination von \Rightarrow]$$

$$\equiv (A \land (\neg B \lor C)) \Rightarrow D \qquad [Elimination von \Rightarrow]$$

$$\equiv \neg(A \land (\neg B \lor C)) \lor D \qquad [de Morgan]$$

$$\equiv (\neg A \lor \neg(\neg B \lor C)) \lor D \qquad [de Morgan]$$

$$\equiv (\neg A \lor (\neg \neg B \land \neg C)) \lor D \qquad [Doppelte Negation]$$

$$\equiv (\neg A \lor (B \land \neg C)) \lor D \qquad [Distributivität]$$

$$\equiv ((\neg A \lor B) \land (\neg A \lor \neg C)) \lor D \qquad [Distributivität]$$

$$\equiv ((\neg A \lor B) \lor D) \land ((\neg A \lor \neg C) \lor D)$$

Verfahren für die Erstellung von Normalformen – Fortsetzung

- Das Verfahren führt zu Formeln, die äquivalent zur Ausgangsformel sind.
- Das Verfahren terminiert.
- Das Verfahren liefert eine Formel in KNF (2a) bzw. in DNF (2b).

Begründungen

- Da alle Ersetzungen auf Äquivalenzen beruhen (Satz 4.7), sind alle (Zwischen- und Endprodukte) äquivalent zur ursprünglichen Formel (Satz 4.9).
- Die Elimination von ⇔ terminiert, da eine (zwischenzeitliche) Vermehrung von Biimplikationen immer nur auf unteren Ebenen des Strukturbaums erfolgt.
- Alle weiteren Ersetzungen können zwar die Formellänge vergrößern, aber nicht die Tiefe des Strukturbaums.
- Ist die Elimination von ⇔ (bzw. ⇒) abgeschlossen, dann wird durch keinen Schritt ⇔ (bzw. ⇒) wieder eingeführt.
- Der Prozess endet, wenn
 - (i) Negationen nur noch bei atomaren Formeln auftreten (negative Literale) und wenn
 - (ii) keine Teilformel, deren Hauptoperator die Disjunktion ist, eine Konjunktion enthält (2a) bzw. keine Teilformel, deren Hauptoperator die Konjunktion ist, eine Disjunktion enthält (2b)

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik–Normalformen [35]

Erstellung von Normalformen aus Wahrheitstafeln – I (DNF)

Die Idee

- Komplette Wahrheitstafeln (Angabe aller unterschiedlichen Belegungen A_i zu einer Menge von Aussagensymbolen) geben einen Wahrheitswertverlauf an.
- Hieraus soll eine Formel in DNF oder KNF erzeugt werden, die genau diesen Wahrheitswertverlauf hat.

Verfahren zur Konstruktion einer DNF-Formel

Gegeben: ein kompletter Wahrheitswertverlauf

- Konstruiere zu jeder Zeile der Wahrheitstafel, die den Wert 1 aufweist, eine duale Klausel wie folgt:
 - Falls der Wert für ein Aussagensymbol in der Zeile 1 ist, so nimm das positive Literal in die Konjunktion auf.
 - Falls der Wert **0** ist, so nimm das negative Literal in die Konjunktion auf.
- Bilde die Disjunktion aller Konjunktionen, die nach diesem Verfahren konstruiert wurden. (Ignoriere alle Zeilen, die den Wert **0** aufweisen.)
- Wenn der Wahrheitswertverlauf keine 1 enthält, wähle ein beliebiges Aussagensymbol A und bilde die Formel (A ∧ ¬A)

Normalformen aus Wahrheitstafel – II (Beispiel / DNF)

Die Wahrheitstafel

	Α	В	С	F	
\mathcal{A}_1	0	0	0	1	(¬A ∧ ¬B ∧ ¬C)
\mathcal{A}_2	0	0	1	0	
\mathcal{A}_3	0	1	0	0	
\mathcal{A}_4	0	1	1	0	
\mathcal{A}_5	1	0	0	1	(A ∧ ¬B ∧ ¬C)
\mathcal{A}_6	1	0	1	1	(A ∧ ¬B ∧ C)
\mathcal{A}_7	1	1	0	0	
\mathcal{A}_8	1	1	1	0	

• DNF: $(\neg A \land \neg B \land \neg C) \lor (A \land \neg B \land \neg C) \lor (A \land \neg B \land C)$

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik–Normalformen [37]

Normalformen aus Wahrheitstafel – III – Die Idee (DNF)

- Eine Disjunktion ist genau dann wahr, wenn eine ihrer direkten Teilformeln wahr ist.
- Wir verwenden daher Formeln, die unter genau einer der Belegungen wahr sind.
- $F = F1 \vee F5 \vee F6$

	Α	В	С	F	F1	F2	F3	F4	F5	F6	F7	F8
\mathcal{A}_1	0	0	0	1	1	0	0	0	0	0	0	0
\mathcal{A}_2	0	0	1	0	0	1	0	0	0	0	0	0
\mathcal{A}_3	0	1	0	0	0	0	1	0	0	0	0	0
\mathcal{A}_4	0	1	1	0	0	0	0	1	0	0	0	0
\mathcal{A}_5	1	0	0	1	0	0	0	0	1	0	0	0
\mathcal{A}_6	1	0	1	1	0	0	0	0	0	1	0	0
\mathcal{A}_7	1	1	0	0	0	0	0	0	0	0	1	0
\mathcal{A}_8	1	1	1	0	0	0	0	0	0	0	0	1

- Konjunktionen aus Literalen, in denen jedes Aussagensymbol genau einmal auftritt, werden unter genau einer der Belegungen wahr.
- z.B. $F2 = \neg A \land \neg B \land C$, $F5 = A \land \neg B \land \neg C$

Normalformen aus Wahrheitstafel - VI (Der KNF-Fall)

- Eine Konjunktion ist genau dann falsch, wenn eine ihrer direkten Teilformeln falsch ist. Wir betrachten daher Formeln, die unter genau einer der Belegungen falsch sind.
- $F = G2 \wedge G3 \wedge G4 \wedge G7 \wedge G8$

	Α	В	С	F	G1	G2	G3	G4	G5	G6	G7	G8
\mathcal{A}_1	0	0	0	1	0	1	1	1	1	1	1	1
\mathcal{A}_2	0	0	1	0	1	0	1	1	1	1	1	1
\mathcal{A}_3	0	1	0	0	1	1	0	1	1	1	1	1
\mathcal{A}_4	0	1	1	0	1	1	1	0	1	1	1	1
\mathcal{A}_5	1	0	0	1	1	1	1	1	0	1	1	1
\mathcal{A}_6	1	0	1	1	1	1	1	1	1	0	1	1
\mathcal{A}_7	1	1	0	0	1	1	1	1	1	1	0	1
\mathcal{A}_8	1	1	1	0	1	1	1	1	1	1	1	0

- Disjunktionen aus Literalen, in denen jedes Aussagensymbol genau einmal auftritt, werden unter genau einer der Belegungen falsch.
- z.B. $G2 = A \lor B \lor \neg C$

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik-Normalformen [39]

Normalformen aus Wahrheitstafel - V (KNF)

- Konstruiere zu jeder Zeile der Wahrheitstafel mit dem Wert **0**, eine Klausel wie folgt:
 - Falls der Wert für ein Aussagensymbol in der Zeile **0** ist, so nimm das positive Literal in die Disjunktion auf, sonst nimm das negative Literal auf.
- Bilde die Konjunktion aller so gewonnenen Disjunktionen. (Ignoriere alle Zeilen mit 1.)
- Wenn der Wahrheitswertverlauf keine 0 enthält, wähle ein beliebiges Aussagensymbol A und bilde die Formel (A ∨ ¬A)

		Α	В	С	F	
T	41	0	0	0	1	
T	42	0	0	1	0	(A ∨ B ∨ ¬C)
T	43	0	1	0	0	(A ∨ ¬B ∨ C)
T	44	0	1	1	0	(A ∨ ¬B ∨ ¬C)
T	45	1	0	0	1	
T	46	1	0	1	1	
T	47	1	1	0	0	(¬A ∨ ¬B ∨ C)
T	48	1	1	1	0	$(\neg A \lor \neg B \lor \neg C)$

KNF:

$$(A \lor B \lor \neg C) \land (A \lor \neg B \lor C)$$

 $\land (A \lor \neg B \lor \neg C) \land (\neg A \lor \neg B$
 $\lor C) \land (\neg A \lor \neg B \lor \neg C)$

Zusammenfassung: Äquivalenz und Normalformen

Äquivalenz

- → Formeln sind äquivalent, wenn sie unter allen Belegungen denselben Wahrheitswert liefern.
- → semantische Gleichwertigkeit: Immer wenn es um semantische Fragen (Wahrheitswertverläufe) geht, ist es egal welche der äquivalenten Formeln man betrachtet
- → syntaktische Unterschiede können aber bestehen, Formelgleichheit / Identität bezieht diese Unterschiede mit ein.

Normalformen: insb. KNF, DNF

- Restriktion der Syntax der Sprache (Junktoreninventar, Bildungsregeln) ohne Einschränkung des Ausdrucksvermögens
- Normalform zu einer Formel: Äquivalente Formel, die zur eingeschränkten Sprache gehört.
- Nutzen: der geringere Formenreichtum kann die weitere Verarbeitung erleichtern
- Eindeutigkeit der Normalform muss aber nicht gewährleistet sein.

FGI-1 Habel / Eschenbach

Kap. 4 Aussagenlogik-Normalformen [41]

Wichtige Konzepte in diesem Foliensatz

- (logische) Äquivalenz
- Konjunktive Normalform, Disjunktive Normalform, Klausel, duale Klausel, Literal
- Ersetzung, Ersetzbarkeitstheorem
- Junktorenelimination
- KNF-/DNF-Erzeugung durch Umformung
- KNF-/DNF-Erzeugung aus Wahrheitstafel