A Generalized Language Model in Tensor Space

Lipeng Zhang ¹, Peng Zhang ^{1,*}, Xindian Ma¹, Shuqin Gu ¹, Zhan Su ¹, Dawei Song ²

1 College of Intelligence and Computing, Tianjin University, China

2 School of Computer Science and Technology, Beijing Institute of Technology, China

1. Introduction

Motivation

- ☐ The existing methods usually adopt relatively low-order tensors, which have limited expressive power in modeling language.
- ☐ We propose a language model based on relatively high-order tensor representation——Tensor Space Language Model (TSLM).
- Challenges
 - To derive an effective solution for such high order representation;
 - ◆ To demonstrate such a solution is a general approach for language modeling;
 - ◆ To solve that such a high-order tensor contains exponential magnitude of parameters.

2. Tensor Network

4. Deriving Recursive Language Modeling Process from TSLM

3. Tensor Space Language Model and The Generalization

TSLM Basic Representation

Hypotheses: A sentence has n words. Each word has m semantic meanings.

The sentence still has m meanings.

we will get m^n semantic combinations.

 \square How to represent a single word $\stackrel{m}{\searrow}$

$$\mathbf{w}_i = \sum_{d_i=1}^m \alpha_{i,d_i} \mathbf{e}_{d_i}$$

☐ How to represent a sentence

$$s = w_1 \otimes \cdots \otimes w_n = \sum_{d_1, \cdots, d_n = 1}^m \mathcal{A}_{d_1 \cdots d_n} e_{d_1} \otimes \cdots \otimes e_{d_n}$$

lacksquare Assume that each sentence s_i appears with a probability p_i . We can denote the corpus as:

$$c = \sum_{i}^{m} p_{i} s_{i} = \sum_{d_{1}, \dots, d_{n}=1}^{m} \mathcal{T}_{d_{1} \dots d_{n}} e_{d_{1}} \otimes \dots \otimes e_{d_{n}}$$

☐ The sentence probability:

$$p(s) = \langle s, c \rangle = \sum_{d_1, \dots, d_n=1}^{m} \mathcal{T}_{d_1 \dots d_n} \mathcal{A}_{d_1 \dots d_n}$$

The Generalization of N-Gram Language

□ Claim 1:

In our TSLM, when we set the dimension of vector space m=|V| and each word w as an one-hot vector, the probability of sentence s consist of words d_1, \ldots, d_n in vocabulary is the entry $\mathcal{T}_{d_1 \ldots d_n}$ of tensor \mathcal{T} .

☐ Claim 2:

In our TSLM, we define the word sequence $w_1^i = (w_1, w_2, ..., w_i)$ with length i as:

$$\mathbf{w}_1^i = \mathbf{w}_1 \otimes \cdots \otimes \mathbf{w}_i \otimes \mathbf{1}_{i+1} \otimes \cdots \otimes \mathbf{1}_n$$

Which means that the sequence w_1^i is padded via using full one vector **1**. Then, the probability $p(w_1^i) = \langle w_1^i, c \rangle$.

lacksquare In TSLM, the conditional probability $p(w_i|w_1^{i-1})$ can be computed as:

$$p(w_i|w_1^{i-1}) = \frac{p(w_1^i)}{p(w_1^{i-1})} = \frac{\langle w_1^i, c \rangle}{\langle w_1^{i-1}, c \rangle}$$

Recursive Tensor Decomposition

□ Decomposition :

$$\mathcal{T} = \sum_{\substack{i=1\\r}}^{r} \lambda_i \mathcal{S}_{(n),i} \otimes \boldsymbol{u}_i$$

$$\boldsymbol{u}_{n),k} = \sum_{\substack{i=1\\i=1}}^{r} W_{k,i} \mathcal{S}_{(n-1),i} \otimes \boldsymbol{u}_i$$

$$S_{(1)} = \mathbf{1}$$

- □ Denote : $h_0 = W^{-1}1$
- lacktriangledown Computing $oldsymbol{h}_t$ recursively:

$$\boldsymbol{h}_t = W\boldsymbol{h}_{t-1} \odot U\boldsymbol{\alpha}_t$$

 \square Constructing a tensor mapping to vocabulary by a matrix $V \in \mathbb{R}^{r \times |V|}$:

$$\mathcal{T}_{(t),k} = \sum_{i=1}^{r} V_{k,i} \mathcal{S}_{(t-1),i} \otimes \boldsymbol{u}_{i}$$

☐ Therefore, computing the conditional probability recursively:

$$p(w_t|w_1^{t-1}) = softmax(y_t)$$

$$y_t = Vh_t$$

$$h_t = g(Wh_{t-1}, U\alpha_t)$$

$$g(a, b) = a \odot b$$

5. Empirical Evaluation and Conclusion

Experiment Results

	PTB				WikiText-2			
Model	Hidden size	Layers	Valid	Test	Hidden size	Layers	Valid	Test
KN-5(Mikolov and Zweig 2012)	-	-	-	141.2	-	-	-	_
RNN(Mikolov and Zweig 2012)	300	1	-	124.7	-	-	-	-
LSTM(Zaremba, Sutskever, and Vinyals 2014)	200	2	120.7	114.5	-	-	-	-
LSTM(Grave, Joulin, and Usunier 2016)	1024	1	-	82.3	1024	1	-	99.3
LSTM(Merity et al. 2017)	650	2	84.4	80.6	650	2	108.7	100.9
RNN†	256	1	130.3	124.1	512	1	126.0	120.4
LSTM†	256	1	118.6	110.3	512	1	105.6	101.4
TSLM	256	1	117.2	108.1	512	1	104.9	100.4
RNN+MoS†(Yang et al. 2018)	256	1	88.7	84.3	512	1	85.6	81.8
TSLM+MoS	256	1	86.4	83.6	512	1	83.9	81.0

Conclusion

- We propose a novel language model, named Tensor Space Language Model, aiming to consider high-order dependencies of words via tensors and tensor networks.
- ☐ We prove that TSLM is a generalization of the n-gram language model.
- ☐ We can derive a recursive calculation of conditional probability for language modeling via tensor decomposition in TSLM.