3 Теорема о вложенных шарах

В анализе широко используется теорема о вложенных отрезках. В теории метрических пространств ее аналогом является теорема о вложенных шарах.

Теорема 3.1. (Теорема о вложенных шарах) Для того, чтобы метрическое пространство М было полным, необходимо и достаточно, чтобы в нем всякая последовательность вложенных друг в друга замкнутых шаров, радиусы которых стремятся к нулю, имела непустое пересечение.

Доказательство. <u>Необходимость</u>. Пусть M – полное метрическое пространство и

$$\overline{B}_{r_1}(x_1) \supset \overline{B}_{r_2}(x_2) \supset \dots \overline{B}_{r_n}(x_n) \supset \dots$$

последовательность вложенных друг в друга замкнутых шаров с $r_n \to 0$ при $n \to \infty$.

Так как $\overline{B}_{r_n}(x_n) \supset \overline{B}_{r_m}(x_m)$, то

$$\rho(x_n, x_m) \leqslant r_n < \varepsilon$$
 при $m > n > N(\varepsilon)$.

Следовательно последовательность $\{x_n\}_{n=1}^{\infty}$ фундаментальна. В силу полноты пространства M существует $x_0 \in M$ такое, что $x_n \to x_0$. Заметим, что $x_m \in \overline{B}_{r_n}(x_n)$ для всех m > n. Как следствие, $x_0 \in \overline{B}_{r_n}(x_n)$ для всех $n \geqslant 1$ и поэтому $x_0 \in \bigcap_{n=1}^{\infty} \overline{B}_{r_n}(x_n)$.

<u>Достаточность</u>. Пусть в M всякая последовательность вложенных друг в друга замкнутых шаров, радиусы которых стремятся к нулю имеет непустое пересечение.

Рассмотрим фундаментальную последовательность $\{x_n\}_{n=1}^{\infty}$ и докажем, что она имеет предел. Положим $r_n=\frac{1}{2^n}$ для $n\geqslant 1$. В силу фундаментальности найдется номер n_1 такой, что $\rho(x_n,x_{n_1})<\frac{r_1}{2}$ для всех $n>n_1$. Аналогично существует $n_2>n_1$ такой, что $\rho(x_n,x_{n_2})<\frac{r_2}{2}$ для всех $n>n_2$.

Если номера $n_1 < n_2 < \dots < n_k$ уже выбраны, то выберем $n_{k+1} > n_k$ так, чтобы $\rho(x_n, x_{n_{k+1}}) < \frac{r_{k+1}}{2}$ для всех $n > n_{k+1}$.

Заметим, что $\overline{B}_{r_k}(x_k)\supset \overline{B}_{r_{k+1}}(x_{k+1})$. Действительно, если $x\in \overline{B}_{r_{k+1}}(x_{k+1})$, то

$$\rho(x, x_k) \leqslant \rho(x, x_{k+1}) + \rho(x_{k+1}, x_k) \leqslant r_{k+1} + \frac{r_k}{2} = r_k \quad \Rightarrow x \in \overline{B}_{r_k}(x_k).$$

Но тогда, в силу сделанного предположения, существует $x \in \bigcap_{n=1}^{\infty} \overline{B}_{r_n}(x_{n_k})$. Так как $\rho(x, x_{n_k}) \leqslant r_n \to 0$ при $n \to \infty$, то $x_{n_k} \to x$.

Покажем, что $x_n \to x$ при $n \to \infty$. Возьмем произвольное $\varepsilon > 0$. Выберем $N = N(\varepsilon)$ так, чтобы $\rho(x_n, x_m) < \varepsilon/2$ для n > m > N. Затем выберем $n_k > N$ такое, что $\rho(x_{n_k}, x) < \varepsilon/2$. Как следствие

$$\rho(x_n, x) \leqslant \rho(x_n, x_{n_k}) + \rho(x_{n_k}, x) < \varepsilon/2 + \varepsilon/2 = \varepsilon \quad \forall n > N.$$

Теорема доказана.

При доказательстве теоремы о вложенных шарах мы фактически передоказали следующее утверждение.

Лемма 3.1. Если для фундаментальной поледовательности $\{x_n\}_{n=1}^{\infty} \subset M$ существует подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$ такая, что $x_{n_k} \to x \in M$ при $k \to \infty$, то $x_n \to x$ при $n \to \infty$.

ДЗ 3.1. Доказать лемму 3.1.

4 Плотные подмножества. Теорема Бэра

Напомним, что замыкание множества A в метрическом пространстве мы обозначаем через \overline{A} или [A]. Точка $x \in [A]$ тогда и только тогда, когда $x \in A$ или x является предельной точкой множества A. Другими словами, $x \in [A]$ тогда и только тогда, когда существует последовательность $\{x_n\}_{n=1}^{\infty} \subset A$ такая, что $x_n \to x$ при $n \to \infty$.

Опр. Пусть A и B – подмножества метрического пространства M. Говорят, что множество A плотно в B, если $\overline{A} \supset B$.

Множество A называется всюду плотным в M, если $\overline{A} \supset M$ (то есть $\overline{A} = M$).

Примеры.

- **1.** Множество рациональных чисел всюду плотно в \mathbb{R} .
- **2.** Множество $C^{\infty}[a,b]$ всюду плотно в $L_p(a,b)$ при $1 \leq p < \infty$.

Опр. Метрическое пространство, содержащее бесконечное множество элементов, называется сепарабельным, если в нем существует счетное всюду плотное множество.

Примеры сепарабельных пространств:

- 1) \mathbb{R}^m ,
- 2) C[a, b],
- 3) $L_p(E)$, $1 \leqslant p < \infty$,
- 4) ℓ_p , $1 \leqslant p < \infty$.

Примеры пространств, не являющихся сепарабельными:

- 1) ℓ_{∞} ,
- 2) $L_{\infty}(E)$.

Для того, чтобы убедиться в сепарабельности пространства C[a,b], воспользуемся следующей классической теоремой.

Теорема 4.1. (Аппроксимационная теорема Вейерштрасса.)

Для всякой функции $f \in C[a,b]$ и произвольного $\varepsilon > 0$ найдется такой алгебраический многочлен P_n степени $n = n(f,\varepsilon)$, что

$$\max_{x \in [a,b]} |f(x) - P_n(x)| < \varepsilon.$$

Пусть $f \in C[a,b]$ и $\varepsilon > 0$. В силу аппроксимационной теоремы Вейерштрасса существует многочлен $P_N(x) = \sum_{k=0}^N a_k x^k$ такой, что

$$||f - P_N||_{C[a,b]} < \varepsilon/2.$$

Заменим коэффициенты a_k их рациональными приближениями \widetilde{a}_k таким образом, чтобы для многочлена $\widetilde{P}_N(x) = \sum_{k=0}^N \widetilde{a}_k x^k$ было справедливо неравенство

$$||P_N - \widetilde{P}_N||_{C[a,b]} < \varepsilon/2.$$

Тогда

$$||f - \widetilde{P}_N||_{C[a,b]} \le ||f - P_N||_{C[a,b]} + ||P_N - \widetilde{P}_N||_{C[a,b]} < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Мы доказали, что множество многочленов с рациональными коэффициентами всюду плотно в C[a,b]. Поскольку это множество счетно, пространство C[a,b] сепарабельно.

ДЗ 4.1. Доказать, что пространство $L_p(a,b)$ с $1\leqslant p<\infty$ сепарабельно.

ДЗ 4.2. Доказать, что пространство ℓ_p с $1\leqslant p<\infty$ сепарабельно.

Теорема 4.2. Пространство ℓ_{∞} не является сепарабельным.

Доказательство. Рассмотрим множество $E \subset \ell_{\infty}$, элементами которого являются последовательности $x = \{x_k\}_{k=1}^{\infty}$, где x_k равно 0 и 1.

Множество E имеет мощность континуума. Заметим, что расстояние между разными элементами $x,y\in E$ равно 1. Действительно,

$$\rho(x,y) = \sup_{k \ge 1} |x_k - y_k| = 1.$$

•Предположим, что в ℓ_{∞} существует счетное всюду плотное множество $A = \{a_n\}_{n=1}^{\infty}$. Тогда для каждого $x \in \ell_{\infty}$ и для каждого $\varepsilon > 0$ существует элемент $a_n \in A$ такой, что $a_n \in B_{\varepsilon}(x)$. Возьмем $\varepsilon < 1/2$ и $x, y \in E, x \neq y$.

Поскольку расстояние между x и y равно 1, то шары $B_{\varepsilon}(x)$ и $B_{\varepsilon}(y)$ не пересекаются. Следовательно элементы $a_n \in B_{\varepsilon}(x)$ и $a_m \in B_{\varepsilon}(y)$ разные. Таким образом, между множеством E и некоторым подмножеством множества A установлено взаимно однозначное соответствие. Это невозможно, так как E имеет мощность континуума, а A счетно.

Теорема доказана.

ДЗ 4.3. Доказать, что пространство $L_{\infty}(a,b)$ не является сепарабельным. Подсказка: рассмотреть множество характеристических функций интервалов (a,x), где $x\in(a,b)$.