Emergent Necessity Theory: Core Development Plan

AlWaleed AlShehail

June 2025

Philosophical Anchors

- Structurism: Reality propagates via structural necessity $(S_1 \to S_2)$
- Primordial Structure: Acausal origin point (mathematical necessity)
- Emergence: $\tau \geq \tau_c$ triggers phase transitions

1 Formalized Dynamics

1.1 Fokker-Planck Equation (Jarzynski-Anchored)

$$\frac{\partial P(\tau, t)}{\partial t} = -\underbrace{\frac{\partial}{\partial \tau} \left[\alpha \frac{\partial \mathcal{F}_{\text{info}}}{\partial \tau} P \right]}_{\text{Drift}} + \underbrace{\frac{\partial^2}{\partial \tau^2} \left[\beta \tau (1 - \tau / \tau_{\text{max}}) P \right]}_{\text{Diffusion}}$$
(1)

where:

$$\mathcal{F}_{\text{info}} = \mathcal{E}(X) - T \sum_{i,j} I(x_i; x_j)$$
 (Informational free energy)

 $\alpha = \text{Drift strength}, \quad \beta = \text{Stochasticity scale}$

First-Principles Derivation:

- 1. Start from Jarzynski equality: $\langle e^{-\beta W} \rangle = e^{-\beta \Delta F}$
- 2. Map $W \to \text{coherence work}, \Delta F \to \Delta \mathcal{F}_{\text{info}}$
- 3. Derive drift via entropy gradient flow: $A(\tau) = -\alpha \nabla_{\tau} \mathcal{F}_{info}$

2 Primordial Structure Grounding

2.1 AdS/CFT Boundary Identification

$$\Psi_{\text{primordial}} = \lim_{\Lambda \to \infty} \text{CFT}_{\text{boundary}} \quad \text{(UV-complete state)}$$
 (2)

with τ as boundary functional:

$$\tau = -\log|Z_{\text{CFT}}[\phi_0]|^2 \tag{3}$$

2.2 String Vacuum Selection Criterion

Vacuum stability requires:

$$\tau_{\rm vac} \ge \tau_c \quad \text{where} \quad \tau_{\rm vac} = \int_{\mathcal{M}} G_{ij} dz^i \wedge d\bar{z}^j$$
(4)

 G_{ij} = Khler metric on Calabi-Yau \mathcal{M} . Predicts SUSY breaking at:

$$\tau < \tau_c \implies m_{3/2} \sim \Lambda e^{-\kappa(\tau_c - \tau)}$$
 (5)

3 Make-Break Prediction: Gravitational Signature

$$\Delta G_{\mu\nu} = -\chi \nabla_{\mu} \nabla_{\nu} \tau \quad \text{(ENT-modified Einstein eqn.)}$$
 (6)

Optomechanics Test:

- Setup: Squeezed light states in LIGO-type interferometer
- Prediction:

$$\Delta L/L_0 \propto \chi |\nabla \tau|^2 \tag{7}$$

Roadmap Timeline

Task	Deadline	Metrics
Simulate τ -flow in SYK model	Sep 2025	$\tau_c^{\rm SYK}$ vs analytic
Compute τ for 10^5 KKLT vacua	Dec 2025	Vacuum stability curve
LIGO data collaboration	Mar 2026	χ bound established
IBM Quantum τ_c measurement	Jun 2026	QAOA on 100-qubit device