```
1 import pandas as pd
 1 import warnings
 2 warnings.filterwarnings("ignore")
 1 data = pd.read_csv("/content/ML Case Study - Data.csv")
 1 import pandas as pd
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 %matplotlib inline
 5 import seaborn as sns
 6 pd.options.display.float_format = '{:,.2f}'.format
 7 from IPython.core.display import display, HTML
 8 display(HTML("<style>.container {width : 98% !important; }</style>"))
 9 plt.style.use('ggplot')
10 plt.rcParams['figure.figsize'] = [10,10]
11 pd.set_option('display.max_columns', 500)
12 pd.set_option('display.max_rows', 500)
С→
 1 from scipy import stats
 2 from sklearn import metrics
 1 import yellowbrick as yb
```

Checking Data Types

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 14 columns):

Statistical Summary

6 CCAvg 5000 non-null +loat64

1 data.describe()

₽		ID	Age	Experience	Income	ZIP Code	Family	CCAvg	Education	Мо
	count	5,000.00	5,000.00	5,000.00	5,000.00	5,000.00	5,000.00	5,000.00	5,000.00	5
	mean	2,500.50	45.34	20.10	73.77	93,152.50	2.40	1.94	1.88	
	std	1,443.52	11.46	11.47	46.03	2,121.85	1.15	1.75	0.84	
	min	1.00	23.00	-3.00	8.00	9,307.00	1.00	0.00	1.00	
	25%	1,250.75	35.00	10.00	39.00	91,911.00	1.00	0.70	1.00	
	50%	2,500.50	45.00	20.00	64.00	93,437.00	2.00	1.50	2.00	
	75%	3,750.25	55.00	30.00	98.00	94,608.00	3.00	2.50	3.00	
				40.00				40.00	2 22	

1 data.describe()

₽		ID	Age	Experience	Income	ZIP Code	Family	CCAvg	Education	Мо
	count	5,000.00	5,000.00	5,000.00	5,000.00	5,000.00	5,000.00	5,000.00	5,000.00	5
	mean	2,500.50	45.34	20.10	73.77	93,152.50	2.40	1.94	1.88	
	std	1,443.52	11.46	11.47	46.03	2,121.85	1.15	1.75	0.84	
	min	1.00	23.00	-3.00	8.00	9,307.00	1.00	0.00	1.00	
	25%	1,250.75	35.00	10.00	39.00	91,911.00	1.00	0.70	1.00	
	50%	2,500.50	45.00	20.00	64.00	93,437.00	2.00	1.50	2.00	
	75%	3,750.25	55.00	30.00	98.00	94,608.00	3.00	2.50	3.00	
				40.00			4.00		2 22	

^{1 #} from pandas_profiling import ProfileReport

^{2 #} prof = ProfileReport(data)

^{3 #} prof.to_file("profile.html")

Checking for Null Values

There were none

1 data.isnull().sum() ID 0 Г⇒ Age 0 Experience 0 Income 0 ZIP Code 0 Family 0 **CCAvg** 0 Education 0 Mortgage Personal Loan Securities Account 0 CD Account 0 Online | 0 CreditCard dtype: int64

Checking For Incorrect Values

1 data.describe()

 \Box ID Age Experience Income ZIP Code Family CCAvg Education Mo 5,000.00 5 5,000.00 5,000.00 5,000.00 5,000.00 5,000.00 5,000.00 5,000.00 count 2,500.50 45.34 20.10 73.77 93,152.50 2.40 1.94 1.88 mean std 1,443.52 11.46 11.47 46.03 2,121.85 1.15 1.75 0.84 -3.00 9,307.00 0.00 1.00 min 1.00 23.00 8.00 1.00 25% 1,250.75 35.00 10.00 39.00 91,911.00 1.00 0.70 1.00 50% 2,500.50 45.00 20.00 64.00 93,437.00 2.00 1.50 2.00 75% 3,750.25 55.00 30.00 98.00 94,608.00 3.00 2.50 3.00

▼ Incorrect values are in experience as it connot be negative

1 for i,k in enumerate(data["Experience"]):

2 if k < 0:

Corrected the Experience Values

1 data.describe()

₽		ID	Age	Experience	Income	ZIP Code	Family	CCAvg	Education	Мо
	count	5,000.00	5,000.00	5,000.00	5,000.00	5,000.00	5,000.00	5,000.00	5,000.00	5
	mean	2,500.50	45.34	20.12	73.77	93,152.50	2.40	1.94	1.88	
	std	1,443.52	11.46	11.44	46.03	2,121.85	1.15	1.75	0.84	
	min	1.00	23.00	0.00	8.00	9,307.00	1.00	0.00	1.00	
	25%	1,250.75	35.00	10.00	39.00	91,911.00	1.00	0.70	1.00	
	50%	2,500.50	45.00	20.00	64.00	93,437.00	2.00	1.50	2.00	
	75%	3,750.25	55.00	30.00	98.00	94,608.00	3.00	2.50	3.00	
			~= ~~	10.00				40.00		

Unique value in each column

```
1 for i in list( data.columns):
2  print(i,data[i].nunique())
```

```
ID 5000
```

Number Of People with 0 Mortgage

```
Mortgage 34/
1 (data["Mortgage"] == 0).sum()

→ 3462

Creuicaru 2
```

Number of people 0 credit card spending

```
1 (data["CCAvg"] == 0).sum()

D 106

1 data.drop("ID", axis = 1, inplace= True)

1 data.drop("ZIP Code", axis = 1, inplace= True)
```

Value Counts of diffrent categorical variable

```
1472
    1
    2
         1296
    4
         1222
         1010
    Name: Family, dtype: int64
    1
         2096
    3
         1501
         1403
    Name: Education, dtype: int64
    0
         4520
    1
          480
    Name: Personal Loan, dtype: int64
         4478
          ΕЭЭ
1 pd.pivot_table(data , values="Personal Loan", index = "Family",columns="Education", aggfun
С⇒
     Education
                     2
                         3
        Family
                 9 40 58
         2
                 4 50 52
                40 44 49
                40 48 46
```

Can be seen than that as the family and and education grows the number of people that go for personal loans have increased

Data Preproceesing

```
6 # dic[1] = temp

1 from sklearn.model_selection import train_test_split
2 X_train, X_test,Y_train, Y_test = train_test_split(x,y,test_size = 0.3,random_state=7)
```

First Model Logistic Regression

```
1 from sklearn.linear_model import LogisticRegression
2 from sklearn.metrics import accuracy_score
3 lg_reg = LogisticRegression(max_iter =100000,class_weight=dic)
4 lg_reg.fit(X_train, Y_train)
5 print("test_accuracy",lg_reg.score(X_test,Y_test))
6 print("train_accuracy",lg_reg.score(X_train,Y_train))

L→ test_accuracy 0.944
    train_accuracy 0.9382857142857143

1 y_pred = lg_reg.predict(X_test)

1 from yellowbrick.classifier import ClassificationReport
2 viz = ClassificationReport(lg_reg)
3 viz.fit(X_train, Y_train)
4 viz.score(X_test, Y_test)
5
```


1 lg_reg.get_params()

```
{'C': 1.0,
     'class_weight': {0: 4520, 1: 481},
     'dual': False,
     'fit_intercept': True,
     'intercept_scaling': 1,
     'l1_ratio': None,
     'max iter': 100000,
     'multi_class': 'auto',
     'n jobs': None,
     'penalty': '12',
     'random_state': None,
     'solver': 'lbfgs',
     'tol': 0.0001,
     'verbose': 0,
     'warm start': False}
1 from sklearn.metrics import confusion_matrix
2 confusion_matrix(Y_test,y_pred)
□→ array([[1362, 0],
          [ 84, 54]])
```

→ Performance Metrics

We choose **f1_score** as the evaluation matric due to the class size imbalance. 1 are 481 and 0 are 4520.

Metrics from http://onlineconfusionmatrix.com/

Measure	Value
Sensitivity	0.8365
Specificity	0.9635
Precision	0.6304
Negative Predictive Value	0.9875
False Positive Rate	0.0365
False Discovery Rate	0.3696
False Negative Rate	0.1635
Accuracy	0.9547
F1 Score	0.7190
Matthews Correlation Coefficient	0.7024

Tweaking Hyperparameters

Since the most there is a imbalance in the number of dataset of each class.

```
1 from sklearn.metrics import f1_score
2 Lr_rate = [0.001,0.01,0.1,0.3,0.9,1.0,3,10.0]
3 for i in Lr rate:
     lg_reg = LogisticRegression(C = i,max_iter =1000,class_weight="balanced")
5
     lg_reg.fit(X_train, Y_train)
     Y_pred = lg_reg.predict(X_test)
     print(f1_score(Y_test,Y_pred),"C =" + str(i))
r→ 0.5617977528089888 C =0.001
    0.5794392523364487 C = 0.01
    0.5975903614457831 C = 0.1
    0.5980861244019139 C = 0.3
    0.6024096385542169 C = 0.9
    0.6038647342995169 C =1.0
    0.6038647342995169 C =3
    0.6024096385542169 C =10.0
```

Ways To Improving our model

Since there are 5 categorical variables in the data using **Random Forest** and **descision trees** classifiers make more sense. But we will work our way upto it.

SVM Based Classifier

C→ 0.6948356807511737

→ Decision Tree Classifier

As predicted we get a lot better prediction scores.

```
1 from sklearn.tree import DecisionTreeClassifier
2 Dt = DecisionTreeClassifier()
```

³ Dt.fit(X train.Y train)

```
4 print(Dt.score(X test,Y test))
5 Y pred = Dt.predict(X test)
6 f1_score(Y_test,Y_pred)
   0.983333333333333
   0.9110320284697508
1 Y pred = Dt.predict(X test)
2 from sklearn.metrics import confusion_matrix
3 print(confusion_matrix(Y_test,Y_pred))
4 sns.heatmap(confusion matrix(Y test,Y pred))
```

Гэ [[1347 15] [10 128]] <matplotlib.axes._subplots.AxesSubplot at 0x7f3253c10438>


```
1 from sklearn import tree
2 import graphviz
3 dt_data = tree.export_graphviz(Dt, out_file=None)
4 graph = graphviz.Source(dt data)
5 graph.render("iris")
6 tree.export_graphviz(Dt, out_file=None,
7
                     feature names=x.columns,
8
                      class_names = "Personal Loan",
                                                                              filled=True, rou
9
                        special characters=True)
```

'digraph Tree {\nnode [shape=box, style="filled, rounded", color="black", fontname=helv@ Г⇒ [fontname=helvetica] ;\n0 [label=<Income ≤ 100.5
gini = 0.176
samples = 3500 158, 342]
class = P>, fillcolor="#e88f4e"] ;\n1 [label=<CCAvg ≤ 2.95
gini = { es = 2638
value = [2607, 31]
class = P>, fillcolor="#e5823b"];\n0 -> 1 [labeldi belangle=45, headlabel="True"];\n2 [label=<gini = 0.0
samples = 2472
value = [2 ass = P>, fillcolor="#e58139"];\n1 -> 2;\n3 [label=<CD Account ≤ 0.5
gini = 0.3 = 166<hr/>r/svalue = [135, 31]<hr/>class = P>, fillcolor="#eh9e66"] :\n1 -> 3 :\n4 [lahel=<

```
1 x.columns
```


RandomForestClassifier

C→

```
0.988666666666667 0.9368029739776952 N est = 25 max depth = None
   0.9606666666666667 0.730593607305936 N est = 25 max depth = 3
   0.984 \ 0.9069767441860466 \ N \ est = 25 \ max \ depth = 5
   0.982 \ 0.8957528957528957 \ N \ est = 25 \ max \ depth = 6
   0.98866666666667 0.9368029739776952 N est = 50 max depth = None
   0.972 \ 0.8220338983050847 \ N \ est = 50 \ max \ depth = 4
   0.986 \ 0.9207547169811321 \ N \ est = 75 \ max \ depth = None
   0.9433333333333334 0.5595854922279793 N est = 75 max depth = 3
   0.964 0.7589285714285714 N est = 75 max depth = 4
   0.9846666666666667 0.9118773946360155 N est = 75 max depth = 6
   0.9866666666666667 0.9259259259259259 N est = 100 max depth = None
   0.944 \ 0.5670103092783505 \ N \ est = 100 \ max \ depth = 3
   0.9733333333333334 0.8347107438016529 N est = 100 max depth = 4
   A 09/666666666667 A 01197720/62601EE N ast - 100 may donth - E
1 rbf_clf = RandomForestClassifier(n_estimators=100,max_depth = None)
2 rbf clf.fit(X train, Y train)
3 Y pred = rbf clf.predict(X test)
4 print(rbf_clf.score(X_test, Y_test),f1_score(Y_test,Y_pred))
   0.9906666666666667 0.9477611940298507
```

Best F1 Score 94 % Accuracy 99

Since the accuracy varies a lot so let us boost it to its maximum accuracy.(I'll use XGBoost)

```
1 import pickle
2 pickle.dump(rbf_clf,open("rbf_clf.pkl","wb"))
1 rbf_clf.get_params()
```

```
{'bootstrap': True,
    'ccp_alpha': 0.0,
    'class_weight': None,

1 Y_pred = rbf_clf.predict(X_test)
2 print(confusion_matrix(Y_test,Y_pred))
3 sns.heatmap(confusion_matrix(Y_test,Y_pred))
4 f1_score(Y_test,Y_pred)

[-> [[1359 3]
```


Measure Value

```
1 X train.columns
    Index(['Age', 'Experience', 'Income', 'Family', 'CCAvg', 'Education',
            'Mortgage', 'Securities Account', 'CD Account', 'Online', 'CreditCard'],
           dtype='object')
            Negative Bradistive Value
                                                                         0 0000
 1 # data.groupby(['Loan_Status', 'Gender', 'Property_Area'])['Married'].value_counts()
 2 # from yellowbrick.classifier import ClassificationReport
 3 # viz = ClassificationReport(LR_model)
 4 # viz.fit(XT, YT)
 5 # viz.score(Xt, Yt)
 6 # viz.show()
 7 # import statsmodels.api as sm
 8 # X2 = sm.add constant(XT)
 9 # regressor2 = sm.Logit(YT, X2).fit()
10 # print("p-Values for each column: ")
11 # print()
12 # print(regressor2.pvalues)
 1 from xgboost import XGBClassifier
 2 model = XGBClassifier(max depth=3,n estimators=100)
 3 model.fit(X train, Y train)
    XGBClassifier(base score=0.5, booster='gbtree', colsample bylevel=1,
                   colsample_bynode=1, colsample_bytree=1, gamma=0,
                   learning rate=0.1, max delta step=0, max depth=3,
                   min child weight=1, missing=None, n estimators=100, n jobs=1,
                   nthread=None, objective='binary:logistic', random_state=0,
                   reg alpha=0, reg lambda=1, scale pos weight=1, seed=None,
                   silent=None, subsample=1, verbosity=1)
 1 print(model.score(X_test,Y_test),model.score(X_train,Y_train))
    0.989333333333333 0.9908571428571429
 1 Y pred = model.predict(X test)
 1 print(confusion_matrix(Y_test,Y_pred))
 2 sns.heatmap(confusion matrix(Y test,Y pred))
 3 f1_score(Y_test,Y_pred)
\Box
```