

Sistemi

Università di Verona Imbriani Paolo -VR500437 Professor Francesco Visentin

December 6, 2024

Contents

1	Tra	sformata di Laplace	3							
	1.1	Proprietà	3							
	1.2	Trasformate di funzioni notevoli	6							
	1.3	Applicazione della TdL per i sistemi LTI causali	9							
		1.3.1 Funzione di trasferimento	12							
2	Antitrasformata di Laplace									
	2.1	Divisione polinomiale	13							
	2.2	Fratti semplici	14							
3	Sist	ema a blocchi	17							
	3.1	Controllori	18							
	3.2	Forma canonica - nomenclatura	18							
	3.3	Regole di trasfromazione	19							
4	Dia	grammi di flusso	20							
	4.1	Convertire un Sistema a blocchi in un diagramma di flusso	20							
	4.2	Funzione di Mason	20							
5	Dia	grammi di Bode	22							
	5.1	Motivo delle sinusoidi	22							
	5.2	Rappresentazione del diagramma di Bode	23							
	5.3	Risposta in frequenza								
	5.4	Operazioni tra numeri complessi								
	5.5		26							

1 Trasformata di Laplace

Definition 1.1. v(t) è definito nel tempo. V(s) è la sua trasformata.

$$\mathcal{L}[f(t)](s) = \int_0^{+\infty} v(t)e^{-st}dt$$

Figure 1: $\alpha \geq \max\{\lambda_i\}$

1.1 Proprietà

La trasformata di LaPlace ha svariate utili proprietà che possiamo utilizzare a nostro vantaggio:

Property 1.2. Linearità:

$$a_1v_1(t) + a_2v_2(t) = a_1V_1(s) + a_2V_2(s)$$

Property 1.3. Traslazione nel dom. del tempo:

$$\mathcal{L}[v(t-\tau)](s) = e^{\frac{\tau>0}{-st}V(s)}$$

Property 1.4. Tralaslazione nel dom. dei complessi:

$$\mathcal{L}[e^{\lambda t}v(t)] = V(s-\lambda)$$

Property 1.5. Cambio di scala:

$$\mathcal{L}[v(rt)](s) = \frac{1}{r}V\left(\frac{s}{r}\right)$$

Property 1.6. Proprietà delle derivate: $Se\ v(t)$ ammette TdL (Trasformata di Laplace) ed esiste finito $v(0^-) = \lim_{t\to 0} v(t)$ allora anche la sua derivata i-esima ammette TdL.

$$\mathcal{L}\left[\frac{d^iv(t)}{dt}\right] = S^iV(s) - \sum_{k=0}^{i-1} \frac{d^kv(t)}{d^t}\bigg|_{t=0^-} (S^{i-1-k})$$

Proof. Per la derivata prima:

$$\begin{split} \mathcal{L}\left[\frac{d}{dt}v(t)\right](s) &= \int_0^\infty \frac{d}{dt}v(t)e^{-st}dt = \\ &= v(t)e^{-st}\bigg|_0^{+\infty} + s\int_0^\infty v(t)e^{-st}dt \\ &= \lim_{\varepsilon \to 0} v(\varepsilon)e^{-s\varepsilon} - \lim_{\varepsilon \to 0^-} v(\varepsilon)e^{-s\varepsilon} + sV(s) \\ &= sV(s) - v(0^-) \end{split}$$

Proof. Per la derivata seconda:

$$\mathcal{L}\left[\frac{d^2}{dt^2}v(t)\right](s) = \mathcal{L}\left[\frac{d}{dt}\left(\frac{d}{dt}v(t)\right)\right](s)$$

$$= s\mathcal{L}\left[\frac{d}{dt}v(t)\right](s) - \frac{d}{dt}v(t)\Big|_{t=0^-}$$

$$= \int_0^{+\infty} \left[S\mathcal{L}[v(t)](s) - v(0^-)\right] - \frac{d}{dt}v(t)\Big|_{t=0^-}$$

$$= s^2V(s) - sv(0^-) - \frac{d}{dt}v(t)\Big|_{t=0^-}$$

Property 1.7. Moltiplicazione per funzioni polinomiali: Se v(t) ammette TdL e t è un polinomio allora anche tV(s) ammette TdL.

$$\mathcal{L}[t^{i}v(t)](s) = (-1)^{i} \frac{d^{i}V(s)}{dS^{i}}$$

Proof. Per i = 1:

$$\begin{split} \mathcal{L}[tv(t)](s) &= \int_{0^{-}}^{+\infty} tv(t)e^{-st}dt = -\int_{0^{-}}^{+\infty} v(t)\cdot(te^{-st})dt \\ &= -\int_{0}^{+\infty} v(t)\frac{d}{ds}te^{-st}dt \\ &= -\frac{d}{ds}\int_{0}^{\infty} v(t)e^{-st}dt \\ &= -\frac{d}{ds}V(s) \end{split}$$

Property 1.8. Integrazione nel dom. del tempo: Se v(t) ammette TdL, allora $\Psi(t)=\int_{0^{-}}^{t}v(t)dt$ ammette TdL

$$\mathcal{L}[\Psi(t)](s) = \frac{V(s)}{s}$$

Ascissa di convergenza: $\alpha = max\{0, \alpha_0\}$

Proof.

$$v_1(t) = \int_{0^-}^{\infty} v(t)dt \Longrightarrow \begin{cases} v_1' = v(t) \\ v(0^-) = \int_{0^-}^{0^-} v(t)dt = 0 \end{cases}$$

$$V(s) = \mathcal{L}[v(t)](s) = \mathcal{L}[v'_1(t)](s) = S\mathcal{L}[v'_1(t)](s) - v_1(0^-)$$

$$= \mathcal{L}\left[\int_0^t v(t)dt\right](s)$$

$$= \frac{V(s)}{s}$$

Property 1.9. Integrazione nel dom. dei complessi: Se v(t) ammette TdL e esiste $\lim_{t\to 0^-} \frac{v(t)}{t}$ allora:

$$\mathcal{L}\left[\frac{v(t)}{t}\right](s) = \int_{s}^{\infty} \mathcal{L}[v(t)](\zeta)d\zeta$$

Proof.

$$\begin{split} \int_{s}^{+\infty} \mathcal{L}[v(t)](\zeta) d\zeta &= \int_{s}^{\infty} \int_{0^{-}}^{\infty} v(t) e^{-st} dt d\zeta \\ &= \int_{0^{-}}^{\infty} v(t) \underbrace{\left(\int_{s}^{+\infty} e^{-t\zeta} d\zeta\right)}_{=\frac{e^{-st}}{t}} dt \\ &= \int_{0}^{\infty} \frac{v(t)}{t} e^{-st} dt = \mathcal{L}\left[\frac{v(t)}{t}\right](s) \end{split}$$

Theorem 1.10. Teorema del valore iniziale: Se v(t) ammette TdL ed esiste finito $\lim_{t\to 0^-} v(t)$ allora

$$\lim_{t\to 0^-}v(t)=\lim_{s\to \infty}S\mathcal{L}[v(t)](s)$$

Theorem 1.11. Teorema del valore finale: Se v(t) ammette TdL ed esiste finito $\lim_{t\to\infty} v(t)$ allora

$$\lim_{t\to\infty}v(t)=\lim_{s\to 0^+}S\mathcal{L}[v(t)](s)$$

Property 1.12. Convoluzione nel dom. del tempo: Siano u(t) e v(t) due funzioni causali (nulla per t < 0) che ammettono TdL, allora la loro convoluzione (u*v)(t) ammette TdL.

$$\mathcal{L}[(u*v)(t)](s) = \mathcal{L}[u(t)](s) \cdot \mathcal{L}[v(t)](s)$$

Proof.

$$\mathcal{L}[(u*v)(t)](s) = \int_0^{+\infty} (u*v)(t)e^{-st}dt$$

$$= \int_0^{+\infty} \left(\int_0^t u(\tau)v(t-\tau)d\tau\right)e^{-st}dt$$

$$= \int_0^{+\infty} \int_0^t u(\tau)v(t-\tau)e^{-st}d\tau dt$$

$$= \int_0^{\infty} u(\tau)\left(\int_0^{\infty} v(t-\tau)e^{-st}dt\right)d\tau$$

Sostituiamo x=t- au o t=x+ au o dt=dx

$$\begin{split} &= \int_{0^-}^\infty u(\tau) \left(\int_{0^-}^\infty v(x) e^{-s(x+\tau)} dx \right) d\tau \\ &= \int_{0}^{+\infty} u(\tau) e^{-s\tau} d\tau \cdot \int_{0}^{+\infty} v(x) e^{-sx} dt \\ &= \mathcal{L}[u(t)](s) \cdot \mathcal{L}[v(t)](s) \end{split}$$

1.2 Trasformate di funzioni notevoli

Ora andremo a vedere le trasformate di alcune funzioni notevoli: Trasformata dell'**impulso unitario**:

Unit Impulse $\delta(t)$

$$\mathcal{L}[\delta(t)](s) = \int_0^{+\infty} \delta(t)e^{-st}dt = e^{-s\cdot 0} = 1$$

Ampiezza:

$$\mathcal{L}[A\delta_0(t)](s) = A \underbrace{\mathcal{L}[\delta_0(t)](s)}_{1} = A$$

Ritardato nel tempo:

$$\mathcal{L}[\delta(t-\tau)](s) = e^{-st}\mathcal{L}[\delta_0(t)](s) = e^{-s\tau}$$

$$\mathcal{L}[\delta_{-1}(t)](s) = \int_{0^{-}}^{\infty} \delta_{-1}(t)e^{-st}dt$$
$$= \int_{0^{-}}^{\infty} e^{-st}dt$$
$$= \frac{e^{-st}}{-s} \Big|_{0^{-}}^{\infty} = \frac{1}{s}$$

$$\mathcal{L}[A\delta_{-1}(t)](s) = A\mathcal{L}[\delta_{-1}(t)](s) = \frac{A}{s}$$

$$= \mathcal{L}[\delta_{t-\tau}](s)$$

$$= e^{-s\tau}\mathcal{L}[\delta_{-1}(t)](s)$$

$$= \frac{e^{-s\tau}}{s}$$

Esponenziale complesso causale: $v(t) = e^{\lambda t} \delta_{-1}(t)$

$$\mathcal{L}[e^{\lambda t}\delta_{-1}(t)](s) = \mathcal{L}[\delta_{-1}(t)](s-\lambda)$$
$$= \frac{1}{s-\lambda}$$

$$\mathcal{L}[Ae^{\lambda t}\delta_{-1}(t)](s) = \frac{A}{s-\lambda}$$

$$\mathcal{L}[e^{\lambda(t-\tau)}\delta_{-1}(t-\tau)](s) = \frac{e^{-(s-\lambda)\tau}}{s-\lambda}$$

Esponenziale complesso causale moltiplicato per una funzione polinomiale:

$$v(t) = \frac{t^l}{l!} e^{\lambda t} \delta_{-1}(t)$$

$$\mathcal{L}\left[\frac{t^{l}}{l!}e^{\lambda t}\delta_{-1}(t)\right](s) = \frac{1}{l!}\mathcal{L}[t^{l}e^{\lambda t}\delta_{-1}(t)](s)$$

$$\stackrel{1.3}{=} \frac{(-1)^{l}}{l!}\frac{d^{l}}{dS^{l}}\mathcal{L}[e^{\lambda t}\delta_{-1}(t)](s)$$

$$= \frac{(-1)^{l}}{l!}\frac{d^{l}}{dS^{l}}\frac{1}{s-\lambda}$$

$$= \frac{(-1)^{l}}{l!}\frac{l!(-1)^{l}}{(s-\lambda)^{l+1}}$$

$$= \frac{1}{(s-\lambda)^{l+1}}$$

Esempio 1

$$Con l = 1$$

$$\mathcal{L}[te^{e^{\lambda t}}\delta_{-1}(t)](s) = \frac{1}{(s-\lambda)^2}$$

Con
$$l=2$$

$$\mathcal{L}\left[\frac{t^2}{2!}e^{\lambda t}\delta_{-1}(t)\right](s) = \frac{1}{(s-\lambda)^3}$$

Funzione coseno:

$$\mathcal{L}[\cos(wt)](s) \stackrel{Eulero}{=} \mathcal{L}\left[\frac{e^{jwt} - e^{-jwt}}{2}\right]$$

$$= \frac{1}{2}\left[\mathcal{L}[e^{jwt}](s) - \mathcal{L}[e^{-jwt}](s)\right]$$

$$= \frac{1}{2}\left[\frac{1}{s - jw} + \frac{1}{s + jw}\right]$$

$$= \frac{s}{s^2 + w^2}$$

Funzione seno:

$$\mathcal{L}[sin(wt)](s) \stackrel{Eulero}{=} \mathcal{L}\left[\frac{e^{jwt} - e^{-jwt}}{2j}\right]$$

$$= \frac{1}{2j} \left[\mathcal{L}[e^{jwt}](s) - \mathcal{L}[e^{-jwt}](s)\right]$$

$$= \frac{1}{2j} \left[\frac{1}{s - jw} - \frac{1}{s + jw}\right]$$

$$= \frac{1}{2j} \left[\frac{\cancel{s} + jw - \cancel{s} + jw}{s^2 + w^2}\right]$$

$$= \frac{w}{s^2 + w^2}$$

1.3 Applicazione della TdL per i sistemi LTI causali

$$\sum_{i=0}^{n} a_i \frac{d^i v(t)}{dt^i} = \sum_{j=0}^{m} b_j \frac{d^j u(t)}{dt^j}$$

$$n \geq m$$
e $u(t) = u(t) \cdot \delta_{-1}(t) (u(t) = 0, t < 0)$

E consideriamo le n-1 condizioni iniziali:

$$v(0^-), \frac{dv(0)}{dt}; \frac{d^2v(0)}{dt^2}; \dots \frac{d^{n-1}v(0)}{dt^{n-1}}$$

Se u(t) ammette TdL allora anche v(t) ammette TdL e:

$$\mathcal{L}\left[\sum_{i=0}^{n} a_i \frac{d^i v(t)}{dt^i}\right](s) = \mathcal{L}\left[\sum_{i=0}^{m} b_i \frac{d^i u(t)}{dt^i}\right](s)$$

$$\sum_{i=0}^{n} a_{i} \mathcal{L}\left[\frac{d^{i}v(t)}{dt^{i}}\right](s) = \sum_{i=0}^{m} b_{i} \mathcal{L}\left[\frac{d^{i}u(t)}{dt^{i}}\right](s)$$

Applicando n + m volte la regole della derivata:

$$a_n \left[S^n V(s) - \sum_{k=0}^{n-1} \frac{d^k v(t)}{dt^k} \Big|_{t=0^-} (S^{n-1-k}) \right] +$$

$$+ a_{n-1} \left[S^{n-1} V(s) - \sum_{k=0}^{n-2} \frac{d^k v(t)}{dt^k} \Big|_{t=0^-} (S^{n-2-k}) \right] +$$

$$+ \dots + a_0 V(s)$$

$$= b_m S^m U(s) + b_{m-1} S^{m-1} U(s) + \dots + b_0 U(s)$$

Imponiamo le C.I.: $u(t)\Big|_{t=0} = 0$

Espandiamo e raccogliamo:

$$\underbrace{\left[a_{n}S^{n} + a_{n-1}S^{n-1} + \dots + a_{0}\right]V(s)}_{d(s)} + \underbrace{\left[a_{n}V(0^{-})S^{n-1}\left(a_{n-1}v(0^{-}) + a_{n}\frac{dv(t)}{dt}\Big|_{t=0^{-}}\right)S^{n-2} - \dots - \left(\sum_{k=0}^{n-1}a_{k+1}\frac{d^{k}v(t)}{dt^{k}}\Big|_{t=0^{-}}\right)\right]}_{p(s)}$$

$$=\underbrace{\left[b_{m}S^{m} + b_{m-1}S^{m-1} + \dots + b_{0}\right]}_{p(s)}U(s)$$

$$\implies d(s) \cdot V(s) - p(s) = n(s) \cdot U(s)$$

$$V(s) = \frac{n(s)}{d(s)} \cdot U(s) + \frac{P(s)}{d(s)}$$

- n(s) è un polinonio di grado m che dipende solo dai coefficenti delle derivate associate all'ingresso. Polinimonio caratteristico di $\mathbf{u}(\mathbf{t})$
- d(s) è un polinomio di grado n che dipende solo dai coefficenti delle derivate associate di uscita. Polinimonio caratteristico di v(t)
- \bullet p(s):

$$\sum_{k=0}^{n-1} S^k \left(\sum_{j=k+1}^n a_{j+1} \frac{d^{n-j}}{dt^{n-j}} \bigg|_{t=0^-} \right)$$

Polinomio di grado n-1 che dipende solo dalle C.I di $\mathbf{v}(\mathbf{t})$

• $\frac{P(s)}{d(S)}$ è una funzione razionale che dipende solo dalle C.I ì del sistema e dai coefficenti del polinomio caratteristico di v(t)

$$V_l(s) = \frac{P(s)}{d(s)}$$

• $\frac{n(s)}{d(s)}U(s)$ è una funzione razionale che dipende dai coefficenti del polinomio caratteristico di u(t), dei coefficenti del polinomio caratteristico di v(t) moltiplicati per tali u(t):

$$V_f(s) = \frac{n(s)}{d(s)}U(s)$$

Esempio

Dato un sistema LTI:

$$\frac{d^{3}v(t)}{dt^{3}} + \frac{d^{2}v(t)}{dt^{2}} = \frac{du(t)}{dt}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

H(s) è definita come TdL delle risposte impulsive h(t). È una funzione razionale con grado del numeratore generalemnte minore o uguale del denominatore.

$$h(t) = d_0 \delta_0(t) + \dots \left(\sum_{i=1}^r \sum_{l=0}^{\mu_i - 1} d_{i,l} \frac{t^l}{l!} e^{\lambda_i t} \right) \delta_{-1}(t)$$

$$\stackrel{\mathcal{L}}{=} d_0 + \sum_{i=1}^r \sum_{l=0}^{\mu_i - 1} \frac{d_{i,l}}{(s - \lambda)^{l+1}} = H(s)$$

1.3.1 Funzione di trasferimento

$$\begin{split} H(s) &= \frac{\sum_{j=0}^{m} b_{j} s^{j}}{\sum_{i=0}^{n} a_{i} s^{i}} \\ &= \frac{b_{m} (S - \beta)^{\zeta_{1}} (S - \beta_{2})^{\zeta_{2}} \dots (S - \beta_{q})^{\zeta_{q}}}{a_{n} (S - \alpha)^{\mu_{1}} (S - \alpha_{2})^{\mu_{2}} \dots (S - \alpha_{n})^{\mu_{r}}} \end{split}$$

Rapporto tra i polinomi car. di $\mathbf{u}(t)$ e $\mathbf{v}(t)$

Dove α_i e β_j sono rispettivamente radici del denominatore e del numeratore.

Possiamo anche riscriverla come:

$$H(s) = k \frac{\prod_{i=1}^{m} (S - Z_i)}{\prod_{i=1}^{n} (S - P_i)} \quad \text{dove} \quad k = \frac{b_m}{a_n}$$

Dove $(S-Z_i)$ e $(S-P_i)$ sono rispettivamente zeri e poli della funzione razionale.

Definition 1.13. Definiamo come zero di una funzione razionale H(s) un qualiasi numero $\beta \in \mathbb{C}$ t.c. $H(\beta) = 0$.

Definition 1.14. Definiamo come polo di una funzione razionale H(s) un qualunque numero $\alpha \in \mathbb{C}$ t.c. $H(\alpha) = \infty$.

Dato H(s) in forma ridotta (ho eliminato le radici in comune): Siano $\lambda_1, \dots \lambda_r$ con $r \leq n$ i suoi poli dopo la semplificazione se $Re(\lambda_i) < 0$ per $i = 1, \dots r$ allora il sistema è BIBO stabile.

Lemma 1.15. Un sistema è BIBO stabile se tutti i suoi poli giaciono nel semipiano complesso negativo.

Per stabilizzare un sistema (BIBO stabilizzato) devo togliere gli zeri λ_i con $Re(\lambda_i) > 0$, dividendoli per il loro corrispettivo polo.

Esempio 1

$$v'(t) - 3v(t) = u''(t) - 5u'(t) + 4u(t)$$

Calcoliamoci il polinomio caratteristico:

$$s-3=s^2-5s+4$$

$$H(s)=\frac{n(s)}{d(s)}=\frac{\text{Pol. Car degli ingressi}}{\text{Pol. Car delle uscite}}=\frac{s^2-5s+4}{s-3}$$

$$H(s)=\frac{s^2-5s+4}{s-3}=\frac{(s-4)(s-1)}{s-3}$$

Poiché $\lambda_1 = 3$ non è asintonticamente stabile poiché la sua parte reale è maggiore di 0.

Non è neanche BIBO stabile perché tutte le radici del denominatore (poli di H(s)) hanno parte reale maggiore di 0.

Esempio 2

$$v''(t) + 3v'(t) + 2v(t) = u''(t) - 4u'(t) + 3u(t)$$
$$H(s) = \frac{s^2 - 4s + 3}{s^2 + 3s + 2} = \frac{(s - 3)(s - 1)}{(s + 1)(s + 2)}$$

Poiché $\lambda_1 = -1$ e $\lambda_2 = -2$ sono minori di 0 allora il sistema è asintonticamente stabile. Ricordiamo che se un sistema è asintonticamente stabile allora è anche BIBO stabile.

Esempio 3

$$v'''(t) + 7v''(t) - 2v'(t) + 6v(t) = u''(t) + 3u(t) - 4u(t)$$

$$H(s) = \frac{s^2 + 3s - 4}{s^3 + 7s^2 - 2s + 6} = \underbrace{\frac{(s+4)(s-1)}{(s+3)(s+2)(s-1)}}_{\lambda_1 = -3} \underbrace{\frac{(s+3)(s+2)(s-1)}{(s+2)(s-1)}}_{\lambda_2 = -2}$$

Non è asintonticamente stabile. Tuttavia è BIBO stabile poiché tutti i poli di H(s) hanno parte reale minore di 0.

2 Antitrasformata di Laplace

$$V(s) = \frac{n(s)}{d(s)} \Longrightarrow \left\{ \underbrace{\frac{deg[n(s)] \ge deg[d(s)]}{\text{Sistema proprio}}}_{\text{Sistema strett. proprio}} \Longrightarrow A \right.$$

 $A\to Divisione polinomiale \to Fratti semplici \to Antitrasformata <math display="block">B\to Fratti \ complessi \to Antitrasformata$

2.1 Divisione polinomiale

$$V(S) = \frac{r(s)}{d(s)} + k \quad \text{dove} \quad deg[r(s)] < deg[d(s)], k \in \mathbb{C}$$
$$\mathcal{L}[K\delta(t)] = K \stackrel{\mathcal{L}^{-1}}{\Longrightarrow} K\delta_0(t)$$

Esempio

$$V(s) = \frac{2s^2 + 4s - 3}{s^2 - s - 1} \quad \text{dove} \quad m = 2, n = 2$$

$$\frac{\text{Quotient} \mid 2}{\text{Divisor} \mid s^2 - s - 1}$$

$$\text{Step 1:} \quad 2s^2 + 4s - 3$$

$$\text{Subtract:} \quad -(2s^2 - 2s - 2)$$

$$\text{Remainder:} \quad |6s - 1|$$

$$V(s) = \frac{6s - 1}{s^2 - s + 1} + 2$$

2.2 Fratti semplici

$$\frac{r(s)}{d(s)} = d_0 + \sum_{i=1}^{r} \sum_{l=0}^{\mu_i - 1} \frac{d_{i,l}}{(s - \lambda)^{l+1}}$$

Esempio 1

$$V(s) = \frac{3s^2 - 1}{(s+1)^2(s-2)(s+5)}$$
$$V(s) = \frac{A}{s-2} + \frac{B}{s+1} + \frac{C}{(s+1)^2} + \frac{D}{(s+5)}$$

A, B, C, D sono i $c_{i,l}$

Esempio 2

$$\frac{s-20}{(s+4)(s-2)} = \frac{c_{1,0}}{(s+4)} + \frac{c_{2,0}}{s-2} = \frac{A}{s+4} + \frac{B}{s-2}$$

1. Metodo:

$$\frac{A(s-2) + B(s+4)}{(s+4)(s-2)} = \frac{AS - 2A + BS + 4b}{(s+4)(s+2)}$$

$$\begin{cases} A + B = 1\\ -2A + 4B = -20 \end{cases} \rightarrow \begin{cases} A = 4\\ B = -3 \end{cases}$$

$$\frac{S - 20}{(s+4)(s-2)} = \frac{4}{s+4} - \frac{3}{s-2}$$

2. Metodo:

$$c_{i,l} = \lim_{s \to \alpha_i} \frac{d^{\mu_i - l - 1} \left((s - \alpha_i)^{\mu_i} \frac{r(s)}{d(s)} \right)}{ds^{\mu_i - l - 1}}$$

$$c_1 = A = \lim_{s \to -4} \frac{d^{1 - 0 - 1} \left((s + 4)^{1} \frac{s - 20}{(s + 4)(s - 2)} \right)}{ds^{0}} = \frac{-24}{-6} = 4$$

$$c_2 = B = \lim_{s \to 2} \frac{d^{1 - 0 - 1} \left((s - 2)^{1} \frac{s - 20}{(s + 4)(s - 2)} \right)}{ds^{0}} = \frac{-18}{6} = -3$$

$$\frac{S - 20}{(s + 4)(s - 2)} = \frac{4}{s + 4} - \frac{3}{s - 2}$$

Ora si applica l'antitrasformata:

$$V(s) = k + \sum_{i=1}^{r} \sum_{l=0}^{\mu_{i}-1} \frac{c_{i,l}}{(s - \lambda_{i})^{l+1}}$$

$$\stackrel{\mathcal{L}^{-1}}{=} \mathcal{L}^{-1}[k](t) + \sum_{i=0}^{r} \sum_{l=0}^{\mu_{i}-1} \mathcal{L}^{-1}\left[\frac{c_{i,l}}{(s - \lambda_{i})^{l+1}}\right](t)$$

$$= k\delta_{0}(t) + \left[\sum_{i=0}^{r} \sum_{l=0}^{\mu_{i}-1} c_{i,l} \frac{t^{l}}{l!} e^{\lambda_{i}t} \delta_{-1}(t)\right]$$

Esempio completo

$$v''(t) - v'(t) - 2v(t) = u''(t) + 2u'(t) + u(t)$$

$$C.I = \begin{cases} v(0) = 1 \\ v'(0) = 0 \end{cases}$$

$$u(t) = e^{3t} \delta_{-1}(t)$$

Quello che ci viene chiesto è

- 1. Stabilità
- 2. Risposta libera (nel tempo e in frequenza)
- 3. Risposta impulsiva
- 4. Risposta forzata
- 5. Risposta totale

Partiamo con il primo punto:

1. Polinomio caratteristico: $s^2-s-2=0 \to \lambda_1=2, \lambda_2=-1$ e $\mu_i=1$ Non è asintonticamente stabile perché $\lambda_1>0$

$$V(s) = \underbrace{\frac{p(s)}{d(s)}}_{V_l(s)} + \underbrace{\underbrace{\frac{h(s)}{h(s)}}_{V_f(s)} \cdot U(s)}_{V_f(s)}$$

Per garantire stabilità BIBO i poli di H(s) devono avere parte reale minore di 0.

Calcoliamo la funzione di trasferimento:

$$H(s) = \frac{s^2 + 2s + 1}{s^2 - s - 2} = \frac{(s+1)^{\frac{1}{2}}}{(s-2)(s+1)} = \frac{s+1}{s-2}$$

Non è BIBO stabile perché λ_1 (che è un polo della funzione di trasferimento) è maggiore di 0.

2a. Risposta libera nel tempo:

$$v_l(t) = \sum_{i=1}^r \sum_{l=0}^{\mu_i - 1} c_{i,l} \frac{t^l}{l!} e^{\lambda_i t}$$

$$= c_1 e^{2t} + c_2 e^{-t}$$

$$\begin{cases} v_l(t) = c_1 e^{2t} + c_2 e^{-t} & \underset{l=0}{\overset{t=0}{\longrightarrow}} \begin{cases} c_1 + c_2 = 1 \\ 2c_1 - c_2 = 0 \end{cases} \rightarrow \begin{cases} c_1 = 0 \\ c_2 = 1 \end{cases}$$

$$v_l(t) = e^{-t}$$

2b . Risposta libera in frequenza: Facciamo la trasformata di Laplace del sistema:

$$\mathcal{L}[v''(t) - v'(t) - 2v(t)] = \mathcal{L}[u''(t) + 2u'(t) + u(t)]$$

$$\underbrace{\mathcal{L}[v''(t)]}_{\text{$(s^2V(s) - s + 1)$}} \underbrace{\mathcal{L}[v'(t)]}_{\text{$(s^2V(s) + 1)$}} \underbrace{\mathcal{L}[v'(t)]}_{\text{$(s^2V(s) + 2sU(s)$}} \underbrace{\mathcal{L}[u''(t)]}_{\text{$(s^2V(s) + 2sU(s)$}} \underbrace{\mathcal{L}[u'(t)]}_{\text{$(s^2V(s) + 2sU(s)$}} \underbrace{\mathcal{L}[u'(t)]}_{\text{$(s^2V$$

Vediamo ora cosa è U(s):

$$u(t) = \underbrace{e^{-3t}\delta_{-1}(t)}_{\lambda = -3, A = 1} \xrightarrow{\mathcal{L}} U(s) = \frac{1}{s+3}$$

$$V(s) = \underbrace{\frac{1}{s+1}}_{v_l(s)} + \underbrace{\frac{s+1}{s+2} \cdot \frac{1}{s+3}}_{H(s)}$$

Quindi la risposta libera in Laplace è:

$$v_l(s) = \underbrace{\frac{1}{s+1}}_{\lambda=1, A=1} \xrightarrow{\mathcal{L}^{-1}} e^{-t} \delta_{-1}(t)$$

L'unica differenza che ci sta tra risposta libera e in frequenza e che quella in frequenza, quando la andiamo a trovare dobbiamo moltiplicarla per la funzione causale, ovvero il gradino.

3. Risposta impulsiva:

$$H(s) = \frac{s+1}{s-2}$$

Facciamo la divisione tra polinomi dove otteniamo:

$$H(s) = 1 + \frac{3}{s-2}$$

Applichiamo l'antitrasformata: h(t) = $\mathcal{L}^{-1}[H(s)] = \delta_0(t) + 3e^{2t}\delta_{-1}(t)$

4. Risposta forzata: Proviamo entrambi i metodi, partiamo con il primo (i fratti semplici):

$$V_f(s) = \frac{s+1}{(s-2)(s+3)} = \frac{A}{s-2} + \frac{B}{s+3}$$
$$\frac{As+3A+Bs-2B}{(s-2)(s+3)} = \frac{(A+B)s+(3A-2B)}{(s-2)(s+3)}$$
$$\begin{cases} A+B=1\\ 3A-2B=1 \end{cases} \rightarrow \begin{cases} A=1-\frac{2}{5}=\frac{3}{5}\\ B=\frac{2}{5} \end{cases}$$
$$\frac{3}{5}\frac{1}{s-2} + \frac{2}{5}\frac{1}{s+3} = \left(\frac{3}{5}e^{2t} + \frac{2}{5}e^{-3t}\right)\delta_{-1}(t)$$

Okay ora proviamo con il metodo dei limiti:

$$c_{i} = \lim_{s \to \lambda_{i}} \frac{d^{\mu - l - 1} n(s)}{ds^{s - l - 1} d(s)} (s - \lambda)^{\mu}$$

$$A = \lim_{s \to +2} \frac{d^{1 - 0 - 1}}{ds^{1 - 0 - 1}} \frac{s + 1}{(s - 2)(s + 3)} (s - 2) = \frac{3}{5}$$

$$B = \lim_{s \to -3} \frac{d^{1 - 0 - 1}}{ds^{1 - 0 - 1}} \frac{s + 1}{(s - 2)(s + 3)} (s + 3) = \frac{2}{5}$$

E come si vede, si ottiene il risultato medesimo con diverso metodo.

3 Sistema a blocchi

In generale ci sono tre modi per mettere a sistema un sistema a blocchi:

• Sistema in serie (o cascata) dove l'output di un sistema A diventa l'input di un sistema B

$$x_2 = y_1$$

• Sistema parallelo dove un input x viene separato in x_1 e x_2 , entrano all'interno rispettivamente dei sistemi A e B e poi vengono sommati in una singola uscita y.

$$x = x_1 = x_2$$
$$y = y_1 + y_2$$

• Sistema di retroazione dove l'uscita di un sistema A diventa l'input di un sistema B e viceversa.

$$x = x_1 + y_2$$

$$y = y_1 = x_2$$

I blocchi avranno sempre un singolo input e un singolo output (poiché sistemi SISO (Single Input Single Output)), per quanto riguarda i nodi sommatori, possono entrare infiniti numeri di archi e generalmente ne esce solo una. Esistono 2 tipi di controlli:

- 1. Il controllo ad anello aperto è un sistema in cui l'uscita non influenza l'input. È un sistema a ciclo aperto, ovvero non c'è feedback.
- 2. Il controllo ad anello chiuso è un sistema in cui l'uscita influenza l'input. È un sistema a ciclo chiuso, ovvero c'è feedback. Dove il sistema che ritorna il feedback del sistema A si chiama funzione di trasferimento del sistema.

I sistemi che ci interessano di più sono quelli a ciclo chiuso, in quanto sono quelli che si avvicinano di più alla realtà.

Guardando la nomenclatura dei sistemi a blocchi, si ha che:

- \bullet Sistema di riferimento r è l'input del sistema
- $\bullet\,$ Elemento di feedforward F è un blocco che manda un segnale di controllo al processo
- ullet Processo P è il sistema che trasforma l'input in un output (che però può essere disturbato)
- \bullet Elemento di feedback B è un blocco che manda un segnale di feedback b al processo per correggere l'errore
- Segnale di attuazione che è in genere una sorta di errore e=r-b (in genere viene chiamato chiamato feedback negativo quando e=r-b mentre è feedback positivo quando e=r+b)

3.1 Controllori

I controllori sono di tre tipi con relative regole di controllo:

- P è il controllore proporzionale e la sua regola di controllo è $u(t) = K_p e(t)$
- I è il controllore integrale e la sua regola di controllo è $u(t) = K_i \int e(\tau) d\tau$
- D è il controllore derivativo e la sua regola di controllo è $u(t) = K_d \frac{de(t)}{dt}$

Possiamo anche combinarli insieme, esistono tipi "compositi" di controllori come PID, PI, PD, I, P, D.

$$\mu_{pid} = K_p e(t) + K_d \frac{de(t)}{dt} + K_i \int e(t)dt$$

Quando abbiamo un sistema a blocchi complesso e ridurlo a un sistema a blocchi più semplice, applicando diverse regole di riduzione:

3.2 Forma canonica - nomenclatura

La Forma canonica è una forma standard di rappresentazione di un sistema a blocchi.

- 1. G: Funzione di trasferimento diretta
- 2. H: Funzione di trasferimento di feedback
- 3. GH: Funzione di trasferimento del loop (o anello)

4. $\frac{C}{R}=$ Funzione di trasferimento dell'anello chiuso

$$\frac{C}{R} = \frac{G}{1 \pm GH} = \frac{\text{eq. car. dell'ingresso}}{\text{eq. car. dell'uscita}}$$

- 5. $\frac{E}{R} \colon$ rapporto del segnale di attuazione = $\frac{1}{1 \pm GH}$
- 6. $\frac{B}{R}$: rapporto di feedback = $\frac{GH}{1+GH}$

L'obiettivo è di compattare il sistema fino ad arrivere ad un sistema a blocchi uguale alla forma canonica. Prendiamo per esempio il sistema massa molla smorzatore:

$$ma = \sum F$$

$$mx'' = F_{ext} - kx - bx'$$

$$F_{ext} = kx + bx' + mx''$$

$$F_{ext}(s) = kX(s) + bsX(s) + ms^2X(s)$$

$$X(s) = \frac{F_{ext}(s)}{ms^2 + bs + k}$$

3.3 Regole di trasfromazione

- 1. Combinazione di blocchi in serie: dati due blocchi A e B in serie, riducendolo otteniamo un singolo blocco che è il prodotto di AB.
- 2. Combinazione di blocchi in parallelo: dati due blocchi A e B in parallelo, riducendolo otteniamo un singolo blocco che è (in base al sommatore) $A \pm B$.
- 3. Rimozione di blocchi in parallelo: dati due blocchi A e B in parallelo, riducendolo otteniamo un singolo blocco che è il prodotto di AB diviso la somma di AB.
- 4. Rimozione di anello feedback: dati due blocchi A e B in feedback, riducendolo otteniamo un singolo blocco che diventa $\frac{A}{1\pm AB}$
- 5. Rimozione del loop: dati due blocchi A e B in loop, possiamo spostare il blocco retroattivo all'inizio del blocco iniziale
- Riorganizzazione degli input: posso organizzare gli input del sistema a blocchi come voglio, l'importante è che alla fine si arrivi ad un sistema a blocchi canonico.
- 7. **Spostamento dei nodi di somma prima di un blocco**: posso spostare i nodi di somma prima di un blocco
- 8. Spostamento dei nodi di somma dopo un blocco: posso spostare i nodi di somma dopo un blocco
- 9. **Spostamento dei nodi prima di un blocco**: posso spostare i nodi prima di un blocco
- 10. **Spostamento dei nodi dopo un blocco**: posso spostare i nodi dopo un blocco

4 Diagrammi di flusso

I diagrammi di flusso sono una rappresentazione grafica di un sistema a blocchi. Guardiamo ora le diverse componenti di un diagramma di flusso:

- Percorso in avanti: Un cammino che unisce un nodo di input ad un nodo di output
- Percorso ad anello: Un cammino che inizia e finisce nello stesso nodo e senza passare più volte in altri nodi intermedi
- \bullet \to Self loop: Un cammino che inizia e finisce nello stesso nodo e non tocca altri nodi intermedi
- Guadagno: prodotto di tutti i pesi degli archi lungo un percorso

4.1 Convertire un Sistema a blocchi in un diagramma di flusso

Per convertire un sistema a blocchi in un diagramma flussi (così che sia più facile da gestire) dobbiamo convertire gli archi e i nodi nel seguente modo:

- 1. Indiviiamo i nodi di input e output
- 2. Per ogni nodo somma si aggiunge un nodo
- 3. Per ogni nodo dello schema a blocchi si aggiunge un nodo al diagramma di flusso
- 4. Unisco i nodi con gli archi il cui peso è la funzione dentro al blocco. Se tra un nodo e l'altro non ci sono blocchi, il suo peso vale 1.

4.2 Funzione di Mason

Definition 4.1. La funzione di Mason è una funzione che permette di calcolare la funzione di trasferimento di un sistema a blocchi.

$$T = \sum_{i} \frac{P_i \Delta_i}{\Delta}$$

dove

- P_i è il guadagno del percorso i
- Δ_i è il determinante del percorso i

 $\bullet \ \Delta$ è il determinante del sistema

$$\begin{split} &\Delta = 1 - (-1)^{k+1} \sum_k \sum_j P_{jk} \\ &= 1 - \left(\sum_j P_{j1} + \sum_j P_{j2} + \ldots \right) \\ &= 1 - \left(\begin{array}{c} \text{Somma dei guadagni di tutti gli} \\ \text{alberi} \end{array} \right) + \left(\begin{array}{c} \text{Somma dei guadagni dei prodotti degli anelli che non toccano a due} \end{array} \right) \\ &+ \left(\begin{array}{c} \text{somma dei guadagni dei prodotti} \\ \text{degli anelli che non si toccano 3} \right) + \ldots \end{split}$$

Esempio 1

Prendiamo come esempio il diagramma di flusso visto a lezione (guarda gli punt) e calcoliamo la funzione di Mason. Troviamo i guadagni per ogni percorso:

$$P_1 = (x_1, x_2, x_3, x_4) = 1 \cdot G \cdot 1 = G$$

 $P_{1,1} = (x_2, x_3) = -GH$

L'ordine in cui vengono chiamati i percorsi è arbitrario. Sono stati scelti semplicemente nell'ordine in cui li abbiamo notati. I guadagni che hanno 1 non vengono considerati. Calcoliamo ora il determinante del sistema:

$$\Delta = 1 - (P_{1,1}) = 1 + GH$$

Annulo tutti gli archi che toccano il percorso i-esimo:

$$\Delta_1 = 1 - P_{1,1} = 1 - 0 = 1$$

$$T = \frac{P_1 \Delta_1}{\Delta} = \frac{G \cdot 1}{1 + GH} = \frac{G}{1 + GH}$$

Esempio 2

TODO...

	Anelli	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
A_1^1	-AB			1	1						
A_2^1	-CD							1	1	1	
A_3^1	FCE	1	1				1	1	1	1	
A_4^1	FGE	1	1				1	1	1	1	1
A_5^1	ACE	1	1	1	1	1	1	1	1	1	1
A_6^1	AGE	1	1	1	1	1	1		1	1	1

5 Diagrammi di Bode

I diagrammi di Bode sono un modo per rappresentare graficamente la risposta in frequenza di un sistema.

Esempio

$$u(t) = \sin\left(\frac{1}{2}t\right)$$
$$= \frac{1}{2}\frac{rad}{s}\alpha Hz$$

$$v(t) = 2u(t) + \int u(t)dt$$

$$= 2\sin\left(\frac{1}{2}t\right) + \int \sin\left(\frac{1}{2}t\right)dt$$

$$= 2\sin\left(\frac{1}{2}t\right) - 2\cos\left(\frac{1}{2}t\right)$$

$$= \sqrt{2^2 + 2^2}\sin\left(\frac{1}{2}t + a\tan\left(\frac{-2}{2}\right)\right)$$

$$= 2.83\sin\left(\frac{1}{2}t - 0.785\right)$$

$$= A\sin(\omega t + \phi)$$

Questo diagramma ci aiuta a capire come si comporta un sistema descritto da segnali **sinusoidali**.

5.1 Motivo delle sinusoidi

I sistemi descritti da segnali sinusoidali sono utili perchè vedremo che qualsiasi segnale può essere rappresentato come una somma di sinusoidi.

Un sistema LTI causale permette le seguenti operazioni:

- $u(t) \cdot a$
- $\bullet \quad \frac{du(t)}{t}$
- $\int u(t) dt$
- $u_1(t) + u_2(t)$

L'output del sistema è un onda scalata rispetto all'ampiezza o ritardata rispetto al tempo:

Esempio

Prendiamo ad esempio il seguente sistema:

$$u(t) = \sin(\frac{1}{2}t)$$
$$\omega = \frac{1}{2} \frac{rad}{s} \alpha Hz$$

Calcoliamo l'ingresso:

$$v(t) = 2 \cdot u(t) + \int u(t) dt$$
$$= 2\sin(\frac{1}{2}t) + \int \sin(\frac{1}{2}t) dt$$
$$= 2\sin(\frac{1}{2}t) - 2\cos(\frac{1}{2}t)$$

Utilizziamo un'identità trigonometrica, cioè:

$$asin(x) + bcos(x) =$$

$$= \sqrt{a^2 + b^2} \cdot \sin(x + \rho)$$

dove: $\rho = atan\left(\frac{b}{a}\right)$ $a \ge 0$

$$v(t) = \underbrace{\frac{a}{2} \sin(\frac{1}{2}t)}_{b} \underbrace{-2 \cos(\frac{1}{2}t)}_{b}$$

$$= \sqrt{2^2 + (-2)^2} \cdot \sin(\frac{1}{2}t + atan(\frac{-2}{2}))$$

$$= \sqrt{8} \cdot \sin(\frac{1}{2}t + atan(-1))$$

$$= 2.83 \cdot \sin(\frac{1}{2}t - 0.785)$$

$$= A \cdot \sin(\omega + \phi)$$

5.2 Rappresentazione del diagramma di Bode

Il diagramma di bode permette di rappresentare il comportamento di un sistema LTI formato da sinusoidi, di seguito guardiamo un diagramma semi-logaritmico (cioè con un asse lineare e uno logaritmico) che rappresenta l'ampiezza e la fase di un sistema LTI:

Osservazione:

Il decibel dB è un unità di misura inventata nel 1920 per misurare quanto si disperde il segnale acustico su una transmission unit ($1TU = 10 \log_{10} \Delta_{\text{Potenza}}$). Quindi un decibel è il minimo di potenza che un orecchio umano può percepire.

$$\begin{aligned} & \text{Potenza} = \text{Ampiezza}^2 \\ & 1bel = 1TU = 10\log_{10}A^2 = 20\log_{10}A \end{aligned}$$

$$1dB = \frac{1}{10}bel$$

Esempio

$$u(t) = \sin(\frac{1}{2}t) \quad \omega = \frac{1}{2}$$
$$v(t) = 2.83 \cdot \sin\left(\frac{1}{2}t - 0.785\right)$$

Studiamo il sistema in frequenza:

$$V(s)=\left(2+\frac{1}{s}\right)U(s)$$

$$\frac{V(s)}{U(s)}=2+\frac{1}{s}=\frac{2s+1}{s}\quad \text{Funzione di trasferimento del sistema}$$

s è un numero complesso:

$$s = \sigma + j\omega$$

Con la risposta in frequenza la s diventa solo $s=j\omega$, quindi otteniamo:

$$\begin{split} \frac{V(s)}{U(s)} &= \frac{2j\omega + 1}{j\omega} \\ &= \frac{2j\omega}{j\omega} + \frac{1}{j\omega} \cdot \frac{j}{j} \\ &= 2 - \frac{1}{\omega} \cdot j \end{split}$$

La rispsota del sistema nel piano dei complessi è: dove:

Ampiezza =
$$l = \sqrt{\Re^2 + \Im^2}$$

Fase = $\theta = atan2 (\Im, \Re)$

$$atan2(\sigma,j\omega) = \begin{cases} atan\left(\frac{\omega}{\sigma}\right) & \text{se } \sigma > 0, \ \omega \in \mathbb{R} \\ segno(\omega) \cdot \frac{\pi}{2} & \text{se } \sigma = 0, \ \omega \neq 0 \\ atan\left(\frac{\omega}{\sigma}\right) + \pi \cdot segno(\omega) & \text{se } \sigma < 0, \ o \ \sigma = 0 \ \omega \geq 0 \end{cases}$$

Il diagramma di Bode sarà:

5.3 Risposta in frequenza

$$u(t) = Ae^{\omega_0 + \phi} \Longrightarrow Ae^{j\phi}e^{j\omega_0 t} \Longrightarrow LTIBIBO \Longrightarrow v(t)$$

$$A \in \mathbb{R}_+ \ \phi, \omega \in \mathbb{R}$$

$$H(j\omega) := \int_{-\infty}^{+\infty} h(\tau)e^{-j\omega t}d\tau$$
 per ogni $\omega \in \mathbb{R}$
$$:= \mathcal{L}[h(t)]\bigg|_{s=j\omega}(s)$$

Prendiamo come esempio un fasore:

$$u(t) = Ae^{j\phi}e^{j\omega t}$$

$$u(t) \to [h(t)] \to v(t)$$

$$v(t) = \int_{-\infty}^{+\infty} h(\tau)u(t-\tau)d\tau$$

$$= \int_{-\infty}^{+\infty} h(\tau)Ae^{j\phi}e^{j\omega(t-\tau)}d\tau$$

$$= Ae^{j\phi}e^{j\omega t}\int_{-\infty}^{+\infty} h(\tau)e^{-j\omega\tau}d\tau$$

$$= Ae^{j\phi}e^{j\omega t}H(j\omega) = Ae^{j\phi}e^{j\omega t}A(\omega)e^{j\phi(\omega)}$$

$$= AA(\omega)e^{j(\phi+\phi(\omega))}e^{j\omega t}$$

Dove A è l'ampiezza di u(t), $A(\omega)$ è l'ampiezza della risposta in frequenza, ϕ è la fase di u(t) e $\phi(\omega)$ è la fase della risposta in frequenza, ω è la frequenza iniziale e rimane invariata. Bode ci serve a capire il comportamento del sistema al variare della frequenza del segnale d'ingresso. Che sia un fasore o una sinusoide ci dice cosa succede se aumentiamo o diminuiamo la frequenza del nostro segnale d'ingresso.

5.4 Operazioni tra numeri complessi

Property 5.1. Siano a e b due numeri complessi, allora:

- |ab| = |a||b|
- arg(ab) = arg(a) + arg(b)
- |a/b| = |a|/|b|
- arg(a/b) = arg(a) arg(b)
- $\bullet ||a^n| = |a|^n$
- $arg(a^n) = n \ arg(a)$

Property 5.2. Sia s un numero complesso con $x \in \mathbb{C}t.c.$:

$$\log s = x \iff s = e^x$$

E scrivendo S in forma esponenziale e x in forma complessa:

$$S = \rho e^{j\omega} \ x = \sigma + j\omega$$

$$\log s = x$$

$$= \log \rho + j\phi$$

$$= \log |s| + jarq(s)$$

5.5 Forma di Bode

$$H(s) = \frac{\sum_{j} b_{j} S^{j}}{\sum_{i} a_{i} S^{i}} U(s)$$
$$= K \frac{(s - z_{1})^{\mu_{1}} \dots (s - z_{e})^{\mu_{e}}}{(s - p_{1})^{\gamma_{1}} \dots (s - z_{r})^{\gamma_{r}}}$$

Molteplicità delle soluzioni algebriche:

$$l \leq m, \mu_1 + \dots + \mu_e = m$$

$$r \leq n, \gamma_1 + \dots + \gamma_r = n$$

Theorem 5.3. La forma di Bode di un sistema LTI è:

$$H(s) = K_b \frac{\prod_i (1 + s\tau_i')^{\mu_i'} \prod_k \left(1 + 2\zeta_k' \frac{s}{\omega_{n,k}'} + \frac{s^2}{(\omega_{n,k}^2)}\right)^{\mu_k'}}{(S^{r_1}) \prod_i (1 + s\tau_i)^{\mu_i} \prod_k \left(1 + 2\zeta_k \frac{s}{\omega_{n,k}} + \frac{s^2}{(\omega_{n,k}^2)}\right)^{\mu_k}}$$

 K_b : è il termine costante (o guardagno di Bode)

 S^r : raggruppa tutti le radici nulle

 $(1+s\tau_i)^{\mu_i}$: raggruppa la singola radice reale

 $\left(1+2\zeta_k\frac{s}{\omega_{n,k}}+\frac{s^2}{(\omega_{n,k}^2)}\right)^{\mu_k}$: raggrupa la singola radice complessa conivanta

Per arrivare a questa forma dobbiamo raccogliere le "costanti":

Esempio

$$H(s) = 4\frac{s^3 + s^2 - 2s}{s^3 + s^2}$$

1. Poli/Zeri Nulli

$$H(s) = 4\frac{s(s+2)(s-1)}{s^2(s+1)} = 4\frac{1}{2}\frac{s^2+s-2}{s+1}$$

2. Poli e zeri reali e cerco di arrivare alla forma di bode: $(1+s\tau)^{\mu}$

$$H(s) = 4\frac{1}{s} \frac{s^2 + s - 2}{s + 1}$$

$$= 4\frac{1}{s} \frac{(s + 2)(s - 1)}{s + 1}$$

$$= 4\frac{1}{s} \frac{-(1 - s)2(1 + \frac{s}{2})}{(1 + s)}$$

$$= \frac{-8}{1} \frac{1}{s} \frac{(1 - s)(1 - \frac{s}{2})}{1 + s}$$

$$= -8\frac{1}{s} \frac{(1 - s)(1 + \frac{s}{2})}{1 + s}$$

$$= -8\frac{1}{s} \frac{(1 - s) + (1 + \frac{s^2}{2})}{1 + s}$$

$$= K_b \frac{1}{s^{\mu}} \frac{(1 + s\tau_1)^{\mu_i}(1 + s\tau_2)^{\mu_2}}{(1 + s\tau_1)^{mu_1}}$$

3. Polo o zero complesso coniugato

$$\begin{split} &= (s - (\sigma + j\omega))(s - (\sigma - j\omega)) = s^2 - 2\sigma s + \sigma^2 + \omega^2 \\ &= (s^2 - s\sigma + sj\omega - s\sigma - sj\omega + |z|^2) \\ &= (s^2 - 2s\sigma + |z|^2)^{\mu} \\ &= |z|^{2\mu} \left(1 - 2\frac{2\sigma}{|z|^2}s + \frac{s^2}{|z|^2}\right)^{\mu} \\ &= |z|^{2\mu} \left(1 - 2\zeta\frac{s}{\omega_n} + \frac{s^2}{\omega_n^2}\right)^{\mu} \end{split}$$

dove $\zeta=\frac{-\sigma}{|z|}=-\frac{-Re(z)}{|z|}$ è il coeff. di smorzamento e $w_n=|z|$ ovvero la pulsazione naturale.

Dobbiamo trasformare $H(s) \to H(j\omega)$: Analisi in frequenza

$$H(j\omega) = K_b \frac{\prod_i (1+j\omega\tau_i')^{\mu_i'} \prod_k \left(1+j2\zeta_k' \frac{j\omega}{\omega_{n,k}'} - \frac{(j\omega)^2}{(\omega_{n,k}^2)}\right)^{\mu_k'}}{(S^{r_1}) \prod_i (1+j\omega\tau_i)^{\mu_i} \prod_k \left(1+j2\zeta_k \frac{j\omega}{\omega_{n,k}} - \frac{(j\omega)^2}{(\omega_{n,k}^2)}\right)^{\mu_k}}$$

Esempio 2

$$\begin{split} H(s) &= \frac{s^2 - 2s^2 - 8s}{s^4 - 2s^3 + 2s^2} = \frac{s(s^2 - 2s - 8)}{s^2(s^2 - 2s + 2)} = \frac{s^2 - 2s - 8}{s(s^2 - 2s + 2)} \\ &= \frac{(s - 4)(s + 2)}{s(s^2 - 2s + 2)} \\ &= \frac{-4\left(1 - \frac{s}{4}\right)2\left(1 + \frac{s}{2}\right)}{s(2)\left(1 - s + \frac{s^2}{2}\right)} = -4\frac{1}{s}\frac{\left(1 - \frac{s}{4}\right)\left(1 + \frac{s}{2}\right)}{\left(1 - s + \frac{s^2}{2}\right)} \end{split}$$

Ora vediamo ogni singolo $(1 + s\tau)^{\mu}$:

- $(1 \frac{s}{4})$ dove $\tau_1 = -\frac{1}{4}$
- $(1 + \frac{s}{2})$ dove $\tau_2 = \frac{1}{2}$
- $\left(1 s + \frac{s^2}{2}\right)$ dove $w_n^2 = 2 \to w_n = \sqrt{2}$

$$\frac{2\zeta}{w_n} = -1 \Longrightarrow \frac{2\zeta}{\sqrt{2}} = -1 \Longrightarrow \zeta = \frac{-1\sqrt{2}}{2} = -\frac{\sqrt{2}}{2}$$