Weiner's linear-time suffix tree algorithm

2015. 05. 26
BIS Lab
Kyungjung Song

Weiner's algorithm

- starts with the entire string *S* (unlike Ukkonen's algorithm)
- enters one suffix at a time into a growing tree(like Ukkonen's algorithm)
 - although in a very different order

- It first enters string S(n)\$
- S[n-1...n]\$
- S[n-2...n]\$
- ...
- *S*[1...*n*]\$
 - = Entire string

Ex) T = xabxac

- xabxac\$
- xabxac\$
- xabxac\$
- ...
- xabxac\$
 - = Entire string

Definition

- Suff_i: suffix S[i..n]
 - Suff_n: the single character S(n)
 - Suff₁: the entire string *S*

Ex) T = xabxac

- $Suff_6$: c
- Suff₄: xac
- Suff₁: xabxac

Definition

- T_i : a suffix tree of string S[i..n]\$
 - n-i+2 leaves numbered i through n+1
 - The path from root to any leaf $j(i \le j \le n+1)$ has label Suff_i\$

Ex)
$$T = xabxac$$

Definition

- T_i : a suffix tree of string S[i..n]\$
 - n-i+2 leaves numbered i through n+1
 - The path from root to any leaf $j(i \le j \le n+1)$ has label Suff_i\$

Ex)
$$T = xabxac$$

- Weiner's algorithm constructs trees
 - From T_{n+1} down to T_1
 - First, we will implement the method in a straightforward inefficient way
 - Then we will speed up the straightforward construction
 - to obtain Weiner's linear-time algorithm

The idea of the method

- Essentially the same as the idea for constructing keyword trees (Section 3.4)
- Construct each tree T_i
 - from T_{i+1} and character S(i)
 - for each *i* from *n* down to 1
- For any node v in T_i , no two edges out of v have edge-labels beginning with the same character

- Ex) T = xabxac
 - Start at i = n+1 = 7

- Ex) T = xabxac
 - *i* = 6

- Ex) T = xabxac
 - *i* = 5

- Ex) T = xabxac
 - *i* = 4

- Ex) T = xabxac
 - *i* = 3

- Ex) T = xabxac
 - *i* = 2

- Ex) T = xabxac
 - i = 1

Definition

• Head(i): the longest prefix of S[i..n] that matches a substring of S[i+1..n]\$

Ex) T = xabxac

- *Head*(2): the longest prefix of 'abxac' that matches a substring of 'bxac\$'
- Head(2) = a

Definition

• Head(i): the longest prefix of S[i..n] that matches a substring of S[i+1..n]\$

Ex) T = xabxac

- *Head*(1): the longest prefix of 'xabxac' that matches a substring of 'abxac\$'
- Head(1) = xa

• Naïve weiner algorithm

Naïve weiner algorithm

1. Find the end of the path labeled Head(i) in tree \mathcal{T}_{i+1}

Naïve weiner algorithm

- 1. Find the end of the path labeled Head(i) in tree \mathcal{T}_{i+1}
- 2. If there is no node at the end of *Head(i)*
 - Create a node

Ex) T = xabxac, i=2Suff₂\$ = abxac\$, Head(2) = a

Naïve weiner algorithm

- 1. Find the end of the path labeled Head(i) in tree \mathcal{T}_{i+1}
- 2. If there is no node at the end of *Head(i)*
 - Create a node

Ex) T = xabxac, i=2Suff₂\$ = abxac\$, Head(2) = a

Naïve weiner algorithm

- 1. Find the end of the path labeled Head(i) in tree \mathcal{T}_{i+1}
- 2. If there is no node at the end of *Head(i)*
 - Create a node
- 3. Let w denote the node at the end of Head(i)
 - Created or not

Ex)
$$T = \text{xabxac}$$
, $i=2$
Suff₂\$ = abxac\$, $Head(2) = a$

Naïve weiner algorithm

- 1. Find the end of the path labeled Head(i) in tree \mathcal{T}_{i+1}
- 2. If there is no node at the end of *Head(i)*
 - Create a node
- 3. Let w denote the node at the end of Head(i)
 - Created or not
- 4. Splitting an existing edge and its existing edge-label
 - So that *w* has node-label *Head*(*i*)

Ex)
$$T = \text{xabxac}$$
, $i=2$
Suff₂\$ = abxac\$, $Head(2) = a$

Naïve weiner algorithm

- 1. Find the end of the path labeled Head(i) in tree \mathcal{T}_{i+1}
- 2. If there is no node at the end of *Head(i)*
 - Create a node
- 3. Let w denote the node at the end of Head(i)
 - Created or not
- 4. Splitting an existing edge and its existing edge-label
 - So that *w* has node-label *Head*(*i*)

Ex)
$$T = \text{xabxac}$$
, $i=2$
Suff₂\$ = abxac\$, $Head(2) = a$

Naïve weiner algorithm

- 1. Find the end of the path labeled Head(i) in tree \mathcal{T}_{i+1}
- 2. If there is no node at the end of Head(i)
 - Create a node
- 3. Let w denote the node at the end of Head(i)
 - Created or not
- 4. Splitting an existing edge and its existing edge-label
 - So that *w* has node-label *Head(i)*
- 5. Create a new leaf numbered i and a new edge (w,i) labeled with the remaining characters of Suff_i\$

Ex) T = xabxac, i=2Suff₂\$ = abxac\$, Head(2) = a

- The final suffix tree $T = T_1$
 - Constructed in $O(n^2)$ time
 - The difficult part of the algorithm is **finding** *Head*(*i*)
 - So, to speed up the algorithm
 - Need a more efficient way to find *Head*(*i*)

Toward a more efficient implementation

Edge-labeling

- As in the discussion of Ukkonen's algorithm
 - If edge-labels are explicitly written on the tree
 - a linear time bound is not possible

Toward a more efficient implementation

- Each edge-label is represented by two indices
 - Indicating the start and end positions of the labeling substring

T = xabxac\$

The key to Weiner's algorithm

- Two vectors kept at each nonleaf node (including the root)
 - 1. Indicator vector *I*
 - A bit vector(0 or 1)
 - 2. Link vector *L*
 - The reverse of the suffix link in Ukkonen's algorithm
- Length of vector: the size of the alphabet
- Indexed by the characters of the alphabet

Ex) node *v*

	а	•••	x	y	Z
I	0	•••	1	1	1
L	null		v**	null	w

- $I_u(x) = 1$
 - if and only if there is a path from the root labeled $x\alpha$

• where α is the path-label of node u

	а		x	у	Z
I	0	•••	1	0	0

• $L_u(x)$ points to (internal) node \bar{u}

- if and only if \bar{u} has path-label $x\alpha$
 - where u has path-label α
- Otherwise $L_u(x) = \text{null}$

	а		x	у	Z
L	null	•••	Ū	null	null

- $L_u(x)$ is nonnull only if $I_u(x) = 1$
 - But the converse is not true
 - T = xabxac
 - $I_w(b) = 1$
 - $L_w(b) = \text{null}$

	a	b	•••	y	Z
I	0	1	•••	0	0
L	null	null	•••	null	null

- If $I_u(x) = 1$ then $I_v(x) = 1$
 - *v*: every ancestor node of *u*

• The root *r*, only one nonleaf node

- $I_r(S(n)) = 1$, $I_r(x) = 0$ for every other character x
- $L_r(x) = \text{null}$, for every character x
- Ex) T = xabxac

	а	b	C	•••	Z
I	0	0	1	•••	0
L	null	null	null	•••	null

• The algorithm will maintain the vectors as the tree changes

The basic idea of Weiner's algorithm

- Using indicator and link vectors
 - to find Head(i)
 - to construct T_i more efficiently

The basic idea of Weiner's algorithm

• The algorithm

1. Start at leaf i+1 of T_{i+1}

The basic idea of Weiner's algorithm

• The algorithm

- 1. Start at leaf i+1 of T_{i+1}
- 2. Walk toward the root

• The algorithm

- 1. Start at leaf i+1 of \mathcal{T}_{i+1}
- 2. Walk toward the root
 - looking for the first node v such that $I_v(S(i)) = 1$ (if it exists)

• The algorithm

- 1. Start at leaf i+1 of \mathcal{T}_{i+1}
- 2. Walk toward the root
 - looking for the first node v such that $I_v(S(i)) = 1$ (if it exists)
- 3. Then continues from v to the root

The algorithm

- 1. Start at leaf i+1 of \mathcal{T}_{i+1}
- 2. Walk toward the root
 - looking for the first node v such that $I_v(S(i)) = 1$ (if it exists)
- 3. Then continues from *v* to the root
 - Searching for the first node *v*'
 - it encounters (possibly v) where $L_{v}(S(i))$ is nonnull

The algorithm

- 1. Start at leaf i+1 of \mathcal{T}_{i+1}
- 2. Walk toward the root
 - looking for the first node v such that $I_v(S(i)) = 1$ (if it exists)
- 3. Then continues from v to the root
 - Searching for the first node *v*'
 - it encounters (possibly v) where $L_{v}(S(i))$ is nonnull

Three cases

- A. Both v and v' exist(good case)
- B. Neither *v* nor *v*' exist(degenerate case 1)
- C. v exists but v' does not(degenerate case 2)

- *l*_i
 - the number of characters on the path between v' and v
 - If $l_i = 0$, then v' = v
- c
 - The first character of these l_i characters (if $l_i > 0$)

• Theorem 6.2.1

• Assume that node v has been found by the algorithm and that it has path-label α . Then the string Head(i) is exactly $S(i)\alpha$.

• Ex)
$$i = 4$$
, $S(i) = c$
=> $Head(4) = cxabxa$

- Head(i)
 - the longest prefix of Suff_i that is also a prefix of Suff_k for some k > i
- $I_{v}(S(i)) = 1$
 - there is a path that begins with S(i)
 - So *Head*(*i*) is at least one character long.
- Therefore, we can express Head(i) as $S(i)\beta$, for some (possibly empty) string β .

- Suff_i and Suff_k
 - both begin with string $Head(i) = S(i)\beta$
 - and differ after that.
- Suff_i begins $S(i)\beta a$ and Suff_k begins $S(i)\beta b$
 - then Suff_{i+1} begins βa and Suff_{k+1} begins βb .
- Therefore, there must be a path
 - from the root labeled β
 - that extends in two ways with *a* and *b*

- Hence there is a node u with path-label β , and $I_u(S(i)) = 1$
- Further, node u must be on the path to leaf i + 1
 - since β is a prefix of suff_{i+1}

- $I_{\nu}(S(i)) = 1$ and ν has path-label α
 - So Head(i) must begins with $S(i)\alpha$
 - That means that α is a prefix of β
 - so node u must either be v or below v on the path to leaf i+1
- If $u \neq v$ then
 - u would be a node below v on the path to leaf i + 1 and I_v(S(i)) = 1
 contradict to choice of node v
- So v = u, $\alpha = \beta$
- That is, head(i) is exactly the string $S(i)\alpha$

• Theorem 6.2.2

- Assume both v and v' have been found and $L_{\nu}(S(i))$ points to node v"
 - If $l_i=0$ then Head(i) ends at v"
 - Otherwise it ends after exactly l_i characters on a single edge out of v" that starts with c.

- Since v' is on the path to leaf i+1 and $L_{v'}(S(i))$ Points to node v"
 - The path from the root labeled Head(i) must include v"
- By theorem 6.2.1, $Head(i) = S(i)\alpha$, so Head(i) must end exactly l_i characters below v"

Tree T_i is then constructed by

- subdividing edge e
- creating a node w at this point adding a new edge from w to leaf i labeled with the remainder of $Suff_i$

- Degenerate case 1: Neither *v* nor *v*' exist
 - $I_r(S(i)) = 0$
 - So, Head(i) is the empty string and ends at the root

- Degenerate case 2: v exists but v' does not
 - $I_{\nu}(S(i)) = 1$ for some ν (possibly the root), but ν ' does not exist
 - The walk ends at the root with $L_r(S(i)) = \text{null}$

- Degenerate case 2: v exists but v' does not
 - Let t_i be the number of characters from the root to v
 - a. $t_i = 0$ (when v is the root node)
 - b. $t_i > 0$ (else)
 - From Theorem 6.2.1, Head(i) ends exactly t_i+1 characters from the root

- Degenerate case 2: v exists but v' does not
 - Head(i) ends exactly t_i+1 characters from the root
 - a. If $t_i=0$
 - Head(i) ends after the first character, S(i) on edge e which start at root

- Degenerate case 2: v exists but v' does not
 - Head(i) ends exactly t_i+1 characters from the root
 - a. If $t_i=0$
 - Head(i) ends after the first character, S(i) on edge e which start at root

- Degenerate case 2: v exists but v' does not
 - Head(i) ends exactly t_i+1 characters from the root
 - b. If $t_i > 1$
 - Head(i) ends exactly t_i+1 character from the root

- Degenerate case 2: v exists but v' does not
 - Head(i) ends exactly t_i+1 characters from the root
 - b. If $t_i > 1$
 - Head(i) ends exactly t_i+1 character from the root

The two degenerate cases

- In either of these degenerate cases
 - *Head(i)* is found in constant time after the walk reaches the root

The full algorithm for creating \mathcal{T}_i from \mathcal{T}_{i+1}

Weiner's Tree extension

- 1. Start at leaf i+1 of T_{i+1} and walk toward the root searching for the first node v on the walk such that $I_v(S(i)) = 1$
- 2. If the root is reached and $I_r(S(i)) = 0$ (that is, degenerate case 1),
 - create a new node and new edge from root
- 3. Let *v* be the node found(possibly the root) such that $I_v(S(i)) = 1$
 - Then continue walking upward searching for the first node v'(possibly v itself) such that $L_{v}(S(i))$ is nonnull
 - 3a. If the root is reached and $L_r(S(i))$ is null(that is, degenerate case 2)
 - 3b. If v' was found such that $L_{v'}(S(i))$ is v''(that is, the good case)

Correctness

- The algorithm correctly creates tree T_i from T_{i+1}
 - from Theorems 6.2.1, 6.2.2 and the discussion of the degenerate cases
 - although before it can create T_{i-1} , it must update the *I* and *L* vectors

- After finding (or creating) node w
 - We must update the *I* and *L* vectors
 - so that they are correct for tree T_i

- Update *L* vectors
- Update *I* vectors

- If node *v* was found(the good case and degenerate case 2)
 - Node w has path-label $S(i)\alpha$ in T_i
 - In this case, $L_{\nu}(S(i))$ should be set to point to w in T_i
 - If node w is newly created, all its link entries should be null

	a	•••	x	У	z	
L	null	•••	null	null	null	

- If node w is newly created, all its link entries should be null
 - Proof
 - Suppose there is a node u in T_i with path-label xHead(i)
 - But then there must have been a node in \mathcal{T}_{i+1} with path-label Head(i)

- For every node \boldsymbol{u} on the path from the root to leaf i+1
 - $I_u(S(i))$ must be set to 1 in \mathcal{T}_i
 - Since there is now a path for sting $Suff_i$ in T_i

	•••	C	•••
I	•••	1	• • •

- Theorem 6.2.3
 - When a new node w is created in the interior of an edge (v'', z)
 - I vector for w should be copied from the I vector for z

- Proof
 - It is immediate that if $I_z(x) = 1$ then $I_w(x)$ must also be 1
 - Can it happen that $I_w(x) = 1$ and $I_z(x) = 0$ at the moment that w is created? \sim It cannot

- Proof
 - It is immediate that if $I_z(x) = 1$ then $I_w(x)$ must also be 1
 - Can it happen that $I_w(x) = 1$ and $I_z(x) = 0$ at the moment that w is created? \sim It cannot

- The time to construct \mathcal{T}_i
 - \approx the time needed during the walk from leaf i+1 ending either at v' or the root
 - Move to one node(constant time)
 - Follow a *L* link pointer(constant time)
 - Add a node and edge(constant time)
 - So, \approx the number of nodes encountered on the walk from leaf i+1
 - = **The node-depth**(the number of nodes from the root to node v)

- The time to construct T_i
 - When the algorithm walks up a path from a leaf
 - The current node-depth can decrease by one each time
 - A new node is created
 - The current node-depth can increase by one each time

• The time to construct T_i

• A link pointer is traversed

Lemma 6.2.1

When the algorithm traverses a link pointer from a node v to a node v, the current node-depth increases by **at most one**

• The time to construct T_i

- Proof
 - Let u be a nonroot node on the path from the root to v'', and suppose u has path-label $S(i)\alpha$ for some nonempty string α .
 - All nodes on the root-to-v" path are of this type
 - except for the single node (if it exists) with path-label S(i).

- The time to construct T_i
 - Proof
 - $S(i)\alpha$ is the prefix of $Suff_i$ and of $Suff_k$ for some k > i
 - and this string extends differently in the two cases

• The time to construct T_i

- Proof
 - Since v' is on the path from the root to leaf i+1,
 - α is a prefix of suff_{i+1}
 - and there must be a node with path-label α (possibly the root) on the path to v'

• The time to construct T_i

- Proof
 - Hence the path to v' has a node corresponding to every node on the path to v"
 - except the node (if it exists) with path-label S(i)
 - Hence the depth of v" is **at most one** more than the depth of v', although it could be less

Theorem 6.2.4

• Assuming a finite alphabet, Weiner's algorithm constructs the suffix tree for a string of length n in O(n) time

- the total number of increased in the current node-depth is at most 2n
- the current node-depth can also only decrease at most 2n times
- So the total number of nodes visited during all the upward walks is
 - At most 2n

Last comments about Weiner's algorithm

• Theorem 6.2.5

- If v is a node in the suffix tree labeled by the string $x\alpha$
 - where *x* is a single character
- then there is a node in the tree labeled with the string α