Fundamentals of Deep Learning

Manuel Ujaldón

Catedrático de Universidad Departamento de Arquitectura de Computadores Universidad de Málaga

La ficha del workshop Fundamentals of Deep Learning

- Duración: 8-10 horas.
- Certificado: Los participantes que superen la prueba de evaluación del curso recibirán un certificado del DLI de Nvidia que acredita sus competencias en esta materia y fortalece el crecimiento de su carrera profesional.
- Prerrequisitos: Estar familiarizado con los fundamentos de la programación básica en Python, como funciones y variables.
- Herramientas, librerías y entornos de desarrollo:

TensorFlow, Keras, Pandas, Numpy.

Objetivos del workshop

- Entender los fundamentos del deep learning.
- Entrenar diversos tipos de redes neuronales, orientados a problemas en los que estas técnicas muestran su potencia.
- Implementar típicos flujos de trabajo del deep learning.
- Experimentar con datos, parámetros de entrenamiento, estructura de la red y otras estrategias para aumentar el rendimiento y la funcionalidad de las redes neuronales.
- Combinar *deep learning* con la programación tradicional y las aplicaciones existentes para comenzar a resolver problemas complejos del mundo real.
- Aprovechar los recursos que ofrece el estado del arte para crecer sobre modelos afines ya desarrollados.

Metodología del workshop

- Nos saltamos los fundamentos teóricos y la instalación de todo el *software* y *hardware* para usar las GPUs ¡YA!.
- Aprendemos de forma interactiva e iterativa en lugar de usando las viejas fórmulas basadas en instrucciones.
- Usamos potentes herramientas para entrenar y desplegar redes neuronales y afinar su rendimiento con objeto de que, en menos de 10 horas, el estudiante consiga:
 - Desarrollar sus propios proyectos de DL.
 - Identificar qué problemas se resuelven mejor con DL.
 - Familiarizarse con las mejores herramientas de trabajo.
 - Conocer las prestaciones y las limitaciones del DL.

Ficha del DLI

TOPIC	DESCRIPTION			
Introduction	> Meet the instructor.			
(15 mins)	> Create an account at courses.nvidia.com/join			
The Mechanics of Deep Learning	Explore the fundamental mechanics and tools involved in successfully training deep neural networks:			
(120 mins)	> Train your first computer vision model to learn the process of training.			
	Introduce convolutional neural networks to improve accuracy of predictions in vision applications.			
	> Apply data augmentation to enhance a dataset and improve model generalization.			
Break (60 mins)				
Pre-trained Models and Recurrent Networks	Leverage pre-trained models to solve deep learning challenges quickly Train recurrent neural networks on sequential data:			
(120 mins)	Integrate a pre-trained image classification model to create an automatic doggy door.			
	 Leverage transfer learning to create a personalized doggy door that only lets in your dog. 			
	> Train a model to autocomplete text based on New York Times headlines.			
Break (15 mins)				

Ficha del DLI (cont.)

Break (15 mins)			
Final Project: Image Captioning	Apply computer vision and natural language processing to automatically caption images.		
(120 mins)	Create and train an advanced model with multiple input layers and data types.		
	> Build training sequences that join image and language data.		
	 Improve training speed by combining transfer learning and feature extraction. 		
Final Review	> Review key learnings and answer questions.		
(15 mins)	> Complete the assessment and earn a certificate.		
	> Complete the workshop survey.		
	> Learn how to set up your own AI application development environment.		
Next Steps	Continue your learning with these DLI trainings:		
	> Getting Started with Image Segmentation		
	> Modeling Time-Series Data with Recurrent Neural Networks in Keras		
	> Building Transformer-Based Natural Language Processing Applications		
	> Building Intelligent Recommender Systems		
	> Fundamentals of Deep Learning for Multi-GPUs		

Diapositivas del DLI y proyectos de Deep Learning a realizar

Proyectos de Deep Learning a realizar	# diapositivas y tiempo práctico	Huecos a rellenar	Dificultad
Part 1. An introduction to Deep Learning Lab 01_mnist.ipynb (area: CV)	40 20'	0	Baja Baja
Part 2. How a neural network trains Lab 02_asl.ipynb (CV)	54 15'	4	Moderada Baja
Part 3. Convolutional Neural Networks Lab 03_asl_cnn.ipynb (CV)	29 15'	0	Moderada Baja
Part 4. Data Augmentation and Deployment Lab 04a_asl_augmentation.ipynb (CV) Lab 04b_asl_predictions.ipynb (CV)	20 20' 10'	0 7	Baja Baja Moderada
Part 5. Pre-trained models Lab 05a_doggy_door.ipynb (CV) Lab 05b_presidential_doggy_door.ipynb	18 25' 10' guiados + 10'	3+2 1	Moderada Moderada Moderada
Part 6. Advanced Architectures Lab 06_headline_generator.ipynb (NLP)	32 20' guiados + 10'	0	Alta Alta
Part 7. Wrap-up and Assessment Final Assessment (CV)			

Total: 193 diapositivas y 2h 30' de trabajo práctico en 8 proyectos distintos