Você verá de onde os épsilons vêm na prova fornecida no Apêndice 9. Resultados similares são verdadeiros para funções de mais de duas variáveis independentes.

DEFINIÇÃO Uma função z = f(x, y) é **diferenciável em** (x_0, y_0) se $f_x(x_0, y_0)$ e $f_{\nu}(x_0, y_0)$ existem e Δz satisfaz uma equação da forma

$$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

na qual $\epsilon_1, \epsilon_2 \rightarrow 0$ quando $\Delta x, \Delta y \rightarrow 0$. Dizemos que f é **diferenciável** se ela é diferenciável em todos os pontos de seu domínio, e dizemos que seu gráfico é uma superfície lisa.

Devido a essa definição, um corolário imediato do Teorema 3 diz que uma função é diferenciável em (x_0, y_0) se suas primeiras derivadas parciais são *contínuas* ali.

COROLÁRIO DO TEOREMA 3 Se as derivadas parciais f_x e f_y de uma função f(x, y) são contínuas ao longo de uma região aberta R, então f é diferenciável em todos os pontos de R.

Se z = f(x, y) é diferenciável, então a definição de diferenciabilidade assegura que $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ se aproxima de 0 quando Δx e Δy se aproximam de 0. Isso nos diz que uma função de duas variáveis é contínua em todos os pontos onde ela é diferenciável.

TEOREMA 4 — Diferenciabilidade implica continuidade Se uma função f(x, y) é diferenciável em (x_0, y_0) , então ela é contínua em (x_0, y_0) .

Como podemos observar a partir do Corolário 3 e do Teorema 4, uma função f(x, y) deve ser contínua em um ponto (x_0, y_0) se f_x e f_y forem contínuas por toda uma região aberta contendo (x_0, y_0) . Entretanto, lembre-se de que ainda é possível que uma função de duas variáveis não seja contínua em um ponto no qual suas primeiras derivadas parciais existam, como vimos no Exemplo 8. A existência por si só das derivadas parciais em um ponto não é suficiente, mas a continuidade das derivadas parciais garante a diferenciabilidade.

Exercícios 14.3

Calculando derivadas parciais de primeira ordem

Nos Exercícios 1-22, encontre $\partial f/\partial x$ e $\partial f/\partial y$.

1.
$$f(x, y) = 2x^2 - 3y - 4$$

11.
$$f(x, y) = (x + y)/(xy - 1)$$

2.
$$f(x, y) = x^2 - xy + y^2$$

12.
$$f(x, y) = tg^{-1}(y/x)$$

3.
$$f(x, y) = (x^2 - 1)(y + 2)$$

13.
$$f(x, y) = e^{(x+y+1)}$$

4.
$$f(x, y) = 5xy - 7x^2 - y^2 +$$
14. $f(x, y) = e^{-x} \operatorname{sen}(x + y)$

$$3x - 6y + 2$$

15.
$$f(x, y) = \ln(x + y)$$

5.
$$f(x, y) = (xy - 1)^2$$

6.
$$f(x, y) = (2x - 3y)^3$$

16.
$$f(x, y) = e^{xy} \ln y$$

17.
$$f(x, y) = \text{sen}^2(x - 3y)$$

7.
$$f(x, y) = \sqrt{x^2 + y^2}$$

18.
$$f(x, y) = \cos^2(3x - y^2)$$

8.
$$f(x, y) = (x^3 + (y/2))^{2/3}$$

19.
$$f(x, y) = x^y$$

9.
$$f(x, y) = 1/(x + y)$$

10. $f(x, y) = x/(x^2 + y^2)$

20.
$$f(x, y) = \log_{v} x$$

19.
$$f(x, y) = x$$

21.
$$f(x,y) = \int_{x}^{y} g(t) dt$$
 (g continua para todo t)

22.
$$f(x, y) = \sum_{n=0}^{\infty} (xy)^n \quad (|xy| < 1)$$

Nos Exercícios 23-34, encontre f_x , f_y e f_z .

23.
$$f(x, y, z) = 1 + xy^2 - 2z^2$$

24.
$$f(x, y, z) = xy + yz + xz$$

25.
$$f(x, y, z) = x - \sqrt{y^2 + z^2}$$

26.
$$f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2}$$

27.
$$f(x, y, z) = \text{sen}^{-1}(xyz)$$

28.
$$f(x, y, z) = \sec^{-1}(x + yz)$$

29.
$$f(x, y, z) = \ln(x + 2y + 3z)$$

30.
$$f(x, y, z) = yz \ln(xy)$$

235

31.
$$f(x, y, z) = e^{-(x^2 + y^2 + z^2)}$$

32.
$$f(x, y, z) = e^{-xyz}$$

33.
$$f(x, y, z) = \text{tgh}(x + 2y + 3z)$$

34.
$$f(x, y, z) = \text{senh}(xy - z^2)$$

Nos Exercícios 35-40, encontre a derivada parcial da função em relação a cada variável.

35.
$$f(t, \alpha) = \cos(2\pi t - \alpha)$$

36.
$$g(u, v) = v^2 e^{(2u/v)}$$

37.
$$h(\rho, \phi, \theta) = \rho \sin \phi \cos \theta$$

38.
$$g(r, \theta, z) = r(1 - \cos \theta) - z$$

$$W(P, V, \delta, v, g) = PV + \frac{V\delta v^2}{2g}$$

40. Fórmula do tamanho do lote de Wilson (Seção 4.6, Exercício 53)

$$A(c, h, k, m, q) = \frac{km}{q} + cm + \frac{hq}{2}$$

Calculando derivadas parciais de segunda ordem

Encontre todas as derivadas parciais de segunda ordem das funções nos Exercícios 41-50.

41.
$$f(x, y) = x + y + xy$$

46.
$$s(x, y) = tg^{-1}(y/x)$$

42.
$$f(x, y) = \sin xy$$

47.
$$w = x^2 \operatorname{tg}(xy)$$

43.
$$g(x, y) = x^2y + \cos y + y \sin x$$
 48. $w = ye^{x^2 - y}$

48.
$$w = ye^{x^2 - y}$$

44.
$$h(x, y) = xe^y + y + 1$$

49.
$$w = x \operatorname{sen}(x^2 y)$$

45.
$$r(x, y) = \ln(x + y)$$

50.
$$w = \frac{x - y}{x^2 + y}$$

Derivadas parciais mistas

Nos Exercícios 51-54, verifique que $w_{xy} = w_{yx}$.

51.
$$w = \ln(2x + 3y)$$

53.
$$w = xv^2 + x^2v^3 + x^3v^4$$

52.
$$w = e^x + x \ln y + y \ln x$$

54.
$$w = x \operatorname{sen} y + y \operatorname{sen} x + xy$$

55. Qual ordem de derivação calculará
$$f_{xy}$$
 mais rapidamente: primeiro x ou y ? Tente responder sem fazer anotações.

a.
$$f(x, y) = x \text{ sen } y + e^{y}$$

b.
$$f(x, y) = 1/x$$

c.
$$f(x, y) = y + (x/y)$$

d.
$$f(x, y) = y + x^2y + 4y^3 - \ln(y^2 + 1)$$

e.
$$f(x, y) = x^2 + 5xy + \sin x + 7e^x$$

$$\mathbf{f.} \quad f(x, y) = x \ln xy$$

56. A derivada parcial de quinta ordem $\partial^5 f/\partial x^2 \partial y^3$ é zero para cada uma das funções a seguir. Para mostrar isso o mais rapidamente possível, em relação a qual variável você diferencia primeiro: x ou y? Tente responder sem fazer anotações.

a.
$$f(x, y) = y^2 x^4 e^x + 2$$

b.
$$f(x, y) = y^2 + y(\sin x - x^4)$$

c.
$$f(x, y) = x^2 + 5xy + \sin x + 7e^x$$

d.
$$f(x, y) = xe^{y^2/2}$$

Utilizando a definição de derivada parcial

Nos Exercícios 57-60, utilize a definição limite de derivada parcial para calcular as derivadas parciais das funções nos pontos especificados.

57.
$$f(x,y) = 1 - x + y - 3x^2y$$
, $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ em $(1,2)$

58.
$$f(x,y) = 4 + 2x - 3y - xy^2$$
, $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ em (-2, 1)

59.
$$f(x,y) = \sqrt{2x + 3y - 1}$$
, $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ em (-2, 3)

60.
$$f(x,y) = \begin{cases} \frac{\sec(x^3 + y^4)}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0), \end{cases}$$

$$\frac{\partial f}{\partial x}$$
 e $\frac{\partial f}{\partial y}$ em $(0,0)$

61. Seja f(x, y) = 2x + 3y - 4. Encontre o coeficiente angular da reta tangente a essa superfície no ponto (2, -1) que está no **a.** plano x = 2 **b.** plano y = -1.

62. Seja $f(x, y) = x^2 + y^3$. Encontre o coeficiente angular da reta tangente a essa superfície no ponto (-1, 1) que está no **a.** plano x = -1 **b.** plano y = 1.

63. Três variáveis Seja w = f(x, y, z) uma função de três variáveis independentes, e escreva a definição formal da derivada parcial $\partial f/\partial z$ em (x_0, y_0, z_0) . Utilize essa definição para encontrar $\partial f/\partial z$ em (1, 2, 3) para $f(x, y, z) = x^2yz^2$.

64. Três variáveis Seja w = f(x, y, z) uma função de três variáveis independentes, e escreva a definição formal da derivada parcial $\partial f/\partial y$ em (x_0, y_0, z_0) . Utilize essa definição para encontrar $\partial f/\partial y$ em (-1, 0, 3) para $f(x, y, z) = -2xy^2 + yz^2$.

Diferenciando implicitamente

65. Encontre o valor de $\partial z/\partial x$ no ponto (1, 1, 1) se a equação

$$xy + z^3x - 2yz = 0$$

define z como uma função de duas variáveis independentes x e y e se a derivada parcial existe.

66. Encontre o valor de $\partial x/\partial z$ no ponto (1, -1, -3) se a equação

$$xz + y \ln x - x^2 + 4 = 0$$

define x como uma função de duas variáveis independentes y e z e se a derivada parcial existe.

Os Exercícios 67 e 68 estão relacionados com o triângulo mostrado a seguir.

67. Expresse A implicitamente com uma função de a, b e c e calcule $\partial A/\partial a$ e $\partial A/\partial b$.

68. Expresse a implicitamente como uma função de A, b e B e calcule $\partial a/\partial A$ e $\partial a/\partial B$.

69. Duas variáveis dependentes Expresse v_x em termos de ue y se as equações $x = v \ln u$ e $y = u \ln v$ definem u e v como funções das variáveis independentes x e y e se v existe. (Sugestão: diferencie ambas as equações em relação a x e resolva para v_r eliminando u_r .)

70. Duas variáveis dependentes Encontre $\partial x/\partial u = \partial y/\partial u$ se as equações $u = x^2 - y^2$ e $v = x^2 - y$ definem x e y como funções das variáveis independentes u e v, e as derivadas parciais existem. (Veja a sugestão do Exercício 69.) Em seguida, seja $s = x^2$ + y^2 e encontre $\partial s/\partial u$.

71. Seja $f(x, y) = \begin{cases} y^3, & y \ge 0 \\ -y^2, & y < 0. \end{cases}$

Encontre f_{x} , f_{y} , f_{xy} e f_{yx} e diga qual é o domínio para cada de-