

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Polyester synthase gene and process for producing polyester

Patent Number: EP0824148, A3

Publication date: 1998-02-18

Inventor(s): YOSHIHARU DOI (JP); TOSHIAKI FUKUI (JP)

Applicant(s):: RIKAGAKU KENKYUSHO (JP)

Requested Patent: JP10108682

Application Number: EP19970113932 19970813

Priority Number(s): JP19960214509 19960814; JP19970199979 19970725

IPC Classification: C12N15/52 ; C12N15/60 ; C12N1/21 ; C12P7/62 ; C12N15/74

EC Classification: C12N9/00L, C12N9/88, C12P7/62A

Equivalents: JP3062459B2, US5981257

Abstract

The present invention relates to a polyester synthase gene coding for a polypeptide containing the amino acid sequence of SEQ ID NO:2 or a sequence where in said amino acid sequence, one or more amino acids are deleted, replaced or added, said polypeptide bringing about polyester synthase activity; a gene expression cassette comprising the polyester synthase gene and either of open reading frames located upstream and downstream of said gene; a recombinant vector comprising the gene expression cassette; a transformant transformed with the recombinant vector; and a process for producing polyester by culturing the transformant in a medium and recovering polyester from the resulting culture.

Data supplied from the esp@cenet database - I2

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平10-108682

(43) 公開日 平成10年(1998)4月28日

(51) Int.Cl.*	識別記号	F I	
C 12 N 15/09	ZNA	C 12 N 15/00	ZNAA
C 07 H 21/04		C 07 H 21/04	B
C 12 N 1/21		C 12 N 1/21	
9/88		9/88	
C 12 P 7/62		C 12 P 7/62	

審査請求 未請求 請求項の数12 O L (全 25 頁) 最終頁に続く

(21) 出願番号	特願平9-199979	(71) 出願人	000006792 理化学研究所 埼玉県和光市広沢2番1号
(22) 出願日	平成9年(1997)7月25日	(72) 発明者	福居 傑昭 埼玉県和光市広沢2番1号 理化学研究所 内
(31) 優先権主張番号	特願平8-214509	(72) 発明者	土肥 義治 埼玉県和光市広沢2番1号 理化学研究所 内
(32) 優先日	平8(1996)8月14日	(74) 代理人	弁理士 平木 拓輔 (外1名)
(33) 優先権主張国	日本 (JP)		

(54) 【発明の名称】 ポリエステル重合酵素遺伝子及びポリエステルの製造方法

(57) 【要約】

【課題】 ポリエステル重合酵素遺伝子、該遺伝子を含む組換えベクター、該組換えベクターを含む形質転換体及びポリエステルの製造方法の提供。

【解決手段】 配列番号2で表されるアミノ酸配列又は該アミノ酸配列において1若しくは数個のアミノ酸が消失、置換若しくは付加された配列を含み、ポリエステル重合活性をもたらすポリペプチドをコードするポリエス テル重合酵素遺伝子、該ポリエステル重合酵素遺伝子と、該遺伝子の上流及び下流に存在するオープンリーデ ィングフレームのいずれか一方とを含む遺伝子発現カセ ット、前記ポリエステル合成酵素遺伝子又は遺伝子発現 カセットを含む組換えベクター、該組換えベクターによ って形質転換された形質転換体、該形質転換体を培地に 培養し、得られる培養物からポリエステルを採取することを特徴とするポリエステルの製造方法。

〔特許請求の範囲〕

〔請求項1〕 配列番号2で表されるアミノ酸配列又は該アミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加された配列を含み、ポリエステル重合活性をもたらすポリペプチドをコードするポリエステル重合酵素遺伝子。

〔請求項2〕 配列番号1で表される塩基配列を含むポリエステル重合酵素遺伝子。

〔請求項3〕 請求項1又は2記載のポリエステル重合酵素遺伝子と、該遺伝子の上流及び下流に存在するオープンリーディングフレームのいずれか一方とを含む遺伝子発現カセット。

〔請求項4〕 ポリエステル重合酵素遺伝子の上流に存在するオープンリーディングフレームが、配列番号4で表されるアミノ酸配列をコードするDNAを含むものである請求項3記載の遺伝子発現カセット。

〔請求項5〕 ポリエステル重合酵素遺伝子の上流に存在するオープンリーディングフレームが、配列番号3で表される塩基配列を含むものである請求項3記載の遺伝子発現カセット。

〔請求項6〕 ポリエステル重合酵素遺伝子の下流に存在するオープンリーディングフレームが、配列番号6で表されるアミノ酸配列又は該アミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加された配列を含み、エノイル-COAヒドラターゼ活性をもたらすポリペプチドをコードするDNAを含むものである請求項3記載の遺伝子発現カセット。

〔請求項7〕 ポリエステル重合酵素遺伝子の下流に存在するオープンリーディングフレームが、配列番号5で表される塩基配列を含むものである請求項3記載の遺伝子発現カセット。

〔請求項8〕 請求項1若しくは2記載のポリエステル合成酵素遺伝子又は請求項3～7のいずれか1項に記載の遺伝子発現カセットを含む組換えベクター。

〔請求項9〕 請求項8記載の組換えベクターによって形質転換された形質転換体。

〔請求項10〕 請求項9記載の形質転換体を培地に培養し、得られる培養物からポリエステルを採取することを特徴とするポリエステルの製造方法。

〔請求項11〕 ポリエステルが、次式I：

〔化1〕

(Rは水素原子又は炭素数1～4のアルキル基を表す。)で示される3-ヒドロキシアルカン酸の共重合体である請求項10記載のポリエステルの製造方法。

〔請求項12〕 ポリエステルが、ポリ(3-ヒドロキシブチレート-3-ヒドロキシヘキサノエート)ランダム共重合体である請求項10記載のポリエステルの製造

方法。

〔発明の詳細な説明〕

〔0001〕

〔発明の属する技術分野〕 本発明は、ポリエステル重合酵素遺伝子、該遺伝子を含む組換えベクター、該組換えベクターを含む形質転換体及び該形質転換体を用いたポリエステルの製造方法に関する。

〔0002〕

〔従来の技術〕 数多くの微生物は、ポリ-3-ヒドロキシブチレート(P(3HB))を生合成し、エネルギーの貯蔵物質として体内に微粒子状で蓄えることが知られている。微生物体内から抽出したP(3HB)は、180°C程度に融解温度をもつ熱可塑性高分子であり、優れた生分解性と生体適合性を示すことから、環境を保全する“グリーン”プラスチックとして注目されている。また、P(3HB)は各種の微生物を用いて糖や植物油などの再生可能炭素資源から合成できる“グリーン”プラスチックである。しかしながら、P(3HB)は、高結晶性高分子のために耐衝撃性が劣るという物性上の問題があり、実用化が見送られてきた。

〔0003〕 近年、3-ヒドロキシブチレート(3HB)と3-ヒドロキシヘキサノエート(3HH)との2成分共重合ポリエステル P(3HB-co-3HH)およびその製造法について、研究、開発がなされ、たとえば、特開平5-93049号公報および特開平7-265065号公報にそれぞれ記載されている。これらの公報のP(3HB-co-3HH)共重合体の製造法は、土より単離したアエロモナス・キャビエ(Aeromonas caviae)を用いてオレイン酸やオリーブオイルから発酵生産するものである。発酵生産したP(3HB-co-3HH)共重合体は、3HHユニット分率の増加とともに結晶化度が低下するために、柔軟な高分子材料となり、熱安定性や成形性にも優れ、強い糸や透明でしなやかなフィルムにも加工できることが明らかにされている(Y. Doi, S. Kitamura, H. Abe, Macromolecules 28, 4822-4823 (1995))。しかしながら、特開平5-93049号公報および特開平7-265065号公報に記載の製造方法では、ポリエステル収率(乾燥微生物体内的ポリエステル含有量)が低いため、P(3HB-co-3HH)共重合ポリエステルを高収率で生産する方法の開発が望まれていた。

〔0004〕

〔発明が解決しようとする課題〕 本発明は、ポリエステル重合酵素遺伝子、該遺伝子を含む組換えベクター、該組換えベクターによって形質転換された形質転換体及び該形質転換体を用いたポリエステルの製造方法を提供することを目的とする。

〔0005〕

〔課題を解決するための手段〕 本発明者は、上記課題に基づいて鋭意研究を行った結果、ポリエステル重合酵素の遺伝子をクローニングし、さらにポリエステル重合酵素遺伝子に付随する上流及び下流のオープンリーディン

グフレームのいずれか一方又は両方を欠失させることによりポリエステルを高収率で生産することに成功し、本発明を完成するに至った。

〔0006〕すなわち、本発明は、配列番号2で表されるアミノ酸配列又は該アミノ酸配列において1若しくは数個のアミノ酸が消失、置換若しくは付加された配列を含み、ポリエステル重合活性をもたらすポリペプチドをコードするポリエステル重合酵素遺伝子である。該遺伝子としては、例えば配列番号1で表される塩基配列を含むものが挙げられる。

〔0007〕さらに、本発明は、前記ポリエステル重合酵素遺伝子と、該遺伝子の上流及び下流に存在するオープンリーディングフレームのいずれか一方とを含む遺伝子発現カセットである。該遺伝子発現カセットにおいて、ポリエステル重合酵素遺伝子の上流に存在するオープンリーディングフレームとしては、配列番号4で表されるアミノ酸配列をコードするDNAを含むもの（例えば配列番号3）が挙げられ、ポリエステル重合酵素遺伝子の下流に存在するオープンリーディングフレームとしては、配列番号6で表されるアミノ酸配列又は該アミノ酸配列において1若しくは数個のアミノ酸が消失、置換若しくは付加された配列を含み、エノイル-C₆Aヒドラターゼ活性をもたらすポリペプチドをコードするDNAを含むもの（例えば配列番号5）が挙げられる。

〔0008〕ここで、本発明のポリエステル重合酵素遺伝子は、配列番号2で表されるアミノ酸配列又は該アミノ酸配列において1個若しくは数個のアミノ酸に消失、置換、付加等の変異が生じても、当該アミノ酸配列を有するポリペプチドがポリエステル重合活性を有する限り、そのポリペプチドをコードするDNAも本発明の遺伝子に含まれる。例えば、配列番号2で表されるアミノ酸配列の第1番目のメチオニンが消失したものをコードするDNAも、本発明の遺伝子に含まれる。

〔0009〕さらに、本発明は、前記ポリエステル重合酵素遺伝子又は前記遺伝子発現カセットを含む組換えベクターである。さらに、本発明は、前記組換えベクターによって形質転換された形質転換体である。

〔0010〕さらに、本発明は、前記形質転換体を培地に培養し、得られる培養物からポリエステルを採取することを特徴とするポリエステルの製造方法である。ポリエステルとしては、例えば、次式1：

〔0011〕

〔化2〕

〔0012〕(Rは水素原子又は炭素数1～4のアルキル基を表す。)で示される3-ヒドロキシアルカン酸の共重合体（例えば、ポリ(3-ヒドロキシブチレート-3-ヒドロキシヘキサノエート)ランダム共重合体）が

挙げられる。以下、本発明を詳細に説明する。

〔0013〕

【発明の実施の形態】

(1) ポリエステル重合酵素遺伝子のクローニング

本発明のポリエステル重合酵素遺伝子は、アエロモナス属に属する微生物の菌体から分離される。まず、ポリエステル重合酵素遺伝子を有する菌株から染色体DNAを作製する。菌株としては、例えばアエロモナス・キャビエ(Aeromonas caviae)が挙げられる。

〔0014〕染色体DNAの調製は公知の方法を用いることができる。例えば、アエロモナス・キャビエをLB培地で培養した後、臭化ヘキサデシルトリメチルアンモニウム法(Currnt Protocols in Molecular Biology, 1巻, 2.4.3頁, John Wiley & Sons出版, 1994年)等により染色体DNAを調製する。

〔0015〕上記の手法により得られたDNAを適當な制限酵素（例えばSau3A1, BamHI, BglII等）で部分分解した後、アルカリホスファターゼ処理を行い、DNA断片を脱リン酸化する。これを制限酵素（例えばBamHI, B

20 gII等）で切断したベクターとライゲーションを行い、ライブラーを作成する。

〔0016〕ベクターには、宿主微生物で自律的に増殖し得るファージ又はプラスミドが使用される。ファージベクターとしては、例えばEMBL3, M13, λgt11等が挙げられ、プラスミドベクターとしては、例えばpBR322, pUC18, pBluescript II (STRATAGENE社製)等が挙げられる。さらに、大腸菌やバチルス・ブレビスなどの2種以上の宿主微生物で自律的増殖が可能なベクターのか、各種のシャトルベクターを使用することもできる。

30 〔0017〕このようないべくても、前記制限酵素で切断し、その断片を得ることができる。

〔0018〕DNA断片とベクター断片とを連結させるには、公知のDNAリガーゼを用いる。そして、DNA断片とベクター断片とをアニーリングさせた後連結させ、組換えベクターを作成する。

〔0019〕宿主微生物に組換えベクターを導入するには、公知の方法により行うことができる。例えば、宿主微生物が大腸菌の場合はカルシウム法(Lederberg, E.M. et al., J. Bacteriol. 119, 1072 (1974))やエレクトロボ

40 レーション法(Current Protocols in Molecular Biology, 1巻, 1.8.4頁, 1994年)を採用することができ、宿主微生物がファージDNAの場合はインピトロ・パッケージング法(Current Protocols in Molecular Biology, 1巻, 5.7.1頁, 1994年)等を採用することができる。本発明では、インピトロ・パッケージング用キット(Gigapack II: STRATAGENE社製等)を用いることもできる。

〔0020〕次に、アエロモナス・キャビエのポリエステル重合酵素遺伝子を含むDNA断片を得るためのプローブを調製する。ポリエステル重合酵素のアミノ酸配列

5
については、既に何種類かのものが知られている (Peoples, O.P. and Sinskey, A.J., J.Biol.Chem., 264, 15293 (1989); Huisman, G.W. et al., J.Biol.Chem., 266, 2191 (1991); Pieper,U. et al., FEMS Microbiol.Lett., 96, 73(1992)他)。そこで、これらのアミノ酸配列のうち、保存されている2つの領域を選択し、それをコードする塩基配列を推定してオリゴスクレオチドを設計する。これらオリゴスクレオチドとしては、例えば5'-CC(C/C)CC(C/C)TCGATCACT(T/C)AAGT(T/A)(T/C)TACT(C/C)ATC-3' (配列番号7)、及び5'-(G/C)AGCCA(G/C)CC(C/C)GTCCA(A/G)TC(G/C)GGCACCA-3' (配列番号8)で表される2種類のオリゴスクレオチドが挙げられるがこれらに限定されるものではない。

[0020] これらのオリゴスクレオチドをプライマーとし、アエロモナス・キャビエの染色体DNAを鋳型としてポリメラーゼ連鎖反応 (PCR; Molecular Cloning, 2巻, 14.2頁, 1989年) を行う。そして、PCRによりポリエステル重合酵素遺伝子を部分的に増幅する。

[0021] 次に、この部分増幅断片を適当な試薬を用いて標識し、前記染色体DNAライブラリーからコロニーハイブリダイゼーションを行う (Current Protocols in Molecular Biology, 1巻, 6.0.3頁, 1994年)。

[0022] コロニーハイブリダイゼーションによりスクリーニングされた大腸菌からアルカリ法 (Current Protocols in Molecular Biology, 1巻, 1.6.1頁, 1994年) によってプラスミドを回収することにより、ポリエステル重合酵素遺伝子を含むDNA断片が得られる。

[0023] 上記DNA断片の塩基配列の決定は、公知方法、例えばサンガー法 (Molecular Cloning, 2巻, 13.3頁, 1989年) 等によって行うことができ、塩基配列自動分析装置、例えば373A-DNAシーケンサー (Applied Biosystems社) 等を用いて行うことができる。

[0024] 配列番号1に本発明のポリエステル重合酵素遺伝子の塩基配列を、配列番号2に該遺伝子によりコードされるアミノ酸配列を示すが、当該アミノ酸配列を有するポリペプチドがポリエステル重合活性をもたらす限り、アミノ酸のいくつかについて欠失、置換、付加等の変異があつてもよい。また、本発明の遺伝子は、配列番号2で表されるアミノ酸をコードする塩基配列をもつもののほか、縮重コドンにおいてのみ異なる同一のポリペプチドをコードする縮重異性体をも包含するものである。

[0025] なお、上記欠失等の変異は、公知の部位突然変異誘発方法 (Current Protocols in Molecular Biology 1巻, 8.1.1頁, 1994年) により誘発することができる。上記手法により塩基配列が決定された後は、化学合成によって、又は染色体DNAを鋳型としたPCR法によって、あるいは該塩基配列を有するDNA断片をプローブとしてハイブリダイズさせることにより、本発明の遺伝子を得ることができる。

[0026] (2) 形質転換体の作製

本発明の形質転換体は、本発明の組み換えベクターを、該組み換えベクターを作製する際に用いた発現ベクターに適合する宿主中に導入することにより得られる。宿主としては、目的とする遺伝子を発現できるものであれば特に限定されず、例えば、アルカリゲネス属に属する微生物、シュードモナス属に属する微生物、バチルス属に属する微生物等の細菌、サッカロミセス属、カンジダ属等の酵母、COS細胞、CHO細胞等の動物細胞などが挙げられる。

[0027] アルカリゲネス属に属する微生物、シュードモナス属に属する微生物等の細菌を宿主として用いる場合は、本発明の組換え体DNAが該宿主中で自立複製可能であるとともに、プロモーター、本発明のDNA、転写終結配列を含む構成であることが好ましい。発現ベクターとしては、広範囲の宿主において複製・保持されるRK2複製起点を有するpLA2917(ATCC 37355)、あるいはRSF1010複製起点を有するpJRD215(ATCC 37533)等が挙げられる。

[0028] プロモーターとしては、宿主で発現できるものであればいずれを用いてもよい。例えば、trpプロモーター、lacプロモーター、P_cプロモーター、P_aプロモーター、T7プロモーターなどの大腸菌やファージ等に由来するプロモーターが用いられる。細菌への組み換え体DNAの導入方法としては、例えばカルシウムイオンを用いる方法 (Current Protocols in Molecular Biology, 1巻, 1.8.1頁, 1994年)、エレクトロポレーション法 (Current Protocols in Molecular Biology, 1巻, 1.8.4頁, 1994年) 等が挙げられる。

[0029] 酵母を宿主として用いる場合は、発現ベクターとして、例えばYEp13、YCp50等が挙げられる。プロモーターとしては、例えばqal1プロモーター、qal10プロモーター等が挙げられる。酵母への組換え体DNAの導入方法としては、例えばエレクトロポレーション法 (Methods. Enzymol., 194, 182-187(1990))、スフェロプラスト法 (Proc.Natl.Acad.Sci.U.S.A, 84, 1929-1933(1978))、酢酸リチウム法 (J.Bacteriol., 153, 163-168(1983)) 等が挙げられる。

[0030] 動物細胞を宿主として用いる場合は、発現ベクターとして例えばpcDNA1、pcDNA1/Amp (インビタジエン社) 等が用いられる。動物細胞への組換え体DNAの導入方法としては、例えば、エレクトロポレーション法、リン酸カルシウム法等が挙げられる。

[0031] ここで、前記のようにして決定された塩基配列は、ポリエステル重合酵素遺伝子のほかに、その上流及び下流にポリエステル生合成に関与する遺伝子のオープンリーディングフレームが複数含まれている。すなわち、ポリエステル重合酵素遺伝子は、単一のプロモーター領域の支配下に少なくとも2個のORFとともにオペロンを形成している。

〔0032〕ポリエステル重合酵素遺伝子の上流に位置するORFを以下「ORF1」といい、下流に位置するORFを以下「ORF3」という。ORF1は、菌体内ポリエステルの蓄積に関与する遺伝子又はポリエステル生合成系遺伝子のものと思われる。また、ORF3は、ポリエステル生合成に関与するエノイル-C_oAヒドロターゼ（特に（R）-特異的エノイル-C_oAヒドロターゼ）をコードする遺伝子のものであることを明らかにした。

〔0033〕本発明では、図1に示すように、発現制御領域（図1(1)において「-35/-10」と表示）、ポリエステル重合酵素遺伝子、ORF1及びORF3を含むEcORI断片をクローニングした（図1(1)）。この断片をEE32とする。

〔0034〕次に、EE32においてORF1又はORF3のいずれか一方又は両方を欠失させた断片（遺伝子発現カセット）を作製し、このカセットを宿主に導入することにより、ポリエステルを効率よく生産することができる形質転換体を得ることができる。

〔0035〕EE32中、発現制御領域とORF1の翻訳開始領域との間、及びORF1の翻訳停止領域とポリエステル重合酵素遺伝子の翻訳開始領域との間にそれぞれ制限酵素BglII部位を導入し、BglIIによりORF1を欠失させる（図1(2)）。これと同様にして、ポリエステル重合酵素遺伝子の翻訳停止領域とORF3との間に制限酵素BamHI領域を挿入し、BamHI処理によりORF3を欠失させる（図1(3)）。

〔0036〕ORF1及びORF3の両者を欠失させるには、EE32について、上記ORF1及びORF3を欠失させる操作を両方行えばよい（図1(4)）。なお、制限酵素部位は、合成オリゴヌクレオチドを用いた部位特異的変異法（Current Protocols in Molecular Biology, 1巻, 8.1.1頁, 1994年）によって導入することができる。

〔0037〕このようにして得られたそれぞれの遺伝子発現カセットを、前記発現可能なプラスミド（例えばpJRD215(ATCC 37533)）に挿入し、得られた組換えベクターを用いて、アルカリゲネス・ユートロファス（Alcaligenes eutrophus）・PHB-4株（DSM541）（ポリエステル合成能欠損株）を形質転換する。形質転換法としては、例えば塩化カルシウム法、塩化ルビジウム法、低pH法、インピトロ・パッケージングによる方法、接合伝達法等が挙げられる。

〔0038〕(3) ポリエステルの製造

ポリエステルの製造は、本発明の形質転換体を培地で培養し、培養菌体又は培養物中に本発明のポリエステルを生成蓄積させ、該培養菌体又は培養物から該ポリエステルを採取することにより行われる。本発明の形質転換体を培地で培養する方法は、宿主の培養に用いられる通常の方法に従って行われる。

〔0039〕アルカリゲネス属に属する微生物又はショードモナス属に属する微生物等の細菌を宿主として得られた形質転換体を培養する培地としては、微生物が資化し得る炭素源を与え、窒素源、無機塩類及び有機栄養源のうちのいずれかを制限した培地、例えば窒素源を0.01～0.1%に制限した培地が挙げられる。

〔0040〕炭素源は微生物の増殖に必要であり、かつ、ポリエステル合成の原料となるものであり、その例としては、例えばグルコース、フラクトース、スクロース、マルトース等の炭水化物が挙げられる。また、炭素数2以上の油脂関連物質を炭素源とすることもできる。炭素数2以上の油脂関連物質としては、コーン油、大豆油、サフラワー油、サンフラワー油、オリーブ油、ヤシ油、バーム油、ナタネ油、魚油、鯨油、豚油又は牛油などの天然油脂、酢酸、プロピオン酸、ブタン酸、ペントン酸、ヘキサン酸、オクタン酸、デカン酸、ラウリン酸、オレイン酸、バルミチン酸、リノレン酸、リノール酸若しくはミリスチン酸等の脂肪酸又はこれら脂肪酸のエステル、オクタノール、ラウリルアルコール、オレイルアルコール若しくはバルミチルアルコール等又はこれらアルコールのエステル等が挙げられる。

〔0041〕窒素源としては、例えばアンモニア、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム等のアンモニウム塩の他、ペプトン、肉エキス、酵母エキス、コーンスティーブリカー等が挙げられる。無機物としては、例えばリン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム等が挙げられる。

〔0042〕培養は、通常振盪培養などの好気的条件下、25～37°Cで発現誘導後24時間以上（例えば1～7日）行う。培養中は、カナマイシン、アンビシリン、テトラサイクリン等の抗生物質を培地に添加してもよい。そして、培養することによりポリエステルを菌体内に蓄積させ、その後、このポリエステルを回収する。

〔0043〕誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養する場合は、インデューサーを培地に添加することもできる。例えば、イソプロピル-β-D-チオガラクトビラノシド（IPTG）、インドールアクリル酸（IAA）等を培地に添加することができる。

〔0044〕動物細胞を宿主として得られた形質転換体を培養する培地としては、例えばRPMI-1640、DMEM培地又はこれらの培地にウシ胎児血清を添加した培地が用いられる。培養は、通常5%CO₂存在下、30～37°Cで14～28日間行う。培養中はカナマイシン、ベニシリン等の抗生物質を培地に添加してもよい。

〔0045〕本発明において、ポリエステルの精製は例えば以下のように行うことができる。培養液から遠心分離によって形質転換体を集め、蒸留水で洗浄した後、乾燥させる。その後、クロロホルムに乾燥形質転換体を懸

濁し、加熱することによってポリエステルを抽出する。なお、濾過によって残渣を取り除く。このクロロホルム溶液にメタノールを加えてポリエステルを沈殿させる。濾過や遠心分離によって上澄み液を除去した後、乾燥して精製ポリエステルを得る。

[0046] 得られたポリエステルが目的のものであることの確認は、通常の方法、例えばガスクロマトグラフ法、核磁気共鳴法等により行う。本発明の遺伝子はアエロモナス・キャビエから単離したポリエステル重合酵素をコードする遺伝子を含んでいる。この重合酵素は、次式I:

[0047]

(化3)

[0048] (Rは水素原子又は炭素数1~4のアルキル基を表す。)で示される3-ヒドロキシアルカン酸をモノマーユニットとした共重合体(ポリエステル)を合成することが可能である。上記共重合体としては、例えばポリ(3-ヒドロキシブチレート-3-ヒドロキシヘキサノエート)ランダム共重合体(P(3HB-co-3HH))等が挙げられ、前記重合酵素遺伝子を導入した形質転換体はP(3HB-co-3HH)を極めて高効率で生産する能力を示す。

[0049] 従来では、ポリ-3-ヒドロキシブチレート(P(3HB))あるいはポリ(3-ヒドロキシブチレート-3-ヒドロキシバリレート)ランダム共重合体(P(3HB-co-3HV))の製造法について研究、開発がなされきたが、これらのポリエステルは高結晶性高分子のために耐衝撃性が劣るという物性上の問題がある。

[0050] 炭素数6の3-ヒドロキシヘキサノエートをポリマー鎖に導入することによって結晶化度が低下するため、ポリエステルは柔軟な高分子材料となり、熱安定性や成形性にも優れるが、アエロモナス・キャビエを用いた従来のP(3HB-co-3HH)製造法(特開平5-93049号公報および特開平7-265065号公報)では、ポリエステルの収率が低い。

[0051] これに対し、本発明ではP(3HB-co-3HH)共重合ポリエステルを高収率で生産することができる。上記手法により目的とするポリエステルを大量に得ることができるために、これを用いて生分解性の糸やフィルム、各種容器等の素材として利用することができる。また、本発明の遺伝子を用いてP(3HB-co-3HH)共重合ポリエステル高生産株を育種することもできる。

[0052]

(実施例)以下、実施例により本発明をさらに具体的に説明する。但し、本発明は、これら実施例にその技術的範囲を限定するものではない。

(実施例1)アエロモナス・キャビエのポリエステル重

合酵素遺伝子のクローニング

最初に、アエロモナス・キャビエの染色体DNAライブラリーを作製した。

[0053] アエロモナス・キャビエFA440株を10mlのLB培地(1%イーストエキス、0.5%トリプトン、0.5%塩化ナトリウム、0.1%グルコース、pH7.5)中、30°Cで終夜培養した後、臭化ヘキサデシルトリメチルアンモニウム法(Currnt Protocols in Molecular Biology, 1巻, 2.4.3.頁, 1994年; John Wiley & Sons出版)により染色体DNAを得た。

[0054] 得られた染色体DNAを制限酵素Sau3AIで部分分解した。またベクタープラスミドについては、コスミドベクターであるpLA2917(ATCC37355)を使用した。このプラスミドを制限酵素BglIIで切断し、脱リン酸化処理(Molecular Cloning, 1巻, 5.7.2 頁, 1989年; Cold Spring Harbor Laboratory 出版)を施した後、DNAリガーゼを用いて染色体DNA部分分解断片と連結させた。

[0055] この連結DNA断片を用いたインピトロ・20 バッケージング法(Currnt Protocols in Molecular Biology, 1巻, 5.7.2 頁, 1994年)によって大腸菌S17-1株を形質転換し、アエロモナス・キャビエ染色体DNAライブラリーを得た。

[0056] 次に、アエロモナス・キャビエのポリエステル重合酵素遺伝子を含むDNA断片を得るためのプローブを調製した。これまでに知られている数種のポリエステル重合酵素のアミノ酸配列でよく保存されている2つの領域を選択し、それをコードする核酸塩基配列を推定して5'-CC(C/G)CC(C/G)TGGATCACT/C)AACT(T/A)(T/C)30 TACT/C)ATC-3'(配列番号7)、及び5'-(G/C)AGCCA(G/C)CC(G/C)GTCCA(A/G)TC(G/C)CGCCACCA-3'(配列番号8)で表される2種類のオリゴヌクレオチドを合成した。

[0057] これらのオリゴヌクレオチドをプライマーとし、アエロモナス・キャビエの染色体DNAを鑄型としたPCR法によってポリエステル重合酵素遺伝子を部分増幅した。PCRは、94°Cで30秒、50°Cで30秒及び72°Cで60秒の反応を1サイクルとしてこれを30サイクル行った。この部分増幅断片をDIG DNA標識キット(ペーリンガーマンハイム社製)によってジゴキシゲニン標識し、プローブとした。

[0058] 得られたプローブを用いてアエロモナス・キャビエ染色体DNAライブラリーからコロニーハイブリダイゼーション法によってポリエステル重合酵素遺伝子を含むプラスミドを有する大腸菌を単離した。この大腸菌からアルカリ法によってプラスミドを回収することでポリエステル重合酵素遺伝子を含むDNA断片を得た。この断片のBglII-EcoRI断片についてサンガー法によって塩基配列を決定した。その結果、配列番号9又は50 10で表される3.2kbp断片の塩基配列が決定された。

〔0059〕さらに、この塩基配列について相同性検索を行った結果、この3.2kbpの塩基配列の中には、配列番号1で表される塩基配列(1785bp)を含むポリエステル重合酵素遺伝子を同定することができた。なお、本発明においては、本発明のポリエステル重合酵素遺伝子によりコードされるタンパク質が、ポリエステル重合の遺伝子発現機能を有する限り、当該遺伝子の塩基配列に欠失、置換、付加等の変異が生じてもよい。

〔0060〕また、配列番号9又は10で表される塩基配列を有する断片において、上記1785bpの塩基配列の下流に存在する405bpの遺伝子(ORF3)及び転写終結領域、並びに上流に存在する354bpの遺伝子(ORF1)及び発現調節領域を同定した。ORF1の塩基配列を配列番号3、ORF1によりコードされるアミノ酸配列を配列番号4に、ORF3の塩基配列を配列番号5、ORF3によりコードされるアミノ酸配列を配列番号6に示す。ここで、ORF3はポリエステル合成に関与するエノイル-C_oAヒドラターゼをコードする遺伝子のものである。そして、ORF3によりコードされるアミノ酸を有するポリペプチドがエノイル-C_oAヒドラターゼ活性、特に(R)-特異的エノイル-C_oAヒドラターゼ活性をもたらす限り、当該アミノ酸配列において、1個又は数個のアミノ酸に欠失、置換、付加等の変異が生じてもよい。また、配列番号9及び10で表される塩基配列において、発現調節領域は第1～383番目であり、転写終結領域は第3010～3187番目である。

〔0061〕〔実施例2〕アルカリゲネス・ユートロファス形質転換体の作製
実施例1で同定された発現調節領域、ORF1、ポリエステル重合酵素遺伝子、ORF3及び転写終結領域を含むBglII-EcoRI断片のBglII部位をEcoRIリンクeraseを用いてEcoRI部位とし、3.2kbpのEcoRI-EcoRI断片(EE32断片)を得た。これをアルカリゲネス属に属する微生物中で発現可能なプラスミドpJRD215(ATCC37533)に挿入し、得られた組換えプラスミドでアルカリゲネス・ユートロファスPHB-4株(DSM541)(ポリエステル合成能欠損株)を接合伝達法によって形質転換した。

〔0062〕すなわち、まず、この組換えプラスミドを用いて大腸菌S17-1株を塩化カルシウム法によって形質転換した。この組換え大腸菌とアルカリゲネス・ユートロファスPHB-4株をLB培地1.5ml中、30°Cで終夜培養し、それぞれの培養液0.1mlを混合し、30°Cで4時間培養した。この菌体混合液をMBF寒天培地(0.9%リン酸二ナトリウム、0.15%リノ酸一カリウム、0.05%塩化アンモニウム、0.5%フルクトース、1.5%寒天、0.3mMカナマイシン)に塗布し、30°Cで5日間培養した。

〔0063〕組換え大腸菌中のプラスミドがアルカリゲネス・ユートロファスPHB-4株に伝達されるとカナマイシン耐性を示すことから、MBF寒天培地上で増殖したコロニーはアルカリゲネス・ユートロファス形質転換体

である。この中から1個のコロニーを単離し、アルカリゲネス・ユートロファスAC32株(以下、AC32株と呼ぶ)を得た。なお、AC32株は、工業技術院生命工学工業技術研究所に、FERM P-15786として寄託されている。

〔0064〕さらに合成オリゴヌクレオチドを用いた部位特異的変異法(Currnt Protocols in Molecular Biology, 1巻, 8.1.1頁, 1994年)によってEE32断片中のORF1遺伝子の前後にそれぞれ制限酵素BglII部位を導入し、BglII-BglII断片を欠失させることによってORF1遺伝子が欠失した断片を作製し、プラスミドpJRD215に挿入した。この組換えプラスミドを用いて、上述の接合伝達法によってアルカリゲネス・ユートロファスPHB-4株を形質転換した。得られた形質転換体を、以下AC321株と呼ぶ。

〔0065〕同様に、部位特異的変異法によってEE32断片中のORF3遺伝子の前後にそれぞれ制限酵素BamHI部位を導入し、BamHI-BamHI断片を欠失させることによってORF3遺伝子が欠失した断片を作製し、プラスミドpJRD215に挿入した。この組換えプラスミドを用いて、上述の接合伝達法によってアルカリゲネス・ユートロファスPHB-4株を形質転換した。得られた形質転換体を、以下AC323株と呼ぶ。

〔0066〕同様に、EE32断片中のORF1遺伝子の前後にそれぞれ制限酵素BglII部位を、ORF3遺伝子の前後にそれぞれ制限酵素BamHI部位を導入し、BglII-BglII断片およびBamHI-BamHI断片を欠失させることによってORF1遺伝子およびORF3遺伝子が共に欠失した断片を作製し、プラスミドpJRD215に挿入した。この組換えプラスミドを用いて、上述の接合伝達法によってアルカリゲネス・ユートロファスPHB-4株を形質転換した。得られた形質転換体を、以下AC3213株と呼ぶ。

〔0067〕さらに、EE32断片を錠型とし、PCR法によってポリエステル重合酵素遺伝子を增幅し、得られた増幅断片を、公知であるアルカリゲネス・ユートロファス由来ポリエステル合成系遺伝子の発現調節領域と転写終結領域との間に挿入した。PCRは、5'-AGTTCCC CCCTCCCTGTCCCTGAA-3'(配列番号11)および5'-GCCATAT CCCCTCATCCCCGGTCT-3'(配列番号12)をプライマーとして、94°Cで30秒、55°Cで30秒及び72°Cで60秒の反応を1サイクルとしてこれを30サイクル行った。

〔0068〕このDNA断片をプラスミドpJRD215に挿入し、得られた組換えプラスミドを用いて、上述の接合伝達法によってアルカリゲネス・ユートロファスPHB-4株を形質転換した。得られた形質転換体を、以下AC29株と呼ぶ。

〔0069〕〔実施例3〕アルカリゲネス・ユートロファス形質転換体によるポリエステル合成
50 アルカリゲネス・ユートロファスH16株、PHB-4

13

株、AC32株、AC321株、AC323株、AC3213株、AC29株を、それぞれ、95mLのMB培地（0.9%リン酸二ナトリウム、0.15%リン酸一カリウム、0.05%塩化アンモニウム）に1mLの1%オクタン酸ナトリウムを加えた培地に植菌し、坂口フラスコ中、30°Cで培養した。AC32株、AC321株、AC323株、AC3213株及びAC29株についてはカナマイシンを0.2g/Lの濃度で含有させた。12時間、24時間、36時間及び48時間経過後にそれぞれ1mLの1%オクタン酸ナトリウムを添加しつつ（オクタン酸ナトリウムの総添加量0.5g）、72時間培養した。

[0070] H16株、及びAC3213株については上述のMB培地に1%オリーブ油、バーム油、コーン油、あるいはオレイン酸を加えた培地に植菌し、坂口フラスコ中、30°Cで72時間培養した。なお、AC3213株を培養する際には、培地にカナマイシンを0.2g/Lの濃度で含有させた。

[0071] H16株、AC32株、AC321株、AC323株、AC3213株については上述のMB培地に1mLの1%ヘプタン酸ナトリウムを加えた培地に植菌し、坂口フラスコ中、30°Cで培養した。なお、AC32株、AC321株、AC323株、及びAC3213株*

表1 オクタン酸を炭素源としたポリエステル合成

使用菌株	乾燥菌体重量 (g/1)	ポリエステル含量 (重量%)	ポリエステル組成 3HB (モル%)	3HH (モル%)
H16	3.00	86	100	0
PHB-4	0.80	0	-	-
AC32	0.99	33	78	23
AC321	2.85	92	87	13
AC323	2.85	92	88	12
AC3213	3.64	96	85	15
AC29	3.20	94	92	8

3HB : 3-ヒドロキシブチレート、3HH : 3-ヒドロキシヘキサノエート

[0074]

※※[表2]

表2 植物油またはオレイン酸を炭素源としたポリエステル合成

使用菌株	炭素源	乾燥菌体重量 (g/1)	ポリエステル含量 (重量%)	ポリエステル組成 3HB (モル%)	3HH (モル%)
H16	オリーブ油	4.27	79	100	0
	コーン油	3.57	81	100	0
	バーム油	4.13	79	100	0
	オレイン酸	4.06	82	100	0
AC3213	オリーブ油	3.54	76	96	4
	コーン油	3.60	77	95	5
	バーム油	3.58	81	96	4
	オレイン酸	2.22	70	96	4

3HB : 3-ヒドロキシブチレート、3HH : 3-ヒドロキシヘキサノエート

[0075]

〔表3〕

表3 ヘプタン酸を炭素源としたポリエステル合成

使用菌株	乾燥菌体重量 (g/L)	ポリエステル含量 (重量%)	ポリエステル組成 3HB 3HV 3HHP (モル%)		
			3HB	3HV	3HHP
H16	2.50	60	50	50	0
AC32	0.77	7	30	67	5
AC321	1.67	55	46	52	2
AC323	1.27	40	48	45	7
AC3213	2.76	67	44	48	8

3HB : 3-ヒドロキシブチレート、3HV : 3-ヒドロキシバリレート
3HHP : 3-ヒドロキシヘプタノエート

〔0076〕オクタン酸を炭素源とした場合、表1に示すようにアルカリゲネス・ユートロファス野生株であるH16株ではポリ(3-ヒドロキシブチレート)ホモポリマーを合成する。これはH16株の有するポリエステル重合酵素は炭素数6の3HH(3-ヒドロキシヘキサノエート)を基質としないためである。そのポリエステル合成能欠損株であるPHB-4株では変異処理によってポリエステル重合酵素が欠損しているため、ポリエステルを蓄積しない。PHB-4株にアエロモナス・キャビエ由来のポリエステル重合酵素遺伝子を含むEE32断片を導入したAC32株では3HH(3-ヒドロキシヘキサノエート)分率22モル%のポリ(3-ヒドロキシブチレート-3ヒドロキシヘキサノエート)ランダム共重合体(P(3HB-co-3HH))を乾燥菌体重量あたり33重量%蓄積した。

〔0077〕さらに、AC321株、AC323株、AC3213株では3HH分率12~15モル%のP(3HB-co-3HH)を92~96重量%蓄積し、ORF1遺伝子、ORF3遺伝子、あるいはその両方を欠失させることでポリエステル収率が著しく改善された。

〔0078〕また、導入したポリエステル重合酵素遺伝子の発現調節領域および転写終結領域をアルカリゲネス・ユートロファス由来のものに置換したAC29株でも、94重量%のP(3HB-co-3HH)を蓄積し、由来の異なる発現調節領域および転写終結領域を使用してもポリエステル収率が著しく改善された。

〔0079〕最もポリエステル収率の高いAC3213株をオリーブ油、コーン油、バーム油を炭素源として培養したところ、表2に示すように3HH分率4~5モル%のP(3HB-co-3HH)を76~81重量%蓄積した。植物油に最も多く含まれる脂肪酸成分であるオレイン酸を炭素源としても3HH分率4モル%のP(3HB-co-3HH)を70重量%で蓄積した。野性株であるH16株はこの条件下でポリ(3-ヒドロキシブチレート)ホモポリマーのみを合成した。

〔0080〕なお、アエロモナス・キャビエFA440株では、バルミチン酸を炭素源として8重量%のP(3HB-co-3HH)を蓄積することが報告されている(特開平7-265065号公報)。本発明においてはオクタン酸を炭素源として96重量%のP(3HB-co-3HH)が、また極めて安価である植物油を炭素源として76~81重量%のP(3HB-c-

o-3HH)が蓄積されることから、公報記載の方法と比較すると、本実施例で使用した形質転換体によるP(3HB-co-3HH)合成法は極めて優れた方法であると言える。

〔0081〕ヘプタン酸を炭素源とした場合、表2に示すようにアルカリゲネス・ユートロファス野生株であるH16株ではポリ(3-ヒドロキシブチレート-3-ヒドロキシバリレート)共重合体(P(3HB-co-3HV))を合成する。これはH16株の有するポリエステル重合酵素は炭素数7の3HHP(3-ヒドロキシヘプタノエート)

を基質としないためである。PHB-4株にアエロモナス・キャビエ由来のポリエステル重合酵素遺伝子を含むEE32断片を導入したAC32株では3HHP分率5モル%のポリ(3-ヒドロキシブチレート-3-ヒドロキシバリレート-3-ヒドロキシヘプタノエート)三元共重合体(P(3HB-co-3HV-co-3HHP))を乾燥菌体重量あたり7重量%蓄積した。

〔0082〕さらに、AC321株、AC323株、AC3213株では3HHP分率2~8モル%のP(3HB-co-3HV-co-3HHP)を40~67重量%蓄積し、ORF1遺伝子、ORF3遺伝子、あるいはその両方を欠失させることでポリエステル収率が著しく改善された(表3)。

〔0083〕これらの結果から、アエロモナス・キャビエ由来のポリエステル重合酵素は炭素数4~7の3-ヒドロキシアルカン酸をモノマーエニットとする共重合ポリエステルを合成することができると言える。

〔0084〕〔実施例4〕ORF3の機能同定
EE32断片を鋳型として、PCR法によってORF3遺伝子を增幅し、発現プラスミドPET-3a(ノバジエン社製)のT7プロモータ下流に挿入した。PCRは

40 5'-CCCATATGAGCCCACAATCCCTGGAAAGTAG-3' (配列番号13) および 5'-CTCGGATCCCCGGTCTTAAGCCACCTTC-3' (配列番号14) をプライマーとして、95°Cで60秒、68°Cで30秒の反応を1サイクルとして25サイクル行った。得られたプラスミドを用いて大腸菌BL21(DE3)株(ノバジエン社製)を形質転換した。得られた形質転換体を以下、NB3株とする。

〔0085〕NB3株を100mlのLB培地で30°C、4時間培養し、イソプロピルチオガラクトビラノシド(IPTG)を最終濃度0.4mMとなるように添加して発現を誘導し、さらに30°Cで2時間培養した。菌体を遠心分離によ

って回収した後、超音波破碎、遠心分離によって可溶性タンパク画分を得た。表4に示すように、発現プラスミドを導入した菌体の可溶性画分には高いエノイル-CoAヒドラターゼ活性が検出された。

【0086】

【表4】

表4 可溶性タンパク画分のエノイル-CoAヒドラターゼ活性
(ユニット/mgタンパク)

大腸菌BL21(DE3) 株/PET-3a	0
大腸菌NB3 株	1700

【0087】エノイル-CoAヒドラターゼ活性はクロトニル-CoA(シグマ社製)を基質とし(濃度0.25mM)、2重結合の水和に伴う吸光度変化(263nm)を測定することにより求めた。一方、ORF3遺伝子を挿入していないコントロールプラスミドPET-3aを導入した大腸菌株では活性はまったく検出されなかった。

【0088】そこで、エノイル-CoAヒドラターゼタンパクの精製を行った。NB3株の可溶性タンパク画分をQ-セファロース陰イオン交換カラム(ファルマシア※)【表5】

表5 エノイル-CoAヒドラターゼ活性
(ユニット/mgタンパク)

大腸菌NB3株可溶性タンパク画分 陰イオン交換カラム溶出画分	1700
	5100

【0090】得られた精製エノイル-CoAヒドラターゼタンパクのN末端アミノ酸配列を決定したところ、表6に示すように開始コドンであるMet以外のアミノ酸配列は、ORF3遺伝子の塩基配列から推定したアミノ酸☆

表6 アミノ酸配列の比較

精製エノイル-CoAヒドラターゼ N-末端アミノ酸配列: ORF3塩基配列から の推定アミノ酸配列:	SAQSLEVGQKARLSKRGAA (配列番号15) MSAQSLLEVQKARLSKRGAA (配列番号16)
---	---

【0092】このことから、ORF3がエノイル-CoAヒドラターゼをコードしていることが確認できた。Metは翻訳後修飾によって脱離したものと考えられる。また、ORF3にコードされるエノイル-CoAヒドラターゼの立体特異性について以下のように検討した。

【0093】活性測定の反応溶液に(S)-3-ヒドロキシブチリル-CoAデヒドロゲナーゼ(シグマ社製)(最終濃度0.2 ユニット/ml)と酸化型ニコチンアミドアデニジヌクレオチド(NAD+)(最終濃度0.5mM)を添加すると、エノイル-CoAヒドラターゼの特異性が(S)-体特異的であれば、生成した(S)-3-ヒドロキシブチリル-CoAはデヒドロゲナーゼの作用によってアセトアセチル-CoAに酸化される。それ☆

30☆に伴ってNAD+は還元されてNADHが生成し、340nmに特異的な吸収を生じる。逆にエノイル-CoAヒドラターゼが(R)-体特異的であれば、NADHは生成しない。

【0094】表7に示すように、ORF3にコードされるエノイル-CoAヒドラターゼを用いた場合では、340nmの吸光度変化はエノイル-CoAヒドラターゼ無添加の場合とはほとんど同じであったが、市販の(S)-特異的エノイル-CoAヒドラターゼ(シグマ社製)を用いた場合では、NADHの生成に伴う吸光度変化が見られた。

【0095】

【表7】

表7 1分後の340nmにおける吸光度変化

エノイル-CoAヒドラターゼ無添加	0.045
ORF3由来エノイル-CoAヒドラターゼ	0.047
(S)-体特異的エノイル-CoAヒドラターゼ (シグマ社製)	0.146

【0096】この結果から、精製エノイル-CoAヒドラターゼは(R)-体特異的であることが明らかとなつた。従って、ORF3は(R)-体特異的エノイル-

CoAヒドラターゼをコードしていることが分かった。

【0097】

【発明の効果】本発明により、ポリエステル重合酵素遺

伝子、該遺伝子を含む組換えベクター、該組換えベクターを含む形質転換体及びポリエステルの製造方法が提供される。本発明の遺伝子は、炭素数4~7の3-ヒドロキシアルカン酸をモノマーユニットとする共重合ポリエステルを合成することが可能なポリエステル重合酵素をコードしている点で、また、本発明の製造方法は、熱安定性や成形性に優れた生分解性プラスチックであるP(3HB-co-3HH)を効率よく合成可能である点で有用である。

* (0098)

〔配列〕

配列番号：1

配列の長さ：1785

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：genomic DNA

配列：

ATG ACC CAA CCA TCT TAT CCC CCG CTG TTC GAG CCC CTG CCC CAC TAC	48
Met Ser Gln Pro Ser Tyr Gly Pro Leu Phe Glu Ala Leu Ala His Tyr	
1 5 10 15	
AAT GAC AAC CTG CTG GCC ATG GCC AAG CCC CAG ACA GAG CCC ACC CCC	96
Asn Asp Lys Leu Leu Ala Met Ala Lys Ala Gln Thr Glu Arg Thr Ala	
20 25 30	
CAG CGG CTG CTG CAG ACC AAT CTG GAC GAT CTG CCC CAG GTC CTG GAG	144
Gln Ala Leu Leu Gln Thr Asn Leu Asp Asp Leu Gly Gln Val Leu Glu	
35 40 45	
CAG GCC ACC CAG CAA CCC TCG CAG CTG ATC CAG CCC CAG ATG AAC TCG	192
Gln Gly Ser Gln Gln Pro Trp Gln Leu Ile Gln Ala Gln Met Asn Trp	
50 55 60	
TGG CAG GAT CAG CTC AAG CTG ATG CAG CAC ACC CTG CTC AAA ACC CCA	240
Trp Gln Asp Gln Leu Lys Leu Met Gln His Thr Leu Leu Lys Ser Ala	
65 70 75 80	
CCC CAG CCG AGC GAG CCG GTG ATC ACC CCG CAG CCC ACC GAT CCC CCC	288
Gly Gln Pro Ser Glu Pro Val Ile Thr Pro Glu Arg Ser Asp Arg Arg	
85 90 95	
TTC AAG CCC GAG CCC TCG ACC GAA CAA CCC ATC TAT GAC TAC CTC AAG	336
Phe Lys Ala Glu Ala Trp Ser Glu Gln Pro Ile Tyr Asp Tyr Leu Lys	
100 105 110	
CAG TCC TAC CTG CTC ACC CCC AGG CAC CTG CTG CCC TCG GTC GAT CCC	384
Gln Ser Tyr Leu Leu Thr Ala Arg His Leu Leu Ala Ser Val Asp Ala	
115 120 125	
CTG GAG CCC GTC CCC CAG AAG AGC CGG GAG CGG CTG CGT TTC TTC ACC	432
Leu Glu Gly Val Pro Gln Lys Ser Arg Glu Arg Leu Arg Phe Phe Thr	
130 135 140	
CCC CAG TAC GTC AAC CCC ATG GCC CCC AGC AAC TTC CTG CCC ACC AAC	480
Arg Gln Tyr Val Asn Ala Met Ala Pro Ser Asn Phe Leu Ala Thr Asn	
145 150 155 160	
CCC GAG CTG CTC AAC CTG ACC CTG GAG TCC GAC CCC CAG AAC CTG GTG	528
Pro Glu Leu Lys Leu Thr Leu Glu Ser Asp Gly Gln Asn Leu Val	
165 170 175	
CCC CGA CTG CCC CTC TTG CCC GAG GAT CTG GAG CCC ACC CCC GAT CAG	576
Arg Gly Leu Ala Leu Leu Ala Glu Asp Leu Glu Arg Ser Ala Asp Gln	
180 185 190	
CTC AAC ATC CCC CTG ACC GAC GAA TCC CCC TTC CAG CTC CCC CCC GAT	624
Leu Asn Ile Arg Leu Thr Asp Glu Ser Ala Phe Glu Leu Gly Arg Asp	
195 200 205	
CTG CCC CTG ACC CCG CGC CGG CTG CAG CCC ACC GAG CTC TAT CAG	672
Leu Ala Leu Thr Pro Gly Arg Val Val Gln Arg Thr Glu Leu Tyr Glu	

21

22

210	215	220	
CTC ATT CAG TAC AGC CCG ACT ACC GAG AGC GTG CCC AAG ACA CCT GTG			
Leu Ile Gln Tyr Ser Pro Thr Thr Glu Thr Val Lys Thr Pro Val			
225	230	235	240
CTG ATA GTG CCG CCC TTC ATC AAC AAG TAC TAC ATC ATG GAC ATG CCG			
Leu Ile Val Pro Pro Phe Ile Asn Lys Tyr Tyr Ile Met Asp Met Arg			
245	250	255	
CCC CAG AAC TCC CTG GTC GCC TGG CTG GTC CCC CAG GCC CAG ACG GTA			
Pro Gln Asn Ser Leu Val Ala Trp Leu Val Ala Gln Gly Gln Thr Val			
260	265	270	
TTC ATG ATC TCC TGG CGC AAC CCG GGC GTG CCC CAG GCC CAA ATC CAT			
Phe Met Ile Ser Trp Arg Asn Pro Gly Val Ala Gln Ala Gln Ile Asp			
275	280	285	
CTC GAC GAC TAC GTG GTG GAT GCC GTC ATC CCC GCC CTG GAC CCC GTG			
Leu Asp Asp Tyr Val Val Asp Gly Val Ile Ala Ala Leu Asp Gly Val			
290	295	300	
GAG GCG GCC ACC GCG GAG CCG GAG GTG CAC CCC ATC GGC TAC TGC ATC			
Glu Ala Ala Thr Gly Glu Arg Glu Val His Gly Ile Gly Tyr Cys Ile			
305	310	315	320
GCC GCC ACC CCC CTG TCG CTC GCC ATG GGC TGG CTG CCC CGG CGC CCC			
Gly Gly Thr Ala Leu Ser Leu Ala Met Gly Trp Leu Ala Ala Arg Arg			
325	330	335	
CAG AAG CAG CGG GTG CGC ACC CCC ACC CTG TTC ACT ACC CTG CTG GAC			
Gln Lys Gln Arg Val Arg Thr Ala Thr Leu Phe Thr Thr Leu Leu Asp			
340	345	350	
TTC TCC CAG CCC CGG GAG CTT CCC ATC TTC ATC CAC GAG CCC ATC ATA			
Phe Ser Gln Pro Gly Glu Leu Gly Ile Phe Ile His Glu Pro Ile Ile			
355	360	365	
CCG CGG CTC GAG CGG CAA AAT GAG CCC AAG CGC ATC ATG GAC CCC CCC			
Ala Ala Leu Glu Ala Gln Asn Glu Ala Lys Gly Ile Met Asp Gly Arg			
370	375	380	
CAG CTG GCG GTC TCC TTC ACC CTG CTG CGG CAG AAC ACC CTC TAC TCG			
Gln Leu Ala Val Ser Phe Ser Leu Leu Arg Glu Asn Ser Leu Tyr Trp			
385	390	395	400
AAC TAC TAC ATC GAC ACC TAC CTC AAG GGT CAG ACC CGG GTG CCC TTC			
Asn Tyr Tyr Ile Asp Ser Tyr Leu Lys Gly Gln Ser Pro Val Ala Phe			
405	410	415	
CAT CTG CTG CAC TGG AAC ACC GAC ACC ACC AAT GTG CGG CCC AAG ACC			
Asp Leu Leu His Trp Asn Ser Asp Ser Thr Asn Val Ala Gly Lys Thr			
420	425	430	
CAC AAC ACC CTG CTG CGC CGT CTC TAC CTG CAG AAC CAG CTG GTG AAG			
His Asn Ser Leu Leu Arg Arg Leu Tyr Leu Glu Asn Gln Leu Val Lys			
435	440	445	
CGG GAG CTC AAG ATC CGC AAC ACC CGC ATC GAT CTC CCC AAG GTG AAG			
Gly Glu Leu Lys Ile Arg Asn Thr Arg Ile Asp Leu Gly Lys Val Lys			
450	455	460	
ACC CCT GTG CTG CTG GTG TCG CGG GTG GAC GAT CAC ATC CCC CTC TCG			
Thr Pro Val Leu Leu Val Ser Ala Val Asp Asp His Ile Ala Leu Trp			
465	470	475	480
CAG CCC ACC TGG CAG CCC ATG AAG CTG TTT CCC CGG GAG CGC CCC TTC			
1488			

23

24

Gln Gly Thr Trp Gln Gly Met Lys Leu Phe Gly Gly Glu Gln Arg Phe
 485 490 495
 CTC CTG CGG GAG TCC CCC CAC ATC GCC CCC ATC ATC AAC CCG CCG CCC 1536
 Leu Leu Ala Glu Ser Gly His Ile Ala Gly Ile Ile Asn Pro Pro Ala
 500 505 510
 CCC AAC AAG TAC GGC TTC TCG CAC AAC GGG CCC CAG CCC GAG AGC CCG 1584
 Ala Asn Lys Tyr Gly Phe Trp His Asn Gly Ala Glu Ala Glu Ser Pro
 515 520 525
 GAG ACC TGG CTG GCA CGG CGG ACC CAC CAG CCC CCC TCC TCG TCG CCC 1632
 Glu Ser Trp Leu Ala Gly Ala Thr His Gln Gly Gly Ser Trp Trp Pro
 530 535 540
 GAG ATG ATG CGC TTT ATC CAG AAC CGT GAC GAA GGG TCA GAG CCC GTC 1680
 Glu Met Met Gly Phe Ile Gln Asn Arg Asp Glu Gly Ser Glu Pro Val
 545 550 555 560
 CCC CGG CGG GTC CCG GAG GAA GGG CTG CCC CCC CCC CCC CAC TAT 1728
 Pro Ala Arg Val Pro Glu Glu Gly Leu Ala Pro Ala Pro Gly His Tyr
 565 570 575
 GTC AAG GTC CGG CTC AAC CCC CTG TTT CCC TCC CCA ACA CAG GAG CAC 1776
 Val Lys Val Arg Leu Asn Pro Val Phe Ala Cys Pro Thr Glu Glu Asp
 580 585 590
 CCC CCA TGA
 Ala Ala 1785

【0099】配列番号：2

配列の長さ：594

配列の型：アミノ酸

* トボロジー：直鎖状

配列の種類：タンパク質

*

配列：

Met Ser Gln Pro Ser Tyr Gly Pro Leu Phe Glu Ala Leu Ala His Tyr
 1 5 10 15
 Asn Asp Lys Leu Leu Ala Met Ala Lys Ala Gln Thr Glu Arg Thr Ala
 20 25 30
 Gln Ala Leu Leu Gln Thr Asn Leu Asp Asp Leu Gly Gln Val Leu Glu
 35 40 45
 Gln Gly Ser Gln Gln Pro Trp Gln Leu Ile Gln Ala Gln Met Asn Trp
 50 55 60
 Trp Gln Asp Gln Leu Lys Leu Met Gln His Thr Leu Leu Lys Ser Ala
 65 70 75 80
 Gly Gln Pro Ser Glu Pro Val Ile Thr Pro Glu Arg Ser Asp Arg Arg
 85 90 95
 Phe Lys Ala Glu Ala Trp Ser Glu Gln Pro Ile Tyr Asp Tyr Leu Lys
 100 105 110
 Gln Ser Tyr Leu Leu Thr Ala Arg His Leu Leu Ala Ser Val Asp Ala
 115 120 125
 Leu Glu Gly Val Pro Gln Lys Ser Arg Glu Arg Leu Arg Phe Phe Thr
 130 135 140
 Arg Gln Tyr Val Asn Ala Met Ala Pro Ser Asn Phe Leu Ala Thr Asn
 145 150 155 160
 Pro Glu Leu Leu Lys Leu Thr Leu Glu Ser Asp Gly Gln Asn Leu Val
 165 170 175
 Arg Gly Leu Ala Leu Leu Ala Glu Asp Leu Glu Arg Ser Ala Asp Gln
 180 185 190

25

26

Leu Asn Ile Arg Leu Thr Asp Glu Ser Ala Phe Glu Leu Gly Arg Asp
 195 200 205
 Leu Ala Leu Thr Pro Gly Arg Val Val Gln Arg Thr Glu Leu Tyr Glu
 210 215 220
 Leu Ile Gln Tyr Ser Pro Thr Thr Glu Thr Val Gly Lys Thr Pro Val
 225 230 235 240
 Leu Ile Val Pro Pro Phe Ile Asn Lys Tyr Tyr Ile Met Asp Met Arg
 245 250 255
 Pro Gln Asn Ser Leu Val Ala Trp Leu Val Ala Gln Gly Gln Thr Val
 260 265 270
 Phe Met Ile Ser Trp Arg Asn Pro Gly Val Ala Gln Ala Gln Ile Asp
 275 280 285
 Leu Asp Asp Tyr Val Val Asp Gly Val Ile Ala Ala Leu Asp Gly Val
 290 295 300
 Glu Ala Ala Thr Gly Glu Arg Gln Val His Gly Ile Gly Tyr Cys Ile
 305 310 315 320
 Gly Gly Thr Ala Leu Ser Leu Ala Met Gly Trp Leu Ala Ala Arg Arg
 325 330 335
 Gln Lys Gln Arg Val Arg Thr Ala Thr Leu Phe Thr Thr Leu Leu Asp
 340 345 350
 Phe Ser Gln Pro Gly Glu Leu Gly Ile Phe Ile His Glu Pro Ile Ile
 355 360 365
 Ala Ala Leu Glu Ala Gln Asn Glu Ala Lys Gly Ile Met Asp Gly Arg
 370 375 380
 Gln Leu Ala Val Ser Phe Ser Leu Leu Arg Glu Asn Ser Leu Tyr Trp
 385 390 395 400
 Asn Tyr Tyr Ile Asp Ser Tyr Leu Lys Gly Gln Ser Pro Val Ala Phe
 405 410 415
 Asp Leu Leu His Trp Asn Ser Asp Ser Thr Asn Val Ala Gly Lys Thr
 420 425 430
 His Asn Ser Leu Leu Arg Arg Leu Tyr Leu Glu Asn Gln Leu Val Lys
 435 440 445
 Gly Glu Leu Lys Ile Arg Asn Thr Arg Ile Asp Leu Gly Lys Val Lys
 450 455 460
 Thr Pro Val Leu Leu Val Ser Ala Val Asp Asp His Ile Ala Leu Trp
 465 470 475 480
 Gln Gly Thr Trp Gln Gly Met Lys Leu Phe Gly Gly Glu Gln Arg Phe
 485 490 495
 Leu Leu Ala Glu Ser Gly His Ile Ala Gly Ile Ile Asn Pro Pro Ala
 500 505 510
 Ala Asn Lys Tyr Gly Phe Trp His Asn Gly Ala Glu Ala Glu Ser Pro
 515 520 525
 Glu Ser Trp Leu Ala Gly Ala Thr His Gln Gly Gly Ser Trp Trp Pro
 530 535 540
 Glu Met Met Gly Phe Ile Gln Asn Arg Asp Glu Gly Ser Glu Pro Val
 545 550 555 560
 Pro Ala Arg Val Pro Glu Glu Gly Leu Ala Pro Ala Pro Gly His Tyr
 565 570 575
 Val Lys Val Arg Leu Asn Pro Val Phe Ala Cys Pro Thr Glu Glu Asp
 580 585 590

Ala Ala

〔0100〕配列番号：3

配列の長さ：354

配列の型：核酸

＊鎖の数：二本鎖

トポロジー：直鎖状

＊ 配列の種類：genomic DNA

配列：

ATG	ATG	AAT	ATG	GAC	GTG	ATC	AAG	AGC	TTT	ACC	GAG	CAG	ATG	CAA	CCC	48
Met	Met	Asn	Met	Asp	Val	Ile	Lys	Ser	Phe	Thr	Glu	Gln	Met	Gln	Gly	
1									5	10			15			
TTC	GCC	GCC	CCC	CTC	ACC	CCC	TAC	AAC	CAG	CTG	CTG	CCC	AGC	AAC	ATC	96
Phe	Ala	Ala	Pro	Leu	Thr	Arg	Tyr									
Gln	Leu	Leu	Ala	Ser	Asn	Ile										
GAA	CAG	CTG	ACC	CGG	TTG	CAG	CTG									
TCC	GCC	AAC	GCC	TAC	GCC	GAA										144
Glu	Gln	Leu	Thr	Arg	Leu	Gln	Leu									
Ser	Ala	Asn	Ala	Tyr	Ala	Glu										
35																40
CTG	GGC	CTC	AAC	CAG	TTG	CAG	GCC									
AGC	AAG	GTG	CAG	GAC	ACC	CAG										192
Leu	Gly	Leu	Asn	Gln	Leu	Gln	Ala									
Ser	Lys	Val	Gln	Asp	Thr	Gln										
50																55
AGC	CTG	GCG	GCC	CTG	GGC	ACA	GTG	CAA								
CTG	GAG	ACC	GCC	AGC	CAG	CTC										240
Ser	Leu	Ala	Ala	Leu	Gly	Thr	Val	Gln								
Leu	Glu	Thr	Ala	Ser	Gln	Leu										
65																70
TCC	CGC	CAG	ATG	CTG	GAT	GAC	ATC	CAG								
AAG	CTG	AGC	GCC	CTC	GGC	CAG										288
Ser	Arg	Gln	Met	Leu	Asp	Asp	Ile	Gln								
Lys	Leu	Ser	Ala	Leu	Gly	Gln										
85																
CAG	TTC	AAG	GAA	GAG	CTG	GAT	GTC	CTG								
ACC	GCA	GAC	GGC	ATC	AAG	AAA										336
Gln	Phe	Lys	Glu	Glu	Leu	Asp	Val	Leu								
Thr	Ala	Asp	Gly	Ile	Lys	Lys										
100																105
AGC	ACG	GGC	AAG	GCC	TGA											
Ser	Thr	Gly	Lys	Ala												354
115																

〔0101〕配列番号：4

配列の長さ：117

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：タンパク質

29

30

配列:

Met	Met	Asn	Met	Asp	Val	Ile	Lys	Ser
Phe	Thr	Glu	Gln	Met	Gln	Gly		
1				5				
10					15			
Phe	Ala	Ala	Pro	Leu	Thr	Arg	Tyr	Asn
Gln	Leu	Leu	Ala	Ser	Asn	Ile		
				20			25	
Glu	Gln	Leu	Thr	Arg	Leu	Gln	Leu	Ala
Ser	Ala	Asn	Ala	Tyr	Ala	Glu		
				35			40	
Leu	Gly	Leu	Asn	Gln	Leu	Gln	Ala	Val
Ser	Lys	Val	Gln	Asp	Thr	Gln		
		50			55			
Ser	Leu	Ala	Ala	Leu	Gly	Thr	Val	Gln
Leu	Glu	Thr	Ala	Ser	Gln	Leu		
	65			70				
Ser	Arg	Gln	Met	Leu	Asp	Asp	Ile	Gln
Lys	Leu	Ser	Ala	Leu	Gly	Gln		
				85				
Gln	Phe	Lys	Glu	Glu	Leu	Asp	Val	Leu
Thr	Ala	Asp	Gly	Ile	Lys	Lys		
				100			105	
Ser	Thr	Gly	Lys	Ala				
				115				

[0102] 配列番号: 5

* 鎮の数: 二本鎮

配列の長さ: 405

トボロジー: 直鎮状

配列の型: 核酸

* 配列の種類: genomic DNA

配列:

ATG	AGC	GCA	CAA	TCC	CTG	GAA	GTA	GGC
CAG	AAG	GCC	CGT	CTC	AGC	AAG		48
Met	Ser	Ala	Gln	Ser	Leu	Glu	Val	Gly
Gln	Lys	Ala	Arg	Leu	Ser	Lys		
1				5				
10					15			
CGG	TTC	GGG	GCG	GCG	GAG	GTA	GCC	GCC
TTC	GCC	GCG	CTC	TCG	GAG	GAC		96
Arg	Phe	Gly	Ala	Ala	Glu	Val	Ala	Ala
Phe	Ala	Ala	Leu	Ser	Glu	Asp		
				20			25	
TTC	AAC	CCC	CTG	CAC	CTG	GAC	CCG	GCC
TTC	GCC	GCC	ACC	ACG	GCG	TTC		144
Phe	Asn	Pro	Leu	His	Leu	Asp	Pro	Ala
					30			

31

32

Phe	Ala	Ala	Thr	Thr	Ala	Phe	
			35				40
				45			
GAG	CGG	CCC	ATA	GTC	CAC	GGC	ATG CTG
CTC	GCC	AGC	CTC	TTC	TCC	GGG	192
Glu	Arg	Pro	Ile	Val	His	Gly	Met Leu
Leu	Ala	Ser	Leu	Phe	Ser	Gly	
			50			55	
				60			
CTG	CTG	GGC	CAG	CAG	TTG	CCG	GGC AAG
GGG	AGC	ATC	TAT	CTG	GGT	CAA	240
Leu	Leu	Gly	Gln	Gln	Leu	Pro	Gly Lys
Gly	Ser	Ile	Tyr	Leu	Gly	Gln	
		65			70		
				75		80	
AGC	CTC	AGC	TTC	AAG	CTG	CCG	GTC TTT
GTC	GGG	GAC	GAG	GTG	ACG	GCC	288
Ser	Leu	Ser	Phe	Lys	Leu	Pro	Val Phe
Val	Gly	Asp	Glu	Val	Thr	Ala	
				85			
		90			95		
GAG	GTG	GAG	GTG	ACC	GCC	CTT	CGC GAG
GAC	AAG	CCC	ATC	GCC	ACC	CTG	336
Glu	Val	Glu	Val	Thr	Ala	Leu	Arg Glu
Asp	Lys	Pro	Ile	Ala	Thr	Leu	
				100		105	
					110		
ACC	ACC	CGC	ATC	TTC	ACC	CAA	GGC GGC
GCC	CTC	GCC	GTG	ACG	GGG	GAA	384
Thr	Thr	Arg	Ile	Phe	Thr	Gln	Gly Gly
Ala	Leu	Ala	Val	Thr	Gly	Glu	
			115			120	
				125			
GCC	GTG	GTC	AAG	CTG	CCT	TAA	
						405	
Ala	Val	Val	Lys	Leu	Pro		
			130				

[0103]配列番号: 6

*トポロジー: 直鎖状

配列の長さ: 134

配列の種類: タンパク質

配列の型: アミノ酸

*40

配列:

Met	Ser	Ala	Gln	Ser	Leu	Glu	Val	Gly
Gln	Lys	Ala	Arg	Leu	Ser	Lys		
1				5				
10					15			
Arg	Phe	Gly	Ala	Ala	Glu	Val	Ala	Ala
Phe	Ala	Ala	Leu	Ser	Glu	Asp		
			20				25	
				30				
Phe	Asn	Pro	Leu	His	Leu	Asp	Pro	Ala

33

34

Phe	Ala	Ala	Thr	Thr	Ala	Phe		
			35				40	
			45					
Glu	Arg	Pro	Ile	Val	His	Gly	Met	Leu
Leu	Ala	Ser	Leu	Phe	Ser	Gly		
			50				55	
			60					
Leu	Leu	Gly	Gln	Gln	Leu	Pro	Gly	Lys
Gly	Ser	Ile	Tyr	Leu	Gly	Gln		
		65			70			
		75			80			
Ser	Leu	Ser	Phe	Lys	Leu	Pro	Val	Phe
Val	Gly	Asp	Glu	Val	Thr	Ala		
			85					
		90			95			
Glu	Val	Glu	Val	Thr	Ala	Leu	Arg	Glu
Asp	Lys	Pro	Ile	Ala	Thr	Leu		
			100				105	
			110					
Thr	Thr	Arg	Ile	Phe	Thr	Gln	Gly	Gly
Ala	Leu	Ala	Val	Thr	Gly	Glu		
		115			120			
		125						
Ala	Val	Val	Lys	Leu	Pro			
		130						

〔0104〕配列番号：7

配列の長さ：27

配列の型：核酸

配列：

CCSCCSTGGA TCAAYAAGTW YTAYATC

27

＊鎖の数：一本鎖

トポロジー：直鎖状

＊ 配列の種類：他の核酸（合成DNA）

〔0105〕配列番号：8

配列の長さ：27

配列の型：核酸

配列：

SACCCASGCCS GTCCARTCSG CCCACCA

27

＊鎖の数：一本鎖

トポロジー：直鎖状

＊ 配列の種類：他の核酸（合成DNA）

〔0106〕配列番号：9

配列の長さ：3187

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：genomic DNA

配列：

AGATCTGGAC CGGGGTGCTG CCCTGGGCCA CCGCGGGAG CGCCACCCG CACCAACCGA 60

CCACCAAGGG GAGACGTTTC ATCCGGATTTC CTTCGGAGTC TCAATGACCT CCCACCCCTAT 120

CACCGGCCCCG CCGGTGCGCCG GACGGGGCCC CGGACCCAGT CGGTCACTCTC TCGTCTGATC 180

CCCTCTCTC GACGGGGCTC GCTCACAAAA AAATTCAAAC AGAAATTAAAC ATTATATGTC 240

TTTACACCAA ACCGCATTTC GTTCCAGAAT GCTCAAACGT GTGTTTCAAC AGACCAACCA 300

ACACGTAAAC ACGGATGACA TCCAGTACCC GTAAGAAGGG CCCATTGCC CACAACAACA 360

CTGTTCTCCC GAACTCGAGA CGC ATG ATG AAT ATG GAC GTG ATC AAG ACC 410

Met Met Asn Met Asp Val Ile Lys Ser

1 5

TTT ACC GAG CAG ATG CAA GCC TTC GCC CCC CTC ACC CCC TAC AAC 458
 Phe Thr Glu Gln Met Gln Gly Phe Ala Ala Pro Leu Thr Arg Tyr Asn
 10 15 20 25
 CAG CTG CTG CCC AGC AAC ATC GAA CAG CTG ACC CCG TTG CAG CTG CCC 506
 Gln Leu Leu Ala Ser Asn Ile Glu Gln Leu Thr Arg Leu Gln Leu Ala
 30 35 40
 TCC GCC AAC CCC TAC CCC GAA CTG CCC CTC AAC CAG TTG CAG GCC GTG 554
 Ser Ala Asn Ala Tyr Ala Glu Leu Gly Leu Asn Gln Leu Gln Ala Val
 45 50 55
 ACC AAC GTG CAG GAC ACC CAG ACC CTG CCC CCC CTG CCC ACA GTG CAA 602
 Ser Lys Val Gln Asp Thr Gln Ser Leu Ala Ala Leu Gly Thr Val Gln
 60 65 70
 CTG GAG ACC CCC ACC CAG CTC TCC CCC CAG ATG CTG GAT GAC ATC CAG 650
 Leu Glu Thr Ala Ser Gln Leu Ser Arg Gln Met Leu Asp Asp Ile Gln
 75 80 85
 AAG CTG ACC CCC CTC CCC CAG CAG TTC AAG GAA GAG CTG GAT GTC CTG 698
 Lys Leu Ser Ala Leu Gly Gln Gln Phe Lys Glu Glu Leu Asp Val Leu
 90 95 100 105
 ACC GCA GAC CCC ATC AAG AAA ACC ACG CCC AAG GCC TGATAACCCC 744
 Thr Ala Asp Gly Ile Lys Lys Ser Thr Gly Lys Ala
 110 115
 TGGCTCCCCG TTCCCCCAGC CACATCTCCC CATCACTCGA CCCTACCCGC TAGTTCCCGC 804
 CTCCGGTGTG CGTGAAGGAG ACCAC ATG AGC CAA CCA TCT TAT GGC CCG CTG 856
 Met Ser Gln Pro Ser Tyr Gly Pro Leu
 1 5
 TTC GAG GCC CTG CCC CAC TAC AAT GAC AAG CTG CTG CCC ATG GCC AAG 904
 Phe Glu Ala Leu Ala His Tyr Asn Asp Lys Leu Leu Ala Met Ala Lys
 10 15 20 25
 CCC CAG ACA GAG CCC ACC CCC CAG CCC CTG CTG CAG ACC AAT CTG GAC 952
 Ala Gln Thr Glu Arg Thr Ala Gln Ala Leu Leu Gln Thr Asn Leu Asp
 30 35 40
 CAT CTG CCC CAG GTG CTG CAG CCC ACC CAG CAA CCC TCG CAG CTG 1000
 Asp Leu Gly Gln Val Leu Glu Gln Gly Ser Gln Gln Pro Trp Gln Leu
 45 50 55
 ATC CAG GCC CAG ATG AAC TCG TCG CAG GAT CAG CTC AAG CTG ATG CAG 1048
 Ile Gln Ala Gln Met Asn Trp Trp Gln Asp Gln Leu Lys Leu Met Gln
 60 65 70
 CAC ACC CTG CTC AAA ACC GCA CCC CAG CCC ACC GAG CCC CTG ATC ACC 1096
 His Thr Leu Leu Lys Ser Ala Gly Gln Pro Ser Glu Pro Val Ile Thr
 75 80 85
 CCG GAG CCC AGC GAT CCC CCC TTC AAG GCC GAG CCC TCG ACC GAA CAA 1144
 Pro Glu Arg Ser Asp Arg Arg Phe Lys Ala Glu Ala Trp Ser Glu Gln
 90 95 100 105
 CCC ATC TAT GAC TAC CTC AAG CAG TCC TAC CTG CTC ACC CCC ACC CAG 1192
 Pro Ile Tyr Asp Tyr Leu Lys Gln Ser Tyr Leu Leu Thr Ala Arg His
 110 115 120
 CTG CTG CCC TCG GTG GAT CCC CTG GAG CCC GTC CCC CAG AAG ACC CCC 1240
 Leu Leu Ala Ser Val Asp Ala Leu Glu Gly Val Pro Gln Lys Ser Arg
 125 130 135

37

38

CAG CGG CTG CGT TTC ACC CCC CAG TAC GTC AAC GCC ATG CCC CCC 1288
 Glu Arg Leu Arg Phe Phe Thr Arg Gln Tyr Val Asn Ala Met Ala Pro
 140 145 150

AGC AAC TTC CTG CCC ACC AAC CCC GAG CTG CTC AAG CTG ACC CTG GAG 1336
 Ser Asn Phe Leu Ala Thr Asn Pro Glu Leu Leu Lys Leu Thr Leu Glu
 155 160 165

TCC GAC GGC CAG AAC CTG GTG CCC GGA CTG CCC CTC TTG CCC CAG GAT 1384
 Ser Asp Gly Gln Asn Leu Val Arg Gly Leu Ala Leu Leu Ala Glu Asp
 170 175 180 185

CTG GAG CGC AGC CCC GAT CAG CTC AAC ATC CCC CTG ACC GAC GAA TCC 1432
 Leu Glu Arg Ser Ala Asp Gln Leu Asn Ile Arg Leu Thr Asp Glu Ser
 190 195 200

CCC TTC GAG CTC CGG CGG GAT CTG GCC CTG ACC CCC CCC GTG GTG 1480
 Ala Phe Glu Leu Gly Arg Asp Leu Ala Leu Thr Pro Gly Arg Val Val
 205 210 215

CAG CCC ACC GAG CTC TAT GAG CTC ATT CAG TAC ACC CCC ACT ACC GAG 1528
 Gln Arg Thr Glu Leu Tyr Glu Leu Ile Gln Tyr Ser Pro Thr Thr Glu
 220 225 230

ACG GTG GCC AAG ACA CCT GTG CTG ATA GTG CCC CCC TTC ATC AAC AAG 1576
 Thr Val Gly Lys Thr Pro Val Leu Ile Val Pro Pro Phe Ile Asn Lys
 235 240 245

TAC TAC ATC ATG GAC ATG CCC CAG AAC TCC CTG GTC CCC TCG CTG 1624
 Tyr Tyr Ile Met Asp Met Arg Pro Pro Gln Asn Ser Leu Val Ala Trp Leu
 250 255 260 265

GTC CCC CAG CGC CAG ACC GTA TTC ATG ATC TCC TCG CCC AAC CCG CCC 1672
 Val Ala Gln Gly Gln Thr Val Phe Met Ile Ser Trp Arg Asn Pro Gly
 270 275 280

GTG CCC CAG CCC CAA ATC GAT CTC GAC GAC TAC GTG GTG GAT CCC GTC 1720
 Val Ala Gln Ala Gln Ile Asp Leu Asp Asp Tyr Val Val Asp Gly Val
 285 290 295

ATC GCC GCC CTG GAC CCC GTG GAG GCG CCC ACC CCC GAG CCC CAG GTC 1768
 Ile Ala Ala Leu Asp Gly Val Glu Ala Ala Thr Gly Glu Arg Glu Val
 300 305 310

CAC CCC ATC CCC TAC TCC ATC CCC GGC ACC CCC CTG TCC CTC CCC ATG 1816
 His Gly Ile Gly Tyr Cys Ile Gly Gly Thr Ala Leu Ser Leu Ala Met
 315 320 325

CCC TCG CTG CGG CGG CCC CAG AAG CAG CGG GTG CCC ACC CCC ACC 1864
 Gly Trp Leu Ala Ala Arg Arg Gln Lys Gln Arg Val Arg Thr Ala Thr
 330 335 340 345

CTG TTC ACT ACC CTG CTG GAC TTC TCC CAG CCC GCG GAG CTT CCC ATC 1912
 Leu Phe Thr Thr Leu Leu Asp Phe Ser Gln Pro Gly Glu Leu Gly Ile
 350 355 360

TTC ATC CAC GAG CCC ATC ATA GCG GCG CTC CAG CCC CAA AAT GAG CCC 1960
 Phe Ile His Glu Pro Ile Ile Ala Ala Leu Glu Ala Gln Asn Glu Ala
 365 370 375

AAG CCC ATC ATG GAC CGG CCC CAG CTG CCC GTC TCC TTC ACC CTG CTG 2008
 Lys Gly Ile Met Asp Gly Arg Gln Leu Ala Val Ser Phe Ser Leu Leu
 380 385 390

CCG GAG AAC ACC CTC TAC TCG AAC TAC TAC ATC CAC ACC TAC CTC AAC 2056
 Arg Glu Asn Ser Leu Tyr Trp Asn Tyr Tyr Ile Asp Ser Tyr Leu Lys

39

40

395	400	405	
CGT CAG AGC CCC GTG CCC TTC GAT CTG CTG CAC TCG AAC ACC GAC ACC Gly Gln Ser Pro Val Ala Phe Asp Leu Leu His Trp Asn Ser Asp Ser			
410	415	420	425
ACC AAT GTG GCG CCC AAG ACC CAC AAC ACC CTG CTG CGC CGT CTC TAC Thr Asn Val Ala Gly Lys Thr His Asn Ser Leu Leu Arg Arg Leu Tyr			
430	435	440	
CTG GAG AAC CAG CTG GTG AAG CGG GAG CTC AAG ATC CCC AAC ACC CCC Leu Glu Asn Gln Leu Val Lys Gly Glu Leu Lys Ile Arg Asn Thr Arg			
445	450	455	
ATC GAT CTC CGC AAG GTG AAG ACC CCT GTG CTG CTG TCG CGG CGC Ile Asp Leu Gly Lys Val Lys Thr Pro Val Leu Leu Val Ser Ala Val			
460	465	470	
CAC GAT CAC ATC CCC CTC TCG CAG CCC ACC TGG CAG CCC ATG AAG CTC Asp Asp His Ile Ala Leu Trp Gln Gly Thr Trp Gln Gly Met Lys Leu			
475	480	485	
TTT CGC CGG GAG CAG CCC TTC CTC CTG CGG GAG TCC CCC CAC ATC CCC Phe Gly Gly Glu Gln Arg Phe Leu Leu Ala Glu Ser Gly His Ile Ala			
490	495	500	505
CCC ATC ATC AAC CCG CCG CCC AAC AAG TAC CCC TTC TGG CAC AAC Gly Ile Ile Asn Pro Pro Ala Ala Asn Lys Tyr Gly Phe Trp His Asn			
510	515	520	
CGG CGC GAG CCC GAG ACC CCG GAG ACC TGG CTG CCA CGG CGG ACG CAC Gly Ala Glu Ala Glu Ser Pro Glu Ser Trp Leu Ala Gly Ala Thr His			
525	530	535	
CAG CGC CGC TCC TGG CCC GAG ATG ATG CGC TTT ATC CAG AAC CGT Gln Gly Gly Ser Trp Trp Pro Glu Met Met Gly Phe Ile Gln Asn Arg			
540	545	550	
GAC GAA CGG TCA GAG CCC GTC CCC CGG CGG GTC CCG GAG GAA CGG CTG Asp Glu Gly Ser Glu Pro Val Pro Ala Arg Val Pro Glu Glu Gly Leu			
555	560	565	
CCC CCC CCC CGC CAC TAT GTC AAG GTG CGG CTC AAC CCC GTG TTT Ala Pro Ala Pro Gly His Tyr Val Lys Val Arg Leu Asn Pro Val Phe			
570	575	580	585
CCC TCC CCA ACA GAG GAG GAC CCC CCA TGACCCGACA ATCCCTGGAA Ala Cys Pro Thr Glu Glu Asp Ala Ala			
590			
GTACGCCAGA AGGCCCCGTCT CAGCAACCCG TTCCGGGGGG CGGAGGTACCG CGCCTTCGCC 2691 CCCTCTCGG AGGACTTCAA CCCCTCCAC CTGGACCCGG CGTCCCGG CACCAACCCG 2751 TTGGACCCGG CGCATGCTCA CGGCATGCTG CTGGCCACCC TCTTCTCCCG CCTGCTGGCC 2811 CACCAGTTGC CGGCGAACGG GACCATCTAT CTGGGTCAA CGCTCACCTT CAACCTGGCC 2871 GTCTTGTGG CGGAGGAGGT GACGGCCGAG GTGGAGGTGA CGGCGCTTCG CGAGGACAAG 2931 CCCATGGCCA CCCTCACCAAC CGGCATCTTC ACCCAACCCG CGCCCGTCCC CGTCACGGGG 2991 GAACCCGTGG TCAACCTGCC TTAACCCACCG CGGGCACCCA CGCACAAATCA CGCCGGGGGG 3051 TGCCGGCTG ATTGTTCTCC CCCCTCCCC TTGGCCCCCTT TTTCGGGCA ATTTCGGGCA 3111 CCCCCTTCC CGGCGGGGGGG TAACTGCCCTA AAATGGGGGG CCTGGCCGTG ACCCATTCA 3171 CCAGCTAGAG GAATTTC 3187			

〔0107〕配列番号：10

配列の長さ：3187

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

50 配列の種類：genomic DNA

配列の特徴

特徴を表す記号: CDS

* 存在位置: 2611..3012

*

配列:

AGATCTGGAC CGGGGTGCTG CCTGGGCCA CCCCCGCCAG CCCAACCGG GACCAACCGA 60
 CCACCAAGGC GAGACGTTTC ATCCGGATTG CTGGCAGTC TGAATGACGT CCCACCCCTAT 120
 CACCCGGCCC CGGGTGGCCC GACGGGCCAG CCCACCCAGT CGTCACACTC TCGTCTGATC 180
 CGCCCTCCCTC GACGGGGCTC CCTCACAAAA AAATTCAAAAC AGAAATTAAAC ATTATGTCA 240
 TTACACCAA ACCGCATTG GTTCCAGAAT GCTCAAAAGT GTGTTGAAC AGACCAAGCA 300
 ACACGTAAC ACCGATGACA TCCAGTACCC GTAAAGAACGG CGGATTGCC CACAAACAACA 360
 CTGTTCTGCC GAACCTGGAGA CGCATGATCA ATATGGACGT GATCAAGACCC TTTACCGACC 420
 AGATGCAAGG CTTCGGGCC CCCCTCACCC CCTACAAACCA CCTGCTGGCC AGCAACATCG 480
 AACAGCTGAC CGGGTGGAG CTGGGCTCCG CCAACCCCTA CCCCCAACTG CCCCTCAACC 540
 AGTTGGAGG CGTGAGGAAG GTGAGGAGA CCCAGAGCT CCCAGGGCTG CGCACAGTCC 600
 AACTGGAGAC CGGGAGCCAG CTCTGGGCC AGATGCTGA TGACATCCAG AACCTGAGG 660
 CCCTGGCCA CGAGTTCAAG GAAGAGCTCG ATGTCCTCAC CCCAGACCCG ATCAACAAAA 720
 CCACGGGCAA CGGCTGATAA CCCCTGGCTG CCCGGTCCGG CAGCCACATC TCCCCATGAC 780
 TCGACCCCTAC CGGCTAGTTC CGGGCTCGG TGCGGTGAA CGAGAGGACA TGACCCAACC 840
 ATCTTATGCC CGGCTGTTG AGGGGCTGCC CCACTACAAAT GACAAGCTCC TCCCCATGCC 900
 CAAGGGCCAG AGAGACCCCA CGGGGGAGCC CCTGCTCCAG ACCAATCTGG ACCATCTGG 960
 CCAGGTCCTG GACCAAGGCA CGGAGCAACC CTGGCAGCTG ATCCAGGGCC AGATGAACTG 1020
 GTGCCAGGAT CGGCTCAAG TGATGCAAGA CACCCCTGCA AAAAGGGCCAG CCCACCCGAG 1080
 CGACGGCGTG ATCACCCCG AGGGGAGCA TCCGGCTTC AAGCCGGAGG CCTGGAGCGA 1140
 ACAACCCATC TATGACTACC TCAAGGACTC CTACCTGCTC ACCCCCCAGG ACCTGCTGCC 1200
 CTGGTGGAT CGGCTGGAGG CGGTCCCCCA GAAGAGCCCG GACGGGCTCC GTTCTTCAC 1260
 CGGGCAGTAC GTCAACCCCA TGGGGCCAG CAACCTGCTG GCCACCAACC CGGAGCTGCT 1320
 CAAGCTGACCT CGGGAGTCCG AGGGGAGAA CCTGGTCCCC CGACTGGCCC TCTTCCCCGA 1380
 CGATCTGGAG CGGAGGGCCG ATCAGCTCAA CATGGCTCG ACCGAGCAAT CGGGCTTCGA 1440
 CCTCCCCGGG GATCTGGCCC TGACCCCCGG CGGGTGGTG CACCCCAACCG ACCTCTATGA 1500
 CCTCATTGAG TACACCCCGA CTACCGAGAC CGTGGGCAAG ACACCTGTCG TGATAGGCC 1560
 CGCCCTTCATC AACAAGTACT ACATCATGCA CATGGGGCC CAGAACTCCC TGTCCTCTG 1620
 CCTGGTCCC CGGGGGAGA CGGTATTGAT GATCTCTGG CCCAACCCCG CGGTCCCCCA 1680
 CGGGCCAAATC GATCTGGAGC ACTACGTTG GATGGGCTC ATGGGGCCCG TGACCCCCGT 1740
 CGACGGGGCCG ACCGGGGAGC CGGAGGTGCA CGGGATCCCC TACTGGATCG CGGGCACCCG 1800
 CCTGTCCTC CGCATGGCT CGGTGGGCCG CGGGGGCCAG AAGCAGGGCG TCCCCACCCC 1860
 CACCCGGTTC ACTACCTGC TGGACTTCTC CGGGGGGGG GAGCTGGCA TCTTCATCCA 1920
 CGACCCCATC ATACGGGGCC TCGAGGGCA AAATGACCCG AAGGGCATCA TGGACCCCC 1980
 CGAGCTGGCG GTCTCCCTCA CGCTGGCTGG CGAGAACACCC CTCTACTGGA ACTACTACAT 2040
 CGACACCTAC CTCAAGGGTC AGACCCCGT CGGCTCTCAT CTGCTGCACT CGAACAGCGA 2100
 CACCCACCAT GTCGGGGCA AGACCCACAA CACCCCTGCG CGGGCTCTCT ACCTGAGAA 2160
 CGAGCTGGTG AAGGGGGAGC TCAAGATCCG CAACACCCCG ATCGATCTCG CCAACGTGAA 2220
 GACCCCTGTC CGCTGGTGT CGGGGGTGGG CGATCACATC CGGCTCTGCC AGGGCACCTG 2280
 CGACGGGATG AAGCTGTTG CGGGGGAGCA CGGGCTCTCT CGGGGGAGGT CGGGGGACAT 2340
 CGGGCCATC ATCAACCCCG CGGGGGCAAA CAAGTACCGG TTCTGGACA ACCGGGGCGA 2400
 CGGGGAGAGC CGGGAGAGCT CGGTGGCAGG CGGGACCCAC CACGGGGCGT CCTGGTCCCC 2460
 CGAGATGATG CGCTTTATCC AGAACGGTCA CGAAGGGTCA GACCCGGTCC CGGGGGGGT 2520
 CGGGGAGGAA CGGCTGGCCC CGGGGGGGG CCACTATGTC AAGCTGGCCG TCAACCCCGT 2580
 GTTGGCTCC CCAACAGAGG AGGACGGCCG ATG ACC GCA CAA TCC CTG GAA GTA 2634

Met Ser Ala Glu Ser Leu Glu Val

Gly Gln Lys Ala Arg Leu Ser Lys Arg Phe Gly Ala Ala Glu Val Ala
 10 15 20
 CCC TTC CCC CCC CTC TCG GAG GAC TTC AAC CCC CTG CAC CTG GAC CCG 2730
 Ala Phe Ala Ala Leu Ser Glu Asp Phe Asn Pro Leu His Leu Asp Pro
 25 30 35 40
 CCC TTC CCC CCC ACC ACC GCG TTC GAG CGG CCC ATA GTC CAC CCC ATG 2778
 Ala Phe Ala Ala Thr Thr Ala Phe Glu Arg Pro Ile Val His Gly Met
 45 50 55
 CTG CTC CCC AGC CTC TTC TCC GGG CTG CTG CGG CAG CAG TTG CCG CCC 2826
 Leu Leu Ala Ser Leu Phe Ser Gly Leu Leu Gly Gln Gln Leu Pro Gly
 60 65 70
 AAG GCG AGC ATC TAT CTG GGT CAA AGC CTC AGC TTC AAG CTG CCG GTC 2874
 Lys Gly Ser Ile Tyr Leu Gly Gln Ser Leu Ser Phe Lys Leu Pro Val
 75 80 85
 TTT GTC GGG GAC GAG GTG ACG GCC GAG GTG GAG GTG ACC CCC CTT CCC 2922
 Phe Val Gly Asp Glu Val Thr Ala Glu Val Glu Val Thr Ala Leu Arg
 90 95 100
 GAG GAC AAG CCC ATC CCC ACC CTG ACC ACC CCC ATC TTC ACC CAA CCC 2970
 Glu Asp Lys Pro Ile Ala Thr Leu Thr Thr Arg Ile Phe Thr Gln Gly
 105 110 115 120
 CCC CCC CTC CCC GTG ACG GCG GAA CCC GTG GTC AAG CTG CCT 3012
 Gly Ala Leu Ala Val Thr Gly Glu Ala Val Val Lys Leu Pro
 125 130
 TAAGCACCGG CGCCACGGAG GCACAATCAG CCCCCCCCCT GCGGGCTGA TTGTTCTCCC 3072
 CGCGTCCCGT TCCCCCTTT TTCCGGGCAA TTTCGGCCAG GCGCTTCCC TGCCCCCGCT 3132
 AACTGCCTAA AATGGGGCCC CTGGCGTGTGTA GGCAATTGATC CAGCTAGAGG ATTTC 3187

〔0108〕配列番号：11

* 鎮の数：一本鎖

配列の長さ：25

トポロジー：直鎖状

配列の型：核酸

* 配列の種類：他の核酸（合成DNA）

配列：

AGTTCCCCCG TCGGGTGTGG GTCAA

25

〔0109〕配列番号：12

* 鎮の数：一本鎖

配列の長さ：25

トポロジー：直鎖状

配列の型：核酸

* 配列の種類：他の核酸（合成DNA）

配列：

CCCATATCGG CTCATCGGC GTCCT

25

〔0110〕配列番号：13

★ 鎮の数：一本鎖

配列の長さ：30

トポロジー：直鎖状

配列の型：核酸

★ 配列の種類：他の核酸（合成DNA）

配列：

CCCATATGAG CCCACAATCC CTGGAAGTAG

30

〔0111〕配列番号：14

★ 鎮の数：一本鎖

配列の長さ：30

トポロジー：直鎖状

配列の型：核酸

★ 配列の種類：他の核酸（合成DNA）

配列：

CTCGGATCGG CGGGTCTTA AGCCACCTTG

30-

〔0112〕配列番号：15

◆ トポロジー：直鎖状

配列の長さ：20

配列の種類：ペプチド

配列の型：アミノ酸

配列：

Ser Ala Gln Ser Leu Glu Val Gly Gln Lys Ala Arg Leu Ser Lys Arg
 1 5 10 15
 Phe Gly Ala Ala
 20

[0113] 配列番号：16

配列の長さ：21

配列の型：アミノ酸

配列：

Met Ser Ala Gln Ser Leu Glu Val Gly Gln Lys Ala Arg Leu Ser Lys
 1 5 10 15
 Arg Phe Gly Ala Ala
 20

【図面の簡単な説明】

【図1】本発明の遺伝子の構築図である。

* トポロジー：直鎖状

配列の種類：ペプチド

*

* 【図2】 SDS-ポリアクリルアミドゲル電気泳動の結果を示す写真である。

【図1】

[図2]

フロントページの続き

(51)Int.Cl.^{*} 識別記号 F I
 // (C 12 N 1/21
 C 12 R 1:05)
 (C 12 N 9/88
 C 12 R 1:05)
 (C 12 P 7/62
 C 12 R 1:05)