

SEQUENCE LISTING

<110> EXELIXIS, INC.

<120> MAP2K6 AS MODIFIER OF BRANCHING MORPHOGENESIS AND METHODS OF USE

<130> EX03-078C-PC

<150> US 60/420,554

<151> 2002-10-23

<160> 3

<170> PatentIn version 3.2

<210> 1
<211> 2924
<212> DNA
<213> Homo sapiens

<400> 1
ggcttctgg tccggcccacc tctgaagggtt ccagaatcga tagtgaattc gtggttccaa 60
gtttggagct tttagctgcc agccctggcc catcatgtag ctgcagcaca gccttcctta 120
acgttgcaac tgggggaaaa atcactttcc agtctgttt gcaaggtgtg catttccatc 180
ttgattccct gaaagtccat ctgctgcattc ggtcaagaga aactccactt gcatgaagat 240
tgcacgcctg cagcttgcattt ctttggca aaacttagcta cagaagagaa gcaaggcaaa 300
gtctttgtg ctccccctccc ccatcaaagg aaaggggaaa atgtctcagt cgaaaggcaa 360
gaagcgaaac cctggcctta aaattccaaa agaagcattt gaacaacctc agaccagttc 420
cacaccacctt cgagattttag actccaaggc ttgcatttctt attggaaatc agaactttga 480
ggtgaaggca gatgacctgg agcctataat ggaactggga cgaggtgcgt acgggggtgt 540
ggagaagatg cggcacgtgc ccagcgggca gatcatggca gtgaagcggta tccgagccac 600
agtaaatagc caggaacaga aacggctact gatggattt gatatttcca tgaggacgg 660
ggactgtcca ttcaactgtca ccttttatgg cgcactgttt cgggagggtg atgtgtggat 720
ctgcatggag ctcatggata catcaactaga taaattctac aaacaagtta ttgataaagg 780
ccagacaattt ccagaggaca tcttagggaa aatagcaggta tctattgtaa aagcattaga 840
acatttacat agtaagctgt ctgtcattca cagagacgtc aagcatttcta atgtactcat 900
caatgctctc ggtcaagtga agatgtgcga ttttggaaatc agtggctact tggggactc 960
tgttgctaaa acaatttgatg caggttgcaa accatacatg gcccctgaaa gaataaaccc 1020
agagctcaac cagaaggat acagtgtgaa gtctgacatt tggagtctgg gcatcacgt 1080
gattgagttg gccatccttc gattccctta tgattcatgg ggaactccat ttcagcagct 1140
caaacaggtg gtagaggagc catcgccaca actcccagca gacaagttct ctgcagagtt 1200
tgttgactttt acctcacagt gcttaaagaa gaattccaaa gaacggccta cataccaga 1260

gctaatgcaa catccattt tcaccctaca tgaatccaaa ggaacagatg tggcatctt	1320
tgtaaaactg attcttggag actaaaaagc agtggactta atcggttgac cctactgtgg	1380
attggtggtt ttcggggta agcaagttca ctacagcatc aatagaaagt catcttgag	1440
ataatttaac cctgcctctc agagggttt ctctcccaat tttctttta ctccccctct	1500
taagggggcc ttggaatcta tagtataaga tgaactgtct agatggatga attatgataa	1560
aggcttagga cttcaaaagg tgattaaata ttaatgatg tgtcatatga gtcctcaagc	1620
ttctcagact tctcttattc tttacaaaat gaatgcattt gccctgacaa aaaggtgcta	1680
cggtagtgat gaaattataa gtagattgt agtttgtccc atttatttt ttaatattta	1740
tgttaagtg cttgggtgaa aagattccat tttatacaag aaggagatt caaaaaaaaaa	1800
atataagggtt gggtagcaa tattnatagg gcttttattt tttaagttca attgtgtctg	1860
tggtccagaa gaaattattt aatatgcattt tttgagaata ttataaaaat atcaaaaagg	1920
agctcttctt gtgaaatgtc tggccagct gttgtgactg ctgcccattt tggaaacatc	1980
tgccttccatcc tgggtgatca ccacatctt tagggaaagt gacaagatgc tctggcata	2040
ctcttttcc caactttgga aaacataaaa atcactcata taacagctca aagagtaaaa	2100
catttggtc ttctgacact tgggtatag tattatggaa aagtgattttaatatgatt	2160
ttatatccac ctaccttattc atctacctgt gtgtatgtgt gtgtttgtgt gtctatttgg	2220
caattcacaa gtcctgccaa gtggttctta tgagcatctc tggttggaa ggaggacaat	2280
tgtcagttt gagggggaca tgggttaat cacagaaaaa aatgggcct tcttctgcgt	2340
ttgtccctcc tgcctatgtgt aagttgtaaag gattgcctt gtgttatg tactcttgg	2400
ctttgttgtt ttgtttctt ctgcgtgaa gcagccttac tattcataga agggctagaa	2460
taggagaaaa tggaaaggttag tgagtaattc tttgataaga tgagggaaata atggaaagg	2520
ttgaattaat tcctggcat ggactaccag atgaccacaa gttgcgttga ggccgcacatc	2580
ttcttcagca gctggcaata gctggctcct ctataggaga tgagcttcat tgggagttcc	2640
tagcaagttt actaaacagc aaaagttctt tctcgtgggt aaatatacc acaggttctta	2700
tgattttagt ctcttagttt ctgtatgtac aaggagtgaa gtaattgaca gggaaaatat	2760
agacctatga taaataacca ggaagcattt gtttggaca aggaagaaca gagggttttgg	2820
atttaaaaaa gaagaaaaaa aaaccttatt tttctttct tggcctcaag ttcaatatgg	2880
agaggattgc ttccctgaat cctcttttcc ttccccctttt agag	2924

<210> 2
<211> 2820
<212> DNA
<213> Homo sapiens

aaaaatatatca	aaaaggagct	cttcttgtga	aatgtctgtt	ccagctgttg	tgactgctgc	1860
catttttggaa	aacatctgcc	caatcctggg	tgatcaccac	atcttttagg	ggaagtgaca	1920
agatgctctg	gtcatactct	tttcccaac	tttggaaaac	ataaaaatca	ctcatataac	1980
agctcaaaga	gtaaaacatt	tggttttct	gacacttgtg	gtatagtatt	agtggaaaagt	2040
gatttgtaat	atgattttat	atccacctac	ctattcatct	acctgtgtgt	atgtgtgtgt	2100
tttgtgtgtct	atttggcaat	tcacaagtcc	tgccaagtgg	tttcttatgag	catctctgtt	2160
tggtaaggag	gacaattgtc	agtttgagg	gggacatgtg	ttaaatcaca	aaaaaaaatg	2220
gtgccttctt	ctgcgtttgt	ccctcctgcc	atgtgttaat	tgtaaggatt	gcctttgttag	2280
ttaatgtact	ctttggcttt	gtttgtttgt	tttcttcttc	agtgaagcag	ccttactatt	2340
catagaaggg	ctagaatagg	agaaaatgaa	aggttagtgag	taattctttg	ataagatgag	2400
gaaataatgg	gaaagggttga	attaattcct	gggcatggac	taccagatga	ccacaagttg	2460
cgtttagggcc	gcatcttct	tcagcagcgt	gcaatagctg	gctcctctat	aggagatgag	2520
cttcattggg	agttcctagc	aagttgacta	aacagcaaaa	gttcttctc	gtgggttaat	2580
atacccacag	gttctatgat	ttgttagctct	aggtttcttg	atgatcaagg	agtgaagtaa	2640
ttgacaggga	aaatataagac	ctatgataaa	taaccaggaa	gcattgcttt	tggacaagga	2700
agaacagagg	gttttgattt	taaaaagaag	aaaaaaaaac	cttatttttt	ctttcttggc	2760
ctcaagttca	atatggagag	gattgcttcc	ctgaatcctc	tcttccttcc	ccttttagag	2820

<210> 3
<211> 334
<212> PRT
<213> Homo sapiens

<400> 3

Met	Ser	Gln	Ser	Lys	Gly	Lys	Arg	Asn	Pro	Gly	Leu	Lys	Ile	Pro
1				5				10				15		

Lys	Glu	Ala	Phe	Glu	Gln	Pro	Gln	Thr	Ser	Ser	Thr	Pro	Pro	Arg	Asp
			20					25				30			

Leu	Asp	Ser	Lys	Ala	Cys	Ile	Ser	Ile	Gly	Asn	Gln	Asn	Phe	Glu	Val
			35				40				45				

Lys	Ala	Asp	Asp	Leu	Glu	Pro	Ile	Met	Glu	Leu	Gly	Arg	Gly	Ala	Tyr
			50			55		55		60					

Gly	Val	Val	Glu	Lys	Met	Arg	His	Val	Pro	Ser	Gly	Gln	Ile	Met	Ala
65					70				75			80			

Val Lys Arg Ile Arg Ala Thr Val Asn Ser Gln Glu Gln Lys Arg Leu
85 90 95

Leu Met Asp Leu Asp Ile Ser Met Arg Thr Val Asp Cys Pro Phe Thr
100 105 110

Val Thr Phe Tyr Gly Ala Leu Phe Arg Glu Gly Asp Val Trp Ile Cys
115 120 125

Met Glu Leu Met Asp Thr Ser Leu Asp Lys Phe Tyr Lys Gln Val Ile
130 135 140

Asp Lys Gly Gln Thr Ile Pro Glu Asp Ile Leu Gly Lys Ile Ala Val
145 150 155 160

Ser Ile Val Lys Ala Leu Glu His Leu His Ser Lys Leu Ser Val Ile
165 170 175

His Arg Asp Val Lys Pro Ser Asn Val Leu Ile Asn Ala Leu Gly Gln
180 185 190

Val Lys Met Cys Asp Phe Gly Ile Ser Gly Tyr Leu Val Asp Ser Val
195 200 205

Ala Lys Thr Ile Asp Ala Gly Cys Lys Pro Tyr Met Ala Pro Glu Arg
210 215 220

Ile Asn Pro Glu Leu Asn Gln Lys Gly Tyr Ser Val Lys Ser Asp Ile
225 230 235 240

Trp Ser Leu Gly Ile Thr Met Ile Glu Leu Ala Ile Leu Arg Phe Pro
245 250 255

Tyr Asp Ser Trp Gly Thr Pro Phe Gln Gln Leu Lys Gln Val Val Glu
260 265 270

Glu Pro Ser Pro Gln Leu Pro Ala Asp Lys Phe Ser Ala Glu Phe Val
275 280 285

Asp Phe Thr Ser Gln Cys Leu Lys Lys Asn Ser Lys Glu Arg Pro Thr
290 295 300

Tyr Pro Glu Leu Met Gln His Pro Phe Phe Thr Leu His Glu Ser Lys
305 310 315 320

Gly Thr Asp Val Ala Ser Phe Val Lys Leu Ile Leu Gly Asp
325 330