Завдання Розгалуження

if-elif-else

У звіті лабораторної роботи скласти блок-схеми алгоритмів і написати програми мовою Python із застосуванням **if-elif-else** для розв'язання завдань, поданих у табл. 4.1 ... 4.2 відповідно до індивідуального варіанта.

Таблиця 4.1 Індивідуальні завдання базового рівня складності

No	тндивідуальні завдання оазового рівня складності		
л <u>ч</u> вар	Функція	вар.	Функція
1	$y = \begin{cases} 2x+1 & \text{3a } k = 1; \\ \sqrt[3]{1-x^4} & \text{3a } k = 2; \\ \lg x+5 & \text{3a } k = 3; \\ \ln\left \frac{1+x}{x^3 + \cos x}\right & \text{3a } k = 4 \end{cases}$	2	$y = \begin{cases} \frac{\text{tg} 1 + e^{x+1.2} }{x + \sin x} & \text{3a } n = 1; \\ 4\sqrt{\cos \pi + x } & \text{3a } n = 2; \\ \frac{1 + x^{x+1} - \lg x}{x^3 + \ln x } & \text{3a } n = 3 \end{cases}$
3	$y = \begin{cases} 1/x + \arctan^2 x^3 & \text{3a} M = 1; \\ 2^{x-1} + \sin^2 x + \lg x & \text{3a} M = 2; \\ \sqrt{ 1+x } - \sqrt[3]{x} & \text{3a} M = 3 \end{cases}$ $\left[\sqrt{ 2^x - x^2 + 0.5} \text{3a} k = 1; \right]$	4	$y = \begin{cases} 10^{-3} + \sin x^3 & \text{3a} z = 1; \\ \sqrt{1+x} + \sin^2 x & \text{3a} z = 2; \\ \lg(1/x + \sqrt{x}) & \text{3a} z = 3 \end{cases}$
5	$t = \begin{cases} \sqrt{ 2^{x} - x^{2} + 0.5} & \text{3a } k = 1; \\ 1 + \arctan(x) & \text{3a } k = 2; \\ \sqrt[5]{\pi^{2} + x^{2}} & \text{3a } k = 3; \\ \lg 6.5 - x^{4} & \text{3a } k = 4 \end{cases}$	6	$y = \begin{cases} 2^{x+1} + 1 & \text{3a } k = 1; \\ \sqrt[3]{e^{x^2} + x^4} & \text{3a } k = 2; \\ 1g \sin(\pi - x) & \text{3a } k = 3; \\ tg\frac{1+x}{x^3 + x^4} & \text{3a } k = 4 \end{cases}$
7	$y = \begin{cases} \sqrt{x+1} - \cos^2 x & \text{3a} k = 1; \\ e^{0.01} + \ln x^2, & \text{3a} k = 2; \\ \sqrt{x} + \sin^2(x - \pi) & \text{3a} k = 3; \\ x + \lg x & \text{3a} k = 4 \end{cases}$	8	$y = \begin{cases} 3.5x - 7.3x^{2} \operatorname{ctg} x & \text{3a} & L = 1; \\ 2.8 \ln x + e^{\sqrt{x}} & \text{3a} & L = 2; \\ \frac{3}{\sqrt{3.4x}} + x^{2} \sin x & \text{3a} & L = 3; \\ 1.7^{x} + \cos^{2} x^{2} & \text{3a} & L = 4 \end{cases}$
9	$y = \begin{cases} \sin e^{x+1.2} & \text{3a } n = 1; \\ \sqrt[5]{\lg 1+x }, & \text{3a } n = 2; \\ \lg \cos x + 5\pi/4 & \text{3a } n = 3; \\ \frac{1+x^{x+1}-x}{x^3+\ln x } & \text{3a } n = 4 \end{cases}$	10	$y = \begin{cases} 7.8x^3 - \text{tg}(3.1x^2 + 4x) \text{ 3a } k = 1; \\ e^{0.85\sqrt{x}}(x^2 + 3) & \text{3a } k = 2; \\ \sin(2x + \pi) + e^{4x} & \text{3a } k = 3; \\ x\frac{\sqrt[3]{x + \cos(\pi/2 + x)}}{x^{2^x} + 0.1 \cdot 10^{-3}} & \text{3a } k = 4 \end{cases}$
1	$y = \begin{cases} \arctan(2x+1)+1 & \text{3a} k=1; \\ \sqrt[3]{1+x^4} & \text{3a} k=2; \\ \cos\left(\frac{\pi}{2}-x^x\right)+e^{ x+5 } & \text{3a} k=3; \\ \log\frac{1+x}{x^3+\sqrt{ x }} & \text{3a} k=4 \end{cases}$	12	$y = \begin{cases} \frac{4x^2t}{2x - 3t + 2} & \text{3a} n = 1; \\ 6.2x - \frac{\ln\sqrt{x^2 + 0.1}}{\sqrt{ 2x - \cos x }} & \text{3a} n = 2; \\ 8.3t^3 + x - 0.2 & \text{3a} n = 3 \end{cases}$

13	$y = \begin{cases} \sqrt[5]{x+1} & \text{3a } k = 1; \\ tg(\cos x + \pi/2) & \text{3a } k = 2; \\ e^{2x^2} + \sqrt{ 1-x } & \text{3a } k = 3; \\ \sin^2(x^2 + 3) & \text{3a } k = 4; \\ \cos 3x^2 & \text{3a } k = 5 \end{cases}$	14	$y = \begin{cases} 2x^2 + \lg x & \text{3a} n = 1; \\ \cos^2 x + 2.8\sqrt[3]{x} & \text{3a} n = 2; \\ \sin^2 \sqrt{ x } & \text{3a} n = 3; \\ \ln\left \frac{x+1}{4}\right & \text{3a} n = 4 \end{cases}$
15	$y = \begin{cases} \sqrt{x} + e^x & \text{3a} L = 1; \\ \ln x + 0.8 & \text{3a} L = 2; \\ x^2 / \lg^2 x & \text{3a} L = 3; \\ x \cos^2 x + \sqrt{x} & \text{3a} L = 4; \\ e^{0.8x} + x & \text{3a} L = 5 \end{cases}$	16	$y = \begin{cases} \cos^2(x + \pi/2) & \text{3a } S = 1; \\ \cot^2 \sqrt{x} + 1/x & \text{3a } S = 2; \\ 2\sin x + \ln x & \text{3a } S = 3; \\ \frac{0.8x^2}{e^x + x^x + x} & \text{3a } S = 4 \end{cases}$
17	$y = \begin{cases} e^{2x} - \sin^2 x & \text{3a} S = 1; \\ \cos^2 x + \ln x & \text{3a} S = 2; \\ \sin^2 x - \ln x & \text{3a} S = 3; \\ x + \sin\sqrt{x} & \text{3a} S = 4 \end{cases}$	18	$y = \begin{cases} \cos^2 x & \text{3a} & S = 1; \\ \sin x^2 + 1/x & \text{3a} & S = 2; \\ 2\ln x + e^x & \text{3a} & S = 3; \\ 8x^2 - \operatorname{arctg} x & \text{3a} & S = 4 \end{cases}$
19	$S = \begin{cases} \frac{\cos(\pi - x^2)}{x+1} & \text{3a} n = 1; \\ tg(\pi x^2) & \text{3a} n = 2; \\ \frac{3}{\sqrt{e^{x+1} - \ln x }} & \text{3a} n = 3; \\ x^2 - 2^x & \text{3a} n = 4 \end{cases}$	20	$y = \begin{cases} \sqrt{x} + e^{x} & \text{3a} L = 1; \\ \ln x + 0.8 & \text{3a} L = 2; \\ x^{2} + \sin^{2} x & \text{3a} L = 3; \\ x \cos x^{2} + \sqrt{x} & \text{3a} L = 4; \\ e^{0.8x} + \ln x & \text{3a} L = 5 \end{cases}$
21	$y = \begin{cases} \sqrt[3]{x+1} & \text{3a } k = 1; \\ \sin(\cos x + \pi/2) & \text{3a } k = 2; \\ e^{1+x^2} + \lg\sqrt{ 1-x } & \text{3a } k = 3; \\ \sin^3(x^2 + \pi) & \text{3a } k = 4; \\ \arccos(3-x^2) & \text{3a } k = 5 \end{cases}$	22	$y = \begin{cases} \sqrt{e^x - 1} & \text{3a} L = 1; \\ \lg x + 1/x & \text{3a} L = 2; \\ 2^{x-1} + \arcsin^2 x & \text{3a} L = 3; \\ x\cos^2 x + \sqrt{x} & \text{3a} L = 4; \\ \ln\sqrt{ x + 0.1 } & \text{3a} L = 5 \end{cases}$
23	$y = \begin{cases} \frac{\sqrt{x} + e^{x}}{e^{0.1x} + \lg x } & \text{3a } L = 1; \\ \ln x + \operatorname{ctg}\left(\sqrt{ \pi - x }\right) & \text{3a } L = 2; \\ x^{2} + \sin^{2} x & \text{3a } L = 3; \\ x \cos^{2} x + \sqrt{x} & \text{3a } L = 4 \end{cases}$	24	$y = \begin{cases} \sin(x - \pi/2) & \text{3a} S = 1; \\ tg^{3} \sqrt{x} + x & \text{3a} S = 2; \\ \arcsin^{2} x + \lg x & \text{3a} S = 3; \\ \frac{2,4 - x^{2}}{e^{x} + x^{x}} & \text{3a} S = 4 \end{cases}$

Індивідуальні завдання середнього рівня складності

№ вар.	Функції	Варіанти параметрів
1	$y = \begin{cases} \frac{(2u+1)^2}{7\pi + x} & \text{3a} u + x < -0.5; \\ \cos^2 u - \sin\frac{u}{3} & \text{3a} -0.5 \le u + x \le 10^{-3}; \\ \frac{\lg(u+x) - e^x}{3.5x} & \text{3a} u + x > 10^{-3} \end{cases}$	1
2	$y = \begin{cases} abx - \cos^2(zx) & \text{3a} x < 3.5a; \\ (a - x)^2 - \ln(z + x) & \text{3a} 3.5a \le x \le b; \\ \sqrt{bx - a + zx^2} & \text{3a} x > b \end{cases}$	1 $a = 0.4$; $b = 2.3$; $z = e^{2x}$; 2 $a = 0.2$; $b = 0.8$; $z = e^{x}$; 3 $a = 0.7$; $b = 8.1$; $z = 0.8$
3	$y = \begin{cases} \sin(bm + \cos(nx)) & \text{3a} bm > x^2; \\ \cos(bm - \sin x) & \text{3a} bm < x^2; \\ \sqrt{e^{ \cos x } + \sqrt{ bmx }} & \text{3a} bm = x^2 \end{cases}$	1 $b = -1.6$; $m = 0.9$; $n = -1.4$; 2 $b = 4.5$; $m = -2$; $n = 2.2$; 3 $b = -4.5$; $m = 0.5$; $n = -1.5$
4	$y = \begin{cases} a \sin^2 x + b \cos(zx) & \text{3a } x < -\ln(a); \\ a^b - \cos^3(a + zx) & \text{3a } -\ln(a) \le x \le b; \\ \sqrt{2.5a^3 + (b - zx^2)^6} & \text{3a } x > b \end{cases}$	1 $a = 0.2$; $b = 0.5$; $z = e^{ax}$; 2 $a = 0.15$; $b = 0.2$; $z = e^{2ax}$; 3 $a = 0.9$; $b = 5$; $z = e^{2.5ax}$
5	$y = \begin{cases} \sin(e^{a+b}) + x^2 & \text{3a} e^{a+b} > e^x; \\ \arctan(abc) + \sqrt[3]{x} & \text{3a} e^{a+b} = e^x; \\ \cos(\sqrt{ x+abc }) & \text{3a} e^{a+b} < e^x \end{cases}$	1 $a = 4.2$; $b = 5.3$; $c = 1.5$; 2 $a = -0.35$; $b = 1.8$; $c = -1.8$; 3 $a = 2.8$; $b = -0.6$; $c = 2.0$
6	$y = \begin{cases} 2.8\sin^2 ax - bx^3 z & \text{3a} x < a; \\ z\cos(ax+b)^2 + \ln(z) & \text{3a} a \le x \le b^2; \\ e^{2.5ax} + zabx & \text{3a} x > b^2 \end{cases}$	1 $a = -5$; $b = 2.5$; $z = \ln bx^3 $; 2 $a = 3$; $b = 5$; $z = \ln bx $; 3 $a = -10$; $b = 3$, $z = \ln bx^2 $
7	$y = \begin{cases} xe^{a} + e^{ bc } & \text{3a } 1 - x^{2} = a + c; \\ \sin^{2} ax + \cos bc & \text{3a } 1 - x^{2} > a + c; \\ \sqrt{ab^{4} + \sqrt[5]{cx^{2}}} & \text{3a } 1 - x^{2} < a + c \end{cases}$	1 $a = 3.2$; $b = -0.7$; $c = 2.2$; 2 $a = 10.5$; $b = -2.5$; $c = 5.6$; 3 $a = 5.4$; $b = 3$; $c = 2.6$
8	$y = \begin{cases} \ln mx + n & \text{3a } x^2 > m + n; \\ e^{\cos mx - n } & \text{3a } x^2 = m + n; \\ \frac{3}{\sqrt{k^2 + \cos^2 x}} & \text{3a } x^2 < m + n \end{cases}$	1 $k = 3.1$; $m = 5.15$; $n = -1.15$; 2 $k = 0.78$; $m = -2.4$; $n = 4.36$; 3 $k = 1.1$; $m = 0.8$; $n = 0.41$
9	$y = \left\{ (a+bx)^2 - \sin(a+zx) \text{ a } a^3 \le x \le b; \right\}$	$a = 1.2; b = 7.2; z = e^x;$ $a = -1.5; b = 3.2; z = e^{2x};$ $a = 1.7; b = 5.5; z = e^3$

10	$y = \begin{cases} \sqrt[3]{b^2 + \sqrt{ x+c }} & \text{3a} & \lg a < x; \\ \cos(x-b-c) & \text{3a} & \lg a = x; \\ \sin(x+a-b) & \text{3a} & \lg a > x \end{cases}$	1 $a = 0.1$; $b = 9.8$; $c = 11.12$; 2 $a = 10$; $b = 10.05$; $c = 6.2$; 3 $a = 100$; $b = 3.03$; $c = 7.12$
11	$y = \begin{cases} \ln(\lg kx + mn) & \text{3a } 3x > m+n ; \\ \sin(kmx) + \sqrt{ nx } & \text{3a } 3x = m+n ; \\ e^{\cos x} + e^{m+n} & \text{3a } 3x < m+n \end{cases}$	1 $k = 4$; $m = -14.7$; $n = -0.6$; 2 $k = 3$; $m = 6.5$; $n = 3.15$; 3 $k = 5$; $m = -12$; $n = 0.45$
12	$y = \begin{cases} e^{ax} - 3.5\cos^2(z + bx) & \text{3a } x \le a; \\ a + \ln a + bx - 2x & \text{3a } a < x \le b^{3.5}; \\ a + \cos^{3.5}(a + bxz) & \text{3a } x > b^{3.5} \end{cases}$	1 $a = -1$; $b = 3.4$; $z = \operatorname{tg} bx$; 2 $a = -3.2$; $b = 5.5$; $z = \operatorname{tg} bx^2$; 3 $a = -5.2$; $b = 7.2$; $z = \operatorname{tg} bx^3$
13	$y = \begin{cases} x^2 e^{2k} + \ln rx & \text{3a } \cos x = \cos(rs); \\ \sqrt[3]{x^2} + \sqrt{ k + rsx } & \text{3a } \cos x > \cos(rs); \\ \arctan(kx + rs) & \text{3a } \cos x < \cos(rs) \end{cases}$	1 $k = 1.33$; $r = 0.85$; $s = 3.5$; 2 $k = 0.9$; $r = 3.3$; $s = 1.2$; 3 $k = 1.57$; $r = 0.75$; $s = 2.15$
14	$y = \begin{cases} 2.5b^2 + ax - 4.5\cos xz & \text{3a} x \le 5a; \\ \left(a^2 - 5.4x\right)^3 + \ln(xz) & \text{3a} x > b; \\ \sqrt{6.5b^2 + \left(a - x^3 z\right)} & \text{3a} 5a < x \le b \end{cases}$	1 $a = 0.5$; $b = 4.5$; $z = e^{ax}$; 2 $a = 0.5$; $b = 3.7$; $z = e^{2ax}$; 3 $a = 0.5$; $b = 2.7$; $z = e^{2.5ax}$
15	$y = \begin{cases} a\cos^2 x + b\sin zx & \text{3a } x \le a; \\ tg(ax + z) + \sin^2 bx & \text{3a } a < x \le 1.5b; \\ ln(ax - b) + z^2 & \text{3a } x > 1.5b \end{cases}$	1 $a = 4.5$; $b = 8.4$; $z = tg(bx)^2$; 2 $a = 8.2$; $b = 15.2$; $z = tg(bx)^2$; 3 $a = 1.7$; $b = 0.5$; $z = tg(bx^2)$
16	$y = \begin{cases} 3.5\sin^2(bx+z)^3 - e^{3.5a} & \text{3a} & x \le a; \\ \ln(a+b^3x) + a & \text{3a} & a < x \le b^{2.5}; \\ \cos^2(a^b + xz) + a^2 & \text{3a} & x > b^{2.5} \end{cases}$	1 $a = 0.1$; $b = 0.5$; $z = e^{2.5ax}$; 2 $a = 1.2$; $b = 2.5$; $z = e^{2.5ax}$; 3 $a = 2.5$; $b = 1.2$; $z = e^{2.5ax}$
17	$y = \begin{cases} \sqrt{ ax - \cos^2 b^3 x + 5.1c^2 } & \text{3a } 1 - x^2 = a + c; \\ e^{0.04x} + \ln b^5 \cos x & \text{3a } 1 - x^2 > a + c; \\ \cos^2(b^3 x^2) + \ln bx - a^2 & \text{3a } 1 - x^2 < a + c \end{cases}$	1 $a = 3.5$; $b = -0.73$; $c = 2.5$; 2 $a = 15.4$; $b = -5.6$; $c = 3.5$; 3 $a = 5.1$; $b = 4$; $c = 2.7$
18	$y = \begin{cases} a + \sin bx + \cos x^2 & \text{3a} x \le a; \\ \sqrt{a + bx} + \sin zx & \text{3a} a < x < \ln b; \\ \ln(a + bx + z) & \text{3a} x \ge \ln b \end{cases}$	1 $a = -1.2$; $b = 0.75$; $z = \ln \operatorname{tg}(bx) $; 2 $a = 0.4$; $b = 2.4$; $z = \ln \operatorname{tg}(bx) $; 3 $a = 1.1$; $b = 6.1$; $z = \ln \operatorname{tg}(bx) $
19	$y = \begin{cases} \frac{(2z+1)^2}{3.71 - x^2} & \text{3a} & z > -0.5; \\ \sin^3 z - \sin \frac{z}{3\pi} & \text{3a} & -0.5 \le z \le 10^{-3}; \\ \frac{\text{tg}(z+x) - e^x}{3.5x} & \text{3a} & z > 10^{-3} \end{cases}$	1 $z = \arcsin x^3$; 2 $z = \arccos^2 x$; 3 $z = \operatorname{tg} x$

20	$y = \begin{cases} (3.5a - 7.3bx + \sin(zx))^3 & \text{3a} x < -\ln a ; \\ a^b - \cos^3(a + zx) & \text{3a} - \ln a \le x < b; \\ \sqrt{ \operatorname{tg} a - x } - x^2 & \text{3a} x \ge b \end{cases}$	1 $a = 6$; $b = 3.2$; $z = e^{1.5ax}$; 2 $a = 3$; $b = 6$; $z = e^{1.5ax}$; 3 $a = 2.7$; $b = 1.8$; $z = e^{1.5ax}$
21	$y = \begin{cases} e^{ax} + f \cos^5 bx & \text{3a } x \le a; \\ a + \cos^2 bx - \ln(fx) & \text{3a } a < x \le b^2; \\ \cos^2(a + bfx) & \text{3a } x > b^2 \end{cases}$	1 $a = 0.8$; $b = 2.4$; $f = e^{1.5ax}$; 2 $a = 1,2$; $b = 4.2$; $f = e^{2ax}$; 3 $a = 3.4$; $b = 8.1$; $f = e^{3ax}$
22	$y = \begin{cases} a + bx + \sin^2 zx^{3.5} & \text{3a} x < a; \\ a + \ln ab - zx^3 + \ln x & \text{3a} a \le x \le b^2; \\ \sqrt{ a + \cot(zx) } + b\sin x & \text{3a} x > b^2; \end{cases}$	1 $a = 0.3$; $b = 0.9$; $z = \sin x^2$; 2 $a = 4.3$; $b = 3.15$; $z = \sin x^3$; 3 $a = 6.5$; $b = 3.5$; $z = \sin^2 x$
23	$y = \begin{cases} \ln bzx + za^{2.5} & \text{3a} a^3 < x \le b; \\ ax^2 + bz^a + \sin^2 zx & \text{3a} x > b; \\ \cos(ax + b) + \ln zx & \text{3a} x \le a^3 \end{cases}$	1 $a = 1.5$; $b = 6.4$; $z = \ln bx^3 + 1.5 $; 2 $a = 1.9$; $b = 8.6$; $z = \ln bx^3 + 3 $; 3 $a = 0.6$; $b = 2.4$; $z = \ln bx^3 + 1.8 $
24	$y = \begin{cases} x e^{x} + (z + 7.7abx) & \text{3a} x < a; \\ tg(ax + z) + \cos^{2}bx & \text{3a} a \le x \le b^{2}; \\ \ln(\sin^{2}(a + bx + zx^{2})) & \text{3a} x > b^{2} \end{cases}$	1 $a = 8.7$; $b = 3.7$; $z = tg(bx)$; 2 $a = 9.3$; $b = 3.5$; $z = tg(abx)$; 3 $a = 2.1$; $b = 5.7$; $z = tg(b^2x)$
25	$y = \begin{cases} a + z \cos^2(bx)^3 & \text{3a} x < a; \\ a + \sin^2 b^2 + \ln(zx) & \text{3a} a \le x \le b; \\ \sqrt[3]{0.3b + \sqrt{ (a - z^2 - \cos x) }} & \text{3a} x > b \end{cases}$	1 $a = 1.5$; $b = 5.7$; $z = \ln \text{tg}(bx) $ 2 $a = 3.7$; $b = 8.4$; $z = \ln \text{tg}(bx) $ 3 $a = 4.4$; $b = 5.6$; $z = \ln \text{tg}(bx) $