

# Visual Recognition using Deep Learning 2025 Spring, Homework 3

Release Date: 2025/04/16 12:00

#### Homework 3

- Deadline: 23:59, 05/07 (Wed), 2025
- **Participate the competition** (80%): Instance Segmentation
  - Participant the competition on the CodaBench and get the highest score as possible. (70%)
  - Code reliability: GitHub (10%)
- **Report and code** (20%): Document your method and findings.
  - Report
    - In PDF format and written in English. (5pt penalty)
    - Introduction to your method (e.g., data pre-processing, model architecture, hyper-parameters)
    - Conduct additional experiments to further improve the model and analyze their results.
  - Code
    - Zip your code (.py) alone with report Submit to E3.
    - You should also put your code on your GitHub repository and provide the link in the report.

# Links

- Link to the dataset
- Sample code
- Link to the competition

# How to participate the competition and do submission

- 1. Register an account on <u>CodaBench</u>
  - a. When registering the account, please use your studentID as the UserName
- 2. After you click the competition link, go to My Submissions, and join the competition



# How to participate the competition and do submission

- 3. Submit your results and don't forget to "Add to Leaderboard"
- 4. Don't forget to check your results can be found on the leaderboard

Metadata or Fact Sheet





# Coding Environment

- Recommnedation: Python 3.9 or higher
- Tips
  - We recommend you to use **virtual environments** when implementing your homework assignments.
  - Here are some popular virtual environment management tools
    - Poetry
    - Conda
    - <u>Virtualenv</u>

# Numpy & PyTorch

- Numpy Tutorial: <u>Link</u>
- PyTorch Tutorial: <u>Link</u>
  - Free to use any modules and functions

### Task and Dataset

- Task type: Instance Segmentation
- Dataset
  - colored medical images
    - Training / Validation: 209 images
    - Test: 101 images
- Target
  - Segmentation masks of 4 types of cells (class1, class2, class3, class4)













# Task Requirement and Limitations

- **Requirement**: Train instance segmentation models to segment target objects.
  - We provide you the raw image and masks in .tif format.
    - You need to process the data by yourself.
    - You need to convert predicted masks into correct submission format (<u>example</u>).

#### • Limitations

- No external data (i.e., data from other sources) is allowed.
- Only pure vision-based model is allowed (No vision-language based model; No prompt-based model)
- You can base on mask R-CNN to modify components/modules to improve the model performance.
  - You must "elaborate" (i.e., key design/contribution of that work) and "cite" the paper in the report.
  - Your model size (trainable parameters) should less than **200M**.
- **Note**: Pretrained weights (ImageNet) is allowed.

#### **Dataset Inspection** train/ [image\_name] image.tif class1.tif class3.tif Each unique pixel value represents an instance. (e.g., mask == 1, mask == 2, mask == 3, mask == 4)test/ [image\_name].tif test\_image\_name\_to\_ids.json "file name": "c8cb7626-7423-4c1e-a81c-5ff25ea180b3.tif" "id": 1, "height": 446, "width": 512 "file\_name": "8bf17017-577c-4bc7-b599-df8289a69279.tif" "height": 151, "width": 147

For you to generate submission file, you will need to map the filename to image id

# What you will learn from this homework

- 1. Know the key differences between <u>detection</u> and <u>instance segmentation</u> tasks.
- 2. How to process the instance data.
- 3. The concept of AP and how to evaluate the instance segmentation task.
- 4. How to generate the most common used result format COCO format.

# What you will learn from this homework

- 1. Know the key differences between <u>detection</u> and <u>instance segmentation</u> tasks.
- 2. How to process the instance data.
- 3. The concept of AP and how to evaluate the instance segmentation task.
- 4. How to generate the most common used result format COCO format.

# Average Precision (AP) in Instance Segmentation Task: Box → Mask



- 1. Compute the Intersection over Union (IoU) between prediction and ground-truth
- 2. Set a IoU threshold (e.g., 0.5) Determine "Hit" or "Miss"
- 3. Based on prediction score (box/mask score), compute the recall and precision
- Average over the precision under different recall score (Area over PR-Curve)



# AP in Instance Segmentation Task: Box → Mask (Use box as example)

- 1. Compute the Intersection over Union (IoU) between prediction and ground-truth (box or mask)
- 2. Set a IoU threshold (e.g., 0.5) Determine "Hit" or "Miss"



Assume IoU threshold = 0.5

Assume IoU threshold = 0.75

#### AP in Instance Segmentation Task: Box $\rightarrow$ Mask (Use box as example)

- Based on prediction score (box/mask score), compute the recall and precision



Assume IoU threshold = 0.5

IoU >= 0.5

#### AP in Instance Segmentation Task: Box $\rightarrow$ Mask (Use box as example)

- Based on prediction score (box/mask score), compute the recall and precision



| Rank | IOU >= 0.5 | Prob | Precision | Recall |
|------|------------|------|-----------|--------|
| 1    | T          | 0.9  | 1.0       | 0.33   |

Assume IoU threshold = 0.5



| Rank | IOU >= 0.5 | Prob | Precision | Recall |
|------|------------|------|-----------|--------|
| 1    | T          | 0.9  | 1.0       | 0.33   |
| 2    | T          | 0.9  | 1.0       | 0.66   |

Assume IoU threshold = 0.5

#### AP in Instance Segmentation Task: Box $\rightarrow$ Mask (Use box as example)

- Compute AP score



| Rank | IOU >= 0.5 | Prob | Precision | Recall |
|------|------------|------|-----------|--------|
| 1    | Т          | 0.9  | 1.0       | 0.33   |
| 2    | T          | 0.9  | 1.0       | 0.66   |
| 3    | F          | 0.85 | 0.67      | 0.67   |







0.5

0.75

1.0

F



# What you will learn from this homework

- 1. Know the key differences between <u>detection</u> and <u>instance segmentation</u> tasks.
- 2. How to process the instance data.
- 3. The concept of AP and how to evaluate the instance segmentation task.
- 4. How to generate the most common used result format COCO format.

# Output Format Example for Instance Segmentation

- Official instruction
- What is **RLE format**
- <u>Sample code</u> for you to encode mask to RLE format
- To prevent blind submission Run evaluation by yourself before submitting (see <u>COCOEval</u>)

```
For detection with bounding boxes, please use the following format
         "image id"
                               : int.
        "category_id"
                               : int,
                               : [x,y,width,height],
        "score"
                               : float.
     }]
                               : int,
        "category id"
                               : int,
        "segmentation"
                               : RLE.
        "score"
                               : float,
```

```
'image id': 1,
'bbox': [95.22177124023438, 381.214111328125, 24.7103271484375, 25.109375],
'score': 0.56789,
'category id': 1,
'segmentation': {
    'size': [446, 512],
    'counts': 'PhY1f0W=1000010002N102N1N3N2M5Jgb 5'
'image id': 1.
'bbox': [304.9966735839844, 241.36700439453125, 45.23297119140625, 41.11309814453125],
'score': 0.45678,
'category id': 1,
'segmentation': {
    'size': [446, 512],
    'counts': 'cRU4d0Y=3N1001001010001000100100010001000101N102M3N2M5JjT^2'
```

# Grading Policy - Report (20%)

- Format: PDF, written in English. (-5pts if not followed)
- Sections that you should include
  - **Introduction** to the task and core idea of your method
  - **Method:** Describble how you pre-process the data; what is your model architecture, and hyperparameters, etc.
    - You need to describe each key component in your model. (e.g., Backbone: ResNet, Neck: FPN, Heads: Mask/Transformer decode, etc.)
  - **Results**: Describe your findings and list/plot your model performance (e.g., training curve, confusion matrix, etc.)
  - References: Your method references (Paper / Github sources, <u>must include if you use any</u>.)

We encourage you to stand on the shoulders of giants - only clone repo and run it is not enough.

- Among various architectures, why do you choose this one as your module? What are the pros and cons?
- Additional experiments to explore better performance
  - Simply tuning the hyper-parameters doesn't count (e.g., batch-size, LR, different optimizers)
  - Hint: Try to add/remove some layers, use different design, use different loss functions, etc.
- You should 1) include your hypothesis (why you do this), 2) How this may (or may not) work, and 3) The experiment results and their implications.

15pts

5pts

20

# Grading Policy - Code Reliability (10%)

- Python Coding Style Guide Reference
- 1. <u>PEP8</u>
- 2. Google Python Style
- 1. Please follow the PEP8 instructions and lint your code.
- 2. Push your code to the GitHub
- It should contains a README.md to introduce this work (And your StudentID)
- Runable codes



An example: README.md

# Grading Policy (70%)

We will use **private** (hidden) leaderboard to evaluate the performance (the distribution is similar for data in public and private set.) The public leaderboard is for you as reference.

#### Your score (competinion):

- Less than weak-baseline (AP50  $\leq$  w.baseline): S = 0
- Between weak-baseline and strong baseline (AP50 >= w.baseline & AP50 < s.baseline): (70 + (X w.baseline) / (s.baseline w.baseline) \* (85 70)) \* 0.70</li>
- Between strong-baseline and Rank3: (85 + (X s.baseline) / (AP.rank3 s.baseline) \* (100 85)) \* 0.70
- Rank1,2,3 = 100 \* 0.70



#### **Submission**

- Compress your **code** and **report** into a **.zip file** and submit it to E3.
  - o Don't forget to push your code to GitHub. And your GitHub link should be written in the report.
- Report should be written in English.
- STUDENT ID>\_HW3.zip
  - o codes (.py, folders, etc)

• Don't put the data (e.g. x.jpg / train.csv / test.csv) and model checkpoints into submission file (-5 if not followed)

#### Other rules

- Late Policy: A penalty of 20 points per additional late day. (-20pt / delayed.day)
  - For example, If you get 90 points but delay for two days, your will get only 50 points!

- <u>No Plagiarism</u>: You should complete the assignment by yourself. Students engaged in plagiarism will be penalized heavily. Super serious penalty.
  - o e.g. -100pt for the assignment or failed this course, etc
  - Report to academic integrity office

# **FAQs**

- Can I use any library/package/framework from GitHub or other resources?
  - Yes, we encourage you to learn how to leverage existing knowledge on your own task
    - e.g., Github of <u>published works</u> and model zoo from Torchvision
    - Focus on how to step forward from them That's why part of scores comes from your competition ranks
  - You **should not copy-and-paste from your classmates** (Plagiarism)
- How to handle the GPU Out-of-Memory (OOM) issue?
  - Easy answer Make your batch size smaller or make your model smaller.
  - Advanced methods: Try to figure it out by yourself. (Many online resources and AI-assistance)

# FAQs

- If I don't have my own GPU Use Google Colab
  - It should be 12 hours, please check this discussion in the stackoverflow
  - And some tricks <u>here</u> may make it longer.

• If you have other questions, ask on **E3 forum** first! We will reply as soon as possible.

# It's your turn! Have Fun!



#### DONT FOGET: Team-up for the final project!

3/26 (Wed) - 4/23 (Wed) – After 4/24, we will random assign

Find 4 classmates to team up. [Link to the form]

- "Team Member 1" will be the leader (We'll contact leader when needed.)
- Feel free to invite/join using E3 discussion board. (Just use <a href="https://example.com/homework/discussion">homework discussion</a> board)

Report order may be related to "topic" and in a random order - announce after the topic is selected.

| A       | В                | С               | D            | E             | F           | G               |
|---------|------------------|-----------------|--------------|---------------|-------------|-----------------|
| GroupID | GroupName        | TeamMember1     | TeamMember2  | TeamMember3   | TeamMember4 | Selected Topic  |
| Group1  | <b>\</b>         |                 |              |               | ,           | r. ( → ) r      |
| Group2  |                  |                 |              | Y             |             | Topic will be r |
| Group3  |                  |                 | [Student ID] | , [Your Name] |             | future.         |
| Group4  | Group Name       |                 |              |               |             | , atai oi       |
| Group5  |                  | Chinese English |              |               |             |                 |
| Group6  | No affect to the | e grading       |              |               |             |                 |
| Group7  |                  |                 |              |               |             |                 |
| Group8  |                  |                 |              |               |             |                 |
| Group9  |                  |                 |              |               |             |                 |
| Group10 |                  |                 |              |               |             |                 |

