POKAL 2.0: Kollaboratives eLearning neu erfunden

Physik
Onlines
Kollaborative
Arbeits- und
Lernplattform

Carsten Bauer Sven Köppel

Team PhysikOnline am Institut für Theoretische Physik

POKAL ist eine Plattform zum Rechnen im Browser

Warum besteht Bedarf?

Kommerzielle Computeralgebrasysteme, zb:

- Lizenzkosten! 100.000€/Jahr
- Verfügbarkeit für Studenten: Schwierig
- Vendor-Lockin

Alternativen:

- z.B. "Scientific Python"
- Open-Source, kostenlos
- Integrierbar ins Web 2.0

Cloudbasierte Echtzeitkollaborationstools

Das POKAL-Team: am Riedberg

Das POKAL-Team: am Riedberg

POKAL 1.0

Externer Dienstleister + 2 Hiwis

POKAL 2.0

Carsten

Philip

Sven

Einblick

Willkommen auf POKAL 2.0

Physik Onlines Kollaborative Arbeits- und Lernplattform (POKAL) ist eine brandneue Online-Mathematiksoftware für Studenten und Forscher, die gemeinsam arbeiten, lernen und rechnen wollen.

Freunde und Förderer

Wir bedanken uns bei unseren Sponsoren und Förderern:

SeLF 2012/2013

POKAL ist ein Pilotprojekt von Physikstudenten und wurde in den Förderrunden 2011/2012 und 2012/2013 im Rahmen des studentischen eLearning-Förderfonds von Studiumdigitale ins Leben gerufen.

ITP

Ohne die Administratoren des ITP und CSC könnten wir die nötige Rechenleistung und Infrastruktur nicht stellen.

SAGE

Das POKAL-Projekt beteiligt sich aktiv an der OpenSource-Mathematik-Software SAGE durch zahlreiche Weiterentwicklungen.

Öffentlicher Arbeitsblatt-Katalog

Benutzer können Arbeitsblätter zu Demonstrationszwecken, für Vorlesungen oder schlicht zum Verbreiten via Link veröffentlichen.

POAK öffnen

Einloggen	
HRZ Name	
Passwort	
Anmeldedaten merken	

Impressum · Datenschutzbestimmungen · Projekt

PhysikOnline ist ein studentisches Projekt der Goethe-Universität

PPOKAL

Physik Plotting

Arbeitsblatt-Chat

Kollaboratoren: carsten

carsten: Hier kann diskutiert werden!

carsten: Da auch LaTeX unterstützt wird, können auch

Formeln elegant ausgetauscht werden:

carsten:
$$\hat{H}=rac{\hat{p}^2}{2m}+rac{1}{2}\,m\omega^2\hat{x}^2$$

carsten

$$\psi_n(x) = rac{1}{\sqrt{2^n\, n!}} \left(rac{m\omega}{\pi\hbar}
ight)^{1/4} e^{-rac{m\omega x^2}{2\hbar}} H_n\left(\sqrt{rac{m\omega}{\hbar}}x
ight)$$

carsten: Auch diagrammatische Rechnungen lassen sich besprechen:

carsten:

$$egin{split} V(\mathbf{q}) &= f_{\mathbf{q}} = \int d^2r e^{-i\mathbf{q}\mathbf{r}} \, rac{e^2}{|\mathbf{r}|} \ &= e^2 \int_0^\infty dr \underbrace{\left(\int_0^{2\pi} d heta e^{-iqr\cos heta}
ight)}_{2\pi J_0(qr)} \ &= rac{2\pi e^2}{|\mathbf{q}|} \underbrace{\int_0^\infty J_0(u)}_{=1} \end{split}$$

Senden

Physik Online Arbeitsblatt-Katalog Zurück zu Pokal

POAK ist unsere Plattform, um veröffentlichte POKAL-Arbeitsblätter leichter zugänglich und nach verschiedenen Schlagworten durchsuchbar zu machen.

Anmelden

Harmonischer Oszillator (DGL Lösen)

Als einfaches Beispiel wollen wir den harmonischen Oszillator in einer Dimension Lösen. Dieser wird durch folgende Differentialgleichung beschrieben:

$$\ddot{x} + \omega^2 x = 0$$

```
reset()
t = var('t')
var('w k1 k2')
assume(w>0)
x = function('x',t)
DE = diff(x,t,2)+w^2*x
solution = desolve(DE, [x,t])
solution
```

 $k_2\cos\left(tw\right)+k_1\sin\left(tw\right)$

```
pos(t,k1,k2,w) = solution plot(pos(t,1,1,1.5),(t,0,20),figsize=5,title='Zeitentwicklung des harmonischen Oszillators').show(figsize=6)
```


PPOKAL

Lorenz-Attraktor

Der **Lorenz-Attraktor** ist der seltsame Attraktor eines Systems, bestehend aus drei gekoppelten, nichtlinearen gewöhnlichen Differentialgleichungen. Das System ist innerhalb der Chaostheorie ein bekanntes Beispiel für **deterministisches Chaos**. Obwohl die mikroskopische Zukunft des Systems durch die folgenden Differentialgleichungen vollständig determiniert ist, sind praktische Vorhersagen für bestimmte Parameterkonfigurationen unmöglich.

$$egin{aligned} rac{\mathrm{d}x}{\mathrm{d}t} &= \sigma(y-x), \ rac{\mathrm{d}y}{\mathrm{d}t} &= x(
ho-z)-y, \ rac{\mathrm{d}z}{\mathrm{d}t} &= xy-eta z. \end{aligned}$$

Wir wollen nun den Lorenz-Attraktor visualisieren. Hierfür lösen wir das System der 3 DGL's numerisch.

```
Integer = int
RealNumber = float
def lorenz(t,y,params):
    return [params[0]*(y[1]-y[0]),y[0]*(params[1]-y[2]) - y[1],y[0]*y[1]-params[2]*y[2]]
def lorenz_jac(t,y,params):
    return [ [-params[0],params[0],0],[(params[1]-y[2]),-1,-y[0]],[y[1],y[0],-params[2]],[0,0,0]]
T=ode_solver()
T.algorithm="bsimp" # implicit burlisch-stoer
T.function=lorenz
T.jacobian=lorenz_jac
T.jacobian=lorenz_jac
T.ode_solve(y_0=[.5,.5,.5],t_span=[0,100],params=[10,40.5,3],num_points=10000)
l=[T.solution[i][1] for i in range(len(T.solution))]
line3d(l,thickness=0.3, figsize=5).show()
```


Lorenz-Attraktor

Der Lorenz-Attraktor ist der seltsame Attraktor eines Chaostheorie ein bekanntes Beispiel für deterministis ist, sind praktische Vorhersagen für bestimmte Paramet ➤ Alle Zellen auswerten

■ Abbrechen

■ Alle Abbrechen

❖ System ändern

n, nichtlinearen gewöhnlichen Differentialgleichungen. Das System ist innerhalb der ne Zukunft des Systems durch die folgenden Differentialgleichungen vollständig determiniert

- Alle Ausgaben verbergenAlle Ausgaben anzeigen
- X Alle Ausgaben löschen
- Weiterrechnen beim Verlassen -z) -y,

$$rac{\mathrm{d}z}{\mathrm{d}t} = xy - eta z$$
.

x),

Wir wollen nun den Lorenz-Attraktor visualisieren. Hierfür lösen wir das System der 3 DGL's numerisch.

```
Integer = int
RealNumber = float
def lorenz(t,y,params):
    return [params[0]*(y[1]-y[0]),y[0]*(params[1]-y[2])- y[1],y[0]*y[1]-params[2]*y[2]]
def lorenz_jac(t,y,params):
    return [ [-params[0],params[0],0],[(params[1]-y[2]),-1,-y[0]],[y[1],y[0],-params[2]],[0,0,0]]
T=ode_solver()
T.algorithm="bsimp" # implicit burlisch-stoer
T.function=lorenz
T.jacobian=lorenz_jac
T.ode_solve(y_0=[.5,.5,.5],t_span=[0,100],params=[10,40.5,3],num_points=10000)
l=[T.solution[i][1] for i in range(len(T.solution))]
line3d(l,thickness=0.3, figsize=5).show()
```

Öffne interaktive Ansicht Popout

66.2

33.3

PPOKAL

Graphen Tight-Binding

$$E=\pm\sqrt{\gamma_0^2\left(1+4\cos^2\pi k_y a+4\cos\pi k_y a\cdot\cos\pi k_x\sqrt{3}a
ight)}$$

```
def Ep(kx, ky):
      return sgrt(1+4*cos(pi*ky)^2+4*cos(pi*ky)*cos(pi*kx*sgrt(3)))
%"S) (/")!)!)!"S(!(
     return (-1) *sqrt(1+4*cos(pi*ky)^2+4*cos(pi*ky)*cos(pi*kx*sqrt(3)))
p1 = plot3d(Ep, (-1,1), (-1,1))
p2 = plot3d(Em, (-1,1), (-1,1))
(p1+p2).show()
```

Öffne interaktive Ansicht Popout

POKAL

Kollaboratives eLearning neu erfunden

www.pokal.uni-frankfurt.de pokal@elearning.physik.uni-frankfurt.de

Carsten Bauer Sven Köppel

Team PhysikOnline am Institut für Theoretische Physik

