1 Aufgabe: Konfidenzintervall für μ

Betrachtet wird eine unabhängig und identisch normalverteilte Zufallsvariable $X \sim N(\mu, \sigma^2)$.

- 1. Zunächst soll die Varianz σ^2 als bekannt vorausgesetzt sein. Mittels der Zufallsstichprobe $X_1,...,X_n$ soll ein Konfidenzintervall für den Erwartungswert μ mit einer Irrtumswahrscheinlichkeit α konstruiert werden.
- 2. In der Praxis ist die Varianz jedoch unbekannt und muss geschätzt werden. Bestimmen Sie auch für diesen Fall mittels der Zufallsstichprobe $X_1,...,X_n$ ein Konfidenzintervall für den Erwartungswert μ mit einer Irrtumswahrscheinlichkeit α .
- 3. Verspätungen der Deutschen Bahn: Die Stiftung Warentest hat an einigen deutschen Bahnhöfen den Prozentsatz der verspäteten Züge (Verspätungen größer 4 Minuten) beobachtet. In der folgenden Tabelle finden Sie die Ergebnisse einer Stichprobe von $n=94\,136$ Zügen im Herbst 2007:

Stadt	Prozentsatz
Berlin	25
Hannover	28
Hamburg	35
München	33
Leipzig	16
Dresden	35
Mannheim	29
Stuttgart	23
Frankfurt	34
Köln	36

Berechnen Sie aus dieser Stichprobe den mittleren Prozentsatz der verspäteten Züge für Deutschland und geben Sie das zugehörige Konfidenzintervall mit einer Irrtumswahrscheinlichkeit von 0.05 an. Interpretieren Sie die Ergebnisse!

2 Aufgabe: Erwartungstreue

Gegeben sei eine unabhängig und identisch verteilte Zufallsstichprobe $X_1, ..., X_n$.

1. Der Erwartungswert $E(X)=\mu$ sei bekannt und $\sigma^2=Var(X)$ soll geschätzt werden. Bestimmen Sie den Erwartungswert der folgenden Varianzschätzung und geben Sie an, ob der Schätzer erwartungstreu ist:

$$S_{\mu} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

2. Der Erwartungswert $E(X) = \mu$ sei unbekannt und $\sigma^2 = Var(X)$ soll geschätzt werden. Bestimmen Sie den Erwartungswert der folgenden Varianzschätzung und geben Sie an, ob der Schätzer erwartungstreu ist:

$$S_1 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Mit dem Mittelwertschätzer $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

3. Leiten Sie nun mithilfe des Teilergebnisses 2.2 den erwartungstreuen Schätzer (Stichprobenvarianz) für die Varianz bei unbekanntem Mittelwert her.

3 Aufgabe: Gleichverteilung

Eine stetige Zufallsvariable X heißt gleichverteilt auf dem Intervall [a,b], kurz $X \sim U(a,b)$ falls für ihre Dichte gilt:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{für } a \le x \le b; \\ 0 & \text{sonst.} \end{cases}$$

(a) Weisen Sie nach, dass die Verteilungsfunktion einer gleichverteilten Zufallsvariable X wie folgt gegeben ist:

$$F(x) = \begin{cases} 0 & \text{für } x < a; \\ \frac{x-a}{b-a} & \text{für } a \le x \le b; \\ 1 & \text{für } x > b. \end{cases}$$

- (b) Zeigen Sie, dass E(X)=(b+a)/2 und ${\rm Var}(X)=(b-a)^2/12$ gilt. Hinweis: Benutzen Sie zur Berechnung der Varianz den Zusammenhang ${\rm Var}(X)=E(X^2)-E(X)^2.$
- (c) Gegeben sei eine unabhängige Stichprobe x_1, x_2, \ldots, x_n einer Gleichverteilung auf dem Intervall [-a,a] (a>0). Weisen Sie nach, dass $T=\frac{3}{n}(X_1^2+\ldots+X_n^2)$ ein unverzerrter Schätzer für a^2 ist.

Übungsleiter:

Bernd Klaus (Dipl. Wi-Math) Mail: bernd.klaus@uni-leipzig.de Verena Zuber (M.Sc.) Mail: vzuber@uni-leipzig.de