R 기초 프로그래밍

한국환경정책·평가연구원 부연구위원 진대용

강의자료 : https://github.com/dyjin1217

프로그래밍 언어

- 사람과 컴퓨터 사이에 존재하는 일종의 의사소통 수단
 - 컴퓨터한테 명령을 내리기 위한 수단

출처: https://istudio7.tistory.com/46

R 프로그램

- R은 통계 계산과 그래픽을 위한 **프로그래밍 언어**이자 소 프트웨어 환경 (위키피디아)
- R의 활용
 - 통계분석
 - 기계학습
 - 네트워크 분석
 - 웹 프로그램
 - 유전체 분석
 - **–** ...

R 프로그램 장/단점

- 장점
 - 다양한 패키지
 - 시각화
 - 무료 (오픈 소프트웨어)
- 단점
 - 느림
 - 높은 메모리 요구
- 그 외
 - 유연성 (예 : 데이터 타입)

R 프로그램 설치

- R 설치
 - https://www.r-project.org
- R-studio 설치
 - https://www.rstudio.com/
 - 통합개발환경: 개발에 관련된 모든 작업을 하나의 프로그램 안에서 처리하는 환경
- 참조 사이트
 - https://backgomc.tistory.com/34

R-Studio 시작화면

첫 프로그래밍

- 2 + 3
- "Hello World"
- X <- 3
- X * X

R의 연산

- 산술 연산 (+,-,/,%%,^...)
 - -3+2, X+2
- 논리 연산 (AND(&), OR(|), NOT(!)...)
 - X %% 2 == 0 & X %% 3 == 0
- 비교(관계) 연산 (>, <, ==, ...)
 - X > 2
 - X == 3
- 대입/할당 (연산)
 - X <- 3 (기본)
 - X = 3 (함수에서 주로 사용)

R 데이터 타입

기본 데이터 타입 (원자 벡터)

객체(변수)	예
integer	100
double	0.05
character	"Hello"
logical	TRUE
factor	"Black"

"R에서 모든 객체(변수)는 데이터 타입(자료의구조)를 가지고, 기본이 되는 데이터 타입은 벡터(Vector)"

R 데이터 타입

- 벡터(vector)
 - 1차원 데이터, 동일 데이터 타입
- 행렬(matrix)
 - 2차원 행*열 데이터, 동일 데이터 타입
- 데이터 프레임(dataframe)
 - 2차원 행*열 데이터, 열 단위 다른 데이터 가능
- 리스트(list)
 - 다수 객체를 인덱스를 활용하여 사용

R 데이터 타입 연습

연습

- A < 3
- A < -4.5
- A <- "안녕"
- A < c(1,2,3)
- A <- c("사과","바나나","배")
- A <- matrix(c(1,2,3,4), nrow=2)
- A <- data.frame(숫자=c(1,2,3),과일= c("사과","바나나","배"))

데이터 타입 알아보기

- typeof(객체)
 - 기본 데이터 타입을 출력
- class(객체)
 - 객체의 종류 출력, 벡터는 기본 데이터 타입을 출력
- str(객체)
 - 객체구조 출력

데이터 타입 확인 및 변경

- is.character(객체)
 - is.character(c(1,2)) # FALSE
- as.character(객체)
 - as.character(c(1,2))

- as.matrix(객체)
 - A <- as.matrix(c(1,2,3,4))
- as.vector(객체)
 - A <- as.vector(A)</p>

벡터 생성

- 1~5 벡터 생성
 - A <- c(1,2,3,4,5)
 - A <- 1:5
 - A <- seq(1,5,1) # seq(시작값, 끝값, 등차)
- 5가 5번 벡터 생성
 - A <- rep(5,5) # rep(숫자, 반복횟수)

벡터 원소 추출

- R의 인덱스는 1부터 시작
 - 예:1번째 원소는 인덱스 1
- 인덱스 기반 벡터 원소 추출
 - 1. A <- 1:10
 - 2. A[3] : 3번째 원소 추출 #A[인덱스]
 - 3. A[1:3]: 1~3번째 원소 추출 # A[시작인덱스:끝인덱스]
 - 4. A[5:10]: 5번째 원소부터 끝까지 출력 # A[시작인덱스:]
 - 5. A[1:2] : 2번째 원소까지 출력 # A[:끝인덱스]
 - 6. A[-1]: 1번째 인덱스 제외
 - 7. A[-(1:3)] : 1번째 인덱스 제외

벡터 원소 추출

- 값 기반 원소 추출
 - A <- c(1,3,5,3,2,5,3)
 - A == 3
 - A[A==3]
 - A[A > 3]
 - A %in% c(3,5)
 - A[A % in% c(3,5)]

행렬 생성 및 추출

- 1~42 × 2 행렬 생성
 - 1. $V \leftarrow c(1,2,3,4)$
 - 2. A <- matrix(V, nrow=2, byrow=2)
- 1~25사이 숫자 생성 및 5*5 행렬 생성
 - 1. V <- 1:25
 - 2. A <- matrix(V, nrow=5) # matrix(데이터(벡터), 행,열)
 - 3. A[3,3] # 3,3
 - 4. A[1:3,4:5] #1~3행, 4~5열 추출
 - 5. A[,4:5] #모든행 4~5열 추출
 - 6. A[-1,] #행 제외 추출
 - 7. A[,-(2:3)] # 2~3열 제외 추출

데이터 프레임 생성 및 추출

- 2개 다른 기본타입의 벡터를 데이터프레임으로
 - 1. A <- data.frame(숫자=c(1,2,3),과일= c("사과","바나나","배"))
 - 2. A[1:2,1:2] # 1~2행, 1~2열
 - 3. A[1:3,] # 1~3행 추출
 - 4. A[-1,] # 1행 제외 추출
 - 5. A[,-c(2,3)] #2~3열 제외 추출
 - 6. A\$과일 or A[,'과일'] # 과일열 추출
 - 7. A\$과일[2]
- 참고 : data.frame(벡터1,벡터2, ...), 동일길이 벡터를 주 로 활용

리스트 생성 및 추출

- 리스트 생성 및 추출
 - 1. $L \leftarrow list(x = 1:3, y = c("A","B","C")$
 - 2. L\$x
 - 3. L[1]
 - 4. L[[1]]

대입연산자

• 대입연산

- A < 1:10
- A[1] < 4
- A[1:3] <- 4 # Broadcasting
- A[1:3] < 3:5
- A <- matrix(1:8,nrow=2)</pre>
- -A[,2] < -c(4,1)
- -A[1:2,1:2] < -2
- A[1:2,1:2] <- matrix(c(1,2,3,4),nrow=2)

펙터(factor)

- 특정 수준 값만을 가질 수 있는 데이터 타입
 - 1. A <- factor(c("바나나","사과","오렌지"))
 - 2. A[3] <- "Hello" # Error
 - 3. A[3] <- "오렌지"
 - 4. A <- data.frame(숫자=c(1,2,3),과일= c("사과","바나나","배"))
 - 5. A <- data.frame(숫자=c(1,2,3),과일= c("사과","바나나","배"), stringsAsFactors=FALSE)

조건문

• 조건문 if

- 1. if(조건1){
- 2. 코드1
- 3. } else if(조건2)
- 4. 코드2
- 5. } else{ # 그외
- 6. 코드3
- 7. }

조건문

- X가 7일때 양수/음수/0 판단 조건문 프로그램
 - 1. X < -7
 - 2. if(X>0){
 - 3. cat("양수")
 - 4. } else if(X = 0){
 - 5. cat("0")
 - 6. } else{
 - 7. cat("음수")
 - 8. }

연습문제

- 점수를 입력받아 성적을 판단 프로그램
 - 90 이상 수
 - 80~90 이하 우
 - 70~80 이하 미
 - **–** ...
- 홀짝 판단하는 프로그램

반복문

- 반복문
 - for : 일반적으로 가장 많이 사용
 - while : 무한루프, while(1){ }, while(TRUE){} 형태
 - repeat

- for 문
 - 1. for(반복변수 in 객체(보통 벡터)){
 - 2. 코드
 - 3. }

- 벡터값 1개씩 출력
 - 1. fruits <- c('사과','배','귤','참외','자두')
 - 2. for(fruit in fruits){
 - 3. print(fruit)
 - 4. }

fruits <- c('사과','배','귤','참외','자두')

인덱스	1	2	3	4	5
값	사과	배	귤	참외	자두

• 1에서 100까지의 합

1:100 벡터

1.	sum	<-	0
 •	3 G 1 1 1	•	<u> </u>

- 2. for(i in 1:100)
- 3. {
- 4. sum < sum + i
- 5. }
- 6. print(sum)

인덱스	1	2	3	•••	100
값	1	2	3	•••	100

```
• 구구단 출력
1. for(i in 1:9){
2. for(j in 1:9){
      print(paste(i, "*", j, "=", i*j,sep=""))
4. }
5. }
```

while문

- 1에서 100까지의 합
 - 1. i < -1
 - $2. \, sum < -0$
 - 3. while (i <= 100){
 - 4. sum <- sum + i
 - 5. i < -i + 1
 - 6. }
 - 7. print(sum)

while문

• 구구단 출력

```
1. i <- 1
2. while (i <= 9){
3. j < -1
4. while (j <= 9){
5. cat(i, "*", j, "=", i*j,"₩n",sep="")
6. j < -j + 1
7. }
8. i < -i + 1
9. }
```

반복문 제어

- break : 루프 탈출
- 1. for(i in 1:10){
- 2. if(i %% 2 == 0){
- 3. break
- 4. }
- 5. print(i)
- 6. }

반복문 제어

- next : 반복문 블록의 수행을 중단하고 다음 반복 을 시작
- 1. for(i in 1:10){
- 2. if(i %% 2 == 0)
- 3. next
- 4. print(i)
- 5. }

연습문제

- "exit"가 입력될 때 까지 무한 루프를 수행하는 코드를 작성
- 1+2+3+...+N이 150이상이 되는 첫 N을 구하는 코드를 작성
- 1~9까지 제곱한 출력 (1+4+9...)

함수

- 함수 : Function
 - 함수정의: 함수 <- function(인자1,인자2,...) { 내용 }
 - 함수호출 : 함수(인자1,인자2,...)

함수

- 2개의 값을 입력 받아 평균을 내는 함수
 - 함수정의: 함수 <- function(인자1,인자2,...) { 내용 }
 - 1. ave_two <- function(n1,n2)</pre>
 - 2. {

return (n1 + n2)

3. }

- 함수호출: 함수(인자1,인자2,...) 함수

1. $ave_two(2,3)$

출력

입력

연습문제

- 2개의 값을 입력 받아 큰 수 출력하는 함수 구현
- 2개의 값을 입력 받아 그 사이에 해당하는 값을 더해주는 함수 구현 (두수도 포함)
- 3개의 값을 입력 받아 1번째 수 + 2번째 수 3
 번째 수를 수행하는 함수 구현

그외 주요내용

- length : 벡터의 길이
- names : 벡터에 이름 부여
- nrow : 행수
- ncol : 열수
- colnames : 열 이름
- rownames : 행 이름
- NULL/NA 처리: is.na(객체), is.null(객체)
- which : 인덱스 위치
- paste : 문자열을 붙일때
- unlist
- sort : 정렬
- order : 정렬 색인

•

R 통계량 구하기

Maths Functions

log(x)	Natural log.	sum(x)	Sum.
exp(x)	Exponential.	mean(x)	Mean.
max(x)	Largest element.	median(x)	Median.
min(x)	Smallest element.	quantile(x)	Percentage quantiles.
round(x, n)	Round to n decimal places.	rank(x)	Rank of elements.
<pre>signif(x, n)</pre>	Round to n significant figures.	var(x)	The variance.
cor(x, y)	Correlation.	sd(x)	The standard deviation.

R 통계량 구하기

• 통계량 구하기

- 1. score = c(50,60,100,95,85)
- 2. mean(score) # 평균
- 3. median(score) # 중앙값
- 4. max(score) # 최고값
- 5. quantile(score) # 4분위수, IQR = Q3 Q1
- 6. which(score == 95) # 인덱스

연습문제

- 성적표
 - kor : 90, math : 95, hist : 80, ps : 70, music :
- 문제
 - 점수를 score 벡터에 저장
 - names를 이용해 제목 부여
 - 평균, 중앙값, 표준편차, 최고점 과목

apply 함수

- apply(객체, 1 or 2, 함수)
- 1:행,2:열

연습문제

- 1~25로 이루어진 5 * 5 행렬 생성
- 문제
 - 행 합, 열 합
 - -행 평균, 열 평균
 - -행 최대값, 열 최대값

	SET GRAPHICA	AL PARAMETERS			ADD	TEXT	
	par	nly be set with par(axis labels	xlab =, ylab =	(mag	size gnification factor) cex =
multiple plots	<pre>mfcol = c(nrow,ncol) mfrow = c(nrow,ncol)</pre>	/ /	oma = c(bottom, left, top, right) default: c(0,0,0,0) lines	subtitle title	sub = main =	axis labels subtitle	<pre>cex.lab = cex.sub =</pre>
plot margins	mar = c(bottom, left, top, right) default: c(5.1, 4.1, 4.1, 2.1) lines	query x & y limits	par ("usr")	font face	style font = 1 (plain) 2 (bold) 3 (italic)	tick mark lab title	els cex.axis = cex.main = position
CREATE A NEW PLOT				4 (bold italic)	text direction	•	
Bar charts bar labels	<pre>barplot(height,) names.arg = border =</pre>	Histograms breakpts	hist(x,) breaks =	font family	<pre>family = "serif" "sans" "mono"</pre>	justification	adj = 0 .5 1 (left, center, right)
border fill color	col =	Line charts	plot (<i>x</i> , type = "1")	ADD TO AN EXISTING PLOT			
horizontal	horiz = TRUE	line type	"blank" 0 "solid" 1	Add new plot	[any plot function] (, add = TRUE)	Lines line style	lines (x,) lty =
Box plots boxplot(x,) horizontal horizontal = TRUE		"dashed" 2 "dotted" 3		x, add = TRUE)	line width	-	
box labels	names =	line width	lwd =	Axes location	axis (<i>side,</i>) side = 1 2 3 4	color Points	points (x,)
Dot plots dot labels	<pre>dotchart(x,) labels =</pre>	Scatterplots symbol	plot(x,) pch =	tick mark: labels	(bottom, left, top, right) labels =	symbol □ ○ △ + 0 1 2 3	pch = × ⋄ ▽ ⊠ * ◆ ⊕ ቖ ⊞ 4 5 6 7 8 9 10 11 12
	REMOVE		ADJUST	location	at =	⊠ ■ ● 13 14 15 16	↑ ↑ ↑ ↑ ○ □ ♦ △ ▽ 17 18 19 20 21 22 23 24 25
axis labels	ann = FALSE	allow plotting		remove rotate text	tick = FALSE las = 1 (horizontal)	color fill color	col = bg = (pch: 21-25 only)
axis, tickmark and labels	•	out of plot region	xpd = TRUE	Axis labels location	mtext (text,) side = 1 2 3 4	Text position	text (x, y, text,) pos = 1 2 3 4
plot box	bty = "n"	aspect ratio	asp =	lines to skip	(bottom, left, top, right) line = (from plot	(rel. to x,y)	(below, left, above, right) (default=center)
NOTE: Marie	fthe nevernetors b	axis limits	xlim =, ylim =	position	region, default = 0) at = x or y-coord	Title axis labels	<pre>title (main,) xlab =, ylab =</pre>
	f the parameters here set in par(). See R options.	axis lines to match axis limits	xaxs = "i" , yaxs = "i" (internal axis calculation)	•	(depending on side) adj = 0 .5 1 (left, center, right)	subtitle title	sub = main = iovcerobbins1@amail.com

http://publish.illinois.edu/johnrgallagher/files/2015/10/BaseGraphicsCheatsheet.pdf

Scatter Plot

- 1. x < -c(1,2,3,4,5)
- 2. y < -c(1,4,3,5,9)
- 3. plot(x,y)
- 4. plot(x,y,main="title")
- 5. plot(x,y,font=3, main="title")
- 6. plot(x,y,font.main=3, main="title")
- 7. plot(x,y,xlim=c(1,5),main="title")
- 8. plot(x,y,font.main=3,xlim=c(1,5),main="title",ann=FALSE)

Scatter Plot

- 1. x < -c(1,2,3,4,5)
- 2. y < -c(1,4,3,5,9)
- 3. plot(x,y)
- 4. title(main="title")
- 5. title(xlab="num")
- 6. text(3,3, "Hello")

- 히스토그램
 - 1. A <- round(runif(100, min = 0,max = 100),0)
 - 2. hist(A, main="")
 - 3. title("histogram")

Boxplot

- 1. A <- round(runif(100, min = 0,max = 100),0)
- 2. boxplot(A)
- 3. title(main="boxplot")
- 4. title(xlab="Hello")
- 5. axis(4)
- 6. lines(c(1,1),c(30,50))

R 활용사례: iris 데이터 분석

변수명	변수설명		
Species	붓꽃의 종. setosa, versicolor, virginica 세 가지 값 중 하나		
Sepal.Width	꽃받침의 너비		
Sepal.Length	꽃받침의 길이		
Petal.Width	꽃잎의 너비		
Petal.Length	꽃잎의 길이		

• iris_analysis.R 참조

R 활용사례: mtcars 데이터 분석

변수명	변수설명
mpg	연비 (Miles per Gallon)
cyl	실린더 개수
disp	배기량
hp	마력
drat	후방차축 비율
wt	무게
qsec	1/4 마일에 도달하는데 걸린 시간
VS	엔진 (0 : V engine 1 : Straight engine)
am	변속기 (0 : 자동, 1 : 수동)
gear	기어 개수?
carb	기화기(카뷰레터) 개수

• mtcars_analysis.R 참조