

Report Information
from Dialog DataStar

THOMSON
The logo consists of the word "THOMSON" in a bold, sans-serif font above a horizontal line. A five-pointed star is positioned on the line, with its points pointing upwards, downwards, leftwards, and rightwards. Below the line is the word "DIALOG" in a bold, sans-serif font.
DIALOG

Table of Contents

DataStar Documents.....	1
A video eye tracking system based on a statistical algorithm.....	1
Search Strategy.....	3

A video eye tracking system based on a statistical algorithm.

Accession number & update

0004839678 20070101.

Conference information

Proceedings of 36th Midwest Symposium on Circuits and Systems,
Detroit, MI, USA, 16–18 Aug. 1993.

Sponsor(s): Wayne State Univ; IEEE Circuits & Syst. Soc.

Source

Proceedings of the 36th Midwest Symposium on Circuits and Systems (Cat. No.93CH3381-1), 1993,
vol.1, p. 438–41 vol.1, 7 refs, pp. 2 vol. xxxv+1565, ISBN: 0-7803-1760-2. Publisher: IEEE, New York,
NY, USA.

Author(s)

Sung-K-J, Anderson-D-J.

Author affiliation

Sung, K.J., Anderson, D.J., Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA.

Abstract

Presents the design and analysis of an algorithm which determines the yaw, pitch, roll and **pupil** diameter states of an **eye** viewed with a standard video camera. A maximum likelihood estimation technique tracks the location and size of the **pupil** in a video image to find horizontal and vertical **eye** position. Simulations and analyses show that the noiseless measuring resolution of horizontal and vertical movements is less than 0.05 pixel on an image. Based on accurate measurements of **pupil** position, counterroll movements are calculated using cross correlations between one dimensional templates which consist of equidistant pixels on a partial annulus overlying the iris and **concentric** with the **pupil** center. Another advantage of the algorithm is a robustness with respect to intrusions of droopy eyelids and random light reflections. Analysis shows that eyelids which cover **pupils** by less than a third of **pupil** radius do not cause a bias in **pupil** position estimates. Light reflections on the **pupil** boundary have a minimal effect on estimate bias, while light reflections embedded inside the **pupil** have a lesser effect. The speed of image analysis (about 10 frames per second on Macintosh IIfx computer), the robustness for eyelid cover and random light reflections, and the ability to track 4 dimensional **eye** movement (horizontal, vertical, counterroll movement and **pupil** size) are major characteristics of the algorithm.

Descriptors

BIOLOGICAL-TECHNIQUES; BIOMECHANICS; EYE; MAXIMUM-LIKELIHOOD-ESTIMATION; TELEVISION-APPLICATIONS.

Classification codes

A8780 Biophysical-instrumentation-and-techniques*;

A8732 Physiological-optics-vision;

A8745D Physics-of-body-movements.

Keywords

video-eye-tracking-system; statistical-algorithm; maximum-likelihood-estimation-technique; **pupil**-position; counterroll-movements; equidistant-pixels; partial-annulus; iris; **pupil**-center; light-reflections; Macintosh-IIfx-computer; droopy-eyelids; random-light-reflections.

Treatment codes

T Theoretical-or-mathematical.

Language

English.

Publication type

Conference-paper.

Availability

CCCC: CH3381-1/93/\$01.00.

Digital object identifier

10.1109/MWSCAS.1993.342994.

Publication year

1993.

Publication date

19930000.

Edition

1994050.

Copyright statement

Copyright 1994 IEE.

((c) 2008 The Institution of Engineering and Technology)

Search Strategy

No.	Database	Search term	Info added since	Results
1	INZZ	pupil\$4 AND eye\$1	unrestricted	1816
2	INZZ	concentric\$4	unrestricted	14288
3	INZZ	1 AND 2	unrestricted	13

Saved: 19–Aug–2008 18:49:36 MEST