19.12.2022 Understanding MacPherson - Lemma 5 Proof of Naturality

· Remember: - D'Orientation / Fundamental classes always exist, since we use Borel-Moore

 $\xi \subseteq TX \oplus TN \supseteq TV_i$

homology. Notation: Oû: E Hading (v.) (v.)

- MEHR(M), PEHP (M) - Mn DEHR- (M)

 $\xi \subseteq TX \oplus TN$

o (Complex) dimension count

$$\begin{array}{c|c}
 & P_{i} & P_{i} & P_{i} & P_{i} \\
\hline
 & P_{i} & P_{i} & P_{i} & P_{i}
\end{array}$$

$$\begin{array}{c|c}
 & O_{P_{i}} & P_{i} & P_{i} & P_{i} \\
\hline
 & O_{P_{i}} & O_{P_{i}} & O_{P_{i}} & O_{P_{i}} & O_{P_{i}}
\end{array}$$

$$\begin{array}{c|c}
 & O_{P_{i}} & O_{P_{i}} & O_{P_{i}} & O_{P_{i}} & O_{P_{i}}
\end{array}$$

$$\begin{array}{c|c}
 & O_{P_{i}} & O_{P_{i}} & O_{P_{i}} & O_{P_{i}}
\end{array}$$

$$\begin{array}{c|c}
 & O_{P_{i}} & O_{P_{i}} & O_{P_{i}}
\end{array}$$

$$\begin{array}{c|c}
 & O_{P_{i}} & O_{P_{i}} & O_{P_{i}}
\end{array}$$

$$\begin{array}{c|c}
 & O_{$$

Facts about P: :

· dh / V;) = m

$$P_{i} \subseteq V_{i} \times_{V_{i}} V_{i} \xrightarrow{\pi_{2}} V_{i}$$

$$V_{i} \longrightarrow V_{i}$$

$$S_{i}^{+}(V_{i}) \leq M_{i}^{+}(\xi)$$

$$P_{i}^{-}$$
LEMMA 5. ρ_{i*} Dual $c(\xi/TV_{i}) = \rho_{i*}$ Dual Eu (ξ/TV_{i})

$$= p_i \mathcal{O}_{\hat{v}_i} \qquad \text{Sor some } p_i \in \mathbb{Z} \ .$$

$$\frac{\text{ftvof}:}{\text{C}^*(\circ)} = 1 + C^1(\circ) + ... + C$$

$$= Eu(\circ)$$

$$\text{rk} \leq \text{dim } \text{Base}$$

Onal
$$c^* = O_{P_i} \cap 1 + O_{P_i} \cap c^1(\cdot) + \dots + O_{P_i} \cap E_n \in H_{k}(P_i)$$

$$= G_{lk}(O_{P_i} \cap 1) + G_{lk}(O_{P_i} \cap c^1(\cdot)) + \dots + G_{lk}(O_{P_i} \cap E_n) \in H_{k}(V_i)$$

$$\stackrel{!}{=} O \qquad \text{by dimension.}$$

$$H_{\mu}(\hat{V}_{i}) = 0 \quad \text{for } k > 2n$$

Topology:
$$H_{2n}(\hat{V}_i) = \langle O_{\hat{V}_i} \rangle$$

BUILDING BLOCKS

```
• Naturality: C^*(S^kV) = S^*c^*(V)
```

. Whitney - Sum: $\beta \rightarrow V \rightarrow W \rightarrow U \rightarrow 0 \Rightarrow c^*(W) = c^*(u) \cup c^*(V)$ o Pushforward - Pullback - Relation: $f_*(\mu \cap f^* \varphi) = (f_* \mu) \cap \varphi$

o Distributionity of U&n: $\mu n (\phi u \psi) = (\mu n \phi) n^2 \psi$

ο Definition: Dual (Φ)= O₂ Λ Φ S₀: X = TX ⊕ O ⊆ Gr_d (TX⊕TN)

• Lemma 3: $s_{0*}\mathcal{O}_{X}=\sum m_{i}\mu_{i*}\mathcal{O}_{P_{i}}$

• Lemma 5: ho_{i*} Dual $c(\xi/TV_i)=
ho_{i*}$ Dual $\mathrm{Eu}(\xi/TV_i)=p_i\mathfrak{O}_{\hat{v}_i}$

 $f_* \operatorname{Dual} c(x) = f_* \operatorname{Dual} c(TX)$ X smooth $=f_*\operatorname{Dual}_{\mathcal{C}(s_0^*\xi)}$ def of $s_0 \notin \S$ $=f_*\mathcal{O}_X oldsymbol{\sim} s_0^*c(\xi)$ not of c & def Dual $=f_*\pi_*s_{0*}(\mathcal{O}_X - \underline{s_0^*}c(\xi)) \qquad \exists r \circ s_0 = id_X$ $=f_*\pi_*(s_{0*}\mathcal{O}_{X_*} - c(\xi))$ Pushforward-Pullback-Relation = Em; Mi* Op; Lemma 3 $=\sum m_i f_* \pi_* (\mu_i * \mathcal{O}_{P_i} \frown c(\xi))$ Linearity $=\sum m_i f_* \pi_* \mu_{i*}(\mathcal{O}_{P_i} - \mu_i^* c(\xi))$ Pushforward - Pullback - Relation $=\sum m_i \nu_{i*} \rho_{i*} (\mathcal{O}_{P_i} - c(\xi)) \quad \forall \forall \zeta \in \zeta = \gamma, \forall \beta \in \zeta = \chi, \forall \beta \in \Xi$ $=\sum m_i {m v_i}_* {m
ho_i}_* ({m O}_{P_i} \frown [c(\xi/TV_i) \smile c(TV_i)])$ of ${m V_i} \rightarrow {m S} \rightarrow {m S}/_{{m V_i}} \rightarrow {m S}$ $=\sum m_i
u_{i*}
ho_{i*} ([\mathfrak{O}_{P_i} - c(\xi/TV_i)] - c(TV_i)) \quad \cup - \cap - \text{Relation}$ $= \sum m_i \nu_{i*} \rho_{i*} ([\mathcal{O}_{PN_i} - c(\xi/TV_i)] - \rho_i^* c(TV_i))_{\mathbb{R}} \mathcal{O}_i^{\dagger} TV_i \text{ over } P_i$ Lemma 5 = $P_i \mathcal{O}_i$ Lemma $5 = P; O\hat{v};$ $=\sum m_i
u_{i*} \left(
ho_{i*} \operatorname{Dual} c(\xi/TV_i)
ight)
ho_i c(TV_i)$ Pushforward - Pullback -Relation $= \sum m_i \nu_{i*}(p_i \mathcal{O}_{\hat{V}_i}) - c(TV_i)$ $=\sum m_i p_i
u_{i*} \operatorname{Dual} c(TV_i)$ deforation $=\sum n_i\operatorname{incl}_{ist} c_{\scriptscriptstyle M}(V_i)$. Def Mather class

Next time: $(f_* M_X)(p) = \chi f^{-1}(p)$ $\stackrel{!}{=} \sum_{n_i} \sum_{k} Eu_k(V_i)$

Then: S_* Dual $C(X) = C(S_* 1_X)$ $C(1_X)$