乘法逆元

乘法逆元一般用来求形同下式的值,一般来说, p是一个质数

$$\frac{a}{b} \pmod{p}$$

逆元定义

如果
$$a*x\equiv 1\ (mod\ b)$$
,且 a 与 b 互质,那么称 x 为 a 的逆元,记作 a^{-1} $rac{a}{b}\ (mod\ p)=rac{a}{b}*1\ (mod\ p)=rac{a}{b}*bb^{-1}\ (mod\ p)=ab^{-1}\ (mod\ p)$ $bb^{-1}\equiv 1\ (mod\ p)$

用快速幂求解逆元

欧拉定理

对于任何正整数
$$a$$
和 n 有 $gcd(a,n)=1$,则 $a^{\phi(n)}\equiv 1\ (mod\ n)$

证明:

假设
$$A=a_1,a_2,\ldots,a_{\phi(n)}$$
是 1 n 中 $\phi(n)$ 个互不相同的且与 n 互质的数 且 $0< a_1< a_2<\ldots< a_{\phi(n)}< n$ 构造一组新的数 $Z=a*a_1,a*a_2,\ldots,a*a_{\phi(n)}$ 首先, z_i 之间两两模 n 不同余 如果 $\exists z_i\equiv z_j (mod\ n), i\neq j$ $z_i-z_j\equiv 0 (mod\ n) \Longrightarrow a*(a_i-a_j)\equiv 0 (mod\ n) \Longrightarrow a_i-a_j\equiv 0 (mod\ n) \Longrightarrow a_i\equiv a_j (mod\ n)$ 所属 其次, $gcd(z_i,n)=1,i=1,\ldots,\phi(n)$ 则 $A=Z$,即 $z_i(i=1...\phi(n))$ 是 $a_i(i=1...\phi(n))$ 的某个排列 $\prod a_i\equiv\prod z_i (mod\ n) \Longrightarrow (a^{\phi(n)}-1)a_1*\ldots*a_{\phi(n)}\equiv 0 (mod\ n)$ $a^{\phi(n)}\equiv 1 (mod\ n)$

费马小定理

若
$$p$$
是质数, a 是正整数,且 a , p 互质。那么, $a^{p-1}\equiv 1\ (mod\ p)$

根据费马小定理,可以很容易的知道当p是质数,a是正整数时, $a^{-1}=a^{p-2}$

利用乘法逆元求组合数

原题链接 Acwing 886 求组合数II

```
#include <iostream>
using namespace std;
```

```
typedef long long LL;
const int N = 100010, P = 1e9 + 7;
int fact[N], infact[N];
int n;
int qmi(int a, int p, int mod)
   int res = 1;
   while (p)
       if (p & 1) res = (LL) res * a % mod;
        a = (LL) a * a % mod;
        p >>= 1;
   return res;
}
int main()
    fact[0] = infact[0] = 1;
    for (int i = 1; i < N; i ++)
       fact[i] = (LL) fact[i - 1] * i % P;
       infact[i] = (LL) infact[i - 1] % P * qmi(i, P - 2, P) % P;
    cin >> n;
    for (int i = 0; i < n; i ++)
       int a, b;
       cin >> a >> b;
        cout << (LL) fact[a] \% P * infact[b] \% P * infact[a - b] \% P << endl;
   return 0;
}
```