UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2017/1 Prova da área I

1-8	9	10	Total

Nome:	Cartão:

${\bf Regras\ Gerais:}$

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

COORDENADAS CILÍNDRICAS E ESFÉRICAS

a) Coordenadas cilíndricas : ρ,φ,z

b) Coordenadas esféricas : r, θ, ϕ

Elipsóide:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Parabolóide Elíptico:
$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Parabolóide Hiperbólico:
$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Hiperbolóide
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

$$\begin{array}{ll} \text{Hiperbol\'oide} & -\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \end{array}$$
 de duas folhas:

Tabela do operador $\vec{\nabla}$:

f = f(x, y, z) e g = g(x, y, z) são funções escalares; $\vec{F} = \vec{F}(x, y, z)$ e $\vec{G} = \vec{G}(x, y, z)$ são funções vetoriais.

F = F	(x, y, z) e $G = G(x, y, z)$ são funções vetoriais.
1.	$\vec{\nabla} \left(f + g \right) = \vec{\nabla} f + \vec{\nabla} g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$\vec{\nabla} \times \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$
4.	$\vec{\nabla} \left(fg \right) = f \vec{\nabla} g + g \vec{\nabla} f$
5.	$ec{ abla} \cdot \left(f ec{F} ight) = \left(ec{ abla} f ight) \cdot ec{F} + f \left(ec{ abla} \cdot ec{F} ight)$
6.	$\vec{\nabla} \times \left(f \vec{F} \right) = \vec{\nabla} f \times \vec{F} + f \vec{\nabla} \times \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$ec{ abla} imes\left(ec{ abla}f ight)=0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$\vec{\nabla} \times \left(\vec{\nabla} \times \vec{F} \right) = \vec{\nabla} \left(\vec{\nabla} \cdot \vec{F} \right) - \vec{\nabla}^2 \vec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$ \vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right) $

Algumas fórmulas:

Algumas formulas.				
Nome	Definição			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}''(t) \times \vec{r}'''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}''(t) \times \vec{r}'''(t)\ ^2}$			
Módulo da Torção	$ au = \left\ \frac{d\vec{B}}{ds} \right\ = \left\ \frac{\frac{d\vec{B}}{dt}}{\frac{ds}{dt}} \right\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

$$x(t) = at + \cos(t), \quad y(t) = \sin(t), \quad z(t) = 0.$$

Assinale a alternativa que indica uma expressão para o aceleração tangencial:

$$\frac{a\cos(t)}{\sqrt{a^2 + 1 - 2a\sin(t)}}$$

$$() \frac{-a \operatorname{sen}(t)}{\sqrt{a^2 + 1 + 2a \cos(t)}}$$

(X)
$$\frac{-a\cos(t)}{\sqrt{a^2+1-2a\sin(t)}}$$

$$() \frac{a \operatorname{sen}(t)}{\sqrt{a^2 + 1 - 2a \cos(t)}}$$

$$() \frac{a\cos(t)}{\sqrt{a^2 + 1 + 2a\sin(t)}}$$

() Nenhuma das anteriores.

• Questão 2 (0.75 ponto) Considere a curva escrita de forma paramétrica como:

$$x(t) = t$$
, $y(t) = t^2$, $z(t) = t^3$.

Assinale a alternativa correta a respeito da torção $\tau(t)$:

- (X) A curva apresenta torção dextrogira com módulo dado por $\frac{3}{9t^4+9t^2+1}$
- () A curva apresenta torção dextrogira com módulo dado por $\frac{12}{9t^4+9t^2+1}$
- () A curva apresenta torção dextrogira com módulo dado por $\frac{3}{(3t^2+1)^2}$
- () A curva apresenta torção levogira com módulo dado por $\frac{3}{9t^4 + 9t^2 + 1}$.
- () A curva apresenta torção levogira com módulo dado por $\frac{12}{9t^4+9t^2+1}$
- () A curva apresenta torção levogira com módulo dado por $\frac{3}{(3t^2+1)^2}$.
- () Nenhuma das anteriores.

• Questão 3 (0.75 ponto) Considere os campos dados por

$$f = \cos(x + y + z)$$

$$g = z$$

$$\begin{array}{rcl} f & = & \cos(x+y+z) \\ g & = & z^2 \\ \vec{F} & = & \cos(y)\vec{i} + \sin(x)\vec{j} + e^z\vec{k} \end{array}$$

Assinale a alternativa que apresenta uma expressão para $\vec{\nabla} g \cdot \vec{\nabla} \times (\vec{F} + \vec{\nabla} f)$:

(X)
$$2z(\cos(x) + \sin(y))$$

$$() z^2(\cos(x) + \sin(y))$$

()
$$2z(\cos(x) - \sin(y))$$

$$() -z^2(\cos(x) + \sin(y))$$

()
$$2z(-\cos(x) + \sin(y))$$

• Questão 4 (0.75 ponto) Considere o campo $\vec{F} = F_1(x,y)\vec{i} + F_2(x,y)\vec{j}$ representado no gráfico ao lado e as seguintes integrais:

$$I_1 = \oint_{C_1} \vec{F} \cdot d\vec{r}, \qquad I_2 = \int_{C_2} \vec{F} \cdot d\vec{r}, \qquad I_3 = \int_{C_3} \vec{F} \cdot d\vec{r},$$

onde C_1 é o círculo (representado na figura) de raio 2 centrado em (3,0,0) no plano xyorientado no sentido antihorário, C_2 é o segmento de reta que vai do ponto (0,0,0) até (6,0,0)e C_3 é o segmento de reta que vai do ponto (3, -3, 0) até (3, 3, 0). Assinale a alternativa

correta: ()
$$I_1 < 0, I_2 > 0$$
 e $I_3 > 0$

()
$$I_1 > 0$$
, $I_2 = 0$ e $I_3 < 0$

()
$$I_1 > 0, I_2 > 0 e I_3 < 0$$

(X)
$$I_1 < 0, I_2 = 0 \text{ e } I_3 < 0$$

()
$$I_1 < 0, I_2 < 0 \text{ e } I_3 > 0$$

()
$$I_1 > 0$$
, $I_2 = 0$ e $I_3 > 0$

• Questão 5 (0.75 ponto) Dado o campo escalar $f(r)$ suave onde $r = \vec{r} = \sqrt{x^2 + y^2 + z^2}$ e o campo vetorial $\vec{F} = f(r)\vec{r}$. Assinale s
alternativa incorreta:
(X) $\iint_S \vec{F} \cdot \vec{n} dS = 0$ para qualquer superfície fechada S .

()
$$\iint_S \vec{\nabla} \times \vec{F} \cdot \vec{n} dS = 0$$
 para qualquer superfície fechada S .

()
$$\oint_C \vec{F} \cdot d\vec{r} = 0$$
 para qualquer caminho fechado C .

()
$$\iint_S \vec{\nabla} f \cdot \vec{n} dS = \iiint_V \vec{\nabla}^2 f dV \text{ para qualquer superfície fechada } S \text{ que limita a região } V.$$

$$(\)\ \iiint_V \vec{F} \cdot \vec{F} dV \geq 0 \ {\rm para\ toda\ região\ limitada}\ V.$$

• Questão 6 (0.75 ponto) O potencial φ tal que $\vec{\nabla} \varphi = \vec{i} + z \vec{j} + (y + e^z + z e^z) \vec{k}$ é dado por: () $z - z (y + e^z) + C$

(a)
$$x-z(y+e^z)+C$$
 (b) $z(y+e^z)+C$

(X)
$$x + z(y + e^z) + C$$
 () $1 + z + y + e^z + ze^z + C$

$$(\quad) \ z\left(x+y+e^{z}\right)+C \\ \qquad \qquad (\quad) \ x+2zy+ze^{z}+C$$

ullet Questão 7 (0.75 ponto) Seja S a superfície plana limitada pelo retângulo de vértices (0,0,0), (0,1,1), (1,1,1) e (1,0,0) e orientada no sentido positivo do eixo z. Assinale a alternativa que indica o valor de $\iint_S \vec{F} \cdot \vec{n} dS$, onde $\vec{F} = \vec{i} - \vec{j} + \vec{k}$

$$(\)\ -2$$

$$(\)\ -1$$
 $(X)\ 2$

• Questão 8 (0.75 ponto) Seja C o caminho retangular de vértices $V_1=(0,0,0),\ V_2=(0,1,1),\ V_3=(1,1,1)$ e $V_4=(1,0,0)$ orientado no sentido $V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow V_1$. Assinale a alternativa que indica o valor de $\oint_C \vec{F} \cdot d\vec{r}$, onde $\vec{F} = x\vec{i} + y\vec{j} + z\vec{k}$

$$(\)\ -2$$

$$(\)\ -1$$

$$(X) 0$$
 () 3

- Questão 9 (2.0 pontos) Obtenha o valor de $\iint_S \vec{F} \cdot \vec{n} dS$ onde S é a superfície orientada para fora que limita o hemisfério de raio unitário centrado na origem $(x^2+y^2+z^2=1,\,y\geq 0)$ e a porção de plano y=0 tal que $x^2+z^2\leq 1$ e \vec{F} é o campo dado por $\vec{F}=xy\vec{i}+(1+y)\vec{j}-zy\vec{k}$.
 - a) (1.0 ponto) Usando uma parametrização direta da superfície.
 - b) (1.0 ponto) Usando o Teorema da Divergência.

Solução a) Vamos separar a superfície em duas, $S_1: y = \sqrt{1-x^2-z^2}$ e $S_2: y = 0, x^2+z^2 \le 1$. Primeiro calculamos o fluxo em S_1 :

$$\begin{array}{rcl} \phi_1 & = & \displaystyle \iint_{S_1} \vec{F} \cdot \vec{n} dS \\ \\ & = & \displaystyle \iint_{D} \vec{F} \cdot \vec{\nabla} G dA \end{array}$$

onde D é o disco de raio unitário no plano $y=0,\ D:x^2+z^2\leq 1,\ y=0$ e $G=y-\sqrt{1-x^2-z^2}$. Particularmente nesse problema, a superfície S_2 coincide com D. Seguimos calculando:

$$\begin{array}{ll} \phi_1 & = & \iint_D \vec{F} \cdot \vec{\nabla} G dA \\ & = & \iint_D \left(xy\vec{i} + (1+y)\vec{j} - zy\vec{k} \right) \cdot \left(\frac{x}{\sqrt{1-x^2-z^2}} \vec{i} + \vec{j} + \frac{z}{\sqrt{1-x^2-z^2}} \vec{k} \right) dA \\ & = & \iint_D \left(\frac{x^2y}{\sqrt{1-x^2-z^2}} + (1+y) - \frac{z^2y}{\sqrt{1-x^2-z^2}} \right) dA. \end{array}$$

Tendo em vista que $y = \sqrt{1 - x^2 - z^2}$, temos

$$\begin{array}{ll} \phi_1 & = & \displaystyle \iint_D \left(x^2 + 1 + \sqrt{1 - x^2 - z^2} - z^2 \right) dA \\ \\ & = & \displaystyle \int_0^{2\pi} \int_0^1 \left(r^2 \cos^2(\theta) - r^2 \sin^2(\theta) + 1 + \sqrt{1 - r^2} \right) r dr d\theta \\ \\ & = & \displaystyle \int_0^{2\pi} \int_0^1 \left(r^3 \cos(2\theta) + r + r \sqrt{1 - r^2} \right) dr d\theta \\ \\ & = & \displaystyle \int_0^{2\pi} \left[\frac{r^4}{4} \cos(2\theta) + \frac{r^2}{2} - \frac{1}{3} (\sqrt{1 - r^2})^{3/2} \right]_0^1 d\theta \\ \\ & = & \int_0^{2\pi} \left(\frac{1}{4} \cos(2\theta) + \frac{1}{2} + \frac{1}{3} \right) d\theta \\ \\ & = & \left[\frac{1}{8} \sin(2\theta) \right]_0^{2\pi} + 2\pi \frac{5}{6} = \frac{5\pi}{3} \end{array}$$

Agora, calculamos o fluxo em S_2 :

$$\begin{array}{rcl} \phi_1 & = & \displaystyle \int_{S_2} \vec{F} \cdot \vec{n} dS \\ \\ & = & \displaystyle \int_D \vec{F} \cdot (-\vec{j}) dA \\ \\ & = & \displaystyle \int_D (-1-y) dA \\ \\ & = & - \displaystyle \int_D 1 dA = -\pi. \end{array}$$

Logo, o fluxo através de S é $\frac{5\pi}{3}-\pi=\frac{2\pi}{3}$. Solução b) Calculamos $\vec{\nabla}\cdot\vec{F}=y+1-y=1$ a aplicamos o teorema da divergência:

$$\phi = \iint_{S} \vec{F} \cdot \vec{n} dS$$

$$= \iiint_{V} \vec{\nabla} \cdot \vec{F} dV$$

$$= \iiint_{V} 1 dV$$

$$= \frac{2\pi}{3}$$

- Questão 10 (2.0 pontos) Seja $\vec{F} = \vec{u} \times \vec{r}$, onde \vec{u} é o vetor constante $\vec{u} = u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k}$ e $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$.
 - a) (1.0 ponto) Calcule $\vec{\nabla} \times \vec{F}$.
 - b) (1.0 ponto) Use o Teorema de Stokes <u>ou</u> uma parametrização direta do caminho C para obter o valor de $\oint_C \vec{F} \cdot d\vec{r}$ onde C é o triângulo no plano z = 2x + 3y de vértices P1(0,0,0), P2(1,0,2) e P3(0,1,3) orientado no sentido $P1 \rightarrow P2 \rightarrow P3 \rightarrow P1$.

Solução a) Usamos o item 12 da tabela para calcular o rotacional:

$$\begin{split} \vec{\nabla} \times \vec{F} &= \quad \vec{\nabla} \times (\vec{u} \times \vec{r}) \\ &= \quad \vec{\nabla} \times (\vec{u} \times \vec{r}) \\ &= \quad \left(\vec{r} \cdot \vec{\nabla} \right) \vec{u} - \vec{r} \left(\vec{\nabla} \cdot \vec{u} \right) - \left(\vec{u} \cdot \vec{\nabla} \right) \vec{r} + \vec{u} \left(\vec{\nabla} \cdot \vec{r} \right). \end{split}$$

Como \vec{u} é um vetor constante e, portanto, possui todas derivadas nulas, temos

Solução b) Usamos o Teorema de Stokes para escrever

$$\oint_C \vec{F} \cdot d\vec{r} \quad = \quad \iint_S \vec{\nabla} \times \vec{F} \cdot \vec{n} dS,$$

onde S é a porção do plano z=2x+3y limitada pelo triângulo $P_1P_2P_3$. Seguimos resolvendo a integral de superfície:

$$\begin{split} \oint_C \vec{F} \cdot d\vec{r} &= \iint_S 2\vec{u} \cdot \vec{n} dS \\ &= 2 \iint_T \vec{u} \cdot \vec{\nabla} G dA \end{split}$$

onde T é o triângulo no plano xy de vértices $T_1(0,0,0)$, $T_2(1,0,0)$ e $T_3(0,1,0)$, e G=z-2x-3y. Observe que $\vec{\nabla}G=-2\vec{i}-3\vec{j}+\vec{k}$ está no mesmo sentido de \vec{n} . Logo

$$\oint_C \vec{F} \cdot d\vec{r} = 2 \iint_T (-2u_1 - 3u_2 + u_3) dA$$

$$= 2 (-2u_1 - 3u_2 + u_3) \iint_T 1 dA$$

$$= 2 (-2u_1 - 3u_2 + u_3) \frac{1}{2}$$

$$= (-2u_1 - 3u_2 + u_3).$$