الجامعة المصرية للتعلم الإلكتروني الأهلية

GEN206 Discrete Mathematics

Section 4

Faculty of Information Technology Egyptian E-Learning University

Fall 2021-2022

29. Let
$$A = \{a, b, c, d\}$$
 and $B = \{y, z\}$. Find **a)** $A \times B$. **b)** $B \times A$.

PART A:
$$\{(a, y), (a, z), (b, y), (b, z), (c, y), (c, z), (d, y), (d, z)\}$$

PART B: $\{(y, a), (y, b), (y, c), (y, d), (z, a), (z, b), (z, c), (z, d)\}$

34. Let $A = \{a, b, c\}, B = \{x, y\}, \text{ and } C = \{0, 1\}.$ Find

a) $A \times B \times C$.

(a)
$$A \times B \times C = \{(a, x, 0), (a, x, 1), (a, y, 0), (a, y, 1), (b, x, 0), (b, x, 1), (b, y, 0), (b, y, 1), (c, x, 0), (c, x, 1), (c, y, 0), (c, y, 1)\}$$

3. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$. Find

a) A ∪ B.

b) $A \cap B$.

c) A-B.

d) B-A.

Solution:

PART A: {0, 1, 2, 3, 4, 5, 6}

PART B: {3}

PART C: {1,2,4,5}

PART D: {0,6}

Prove:

$$a)A \cap \emptyset \equiv \emptyset$$

$$A \cap \emptyset = \{x | (x \in A) \land (x \in \emptyset)\}$$
$$= \{x | (x \in A) \land F\}$$
$$= \{x | F\} = \emptyset$$

b) $A \cap U = A$

$$A \cap u = \{x | (x \in A) \land (x \in u)\}$$

$$= \{x \mid (x \in A) \land T\}$$

$$= \{x \mid (x \in A)\}$$

$$= A$$

Prove:

a)
$$A \cup \overline{A} = U$$
.

b)
$$A \cap \overline{A} = \emptyset$$
.

$$A \cap \bar{A} = \{x | (x \in A) \lor (x \notin A)\}$$

$$= \{x | (x \in A) \lor \neg (x \in A)\}$$

$$= \{x | P \lor \neg P\} = \{x | T\}$$

$$= \bigcup$$

$$A \cap \bar{A} = \{x | (x \in A) \cap (x \notin A)\}$$
$$= \{x | (x \in A) \land \neg (x \in A)\}$$
$$= \{x | P \land \neg P\}$$
$$= \{x | f\} = \emptyset$$

If A,B, C are sets , show that : $A \cap (A \cup B) = A$

Let
$$x \in (A \cap (A \cup B))$$

 $(x \in A) \land (x \in (A \cup B))$ =True
so $(x \in A)$ must be True
i.e $(x \in A)$

 $A \cap (A \cup B) \subseteq A$ 1

Let
$$(x \in A) = true$$

so $(x \in A) \lor (x \in B)$ is also true
and $(x \in A) \land (x \in (A \cup B))$ is also true

$$x \in (A \cap (A \cup B))$$

$$\therefore A \subseteq (A \cap (A \cup B))$$

From 1 & 2 $A=A\cap A\cup B$

Use set builder notation and logical equivalences to establish the first De Morgan law $A \cap B = \overline{A \cup B}$.

$$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$$

$$= \{x \mid \neg(x \in (A \cap B))\}$$

$$= \{x \mid \neg(x \in A \land x \in B)\}$$

$$= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$$

$$= \{x \mid x \notin A \lor x \notin B\}$$

$$= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$$

$$= \{x \mid x \in \overline{A} \cup \overline{B}\}$$

$$= \overline{A} \cup \overline{B}$$

Determine whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one.

Solution: The function
$$f(x) = x^2$$
 is not one-to-one because, for instance, $f(1) = f(-1) = 1$, but $1 \neq -1$.

- **23.** Determine whether each of these functions is a bijection from **R** to **R**.
 - **a**) f(x) = 2x + 1
 - **b**) $f(x) = x^2 + 1$
 - **c**) $f(x) = x^3$
 - **d**) $f(x) = (x^2 + 1)/(x^2 + 2)$

We can prove not bijective by proving either not onto or not one to one

- a) bijctive
- b) Not bijctive let x_1 = a , x_2 = -a so $(x_1 \neq x_2)$ but f(a) = f(-a) so it is not one to one
- c) bijctive
- d) Not bijctive let x_1 = a , x_2 = -a so $(x_1 \neq x_2)$ but f(a) = f(-a)so it is not one to one