Nuclear Structure and Reactions superfluidity with Cooper pair transfer

G. Potel and R. A. Broglia

September 5, 2019

Preface

The elementary modes of nuclear excitation are vibrations and rotations, single—particle (quasiparticle) motion, and pairing vibrations and rotations. The specific reactions probing these modes are inelastic and Coulomb excitation, single—and two—particle transfer processes respectively. Within this context one can posit that nuclear structure (bound) and reactions (continuum) are but two aspects of the same physics. This is even more so concerning the study of exotic nuclei, where the study of halo nuclei, which occupies a large fraction of the present monograph, has blurred almost completely the distinction between bound and continuum states. This is the reason why they are treated on equal footing in terms of elementary modes of excitation, within the framework of the unified nuclear field theory of structure and reactions (NFT) (r+s). This theory provides the rules to diagonalize in a compact and economic way the nuclear Hamiltonian for both bound and continuum states correcting for overcompletness of the basis (particle—vibration coupling (structure), non—orthogonality (reaction)), and for Pauli principle violation.

Pairing vibrations and rotations, closely connected with nuclear superfluidity are paradigms of quantal nuclear phenomena. They thus play an important role within the field of nuclear structure. It is only natural that two-nucleon transfer plays a similar role concerning direct nuclear reactions. At the basis of fermionic pairing phenomena one finds Cooper pairs, weakly bound, extended, strongly overlapping (quasi-) bosonic entities, made out of pairs of nucleons dressed by collective vibrations and interacting through the exchange of these vibrations as well as through the bare NN-interaction, eventually corrected by 3N contributions. Cooper pairs not only change the statistics of the nuclear stuff around the Fermi surface and, condensing, the properties of nuclei close to their ground state. They also display a rather remarkable mechanism of tunnelling between target and projectile in direct two-nucleon transfer reaction. In fact, being weakly bound (≪ ϵ_F , Fermi energy) Cooper pair partners are correlated over distances (correlation length) much larger than nuclear dimensions ($\gg R$, nuclear radius). On the other hand, Cooper pairs are forced to be confined within regions in which normal density is present and thus, within nuclear dimensions by the action of the average potential, which can be viewed as an external field as far as these pairs are concerned. Nonetheless, the correlation length paradigm comes into evidence, for example, when two nuclei are set into weak contact in a direct reaction. In this case, each of the partner nucleons of a Cooper pair has a finite probability to be confined within the mean field of each of the two nuclei. It is then natural that a Cooper pair can tunnel, equally well correlated, between target and projectile, through simultaneous than through successive transfer processes. Although one does not expects supercurrents in nuclei, one can study long-range pairing correlations in terms of individual quantal state. The above mentioned weak coupling Cooper pair transfer reminds the tunnelling mechanism of electronic Cooper pairs across a barrier (e.g. a dioxide layer) separating two superconductors, known as Josephson junction. The main difference is that, as a rule, in the nuclear time dependent junction efimerely established in direct two–nucleon transfer process, only one or even none of the two weakly interacting nuclei are superfluid. Now, in nuclei, paradigmatic example of fermionic finite many-body system, zero point fluctuations (ZPF) in general, and those associated with pair addition and pair substraction modes known as pairing vibrations in particular, are much stronger than in condensed matter. Consequently, and in keeping with the fact that pair addition and substraction modes are nuclear embodiments of Cooper pairs in nuclei, pairing correlations based on even a single Cooper pair can lead to distinct pairing correlation effects in two-nucleon transfer processes.

Nucleonic Cooper pair tunnelling has played and is playing a central role in the probing of these subtle quantal phenomena, both in the case of exotic nuclei as well as of nuclei lying along the stability valley, and have been instrumental in shedding light on the subject of pairing in nuclei at large, and on nuclear superfluidity in particular. Consequently, the subject of two–nucleon transfer occupies a central place in the present monograph both concerning the conceptual and the computational aspects of the description of nuclear pairing, as well as regarding the quantitative confrontation of the results and predictions with the experimental findings in terms of absolute cross sections.

Because of the central role the interweaving of the variety of elementary modes of nuclear excitation, namely single-particle motion and collective vibrations play in nuclear superfluidity, the study of Cooper pair tunnelling in nuclei aside from requiring a consistent description of nuclear structure in terms of dressed quasiparticles and vibrations resulting from both bare and induced interactions, also involves the description of one-nucleon transfer as well as knock out processes. Consequently, in the present monograph the general physical arguments and technical computational details concerning the calculation of absolute one-and two nucleon transfer cross sections, making use of state of the art nuclear structure information, are discussed in detail. As a consequence, theoretical and experimental nuclear practitioners, as well as fourth year and PhD students can use the present monograph at profit. To help this use, the basic nuclear structure formalism, in particular that associated with pairing and with collectives modes in nuclei, is economically introduced through general physical arguments. This is also in keeping with the availability in the current literature, of detailed discussions of the corresponding material. Within this context, the monographs Nuclear Superfluidity by Brink and Broglia and Oscillations in Finite Quantum Systems by Bertsch and Broglia, published also by Cambridge University Press can be considered companion volumes to the present one. Volume which shares with those a similar aim: to provide a broad physical view of central issues in the study of finite quantal many-body nuclear systems accessible to motivated students and practitioners. However, neither the present one, nor the other two are introductory texts. In particular the present one in which an attempt at unifying structure and reactions as it happens in nature is made. On the other hand, unifying discrete (mainly structure) and continuum (reactions), implies that we will be dealing with those structure results which can be tested by means of experiment. A fact which makes the subject of the present monograph a chapter of quantum mechanics, and thus close to what fourth year students have been learning.

Concerning the notation, we have divided each chapter into sections. Each section may, in turn, be broken down into subsections. Equations and Figures are identified by the number of the chapter and that of the section. Thus (6.1.33) labels the thirtythird equation of section 1 of chapter 6. Similarly, Fig. 6.1.2 labels the second figure of section 1 of chapter 6. Concerning the Appendices, they are labelled by the chapter number and by a Latin letter in alphabetical order, e.g. App. 6.A, App. 6.B, etc. Concerning equations and Figures, a sequential number is added. Thus (6.E.15) labels the fifteenth equation of Appendix E of chapter 6, while Fig. 6.F.1 labels the first figure of Appendix F of Chapter 6. References are referred to in terms of the author's surname and publication year and are found in alphabetic order in the bibliography.

A methodological approach used in the present monograph concerns a certain degree of repetition. Similar, but not the same issues are dealt with more than once using different but equatable terminologies. This approach reflects the fact that useful concepts like reaction channels, or correlation length, let alone elementary modes of excitation, are easy to understand but difficult to define. This is because their validity is not exhausted in a single perspective¹. But even more important, because their power in helping at connecting² seemingly unrelated results and phenomena is difficult to be fully appreciated the first time around, spontaneous symmetry breaking and associated emergent properties providing an example of this fact.

Throughout, a number of footnotes are found. This is in keeping with the fact that footnotes can play a special role within the framework of an elaborated presentation. In particular, they are useful to emphasize relevant issues in an economic way. Being outside the main text, they give the possibility of stating eventual im-

¹This is also a consequence of the fact that physically correct concepts are forced to be expressed, to become precise, in an axiomatic fashion, a style foreign to the one used here.

²"The concepts and propositions get "meaning" viz. "content", only through their connection with sense–experience... The degree of certainty with which this connection, viz., intuitive combination, can be undertaken, and nothing else, differentiates empty fantasy from scientific "truth"... A correct proposition borrows its "truth" from the truth–content of the system to which it belongs" (A. Einstein, Autobiographical notes, in Albert Einstein, Ed. P. A. Schlipp, Harper, New York (1951)) p.1, Vol I.

portant results, without the need of elaborating on the proof. Within this context, and keeping the natural distances, one can mention that in the paper in which Born³ introduces the probabilistic interpretation of Schrödinger's wavefunction, the fact that this probability is connected with its modulus squared and not with the wavefunction itself, is only referred to in a footnote.

Most of the material contained in this monograph have been the subject of lectures of the four year course "Nuclear Structure Theory" which RAB delivered throughout the years at the Department of Physics of the University of Milan, as well as at the Niels Bohr Institute and at Stony Brook (State University of New York). It was also presented by the authors in the course Nuclear Reactions held at the PhD School of Physics of the University of Milan.

GP wants to thank the tutoring of Ben Bayman concerning specific aspects of two-particle transfer reactions. Discussions with Ian Thompson and Filomena Nunes on a variety of reaction subjects are gratefully acknowledged. RAB acknowledges the essential role the collaboration with Francisco Barranco and Enrico Vigezzi has played concerning nuclear structure aspects of the present monograph. Its debt with the late Aage Winther regarding the reaction aspects of it is difficult to express in words. The overall contributions of Daniel Bès, Ben Bayman and Pier Francesco Bortignon⁴ are only too explicitly evident throughout the text and constitute a daily source of inspiration. G. P. and R. A. B. have received important suggestions and comments regarding concrete points and the overall presentation of the material discussed below from Ben Bayman, Pier Francesco Bortignon, David Brink, Willem Dickhoff and Vladimir Zelevinsky and are here gratefully acknowledged.

Gregory Potel Aguilar East Lansing Ricardo A. Broglia Copenhagen

³Born (1926). Within this context, it is of notice that the extension of Born probabilistic interpretation to the case of many-partice systems is also found in a footnote (Pauli (1927), footnote on p. 83 of the paper).

⁴Deceased August 27, 2018.

Bibliography

M. Born. Zur Quantenmechanik der Stoßvorgänge. Zeitschr. f. Phys., 37:863, 1926.

W. Pauli. Über gasentartung und paramagnetismus. *Zeitschrift für Physik*, 41(2): 81, Jun 1927.

Contents

1	Introduction 15					
	1.1	Views of the nucleus	15			
		1.1.1 The liquid drop and the shell model	15			
	1.2	The particle-vibration coupling	23			
	1.3	Pairing vibrations	29			
	1.4	Spontaneous broken symmetry	32			
		1.4.1 Quadrupole deformations in 3D-space	32			
		1.4.2 Deformation in gauge space	39			
	1.5	Giant dipole resonance	47			
	1.6	Giant pairing vibrations	48			
	1.7	Sum rules	49			
	1.8	Ground state correlations	50			
2	Structure and reactions 6					
	2.1	Elementary modes of excitation and specific probes	61			
	2.2	Sum rules	70			
	2.3	Particle–vibration coupling	77			
		2.3.1 Fluctuation and damping	79			
		2.3.2 Induced interaction	85			
	2.4	Well funneled nuclear structure landscape	88			
	2.5					
	2.6	Coupling between intrinsic and relative motion				
		Nuclear Field Theory for pedestrians	99			
		2.7.1 The concept of elementary modes of excitation	104			
		2.7.2 NFT rules and applications	107			
		2.7.3 Spurious states	115			
			123			
	2.8	Competition between ZPF				
	2.9 Optical potential and transfer					
		2.9.1 Bare particles and Hartree–Fock field	133			
		*	134			
			135			
		2.9.4 ${}^{11}\text{Li}(p,p)^{11}\text{Li}$ optical potential and transfer reaction channels	139			

	2.10	Charac	terization of an open-shell nucleus: 120Sn	146
	2.11	Summa	ary	149
	2.A	Inelasti	ic Scattering	149
		2.A.1	(α,α') -scattering	150
	2.B	Technic	cal details NFT	154
		2.B.1	Graphical solution	154
		2.B.2	Overlap	156
		2.B.3	NFT(r+s): linear theory	156
	2.C	NFT ar	nd reactions	158
		2.C.1	Potential scattering	160
		2.C.2	Transfer	161
	2.D	NFT va	acuum polarization	167
3	Pairi	ing with	n transfer	181
	3.1	Nuclea	r Structure in a nutshell	181
	3.2	Renorm	malization and spectroscopic amplitudes	193
	3.3	Quanta	llity Parameter	196
	3.4		r pairs	198
		3.4.1	independent–particle motion	199
		3.4.2	independent-pair motion	204
	3.5	Pair vil	bration spectroscopic amplitudes	206
		3.5.1	Pair removal mode	212
		3.5.2	Pair addition mode	216
	3.6	Halo pa	air addition mode and pygmy	219
		3.6.1	Cooper pair binding: a novel embodiment of the Axel–Brink hypothesis	222
	3.A	Nuclea	r van der Waals Cooper pair	230
	3.B		nalized coupling constants ¹¹ Li: resumé	232
	3.C		nann criterion and quantality parameter	233
			Lindemann ("disorder") parameter for a nucleus	234
	3.D		n der Waals interaction	235
		3.D.1	van der Waals interaction between two hydrogen atoms	236
		3.D.2	Critical dimension for van der Waals H-H interaction (pro-	
			tein folding domain)	240
		3.D.3	van der Waals between two amino acids	241
		3.D.4	Average interaction between two side chains	242
	3.E	Phase t	transition and fluctuations	242
		3.E.1	Pairing phase transition in small particles	244
		3.E.2	Fine Sn particles	246
		3.E.3	Time–reversal response function	246

4	Sim	ultaneous versus successive transfer	265
	4.1	Simultaneous versus successive Cooper pair transfer in nuclei 2	265
	4.2	Transfer probabilities, enhancement factor	266
		4.2.1 Interplay between mean field and correlation length 2	279
	4.3	Correlations in Cooper pair tunneling	282
	4.4	Pair transfer	285
		4.4.1 Cooper pair dimensions	285
	4.5	Comments on the optical potential	291
	4.6		295
	4.7		300
		4.7.1 Phase coherence	301
	4.8	Hindsight	305
	4.A		308
		4.A.1 Nuclei	310
		4.A.2 Metals	319
		4.A.3 Elementary theory of phonon dispersion relation 3	320
		4.A.4 Pairing condensation (correlation) energy beyond level den-	
		sity	325
		4.A.5 Hindsight	326
	4.B		328
			333
		4.B.2 Coherence length and quantality parameter for (<i>ph</i>) vibra-	
			335
			339
			340
			341
	4.C		343
			344
	4.D	* *	350
	4.E		352
5	One	±	365
	5.1	General derivation	366
		5.1.1 Coordinates	373
		C 11	373
	5.2	1 11	374
		5.2.1 120 Sn $(p, d)^{119}$ Sn and 120 Sn $(d, p)^{121}$ Sn reactions 3	374
		5.2.2 Dressing of single–particle states: parity inversion in ¹¹ Li	379
	5.A	Minimal mean field theory	385
		5.A.1 Density of levels	387
	5.B		389
e 1		Vacuum and medium polarization	392
	5.D	The Lamb Shift	394
	5.E		395

	5.F	Single–nucleon transfer for pedestrians	6		
		5.F.1 Plane-wave limit	0		
	5.G	One–particle knockout within DWBA 40	2		
		5.G.1 Spinless particles	2		
		5.G.2 Particles with spin	9		
		5.G.3 One–particle transfer 41	5		
	5.H	Dynamical shell model in a nutshell	8		
6	Two-particle transfer 4.				
	6.1	Summary of second order DWBA	2		
	6.2	Detailed derivation of second order DWBA	6		
		6.2.1 Simultaneous transfer: distorted waves 43	6		
		6.2.2 matrix element for the transition amplitude 43	7		
		6.2.3 Coordinates for the calculation of simultaneous transfer . 44	5		
		6.2.4 Matrix element for the transition amplitude (alternative deriva-			
		tion)	8		
		6.2.5 Coordinates used to derive Eq. (6.2.89)	1		
		6.2.6 Successive transfer	3		
		6.2.7 Coordinates for the successive transfer	8		
		6.2.8 Simplifying the vector coupling	9		
		6.2.9 non–orthogonality term	0		
		6.2.10 Arbitrary orbital momentum transfer	1		
		6.2.11 Successive transfer contribution	3		
	6.A	ZPF and Pauli principle	7		
	6.B	Coherence and effective formfactors	0		
	6.C				
		6.C.1 Independent particle limit	2		
		6.C.2 Strong correlation (cluster) limit	3		
	6.D	Spherical harmonics and angular momenta	4		
		6.D.1 addition theorem	5		
		6.D.2 expansion of the delta function	5		
		6.D.3 coupling and complex conjugation 48	5		
		6.D.4 angular momenta coupling 48	6		
		6.D.5 integrals	6		
		6.D.6 symmetry properties	7		
	6.E	distorted waves	8		
	6.F	hole states and time reversal	9		
	6.G	Spectroscopic amplitudes in the BCS approximation 49	1		
	6.H	Bayman's two–nucleon transfer amplitudes 49	3		
7	Stru	cture with two neutrons 49	7		
	7.1	Evidence for phonon mediated pairing			
		7.1.1 Structure			
		7.1.2 Reaction			

7.2	NFT of	f ¹¹ Be: one–particle transfer in halo nuclei	504
	7.2.1	Outlook	504
	7.2.2	Calculations	506
7.3	Summa	ary	511
7.4	Pairing	rotational bands	511
	7.4.1	Structure–reaction: stability of the order parameter α_0	511
	7.4.2	A two–nucleon transfer physical sum rule	515
7.5	Virtual	states forced to become real	516
	7.5.1	Empirical renormalization: $(NFT)_{ren}(r+s)$ (Feynman + $S-$	
		matrix)	518
	7.5.2	On–shell energy	519
7.6	Perturb	pation and beyond	520
	7.6.1	One–particle transfer and optical potential	521
	7.6.2	$(NFT)_{ren}(r+s)$ diagrams, S -matrix	521
	7.6.3	The structure of "observable" Cooper pairs	521
	7.6.4	Closing the circle	526
7.A	Bootsti	rap mechanism to break gauge invariance	527
	7.A.1	Gedanken eksperiment	527
7.B	Alterna	ative processes to populate $ {}^{9}\text{Li}(1/2^{-})\rangle$	528
7.C	Software		532
7.D	Statistics		
7.E	E Correlation length and quantality parameter		537
7.F			
7.G	Vacuur	m fluctuations: the Casimir effect	544
	7.G.1	Measuring QED quantum fluctuations	545
	7.G.2	The hydrophobic force	548