Formulation du problème en PLNE

December 2016

On dispose d'un ensemble $(P_i)_{i\in 1,n}$ de patients $(n \in N)$ et d'un ensemble $(c_j)_{j\in [\![1,p]\!]}$ de créneaux $(p \in N)$ avec $n \leq p$ auxquels on veut assigner chaque patient de façon optimale, pour le critère d'optimalité suivant : la répartition est optimale si elle minimise le mécontement globale des patients (on définit plus loin le mécontement).

Chaque créneau c_j est un intervalle de la forme $[t_{d\acute{e}but}^j, t_{fin}^j]$, avec

$$\forall j \in [1, p-1], \ t_{début}^j < t_{fin}^j \le t_{début}^{j+1}$$

(les créneaux ne se chevauchent pas).

Chaque patient P_i ordonne les créneaux selon ses préférences et assigne au créneau c_j le rang m_j^i (par exemple, $m_{i,j} = 1$ si c_j est le créneau qui lui convient le mieux et $m_{i,j} = p$ si c'est le créneau qui l'arrange le moins). On appelle $m_{i,j}$ le **mécontement** de P_i relatif au créneau c_j (plus $m_{i,j}$ est grand, plus P_i est mécontent qu'on lui assigne le créneau c_j).

On cherche alors à minimiser le mécontement global défini comme la somme des mécontements de chaque patient pour le créneau qu'on lui assigne.

Notre problème se met alors sous la forme d'un programme linéaire en nombres entiers de la façon suivante :

$$\operatorname{Min} \sum_{j=1}^{p} m_{j^*,j} x_j$$
s.c
$$\sum_{j=1}^{p} y_{i,j} x_j = 1, \ i \in [1, n]$$

$$x_j \sum_{j=1}^{p} y_{i,j} = 1, j \in [1, p]$$

$$x_j \in \{0, 1\}, j \in [1, p]$$

$$y_{i,j} \in \{0, 1\}, i \in [1, n], j \in [1, p]$$

où:

$$x_j = \begin{cases} 1 \text{ si on assigne le créneau } c_j \text{ à un patient} \\ 0 \text{ sinon} \end{cases}$$
$$y_{i,j} = \begin{cases} 1 \text{ si le patient } P_i \text{ est affecté au créneau } c_j \\ 0 \text{ sinon} \end{cases}$$

et $\forall j \in [\![1,p]\!], j^*$ est défini comme l'unique $i \in [\![1,n]\!]$ tel que $y_{i,j}=1.$