1 Requirements

The requirements are split into functional and non-functional requirements, where the former are definitions of what a system is supposed to do and the latter are requirments describe how the system is supposed to be. The functional requirements The functional requirements are straight forward and listed in section 1. The criteria for the non-functional requirements are shown in section 1. In contrast to many consumer facing technologies usability is not part of the requirements, as the enduser should have as little interaction with the system as possible and physical maintenance is only carried out by professionals¹.

¹They would still be nice, but due to time limitations we excluded them.

Functional Requirements

ID	Name Class		Description
100	Register	Must	The system must be able to automatically
	goals		register goals
101	Transmit	Must	The system must be able to automatically
	goals		transmit goal information to the edge de-
			vice.
102	OTA updates	Should	The microcontroller should support over
			the air (OTA) updates
103	Low energy	Must	The microcontroller and its transmission
	transmission		partner must be able to communicate via
			a low energy transmission protocol
104	Power modes	Must	The microcontroller must be able to sup-
			port different power mode in which it can
			operate to save power during unused peri-
			ods.
105	Wake up	Must	The microcontroller must be able to wake
	from sensor		up from an external sensor input.
106	Wake up	Must	The microcontroller must be able to wake
	from timeout		up after a predefined timeout.
107	Transmission	Must	The transmission range must be larger
	range		than 5 meters without blockage.
108	Pin reads	Must	The microcontroller must support reading
			from input pins.
109	Centralized	Should	All configurations should be synchronized
	configuration		across the nodes in the system.
110	Node fault	Should	The state of each node should be synchro-
	tolerance		nized in the system, so that in case of an
			error, the last operable state can be recov-
			ered
111	Adjustable Shoul		The goals setup need to able to adjust in
	Goals setup		their width to cover a variety of different
			goal sizes

Functional Requirements

ID	Name Class		Description	
112	Containers	Should	All applications, excluding the microcon-	
	(excl mi-		troller, should run inside containers.	
	croc.)			
113	Containers	Would	The microcontroller code runs inside con-	
			tainers as well.	
114	Single bina-	Could	All applications should be packaged in one	
	ries		binary.	
115	Edge storage	Would	The edge part should be able to count goals	
			and syncronize with user devices without	
			the Internet.	

Non-Functional Requirements

Area	ID	Name	Description
Reliability	100	Downtime	The downtime due needs to be less once
			per month.
	101	Recording	Less than 5 percent incorrect readings.
		failures	
Robustness	200	Interference	The system should be able to deal with
			at least 10 bluetooth enabled devices
			nearby.
	201	Transmission	There should not be more 0.01 percent
		failures	of transmission failures, including all
			reasons.
	203	Incorrect	There should not be more 0.0001 per-
		data	cent of wrong data transmission.
	202	Crashes	In case of a crash, the software must be
			able to recover automatically.
Portability	300	Supported	The application needs to supported on
		platforms	a wide variety of IoT devices for future
			changes.
Maintainability	400	Updates	The software needs to be updatable over
			the air (OTA).
	401	Centralization	As long as a table is connected to the In-
			ternet (also indirectly through the rasp-
			berry pi), all updates must be available
			through a central point.
	402	Bug fixes	All bugs need to be addressed latest 6
			months after discovery
Efficiency	500	Battery life	The system needs to able to life on a sin-
			⁵ gle battery charge for at least two weeks
			with no more than 20 games per day.
	501	Battery	The battery needs to be able to charge
		replacement	to above 80 percent of its original value
			after 2 years, with 25 recharges a year.