KTH Matematik

Olof Heden

Σρ	G/U	bonus

Efternamn	förnamn	ååmmdd	kodnr

Kontrollskrivning 3A, den 28 april 2014, kl 13.00-14.00 i SF1610 Diskret matematik för CINTE.

Inga hjälpmedel tillåtna.

Minst 8 poäng ger godkänt.

Godkänd ks n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), n = 1, ..., 5.

13–15 poäng ger ett ytterligare bonuspoäng till tentamen.

Uppgifterna 3)–5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning.

Spara alltid återlämnade skrivningar till slutet av kursen!

Skriv dina lösningar och svar på samma blad som uppgifterna, använd baksidan om det behövs.

1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.) **Kryssa för** om påståendena **a**)-**f**) är sanna eller falska (eller avstå)!

		sant	falskt
a)	Om gruppen (G, \circ) har delgrupper med 7 resp 8 element så gäller att talet 56 delar antalet element i (G, \circ) .		
b)	För varje element g i en grupp (G, \circ) med 37 element gäller att $g^{39} = g^3$.		
c)	I varje grupp (G, \circ) gäller den kommutativa lagen, dv s $a \circ b = b \circ a$ för alla $a, b \in G.$		
d)	Produkten av två udda permutationer är alltid en jämn permutation.		
e)	Om ordingen av permutationen φ är primtalet $p>2$ så är ordningen av permutationen φ^2 också lika med p .		
f)	Varje grupp (G, \circ) med 42 element har minst en icketrivial delgrupp $H.$		

poäng uppg.1

Namn	poäng uppg.2

2a) (1p) Låt φ och ψ vara nedanstående permutationer av elementen i mängden $\{1,2,\ldots,7\}$

$$\varphi = (1 \ 2 \ 3)(4 \ 5)(6 \ 7)$$
 $\psi = (1 \ 5 \ 4)(3 \ 2 \ 6)(7).$

Skriv $\varphi \psi$ som en produkt av disjunkta cykler. (Svara bara.)

b) (1p) Betrakta delgruppen $H = \{0, 3, 6\}$ till gruppen $G = (Z_9, +)$. Bestäm samtliga sidoklasser till H i G. (Svara bara.)

 ${f c}$) (1p) Skriv upp multiplikationstabellen (alternativt additionstabellen) till en grupp med fem element.

Namn	poäng uppg.3

3) (3p) Betrakta gruppen $G=(Z_{21},+)$. Bestäm fyra olika delgrupper till G. OBS. Lösningen skall motiveras.

Namn	poäng uppg.4

4) (3p) Elementen $\{1,3,5,9,11,13\}$ i ringen \mathbb{Z}_{14} bildar under operationen multiplikation i \mathbb{Z}_{14} en grupp G. (T ex så är $3 \cdot 5 = 1$.) Undersök om gruppen är en cyklisk grupp.

OBS. Lösningen skall motiveras.

Namn	poäng uppg.5

5) (3p) Låt φ beteckna permutationen

$$\varphi = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)(8 \ 9 \ 10)(11 \ 12)(13 \ 14 \ 15).$$

Ange de värden på det positiva heltalet k för vilka permutationen φ^k har ordning 3.

OBS. Lösningen skall motiveras.