Hypothesis Testing Notes

General	Procedure
OCH CI ai	1 1 Occurre

Let μ be the mean <u>(in context of question)</u>

Let X be (jf not defined by question)

For unknown population variance, $s^2 = \frac{n}{n-1}(sample\ variance)$ for unbiased estimate (Sampling)

Test
$$H_o$$
: $\mu =$ ___ against H_1 : $\mu < / \neq / >$ ___ tail test at ____ level of significance

Sample statistics: If you need to calculate due to population mean/ population variance being unknown, be careful to note the negative sign in calculating unbiased estimate of population variance, $s^2 = \frac{1}{n-1} \left[\sum x^2 - \frac{(\sum x)^2}{n} \right]$.

Test statistic:

Under H_o , $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ approximately since n is large

$$Z=rac{ar{X}-\mu_o}{rac{\sigma}{\sqrt{n}}}{\sim}N(0,1)$$
 approximately

Could be s instead of σ if population variance unknown.

Directly input values.

Take standard distribution

by convention

For known population variance, Test statistic: $Z = \frac{\bar{X} - \mu_o}{\frac{\sigma}{-}} \sim N(0,1)$

For <u>unknown</u> population variance,

Test statistic: $Z = \frac{\bar{X} - \mu_0}{\frac{s}{\sqrt{n}}} \sim N(0,1)$

Where in both cases, X follows a normal distribution \underline{OR} follows a normal distribution approximately when n is large

Method 1:

Critical region: Reject H_o , if z < />

Using GC, $z_{calculated} =$ ____</>___

Since $z_{calculated}$ lies within critical region, we reject H_o .

Method 2:

p-value= ____ </> ___(level of significance)

There is sufficient/insufficient evidence at % level of significance that

p-value can be calculated directly with GC

Take note that when you key into GC "Z-test", under σ you key in sample/ population variance without the "sample size, n".

However, take note that when you key into GC e.g. normal cdf to find probability of sample means exceeding a particular value, under σ you key in sample/ population variance with the "sample size, \mathbf{n} ".

Pointers:

1. H_o must be attributed with equal sign.

Example: A wholesaler claimed that the mass of his watermelons has a <u>mean mass of at least 3kg</u>. The mean mass of a sample of <u>50 watermelons</u> from the wholesaler was measured and the mass of watermelons in the sample was found to have <u>standard</u> deviation of 0.6kg.

- → Unknown distribution (require CLT), unknown variance (require unbiased estimator)
- \rightarrow Interpret as Test H_0 : $\mu = 3$ against H_1 : $\mu < 3$

2. Concepts of p-value and level of significance

We reject H_o if p-value $<$ level of significance		
Test H_o : $\mu = \mu_o$ against H_1 : $\mu > \mu_o$	p-value = P ($Z \ge z_{calculated}$)	one tail test (upper tail test)
Test H_o : $\mu = \mu_o$ against H_1 : $\mu < \mu_o$	p-value = P ($Z \le z_{calculated}$)	one tail test (lower tail test)
Test H_o : $\mu = \mu_o$ against H_1 : $\mu \neq \mu_o$	p-value = P ($ Z \ge z_{calculated} $)	two tail test

Note that if you are using method 1 (using $z_{calculated}$), need to be careful to ensure that the benchmark z value is calculated with the **right probability values** for **two tail test** in particular.

N.B. If later parts of question requires you to relate p-value from 1-tail test to p-value of 2 tail test, need to multiply p-value by 2, before comparing to the benchmark p-value (inferred from level of significance).

- 3. Take note of reverse hypothesis questions
 - What is the conclusion?
 - Should the p-value approach be used or should the $z_{calculated}$ and critical range approach be used?
 - Possible questions: (1) Find the range of values of sample mean (2) Find the range of values for population mean (3) Find the least value for sample size

- 4. Other sub questions you might encounter
 - State what it means for a sample to be random in this context.
 Example: Every biscuit bar has an <u>equal probability</u> of being selected for the sample, and the selection of biscuit bars are made <u>independently</u>.
 - Do we need to assume that variable (e.g. X) follows a normal distribution? Example: There is no need to assume that X is normally distributed as n=150>30 is large, hence \overline{X} follows a normal distribution approximately. N.B. Don't cite CLT. It is used when population variance is known in RV's case.
 - Explain, in this context, the meaning of 'at 2% significance level"

 Example: At 2% level of significance means that there is a probability of 0.02 that the test will wrongly indicate that the mean mass of strawberry jam is less than 200 grams when in fact, it is 200 grams.
 - Explain the meaning of the calculated p value in this context.
 Example: 0.0301 is the probability of obtaining a sample mean <u>as extreme or more extreme</u> than 121 g, <u>assuming the population mean mass</u> of bananas is 125 g.
 Example: The p-value is the <u>smallest significance level</u> to conclude that the population mean time has changed from 30min.

N.B. May need to assume that <u>standard deviation of e.g. coating of a computer device remains unchanged</u>, if question provides you with the **actual value of population variance**. If further asked on why the actual value of population variance may not be used: <u>standard deviation may have changed due to wear out of mechanical parts</u>.