Topic 2-1: Likelihood Construction & Estimation Univariate Models

EXST 7160 Department of Experimental Statistics Louisiana State University

July 25, 2021

Content

Discrete IID Random Variables
Multinomial Likelihoods
Continuous IID Random Variables
Mixtures of Discrete and Continuous Components
Proportional Likelihoods
The Empirical Distribution Function as an MLE
Likelihoods from Censored Data

Contents

- 1 General Concept
- 2 Constructing Likelihood Functions
- 3 More on likelihood functions
- 4 Appendix: The connection between discrete and continuous likelihoods

Contents

- 1 General Concept
 - Introduction

- 4 Appendix: The connection between discrete and continuous

■ A statistical model is a general functional relation between the unknown parameter(s) and the observed data.

- A statistical model is a general functional relation between the unknown parameter(s) and the observed data.
- After a statistical model for the observed data has been formulated, the likelihood function of the data is the natural starting point for the inference in many statistical problems.

- A statistical model is a general functional relation between the unknown parameter(s) and the observed data.
- After a statistical model for the observed data has been formulated, the likelihood function of the data is the natural starting point for the inference in many statistical problems.
- The likelihood function typically leads to essentially automatic methods of inference, including point estimation, interval estimation, and hypothesis testing.

- A statistical model is a general functional relation between the unknown parameter(s) and the observed data.
- After a statistical model for the observed data has been formulated, the likelihood function of the data is the natural starting point for the inference in many statistical problems.
- The likelihood function typically leads to essentially automatic methods of inference, including point estimation, interval estimation, and hypothesis testing.
- In this topic, we will focus on constructing the likelihood functions from various types of data, including discrete, continuous, mixture of discrete and continuous, and censored data.

■ The likelihood is the joint density of the observed data to be analyzed.

- The likelihood is the joint density of the observed data to be analyzed.
- Let the random variables Y_1, \dots, Y_n have a joint density function $f(\mathbf{Y} = (Y_1, \dots, Y_n)^T; \boldsymbol{\theta})$ with unknown b density parameters $\boldsymbol{\theta} = (\theta_1, \dots, \theta_b)$. Then, given observed data $\mathbf{Y} = \mathbf{y}$, where $\mathbf{y} \equiv (y_1, \dots, y_n)^T$, the function of $\boldsymbol{\theta}$

$$L(\boldsymbol{\theta}; \mathbf{y}) = f(\mathbf{Y} = \mathbf{y}; \boldsymbol{\theta})$$

is the likelihood function.

Likeliihod for iid data

■ If the random variables Y_1, \dots, Y_n are independent, then the likelihood function becomes

$$L(\boldsymbol{\theta}; \mathbf{y}) = \prod_{i=1}^{n} f_i(Y_i = y_i; \boldsymbol{\theta}),$$

where $f_i(Y_i; \theta)$ is the density of Y_i .

Likeliihod for iid data

■ If the random variables Y_1, \dots, Y_n are independent, then the likelihood function becomes

$$L(\boldsymbol{\theta}; \mathbf{y}) = \prod_{i=1}^{n} f_i(Y_i = y_i; \boldsymbol{\theta}),$$

where $f_i(Y_i; \theta)$ is the density of Y_i .

■ If the random variables Y_1, \dots, Y_n are independent and indentically distributed (denoted by iid), then the likelihood function becomes

$$L(\boldsymbol{\theta}; \mathbf{y}) = \prod_{i=1}^{n} f(Y_i = y_i; \boldsymbol{\theta}),$$

where f is the distribution that all Y_1, \dots, Y_n follow.

Solving the Likelihood

■ The value of θ that maximizes the likelihood function $L(\theta; \mathbf{y})$ is called the maximum likelihood estimator (MLE) denoted by $\hat{\theta}_{MLE}$.

Solving the Likelihood

- The value of θ that maximizes the likelihood function $L(\theta; \mathbf{y})$ is called the maximum likelihood estimator (MLE) denoted by $\hat{\theta}_{MLE}$.
- In practice, $\hat{\theta}_{MLE}$ is usually calculated by optimizing the log likelihood function $\log(L(\theta; \mathbf{y}))$

Solving the Likelihood

- The value of θ that maximizes the likelihood function $L(\theta; \mathbf{y})$ is called the maximum likelihood estimator (MLE) denoted by $\hat{\theta}_{MLE}$.
- In practice, $\hat{\theta}_{MLE}$ is usually calculated by optimizing the log likelihood function $\log(L(\theta; \mathbf{y}))$
- Note: $\hat{\theta}_{MLE}$ is "optimal" under some regularity conditions (to be discussed in a future topic).

■ Denote the log likelihood function $log(L(\theta; \mathbf{y}))$ by $\ell(\theta)$, and assume $\ell(\theta)$ is differentiable with respect to θ .

- Denote the log likelihood function $log(L(\theta; \mathbf{y}))$ by $\ell(\theta)$, and assume $\ell(\theta)$ is differentiable with respect to θ .
- The procedure for obtaining the MLE from $\ell(\theta)$ is

- Denote the log likelihood function $log(L(\theta; \mathbf{y}))$ by $\ell(\theta)$, and assume $\ell(\theta)$ is differentiable with respect to θ .
- lacksquare The procedure for obtaining the MLE from $\ell(heta)$ is
 - **1** Differentiate $\ell(\theta)$ with respect to θ to obtain the likelihood score function $S(\theta) = (\frac{\partial \ell(\theta)}{\partial \theta_1}, \cdots, \frac{\partial \ell(\theta)}{\partial \theta_b})^T$.

- Denote the log likelihood function $log(L(\theta; \mathbf{y}))$ by $\ell(\theta)$, and assume $\ell(\theta)$ is differentiable with respect to θ .
- The procedure for obtaining the MLE from $\ell(\theta)$ is
 - **1** Differentiate $\ell(\theta)$ with respect to θ to obtain the likelihood score function $S(\theta) = (\frac{\partial \ell(\theta)}{\partial \theta_1}, \cdots, \frac{\partial \ell(\theta)}{\partial \theta_k})^T$.
 - 2 Find possible MLE cadidates by solving the likelihood equations $S(\theta) = \mathbf{0}_{b \times 1}$.

- Denote the log likelihood function $log(L(\theta; \mathbf{y}))$ by $\ell(\theta)$, and assume $\ell(\theta)$ is differentiable with respect to θ .
- lacksquare The procedure for obtaining the MLE from $\ell(heta)$ is
 - **1** Differentiate $\ell(\theta)$ with respect to θ to obtain the likelihood score function $S(\theta) = (\frac{\partial \ell(\theta)}{\partial \theta_1}, \cdots, \frac{\partial \ell(\theta)}{\partial \theta_k})^T$.
 - **2** Find possible MLE cadidates by solving the likelihood equations $S(\theta) = \mathbf{0}_{b \times 1}$.
 - 3 Check if the solution from the last step is the global maximizer of $\ell(\theta)$. If it is, then the solution is the MLE of θ .

An R Example

Remark

■ A non-differentiable likelihood example can be found in Example 7.2.9 of Casella and Berger (2002).

Remark

- A non-differentiable likelihood example can be found in Example 7.2.9 of Casella and Berger (2002).
- An example for checking if the solution of the score function equation with two unknown parameters is a global maximizer can be found in Example 7.2.12 of Casella and Berger (2002).

Contents

- 1 General Concept
- 2 Constructing Likelihood Functions
- 3 More on likelihood functions
- 4 Appendix: The connection between discrete and continuous likelihoods

Discrete IID Random Variables

Discrete IID Random Variables

Discrete IID Random Variables

Continuous IID Variables

Continuous IID Variables

Continuous IID Variables

- References: More examples for constructing the product likelihood likelihood associated with iid data can be found in Section 7.2.2 of Casella and Berger (2002).

Multinomial

Multinomial

Multinomial

- References: Examples for

Multivariate Normal

Multivariate Normal

Multivariate Normal

Mixture of discrete and continuous

Mixture of discrete and continuous

Mixture of discrete and continuous

Multinomial

Multinomial

Multinomial

- References: Examples for

Contents

- 3 More on likelihood functions
- 4 Appendix: The connection between discrete and continuous

Proportional Likelihood

Proportional Likelihood

Proportional Likelihood

Contents

- 4 Appendix: The connection between discrete and continuous likelihoods

A general working defintion of the likelihood

A general working defintion of the likelihood

A general working defintion of the likelihood

