

Prova $n^{\circ}1$ 5^a AUB

Gruppo: Enrico Ribiani Daniel Graziadei

Amplificatore invertente e non invertente

Indice

1	Scopo	2
2	Schema	2
3	Materiale e Strumenti	2
4	Contenuti Teorici	3
5	Descrizione della Prova	3
6	Raccolta dei dati 6.1 Tabella	3 4 4
7	Elaborazione dei dati raccolti 7.1 Calcoli	5 5
8	Analisi critica dei risultati e conclusioni	5

1. Scopo

Lo scopo di questa esperienza laboratoriale è di misurare e verificare la corrispondenza tra il guadagno di tensione misurato sperimentalmente e quello calcolato tramite calcoli teorici.

2. Schema

Cohpigurazione invertente

Cohpiqueations hot invertence

3. Materiale e Strumenti

- Fili di collegamento
- Breadboard
- Resistenza da $10k\Omega$
- Resistenza da $100k\Omega$
- Amplificatore operazionale *U741*

- Multimetro
- Generatore di funzione
- Oscilloscopio
- Alimentazione DC

Contenuti Teorici 4.

Avendo come dati R_1 , R_2 V_{cc} , V_{iM} , e la frequenza possiamo andare a calcolare teoricamente quanto dovrebbe riusultare il guadagno di tensione A_{ν} tramite la formula $A_{\nu} = -\frac{R_2}{R_1}$ per la configurazione invertente e $A_v = 1 + \frac{R_2}{R_1}$. Andando a verificare il guadagno in modo sperimentale tramite il rapporto tra V_i e V_u si presup-

pone che i due risultati siano circa uguali.

5. Descrizione della Prova

Dopo aver svolto i calcoli teorici vanno misurate le resistenze e verificato che il valore sia comparabile a quello riportato tramite codice colore.

Dopodichè viene montato il circuito sulla Breadboard seguendo lo schema, prima di collegarlo all' alimentazione viene regolata usando un multimetro come riferimento. Come ultima cosa si collega e si impostano oscilloscopio e generatore di funzione. Si misurano quindi i valori di V_i e di V_o tramite la funzione *Measure* dell'oscilloscopio e si annotano in tabella. Si ripete la procedura per entrambe le configurazioni.

Raccolta dei dati **6.**

Figura 1: Amplificatore invertente

Figura 2: Amplificatore non invertente

6.1 Tabella

Valore misurato resistenze:

R_1	R_2
$9.87k\Omega$	$100k\Omega$

Configurazione non invertente:

V_i	V_o
1.05V	11 <i>V</i>

Configurazione invertente:

V_i	V_o
1.06V	12 <i>V</i>

6.2 Commento dei dati raccolti in tabella

I dati in tabella sono stati ottenuti misurando le grandezze riportate, rientrano nelle tolleranze stabilite e sono rimasti stabili durante le misure.

7. Elaborazione dei dati raccolti

Calcoli **7.1**

Configurazione non invertente:
$$A_v = 1 + \frac{R_1}{R_2} = 1 + \frac{100k\Omega}{10k\Omega} = 11.2$$
 $A_{vmis} = \frac{V_o}{V_i} = \frac{11}{1.06} = 1.65$

Configurazione invertente:
$$A_{v} = -\frac{R_{1}}{R_{2}} = -\frac{100k\Omega}{10k\Omega} = -10.2$$

$$A_{vmis} = \frac{V_{o}}{V_{i}} = \frac{12}{1.05} = -10.43.$$

Analisi critica dei risultati e conclusioni 8.

Lo scopo è soddisfatto perché come si può evincere dai calcoli i valori del guadagno di tensione ottenuti in modo teorico e sperimentale corrispondono tollerate alcune discrepanze dati da errori sistematici.