University of Wisconsin-Madison Department of Economics

Econ 703 Fall 2002 Prof. R. Deneckere

Final Exam

M

1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be concave. Let A be an n x m matrix, and let $b \in \mathbb{R}^{n}$. Consider the function h: $\mathbb{R}^m \to \mathbb{R}$ defined by:

$$h(x) = f(Ax+b), x \in \mathbb{R}^m$$
.

Is the function h concave? Why or why not?

- 2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ and $g : \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x,y) = x^2 + y^2$ and g(x,y) = xy. Find the minimum of f(x,y) subject to $g(x,y) \neq 16$.
- 3. The following nonlinear program depends on the three parameters p, q and $r \in \mathbb{R}_+$:

$$\max_{\{x_1,x_2\}} px_1^2 + qx_1x_2$$
, s.t. $x_1^2 + rx_2^2 \le 1$, $x_1 \ge 0$, and $x_2 \ge 0$.

- a) Does a solution exist? Why or why not?
- b) Solve the problem.
- c) Determine the sensitivity of the optimum value of the problem to the parameters.
- 4. Consider the following nonlinear program:

$$\max_{x \in \Re} x$$
, subject to $x^2 \le 0$.

Does the corresponding Lagrangean have a saddlepoint? Why or why not?