Les suites numériques

Analyse 1

Les suites numériques

Analyse 1

Définition

Une suite réelle (où numérique) $(u_n)_{n\geq n_0}$, est une application $u: \mathbb{N} \longrightarrow \mathbb{R}$ qui associe a tout entier $n\geq n_0$ un réel u(n) que l'on **notera** u_n .

- u_n est appelé le terme général de la suite.
- u_{n_0} est appelé le premier terme.

Définition

Une suite réelle (où numérique) $(u_n)_{n\geq n_0}$, est une application $u: \mathbb{N} \longrightarrow \mathbb{R}$ qui associe a tout entier $n\geq n_0$ un réel u(n) que l'on **notera** u_n .

- u_n est appelé le terme général de la suite.
- u_{n_0} est appelé le premier terme.

Une suite peut être définie :

Définition

Une suite réelle (où numérique) $(u_n)_{n\geq n_0}$, est une application $u: \mathbb{N} \longrightarrow \mathbb{R}$ qui associe a tout entier $n\geq n_0$ un réel u(n) que l'on **notera** u_n .

- u_n est appelé le terme général de la suite.
- u_{n_0} est appelé le premier terme.

Une suite peut être définie :

Sous forme explicite. Par exemple, la suite de terme général

$$u_n = n - 2n^2$$
, pour tout $n \ge 1$.

Définition

Une suite réelle (où numérique) $(u_n)_{n\geq n_0}$, est une application $u: \mathbb{N} \longrightarrow \mathbb{R}$ qui associe a tout entier $n\geq n_0$ un réel u(n) que l'on **notera** u_n .

- u_n est appelé le terme général de la suite.
- u_{n_0} est appelé le premier terme.

Une suite peut être définie :

1 Sous forme explicite. Par exemple, la suite de terme général

$$u_n = n - 2n^2$$
, pour tout $n \ge 1$.

2 Sous forme récurrentes. Par exemple, la suite définie par

$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{2u_n}{1+u_n}, \quad n \ge 1. \end{cases}$$

Suites arithmétiques-Suites géométriques Suites arithmétiques

Une suite $(u_n)_{n\in\mathbb{N}}$ est appelée *une suite arithmétique* s'il existe un nombre r tel que,

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + r \quad u_0 \ donn\acute{e}$$

Le nombre r s'appelle la raison de la suite

Suites arithmétiques-Suites géométriques Suites arithmétiques

Une suite $(u_n)_{n\in\mathbb{N}}$ est appelée *une suite arithmétique* s'il existe un nombre r tel que,

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + r \quad u_0 \ donn\acute{e}$$

Le nombre r s'appelle $la\ raison$ de la suite

Propriétés

Si $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r, alors

- Pour tout $n \in \mathbb{N}$, on a $u_n = u_0 + nr$
- D'une manière générale, pour tout $n, p \in \mathbb{N}$ $u_n = u_p + (n p)r$.

Exemple : Soit la suite de terme général $u_n = n$.

On a $u_{n+1} - u_n = 1$ donc c'est une suite arithmétique de raison 1.

Suites arithmétiques et Suites géométriques Suites arithmétiques

Suites arithmétiques

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r alors

$$S_n = \sum_{k=m}^n u_k = u_m + u_{m+1} + \ldots + u_n = (n-m+1)\frac{(u_m + u_n)}{2}$$

Ce qu'on retient en disant :

 $Somme \,\,de \,\, termes = nombre \,\,de \,\, termes rac{premier \,\, terme + dernier \,\, terme}{2}$

Exemple : Soit $u_n = n$ alors

$$S_n = \sum_{k=0}^n k = (n+1)\frac{(0+n)}{2} = \frac{n(n+1)}{2}$$

Suites arithmétiques - Suites géométriques Suites géométriques

Une suite $(u_n)_{n\in\mathbb{N}}$ est appelée une *suite géométrique* s'il existe un nombre q tel que,

$$\forall n \in \mathbb{N}, \quad u_{n+1} = qu_n \quad u_0 \ donn\acute{e}$$

Le nombre q s'appelle la raison de la suite.

Suites arithmétiques - Suites géométriques Suites géométriques

Une suite $(u_n)_{n\in\mathbb{N}}$ est appelée une *suite géométrique* s'il existe un nombre q tel que,

$$\forall n \in \mathbb{N}, \quad u_{n+1} = qu_n \quad u_0 \ donn\acute{e}$$

Le nombre q s'appelle la raison de la suite.

Propriétés

Si $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q, alors

- Pour tout $n \in \mathbb{N}$, on a $u_n = u_0 q^n$
- D'une manière générale, pour tout $n, p \in \mathbb{N}$ $u_n = u_p q^{n-p}$

Preuve : Par récurrence on a :

$$u_n = qu_{n-1} = q(qu_{n-2}) = q^2u_{n-2} = \ldots = q^nu_0$$

Suites arithmétiques- Suites géométriques Suites géométriques

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison $q\neq 1$ alors

$$S_n = \sum_{k=m}^n u_k = u_m + u_{m+1} + \ldots + u_n = u_m \frac{1 - q^{n-m+1}}{1 - q}$$

Ce qu'on retient en disant :

$$Somme \ de \ termes = Premier \ terme imes rac{1-La \ raison^{nombre} \ de \ termes}{1-La \ raison}$$

Preuve: Pour m = 0, on a

$$S_n = u_0 + u_1 + \ldots + u_n = u_0(1 + q + \ldots + q^n)$$

En multipliant par 1 - q, on obtient immédiatement,

$$(1-q)S_n = u_0(1+q+\ldots+q^n)(1-q) = u_0(1-q^{n+1})$$

N.Mrhardy 7

$D\'{e}finition$

① Une suite $(u_n)_{n\geq n_0}$ est dite croissante si pour tout $n\geq n_0$, $u_{n+1}\geq u_n$.

Définition

- ① Une suite $(u_n)_{n\geq n_0}$ est dite croissante si pour tout $n\geq n_0$, $u_{n+1}\geq u_n$.
- ② Une suite $(u_n)_{n>n_0}$ est dite décroissante si pour tout $n \ge n_0$, $u_{n+1} \le u_n$.

N.MRHARDY

Définition

- ① Une suite $(u_n)_{n\geq n_0}$ est dite croissante si pour tout $n\geq n_0$, $u_{n+1}\geq u_n$.
- ② Une suite $(u_n)_{n>n_0}$ est dite décroissante si pour tout $n \ge n_0$, $u_{n+1} \le u_n$.
- 3 Une suite est dite monotone si elle est soit croissante, soit décroissante.

N.MRHARDY

Définition

- Une suite $(u_n)_{n\geq n_0}$ est dite croissante si pour tout $n\geq n_0$, $u_{n+1}\geq u_n$.
- ② Une suite $(u_n)_{n\geq n_0}$ est dite décroissante si pour tout $n\geq n_0$, $u_{n+1}\leq u_n$.
- 3 Une suite est dite monotone si elle est soit croissante, soit décroissante.

Lorsque les inégalités sont strictes la suite est strictement croissante (resp. décroissante, monotone).

Définition

- ① Une suite $(u_n)_{n\geq n_0}$ est dite croissante si pour tout $n\geq n_0$, $u_{n+1}\geq u_n$.
- ② Une suite $(u_n)_{n\geq n_0}$ est dite décroissante si pour tout $n\geq n_0$, $u_{n+1}\leq u_n$.
- 3 Une suite est dite monotone si elle est soit croissante, soit décroissante.

Lorsque les inégalités sont strictes la suite est strictement croissante (resp. décroissante, monotone).

Remarque

Si la suite $(u_n)_{n\geq n_0}$ est strictement positive c'est-à-dire $\forall n,\ u_n>0$ alors le sens de variation d'une suite $(u_n)_{n\geq 0}$ peut être étudier de la façon suivante :

- La suite $(u_n)_{n\geq n_0}$ est croissante si et seulement si $\dfrac{u_{n+1}}{u_n}\geq 1$.
- La suite $(u_n)_{n\geq n_0}$ est décroissante si et seulement si $\frac{u_{n+1}}{u_n}\leq 1$.

$D\'{e}finition$

Définition

- ① Une suite $(u_n)_{n>n_0}$ est dite constante si $\forall n \geq n_0$; $u_n = u_{n+1}$
- 2 Une suite $(u_n)_{n>n_0}$ est dite stationnaire à partir du rang $p \ge n_0$ si $\forall n \geq p, \ u_n = u_p.$

N.MRHARDY

$D\'{e}finition$

- **1** Une suite $(u_n)_{n>n_0}$ est dite constante si $\forall n \geq n_0$; $u_n = u_{n+1}$
- ② Une suite $(u_n)_{n \ge n_0}$ est dite stationnaire à partir du rang $p \ge n_0$ si $\forall n \ge p$, $u_n = u_p$.

Remarque importante

Une suite peut ne pas être ni croissante ni décroissante. Par exemple la suite $(u_n)_{n\geq 1}$ de terme générale

$$u_n=\frac{(-1)^n}{n}$$

les termes successifs sont : $\frac{-1}{1}$, $\frac{1}{2}$, $\frac{-1}{3}$, $\frac{1}{4}$... Cette suite n'est pas monotone.

Exemples.

• Soit la suite $(u_n)_{n\geq 0}$ définie par $u_n=n^2+n+2$. On a

$$u_{n+1} - u_n = (n+1)^2 + (n+1) + 2 - (n^2 + n + 2) = 2n + 2 > 0, \quad \forall n \ge 0$$

donc $(u_n)_{n>0}$ est une suite strictement croissante.

Exemples.

• Soit la suite $(u_n)_{n\geq 0}$ définie par $u_n=n^2+n+2$. On a

$$u_{n+1} - u_n = (n+1)^2 + (n+1) + 2 - (n^2 + n + 2) = 2n + 2 > 0, \quad \forall n \ge 0$$

donc $(u_n)_{n\geq 0}$ est une suite strictement croissante.

② Soit la suite $(v_n)_{n\geq 19}$ définie par $v_n=\frac{20^n}{n!}$. Puisque $v_n>0$, on calcule

$$\frac{v_{n+1}}{v_n} = \left(\frac{20^{n+1}}{(n+1)!}\right) \times \left(\frac{n!}{20^n}\right) = \frac{20}{n+1}$$

or pour tout $n \ge 19$ on a $n + 1 \ge 20$ donc

$$\frac{v_{n+1}}{v_n} \leq 1$$

d'où $(v_n)_{n\geq 19}$ est une suite décroissante.

Suites bornées

N.Mrhardy 11 / 57

Suites bornées

Définition

- ① Une suite $(u_n)_{n>n_0}$ est dite majorée s'il existe un réel $M \in \mathbb{R}$ tel que, pour tout $n > n_0$, $u_n < M$.
- ② Une suite $(u_n)_{n>n_0}$ est dite minorée s'il existe un réel $m \in \mathbb{R}$ tel que, pour tout $n > n_0$, $u_n > m$.
- 3 Une suite est dite bornée si elle est à la fois majorée et minorée.

N.MRHARDY

Suites bornées

Définition

- ① Une suite $(u_n)_{n>n_0}$ est dite majorée s'il existe un réel $M \in \mathbb{R}$ tel que, pour tout $n > n_0$, $u_n < M$.
- ② Une suite $(u_n)_{n>n_0}$ est dite minorée s'il existe un réel $m \in \mathbb{R}$ tel que, pour tout $n > n_0$, $u_n > m$.
- 1 Une suite est dite bornée si elle est à la fois majorée et minorée.

Caractérisation des suites bornées

Une suite $(u_n)_{n>n_0}$ est bornée ssi il existe un réel positif A tel que l'on ait

$$\forall n \geq n_0; \quad |u_n| \leq A$$

N. Mrhardy

Exemples:

1 La suite $u_n = \frac{(-1)^n}{n}$ est bornée mais n'est pas monotone. En effet, pour tout $n \ge 1$

$$|(-1)^n|=1\Longrightarrow |u_n|=\frac{1}{n}\leq 1$$

N.Mrhardy 12/5

Exemples:

1 La suite $u_n = \frac{(-1)^n}{n}$ est bornée mais n'est pas monotone. En effet, pour tout $n \ge 1$

$$|(-1)^n|=1\Longrightarrow |u_n|=\frac{1}{n}\leq 1$$

2 La suite $(v_n)_{n\geq 0}$ définie par $v_n=e^{2-n}$ est **bornée** et **décroissante**. En effet, pour tout $n\geq 0$, on a

$$2-n \leq 2 \Longrightarrow 0 < e^{2-n} \leq e^2 \Longrightarrow |v_n| \leq e^2$$

De plus

$$\frac{v_{n+1}}{v_n} = \frac{e^2 e^{-n-1}}{e^2 e^{-n}} = \frac{1}{e} \le 1$$

N.Mrhardy 12 / 57

Exemples:

① La suite $u_n = \frac{(-1)^n}{n}$ est bornée mais n'est pas monotone. En effet, pour tout $n \ge 1$

$$|(-1)^n|=1\Longrightarrow |u_n|=\frac{1}{n}\leq 1$$

2 La suite $(v_n)_{n\geq 0}$ définie par $v_n=e^{2-n}$ est **bornée** et **décroissante**. En effet, pour tout $n\geq 0$, on a

$$2-n \le 2 \Longrightarrow 0 < e^{2-n} \le e^2 \Longrightarrow |v_n| \le e^2$$

De plus

$$\frac{v_{n+1}}{v_n} = \frac{e^2 e^{-n-1}}{e^2 e^{-n}} = \frac{1}{e} \le 1$$

3 La suite $w_n = 2^n$ est *croissante mais n'est pas majorée*. En effet, c'est est clair qu'elle est croissante. Supposons $(w_n)_n$ est majorée c-à-d $\exists M > 0, \ \forall n \geq 0, w_n = 2^n \leq M \Longrightarrow \exists M > 1, \ \forall n \geq 0 \ n \leq \frac{\ln(M)}{\ln(2)}$ ce qui est absurde car l'ensemble $\mathbb N$ n'est pas majorée.

N.Mrhardy 12

$Suite\ convergente$

On dit que la suite de nombres réelles $(u_n)_{n\geq n_0}$ converge vers une limite $\ell\in\mathbb{R}$ ssi

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} > n_0 \ tel \ que : \ \forall n > N_{\varepsilon} \ |u_n - \ell| < \varepsilon.$$

$$\iff \forall \varepsilon > 0 \ \exists N_{\varepsilon} \geq n_0 \ \text{tel que} : \ \forall n \geq N_{\varepsilon} \ u_n \in]\ell - \varepsilon, \ell + \varepsilon[$$

On note alors

$$\lim_{n \to +\infty} u_n = \ell \quad \Leftrightarrow \quad \lim_{n \to +\infty} |u_n - \ell| = 0.$$

Si le réel ℓ n'existe pas, la suite est dite divergente.

Suite convergente

On dit que la suite de nombres réelles $(u_n)_{n\geq n_0}$ converge vers une limite $\ell\in\mathbb{R}$ ssi

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} > n_0 \ tel \ que : \ \forall n > N_{\varepsilon} \ |u_n - \ell| < \varepsilon.$$

$$\iff \forall \varepsilon > 0 \ \exists N_{\varepsilon} \geq n_0 \ \text{tel que} : \ \forall n \geq N_{\varepsilon} \ u_n \in]\ell - \varepsilon, \ell + \varepsilon[$$

On note alors

$$\lim_{n \to +\infty} u_n = \ell \quad \Leftrightarrow \quad \lim_{n \to +\infty} |u_n - \ell| = 0.$$

Si le réel ℓ n'existe pas, la suite est dite divergente.

Remarque

Si la limite n'existe pas, la suite est dite divergente.

Exemple. En utilisant la définition, montrons que

$$\left(\frac{1}{n}\right)_{n\geq 0}$$
 converge vers 0

En effet, on veut montrer que

$$\forall \varepsilon > 0 \ \exists N_\varepsilon \geq 0 \ \text{tel que}: \ \forall n \geq N_\varepsilon \ |\frac{1}{n}| = \frac{1}{n} < \varepsilon.$$

Exemple. En utilisant la définition, montrons que

$$\left(\frac{1}{n}\right)_{n\geq 0}$$
 converge vers 0

En effet, on veut montrer que

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \geq 0 \ \text{tel que}: \ \forall n \geq N_{\varepsilon} \ |\frac{1}{n}| = \frac{1}{n} < \varepsilon.$$

$$\left(\frac{1}{n} < \varepsilon \Longleftrightarrow n > \frac{1}{\varepsilon}\right)$$

Exemple. En utilisant la définition, montrons que

$$\left(\frac{1}{n}\right)_{n\geq 0}$$
 converge vers 0

En effet, on veut montrer que

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \geq 0 \ \text{tel que}: \ \forall n \geq N_{\varepsilon} \ |\frac{1}{n}| = \frac{1}{n} < \varepsilon.$$

$$\left(\frac{1}{n} < \varepsilon \Longleftrightarrow n > \frac{1}{\varepsilon}\right)$$

Soit $\forall \varepsilon > 0$.

Exemple. En utilisant la définition, montrons que

$$\left(\frac{1}{n}\right)_{n\geq 0}$$
 converge vers 0

En effet, on veut montrer que

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \geq 0 \ \text{tel que}: \ \forall n \geq N_{\varepsilon} \ |\frac{1}{n}| = \frac{1}{n} < \varepsilon.$$

$$\left(\frac{1}{n} < \varepsilon \Longleftrightarrow n > \frac{1}{\varepsilon}\right)$$

Soit $\forall \varepsilon > 0$. On pose $N_{\varepsilon} = E\left(\frac{1}{\varepsilon}\right) + 1 \in \mathbb{N}$, donc

$$Si \ n \geq N_{\varepsilon} \Longrightarrow n \geq E(\frac{1}{\varepsilon}) + 1 \geq \frac{1}{\varepsilon} \Longrightarrow n > \frac{1}{\varepsilon}$$

N.Mrhardy 14 / 57

Nature d'une suite **Suite Convergente**

Exercice (TD): En utilisant la définition, montrer que

$$\left(\frac{1}{2^n}\right)_{n\geq 0}$$
 converge vers 0

Réponse. On veut montrer que

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \geq 0 \ \text{tel que}: \ \forall n \geq N_{\varepsilon} \ |\frac{1}{2^n}| = \frac{1}{2^n} < \varepsilon.$$

$$\left(\frac{1}{2^n} < \varepsilon \Longleftrightarrow \frac{1}{\varepsilon} < 2^n \Longleftrightarrow \ln\left(\frac{1}{\varepsilon}\right) < n\ln(2) \Longleftrightarrow n > \frac{\ln\left(\frac{1}{\varepsilon}\right)}{\ln(2)} > 0 \text{ si } \varepsilon < 1\right)$$

15 / 57

Nature d'une suite Suite Convergente

Exercice (TD): En utilisant la définition, montrer que

$$\left(\frac{1}{2^n}\right)_{n\geq 0}$$
 converge vers 0

Réponse. On veut montrer que

$$\forall \varepsilon>0 \ \exists \textit{N}_{\varepsilon}\geq 0 \ \text{tel que}: \ \forall \textit{n}\geq \textit{N}_{\varepsilon} \ |\frac{1}{2^{\textit{n}}}|=\frac{1}{2^{\textit{n}}}<\varepsilon.$$

$$\left(\frac{1}{2^n} < \varepsilon \Longleftrightarrow \frac{1}{\varepsilon} < 2^n \Longleftrightarrow \ln\left(\frac{1}{\varepsilon}\right) < n\ln(2) \Longleftrightarrow n > \frac{\ln\left(\frac{1}{\varepsilon}\right)}{\ln(2)} > 0 \text{ si } \varepsilon < 1\right)$$

Soit $0 < \varepsilon < 1$.

Nature d'une suite Suite Convergente

Exercice (TD): En utilisant la définition, montrer que

$$\left(\frac{1}{2^n}\right)_{n\geq 0}$$
 converge vers 0

Réponse. On veut montrer que

$$\forall \varepsilon > 0 \ \exists \textit{N}_{\varepsilon} \geq 0 \ \text{tel que}: \ \forall \textit{n} \geq \textit{N}_{\varepsilon} \ |\frac{1}{2^{\textit{n}}}| = \frac{1}{2^{\textit{n}}} < \varepsilon.$$

$$\left(\frac{1}{2^n} < \varepsilon \Longleftrightarrow \frac{1}{\varepsilon} < 2^n \Longleftrightarrow \ln\left(\frac{1}{\varepsilon}\right) < n\ln(2) \Longleftrightarrow n > \frac{\ln\left(\frac{1}{\varepsilon}\right)}{\ln(2)} > 0 \text{ si } \varepsilon < 1\right)$$

Soit $0 < \varepsilon < 1$. On pose $N_{\varepsilon} = E\left(\frac{\ln\left(\frac{1}{\varepsilon}\right)}{\ln(2)}\right) + 1 \in \mathbb{N}$, donc on obtient

$$\forall n \geq N_{\varepsilon} \geq \frac{\ln\left(\frac{1}{\varepsilon}\right)}{\ln(2)} \Longrightarrow \frac{1}{2^n} < \varepsilon$$

N.Mrhardy 15 / 57

Propriétés de convergence des suites

Unicité de la limite

Si $(u_n)_{n\geq n_0}$ converge vers une limite alors cette limite est unique.

N.Mrhardy 16 / 57

Propriétés de convergence des suites

Unicité de la limite

Si $(u_n)_{n\geq n_0}$ converge vers une limite alors cette limite est unique.

Preuve: Supposons que $(u_n)_{n\geq n_0}$ converge vers deux limites ℓ_1 et ℓ_2 . Montrons que

$$\forall \varepsilon > 0 \quad |\ell_1 - \ell_2| < \varepsilon$$

Propriétés de convergence des suites

Unicité de la limite

Si $(u_n)_{n\geq n_0}$ converge vers une limite alors cette limite est unique.

Preuve: Supposons que $(u_n)_{n\geq n_0}$ converge vers deux limites ℓ_1 et ℓ_2 . Montrons que

$$\forall \varepsilon > 0 \quad |\ell_1 - \ell_2| < \varepsilon$$

Soit $\varepsilon > 0$. Alors il existe $N_1 \ge n_0$ et $N_2 \ge n_0$ tel que

$$\forall n \geq N_1, \ |u_n - \ell_1| < \frac{\varepsilon}{2}, \quad \text{et} \quad \forall n \geq N_2, \ |u_n - \ell_2| < \frac{\varepsilon}{2}.$$
 (*)

N.Mrhardy 16 / 57

Propriétés de convergence des suites

Unicité de la limite

Si $(u_n)_{n\geq n_0}$ converge vers une limite alors cette limite est unique.

Preuve: Supposons que $(u_n)_{n\geq n_0}$ converge vers deux limites ℓ_1 et ℓ_2 . Montrons que

$$\forall \varepsilon > 0 \quad |\ell_1 - \ell_2| < \varepsilon$$

Soit $\varepsilon > 0$. Alors il existe $N_1 \ge n_0$ et $N_2 \ge n_0$ tel que

$$\forall n \geq N_1, \ |u_n - \ell_1| < \frac{\varepsilon}{2}, \quad \text{et} \quad \forall n \geq N_2, \ |u_n - \ell_2| < \frac{\varepsilon}{2}.$$
 (*)

Posons $N = \max(N_1, N_2)$.

Propriétés de convergence des suites

Unicité de la limite

Si $(u_n)_{n\geq n_0}$ converge vers une limite alors cette limite est unique.

Preuve: Supposons que $(u_n)_{n\geq n_0}$ converge vers deux limites ℓ_1 et ℓ_2 . Montrons que

$$\forall \varepsilon > 0 \quad |\ell_1 - \ell_2| < \varepsilon$$

Soit $\varepsilon > 0$. Alors il existe $N_1 \ge n_0$ et $N_2 \ge n_0$ tel que

$$\forall n \geq N_1, \ |u_n - \ell_1| < \frac{\varepsilon}{2}, \quad \text{et} \quad \forall n \geq N_2, \ |u_n - \ell_2| < \frac{\varepsilon}{2}.$$
 (*)

Posons $N = \max(N_1, N_2)$. Il vient, d'après l'inégalité triangulaire et (*),

$$\forall n \geq N \quad 0 < |\ell_1 - \ell_2| = |\ell_1 - u_n + u_n - \ell_2| \leq |\ell_1 - u_n| + |u_n - \ell_2| < \varepsilon.$$

Propriétés de convergence des suites

Unicité de la limite

Si $(u_n)_{n\geq n_0}$ converge vers une limite alors cette limite est unique.

Preuve: Supposons que $(u_n)_{n\geq n_0}$ converge vers deux limites ℓ_1 et ℓ_2 . Montrons que

$$\forall \varepsilon > 0 \quad |\ell_1 - \ell_2| < \varepsilon$$

Soit $\varepsilon > 0$. Alors il existe $N_1 \ge n_0$ et $N_2 \ge n_0$ tel que

$$\forall n \geq N_1, \ |u_n - \ell_1| < \frac{\varepsilon}{2}, \quad \text{et} \quad \forall n \geq N_2, \ |u_n - \ell_2| < \frac{\varepsilon}{2}.$$
 (*)

Posons $N = \max(N_1, N_2)$. Il vient, d'après l'inégalité triangulaire et (*),

$$\forall n \ge N \quad 0 < |\ell_1 - \ell_2| = |\ell_1 - u_n + u_n - \ell_2| \le |\ell_1 - u_n| + |u_n - \ell_2| < \varepsilon.$$

On abouti donc à

$$\forall \varepsilon > 0 \quad |\ell_1 - \ell_2| < \varepsilon \iff |\ell_1 - \ell_2| = 0 \iff \ell_1 = \ell_2$$

N.Mrhardy 16 /

Propriétés de convergence des suites

Proposition

Toute suite convergente est bornée.

Preuve: Soit $(u_n)_{n>n_0}$ une suite convergente vers ℓ . Prenons $\varepsilon=1$.

$$\exists N \ge n_0 \quad \forall n \ge N, \quad |u_n - \ell| < 1. \tag{*}$$

Notons $M_1 = \max\{|u_{n_0}|, \dots, |u_{N-1}|\}$, $M_2 = |\ell| + 1$ et $M = \max(M_1, M_2)$. Pour tout $n \ge n_0$, on a deux cas :

- si $n_0 \le n \le N-1$, on a $|u_n| \le M_1 \le M$,
- si $n \ge N$, on a d'après (*) et l'inégalité triangulaire,

$$|u_n| = |u_n - \ell + \ell| \le |u_n - \ell| + |\ell| \le 1 + |\ell| = M_2 \le M.$$

d'où

$$\forall n > n_0, |u_n| < M$$

N.Mrhardy 17 / 57

Propriétés de convergence des suites

Proposition

Toute suite convergente est bornée.

Remarque

La réciproque est fausse. Pour le voir, considérons la suite $(u_n)_{n\geq 0}$ définie par $u_n=(-1)^n$ qui est bornée $(|u_n|\leq 1)$ mais n'est pas convergente car,

- Si n et pair on aura $\lim_{n \to +\infty} u_n = 1$
- Si n et impair on aura $\lim_{n \longrightarrow +\infty} u_n = -1$

donc elle n'admet pas de limite.

N.Mrhardy 18 / 57

1 On dit que la suite $(u_n)_{n>n_0}$ diverge vers $+\infty$ ssi

$$\lim_{n \longrightarrow +\infty} u_n = +\infty \Longleftrightarrow \forall A \in \mathbb{R} (\textit{où} \ \mathbb{R}^+), \ \exists N \geq \textit{n}_0 \ \textit{tel que} \ \forall n \geq \textit{N}, u_n > A.$$

② On dit que la suite $(u_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$ ssi

$$\lim_{n \longrightarrow +\infty} u_n = -\infty \Longleftrightarrow \forall B \in \mathbb{R}(\text{où }\mathbb{R}^-), \ \exists N \geq n_0 \text{ tel } \text{que } \forall n \geq N, u_n < B.$$

Exemple:

$$\lim_{n \to +\infty} n^{\alpha} = \left\{ \begin{array}{ll} +\infty & \textit{si } \alpha > 0 \\ 0 & \textit{si } \alpha < 0 \\ 1 & \textit{si } \alpha = 0 \end{array} \right.$$

Exemple: En utilisant la définition, montrer que

$$(\sqrt{n})_{n\geq 0}$$
 tend vers $+\infty$

On veut montrer que

$$\forall A \in \mathbb{R} (\text{où } \mathbb{R}^+), \ \exists N \geq n_0 \text{ tel que } \forall n \geq N, u_n > A.$$

Exemple: En utilisant la définition, montrer que

$$(\sqrt{n})_{n\geq 0}$$
 tend vers $+\infty$

On veut montrer que

$$\forall A \in \mathbb{R}(\text{où }\mathbb{R}^+), \ \exists N \geq n_0 \text{ tel que } \forall n \geq N, u_n > A.$$

(c-à-d
$$\exists N \geq n_0 \text{ tel que } \forall n \geq N, \sqrt{n} > A \Longleftrightarrow n > A^2.$$
)

Exemple: En utilisant la définition, montrer que

$$(\sqrt{n})_{n\geq 0}$$
 tend vers $+\infty$

On veut montrer que

$$\forall A \in \mathbb{R}(\text{où }\mathbb{R}^+), \ \exists N \geq n_0 \text{ tel que } \forall n \geq N, u_n > A.$$

(c-à-d
$$\exists N \geq n_0$$
 tel que $\forall n \geq N, \sqrt{n} > A \Longleftrightarrow n > A^2$.)
Soit $A \in \mathbb{R}$, prenons $N = E(A^2) + 1$. On a, $N > A^2$ et donc pour tout $n \geq N$, $u_n > A$.

N.Mrhardy 19 / 57

Exercice(TD). En utilisant la définition, montrer que

$$(\ln(n^2+1))_{n\geq 0}$$
 tend vers $+\infty$

Réponse. On veut montrer que

$$\forall A \in \mathbb{R}(où \mathbb{R}^+), \ \exists N \geq n_0 \text{ tel que } \forall n \geq N, u_n > A.$$

Exercice(TD). En utilisant la définition, montrer que

$$(\ln(n^2+1))_{n\geq 0}$$
 tend vers $+\infty$

Réponse. On veut montrer que

$$\forall A \in \mathbb{R}(où \mathbb{R}^+), \ \exists N \geq n_0 \text{ tel que } \forall n \geq N, u_n > A.$$

(c-à-d
$$\exists N \ge n_0 \text{ tel que } \forall n \ge N, \ln(n^2+1) > A \Longleftrightarrow n^2 > e^A - 1 \Longleftrightarrow n > \sqrt{|e^A - 1|}.$$
)

Exercice(TD). En utilisant la définition, montrer que

$$(\ln(n^2+1))_{n\geq 0}$$
 tend vers $+\infty$

Réponse. On veut montrer que

$$\forall A \in \mathbb{R}(\text{où }\mathbb{R}^+), \ \exists N \geq n_0 \text{ tel que } \forall n \geq N, u_n > A.$$

(c-à-d
$$\exists N \geq n_0$$
 tel que $\forall n \geq N, \ln(n^2+1) > A \iff n^2 > e^A - 1 \iff n > \sqrt{|e^A - 1|}$.) Soit $A \in \mathbb{R}^+$, prenons $N = E(\sqrt{e^A - 1}) + 1$. On a donc pour tout $n \geq N$, $u_n > A$.

20 / 57

Soient $(u_n)_{n\geq n_0}$ et $(v_n)_{n\geq n_0}$ deux suites réelles telles que

$$\lim_{n \longrightarrow +\infty} u_n = \ell_1 \quad et \quad \lim_{n \longrightarrow +\infty} v_n = \ell_2.$$

Alors, on a:

Soient $(u_n)_{n>n_0}$ et $(v_n)_{n>n_0}$ deux suites réelles telles que

$$\lim_{n \longrightarrow +\infty} u_n = \ell_1 \quad et \quad \lim_{n \longrightarrow +\infty} v_n = \ell_2.$$

Alors, on a:

• La suite somme $(u_n + v_n)_{n \ge n_0}$ est convergente, de plus on a $\lim_{n \to +\infty} (u_n + v_n) = \ell_1 + \ell_2$.

Soient $(u_n)_{n>n_0}$ et $(v_n)_{n>n_0}$ deux suites réelles telles que

$$\lim_{n \to +\infty} u_n = \ell_1 \quad et \quad \lim_{n \to +\infty} v_n = \ell_2.$$

Alors, on a:

- **1** La suite somme $(u_n + v_n)_{n > n_0}$ est convergente, de plus on a $\lim_{n \to +\infty} (u_n + v_n) = \ell_1 + \ell_2.$
- 2 La suite produit $(u_n v_n)_{n>n_0}$ est convergente, de plus on a $\lim_{n \to +\infty} (u_n v_n) = \ell_1 \ell_2$. En particulier pour tout $a \in \mathbb{R}$, $\lim_{n \to +\infty} (au_n) = a\ell_1$.

N. Mrhardy 21 / 57

Soient $(u_n)_{n>n_0}$ et $(v_n)_{n>n_0}$ deux suites réelles telles que

$$\lim_{n \to +\infty} u_n = \ell_1 \quad et \quad \lim_{n \to +\infty} v_n = \ell_2.$$

Alors, on a:

- **1** La suite somme $(u_n + v_n)_{n > n_0}$ est convergente, de plus on a $\lim_{n \to +\infty} (u_n + v_n) = \ell_1 + \ell_2.$
- 2 La suite produit $(u_n v_n)_{n>n_0}$ est convergente, de plus on a $\lim_{n \to +\infty} (u_n v_n) = \ell_1 \ell_2$. En particulier pour tout $a \in \mathbb{R}$, $\lim_{n \to +\infty} (au_n) = a\ell_1$.

N. Mrhardy 21 / 57

Soient $(u_n)_{n\geq n_0}$ et $(v_n)_{n\geq n_0}$ deux suites réelles telles que

$$\lim_{n \to +\infty} u_n = \ell_1 \quad et \quad \lim_{n \to +\infty} v_n = \ell_2.$$

Alors, on a:

- **1** La suite somme $(u_n + v_n)_{n \ge n_0}$ est convergente, de plus on a $\lim_{n \to +\infty} (u_n + v_n) = \ell_1 + \ell_2$.
- ② La suite produit $(u_n v_n)_{n \geq n_0}$ est convergente, de plus on a $\lim_{n \to +\infty} (u_n v_n) = \ell_1 \ell_2$. En particulier pour tout $a \in \mathbb{R}$, $\lim_{n \to +\infty} (au_n) = a\ell_1$.
- **3** Si pour tout $n \ge n_0$, $v_n \ne 0$ et $\ell_2 \ne 0$, alors $\lim_{n \longrightarrow +\infty} \frac{1}{v_n} = \frac{1}{\ell_2}$.

Soient $(u_n)_{n\geq n_0}$ et $(v_n)_{n\geq n_0}$ deux suites réelles telles que

$$\lim_{n \to +\infty} u_n = \ell_1 \quad et \quad \lim_{n \to +\infty} v_n = \ell_2.$$

Alors, on a:

- **1** La suite somme $(u_n + v_n)_{n \ge n_0}$ est convergente, de plus on a $\lim_{n \to +\infty} (u_n + v_n) = \ell_1 + \ell_2$.
- ② La suite produit $(u_n v_n)_{n \geq n_0}$ est convergente, de plus on a $\lim_{n \to +\infty} (u_n v_n) = \ell_1 \ell_2$. En particulier pour tout $a \in \mathbb{R}$, $\lim_{n \to +\infty} (au_n) = a\ell_1$.
- **3** Si pour tout $n \ge n_0$, $v_n \ne 0$ et $\ell_2 \ne 0$, alors $\lim_{n \longrightarrow +\infty} \frac{1}{v_n} = \frac{1}{\ell_2}$.
- **4** Si pour tout $n \ge n_0$, $u_n \le v_n$ (respectivement $u_n < v_n$), alors $\ell_1 \le \ell_2$.

Soient $(u_n)_{n\geq n_0}$ et $(v_n)_{n\geq n_0}$ deux suites réelles telles que

$$\lim_{n \to +\infty} u_n = \ell_1 \quad et \quad \lim_{n \to +\infty} v_n = \ell_2.$$

Alors, on a:

- **1** La suite somme $(u_n + v_n)_{n \ge n_0}$ est convergente, de plus on a $\lim_{n \to +\infty} (u_n + v_n) = \ell_1 + \ell_2$.
- ② La suite produit $(u_n v_n)_{n \geq n_0}$ est convergente, de plus on a $\lim_{n \to +\infty} (u_n v_n) = \ell_1 \ell_2$. En particulier pour tout $a \in \mathbb{R}$, $\lim_{n \to +\infty} (au_n) = a\ell_1$.
- **3** Si pour tout $n \ge n_0$, $v_n \ne 0$ et $\ell_2 \ne 0$, alors $\lim_{n \longrightarrow +\infty} \frac{1}{v_n} = \frac{1}{\ell_2}$.
- **4** Si pour tout $n \ge n_0$, $u_n \le v_n$ (respectivement $u_n < v_n$), alors $\ell_1 \le \ell_2$.

Exemple: On a
$$\forall n \geq 1$$
, $\frac{1}{n+1} < \frac{1}{n}$ mais $\lim_{n \to +\infty} \frac{1}{n+1} = \lim_{n \to +\infty} \frac{1}{n} = 0$

<u>Preuve</u> : (1) On veut montrer que

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \quad \forall n \geq N \quad |u_n + v_n - (\ell_1 + \ell_2)| < \varepsilon$$

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \quad \forall n \geq N \quad |u_n + v_n - (\ell_1 + \ell_2)| < \varepsilon$$

$$\left(\begin{array}{l} \text{d'après l'inégalité triangulaire on a} \\ |u_n+v_n-\left(\ell_1+\ell_2\right)| = |u_n-\ell_1+v_n-\ell_2| \end{array} \right.$$

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \quad \forall n \geq N \quad |u_n + v_n - (\ell_1 + \ell_2)| < \varepsilon$$

$$\left(\begin{array}{l} \text{d'après l'inégalité triangulaire on a} \\ |u_n + v_n - (\ell_1 + \ell_2)| = |u_n - \ell_1 + v_n - \ell_2| \leq \underbrace{|u_n - \ell_1|}_? + \underbrace{|v_n - \ell_2|}_? \end{array} \right)$$

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \quad \forall n \geq N \quad |u_n + v_n - (\ell_1 + \ell_2)| < \varepsilon$$

$$\left(\begin{array}{l} \text{d'après l'inégalité triangulaire on a} \\ |u_n + v_n - (\ell_1 + \ell_2)| = |u_n - \ell_1 + v_n - \ell_2| \leq \underbrace{|u_n - \ell_1|}_{?} + \underbrace{|v_n - \ell_2|}_{?} \end{array} \right)$$
 Soit $\varepsilon > 0$.

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \quad \forall n \geq N \quad |u_n + v_n - (\ell_1 + \ell_2)| < \varepsilon$$

$$\left(\begin{array}{l} \text{d'après l'inégalité triangulaire on a} \\ |u_n + v_n - (\ell_1 + \ell_2)| = |u_n - \ell_1 + v_n - \ell_2| \leq \underbrace{|u_n - \ell_1|}_? + \underbrace{|v_n - \ell_2|}_? \end{array} \right)$$

Soit $\varepsilon > 0$. On sait que

$$\lim_{n \longrightarrow +\infty} u_n = \ell_1 \Longrightarrow \exists N_1 \ge n_0, \ \forall n \ge N_1, |u_n - \ell_1| < \frac{\varepsilon}{2}$$

et

$$\lim_{n \longrightarrow +\infty} v_n = \ell_2 \Longrightarrow \exists N_2 \geq n_0, \ \forall n \geq N_2, \ |v_n - \ell_2| < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \quad \forall n \geq N \quad |u_n + v_n - (\ell_1 + \ell_2)| < \varepsilon$$

$$\left(\begin{array}{l} \text{d'après l'inégalité triangulaire on a} \\ |u_n + v_n - (\ell_1 + \ell_2)| = |u_n - \ell_1 + v_n - \ell_2| \leq \underbrace{|u_n - \ell_1|}_? + \underbrace{|v_n - \ell_2|}_? \end{array} \right)$$

Soit $\varepsilon > 0$. On sait que

$$\lim_{n \to +\infty} u_n = \ell_1 \Longrightarrow \exists N_1 \ge n_0, \ \forall n \ge N_1, |u_n - \ell_1| < \frac{\varepsilon}{2}$$

et

$$\lim_{n \longrightarrow +\infty} v_n = \ell_2 \Longrightarrow \exists N_2 \ge n_0, \ \forall n \ge N_2, \ |v_n - \ell_2| < \frac{\varepsilon}{2}$$

Posons $N = max(N_1, N_2)$.

N.Mrhardy 22

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \quad \forall n \geq N \quad |u_n + v_n - (\ell_1 + \ell_2)| < \varepsilon$$

$$\left(\begin{array}{l} \text{d'après l'inégalité triangulaire on a} \\ |u_n+v_n-(\ell_1+\ell_2)| = |u_n-\ell_1+v_n-\ell_2| \leq \underbrace{|u_n-\ell_1|}_{?} + \underbrace{|v_n-\ell_2|}_{?} \end{array} \right)$$

Soit $\varepsilon > 0$. On sait que

$$\lim_{n \longrightarrow +\infty} u_n = \ell_1 \Longrightarrow \exists N_1 \geq n_0, \ \forall n \geq N_1, |u_n - \ell_1| < \frac{\varepsilon}{2}$$

et

$$\lim_{n\longrightarrow +\infty} v_n = \ell_2 \Longrightarrow \exists N_2 \geq n_0, \ \forall n \geq N_2, \ |v_n - \ell_2| < \frac{\varepsilon}{2}$$

Posons $N = \max(N_1, N_2)$. Il vient que

$$\forall n \geq N, \ |u_n+v_n-(\ell_1+\ell_2)| = |u_n-\ell_1+v_n-\ell_2| \leq |u_n-\ell_1|+|v_n-\ell_2| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

(2) On veut montrer que

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \quad \forall n \geq N \quad |u_n v_n - \ell_1 \ell_2| < \varepsilon$$

(2) On veut montrer que

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \quad \forall n \geq N \quad |u_n v_n - \ell_1 \ell_2| < \varepsilon$$

$$\left(\begin{array}{c} \text{Commençons par remarquer que} \\ |u_nv_n - \ell_1\ell_2| = |(u_n - \ell_1)v_n + (v_n - \ell_2)\ell_1| \leq \underbrace{|u_n - \ell_1|\,|v_n|}_{?} + \underbrace{|v_n - \ell_2|}_{?}|\ell_1| \end{array} \right)$$

(2) On veut montrer que

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \quad \forall n \geq N \quad |u_n v_n - \ell_1 \ell_2| < \varepsilon$$

Commençons par remarquer que
$$|u_nv_n-\ell_1\ell_2|=|(u_n-\ell_1)v_n+(v_n-\ell_2)\ell_1|\leq \underbrace{|u_n-\ell_1||v_n|}_{?}+\underbrace{|v_n-\ell_2|}_{?}|\ell_1|$$

 $(v_n)_{n>n_0}$, étant convergente, elle est bornée donc $\exists M>0$ tel que

$$\forall n \geq n_0, |v_n| \leq M.$$

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \quad \forall n \geq N \quad |u_n v_n - \ell_1 \ell_2| < \varepsilon$$

Commençons par remarquer que
$$|u_nv_n-\ell_1\ell_2|=|(u_n-\ell_1)v_n+(v_n-\ell_2)\ell_1|\leq \underbrace{|u_n-\ell_1|\,|v_n|}_{?}+\underbrace{|v_n-\ell_2|}_{?}|\ell_1|$$

$$(v_n)_{n>n_0}, \text{ étant convergente, elle est bornée donc } \exists M>0 \text{ tel que}$$

$$\forall n \geq n_0, |v_n| \leq M.$$

Soit $\varepsilon > 0$.

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \quad \forall n \geq N \quad |u_n v_n - \ell_1 \ell_2| < \varepsilon$$

Commençons par remarquer que
$$|u_nv_n-\ell_1\ell_2|=|(u_n-\ell_1)v_n+(v_n-\ell_2)\ell_1|\leq \underbrace{|u_n-\ell_1||v_n|}_{?}+\underbrace{|v_n-\ell_2|}_{?}|\ell_1|$$

$$(v_n)_{n>n_0}, \text{ étant convergente, elle est bornée donc } \exists M>0 \text{ tel que}$$

$$\forall n \geq n_0, |v_n| \leq M.$$

Soit $\varepsilon > 0$. On sait que

$$\lim_{n \longrightarrow +\infty} u_n = \ell_1 \Longrightarrow \exists N_1 \ge n_0, \ \forall n \ge N_1, \ |u_n - \ell_1| < \frac{\varepsilon}{2M}$$

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \quad \forall n \geq N \quad |u_n v_n - \ell_1 \ell_2| < \varepsilon$$

Commençons par remarquer que
$$|u_nv_n-\ell_1\ell_2|=|(u_n-\ell_1)v_n+(v_n-\ell_2)\ell_1|\leq \underbrace{|u_n-\ell_1||v_n|}_{?}+\underbrace{|v_n-\ell_2|}_{?}|\ell_1|$$

$$(v_n)_{n>n_0}, \text{ étant convergente, elle est bornée donc } \exists M>0 \text{ tel que}$$

$$\forall n > n_0, |v_n| < M.$$

Soit $\varepsilon > 0$. On sait que

$$\lim_{n \to +\infty} u_n = \ell_1 \Longrightarrow \exists N_1 \ge n_0, \ \forall n \ge N_1, \ |u_n - \ell_1| < \frac{\varepsilon}{2M}$$

et

$$\lim_{n \to +\infty} v_n = \ell_2 \Longrightarrow \exists N_2 \ge n_0, \ \forall n \ge N_2, \ |v_n - \ell_2| < \frac{\varepsilon}{2(|\ell_1| + 1)}.$$

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \quad \forall n \geq N \quad |u_n v_n - \ell_1 \ell_2| < \varepsilon$$

Commençons par remarquer que
$$|u_nv_n-\ell_1\ell_2|=|(u_n-\ell_1)v_n+(v_n-\ell_2)\ell_1|\leq \underbrace{|u_n-\ell_1||v_n|}_{?}+\underbrace{|v_n-\ell_2|}_{?}|\ell_1|$$

$$(v_n)_{n>n_0}, \text{ étant convergente, elle est bornée donc } \exists M>0 \text{ tel que}$$

$$\forall n \geq n_0, |v_n| \leq M.$$

Soit $\varepsilon > 0$. On sait que

$$\lim_{n \to +\infty} u_n = \ell_1 \Longrightarrow \exists N_1 \ge n_0, \ \forall n \ge N_1, \ |u_n - \ell_1| < \frac{\varepsilon}{2M}$$

et

$$\lim_{n \to +\infty} v_n = \ell_2 \Longrightarrow \exists N_2 \ge n_0, \ \forall n \ge N_2, \ |v_n - \ell_2| < \frac{\varepsilon}{2(|\ell_1| + 1)}.$$

Posons $N = \max(N_1, N_2)$.

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \quad \forall n \geq N \quad |u_n v_n - \ell_1 \ell_2| < \varepsilon$$

Commençons par remarquer que
$$|u_nv_n-\ell_1\ell_2|=|(u_n-\ell_1)v_n+(v_n-\ell_2)\ell_1|\leq \underbrace{|u_n-\ell_1||v_n|}_{?}+\underbrace{|v_n-\ell_2|}_{?}|\ell_1|$$

$$(v_n)_{n\geq n_0}, \text{ étant convergente, elle est bornée donc } \exists M>0 \text{ tel que}$$

$$\forall n > n_0, |v_n| < M.$$

Soit $\varepsilon > 0$. On sait que

$$\lim_{n \to +\infty} u_n = \ell_1 \Longrightarrow \exists N_1 \ge n_0, \ \forall n \ge N_1, \ |u_n - \ell_1| < \frac{\varepsilon}{2M}$$

et

$$\lim_{n \to +\infty} v_n = \ell_2 \Longrightarrow \exists N_2 \ge n_0, \ \forall n \ge N_2, \ |v_n - \ell_2| < \frac{\varepsilon}{2(|\ell_1| + 1)}.$$

Posons $N = \max(N_1, N_2)$. Il vient que

$$\forall n \geq N, \ |u_n v_n - \ell_1 \ell_2| \leq \frac{\varepsilon}{2M} M + \frac{\varepsilon}{2(|\ell_1|+1)} (|\ell_1|+1) < \varepsilon.$$

Proposition

• Si $(u_n)_{n\geq n_0}$ tend vers $+\infty$ (respectivement vers $-\infty$) et si $(v_n)_{n\geq n_0}$ est une suite minorée (respectivement majorée), alors $(u_n+v_n)_{n\geq n_0}$ tend vers $+\infty$ (respectivement vers $-\infty$).

Proposition

- ① $Si(u_n)_{n>n_0}$ tend vers $+\infty$ (respectivement vers $-\infty$) et $Si(v_n)_{n>n_0}$ est une suite minorée (respectivement majorée), alors $(u_n + v_n)_{n > n_0}$ tend vers $+\infty$ (respectivement vers $-\infty$).
- 2 $Si(u_n)_{n>n_0}$ tend vers $\pm \infty$ et $Si(v_n)_{n>n_0}$ est une suite convergente de limite non nulle alors leurs produit $(u_n v_n)_{n>n_0}$ tend vers $\pm \infty$ selon le signe de $(v_n)_{n>n_0}$

N. Mrhardy 24 / 57

Proposition

- **1** Si $(u_n)_{n\geq n_0}$ tend vers $+\infty$ (respectivement vers $-\infty$) et si $(v_n)_{n\geq n_0}$ est une suite minorée (respectivement majorée), alors $(u_n + v_n)_{n\geq n_0}$ tend vers $+\infty$ (respectivement vers $-\infty$).
- 2 $Si(u_n)_{n\geq n_0}$ tend vers $\pm\infty$ et $si(v_n)_{n\geq n_0}$ est une suite convergente de limite non nulle alors leurs produit $(u_nv_n)_{n\geq n_0}$ tend vers $\pm\infty$ selon le signe de $(v_n)_{n\geq n_0}$
- 3 $Si(u_n)_{n\geq n_0}$ tend vers $\pm \infty$ alors $\frac{1}{u_n}$ converge vers 0

Proposition

- Si $(u_n)_{n\geq n_0}$ tend vers $+\infty$ (respectivement vers $-\infty$) et si $(v_n)_{n\geq n_0}$ est une suite minorée (respectivement majorée), alors $(u_n+v_n)_{n\geq n_0}$ tend vers $+\infty$ (respectivement vers $-\infty$).
- 2 $Si(u_n)_{n\geq n_0}$ tend vers $\pm\infty$ et $si(v_n)_{n\geq n_0}$ est une suite convergente de limite non nulle alors leurs produit $(u_nv_n)_{n\geq n_0}$ tend vers $\pm\infty$ selon le signe de $(v_n)_{n\geq n_0}$
- **3** Si $(u_n)_{n\geq n_0}$ tend vers $\pm \infty$ alors $\frac{1}{u_n}$ converge vers 0
- ① Si u_n tend vers 0 et $u_n > 0$ (respectivement $u_n < 0$) alors $\frac{1}{u_n}$ tend vers $+\infty$ (respectivement vers $-\infty$)

Preuve: (1) On veut montrer que

$$\forall A \in \mathbb{R}, \ \exists N \geq n_0, \ (\forall n \geq N \Longrightarrow u_n + v_n > A)$$

<u>Preuve</u> : (1) On veut montrer que

$$\forall A \in \mathbb{R}, \ \exists N \geq n_0, \ (\forall n \geq N \Longrightarrow u_n + v_n > A)$$

On a $(v_n)_{\geq n_0}$ une suite minorée donc il existe $M \in \mathbb{R}$ tel que pour tout $n \geq n_0$ on a

$$v_n \geq M$$

<u>Preuve</u>: (1) On veut montrer que

$$\forall A \in \mathbb{R}, \ \exists N \geq n_0, \ (\forall n \geq N \Longrightarrow u_n + v_n > A)$$

On a $(v_n)_{\geq n_0}$ une suite minorée donc il existe $M \in \mathbb{R}$ tel que pour tout $n \geq n_0$ on a

$$v_n \geq M$$

Soit $A \in \mathbb{R}$,

<u>Preuve</u>: (1) On veut montrer que

$$\forall A \in \mathbb{R}, \ \exists N \geq n_0, \ (\forall n \geq N \Longrightarrow u_n + v_n > A)$$

On a $(v_n)_{\geq n_0}$ une suite minorée donc il existe $M \in \mathbb{R}$ tel que pour tout $n \geq n_0$ on a

$$v_n \geq M$$

Soit $A \in \mathbb{R}$, donc il existe $N \ge n_0$ tel que

$$n \geq N \Longrightarrow u_n > A - M$$

Par conséquent; on obtient $\forall n \geq N$

$$u_n + v_n > A$$

Soient $(u_n)_{n>n_0}$, $(v_n)_{n>n_0}$ et $(w_n)_{n>n_0}$ trois suites réelles. On suppose que

$$\forall n \geq n_0, \ \underline{u_n} \leq \underline{w_n} \leq \underline{v_n} \quad \text{et} \quad \lim_{n \to +\infty} \underline{u_n} = \lim_{n \to +\infty} \underline{v_n} = \ell.$$

Alors

$$\lim_{n\longrightarrow +\infty}w_n=\ell.$$

Critères de convergence d'une suite

Théorèmes de comparaison et d'encadrement

Soient $(u_n)_{n\geq n_0}$, $(v_n)_{n\geq n_0}$ et $(w_n)_{n\geq n_0}$ trois suites réelles. On suppose que

$$\forall n \geq n_0, \ \underline{u_n} \leq \underline{w_n} \leq \underline{v_n} \quad \text{et} \quad \lim_{n \to +\infty} \underline{u_n} = \lim_{n \to +\infty} \underline{v_n} = \ell.$$

Alors

$$\lim_{n \to +\infty} w_n = \ell.$$

Preuve: Soit $\varepsilon > 0$. Il existe $N_1 > n_0$ et $N_2 > n_0$ tels que

$$\forall n \geq N_1, \ \ell - \varepsilon < u_n < \varepsilon + \ell \quad \text{et} \quad \forall n \geq N_2, \ \ell - \varepsilon < v_n < \varepsilon + \ell.$$

Critères de convergence d'une suite

Théorèmes de comparaison et d'encadrement

Soient $(u_n)_{n\geq n_0}$, $(v_n)_{n\geq n_0}$ et $(w_n)_{n\geq n_0}$ trois suites réelles. On suppose que

$$\forall n \geq n_0, \ \underline{u_n} \leq \underline{w_n} \leq \underline{v_n} \quad \text{et} \quad \lim_{n \to +\infty} \underline{u_n} = \lim_{n \to +\infty} \underline{v_n} = \ell.$$

Alors

$$\lim_{n \to +\infty} w_n = \ell.$$

Preuve: Soit $\varepsilon > 0$. Il existe $N_1 \ge n_0$ et $N_2 \ge n_0$ tels que

$$\forall n \geq N_1, \ \ell - \varepsilon < u_n < \varepsilon + \ell \quad \text{et} \quad \forall n \geq N_2, \ \ell - \varepsilon < v_n < \varepsilon + \ell.$$

Posons $N = max(N_1, N_2)$.

Soient $(u_n)_{n>n_0}$, $(v_n)_{n>n_0}$ et $(w_n)_{n>n_0}$ trois suites réelles. On suppose que

$$\forall n \geq n_0, \ \underline{u_n} \leq \underline{w_n} \leq \underline{v_n} \quad \text{et} \quad \lim_{n \to +\infty} \underline{u_n} = \lim_{n \to +\infty} \underline{v_n} = \ell.$$

Alors

$$\lim_{n \to +\infty} w_n = \ell.$$

Preuve: Soit $\varepsilon > 0$. Il existe $N_1 > n_0$ et $N_2 > n_0$ tels que

$$\forall n \geq N_1, \ \ell - \varepsilon < u_n < \varepsilon + \ell \quad \text{et} \quad \forall n \geq N_2, \ \ell - \varepsilon < v_n < \varepsilon + \ell.$$

Posons $N = max(N_1, N_2)$. Il vient

$$\forall n \geq N, \quad \ell - \varepsilon < u_n \leq w_n \leq v_n < \varepsilon + \ell \Longrightarrow w_n \in]\ell - \varepsilon, \ell + \varepsilon[$$

Ceci montre que $\lim_{n \to +\infty} w_n = \ell$.

Soient $(u_n)_{n\geq n_0}$ et $(v_n)_{n\geq n_0}$ telles que, pour tout $n\geq n_0$, $u_n\leq v_n$. Alors :

2 Si
$$\lim_{n \to +\infty} v_n = -\infty$$
 alors $\lim_{n \to +\infty} u_n = -\infty$.

Soient $(u_n)_{n\geq n_0}$ et $(v_n)_{n\geq n_0}$ telles que, pour tout $n\geq n_0$, $u_n\leq v_n$. Alors :

$$2 \text{ Si } \lim_{n \longrightarrow +\infty} v_n = -\infty \text{ alors } \lim_{n \longrightarrow +\infty} u_n = -\infty.$$

Preuve: Soit A > 0. Puisque $\lim_{n \to +\infty} u_n = +\infty$, il existe $N \ge n_0$ tel que pour tout $n \ge N$, $u_n > A$. Or $v_n \ge u_n$, pour tout $n \ge n_0$ on déduit alors que,

$$\forall n \geq N \quad v_n > A \Longrightarrow \lim_{n \to +\infty} v_n = +\infty$$

Soient $(u_n)_{n>n_0}$ et $(v_n)_{n>n_0}$ telles que, pour tout $n\geq n_0,\ u_n\leq v_n$. Alors :

2 Si
$$\lim_{n \to +\infty} v_n = -\infty$$
 alors $\lim_{n \to +\infty} u_n = -\infty$.

Preuve: Soit A > 0. Puisque $\lim_{n \to +\infty} u_n = +\infty$, il existe $N \ge n_0$ tel que pour tout $n \ge N$, $u_n > A$. Or $v_n \ge u_n$, pour tout $n \ge n_0$ on déduit alors que,

$$\forall n \geq N \quad v_n > A \Longrightarrow \lim_{n \to +\infty} v_n = +\infty$$

Obtention de convergence

Si à partir d'un certain rang $|u_n-\ell|\leq v_n$ et si $\lim_{n\longrightarrow +\infty}v_n=0$ alors $\lim_{n\longrightarrow +\infty}u_n=\ell$

Exemple : Etudier la nature des suites $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$u_n = \frac{(-1)^n}{\sqrt{n}}$$

$$u_n = n\sin(n) + n^2.$$

Exemple : Etudier la nature des suites $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$u_n = \frac{(-1)^n}{\sqrt{n}}$$

 $u_n = n\sin(n) + n^2.$

(1) On sait que $\forall n$

$$-1 \le (-1)^n \le 1 \Longrightarrow \frac{-1}{\sqrt{n}} \le u_n \le \frac{1}{\sqrt{n}}$$

or $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$, donc

$$\lim_{n \to +\infty} u_n = 0$$

d'où $(u_n)_n$ est convergente.

N.Mrhardy 28

Exemple : Etudier la nature des suites $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$u_n = \frac{(-1)^n}{\sqrt{n}}$$

- $u_n = n\sin(n) + n^2.$
- (2) On a pour tout $n \in \mathbb{N}$

$$sin(n) \ge -1 \Longrightarrow u_n \ge n^2 - n$$

or $\lim_{n \to +\infty} n^2 - n = +\infty$ alors

$$\lim_{n \to +\infty} u_n = +\infty$$

d'où $(u_n)_n$ est divergente.

Exercice (TD). Etudier les suites suivantes;

1.
$$u_n = \frac{2n + (-1)^n}{5n + (-1)^{n+1}}$$
 2. $u_n = \frac{E((n + \frac{1}{2})^2)}{E((n - \frac{1}{2})^2)}$

Exercice (TD). Etudier les suites suivantes;

1.
$$u_n = \frac{2n + (-1)^n}{5n + (-1)^{n+1}}$$
 2. $u_n = \frac{E((n + \frac{1}{2})^2)}{E((n - \frac{1}{2})^2)}$

Réponse.

1. On écrit

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{2n}{5n} \left(\frac{1 + \frac{(-1)^n}{2n}}{1 + \frac{(-1)^{n+1}}{5n}} \right)$$

or d'aprés le critère d'encadrement; on peut montrer que

$$\lim_{n \to +\infty} \frac{(-1)^n}{2n} = \frac{(-1)^{n+1}}{5n} = 0$$

donc

$$\lim_{n\to+\infty}u_n=\frac{2}{5}$$

Exercice (TD). Etudier les suites suivantes;

1.
$$u_n = \frac{2n + (-1)^n}{5n + (-1)^{n+1}}$$
 2. $u_n = \frac{E((n + \frac{1}{2})^2)}{E((n - \frac{1}{2})^2)}$

Réponse.

2. On a

$$(n+\frac{1}{2})^2 - 1 < E\left(\left(n+\frac{1}{2}\right)^2\right) \le (n+\frac{1}{2})^2$$

 $(n-\frac{1}{2})^2 - 1 < E\left(\left(n-\frac{1}{2}\right)^2\right) \le (n-\frac{1}{2})^2$

donc

$$\frac{(n+\frac{1}{2})^2-1}{(n-\frac{1}{2})^2} < u_n < \frac{(n+\frac{1}{2})^2}{(n-\frac{1}{2})^2-1}$$

or

$$\lim_{n \to +\infty} \frac{(n+\frac{1}{2})^2 - 1}{(n-\frac{1}{2})^2} = \lim_{n \to +\infty} \frac{(n+\frac{1}{2})^2}{(n-\frac{1}{2})^2 - 1} = 1$$

d'où $\lim_{n\to+\infty}u_n=1$

N.Mrhardy

Critères de convergence d'une suite Critère de la convergence monotone

Théorème des suites monotones

1 Toute suite $(u_n)_{n>n_0}$ croissante majorée est convergente et, en plus, on a

$$\lim_{n \longrightarrow +\infty} u_n = \sup_{n \ge n_0} u_n \triangleq \sup\{u_n; \ n \ge n_0\}$$

2 Toute suite $(u_n)_{n>n_0}$ décroissante minorée est convergente et, en plus, on a

$$\lim_{n \to +\infty} u_n = \inf_{n > n_0} u_n \triangleq \inf\{u_n; \ n \ge n_0\}$$

3 Toute suite croissante (respectivement décroissante) non majorée (respectivement non minorée) tend vers $+\infty$ (respectivement $-\infty$).

Remarque

Ce théorème dit que si une suite est croissante alors soit elle converge, soit elle diverge vers $+\infty$.

Critères de convergence d'une suite

Critère de la convergence monotone

Théorème des suites monotones

1 Toute suite $(u_n)_{n\geq n_0}$ croissante majorée est convergente et, en plus, on a

$$\lim_{n \longrightarrow +\infty} u_n = \sup_{n \ge n_0} u_n \triangleq \sup\{u_n; \ n \ge n_0\}$$

2 Toute suite $(u_n)_{n\geq n_0}$ décroissante minorée est convergente et, en plus, on a

$$\lim_{n \longrightarrow +\infty} u_n = \inf_{n > n_0} u_n \triangleq \inf\{u_n; \ n \ge n_0\}$$

3 Toute suite croissante (respectivement décroissante) non majorée (respectivement non minorée) tend vers $+\infty$ (respectivement $-\infty$).

Exemple : Etudier la nature de la suite : $u_n = \frac{n!}{n^n}, n \ge 1$.

On a pour tout
$$n \ge 1$$
, $u_n > 0$ et $\frac{u_{n+1}}{u_n} = \left(\frac{n}{n+1}\right)^n < 1$

donc $(u_n)_n$ est minorée par 0 et décroissante, on conclut qu'elle est convergente.

1 Supposons que la suite $(u_n)_{n\geq n_0}$ est croissante majorée et notons

$$\ell = \sup_{n \ge n_0} u_n = \sup\{u_n; \ n \ge n_0\}$$

qui existe d'après la propriété de la borne supérieure. Soit $\varepsilon>0$.

1 Supposons que la suite $(u_n)_{n\geq n_0}$ est croissante majorée et notons

$$\ell = \sup_{n \ge n_0} u_n = \sup\{u_n; \ n \ge n_0\}$$

qui existe d'après la propriété de la borne supérieure.

Soit $\varepsilon > 0$. D'après la caractérisation de la borne supérieure, il existe un entier $N \ge n_0$ tel que

$$\ell - \varepsilon < u_N \le \ell. \qquad (ii')$$

1 Supposons que la suite $(u_n)_{n\geq n_0}$ est croissante majorée et notons

$$\ell = \sup_{n \ge n_0} u_n = \sup\{u_n; \ n \ge n_0\}$$

qui existe d'après la propriété de la borne supérieure.

Soit $\varepsilon>0$. D'après la caractérisation de la borne supérieure, il existe un entier $N\geq n_0$ tel que

$$\ell - \varepsilon < u_N \le \ell. \qquad (ii')$$

Maintenant, puisque la suite est croissante, il vient

$$\forall n \geq N, \ \ell - \varepsilon < u_N \leq u_n \leq \ell < \ell + \varepsilon. \Longrightarrow \forall n \geq N, \ u_n \in]\ell - \varepsilon, \ell + \varepsilon[$$

Ceci montre que $\lim_{n \to +\infty} u_n = \ell$.

① Supposons que la suite $(u_n)_{n\geq n_0}$ est croissante majorée et notons

$$\ell = \sup_{n \ge n_0} u_n = \sup\{u_n; \ n \ge n_0\}$$

qui existe d'après la propriété de la borne supérieure.

Soit $\varepsilon > 0$. D'après la caractérisation de la borne supérieure, il existe un entier $N \geq n_0$ tel que

$$\ell - \varepsilon < u_N \le \ell. \qquad (ii')$$

Maintenant, puisque la suite est croissante, il vient

$$\forall n \geq N, \ \ell - \varepsilon < u_N \leq u_n \leq \ell < \ell + \varepsilon. \Longrightarrow \forall n \geq N, \ u_n \in]\ell - \varepsilon, \ell + \varepsilon[$$

Ceci montre que $\lim_{n \to +\infty} u_n = \ell$.

2 Pour une suite $(u_n)_{n\geq n_0}$ décroissante minorée, la suite $(-u_n)_{n\geq n_0}$ est croissante majorée et $\sup_{n>n_0}(-u_n)=-\inf_{n\geq n_0}u_n$ et ce qui précède permet de conclure.

Exercice (TD). Soit $u_0 > 0$ et (u_n) la suite définie par : $u_{n+1} = \sqrt{\sum_{k=0}^n u_k}$

- **1** Trouver une relation de récurrence simple entre u_{n+1} et u_n .
- 2 Montrer que la suite $(u_n)_n$ est croissante.
- **3** Montrer que la suite $(u_n)_n$ diverge vers $+\infty$.

Réponse.

(1) D'abord puisque $u_0 > 0$ on peut montrer par récurrence que $u_n > 0$ pour tout $n \ge 0$. De plus, puisque

$$u_n = \sqrt{\sum_{k=0}^{n-1} u_k} \Longrightarrow u_n^2 = \sum_{k=0}^{n-1} u_k$$

donc

$$u_{n+1} = \sqrt{\sum_{k=0}^{n-1} u_k + u_n} = \sqrt{u_n^2 + u_n}$$

Exercice (TD). Soit $u_0 > 0$ et (u_n) la suite définie par : $u_{n+1} = \sqrt{\sum_{k=0}^{n} u_k}$

- **1** Trouver une relation de récurrence simple entre u_{n+1} et u_n .
- 2 Montrer que la suite $(u_n)_n$ est croissante.
- **3** Montrer que la suite $(u_n)_n$ diverge vers $+\infty$.

Réponse.

(2) On a

$$u_{n+1} - u_n = \sqrt{u_n^2 + u_n} - u_n = \frac{u_n}{\sqrt{u_n^2 + u_n} + u_n} > 0$$

d'où la suite $(u_n)_n$ est croissante.

Exercice (TD). Soit
$$u_0 > 0$$
 et (u_n) la suite définie par : $u_{n+1} = \sqrt{\sum_{k=0}^n u_k}$

- **1** Trouver une relation de récurrence simple entre u_{n+1} et u_n .
- 2 Montrer que la suite $(u_n)_n$ est croissante.
- **3** Montrer que la suite $(u_n)_n$ diverge vers $+\infty$.

Réponse.

(3) Supposons que la suite $(u_n)_n$ converge vers une limite ℓ , alors puisque $(u_n)_n$ est croissante et $u_0>0$ on aura $\ell>0$. D'autre part en passant à la limite dans l'équation $u_{n+1}=\sqrt{u_n^2+u_n}$, on trouve que ℓ vérifie

$$\ell = \sqrt{\ell^2 + \ell} \iff \ell = 0$$

ce qui contredit $\ell > 0$, donc $(u_n)_n$ ne converge pas. D'aprés le théorème des suites monotones, la suite $(u_n)_n$ va sûrement diverger vers $+\infty$.

Critères de convergence d'une suite Critère de d'Alembert

Soit
$$(u_n)_{n\geq n_0}$$
 une suite réelle tel que $\lim_{n\to +\infty}\left|\dfrac{u_{n+1}}{u_n}\right|=\ell$ alors on a

- (i) Si $\ell < 1$, la suite $(u_n)_n$ converge vers 0.
- (ii) Si $\ell > 1$, la suite $(u_n)_n$ tend vers $+\infty$.
- (iii) Si $\ell = 1$ on ne peut rien dire.

Critères de convergence d'une suite Critère de d'Alembert

Soit
$$(u_n)_{n\geq n_0}$$
 une suite réelle tel que $\lim_{n\to +\infty}\left|\frac{u_{n+1}}{u_n}\right|=\ell$ alors on a

- (i) Si $\ell < 1$, la suite $(u_n)_n$ converge vers 0.
- (ii) Si $\ell > 1$, la suite $(u_n)_n$ tend vers $+\infty$.
- (iii) Si $\ell=1$ on ne peut rien dire.

Preuve: (i) Pour
$$\varepsilon = \frac{1-\ell}{2} > 0$$
, il exite $N \ge n_0$ tel que

$$\forall n \geq N, \quad \ell - \varepsilon < \left| \frac{u_{n+1}}{u_n} \right| < \ell + \varepsilon \Longrightarrow 0 \leq \left| \frac{u_{n+1}}{u_n} \right| < \frac{\ell+1}{2} = \rho \Longrightarrow |u_{n+1}| \leq \rho |u_n|$$

Par récurrence on obtient $|u_n| \le \rho \, |u_{n-1}| \le \rho (\rho \, |u_{n-2}|) < \ldots < \rho^{n-N} \, |u_N|$ Puisque $0 < \ell < 1$ alors $0 < \rho < 1$ et donc ρ^{n-N} tend vers 0, on en déduit le résultat.

Soit $A \subset \mathbb{R}$. Alors :

① $\alpha = \sup A$ si et seulement si α est un majorant de A et il existe une suite $(a_n)_{n \ge n_0}$ telle que, pour tout $n \ge n_0$, $a_n \in A$ et $\lim_{n \longrightarrow +\infty} a_n = \alpha$.

Soit $A \subset \mathbb{R}$. Alors :

- \bullet $\alpha = \sup A$ si et seulement si α est un majorant de A et il existe une suite $(a_n)_{n\geq n_0}$ telle que, pour tout $n\geq n_0$, $a_n\in A$ et $\lim_{n\longrightarrow +\infty}a_n=\alpha$.
- \emptyset $\beta = \inf A$ si et seulement si β est un minorant de A et il existe une suite $(a_n)_{n>n_0}$ telle que, pour tout $n\geq n_0$, $a_n\in A$ et $\lim_{n\to\infty}a_n=\beta$.

N.MRHARDY 34 / 57

Soit $A \subset \mathbb{R}$. Alors :

- \bullet $\alpha = \sup A$ si et seulement si α est un majorant de A et il existe une suite $(a_n)_{n\geq n_0}$ telle que, pour tout $n\geq n_0$, $a_n\in A$ et $\lim_{n\longrightarrow +\infty}a_n=\alpha$.
- $2 \beta = \inf A$ si et seulement si β est un minorant de A et il existe une suite $(a_n)_{n\geq n_0}$ telle que, pour tout $n\geq n_0$, $a_n\in A$ et $\lim_{n\to\infty}a_n=\beta$.
- 3 A n'est pas majoré si et seulement si il existe une suite $(a_n)_{n \ge n_0}$ telle que, pour tout $n \ge n_0$, $a_n \in A$ et $\lim_{n \to \infty} a_n = +\infty$.

N. Mrhardy 34 / 57

Soit $A \subset \mathbb{R}$. Alors :

- **1** $\alpha = \sup A$ si et seulement si α est un majorant de A et il existe une suite $(a_n)_{n\geq n_0}$ telle que, pour tout $n\geq n_0$, $a_n\in A$ et $\lim_{n\longrightarrow +\infty}a_n=\alpha$.
- $2 \beta = \inf A$ si et seulement si β est un minorant de A et il existe une suite $(a_n)_{n\geq n_0}$ telle que, pour tout $n\geq n_0$, $a_n\in A$ et $\lim_{n\to\infty}a_n=\beta$.
- **3** A n'est pas majoré si et seulement si il existe une suite $(a_n)_{n>n_0}$ telle que, pour tout $n \ge n_0$, $a_n \in A$ et $\lim_{n \to +\infty} a_n = +\infty$.
- 4 n'est pas minoré si et seulement si il existe une suite $(a_n)_{n\geq n_0}$ telle que, pour tout $n \ge n_0$, $a_n \in A$ et $\lim_{n \to +\infty} a_n = -\infty$.

N.MRHARDY 34 / 57 <u>Preuve.</u> (1) Supposons que $\alpha = \sup A$. D'après la caractérisation de la borne supérieur, pour tout n > 0, il existe un élément $a_n \in A$ tel que

$$\alpha - \frac{1}{n} < a_n \le \alpha.$$

Le critère de comparaison implique que la suite $(a_n)_{n\geq n_0}$ est une suite de points de A qui converge vers α .

<u>Preuve.</u> (1) Supposons que $\alpha = \sup A$. D'après la caractérisation de la borne supérieur, pour tout n > 0, il existe un élément $a_n \in A$ tel que

$$\alpha - \frac{1}{n} < a_n \le \alpha.$$

Le critère de comparaison implique que la suite $(a_n)_{n\geq n_0}$ est une suite de points de A qui converge vers α .

Inversement, supposons que α est un majorant de A et qu'il existe une suite $(a_n)_{n\geq n_0}$ telle que, pour tout $n\geq n_0$, $a_n\in A$ et $\lim_{n\longrightarrow +\infty}a_n=\alpha$.

Pour montrer que $\alpha = \sup A$, il suffit de montrer le (ii)' de la caractérisation.

<u>Preuve.</u> (1) Supposons que $\alpha = \sup A$. D'après la caractérisation de la borne supérieur, pour tout n > 0, il existe un élément $a_n \in A$ tel que

$$\alpha - \frac{1}{n} < a_n \le \alpha.$$

Le critère de comparaison implique que la suite $(a_n)_{n\geq n_0}$ est une suite de points de A qui converge vers α .

Inversement, supposons que α est un majorant de A et qu'il existe une suite $(a_n)_{n\geq n_0}$ telle que, pour tout $n\geq n_0$, $a_n\in A$ et $\lim_{n\longrightarrow +\infty}a_n=\alpha$.

Pour montrer que $\alpha = \sup A$, il suffit de montrer le (ii)' de la caractérisation. En effet, soit $\varepsilon > 0$. Puisque $\lim_{n \longrightarrow +\infty} a_n = \alpha$, il existe $N \ge n_0$ telle

$$\alpha - \varepsilon < a_N < \alpha + \varepsilon$$
.

Puisque $a_N \in A$, on peux conclure.

Exemple.

- ① Soit $A =]-1, +\infty[$. On a inf A = -1 car -1 est un minorant de A et la suite $\left(-1+\frac{1}{n}\right)_{n\geq 1}$ est une suite de points de A qui converge vers -1. La partie A n'est pas majorée car la suite $(n)_{n>0}$ est une suite de points de A qui diverge vers $+\infty$.
- $oldsymbol{2}$ La partie $A=\left\{\sqrt{n}+rac{1}{n},n\in\mathbb{N}^*
 ight\}$ n'est pas majorée car la suite $\left(\sqrt{n} + \frac{1}{n}\right)$ est une suite de points de A qui diverge vers $+\infty$.

N.MRHARDY 36 / 57

Caractérisation séquentielle de la densité

Soit A une partie de \mathbb{R} . A est dense dans \mathbb{R} si et seulement si pour tout $x \in \mathbb{R}$, il existe une suite $(a_n)_n$ d'éléments de A telle que

$$x = \lim_{n \to +\infty} a_n$$

Caractérisation séquentielle de la densité

Soit A une partie de \mathbb{R} . A est dense dans \mathbb{R} si et seulement si pour tout $x \in \mathbb{R}$, il existe une suite $(a_n)_n$ d'éléments de A telle que

$$x = \lim_{n \to +\infty} a_n$$

• Supposons A dense dans $\mathbb R$ et $x\in\mathbb R$. Alors pour tout n>0, il existe $a_n\in A$ tel

$$x < a_n < x + \frac{1}{n}$$

Le critère d'encadrement, implique $\lim_{n \to +\infty} a_n = x$

Caractérisation séquentielle de la densité

Soit A une partie de \mathbb{R} . A est dense dans \mathbb{R} si et seulement si pour tout $x \in \mathbb{R}$, il existe une suite $(a_n)_n$ d'éléments de A telle que

$$x = \lim_{n \to +\infty} a_n$$

• Supposons A dense dans $\mathbb R$ et $x \in \mathbb R$. Alors pour tout n > 0, il existe $a_n \in A$ tel

$$x < a_n < x + \frac{1}{n}$$

Le critère d'encadrement, implique $\lim_{n\to+\infty} a_n = x$

• Inversement, soit $x,y \in \mathbb{R}$ tel que x < y. Par hypothèse, il existe une suite $(a_n)_n$ d'élément de A telle que $\lim_{n \to +\infty} a_n = \frac{x+y}{2}$. Alors, pour $\varepsilon = \frac{y-x}{2}$, il existe $N \in \mathbb{N}^*$ tel que

$$\forall n \geq N, \quad \left| a_n - \frac{x+y}{2} \right| < \frac{y-x}{2} \iff x < a_n < y$$

Suites particulières Suites arithmétiques et Suites géométriques

Suites arithmétiques

Soit $(u_n)_n$ une suite arithmétique de raison $r \neq 0$ de terme générale : $u_n = u_0 + nr$ alors $(u_n)_n$ diverge vers l'infini avec le signe r.

Suites arithmétiques et Suites géométriques

$Suites\ arithm\'etiques$

Soit $(u_n)_n$ une suite arithmétique de raison $r \neq 0$ de terme générale : $u_n = u_0 + nr$ alors $(u_n)_n$ diverge vers l'infini avec le signe r.

Suites géométriques

Soit $(u_n)_n$ suite géométrique de raison q de terme générale : $u_n = u_0 q^n$ alors

- Si |q| < 1, la suite converge vers 0.
- Si q = 1, la suite $(u_n)_n$ converge vers u_0 (elle est stationnaire).
- Si q = -1, la suite diverge.
- Si q > 1, la suite (u_n) tend vers l'infini avec le signe de u_0 .
- Si |q| > 1, la suite $(|u_n|)_n$ tend vers $+\infty$.

Suites arithmético-géométriques

Suites arithmético-géométriques

On appelle suite arithmético-géométrique de paramètres q et r, toute suite $(u_n)_n$ définie par récurrence par : u_0 donné, $u_{n+1} = qu_n + r$.

Suites arithmético-géométriques

Suites arithmético-géométriques

On appelle suite arithmético-géométrique de paramètres q et r, toute suite $(u_n)_n$ définie par récurrence par : u_0 donné, $u_{n+1} = qu_n + r$.

Si $(u_n)_n$ est suite arithmético-géométrique de paramètres q et r, alors

• Si q = 1, $u_n = u_0 + nr$, c'est une suite arithmétique.

Suites arithmético-géométriques

Suites arithmético-géométriques

On appelle suite arithmético-géométrique de paramètres q et r, toute suite $(u_n)_n$ définie par récurrence par : u_0 donné, $u_{n+1} = qu_n + r$.

Si $(u_n)_n$ est suite arithmético-géométrique de paramètres q et r, alors

- Si q = 1, $u_n = u_0 + nr$, c'est une suite arithmétique.
- Si r = 0; $u_n = u_0 q^n$, c'est une suite géométrique

Suites arithmético-géométriques

Suites arithmético-géométriques

On appelle suite arithmético-géométrique de paramètres q et r, toute suite $(u_n)_n$ définie par récurrence par : u_0 donné, $u_{n+1} = qu_n + r$.

Si $(u_n)_n$ est suite arithmético-géométrique de paramètres q et r, alors

- Si q = 1, $u_n = u_0 + nr$, c'est une suite arithmétique.
- Si r = 0; $u_n = u_0 q^n$, c'est une suite géométrique
- Si $q \neq 1$, $u_n = q^n(u_0 a) + a$, avec $a = \frac{r}{1-q}$

Suites arithmético-géométriques

Suites arithmético-géométriques

On appelle suite arithmético-géométrique de paramètres q et r, toute suite $(u_n)_n$ définie par récurrence par : u_0 donné, $u_{n+1} = qu_n + r$.

Si $(u_n)_n$ est suite arithmético-géométrique de paramètres q et r, alors

- Si q = 1, $u_n = u_0 + nr$, c'est une suite arithmétique.
- Si r = 0; $u_n = u_0 q^n$, c'est une suite géométrique
- Si $q \neq 1$, $u_n = q^n(u_0 a) + a$, avec $a = \frac{r}{1-q}$

Preuve: En utilisant la récurrence, on écrit $u_n = qu_{n-1} + r = q (qu_{n-2} + r) + r = q^2u_{n-2} + qr + r = \dots = q^nu_0 + r(q^{n-1} + \dots + 1)$ or $q^{n-1} + \dots + 1 = \frac{1-q^n}{1-q}$ donc

$$u_n = q^n u_0 + r \frac{1 - q^n}{1 - q} = q^n \left(u_0 - \frac{r}{1 - q} \right) + \frac{r}{1 - q}$$

Suites particulières Suites arithmético-géométriques

Convergence d'une suite arithmético-géométrique

Si $(u_n)_n$ est suite arithmético-géométrique de paramètres $q \neq 1$ et $r \neq 0$ de terme générale ,

$$u_n = q^n(u_0 - a) + a; \quad a = \frac{r}{1 - q}$$

Si $u_0 = a$ alors c'est une suite stationnaire $u_n = u_0, \forall n$, sinon on aura

- Si |q| < 1, la suite converge vers a.
- ② Si q > 1, la suite diverge vers l'infini avec le signe de $(u_0 a)$.
- 3 Si $q \le -1$ la suite diverge.

Exercice (TD). Soit la suite $(u_n)_n$ définie par :

$$u_0 = 2$$
 et $u_{n+1} = 0.8u_n + 2, \ n \ge 1$

On se propose d'étudier la suite de deux manières différentes

- ① Donner le terme général u_n en fonction de n puis étudier la nature de la suite $(u_n)_n$.
- ② On considère la suite de terme général $v_n = u_n + c$. Trouver $c \in \mathbb{R}$ tel que la suite de terme général v_n soit géométrique
- 3 Retrouver le résultat de (1).
- **1** Calculer $T_n = v_0 + v_1 + \dots + v_n$ et $S_n = u_0 + u_1 + \dots + u_n$ en fonction de n.
- **6** Calculer les limites des suites $(T_n)_{n\geq 0}$ et $(S_n)_{n\geq 0}$.

N.Mrhardy 41 / 57

Réponse. On a

$$u_0 = 2$$
 et $u_{n+1} = 0.8u_n + 2, \ n \ge 1$

(1) $(u_n)_n$ est une suite arithmético-géométrique de paramétres r=2 et q=0,8, donc

$$u_n = q^n(u_0 - a) + a; \quad a = \frac{r}{1 - q}$$

d'où

$$u_n = -8(0.8)^n + 10 \Longrightarrow \lim_{n \longrightarrow +\infty} u_n = 10$$

 $(u_n)_n$ est une suite convergente.

Réponse. On a

$$u_0 = 2$$
 et $u_{n+1} = 0.8u_n + 2$, $n \ge 1$

(2) Comme $v_n = u_n + c$, alors on peut écrire

$$v_{n+1} = 0.8u_n + 2 + c = 0.8\left(u_n + \frac{2+c}{0.8}\right)$$

donc $(v_n)_n$ est géométrique de raison 0.8 si $\frac{2+c}{0.8}=c$; c.à.d c=-10

(3) $(v_n)_n$ est géométrique de raison 0.8 donc son terme générale s'écrit

$$v_n = v_0(0.8)^n = -8(0.8)^n$$

on déduit que

$$u_n = -8(0.8)^n + 10 \xrightarrow[n \to +\infty]{} 10$$

N.Mrhardy 42 / 57

Réponse. On a

$$u_0 = 2$$
 et $u_{n+1} = 0.8u_n + 2$, $n \ge 1$

(4) Puisque $(v_n)_n$ est géométrique de raison 0.8, alors

$$T_n = v_0 + v_1 + \dots + v_n = v_0 \frac{1 - (0.8)^{n+1}}{1 - 0.8}$$

= -40 (1 - (0.8)ⁿ⁺¹)

Puisque $u_n = v_n + 10$, on déduit que

$$S_n = T_n + \underbrace{(10+10+\ldots+10)}_{(n+1) \text{ fois}} = -40 (1-(0.8)^{n+1}) + 10(n+1)$$

(5) $\lim_{n\to+\infty} T_n = -40$ et $\lim_{n\to+\infty} S_n = +\infty$.

N.Mrhardy 42 /

$D\'{e}finition$

On dit qu'une suite $(u_n)_n$ est une suite récurrente si il existe une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que

(*)
$$u_{n+1} = f(u_n);$$
 u_0 **donné**

D'efinition

On dit qu'une suite $(u_n)_n$ est une suite récurrente si il existe une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que

(*)
$$u_{n+1} = f(u_n);$$
 u_0 **donné**

Pour trouver la limite d'une suite récurrente, on peut citer ici deux méthodes :

- 1ère méthode : On essaie de se ramener à une suite non-récurrente en exprimant le terme général comme une fonction de n.
- 2ème méthode : On démontre d'abord que la limite ℓ existe puis on passe à la limite dans (*) ce qui nous ramene à résoudre l'équation

$$\ell = f(\ell)$$

Exemple : Soit une suite $(u_n)_{n\geq 1}$ définie par récurrence :

$$u_1 = 2$$
, $u_{n+1} = \frac{2u_n}{1+u_n}$; $\forall n \ge 1$

N.Mrhardy 44 / 57

Exemple: Soit une suite $(u_n)_{n\geq 1}$ définie par récurrence :

$$u_1 = 2$$
, $u_{n+1} = \frac{2u_n}{1 + u_n}$; $\forall n \ge 1$

• 1ère méthode : On calcule

$$u_2 = \frac{4}{3} = \frac{2^2}{2^2 - 1}, \quad u_3 = \frac{8}{7} = \frac{2^3}{2^3 - 1}, \quad u_4 = \frac{16}{15} = \frac{2^4}{2^4 - 1}, \dots$$

On remarque que les premiers termes de la suite vérifient $u_n = \frac{2^n}{2^n - 1}$ On démontre, par récurrence, que cette formule est vraie pour tout n, puis on calcule la limite

$$\lim_{n \to +\infty} \frac{2^n}{2^n - 1} = \lim_{n \to +\infty} \frac{2^n}{2^n} \frac{1}{1 - 2^{-n}} = \lim_{n \to +\infty} \frac{1}{1 - 2^{-n}}$$

or
$$\lim_{n \to +\infty} 2^{-n} = 0$$
 donc $\lim_{n \to +\infty} u_n = 1$

N.Mrhardy 44 / 57

Exemple: Soit une suite $(u_n)_{n\geq 1}$ définie par récurrence :

$$u_1 = 2$$
, $u_{n+1} = \frac{2u_n}{1 + u_n}$; $\forall n \ge 1$

- 2ème méthode : On montre d'abord, que la suite est décroissante et minorée par 1. En effet, par récurrence on a
 - (i) On a $u_1 = 2 > 1$.
 - (ii) On suppose $u_n \geq 1$ donc

$$u_n + u_n \ge 1 + u_n \Longrightarrow 2u_n \ge 1 + u_n \Longrightarrow u_{n+1} \ge 1$$

d'où, $u_n \ge 1$; $\forall n \ge 1$.

D'autre part, on a pour tout $n \ge 1$

$$u_{n+1} - u_n = \frac{u_n(1 - u_n)}{1 + u_n} \le 0$$
 donc la suite est décroissante.

N.Mrhardy 44 / 57

Exemple: Soit une suite $(u_n)_{n\geq 1}$ définie par récurrence :

$$u_1 = 2$$
, $u_{n+1} = \frac{2u_n}{1 + u_n}$; $\forall n \ge 1$

• 2ème méthode : D'aprés le théorème des suites monotones ; $(u_n)_n$ converge vers une limite ℓ qui sera solution de l'équation :

$$\ell = rac{2\ell}{1+\ell} \Longleftrightarrow \ell(\ell-1) = 0$$

Cette équation a 2 solutions 0 et 1. Puisque que $u_n \ge 1$ pour tout n alors la limite est donc $\ell = 1$.

Définition

Deux suites réelles $(u_n)_{n>n_0}$ et $(v_n)_{n>n_0}$ sont dites adjacentes si :

- ① pour tout $n > n_0$, $u_n < v_n$,
- 2 la suite $(u_n)_{n>n_0}$ est croissante,
- 3 la suite $(v_n)_{n>n_0}$ est décroissante,
- $\lim_{n \to +\infty} (v_n u_n) = 0.$

$D\'{e}finition$

Deux suites réelles $(u_n)_{n>n_0}$ et $(v_n)_{n>n_0}$ sont dites adjacentes si :

- pour tout $n \ge n_0$, $u_n \le v_n$,
- 2 la suite $(u_n)_{n>n_0}$ est croissante,
- 3 la suite $(v_n)_{n>n_0}$ est décroissante,
- $\lim_{n \to +\infty} (v_n u_n) = 0.$

Deux suites $(u_n)_{n\geq n_0}$ et $(v_n)_{n\geq n_0}$ adjacentes sont convergentes et convergent vers la même limite ℓ de plus on a $\forall n\geq n_0, \quad u_n\leq \ell\leq v_n$

Preuve: On a pour tout $n \ge n_0$ $u_{n_0} \le u_n \le v_n \le v_{n_0}$ alors (u_n) est croissante et majorée (par v_{n_0}) donc converge vers une limite ℓ_1 et (v_n) est décroissante et minorée (par u_{n_0}) donc converge vers une limite ℓ_2 . d'après le point(4)

$$\lim_{n \to +\infty} (v_n - u_n) = 0 = \ell_1 - \ell_2 \Longrightarrow \ell_1 = \ell_2 = \ell$$

N.Mrhardy 45 / 57

Exemple. Soient $(u_n)_n$ et $(v_n)_n$ définies par :

$$0 < \textit{u}_0 < \textit{v}_0 \text{ et } \forall \textit{n} \in \mathbb{N} \quad \textit{v}_{\textit{n}+1} = \frac{\textit{u}_\textit{n} + \textit{v}_\textit{n}}{2}, \quad \textit{u}_{\textit{n}+1} = \sqrt{\textit{u}_\textit{n} \textit{v}_\textit{n}}.$$

N.Mrhardy 46 / 57

Exemple. Soient $(u_n)_n$ et $(v_n)_n$ définies par :

$$0 < \textit{u}_0 < \textit{v}_0 \text{ et } \forall \textit{n} \in \mathbb{N} \quad \textit{v}_{\textit{n}+1} = \frac{\textit{u}_\textit{n} + \textit{v}_\textit{n}}{2}, \quad \textit{u}_{\textit{n}+1} = \sqrt{\textit{u}_\textit{n} \textit{v}_\textit{n}}.$$

• Montrer que : $\forall n \in \mathbb{N}$; $0 \le u_n \le v_n$.

Par récurrence :

- (i) C'est vrai pour n = 0 car $0 < u_0 < v_0$.
- (ii) On suppose $0 \le u_n \le v_n$. On aura donc $v_{n+1} \ge 0$ et $u_{n+1} \ge 0$, de plus

$$v_{n+1} - u_{n+1} = \frac{u_n + v_n}{2} - \sqrt{u_n v_n} = \frac{\left(\sqrt{u_n} - \sqrt{v_n}\right)^2}{2} \ge 0$$

d'où

$$0 \le u_{n+1} \le v_{n+1}$$

N.Mrhardy

Exemple. Soient $(u_n)_n$ et $(v_n)_n$ définies par :

$$0 < \textit{u}_0 < \textit{v}_0 \text{ et } \forall \textit{n} \in \mathbb{N} \quad \textit{v}_{\textit{n}+1} = \frac{\textit{u}_{\textit{n}} + \textit{v}_{\textit{n}}}{2}, \quad \textit{u}_{\textit{n}+1} = \sqrt{\textit{u}_{\textit{n}} \textit{v}_{\textit{n}}}.$$

• Etudier la monotonie des suites $(u_n)_n$ et $(v_n)_n$.

On a d'après le résultat précédent

-
$$v_{n+1} - v_n = \frac{u_n + v_n}{2} - v_n = \frac{u_n - v_n}{2} \le 0 \Longrightarrow v_{n+1} \le v_n$$

donc $(v_n)_n$ est une suite décroissante.

-
$$0 \le u_n \le v_n \Longrightarrow u_n^2 \le u_n v_n \Longrightarrow u_n \le \sqrt{u_n v_n} = u_{n+1}$$

donc $(u_n)_n$ est une suite croissante.

Suites adjacentes

Exemple. Soient $(u_n)_n$ et $(v_n)_n$ définies par :

$$0 < \textit{u}_0 < \textit{v}_0 \text{ et } \forall \textit{n} \in \mathbb{N} \quad \textit{v}_{\textit{n}+1} = \frac{\textit{u}_{\textit{n}} + \textit{v}_{\textit{n}}}{2}, \quad \textit{u}_{\textit{n}+1} = \sqrt{\textit{u}_{\textit{n}} \textit{v}_{\textit{n}}}.$$

• Montrer que pour tout $n \in \mathbb{N}$ $v_{n+1} - u_{n+1} \le \frac{v_n - u_n}{2}$

On a

$$v_{n+1} - u_{n+1} = \frac{u_n + v_n}{2} - \sqrt{u_n v_n}$$

or $u_n \leq \sqrt{u_n v_n} \Rightarrow -\sqrt{u_n v_n} \leq -u_n$, donc on obtient

$$v_{n+1} - u_{n+1} = \frac{u_n + v_n}{2} - \sqrt{u_n v_n} \le \frac{u_n + v_n}{2} - u_n = \frac{v_n - u_n}{2}$$

N.Mrhardy

Suites adjacentes

Exemple. Soient $(u_n)_n$ et $(v_n)_n$ définies par :

$$0 < \textit{u}_0 < \textit{v}_0 \text{ et } \forall \textit{n} \in \mathbb{N} \quad \textit{v}_{\textit{n}+1} = \frac{\textit{u}_\textit{n} + \textit{v}_\textit{n}}{2}, \quad \textit{u}_{\textit{n}+1} = \sqrt{\textit{u}_\textit{n} \textit{v}_\textit{n}}.$$

• En déduire que $(u_n)_n$ et $(v_n)_n$ convergent vers la même limite.

or $\lim_{n\to +\infty}\left(\frac{1}{2}\right)^n=0$ donc $\lim_{n\to +\infty}(v_n-u_n)=0$ d'où $(u_n)_n$ et $(v_n)_n$ sont adjacentes et parsuite convergent vers la même limite.

N.Mrhardy 46 / 57

Exercice (TD). On définie par récurrence $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ en posant : $u_0=3, v_0=4$, et si $n\geq 0$:

$$u_{n+1} = \frac{v_n + u_n}{2}, \ v_{n+1} = \frac{u_{n+1} + v_n}{2}$$

- géométrique positive et calculer sa limite.
- Démontrer que ces deux suites sont adjacentes. Que peut-on en déduire?
- **3** On considère à présent la suite $(t_n)_n$ définie, pour tout $n \in \mathbb{N}$, par :

① On pose $w_n = v_n - u_n$, $\forall n \geq 0$. Montrer que $(w_n)_{n \geq 0}$ est une suite

$$t_n=\frac{u_n+2v_n}{3}$$

Montrer que la suite $(t_n)_n$ est constante. En déduire la limite des suites $(u_n)_n$ et $(v_n)_n$.

N.Mrhardy 47 / 57

Réponse.

• $(w_n)_{n\geq 0}$ est une suite géométrique positive de raison $0<\frac{1}{4}<1$ et donc $\lim_{n\longrightarrow +\infty}w_n=0.$

N.Mrhardy 48 / 57

Réponse.

- ① $(w_n)_{n\geq 0}$ est une suite géométrique positive de raison $0<\frac{1}{4}<1$ et donc $\lim_{n\to +\infty}w_n=0$.
- d'aprés (1) on a $0 < w_n \xrightarrow[n \to +\infty]{} 0$ donc $u_n \le v_n$ et $\lim_{n \to +\infty} (v_n u_n) = 0$
 - $u_{n+1} u_n = \frac{v_n u_n}{2} \ge 0$ donc $(u_n)_n$ est croissante
 - $v_{n+1} v_n = \frac{u_n v_n}{2} \le 0$ donc $(u_n)_n$ est décroissante.

On conclut les deux suites sont adjacentes. Donc elles convergent vers la même limite ℓ .

N.Mrhardy 48 / 57

Réponse.

- $(w_n)_{n\geq 0}$ est une suite géométrique positive de raison $0<\frac{1}{4}<1$ et donc $\lim_{n \to +\infty} w_n = 0$.
- d'aprés (1) on a $0 < w_n \xrightarrow[n \to +\infty]{} 0$ donc $u_n \le v_n$ et $\lim_{n \to +\infty} (v_n u_n) = 0$
 - $u_{n+1} u_n = \frac{v_n u_n}{2} \ge 0$ donc $(u_n)_n$ est croissante
 - $v_{n+1} v_n = \frac{u_n v_n}{2} \le 0$ donc $(u_n)_n$ est décroissante.

On conclut les deux suites sont adjacentes. Donc elles convergent vers la même limite ℓ .

On a

$$t_{n+1} = \frac{1}{3} \left(\frac{v_n + u_n}{2} + 2 \frac{u_n + 3v_n}{4} \right) = t_n$$

donc $(t_n)_n$ est constante et parsuite

$$t_n=t_0=\frac{11}{3}$$

En passant à la limite dans t_n on trouve

$$\frac{\ell+2\ell}{3} = \frac{11}{3} \iff \ell = \frac{11}{3}$$

N.Mrhardy 48 / 57

Suites de Cauchy

Définition

Une suite $(u_n)_{n\geq n_0}$ est une suite de Cauchy si

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}^*$$
; tel que $\forall p, q \geq N_{\varepsilon}$ on a $|u_p - u_q| < \varepsilon$

ou de manière équivalente

$$\forall \varepsilon>0, \exists \textit{N}_{\varepsilon}\in\mathbb{N}^{*}; \ \textit{tel que} \ \forall \textit{p}\in\mathbb{N}, \ \forall \textit{n}\geq\textit{N}_{\varepsilon} \ \textit{on a} \quad |\textit{u}_{\textit{p}+\textit{n}}-\textit{u}_{\textit{n}}|<\varepsilon$$

N.Mrhardy 49 / 57

Suites de Cauchy

Définition

Une suite $(u_n)_{n>n_0}$ est une suite de Cauchy si

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}^*$$
; tel que $\forall p, q \geq N_{\varepsilon}$ on a $|u_p - u_q| < \varepsilon$

ou de manière équivalente

$$\forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}^*; \ \ \text{tel que} \ \ \forall p \in \mathbb{N}, \ \ \forall n \geq N_\varepsilon \ \ \text{on a} \quad |u_{p+n} - u_n| < \varepsilon$$

Théorème

On a les implications suivantes

$$(u_n)_{n>n_0}$$
 converge $\Longrightarrow (u_n)_{n>n_0}$ de Cauchy $\Longrightarrow (u_n)_{n>n_0}$ est bornée

La réciproque de la 1 ière implication n'est pas toujours vraie.

N.Mrhardy 49 / 57

Exercice. Montrer que la suite définie par $u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}$ est de Cauchy.

Indication : on pourra utiliser $(n+p)! \ge 2^{n+p-1}$ Réponse. Soient $p, n \in \mathbb{N}$. On a

$$u_{n+p}-u_n=\frac{1}{(n+1)!}+\ldots+\frac{1}{(n+p)!}$$

or $(n+p)! \ge 2^{n+p-1}$, donc

$$0 \le u_{n+p} - u_n \le \frac{1}{2^n} + \ldots + \frac{1}{2^{n+p-1}} = \frac{1}{2^n} (1 + \ldots + \frac{1}{2^{p-1}})$$

ďoù

$$0 \leq u_{n+p} - u_n \leq \frac{1}{2^{n-1}} (1 - \frac{1}{2^p})$$

Puisque, pour tout $p \in \mathbb{N}$, $\lim_{n \to +\infty} \frac{1}{2^{n-1}} (1 - \frac{1}{2^p}) = 0$, alors la suite (u_n) est de Cauchy.

N.Mrhardy 50 / 57

Proposition

On dit qu'une suite $(v_n)_n$ est une suite extraite ou une sous suite d'une suite $(u_n)_n$ s'il existe une application $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $\forall n \in \mathbb{N}$,

$$v_n = u_{\varphi(n)}$$

Si la suite $(u_{\varphi(n)})$ converge vers ℓ , on dit que ℓ est la valeur d'adhérence.

N.Mrhardy 51 / 57

Proposition

On dit qu'une suite $(v_n)_n$ est une suite extraite ou une sous suite d'une suite $(u_n)_n$ s'il existe une application $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $\forall n \in \mathbb{N}$,

$$v_n = u_{\varphi(n)}$$

Si la suite $(u_{\varphi(n)})$ converge vers ℓ , on dit que ℓ est la valeur d'adhérence.

Exemple : Soit $u_n = \cos(\frac{n\pi}{2})$, alors on aura

$$u_{4n} = 1;$$
 $u_{2n+1} = 0,$ $u_{2n} = (-1)^n$

 $(u_{4n})_n$, $(u_{2n+1})_n$ et $(u_{2n})_n$ sont des sous suites de $(u_n)_n$ associées respectivement aux applications strictement croissantes

$$\varphi_1(n) = 4n, \quad \varphi_2(n) = 2n + 1, \quad \varphi_3(n) = 2n$$

N.Mrhardy 51 / 57

Proposition

Toute suite extraite d'une suite (u_n) convergeant vers une limite ℓ est une suite convergeant vers ℓ .

Cette proposition est souvent utilisé pour montrer qu'une suite n'est pas convergente : En pratique, on extrait une sous suite qui diverge, ou bien deux sous suites ayant deux limites distinctes.

Preuve de la proposition :

Tout d'abord; on peut montrer par récurrence que

Soit $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante. Alors

$$\forall n \in \mathbb{N}, \quad \varphi(n) \geq n$$

Proposition

Toute suite extraite d'une suite (u_n) convergeant vers une limite ℓ est une suite convergeant vers ℓ .

Cette proposition est souvent utilisé pour montrer qu'une suite n'est pas convergente : En pratique, on extrait une sous suite qui diverge, ou bien deux sous suites ayant deux limites distinctes.

Preuve de la proposition :

Soit maintenant $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ une application strictement croissante. On suppose que $u_n \longrightarrow \ell$. Montrons que $u_{\varphi(n)} \longrightarrow \ell$. Soit $\varepsilon > 0$. Puisque $u_n \longrightarrow \ell$, il existe $N \in \mathbb{N}$ tel que $\forall n > N$, $|u_n - \ell| < \varepsilon$. Soit n > N. D'après le résultat précédent, $\varphi(n) \geq n \geq N$ et donc $|u_{\varphi(n)} - \ell| < \varepsilon$.

N.Mrhardy 52 / 57

Exercice (TD). Etudier la suite suivante

$$u_n = \sin\left(\frac{2n\pi}{3}\right)$$

Réponse. On a

$$u_{3n} = \sin(2n\pi) = 0$$
, et $u_{3n+1} = \sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2} \neq 0$

On conclut que $(u_n)_n$ est divergente.

Complétude de \mathbb{R}

Théorème de BOLZANO-WIERSTRASS

De toute suite réelle bornée, on peut extraire une suite convergente.

$Application: Complétude de \mathbb{R}$

Une suite de nombres réels converge vers une limite finie ℓ si et seulement si elle est de Cauchy. On dit que \mathbb{R} est complet.

Preuve: Soit (u_n) une suite de Cauchy dans \mathbb{R} .

La suite (u_n) est bornée et donc par le théorème de Bolzano-Wierstrass, elle admet une sous suite $(u_{\varphi(n)})_n$ qui converge vers une limite ℓ . On va montrer que $(u_n)_n$ converge vers la même limite que cette sous-suite.

N.Mrhardy 55 / 57

Preuve: Soit (u_n) une suite de Cauchy dans \mathbb{R} .

La suite (u_n) est bornée et donc par le théorème de Bolzano-Wierstrass, elle admet une sous suite $(u_{\varphi(n)})_n$ qui converge vers une limite ℓ . On va montrer que $(u_n)_n$ converge vers la même limite que cette sous-suite. Comme (u_n) est de Cauchy, on a

$$\forall \varepsilon > 0, \exists N_1 \in \mathbb{N}^*, ((\rho, q)^2 \in \mathbb{N}^2, \rho, q \geq N_1 \Longrightarrow |u_\rho - u_q| < \frac{\varepsilon}{2})$$

De plus, on a:

- $\forall A > 0$; $\exists N_2(A)$ tel que $\forall n \geq N_2(A) \Rightarrow \varphi(n) > A$ car $\varphi(n) \longrightarrow +\infty$
- $\forall \varepsilon > 0, \exists N_3$ tel que $\forall m \geq N_3 \Rightarrow |u_{\varphi(m)} \ell| < \frac{\varepsilon}{2}$

Soit alors $\varepsilon > 0$, posons $N(\varepsilon) = N_1$. Soit m un entier tel $m \ge \max(N_3, N_2(N_1))$, alors on aura :

$$\forall n \geq N(\varepsilon), \quad |u_n - \ell| < |u_n - u_{\varphi(m)}| + |u_{\varphi(m)} - \ell| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Ce qui montre que la suite (u_n) converge vers ℓ .

N.Mrhardy 55 / 57

Exercice (TD). Soit $(u_n)_n$ la suite définie par $u_0 = 2$ et $u_{n+1} = \frac{1}{2}(u_n + \frac{2}{u_n})$ pour tout entier n.

- ① Montrer que pour tout n on a : $u_n > 0$ et $u_n^2 > 2$.
- 2 Montrer que $(u_n)_n$ converge et calculer sa limite.
- **3** L'ensemble \mathbb{Q} est-il complet? (on peut remarquer que la suite $(u_n)_n$ est à valeur dans \mathbb{Q})

Réponse.

(1) On montre par récurrence que pour tout n on a : $u_n > 0$. De même on a $u_0^2 > 2$ et

$$u_{n+1}^{2} - 2 = \frac{1}{4} \left(u_{n} + \frac{2}{u_{n}} \right)^{2} - 2$$

$$= \frac{1}{4u_{n}^{2}} \left(u_{n}^{4} - 4u_{n}^{2} + 4 \right)$$

$$= \frac{1}{4u_{n}^{2}} \left(u_{n}^{2} - 2 \right)^{2} > 0$$

donc $u_n^2 > 2$.

Exercice (TD). Soit $(u_n)_n$ la suite définie par $u_0 = 2$ et $u_{n+1} = \frac{1}{2}(u_n + \frac{2}{u_n})$ pour tout entier n.

- ① Montrer que pour tout n on a : $u_n > 0$ et $u_n^2 > 2$.
- 2 Montrer que $(u_n)_n$ converge et calculer sa limite.
- **3** L'ensemble \mathbb{Q} est-il complet ? (on peut remarquer que la suite $(u_n)_n$ est à valeur dans \mathbb{Q})

Réponse.

(2) On a : $\frac{u_{n+1}}{u_n} = \frac{1}{2}(1+\frac{2}{u_n^2}) < 1$ donc $(u_n)_n$ est décroissante. De plus $u_n > 0$ et $u_n^2 > 2$ alors la suite $(u_n)_n$ est minorée par $\sqrt{2}$, de plus elle est décroissante donc d'aprés le théorème de la convergence monotone elle converge vers une limite ℓ vérifiant

$$\ell = \frac{1}{2}(\ell + \frac{2}{\ell}) \Longleftrightarrow \ell^2 = 2 \Longleftrightarrow \ell = \sqrt{2}$$

N.Mrhardy 56 / 57

Exercice (TD). Soit $(u_n)_n$ la suite définie par $u_0 = 2$ et $u_{n+1} = \frac{1}{2}(u_n + \frac{2}{u_n})$ pour tout entier n.

- ① Montrer que pour tout n on a : $u_n > 0$ et $u_n^2 > 2$.
- 2 Montrer que $(u_n)_n$ converge et calculer sa limite.
- ③ L'ensemble \mathbb{Q} est-il complet ? (on peut remarquer que la suite $(u_n)_n$ est à valeur dans \mathbb{Q})

Réponse.

(3) $(u_n)_n$ est une suite dans \mathbb{Q} convergente donc c'est une suite de Cauchy mais sa limite n'appartient pas à \mathbb{Q} . On conclut que \mathbb{Q} n'est pas complet.

N.Mrhardy 56 / 57

Fin

N.Mrhardy 57 / 57