\star Spé - St
 Joseph/ICAM Toulouse \star

vendredi 04 octobre 2019 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

- 1. Soient $u \in \mathcal{L}(\mathbb{R}^3)$, $\lambda \in \mathbb{R}$ et $\mathrm{Id}_{\mathbb{R}^3}$ l'application identité de \mathbb{R}^3 .
 - **a.** Montrer que $\operatorname{Ker}(u \lambda \operatorname{Id}_{\mathbb{R}^3})$ est stable par u.
 - **b.** Montrer alors que l'endomorphisme induit par u sur $\text{Ker}(u \lambda \text{Id}_{\mathbb{R}^3})$ est une homothétie.
- 2. On considère l'endomorphisme $u \in \mathcal{L}(\mathbb{R}^3)$ canoniquement associé à

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

On note I_3 la matrice identité de \mathbb{R}^3 .

a. Montrer que

$$\det(\lambda I_3 - A) = (\lambda - 4)(\lambda - 1)^2$$

- b. En déduire les valeurs de λ pour les quelles $u-\lambda \mathrm{Id}_{\mathbb{R}^3}$ n'est pas bijective.
- c. Montrer que

$$\mathbb{R}^3 = \operatorname{Ker}(u - 4 \operatorname{Id}_{\mathbb{R}^3}) \oplus \operatorname{Ker}(u - \operatorname{Id}_{\mathbb{R}^3})$$

- **d.** Déterminer la matrice de u dans la base adaptée à la décomposition précédente.
- 3. Soit $(a,b) \in \mathbb{R}^2$, avec $b \neq 0$. On considère l'endomorphisme $vin\mathcal{L}(\mathbb{R}^3)$ canoniquement associé à

$$B = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$$

a. Calculer

$$\det(\lambda I_3 - B)$$

- **b.** En déduire les valeurs de λ pour lesquelles $v \lambda \operatorname{Id}_{\mathbb{R}^3}$ n'est pas bijective. On note λ_1 et λ_2 ces valeurs.
- c. Montrer que

$$\mathbb{R}^3 = \operatorname{Ker}(v - \lambda_1 \operatorname{Id}_{\mathbb{R}^3}) \oplus \operatorname{Ker}(v - \lambda_2 \operatorname{Id}_{\mathbb{R}^3})$$

d. Déterminer la matrice de v dans une base adaptée à la décomposition précédente.

Fin de l'énoncé d'algèbre