Supplemental Material for the paper "An Evolutionary Strategy for Automatic Hypotheses Generation inspired by Abductive Reasoning"

Anonymous Author(s)

ABSTRACT

The supplementary material for the paper entitled "An Evolutionary Strategy for Automatic Hypotheses Generation inspired by Abductive Reasoning" includes *textual material* and *artifacts*. Textual material is in the following Sections 1-4. Artifacts includes the code (an executable .jar) of the proposed algorithm, and the datasets used for the experimentation. These are available at: https://github.com/rpietrantuono/MOEVA

The following textual supplementary material is organized as follows. After the reproducibility statement (Section 1), Section 2 reports the description of the customized MOEAs we borrowed from [11] and setting of MOEAs parameters. Section 3 reports the results of the tuning of the parameters used in the experimentation. These refer to both the EVA hyperparameters and to the size of the population used in the experimental study. A best and worst case for EVA are derived, then used in the final experimentation reported in the main text. Section 4 details the ASRS dataset, which, unlike the other datasets, is prepared from scratch starting from the ASRS database.

ACM Reference Format:

Anonymous Author(s). 2023. Supplemental Material for the paper "An Evolutionary Strategy for Automatic Hypotheses Generation inspired by Abductive Reasoning". In *Proceedings of The Genetic and Evolutionary Computation Conference 2023 (GECCO '23)*. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnnnnnnnn

1 REPRODUCIBILITY

The material reported in this paper, including the datasets used for the experimentation and the code (an executable . jar) of the proposed algorithm, are available at:

https://github.com/rpietrantuono/MOEVA

Instructions are provided in the repository to *reproduce* the same results of the paper and to *replicate* the study with other datasets. Textual configuration files allow to select the datasets, to set EVA hyperparameters and experimental parameters (e.g., population size), to set the initial seed, to set the split (knowledge base and test set).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

GECCO '23, July 15–19, 2023, Lisbon, Portugal

© 2023 Association for Computing Machinery. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...\$15.00 https://doi.org/10.1145/nnnnnnnnnnnnnnnn

2 MOEA BASELINES AND PARAMETERS SETTING

In the empirical studies, vairants of four multi-objective evolutionary algorithms (MOEA) have been used for comparisons purpose, borrowed from the original work introducing the Combinatorial Causal Optimization Problem (CCOP) [11]. These MOEAs are: csNSGA-II (variant of Non-Sorted Genetic Algorithm II [7]), csOMOPSO (variant of Optimized Multi-objective Particle Swarm Optimization [14]), csSMS-EMOA (variant of ${\mathscr S}$ Metric Selection-Evolutionary Multiobjective Optimisation Algorithms [5]), csSPEA2 (variant of Strength Pareto Evolutionary Algorithm 2 [16]), where the prefix cs stands for causal. Changes regard the operators, while the algorithm steps are the same as the original algorithms.

CCOP solutions have not a fixed length, as a different number of sources can appear in a solution referring to a target(s). Thus, csNSGA-II, csSMS-EMOA, csSPEA2 adopt a slight variant of the two-point crossover, in which the two crossover points are chosen randomly between 0 and the minimum between the length of the two solutions ${\bf x}$ and ${\bf y}$ involved, and then the swap operation is performed like in conventional two-point crossover. As for mutation, they adapt a swap mutation operator that replaces, with a given probability, an element of the solution with another.

Changes to csOMOPSO are more substantial. In a OMOPSO algorithm, there is the notion of speed and position of particles (which are the solutions) that change in a continuous range. At each iteration, the algorithm computes, for each particle, i) the new position, ii) the speed, and applies the iii) mutation operator. These form the new solutions to be evaluated. Let us consider U, the domain of interest, with each element i representing an element that can (not necessarily will) be part of a solution; let us as x_i , with i = 1, ..., n = |U|, the decision variable associated with element i, that can be either a source or a target variable (x_s or x_t). The set of all possible values that a *source* variable can take is denoted as $D_s = \{D_{s_1}, \dots D_{s_i}\}$; while target variable take values in the respective (target domains): $D_t = \{D_{t_{j+1}}, \dots D_{t_n}\}$. csOMOPSO splits the continuous [0, 1] interval of values in n equally spaced ranges R_k , and assigns each range R_k to each element $k \in D_s$ or $k \in D_t$ (k = 1 to n), so as a potential value of a decision variable is uniquely represented by a range R_k . In this way, each solution \mathbf{x} is a combination of elements represented by a set of continuous values, that correspond to the position in the PSO terminology. The computation of speed and position, as well as the mutation operator, is then applied to such values like in conventional OMOPSO: if a value falls outside its range R_k , than the corresponding source (or target) variable is replaced in the solution, in favour of the variable represented by the new range. If the value exceeds the [0, 1] range, the variable is neglected by the algorithm (i.e., it is "removed" from the solution), while it can be back if the value

176

179

180

181

182

183

184

186

187

188

189

190

192

193

194

195

196

199

200

201

202

203

204

205

206

207

208

209

214

215

130

131

132

133

139

140

141

142

149

150

151

152

153

156

157

158

159

160

161

162

163

164

165

166

167 168

169

170

171 172

173

174

227

228

231

232

222

Table 1: MOEA parameters setting

	csNSGA-II	csOMOPSO	csSMS-EMOA	csSPEA2
Crossover prob.	0.9	-	0.9	0.9
Crossover index	40	-	20	20
Mutation prob.	(1/n)	(1/n)	(1/n)	(1/n)
Mutation index	20	-	20	20
Perturbation index	_	0.5	_	-
Population size	100	100	100	100
Archive size/offset	_	100	100	100

becomes again included in an R_k range – a solution in a CCOP, as said, can change its size. As for mutation operators: one-third of solutions undergoes the non-uniform mutation, one-third the uniform mutation and one-third are no subject to mutation.

The setting for the described metaheuristics are the default setting as provided by the framework used for experimentation, *jMetal* [8] – they are reported in Table 1. For selection, all the algorithms adopt binary tournament.

3 EVA PARAMETERS TUNING

A grid search approach is adopted for parameters tuning. The EVA hyperparameters are η_F , η_A and η_H , and the change indexes γ_F and γ_H of the abduction operators. Both regulate the extent to which solutions are required to be diverse (hence novel) with respect to the KB and to the current population: the higher the η . values, the higher the probability of selecting new unseen sources, and the higher the *y*. the higher the number of modifications that are done to build a (factual or hypothetical-cause) solution. The following configurations are considered: $\langle \eta_{.}, \gamma_{.} \rangle = (\langle 0.1, 3 \rangle, \langle 0.5, 5 \rangle)$, < 0.9, 7 >, representing, respectively, a Low novelty degree in the solution, a Medium novelty and a High novelty.

Additionally, due to its evolutionary nature, EVA exploits the notion of population of solutions, whose size can impact the final results. Three values are considered for the population size:|P| =

We ran 10 repetitions for each of the $3 \times 3 = 9$ configurations, each one for 600 evaluations, for the four datasets. Table 2 reports the average distance of the final population's solution (averaged over the 10 repetitions) from the test set. The best (B) and worst (W) configurations for EVA are highlighted (green and red, respectively). These two configurations are used to compare EVA with the baselines (cf. with the main paper), considering both the best and the worst case.

THE ASRS DATASET

While the TUMOR, MEDICAL and NURSERY datasets were already publicly available and explained, the ASRS dataset is new. Here we briefly describe the source of information from which the dataset is derived.

The Aviation Safety Reporting System (ASRS) database is the world's largest repository of voluntary, confidential safety information provided by aviation personnel, including pilots, controllers, mechanics, flight attendants and dispatchers [4].

It contains more than 1 million of entries reported since 1988. It is a structured database used for data retrieval and analysis, with all the accidents stored in a cause-effect style: the events regarding the aircraft components, the weather conditions, the human personnel involved, the airport, and many other potential causes recorded for each accident as a categorised set of values (i.e., enumerative), along with the resulting accident (also categorised). The main entities are reported in the following:

- Environment, with information regarding the flight conditions when accident occurred, visibility, working environment factors such as lighting or temperature.
- · Aircraft-related elements, e.g., the flight plan, the route, the flight phase, the maintenance status, the mission.
- Component, with information about all the components of the aircraft and their status (e.g., design problem, failed, malfunctioning).
- Person, reporting the information about the persons involved, such as the flight crew, the air traffic control, or people working in maintenance, information about the human factors that could cause mistakes such as distraction, confusion, stress, etc.
- Events, including anomalies such as airspace violation, deviation of altitude, procedural errors, airbone or ground conflict, fire, as well as the event describing the final result, such as the type of accident and its consequences (which correspond to our target variables).

An excerpt of the main information is reported in the Tables 3-7. A glossary of terms is available on the website [3]. For illustrative purpose, a solution looks like follows:

Environment.Weather = Fog Environment.Weather = Windshear Environment.Weather = Turbulence Environment.FlighConditions = IMC Environment.Light = Night Aircraft.Mission = Cargo/Freight FlightAircraft.Phase = Final Approach Anomaly.Inflight Event = Object encountered Result.Flight Crew = Landed in **Emergency Condition** Result.Aircraft = Aircraft Damaged

This describes an accident in which the pilot, while descending to approach for landing (Final Approach) during the night and under bad weather conditions (IMC stands for Instrument Meteorological Conditions as opposed to Visual Meteorological Conditions), struck a tree branch (Object encountered) and damaged the wing. Hence, he diverted to another airport, landing there in emergency conditions. This type combination is what EVA aims to construct by its operators as described in the main article. The dataset is made publicly available in our repository, https://anonymous.4open.science/r/EVA

292

293

297

298

302

303

304

305

306

307

309

310

311

312

315

316

317

318

319

320

322

323

324

325

326

328

329 330

331

332 333

335

336

337

339

341 342

343

344

345

346 347

REFERENCES

233

234

235

236

237

238

239

240

241

242

245

246

247

248

249

250

251 252

253

254

255

256

259

260

261

262

263

265

266

267

268

269

271

272

274

275

278

279

280

281

286

287

288

- [1] Last checked: 2022. (Last checked: 2022). https://github.com/bd2kccd/py-causal
- [2] Last checked: 2022. (Last checked: 2022). https://www.ccd.pitt.edu/tools/
- [3] Last checked: 2022. NASA Aviation Safety Reporting System Abbreviations. (Last checked: 2022). https://asrs.arc.nasa.gov/docs/dbol/ASRS_Abbreviations. pdf
- [4] Last checked: Feb. 2023. NASA Aviation Safety Reporting System. (Last checked: Feb. 2023). https://asrs.arc.nasa.gov/index.html
- [5] N. Beume, B. Naujoks, and M. Emmerich. 2007. SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181 (2007), 1653– 1669.
- [6] Diego Colombo, Marloes H. Maathuis, Markus Kalisch, and Thomas S. Richardson. 2012. Learning high-dimensional directed acyclic graphs with latent and selection variables. *The Annals of Statistics* 40, 1 (2012), 294–321. http://www.jstor.org/ stable/41713636
- [7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. *IEEE Transactions on Evolutionary Computation* 6, 2 (2002), 182–197.
- [8] Juan J. Durillo and Antonio J. Nebro. 2011. jMetal: A Java framework for multiobjective optimization. Advances in Engineering Software 42, 10 (2011), 760 – 771. https://doi.org/10.1016/j.advengsoft.2011.05.014
- [9] Juan Miguel Ogarrio, Peter Spirtes, and Joe Ramsey. 2016. A Hybrid Causal Search Algorithm for Latent Variable Models. In Proceedings of the Eighth International

- Conference on Probabilistic Graphical Models, Alessandro Antonucci, Giorgio Corani, and Cassio Polpo Campos (Eds.), 368–379.
- [10] Judea Pearl. 2009. Causality: Models, Reasoning and Inference (2nd ed.). Cambridge University Press, USA.
- [11] Roberto Pietrantuono. 2021. Automated Hypotheses Generation via Combinatorial Causal Optimization. In 2021 IEEE Congress on Evolutionary Computation (CEC). 399–407. https://doi.org/10.1109/CEC45853.2021.9504816
- [12] Joseph Ramsey. 2015. Scaling up Greedy Equivalence Search for Continuous Variables. ArXiv abs/1507.07749 (2015).
- [13] Joseph Ramsey, Kun Zhang, Madelyn Glymour, Ruben Sanchez Romero, Biwei Huang, Immé, Ebert-Uphoff, Savini M. Samarasinghe, Elizabeth A. Barnes, and Clark Glymour. 2018. TETRAD - A TOOLBOX FOR CAUSAL DISCOVERY.
- [14] Margarita Reyes Sierra and Carlos A. Coello Coello. 2005. Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and âĹĹ-Dominance. In Evolutionary Multi-Criterion Optimization, Carlos A. Coello Coello, Arturo Hernández Aguirre, and Eckart Zitzler (Eds.). Springer Berlin Heidelberg, 505– 519.
- [15] Matthew J. Vowels, Necati Cihan Camgoz, and Richard Bowden. 2021. D'ya like DAGs? A Survey on Structure Learning and Causal Discovery. (2021). arXiv:cs.LG/2103.02582
- [16] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2002. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In EUROGEN 2001. 95–100.

Table 3: ASRS. Environment entity.

	Environment		
Light	Work Env. Factors	Weather Elements/ Visibility	Flight conditions
Dawn Daylight Dusk Night	Poor lighting Glare Temperature extreme Excessive humidity	Cloudy Fog Hail Haze-Smoke Icing Rain Snow Thunderstorm Turbolence Windshear	VMC IMC Mixed Marginal
	Dawn Daylight Dusk	Work Env. Light Factors Poor lighting Dawn Glare Daylight Temperature extreme Dusk	Weather Elements/ Visibility Factors Cloudy Poor lighting Dawn Fog Glare Daylight Hail Temperature extreme Dusk Haze-Smoke Excessive humidity Night Icing Rain Snow Thunderstorm Turbolence

Table 4: ASRS. Aircraft entity.

			Aircraf	t		
Flight plan	Flight Phase	Route in use	Navigation in use	Cabin Lighting	Maintenance status & items	Mission
VFR	Taxi	Direct	FMS/FMC	High	Deferred	Aerobatics
IFR	Parked	Oceanic	GPS	Medium	Records	Agricolture
SVFR	Takeoff	VFR Route	INS	Low	complete	Ambulance
DVFR	Initial	Vectors	Localizer/	Off	Released	Banner tow
None	climb	Visual appr.	Gideslop/ILS		for serv.	Ferry
	Climb	None	NDB		Required	Cargo/Freight
	Cruise	Airway	VOR/VORTAC		Scheduled	Passenger
	Descent	STAR			Unscheduled	Photo shoot
	Initial Appr.	SID				Personal
	Final Appr.	Other			Maintenance items	Refueling
	Landing				Inspection	Skydiving
	Other				Installation	Tactical
					Repair	Test Flight
					Testing	Traffic watch
					Work cards	Training
						Utility
						Other

Table 5: ASRS. Component entity

	Component	
Component		Problem
Weather Radar DC Battery	Electrical Wiring & Connectors Autopilot	Design Failed
Turbine Engine Indicating and Warning - Landing Gear	Landing Gear	Improperly operated Malfunctioning
Nose Gear Flap Vane	Yaw Control Brake System	
Powerplant Fire Extinguishing	Wheels/Tires/Brakes	
Cockpit Window Turbine Assemb Blade	Aircraft Cooling System Landing Gear Indicating System	
Normal Brake System Gear Down Lock	Tires Fuel System	
Engine Control	Fire/Overheat Warning	
Antiskid System Fuselage Skin	Piston Powerplant Fuel Control	
External Power	Flap Control	
Supplemental Landing Gear Fuselage Panel	FCC (Flight Control Computer) (more than 350)	
Engine		

Table 6: ASRS. Person entity

Person			
Function	Qualification	Experience	Human Factors
	Flight crew		
Captain	Student	Total	Communication breakdown
Check Pilot	Sport	Last 90 days	Confusion
First Officer	Private		Distraction
Flight Engineer	Commercial		Fatigue
Instructor	Air Transport Pilot		Human-Machine Interaction
Pilot Flying	Flight Instructor		Physiological
Pilot not Flying	Multiengine		Situational Awareness
Relief Pilot	Instrument		Time Pressure
Single Pilot	Flight Engineer		Training/Qualification
Trainee	Rotorcraft		Workload
Other	Lighter-Than-Air		Other
	Sea		
	Glider		Location in aircraft
	Air Traffic Control		Flight deck
Approach	Fully certified	Radar	Cabin Jumpseat
Coordinator	Developmental	Non-radar	Crew Rest Area
Departure		Military	Dooe Area
Enroute		Supervisory	Galley
Flight data			General Searing Area
Flight service			Lavatory
Ground			Other
Handoff			
Instructor			
Trainee			
Local			
Oceanic			
Supervisor			
Traffic Management			
Other			
	Maintenance		
Inspector	Airframe	Avionics	
Instructor	Powerplant	Inspector	
Lead Technician	Appentice	Lead Technician	
arts/Stores Personnel	Avionics	Repairman	
Quality Assurance	Inspection Authority	Technician	
Technician	Nondestructive Testing		
Trainee	Repairman		
Other			

Table 7: ASRS. Events entity

	Events	
Result	Assessment	Anomalies
	Primary or	
	Contributory factor	
Genera		Aircraft Equipment
Declared Emergency	Aircraft	Critical
Evacuate	Airport	Less severe
Flight Cancelled/Delaye	Airspace structure	Dess severe
Maintenance Action	ATC Equip	Airspace Violation
Physical Injury/Incapacitation	/Nav Facility/Buildings	All types
Police/Security Involved	Chart or Publication	ATC Issues
Release Refused/Aircraft not Accepted	Company Policy	All types
Work Refused	Equipment/Tooling	Flight Deck/Cabin/Aircraft
Non	Env. non-weather related	Illness
Flight crev	Human Factors	Passenger Electronic Device
Reoriente	Incorrect/Not Instal.	Passenger Misconduct
Divertee	/Unav. Part	Smoke/Fire/Fumes/Odor
FLC Overrode Automation	Logbook Entry	Other
FLC Complied	Manuals	Conflict
Executed Go Around/Missed Approach	MEL	NMAC
Exited Penetrated Airspace	Procedure	Airbone conflict
Inflight Shutdown	Staffing	Ground Conflict, critical
Landed as Precaution	Weather	Ground Conflict, less severe
Overcame Equipment Problem	weather	Deviation - Altitude
Regained Aircraft Contro		Crossing Restriction Not Met
Regained Aircraft Contro Rejected Takeof		Excursion from Assigned Altitude
Requested ATC Assistance/Clarification		Overshoot
Returned to Clearance		
		Undershoot Deviation - Speed or Track/Healing
Returned to Departure Airpor Returned to Gat		
		All types Deviation - Procedural
Took Evasive Action		Clearance
Air Traffic Contro Provided Assistanc		FAR
Issued Advisory/Aler		Hazardous Material Violation
Issued New Clearance		
		Landing without Clearance
Separated Traffi		Maintenance
Aircraf		MEL
Aircraft Damage Automation Overrode Flight Crev		Published Material/Policy 5205 - Security Weight and Balance
Equipment Problem Dissipated		e e e e e e e e e e e e e e e e e e e
Equipment Problem Dissipated		Other/Unknown Ground Excursion/Incursion
		Ramp
		Runaway
		Taxiway
		Ground Event/Encounter
		Aircraft
		FOD Coar Un Londing
		Gear Up Landing
		Ground Strike Ð Aircraf Loss of Aircraft Control
		Object
		Person/Animal/Bird Vehicle
		Other
		Inflight Event/Encounter
		CFTT/CFIT
		Fuel Issue
		Loss of Aircraft Control 5215 - Object
		Bird/Animal
	7	Unstabilized Approach
	,	VFR in IMC
		Wake Vortex Encounter

Weather/Turbulence