Campos Gradiente

Se f é uma função escalar de duas variáveis, sabemos da Seção 14.6 que seu gradiente ∇f (ou $\operatorname{grad} f$) é definido por

$$\nabla f(x, y) = f_x(x, y) \mathbf{i} + f_y(x, y) \mathbf{j}$$

Portanto, ∇f é realmente um campo vetorial em \mathbb{R}^2 e é denominado campo vetorial gradiente. Da mesma forma, se f for uma função escalar de três variáveis, seu gradiente é um campo vetorial em \mathbb{R}^3 dado por

$$\nabla f(x, y, z) = f_x(x, y, z) \mathbf{i} + f_y(x, y, z) \mathbf{j} + f_z(x, y, z) \mathbf{k}$$

EXEMPLO 6 Determine o campo vetorial gradiente de $f(x, y) = x^2y - y^3$. Desenhe o campo vetorial gradiente juntamente com um mapa de contorno de f. Como eles estão relacionados?

SOLUÇÃO O campo vetorial gradiente é dado por

$$\nabla f(x, y) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} = 2xy \mathbf{i} + (x^2 - 3y^2) \mathbf{j}$$

A Figura 15 mostra o mapa de contorno de f com o campo vetorial gradiente. Observe que os vetores gradientes são perpendiculares às curvas de nível, como devíamos esperar da Seção 14.6. Observe também que os vetores gradientes são mais longos onde as curvas de nível estão mais próximas umas das outras e mais curtos quando elas estão mais distantes entre si. Isso se deve ao fato de o comprimento do vetor gradiente ser o valor da derivada direcional de f e a proximidade das curvas de nível indicar uma grande inclinação no gráfico.

Um campo vetorial **F** é chamado **campo vetorial conservativo** se ele for o gradiente de alguma função escalar, ou seja, se existir uma função f tal que $\mathbf{F} = \nabla f$. Nessa situação, f é denominada função potencial de F.

Nem todos os campos vetoriais são conservativos, mas estes campos aparecem frequentemente em física. Por exemplo: o campo gravitacional F do Exemplo 4 é conservativo, pois, se definimos

$$f(x, y, z) = \frac{mMG}{\sqrt{x^2 + y^2 + z^2}}$$

então

$$\nabla f(x, y, z) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

$$= \frac{-mMGx}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{i} + \frac{-mMGy}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{j} + \frac{-mMGz}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{k}$$

$$= \mathbf{F}(x, y, z)$$

Nas Seções 16.3 e 16.5, aprenderemos a determinar se um campo vetorial é conservativo ou não.

FIGURA 15

16.1 **Exercícios**

1-10 Esboce o campo vetorial F desenhando um diagrama como o da Figura 5 ou da Figura 9.

1.
$$\mathbf{F}(x, y) = 0.3 \mathbf{i} - 0.4 \mathbf{j}$$

2.
$$\mathbf{F}(x, y) = \frac{1}{2}x\mathbf{i} + y\mathbf{j}$$

3.
$$\mathbf{F}(x, y) = -\frac{1}{2}\mathbf{i} + (y - x)\mathbf{j}$$
 4. $\mathbf{F}(x, y) = y\mathbf{i} + (x + y)\mathbf{j}$

$$\mathbf{A} \cdot \mathbf{F}(\mathbf{r}, \mathbf{v}) = \mathbf{v} \mathbf{i} + (\mathbf{r} + \mathbf{v})$$

5.
$$\mathbf{F}(x, y) = \frac{y \, \mathbf{i} + x \, \mathbf{j}}{\sqrt{x^2 + y^2}}$$

5.
$$\mathbf{F}(x, y) = \frac{y \, \mathbf{i} + x \, \mathbf{j}}{\sqrt{x^2 + y^2}}$$
 6. $\mathbf{F}(x, y) = \frac{y \, \mathbf{i} - x \, \mathbf{j}}{\sqrt{x^2 + y^2}}$

7.
$$F(x, y, z) = k$$

8.
$$F(x, y, z) = -y k$$

9.
$$F(x, y, z) = x k$$

10.
$$F(x, y, z) = j - i$$

11-14 Faça a correspondência entre o campo vetorial F e a figura rotulada de I-IV. Justifique suas escolhas.

11.
$$\mathbf{F}(x, y) = \langle x, -y \rangle$$

12.
$$\mathbf{F}(x, y) = \langle y, x, -y \rangle$$

13.
$$F(x, y) = \langle y, y + 2 \rangle$$

14.
$$\mathbf{F}(x, y) = \langle \cos(x + y), x \rangle$$

15–18 Faça a correspondência entre o campo vetorial \mathbf{F} em \mathbb{R}^3 e a figura rotulada de I-IV. Justifique suas escolhas.

15.
$$\mathbf{F}(x, y, z) = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$

16.
$$\mathbf{F}(x, y, z) = \mathbf{i} + 2\mathbf{j} + z\mathbf{k}$$

17.
$$\mathbf{F}(x, y, z) = x \, \mathbf{i} + y \, \mathbf{j} + 3 \, \mathbf{k}$$

$$\mathbf{F}(x, y) = (y^2 - 2xy) \mathbf{i} + (3xy - 6x^2) \mathbf{j}$$

Explique sua aparência, determinando um conjunto de pontos (x, y) tal que $\mathbf{F}(x, y) = \mathbf{0}$.

21–24 Determine o campo vetorial gradiente f.

21.
$$f(x, y) = xe^{xy}$$

22.
$$f(x, y) = tg(3x - 4y)$$

23.
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
 24. $f(x, y, z) = x \cos(y/z)$

24.
$$f(x, y, z) = x \cos(y/z)$$

25–26 Determine o campo vetorial gradiente ∇f de f e esboce-o.

25.
$$f(x, y) = x^2 - y$$

26.
$$f(x, y) = \sqrt{x^2 + y^2}$$

 \square 27–28 Desenhe o campo vetorial gradiente de f juntamente com um mapa de contorno de f. Explique como eles estão relacionados entre si.

27.
$$f(x, y) = \ln(1 + x^2 + 2y^2)$$

28.
$$f(x, y) = \cos x - 2 \sin y$$

29–32 Faça uma correspondência entre as funções f e os desenhos de seus campos vetoriais gradientes rotulados de I-IV. Justifique suas escolhas.

29.
$$f(x, y) = x^2 + y^2$$

30.
$$f(x, y) = x(x + y)$$

31.
$$f(x, y) = (x + y)^2$$

32.
$$f(x, y) = \sin \sqrt{x^2 + y^2}$$

33. Uma partícula se move em um campo de velocidade $V(x, y) = \langle x^2, x + y^2 \rangle$. Se ela está na posição (2, 1) no instante t = 3, estime sua posição no instante t = 3.01.

34. No instante t=1, uma partícula está localizada na posição (1, 3). Se ela se move em um campo de velocidade

$$\mathbf{F}(x, y) = \langle xy - 2, y^2 - 10 \rangle$$

encontre sua posição aproximada no instante t = 1,05.

As linhas de escoamento (ou linhas de corrente) de um campo vetorial são as trajetórias seguidas por uma partícula cujo campo de velocidade é um campo vetorial dado. Assim, os vetores do campo vetorial são tangentes a suas linhas de fluxo.

(a) Use um esboço do campo vetorial $\mathbf{F}(x, y) = x \mathbf{i} - y \mathbf{j}$ para desenhar algumas linhas de escoamento. Desses seus esboços é possível descobrir qual é a equação das linhas de escoamento?

(b) Se as equações paramétricas de uma linha de escoamento são x = x(t), y = y(t), explique por que essas funções satisfazem as equações diferenciais dx/dt = x e dy/dt = -y. Então resolva as equações diferenciais para encontrar uma equação da linha de escoamento que passa através do ponto (1, 1).

36. (a) Esboce o campo vetorial $\mathbf{F}(x, y) = \mathbf{i} + x \mathbf{j}$ e algumas linhas de escoamento. Qual é o formato que essas linhas de escoamento parecem ter?

(b) Se as equações paramétricas das linhas de escoamento são x = x(t), y = y(t), que equações diferenciais essas funções satisfazem? Deduza que dy/dx = x.

(c) Se uma partícula está na origem no instante inicial e o campo de velocidade é dado por F, determine uma equação para a trajetória percorrida por ela.

961

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_0^1 (t^3 + 5t^6) dt = \frac{t^4}{4} + \frac{5t^7}{7} \bigg|_0^1 = \frac{27}{28}$$

Finalmente, observamos a relação entre as integrais de linha de campos vetoriais e as integrais de linha de campos escalares. Suponha que o campo vetorial \mathbf{F} em \mathbb{R}^3 seja dado na forma de componente, a equação $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$. Usamos a Definição 13 para calcular a sua integral de linha ao longo de C:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_{a}^{b} (P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}) \cdot (x'(t) \mathbf{i} + y'(t) \mathbf{j} + z'(t) \mathbf{k}) dt$$

$$= \int_{a}^{b} \left[P(x(t), y(t), z(t)) x'(t) + Q(x(t), y(t), z(t)) y'(t) + R(x(t), y(t), z(t)) z'(t) \right] dt$$

Mas essa última integral é exatamente a integral de linha de 10. Portanto, temos

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P \, dx + Q \, dy + R \, dz \qquad \text{onde } \mathbf{F} = P \, \mathbf{i} + Q \, \mathbf{j} + R \, \mathbf{k}$$

Por exemplo, a integral $\int_C y \, dx + z \, dy + x \, dz$ do Exemplo 6 poderia ser expressa como $\int_C \mathbf{F} \cdot d\mathbf{r}$, onde

$$\mathbf{F}(x, y, z) = y \,\mathbf{i} + z \,\mathbf{j} + x \,\mathbf{k}$$

16,2 Exercícios

1–16 Calcule a integral de linha, onde C é a curva dada.

- **1.** $\int_C y^3 ds$, $C: x = t^3$, y = t, $0 \le t \le 2$
- **2.** $\int_C xy \, ds$, $C: x = t^2$, y = 2t, $0 \le t \le 1$
- 3. $\int_C xy^4 ds$, C é a metade direita do círculo $x^2 + y^2 = 16$.
- **4.** $\int_C x \sin y \, ds$, C é o segmento de reta que liga (0, 3) a (4, 6).
- **5.** $\int_C (x^2y^3 \sqrt{x}) dy$, $C \in O$ arco da curva $y = \sqrt{x}$ de (1, 1) a (4, 2).
- **6.** $\int_C xe^y dx$, C é o arco da curva $x = e^y de(1, 0)$ a (e, 1).
- 7. $\int_C (x + 2y) dx + x^2 dy$, C consiste nos segmentos de reta de (0, 0) a (2, 1) e de (2, 1) a (3, 0).
- **8.** $\int_C x^2 dy + y^2 dy,$ C consiste na metade superior da circunferência $x^2 + y^2 = 4$ de (2, 0) a (0, 2) e no segmento de reta de (0, 2) a (4, 3).
- **9.** $\int_C xyz ds$, $C: x = 2 \operatorname{sen} t$, y = t, $z = -2 \cos t$, $0 \le t \le \pi$
- **10.** $\int_C xyz^2 ds$, C é o segmento de reta de (-1, 5, 0) a (1, 6, 4).
- **11.** $\int_C xe^{yz} ds$, C é o segmento de reta de (0, 0, 0) a (1, 2, 3).
- **12.** $\int_C (x^2 + y^2 + z^2) ds$, C: x = t, $y = \cos 2t$, $z = \sin 2t$, $0 \le t \le 2\pi$

- **13.** $\int_C xye^{yz} dy$, C: x = t, $y = t^2$, $z = t^3$, $0 \le t \le 1$
- **14.** $\int_C z \, dx + x \, dy + y \, dz$, $C: x = t^2$, $y = t^3$, $z = t^2$, $0 \le t \le 1$
- **15.** $\int_C z^2 dx + x^2 dy + y^2 dz$, C consiste nos segmentos de reta de (1, 0, 0) a (4, 1, 2).
- **16.** $\int_C (y+z) dx + (x+z) dy$, + (x+y) dz, C consiste nos segmentos de reta de (0,0,0) a (1,0,1) e de (1,0,1) a (0,1,2).
- 17. Seja F o campo vetorial mostrado na figura.
 - (a) Se C_1 é o segmento de reta vertical de (-3, -3) a (-3, 3), determine se $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$ é positivo, negativo ou zero.
 - (b) Se C_2 é o círculo de raio 3 e centro na origem percorrido no sentido anti-horário, determine se $\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$ é positivo, negativo ou zero.

1. As Homework Hints estão disponíveis em www.stewartcalculus.com

18. A figura mostra um campo vetorial \mathbf{F} e duas curvas C_1 e C_2 . As integrais de linha de \mathbf{F} sobre C_1 e C_2 são positivas, negativas ou nulas? Explique.

19-22 Calcule a integral de linha $\int_C \mathbf{F} \cdot d\mathbf{r}$, onde C é dada pela função vetorial $\mathbf{r}(t)$.

19.
$$\mathbf{F}(x, y) = xy\mathbf{i} + 3y^2\mathbf{j}, \quad \mathbf{r}(t) = 11t^4\mathbf{i} + t^3\mathbf{j}, \quad 0 \le t \le 1$$

20.
$$\mathbf{F}(x, y, z) = (x + y)\mathbf{i} + (y - z)\mathbf{j} + z^2\mathbf{k},$$

 $\mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j} + t^2\mathbf{k}, \quad 0 \le t \le 1$

21.
$$\mathbf{F}(x, y, z) = \operatorname{sen} x \mathbf{i} + \operatorname{cos} y \mathbf{j} + xz \mathbf{k},$$

 $\mathbf{r}(t) = t^3 \mathbf{i} - t^2 \mathbf{j} + t \mathbf{k}, \quad 0 \le t \le 1$

22.
$$\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} - xy\mathbf{k},$$

 $\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le \pi$

23-26 Use uma calculadora ou um SCA para calcular a integral de linha correta até a quarta casa decimal.

23.
$$\int_C \mathbf{F} \cdot d\mathbf{r}$$
, onde $\mathbf{F}(x, y) = xy \mathbf{i} + \text{sen } y \mathbf{j} \in \mathbf{r}(t) = e^t \mathbf{i} + e^{-t^2} \mathbf{j}$, $1 \le t \le 2$

24.
$$\int_C \mathbf{F} \cdot d\mathbf{r}$$
, onde $\mathbf{F}(x, y, z) = y \sec z \mathbf{i} + z \sec x \mathbf{j} + x \sec y \mathbf{k} \mathbf{e}$
 $\mathbf{r}(t) = \cos t \mathbf{i} + \sec t \mathbf{j} + \sec 5t \mathbf{k}$, $0 \le t \le \pi$

25.
$$\int_C x \sec(y+z) ds$$
, onde *C* tem equações paramétricas $x=t^2$, $y=t^3$, $z=t^4$, $0 \le t \le 5$

26
$$\int_C ze^{-xy} ds$$
, onde C tem equações paramétricas $x=t, y=t^2$, $z=e^{-t}, 0 \le t \le 1$

SCA 27–28 Use um gráfico do campo vetorial **F** e a curva *C* para dizer se a integral de linha de \mathbf{F} ao longo de C é positiva, negativa ou nula. Em seguida, calcule a integral.

27. $\mathbf{F}(x, y) = (x - y)\mathbf{i} + xy\mathbf{j}$, *C* é o arco de círculo $x^2 + y^2 = 4$ percorrido no sentido horário de (2, 0) a (0, -2)

28.
$$\mathbf{F}(x, y) = \frac{x}{\sqrt{x^2 + y^2}} \mathbf{i} + \frac{y}{\sqrt{x^2 + y^2}} \mathbf{j}$$

 \mathbb{A}

C é a parábola $y = 1 + x^2 de(-1, 2) a(1, 2)$

29. (a) Calcule a integral de linha $\int_C \mathbf{F} \cdot d\mathbf{r}$, onde $\mathbf{F}(x, y) = e^{x-1}\mathbf{i} + xy\mathbf{j} \in C \stackrel{\circ}{\mathbf{e}} \text{ dado por } \mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j},$ $0 \le t \le 1$.

correspondentes a t = 0, $1/\sqrt{2}$ e 1 (como na Figura 13).

30. (a) Calcule a integral de linha $\int_C \mathbf{F} \cdot d\mathbf{r}$, onde $\mathbf{F}(x, y, z) = x \mathbf{i} - z \mathbf{j} + y \mathbf{k} e C$ é dado por $\mathbf{r}(t) = 2t\,\mathbf{i} + 3t\,\mathbf{j} - t^2\,\mathbf{k}, -1 \le t \le 1.$

(b) Ilustre a parte (a) utilizando um computador para desenhar C \mathbb{A} e os vetores do campo vetorial correspondentes a $t = \pm 1$ e $\pm \frac{1}{2}$ (como na Figura 13).

SCA 31. Encontre o valor exato de $\int_C x^3 y^2 z \, ds$, onde C é a curva com equações paramétricas $x = e^{-t} \cos 4 t$, $y = e^{-t} \sin 4 t$, $z = e^{-t}$, $0 \le t \le 2\pi$.

32. (a) Determine o trabalho realizado pelo campo de força $\mathbf{F}(x, y) = x^2 \mathbf{i} + xy \mathbf{j}$ sobre uma partícula que dá uma volta no círculo $x^2 + y^2 = 4$ orientada no sentido anti-horário.

(b) Utilize um sistema de computação algébrica para desenhar o campo de força e o círculo na mesma tela. Use essa figura para explicar sua resposta para a parte (a).

33. Um arame fino é entortado no formato da semicircunferência $x^2 + y^2 = 4$, $x \ge 0$. Se a densidade linear for uma constante k, determine a massa e o centro de massa do arame.

Um arame fino tem a forma da parte que está no primeiro quadrante da circunferência com centro na origem e raio a. Se a função densidade for $\rho(x, y) = kxy$, encontre a massa e o centro de massa do arame.

35. (a) Escreva fórmulas semelhantes à Equação 4 para o centro de massa $(\bar{x}, \bar{y}, \bar{z})$ de um arame fino com forma da curva espacial C se o fio tem função densidade $\rho(x, y, z)$.

(b) Determine o centro de massa de um arame com formato da hélice x = 2 sen t, y = 2 cos t, z = 3t, $0 \le t \le 2\pi$, se a densidade for uma constante k.

36. Determine a massa e o centro de massa de um arame com formato da hélice x = t, $y = \cos t$, $z = \sin t$, $0 \le t \le 2\pi$, se a densidade em qualquer ponto for igual ao quadrado da sua distância do ponto à origem.

Se um arame com densidade linear $\rho(x, y)$ está sobre uma curva plana C, seus momentos de inércia em relação aos eixos x e y

$$I_x = \int_C y^2 \rho(x,y) \ ds \qquad I_y = \int_C x^2 \rho(x,y) \ ds$$
 Determine os momentos de inércia do arame do Exemplo 3.

Se um arame com densidade linear $\rho(x, y, z)$ está sobre uma curva espacial C, seus momentos de inércia em relação aos eixos x, y e z são definidos por

$$I_{x} = \int_{C} (y^{2} + z^{2})\rho(x, y, z) ds$$

$$I_{y} = \int_{C} (x^{2} + z^{2})\rho(x, y, z) ds$$

$$I_{z} = \int_{C} (x^{2} + y^{2})\rho(x, y, z) ds$$

Determine os momentos de inércia do arame do Exercício 35.

39. Determine o trabalho realizado pelo campo de força $\mathbf{F}(x, y) = x \mathbf{i} + (y + 2) \mathbf{j}$ sobre um objeto que se move sobre um arco da cicloide $\mathbf{r}(t) = (t - \sin t)\mathbf{i} + (1 - \cos t)\mathbf{j}, 0 \le t \le 2\pi$.

Determine o trabalho realizado pelo campo de força $\mathbf{F}(x, y) = x^2 \mathbf{i} + y e^x \mathbf{j}$ em uma partícula que se move sobre a parábola $x = y^2 + 1$ de (1, 0) a (2, 1).

41. Determine o trabalho realizado pelo campo de força $\mathbf{F}(x, y, z) = \langle x - y^2, y - z^2, z - x^2 \rangle$ sobre uma partícula que se move ao longo do segmento de reta de (0, 0, 1) a (2, 1, 0).

42. A força exercida pela carga elétrica colocada na origem sobre uma partícula carregada em um ponto (x, y, z) com vetor posição $\mathbf{r} = \langle x, y, z \rangle$ é $\mathbf{F}(\mathbf{r}) = K\mathbf{r}/|\mathbf{r}|^3$, onde K é uma constante. (Veja o Exemplo 5 da Seção 16.1.) Encontre o trabalho feito quando a partícula se move ao longo de uma linha reta de (2, 0, 0) a (2, 1, 5).