Low Power Wide Area Networks, NB-IoT and the Internet of Things

Philip Chang Keysight Technologies

Oct. 2016

LPWAN & the Internet of Things Agenda

I. IoT and LPWAN

II.3GPP Cat M & NB-IoT

III.Test Challenge & Solution

IoT Market Predictions

>30B Connected devices by 2020
ABI Research

50B devices will be connected by 2020 *Cisco*

95.5B connected devices by 2025 IHS Technology

"90% of all Samsung's products will be loT devices by 2017, and 100% by 2020"

BK Yoon Samsung Electronics

BK Yoon Samsung Electronics President and CEO

IoT Radios

© 2016 Keysight Technologies

LPWAN & the Internet of Things

Low Power Wide Area (LPWA)

Narrow band + Robust modulation =

- 20dB better link budget than cellular
- 10 year battery life, Very low data rates

Typical applications

Street lighting (Telensa widely deployed)

Parking space occupancy sensors

Burglar alarm back-up (cellular jammers widely available)

Social housing use cases (e.g. smoke alarm and energy credit policing **SIGFOX** in UK)

Pet tracking

Garbage collection bin fill level for pick up route optimization (LoRa)

Agricultural sensors Forest fire detection

Coverage pools

Region coverage

Global coverage

Street lighting

Fire detection

Social housing monitoring

Parking sensor

Soil moisture

Trash collection

Pet tracker

Bag tracker

Bike tracker

Embedded asset status

Capital asset Meter

IoT Key Enabling Technologies SIGFOX

- SIGFOX is a startup in France building a low cost network dedicated for IoT.
- Uses unlicensed spectrum mostly sub-GHz band and patented ultra narrow band (UNB) communication
 - Ultra low throughput ~100 bps
 - Device send 0 and 140 messages/day, each message is up to 12 bytes
 - Low power: Up to 20 years of battery life
 - Long range up to 30 miles in rural area and 2-6 miles in urban area
- Devices require a SIGFOX modem and SIGFOX network
- Target applications: smart meter, pet tracking, smoke detector, agriculture etc...
- Networks deployed in France, Netherlands,
 Russia and Spain; Launching 902 MHz network
 in San Francisco

reysigni

Confidential

Page

LoRa Alliance

- LoRa: Long Range M2M communications used for applications like loT, using very low power levels. LoRa Alliance is an open, non-profit association.
- Members of the LoRa Alliance include Actility, Cisco, Eolane, IBM, Kerlink, IMST, MultiTech, Sagemcom, Semtech, and Microchip Technology.
- Frequency bands: sub-1GHz ISM bands:
 - 868 MHz for Europe
 - 915 MHz for North America
 - 433 MHz band for Asia

Key Features

- Low Cost: simple modulation
- Low power: Long of ten yrs
- Long range: ~15 20 km

Also: Axsemi, Freescale, Analog Devices, etc...

Wide area networks

Technology Trade-offs

Pros:

- Long range
- Long battery life (up to 20 years)
- Low cost

Cons:

- New standard
- Unlicensed band interference
- Can't run on existing cellular network – needs a dedicated SIGFOX network
- Very low data rate can only be used for loT

Pros:

- Long range
- Long battery life (>10 years)
- Low cost
- Uses cellular network as backhaul

Cons:

- New standard
- Unlicensed band interference
- Very low data rate can only be used for loT

Pros:

- Well established standards
- Long rage
- · High data rate
- Very wide coverage
- Licensed band (except LTE-U)

Cons:

- Not optimized for IoT
 - Battery life
 - Cost

LPWAN & the Internet of Things Agenda

I. IoT and LPWAN

II.3GPP Cat M & NB-IoT

III.Test Challenge & Solution

IoT Radios 3GPP LTE-MTC, eMTC/Cat M, LTE-V 3GPP NB-IoT NFC **EMV** 3GPP GSM, WCDMA, EC-GPRS 3GPP2 Cdma2000, WiMAX Cellular (licensed) <10cm WPAN <100km <5km Terms not precise LPWAN (licensed) **WWAN Proximity WHAN WNAN WFAN WLAN** LPWAN (un-licensed) ISA100.11a (6LoWPAN) Wi-SUN (6LoWPAN) Bluetooth/LE WirelessHART ZigBee NAN (6LoWPAN) ANT+ Many others Wireless M-bus MiWi Many others 802.11a/b/g/n/ac (WiFi) ZigBee **SIGFOX** 802.11ah (WiFi HaLow 1km) Z-Wave LoRa 802.11p (V2X) Thread (6LoWPAN) **Telensa** 802.11af (white space) EnOcean OnRamp/INGENU Many others Weightless P Many others WPAN: Wireless Personal Area Network Blue: > billion units/year now WHAN: Wireless Home Area Red: emerging WFAN: Wireless Field (or Factory) Area WLAN: Wireless Local Area WNAN: Wireless Neighbourhood Area WWAN: Wireless Wide Area LPWAN: Low Power Wide Area Network

© 2016 Keysight Technologies

LPWAN & the Internet of Things

GTI 2.0 啟航 加速推動LTE應用服務與擴大

LTE-A Pro發展資源為其重要的工作目標

GTI 1.0 (2011年~2015年)

GTI 2.0 (2016年~)

推動 TDD 4G Plus技術過渡到 5G世代

推動NB-IoT 於2017年實 現商用化

資料來源:DIGITIMES · 2016/3

LTE MTC (Machine-Type Communications)

Features

– Power saving:

- Enhanced Power Save Mode (PSM): More efficiently turn on/off modem; optimized for scheduled applications
- Extended Discontinuous Reception (DRX): Longer sleep cycles optimized for delay-tolerant
- Connectionless Random Access Channel (RACH)
- Less frequent Tracking Area Updates (TAUs) and measurements

– Reduces device cost:

- Narrowband (~1 MHz)
- Reduced Data Rate (<2 Mbps)
- Single receive antenna
- Half Duplex Operation

Data refer from Qualcomm

3GPP Release 13 Cellular IoT timelines

GERAN Objectives

- 164dB link budget (GPRS +20dB)
- 40 devices per home (~50k/cell)
- >160bps at range limit
- 10 second latency
- 10 year life with 5Wh ~AA battery

eMTC Cat M:

- Machine Type Communication
- 1.4MHz Bandwidth LTE derivative
- Software update to LTE infrastructure
- 1Mbps, full mobility, 156dB link, 10 year batt

NB-IoT:

- Narrowband IoT
- 200 (180kHz) Clean sheet format
- Software update to LTE or GSM infrastructure
- <~250kbps, nomadic, 164dB, 10 year batt

EC-GPNO

- Extended coverage GPRS
- 200kHz GSM/EDGE
- Repetitions to get to 164dB link budget
- EC-PDTCH and EC-PACCH, ~52 min DRX
- Software update to GSM infrastructure

2015 2016 2017

GSMA Mobile IoT initiative backed by 21 MNOs:

AT&T, Bell Mobility, Bermuda Digital Comm, China Telecom, China Unicom, China Mobile, Deutsche Telekom, Etisalat, KDDI, KT, Mobistar, NTT DoCoMo, Orange, Singtel, Softbank, Taiwan Mobile, Telecom Italia, Telefonica, Telenor, Telstra, Verizon, Vodafone

3GPP spec dev

3GPP test case development

Conformance testing

Field trials

Commercial service

LPWAN & the Internet of Things

Cat M 3GPP R13

Close to standard LTE including full mobility

~ 15dB Coverage enhancements over standard LTE

- Frequency hopping
- PSD (Power Spectral Density) boosting
- TTI bundling or repetition (redundant transmission)
- Multi-subframe channel estimation

Power and complexity savings

- Fewer supported transmission modes
- Reduced max Tx power (20dBm power class)
- Reduced measurement reports
- PSM (R12 Power Saving Mode) & eDRX (R13 extended Discontinuous Reception)
- C-eDRX (Connected mode eDRX 5.12 and 10.24 second cycles)
- I-eDRX (Idle mode eDRX ~44 minute cycles)

Deployable in any 6PRB group e.g. of a 20MHz channel

- New M-PDCCH similar to EPDCCH (Physical Dedicated Control Channel)
- UE uses 6 central PRBs for synchronization & PRACH then re-tunes to another 6PRB frequency range for follow-on control messages
- No support for PDCCH, PCFICH, PHICH

NB-IoT 3GPP R13

Clean-sheet design though leverages significantly from LTE Cat M but with nomadic mobility only

- Coverage enhancements (~23dB improvement over standard LTE)
- Downlink leveraged from 1 LTE PRB
- Uplink: LTE-like 15kHz subcarrier multi-tone SC-FDMA, single tone 15kHz FDMA or 3.75kHz FDMA
- R13 standardization focussing on FDD, TDD could be added later

Power and complexity savings

- RLC-Transparent Mode and simplified RLC-Ack' Mode only (TBC no RLC-Unack' Mode)
- Downlink TBCC (tail biting convolutional code) easier to decode than LTE turbo-codes
- Half-duplex only
- Control plane (CP) data transmission (inside RRC/NAS messages) as a lower overhead alternative to full DRB IP user plane (UP) data transmission
- C-eDRX (Connected mode eDRX 5.12 and 10.24 second cycles)
- I-eDRX (Idle mode eDRX ~3 hour cycles)

New NB channels

Downlink:

- NPBCH (physical broadcast channel)
- **NPDSCH** (physical downlink shared channel)
- NPDCCH (physical downlink control channel),
- NRS (Narrowband Reference Signal)
- NPSS/SSS (primary and secondary synchronization channels)

Uplink:

- NPUSCH (Narrowband Physical Uplink Shared CHannel),
- NPRACH (Narrowband Physical Random Access CHannel),
- DMRS (demodulation reference signal)

Control plane and user plane data transmission Alternative NB-IoT Control LTE DRB User plane Plane data transmission data transmission NAS IP RRC **PDCP** Low overhead IP overhead **RLC** MAC PHY LPWAN & the Internet of Things Page 17

3GPP Cellular IoT summary

	3GPP Rel 12	3GPP Rel 13				
	MTC Cat 0	eMTC Cat M*	EC-GPRS	NB-IoT*		
Heritage	LTE	LTE	GSM	Clean-slate		
Bandwidth (downlink)	20 MHz	1.4 MHz	200 kHz	180kHz (12 by 15kHz)		
Bandwidth (uplink)	20 MHz	1.4 MHz	200 kHz	Single-tone (180kHz by 3.75kHz or 15kHz) or multi-tone (180kHz by 15kHz)		
Multiple access (downlink)	OFDMA	OFDMA	TDMA	OFDMA		
Multiple access (uplink)	SC-FDMA	SC-FDMA	TDMA	Single-tone FDMA or multi-tone SC-FDMA		
Modulation (downlink)	QPSK, 16QAM, 64QAM	QPSK, 16QAM, 64QAM	GMSK, optional 8PSK	BPSK, QPSK, optional 16QAM		
Modulation (uplink)	QPSK, 16QAM	QPSK, 16QAM	GMSK, optional 8PSK	TBC $\pi/4$ -QPSK, rotated $\pi/2$ -BPSK, 8PSK optional 16QAM		
Peak data rate	1 Mbps	1 Mbps	10 kbps to 240kbps TBC	DL up to 250kbps TBC, UL single tone up to 20 to 64kbps TBC, UL multi-tone up to 250kbps TBC		
Coverage (link budget)	~141dB	~156dB	~164dB	~164dB		
Mobility	Full	Full	Full	Nomadic		

Note * Cat M also currently referred to as Cat M1, NB-IoT also referred to as Cat M2. Details for NB-IoT are subject to change as 3GPP drafting continues

NB-IoT 5G context NB-IoT is a pre-5G technology likely to be developed into 5G Low power ↑ massive MTC Massive machine type communications Deep coverage Density Low latency Data rate Ultra reliable low latency Enhanced mobile broadband **↓**Mobility Vehicles VR & AR **Drones Smartphones** LPWAN & the © 2016 Keysight Technologies

Internet of Things

Licensed and unlicensed examples

	SIGFOX	LoRaWAN	NB-loT	Cat M	EC-GPRS
Release	Now	Now	H2 2016	H2 2016	H2 2016
Link budget	~162dB	~157dB	~164dB	~156dB	~164dB
Battery life	>10 years	>10 years	>10 years	>10 years	>10 years
Spectrum	un & lightly-license bands e.g. 868, 915 MHz	un & lightly-license bands e.g. 169, 433, 470, 868, 915 MHz	GSM & LTE Licensed bands	LTE Licensed bands	GSM Licensed bands
Rates and modulation	Uplink: 100bps BPSK 100Hz BW Downlink: 500bps GFSK 600Hz BW	GFSK, CSS (Chirp Spread Spectrum) ~0.3 to 50kbps 125kHz BW	Up to ~250kbps Uplink π/4-QPSK, rotated π/2 BPSK, 8PSK, opt 16QAM Downlink BSK-16QAM 180kHz BW	1Mbps QPSK, 16 or 64QAM 1.4MHz BW	~10 to ~240kbps GMSK, opt 8PSK, 200kHz BW
Silicon	Multi-vendor	Semtech (2 nd vendor announced)	Multi-vendor	Multi-vendor	TBC
Protocol	SIGFOX	Semtech (2 nd vendor announced)	3GPP Multi-vendor	3GPP Multi-vendor	3GPP Multi-vendor
Certification	SIGFOX	LoRa Alliance	GCF/PTCRB TBC	GCF/PTCRB TBC	GCF/PTCRB TBC

LPWAN & the Internet of Things Agenda

I. IoT and LPWAN

II.3GPP Cat M & NB-IoT

III.Test Challenge & Solution

IoT Verification Challenges

Power consumption

Lifetime SLA, software update drain

Operator settings, IoT protocol selection

Unhandled software and network exceptions

Achieving deep in-building coverage

3rd party enclosure/antenna effects

Multi-radio interference/inter-mod

Long time between re-boot, unattended recovery

Authentication, security, secure boot

Remote software update

Certification & regulation test e.g. GCF/PTCRB

Operator acceptance, interop lab and field test

System integrator acceptance

Radio frequency design

Stability/longevity

Acceptance/production

Example applications

Power consumption

UXM

UXM message editor

Source Measurement Unit

UXM RF Meas'

GP RF test tools

Radio frequency design

UXM built-in app server

Antenna test systems

Stability/longevity

Test Automation Platform (TAP)

T4000S RCT/RRM operator RF

EXM high volume mfg

Anite protocol and operator test

Power consumption analysis

LPWAN & the Internet of Things

Power consumption analysis

CX3300 Current Waveform Analyzer

Probing for insight

89601B VSA Software

N9010B EXA Signal Analyzer, Multi-touch, 10 Hz to 44 GHz

N2820A 3 MHz/50uA High Sensitivity AC/DC Current Probe

N6705B with Source Measurement Unit

Infiniium S-Series oscilloscopes

Device under test

Base station and network emulation

Keysight UXM Wireless Test Set

- 300MHz to 6GHz Multi-format base station emulation
- Built-in server PC to host cloud & remote end-point apps
- End to end IP connection to internet
- IMS support
- Tx and Rx measurements
- Built-in channel emulator (fader)

RF Design verification

M9420A VXT PXIe Vector Transceiver

- 60MHz to 6GHz
- 160MHz channel bandwidth

Complement with:

- Vector Network analysers
- Microwave sources and analyzers
- Power supplies
- Software, fixtures, systems, services

Device under test

Broadest format coverage

- LTE-A, GSM, WCDMA, cdma2000
- eMTC Cat M and NB-IoT TBC
- GNSS
- 802.11a/b/g/n/ac/p/j/ah/af
- 802.15.4 (Zigbee, Thread/ 6LoWPAN)
- Bluetooth/BLE, Z-Wave, ANT+
- Wireless M-Bus, LoRa, SIGFOX & many others

Production ramp

- Scalable and upgradeable from 1 to 4 TRX
- Port switching, robust N-connectors
- Broadest format coverage with arb files and X-Apps
- Systems, software, consulting and services

DUT 1

Keysight Technologies

Network Analyzers

= 0. O. O. O.

Anite

Propsim channel emulator

FieldFox

Modelling tools

A9000 protocol conformance test

Compliance

Manufacturing

Deployment

R&D **Design validation** Modelling PHY/RF L2/L3 **Apps** Integration

RF performance

Throughput

Battery Drain

Stress

Regression

OTA

Lab IOT

Operator

GCF/PTCRB

Regulations

IC

Module

i3070 test systems

Product

Sample

Debug

Spectrum clearance

Installation

Optimization

Repair

Operations

Thermal test

RF & RRM conformance

EXM Wireless Test Set

VSA/VSG

Source measurement units

Oscilloscopes

Spectrum regulation and network optimization tools

LPWAN & the Internet of Things

Thank You !!!

Questions and Answers

