Definitions and Example for Confidence Intervals

Definition: A $(1-\alpha)*100\%$ confidence interval for a parameter Θ is a pair of random variables A and B such that $P(A \leq \Theta \leq B) = 1-\alpha$.

- · A and B are random voicibles because they dependen Sample data.
- · Based on a particular sample we observe realized values a ord b. The interval La, b] is our observed considerce interval.

Motes;

- 1) If we want a 95% C.I., then x=0.05! (1-x)*100% = (1-0.05)*100% = 0.95*100% = 95% If we want a 99% C.I., then x=0.01.
- 2) The quantity (1-0x)*100% (ex 95%) is referred to as the confidence level of the interest.

Example: X,, X, id Normal (M, 02) (both M and of unknown)
(both u ond or cunknown)
From day 2 of class:
$\frac{\overline{X} - M}{S/\sigma n} \sim t_{n-1}$
where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is the sample mean (as a random variable)
and $S = \sqrt{\frac{2}{2}(X_i - X)^2}$ is sample about deviction (as a random variable)
(as a random Garable)
Denote the quantile q of the true distribution by true(9)
Then $P(t_{n-1}(\overset{\sim}{\beta}) \leq \frac{\tilde{X} - \mu}{5 \ell_{n-1}} \leq t_{n-1}(1-\overset{\sim}{\beta})) = 1-\alpha$
For 95% CI: 2=0.05 (distribution of $\frac{\overline{X} - \mu}{5/\sqrt{n}}$)
$\sqrt{2} = 1 - \sqrt{2}$
$1-\frac{4}{3}=0.975$ $=0.95$ $=0.95$ $=0.95$ $=0.95$
Over the second of the second
$+ \frac{1}{1-\frac{d}{2}}$
area under come is 0.975

Our Goal: A pair of random variables A, B such that $P(A \le \mu \le B) = 1 - \alpha$ ²

$$1-\alpha = P(t_{n-1}(\frac{\alpha}{2}) \leq \frac{\overline{X}-\mu}{15/\nu_n} \leq t_{n-1}(1-\frac{\alpha}{2}))$$
 random variables everything else is a number.

$$= P(t_{n-1}(\frac{d}{a}) \cdot \frac{S}{\sqrt{n}} \leq \frac{X}{2} - \mu \leq t_{n-1}(1-\frac{d}{a}) \cdot \frac{S}{\sqrt{n}})$$

$$= P(-\frac{X}{2} + t_{n-1}(\frac{d}{a}) \cdot \frac{S}{\sqrt{n}} \leq -\mu \leq -\frac{X}{2} + t_{n-1}(1-\frac{d}{a}) \cdot \frac{S}{\sqrt{n}})$$

$$= P(\frac{X}{2} - t_{n-1}(\frac{d}{a}) \cdot \frac{S}{\sqrt{n}} \geq \mu \geq \frac{X}{2} - t_{n-1}(1-\frac{d}{a}) \cdot \frac{S}{\sqrt{n}})$$

$$= P(\frac{X}{2} - t_{n-1}(1-\frac{d}{a}) \cdot \frac{S}{\sqrt{n}})$$

Our
$$(1-x)+100\%$$
 confidence introd for μ is random variables $\left[\overline{X}-t_{n-1}(1-\frac{x}{2})\overline{S}\right]$

Based on a data set with observed sample near π and sample standard abulations, our observed confidence interval is

$$\left[\bar{\chi} - t_{n-1} \left(1 - \frac{t}{a}\right) \frac{s}{sn}, \bar{\chi} - t_{n-1} \left(\frac{a}{a}\right) \frac{s}{sn}\right]$$

no random variables! all just numbers, can't make probability statements.

Example: Body Temperatures

• It's generally believed that the average body temperature is 98.6 degrees Farenheit (37 degrees Celsius).

```
• Let's investigate with measurements of the temperatures of 130 adults.
                                          Confidence Interval Calculation
   Sample mean and standard deviation:
   x_bar <- mean(bodytemp$temp)</pre>
  x_bar
   ## [1] 98.24923
   s <- sd(bodytemp$temp)</pre>
   ## [1] 0.7331832
   Verifying our sample size is n = 130
   n <- nrow(bodytemp)</pre>
   ## [1] 130
   Finding appropriate quantiles for a 95% confidence interval:
   t_{lower} \leftarrow qt(0.025, df = n - 1)
   t_lower
   ## [1] -1.978524
   t_{upper} \leftarrow qt(0.975, df = n - 1)
   t_upper
   ## [1] 1.978524
   Calculation of the confidence interval:
                                   -> 98,249 - 1,979 x 6,793/JI30
   x_bar - t_upper * s / sqrt(n)
   ## [1] 98.122
                                  -> 98,249 - (-1.979) * O.733/JEA
   x_bar - t_lower * s / sqrt(n)
   ## [1] 98.37646
                                      98,249 + 1.979 +0.733/1130
Our observed confidence interveil for u is [98,122, 98,376]
Interpretation: We are 95% confident that the paper lation mean body temperature is between 98,122 of and 98,376 of.
Non-interpretation (can't say this!!!)
```

There is probability 0.95 that u is between 98.122 and 98.376. (This is the a Bayosian credible introl!)

Comparison of Frequentist confidence interverls and Bayesian credible intervels.

In both cases: a range of placesible values for the unknown parameter O.

	U	
	Bayesian	Frequentist
The random variable is:	(a) (the parameter)	A, B the endpoints of the confidence interval
Why is the random?	Expresses our stak of Inowledge about 0.	Each sample vertake gives a different confidence interval.
How binterpret:	The probability that @ is in the interval is 0.95	Before taking sangle: The probability that O is in the random interval [A, B] is 0.95 After taking sample: O is either in the interval [a, b] or not, and we don't know for swe whether or not it is. For 95% of samples, the interval calculated based on that sample would contain O.