

Razdalje

Velikostne skale življenja

Kaj je veliko in kaj majhno?

- Velikosti gradnikov primerjamo s tipično dimenzijo, npr. s premikom fronte molekul zaradi difuzije (difuzijski premik), ki je
 - odvisen od reologije (povezanosti prostora)

$$\Lambda^2 \propto D \tau$$

- odvisen od velikosti in tipičnega časa sistema
- tipični difuzijski premik v značilnem času spreminjanja konformacij (1 ns) je za majhne molekule:
 - v vodni raztopini 10 nm,
 - v membrani 1 nm,
 - v močno koncentrirani sladkorni raztopini pa manj kot 0.3 nm

Ravnila

- Če hočemo izmeriti velikost, moramo narediti "ravnilo" in definirati "enoto" (spodnjo mejo ločljivosti)
- "Enoto" definira orodje, s katerim preiskujemo snov
 - Če snov gledamo s svetlobo ali hitrimi delci, je to njihova valovna dolžina

```
• vidna svetloba \lambda = 300 - 700 \text{ nm}
```

• rentgenska svetloba
$$\lambda = 0.1$$
 - 10 nm

• elektroni
$$\lambda = 0.02 - 0.1 \text{ nm}$$

- Če opazujemo sosledje difuzijskih dogodkov, je to difuzijski premik
 - fotonska korelacijska spektroskopija $\Lambda = 10 \text{ nm}$

Sipanja kot ravnila

Sipanja

- ojačanje in slabljenje širjenja valovanja (interferenca) po uklonu na ovirah brez absorpcije
- meja ločljivosti: valovna dolžina in urejenost vzorca
- primeri:
 - sipanje rentgenskih žarkov
 - sipanje elektronov
 - sipanje nevtronov

SAXS

electron diffraction

Spektroskopije kot ravnila

Spektroskopije

- odvisnost absorpcije svetlobe od njene energije
- meja ločljivosti: najmanjša izmerljiva spektralna sprememba
- doseg: najmanjša izmerljiva izmenjava energije
- primeri:
 - FRET (fluorescence resonance energy transfer)
 - NOE (nuclear Overhauser effect)
 - ELDOR (electron-electron double resonance)

Mikroskopije kot ravnila

- Mikroskopije
 - krajevno odvisna absorbcija svetlobe ali sipanje delcev
 - meja ločljivosti: valovna dolžina

Velikostne skale življenja

Kako lahko vidimo majhne stvari?

Kako lahko vidimo majhne stvari?

Povečava slike zaradi uklona svetlobe na ukrivljeni površini:

Optična povečava: $M = y_2 / y_1 = f_2 / f_1$

Kratka zgodovina svetlobne mikroskopije

17. stol.

20. stol.

21. stol.

Zgradba presevnega mikroskopa

Kako podrobno vidimo majhne stvari?

Ločljivost mikroskopa zaradi uklona svetlobe je odvisna od:

- valovne dolžine svetlobe λ
- numerične odprtine objektiva NA = 2 n sin(α)
 n lomni količnik medija
 α polovični kot zajema svetlobe
- ne od povečave!

Ernst Abbe

Velikostne skale življenja

Kaj manjka tem slikam?

V čem se razlikujeta sliki iste celice?

Presevna mikroskopija

Fluorescenčna mikroskopija

citoskelet / nanomaterial / kolokalizacija

Fluorescenca: revolucija kontrasta

Osnove fluorescence

Energijski prehodi elektrona

Diagram Jabłonskega

Spekter svetlobe

Fluorescenčni mikroskop

Konfokalni fluorescenčni mikroskop

• Omogoča optično rezinjenje

3D rekonstrukcija:

Superločljiv fluorescenčni mikroskop

Fluorescenčne kroglice (40 nm)

Velikostne skale življenja

Fluorescenca: revolucija specifičnosti

Fluorescenčna barvila

Fluorescenčni proteini

Chromophore Structural Motifs of Green Fluorescent Protein Variants EBFP Gly67 Figure 2 Chromophore Structural Motifs of Green Fluorescent Protein Variants ECFP Trp66 Fluorescent Protein Variants ECFP Trp66 Gly67 Tyr66 Tyr66 Figure 2

Organska barvila

Fluorescenčno označevanje proteinov

Nespecifično

Označevanje izoliranih proteinov (npr. protiteles)

Specifično

Fluorescenčno označena protitelesa

Ekspresija fluorescenčnih proteinov v celici

Fluorescenčno označevanje DNA/RNA

Nespecifično

DAPI, Hoechst, ...

Specifično

Fluorescence in situ hybridization (FISH)

Fluorescenčno označevanje lipidov

Nespecifično

Fluorescenčni analogi lipidov, maščobnih kislin, transmembranskih proteinov ipd. (amfifilne molekule)

Specifično

Vezava na izbrano vrsto lipidov (fosfatidilserin)

Fluorescenčna mikroskopija Kontrast + specifičnost 1 μm konfokalno **STED**