Задание 1 Пусть $(r_k)_{k=1}^{\infty}$ — одна из следующих последовательностей:

1.
$$r_k := \alpha^k$$

$$\mathbf{1.} \ \ r_k := \alpha^k \qquad \qquad \mathbf{3.} \ \ r_k := \alpha^{2^k}$$

6.
$$r_k := 1/k!$$

4.
$$r_k := 1/k$$

$$2. \ r_k := \alpha^{k^2}$$

5.
$$r_k := k^p$$

7.
$$r_k := 1/k^k$$

Для каждого из указанных вариантов классифицируйте $(r_k)_{k=1}^\infty$ по скорости сходимости (линейная, сублинейная, сверхлинейная). В случае сверхлинейной сходимости дополнительно выясните, имеет ли место квадратичная сходимость. Если у последовательности есть параметры (α, p) , то нужно провести анализ в зависимости от значения данного параметра (считаем, что параметр любое вещественное число).

Задание 2

Пусть C>0, и пусть $(r_k)_{k=1}^{\infty}$ — одна из следующих трех последовательностей:

1.
$$r_k := C/k^{\gamma}$$
, где $\gamma > 0$.

2.
$$r_k := Cq^k$$
, где $0 < q < 1$.

3.
$$r_k := C(C^{-1}R)^{2^k}$$
, где $R > 0$ и $0 < C^{-1}R < 1$.

Пусть $0<\varepsilon<1$, и пусть $T(\varepsilon):=\min\{k\geq 1: r_k\leq \varepsilon C\}$ — первый момент времени достижения относительной точности ε .

- 1. Классифицируйте по скорости сходимости
- 2. Для каждого из трех вариантов последовательности выпишите явную формулу для T.
- 3. Проанализируйте, насколько сильно T зависит от точности ε и параметра последовательности (γ , q, R соответственно).
- 4. Заполните следующие таблицы, вписав в пустые ячейки соответствующие числовые значения T:

	1					
•	ε	1	2	0.5		
	10^{-1}					
	10^{-3}					
	10^{-5}					
	10^{-7}					
	10^{-12}					

	2						
ε q	0.9	0.999	0.99999				
10^{-1}							
10^{-3}							
10^{-5}							
10^{-7}							
10^{-12}							

	3							
	ε R	0.9C	0.999C	0.99999 C				
	10^{-1}							
•	10^{-3}							
	10^{-5}							
	10^{-7}							
	10^{-12}							

Для всех производных (в том числе возникающих в задании 6) написать тест, проверяющий корректность вычислений с помощью разностного дифференцирования. Задание считается выполненым только при наличии как теста, так и вывода аналитической формулы

Задание 3

Упростите каждое из следующих выражений:

- 1. $\det(AXB(C^{-T}X^TC)^{-T})\text{, где }A,B,C,X\in\mathbb{R}^{n\times n},\det(C)\neq0,\det(C^{-T}X^TC)\neq0.$
- 2. $\|uv^T-A\|_F^2-\|A\|_F^2$, где $u\in\mathbb{R}^m$, $v\in\mathbb{R}^n$, $A\in\mathbb{R}^{m\times n}$.
- 3. $\operatorname{Tr}((2I_n+aa^T)^{-1}(uv^T+vu^T))$, где $a,u,v\in\mathbb{R}^n.$

Задание 4

Пусть f — одна из следующих функций:

1.
$$f(x) := \frac{1}{2} \|xx^T - A\|_F^2$$
, где A p.d., $x \in \mathbb{R}^n$

2.
$$f(x) := \frac{\langle Ax, x \rangle}{|x|^2}$$
, где A p.d., $x \in \mathbb{R}^n$

3.
$$f(x):=\langle x,x \rangle^{\langle x,x \rangle}$$
, $x \in \mathbb{R}^n, x \neq 0$

Для каждого из указанных вариантов вычислите вектор градиент ∇f и матрицу гессиан $\nabla^2 f$

Задание 5

Пусть f(X), X p.d. одна из следующих функций

1.
$$f(X) := \text{Tr}(X^{-1})$$
.

2.
$$f(X):=\langle X^{-1}v,v \rangle$$
, где $v\in \mathbb{R}^n.$

3.
$$f(X) := (\det(X))^{1/n}$$
.

Для каждого из указанных вариантов покажите, что вторая производная $D^2f(X)[H,H]$ имеет постоянный знак

Задание 6

Пусть f — одна из следующих функций:

- 1. функция $f(x,y) := 2x^2 + y^2(x^2 2)$.
- 2. функция $f(x,y) := (1-x)^2 + \lambda (y-x^2)^2$.
- 3. функция $f(x) := \frac{\langle Ax, x \rangle}{|x|^2}$, где A p.d..

Для каждого из указанных вариантов найдите все точки стационарности f и определите их тип (локальный минимум/максимум, седловая точка).

Задание 7 Для нескольких функций на ваш выбор исследовать зависимость ошибки численного дифференцирования от выбираемого шага h и построить график, на котором по оси y ошибка аппроксимации, по оси x выбранный ε . На оси x отметить точки $\sqrt{\varepsilon_m}, \varepsilon_m$, где ε_m машинная точность для используемого типа Эксперимент провести для одинарной и двойной точности (float32, float64)