1 Lebesgue Integration Theory

1.1 Review of measure theory

Definition. Given a set E, a σ -algebra on E is a collection \mathcal{E} of subsets of E such that:

- (i) $E \in \mathcal{E}$;
- (ii) $A \in \mathcal{E} \Rightarrow A^c = E \setminus A \in \mathcal{A}$;
- (iii) $A_n \in \mathcal{E}, n \in \mathbb{N} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{E}.$
- (E,\mathcal{E}) is called a measurable space, and any $A \in \mathcal{E}$ is called a measurable set.

Given a collection \mathcal{A} of subsets of E, $\sigma(\mathcal{A})$ is the smallest σ -algebra containing \mathcal{A} .

Definition. A measure on (E, \mathcal{E}) is a function $\mu : \mathcal{E} \to [0, \infty]$ such that

- (i) $\mu(\emptyset) = 0;$
- (ii) $A_n \in \mathcal{E}, n \in \mathbb{N} \text{ disjoint } \Rightarrow \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \mu(A_n).$

 (E, \mathcal{E}, μ) is called a measure space.

Definition (Borel measure). If (E, τ) is a topological space, then $\sigma(\tau)$ is called a *Borel algebra*, denoted $\mathcal{B}(E)$, and a measure on $(E, \mathcal{B}(E))$ is called a *Borel measure*.

Example. $E = \mathbb{R}^n$, μ the Lebesgue measure satisfying $\mu((a_1, b_1) \times \ldots \times (a_n, b_n)) = (b_1 - a_1) \ldots (b_n - a_n)$.

Notation: we write $\mu(dx) = dx$ and $\mu(A) = |A|$ when μ is the Lebesgue measure.

Definition (Measurable function). Let (E, \mathcal{E}) and (F, \mathcal{F}) be measurable spaces. Then $f: E \to F$ is measurable if $f^{-1}(A) \in \mathcal{E}$ whenever $A \in \mathcal{F}$. If (E, \mathcal{E}) and (F, \mathcal{F}) are Borel algebras, a measurable function is called a Borel function. Special case: $(F, \mathcal{F}) = ([0, \infty], \mathcal{B}([0, \infty]))$, then $f: E \to F$ is called a nonnegative measurable function.

Fact. The class of measurable functions is closed under addition, multiplication and taking (pointwise) limits.

Definition. $f: E \to F$ $(F = [0, \infty] \text{ or } \mathbb{R}^n \text{ or } \mathbb{C}^n)$ is a *simple function* if $f = \sum_{k=1}^K a_k \mathbb{1}_{A_k}$ for some $K \in \mathbb{N}$, $a_k \in F$, $A_k \in \mathcal{E}$. For a simple function, the integral is

$$\int f d\mu = \int f(x) d\mu(x) = \sum_{k=1}^{K} a_k \mu(A_k) \ (0 \cdot \infty := 0).$$

For a non-negative measurable f, we define

$$\int f \mathrm{d}\mu = \sup \left\{ \int g \mathrm{d}\mu : g \text{ simple }, 0 \leq g \leq f \right\}.$$

Definition. A measurable function $f: E \to \mathbb{R}$ is said to be *integrable* if $\int |f| d\mu < \infty$. Write $f = f_+ - f_-$ with f_\pm non-negative, measurable, $\int f_\pm d\mu < \infty$, and then $\int f d\mu = \int f_+ d\mu - \int f_- d\mu$. For $f: E \to \mathbb{R}^n$, this is applied in each component.

Theorem (Monotone convergence theorem). Let (E, \mathcal{E}, μ) be a measure space, and let (f_n) be a (pointwise) increasing sequence of non-negative functions on E converging to f. Then

$$\lim_{n \to \infty} \int_E f_n d\mu = \int_E f d\mu.$$

Theorem (Dominated convergence theorem). Let (f_n) be a sequence of measurable functions on a measure space (E, \mathcal{E}, μ) such that:

- (i) $f_n \to f$ pointwise almost everywhere;
- (ii) $|f_n| \leq g$ almost everywhere for some integrable g.

Then

$$\lim_{n \to \infty} \int_E f_n d\mu = \int_E f d\mu.$$

1.2 L^p spaces

Definition. Let (E, \mathcal{E}, μ) be a measure space. For $p \in [1, \infty)$ and $f : E \to \mathbb{R}$ define

$$||f||_{L^p} = \left(\int_E |f|^p \mathrm{d}\mu\right)^{1/p}$$

and

$$||f||_{L^{\infty}} = \operatorname{esssup}|f| = \inf\{K : |f| \le K \text{ a.e}\}.$$

The space L^p , $p \in [1, \infty]$ is defined by

$$L^p = L^p(E, \mathcal{E}, \mu) = \{f : E \to \mathbb{R} \text{ measurable} : ||f||_{L^p} < \infty\}/\sim.$$

Where $f \sim g$ if f = g a.e.

Theorem (Riesz-Fisher theorem). L^p is a Banach space for all $p \in [1, \infty]$.

Notation: when $E = \mathbb{R}^n$, μ the Lebesgue measure, write $L^p(E, \mu) = L^p(\mathbb{R}^n)$.

Fact. For $p \in [1, \infty)$, the simple functions f with $\mu(\{x : f(x) \neq 0\}) < \infty$ are dense in L^p . For $p = \infty$ we can drop the condition on the measure of the support.

Definition. For $f, g : \mathbb{R}^n \to \mathbb{R}$, the convolution f * g is defined by

$$f * g(x) = \int_{\mathbb{R}^n} f(y)g(x-y)dy,$$

provided the integral exists. Note that f*g=g*f, convolution is associative, and $\mu(f*g)=\mu(f)\mu(g)$.

Theorem. $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$ for $p \in [1, \infty)$.

Before we prove the theorem, we will need some preliminary results.

Remark. This theorem is false for $p = \infty$.

Notation: a multiindex is $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n$. Set $|\alpha| = \alpha_1 + \dots + \alpha_n$; $\alpha! = \alpha_1! \dots \alpha_n!$; $X^{\alpha} = X_1^{\alpha_1} \dots X_n^{\alpha_n}$ for $X \in \mathbb{R}^n$; $\nabla^{\alpha} f = D^{\alpha} f = \frac{\partial^{\alpha} f}{\partial x^{\alpha}} = \frac{\partial^{|\alpha|} f}{\partial x^{\alpha_1} \dots \partial x_n^{\alpha_n}}$.

Definition. We say $f \in L^p_{loc}(\mathbb{R}^n)$ if $f \mathbb{1}_K \in L^p(\mathbb{R}^n)$ for any $K \subseteq \mathbb{R}^n$ compact.

Proposition. Let $f \in L^1_{loc}(\mathbb{R}^n)$, $g \in C^k_c(\mathbb{R}^n)$, some $k \geq 0$. Then $f * g \in C^k(\mathbb{R}^n)$ and $\nabla^{\alpha}(f * g) = f * (\nabla^{\alpha}g)$ for all $|\alpha| \leq k$.

Proof. First we check for k=0. Set $T_zf(x)=f(x-z), z\in\mathbb{R}^n$. Then $T_z(f*g)=f*(T_zg)$. Also $T_zg(x)\to g(x)$ for all x as $z\to 0$ (continuity of g). Furthermore $|T_zg(x)|\leq ||g||_{L^\infty}\mathbb{1}_{B_R(0)}(x)$ if $|x|+1\leq R, |z|<1$ (we can just take R large enough so it holds everywhere since g has compact support). Then $|f(y)T_zg(x-y)|\leq C|f(y)|\mathbb{1}_{B_R(0)}(x-y)$, for $C:=||g||_{L^\infty}$.

Since $f \in L^1_{loc}(\mathbb{R}^n)$, $|f(y)|\mathbb{1}_{B_R(0)}(x-y)$ is integrable in y, so by the dominated convergence theorem,

$$T_z(f*g) = (f*T_zg)(x) = \int_{\mathbb{R}^n} f(y)T_zg(x-y)dy \xrightarrow{z\to 0} \int_{\mathbb{R}^n} f(y)g(x-y)dy = (f*g)(x).$$

And so $f * g \in C^0$. Now let k = 1. Let $\nabla_i^h g(x) = \frac{g(x + he_i) - g(x)}{h}$, where e_i is the *i*th unit vector. Then $\nabla_i^h g(x) \to \nabla_i g(x)$ as $h \to 0$.

By the mean value theorem, there exists $t \in [-h, h]$ such that

$$\nabla_i^h g(x) = \nabla_i g(x + te_i) \Rightarrow |\nabla_i^h g(x)| \le ||\nabla_i g||_{L^{\infty}} \mathbb{1}_{B_R(0)}(x).$$

Again by the dominated convergence theorem, $\nabla_i^h(f*g) = f*(\nabla_i^h g) \to f*\nabla_i g$. Thus $f*g \in C^1$. The case k>1 is similar, with induction.

Proposition (Minkowski's integral inequality). Let $p \in [1, \infty)$ and $f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ Borel. Then

$$\left[\int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} f(x, y) dx \right|^p dy \right]^{1/p} \le \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} |f(x, y)|^p dy \right|^{1/p} dx.$$

Proof. Example sheet 1.

Proposition. Let $p \in [1, \infty)$, $g \in L^p(\mathbb{R}^n)$. Then

$$||T_z g - g||_{L^p} \to 0 \text{ as } |z| \to 0.$$

Remark. This is not true for $p = \infty$. Let $\theta(x) = \mathbb{1}_{x \geq 0}$. Then $||T_z \theta - \theta||_{L^{\infty}} = 1$ if $z \neq 0$.

Proof. Consider first $g = \mathbb{1}_R$, R a rectangle. Then the result is clear. Hence it also follows for any finite union of rectangles. If B is a Borel set, $|B| < \infty$, then for every $\varepsilon > 0$, there exists a finite union of rectangles R such that

$$||\mathbb{1}_B - \mathbb{1}_R||_{L^p} = |B \triangle R|^{1/p} < \varepsilon.$$

Hence

$$||T_z\mathbbm{1}_B - \mathbbm{1}_B||_{L^p} \leq \underbrace{||T_z\mathbbm{1}_B - T_z\mathbbm{1}_R||_{L^p}}_{=||\mathbbm{1}_B - \mathbbm{1}_R||_{L^p} < \varepsilon} + \underbrace{||T_z\mathbbm{1}_R - \mathbbm{1}_R||_{L^p}}_{<\varepsilon \text{ for } |z| \text{ small}} + \underbrace{||\mathbbm{1}_R - \mathbbm{1}_B||_{L^p}}_{<\varepsilon}.$$

Thus the result holds for $g = \mathbb{1}_B$, $B \in \mathcal{B}(\mathbb{R}^n)$. Thus the result holds for simple functions g. Finally, for any $g \in L^p$, there is a \tilde{g} simple such that $||g - \tilde{g}||_{L^p} < \varepsilon$. Then

$$||T_zg-g||_{L^p} \leq \underbrace{||T_zg-T_z\tilde{g}||_{L^p}}_{=||g-\tilde{g}||_{L^p}<\varepsilon} + \underbrace{||T_z\tilde{g}-\tilde{g}||_{L^p}}_{<\varepsilon \text{ for } |z| \text{ small}} + \underbrace{||g-\tilde{g}||_{L^p}}_{<\varepsilon}.$$

Theorem. Let $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ be such that $\varphi \geq 0$ and $\int_{\mathbb{R}^n} \varphi dx = 1$ and set $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(x/\varepsilon)$. Then for any $g \in L^p$, $p \in [1, \infty)$, it follows that $\varphi_{\varepsilon} * g \in C^{\infty}(\mathbb{R}^n)$ and $\varphi_{\varepsilon} * g \to g$ in L^p .

Proof. We have

$$\varphi_{\varepsilon} * g(x) - g(x)| = \left| \int_{\mathbb{R}^n} \left[\varphi_{\varepsilon}(y) g(x - y) - g(x) \right] dy \right|$$

$$= \left| \int_{\mathbb{R}^n} \varphi(z) \left[g(x - \varepsilon z) - g(x) \right] dz \right|$$

$$\leq \int_{\mathbb{R}^n} \varphi(z) \left| T_{\varepsilon z} g(x) - g(x) \right| dz.$$

Hence

$$\|\varphi_{\varepsilon} * g - g\|_{L^{p}} = \left(\int_{\mathbb{R}^{n}} \underbrace{|\varphi_{\varepsilon} * g - g|^{p}}_{\int_{\mathbb{R}^{n}} \varphi(z)|T_{\varepsilon z}g - g|dz} dx \right)^{1/p}$$

$$\leq \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} \varphi(z)^{p} |T_{\varepsilon z}g(x) - g(x)|^{p} dx \right)^{1/p} dz$$

$$= \int_{\mathbb{R}^{n}} \varphi(z) \underbrace{||T_{\varepsilon z}g - g||_{L^{p}}}_{\to 0 \text{ as } \varepsilon \to 0} dz$$

where the inequality comes from Minkowski's inequality. Also the final term tends to 0 as $\varepsilon \to 0$ by the DCT since $\varphi(z)||T_{\varepsilon z}g - g||_{L^p}|| \le 2\varphi(z)||g||_{L^p}$ and φ is integrable.

Definition. φ as above is called a (smooth) mollifier.

Corollary. $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$, $p \in [1, \infty)$.

Proof. The previous theorem implies $C^{\infty}(\mathbb{R}^n) \cap L^p(\mathbb{R}^n)$ is dense in L^p . Since $||f - f \mathbb{1}_{B_R(0)}||_{L^p} \to 0$ as $R \to \infty$ by the DCT, for $f \in L^p$, applying the theorem with $g = f \mathbb{1}_{B_R(0)}$ it follows that $C_c^{\infty}(\mathbb{R}^n)$ is dense in L^p .

1.3 Lebesgue Differentiation Theorem

Recall:

Theorem (Fundamental Theorem of Calculus). For $f : \mathbb{R} \to \mathbb{R}$ continuous, $F(x) := \int_0^x f(t) dt$ is differentiable with F'(x) = f(x).

We actually have a stronger result:

Theorem (Lebesgue Differentiation Theorem). For $f: \mathbb{R}^n \to \mathbb{R}$ integrable,

$$\lim_{r \to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y) - f(x)| dy = 0 \text{ for almost all } x.$$

The x for which this holds are called Lebesgue points.

We will need a few preliminary results and definitions before we can prove this.

Corollary. If $g \in L^1(\mathbb{R})$ and $G(x) = \int_{-\infty}^x g(t) dt$, then G is differentiable for almost every x with G'(x) = g(x).

Corollary. If φ is a smooth mollifier and $g \in L^p(\mathbb{R}^n)$, then $\varphi_{\varepsilon} * g \xrightarrow{\varepsilon \to 0} g$ almost everywhere.

Definition. For $f: \mathbb{R}^n \to \mathbb{R}$ integrable, the Hardy-Littlewood Maximal Function Mf: $\mathbb{R}^n \to [0, \infty]$ is defined by

$$Mf(x) = \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| dy.$$

Remark. We sometimes write $\int_{B_r(x)} |f(y)| dy$ for $\frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| dy$.

Lemma (Wiener's covering lemma). If K is compact and $K \subseteq \bigcup_{i=1}^N B_i$ for open balls $(B_i)_{i=1}^N$, there exists a subcollection $(B_{i_k})_k$ of disjoint balls such that

$$\left| \bigcup_{i=1}^{N} B_i \right| \le 3^n \sum_{k} |B_{i_k}|.$$

Proof. Example sheet.

Proposition. Take $f \in L^1(\mathbb{R}^n)$. Then Mf is a Borel function, finite almost everywhere, and

$$|\underbrace{\{\mathrm{Mf} > \lambda\}}_{:=A_{\lambda}}| \le \frac{3^n}{\lambda} ||f||_{L^1}.$$

Proof. For each $x \in A_{\lambda}$, there exists $r_x > 0$ such that

$$\frac{1}{B_{r_x}(x)} \int_{B_{r_x}(x)} |f(y)| \mathrm{d}y > \lambda.$$

We claim that A_{λ} is open. Then we will have shown Mf is Borel as the $A_{\lambda}=(\mathrm{Mf})^{-1}((\lambda,\infty])$ are open, and the sets $(\lambda,\infty]$ generate the Borel σ -algebra.

We'll actually show A_{λ}^c is closed. Suppose $(x_k)_{k\geq 1}$ is a sequence in A_{λ}^c with $x_k \to x$. Suppose $x \in A_{\lambda}$. By the Dominated Convergence Theorem,

$$\frac{1}{B_{r_x}(x_k)} \int_{B_{r_x}(x_k)} |f(y)| dy \to \frac{1}{B_{r_x}(x)} \int_{B_{r_x}(x)} |f(y)| dy.$$

Since $x_k \notin A_\lambda$, the LHS is $\leq \lambda$ for all k, but the RHS is $> \lambda$ which is impossible. Hence $x \in A_\lambda^c$ and A_λ^c is closed.

To prove the inequality, let $K \subseteq A_{\lambda}$ be compact. Since $\{B_{r_x}(x)\}_{x \in A_{\lambda}}$ is an open cover of K, there exists a finite subcover $K \subseteq \bigcup_{i=1}^N B_i$, where $B_i = B_{r_x}(x)$ for

some $x \in A_{\lambda}$. Now take a subcollection $(B_{i_k})_k$ of disjoint balls as in Wiener's covering lemma.

Since $\frac{1}{|B_i|}\int_{B_i}|f(y)|\mathrm{d}y>\lambda$, it follows that $|B_i|<\frac{1}{\lambda}\int_{B_i}|f(y)|\mathrm{d}y$. Hence

$$|K| \leq 3^n \sum_k |B_{i_k}| < \frac{3^n}{\lambda} \sum_k \int_{B_{i_k}} |f(y)| \mathrm{d}y \leq \frac{3^n}{\lambda} \int_{\mathbb{R}^n} |f(y)| \mathrm{d}y.$$

Since this holds for any $K \subseteq A_{\lambda}$ compact, by regularity of the Lebesgue measure, it also holds for A_{λ} . In particular, $|\{\mathrm{Mf} = \infty\}| \leq |\{\mathrm{Mf} > \lambda\}| \xrightarrow{\lambda \to \infty} 0$, i,e $\mathrm{Mf} < \infty$ almost everywhere.

Now we are ready to prove:

Theorem (Lebesgue Differentiation Theorem). For $f: \mathbb{R}^n \to \mathbb{R}$ integrable,

$$\lim_{r\to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y) - f(x)| dy = 0 \text{ for almost all } x.$$

The x for which this holds are called Lebesgue points.

Proof. Let

$$A_{\lambda} = \left\{ x \in \mathbb{R}^n : \limsup_{r \to 0} \int_{B_r(x)} |f(y) - f(x)| \mathrm{d}y > 2\lambda \right\}$$

Then it suffices to show $|A_{\lambda}| = 0$ for any $\lambda > 0$. Indeed, the non-Lebesgue points are then $\bigcup_n A_{1/n}$, a countable union of sets of measure 0.

Given $\varepsilon > 0$, let $g \in C_c^{\infty}(\mathbb{R}^n)$ be such that $||f - g||_{L^1} < \varepsilon$. Then

$$\underbrace{\int_{B_r(x)} |f(y) - f(x)| \mathrm{d}y}_{\leq \underbrace{\int_{B_r(x)} |f(y) - g(y)| \mathrm{d}y}_{\leq M(f - g)(x)} + |f(x) - g(x)| + \underbrace{\int_{B_r(x)} |g(x) - g(y)| \mathrm{d}y}_{\to 0 \text{ since } g \in C^{\infty}}.$$

$$\implies \limsup_{r \to 0} \int_{B_r(x)} |f(y) - f(x)| \mathrm{d}y \le M(f - g)(x) + |f(x) - g(x)|.$$

If $x \in A_{\lambda}$, then either $M(f-g)(x) > \lambda$ or $|f(x) - g(x)| > \lambda$. The Hardy-Littlewood maximal inequality says $|\{M(f-g) > \lambda\}| \leq \frac{3^n}{\lambda}||f-g||_{L^1}$. Then by Markov's inequality $|\{|f-g| > \lambda\}| \leq \frac{1}{\lambda}||f-g||_{L^1}$. Hence

$$|A_{\lambda}| \le \frac{3^n + 1}{\lambda} ||f - g||_{L^1} < \frac{3^{n+1} + 1}{\lambda} \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, $|A_{\lambda}| = 0$.

1.4 Littlewood's Principles

Theorem (Egorov). Let $E \subseteq \mathbb{R}^n$, $|E| < \infty$, and $f_k : E \to \mathbb{R}$, $k \ge 1$ be a sequence of measurable functions such that $f_k \to f$ almost everwhere. Then for every $\varepsilon > 0$, there is a closed subset $A_{\varepsilon} \subseteq E$ such that $|E \setminus A_{\varepsilon}| < \varepsilon$ and $f_k \to f$ uniformly on A_{ε} .

Proof. Without loss of generality, $f_k(x) \to f(x)$ for all $x \in E$ (otherwise restrict to a subset of E of full measure). Let

$$E_k^n = \left\{ x \in E : |f_j(x) - f(x)| < \frac{1}{n} \ \forall j > k \right\}.$$

Then $E_{k+1}^n \supseteq E_k^n$, $\bigcup_k E_k^n = E$, hence $|E_k^n| \uparrow |E|$ as $k \to \infty$. Let k_n be such that $|E \setminus E_{k_n}^n| < 2^{-n}$ and for $N \in \mathbb{N}$ set

$$A_N = \bigcap_{n \ge N} E_{k_n}^n \implies |E \setminus A_N| \le \sum_{n \ge N} |E \setminus E_{k_n}^n| \le 2^{-N+1} < \varepsilon \text{ for } N = N_{\varepsilon}.$$

Now it suffices to show $f_j \to f$ uniformly on A_N . Indeed, for $x \in A_N$ and any $n \ge N$, $|f_j(x) - f(x)| < \frac{1}{n}$ for all $j > k_n$. Hence $\limsup_{j \to \infty} \sup_{A_N} |f_j - f| \le \frac{1}{n}$ for all $n \ge N$, hence $\lim_{j \to \infty} \sup_{A_N} |f_j - f| = 0$.

Theorem (Lusin). Let $f: E \to \mathbb{R}$ be a Borel function, where $E \subseteq \mathbb{R}^n$ and $|E| < \infty$. Then for every $\varepsilon > 0$, there exists $F_{\varepsilon} \subseteq E$ closed such that $|E \setminus F_{\varepsilon}| < \varepsilon$ and $f|_{F_{\varepsilon}}$ is continuous.

Remark. Careful: this does <u>not</u> mean that f is continuous at $x \in F_{\varepsilon}$ in the topology of \mathbb{R}^n .

Proof. First we show that the statement holds for simple functions f. Let $f = \sum_{m=1}^{M} a_m \mathbbm{1}_{A_m}$ with the A_m disjoint and $\bigcup_m A_m = E$. Then there are compact sets $K_m \subseteq A_m$ with $|A_m \setminus K_m| < \frac{\varepsilon}{M}$ by regularity of the Lebesgue measure. Then if $F_\varepsilon = \bigcup_m K_m$, $|E \setminus F_\varepsilon| < \varepsilon$. Since f is constant on each K_m , and the distance between K_m and $K_{m'}$ is strictly positive for $m \neq m'$ (compactness), this implies $f|_{F_\varepsilon}$ is continuous.

Now we show the statement holds for any measurable f. Let f_n be simple functions such that $f_n \to f$ almost everywhere, and $C_n \subseteq E$ be such that $|C_n| < 2^{-n}$ and $|E_n| < 2^{-n}$ and $|E_n| < 2^{-n}$ is continuous for all n. By Egorov's Theorem, there exists A_ε such that $|E_n| < 1$ uniformly on $|E_n| < 1$ so $|E_n| < 1$ so $|E_n| < 1$ for $|E_n| < 1$ so $|E_n|$

By regularity of the Lebesgue measure, there exists $F_{\varepsilon} \subseteq F'_{\varepsilon}$ closed with $|F'_{\varepsilon} \setminus F_{\varepsilon}| < \varepsilon$ so $|E \setminus F_{\varepsilon}| < 3\varepsilon$ and we are done.

2 Banach and Hilbert space analysis

2.1 The Hilbert space L^2

For any measure space (E, \mathcal{E}, μ) , $L^2(E, \mu)$ is a Hilbert space with inner product

$$\langle f, g \rangle_{L^2} = \int_F \overline{f} g \mathrm{d}\mu.$$

Definition. A subset $S = \{u_j\}_{j \in J} \subseteq H$ of a Hilbert space H is

- Orthogonal if $\langle u_i, u_k \rangle = 0$ for all $j \neq k$;
- Orthonormal if it is orthogonal and $\langle u_j, u_j \rangle = 1$ for all j;
- Complete if $\overline{\operatorname{span}\{u_j\}} = H$.

A complete orthonormal set is called a *Hilbert basis*.

Fact. A Hilbert space is separable (i.e there is a countable dense subset) if and only if there is a countable orthonormal (Hilbert) basis.

Examples.

- (i) $L^2([-\pi,\pi]), S = \left\{\frac{1}{\sqrt{2\pi}}e^{-inx}\right\}_{n\in\mathbb{Z}}$. Then S is a Hilbert basis; the Fourier basis (completeness follows from the Stone-Weierstrass theorem & density of C^{∞}).
- (ii) $L^2(\mathbb{R})$, $S = \{\psi_{n,k}\}_{n,k\in\mathbb{Z}}$ where

$$\psi_{n,k}(x) = 2^{n/2}\psi(2^n x - k),$$

$$\psi(x) = \begin{cases} 1 & x \in [0, 1/2) \\ -1 & x \in [1/2, 1) \\ 0 & \text{otherwise} \end{cases}$$

S is a Hilbert basis; the *Haar system*.

(iii) $L^2(\mathbb{R}, \mu(\mathrm{d}x))$, where $\mu(\mathrm{d}x) = (2\pi)^{-1/2} \exp(x^2/2) \mathrm{d}x$; the Gauss measure. Then take $\{H_n\}_{n \in \mathbb{Z}_{\geq 0}}$, where the H_n are obtained by applying Gram-Schmidt to $\{1, x, x^2, \ldots\}$; the Hermite polynomials. Then $\{H_n\}_{n \in \mathbb{Z}_{\geq 0}}$ is a Hilbert basis.

Theorem (Reisz representation theorem). For any bounded linear functional $\Lambda: H \to \mathbb{R}$ (respectively \mathbb{C}), there is a unique $w \in H$ such that $\Lambda(u) = \langle w, u \rangle$ for all $u \in H$.

2.2 Radon-Nikodym Theorems

Definition. Let (E, \mathcal{E}) be a measurable space and let μ, ν be two measures on (E, \mathcal{E}) . Then ν is said to be absolutely continuous with respect to μ , written $\nu \ll \mu$, if for all $A \in \mathcal{E}$, $\nu(A) = 0$ whenever $\mu(A) = 0$. Two measures μ, ν are mutually singular, written $\mu \perp \nu$ if there is $B \in \mathcal{E}$ such that $\mu(B) = 0 = \nu(B^c)$.

Theorem (Radon-Nikodym). Let μ and ν be finite measures on (E, \mathcal{E}) with $\nu \ll \mu$. Then there exists $\omega \in L^1(E, \mathcal{E})$ such that for all $A \in \mathcal{E}$,

$$\nu(A) = \int_A \omega \mathrm{d}\mu.$$

Equivalently, for all $h: E \to [0, \infty]$ Borel,

$$\int h \mathrm{d}\nu = \int h \omega \mathrm{d}\mu.$$

Proof. Set $\alpha = \mu + 2\nu$ and $\beta = 2\mu + \nu$. Define

$$\Lambda(f) = \int_{E} f \mathrm{d}\beta.$$

Then

$$|\Lambda(f)| \le \int_E |f| \mathrm{d}\beta \le 2 \int_E |f| \mathrm{d}\alpha \le 2 \sqrt{\alpha(E)} ||f||_{L^2(E,\alpha)}.$$

So $\Lambda: L^2(E,\alpha) \to \mathbb{R}$ is bounded and linear. So by the Riesz representation theorem, there is $g \in L^2(E,\alpha)$ such that $\Lambda(f) = \langle g, f \rangle_{L^2(E,\alpha)}$ for all $f \in L^2(E,\alpha)$. Hence $\int f d\beta = \int g f d\alpha$, and

$$\int f(2d\mu + d\nu) = \int gf(d\mu + 2d\nu) \iff \int f(2-g)d\mu = \int f(2g-1)d\nu.$$

We claim that g takes values in [1/2, 2] μ -a.e and ν -a.e, and that $g \neq 1/2$ μ -a.e (this implies $g \neq 1/2$ ν -a.e since $\nu \ll \mu$). Assuming the claim, the proof is completed as follows; by the monotone convergence theorem, (*) can be extended to all $f: E \to [0, \infty]$. Given $h: E \to [0, \infty]$ measurable, set

$$f(x) = \frac{h(x)}{2g(x) - 1}, \ \omega(x) = \frac{2 - g(x)}{2g(x) - 1}, \ x \in \{g \neq 1/2\}.$$
 (*)

Then

$$\int h d\nu = \int f(2g - 1) d\nu = \int f(2g - 1) d\mu = \int h\omega d\mu.$$

In particular, taking h = 1, we see $\omega \in L^1(E, \mu)$.

Now we prove the claim: let $f = \mathbb{1}_{A_j}$, with $A_j = \left\{ x \in E : g(x) < \frac{1}{2} - \frac{1}{j} \right\}$. Then we have

$$\int f(2g-1)\mathrm{d}\nu \le -\frac{2}{i}\nu(A_j),$$

$$\int f(2-g) d\mu \ge \frac{3}{2} \mu(A_j),$$

$$\implies \frac{3}{2} \mu(A_j) \le -\frac{2}{j} \nu(A_j) \implies \mu(A_j) = \nu(A_j) = 0.$$

Implying $g\geq 1/2$ both μ -a.e and ν -a.e. To show $g\leq 2$ μ -a.e and ν -a.e the proof is analogous, instead with $A_j=\{x\in E:g(x)\geq 2+1/j\}$. To show $\mu(\{g=1/2\})=0,$ set $f=\mathbbm{1}_Z,$ $Z=\{g=1/2\}$ in (*), giving

$$\frac{3}{2} \int \mathbb{1}\{g = 1/2\} \mathrm{d}\mu = 0.$$

2.3 The dual of L^p

Definition. A topological vector space (TVS) X is a vector space together with a topology in which $(x,y) \mapsto x+y$ and $(\lambda,x) \mapsto \lambda x$ are continuous. The dual space X' is the linear space of continuous linear maps $\Lambda: X \to \mathbb{R}$ (or \mathbb{C}).

If X is a normed vector space equipped with the topology induced by the norm, then linear maps on X are bounded if and only if they are continuous. We can define a norm on X' by

$$||\Lambda||_{X'} = \sup_{\substack{x \in X \\ ||x|| \le 1}} |\Lambda(x)|.$$

Then X' is a Banach space (even if X isn't).

We aim to identify $L^p(\mathbb{R}^n)'$ with $L^q(\mathbb{R}^n)$, where $\frac{1}{p} + \frac{1}{q} = 1$, if $p \in [1, \infty)$.

Proposition. Let $q \in [1, \infty]$. For every $g \in L^q(\mathbb{R}^n)$,

$$\Lambda_g(f) = \int \bar{f}g \mathrm{d}x$$

defines $\Lambda_g \in L^p(\mathbb{R}^n)'$ with $||\Lambda_g|| = ||g||_{L^q}$.

Proof. By Hölder's inequality, $|\Lambda_g(f)| = ||f||_{L^p} ||g||_{L^q}$. Hence $\Lambda_g \in L^p(\mathbb{R}^n)'$ and $||\Lambda_g|| \le ||g||_{L^p}$. Equality: see Example sheet 1.

Corollary. The map $J: L^q(\mathbb{R}^n) \to L^p(\mathbb{R}^n)'$, $g \mapsto \Lambda_g$ is a linear isometry. Thus we can identify $L^q(\mathbb{R}^n)$ as a subspace of $L^p(\mathbb{R}^n)'$.

Remark. When p=2 then $L^2(\mathbb{R}^n)'=L^2(\mathbb{R}^n)$, i.e J is surjective (Riesz representation theorem).

Theorem. Let $p \in [1, \infty)$, $\frac{1}{p} + \frac{1}{q} = 1$. Then J is surjective, i.e $L^p(\mathbb{R}^n)' = L^q(\mathbb{R}^n)$.

Remarks.

- 1. $L^1(\mathbb{R}^n)' = L^\infty(\mathbb{R}^n)$, but $L^\infty(\mathbb{R}^n)' \neq L^1(\mathbb{R}^n)$;
- 2. The same is true if \mathbb{R}^n is replaced by $U \subseteq \mathbb{R}^n$ open.

Definition. $\Lambda \in L^p(\mathbb{R}^n)'$ is positive if

$$\Lambda(f) \geq 0$$
 for all $f \in L^p(\mathbb{R}^n)$ such that $f \geq 0$ a.e.

Lemma. Let $\Lambda \in L^p(\mathbb{R}^n)'$ be positive. Then there is $g \in L^q(\mathbb{R}^n)$ non-negative with

$$\Lambda(f) = \int_{\mathbb{R}^n} fg dx \text{ for all } f \in L^p(\mathbb{R}^n).$$

Furthermore $||g||_{L^q} = ||\Lambda||$.

Proof. Let $\mu(\mathrm{d}x) = e^{-|x|^2} \mathrm{d}x$. Then $\mu(\mathbb{R}^n) < \infty$. Define

$$\nu(A) = \Lambda\left(e^{-|x|^2/p} \mathbb{1}_A\right) \text{ for } A \in \mathcal{B}(\mathbb{R}^n).$$

First we show that ν is a finite measure on \mathbb{R}^n . Clearly $\nu(\emptyset) = 0$ and $\nu(A) \in [0, \infty)$ since Λ is positive. Let $A_k \in \mathcal{B}(\mathbb{R}^n)$ be a sequence of disjoint sets and $B_m = \bigcup_{k=1}^m A_k$. Then

$$|\nu(B_{\infty}) - \nu(B_m)| \le ||\Lambda|| \left\| e^{-|x|^2/p} (\mathbb{1}_{B_{\infty}} - \mathbb{1}_{B_m}) \right\|_{L^p}$$
$$= ||\Lambda|| \mu(B_{\infty} \setminus B_m)^{1/p} \to 0.$$

So ν is countably additive, and thus a measure. Now we claim $\nu \ll \mu$. Indeed if $\mu(A) = 0$, $\nu(A) \leq ||\Lambda||\mu(A)^{1/p}$. Thus by the Radon-Nikodym theorem, there is $\omega \in L^1(\mathbb{R}^n, \mu)$ non-negative such that

$$\nu(A) = \int_A \omega d\mu = \int_A \omega e^{-|x|^2} dx \text{ for all } A \in \mathcal{B}(\mathbb{R}^n).$$

Now let $f = e^{-|x|^2/p} \tilde{f}$ where \tilde{f} is simple. Then by linearity of Λ ,

$$\Lambda(f) = \int \tilde{f} d\nu = \int \tilde{f} \omega e^{-|x|^2} dx$$
$$= \int f \underbrace{\omega e^{-\left(1 - \frac{1}{p}\right)|x|^2}}_{\tilde{\omega} = \omega e^{-\frac{1}{q}|x|^2}} dx.$$

Hence $\Lambda(f) = \int f \tilde{\omega} dx$ for all f as above. Exercise: functions of the form $f = e^{-|x|^2/p} \tilde{f}$ for \tilde{f} are dense in $L^p(\mathbb{R}^n)$. Then we have $\Lambda(f) = \int f \tilde{\omega} dx$ for all $f \in L^p(\mathbb{R}^n)$ since Λ is continuous.

Example sheet 1 gives that

$$||\tilde{\omega}||_{L^q} = \sup \left\{ \int |f\tilde{\omega}| dx : ||f||_{L^p} \le 1 \right\}.$$

Thus

$$||\tilde{\omega}||_{L^p} \leq ||\Lambda|| \text{ since } \int |f\tilde{\omega}| \mathrm{d}x = \int |f|\tilde{\omega} \mathrm{d}x = \Lambda(|f|) \leq ||\Lambda||||f||_{L^p}.$$

Conversely, $\Lambda(f) \leq ||f||_{L^p} ||\tilde{\omega}||_{L^q}$ by Hölder's inequality, so $||\Lambda|| \leq ||\tilde{\omega}||_{L^q}$ and $||\Lambda|| = ||\tilde{\omega}||_{L^q}$.

Theorem. Let $p \in [1, \infty)$. Then $\int : L^q(\mathbb{R}^n) \to L^p(\mathbb{R}^n)'$, $g \mapsto \Lambda_g$ where $\Lambda_g(f) = \int fg$ is a linear isometry and surjective.

Proof. First consider the real case. In Example Sheet 2 its shown that if $\Lambda \in L^p(\mathbb{R}^n)'$ is real-values, there are Λ_+ and Λ_- both bounded and positive such that $\Lambda = \Lambda_+ - \Lambda_-$. The claim follows from the previous lemma.

In the complex case, if $\Lambda \in L(\mathbb{R}^n, \mathbb{C})'$ then $\Lambda_r(f) = \Re \Lambda(f)$ and $\Lambda_i(f) = \Im \Lambda(f)$ define two \mathbb{R} -linear $\Lambda \in L^p(\mathbb{R}^n, \mathbb{R})$ such that

$$\Lambda(f_r + if_i) = \Lambda_r(f_r) - \Lambda_i(f_i) + i\Lambda_r(f_i) + i\Lambda_i(f_r).$$

The claim then follows by the real-valued case.

2.4 Riesz-Markov Theorem

Fact. For any finite (positive) regular Borel measure on \mathbb{R}^n , $\Lambda_{\mu}(f) = \int f d\mu$ defines a positive bounded linear functional on $C_c(\mathbb{R}^n, ||\cdot||_{\infty})$.

Lemma. A uniquely determines μ and for any $U \in \mathbb{R}^n$ open

$$\mu(U) = \sup\{\Lambda_{\mu}(g) : g \in C_c(\mathbb{R}^n), 0 \le g \le \mathbb{1}_U\}. \tag{*}$$

Proof sketch. We would like to take $f = \mathbb{1}_A$ for $A \in \mathcal{B}(\mathbb{R}^n)$, but this is not continuous. So we approximate by continuous functions: assume $U \in \mathbb{R}^n$ is open, set $U_k = U \cap \{|x| < k\}$, abd

$$\chi_k(x) = \begin{cases} 1 & x \in U_k, \ d(x, U_k^c) \ge \frac{1}{k} \\ 0 & x \notin U_k \\ kd(x, U_k^c) & x \in U_k, \ d(x, U_k^c) < 1/k \end{cases}.$$

Then $\chi_k \in C_c(\mathbb{R}^n)$ and $\chi_k \uparrow \mathbb{1}_U$. So by the Monotone Convergence Theorem,

$$\mu(U) = \lim_{k \to \infty} \int \chi_k d\mu = \lim_{k \to \infty} \Lambda(\chi_k).$$

And (*) also follows. Since μ is regular, this determines μ on all Borel sets. \square

Definition. A *signed measure* is the difference of two mutually singular finite positive measures.

Theorem (Riesz-Markov Theorem). Given $\Lambda: C_c(\mathbb{R}^n) \to \mathbb{R}$ linear positive and bounded, there is a unique finite Borel measure μ on \mathbb{R}^n such that

$$\Lambda(f) = \int_{\mathbb{D}} f d\mu, \ \forall f \in C_c(\mathbb{R}^n).$$

The dual space $C_c(\mathbb{R}^n)$ is the space of signed measures.

2.5 Strong, weak & weak-* topologies

Example Sheet 2: if X is a Banach space, then the closed unit ball is compact iff X is finite dimensional.

Goal: recover some form of compactness by considering a weaker topology.

Definition. A seminorm p on a vector space X (over \mathbb{R} or \mathbb{C}) is a map $p:X\to\mathbb{R}$ such that

- (i) $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$;
- (ii) $p(\lambda x) = |\lambda| p(x)$ for all $x \in X$;
- (iii) $p(x) \ge 0$ for all $x \in X$.

(Note: it is not necessarily positive semidefinite)

Definition. A family \mathcal{P} of seminorms is *separating* if for every $x \in X$ with $x \neq 0$ there is $p \in \mathcal{P}$ such that $p(x) \neq 0$.

Definition. The topology $\tau_{\mathcal{P}}$ induced by a family of seminorms \mathcal{P} is generated by

$$\beta = \{x + B : x \in X, \ B \in \dot{\beta}\}.$$

Where $\dot{\beta}$ consists of finite intersections of $V(p,n) = \{x \in X : p(x) < 1/n\}$ for $p \in \mathcal{P}, n \in \mathbb{N}.$ $(X, \tau_{\mathcal{P}})$ is a locally convex topological vector space (LCTVS).

Theorem. β is a neighbourhood base for the topology $\tau_{\mathcal{P}}$ (every open set $U \in \tau_{\mathcal{P}}$ is a union of sets in β), and the vector space operations $(x,y) \mapsto x + y$ and $(\lambda, x) \mapsto \lambda x$ are continuous, as is every seminorm $p \in \mathcal{P}$.

Example Sheet 2: for $(x_k)_{k\geq 1}$ in X, $x_k \to x$ in $\tau_{\mathcal{P}}$ if and only if $p(x-x_k) \to 0$ for all $p \in \mathcal{P}$.

Fact. If $\mathcal{P} = (p_k)_{k \in \mathbb{N}}$ is countable, then the topology is induced by the metric

$$d_{\mathcal{P}}(x,y) = \sum_{k=1}^{\infty} 2^{-k} \frac{p_k(x-y)}{1 + p_k(x-y)}.$$

Definition. If \mathcal{P} is as above with metric as above, if the metric $d_{\mathcal{P}}$ is complete, $(X, d_{\mathcal{P}})$ is called a *Fréchet space*.

Examples.

- (i) X a Banach space, $\mathcal{P}_s = \{||\cdot||\}$: the corresponding topology $\tau_s = \tau_{\mathcal{P}_s}$ is called *norm* or *strong topology*. We have $x_k \to x$ in τ_s if and only if $||x_k x|| \to 0$.
- (ii) X a Banach space, $\mathcal{P}_w = \{p_{\Lambda} : \Lambda \in X^1\}$ where $p_{\Lambda}(x) = |\Lambda(x)|$. Each p_{Λ} is a seminorm and is the Hahn-Banach theorem implies \mathcal{P}_w is separating. (For $X = L^p(\mathbb{R}^n)$ this can be verified directly.) The topology $\tau_w = \tau_{\mathcal{P}_w}$ is called the *weak topology*. We have $x_k \to x$ in τ_w if and only if $\Lambda(x_k) \to \Lambda(x)$ for all $\Lambda \in X'$. We write $x_k \to^w x$. Also $x_k \to x$ implies $x_k \to^w x$.
- (iii) X a Banach space, then X' is also a Banach space. Hence we have a strong and weak topology on X'. The weak-* topology τ_{w^*} is generated by $\mathcal{P}_{w^*} = \{p_x : x \in X\}$ where $p_x(\Lambda) = |\Lambda(x)|$. Then $\Lambda_k \to \Lambda$ in τ_{w^*} if and only if $\Lambda_k(x) \to \Lambda(x)$ for every $x \in X$. We write $\Lambda_k \to w^*$ Λ .

Remark. If X is reflexive, i.e X'' = X, then $\tau_w = \tau_{w^*}$.

Example. Let $p \in [1, \infty)$ and $(f_k)_{k>1}$ be a sequence in $L^p(\mathbb{R}^n)$. Then

$$f_k \to f \text{ in } L^p \iff \int |f_k - f|^p dx \to 0$$

$$f_k \to^w f \text{ in } L^p \iff \int g(f_k - f) dx \to 0 \text{ for all } g \in L^q$$

$$f_k \to^{w^*} f \text{ in } L^p \iff f_k \to^w f \text{ in } L^p$$

On the other hand, if $(f_k)_{k>1}$ is in $L^{\infty}(\mathbb{R}^n)$,

$$f_k \to f \text{ in } L^{\infty} \iff \text{esssup}|f_k - f| \to 0$$

$$f_k \xrightarrow{w^*} \text{ in } L^{\infty} \iff \int g(f_k - f) dx \to 0 \text{ for all } g \in L^1$$

$$f_k \xrightarrow{w^*} \text{ in } L^{\infty} \iff f_k \xrightarrow{w} \text{ in } L^{\infty}$$

2.6 Compactness

Theorem (Arzela-Ascoli Theorem). Let I = [0,1] (or a compact Hausdorff space). Suppose a sequence of continuous functions $f_k : I \to \mathbb{R}$ is

- Bounded: $\sup_{k} \sup_{x \in I} |f_k(x)| < \infty$
- Equicontinuous: for all $\varepsilon > 0$ there exists δ such that $\sup_k \sup_{x \in I} \sup_{y \in B(x,\varepsilon)} |f_k(x) f_k(y)| < \varepsilon$.

Then there is a subsequence (i_k) such that f_{i_k} converges to some continuous f.

Application: $C^{0,\alpha}(I)$ embeds compactly into $C^0(I)$, where $C^{0,\alpha}(I) = \{f \in C^0(I) : ||f||_{C^{0,\alpha}} < \infty\}$,

$$||f||_{C^{0,\alpha}} = \sup_{x \in I} |f'(x)| + \sup_{\substack{x,y \in I \\ x \neq y}} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

The identity map id: $C^{0,\alpha}(I) \to C^0(I)$ is compact, i.e any sequence $(f_i)_{i\geq 1}$ in $C^{0,\alpha}$ that is bounded in $C^{0,\alpha}$ has a convergent subsequence in $C^0(I)$.

Theorem (Banach-Alaoglu). Let X be a separable Banach space, and let $(\Lambda_j)_{j\geq 1}$ be a bounded sequence in X', say $\sup_j ||\Lambda_j||_{X'} \leq 1$. Then there is a subsequence (j_i) and $\Lambda \in X'$ such that $\Lambda_{j_i} \to^{w^*} \Lambda$.

Example. Let $p \in (1, \infty]$ and $(f_j)_{j \geq 1}$ be a sequence in $L^p(\mathbb{R}^n)$ such that $||f_j||_{L^p} \leq K$ for all j. Then there is $f \in L^p$ with $||f||_{L^p} \leq K$ and a subsequence (j_i) such that for every $g \in L^q(\mathbb{R}^n)$, $\int f_{j_i} g \mathrm{d}x \to \int f g \mathrm{d}x$. (Just apply Banach-Alaoglu noting $L^q(\mathbb{R}^n)' = L^p(\mathbb{R}^n)$ for $p \in [1, \infty)$ and L^q is separable for such q.)

Proof. Step 1: construction. Let $D = \{x_k\}_{k=1}^{\infty} \subseteq X$ be dense (can do this by separability). Since $(\Lambda_j(x_1))_{j\geq 1}$ is a bounded sequence, there is a subsequence $J_1 \subseteq \mathbb{N}$ and $\Lambda(x_1) \in \mathbb{R}$ (or \mathbb{C}) such that $\Lambda_j(x_1) \to \Lambda(x_1)$ for $j \in J_1, j \to \infty$. Iterating, there are nested subsequences $J_1 \supseteq J_2 \supseteq J_3 \supseteq \ldots$ and $\Lambda(x_k) \in \mathbb{R}$ (or \mathbb{C}) such that $\Lambda_j(x_k) \to \Lambda(x_k)$ for $j \in J_l, l \geq k$.

Now take the 'diagonal subsequence' J of $J_1 \supseteq J_2 \supseteq \ldots$ defined by $J = (j_n)_{n \ge 1}$ where j_n is the first element of J_n . i.e it has first element which is the first element of J_1 , second element which is the first element of J_2 , etc. Then $\Lambda_j(x_k) \to \Lambda(x_k)$ for $j \in J, j \to \infty$.

Step 2: we'll show $\Lambda: D \to \mathbb{R}$ is uniformly continuous so can be extended uniquely to $\Lambda: X \to \mathbb{R}$ continuous. For each $x, y \in D$ such that $||x - y|| < \varepsilon$, there is $j \in J$ such that $|\Lambda_j(x) - \Lambda(x)| < \varepsilon$, $|\Lambda_j(y) - \Lambda(y)| < \varepsilon$. Hence

$$|\Lambda(x) - \Lambda(y)| \leq |\Lambda(x) - \Lambda_j(x)| + |\Lambda(y) - \Lambda_j(y)| + |\Lambda_j(x - y)| \leq 3\varepsilon.$$

Step 3: we show $\Lambda: X \to \mathbb{R}$ (or \mathbb{C}) is linear. For $x,y \in X, \ a \in \mathbb{R}$ (or \mathbb{C}), let $x',y',z' \in D$ be such that $||x-x'|| < \varepsilon, ||y-y'|| < \varepsilon, ||x+ay-z'|| < \varepsilon$. Then take $j \in J$ such that $|\Lambda(x') - \Lambda_j(x')| < \varepsilon, |\Lambda(y') - \Lambda_j(y')| < \varepsilon, |\Lambda(z') - \Lambda_j(z')| < \varepsilon$. Then

$$\begin{split} |\Lambda(x + ay) - \Lambda(x) - a\Lambda(y)| &\leq |\Lambda(x + ay) - \Lambda(z')| + |\Lambda(x) - \Lambda(x')| + |a||\Lambda(y) - \Lambda(y')| \\ &+ |\Lambda(z') - \Lambda_j(z')| + |\Lambda(x') - \Lambda_j(x')| + |a||\Lambda(y') - \Lambda_j(y')| \\ &+ |\Lambda_j(x') - \Lambda_j(x') - a\Lambda_j(y')| \\ &\leq C\varepsilon + ||\Lambda_j||||z' - x' - ay'|| \leq C'\varepsilon \end{split}$$

so $\Lambda(x + ay) = \Lambda(x) + a\Lambda(y)$.

Step 4: $||\Lambda|| \le 1$. We have

$$||\Lambda|| = \sup_{\substack{x \in X \\ ||x|| \leq 1}} |\Lambda(x)| = \sup_{\substack{x \in D \\ ||x|| \leq 1}} |\Lambda(x)| \leq 1 \text{ by density}.$$

Step 5: $\Lambda_j \to^{w^*} \Lambda$. For $x' \in D$ take $x \in X$ with ||x - x||'. Then we have

$$|\Lambda_j(x) - \Lambda(x)| \le |\Lambda_j(x - x')| + |\Lambda_j(x') - \Lambda(x')| + |\Lambda(x - x')| < 3\varepsilon.$$

So
$$\Lambda_j(x) \to \Lambda(x)$$
 for all $x \in X$.

2.7 Hahn-Banach Theorem

Suppose $\Lambda: M \to \mathbb{R}$ (or \mathbb{C}) is a bounded linear functional on a subspace $M \subseteq X$ of a Banach space. Goal: extend Λ to $\tilde{\Lambda}: X \to \mathbb{R}$ (or \mathbb{C}) with $||\tilde{\Lambda}||_{X'} = ||\Lambda||_{M'}$.

Definition. Let X be a real vector space. Then $p: X \to \mathbb{R}$ is *sublinear* if

- (i) $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$;
- (ii) p(tx) = tp(x) for all $x \in X$, $t \ge 0$.

Examples.

- p(x) = |l(x)| for $l: X \to \mathbb{R}$ linear.
- Any seminorm.

Note. If p is sublinear, l is linear, $l(x) \leq p(x)$ for all $x \in M$, then

$$-p(-x) \le l(x) \le p(x).$$

Lemma (Bounded extension lemma). Let X be a real vector space, $p: X \to \mathbb{R}$ sublinear, $M \subseteq X$ a subspace. Assume $l: M \to \mathbb{R}$ is linear and $l(y) \le p(y)$ for all $y \in M$. For $x \in X \setminus M$, let $\tilde{M} = span\{x, M\}$. Then there is an extension $\tilde{l}: \tilde{M} \to \mathbb{R}$ linear such that $\tilde{l}(y) = l(y)$ for all $y \in M$ and $\tilde{l}(z) \le p(z)$ for all $z \in \tilde{M}$.

Proof. If $z \in \tilde{M}$, there are unique $y \in M$ and $\lambda \in \mathbb{R}$ such that $z = y + \lambda x$. Define $\tilde{l}(x) = a$ for some a to be defined, and $\tilde{l}(y) = l(y)$ for $y \in M$ and then l(z) is defined by linearity.

Claim: $a = \sup\{l(y) - p(y - x) : y \in M\}$ works. For each $y, z \in M$,

$$l(y) + l(z) = l(y+z) \le p(y+z) \le p(y-x) + p(x+z).$$

Hence

$$l(y) - p(y - x) \le p(z + x) - l(z).$$
 (*)

Note this implies $a < \infty$. Also (*) implies

$$l(y) - a \le p(y - x) \text{ for all } y \in M. \tag{*'}$$

and

$$l(z) + a \le p(z+x) - (l(y) - p(y-x)) + a \text{ for all } y \in M.$$
 (*")

So taking the infimum of (*'') over $y \in M$:

$$l(z) + a \le p(z+x) - a + a = p(z+x).$$

Now

$$\tilde{l}(y + \lambda x) = l(y) + a\lambda \le p(y + \lambda x)$$
 for all $y \in M, \lambda > 0$

by taking $z = \lambda^{-1}y$ in (*") and multiplying across by λ . Also

$$\tilde{l}(y+a\lambda) = l(y) + a\lambda \le p(y+\lambda x)$$
 for all $y \in M, \lambda > 0$

by replacing y with $|\lambda|^{-1}y$ in (*') and multiplying across by $|\lambda|$. Hence $l(z) \leq p(z)$ for all $z \in \tilde{M}$.

Corollary. If M has finite codimension in X, then any $l: M \to \mathbb{R}$ satisfying $l(y) \leq p(y)$ for all $y \in M$ can be extended to $\tilde{l}: X \to \mathbb{R}$ linear with $l(x) \leq p(x)$ for all $x \in X$.

Proof. Apply lemma repeatedly.

Definition. Let S be a set. A partial order is a binary relation \leq on S such that

- (i) $a \le a$ for all $a \in S$ (reflexive);
- (ii) $a \le b, b \le c \Rightarrow a \le c$ (transitive);
- (iii) $a \le b, b \le a \Rightarrow a = b$ (antisymmetry).

A set S with a partial order is called a *poset*. If additionally $a \leq b$ or $b \leq a$ holds for all $a, b \in S$, then \leq is called a *total order*. A totally ordered subset $T \subseteq S$ of a poset S is called a *chain*. An element $u \in S$ is an *upper bound* for $T \subseteq S$ if $t \leq u$ for all $t \in T$. A maximal element $m \in S$ is an element such that $m \leq x$ implies m = x.

Examples.

- (i) If A is any set, $S = 2^A$ is a poset partially ordered by inclusion of sets.
- (ii) \mathbb{R} (with the usual ordering) is a totally ordered set with no maximal element.
- (iii) The collection of open balls in \mathbb{R}^n is a poset ordered by inclusion. The subset $T = \{B_r(0) : 0 < r \leq 1\}$ is a chain in S. $B_1(0)$ is a maximal element of T. $B_2(0)$ is an upper bound of T.

Lemma (Zorn's Lemma). Let (S, \leq) be a poset in which every totally ordered subset has an upper bound. Then (S, \leq) contains at least one maximal element.

We will treat Zorn's Lemma as an axiom.

Theorem (Hahn-Banach). Let X be a real vector space, $p: X \to \mathbb{R}$ sublinear, $M \subseteq X$ a subspace. For any $l: M \to \mathbb{R}$ linear such that $l(x) \leq p(x)$ for all $x \in M$, there exists $\tilde{l}: X \to \mathbb{R}$ linear such that $\tilde{l}|_M = l$ and $\tilde{l}(y) \leq p(y)$ for all $y \in X$.

Proof. Let

$$S = \{(N, \tilde{l}) : X \supseteq N \supseteq M, \ \tilde{l} : N \to \mathbb{R} \ \text{linear}, \tilde{x} \le p(x) \forall x \in N, \ \tilde{x} = p(x) \forall x \in M\}$$

and define the partial order $(N_1, \tilde{l}_1) \leq (N_2, \tilde{l}_2) \iff N_1 \subseteq N_2, \ \tilde{l}_2|_{N_1} = \tilde{l}_1$. For every totally ordered subset $T \subseteq S$, we obtain an upper bound for T via

$$N_T := \bigcup_{(N,\tilde{l}) \in T} N, \ l_T(x) = \tilde{l}(x) \text{ if } x \in N \text{ for some } (N,\tilde{l}) \in T$$

which is well-defined since where the \tilde{l} are defined (for $(N, \tilde{l}) \in T$), they agree since T is a total order. Further, $(N, \tilde{l}) \leq (N_T, l_T)$ for every $(N, \tilde{l}) \in T$. Thus (N_T, l_T) is an upper bound.

Applying Zorn's Lemma, there is a maximal element (\tilde{N}, \tilde{l}) of S. It suffices to show $\tilde{N} = X$. Suppose not, then there is $x \in X \setminus \tilde{N}$ and the bounded extension lemma gives an extension l^* to $N^* = \text{span}\{x, \tilde{N}\}$ such that $(\tilde{N}, \tilde{l}) \leq (N^*, l^*)$, contradicting maximality of (\tilde{N}, \tilde{l}) .

Corollary. Let X be a normed vector space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} and $M \subseteq X$ a subspace. Then every bounded linear functional $\Lambda : M \to \mathbb{K}$ can be extended to a bounded linear functional $\tilde{\Lambda} : X \to \mathbb{K}$ such that $||\tilde{\Lambda}||_{X'} = ||\Lambda||_{M'}$ and $\tilde{\Lambda}|_M = \Lambda$.

Proof. If $\mathbb{K} = \mathbb{R}$, then $p(x) = ||\Lambda|| \cdot ||x||$ is sublinear and the result follows immediately from Hahn-Banach. If $\mathbb{K} = \mathbb{C}$, then $\Lambda(x) = l(x) - il(ix)$ with $l: X \to \mathbb{R}$, $l(x) = \Re(\Lambda(x))$ a real linear function. Since $|\Lambda(x)| = l(e^{i\theta}x)$ for suitable $\theta \in [0, 2\pi]$,

$$\sup_{\substack{||x||\leq 1\\x\in N}}|\Lambda(x)|=\sup_{\substack{||x||\leq 1\\x\in N}}l(x),\ N\subseteq X.$$

So apply Hahn-Banach to l and the result follows.

Corollary. Let X be a normed vector space and $x \in X$. Then there is $\Lambda_x \in X'$ such that $||\Lambda_x|| = 1$ and $\Lambda_x(x) = ||x||$. Λ_x is called a support functional.

Proof. Let $M = \text{span}\{x\}$ and define $l \in M'$ by l(tx) = t||x||, $t \in \mathbb{K}$. Clearly, ||l|| = 1 and l(x) = ||x||. Apply Hahn-Banach to get the result.

Remark. For $X = L^p(\mathbb{R}^n)$, $p \in [1, \infty]$, can construct a support functional by hand (Example Sheet 1).

Corollary. Let X be a normed vector space and $x \in X$. Then x = 0 if and only if $\Lambda(x) = 0$ for all $\Lambda \in X'$.

Corollary. Let X be a normed vector space and $x, y \in X$ be distinct. Then there exists $\Lambda \in X'$ such that $\Lambda(x) \neq \Lambda(y)$: i.e linear functionals separate points.

Corollary. The map $\Phi: X \to X''$, $\Phi(x) = \tilde{x}$ where $\tilde{x}(\Lambda) = \Lambda(x)$ is an isometry. Proof. By definition

$$||\Phi(x)||_{X'} = \sup_{\substack{\Lambda \in X' \\ ||\Lambda|| \le 1}} |\Phi(x)(\Lambda)| = \sup_{\substack{\Lambda \in X' \\ ||\Lambda|| \le 1}} |\Lambda(x)| \le \sup_{\substack{\Lambda \in X' \\ ||\Lambda|| \le 1}} ||\Lambda|| \cdot ||x|| = ||x||$$

By choosing $\Lambda = \Lambda_x$ (the support functional), there is equality.

Definition. X is said to be *reflexive* if Φ is surjective, i.e X = X''.

Example. $L^p(\mathbb{R}^n)$ is reflexive iff $p \in [1, \infty)$.

Theorem. Let $A, B \subseteq X$ be disjoint, nonempty, convex subsets of a normed space X (real or complex). Then

(a) If A is open, there exists $\Lambda \in X'$ such that and $\gamma \in \mathbb{R}$ such that

$$\Re \Lambda(x) < \gamma \le \Re \Lambda(y) , \forall x \in A, \forall y \in B.$$

If B is also open the second inequality can be made strict.

(b) If A is compact and B is closed, then there exists $\Lambda \in X'$ and $\gamma_1, \gamma_2 \in \mathbb{R}$ such that

$$\Re \Lambda(x) < \gamma_1 < \gamma_2 < \Re \Lambda(y) , \forall x \in A, \forall y \in B.$$

Proof. Assume X is a vector space over \mathbb{R} (otherwise just apply to real part)

(a) Fix $a_0 \in A$, $b_0 \in B$ and set

$$x_0 = b_0 - a_0, \ C = A - B + x_0 \ni 0.$$

Note C is convex (since A and B are), $x_0 \notin C$. (since $A \cap B = \emptyset$). Thus C is a convex neighbourhood of 0. Let $p(x) = \inf\{t > 0 : t^{-1}x \in C\}$. Then p is sublinear wih $p(x) \leq k||x||$ for some k, and p(x) < 1 if and only if $x \in C$ (Example Sheet 2). Define $M = \{tx_0 : t \in \mathbb{R}\}$, and define $l : M \to \mathbb{R}$ by $l(tx_0) = t$.

We claim that $l(x) \leq p(x)$ for all $x \in M$. If t > 0, $l(tx_0) = t \leq tp(x_0)$ since $x_0 \notin C$. If t < 0, $l(tx_0) = t \leq 0 \leq p(tx_0)$. By Hahn-Banach, l can be extended to $\Lambda: X \to \mathbb{R}$ with $\Lambda(x) \leq p(x)$ for all $x \in X$. Moreover, $-k||x|| \leq -p(-x) \leq \Lambda(x) \leq p(x)$ so $|\Lambda(x)| \leq k||x||$ and $\Lambda \in X'$.

We claim that $\Lambda(a) < \Lambda(b)$ for all $a \in A$ and all $b \in B$. Indeed

$$\underbrace{\Lambda(a-b+x_0)}_{\Lambda(a)-\Lambda(b)+1} \le p(a-b+x_0) < 1.$$

Since non-zero elements of the dual are open maps (Example Sheet 2), $\Lambda(A)$ is an open interval (since A is open). Take γ to be the right endpoint of $\Lambda(A)$. Then $\Lambda(x) < \gamma \leq \Lambda(x)$. If B is also open, the inequality is strict.

(b) Since A is compact, B is closed and $A \cap B$,

$$d = \inf\{||a - b|| : a \in A, b \in B\} > 0.$$

Let $V = B_{1/2}(0)$. Then A + V is open and disjoint from B. By (a), there is a $\Lambda \in X'$ such that $\Lambda(A + V)$ and $\Lambda(B)$ are disjoint intervals of \mathbb{R} . These intervals are also a positive distance apart so there exist $\gamma_1 < \gamma_2$ between them.

Corollary. Let X be a Banach space, $M \subseteq X$ a subspace and $x_0 \in X$. If $x_0 \notin \overline{M}$ then there is $\Lambda \in X'$ such that $\Lambda(x_0) = 1$ and $\Lambda(x) = 0$ for all $x \in \overline{M}$.

Proof. Apply (b) of the previous theorem with $A = \{x_0\}$, $B = \overline{M}$. Thus there exists $\Lambda \in X'$ such that $\Lambda(x_0) \notin \Lambda(M)$. Thus $\Lambda(\overline{M})$ must be a proper subsapce of \mathbb{K} , so $\{0\}$. Also $\Lambda(x_0) \neq 0$, so $\frac{\Lambda}{\Lambda(x_0)}$ is the required element of X'.

Page 25

3 Distributions

Distributions are generalised functions.

Example. $G(x) = \frac{1}{4\pi|x|}, x \in \mathbb{R}^3$ solves $-\nabla^2 G = \delta$ as distributions. What this means is that for all sufficiently nice $f: \mathbb{R}^3 \to \mathbb{R}, \int (-\nabla^2 f) G dx = f(0)$.

3.1 Distributions, the space $\mathcal{D}(U)$ and $\mathcal{D}'(U)$

For $U \subseteq \mathbb{R}^n$ open, $C_c^{\infty}(U) = \{\phi : U \to \mathbb{R} \text{ smooth and supp } \phi \subseteq U \text{ is compact}\}.$

Theorem. There is a topology on $C_c^{\infty}(U)$ such that

- (i) The vector space operations are continuous;
- (ii) A sequence $(\phi_j)_{j\geq 1}$ in $C_c^{\infty}(U)$ converges to 0 if and only if there is $K\subseteq U$ compact such that supp $\phi_j\subseteq K$ for all j and for all α , sup $_K|\nabla^{\alpha}\phi_j|\to 0$;
- (iii) If Y is a LCTVS (Locally Compact TVS) and $\Lambda: C_c^{\infty}(U) \to Y$ is linear then Λ is sequentially continuous if and only if it is continuous.

Proof. Not given. \Box

Definition. $C_c^{\infty}(U)$ with the above topology is called the space of *test functions* and is denoted $\mathcal{D}(U)$.

Examples. Let $\phi \in C_c^{\infty}(\mathbb{R})$.

- (a) If $\phi_j(x) = e^{-j}\phi(jx)$, then $\phi_j \to 0$ in $\mathcal{D}(\mathbb{R})$;
- (b) If $\phi_j(x) = j^{-100}\phi(jx)$, then ϕ_j does not necessarily converge to 0 in $\mathcal{D}(\mathbb{R})$;
- (c) If $\phi_j(x) = e^{-j}\phi(x-j)$ then ϕ_j does not necessarily converge to 0 in $\mathcal{D}(\mathbb{R})$.

Definition. The space of distributions $\mathcal{D}'(U)$ is the dual space of $\mathcal{D}(U)$ with the weak-* topology.

In practice, $u \in \mathcal{D}'(U)$ if and only if $u(\phi_j) \to u(\phi)$ whenever $\phi_j \to \phi$ in $\mathcal{D}(U)$. Also, $u_j \to u$ in $\mathcal{D}'(U)$ if and only if $u_j(\phi) \to u(\phi)$ for all $\phi \in \mathcal{D}(U)$.

Examples.

- (a) For any $x \in U$, define $\delta_x : \mathcal{D}(U) \to \mathbb{R}$ by $\delta_x(\phi) = \phi(x)$. This is called the *Dirac* or δ distribution.
- (b) If $f \in L^1_{loc}(U)$ then $T_f : \mathcal{D}(U) \to \mathbb{R}$, $T_f(\phi) = \int_U f \phi dx$ defines a $T_f \in \mathcal{D}'(U)$.

Fact. $T_f = T_g \iff \int_U (f-g)\phi \mathrm{d}x = 0$ for all $\phi \in C_c^\infty(U) \iff f = g$ almost everywhere. Hence the map $T: L^1_{\mathrm{loc}}(U) \to \mathcal{D}'(U), f \mapsto T_f$ is an injection.

Example. If $\alpha \in C^{\infty}(U)$, then $T_{\alpha f}(\phi) = \int_{U} f \alpha \phi dx = T_{f}(\alpha \phi)$ for all $\phi \in \mathcal{D}(U)$.

Definition. If $u \in \mathcal{D}'(U)$ is a distribution we define $\alpha u \in \mathcal{D}'(U)$ by $\alpha u(\phi) = u(\alpha\phi)$ for all $\phi \in \mathcal{D}(U)$.

Example. If $f \in C^1(U)$ then

$$T_{\nabla_i f}(\phi) = \int_U (\nabla_i f) \phi dx = -\int_U f(\nabla_i \phi) dx = -T_f(\nabla_i \phi) \ \forall \phi \in C_c^{\infty}.$$

Definition. If $u \in \mathcal{D}'(U)$ define $\nabla^{\alpha} u \in \mathcal{D}'(U)$ by

$$\nabla^{\alpha} u(\phi) = (-1)^{|\alpha|} u(\nabla^{\alpha} \phi) \ \forall \phi \in C_c^{\infty}.$$

Example. Define $H: \mathbb{R} \to \mathbb{R}$ by H(x) = 1 for all $x \geq 0$ and H(x) = 0 for all x < 0 (Heaviside function). Then for $\phi \in \mathcal{D}(\mathbb{R})$, $\nabla T_H(\phi) = -\int H \phi' dx = -\int_0^\infty \phi'(x) dx = \phi(0) = \delta_0(\phi)$. Hence $\nabla T_H = \delta_0$ or $H' = \delta_0$ in the sense of distributions.

3.2 Compactly supported distributions: $\mathcal{E}(U)$ and $\mathcal{E}'(U)$

Now consider $C^{\infty}(U) = \{\phi : U \to \mathbb{R} \text{ smooth}\}.$

Let $(K_i \subseteq U : i \in \mathbb{N})$ be compact sets such that $K_i \subseteq \operatorname{int}(K_{i+1})$, $U = \bigcup_i K_i$. For $\phi \in C^{\infty}$ define $p_N(\phi) = \sup_{x \in K_N} \sup_{|\alpha| \le N} |\nabla^{\alpha} \phi(x)|$. Then $\mathcal{P} = \{p_N\}_{N \ge 1}$ is a separating family of seminorms.

Definition. The space $C^{\infty}(U)$ with the locally convex topology induced by \mathcal{P} is denoted $\mathcal{E}(U)$.

Remark. Since \mathcal{P} is countable, $\mathcal{E}(U)$ is a metric space. It is also complete, i.e a Fréchet space.

A sequence $(\phi_j)_{j\geq 1}$ in $\mathcal{E}(U)$ converges to 0 if and only if for all $K\subseteq U$ compact and all α , $\sup_{x\in K} |\nabla^{\alpha}\phi_j(x)| \to 0$.

Fact. $\mathcal{D}(U) \subseteq \mathcal{E}(U)$ so $\mathcal{E}'(U) \subseteq \mathcal{D}'(U)$.

Example. If $\phi \in C_c^{\infty}$, then $\phi_j(x) = e^{-j}\phi(x-j)$ converges to 0 in $\mathcal{E}(\mathbb{R})$ but not in $\mathcal{D}(\mathbb{R})$.

Definition. $u \in \mathcal{D}'(U)$ has support in $S \subseteq U$ if $u(\phi) = 0$ for all $\phi \in C_c^{\infty}(U \setminus S)$. If S can be taken compact, say u has compact support.

Theorem. $\mathcal{E}'(U) = \{u \in \mathcal{D}'(U) : u \text{ has compact support}\}.$

Lemma. Let $u: \mathcal{E}(U) \to \mathbb{R}$ be linear. Then u is continuous if and only if

$$\exists \ compact \ K \subseteq \mathbb{R}^n, \ N \in \mathbb{N}, \ C > 0 \ such \ that \ |u(\phi)| \leq C \sup_{\substack{x \in K \\ |\alpha| \leq N}} |\nabla^{\alpha} \phi(x)|. \quad (*)$$

Proof. Recall that $u \in \mathcal{E}'(U)$ if and only if $u(\phi_j) \to 0$ for all sequences (ϕ_j) in $\mathcal{E}(U)$, i.e $\phi_j \xrightarrow{\mathcal{E}(U)} 0$. Now assume (*) and let (ϕ_j) be a sequence in $\mathcal{E}(U)$ with $\phi_j \xrightarrow{\mathcal{E}(U)} 0$. This is equivalent to: for all $\tilde{K} \subseteq U$ compact, $\tilde{N} \in \mathbb{N}$, $\sup_{\substack{x \in K \\ |\alpha| \le N}} |\nabla^{\alpha} \phi(x)| \to 0$. Thus taking $\tilde{K} = K$ and $\tilde{N} = N$, (*) implies $u(\phi_j) \to 0$.

Now suppose (*) does not hold. Let $K_i \subseteq U$ be compact, $K_j \subseteq \operatorname{int}(K_{j+1})$, $\bigcup_j K_j = U$. Since (*) does not hold, for each j we have $\phi_j \in \mathcal{E}(U)$ such that $|u(\phi_j)| > j \sup_{x \in K_j} \sup_{|\alpha| \le j} |\nabla^\alpha \phi_j(x)|$. Set $\psi_j = \frac{\phi_j}{|u(\phi_j)|}$. We claim that $\psi_j \to 0$ in $\mathcal{E}(U)$. For any $\tilde{K} \subseteq U$ compact, $\tilde{N} \in \mathbb{N}$, there exists $J > \tilde{N}$ such that $\tilde{K} \subseteq K_j$ for all j > J, so

$$\sup_{\substack{x \in \tilde{K} \\ |\alpha| \leq \tilde{N}}} |\nabla^{\alpha} \psi(x)| \leq \sup_{\substack{x \in \tilde{K} \\ |\alpha| \leq \tilde{N}}} \frac{\nabla^{\alpha} \phi_{j}(x)}{|u(\phi_{j})|} < \frac{1}{j}.$$

As claimed. But $|u(\psi_i)| = 1$, so $|u(\psi_i)| \neq 0$, so u is not continuous.

Proof of Theorem. If $u \in \mathcal{E}'(U)$, the lemma implies that u has support in K. Conversely, if $u \in \mathcal{D}'(U)$ has support in $K \subseteq U$ compact, define $\tilde{u} \in \mathcal{E}'(U)$ by $\tilde{u}(\phi) = u(\chi\phi)$ for all $\phi \in \mathcal{E}(U)$, where $\chi \in C_c^{\infty}(U)$ satisfies $\chi = 1$ on K. The extension does not depend on χ since for any other such $\tilde{\chi}$ one has $\chi - \tilde{\chi} \in C_c^{\infty}(U \setminus K)$.

Examples.

- (a) If $f \in L^1(U)$ vanishes almost everywhere in $U \setminus K$ for K compact, then $T_f \in \mathcal{E}'(U)$;
- (b) For any $x \in U$, $\delta_x \in \mathcal{E}'(U)$;
- (c) $u \in \mathcal{D}'(U)$ where $u(\phi) = \sum_{m=-\infty}^{\infty} \phi(m) \notin \mathcal{E}(\mathbb{R})$.

3.3 Tempered distributions: the spaces $S(\mathbb{R}^n)$ and $S'(\mathbb{R}^n)$

Definition. $\phi \in C^{\infty}(\mathbb{R}^n)$ is rapidly decreasing if

$$\sup_{x \in \mathbb{R}^n} |(1+|x|)^N \nabla^{\alpha} \phi(x)| < \infty$$

for all multi-indices α and $N \in \mathbb{N}$.

Examples.

- (a) $\phi(x) = e^{-|x|^a}$ is rapidly decreasing;
- (b) $\phi(x) = |x|^{-2023}$ is not rapidly decreasing.

Definition. The *Schwartz space* $S(\mathbb{R}^n)$ is the space of rapidly decreasing functions with the topology generated by the separating family of seminorms

$$p_N(\phi) = \sup_{x \in \mathbb{R}^n} \sup_{|\alpha| \le N} |(1+|x|)^N \nabla^{\alpha} \phi(x)|.$$

Remark. There are other equivalent families of seminorms such as

$$\sup_{x \in \mathbb{R}^n} \sup_{|\alpha| \le N} |(1+|x|^2)^N \nabla^{\alpha} \phi(x)|$$

$$\sup_{x \in \mathbb{R}^n} \sup_{|\alpha| \le N} |\nabla^{\alpha} (1+|x|^2)^N \phi(x)|.$$

Fact. $S(\mathbb{R}^n)$ is a Fréchet space, $\mathcal{D}(\mathbb{R}^n) \subseteq S(\mathbb{R}^n) \subseteq \mathcal{E}(\mathbb{R}^n)$ continuously and $\mathcal{E}'(\mathbb{R}^n) \subseteq S'(\mathbb{R}^n) \subseteq \mathcal{D}'(\mathbb{R}^n)$.

Definition. $S'(\mathbb{R}^n)$ is called the space of tempered distributions or Schwartz distributions.

Examples.

(a) If $f \in L^1_{loc}(\mathbb{R}^n)$ satisfies $\int_{\mathbb{R}^n} (1+|x|)^{-N} |f(x)| dx < \infty$ for some $N \in \mathbb{N}$, then $T_f \in S'(\mathbb{R}^n)$. Indeed, if $\phi \in S(\mathbb{R}^n)$, then

$$|T_f(\phi)| = \left| \int f(x)\phi(x) dx \right|$$

$$= \underbrace{\left(\int (1+|x|)^{-N} |f(x)| dx \right)}_{\leq C} \underbrace{\sup_{x \in \mathbb{R}^n} (1+|x|)^N |\phi(x)|}_{\Rightarrow 0 \text{ if } \phi \xrightarrow{S(\mathbb{R}^n)} \downarrow 0}$$

so if
$$\phi_j \xrightarrow{S(\mathbb{R}^n)} 0$$
 then $T_f(\phi_j) \to 0$.

- (b) If $f(x) = e^{|x|^2}$ then $T_f \in \mathcal{D}'(\mathbb{R}^n)$ but $T_f \notin S'(\mathbb{R}^n)$.
- (c) $u(\phi) = \sum_{m=-\infty}^{\infty} |m|^{2023} \phi(m)$ belongs to $S'(\mathbb{R})$ but not $\mathcal{E}'(\mathbb{R})$.

3.4 Convolution

Example. Let $f \in L^1_{loc}(\mathbb{R}^n)$, $\phi \in \mathcal{D}(\mathbb{R}^n)$. Then

$$f * \phi(x) = \int f(y)\phi(x-y)dy = T_f(\tau_x \check{\phi})$$

where $\tau_x \check{\phi}(y) = \check{\phi}(y-x) = \phi(x-y), \ \check{\phi}(y) = \phi(-y).$

Definition. For $u \in \mathcal{D}'(\mathbb{R}^n)$ and $\phi \in \mathcal{D}(\mathbb{R}^n)$ define

$$u * \phi(x) = u(\tau_r \check{\phi}).$$

Facts.

• $(u_1 + au_2) * \phi = u_1 * \phi + au_2 * \phi$;

•
$$u * (\phi_1 + a\phi_2) = u * \phi_1 + au * \phi_2;$$

• $u * \check{\phi}(0) = u(\phi)$ - thus $u * \phi(0), \phi \in \mathcal{D}(\mathbb{R}^n)$ determines $u \in \mathcal{D}'(\mathbb{R}^n)$.

Example. $\delta_0 * \phi(x) = \delta_0(\tau_x \check{\phi}) = \check{\phi}(-x) = \phi(x)$. Thus $\delta_0 * \phi = \phi$.

Proposition. Let $u \in \mathcal{D}'(\mathbb{R}^n)$ and $\phi \in \mathcal{D}(\mathbb{R}^n)$. Then

(i)
$$u * \phi \in C^{\infty}(\mathbb{R}^n)$$
 and $\nabla^{\alpha}(u * \phi) = (\nabla^{\alpha}u) * \phi = u * \nabla^{\alpha}\phi$;

(ii) If $u \in \mathcal{E}'(\mathbb{R}^n)$ then $u * \phi$ has compact support, i.e $u * \phi \in \mathcal{D}(\mathbb{R}^n)$.

Proof.

(i)

$$\frac{1}{h}(u * \phi(x + he_i) - u * \phi(x)) = u\left(\frac{1}{h}(\tau_{x + e_i h}\check{\phi} - \tau_x\check{\phi})\right) \xrightarrow{h \to 0} u(\tau_x \widetilde{\nabla_i \phi}).$$

Where we used from Example Sheet 3:

$$\frac{1}{h}(\tau_{x+e_ih}\check{\phi} - \tau_x\check{\phi}) \xrightarrow{\mathcal{D}(\mathbb{R}^n)} \nabla_i\phi(x-\cdot) = \tau_x\widecheck{\nabla_i\phi}.$$

Hence $\nabla_i(u+\phi)(x)$ exists and equals $u(\tau_x\widetilde{\nabla_i\phi}) = u * \nabla_i\phi(x)$. So by induction $u * \phi \in C^{\infty}$ and $\nabla^{\alpha} u * \phi = u * \nabla^{\alpha} \phi$ for all α . Also; $\nabla^{\alpha} \tau_{x} \check{\phi}(y) =$ $\nabla_y^{\alpha}\phi(x-u) = (-1)^{|\alpha|}\nabla_x^{\alpha}\phi(x-y) = (-1)^{|\alpha|}\tau_x\overline{\nabla^{\alpha}\phi}(y). \text{ Thus } u*\nabla^{\alpha}\phi = \nabla^{\alpha}u*\phi.$

(ii) Assume $u(\phi)=0$ for all $\phi\in C_c^\infty(\mathbb{R}^n\setminus K)$ for some K compact. Then for any $\phi \in \mathcal{D}(\mathbb{R}^n)$, supp $\tau_x \check{\phi} \cap K = \emptyset$ for |x| large enough, i.e $u * \phi$ has compact support.

Definition. For $u_1 \in \mathcal{D}'(\mathbb{R}^n)$ and $u_2 \in \mathcal{E}'(\mathbb{R}^n)$, define $u_1 * u_2$ to be the unique distribution such that

$$(u_1 * u_2) * \phi = u_1 * (u_2 * \phi).$$

[Note that $u_2 * \phi \in \mathcal{D}(\mathbb{R}^n)$ by the previous proposition so this makes sense.]

Example. Let $u \in \mathcal{D}'(\mathbb{R}^n)$. Then $u * \delta_0 = u$. Indeed, $(u * \delta_0) * \phi = u * (\delta_0 * \phi) = u$ $u * \phi$.

Proposition. Let $u \in \mathcal{D}'(\mathbb{R}^n)$ and $u_2 \in \mathcal{E}'(\mathbb{R}^n)$. Then $\nabla^{\alpha}(u_1 * u_2) = u_1 *$ $(\nabla^{\alpha} u_2) = (\nabla^{\alpha} u_1) * u_2.$

Proof. Let $\phi \in \mathcal{D}(\mathbb{R}^n)$. Then by the previous proposition

$$\underbrace{\nabla^{\alpha}(u_1 * u_2)}_{\in \mathcal{D}'} * \underbrace{\phi}_{\in \mathcal{D}} = (u_1 * u_2) * (\nabla^{\alpha}\phi)$$
$$= u_1 * (u_2 * (\nabla^{\alpha}\phi)) = (u_1 * \nabla^{\alpha}u_2) * \phi.$$

Definition. Call $L = \sum_{|\alpha| \leq k} a_{\alpha} \nabla^{\alpha}$, $a_{\alpha} \in \mathbb{R}$, $\nabla^{\alpha} u_{2} * \phi$ a constant coefficient partial differential operator of order k. A fundamental solution of L is a distribution G such that $LG = \delta_{0}$.

Theorem. If $G \in \mathcal{D}'(\mathbb{R}^n)$ is a fundamental solution of L and $f \in \mathcal{E}'(\mathbb{R}^n)$ then u = G * f solves Lu = f. Moreover, if $f \in \mathcal{D}(\mathbb{R}^n)$ then $u = G * f \in C^{\infty}(\mathbb{R}^n)$ solves Lu = f in the classical sense.

Proof.

$$L(G*f) = \sum_{|\alpha| \le k} a_{\alpha} \nabla^{\alpha}(G*f) = \left(\sum_{|\alpha| \le k} a_{\alpha} \nabla^{\alpha}G\right) * f = \delta_{0} * f = f.$$

Example. $L=-\nabla^2=-\sum_{i=1}^3\frac{\partial^2}{\partial x_i^2}$ on \mathbb{R}^3 . Define $g(x)=\frac{1}{4\pi|x|}\in L^1_{\mathrm{loc}}(\mathbb{R}^3)$. Then $G=T_g$ is a fundamental solution for L. In particular, if $f\in C_c^\infty(\mathbb{R}^n)$ then

$$u(x) = \int_{\mathbb{R}^3} \frac{f(y)}{4\pi |x - y|} dy$$

solves Lu = f.

3.5 Fourier Transform

Definition. If $f \in L^1(\mathbb{R}^n)$ then the Fourier transform of f is $\hat{f} = \mathcal{F}(f) : \mathbb{R}^n \to \mathbb{C}$, $\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-ix\cdot\xi} dx$.

Example. (n = 1)

(i)

$$f(x) = \begin{cases} 1 & |x| < 1 \\ 0 & |x| \ge 1 \end{cases}$$

The Fourier transform of f is $\hat{f}(\xi) = 2\frac{\sin \xi}{\xi}$;

- (ii) $f(x) = e^{-|x|}$ has Fourier transform $\hat{f}(\xi) = \frac{2}{1+\xi^2}$;
- (iii) $f(x) = \frac{1}{1+x^2}$ has Fourier transform $\hat{f}(\xi) = e^{-|x|}\pi$;
- (iv) $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ has Fourier transform $\hat{f}(\xi) = e^{-|\xi|^2/2}$.

Upshot: f regular $\leftrightarrow \hat{f}$ decays.

Theorem (Riemann-Lebesgue Lemma). Let $f \in L^1(\mathbb{R}^n)$. Then $\hat{f} \in C^0(\mathbb{R}^n)$ and $\sup_{\xi \in \mathbb{R}^n} |\hat{f}(\xi)| \leq ||f||_{L^1}$, $\hat{f}(\xi) \to 0$ as $|\xi| \to \infty$.

Proof. Assume $\xi_k \to \xi$. Then for $x \in \mathbb{R}^n$, $f(x)e^{-i\xi_k \cdot x} \to f(x)e^{-i\xi \cdot x}$ pointwise and $|f(x)e^{-i\xi_k \cdot x}| \in |f(x)| \in L^1$ so by the DCT, $\hat{f}(\xi_k) \to \hat{f}(\xi)$. Hence $\hat{f} \in C^0$. We also have

$$|\hat{f}(\xi)| = \left| \int f(x)e^{-i\xi \cdot x} dx \right| \le ||f||_{L^1}.$$

To show $\hat{f}(\xi) \to 0$ as $|\xi| \to \infty$, let $f_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^n)$ be such that $||f - f_{\varepsilon}||_{L^1} < \varepsilon$. Then

$$\hat{f}_{\varepsilon}(\xi) = \int_{\mathbb{R}^n} f_{\varepsilon}(x) \underbrace{e^{-i\xi \cdot x}}_{-\frac{1}{|\xi|^2} \nabla_x^2 (e^{-i\xi \cdot x})} dx = -\frac{1}{|\xi|^2} \underbrace{\int_{\mathbb{R}^n} (\nabla^2 f_{\varepsilon}) e^{-i\xi \cdot x} dx}_{\leq ||\nabla^2 f_{\varepsilon}||_{r^1}}.$$

Hence $\limsup_{|\xi|\to\infty} |\hat{f}_{\varepsilon}(\xi)| = 0$. Finally note

$$|\hat{f}(\xi)| \le |\hat{f}_{\varepsilon}(\xi)| + \underbrace{|\hat{f}(\xi) - \hat{f}_{\varepsilon}(\xi)|}_{\le ||f - f_{\varepsilon}||_{L^{1}}} \le |\hat{f}_{\varepsilon}(\xi)| + \varepsilon.$$

So
$$\hat{f}(\xi) \to 0$$
 as $|\xi| \to \infty$.

Notation: $\tau_y f(x) = f(x - y)$ and $e_y(x) = e^{ix \cdot y}$.

Proposition.

- (i) Let $f \in L^1(\mathbb{R}^n)$, $x \in \mathbb{R}^n$, $\lambda > 0$, and set $f_{\lambda}(x) = \lambda^{-n} f(x/\lambda)$. Then $\widehat{f_{\lambda}}(\xi) = \widehat{f(\lambda\xi)}$, $\widehat{e_y f}(\xi) = \tau_y \widehat{f}(\xi)$, $\widehat{\tau_y f}(\xi) = e_{-y}(\xi)\widehat{f(\xi)}$;
- (ii) Let $f, g \in L^1(\mathbb{R}^n)$. Then $f * g \in L^1(\mathbb{R}^n)$ and $\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$.

Proof. Change of variables and Fubini.

Proposition.

(i) If $f \in C^1(\mathbb{R}^n)$ and $f, \nabla_i f \in L^1(\mathbb{R}^n)$ for all $1 \leq i \leq n$, then

$$\widehat{\nabla_j f}(\xi) = i\xi_j \widehat{f}(\xi).$$

(ii) Assume $(1+|x|)f \in L^1(\mathbb{R}^n)$. Then $\hat{f} \in C^1(\mathbb{R}^n)$ and

$$\nabla_i \hat{f}(\xi) = -i\widehat{x_i f}(\xi).$$

Proof.

(i) Let $f_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^n)$ be such that $||f_{\varepsilon} - f||_{L^1} + \sum_j ||\nabla_j f - \nabla_j f_{\varepsilon}||_{L^1} < \varepsilon$ (Exercise: show we can do this). Then (IBP)

$$\widehat{\nabla_j f_{\varepsilon}}(\xi) = \int_{\mathbb{R}^n} e^{-ix \cdot \xi} \nabla_j f_{\varepsilon}(x) dx = i\xi_j \int_{\mathbb{R}^n} e^{-ix \cdot \xi} f_{\varepsilon}(x) dx = i\xi_j \hat{f_{\varepsilon}}(\xi).$$

(ii) Hence

$$|\widehat{\nabla_j f}(\xi) - i\xi_j \widehat{f}(\xi)| \le ||\nabla_j f - \nabla_j f_{\varepsilon}||_{L^1} + |\xi|||f - f_{\varepsilon}||_{L^1} \le (1 + |\xi|)\varepsilon \xrightarrow{\varepsilon \to 0} 0.$$

(iii) Since $x_j f \in L^1$, $-i\widehat{x_j f} \in C^0$. Need to show $\nabla_j \hat{f}$ exists and equals $-i\widehat{x_j f}$.

$$\frac{\hat{f}(\xi + he_j) - \hat{f}(\xi)}{h} = \int_{\mathbb{R}^n} f(x)e^{-i\xi \cdot x} \underbrace{\left(\frac{e^{-ih \cdot x_j} - 1}{h}\right)}_{\substack{\to -ix_j \\ <|x_j|}} dx \xrightarrow{h \to 0} -ix_j \hat{f}(\xi)$$

by the DCT, using $|x_j|f \in L^1$.

Corollary. The Fourier Transform maps $S(\mathbb{R}^n)$ to $S(\mathbb{R}^n)$ continuously.

Proof. For any $f: \mathbb{R}^n \to \mathbb{C}$,

$$||f||_{L^1} \le \sup_{x \in \mathbb{R}^n} (1+|x|)^{n+1} |f(x)| \underbrace{\int_{\mathbb{R}^n} \frac{\mathrm{d}y}{(1+|y|)^{n+1}}}_{<\infty}.$$
 (*)

Hence if $f \in \mathcal{S}(\mathbb{R}^n)$, then $\nabla^{\alpha}(x^{\beta}f(x)) \in L^1(\mathbb{R}^n)$ for any multi-indices α, β . Thus by the previous proposition (applied repeatedly),

$$|\widehat{\nabla^{\alpha}(x^{\beta}f)}(\xi)| = |\xi^{\alpha}\nabla^{\beta}\widehat{f}(\xi)|.$$

So in particular (using (*)),

$$\sup_{\xi} |\xi^{\alpha} \nabla^{\beta} \hat{f}(\xi)| \leq C \sup_{\substack{x \in \mathbb{R}^n \\ |\gamma| \leq \alpha}} \left[(1+|x|)^{|\beta|+n+1} |\nabla^{\gamma} f(x)| \right] \to 0 \text{ if } f \to 0 \text{ in } \mathcal{S}(\mathbb{R}^n).$$

Therefore $\hat{f} \to 0$ in $\mathcal{S}(\mathbb{R}^n)$ if $f \to 0$ in $\mathcal{S}(\mathbb{R}^n)$. Hence $\mathcal{F} : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ is well-defined and continuous.

Theorem (Fourier inversion). Let $f \in L^1(\mathbb{R}^n)$ and assume also $\hat{f} \in L^1(\mathbb{R}^n)$. Then

 $f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \hat{f}(\xi) e^{i\xi \cdot x} d\xi \text{ for almost all } x.$

Thus writing $\check{f}(x) = f(-x)$ we have $\mathcal{F}^2(f) = (2\pi)^n \check{f}$.

Proof. Let

$$I_{\varepsilon}(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \hat{f}(\xi) e^{-\frac{1}{2}\varepsilon^2 |\xi|^2} e^{ix\xi} d\xi.$$

Since $\hat{f} \in L^1$, by the DCT, $I_{\varepsilon}(x) \xrightarrow{\varepsilon \to 0} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \hat{f}(\xi) e^{i\xi \cdot x} d\xi$. On the other hand,

$$\begin{split} I_{\varepsilon}(x) &= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} f(y) e^{-i\xi y} \mathrm{d}y \right) e^{-\frac{\varepsilon^2}{2} |\xi|^2} e^{ix \cdot \xi} \mathrm{d}\xi \\ &= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} f(y) \left(\int_{\mathbb{R}^n} e^{-\frac{1}{2}\varepsilon^2 |\xi|^2} e^{i(x-y) \cdot \xi} \mathrm{d}\xi \right) \mathrm{d}y \\ &= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} f(y) (2\pi)^{n/2} \varepsilon^{-n} e^{-\frac{|x-y|^2}{2\varepsilon^2}} \mathrm{d}y \\ &= f * \psi_{\varepsilon}(x). \end{split} \tag{Fubini}$$

Where $\psi_{\varepsilon}(x) = \varepsilon^{-n} \psi(\varepsilon^{-1}x)$, $\psi(x) = (2\pi)^{-n/2} e^{-\frac{|x|^2}{2}}$. Since $\psi \in C^{\infty}(\mathbb{R}^n)$, $\psi \geq 0$ and $\int_{\mathbb{R}^n} \psi dx = 1$, we have $f * \psi_{\varepsilon} \to f$ in L^1 as $\varepsilon \to 0$ (since ψ is a smooth mollifier). Hence $f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \hat{f}(\xi) e^{ix \cdot \xi} d\xi$ for almost all $x \in \mathbb{R}^n$.

Remark. If f is continuous, this holds for all $x \in \mathbb{R}^n$.

Theorem (Parseval-Plancherel). Let $f, g \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$. Then $\hat{f}, \hat{g} \in L^2(\mathbb{R}^n)$ and $(f, g)_{L^2} = \frac{1}{(2\pi)^n} (\hat{f}, \hat{g})_{L^2}$.

Proof. Suppose $f, g \in \mathcal{S}(\mathbb{R}^n)$. Then $\hat{f}, \hat{g} \in \mathcal{S}(\mathbb{R}^n)$ and

$$(f,g)_{L^{2}} = \int_{\mathbb{R}^{n}} \bar{f}(x)g(x)dx$$

$$= \int_{\mathbb{R}^{n}} \bar{f}(x) \left(\frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \hat{g}(\xi)e^{ix\cdot\xi}d\xi\right) dx$$

$$= \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} \bar{f}(x)e^{ix\cdot\xi}dx\right) \hat{g}(\xi)d\xi \qquad (Fubini)$$

$$= \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \bar{\hat{f}}(\xi)\hat{g}(\xi)d\xi.$$

Given $f, g \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$, let $f_j, g_j \in \mathcal{S}(\mathbb{R}^n)$ be such that $||f_i - f||_{L^1} + ||f_i - f||_{L^2} + ||g_i - g||_{L^1} + ||g_i - g||_{L^1} \to 0$. Then $\sup_{\xi \in \mathbb{R}^n} |\hat{f}(\xi) - \hat{f}_j(\xi)| + \sup_{\xi \in \mathbb{R}^n} |\hat{g}(\xi) - \hat{g}_j(\xi)| \le ||f - g_j||_{L^1} + ||g - g_j||_{L^1} \to 0$.

So $(f_j)_{j\geq 1}$ is a Cauchy sequence in L^2 . Hence $||\hat{f}_j - \hat{f}_k||_{L^2}^2 = (2\pi)^n ||f_j - f_k||_{L^2}^2$, so $(\hat{f}_j)_{j\geq 1}$ is also a Cauchy sequence in L^2 . By completeness of L^2 , there exists $\hat{f} \in L^2$ such that $\hat{f}_j \to \hat{f}$ in L^2 (exercise: show that this \hat{f} is indeed the Fourier transform of f). Similarly there is $\hat{g} \in L^2$ such that $\hat{g}_j \to \hat{g}$ in L^2 . Thus

$$(f,g)_{L^2} = \lim_{j \to \infty} (f_j, g_j) = \lim_{j \to \infty} \frac{1}{(2\pi)^n} (\hat{f}_j, \hat{g}_j)_{L^2} = \frac{1}{(2\pi)^n} (\hat{f}, \hat{g})_{L^2}.$$

Corollary. $f \mapsto (2\pi)^{-n/2} \hat{f}$ is an isometry from $L^1 \cap L^2 \subseteq L^2$ into L^2 . Since $L^1 \cap L^2$ is dense in L^2 , it extends uniquely to a linear isometry $(2\pi)^{-n/2} \mathcal{F}$ from L^2 to L^2 .

Definition. For $f \in L^2(\mathbb{R}^n)$, write $\hat{f} = \mathcal{F}(f)$ where \mathcal{F} is the above extension of the usual Fourier transform to L^2 .

Remark. If $f \in L^2(\mathbb{R}^n)$ then $f_R = f \mathbb{1}_{B_R(0)} \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ and $f_R \to f$ as $R \to \infty$ in L^2 . Thus $\hat{f}_R \to \hat{f}$ in L^2 , i.e $\left(\xi \mapsto \int_{B_R(0)} f(x) e^{-ix \cdot \xi} \mathrm{d}x\right) \xrightarrow{L^2} \hat{f}$.

Example. Let $f \in L^1(\mathbb{R}^n)$, $\phi \in \mathcal{S}(\mathbb{R}^n)$. Then

$$\begin{split} T_{\hat{f}}(\phi) &= \int_{\mathbb{R}^n} \hat{f}(\xi) \phi(\xi) \mathrm{d}\xi = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} f(x) e^{ix \cdot \xi} \mathrm{d}x \right) \phi(\xi) \mathrm{d}\xi \\ &= \int_{\mathbb{R}^n} f(x) \left(\int_{\mathbb{R}^n} \phi(\xi) e^{-ix \cdot \xi} \mathrm{d}\xi \right) \mathrm{d}x \\ &= \int_{\mathbb{R}^n} f(x) \hat{\phi}(x) \mathrm{d}x \\ &= T_f(\hat{\phi}). \end{split}$$

Definition. For $u \in \mathcal{S}'(\mathbb{R}^n)$, define $\hat{u} \in \mathcal{S}'(\mathbb{R}^n)$ by $\hat{u}(\phi) = u(\hat{\phi})$ for all $\phi \in \mathcal{S}(\mathbb{R}^n)$.

Remark. The above is valid since the map $\mathcal{S} \to \mathcal{S}$ given by $\phi \mapsto \hat{\phi}$ is well-defined and continuous, so \hat{u} is continuous as well. For $u \in \mathcal{D}'(\mathbb{R}^n)$, this definition wouldn't work as $\phi \in \mathcal{D}(\mathbb{R}^n)$ does not imply $\hat{\phi} \in \mathcal{D}(\mathbb{R}^n)$.

Examples.

- (a) Fix $\xi \in \mathbb{R}^n$. Then $\hat{\delta}_{\xi}(\phi) = \delta_{\xi}(\hat{\phi}) = \hat{\phi}(\xi) = \int_{\mathbb{R}^n} e^{-ix\cdot\xi} \phi(x) dx = T_{e_{-\xi}}(\phi)$ fo all $\phi \in \mathcal{S}(\mathbb{R}^n)$ (recall $e_{y}(x) := e^{ix\cdot y}$) i.e " $\hat{\delta}_{\xi} = e^{-i\xi\cdot(\cdot)}$ ".
- (b) For $x \in \mathbb{R}^n$,

$$\hat{T}_{e_x}(\phi) = T_{e_x}(\hat{\phi}) = \int_{\mathbb{R}^n} e^{ix \cdot \xi} \hat{\phi}(\xi) d\xi = (2\pi)^n \phi(x) = (2\pi)^n \delta_x(\phi).$$
 So $\hat{T}_{e_x} = (2\pi)^n \delta_x$ or $\widehat{e^{ix \cdot (\cdot)}} = (2\pi)^n \delta_x$ ".

Lemma. Let $u \in \mathcal{S}'(\mathbb{R}^n)$. Then

$$\widehat{e^{i\xi\cdot(\cdot)}u} = \tau_{\xi}\hat{u}, \quad \widehat{\tau_{x}u} = e^{ix\cdot(\cdot)}\hat{u},
\widehat{\nabla^{\alpha}u} = (i\xi)^{\alpha}\hat{u}, \quad \nabla^{\alpha}\hat{u} = (-1)^{|\alpha|}\widehat{x^{\alpha}u},
\widehat{\hat{u}} = (2\pi)^{n}\check{u}.$$

Proof. Let $\phi \in \mathcal{S}(\mathbb{R}^n)$. Then

$$\widehat{e^{i\xi\cdot(\cdot)}}u(\phi) = e^{i\xi\cdot(\cdot)}u(\widehat{\phi}) = u(e^{i\xi\cdot(\cdot)}\widehat{\phi})$$

$$= u(\widehat{\tau_{-\xi}\phi})$$

$$= \widehat{u}(\tau_{-\xi}\phi)$$

$$= \tau_{\xi}\widehat{u}(\phi).$$

And

$$\begin{split} \widehat{\nabla^{\alpha}u}(\phi) &= \nabla^{\alpha}u(\widehat{\phi}) = (-1)^{|\alpha|}u(\nabla^{\alpha}\widehat{\phi}) \\ &= (-1)^{|\alpha|}u((-i)^{|\alpha|}\widehat{\xi^{\alpha}\phi}) \\ &= i^{|\alpha|}u(\widehat{\xi^{\alpha}\phi}) \\ &= i^{|\alpha|}\widehat{u}(\xi^{\alpha}\phi) \\ &= (i\xi)^{\alpha}\widehat{u}(\phi). \end{split}$$

And

$$\hat{\hat{u}}(\phi) = \hat{u}(\hat{\phi}) = u(\hat{\phi}) = u((2\pi)^n \check{\phi}) = (2\pi)^n \check{u}(\phi).$$

The other statements are analogous.

Proposition. $\mathcal{F}: \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ is a linear homeomorphism.

Proposition. Suppose $u_j \to u$ in $\mathcal{S}'(\mathbb{R}^n)$, i.e $u_j(\phi) \to u(\phi)$ for all $\phi \in \mathcal{S}(\mathbb{R}^n)$, then $\hat{u}_j(\phi) = u_j(\hat{\phi}) \to u(\hat{\phi}) = \hat{u}(\phi)$ for all $\phi \in \mathcal{S}(\mathbb{R}^n)$, i.e $\hat{u}_j \to \hat{u}$ in $\mathcal{S}'(\mathbb{R}^n)$. Thus \mathcal{F} is continuous from \mathcal{S}' to \mathcal{S}' . Since $\mathcal{F}^4 = (2\pi)^{2n} \mathrm{id}$, \mathcal{F} is invertible with continuous inverse $\mathcal{F}^{-1} = (2\pi)^{-2n} \mathcal{F}^3$.

3.6 Periodic distributions

Recall: if $f \in L^2((0,1))$ then $f(x) = \sum_{n \in \mathbb{Z}} f_n e^{-2\pi i n x}$ in L^2 , where $f_n = \int_0^1 e^{-2\pi i n x} dx$.

Definition. $u \in \mathcal{D}'(\mathbb{R}^n)$ is *periodic* if for any $g \in \mathbb{Z}^n$ $\tau_g u = u$ (recall $\tau_g u(\phi) = u(\tau_{-g}\phi), \ \tau_{-g}(\phi)(x) = \phi(x+g)$).

Examples.

(a) For $k \in \mathbb{Z}^n$, the distribution " $e^{2\pi i k \cdot (\cdot)}$ " = $T_{e_{2\pi k}}$ is periodic. Indeed,

$$\tau_g T_{e_{2\pi k}}(\phi) = T_{e_{2\pi k}}(\tau_{-g}\phi) = \int_{\mathbb{R}^n} e^{2\pi i k \cdot x} \phi(x+g) dx$$
$$= \int_{\mathbb{R}^n} e^{2\pi i k \cdot (x-g)} \phi(x) dx$$
$$= \int_{\mathbb{R}^n} e^{2\pi i k \cdot x} \phi(x) dx$$
$$= T_{e_{2\pi k}}(\phi).$$

(b) Suppose $v \in \mathcal{E}'(\mathbb{R}^n)$. Then $u = \sum_{k \in \mathbb{Z}_n} \tau_k v$ is periodic. Note that u defines a distribution in \mathcal{D}' since $u(\phi)$ is a finite sum for every $\phi \in \mathcal{D}(\mathbb{R}^n)$. Then for $g \in \mathbb{Z}^n$, $\phi \in \mathcal{D}(\mathbb{R}^n)$, $\tau_g u(\phi) = \sum_{k \in \mathbb{Z}^n} \tau_{k+g} v(\phi) = \sum_{k \in \mathbb{Z}} \tau_k v(\phi) = u(\phi)$.

Definition. The fundamental cell of the lattice is

$$q = \{x \in \mathbb{R}^n : -\frac{1}{2} \le x_i < \frac{1}{2}, \ i = 1, \dots, n\}.$$

[intuitively q is the hypercube with side lengths 1 centred at 0, but with some edges "open".]

Lemma. Let $Q = \{x \in \mathbb{R}^n : -1 \le x_i < 1, i = 1, ..., n\}$. Then there exists $\psi \in C^{\infty}(\mathbb{R}^n)$ such that

- (i) $\psi \geq 0$;
- (ii) supp $\psi \subseteq Q$;
- (iii) $\sum_{g \in \mathbb{Z}^n} \tau_g \psi = 1$.

Such a ψ is called a periodic partition of unity (p.p.u). Suppose ψ and ψ' are both p.p.u's. Then if $u \in \mathcal{D}'(\mathbb{R}^n)$ is periodic, $u(\psi) = u(\psi')$.

Proof. Let $\psi_0 \in C_c^{\infty}(\mathbb{R}^n)$, supp $\psi_0 \subseteq \operatorname{int}(Q)$ and $\psi_0(x) = 1$ for $x \in q$ and $\psi_0 \ge 0$. Set $S(x) = \sum_{g \in \mathbb{Z}^n} \psi_0(x - g)$. Then $S \in C^{\infty}$ and $S(x) \ge 1$ for all $x \in \mathbb{R}^n$. Thus $\psi(x) = \frac{\psi_0(x)}{S(x)}$ satisfies the conditions.

Now let $u \in \mathcal{D}'(\mathbb{R}^n)$ be periodic and ψ, ψ' be p.p.u's. Then

$$u(\psi) = u\left(\psi \sum_{g \in \mathbb{Z}^n} \tau_g \psi'\right) = \sum_{g \in \mathbb{Z}^n} u(\psi(\tau_g \psi'))$$

$$= \sum_{g \in \mathbb{Z}^n} \tau_{-g} \tau_g u(\psi(\tau_g \psi'))$$

$$= \sum_{g \in \mathbb{Z}^n} \tau_{-g} u((\tau_{-g} \psi) \psi')$$

$$= u\left(\left(\sum_{g \in \mathbb{Z}^n} \tau_{-g}\right) \psi'\right) = u(\psi').$$

Corollary. Let ψ be a p.p.u. Then for $f \in L^1_{loc}(\mathbb{R}^n)$ periodic, $T_f(\psi) = \int_q f(x) dx$.

Proof. Choose ψ_n a p.p.u such that $\psi_n \to \mathbbm{1}_q$ pointwise and ψ_n is bounded. \square

Definition. For $u \in \mathcal{D}'(\mathbb{R}^n)$ periodic, the *average* of u over the fundamental cell is $M(u) = u(\psi)$ where ψ is any p.p.u.

Page 39

Lemma. Let $v \in \mathcal{E}'(\mathbb{R}^n)$. Then

$$u = \sum_{g \in \mathbb{Z}^n} \tau_g v \tag{*}$$

converges (in the weak-* topology) in $S'(\mathbb{R}^n)$. Conversely, if $u \in \mathcal{D}'(\mathbb{R}^n)$ is periodic there exists $v \in \mathcal{E}'(\mathbb{R}^n)$ such that (*) holds. Hence every periodic distribution is tempered.

Proof. Let $K = \operatorname{supp} v$. We have seen that there exist $N \in \mathbb{N}$, C > 0 such that $|v(\phi)| \leq C \sup_{\substack{x \in K \\ |\alpha| \leq N}} |\nabla^{\alpha} \phi(x)|$ for all $\phi \in \mathcal{E}(\mathbb{R}^n)$. Now let $\phi \in \mathcal{E}(\mathbb{R}^n) \subseteq \mathcal{E}(\mathbb{R}^n)$. Then

$$|\tau_g v(\phi)| = |v(\tau_{-g}\phi)| \le C \sup_{\substack{x \in K \\ |\alpha| \le N}} |\nabla^{\alpha}\phi(x+g)|.$$

Since $K \subseteq B_R(0)$ for some R > 0, $1 + |g| \le 1 + |x| + |x+g| \le (1+R)(1+|x+g|)$. Hence $1 \le (1+R)\frac{1+|g+x|}{1+|g|}$. Thus for any $M \ge 1$,

$$|\tau_g v(\phi)| \le C \left(\frac{1+R}{1+|g|}\right)^M \sup_{\substack{x \in K \\ |\alpha| \le N}} \left((1+|x+g|)^M |\nabla^\alpha \phi(x+g)| \right)$$

$$\le \frac{C'}{(1+|g|^{n+1})} \underbrace{\sup_{\substack{x \in \mathbb{R}^n \\ |\alpha| \le N}} (1+|x|)^M |\nabla^\alpha \phi(x)|}_{<\infty}$$

so $\sum_{g\in\mathbb{Z}^n} \tau_g v(\phi)$ converges for all $\phi\in\mathcal{S}(\mathbb{R}^n)$, so converges in $\mathcal{S}'(\mathbb{R}^n)$.

For the converse, let $u \in \mathcal{D}'(\mathbb{R}^n)$ be periodic. Let ψ be a p.p.u. Then for any $\phi \in \mathcal{D}(\mathbb{R}^n)$,

$$u(\phi) = \underbrace{\left(\sum_{g \in \mathbb{Z}^n} \tau_g \psi\right)}_{1} u(\phi) = \sum_{g \in \mathbb{Z}^n} u((\tau_g \psi)\phi)$$
$$= \sum_{g \in \mathbb{Z}^n} \tau_g u((\tau_g \psi)\phi)$$
$$= \sum_{g \in \mathbb{Z}^n} u(\psi(\tau_{-g}\phi))$$
$$= \sum_{g \in \mathbb{Z}^n} \psi u(\tau_{-g}\phi)$$
$$= \sum_{g \in \mathbb{Z}^n} (\tau_g(\psi u))(\phi).$$

Note that ψu has compact support:

$$\operatorname{supp} \phi \cap \operatorname{supp} \psi = \emptyset \implies \psi u(\phi) = u(\psi(\phi)) = 0.$$

Hence ψu extends uniquely to $v \in \mathcal{E}'(\mathbb{R}^n)$ and therefore $u(\phi) = \sum_{g \in \mathbb{Z}^n} \tau_g v(\phi)$.

Theorem. Let $u \in \mathcal{D}'(\mathbb{R}^n)$ be periodic. Then

$$u = \sum_{g \in \mathbb{Z}^n} u_g T_{e_{2\pi g}} = \sum_{g \in \mathbb{Z}^n} u_g e^{2\pi i \cdot (\cdot)}$$

converges in $\mathcal{S}'(\mathbb{R}^n)$ and $u_g = M(e_{-2\pi g}u)$ "= $\int_q u(x)e^{-2\pi i g \cdot x} dx$ " satisfying $|u_g| \le C(1+|g|)^N$ for some C > 0, $N \in \mathbb{N}$.

Definition. The u_g above are the Fourier coefficients of u.

Lemma. Assume $u \in \mathcal{S}'(\mathbb{R}^n)$ satisfies

$$(e_{-k} - 1)u = 0 \ \forall k \in \mathbb{Z}^n. \tag{*}$$

Then $u = \sum_{g \in \mathbb{Z}^n} c_g \delta_{2\pi g}$ for $c_g \in \mathbb{C}$ satisfying $|c_g| \leq C(1+|g|)^N$ for some C > 0, $N \in \mathbb{N}$.

Proof. We first show supp $u \subseteq \Lambda^* = \{2\pi g : g \in \mathbb{Z}^n\}$. Indeed, let $\phi \in \mathcal{D}(\mathbb{R}^n)$ with supp $\phi \cap \Lambda^* = \emptyset$. Then $(e_{-k} - 1)^{-1}\phi \in \mathcal{S}(\mathbb{R}^n)$ since $\phi(x) = 0$ if $(e_{-k} - 1)(x) = 0 \iff x \in \Lambda^*$. Thus by (*)

$$u(\phi) = \underbrace{(e_{-k} - 1)}_{=0} u(\underbrace{(e_{-k} - 1)^{-1}\phi}_{\in \mathcal{S}(\mathbb{R}^n)}) = 0.$$

Now let ψ be a p.p.u and set $\tilde{\psi}(x) = \psi(x/2\pi)$. Let $v_g = (\tau_{2\pi g}\tilde{\psi})u$ and note that supp $v_g \subseteq \{2\pi g\}$, so

$$\sum_{g \in \mathbb{Z}^b} v_g = u, \ (e_{-k} - 1)v_g = 0.$$

Take k an element of the standard basis of \mathbb{R}^n so

$$(e^{-ix_j} - 1)v_g = (e^{-i(x_j - 2\pi g_j)} - 1)v_g = 0$$

= $(x_i - 2\pi g_i)K(x_i)v_i$

where K is smooth and non-zero near $2\pi g$ (using $\frac{1}{t}(e^{-it}-1)=-i+\mathcal{O}(t)$). Hence $(x_j-2\pi g_j)v_g=0$.

Since v_g has compact support, it can be extended to $\mathcal{E}(\mathbb{R}^n) = C^{\infty}(\mathbb{R}^n)$. Since $\phi \in \mathcal{S}(\mathbb{R}^n)$, there are $\phi_j \in C^{\infty}(\mathbb{R}^n)$ such that (by Taylor's theorem):

$$\phi(x) = \phi(2\pi g) + \sum_{i=1}^{n} (x_j - 2\pi g_j)\phi_j(x).$$

So

$$v_g(\phi) = \underbrace{v_g(\phi(2\pi g))}_{\phi(2\pi g)v_g(1)} + \sum_{j=1}^n (x_j - 2\pi g_j)v_g(\phi_j) = \underbrace{\phi(2\pi g)}_{\delta_{2\pi g}(\phi)} u(\tau_{2\pi g}\tilde{\psi}).$$

So

$$u = \sum_{g \in \mathbb{Z}^n} v_g = \sum_{g \in \mathbb{Z}^n} c_g \delta_{2\pi g}, \ c_g = u(\tau_{2\pi g} \tilde{\psi}).$$

Example sheet 3: $\forall u \in \mathcal{S}'(\mathbb{R}^n)$ there exists $N, k \in \mathbb{N}, C > 0$ such that

$$|u(\phi)| \le C \sup_{\substack{x \in \mathbb{R}^n \\ |\alpha| \le k}} (1 + |x|)^N |\nabla^{\alpha} \phi(x)| \ \forall \phi \in \mathcal{S}(\mathbb{R}^n).$$

Hence

$$|c_g| \leq C \sup_{\substack{x \in \mathbb{R}^n \\ |\alpha| \leq k}} (1+|x|)^N |\nabla^{\alpha} \tilde{\psi}(x-2\pi g)|$$

$$\leq C \sup_{\substack{x \in \mathbb{R}^n \\ |\alpha| \leq k}} \underbrace{(1+|x+2\pi g|)^N}_{(1+|x|)^N (1+2\pi|g|)^N} |\nabla^{\alpha} \tilde{\psi}(x)|$$

$$\leq C (1+|g|)^N \sup_{\substack{x \in \mathbb{R}^n \\ |\alpha| \leq k}} (1+|x|)^N |\nabla^{\alpha} \tilde{\psi}(x)|$$

So $|c_g| \le C''(1+|g|)^N$ for some C''.

Theorem. Let $u \in \mathcal{D}'(\mathbb{R}^n)$ be periodic. Then

$$u = \sum_{g \in \mathbb{Z}^n} u_g T_{e_{2\pi g}} = \sum_{g \in \mathbb{Z}^n} u_g e^{2\pi i g \cdot x}$$

(convergence in $\mathcal{S}'(\mathbb{R}^n)$) where $u_g = M(e_{-2\pi g}u) = \int_q u(x)e^{-2\pi ig\cdot x}dx \in \mathbb{C}$ and satisfy $|u_g| \leq C(1+|g|)^N$ for some C > 0, $N \in \mathbb{N}$.

Proof. Since u is periodic, $u \in \mathcal{S}'(\mathbb{R}^n)$ and its Fourier transform \hat{u} is defined. Then $\tau_k u = u$ for all $k \in \mathbb{Z}^n$ so $e_{-k}\hat{u} = \hat{u}$ for all $z \in \mathbb{Z}^n$, i.e $(e_{-k} - 1)\hat{u} = 0$. Then by the previous lemma,

$$\hat{u} = (2\pi)^n \sum_{g \in \mathbb{Z}^n} u_g \delta_{2\pi g} \text{ in } \mathcal{S}'(\mathbb{R}^n).$$

Applying the inverse Fourier transform gives

$$u = \sum_{g \in \mathbb{Z}^n} u_g T_{e_{2\pi g}} \text{ in } \mathcal{S}'(\mathbb{R}^n).$$

Since $e_{2\pi g} \in L^1_{loc}$, $M(e_{-2\pi k}T_{e_{2\pi g}}) = \int_q e^{2\pi i(g-k)\cdot x} dx = \delta_{kg}$. Since $u \mapsto M(u)$ is continuous on $\mathcal{S}'(\mathbb{R}^n)$, it follows that $M(e_{-2\pi q}u) = u_q$.

Examples. Let $u = \sum_{g \in \mathbb{Z}^n} \delta_g$. Then

$$u_k = M(e_{-2\pi k}u) = u(\psi e_{-2\pi k}) = \sum_{g \in \mathbb{Z}^n} \psi(g)e^{-2\pi i k \cdot g} = 1.$$

So

$$\sum_{g \in \mathbb{Z}^n} \delta_g = \sum_{g \in \mathbb{Z}^n} T_{e_{2\pi g}} \text{ in } \mathcal{S}'(\mathbb{R}^n)$$

or

"
$$\sum_{g \in \mathbb{Z}^n} f(x - g) = \sum_{g \in \mathbb{Z}^n} e^{2\pi i g \cdot x}$$
".

This is the Poisson summation formula.