CML100

Minor 1

Aug. 31, 2017

Time: 60 min

Consider a system with Hamiltonian $\hat{\mathcal{H}}$ and satisfying $\hat{\mathcal{H}}\psi_n = n^2 \mathcal{E}_0 \psi_n$. Consider, also, an observable A represented by the operator $\hat{\mathcal{A}}$. Action of $\hat{\mathcal{A}}$ on ψ_n follows $\hat{\mathcal{A}}\psi_n = (n+1)a_0\psi_{n+1}$.

- 1. If the system is in the state ψ_3 , what would be the result of (i) first measuring $\hat{\mathcal{H}}$ and then $\hat{\mathcal{A}}$, and (ii) first measuring $\hat{\mathcal{A}}$ and then $\hat{\mathcal{H}}$?
- 2. Comment on the significance of your result in question 1. \vee

The radial Schrödinger equation for a particle of mass M in a potential $V(r)=1/2M\omega^2r^2$ is

$$-\frac{\hbar^2}{2M}\frac{d^2}{dr^2}u_{nl}(r) + \left[\frac{1}{2}M\omega^2r^2 + \frac{l(l+1)\hbar^2}{2Mr^2}\right]u_{nl}(r) = Eu_{nl}(r),$$

with $u_{nl}(r)$ defined as $u_{nl}(r) = rR_{nl}(r)$. Other symbols have their usual meaning. Here we are interested in this equation in the limit $r \to 0$.

- $\sqrt{3}$. What is the differential equation satisfied by $u_{nl}(r)$ in this limit?
 - 4. Two possible solutions for $u_{nl}(r)$ are r^{l+1} and r^{-l} . Which of these two solutions are acceptable as quantum mechanical wave functions? Why?

A hydrogen atom is in a state with a radial wave function $\frac{1}{\sqrt{3}} \left(\frac{1}{2a_0} \right)^{3/2} \left(\frac{r}{a_0} \right) \exp \left(-\frac{r}{2a_0} \right)$.

- 5. In this state what fraction of the energy is in the form of potential energy? You are given that $\int_0^\infty r^n e^{-\beta r} dr = \frac{n!}{\beta^{n+1}}$.
- 6. Could an electron with this radial wave function have the angular wave function $\sqrt{\left(\frac{15}{8\pi}\right)}\cos\theta\sin\theta\exp(i\phi)$? Why or why not?

In the next two questions we explore the effect of a magnetic field on the energy levels in hydrogen atom, whose Hamiltonian in the absence of the magnetic field is $\hat{\mathcal{H}}_0$ and eigen functions are ψ_{nlm} . Classically, the motion of an electron around a closed loop produces a magnetic dipole given by

$$\vec{m} = -\frac{|e|}{2}\vec{r} \times \vec{v}$$

where e and \vec{v} are, respectively, the charge and the velocity of the electron. The potential energy of a magnetic dipole interacting with a magnetic field, \vec{B} , is given by

$$V=-\vec{m}\cdot\vec{B}.$$

Take the strength of the field to be B_0 and it is in the z-direction.

- 7. What is the Hamiltonian of the hydrogen atom in the magnetic field?
- 8. What is the effect of the magnetic field on the energy levels of a hydrogen atom in the 3*d* state? Remember that $\mathcal{H}_0\psi_{nlm}=E_n\psi_{nlm}$.