انجينئري حساب

خالد خان بوسفرنگی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹینالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

V																													4	ويباج	بكا	لی کتار	ی پی _ن	مير
1																													- /			رجهاوا	,	1
2																													شي	بونه ک	ż	1.1		
13										-	لر	ب يو	كيب	Ţ.	ناور	سمت	کی ر	ر ۔ان	ميد	ب.	طله	ئىم	نرياؤ	ئيوم	٤٢:	y′	=	f((x,	<i>y</i>)		1.2	2	
22																										- /				نابل		1.3	3	
40																						_						- /		طعی په		1.4	ļ	
52																											-	- /		نظی سه		1.5	5	
70																														نودكِ		1.6	6	
74		•			•		•				•						ت	نائيد	ر یک	تاو	ورير	وجو	ى كى	،:حار	دات	مساو	ر فی	ت تف	ا قیمه	بتداكي	1	1.7	7	
81																											ات	مساو	نر قی	اده ته	م سر	رجهدو	,	2
81																									.;					تحانس		2.1		
																									- /			-		•				
98																				- /			سطى س									2.2		
113																														ُفر ق		2.3		
117																																2.4	-	
132																																2.5)	
141																																2.6	6	
150																								ت	ساوا	ِقْ م	۽ تفر	اساده	بانس	بير متح	Ė	2.7	7	
162																											گمک	ش۔	ر تعا	برىا	7.	2.8	3	
168																				لمك	ملی ا	٤_	نيطه	ں کا	ں حا	رحال	رقرا	<i>.</i>	2.	8.1	1			
172																										<u>ئى</u> .	ئ اینه	کی نمو	وار آ	ر قی اد	,	2.9)	
183											L	کاحل	ت	اوار	امس	نرقی	ره تغ	اساد	نطى	س:	متحا	فير	یے غ	يقے۔	طر۔	کے	لنے	۔ م بد	معلو	قدار	•	2.10)	
101																												.		ı	, ;	7	,	•
191																																نددر.		3
191																										- /		-	_	تجانس			l	
203																		ات	ساو	ق.	ہ تفر	ماده	طی سا	ن خو	متجانه		ر وا۔	ئىر	عدو	ستفر	•	3.2	2	

غیر متجانس خطی سادہ تفرقی مساوات مقدار معلوم ہدلنے کے طریقے سے غیر متجانس خطی سادہ تفرقی مساوات کا حل	3.3	
	4.د نظامِ تفر ڌ	4
قاب اور سمتىي كے بنیادی هاکق		
سادہ تفر قی مساوات کے نظام بطورانجینئر کی مسائل کے نمونے	4.2	
نظرىيە نظام سادہ تفر قى مساوات اور ورونسکى	4.3	
4.3.1 خطی نظام		
ستقل عدد ی سروالے نظام۔ سطح مر حلہ کی تزکیب	4.4	
قطہ فاصل کے جانٹے پڑتال کا مسلمہ معیار۔استحکام	4.5	
يفي تراكيب برائے غير خطی نظام	4.6	
4.6.1 سطح حرکت پرایک در جی مساوات میں تبادلہ		
173	اضافی ثبور	1

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

جمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ حاصل کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال ستعال کئے جائیں۔ جہاں ایسے الفاظ موجود نہ سے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی ڈلی ہیں البتہ اسے درست بنانے میں بہت لوگوں کا ہاتھ ہے۔ میں ان سب کا شکر یہ ادا کرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور کمل ہونے یر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر کی

28 اكتوبر 2011

4.6.1 سطح ترکت پرایک درجی مساوات میں تبادلہ

F(y,y',y'')=0 $y=y_1$ کو آزاد متغیرہ اور $y'=y_2$ کو $y'=y_2$ کو آزاد متغیرہ اور $y''=y_2$ کو $y'''=y_2$ کو $y''=y_2$ کو $y'''=y_2$ کو $y''''=y_2$ کو $y'''=y_2$ کو $y''''=y_2$ کو $y''''=y_2$ کو $y''''=y_2$ کو $y''''=y_2$ کو $y''''=y_2$

لکھ کر ایک درجی مساوات

$$(4.81) F\left(y_1, y_2, \frac{\mathrm{d}y_2}{\mathrm{d}y_1}y_2\right) = 0$$

میں تبدیل کرنے پر مبنی ہے۔اس ایک درجی مساوات کو یا تو حل کرنا ممکن ہوتا ہے اور یا میدان ڈھال کی مدد سے اس پر غور ممکن ہوتا ہے۔ آئیں مثال 4.14 پر اس ترکیب کی مدد سے غور کریں۔

مثال 4.17: بلا تقصیر ارتعاثی نظام کی ایک در بی تفرقی مساوات۔ $\theta'=y_2$ بلا التے ہوئے $\theta''+k\sin\theta=0$ (زاویائی رفتار) گیتے ہوئے مساوات 4.71 میں $\theta''=\frac{\mathrm{d} y_2}{\mathrm{d} t}=\frac{\mathrm{d} y_2}{\mathrm{d} y_1}\frac{\mathrm{d} y_1}{\mathrm{d} t}=\frac{\mathrm{d} y_2}{\mathrm{d} y_1}y_2$

 $y_2\,\mathrm{d}y_2=-k\sin y_1\,\mathrm{d}y_1$ کھ کر $y_2\,\mathrm{d}y_2=-k\sin y_1$ متا ہے جس کو علیحد گی متغیرات سے $\frac{\mathrm{d}y_2}{\mathrm{d}y_1}y_2=-k\sin y_1$ کھا جا سکتا ہے جس کا تکمل

(4.82)
$$\frac{1}{2}y_2^2 = k\cos y_1 + C$$

$$e_z = mL^2 \quad mL^2 \quad mL^2 \quad C \quad C$$

$$\frac{1}{2}m(Ly_2)^2 - mL^2k\cos y_1 = mL^2C$$

حاصل ہوتا ہے جس کے تینوں اجزاء تو انائی 77 کو ظاہر کرتے ہیں۔چونکہ y_2 زاویائی رفتار ہے لہذا y_2 کماتی رفتار اور $\frac{1}{2}m(Ly_2)^2$ حرکمی تو انائی $\frac{78}{2}$ ہے۔درج بالا مساوات کا دوسرا جزو (بہتع منفی علامت) محفمی تو انائی mL^2 ہے جبکہ مساوات کا دایاں ہاتھ mL^2 کل تو انائی ہے۔بلا تقصیر نظام میں تو انائی کا ضیاع نہیں پایا جاتا لہذا حزب تو تع کل تو انائی مستقل مقدار ہے۔ آئیں دیکھیں کہ حرکت کی نوعیت کل تو انائی پر کیسے منحصر ہے۔

دو درجی مساوات کے تبادلے سے سطح حرکت پر (مثال 4.17 کی طرح) قابل حل ایک درجی مساوات کے علاوہ نا قابل حل مساوات بھی اہمیت کے حامل ہے۔ایسی صورت میں میدان ڈھال [حصہ 1.2 دیکھیں۔] کے ذریعہ نظام کے بارے میں معلومات حاصل کرنا ممکن ہوتا ہے۔اس عمل کو ایک مشہور مثال کی مدد سے دیکھتے ہیں۔

مثال 4.18: منحصر بہ خود ارتعاش۔ مساوات ون در پول ایسی طبعی نظام پائے جاتے ہیں جن میں معمولی ارتعاش کی صورت میں نظام کو توانائی فراہم ہوتی ہے جبکہ وسیع ارتعاش

energy⁷⁷

kinetic energy⁷⁸ potential energy⁷⁹

کی صورت میں نظام سے توانائی کا اخراج ہوتا ہے۔ یوں وسیع ارتعاش کی صورت میں نظام قصری صورت اختیار کرتا ہے جبکہ کم ارتعاش کی صورت میں نظام میں منفی تقصیر (نظام کو توانائی کی فراہمی) پائی جاتی ہے۔ ہم طبعی وجوہات کی بنا توقع کرتے ہیں کہ ایبا نظام دوری طرز عمل رکھے گا، جو سطح حرکت پر بند دائرے کی صورت اختیار کرے گا جسے تحدیدی داؤہ 80 کہتے ہیں۔ ایک ارتعاش کو مساوات ون در یول 81

(4.83)
$$y'' - \mu(1 - y^2)y' + y = 0 \qquad (\mu > 0)$$

ظاہر کرتی ہے جہاں μ مثبت مستقل ہے۔ یہ مساوات پہلی مرتبہ خلا نلکی 82 والے برقی ادوار پر غور کے دوران رو پذیر ہوئی۔ یہ مساوات μ کی صورت میں ہارمونی ارتعاش کی تفرقی مساوات μ μ μ ہے۔ ون در پول مساوات میں قصری جزو μ μ μ صورت میں ہارمونی ارتعاش کی تفرق μ μ μ μ کی صورت میں در پول مساوات میں قصری جزو μ μ μ کی صورت میں مثنی تقصیری، μ μ کی صورت میں بلا تقصیر جبکہ μ کی صورت میں مثبت تقصیری (جس میں توانائی کا ضیاع ہو گا) نظام پایا جائے گا۔ نہایت کم μ کی صورت میں مساوات ون در پول اور μ μ میں بہت کم فرق پایا جائے گا لہذا ہم تو قع کرتے ہیں کہ سطح حرکت پر تحدیدی دائرہ تقریباً گول دائرہ ہو گا۔ اگر μ کی قیمت زیادہ ہو تب تحدیدی دائرہ کی شکل غالباً مختلف ہو گی۔

 $y''=rac{\mathrm{d}y_2}{\mathrm{d}y_1}y_2$ اور $y'=y_2$ ، $y=y_1$ کی خاطر $y'=y_2$ ، $y=y_1$ اور تبدیل کرنے کی خاطر کرتی ہوئے ون در پول مساوات درج ذیل صورت اختیار کرتی ہے۔

(4.84)
$$\frac{\mathrm{d}y_2}{\mathrm{d}y_1}y_2 - \mu(1 - y_1^2)y_2 + y_1 = 0$$

سطح حرکت y_1y_2 سطح) پر ہم میلان 83 نیل 83 بین جہاں K مستقل مقدار ہے۔ یوں ہم میلان خطوط درج ذیل ہوں گے

$$\frac{dy_2}{dy_1} = \mu(1 - y_1^2) - \frac{y_1}{y_2} = K$$

جن سے

$$(4.85) y_2 = \frac{y_1}{\mu(1-y_1^2) - K} (-2) (4.18) (4.18) (4.85)$$

حاصل ہوتا ہے۔

 $\begin{array}{c} {\rm limit\ cycle^{80}}\\ {\rm van\ del\ Pol\ equation^{81}}\\ {\rm vacuum\ tube^{82}}\\ {\rm isoclines^{83}} \end{array}$

 $\mu=0.1$ فن ڈریول مساوات؛ $\mu=0.1$ لیتے ہوئے دوخط حرکت کو تحدیدی دائرہ تک پینچتے ہوئے دکھایا گیاہے۔

شکل 4.17 میں μ کی کم قیمت $(\mu=0.1)$ کے لئے چند ہم میلان خطوط کو ہلکی سیابی میں دکھایا گیا ہے۔اس کے علاوہ تحدیدی دائرے کو موٹی کئیر سے ظاہر کیا گیا ہے۔ تحدیدی دائرہ تقریباً گول ہے۔ ایک خط حرکت، جو تحدیدی دائرے کے باہر ہے، اور دوسرا خط حرکت، جو تحدیدی دائرے کے باہر ہے، کو تحدیدی دائرے تک پہنچتے ہوئے دکھایا گیا ہے۔ تحدیدی دائرہ اور نقطہ فاصل کے گرد بند دائرہ (وسط) میں فرق سے ہے کہ تحدیدی دائرے تک خط حرکت پہنچتی ہے جبہہ وسط کا خط اسی دائرے پر پایا جاتا ہے۔ μ کی زیادہ قیمت پر تحدیدی دائرہ گول صورت نہیں رکھتا۔ شکل 4.18 میں μ کی زیادہ قیمت μ کی دیدی دائرہ گول ہے۔

مثال 4.19: تفرقی مساوات $y'' + y - y^3 = 0$ سے نظام حاصل کریں۔اس نظام کے تمام نقطہ فاصل دریافت کریں۔نقطہ فاصل کی نوعیت دریافت کریں۔

(4.86)
$$y'_1 = f_1 = y_2 y'_2 = f_2 = -y_1 + y_1^3$$

 $\mu=1$ کی 4.18: ون ڈرپول مساوات؛ $\mu=1$ لیتے ہوئے دوخط حرکت کو تحدیدی دائرہ تک پینچتے ہوئے دکھایا گیا ہے۔

حاصل ہوتا ہے۔ نقطہ فاصل $y_2=0$ سے حاصل ہوں گے۔ 0 سے حاصل ہوں ہوں ہوتا ہے۔ نقطہ فاصل $y_2=0$ سے $y_1=f_1=f_2=0$ اور $y_1=\mp 1$ سے بیں۔ یوں نقطہ فاصل جبکہ ہوں ہوتا ہے۔ $y_1=\mp 1$ اور $y_1=0$ سے بیں۔ نقطہ فاصل $y_1=0$ مرکز پر پایا جاتا ہے المذا اس پر پہلے غور کرتے ہیں۔ نقطہ فاصل $y_1=0$ مرکز پر پایا جاتا ہے المذا اس پر پہلے غور کرتے ہیں۔ نقطہ فاصل کی نوعیت جاننے کی خاطر نظام کو خطی بناتے ہیں۔ ایسا کوئی بھی جزوجو $y_1^n y_2^0$ کی صورت میں لکھا گیا ہو، جہاں $y_1^n y_2^0$ کی خطی اجزاء کو رد کرنے جان خطی نظام حاصل ہوتا ہے۔ یوں y_2^0 کی مساوات میں y_1^0 کو رد کرتے ہوئے خطی نظام حاصل ہوتا ہے۔ یوں y_2^0 کی مساوات میں y_1^0 کو رد کرتے ہوئے خطی نظام

$$y_1' = y_2 \\ y_2' = -y_1 \implies y' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} y$$

حاصل ہو گا جس سے $\Delta=-4<0$ اور q=1>0 ، $p=a_{11}+a_{22}=0$ ملتے ہیں لہذا نقطہ $\Delta=-4<0$ اور q=1>0 مستظم وسط ہے۔ $\Delta=-4<0$ مستظم وسط ہے۔

 $ilde{y}_1=y_1+1$ پر غور کریں۔اس کو مرکز منتقل کرنے کی خاطر نظام 4.86 میں $ilde{y}_1=y_1+1$ یعنی اب نقطہ $ilde{y}_1=y_1+1$ یونی $ilde{y}_2=y_2$ یو کے $ilde{y}_1= ilde{y}_1-1$

$$\begin{array}{l}
\tilde{y}'_1 = \tilde{y}_2 \\
\tilde{y}'_2 = -(\tilde{y}_1 - 1) + (\tilde{y}_1 - 1)^3
\end{array} \implies \begin{array}{l}
\tilde{y}'_1 = \tilde{y}_2 \\
\tilde{y}'_2 = 2\tilde{y}_1 - 3\tilde{y}_1^2 + \tilde{y}_1^3
\end{array}$$

ماتا ہے۔ غیر خطی اجزاء $ilde{y}_1^2$ اور $ilde{y}_1^3$ کو رد کرتے ہوئے خطی نظام

$$\begin{array}{ccc} \tilde{y}_1' = \tilde{y}_2 \\ \tilde{y}_2' = 2\tilde{y}_1 \end{array} \implies \tilde{\boldsymbol{y}}' = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} \tilde{\boldsymbol{y}}$$

(-1,0) اور $\Delta=8>0$ حاصل ہوتے ہیں للمذا نقطہ وراد q=-2<0 ، p=0 حاصل ہوتے ہیں للمذا نقطہ فیر منظم نقطہ زین ہے۔

نقطہ $\tilde{y}_1=y_1-1$ پر غور کرنے کی خاطر اس کو مرکز منتقل کرتے ہیں۔اییا کرنے کی خاطر $\tilde{y}_1=y_1-1$ اور $\tilde{y}_2=y_2$ ور $\tilde{y}_2=y_2$

$$\tilde{y}'_1 = \tilde{y}_2
\tilde{y}'_2 = 2\tilde{y}_1 + 3\tilde{y}_1^2 + \tilde{y}_1^3$$

ماتا ہے جس میں غیر خطی اجزاء \tilde{y}_1^2 اور \tilde{y}_1^3 رد کرتے ہوئے خطی نظام

$$\begin{array}{ccc} \tilde{y}_1' = \tilde{y}_2 \\ \tilde{y}_2' = 2\tilde{y}_1 \end{array} \implies \tilde{\boldsymbol{y}}' = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} \tilde{\boldsymbol{y}}$$

ملتا ہے۔اس سے p=0 ، p=0 ، ور 0>8>0 اور 0>8>0 ماشا ہوتے ہیں لہذا نقطہ q=-2

سوالات

سوال 4.51 تا سوال 4.55 کو خطی بناتیے ہوئے تمام نقطہ فاصل دریافت کریں۔ نقطہ فاصل کی نوعیت جدول 4.1 اور جدول 4.2 کی مدد سے دریافت کریں۔

$$y_1' = 4y_1 - y_1^2, \quad y_2' = y_2 \quad :4.51$$

 $y_1' = -y_1 + y_2 + y_1^2, \quad y_2' = -y_1 - y_2 \quad :4.54$ حوابات: (0,0) پر مشجکم اور جاذب نقطہ مرغولہ پایا جاتا ہے جبکہ (-2,2) پر غیر مشجکم نقطہ زین پایا جاتا ہے۔

 $y_1'=-y_1+y_2-y_2^2,\quad y_2'=-y_1-y_2$ عوابات: (0,0) پر جاذب نقطہ مر غولہ پایا جاتا ہے جبکہ (-2,2) پر غیر مستکم نقطہ زین پایا جاتا ہے۔

سوال 4.56 تا سوال 4.59 میں تفرقی مساوات سے نظام حاصل کریں۔اس نظام کے تمام نقطہ فاصل دریافت کریں۔نظام کو خطی بناتے ہوئے نقطہ فاصل کی نوعیت دریافت کریں۔

 $y'' - 4y + y^3 = 0$:4.56

(-2,0) جوابات: نظام $y_1'=y_2$ اور $y_2'=4y_1-y_1^3$ حاصل ہوتا ہے۔ $y_1'=y_2$ خطر زین، منتخكم وسط اور (2.0) منتخكم وسط ہیں۔

 $y'' + 4y - y^3 = 0$:4.57

جوابات: نظام $y_1'=y_2$ اور $y_2'=4y_1-y_1^3$ حاصل ہوتا ہے۔ $y_1'=y_2$ صط، $y_1'=y_2$ عمیر متحكم نقطه زين اور (2,0) غير متحكم نقطه زين بين-

 $y'' + \sin y = 0$ نوال 4.58: $y'' + \sin y = 0$ نوال $\pi \pi, 0$) اور $\pi \pi \pi, 0$ مستحکم وسط ہیں جہاں $\pi \pi \pi, 0$ ہو سکتا ہے۔نقطہ $\pi \pi \pi, 0$ غیر منظم نقطه زین ہے جہاں $m=1,3,5,\cdots$ ہو سکتا ہے۔

 $y'' + \cos y = 0$ نوال $n = 1, 2, 3, \cdots$ وسط بین جہاں $(-\frac{\pi}{2} \mp n2\pi, 0)$ فقط نیز جبکہ نقطہ نیز جبکہ $(\frac{\pi}{2} \mp n2\pi, 0)$ وسط بین جہاں $(\frac{\pi}{2} \mp n2\pi, 0)$ ہو سکتا ہے۔آپ کو $-\cos(\mp\frac{\pi}{2}+\tilde{y}_1)=\sin(\mp\tilde{y}_1)pprox \mp\tilde{y}_1$ کی مدد لے سکتے ہیں۔

حواليه

[1] Coddington, E. A. and N. Levinson, Theory of Ordinary Differential Equations. Malabar, FL: Krieger, 1984.

واله