EX05 Stock Price Prediction

AIM

To develop a Recurrent Neural Network model for stock price prediction.

Problem Statement and Dataset

The given problem is to predict the google stock price based on time. For this we are provided with a dataset which contains features like Date, Opening Price, Highest Price, Lowest Price, Closing Price, Adjusted Closing, Price and Volume. Based on the given features, develop a RNN model to predict the price of stocks in future.

Design Steps

- Step 1: Import the required packages
- Step 2: Load the dataset
- Step 3: Perform the necessary data preprocessing
- Step 4: Build and fit the data in the Learning model
- Step 5: Predict using the fit model
- Step 6: Check the error value of the predicted pricing model

Program

```
Name: DEEPIKA S
Register Number: 21222230028
Importing Libraries
import numpy as np
                                                                                                                         enia 🔑 Expos
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras import layers
from keras.models import Sequential
Loading Dataset
dtrain=pd.read_csv('trainset.csv')
                                                                                                                         🛟 Exp 🔀
dtrain.columns
dtrain.head()
dtrainset=dtrain.iloc[:,1:2].values
Scaling the Data
sc = MinMaxScaler(feature range=(0,1))
                                                                                                                             Ċ
training_set_scaled = sc.fit_transform(dtrainset)
training_set_scaled.shape
Training the Data
X_train_array = []
                                                                                                                         expain 🔀
y_train_array = []
for i in range(60, 1259):
    X train array.append(training set scaled[i-60:i,0])
    y_train_array.append(training_set_scaled[i,0])
X_train, y_train = np.array(X_train_array), np.array(y_train_array)
X_train1 = X_train.reshape((X_train.shape[0], X_train.shape[1],1))
X_train.shape
Creating Network Model
model = Sequential([layers.SimpleRNN(42,input_shape=(60,1)),layers.Dense(1)])
                                                                                                                         💔 Expolain
model.compile(optimizer='adam',loss='mse')
model.summary()
model.fit(X_train1,y_train,epochs=20, batch_size=32)
Reading Test Data
dataset test = pd.read csv('testset.csv')
                                                                                                                             Ċ
test_set = dataset_test.iloc[:,1:2].values
test_set.shape
Training Test Data
dataset_total = pd.concat((dtrain['Open'],dataset_test['Open']),axis=0)
                                                                                                                          Expolain
inputs = dataset_total.values
inputs = inputs.reshape(-1,1)
inputs scaled=sc.transform(inputs)
X_{test} = []
y_test = []
```

```
for i in range(60,1384):
    X_test.append(inputs_scaled[i-60:i,0])
    y_test.append(inputs_scaled[i,0])
X_test = np.array(X_test)
X_test = np.reshape(X_test,(X_test.shape[0], X_test.shape[1],1))
X test.shape
Ploting Results
predicted_stock_price_scaled = model.predict(X_test)
                                                                                                                        ⊕ Expo∏ain
predicted_stock_price = sc.inverse_transform(predicted_stock_price_scaled)
plt.figure(figsize=(8,3))
plt.plot(np.arange(0,1384),inputs, color='red', label = 'Test data')
plt.plot(np.arange(60,1384),predicted_stock_price, color='green',label = 'Predicted stock price')
plt.title('DEEPIKA S - 212222230028\nStock Price Prediction')
plt.xlabel('Time')
plt.ylabel('Stock Price')
plt.legend()
plt.show()
Mean Square Error
from sklearn.metrics import mean_squared_error as mse
                                                                                                                           Q
print('DEEPIKA S')
print(mse(y_test,predicted_stock_price))
```

Output

True Stock Price, Predicted Stock Price vs time

Mean Square Error

DEEPIKA S 544283.8194571127

Result

Thus, a Recurrent Neural Network model for stock price prediction is developed.