Heteroscedasticity-Based Identification

June 12, 2025

1 Preliminaries and Notation

This document summarizes the heteroscedasticity-based identification strategy for models with endogenous regressors, as developed by Lewbel (2012). The method provides a way to construct valid instruments from the model's data when traditional external instruments are unavailable.

Throughout, Z = g(X) denotes a transformation of the exogenous variables, constructed to be mean-zero.¹ All instruments are therefore understood to be mean-zero.

2 Structural Forms and Reduced-Form Residuals

Let the endogenous vector be $(Y_1, Y_2)'$, X a vector of exogenous variables (including a constant), and Z = g(X) as above.

Projecting each Y_j on X yields reduced-form residuals $W_j \triangleq Y_j - X'(\mathbb{E}[XX'])^{-1}\mathbb{E}[XY_j]$. A short calculation gives

$$W_1 = \frac{\varepsilon_1 + \gamma_1 \varepsilon_2}{1 - \gamma_1 \gamma_2}, \qquad W_2 = \frac{\varepsilon_2 + \gamma_2 \varepsilon_1}{1 - \gamma_1 \gamma_2},$$

with the triangular case obtained by setting $\gamma_2 = 0$.

Remark 1. The algebra follows directly from solving the two-equation system for the reduced form and collecting the error terms.

3 Core Assumptions for Point Identification

The method relies on the following key assumptions:

- (A1) Strict exogeneity. $\mathbb{E}[\varepsilon_j \mid X] = 0$ for j = 1, 2. Time-series note: in Section 8 we weaken this to a martingale-difference assumption and add HAC inference.
- (A2) Covariance restriction. $Cov(Z, \varepsilon_1 \varepsilon_2) = 0$. This holds automatically if the errors have a common factor structure $\varepsilon_j = a_j u + \eta_j$ where the common factor u is uncorrelated with and mean independent of Z.
- (A3) Instrument relevance via heteroscedasticity.
 - Triangular: $Cov(Z, \varepsilon_2^2) \neq 0$.
 - Simultaneous: the $r \times 2$ matrix $\Phi_W = [\operatorname{Cov}(Z, W_1^2) \operatorname{Cov}(Z, W_2^2)]$ has rank 2.
- (A4) Normalization (simultaneous case). The parameter space for (γ_1, γ_2) precludes the observationally equivalent pair $(1/\gamma_2, 1/\gamma_1)$ unless $\gamma_1 \gamma_2 = 1$.

¹For simplicity, we write Z to mean the centered variable $Z - \mathbb{E}[Z]$. In practice, this means we use the sample-demeaned version, $Z_i - \bar{Z}$, in all calculations.

4 Triangular System: Closed-Form Identification and 2SLS

4.1 Closed-form

$$\gamma_1 = \frac{\operatorname{Cov}(Z, W_1 W_2)}{\operatorname{Cov}(Z, W_2^2)}.$$
(1)

Remark 2 (Why (1) identifies γ_1). Under (A2) the numerator simplifies to $Cov(Z, \varepsilon_1 \varepsilon_2) + \gamma_1 Cov(Z, \varepsilon_2^2) = \gamma_1 Cov(Z, \varepsilon_2^2)$. Because the denominator is non-zero by (A3), γ_1 is point identified.

4.2 Feasible two-step 2SLS

- 1. Generate residuals. Regress Y_2 on X via OLS and store the residuals $\hat{\varepsilon}_2 = Y_2 X' \hat{\beta}_2^{\text{OLS}}$.
- 2. Construct the heteroscedasticity-based instrument. The generated instrument is $IV = (Z \bar{Z})\hat{\varepsilon}_2$.
- 3. **First stage.** Regress the endogenous variable Y_2 on the exogenous variables and the generated instrument, [X, IV], to obtain fitted values \hat{Y}_2 .
- 4. **Second stage.** Regress Y_1 on $[X, \hat{Y}_2]$ to estimate (β_1, γ_1) .

Practical guidance. Weak-instrument concerns apply because the instrument is generated. Report the first-stage F-statistic on IV and, where necessary, use weak-IV-robust inference. Standard errors should account for the first-stage estimation step, typically via GMM or bootstrap.

5 GMM Moment Conditions

The identification strategy can be expressed more generally using GMM. The core idea is to form moment conditions that are zero at the true parameter values θ .

5.1 Triangular system

The parameter vector is $\theta = (\beta_1', \gamma_1, \beta_2')'$. The moment vector is formed by multiplying instruments by the model's structural errors, which are defined as $\varepsilon_1(\theta) = Y_1 - X'\beta_1 - Y_2\gamma_1$ and $\varepsilon_2(\theta) = Y_2 - X'\beta_2$.

$$Q_{\text{TRI}}(\theta) = \begin{pmatrix} X \cdot \varepsilon_1(\theta) \\ X \cdot \varepsilon_2(\theta) \\ Z \cdot \varepsilon_1(\theta) \cdot \varepsilon_2(\theta) \end{pmatrix}. \tag{2}$$

The instruments are constructed directly from the exogenous data:

- For the two mean equations, the instruments are the exogenous variables X.
- For the covariance restriction, the instrument is the heteroscedasticity driver Z.

Since the errors are functions of data and parameters, the entire moment vector is observable for any candidate θ .

5.2 Simultaneous system

The parameter vector is $\theta = (\beta_1', \gamma_1, \beta_2', \gamma_2)'$. The structural errors are now $\varepsilon_1(\theta) = Y_1 - X'\beta_1 - Y_2\gamma_1$ and $\varepsilon_2(\theta) = Y_2 - X'\beta_2 - Y_1\gamma_2$.

$$Q_{\text{SIM}}(\theta) = \begin{pmatrix} X \cdot \varepsilon_1(\theta) \\ X \cdot \varepsilon_2(\theta) \\ Z \cdot \varepsilon_1(\theta) \cdot \varepsilon_2(\theta) \end{pmatrix}. \tag{3}$$

The instruments are again constructed from exogenous data: X for the mean equations and Z for the covariance restriction. Estimation proceeds by finding the parameter vector $\hat{\theta}$ that minimizes the sample analog of the moment conditions, $\bar{Q}(\theta)'W\bar{Q}(\theta)$, where W is a weighting matrix.

6 Set Identification Under a Relaxed Covariance Restriction

When assumption (A2) is weakened to allow for a small correlation, $|\operatorname{Corr}(Z, \varepsilon_1 \varepsilon_2)| \leq \tau |\operatorname{Corr}(Z, \varepsilon_2^2)|$, $\tau \in [0, 1)$, the parameter γ_1 in the triangular model is set-identified rather than point-identified.

Theorem 1 (Bounds for γ_1 with $\tau > 0$). γ_1 is contained in the closed interval whose endpoints are the (real) roots of the quadratic equation in γ_1 :

$$\frac{\mathrm{Cov}(Z,W_1W_2)^2}{\mathrm{Cov}(Z,W_2^2)^2} - \frac{\mathrm{Var}(W_1W_2)}{\mathrm{Var}(W_2^2)}\tau^2 + 2\bigg(\frac{\mathrm{Cov}(W_1W_2,W_2^2)}{\mathrm{Var}(W_2^2)}\tau^2 - \frac{\mathrm{Cov}(Z,W_1W_2)}{\mathrm{Cov}(Z,W_2^2)}\bigg)\gamma_1 + (1-\tau^2)\gamma_1^2 = 0.$$

The interval collapses to the point estimate from (1) when $\tau = 0$ and widens as $\tau \to 1$.

Identification of other parameters. The remaining parameters are identified conditional on a value of γ_1 from its identified set.

- The parameter β_2 is always point-identified by OLS: $\hat{\beta}_2 = (\mathbb{E}[X'X])^{-1}\mathbb{E}[X'Y_2]$.
- For each value $\gamma_{1,k}$ in the identified interval for γ_1 , there is a corresponding identified value for β_1 , given by $\beta_{1,k} = (\mathbb{E}[X'X])^{-1}\mathbb{E}[X'(Y_1 Y_2\gamma_{1,k})].$

The result is an identified set of parameter pairs (β_1, γ_1) corresponding to the interval for γ_1 .

7 Two Illustrative Extensions

The core idea can be adapted to other contexts by creatively defining the heteroscedasticity-generating variable Z.

7.1 Conditional heteroscedasticity (Prono)

Context and Model. In a time-series setting, the structural model is a triangular system:

$$Y_{1t} = X_t'\beta_1 + \gamma_1 Y_{2t} + \varepsilon_{1t}$$

$$Y_{2t} = X_t'\beta_2 + \varepsilon_{2t}$$

The key insight is that the error variance may be time-varying and predictable. Prono's extension assumes ε_{2t} follows a GARCH process, where its conditional variance is a function of past errors and variances:

$$\operatorname{Var}(\varepsilon_{2t} \mid \mathcal{F}_{t-1}) = \sigma_{2t}^2 = \omega + \alpha \varepsilon_{2,t-1}^2 + \beta \sigma_{2,t-1}^2.$$

Procedure. The fitted conditional variance from the GARCH model serves as the heteroscedasticity driver.

- 1. Estimate the second equation by OLS to get residuals $\hat{\varepsilon}_{2t} = Y_{2t} X_t' \hat{\beta}_2$.
- 2. Fit a GARCH(1,1) model to the residuals $\hat{\varepsilon}_{2t}$ to obtain the series of fitted conditional variances, $\hat{\sigma}_{2t}^2$.
- 3. This fitted variance is the heteroscedasticity driver: set $Z_t = \hat{\sigma}_{2t}^2$.
- 4. Construct the generated instrument: $IV_t = (Z_t \bar{Z})\hat{\varepsilon}_{2t}$.
- 5. Proceed with 2SLS as in Section 4.2, using $[X_t, IV_t]$ as instruments for Y_{2t} in the first structural equation. Use HAC-robust standard errors.

7.2 Regime heteroscedasticity (Rigobon)

Context and Model. The model is a simultaneous system where the error variances differ across observable, discrete regimes (e.g., pre- and post-policy change, or high- vs. low-volatility periods).

$$Y_1 = X'\beta_1 + \gamma_1 Y_2 + \varepsilon_1$$

$$Y_2 = X'\beta_2 + \gamma_2 Y_1 + \varepsilon_2$$

The key assumption is that for at least one error term ε_j , its variance changes across regimes s, while the covariance between the errors remains constant:

$$\operatorname{Var}(\varepsilon_j \mid s) \neq \operatorname{Var}(\varepsilon_j \mid s')$$
 for $s \neq s'$
 $\operatorname{Cov}(\varepsilon_1, \varepsilon_2 \mid s) = \text{constant for all } s.$

Procedure. The regime indicators are used to generate the instrument.

- 1. Estimate the second equation by OLS to get residuals $\hat{\varepsilon}_2$.
- 2. Create a set of dummy variables $\{D_1, \ldots, D_S\}$ for the regimes.
- 3. The heteroscedasticity drivers are these dummies: set Z to be the vector of centered dummies, $Z_s = D_s p_s$, where p_s is the sample proportion of observations in regime s.
- 4. Construct the generated instrument(s): $IV_s = Z_s \hat{\varepsilon}_2$.
- 5. Proceed with 2SLS, using $[X, IV_1, \ldots, IV_S]$ as instruments for Y_2 in the main equation.

8 Time-Series Variant with Log-Linear Conditional Variances

Context and Model. This extension formalizes identification within a GMM framework for a stationary and mixing time series. The structural model is a simultaneous system:

$$Y_{1t} = X_t'\beta_1 + \gamma_1 Y_{2t} + \varepsilon_{1t}$$

$$Y_{2t} = X_t'\beta_2 + \gamma_2 Y_{1t} + \varepsilon_{2t}$$

The key assumption is that the conditional variances are an explicit log-linear function of the exogenous variables X_t :

$$\log \sigma_{jt}^2 = X_t' \delta_j$$
, where $\varepsilon_{jt} \mid \mathcal{F}_{t-1} \sim (0, \sigma_{jt}^2)$ for $j = 1, 2$.

Since (δ_1, δ_2) are assumed non-zero, X_t is correlated with ε_{jt}^2 , satisfying the instrument relevance condition (A3). The heteroscedasticity driver is defined as the centered exogenous variables, $Z_t = X_t - \mathbb{E}[X_t]$.

8.1 Moment vector

The full set of parameters is $\theta = (\beta_1', \beta_2', \gamma_1, \gamma_2, \delta_1', \delta_2')'$. The moment conditions implied by the model are $\mathbb{E}[Q_t(\theta)] = 0$, where:

$$Q_{t}(\theta) = \begin{pmatrix} X_{t}\varepsilon_{1t}(\theta) \\ X_{t}\varepsilon_{2t}(\theta) \\ Z_{t}\varepsilon_{1t}(\theta)\varepsilon_{2t}(\theta) \\ Z_{t}\left(\varepsilon_{1t}(\theta)^{2} - e^{X'_{t}\delta_{1}}\right) \\ Z_{t}\left(\varepsilon_{2t}(\theta)^{2} - e^{X'_{t}\delta_{2}}\right) \end{pmatrix}.$$

Instruments as Functions of Observables. The instruments are derived from the exogenous variables X_t . The terms inside the expectation are functions of these instruments and the structural errors (e.g., $\varepsilon_{1t}(\theta) = Y_{1t} - X_t'\beta_1 - Y_{2t}\gamma_1$), which are themselves functions of the observable data and the parameter vector θ .

- For the first two mean equations, the instruments are X_t .
- For the error product and variance specification moments, the instrument is $Z_t = X_t \mathbb{E}[X_t]$, estimated in-sample as $X_t \bar{X}$.

Therefore, the sample average of $Q_t(\theta)$ is a computable criterion function for any candidate parameter values.

8.2 Estimation

Estimation proceeds via a multi-step GMM procedure:

- 1. Obtain initial estimates of mean parameters via OLS/IV, and get residuals $\hat{\varepsilon}_{jt}$.
- 2. Estimate the variance parameters δ_j by regressing $\log \hat{\varepsilon}_{it}^2$ on X_t .
- 3. Use the full set of moment conditions defined in $Q_t(\theta)$ to form a GMM criterion function.
- 4. Minimize the GMM objective function using a HAC-robust weighting matrix (e.g., Newey-West) to obtain efficient, consistent, and asymptotically normal estimates of $\hat{\theta}$. A conventional bandwidth choice is $\ell_T = \lfloor 4(T/100)^{2/9} \rfloor$.

9 Diagnostic Tests and Practical Checks

- Instrument relevance. Report the first-stage F-statistic on the generated instrument(s); if F < 10, standard inference is unreliable, and weak-IV-robust tests should be used.
- Instrument validity. If there are more heteroscedasticity drivers Z than needed for identification (i.e., the model is overidentified), a Hansen J-test of overidentifying restrictions can be used to test the validity of the moment conditions.
- Endogeneity of Y_2 . The endogeneity of Y_2 can be tested using a difference-in-Hansen test (C-statistic) or a Hausman-style test comparing the OLS and 2SLS estimates of γ_1 .
- Heteroscedasticity of ε_2 . The crucial assumption (A3) can be checked with a Breusch-Pagan or White test for heteroscedasticity, by regressing the squared residuals $\hat{\varepsilon}_2^2$ on the proposed driver(s) Z. A significant relationship provides evidence for instrument relevance.