A Gentle Introduction to Natural Language Processing

Natalia Klyueva

The Hong Kong Polytechnic University Chinese and Bilingual Studies natalia.klyueva@polyu.edu.hk

June 25, 2018

Overview

ML and NLP

2 From a sense to a word

3 Sentiment analysis

ML and NLP

picture taken from https://rutumulkar.com/blog/2016/NLP-ML

What is ML: Recap

MACHINE LEARNING

picture taken from https://twitter.com/KirkDBorne

Canonical Examples of ML data

Size of House	Lot Size (acre)	# of Bedrooms	# of Bathrooms	Price of House \$127,325	
950	2.5	2	1		
1,535	1.5	2	2	\$156,570	
1,605	2.25	3	1.5	\$158,895	
1,905	2.5	2	1.5	\$200,025	
2,057	2.25	3	2	\$230,384	
2,227	2.75	3	2	\$233,835	
3,150	1	4	2	\$261,420	
3,620	3	4	3	\$433,500	

1	Α	В	С	D	Е	F	G	1
1	age	job	marital	education	default	housing	Ioan	con
2	56	housemaid	married	basic.4y	no	no	no	tek
3	57	services	married	high.scho	unknown	no	no	tel
4	37	services	married	high.scho	no	yes	no	tel
5	40	admin.	married	basic.6y	no	no	no	tele
6	56	services	married	high.scho	no	no	yes	tel
7	45	services	married	basic.9y	unknown	no	no	tel
8	59	admin.	married	profession	no	no	no	tel
9	41	blue-collar	married	unknown	unknown	no	no	teli
10	24	technician	single	profession	no	yes	no	tel
11	25	services	single	high.scho	no	yes	no	tel
12	41	blue-collar	والمحاصدون	حييرموساوحا	NONIN	20		tek

Natural Language Processing

- The same as in Machine Learning tasks above, but...
- features are: words, sentences, paragraphs, documents etc.
- Canonical NLP tasks:
 - search engines
 - Machine Translation
 - face recognition systems
 - chatbots
 - natural language generation
 - opinion mining (sentiment analysis)

Overview

ML and NLP

2 From a sense to a word

3 Sentiment analysis

Word <-> Sense: overview

How can machine understand meaning? Let's start with the basic notion - 'sense'

- How can machine understand meaning of a word?
- image recognition task: how to relate from an image (real world object) to a word/sentence
 - "Is this a cat on the picture?"
 - FB: "Do you want to tag FRIENDS_NAME FRIENDS_SURNAME?"
- given a picture, give a description of an object

Image recognition: near-NLP task

What object do we(humans) and they(machines) refer to?

Machinegenerated (but turker prefered)

a group of motorcycles parked next to a motorcycle

Human-annotated (but turker not prefered) two girls wearing are wearing short skirts and one of them sits on a motorcycle while the other stands nearby

How the machine sees an image: oversimplified

- We identify object by its features (is furry, has 4 paws, tail, special form of ears etc...)? Or by observations?
- Representation for a machine: all images are 64x64 pixels, and each pixel is a certain value of RGB
- Input: array of numbers

- Output: 97% it is a dog
- That is how to represent a picture.
- And how do we represent words?

Word representation

- Obviously, we need numbers to make calculations easier and faster
- We need to assign some numerical representation for each word
- I->id1; see->id2; a->id3 cat->id4 ... Is it a good one?????
- Small revolution in NLP: word2vec https://www.tensorflow.org/tutorials/word2vec
- Input: words, sentences, text, documents. Output: vector

- '2+2' of NLP: king-man+women=queen
- https://projector.tensorflow.org/

word2vec/doc2vec: what is inside?

• Predict the word:

• For doc2vec - the same principle, with document information included https://cs.stanford.edu/~quocle/paragraph_vector.pdf

Overview

1 ML and NLP

2 From a sense to a word

3 Sentiment analysis

Hot NLP topic: Sentiment analysis (or opinion mining)

- Likes/dislikes on facebook, we chat; swipes right/left; comments on products/services on internet
- User generated content. Comes for free and in large quantity
- The questions are: "Do you like this or dislike this?", "What are your emotions"

Training the model

- Sentiment analysis of the text
- On the user generated content, you can perform various machine learning experiments and model "sentiment"
- Input: review -> MODEL -> Output:sentiment/emotion

Our data: openrice

- Sentiment analysis of the text
- On the user generated content, you can perform various machine learning experiments and model "sentiment"
- Input: review -> MODEL -> Output:sentiment/emotion
- Openrice scrapped
- About 360,000 comments; 5,000 restaurant IDs

Data formatting

Our data: openrice

- The simple (baseline) task: given a comment, predict the 'value' (1-5)
- Input: document embeddings, classifier from sklearn
- Demo: https://github.com/natalink/openrice_ annotations/blob/master/clf_openrice.ipynb
- For the small sample (12506, on github) that I put online, the accuracy of the model was about 0.4
- If we select only very positive(rank 5) or negative (rank 1) comments, the accuracy was 0.7.
- For the whole data with rank value [1, 5] (26549 reviews) accuracy was around 0.850

Operations with vectors: spicy+sechuan-Hong Kong=???

```
model = Doc2Vec.load("ALL_picc_doc2vec.vec")
print("\n","Most similar to 'good' ", model.most_similar('好')) # just to test the model
print ("most similar to 'Whong Kong' ", model.most similar('意港'))
print ("most similar to 'kowloon' ", model.most similar('九龍'))
print("Most similar to 'dimsum': ", model.most similar('九龍')) # just to test the model
print ("china + hk - england =???", model.most_similar(positive=['中國', '香港'], negative=['英國']))
print ("spicy + Sechuan - Hong Kong =???", model.most_similar(positive=['四川', '辣'], negative=['香港']))
```

Most similar to 'qood' [('幾', 0.6377090215682983), ('好好', 0.6115480661392212), ('幾好', 0.582214593887329 1)。('呀', 0.5795080661773682)。('超級', 0.5684177279472351)。('物', 0.5599690675735474)。('非常', 0.552945137 0239258),('仲好',0.5522783398628235),('食落夠',0.545662522315979),('勁',0.5417361259460449)] most similar to 'Hong Kong' [('台灣', 0.7651838064193726), ('小店', 0.7570662498474121), ('中菜', 0.75396239 75753784), ('一間', 0.74861741065979), ('天堂', 0.737130880355835), ('連鎖', 0.7272865772247314), ('老店', 0.72 64119982719421).('近年', 0.7263711094856262).('館', 0.7198368310928345).('食店', 0.7153961658477783)] most similar to 'kowloon' [('海港', 0.9411194324493408), ('灣仔', 0.9407057166099548), ('上環', 0.94050866365 43274), ('大圍', 0.939861536026001), ('北角', 0.9396387338638306), ('邨', 0.9392281770706177), ('萬', 0.931288 7191772461),('兆',0.9311912655830383),('中環',0.9305603504180908),('天后',0.9292474985122681)] Most similar to 'dimsum': [('包類', 0.7647587060928345), ('食品', 0.7600960731506348), ('小菜', 0.74586737155 91431), ('午市', 0.7368004322052002), ('其式', 0.7218303680419922), ('粥品', 0.7156221866607666), ('熟食', 0.71 18027806282043), ('老式', 0.6852641701698303), ('供應', 0.6790927648544312), ('廣東', 0.6718846559524536)] china + hk - england =??? [('小店', 0.721519947052002), ('懐舊', 0.7202714681625366), ('舊式', 0.7020691037178 04),('高檔',0.6987070441246033),('街坊',0.6961661577224731),('格局',0.6949720978736877),('裝修',0.68691 36095046997), ('風格', 0.6842846274375916), ('老店', 0.683087944984436), ('酒吧', 0.6787234544754028)] spicy + Sechuan - Hong Kong =??? [('酸菜', 0.8346952795982361), ('酸辣', 0.8040406107902527), ('麻辣', 0.78325 20008087158).('小辣', 0.7822674512863159).('胡椒', 0.7609094977378845).('香辣', 0.7529984712600708).('白肉' , 0.739170491695404), ('紅油', 0.7313030958175659), ('鳳爪', 0.7268850803375244), ('少辣', 0.7263926267623901)