

Banco de Dados I Helio Rangel

AULA 7 Normalização Parte 2

Normalização Parte 2

Terceira Forma Normal

- · Baseada no conceito de Dependência Transitiva;
- A relação não deve ter um atributo não chave determinado funcionalmente por outro atributo não chave (ou conjunto);
- Não deve haver dependência transitiva de um atributo não chave sobre a PK;
- Deve-se decompor e montar uma nova relação que inclua os atributos não chave que determinam funcionalmente outros atributos não chave;

Uma tabela está na 3ª FN se as condições forem satisfeitas:

- Estiver na 2º FN;
- · Não existirem dependências transitivas (dependência funcional entre dois ou mais atributos não chave);
- Se nenhuma coluna não chave depender de outra coluna não chave.

Procedimentos para 3ª FN

- Para cada atributo, ou grupo de atributos não chave que for um determinante na relação, crie uma nova tabela;
- Este atributo será PK na nova relação;
- Mova todos os atributos que são dependentes funcionalmente do atributo chave para a nova tabela;
- O Atributo PK da nova relação, fica também na tabela original e passará a ser uma chave estrangeira para associar a nova tabela com a tabela original.

Normalização

Quarta forma normal FNBC (Forma Normal de Boyce-Codd)

A definição original da 3ª FN de Codd com uma relação que:

- · Tivesse duas ou mais chaves candidatas;
- · Essas chaves candidatas fossem compostas;
- Elas tivessem sobreposição ou seja, atributos em comum.

Caso essas condições não acorram em uma tabela, basta chegar até a 3ª FN.

Dizemos que uma relação esta em FNBC se e somente se os únicos determinantes são chaves candidatas.

Para normalizar uma tabela até FNBC devemos decompor a tabela com os passos a seguir:

- Encontrar uma dependência funcional não-trivial X -> Y que viole a condição de FNBC. X não deve ser uma PK;
- Dividir a tabela em duas:
 - Uma com os atributos XY, ou seja, todos os atributos da dependência;
 - Outra com os atributos X juntamente com os atributos restantes da tabela original.

Normalização

Quarta forma normal FNBC (Forma Normal de Boyce-Codd)

Exemplo 1:

Considere uma tabela TAB_Fornece {Codigo_Fornecedor, Nome_Fornecedor, Codigo_Produto, Quantidade_Produto}

Normalização

Quarta forma normal FNBC (Forma Normal de Boyce-Codd) Exemplo 2:

Tabela não normalizada

TAB_Aluno_Disciplina_Professor							
Codigo_Aluno	Disciplina	Professor					
500	Matemática	Arthur					
501	Física	Helio					
501	História	Carlos					
503	Matemática	Arthur					
503	Historia	Carlos					
503	Física	Maria					

Restrições:

- Cada estudante aprende uma disciplina lecionada por um professor;
- Cada Professor leciona apenas uma disciplina mas uma disciplina pode ser lecionada por mais de um professor;

Solução

TAB_Aluno_Professor				
Codigo_Aluno Professor			TAB_Profess	
	500	Arthur		Professor
	501	Helio		Arthur
	501	Carlos		Helio
	503	Arthur		Carlos
	503	Carlos		Maria
	503	Maria		

Normalização

Quarta forma normal FNBC (Forma Normal de Boyce-Codd)

Exemplo 3:

Vamos pensar agora na seguinte situação: Um aluno pode se matricular em um ou mais cursos, e um curso pode ser cursado por um ou mais alunos. Temos aqui uma relação N x M.

Nossa relação poderia ser assim

A Solução seria criar uma terceira tabela cuja única finalidade seria ligar as duas.

