Построение многопроцессорного расписания с использованием жадных стратегий и ограниченного перебора

Савицкий Илья

Научный руководитель: к.т.н. доцент Костенко Валерий Алексеевич

26 мая 2022 г.

Цели и задачи курсовой

Для достижения указанной цели требуется:

- Провести обзор алгоритмов построения списочных расписаний с целью выявления жадных критериев и схем ограниченного перебора которые могут быть модифицированы для решения данной задачи.
- 2 Разработать алгоритм.
- Реализовать алгоритм.
- Провести исследование свойств алгоритма.

Постановка задачи

Дано:

- Ориентированный граф работ G без циклов, в котором дуги зависимости по данным, а вершины задания. Вершин n, дуг m
- Вычислительная система, состоящая из р различных процессоров
- **3** Матрица C_{ij} длительности выполнения работ на процессорах, $i=1\ldots n, j=1\ldots p$
- $m{Q}$ Матрица D_{kl} передач данных между процессорами, $k=1\ldots p, l=1\ldots p, D_{kk}=0$

Граф потока данных

Расписание

Расписание программы определено, если

- Множества процессор и работ
- Привязка
- Порядок

Привязка - всюду определенная на множестве работ функция, которая задает распределение работ по процессорам

Порядок задает ограничения на последовательность выполнения работ и является отношением частичного порядка, удовлетворяющим условиям ацикличности и транзитивности. Отношение порядка на множестве работ, распределенных на один процессор, является отношением полного порядка.

Графическая форма представления расписания

Графическая форма представления расписания

Графическая форма представления расписания 👄 Временная диаграмма

Постановка задачи

Требуется:

- Построить расписание HP, то есть для i-й работы определить время начала ее выполнения s_i и процессор p_i на которм она будет выполняться
- Минимизируемый критерий: время завершения выполнения расписания
- Дополнительные ограничения

Представление расписания в виде временной диаграммы

Модель расписания

Множество корректных расписаний НР задается набором ограничений:

- В расписании не допустимы прерывания
- Интервалы выполнения заявок не пересекаются
- Каждая работа назначена на процессор
- Любую работу обслуживает один процессор
- Частичный порядок, заданный графом зависимостей G, сохранен в $HP: G \subset G_{HP}^T$, где G_{HP}^T транзитивное замыкание отношения G_{HP}

Постановки задачи

- Задача с однородными процессорами (длительность выполнения работы не зависит от того, на каком процессоре она выполняется) и дополнительными ограничениями на количество передач:
 - ullet $CR = rac{m_{ip}}{m}$, где m_{ip} количество передач данных между работами на каждый процессор
 - $CR2 = \frac{m_{2edg}}{m}$, где m_{2edg} количество дуг, начальный и конечный узлы которых назначены на процессоры, не соединенных напрямую
- Задача с однородными процессорами и дополнительным ограничением сбалансированности распределения работ:
 - $BF = \left(\frac{a_{max} \cdot p}{n}\right) 1$, где a_{max} наибольшее, по всем процессорам, количество работ на процессоре
- Задача с неоднородными процессорами, но без дополнительных ограничений на расписание

Обзор существующих алгоритмов

Название алгоритма	Рандомизированность	Итерационный	Возможность масштабирования
Генетические	Рандомный	Итерационный	+/-
алгоритмы			
Алгоритм имитации	Рандомный	Итерационный	+
отжига			
Муравьиные	Рандомный	Итерационный	-
алгоритмы			
Жадные стратегии	Детерминированный	Конструктивный	+
и ограниченный перебор			

Дополнительные обозначения

- $D = (d_1, d_2, \dots, d_I)$, где I количество вершин, доступных для добавления(т.е. у которых нет предшественников в исходном графе) множество вершин, доступных для добавления в расписание.
- ullet (s_i, p_i) достаточное количество информации для размещения работы в расписании.

Жадные критерии

- GR1 критерий, используемый в выборе работы на постановку
- @ GR2 критерий, используемый в выборе места постановки работы

Процедуры ограниченного перебора

- Н1 процедура перебора для создания места для постановки работы
- $oldsymbol{2}$ H2 процедура перебора для приближения времени старта работы к длине критического пути до нее

Общая схема алгоритма

Предподсчет

- lacktriangle Формируется множество D
- ② Вычисляется вектор k. В случае, если такой вершины нет создается фиктивная вершина с нулевой длительностью. Вектор k заполняется при помощи алгоритма Дейкстры.

Фиктивная вершина

Блок-схема пробного размещения работы

Жадный критерий выбора размещения

Из множества D выбирается работу по критерию GC1 максимальности количества потомков у вершины.

Выбранная вершина

Пробное размещение работы

Пробное размещение работы производится с учетом жадного и дополнительных критериев.

Жадный критерий GC2 - скорейшее завершение работы в расписании. Способы выбора места:

• Подсчет усредненного взвешенного показателя среди критериев

$$crit = C_1 \cdot GC2 + C_2 \cdot CR + C_3 \cdot BF$$

,где C_1, C_2, C_3 - параметры алгоритма

2 Допускная система выбора

Допускная система выбора

- **①** Список мест размещения работ ранжируется по GC2, после чего отсекаются верхние n% работ, где n параметр алгоритма
- Такие же действия повторяются для каждого дополнительного критерия
- В конечном списке выбрать место по жадному критерию

Процедура ограниченного перебора

- После неудачной пробной постановки работы в расписание алгоритм создает набор $K=(k_1,k_2,\ldots,k_t)$, состоящий из t последних добавленных работ (t- параметр алгоритма).
- Процедурой полного перебора пробуются различные расписания до тех пор, пока не получится расписание, удовлетворяющее заданным критериям.

Блок схема корректировки расписания

Программная реализация

Алгоритм реализован на языке C++ с помощюь фреймворка boost. Проект обладает следующей структурой:

- logging функции настройки логирования для проекта. Реализовано на основе Boost∷log
- $oldsymbol{2}$ schedule модуль для работы с графом входных данных и матрицами C и D, подаваемыми на вход. Реализован на основе Boost::graph и Boost::uBLAS.
- 3 time schedule модуль для работы с временной диаграммой.
- main.cpp main() программы. Основной алгоритм реализован тут. Разбор аргументов основан на Boost::program_options.
- 5 Doxyfile файл с настройками Doxygen.

Для сборки проекта используется CMake.

Текущие результаты

Реализвано:

- Проведен обзор алгоритмов построения списочных расписаний. Цель обзора; выявление жадных критериев и схем ограниченного перебора которые могут быть модифицированы для решения данной задачи.
- Разработан алгоритм, основанный на сочетании жадных стратегий и ограниченного перебора.
- Реализован алгоритм.

Предстоит реализовать:

- Проведено исследование свойств алгоритма на данных от Хуавей.
- Подбор оптимальных значений параметров алгоритма.

