WHAT IS CLAIMED IS:

1		1.	A computer-implemented method for separating a three-dimensional		
2	polygonal structure, comprising:				
3		detern	nining a continuous curve on the surface of the structure; and		
4		separa	ting the structure into two objects based on the continuous curve.		
1		2.	The method of claim 1, wherein determining the continuous curve		
1 2	comprises:	۷.	The method of claim 1, wherein determining the continuous curve		
2 3	comprises.	selecti	ing two points on the polygonal structure; and		
,		SCICCU	ng two points on the polygonal structure, and		
4		detern	nining a piece-wise continuous curve on the surface of the structure		
5	based on the two points				
1		3.	The method of claim 2, wherein the determining a piece-wise.		
2	contin		rive on the surface of the structure comprises:		
3	0011111		ating a local curvature for each edge of the structure;		
4			ating a cost function based on the local curvature and length of the edge;		
5	and	genera	uning a cost function based on the local curvature and length of the cage,		
6	and	detern	nining the shortest path based on the cost function.		
J		detern	ming the shortest path based on the cost function.		
1		4.	The method of claim 3, further comprising generating a set of control		
2	points to creat	te a fitti	ng surface based on the shortest path.		
1		5.	The method of claim 4, further comprising applying the fitting surface		
2	to congrete the		are into two portions.		
۷.	to separate the	Suucu	ne into two portions.		
1		6.	The method of claim 4, wherein the fitting surface is expressed as a		
2	function.				
		_			
1	1. 0	7.	The method of claim 4, wherein the fitting surface is expressed as a		
2	spline function	n.			
1		8.	The method of claim 4, wherein the fitting surface is interactively		
2	adjusted.				
1		9.	The method of claim 5, further comprising interactively highlighting a		
2	separated port	tion.			

1	10	The method of claim 5, further comprising interactively highlighting a			
2	border of the port	ion.			
1 2	11	The method of claim 4, further comprising determining a shortest path s and the fitting surface.			
2	between the point	s and the fitting surface.			
1	12	The method of claim 4, further comprising minimizing the curvature			
2	along the fitting surface.				
1	13	The method of claim 4, wherein the fitting surface is adjusted by			
2	moving one or more points on the object.				
1	14	The method of claim 4, wherein the cutting surface is adjusted by			
2	moving one or more nodes.				
1	15	The method of claim 4, wherein the cutting surface is adjusted by:			
2	spe	ecifying a point on the cutting surface and between two nodes; and			
3	adj	usting the point to vary the cutting surface.			
1	16	The method of claim 1, wherein the structure comprises one or more			
2	teeth.				
1	17	The method of claim 1, wherein a shortest path is used to segment the			
2	structure into two	portions.			
1	18	The method of claim 1, further comprising:			
2	displaying a plane having a surface specified by a plurality of nodes;				
3	adjusting one or more nodes to modify the surface of the plane; and				
4	ap	plying the plane to the structure.			
1	19	The method of claim 18, further comprising providing a handle to			
2	adjust each orientation of the plane.				
1	20	The method of claim 19, wherein adjusting one or more nodes further			
2	comprises dragging and dropping the one or more nodes.				
1	21	The method of claim 19, wherein the flexible plane surface is formed			
2	using a function applied over a two dimensional plane.				

1	22. The method of claim 21, wherein the function is represented as bicubic				
2	Bézier patches.				
1	23. The method of claim 1, wherein the object is two joined teeth to be				
2	separated, further comprising:				
3	receiving an initial digital data set representing the two joined teeth,				
4	representing the two joined teeth as a teeth mesh;				
5	applying a fitting surface to the teeth mesh;				
6	identifying an intersecting line between the teeth mesh and fitting surface; and				
7	generating two separated teeth based on the intersecting line.				
1	24. The method of claim 23, further comprising rendering a three-				
2	dimensional (3D) graphical representation of the separated teeth.				
1	25. The method of claim 23, further comprising receiving an instruction				
2	from a human user to modify the graphical representation of the teeth and modifying the				
3	graphical representation in response to the instruction.				