Sprawozdanie z laboratorium Teorii Optymalizacji

Imię i nazwisko	Jacek Gołda
Temat ćwiczenia	Pierwsza metoda Powella
Data i godzina wykonania ćwiczenia	9 marca 2016, 14:00

1 Wstęp

Celem laboratorium było zbadanie własności pierwszej metody Powella.

2 Ćwiczenie 2

Treść zadania:

"Dolina bananowa" Rosenbrocka. Wyznaczyć minimum funkcji:

$$Q(x_1, x_2) = 100[(x_2 - 3n) - (x_1 - 3n)^2]^2 + [1 - (x_1 - 3n)]^2$$

Na mapę poziomic doliny nanieść punkty pośrednie poszczególnych kroków oraz położenie baz.

Za parametr n przyjęto wartość 4.

$$Q(x_1, x_2) = 100[(x_2 - 12) - (x_1 - 12)^2]^2 + [1 - (x_1 - 12)]^2$$

Rozwiązanie:

2.1 Rozwiązanie analityczne

Zauważam, że funkcja jest sumą dwóch wyrażeń, z których każde jest nieujemne, ponieważ jest kwadratem pewnej liczby. Oznacza to, że minimalną wartością funkcji jest wartość 0.

Wyznaczam wartości \boldsymbol{x}_1 i \boldsymbol{x}_2 dla których obydwa wyrażenia się zerują.

$$\begin{cases} (x_2 - 12) - (x_1 - 12)^2 = 0 \\ 1 - (x_1 - 12) = 0 \end{cases}$$

$$\begin{cases} x_2 = 13 \\ x_1 = 13 \end{cases}$$

Minimum będzie osiągane dla punktu $\widehat{x} = \left[\begin{array}{c} 13 \\ 13 \end{array} \right]$

2.2 Rozwiązanie numeryczne

Jako punkt początkowy przyjęto punkt $x_0 = \left[\begin{array}{c} 11 \\ 11.5 \end{array} \right]$

W rozwiązaniu wykorzystano m-pliki realizujące pierwszą metodę Powella. Dokonano modyfikacji pliku definiującego koszt:

```
function [q,x]=koszt(x,z,d)

% KOSZT wylicza wskaznik jakosci dla wektora zmiennych
% decyzyjnych x+z*d.

if nargin==2, x=x+z;
elseif nargin==3, x=x+z*d;
end

n = 4;
x = x - 3 * n;
x1 = x(1);
x2 = x(2);
q = 100 * (x2 - x1 .^ 2) .^ 2 + (1 - x1) .^ 2;
```

Zmodyfikowano również plik pownad. W wersji pobranej ze strony laboratorium znajdował się kod, który powodował powtórne szukanie minimum, z warunku początkowego przesuniętego o wektor jedynek w stosunku do ostatnio znalezionego punktu. Usunięto tę część kodu wraz z pętlą, gdyż eksperymentalnie sprawdzono, że minimum jest znajdowane od razu przy pierwszym wywołaniu skryptu powe_1, a powtórne wywołanie tylko zaciemnia uzyskany poniżej wykres.

```
maxit=100;
itp=1;
xn = x0;
n=length(xn);
dm=eye(n);
xa=xn;
e0=1e-7;
x_rozw = [x0];
kier_baz = dm;

if metoda==1
    powe_1
else
    powe_2
end
```

W pliku powe_1 dodano zapis wartości obecnego rozwiązania i nowego kierunku poszukiwań za pomocą instrukcji:

```
x_rozw = [x_rozw, xn];
kier_baz = [kier_baz, dm(:, n)];
```

Nie załączono pełnego listingu, gdyż nie wnosiłby on dużo do sprawozdania.

Napisano ponizszy m-plik w celu przedstawienia przykładowych poziomic funkcji celu i wyników pracy algorytmu: kolejno znalezionych punktów wraz z wektorami baz w których prowadzone były poszukiwania.

```
clear all;
close all;
clc

drawArrow = @(p1, p2, varargin) quiver(p1(1), p1(2), p2(1) - p1(1), p2(2) - p1(2), 0, varargin{:});

[x1, x2] = meshgrid(10.75:0.001:13.25, 11.4:0.001:13.25);
n = 4;
q = 100 * ( ( x2 - 3 * n ) - ( x1 - 3 * n ) .^ 2 ) .^ 2 + ( 1 - ( x1 - 3 * n ) ) .^ 2;

figure
contour(x1, x2, q, [1, 2, 5, 20, 50, 100, 200], 'ShowText', 'on');
```

Uzyskano następujący wykres:

Czerwonymi rombami są zaznaczone kolejne wyznaczone punkty, są one połączone czerwonymi liniami. Na czarno zaznaczone są wektory bazy, dla której było poszukiwane minimum.

Tabela prezentuje kolejne przybliżenia rozwiązania optymalnego uzyskane w kolejnych iteracjach algorytmu.

Numer iteracji	Współrzędne x_1, x_2		Wartość funkcji	
1	11	11,50000000000000	229	
2	11,0083492816806	12,9833711471434	3,96667258378229	
3	11,2756387349858	12,4934416487712	3,07112548730848	
4	11,5143140110961	12,1970213939505	2,35834655078255	
5	11,8190130839544	12,0002956410268	1,50009929882121	
6	12,0777064235548	11,9765479363083	0,93759352698522	
7	12,2653362504702	12,0473117105480	0,59305309443070	
8	12,5603174351663	12,2990611591440	0,21550527851975	
9	12,7171323701030	12,5028255026689	0,09313198105451	
10	12,9064978793585	12,8182126772852	0,00998572235486	
11	12,9978706073696	12,9965156505864	0,00006380915022	

Kolejne rozwiązania zbiegają do wyznaczonego teoretycznie rozwiązania \hat{x} , a kolejne wartości funkcji zbiegają do zera.

3 Ćwiczenie 3

Treść zadania:

Zbadać działanie metod Powella dla funkcji:

$$Q(x) = 100 [(x_1 - 3n)^2 - (x_2 - 3n)]^2 + [1 - (x_1 - 3n)]^2 + 90 [(x_3 - 3n)^3 - x_4] + [1 - (x_3 - 3n)]^3 + 10.1 [[(x_2 - 3n) - 1]^2 + big[(x_4 - 3n) - 1]^2] + 19.8 [(x_2 - 3n) - 1] [(x_4 - 3n) - 1]$$

3.1 Oszacowanie analityczne

Ze względu na fakt, że analityczne wyznaczenie minimów tej funkcji byłoby bardzo złożone, analityczne oszacowanie minimum ograniczono do zauważenia, że po wstawieniu $z_i = x_i + 3n$ uzyskuje się funkcję zbliżoną do tej, którą badano na poprzednim laboratorium. Wyznaczono wtedy minimum na kierunku $d = [1, 1, 1, 1]^T$ — było ono osiągane dla $\hat{x} = [1, 1, 1, 1]^T$, a wartość funkcji w minimum wynosiła 0. W analogiczny sposób sprawdzono, czy dla tej funkcji również istnieje to minimum.

Dokonano podstawienia opisanego powyżej, a następnie wstawiono parametryzację prostej o kierunku d przechodzącej przez punkt (0,0):

$$z = z_0 + td = t$$

Po wstawieniu i uporządkowaniu wyrazów uzyskano:

$$q(t) = Q(t, t, t, t) = (t - 1)^{2}(90t^{4} + 180t^{3} + 190t^{2} + 42)$$

Sprawdzono, czy wyrażenie w drugim nawiasie nie ma pierwiastków. Po zróżniczkowaniu tego wyrażenia uzyskuje się:

$$360t^3 + 540t^2 + 380t = t \cdot (360t^2 + 540t^1 + 380)$$

Wyróżnik trójmianu kwadratowego w nawiasie jest mniejszy od zera, więc jedynym punktem, w którym zeruje się pochodna jest punkt t=0. Będzie to minimum globalne tego wyrażenia. Wartość wyrażenia dla t=0 wynosi 42, jest to więcej niż

0. Wynika stąd, że punkt t = 1 jest minimum globalnym na rozważanym kierunku. Wartość funkcji w tym punkcie jest równa 0. Po cofnięciu się do zmiennych x_i uzyska się następujący punkt jako oszacowanie minimum:

$$x = \begin{bmatrix} 13 \\ 13 \\ 13 \\ 13 \end{bmatrix}$$

Ta wartość będzie oszacowaniem minimum funkcji dla rozwiązania numerycznego.

3.2 Rozwiązanie numeryczne

W celu znalezienia rozwiązania numerycznego ponownie zmodyfikowano funkcję obliczającą wartość funkcji celu.

```
function [q,x]=koszt(x,z,d)
% KOSZT wylicza wskaznik jakosci dla wektora zmiennych
% decyzyjnych x+z*d.
if nargin==2, x=x+z;
elseif nargin==3, x=x+z*d;
end
n = 4;
x = x - 3 * n;
x1 = x(1);
x2 = x(2);
x3 = x(3);
x4 = x(4);
q = 100 * (x1 .^2 - x2) .^2 + (1 - x1) .^2 +
                                                      90 * (x3 .^3 - x4) .^2 + ...
       (1 - x3) .^2 + 10.1 * ((x2 - 1) .^2 + (x4 - 1) .^2) + ...
        19.8 * (x2 - 1) * (x4 - 1);
```

Wykorzystano zmodyfikowane w poprzednim ćwiczeniu pliki pownad i powe_1

Wyznaczano minimum funkcji dla punktu startowego $x_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

Uzyskano następujące wyniki:

Numer iteracji	Współrzędne x_1, x_2, x_3, x_4			Wartość funkcji	
1	0	0	0	0	267459738
2	11,9971162516832	151,758149502015	0,421696047728145	-1397,16559042962	20198192,8178327
3	36,4762887690099	579,020262702104	1,62014788159304	-1041,48258423002	3130649,28947490
4	41,4012682651431	874,577054085991	2,47111674992001	-853,081105479597	299947,374310426
5	41,3683386086852	874,677005068520	2,47209016612369	-850,809602713037	299108,426152982
6	41,3682223466364	874,670462772799	2,47211822815103	-850,788301784999	299103,481673144
7	39,4628952262741	762,879305386457	3,03240970326098	-703,637625584493	230764,195358163
8	36,7217135256719	615,917675061527	3,56907566837157	-576,924658458411	159516,931356873
9	33,1944814357768	$448,\!231726445676$	4,40575599723750	-423,947338807499	93785,6518707890
10	32,8156800798772	$432,\!239517454662$	4,50097664117885	-410,004256785505	88589,9986808328
11	30,2784984567285	337,870223113102	5,16287678240868	-303,391001142585	50581,1472976224
12	27,2775945271226	$241,\!030774602880$	6,05035770197600	-195,969562168258	25521,6606189173
13	25,2339718428315	181,758119169330	6,69297218659321	-136,987642427368	16787,9079059575
14	24,3309348602804	$161,\!283171324532$	7,00020276776944	-111,880752155778	13979,2903967697
15	22,1324024896152	110,551957122609	7,77079921289386	-64,2913316528182	9002,58659124203
16	20,6791156503973	83,6128346868430	8,31089873699871	-38,5041549148167	6611,13005775743
17	19,1442099620320	$61,\!1086904828676$	8,91322048764375	-16,9859889441049	4337,84132992468
18	17,5516442705116	40,7544192582619	9,56193452082609	-2,19659509847426	2228,84772860074
19	16,0297363556495	$26,\!5189258015428$	10,2097442025562	6,17822717708862	803,280628688845
20	15,0640996453851	20,0055204779791	10,6354241807837	8,27633636781139	392,895110437795
21	15,0369461269039	19,9743861506800	10,6481330200560	8,20325989613152	385,150916691244
22	14,1593841346066	$16,\!4780364769228$	11,0396749402924	11,1466899330501	37,9396972659049
23	13,4047164257992	14,0435523851946	11,3822972032309	11,7991321328045	4,13565408180657
24	13,4187336423480	14,0644230114266	11,3759045156895	11,7684703197111	3,89786207293810
25	13,4708067418839	$14,\!1702468794475$	11,3520448182415	11,7404403035416	3,62646452112417
26	13,4714521860462	$14,\!1722801140344$	11,3517519305415	11,7397538899957	3,62645791065936
27	13,4714539709471	$14,\!1722884263528$	11,3517511035296	11,7397630434865	3,62645787091147
28	13,4714540309972	$14,\!1722887679603$	11,3517510751633	11,7397636724007	3,62645786529552

Dwie rzeczy zwracają uwagę:

- 1. Algorytm rozpoczął od bardzo odległego skoku z punktu początkowego, a następnie inną ("okrężną") drogą zaczął zbiegać najpewniej do punktu \hat{x} .
- 2. Algorytm nie odnalazł minimum, ponieważ wcześniej zadziałało kryterium stopu badające zmianę rozwiązania w kolejnych iteracjach.

Powyższe eksperymenty wykonywano z domyślną dokładnością 10^{-7} . Ponowiono eksperyment żądając większej dokładności 10^{-10} . Obliczenia zakończono w 29 iteracji, czyli o jedną iterację później. Uzyskano następujący wynik końcowy:

$$x_s = \begin{bmatrix} 13,4714538670667\\ 14,1722882038308\\ 11,3517511493721\\ 11,7397638642203 \end{bmatrix} \qquad Q_s = 3,62645785234968$$

Takie zachowanie się algorytmu może być wynikiem degeneracji bazy objawiającej się zerowaniem się wyznacznika z macierzy kierunków. Sprawdzono, czy w tym wypadku zaszło takie zjawisko. Obliczono wyznacznik kolejnych macierzy kierunków wykorzystywanych do wyznaczania kolejnych rozwiązań. Przedstawia je poniższa tabela:

Numer iteracji	Wartość wyznacznika macierzy	
1	1	
2	-0,0574224682668565	
3	0,0374233294919469	
4	-4,12363549973580e-05	
5	4,47499993678181e-05	
6	-0,000263575448586089	
7	-0,000107694696554208	
8	4,81807632599087e-06	
9	1,33485423982365e-06	
10	4,25302530876073e-07	
11	3,78096537878616e-07	
12	2,63232784423189e-07	
13	2,06720301501312e-07	
14	1,95611636841665e-07	
15	1,58265151408770e-07	
16	1,46658514739426e-07	
17	1,40475685978987e-07	
18	1,52491439634781e-07	
19	2,09434753827643e-07	
20	-2,21975846243208e-07	
21	1,45167023316031e-06	
22	9,60400598696611e-07	
23	-1,47491883519371e-06	
24	-9,23401181932753e-07	
25	2,28661104889235e-07	
26	2,58699049803582e-07	
27	2,58698760597505e-07	
28	1,09230200516028e-10	
29	1,22960375324095e-09	

Wyznaczniki macierzy dla kolejnych iteracji zbliżają się do zera. Oznacza to, że dalsze poszukiwanie nie odniesie oczekiwanego efektu. Aby uniknąć tego zjawiska, należałoby zastosować zmodyfikowaną metodę Powella, w której nie podmienia się wektorów bazy, jeżeli spowodowałoby to jej zbyt dużą degenerację.

4 Podsumowanie

W trakcie laboratorium zbadano działanie pierwszej metody Powella na przykładzie dwóch funkcji.

Dla doliny bananowej dała ona zadowalający wynik, dość bliski rzeczywistemu minimum. Obliczenia zakończyły się w 11 iteracji.

Dla drugiej funkcji zaobserwowano efekty degeneracji bazy. Uzyskany wynik był znacznie gorszy. W pobliżu punktu w którym oszacowano minimum funkcja bardzo wolno zbiegała do wartości oszacowania wyznaczonej analitycznie. Nie pomogło zwiększenie żądanej dokładności obliczeń o trzy rzędy wielkości. Algorytm wykonał w wyniku tego tylko jedną iterację więcej, uzyskując nieznacznie lepsze rozwiązanie.

Rozwiązaniem tego problemu jest zmodyfikowana metoda Powella, która zapobiega degeneracji bazy.