```
In [2]: import numpy as np
  import matplotlib.pyplot as plt
  import pandas as pd
  import seaborn as sns
```

In [3]: df = pd.read_csv('..\Datascie\data\customer.csv')

In [4]: | df.head()

Out[4]:

	gender	age	salary	purchased
0	Male	19	19000	0
1	Male	35	20000	0
2	Female	26	43000	0
3	Female	27	57000	0
4	Male	19	76000	0

In [5]: df

Out[5]:

		gender	age	salary	purchased
	0	Male	19	19000	0
	1	Male	35	20000	0
	2	Female	26	43000	0
	3	Female	27	57000	0
	4	4 Male		76000	0
	395	Female	46	41000	1
	396 Male397 Female		51	23000	1
			50	20000	1
	398	Male	36	33000	0
	399 Female		49	36000	1

400 rows × 4 columns

In [6]: from sklearn.preprocessing import StandardScaler
 from sklearn.model_selection import train_test_split
 from sklearn.neighbors import KNeighborsClassifier

```
In [23]: att = df[['age' , 'salary']]
    label = df['purchased']

att_train ,att_test , class_train , class_test = train_test_split(att,label,rar scaler = StandardScaler()
    scaler.fit(att_train)

att_train[['age' , 'salary']] = scaler.transform(att_train)
    model = KNeighborsClassifier(n_neighbors=3)
    model.fit(att_train,class_train)

model.score(scaler.transform(att_test) , class_test)

c:\Users\User\anaconda3\Lib\site-packages\sklearn\base.pv:464: UserWarning: X
```

c:\Users\User\anaconda3\Lib\site-packages\sklearn\base.py:464: UserWarning: X
does not have valid feature names, but KNeighborsClassifier was fitted with f
eature names

warnings.warn(

Out[23]: 0.9083333333333333

```
In [24]: result = pd.concat([att_test,class_test] , axis= 1 )
    result['predict'] = model.predict(scaler.transform(att_test))
    result
```

c:\Users\User\anaconda3\Lib\site-packages\sklearn\base.py:464: UserWarning: X
does not have valid feature names, but KNeighborsClassifier was fitted with f
eature names

warnings.warn(

Out[24]:

	age	salary	purchased	predict
132	30	87000	0	0
309	38	50000	0	0
341	35	75000	0	0
196	30	79000	0	0
246	35	50000	0	0
216	49	65000	0	0
259	45	131000	1	1
49	31	89000	0	0
238	46	82000	0	1
343	47	51000	1	0

120 rows × 4 columns

In []: