Sutton & Barto RL Cheatsheet

Pierluca D'Oro

Monte Carlo Exploring Starts

Initialize, for all $s \in \mathcal{S}, a \in \mathcal{A}(s)$ $Q(s, a) \leftarrow \text{arbitrary}$ $\pi(s) \leftarrow \text{arbitrary}$ $Returns(s, a) \leftarrow \text{empty list}$

Repeat forever:

Choose $S_0 \in \mathcal{S}$ and $A_0 \in \mathcal{A}(S_0)$ randomly Generate episode starting from S_0, A_0 , using π For each pair s, a appearing in episode: $G \leftarrow$ return following first s, a occurrence Append G to Returns(s, a) $Q(s, a) \leftarrow \text{average}(Returns(s, a))$ For each s in the episode:

On policy first-visit MC control

 $\pi(s) \leftarrow \operatorname{argmax}_a Q(s, a)$

Initialize, for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$: $Q(s,a) \leftarrow \text{arbitrary}$ $Returns(s, a) \leftarrow \text{empty list}$ $\pi(a|s) \leftarrow \text{arbitrary } \epsilon - \text{soft policy}$

Repeat forever:

- (a) Generate an episode using π
- (b) For each pair s, a appearing in the episode: $G \leftarrow$ return following first s, a occurrence Append G to Returns(s, a) $Q(s, a) \leftarrow \text{average}(Returns(s, a))$
- (c) For each s in the episode: $A^* \leftarrow \operatorname{argmax}_a Q(s, a)$ For all $a \in \mathbf{A}(s)$:

$$\pi(a|s) \leftarrow \begin{cases} 1 - \epsilon + \epsilon/|\mathcal{A}(s)|, & \text{if } a = A^* \\ \epsilon/|\mathcal{A}(s)|, & \text{if } a \neq A^* \end{cases}$$

Monte Carlo Policy Gradient (REINFORCE)

Given $\pi_{\boldsymbol{\theta}}(a|s)$, initialize $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ Repeat forever: Generate an episode following π For each step t to T in the episode: $G \leftarrow \text{return from step } t$ $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G \nabla_{\boldsymbol{\theta}} \ln \pi_{\boldsymbol{\theta}} (A_t | S_t)$

Q-learning (off-policy TD control)

Initialize Q(s, a) arbitrarily, Q(terminal-state, -) = 0Repeat (for each episode): Initialize SRepeat (for each step of episode): Choose A in S with ϵ -greedy policy from Q Take action A, observe R, S' $Q(S,A) \leftarrow (1-\alpha)Q(S,A) +$ $\alpha(R + \gamma \max_a Q(S', a))$ $S \leftarrow S'$ Until S is terminal

Sarsa (on-policy TD control)

Initialize Q(s, a) arbitrarily, Q(terminal-state, -) = 0

Repeat (for each episode):

Initialize S

Choose A in S with ϵ -greedy policy from Q Repeat (for each step of episode):

Take action A, observe R, S'

Choose A' in S' with ϵ -greedy policy from Q

$$Q(S, A) \leftarrow (1 - \alpha)Q(S, A) + \alpha(R + \gamma Q(S', A'))$$

 $S \leftarrow S'$ $A \leftarrow A'$

Until S is terminal

One-step Actor-Critic

Given $\pi_{\boldsymbol{\theta}}(a|s)$, $\hat{v}_{\boldsymbol{\omega}}(s)$, initialize $\boldsymbol{\theta} \in \mathbb{R}^{d'}$, $\boldsymbol{\omega} \in \mathbb{R}^{d}$

Repeat forever:

Initialize S

 $I \leftarrow 1$

While S is not terminal:

 $A \sim \pi_{\theta}(A|S)$

Take action A, observe S', R

 $\delta \leftarrow R + \gamma \hat{v}_{\omega}(S') - \hat{v}_{\omega}(S)$

 $\boldsymbol{\omega} \leftarrow \boldsymbol{\omega} + \alpha I \delta \nabla_{\boldsymbol{\omega}} \hat{v}_{\boldsymbol{\omega}}(S)$

 $\theta \leftarrow \theta + \beta I \delta \nabla_{\theta} \ln \pi_{\theta}(A|S)$

 $I \leftarrow \gamma I$

 $S \leftarrow S'$

Value Iteration

Initialize array V arbitrarily

Repeat

 $\Lambda \leftarrow 0$

For each $s \in \mathcal{S}$:

 $v \leftarrow V(s)$

 $V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]$

 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$

until $\Delta < \epsilon$

Output a deterministic policy $\pi \approx \pi_*$:

 $\pi(s) = \operatorname{argmax}_{a} \sum_{s' r} p(s', r|s, a) [r + \gamma V(s')]$

Policy Iteration

(1) Initialization

 $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

(2) Policy Evaluation

Repeat

 $\Lambda \leftarrow 0$

For each $s \in \mathcal{S}$:

 $v \leftarrow V(s)$

 $V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta,|v - V(s)|)$

until $\Delta < \epsilon$

(3) Policy Improvement

policy-stable $\leftarrow true$

For each $s \in \mathcal{S}$:

 $old\text{-}action \leftarrow \pi(s)$

 $\pi(s) \leftarrow \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$ If policy-stable, then stop, else go to (2)