Total No. of Questions: 3

Total No. of Printed Pages: 3

Enrollment No.....

Faculty of Pharmacy

End Sem (Even) Examination May-2022 PY3CO13 Pharmaceutical Organic Chemistry -III

Programme: B. Pharma Branch/Specialisation: Pharmacy

Duration: 3 Hrs. Maximum Marks: 75

Note: All questions are compulsory. Internal choices, if any, are indicated.

- A mixture of equal amounts of two enantiomers—such as (R)-Q.1 i. 2 lactic acid and (S)- lactic acid is called as (a) Symmetrical mixture (b) Asymmetrical mixture (c) Racemic mixture (d) Achiral mixture
 - Which of the following compounds have asymmetric carbons? 2
 - (a) 2-Chlorobutane (b) Ethanol
 - (c) 3-Methylpentane (d) 3- Methylbutane
 - Which of the following structures represents a cis-isomer? 2

- Which of the following system is not used for the nomenclature of 2 geometrical isomers?
 - (c) syn/anti (d) R/S (a) cis-trans (b) E/Z
- Which of the following is not a five-membered heterocyclic 2 compound?
 - (b) Pyridine (a) Furan (c) Pyrrole

(d) Thiophene

P.T.O.

Q.2

[3]

Q.3

iii.	(a) Explain D, L system of nomenclature illustrating with an example of D- & L- glucose.	5			
	(b) Draw the different conformational isomers of cyclohexane using Newman Projection.	5			
	Attempt any seven: Two questions from each section is compulsory.				
	Section - A				
i.	Give one reaction of electrophilic substitution in pyrrole, furan and thiophene each.				
ii.	Make a comparative analysis for the relative aromaticity of pyrrole and furan. Justify your answer with an appropriate reason.				
iii.	Give the synthetic reactions and any two chemical properties of	5			
	thiophene.				
	Section - B				
iv.	Compare the basicity of pyridine with pyrrole and aliphatic amines. Account the reason for the same.				
v.	Give the synthetic scheme for the synthesis of azepines and any two medicinal uses of azepines.				
vi.	Give two chemical reactions of Oxazole and thiazole.	5			
	Section - C				
vii.	Explain Beckmann rearrangement in detail.	5			
viii.	Differentiate between Schmidt rearrangement and Claisen-Schmidt	5			
	condensation.				
ix.	Compare the reduction strength of NaBH4 and LiAlH4 with reaction illustration. Which reagent would you prefer for the reduction of a carboxylic acid and why?	5			

Marking Scheme

PY3CO13 Pharmaceutical Organic Chemistry -III

Q.1 A mixture of equal amounts of two enantiomers—such as (R)-2 lactic acid and (S)- lactic acid is called as (c) Racemic mixture Which of the following compounds have asymmetric carbons? 2 (a) 2-Chlorobutane Which of the following structures represents a *cis*-isomer? 2 (c) Which of the following system is not used for the nomenclature of 2 geometrical isomers? (d) R/S Which of the following is not a five-membered heterocyclic 2 compound? (b) Pyridine Which of the following product will be the most stable? 2 Electrophile (E) (b) Structure of quinoline is 2 (a) viii. Pyrimidine and purines are 2 (c) Nitrogen bases ix. Which of the following metal is not used for reduction? 2 (b) Potassium Esters can be easily reduced by 2 (b) LiAlH4 Q.2 Attempt any two: Reactions of the chiral molecules with any four examples. **10** Definition 1 mark Reaction 6 marks 3 marks Examples

	ii.	Describe Atropisomerism in Biphenyl compounds.				
		Definition	2 marks			
		Reaction-1	4 marks			
		Reaction-2	4 marks			
	iii.	(a) D, L system of nomenclature illustrating 3 marks				
		An example of D- & L- glucose. 2 marks				
		(b) Different conformational is		5		
		Eclipsed	2.5 marks			
		Stagged	2.5 marks			
		Attempt any seven: Two questions compulsory.	from each section is			
		Section - A				
	i.	Explanation	0.5 mark	5		
		reaction for pyrrole, furan and thiophene each				
			(1.5 marks * 3)			
	ii.	Comparative analysis for the relative		5		
		Pyrrole	2.5 marks			
		Furan	2.5 marks	_		
	iii.	Synthetic reactions	3 marks	5		
		Two chemical properties of thiophene	2 marks			
		Section - B				
	iv.	Basicity of pyridine	3 marks	5		
		Account the reason for the same 2 marks				
	V.	Synthetic scheme for the synthesis	2.5 marks	5		
		Two medicinal uses of azepines.	2.5 marks	_		
	vi.	Two chemical reactions of Oxazole		5		
		2.5 marks for each	(2.5 marks * 2)			
		Section - C				
	vii.	Beckmann rearrangement in detail		5		
		As per the explanation				
	viii.	Schmidt rearrangement (0.5 mark * 5)	2.5 marks	5		
		and Claisen-Schmidt condensation.				
	(0.5 mark * 5)	2.5 marks				
	ix.	Reduction strength of NaBH4 and	LiAlH4 with reaction	5		
		illustration.	2.5 marks			
	on of a carboxylic acid and					
		why	2.5 marks			

Q.3
