Computing the eigen-energies of a 1D Schdinger equation for piecewise potentials

Rafa da Silva

Following BJD notes, for every piece of a piecewise potential

$$V(x) = \begin{cases} \infty & x < 0 \\ V_1 & 0 < x < x_1 \\ \dots & \dots \\ V_k & x_{k-1} < x < x_k \\ \dots & \dots \\ V_N & 0 < x < x_N \\ \infty & x > 1 \end{cases}$$
 (1)

there will be a wave-function solution of the Schdinger equation

$$\psi(x) = \begin{cases}
0 & x < 0 \\
\psi_1 & 0 < x < x_1 \\
\dots & \dots \\
\psi_k & x_{k-1} < x < x_k \\
\dots & \dots \\
\psi_N & 0 < x < x_N \\
0 & x > 1
\end{cases} \tag{2}$$

with the shape

$$\psi_k(x) = A_k e^{i\kappa_k x} + B_k e^{-i\kappa_k x}. (3)$$

and the wave number $\kappa_k = \sqrt{2(E - V_k)}$.

This piecewise wave will satisfy both a boundary condition at the infinite walls

$$\psi_1(x=0) = \psi_N(x=1) = 0 \tag{4}$$

and a continuity condition, for k = 1...N - 1,

$$\psi_k(x_k) = \psi_{k+1}(x_k)
\psi'_k(x_k) = \psi'_{k+1}(x_k).$$
(5)

As suggested by BJD notes, we simplify the wave-function as

$$\psi_k(x) = A_k e^{i\kappa_k x} + B_k e^{-i\kappa_k x} \implies \phi_k = \begin{pmatrix} A_k \\ B_k \end{pmatrix}$$
 (6)

and impose a boundary condition for the left wall

$$\psi_1(x=0) = 0 \implies B_1 = -A_1 \implies \phi_1 = -A_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} \implies \tilde{\phi}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$
(7)

We can work with the unnormalized form $\tilde{\phi}_0$ and leave the normalization of the whole wave for the end. Having $\tilde{\phi}_1$, we can find the others $\tilde{\phi}_k$ neighbour by neighbour with the continuity condition:

$$\begin{array}{ll} \psi_k(x_k) = & \psi_{k+1}(x_k) \\ \psi'_k(x_k) = & \psi'_{k+1}(x_k) \end{array} \Longrightarrow \mathcal{M}(\kappa_k, x_k) \tilde{\phi}_k = \mathcal{M}(\kappa_{k+1}, x_k) \tilde{\phi}_{k+1}$$

Which means that, in the simplified form, the continuity condition from $\tilde{\phi}_k$ to $\tilde{\phi}_{k+1}$ is a 2x2 matrix

$$\tilde{\phi}_2 = \mathcal{M}^{-1}(\kappa_2, x_1) \mathcal{M}(\kappa_1, x_1) \tilde{\phi}_1$$

$$\tilde{\phi}_3 = \mathcal{M}^{-1}(\kappa_3, x_2) \mathcal{M}(\kappa_2, x_2) \tilde{\phi}_2$$
...
(8)

Therefore, multiplying all the way from $\tilde{\phi}_1$ to $\tilde{\phi}_N$ we can compute

$$\tilde{\phi}_{N} = \prod^{N-1} \mathcal{M}^{-1} \mathcal{M} \quad \tilde{\phi}_{1} \\
\begin{pmatrix} \tilde{A}_{N} \\ \tilde{B}_{N} \end{pmatrix} = \mathcal{M}_{eff} \quad \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
(9)

Here's the tricky part. Having imposed that the wave function is null on the left wall, only eigen-energies will null it on the right wall

$$\psi_{1}(x) = A_{1}e^{i\kappa_{1}x} + B_{1}e^{-i\kappa_{1}x}$$

$$\psi_{1}(x = 0) = 0$$

$$\psi_{1}(x) = A_{1}e^{i\kappa_{1}x} + B_{1}e^{-i\kappa_{1}x}$$

$$\psi_{N}(x) = A_{N}e^{i\kappa_{N}x} + B_{N}e^{-i\kappa_{N}x}$$

$$\psi_{N}(x) = A_{N}e^{i\kappa_{N}x} + B_{N}e^{-i\kappa_{N}x}$$

$$\phi_{N}(x) = A_{N}e^{i\kappa_{N}x} + B_{N}e^{-i\kappa_{N}x$$

Here the idea is to find the eigen-energies with a root-finding algorithm. So we need a function f(E) that is null when we have an eigen-function.

BJD notes suggest the relation between ϕ_N and ϕ_N

$$\tilde{\psi}_N(x=1) \sim \tilde{\psi}_N(x=1) \implies \frac{\tilde{A}_N}{\tilde{B}_N} - \frac{1}{-e^{2i\kappa_N}} = 0 = f(E)$$
 (11)

However, as we approach an eigen-energy, f(E) varies its order of magnitude wildly, leading to asymptotes and fake roots.

FIG. 1: Compute of (11) for a squared infinite potential, N = 2 $V_1 = 0$ $V_2 = 0$ and $X_1 = 0.5$. We expect to cut the horizontal axis on $1, 4, 9, 25, \dots$ On the first one, the magnitude varies too much. We apply the logarithm on the second. But on the second one, there are asymptotes instead of roots. We change X_1 to 0.9 to see if they are really roots on the third. But on the third one there are fake roots.

An alternative function f(E) that is null when we have an eigen-function can be the wave-function value at the right wall

$$\tilde{\psi}_N(x=1) = 0 = \tilde{A}_N e^{i\kappa_N} + \tilde{B}_N e^{-i\kappa_N} = f(E) \tag{12}$$

If V_N is smaller/bigger than E, $\tilde{\psi}_N$ will be real/imaginary. For increasing E, $\tilde{\psi}_N$ makes a transition from 'pure' real to 'pure' imaginary values. The " are because the other part is never really 0, it remain floating between $\pm 10^{-16}$, constantly crossing the axis.

This f(E) is $\mathbb{R}\tilde{\psi}_N - \mathbb{I}\tilde{\psi}_N = 0$ in order to only cross the axis when one of the arts does it. $\mathbb{R} + \mathbb{I}$ is not used because at $E \sim V_N$ real and imaginary parts have different signs, and if added, at $E = V_N$ you can get an extra root.

FIG. 2: Compute of (12). On the left, for a squared infinite potential $V_k = 0$ for $\forall k$. It cuts the horizontal axis on $1, 4, 9, 25, \ldots$ On the right, $V_k = 5$ for $\forall k$. It cuts the horizontal axis on $1 + 5, 2 + 5, 4 + 5, 16 + 5, \ldots$