Learning Objectives

By the end of this worksheet, you will:

- Prove statements using the technique of simple induction.
- Write proofs using simple induction with different starting base cases.
- Write proofs using simple induction within the scope of a larger proof.
- 1. **Induction**. Consider the following statement:

$$\forall n \in \mathbb{N}, n \leq 2^n$$

(a) Suppose we want to prove this statement using induction. Write down the full statement we'll prove (it should be an **AND** of the base case and induction step). Consult your notes if you aren't sure about this!

$$0 \le 2^0 \land (\forall k \in \mathbb{N}, k \le 2^k \Rightarrow k+1 \le 2^{k+1})$$

(b) Prove the statement using induction. We strongly recommend reviewing the induction proof template from lecture before working on a proof here.

Hint:
$$2^{k+1} = 2^k + 2^k$$
.

Solution

Proof. We will prove this statement using induction on n.

Base case: let n = 0.

Then $2^n = 1$, and n = 0, so $n \le 2^n$.

Induction step: let $k \in \mathbb{N}$, and assume that $k \leq 2^k$. We want to prove that $k+1 \leq 2^{k+1}$.

Since $0 \le k$, we know that $1 \le 2^k$ (raising 2 to the power of either side). Then we can add this inequality to our assumption $k \le 2^k$ to get:

$$k+1 \le 2^k + 2^k$$

$$k+1 \le 2^{k+1}$$

2. **Induction (summations).** If marbles are arranged to form an equilateral triangle shape, with n marbles on each side, a total of $\sum_{i=1}^{n} i$ marbles will be required. (For convenience, we also define $T_0 = 0$.)

In the course notes, we prove that $\sum_{i=1}^{n} i = n(n+1)/2$. For each $n \in \mathbb{N}$, let $T_n = n(n+1)/2$; these numbers are usually called the *triangular numbers*. Use induction to prove that

$$\forall n \in \mathbb{N}, \ \sum_{j=0}^{n} T_j = \frac{n(n+1)(n+2)}{6}$$

Solution

Let us start by defining the predicate

$$P(n): \sum_{j=0}^{n} T_j = \frac{n(n+1)(n+2)}{6}$$

We need to prove that $\forall n \in \mathbb{N}, P(n)$.

Proof. Base case: let n=0. We want to prove P(0). Then we can calculate:

$$\sum_{j=0}^{n} T_j = \sum_{j=0}^{0} T_j$$
$$= T_0$$
$$= \frac{0(0+1)}{2}$$
$$= 0$$

And also $\frac{0(0+1)(0+2)}{6} = 0$.

<u>Induction step</u>: Let $k \in \mathbb{N}$ and assume P(k), i.e., that $\sum_{j=0}^{k} T_j = k(k+1)(k+2)/6$. We want to prove P(k+1),

i.e., that
$$\sum_{j=0}^{k+1} T_j = (k+1)(k+2)(k+3)/6$$
.

We'll calculate starting from the left side and show that it equals the right side.

$$\sum_{j=0}^{k+1} T_j = \left(\sum_{j=0}^k T_j\right) + T_{k+1}$$
 (pulling out the last term)
$$= \frac{k(k+1)(k+2)}{6} + T_{k+1}$$
 (by the I.H.)
$$= \frac{k(k+1)(k+2)}{6} + \frac{(k+1)(k+2)}{2}$$
 (by the definition of T_{k+1})
$$= \frac{k(k+1)(k+2) + 3(k+1)(k+2)}{6}$$

$$= \frac{(k+1)(k+2)(k+3)}{6}$$

3. Induction (inequalities). Consider the statement:

For every positive real number x and every natural number n, $(1+x)^n \ge (1+nx)$.

We can express the statement using the notation of predicate logic as:

$$\forall x \in \mathbb{R}^+, \ \forall n \in \mathbb{N}, \ (1+x)^n > 1+nx$$

Notice that in this statement, there are two universally-quantified variables: n and x.¹ Prove this statement is True using the following approach:

- (a) Use the standard proof structure to introduce x.
- (b) When proving the $(\forall n \in \mathbb{N}, (1+x)^n \ge 1+nx)$, do induction on n.²

Solution

Proof. Let $x \in \mathbb{R}^+$. We'll prove that for all $n \in \mathbb{N}$, $(1+x)^n \ge 1 + nx$ by induction.

Base case: Let n = 0.

Then $(1+x)^n = 1$ and 1 + nx = 1. So then $(1+x)^n \ge 1 + nx$.

Induction step: Let $k \in \mathbb{N}$, and assume that $(1+x)^k \ge 1+kx$. We want to prove that $(1+x)^{k+1} \ge 1+(k+1)x$.

We'll start with the quantity on the left, and show that it's \geq the quantity on the right.

$$(1+x)^{k+1} = (1+x)^k (1+x)$$

$$\geq (1+kx)(1+x)$$
 (by the I.H.)
$$= 1+kx+x+kx^2$$

$$\geq 1+kx+x$$
 (since $kx^2 \geq 0$)
$$= 1+(k+1)x$$

¹For extra practice, think about the following questions. First, would the statement still be True with the order of the quantifiers reversed: $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}^+, \ (1+x)^n \geq 1+nx$? Second, if this variation is correct, how would this change the proof?

²Your predicate P(n) that you want to prove will also contain the variable x—that's okay, since when we do the induction proof, x has already been defined.

- 4. Changing the starting number. Recall that you previously proved that $\forall n \in \mathbb{N}, n \leq 2^n$ using induction.
 - (a) First, use trial and error to fill in the blank to make the following statement true—try finding the *smallest* natural number that works!

$$\forall n \in \mathbb{N}, n \ge \underline{\hspace{1cm}} \Rightarrow 30n \le 2^n$$

Solution

 $\forall n \in \mathbb{N}, n \ge 8 \Rightarrow 30n \le 2^n.$

(b) Now, prove the completed statement using induction. Be careful about how you choose your base case!

Solution

Proof. Base case: Let n = 8.

Then 30n = 240, and $2^n = 256$. So $30n \le 2^n$.

<u>Induction step</u>: Let $k \in \mathbb{N}$. Assume that $k \geq 8$, and that $30k \leq 2^k$. We want to prove that $30(k+1) \leq 2^{k+1}$.

Since $8 \le k$, we know that $256 \le 2^k$ (raising 2 to the power of either side). The induction hypothesis tells us that $30k \le 2^k$. Adding these two inequalities yields:

$$30k + 256 \le 2^k + 2^k$$

 $30k + 256 \le 2^{k+1}$
 $30k + 30 \le 2^{k+1}$ (since $30 \le 256$)
 $30(k+1) \le 2^{k+1}$