11 TLE celiminator 11 V.V. imp tor CP

Combinatorics -1

not so much for interviews

- Priyansh Agarwal

Binomial Coefficients

Base formula

Number of ways to choose K items from N items

-> distinct items

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$C(n, k)$$

3 elements A, B, C choose 2 elements -> c(3,2) A,B => B,A B, C C, B 21 (3-2) | 21 11 A, C

4 elements

Choose 2 elements

A A B B

A B B

A B B

Choose 2 elements

AB (-) BA

eamond of type 3 az elmont elmont of 74/82 of type 1 Choose & element 22 3333 choose k eamnb out of it

$$K=5$$

$$21, \quad 32$$

$$31$$

$$21, \quad 4n_2 + n_3 = 5$$

$$5uch \quad 4hot \quad 0 \leq n_1 \leq c_1$$

$$0 \leq n_2 \leq c_2$$

$$0 \leq n_3 \leq a_3$$

Requirements to calculate C(n, r)

- Mod Inverse calculation
- Precomputation of Factorials
- Precomputation of Inverse Factorials
- Trick to find Inverse Factorials in O(N)

· I de to implement n(g in o(s) time

no of ways mad 109 + 7 no of way to choose So items from 106 echmap

$$C(n,s) \quad \text{ond} \quad X$$

$$= \sum_{n \to \infty} (n,s)$$

$$C(n,s) \quad X \leq n$$

$$= \sum_{n \to \infty} (n-s)^n$$

Inint
$$C(n,s)$$
 mod some prime

 $\frac{n!}{r!(n-s)!} \longrightarrow (n!) \cdot (s!) \cdot ((n-s)!)$
 $\chi^{1-2} = \pi^{1} \mod 8$

Suppose you have tactorials for computed $\frac{1}{2} \left(\frac{3}{2} \right) \cdot \left(\frac$ 2 (v-9) j $\begin{bmatrix} \gamma \end{bmatrix} = \begin{bmatrix} -2 \\ (n-3) \end{bmatrix} =$

factorials -> 1,200mp ute d $\frac{1}{2}$

fact [n] itact (n) ifact(i) = (i] 5 fact (i) = 11 fu(t(0) =) $fm(int i = 1 ; i \le n ; i + 1)$ 0(1) -> fact(i) = (fact(i-1) x i) med M 0 (691) -> itact [i] - (270 (tact[i) M-2) 109 (M)

$$C(n, 3) = n!$$
 = fact(n), ifact(s).
 $\delta!(n-3)!$ ifact(n-3)

Incomputation — o(nlogh)

o(n)

fact

fact

$$fact(n) = n!$$

$$ifact(n) = (n!)^{-1} = expo(n!, M-2)$$

$$ggM time$$

$$ifact(n)$$

$$= fact(n-1)$$

$$fact(i) = i \times fact(i-1)$$

$$|fact(i-1)| = |fact(i)| \times i$$

fact (n), if act (n)

if act (n) = if act (n)
$$\times$$
 n

if act (n-1) = if act (n) \times n

if act [n-2] = if act [n-1) \times (n-1)

Efficient Implementation


```
ll combination1(ll n, ll r, ll m, vector<ll>& fact, vector<ll>& ifact){
    return mod_mul(fact[n], mod_mul(ifact[r], ifact[n - r], m), m);
void solve(){
     int n = 10;
     vector<ll> fact(n + 1); \
     vector<ll> ifact(n + 1); (
     fact[0] = 1;
     for(int i = 1; i \le n; i++){
         fact[i] = mod_mul(fact[i - 1], i, MOD);
                                                           mminulning
  ifact[n] = mminvprime(fact[n], MOD);
     for(int i = n - 1; i >= 0; i - - ){
         ifact[i] = mod_mul(ifact[i + 1], i + 1, MOD);
     cout << combination1(8, 6, MOD, fact, ifact) << endl;</pre>
```

$$\frac{5!}{2! \ 2!} \frac{3!}{2!} \frac{3!}{2!} \frac{(4)(5)}{2! \ 3!} \frac{3!}{2!} \frac{(4)(5)(5)(5)(7)}{2! \ 3!} \frac{3!}{2!} \frac{(4)(5)(5)(5)(7)}{3!} \frac{54647}{3!}$$

$$= \frac{2 \times (x-1) \times (x-5) - - - (1)}{2 \times (x-1) \times (x-5) - - - (1)}$$

$$= \frac{2 \times (x-1) \times (x-5) - - - (x-5+1)}{2 \times (x-5)!}$$

$$= \frac{2 \times (x-1) \times (x-5) - - - (x-5+1)}{2 \times (x-5)!}$$

$$= \frac{2 \times (x-1) \times (x-5) - - - (1)}{2 \times (x-5)!}$$

$$= \frac{2 \times (x-1) \times (x-5) - - - (1)}{2 \times (x-5)!}$$

$$C(n_1r) \longrightarrow \text{individually}$$

$$\int_{r} n \times (n-1) \times (n-2) \longrightarrow (n-8+1)$$

$$\int_{r} r \times (r-1) \times (r-2) \longrightarrow (\log l)$$

$$O(r) + O(\log l)$$

losum 1 10 for som general n,r 15n 4 106 many time 0 (1) Hml

soften 2 Calculate M(x j'oot ONC 7x (n-1) -... (n-8+1) 2 × (x-1) ---- 1 D(Y)
==

 $N(\chi = N\chi(n-1) =$ n-31) γχ (r-)) ~-- 1 nym, den Mum - o(r) L 0 ((691) dm -1 0(1) D(r) + o(r) + 6(log l)

(ax8) mod m $(a^{\circ}(m) = (b^{\circ}(m))^{\circ}(m)$

3 x 2 x

Important Binomial Results

$$\binom{n}{k} = \binom{n}{n-k}$$

$$inom{n}{k} = inom{n-1}{k-1} + inom{n-1}{k}$$

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

$$C(n,k) = C(n,n-k)$$

$$N_{0}$$

Given n Henrs choose k Henrs Given n Hems dutt choose (n-k) Hemy (2) A, B, C A, C

1,2,3 4 1 % \$1,34 1 S 2 4 1,2,34

((1000,998) -> ((1000,2) 0 < k < 10 $C(10^{9},10^{9}-k) \rightarrow C(10^{9},k)$

Important Binomial Results

- K items always included C(n k, r k)

 K items are never included C(n k, r)
 - Value of C(n, r) is greatest when r = n/2

(3) (4) ---lo clavert from 100 Chuese elevents such that ar always quent (j) (q) Muaining to de choser 97

Chorse lo 1fem trous 200 such that Cer neuro included

 $n \subset P \subset V$ 6(8 6 (2) 6(46(6 6(15 6 1 6 15 20

1) how many ways as those to those equal no et odd element and ever elements from an array of neliment 1 < 10 mod 10 +7

(3)(2)(5)(6) (3,2)(3)(5)(6) (3,2)(3)(5)(6)(5,2) (5,6) (3,1,2,6) (1,2) (1,6) (511,2,6)2 (min (6dd, (mn)) -) 22-, 4 H (Noso & 1 020 EumnD even C(odd,1)odd — Count event -cumt C (& MN 1)

C (oold, 1) × ((QURN, 1)

0 dd = 0, eun 20 for (auto i: cers) D(V)if (i (2 == 0) eun ++ 9(se 0dd +4 QM = 0 fr (int i= 1 ; i \ min (cod, enn); ; 44)

 $\int dw + = c(odd,i) \times c(evn,i)$ $= - c(odd,i) \times c(evn,i)$ $= - c(odd,i) \times c(evn,i)$

Arrangement

Arranging distinct elements

n!

Arranging similar elements

$$\underbrace{\left(\underbrace{a_1+a_2+a_3+\ldots+a_n)!}_{a_1!\cdot a_2!\cdot \ldots \cdot a_n!}\right)}$$

3) 3 2 1 A B C D

AABB CCCC

A B C B B C C C C

ALCDERE 11234

ALECEDEE

Assums all Es as alithernt fermet all it them

way Remultiy pennethy Non Si

A, A₂R AAB ARA BAA

A, A, B AZA, B B A2 A1

Let's solve some problems

- Creating Strings 2 <u>Link</u>
- Kth String in Dictionary
- Unique Paths <u>Link</u>
- Arrange N different items such that K of them always come together

AABCDDAXY

looth unicographically min stoirt

ABBC 472721, = 128th stri

ABB C ABBC ABCS 3 tcl 17 my

DDDFR RDDRD DLDLD

 $\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$ C(N-14m-1, m-1) (m-1) R (n-1) S (n-1

AABCDEHFF No of ways to arrays such that Jess and Bs come figether and I's come tyether (41)