Sucesiones Divergentes

No todas las sucesiones (<u>Sucesión</u>) convegen, existen algunas que no lo hacen por ejemplo $a_n = (-1)^n$ es obvio que diverge pero ¿Cómo lo demostramos? Existen diversos límites de divergen uno de ellos es el límite al infinito positivo:

#Definición Diremos que $\{a_n\}$ definida en R tiene a **infinito**, y lo denotaremos por

$$\lim_{n o\infty}a_n=+\infty$$

Si para todo M>0 existe $N\in\mathbb{N}$ tal que $a_n>M$ para todo n>N.

Pero a diferencia de una sucesión arbitraria divergente, al menos podemos hacer una referencia del "comportamiento" de una sucesión que tiene límite infinito. En este caso, podemos decir de manera informal que a medida que el índice n se hace cada vez más grande, entonces a_n también se hace cada vez más grande.

Podemos presentar la misma definición para cuando la sucesión hace más grande y negativa. Cambiando que ahora $a_n < -M$ para todo n > N.

Es obvio que la sucesión $a_n = n$ tiene al infinito pues como vimos en Axiomas (Básicos) de los números reales los naturales no están acotados superiormente.

Por ejemplo la sucesión $\lim_{n \to \infty} \frac{n^4 + 3n^2}{3n^3 - n^2 - 1} = +\infty$, analizandolo lógicamente es obvio que esto ocurre pues el polinomio del numerador $n^4 + 3n^2$ crece más rápido que el polinomio denominador pues es de grado mayor.

El Lema del Sandwitch

Sería útil disponer de una herramienta que facilite encontrar la convergencia o divergencia de sucesiones más complicadas como $a_n=\frac{n}{2^n}$. Intuitivamente, veamos que las sucesiones divergen, pero 2^n crece mucho más rápido que n (por ejemplo para n=20 tenemos $\frac{20}{1048576}$). Podemos preguntarnos ¿En que momento se supera 2^n a n? se puede verificar por el Principio de la inducción que, $2^n>n^2$ para todo n>3, por lo cual $\frac{1}{2^n}<\frac{1}{n^2}$ y tenemos que podemos acotar:

$$0 \leq rac{n}{2^n} \leq rac{n}{n^2} = rac{1}{n} \qquad (orall n > 3)$$

Entonces, para que nos quede para todo $n\in\mathbb{N}$ podemos hacer

$$0 \le \frac{n}{2^n} \le \frac{n+3}{2^{n+3}} \le \frac{1}{n+3}$$

Notemos que tenemos una sucesión que está acotada entre otras dos que a medida que $n\to\infty$ se acercan cada vez más a 0, entonces queda claro que para que se siga cumpliendo la desigualdad $a_n=n/2^n$ también tiene que estar acercandose a 0. De aquí sale un lema muy importante:

Lema del sandwich (o de las sucesiones encajadas). Si $a_n \leq b_n \leq c_n$ para todo n y

$$\lim_{n o\infty}a_n=\lim_{n o\infty}c_n=\ell,$$

entonces $\lim_{n\to\infty} b_n = l$.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = \ell,$$

o sea,

$$\forall \varepsilon_1 > 0 \exists N_1 \text{ tal que } (n \ge N_1 \Rightarrow |a_n - \ell| < \varepsilon_1).$$
 (4)
 $\forall \varepsilon_2 > 0 \exists N_2 \text{ tal que } (n \ge N_2 \Rightarrow |c_n - \ell| < \varepsilon_2).$ (5)

Dado arepsilon>0, buscamos N=N(arepsilon) tal que

$$n \geq N \Rightarrow |b_n - \ell| < \varepsilon$$
.

Pero

$$|a_n - \ell| < \varepsilon_1 \text{ si y solo si} \quad \varepsilon_1 < a_n - \ell < \varepsilon_1, \ |c_n - \ell| < \varepsilon_2 \text{ si y solo si} \quad \varepsilon_2 < c_n - \ell < \varepsilon_2.$$

Por hipótesis, $a_n \leq b_n \leq c_n$. Restamos miembro a miembro ℓ y usamos (4) y (5), obteniendo

$$-\varepsilon_1 < a_n - \ell \le b_n - \ell \le c_n - \ell < \varepsilon_2.$$
 (6)

Podemos tomar $\varepsilon_1=\varepsilon_2=\varepsilon$ y $N=\max\{N_1,N_2\}$. En efecto, si n>N, entonces $n>N_1$ y $n>N_2$. Luego valen la primera desigualdad y la última desigualdad en (6), y en particular,

$$\varepsilon = \varepsilon_1 < b_n - \ell < \varepsilon_2 = \varepsilon,$$

o equivalentemente,

$$|b_n - \ell| < \varepsilon,$$

como queríamos.

¿Cómo encontramos si una sucesión es divergente?

Hagamos antes unos ejemplos por definición.

Ejemplo. Verificar que lǐ $\mathrm{m}_{n o \infty} \sqrt{n} = \infty$. Dado M > 0, buscamos N = N(M) tal que

$$n > N \Longrightarrow \sqrt{n} > M$$
.

Despejando n, vemos que podemos tomar $N=M^2$. En efecto, si $n>N=M^2$, tomando raíz cuadrada miembro a miembro, y usando que $0< x< y \Longrightarrow \sqrt{x}<\sqrt{y}$ (conocemos la implicación equivalente $a,b>0,a^2< b^2 \Longrightarrow a< b$) llegamos a que $\sqrt{n}>M$, como queríamos.

Ejemplo. Verificar por definición que

$$\lim_{n\to\infty}\frac{n^3+n}{3n+1}=\infty.$$

Dado M>0, buscamos N=N(M) tal que

$$n>N\Longrightarrow rac{n^3+n}{3n+1}>M.$$

Planteamos

$$rac{n^3+n}{3n+1} \geq rac{n^3}{3n+n} = rac{n^3}{4n} = rac{n^2}{4} > M.$$

Despejando n, observamos que podemos tomar $N=\sqrt{4M}=2\sqrt{M}.$ Por ejemplo, si $M=10^4$, para n>200 tendremos

$$\frac{n^3+n}{3n+1} > 10^4$$

Podemos definir de la misma manera al límite de $\lim_{n\to\infty}a_n=-\infty$ que dado un número muy grande M>0 entonces la sucesión se hace cada vez más negativa tal que $a_n<-M$.

Al igual que con los límites finitos si tenemos dos sucesiones que divergen operar con ellas nos va a dar (casi siempre) otra sucesión divergente. Es obvio que n^3+n diverge, para no tener que demostrarlo por definición si podemos probar que n^3 diverge, n también diverge y que la suma de dos sucesiones divergentes diverge entonces listo. De esta manera nacen las siguientes proposiciones que nos enseñan como lidear con las sucesiones que tienden al infinito:

Proposición 1. (Criterios de Comparación para sucesiones) Si $a_n \leq b_n$ para todo $n \in \mathbb{N}$:

- 1. Si $\lim a_n = +\infty$, entonces $\lim b_n = +\infty$
- 2. Si $\lim b_n = -\infty$, entonces $\lim a_n = -\infty$.

Este criterio nos ayuda a encontrar la divergencia de sucesiones usando otras como por ejemplo $n<2^n$ y como sabemos que $\lim n=+\infty$ entonces $\lim 2^n=+\infty$.

Demostración. Como $\lim_{n\to\infty}a_n=\infty$, para M>0 existe $N\in\mathbb{N}$ tal que n>N entonces $a_n>M$. A su vez $b_n\geq a_n$, entonces $b_n\geq a_n>M$ para todo n>N. Entonces, $b_n>M$ para todo n>N. Pero esto es la definición de $\lim_{n\to\infty}b_n=\infty$. La demostración para $-\infty$ es parecida \blacksquare

Proposición 2. Si

$$\lim_{n o\infty}a_n=\infty,\quad \lim_{n o\infty}b_n=\infty\quad ext{ y }\quad \lim_{n o\infty}c_n=\ell
eq 0,$$

entonces

- 1. $\lim_{n \to \infty} a_n + b_n = \infty$,
- 2. $\lim_{n o \infty} a_n b_n = \infty$,
- 3. $\lim_{n\to\infty}a_n+c_n=\infty$,
- 4. $\lim_{n\to\infty} \frac{1}{a_n} = 0$,
- 5. $\lim_{n\to\infty} a_n c_n = \infty$, si $\ell > 0$
- 6. $\lim_{n \to \infty} a_n c_n = -\infty$, si $\ell < 0$.

Demostración.

1. Por definición tenemos que

$$\forall M_1 > 0 \exists N_1 \text{ tal que } (n > N_1 \Longrightarrow a_n > M_1), \tag{1}$$

$$\forall M_2 > 0 \exists N_2 \text{ tal que } (n > N_2 \Longrightarrow b_n > M_2). \tag{2}$$

Debemos mostrar que

$$\forall M > 0, \ \exists N \ \mathrm{tal} \ \mathrm{que} \ (n > N \Longrightarrow a_n + b_n > M).$$

Supongamos que nos dan un M_1 y un M_2 tal que se cumple (1) y (2) para algún N_1 y N_2 , entonces $a_n+b_n>M_1+M_2$. Si elegimos tomar $M_1=M_2=\frac{M}{2}$ nos queda $a_n+b_n>\frac{M}{2}+\frac{M}{2}=M$ eligiendo $N=\frac{M}{2}$ máx $\{N_1,N_2\}$, lo que queriamos.

2. De nuevo tenemos (1) y (2) y queremos probar que

$$\forall M>0, \ \exists N \ \mathrm{tal} \ \mathrm{que} \ (n>N \Longrightarrow a_nb_n>M).$$

Sea M>0. Planteamos

$$a_n b_n > M_1 M_2 = M$$

Luego podemos tomar $M_1=M_2=\sqrt{M}$. Si $n>N_1(\sqrt{M})$ y $n>N_2(\sqrt{M})$, entonces

$$a_n b_n > \sqrt{M} \sqrt{M} = M$$

Así
$$N= ext{máx}\left\{N_1(\sqrt{M}),N_2(\sqrt{M})
ight\}.$$

3. Tenemos ahora como hipótesis (1) y

$$orall \epsilon_3 > 0, \exists N_3 ext{ tal que } (n > N_3 \implies |c_n - l| < \epsilon$$

Como $\lim_{n \to \infty} c_n = l$, para $\epsilon = 1$, existe $N \in \mathbb{N}$ tal que $|c_n - l| < 1$ para todo n > N. O bien, $-1 < c_n - l < 1$ para todo n > N. Luego, $l - 1 < c_n < l + 1$ para todo n > N. Por lo tanto

$$a_n + (l-1) < a_n + c_n$$
 para todo $n > N$.

Ahora, el límite de una sucesión que tiende al infinito más una constante es infinito, $\lim_{n \to \infty} a_n + (l-1) = \infty$. Pero usando el inciso (1) de la Proposición anterior resulta que $\lim_{n \to \infty} b_n + a_n = \infty$.

4. Como hipótesis sabemos (1), supongamos que existe un $\epsilon>0$ tal que $M=\frac{1}{\epsilon}$, existe un $N\in\mathbb{N}$ tal que si n>N entonces $a_n>M=\frac{1}{\epsilon}$. Por lo tanto, para ϵ dado, si n>N se cumple $\frac{1}{a_n}<\epsilon$ siempre que $a_n\neq 0$. Pero esto es la definición de $\lim_{n\to\infty}\frac{1}{a_n}=0$.

Las demostraciones de (5) y (6) son parecidas, para (5) si tomamos $\epsilon=\frac{l}{2}>0$,

 $|c_n-l|<\epsilon \to l-\epsilon < c_n < l+\epsilon$ entonces $a_nc_n < (l+\epsilon)M$ si l>0, entonces $(l+\epsilon)>0$ y nos queda que $(l+\epsilon)M>0$ y se cumple la definici´pon de límite al infinito positivo.

Sucesiones Divergentes

No todas las sucesiones (<u>Sucesión</u>) convegen, existen algunas que no lo hacen por ejemplo $a_n = (-1)^n$ es obvio que diverge pero ¿Cómo lo demostramos? Existen diversos límites de divergen uno de ellos es el límite al infinito positivo:

#Definición Diremos que $\{a_n\}$ definida en $\underline{ extstyle R}$ tiene a extstyle exts

$$\lim_{n o \infty} a_n = +\infty$$

Si para todo M>0 existe $N\in\mathbb{N}$ tal que $a_n>M$ para todo n>N.

Pero a diferencia de una sucesión arbitraria divergente, al menos podemos hacer una referencia del "comportamiento" de una sucesión que tiene límite infinito. En este caso, podemos decir de manera informal que a medida que el índice n se hace cada vez más grande, entonces a_n también se hace cada vez más grande.

Podemos presentar la misma definición para cuando la sucesión hace más grande y negativa. Cambiando que ahora $a_n < -M$ para todo n > N.

Es obvio que la sucesión $a_n=n$ tiene al infinito pues como vimos en Axiomas (Básicos) de los números

reales los naturales no están acotados superiormente.

Por ejemplo la sucesión $\lim_{n o\infty}rac{n^4+3n^2}{3n^3-n^2-1}=+\infty$, analizandolo lógicamente es obvio que esto ocurre pues el polinomio del numerador n^4+3n^2 crece más rápido que el polinomio denominador pues es de grado mayor.

El Lema del Sandwitch

Sería útil disponer de una herramienta que facilite encontrar la convergencia o divergencia de sucesiones más complicadas como $a_n=rac{n}{2^n}$. Intuitivamente, veamos que las sucesiones divergen, pero 2^n crece mucho más rápido que n (por ejemplo para n=20 tenemos $\frac{20}{1048576}$). Podemos preguntarnos ¿En que momento se supera 2^n a n? se puede verificar por el Principio de la inducción que, $2^n > n^2$ para todo n > 3, por lo cual $\frac{1}{2^n} < \frac{1}{n^2}$ y tenemos que podemos acotar:

$$0 \leq rac{n}{2^n} \leq rac{n}{n^2} = rac{1}{n} \qquad (orall n > 3)$$

Entonces, para que nos quede para todo $n \in \mathbb{N}$ podemos hacer

$$0 \le \frac{n}{2^n} \le \frac{n+3}{2^{n+3}} \le \frac{1}{n+3}$$

Notemos que tenemos una sucesión que está acotada entre otras dos que a medida que $n o \infty$ se acercan cada vez más a 0, entonces queda claro que para que se siga cumpliendo la desigualdad $a_n=n/2^n$ también tiene que estar acercandose a 0. De aquí sale un lema muy importante:

Lema del sandwich (o de las sucesiones encajadas). Si $a_n \leq b_n \leq c_n$ para todo n y

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = \ell,$$

entonces $\lim_{n\to\infty} b_n = l$.

Demostración. Sabemos que

$$\lim_{n o\infty}a_n=\lim_{n o\infty}c_n=\ell,$$

o sea,

$$\forall \varepsilon_1 > 0 \exists N_1 \text{ tal que } (n \ge N_1 \Rightarrow |a_n - \ell| < \varepsilon_1).$$
 (4)
 $\forall \varepsilon_2 > 0 \exists N_2 \text{ tal que } (n \ge N_2 \Rightarrow |c_n - \ell| < \varepsilon_2).$ (5)

$$\forall \varepsilon_2 > 0 \exists N_2 \text{ tal que } (n > N_2 \Rightarrow |c_n - \ell| < \varepsilon_2).$$
 (5)

Dado arepsilon>0, buscamos N=N(arepsilon) tal que

$$n \ge N \Rightarrow |b_n - \ell| < \varepsilon$$
.

Pero

$$|a_n - \ell| < \varepsilon_1 \text{ si y solo si} \quad \varepsilon_1 < a_n - \ell < \varepsilon_1, \ |c_n - \ell| < \varepsilon_2 \text{ si y solo si} \quad \varepsilon_2 < c_n - \ell < \varepsilon_2.$$

Por hipótesis, $a_n \leq b_n \leq c_n$. Restamos miembro a miembro ℓ y usamos (4) y (5), obteniendo

$$-\varepsilon_1 < a_n - \ell \le b_n - \ell \le c_n - \ell < \varepsilon_2.$$
 (6)

Podemos tomar $arepsilon_1=arepsilon_2=arepsilon$ y $N=\max\{N_1,N_2\}$. En efecto, si n>N, entonces $n>N_1$ y $n>N_2$. Luego valen la primera desigualdad y la última desigualdad en (6), y en particular,

$$\varepsilon = \varepsilon_1 < b_n - \ell < \varepsilon_2 = \varepsilon,$$

o equivalentemente,

como queríamos.

¿Cómo encontramos si una sucesión es divergente?

Hagamos antes unos ejemplos por definición.

Ejemplo. Verificar que lǐ $\mathbf{m}_{n o \infty} \sqrt{n} = \infty$. Dado M > 0, buscamos N = N(M) tal que

$$n > N \Longrightarrow \sqrt{n} > M$$
.

Despejando n, vemos que podemos tomar $N=M^2$. En efecto, si $n>N=M^2$, tomando raíz cuadrada miembro a miembro, y usando que $0< x< y \Longrightarrow \sqrt{x}<\sqrt{y}$ (conocemos la implicación equivalente $a,b>0,a^2< b^2 \Longrightarrow a< b$) Ilegamos a que $\sqrt{n}>M$, como queríamos.

Ejemplo. Verificar por definición que

$$\lim_{n o\infty}rac{n^3+n}{3n+1}=\infty.$$

Dado M>0, buscamos N=N(M) tal que

$$n>N\Longrightarrowrac{n^3+n}{3n+1}>M.$$

Planteamos

$$rac{n^3+n}{3n+1} \geq rac{n^3}{3n+n} = rac{n^3}{4n} = rac{n^2}{4} > M.$$

Despejando n, observamos que podemos tomar $N=\sqrt{4M}=2\sqrt{M}.$

Por ejemplo, si $M=10^4$, para n>200 tendremos

$$rac{n^3+n}{3n+1} > 10^4$$

Podemos definir de la misma manera al límite de $\lim_{n \to \infty} a_n = -\infty$ que dado un número muy grande M>0 entonces la sucesión se hace cada vez más negativa tal que $a_n < -M$.

Al igual que con los límites finitos si tenemos dos sucesiones que divergen operar con ellas nos va a dar (casi siempre) otra sucesión divergente. Es obvio que n^3+n diverge, para no tener que demostrarlo por definición si podemos probar que n^3 diverge, n también diverge y que la suma de dos sucesiones divergentes diverge entonces listo. De esta manera nacen las siguientes proposiciones que nos enseñan como lidear con las sucesiones que tienden al infinito:

Proposición 1. (Criterios de Comparación para sucesiones) Si $a_n \leq b_n$ para todo $n \in \mathbb{N}$:

- 1. Si $\lim a_n = +\infty$, entonces $\lim b_n = +\infty$
- 2. Si $\lim b_n = -\infty$, entonces $\lim a_n = -\infty$.

Este criterio nos ayuda a encontrar la divergencia de sucesiones usando otras como por ejemplo $n<2^n$ y como sabemos que $\lim n=+\infty$ entonces $\lim 2^n=+\infty$.

Demostración. Como $\lim_{n\to\infty}a_n=\infty$, para M>0 existe $N\in\mathbb{N}$ tal que n>N entonces $a_n>M$. A su vez $b_n\geq a_n$, entonces $b_n\geq a_n>M$ para todo n>N. Entonces, $b_n>M$ para todo n>N. Pero esto es la definición de $\lim_{n\to\infty}b_n=\infty$. La demostración para $-\infty$ es parecida \blacksquare

Proposición 2. Si

$$\lim_{n o\infty}a_n=\infty,\quad \lim_{n o\infty}b_n=\infty\quad ext{ y }\quad \lim_{n o\infty}c_n=\ell
eq 0,$$

entonces

- 1. $\lim_{n\to\infty}a_n+b_n=\infty$,
- 2. $\lim_{n o \infty} a_n b_n = \infty$,
- 3. $\lim_{n \to \infty} a_n + c_n = \infty$,
- 4. $\lim_{n\to\infty}\frac{1}{a_n}=0$,
- 5. $\lim_{n \to \infty} a_n c_n = \infty$, si $\ell > 0$
- 6. $\lim_{n\to\infty} a_n c_n = -\infty$, si $\ell < 0$.

Demostración.

1. Por definición tenemos que

$$\forall M_1 > 0 \exists N_1 \text{ tal que } (n > N_1 \Longrightarrow a_n > M_1),$$
 (1)
 $\forall M_2 > 0 \exists N_2 \text{ tal que } (n > N_2 \Longrightarrow b_n > M_2).$ (2)

Debemos mostrar que

$$\forall M > 0, \ \exists N \ \mathrm{tal} \ \mathrm{que} \ (n > N \Longrightarrow a_n + b_n > M).$$

Supongamos que nos dan un M_1 y un M_2 tal que se cumple (1) y (2) para algún N_1 y N_2 , entonces $a_n+b_n>M_1+M_2$. Si elegimos tomar $M_1=M_2=\frac{M}{2}$ nos queda $a_n+b_n>\frac{M}{2}+\frac{M}{2}=M$ eligiendo $N=\frac{M}{2}$ máx $\{N_1,N_2\}$, lo que queriamos.

2. De nuevo tenemos (1) y (2) y queremos probar que

$$\forall M > 0, \; \exists N \; \text{tal que} \; (n > N \Longrightarrow a_n b_n > M).$$

Sea M>0. Planteamos

$$a_n b_n > M_1 M_2 = M$$

Luego podemos tomar $M_1=M_2=\sqrt{M}$. Si $n>N_1(\sqrt{M})$ y $n>N_2(\sqrt{M})$, entonces

$$a_n b_n > \sqrt{M} \sqrt{M} = M$$

Así $N=\max\Big\{N_1(\sqrt{M}),N_2(\sqrt{M})\Big\}.$

3. Tenemos ahora como hipótesis (1) y

$$\forall \epsilon_3 > 0, \exists N_3 \text{ tal que } (n > N_3 \implies |c_n - l| < \epsilon$$
 (3)

Como $\lim_{n \to \infty} c_n = l$, para $\epsilon = 1$, existe $N \in \mathbb{N}$ tal que $|c_n - l| < 1$ para todo n > N. O bien, $-1 < c_n - l < 1$ para todo n > N. Luego, $l - 1 < c_n < l + 1$ para todo n > N. Por lo tanto

$$a_n + (l-1) < a_n + c_n$$
 para todo $n > N$.

Ahora, el límite de una sucesión que tiende al infinito más una constante es infinito, $\lim_{n \to \infty} a_n + (l-1) = \infty$. Pero usando el inciso (1) de la Proposición anterior resulta que $\lim_{n \to \infty} b_n + a_n = \infty$.

4. Como hipótesis sabemos (1), supongamos que existe un $\epsilon>0$ tal que $M=\frac{1}{\epsilon}$, existe un $N\in\mathbb{N}$ tal que si n>N entonces $a_n>M=\frac{1}{\epsilon}$. Por lo tanto, para ϵ dado, si n>N se cumple $\frac{1}{a_n}<\epsilon$ siempre que $a_n\neq 0$. Pero esto es la definición de $\lim_{n\to\infty}\frac{1}{a_n}=0$. Las demostraciones de (5) y (6) son parecidas, para (5) si tomamos $\epsilon=\frac{l}{2}>0$, $|c_n-l|<\epsilon\to l-\epsilon< c_n< l+\epsilon$ entonces $a_nc_n<(l+\epsilon)M$ si l>0, entonces $(l+\epsilon)>0$ y nos queda que $(l+\epsilon)M>0$ y se cumple la definici´pon de límite al infinito positivo. \blacksquare