Advantech - Analog Output, Universal Example

In this example, we illustrate how to produce analog outputs at a given AO channel. The process is divided into several steps. The first step is to configure the range of the desired output channels. The AO range should be set to +/- 10V. The range can be set using a GUI, the device selection should be changed in the GUI.

A0 := atconfig_form(0, "A010", "")

Jame: USB4704 Board Id: Description: USB-4704,BID#0 Driver Version: 3	Board Version: 1, 13, 0 Base Addre	ion: 1.0.19.1
Name: USB4704 Board Id: Description: USB-4704,BID#0 Driver Version: 3 Analog Input Analog Output Digital Input Digital Output AI Channel Conversion Record Channel Connection Type Value F	Board Versi	ion: 1.0.19.1 ess: Port_#0004.Hub_#0001
Description: USB-4704,BID#0 Driver Version: 3 Analog Input Analog Output Digital Input Digital Output AI Channel Conversion Record Channel Connection Type Value F	1, 13, 0 Base Addre	ess: Port_#0004.Hub_#0001
Analog Input Analog Output Digital Input Digital Output AI Channel Conversion Record Channel Connection Type Value F 0 SingleEnded +/- 10 V	ange	
AI Channel Conversion Record Channel Connection Type Value F 0 SingleEnded +/- 10 V		SCADA Tag
Channel Connection Type Value F 0 SingleEnded ▼ +/- 10 V		SCADA Tag
0 SingleEnded ▼ +/- 10 V		SCADA Tag
		201211129
1 SingleEnded ▼ +/- 10 V		
	-	
2 SingleEnded ▼ +/- 10 V	•	
3 SingleEnded ▼ +/- 10 V	•	
4 SingleEnded ▼ +/- 10 V	•	
5 SingleEnded ▼ +/- 10 V	•	
6 SingleEnded ▼ +/- 10 V	•	
7 SingleEnded ▼ +/- 10 V	•	

```
atconfig_form_configure(AO)

AOhandle:=atconfig_form_device_handle(AO, "ao")

AIhandle:=atconfig_form_device_handle(AO, "ai")
```

The waveform data is generated so that there is a single column vector which contains data to be written to AOs in parallel. The function GenrateWaveform() is given at the end of this document.

```
ONE_WAVE_POINT_COUNT := 512
xaxis := ynodes(x, 0, 511, 512)
//waveform := sin(2 * cpi() * xaxis / 100)
waveform := vector_create(ONE_WAVE_POINT_COUNT, false, 0)
```

Next, we select the AO channel to write:

```
6 chanStart := 0
7 chanCount := 1
```

Everything is ready to output data, which is done in the remaining two steps.

Step 2: Output the data

```
ai_var := vector_create(size(waveform), false, 0)
freq := 0.5
t0 := timenow()
for(i := 0; i < ONE_WAVE_POINT_COUNT; i += 1)
{
    xaxis[i] = timenow() -t0
    waveform[i] = 5 * sin(2 * cpi() * xaxis[i] * freq|)
    atdevice_ao_write(AOhandle, chanStart, waveform[i])
    ai_var[i] = atdevice_ai_read(AIhandle, chanStart)
}
write_to_ao0 := join_mat_cols(xaxis, waveform)
ain0_read_ao0 := join_mat_cols(xaxis, ai_var)</pre>
```

Step 3: Close the device

```
atdevice_close(A0handle)
atdevice_close(AIhandle)
```

The data output at AO0 is displayed in the graph below

