A Reputational Theory of Firm Dynamics

Simon Board, Moritz Meyer-ter-Vehn

University of California, Los Angeles

July 29, 2022

- Introduction
- 2 Model
- 3 Analysis
- 4 Equilibrium
- **5** Two Model Variants
- 6 Conclusion

Introduction

- This work studies the firm's investment and exit decisions over life cycles.
- Applications: restaurant, surgeon, and investor.

Model

- A long-lived firm faces a mass of short-lived consumers.
- Time is continuous: $t \in [0, \infty)$.
- The firm chooses the investment levels: $A_t \in [0, \bar{a}]$ $(\bar{a} < 1)$.
- The firm also chooses an exiting time $T \in [0, \infty]$.

Technology

- The firm's product quality is $\theta_t \in \{L, H\}$, where L = 0 and H = 1.
- ullet Initial quality $heta_0$ is exogenous; subsequent quality depends on investment and technology shocks.
- Specifically, shocks are generated according to a Poisson process with arrival rate $\lambda > 0$.
- Quality θ_t is constant between shocks and determined by the firm's investment at the most recent technology shock $s \le t$; i.e., $\theta_t = \theta_s$ and $\Pr(\theta_s = H) = A_s$.
- This captures the idea that quality is a lagged function of past investments.

Information

- Consumers observe neither quality nor investment but learn about quality through public breakthroughs.
- Given quality θ , breakthroughs are generated according to a Poisson process with arrival rate $\mu\theta$; that is, breakthroughs only occur when $\theta=H$.
- We write h^t for histories of breakthrough arrival times before time t, and h for infinite histories.
- The firm does not observe product quality, either, but does recall its past actions.
- Its investment plan {A_t}_{t≥0} and exit time T are thus progressively measurable with respect to the filtration induced by public histories h^t.
- In turn, the investments $A:=\{A_t\}_{t\geq 0}$ control the distribution of quality $\{\theta_t\}_{t\geq 0}$ and thereby the histories of breakthroughs h; we write E^A for expectations under this measure and call $Z_t=E^A[\theta_t|h^t]$ the firm's **self-esteem** at time t<T. This reflects the firm's belief in its own quality given its past investment and the history of breakthroughs.
- We write (pure) market beliefs over investment and exit as $\tilde{A} = \{\tilde{A}_t\}_{t\geq 0}$ and \tilde{T} . The firm's **reputation** is given by $X_t := E^{\tilde{A}}[\theta_t|h^t]$.

Payoffs

- The firm has flow profits $\pi\left(X_{t}\right)-c\left(A_{t}\right)$ and discount rate r>0. The firm's income $\pi(\cdot)$ is smooth and strictly increasing with boundaries $\pi(0)<0$ and $\pi(1)>0$;
- ullet The firm's investment cost $c(\cdot)$ is smooth, strictly increasing, and convex, with c(0)=0
- Given the firm's strategy (A, T) and market beliefs (\tilde{A}, \tilde{T}) , its expected present value equals

$$E^{A}\left[\int_{t=0}^{T}e^{-rt}\left(\pi\left(X_{t}\right)-c\left(A_{t}\right)\right)dt\right].$$

• To highlight the distinct roles of market beliefs \tilde{A} and actual investment A, note that \tilde{A} determines the firm's reputation $X_t = E^{\tilde{A}} \left[\theta_t | h^t \right]$ for a given history h^t , while A determines the distribution over histories h^t .

Dynamic Programming Formulation

• Truncating the integral at the first breakthrough (which arrives at rate μz_t), the firm's continuation value at time t is

$$V(t, z_{t}) = \sup_{a, \tau} \int_{s=t}^{\tau} e^{-\int_{t}^{s} (r + \mu z_{u}) du} \left[\pi(x_{s}) - c(a_{s}) + \mu z_{s} V(0, 1) \right] ds$$

• We write optimal strategies as (a^*, τ^*) and the associated self-esteem as $z^* = \{z_t^*\}$.

Reputational Dynamics

• Self-esteem is governed by the firm's investment and the history of breakthroughs. At a breakthrough, self-esteem jumps to one. Absent a breakthrough, self-esteem is governed by $\dot{z}_t = g\left(a_t, z_t\right)$, where the drift is given by

$$g(a,z) = \lambda(a-z) - \mu z(1-z).$$

- The first term derives from the technology process: with probability λdt a technology shock hits in [t, t + dt), previous quality becomes obsolete, and the current quality is determined by the firm's investment.
- This term is positive if investment exceeds the firm's self-esteem, a > z, and negative otherwise.
- The second term derives from the absence of breakthroughs and is always negative.
- Analogously, reputation is governed by believed investment \tilde{a} and the history of breakthroughs, jumping to 1 at a breakthrough and in its absence following $\dot{x}_t = g\left(\tilde{a}_t, x_t\right)$.

Condition for Exits

- We want to guarantee that in the absence of a breakthrough, the firm eventually exits.
- Assume

$$\pi(z^{\dagger}) + \mu z^{\dagger} \pi(1)/r < 0,$$

where $z^{\dagger} \in (0,1)$ is the unique level of self-esteem where reputational drift vanishes under maximal investment, $g(\bar{a}, z^{\dagger}) = 0$.

• So defined, drift g(a,z) is strictly **negative** on $[z^{\dagger},1]$ for any beliefs $(\tilde{a},\tilde{\tau})$, and (absent a breakthrough) reputation and self-esteem eventually drop below z^{\dagger} . At that point, the condition ensures that the integrand is negative and the firm exits, where $\pi(1)/r$ serves as an upper bound for V(0,1).

The Firm's Problem

Lemma (1)

For any pure beliefs $(\tilde{a}, \tilde{\tau})$,

- 1 reputation $\{x_t\}$ is continuous and strictly decreasing,
- 2 an optimal strategy (a^*, τ^*) exists and $\tau^* < \infty$, and
- 3 firm value V(t,z) strictly decreases in t and strictly increases in z.
 - The optimal strategy is characterized by the firm's Hamilton Jacobi Bellman (HJB) equation

$$rV(t,z) = \max_{a} [\pi(x_t) - c(a) + g(a,z)V_z(t,z) + V_t(t,z) + \mu z(V(0,1) - V(t,z))]^+,$$

where $y^+ := \max\{y, 0\}$, capturing the firm's ability to exit for a continuation value of 0.

The optimal investment balances

$$\lambda V_{z}\left(t,z_{t}^{*}\right)=c^{\prime}\left(a_{t}^{*}\right).$$

with $a_t^* = 0$ if $\lambda V_z(t, z_t^*) < c'(0)$ and $a_t^* = \bar{a}$ if $\lambda V_z(t, z_t^*) > c'(\bar{a})$.

→ □ → → □ → → □ → ○ ○ ○ ○

Marginal Value of Self-Esteem

Lemma (2)

If $V_z(t, z_t^*)$ exists, it equals

$$\Gamma(t) := \int_{t}^{\tau*} \mathrm{e}^{-\int_{t}^{s} \left(r + \lambda + \mu \left(1 - z_{u}^{*}\right)\right) du} \mu \left[V(0, 1) - V\left(s, z_{s}^{*}\right)\right] ds.$$

More generally, $V_{z^{-}}\left(t,z_{t}^{*}\right)\leq\Gamma(t)\leq V_{z^{+}}\left(t,z_{t}^{*}\right)$.

• Fix time t, self-esteem z_t , firm strategy (a, τ) (not necessarily optimal), write $z = \{z_s\}_{s \ge t}$ for future self-esteem, and let

$$\Pi\left(t,z_{t}\right)=\int_{s=t}^{\tau}e^{-\int_{t}^{s}\left(r+\mu z_{u}\right)du}\left[\pi\left(x_{s}\right)-c\left(a_{s}\right)+\mu z_{s}\Pi(0,1)\right]ds$$

be the firm's continuation value, where the integral of the cash flows is truncated at the first breakthrough.

• We will show that $\Pi(t,z)$ is differentiable in z with derivative

$$\Pi_{z}(t,z_{t}) = \int_{s=t}^{\tau} e^{-\int_{t}^{s} (r+\lambda+\mu(1-z_{u}))du} \mu \left[\Pi(0,1) - \Pi(s,z_{s}) \right] ds.$$

Marginal Value of Self-Esteem

Claim (2)

For any times s>t and fixed investment a, time-s self-esteem z_s is differentiable in time-t self-esteem z_t . The derivative is

$$\frac{dz_{s}}{dz_{t}} = \exp\left(-\int_{u=t}^{s} (\lambda + \mu (1 - 2z_{u})) du\right)$$

• Taking the derivative with respect to z at $z=z_t$ and applying Claim 2 , we get

$$\begin{split} \Pi_{z}\left(t,z_{t}\right) &= \int_{s=t}^{\tau} e^{-r(s-t)} \frac{dz_{s}}{dz_{t}} \left[\mu\left(\Pi(0,1) - \Pi\left(s,z_{s}\right)\right) - \mu z_{s} \Pi_{z}\left(s,z_{s}\right)\right] ds \\ &= \int_{s=t}^{\tau} e^{-\int_{t}^{s} (r + \lambda + \mu(1 - 2z_{u})) du} \left[\mu\left(\Pi(0,1) - \Pi\left(s,z_{s}\right)\right) - \mu z_{s} \Pi_{z}\left(s,z_{s}\right)\right] ds. \end{split}$$

• We can solve the integral equation with solution $\Pi_z(t,z)$.

◆ロト 4個ト 4 差ト 4 差ト 差 めなぐ

Marginal Value of Self-Esteem

 The optimal strategy is characterized by the firm's Hamilton Jacobi Bellman (HJB) equation

$$rV(t,z) = \max_{a} [\pi(x_t) - c(a) + g(a,z)V_z(t,z) + V_t(t,z) + \mu z(V(0,1) - V(t,z))]^+,$$

where $y^+ := \max\{y, 0\}$, capturing the firm's ability to exit for a continuation value of 0.

The optimal investment balances

$$\lambda V_{z}\left(t,z_{t}^{*}\right)=c'\left(a_{t}^{*}\right).$$

with $a_t^* = 0$ if $\lambda V_z(t, z_t^*) < c'(0)$ and $a_t^* = \bar{a}$ if $\lambda V_z(t, z_t^*) > c'(\bar{a})$.

Optimal Investment and Exit Time

Lemma (3)

Any optimal strategy (a^*, τ^*) satisfies

$$\lambda\Gamma(t) = c'(a_t^*)$$

with $a_t^* = 0$ if $\lambda \Gamma(t) < c'(0)$ and $a_t^* = \bar{a}$ if $\lambda \Gamma(t) > c'(\bar{a})$ for almost all t.

Theorem (1)

For any pure beliefs $(\tilde{a},\tilde{\tau})$, optimal investment $\{a_t^*\}$ is single-peaked in the time since a breakthrough t at the exit threshold, $a_{\tau^*}^*=0$. The optimal exit time τ^* satisfies

$$\pi(x_{\tau^*}) + \mu z_{\tau^*} V(0,1) = 0.$$

Optimal Investment and Exit Time

• We wish to show that $\Gamma(t)$ is single-peaked in t with boundary conditions

$$\Gamma(0) > 0$$
, $\dot{\Gamma}(0) > 0$, $\Gamma(\tau^*) = 0$.

• Taking the derivative of investment incentives and setting $\rho(t):=r+\lambda+\mu\left(1-z_t^*\right)$ yields the adjoint equation

$$\dot{\Gamma}(t) = \rho(t)\Gamma(t) - \mu\left(V(0,1) - V\left(t, z_t^*\right)\right).$$

- Now assume that $\rho(t)$ and $V(t, z_t^*)$ are differentiable. Then $\dot{\rho}(t) = -\mu \dot{z}_t^*$ and $(d/dt)V(t, z_t^*) = \dot{z}_t^* \Gamma(t) + V_t(t, z_t^*)$.
- Differentiating $\dot{\Gamma}(t)$

$$\ddot{\Gamma}(t) = \rho(t)\dot{\Gamma}(t) + \dot{\rho}(t)\Gamma(t) + \mu \frac{d}{dt}V(t,z_t^*) = \rho(t)\dot{\Gamma}(t) + \mu V_t(t,z_t^*).$$

• Since $V_t(t, z_t^*) < 0$, $\dot{\Gamma}(t) = 0$ implies $\ddot{\Gamma}(t) < 0$; hence $\Gamma(t)$ is single-peaked.

Equilibrium

- To illustrate the equilibrium dynamic, suppose cost is linear: c(a) = ca for $a \in [0, \bar{a}]$.
- By Lemma 3, optimal investment is **bang-bang** with $a_t^* = \bar{a}$ when $\lambda \Gamma(t) > c$ and $a_t^* = 0$ when $\lambda \Gamma(t) < c$.
- In any pure strategy equilibrium, Theorem 1 tells us that investment incentives $\Gamma(t)$ are single-peaked, so there are two cases.
- When costs are low, $\Gamma(0) > c = \Gamma(t_1)$ for some t_1 , the firm chooses $a = \bar{a}$ on $[0, t_1]$ and a = 0 on $[t_1, \tau]$.
- We call this a "probationary equilibrium" since the market assumes a firm invests for a fixed period of time after each breakthrough but then grows suspicious if no breakthrough is forthcoming.
- The firm's reputation initially drifts down slowly, as the favorable beliefs about investment
 offset the bad news conveyed by the lack of breakthroughs. After enough time without a
 breakthrough, market beliefs turn against the firm and the perceived disinvestment
 hastens the firm's decline.

Equilibrium

- When costs are high, $\Gamma(0) < c = \Gamma(t_0) = \Gamma(t_1)$ for some $t_0 < t_1$, the firm chooses a = 0 on $[0, t_0]$, $a = \bar{a}$ on $[t_0, t_1]$, and a = 0 on $[t_1, \tau]$.
- Here, the firm's initial incentives Γ(0) are insufficient to motivate effort. After a
 breakthrough, the firm rests on its laurels because it has little to gain from an additional
 breakthrough.
- As its reputation and self-esteem drop, it starts investing and works hard for its survival, but eventually gives up and shirks before exiting the market.

Theorem (2)

An equilibrium exists.

Steady-State Distribution

- Consider a continuum of price-taking firms, such as that studied above, and assume that new firms enter the market continuously at rate ϕ with reputation drawn with density h on $[x^e,1]$, where $x^e=x_{\tau^*}$ is the reputation at the exit time.
- Writing $g(x) = g(a^*(x), x)$ for equilibrium drift, the density of firms f(x, t) with reputation $x \in [x^e, 1]$ at time t is governed by the Kolmogorov forward equation

$$\frac{\partial}{\partial t} f(x,t) = -\underbrace{\frac{\partial}{\partial x} [f(x,t)g(x)]}_{\text{drift}} - \underbrace{\mu x f(x,t)}_{\text{break through}} + \underbrace{\phi h(x)}_{\text{entering}}.$$

• In steady state, the density of firms is constant, $f(x,t) \equiv f(x)$, and the measure of entering firms exactly compensates for the measure of exiting firms whose reputation drifts into the exit threshold, $\phi = -g(x^e) f(x^e)$. The total measure of firms depends on the choice of ϕ , which we normalize so that $\int_{x_e}^1 f(x) dx = 1$. Setting the LHS to 0 and rearranging, we get

$$f'(x) = \underbrace{\frac{g'(x)}{-g(x)}f(x)}_{\text{drift }(-1+)} + \underbrace{\frac{\mu x}{-g(x)}f(x)}_{\text{jumps }(+)} - \underbrace{\frac{\phi h(x)}{-g(x)}}_{\text{entry }(-)}.$$

◄□▶◀∰▶◀불▶◀불▶ 불 쒸٩ભ

Consumers Observe Firm's Investment

- Since the market has the same information as the firm, reputation and self-esteem coincide, x_t = z_t; we can thus write firm value as a function of self-esteem alone.
- We truncate the firm's flow payoffs at a breakthrough, yielding

$$\hat{V}\left(z_{t}\right) = \sup_{s,\tau} \int_{t}^{\tau} e^{-\int_{t}^{s} (r + \mu z_{u}) du} \left[\pi\left(z_{s}\right) - c\left(a_{s}\right) + \mu z_{s} \hat{V}(1)\right] ds.$$

The value function is strictly convex with derivative

$$\hat{V}'\left(z_{t}\right) = \hat{\Gamma}(t) := \int_{t}^{\hat{\tau}} e^{-\int_{t}^{s} (r + \lambda + \mu(1 - \hat{z}_{u})) du} \left[\pi'\left(z_{s}\right) + \mu\left(\hat{V}(1) - \hat{V}\left(\hat{z}_{s}\right)\right)\right] ds.$$

In any optimal strategy, investment satisfies

$$\lambda \hat{\Gamma}(t) = c'(\hat{a}_t)$$

with $\hat{a}_t = 0$ if $\lambda \hat{\Gamma}(t) < c'(0)$ and $\hat{a}_t = \bar{a}$ if $\lambda \hat{\Gamma}(t) > c'(\bar{a})$.

4□▶ 4□▶ 4□▶ 4□▶ □ 90○

Consumers Observe Firm's Investment

Theorem (3)

Investment \hat{a}_t decreases in the time since a breakthrough; at the exit threshold, $\hat{a}_{\hat{\tau}} = 0$. Moreover, the optimal exit time satisfies

$$\pi\left(\hat{z}_{\hat{\tau}}\right) + \mu \hat{z}_{\hat{\tau}} \, \hat{V}(1) = 0.$$

• Given assumption on exiting, drift $g(a_t, z_t)$ is boundedly negative on $[z^\dagger, 1]$ and the firm exits before its reputation hits z^\dagger . Since z_t decreases and the value function is strictly convex, $\hat{\Gamma}(t) = \hat{V}'(z_t)$ strictly decreases in t.

Firm Knows Its Own Quality

- We focus on strategies that depend on the time since the last breakthrough, t, and on current quality.
- Formally, such a strategy consists of an investment plan $a^{\theta} = \{a_t^{\theta}\}$ and an exit time τ^{θ} for $\theta = L, H$.
- To analyze firm value for an arbitrary trajectory of reputation $\{x_t\}$, we truncate its cash flow expansion at the first technology shock, obtaining

$$\begin{split} \check{V}(t,\theta) = \sup_{a^{\theta},\tau^{\theta}} \int_{t}^{\tau^{\theta}} e^{-(r+\lambda)(s-t)} \left[\pi\left(x_{s}\right) - c\left(a_{s}^{\theta}\right) + \lambda\left(a_{s}^{\theta} \check{V}(s,H) + \left(1 - a_{s}^{\theta}\right) \check{V}(s,L)\right) \right. \\ \left. + \mu\theta(\check{V}(0,H) - \check{V}(s,H))\right] ds, \end{split}$$

where the last term captures the value of breakthroughs with present value $\check{V}(0,1) - \check{V}(s,1)$ and arrival rate $\mu\theta$.

• Writing $\check{\Gamma}(t) = \check{V}(t,H) - \check{V}(t,L)$ for the value of quality, optimal investment \check{a}^{θ}_t is thus characterized by the first-order condition

$$\lambda \check{\Gamma}(t) = c' \left(\check{\mathbf{a}}_t^{ heta} \right),$$

with $\check{a}^{\theta}_{t}=0$ if $\lambda\check{\Gamma}(t)< c'(0)$ and $\check{a}^{\theta}_{t}=\bar{a}$ if $\lambda\check{\Gamma}(t)> c'(\bar{a})$. Importantly, optimal investment \check{a}^{θ}_{t} is independent of the firm's quality, allowing us to drop the superscript θ .

ロト 4 倒 ト 4 き ト 4 き ト き りへの

Firm Knows Its Own Quality

Theorem (4)

There exists an equilibrium with continuous and weakly decreasing reputation $\{x_t\}$ and pure investment $\{\check{a}_t\}$. In any such equilibrium, the exit time of the low-quality firm $\check{\tau}^L$ has support $[\underline{\tau},\infty)$ for some $\underline{\tau}>0$. Reputation and firm value are constant for $t\in[\underline{\tau},\infty)$ and satisfy

$$\pi(x_t) + \max_{a} [a\lambda \check{V}(t, H) - c(a)] = 0.$$

The high-quality firm never exits; i.e., $\check{\tau}^H = \infty$. Investment \check{a}_t increases over $[0,\underline{\tau}]$ and remains constant thereafter.

 Subtracting the value of high-value and low-value firms, we obtain the following expression for the equilibrium value of quality:

$$\check{\Gamma}(t) = \check{V}(t,H) - \check{V}(t,L) = \int_t^\infty e^{-(r+\lambda)(s-t)} \mu [\check{V}(0,H) - \check{V}(s,H)] ds.$$

• As $s \in [0, \underline{\tau}]$ rises, the firm's value $\check{V}(s, 1)$ falls and reputational dividends $\check{V}(0, 1) - \check{V}(s, 1)$ grow. Hence, an increase in t leads to an increase in the value of quality and in investment via the first-order condition.

Conclusion

- We have proposed a model in which firms make optimal investment and exit decisions while the market learns about the quality of the firm's product.
- We characterize investment incentives and show they are single-peaked in the firm's reputation. This yields predictions about the distribution of firms' reputations and the turnover rate.
- The model can be calibrated using real-data and can be extended to deal with competition, Brownian signals of quality.

Thanks!