Flip-Flop

Praktikum Rangkaian Digital

Ilmu Komputer IPB

2020

Flip-Flop

- ► *latch* bekerja pada level sinyal:
 - state dapat berubah selama sinyal kontrol aktif
 - operasi tidak reliable
- flip-flop hanya bekerja saat transisi sinyal:
 - positive-edge: dari low ke high
 - negative-edge: dari high ke low
 - state stabil, hanya berubah pada saat transisi sinyal

Tabel Karakteristik

D	Q_{t+1}	
0	0	Reset
1	1	Set

Simulasi: D Flip-Flop with Asynchronous Reset

JK Flip-Flop

Tabel Karakteristik

J	K	Q_{t+1}	
0	0	Q_t	No change
0	1	0	Reset
1	0	1	Set
1	1	Q_t'	Complement

Simulasi: JK Flip-Flop

Simulasi: JK Flip-Flop (IC)

Tabel Karakteristik

T	Q_{t+1}	
0	Q_t	No change
1	Q_t'	Complement

Simulasi: T Flip-Flop

Simulasi: T Flip-Flop (IC)

Implementasi

Clock Generator¹

$$R_1=1~{\rm k}\Omega,~R_2=10~{\rm M}\Omega,C=100~{\rm nF}$$
 $ightarrow~T=1.4~{\rm s}$

¹http://www.ohmslawcalculator.com/555-astable-calculator

Clock Generator

fritzing

Tugas

Simulasi dan Implementasi Flip-Flop

- Buat simulasi pada Logisim:
 - ► D flip-flop (with reset)
 - JK flip-flop
 - ► T flip-flop
- ► Implementasikan pada breadboard:
 - clock generator
 - D flip-flop
 - T flip-flop
- Penilaian langsung pada saat praktikum oleh asprak