1. Choose the equation of the function graphed below.

A.
$$f(x) = \sqrt{x+12} - 4$$

B.
$$f(x) = -\sqrt{x+12} - 4$$

C.
$$f(x) = \sqrt{x - 12} - 4$$

D.
$$f(x) = -\sqrt{x - 12} - 4$$

- E. None of the above
- 2. What is the domain of the function below?

$$f(x) = \sqrt[4]{5x - 7}$$

A.
$$(-\infty, \infty)$$

B.
$$(-\infty, a]$$
, where $a \in [1.16, 1.84]$

C.
$$[a, \infty)$$
, where $a \in [1.27, 1.56]$

D.
$$(-\infty, a]$$
, where $a \in [-0.5, 0.82]$

E.
$$[a, \infty)$$
, where $a \in [-0.14, 1.01]$

3. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{8x-2} - \sqrt{3x-3} = 0$$

4315-3397

A. $x_1 \in [-0.4, 0.02]$ and $x_2 \in [-1.12, 0.42]$

B. $x \in [0.76, 1.43]$

C. $x \in [-0.4, 0.02]$

D. $x_1 \in [0.24, 0.59]$ and $x_2 \in [0.9, 1.31]$

E. All solutions lead to invalid or complex values in the equation.

4. Choose the graph of the equation below.

$$f(x) = \sqrt[3]{x+6} + 3$$

В.

- D.
- E. None of the above.
- 5. What is the domain of the function below?

$$f(x) = \sqrt[4]{4x - 6}$$

A. $[a, \infty)$, where $a \in [0.19, 1.17]$

B. $(-\infty, \infty)$

C. $[a, \infty)$, where $a \in [1.26, 2.09]$

- D. $(-\infty, a]$, where $a \in [-0.9, 1.18]$
- E. $(-\infty, a]$, where $a \in [1.38, 2.32]$
- 6. Choose the graph of the equation below.

$$f(x) = \sqrt[3]{x+6} - 7$$

C.

- В.
- E. None of the above.
- 7. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{15x^2 - 8} - \sqrt{2x} = 0$$

- A. $x_1 \in [-1.08, -0.65]$ and $x_2 \in [-0.2, 2.8]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x \in [-1.08, -0.65]$
- D. $x_1 \in [0.3, 0.69]$ and $x_2 \in [-0.2, 2.8]$
- E. $x \in [0.67, 1.17]$

8. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-30x^2 + 16} - \sqrt{4x} = 0$$

- A. $x_1 \in [-1.1, 0.5]$ and $x_2 \in [0.11, 0.74]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x \in [-0.2, 3.2]$
- D. $x \in [-1.1, 0.5]$
- E. $x_1 \in [-0.2, 3.2]$ and $x_2 \in [0.76, 1.16]$
- 9. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-4x - 8} - \sqrt{-5x + 4} = 0$$

- A. $x \in [12, 15]$
- B. $x \in [1, 11]$
- C. $x_1 \in [-2, 3]$ and $x_2 \in [0.8, 3.8]$
- D. All solutions lead to invalid or complex values in the equation.
- E. $x_1 \in [-2, 3]$ and $x_2 \in [10, 14]$
- 10. Choose the equation of the function graphed below.

A.
$$f(x) = \sqrt[3]{x-6} + 4$$

B.
$$f(x) = \sqrt[3]{x+6} + 4$$

C.
$$f(x) = -\sqrt[3]{x-6} + 4$$

D.
$$f(x) = -\sqrt[3]{x+6} + 4$$

E. None of the above