

Department of Computer Engineering

CSE5041 Database Design & Development Project Report

PROJECT TITLE

Students:

ID	Name & Surname
2000004855	EMREHAN GÖKÇAY
2100005861	BEYZA YALVAÇ

TABLE OF CONTENTS

1	INTE	RODUCTION	.Hata! Yer işareti tanımlanmamış.
	1.1	PROJECT DESCRIPTION	.Hata! Yer işareti tanımlanmamış.
2	ENT	ITY RELATIONAL MODEL	5
	2.1	ENHANCED ER DIAGRAM	5
	2.2	RELATIONAL SCHEMA & MAPPING	5
3	NOR	MALIZATION	S

LIST OF FIGURES

Figure 1: EER diagram of the Database5	
Figure 2: Relational schema of the Database with arrows indicating	referential
integrity	5

PROJECT DESCRIPTION

Muğla's Bus hubs are full of activity: the crowd, the rush, the lines, the race to the platform or terminal. Clearly, such places require a lot of organization! In this project, we'll describe a database model that could keep a transport hub organized.

And that's not easy. There are many parameters to account for: lines, stations, passengers, tickets, garages, buses, and the number of available seats on any given trip. Plus, before selling tickets or doing any similar action, we need to be sure that the result is the desired one.

So let's look at the problems transport hubs face as well the data model to solve them.

Before we start the technical stuff, we'll consider the issues facing travel hubs from different perspectives. For each one, we'll explain what actions are required.

- The buses are organized into routes. Each route has a unique ID, a unique number, a starting point and an ending point. The database keeps track of the starting and ending time. A starting route may have several locations.
- The database stores each driver's name, driver's id, address, salary, sex and birthdate. A driver might be assigned to many buses and he/she may work on several buses, which are not necessarily controlled by the same bus. The database also keeps track of the check in hours of a driver already worked on each bus.
- The database stores each passenger's name, passenger's id, address, email, sex, Social Security Number and birthdate.
- The database stores each cards and the charge that has been taken from the card.
- Each bus is stored in a garage and our database holds each specific element of a garage.

RELATIONAL MAPPING

STEP 1-) MAPPING OF REGULAR ENTITY TYPES

Step 2-) MAPPING WEAK ENTITIES

STEP 3-) MAPPING OF BINARY 1:1 RELATIONSHIPS

STEP 4-) MAPPING OF BINARY 1:N RELATIONSHIPS

STEP 5-) MAPPING OF BINARY M:N RELATIONSHIPS

3 NORMALIZATION

3.2 UNNORMALISED FORM

3.3 FIRST NORMAL FORM

3.4 SECOND NORMAL FORM

3.5 THIRD NORMAL FORM

