

Dense Computing with Transmeta's CrusoeTM

Dean Gaudet dgaudet@transmeta.com

Transmeta Corp.

- ◆ http://www.transmeta.com/
- ◆ Located in Santa Clara, CA
- ◆ Transmeta develops and sells software-based microprocessors, and supporting technologies that enable low power, high performance x86 computing.
- ◆ Transmeta's family of Crusoe microprocessors is targeted at notebook, Internet appliance, and ultra-dense servers.
- ◆ Transmeta is publicly traded on NASDAQ, ticker symbol TMTA.

Crusoe overview

- ◆ Our product = Processor silicon + Code Morphing Software (CMS)
- x86 compatible including MMX, SMM, etc.
- ◆ CMS dynamically translates x86 code to native Very Long Instruction Word (VLIW) instructions

TM5x00 architectural overview

- ◆ VLIW architecture executes up to 4 operations per cycle
- ♦ Integrated northbridge
 - Two memory controllers (SDR and DDR)
- Separate memory spaces
 - x86
 - private memory for CMS (invisible to x86)
- ♦ 64KB L1 instruction cache, 64KB L1 data cache
- ◆ 256KB-512KB L2 unified cache
- 0.18μ process -> 0.13μ process

X86 Performance Challenges

- ◆ X86 performance is complicated by:
 - Complex instruction encoding
 - Too few registers
 - Branches (basic blocks too short)
 - Memory aliasing
 - Legacy 16-bit support
 - Self modifying code
- ◆ Transmeta's VLIW architecture provides many features for addressing these challenges

Key CPU features

- Some x86 functionality provided by the VLIW core
 - EFLAGS, many operations, TLB entries similar to x86
- ◆ Larger number of registers (64 Int., 32 FP/MMX)
- Support for speculative execution
 - Commit/Rollback mechanisms
 - Most integer registers are shadowed
 - Stores are held in a buffer
 - Allows speculation while guaranteeing precise x86 instruction execution semantics

Additional CPU innovations

- Alias hardware (memory aliasing)
 - Register-poor x86 code requires lots of memory accesses
 - Special load and store instructions
 - They "protect" the physical address loaded into register
 - Another load or store to the same address traps
 - Benefits:
 - Can reorder memory operations more freely
 - Can eliminate redundant memory operations
 - → fewer memory accesses than typical x86
- Translation protection hardware (self-modifying code)
 - Self-modifying code could lead to stale translations.
 - Extension to the TLB to keep the common case fast

Crusoe Code Morphing Software (CMS)

Operating System and Application Software

Code Morphing Software

(in separate memory address space)

Interpreter

Translator

Translations

Runtime

Low-power VLIW processor

CMS: Interpreter

- ◆ Interpret one x86 instruction at a time
- ◆ Low overhead, but slow
- ◆ Why?
 - Provides precise exceptions
 - Assists the translator
 - Collects branch probabilities
 - Collects information about type of memory accessed
 - "Filters" infrequently-executed code from being translated

CMS: Translator

- ◆ Translates frequently executed x86 code into native VLIW instructions
 - Translations can contain multiple x86 basic blocks
- ◆ Translator also optimizes and schedules the generate efficient code
 - Classical compiler optimizations like CSE, dead code elimination, etc.
 - Applies transformations to increase parallelism
- Caches the translations for re-use
- ♦ Higher overhead, but much faster than interpreter

Goal: Amortize the cost of translation

CMS: Translations

- Optimize for the common case!
- Translations aggressively use CPU features
 - Rollback/Commit mechanism allows speculation
 - Schedule aggressively for the common path
 - Control and data speculation
 - If a fault occurs, rollback and interpret
 - Alias hardware allows us to reorder memory ops
 - Translator uses static memory disambiguation
 - Alias hardware assists with the remaining cases
 - Exposes more parallelism by breaking many data dependences
 - Allows us to exploit large register set
 - T-bit HW protects us from executing stale translations

CMS: Runtime

- Manages a cache of translations
 - Garbage collection/compaction optimizes RAM cache
 - Quick look-up schemes
 - Speeds up inter-translation flow via "chaining"
- Includes out-of-line handlers for complex ops
 - Single, shared copy of big ops helps the I-cache
 - ex. Segment descriptor manipulation, IRET, etc.
- Handles interrupts, PCI, exceptions, LongRun

LongRun

- Goal: Adapt processor's power usage to the needs of the workload
- Power = $C \times V^2 \times F$
 - CPU frequency roughly linear to operating voltage
 - By running CPU at lower frequency and voltage, a cubic power reduction can be achieved
 - CMS monitors "idleness" and dynamically adapts both frequency and voltage to meet the application demands

Advantages of our approach

- Allows infrequently-used logic to be in software
 - Trades expensive logic for cheap memory
 - Smaller die size
 - Fewer logic transistors means lower power chip
- Easier to build and debug
 - Easily work around silicon bugs
 - Great tools for performance and correctness testing
- Combined HW and SW approach enables improvements in 4 axes!
 - process technology
 - microarchitecture and circuits
 - architecture
 - software

Architecture and software axes are unique to Transmeta!

Processor Comparison

Processor Families	Speed	Silicon Characteristics			TDP (Max)
		Process	Die Area	# of Gates	
PIII-M (Tualatin)	1.13 GHz	0.13u	80.4 mm2	44 Million	21.8 W
	866 MHz	0.13u	80.4 mm2	44 Million	19.5 W
PIV	2 GHz	0.18u	217 mm2	42 Million	75.3 W
	1.5 GHz	0.18u	217 mm2	42 Million	57.9 W
IA-64 Itanium	800 MHz	0.18u	440 mm2	320 Million	130 W
UltraSpare III	750 MHz	0.18u	246 mm2	29 Million	70 W
PowerPC	667 MHz	0.18u	106 mm2	33 Million	19.0 W
	533 MHz	0.18u	106 mm2	33 Million	15.2 W
AMD Athlon	1.4 GHz	0.18u	120 mm2	37 Million	72 W
	1.0 GHz	0.18u	120 mm2	37 Million	54 W
TMTA Crusoe	1.0 GHz	0.13u	55 mm2	28 Million	7.5 W
	800 MHz	0.13u	55 mm2	28 Million	6 W

Crusoe and Clusters

- ◆ TM5800 @ 800MHz has a Thermal Design Power (TDP) of 6W, and runs SPECint2000 with less than 4W.
- ◆ Note this is at full performance Intel LV/ULV parts have quite different power requirements on AC power, their high-performance settings.
- ◆ AMD, Intel high-end and next-generation CPUs have TDPs of 50W and (much) higher.
- ◆ The low Crusoe TDP allows computer manufacturers to achieve a much greater density of CPUs within any physical space far less heat to remove per CPU.

IR Photographs of CPU

Figure 3. A Pentium III processor plays a DVD at 105° C (221° F).

Intel Pentium III CPU decoding a DVD

221 degrees

Figure 4. A Crusoe processor model TM5400 plays a DVD at 48° C (118° F).

118 degrees

RLX System 324[™] Overview

- ◆RLXtechnologies located in Houston, TX
- http://www.rlxtechnologies.com/
- **♦**RLX ServerBlade[™]
 - Transmeta[™] Crusoe[™] CPU, TM5600
 - Single DIMM, up to 512MB
 - 0, 1 or 2 hard drives, up to 30GB each
 - 3 NICs for public, private and management nets

◆RLX Chassis

- 3U, houses 24 ServerBlades
- 3 network cards, 1 management hub
- 2 power supplies for redundancy
- Front door fans and status LEDs
- **◆**Management Software
 - RLX Control Tower $^{\scriptscriptstyle{\text{TM}}}$ for web-based provisioning and monitoring
 - RLX Remote Console for console access via network

RLX ServerBladeTM

CMS 1 MB

- PublicNIC
- 33 MHz PCI
 Private NIC
 33 MHz PCI

Management NIC 33 MHz PCI

RLI

STATE OF THE STATE OF THE

128MB, 256MB, 512MB DIMM SDRAM PC-133

512KB Flash ROM Transmeta[™] TM5600 633 MHz

ATA 66 0, 1 or 2 - 2.5" HDD 10 or 30 GB each

128KB L1 cache, 512KB L2 cache LongRun, Southbridge, X86 compatible

Status LEDs

Serial RJ-45

Reset Switch

debug port

RLX System 324[™] Chassis

RLX System 324[™] Chassis

Passive Midplane

- Passes signal and power
- Consolidates network cabling
- Enables front door function and reporting

4 Network Connect Cards provide pass-through for 48 (2x24) NICs

4 RJ-21 Connectors
switched or routed to
public or private
networks

2 Power Supplies

- Load balanced
- Hot pluggable
- Provide 450 watts each

1 Management Hub Card

supports 24 NICs, 1 RJ-45 connector out to Management Network

Crusoe vs. P-III relative performance

- ◆ Relative performance of similarly configured Crusoe and P-III systems
- Results scaled by MHz
- Note that no attempt has been made to factor in power costs!

Benchmark	Relative Performance	Notes
SPECweb99	100%	2x 100baseT, 512MB memory, 4200rpm 2.5" IDE, Linux/TUX
SPECint2000	71%	Intel 5.0 compiler on Win2K
BLAST	85%	
RSA1024	80%	Openssl-0.9.6 "openssl speed rsa1024"
Misc crypto.	80 to 110%	Various other "openssl speed" results
FinSim	~70%	Based on a verilog sample from Crusoe design

Power Measurements

- ◆ Direct power comparisons of the CPUs Crusoe vs. P-III are difficult/misleading because:
 - Crusoe has integrated northbridge, P-III has separate northbridge.
 - No access to P-III "development systems" no power measurement pins.
 - CPU power is only one component of overall system power.
- ◆ Direct power comparisons of overall system power requires us to choose a P-III system vendor to compare with.
- ◆ P-III systems can vary from 70W to more than 100W for full system power under a load such as SPECweb99.
- RLX ServerBlade consumes only 15W at peak load, idles at 7W.

More Web Pages Served

Compare Pages/Sec/Rack at 5,000 max watts per 42U rack*

	RLX System 324	Cobalt 4i	Cobalt 4R XTR	Compaq DL320
Number of Servers	254	42	42	42
Watts per Server	15.7	33.9	72.0	76.4
Pages/Sec per Server ZD WebBench (peak request load)	1466 TM 5600 633MHz, 512MB SDRAM,IDE 10GB HD, Red Hat 6.2, 2.4.2, Zeus	208 AMD k6-2 450MHz, 128MB SDRAM, IDE 10GB HD, Cobalt SW	916 PIII, 933 MHz, 512MB, SDRAM, IDE 3x30 GB, RAID, Cobalt SW	1706 PIII 800MHz 512MB SDRAM, 18GB Ultra SCSI3HD, Red Hat 6.2, 2.4.2, Zeus
Pages/Sec per Rack	372,364 Baseline	8,736 2.3%	38,472 10.3%	71,652 19.2%
RLX Advantage		43x	10x	5x

^{*}Calculations based on 80% of max watts = 4000 watts

Conclusion

- ◆ Transmeta's unique technology has enabled a new class of low-power, high-performance computing.
- ◆ The industry is now awakening to the issue of power consumption.
- ◆ RLXtechnologies has packaged the Crusoe processor in a very dense, highly scalable platform suitable for cluster applications.
- RLXtechnologies System 324, fully loaded costs less than US\$30,000, and consumes only 400W at peak power with 24 nodes.
- ◆ In addition to the power/cooling benefits within a machine room, the System 324 solution can easily fit "under your desk", enabling researchers to build clusters without special IT/MIS assistance.

