

□ Include

MicroPatent® PatSearch FullText: Record 1 of 1

Search scope: JP (bibliographic data only)

Years: 2001-2003

Patent/Publication No.: JP2002012857

[no drawing available]

Order This Patent

Family Lookup

Find Similar

Legal Status

Go to first matching text

JP2002012857 A ROLL-OFF REDUCING AGENT KAO CORP

Inventor(s): ;HAGIWARA TOSHIYA ;FUJII SHIGEO ;OOSHIMA YOSHIAKI Application No. 2000384512 JP2000384512 JP, Filed 20001218,A1 Published 20020115Published 20020115

Abstract: PROBLEM TO BE SOLVED: To obtain a roll-off reducing agent capable of decreasing a roll-off of a substrate to be polished produced by polishing and improving a polishing rate, a roll-off reducing agent composition containing the roll-off reducing agent, to provide a method for decreasing the roll-off of the substrate to be polished by using the roll-off reducing agent and a method for producing the substrate to be polished using the roll-off reducing agent.

SOLUTION: This roll—off reducing agent is selected from the group consisting of an OH group or SH group—containing 2–20C carboxylic acid, 1–20C monocarboxylic acid, 2–3C dicarboxylic acid and their salts. This roll—off reducing agent composition comprises the roll—off reducing agent, an abrasive and water. This method for decreasing the roll—off of the substrate to be polished comprises using the roll—off reducing agent. This method for producing the substrate to be polished comprises using the roll—off reducing agent.

Int'l Class: C09K00314; B24B03700 B24B05702 G11B00584

Priority: JP 2000131698 20000428

Patents Citing this One: No US, EP, or WO patents/search reports have cited this patent. MicroPatent

Reference Number: 000371954 COPYRIGHT: (C) 2002JPO

For further information, please contact:

Technical Support | Billing | Sales | General Information

http://www.micropat.com/cgi-bin/pslist

PRODUCTS & SERVICES ABOUT MICROPATENT

Prev List **First** Next

Micr Patent® PatSearch Inpad c: [Complete Family of JP2002012857A2] 6 record(s) found in the family

Order Selected Patent(s)

[no drawing available]

CN1325933A

Title: ROLLING REDUCING AGENT Application Date: 20010427 Applicati n No: 2001 2001117604 **Publication Date: 20011212** IPC: C09K00300; C09G00100

Inventor(s): OGIHARA TOSHINARI; FUJII SHIGEOFU; OSHIMA YOSHIKO

Applicant(s): KAO CORP. Language of Title: ENG

Priority: JP 2000 2000131697 20000428 A; JP 2000 2000131698 20000428 A; JP 2000 2000141020 20000512 A; JP

2000 2000141022 20000512 A

Legal Status: There is no Legal Status information available for this patent

[no drawing available]

🎁 JP2002012855A2 🦵

Title: ABRASIVE LIQUID COMPOSITION

Application Date: 20001218 Applicati n No: 2000 2000384456 Publication Date: 20020115

IPC: C09K00314; B24B03700; G11B00584

Inventor(s): FUJII SHIGEO; OOSHIMA YOSHIAKI

Applicant(s): KAO CORP Language of Title: ENG

Priority: JP 2000 2000384456 20001218 A; JP 2000 2000131697 20000428 A Legal Status: There is no Legal Status information available for this patent

[no drawing available]

→ JP2002012857A2 「

Title: ROLL-OFF REDUCING AGENT **Application Date: 20001218 Application No: 2000 2000384512 Publication Date: 20020115**

IPC: C09K00314; B24B03700; B24B05702; G11B00584

Inventor(s): HAGIWARA TOSHIYA; FUJII SHIGEO; OOSHIMA YOSHIAKI

Applicant(s): KAO CORP Language of Title: ENG

Priority: JP 2000 2000384512 20001218 A; JP 2000 2000131698 20000428 A

[no drawing available]

➡ JP2002030273A2 厂

Title: ABRASIVE FLUID COMPOSITION

Application No: 2000 2000384510

Publication Date: 20020131

IPC: C09K00314; B24B03700; B24B05702; G11B00584
Inventor(s): FUJII SHIGEO; OOSHIMA YOSHIAKI

Applicant(s): KAO CORP Language of Title: ENG

Priority: JP 2000 2000384510 20001218 A; JP 2000 2000141022 20000512 A **Legal Status:** There is no Legal Status information available for this patent

[no drawing available]

→ JP2002030276A2 [

Title: ABRASIVE FLUID COMPOSITION

Application Date: 20001218 **Applicati n No:** 2000 2000384450

Publication Date: 20020131

IPC: C09K00314; B24B03700; G11B00584

Inventor(s): FUJII SHIGEO; OOSHIMA YOSHIAKI

Applicant(s): KAO CORP Language of Title: ENG

Priority: JP 2000 2000384450 20001218 A; JP 2000 2000141020 20000512 A **Legal Status:** There is no Legal Status information available for this patent

[no drawing available]

→ US2001051746AA [

Title: ROLL-OFF REDUCING AGENT

ABSTRACT: A roll-off reducing agent comprising one or more compounds selected from the group consisting of carboxylic acids having 2 to 20 carbon atoms having either OH group or groups or SH group or groups, monocarboxylic acids having 1 to 20 carbon atoms, and dicarboxylic acids having 2 to 3 carbon atoms, and salts thereof; and a roll-off reducing agent composition comprising a roll off-reducing agent comprising one or more compounds selected from the group consisting of carboxylic acids having 2 to 20 carbon atoms having either OH group or groups or SH group or groups, monocarboxylic acids having 1 to 20 carbon atoms, and dicarboxylic acids having 2 to 3 carbon atoms, and salts thereof; an abrasive; and water.

Application Date: 20010427 Application No: 2001 842769 Publication Date: 20011213 IPC: A61K031665; A01N05700 National Classification: 5624

European Classification: C09G00102

Inventor(s): HAGIHARA TOSHIYA; FUJII SHIGEO; OSHIMA YOSHIAKI Applicant(s): HAGIHARA TOSHIYA; FUJII SHIGEO; OSHIMA YOSHIAKI

Priority: JP 2000 2000131697 20000428 A; JP 2000 2000131698 20000428 A; JP 2000 2000141020 20000512 A; JP

2000 2000141022 20000512 A

CAS, Japio and Derwent Abstracts: CHEMABS136(02)024191R

Legal Status:

Date	·+/-	Code	Description
20000428		AA	PRIORITY (PATENT) JP 2000 2000131697 A 20000428
20000428		· AA	PRIORITY (PATENT) JP 2000 2000131698 A 20000428
20000512		AA	PRIORITY (PATENT) JP 2000 2000141020 A 20000512
20000512		AA	PRIORITY (PATENT) JP 2000 2000141022 A 20000512
20010427		ΑE	APPLICATION DATA (PATENT) US 2001 842769 A 20010427
20011213		A1A1	PATENT APPLICATION PUBLICATION (PRE-GRANT)

Copyright © 2002, MicroPatent, LLC. The contents of this page are the property of MicroPatent LLC including without limitiation all text, html, asp, javascript and xml. All rights herein are reserved to the owner and this page cannot be reproduced without the express permission of the owner.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-12857 (P2002-12857A)

(43)公開日 平成14年1月15日(2002.1.15)

(51) Int.Cl. ⁷		識別記号	FΙ		デ ー	マコード(参考)
C 0.9 K	3/14	5 5 0	C 0 9 K	3/14	5 5 0 Z	3 C 0 4 7
B 2 4 B	37/00		B 2 4 B	37/00	Н	3 C 0 5 8
	57/02			57/02		5 D 1 1 2
G 1 1 B	5/84		G 1 1 B	5/84	Α	

審査請求 未請求 請求項の数4 OL (全 7 頁)

(21)出願番号	特願2000-384512(P2000-384512)	(71)出顧人	000000918
	•	·	花王株式会社
(22)出願日	平成12年12月18日(2000.12.18)		東京都中央区日本橋茅場町1丁目14番10号
		(72)発明者	萩原 敏也
(31)優先権主張番号	特願2000-131698 (P2000-131698)		和歌山市湊1334番地 花王株式会社研究所
(32)優先日	平成12年4月28日(2000.4.28)		内
(33)優先権主張国	日本 (JP)	(72)発明者	藤井、滋夫
			和歌山市湊1334番地 花王株式会社研究所
			内
		(74)代理人	100095832
			弁理士 細田 芳徳
		1	

最終頁に続く

(54) 【発明の名称】 ロールオフ低減剤

(57) 【要約】

【課題】研磨で生じる被研磨基板のロールオフを低減し、且つ研磨速度も向上し得るロールオフ低減剤、該ロールオフ低減剤を含有するロールオフ低減剤組成物、前記ロールオフ低減剤を用いて被研磨基板のロールオフを低減する方法、前記ロールオフ低減剤を用いた被研磨基板の製造方法を提供すること。

【解決手段】OH基又はSH基を有する炭素数2~20のカルボン酸、炭素数1~20のモノカルボン酸、炭素数2~3のジカルボン酸及びこれらの塩からなる群より選ばれるロールオフ低減剤、該ロールオフ低減剤と研磨材と水とを含有するロールオフ低減剤組成物、前記ロールオフ低減剤を用いて、被研磨基板のロールオフを低減する方法、並びに前記ロールオフ低減剤を用いる被研磨基板の製造方法。

2

【特許請求の範囲】

【請求項1】 OH基又はSH基を有する炭素数2~2 0のカルボン酸、炭素数1~20のモノカルボン酸、炭 素数2~3のジカルボン酸及びこれらの塩からなる群よ り選ばれるロールオフ低減剤。

1

【請求項2】 OH基又はSH基を有する炭素数2~2 0のカルボン酸、炭素数1~20のモノカルボン酸、炭素数2~3のジカルボン酸及びこれらの塩からなる群より選ばれた1種以上のロールオフ低減剤と研磨材と水とを含有するロールオフ低減剤組成物。

【請求項3】 OH基又はSH基を有する炭素数2~2 0のカルボン酸、炭素数1~20のモノカルボン酸、炭 素数2~3のジカルボン酸及びこれらの塩からなる群よ り選ばれた1種以上のロールオフ低減剤を用いて、被研 磨基板のロールオフを低減する方法。

【請求項4】 OH基又はSH基を有する炭素数2~2 0のカルボン酸、炭素数1~20のモノカルボン酸、炭 素数2~3のジカルボン酸及びこれらの塩からなる群よ り選ばれた1種以上のロールオフ低減剤を用いる被研磨 基板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ロールオフ低減剤 に関する。さらに、該ロールオフ低減剤を含有するロー ルオフ低減剤組成物、前記ロールオフ低減剤を用いた被 研磨基板のロールオフの低減方法、前記ロールオフ低減 剤を用いた被研磨基板の製造方法に関する。

[0002]

【従来の技術】年々、ハードディスクの容量をさらに高める技術への要求が高まっている。このハードディスクの高容量化の有力な手段として、研磨工程で発生するロールオフ(基板の端面だれ)を低減し、より外周部まで記録できる基板を製造する手段が考えられており、例えば、研磨パッドを堅くする、研磨荷重を小さくするといったロールオフを低減しうる機械的研磨条件が検討されている。しかしながら、このロールオフを小さくするためのそれら機械的研磨条件はある程度の効果があるものの今だ充分とはいえない。

【0003】また、ロールオフを低減し得る研磨用組成物として、水、αーアルミナ粒子及び硝酸アルミニウム 40からなる組成物が知られている(特開平9-286975号公報)が、この組成物のロールオフ低減効果も充分とはいえず、さらにロールオフ低減効果に優れた研磨液成分の検討も充分になされていないのが現状である。

[0004]

【発明が解決しようとする課題】本発明は、研磨で生じる被研磨基板のロールオフを低減し、且つ研磨速度も向上し得るロールオフ低減剤、該ロールオフ低減剤を含有するロールオフ低減剤組成物、前記ロールオフ低減剤を用いて被研磨基板のロールオフを低減する方法、前記ロ

ールオフ低減剤を用いた被研磨基板の製造方法を提供することを目的とする。なお、本明細書中において、ロールオフとは、研磨時に被研磨基板に発生する端面だれを指す。

[0005]

【課題を解決するための手段】即ち、本発明の要旨は、 [1] OH基又はSH基を有する炭素数2~20のカルボン酸、炭素数1~20のモノカルボン酸、炭素数2~3のジカルボン酸及びこれらの塩からなる群より選ばれるロールオフ低減剤、 [2] OH基又はSH基を有する炭素数2~20のカルボン酸、炭素数1~20のモノカルボン酸、炭素数2~3のジカルボン酸及びこれらの塩からなる群より選ばれた1種以上のロールオフ低減剤を用いて、被研磨基板のロールオフを低減する方法、並びに [3] OH基又はSH基を有する炭素数2~20のカルボン酸、炭素数1~20のモノカルボン酸、炭素数2~3のジカルボン酸及びこれらの塩からなる群より選ばれた1種以上のロールオフ低減剤を用いる被研磨基板の製造方法に関する。

[0006]

20

【発明の実施の形態】本発明に用いられるロールオフ低減剤は、OH基又はSH基を有する炭素数2~20のカルボン酸、炭素数1~20のモノカルボン酸、炭素数2~3のジカルボン酸及びこれらの塩からなる群より選ばれる1種以上の化合物である。

【0007】OH基又はSH基を有する炭素数 $2\sim20$ のカルボン酸としては、オキシカルボン酸、及び該酸のOH基の酸素原子が硫黄原子に置換した化合物が挙げられる。これらのカルボン酸の炭素数は、水への溶解性の観点から、 $2\sim20$ であり、 $2\sim12$ が好ましく、より好ましくは $2\sim8$ 、さらに好ましくは $2\sim6$ であることが望ましい。また、ロールオフ低減の観点から、オキシカルボン酸としては、カルボキシル基の α 位に水酸基を持つものが好ましい。

【0008】モノカルボン酸の炭素数は、水への溶解性の観点から、 $1\sim20$ であり、 $1\sim12$ が好ましく、より好ましくは $1\sim8$ 、さらに好ましくは $1\sim6$ であることが望ましい。

【0009】ジカルボン酸は、ロールオフ低減の観点から、炭素数2~3のもの、即ちシュウ酸とマロン酸である。これらのロールオフ低減剤の中では、研磨速度向上の観点から、オキシカルボン酸が好ましい。また、ロールオフ低減の観点からはジカルボン酸が好ましい。

【0010】OH基又はSH基を有する炭素数2~20のカルボン酸の具体例としては、グリコール酸、メルカプトコハク酸、チオグリコール酸、乳酸、β-ヒドロキシプロピオン酸、リンゴ酸、酒石酸、クエン酸、イソクエン酸、アロクエン酸、グルコン酸、グリオキシル酸、グリセリン酸、マンデル酸、トロパ酸、ベンジル酸、サリチル酸等が挙げられる。モノカルボン酸の具体例とし

ては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、ヘキサン酸、ヘプタン酸、2-メチルヘキサン酸、オクタン酸、2-エチルヘキサン酸、ノナン酸、デカン酸、ラウリン酸等が挙げられる。これらの中で、酢酸、シュウ酸、マロン酸、グリコール酸、乳酸、リンゴ酸、酒石酸、グリオキシル酸、クエン酸及びグルコン酸が好ましく、さらに好ましくは、シュウ酸、マロン酸、グリコール酸、乳酸、リンゴ酸、酒石酸、グリオキシル酸、クエン酸及びグルコン酸であり、特に好ましくはシュウ酸、マロン酸、グリコール酸、酒石酸及びグリオキシル酸である。

【0011】また、シュウ酸、リンゴ酸、酒石酸、クエン酸及びグルコン酸は、単独で又は他のロールオフ低減剤と併用することによって、更に研磨パッドを長期間使用することによる、研磨速度や面質等の研磨特性の劣化を防止できるので好ましい。また、頻繁なパッド洗浄が不要となる、すなわちパッドドレッシングの間隔を大幅に延ばすことができ、生産性があがるので経済的観点からも優れ好ましい。その中でも、シュウ酸、酒石酸及びクエン酸が好ましく、特にクエン酸が好ましい。なお、本発明に用いられるモノカルボン酸及びジカルボン酸は、OH基又はSH基を有しないカルボン酸から選ばれる。

【0012】また、これらの酸の塩(即ち、OH基又は SH基を有する炭素数2~20のカルボン酸の塩、炭素数1~20のモノカルボン酸の塩、炭素数2~3のジカルボン酸の塩)としては、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム、有機アミン等との塩が挙げられる。金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。これらの金属の中でも、ロールオフ低減の観点から1A、3A、3B、7A又は8族に属する金属が好ましく、1A、3A又は3B族に属する金属が好ましく、1A族に属するナトリウム、カリウムが最も好ましい。

【0013】アルキルアンモニウムの具体例としては、 テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム等が挙げられる。

【0014】有機アミン等の具体例としては、ジメチルアミン、トリメチルアミン、アルカノールアミン等が挙げられる。

【0015】これらの塩の中では、アンモニウム塩、ナトリウム塩及びカリウム塩が特に好ましい。

【0016】本発明のロールオフ低減剤は、研磨材、水などを含有する研磨液に配合して使用することができる。このようにして得られる研磨液組成物を本明細書においては、特に「ロールオフ低減剤組成物」とも呼ぶ。即ち、本発明のロールオフ低減剤組成物は、前記ロール 50

オフ低減剤と研磨材と水とを含有してなるものである。 【0017】ロールオフ低減剤組成物中におけるロール オフ低減剤の含有量は、ロールオフを低減する観点、研 磨速度を向上させる観点から、0.01重量%以上が好まし く、また、経済的な観点、面質を向上させる観点から、 5 重量%以下が好ましい。より好ましくは0.01~3 重量 %、さらに好ましくは0.01~2重量%、もっとも好まし くは0.02~1重量%である。なお、ロールオフ低減剤 は、単独で又は2種以上を混合して用いることができ る。

【0018】本発明に用いられる研磨材は、研磨用に一 般に使用されている研磨材を使用することができる。該 研磨材の例としては、金属;金属又は半金属の炭化物、 窒化物、酸化物、ホウ化物;ダイヤモンド等が挙げられ る。金属又は半金属元素は、周期律表(長周期型)の2 A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A 又は8族由来のものである。研磨材の具体例として、α アルミナ粒子、炭化ケイ素粒子、ダイヤモンド粒子、 酸化マグネシウム粒子、酸化亜鉛粒子、酸化セリウム粒 子、酸化ジルコニウム粒子、コロイダルシリカ粒子、ヒ ュームドシリカ粒子等が挙げられ、これらを1種以上使 用することは、研磨速度を向上させる観点から好まし い。中でも、α-アルミナ粒子、酸化セリウム粒子、酸 化ジルコニウム粒子、コロイダルシリカ粒子、ヒューム ドシリカ粒子等がさらに好ましく、αーアルミナ粒子が 特に好ましい。

【0019】研磨材の一次粒子の平均粒径は、研磨速度を向上させる観点から、好ましくは $0.01\sim3~\mu m$ 、さらに好ましくは $0.02\sim0.8~\mu m$ 、特に好ましくは $0.05\sim0.5~\mu m$ である。さらに、一次粒子が凝集して二次粒子を形成している場合は、同様に研磨速度を向上させる観点及び被研磨物の表面粗さを低減させる観点から、その二次粒子の平均粒径は、好ましくは $0.05\sim3~\mu m$ 、さらに好ましくは $0.1~\sim1.5~\mu m$ 、特に好ましくは $0.2~\sim1.2~\mu m$ である。研磨材の一次粒子の平均粒径は、走査型電子顕微鏡で観察(好適には $3000\sim30000$ 倍)して画像解析を行い、粒径を測定することにより求めることができる。また、二次粒子の平均粒径はレーザー光回折法を用いて体積平均粒径として測定することができる。

【0020】研磨材の比重は、分散性及び研磨装置への 供給性や回収再利用性の観点から、その比重は2~6で あることが好ましく、2~5であることがより好まし い。

【0021】研磨材の含有量は、経済性及び表面粗さを小さくし、効率よく研磨することができるようにする観点から、ロールオフ低減剤組成物中において好ましくは1~40重量%、より好ましくは2~30重量%、さらに好ましくは3~15重量%である。

【0022】本発明のロールオフ低減剤組成物中の水は、媒体として使用されるものであり、その含有量は被

研磨物を効率良く研磨する観点から、好ましくは50~9 8.99 重量%、より好ましくは60~98重量%、さらに好 ましくは70~95重量%である。

【0023】また、本発明のロールオフ低減剤組成物に は、必要に応じて他の成分を配合することができる。

【0024】他の成分としては、前記ロールオフ低減剤 以外の有機酸及びその塩、例えば、多価カルボン酸、ア ミノポリカルボン酸、アミノ酸等の有機酸及びその塩 や、無機酸及びその塩、酸化剤、増粘剤、分散剤、防錆 剤、塩基性物質、界面活性剤等が挙げられる。有機酸及 びその塩、無機酸及びその塩、並びに酸化剤の具体例と しては、特開昭62-25187号公報2 頁右上欄3 ~11行目、 特開昭63-251163 号公報2頁左下欄7行~14行、特開平 1-205973号公報3 頁左上欄11行~右上欄2 行、特開平3-115383号公報2 頁右下欄16行~3 頁左上欄11行、特開平 4-108887号公報2頁左下欄1 行~9 行、特開平4-275387 号公報2 頁右欄27行~3 頁左欄12行、特開平4-363385号 公報2 頁右欄21行~30行等に記載されているものが挙げ

種以上を混合して用いても良い。また、その含有量は、 それぞれの機能を発現させる観点及び経済性の観点か ら、好ましくはロールオフ低減剤組成物中0.05~2 0重量%、より好ましくは0.05~10重量%、さら に好ましくは0.05~5重量%である。

【0026】尚、前記ロールオフ低減剤組成物中の各成 分の濃度は、研磨する際の好ましい濃度であるが、該組 成物製造時の濃度であってもよい。通常、濃縮液として 組成物は製造され、これを使用時に希釈して用いる場合 が多い。

【0027】本発明のロールオフ低減剤組成物は、前記 OH基又はSH基を有する炭素数2~20のカルボン 酸、炭素数1~20のモノカルボン酸、炭素数2~3の ジカルボン酸及びこれらの塩からなる群より選ばれる1 種以上、さらに必要であれば各種添加剤を公知の方法で 適宜添加、混合することにより製造することができる。

【0028】ロールオフ低減剤組成物のpHは、被研磨 物の種類や要求品質等に応じて適宜決定することが好ま しい。例えば、ロールオフ低減剤組成物のpHは、基板 の洗浄性及び加工機械の腐食防止性、作業者の安全性の 観点から、2~12が好ましい。また、被研磨物がNi-Pメ ッキされたアルミニウム合金基板等の金属を主対象とし た精密部品用基板である場合、研磨速度の向上と表面品 質の向上の観点から、2~9 がより好ましく、3~8 が 特に好ましい。さらに、半導体ウェハや半導体素子等の 研磨、特にシリコン基板、ポリシリコン膜、SiOz膜等の 研磨に用いる場合は、研磨速度の向上と表面品質の向上 の観点から、7~12が好ましく、8~12がより好まし く、9~11が特に好ましい。該pHは、必要により、硝 酸、硫酸等の無機酸、多価カルボン酸やアミノポリカル ボン酸、アミノ酸等の有機酸、及びその金属塩やアンモ ニウム塩、アンモニア水、水酸化ナトリウム、水酸化カ リウム、アミン等の塩基性物質を適宜、所望量で配合す ることで調整することができる。

【0029】本発明の対象である被研磨基板に代表され る被研磨物の材質は、例えば、シリコン、アルミニウ ム、ニッケル、タングステン、銅、タンタル、チタン等 の金属又は半金属、及びこれらの金属を主成分とした合 金、ガラス、ガラス状カーボン、アモルファスカーボン 等のガラス状物質、アルミナ、二酸化ケイ素、窒化ケイ 素、窒化タンタル、窒化チタン等のセラミック材料、ポ リイミド樹脂等の樹脂などが挙げられる。これらの中で は、アルミニウム、ニッケル、タングステン、銅等の金 属及びこれらの金属を主成分とする合金が被研磨物であ るか、又はそれらの金属を含んだ半導体素子等の半導体 基板が被研磨物であることが好ましい。特に、Ni-Pメッ キされたアルミニウム合金からなる基板が、研磨する際 に本発明のロールオフ低減剤を用いた場合、ロールオフ が小さくすることできるので好ましい。

【0025】これらの成分は単独で用いても良いし、2 20 【0030】これらの被研磨物の形状には特に制限がな く、例えば、ディスク状、プレート状、スラブ状、プリ ズム状等の平面部を有する形状や、レンズ等の曲面部を 有する形状が本発明のロールオフ低減剤組成物を用いた 研磨の対象となる。その中でも、ディスク状の被研磨物 の研磨に特に優れている。

> 【0031】本発明のロールオフ低減剤は、精密部品用 基板の研磨に好適に用いられる。例えば、磁気ディス ク、光ディスク、光磁気ディスク等の磁気記録媒体の基 板、フォトマスク基板、光学レンズ、光学ミラー、光学 プリズム、半導体基板等の研磨に適している。半導体基 板の研磨は、シリコンウェハ(ベアウェハ)のポリッシ ング工程、埋め込み素子分離膜の形成工程、層間絶縁膜 の平坦化工程、埋め込み金属配線の形成工程、埋め込み キャパシタ形成工程等において行われる研磨がある。本 発明のロールオフ低減剤組成物は、特に磁気ディスク基 板の研磨に適している。

【0032】本発明のロールオフ低減剤を用いる被研磨 基板のロールオフ低減方法において、上記に挙げた被研 磨基板を、本発明のロールオフ低減剤を含有した研磨液 又は本発明のロールオフ低減剤組成物そのものを研磨液 として用いて研磨することにより、被研磨基板のロール オフを顕著に低減させることができる。

【0033】例えば、不織布状の有機高分子系の研磨布 等を貼り付けた研磨盤で基板を挟み込み、本発明のロー ルオフ低減剤を含有させた研磨液、あるいは本発明のロ ールオフ低減剤組成物を研磨面に供給し、一定の圧力を 加えながら研磨盤や基板を動かすことにより、ロールオ フの低減した基板を製造することができる。

【0034】本発明において被研磨基板に発生したロー ルオフは、例えば、触針式または光学式形状測定装置を 用いて端面部分の形状を測定し、そのプロファイルより 端面部分がディスク中央部にくらべてどれくらい多く削 れているかを数値化することにより評価することができ る。

【0035】数値化の方法は、図1に示すように、ディスク中心からある距離離れたA点とB点とC点といった測定曲線(被研磨基板の端面部分の形状を意味する)上の3点をとり、A点とC点を結んだ直線をベースラインとし、B点とベースラインとの距離(D)をいうものである。ロールオフが良いとは、Dの値がより0に近いことを言う。ロールオフ値は、Dを研磨前後のディスクの厚さの変化量の1/2で除した値を言う。ロールオフ値は好ましくは $0.2\mu m/\mu m$ 以下、より好ましくは $0.15\mu m/\mu m$ 、さらに好ましくは $0.10\mu m/\mu m$ である。

【0036】なお、A点、B点及びC点の位置は、被測定物の大きさにより様々であるが、一般にB点はディスクの端部と中心を結ぶ線上をディスクの端部から0.5 mmの位置、C点は2.5 mmの位置、A点は4.5 mmの位置であることが好ましい。例えば、3.5インチ 20ディスクの場合は、A点、B点及びC点をそれぞれディスク中心から43mm、47mm及び45mmの距離にとることが好ましい。

【0037】また、精密部品用基板等の研磨工程において、本発明のロールオフ低減剤を用いることで、該基板のロールオフを顕著に低減させるだけでなく、研磨速度をも向上させるという利点がある。また、ロールオフ低減剤として、シュウ酸、リンゴ酸、酒石酸、クエン酸、グルコン酸及びこれらの塩の1種以上を使用した場合、更に研磨パッドへの砥粒や研磨カスの目詰まりを低減させ、研磨パッドを長期間使用することによる研磨速度や面質等の研磨特性の劣化を防止できるので好ましい。

【0038】この場合上記化合物の中でもシュウ酸、酒石酸、クエン酸又はそれらの塩が好ましく、特にクエン酸又はその塩が好ましい。また、前記化合物を2種以上併用する場合、特に好ましい組み合わせとしては、シュウ酸、酒石酸、クエン酸及びそれらの塩から選ばれる2種以上の組み合わせ、または、シュウ酸、酒石酸、クエン酸及びそれらの塩から選ばれる1種以上とマロン酸、グリコール酸、乳酸、リンゴ酸、グルコン酸及びそれらの塩から選ばれる1種以上との組み合わせが好ましく、更に、クエン酸又はその塩とシュウ酸、グリコール酸、乳酸、リンゴ酸、酒石酸及びそれらの塩から選ばれる1種以上との組み合わせがより好ましい。特に好ましい組み合わせはクエン酸又はその塩とグリコール酸又はその塩である。

【0039】本発明の研磨液組成物は、ポリッシング工程において特に効果があるが、これ以外の研磨工程、例えば、ラッピング工程等にも同様に適用することができる。

[0040]

【実施例】実施例1~10及び比較例1~5

研磨材(一次粒径の平均粒径 $0.23\,\mu\,\mathrm{m}$ 、二次粒子の平均粒径 $0.5\,\mu\,\mathrm{m}$ の α ーアルミナ(純度約99.9%))7重量部と、実施例に用いたロールオフ低減剤及び比較例に用いた化合物を表1に示す所定量と、イオン交換水残部とを混合・攪拌し、実施例 $1\sim10$ 、比較例 $2\sim4$ はアンモニア水でp Hを4に調整し、比較例1、5 は硝酸でp Hを4に調整し、実施例 $1\sim10$ 及び比較例 $1\sim5$ の組成物100重量部を得た。

【0041】得られた組成物を用い、ランク・テーラーホブソン社製のタリーステップ(触針先端サイズ: 25μ m × 25μ m 、ハイパスフィルター: 80μ m 、測定長さ:0.64mm)によって測定した中心線平均粗さ $Raが0.2\mu$ m 、厚さ0.8mm、直63.5 インチのNi-Pメッキされたアルミニウム合金からなる基板の表面を両面加工機により、以下の両面加工機の設定条件でポリッシングし、磁気記録媒体用基板として用いられるNi-Pメッキされたアルミニウム合金基板の研磨物を得た。

【0042】両面加工機の設定条件を下記に示す。 <両面加工機の設定条件>

両面加工機:スピードファーム(株)製、9B型両面加工 機

加工圧力:9.8kPa

研磨パッド:ポリテックスDG-H(ロデールニッタ社製)

定盤回転数:50r/min

研磨液組成物供給流量:100ml/min

研磨時間:5min

投入した基板の枚数:10枚

【0043】研磨後、下記の測定方法で被研磨基板に発生したロールオフの値を求め、比較例2を基準として相対値を求めた。また、実施例のアルミニウム合金基板の厚さを膜厚計(ミツトヨ(株)製、レーザー膜厚計 Model LGH-110/LHC-11N)を用いて測定し、研磨前後のアルミニウム合金基板の厚さの変化から厚さの減少速度を求め、比較例1を基準として相対値(相対研磨速度)を求めた。結果を表1に示す。

【0044】<ロールオフの測定方法>

測定装置:ミツトヨ フォームトレーサーSV-C624

触針先端半径:2 μm (コードNo.178-381)

触針圧: 0.7mN 以下

速度:0.2mm/s

解析ソフト: SV-600微細輪郭解析システム version1.0

フィルター: LPF (Gaussian) 0.800mm

【0045】上記の装置を用いて、ディスク中心からの 距離が42.5mmから47.5mmまでのディスク端部の形状を測 定し、A、B及びC点の位置をディスク中心からそれぞ れ43mm、47mm及び45mmにとり、解析ソフトを用いて前記 測定方法により、Dを求めた。この求められたDを研磨

10

前後のディスクの厚さの変化量の1/2で除した値をロールオフ値とした。

[0046]

【表1】

	[31]					
	配合する化合物	添加量 (重量部)	ロールオフ (相対値)	研磨速度 (相対値)		
実施例1	乳酸 .	0. 81	0. 54	1.6		
実施例 2	グリコール酸	0.69	0. 23	1.4		
実施例3	酒石酸	0. 68	0. 24	1. 3		
実施例 4	クエン酸	0.58	0.41	1.5		
実施例 5	リンゴ酸	0. 61	0.43	1. 3		
実施例 6	グリオキシル酸	0. 83	0. 34	1. 3		
実施例7	シュウ酸	0. 29	0. 14	1.1		
実施例8	マロン酸	0. 47	0. 15	1.1		
実施例9	酢酸	0. 54	0. 61	1. 2		
実施例10	グリコール酸 クエン酸	0. 69 0. 10	0. 21	1.4		
比較例1	無添加	_	測定不可#1	1.0		
比較例 2	硝酸アルミニウム	0.60	1. 0#2	_		
比較例3	コハク酸	0. 53	0. 83	_		
比較例4	エチレンジアミン四酢酸アルミニウム, アンモニウム塩	0. 83	1. 54	_		
比較例 5	グリシン	0. 68	0. 93	_		

#1 スキージャンプが生じ、測定できなかった。 #2 ロールオフ値 $0.31 \mu m/\mu m$ であった。

【0047】表1の結果より、実施例1~10で得られたロールオフ低減剤組成物は、いずれも比較例1~5で得られたロールオフ低減剤組成物に比べ、ロールオフが著しく低減されていることがわかる。また、ロールオフ低減剤が含有されている実施例1~10は添加されていない比較例1に比べ研磨速度が向上していることがわかま

【0048】また、実施例4、実施例10及び比較例3 で調製した研磨液組成物を使用し、先に記載の研磨評価を20回繰り返し、1回目の相対研磨速度に対する20 回目の相対研磨速度の比を目詰まり防止性能として測定 したところ、実施例4の研磨液組成物では、0.97であり、実施例10では0.95、比較例3では0.62 であった。また、実施例4、10、比較例3のパッド目 詰まり防止能評価結果より、実施例4、10は比較例3 に対し、研磨速度の劣化が少なく、優れたパッド目詰ま り防止性能があることがわかる。

[0049]

【発明の効果】本発明のロールオフ低減剤を精密部品用 基板等の研磨に用いることにより、該基板のロールオフ を著しく低減させることに加え、研磨速度も向上させる ことができるという効果が奏される。

【図面の簡単な説明】

【図1】図1は、測定曲線とロールオフとの関係を示す図である。

【図1】

フロントページの続き

(72)発明者 大島 良暁

和歌山市湊1334番地 花王株式会社研究所

内

Fターム(参考) 3CO47 GG00

3C058 AA07 AC04 DA17

5D112 AAO2 AA24 BAO6 GA14 JJ01