

Sequential Decoding of Convolutional Codes for Synchronization Errors

Anisha Banerjee

Joint work with

Andreas Lenz, Antonia Wachter-Zeh

Technical University of Munich Institute for Communications Engineering

November 8, 2022

Outline

Introduction

Sequential Decoding

Modifications for IDS Channels

Results & Conclusion

Introduction

Sequential Decoding

Modifications for IDS Channels

Results & Conclusion

- Insertions and deletions occur
 - due to improper synchronization.

[[]HMG19] R. Heckel *et al.*, "A Characterization of the DNA Data Storage Channel," en, *Scientific Reports*, vol. 9, no. 1, p. 9663, Dec. 2019

- Insertions and deletions occur
 - ▶ due to improper synchronization.
 - ▶ in molecular storage paradigms, e.g. DNA storage [HMG19].

[[]HMG19] R. Heckel *et al.*, "A Characterization of the DNA Data Storage Channel," en, *Scientific Reports*, vol. 9, no. 1, p. 9663, Dec. 2019

- Insertions and deletions occur
 - due to improper synchronization.
 - ▶ in molecular storage paradigms, e.g. DNA storage [HMG19].
- May use convolutional codes for correction.

[[]HMG19] R. Heckel *et al.*, "A Characterization of the DNA Data Storage Channel," en, *Scientific Reports*, vol. 9, no. 1, p. 9663, Dec. 2019

- Insertions and deletions occur
 - due to improper synchronization.
 - ▶ in molecular storage paradigms, e.g. DNA storage [HMG19].
- May use convolutional codes for correction.
- Problem: High complexity of Viterbi & MAP decoders.

[[]HMG19] R. Heckel *et al.*, "A Characterization of the DNA Data Storage Channel," en, *Scientific Reports*, vol. 9, no. 1, p. 9663, Dec. 2019

- Insertions and deletions occur.
 - due to improper synchronization.
 - ▶ in molecular storage paradigms, e.g. DNA storage [HMG19].
- May use convolutional codes for correction.
- Problem: High complexity of Viterbi & MAP decoders.
- Solution: Use sequential decoders!
 - Only examines 'promising' codewords.
 - Complexity independent of memory.

[[]HMG19] R. Heckel *et al.*, "A Characterization of the DNA Data Storage Channel," en, *Scientific Reports*, vol. 9, no. 1, p. 9663, Dec. 2019

- Permits insertions, deletions and substitutions at random positions.
 - → Denote as 'IDS channel'.

[[]DM01] M. C. Davey and D. J. C. MacKay, "Reliable communication over channels with insertions, deletions, and substitutions," *IEEE Transactions on Information Theory*, vol. 47, no. 2, pp. 687–698, Feb. 2001

- Permits insertions, deletions and substitutions at random positions.
 - → Denote as 'IDS channel'.
- Specified by insertion, deletion and substitution probabilities, i.e., P_i , P_d and P_s .

- Permits insertions, deletions and substitutions at random positions.
 - → Denote as 'IDS channel'.
- Specified by insertion, deletion and substitution probabilities, i.e., P_i , P_d and P_s .
- Modeled as finite-state machine [DM01].
 - ▶ Let channel input be $\mathbf{x} = (x_1, \dots, x_T)$.
 - \blacktriangleright When x_i awaits transmission, four events possible.

- Permits insertions, deletions and substitutions at random positions.
 - → Denote as 'IDS channel'.
- Specified by insertion, deletion and substitution probabilities, i.e., P_i , P_d and P_s .
- Modeled as finite-state machine [DM01].
 - ▶ Let channel input be $\mathbf{x} = (x_1, \dots, x_T)$.
 - \blacktriangleright When x_i awaits transmission, four events possible.

[[]DM01] M. C. Davey and D. J. C. MacKay, "Reliable communication over channels with insertions, deletions, and substitutions," *IEEE Transactions on Information Theory*, vol. 47, no. 2, pp. 687–698, Feb. 2001

Overview

4周)4号)4号)

Prior work

- [MT10] & [BF15] adapted Viterbi & MAP decoders to accommodate indels.
- [Gal61] & [MT02] investigated sequential decoding for IDS channels.

Our contributions

- New decoding metric for Fano's sequential decoder.
- Determination of 'cutoff rate'.
 - \rightarrow Beyond this code rate, sequential decoder is computationally impractical.

[MT10] M. F. Mansour and A. H. Tewfik, "Convolutional decoding in the presence of synchronization errors," *IEEE Journal on Selected Areas in Communications*, vol. 28, no. 2, pp. 218–227, Feb. 2010

[BF15] V. Buttigieg and N. Farrugia, "Improved bit error rate performance of convolutional codes with synchronization errors," in *Proc. Int. Conf. Comm.*, London, Jun. 2015, pp. 4077–4082

[Gal61] R. G. Gallager, "Sequential decoding for binary channel with noise and synchronization errors," Lincoln Lab Group, Arlington, VA, USA, Tech. Rep., Sep. 1961

[MT02] M. F. Mansour and A. H. Tewfik, "Convolutional codes for channels with substitutions, insertions, and deletions," in *Proc. Gobal Commun. Conf.*, vol. 2, Taipei, Taiwan: IEEE, 2002, pp. 1051–1055

• Encoding scheme with memory.

- Encoding scheme with memory.
- For a (c, b, m) convolutional code, its encoder

- Encoding scheme with memory.
- For a (c, b, m) convolutional code, its encoder
 - ► takes *b* input bits and

- Encoding scheme with memory.
- For a (c, b, m) convolutional code, its encoder
 - ► takes *b* input bits and
 - ► produces *c* output bits,

- Encoding scheme with memory.
- For a (c, b, m) convolutional code, its encoder
 - ► takes *b* input bits and
 - ► produces *c* output bits,
 - ▶ which depend on last b(m+1) input bits.

- Encoding scheme with memory.
- For a (c, b, m) convolutional code, its encoder
 - ► takes *b* input bits and
 - ► produces *c* output bits,
 - ▶ which depend on last b(m+1) input bits.

Figure: A (2, 1, 1) binary convolutional encoder

Introduction

Sequential Decoding

Modifications for IDS Channels

Results & Conclusion

Applicable to tree codes ⊇ convolutional codes.

- Applicable to tree codes ⊇ convolutional codes.
- Uses tree representation of codes.

Figure: Code tree for a (2, 1, 1) convolutional code.

- Applicable to tree codes ⊇ convolutional codes.
- Uses tree representation of codes.
- Only explores 'promising' paths in tree, unlike Viterbi.
 - → Suboptimal, but faster!

Figure: Code tree for a (2, 1, 1) convolutional code.

- Applicable to tree codes ⊇ convolutional codes.
- Uses tree representation of codes.
- Only explores 'promising' paths in tree, unlike Viterbi.
 - → Suboptimal, but faster!
- For channel output **y**, assigns 'metrics' to nodes.

Figure: Code tree for a (2, 1, 1) convolutional code.

- Applicable to tree codes ⊇ convolutional codes.
- Uses tree representation of codes.
- Only explores 'promising' paths in tree, unlike Viterbi.
 - → Suboptimal, but faster!
- For channel output **y**, assigns 'metrics' to nodes.

Example

Say we receive y = 1010 over a BSC with $P_s = 0.04$.

Figure: Code tree for a (2, 1, 1) convolutional code.

 Decoder starts at root; evaluates successors' metrics.

- Decoder starts at root; evaluates successors' metrics.
- $\bullet \ \ \text{Chosen step size, } \Delta \leftarrow 0.5.$

- Decoder starts at root; evaluates successors' metrics.
- $\bullet \ \ \text{Chosen step size, } \Delta \leftarrow 0.5.$
- Initialize threshold.

$$T = 0$$
 $\mu_s = -0.4$

$$\Delta = 0.5$$

Algorithm

• Is best successor metric ≥ T?

$$T = 0$$
 $\mu_s = -0.6$
 $\mu_p = -\infty$

$$\Delta = 0.5$$

Algorithm

- Is best successor metric ≥ T?
 - ► NO: Is predecessor metric ≥ *T*?

$$T = -0.5$$
 $\mu_s = -0.4$
 $\mu_p = -\infty$

$$\Delta = 0.5\,$$

Algorithm

- Is best successor metric ≥ T?
 - ▶ NO: Is predecessor metric $\geq T$?
 - No: Lowers T by Δ .

$$T = -0.5$$

$$\mu_{
m s}=-$$
0.8

$$\mu_{
m p}={
m 0}$$

$$\mu_c = -0.4$$

Algorithm

- Is best successor metric ≥ T?
 - ► NO: Is predecessor metric ≥ *T*?

 $\Delta = 0.5$

- No: Lowers T by Δ.
- YES: Move forward. Evaluate successors.

$$T = -0.5$$

$$\mu_s = -0.4$$

$$\mu_p = -\infty$$

$$\mu_c = 0$$

$$\Delta = 0.5$$

Algorithm

- Is best successor metric ≥ T?
 - ► NO: Is predecessor metric ≥ *T*?
 - No: Lowers T by Δ .
 - Yes: Move back. Pick next best.
 - YES: Move forward. Evaluate successors.

Fano's Algorithm

Summary

• If $\mu_s \geq T$: decoder moves forward.

$$T = -0.5$$

 $\mu_p = -0.4$
 $\mu_c = 0.6$
 $\mu_s = -$

Fano's Algorithm

$$T=-0.5$$
 $\mu_{
ho}=-0.4$
 $\mu_{c}=0.6$
 $\mu_{s}=-$

Summary

- If $\mu_s \geq T$: decoder moves forward.
- \bullet When error occurs \rightarrow metric dip across branch.

Fano's Algorithm

$$T=-0.5$$

 $\mu_{
ho}=-0.4$
 $\mu_{
ho}=0.6$
 $\mu_{
ho}=-$

Summary

- If $\mu_s \geq T$: decoder moves forward.
- $\bullet \;$ When error occurs \to metric dip across branch.
- May cause $\mu_s < T$.

Fano's Algorithm

$$T = -0.5$$

$$\mu_{p} = -0.4$$

$$\mu_{c} = 0.6$$

$$\mu_{s} = -$$

Summary

- If $\mu_s \geq T$: decoder moves forward.
- $\bullet \;$ When error occurs \to metric dip across branch.
- May cause $\mu_s < T$.
 - ► Backtracks to find nodes above *T*.

Fano's Algorithm

$$T = -0.5$$

 $\mu_p = -0.4$
 $\mu_c = 0.6$
 $\mu_s = -$

Summary

- If $\mu_s \geq T$: decoder moves forward.
- When error occurs → metric dip across branch.
- May cause $\mu_s < T$.
 - ► Backtracks to find nodes above *T*.
 - ► When none exist, lowers *T* & repeats.

Introduction

Sequential Decoding

Modifications for IDS Channels

Results & Conclusion

• Aim: Modify code tree to account for insertions & deletions.

[BF15] V. Buttigieg and N. Farrugia, "Improved bit error rate performance of convolutional codes with synchronization errors," in *Proc. Int. Conf. Comm.*, London, Jun. 2015, pp. 4077–4082

[DM01] M. C. Davey and D. J. C. MacKay, "Reliable communication over channels with insertions, deletions, and substitutions," *IEEE Transactions on Information Theory*, vol. 47, no. 2, pp. 687–698, Feb. 2001

- Aim: Modify code tree to account for insertions & deletions.
- Idea: Use 'drift state' [DM01, BF15].
 - \rightarrow Let $d_t = \#$ received bits #transmitted bits, at time t.

[DM01] M. C. Davey and D. J. C. MacKay, "Reliable communication over channels with insertions, deletions, and substitutions," *IEEE Transactions on Information Theory*, vol. 47, no. 2, pp. 687–698, Feb. 2001

[[]BF15] V. Buttigleg and N. Farrugia, "Improved bit error rate performance of convolutional codes with synchronization errors," in *Proc. Int. Conf. Comm.*, London, Jun. 2015, pp. 4077–4082

- Aim: Modify code tree to account for insertions & deletions.
- Idea: Use 'drift state' [DM01, BF15].
 - \rightarrow Let d_t = #received bits #transmitted bits, at time t.
- In new code tree, each state must combine encoder & drift states.

$$v_t = (s_t, d_t)$$

Figure: Hidden Markov Model seen by receiver

- Aim: Modify code tree to account for insertions & deletions.
- Idea: Use 'drift state' [DM01, BF15].
 - \rightarrow Let $d_t =$ #received bits #transmitted bits, at time t.
- In new code tree, each state must combine encoder & drift states.

$$v_t = (s_t, \frac{d_t}{d_t})$$

Figure: Hidden Markov Model seen by receiver

- Aim: Modify code tree to account for insertions & deletions.
- Idea: Use 'drift state' [DM01, BF15].
 - \rightarrow Let $d_t = \#$ received bits #transmitted bits, at time t.
- In new code tree, each state must combine encoder & drift states.

$$v_t = (s_t, \frac{d_t}{d_t})$$

Figure: Hidden Markov Model seen by receiver

• Consider received sequence **y**.

- Consider received sequence y.
- Metric of any node v_t should

- Consider received sequence y.
- Metric of any node v_t should
 - ► minimize probability of choosing wrong successor.

- Consider received sequence y.
- Metric of any node v_t should
 - minimize probability of choosing wrong successor.
 - ightharpoonup quantify closeness of \mathbf{y} with path to v_t from root.

- Consider received sequence **v**.
- Metric of any node v_t should
 - minimize probability of choosing wrong successor.
 - ightharpoonup quantify closeness of \mathbf{y} with path to v_t from root.
- Say v_t is reached from tree root via
 - ightharpoonup encoder states $ightharpoonup = (s_0, \dots, s_t)$,
 - ► drift states $\mathbf{d} = (d_0 = 0, d_1 \dots, d_t)$.

- Consider received sequence **v**.
- Metric of any node v_t should
 - minimize probability of choosing wrong successor.
 - ightharpoonup quantify closeness of \mathbf{y} with path to v_t from root.
- Say v_t is reached from tree root via
 - ightharpoonup encoder states $ightharpoonup = (s_0, \dots, s_t)$,
 - ightharpoonup drift states $\mathbf{d} = (d_0 = 0, d_1, \dots, d_t)$.

$$\mu(\mathbf{v}_t) = \log P(\mathbf{v}_t | \mathbf{y})$$

$$= \log P(\mathbf{s}, \mathbf{d} | \mathbf{y})$$

- Consider received sequence y.
- Metric of any node v_t should
 - minimize probability of choosing wrong successor.
 - ightharpoonup quantify closeness of \mathbf{y} with path to \mathbf{v}_t from root.
- Say v_t is reached from tree root via
 - ightharpoonup encoder states $ightharpoonup = (s_0, \dots, s_t)$,
 - ightharpoonup drift states $\mathbf{d} = (d_0 = 0, d_1, \dots, d_t)$.

$$\mu(\mathbf{v}_t) = \log P(\mathbf{v}_t | \mathbf{y})$$

$$= \log P(\mathbf{s}, \mathbf{d} | \mathbf{y})$$

• Special case: When no $P_i = P_d = 0$, ignore drift states.

$$\mu(\mathbf{v}_t) = \log P(\mathbf{s}|\mathbf{y})$$

→ Original Fano metric for substitution-only channels!

Introduction

Sequential Decoding

Modifications for IDS Channels

Results & Conclusion

Bit Error Rate

• Recall:

Complexity $\propto \# \text{Branch metric computations}$

• Recall:

Complexity $\propto \# \text{Branch metric computations}$

- Decoding complexity for
 - ► Viterbi:

 $\# \mathsf{Edges} \; \mathsf{in} \; \mathsf{trellis}$

Recall:

Complexity $\propto \# Branch metric computations$

- Decoding complexity for
 - ► Viterbi:

 $\# \mathsf{Nodes} \; \mathsf{in} \; \mathsf{trellis} \cdot \# \mathsf{Edges}_{\mathsf{out}} \; \mathsf{per} \; \mathsf{node}$

[Constant]

Recall:

Complexity $\propto \# Branch metric computations$

- Decoding complexity for
 - ► Viterbi:

#Nodes in trellis · #Edges_{out} per node [Constant]

► Fano's:

 $\# Steps forward \cdot \# Edges_{out} per node$

[Variable]

Recall:

Complexity $\propto \# Branch metric computations$

- Decoding complexity for
 - ▶ Viterbi:

#Nodes in trellis · #Edges_{out} per node [Constant]

► Fano's:

#Steps forward $\cdot \#$ Edges_{out} per node [Variable]

→ Note: Independent of memory!

Recall:

Complexity $\propto \# Branch metric computations$

- Decoding complexity for
 - ▶ Viterbi:

#Nodes in trellis · #Edges_{out} per node

[Constant]

► Fano's:

 $\# Steps \ forward \cdot \# Edges_{out} \ per \ node$

[Variable]

→ Note: Independent of memory!

Define

Complexity reduction factor = $\frac{\text{Complexity of Viterbi}}{\text{Mean complexity of Fano's}}$

< □ > < ≥ > < ≥ >

• Recall:

Complexity $\propto \# Branch metric computations$

- Decoding complexity for
 - ▶ Viterbi:

#Nodes in trellis · #Edges_{out} per node

[Constant]

► Fano's:

 $\# Steps forward \cdot \# Edges_{out} per node$

[Variable]

→ Note: Independent of memory!

Define

Complexity reduction factor = $\frac{\text{Complexity of Viterbi}}{\text{Mean complexity of Fano's}}$ = $\frac{\text{#Nodes in trellis}}{\text{#Mean steps forward}}$

ТИП

#Blocks=300, c=3, b=1, Terminated

More errors

ТИП

ТШП

ТИП

ТИП

#Blocks=300, c=3, b=1, Terminated

Question: When is Fano's algorithm no longer practical to use?

• Beyond cutoff rate R_0 , sequential decoder is computational impractical.

[[]JZ15] R. Johannesson and K. S. Zigangirov, "Sequential decoding," in *Fundamentals of Convolutional Coding*. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015, pp. 425–484

- Beyond cutoff rate R_0 , sequential decoder is computational impractical.
- For rates $< R_0$,
 - ► Complexity of decoding one frame grows **linearly** with #blocks.

- Beyond cutoff rate R_0 , sequential decoder is computational impractical.
- For rates < R₀,
 - ► Complexity of decoding one frame grows **linearly** with #blocks.
- For rates $> R_0$,
 - ► Too much backtracking.
 - ► Complexity of decoding one frame grows **exponentially** with #blocks..

[[]JZ15] R. Johannesson and K. S. Zigangirov, "Sequential decoding," in *Fundamentals of Convolutional Coding*. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015, pp. 425–484

- Beyond cutoff rate R_0 , sequential decoder is computational impractical.
- For rates < R₀,
 - ► Complexity of decoding one frame grows **linearly** with #blocks.
- For rates $> R_0$,
 - ► Too much backtracking.
 - ► Complexity of decoding one frame grows **exponentially** with #blocks..
- By extending methods in [JZ15], we can compute this!

[[]JZ15] R. Johannesson and K. S. Zigangirov, "Sequential decoding," in *Fundamentals of Convolutional Coding*. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015, pp. 425–484

ТИП

 P_0^* & $P_{0.02}^*$ mark cutoff rate operation for code (3,1) at $P_s=0$ and $P_s=0.02$ respectively.

Conclusion

Summary

- New decoding metric for Fano's algorithm in IDS channels.
- Determination of computational cutoff rate.

Future work

- Error probability analysis.
- Branching process techniques for complexity analysis.

Conclusion

Summary

- New decoding metric for Fano's algorithm in IDS channels.
- Determination of computational cutoff rate.

Future work

- Error probability analysis.
- Branching process techniques for complexity analysis.

Thank you!

References

4周 > 4 至 > 4 至 >

- [1] R. Heckel, G. Mikutis, and R. N. Grass, "A Characterization of the DNA Data Storage Channel," en, *Scientific Reports*, vol. 9, no. 1, p. 9663, Dec. 2019.
- [2] M. C. Davey and D. J. C. MacKay, "Reliable communication over channels with insertions, deletions, and substitutions," *IEEE Transactions on Information Theory*, vol. 47, no. 2, pp. 687–698, Feb. 2001.
- [3] M. F. Mansour and A. H. Tewfik, "Convolutional decoding in the presence of synchronization errors," *IEEE Journal on Selected Areas in Communications*, vol. 28, no. 2, pp. 218–227, Feb. 2010.
- [4] V. Buttigieg and N. Farrugia, "Improved bit error rate performance of convolutional codes with synchronization errors," in *Proc. Int. Conf. Comm.*, London, Jun. 2015, pp. 4077–4082.
- [5] R. G. Gallager, "Sequential decoding for binary channel with noise and synchronization errors," Lincoln Lab Group, Arlington, VA, USA, Tech. Rep., Sep. 1961.
- [6] M. F. Mansour and A. H. Tewfik, "Convolutional codes for channels with substitutions, insertions, and deletions," in *Proc. Gobal Commun. Conf.*, vol. 2, Taipei, Taiwan: IEEE, 2002, pp. 1051–1055.
- [7] R. Johannesson and K. S. Zigangirov, "Sequential decoding," in *Fundamentals of Convolutional Coding*. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015, pp. 425–484.