# IPhO 2018 Lisbon, Portugal



# Solutions to Experimental Problem 1

# Paper transistor

(Elvira Fortunato, Luís Pereira, Rui Igreja, Paul Grey, Inês Cunha, Diana Gaspar, Rodrigo Martins)

July 23, 2018

# Sketch of the solutions:

#### Part A. Circuit dimensioning (2.4 points)

## **A.1**

Using Ohm's law, the current through the voltage divisor is  $I=V_{\mathsf{in}}/(R_x+R_y)$ , and  $V_{\mathsf{out}}=R_yI$ . Thus

A.1  $V_{\rm out} = V_{\rm in} \frac{R_y}{R_x + R_y} \label{eq:Vout}$ 

**A.2** 

**A.2** Uncertainty in each measurement:  $\pm 0.01 \Omega$  0.5pt

| #              | $R_{T1}$ | $R_{T2}$ | $R_{T3}$ |
|----------------|----------|----------|----------|
| 1              | 122.3    | 125.3    | 125.3    |
| 2              | 122.3    | 125.4    | 125.4    |
| 3              | 122.3    | 125.3    | 125.4    |
| 4              | 122.2    | 125.2    | 125.5    |
| 5              | 122.3    | 125.4    | 125.4    |
| 6              | 122.3    | 125.4    | 125.3    |
| 7              | 122.2    | 125.4    | 125.4    |
| 8              | 122.2    | 125.3    | 125.4    |
| 9              | 122.2    | 125.4    | 125.4    |
| 10             | 122.2    | 125.4    | 125.5    |
| $\overline{R}$ | 122.25   | 125.35   | 125.40   |
| $\sigma_R$     | 0.05     | 0.07     | 0.07     |

### **A.3**

**A.3** For a parallelepiped conductor of length l, width w and thickness t, the resistance is given by

$$R = \rho \frac{l}{w t}$$

For a thin film of square shape, l=w, thus

$$R = \rho \frac{l}{tw} = \frac{\rho}{t} = R_{\square}.$$

### **A.4**

The weighted average value (weighed by  $1/\sigma^2$  ) of the sheet resistance is  $\overline{R}=123.94\pm0.04~\Omega$  and  $\rho=R_{\Box}t$ .

$$A.4 \qquad \overline{R} = 123.94 \pm 0.04 \ \Omega$$
 
$$\rho = 2.5 \pm 0.1 \times 10^{-3} \ \Omega \ \text{m}.$$

0.4pt

# **A.5**

**A.5** For a rectangular thin film  $R = R_{\square} \frac{l}{w}$ , thus

0.5pt

$$R_1 = R_2 = R_{\square} \left( 1 + 1/0.9 + 1/0.8 + 1/0.7 + 1/0.6 + 1/0.5 + 1/0.4 + 1/0.3 \right) = 14.2897 R_{\square}$$

Measured values:

$$\begin{split} R_1 &= 1776 \pm 1\Omega \quad k_1 = 14.33 \\ R_2 &= 1787 \pm 1\Omega \quad k_2 = 14.42 \end{split}$$

$$\overline{\kappa} = 14.3 \pm 0.1$$

Comparison with the theoretical value: the average value is compatible, within the assigned error bar, with the theoretical value.

### **A.6** Uncertainty in resistance measurements: $\pm 1 \Omega$ .

0.3pt

### Resistor $R_1$ :

| Points | $R_x/\Omega$ | $R_y/\Omega$ |
|--------|--------------|--------------|
| Z      | 1776         | 0            |
| Α      | 1708         | 165          |
| В      | 1578         | 296          |
| С      | 1421         | 452          |
| D      | 1239         | 607          |
| E      | 1033         | 829          |
| F      | 768          | 1072         |
| G      | 439          | 1394         |
| V      | 0            | 1782         |

### Resistor $R_2$ :

| Points | $R_x/\Omega$ | $R_y/\Omega$ |
|--------|--------------|--------------|
| Z      | 1791         | 0            |
| Н      | 1428         | 411          |
| I      | 1120         | 737          |
| J      | 882          | 996          |
| K      | 670          | 1200         |
| L      | 498          | 1396         |
| М      | 341          | 1555         |
| N      | 188          | 1719         |
| W      | 0            | 1793         |

## **A.7**

**A.7** 0.3pt

| Points | $V_{out}/V$ | Points | $V_{out}/V$ |
|--------|-------------|--------|-------------|
| Z      | 0           | _      | _           |
| Α      | -0.208      | Н      | 0.664       |
| В      | -0.435      | I      | 1.171       |
| С      | -0.699      | J      | 1.593       |
| D      | -1.003      | K      | 1.939       |
| E      | -1.337      | L      | 2.24        |
| F      | -1.756      | М      | 2.51        |
| G      | -2.29       | N      | 2.77        |
| V      | -2.99       | W      | 3.00        |

## Part B. Characteristic Curves of the JFET transistor (4.5 points)

## **B.1**

**B.1**  $I_{DS} = 11.84 \pm 0.01 \text{ mA}$  0.2pt

### **B.2** $I_{DS}$ currents in mA:

0.8pt

| Gate/Drain | Z | Н    | I    | J    | K    | L    | М    | N    | W     |
|------------|---|------|------|------|------|------|------|------|-------|
| Z          | 0 | 1.58 | 2.18 | 2.82 | 3.60 | 4.75 | 6.45 | 9.43 | 11.87 |
| А          | 0 | 1.52 | 2.13 | 2.67 | 3.47 | 4.53 | 6.04 | 7.82 | 8.78  |
| В          | 0 | 1.45 | 2.00 | 2.63 | 3.29 | 4.21 | 5.15 | 5.77 | 6.09  |
| С          | 0 | 1.28 | 1.79 | 2.23 | 2.59 | 2.85 | 2.99 | 3.08 | 3.16  |
| D          | 0 | 0.65 | 0.76 | 0.81 | 0.85 | 0.89 | 0.92 | 0.94 | 0.96  |
| E          | 0 | 0.03 | 0.04 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.07  |
| F          | 0 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| G          | 0 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| V          | 0 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |

**B.3** 

The unloaded voltage is

$$V_{\mathsf{out}} = V_{\mathsf{in}} \frac{R_y}{R_x + R_y}$$

and the loaded voltage is

$$V_{\rm out}^{\rm L} = V_{\rm in} \frac{R_y'}{R_x + R_y'}, \label{eq:Volume}$$

where  $R_y^\prime$  is the equivalent resistance of the parallel association between  $R_y$  and  $R_{\rm L}$ :

$$R_y' = \frac{R_y R_{\rm L}}{R_y + R_{\rm L}}. \label{eq:Ry}$$

Thus,

$$f = \frac{\frac{R_y'}{R_x + R_y'}}{\frac{R_y}{R_x + R_y}} = \frac{(R_x + R_y)R_y'}{(R_x + R_y')R_y} = \frac{(R_x + R_y)\frac{R_{\rm L}}{R_y + R_{\rm L}}}{R_x + R_y\frac{R_{\rm L}}{R_y + R_{\rm L}}}$$

Note that in terms of  $\eta=1/(1+rac{R_y}{R_{\rm L}})$ , the factor f can be written as

$$f = \frac{(R_x + R_y)\eta}{R_x + R_y\eta}$$

When  $R_{\rm L}\gg R_y$ ,  $\eta\to 1$ , and  $f\to 1$ ; when  $R_{\rm L}\ll R_y$ ,  $\eta\to 0$  and  $f\to 0$ .

**B.3** 

$$f = \frac{(R_x + R_y)\eta}{R_x + R_y\eta}$$

0.2pt

0.7pt

**B.4** 

**B.4** 

Gate: A 
$$V_{\rm GS}=0~{
m V}$$
  $R_{\rm DS}=50.0$ 

| Drain | $V_{out}/V$ | $V_{ m out}^L/{ m V}$ | $V_{DS}/V$ | $I_{DS}/mA$ | rI/V  | f     |
|-------|-------------|-----------------------|------------|-------------|-------|-------|
| Z     | 0,000       | 0,000                 | 0,000      | 0,00        | 0,000 | 1,000 |
| Н     | 0,664       | 0,105                 | 0,089      | 1,58        | 0,016 | 0,158 |
| I     | 1,171       | 0,139                 | 0,117      | 2,18        | 0,022 | 0,119 |
| J     | 1,593       | 0,181                 | 0,153      | 2,82        | 0,028 | 0,114 |
| K     | 1,939       | 0,237                 | 0,201      | 3,60        | 0,036 | 0,122 |
| L     | 2,240       | 0,315                 | 0,267      | 4,75        | 0,048 | 0,140 |
| М     | 2,510       | 0,443                 | 0,379      | 6,45        | 0,065 | 0,177 |
| N     | 2,770       | 0,724                 | 0,630      | 9,43        | 0,094 | 0,261 |
| W     | 3,000       | 3,000                 | 2,881      | 11,87       | 0,119 | 1,000 |

0.7pt

B.4 cont.

Gate: B

 $V_{\mathsf{GS}} = -$ 0.208 V

 $R_{\mathsf{DS}} = \mathsf{58.73}$ 

| Drain | $V_{out}/V$ | $V_{out}^L/V$ | $V_{DS}/V$ | $I_{DS}/mA$ | rI/V  | $\int f$ |
|-------|-------------|---------------|------------|-------------|-------|----------|
| Z     | 0.000       | 0.000         | 0.000      | 0.00        | 0.000 | 1.000    |
| Н     | 0.664       | 0.118         | 0.102      | 1.52        | 0.015 | 0.177    |
| I     | 1.171       | 0.157         | 0.136      | 2.13        | 0.021 | 0.134    |
| J     | 1.593       | 0.204         | 0.177      | 2.67        | 0.027 | 0.128    |
| K     | 1.939       | 0.267         | 0.233      | 3.47        | 0.035 | 0.138    |
| L     | 2.240       | 0.353         | 0.308      | 4.53        | 0.045 | 0.158    |
| М     | 2.510       | 0.495         | 0.435      | 6.04        | 0.060 | 0.197    |
| N     | 2.770       | 0.799         | 0.721      | 7.82        | 0.078 | 0.289    |
| W     | 3.000       | 3.000         | 2.912      | 8.78        | 0.088 | 1.000    |

Gate: C

$$V_{\mathsf{GS}} = - 0.435 \, \mathsf{V}$$

$$R_{\mathrm{DS}} = 72.54$$

| Drain | $V_{out}/V$ | $V_{ m out}^L/{ m V}$ | $V_{DS}/V$ | $I_{DS}/mA$ | rI/V  | f     |
|-------|-------------|-----------------------|------------|-------------|-------|-------|
| Z     | 0.000       | 0.000                 | 0.000      | 0.00        | 0.000 | 1.000 |
| Н     | 0.664       | 0.136                 | 0.122      | 1.45        | 0.015 | 0.205 |
| I     | 1.171       | 0.183                 | 0.163      | 2.00        | 0.020 | 0.157 |
| J     | 1.593       | 0.239                 | 0.213      | 2.63        | 0.026 | 0.150 |
| K     | 1.939       | 0.312                 | 0.279      | 3.29        | 0.033 | 0.161 |
| L     | 2.240       | 0.411                 | 0.369      | 4.21        | 0.042 | 0.184 |
| М     | 2.510       | 0.572                 | 0.520      | 5.15        | 0.052 | 0.228 |
| N     | 2.770       | 0.907                 | 0.850      | 5.77        | 0.058 | 0.328 |
| W     | 3.000       | 3.000                 | 2.939      | 6.09        | 0.061 | 1.000 |

B.4 cont.

0.7pt

Gate: D

 $V_{\mathsf{GS}} = - \mathsf{0.699}\,\mathsf{V}$ 

 $R_{\mathrm{DS}} = 99.86$ 

| Drain | $V_{out}/V$ | $V_{ m out}^L/{ m V}$ | $V_{DS}/V$ | $I_{DS}/mA$ | rI/V  | f     |
|-------|-------------|-----------------------|------------|-------------|-------|-------|
| Z     | 0.000       | 0.000                 | 0.000      | 0.00        | 0.000 | 1.000 |
| Н     | 0.664       | 0.170                 | 0.157      | 1.28        | 0.013 | 0.256 |
| I     | 1.171       | 0.232                 | 0.214      | 1.79        | 0.018 | 0.198 |
| J     | 1.593       | 0.303                 | 0.281      | 2.23        | 0.022 | 0.190 |
| K     | 1.939       | 0.395                 | 0.369      | 2.59        | 0.026 | 0.204 |
| L     | 2.240       | 0.516                 | 0.487      | 2.85        | 0.029 | 0.230 |
| М     | 2.510       | 0.708                 | 0.678      | 2.99        | 0.030 | 0.282 |
| N     | 2.770       | 1.089                 | 1.059      | 3.08        | 0.031 | 0.393 |
| W     | 3.000       | 3.000                 | 2.968      | 3.16        | 0.032 | 1.000 |

Gate: E

$$V_{\mathsf{GS}} = -$$
1.003 V

$$R_{\mathrm{DS}}=$$
 176.3

| Drain | $V_{out}/V$ | $V_{ m out}^L/{ m V}$ | $V_{DS}/V$ | $I_{DS}/mA$ | rI/V  | f     |
|-------|-------------|-----------------------|------------|-------------|-------|-------|
| Z     | 0.000       | 0.000                 | 0.000      | 0.00        | 0.000 | 1.000 |
| Н     | 0.664       | 0.245                 | 0.238      | 0.65        | 0.007 | 0.369 |
| I     | 1.171       | 0.346                 | 0.338      | 0.76        | 0.008 | 0.295 |
| J     | 1.593       | 0.454                 | 0.446      | 0.81        | 0.008 | 0.285 |
| K     | 1.939       | 0.586                 | 0.578      | 0.85        | 0.009 | 0.302 |
| L     | 2.240       | 0.754                 | 0.745      | 0.89        | 0.009 | 0.337 |
| М     | 2.510       | 1.004                 | 0.994      | 0.92        | 0.009 | 0.400 |
| N     | 2.770       | 1.451                 | 1.441      | 0.94        | 0.009 | 0.524 |
| W     | 3.000       | 3.000                 | 2.990      | 0.96        | 0.010 | 1.000 |

B.4 cont.

1.2pt

Gate: F

 $V_{\mathsf{GS}} = -$ 1.337 V

 $R_{\mathrm{DS}}=$  1111

| Drain | $V_{out}/V$ | $V_{out}^L/V$ | $V_{DS}/V$ | $I_{DS}/mA$ | rI/V  | f     |
|-------|-------------|---------------|------------|-------------|-------|-------|
| Z     | 0.000       | 0.000         | 0.000      | 0.00        | 0.000 | 1.000 |
| Н     | 0.664       | 0.526         | 0.523      | 0.03        | 0.003 | 0.791 |
| I     | 1.171       | 0.857         | 0.853      | 0.04        | 0.004 | 0.732 |
| J     | 1.593       | 1.149         | 1.144      | 0.05        | 0.005 | 0.721 |
| K     | 1.939       | 1.431         | 1.426      | 0.05        | 0.005 | 0.738 |
| L     | 2.240       | 1.719         | 1.714      | 0.05        | 0.005 | 0.767 |
| М     | 2.510       | 2.039         | 2.034      | 0.05        | 0.005 | 0.812 |
| N     | 2.770       | 2.430         | 2.424      | 0.06        | 0.006 | 0.877 |
| W     | 3.000       | 3.000         | 2.993      | 0.07        | 0.007 | 1.000 |

Gate: G

$$V_{\mathsf{GS}} = -$$
1.756 V

$$R_{\rm DS}= \infty$$

| Drain | $V_{out}/V$ | $V_{ m out}^L/{ m V}$ | $V_{DS}/V$ | $I_{DS}/mA$ | rI/V  | f      |
|-------|-------------|-----------------------|------------|-------------|-------|--------|
| Z     | 0.000       | 0.000                 | 0.000      | 0.00        | 0.000 | 1.000  |
| Н     | 0.664       | -0.288                | -0.288     | 0.00        | 0.000 | -0.434 |
| I     | 1.171       | -0.325                | -0.325     | 0.00        | 0.000 | -0.278 |
| J     | 1.593       | -0.415                | -0.415     | 0.00        | 0.000 | -0.260 |
| K     | 1.939       | -0.562                | -0.562     | 0.00        | 0.000 | -0.290 |
| L     | 2.240       | -0.800                | -0.800     | 0.00        | 0.000 | -0.357 |
| М     | 2.510       | -1.325                | -1.325     | 0.00        | 0.000 | -0.528 |
| N     | 2.770       | -3.675                | -3.675     | 0.00        | 0.000 | -1.327 |
| W     | 3.000       | 3.000                 | 3.000      | 0.00        | 0.000 | 1.000  |

### **B.5**



### **B.6**

and will be ignored.

The  $R_{\rm DS}$  values are obtained from the slopes of the linear region of the output curves (small  $V_{\rm DS}$  voltages). The last point in the plot  $R_{\rm DS}(V_{\rm GS})$  has a large error bars as we are missing points in the linear regime,

The solid line in the plot is the result of a fit to  $R_{\rm DS}=R_{\rm DS}^0\,(1-V_{\rm GS}/V_{\rm P})$ , that gave  $R_{\rm DS}^0=52(2)\,\Omega$ ,  $V_{\rm P}=-1.18(1)\,{\rm V}$ .

0.5pt

**B.6** 

| $V_{GS}/V$ | $R_{DS}/\Omega$ |
|------------|-----------------|
| 0          | 56.5 ±2         |
| -0.208     | 67.4 ±2         |
| -0.435     | 84.1 ±4         |
| -0.699     | 122.84 ±4       |
| -1.003     | 366.6 ±4        |
| -1.337     | 1111 ±100       |

JFET  $\rm R_{DS}$  vs.  $\rm V_{GS}$ 400 350 300 250 200 150 100 50 0 <sup>L</sup> -1 -0.8 -0.6 -0.4 -0.2 0  $V_{\rm GS}/V$ 

The data was obtained with  $V_{
m DS}=+3$  V. The solid line is the result of the fit to the data of the function

$$I_{\rm DS} = I_{\rm DSS} \left(1 - V_{\rm GS}/V_{\rm P}\right)^2. \label{eq:IDS}$$

The fitted parameters are  $I_{\rm DSS}=11.89\pm0.06$  mA and  $V_{\rm P}=-1.42\pm0.02$  V.



**B.8** 

From

$$I_{\mathrm{DS}} = I_{\mathrm{DSS}} \left(1 - V_{\mathrm{GS}}/V_{\mathrm{P}}\right)^2$$

a plot of  $\sqrt{I_{\rm DS}}$  as function of  $V_{\rm GS}$  should yield a straight line with slope  $a=-\sqrt{I_{\rm DS}}/V_{\rm P}$  that intercepts the x-axis at  $V_{\rm P}$ .





A linear fit to fx) = ax + b gave a = 2.50(2) and b = 3.47(2). Thus,  $V_{\rm P} = -b/a = -1.39(2)$  V and  $I_{\rm DSS} = 4.23^2 = 12.0(2)$  mA.

$$\begin{array}{ll} {\rm B.8} & & V_{\rm P} = -b/a = -1.39(2) \; {\rm V} \\ & & I_{\rm DSS} = 4.23^2 = 12.0(2) \; {\rm mA.} \end{array}$$

0.4pt

## **B.9**

The transcondutance is the slope of the transfer curve at a given point. From the transfer plot, we draw the tangent at the point with abscissa  $-0.50\,\mathrm{V}$  and read the slope from the graph, obtaining  $g=10.8(1)\,\mathrm{m}^{-1}$ .





From

$$I_{\mathrm{D}} = I_{\mathrm{DSS}} \left(1 - V_{\mathrm{GS}}/V_{\mathrm{P}}\right)^{2}, \label{eq:IDSS}$$

$$g = \frac{\partial I_{\rm DS}}{\partial V_{\rm GS}} = 2I_{\rm DSS}\left(1 - V_{\rm GS}/V_{\rm P}\right) \left(-\frac{1}{V_{\rm P}}\right) = \frac{2I_{\rm DSS}}{V_{\rm P}}\left(V_{\rm GS}/V_{\rm P} - 1\right). \label{eq:gaussian}$$

Substituting values,

$$q=10.8$$
 m  $^{-1}$ 

a value that agrees with that obtained using the graphical method.

**B.9** 
$$g_{\rm measured} = 10.8(1)~{\rm m}^{-1}$$
 
$$g_{\rm model} = 10.8~{\rm m}^{-1}$$
 0.4pt

### **C.1**

| C.1 |     |               |     |               | 0.8p |
|-----|-----|---------------|-----|---------------|------|
|     | t/s | $I_{DS}/\muA$ | t/s | $I_{DS}/\muA$ |      |
|     | 0   | 0             | 110 | 112,0         |      |
|     | 10  | 6.6           | 120 | 116.2         |      |
|     | 20  | 25.8          | 180 | 137.7         |      |
|     | 30  | 50.1          | 240 | 155.4         |      |
|     | 40  | 66.2          | 300 | 171.2         |      |
|     | 50  | 76.7          | 360 | 184.4         |      |
|     | 60  | 83.8          | 420 | 197.9         |      |
|     | 70  | 91.6          | 480 | 209.2         |      |
|     | 80  | 97.2          | 540 | 219.1         |      |
|     | 90  | 102.6         | 600 | 220.0         |      |
|     | 100 | 107.4         | -   | -             |      |

## **C.2**

The data is similar to that of the charge of a capacitor, superimposed with an almost linear component that corresponds to the charge of the second capacitor with a larger time constant.

A least squares fit to a  $A(1-\exp(-t/ au_1))+B(1-\exp(-t/ au_2))$  is also depicted, showing that the data can be well fitted by this model. The shorter time constant is  $au_1=$  43(8) s, the longer time constant,  $au_2$  is roughly 20 times larger.



Let  $I_{\mathrm{DS}}^{\mathrm{sub}}$  =  $A(1-\exp(-t/ au_1))$  be the data subtracted from the long time constant component. A logarithmic plot of  $\log(A-I_{\mathrm{DS}}^{\mathrm{sub}})$  should be a straight line of slope  $-1/ au_1$ . The constant A, the saturation current of the short  $au_1$  component, can be easily estimated from the above plot.

The slope of the line is m=-0.023(1), from which we get  $\tau_1=44$ (3) s. The error bar is underestimated, as it does not take into account the error in the subtraction of the  $\tau_2$  component.



Part D. Inverter Circuit (1.0 points)

# D.1

| D.1 | $R_{L} = 198 \; k\Omega$ |   |            |             | 0.5pt |
|-----|--------------------------|---|------------|-------------|-------|
|     |                          | t | $V_{in}/V$ | $V_{out}/V$ |       |
|     |                          |   | -2.983     | 2.456       |       |
|     |                          |   | -2.760     | 2.470       |       |
|     |                          |   | -2.567     | 2.461       |       |
|     |                          |   | -2.340     | 2.461       |       |
|     |                          |   | -2.058     | 2.460       |       |
|     |                          |   | -1.719     | 2.252       |       |
|     |                          |   | -1.330     | 0.889       |       |
|     |                          |   | -0.775     | 0.039       |       |
|     |                          |   |            |             |       |

**D.2** 

