Attitude of Spacecraft

MAE 243a – Spacecraft Engineering

Attitude of a craft free of disturbances

Starting with the equations from last time for a system aligned with the principle axis

$$I_{xx}\dot{\omega}_{x} - (I_{yy} - I_{zz})\omega_{y}\omega_{z} = T_{x} = 0$$

$$I_{yy}\dot{\omega}_{y} - (I_{zz} - I_{xx})\omega_{x}\omega_{z} = T_{y} = 0$$

$$I_{zz}\dot{\omega}_{z} - (I_{xx} - I_{yy})\omega_{x}\omega_{y} = T_{z} = 0$$

Thing of special cases where

$$I_{xx} = I_{yy} = I_{yy}$$
 and $I_{xx} = I_{yy}$

Are either or both of these practical assumptions for most spacecraft?

Spin with inertially asymmetric craft and no disturbances

$$I_t \dot{\omega}_x = (I_t - I_s) \omega_y \omega_z$$
$$I_t \dot{\omega}_y = (I_s - I_t) \omega_x \omega_z$$
$$I_s \dot{\omega}_z = 0$$

The angular velocity in the z axis affects the other two axes, yet the motion on the z axis remains independent of the other two

This system also has an analytic solution

$$\omega_x(t) = \omega_{x0} \cos \Omega t + \omega_{y0} \sin \Omega t$$

$$\omega_y(t) = \omega_{y0} \cos \Omega t - \omega_{x0} \sin \Omega t$$

Where

$$\Omega = \left(\frac{I_t - I_s}{I_t}\right) \omega_{z0}$$

Since
$$I_{zz}\dot{\omega}_z=0$$
, ω_z = ω_{z0}

Introducing torques back in

$$I_{xx}\dot{\omega}_{x} - (I_{yy} - I_{zz})\omega_{y}\omega_{z} = T_{x}$$

$$I_{yy}\dot{\omega}_{y} - (I_{zz} - I_{xx})\omega_{x}\omega_{z} = T_{y}$$

$$I_{zz}\dot{\omega}_{z} = T_{z}$$

Separating ω_x and ω_v leads to

$$egin{aligned} I_{xx}ig(\ddot{m{\omega}}_x+\Omega^2m{\omega}_xig)&=\dot{m{T}}_x-\Omegam{T}_y\ & ext{and}\ I_{yy}ig(\ddot{m{\omega}}_y+\Omega^2m{\omega}_yig)&=\dot{m{T}}_y-\Omegam{T}_x \end{aligned}$$

To repoint a craft with a momentum bias

$$I_{xx}\dot{\Omega}_{x} + I_{zz}\omega_{z}\Omega_{y} = T_{x}$$

$$I_{yy}\dot{\Omega}_{y} + I_{zz}\omega_{z}\Omega_{x} = T_{y}$$

$$I_{zz}\dot{\omega}_{z} = T_{z}$$

Where Ω_x and Ω_y are the procession rates of the non spinning axis

Hybrid craft

For a craft with a spinning section with a rotational axis aligned with the z axis

$$I_{xx}\dot{\omega}_{x} - (I_{yy} - I_{zz})\omega_{y}\omega_{z} + \omega_{y}H_{z} = T_{x}$$

$$I_{yy}\dot{\omega}_{y} - (I_{zz} - I_{xx})\omega_{x}\omega_{z} - \omega_{x}H_{z} = T_{y}$$

$$I_{zz}\dot{\omega}_{z} - (I_{xx} - I_{yy})\omega_{x}\omega_{y} + \dot{H}_{z} = T_{z}$$

This rotational element will also cause a nutation in the non-spinning axes with a frequency of

$$\Omega = \frac{H_z}{\sqrt{I_{xx}I_{yy}}}$$

This also applies to any other rotational elements on the spacecraft. The contributions of each element must be included:

$$\dot{H} = -\omega \times H + T$$

$$H = I\omega$$

$$T = \sum_{i} -\omega \times H_{i} + \dot{H}_{i}$$

Torques and Torquers

External torques source	Height range over which it is potentially dominant
Aerodynamic	<about 500="" km*<="" td=""></about>
Magnetic	500-35 000 km
Gravity gradient	500-35 000 km
Solar radiation	>700 km*
Thrust misalignment	all heights
Internal torques source	
Mechanisms	
Fuel movement	
Astronaut movement	
Flexible appendages	
General mass movement	

Туре	Advantages	Disadvantages
External types	Can control momentum build-up	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gas jets	Insensitive to altitude Suit any orbit Can torque about any axis	Requires fuel On-off operation only Has minimum impulse Exhaust plume contaminants
Magnetic	No fuel required	No torque about the local field
	Torque magnitude is controllable	direction Torque is altitude and latitude sensitive
		Can cause magnetic interference
Gravity gradient	No fuel or energy needed	No torque about the local vertical
Solar radiation	No fuel required	Low accuracy Low torque, altitude sensitive Libration mode needs damping Needs controllable panels Very low torque
Internal types	No fuel required Can store momentum Torque magnitude is controllable	Cannot control momentum build-up
Reaction wheels (RW) Momentum wheels (MWs)	Continuous, fine-pointing capability Provide momentum bias	Non-linearity at zero speed
Control moment gyroscope (CMG)	Suitable for three-axis control Provides momentum bias	Complicated Potential reliability problem

planning and precise manufact	Disturbance Torques. Spacecraft designers can minuring, which may increase cost. Effect on Vehicle	Typical Values	
Disturbances		1–3 cm	
Uncertainty in Center of Gravity (cg)	Unbalanced torques during firing of couples thrusters Unwanted torques during translation thrusting	0.1–0.5 deg	
	Same as cg uncertainty	+5%	
Thruster Misalignment Mismatch of Thruster	Similar to cg uncertainty	1576	
Outputs		Roughly proportional to wheel speed	
Reaction Wheel Friction and Electromotive Force (i.e., back EMF)	Resistance that opposes control torque effort. These torques are the limiting mechanism for wheels speed.	depending on model. At top speed, 100% control torque (i.e., saturation)	
	Torques that perturb both stability and accuracy	Dependent on spacecraft design; may be	
Rotating Machinery	Torques that perturb both stability and asset	compensated by counter-rotating elemen	
(pumps, filter wheels)	Torques due to liquid dynamic pressure on tank walls,	Dependent on specific design; may be mitigated by bladders or baffles	
Liquid Slosh	as well as changes in cg location.		
Dynamics of Flexible Bodies	Oscillatory resonance at bending/twisting frequencies, limiting control bandwidth	Depends on spacecraft structure; flexible frequencies within the control bandwidth must be phase-stabilized, which may be undesirable.	
Thermal Shocks ("snap") on Flexible Appendages	Attitude disturbances when entering/leaving umbra	Depends on spacecraft structure. Long inertia booms and large solar arrays can cause large disturbances.	

Table 19-6. Attitude Control Methods and Their Capabilities. As requirements become tighter, more complex control systems become necessary.

Type	Pointing Options	Attitude Maneuverability	Typical Accuracy	Lifetime Limits
Gravity-Gradient	Earth local vertical only	Very limited	±5 deg (2 axes)	None
Gravity-Gradient + Momentum Bias	Earth local vertical only	Very limited	±5 deg (3 axes)	Life of wheel bearings
Passive Magnetic	North/South only	Very limited	±5 deg (2 axes)	None
Rate-Damping + Target Vector Acquisition	Usually Sun (power) or Earth (communication)	Generally used as robust safe mode.	±5-15 deg (2 axes)	None
Pure Spin Stabilization	Inertially fixed any direction	Repoint with precession maneuvers; very slow with torquers, faster with thrusters	±0.1 deg to ±1 deg in 2 axes (proportional to spin rate)	Thruster propellant (if applies)*
Dual-Spin Stabilization Limited only by articulation on despun platform		Same as above	Same as above for spun section.	Thruster propellant (if applies)*
	despun platform		Despun dictated by payload reference and pointing	Despun section bearings
Bias Momentum (1 wheel)	Local vertical pointing or inertial targets	Fast maneuvers possible around momentum vector Repoint of momentum vector as with spin stabilized	±0.1 deg to ±1 deg	Propellant (if applies)* Life of sensor and wheel bearings
Active Magnetic with Filtering	Any, but may drift over short periods	Slow (several orbits to slew); faster at lower altitudes	±1 deg to ±5 deg (depends on sensors)	Life of sensors
Zero Momentum (thruster only)	No constraints	No constraints High rates possible	±0.1 deg to 5 deg	Propellant
Zero momentum 3 wheels)	No constraints	No constraints	±0.0001 deg to ±1 deg (determined by sensors and processor)	Propellant (if applies)* Life of sensors and whele bearing
Zero Momentum (CMG)	No constraints Short CMG life may require high redundancy	No constraints High rates possible um dumping at all altitudes, but pro	±0.001 deg to ±1 deg	Propellant (if applies)* Life sensors and CMG bearings

Table 19-6, Fig. 19-6◀, Eq. 19-8◀

Reaction wheels vs. control moment gyros

Reaction Wheel - Mainly causes momentum change through changing the speed of a

rotor

Control Moment Gyro – Mainly causes momentum change through changing the orientation of the rotation axis.

Thrusters

Torque created by thrusters is simple, just keep in mind they are usually arranged in a way that they can be fired in pairs to produce nearly pure force couples

$$T = r \times F$$

Where r is the perpendicular distance from the CG and F is the force produced by the thruster

Magnetic Torquers

Magnetic torquers can be easy to predict as long as the have simple geometries In the simplest for the torque can be represented as

$$T = m \times B$$

Where m is the magnetic moment and B is the local flux density

For a given environment or location on orbit the local flux density will be fairly constant
but uncontrollable. Therefore control must be done through manipulation of the
magnetic moment.

A common way to produce a magnetic moment is by running a current through a coil.

Here the magnetic moment would be calculated by

$$m = nIAc$$

Here n is the number of coils, I as the current, A is the crosssectional area of the coil, and c is the unit vector in the direction of the coil's axis.

Gravity Gradient

Any craft with an uneven mass distribution will have a gravity gradient The gravitational force on an increment of mass dm can be found as

$$dF = \frac{\mu \, dm}{r^2}$$

If we were to sum the moments (about the center of mass) for each of the forces then we could find the torque produced on the craft due to the uneven mass distribution These torques are found to be:

$$T_{x} = \left(\frac{3\mu}{2r^{3}}\right) \left(I_{zz} - I_{yy}\right) \sin 2\varphi \cos^{2}\theta$$

$$T_{y} = \left(\frac{3\mu}{2r^{3}}\right) \left(I_{zz} - I_{xx}\right) \sin 2\theta \cos \theta$$

$$T_{z} = \left(\frac{3\mu}{2r^{3}}\right) \left(I_{xx} - I_{yy}\right) \sin 2\theta \sin \varphi$$

These torques will result in a conical pendulum motion with a motion defined by:

$$\Omega = \sqrt{\left[\left(\frac{3\mu}{r^3}\right)\left(1 - \frac{I_{zz}}{I_{xx}}\right)\right]}$$

Aerodynamic Drag

Aerodynamic forces can be calculated as

$$dF = 0.5\rho V^2 C_D(\widehat{n}.\widehat{V})(-\widehat{V})dA$$

Where

 ρ = atmospheric density

V = craft velocity relative to atmospheric gas

 C_D = drag coefficient (usually taken to be 2.2)

 \widehat{V} = unit vector aligned with velocity vector

 \hat{n} = unit vector normal to exposed surface

dA = incremental area

The integral is performed over the area where \widehat{n} . $\widehat{V} \geq 0$ The more complex the surface of the craft, the less accurate the estimate becomes Works best for radially closed shapes

Radiation Pressure

Radiation pressure is largely due to solar radiation and albedo An incremental force due to radiation pressure can be calculated as:

$$dF = -P\cos\theta \, dA \left[(1 - f_s)\hat{s} + 2\left(f_s\cos\theta + \frac{f_d}{3}\right)\hat{n} \right] \quad \text{for} \quad \hat{s}.\,\hat{n} \ge 0$$

Where

 \hat{s} = unit vector from spacecraft to sun

 \hat{n} = unit vector normal to exposed surface

P = mean momentum flux $(4.67x10^{-6}Nm^{-2} solar)$

flux at Earth)

 $\theta = \cos^{-1}(\hat{s}. \hat{n})$ (incidence of radiation)

f_s = specular coefficient

f_d = diffuse coefficient

Each of these forces imparts a moment on the craft just like any other force
The resultant torque is found by integrating the effects of the forces on all exposed surfaces

Other Major Considerations

- Mass movement
 Anything within the payload that moves, crew movement, fluid pumping
- Fuel Slosh
 Different behavior than pumping
- Impacts/Collisions
 Less predictable unless accounting for collision during proximity operations
- Instruments
 Any moving instuments will have an adverse effect

Wheels and Saturation

Electronically powered reaction wheels and control moment gyros are limited by internal resistances. These are predominantly in the form of friction and back EMF. These loses are related to the rotational speed and therefore put a maximum rotation on control elements.

With the exception of saturation, electronic rotational control elements have huge advantages due to the fact that they run on an essentially renewable resource.

To desaturate wheels, external forces are usually used. This is in the form of thrusters or magnetic torquers for smaller applications.

Other types of more novel momentum dumps are also possible