巨量資料分析期末 Project #1

玉山人工智慧公開挑戰賽 2021 冬季賽 信用卡消費類別推薦

巴斯克乳酪蛋糕

統計 111 H24076029 劉米婷 統計 111 H24071215 陳柔漪 統計 111 H24071273 林少穎

Table of Contents

1. Problem	Statement	2
1.1	競賽說明與目標	2
1.2	競賽評比指標	2
2. Data pro	eprocessing	2
3. Insights	discovered from the data	3
3.1	遺失值紀錄 (以全部資料做計算)	
3.2	消費次數與類別關係	3
3.3	消費類別與年齡	4
3.4	消費類別與性別	4
4. The met	hod you designed	5
4.1	僅使用總金額進行計算 (不使用模型)	
4.2	目標變數為 TOP3 消費類別	
4.3	目標變數為 TOP1 消費類別	
4.4	計算 16 種消費類別的消費總金額與總次數	
4.5	計算 16 種消費類別的消費總金額與總次數 + 加入其他變數	7
5. Results .		

1. Problem Statement

1.1 競賽說明與目標

使用兩年內的顧客基本資料與信用卡消費紀錄,去預測每位顧客下個月份 消費金額前三名的消費類別排序。原始消費類別總共有需要預測的類別指定為 其中的 16 種類別。

1.2 競賽評比指標

此次競賽採用 NDCG@3 (Normalized Discounted Cumulative Gain) 作為評分標準,NDCG的計算如以下。

$$NDCG = \frac{\sum_{c \in C} NDCG_c}{|C|} = \frac{\sum_{c \in C} \frac{DCG_c}{iDCG_c}}{|C|}$$

C 為所有需要預測的顧客,若 c 為其中一位顧客,則 $NDCG_C$ 為顧客 C 之 Normalized Discounted cumulative gain, DCG_C 則為顧客 c 之 Discounted cumulative gain,而 $iDCG_C$ 為顧客 c c 最理想之 Discounted cumulative gain。

由此評分可知需預測的前三名消費類別中,第一名的預測準確度佔了大部分的重要性。

2. Data preprocessing

資料集可分為使用者「信用卡消費資料」與「基本屬性資料」,全部有53個特徵變數,資料總筆數為32975653筆,而顧客數有500000人。

因為資料量非常龐大,我們首先決定僅保留需預測的 16 種消費類別資料往下探討。再者,資料的總時長有兩年,我們覺得顧客喜好會隨著時間有所改變,因此時間上我們也只保留了第二年 (dt 13~24) 的消費紀錄,而越靠近預測月的時間是相對重要的。

要預測的變數為消費類別,且一位消費者可能具有多種類別的紀錄,為了 讓預測更貼近前三名,因此我們對於消費類別資料有做新的整理,大致分成以 下種類,詳細資料格式置於後方第4部分。

- 取消費金額前三名的類別
- 取消費金額第一名的類別
- 以消費類別為單位加總該類別的金額與次數

3. Insights discovered from the data

3.1 遺失值紀錄 (以全部資料做計算)

變數	筆數	變數	筆數
masts	10 (<0.01%)	cuorg	10 (<0.01%)
educd	23 (<0.01%)	slam	1749906 (5.3 %)
trdtp	435 (<0.01%)	gender_code	421667 (1.3 %)
naty	10(<0.01%)	age	421667 (1.3 %)
posed	10 (<0.01%)		

3.2 消費次數與類別關係

信用卡資料記錄 14 張卡的消費次數,以及國內外、線上線下購物次數,將這些變數與消費類別進行繪圖。可以看到類別 36 與 37 是擁有最多的消費次數,圖一中顯示類別 37 在 4 號信用卡有相對多的消費紀錄,圖二顯示購買類別 10 與 13 的商品較不容易從國內線下交易取得。

▲圖一,消費類別與14張信用卡的消費次數

▲圖二,消費類別與國內外、線上線下購物次數

3.3 消費類別與年齡

我們認為不同的年齡層會擁有不同消費請傾向,故將年齡與消費類別繪製分布圖,可以看到此份資料主要為年輕人居多,第四區年齡在37類別上也有較明顯的升高。

▲圖四,年齡與消費類別的分佈關係

3.4 消費類別與性別

接著來看性別與消費類別的關係,在指定的 16 個消費類別中,6、12、39 類別有相對較平衡的性別比例,其他類別都是由女性購買多過男性。

▲圖五,性別與消費類別的關係

4. The method you designed

4.1 僅使用總金額進行計算 (不使用模型)

• 方法描述

Top3 消費類別的產生來自於消費總金額,因此我們嘗試取用最近的四個月, 將每個顧客在每個消費類別的總金額做加總,並以此建立 top 3 消費類別,此段 時間內無消費記錄的顧客使用 36,37,15 (消費類別的總 top 3) 去填補。

• 上傳結果

Public	Private
0.6375	0.6358

4.2 目標變數為 TOP3 消費類別

模型

LGBMClassifier + Multioutput Classifier(from sklearn)

• 方法描述

以一個 ID、三個月為一組產生特徵變數 X,特徵變數主要包含一個顧客的前三消費類別,不足三個類別以指定 16 個消費類別隨機補充,其餘消費紀錄以加總處理。則在三個消費類別的情況下一共產生 136 個特徵欄位。

	dt	ID	tag 1st	tag 2nd	tag 3rd	Feature	時間紀錄	tag 數量
X	13~15	1	1	2	NA	•••	1	2
Λ	16~18	1	1	NA	NA	•••	2	1
	19~21	1	1	6	2	•••	3	3

因為競賽目標需要預測出三個消費類別,因此我們將第四個月的 Top 3 消費類別作為目標變數 y,並使用 sklearn 的 Multioutput Classifier 輔助我們進行三維資料的預測。而後我們為了提高預測的正確程度,在資料量的足夠的形況下,若該筆資料無法透過加總計算得到 y,我們就捨棄該筆訓練資料。

	dt	ID	tag 1st	tag 2nd	tag 3rd
	16	1	37	36	2
У	19	1	37	36	2
	22	1	37	2	36

• 上傳結果

與單純計算消費金額有點落差,研究後發現我們所選擇的 Multioutput Classifier,更多使用於多標籤估計,較不適用於 Ranker 類型的題目,故往下嘗試進行別種方法。

Public	Private
0.5200	0.5184

4.3 目標變數為 TOP1 消費類別

模型

LGBMClassifier + predict_proba

• 方法描述

資料建構與 4.2 相同,但分數上並不是很好,於是參考同學期中報告的做 法將目標變數 y 改為使用 Top1 消費類別,並使用 LGBMClassifier 模型計算出 顧客在 16 種類別的機率,取前三高類別做為答案。此方法因為顧客擁有的 Top1 消費類別較為完整,在目標變數上能保留更多的資料筆數。

• 上傳結果

改換模型的使用方法後,分數明顯增加,但依然不如使用消費金額下去估計 的高。因此,我們決定改換資料格式,希望能更著重在單個顧客的消費金額與類 別上的連結。

Public	Private
0.5798	0.5787

4.4 計算 16 種消費類別的消費總金額與總次數

模型

LGBMClassifier + predict proba

• 方法描述

經由上方方法得知使用 LGBMClassifier 配合下個月的 Top1 消費類別是可行的,為了更注重每個消費類別的消費金額與次數,我們加總每位顧客每三個月內 16 個消費類別的總金額與總次數,做為特徵變數(如下圖)。時間切割上每三個月一組,之間重疊一個月,即 dt 13~15、15~17...,則測試集使用 dt 22~24。目標變數一樣為第四個月的消費類別 Top1,無資料的顧客約有 31000人,使用出現頻率前三高的消費類別進行填補。

		總消費次數 總消					總消費金	額	
	chid	2_cnt	6_cnt	10_cnt	12_cnt	13_cnt	 19_amt	21_amt	22_amt
0	10000000	0.0	0.0	7.0	0.0	0.0	 0.0	0.000000	0.000000
1	10000001	0.0	0.0	1.0	1.0	0.0	 0.0	10223.421432	3945.661088
2	10000002	0.0	0.0	0.0	0.0	0.0	 0.0	0.000000	3571.095195

• 上傳結果

此次模型僅考量與消費類別最相關的總金額與總次數,分數呈現來到目前實 驗個方法中的最高分。

Public	Private
0.6807	0.6797

4.5 計算 16 種消費類別的消費總金額與總次數 + 加入其他變數

• 模型
LGBMClassifier + predict proba

• 方法描述

在上一個方法中,我們得到了明顯的進步,因此保留原本的資料格式,這次嘗試把其他資料加總加入更多變數,以及希望彌補 31000 個顧客的缺失資料中來增加準確率。有資料缺失的顧客我們在訓練集中,從時間最靠近的月份開始檢索,將其當作測試集資料,最後剩下約 4000 的 ID 是在第二年當中完全沒有消費記錄的人,除了顧客基本資料,顧客的信用卡紀錄資料全部以 0 實施填補。至此,全部 50 萬的 ID 都有可預測的資料。

• 上傳結果

此次方法給與模型更多變數以預測 Top3 消費類別,分數以是所有方法中最高的得分,比起使用統計 Top3 消費類別的方式來填補無資料的人的答案,以 0 填補加上基本資料,我們認為模型多少可以找出資料的相關性並給出較好的答案。

Public	Private
0.6843	0.6828

5. Results

第一次使用這樣大量的多分類題目資料,因為訓練、測試資料必須由自己 建構,所以大部分的時間都耗在整理資料格式上,反而在模型預測的部分花費 時間意外的少。最後提交答案為上方的方法 4.5,在競賽中獲得第 97 名, Private 與 Public 差距 0.0015。

(TBrain)	▲)實戰吧		Hom	ne Competitions	Discussion	Datasets	Success Story
Overview	Leaderboard Dowr	nload Dataset	Submission H	istory			т
93	塗錫錫大大大均	3	12	0.683298	1/6/2022 3:37:06 PM		
94	T-Partner	4	1	0.683144	12/10/2021 10:35:57 AM	•	
95	DART	6	30	0.683124	1/4/2022 7:20:27 PM		859 賽隊伍
96	阿里山銀行	4	3	0.683099	12/23/2021 5:50:02 PM	開始 10/27	2021
97	巴斯克乳酪蛋糕	3	19	0.682762	1/6/2022 1:34:55 PM		
98	東吳資科	5	1	0.682647	1/5/2022 9:08:25 PM		
98	抱團求救組合	6	21	0.682647	1/6/2022 8:28:02 AM		