K13_documentation.md 12/22/2022

K13 Overview

K13 is a two state model, meaning that we have $S = {*, \forall agger}$, giving us:

 $\$ \begin{aligned} P(t,s) &= \begin{bmatrix} p_{\{t,s} & p_{*}\dagger}(t,s) \ 0 & 1 \end{bmatrix} ;;\text{and};; \Lambda(s) = \begin{bmatrix} \mu_{\{s} & \mu_{*}\dagger}(s) \ 0 & 0 \end{bmatrix} \end{aligned}\$\$

Kolmogorov's backward equation: $\$ \perial_{t}p_{ij}(t,s) &= \mu_{i}(t)p_{ij}(t,s) - \sum_{k \neq i}\mu_{k}(t,s) \ \ \perial_{t}p_{\text{

From the fundamental theorem of calculus we have: $\$ begin{aligned} -\int_{t}^{s}\mu_{}(u)du &= -[M_{}(s) - M_{}(t)] \ &= -M_{}(s) + M_{}(t) \ &\Downarrow \ partial_{t}\left(- \int_{t}^{s}\mu_{}(u)du \right) &= \partial_{t} \ (M_{}(t)) = \mu_{}(t) \end{aligned}

Using this we get: $p_{\star} = \left(-\int_{t}^{s} \mu_{s} \right)$

The row sum of the intensity matrix $\lambda = \sqrt{i}(t) = -\mu_{i}(t)$, this yields: $p_{**}(t,s) = \exp\left(t - \int_{t}^{t}^{s}\mu_{*'}(t,s) \right)$

Translating this to K13, where one also accounts for the calculation year \$Y\$, one gets: $\frac{p_{{x}(t,s)} = p_{{x+t, x + s} \&= \exp\left(-\int_{t}^{s}\sum_{x=t}^{s}\sum_{x=t}^{s}\int_{t}^{s}\sum_{x=t}^{s}\int_{t}^{s}$