Nuclear Materials Engineering Fall 2008

- **1.** (**10 min**) When a material is irradiated, an equal quantity of interstitials and vacancies are created. If defect recombination were perfect, radiation damage will be self-repaired. However, irradiated metal alloys always develop voids. Why?
- **2.** (**15 min**) Three typical methods for strengthening stainless steel are: (1) work hardening, (2) martensitic hardening, and (3) precipitation hardening.
 - (10 min) Select two of these methods and explain the fundamental hardening mechanism for each.
 - (5 min) In comparison, explain how radiation hardens steel.
- **3.** (15 min) For the mechanism of defect clustering, what is the difference between coalescence, Ostwald ripening and the reverse Ostwald ripening process. Why do most alloys exhibit Ostwald ripening?
- **4.** (**20 min**) Fuel Restructuring.
 - (5 min) Sketch the radial cross section of high burnup UO_2 fuel pellet and label all the key features.
 - (5 min) Explain the mechanism that drives the formation of columnar grains and a central hole/void.
 - (10 min) Describe the physical state, chemical form, and physical location of the various types of fission products present in the fuel pin at high burnup.
- **5.** (10 min) Assume you have a structural material with a thermal displacement cross section of ~ 1 b, and a number density of $\sim 10^{22}$ atoms/cm³. Assume the reactor operates for 300 days a year with a nominal thermal flux of 10^{13} n/cm² s and the nominal value for v is ~ 1000 displacements/pka.
 - (5 min) How long must you irradiate it in an LWR to achieve a damage level of 1 dpa?
 - (5 min) What fluence has this material been exposed to at 1 dpa?
- **6.** (15 min) Describe two mechanisms that cause the thermal conductivity of UO_2 to change with high burnup and discuss their implications (in other words, "what happens and why do we care?")

7. (20 min)

Table: Free Energy of Formation ($\Delta G_f = -RTlnK$ in kcal/mole)

Temp. (°C)	$U + O_2 \rightarrow UO_2$	$2Gd + 1.5O_2 \rightarrow Gd_2O_3$	$Mo + O_2 \rightarrow MoO_2$
500	-227	-386	-106
1000	-207	-353	-86
1500	-178	-320	-67
2000	-160	-286	-48

- (10 min) Construct an Ellingham-style stability diagram (ΔG vs. T) for the oxides listed above based on the tabulated data to compare (per mole O_2) the relative stability of the various oxides.
- (5 min) Gd is a common burnable poison. If it is embedded in UO₂, will it be an oxide or a metal?
- (5 min) Mo is a common fission product. If generated in UO₂ fuel, will it be an oxide or a metal?
- **8.** (**15 min**) Use the U-Fe phase diagram on the next page to answer questions about cooling a U-20 wt% Fe hypoeutectic alloy from 1500°C:
 - (5 min) Estimate the liquidus temperature for this composition. Sketch the equilibrium microstructure at room temperature (label phases) that will form as the alloy is cooled slowly.
 - (10 min) Calculate the volume fraction of each phase present at this composition at room temperature.

