

Vishay Siliconix

N-Channel 30 V (D-S) MOSFET

DESCRIPTION

The attached SPICE model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the - $55\,^{\circ}$ C to 125 $^{\circ}$ C temperature ranges under the pulsed 0 V to 10 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS
- Apply for both Linear and Switching Application
- Accurate over the 55 °C to + 125 °C Temperature Range
- Model the Gate Charge

SUBCIRCUIT MODEL SCHEMATIC

Note

• This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer to the appropriate datasheet of the same number for guaranteed specification limits.

SPICE Device Model Si1308EDL

www.vishay.com

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)					
PARAMETER	SYMBOL	TEST CONDITIONS	SIMULATED DATA	MEASURED DATA	UNIT
Static					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1	-	V
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 1.4 \text{ A}$	0.11	0.11	Ω
		$V_{GS} = 4.5 \text{ V}, I_D = 1 \text{ A}$	0.12	0.12	
Forward Transconductancea	9 _{fs}	$V_{DS} = 10 \text{ V}, I_D = 1.4 \text{ A}$	7	5	S
Diode Forward Voltage	V _{SD}	I _S = 1.1	0.8	0.8	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	103	105	pF
Output Capacitance	C _{oss}		23	23	
Reverse Transfer Capacitance	C _{rss}		11	11	
Total Gate Charge	Qg	V _{DS} = 15 V, V _{GS} = 10 V, I _D = 1.4 A	1.9	2.7	nC
			0.9	1.4	
Gate-Source Charge	Q_{gs}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 1.4 \text{ A}$	0.3	0.3	
Gate-Drain Charge	Q _{gd}		0.5	0.5	

Notes

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

www.vishay.com

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA ($T_J = 25$ °C, unless otherwise noted)

Note

• Dots and squares represent measured data.