jueves, 6 de octubre de 2022 15:53

1. Representa usando el formato IEE 754 de 32 bits el siguiente número real:

-138,5

1. Pasar a Binario el numero entero + el decimal:

138	10001010
0,5	0,5 * 2 = 1
138,5	10001010,1

2. Notación científica - Mover coma para que sea 1,0... y contar los movimientos:

```
10001010,5 = 1,00010101 = 27
```

Se mueve 7 huecos = 7 + 127 = 134

Pasar 134 a Binario y así conseguir el exponente de 8 bits:

3. Colocar en coma flotante: 1,00010101 · 27 (10000110)

(Como es negativo el sigo es 1)

SIGNO	EXPONENTE (8b)	MANTISA (23b) Rellenar con 0'
1	10000110	000101010000000000000000

- Representa usando el formato IEE 754 de <u>32 bits</u> el siguiente número real: 705,672
 - 1. Pasar a Binario el numero entero + el decimal:

705	1011000001
0,672	101011
705,672	10110000001,101011

Como sacamos el decimal: (Entre 5 - 6)

0,672 * 2 = **1**,344

0,344 * 2 = **0**,688

0,688 * 2 **= 1**,376

0,376 * 2 = **0**,752 0,752 * 2 = **1**,504

0,504 * 2 = **1**,008

101011 -> Elegimos el primer digito de cada resultado (0 - 1)

2. Notación científica - Mover coma para que sea 1,0... y contar los movimientos:

1011000001,101011 = 1,011000001101011 = 29

Se mueve 9 huecos = 9 + 127 = 136

Pasar 136 a Binario y así conseguir el exponente de 8 bits:

136 10001000

3. Colocar en coma flotante: 1,011000001101011 · 29 (10001000)

SIGNO	EXPONENTE (8b)	MANTISA (23b) Rellenar con 0'
0	10001000	01100000110101100000000

3. Representar en <u>signo y magnitud</u>, <u>complemento a uno</u> y <u>complemento a dos</u> utilizando **16 bits** los números: 0, +4685, -4685, -88787

NUMERO	BINARIO	C - 1	C - 2
0	0000000000000000	000000000000000000	00000000000000000
+4685	0001001001001101	0001001001001101	0001001001001101
-4685	1001001001001101	1110110110110010	1110110110110011
-88787	No se puede en 16 bits	-	-

4. En un ordenador con palabras de 32 bits, se tiene la siguiente información en dos bloques consecutivos de su <u>memoria</u>:

Dirección mem.	Contenido
2000	00A1 0030
2001	00A9 0030

Indicar la información que se está representando:

- a. Si los dos datos representan caracteres codificados en Unicode. Suponer que en cada palabra (1 palabra = 2bytes) se almacenan dos caracteres de texto.
 - 1. Abrir Mapa de Caracteres + Vista Avanzada + Ir a Unicode.

Dirección 2000: 00A1 0030

Primer carácter: 00A1 → "¡" (exclamación invertida)

Segundo carácter: 0030 → "0"

Dirección 2001: 00A9 0030

Primer carácter: $00A9 \rightarrow \text{"©"}$ Segundo carácter: $0030 \rightarrow \text{"0"}$

Dirección 2000	i0
Dirección 2001	©0

 Si los dos datos representan valores numéricos enteros de 32 bits en complemento a dos.

Dirección 2000: 00A1 0030

1. Pasamos el hexadecimal a binario y luego a decimal + C2: (00A10030)

00	0000 0000	-
A1	1010 0001	0101 1110 + 1

00000000 00000000 00000000 01011111 95	00000000 00000000 01011111 95	5
--	-------------------------------	---

00	0000 0000
30	0011 0000

00000000 00000000 00000000 00110000 48

0000000 01011111 00000000 00110000 6.225.968

Dirección 2001: 00A9 003

CORRECIÓN:

1. Pasamos hexadecimal a binario y de ahí a Decimal + C2: (00A90030)

00	0000 0000	-
A9	1010 1001	01010110 + 1

00000000 00000000 00000000 01010111 87

00	0000 0000
30	0011 0000

00000000 00000000 00000000 00110000 48

CORRECIÓN:

Dirección 2000	95 48 6.225.968
Dirección 2001	87 48 5.701.680

c. Si la dirección de memoria está representada en hexadecimal, ¿Cuál es el valor máximo que podría representarse?

00000 ----- 1xFFF ----- 2000 2001 ----- 0xFFFFF

- 5. Representa usando el formato IEE754 de 64 bits el siguiente número real: -275,354
 - 1. Pasar a Binario el numero entero + el decimal:

275	100010011
0,354	0101101
275,345	100010011,0101101

Como sacamos el decimal: (Entre 5 - 6)

0,354 * 2 = **0**,708

0,708 * 2 = **1**,416

0,416 * 2 = **0**,832

0,832 * 2 = **1**,664

0,664 * 2 = **1**,328

0,328 * 2 = **0**,656

0,656 * 2 = **1**,312

010110 -> Elegimos el primer digito de cada resultado (0-1) -> **0,34375** Probamos con 1 mas = 0101101 = **0,3515625** (nos lo quedamos)

 $100010011,0101101 = 1,000100110101101 = 2^8$

Se mueve 8 huecos = 8 + 1023 = 1031

Pasar 1031 a Binario y así conseguir el exponente de 11 bits:

1031 10000000111

3. Colocar en coma flotante: 1,000100110101101 · 28 (10000000111)

(Como es negativo el sigo es 1)

SIGNO	EXPONENTE (11b)	MANTISA (52b) Rellenar con 0'
1	10000000111	000100110101101000000000000(37 0')

- Un ordenador recibe de un terminal los siguientes caracteres ASCII que contienen un bit de paridad (criterio par). ¿Cuáles deben ser rechazados por ser erróneos? 7A; 5C; 47; CA; 7C; C9
 - 1. Convertir hexadecimales a binario

7A	0111 1010
5C	0101 1100
47	0100 0111
CA	1100 1010
7C	0111 1100
C9	1100 1001

2. Contar el número de bits en 1 (incluyendo el bit de paridad).

Hay que contar cuantos 1 tienen y ver si es par o impar:

0111 1010	5 bits en 1	IMPAR
0101 1100	4 bits en 1	PAR
0100 0111	4 bits en 1	PAR
1100 1010	4 bits en 1	PAR
0111 1100	5 bits en 1	IMPAR
1100 1001	4 bits en 1	PAR]
	0101 1100	0101 1100 4 bits en 1 0100 0111 4 bits en 1 1100 1010 4 bits en 1

Rechazados: 7A y 7C.

CORRECIÓN:

SI ACABA POR 0 ES PAR, SI ACABA POR 1 ES IMPAR:

7A	1010	PAR
5C	1100	PAR
47	0111	IMPAR
CA	1010	PAR
7C	1100	PAR

Loading [MathJax]/extensions/MathZoom.js

RECHAZADOS: 47 Y C9.