(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-331773

(43)公開日 平成11年(1999)11月30日

							
(51) Int.Cl. 6		識別記号	FI	lon		7	
H04N	5/92			/92	_	Z	
G06T	1/00			/76		E	
H 0 4 N	5/76		7	/01		G	
	7/01		G06F 15	/66	-	A	
					3 3 0 1		
			審查請求	未請求	請求項の数5	OL	(全 15 頁)
(21) 出願番号	.	特顏平10-134098	(71) 出願人	0000043	29		
(CI) MENTING				日本ビグ	フター株式会社		
(22)出顧日		平成10年(1998) 5月15日		神奈川県	具横浜市神奈川	区守屋町	丁3丁目12番
(,,,,,,				地			
			· (72)発明者	新屋 思	忠雄		•
				神奈川以	具横浜市神奈川	文守屋町	丁3丁目12番
				地 日2	キピクター株式	会社内	
			(72)発明者	遠藤	谷		
				神奈川	具横浜市神奈川	区守屋	丁3丁目12番
				地 日2	本ピクター株式:	会社内	
					8		

(54) 【発明の名称】 画像補間方法

(57)【要約】

【課題】 インターレース走査方式のビデオ信号における1フィールド画像により他のフィールド画像を補間する画像方法であり、少ない参照画素にて正確な補間軸を設定するとと。

【解決手段】 補間画素の垂直方向に位置する画素と、これと水平方向に隣接する画素との間の仮想的な隣接画素における画素データを補間軸方向の検出に用いることにより、垂直方向からわずかに傾いた方向に相関性のある画像に対しても適切な補間軸の設定及び補間処理ができるようにした。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】互いに隣接して直線的に配列された第1及び第3の画案信号列の間に、第2の画案信号列を発生させる画像補間方法において、

1

前記第2の画素信号列における補間画素の近傍に位置する前記第1及び第3の画素信号列の複数の画素を参照画素として、前記参照画素の画素データの相関性を評価することで前記補間画素に対する補間軸方向を定め、定められた補間軸方向に応じて前記参照画素の画素データを用いて補間画素の画素データを得る画像補間方法であれ

前記第1の画素信号列上の参照画素に加え、第1の画素信号列上の複数の画素の画素データを用いて、前記補間画素の垂直上方向に位置する第1の画素信号列上の垂直上画素と垂直上画素の水平左方向に隣接する左上画素との間に左上仮想画素を、

また、前記垂直上画素と垂直上画素の水平右方向に隣接 する右上画素との間に右上仮想画素をそれぞれ参照画素 として算出し、

前記第3の画素信号列上の参照画素に加え、第3の画素 20 信号列上の複数の画素の画素データを用いて、前記補間 画素の垂直下方向に位置する第3の画素信号列上の垂直 下画素と垂直下画素の水平左方向に隣接する左下画素と の間に左下仮想画素を、

また、前記垂直下画素と垂直下画素の水平右方向に隣接 する右下画素との間に右下仮想画素を、それぞれ参照画 素として算出し、

前記左上仮想画素と前記右下仮想画素とを結ぶ方向、及び、前記右上仮想画素と前記左下仮想画素とを結ぶ方向を少なくとも含み、前記補間画素を中心として点対称の 30 位置にある前記参照画素を結ぶ方向での信号の相関性を夫々評価し、最も相関性の高い方向を補間軸方向として定め、

前記定められた補間軸方向における前記参照画素の画素 データに基づき補間画素の画素データを得ることを特徴 とする画像補間方法。

【請求項2】互いに隣接して直線的に配列された第1及び第3の画素信号列の間に、第2の画素信号列を発生させる画像補間方法において、

前記第2の画素信号列における補間画素の近傍に位置す 40 る前記第1及び第3の画素信号列の複数の画素を参照画素として、前記参照画素の画素データの相関性を評価することで前記補間画素に対する補間軸方向を定め、定められた補間軸方向に応じて前記参照画素の画素データを用いて補間画素の画素データを得る画像補間方法であ

前記第1の画素信号列上の参照画素に加え、第1の画素信号列上の複数の画素の画素データを用いて、前記補間画素の垂直上方向に位置する第1の画素信号列上の垂直上画素と垂直上画素の水平左方向に隣接する左上画素と50

の間に左上仮想画素を、

また、前記垂直上画索と垂直上画索の水平右方向に隣接 する右上画索との間に右上仮想画索をそれぞれ参照画索 として算出し、

前記第3の画素信号列上の参照画素に加え、第3の画素信号列上の複数の画素の画素データを用いて、前記補間画素の垂直下方向に位置する第3の画素信号列上の垂直下画素と垂直下画素の水平左方向に隣接する左下画素との間に左下仮想画素を、

10 また、前記垂直下画素と垂直下画素の水平右方向に隣接 する右下画素との間に右下仮想画素を、それぞれ参照画 素として算出し、

前記左上仮想画素と前記右下仮想画素とを結ぶ方向、及び、前記右上仮想画素と前記左下仮想画素とを結ぶ方向を少なくとも含み、前記補間画素を中心として点対称の位置にある前記参照画素を結ぶ方向での信号の相関性を夫々評価し、最も相関性の高い方向を補間軸方向として定め、

前記左上仮想画素と前記右下仮想画素とを結ぶ方向、又は、前記右上仮想画素と前記左下仮想画素とを結ぶ方向のいずれかの方向が補間軸方向として定められた場合には、前記当該仮想画素を算出するために用いた前記参照画素の画素データに基づき補間画素の画素データを得、前記左上仮想画素と前記右下仮想画素とを結ぶ方向、又は、前記右上仮想画素と前記左下仮想画素とを結ぶ方向以外が補間軸方向として定められた場合には、前記定められた補間軸方向における前記参照画素の画素データに基づき補間画素の画素データを得ることを特徴とする画像補間方法。

【請求項3】互いに隣接して直線的に配列された第1及 び第3の画素信号列の間に、第2の画素信号列を発生さ せる画像補間方法において、

前記第2の画素信号列における補間画素の近傍に位置する前記第1及び第3の画素信号列の複数の画素を参照画素として、前記参照画素の画素データの相関性を評価することで前記補間画素に対する補間軸方向を定め、定められた補間軸方向に応じて前記参照画素の画素データを用いて補間画素の画素データを得る画像補間方法であり

前記第1の画素信号列上の参照画素に加え、第1の画素信号列上の複数の画素の画素データを用いて、前記補間画素の垂直上方向に位置する第1の画素信号列上の垂直上画素と垂直上画素の水平左方向に隣接する左上画素との間に左上仮想画案を、

また、前記垂直上画素と垂直上画素の水平右方向に隣接 する右上画素との間に右上仮想画素をそれぞれ参照画素 として算出し、

前記第3の画素信号列上の参照画素に加え、第3の画素 信号列上の複数の画素の画素データを用いて、前記補間 画素の垂直下方向に位置する第3の画素信号列上の垂直

下画素と垂直下画素の水平左方向に隣接する左下画素と の間に左下仮想画素を、

また、前記垂直下画素と垂直下画素の水平右方向に隣接 する右下画素との間に右下仮想画素を、それぞれ参照画 索として算出し、

前記左上仮想画素と前記右下仮想画素とを結ぶ方向、及 び、前記右上仮想画素と前記左下仮想画素とを結ぶ方向 を少なくとも含み、前記補間画素を中心として点対称の 位置にある前記参照画素を結ぶ方向での信号の相関性を 夫々評価し、最も相関性の高い方向を補間軸方向として 10

前記左上仮想画素と前記右下仮想画素とを結ぶ方向、又 は、前記右上仮想画素と前記左下仮想画素とを結ぶ方向 のいずれかの方向が補間軸方向として定められた場合に は、前記垂直上画素と前記垂直下画素との画素データに 基づき補間画素の画素データを得、前記左上仮想画素と 前記右下仮想画素とを結ぶ方向、又は、前記右上仮想画 素と前記左下仮想画素とを結ぶ方向以外が補間軸方向と して定められた場合には、前記定められた補間軸方向に 素データを得ることを特徴とする画像補間方法。

【請求項4】前記補間画素を中心として点対称の位置に ある前記参照画素を結ぶ複数の方向での信号の相関性を 夫々評価し、最も相関性の高い方向を補間軸方向として 定める際に、

最も相関性の高い方向が複数存在する場合には、各方向 における参照画素の位置と補間画素との距離が最も短い 方向を補間軸方向として定めることを特徴とする請求項 1乃至3のいずれか一項記載の画像補間方法。

【請求項5】前記補間画素を中心として点対称の位置に 30 ある前記参照画素を結ぶ複数の方向での信号の相関性を 夫々評価し、最も相関性の高い方向を補間軸方向として 定め、前記定められた補間軸方向における前記参照画素 の画素データに基づき補間画素の画素データを得る際 亿、

最も相関性の高い方向が複数存在する場合には、各方向 における参照画素の位置と補間画素との距離が短いほど 大きい係数を、距離が長いほど小さい係数を各参照画素 の画素データに乗じ、これら参照画素の荷重平均値を補 間画素の画素データとして得ることを特徴とする請求項 40 1 に記載の画像補間方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、インターレース走 査方式のビデオ信号における1フィールド画像により他 のフィールド画像を補間する画像補間方法に関する。 [0002]

【従来の技術】インターレース走査方式のビデオ信号に おいて、動画像信号から1フレーム分の信号を取り出し てとれを静止画として表示あるいは印刷させると、動き 50 順に0、0、0、0, 0, 0, 2, 3, 7, 1, 0, 7, 3,

の速い部分では夫々のフィールド画像が櫛の歯状にぶれ て見える。そこで、このぶれを補正する為に、一方のフ ィールド信号から他方のフィールド信号を演算により生 成し、ぶれのないフレーム画像を得ようとする画像補間

方法が知られている。

【0003】図6は、従来の画像補間方法の一例を説明 するための説明図である。ととで、補間演算のソースと なるフィールド (ソースデータ) のk番目のラインとk +2番目のラインとからその間に存在するk+1番目の ラインにおける画素Xを補間する場合、まず、k番目の ライン又はk+2番目のラインに存在し、画素Xと隣接 する合計 1 0 画素 (A,~E,及びA,,,~E,,,) により 構成される隣接画素に着目し、画素Xを中心として点対 称をなす2つの隣接画素(例えばA,とE,..又はB,と D_{k・2}等) を点対称画素として、これらの点対称画素を 夫々結ぶ5つの軸方向(第1~第5補間軸)に対する画 素データの相関性を評価する。

【0004】画素データの相関性は、例えばk番目のラ インに存在する隣接画素の輝度データ(A_k~E_k)と k おける前記参照画素の画素データに基づき補間画素の画 20 +2番目のラインに存在する隣接画素の輝度データ(A k+2~Ek+2)との差で表すことが可能であり、第 1 ~第 5補間軸方向での相関評価指数を夫々△1~△5とした 場合に、△1は | A 🕻 − E 👡 | 、△2は | B 🖡 − D k+2 | $\triangle 3$ t | $C_k - C_{k+2}$ | $\triangle 4$ t | $D_k - B$ k+2 $| \cdot \cdot \cdot \Delta 5$ は $| \cdot E_k - A_{k+2} \cdot |$ により演算される。そし て、各相関評価指数△1~△5の値を比較して、値が最 も小さい軸方向を補間軸Hとして決定し、この補間軸H における2つの点対称画素の画素データの例えば平均値 により画素Xでの補間データを得ていた。

> 【0005】図7は、従来の画像補間方法を用いてk番 目のラインに存在する15画素とk+2番目のラインに 存在する15画素との輝度データにより、k番目のライ ンとk+2番目のラインとの間の補間ライン(k+1番 目のライン) における11画素(画素P~Z)の補間デ ータ (Ph~Zh) を得た例を示している。

【0006】また、図8は、従来の画像補間方法を用い てk+2番目のラインに存在する15画素とk+4番目 のラインに存在する15画素との輝度データにより、k +2番目のラインとk+4番目のラインとの間の補間ラ イン (k+3番目のライン) における11画素(画素P ~ Z) の補間データ (Ph~Zh)を得た例を示してい

【0007】とこで、図7及び図8に示す如く、k番目 のラインにおける15画素の輝度データは、左から順に 0, 0, 0, 2, 3, 7, 10, 7, 3, 3, 0, 0, 0、0、0とし、k+2番目のラインにおける15画素 の輝度データは左から順に0、0、0、0、2、4、 8、10、8、3、2、0、0、0、0、そしてk+4 番目のラインにおける15画素の輝度データは、左から

3、0、0、0とする。

【0008】図7において、補間ライン(k+1)での 11画素 (画素 P~Z) の各軸方向に対する相関評価指 数 Δ 1 \sim Δ 5の値を夫々比較すると、まず、画案Pに関 しては、相関評価指数△1~△5の値が夫々、2、0、 0、2、3である為、最小値となった第2及び第3補間 軸を補間軸Hと決定し、以下同様に、画素Qに関しては 第2及び第3補間軸、画索Rに関しては第3補間軸、画 素Sに関しては第3補間軸、画素Tに関しては第5補間 軸、画素Uに関しては第5補間軸、画素Vに関しては第 10 2補間軸、画素Wに関しては第3補間軸、画素Xに関し ては第3補間軸、画索Yに関しては第2及び第3補間 軸、画素2に関しては第1、第2、第3及び第4補間軸 を補間軸Hとする。

5

【0009】また、図8において、補間ライン(k+ 3) での11画素 (画素P~Z) の各軸方向に対する相 関評価指数△1~△5の値を夫々比較すると、まず、画 素Pに関しては、相関評価指数Δ1~Δ5の値が夫々、 0、0、0、0、2である為、最小値となった第1、第 2、第3及び第4補間軸を補間軸Hと決定し、以下同様 20 に、画素Qに関しては第2及び第3補間軸、画素Rに関 しては第2及び第3補間軸、画素Sに関しては第2補間 軸、画素Tに関しては第2補間軸、画素Uに関しては第 5補間軸、画素∨に関しては第5補間軸、画素Wに関し ては第3補間軸、画素Xに関しては第2補間軸、画素Y に関しては第2補間軸、画素乙に関しては第2及び第3 補間軸を補間軸Hとする。

[0010]次に、補間ライン(k+1)での11画素 (画素P~Z) に対しては、夫々決定された補間軸Hに おける点対称画素の平均値により画素データを得る為、 画素Pの補間データPhは、先に補間軸Hとして決定さ れた第2補間軸での点対称画素の輝度データである0と 0、及び第3補間軸での点対称画素の輝度データである 0と0との全ての値の平均により0となり、以下同様 に、画素Qの補間データQhは1.0、画素Rの補間デ ータRhは2.5、画索Sの補間データShは5.5、 画索Tの補間データThは2.5、画素Uの補間データ Uhは3.5、画素Vの補間データVhは5.0、画素 Wの補間データWhは3.0、画素Xの補間データXh は1.0、画素Yの補間データYhは0、画素Zの補間 40 データZhは0となる。

[0011]また、補間ライン(k+3)での11画素 (画素P~2) に関しては、画素Pの補間データPh は、第1、第2、第3及び第4補間軸での点対称画素の 輝度データである0と0、0と0、0と0及び0と0と の全ての値の平均によりOとなり、以下同様に、画素Q の補間データQhはO、画素Rの補間データRhは1. 0、画素Sの補間データShは2.5、画素Tの補間デ ータThは5.5、画素Uの補間データUhは2.5、 画素∨の補間データ∨hは2.5、画素₩の補間データ 50 であるが、補間ライン(k+1)における画素T及び画

Whは5.0、画素Xの補間データXhは3.0、画素 Yの補間データYhは1.0、画索Zの補間データZh は0となる。

【0012】なお、補間ライン(k+1)における画素 Pのように、補間軸Hとして複数の補間軸が決定された 場合、ととではこれら全ての補間軸の点対称画素の平均 値を補間データとして算出したが、一般的に、軸方向の 相関性が同じであれば、補間される画素により近い位置 の画索を用いて補間データを生成した方が周辺の画索と の連続性が高く、違和感のない望ましい補間が行えると とが多いことから、相関評価指数(Δ 1 \sim Δ 5)の最小 値が同一となり、複数の補間軸が決定された場合には、 補間する画素と各軸における点対称画素との距離に応じ て、例えば、第3補間軸>第2補間軸(あるいは第4補 間軸)>第4補間軸(あるいは第2補間軸)>第1補間 軸(あるいは第5補間軸)>第5補間軸(あるいは第1 補間軸)の如く優先順位を設けて補間軸Hを1つに決定 し、各補間データを先の如く演算することも可能であ り、あるいは、複数の補間軸の点対称画素に対して、上 記優先順位に応じた重み係数を乗じ、補間データとして この荷重平均値を演算することも可能である。 但し、第 7図及び第8図の数値例においては、いずれの演算方法 を用いても同じ演算結果が得られる。

[0013]

[発明が解決しようとする課題] 図9(a)は、このよ うにして得られた補間ライン(k+1)における画素P ~2の補間データ、補間ライン(k+3)における画素 P~Zの補間データ、k番目のラインにおける15画素 の輝度データ、k+2番目のラインにおける15画素の 30 輝度データ、k+4番目のラインにおける15画素の輝 度データを示した表であり、また、図9(b)はこれを グラフ化したものある。

【0014】図9(b) に示すように、k番目のライン の輝度データ、k+2番目のラインの輝度データ、そし てk+4番目のラインの輝度データは、共に相関性が高 く、夫々輝度データのピーク(山)が発生している。と とろが、補間ライン(k+1)における画素P~Zの補 間データ、そして、補間ライン(k+3)における画素 P~Zの補間データには、同じようなピーク(山)が発 生せずに、むしろ谷になっており、適切な補間が行われ ていないことがわかる。

[0015]また、図9(a)においてk番目のライン の輝度データ、k+2番目のラインの輝度データ、そし てk+4番目のラインの輝度データとを比較してみる と、垂直方向からいくらか反時計方向に傾いた軸方向に 対して同程度の数値の輝度データが並んでいることがわ かる。

【0016】従って、画紫P~Zの夫々の補間軸Hは、 本来第2補間軸あるいは第3補間軸とされるべきところ 素U、そして補間ライン(k+3)における画素U及び 画素Vに対しては、それぞれ第5補間軸が補間軸Hとさ れている。

【0017】図10は、画衆Xに対して、参照画衆数を 更に増やした場合の隣接した補間軸同士の成す角を示す 図である。図10に示す如く、参照画素を増やすことに より水平方向に近い軸方向に対しては更に細かく相関性 を評価することが可能となるが、この場合であっても、 第2補間軸と第3補間軸との成す角、あるいは第3補間 軸と第4補間軸との成す角は、それぞれ45度となって 10 おり、第2補間軸と第3補間軸との間、あるいは第3補 間軸と第4補間軸との間の軸方向に対する相関性を評価 することができない。

【0018】従って、従来の画像補間方法では、補間軸 同士の成す角が比較的大きい隣り合う補間軸の間で画素 の相関性が高くなっている場合でも、これを検出するこ とができず、誤った補間軸をとってしまう可能性が高い という問題があった。

[0019]

【課題を解決するための手段】以上の課題を解決する為 20 に、本発明に係る画像補間方法は、互いに隣接して直線 的に配列された第1及び第3の画素信号列の間に、第2 の画素信号列を発生させる画像補間方法において、前記 第2の画素信号列における補間画素の近傍に位置する前 記第1及び第3の画素信号列の複数の画素を参照画素と して、前記参照画素の画素データの相関性を評価すると とで前記補間画素に対する補間軸方向を定め、定められ た補間軸方向に応じて前記参照画素の画素データを用い て補間画素の画素データを得る画像補間方法であり、前 記第1の画素信号列上の参照画素に加え、第1の画素信 30 号列上の複数の画素の画素データを用いて、前記補間画 素の垂直上方向に位置する第1の画素信号列上の垂直上 画素と垂直上画素の水平左方向に隣接する左上画素との 間に左上仮想画素を、また、前記垂直上画素と垂直上画 素の水平右方向に隣接する右上画素との間に右上仮想画 素をそれぞれ参照画素として算出し、前記第3の画素信 号列上の参照画素に加え、第3の画素信号列上の複数の 画素の画素データを用いて、前記補間画素の垂直下方向 に位置する第3の画素信号列上の垂直下画素と垂直下画 素の水平左方向に隣接する左下画索との間に左下仮想画 40 索を、また、前記垂直下画索と垂直下画索の水平右方向 に隣接する右下画素との間に右下仮想画素を、それぞれ 参照画素として算出し、前記左上仮想画素と前記右下仮 想画素とを結ぶ方向、及び、前記右上仮想画素と前記左 下仮想画素とを結ぶ方向を少なくとも含み、前記補間画 素を中心として点対称の位置にある前記参照画素を結ぶ 方向での信号の相関性を夫々評価し、最も相関性の高い 方向を補間軸方向として定め、前記定められた補間軸方 向における前記参照画素の画素データに基づき補間画素 の画素データを得ることを特徴とするものであり、ま

た、前記左上仮想画素と前記右下仮想画素とを結ぶ方 向、又は、前記右上仮想画素と前記左下仮想画素とを結 ぶ方向のいずれかの方向が補間軸方向として定められた 場合には、前記当該仮想画素を算出するために用いた前 記参照画素の画素データに基づき補間画素の画素データ を得、前記左上仮想画素と前記右下仮想画素とを結ぶ方 向、又は、前記右上仮想画素と前記左下仮想画素とを結 ぶ方向以外が補間軸方向として定められた場合には、前 記定められた補間軸方向における前記参照画素の画素デ ータに基づき補間画素の画素データを得ることを特徴と するものであり、また、前記左上仮想画素と前記右下仮 想画素とを結ぶ方向、又は、前記右上仮想画素と前記左 下仮想画素とを結ぶ方向のいずれかの方向が補間軸方向 として定められた場合には、前記垂直上画素と前記垂直 下画素との画素データに基づき補間画素の画素データを 得、前記左上仮想画素と前記右下仮想画素とを結ぶ方 向、又は、前記右上仮想画素と前記左下仮想画素とを結 ぶ方向以外が補間軸方向として定められた場合には、前 記定められた補間軸方向における前記参照画素の画素デ ータに基づき補間画素の画素データを得ることを特徴と するものである。

[0020] 更に、本発明に係る画像補間方法は、前記 補間画素を中心として点対称の位置にある前記参照画素 を結ぶ複数の方向での信号の相関性を夫々評価し、最も 相関性の高い方向を補間軸方向として定める際に、最も 相関性の高い方向が複数存在する場合には、各方向にお ける参照画素の位置と補間画素との距離が最も短い方向 を補間軸方向として定めることを特徴とするものであ り、また、前記補間画素を中心として点対称の位置にあ る前記参照画素を結ぶ複数の方向での信号の相関性を夫 々評価し、最も相関性の高い方向を補間軸方向として定 め、前記定められた補間軸方向における前記参照画素の 画素データに基づき補間画素の画素データを得る際に、 最も相関性の高い方向が複数存在する場合には、各方向 における参照画素の位置と補間画素との距離が短いほど 大きい係数を、距離が長いほど小さい係数を各参照画素 の画索データに乗じ、これら参照画素の荷重平均値を補 間画素の画素データとして得ることを特徴とするもので ある。

[0021]

【発明の実施の形態】本発明に係る画像補間方法は、k 番目のラインとk+2番目のラインとからその間に存在 するk+1番目のラインにおける画素Xを補間する場 合、この補間画素Xの画素データを補間する際の補間軸 の設定を、限られた少ない画素から正確に行えるように したことを特徴とするものである。

[0022]図1は、本発明の実施例に係る画像補間方法を説明するための説明図である。本発明の実施例に係る画像補間方法では、従来の画像補間方法と同様に、k番目のラインとk+2番目のラインとの間に存在する補

間ライン(k+1ライン)に画素Xを補間する際に、ま ず、k番目のライン又はk+2番目のラインに存在し、 画素Xと隣接する合計10画素(A、~E、及びA、、、~ E...) により構成される隣接画素に着目する。

【0023】次に、隣接画素B、と隣接画素C、との間の 仮想的な隣接画素F、における仮想画素データを(B、+ Ck) /2、隣接画素Ckと隣接画素Dkとの間の仮想的 な隣接画素G_kにおける仮想画素データを(C_k+D_k) /2、隣接画素 B... と隣接画素 C... との間の仮想的な 隣接画素 F..., における仮想画素データを(B....+C. .,) /2、隣接画素C.,,と隣接画素D.,,との間の仮想 的な隣接画素G...における仮想画素データを(C...+ D...) /2により演算する。

【0024】そして、画素Xを中心として点対称をなす 2つの隣接画素(例えばA、とE、、、又はB、とD ***等)、そして画素Xを中心として点対称をなす2つ の仮想的な隣接画素 (F,とG,,,及びG,とF,,,)を全

て点対称画素として、この点対称画素を夫々結ぶ7つの 軸方向 (第1、第2、第2.5、第3、第3.5、第 る。

【0025】まず、第1補間軸方向への画素データの相 関性を示す相関評価指数△1は、第1補間軸上の点対称 画素の画素データの差である | A, - E,,, | 、同様にし て、第2補間軸方向での相関評価指数△2は | B_k-D L. 1、第3補間軸方向での相関評価指数△3は | C L -C_{k・2} | 、第4補間軸方向での相関評価指数△4は | D_k - B_{1.1} | 、第5補間軸方向での相関評価指数△5は | Ex-Ax., | となる。

【0026】また、第2.5補間軸方向への画素データ の相関性を示す相関評価指数△2.5は、第2.5補間 軸上の点対称画素の画素データの差である(│Bょ+Сょ -C***-D***1)/2、第3.5補間軸方向への画素 データの相関性を示す相関評価指数△3.5は、第3. 5補間軸上の点対称画素の画素データの差である(|C $_{k} + D_{k} - B_{k+2} - C_{k+2} |) / 2 \ge x \delta_{k}$

【0027】そして、各軸方向の相関評価指数△1、△ 2、 Δ2. 5、 Δ3、 Δ3. 5、 Δ4、 Δ5 の値を比較 して、値が最も小さい軸により補間軸Hを決定し、この 補間軸Hにおける2つの点対称画素の画素データの平均 40 値により画索Xでの補間データを得る。

【0028】即ち、画素Xと隣接する合計10画素(A 、~E、及びA...、~E...、)における点対称画素を結ぶ各 軸方向により Δ 1、 Δ 2、 Δ 3、 Δ 4、 Δ 5の値を演算 するのに加え、第2補間軸と第3補間軸との間の仮想的 な第2. 5補間軸方向、そして第3補間軸と第4補間軸 との間の仮想的な第3.5補間軸方向により△2.5、 そして△3.5の値をそれぞれ演算することにより、仮 想的な軸方向に対しても相関評価指数が得られるように している。

【0029】図2は、本発明の実施例に係る画像補間方 法を用いてk番目のラインに存在する15画素とk+2 番目のラインに存在する15画素との輝度データによ り、k番目のラインとk+2番目のラインとの間の補間 ライン (k+1番目のライン) における11画素 (画素 P~Z)の補間データ(Ph~Zh)を得た例を示して いる。

[0030]また、図3は、本発明の実施例に係る画像 補間方法を用いて k + 2番目のラインに存在する 1 5 画 10 索とk+4番目のラインに存在する15画素との輝度デ ータにより、k+2番目のラインとk+4番目のライン との間の補間ライン (k+3番目のライン) における1 1画素(画素P~Z)の補間データ(Ph~Zh)を得 た例を示している。

[0031] ととで、図2及び図3に示す如く、k番目 のラインにおける15画素の輝度データは、図7及び図 8で示した輝度データの値と同一であり左から順に0、 0, 0, 2, 3, 7, 10, 7, 3, 3, 0, 0, 0, O. Oとし、k+2番目のラインにおける15画素の輝 4、第5補間軸)に対する画素データの相関性を評価す 20 度データは左から順に0、0、0、0、2、4、8、10、8、3、2、0、0、0、0、そしてk+4番目の ラインにおける15画素の輝度データは、左から順に 0, 0, 0, 0, 0, 2, 3, 7, 10, 7, 3, 3, 0、0、0とする。

> 【0032】図2において、補間ライン(k+1)での 11画素 (画素 P~ Z) の各軸方向に対する相関評価指 数の値を夫々比較すると、まず、画素Pに関しては、相 関評価指数△1、△2、△2.5、△3、△3.5、△ 4、△5の値が夫々、2、0、0、0、1、2、3とな るが、ことでは各軸方向に対して、補間画素との距離に 応じた第3補間軸>第2.5補間軸>第3.5補間軸> 第2補間軸>第4補間軸>第1補間軸>第5補間軸の如 き優先順位を設け、相関評価指数が最小値となった第2 補間軸、第2.5補間軸及び第3補間軸の中から、との 優先順位に従い第3補間軸を補間軸Hと決定し、以下同 様に、画素Qに関しては第2.5補間軸、画素Rに関し ては第2. 5補間軸、画索Sに関しては第2. 5補間 軸、画素Tに関しては第2.5補間軸、画素Uに関して は第2.5補間軸、画素Vに関しては第2.5補間軸、 画素Wに関しては第3補間軸、画素Xに関しては第2. 5補間軸、画素Yに関しては第3補間軸、画素Zに関し ては第3補間軸を補間軸Hとする。

【0033】また、図3において、補間ライン(k+ 3) での11画素(画素P~Z)の各軸方向に対する相 関評価指数の値を夫々比較すると、まず、画索Pに関し ては、相関評価指数 Δ 1、 Δ 2、 Δ 2. 5、 Δ 3、 Δ 3.5、Δ4、Δ5の値が夫々、0、0、0、0、0、0、 0、2である為、最小値となった第1、第2、第2. 5、第3、第3、5及び第4補間軸の中から、先と同様 50 の優先順位に従い、第3補間軸を補間軸Hと決定し、以 11

下同様に、画素Qに関しては第3補間軸、画素Rに関しては第2.5補間軸、画素Sに関しては第2.5補間軸、画素Uに関しては第2.5補間軸、画素Uに関しては第2.5補間軸、画素Vに関しては第2.5補間軸、画素Xに関しては第2.5補間軸、画素Yに関しては第2.5補間軸、画素Zに関しては第3補間軸を補間軸Hとする。

【0034】補間ライン(k+1)での11画素(画索P~Z)は、夫々決定された補間軸Hにおける点対称画素の平均値により画素データを得る為、画索Pの補間デ10ータPhは、第3補間軸での点対称画素の輝度データである0と0との平均により0となり、以下同様に、画索Qの補間データQhは1.0、画素Rの補間データRhは2.75、画素Sの補間データShは5.5、画素Tの補間データThは8.75、画素Uの補間データUhは8.75、画素Vの補間データVhは5.25、画素Wの補間データWhは3.0、画素Xの補間データXhは1.25、画素Yの補間データYhは0、画素Zの補間データZhは0となる。

【0035】また、補間ライン(k+3)での11画素 20(画素P~Z)に関しては、画素Pの補間データPhは、第3補間軸での点対称画素の輝度データである0と0との平均により0となり、以下同様に、画素Qの補間データQhは0、画素Rの補間データRhは1.0、画素Sの補間データShは2.75、画素Tの補間データThは5.5、画素Uの補間データUhは8.75、画素Vの補間データVhは8.75、画素Wの補間データWhは5.25、画素Xの補間データXhは3.0、画素Yの補間データYhは1.25、画素Zの補間データZhは0となる。 30

【0036】図4 (a) は、とのようにして得られた補間ライン (k+1) における画素 $P \sim Z$ の補間データ、補間ライン (k+3) における画素 $P \sim Z$ の補間データ、k 番目のラインにおける 15 画素の輝度 データ、k+2 番目のラインにおける 15 画素の輝度 データ、k+4 番目のラインにおける 15 画素の輝度 データを示した表であり、また、図4 (b) はこれをグラフ化したものある。

【0037】図4(b)に示すように、補間ライン(k+1)における画素P~Zの補間データ、そして、補間 40ライン(k+3)における画素P~Zの補間データは、k番目のラインの輝度データ、k+2番目のラインの輝度データ、そしてk+4番目のラインの輝度データと同様に輝度データのピーク(山)が発生した相関性が高い補間データとなり、適切な補間が行われたことがわかる。そして、これは、図2及び図3からも明らかなように、画案P~Zにおける補間軸が第2.5補間軸あるいはこの補間軸に近い角度である第2補間軸または第3補間軸に正確に設定されたことによる。

【0038】なお、以上の実施例では各補間画素におけ 50

る補間軸方向を、所定の優先順位にしたがって1軸として、この補間軸上の参照画素データに基づいて補間画素を算出したが、補間軸として複数の補間方向が決定された場合、各補間方向の参照画素データに対して優先順位に応じた所定の重み係数を乗じ、この荷重平均値を補間画素データとして算出することも可能である。この場合、例えば重み係数として、第3補間軸には4、第2、5及び第3.5補間軸には3、第2及び第4補間軸には2、第1及び第5補間軸には1を用いれば、図2において、補間ライン(k+1)の画素Pに関しては、第2、第2.5、及び第3補間軸の3軸が補間軸となるので、第2補間軸上の参照画素データには2を、第2.5補間軸上の参照画素データには2を、第2.5補間軸上の参照画素データには3を、第3補間軸上の参照画素データには4を重み係数として乗じ、これら参照画素データの荷重平均値を補間画素Pの画素データとすれば良い。

【0039】また、以上の実施例では補間軸が第2.5 補間軸、あるいは第3.5 補間軸に設定された場合に、この軸上にある仮想的な隣接画素の画素データを用いて、補間画素の画素データを演算したが、仮想的な隣接画素を補間軸方向の検出のみに用い、補間軸が第2.5 補間軸、あるいは第3.5 補間軸に設定された場合の補間画素の補間データは、補間軸として第3補間軸が検出された場合と同様に、第3補間軸上にある画素C.及びC...のデータから演算しても良く、こうすることによって、補間方向の検出精度を高めながら補間データの高域周波数特性(画像のキレ)を高めることが可能となり、 "細い垂直な線"を含んだCGやアニメーションのような画像に対して、より自然な補間データを得ることができる。

【0040】また、以上の実施例では補間軸が第2.5 補間軸、あるいは第3.5 補間軸に設定された場合に、この軸上にある仮想的な隣接画素の画素データを用いて、補間画素の画素データを演算したが、この軸上にある仮想的な隣接画素の画素データを直接用いなくても、例えば第2.5 補間軸(第3.5 補間軸)が補間軸に設定された場合には、これらの補間軸上での仮想的な隣接画素での画素データを演算する為に用いた4つの点対称画素 B_k 、 C_k 、 C_{k+1} 及び D_{k+1} (C_k 、 D_k 、 B_{k+1} 及び C_{k+1})での画素データを用いて補間画素の画素データを演算すれば良い。

【0041】また、以上の実施例では、補間画素と隣接する10画素からなる5つの補間軸に加え、仮想的な隣接画素からなる2つの補間軸に対する相関性を評価して補間方向を検出したが、補間軸の数はこれに限らず、補間画素と隣接する複数の画素からなる補間軸に加え、演算によって得られた仮想的な隣接画素からなる補間軸を補間方向の検出に用いれば、仮想的な隣接画素を用いない従来の補間方法より補間方向の検出精度が高まり、より自然な補間データを得ることができる。特に、実施例

のように、補間軸同士の成す角度の広い第2補間軸と第 3補間軸の間、及び第3補間軸と第4補間軸の間に仮想 的な隣接画索からなる補間軸を設けた場合は、その効果 が大きい。

13

【0043】図5は、仮想的な隣接画素の数を増やした場合の例であり、とこでは、k番目のラインにおける隣接画素A、及びB、の間を6:3の比率で分ける位置、隣接画素B、及びC、の間を3:2:2:2の比率で分ける位置、隣接画素C、及びD、の間を2:2:2:3の比率で分ける位置、隣接画素D、及びE、の間を3:6の比率で分ける位置(k+2番目のラインも同様)にそれぞれ仮想的な隣接画素を設けてある。

【0044】 このように、仮想的な隣接画素を設けるこ 20 とにより、各補間軸間の成す角を狭くすると共に、各補間軸間の成す角の均等性(8.1度~12.5度)を高めることができる為、より高精度で、且つ検出方向に偏りの少ない補間軸検出が可能となる。

【0045】また、以上の実施例では、補間しようとする画素の補間データを補間軸Hにおける2つの点対称画素の画素データの単純平均値により得た例を示したが、空間周波数特性の高域成分(画像のキレ)を重視して、例えばk番目のライン上の点対称画素の画素データには0.7の値を乗じ、k+2番目のライン上の点対称画素 30の画素データには0.3の値を乗じて、それぞれの値の加算値により補間ライン(k+1)における補間画素の補間データを得てもよい。

[0046]また、以上の実施例では、水平方向の画素データの間隔と垂直方向のライン間隔とが等しい正方配列の画像データに対する補間処理の例を示したが、例えばNTSC信号において色副搬送波の4倍の周波数(4fsc)で水平画像データを得た場合のように、走査線ピッチ(垂直方向のライン間隔)の0.8倍程度の間隔で水平画素データが配列される信号に対しても、従来の40補間方法では垂直に近い軸方向の検出精度が粗いことに

は変わりはなく、本発明を適用することで検出精度が高 まることは言うまでもない。

[0047]

【発明の効果】とのように、本発明に係る画像補間方法によると、補間画素の垂直方向に位置する画素と、これと水平方向に隣接する画素との間の仮想的な隣接画素における画素データを補間軸方向の検出に用いることにより、垂直方向からわずかに傾いた方向に相関性のある画像に対しても適切な補間軸の設定及び補間処理が可能となる。

【図面の簡単な説明】

【図1】本発明の実施例に係る画像補間方法を説明する ための説明図である。

【図2】本発明の実施例に係る画像補間方法を用いて得られた補間ライン(k+1)の補間データを説明する図である。

【図3】本発明の実施例に係る画像補間方法を用いて得られた補間ライン(k+3)の補間データを説明する図である。

3 【図4】本発明の実施例に係る画像補間方法による補間 結果を示す図である。

【図5】本発明の実施例に係る画像補間方法において、 仮想的な隣接画素を増やした場合の成す角を示す図であ 2

【図6】従来の画像補間方法の一例を説明するための説明図である。

【図7】従来の画像補間方法を用いて得られた補間ライン(k+1)の補間データを説明する図である。

【図8】従来の画像補間方法を用いて得られた補間ライン(k+3)の補間データを説明する図である。

【図9】従来の画像補間方法による補間結果を示す図で ある。

【図10】従来の画像補間方法において参照画素数を増 やした場合の成す角を示す図である。

【符号の説明】

Δ1…第1補間軸方向での画素データの相関評価指数

△2…第2補間軸方向での画素データの相関評価指数

△3…第3補間軸方向での画素データの相関評価指数

△4…第4補間軸方向での画素データの相関評価指数

△5…第5補間軸方向での画素データの相関評価指数

【図1】

【図5】

【図6】

【図2】

																			被間データ
相関評価	散	۵۱	Δ2 0	Δ2.5 0	Δ3 0	∆3.5	$\frac{\Delta 4}{2}$	Δ5 3											H≡ ∆3
ースライン	(k)	ő	0	0	Ö	+	2	3	7	10	7	3	3	Ô	0	0	0	6	
間ライン					P		(U)	(H)	(2)	m	(L)	N)	(4)	(X)	8	m			Ph= 0.0
ースライン		0	0	0	0	0	0	2	4	8	10	8	3_	2	0	0	0_	0	
相関評価	数		Δ1 4	Δ2 2	Δ2.5 0	Δ3 2	Δ3.5 2.5	Δ4 3	Δ5 7										li≡ Δ2.5
ースライン	(k)	0	0	0	ì	2	2.5	3	7	10	7	3	3	0	0	0	0	0	
	(k+1)			(P)		Q		(90)	63	m	ധ	W	(A)	<u>∞</u>	w	<u>(Z)</u>		_	Qh= 1.0
ースライン	(k+2)	0	0_	0	0	0	1	2	4	8	10	В	3	_2_	0.	0	0_	0	l
相関評価技	自数			8	Δ2 2	Δ2.5 0.5	Δ3	Δ3.5	Δ4	Δ5 10									H ≃ Δ2.5
ースライン	(k)	0	0	0	2	2.5	3	5	7	10	7	3	3	0	0	0	0	0	
間ライン				(P)	(Q)		R		60	m	(L)	8	(W)	(X)	B	3		_	Rh= 2.75
ースライン	(k+2)	0_	0	0	0_	_1_	2	3_	4	8	10	8	_3_	2	0	0	0	0	1
相関評価	首数				Δ1 8	Δ2	Δ2.5	Δ3 3	Δ3.5 5.5	Δ4 8	Δ5 7								H≡ Δ2.5
ースライン	(i)	0	Ô	0	2	3	5	7	8.5	10	7	3	3	0	0	0	0	0	1
間ライン				(P)	(C)	(70		5		m	(U)	Ø	(₩)	(X)	(Y)	(2)			Sh= 5.5
ースライン		0	0	0	0	2	3	4	6	8	10	8	3	2	0	0	0	0	J
相関評価	首数					Δ1 5	Δ2 3	Δ2.5 0.5	Δ3 2	Δ3.5 2.5	Δ4 3	Δ5 1							H= Δ2.5
ースライン	ω i	0	0	0	2	3	7	8.5	. 10	8.5	7	3	3	0	0	0	0	0	1
間ライン	(k+1)	-		(P)	(0)	(FO)	(2)		Т		(L)	8	(W)	00	(Y)	(2)			Th= 8.75
ースライン		0	0	0	0	2	4	6	8	9	10	8	3	2	0	0	0	0	J
相關評価	指数						Δ1 4	Δ2 2	Δ2.5 0.5	Δ3 3	∆3.5	Δ4 5	Δ5						H≡ Δ2.5
ースライン	(id)	6	0	0	2	3	7	10	8.5	7	- 5	- 3	3	0	0	0	0	0	1
	(k+1)	Ť		(P)	(2)	(10)	(3)	(1)		Ü		(7)	(17)	(X)	m	(2)			Uh= 8.75
ースライン		0	0	0	0	2	4	8	9	10	9	8	3	2_	0	0	0	0]
相關評価	首数							Δ1 8	Δ2	Δ2.5 0.5	Δ3 5	Δ3.5	Δ4 7	Δ5 8] H≡ Δ2.5
ースライン	(k)	0	Ö	0	2	3	7	10	7	3	3	3	3	ŏ	0	0	0	D]
間ライン	(k+1)			(P)	(Q)	00	CO	m	(U)		V		(W)	(00)	m	(2)			√h= 5.25
ースライン	(k+2)	0	0	0	0	2	4	8	10	9	8	5.5	3_	2	0	0	0	0	J
相關評価	指数						_	*	Δ1	Δ2		Δ3	Δ3.5	Δ4 8	Δ5 10				H = Δ3
ースライン	(1)	0	0	Ö	2	3	7	10	 -	3	0.5 3	3	1.5	0	0	0	0	0	
間ライン	(k+1)	<u> </u>		(17)	Q	60	(S)	m	(L)	N)		w		(X)	m.	Ø			Wh= 3.0
ースライン		0	0	Ö	0	2	4	8	10	8	5.5	3	2.5	2	0	0	0	0]
相関評価	指数									Δ1 3	Δ2 3	Δ2.5 0.5	Δ3	Δ3.5 2.5	Δ4 3	Δ5 8] H ≅ Δ2.5
ースライン	00	0	0	0	2	3	7	10	7	3	3	1.5	- 6 -	0	0	Ö	0	0	1
リライン		Ť		(P)	(4)	(10	(5)	m.	(1)	8	(3)	4	×		m	(2)			Xh= 1.25
ースライン		0	0	0	Ö	2	4	8	10	8	3	2.5	2	L	0	0	0	0]
相関評価	数										Δ1 3	Δ2	Δ2.t	Δ3	Δ3.5	Δ4 2	Δ5 3		H = Δ3
ースライン	(k)	0	0	0	2	3	7	ίO	7	3	3	0	ő	0	0	. 0	Q	0	
間ライン	(k÷1)			ሀን	(Q)	(Ю	(57)	(1)	(U)	(V)	(V)	00		Y		(2)			Yh= 0.0
ースライン	(k+2)	0	0	0	0	2	4	8	10	8	3	2	1	0	0_	0	0	0	1
相關評価	首数		-									Δ1 0	Δ2 0	Δ2.3 0	Δ3	Δ3.5	Δ4 0	Δ5 2	Н≡ДЗ
ースライン	(k)	a	0	0	2	3	7	10	7	.3	3	0	0	0	ō	0	0	₹	1
同ライン		Ť		112	(<u>(</u> (<u>(</u>)	(H)	(S)	(D	(U)	(v)	(W)	(X)	ന	<u>×</u> _	Ž				Zh= 0.0
		0	0	Ô	0	2	4	8	10	8	3	2	0	-0	0	0	0	0	1

【図3】

間ラインの各個	おに対	+ 51	相関的	化推	数 (Δ1,Δ	2,Δ	2.5, ∆	3, ∆3	.5,Δ	4, Δ5)	一英	施例					植間粒H。 補間デー
相関評価指数	Δ1	Δ2	Δ2.5 0	Δ3	Δ3.5 0	Δ4	Δ5											Н≡∆З
ースライン (k+2)	Ö	0	ō	0	0	0	2	4	8	10_	8	3	2	0	0	0	0	
間ライン (k+3)				Р		(C)	R	(3)	(I)	(L)	(V)	(W)	(X)	m	(73)			Ph= 0.0
ースライン (k+4)	0	0	0	0	_0_	0	0	2	3	7	10		_3	3	0	0_	0	
相関評価指数		Δ1 2	Δ2 0	Δ2.5 0	Δ3 0	Δ3.5 1	Δ4 2	Δ5 4										H≅∆3
ースライン (k+2)	0	0	0	0	0	1	2	4	8	10	8	3	2_	0	0	0	0	0
間ライン (k+3) ースライン (k+4)	0	0	(P) 0	0	0	0	80	(S)	<u>m</u> 3	(1) 7	10	7	3	<u>m</u>	0	0	0	Qh= 0.0
相関評価指数			Δ1	Δ2	Δ2.5	Δ3	Δ3.5	Δ4	Δ5								_	}
			3	2	0	2	3	4	8						-			$H = \Delta 2.8$
ースライン (k+2)	C	0	(P)	0	. 1	2 R	3	4	8 m	<u>ແ</u> ກ	8	3	2	33	0	0	0	Rħ= 1.0
間ライン (k+3) ースライン (k+4)	0	0	0	0	0	0	ì	2	3	7	10	7	3	3	0	0	0	1410
相関評価指数				A 1	A 2	A 0 6	A 2	Δ3.5	A 4	Δ5							_	1
化进行面位数				Δ1 7	ΔZ	Δ2.5 0.5	2	Δ3.5 5	8	10								H≡ Δ2.5
ースライン (k+2)	0	0	0	0	2	3	4	6	В	10	8	3	2	0	0	0	0	
ライン (k+3)	Ļ		(P)	(0)	(R)		S		ಹ	(L)	(V)	(W)	<u>∞</u>	n	(Z)			Sh= 2.79
ースライン (k+4)	0	0	0	0_	0	1	2_	2.5	3	7_	10	7	3	3_	0_	0	0	J
相関評価指数					Δ1 8	Δ2 3	Δ2.5 1	Δ3 5	Δ3.5 6.5	Δ4 8	Δ5 8							H≡ Δ2.5
ースライン (k-2)	0	0	0	0	2	4	6	8	9	10	8	3	2	0	0	0	0	
脚ライン (k+3)			(P)	(0)	(E)	<u>_</u>	- 2 -	T	-	<u>~~</u>	<u>~~</u>	(W)	3	<u>m</u>	(Z) O	0	Ō	Th= 5.5
ースライン (k+4)	<u>. u</u>	0	0	0	0	2	2.5	3	5_	7	10			<u> </u>		<u></u>		-
相関評価指数						Δ1 3	Δ2 2	Δ2.5 0.5	Δ3 3	Δ3.5 4	Δ4 5	Δ5 1] H = Δ2.5
ースライン (k+2)		0	0	0	2	4	- 8	9	10	9	8	3	2	0	0	0	0]
間ライン (k+3)		0	0	(0)	(K) 0	2	(i)		7	8.5	10	(W) 7	3	<u>m</u>	(7.)	0	0	Uh= 8.7
ースライン (k+4)	0			- 0	<u> </u>		3	- 5		5.0	10						<u> </u>	
相關評価指数							Δ1 5	Δ2 3	Δ2.5 0.5	Δ3 2	Δ3.5 3	Δ4 4	Δ5 1					H≡Δ2.
ースライン (k+2)		0	0	0	2	4	8	10	9	8	5.5	3	2	0	0	0	0	}
制制ライン (k+3)		0	(P) 0	(Q) 0	(10)	2	<u>m</u>	(L) 7	0.5	10	8.5	(W)	3	(Y) 3	(2)	0	0	Vh= 8.7
ースライン (k+4)									8.5	10	0.0					<u> </u>		,
相関評価指数								Δ1	_		Δ3			Δ5]
ースライン (k+2)	0	0	0	0	2	1	8	10	<u>5</u>	0,5 5.5	3	2.5	2	7	Ó	Ó	0	$H = \Delta 2$.
所 ライン (k+3)			9	(Q)	(R)	(3)	רוז	(L)	62	J.J	w	2.,3	<u>~</u>	ĸ	62		<u> </u>	Wh= 5.2
ースライン (k+4)	0	0	0	0	0	2	3	7	10	8.5	7	5	3_	3	0	0	0]
相例評価指数	r —								Δ1	Δ2	Δ2.5	Δ3	Δ3.5	Δ4	Δ5			7
									В	0	0.5	1	4	7	10			H≡Δ2
ースライン (k+2)	0	0	0	0	2		8	10	- 8	_3	2.5	2	_1	0	0	0	0	1~
ライン (k+3) 一スライン (k+1)	0	0	0	(U) 0	(K) 0	(3)	<u>m</u>	<u>(L)</u> 7	10	(W) 7	5	-X	3	<u>~~</u>	<u>8</u>	0	0	Xh= 3.0
	<u></u>	<u> </u>		_ <u>`</u> _	<u>`</u> _													-
相拟評価指数										Δ1 3	Δ2 2	Δ2.5 0,5	Δ3 3	Δ3.5 3	3	Δ5 7		H≡ Δ2.
ースライン (k+2)	0	0	0	0	2	4	8	10	8	3	2	1	0	0	Ö	ō	0]
間ライン (k-3)			09	(4)	(83	(8)	m	(L)	(v)	(11)	()()		Y		(0)] ነኩ+ 1.2
ースライン (k-4)	0	0	0	0	0	2	3	7	10	7	3	3	3	1.5	0	0	0	j
相関評価指数											Δ1	Δ2	Δ2.5	Δ3	Δ3.5 1.5	Δ·I 3	Δ5 3] H=∆3
ースライン (k-2)	0	0	0	Ö	7	1	- 8	10	8	3	2	- 0	Ö	0	0	0	3	1
IIIライン (k+3)		v_	02	(C)	(R)	(5)	(1)	(L)	63	(1)	(x)	~		2	· ·			d zh= 0.0
ースライン (k+4)		Ó	Q	0	0	2	3	7	10	7	3	3	1.5	ō	0	0	0	7

【図4】

(a)

本発明による補間結果

ソースライン(は)	0	0	0	2	3	7	10	7	3	3	0	0	0	0	0
補間ライン(k+1)			0.0	1.0	2.75	5.5	8.75	8.75	5.25	3.0	1.25	0.0	0.0		
ソースライン(k+2)	0	0	0	0	2	4	8	10	8	3	2	0	0	_0	0
補間ライン(k+3)			0.0	0.0	1.00	2.75	5.5	8.75	8.75	5.25	3.0	1.25	0.0		
ソースライン(k+4)	0	0	0	0	0	2	_ 3_	_7	10	7	3	_3	0	0	0
画案位置			Р	Q	R	\$	T	Ū	٧	W	X	Y	Z		

(b)

[図10]

(第1補間軸) (第2補間軸) (第3補間軸) (第4補間軸) (第5補間軸)

【図7】

関評価指数	Δ1 2	Δ2 0	Δ3	Δ4 2	Δ5 3										- 1	H = Δ2, Δ3
25/2/1	0	0	-	2	3	7	10	7	3	3	0	0	0	0	0	
・スライン (k)			P	(Q)	00	(3)	(1)	(1)		w	α)	8	Ø			Ph= 0.0
ライン (k+1) -スライン (k+2)	0	0	-	8	2	4	8	10	8	3	2	Ö	0	0	0	
~/7/ IA-2/	<u>v</u>															
関評価指数		Δ1	Δ2	$\Delta 3$	Δ4	Δ5										
AINST IMISE WA		4	2	2	3	7										$H \equiv \Delta 2, \Delta 3$
-スライン (k)	0	0	0	2	3	7	10	7	3	3	0	0	0	0	0	
リライン (k+1)			(P)	Q	OD	(S)	Œ	(L)	8	(W)	(X)	3	(22)-			Qh= 1.0
スライン (k+2)	0	-0	0	0	2	4	8	10	8	3	2	0	0	0	0	
2 (2) 11 111	-															
1関評価指数			Δ1	Δ2	Δ3	Δ4	$\Delta 5$									
HINDET WILL TA			8	2	1	7	10								_	H≅∆3
-スライン (k)	0	0	0	2	3	7	10	7	3	3	0	0	0	Q	0	
ガライン (k+1)	_	<u> </u>	(P)	(0)	Ř	(5)	(1)	(i)	W	(%)	00	82	(2)			Rh= 2.5
-スライン (k+2)	0	0	Ö	- 77/	2	4	8	10	В	3	2	0	0	0	0	
-1777 (KT6)		<u> </u>	<u> </u>	<u> </u>			<u> </u>									
1開評価指数				Δ1	Δ2	Δ3	Δ4	Δ5							- l	
ल्यं वर्षा भाग ।				8	5	3	8	7								$H = \Delta 3$
-スライン (k)	0	0	Ô	2	3	7	10	7	3	3	0	0	0	0	0	
プライン (k・1)	۳		(P)	(0)	æ	s	m	ແາ	Š	(%)	00	3	(Z)			Sh= 5.5
リフィン (k-1) -スライン (k+2)	0	0	0	~~	2	4	8	10	8	3	2	0	0	0	0	
-17-18 (N.E/	<u> </u>		_ <u>*</u> _													
相關評価指数					Δ1	Δ2	Δ3	Δ4	Δ5						1	4 -
M/201 M/10 3A	l				5	3	2	3	1							$H = \Delta 5$
ースライン (k)	0	0	0	2	j	7	10	7	3	3	0	0	0	0	0	
間ライン (k+1)		Ť	(P)	(Q)	(R)	(5)	T	(L)	(5)	(4)	00	(Y)	(2)			Th= 2.5
ースライン (k+2)		0	- 6	- 7	2	4	8	10	- 8	3	2	0	0	0	0	
10 (10) (10)																
电慢評価指数	П					ΔΊ	Δ2	Δ3	Δ4	Δ5					- 1	U - A F
	L_					4	2	3	5	_1					_	H≡Δ5
ースライン (k)	0	0	0	2	3	7	10	7	3	3	0	0	0	0	0	10.05
間ライン (k+1)			(17)	(Q)	(FQ	(5)	Е	U	8	(44)	ΩÚ	3	(2)			Uh= 3.5
ースライン (k+2)	0	0	0	0	2	4	8	10	8	3	2	_ 0	0_	0_	0	
相関評価指数	Ι						Δ1	Δ2	Δ3			i			1	H≡ Δ2
	L.						8	4	5	7	8					U= 77
ースライン (k)	0	Ö	0	2	3	7	10	7	3	.3	0	0	0	0	0	15- 50
関ライン (k+1)			(P)	(Q)	00	(2)	m	(L)	_ <u>v</u> _	(W)	00				,-	Vh= 5.0
ースライン (k+2)		0	0	٥	2	4	8	10	8_	3_	2	0	0	0	0	
相関評価指数								ΔΙ							L	H≡∆3
								_ 7_	1	0	_ 8	10	4 1 800 9			11-13
ースライン (k)	0	0	0	2	3_	7	10	_7_	3	3	0	0	0	0	0	Wh= 3.0
間ライン (k+1)		(P)	(9)	(R)	(3)	m	a)	Ň	w	<u> </u>					wn= 3.0
ースライン (k+2	0	0	0	0	2	4	8	10	8	3	2	0	0	0	0	
												1 4	, ,			
相阅評価指数									_Δ1				4 Δ: 8	3		H≡ ∆3
	<u>_</u>					-			3	3	2	3		A		60
ースライン (k)		0	0	2	3	_ 7	10		3	3	0		0	_		Xh= 1.0
们リライン (kリ			(17)		(1र)	(2)	_ m		<u>~</u> ∑	(W)		<u>~~~</u>			-	Wi- 1.0
ースライン (k・2) 0	0	0	0	2	_ +	8	10	8	3	2	0	0	0		
		•											2 ^	4 Δ5		
相似評価指数	1									ΔΙ		_				H≡Δ2.Δ
									-	3	0	_			_	
ースライン (k)	0	0	0		3	1	10		3	3	0	_			-0-	¥ħ≠ 0.0
1的ライン (k+1)		(P)			(5)									╌┥	I N= U.U
ースライン (k-2	0_(0	0	0	2	_+	8	10	8	3	2	0	0	0		
												, .		2 1	A = 1	
相對評価指数	1										Δ				Δ5	H=Δ1,Δ
											0		THE R. L.			11= 11,1
ースライン (k)	0	0	0	2	3	7	10		3	3	0				0	76-00
前間ライン(k・))		(17)	3		7:-7				<u>w</u>					-	Zh= 0.0
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					2	- 4	8	10				: (

[図8]

福岡ラインの各國素に対する和閩評価指数 (Δ1,Δ2,Δ3,Δ4,Δ5) - 従来の補間方法-	補間軸Hと 補間データ
相関評価指数 △1 △2 △3 △4 △5 0 0 0 0 2	H = ∆1, ∆2, ∆3, ∆4
ソースライン (k·2) 0 0 0 0 2 4 8 10 8 3 2 0 0 0 0	
補間ライン (k+3) P (x) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t	Ph= 0.0
2-x772 (K+47] 0 0 0 0 2 3 1 10 1 3 3 0 0 0]	
相関評価指数 Δ1 Δ2 Δ3 Δ4 Δ5	
2 0 0 2 4	$H \equiv \Delta 2, \Delta 3$
ソースライン (k+2) 0 0 0 0 2 4 8 10 8 3 2 0 0 0 0	01-00
補間ライン (k+3)	Qh= 0.0
(:
相関評価指数 Δ1 Δ2 Δ3 Δ4 Δ5	
3 2 2 4 8	$H = \Delta 2, \Delta 3$
ソースライン (k+2) 0 0 0 0 2 4 8 10 8 3 2 0 0 0 0 0 種間ライン (k+3)	Rh= 1.0
抽間ライン (k+3)	rue t.u
相関評価指数 Δ1 Δ2 Δ3 Δ4 Δ5	**- 40
7 1 2 8 10 ソースライン (k-2) 0 0 0 0 2 4 8 10 8 3 2 0 0 0 0	H≡ Δ2
ソースライン (k-2) 0 0 0 0 2 4 8 10 8 3 2 0 0 0 0 捕筒ライン (k+3)	Sh= 2.5
ゾースライン (k+4) 0 0 0 0 0 2 3 7 10 7 3 3 0 0 0	
相関評価指数	H≘ Δ2
ソースライン (k+2)[0 0 0 0 2 4 8 10 8 3 2 0 0 0 0	11-02
補間ライン (k-3) P (Q) (R) S) T (L) (V) (W) CO (Y) (Z)	Th= 5.5
ソースライン (k+4) 0 0 0 0 0 2 3 7 10 7 3 3 0 0 0	
相関評価指数	
3 2 3 5 1	H≡ ∆5
ソースライン (k+2) 0 0 0 0 2 4 8 10 8 3 2 0 0 0 0	
補間ライン (k+3)	Uh= 2.5
ソースライン (k+4) 0 0 0 0 0 2 3 7 10 7 3 3 0 0 0	
相関評価指数 A1 A2 A3 A4 A5	
5 3 2 4 1	H = Δ5
ソースライン (k+2) 0 0 0 0 2 4 B 10 B 3 2 0 0 0 0	
補間ライン (k+3)	Vh= 2.5
7-x7-7 (k74) 0 0 0 0 2 3 1 10 7 3 3 0 0 0	
相関評価指数 Δ1 Δ2 Δ3 Δ4 Δ5	
7 5 4 8 7	H≡ ∆3
ソースライン (k+2) 0 0 0 0 2 4 8 10 8 3 2 0 0 0 0 補間ライン (k+3)	Wh= 5.0
補間ライン (k+3) (l) (u) (l) (l) (l) (n) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l	WII- 3.0
相関評価指数 Δ1 Δ2 Δ3 Δ4 Δ5	17 - A 2
	H = ∆2
ターステイン (k+2) 0 0 0 0 2 4 8 10 8 3 2 0 0 0 0	Xh= 3.0
ソースライン (k+4) 0 0 0 0 0 2 3 7 10 7 3 3 0 0 0	
Section of the second of the s	
相関評価指数 . Δ1 Δ2 Δ3 Δ4 Δ5 3 2 3 3 7	H≡∆2
ソースライン (k+2) 0 0 0 0 2 J 8 10 B 3 2 0 0 0 0	
補間ライン(x+3) (i) (i) (i) (i) (i) (i) (i) (i) (ii) (Yh= 1.0
ソースライン (k-4) 0 0 0 0 0 2 3 7 10 7 3 3 0 0 0	
相関評価指数	
2 0 0 3 3	H≡ Δ2, Δ3
ソースライン (k+2) 0 0 0 0 2 4 8 10 8 3 2 0 0 0 0	
補間ライン (k+3) (4) (k) (5) (T) (L) (V) (N) (X) (Y) Z	Zh= 0.0
ソースライン (k+4) 0 0 0 0 0 2 3 7 10 7 3 3 0 0 0	

【図9】

(a)

従来の補間方法による補間結果

ソースライン(k)	0	0	0	2	3	7	10	7	3	_ 3	0	0	0	0	_0
補間ライン(k+1)			0.0	1.0	2.5	5.5	2.5	3.5	5.0	3.0	1.0	0.0	0.0		
ソースライン(k+2)	0	0	0	0	2	4	8	10	8	3	2	0	0_	0	0
補間ライン (k+3)			0.0	0.0	1.0	2.5	5.5	2.5	2.5	5.0	3.0	1.0	0.0		
ソースライン(k+4)	0	0	0	0	0	2	3	7	10	7	3	3	0_	0	0
阿多位置			Ρ		R	S	T	Ü	<u> </u>	w	X	Y	_z_		

(b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.