13th - 17th May 2019 – Kuala Lumpur

Fraud Model Development and Deployment in SAS FM

Session 5: Model Development

Model Development Topics

- Overview of model development process
- Appending signatures
- Exclusions
- Risk tables
- Segmentation
- Feature generation
- Feature selection
- Model training and selection

Overview of Modeling Process

Overview of Model Development Process

- SAS FM is a realtime scoring engine
- As each transaction arrives, several pre-processing, scoring and postprocessing actions are executed on it before it exits the engine
- All actions run within a SAS datastep

```
data _null_;
  /* Read transaction from an incoming message stream */
  input stdin lrecl = &MAXLEN;
  %recode;
  %update_signatures;
  /* Subsequent steps within the %score module */
  %calculate_segment;
  %lookup_global_risk_factors;
  %generate_features;
  %impute_transform_features;
  %generate_model_score;
  %align_score;
  %reason_codes;
  %additional_processing;
run;
```


Overview of Model Development Process

- Therefore it is best that the model development process is also setup as a series of steps that emulate the production process
- Various benefits in doing this:
 - WYSIWYG from a code point of view, you can be guaranteed that the model will work the way as it did during development with minimal tweaks
 - Lets the developer keep a pulse of technical performance from the get go
 - Any abnormally time consuming steps can be borne out during the development phase itself
 - Allows you to have a reusable framework for model development

Key Steps in the Model Development Process

- Setup basic scoring engine
- Introduce signatures lookup, initialize, recode, update and persist
- Segmentation
- Generate data for risk table generation
- Generate risk tables
- Generate features
- Variable reduction / selection
- Model training and selection
- Score alignment
- Final model assembly

Modeling Steps

Step 1: Setup Basic Scoring Engine

- Skeleton code
- Error checks
- Scoring exclusions
- Replacement window
- Tag based filtering
- Load essential reference datasets as hashes
- Basic regression testing

Step 2: Introduce Signatures

- Signature lookups
- Signature initialization
- Basic recodes
- Signature updates
- Signature persistence
- Advanced recodes

Step 3: Segmentation

- Hard vs soft segmentation
- Soft segmentation
 - Feature generation
 - Clustering and segment selection
- Plugging the final segmentation scheme into the scoring engine
- A no segment model can also be developed in parallel
 - Can serve as a baseline for measuring performance
 - Can be used in score alignment

Feature Generation

- Model features can be grouped into 2 main classes:
 - Global features features based on the entire modeling population
 - Behavioral features features based on individual behavior
- Global features involve taking an aggregate level view of the training data
 - Computed quantities are generally static, stored in datasets and looked up by the model
 - Generally referred to as risk tables
- Behavioral features involve iterating through the signature for each entity
 - Represent the individual entities' behavior
- Can have variables that combine both concepts
 - E.g. average spend of customers at a given MCC; this involves computing the average spend at a MCC for each customer and then averaging these averages

Step 4: Generate Risk Table Data

- Risk in its purest form is a classical technique to convert a categorical variable into a numeric variable
- E.g. relative risk of different POS entry modes, MCC, hour-of-day etc.
 - $hour_of_day_risk(h) = \frac{no.of\ fraud\ transactions\ during\ hour\ h}{no.of\ transactions\ during\ hour\ h}$
- Various other global quantities can also be computed
 - E.g. different percentiles for fraud amounts at different hours of the day
 - Can be directly used as features or further processed to generate features
 - E.g. ratio of current amount / median fraud amount during this hour
- Quantities can be generated at the entire population level or at a different segment level (not necessarily the model segments)
 - E.g. hour of day risk for payments within the bank vs payments outside the bank

Step 4: Generate Risk Table Data

 This step creates the necessary variables that are aggregated together in the risk table creation step

Step 5: Generate Risk Tables

- Is a process done outside the modeling step
- Result is a set of datasets later referenced by the model

Preprocessing Prior to Feature Generation

- We will perform some additional processing on the dataset at this stage:
 - Truncation of fraud window
 - Down-sampling the goods
- When training the model, it is preferable to place emphasis on the early part of the fraud episode
- To achieve this we truncate the fraud episode to contain only the early parts of the fraud
- Review statistics on the run length of fraud episodes to determine criteria
 - For e.g. if median length of fraud episodes is 5 events, then truncating to the first 5 events will result in keeping the entire fraud episode for 50% of the fraud cases and up to 5 events for the remaining 50% of the fraud cases
 - Can be done by segment for soft segmentation schemes

Preprocessing Prior to Feature Generation

- The goods: bads ratio at a transaction level will still be very high
 - Remember, our prior downsampling was done at an entity level
 - Truncating the frauds will make this worse
- However a good model cannot be produced with this level of imbalance
- Therefore we will further down sample the data to bring the transaction level goods: bads to a fixed ratio (usually > 10:1 but < 30:1 depending on the problem)
- Goods are chosen randomly at a transaction level to achieve this ratio
- However the goods are not thrown out of the dataset
 - We still need them to populate the signatures correctly
 - Just set a marker or use a hash to remember which transactions to keep in the final dataset

Preprocessing Prior to Feature Generation

- Why perform this preprocessing prior to feature generation and not prior to model training?
- Feature generation is a time consuming process
- We can skip the feature generation step on the good transactions that were not sampled in and the bad transactions that were dropped
 - Provides enormous savings in processing since feature generation is the most time consuming step
- We will use some flags to indicate that the dropped transactions should update the signature, but need not generate the features during the feature generation step

Step 6: Generate Features

- Risk tables created in the previous step are loaded as hashes in the scoring engine
- Various global features are created from these tables
- Also signatures are iterated through to created behavioral features
- Resulting datasets with the appended features should be written out by segment
 - Since we will perform feature selection by segment

Step 7: Feature Selection

- Feature selection performed separately for each segment
 - De-duplication
 - Transformations
 - Imputation
 - Normalization
 - Correlation
 - Information gain
 - KS distance
 - Regression
 - PCA
- Final outcome is a dataset per segment containing the chosen features and target values ready for training the model

Step 8: Model Training

- Pick your favorite method
- We need the model to produce a score between 1 and 999
 - Scale probabilities appropriately
- It is OK to sacrifice some model performance for better generalization
 - Overfitting should be avoided at all costs
 - Model can very quickly degrade in production

Step 9: Score Alignment

- Scores from each segment model won't have the same 'meaning'
- We need to 'align' the scores such that a given score means the same according to some definition
 - False positive rate, detection rate, outsort rate etc.
- In order to align the scores, the entire training dataset should be scored
 - Not the downsampled & truncated set we created prior to feature generation
- Also entity level sampling rates should be factored when generating the tables used for alignment
- Usually align to the no segment model
 - If it was not generated, then use the largest segment

Step 10: Final Model Assembly

- Trimming unused variables
 - A hard problem
- Breaking the flow into individual modules
- Package

