Machine Intelligence: Deep Learning

Uncertainty in DL models

Beate Sick

sick@zhaw.ch

Remark: Much of the material has been developed together with Elvis Murina and Oliver Dürr

Topics

Capturing uncertainty in statistics

- A conditional probability distribution is modeled
- Parameter of the CPD have uncertainty
- Spread of CPD quantifies data variation

Capturing uncertainty in DL?

- Quantifying prediction uncertain via Dropout
- Calibration

Recap: Linear regression in statistics

Model for the \underline{c} onditional probability \underline{d} istribution

Confidence Interval

Model for the <u>c</u>onditional probability <u>d</u>istribution

CPD:
$$Y_{X_i} = (Y|X_i) \sim N(\mu_{X_i}, \sigma^2)$$

We can determine at each position x_i the confidence interval for μ_{x_i}

Confidence and Prediction Interval: Visualization

The confidence interval quantifies the uncertainty of the parameter μ ("aleatoric uncertainty")

The prediction interval quantifies the variation of the data (" epistemic uncertainty")

⁶Confidence and Prediction Interval: Formula

$$Y_i = a + bX_i + \varepsilon_i$$

CI for
$$\mu$$

$$\hat{\mu}_x \pm q^{t_{n-2}} \frac{se(\hat{\mu}_x)}{2}$$

$$se(\hat{\mu}_x) = \sqrt{\hat{\sigma}^2 \cdot (\frac{1}{n} + \frac{(x - \overline{x})^2}{\sum (x_i - \overline{x})^2})}$$

CI for
$$\sigma$$

$$\hat{\sigma} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} r^{2}_{i}}$$

$$\hat{\sigma} \pm q^{t_{n-2}} \frac{1}{\alpha/2} \cdot se(\hat{\sigma})$$

$$se(\hat{\sigma}) = \sqrt{\hat{\sigma}^2 \cdot (1 + \frac{1}{n} + \frac{(x - \overline{x})^2}{\sum (x_i - \overline{x})^2})}$$

PI for y
$$\hat{\mu}_x \pm q^{t_{n-2}}$$

$$\hat{\mu}_{x} \pm q^{t_{n-2}} \cdot se(y_{x})$$

$$se(y_x)^2 = se(\hat{\mu}_x)^2 + \hat{\sigma}^2$$

Recap: Binary classification in statistics

DL can also be used for regression and classification, but...

Can DL quantify uncertainty?

What do we get from a DL classification model?

Suppose you train a classifier to discriminate between 3 dog breeds

The prediction is "collie" because it gets the highest probability: $p_{max}=0.75$

What is the probability telling?

$$p_{max} = 0.75$$

Among many predications that had p_{max} =0.75, we expect that on average 75% of these predictions are correct and only 25% predictions are wrong

→ Then the classifier produces calibrated probabilities

Sample of images where the predicted class got p=0.75:

Do CNNs produce calibrated probabilities?

Guo et al. (2017)

On Calibration of Modern NN

The deeper CNNs get

- the fewer miss-classifications
- the less well calibrated they get

Good news:

deep NN can be "recalibrated" and then we get calibrated probabilities.

CNNs yield high accuracy and calibrated probabilities, but...

What happens if a novel class is presented to the CNN?

We need some error bars!

MC Dropout and Bayesian Neural Networks

MC Dropout
Randomly drop
nodes in each run
→ Ususally done
during training

Dropout in test time

Yarin Gal* (2015): we learn a whole weight distribution

 $W \cdot \prod_{i=1}^{n} \bigwedge$

Bayesian NN

→ We should sample from weight distribution during test time

No MC Dropout

Probability of predicted class: \mathbf{p}_{max}

Input: image pixel values

Stochastic dropout of units

Stochastic dropout of units

Stochastic dropout of units

Stochastic dropout of units

MC probability prediction

What to get from the MC* probability distribution

The center of mass quatifies the predicted probablilty

 p_{max}^*

The spread quantifies in addition the uncertainty of the predicted probability

σ* total standard deviation

PE* entropy,

MI* mutual information

VR* variation ratio

f* vote ratio

Evaluate method on some real data

Experiment with unknown phenotype

Probability distribution from MC dropout runs

Image with known class 15

100 MC predictions for an image with known phenotype 15

Do known/novel classes yield different values for probability and uncertainty measures?

How good are novel/unusual classes identifiable?

All MC Dropout based appoaches are superior compared to the non-MC approach.

Dropout uncertainty measures outperform traditional CNN probability

Creating custom layers in keras

```
from keras.layers.core import Lambda # needed to build the custom layer
from keras import backend as K #Now we have access to the backend (could be tensorflow,
```

Define your custom function

```
def mcdropout(x):
    #return tf.nn.dropout(x=x, keep_prob=0.33333) #using TensorFlow
    return K.dropout(x, level=0.5) # beeing agnostic of the backend

    Here you could do anything possible in TF
    tf.add(x, 10)
```

Include your custom function as a layer

```
model = Sequential()
model.add(Lambda(mcdropout, input_shape=(5,)))
#model.add(Dense(10))
#... Usually you would have many more layers
model.compile(loss='categorical_crossentropy',optimizer='adam')
```

Conclusion

MC Dropout during test time

- > yields uncertainty measures for each individual classification
- → helps to identify uncertain cases
- → allows to indicate novel classes
- → yields new probability estimates leading to higher accuracy