

AI and 6G: Opportunities and Challenges

Satish Kumar, Airspan Network

6G Timeline

6G Vision

Connected machine - machine as a main user

AI - new tool for communication

Openness in mobile communication

Social goal

Bharat 6G Vision

University of Oulu 6G vision

<u>University of Bristol (6G Futures)</u>

NGMN 6G Drivers and vision

Europe 6G vision

Next G Alliance (ATIS) Vision

Samsung 6G Vision

End -to-end 5G Network

Traditional RAN vs Open RAN

- Disaggregation
- Decoupling HW from SW
- Open / enlarge vendor ecosystem
- Open interfaces
- Intelligent management
- Lower CAPEX
- Minimisation of proprietary solution

Cloud Computing platform comprising:

- PHY infra node to host ORAN functions (r.g., RIC, DU, CU)
- Support software components for deployment (OS, VM, container runtime etc.)
- MANO functionality

O-RAN Logical Architecture

O-RAN Logical Architecture

O-RAN Logical Architecture

O-RAN Logical Architecture

Control loop

- Service and policy mgmt
- RAN analytics
- AI/ML model training
- RAN Control and optimization
- xApps for use cases
- UE and cell specific metrics
- Real time actions
- Resource management
- Radio scheduling, HARQ,

Non-RT RIC example:

Cell Utilisation prediction

- Input: Cell utilisation measurement regarding actual capacity utilisation over time for a cell site over time
 Output: prediction of cell site utilisation

RF signal Prediction

- Input: RF signal experienced by UE for serving or neighbour cell
- Output: Prediction of location of UE, Prediction of RF signal

UE QoE prediction

- Input: measurement on UE RF signal (actual RAN measurement or prediction), measurement of cell capacity utilisation (actual or predicted)
- Output: Calculates QoE experience by particular UE:
 - Estimate actual QoE based on the actual RF signal and actual cell utilisation
 - Estimate QoE in the neighbour cell based RF signal relative to neighbour cell and actual neighbour cell utilisation.
 Estimate future QoE of serving/neighbour cell based on predicted signal and predicted cell utilisation.

Near-RT RIC Architecture Overview

Enables the Near-RT RIC platform with

- **Data pipelining**: enables the Near-RT RIC platform with data ingestion and preparation for xApps.
 - Input: E2 node data collected over E2 interface, enrichment information over A1 interface, information from xApps
 - Output: The output is data sets that are ready to be consumed by AI/ML Model.
- **Model management:** Offers storage, retrieval, and version control of AI/ML models for xApps
- **Training**: This functionality enables training of AI/ML Models for xApps within Near-RT RIC.
- Inference: Near-RT RIC platform offers inference of AI/ML Models for xApps. The associated AI/ML models are managed by the Near-RT RIC platform

Use of the ML components and terminologies

ML Model Lifecycle Implementation Example

- 1. ML Modeller uses a designer environment along with ML toolkits (e.g., TensorFlow) to create the initial ML model
- 2. The initial model is sent to training hosts for training
- 3. The appropriate data sets are collected from the Near-RT RIC, O-CU and O-DU to a data lake and passed to the ML training hosts.
- 4. The trained model/sub models are uploaded to the ML designer catalog
- 5. The ML model is published to Non-RT RIC along with the the associated license and metadata
- 6. Non-RT RIC creates a containerized ML application
- 7. Non-RT RIC deploys the ML application to the Near-RT RIC, O-DU and O-CU using the O1 interface.
- 8. PM data is sent back to ML training hosts from Near-RT RIC, O-DU and O-CU for retraining

AI/ML Models in O-RAN Use Cases

Use Case	AI/ML models functionality description	AI/ML algorithms types (example)	Data Input	Data Output
QoE Optimization	Service type classification (eMBB, URLLC, mMTC)	Supervised learning (e.g., CNN, DNN)	User traffic data	service type
	KQI/QoE prediction (e.g., good, bad or video stall ratio, duration)	Supervised learning (e.g, LSTM)	 Network data: L2 measurement report related to traffic pattern, e.g., throughput, latency, packets per second UE level radio channel information, mobility related metrics RAN protocol stack status: e.g. PDCP buffer status Cell level information: e.g. DL/UL PRB occupation rate Application data: Video QoE score Video initial delay Stalling detail including the timestamp stalling duration, stalling ratio 	KQI/QoE value e.g., good/bad, stalling ratio, video stalling duration, vMoS value
	Available radio bandwidth prediction	Supervised learning (e.g., DNN)	Similar to above	Available radio Bandwidth
Traffic Steering	A cell load prediction/user traffic volume prediction	Supervised learning (time series prediction, e.g., SVR, DNN)	load related counters, e.g., UL/DL PRB occupation	Same as input
	Radio finger print prediction	A supervised learning (e.g., SVR, GBDT)	A Intra-frequency MR data and PM counters, e.g., RSRP, RSRQ, MCS, CQI, etc	Same as input

Challenges for ORAN

System integration

• May lead towards some degree of vendor locking again.

Security Risks

• Zero trust principles guiding O-RAN security requirements.

Widespread adoption

• 35% of UK traffic through ORAN by 2030

Questionable CAPEX and OPEX saving

- May save initial CAPEX and OPEX.
- Integration may be costly in the long run.

Challenges for Al in RAN

Data management

• Managing a huge amount of data with efficiency and security, especially user data.

AI tools for lifecycle management

• CSPs need to consider future-proof tools in the existing deployments.

Deploying new AI capabilities in their systems

• These are retraining, assurance, explainability, and experimentation, which require optimized AI/ML

Optimal hardware considerations

- There are new hardware requirements to satisfy AI implementation including storage capacity and processing power.
- Selecting platforms that effectively support these

Thank you