Semiconductor Physics

Taylor Groos

Semiconductor Physics

- 1. What is a semiconductor?
 - 2. Materials and Properties
 - 3. Types
 - 4. Important Terms
- 5. Introduction to pn junctions

Insulator

High Resistivity

Semiconductor

Somewhere between.
Total resistivity depends of conditions applied on the semiconductor

Conductor

Low Resistivity

Elemental semiconductors		Compound semiconductors	
Si	Silicon	GaAs	Gallium arsenide
Ge	Germanium	GaP	Gallium phosphide
		A1P	Aluminum phosphide
		AlAs	Aluminum arsenide
		InP	Indium phosphide

Silicon

-Group IV of periodic table -4 valence electrons -Most common

Intrinsic Semiconductor

Bandgap Energy

Minimum energy for any one electron to break the covalent bond

As Temperature

More covalent bonds broken

More free electrons

More holes

Both "particles" contribute to current and are equal

Intrinsic Carrier Concentration

$$n_i = BT^{3/2}e^{\left(\frac{-E_g}{2kT}\right)}$$

$$k = 86 \times 10-6 \text{ eV/K}$$

 $E_g = 1.1 \text{ eV}$
 $B(si) = 5.23 \times 10^{15}$

Calculate the intrinsic carrier concentration in silicon at T = 300 K.

Intrinsic vs Extrinsic

Same type of atoms

Low carrier concentration

Low current

Requires high temp. to break bond

Free electrons = Holes

Contains controlled amounts of impurities

high carrier concentration

high current

Bonds bread at room temp.

Free electrons ≠ Holes

Extrinsic Semiconductors

Table 1.2	A portion of periodic ta	
III	IV	V
5	6	
B	C	
Boron	Carbon	
13	14	15
Al	Si	P
Aluminum	Silicon	Phosphorus
31	32	33
Ga	Ge	As
Gallium	Germanium	Arsenic
49		51
In		Sb
Indium		Antimony

Doping

Carriers

Free electrons and holes

Drift Current

Movement caused by electric fields

Diffusion Current

Movement caused by variation in the concentration gradients High concentration to Low concentration

Total Current Density

Drift Current + Diffusion Current

The pn Junction

"The real power of semiconductor electronics occurs when p- and n-regions are directly adjacent to each other, forming a pn junction."

Single Crystal

Resources

Chapter 4.1 in text (Keiser, McGraw Hill, 2011)

Chapter 1.1, 1.2 in text (Neamen, McGraw Hill, 2010)

EECE 315 Notes Dr. Ghang-Ho Lee