МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине 'ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА'

Вариант №7

Выполнила: Конаныхина Антонина P3215 Преподаватель: Малышева Татьяна Алексеевна

Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения, выполнить программную реализацию методов.

Задание:

Вычислительная реализация задачи:

Уточнить корни нелинейного уравнения с точностью $\varepsilon = 10^{-2}$. Вычисления оформить в виде таблиц, удержать 3 знака после запятой.

Программная реализация задачи:

Для нелинейных уравнений:

- 1. Все численные методы должны быть реализованы в виде отдельных подпрограмм или классов.
- 2. Пользователь выбирает уравнение, корень/корни которого требуется вычислить (3-5 функций, в том числе и трансцендентные), из тех, которые предлагает программа.
- 3. Предусмотреть ввод исходных данных (границы интервала/начальное приближение к корню и погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя.
- 4. Выполнить верификацию исходных данных. Для метода Ньютона (метода секущих) выбор начального приближения (а или b). Для метода простой итерации достаточное условие сходимости метода. Программа должна реагировать на некорректные введенные данные.
- 5. Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран.
- 6. Организовать вывод графика функции, график должен полностью отображать весь исследуемый интервал (с запасом).

Для систем нелинейных уравнений:

- 1. Рассмотреть систему двух уравнений.
- 2. Организовать вывод графика функций.
- 3. Для метода простой итерации проверить достаточное условие сходимости.
- 4. Вывод вектора неизвестных: x_1, x_2 .
- 5. Вывод количества итераций, за которое было найдено решение.
- 6. Вывод вектора погрешностей: $|x_i^{(k)} x_i^{(k-1)}|$

Рабочие формулы используемых методов

Вариант №7:

Решение нелинейных уравнений:

- Метод секущих

<u>Рабочая формула</u>: получается из упрощения метода Ньютона заменой производной разностным приближением:

$$x_{i+1} = x_i - \frac{(x_i - x_{i-1})f(x_i)}{f(x_i) - f(x_{i-1})}$$
, где $i = 1, 2, ...$

Метод секущих является двухшаговым, т. е. новое приближение x_{i+1} определяется двумя предыдущими итерациями x_i и x_{i-1} .

Выбор x_0 определяется как и в методе Ньютона, x_1 – выбирается рядом с начальным самостоятельно.

Визуализация:

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$

- Метод простой итерации

Рабочая формула метода:

$$x_{i+1} = \varphi(x_i)$$

Геометрический смысл:

Уравнение f(x) = 0 приводится к эквивалентному виду: $x = \varphi(x)$, выражая x из исходного уравнения.

Через начальное приближение: $x_0 \in a$, b, находятся очередные приближения:

$$x_1 = \varphi(x_0) \to x_2 = \varphi(x_1) \dots$$

Достаточное условие сходимости метода:

 $\varphi'(x) \le q \le 1$, где q — некоторая константа.

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$
 (при $0 < q \le 0.5$)

Решение систем нелинейных уравнений:

– Метод Ньютона

К основе метода лежит использование разложения функций $F_i(x_1, x_2, ..., x_n)$ в окрестности некоторой фиксированной точки в ряд Тейлора, причем члены, содержащие вторые (и более высоких порядков) производные, отбрасываются.

Приведем систему уравнений к эквивалентному виду:

$$\begin{cases} F_1(x_1, x_2, \dots, x_n) = 0 \\ F_2(x_1, x_2, \dots, x_n) = 0 \\ \dots \\ F_n(x_1, x_2, \dots, x_n) = 0 \end{cases} \begin{cases} x_1 = \varphi_1(x_1, x_2, \dots, x_n) \\ x_2 = \varphi_2(x_1, x_2, \dots, x_n) \\ \dots \\ x_n = \varphi_n(x_1, x_2, \dots, x_n) \end{cases}$$

Или, в векторной форме:
$$extbf{X} = extbf{arphi}(extbf{X}) \quad extbf{\varphi}(extbf{X}) = \begin{pmatrix} arphi_1(extbf{X}) \\ arphi_2(extbf{X}) \\ \dots \\ arphi_n(extbf{X}) \end{pmatrix}$$

Если выбрано начальное приближение: $\boldsymbol{X}^{(0)} = x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}$, последующие приближения находятся по формулам:

4

Критерий окончания итерационного процесса:

$$\max_{1 < i < n} \left| x_i^{(k+1)} - x_i^k \right| \le \varepsilon$$

Заполненные таблицы

№ итерации	x_k	$f(x_k)$	x_{k+1}	φ(xk)	$ x_k-x_{k+1} $
1	-2.500	-0.447	-2.417	-2.417	0.0825
2	-2.417	-0.035	-2.411	-2.411	0.006

Таблица 1 - Уточнение крайнего правого корня методом половинного деления

№ шага	a	b	X	f(a)	f(b)	f(x)	a-b
1	1.000	1.500	1.250	-2.561	1.697	-0.800	0.500
2	1.250	1.500	1.375	-0.809	1.697	0.344	0.250
3	1.250	1.375	1.313	-0.809	0.344	-0.257	0.125
4	1.313	1.375	1.344	-0.257	0.344	0.037	0.060
5	1.316	1.344	1.328	-0.257	0.037	-0.111	0.031
6	1.328	1.344	1.336	-0.111	0.037	-0.037	0.016

Таблица 2 - Уточнение крайнего левого корня методом простой итерации

№ итерации	X_k	$f(x_k)$	$f'(x_k)$	X_{k+1}	$\chi_k - \chi_{k+1}$
1	-1.000	-0.693	-3.494	-1.198	0.198
2	-1.198	-0.036	-3.090	-1.210	0.012
3	-1.210	-0.001	-3.059	-1.210	0.001

Таблица 3 - Уточнение центрального корня методом Ньютона

Листинг программы

 $\frac{\texttt{https://github.com/tchn11/ITMO-}}{\texttt{labs/tree/main/2nd} \& 20 \texttt{year/computational} \& 20 \texttt{mathematics/nonlinear} \ \texttt{equations}}$

Результаты выполнения программы:

Введите 1, чтобы выбрать одно уравнение, 2, чтобы выбрать систему уравнений: 1

 $1 - x^3 + 2.28x^2 - 1.934x - 3.907$

 $2 - x^2 - 3x - 2$

 $3 - \sin(x) - \cos(x) + 0.2x$

Введите номер желаемой функции: 3

Введите 1, чтобы ввести интервал, 2, чтобы запустить автоматический поиск интервала: 2

Найден интервал: [-5.0, -4.5]

Введите 1, чтобы найти следующий интервал, 2, чтобы выбрать этот интервал: 1

Найден интервал: [-3.0, -2.5]

Введите 1, чтобы найти следующий интервал, 2, чтобы выбрать этот интервал: 2

a = -3.0, b = -2.5

Введите точность: 0.001

Введите 1, чтобы выбрать метод секущих, 2 чтобы выбрать метод простой итерации: 2

Корень: -2.756818112848826 найден за 4 итераций, f(x) = 0.00016928791576364954

Вывод:

В результате выполнения данной лабораторной работой были изучены численные методы решения нелинейных уравнений и реализованы метод секущих, метод простой итерации и метод Ньютона на языке программирования Python.