Els nombres naturals. Caracterització de N

1 Sistemes de Peano

Definició 1.1 (Sistema de Peano). Un sistema de Peano és una estructura (A, a, f) on A és un conjunt no buit, $a \in A$ i $f: A \to A \setminus \{a\}$ és una bijecció.

Propietat 1.0.1 (Inducció). Per qualsevol $X \subseteq A$ si $0 \in A$ i $\forall x \in X$ $f(x) \in X$, llavors X = A.

Proposició 1.1. • Existeixen sistemes de Peano.

• Si (A, a, f) i (B, b, g) són sistemes de Peano llavors són isomòrfics. És a dir, existeix una bijecció $h: A \to B$ tal que h(a) = b i $\forall x \in A$ h(f(x)) = g(h(x)).

2 Els nombres naturals

Considerem la funció successor. $S: \mathbb{N} \to \mathbb{N} \setminus \{0\}$ definida per S(n) = n+1. $(\mathbb{N}, 0, S)$ és un sistema de Peano.

2.1 Suma en \mathbb{N}

Definició 2.1 (Suma en \mathbb{N}). $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ que compleix els axiomes de la suma de nombres naturals.

- A1) $\forall n \in \mathbb{N} \quad n+0=n$.
- A2) $\forall n, m \in \mathbb{N}$ n + S(m) = S(n + m).

Això és la definició recursiva de la suma en \mathbb{N} . És pot demostrar que és l'única operació que compleix aquestes dues propietats.

Propietat 2.1.1. La suma en \mathbb{N} és associativa.

$$\forall n, m, k \in \mathbb{N}$$
 $(n+m)+k=n+(m+k)$

Demostració. Sigui $n, m \in \mathbb{N}$ i sigui $X = \{k \in \mathbb{N} \mid (n+m) + k = n + (m+k)\}$. Per inducció es vol demostrar que $X = \mathbb{N}$.

Cas base: Si k = 0. (n + m) + 0 = n + m. De la mateixa manera n + (m + 0) = n + (m) = n + m. Per tant $0 \in X$.

Cas inductiu: Es suposa que $k \in X$. Es vol veure que $S(k) \in X$.

$$(n+m)+S(k)=S((n+m)+k)$$
 (Per A2)
= $S(n+(m+k))$ (Ja que $k \in X$)
= $n+S(m+k)$
= $n+(m+S(k))$

Per tant $S(k) \in X$ i aleshores per la propietat d'inducció $X = \mathbb{N}$.

Propietat 2.1.2. La suma en \mathbb{N} és commutativa.

$$\forall n, m \in \mathbb{N}$$
 $n+m=m+n$

Lema 2.1. Per cada $n \in \mathbb{N}$ es compleix que 0 + n = n.

Demostració. Per inducció sobre n. Si n=0 és evident que 0+0=0. Suposem que 0+n=n es vol veure que 0+S(n)=S(n).

$$0 + S(n) = S(0+n)$$
 (Per A2)
= $S(n)$ (Per la HI)

Per tant es compleix.

Lema 2.2. Per cada $n, m \in \mathbb{N}$ es compleix que S(n) + m = S(n + m).

Demostració. Per inducció sobre m. Si m=0, fent ús del primer lema es veu que

$$S(n) + 0 = S(n+0) = S(n)$$

Suposem que S(n) + m = S(n + m) es vol veure per S(m),

$$S(n) + S(m) = S(S(n) + m)$$
 (Per A2)
= $S(S(n + m))$ (Per HI)
= $S(n + S(m))$

Per tant es compleix.

Proposició 2.1. La suma és commutativa

Demostració. Per inducció sobre m. Cas Base: Si m = 0 llavors n+0=0+n=n. Cas inductiu: Suposem n+m=m+n. Es vol veure per S(m).

$$n + S(m) = S(n + m)$$

$$= S(m + n)$$

$$= S(m) + n$$

Per tant la suma és commutativa.

Propietat 2.1.3. $\forall n, m, k \in \mathbb{N}$,

$$n+k=m+k \rightarrow n=m$$

2.2 Producte en \mathbb{N}

Definició 2.2 (Producte en \mathbb{N}). $\cdot : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ és l'única operació que compleix

1.
$$n \cdot 0 = 0$$
.

$$2. \ n \cdot S(m) = n \cdot m + n.$$

Propietat 2.2.1. El producte és associatiu.

$$(nm)k = n(mk)$$

Propietat 2.2.2. El producte és commutatiu.

$$nm = mn$$

Propietat 2.2.3. El producte es distribueix sobre la suma.

$$n(m+k) = n \cdot m + n \cdot k \quad \forall n, m, k \in \mathbb{N}$$

Propietat 2.2.4. Sigui S(0) = 1. $1 \cdot n = n$

Propietat 2.2.5. Si nm = 0 llavors n = 0 o m = 0.

Propietat 2.2.6. Si nk = mk i $k \neq 0$ llavors n = m.

2.3 Exponenciació en \mathbb{N}

Definició 2.3 (Exponenciació). $\exp: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ tal que $\exp(n, m) = n^m$ es defineix a partir dels següents axiomes.

•
$$n^0 = 1$$
.

$$\bullet \ n^{S(m)} = n^m \cdot n.$$

Propietat 2.3.1. $\forall n, m, k \in \mathbb{N}$ es compleix $n^{m+k} = n^m \cdot n^k$.

Propietat 2.3.2. $\forall n, m, k \in \mathbb{N}$ es compleix $n^{m \cdot k} = (n^m)^k$.

Propietat 2.3.3. $1^n = 1$ i $n^1 = n$ per qualsevol $n \in \mathbb{N}$.

Propietat 2.3.4. $0^n = 0 \text{ si } n \neq 0.$

2.4 Ordre en \mathbb{N}

Definició 2.4 (Ordre reflexiu en \mathbb{N}). Es diu $n \leq m$ si $\exists k \in \mathbb{N}$ tal que n + k = m.

Proposició 2.2. La relació proposada és un ordre reflexiu.

Demostració. • Propietat reflexiva. $n \le n$ ja que si es pren k = 0 llavors n = n.

• Propietat antisimètrica. Suposem $n \leq m$ i $m \leq n$. Llavors podem escriure n+k=m i m+j=n amb $k,j\in\mathbb{N}$. Substituint s'obté

$$m + j + k = m$$

i per tant j + k = 0. Com que j, k són naturals llavors els dos han de ser 0 i per tant n = m.

• Propietat transitiva. Suposem $n \le m$ i $m \le k$. Llavors existeixen $j, i \in \mathbb{N}$ tals que n+j=m i m+i=k. Per tant n+j+i=k i per tant $n \le k$.

2.4.1 Propietats de l'ordre

1. 0 és el menor natural.

$$0 \le n \quad \forall n \in \mathbb{N}$$

- 2. S(n) és el successor immediat de n en l'ordre.
 - (a) $n \leq S(n)$.
 - (b) Si $\exists k \in \mathbb{N}$ tal que $n \leq k$ i $k \leq S(n)$ llavors k = n o k = S(n).
- 3. No hi ha un element major.

$$\forall n \in \mathbb{N} \ n < S(n)$$

- 4. L'ordre és total. Per qualsevol $n, m \in \mathbb{N}$ es compleix $n \leq m$ o $m \leq n$.
- 5. $n + k \le m + k$ implies $n \le k$.
- 6. $n \leq m$ implies $n \cdot k \leq m \cdot k$.
- 7. n < m i $k \neq 0$ implies $n \cdot k < m \cdot k$.

Definició 2.5 (Ordre estricte). L'ordre estricte es defineix com

$$n < m \iff n \le m \text{ i } n \ne m$$

Proposició 2.3. n < m si i només si $\exists k \in \mathbb{N}$ i $k \neq 0$ tal que n + k = m.

Teorema 2.1. L'ordre en N és un bon ordre. És a dir, tot subconjunt no buit de N té un mínim.

3 Construcció de \mathbb{Z}

Es defineix una relació \sim en $\mathbb{N} \times \mathbb{N}$ de manera que

$$(n,m) \sim (i,j) \iff n-m = i-j$$

 $\iff n+j = i+m$

Com que se suposa que no es sap restar fins ara la relació s'escriu millor de la segona manera.

Definició 3.1. Sigui \sim una relació en $\mathbb{N} \times \mathbb{N}$ tal que

$$(n,m) \sim (i,j) \iff n+j=i+m$$

Lema 3.1. \sim és una relació d'equivalència en $\mathbb{N} \times \mathbb{N}$.

Demostració. • Reflexivitat: $(n, m) \sim (n, m)$ ja que n + m = n + m.

• Simetria: Suposem $(n,m) \sim (i,j)$. Llavors

$$n+j=i+m$$

 $j+n=m+i \iff (i,j) \sim (n,m)$

• Transitiva: Suposem $(n,m) \sim (i,j)$ i $(i,j) \sim (p,q)$. Llavors n+j=i+m i i+q=j+p. Es sumen les dues equacions, es simplifica i s'obté n+q=m+p i per tant $(n,m) \sim (p,q)$.

Definició 3.2 (El conjunt \mathbb{Z}). El conjunt \mathbb{Z} és el conjunt quocient de la relació \sim .

$$\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$$

 $\overline{(n,m)}$ representa el nombre n-m. Els naturals en \mathbb{Z} són de la forma (n,0).

3.1 Suma en \mathbb{Z}

Definició 3.3 (Suma en \mathbb{Z}). Es defineix $+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ com

$$\overline{(n,m)} + \overline{(i,j)} = \overline{(n+i,m+j)}$$

Proposició 3.1. La definició és independent dels representants escollits. Si $(n,m) \sim (n',m')$ i $(i,j) \sim (i',j')$ llavors $(n+i,m+j) \sim (n'+i',m'+j')$.

Demostració. Si $(n, m) \sim (n', m')$ llavors n + m' = n' + m i si $(i, j) \sim (i', j')$ llavors i + j' = i' + j'. Es sumen les dues equacions

$$n + m' = m + n'$$

$$i + j' = i' + j$$

$$n + m' + i + j' = m + n' + i' + j$$

$$(n + i) + (m' + j') = (m + j) + (n' + i')$$

Per tant $(n + i, m + j) \sim (n' + i', m' + j')$.

3.1.1 Propietats de la suma

Propietat 3.1.1. La suma és associativa.

Propietat 3.1.2. La suma és commutativa.

Demostració. Sigui $a = \overline{(n,m)}$ i $b = \overline{(i,j)}$.

$$a+b=\overline{(n,m)}+\overline{(i,j)}$$

$$=\overline{(n+i,m+j)}$$

$$=\overline{(i+n,j+n)}$$

$$=b+a$$

Propietat 3.1.3. $\forall a \in \mathbb{Z}, a + \overline{(0,0)} = a.$

Demostració. Sigui $a = \overline{(n,m)}$. Llavors

$$\overline{(n,m)} + \overline{(0,0)} = \overline{(n+0,m+0)} = \overline{(n,m)} = a$$

Propietat 3.1.4. $-a = \overline{(m,n)}$ és l'element oposat per $a = \overline{(n,m)}$.

Observació 3.1.1. $(\mathbb{Z},+)$ és un grup abelià. S'han estès els nombres naturals a un grup.

3.2 Producte en \mathbb{Z}

Definició 3.4 (Producte en \mathbb{Z}). $\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ es defineix com

$$\overline{(n,m)}\cdot\overline{(i,j)}=\overline{(ni+mj,nj+mi)}$$

Proposició 3.2. La definició és independent dels representants escollits.

3.2.1 Propietats del producte en Z

Propietat 3.2.1. El producte és associatiu.

Propietat 3.2.2. El producte és commutatiu.

Propietat 3.2.3. El producte és distribueix sobre la suma. $\forall a, b, c \in \mathbb{Z}, a(b+c) = ab + bc$.

Propietat 3.2.4. Per qualsevol $a \in \mathbb{Z}$, $a \cdot (1,0) = a$.

Observació 3.2.1. $(\mathbb{Z},+,0,\cdot,1)$ és un anell abelià unitari.

3.3 Ordre en \mathbb{Z}

Definició 3.5 (Ordre reflexiu en \mathbb{Z}). En l'ordre de \mathbb{Z} $\overline{(n,m)} \leq \overline{(i,j)}$ si i només si $n+j \leq m+i$.

Proposició 3.3. La definició és independent dels representants escollits.

3.4 Immersió canònica de $\mathbb N$ en $\mathbb Z$

Sigui $f: \mathbb{N} \to \mathbb{Z}$ una funció tal que $n \mapsto \overline{(n,0)}$.

- \bullet f és injectiva.
- $\operatorname{rec} f = \{ a \in \mathbb{Z} \mid a \ge f(0) \}.$
- f(a+b) = f(a) + f(b).
- $f(a \cdot f(b) = f(a) \cdot f(b)$.
- En aquest sentit es pot dir que $\mathbb{N} \subseteq \mathbb{Z}$ però més precisament

$$\{(n,0) \mid n \in \mathbb{N}\} \subseteq \mathbb{Z}$$

4 Construcció de \mathbb{Q}

En $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ es defineix una relació d'equivalència \sim de manera que $\overline{(a,b)} = \frac{a}{b}$.

$$(a,b) \sim (c,d) \iff ad = cb$$

Fàcilment es veu que \sim és una relació d'equivalència i es defineix el conjunt quocient com el conjunt dels nombres racionals.

$$\mathbb{Q} = \mathbb{Z} \times (\mathbb{Z} \smallsetminus \{0\})/\sim$$

Observació 4.0.1. $(\mathbb{Q}, +, \cdot, 0, 1, \leq)$ és un cos ordenat.