Equation-free analysis of agent-based models: systematic parameter determination

Spencer A. Thomas¹, David J.B. Lloyd¹, and Anne C. Skeldon¹

April 21, 2015

1 Time horizon τ

For deterministic systems, an ensemble of microscopic models initialised at the same state, will all be in the same state after a simulation time of τ . Stochastic systems however, will result in distribution of final states with a mean \bar{x} and variance $\sigma^2 \neq 0$. The value of σ^2 will vary due to the dynamics and the noise of the system, as may \bar{x} , and thus depends on the size of the time evolution. For increasing time windows, σ^2 may either;

- 1. increase indefinitely with τ (diffusion in an open system),
- 2. increase to a point then remain approximately constant (point of balance or symmetry in the system), or
- 3. increase to a maximum point then begin to reduce (transition from one state to another).

Figure 1: Dependence of σ^2 on τ . For increasing τ , σ^2 increases; indefinitely (left), to a constant (mid), or to a maximum before reducing (right).

This is illustrated in Fig. 1. For an arbitrary system, the distribution of an ensemble of simulation, the realisations, at τ is unknown, and although we can simply calculate \bar{x} , we can not calculate σ^2 in general. We can however average a number of ensembles resulting in a distribution of \bar{x} which, according to the central limit theorem (CLT) is normally distributed. From the distribution of \bar{x} we can calculate a mean \bar{x} (the mean of the means) and a standard deviation ω . As increasing τ leads to an increase, at least initially, in \bar{x} and σ^2 , it will also effect \bar{x} and ω . By defining a a minimum threshold γ for the value of ω , which reflects the amount of variation across the ensembles, we can obtain a value of τ that enables sufficient time evolution such that the dynamic behaviour in the

¹Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK

model is observable. That is, increase τ until $\omega \geq \gamma$. This provides a platform for the systematic determination of τ for a specific model, avoiding excessive trial and error testing, or the need of a deterministic equivalent. This process is illustrated in Fig. 2 and the procedure is summarised in Algorithm 1.

Algorithm 1 Time horizon predictor.

```
# obtain initial parameter settings
N = N_{int} \# \text{ initial realisations (default=10)}
\tau = \tau_{int} \# \text{ initial time horizon}
\delta \tau # time horizon increment
M \# number of runs to average over
MaxIter # maximum number of iterations
\gamma # threshold for dynamics
while iterations < MaxIter do
    for j = 0; j < M do
        LIFT(N)
        SIMUALTE(N, \tau)
       \bar{\mathbf{x}}[j] = RESTRICT(N)
       j := j+1
    end for
    # 95 % confidence interval of distribution of means
   \omega_i = 95 \text{ConfInt}(\bar{\mathbf{x}})
    if \omega > \gamma then
        EXIT # \tau large enough to see some dynamics
    end if
    \tau := \tau * \delta \tau
    iterations := iterations + 1
end while
```

2 Number of microscopic realisations N

Once we have obtained a value for the time evolution of the microscopic simulations we can then obtain a prediction for the number of microscopic realisations required to perform EF continuation of a generic ABM. The time horizon predictor in Algorithm 1 provides both a prediction of τ and a measure of how well defined this value is through ω_N , which we can use as our threshold in the realisation predictor. That is, we can again use the CLT to obtain a (Gaussian) distribution of means and calculate the mean of means, variance and confidence interval. Here we can use the value of ω from the time horizon predictor as a limit for the variance of the distribution of means for the realisations, i.e. ω_N . This process is summaries in Algorithm 2.

Figure 2: Variance of the distribution of means, ω with γ limit. For small τ (left) $\omega < \gamma$, whereas for larger τ (right) $\omega \approx \gamma$.

```
Algorithm 2 Realisation predictor.
```

```
# obtain initial parameter settings
N = N_{int} \# initial realisations
\delta N # increment in N
M \# number of runs to average over
N_{Max} # maximum number of realisations
\tau # time horizon from Algorithm 1
\gamma # threshold for dynamics from Algorithm 1
while \omega_N > \gamma do
   for j = 0; j < M do
       LIFT(N)
       SIMUALTE(N, \tau)
       \bar{\mathbf{x}}[j] = RESTRICT(N)
       j := j+1
   end for
    # 95 % confidence interval of distribution of means
   \omega_N = 95 \text{ConfInt}(\bar{\mathbf{x}})
    N := N * \delta N
end while
```

3 Continuation step size δs and finite differencing

We require a step size (δs) , in the continuation parameter λ such that if $f(x^*,\lambda) = x^*$, then $f(x^*,\lambda+\delta s) \approx x^*$. That is, we require δs to be small enough so that we obtain a suitable prediction to f under this perturbation. However this cannot be arbitrary small due to finite computational resources, impractical run times, and will depend on the specific problem under investigation. As with N and τ , for δs we can determine a value based directly on simulation of the system. In this case by examining the level for stochasticity through the variance using the parameter obtained with Algorithms 1 and 2. We perform the *Lift* and *Simulation* operations for one set of realisations and calculate the standard error in the mean (Δ) of the distribution of simulation results. We then

Figure 3: Illustration of the δs predictor. The standard error (Δ) from the the simulation of N realisations (blue) is used to determine the step size for finite differencing (black) and continuation step size (red).

simply define the step size as

$$\delta s = 3\Delta . (3.1)$$

During the predictor-corrector continuation used here, it is common to employ a Newton-Rhapson corrector method. In order to determine the update step size in this procedure we use finite differencing to calculate the Jacobian J,

$$J_{ik} = \frac{f_i(x+h) - f_k(x)}{h} , \qquad (3.2)$$

for i, k = 0...m, where m is the number of orders in f. The result of Eq. (3.2) is an $m \times m$ matrix. The value h is also problem specific as the accuracy of the determination of J will depend on the magnitude of h compared to x. To ensure that J is accurately calculated for a general system, we define the value of h in terms of the continuation step size,

$$h = \frac{\delta s}{r} \,\,\,\,(3.3)$$

where r=2 in this work.

4 Iterative determination and the selection of γ

It is worth noting that the value of γ in Algorithm 1 and 2 is technically a tunable, problem specific parameter. However, here we have replaced three problem specific parameters with a single parameter, thus reducing the overhead. We note however that γ can easily be obtained for a arbitrary model. By perform the procedure in Algorithm 1 with an arbitrarily large γ (say 10,000) one can monitoring ω as a function of τ . The profile of this curve can be used to select a new value of γ for the specific model and Algorithm 1 can be repeated. Figure 4 shows the dependence of ω on τ when using an arbitrarily large γ . Here we can see that we can use these curves to obtain a better guess for γ and obtain our problem specific equation-free parameters.

Figure 4: Confidence interval on mean of g(x) for 3 examples from the Repository of Models showing the maximum value of γ in each case.

Acknowledgements

The support of the UK Engineering and Physical Sciences Research Council for programme grant EP/H021779/1 (Evolution and Resilience of Industrial Ecosystems (ERIE)) is gratefully acknowledged.