Курсовая работа по предмету «Двухэтапные и многоэтапные задачи стохастического программирования»

Склад функционирует в течение 8 промежутков времени, в которых задан расход продукции $d_1=50,\ d_2=150,\ d_3=50,\ d_4=100,\ d_5=50[l/3+1],\ d_6=150-50[l/6],\ d_7=50[2l/5+1],\ d_8=100+50[(l+2)/3],\ где\ l$ — номер по списку группы, [a]— целая часть числа a. Расход производится в конце каждого периода планирования. Известны затраты на пополнение склада $\psi(u_k)$, где u_k — объём пополнения склада в k-м периоде, и затраты на хранение $\varphi(\bar{y}_k)$, где $\bar{y}_k=y_{k-1}+\frac{u_k}{2}$ — средний запас в k-м периоде, y_k — уровень запасов в начале k-го периода. Вместимость склада ограничена 400 единицами продукции. Значения указанных выше функций представлены в таблице:

t	25	50	75	100	125	150	175	200
$\varphi(t)$	3	7	14	24	33	45	50	54
$\psi(t)$		35		38		42		48
t	225	250	275	300	325	350	375	400
$\varphi(t)$	56	58	60	61	65	70	76	82
$\psi(t)$		55		65		90		130

При этом $\varphi(0) = \psi(0) = 0$. Пополнение запасов осуществляется партиями по 50 единиц продукции.

- 1) Определите оптимальные объёмы пополнения склада и соответствующие им затраты, считая, что в конечный момент времени на складе не должно оставаться запасов продукции. Решить задачу для всех уровней начальных запасов y_0 от 0 до 400 с шагом 50.
- 2) Решите аналогичную задачу в случае, считая, что за каждые 50 единиц оставшейся продукции взимается штраф в размере 5[l/3+1] д. е.
- 3) Решите задачу в стохастическом случае, учитывая штраф за оставшуюся продукцию. Вероятности событий, состоящих в том, что случайный спрос $D_t = d_t, t = \overline{1,8}$, заданы в таблице:

t	1	2	3	4	5	6	7	8
$D_t = 0$	0	0	0	0,2	0,1	0,2	0	$\frac{l}{20}$
$D_t = 50$	0,5	0	$\frac{20-l}{40}$	0,2	0,2	0,4	0,1	$\frac{1}{20}$
$D_t = 100$	$\frac{l}{40}$	$\frac{8+l}{40}$	0,5	0,2	0,4	0,2	0,2	$\frac{18-l}{20}$
$D_t = 150$	$\frac{20-l}{40}$	$\frac{20-l}{40}$	$\frac{l}{40}$	0,2	0,2	0,1	0,4	0
$D_t = 200$	0	0,3	0	0,2	0,1	0,1	0,3	0

Предполагается, что величины D_t независимы.

Различные вариации этой задачи можно найти в [1], описание метода динамического программирования в стохастическом случае — в [2].

Список литературы

- [1] Калихман И. Л., Войтенко М. А. Динамическое программирование в примерах и задачах. М.: Высш. школа, 1979.
- [2] Shapiro A., Dentcheva D., Ruszczyński A. Lecture on Stochastic Programming: Modeling and Theory. Philadelphia: SIAM, 2019.