Лекция 5

Ilya Yaroshevskiy

24 апреля 2021 г.

Содержание

1	Cxe	емы испытаний и соответствующие распределения	1
	1.1	Схема до первого успешного испытания	1
	1.2	Испытание с несколькими исходами	2
	1.3	Урновая схема	2
	1.4	Схемы Пуассона. Теорема Пуассона для схемы Бернулли	3
		1.4.1 Оценка погрешности в формуле Пуассона	4

1 Схемы испытаний и соответствующие распределения

- \bullet n число испытаний
- р вероятность при одном испытании
- \bullet q = 1 p вероятность неудачи при одном испытании

Определение.

$$k \to C_n^k p^k q^{n-k}$$

— биномиальное распределение с параметрами n и p

Обозначение. $B_{n,p} = B(n,p)$

1.1 Схема до первого успешного испытания

Определение. Схема до первого успешного испытания. Пусть проводится бесконечная серия испытаний, которая заканчивается после первого успеха под номером τ

Теорема 1.1. $p(\tau = k) = q^{k-1}p$

Доказательство.

$$p(\tau = k) = p(\underbrace{\operatorname{HH} \dots \operatorname{H}}_{k-1} \underbrace{\operatorname{Y}}_{k}) = q^{k-1}p$$

Определение. $k \to q^{k-1}p, \ 1 \le k \le \infty$ — называется геометрическим распределением с параметром t

Обозначение. G(p)

Примечание. Это распределение обладает так называемым свойством отсутствия после действия или свойством нестарения

Теорема 1.2. $]p(\tau=k)=q^{k-1}p$ Тогда $\forall n,k\in\mathbb{N}\ p(\tau>n+k|\tau>n)=p(\tau>k)$

Доказательство. По формуле условной вероятности:

$$p(\tau > n + k | \tau > k) = \frac{p(\tau > n + k \text{ if } \tau > j)}{p(\tau > n)} = \frac{p(\tau > n + k)}{p(\tau > n)}$$
(1)

 $p(\tau > m) = p(\text{первые } m \text{ неудач}) = q^m$

$$1 = \frac{q^{n+k}}{q^n} = q^k$$

 $\Pi pumeчaние.$ То, проработает ли девайс k часов после этого, не зависит от того сколько проработал до этого

Примечание. Также $p(\tau = n + k | \tau > n) = p(\tau = k)$

1.2 Испытание с несколькими исходами

Пусть при n испытаниях могут произойти m несовместных исходов

ullet p_i — вероятность i-го исхода при одном отдельном испытании

Теорема 1.3. Вероятность того, что при n испытаниях первый исход появится n_1 раз, второй n_2 раз, ..., m-й n_m раз. $n_1 + n_2 + \cdots + n_m = n$ Тогда

$$p(n_1, n_2, \dots, n_m) = \frac{n!}{n_1! n_2! \dots n_m!} p_1^{n_1} p_2^{n_2} \dots p_m^{n_m}$$

Доказательство. $A_1 = \underbrace{11 \dots 1}_{n_1} \underbrace{22 \dots 2}_{n_2} \dots \underbrace{m \dots m}_{n_m}$

$$p(A_1) = p_1^{n_1} \dots p_n^{n_m}$$

Остальные благоприятные исходы отличаются лишь расположением i-х исходов по n местам, а вероятности будут те-же. Всего таких исходов будет:

$$C_n^{n_1}C_{n-n_1}^{n_2}C_{n-n_1-n_2}^{n_3}\dots C_{n_m}^{n_m}=\frac{n!}{n_1!n_2!\dots n_m!}$$

— формула для перестановок с повторениями

Задача 1. Два одинаковых по силе шахматиста играют матч из 6 партий. Вероятность ничьи при одной партии -0.5. Найти вероятность того, что второй игрок две партии выиграл, а три партии свел в ничью

Решение. Исходы:

- 1. первый выиграл
- 2. второй выиграл
- 3. ничья

$$p_3 = \frac{1}{2}$$
; $p_1 = p_2 = \frac{1}{2} \left(1 - \frac{1}{2} \right) = \frac{1}{4}$; $n = 6$

$$P(1,2,3) = \frac{6!}{1!2!3!} \cdot \left(\frac{1}{4}\right)^1 \cdot \left(\frac{1}{4}\right)^2 \cdot \left(\frac{1}{2}\right)^3 = \frac{15}{2^7}$$

1.3 Урновая схема

В урне N шаров. Из них K белых, а черных N-K. Из нее выбираем n шаров без учета порядка. k — число вынутых белых

Теорема 1.4 (Схема с возвратом). Вероятность вынуть белый шар не меняется. Тогда

$$p = \frac{K}{N}$$
 $p_n(k) = C_n^k p^k (1-p)^{n-k}$

— биномиальное распределение

Теорема 1.5 (Схема без возврата). Тогда

$$P_{N,K}(n,k) = \frac{C_K^k \cdot C_{N-K}^{n-k}}{C_N^n}$$

Определение.

$$k \to \frac{C_K^k \cdot C_{N-K}^{n-k}}{C_N^n}, \ k \le K$$

называется гипергеометрическим распределением вероятности

Лемма 1.

$$C_K^k \sim \frac{K^k}{k!}$$

, $npu K \to \infty, K = const$

Доказательство.

$$C_K^k = \frac{K!}{k!(K-k)!} = \frac{K(K-1)\dots(K-k+1)}{K^k} \cdot \frac{K^k}{k!} = \underbrace{1 \cdot \left(1 - \frac{1}{K}\right) \cdot \left(1 - \frac{2}{K}\right) \dots \left(1 - \frac{k-1}{K}\right)}_{1} \cdot \frac{K^k}{k!} \sim \frac{K^k}{k!}$$

Теорема 1.6.

• $N \to \infty$

• $K \to \infty$

• $\frac{K}{N} \to p \in (0,1)$

• n и $0 \le k \le K$ — фиксированы

Тогда

$$P_{N,K}(n,k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n} \to C_n^k p^k (1-p)^{n-k}$$

Доказательство.

$$P_{N,K}(n,k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n} \xrightarrow[N \to \infty]{} \frac{K^k}{k!} \cdot \frac{(N-K)^{n-k}}{(n-k)!} \cdot \frac{n!}{N^n} = \frac{n!}{k! \cdot (n-k)!} \cdot \frac{K^k}{N^k} \cdot \frac{(N-K)^{n-k}}{N^{n-k}} =$$

$$= C_n^k \left(\frac{K}{N}\right)^k \left(1 - \frac{K}{N}\right)^{n-k} \xrightarrow[N \to \infty]{} C_n^k \cdot p^k \cdot (1-p)^{n-k}$$

1.4 Схемы Пуассона. Теорема Пуассона для схемы Бернулли

Схема: вероятность успеха при одном отдельном испытании зависит от числа испытаний n таким образом, чтобы $n\cdot p_n=\lambda$ (точнее $np_n\xrightarrow[n\to\infty]{}\lambda$)

Появление очень редких событий в длинном потоке испытаний

Теорема 1.7 (Формула Пуассона). Пусть $n\to\infty,\ p_n\to 0,$ так что $np_n\to\lambda>0$ Тогда вероятность k успехов при n испытаниях

$$p(\nu_n = k) = C_n^k p_n^k (1 - p_n)^{n-k} \xrightarrow[n \to \infty]{} \frac{\lambda^k}{k!} e^{-\lambda}$$

Доказательство. Положим $\lambda_n = np_n$

$$p(\nu_n = k) = C_n^k p_n^k (1 - p_n)^{n-k} \xrightarrow[n \to \infty]{} \frac{n^k}{k!} \cdot \frac{\lambda_n^k}{n^k} \cdot \left(1 - \frac{\lambda_n}{n}\right)^{n-k} = \frac{\lambda_n^k}{k!} \cdot \left(1 - \frac{\lambda_n}{n}\right)^n \cdot \left(1 - \frac{\lambda_n}{n}\right)^{-k} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} \cdot \left(1 - \frac{\lambda_n}{n}\right)^n \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} \cdot \left(1 - \frac{\lambda_n}{n}\right)^{n-k} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} e^{-\lambda_n} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} e^{-\lambda_n}$$

1.4.1 Оценка погрешности в формуле Пуассона

Теорема 1.8. Пусть ν_n – число успехов при n испытаниях в схеме Бернулли с вероятностью p

$$\lambda = np$$
 $A \subset \{0,1,2,\cdots n\}$ — произвольное подмножество

Тогда погрешность

$$\left| p(\nu_n \in A) - \sum_{k \in A} \frac{\lambda_k}{k!} e^{-\lambda} \right| \le \min(p, \lambda p) = \min(p, np^2) = \min\left(p, \frac{\lambda^2}{n}\right)$$

 $\mbox{\it Примечание.}$ Формулу Пуассона иногда называют формулой редких событий. Применяем при малых $p,\,n \geq 100$

Задача 2. Прибор состоит из 1000 элементов. Вероятность отказа каждого элемента $\frac{1}{1000}$. Какова вероятность отказа больше двух элементов

Решение.

$$p_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

, где $\lambda = np$

- n = 1000
- p = 0.001
- $\lambda = np = 1$
- k > 2

$$p(\nu_n > 2) = 1 - p(\nu_n \le 2) = 1 - (p(0) + p(1) + p(2)) \approx 1 - \left(\frac{\lambda^0}{0!}e^{-\lambda} + \frac{\lambda^1}{1!}e^{-\lambda} + \frac{\lambda^2}{2!}e^{-\lambda}\right) = 1 - 2.5e^{-1} \approx 0.0803$$

Погрешность $\varepsilon \leq \min(p, \lambda p) = 0.001$