III. Primera forma fundamental

Geometría de curvas y superficies, 20-21

(José Luis Fernández/Pablo Fernández)

3.1 Primera forma cuadrática fundamental

Primera forma

Sea S una superficie regular.

Para cada punto $\mathbf{p} \in S$, denotamos por $\mathbf{l_p}$ a la forma cuadrática (cuadrática fundamental) en el plano tangente $T_{\mathbf{p}}S$ que a cada $\mathbf{v} \in T_{\mathbf{p}}S$ le asigna

$$I_{\mathbf{p}}(\mathbf{v}) = \langle \mathbf{v}, \mathbf{v} \rangle = \|\mathbf{v}\|^{2}.$$

 l_p es la primera forma cuadrática (fundamental) de S en el punto p.

Es notación: $I_p(\mathbf{v})$ es simplemente el módulo al cuadrado del vector \mathbf{v} tangente a S en \mathbf{p} .

Cada I_p es una forma cuadrática definida positiva.

l_p es la forma cuadrática asociada a la forma bilineal simétrica

$$(\textbf{u},\textbf{v}) \in \textit{T}_{\textbf{p}}\textit{S} \times \textit{T}_{\textbf{p}}\textit{S} \mapsto \langle \textbf{u},\textbf{v} \rangle \in \mathbb{R}.$$

Primera forma cuadrática en coordenadas

Sea $X: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ carta de S en \mathbf{p} .

Sea $\mathbf{p} \in \mathbb{X}(U)$. Pongamos que $\mathbf{p} = \mathbb{X}(u_0, v_0)$, donde $(u_0, v_0) \in U$.

La base natural del plano tangente $T_{\mathbf{p}}S$ asociada a la carta $\mathbb X$ es

$$\big\{\mathbb{X}_u(u_0,v_0),\mathbb{X}_v(u_0,v_0)\big\}.$$

Vamos a expresar la primera forma fundamental I_p de S en p en coordenadas con respecto a esa base natural de T_pS .

Con notación tradicional que proviene de ... Gauss, denotamos

$$E(u, v) = \langle \mathbb{X}_{u}(u, v), \mathbb{X}_{u}(u, v) \rangle = \|\mathbb{X}_{u}(u, v)\|^{2},$$

$$F(u, v) = \langle \mathbb{X}_{u}(u, v), \mathbb{X}_{v}(u, v) \rangle = \langle \mathbb{X}_{v}(u, v), \mathbb{X}_{u}(u, v) \rangle,$$

$$G(u, v) = \langle \mathbb{X}_{v}(u, v), \mathbb{X}_{v}(u, v) \rangle = \|\mathbb{X}_{v}(u, v)\|^{2}.$$

22 CAROLI FRIDERICI GAUSS

11.

Formulae modo inuentae iam aliam superstruemus, quae inter fertilissima theoremata in doctrina de superficiebus curuis referenda est. Introducamus sequentes notationes:

$$aa + bb + cc = E$$

$$aa' + bb' + cc' = F$$

$$a'a' + b'b' + c'c' = G$$

Gauss: Disquisitiones generales circa superficies curvas, 1828.

Las funciones E, F, G son C^{∞} en el dominio U de parámetros.

- $E(u_0, v_0)$ es el cuadrado de la rapidez de la curva coordenada $\mathbb{X}(u, v_0)$ en $\mathbb{X}(u_0, v_0)$, cuyo vector velocidad es $\mathbb{X}_u(u, v_0)$.
- $G(u_0, v_0)$ es el cuadrado de la rapidez de la curva coordenada $\mathbb{X}(u_0, v)$ en $\mathbb{X}(u_0, v_0)$, cuyo vector velocidad es $\mathbb{X}_v(u_0, v)$.
- Si se tiene que $F \equiv 0$, entonces las curvas coordenadas se cortan perpendicularmente en cada intersección.

Para un vector tangente $\mathbf{v} \in T_{\mathbf{p}}S$, dado respecto de la base $\{\mathbb{X}_{u}(u_{0}, v_{0}), \mathbb{X}_{v}(u_{0}, v_{0})\}$ por

$$\mathbf{v}=a\,\mathbb{X}_u(u_0,v_0)+b\,\mathbb{X}_v(u_0,v_0)\,,$$

se tiene

$$I_{\mathbf{p}}(\mathbf{v}) = \langle \mathbf{v}, \mathbf{v} \rangle$$

$$= \langle a \mathbb{X}_{u}(u_{0}, v_{0}) + b \mathbb{X}_{v}(u_{0}, v_{0}), a \mathbb{X}_{u}(u_{0}, v_{0}) + b \mathbb{X}_{v}(u_{0}, v_{0}) \rangle$$

$$= a^{2} E(u_{0}, v_{0}) + 2ab F(u_{0}, v_{0}) + b^{2} G(u_{0}, v_{0}).$$

La matriz simétrica

$$\begin{pmatrix} E(u_0, v_0) & F(u_0, v_0) \\ F(u_0, v_0) & G(u_0, v_0) \end{pmatrix}$$

es la matriz de la forma cuadrática I_p respecto de $\{X_u(u_0, v_0), X_v(u_0, v_0)\}$.

Como I_p es forma definida positiva, se tiene que

$$\det \begin{pmatrix} E(u_0, v_0) & F(u_0, v_0) \\ F(u_0, v_0) & G(u_0, v_0) \end{pmatrix} = E(u_0, v_0)G(u_0, v_0) - F(u_0, v_0)^2 > 0.$$

Por supuesto, $E(u_0, v_0) > 0$ y $G(u_0, v_0) > 0$.

Pero $F(u_0, v_0)$ puede ser positiva, negativa o cero.

Ejemplos de primera forma

Ejemplo 1. Plano. Carta (global) X(u, v) = (u, v, 0), para $(u, v) \in \mathbb{R}^2$. Se tiene

$$\mathbb{X}_{u}(u,v) = (1,0,0)$$
 $\Rightarrow \begin{cases} E \equiv 1 \\ G \equiv 1 \\ F \equiv 0 \end{cases}$

Ejemplo 2. Cilindro. Carta $X(\theta, h) = (\cos \theta, \sin \theta, h)$, para $h \in \mathbb{R}$, $0 < \theta < 2\pi$. Se tiene

$$\mathbb{X}_{u}(\theta, h) = (\operatorname{sen} \theta, \cos \theta, 0)$$

$$\mathbb{X}_{v}(\theta, h) = (0, 0, 1)$$

$$\Rightarrow \begin{cases} E \equiv 1 \\ G \equiv 1 \\ F \equiv 0 \end{cases}$$

Ejemplo 3. Grafo de función. Carta (global)

$$X(u,v)=(u,v,f(u,v)), \qquad \text{para } (u,v)\in U\subset \mathbb{R}^2.$$

Se tiene

$$X_{u}(u,v) = (1,0,f_{u}(u,v)) X_{v}(u,v) = (0,1,f_{v}(u,v))$$

$$\Rightarrow \begin{cases} E(u,v) = 1 + f_{u}^{2}(u,v), \\ G(u,v) = 1 + f_{v}^{2}(u,v), \\ F(u,v) = f_{u}(u,v)f_{v}(u,v). \end{cases}$$

Si
$$f(u,v) = u + v$$
, entonces $f_u = f_v = 1$, y por tanto $F \equiv 1$.

Si
$$f(u,v)=u-v$$
, entonces $f_u=1$ y $f_v=-1$, y por tanto $F\equiv -1$.

Ejemplo 4. Esfera unidad. Carta

$$\mathbb{X}(\theta,\phi) = (\operatorname{sen} \phi \cos \theta, \operatorname{sen} \phi \operatorname{sen} \theta, \cos \phi), \qquad \operatorname{para} \ 0 < \theta < 2\pi, 0 < \phi < \pi.$$

Se tiene

$$\mathbb{X}_{\theta} = (-\sin\phi \sin\theta, \sin\phi \cos\theta, 0),$$

$$\mathbb{X}_{\phi} = (\cos\phi \cos\theta, \cos\phi \sin\theta, -\sin\phi),$$

$$\Rightarrow \begin{cases} E(\theta, \phi) = \sin^2\phi, \\ G(\theta, \phi) \equiv 1, \\ F(\theta, \phi) \equiv 0. \end{cases}$$

Meridianos y paralelos de la esfera se cortan perpendicularmente: $F\equiv 0$.

En la parametrización X,

- los meridianos se recorren se recorren con rapidez 1,
- el paralelo de colatitud ϕ se recorre con rapidez sen ϕ .

Ejemplo 5. Helicoide. Carta (global)

$$\mathbb{X}(u,\theta) = (u\cos\theta, u\sin\theta, \theta), \quad \text{para } \theta \in \mathbb{R}, \ 0 < u < \infty.$$

Se tiene

$$\mathbb{X}_{u}(u,\theta) = (\cos \theta, \sin \theta, 0),$$

$$\mathbb{X}_{\theta}(u,\theta) = (-u \sin \theta, u \cos \theta, 1),$$

$$\Rightarrow \begin{cases} E(u,\theta) \equiv 1, \\ G(u,\theta) = 1 + u^{2}, \\ F(u,\theta) \equiv 0. \end{cases}$$

Las curvas u= constante son hélices. Las curvas $\theta=$ constante son rayos/semirrectas/peldaños. Estas curvas coordenadas se cortan ortogonalmente en cada intersección ($F\equiv 0$).

Los rayos $\theta=$ constante están parametrizados por longitud de arco. La hélice $u=u_0$ se recorre con rapidez $\sqrt{1+u_0^2}$.

Ejemplo 5. Superficie de revolución.

Curva $\gamma(s)=(a(s),b(s))$ en el semiplano derecho del plano YZ (es decir, a(s)>0) que se recorre con longitud de arco, de manera que $\dot{a}^2(s)+\dot{b}^2(s)\equiv 1$.

Carta: $\mathbb{X}(\theta, s) = (a(s)\cos\theta, a(s)\sin\theta, b(s))$, para $\theta \in (0, 2\pi), s \in I$. Se tiene

$$\mathbb{X}_{\theta}(\theta, s) = (-a \operatorname{sen} \theta, a \cos \theta, 0)$$

$$\mathbb{X}_{s}(\theta, s) = (\dot{a}(s) \cos \theta, \dot{a}(s) \operatorname{sen} \theta, \dot{b}(s)) \Rightarrow \begin{cases} E(\theta, s) = a^{2}(s), \\ G(\theta, s) = \dot{a}^{2}(s) + \dot{b}^{2}(s) \equiv 1, \\ F(\theta, s) \equiv 0. \end{cases}$$

Meridianos y paralelos son perpendiculares. Los meridianos se recorren con rapidez 1.

3.2 Longitudes, ángulos, áreas

1. Longitudes

Si $\alpha: I \to \mathbb{R}^3$ es una curva y $a,b \in I, a < b$, la longitud de la traza de α entre $\alpha(a)$ y $\alpha(b)$ es

longitud =
$$L(\alpha) = \int_a^b \|\dot{\alpha}(t)\| dt$$
.

Si la traza de α está contenida en una superficie regular S, de hecho, en $\mathbb{X}(U)$, donde $\mathbb{X}:U\to S$ es una carta de S, entonces

$$\alpha(t) = \mathbb{X}(u(t), v(t)), \quad \text{para } t \in I.$$

u(t), v(t) son las coordenadas respecto de \mathbb{X} de la curva α .

Se tiene

$$\dot{\alpha}(t) = \dot{u}(t) \, \mathbb{X}_{u}(\alpha(t)) + \dot{v}(t) \, \mathbb{X}_{v}(\alpha(t)).$$

Si
$$\mathbf{p} = \mathbb{X}(u(t), v(t))$$
, obviando la variable t , se tiene

$$\|\dot{\alpha}(t)\|^2 = I_{\mathbf{p}}(\dot{\alpha}(t)) = \dot{u}^2 E(u,v) + 2\dot{u}\dot{v} F(u,v) + \dot{v}^2 G(u,v).$$

Por tanto, la longitud de α se escribe, obviando de nuevo la variable t,

longitud(
$$\alpha$$
) = $\int_{a}^{b} \sqrt{\dot{u}^2 E(u,v) + 2\dot{u}\dot{v} F(u,v) + \dot{v}^2 G(u,v)} dt$.

Se escribe (regla nemotécnica):

$$(\star) \quad ds^2 = E \, du^2 + 2F \, dudv + G \, dv^2.$$

A ds se le dice elemento de longitud:

longitud =
$$\int ds$$
.

A (\star) también se le dice primera forma fundamental.

Ejemplo. En el helicoide,

$$\mathbb{X}(u,\theta) = (u\cos\theta, u\sin\theta, \theta),$$

con
$$E(u, \theta) = 1$$
, $F(u, \theta) = 0$, $G(u, \theta) = 1 + u^2$.

Calculamos la longitud de tres curvas sobre el helicoide:

- la curva $\alpha(t) = \mathbb{X}(u_0, t)$, con $t \in (0, 2\pi)$ (hélice, curva coordenada);
- la curva $\beta(t) = \mathbb{X}(t, \theta_0)$, con $t \in (0, 5)$ (segmento, curva coordenada);
- la curva $\gamma(t)=\mathbb{X}(t,t)$, $t\in(0,2\pi)$.

(La curva $\alpha(t)$ se dibuja para $u_0=4$; la curva $\beta(t)$, con $\theta_0=2\pi/3$).

Para

$$\alpha(t) = \mathbb{X}(u_0, t) = (u_0 \cos t, u_0 \sin t, t), \qquad t \in (0, 2\pi),$$

tenemos $u(t)=u_0$ y $\theta(t)=t$. Así que $\dot{u}(t)=0$ y $\dot{\theta}(t)=1$. Por lo tanto,

$longitud(\alpha)$

$$= \int_{0}^{2\pi} \sqrt{\dot{u}^{2}(t)E(u(t),\theta(t)) + 2\dot{u}(t)\dot{\theta}(t)F(u(t),\theta(t)) + \dot{\theta}^{2}(t)G(u(t),\theta(t))} dt$$

$$= \int_{0}^{2\pi} \sqrt{1 + u_{0}^{2}} dt = 2\pi \sqrt{1 + u_{0}^{2}}.$$

Si $u_0 = 4$, entonces la longitud es aproximadamente 25.91.

Para

$$\beta(t) = \mathbb{X}(t,\theta_0) = (t\cos\theta_0, t\sin\theta_0, \theta_0), \qquad t \in (0,5),$$
 tenemos $u(t) = t$ y $\theta(t) = \theta_0$. Así que $\dot{u}(t) = 1$ y $\dot{\theta}(t) = 0$. Por lo tanto,
$$\mathsf{longitud}(\boldsymbol{\beta}) = \int_0^5 \sqrt{\dot{u}^2 \, E + 2 \dot{u} \dot{\theta} F + \dot{\theta}^2 G} \, dt$$
$$= \int_0^5 \sqrt{1} \, dt = 5.$$

Finalmente, para

$$\gamma(t) = \mathbb{X}(t,t) = (t\cos t, t\sin t, t), \qquad t \in (0,2\pi),$$

tenemos u(t)=t y $\theta(t)=t$. Así que $\dot{u}(t)=1=\dot{ heta}(t)$. Por lo tanto,

$$\begin{aligned} & \mathsf{longitud}(\gamma) = \int_0^{2\pi} \sqrt{\dot{u}^2 \, E + 2 \dot{u} \dot{\theta} \, F + \dot{\theta}^2 \, G} \, dt \\ & = \int_0^{2\pi} \sqrt{1 + (1 + t^2)} \, dt = \int_0^{2\pi} \sqrt{2 + t^2} \, dt \\ & = \sqrt{2} \int_0^{2\pi} \sqrt{1 + t^2/2} \, dt \stackrel{t = \sqrt{2} \, h}{=} 2 \int_0^{\pi \sqrt{2}} \sqrt{1 + h^2} \, dh \\ & = 2 \left[\frac{1}{2} h \sqrt{1 + h^2} + \frac{1}{2} \ln \left(h + \sqrt{1 + h^2} \right) \right]_{h=0}^{h=\pi \sqrt{2}} \\ & = \pi \sqrt{2 + 4 \pi^2} + \ln(\pi \sqrt{2} + \sqrt{1 + 2 \pi^2}) \approx 22.43. \end{aligned}$$

Nota: por supuesto, se puede calcular la longitud de cualquiera de estas tres curvas entendiéndolas como curvas en \mathbb{R}^3 .

Por ejemplo, para $\gamma(t)=\big(t\cos t,t\sin t,t\big)$, con $t\in(0,2\pi)$, tendríamos

$$\dot{\gamma}(t) = \left(\cos t - t \sin t, t \cos t + \sin t, 1\right)$$

У

$$\|\dot{\boldsymbol{\gamma}}(t)\|^2 = 2 + t^2.$$

En suma,

longitud =
$$\int_0^{2\pi} \sqrt{2 + t^2} \, dt.$$

Ejemplo. Las curvas más cortas en la esfera son los grandes círculos.

Carta usual de coordenadas esféricas:

$$X(\theta, \phi) = (\cos \theta \operatorname{sen} \phi, \operatorname{sen} \theta \operatorname{sen} \phi, \cos \phi),$$

con $0 < \theta < 2\pi, 0 < \phi < \pi$.

Se tiene

$$E = \operatorname{sen}^2 \phi, \quad F \equiv 0, \quad G \equiv 1.$$

Basta ver (las rotaciones conservan longitudes) que una curva α que va desde el polo Norte N hasta un punto \mathbf{p} de la esfera que tiene coordenadas esféricas $\theta_0=\pi/2$ y $\phi_0\in(0,\pi)$ tiene longitud al menos ϕ_0 , pues el meridiano entre el polo Norte N y \mathbf{p} tiene longitud ϕ_0 .

Pongamos que $lpha(t)=(heta(t),\phi(t))$ y que

$$\theta(a) = \pi/2 = \theta(b)$$

y que

$$\phi(a) = 0$$
 y $\phi(b) = \phi_0$.

La longitud de α entre $\alpha(a)$ y $\alpha(b)$ es

$$\begin{aligned} & \operatorname{longitud} = \int_{a}^{b} \sqrt{\dot{\theta}^{2} \, E + 2 \dot{\theta} \dot{\phi} \, F + \dot{\phi}^{2} \, G} \, \, dt \\ & \left[\operatorname{usando} \, E = \operatorname{sen}^{2} \phi, F \equiv 0, G \equiv 1 \right] \\ & = \int_{a}^{b} \sqrt{\dot{\phi}^{2}(t) + \operatorname{sen}^{2} \phi(t) \, \dot{\theta}^{2}(t)} \, \, dt \\ & \geq \int_{a}^{b} \sqrt{\dot{\phi}^{2}(t)} \, \, dt = \int_{a}^{b} |\dot{\phi}(t)| \, \, dt \\ & \geq \left| \int_{a}^{b} \dot{\phi}(t) \, dt \right| = |\phi(b) - \phi(a)| = \phi_{0}. \end{aligned}$$

2. Ángulos

Tenemos dos curvas α_1 y α_2 cuyas trazas están contenidas en una superficie regular S.

En tiempos respectivos, t_1 y t_2 , pasan por un cierto punto **p** de S:

$$\alpha_1(t_1)=\mathbf{p}=\alpha_2(t_2).$$

El ángulo ω con el que se cortan al pasar por ${\bf p}$ es tal que

$$\cos \omega = \frac{\langle \dot{\alpha_1}(t_1), \dot{\alpha_2}(t_2) \rangle}{\|\dot{\alpha_1}(t_1)\| \|\dot{\alpha_2}(t_2)\|}.$$

Si $\mathbb{X}(u,v)$ es carta alrededor de **p** y

$$\alpha_1(t) = \mathbb{X}(u_1(t), v_1(t)),
\alpha_2(t) = \mathbb{X}(u_2(t), v_2(t)),$$

son dos curvas que se cortan en ${f p}=lpha_1(t_1)=lpha_2(t_2)$, se tiene que (obviando evaluación en t_1,t_2)

$$\begin{split} \dot{\alpha}_1 &= \mathbb{X}_u \, \dot{u}_1 + \mathbb{X}_v \, \dot{v}_1, \\ \dot{\alpha}_2 &= \mathbb{X}_u \, \dot{u}_2 + \mathbb{X}_v \, \dot{v}_2, \end{split}$$

Por lo tanto (obviando de nuevo la evaluación en t_1, t_2),

$$\cos \omega = \frac{E \, \dot{u}_1 \, \dot{u}_2 + F \big(\dot{u}_1 \dot{v}_2 + \dot{u}_2 \dot{v}_1 \big) + G \, \dot{v}_1 \, \dot{v}_2}{\sqrt{E \, \dot{u}_1{}^2 + 2F \, \dot{u}_1 \dot{v}_1 + G \, \dot{v}_1{}^2} \sqrt{E \, \dot{u}_2{}^2 + 2F \, \dot{u}_2 \dot{v}_2 + G \, \dot{v}_2{}^2}}.$$

Las funciones E, F y G se evalúan en $(u_1(t_1), v_1(t_1))$, o lo que es lo mismo, en $(u_2(t_2), v_2(t_2))$. Las derivadas \dot{u}_1 y \dot{v}_1 se evalúan en t_1 , mientras que las derivadas \dot{u}_2 y \dot{v}_2 se evalúan en t_2 .

Ejemplo 1. El caso $F \equiv 0$, curvas coordenadas perpendiculares.

Carta genérica $\mathbb{X}(u,v)$, con $(u,v)\in U$, para la que $F\equiv 0$. Las curvas coordenadas son

- $\alpha_1(t) = \mathbb{X}(u_1(t), v_1(t)) = \mathbb{X}(t, v_0);$
- $\alpha_2(t) = \mathbb{X}(u_2(t), v_2(t)) = \mathbb{X}(u_0, t).$

Se cortan en $\alpha_1(t_1)=\alpha_2(t_2)$, donde $t_1=u_0$ y $t_2=v_0$.

Como $\dot{v}_1=0$ y $\dot{u}_2=0$, solo quedaría el término $F\dot{u}_1\dot{v}_2$, que es también nulo.

Ejemplo 2 (fácil). Ángulo de corte de dos curvas en el cilindro.

Se cortan en el punto (1,0,0).

Tomamos la carta del (medio) cilindro:

$$\mathbb{X}(\theta, h) = (\cos \theta, \sin \theta, h), \qquad \theta \in (-\pi/2, \pi/2), h \in \mathbb{R},$$

para la que $E(\theta, h) = G(\theta, h) = 1$, $F(\theta, h) = 0$.

Queremos calcular el ángulo con el que se cortan las curvas

- $\alpha_1(t) = \mathbb{X}(\theta_1(t), h_1(t)) = \mathbb{X}(t, 0)$, con $t \in (-\pi/2, \pi/2)$;
- $\alpha_2(t) = \mathbb{X}(\theta_2(t), h_2(t)) = \mathbb{X}(t, t)$, con $t \in (-\pi/2, \pi/2)$;

Las curvas se cortan en el punto $(1,0,0)=\mathbb{X}(0,0)$, por el que α_1 pasa en tiempo $t_1=0$ y α_2 , en tiempo $t_2=0$.

La fórmula para el ángulo de corte se simplifica, para el cilindro así parametrizado, a

$$\cos \omega = \frac{\dot{\theta}_1 \, \dot{\theta}_2 + \dot{h}_1 \, \dot{h}_2}{\sqrt{\dot{\theta}_1^2 + \dot{h}_1^2} \, \sqrt{\dot{\theta}_2^2 + \dot{h}_2^2}} \cdot$$

Como $\dot{\theta}_1=\dot{\theta}_2=\dot{h}_2=1$ y $\dot{h}_1=0$, queda simplemente

$$\cos\omega = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2},$$

y el corte es con ángulo $\pi/4$.

Ejemplo 3 (espeluznante). Ángulo de corte de dos curvas en el helicoide.

$$\mathbb{X}(u,\theta) = (u\cos\theta, u\sin\theta, \theta),$$

con
$$E(u, \theta) = 1$$
, $F(u, \theta) = 0$, $G(u, \theta) = 1 + u^2$.

La fórmula para el ángulo de corte se simplifica, en este caso, a

$$\cos \omega = \frac{\dot{u}_1 \, \dot{u}_2 + G \, \dot{\theta}_1 \, \dot{\theta}_2}{\sqrt{\dot{u}_1^2 + G \, \dot{\theta}_1^2} \, \sqrt{\dot{u}_2^2 + G \dot{\theta}_2^2}}$$

Calculamos el ángulo con el que se cortan las curvas

- $\alpha_1(t) = \mathbb{X}(t^2, \pi/2)$, con $t \in (0, 5)$;
- $\alpha_2(t) = \mathbb{X}(\sinh t, t)$, $t \in (0, 2\pi)$.

Para $\alpha_1(t) = (u_1(t), \theta_1(t))$, se tiene

$$\begin{cases} u_1(t) = t^2, \\ \theta_1(t) = \pi/2, \end{cases} \implies \begin{cases} \dot{u}_1(t) = 2t, \\ \dot{\theta}_1(t) = 0. \end{cases}$$

Para $\alpha_2(t) = (u_2(t), \theta_2(t))$, se tiene

$$\begin{cases} u_2(t) = \sinh t, \\ \theta_2(t) = t, \end{cases} \implies \begin{cases} \dot{u}_2(t) = \cosh t, \\ \dot{\theta}_2(t) = 1. \end{cases}$$

¿Punto de corte? Como

$$\alpha_1(t) = \mathbb{X}(t^2, \pi/2) = (t^2 \cos(\pi/2), t^2 \sin(\pi/2), \pi/2) = (0, t^2, \pi/2),$$

 $\alpha_2(t) = \mathbb{X}(\sinh t, t) = (\sinh t \cos t, \sinh t \sin t, t),$

las curvas se cortan en el punto

$$\mathbf{p} = (0, \sinh(\pi/2), \pi/2) = \mathbb{X}(\sinh(\pi/2), \pi/2)$$
$$= \alpha_1 \left(\underbrace{\sqrt{\sinh(\pi/2)}}_{=t_1} \right) = \alpha_2 \underbrace{(\pi/2)}_{=t_2}.$$

Aprovechando que $\dot{\theta}_1 \equiv 0$, la fórmula para el coseno del ángulo de corte vienen resulta ser

$$\cos \omega = \frac{\dot{u}_{1}(\sqrt{\sinh(\pi/2)}) \,\dot{u}_{2}(\pi/2)}{\sqrt{\dot{u}_{1}^{2}(\sqrt{\sinh(\pi/2)})} \,\sqrt{\dot{u}_{2}^{2}(\pi/2) + G(\sinh(\pi/2), \pi/2) \,\dot{\theta}_{2}^{2}(\pi/2)}}$$

$$[\dot{u}_{1}(t) = 2t, \dot{u}_{2}(t) = \cosh(t), \dot{\theta}_{2}(t) = 1, G(u, \theta) = 1 + u^{2}]$$

$$= \frac{2\sqrt{\sinh(\pi/2)} \,\cosh(\pi/2)}{\sqrt{4 \sinh(\pi/2)} \,\sqrt{\cosh^{2}(\pi/2) + (1 + \sinh^{2}(\pi/2))}}$$

$$= \frac{1}{\sqrt{2}}.$$

¡Vaya!

Ejemplo 4. Curvas en el cilindro que cortan a las circunferencias horizontales con ángulo fijo de $\pi/4$.

Carta usual: $\mathbb{X}(\theta, h) = (\cos \theta, \sin \theta, h)$, con

$$E\equiv G\equiv 1,\quad F\equiv 0.$$

Las circunferencias horizontales se pueden parametrizar como

$$\alpha_{h_0}(t) = \mathbb{X}(t,h_0),$$

donde h_0 indica la altura a la que se encuentra esa circunferencia. Se tiene que $\dot{\alpha}_{h_0}=\mathbb{X}_{\theta}.$

Tomamos una curva genérica

$$\gamma(t) = \mathbb{X}(\theta(t), h(t)).$$

Así que $\dot{\gamma} = \mathbb{X}_{\theta} \, \dot{\theta} + \mathbb{X}_h \, \dot{h}$.

La condición es

$$\frac{1}{\sqrt{2}} = \cos \frac{\pi}{4} = \frac{\langle \dot{\boldsymbol{\alpha}}, \mathbb{X}_{\theta} \rangle}{\|\dot{\boldsymbol{\alpha}}\| \|\mathbb{X}_{h}\|} = \frac{\dot{\theta}(t)}{\sqrt{\dot{\theta}^{2}(t) + \dot{h}^{2}(t)}},$$

que equivale a

$$\dot{\theta}^2(t) \equiv \dot{h}^2(t).$$

Así que

$$\theta(t) = \pm h(t) + \text{cte.}$$

¡Hélices!

Ejemplo 5. En el plano, interesan las trayectorias ortogonales \mathcal{G} al sistema de curvas \mathcal{F} : $y = x^2 + a$, $a \in \mathbb{R}$.

Cada punto (x_0, y_0) del plano está en una y solo una curva de la familia \mathcal{F} .

Fijamos un punto del plano $\mathbf{p}=(x_0,y_0)$, que estará en la curva de \mathcal{F} de parámetro $a_0=y_0-x_0^2$.

Esa curva de ${\mathcal F}$ se parametriza como

$$\alpha_{\mathsf{a}_0}(t)=(t,\mathsf{a}+t^2), \qquad t\in\mathbb{R},$$

y pasa por **p** para $t = x_0$, es decir, $\alpha_{a_0}(x_0) = (x_0, y_0)$.

Se tiene que $\dot{\alpha}_{a_0}(t) = (1, 2t)$.

Así que la curva pasa por $\mathbf{p}=(x_0,y_0)$ con vector velocidad $\dot{\alpha}_{a_0}(x_0)=(1,2x_0)$.

Tomamos una curva $\gamma(t)=(x(t),y(t))$, que pase por el punto \mathbf{p} , digamos, en tiempo t^{\star} . Es decir, $x(t^{\star})=x_0$ e $y(t^{\star})=y_0$.

La velocidad con la que pasa por **p** es

$$\dot{\gamma}(t^{\star}) = (\dot{x}(t^{\star}), \dot{y}(t^{\star})).$$

Exigimos que

$$(\dot{x}(t^*),\dot{y}(t^*))\perp (1,2x_0)=(1,2x(t^*)).$$

La conclusión es que buscamos las curvas (x(t), y(t)) tales que en cada t se cumpla que

$$(\dot{x}(t),\dot{y}(t))\perp(1,2x(t)).$$

Es decir, curvas (x(t), y(t)) tales que

$$x'(t) + 2y'(t)x(t) = 0$$

(volvemos a las 'como notación habitual de ecuaciones diferenciales).

Suponemos x(t) > 0. Entonces

$$x'(t) + 2y'(t)x(t) = 0 \Rightarrow x'(t)/x(t) = -2y'(t) \Rightarrow (\ln(x(t)))' = -2y'(t)$$

 $\Rightarrow \ln(x(t)) = -2y(t) + \text{cte} \Rightarrow x(t) = b e^{-2y(t)}, \text{ con } b > 0.$

En general, debe cumplirse que

$$x(t) = b e^{-2y(t)}$$
 para $b \in \mathbb{R}$.

La familia de curvas \mathcal{G} está compuesta por las curvas $x=b\,e^{-2y}$, una por cada valor del parámetro $b\in\mathbb{R}$.

Ejemplo 6. En el helicoide, con carta (global)

$$\mathbb{X}(u,\theta) = (u\cos\theta, u\sin\theta, \theta), \quad \text{con } u \in \mathbb{R} \text{ y } \theta \in \mathbb{R},$$

para la que $E\equiv 1$, $F\equiv 0$ y $G(u,\theta)=1+u^2$, buscamos las trayectorias ortogonales $\mathcal G$ al sistema de curvas $\mathcal F=\{u=Ce^{2\theta}\}$.

Cada punto \mathbf{p} del helicoide está en una y sólo una curva de la familia \mathcal{F} .

Fijamos un punto $\mathbf{p} = \mathbb{X}(u_0, \theta_0)$ del helicoide. Entonces \mathbf{p} está en la curva de \mathcal{F} de parámetro $C_0 = u_0 e^{-2\theta_0}$.

Esa curva de $\mathcal F$ se parametriza

$$\alpha_{C_0}(t) = \mathbb{X}(C_0e^{2t}, t).$$

Se tiene que $\dot{\alpha}_{C_0}(t) = \mathbb{X}_u(C_0e^{2t}, t) 2C_0e^{2t} + \mathbb{X}_{\theta}(C_0e^{2t}, t)$.

La curva pasa por **p** cuando $t = \theta_0$: $\alpha_{C_0}(\theta_0) = \mathbb{X}(u_0, \theta_0)$.

Su vector velocidad al pasar por **p** es

$$\dot{\alpha}_{C_0}(\theta_0) = \mathbb{X}_u(u_0, \theta_0) 2C_0 e^{2\theta_0} + \mathbb{X}_{\theta}(u_0, \theta_0) = 2u_0 \, \mathbb{X}_u(u_0, \theta_0) + \mathbb{X}_{\theta}(u_0, \theta_0).$$

Tomamos una curva $\gamma(t) = \mathbb{X}(u(t), \theta(t))$ que pase por **p**, digamos en tiempo t^* ; es decir, $u(t^*) = u_0$ y $\theta(t^*) = \theta_0$.

La velocidad con la que γ pasa por ${\bf p}$ es

$$\dot{\gamma}(t^{\star}) = \mathbb{X}_{u}(u(t^{\star}), \theta(t^{\star})) \, \dot{u}(t^{\star}) + \mathbb{X}_{\theta}(u(t^{\star}), \theta(t^{\star})) \, \dot{\theta}(t^{\star}).$$

¡Exigimos! que este vector velocidad sea ortogonal a

$$2u_0 \mathbb{X}_u(u_0, \theta_0) + \mathbb{X}_{\theta}(u_0, \theta_0),$$

es decir, a

$$2u(t^{\star}) \mathbb{X}_{u}(u(t^{\star}), \theta(t^{\star})) + \mathbb{X}_{\theta}(u(t^{\star}), \theta(t^{\star})).$$

La conclusión es que buscamos curvas $\mathbb{X}(u(t), \theta(t))$ tales que, para cada t,

$$(\dot{u}(t)\mathbb{X}_u + \dot{\theta}(t)\mathbb{X}_{\theta}) \perp (2u(t)\mathbb{X}_u + \mathbb{X}_{\theta}).$$

En esta expresión, X_u y X_θ están evaluadas en $(u(t), \theta(t))$.

Es decir, queremos (usando $E\equiv 1, F\equiv 0, G=(1+u^2)$) que

$$2u(t)\dot{u}(t) + (1 + u(t)^2)\dot{\theta}(t) = 0.$$

Detalle:

$$2u(t)\dot{u}(t) + (1+u(t)^2)\dot{\theta}(t) = 0 \implies \dot{\theta}(t) = -2\frac{u(t)\dot{u}(t)}{1+u(t)^2} \implies \theta(t) = \ln\frac{1}{1+u(t)^2} + \text{cte.}$$

La familia G está compuesta de las curvas (una por cada valor de K > 0):

$$u=\pm\sqrt{\mathit{K}\mathrm{e}^{-\theta}-1}\,,\quad \mathrm{para}\ \theta<\ln \mathit{K}\,.$$

3. Áreas

Área de
$$\mathbb{X}(U) = \int_U \|\mathbb{X}_u \times \mathbb{X}_v\| \, du dv$$

Idea:

Ejemplo 1. Gráfica de una función, con carta (global)

$$\mathbb{X}(u,v)=(u,v,f(u,v)), \qquad \text{para } (u,v)\in U,$$

para la que $E=1+f_u^2$, $G=1+f_v^2$ y $F=f_uf_v$.

Se tiene que

$$\|\mathbb{X}_{u} \times \mathbb{X}_{v}\| = \sqrt{EG - F^{2}} = \sqrt{1 + f_{u}^{2}(u, v) + f_{v}^{2}(u, v)},$$

y por tanto,

área de
$$\mathbb{X}(U) = \int_U \sqrt{1 + f_u^2(u, v) + f_v^2(u, v)} du dv.$$

Ilustración: sección del paraboloide, para el que $f(u, v) = u^2 + v^2$, con $u^2 + v^2 < R^2$:

$$\begin{split} \text{área} &= \int_{u^2 + v^2 < R^2} \sqrt{1 + 4(u^2 + v^2)} \, du dv \stackrel{\text{polares}}{=} 2\pi \int_0^R \sqrt{1 + 4r^2} \, r \, dr \\ &= 2\pi \Big(\frac{1}{12} (1 + 4r^2)^{3/2} \Big|_0^R \Big) = \frac{\pi}{6} \big((1 + 4R^2)^{3/2} - 1 \big). \end{split}$$

Ejemplo 2. Casquete polar. Dato: $r \in (0, \pi)$.

Con X usual de coordenadas esféricas,

$$\sqrt{EG - F^2} = \operatorname{sen} \phi.$$

Sea $C(r) = \{ \text{distancia a polo Norte es } \le r \}$. Entonces

$$C(r) = \mathbb{X}\big(\{(\theta,\phi): \theta \in [0,2\pi], 0 < \phi < r\}\big).$$

Por tanto,

Área de
$$C(r) = \int_0^{2\pi} \int_0^r \sin \phi d\phi \, d\theta = 2\pi \int_0^r \sin \phi \, d\phi = 2\pi (1 - \cos r) < \pi r^2$$
.

(la comparación es con el área en el plano del disco de radio r).

Ejemplo 3. Área del toro. Tenemos R > r > 0.

Carta:

$$\mathbb{X}(u,v) = ((R+r\cos u)\cos v, (R+r\cos u)\sin v, r\sin u).$$

Cálculos:

$$X_u(u, v) = (-r \operatorname{sen} u \cos v, -r \operatorname{sen} u \operatorname{sen} v, r \cos u),$$

$$X_v(u, v) = (-(R + r \cos u) \operatorname{sen} v, (R + \cos u) \cos v, 0).$$

Así que

$$E=r^2\,,\quad F\equiv 0\,,\quad G=(R+r\cos u)^2\,,\quad \|\mathbb{X}_u\times\mathbb{X}_v\|=r(R+r\cos u)\,.$$

Con $U = \{(u, v) : 0 < u < 2\pi, 0 < v < 2\pi\}$, tenemos

Área toro =
$$\int_0^{2\pi} \int_0^{2\pi} r(R + r \cos u) du dv$$

= $4\pi^2 Rr + 2\pi r \int_0^{2\pi} \cos u \, du = 4\pi^2 Rr = (2\pi R)(2\pi r)$.

Ejercicio: Comprobación de que la mitad "exterior" tiene área $2\pi r(R\pi + 2r)$, mientras que la mitad "interior" tiene área $2\pi r(R\pi - 2r)$.

Ejemplo 3. Área de superficie de revolución. Curva $\gamma(s)=(a(s),b(s))$ en semiplano derecho del plano YZ (es decir, a(s)>0) que se recorre con longitud de arco, de manera que $\dot{a}^2(s)+\dot{b}^2(s)\equiv 1$.

Carta:

$$\mathbb{X}(\theta,s) = (a(s)\cos\theta,a(s)\sin\theta,b(s)), \qquad \text{para } \theta \in (0,2\pi), 0 < s < L.$$

Se tiene

$$E(\theta, s) = a^2(s), \quad G(\theta, s) \equiv 1, \quad F(\theta, s) \equiv 0.$$

Así que

$$\sqrt{EG-F^2}=a(s).$$

y por tanto,

$$\text{área} = \int_0^{2\pi} \int_0^L a(s) \, d\theta \, ds = 2\pi \int_0^L a(s) \, ds.$$

Nota 1. Si γ no está parametrizada por longitud de arco, entonces $\sqrt{EG - F^2} = \sqrt{EG} = a(t)\sqrt{\dot{a}^2(t) + \dot{b}^2(t)}$.

Nota 2. Cálculo del área del toro como superficie de revolución: o bien parametrizando la curva generadora (circunferencia) en el plano YZ como

$$\gamma(t) = (R + r\cos t, r\sin t), \qquad t \in (0, 2\pi),$$

(no parametrizada por longitud de arco), o bien como

$$\gamma(s) = (R + r\cos(s/r), r\sin(s/r)), \qquad s \in (0, 2\pi r),$$

que sí está parametrizada por longitud de arco.

Ejemplo 4. Área del tubo de radio r alrededor de una curva α (parametrizada por longitud de arco). Suponemos que la curvatura de α cumple que $\kappa(s) < 1/r$.Carta:

$$\mathbb{X}(s,\theta) = \alpha(s) + r(\cos\theta \, \mathbf{n}(s) + \sin\theta \, \mathbf{b}(s)),$$

con $0 \le s \le L$, $0 \le \theta \le 2\pi$.

Cálculos con fórmulas de Frenet–Serret (s es longitud de arco):

$$X_s(s,\theta) = (1 - \kappa(s)r\cos\theta)\mathbf{t}(s) + r\tau(s)\sin\theta\mathbf{n}(s) - r\tau(s)\cos\theta\mathbf{b}(s),$$

$$X_\theta(s,\theta) = -r\sin\theta\mathbf{n}(s) + r\cos\theta\mathbf{b}(s).$$

De manera que

$$E(s,\theta) = (1 - \kappa(s)r\cos\theta)^2 + r^2\tau^2(s),$$

 $F(s,\theta) = -r^2\tau(s),$
 $G(s,\theta) = r^2,$
 $EG - F^2 = r^2(1 - \kappa(s)r\cos\theta)^2.$

En conclusión,

$$\sqrt{EG - F^2} = r(1 - \kappa(s) r \cos \theta).$$

Así que

Área de tubo
$$=\int_0^L\int_0^{2\pi}\left(r-r^2\kappa(s)\cos\theta\right)d\theta ds$$
 $=(2\pi r)L-r^2\int_0^L\kappa(s)\,ds\int_0^{2\pi}\cos\theta\,d\theta=(2\pi r)L.$

Pero la mitad del tubo que apunta en dirección de **n**, es decir, para $0 \le s \le L$, $-\pi/2 \le \theta \le \pi/2$, tiene área

$$\int_{0}^{L} \int_{-\pi/2}^{\pi/2} (r - r^{2} \kappa(s) \cos \theta) d\theta ds = \pi r L - 2r^{2} \int_{0}^{L} \kappa(s) ds$$

La otra mitad del tubo (que apunta en dirección contraria a \mathbf{n}) tiene área

$$rL\pi+2r^2\int_0^L\kappa(s)\,ds.$$

Ejercicio. Interpretar el toro como un tubo: caras interior y exterior.