Analysis II - Übung 16

Nina Held - 144753 Clemens Anschütz - 146330 Markus Pawellek - 144645 Ubung: Donnerstag 12-14

Acifgabe 1

Sei (X,d) ein metrischer Raum und fig: X -> 1R.

- $=) f \text{ fir alle Folgen } (x_n) \text{ in } X \text{ mit } x_n \to X \in X, n \to \infty$ $g(x_n) \to f(x), n \to \infty$ $g(x_n) \to g(x_n), n \to \infty$
- => (Verträglichkeit des Betrages mit Folgen) $|f(x_n)| \to |f(x)|, n \to \infty$
- \Rightarrow für alle (x_n) in X mit $x_n \rightarrow X$, $n \rightarrow \infty$ gilt $|f(x_n)| \rightarrow |f(x)|, n \rightarrow \infty$
- =) If I st stells

 $\max \{f(s)\}(x) = \max \{f(x), g(x)\}$

Fall $f(x) \neq g(x) : o.E. f(x) > g(x)$

Sei nun (x_n) in \times mit $x_n \to \times$, $n \to \infty$. Dann gilt wieder $f(x_n) \to f(x)$ and $g(x_n) \to g(x)$

- =) für große $n \in \mathbb{N}$ unterscheiden $f(x_n)$ und f(x) nur um ein (kleines) $\varepsilon > 0$ =) für ausreichend große $n \in \mathbb{N}$ muss also auch $f(x_n) > g(x_n)$

$$\Rightarrow \max \{ f(x_n), g(x_n) \} = f(x_n) \rightarrow f(x) = \max \{ f(x), g(x) \}$$

$$\text{Fall } f(x) = g(x) :$$

$$=) max { f(x), g(x) } = f(x) = g(x)$$

$$\Rightarrow g(x_n) \rightarrow g(x) = f(x_n)$$

$$\Longrightarrow \max \{ f(x_n), g(x_n) \} \to f(x) = \max \{ f(x), g(x) \}$$

Aufgabe 2

Sei (M_1d) ein metrischer Raum und (x_n) in M mit $x_n - x \in M$.

Sei nun $X := \{x_n \mid n \in \mathbb{N} \} \cup \{x\} \subset M$.

Ist nun eine Folge (γ_n) in X goseben, down ist durch Beschrönkt-heit von X eine honvergente Teilfolge (γ_{ak}) gegebeu mit $\gamma_{nk} - \gamma \in \mathcal{M}$.

Annahme $y \notin X$: \Rightarrow for all $\varepsilon > 0$ gift es $k_{\varepsilon} \in \mathbb{N}$, soclass für alle $k \ge k_{\varepsilon}$ gift: $|Y_{mk} - Y| \le \varepsilon$

=) wegen y & X' ist Yak keine konstante Folge

=) im E-Schlauch für ein E>O um y müssen also unend/ich viele Folgeglieder liegen, Samit (Ynk) gegen y lesnvergiert

es gilt aber $y \neq x \Rightarrow |y-x| = : C > 0$

für alle E70 liegen im E-Schlauch um X unendlich viele Folgeglieder in X

- \Rightarrow für alle $\varepsilon > 0$ gibt as $n_{\varepsilon} \in \mathbb{N}$, sodass für alle $n \ge n_{\varepsilon}$ gilt: $1 \times n \times 1 < \varepsilon$
- \Rightarrow außerhalb dieses Schlauches liesen also nur endlich viole blieder $\{fir n \in \{1, ..., n_{\xi} 1\}\}$ also nur $n_{\xi} 1$ blieder $\}$

Wählt man also $\mathcal{E} < \mathcal{C}$, so liest der $(\mathcal{C} - \mathcal{E})$ - Schlauch von γ außerhalb des \mathcal{E} - Schlauches von \mathcal{X} \Longrightarrow es gibt nur audlich viele Greder in $(\mathcal{C} - \mathcal{E})$ - Schlauch \mathcal{C} um \mathcal{Y} (nur $\mathcal{L} - \mathcal{L}$ Glieder).

- \Rightarrow man findet für jedes $\varepsilon>0$ kein $e_{\varepsilon}\in N_{\varepsilon}$ sodass für alle $k\geq k_{\varepsilon}$ $|\gamma_{n_{k}}-\gamma_{\varepsilon}|<\varepsilon$
- => (Ynk) kann nicht gegen y konvergieren b
- => y e X => X ist kompakt

Aufgabe 3

Se' $\|\cdot\|_{\psi}$ eine Norm auf $\|R^N\|$. Se' nun eine lineare Abbildum; $f\colon R^N \to |R^N|$, welche darch die Matrix A beschrieben wird:

 $\Rightarrow f(x) = Ax \quad mit \quad x \in \mathbb{R}^N$

 $\begin{cases}
f_{\lambda}(x) \\
f_{\lambda}(x)
\end{cases} = \begin{cases}
\alpha_{\lambda} \alpha_{\lambda \lambda} & \dots & \alpha_{\lambda N} \\
\alpha_{\lambda \lambda} \alpha_{\lambda \lambda} & \dots & \alpha_{\lambda N}
\end{cases} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & \alpha_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & \alpha_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & \alpha_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & \alpha_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & \alpha_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & \alpha_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & \alpha_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & \alpha_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & \alpha_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & \alpha_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & \alpha_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda N}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda} & \dots & x_{\lambda}
\end{pmatrix} \begin{pmatrix}
x_{\lambda} \\
x_{\lambda}$

Sei nun (x_n) in \mathbb{R}^N mit $x_n \to x \in \mathbb{R}^N$ gegeben. Dann gilt $f(x_n) \to f(x)$ gerade dann, wenn:

 $f_i(x_n) \rightarrow f_i(x)$ für alle $i \in \{1, ..., N\}$

 $f_i(x) = a_{in} X_i + a_{i2} X_2 + \dots + a_{iN} X_N$

$$\Rightarrow (\text{Kenvergen2 ist variety} de mit Hullisthahan and folderinn})$$

$$f(x_{A}) = a_{iA} \times x_{ih} + ... + a_{iN} \times x_{ih} \rightarrow a_{iA} \times x_{i} + ... + a_{iN} \times x_{i} = f(x)$$

$$\Rightarrow f(x_{ih}) \rightarrow f(x) \Rightarrow f \text{ ist storing}$$

$$\frac{\text{Authorse} q}{\text{So}} \cdot d_{p} : \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow [0, \infty) \text{ nelt } p \in [1, \infty)$$

$$d_{p} (x_{i}y) := \left[\sum_{j=A}^{N} (x_{3} - y_{3})^{p}\right]^{\frac{1}{p}} \times x_{i}y \in \mathbb{R}^{N}$$

$$Dann \text{ gibt as } fir \text{ ein } j_{0} \text{ mit } 1 \leq j_{0} \leq N \text{ ein } \text{Haximum}$$

$$\text{von } |x_{3} - y_{4}| \leq 0 \text{ for alle } j = 1, ..., N \Rightarrow |x_{3} - y_{4}| \geq 0$$

$$\text{Fall } |x_{3} - y_{4}| \geq 0 \text{ for alle } j = 1, ..., N \Rightarrow |x_{3} - y_{4}| = 0 \text{ for alle } j$$

$$\Rightarrow d_{p} (x_{i}y) = 0 \Rightarrow \max_{1 \leq j \leq N} (x_{3} - y_{4})$$

$$f(x_{3} - y_{4}) = 0 \Rightarrow \max_{1 \leq j \leq N} (x_{3} - y_{4})$$

$$\text{Fall } |x_{3} - y_{4}| \leq 0 \Rightarrow \max_{1 \leq j \leq N} (x_{3} - y_{4})^{p}$$

$$d_{p} (x_{3}y) = \left[|x_{3} - y_{4}|^{p}\right]^{\frac{1}{p}} \Rightarrow d_{p} (x_{3}y - y_{4})^{p}$$

$$= |x_{3} - y_{4}| \cdot \left[\sum_{j=A}^{N} \frac{|x_{3} - y_{4}|^{p}}{|x_{3} - y_{4}|^{p}}\right]^{\frac{1}{p}} \Rightarrow d_{p} (x_{3}y - y_{4})^{p}$$

$$= |x_{3} - y_{4}| \cdot \left[\sum_{j=A}^{N} \frac{|x_{3} - y_{4}|^{p}}{|x_{3} - y_{4}|^{p}}\right]^{\frac{1}{p}} \Rightarrow d_{p} (x_{3}y - y_{4})^{p}$$

$$= |x_{3} - y_{4}| \cdot \left[\sum_{j=A}^{N} \frac{|x_{3} - y_{4}|^{p}}{|x_{3} - y_{4}|^{p}}\right]^{\frac{1}{p}} \Rightarrow d_{p} (x_{3}y - y_{4})^{p}$$

$$= |x_{3} - y_{4}| \cdot \left[\sum_{j=A}^{N} \frac{|x_{3} - y_{4}|^{p}}{|x_{3} - y_{4}|^{p}}\right]^{\frac{1}{p}} \Rightarrow d_{p} (x_{3}y - y_{4})^{p}$$

$$= |x_{3} - y_{4}| \cdot \left[\sum_{j=A}^{N} \frac{|x_{3} - y_{4}|^{p}}{|x_{3} - y_{4}|^{p}}\right]^{\frac{1}{p}} \Rightarrow d_{p} (x_{3}y - y_{4})^{p}$$

$$= |x_{3} - y_{4}| \cdot \left[\sum_{j=A}^{N} \frac{|x_{3} - y_{4}|^{p}}{|x_{3} - y_{4}|^{p}}\right]^{\frac{1}{p}} \Rightarrow d_{p} (x_{3}y - y_{4})^{p}$$

$$= |x_{3} - y_{4}| \cdot \left[\sum_{j=A}^{N} \frac{|x_{3} - y_{4}|^{p}}{|x_{3} - y_{4}|^{p}}\right]^{\frac{1}{p}} \Rightarrow d_{p} (x_{3}y - y_{4})^{p}$$

$$= |x_{3} - y_{4}| \cdot \left[\sum_{j=A}^{N} \frac{|x_{3} - y_{4}|^{p}}{|x_{3} - y_{4}|^{p}}\right]^{\frac{1}{p}}$$

$$= |x_{3} - y_{4}| \cdot \left[\sum_{j=A}^{N} \frac{|x_{3} - y_{4}|^{p}}{|x_{3} - y_{4}|^{p}}\right]^{\frac{1}{p}}$$

$$= |x_{3} - y_{4}| \cdot \left[\sum_{j=A}^{N} \frac{|x_{3} - y_{4}|^{p}}{|x_{3} - y_{4}|^{p}}\right]^{\frac{1}{p}}$$

$$= |x_{3} - y_{4}| \cdot \left[\sum$$

 $\Rightarrow d_{p}(x_{i}y) \leq |x_{j0} - y_{j0}| \cdot \left[\sum_{j=1}^{N} I^{p}\right]^{\frac{1}{p}}$ $= |x_{j0} - y_{j0}| \cdot \left[\int I^{p}\right] \Rightarrow |x_{j0} - y_{j0}|, p \to \infty$ $d_{p}(x_{i}y) \geq |x_{j0} - y_{j0}| \left[\int I^{p}\right]^{\frac{1}{p}} = |x_{j0} - y_{j0}| \cdot \left[\int I^{p}\right] = |x_{j0} - y_{j0}|$ $(alle Summanden der Summe rowsstreichen außer dem maximalen <math display="block">\Rightarrow d_{i}rd_{i} Ausklammern Sleibt A stehen)$ $\Rightarrow nach Sandwich-Theorem gilt:$ $d_{p}(x_{i}y) \to |x_{j0} - y_{i0}| = \max_{1 \leq i \leq N} |x_{i} - y_{i}| = d_{\infty}(x_{i}y), p \to \infty$ $1 \leq i \leq N$