CS547 HW1 Group 32

Yue Cui

Gaoyu Liu

Problem 1

(1)

$$abla f(oldsymbol{x}) = \left(rac{18x_1}{2x_2}
ight)$$

(2) From fundemantal definition of calculus, we have

$$\boldsymbol{X_t'} = \frac{d\boldsymbol{X_t}}{dt} = \lim_{\Delta t \to 0} \frac{\boldsymbol{X_{t + \Delta t}} - \boldsymbol{X_t}}{\Delta t} = \lim_{\delta \to 0} \frac{\boldsymbol{X_{t + \delta}} - \boldsymbol{X_t}}{\delta} = \lim_{\delta \to 0} \frac{\boldsymbol{x} \lfloor \frac{t}{\delta} \rfloor + 1 - \boldsymbol{x} \lfloor \frac{t}{\delta} \rfloor}{\delta}$$

Now we have

$$oldsymbol{x}_{\left \lfloor rac{t}{\Delta}
ight
floor +1} - oldsymbol{x}_{\left \lfloor rac{t}{\Delta}
ight
floor} = oldsymbol{x}_{n+1} - oldsymbol{x}_n = -\delta
abla f(oldsymbol{x}_n)$$

Therefore

$$\begin{aligned} \boldsymbol{X_t'} &= \lim_{\delta \to 0} \frac{-\delta \nabla f(\boldsymbol{x}_n)}{\delta} = \lim_{\delta \to 0} -\nabla f(\boldsymbol{x}_n) = -\nabla f(\boldsymbol{x}_n) \\ &= -\left(\frac{18x_1}{2x_2}\right)_{|t/\delta|} = -\left(\frac{18X_1}{2X_2}\right)_t \end{aligned}$$

The system of ODE for $\lim_{\delta o 0} oldsymbol{X}_t$ at the optimal location is

$$X_1' + 18X_1 = 0$$
$$X_2' + 2X_2 = 0$$

(3) Sove the system of ODE

$$X'_{1} + 18X_{1} = 0$$

$$\frac{dX_{1}}{dt} \frac{1}{X_{1}} = -18$$

$$\frac{1}{X_{1}} dX_{1} = -18dt$$

$$\ln X_{1} = -18t + C_{1}$$

$$X_{1} = Ae^{-18t}$$

Similarly we have $X_2=Be^{-2t}$. Now substitute the initial condition of $m{x}_0=m{X}_0=(1,2)$, we have

$$A = 1$$

 $B = 2$

The solution for the ODE is

$$X_1 = e^{-18t}$$
$$X_2 = 2e^{-2t}$$

From the solution of ODE, we can conclude that X converges exponentially to the minimum point of (0,0) from initial point of (1,2) at step 0 when t tends to infinity. This is the minimum converges rate of gradient decent when we choose a step size tending to 0.

In []:

Problem 2

(1) Explicitly describe the gradient descent iteration $x_{n+1} = x_n - \delta f'(x_n)$.

First compute the gradient:

$$f'(x_n) = 2\lambda x_n$$

Then we have the explicit expression for the gradient descent iteration:

$$x_{n+1} = x_n - \delta f'(x_n) = x_n - 2\delta \lambda x_n$$
$$x_{n+1} = (1 - 2\delta \lambda)x_n$$

(2) Describe the stability of gradient descent iteration for different values of δ .

Regardless of the sign of x_n , then the gradient descent is stable, x_{n+1} always tend to approach the optimal point x=0. Hence, $\|1-2\lambda\delta\|<1$ should be satisfied.

$$\|1-2\lambda\delta\|<1$$
 $0<\delta<rac{1}{\lambda},\lambda>0.$

Therefore, the gradient descent will be stable when $0 < \delta < \frac{1}{\lambda}$ and converges to 0. The gradient descent is unstable and diverges for all other values of δ .

Problem 3

```
In [8]:
        import os
         import numpy as np
         import pandas as pd
         from IPython.display import Markdown as md
         import time
         import random
         import matplotlib
         #%matplotlib notebook
         import matplotlib.pyplot as plt
         import scipy.stats
         #from pandas.plotting import autocorrelation_plot
         import matplotlib.offsetbox as offsetbox
         from matplotlib.ticker import StrMethodFormatter
         import imageio
         import PIL
         def saver(fname):
             plt.savefig(fname+".png",bbox_inches="tight")
         def legend(pos="bottom",ncol=3,extra=False):
             if pos=="bottom":
                 extra = 0.15 if extra else 0
                 plt.legend(bbox_to_anchor=(0.5,-0.2-extra), loc='upper center',facecolor="lightgray",ncol=ncol)
             elif pos=="side":
                 plt.legend(bbox to anchor=(1.1,0.5), loc='center left',facecolor="lightgray",ncol=1)
         def textbox(txt,fname=None):
             plt.figure(figsize=(1,1))
             plt.gca().add_artist(offsetbox.AnchoredText("\n".join(txt), loc="center",prop=dict(size=30)))
             plt.axis('off')
            if fname is not None:
                saver(fname)
             plt.show()
             plt.close()
```

Load the data.

```
In [3]:
         columns=[
         "CICO",
         "SM1_Dz(Z)",
         "GATS1i",
         "NdsCH",
         "NdssC"
         "MLOGP".
         "LC50" #response
         fname = ("qsar_fish_toxicity.csv",
                   "https://drive.google.com/file/d/1xd30VCQ2clQPzHDXpDi-VPU6pGTIUmQg/view?usp=sharing")
         data_raw = getfile(fname, sep=";", names=columns)
         local file not found; accessing Google Drive
In [4]:
         data_raw.head()
Out[4]:
            CICO SM1_Dz(Z) GATS1i NdsCH NdssC MLOGP LC50
         0 3.260
                       0.829
                               1.676
                                          0
                                                 1
                                                      1.453 3.770
         1 2.189
                      0.580
                               0.863
                                          0
                                                 0
                                                      1.348 3.115
         2.125
                       0.638
                               0.831
                                          0
                                                 0
                                                      1.348 3.531
         3 3.027
                       0.331
                               1.472
                                          1
                                                 0
                                                      1.807 3.510
         4 2.094
                       0.827
                               0.860
                                          0
                                                      1.886 5.390
In [5]:
         feature, response = ["CICO", "SM1_Dz(Z)", "GATS1i", "MLOGP"], "LC50"
         data=data_raw.copy()
         X=data[feature]
         Y=data[response]
         display(X.head())
         display(Y.head())
            CICO SM1_Dz(Z) GATS1i MLOGP
         0 3.260
                      0.829
                               1.676
                                       1.453
         1 2.189
                      0.580
                               0.863
                                       1.348
         2 2.125
                               0.831
                      0.638
                                       1.348
         3 3.027
                      0.331
                               1.472
                                       1.807
         4 2.094
                      0.827
                               0.860
                                       1.886
        0
             3.770
        1
             3.115
             3.531
        2
              3.510
             5.390
        Name: LC50, dtype: float64
```

(1) Sklearn

Use sklearn to find the formula (i.e., coefficients) for the linear regression.

```
In [6]:
        from sklearn.linear_model import LinearRegression
        reg = LinearRegression().fit(X, Y)
        coe_sklearn = reg.coef_
        display(coe_sklearn)
        intrcpt_slkearn = reg.intercept_
        display(intrcpt_slkearn)
        array([ 0.44750162, 1.22068139, -0.77463965, 0.38310065])
        2.1943526381758236
```

(2) Numpy Implementation

Derive the explicit formula for multidimensional linear regression and implement it in numpy to get explicit coefficients.

Implementing the normal equation.

When there are more than one varibale as input x in the linear regression, we have the design matrix $X_{n \times (p+1)}$, where n is the number of the training samples and p is the number of the variables considered in the linear regression model. Each training same is a row in the design matrix. The additional column in the design matrix is 1's to account for the intercept of the linear regression. Thus, we have parameter vector $P_{(p+1)\times 1}=\left(m^T,b\right)^T$. In summary, the linear regression model should look like

$$y_n = X_{n \times (p+1)} P_{(p+1) \times 1}$$

To obtain the optimal parameters P^* of the linear regression model, one can compute the mean squared error (MSE) of the predicted y_n and the ground truth y_{train} , which is

$$\Lambda(P) = rac{1}{n} \sum_{i=1}^{N} \left(y_{train}, i - X_i \; P_{(p+1) imes 1} \;
ight)^2$$

Take the derivative of the MSE $\Lambda(P)$ with respect to the parameters P and make it equal to 0, the solution of which is the solution for the multivariate linear regression.

$$egin{aligned}
abla_P & \Lambda(P) = 0 \\
abla_P & \left(y_{train} - XP \right)^T \left(y_{train} - XP \right) = 0 \\ & 2X^T XP - 2X^T y_{train} = 0 \\ & P = \left(X^T X \right)^{-1} X^T y_{train} \end{aligned}$$

The Pyhton implementation of the normal equation is shown in the cell below.

Gradient Descent

The gradient decent is implemented in the cell below.

More specifically, a class named **LinearRegression_multi** is defined to get multivariate linear regression models. The method **gradient_descent** in the class conducts the gradient decent inparticular.

For each iteration of the gradient descent, all training data are used (1 epoch). The cost, i.e. the difference between the predicted y and the ground truth y_{train} .

$$\epsilon_i(P) = y_{train, i} - X_i P$$

as well as the gradient of the cost fucntion $\Lambda(P)$ with respect to the learning rate δ at $\delta=0$

$$\nabla \Lambda(P) = -\frac{2}{n} \sum_{i=1}^{n} \epsilon_i(P) X_i$$

is computed in the function Cost.

The parameters P is then updated by δ and the computed gradient $\nabla \Lambda(P)$:

$$P_{i+1} = P_i - \delta \nabla \Lambda(P)$$

where i is the iteration step number.

The number of the iterations for the gradient descent is controlled by two factors: (1) maximum allowable number of iterations; (2) the gradient step L2 norm $\|\nabla \Lambda(P)\|^2$. Both factors are compared with the input tolerance during each iteration.

The detailed Python implementation is presented below, as well as the computed optimal parameters P.

```
In [25...
         class LinearRegression multi:
             def __init__(self, x, y):
                 self.xvals = np.array(x)
                 self.nsamples = self.xvals.shape[0]
                 self.nvars = self.xvals.shape[1]
                 self.yvals = np.array(y).reshape((self.nsamples, 1))
                 self.XXvals = np.hstack(
                     [self.xvals, np.array(([1]*self.nsamples)).reshape((self.nsamples, 1))])
                 self.reset()
             def reset(self):
                 self.ctr = 0
                 self.callbacktext = []
                 self.p = [np.zeros([self.nvars, 1]), 0.]
                 self.lr = 0.0001
                 \#self.b = 0.
             @staticmethod
             def linear_function(p):
                 (m, b) = p
                 def 1_f(x):
                     return x@m + b
                 return 1 f
             def Cost(self, p, include_gradient=False):
                 err = self.yvals-self.linear_function(p)(self.xvals)
                 cost = np.mean(err**2)
                 # print(err)
                 if include_gradient:
                     out = -2*np.mean(err*self.XXvals, axis=0)
                     return (cost, out)
                 else:
                     return cost
             def gradient_descent(self, epochs, p=None, lr=None,
                                   precision=0.01):
                 if lr == None:
                     lr = self.lr
                 if p == None:
                     p = self.p
                 m = p[0]
                 b = p[1]
                 step_size = 1.
                 i = 0
                 cost_history = np.array([])
                 m history = np.array([m])
                 b_history = np.array([b])
                 while step_size > precision and i < epochs:</pre>
                     cost, gradient = self.Cost([m, b], True)
                     cost_history = np.append(cost_history, cost)
                     m = m - lr*gradient[:-1].reshape((self.nvars, 1))
```

```
b = b - lr*gradient[-1]
        m_history = np.append(m_history, m.T)
        b_history = np.append(b_history, b)
        step_size = np.linalg.norm(gradient)
    print(f'Gradient descent total iterations: {i}')
    return m.T, b, cost_history, m_history, b_history
def metric(self, p):
    (m, b) = p
    err = self.yvals-self.linear function(p)(self.xvals)
    return np.mean(np.abs(err))
def callback(self, x, verbose=False):
    (m, b) = p
    outstr = "ctr=\{0:\}; (m,b)=(\{1:.3f\},\{2:.2E\}); error=\{3:.2E\}".format(
        self.ctr, m, b, self.Cost(p))
    self.callbacktext.append(outstr)
    if verbose:
        print(outstr)
    self.ctr += 1
```

Now carry out the gradient descent for the linear regration given the X and y data. The maximum iteration number is set to be 10000. The tolerance for the L2 norm of the gradient update step size is 10^{-10} . By trying several different learning rate or δ , it was found that $\delta=0.05$ could be a good choice with stable condition and reseaonable number of iterations.

```
In [24...
        LR = LinearRegression_multi(X, Y)
         delta = 0.05
         m gd, b gd, cost his, m his, b his = LR.gradient_descent(10000, lr=delta,
                                                                   precision=1e-10)
         display(m_gd)
         display(b_gd)
         title = []
         title.append("Cost for Gradient Descent")
         title.append(r"$\delta={:.2f}$".format(delta))
         plt.figure()
         plt.semilogy(cost_his, 'bo', ms=4)
         plt.ylabel("Cost (logarithmic scale)")
         plt.xlabel("iteration")
         plt.title("\n".join(title))
         saver("increasing cost")
         plt.show()
         plt.close()
```

Gradient descent total iterations: 7521 array([[0.44750162, 1.22068139, -0.77463965, 0.38310065]]) 2.1943526365103576

The results agree with (1) and (2):