Задача 2.5

Найти решение задачи Дирихле для уравнения Пуассона:

$$u_{xx} + u_{yy} = f(x, y), x \in [a, b], y \in [c, d]$$

 $u(a, y) = \varphi_1(y), u(b, y) = \varphi_2(y),$
 $u(x, c) = \varphi_3(x), u(x, d) = \varphi_4(x),$

методом установления соответствующего нестационарного уравнения

$$u_t = u_{xx} + u_{yy} - f(x, y)$$

При t = 0 положить $u^{0}(x, y) = C = const.$

Входные параметры: шаг по времени, число узлов в направлении $x - N_{\rm x}$, число узлов в направлении $y-N_{\rm v}$, точность установления $^{\ell}$.

Критерием установления решения считать выполнение условия

$$\max_{\substack{1 \le i \le N_x \\ 1 \le j \le N_y}} \left| \frac{u_{ij}^{n+1} - u_{ij}^n}{\tau} \right| \le \varepsilon.$$

$$egin{aligned} \mathbf{\underline{Cxema}} &: \mbox{Попеременно - треугольный метод.} \\ & \left(1- au\Lambda_1^-- au\Lambda_2^-
ight) \boldsymbol{\xi}_{ij}^{n+1/2} = auig[\left(\Lambda_{11}+\Lambda_{22}
ight) u_{ij}^n-f_{ij}ig], \\ & \left(1- au\Lambda_1^+- au\Lambda_2^+
ight) \boldsymbol{\xi}_{ij}^{n+1} = & \boldsymbol{\xi}_{ij}^{n+1/2}, \\ & u_{ii}^{n+1} = u_{ii}^n + \boldsymbol{\xi}_{ii}^{n+1}. \end{aligned}$$

где

$$\begin{split} \Lambda_{11} u_{ij} &= \frac{u_{i-1,j} - 2u_{ij} + u_{i+1,j}}{h_1^2}, \qquad \Lambda_{22} u_{ij} = \frac{u_{i,j-1} - 2u_{ij} + u_{i,j+1}}{h_2^2}, \\ \Lambda_1^- u_{ij} &= \frac{-u_{i,j} + u_{i-1,j}}{h_1^2} \qquad \Lambda_1^+ u_{ij} = \frac{u_{i+1,j} - u_{i,j}}{h_1^2} \\ \Lambda_2^- u_{ij} &= \frac{-u_{i,j} + u_{i,j-1}}{h_2^2} \qquad \Lambda_2^+ u_{ij} = \frac{u_{i,j+1} - u_{i,j}}{h_2^2} \end{split}$$

Точное решение 1.

$$u(x, y) = \cos(x + y)\sin(xy)$$

$$a = \pi/2$$
, $b = 3\pi/2$, $c = \pi/2$, $d = 3\pi/2$.

$$f(x, y) = -\cos(x + y)\sin(xy)(2 + x^2 + y^2) - 2\sin(x + y)\cos(xy)(x + y).$$

Граничные условия φ_1 , φ_2 , φ_3 , φ_4 найти из точного решения.

$$\phi_1 = -\sin(y)\sin(\frac{\pi y}{2})$$

$$\phi_2 = \sin(y)\sin(\frac{3\pi y}{2})$$

$$\phi_3 = -\sin(x)\sin(\frac{\pi x}{2})$$

$$\phi_4 = \sin(x)\sin(\frac{3\pi x}{2})$$

1.График решения

2 . Порядок схемы р и отклонение $\left. \delta_{abs} = \max_{i,j} \left| u_{ij} - u_{ex}(x_i, y_j) \right| \right|$:

$${
m e}={
m b} \, {
m g}={
m log} \, 2(rac{e_{_n}}{e_{_{n+1}}})$$
 ${
m k}={
m k}$ количество шагов до установления

N	10	20	40	80
е	.150612506777344	.035993039920407	.008386952150622	.001828381852029
k	15	27	53	106
р		2.0650517151	2.101499425	2.1975792208

3.Влияние шага по времени на скорость сходимости и точность решения:

N = 40 , e = 0.01 , 0.01 < t < 1 с шагом 0.01 , Top = 0.025255482896747 , где
$$t_{opt} = \frac{h^2}{\sin{(\pi\,h)}}$$

t	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
k	77	44	41	46	53	60	68	75	82
е	0.0105689507	0.0097146757	0.0085070643	0.0085102528	0.0084084646	0.0082706375	0.0081800875	0.0080429035	0.0079102034

3. Влияние начальных данных на сходимость.

 $N\!\!=\!\!40$, e = 0.01, t = 0.025255482896747, -100 < C < 100 k = количество шагов до установления

С	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5
k	87	85	82	79	74	67	41	65	74	79	82	85
e	0.0111023107	0.0110386317	0.0112007445	0.0110432707	0.0111701282	0.0108037755	0.0084687306	0.009589364	0.0095547355	0.0095547489	0.0096325637	0.0095884841