DISCLAMER, this stuff should be taken as a quick indication, if you think something's wrong, go look in the course. Also, if you spot any mistakes please tell me

misc

- smol means n < 30, big means $n \ge 30$;
- $(S^*)^2 = \frac{n}{n-1}S^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i \bar{X})^2;$
- $S^* = \sqrt{(S^*)^2}, S = \sqrt{S^2}, \text{ duh};$
- $D^2(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2$;
- Maximum likelihood estimator = (Metoda) verosimilității maxime
- the χ^2 -test is gud for testing the expected frequency vs the frequency you got (like on a coin/ on dice);
- $cov(X,Y) = \mathbb{E}\left((X \bar{X})(Y \bar{Y})\right) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y);$
- when testing try to reject the null hypotesis (ie. chose he other thing as the null hypotesis: if ya want to check if r > 0.8 make $(H_0) : r = 0.8$ and $(H_1) : r > 0.8$)

(also look at https://en.wikipedia.org/wiki/Exclusion_of_the_null_hypothesis);

- P-value:
 - $-P_v \le \alpha \implies (H_0) \text{ fals},$
 - $-P_v =$ "Probabilitatea de a obtine un rezultat cel putin la fel de extrem ca cel observat,
 - $-P_v = \mathbb{P}(T \ge t|H)$ for a one-sided (right tail) test,
 - $-P_v = \mathbb{P}(T \leq t|H)$ for a one-sided (left tail) test,
 - $-P_v = 2\min \{\mathbb{P}(T \leq t|H), \mathbb{P}(T \geq t|H)\}\$ for a two-sided test
 - more stuff at C6/pg 3;

$Confidence\ intervals\ -\ tl; dr$

for the average

type	where to find	X type	n size	σ known	the interval	
bilateral	C5 - pg 2	$\mathcal{N}(\mu, \sigma^2)$	whatever	yes	$\mu \in \left(\bar{X} - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}, \bar{X} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}\right)$	
bilateral	C5 - pg 3	whatever	big	yes	$\mu \in \left(\bar{X} - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}, \bar{X} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}\right)$	
no sup	C5 - pg 3	$\sim \mathcal{N}(\mu, \sigma^2)$	big	yes	$\mu \in \left(\bar{X} - \frac{\sigma}{\sqrt{n}} z_{1-\alpha}, \infty\right)$	
no inf	C5 - pg 3	$\sim \mathcal{N}(\mu, \sigma^2)$	big	yes	$\mu \in \left(-\infty, \bar{X} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}\right)$	
bilateral	C5 - pg 3 bot	whatever	big	no	$\mu \in \left(\bar{X} - \frac{S^*}{\sqrt{n}} z_{1-\alpha/2}, \bar{X} + \frac{S^*}{\sqrt{n}} z_{1-\alpha/2}\right)$	
unilateral	C5 - pg 4	whatever	big	no	like rows 2 and 3 but with S^*	
bilateral	C5 - pg 5	$\sim \mathcal{N}(\mu, \sigma^2)$	smol	no	$\mu \in \left(\bar{X} - \frac{S^*}{\sqrt{n}} t_{1-\alpha/2, n-1}, \bar{X} + \frac{S^*}{\sqrt{n}} t_{1-\alpha/2, n-1}\right)$	
unilateral	C5 - pg 5	$\sim \mathcal{N}(\mu, \sigma^2)$	smol	no	like rows 2 and 3 but with S^* and $t_{1-\alpha,n-1}$	

for the variance (dispersion)

type	where to find	X type	n size	'	the interval	
bilateral	C5 - pg 6	$\sim \mathcal{N}(\mu, \sigma^2)$	smol	yes	$\sigma^{2} \in \left(\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{\alpha/2,n}^{2}}, \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{1-\alpha/2,n}^{2}}\right)$	
bilateral	C5 - pg 6	$\sim \mathcal{N}(\mu, \sigma^2)$	smol	no	$\sigma^2 \in \left(\frac{(n-1)(S^*)^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)(S^*)^2}{\chi^2_{1-\alpha/2,n-1}},\right)$	

for n large, look at C5 pg 7 - obs 1.3 tl; dr we make it a normal distribution

for two selections

look at C5 pg 8-10

"Testarea ipotezelor statistice" 1 - tl;dr

For the average

 $(H_0): \mu = \mu_0$

name	where to find	X type	n size	σ known	$thing_0$	bilateral tl;dr
Z test	C6 - pg 6-9	$\sim \mathcal{N}(\mu, \sigma^2)$	big	yes	$z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	$z_0 \in \left(-z_{1-\alpha/2}, z_{1-\alpha/2}\right)$
T test	C6 - pg 10-13	$\sim \mathcal{N}(\mu, \sigma^2)$	smol	no		$t_0 \in \left(-t_{1-\alpha/2,n-1}, t_{1-\alpha/2,n-1}\right)$

 $^{^{1}}$ yea, ik, not the proper quotes

For the variance (dispersion)

$$(H_0): \sigma = \sigma_0$$

$$\chi^2\text{-test}$$
At C6 - pg 13-14
$$\chi_0^2 = \frac{(n-1)(s^*)^2}{\sigma_0^2}$$

$$H_0 \text{ is accepted (or pedantically "not rejected") if:}$$

$$\chi_0^2 \in (\chi_{1-\alpha/2,n-1}^2, \chi_{1-\alpha/2,n-1}^2)$$
also see S10/S11 - pg 4

F test for dispertion ratios

see C6 p14 - 16 also see S10/S11 - pg9

"Teoria concordanței" - tl;dr

the rank thing is (sometimes) calculated as the mean of the indices the value is equal - just look at 2b

- ex 1: Spearman & pearson coefficient
- ex 2: Pearson coefficient with an outlier
- ex 3: $\rho_{X,Y} = 0$ with $\alpha = 0.05$
 - is $y = x^3 1$ in contradiction with the other stuff
 - the usual stuff
- ex 4: Spearman coefficient with some frequencies
- the other ones are about the same thing mostly

Sun Tzu said: "The opportunity to secure ourselves against restanță lies in our own hands, but the opportunity of passing the exam is provided by the professor himself."