Cicuit to Analyze:

· · ·	iz	3	
P,+ 12.	-R1	P2	.10.
- P1	RI+R3+RL	-RL	.10
-R ₂	-PL	R2+ RL+RY	. 0

$$\frac{V_{A}}{R_{2}} + \frac{V_{A} - V_{5}}{R_{1}} + \frac{V_{A} - V_{B}}{R_{L}} = 0$$

$$\frac{V_{B}}{R_{V}} + \frac{V_{B} - V_{5}}{R_{3}} + \frac{V_{B} - V_{A}}{R_{1}} = 0$$

$$\frac{V_{A}}{R_{V}} + \frac{V_{B} - V_{5}}{R_{3}} + \frac{V_{B} - V_{A}}{R_{1}} = 0$$

$$\frac{V_{B}}{R_{V}} + \frac{V_{B} - V_{5}}{R_{1}} + \frac{V_{5}}{R_{1}} + \frac{V_{5}}{R_{2}} = 0$$

$$\frac{V_{A}}{R_{V}} + \frac{V_{A} - V_{5}}{R_{1}} + \frac{V_{A} - V_{B}}{R_{2}} = 0$$

$$\frac{V_{B}}{R_{V}} + \frac{V_{B} - V_{A}}{R_{V}} = 0$$

PARTS

$$\frac{V_{A}-V_{S}}{R_{1}} + \frac{V_{A}}{R_{2}} = 0$$

$$V_{R}\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right) = \frac{V_{S}}{R_{1}} \longrightarrow V_{A} = \frac{V_{S}}{R_{1}} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right)^{-1}$$

$$U_{B}\left(\frac{1}{R_{2}} + \frac{1}{R_{3}}\right) = \frac{V_{S}}{R_{3}} \longrightarrow V_{B} = \frac{V_{S}}{R_{3}} \left(\frac{1}{R_{3}} + \frac{1}{R_{2}}\right)^{-1}$$

$$\frac{1}{R_{1}} \times \frac{R_{1}}{R_{2}} = \frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} = \frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} \times \frac{R_{2}}{R_{2}} = \frac{R_{2}}{R_{2}} \times \frac{R_{2$$

PART C:

