Jaewoo Park CSCI 2300 – HW1 Jan 24, 2020

- 1. I will use inductive proof to show the relationship between T(n) and n.
 - 1) When n=0, T(0) = 1.
 - 2) When n=1, T(1) = 2.
 - 3) When n=2, T(2) = 4.
 - 4) When n=3, T(3) = 8.

(Inductive Case) Therefore, we can conclude that $T(n) = 2^n$.

- 2. 1) When n=0, T(0) = 0.
 - 2) When n=1, T(1) = 1.
 - 3) When n=2, T(2) = 3.
 - 4) When n=3, T(3) = 6.

(Inductive case) Therefore, we can conclude that T(n) = n(n+1)/2.

- 3. (a) Each edge (E) of a graph has two ends, both being connected to either one vertex(V) as a looping edge or two separate vertices as a regular edge. And, each end of an edge contributes one degree to the entire graph. Therefore,
 - $\Sigma_{u \in V} d(u)$ = the number of ends from all the edges = twice the number of E's = 2|E|.
 - (b) In a given graph G=(V,E), let's call the even-degreed vertices V_{even} and odd-degreed vertices V_{odd} . We proved above that $\Sigma_{u \in V} d(u) = 2|E|$, which is always an even number.
 - And, $\Sigma_{u \in V} d(u) = \Sigma_{u \in Veven} d(u) + \Sigma_{u \in Vodd} d(u)$. Also, we know that $\Sigma_{u \in Veven} d(u)$ is also an even number. Therefore $\Sigma_{u \in Vodd} d(u)$, which is a number given from (even) (even), should also be even.
 - (c) Yes. If there were odd number of indegrees in a given graph, there should be the same number of outdegrees, since a pair of indegree and outdegree compose of a directed edge. If there were odd number of indegrees in a directed graph, there will be an equivalent odd number of outdegrees, and $\Sigma_{u \in V} d(u) = 2|E|$ still holds true in this case.
- 4. Algorithm:
 - 1. Run BFS($V_1 \cup V_2$, s) until you find the shortest distance to t (s->t).
 - 2. Check which edge $e \in E'$ was used during the BFS execution. There will be only one e used out of all the edges E'.
 - Step 1. will incur some computation time that is less than $[|V_1| + |V_2| + |E_1| + |E_2| + |E'|]$ because not every edge of E_1 and E_2 is necessarily visited during the execution of BFS. Step 2. will incur |E'| or O(1) computation time depending on the specific implementation of the algorithm. Therefore the execution of my algorithm is in linear time.

5. Let the nodes of the graph V_1 to be $V_1 = \{v_1, v_2, v_3, ...\}$. In order to see if a given graph is bipartite, I will choose an arbitrary node v_1 from the graph V_1 . Then, I run BFS on the node, BFS(v_1). Once that is done, then I check the distances between v_1 and v_i (i= 2,3, ...). For instance, if distance between v_1-v_2 was 2, but distance from v_1-v_3 is 3 (using the red line from v_2 to v_3), then it implies that there might be an edge connecting between v_2 & v_3 , or some edge connected to v_3 . In order for v_1 to be able to get to other nodes in V_1 , it must transit from V_2 , which constrains it to take 2n steps in traversing between V_1 and V_2 . So, if dist($v_1 -v_3$) is an odd number, this could mean that our graph is not bipartite.

