

Tentative

Specifications

Model No: S220Z1 - M02

Customer :	
Approved by :	
Note:	

Liquid Crystal Display Division				
QRA Division.	OA Head Division.			
Approval	Approval			

Tentative

- CC REVISION HISTORY	ONTENTS - 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	11
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 COLOR DATA INPUT ASSIGNMENT	
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	15
7. DRIVER DC CHARACTERISTIC 7.1 RSDS CHARACTERISTICS 7.2 Electrical Characteristics	17
8. Driver AC CHARACTERISTICS 9. VERTICAL TIMING	19 20
10. OPTICAL CHARACTERISTICS 10.1 TEST CONDITIONS 10.2 OPTICAL SPECIFICATIONS	21
11. PACKAGING 11.1 PACKING SPECIFICATIONS 11.2 PACKING METHOD	24
12. DEFINITION OF LABELS	25
13. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS	
14. MECHANICAL CHARACTERISTICS	27

Issued Date: Mar. 12, 2008 Model No.: S220Z1-M02 **Tentative**

REVISION HISTORY

	Date	Section	Description
0.0	Date Mar, 12, 08'	Section	Description S220Z1 Tentative Specifications was first issued.
		20	

1. GENERAL DESCRIPTION

1.1 OVERVIEW

S220Z1-M02 is a 22" wide TFT Liquid Crystal Display module with 4 CCFL Backlight unit and a 30-pin TMDS interface. This module supports 1680 x 1050 WSXGA+ (16:10 wide screen) mode and displays up to 16.7 million colors. The inverter module for the Backlight Unit is not built in.

1.2 FEATURES

- Super Wide viewing angle.
- High contrast ratio
- Fast response time
- High color saturation
- WSXGA+ (1680 x 1050 pixels) resolution
- DE (Data Enable) only mode
- Reduce residue
- TMDS (Transition Minimized Differential Signaling) interface
- RoHS Compliance
- Real 120Hz frame rate at resoluton 1680*1050
- Support Single link/Dual link

1.3 APPLICATION

- 2D TFT LCD Monitor
- 3D TFT LCD Monitor

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal Size	558.68	mm	
Active Area	473.76 (H) x 296.1 (V)	mm	(1)
Bezel Opening Area	477.7 (H) x 300.1 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1680 x R.G.B. x 1050	pixel	-
Pixel Pitch	0.282 (H) x 0.282 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally White	-	-
Surface Treatment	Hard coating (3H), AG (Haz1 25%)	-	-

1.5 MECHANICAL SPECIFICATIONS

Ite	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	(493.2)	(493.7)	(494.2)	mm	
Module Size	Vertical(V)	(319.6)	(320.1)	(320.6)	mm	(1)
	Depth(D)	(16)	(16.5)	(17)	mm	
We	eight	1	-	(2550)	g	-

Model No.: S220Z1-M02 Tentative

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)
Vibration (Non-Operating)	V_{NOP}	-	1	G	(4), (5)
LCD Cell Life Time	1	50,000		Hrs	MTBF
	L-CELL	30,000	-	ПІЗ	based

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Relative Humidity (%RH)

- Note (2) The temperature of panel display surface area should be 0 °C Min. and 60 °C Max.
- Note (3) 11ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z.
- Note (5) Upon the Vibration and Shock tests, the fixture used to hold the module must be firm and rigid enough to prevent the module from twisting or bending by the fixture.

Tentative

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	T OIIIL	Note
Power Supply Voltage for LCD	Vin			V	(4)
Logic Input Voltage	V5A			V	(1)
Logic Input Voltage	VDD			V	

Item	Symbol	Value		Unit	Note
	Symbol	Min.	Max.	Oliit	Note
Power Supply Voltage	Vcc	-0.3	+5.5	V	(1)
Logic Input Voltage	V _{IN}	-0.3	+4.3	V	(1)

2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Lamp Voltage	V_L	-	2.5K	V_{RMS}	$(1), (2), I_L = 7.0 \text{mA}$
Lamp Current	ΙL	3.0	8.0	mA_{RMS}	(1), (2)
Lamp Frequency	F_L	40	80	KHz	(1), (2)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

Tentative

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

D (.	Darameter			Value			NI-1-
Paramete	r	SYMBOL	MIN	IN TYP MA		UNIT	Note
Power Supply Voltage for	or LCD	Vin	12.42	13.8	15.18	V	
Power Supply Current for	or LCD	lin		300		mA	
Logic Input Voltage		V5A	4.75	5	5.25	V	
Logic Input Current		I5A		0.5		Α	
Driver Logic Input Voltag	je	VDD	3.135	3.3	3.465	V	
Driver Logic Input Curre	nt	IDD		60		mA	
Differential Impendence		Zm		100		Ω	
Logic Input Voltage	High	VIH	0.8VDD	-	VDD	V	
	Low	VIL	0	-	VDD	V	
LCD Inrush Current		Irush		3		Α	(2)
Power Consumption		Р		5		W	
PANEL On	High	PANEL_ON	2.5	3.3		V	MAX=3.6 is ok
	Low				0.6	V	
DCDC On	High	DCDC_ON	2.5	3.3		V	MAX=3.6 is ok
	Low				0.6	V	
VCOM PWM	High	VCOM_PWM	2.5			V	MAX=5.45 is ok
Lo		_			0.6	V	
VCOM PWM Frequence	СУ	VCOM_PWM		27		KHz	Adjustable Duty

Ta = 25 ± 2 °C

20 2 2 0							
Parameter		Symbol		Value	Unit	Note	
Farame	itei	Symbol	Min.	Typ.	Max.	Offic	Note
Power Supply Voltage		Vcc	4.5	5.0	5.5	V	-
Ripple Voltage		V_{RP}	-		250	mV	-
Rush Current		I _{RUSH}	-		3	Α	(2)
	White	lcc	-	630	819	mA	(3)a
Power Supply Current	Black		-	1170	1521	mA	(3)b
Power Supply Current	$f_V = 75Hz$, Vcc=4.5V	100	-	1330	1729	mA	(4)
LVDS differential input voltage		Vid	200	-	600	mV	
LVDS common input vo	ltage	Vic		1.2		V	

Above all conditions are VDD=5.0V, all black pattern at 75HZ.

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

Issued Date: Mar. 12, 2008 Model No.: S220Z1-M02

Tentative

Vcc rising time is 470μs

Tentative

Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, Ta = 25 ± 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The specified power supply current is under the conditions at Vcc = 4.5 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 75 \,^{\circ}\text{Hz}$, whereas a power dissipation check pattern (Black Pattern) below is displayed.

Tentative

3.2 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Parameter	Symbol		Value		Unit	Note
raiametei	Syllibol	Min.	Тур.	Max.	Offic	Note
Lamp Input Voltage	V_L	738	820	902	V_{RMS}	$I_{L} = 7.0 \text{ mA}$
Lamp Current	ΙL	3	7.0	8	mA_{RMS}	(1)
Lamp Turn On Voltage	Vs	ı	-	1560(25℃)	V_{RMS}	(2)
Lamp rum on voltage	V _S	-	-	1800(0℃)	V_{RMS}	(2)
Operating Frequency	F∟	40	60	80	KHz	(3)
Lamp Life Time	L_BL	50000	-	-	Hrs	(5) , $I_L = 7.0 \text{ mA}$
Power Consumption	P_L	-	22.96	-	W	$(4), I_L = 7.0 \text{ mA}$

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

- Note (2) The voltage that must be larger than Vs should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) $P_L = I_L \times V_L \times 4 CCFLs$
- Note (5) The lifetime of lamp can be defined as the time in which it continues to operate under the condition $Ta = 25 \pm 2$ °C and $I_L = 7.0$ mA rms until one of the following events occurs:
 - (a) When the brightness becomes or lower than 50% of its original value.
 - (b) When the effective ignition length becomes or lower than 80% of its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform. (Unsymmetrical ratio is less than 10%) Please do not use the inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

- a. The asymmetry rate of the inverter waveform should be 10% below;
- b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$;
 - c. The ideal sine wave form shall be symmetric in positive and negative polarities.

Issued Date: Mar. 12, 2008 Model No.: <u>S220Z1-M02</u> **Tentative**

4.2 BACKLIGHT UNIT

Note: On the same side, the same-polarity lamp voltage design for lamps is recommended

Issued Date: Mar. 12, 2008 Model No.: <u>S220Z1-M02</u>

Tentative

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

(1)CN1 (Panel Interface)

Pin	Name	Description
1	Vin	Driver Power Input Voltage
2	Vin	Driver Power Input Voltage
3	V5A	
3	VOA	Logic Input Voltage +5V
4	PANEL_ON	This pin is used to control the driver Logic Input Voltage VDD. When PANEL_ON input is "H", VDD will be to driver.
5	DCDC_ON	This pin is used to control the PWM IC. When DCDC_ON input is "H", it enable PWM IC.
6	VCM_PWM	This pin is used to generate common voltage for panel. Adjust pulse width could be changed common voltage.
7	GVOFF	Gate driver high voltage switch timing control.
8	NC	No connect
9	GND	Ground
10	BSTHI	Data driver start pulse input(Back)
11	GND	Ground
12	BR0N	Negative RSDS differential data input. Channel R0(Back)
13	BR0P	Positive RSDS differential data input. Channel R0(Back)
14	BR1N	Negative RSDS differential data input. Channel R1(Back)
15	BR1P	Positive RSDS differential data input. Channel R1(Back)
16	BR2N	Negative RSDS differential data input. Channel R2(Back)
17	BR2P	Positive RSDS differential data input. Channel R2(Back)
18	GND	Ground
19	BCKN	Negative RSDS differential clock input. (Back)
20	BCKP	Positive RSDS differential clock input. (Back)
21	GND	Ground
22	BG0N	Negative RSDS differential data input. Channel G0(Back)
23	BG0P	Positive RSDS differential data input. Channel G0(Back)
24	BG1N	Negative RSDS differential data input. Channel G1(Back)
25	BG1P	Positive RSDS differential data input. Channel G1(Back)
26	BG2N	Negative RSDS differential data input. Channel G2(Back)
27	BG2P	Positive RSDS differential data input. Channel G2(Back)
28	GND	Ground
29	BB0N	Negative RSDS differential data input. Channel B0(Back)
30	BB0P	Positive RSDS differential data input. Channel B0(Back)
31	BB1N	Negative RSDS differential data input. Channel B1(Back)
32	BB1P	Positive RSDS differential data input. Channel B1(Back)
33	BB2N	Negative RSDS differential data input. Channel B2(Back)
34	BB2P	Positive RSDS differential data input. Channel B2(Back)
35	GND	Ground
36	GND	Ground

Issued Date: Mar. 12, 2008 Model No.: <u>S220Z1-M02</u>

Tentative

(2)CN1 (Panel Interface)

Pin	Name	Description
1	VDD	Driver Logic Input Voltage
2	VDD	Driver Logic Input Voltage
		When /XAO input pin is low, all the Gate driver output pins are forced to
3	XAO	VGH level. Note that this pin has higher priority than OE.
	1	Gate driver start pulse is read at the rising edge of CKV and a scan
4	STV	signal is output from the gate driver output pin.
5	CKV	Gate driver shift clock
		This pin is used to control the Gate driver output. When OE input is "H",
6	OE	gate driver output is fixed to VGL level regardless CKV.
7	GND	Ground
8	FR0N	Negative RSDS differential data input. Channel R0(Front)
9	FR0P	Positive RSDS differential data input. Channel R0(Front)
10	FR1N	Negative RSDS differential data input. Channel R1(Front)
11	FR1P	Positive RSDS differential data input. Channel R1(Front)
12	FR2N	Negative RSDS differential data input. Channel R2(Front)
13	FR2P	Positive RSDS differential data input. Channel R2(Front)
14	GND	Ground
15	POL	Data driver polarity inverting input
		The contents of the data driver register are transferred to the latch circuit
16	STB	at the rising edge of STB. Then the gray scale voltage is output from the
. •		device at the falling edge of STB.
17	GND	Ground
18	FCKN	Negative RSDS differential clock input. (Front)
19	FCKP	Positive RSDS differential clock input. (Front)
20	GND	Ground
21	FG0N	Negative RSDS differential data input. Channel G0(Front)
22	FG0P	Positive RSDS differential data input. Channel G0(Front)
23	FG1N	Negative RSDS differential data input. Channel G1(Front)
24	FG1P	Positive RSDS differential data input. Channel G1(Front)
25	FG2N	Negative RSDS differential data input. Channel G2(Front)
26	FG2P	Positive RSDS differential data input. Channel G2(Front)
27	GND	Ground
28	FB0N	Negative RSDS differential data input. Channel B0(Front)
29	FB0P	Positive RSDS differential data input. Channel B0(Front)
30	FB1N	Negative RSDS differential data input. Channel B1(Front)
31	FB1P	Positive RSDS differential data input. Channel B1(Front)
32	FB2N	Negative RSDS differential data input. Channel B2(Front)
33	FB2P	Positive RSDS differential data input. Channel B2(Front)
34	FSTHI	Data driver start pulse input(Front)
35	GND	Ground
36	GND	Ground

Note (1) Connector Part No.: IL-FHR-F36S-HF.

Issued Date: Mar. 12, 2008 Model No.: S220Z1-M02

Tentative

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	NC	Not connection, this pin should be open.
26	VCOM	VCOM Control, should be open.
27	AGMODE	AGMODE should be tied to ground or open.
28	VCC	+5.0V power supply
29	VCC	+5.0V power supply
30	VCC	+5.0V power supply

Note (1) Connector Part No.: 093G30-B0001A(STARCONN) or FI-X30SSL-HF(JAE) or EQUIVALENT.

Note (2) Mating Connector Part No.:FI-X30H; FI-X30C*; FI-X30M*; FI-X30HL(-T),FI-X30C*L(-T) [JAE]

Note (3) The first pixel is odd.

Note (4) Input signal of even and odd clock should be the same timing.

Tentative

5.2 LVDS DATA MAPPING TABLE

Global LCD Panel Exchange Center

LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Charmer E0	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel E1	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Channel E2	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Channel E3	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6
LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Channel Ou	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Charmer OT	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Charmel O2	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Channel O3	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Remark
1	HV	High Voltage	Pink
2	LV	Low Voltage	White
1	HV	High Voltage	Blue
2	LV	Low Voltage	Black

Note (1) Connector Part No.: JST-BHSR-02VS-1 or equivalent

Note (2) User's connector Part No.: JST-SM02B-BHSS-1-TB (JST) or equivalent

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

		Data Signal																							
	Color	Red					Green					Blue													
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	B5	B4	В3	B2	B1	BC
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Tentative

	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		·		:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:		:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	: '	•	:	:		:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Tentative

Tentative

6.2 POWER ON/OFF SEQUENCE

Global LCD Panel Exchange Center

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Parameter	Symbol	Condition		Unit		
1 arameter	Cyllibol	Condition	Min.	Typ.	Max.	Oill
Panel On to DC/DC On	t_1	-	10	-	-	
DC/DC On to RSDS Data	t_2	-	40	50	60	mS
RSDS Data to BL_On	t_3	=	100	200	-	1110
RSDS Data Off to Panel Off	t_4	-	80	100	120	

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	50	59.5	82	MHz	-
LVDS Clock	Period	Tc	13.4	16.8	-	ns	
LVD3 Clock	High Time	Tch	-	4/7	-	Tc	-
	Low Time	Tcl	-	3/7	-	Tc	-
LVDS Data	Setup Time	Tlvs	600	•	-	ps	-
LVD3 Data	Hold Time	Tlvh	600	•	-	ps	-
	Frame Rate	Fr	50	60	76	Hz	Tv=Tvd+Tvb
Vertical Active Display Term	Total	Tv	1060	1080	1195	Th	-
Vertical Active Display Term	Display	Tvd	1050	1050	1050	Th	-
	Blank	Tvb	Tv-Tvd	30	Tv-Tvd	Th	-
	Total	Th	890	920	1000	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	840	840	840	Tc	-
	Blank	Thb	Th-Thd	80	Th-Thd	Tc	-

Note: (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

Tentative

Issued Date: Mar. 12, 2008

Model No.: S220Z1-M02 Tentative

6.2 POWER ON/OFF SEQUENCE

Global LCD Panel Exchange Center

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Power ON/OFF Sequence

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Please apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off, the display may, instantly, function abnormally.
- (3) In case of vcc = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power on/off periods.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Tentative

7. Driver DC Characteristics

7.1 RSDS CHARACTERISTICS

(Ta = - 10 to +85 °C, VDD = 2.3 to 3.6 V, VDDA = 8.0 to 13.5 V, VSSD = VSSA = 0V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
RSDS high input voltage	V _{DIFFRSDS}	$V_{CMRSDS} = + 1.2 V^{(1)}$	100	200	-	mV
RSDS low input voltage	$V_{DIFFRSDS}$	$V_{CMRSDS} = + 1.2 V^{(1)}$	-	-200	- 100	
RSDS common mode input voltage range	V _{CMRSDS}	$V_{DIFFRSDS}$ = + 200 mV $^{(2)}$	VSSD + 0.1	-	VDDD - 1.2	٧
RSDS input leakage current	IDL	DxxP, DxxN, CLKP, CLKN	-10	-	10	μΑ

Note: (1) Vcmrsds = (VCLKP + VCLKN) / 2 or Vcmrsds = (VDxxP + VDxxN) / 2

(2) VDIFFRSDS = VCLKP - VCLKN or VDIFFRSDS = VDxxP - VDxxN

Tentative

7.2 Electrical Characteristics (VSSD=VSSA=0V)

Parameter	Symbol	Condition		Spec		Unit
raiailletei	Syllibol	Condition	Min.	Тур.	Max.	OIIIL
RSDS input "Low" Voltage	V _{DIFFRSDS}		-	-200	-	mV
RSDS input "High" Voltage	V _{DIFFRSDS}	DX[2:0]P,DX[2:0]N, CLKP,CLKN	-	200	-	mV
RSDS reference voltage	V _{CMRSDS}		VSSD+0.1	1.2	VDDD-1.2	V
Input "Low" voltage	V _{IL}	EIO1,EIO2,DIR,TP1,	GND	-	0.2VDDD	μΑ
Input "High" voltage	V_{IH}	POL	0.8VDDD	ı	VDDD	μΑ
Input leak current	IL	1 OL	-	-	10	μA
Supply current (In operation mode)	I _{CCD1}	VDDD=3.6V	-	TBD	TBD (1)	mA
Supply current (In stand-by mode)	I _{CCD2}	VDDD=3.6V	-	TBD	TBD	mA
Supply current (In operation mode)	I _{CCA1}	VDDA=13.5V	-	TBD	TBD ⁽¹⁾⁽²⁾	mA
Supply current (In stand-by mode)	I _{CCA2}	VDDA=13.5V	-	TBD	TBD	mA
Output ourrent	I_{VOH}	Vout=V γ 1-1V	-	-	-100	μΑ
Output current	I _{VOL}	Vout=V γ 10+1V) -	-	100	μΑ
Output Voltage range	Vout	OUT1~OUT432	VSSA+0.1	-	VDDA-0.1	V
Output Voltage deviation	Vcho-dev	VDDA=13.5V Dxx=0 to 63 Gray	-	±5	±10	mV
Gamma impedance	Rr	V γ 1~V γ 5,V γ 6~V γ 10	0.5Typ	16820	1.5Typ	Ω

Note: (1) Test condition: TP1= 20μs, CLK =54MHz, data pattern =1010....checkerboard pattern, Ta=25°C

(2) No load condition

Tentative

8. Driver AC Characteristics

Dawawataw	Symbol	Candition	Spec			11
Parameter Syn		Condition	Min.	Тур.	Max.	Unit
Clock pulse width	t_{CLK}	-	11	-	-	ns
Clock pulse low period	t _{CLK(L)}	-	5	-	-	ns
Clock pulse high period	t _{CLK(H)}	ı	5	ı	-	ns
Data setup time	t _{SETUP1}	-	2	-	-	ns
Data hold time	t _{HOLD1}	-	0	-	-	ns
Start pulse setup time	t _{SETUP2}	1	1	ı	-	ns
Start pulse hold time	t _{HOLD2}	1	2	-	-	ns
TP1 high period	t _{TP1(H)}	1	1	ı	-	CLKP
Last data CLK to TP1 high	t _{LAST}	-	0	-	-	CLKP
TP1 high to EIOn high	t _{NEXT}	-	6	-	-	CLKP
POL to TP1 setup time	t _{POL-TP1}	POL toggle to TP1 rising	3	-	-	ns
TP1 to POL hold time	t _{TP1-POL}	TP1 falling to POL toggle	2	-	-	ns

Issued Date: Mar. 12, 2008 Model No.: S220Z1-M02

Tentative

9. Vertical Timing

Parameter	Symbol	Condition	Spec			Unit	Remark
Farameter	Syllibol	Condition	Min.	Тур.	Max.	Offic	Kelliaik
CKV period	t _{CKV}	-	5	-	-	μs	
CKV pulse width	t_{CKVH}, t_{CKVL}	50% duty cycle	2.5	-	-	μs	
OE pulse width	t _{OE}	-	1	-	3.5	μs	Note2
/XAO pulse width	t _{WXAO}	-	6	-	-	μs	
Data setup time	t _{su}	-	700	-	-	ns	
Data hold time	t _{HD}	-	700	-	-	ns	
OE to CKV time	t _{OE-CKV}			0.5		μs	
STB to CKV	t _{STB-CKV}		0	0	0	μs	
STB Pulse Width	t _{STB}			0.5		μs	
CKV to GVOFF	t _{CKV-GVOFF}			-0.5		μs	
GVOFF Pulse width	t _{GVOFF}			12.8		μs	Note1

Note 1:GVOFF,OE,STB frequency same as CKV

Note 2:Width of OE pulse should be according to vertical frequency.

Ex:2.4 µs with 75Hz V-Sync; 3.0µs with 60Hz V-Sync.

Note 3: GVOff is used to make 3-step wave form to avoid V-Through on panel.

Note 4: OE is used to control VGH P output to panel. When OE is "H", VGH P output to panel is fixed to "L" regardless CKV.

Version 0.0

Issued Date: Mar. 12, 2008 Model No.: S220Z1-M02

Tentative

10. OPTICAL CHARACTERISTICS

10.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	Ambient Humidity Ha		%RH		
Supply Voltage	V _{CC}	5.0	V		
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
Inverter Current	IL	7.0	mA		
Inverter Driving Frequency	FL	61	KHz		
Inverter	Darfon VK.13165.101				

10.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Dod	Rx			0.649			
	Red	Ry			0.335			
	Green	Gx	θ_x =0°, θ_Y =0°		0.283			
Color	Green	Gy		0.605	Typ +		(4) (5)	
Chromaticity	Blue	Bx	Grayscale 0.03 0.151 0.073	0.03	0.151	0.03		(1), (5)
	Dide	Ву						
	\	Wx			0.313			
	White	Wy			0.329			
Center Luminance of White		L _C		250	300		cd/m ²	(4), (5)
Contrast Ratio		CR		700	1000		-	(2), (6)
Response Time		T _R	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		1.3	2.2	ms	(3)
Response Time		T _F	ο _χ -ο , ογ -ο		3.7	5.8	ms	(3)
White Variation		δW	θ_{x} =0°, θ_{Y} =0°		1.3	1.42	-	(5), (6)
Viewing Angle	Horizontal	θ_{x} +	CR>10	75	85			
	Honzonal	θ_{x} -		75	85		Deg.	(1), (5)
Vicwing Angle	Vertical	θ_{Y} +	OIX-10	70	80		Deg.	(1), (3)
		θ_{Y} -		70	80			

Note (1) Definition of Viewing Angle (θx , θy):

Issued Date: Mar. 12, 2008 Model No.: S220Z1-M02

Tentative

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Tentative

Note (4) Definition of Luminance of White (L_{C}):

Measure the luminance of gray level 255 at center point

$$L_{\rm C} = L (5)$$

L(x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 9 points

 $\delta W = Maximum [L (1) \sim L (9)] / Minimum [L (1) \sim L (9)]$

Version 0.0

Tentative

11. PACKAGING

11.1 PACKING SPECIFICATIONS

- (1) 6 LCD modules / 1 Box
- (2) Box dimensions: 595(L) X 330 (W) X 440 (H) mm
- (3) Weight: 17.3 Kg (6 modules per box)

11.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

Test Item	Test Conditions	Note
	ISTA STANDARD	
	Random, Frequency Range: 1 – 200 Hz	
Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
	Right & Left: 10 minutes (X)	
	Back & Forth 10 minutes (Y)	
Dropping Test	1 Angle, 3 Edge, 6 Face, 60cm	Non Operation

Figure. 8-1 Packing method

Issued Date: Mar. 12, 2008 Model No.: <u>S220Z1-M02</u>

Tentative

Tentative

12. DEFINITION OF LABELS

12.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: M220Z1-L03

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) CMO barcode definition:

Serial ID: XX-XX-XX-YMD-L-NNNN

Code	Meaning	Description
XX	CMO internal use	-
XX	Revision	Cover all the change
Χ	CMO internal use	-
XX	CMO internal use	-
	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4
YMD		Month: 1~12=1, 2, 3, ~, 9, A, B, C
		Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

(d) Customer's barcode definition:

Serial ID: CM-22Z13-X-X-X-XX-L-XX-L-YMD-NNNN

Code	Meaning	Description
CM	Supplier code	CMO=CM
22Z13	Model number	M220Z1-L03=22Z13
X	Revision code	ZBD, C1=A, C2=B,
^		Non ZBD, C1=1, C2=2,
X	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatec=C,
X	Gate driver IC code	OKI=D, Philips=E, Renasas=F, Samsung=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M
XX	Cell location	Tainan, Taiwan=TN
L	Cell line #	1~12=0~C
XX	Module location	Tainan, Taiwan=TN; Ningbo China=NP
L	Module line #	1~12=0~C
	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4
YMD		Month: 1~12=1, 2, 3, ~, 9, A, B, C
		Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, T, U, V
NNNN	Serial number	By LCD supplier

<u>31 / 29</u>

Tentative

13. PRECAUTIONS

13.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of CCFL will be higher than room temperature.

13.2 SAFETY PRECAUTIONS

- (1) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.