

让Arduino成为Android的 "可穿戴设备"

谢作如 浙江省温州中学

Android手机虽然已经附带了多种 传感器,如方向、重力、距离、加速度等。 并且早在Android2.3(gingerbread)系 统中,Google就提供了11种传感器供应 用层使用。但是,并非所有Android手机 都把这些传感器配齐了,如温度、湿度、 气压之类的传感器就不常见。为了使 Android手机能支持更多的应用,越来 越多的手机外设就涌现出来,可穿戴设 备开发在短时间内就成为了硬件开发方 面的"时尚"。其实,可穿戴设备的开发 门槛并不高,通过Arduino,我们也可以 初步体验Android的"可穿戴设备"的 开发。

可穿戴设备指直接穿在身上,或是 整合到用户的衣服或配件的一种便携式 设备。手机可穿戴设备将会给我们的生 活、感知带来很大的转变。但是,可穿戴 设备中的传感器未必一定是手机中所 没有的,如最近很流行的智能手环,其核 心传感器就是加速度传感器和陀螺仪, 都是智能手机标配的传感器。我们选择 了温度和湿度传感器,通过Arduino将 传感器数值发送给Android手机,以期 通过这一项目来体验可穿戴设备和手 机的信息互动。

● 项目描述

本项目设计了一个简单的通讯协

议,让Arduino能通过蓝牙将各种传感 器(以温度和湿度传感器为例)的信息 传输到Android手机,并显示出来。本 项目的难度设计为中小学生都能完成, Arduino的程序我们选择用ArduBlock 编写,而手机的程序由App Inventor编 写。这个项目的流程如图1所示。

● 项目分析

1.协议设计

与本栏目上期文章《用Android 控制Arduino小车》一样,首先需要为 Android和Arduino设计通讯协议。这 个协议规定了数据的格式以及数据代 表的意义。针对ArduBlock教育版和 App Inventor的特点,我设计了一个简 单的通讯协议,各类数据的含义说明如 表1。

表1 通讯协议表

数据(文本)	含义	
	传感器端口	传感器数值
010012	0	12
110123	1	123
211012	2	1012
310001	3	1

因为App Inventor没有二进制的 数据处理能力,这个通讯协议只能使用 字符形式传送数值。虽然效率不高,但 也通俗易懂。之所以采用6个字符,是因 为Arduino的A/d的转换分辨率为10位, 即0~1023之间,需要留下4个字符,第一 个字符是为了标识模拟传感器的针脚。 而第二个字符永远是1,并没有实际作 用,仅仅是因为在ArduBlock教育版可 以使用"10000+传感器值"的简单表达

> 式来补足传感器数值 不足4位时需要补上 的"0"。

另外, ArduBlock教育版的串口打 印会自动加上回车(这也是教育版为了 简化积木模块而牺牲其更多功能的无 奈之举),回车和换行刚好要占去2个字 节,实际一次传输的是8个字符(字节)。

如果抛开这两款软件,我建议可以 参照S4A的通讯协议,效率较高,2个字 节就能完成一个传感器数据的传送。

2.设备选择

虽然这是一个测试的项目,并非开 发真正意义上的可穿戴设备产品,但我 还是物色了一款体积较小的Arduino板 子,做出"可穿戴"的感觉来。经过比较, DFRobot公司推出的Bluno Nano主控 板成了我的选择。Bluno Nano集成了 低功耗的蓝牙4.0芯片,而且只有拇指大 小,非常适合用来开发做可穿戴设备的 原型(如下页图2)。

图2

除了Bluno Nano主控板外,只有硬 币般大小的Microduino的产品也很适合 做可穿戴设备的原型(如图3)。

图3

当然,如果仅仅想测试Arduino和 Android的连接,可以找任何一款蓝牙 模块来实现,具体可以参考本栏目的上 期文章。至于温度和湿度传感器,网上 可以选择的店铺很多,价格从几元到十 几元不等,不再一一说明。

● 编程实现

1.Arduino程序

我们使用ArduBlock教育版来写 Arduino的代码。ArduBlock教育版是 一款经过优化的版本,界面清爽、分类 清晰且命名规范,适合在中小学的课堂 上使用。其串口输出功能很简单,就一个 "串口打印加回车"积木模块,这一积木 模块和Arduino代码的对应关系如表2。

因为表1设计的协议,我编写了从串

表2 ArduBlock串口打印积木

口输出模拟端口A0和A1值 的代码,每隔300毫秒传输 一次数据。其中用"10000+ 传感器值"的简单表达

式,补足了传感器数值不足4位时需要 添加的"0"。这样加上回车换行,传输 一个传感器的数值刚好需要8个字节 (如图4)。

```
转成Arduino代码后为:
int ABVAR 1 AO = 0;
int \_ABVAR\_2\_A1 = 0;
void setup()
  Serial.begin(9600);
```

void loop()

A0 = (analogRead(0))

+ 10000);

ABVAR 1

_ABVAR_2_

Serial_print(_ABVAR_2_A1);

Serial.println();

delay(300);

注意:如果出现下载失败的情况, 请参照本栏目上期文章进行相应处理。

2.App Inventor程序

Android端App程序的主要功能 是接收Arduino发送的数据,然后显 示在屏幕上。代码并不复杂,除了常见 的Label、TextBox、Button外,还需要 ListPicker、BluetoothClient这几个必要 的控件。因为要实时接收数据,我还加上 了Clock这一时间控件。具体界面如图5 所示。

图4

App中所涉及控件的作用简要说 明如表3。

给Button1控件编写Click事件,为 了使程序更加完善,我添加了针对各种

表3

App各控件作用说明

控件类型	控件名称	控件作用
Label	Label1, Label2, Label3, Label4	显示文字
TextBox	TextBox1, TextBox2	显示传感器数值
Button	Button1	连接或者断开蓝牙
ListPicker	ListPicker1	选择设备列表
BluetoothClient	Blue	蓝牙设备(客户端形式)
Notifier	Notifier1	弹出提示框
Clock	Clock1	定时获取蓝牙串口数据

接下来,我们可以开始编写代码了, 其中给ListPickerl控件写选择蓝牙设备 的代码。需要注意的是,这个控件仅能显 示手机已经配对过的蓝牙设备(如图6)。

意外情况,会显示不同提示的代码(如 图7)。

Clock1控件的TimerEnabled 属性默认值为false,当连接了蓝牙设

> 备, TimerEnabled 就修改为true。 Clock1控件Timer 事件代码如图8 所示。

因为代码篇 幅过长,影响了截 图,这里我仅仅写 了一个传感器。为 了便于观察,我将 获取的字符显示 在Label4上。

3.运行测试

编译为APK 文件,然后安装。 App的运行效果 如图9所示。Bluno Nano主控板上的 蓝牙默认配对码 是1234,连接上后, 就能看到传送过

来的数据了。

● 拓展应用

在本项目中, Android仅仅将接收 到的传感器数据显示出来,并没有做进 一步的处理,也没有根据传感器信息, 控制Arduino执行相应的动作。一般来 说,手机还要对可穿戴设备的数据进行 进一步处理,并存储在云服务器上,以 便更加深入地进行分析。例如,智能手 环可以统计用户每天的运动路径、消耗 卡路里和摄入热量,也能根据事先的设 定,通过振动马达来提醒用户应该运动 或者休息了。结合本栏目上一期文章的 内容,相信让中小学生实现这样的功能 并不会很难。

● 总结

本项目还可以应用在某些特殊 场合,如无线抄水电表,甚至也可以把 Android作为Arduino的蓝牙显示屏来 使用。蓝牙4.0的功耗很低,应用范围很 广, Android手机结合Arduino后, 功能 将大大提高。从本质上看,可穿戴设备 和智能家居、物联网并没有太大的区别, App Inventor编程的价值就在于其和 硬件结合紧密,让学生们玩玩最新的技 术吧。e

图6

图7

图8