Name Student

CHEMISTRY 3PA3 Section #1 VERSION # 1

DAY CLASS

DURATION OF EXAM: 3 Hours.

INSTRUCTOR: Paul W. Ayers (x24505; ayers@mcmaster.ca)

McMASTER UNIVERSITY DEFERRED FINAL EXAMINATION

February, 2010

THIS EXAMINATION PAPER CONTAINS <u>13</u> PAGES AND <u>25</u> QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY DISCREPANCY TO THE ATTENTION OF THE INVIGILATOR.

SPECIAL AIDS:

Any calculator can be used.

Immediately following this page is a list of formulas and experimental data that you may find helpful.

In all portions of this exam, be very careful to record the units in which you are giving your answer.

Instructions:

The exam is scored out of 100 points.

There are TWENTY short-answer questions in this exam. Answer all of them. Use the exam booklet when there is not room to write your answer on the exam paper. When you use the exam booklet, write on the exam "in booklet" so that I know to look there. Each short-answer question is worth 3 points.

There are FIVE long-form problems in this exam. Pick FOUR of the problems and answer them in the exam booklet. Each problem is worth 10 points.

Write you work clearly and neatly. Clearly label the problems you work in the exam booklet. Be careful with your units. Partial credit is available, but only if your work is clear, neat, and easy to follow.

Page 2: Periodic Table

Pages 3 & 4: formula sheet & conversion factors.

Pages 5-10: 20 short-answer questions.

Pages 11-13: 5 long-form problems. (Pick 4 of 5).

hydroger			127)	350	15	8	1587	5	100	100	85.	100	\$4764	595	355	100	345	helium
1																		2
H																		He
1.0079																	20	4.0026
lithium	beryllium]										[boron	carbon	nitrogen	oxygen	fluorine	neon
3	_4												_5	6	7	8	9	10
Li	Be												В	C	N	0	F	Ne
6.941	9.0122	1											10.811	12.011	14.007	15.999	18.998	20.180
sodium	magnesium												aluminium	silicon	phosphorus	sulfur	chlorine	argon
11	12												13	14	15	16	17	18
Na	Mg												ΑI	Si	Р	S	CI	Ar
22.990	24.305									•			26.982	28.086	30.974	32.065	35.453	39.948
potassiur 19	n calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
													_					
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
			0.000	4.500		10000000000000000000000000000000000000	121 112		A. 300000	Participation of the Participa	20	54555 566			500000000000000000000000000000000000000	Control of the Control	33	0.7427.432
Rb	Sr		Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
	1000000		-				11.5		1000			100000000000000000000000000000000000000	T			100	2000	
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	- 11	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112		ununquadium				
0/	00	09-102	103			12.22.00	20000000	322.2332		N2/28/57/0	(H) E (H) E (H)	100000000000000000000000000000000000000		114				
green .																		
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
Er	Da	XX	100	Df	Dh	C~	Dh	LIC	1 1/1+	IIII		IIII						

*Lanthanide series

* * Actinide series

	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
?	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Key integrals and identities:

$$\left(\frac{a}{2}\right)\delta_{mn} = \int_{0}^{a} \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi x}{a}\right) dx$$

$$\left(\frac{a}{2}\right)\delta_{mn} = \int_{0}^{a} \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx$$

$$0 = \int_{0}^{a} \cos\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi x}{a}\right) dx$$

$$\frac{a^{2}}{4} = \int_{0}^{a} \left(\sin\left(\frac{n\pi x}{a}\right)\right)^{2} x dx$$

$$\left(\frac{a}{2\pi n}\right)^{3} \left(\frac{4\pi^{3}n^{3}}{3} - 2\pi n\right) = \int_{0}^{a} \left(\sin\left(\frac{n\pi x}{a}\right)\right)^{2} x^{2} dx$$

$$\frac{1}{2}\sqrt{\frac{\pi}{\alpha}} = \int_{0}^{\infty} e^{-ax^{2}} dx$$

$$\left(\frac{1}{2}\sqrt{\frac{\pi}{\alpha}}\right) \left(\frac{(2n-1)(2n-3)\cdots(3)(1)}{(2\alpha)^{n}}\right) = \int_{0}^{\infty} x^{2n} e^{-ax^{2}} dx$$

$$n = 1, 2, 3, \dots$$

$$\left(\frac{1}{2}\right) \left(\frac{n!}{\alpha^{n+1}}\right) = \int_{0}^{\infty} x^{2n+1} e^{-ax^{2}} dx$$

$$n = 0, 1, 2, \dots$$

$$2\sin(x)\sin(y) = \cos(x-y) - \cos(x+y) \rightarrow 2\sin^{2}x = 1 - \cos(2x)$$

$$2\cos(x)\cos(y) = \cos(x-y) + \cos(x+y) \rightarrow 2\cos^{2}x = 1 + \cos(2x)$$

$$2\sin(x)\cos(y) = \sin(\alpha+\beta) + \sin(\alpha-\beta) \rightarrow 2\sin x\cos x = \sin(2x)$$

$$\sin(x+y) = \sin x\cos y + \cos x\sin y \rightarrow \sin(2x) = 2\sin x\cos x$$

$$\cos(x+y) = \cos x\cos y - \sin x\sin y \rightarrow \cos(2x) = \cos^{2}x - \sin^{2}x$$

VALUES OF SOME PHYSICAL CONSTANTS

Constant	Symbol	Value
Avogadro's number	N_0	$6.02205 \times 10^{23} \text{mol}^{-1}$
Proton charge	e	$1.60219 \times 10^{-19} \mathrm{C}$
Planck's constant	* *	$6.62618 \times 10^{-34} \text{ J} \cdot \text{s}$ $1.05459 \times 10^{-34} \text{ J} \cdot \text{s}$
Speed of light in vacuum	c	$2.997925 \times 10^{8} \mathrm{m \cdot s^{-1}}$
Atomic mass unit	amu	$1.66056 \times 10^{-27} \mathrm{kg}$
Electron rest mass	m_e	$9.10953 \times 10^{-31} \text{ kg}$
Proton rest mass	m_p	$1.67265 \times 10^{-27} \text{ kg}$
Boltzmann constant	k_B	$1.38066 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$ 0.69509 cm^{-1}
Molar gas constant	R	8.31441 J·K ⁻¹ ·mol ⁻¹
Permittivity of a vacuum	$\frac{\varepsilon_0}{4\pi\varepsilon_0}$	$\begin{array}{l} 8.854188 \times 10^{-12} \ \text{C}^2 \cdot \text{s}^2 \cdot \text{kg}^{-1} \cdot \text{m}^{-3} \\ 1.112650 \times 10^{-10} \ \text{C}^2 \cdot \text{s}^2 \cdot \text{kg}^{-1} \cdot \text{m}^{-3} \end{array}$
Rydberg constant (infinite nuclear mass)	R_{ω}	$2.179914 \times 10^{-23} \text{ J}$ 1.097373 cm^{-1}
First Bohr radius	a_0	$5.29177 \times 10^{-11} \text{ m}$
Bohr magneton	μ_B	$9.27409 \times 10^{-24} \text{J} \cdot \text{T}^{-1}$
Stefan-Boltzmann constant	9	$5.67032 \times 10^{-8} \text{ J} \cdot \text{m}^{-2} \cdot \text{K}^{-4} \cdot \text{s}^{-1}$

CONVERSION FACTORS FOR ENERGY UNITS

SOME MATHEMATICAL FORMULAS

and

 $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$ $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$ $\int_0^\infty e^{-ax^2} dx = \left(\frac{\pi}{4a}\right)^{1/2}$ $\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{}$ $\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ $\int_0^\infty x^{2n+1} e^{-\alpha x^2} dx = \frac{n!}{2d^{n+1}} \qquad (n \text{ positive integer})$ $(1 \pm x)^n = 1 \pm nx \pm \frac{n(n-1)}{2!}x^2 \pm \frac{n(n-1)(n-2)}{3!}x^3 \pm \cdots$ $\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots \qquad x^2 < 1$ $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$ $e^{\pm i\theta} = \cos\theta \pm i\sin\theta$ $\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ $\int_0^a \cos \frac{n\pi x}{a} \sin \frac{m\pi x}{a} dx = 0 \qquad (m \text{ and } n \text{ integers})$ $f(x) = f(a) + f'(a)(x - a) + \frac{1}{2!}f''(a)(x - a)^2 + \frac{1}{3!}f'''(a)(x - a)^3 + \cdots$ $\sin \alpha \cos \beta = \frac{1}{2} \sin (\alpha + \beta) + \frac{1}{2} \sin (\alpha - \beta)$ $\sin \alpha \sin \beta = \frac{1}{2}\cos(\alpha - \beta) - \frac{1}{2}\cos(\alpha + \beta)$ $\cos \alpha \cos \beta = \frac{1}{2}\cos(\alpha - \beta) + \frac{1}{2}\cos(\alpha + \beta)$ $\int_0^a \sin \frac{n\pi x}{a} \sin \frac{m\pi x}{a} dx = \int_0^a \cos \frac{n\pi x}{a} \cos \frac{n\pi x}{a} dx = \frac{a}{2} \delta_{nm}$ $\int_0^\infty x^{2n} e^{-ax^2} dx = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^{n+1} a^n} \left(\frac{\pi}{a}\right)^{1/2}$ $\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}} \qquad (n \text{ positive integer})$ (n positive integer) x² <

Short Answer Questions: (20 questions @ 3 points each = 60 points total).

- 1,2. Fill in the first column of the following table, labelling the following molecules as:
 - **O** oblate symmetric top
 - **P** prolate symmetric top
 - **S** spherical top
 - **A** asymmetric top

Type of "top"	Name of Molecule	Structure of Molecule
	Carbon tetrachloride	CI CI CI
	Coronene	
	1-butyne	
	propyne	= −CH ₃

3-5. Match the following systems to the energy level diagrams on the next two pages. Each line indicates an energy level, and the number in parenthesis next to the line indicates the degeneracy of that level. That is, the positions of the lines give the relative energies of the ground state (the first line) and a few excited states, and the number in parenthesis indicates the number of states with that energy.

 One-Electron Atom
 One-Dimensional Harmonic Oscillator
 One-Dimensional Particle in a Box with Infinite Sides
 Rigid Rotation of a Spherical Top Molecule
 Rigid Rotation of a Oblate Symmetric Top Molecule
Digid Potation of a Prolate Symmetric Ton Malegula

QuickTime™ and a decompressor are needed to see this picture. QuickTime™ and a decompressor are needed to see this picture. QuickTime™ and a decompressor are needed to see this picture. QuickTime™ and a decompressor are needed to see this picture.

E

G

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

F

H

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

The following text refers to problems 6-8.

Among the many possible wavefunctions associated with the 7G term symbol, suppose you are given the one with the largest possible values for the J quantum number (total angular momentum) and the M_J quantum number (total angular momentum about the z-axis). This wavefunction is denoted $\Psi_{J^{(\max)}M_{\gamma}^{(\max)}}^{^7G}$.

- 6. What is the degeneracy of an atomic state described by the ⁷G term symbol?
- 7. What are the maximum values for the total angular momentum and the total angular momentum around the *z*-axis.

$$J^{(\text{max})}$$

$$M_{I}^{(\text{max})}$$

8. What are the eigenvalues of the following operators. Be sure to show the dependence on \hbar .

- 9. Write the key equation known as "Fermi's Golden Rule."
- 10. Write a Slater determinant of molecular orbitals that is appropriate for the *ground* state of the Lithium Hydride cation, LiH⁺. Label the molecular orbitals with symmetry labels, i.e. $\sigma_u, \sigma_g, \pi_u^+, \pi_u^-, \pi_g^+, \pi_g^-, \dots$ Use the long form of the Slater determinant, writing out all the rows and columns.

11. Because of the presence of other electrons and the positive nuclei, electrons in large molecules and solids do not experience the full Coulomb potential. Instead, they experience a screened Coulomb potential. (You learned about this in thermodynamics, as it is a key component of the Debye-Hückel theory of electrolyte solutions.) A common model for the screened Coulomb potential is the Yukawa potential,

$$V_{\rm Y}(r) = \frac{q_1 q_2 e^{-\lambda r}}{4\pi \varepsilon_0 r}$$

where r is the separation between the particles. Write the Hamiltonian for two particles, with charges q_1 and q_2 and masses m_1 and m_2 whose interaction is described by the Yukawa potential.

The following text refers to problems 12-15.

Consider an electron confined to two one-dimensional boxes with infinitely repulsive sides. The two boxes are adjacent to each other but separated by an infinite barrier, as shown in the following figure and encapsulated by the following equation:

$$V(x) = \begin{cases} +\infty & x \le 0 \\ 0 & 0 < x < a \\ +\infty & x = a \\ 0 & a < x < 2a \\ +\infty & x \ge 2a \end{cases}$$

- 12. The system is prepared in its ground state and then its absorption spectrum is taken. The largest-wavelength absorption that is observed has wavelength 1000 nm. How wide are the boxes? (I.e., what is the value of a?)
- 13. What is the ground state energy of this system?
- 14,15. An experiment reveals that the system has a 90% chance of being observed in the first box and a 10% chance of being observed in the second box. Write <u>TWO</u> wavefunctions, which differ from each other by more than a constant factor, that are consistent with this observation.

16-18. Write expressions for each of the following operators in a general N-electron, P-nucleus molecule. Show the dependence on the fundamental physical constants, $\hbar, m_{\cdot}, e, \varepsilon_{0}$, etc..

$m, m_e, e, \varepsilon_0,$ etc	
Quantity	Quantum-Mechanical Operator in <u>SI units</u>
nuclear kinetic energy, \hat{T}_n	
electronic kinetic energy, $\hat{T_e}$	
nuclear-electron attraction energy, \hat{V}_{ne}	
nuclear-nuclear repulsion energy, \hat{V}_{nn}	
electron-electron repulsion energy, $\hat{V_{ee}}$	

19,20. Using the notation in the first column of the table in #18,19, write the electronic and nuclear time-independent Schrödinger equations for a molecule.

Electronic:

Nuclear:

Part 2. Problems

There are FIVE problems, each worth 10 points. Pick FOUR of the five problems and clearly indicate which problem you do not wish for me to grade.

1. **Properties of the Second Derivative Operator.**

In this problem, you will derive some properties of the second derivative operator,

$$\left\langle \Psi(x) \left| \frac{d^2}{dx^2} \right| \Psi(x) \right\rangle$$

- 1a. Explicitly show that the second derivative operator is Hermitian. [6 points]
- Explicitly show that the second derivative operator is negative semidefinite. 1b. That is, show that for <u>any</u> wavefunction, $\Psi(x)$,

$$\left\langle \Psi(x) \left| \frac{d^2}{dx^2} \right| \Psi(x) \right\rangle \leq 0.$$

[4 points]

2. **Atomic Diffraction and Neutron Diffraction.**

Suppose we use a beam of Helium-4 atoms to image a crystal, in a manner similar to X-ray crystallography. Assume that the ${}_{2}^{4}$ He atoms are in thermal equilibrium at temperature T. From fundamental thermodynamics, we know that the kinetic energy of the Helium atoms is

kinetic energy =
$$\frac{3}{2}k_BT$$
 (1)

where k_B is Boltzmann's constant. Suppose that the substance we want to diffract the Helium atoms from crystallizes in a simple cubic lattice with lattice constant (i.e., nearestneighbor distance) $a = 3.0 \cdot 10^{-10}$ m.

- At what temperature would diffraction of the ⁴₂He atoms become appreciable? (6 points)
- **2b.** Suppose we use thermal neutrons, instead of ⁴₂He to diffract off the crystal. Would the optimal temperature of the neutrons be smaller or larger than that of the **Helium atoms in part (a)? (2 points)**

(i)
$$T_{\text{neutrons}} > T_{\text{Helium}}$$

(ii)
$$T_{\text{neutrons}} < T_{\text{Helium}}$$

Suppose we now decide to diffract ⁴₂He from a cubic lattice with a slightly smaller lattice constant, $a = 2.8 \cdot 10^{-10}$ m. Should the temperature of the Helium atom beam be increased or decreased in order to optimize diffraction. (2 points)

(i)
$$T_{\text{He for .28 nm}} > T_{\text{He for .20 nm}}$$
 (increase T) (ii) $T_{\text{He for .28 nm}} < T_{\text{He for .20 nm}}$ (decrease T)

(ii)
$$T_{\text{He for 28 nm}} < T_{\text{He for 20 nm}}$$
 (decrease T)

- 3. Term symbols for the Vanadium Atom.
 - 3a. What are the term symbols associated with the ground state electron configuration of the Vanadium atom, $[Ar]4s^23d^3$? You do not need to show the "J labels". (6 points)
 - 3b. According to Hund's Rules, what is the ground-state term symbol for Vanadium? (2 points)
 - 3c. For the ground state term symbol from #3b, what are the possible values of J? List these in order of increasing energy. (2 points)
- 4. Mathematical results related to infinitesimal unitary transformations.

Let $\hat{C}(\tau)$ be a time-independent Hermitian operator. Let $\Psi_k(\tau)$ denote the eigenfunctions of the Hamiltonian, $\hat{H}(\tau)$. Denote the ground-state wavefunction as $\Psi_0(\tau)$.

4a. Show that for any eigenfunction of the Hamiltonian, the following expectation value is zero:

$$\langle \Psi_{k} \left[\hat{H}, \hat{C} \right] | \Psi_{k} \rangle = 0$$

(3 points)

4b. Show that the expectation value of the following double-commutator is always greater than or equal to zero for the ground-state wavefunction,

$$\langle \Psi_0 \left[\hat{C}, \left[\hat{H}, \hat{C} \right] \right] \left| \Psi_0 \right\rangle \ge 0$$

(7 points)

5. The electron in a spherical well.

In the third-year chemistry laboratory, you made "quantum dots." An electron in a quantum dot can be approximated as a particle in a spherical well,

$$V(r) = \begin{cases} 0 & r \le a \\ +\infty & r > a \end{cases}$$

The eigenfunctions of this system are products of spherical Bessel functions and spherical Harmonics,

$$\Psi_{klm}(r,\theta,\phi) \propto j_l(kr) Y_l^m(\theta,\phi)$$

The two lowest-order spherical Bessel functions are:

$$j_0(x) = \frac{\sin(x)}{x} \qquad \qquad j_1(x) = \frac{\sin(x)}{x^2} - \frac{\cos(x)}{x}$$

These functions have the property that they are zero at the following values:

$$0 = j_0(x_i) \qquad x_0 = \pi; \ x_1 = 2\pi; \ x_3 = 3\pi; \ \cdots$$

$$0 = j_1(x_i) \qquad x_0 = 4.493409; \ x_1 = 7.725252; \ x_3 = 10.904122; \ \cdots$$

The spherical Bessel functions are eigenfunctions of the following differential equation:

$$\left(\frac{-1}{2}\left(\frac{1}{r^2}\frac{d}{dr}r^2\frac{d}{dr}\right) + \frac{l(l+1)}{2r^2}\right)j_l(kr) = \frac{k^2}{2}j_l(kr)$$

- 5a. Confirm, by explicit substitution, that the proposed wavefunction, $\Psi_{klm}(r,\theta,\phi) \propto j_l(kr) Y_l^m(\theta,\phi)$ is an eigenfunction for the "electron in a spherical well" Hamiltonian. (4 points)
- 5b. What are the energy levels for the *s*-type "electron in a spherical well" states? What is the ground-state energy for the electron in a spherical well? (3 points)
- 5c. Suppose that you want to design a quantum dot that absorbs red light, with wavelength $\lambda = 680 \cdot 10^{-9}$ m, and assume that the "electron in a spherical well" is an adequate model for the quantum dot. What radius for the quantum dot will cause the lowest-energy electric-dipole-allowed absorption from the ground state to have wavelength $\lambda = 680$ nm? You will probably find it helpful to work this problem in atomic units. The atomic unit of length is the Bohr, and $1 \text{ Bohr} = .52917725 \cdot 10^{-10} \text{ m}$. (3 points)