WE CLAIM:

1. A compound of the formula:

$$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & & \\ & &$$

wherein:

R₃₁ is a linear or branched polymer residue;

 Y_{10} and Y_{11} are independently O, S, or NR_{40} ;

 X_2 is O, S or NR_{41} ;

 R_{32} , R_{33} , R_{34} , R_{35} , R_{37} , R_{38} , R_{39} , R_{40} , R_{41} , R_{50} and R_{51} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls and substituted C_{1-6} heteroalkyls;

a, b and e are each independently a positive integer;

L is an amino acid residue or a bifunctional linker;

wherein Y_{12} and Y_{13} are independently O, S, or NR_{41} ;

Z is selected from the group consisting of a bond, a moiety that is actively transported into a target cell, a hydrophobic moiety, and combinations thereof;

D₁ and D₂ are independently selected from the group consisting of OH, a

residue of a hydroxyl-containing moiety, a residue of an amine-containing moiety and a leaving group; and

y₁ and y₂ are independently selected positive integers.

- The compound of claim 1, wherein Y_1 and Y_2 are O.
- 3. The compound of claim 1, wherein R_2 , R_3 , R_4 , R_7 , R_8 and R_9 are H
- 4. The compound of claim 1, wherein m and n are both 1.
- 5. The compound of claim 1, wherein R_1 is $O-(CH_2CH_2O)_x$ or $O-(CH(CH_3)CH_2O)_x$, wherein x is the degree of polymerization.
- 6. The compound of claim 5, wherein R_1 is $O-(CH_2CH_2O)_x$ and x is a positive integer selected so that the weight average molecular weight is at least about 20,000.
- 7. The compound of claim 6, wherein R_1 has a weight average molecular weight of from about 20,000 to about 100,000.
- 8. The compound of claim 7, wherein R₁ has a weight average molecular weight of from about 25,000 to about 60,000.
- 9. The compound of claim 1 wherein L is selected from the group consisting of:

$$\begin{array}{c} X_{5} & \begin{array}{c} X_{15} \\ X_{5} & \begin{array}{c} X_{5} \\ \end{array} \end{array} \end{array} = \begin{array}{c} \begin{array}{c} X_{15} \\ X_{5} & \begin{array}{c} X_{55} \\ \end{array} \end{array} = \begin{array}{c} X_{55} \\ \end{array} = \begin{array}{c} X_{57} \\ \end{array} = \begin{array}{c} X_{5} \\ \end{array} =$$

$$X_5 - C - NR_{54} - \begin{pmatrix} R_{55} \\ C \\ R_{56} \end{pmatrix}_g$$

$$X_5$$
— C — NR_{54} — C — CH_2 — C — and R_{56}

10. The compound of claim 1 wherein L is an amino acid residue of the formula:

$$X_4$$
— C
 $\begin{pmatrix} Y_{14} & R_{52} \\ C & C \\ R_{53} & f \end{pmatrix}$

wherein X_4 is O, S or NR_{42} ;

Y₁₄ is independently O, S, or NR₄₅;

 R_{42} , R_{45} and R_{52} - R_{53} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls and substituted C_{1-6} heteroalkyls; and

f is a positive integer.

11. The compound of claim 1 wherein D_1 and D_2 are residues of an

active biological agent, an anticancer prodrug, a detectable tag, and combinations thereof.

- 12. The compound of claim 11 wherein the anticancer agent or anticancer prodrug is selected from the group consisting of daunorubicin, doxorubicin, p-aminoaniline mustard, melphalan, cytosine arabinoside, gemcitabine, and combinations thereof.
- 13. The compound of claim 1 wherein at least one D moiety is a leaving group selected from the group consisting of as N-hydroxybenzotriazolyl, halogen, N-hydroxy-phthal-imidyl, p- nitrophenoxy, imidazolyl, N-hydroxysuccinimidyl, thiazolidinyl thione, and combinations thereof.
- 14. A compound of the formula:

wherein:

R₃₁ is a linear or branched polymer residue;

Y₁₀ and Y₁₁ are independently O, S, or NR₄₀;

 X_1 is O, S or NR_{41} ;

 R_{32} , R_{33} , R_{34} , R_{35} , R_{36} , R_{37} , R_{38} , R_{40} and R_{41} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, $_{3-12}$ branched alkyls, C_{3-8} cycloalkyls,

 C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls and substituted C_{1-6} heteroalkyls; and a and b are each independently a positive integer.

15. A method of preparing a polymeric conjugate, comprising reacting a compound of the formula (XII)

wherein

R₃₁ is a linear or branched polymer residue;

Y₁₀ and Y₁₁ are independently O, S, or NR₄₀;

L is an amino acid residue or a bifunctional linker;

 R_{32} , R_{33} , R_{34} , R_{35} , R_{37} , R_{38} , and R_{40} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls and substituted C_{1-6} heteroalkyls;

a and b are each independently a positive integer, and B is a leaving group;

with a compound of the formula (XIII)

(XIII)
$$\begin{pmatrix} X_3 - Z - D_1 \\ R_{50} - C - R_{51} \\ R_{39} \end{pmatrix}_{e}$$

$$+ X_2 C - R_{39} \\ X_3 - Z - D_2 \\ Y_2$$

wherein

 X_2 is O, S or NR_{41} ;

 R_{39} , R_{41} , R_{50} and R_{51} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls and substituted C_{1-6} heteroalkyls;

wherein Y₁₂ and Y₁₃ are independently O, S, or NR₄₁;

Z is selected from the group consisting of a bond, a moiety that is actively transported into a target cell, a hydrophobic moiety, and combinations thereof;

 D_1 and D_2 are independently selected from the group consisting of OH, a residue of a hydroxyl, a residue of an amine-containing moiety and a leaving group;

e is a positive integer; and

 y_1 and y_2 are independently selected positive integers; under conditions sufficient to cause a substitution reaction in which the compound of formula (X) is formed.

16. A method of treating mammals with polymeric conjugates, comprising administering an effective amount of the compound of claim 1.