02. Small Example

Friday, September 12, 2025 5:05 PM

Problem: Maximize $f(x) = x^2$

where x can be any integer between -5 and +5.

Step 1: Initial Population (random guesses)

Suppose we randomly pick 3 solutions:

•
$$x = -3$$
 $f(x) = 9$

•
$$x=1$$
 $f(x)=1$

•
$$x = 4$$
 $f(x) = 16$

Fitness = function value. Best solution so far: x = 4 (fitness 16).

Step 2: Selection (survival of the fittest)

The best individuals are more likely to "reproduce."

• Here, x = -3 and x = 4 are better than x = 1.

Step 3: Crossover + Mutation (adaptation)

- Crossover: mix two parents. Example: take avg of -3 and 4 \rightarrow new child $x=\mathbf{0}$.
- Mutation: add a small random change. Example: mutate $x = 4 \rightarrow x = 5$.

New population (3 solutions):

- x = 0• x = -3
- f(x) = 0f(x) = 9
- x = -3 f(x) = 3

Step 4: Next Generation (evolution)

- Now the best is x = 5 with fitness = 25.
- Population is adapting —> solutions are getting better!

After just 2 generations, the population "evolved" from fitness $16 \Rightarrow 25$, moving closer to the **optimal solution**.

So, we are looking for the chromosome which gives the best value for x1, x2 and x3.

? How to apply this abstract idea to the real-valued optimization problem?

PHENOTYPE: Raw solution space, real world solution space, not have proper representation in written form.

GENOTYPE: Required for Computation, Representation which our algo understand, fined input, encoded.