Семинар 5

Отображения множеств

Пусть X,Y — некоторые множества, а $\varphi\colon X\to Y$ — отображение. Тогда φ называется *инъективным*, если оно «не склеивает точки», т.е. для любых $x,y\in X$ из условия $x\neq y$ следует $\varphi(x)\neq \varphi(y)$. Отображение φ называется сюръективным, если в любой элемент что-то переходит, т.е. для любого $y\in Y$ существует $x\in X$ такой, что $\varphi(x)=y$. Отображение φ называется биективным, если оно одновременно инъективно и сюръективно.

Для любого множества X отображение $\mathrm{Id}\colon X\to X$ заданное по правилу $\mathrm{Id}(x)=x$ называется тождественным. Пусть $\varphi\colon X\to Y$ – некоторое отображение. Тогда $\psi\colon Y\to X$ называет левым обратным (соответственно правым обратным) к φ , если $\psi\varphi=\mathrm{Id}\ (\varphi\psi=\mathrm{Id})^1$ Левых и правых обратных для φ может быть много. Однако, если есть оба обратных и ψ_1 – левый обратный, а ψ_2 – правый обратный, то они совпадают, так как $\psi_1=\psi_1(\varphi\psi_2)=(\psi_1\varphi)\psi_2=\psi_2$. А следовательно совпадают все левые обратные со всеми правыми и такой единственный элемент называют обратным и обозначают φ^{-1} , а φ называют обратимым.

Задача. Пусть $\varphi \colon X \to Y$ – некоторое отображение. Покажите, что

- 1. φ инъективно тогда и только тогда, когда φ обладает левым обратным.
- $2. \ \varphi$ сюръективно тогда и только тогда, когда φ обладает правым обратным.
- 3. φ биективно тогда и только тогда, когда φ обратимо.

Перестановки

Пусть $X_n = \{1, \dots, n\}$ — конечное множество из n занумерованных элементов. 2 Перестановкой называется биективное отображение $\sigma \colon X_n \to X_n$. Множество всех перестановок на n элементном множестве будем обозначать через S_n .

Любая перестановка σ отправляет элемент i в некоторый элемент $\sigma(i)$, потому перестановку можно задать таблицей

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Заметим, что, если записать элементы $1, \ldots, n$ в другом порядке, скажем, i_1, \ldots, i_n , то перестановка σ запишется в виде³

$$\begin{pmatrix} i_1 & i_2 & \dots & i_n \\ \sigma(i_1) & \sigma(i_2) & \dots & \sigma(i_n) \end{pmatrix}$$

Обратная перестановка σ^{-1} записывается таблицей

$$\begin{pmatrix} \sigma(1) & \sigma(2) & \dots & \sigma(n) \\ 1 & 2 & \dots & n \end{pmatrix}$$

На множестве перестановок естественным образом определена операция умножения, а именно, $\sigma\tau(i) = \sigma(\tau(i))$ для любых $\sigma, \tau \in S_n$ и $i \in X_n$. Тогда тождественная перестановка будет нейтральным элементом для этой операции, а обратная – обратным. Эта операция не коммутативна, т.е. порядок перемножения имеет значение.

Циклические перестановки

Пусть $\sigma \in S_n$ действует следующим образом. Для некоторого множества i_1, \ldots, i_k выполнено

$$\sigma(i_1) = i_2, \ldots, \, \sigma(i_{k-1}) = i_k, \, \sigma(i_k) = i_1,$$

 $^{^{1}}$ Легко проверить, что существование левого обратного никак не связано с существованием правого обратного и наоборот.

 $^{^2}$ Формально говоря, это множество из n элементов и фиксированный линейный порядок на нем.

³Заметим, что в этой записи можно произвольным образом перемешивать столбцы, это никак не изменит задаваемую перестановку.

⁴Пример будет в разделе «Циклические перестановки».

а все остальные элементы остаются на месте под действием σ . Тогда σ называется μ иклом длины k. Такая перестановка для краткости обозначается (i_1,\ldots,i_k) . Заметим, что такая запись не единственная, например можно сказать $\sigma=(i_2,\ldots,i_k,i_1)$. Таблицей такой цикл задается следующим образом

$$\begin{pmatrix} i_1 & \dots & i_{k-1} & i_k & j_1 & \dots & j_{n-k} \\ i_2 & \dots & i_k & i_1 & j_1 & \dots & j_{n-k} \end{pmatrix}$$

где $\{1,\ldots,n\}=\{i_1,\ldots,i_k\}\sqcup\{j_1,\ldots,j_{n-k}\}$. Цикл длины 2 называется *транспозицией*, т.е. транспозиция – это перестановка каких-то двух элементов.

Два цикла (i_1, \ldots, i_k) и (j_1, \ldots, j_m) называются независимыми, если множества $\{i_1, \ldots, i_k\}$ и $\{j_1, \ldots, j_m\}$ не пересекаются, т.е. множества действительно перемещаемых элементов не пересекаются. Заметим, что независимые циклы коммутируют друг с другом.

Задача. Покажите, что (12)(23) = (123), а (23)(12) = (321).

Структура перестановки

Пусть $\sigma \in S_n$ и пусть $i_1 \in X_n$. Подействуем на него σ , получим $i_2 = \sigma(i_1)$ и т.д. Так как X_n конечно, то мы в какой-то момент повторимся, например $i_5 = i_2$, как на рисунке ниже

На этой картинке видно, что $\sigma(i_1) = \sigma(i_4)$, но σ инъективно, потому $i_1 = i_4$. То есть правильная картинка следующая

Таким образом, для произвольной перестановки σ картинка, как она действует на X_n , будет выглядеть приблизительно следующим образом⁶

Таким образом, мы показали, что любая перестановка представляется в виде произведения независимых циклов. Например на рисунке выше $\sigma = (1234)(567)$.

 $^{^{5}}$ Как легко видеть, другой неоднозначности в записи цикла нет.

⁶На картинке $\sigma \in S_9$.

 $^{^{7}}$ Иногда для удобства в этой записи неподвижные элементы учитывают как циклы длины 1, т.е. $\sigma = (1234)(567)(8)(9)$. Это бывает удобно для некоторых комбинаторных задач.

Произведение циклов

Два цикла

Пусть $\sigma, \tau \in S_n$ циклы зацепляющиеся по одному элементу, как на рисунке ниже

Надо найти произведение $\sigma \tau$. На рисунке ниже показано как выглядит произведение

Таким образом, мы получили формулу $(i_1, \ldots, i_k)(i_k, \ldots, i_n) = (i_1, \ldots, i_n)$.

Цикл и транспозиция

Пусть $\sigma, \tau \in S_n$, где σ – цикл, а τ – транспозиция, переставляющая два элемента цикла σ как на рисунке ниже.

Вот так выглядят композиции для $\sigma\tau$ и $\tau\sigma$ соответственно

Таким образом общее правило выглядит так

$$(i_1, \dots, i_n)(i_1, i_k) = (i_1, i_{k+1}, \dots, i_n)(i_2, \dots, i_k)$$

 $(i_1, i_k)(i_1, \dots, i_n) = (i_1, \dots, i_{k-1})(i_k, \dots, i_n)$

3

Пара циклов и транспозиция

Пусть $\sigma, \tau \in S_n$, причем, σ – произведение двух независимых циклов, а τ – транспозиция, переставляющая две вершины из разных циклов как на рисунке ниже.

Произведения $\sigma \tau$ и $\tau \sigma$ имеют вид

Таким образом общее правило выглядит так

$$(i_1,\ldots,i_k)(i_{k+1},\ldots,i_n)(i_k,i_{k+1}) = (i_1,\ldots,i_k,i_{k+2},\ldots,i_n,i_{k+1})$$

 $(i_k,i_{k+1})(i_1,\ldots,i_k)(i_{k+1},\ldots,i_n) = (i_k,i_1,\ldots,i_{k-1},i_{k+1},\ldots,i_n)$

Знак перестановки

Пусть $X_n = \{1, \dots, n\}$ – конечное множество из n занумерованных элементов. Напомним, что перестановка σ на множестве X_n это биективное отображение $\sigma \colon X_n \to X_n$. Множество всех перестановок на n элементах обозначается S_n . Оказывается, можно построить единственное отображение

$$\operatorname{sgn} \colon \operatorname{S}_n \to \{\pm 1\}$$
 со свойством $\operatorname{sgn}(\sigma \tau) = \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$ и $\operatorname{sgn} \not\equiv 1$

Такое отображение называется знаком перестановки. Есть два отдельных вопроса: какими свойствами обладает подобное отображение и как его построить. Я разберу эти вопросы отдельно.

Построение знака

Обычно знак перестановки σ определяют в виде $(-1)^{d(\sigma)}$, где $d(\sigma)$ – некоторая целочисленная характеристика перестановки σ . Классическим определением является *число беспорядков*. Пара элементов (i,j), где i < j $i,j \in X_n$, называется *инверсией* для σ , если $\sigma(i) > \sigma(j)$, то есть на паре i,j функция σ убывает. Тогда определим $d(\sigma)$ как количество инверсий в σ и $\mathrm{sgn}(\sigma) = (-1)^{d(\sigma)}$.

Другой способ определить знак – ∂ екремент. Декремент перестановки $\sigma \in S_n$ это

$$\operatorname{dec}(\sigma) = n$$
 – «количество циклов» – «количество неподвижных точек»

Декремент можно описать еще так: каждая перестановка σ определяет граф на множестве вершин X_n , где (i,j) – ребро, если $\sigma(i)=j$. Тогда

$$dec(\sigma) = «количество вершин» - «количество компонент графа»$$

В этом случае знак определяется $sgn(\sigma) = (-1)^{dec(\sigma)}$.

Теперь после определения знака, надо лишь показать, что он согласован с произведением. Это обычно делается руками в лоб. Помогает нам тот факт, что все числа из определения знака (число инверсий или декремент) нас интересуют по модулю 2, т.е. только их четность.

 $^{^{8}}$ Оно же 4 исло инверсий.

Важно При подсчета знака перестановки надо пользоваться декрементом. То есть, надо разложить перестановку в произведение независимых циклов и сложить их длины без единицы. Например:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 8 & 2 & 3 & 7 & 1 & 5 & 9 & 6 \end{pmatrix}$$

Теперь видим, что

$$1 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 8 \rightarrow 9 \rightarrow 6 \rightarrow 1$$

$$5 \rightarrow 7 \rightarrow 5$$

Значит $\sigma = (1, 4, 3, 2, 8, 9, 6)(57)$, а значит $\operatorname{dec}(\sigma) = 6 + 1 = 7$ и $\operatorname{sgn}(\sigma) = -1$.

Единственность знака

Единственность такого отображения вытекает из двух наблюдений. Во-первых, любая перестановка раскладывается в произведение транспозиций (сначала раскладываем в независимые циклы, а потом в каждый цикл в транспозиции). То есть все определяется значением на транспозициях. Во-вторых, так как все транспозиции сопряжены, то есть для любых транспозиций τ и τ' найдется перестановка σ , что $\tau' = \sigma \tau \sigma^{-1}$, значение знака на всех транспозициях совпадает. Из этих двух наблюдений и мультипликативности знака выводится единственность.

Свойства знака

Кратко перечислим самое главное

- 1. sgn(1) = 1, где $1 \in S_n$ обозначает тождественную перестановку.
- 2. $\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)^{-1}$.
- 3. $\operatorname{sgn}(i_1, \dots, i_k) = (-1)^{k-1}$
- 4. sgn(i, j) = -1

Задача. Посчитайте $\prod_{\sigma \in S_n} \operatorname{sgn}(\sigma)$.