CC4102 - Diseño y Análisis de Algoritmos Auxiliar 6

Prof. Gonzalo Navarro; Aux. Mauricio Quezada

9 de octubre de 2012

1. Queremos diseñar una estructura que soporte las operaciones Buscar e Insertar en un conjunto de n elementos. Sea $k = \lceil \lg(n+1) \rceil$ y $n_{k-1}n_{k-2}\dots n_0$ la representación binaria de n en k bits. Considere k arreglos ordenados A_0, A_1, \dots, A_{k-1} donde para cada $0 \le i < k$, el tamaño de A_i es 2^i .

Cada arreglo o está vacío o completamente lleno, según si $n_i = 0$ o $n_i = 1$, respectivamente. Note que la cantidad de elementos en los k arreglos es $\sum_{i=0}^{k-1} n_i 2^i = n$.

- (a) Describa cómo buscar un elemento x en esta estructura y de su rendimiento en el peor caso.
- (b) Describa cómo insertar un elemento x en esta estructura. Analice su rendimiento en términos del peor caso y del costo amortizado.
- (c) (Propuesto) Describa cómo eliminar un elemento del arreglo y su rendimiento en el peor caso y costo amortizado.
- 2. Describa un algoritmo que, dados n enteros en [0..k], preprocesa su entrada y responde cuántos de los n enteros caen en el rango [a..b] en tiempo constante. Su algoritmo debería tomar $\Theta(n+k)$ en el preprocesamiento.
- 3. Muestre cómo ordenar un arreglo de enteros, donde los enteros no necesariamente tienen la misma cantidad de dígitos, pero la cantidad total de dígitos es n; en tiempo O(n).
- 4. Muestre cómo ordenar n enteros en el rango $[0..n^3 1]$ en tiempo O(n).
- 5. Construya un Patricia Tree con la siguiente secuencia de inserciones: tester, slow, water, test, team, toast.