

Structure Discovery in Nonparametric Regression through Compositional Kernel Search

David Duvenaud¹, James Robert Lloyd¹, Roger Grosse², Joshua B. Tenenbaum², Zoubin Ghahramani¹

1: Department of Engineering, University of Cambridge, UK 2: Massachusetts Institute of Technology, USA

Data often exhibits high level structure or patterns

Identifying this structure is crucial for extrapolation

- Traditionally, a researcher / scientist / statistician would select an appropriate model for the type of structures present
- Automatic model selection techniques already exist, typically choosing between a finite or restricted set of models
- Instead, we automate statistical model construction

Gaussian process regression can model many structures with an appropriately chosen kernel

- The kernel encodes the inductive bias of the model i.e. the types of functions the model 'believes in'
- Below we list standard base kernels, and examples of functions the model believes in (samples from the prior)

• Base kernels can be combined to create more complicated structural assumptions

We consider all kernel expressions derived from a generative grammar...

- Constructing appropriate composite kernels has previously been the domain of Gaussian process experts
- We consider all algebraic expressions involving a small number of base kernels and the operations + and + and + including e.g.

Bayesian linear regression	LIN
Bayesian polynomial regression	$L_{IN} \times L_{IN} \times \dots$
Generalized Fourier decomposition	PER + PER + .
Generalized additive models	$\sum_{d=1}^{D} ext{SE}_d$
Automatic relevance determination	$igg \prod_{d=1}^D \mathrm{SE}_d$
Linear trend with deviations	Lin + SE
Linearly growing amplitude	$Lin \times SE$

. . . which we search greedily, producing progressively better statistical models

- We try all base kernels, selecting the one with the highest (approximate) marginal likelihood which balances data fit and model complexity
- The search continues by adding an extra term to the current best kernel, stopping when marginal likelihood no longer improves

Example: Mauna Loa CO₂ concentration

• By automatically inferring an appropriate kernel, we can also automatically decompose functions into additive components (additive components of the kernel correspond to independent additive functions)

Example: International airline passengers

