P(Program Syntax)	Translation Set of Axoims
if B then P1 else P2	$B \to \varphi$, for each $\varphi \in \Pi_{P1}^{\vec{X}}$, $\neg B \to \varphi$, for each $\varphi \in \Pi_{P1}^{\vec{X}}$,
P1; P2	$\varphi(\vec{X}1/\vec{Y}) \to \varphi, \text{ for each } \varphi \in \Pi_{P1}^{\vec{X}},$ $\varphi(\vec{X}/\vec{Y}) \to \varphi, \text{ for each } \varphi \in \Pi_{P2}^{\vec{X}}$ where $\vec{Y} = (Y_1,, Y_k)$ is a tuple of new program variables(array names) such that each Yi is of the same arity as X_i in \vec{X} , $\varphi(\vec{X}1/\vec{Y})$ is the result of replacing in φ each occurrence of X_i by Y_i , and similarly for $\varphi(X/\vec{Y})$. By renaming them if necessary, we assume here that $\Pi_{P1}^{\vec{X}}$ and $\Pi_{P2}^{\vec{X}}$ have no common program variables except those in \vec{X} .
while B do P1	$\varphi(n), \text{ for each } \varphi \in \Pi^{\vec{X}}_{P1},$ $X_i(\vec{x}) = X_i(\vec{x}, 0), \text{ for each } X_i \in \vec{X}$ $smallest(N, n, \neg B(n)),$ $X1_i(\vec{x}) = X_i(\vec{x}, N), \text{ for each } X_i \in X \text{ where n is a new natural number variable not already in } \varphi,$ and N a new constant not already used in $\Pi^{\vec{X}}_{P1}$. For each formula or term $\alpha, \alpha(n)$ is defined inductively as follows: it is obtained from α by performing the following recursive substitutions: • for each $X_i \in \vec{X}$, replace all occurrences of $X_i1(e_1,, e_k)$ by $X_i(e_1(n),, e_k(n), n+1),$ and • for each program variable X in α , replace all occurrences of $X(e_1,, e_k)$ by $X(e_1(n),, e_k(n), n).$ Notice that this replacement is for every program variable X , including those not in \vec{X} . $smallest(N, n, \neg B(n)) \text{ is a shorthand for the following formula}$
	$\neg B(N), \tag{1}$ $\forall n.n < N \to B(n) \tag{2}$

Table 1: Set of rules used by the translation algorithm [1]. Given a program P and a set \vec{X} of program variables including all variables used in P, our system constructs a set of axioms $\Pi_P^{\vec{X}}$ according to the these presented rules.

References

[1] F. Lin, "A formalization of programs in first-order logic with a discrete linear order," $Artificial\ Intelligence,\ vol.\ 235,\ pp.\ 1-25,\ 2016.$