IMPORT NECESSARY LIBRARY

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.simplefilter("ignore")
```

ADJUSTS THE DEFAULT FIGURE SIZE FOR MATPLOTLIB PLOTS

```
In [2]: import matplotlib
matplotlib.rcParams['figure.figsize']=(12,6)
```

READ DATASET

```
In [3]: #Load the data
fiber_data=pd.read_excel("E:/Intern/fiber_data.xlsx")
#fiber_data=fiber_data.drop(["Source", "Solution (Solvent Ratio)"],axis=1)
```

DISPLAY THE FIRST AND LAST FIVE ROWS OF THE DATA

```
In [4]: fiber_data
```

Out[4]:

	Source	Solvent	Solution (Solvent Ratio)	δ* =Sum of Products of Volume Fraction and δ of Individual Solvents	Ra* (HSP distance between Polymer & Solvent mixture)	Polymer Concentration (wt%)	RED	Voltage (kV)	Dista
0	K.P. Matabola, R.M. Moutloali, The influence o	DMAC	1:0	22.771254	0.72111	22.0	0.075116	12	
1	NaN	DMAC	1:0	22.771254	0.72111	24.0	0.075116	12	
2	NaN	DMAC	1:0	22.771254	0.72111	26.0	0.075116	12	
3	NaN	DMAC	1:0	22.771254	0.72111	28.0	0.075116	12	
4	NaN	DMAC	1:0	22.771254	0.72111	28.0	0.075116	12	
287	NaN	DMF	1:0	24.862421	2.10000	18.0	0.218700	11.3	
288	NaN	DMF	1:0	24.862421	2.10000	18.0	0.218700	11.8	
289	NaN	DMF	1:0	24.862421	2.10000	18.0	0.218700	12.3	
290	NaN	DMF	1:0	24.862421	2.10000	18.0	0.218700	12.8	
291	NaN	DMF	1:0	24.862421	2.10000	18.0	0.218700	13.5	
292 r	ows × 12 o	columns							
4									•

DISPLAY COLUMNS NAME OF YOURS DATASET

DISPLAY THE SHAPE OF THE DATA

```
In [6]: fiber_data.shape
Out[6]: (292, 12)
```

SUMMARY OF THE DATA

```
In [7]: fiber_data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 292 entries, 0 to 291
        Data columns (total 12 columns):
             Column
        Non-Null Count Dtype
         0
            Source
        31 non-null object
            Solvent
         1
        292 non-null object
         2 Solution (Solvent Ratio)
        292 non-null object
         3 \delta^* =Sum of Products of Volume Fraction and \delta of Individual Solvents
        292 non-null float64
         4 Ra* (HSP distance between Polymer & Solvent mixture)
        292 non-null float64
             Polymer Concentration (wt%)
        292 non-null float64
         6
            RED
        292 non-null
                      float64
         7 Voltage (kV)
        292 non-null object
         8 Distance (cm)
        292 non-null
                       object
         9 Feed (mL/h)
        292 non-null
                      object
         10 Flory-Huggins χ parameter
        292 non-null
                     float64
         11 Fiber Diameter (nm)
        292 non-null
                       object
        dtypes: float64(5), object(7)
        memory usage: 27.5+ KB
```

CHANGE COLUMNS TYPE (OBJECT TO FLOAT)

```
In [8]: for col in fiber_data.columns:
    if col in ["Voltage (kV)", "Distance (cm)", "Feed (mL/h)", "Fiber Diamete
        fiber_data[col] = pd.to_numeric(fiber_data[col], errors='coerce')
```

FEATURE SELECTION (remove unwanted columns)

```
In [9]: clear_fiber_data=fiber_data.iloc[:,5:]
```

In [10]: clear_fiber_data

Out[10]:

	Polymer Concentration (wt%)	RED	Voltage (kV)	Distance (cm)	Feed (mL/h)	Flory-Huggins χ parameter	Fiber Diameter (nm)
0	22.0	0.075116	12.0	15.0	NaN	0.004855	98.0
1	24.0	0.075116	12.0	15.0	NaN	0.004855	155.0
2	26.0	0.075116	12.0	15.0	NaN	0.004855	240.0
3	28.0	0.075116	12.0	15.0	NaN	0.004855	397.0
4	28.0	0.075116	12.0	16.0	NaN	0.004855	314.0
287	18.0	0.218700	11.3	10.0	1.0	0.033900	203.1
288	18.0	0.218700	11.8	10.0	1.0	0.033900	148.2
289	18.0	0.218700	12.3	10.0	1.0	0.033900	203.0
290	18.0	0.218700	12.8	10.0	1.0	0.033900	194.2
291	18.0	0.218700	13.5	10.0	1.0	0.033900	153.0

292 rows × 7 columns

SUMMARY OF THE CLEAR_FIBER_DATA

In [11]: clear_fiber_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 292 entries, 0 to 291
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Polymer Concentration (wt%)	292 non-null	float64
1	RED	292 non-null	float64
2	Voltage (kV)	222 non-null	float64
3	Distance (cm)	273 non-null	float64
4	Feed (mL/h)	232 non-null	float64
5	Flory-Huggins χ parameter	292 non-null	float64
6	Fiber Diameter (nm)	267 non-null	float64

dtypes: float64(7)
memory usage: 16.1 KB

TOTAL MISSING VALUES IN EACH COLUMNS

```
clear_fiber_data.isnull().sum()
In [12]:
Out[12]: Polymer Concentration (wt%)
                                          0
                                          0
         RED
                                          70
         Voltage (kV)
         Distance (cm)
                                          19
         Feed (mL/h)
                                          60
         Flory-Huggins \chi parameter
                                          0
         Fiber Diameter (nm)
                                          25
         dtype: int64
In [13]: missing_values_count = clear_fiber_data.isnull().sum()
         sns.barplot(x=missing_values_count.index, y=missing_values_count.values)
         plt.xlabel('Columns')
         plt.ylabel('Missing Values Count')
         plt.title('Missing Values Count by Column')
         plt.show()
```


DISPLAY NULL VALUE PERCENTAGE IN ASCENDING ORDER

```
missing_val=round((clear_fiber_data.isna().sum().sort_values()/len(clear_fiber_data.isna().sum().sort_values()/len(clear_fiber_fiber_data.isna().sum().sort_values()/len(clear_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber_fiber
  In [14]:
                                                                                  missing_val
Out[14]: Polymer Concentration (wt%)
                                                                                                                                                                                                                                                                                                                                                                        0.0
                                                                                   RED
                                                                                                                                                                                                                                                                                                                                                                        0.0
                                                                                   Flory-Huggins χ parameter
                                                                                                                                                                                                                                                                                                                                                                      0.0
                                                                                   Distance (cm)
                                                                                                                                                                                                                                                                                                                                                                      7.0
                                                                                   Fiber Diameter (nm)
                                                                                                                                                                                                                                                                                                                                                                      9.0
                                                                                   Feed (mL/h)
                                                                                                                                                                                                                                                                                                                                                               21.0
                                                                                   Voltage (kV)
                                                                                                                                                                                                                                                                                                                                                                24.0
                                                                                   dtype: float64
```

VISUAL REPRESENTATION

```
In [17]: missing_val.plot(kind='barh')
Out[17]: <Axes: >
```


In [18]: sns.heatmap(clear_fiber_data.isnull(),yticklabels=False,cbar=False,cmap='vir

Out[19]: <Axes: >

FILL THE MISSING VALUES

• Fiber Diameter (nm)

```
In [20]: sns.lineplot(x='Polymer Concentration (wt%)',y='Fiber Diameter (nm)',data=fi
```

Out[20]: <Axes: xlabel='Polymer Concentration (wt%)', ylabel='Fiber Diameter (nm)'>

In [22]: sns.lineplot(x='Polymer Concentration (wt%)',y='Fiber Diameter (nm)',data=c]

Out[22]: <Axes: xlabel='Polymer Concentration (wt%)', ylabel='Fiber Diameter (nm)'>

• 'Voltage (kV)'

```
In [23]: sns.lineplot(x='Voltage (kV)',y='Fiber Diameter (nm)',data=fiber_data)
```

Out[23]: <Axes: xlabel='Voltage (kV)', ylabel='Fiber Diameter (nm)'>

In [25]: sns.lineplot(x='Voltage (kV)',y='Fiber Diameter (nm)',data=clear_fiber_data)

Out[25]: <Axes: xlabel='Voltage (kV)', ylabel='Fiber Diameter (nm)'>

· 'Distance (cm)'

```
In [26]: sns.lineplot(x='Distance (cm)',y='Fiber Diameter (nm)',data=fiber_data)
```

Out[26]: <Axes: xlabel='Distance (cm)', ylabel='Fiber Diameter (nm)'>

In [28]: sns.lineplot(x='Distance (cm)',y='Fiber Diameter (nm)',data=clear_fiber_data

Out[28]: <Axes: xlabel='Distance (cm)', ylabel='Fiber Diameter (nm)'>

• FEED

```
sns.lineplot(x='Feed (mL/h)',y='Fiber Diameter (nm)',data=fiber_data)
In [29]:
Out[29]: <Axes: xlabel='Feed (mL/h)', ylabel='Fiber Diameter (nm)'>
            3500
            3000
            2500
           Fiber Diameter (nm)
            2000
            1500
            1000
             500
              0
                                                                  10
                                                  Feed (mL/h)
In [30]: clear_fiber_data['Feed (mL/h)'] = clear_fiber_data.groupby('Polymer Concentr
In [31]:
         clear_fiber_data.isnull().sum()
Out[31]: Polymer Concentration (wt%)
                                            0
          RED
                                             0
                                            1
          Voltage (kV)
          Distance (cm)
                                            1
                                            23
          Feed (mL/h)
          Flory-Huggins \chi parameter
                                            0
          Fiber Diameter (nm)
                                             3
          dtype: int64
In [32]: missing_values_feed = clear_fiber_data[clear_fiber_data['Feed (mL/h)'].isnu]
         max_diameter=missing_values_feed['Fiber Diameter (nm)'].max()
In [33]:
In [34]:
          #sns.lineplot(y='Feed (mL/h)',x='Fiber Diameter (nm)',data=clear_fiber_data[
          clear_fiber_data.loc[clear_fiber_data['Fiber Diameter (nm)'] < max_diameter,</pre>
```

```
In [36]: sns.lineplot(x='Feed (mL/h)',y='Fiber Diameter (nm)',data=clear_fiber_data)
```

```
Out[36]: <Axes: xlabel='Feed (mL/h)', ylabel='Fiber Diameter (nm)'>
```



```
In [37]: clear_fiber_data.isnull().sum()
```

Out[37]:	Polymer Concentration (wt%)	0
	RED	0
	Voltage (kV)	1
	Distance (cm)	1
	Feed (mL/h)	2
	Flory-Huggins χ parameter	0
	Fiber Diameter (nm)	3
	dtyne: int64	

DROP

```
In [38]: clear_fiber_data=clear_fiber_data.dropna()
```

In [39]: clear_fiber_data.describe()

Out[39]:

	Polymer Concentration (wt%)	RED	Voltage (kV)	Distance (cm)	Feed (mL/h)	Flory- Huggins x parameter	Fibo Diameto (nn
count	288.000000	288.000000	288.000000	288.000000	288.000000	288.000000	288.00000
mean	19.212917	0.162954	22.368104	15.351013	1.207058	0.026135	818.70426
std	5.128778	0.096776	13.134601	4.633670	1.704752	0.028241	1360.10954
min	8.000000	0.075116	5.000000	3.000000	0.060000	0.004041	28.00000
25%	15.000000	0.075116	14.000000	12.000000	0.465000	0.004888	167.52500
50%	20.000000	0.103183	20.000000	15.000000	0.700000	0.007533	382.83333
75%	22.500000	0.218750	24.100000	18.000000	1.080000	0.034500	893.00000
max	30.300000	0.490026	70.000000	27.700000	14.210000	0.165076	7994.00000
4							

VISUALIZATION

```
In [40]: sns.scatterplot(data=fiber_data, x='Polymer Concentration (wt%)', y='Fiber [
```

Out[40]: <Axes: xlabel='Polymer Concentration (wt%)', ylabel='Fiber Diameter (nm)'>

In [41]: sns.barplot(x='Distance (cm)',y='Fiber Diameter (nm)',data=fiber_data)

Out[41]: <Axes: xlabel='Distance (cm)', ylabel='Fiber Diameter (nm)'>

In []:

```
In [42]: sns.histplot(data=clear_fiber_data, x='Fiber Diameter (nm)', bins=30, kde=Tr
Out[42]: <Axes: xlabel='Fiber Diameter (nm)', ylabel='Count'>
```


MODEL BUILDING

```
In [43]: X = clear_fiber_data.drop("Fiber Diameter (nm)",axis=1)
y = clear_fiber_data["Fiber Diameter (nm)"]

In [44]: from sklearn.preprocessing import StandardScaler, MinMaxScaler

# Create an instance of the StandardScaler
scaler = StandardScaler()

# Define the columns you want to standardize
columns_to_standardize = ['Polymer Concentration (wt%)', 'Voltage (kV)', 'Di
# Apply standardization to the selected columns
#X[columns_to_standardize] = scaler.fit_transform(X[columns_to_standardize])

# Create an instance of the MinMaxScaler
minmax_scaler = MinMaxScaler(feature_range=(0, 1))

# Apply normalization to the selected columns
X[columns_to_standardize] = minmax_scaler.fit_transform(X[columns_to_standardize])
```

In [45]: X.describe()

Out[45]:

_	Polymer Concentration (wt%)	RED	Voltage (kV)	Distance (cm)	Feed (mL/h)	Flory-Huggins χ parameter
count	288.000000	288.000000	288.000000	288.000000	288.000000	288.000000
mean	0.502821	0.162954	0.267202	0.500041	0.081064	0.026135
std	0.229990	0.096776	0.202071	0.187598	0.120477	0.028241
min	0.000000	0.075116	0.000000	0.000000	0.000000	0.004041
25%	0.313901	0.075116	0.138462	0.364372	0.028622	0.004888
50%	0.538117	0.103183	0.230769	0.485830	0.045230	0.007533
75%	0.650224	0.218750	0.293846	0.607287	0.072085	0.034500
max	1.000000	0.490026	1.000000	1.000000	1.000000	0.165076

TRAIN_TEST_SPLIT

```
In [46]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, r
```

RandomForestRegressor

```
In [47]: from sklearn.model_selection import GridSearchCV
         from sklearn.ensemble import RandomForestRegressor
         # Create the RandomForestRegressor model
         model 1=RandomForestRegressor()
         # Define the hyperparameters and their values to search over
         model_1_param_grid = {
             'n_estimators': [3,5,10,20,50],
             'max_depth': [None, 5, 10],
              'min_samples_split': [2, 5, 10],
              'min_samples_leaf': [1, 2, 5, 10],
             'max_features': ['auto', 'sqrt', 'log2', None]
         }
         model 1 num combination = 1
         for model_1_k in model_1_param_grid.keys():
             model_1_num_combination *= len(model_1_param_grid[model_1_k])
         print("Number of Combinations: ", model_1_num_combination)
         # Perform grid search
         model_1_grid_search = GridSearchCV(estimator=model_1, param_grid=model_1_par
         model_1_grid_search.fit(X_train, y_train)
         Number of Combinations: 720
Out[47]:
                     GridSearchCV
           ▶ estimator: RandomForestRegressor
                 ▶ RandomForestRegressor
In [48]: # Get the best hyperparameters and the best model for model_1
         model_1_best_params = model_1_grid_search.best_params_
         model 1 best model = model 1 grid search.best estimator
In [49]: model 1 best params
Out[49]: {'max depth': 10,
           'max_features': 'log2',
           'min_samples_leaf': 2,
           'min_samples_split': 5,
           'n_estimators': 5}
```

```
In [50]: from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_scor
         # Model_1 Train evaluation
         y predict model 1 train = model 1 grid search.predict(X train)
         model_1_mae_train = mean_absolute_error(y_train, y_predict_model_1_train)
         model_1_mse_train = mean_squared_error(y_train, y_predict_model_1_train)
         model_1_rmse_train = np.sqrt(model_1_mse_train)
         model_1_r2_train = r2_score(y_train, y_predict_model_1_train)
         print("Model_1 Training evaluation")
         print("Mean Absolute Error:", model_1_mae_train)
         print("Mean Squared Error:", model_1_mse_train)
         print("Root Mean Squared Error:", model_1_rmse_train)
         print("R-squared Score:", model_1_r2_train)
         print()
         Model_1 Training evaluation
         Mean Absolute Error: 234.83182463454992
         Mean Squared Error: 223887.45273241925
         Root Mean Squared Error: 473.16746795655683
         R-squared Score: 0.8747039104239243
In [51]: # Model 1 Test evaluation
         y_predict_model_1 = model_1_grid_search.predict(X_test)
         model_1_mae = mean_absolute_error(y_test, y_predict_model_1)
         model_1_mse = mean_squared_error(y_test, y_predict_model_1)
         model_1_rmse = np.sqrt(model_1_mse)
         model_1_r2 = r2_score(y_test, y_predict_model_1)
         print("Model 1 Test evaluation")
         print("Mean Absolute Error:", model_1_mae)
         print("Mean Squared Error:", model_1_mse)
         print("Root Mean Squared Error:", model_1_rmse)
         print("R-squared Score:", model_1_r2)
         print()
         Model 1 Test evaluation
         Mean Absolute Error: 234.1752678990775
         Mean Squared Error: 159512.0249568771
         Root Mean Squared Error: 399.38956540810767
         R-squared Score: 0.9228177399040016
In [52]: # Accuracy of the model
         model_1_accuracy = model_1_grid_search.score(X_test, y_test)
         model_1_accuracy
```

Out[52]: 0.9228177399040016

SVM

```
In [53]: from sklearn.svm import SVR
         # Create the SVR model
         model 2 = SVR()
         # Define the hyperparameters and their values to search over
         model_2_param_grid = {
             'kernel': ['rbf','poly','sigmoid','linear'],
             'C': [0.1, 1, 10, 100, 1000],
             'gamma': ['scale', 'auto'],
         model_2_num_combination = 1
         for model_2_k in model_2_param_grid.keys():
             model_2_num_combination *= len(model_2_param_grid[model_2_k])
         print("Number of Combinations: ", model_2_num_combination)
         # Perform grid search
         model_2_grid_search = GridSearchCV(estimator=model_2, param_grid=model_2_par
         model_2_grid_search.fit(X_train, y_train)
         Number of Combinations: 40
Out[53]:
          ▶ GridSearchCV
           ▶ estimator: SVR
                 ▶ SVR
In [54]: # Get the best hyperparameters and the best model for model_3
         model_2_best_params = model_2_grid_search.best_params_
         model_2_best_model = model_2_grid_search.best_estimator_
In [55]: model_2_best_params
Out[55]: {'C': 1000, 'gamma': 'scale', 'kernel': 'poly'}
```

```
In [56]: # Model_2 Train evaluation
         y_predict_model_2_train = model_2_grid_search.predict(X_train)
         model 2 mae train = mean_absolute_error(y_train, y_predict_model_2_train)
         model_2_mse_train = mean_squared_error(y_train, y_predict_model_2_train)
         model_2_rmse_train = np.sqrt(model_2_mse_train)
         model_2_r2_train = r2_score(y_train, y_predict_model_2_train)
         print("Model 2 Train evaluation")
         print("Mean Absolute Error:", model_2_mae_train)
         print("Mean Squared Error:", model_2_mse_train)
         print("Root Mean Squared Error:", model_2_rmse_train)
         print("R-squared Score:", model_2_r2_train)
         print()
         Model 2 Train evaluation
         Mean Absolute Error: 331.755898932371
         Mean Squared Error: 584048.6471235857
         Root Mean Squared Error: 764.2307551542176
         R-squared Score: 0.6731437572151795
In [57]: # Model_2 test evaluation
         y predict model 2 = model 2 grid search.predict(X test)
         model_2_mae = mean_absolute_error(y_test, y_predict_model_2)
         model_2_mse = mean_squared_error(y_test, y_predict_model_2)
         model_2_rmse = np.sqrt(model_2_mse)
         model_2_r2 = r2_score(y_test, y_predict_model_2)
         print("Model_2 test evaluation")
         print("Mean Absolute Error:", model_2_mae)
         print("Mean Squared Error:", model_2_mse)
         print("Root Mean Squared Error:", model 2 rmse)
         print("R-squared Score:", model 2 r2)
         print()
         Model 2 test evaluation
         Mean Absolute Error: 312.2129615266444
         Mean Squared Error: 345917.6031665916
         Root Mean Squared Error: 588.147603214186
         R-squared Score: 0.8326226350232466
In [58]: # Accuracy of the model
         model_2_accuracy = model_2_grid_search.score(X_test, y_test)
         model_2_accuracy
Out[58]: 0.8326226350232466
```

KNeighborsRegressor

```
In [59]: from sklearn.neighbors import KNeighborsRegressor
         # Create the KNeighborsRegressor model
         model_3 = KNeighborsRegressor()
         # Define the hyperparameters and their values to search over
         model_3_param_grid = {
              'n_neighbors': [1,3,5,7,9,11],
              'weights': ['uniform', 'distance'],
             'metric': ['minkowski','euclidean','manhattan'],
             'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'],
              'leaf_size': [10, 20, 30, 40],
              'p': [1, 2]
         }
         model_3_num_combination = 1
         for model_3_k in model_3_param_grid.keys():
             model_3_num_combination *= len(model_3_param_grid[model_3_k])
         print("Number of Combinations: ", model_3_num_combination)
         # Perform grid search
         model_3_grid_search = GridSearchCV(estimator=model_3, param_grid=model_3_par
         model_3_grid_search.fit(X_train, y_train)
         Number of Combinations: 1152
Out[59]:
                    GridSearchCV
           • estimator: KNeighborsRegressor
                ▶ KNeighborsRegressor
         # Get the best hyperparameters and the best model for model_4
In [60]:
         model_3_best_params = model_3_grid_search.best_params_
         model_3_best_model = model_3_grid_search.best_estimator_
In [61]: model_3_best_params
Out[61]: {'algorithm': 'ball_tree',
          'leaf size': 10,
           'metric': 'minkowski',
           'n neighbors': 3,
          'p': 1,
           'weights': 'uniform'}
```

```
In [62]: # Model_3 Train evaluation
         y_predict_model_3_train = model_3_grid_search.predict(X_train)
         model 3 mae train = mean_absolute_error(y_train, y_predict_model_3_train)
         model_3_mse_train = mean_squared_error(y_train, y_predict_model_3_train)
         model_3_rmse_train = np.sqrt(model_3_mse_train)
         model_3_r2_train = r2_score(y_train, y_predict_model_3_train)
         print("Model_3 Train evaluation")
         print("Mean Absolute Error:", model_3_mae_train)
         print("Mean Squared Error:", model_3_mse_train)
         print("Root Mean Squared Error:", model_3_rmse_train)
         print("R-squared Score:", model_3_r2_train)
         print()
         Model 3 Train evaluation
         Mean Absolute Error: 153.65518566741585
         Mean Squared Error: 118890.7839443876
         Root Mean Squared Error: 344.80542911095176
         R-squared Score: 0.9334641127358326
In [63]: # test the model
         y_predict_model_3 = model_3_grid_search.predict(X_test)
         model_3_mae = mean_absolute_error(y_test, y_predict_model_3)
         model_3_mse = mean_squared_error(y_test, y_predict_model_3)
         model_3_rmse = np.sqrt(model_3_mse)
         model_3_r2 = r2_score(y_test, y_predict_model_3)
         print("Model_4 evaluation")
         print("Mean Absolute Error:", model_3_mae)
         print("Mean Squared Error:", model_3_mse)
         print("Root Mean Squared Error:", model_3_rmse)
         print("R-squared Score:", model 3 r2)
         print()
         Model 4 evaluation
         Mean Absolute Error: 209.5362359395169
         Mean Squared Error: 127534.29774995463
         Root Mean Squared Error: 357.11944465396255
         R-squared Score: 0.9382906376948159
In [64]: # Accuracy of the model
         model_3_accuracy = model_3_grid_search.score(X_test, y_test)
         model_3_accuracy
Out[64]: 0.9382906376948159
```

GradientBoostingRegressor

```
In [65]: from sklearn.ensemble import GradientBoostingRegressor
         # Create the GradientBoostingRegressor model
         model_4=GradientBoostingRegressor()
         # Define the hyperparameters and their values to search over
         model 4 param grid = {
              'n_estimators': [3,5,10,20,40],
              'learning_rate': [0.01, 0.1, 0.5],
             'max_depth': [3, 5, 7],
             'min_samples_split': [2, 5, 10],
              'min_samples_leaf': [1, 2, 4],
              'max_features': ['auto', 'sqrt', 'log2',None]
         model_4_num_combination = 1
         for model 4 k in model 4 param grid.keys():
             model_4_num_combination *= len(model_4_param_grid[model_4_k])
         print("Number of Combinations: ", model_4_num_combination)
         # Perform grid search
         model_4 grid_search = GridSearchCV(estimator=model_4, param_grid=model_4 par
         model_4_grid_search.fit(X_train, y_train)
         Number of Combinations: 1620
Out[65]:
                        GridSearchCV
           ▶ estimator: GradientBoostingRegressor
                 ▶ GradientBoostingRegressor
         # Get the best hyperparameters and the best model for model 2
         model_4_best_params = model_4_grid_search.best_params_
         model_4_best_model = model_4_grid_search.best_estimator_
In [67]: model_4_best_params
Out[67]: {'learning_rate': 0.5,
           'max_depth': 5,
           'max features': 'sqrt',
           'min_samples_leaf': 1,
           'min_samples_split': 10,
           'n_estimators': 40}
```

```
In [68]: # Model_4 train evaluation
    y_predict_model_4_train = model_4_grid_search.predict(X_train)

model_4_mae_train = mean_absolute_error(y_train, y_predict_model_4_train)
    model_4_mse_train = mean_squared_error(y_train, y_predict_model_4_train)
    model_4_rmse_train = np.sqrt(model_4_mse_train)
    model_4_r2_train = r2_score(y_train, y_predict_model_4_train)

print("Model_4 Train evaluation")
    print("Mean Absolute Error:", model_4_mae_train)
    print("Mean Squared Error:", model_4_mse_train)
    print("Root Mean Squared Error:", model_4_rmse_train)
    print("R-squared Score:", model_4_r2_train)

print()
```

Model_4 Train evaluation

Mean Absolute Error: 59.8707211419737 Mean Squared Error: 12712.591476786585 Root Mean Squared Error: 112.75012850008902

R-squared Score: 0.9928855414585327

```
In [69]: # test the model
y_predict_model_4 = model_4_grid_search.predict(X_test)

model_4_mae = mean_absolute_error(y_test, y_predict_model_4)
model_4_mse = mean_squared_error(y_test, y_predict_model_4)
model_4_rmse = np.sqrt(model_4_mse)
model_4_r2 = r2_score(y_test, y_predict_model_4)

print("Model_4 Test evaluation")
print("Mean Absolute Error:", model_4_mae)
print("Mean Squared Error:", model_4_mse)
print("Root Mean Squared Error:", model_4_rmse)
print("R-squared Score:", model_4_r2)

print()
```

Model_4 Test evaluation

Mean Absolute Error: 200.47366712303446 Mean Squared Error: 106377.55639116574 Root Mean Squared Error: 326.1557241428789

R-squared Score: 0.948527640922499

XGBoost

```
In [70]: import xgboost as xgb
         # Create the XGBoost model
         model_5 = xgb.XGBRegressor()
         # Define the hyperparameters and their values to search over
         model_5_param_grid = {
              'learning_rate': [0.01, 0.1, 0.5],
              'n_estimators': [100, 200, 300],
             'max_depth': [3, 5, 7],
             'reg_alpha': [0, 0.1, 1],
              'reg_lambda': [0, 0.1, 1],
              'subsample': [0.8, 1.0],
             'colsample_bytree': [0.8, 1.0],
              'gamma': [0, 0.1, 0.2]
         }
         model_5_num_combination = 1
         for model_5_k in model_5_param_grid.keys():
             model_5_num_combination *= len(model_5_param_grid[model_5_k])
         print("Number of Combinations: ", model_5_num_combination)
         # Perform grid search
         model_5_grid_search = GridSearchCV(estimator=model_5, param_grid=model_5_par
         model 5 grid search.fit(X train, y train)
         Number of Combinations: 2916
Out[70]:
                  GridSearchCV
           ▶ estimator: XGBRegressor
                 ▶ XGBRegressor
In [71]: # Get the best hyperparameters and the best model for model_5
         model_5_best_params = model_5_grid_search.best_params_
         model 5 best model = model 5 grid search.best estimator
In [72]: model_5_best_params
Out[72]: {'colsample_bytree': 0.8,
           gamma': 0,
           'learning_rate': 0.1,
           'max depth': 3,
           'n_estimators': 300,
           'reg_alpha': 0.1,
           'reg lambda': 0,
           'subsample': 1.0}
```

```
In [73]: # Model_5 train evaluation
y_predict_model_5_train = model_5_grid_search.predict(X_train)

model_5_mae_train = mean_absolute_error(y_train, y_predict_model_5_train)
model_5_mse_train = mean_squared_error(y_train, y_predict_model_5_train)
model_5_rmse_train = np.sqrt(model_5_mse_train)
model_5_r2_train = r2_score(y_train, y_predict_model_5_train)

print("Model_5 Train evaluation")
print("Mean Absolute Error:", model_5_mae_train)
print("Mean Squared Error:", model_5_mse_train)
print("Root Mean Squared Error:", model_5_rmse_train)
print("R-squared Score:", model_5_r2_train)

print()

Model_5 Train evaluation
```

Mean Absolute Error: 65.51598101267386 Mean Squared Error: 13254.01179320743 Root Mean Squared Error: 115.12606912948705 R-squared Score: 0.9925825416805789

```
In [74]: # Model_5 test evaluation
    y_predict_model_5 = model_5_grid_search.predict(X_test)

model_5_mae = mean_absolute_error(y_test, y_predict_model_5)
    model_5_mse = mean_squared_error(y_test, y_predict_model_5)
    model_5_rmse = np.sqrt(model_5_mse)
    model_5_r2 = r2_score(y_test, y_predict_model_5)

print("Model_5 test evaluation")
    print("Mean Absolute Error:", model_5_mae)
    print("Mean Squared Error:", model_5_mse)
    print("Root Mean Squared Error:", model_5_rmse)
    print("R-squared Score:", model_5_r2)

print()
```

Model 5 test evaluation

Mean Absolute Error: 212.9593244876682 Mean Squared Error: 134670.05909928257 Root Mean Squared Error: 366.9741940508659

R-squared Score: 0.9348378936863583

```
In [75]: # Evaluate the model
accuracy = model_5_grid_search.score(X_test, y_test)
accuracy
```

Out[75]: 0.9348378936863583

RESULT

```
In [76]: rows = []
         model_name=["RandomForestRegressor","SVM","KNeighborsRegressor","GradientBod
         # Loop through the range 1 to 5
         for i in range(1, 6):
             # Assign values to model-specific variables
             model_mae = f"model_{i}_mae"
             model_mse = f"model_{i}_mse"
             model_rmse = f"model_{i}_rmse"
             model r2 = f"model {i} r2"
             model_best_params = f"model_{i}_best_params"
             # Create a dictionary for the model performance metrics
             performance_dict = {
                 'Model': model_name[i-1],
                 'Mean Absolute Error (MAE)': eval(model_mae),
                 'Mean Squared Error (MSE)': eval(model_mse),
                  'Root Mean Squared Error (RMSE)': eval(model_rmse),
                  'R-squared Score': eval(model_r2),
                 'Best Hyperparameters': eval(model_best_params)
             }
             # Append the performance dictionary to the list
             rows.append(performance_dict)
         # Convert the list of dictionaries into a DataFrame
         performance_df = pd.DataFrame(rows)
```

In [77]: performance_df

Out[77]:

	Model	Mean Absolute Error (MAE)	Mean Squared Error (MSE)	Root Mean Squared Error (RMSE)	R- squared Score	B Hyperparamet
0	RandomForestRegressor	234.175268	159512.024957	399.389565	0.922818	{'max_depth': 'max_featur 'log2', 'mi
1	SVM	312.212962	345917.603167	588.147603	0.832623	{'C': 1000, 'gamn 'scale', 'kerr 'pc
2	KNeighborsRegressor	209.536236	127534.297750	357.119445	0.938291	{'algorith 'ball_tr 'leaf_size': 10, 'r
3	GradientBoostingRegressor	200.473667	106377.556391	326.155724	0.948528	{'learning_rate': ('max_depth' 'max_f
4	XGBRegressor	212.959324	134670.059099	366.974194	0.934838	{'colsample_bytre 0.8, 'gamma' 'learni

```
In [80]: import matplotlib.pyplot as plt

# Create a scatter plot of observed versus predicted values
plt.scatter(y_test, y_predict_model_4, alpha=0.5)
plt.xlabel('Observed Values')
plt.ylabel('Predicted Values')
plt.title('Observed vs Predicted Fiber Diameter')

# Add a diagonal line for reference (perfect predictions)
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 'r--')

# Show the plot
plt.show()
```



```
In [81]:
         import numpy as np
         import matplotlib.pyplot as plt
         # Train the XGBoost Regressor model
         model = GradientBoostingRegressor(**model_4_best_params)
         model.fit(X_train, y_train)
         # Get the feature importances
         importances = model.feature_importances_
         features = X_train.columns
         # Sort feature importances in descending order
         indices = np.argsort(importances)[::-1]
         # Plot the feature importances
         plt.figure(figsize=(10, 6))
         plt.title("Feature Importance - Gradient Boosting Regressor")
         plt.bar(range(len(importances)), importances[indices], align="center")
         plt.xticks(range(len(importances)), [features[i] for i in indices], rotation
         plt.xlabel("Features")
         plt.ylabel("Importance")
         plt.tight_layout()
         # Show the plot
         plt.show()
```



```
In [ ]:
```