信号与系统

名称	对象	定义		关键词	性质	备注
		正变换	逆变换	八姓四	口灰	田仁
傅立叶级数	连续周期 信号	$F(k\omega_1) = \frac{1}{T_1} \int_{t_0}^{t_0 + T_1} f(t) e^{-jk\omega_1 t} dt$	$f(t) = \sum_{k=-\infty}^{+\infty} F(k\omega_1) e^{jk\omega_1 t}$	t, ω, T_1, ω_1	时域周期,频域离散; 时域连续,频域不周期	
	离散周期 信号	$X_d(k) = \sum_{n=n_0}^{n_0+N_1-1} x_d(n)e^{-jk\theta_1 n}$	$x_d(n) = \frac{1}{N_1} \sum_{k=0}^{n_0 + N_1 - 1} X_d(k) e^{jk\theta_1 n}$	n, θ, N_1, θ_1	时域周期,频域离散; 时域离散,频域周期	(I)DFS
傅立叶 变换	连续非周 期信号	$F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} dt$	t, ω	线性, 奇偶虚实; 尺度; 时频对称; 时/频平移; 时/频微分; 时/频卷积; 帕赛瓦尔定理	
	离散非周 期信号	$X_d(e^{j\theta}) = \sum_{n=-\infty}^{+\infty} x_d(n)e^{-j\theta n}$	$x_d(n) = \frac{1}{2\pi} \int_{2\pi} X_d(n) e^{j\theta n} d\theta$	n, θ	线性;奇偶虚实(+反褶); 时/频平移;线性加权; 时/频卷积;帕赛瓦尔定理	(I)DTFT
拉普拉斯变换	连续信号	$F_b(s) = \int_{-\infty}^{+\infty} f(t)e^{-st} dt$ $F_b(s) = \int_{0_{-}}^{+\infty} f(t)e^{-st} dt$	$f(t) = \frac{1}{2\pi i} \int_{\sigma - j\infty}^{\sigma + j\infty} F_b(s) e^{st} ds$	t, s	线性;尺度; 时/s 平移;时/s 微/积分; 时/s 卷积;初/终值定理	
Z变换	离散信号	$X_{d}(z) = \sum_{n=-\infty}^{+\infty} x_{d}(n)z^{-n}$	$x_{d}(n) = \frac{1}{j2\pi} \oint_{C} X_{d}(z) z^{n-1} dz$	n, z	线性;指数加权; 时/z 平移;线性加权; 时/z 卷积;初/终值定理	
		$X_d(z) = \sum_{n=0}^{+\infty} x_d(n) z^{-n}$				

- 注 1: 冲激抽样常用以连续信号对待,关键词还包括 T_s , ω_s ,数值抽样常以离散信号对待;
- 注 2: 对于连续函数,傅立叶变换的对象也可为周期函数(自然或延拓),但对于离散函数,傅立叶变换的对象则不可为周期函数;
- 注 3: 对于离散信号变换的误差分析常考虑泄露误差和混叠误差,前者和截取长度有关,后者因为抽样间隔有关;
- 注 4: 各种常见函数的变换(略);
- 注 5: 拉普拉斯变换、Z 变换的逆变换的求法(略);
- 注 6: 傅立叶级数、傅立叶变换在离散和连续函数之间的关系(略);
- 注 6: 拉普拉斯变换、Z变换在离散和连续函数之间的关系(略);
- 注 7: 离散系统和连续系统的系统函数及频率响应特性(略)。