Zadania

May 2, 2025

1 Realizacja część 1

** Przygotował:** Paweł Jan Tłusty

IDE: jupyter studio + IRKernel Export do pdf: pandoc

sudo apt-get install texlive texlive-latex-extra pandoc texlive-xetex

** Wersja online:** Notes dostępny również w serwisie GitHub (niektóre wykresy niewłaściwie dzedziczą style, zaleca zaleca się jasny motyw lub otwieranie poszczególnych wykresów jako obraz w nowej karcie)

1.1 Zadanie 1

Liczba strzelonych bramek w kolejnych meczach przez pewną drużynę piłkarską jest następująca:

Zbadać, czy ilość zdobytych goli w meczu jest zgodna z rozkładem Poissona. Parametry rozkładu oszacować na podstawie danych.

1.1.1 Hipotezy statystyczne:

- H (hipoteza zerowa): rozkład liczby goli jest zgodny z rozkładem Poissona.
- H (hipoteza alternatywna): rozkład liczby goli nie jest zgodny z rozkładem Poissona.

[2]: n <- length(gole)

[3]: n

43

```
[4]: # Oszacowanie parametru dla rozkładu Poissona
      lambda_hat <- mean(gole)</pre>
 [5]: lambda_hat
      1.09302325581395
 [6]: ## Dane empiryczne
      ### Ile razy występuje dana liczba goli
      obs <- table(gole)</pre>
      obs
     gole
      0 1 2 3 4
      15 15 8 4 1
 [7]: k <- 0:max(gole)
 [8]: k
      1, 0 2, 1 3, 2 4, 3 5, 4
 [9]: # Teoretyczne prawdopodobieństwa z rozkładu Poissona
      probs <- dpois(k, lambda_hat)</pre>
[10]: probs
      1. \quad 0.335201560212229 \quad 2. \quad 0.366383100697087 \quad 3. \quad 0.200232624799571 \quad 4. \quad 0.0729529718262003
      5. 0.0199348236966943
[11]: # Oczekiwane liczności
      exp <- probs * n
      names(exp) <- k</pre>
      exp
           14.4136670891258 1
                                 15.7544733299748 2
                                                        8.61000286638155 3
                                                                              3.13697778852661 4
      0.857197418957853
[12]: ## Wizualizacja
      df <- data.frame(</pre>
        gole = factor(names(obs), levels = as.character(0:max(gole))),
        obserwowane = as.numeric(obs),
        oczekiwane = as.numeric(exp)
      )
[13]: # Załadowanie biblioteki
      library(ggplot2)
```

Rozkład liczby goli: obserwowany vs teoretyczny (Poisson)


```
[20]: gole_kategorie <- as.character(0:max(gole))</pre>
      obserwowane <- as.numeric(table(factor(gole, levels = 0:max(gole))))</pre>
      oczekiwane <- exp
      df_obserw <- data.frame(gole = gole_kategorie, liczność = obserwowane, typ =⊔
       →"Obserwowane")
      df_oczek <- data.frame(gole = gole_kategorie, liczność = oczekiwane, typ =__
       →"Oczekiwane")
      df_final <- rbind(df_obserw, df_oczek)</pre>
      ggplot(df_final, aes(x = gole, y = liczność, fill = typ)) +
        geom_bar(stat = "identity", position = position_dodge(width = 0.7), width = 0.
       ⇔6) +
        scale_fill_manual(values = c("Obserwowane" = "skyblue", "Oczekiwane" = __

¬"orange")) +
        labs(
          title = "Rozkład liczby goli: obserwowany vs teoretyczny (Poisson)",
          x = "Liczba goli",
          y = "Liczność",
         fill = "Typ"
        ) +
        theme minimal()
```



```
[]: | ## Teraz powinniśmy przeprowadzić test zgodności
```

```
[21]: # Oczekiwane liczności
oczekiwane

# Warunki:
sum(oczekiwane < 1) # ile klas ma < 1
sum(oczekiwane < 5) / length(oczekiwane) # jaki % ma < 5
```

0 14.4136670891258 **1** 15.7544733299748 **2** 8.61000286638155 **3** 3.13697778852661 **4** 0.857197418957853

1

0.4

```
[22]: # bazując na tych danych dobrze by było połączyć 3 i 4
     gole
      0 1 2 3 4
     15 15 8 4 1
[23]: obs["3+"] <- sum(obs["3"], obs["4"])
      obs <- obs[c("0", "1", "2", "3+")]
[24]: obs
      0 1 2 3+
     15 15 8 5
[25]: oczekiwane
     0
          14.4136670891258 1
                              15.7544733299748 2
                                                   8.61000286638155 3
                                                                        3.13697778852661 4
      0.857197418957853
[27]: oczekiwane["3+"] <- sum(oczekiwane[4:5])
[28]: oczekiwane
          14.4136670891258 1
                              15.7544733299748 2
                                                   8.61000286638155 3
                                                                        3.13697778852661 4
      0.857197418957853 3+
                                                  3.99417520748446
[29]: oczekiwane <- oczekiwane[c(1:3, 6)]
      names(oczekiwane) <- names(obs)</pre>
[30]: oczekiwane
         14.4136670891258 1 15.7544733299748 2
                                                 8.61000286638155 3+
                                                                       3.99417520748446
[31]: test_chikwadrat <- chisq.test(
        x = as.numeric(obs),
       p = oczekiwane / sum(oczekiwane),
        rescale.p = TRUE
      )
     Warning message in chisq.test(x = as.numeric(obs), p =
     oczekiwane/sum(oczekiwane), :
     "Chi-squared approximation may be incorrect"
[32]: test chikwadrat
```

Chi-squared test for given probabilities

```
data: as.numeric(obs)
X-squared = 0.3534, df = 3, p-value = 0.9497
```

```
[33]: rozn_bezwzgl <- abs(obs - oczekiwane)
procent_dopasowanych <-mean(rozn_bezwzgl <= 1) * 100
```

Dopasowanie (klas z różnicą 1): 75 %

1.1.2 Wnioski zadanie 1

Hipotezy statystyczne: - H (hipoteza zerowa): rozkład liczby goli jest zgodny z rozkładem Poissona. - H (hipoteza alternatywna): rozkład liczby goli nie jest zgodny z rozkładem Poissona.

Wniosek: Brak podstaw do odrzucenia hipotezy zerowej. p-value - bardzo duże / znacznie większe od 0.05.

Przemyślenia: Być może dodatkowa weryfiakcja przy pomocy Monte Carlo?

1.2 Zadanie 2: Weryfikacja zgodności z rozkładem chi-kwadrat

Na podstawie podanej próbki należy zweryfikować hipotezę, że cecha X ma rozkład chi-kwadrat.

```
1.0,\ 4.7,\ 5.2,\ 7.6,\ 2.9,\ 6.5,\ 4.3,\ 1.3,\ 1.6,\ 3.3,\ 0.5,\ 1.8,\ 15.4,\ 2.7,\ 9.6,\ 11.6,\ 23.2,\ 3.2,\ 3.4,\ 12.4,\ 19.5
```

Część (a): - Wykonać test Kołmogorowa-Smirnowa dla zgodności z rozkładem chi-kwadrat. - Porównać dystrybuantę empiryczną z teoretyczną (na wykresie).

Część (b): - Porównać kwantyle empiryczne i teoretyczne za pomocą wykresu Q-Q.

Hipotezy statystyczne: - H (hipoteza zerowa): próba pochodzi z rozkładu X^2. - H (hipoteza alternatywna): próba nie pochodzi z rozkładu X^2

```
[35]: x <- c(1.0, 4.7, 5.2, 7.6, 2.9, 6.5, 4.3, 1.3, 1.6, 3.3, 0.5, 1.8, 15.4, 2.7, 9.6, 11.6, 23.2, 3.2, 3.4, 12.4, 19.5)
```

```
[36]: n <- length(x)
```

21

1.2.1 Z2.a test Kołmogorowa-Smirnowa dla zgodności z rozkładem chi-kwadrat

```
[38]: ## est stopni swobody
      df_hat <- mean(x)</pre>
[39]: df_hat
     6.74761904761905
[40]: ks.test(x, "pchisq", df = df_hat)
             Exact one-sample Kolmogorov-Smirnov test
     data: x
     D = 0.30233, p-value = 0.03367
     alternative hypothesis: two-sided
[41]: dystr_empiryczna <- ecdf(x)
      # Zakres wartości
      x_wykres <- seq(min(x), max(x), length.out = 200)</pre>
      # Rysowanie wykresu
      plot(dystr_empiryczna, verticals = TRUE, do.points = FALSE,
           main = "Dystrybuanta empiryczna vs teoretyczna",
           xlab = "Wartości cechy X", ylab = "Prawdopodobieństwo skumulowane")
      # Teoretyczna dystrybuanta chi-kwadrat
      lines(x_wykres, pchisq(x_wykres, df = df_hat),
            col = "red", lwd = 2)
      legend("bottomright", legend = c("Empiryczna", "Teoretyczna 2"),
             col = c("black", "red"), lwd = c(1, 2))
```

Dystrybuanta empiryczna vs teoretyczna


```
[42]: ### Wnioski część (a)
Przy załozeniu progu istotności p-value == 0.05.
Test Kołmogorowa-Smirnowa wykazał p-wartość 0.033, co oznacza, że istnieją∟
⇒statystyczne podstawy do odrzucenia hipotezy zgodności z rozkładem∟
⇒chi-kwadrat
```

1.2.2 Z2.b wykres kwantylowy (Q-Q plot)

```
[43]: # asc sort (kwantyle empiryczne)
x_empiryczne <- sort(x)

# # Kwantyle teoretyczne (z rozkładu chi-kwadrat o df_hat)
kwantyle_teoretyczne <- qchisq(ppoints(n), df = df_hat)
```

[45]: x_empiryczne

 $1. \ 0.5 \ 2. \ 1 \ 3. \ 1.3 \ 4. \ 1.6 \ 5. \ 1.8 \ 6. \ 2.7 \ 7. \ 2.9 \ 8. \ 3.2 \ 9. \ 3.3 \ 10. \ 3.4 \ 11. \ 4.3 \ 12. \ 4.7 \ 13. \ 5.2 \ 14. \ 6.5 \ 15. \ 7.6 \ 16. \ 9.6 \ 17. \ 11.6 \ 18. \ 12.4 \ 19. \ 15.4 \ 20. \ 19.5 \ 21. \ 23.2$

[44]: kwantyle_teoretyczne

- $1. \quad 1.54462427051942 \quad 2. \quad 2.33096538125728 \quad 3. \quad 2.8749947773806 \quad 4. \quad 3.33476934436616$
- $5. \quad 3.75295516614992 \quad 6. \quad 4.14883460199186 \quad 7. \quad 4.53353548070311 \quad 8. \quad 4.91466785143739$
- $9. \quad 5.29822204351978 \quad 10. \quad 5.68954011714865 \quad 11. \quad 6.09394293137503 \quad 12. \quad 6.51725995266972$
- $17. \quad 9.26108836834429 \quad 18. \quad 10.0855238579207 \quad 19. \quad 11.1426621231644 \quad 20. \quad 12.6717197778583$
- 21. 15.755016482405

Wykres Q-Q: empiryczne vs chi-kwadrat

Punkty znacząco odbiegają od linii idealnego dopasowania. Największe \Box rozbieżoności występują w górnych kwantylach Wykres Q-Q wspiera wynik testu KS z punktu a.

1.3 Zadanie 3: Analiza wpływu nawozu na plony

1.3.1 Polecenie:

W pewnym doświadczeniu rolniczym bada się plony nowej odmiany pszenicy (w kwintalach na hektar) w zależności od rodzaju nawozu. Należy:

(a) Zweryfikować hipotezę H , że rozkłady plonów dla każdego typu nawozu są jednakowe, wykorzystując test Kruskala–Wallisa.

(b) Obliczyć średnia rangę dla każdej grupy.

Dane:

```
• n1 = c(35, 32, 33.5, 36, 38, 30, 32.5, 31, 34)
```

- n2 = c(28.5, 32, 33, 34, 28, 30.5, 30, 32)
- n3 = c(26.5, 29, 33, 31, 28, 25.5, 29, 32, 29.5, 32)
- n4 = c(30.5, 25.5, 32.5, 27, 34.5, 31)

1.3.2 Z3.a Kruskal-Wallis - rozkłady plonów dla każdego typu nawozu są jednakowe

```
[47]: n1 <- c(35, 32, 33.5, 36, 38, 30, 32.5, 31, 34)
n2 <- c(28.5, 32, 33, 34, 28, 30.5, 30, 32)
n3 <- c(26.5, 29, 33, 31, 28, 25.5, 29, 32, 29.5, 32)
n4 <- c(30.5, 25.5, 32.5, 27, 34.5, 31)
```

```
[48]: plony <- c(n1, n2, n3, n4)
```

```
[49]: grupy <- factor(c(
    rep("n1", length(n1)),
    rep("n2", length(n2)),
    rep("n3", length(n3)),
    rep("n4", length(n4))
))</pre>
```

[50]: grupy

 $1. \ n1 \ 2. \ n1 \ 3. \ n1 \ 4. \ n1 \ 5. \ n1 \ 6. \ n1 \ 7. \ n1 \ 8. \ n1 \ 9. \ n1 \ 10. \ n2 \ 11. \ n2 \ 12. \ n2 \ 13. \ n2 \ 14. \ n2 \ 15. \ n2 \ 16. \ n2 \ 17. \ n2 \ 18. \ n3 \ 19. \ n3 \ 20. \ n3 \ 21. \ n3 \ 22. \ n3 \ 23. \ n3 \ 24. \ n3 \ 25. \ n3 \ 26. \ n3 \ 27. \ n3 \ 28. \ n4 \ 29. \ n4 \ 30. \ n4 \ 31. \ n4 \ 32. \ n4 \ 33. \ n4$

Levels: 1. 'n1' 2. 'n2' 3. 'n3' 4. 'n4'

```
[51]: plony
```

1. 35 2. 32 3. 33.5 4. 36 5. 38 6. 30 7. 32.5 8. 31 9. 34 10. 28.5 11. 32 12. 33 13. 34 14. 28 15. 30.5 16. 30 17. 32 18. 26.5 19. 29 20. 33 21. 31 22. 28 23. 25.5 24. 29 25. 32 26. 29.5 27. 32 28. 30.5 29. 25.5 30. 32.5 31. 27 32. 34.5 33. 31

```
[52]: test_kw <- kruskal.test(plony ~ grupy)
```

```
[53]: test_kw
```

Kruskal-Wallis rank sum test

```
data: plony by grupy
Kruskal-Wallis chi-squared = 8.9766, df = 3, p-value = 0.0296
```

1.3.3 Z3.a Wnioski

Wyniki testu: - Statystyka testowa: $^2 = 8.9766$ - Stopnie swobody: df = 3 - p-wartość: 0.0296

Hipotezy: - **H:** Rozkłady plonów w grupach n1, n2, n3 i n4 są identyczne. - **H:** Co najmniej jedna grupa różni się pod względem rozkładu plonów.

Wniosek: Ponieważ p-wartość < 0.05, odrzucamy hipotezę zerową. Istnieją statystycznie istotne różnice w rozkładach plonów między co najmniej dwoma rodzajami nawozów

1.3.4 Z3.b średnia ranga dla każdej próbki

```
[55]: # plony - wszystkie obserwacje
# grupy - wektor etykiet grupowych

rangi <- rank(plony)

[56]: df_rangi <- data.frame(
    grupa = grupy,
    ranga = rangi
)</pre>
```

```
[57]: df_rangi
```

	grupa	ranga
	<fct $>$	<dbl $>$
	n1	31.0
	n1	20.0
	n1	27.0
	n1	32.0
	n1	33.0
	n1	11.5
	n1	23.5
	n1	16.0
	n1	28.5
	n2	7.0
	n2	20.0
	n2	25.5
	n2	28.5
	n2	5.5
	n2	13.5
A data.frame: 33×2	n2	11.5
	n2	20.0
	n3	3.0
	n3	8.5
	n3	25.5
	n3	16.0
	n3	5.5
	n3	1.5
	n3	8.5
	n3	20.0
	n3	10.0
	n3	20.0
	n4	13.5
	n4	1.5
	n4	23.5
	n4	4.0
	n4	30.0
	n4	16.0

```
[58]: srednie_rangi <- aggregate(ranga ~ grupa, data = df_rangi, FUN = mean)
```

[59]: srednie_rangi

1.3.5 Z3.b Wnioski Średnie rangi dla każdej grupy nawozu

Najwyższą średnią rangę uzyskała grupa **n1**, co oznacza, że ta grupa miała generalnie **wyższe plony** niż pozostałe. Najniższą rangę uzyskała grupa **n3**, co sugeruje, że dawała najniższe plony.

Co potwierdza wynik testu Kruskala-Wallisa oraz jego interpretację z części Z3a Wynik

Wilcoxon - które grupy się istotnie różniły?

1.4 Zadanie 4 : Charakter losowości i niezależność cyfr

1.4.1 Polecenie:

- (a) Zbadać, czy poniższa próbka ma charakter losowy.
- (b)

Niech X będzie pierwszą, a Y drugą cyfrą w rozważanych liczbach. Zbadać, czy X i Y są statystycznie niezależne.

1.4.2 Dane (próbka losowa):

1.4.3 Z4.a Zbadać czy próbka ma charakter losowy?

Benford? histogram?

```
[61]: x <- c(35, 60, 148, 75, 92, 243, 37, 48, 95, 740, 154, 292, 334, 421, 15, 87, 36, 302, 250, 82, 101, 336, 230, 672, 55, 65, 17, 102, 21, 304, 640, 25, 354, 85, 340, 395, 720, 407, 230, 84, 14, 26, 35, 458, 370, 483, 310, 75, 300, 435, 92, 180, 405, 66, 315, 40, 532, 326, 604, 157, 640, 45, 31, 258, 625, 152, 193, 32, 488, 166, 10, 307, 260, 85, 450, 62, 345, 71, 165, 251, 236, 354, 58, 320, 81, 71, 45, 310, 345, 127, 476, 420, 150, 23, 48, 60, 95, 470, 92, 67, 325, 45, 157, 385, 125, 357, 582, 393, 175, 86, 830, 650, 40)
```

```
[62]: # Benford
# Pierwsza cyfra
pierwsze_cyfry <- as.numeric(substring(as.character(x), 1, 1))</pre>
```

```
[63]: pierwsze_cyfry
```

 $\begin{array}{c} 1. \ 3 \ 2. \ 6 \ 3. \ 1 \ 4. \ 7 \ 5. \ 9 \ 6. \ 2 \ 7. \ 3 \ 8. \ 4 \ 9. \ 9 \ 10. \ 7 \ 11. \ 1 \ 12. \ 2 \ 13. \ 3 \ 14. \ 4 \ 15. \ 1 \ 16. \ 8 \ 17. \ 3 \ 18. \ 3 \ 19. \ 2 \\ 20. \ 8 \ 21. \ 1 \ 22. \ 3 \ 23. \ 2 \ 24. \ 6 \ 25. \ 5 \ 26. \ 6 \ 27. \ 1 \ 28. \ 1 \ 29. \ 2 \ 30. \ 3 \ 31. \ 6 \ 32. \ 2 \ 33. \ 3 \ 34. \ 8 \ 35. \ 3 \ 36. \ 3 \ 37. \ 7 \\ 38. \ 4 \ 39. \ 2 \ 40. \ 8 \ 41. \ 1 \ 42. \ 2 \ 43. \ 3 \ 44. \ 4 \ 45. \ 3 \ 46. \ 4 \ 47. \ 3 \ 48. \ 7 \ 49. \ 3 \ 50. \ 4 \ 51. \ 9 \ 52. \ 1 \ 53. \ 4 \ 54. \ 6 \ 55. \ 3 \\ 56. \ 4 \ 57. \ 5 \ 58. \ 3 \ 59. \ 6 \ 60. \ 1 \ 61. \ 6 \ 62. \ 4 \ 63. \ 3 \ 64. \ 2 \ 65. \ 6 \ 66. \ 1 \ 67. \ 1 \ 68. \ 3 \ 69. \ 4 \ 70. \ 1 \ 71. \ 1 \ 72. \ 3 \ 73. \ 2 \\ 74. \ 8 \ 75. \ 4 \ 76. \ 6 \ 77. \ 3 \ 78. \ 7 \ 79. \ 1 \ 80. \ 2 \ 81. \ 2 \ 82. \ 3 \ 83. \ 5 \ 84. \ 3 \ 85. \ 8 \ 86. \ 7 \ 87. \ 4 \ 88. \ 3 \ 89. \ 3 \ 90. \ 1 \ 91. \ 4 \\ 92. \ 4 \ 93. \ 1 \ 94. \ 2 \ 95. \ 4 \ 96. \ 6 \ 97. \ 9 \ 98. \ 4 \ 99. \ 9 \ 100. \ 6 \ 101. \ 3 \ 102. \ 4 \ 103. \ 1 \ 104. \ 3 \ 105. \ 1 \ 106. \ 3 \ 107. \ 5 \\ 108. \ 3 \ 109. \ 1 \ 110. \ 8 \ 111. \ 8 \ 112. \ 6 \ 113. \ 4 \\ \end{array}$

```
[64]: obs <- table(factor(pierwsze_cyfry, levels = 1:9))
```

```
[66]: obs
```

```
19 13 28 18 4 12 6 8 5
[67]: # Warunki
      # teoretyczne wystąpienie pierwszych cyfr
      benford_probs <- log10(1 + 1 / (1:9))
[68]: benford_probs
      1. \quad 0.301029995663981 \quad 2. \quad 0.176091259055681 \quad 3. \quad 0.1249387366083 \quad 4. \quad 0.0969100130080564
      5. \ \ 0.0791812460476248 \ \ 6. \ \ 0.0669467896306132 \ \ 7. \ \ 0.0579919469776867 \ \ 8. \ \ 0.0511525224473813
      9. 0.0457574905606751
[69]: # liczności
      exp <- benford_probs * length(x)</pre>
[70]: exp
      1. \quad 34.0163895100299 \quad 2. \quad 19.898312273292 \quad 3. \quad 14.1180772367379
                                                                                 10.9508314699104
                                                                           4.
          8.9474808033816 6.
                                 7.56498722825929 7. 6.5530900084786 8.
                                                                                 5.78023503655409
      9. 5.17059643335629
[71]: chisq.test(x = obs, p = benford_probs, rescale.p = TRUE)
               Chi-squared test for given probabilities
      data: obs
      X-squared = 33.448, df = 8, p-value = 5.112e-05
[72]: barplot(rbind(obs, round(exp)),
               beside = TRUE, col = c("skyblue", "orange"),
               names.arg = 1:9, legend = c("Obserwowane", "Benford"),
               main = "Rozkład pierwszych cyfr vs prawo Benforda",
               ylab = "Liczność")
```

1 2 3 4 5 6 7 8 9

Rozkład pierwszych cyfr vs prawo Benforda


```
[77]: install.packages("e1071")
```

Installing package into '/home/kotmin/R/x86_64-pc-linux-gnu-library/4.5' (as 'lib' is unspecified)

also installing the dependency 'proxy'

```
[78]: # POM
srednia <- mean(x)
mediana <- median(x)</pre>
```

```
wariancja <- var(x)
odchylenie <- sd(x)

library(e1071)
skosnosc <- skewness(x)

pom <- mean(x, trim = 0.1)

data.frame(
   Średnia = round(srednia, 2),
   Mediana = round(mediana, 2),
   POM_10proc = round(pom, 2),
   Odchylenie = round(odchylenie, 2),
   Skośność = round(skosnosc, 2)
)</pre>
```

```
[80]: ## dodatkowo możemy zrobić histogram
      hist(x,
           breaks = 30,
           col = "skyblue",
           main = "Histogram próby - losowej?",
           xlab = "Wartości",
           ylab = "Liczność")
      # Dodajemy linię średniej
      abline(v = mean(x), col = "red", lwd = 2, lty = 2)
      # Dodajemy linie mediany
      abline(v = median(x), col = "darkgreen", lwd = 2, lty = 3)
      # Legenda
      legend("topright",
             legend = c("Średnia", "Mediana"),
             col = c("red", "darkgreen"),
             lwd = 2,
             lty = c(2, 3)
```


[]:

1.4.4 4a Wnioski

Zostały sprawdzone warunki czy można wykonać testy zgodności z prawem Benforda.

Rozkład jest skośny dodatnio(prawostronnie) średnia > mediana.

Wysoka wartość współczynnika skośności i spora różnica między średnią, a medianą sugerują, że dane są **silnie niesymetryczne** i mogą pochodzić z próbki zdominowanej przez duże wartości.

Wniosek z testu zgodności z prawem Benforda: Test chi-kwadrat dał wynik: data: obs X-squared = 33.448, df = 8, p-value = 5.112e-05

Odrzucamy hipotezę zgodności z rozkładem Benforda – dane nie mają naturalnego, losowego

charakteru

Histogram, linie statystyk, klasyczne statystyki opisowe, obserwowana dodatnia skośność oraz test Benforda jednoznacznie wskazują, że dane nie są naturalnie rozłożone ani całkiem losowe.

1.4.5 Z4.b XY statystycznie niezależne

```
[120]: # polecenie mówiło o cyfrach - chcemy mieć możliwość uzyskania X oraz Y x_{filtr} \leftarrow x[x >= 10]
```

```
[121]: x_filtr
```

 $\begin{array}{c} 1.\ 35\ 2.\ 60\ 3.\ 148\ 4.\ 75\ 5.\ 92\ 6.\ 243\ 7.\ 37\ 8.\ 48\ 9.\ 95\ 10.\ 740\ 11.\ 154\ 12.\ 292\ 13.\ 334\ 14.\ 421\ 15.\ 15\\ 16.\ 87\ 17.\ 36\ 18.\ 302\ 19.\ 250\ 20.\ 82\ 21.\ 101\ 22.\ 336\ 23.\ 230\ 24.\ 672\ 25.\ 55\ 26.\ 65\ 27.\ 17\ 28.\ 102\ 29.\ 21\\ 30.\ 304\ 31.\ 640\ 32.\ 25\ 33.\ 354\ 34.\ 85\ 35.\ 340\ 36.\ 395\ 37.\ 720\ 38.\ 407\ 39.\ 230\ 40.\ 84\ 41.\ 14\ 42.\ 26\\ 43.\ 35\ 44.\ 458\ 45.\ 370\ 46.\ 483\ 47.\ 310\ 48.\ 75\ 49.\ 300\ 50.\ 435\ 51.\ 92\ 52.\ 180\ 53.\ 405\ 54.\ 66\ 55.\ 315\\ 56.\ 40\ 57.\ 532\ 58.\ 326\ 59.\ 604\ 60.\ 157\ 61.\ 640\ 62.\ 45\ 63.\ 31\ 64.\ 258\ 65.\ 625\ 66.\ 152\ 67.\ 193\ 68.\ 32\\ 69.\ 488\ 70.\ 166\ 71.\ 10\ 72.\ 307\ 73.\ 260\ 74.\ 85\ 75.\ 450\ 76.\ 62\ 77.\ 345\ 78.\ 71\ 79.\ 165\ 80.\ 251\ 81.\ 236\\ 82.\ 354\ 83.\ 58\ 84.\ 320\ 85.\ 81\ 86.\ 71\ 87.\ 45\ 88.\ 310\ 89.\ 345\ 90.\ 127\ 91.\ 476\ 92.\ 420\ 93.\ 150\ 94.\ 23\\ 95.\ 48\ 96.\ 60\ 97.\ 95\ 98.\ 470\ 99.\ 92\ 100.\ 67\ 101.\ 325\ 102.\ 45\ 103.\ 157\ 104.\ 385\ 105.\ 125\ 106.\ 357\\ 107.\ 582\ 108.\ 393\ 109.\ 175\ 110.\ 86\ 111.\ 830\ 112.\ 650\ 113.\ 40\\ \end{array}$

```
[122]: length(x_filtr)
```

113

```
[123]: cyfra_X <- as.numeric(substr(as.character(x_filtr), 1, 1))
cyfra_Y <- as.numeric(substr(as.character(x_filtr), 2, 2))</pre>
```

```
[124]: cyfra_X
```

 $\begin{array}{c} 1. \ 3 \ 2. \ 6 \ 3. \ 1 \ 4. \ 7 \ 5. \ 9 \ 6. \ 2 \ 7. \ 3 \ 8. \ 4 \ 9. \ 9 \ 10. \ 7 \ 11. \ 1 \ 12. \ 2 \ 13. \ 3 \ 14. \ 4 \ 15. \ 1 \ 16. \ 8 \ 17. \ 3 \ 18. \ 3 \ 19. \ 2 \\ 20. \ 8 \ 21. \ 1 \ 22. \ 3 \ 23. \ 2 \ 24. \ 6 \ 25. \ 5 \ 26. \ 6 \ 27. \ 1 \ 28. \ 1 \ 29. \ 2 \ 30. \ 3 \ 31. \ 6 \ 32. \ 2 \ 33. \ 3 \ 34. \ 8 \ 35. \ 3 \ 36. \ 3 \ 37. \ 7 \\ 38. \ 4 \ 39. \ 2 \ 40. \ 8 \ 41. \ 1 \ 42. \ 2 \ 43. \ 3 \ 44. \ 4 \ 45. \ 3 \ 46. \ 4 \ 47. \ 3 \ 48. \ 7 \ 49. \ 3 \ 50. \ 4 \ 51. \ 9 \ 52. \ 1 \ 53. \ 4 \ 54. \ 6 \ 55. \ 3 \\ 56. \ 4 \ 57. \ 5 \ 58. \ 3 \ 59. \ 6 \ 60. \ 1 \ 61. \ 6 \ 62. \ 4 \ 63. \ 3 \ 64. \ 2 \ 65. \ 6 \ 66. \ 1 \ 67. \ 1 \ 68. \ 3 \ 69. \ 4 \ 70. \ 1 \ 71. \ 1 \ 72. \ 3 \ 73. \ 2 \\ 74. \ 8 \ 75. \ 4 \ 76. \ 6 \ 77. \ 3 \ 78. \ 7 \ 79. \ 1 \ 80. \ 2 \ 81. \ 2 \ 82. \ 3 \ 83. \ 5 \ 84. \ 3 \ 85. \ 8 \ 86. \ 7 \ 87. \ 4 \ 88. \ 3 \ 89. \ 3 \ 90. \ 1 \ 91. \ 4 \\ 92. \ 4 \ 93. \ 1 \ 94. \ 2 \ 95. \ 4 \ 96. \ 6 \ 97. \ 9 \ 98. \ 4 \ 99. \ 9 \ 100. \ 6 \ 101. \ 3 \ 102. \ 4 \ 103. \ 1 \ 104. \ 3 \ 105. \ 1 \ 106. \ 3 \ 107. \ 5 \\ 108. \ 3 \ 109. \ 1 \ 110. \ 8 \ 111. \ 8 \ 112. \ 6 \ 113. \ 4 \\ \end{array}$

```
[125]: cyfra_Y
```

 $\begin{array}{c} 1. \ 5 \ 2. \ 0 \ 3. \ 4 \ 4. \ 5 \ 5. \ 2 \ 6. \ 4 \ 7. \ 7 \ 8. \ 8 \ 9. \ 5 \ 10. \ 4 \ 11. \ 5 \ 12. \ 9 \ 13. \ 3 \ 14. \ 2 \ 15. \ 5 \ 16. \ 7 \ 17. \ 6 \ 18. \ 0 \ 19. \ 5 \\ 20. \ 2 \ 21. \ 0 \ 22. \ 3 \ 23. \ 3 \ 24. \ 7 \ 25. \ 5 \ 26. \ 5 \ 27. \ 7 \ 28. \ 0 \ 29. \ 1 \ 30. \ 0 \ 31. \ 4 \ 32. \ 5 \ 33. \ 5 \ 34. \ 5 \ 35. \ 4 \ 36. \ 9 \ 37. \ 2 \\ 38. \ 0 \ 39. \ 3 \ 40. \ 4 \ 41. \ 4 \ 42. \ 6 \ 43. \ 5 \ 44. \ 5 \ 45. \ 7 \ 46. \ 8 \ 47. \ 1 \ 48. \ 5 \ 49. \ 0 \ 50. \ 3 \ 51. \ 2 \ 52. \ 8 \ 53. \ 0 \ 54. \ 6 \ 55. \ 1 \\ 56. \ 0 \ 57. \ 3 \ 58. \ 2 \ 59. \ 0 \ 60. \ 5 \ 61. \ 4 \ 62. \ 5 \ 63. \ 1 \ 64. \ 5 \ 65. \ 2 \ 66. \ 5 \ 67. \ 9 \ 68. \ 2 \ 69. \ 8 \ 70. \ 6 \ 71. \ 0 \ 72. \ 0 \ 73. \ 6 \\ 74. \ 5 \ 75. \ 5 \ 76. \ 2 \ 77. \ 4 \ 78. \ 1 \ 79. \ 6 \ 80. \ 5 \ 81. \ 3 \ 82. \ 5 \ 83. \ 8 \ 84. \ 2 \ 85. \ 1 \ 86. \ 1 \ 87. \ 5 \ 88. \ 1 \ 89. \ 4 \ 90. \ 2 \ 91. \ 7 \\ 92. \ 2 \ 93. \ 5 \ 94. \ 3 \ 95. \ 8 \ 96. \ 0 \ 97. \ 5 \ 98. \ 7 \ 99. \ 2 \ 100. \ 7 \ 101. \ 2 \ 102. \ 5 \ 103. \ 5 \ 104. \ 8 \ 105. \ 2 \ 106. \ 5 \ 107. \ 8 \\ 108. \ 9 \ 109. \ 7 \ 110. \ 6 \ 111. \ 3 \ 112. \ 5 \ 113. \ 0 \\ \end{array}$

```
[126]: # tablica liczności / kontyngencji
       tablica_xy <- table(X = cyfra_X, Y = cyfra_Y)</pre>
[127]: tablica_xy
         Y
          0 1 2 3 4 5 6 7 8 9
         1 3 0 2 0 2 6 2 2 1 1
         20104142001
         3 4 4 4 2 3 5 1 2 1 2
        4 4 0 2 1 0 5 0 2 4 0
        5 0 0 0 1 0 1 0 0 2 0
         6 3 0 2 0 2 2 1 2 0 0
        7 0 2 1 0 1 2 0 0 0 0
         8 0 1 1 1 1 2 1 1 0 0
         90030020000
[128]: ## test wstpepny
       test_chi <- chisq.test(tablica_xy)</pre>
      Warning message in chisq.test(tablica_xy):
       "Chi-squared approximation may be incorrect"
[129]: test_chi
               Pearson's Chi-squared test
      data: tablica_xy
      X-squared = 83.349, df = 72, p-value = 0.1698
[130]:
       oczekiwane <- test_chi$expected
[131]:
       oczekiwane
                                                                                                      6
                                 1
                                    2.3539823
                                               1.3451327
                                                           2.5221239
                                                                      1.5132743
                                                                                 1.6814159
                                                                                            4.876106
                                                                                                      1.17699
                                    1.6106195
                                 2
                                               0.9203540
                                                           1.7256637
                                                                      1.0353982
                                                                                 1.1504425
                                                                                            3.336283
                                                                                                      0.80530
                                 3
                                    3.4690265
                                               1.9823009
                                                          3.7168142
                                                                      2.2300885
                                                                                 2.4778761
                                                                                            7.185841
                                                                                                      1.73451
                                    2.2300885
                                                                                            4.619469
                                               1.2743363
                                                          2.3893805
                                                                      1.4336283
                                                                                 1.5929204
                                                                                                      1.11504
      A matrix: 9 \times 10 of type dbl
                                    0.4955752
                                               0.2831858
                                                          0.5309735
                                                                      0.3185841
                                                                                 0.3539823
                                                                                            1.026549
                                                                                                      0.24778
                                 6
                                    1.4867257
                                                                                            3.079646
                                                                                                      0.74336
                                               0.8495575
                                                           1.5929204
                                                                      0.9557522
                                                                                 1.0619469
                                 7
                                    0.7433628
                                               0.4247788
                                                          0.7964602
                                                                      0.4778761
                                                                                 0.5309735
                                                                                            1.539823
                                                                                                      0.37168
                                 8
                                    0.9911504
                                               0.5663717
                                                           1.0619469
                                                                      0.6371681
                                                                                 0.7079646
                                                                                            2.053097
                                                                                                      0.49557
                                    0.6194690
                                                                      0.3982301
                                               0.3539823
                                                          0.6637168
                                                                                 0.4424779
                                                                                            1.283186
                                                                                                      0.30973
[132]: str(test_chi)
```

```
List of 9
       $ statistic: Named num 83.3
        ..- attr(*, "names")= chr "X-squared"
       $ parameter: Named int 72
        ..- attr(*, "names")= chr "df"
       $ p.value : num 0.17
       $ method : chr "Pearson's Chi-squared test"
       $ data.name: chr "tablica xy"
       $ observed : 'table' int [1:9, 1:10] 3 0 4 4 0 3 0 0 0 0 ...
        ..- attr(*, "dimnames")=List of 2
        .. ..$ X: chr [1:9] "1" "2" "3" "4" ...
        .. ..$ Y: chr [1:10] "0" "1" "2" "3" ...
       $ expected : num [1:9, 1:10] 2.354 1.611 3.469 2.23 0.496 ...
        ..- attr(*, "dimnames")=List of 2
        .. ..$ X: chr [1:9] "1" "2" "3" "4" ...
        ....$ Y: chr [1:10] "0" "1" "2" "3" ...
       $ residuals: 'table' num [1:9, 1:10] 0.421 -1.269 0.285 1.185 -0.704 ...
        ..- attr(*, "dimnames")=List of 2
        ....$ X: chr [1:9] "1" "2" "3" "4" ...
        .. ..$ Y: chr [1:10] "0" "1" "2" "3" ...
       $ stdres
                : 'table' num [1:9, 1:10] 0.493 -1.441 0.351 1.381 -0.766 ...
        ..- attr(*, "dimnames")=List of 2
        .. ..$ X: chr [1:9] "1" "2" "3" "4" ...
        ....$ Y: chr [1:10] "0" "1" "2" "3" ...
       - attr(*, "class")= chr "htest"
[133]: sum(oczekiwane < 1)
      48
[134]: mean(oczekiwane < 5) * 100
      98.88888888888
[135]: test chi$stdres
         γ
      Х
                                1
                                            2
        1 0.49321893 -1.31917508 -0.38707207 -1.40590728 0.28215151 0.64723735
        2 -1.44130973 0.09155254 -1.49948971 3.22830403 -0.15617009 0.44801254
        3 0.35117240 1.71413865 0.18186204 -0.18517663 0.40057528 -1.09045828
        4 1.38098686 -1.27721502 -0.29500894 -0.41171750 -1.44176693 0.22396027
        5 -0.76577712 -0.56209059 -0.79668852 1.28129396 -0.63450837 -0.03094415
        6 1.40249851 -1.01139197 0.36634231 -1.07788826 1.00849829 -0.75476039
        7 -0.94660627 2.57663005 0.25167546 -0.74050423 0.69283364 0.44201439
        8 -1.10340764 0.62009184 -0.06696362 0.49152489 0.37713332 -0.04458740
        9 -0.86011945 -0.63133910 3.14983353 -0.67284795 -0.71267863 0.75073855
         γ
                                7
                                            8
      Х
                    6
                                                        9
```

```
1 0.85877519 0.45219240 -0.33847255 0.44571472
2 1.46116534 -1.12749723 -1.05794050 0.86129938
3 -0.66393702 -0.18517663 -0.83451487 1.18963121
4 -1.18907640 0.53775346 2.73182101 -0.88640137
5 -0.52330159 -0.59904653 3.40767418 -0.39009709
6 0.32507529 1.17769273 -1.01139197 -0.70191723
7 -0.64687303 -0.74050423 -0.69482159 -0.48221388
8 0.76748957 0.49152489 -0.80991587 -0.56209059
9 -0.58777138 -0.67284795 -0.63133910 -0.43815633
```

```
[136]: # da się tu znaleźć wartości większe od 2
```

```
[137]: # w każdytm razie liczności w klasach są mniejsze od 5, test może stracić nau skuteczności. Test wykazał p-value < 0.05
# spróbujemy wykorzystać test Fishera

fisher.test(tablica_xy,simulate.p.value=TRUE)
```

Fisher's Exact Test for Count Data with simulated p-value (based on 2000 replicates)

```
data: tablica_xy
p-value = 0.3628
```

alternative hypothesis: two.sided

```
[138]: # można spróbować symulacji Monte Carlo chisq.test(tablica_xy, simulate.p.value = TRUE, B = 10000)
```

```
data: tablica_xy
X-squared = 83.349, df = NA, p-value = 0.1646
```

1.4.6 4.b Wnioski

Elementy podzielono zgodnie z poleceniem, stworzono tablice kontyngencji.

Sprawdzono warunki zastosowania klasycznego testu chi-kwadrat: - 48 komórek (spośród 90) miało oczekiwaną liczność mniejszą niż 1 - 98.9% wszystkich komórek miało oczekiwaną liczność mniejszą niż 5 Wynik testu chi-kwadrat mógł zostać uznany za niewiarygodny. Sugerował statystyczną niezależność

Hipotezy: - H (hipoteza zerowa): Cyfry X i Y są niezależne — rozkład drugiej cyfry nie zależy od pierwszej. - H (hipoteza alternatywna): Cyfry X i Y są zależne — rozkład drugiej cyfry

zależy od pierwszej.

Wykonano dwa alternatywne testy nieparametryczne: 1. fisher (2000 permutacji) p $\sim\!\!0.36$ 2. chisqrt z symulacją Monte Carlo, p $\sim\!\!0.16$

W obu przypadkach p-wartość jest większa niż 0.05, brak podstaw do odrzucenia hipotezy zerowej.

Cyfry X i Y mogą być uznane za **statystycznie niezależne** na podstawie dostępnych danych.

[]:	
[]:	
[]:	