2018.12.18

제조데이터 활용한

생산 불량 원인 분석

목차

EDA

(데이터의 구조와 특징 파악하기)

- 이상치/결측치 확인하기
- 데이터 준비하기
 - 시각화

•••

Machine Learning (예측 알고리즘 만들기)

- 회귀분석

•••

- 분류분석

•••

Estimation (모델 평가하기) •••

각 모델의 정확도 비교하여
 최적 모델을 선정하기

EDA: 데이터 구조와 특징 파악하기

prod_date	prod_no	prod_nam	degree	mold	prod	s_no	fix_time	a_speed	b_speed	separation	s_separatio	rate_terms	mpa	load_time	highpressu	c_thickness
2014-03-0	4523 1 -3B4	Oil Gasket	1	양산	생산	349892	68.3	0.492	1.702	206.1	712.1	83	29.6	0	96	32.9
2014-04-0	90784-760	Oil Gasket	2	생산대기	생산	871869	73.1	0.469	1.561	246.6	652.8	80	28.9	0	90	40.1
2014-04-0	90784-760	Oil Gasket	2	생산대기	생산	872996	76.3	0.461	1.539	156.9	741.9	88	29.2	0	82	27
2014-03-3	90784-760	Oil Gasket	1	승인대기	생산	368872	65.4	0.566	1.551	157.9	735	82	29.8	0	81	54.2
2014-03-0	90784-760	Oil Gasket	2	생산대기	생산	350083	81.5	0.501	1.593	182.9	715.3	82	29.4	0	80	38.2
2014-03-2	4523 1 -3B6	Oil Gasket	2	양산	생산	359147	67.6	0.502	1.499	195.2	722.8	90	30.9	0	80	36.5
2014-03-0	90784-760	Oil Gasket	2	생산대기	생산	350080	63.3	0.497	1.593	182.9	715.3	81	29.5	0	80	35
2014-03-3	4523 1 -3B6	Oil Gasket	1	양산	생산	368671	82.1	0.538	1.567	193.8	698.1	86	29.4	0	79	30.3
2014-04-3	90784-760	Oil Gasket	2	생산대기	생산	892322	71	0.477	1.638	244.8	655.5	91	28.5	0	78	34.6

autopart.csv 데이터는

자동차 부품의 생산데이터로서 공정변수들과 함께 생산된 oil gasket의 탕구 두께 기록된 자료이다.

우리는 생산품 품질(탕구 두께)에 주된 영향을 미치는 공정변수 및 그 연관성 등을 파악하여 본다.

EDA: 데이터 구조와 특징 파악하기

```
> str(car)
'data.frame':
                34127 obs. of 17 variables:
                   : Factor w/ 34127 levels "2014-03-01 오전 10:00:33",..: 5918 5917 27081 26236 20023 13062 5922 25371 5370
$ prod_date
                    : Factor w/ 6 levels "45231-3B400",..: 5 5 6 6 4 2 5 6 6 6 ...
$ prod_no
$ prod_name
                   : Factor w/ 1 level "Oil Gasket": 1 1 1 1 1 1 1 1 1 1 ...
                   : int 2 2 2 2 1 2 2 2 2 2 ...
$ dearee
                   : Factor w/ 3 levels "a", "b", "c": 3 3 1 1 3 3 3 1 1 1 ...
$ mold
                   : Factor w/ 1 level "생산": 1 1 1 1 1 1 1 1 1 1 ...
$ prod
                   : int 351134 351133 873570 872723 365279 358252 351138 871491 350457 871490 ...
$ s_no
$ fix_time
                    : num 65.9 80.8 81.1 76 76.5 67.2 82.7 85 81 85.3 ...
$ a_speed
                    : num 0.471 0.475 0.495 0.46 0.516 0.498 0.473 0.595 0.661 0.607 ...
$ b_speed
                    : num 1.7 1.7 1.51 1.68 1.49 ...
$ separation
                    : num 185 185 157 251 185 ...
$ s_separation
                    : num 713 713 743 652 717 ...
$ rate_terms
                    : int 84 84 83 80 77 85 82 80 86 81 ...
$ mpa
                    : num 29.1 29.1 28.7 28.8 29.4 30.4 29.1 26.1 27.2 26.1 ...
$ load_time
                    : num 19.6 0 0 0 0 0 19.6 18.1 19.1 18.1 ...
$ highpressure_time: int 73 73 60 58 76 73 73 65534 70 65534 ...
$ c_thickness
                   : num 66 65.6 65.6 60.4 58.2 56.6 55.7 55.3 55.2 55.2 ...
```

autoparts 데이터는

34117개의 관측치와 15개의 특징들로 구성되어 있습니다.

반응변수는 (c_thickness)이며,

7개의 예측변수(fix_time, a_speed, b_speed, rate_terms, mpa, load_time, highpressure_time)을

사용해 분석할 것입니다. (예측변수 설정은 데이터 설명에 따름)

단일 level인 'prod_no', 'prod'특징은 분석에 사용하지 않을 것이다.

EDA: 데이터 구조와 특징 파악하기

```
> summary(car)
                   prod_date
                                         prod_no
                                                          prod_name
                                                                                        mold
                                                                            dearee
                                                                                                    prod
2014-03-01 오전 10:00:33:
                                                                                                 생산:34127
                                45231-3B400 : 3434
                                                     Oil Gasket:34127
                                                                       Min. :1.000
                                                                                       a:19917
2014-03-01 오전 10:01:56:
                                45231-3B610 : 2378
                                                                       1st Ou.:1.000
                                                                                       b: 1850
2014-03-01 오전 10:03:18:
                                45231-3B641 : 929
                                                                       Median :2.000
                                                                                       c:12360
2014-03-01 오전 10:04:41:
                                45231-3B660 : 5550
                                                                       Mean :1.655
2014-03-01 오전 10:06:03:
                                45231-P3B750:
                                                                       3rd ou.:2.000
2014-03-01 오전 10:07:27:
                                90784-76001 :21767
                                                                       мах.
                                                                              :2.000
(Other)
                        :34121
                                                                    separation
                    fix_time
                                                      b_speed
                                                                                   s_separation
     s_no
                                     a_speed
                                                                                                    rate_terms
                                                                  Min. : 0.0
                                                                                  Min. : 0.0
Min.
       :345142
                Min. : 1.00
                                 Min. :0.4570
                                                  Min. :0.000
                                                                                                  Min.
                                                                                                         :76.00
                                 1st Qu.:0.6020
                                                                                                  1st Qu.:83.00
1st Ou.:353801
                1st Qu.: 81.00
                                                  1st Qu.:1.576
                                                                  1st Qu.:183.6
                                                                                  1st Qu.:657.1
Median :362403
                Median : 81.90
                                 Median :0.6480
                                                  Median :1.633
                                                                  Median :187.9
                                                                                  Median :711.1
                                                                                                  Median :86.00
Mean
       :511816
                Mean
                      : 82.66
                                 Mean
                                        :0.6359
                                                  Mean :1.642
                                                                        :202.7
                                                                                         :696.6
                                                                                                  Mean
                                                                                                       :85.73
                                                                  Mean
                                                                                  Mean
3rd Qu.:871791
                 3rd Qu.: 84.90
                                 3rd Qu.: 0.6610
                                                  3rd Qu.:1.684
                                                                  3rd Qu.:243.2
                                                                                  3rd Qu.:715.3
                                                                                                  3rd Ou.:88.00
Max.
       :892890
                 Max.
                        :178.30
                                 Max.
                                         :0.8080
                                                  Max.
                                                         :3.257
                                                                         :294.5
                                                                                  Max.
                                                                                         :748.9
                                                                                                  Max.
                                                                                                         :97.00
                                                                  Max.
                  load_time
                                                  c_thickness
                                highpressure_time
     mpa
                               Min. :
Min.
       :24.80
                Min.
                     : 0.00
                                           0.00
                                                  Min. : 0.30
1st Ou.:75.00
               1st Qu.:18.20
                                1st Qu.:
                                          64.00
                                                  1st Ou.:22.20
                                Median:
Median :76.10
                Median :19.20
                                          70.00
                                                  Median :23.90
                                          87.51
Mean
       :74.03
                Mean
                      :19.09
                               Mean :
                                                  Mean :24.06
3rd Ou.:77.80
                3rd Ou.:19.70
                                3rd Ou.:
                                          73.00
                                                  3rd Qu.:25.50
       :82.10
                Max.
                       :23.40
                                Max.
                                       :65534.00
                                                  Max.
                                                          :66.00
Max.
```

- 'prod_date': 생산일자

- 'prod_no': 생산품의 생산번호

- 'prod_name': 생산품의 이름

- 'degree' : ? (데이터 설명 없음)

- 'mold' : '생산대기(a)', '승인대기(b)', '양산(c)'의 상태를 나타냄

- 'prod' : 생산

- 's_no' :생산번호

EDA: 이상치와 결측치 확인하기(산점도)

반응변수인 c_thickness과의 산점도에서 군집과 떨어진 점들이 관측된다. B_speed, highpressure_time, load_time의 경우에는 이상치로, Mpa의 경우에는 새로운 군집으로 보여진다.

EDA: 이상치와 결측치 확인하기(상자그림)

꼬리가 긴 모양을 가진 상자그림은 이상치를 나타낸다.

fix_time, b_speed, load_time, highpressure_time에서 이상치가 있을 것이라 예상된다.

EDA: 이상치와 결측치 제거하기

이상치를 확인한 후, 이상치 행을 삭제한다.

car1 <- car1[car1\$load_time != 0,] ##34124->33927

```
fix_time
                                   load_time
                                                 highpressure_time
                   b_speed
Min. : 1.00
                                 Min. : 0.00
                                                 Min. :
                                                             0.00
                Min. :0.000
1st Qu.: 81.00
                                 1st Qu.:18.20
                                                 1st Qu.:
                                                            64.00
                1st Qu.:1.576
Median : 81.90
                                 Median :19.20
                                                 Median :
                Median :1.633
                                                            70.00
Mean : 82.66
                Mean :1.642
                                Mean :19.09
                                                 Mean : 87.51
3rd Qu.: 84.90
                                                 3rd Qu.: 73.00
                3rd Qu.:1.684
                                 3rd Qu.:19.70
      :178.30
                Max. :3.257
                                        :23.40
                                                 Max. :65534.00
мах.
                                 Max.
car1 <- car1[car1$separation != 0,] ## 34139->34135
car1 \leftarrow car1[(car1\$highpressure\_time != 0)*(car1\$highpressure\_time != 65534.00) == 1,] ## 34135->34124
```

이상치 정리 후, 상자그림

EDA: 이상치와 결측치 제거하기

이상치를 확인한 후, 이상치 행을 삭제한다.

car1 <- car1[car1\$load_time != 0,] ##34124->33927

```
fix_time
                                   load_time
                                                 highpressure_time
                   b_speed
Min. : 1.00
                                 Min. : 0.00
                                                 Min. :
                                                             0.00
                Min. :0.000
1st Qu.: 81.00
                                 1st Qu.:18.20
                                                 1st Qu.:
                                                            64.00
                1st Qu.:1.576
Median : 81.90
                                 Median :19.20
                                                 Median :
                Median :1.633
                                                            70.00
Mean : 82.66
                Mean :1.642
                                Mean :19.09
                                                 Mean : 87.51
3rd Qu.: 84.90
                                                 3rd Qu.: 73.00
                3rd Qu.:1.684
                                 3rd Qu.:19.70
      :178.30
                Max. :3.257
                                        :23.40
                                                 Max. :65534.00
мах.
                                 Max.
car1 <- car1[car1$separation != 0,] ## 34139->34135
car1 \leftarrow car1[(car1\$highpressure\_time != 0)*(car1\$highpressure\_time != 65534.00) == 1,] ## 34135->34124
```

이상치 정리 후, 상자그림

EDA: 데이터 준비하기

- 프로젝트 목적에 맞게 mold가 '양산'인 데이터만 추출하여 분석한다.

```
carO<-filter(car, mold == "양산")
carO$mold <- NULL #사용한 column은 삭제한다.
```

- 'prod'와 'prod_name' column은 factor가 1 level이기 때문에 분석에서 제외한다.

```
car0$prod <- NULL
car0$prod_name <- NULL
```

- Factor형 특징들을 시각화하여 데이터 셋을 준비합니다. 이를 위해 'prod_date'의 자료형을 factor->date로 변환시켜준다.

car0\$prod_date <- as.Date(car0\$prod_date, format = "%Y-%m-%d") #날짜형식 변환(factor -> Date)

EDA: 데이터 준비(car0)하기

- Factor형 특징들을 시각화하여 데이터 셋을 준비합니다 c_thickness//prod_date와 prod_no의 관계

→ 제품번호 45231-3B400에 해당하는 oil gasket에 대한 분석을 실시한다. (생산 날짜와 데이터의 분포를 기준으로 선택하였음, 생산 번호에 따라 공정이 다르게 변할 수 있으므로)

car0 <- car0[car0\$prod_no == "45231-3B400",]

→ 탕구두께에 영향을 줄 것으로 생각되는 공정변수로 fix_time, a_speed, b_speed, mpa, load_time, highpressure_time 으로 데이터 셋 car1을 만든다.

>	head(car1	.)								
	fix_time	a_speed	b_speed	separation	s_separation	rate_terms	mpa	load_time	highpressure_time	c_thickness
1	95.7	0.647	1.582	233.5	679.1	91	72.0	21.7	101	13.3
2	82.1	0.748	1.536	171.8	725.6	91	26.3	19.7	101	28.5
3	81.8	0.505	1.582	233.5	679.1	91	30.1	19.7	101	29.5
4	81.9	0.503	1.582	233.5	679.1	91	30.0	19.7	101	29.6
5	81.8	0.502	1.582	233.5	679.1	90	30.0	19.7	101	30.0
6	82.1	0.498	1.582	233.5	679.1	90	29.8	19.7	101	32.5
	cummanu (c	and \								

(fix_time, a_speed, b_speed)

(mpa, load_time, highpressure_time)

변수 시각화를 통해

fix_time은 대부분이 80~90 사이에 몰려 있음을 알 수 있다.

a_speed, b_speed, mpa, road_time, highpressure_time의 값이

특정구간에 집중되는 경향이 있으나 일부 자료들은 분포의 중심에서 떨어져 있다.

특히 대부분 공정변수의 값들이 크게 두 그룹으로 분리되어 있는 것처럼 보인다.

작은 그룹에서 불량이 나올 것으로 예상된다.

EDA: 시각화하기 (c_thickness)

c_thickness의 시각화를 통해

자료의 범위를 크게 벗어나는 점들(10 미만, 50 초과)이 탐지된다. 이는 명백한 불량으로 볼 수 있으며

불량이 나타나는 프로세스 분석시 의미있는 정보를 제공할 수도 있으나 통계적 모형화를 실시할 때 지나치게 큰 영향력을 발휘할 수 있다고 판단되므로 제거하고 분석할 것이다.

```
car0 \leftarrow car0[(car0\c_thickness > 10)*(car0\c_thickness < 50) ==1,]
```

```
c_thickness
Min. : 0.30 Min. :10.30
1st Qu.:22.20 1st Qu.:22.80
Median :23.90 Median :24.10
Mean :24.06 Mean :24.39
3rd Qu.:25.50 Max. :66.00 Max. :49.90
```

EDA: 시각화하기 (c_thickness)

```
> describe(car0$c_thickness)
vars n mean sd median trimmed mad min max range skew kurtosis se
x1 1 12319 24.39 2.64 24.1 24.2 2.08 10.3 49.9 39.6 1.77 9.77 0.02
```

C_thickness의 describe함수를 통해

평균 24.24이며, 히스토그램에서 비교적 두꺼운 제품이 많이 발생하는 것을 볼 수 있다.

왜도(skewness)가 1.71로 양수의 값을 가지므로, 분포가 대칭이 아니라 오른쪽으로 약간 긴 꼬리를 가질 것이다.

즉, 불량 발생시 두께가 얇은 쪽 보다는 두꺼운 쪽으로 발생할 가능성이 높다고 여겨진다.

공정변수의 영향력 분석을 위해 공정변수의 수준에 따른 탕구두께의 분포를 시각화를 할 것이다.

```
fix_time
                  a_speed
                                  b_speed
                                                separation
                                                              s_separation
                                                                             rate_terms
                                                                                               mpa
     : 56.00
               Min. :0.4570
                               Min. :1.323
                                              Min.
                                                                                  :78.00
                                                                  :672.6
                                                     :145.4
                                                            Min.
                                                                           Min.
                                                                                          Min.
                                                                                                :25.70
1st Qu.: 81.10
               1st Qu.:0.6500
                               1st Qu.:1.563
                                             1st Qu.:176.9
                                                            1st Qu.:708.5
                                                                           1st Qu.:85.00
                                                                                          1st Qu.:74.60
Median: 81.80 Median: 0.6610 Median: 1.589
                                              Median:184.0
                                                            Median :714.1
                                                                           Median:87.00
                                                                                          Median :75.70
Mean : 81.82 Mean :0.6662 Mean :1.640
                                                            Mean :715.7
                                                                           Mean :87.83
                                              Mean
                                                   :181.9
                                                                                          Mean :73.83
3rd Qu.: 82.10
              3rd Qu.:0.6760
                                                             3rd Qu.:723.1
                                                                           3rd Qu.:92.00
                               3rd Qu.:1.719
                                              3rd Qu.:188.9
                                                                                          3rd Qu.:76.90
      :116.50 Max.
                     :0.7730
                                    :3.257
Max.
                               Max.
                                              Max.
                                                    :235.3
                                                            Max.
                                                                   :748.9
                                                                           Max.
                                                                                  :95.00
                                                                                          Max.
                                                                                                 :79.20
              highpressure_time c_thickness
  load_time
Min.
     : 0.00
              Min. : 45.00
                               Min.
                                     :10.30
1st Ou.:19.70
              1st Ou.: 70.00
                               1st Qu.:22.80
Median :19.70 Median : 72.00
                               Median :24.10
              Mean : 71.91
Mean
     :19.83
                               Mean :24.39
3rd Ou.:20.20
              3rd Qu.: 74.00
                               3rd Qu.:25.60
     :23.40
Max.
              Max.
                     :101.00
                               Max.
                                      :49.90
car1$fixtime_bin <- as.factor((car1$fix_time > 81.3) + (car1$fix_time > 81.1) + 1)
car1$as_bin <- as.factor((car1$a_speed > 0.659) + (car1$a_speed > 0.667) + 1)
car1$bs_bin <- as.factor((car1$b_speed > 1.632) + (car1$b_speed > 1.732) + 1)
car1\$mpa\_bin <- as.factor((car1\$mpa > 76.4) + (car1\$mpa > 75.4) + 1)
car1$loadtime_bin <- as.factor((car1$load_time > 20.1) + (car1$load_time > 20.3) + 1)
car1$hp_bin <- as.factor((car1$highpressure_time > 72) + (car1$highpressure_time > 69) + 1)
```

변수들은 모두 연속형변수이기에 더 나은 시각화를 위해 각 변수들을 임의로 3개의 구간(low,middle,high = 1,2,3)으로 나누어 각 구간별로 탕구두께에 대한 상자그림을 출력한다.

1. fix_time

→ fix_time이 보통 수준보다 길면, 탕구두께의 변동도 커진다.

2. a_speed

→ a_speed이 낮은 수준이면, 탕구두께의 변동도 커진다.

3. b_speed

→ b_speed은 뚜렷한 경향성은 관측되지 않는다.

4. mpa

- → 실압력이 낮은 수준이면, 탕구두께가 두꺼워지는 경향이 있고.
- → 실압력이 높은 수준이면 탕구두께는 얇아지는 경향을 보인다.

5. load_time

- → 하중시간이 길수록 두께가 전반적으로 얇아지는 경향이 보이며,
- → 특히 하중시간이 가장 높은 수준에 속할 때는 두께의 변동이 매우 크게 증가하는 것으로 보인다.

6. highpressure_time

→ 고압시간의 경우 뚜렷한 경향성은 관측되지 않는다.

M/L: 회귀분석(상관분석)

회귀분석 전, 탕구두께 및 공정변수들간의 상관계수를 계산하여, 선형적 연관성의 정도를 파악한다.

corrplot.mixed(cor(car1), upper = "ellipse" ,lower="number",tl.pos="lt",bg="black")

- → mpa과 a_speed 간의 상관관계가 가장 강하게 나타남.
- → c_thickness와 가장 강한 선형적 연관성을 가지는 변수는 a_speed와 mpa으로 파악되며, 모두 음의 상관이다.
- → a_speed와 mpa이 커질수록, c_thickness는 얇아지는 경향성이 있는 것으로 파악된다.

```
lm1 <- lm(c_thickness ~ .,data=car1)</pre>
```

```
call:
lm(formula = c_thickness \sim ... data = car1)
Residuals:
             1Q Median
    Min
-9.6629 -0.8977 0.0934 0.9760 6.9344
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  59.295028
fix_time
                  -0.092813
                                       -6.373 2.10e 10
a_speed
                  -9.862596
b_speed
                  -2.333781
                              0.133943 -17.424
mpa
                  -0.140038
                              0.005618 -24.927
                                               < 2e-16 ***
load_time
                                       -8.684 < 2e-16 ***
                  -0.219416
                              0.025268
highpressure_time -0.031957
                             0.007375 -4.333 1.51e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.614 on 3424 degrees of freedom
Multiple R-squared: 0.5446, Adjusted R-squared: 0.5438
F-statistic: 682.4 on 6 and 3424 DF. p-value: < 2.2e-16
```

- →선형회귀모형 적합결과 모든 공정변수들이 유<mark>의수준 0.05에서 유의</mark>하므로 c_thickness에 유의미한 영향력을 있다고 할 수 있다.
- →모든 변수들의 계수가 음수이므로, 공정변수들이 커질 때 c_thickness는 얇아지는 경향이 있음을 알 수 있다.
- → F-통계량 및 유의확률을 확인할 때, 모형 전체도 매우 유의함을 알 수 있다.

선형회귀모형의 적합 및 변수선택

- 이를 위해 leap패키지에 있는 regsubsets() 함수를 사용한다.
- regsubsets()함수는 best subset selection을 수행하며,
- 모형의 크기(변수가 포함되는 개수) 순으로 가장 좋은 모형을 출력함

vs1 <- regsubsets(c_thickness~.,data=car1)

```
Subset selection object
Call: regsubsets.formula(c_thickness ~ ., data = car1)
6 Variables (and intercept)
                  Forced in Forced out
fix time
                      FALSE
                                  FALSE
a_speed
                                  FALSE
                      FALSE
b_speed
                      FALSE
                                  FALSE
mpa
                      FALSE
                                  FALSE
load time
                      FALSE
                                  FALSE
highpressure_time
                      FALSE
                                 FALSE
1 subsets of each size up to 6
Selection Algorithm: exhaustive
         fix_time a_speed b_speed mpa load_time highpressure_time
```

- →변수 1개만 모형에 포함하는 경우에는 mpa이 선택되었음으로, 가장 영향력이 큰 공정변수로 볼 수 있다.
- → 두 개의 변수만 포함하는 경우에는 mpa 와 b_speed가 포함되었다.

이는 탕구두께와 개별적인 상관계수를 계산했을 때 '실압력과 a속도가 가장 큰 상관관계를 가짐' 와는 약간 다른 결과이다.

선형회귀모형의 적합 및 변수선택

- 이를 위해 MASS패키지에 있는 stepAIC()함수를 사용한다.
- 'directions'을 'forward', 'backward', 'both' 3가지로 조정하여 수행한다.

```
vs2 <- stepAIC(lm11,direction="both", scope=list(upper=lm1,lower=lm11))
vs21 <- stepAIC(lm11,direction="forward", scope=list(upper=lm1,lower=lm11))
vs22 <- stepAIC(lm1,direction="backward")</pre>
```

```
> vs2 <- stepAIC(lm11,direction="both", scope=list(upper=lm1,lower=lm11))</pre>
Start: AIC=5978.38
c_thickness ~ 1
                   Df Sum of Sq RSS AIC
                    1 9241.8 10342 3789.8
                         7628.9 11955 4287.0
+ a_speed
+ load_time
                        1205.2 18379 5762.5
+ b speed
                          783.6 18801 5840.3
+ fix_time
                          238.8 19346 5938.3
+ highpressure_time 1
                          14.6 19570 5977.8
                                19584 5978.4
<none>
Step: AIC=3789.81
c_thickness ~ mpa
                   Df Sum of Sq
                          826.6 9515.9 3506.0
+ b speed
+ load time
                          430.1 9912.5 3646.1
                          210.7 10131.8 3721.2
+ fix_time
+ a_speed
                           80.5 10262.0 3765.0
+ highpressure_time 1
                           63.2 10279.4 3770.8
                                10342.5 3789.8
                        9241.8 19584.3 5978.4
Step: AIC=3506.01
c_thickness ~ mpa + b_speed
```

```
> vs21 <- stepAIC(lm11,direction="forward", scope=list(upper=lm1,lower=lm11)
Start: AIC=5978.38
c thickness ~ 1
                   Df Sum of Sq RSS AIC
                         9241.8 10342 3789.8
 a_speed
                         7628.9 11955 4287.0
 load_time
                         1205.2 18379 5762.5
b speed
                          783.6 18801 5840.3
+ fix_time
                          238.8 19346 5938.3
+ highpressure_time 1
                          14.6 19570 5977.8
                                19584 5978.4
Step: AIC=3789.81
c_thickness ~ mpa
                         826.61 9515.9 3506.0
 load time
                         430.08 9912.5 3646.1

    fix time

                         210.71 10131.8 3721.2
 a_speed
                          80.54 10262.0 3765.0
+ highpressure_time 1
                          63.17 10279.4 3770.8
                                10342.5 3789.8
```

```
> vs22 <- stepAIC(lm1.direction="backward")</p>
Start: AIC=3291.81
c_thickness ~ fix_time + a_speed + b_speed + mpa + load_time +
   highpressure_time
                    Df Sum of Sq
                                     RSS
                                  8919.2 3291.8
- highpressure_time 1
                           48.90 8968.1 3308.6
fix_time
                           69.92 8989.1 3316.6
 a_speed
                         105.79 9025.0 3330.3

    load_time

                         196.43 9115.6 3364.6

    b_speed

                          790.81 9710.0 3581.3
                        1618.55 10537.7 3862.0
- mpa
```

→3가지 모두 같은 결과를 보여준다.

c_thickness ~ mpa + b_speed + load_time + a_speed + fix_time + highpressure_time

다중공선성 파악하기

- 다중공선성이 존재하면, 추정량의 분산을 크게 하여 모형을 매우 불안정하게 만든다.
- car 패키지에 있는 vif함수를 이용하여 분산팽창계수를 통해 다중공선성을 파악한다.

<pre>> vif(lm1)</pre>					
fix_time	a_speed	b_speed	mpa	load_time high	pressure_time
1.376796	3.964659	1.012278	3.921777	1.277283	1.014540

→ 분산팽창계수가 전반적으로 4를 넘지 않으므로 <u>다중공선성이 심각하게 존</u>재하지 않는 것으로 볼 수 있다.

보통, 분산팽창계수가 10을 넘으면 심각한 것으로 판단하고 4~5를 넘으면 의심해 볼 수 있는 것으로 알려져 있다.

M/L: 회귀분석 2. 축소추정법

- 선형회귀모형에서 설명변수의 개수가 다수 존재하거나 변수들간의 상관성이 큰 경우 다중공선성 문제가 발생할 수 있다.
- 축소추정법(shrinkage method)을 통해 이를 해소하므로 모형의 성능을 개선할 있다.
 - !!! 이미 모든 변수들이 유의미한 것으로 판명되었고,다중공선성도 크게 의심할 수준이 아니라 필수적인 절차이지는 않지만,M/L 공부를 위해 해봤습니다.

데이터셋 준비

```
library(glmnet)
set.seed(1)
ind.train <- sample(1:nrow(car1),nrow(car1)*0.7)
car.train <- car1[ind.train,]
car.test <- car1[-ind.train,]
X <- as.matrix(car.train[,1:6])
Y <- as.matrix(car.train[,7])
nX <- as.matrix(car.test[,1:6])
nY <- as.matrix(car.test[,1:6])</pre>
```

M/L: 회귀분석 2.1 능형(Ridge)회귀

- 적절한 모수를 찾기 위해 교차검증을 실시한다.
- 최적 모수를 이용하여 능형회귀 모델을 예측한다.

```
cv.ridge <- cv.glmnet(X,Y,alpha=0,lambda=10^seq(10,-2,length=100))
ridge.pred <- predict(glmnet(X,Y,alpha=0,lambda=cv.ridge$lambda.min),newx=nX)
# Ridge 모형적합을 위해 alpha=0 으로 설정
mean((nY - ridge.pred)^2)
coef(glmnet(X,Y,alpha=0,lambda=cv.ridge$lambda.min))
```


- → 그림에서 볼 수 있듯이 조절 모수의 값은 작은 쪽에서 형성된다.
- → 실제 선택된 값은 0.01321941다.

\$lambda.min [1] 0.01321941

→ <u>예측오차는 2.496445이다.</u>

```
> mean((nY - ridge.pred)^2)
> [1] 2.496445
```

M/L: 회귀분석 2.2 라소(LASSO)회귀

- 적절한 모수를 찾기 위해 교차검증을 실시한다.
- 최적 모수를 이용하여 라소회귀 모델을 예측한다.

```
cv.lasso <- cv.glmnet(X, Y, alpha=1, lambda=10^seq(10, -2, length=100))
lasso.pred <- predict(glmnet(X,Y,alpha=1,lambda=cv.lasso$lambda.min),newx=nX)
mean((nY - lasso.pred)^2)
coef(glmnet(X,Y,alpha=1,lambda=cv.lasso$lambda.min))</pre>
```


- → 그림에서 볼 수 있듯이 조절 모수의 값은 작은 쪽에서 형성된다.
- → 실제 선택된 값은 0.01로 현재 설정한 값들 중 최소에 해당하는 값이다. \$1ambda.min [1] 0.01
- → 추정된 값중 0은 없다. 즉, 모형에서 빠지는 변수는 없다.
- → 예측오차는 2.500823이다.

```
> mean((nY - lasso.pred)^2)
> [1] 2.500823
```

M/L: 분류분석

불량 vs 양품 분석

- 탕구두께가 [21,27] 구간을 벗어나는 것은 불량이 의심된다.
- 탕구두께가 [21,27] 구간에 속하는지 여부를 반응변수(불량품or양품)로 반응변수을 이산형(binary)으로 변환하여 분류문제로 분석한다.


```
car1$failure <- as.factor((car1$c_thickness > 27)+(car1$c_thickness < 21))
car2 <- car1[,-7]
head(car2)
table(car2$failure)
car2.train <- car2[ind.train,]
car2.test <- car2[-ind.train,]</pre>
```

```
> head(car2)
  fix_time a_speed b_speed mpa load_time highpressure_time failure
             0.492
                   1.702 29.6
       68.3
                                     0.0
                                                        96
                                                                 1
      81.4
             0.502
                    1.702 29.8
                                    19.1
      81.4
             0.651
                    1.689 26.3
                                                        96
                                                                 1
                                     19.1
14
      81.8
                    1.722 76.2
                                     20.2
                                                        88
                                                                 1
             0.660
16
                                                                 1
      81.6
             0.667
                    1.712 76.6
                                    20.3
17
      81.6
            0.672
                    1.692 76.0
                                    20.2
> table(car2$failure)
   0
3051 380
```

M/L: 분류분석 1. 로지스틱(Logistic) 회귀모형

- 로지스틱 회귀모형은 선형모형의 확장된 형태이며. 불량발생확률의 logit 변환을 공정변수들의 선형결합으로 모형화한 것이다. 선형회귀모형과 비슷한 함수들을 이용하여 적합 및 변수 선택이 가능하다.

```
lm2 <- glm(failure~.,data=car2.train, family=binomial)</pre>
call:
glm(formula = failure \sim ., family = binomial, data = car2.train)
Deviance Residuals:
    Min
              1Q Median
                                       Max
-3.5986 -0.3920 -0.3315 -0.2837
                                    3.5042
Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
                              6.00754 -3.768 0.000164 ***
(Intercept)
                 -22.63930
fix_time
                 0.22062
                              0.07844
                                        2.813 0.004914 **
a_speed
                1.16541
                              4.88318
                                        0.239 0.811371
b_speed
                   1.65214
                              0.24259
                                        6.810 9.73e-12 ***
                  -0.10978
                              0.01861 -5.899 3.66e-09 ***
mpa
                  -0.12995
                              0.07221 -1.800 0.071900
load_time
highpressure_time 0.13252
                              0.02038
                                        6.503 7.87e-11 ***
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 1671.9 on 2400 degrees of freedom
Residual deviance: 1171.0 on 2394 degrees of freedom
AIC: 1185
Number of Fisher Scoring iterations: 6
```

→ 유의수준 0.05에서 a_speed와 road_time 이 유의하지 않은 것으로 나왔다.

M/L: 분류분석 1. 로지스틱(Logistic) 회귀모형

선형회귀모형의 적합 및 변수선택

- 이를 위해 MASS패키지에 있는 stepAIC()함수를 사용한다.
- 'directions'을 'forward', 'backward', 'both' 3가지로 조정하여 수행한다.

```
vs3 <- stepAIC(lm2,direction="both")
vs31 <- stepAIC(lm22, direction = "forward", scope=list(upper=lm2,lower=lm22))
vs33 <- stepAIC(lm2, direction = "backward")</pre>
```

```
> vs3 <- stepAIC(lm2,direction="both")</pre>
Start: AIC=1184.95
failure ~ fix_time + a_speed + b_speed + mpa + load_time + highpressure_time
                    Df Deviance AIC

    a_speed

                    1 1171.0 1183.0
<none>
                        1171.0 1185.0
                    1 1174.2 1186.2

    load time

    fix time

                    1 1182.3 1194.3
- highpressure_time 1 1212.0 1224.0

    b_speed

                    1 1213.1 1225.1
- mpa
                    1 1252.6 1264.6
Step: AIC=1183.01
failure ~ fix_time + b_speed + mpa + load_time + highpressure_time
                    Df Deviance AIC
<none>
                        1171.0 1183.0
- load time
                    1 1174.3 1184.3
+ a_speed
                    1 1171.0 1185.0
- fix time
                    1 1182.3 1192.3

    highpressure_time 1 1212.1 1222.1

                    1 1213.1 1223.1

    b_speed

                    1 1459.3 1469.3
- mpa
```

```
> vs31 <- stepAIC(lm22, direction = "forward", scope=list(upper=lm2,lower=lm22))</pre>
Start: AIC=1673.85
failure ~ 1
                   Df Deviance AIC
                        1283.4 1287.4
+ a_speed
                        1376.0 1380.0
+ fix_time
                    1 1594.4 1598.4
+ highpressure_time 1
                       1612.3 1616.3
                       1623.1 1627.1
+ load_time
                    1 1663.4 1667.4
                        1671.8 1673.8
Step: AIC=1287.38
failure ~ mpa
                   Df Deviance
+ hiahpressure time 1
                       1222.4 1228.4
+ b speed
                    1 1228.8 1234.8
+ fix time
                    1 1274.9 1280.9
                        1283.4 1287.4
+ load_time
                    1 1283.0 1289.0
+ a_speed
                    1 1283.4 1289.4
```

```
> vs33 <- stepAIC(lm2, direction = "backward")</p>
Start: AIC=1184.95
failure ~ fix_time + a_speed + b_speed + mpa + load_time + highpressure_time
                   Df Deviance AIC

    a_speed

                    1 1171.0 1183.0
<none>
                        1171.0 1185.0
- load time
                    1 1174.2 1186.2
- fix time
                    1 1182.3 1194.3
                       1212.0 1224.0
- hiahpressure_time 1

    b_speed

                    1 1213.1 1225.1
                    1 1252.6 1264.6
Step: AIC=1183.01
failure ~ fix_time + b_speed + mpa + load_time + highpressure_time
                   Df Deviance AIC
<none>
                        1171.0 1183.0
- load_time
                    1 1174.3 1184.3
- fix time
                    1 1182.3 1192.3
- highpressure_time 1 1212.1 1222.1

    b_speed

                    1 1213.1 1223.1
                    1 1459.3 1469.3
```

→ AIC에 의한 변수선택결과 a_speed를 제외한 모형이 최적으로 나왔다.
failure ~ fix_time + b_speed + mpa + load_time + highpressure_time

M/L: 분류분석 1. 로지스틱(Logistic) 회귀모형

모델 평가하기

- test Data로 예측하기
- ROC Curve
- AUC
- Confusion Matrix

1. ROC Curve_Logistic

2. AUC

Slot "y.values": [[1]] [1] 0.8383322

```
> confusionMatrix(a, car2.test$failure)
Confusion Matrix and Statistics
         Reference
Prediction 0 1
        0 910 61
        1 6 53
              Accuracy: 0.935
                95% CI: (0.9181. 0.9492)
    No Information Rate: 0.8893
    P-Value [Acc > NIR] : 3.852e-07
                 карра : 0.5811
Mcnemar's Test P-Value : 4.191e-11
           Sensitivity : 0.9934
           Specificity: 0.4649
        Pos Pred Value : 0.9372
        Neg Pred Value: 0.8983
            Prevalence: 0.8893
        Detection Rate: 0.8835
  Detection Prevalence: 0.9427
     Balanced Accuracy: 0.7292
       'Positive' Class: 0
```

- → AUC값은 0.8383322이다.
- →로지스틱 모형에 의한 오분류율 (1-0.935) 은 0.065
- → 양품은 양품으로 대부분 잘 분류하였으나 (sensitivity=0.9934), 불량품에 대한 분류성능이 떨어지는 것으로 보인다 (specificity=0.4649).

M/L: 분류분석 2. 의사결정나무 (Decision tree)

- 로지스틱 모형과 달리 비선형모형이다.
- 공정변수들의 값이 이원화되어 있는 경우가 많았으므로
- 로지스틱 모형보다는 의사결정나무 모형에 의한 분류성능이 더 좋을 것으로 기대해 볼 수 있다.

```
tree.car <- tree(failure~., data=car2.train)
summary(tree.car)
Classification tree:
tree(formula = failure \sim ., data = car2.train)
Variables actually used in tree construction:
[1] "mpa"
                        "b_speed"
                                            "load time"
                                                                 "highpressure_time"
Number of terminal nodes: 9
Residual mean deviance: 0.3672 = 878.4 / 2392
Misclassification error rate: 0.06456 = 155 / 2401
```


- → 의사결정나무 결과, 실제 나무적합을 위해 쓰인 변수는 mpa, b_speed, highpressure_time, road_tie, fix_time이다.
- → a속도는 사용되지 않았다.
- → 보통 큰 나무모형은 과적합(overfitting) 문제가 있는 것으로 알려져 있다.
- → 적절한 가지치기(pruning)를 통해 나무의 크기를 줄여 예측 정확도 (1-0.06456=0.93544)를 향상시켜 볼 것이다.

M/L: 분류분석 2. 1.가지치기

의사결정트리 가지치기

- 적절한 가지의 수를 찾기 위해 교차검증을 실시한다.
- 최적의 모수로 가지치기를 한다.

→ 크기가 7인 경우 deviance가 최소가 된다

```
prune.car
           <- prune.misclass(tree.car, best=7)</pre>
> prune.car
node), split, n, deviance, yval, (yprob)
     * denotes terminal node
1) root 2401 1672.000 0 ( 0.88921 0.11079 )
  2) mpa < 52.55 102 56.080 1 ( 0.07843 0.92157 )
    3) mpa > 52.55 2299 1223.000 0 ( 0.92518 0.07482 )
    6) b_speed < 1.8475 2246 1048.000 0 ( 0.93767 0.06233 )
     12) load_time < 19.15 98 125.200 0 ( 0.66327 0.33673 )
     13) load_time > 19.15 2148 850.500 0 ( 0.95019 0.04981 )
      26) load_time < 20.75 2079 671.700 0 ( 0.96200 0.03800 )
      27) load_time > 20.75 69 93.190 0 ( 0.59420 0.40580 )
        54) load_time < 21.25 39    50.920 1 ( 0.35897 0.64103
        7) b_speed > 1.8475 53 71.170 1 ( 0.39623 0.60377 ) *
                     mpa ≤ 52.55
                                    b_speed < 1.8475
  b_speed < 2.097
                      load time < 19.15
                              load time < 20.75
                                     load_time < 21.25
```

크기가 7인 모형을 선택한다.

분류를 위해 쓰인 변수는 mpa, road_time, b_speed 세 개이다

M/L: 분류분석 2. 의사결정나무 (Desicion Tree)

모델 평가하기

- test Data로 예측하기
- ROC Curve
- AUC
- Confusion Matrix

1. ROC Curve_Logistic

2. AUC

```
Slot "y.values":
[[1]]
[1] 0.8456868
```

```
Confusion Matrix and Statistics
         Reference
Prediction 0 1
        0 894 43
        1 22 71
              Accuracy: 0.9369
                95% CI: (0.9203, 0.951)
   No Information Rate : 0.8893
   P-Value [Acc > NIR] : 1.139e-07
                 Kappa : 0.6513
Mcnemar's Test P-Value: 0.01311
           Sensitivity: 0.9760
           Specificity: 0.6228
        Pos Pred Value : 0.9541
        Neg Pred Value: 0.7634
            Prevalence: 0.8893
        Detection Rate: 0.8680
  Detection Prevalence: 0.9097
     Balanced Accuracy: 0.7994
      'Positive' Class: 0
```

- → AUC값은 0.8456868이다.
- →로지스틱 모형에 의한 오분류율 (1-0.936) 은 0.064
- → 양품은 양품으로 대부분 잘 분류하였으나 (sensitivity=0.9760), 불량품에 대한 분류성능이 떨어지는 것으로 보인다 (specificity=0.6228).

M/L: 분류분석 3. 랜덤포레스트 (Random forest)

모델 평가하기

- test Data로 예측하기
- ROC Curve
- AUC
- Confusion Matrix

1. ROC Curve_Logistic

2. AUC

```
slot "y.values":
[[1]]
[1] 0.9410432
```

```
Confusion Matrix and Statistics
         Reference
Prediction 0 1
        0 898 44
        1 18 70
              Accuracy: 0.9398
                95% CI: (0.9235, 0.9535)
   No Information Rate: 0.8893
   P-Value [Acc > NIR] : 1.624e-08
                 Kappa : 0.6603
Mcnemar's Test P-Value : 0.001498
           Sensitivity: 0.9803
           Specificity: 0.6140
        Pos Pred Value : 0.9533
        Neg Pred Value: 0.7955
            Prevalence: 0.8893
        Detection Rate: 0.8718
  Detection Prevalence: 0.9146
     Balanced Accuracy: 0.7972
      'Positive' Class: 0
```

- → AUC값은 0.9410432이다.
- →로지스틱 모형에 의한 오분류율 (1-0.939) 은 0.061
- → 양품은 양품으로 대부분 잘 분류하였으나 (sensitivity=0.9803), 불량품에 대한 분류성능이 떨어지는 것으로 보인다 (specificity=0.6140).

M/L: 분류분석

4. 신경망모형 (Neural network model)

모델 평가하기

- test Data로 예측하기
- ROC Curve
- AUC
- Confusion Matrix

1. ROC Curve_Logistic

2. AUC

Slot "y.values": [[1]] [1] 0.8867023

```
Confusion Matrix and Statistics
         Reference
Prediction 0 1
        0 905 48
        1 11 66
              Accuracy: 0.9427
                95% CI: (0.9267, 0.9561)
   No Information Rate: 0.8893
   P-Value [Acc > NIR] : 1.992e-09
                 карра: 0.6608
Mcnemar's Test P-Value : 2.775e-06
           Sensitivity: 0.9880
          Specificity: 0.5789
        Pos Pred Value: 0.9496
        Neg Pred Value: 0.8571
            Prevalence: 0.8893
        Detection Rate: 0.8786
  Detection Prevalence: 0.9252
     Balanced Accuracy: 0.7835
       'Positive' Class : 0
```

- → AUC값은 0.8867023이다.
- →로지스틱 모형에 의한 오분류율 (1-0.942) 은 0.058
- → 양품은 양품으로 대부분 잘 분류하였으나 (sensitivity=0.9880), 불량품에 대한 분류성능이 떨어지는 것으로 보인다 (specificity=0.5789).

Estimation:회귀분석모델 간의 오차 비교

선형회귀분석	Ridge분석	Lasso분석
<pre>> lm.pred <- predict(lm(c_thickness~.,data=car.train),newdata=car.test[,1:6]) > mean((car.test[,7] -lm.pred)^2) > [1] 2.494666</pre>	<pre>ridge.pred <- predict(glmnet(X,Y,alpha=0,lambda=cv.r idge\$lambda.min),newx=nX) > mean((nY - ridge.pred)^2) [1] 2.496445</pre>	<pre>> lasso.pred <- predict(glmnet(X,Y,alpha=1,lambda=cv.la sso\$lambda.min),newx=nX) > mean((nY - lasso.pred)^2) > [1] 2.500823</pre>

- → 축소추정법을 적용하지 않은 선형회귀모형의 경우 예측오차가 2.494666이다. 즉, Ridge(2.496445)나 LASSO(2.500823)에 비해 작은 값을 주었다.
- → 앞에서 모두 변수가 유의하였던 점. 축소추정에 의해 변수가 모형에서 빠지지 않았던 점. 축소추정에 의해서 예측오차가 좋아지지 않았던 점. 분산팽창계수가 그리 크지 않았던 점 등을 종합하여 볼 때, 본 자료에서는 축소추정법이 필요하지 않은 것으로 보인다.
- →다만, 앞에서 보았듯이 선형모형 가정 자체에도 의심할 만한 여지가 있으며, 공정변수들이 두 그룹으로 완전히 분리되어 나타나는 경우가 많았던 점 등을 생각할 때 선형회귀 모형도 그 성능이 매우 뛰어나다고 보기는 어렵다.

Estimation: 분류분석모델 간의 오차 비교

	로지스틱 (Logistic)	의사결정나무 (Decision tree)	랜덤포레스트 (Random forest)	신경망모형 (Neural network model)
AUC	0.8383322	0.8456868	0.9410432	0.8867023
오분류율	0.065	0.064	0.058	0.058
sensitivity	0.9934	0.9760	0.9803	0.9880
specificity	0.4649	0.6228	0.6140	0.5789

- → 위 그림은 양품(좌), 불량의심품(우) 그룹에서 각 모형에 의한 예측확률을 상자그림으로 표현한 것이다. 좌측 상자는 0에 가깝고 우측상자는 1에 가까울 수록, 또한 두 상자의 폭이 좁고 서로 멀리 떨어져 있을 수록 분류가 잘 된 것으로 볼 수 있다.
- → 약간씩의 차이가 있기는 하지만 양품은 불량확률을 0에 매우 가깝게 대부분 예측하고 있음을 알 수 있다. 다만, 양품을 양품으로 가장 잘 예측하는 것은 의사결정나무모형인 것으로 보인다.
- →불량의심품의 경우에는 모든 분류모형이 저하된 성능을 보였다. 상대적으로는 로지스틱이 가장 좋지 않은 성능을 보이고 있으며, 의사결정나무 가 가장 좋은 성능을 보여주고 있다.