

Machine Learning - Homework 2

Pedro Curvo (ist1102716) | Salvador Torpes (ist1102474)

1st Term - 23/24

Dataset

The following dataset will be used for this homework:

D		Input				Output	
		<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆
Training Observations	<i>x</i> ₁	0.24	0.36	1	1	0	A
	<i>x</i> ₂	0.16	0.48	1	1	0	А
	<i>X</i> ₃	0.32	0.72	0	1	2	А
	<i>X</i> ₄	0.54	0.11	0	0	1	В
	<i>X</i> ₅	0.66	0.39	0	0	0	В
	<i>x</i> ₆	0.76	0.28	1	0	2	В
	<i>x</i> ₇	0.41	0.53	0	1	1	В
Testing Observations	<i>x</i> ₈	0.38	0.52	0	1	0	А
	<i>X</i> 9	0.42	0.59	0	1	1	В

Table 1: Dataset

1st Question

In order to build the Bayesian classifier for this dataset, we need to compute the distribution of y_1 , y_2 , y_3 , y_4 and y_5 , which are the groups of independent input variables of our dataset.

Distribution of y_1 **and** y_2 We are told that $y_1 \times y_2 \in \mathbb{R}$ follows a normal 2D distribution. A multivariate normal distribution of m variables $\vec{x} = \{x_1, x_2, ..., x_m\}$ is defined by its mean vector $\vec{\mu}$ and its covariance matrix Σ :

$$p(ec{x}|ec{\mu},\Sigma) = rac{1}{\sqrt{(2\pi)^m|\Sigma|}} \exp\left(-rac{1}{2}(ec{x}-ec{\mu})^T\cdot\Sigma^{-1}\cdot(ec{x}-ec{\mu})
ight)$$

In our case, we have m=2 and we need to compute the mean vector $\vec{\mu}$ and the covariance matrix Σ :

$$\mu = \begin{bmatrix} \mu_{y_1} \\ \mu_{y_2} \end{bmatrix} = \begin{bmatrix} 0.45 \\ 0.41 \end{bmatrix}$$

Distribution of y_3 **and** y_4 The distribution of y_3 and y_4 comes directly from the information of table **??** and is given by:

$P(y_3 \cap y_4)$		<i>у</i> з					
		0	1				
<i>y</i> ₄	0	$P(y_3 = 0 \cap y_4 = 0) = \frac{2}{7}$	$P(y_3 = 1 \cap y_4 = 0) = \frac{1}{7}$				
	1	$P(y_3 = 0 \cap y_4 = 1) = \frac{2}{7}$	$P(y_3 = 1 \cap y_4 = 1) = \frac{2}{7}$				

Distribution of y_5 The distribution of y_5 is given by: