Haystack ciphers: White-box countermeasures as Symmetric encryption

<u>Alex Charlès</u>¹, Aleksei Udovenko²

1) DCS, University of Luxembourg: alex.charles205@gmail.com

2) SnT, University of Luxembourg: aleksei@affine.group

Journée Thématique sur mes Attaques par Injection de Faute 2025

General overview of White-box Cryptography

Black-box model

Grey-box model

Grey-box model

White-box model

White-box model

White-box model

- ► Controlled environment
 - The only input is the plaintext
 - The implementation is deterministic
- Access to noiseless traces
 - Possibility of algebraic attacks
- ► All bit gates are available
 - Structure analysis of the implementation
- Cheap bit-precise fault
 - Multi-fault is possible

Side channel attacks in the white-box model

a_1	a_2	a_3	a_4	n_1	n_2	n_3	n_4	n_5	n_6	n_7
1	1	0	0	1	1	0	0	1	0	1
1	0	1	0	0	1	0	1	1	1	1
0	0	0	1	0	0	0	0	0	0	1
1	0	1	1	0	1	1	1	0	1	1
1	0	0	1	0	0	0	0	0	0	1
0	0	1	1	0	1	1	1	0	0	1
1	1	0	1	1	1	0	0	1	0	0
1	1	1	1	1	0	1	1	1	1	0
0	1	1	0	0	0	0	0	0	0	0

Selection function

8-bit inputs	k_0	k_1	k_2	k_3	k_4	•••	k ₂₅₅
0b01011011	1	0	1	0	0		1
0b11001111	0	0	1	1	1	•••	1
0b00101101	1	1	0	1	1	•••	0
0b11100101	0	1	1	1	0	•••	1
0b00101011	0	0	0	1	0	•••	1
0b01011110	1	0	0	1	1	•••	1
0b00100110	1	1	1	0	0	•••	0
0b10101100	0	0	1	0	1	•••	0
:	÷	÷	÷	÷	÷	٠.	:
0b11011010	1	1	1	0	1	•••	1

Selection function

128-bit inputs	n_1	n_2	n_3	n_4	n_5	n_6	n_7	•••	$oxed{n_{\# N}}$	k_0	k_1	k_2	k_3	k_4		k_{255}
0x2a61e030	1	0	1	1	0	0	1		1	1	0	1	0	0		1
0x118c3699	1	1	1	1	1	1	0	•••	0	0	0	1	1	1	•••	1
0x243d590c	0	0	1	0	1	1	1		1	1	1	0	1	1		0
0x39ab4f21	0	0	0	1	1	0	0		0	0	1	1	1	0		1
0x21fe5bf1	1	0	1	1	1	0	1		0	0	0	0	1	0		1
0x1106de2f	0	0	0	1	1	0	1		1	1	0	0	1	1		1
0x30d5494c	1	1	1	0	0	1	0		0	1	1	1	0	0		0
0x27b9efbd	0	0	0	1	0	1	1		1	0	0	1	0	1		0
:	i	:	:	i	:	:	:	٠.	:	:	:	÷	÷	÷	٠.	i
0x2881b3f9	1	0	0	0	0	1	0	•••	1	1	1	1	0	1	•••	1

Selection function

128-bit inputs					n_5	n_6				k_0	k_1	k_2	k_3	k_{4}	•••	k ₂₅₅
0x2a61e030	1	0	1	1	0	0	1		1	1	0	1	0	0		1
0x118c3699	1	1	1	1	1	1	0		0	0	0	1	1	1		1
0x243d590c	0	0	1	0	1	1	1		1	1	1	0	1	1	0 0 0	0
0x39ab4f21	0	0	0	1	1	0	0		0	0	1	1	1	0	0 0 0	1
0x21fe5bf1	1	0	1	1	1	0	1		0	0	0	0	1	0		1
0x1106de2f	0	0	0	1	1	0	1		1	1	0	0	1	1		1
0x30d5494c	1	1	1	0	0	1	0		0	1	1	1	0	0		0
0x27b9efbd	0	0	0	1	0	1	1		1	0	0	1	0	1		0
0 0 0	0 0	0 0	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0 0	:	o o o	0 0	•••	o o o	0 0 0	0 0	0 0 0	÷	o o o	••	0 0 0
0x2881b3f9	1	0	0	0	0	1	0	0 0 0	1	1	1	1	0	1		1

 $\overrightarrow{n_5}$ and $\overrightarrow{k_3}$ are equal, therefore $\overrightarrow{k_3}$ should be the correct key byte

ISW Masking Scheme and Algebraic attacks

ISW Masking Scheme

► Ishai, Sahai and Wagner introduced in 2003¹ a first masking masking scheme, that has the decoding function:

$$s = x_1 \oplus \cdots \oplus x_l$$

► For simplicity, let us focus on the case l=3:

$$s = x_1 \oplus x_2 \oplus x_3$$

ISW Masking Scheme

► There exists $\overrightarrow{n_a}$, $\overrightarrow{n_b}$, $\overrightarrow{n_c}$ and $g \in \{0, ..., 255\}$ such that $\overrightarrow{n_a} \oplus \overrightarrow{n_b} \oplus \overrightarrow{n_c} = \overrightarrow{k_g}$.

128-bit inputs	n_1	n_2	n_3	n_4	n_5	n_6	n_7	•••	$n_{\#N}$	k_0	k_1	k_2	k_3	k_4		k_{255}
0x2a61e030	0	0	1	1	0	0	1	•••	1	1	0	1	0	0	•••	1
0x118c3699	0	1	0	1	1	1	0	•••	0	0	0	1	1	1	•••	1
0x243d590c	0	1	1	0	1	1	1	•••	1	1	1	0	1	1	•••	0
0x39ab4f21	1	0	0	1	0	0	0	•••	0	0	1	1	1	0	•••	1
0x21fe5bf1	0	0	1	1	0	0	1	•••	0	0	0	0	1	0	•••	1
0x1106de2f	1	1	0	1	1	0	1	•••	1	1	0	0	1	1	•••	1
0x30d5494c	1	1	1	0	1	1	0	•••	0	1	1	1	0	0	•••	0
0x27b9efbd	0	0	0	1	0	1	1		1	0	0	1	0	1		0
:	÷	ŧ	ŧ	:	÷	÷	÷	٠.	÷	:	:	i	÷	÷	٠.	÷
0x2881b3f9	1	1	0	0	1	1	0	•••	1	1	1	1	0	1	•••	1

ISW Masking Scheme

$$\overrightarrow{n_1} \oplus \overrightarrow{n_3} \oplus \overrightarrow{n_5}$$

$$=\overrightarrow{k_2}$$

128-bit inputs	n_1	n_2	n_3	n_4	n_5	n_6				k_0	k_1	k_2	k_3	k_4	•••	k_{255}
0x2a61e030	1	0	1	1	0	0	1		1	1	0	1	0	0	0 0 0	1
0x118c3699	1	1	0	1	1	1	0		0	0	0	1	1	1	0 0 0	1
0x243d590c	0	1	0	0	1	1	1		1	1	1	0	1	1	0 0 0	0
0x39ab4f21	1	0	0	1	0	0	0		0	0	1	1	1	0	0 0 0	1
0x21fe5bf1	0	0	1	1	1	0	1		0	0	0	0	1	0	0 0 0	1
0x1106de2f	1	1	0	1	1	0	1		1	1	0	0	1	1		1
0x30d5494c	1	1	1	0	1	1	0		0	1	1	1	0	0	0 0 0	0
0x27b9efbd	1	0	0	1	1	1	1		1	0	0	1	0	1		0
:	i	:	÷	o o o	:	0 0 0	0 0	••	0 0	0 0	0 0	i	•	0 0	•••	0 0
0x2881b3f9	1	1	1	0	1	1	0	0 0 0	1	1	1	1	0	1		1

Linear Decoding Attack¹

	←			W =	5		
	n	$1 \mid n$	2	n_3	n_4	n_5	
	1	L (0	1	1	0	
	1	L :	1	0	1	1	
	C) :	1	0	0	1	
	1	L (0	0	1	0	
1	C) (0	1	1	1	
M=	1	L :	1	0	1	1	
	1	L :	1	1	0	1	
	1	L (0	0	1	1	
		:	÷	÷	÷	÷	
	1	L i	1	1	0	1	

k_0	k_1	k_2	k_3	k_4	•••	k_{255}
1	0	1	0	0	•••	1
0	0	1	1	1		1
1	1	0	1	1		0
0	1	1	1	0		1
0	0	0	1	0		1
1	0	0	1	1		1
1	1	1	0	0		0
0	0	1	0	1	•••	0
:	:	÷	:	:	٠.	÷
1	1	1	0	1	•••	1

1. Journal of Cryptographic Engineering 2020: How to reveal the secrets of an obscure white-box implementation

Linear Decoding Attack

n_1	n_2	n_3	n_4	n_5
1	0	1	1	0
1	1	0	1	1
0	1	0	0	1
1	0	0	1	0
0	0	1	1	1
1	1	0	1	1
1	1	1	0	1
1	0	0	1	1
÷	÷	÷	:	÷
1	1	1	0	1

k_0	k_1	k_2	k_3	k_{4}	•••	k_{255}
1	0	1	0	0		1
0	0	1	1	1		1
1	1	0	1	1		0
0	1	1	1	0		1
0	0	0	1	0		1
1	0	0	1	1		1
1	1	1	0	0		0
0	0	1	0	1		0
÷		0 0	0 0		•••	° °
1	1	1	0	1		1

Linear Decoding Attack

n_1	n_2	n_3	n_4	n_5
1	0	1	1	0
1	1	0	1	1
0	1	0	0	1
1	0	0	1	0
0	0	1	1	1
1	1	0	1	1
1	1	1	0	1
1	0	0	1	1
÷	÷	÷	÷	:
1	1	1	0	1

k_0	k_1	k_2	k_3	k_{4}		k_{255}
1	0	1	0	0		1
0	0	1	1	1		1
1	1	0	1	1		0
0	1	1	1	0		1
0	0	0	1	0	0 0 0	1
1	0	0	1	1	0 0 0	1
1	1	1	0	0		0
0	0	1	0	1	0 0 0	0
0 0 0	÷		0 0		•••	0 0 0
1	1	1	0	1	0 0 0	1

Linear Decoding Attack

n_1	n_2	n_3	n_4	n_5
1	0	1	1	0
1	1	0	1	1
0	1	0	0	1
1	0	0	1	0
0	0	1	1	1
1	1	0	1	1
1	1	1	0	1
1	0	0	1	1
÷	÷	÷	÷	:
1	1	1	0	1

k_0	k_1	k_2	k_3	k_{4}	•••	k ₂₅₅
1	0	1	0	0		1
0	0	1	1	1		1
1	1	0	1	1	0 0 0	0
0	1	1	1	0	0 0 0	1
0	0	0	1	0		1
1	0	0	1	1		1
1	1	1	0	0		0
0	0	1	0	1		0
0 0	0 0	ŧ	0 0 0	0 0	•••	0 0
1	1	1	0	1		1

Side-channel Attacks under our Haystack model

Side-channel attacks

ISW Haystack cipher

- ► To encode a bit variable *p* into *l* ISW shares, you compute :
 - $x_1 = p \oplus \$_2 \cdots \oplus \$_l$, with $\$_i$ being random values
 - $x_2 = \$_2$, $x_3 = \$_3$, ..., $x_l = \$_l$
 - We have : $p = x_1 \oplus x_2 \cdots \oplus x_l$

$$E_{k,\ell,r}(p) = \operatorname{Shuffle}_k(p \oplus \$_2 \oplus \ldots \oplus \$_\ell, \ \$_2, \$_3, \ldots, \$_\ell, \ \S_1, \ldots, \S_r)$$
ISW Shares
Other node vectors

ISW Haystack cipher

► Shuffle $_k$ is a fixed permutation, chosen uniformly at random per each value k

INDistinguishability under Chosen-Plaintext Attack

$$E_{k,\ell,r}(p) = \text{Shuffle}_k(p \oplus \$_2 \oplus \ldots \oplus \$_\ell, \$_2, \$_3, \ldots, \$_\ell, \ \tilde{\$}_1, \ldots, \tilde{\$}_r)$$

$$\frac{\mathbf{proc\ Initialize}()}{k \xleftarrow{\$} K();\ b \xleftarrow{\$} \{0,1\}} \frac{\mathbf{proc\ LR}(p_0,p_1)}{c \xleftarrow{\$} E_k(p_b);\ \mathbf{return}\ c}$$

$$\frac{\mathbf{proc\ Enc}(p)}{c \xleftarrow{\$} E_k(p);\ \mathbf{return}\ c} \frac{\mathbf{proc\ Finalize}(b')}{\mathbf{If}\ (b'=b)\ \mathbf{return}\ \mathbf{Win}}$$

$$\frac{\mathbf{lf}\ (b'=b)\ \mathbf{return}\ \mathbf{Win}}{\mathbf{else\ return}\ \mathbf{Loose}}$$

- Generating a trace is querying an encryption
- ► The attacker should not be able to recover information of the selection function from the shares

 \triangleright (IND-CPA)

Fault Attacks under our Haystack model

Fault attacks

Fault attack model

ASSUMPTION:

Injecting any fault on s, r is enough for the attacker to retrieve the value of the corresponding selection function

Fault attack model

Let $E_k(p) = \text{Shuffle}_k(x_1, x_2, ..., x_s, \$_1, ..., \$_r)$ be a Haystack cipher

Shares Other node vectors

► The attacker can fault any variable bit variable of the ciphertext, and recover the associated plaintext *p*

ASSUMPTION:

Injecting any fault on s, r is enough for the attacker to retrieve the value of the corresponding selection function

▶ It is a Chosen Ciphertext Attack!

Fault attack model

Let $E_k(p) = \text{Shuffle}_k(x_1, x_2, ..., x_s, \$_1, ..., \$_r)$ be a Haystack cipher

```
 \begin{array}{ll} \triangleright \text{ (IND-CCA1 / non-adaptive)} \\ & \underline{\textbf{proc Initialize}}() \\ & k \xleftarrow{\$} K(); \ b \xleftarrow{\$} (0,1); \ f \leftarrow 0 \\ \\ & \underline{\textbf{proc Enc}(p)} \\ & c \xleftarrow{\$} E_k(p); \ \textbf{return } c \end{array} \qquad \begin{array}{ll} \underline{\textbf{proc LR}(p_0,p_1)} \\ & c \xleftarrow{\$} E_k(p_b); \ f \leftarrow 1; \ \textbf{return } c \\ \\ & \underline{\textbf{proc Dec}(c)} \\ & \underline{\textbf{If } f = 0 \ \text{then return } D_k(c)} \end{array} \qquad \begin{array}{ll} \underline{\textbf{proc Finalize}(b)} \\ & \underline{\textbf{If } (b' = b) \ \textbf{return Win}} \\ & \text{else return Loose} \end{array}
```

- Generating a trace is querying an encryption
- ► Faulting the ciphertext is querying a decryption
- ► The attacker should not be able to recover information of the selection function

White-box Fault Attacks

White-box Differential Fault attack

- ► It is possible to recover key information by injecting a fault between the two last AES rounds¹
- ► In white-box, mounting such attack is easier²:

- 1. Crypto 1997: Differential Fault Analysis of secret key cryptosystems
- 2. https://blog.quarkslab.com/differential-fault-analysis-on-white-box-aes-implementations.html

Linear Fault Recoding attack

► Let us define a Code-based fault countermeasure:

Let \mathbb{F} be a finite field, $\ell \in \mathbb{Z}_{>0}$ and $G \in \mathbb{F}^{(n+\ell)\times s}$ be a right-invertible matrix (in particular, $s \geq n + \ell$). Define an encoding function

$$\operatorname{Encode}_{\ell,G}^{\operatorname{CB}}: \mathbb{F}^n \to \mathbb{F}^s: \boldsymbol{p} \mapsto (\boldsymbol{p}||\$^{\ell}) \times G,$$

where $\$^{\ell}$ is sampled uniformly at random from \mathbb{F}^{ℓ} .

- Once again, the shares follows a linear structure, that we can observe in white-box
- ► For example : If we find that $x_1 = x_2 \oplus x_3 \oplus x_5$ and $x_2 = x_3 \oplus x_4$, then we can choose x_3, x_4, x_5 and set x_1, x_2 accordingly, resulting in a valid codeword

Randomness removal by faulting

- Let us take back $E_k(p) = \text{Shuffle}_k(x_1, x_2, ..., x_s, \$_1, ..., \$_r)$
- ► Its decryption function is :

$$D_k(c) = \text{Decode}(\text{Unshuffle}_k(c)\Big|_{1,\dots,s})$$

- ightharpoonup Faulting the randomness $\$_1, ..., \$_r$ does not impact the decryption !
 - → An attacker can distinguish randomness from shared values

This corresponds to a forgery attack in the CCA model

Forgery attacks: ineffective faults

- Randomness removal
- ► Double fault against ISW:

$$p = x_1 \oplus x_2 \oplus \cdots \oplus x_l = x_1 \oplus x_2 \oplus \cdots \oplus x_l$$

► Detection of Non-linear shares:

$$p = x_1 \oplus \cdots \oplus x_l \oplus x_{l+1} \cdot x_{l+2} \cdots x_{l+d}$$
Fault succeeds
100% of the time
$$\begin{array}{c} \text{Fault succeeds if all the} \\ d \text{ non-linear shares} \\ \text{are equal to one} \end{array}$$

Symmetric cryptography and Physical cryptanalysis link

Security	Symmetric-key cryptography	White-box cryptography
CPA	Plaintext Ciphertext	Selection function Trace window
CCA1	Decryption query Decryption failure (\bot)	Fault injection Fault detection (\bot)
CCA2	Relative forgery (Malleability)	Targeted fault injection
CCA3	Existential forgery attack	Undetected fault

Thank you for your attention!

Haystack ciphers: White-box countermeasures as Symmetric encryption

https://eprint.iacr.org/2025/1635

<u>Alex Charlès</u>¹, Aleksei Udovenko²

1) DCS, University of Luxembourg : <u>alex.charles205@gmail.com</u>

2) SnT, University of Luxembourg: aleksei@affine.group