Exercise of Supervised Learning: Multiclass Classification

Yawei Li

yawei.li@stat.uni-muenchen.de

November 12, 2024

Exercise 4: Multiclass Hinge Loss

Consider the multiclass classification scenario consisting of a feature space \mathcal{X} and a label space $\mathcal{Y}=\{1,\ldots,g\}$ with $g\geq 2$ classes. Moreover, we consider the hypothesis space of models based on g discriminant/scoring functions:

$$\mathcal{H} = \{ f = (f_1, \dots, f_g)^T : \mathcal{X} \to \mathbb{R}^g | f_k : \mathcal{X} \to \mathbb{R}, \ \forall k \in \mathcal{Y} \}.$$

A model f in \mathcal{H} is used to make a prediction by means of transforming the scores into classes by choosing the class with the maximum score:

$$h(\mathbf{x}) = \arg\max_{k \in \{1, \dots, g\}} f_k(\mathbf{x}). \tag{1}$$

The multiclass hinge loss is defined by

$$L(y, f(\mathbf{x})) = \max_{k} (f_k(\mathbf{x}) - f_y(\mathbf{x}) + I_{y \neq k}). \qquad \triangleright$$

(a) Show that 0-1-loss for a predictor h as in (1) based on a model $f \in \mathcal{H}$ is at most the multiclass hinge loss for f i.e.,

$$L_{0-1}(y,h(\mathbf{x})) = I_{y\neq h(\mathbf{x})} \leq L(y,f(\mathbf{x})).$$

There are two cases: $y = \arg \max_k f_k(\mathbf{x})$ or $y \neq \arg \max_k f_k(\mathbf{x})$. If $y = \arg \max_k f_k(\mathbf{x})$, then

$$L(y, f(\mathbf{x})) = \max_{k} (f_k(\mathbf{x}) - f_y(\mathbf{x}) + I_{y \neq k})$$
$$= f_y(\mathbf{x}) - f_y(\mathbf{x}) + 0$$
$$= 0$$

In this case, the 0-1-loss is

$$L_{0-1}(y,h(\mathbf{x}))=0$$

because $y = \arg\max_k f_k(x)$. That is, the prediction via argmax is correct So $L(y, f(\mathbf{x})) = L_{0,1}(y, h(\mathbf{x}))$.

There are two cases: $y = \arg\max_k f_k(\mathbf{x})$ or $y \neq \arg\max_k f_k(\mathbf{x})$. If $y = \arg\max_k f_k(\mathbf{x})$, then

$$L(y, f(\mathbf{x})) = \max_{k} (f_k(\mathbf{x}) - f_y(\mathbf{x}) + I_{y \neq k})$$
$$= f_y(\mathbf{x}) - f_y(\mathbf{x}) + 0$$
$$= 0$$

In this case, the 0-1-loss is

$$L_{0-1}(y,h(\mathbf{x}))=0$$

because $y = \arg \max_k f_k(x)$. That is, the prediction via argmax is correct So $L(y, f(\mathbf{x})) = L_{0,1}(y, h(\mathbf{x}))$.

There are two cases: $y = \arg\max_k f_k(\mathbf{x})$ or $y \neq \arg\max_k f_k(\mathbf{x})$. If $y = \arg\max_k f_k(\mathbf{x})$, then

$$L(y, f(\mathbf{x})) = \max_{k} (f_k(\mathbf{x}) - f_y(\mathbf{x}) + I_{y \neq k})$$
$$= f_y(\mathbf{x}) - f_y(\mathbf{x}) + 0$$
$$= 0$$

In this case, the 0-1-loss is

$$L_{0-1}(y, h(\mathbf{x})) = 0$$

because $y = \arg \max_k f_k(x)$. That is, the prediction via argmax is correct. So $L(y, f(\mathbf{x})) = L_{0,1}(y, h(\mathbf{x}))$.

Solution to Question (a): Continued

If $y \neq \arg\max_k f_k(\mathbf{x})$, then

$$L(y, f(\mathbf{x})) = \max_{k} \left(\underbrace{f_k(\mathbf{x}) - f_y(\mathbf{x})}_{>0} + \underbrace{f_{y\neq k}}_{=1} \right)$$

$$> 1.$$

The 0-1-loss is

$$L_{0-1}(y, h(\mathbf{x})) = 1$$

because $y \neq \arg\max_k f_k(x)$. That is, the prediction via argmax is incorrect. So $L(y, f(\mathbf{x})) > L_{0,1}(y, h(\mathbf{x}))$.

Combining the two cases, we have proved that

$$L_{0-1}(y,h(\mathbf{x})) = I_{y\neq h(\mathbf{x})} \leq L(y,f(\mathbf{x})).$$

Solution to Question (a): Continued

If $y \neq \arg\max_k f_k(\mathbf{x})$, then

$$L(y, f(\mathbf{x})) = \max_{k} \left(\underbrace{f_{k}(\mathbf{x}) - f_{y}(\mathbf{x})}_{>0} + \underbrace{f_{y\neq k}}_{=1} \right)$$

$$> 1.$$

The 0-1-loss is

$$L_{0-1}(y,h(\mathbf{x}))=1$$

because $y \neq \arg\max_k f_k(x)$. That is, the prediction via argmax is incorrect. So $L(y, f(\mathbf{x})) > L_{0,1}(y, h(\mathbf{x}))$.

Combining the two cases, we have proved that

$$L_{0-1}(y,h(\mathbf{x})) = I_{y\neq h(\mathbf{x})} \leq L(y,f(\mathbf{x})).$$

Solution to Question (a): Continued

If $y \neq \arg \max_k f_k(\mathbf{x})$, then

$$L(y, f(\mathbf{x})) = \max_{k} \left(\underbrace{f_k(\mathbf{x}) - f_y(\mathbf{x})}_{>0} + \underbrace{f_{y\neq k}}_{=1} \right)$$

$$> 1.$$

The 0-1-loss is

$$L_{0-1}(y,h(\mathbf{x}))=1$$

because $y \neq \arg\max_k f_k(x)$. That is, the prediction via argmax is incorrect. So $L(y, f(\mathbf{x})) > L_{0,1}(y, h(\mathbf{x}))$.

Combining the two cases, we have proved that

$$L_{0-1}(y,h(\mathbf{x})) = I_{y\neq h(\mathbf{x})} \leq L(y,f(\mathbf{x})).$$

Question (b)

(b) Verify that the multiclass hinge loss of $f \in \mathcal{H}$ on a data point $(\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$ is bounded from above by $\sum_{k \neq y} \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\}$. Hint: Note that this upper bound is

sometimes referred to as the multiclass hinge loss.

Case 1: $y = \arg \max_k f_k(\mathbf{x})$, then the hinge loss:

$$L(y, f(\mathbf{x})) = \max_{k} (f_k(\mathbf{x}) - f_y(\mathbf{x}) + I_{y \neq k}) = 0$$

and

$$\sum_{k \neq y} \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\} \ge \sum_{k \neq y} 0 = 0$$

So the $\sum_{k\neq y} \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\}$ is a upper bound in this case.

Solution to Question (b): Continued

Case 2: $y \neq \arg \max_{k} f_{k}(\mathbf{x})$, then the hinge loss:

$$L(y, f(\mathbf{x})) = \max_{k} (f_k(\mathbf{x}) - f_y(\mathbf{x}) + I_{y \neq k})$$
$$= \max_{k \neq y} (f_k(\mathbf{x}) - f_y(\mathbf{x}) + 1)$$

Let's say $k^* = \arg \max_k f_k(\mathbf{x}) \neq y$, then it follows that

$$L(y, f(\mathbf{x})) = \underbrace{f_{k^*}(\mathbf{x}) - f_y(\mathbf{x}) + 1}_{>1}$$

$$= \max\{0, f_{k^*}(\mathbf{x}) - f_y(\mathbf{x}) + 1\}$$

$$\leq \max\{0, f_{k^*}(\mathbf{x}) - f_y(\mathbf{x}) + 1\} + \underbrace{\max\{0, f_1(\mathbf{x}) - f_y(\mathbf{x}) + 1\} + \dots + \max\{0, f_g(\mathbf{x}) - f_y(\mathbf{x}) + 1\}}_{\forall j \in \mathcal{Y} \text{ and } j \neq y \text{ and } j \neq k^*}$$

$$= \sum \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\}$$

So, combining the two cases, $\sum_{k \neq v} \max\{0, 1 + f_k(\mathbf{x}) - f_v(\mathbf{x})\}$ is an upper bound for $L(y, f(\mathbf{x}))$.

Solution to Question (b): Continued

Case 2: $y \neq \arg \max_k f_k(\mathbf{x})$, then the hinge loss:

$$L(y, f(\mathbf{x})) = \max_{k} (f_k(\mathbf{x}) - f_y(\mathbf{x}) + I_{y \neq k})$$
$$= \max_{k \neq y} (f_k(\mathbf{x}) - f_y(\mathbf{x}) + 1)$$

Let's say $k^* = \arg \max_k f_k(\mathbf{x}) \neq y$, then it follows that

$$L(y, f(\mathbf{x})) = \underbrace{f_{k^*}(\mathbf{x}) - f_y(\mathbf{x}) + 1}_{>1}$$

$$= \max\{0, f_{k^*}(\mathbf{x}) - f_y(\mathbf{x}) + 1\}$$

$$\leq \max\{0, f_{k^*}(\mathbf{x}) - f_y(\mathbf{x}) + 1\} + \underbrace{\max\{0, f_1(\mathbf{x}) - f_y(\mathbf{x}) + 1\} + \dots + \max\{0, f_g(\mathbf{x}) - f_y(\mathbf{x}) + 1\}}_{\forall j \in \mathcal{Y} \text{ and } j \neq y \text{ and } j \neq k^*}$$

$$= \sum \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\}$$

So, combining the two cases, $\sum_{k\neq v} \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\}$ is an upper bound for $L(y, f(\mathbf{x}))$.

Question (c)

In the case of binary classification, i.e., g=2 and $\mathcal{Y}=\{-1,+1\}$, we use a single discriminant model $f(\mathbf{x})=f_1(\mathbf{x})-f_{-1}(\mathbf{x})$ based on two scoring functions: $f_1,f_{-1}:\mathcal{X}\to\mathbb{R}$ for the prediction by means of $h(\mathbf{x})=\mathrm{sgn}(f(\mathbf{x}))$. Here, f_1 is the score for the positive class and f_{-1} is the score for the negative class. Show that the upper bound in (b) coincide with the binary hinge loss $L(y,f(\mathbf{x}))=\max\{0,1-yf(\mathbf{x})\}$.

Case 1: y = +1. In this case,

$$\sum_{k \neq y} \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\} = \sum_{k \neq +1} \max\{0, f_k(\mathbf{x}) - f_1(\mathbf{x}) + 1\}$$

$$= \max\{0, \underbrace{f_{-1}(\mathbf{x}) - f_1(\mathbf{x})}_{:=-f(\mathbf{x})} + 1\}$$

$$= \max\{0, 1 - f(\mathbf{x})\}$$

$$= \max\{0, 1 - y \cdot f(\mathbf{x})\}$$

So the equation holds in this case.

Solution to Question (c): Continued

Case 2: y = -1. In this case,

$$\sum_{k \neq y} \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\} = \sum_{k \neq -1} \max\{0, f_k(\mathbf{x}) - f_{-1}(\mathbf{x}) + 1\}$$

$$= \max\{0, f_1(\mathbf{x}) - f_{-1}(\mathbf{x}) + 1\}$$

$$= \max\{0, 1 + f(\mathbf{x})\}$$

$$= \max\{0, 1 - y \cdot f(\mathbf{x})\}$$

Therefore, it is proven that the equation holds in two cases.

Question (d)

Recall the statement of the lecture regarding the binary hinge loss:

"... the hinge loss only equals zero for a margin \geq 1 encouraging confident (correct) predictions."

Can we say something similar for the altenative multiclass hinge loss in (b)? Hint: multiclass hinge loss: $\sum_{k\neq y} \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\}$, and all $\max\{0, \cdot\}$ terms are non-negative.

Yes, we can say that it is only zero if all the g-1 margins are greater than 1.

- ▶ Margins: $m_{y,k}(\mathbf{x}) = f_y(\mathbf{x}) f_k(\mathbf{x})$, where $k \in \mathcal{Y} \setminus \{y\}$.
- ▶ Mathematically: $m_{y,k}(\mathbf{x}) \ge 1 \ \forall k \ne y \Leftrightarrow \sum_{k \ne y} \max\{0, 1 + f_k(\mathbf{x}) f_y(\mathbf{x})\} = 0.$

Proof

$$m_{y,k}(\mathbf{x}) \ge 1 \ \forall k \ne y \Rightarrow f_y(\mathbf{x}) - f_k(\mathbf{x}) \ge 1 \ \forall k \ne y$$

$$\Rightarrow f_k(\mathbf{x}) - f_y(\mathbf{x}) \ge -1 \ \forall k \ne y$$

$$\Rightarrow \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\} = 0 \ \forall k \ne y$$

$$\Rightarrow \sum_{k \ne y} \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\} = 0$$

Yes, we can say that it is only zero if all the g-1 margins are greater than 1.

- ▶ Margins: $m_{y,k}(\mathbf{x}) = f_y(\mathbf{x}) f_k(\mathbf{x})$, where $k \in \mathcal{Y} \setminus \{y\}$.
- ▶ Mathematically: $m_{y,k}(\mathbf{x}) \ge 1 \ \forall k \ne y \Leftrightarrow \sum_{k\ne y} \max\{0, 1 + f_k(\mathbf{x}) f_y(\mathbf{x})\} = 0.$

Proof

$$m_{y,k}(\mathbf{x}) \ge 1 \ \forall k \ne y \Rightarrow f_y(\mathbf{x}) - f_k(\mathbf{x}) \ge 1 \ \forall k \ne y$$

$$\Rightarrow f_k(\mathbf{x}) - f_y(\mathbf{x}) \ge -1 \ \forall k \ne y$$

$$\Rightarrow \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\} = 0 \ \forall k \ne y$$

$$\Rightarrow \sum_{k \ne y} \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\} = 0$$

Yes, we can say that it is only zero if all the g-1 margins are greater than 1.

- ▶ Margins: $m_{y,k}(\mathbf{x}) = f_y(\mathbf{x}) f_k(\mathbf{x})$, where $k \in \mathcal{Y} \setminus \{y\}$.
- ▶ Mathematically: $m_{y,k}(\mathbf{x}) \ge 1 \ \forall k \ne y \Leftrightarrow \sum_{k \ne y} \max\{0, 1 + f_k(\mathbf{x}) f_y(\mathbf{x})\} = 0.$

Proof

$$m_{y,k}(\mathbf{x}) \ge 1 \ \forall k \ne y \Rightarrow f_y(\mathbf{x}) - f_k(\mathbf{x}) \ge 1 \ \forall k \ne y$$

$$\Rightarrow f_k(\mathbf{x}) - f_y(\mathbf{x}) \ge -1 \ \forall k \ne y$$

$$\Rightarrow \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\} = 0 \ \forall k \ne y$$

$$\Rightarrow \sum_{k \ne y} \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\} = 0$$

Yes, we can say that it is only zero if all the g-1 margins are greater than 1.

- ▶ Margins: $m_{y,k}(\mathbf{x}) = f_y(\mathbf{x}) f_k(\mathbf{x})$, where $k \in \mathcal{Y} \setminus \{y\}$.
- ▶ Mathematically: $m_{y,k}(\mathbf{x}) \ge 1 \ \forall k \ne y \Leftrightarrow \sum_{k\ne y} \max\{0, 1 + f_k(\mathbf{x}) f_y(\mathbf{x})\} = 0.$

Proof:

$$m_{y,k}(\mathbf{x}) \ge 1 \ \forall k \ne y \Rightarrow f_y(\mathbf{x}) - f_k(\mathbf{x}) \ge 1 \ \forall k \ne y$$

$$\Rightarrow f_k(\mathbf{x}) - f_y(\mathbf{x}) \ge -1 \ \forall k \ne y$$

$$\Rightarrow \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\} = 0 \ \forall k \ne y$$

$$\Rightarrow \sum_{k \ne y} \max\{0, 1 + f_k(\mathbf{x}) - f_y(\mathbf{x})\} = 0$$

Question (e) and Solution to (e)

Show the standard solution.