Anexo 7 Documento de Diagrama de Deployment

Autor:

Luís Campos

Abril, 2023

Índice

1. Introdução	3
1.1. Descrição do Sistema	
1.2. Objetivo do Diagrama de Arquitetura	
2. Diagrama de Arquitetura	
3. Componentes do Sistema	
3.1. Dispositivo IoT	
3.2. Servidor de Aplicativos	
3.3. Painel Web	
4. Fluxo de Dados	
4. FIUXO DE DADOS	r

1. Introdução

1.1. Descrição do Sistema

O Sistema de Monitoramento de Eventos é um sistema web que permite monitorizar eventos em tempo real. O sistema coleta dados de sensores de temperatura, humidade, qualidade do ar e ruído, e os apresenta em um dashboard para os organizadores e participantes do evento. Os organizadores também podem configurar alertas para serem notificados quando os valores dos sensores ultrapassam limites predefinidos.

1.2. Objetivo do Diagrama de Arquitetura

O Diagrama ER é uma ferramenta fundamental para a modelagem de dados em um sistema de informação. Ele permite visualizar de forma clara e concisa os elementos principais do sistema, suas inter-relações e as características de cada um.

2. Diagrama de Arquitetura

Figura 1 - Diagrama de Deployment

3. Componentes do Sistema

3.1. Dispositivo IoT

- Nome: IoT Device
- Descrição: Dispositivo responsável pela coleta de dados ambientais usando diversos sensores.
- Componentes Internos:
 - Microprocessador: Raspberry Pi 3
 - Função: Controlar e gerenciar a coleta de dados dos sensores.
 - o Sensores:
 - Sensor de Temperatura/Umidade: SHT31-D
 - Função: Medir a temperatura e a umidade do ambiente.
 - Sensor de Qualidade do Ar: MQ135
 - **Função**: Medir a qualidade do ar detetando gases nocivos.
 - Sensor de Ruído: KY-038
 - Função: Medir o nível de ruído no ambiente.

3.2. Servidor de Aplicativos

- Nome: App Server
- **Descrição**: Servidor responsável pelo processamento dos dados coletados pelo dispositivo IoT e armazenamento no banco de dados.
- Componentes Internos:
 - Servidor Web: Apache
 - Função: Servir aplicações web e processar requisições HTTP.
 - Linguagem de Programação: PHP
 - Função: Scripts PHP para processar dados recebidos dos sensores.
 - o Banco de Dados: MySQL Server
 - Função: Armazenar dados coletados pelos sensores.

3.3. Painel Web

- Nome: Web Dashboard
- Descrição: Interface web para visualização dos dados coletados e gerenciados pelo sistema.
- Interações:
 - Admin Evento: Usuário administrador que gerência eventos e monitoramento.
 - Visitante: Usuário que visualiza os dados monitorados.

4. Fluxo de Dados

Coleta de Dados:

 Os sensores conectados ao Raspberry Pi 3 coletam dados de temperatura, umidade, qualidade do ar e nível de ruído.

Envio de Dados:

 Os dados coletados s\(\tilde{a}\) enviados via HTTP para o servidor de aplicativos (App Server).

Processamento e Armazenamento:

 O servidor de aplicativos processa os dados usando scripts PHP e os armazena no banco de dados MySQL.

Visualização dos Dados:

 Os dados armazenados no banco de dados são visualizados através painel web (Web Dashboard), onde são visualizados por diferentes tipos de usuários (Admin Evento e Visitante).