

Spatially Constrained GAN for Face and Fashion Synthesis

Songyao Jiang¹, Hongfu Liu², Yue Wu¹ and Yun Fu¹

¹ Northeastern University, Boston MA, USA ² Brandeis University, Waltham MA, USA

Presented by Songyao Jiang at the IEEE International Conference on Automatic Face and Gesture Recognition 2021

About Us

Songyao Jiang (songyaojiang.com)

- Ph.D. candidate in Computer Engineering at Northeastern University, Boston MA, USA.
- Research interests: human detection, pose estimation, face recognition, skeleton-based action recognition, sign language recognition, and generative adversarial networks.
- Email: jiang.so@northeastern.edu

Dr. Hongfu Liu (hongfuliu.com)

- Faculty member affiliated with Michtom School of Computer Science at Brandeis University, Waltham MA, USA.
- Research interests: data mining and machine learning, with special interests in ensemble learning.
- Email: hongfuliu@brandeis.edu

Dr. Yue Wu(wuyuebupt.github.io)

- Ph.D. in Computer Engineering.
- Microsoft.
- Research interests: face recognition and object recognition.
- Email: yuewubupt@gmail.com

Dr. Yun Fu (www1.ece.neu.edu/~yunfu/)

- Principal Investigator and founding director of SmileLab.
- Faculty member affiliated with College of Engineering and Khoury College of Computer Science at Northeastern University, Boston MA, USA.
- Fellow of IEEE, OSA, SPIE, IAPR.
- Successful Serial Entrepreneur
- Research interests: machine learning, computational intelligence, big data mining, computer vision, pattern recognition, and cyber-physical systems.
- Email: yunfu@ece.neu.edu

Problem Definition

Spatially Constrained Image Synthesis

Goal:

- Add spatial constraints to the image synthesis task.
- Decouple the image synthesis task into three dimensions (i.e., spatial, attribute and latent dimensions), control the spatial and attribute-level contents, and randomize the other unregulated contents.
- Train a neural network G to synthesize face and fashion images from semantic segmentations.

Motivation:

- Face and fashion synthesis are inherently one-to-many mappings from semantic segmentations to real images.
- Existing GAN methods lack spatial constraints, thus not explicitly controllable in spatial configuration.

Mathematically:

Our goal can be described as finding the mapping:

$$G(z,c,s) \to y$$

Spatially Constrained Image Synthesis

where G is the generative function, z is the latent vector and y is the conditionally generated image which complies with target attribute c and target semantic segmentation s.

Previous GAN Models

And Our Proposed Solution

- [1] Goodfellow et al., Generative adversarial nets. In NeurIPS, 2014.
- [3] Odena et al., Conditional image synthesis with auxiliary classifier gans. In ICML, 2017.

- [2] Mirza et al., Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.
- [3] Isola et al., Image-to-image translation with conditional adversarial networks. In CVPR, 2017.

[5] Zhu et al., Unpaired image-to-image translation using cycle-consistent adversarial networks. In ICCV, 2017.

Spatially Constrained GAN Overview

Generator Network G:

 Synthesize the fake image from segmentation, latent vector and attribute label step-by-step.

Segmentor Network S:

- Do semantic segmentation on both real and fake images.
- Provide G spatial constraints.

Discriminator Network D:

- Distinguish between real and fake images.
- Classify the images into attribute classes via an embedded auxiliary classifier.

Generator Network

Goal:

• Learn the target mapping function:

$$G(z,c,s) \to y$$

Inputs:

- Target segmentation s
- Random latent vector z
- Attribute-level class label c

Output:

• Synthesized image *G*(*z*,*c*,*s*)

Discriminator Network

Adversarial Loss:
$$\mathcal{L}_{adv} = L_{adv}^{real} + L_{adv}^{fake} + L_{gp},$$

$$\mathcal{L}_{adv} = \mathbb{E}_{x} \left[D_{d} \left(x \right) \right] + \mathbb{E}_{z,c,s} \left[D_{d} \left(G \left(z,c,s \right) \right) \right] + \lambda_{gp} \mathbb{E}_{\hat{x}} \left[\left(\left\| \nabla_{\hat{x}} D_{d} \left(\hat{x} \right) \right\|_{2} - 1 \right)^{2} \right],$$

Classification Loss:

$$\mathcal{L}_{cls}^{real} = \mathbb{E}_{x,c} \left[A_c(c, D_c(x)) \right],$$

$$\mathcal{L}_{cls}^{fake} = \mathbb{E}_{z,c,s} \left[A_c(c, D_c(G(z, c, s))) \right],$$

Segmentor Network

Segmentation Loss:

$$\mathcal{L}_{seg}^{real} = \mathbb{E}_{x,s}[A_s(s, S(x))],$$

$$\mathcal{L}_{seg}^{fake} = \mathbb{E}_{z,c,s}[A_s(s, S(G(z, c, s)))],$$

Pixel-wise Cross Entropy:

$$A_s(a,b) = -\sum_{i=1}^{H} \sum_{j=1}^{W} \sum_{k=1}^{n_s} a_{i,j,k} \log b_{i,j,k},$$

Provide spatial constraints to the generator

Overall Objectives Training SCGAN

Overall objectives to optimize SCGAN:

$$egin{aligned} \mathcal{L}_S &= \mathcal{L}_{seg}^{real}, \ \ \mathcal{L}_D &= -\mathcal{L}_{adv} + \lambda_{cls} \mathcal{L}_{cls}^{real}, \ \ \ \mathcal{L}_G &= \mathcal{L}_{adv}^{fake} + \lambda_{cls} \mathcal{L}_{cls}^{fake} + \lambda_{seg} \mathcal{L}_{seg}^{fake}, \end{aligned}$$

 \mathcal{L}_S : Segmentor Loss.

 \mathcal{L}_D : Discriminator Loss.

 \mathcal{L}_G : Generator Loss.

 \mathcal{L}_{adv} : Adversarial Loss Term.

 \mathcal{L}_{cls} : Classification Loss Term.

 \mathcal{L}_{seq} : Segmentation Loss Term.

 λ_{cls} and λ_{seg} are hyper-parameters that control the relative importance of loss terms.

Datasets

Face attribute dataset:

- 10,177 identities,
- 202,599 number of face images, and
- 5 landmark locations,
- 40 binary attributes annotations.

A large-scale clothes database

- 50 categories, 1,000 descriptive attributes Fashion synthesis subset:
- 78,979 images,
- Captions, and segmentations

Experiment Comparison on CelebA Dataset

Experiment Face Interpolation

Experiment Comparison on DeepFashion Dataset

Experiment Quantitative Evaluation

Evaluation:

- Visual quality
- Spatial correctness
- Metrics:
 - Frechet Inception Distance (FID) [1]
 - Pixel Accuracy
 - Mean IoU (intersection over union)

Methods	CelebA			DeepFashion		
	FID	mIoU	pAcc	FID	mIoU	pAcc
CycleGAN [2]	N/A	N/A	N/A	30.1	63.26	82.21
Pix2Pix [3]	20.4	78.71	98.05	24.4	65.41	82.91
SPADE [4]	18.5	74.76	97.82	20.2	75.80	83.10
SCGAN	10.2	79.11	98.95	19.8	77.20	83.23

^[1] Heusel et al., Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS, 2017.

^[2] Zhu et al., Unpaired image-to-image translation using cycle-consistent adversarial networks. In ICCV, 2017.

^[3] Isola et al., Image-to-image translation with conditional adversarial networks. In CVPR, 2017.

^[4] Park et al., Semantic image synthesis with spatially-adaptive normalization. In CVPR, 2019.

Experiment Ablation Study of Generator Architecture

Our proposed architecture:

- Step-by-step generator G.
- From coarse to fine synthesis.

Alternative architecture:

• Input all at once generator G.

Comparison:

- Better visual quality.
- Sharper details
- No foreground-background mismatch.

Experiment Ablation Study of Model Convergence

- Study of model convergence:
 - SCGAN.
 - w/o Segmentor.
 - w/o Segmentor & Classifier.
- Benefits of Segmentor S:
 - Stabilize training.
 - Faster convergence.
 - Lower loss when converged.
 - Better image quality.

The End. Thank You!

Spatially Constrained GAN for Face and Fashion Synthesis

Scan QR Code

Code and more details available on our project website.

https://jackyjsy.github.io/SCGAN/