(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公則番号 特開2000-223417 (P2000-223417A)

(43)公開日 平成12年8月11日(2000.8.11)

(51) Int CL7

識別配号

FI H01L 21/205 テーマコート*(参考) 5 F O 4 5

H01L 21/205

H01L 21/205

審査請求 未請求 請求項の数43 OL (全 9 頁)

(21)出願番号

特顧平11-19651

(22)出願日

平成11年1月28日(1999.1.28)

(71)出顧人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72) 発明者 冨岡 聡

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 100082762

弁理士 杉浦 正知

Fターム(参考) 5F045 AA04 AB09 AB14 AC03 AC08

AC12 AC13 AC18 AD11 AD14 AF09 BB12 CA10 CA12 DA53

DA55 DB02 DB04 GH09

(54) 【発明の名称】 半導体の成長方法、半導体基板の製造方法および半導体装置の製造方法

(57)【要約】

【課題】 格子定数や熱膨張係数が異なる基板上に窒化物系 I I I - V族化合物半導体などの半導体の厚膜を成長させても、反りや亀裂が発生しない半導体の成長方法、これを用いた半導体基板の製造方法および半導体装置の製造方法を提供する。

【解決手段】 成長マスクを用いてGaNなどの窒化物系III-V族化合物半導体をこの半導体と異なる材料からなる基板、例えばサファイア基板上に選択成長させるようにした半導体の成長方法において、成長マスクとして、3回対称または6回対称の対称性を有するパターンを少なくとも一部に含む成長マスク4を用いる。3回対称の対称性を有するパターンは例えば正三角形、6回対称の対称性を有するパターンは例えば正二角形である。このようにして厚膜の窒化物系III-V族化合物半導体層を選択成長させた後、基板をラッピングなどにより除去して窒化物系III-V族化合物半導体層のみを取り出し、これを基板としてGaN系半導体レーザなどの半導体装置を製造する。

【特許請求の範囲】

【請求項1】 成長マスクを用いて半導体をこの半導体 と異なる材料からなる基板上に選択成長させるようにし た半導体の成長方法において、

上記成長マスクとして、ほぼ3回対称または6回対称の 対称性を有するパターンを少なくとも一部に含む成長マ スクを用いることを特徴とする半導体の成長方法。

【請求項2】 上記成長マスクとして、ほぼ3回対称または6回対称の対称性を有するパターンの繰り返しパターンからなる成長マスクを用いることを特徴とする請求 10項1記載の半導体の成長方法。

【請求項3】 上記半導体は窒化物系 I I I - V族化合物半導体であることを特徴とする請求項1記載の半導体の成長方法。

【請求項4】 上記窒化物系 I I I - V族化合物半導体 をハライド気相エピタキシャル成長法またはハイドライ ド気相エピタキシャル成長法により成長させるようにし たことを特徴とする請求項3記載の半導体の成長方法。

【請求項5】 上記窒化物系 I I I - V族化合物半導体 を有機金属化学気相成長法により成長させるようにした 20 ことを特徴とする請求項3記載の半導体の成長方法。

【請求項6】 上記室化物系 I I I - V族化合物半導体を分子線エピタキシー法により成長させるようにしたことを特徴とする請求項3記載の半導体の成長方法。

【請求項7】 上記基板はサファイア、炭化ケイ素、酸化亜鉛、スピネル、ケイ素またはヒ化ガリウムからなる基板であることを特徴とする請求項3記載の半導体の成長方法。

【請求項8】 上記成長マスクは誘電体からなることを 特徴とする請求項3記載の半導体の成長方法。

【請求項9】 上記成長マスクは二酸化ケイ素、窒化ケイ素または酸化アルミニウムからなることを特徴とする 請求項3記載の半導体の成長方法。

【請求項10】 上記成長マスクは二酸化ケイ素膜、窒化ケイ素膜および酸化アルミニウム膜からなる群より選ばれた少なくとも二つの膜の積層膜からなることを特徴とする請求項3記載の半導体の成長方法。

【請求項11】 上記成長マスクはIVa族の金属、Va族の金属、VIa族の金属、VIa族の金属およびNiからなる群より選ばれた少なくとも一種類の金属からなる金属膜または 40合金膜からなることを特徴とする請求項3記載の半導体の成長方法。

【請求項12】 上記成長マスクはIVa族の金属、Va族の金属、VIa族の金属、VIa族の金属およびNiからなる群より選ばれた少なくとも一種類の金属からなる金属膜または合金膜と誘電体膜との積層膜からなることを特徴とする請求項3記載の半導体の成長方法。

【請求項13】 上記成長マスクは選択成長する上記窒 化物系 I I I - V族化合物半導体の接合面が {11-2 いることを特徴とする請求項3記載の半導体の成長方法。

【請求項14】 成長マスクを用いて半導体をこの半導体と異なる材料からなる基板上に選択成長させるようにした半導体基板の製造方法において、

上記成長マスクとして、ほぼ3回対称または6回対称の 対称性を有するパターンを少なくとも一部に含む成長マ スクを用いることを特徴とする半導体基板の製造方法。

【請求項15】 上記成長マスクとして、ほぼ3回対称 0 または6回対称の対称性を有するパターンの繰り返しパターンからなる成長マスクを用いることを特徴とする請求項14記載の半導体基板の製造方法。

【請求項16】 上記半導体は窒化物系III-V族化 合物半導体であることを特徴とする請求項14記載の半 導体基板の製造方法。

【請求項17】 上記窒化物系III-V族化合物半導体をハライド気相エピタキシャル成長法またはハイドライド気相エピタキシャル成長法により成長させるようにしたことを特徴とする請求項16記載の半導体基板の製造方法。

【請求項18】 上記窒化物系III-V族化合物半導体を有機金属化学気相成長法により成長させるようにしたことを特徴とする請求項16記載の半導体基板の製造方法。

【請求項19】 上記窒化物系III-V族化合物半導体を分子線エピタキシー法により成長させるようにしたことを特徴とする請求項16記載の半導体基板の製造方法。

【請求項20】 上記基板はサファイア、炭化ケイ素、 30 酸化亜鉛、スピネル、ケイ素またはヒ化ガリウムからな る基板であることを特徴とする請求項16記載の半導体 基板の製造方法。

【請求項21】 上記成長マスクは誘電体からなることを特徴とする請求項16記載の半導体基板の製造方法。 【請求項22】 上記成長マスクは二酸化ケイ素、窒化ケイ素または酸化アルミニウムからなることを特徴とする請求項16記載の半導体基板の製造方法。

【請求項23】 上記成長マスクは二酸化ケイ素膜、窒化ケイ素膜および酸化アルミニウム膜からなる群より選ばれた少なくとも二つの膜の積層膜からなることを特徴とする請求項16記載の半導体基板の製造方法。

【請求項24】 上記成長マスクはIVa族の金属、Va族の金属、VIa族の金属はよびNiからなる群より選ばれた少なくとも一種類の金属からなる金属膜または合金膜からなることを特徴とする請求項16記載の半導体基板の製造方法。

【請求項25】 上記成長マスクはIVa族の金属、Va族の金属、VIa族の金属およびNiからなる群より選ばれた少なくとも一種類の金属からなる金属膜または

請求項16記載の半導体基板の製造方法。

【請求項26】 上記成長マスクは選択成長する上記窒 化物系 I I I - V族化合物半導体の接合面が {11-2 0) 面または {1-100} 面となるように形成されて いることを特徴とする請求項16記載の半導体基板の製 造方法。

【請求項27】 上記半導体を選択成長させた後、上記 基板を除去するようにしたことを特徴とする請求項14 記載の半導体基板の製造方法。

基板をラッピングまたはエッチングにより除去するよう にしたことを特徴とする請求項14記載の半導体基板の 製造方法。

【請求項29】 成長マスクを用いて半導体をこの半導 体と異なる材料からなる基板上に選択成長させるように した半導体装置の製造方法において、

上記成長マスクとして、ほぼ3回対称または6回対称の 対称性を有するパターンを少なくとも一部に含む成長マ スクを用いることを特徴とする半導体装置の製造方法。

【請求項30】 上記成長マスクとして、ほぼ3回対称 20 記載の半導体装置の製造方法。 または6回対称の対称性を有するパターンの繰り返しパ ターンからなる成長マスクを用いることを特徴とする請 求項29記載の半導体装置の製造方法。

【請求項31】 上記半導体は窒化物系 I I I - V族化 合物半導体であることを特徴とする請求項29記載の半 導体装置の製造方法。

【請求項32】 上記窒化物系 I I I - V族化合物半導 体をハライド気相エピタキシャル成長法またはハイドラ イド気相エピタキシャル成長法により成長させるように 造方法。

【請求項33】 上記窒化物系III-V族化合物半導 体を有機金属化学気相成長法により成長させるようにし たことを特徴とする請求項31記載の半導体装置の製造 方法。

【請求項34】 上記窒化物系III-V族化合物半導 体を分子線エピタキシー法により成長させるようにした ことを特徴とする請求項31記載の半導体装置の製造方 法。

酸化亜鉛、スピネル、ケイ素またはヒ化ガリウムからな る基板であることを特徴とする請求項31記載の半導体 装置の製造方法。

【請求項36】 上記成長マスクは誘電体からなること を特徴とする請求項31記載の半導体装置の製造方法。 【請求項37】 上記成長マスクは二酸化ケイ素、窒化 ケイ素または酸化アルミニウムからなることを特徴とす る請求項31記載の半導体装置の製造方法。

【請求項38】 上記成長マスクは二酸化ケイ素膜、窒

ばれた少なくとも二つの膜の積層膜からなることを特徴 とする請求項31記載の半導体基板の製造方法。

【請求項39】 上記成長マスクはIVa族の金属、V a族の金属、VIa族の金属およびNiからなる群より 選ばれた少なくとも一種類の金属からなる金属膜または 合金膜からなることを特徴とする請求項31記載の半導 体装置の製造方法。

【請求項40】 上記成長マスクはIVa族の金属、V a族の金属、VIa族の金属およびNiからなる群より 【請求項28】 上記半導体を選択成長させた後、上記 10 選ばれた少なくとも一種類の金属からなる金属膜または 合金膜と誘電体膜との積層膜からなることを特徴とする 請求項31記載の半導体装置の製造方法。

> 【請求項41】 上記成長マスクは選択成長する上記窒 化物系 III-V族化合物半導体の接合面が {11-2 0 } 面または { 1-100 } 面となるように形成されて いることを特徴とする請求項31記載の半導体装置の製 造方法。

> 【請求項42】 上記半導体を選択成長させた後、上記 基板を除去するようにしたことを特徴とする請求項29

【請求項43】 上記半導体を選択成長させた後、上記 基板をラッピングまたはエッチングにより除去するよう にしたことを特徴とする請求項29記載の半導体装置の 製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、半導体の成長方 法、半導体基板の製造方法および半導体装置の製造方法 に関し、特に、窒化物系III-V族化合物半導体を用 したことを特徴とする請求項31記載の半導体装置の製 30 いた半導体レーザや発光ダイオードあるいは電子走行素 子の製造に適用して好適なものである。

[0002]

【従来の技術】近年、AIGaInNなどの窒化物系I II-V族化合物半導体を用い、可視領域から紫外領域 までの発光を得ることができる半導体レーザや発光ダイ オードなどの半導体発光素子の開発が活発に行われてい る。その中でも特に、光記録の分野では、光ディスクな どの記録密度を向上させるために、短波長域の発光が得 られる半導体レーザの実用化が求められている。

【請求項35】 上記基板はサファイア、炭化ケイ素、 40 【0003】最近では、A1GalnN系半導体レーザ において、サファイア基板上に窒化ガリウム(GaN) からなるバッファ層を介して窒化物系III-V族化合 物半導体層を有機金属化学気相成長(MOCVD)法に より成長させることにより、室温における300時間の 連続発振が達成されている (Jpn.J.Appl.Phys.35,L74(1 996)、Jpn. J. Appl. Phys. 36, L1059(1997)) 。しかしなが ら、サファイア基板とGaNとでは格子定数も熱膨張係 数も大きく異なることから、サファイア基板上に成長さ せた窒化物系 I I I - V族化合物半導体層は 1×108

播して結晶中を突き抜けた転位)を有しており、これが 発光素子を作製した場合にその寿命を決める要因になっ ている。したがって、1万時間以上の実用的寿命を実現 するためには、この貫通転位の密度を低減することが必 要であり、これまでに種々の検討がなされている。

【0004】例えば、その一つにGaN基板の使用があるが、GaN基板の製造方法として現在有力視されている手法は、サファイア基板上にバッファ層を介してGaN層を成長させ、その上に1~4μm幅のストライプ状の二酸化ケイ素(SiO2)膜を7μmのピッチで形成 10 した成長マスクを形成し、この成長マスクを用いてサファイア基板上に塩化物気相エピタキシャル成長法によりGaN層を横方向に選択成長させた後、サファイア基板を除去することによりGaN基板を製造するものである(Jpn.J.Appl.Phys.36,L899(1997))。この方法によれば、成長マスク上に成長したGaN層、すなわちGaN基板の貫通転位の密度を1×107個/cm²程度にまで低減することができる。

[0005]

【発明が解決しようとする課題】しかしながら、上述の 20 特徴とするものである。 従来のGaN基板の製造方法では、成長層の貫通転位の 密度は減少するものの、成長膜厚が増大するにつれてサ ファイア基板との熱膨張係数差による歪みが大きくな り、結晶成長後の降温時に反りや亀裂が生じる。このた め、サファイア基板の除去工程でのラッピング時に欠け や亀裂が増大し、基板の製造歩留まりが非常に低くなっ てしまう。また、この反ったGaN基板上に発光素子を 作製する場合には、結晶成長後に行われるフォトリソグ ラフィー工程における露光時に露光装置の焦点深度が反 りに対応することができないなど種々の問題があった。 【0006】したがって、この発明の目的は、格子定数 や熱膨張係数が異なる基板上に窒化物系III-V族化 合物半導体などの半導体の厚膜を成長させても、反りや **亀裂が発生しない半導体の成長方法、この成長方法を用** いた半導体基板の製造方法および半導体装置の製造方法 を提供することにある。

[0007]

い出した。

【0008】これらのことより、選択成長する窒化物系 III-V族化合物半導体の接合面が{11-20}面 または{1-100}面となるように成長マスクを形成 することにより、成長層の亀裂や反りは大幅に減少す る。このような成長マスクとしては、具体的には、3回 対称または6回対称の対称性を有するパターンからなる ものが有効である。

【0009】さらに、以上のことは、同様な性質を示す 限り、窒化物系III-V族化合物半導体以外の半導体 を成長させる場合にも同様に成立し得るものである。 【0010】この発明は、本発明者による以上のような 検討に基づいて案出されたものである。

【0011】すなわち、上記目的を達成するために、この発明の第1の発明は、成長マスクを用いて半導体をこの半導体と異なる材料からなる基板上に選択成長させるようにした半導体の成長方法において、成長マスクとして、ほぼ3回対称または6回対称の対称性を有するパターンを少なくとも一部に含む成長マスクを用いることを特徴とするものである。

【0012】この発明の第2の発明は、成長マスクを用いて半導体をこの半導体と異なる材料からなる基板上に選択成長させるようにした半導体基板の製造方法において、成長マスクとして、ほぼ3回対称または6回対称の対称性を有するパターンを少なくとも一部に含む成長マスクを用いることを特徴とするものである。

【0013】この発明の第3の発明は、成長マスクを用いて半導体をこの半導体と異なる材料からなる基板上に選択成長させるようにした半導体装置の製造方法において、成長マスクとして、ほぼ3回対称または6回対称の対称性を有するパターンを少なくとも一部に含む成長マスクを用いることを特徴とするものである。

【0014】この発明において、典型的には、成長マスクとして、ほぼ3回対称または6回対称の対称性を有するパターンの繰り返しパターンからなるものを用いる。この成長マスクは、3回対称の対称性を有するパターンのみからなるものや、6回対称の対称性を有するパターンのみからなるもののほか、3回対称の対称性を有するパターンと6回対称の対称性を有するパターンとが混在するものであってもよい。

【0015】この発明において、選択成長させるべき半導体は、典型的には、窒化物系III-V族化合物半導体は、具体的には、ガリウム(Ga)、アルミニウム(Al)、インジウム(In)、ホウ素(B)およびタリウム(T1)からなる群より選ばれた少なくとも一種類のIII族元素と、少なくとも窒素(N)を含み、場合によってさらにヒ素(As)またはリン(P)を含むV族元素とからなる。この窒化物系III-V族化合物半導

GaInN、AIGaInN、InNなどである。

【0016】この発明において、窒化物系III-V族 化合物半導体の選択成長には、好適には、成長速度が速 いハライド気相エピタキシャル成長法(塩化物気相エピ タキシャル成長法はその一種) またはハイドライド気相 エピタキシャル成長法 (いずれも「HVPE法」と呼 ぶ。)が用いられる。ここで、ハライド気相エピタキシ ャル成長法とは、ハロゲンが輸送もしくは反応に寄与す る気相成長法を言う。窒化物系III-V族化合物半導 体の選択成長には、有機金属化学気相成長(MOCV D) 法や分子線エピタキシー(MBE)法などを用いて もよい。

【0017】この発明において、基板としては、選択成 長させるべき半導体に応じて選ばれたものが用いられる が、特に窒化物系III-V族化合物半導体を選択成長 させる場合には、サファイア、炭化ケイ素(SiC)、 酸化亜鉛(ZnO)、スピネル、ケイ素(Si)、ヒ化 ガリウム(GaAs)などからなるものが好適に用いら れる。また、成長マスクとしては、具体的には、誘電 iN)、酸化アルミニウム(A12 〇3)などからなる もの、これらの誘電体の膜からなる群より選ばれた少な くとも二つの膜の積層膜、IVa族の金属(Ti、Z r、Hfなど)、Va族の金属(V、Nb、Taな ど)、VIa族の金属 (Cr、Mo、Wなど) およびN i からなる群より選ばれた少なくとも一種類の金属から なる金属膜または合金膜からなるものや、IVa族の金 属、Va族の金属、VIa族の金属およびNiからなる 群より選ばれた少なくとも一種類の金属からなる金属膜 用いられる。

【0018】この発明において、選択成長させるべき半 導体が窒化物系IIIーV族化合物半導体である場合、 成長マスクは、選択成長する窒化物系III-V族化合 物半導体の接合面が {11-20} 面または {1-10 0)面となるように形成される。

【0019】この発明の第2および第3の発明において は、典型的には、半導体を選択成長させた後、基板をラ ッピング、エッチングなどにより除去する。

【0020】上述のように構成されたこの発明において 40 は、成長マスクとして、ほぼ3回対称または6回対称の 対称性を有するパターンを少なくとも一部に含む成長マ スクを用いていることにより、この成長マスクを用いて 窒化物系III-V族化合物半導体を基板上に選択成長 させる場合、少なくとも成長マスクのうちほぼ3回対称 または6回対称の対称性を有するパターンの部分では、 成長マスクの各開口部から選択成長する窒化物系III -V族化合物半導体の接合面が {11-20} 面または 【1-100】面となるため、成長層は、基板との熱膨

減することができる。このため、厚膜を成長させても、 その亀裂や反りの発生を防止することができる。 [0021]

【発明の実施の形態】以下、この発明の実施形態につい て図面を参照しながら説明する。なお、実施形態の全図 において、同一または対応する部分には同一の符号を付 す。

【0022】まず、この発明の第1の実施形態によるG aN系半導体レーザの製造方法について説明する。図1 10 ~図8にこの製造方法を示す。このGaN系半導体レー #IdSCH (Separate Confinement Heterostructure) 構造を有するものである。

【0023】この第1の実施形態においては、まず、図 1に示すように、C面サファイア基板1を用意し、その 上に例えばMOCVD法により、例えば520℃の温度 で厚さが例えば30nmのGaNバッファ層2を成長さ せる。このGaNバッファ層2は非晶質に近い結晶層か らなり、その上に下地層を成長させる際の核となるもの である。このGaNバッファ層2の成長においては、原 体、例えば二酸化ケイ素(SiO2)、窒化ケイ素(S 20 料ガスとしては、例えば、トリメチルガリウム((CH 3) 3 Ga)ガスとアンモニア (NH3)ガスとを用い る。次に、このGaNバッファ層2上に、例えばMOC VD法により、例えば1020℃の温度で厚さが例えば 2μmの下地GaN層3を成長させる。

【0024】次に、図2に示すように、下地GaN層3 上に、例えばCVD法により、例えば450℃の温度で 厚さが例えば〇. 1μmのSiO2 膜を形成した後、こ のSiO2 膜をフォトリソグラフィー法およびエッチン グ法によりパターニングし、図3に示すようなパターン または合金膜と誘電体膜との積層膜からなるものなどが 30 形状の成長マスク4を形成する。図3に示すように、こ の成長マスク4は、3回対称の対称性を有する正三角形 パターンの開口部4aが所定幅のマスク部4bを介して 配列されたマスクパターンを有する。ここで、この成長 マスク4を構成する正三角形のパターンの辺はC面サフ ァイア基板1の〈11-20〉方向または〈1-10 0〉方向に平行になるようにする。また、この成長マス ク4の正三角形の開口部4 aの辺の長さは例えば7 μm とし、それらの間のマスク部4bの幅は例えば3μmと する。

> 【0025】次に、例えばアセトン (CH3 COC H₃)とメタノール(CH₃ OH)とにより、成長マス ク4を形成したC面サファイア基板1の洗浄を行い、さ らに、希釈した塩酸(HCI)または希釈したフッ酸 (HF)に10秒程度浸した後、純水により洗浄を行 Ì.

【0026】次に、図4に示すように、成長マスク4を 用いて、例えば塩化物気相エピタキシャル成長法によ り、例えば1000℃の温度でGaN層5を横方向に選 択成長させる。このGaN層5の選択成長においては、

ガスを流しながらC面サファイア基板1を1000℃ま で加熱した後、金属Ga上に塩化水素(HCI)ガスを 流し、塩化ガリウム (GaC1) ガスを供給する。Ga C1ガスの供給条件は、成長速度が例えば40μm/時 程度となるようにする。この選択成長の際には、成長マ スク4の各開口部4aの下地GaN層3上からマスク部 4 b上に横方向に選択成長するGaN層の接合面は、成 長マスク4の正三角形の開口部4aの辺がC面サファイ ア基板1の〈11-20〉方向に平行な場合にはGaN の {11-20} 面となり、成長マスク4の正三角形の 10 開口部4aの辺がC面サファイア基板1の〈1-10 ○ 方向に平行な場合にはGaNの {1-100} 面と なる。これらの条件で例えば1時間GaNを選択成長さ せると、厚さが約40μmで表面が平坦な低結晶欠陥密 度の高品質の単結晶の厚膜のGaN層5が得られる。図 5にC面サファイア基板1およびGaN層5の結晶方位 関係を示す。

【0027】このようにして選択成長されたGaN層5を光学顕微鏡により観察した所、反りや亀裂の発生は見られなかった。

【0028】次に、図6に示すように、C面サファイア 基板1などをその裏面側から例えば機械的にラッピング することにより除去し、選択成長されたGaN層5のみ を取り出す。

【0029】次に、図7に示すように、このようにして 得られた厚膜のGaN層5をGaN基板として用いて、 その上に例えばMOCVD法によりn型AlGaNクラ ッド層6、n型GaN光導波層7、例えばGai-x In x N/Gai-y I ny N多重量子井戸構造の活性層8. p型AlGaNキャップ層9、p型GaN光導波層1 O、p型A1GaNクラッド層11およびp型GaNコ ンタクト層12を順次成長させる。ここで、これらの層 の下地となるGaN層5が低結晶欠陥密度の高品質の単 結晶であることから、これらの層もまた低結晶欠陥密度 の高品質の単結晶となる。ここで、Inを含まない層で あるn型AIGaNクラッド層6、n型GaN光導波層 7、p型AlGaNキャップ層9、p型GaN光導波層 10、p型AlGaNクラッド層11およびp型GaN コンタクト層12の成長温度は例えば1000℃程度と し、Inを含む層であるGai-x Inx N/Gai-y I nyN多重量子井戸構造の活性層8の成長温度は例えば 700~800℃とする。また、これらのGaN系半導 体層の成長原料は、例えば、Ga原料としてはトリメチ ルガリウム ((CH3)3 Ga)、A1原料としてはト リメチルアルミニウム ((CH3)3 Al)、In原料 としてはトリメチルインジウム ((CH3)3 In)、 N原料としてはアンモニア(NH3)を用いる。また、 キャリアガスとしては、例えば、水素(H2)と窒素 (N2)との混合ガスを用いる。ドーパントは、n型ド ドーパントとしては例えばメチルシクロペンタジエニルマグネシウム((MCp)2 Mg)を用いる。また、これらの層の厚さの一例を挙げると、n型A1GaNクラッド層6は0.5μm、n型GaN光導波層7は0.1μm、p型A1GaNキャップ層9は20nm、p型GaN光導波層10は0.1μm、p型A1GaNクラッド層11は0.5μm、p型GaNコンタクト層12は0.5μmとする。この後、p型A1GaNキャップ層9、p型GaN光導波層10、p型A1GaNクラッド層11およびp型GaNコンタクト層12にドープされたアクセプタの電気的活性化のための熱処理を行う。この熱処理の温度は例えば700℃程度とする。

10

【0030】次に、図8に示すように、p型GaNコンタクト層12上に所定幅のストライプ形状のレジストパターン(図示せず)を形成した後、このレジストパターンをマスクとして、例えば反応性イオンエッチング(RIE)法によりp型A1GaNクラッド層11の厚さ方向の途中の深さまでエッチングし、リッジ部を形成する。

20 【0031】次に、リッジ部のp型GaNコンタクト層 12上に例えばNi/Pt/Au膜からなるp側電極1 3を形成するとともに、GaN層5、すなわちGaN基 板の裏面に例えばTi/Al/Pt/Au膜からなるn 側電極14を形成する。

【0032】この後、上述のようにしてレーザ構造が形成されたGaN層5、すなわちGaN基板を劈開によりバー状に加工して両共振器端面を形成し、さらにこれらの共振器端面に端面コーティングを施した後、このバーを劈開によりチップ化する。以上により、目的とするS CH構造のGaN系半導体レーザが製造される。

【0033】以上のように、この第1の実施形態によれ ば、3回対称の対称性を有する正三角形パターンの開口 部4aがマスク部4bを介して配列されたマスクパター ンを有する成長マスク4を用いてGaN層5を選択成長 させていることにより、このGaN層5はC面サファイ ア基板1との熱膨張係数差による応力が緩和され、反り や亀裂の発生を抑えることができる。このため、厚膜の GaN層5を成長させても、その亀裂や反りの発生を有 効に防止することができ、高品質の単結晶のGaN層5 40 を得ることができる。このようにGaN層5の亀裂や反 りの発生を防止することができることにより、GaN層 5のみを取り出するためにC面サファイア基板1をラッ ピングにより除去する際に欠けや亀裂が増大する問題が なく、GaN基板を高い歩留まりで製造することができ る。そして、このようにして得られるGaN基板上にレ ーザ構造を形成するGaN系半導体層を成長させ、さら にリッジ部を形成し、p側電極13およびp側電極14 を形成することにより、GaAs系半導体レーザと同様 に、素子表面にp側電極が形成され、基板裏面にn側電 11

常の劈開による共振器端面形成により、高い歩留まりで 効率よく製造することができる。また、GaN基板が平 世であるため、結晶成長後に行われるフォトリソグラフ ィー工程における露光時に露光装置の焦点深度が反りに 対応することができないという問題もない。さらに、G aN基板を用いていることにより、GaN系半導体レー ザの製造工程における自由度を高くすることができる。 【0034】次に、この発明の第2の実施形態によるG aN系半導体レーザの製造方法について説明する。

N層3上に形成する成長マスク4として、図9に示すよ うなパターン形状のものを用いる。 図9 に示すように、 この成長マスク4は、6回対称の対称性を有する正六角 形パターンの開口部4 aが所定幅のマスク部4 bを介し て配列されたマスクパターンを有する。ここで、この成 長マスク4の正六角形の開口部4aの辺はC面サファイ ア基板1の〈11-20〉方向または〈1-100〉方 向に平行になるようにする。また、この成長マスク4の 正六角形の開口部4 aの辺の長さは例えば7 μmとし、 それらの間のマスク部4bの幅は例えば3µmとする。 その他のことは第1の実施形態と同様であるので、説明 を省略する。

【0036】この第2の実施形態によっても、第1の実 施形態と同様な利点を得ることができる。

【0037】次に、この発明の第3の実施形態によるG aN系半導体レーザの製造方法について説明する。

【0038】この第3の実施形態においては、図10に 示すように、C面サファイア基板1上に直接、成長マス ク4を形成する。この成長マスク4としては、図3また は図9に示すようなマスクパターンのものを用いる。そ 30 られる成長マスクを示す平面図である。 して、この成長マスク4を用いて、C面サファイア基板 1上にGaN層5を選択成長させる。その他のことは第 1の実施形態と同様であるので、説明を省略する。

【0039】この第3の実施形態によっても、第1の実 施形態と同様な利点を得ることができるほか、成長マス ク4が形成されたC面サファイア基板1上に直接、Ga N層5を選択成長させていることにより、GaN基板の 製造に必要な成長は1回で済み、したがってGaN系半 導体レーザの製造コストの低減を図ることができるとい う利点をも得ることができる。

【0040】以上、この発明の実施形態について具体的 に説明したが、この発明は、上述の実施形態に限定され るものではなく、この発明の技術的思想に基づく各種の 変形が可能である。

【0041】例えば、第1~第3の実施形態において挙 げた数値、構造、基板、原料、プロセスなどはあくまで も例に過ぎず、必要に応じて、これらと異なる数値、構 造、基板、原料、プロセスなどを用いてもよい。

【0042】具体的には、第1~第3の実施形態におい

が、必要に応じて、HVPE法の代わりに、MOCVD 法やMBE法を用いてもよい。また、GaNバッファ層 2や下地GaN層3やレーザ構造を形成するGaN系半 導体層の成長には、MOCVD法の代わりに、MBE法 やHVPE法を用いてもよい。

12

【0043】さらに、第1~第3の実施形態において は、この発明をGaN系半導体レーザの製造に適用した 場合について説明したが、この発明は、GaN系発光ダ イオードの製造に適用してもよく、さらには、GaN系 【0035】この第2の実施形態においては、下地Ga 10 FETなどのGaN系電子走行素子の製造に適用しても よい。

[0044]

【発明の効果】以上説明したように、この発明によれ ば、成長マスクとして、ほぼ3回対称または6回対称の 対称性を有するパターンを少なくとも一部に含む成長マ スクを用いることにより、格子定数や熱膨張係数が異な る基板上に窒化物系IIIーV族化合物半導体などの半 導体の厚膜を成長させても、反りや亀裂が発生するのを 防止することができる。そして、このようにして選択成 20 長される厚膜の半導体膜を用いて半導体基板を製造する ことができ、さらにはこの半導体基板を用いて各種の半 導体装置を製造することができる。

【図面の簡単な説明】

【図1】この発明の第1の実施形態によるGaN系半導 体レーザの製造方法を説明するための断面図である。

【図2】この発明の第1の実施形態によるGaN系半導 体レーザの製造方法を説明するための断面図である。

【図3】この発明の第1の実施形態によるGaN系半導 体レーザの製造方法においてGaN層の選択成長に用い

【図4】この発明の第1の実施形態によるGaN系半導 体レーザの製造方法を説明するための断面図である。

【図5】この発明の第1の実施形態においてC面サファ イア基板およびその上に選択成長されるGaN層の結晶 方位関係を示す略線図である。

【図6】この発明の第1の実施形態によるGaN系半導 体レーザの製造方法を説明するための断面図である。

【図7】この発明の第1の実施形態によるGaN系半導 体レーザの製造方法を説明するための断面図である。

【図8】この発明の第1の実施形態によるGaN系半導 体レーザの製造方法を説明するための断面図である。

【図9】この発明の第2の実施形態によるGaN系半導 体レーザの製造方法においてGaN層の選択成長に用い られる成長マスクを示す平面図である。

【図10】この発明の第3の実施形態によるGaN系半 導体レーザの製造方法を説明するための断面図である。 【符号の説明】

1···C面サファイア基板、3···下地GaN層、 4··・成長マスク、4a··・開口部、4b··・マ 13

層、9・・・p型AlGaNキャップ層、10・・・p 側電極、14・・・n側電極 型GaN光導波層、11···p型AlGaNクラッド

ラッド層、7・・・n型GaN光導波層、8・・・活性層、12・・・p型GaNコンタクト層、13・・・p

14

【図9】

CLIPPEDIMAGE= JP02000223417A

PAT-NO: JP02000223417A

DOCUMENT-IDENTIFIER: JP 2000223417 A

TITLE: GROWING METHOD OF SEMICONDUCTOR, MANUFACTURE OF

SEMICONDUCTOR

SUBSTRATE, AND MANUFACTURE OF SEMICONDUCTOR DEVICE

PUBN-DATE: August 11, 2000

INVENTOR-INFORMATION:

NAME

TOMIOKA, SATOSHI N/A

ASSIGNEE-INFORMATION:

NAME

SONY CORP N/A

APPL-NO: JP11019651

APPL-DATE: January 28, 1999

INT-CL (IPC): H01L021/205

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a method of growing a semiconductor, such as a

nitride III-V compound semiconductor on a substrate that has a lattice constant

and a thermal expansion coefficient, different from those of the semiconductor

without producing warpage or fissures, and a method of manufacturing a

semiconductor substrate and a semiconductor device by the use of this growing

method of a semiconductor.

SOLUTION: In a semiconductor growing method, where a nitride III-V compound

semiconductor such as a GaN semiconductor is formed on a substrate, such as a

sapphire substrate formed of a material different from that of the compound

semiconductor using a growing mask, a growing mask 4 which contains at least a

pattern that is threefold or sixfold symmetrical is used as

04/24/2002, EAST Version: 1.03.0002

the growing mask. A pattern which is threefold symmetrical is a regular triangle, and a pattern which is sixfold symmetrical is a regular hexagon. In this way, a nitride III-V compound semiconductor thick layer is selectively grown, and then the substrate is removed by lapping or the like so as to obtain only the nitride III-V compound semiconductor layer, and a semiconductor device such as a GaN semiconductor laser is manufactured using the compound semiconductor layer as a substrate.

COPYRIGHT: (C) 2000, JPO