date: wednesday, march 27, 2024

Field Extensions and Linear Algebra

Observation: If E is an extension of the field F, then E is also an F-vector space. Ie. the elements of E are the "vectors", the elements of F are the "scalars", with scalar

multiplication F×E->F (f.e) ->fe.

 $(r, a+bi) \rightarrow r(a+bi) = ra + rbi$

eg. C is an extension of R. So C is an R-vector space $\mathbb{R} \times \mathbb{C} -> \mathbb{C}$

To do check that all axioms of a vector space field hold.

Theorem: Let $E=F(\alpha)$ be simple extension of F, where $\alpha \in E$ is algebraic over F. Suppose degree of $\alpha = n$ (= degree of minimum polynomial of α).

Then every element of $F(\alpha)$ can be written uniquely as $b_0 + b_1 \alpha + b_2 \alpha^2 + \cdots + b_{n-1} \alpha^{n-1}$

with b. EF.

Proof: see text

eg. C = R(i) = { a+ bi | a, beR }.

eq.Q(12) = { a+b12 | a,beQ}

Recall: If E is an F-vector space, the dimension of E over dim E = number of basis elements.

Corollary: If $E=F(\alpha)$ is a simple extension with $\alpha \in E$ algebraic over F, then $\dim_F E=n=$ degree of α .

 $F(\alpha)$ is a F-vector space. By previous result, $1, \alpha, \alpha^2, \dots, \alpha^{n-1}$ is a basis for $F(\alpha)$ over F.

is a basis for $F(\alpha)$ over F. eg. $\dim_{\mathbb{R}} \mathbb{C} = 2$ and $\dim_{\mathbb{C}} \mathbb{C} = 1$

eg. $\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt{2}) = 2$

Defa: If E is an extension of F, we let [E:F] = dim_E. We say E has finite extension of degree n = [E:F] over F.

eg. [C:R] = 2.

Theorem: If $[E:F]<\infty$, then E is an algebraic extension of F.

Proof

Let n=[E:F]. Let $\alpha \in E$. Consider $1,\alpha,\alpha^2,...,\alpha^n$. We have n+1 "things" = "vectors" in E since [E:F]=n, these vectors are linearly dependent. So exists $b,...,b,\alpha \in F$ such that $b\cdot 1+b\cdot \alpha+\cdots+b_n\alpha^n=0$.

Create the polynomial $p(x)=b_0+b_1x+b_2x^2+\cdots+b_nx^n$. So α is a root of the polynomial. So E is algebraic over F.

Note: There are fields E that are algebraic but $[E:F]=\infty$.

eg. $\mathbb{Q}(\sqrt{12}, \sqrt[4]{2}, \sqrt[4]{2}, \dots)$ eg. Since \mathbb{T} is not algebraic over \mathbb{Q} , $[\mathbb{Q}(\pi):\mathbb{Q}] = \infty$.

E	If E has extension of F and K is an extension of E, then K is an extension of F. (F=E=K). If these are finite extensions, then [K:F]=[K:E]=[E:F].	
k E	$\begin{cases} \begin{cases} n_2 \\ 3n_1 \end{cases} \end{cases} \begin{cases} n_1 n_2 \end{cases}$	
OVER F.	$\{\alpha_i, \alpha_z,, \alpha_m\}$ is a basis for E over F and $\{\beta_i, \beta_z,, \beta_s\}$ for K over E. $\{\beta_i, 1 \le i \le m, 1 \le j \le n\}$ is a basis for K over F. show this set is linearly independent and span K $\{K:F\}=mn=[E:F][K:F]$.	3 <u>,</u> Z
Corollary:]	If F, is a finite extension of F ₀ . F ₂ is a finite extension of F ₁ . F ₄ is a finite extension of F ₄₋₁ .	
	hen, $ [F_t:F_s] = [F_t:F_{t-1}][F_{t-1}:F_{t-2}] \cdots [F_r:F_s]. $ if $\alpha \in E$ is algebraic over F with minimal polynomial $\alpha(x)$ and $\beta \in F(\alpha)$ with the minimal polynomial $\alpha(x)$ then $\deg \alpha(x) \mid \deg \alpha(x)$.	אג ,

then $\deg q(x) \log p(x)$.

Proof
We have $\beta \in F(\alpha)$, so $F(\beta) \leq F(\alpha)$. So $F(\alpha) : F(\beta) = F(\alpha) : F(\beta) = F(\beta) = F(\beta) = F(\beta)$

No nove $P \in F(\alpha)$, so $F(\beta) \subseteq F(\alpha)$. So $[F(\alpha) : F] = [F(\alpha) : F(\beta)][F(\beta) : F]$ deg $g(\alpha)$.

.).

Theorem Let E be a field extension of F. The following are eauivalent: DE is a finite extension of F ② There exists a finite number of algebraic elements $\alpha_1, \alpha_2, ..., \alpha_n$ such that $E = F(\alpha_1, ..., \alpha_n)$. 3 There exists a sequence of fields $F(\alpha_1,...,\alpha_n) \supseteq F(\alpha_1,...,\alpha_{n-1}) \supseteq F(\alpha_1,...,\alpha_{n-2}) \supseteq \cdots \supseteq F$ such that each $[F(\alpha_1,...,\alpha_n):F(\alpha_1,...,\alpha_{i-1})]$ is finite and α_i is algebraic over $F(\alpha,...,\alpha_{i-1})$. eg. Q(15, 15i) $Q(15i, 15') \ge Q(15) \ge Q$ χ^2+5 χ^3-5 Here, [Q(35, 5) : Q] = 6. eg. Is Q(13) ~ Q(12)? As vector spaces over Q, they are isomorphic because $[\mathbb{Q}(\overline{13}):\mathbb{Q}] = 2 = [\mathbb{Q}(\overline{12}):\mathbb{Q}]$ As vector spaces Q(13)~Q(12)~Q2. Note: isomorphic as fields. Consider 1 (17) and suppose you have a ring isomorphism $\Psi: \mathbb{Q}(12) \rightarrow \mathbb{Q}(13)$ where $\Psi(1) = 1$

