TABLE 5.1 Fourier Transform Properties

Operation	Time Function	Fourier Transform
Linearity	$af_1(t) + bf_2(t)$	$aF_1(\omega) + bF_2(\omega)$
Time shift	$f(t-t_0)$	$F(\omega)e^{-j\omega t_0}$
Time reversal	f(-t)	$F(-\omega)$
Time scaling	f(at)	$\frac{1}{ a }F\bigg(\frac{\omega}{a}\bigg)$
Time transformation	$f(at - t_0)$	$\frac{1}{ a } F\left(\frac{\omega}{a}\right) e^{-j\omega t_0/a}$
Duality	F(t)	$2\pi f(-\omega)$
Frequency shift	$f(t)e^{j\omega_0t}$	$F(\omega - \omega_0)$
Convolution	$f_1(t)*f_2(t)$	$F_1(\omega)F_2(\omega)$
Modulation (Multiplication)	$f_1(t)f_2(t)$	$\frac{1}{2\pi}F_1(\omega)*F_2(\omega)$
Integration	$\int_{-\infty}^t \!\! f(\tau) d\tau$	$\frac{1}{j\omega}F(\omega) + \pi F(0)\delta(\omega)$
Differentiation in time	$\frac{d^n[f(t)]}{dt^n}$	$(j\omega)^n F(\omega)$
Differentiation in Frequency	$(-jt)^n f(t)$	$\frac{d^n[F(\omega)]}{d\omega^n}$
Symmetry	f(t) real	$F(-\omega) = F^*(\omega)$

Linearity

Because the Fourier transform (5.1) is an integral of f(t) and its inverse (5.2) is an integral of $F(\omega)$, and because integration is a linear operation, it can be reasoned that the Fourier transform is a linear operation. The linearity property of the Fourier transform states that if we are given the transform pairs

$$f_1(t) \stackrel{\mathscr{F}}{\longleftrightarrow} F_1(\omega)$$
 and $f_2(t) \stackrel{\mathscr{F}}{\longleftrightarrow} F_2(\omega)$,

then

$$[af_1(t) + bf_2(t)] \stackrel{\mathcal{F}}{\longleftrightarrow} [aF_1(\omega) + bF_2(\omega)], \tag{5.10}$$

where a and b are constants. In words, the principle of superposition applies to the Fourier transform.

EXAMPLE 5.3 The linearity property of the Fourier transform

We can make use of the property of linearity to find the Fourier transforms of some types of waveforms. For example, consider

$$f(t) = B \cos \omega_0 t$$
.