Overfitting, regularization, and model validation

Ngô Minh Nhựt

Content

- Overfitting
- Regularization
- Model validation

Overfitting

When there are many features:

- Model may overfit with training data (training cost ~ 0)
- Could not generalize for new samples (testing cost >> 0)

Source: Andrew Ng

Overfitting

Logistic regression

Source: Andrew Ng

Overfitting

Solutions:

- Reduce number of features
 - Select features through data analysis
 - Select features through model validation
- Regularization
 - Reduce effect of parameters to output
 - Good in case features contributes slightly to output

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + 1000\theta_{3}^{2} + 1000\theta_{4}^{2}$$

Source: Andrew Ng

- When values of parameters become small
 - Produce simpler models
 - Reduce overfitting

Cost function

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

- Lambda: weight decay
- When lambda is bigger, model becomes simpler

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

If lambda too big?

Source: Andrew Ng

Vector gradient

$$\frac{dJ}{d\theta_0} = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_0^{(i)}$$

$$\frac{dJ}{d\theta_j} = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{m} \theta_j$$

Gradient descent algorithm works as usual

■ Logistic regression – cost function

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)})\right)\right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Logistic regression – vector gradient

$$\frac{dJ}{d\theta_0} = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_0^{(i)}$$

$$\frac{dJ}{d\theta_j} = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{m} \theta_j$$

Model validation

- Learning process makes model fit with training data
- Can learnt model generalize for new samples?
 - Validate the model with unseen data
- Solution:
 - Learn, validate, and select the best model
 - Test if the selected model works well with new data

Dataset

- □ Split dataset into 3 subsets: train, validation, and test
- □ With large dataset, the ratio is: 60% : 20% : 20%

Cost function

Train error

$$J_{\text{train}}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Cross-validation error

$$J_{\text{CV}}(\theta) = \frac{1}{2m_{\text{CV}}} \sum_{i=1}^{\text{CV}} \left(h_{\theta}(x_{\text{CV}}^{(i)}) - y_{\text{CV}}^{(i)} \right)^{2}$$

Test error

Section
$$J_{ ext{test}}(heta) = rac{1}{2m_{ ext{test}}} \sum_{i=1}^{ ext{test}} \left(h_{ heta}(x_{ ext{test}}^{(i)}) - y_{ ext{test}}^{(i)}
ight)^2$$

k-fold cross validation

- Randomly split dataset into k parts
- Learn and validate k time. k is usually 10

k-fold cross validation

Model finetuning

- Model has various parameters
- Learning algorithm has various hyper parameters
- What should we do when model does not work well?
 - Collect more data
 - Reduce number of features
 - Try with new features
 - Switch to other models or hypotheses
 - Reduce weight decay
 - Increase weight decay

Model finetuning

Bias and variance

- Bias: model error on training set
- Variance: model error on validation set
- Adjust bias and variance until they reach minimal

High bias (underfit)

"Just right"

High variance (overfit)

Bias and variance

Model evaluation

- Measurements
 - Precision, recall
 - Accuracy
 - F1-score
- Depending on problems, we need some suitable measures

Model evaluation

□ F1 − score =
$$\frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Source: Wikipedia

Confusion matrix

		Cat	Dog	Tiger	Wolf	Total
Actual	Cat	6	0	3	1	10
	Dog	2	4	0	4	10
	Tiger	3	3	3	0	9
	Wolf	1	4	1	2	8
	Total	12	11	7	7	

>>> sklearn.metrics.classification_report		precision	recall	f1-score	support
>>> y_true = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0,]	Cat	0.500	0.600	0.545	10
	Dog	0.364	0.400	0.381	10
>>> y_pred = [0, 0, 0, 0, 0, 0, 2, 2, 2, 3,]	Tiger	0.429	0.333	0.375	9
>>> target_names = ['Cat', 'Dog', 'Tiger', 'Wolf']	Wolf	0.286	0.250	0.267	8
	accuracy			0.405	37
	macro avg	0.394	0.396	0.392	37
	weighted avg	0.399	0.405	0.399	37