M4DataVisualization-lab

June 24, 2022

1 Data Visualization Lab

Estimated time needed: 45 to 60 minutes

In this assignment you will be focusing on the visualization of data.

The data set will be presented to you in the form of a RDBMS.

You will have to use SQL queries to extract the data.

1.1 Objectives

In this lab you will perform the following:

- Visualize the distribution of data.
- Visualize the relationship between two features.
- Visualize composition of data.
- Visualize comparison of data.

1.2 Demo: How to work with database

Download database file.

```
[2]: | wget https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/
GIBM-DA0321EN-SkillsNetwork/LargeData/m4_survey_data.sqlite
```

```
2022-06-24 17:46:13 (29.9 MB/s) - 'm4_survey_data.sqlite.1' saved [36679680/36679680]
```

Connect to the database.

```
[3]: import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import sqlite3
conn = sqlite3.connect("m4_survey_data.sqlite") # open a database connection
```

Import pandas module.

```
[4]: import pandas as pd
```

1.3 Demo: How to run an sql query

```
[5]: # print how many rows are there in the table named 'master'
QUERY = """
SELECT COUNT(*)
FROM master
"""

# the read_sql_query runs the sql query and returns the data as a dataframe
df = pd.read_sql_query(QUERY,conn)
df.head()
```

[5]: COUNT(*)
0 11398

1.4 Demo: How to list all tables

```
[6]: # print all the tables names in the database
QUERY = """
SELECT name as Table_Name FROM
sqlite_master WHERE
type = 'table'
"""
# the read_sql_query runs the sql query and returns the data as a dataframe
pd.read_sql_query(QUERY,conn)
```

```
[6]: Table_Name
0 EduOther
1 DevType
2 LastInt
3 JobFactors
```

```
4
                  WorkPlan
5
             WorkChallenge
6
        LanguageWorkedWith
7
    LanguageDesireNextYear
8
        DatabaseWorkedWith
9
    DatabaseDesireNextYear
10
        PlatformWorkedWith
    PlatformDesireNextYear
11
12
        WebFrameWorkedWith
13
    WebFrameDesireNextYear
14
        MiscTechWorkedWith
15
   MiscTechDesireNextYear
16
                DevEnviron
17
                Containers
18
                 SOVisitTo
19
              SONewContent
20
                     Gender
21
                 Sexuality
22
                 Ethnicity
23
                     master
```

1.5 Demo: How to run a group by query

```
[7]: QUERY = """
    SELECT Age, COUNT(*) as count
    FROM master
    group by age
    order by age
    """
    pd.read_sql_query(QUERY, conn)
```

```
[7]:
           Age
                 count
           NaN
                   287
     0
     1
          16.0
                     3
     2
          17.0
                     6
     3
          18.0
                    29
     4
          19.0
                    78
     5
          20.0
                   109
     6
          21.0
                   203
     7
          22.0
                   406
     8
          23.0
                   581
          24.0
                   679
     9
     10
          25.0
                   738
          26.0
                   720
     11
          27.0
     12
                   724
     13
          28.0
                   787
     14
          29.0
                   697
```

15	30.0	651
16	31.0	531
17	32.0	489
18	33.0	483
19	34.0	395
20	35.0	393
21	36.0	308
22	37.0	280
23	38.0	279
24	39.0	232
25	40.0	187
26	41.0	136
27	42.0	162
28	43.0	100
29	44.0	95
30	45.0	85
31	46.0	66
32	47.0	68
33	48.0	64
34	49.0	66
35	50.0	57
36	51.0	29
37	52.0	41
38	53.0	32
39	54.0	26
40	55.0	13
41	56.0	16
42	57.0	11
43	58.0	12
44	59.0	11
45	60.0	2
46	61.0	10
47	62.0	5
48	63.0	7
49	65.0	2
50	66.0	1
51	67.0	1
52	69.0	1
53	71.0	2
54	72.0	1
55	99.0	1

1.6 Demo: How to describe a table

```
[8]: table_name = 'master' # the table you wish to describe
     QUERY = """
     SELECT sql FROM sqlite_master
     WHERE name= '{}'
     """.format(table_name)
     df = pd.read_sql_query(QUERY,conn)
     print(df.iat[0,0])
    CREATE TABLE "master" (
    "index" INTEGER,
      "Respondent" INTEGER,
      "MainBranch" TEXT,
      "Hobbyist" TEXT,
      "OpenSourcer" TEXT,
      "OpenSource" TEXT,
      "Employment" TEXT,
      "Country" TEXT,
      "Student" TEXT,
      "EdLevel" TEXT,
      "UndergradMajor" TEXT,
      "OrgSize" TEXT,
      "YearsCode" TEXT,
      "Age1stCode" TEXT,
      "YearsCodePro" TEXT,
      "CareerSat" TEXT,
      "JobSat" TEXT,
      "MgrIdiot" TEXT,
      "MgrMoney" TEXT,
      "MgrWant" TEXT,
      "JobSeek" TEXT,
      "LastHireDate" TEXT,
      "FizzBuzz" TEXT,
      "ResumeUpdate" TEXT,
      "CurrencySymbol" TEXT,
      "CurrencyDesc" TEXT,
      "CompTotal" REAL,
      "CompFreq" TEXT,
      "ConvertedComp" REAL,
      "WorkWeekHrs" REAL,
      "WorkRemote" TEXT,
      "WorkLoc" TEXT,
      "ImpSyn" TEXT,
      "CodeRev" TEXT,
      "CodeRevHrs" REAL,
```

```
"UnitTests" TEXT,
  "PurchaseHow" TEXT,
  "PurchaseWhat" TEXT,
  "OpSys" TEXT,
  "BlockchainOrg" TEXT,
  "BlockchainIs" TEXT,
  "BetterLife" TEXT,
  "ITperson" TEXT,
  "OffOn" TEXT,
  "SocialMedia" TEXT,
  "Extraversion" TEXT,
  "ScreenName" TEXT,
  "SOVisit1st" TEXT,
  "SOVisitFreq" TEXT,
  "SOFindAnswer" TEXT,
  "SOTimeSaved" TEXT,
  "SOHowMuchTime" TEXT,
  "SOAccount" TEXT,
  "SOPartFreq" TEXT,
  "SOJobs" TEXT,
  "EntTeams" TEXT,
  "SOComm" TEXT,
  "WelcomeChange" TEXT,
  "Age" REAL,
  "Trans" TEXT,
  "Dependents" TEXT,
  "SurveyLength" TEXT,
  "SurveyEase" TEXT
)
```

2 Hands-on Lab

2.1 Visualizing distribution of data

2.1.1 Histograms

Plot a histogram of ConvertedComp.

```
[9]: # your code goes here
QUERY = """
SELECT *
FROM master
"""
df = pd.read_sql_query(QUERY,conn)
df.shape
```

[9]: (11398, 63)

```
[10]: df['ConvertedComp'].plot(kind='hist')
plt.show()
```


2.1.2 Box Plots

Plot a box plot of Age.

```
[11]: # your code goes here
df['Age'].plot(kind='box')
```

[11]: <AxesSubplot:>

[12]: sns.boxplot(df['Age'])

[12]: <AxesSubplot:xlabel='Age'>

2.2 Visualizing relationships in data

2.2.1 Scatter Plots

Create a scatter plot of Age and WorkWeekHrs.

```
[13]: # your code goes here
sns.catplot(x='Age', y='WorkWeekHrs', data=df)
```

[13]: <seaborn.axisgrid.FacetGrid at 0x7fabb05b3250>

2.2.2 Bubble Plots

Create a bubble plot of WorkWeekHrs and CodeRevHrs, use Age column as bubble size.

```
[14]: # your code goes here
norm_age = (df['Age'] - df['Age'].min()) / (df['Age'].max() - df['Age'].min())
ax = df.plot(kind='scatter', x = 'WorkWeekHrs', y='CodeRevHrs', s=norm_age *□
→500)
```


2.3 Visualizing composition of data

2.3.1 Pie Charts

Create a pie chart of the top 5 databases that respondents wish to learn next year. Label the pie chart with database names. Display percentages of each database on the pie chart.

```
[15]: # your code goes here
      QUERY2 = """
      SELECT * FROM
      DatabaseDesireNextYear
      df2 = pd.read_sql_query(QUERY2,conn)
      # df2.head(15)
      df3 = pd.DataFrame(df2['DatabaseDesireNextYear'].value_counts(sort=True,_
       ⇒ascending=False)[0:5])
      # df3.reset_index(inplace=True)
      # df3.rename(columns={'DatabaseDesireNextYear': 'Count', 'index': 'Language'},
       ⇔inplace=True)
      df3.rename(columns={'DatabaseDesireNextYear': 'Count'}, inplace=True)
      def func(pct, allvalues):
          absolute = int(pct / 100.*np.sum(allvalues))
          return "{:.1f}%\n{:d}".format(pct, absolute)
      ax = df3['Count'].plot(kind='pie', autopct = lambda pct: func(pct, df3))
      ax.set_title("Top 5 Databases That Respondents Wish to Learn Next Year")
```

[15]: Text(0.5, 1.0, 'Top 5 Databases That Respondents Wish to Learn Next Year')

Top 5 Databases That Respondents Wish to Learn Next Year

2.3.2 Stacked Charts

Create a stacked chart of median WorkWeekHrs and CodeRevHrs for the age group 30 to 35.

MySQL

```
[16]: # your code goes here
     x = [30, 31, 32, 33, 34, 35]
     df_custom = df[['Age', 'WorkWeekHrs', 'CodeRevHrs']].loc[(df['Age'] >=30) &__
       y1 = [df_custom.loc[df_custom['Age'] == 30]['WorkWeekHrs'].median(),
           df_custom.loc[df_custom['Age'] == 31]['WorkWeekHrs'].median(),
           df_custom.loc[df_custom['Age'] == 32]['WorkWeekHrs'].median(),
           df_custom.loc[df_custom['Age'] == 33]['WorkWeekHrs'].median(),
           df_custom.loc[df_custom['Age'] == 34]['WorkWeekHrs'].median(),
           df_custom.loc[df_custom['Age'] == 35]['WorkWeekHrs'].median()]
     y2 = [df_custom.loc[df_custom['Age'] == 30]['CodeRevHrs'].median(),
           df_custom.loc[df_custom['Age'] == 31]['CodeRevHrs'].median(),
           df_custom.loc[df_custom['Age'] == 32]['CodeRevHrs'].median(),
           df_custom.loc[df_custom['Age'] == 33]['CodeRevHrs'].median(),
           df_custom.loc[df_custom['Age'] == 34]['CodeRevHrs'].median(),
           df_custom.loc[df_custom['Age'] == 35]['CodeRevHrs'].median()]
     plt.bar(x, y1, color='r')
     plt.bar(x, y2, bottom=y1, color='b')
```

[16]: Text(0.5, 1.0, 'Stack Plot of WorkWeekHrs and CodeRevHrs Medians for Ages 30-35')

2.4 Visualizing comparison of data

2.4.1 Line Chart

Plot the median ConvertedComp for all ages from 45 to 60.

```
[39]: # your code goes here

df_need = df[['Age', 'ConvertedComp']].loc[df['Age'].between(45, 60)]

df_need = df_need.groupby(['Age']).median()

df_need.reset_index(inplace=True)

df_need['Age'] = df_need['Age'].astype(int)

df_need

plt.plot(df_need['Age'], df_need['ConvertedComp'])

plt.xlabel('Age')

plt.ylabel('ConvertedComp')
```

```
plt.title('ConvertedComp Medians for Ages 45-60')
plt.xticks(df_need['Age'], df_need['Age'])
plt.grid()
# plt.grid(axis = 'y')
```


2.4.2 Bar Chart

Create a horizontal bar chart using column MainBranch.

```
[18]: # your code goes here
ax = sns.countplot(y = df['MainBranch'], orient="h")
ax.set_title("Main Branch Bar Plot")
```

[18]: Text(0.5, 1.0, 'Main Branch Bar Plot')

Close the database connection.

[19]: conn.close()

2.5 Authors

Ramesh Sannareddy

2.5.1 Other Contributors

Rav Ahuja

2.6 Change Log

Date			
(YYYY-MM-DD)	Version	Changed By	Change Description
2020-10-17	0.1	Ramesh Sannareddy	Created initial version of the lab

Copyright © 2020 IBM Corporation. This notebook and its source code are released under the terms of the MIT License.