Oppgave 31 - Boundary layer; equation of third order

$$\epsilon^2 y''' - y' + y = 0$$
, $y(0) = \alpha$, $y(1) = \beta$, $y'(1) = \gamma/\epsilon$

Grensesjikt i x = 0 og x = 1

Løsning:

$$\begin{split} y_o &= Ce^x \\ y_{\text{match},L} &= C \\ y_{i,L} &= (\alpha - C)e^{-x/\epsilon} + C \\ y_{\text{match},R} &= Ce \\ y_{i,R} &= (\beta - Ce)e^{(x-1)/\epsilon} + Ce \\ y_{\text{uniform}} &= y_o + y_{i,L} - y_{\text{match},L} + y_{i,R} - y_{\text{match},R} = Ce^x + (\alpha - C)e^{-x/\epsilon} + (\beta - Ce)e^{(x-1)/\epsilon} \end{split}$$

Forskjellige valg av C:

- * Om man finner C fra $y_{i,R}$ får man $C = \frac{\beta \gamma}{e} \equiv C_1$ og det er den metoden man skal bruke på eksamen
- * Men om man finner C fra den uniforme løsningen får man $C = \frac{\beta \gamma \alpha e^{-1/\epsilon}}{e \epsilon e e^{-1/\epsilon}} \approx \frac{\beta \gamma}{e \epsilon e} \equiv C_2$

Effekter av å bruke C_1 eller C_2 :

- \star C_1 gir en løsning som oppfyller $y(0) = \alpha$ og $y(1) = \beta$ bedre enn løsningen med C_2 gjør (se fig 1)
- * C_2 gir en løsning som oppfyller $y'(1) = \gamma/\epsilon$ (se fig 2)
- * For liten ϵ blir løsningene så godt som like, men for noen γ vil ikke løsningen gitt av C_1 gi et avvik fra $y'(1) = \gamma/\epsilon$ som forblir endelig selv for veldig små ϵ (se fig 3). Dette skyldes at mens den deriverte er $O(1/\epsilon)$, vil neste orden, som vi ikke har med i standard grensesjiktsteori, gi en korreksjon i den deriverte som er O(1). I dette tilfellet får vi med denne når vi lar "unified solution" oppfylle randbetingelsen ved x = 1.
- * Begge løsningene viker fortere fra $y(0) = \alpha$ enn $y(1) = \beta$ (se fig 1)

Fig 1: C_1 gir løsning som best oppfyller $y(0)=\alpha,\ y(1)=\beta,$ og begge løsningene oppfyller $y(1)=\beta$ bedre enn $y(0)=\alpha$

Fig 2: C_2 gir en løsning som oppfyller $y'(1) = \gamma/\epsilon$

Fig 3: For liten ϵ blir løsningene så godt som like