Contents

§ 1	常见函数求导	2
§ 2	一阶微分形式不变性	2
§ 3	反函数的导数	2
§ 4	隐函数求导	2
§ 5	高阶导数	2
§ 6	参数方程	2

§1 常见函数求导

1.
$$(\ln x)' = \frac{1}{x}$$

2.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

3.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

4.
$$(\arctan x)' = \frac{1}{1+x^2}$$

5.
$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

6.
$$(\sec x)' = \sec x \tan x$$

7.
$$(\csc x)' = -\csc x \cot x$$

8.
$$\left[\ln\left(x + \sqrt{x^2 \pm a^2}\right)\right]' = \frac{1}{\sqrt{x^2 \pm a^2}}$$

§2 一阶微分形式不变性

 $\mathrm{d}\{f[g(x)]\} = f'[g(x)]\mathrm{d}[g(x)] = f'[g(x)]\cdot g'(x)\mathrm{d}x$

§ 3 反函数的导数

设y=f(x)为单调、可导函数,且 $f'(x) \neq 0$,则存在反函数 $x=\varphi(y)$,且 $\frac{\mathrm{d}x}{\mathrm{d}y}=\frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}}$,即 $\varphi'(y)=\frac{1}{f'(x)}$

若求 $\varphi''(y)$,不能直接使用求导公式,应按照高阶微分的定义进行推导:

$$\frac{\mathrm{d}^2x}{\mathrm{d}y^2} = \frac{\mathrm{d}\frac{\mathrm{d}x}{\mathrm{d}y}}{\mathrm{d}y}$$

§ 4 隐函数求导

设函数y=y(x)是由方程F(x,y)=0确定的可导函数,则:

- 1. 方程F(x,y) = 0两边对自变量x求导,将y看作中间变量,得到一个关于y'的方程
- 2. 解方程即可求出y'

§ 5 高阶导数

- 1. 数学归纳
- 2. 莱布尼茨公式:

$$(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}$$

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)}$$

- 3. 泰勒展开
 - 1. 任意一个任意阶可导的函数都 可以写成:

$$y = f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

2. 根据泰勒展开唯一性,比较次数。

§6参数方程

函数由

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$

确定,则:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t}$$