

Contents

- 1. Research rationale
- 2. Methodology
- 3. Research Location Tokyo
- 4. Pre-Processing
- 5. Model Fitting
- 6. Results
- 7. Interpretation

Published in **November 2021**

Article number: 6763

The role of urban trees in reducing land surface temperatures in European cities

Prepared by researchers of ETH Zurich

Jonas Schwaab Ronny Meier Gianluca Mussetti Sonia Seneviratne Christine Bürgi Eduoard Davin

Research Rationale

Emerging Urban Heat Islands

Exemplary Urban Forest Ecosystem Services

Research Rationale

Emerging Urban Heat Islands

Exemplary Urban Forest Ecosystem Services

Methodology

Comparison				
Authors		Schwaab et al. (2021)	Our approach	
Country				
City		Various	Tokyo	
Köppen classifi	cation	Cfb, Csa	Cfa	
Methods		Generalized Additive Model	Generalized Additive Model	
Data source		Landsat 30m LULC Copernicus Urban Atlas EU-DEM v1.0	Landsat 8 LST 30m from RS Lab HRLULC from JAXA Japanese-DEM from JAXA MODIS Vegetation Model from NASA	Data availability
Data	Imagery	Minimum 80 per city	>36 for Tokyo*	-
requirement	Timeframe	across 12 years	across 3 years*	
Results		Urban trees contribute towards cooling, but extend depends on climate	•••	

The role of urban trees in reducing land surface temperatures in European cities

Research Location Tokyo

Tailwind for existing change

Personal interest

Upside potential

Share of Urban green space (2015 data) Source: World Cities Culture Forum (2022)

Singapore	47%
Chengdu	42%
Shenzhen	41%
Nanjing	41%
Hong Kong	40%
Seoul	28%
Guangzhou	20%
Shanghai	16%
Tokyo	7.5%
Taipei	3%

Pre-processing

LST Selection process

Pre-processing

Predictor variable preparation

Data acquisition

DEMAspect calculation

LULC Subdivision

VCF Vegetation Continuous Fields

Digital Elevation Model Tokyo, Kanagawa Prefecture

Calculate aspect and subdivide into distinct rasters to allow for variability in solar radiation

Model Fitting

Linear Regression model

$$LST = \beta_0 + \beta_1(VCF) + \beta_2(LULC_1) + \dots + \beta_{10}(LULC_9) + \beta_{11}(DEM_1) + \beta_{12}(DEM_2) + \in$$

Generalized additive model

$$LST = \beta_0 + f_1(x, y) + f_2(VCF) + f_3(LULC_1, LULC_2, ..., LULC_9) + f_4(DEM_1, DEM_2) + \epsilon$$

Model Fitting

Our results (1)

Our results (1)

Our results (2)

Linear regression model

Year	2018	2019	2020
Date	08/04/2018	11/04/2019	29/04/2020
Cloud Cover	17 9%	3 9%	1.2%
LST - VCF corr	-0.321	-0.337	-0.447

Intercept (β_0)	 23.06274*** 	 17.385577*** 	- 23.34 9 3 8 7***-
Vcf_2018	-0.09823 ***	-0.024348***	-0.046549***
la_percent_2	 -3.94643 ***	4.10 7 929***	5.6 8 7862*** J
lu_percent_4	3.07862***	2.896111***	3.767533***
lu_percent_5	-0.66237	-2.300663***	-2.240579***
lu_percent_6	-0.60247	0.817421**	-0.567646
lu_percent_8	-2.40762*	-0.336959	0.499397
lu_percent_9	-7.51984***	-6.891491***	-6.783993***
Northface_sum	0.04632**	0.047787***	0.034412**
Southface_sum	0.05804***	0.085887***	0.037603**
R-squared	0.4854	0.5573	0.6147

Adjusted R-squared 0.5551 0.4825

Significance codes: '***' 0.001 '**' 0.01 '*' 0.05

VCF is significantly correlated with LST!

Generalized additive model

Year	2018	2019	2020
Date	08/04/2018	11/04/2019	29/04/2020
Cloud Cover	17.9%	3.9%	1.2%
R-squared	0.560	0.633	0.679
Deviance explained	56.30%	63.50%	68.10%

	Pre-adjustment			
i.	VCF	6.58%	6.80%	6.80%
	LST mean	26.9°C	21.9°C	28.7°C
` -	LST st.dev		1.7°C	2.7℃
	LST min.	12.6°C	15.4°C	13.5°C
	LST max.	41.1°C	27.7°C	38.4°C

Prediction (+10% vegetation cover)

Post-adjustment			
VCF	16.58%	16.80%	16.80%
LST mean	25.7°C	21.4°C	27.8°C
- ST-st-dev	17°€	120	17°6
LST min.	15.4°C	14 9 °C	19.1°C
LST IIIII.	19.1 €	1 1.5 €	19.1 C
LST max.	29.2°C	23.9°C	31.3°C

Cooling range of [0.5; 1.2] °C while reducing St.dev

Interpretation

Authors	Country	City	Input	Impact	
Wong et al. (2011)	(:	Singapore	10%p	[-0.9°C , -1.2°C]	
Stepanie et al. (2022)		Jakartha ¦	10%p 40%p	[-1.5°C, -2.5°C]	
				c	
Huang et al. (1987)		Multiple	10%p 25%p	11-18% 25-42% electricity reduction p.	
			l		
Wong et al. (2011)	(::	Singapore	-1.2°C	4.5% electricity reduction p.a for adjacent buildings	
Chen and Wong (2006)	*}	Guangzhou	-1°C	5% electricity reduction p.a.	
Yabe (2005)		Tokyo	+1°C	0.45% base-load increase, 180 MWh per peak-load	
Quite in line with existing research and effects! (De Frenne et al. (2019)					

Higher vegetation cover desirable – plant trees in the right spots to reap benefits!

Sources:

Page 1

https://pixabay.com/photos/architecture-buildings-cars-city-1837176/

Page 2

https://en.wikipedia.org/wiki/Nature Communications#/media/File:Nature Communications - Journal Cover.jpg

Page 3

Hiemstra, Jelle A., Hadas Saaroni, and Jorge H. Amorim. "The urban heat Island: Thermal comfort and the role of urban greening." The Urban Forest. Springer, Cham, 2017. 7-19.

https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS

https://www.data.jma.go.jp/obd/stats/data/en/smp/index.html

Page 4

https://en.wikipedia.org/wiki/Flag of Japan#/media/File:Flag of Japan.svg

https://en.wikipedia.org/wiki/Flag of Europe#/media/File:Flag of Europe.svg

Schwaab, J., Meier, R., Mussetti, G. et al. The role of urban trees in reducing land surface temperatures in European cities. Nat Commun 12, 6763 (2021).

https://doi.org/10.1038/s41467-021-26768-w

Page 5

https://www.tokyu.co.jp/ir/upload_file/ENtop_01/9005_2013032817342804_P01_.pdf

https://www.mori.co.jp/en/projects/toranomon azabudai/

https://www.kanpai-japan.com/tokyo/shibuya-stream-river

Page 8

https://learningstatisticswithr.com/book/regression.html

https://environmentalcomputing.net/statistics/gams/

Page 11

Wong, N. H., Jusuf, S. K., Syafii, N. I., Chen, Y., Hajadi, N., Sathyanarayanan, H., & Manickavasagam, Y. V. (2011). Evaluation of the impact of the surrounding urban morphology on building energy consumption. Solar energy, 85(1), 57-71.

Stepani, H. M. N., & Emmanuel, R. (2022). How Much Green Is Really "Cool"? Target Setting for Thermal Comfort Enhancement in a Warm, Humid City (Jakarta, Indonesia). Atmosphere, 13(2), 184.

Shen, T., Chow, D. H. C., & Darkwa, J. (2016). Simulating the influence of microclimatic design on mitigating the Urban Heat Island effect in the Hangzhou Metropolitan Area of China. International Journal of Low-Carbon Technologies, 11(1), 130-139.

De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., ... & Lenoir, J. (2019). Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3(5), 744-749.

Huang, Y. J., Akbari, H., Taha, H., & Rosenfeld, A. H. (1987). The potential of vegetation in reducing summer cooling loads in residential buildings. Journal of Applied Meteorology and Climatology, 26(9), 1103-1116.

K. Yabe Proceedings of National Convention of the Institute of Electrical Engineers of Japan (IEEJ) (2005)

Sources:

Climatology, 26(9), 1103-1116.

Page 1 https://pixabay.com/photos/architecture-buildings-cars-city-1837176/ Page 2 https://en.wikipedia.org/wil-12-+-Page 3 Hiemstra, Jelle A., Hadas 2017, 7-19. https://data.worldbank.or https://www.data.jma.go. Page 4 Thank you for your attention! https://en.wikipedia.org/v https://en.wikipedia.org/v Schwaab, J., Meier, R., Mu Page 5 https://www.tokyu.co.jp/ https://www.mori.co.jp/e Any comment, question or criticism would be https://www.kanpai-japar Page 8 highly appreciated! https://learningstatisticsw https://environmentalcon Page 11 Wong, N. H., Jusuf, S. K., S rphology on building energy consumpt Stepani, H. M. N., & Emm. nesia). Atmosphere, 13(2), 184. an Area of China. Shen, T., Chow, D. H. C., & International Journal of Low-Carbon Technologies, 11(1), 130-139. De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., ... & Lenoir, J. (2019). Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3(5), 744-749.

Huang, Y. J., Akbari, H., Taha, H., & Rosenfeld, A. H. (1987). The potential of vegetation in reducing summer cooling loads in residential buildings. Journal of Applied Meteorology and

K. Yabe Proceedings of National Convention of the Institute of Electrical Engineers of Japan (IEEJ) (2005)