Review of Signals and Systems-1

Dr. B. Sainath
EEE Dept., BITS PILANI

Aug., 2017

Important Instructions

- Check 'Nalanda' for useful course material and lab related stuff
- Please bring a dedicated lab note book to do rough work.
- You may leave lab after evaluation.
- You may take a short break for 5-7 minutes after one and half hour.
- Note down all useful commands in your notebook.

Important Instructions

- Try to complete all tasks within 2 hours. After 2 hrs, evaluation starts.
- For each subtask, create mfiles (eg. CT_HT.m) and save them with suitable name.
- Prepare a word document naming your name and ID. In it, save all results including plots.
- In all plots, put x-label, y-label, legend, font 'Arial' (Size = 10), and, Width '2'.

Task1: Continuous-Time (CT) Fourier Transform

- Understand following commands
 - syms
 - subs
 - simplify
 - dirac
 - heaviside
 - sign
 - fourier
 - sinc
- Question: Write a program to find continuous-time (CT) Fourier transform (FT). Express each FT both in ω and f domain (Hint: Use above commands. You may also use function call concept.). Verify them mathematically.
 - **1** $\exp(-j\omega_c t)$, where $\omega_c = 2\pi f_c$
 - u(t) (i.e. heaviside(t))
 - \odot $\sin(2\pi f_c t)$
 - \bigcirc $k \exp(-at) u(t)$
 - \odot sinc(t)

Task 2: Fast Fourier Transform (FFT), Autocorrelation

- Understand following commands
 - fft
 - fftshift
 - ifft
 - ifftshift
 - xcorr
 - norm
 - stem
- Question: Let X[k] = [0 0 4 0]. Using MATLAB, compute
 - IFFT of X[k], denoted by x[n]
 - 2 Autocorrelation of x[n], $R_{xx}[m]$.
 - If P(m) = P(m) of the shift is a Plot P(m) = P(m) of the Plot P(m) = P(m) of the shift is a Plot P(m) = P(m) of t
 - \bigcirc $R_{xx}[0]$
 - $(norm(x[n]))^2$

Aug., 2017

Task 3: Hilbert Transform

- Understand following command
 - hilbert
 - real
 - imag
 - plot
 - hold
 - dot
- Question: Write MATLAB program to plot m(t) and its Hilbert transform m(t)
 - $\mathbf{0} \mathbf{m}(t) = \cos t$
 - ② plot both m(t), $\hat{m}(t)$ in single figure. Interpret your result.
- Question: Using MATLAB compute Hilbert transform of sequence $\hat{d}[n]$
 - d[n] = [1 1 -1 -1]
 - What is the analytic sequence? What are the real and imaginary parts?
 - Find dot product of d[n] and its Hilbert transform (imaginary part)

Task 4: Random matrix

- Understand following commands
 - rand
 - randn
 - randi
 - randsrc
- Questions: Using above commands,
 - ① Create 2x2 random matrix where each element is drawn from uniform distribution $\mathcal{U}[0,1]$
 - create 2x2 random matrix where each element is drawn from normal distribution
 - Create 3x3 matrix whose entries are all 1's
 - **Oreate** $2x^2$ matrix whose entries are drawn from set $\{1, -1\}$

