Chapter 1

Introduction

Mixed notes from the book Convex Optimization [1]. Some parts will be supplemented by the book of Dattoro [2]. The book of Dattoro is extremely useful for concretely illustrating most of the concepts.

Quotes

• "We study convex geometry because it is the easiest of geometries. For that reason, much of a practitioner's energy is expended seeking invertible transformation of problematic sets to convex ones". Dattoro [2].

Chapter 2

Convex Sets

2.1 Affine and convex sets and cones.

- Affine set. A set $C \subseteq \mathbf{R}^n$ is affine if the line through any two points in C lines in C, i.e. if $x_1, x_2 \in C$ and $\theta \in \mathbf{R}$ implies $\theta x_1 + (1-\theta)x_2 \in C$. More generally, an affine set is a set that contains all affine combination (see def. below) of two or more of its points.
 - * Any affine set is convex [2].
 - * The intersection of an arbitrary collection of affine sets remains affine [2].
 - * Any affine set is open in the sense that it contains no boundary, e.g. the empty set \emptyset , point, line, plane, hyperplane, subspace etc [2]. Converse not necessarily true (e.g. see point just below about subspace.)
 - * If C is an affine set and $x_0 \in C$, then the set $V = C x_0 = \{x x_0 | x \in C\}$ is a subspace.
 - Affine combination. A combination of points $\sum_{i=1}^k \theta_i x_i$ where $\sum_{i=1}^k \theta_i = 1$ is an affine combination.
 - Ambient space. The space where a given set lives in, e.g. a plane can live in \mathbb{R}^2 , \mathbb{R}^3 . The choice of ambient space has implications on, for example, the interior of a set ([2], p34)
 - Affine hull, denoted $\mathbf{aff} C$ is the smallest set that makes C affine.
 - Affine dimension of a set C is the dimension of **aff** C. In fact dimension of a set is synonymous with affine dimension [2].
 - Relative interior. The interior of, for example, a plane in \mathbb{R}^3 is empty. To "fix" this issue, we define the relative interior of C as: relint $C = \{x \in C | B(x, r) \cup \text{aff } C \subseteq C \text{ for some } r > 0\}$
- Convex sets. A set C is convex if the line segment between any two points in C lies in C, i.e. $\theta x_1 + (1 \theta)x_2 \in C$ for any $x_1, x_2 \in C$ and $0 \le \theta \le 1$.
 - Convex combination. A combination of points $\sum_{i=1}^k \theta_i x_i$ where $\sum_{i=1}^k \theta_i = 1$ and $\theta_i \ge 0$ is a convex combination.
 - Convex hull $\operatorname{conv} C$ of a set C is the smallest set that makes C convex.
- Cones. A set C is called a cone if for every $x \in C$ and $\theta \ge 0$ we have $\theta x \in C$. Cones can have very unintuitive shapes, see Fig. 35-41 in [2].
 - Convex cone is a set that is cone and also convex, i.e. $\theta_1 x_1 + \theta_2 x_2 \in C$ for any $x_1, x_2 \in C$ and for $\theta_1, \theta_2 \geq 0$. Some differences between a convex set and a convex cone: (i) A convex set doesn't have to include the origin, a convex cone does; (ii) a convex set can be bounded but a convex cone cannot.

Some important examples and notes ([1] p27):

- Any subspace is affine and a convex cone
- A line segment is convex but not affine
- A ray (i.e. $\{\theta v + x_0 : x \geq 0\}$) is convex but not affine. It is convex cone if its base x_0 is 0.
- Any line is affine.
- The empty set, any single point and the whole space are affine (hence convex) subsets of \mathbb{R}^n
- Halfspaces (see below) are convex but not affine.

2.2 Hyperplanes, halfspaces, balls and polyhedra

• Hyperplane is a set of the form

$$\{x|a^Tx = b\}$$

This set has several intuitive interpretations.

- 1. It is the hyperplane with a normal vector a and an offset b from the origin.
- 2. Let b be $a^Tx = b$. Then, $\{x|a^Tx = b\} = \{x|a^T(x x_0)\} = x_0 + a^{\perp}$ where a^{\perp} is the orthogonal complement of a, and x_0 is any point in the hyperplane.
- 3. More interpretations on p27-28.
- \bullet Halfspace. Each hyperplane divides \mathbb{R}^n into two halfspaces. A (closed) halfspace is of the form

$$\{x|a^Tx \leq b\},\$$

where $a \neq 0$.

- Norm ball. A norm ball is the set of the form $B(x_c, r) = \{x : ||x_c x|| \le r, x \in \mathbf{R}^n\}$, where $||\cdot||$ is a given norm. Another common representation of the ball is $B(x_c, r) = \{x_c + ru : ||u|| \le 1, u \in \mathbf{R}^n\}$. Norm ball is convex (p30).
- Norm cone is the set $C(x,t) = \{(x,t) : ||x|| \le x \in \mathbf{R}^{n+1}, t \in \mathbf{R}\} \subseteq \mathbf{R}^{n+1}$. It is a convex cone.
- **Proper cone** is a cone $K \subseteq \mathbf{R}^n$ that satisfies the following:
 - is convex
 - is closed
 - is solid, *i.e.* it has nonempty interior
 - is pointed, which means that it contains no line (or, equivalently, $x \in K$, $-x \in K \implies x = 0$)

The concept of Proper Cone will be central in defining generalized inequalities.

• Polyhedra. A polyhedron is the solution set of a finite number of equalities and inequalities:

$$\mathcal{P} = \{x : a_j^T x \le b_j, j = 1, \dots, m, c_i^T x = d_i, i = 1, \dots, m\}.$$

A simpler notation is $\mathcal{P} = \{x | Ax \leq b, Cx = d\}$, where the symbol \leq is vector or componentwise inequality (p32).

- **Simplexes.** Simplexes are a family of polyhedra; they are also a generalization of the triangle (and its interior); *i.e.* a 1D simplex is a line segment, a 2D simplex is the triangle and its interior, a 3D simplex is tetrahedron.
 - Affine independence means that for $v_0, \ldots, v_k \in \mathbf{R}^n$, the points $v_1 v_0, \ldots, v_k v_0$ are linearly independent.
 - A simplex can be defined in terms affinely independent points: $C = \mathbf{conv} \{v_0, \dots, v_k\}$.

2.3 Operations that preserve convexity•

- Intersection: Convexity is preserved under intersection; the intersection of even infinite convex sets is convex.
- Affine functions. Let f be an affine function, i.e. f(x) = Ax + b. Then the image of S under f,

$$f(S) = \{ f(x) \mid x \in S \}$$

and the inverse image of S under f,

$$f^{-1}(S) = \{x | f(x) \in S\}$$

are both convex if S is convex.

- Cartesian product. $S = S_1 \times S_2$ for two convex sets $S_1, S_2, S = \{x_1 + x_2 : x_1 \in S_1, S_2 \in x_2\}$ is convex.
- Sum The sum S of two convex sets $S_1, S_2, S = \{x_1 + x_2 : x_1 \in S_1, S_2 \in x_2\}$ is convex.
- Linear-fractional and perspective functions.
 - Perspective function is the $R^{n+1} \to \mathbf{R}^n$ function P(x,t) = x/t with domain $\operatorname{\mathbf{dom}} P = \mathbf{R}^{n+1} \times \mathbf{R}_{++}$. That is, the perspective function normalizes the input vector so the last element is one, and then drops this last element. If a set $C \subseteq \operatorname{\mathbf{dom}} P$ is convex, then its image under P is also convex.
 - Linear-fractional function is the composition $P \circ g$ of a perspective function P with an affine function g. It is easy to show that linear-fraction functions preserve convexity: If S is convex, then its image g(S) under g will be convex, then its image under perspective will also be convex.

2.4 Generalized inequalities, minimum and minimal elements

• Generalized inequality. A proper cone K (see above) can be used to define a generalized inequality as follows:

$$x \leq_K y \iff y - x \in K$$

A strict generalized inequality $x \prec y$ is defined as

$$x \prec_K y \iff y - x \in \mathbf{int} K$$

Example. The nonnegative orthant \mathbf{R}_{+}^{n} is a proper cone and for $K = \mathbf{R}_{+}^{n}$ the associated inequality \leq_{K} corresponds to componentwise inequality $x \prec y$.

Properties of generalized inequalities:

- 1. \leq_K is preserved under addition: If $x \leq_K y$ and $u \leq_K y$, then $x + u \leq_K y + v$
- 2. \leq_K is transitive: If $x \leq_K y$ and $y \leq_K z$, then $x \leq_K z$.
- 3. \leq_K is preserved under nonnegative scaling: If $x \leq_K y$ and $\alpha > 0$, then $\alpha x \leq_K \alpha y$.
- 4. \leq_K is reflexive: If $x \leq_K x$.
- 5. \leq_K is antisymmetric: If $x \leq_K y$ and $y \leq_K x$, then x = y.
- 6. \leq_K is preserved under limits: If $x_i \leq_K y_i$ for $i = 1, 2, \ldots$ and $x_i \to x$ and $y_i \to i$, then $x \leq_K y$.

Properties 1,2,3 are shared by the strict inequality $x \prec_K y$ too, property 4 is strictly *not* shared by it. Also, and additional property for strict generalized inequalities (probably shared by non-strict too):

- if $x \prec_K y$, then for small enough u, v we have $x + u \prec_K y + v$.
- Minimum and minimal elements. An essential difference between a regular inequality and a generalized one is that not all points are comparable; that is, one of the two inequalities $x \le y$ or $x \le y$ has to hold. This is not the case for generalized inequality.

Example. Consider the proper cone $K = \mathbb{R}^n_+$, and points x = (3,3), y = (5,5) and z = (4,2). Clearly, x and y are comparable and $x \leq_K y$. Similarly, y and z are comparable and $z \leq_K y$. However, x and z are not comparable.

- Minimum element. We say that $x \in S$ is the minimum element of S (w.r.t. \preceq_K) if for every $y \in S$ we have $x \preceq_K y$, which happens if and only if

$$S \subseteq x + K$$

where x + K is the set of all the points that are (i) comparable to x and (ii) greater than or equal to x (confer Fig. 2.17 of [1] or Fig. 43 of [2]).

There can be at most *one* minimum point.

- Minimal element. First of all, a minimum point is also a minimal point. But a minimal point can exist even if there is no minimum. There can be more than one minimal points.

We say that $x \in S$ is the minimal point of S (w.r.t. \preceq_K) if for any $y \in S$, $y \preceq_K$ holds only if y = x. Or, equivalently,

$$(x - K) \cap S = \{x\}$$

where x - K denotes the set of all points that are comparable to x and are less then or equal to x w.r.t. \leq_K . Confer Fig. 2.17 of [1] or Fig. 43 of [2]. Note that in Fig. 43b it's impossible to draw the cone K (centered on any of the minimal points) that would contain the entire C_2 , therefore C_2 has no minimum.

2.5 Separating and supporting hyperplanes

• **Separating hyperplane** is a hyperplane that separates two convex sets.

Separating hyperplane theorem. Let C and D be two convex sets that do not intersect. Then, there exists $a \neq 0$ and b such that $a^Tx \leq b$ for all $x \in C$ and $a^Tx \geq b$ for all $x \in D$.

- Strict separation is defined similarly when \geq and \leq are replaced by > and <.

Converse of separating hyperplane theorem is not in general true, but one can obtain it by adding additional constraints. One variant of converse theorem would be (see p50): Any two convex sets at least one of which is open are disjoint if and only if there exists a separating hyperplane.

• Supporting hyperplane. Suppose that $C \subseteq \mathbb{R}^n$ and x_0 is a point in its boundary, i.e. $x_o \in \mathbf{bd} C = \mathbf{cl} C \setminus \mathbf{int} C$. If $a \neq 0$ satisfies $a^T x \leq a^T x_0$ for all $x \in C$ (i.e. the entire set C lies on one side of the hyperplane), then the hyperplane $\{x : a^T x = a^T x_0\}$ is called a supporting hyperplane.

Convexity and supporting hyperplanes are intimately connected:

- Supporting hyperplane theorem: If C is convex, then there exists a supporting hyperplane for any $x_0 \in \mathbf{bd} C$.
- Partial converse of the theorem: If a set is closed, has nonempty interior and has a supporting hyperplane at every point on its boundary, then it is convex.

2.6 Dual cones and generalized inequalities

- **Dual cone**. Let K be a cone. Then, the set $K^* = \{y : x^T y \ge 0 \text{ for all } x \in K\}$ is called the dual cone of K. Some properties of dual cone K^* (p51 and p53):
 - A dual cone K^* is a ... cone.
 - $-K^*$ is always convex.
 - $-K^*$ is always closed.
 - $K_1 \subseteq K_2 \implies K_2^* \subseteq K_1^*.$
 - If K has nonempty interior, then K^* is pointed.
 - If the closure of K is pointed, than K^* has nonempty interior.
 - $-K^{**}$ is the closure of the convex hull of K (hence, if K is convex and closed, $K^{**} = K$).
 - If K is a proper cone, then K^* is also a proper cone.

- The dual cone of $K = \mathbf{R}^n_+$ is itself.
- The dual cone of a line in space is its orthogonal complement.
- More generally, the dual cone of a subspace $V \subseteq \mathbf{R}^n$ is its orthogonal complement $\{y : y^T v = 0 \text{ for all } v \in V\}$
- Dual generalized inequalities. Like any proper cone, the dual of a proper cone, K^* , induces a generalized inequality \leq_{K^*} . The following relationships relating the generalized inequality of proper cone and its dual seem to be fundamental:
 - $-x \leq_K y$ iff $\lambda^T x \leq \lambda^T y$ for all $\lambda \succeq_{K^*} 0$.
 - $-x \prec_K y \text{ iff } \lambda^T x < \lambda^T y \text{ for all } \lambda \succ_{K^*} 0, \lambda \neq 0.$

Those are central properties that allow us to characterize minimum and minimal points w.r.t. a cone K in terms of its dual generalized inequalities, \leq_{K^*} .

- Minimum point. $x \in S$ is the minimum point in S w.r.t. generalized inequality \leq_K iff for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over $z \in S$. Geometrically, this means that for any $\lambda \succ_{K^*}$, the hyperplane

$$\{z: \lambda^T(z-x) = 0\}$$

is a strict supporting hyperplane (strict means that the hyperplane intersects S only at one point, e.g. it's not a trivial hyperplane such a line being supporting hyperplane of a line).

- Minimal point. There is a gap between necessary and sufficient conditions. A note to illustrate why: $x \in S$ may be minimal of S but there may be no λ for which x minimizes $\lambda^T z$ over $z \in S$ (see Figure 2.25, 2.26, p57).

Bibliography

- [1] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
- [2] J. Dattorro, Convex optimization & Euclidean distance geometry. Lulu. com, 2010.

Index

Simplex, 3