Introduction to Machine Learning Problem Solutions Unit 2: Simple Linear Regression

Prof. Sundeep Rangan

- 1. A university admissions office wants to predict the success of students based on their application material. They have access to past student records to learn a good algorithm.
 - (a) To formulate this as a supervised learning problem, identify a possible target variable. This should be some variable that measures success in a meaningful way and can be easily collected (in an automated manner) by the university. There is no one correct answer to this problem.
 - (b) Is the target variable continuous or discrete-valued?
 - (c) State at least one possible variable that can act as the predictor for the target variable you chose in part (a).
 - (d) Before looking at the data, would a linear model for the data be reasonable? If so, what sign do you expect the slope to be?

Solution:

- (a) There are many possible target variables: GPA, time to graduate, ...
- (b) Both of the above examples are continuous.
- (c) Some choices: SAT score, high-school GPA, high-school class rank. Note that others, like extra curricular activities, are non-numeric and harder to represent as a numeric feature vector.
- (d) For university GPA vs. high-school GPA, a linear model would be a good place to start and would probably have a positive correlation.
- 2. Suppose that we are given data samples (x_i, y_i) :

x_i	0	1	2	3	4
y_i	0	2	3	8	17

- (a) What are the sample means, \bar{x} and \bar{y} ?
- (b) What are the sample variances and co-variances s_x^2 , s_y^2 and s_{xy} ?
- (c) What are the least squares parameters for the regression line

$$y = \beta_0 + \beta_1 x + \epsilon$$
.

(d) Using the linear model, what is the predicted value at x = 2.5?

Solution:

(a) The sample means are:

$$\bar{x} = \frac{1}{N} \sum_{i} x_i = 2, \quad \bar{y} = \frac{1}{N} \sum_{i} y_i = 6,$$

where N=5 are the number of samples.

(b) The (biased) sample variances and co-variances are

$$s_x^2 = \frac{1}{N} \sum_i (x_i - \bar{x})^2 = 2, \quad s_y^2 = \frac{1}{N} \sum_i (y_i - \bar{y})^2 = 37.2$$
$$s_{xy} = \frac{1}{N} \sum_i (y_i - \bar{y})(x - \bar{x}) = 8$$

(c) The LS parameters are

$$\beta_1 = \frac{s_{xy}}{s_x^2} = 4, \quad \beta_0 = \bar{y} - \beta_1 \bar{x} = -2.$$

(d) The predicted value at x = 2.5 is

$$\hat{y} = -2 + 4(2.5) = 8.$$

3. A medical researcher wants to model, z(t), the concentration of some chemical in the blood over time. She believes the concentration should decay exponentially in that

$$z(t) \approx z_0 e^{-\alpha t},\tag{1}$$

for some parameters z_0 and α . To confirm this model, and to estimate the parameters z_0 , α , she collects a large number of time-stamped samples $(t_i, z(t_i))$, i = 1, ..., N. Unfortunately, the model (1) is non linear, so she can't directly apply the linear regression formula.

- (a) Taking logarithms, show that we can rewrite the model in a form where the parameters z_0 and α appear linearly.
- (b) Using the transform in part (a), write the least-squares solution for the best estimates of the parameters z_0 and α from the data.
- (c) Write a few lines of python code that you would compute these estimates from vectors of samples t and z.

Solution:

(a) Let $y_i = \ln z(t_i)$ and $x_i = t_i$, then

$$y_i = \ln z(t_i) = \ln \left[z_0 e^{-\alpha t_i} \right] = \ln z_0 - \alpha t_i,$$

where we have used the properties that $\ln(ab) = \ln a + \ln b$ and $\ln(e^x) = x$. Thus, if

we define $\beta_0 = \ln z_0$ and $\beta_1 = -\alpha$ we get that

$$y_i = \beta_0 + \beta_1 x_i$$

which is a linear model.

(b) We first make the transformations, then perform the LS solution:

$$y_{i} = \ln z(t_{i}), \quad x_{i} = t_{i},$$

$$\bar{x} = \frac{1}{N} \sum_{i} x_{i}, \quad \bar{y} = \frac{1}{N} \sum_{i} y_{i},$$

$$s_{x}^{2} = \frac{1}{N} \sum_{i} (x_{i} - \bar{x})^{2}, \quad s_{y}^{2} = \frac{1}{N} \sum_{i} (y_{i} - \bar{y})^{2}, \quad s_{xy} = \frac{1}{N} \sum_{i} (y_{i} - \bar{y})(x - \bar{x}),$$

$$\beta_{1} = \frac{s_{xy}}{s_{x}^{2}}, \quad \beta_{0} = \bar{y} - \beta_{1}\bar{x}.$$

Then, we invert the equations $\beta_0 = \ln z_0$ and $\beta_1 = -\alpha$ to get the parameters in the original model,

$$\alpha = -\beta_1, \quad z_0 = e^{\beta_0}.$$

(c) Write a few lines of python code that you would compute these estimates from vectors of samples t and z. The code could be:

```
# Transform the variables
x = t
z = np.log(z)
# Compute the sample means and the difference from the sample means
xm = np.mean(x)
ym = np.mean(y)
x1 = x - xm
y1 = y - ym
# Compute the variances and covariances
sxx = np.mean(x1**2)
sxy = np.mean(x1*y1)
# Compute the LS coefficients
b1 = sxy/sxx
b0 = ym-b1*xm
# Get back the coefficients in the original model
alpha = -b1
z0 = exp(b0)
```

4. Consider a linear model of the form,

$$y \approx \beta x$$

which is a linear model, but with the intercept forced to zero. This occurs in applications where we want to force the predicted value $\hat{y} = 0$ when x = 0. For example, if we are modeling y =output power of a motor vs. x =the input power, we would expect $x = 0 \Rightarrow y = 0$.

- (a) Given data (x_i, y_i) , write a cost function representing the residual sum of squares (RSS) between y_i and the predicted value \hat{y}_i as a function of β .
- (b) Taking the derivative with respect to β , find the β that minimizes the RSS.

Solution:

(a) Given data (x_i, y_i) , write a cost function representing the residual sum of squares (RSS) between y_i and the predicted value \hat{y}_i as a function of β . The RSS is

$$RSS(\beta) := \sum_{i=1}^{N} (y_i - \beta x_i)^2.$$

(b) Taking the derivative with respect to β we get

$$\frac{\partial \text{RSS}(\beta)}{\partial \beta} = \sum_{i=1}^{N} 2(y_i - \beta x_i)(-x_i) = 0$$

$$\Rightarrow \beta \sum_{i} x_i^2 = \sum_{i} x_i y_i \Rightarrow \beta = \frac{\sum_{i} x_i y_i}{\sum_{i} x_i^2}.$$