

TP2

Algoritmos de Clasificación Supervisada

Tomas Marengo Santiago Rivas Franco De Simone Gastón Francois

72.75 – Aprendizaje Automático 2024Q2

Índice

Ejercicio 1: Devolución de Crédito ID3 y Random Forest

Marco Teórico

Métricas y Matriz de Confusión

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precisión = \frac{TP}{TP + FP}$$

$$Tasa\ de\ Falsos\ Positivos = \frac{FP}{FP + TN}$$

$$Specificity = \frac{TN}{TN + FP}$$

$$F1 - Score = \frac{2 \cdot Precisión \cdot Recall}{Precisión + Recall}$$

Recall (Tasa de Verdaderos Positivos) =
$$\frac{TP}{TP + FN}$$

Matriz de Confusión:

	Predicción Positiva	Predicción Negativa
Real Positivo	TP	FN
Real Negativo	FP	TN

Marco teórico

ID3 & Entropía de Shannon

Función información de ganancia: Para cada atributo se calcula la función ganancia y el de máximo valor es el nodo que sigue en el árbol. A mayor ganancia, mejor es el atributo para separar clases.

La **Entropía de Shannon** es una función típica usada en ganancia. Esta es utilizada para medir el grado de (des)organización de una muestra.

$$H(X) = -\sum_{i=1}^{n} P(x_i) \log_b(P(x_i))$$

Con b=2 típicamente (b usado).

Marco teórico

ID3 & Entropía de Shannon

Marco teórico

ID3 & Entropía de Shannon

ID3 Casos Base:

- Caso Base 1:
 - Si todos los ejemplos pertenecen a la misma clase, devolver un árbol de un nodo raíz, con rótulo del valor de la clase.
- Case Base 2:
 - Si los atributos están vacíos, devolver un árbol de un único nodo raíz, con rótulo el valor más frecuente del Atributo Objetivo en los ejemplos.
- Caso Base 3:
 - No hay más atributos para clasificar.

Problemática

Determinar si una persona devolverá el crédito o no, utilizando todas las variables del dataset.

- Dataset total: 1000 muestras
 - Creditabillity: si devolvió el crédito (1) o no (0). Variable objetivo.
 - Diferentes características como Account Balance, Purpose, Credit Amount, etc.
- **División del dataset:** 80% Entrenamiento 20% Testeo
 - Bootstrapping del conjunto de entrenamiento para Random Forest.

Análisis del Dataset

Se buscó discretizar las variables continuas, y reducir la cantidad de categorías para aquellas variables discretas que tuvieran muchos valores.

Credit Amount:

Análisis del Dataset

Duration of Credit (month):

Separamos en cuatro intervalos:

0 - (3.999, 12]

1 - (12.0, 18.0]

2 - (18.0, 24.0]

3- (24.0, 72.0]

Intervalos Duration of Credit

Análisis del Dataset

Age (years):

Separamos en cuatro intervalos:

0 - (18.999, 27.0]

1 - (27.0, 33.0]

2 - (33.0, 42.0]

3- (42.0, 75.0]

Análisis del Dataset

Purpose:

Agrupamos las categorías que tuvieran un conteo menor al 5% del total de registro. Las categorías 4, 5, 6, 7, 8 y 10 pasaron a ser agrupadas en 11 ("Otros").

ID3 Resultados: Matriz de Confusión

Predicción

	Positiva	Negativa
Positivo	53,5% (107)	16,5% (33)
Negativo	17,5% (35)	12,5% (25)

Accuracy: 0,660 **Recall:** 0,754

Precision: 0,764 **F1-Score:** 0,759

Características:

- Account Balance
- Duration of Credit Month
- Purpose
- Credit Amount
- Age
- Etc.

Rea

ID3: Precisión vs Nodos

Marco teórico (IV)

Bootstrapping & Random Forest

Método Bootstrapping:

- Extraer una muestra del tamaño del conjunto de datos original con reemplazo (Esto es 1 bag).
- 2. Repetir el paso 1 S veces, para que tengamos S bags.
- 3. Calcular nuestro valor en cada uno de los bags, de modo que tengamos S estimaciones.
- 4. Utilizar la distribución de estimaciones para realizar inferencias.

Marco teórico (IV)

Bootstrapping & Random Forest

Idea en Random Forest:

- Crear S modelos de "ID3" usando S muestras.
- Combinar resultados tomando la clasificación con más votos.

Random Forest: Matriz de Confusión

Predicción

		Positiva	Negativa	
ובסו	Positivo	55% (110)	16% (32)	
	Negativo	16,5% (33)	12,5% (25)	

Accuracy: 0,675 **Recall:** 0,775

Precision: 0,769 **F1-Score:** 0,772

Parámetros usados:

• Cantidad de árboles: 10

• Min Features: 4

Max Features: 15

Bootstrap: false

Random Forest: Matriz de Confusión

Predicción

	Positiva	Negativa
Positivo	54% (108)	17% (34)
Negativo	12,5% (25)	16,5% (33)

Accuracy: 0,705 **Recall:** 0,761

Precision: 0,812 **F1-Score:** 0,786

Parámetros usados:

• Cantidad de árboles: 10

• Min Features: 4

Max Features: 15

Bootstrap: true

Random Forest: Comparación por parámetros - Cantidad de árboles

Para todos los casos se tomó min_features = 4.

Random Forest: Comparación por parámetros - cantidad de árboles

Random Forest: Comparación por parámetros

Random Forest: Comparación por parámetros

Min Features

Random Forest: Comparación por parámetros

Ejercicio 2: Sentimiento de Opiniones KNN

Marco Teórico

KNN

El método KNN consiste en clasificar una muestra determinando un número de vecinos a partir de alguna métrica de distancia y tomando la clase con más vecinos. Matemáticamente:

$$\hat{f}(x_q) = arg \underbrace{m\acute{a}x}_{v \in V} \sum_{i=1}^{k} 1_{\{v = f(x_i)\}}$$

Es decir, para cada clase V se suma 1 por cada vecino perteneciente a la clase y luego se elige a la clase V que mayor sumatoria posee.

Ejemplo: tomando distancia euclídea entre puntos, si se utiliza K=3 el punto sería clase B (2 vecinos B y 1 Vecino A) y si se utiliza K=6 el punto sería clase A (4 vecinos A y 2 vecinos B).

Marco Teórico

Weighted KNN

Uno de los problemas notables de KNN es que no tiene en cuenta la distancia entre los puntos. Se puede considerar estas distancias y "mejorar" él método al agregar a la sumatoria el inverso al cuadrado de la distancia.

$$\hat{f}(x_q) = \arg \max_{v \in V} \sum_{i=1}^{k} \frac{1}{d(x_q, x_i)^2} \{v = f(x_i)\}$$

Como caso particular, si con otra muestra d=0, entonces se directamente se replica la clase.

En cuanto a la función de distancia, se suele usar la distancia euclídea, aunque esto depende del problema.

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{m} \left(a_r(x_i) - a_r(x_j)\right)^2}$$

Sentimiento de Opiniones

Problemática

El objetivo del ejercicio recae en clasificar opiniones utilizando como variable objetivo Star Rating y como variables explicativas Word Count, Title Sentiment y Sentiment Value mediante Método KNN y Método Weighted KNN.

- Dataset total: 257 comentarios sobre el uso de una aplicación
- Características: Review Title, Review Text, Word Count, Title Sentiment, Text Sentiment, Star Rating y Sentiment Value.
- Variación de parámetros:
 - o Diferentes K.
 - Diferente vector de características.
 - Diferentes tratamientos sobre el dataset.

Review general

El dataset cuenta con 257 datos de reseñas estructuradas en 7 características.

N°	Review Title Título de la reseña	Review Text Comentario de la reseña	Word Count Número de palabras del comentario	Title Sentiment valoración del título (positivo - negativo)	Text Sentiment valoración del comentario (positivo – negativo)	Star Rating Estrellas de la reseña (1 a 5)	Sentiment Value Indicador de positividad (-4 a 4)
1	Sin conexión	Hola desde hace algo más	23	negative	negative	1	-0.486389
2	Es muy buena lo recomiendo	Andres e puto amoooo	4	NaN	negative	1	-0.602240
258	Esta bien	Sin ser la biblia	6	negative	negative	1	-0.651784

Reemplazo datos faltantes

Un análisis sobre datos faltantes arroja 26 datos blancos (~10% del dataset) en Title Sentiment, por lo que surgen 3 posibles reemplazos

- 1. Eliminar los valores.
 - Problema: eliminar un número considerable dentro del dataset.
- 2. Reemplazar con la moda.
 - Problema: Etiqueta dependiente de las características del dataset y no de la reseña.
- 3. Reemplazar con el valor de Text Sentiment.
 - En general el titulo y el comentario deben tener un hilo conductor y tener el mismo sentimiento. Pueden ser diferentes, pero 85% de las muestras poseen el mismo valor en Text Sentiment y Title Sentiment.

Análisis de Star Rating

Analizamos la variable objetivo Star Rating con respecto a otras características.

Análisis de características Sentiment

Notamos 84% reseñas positivas pero una distribución más uniforme en cuanto al valor general.

Método KNN

Tratamiento de datos

Para el correcto manejo en el método KNN se consideró:

- Por tener que trabajar con valores numéricos, se **mapea** "positive" a 1 y "negative" a 0.
- Por utilizar métodos donde la distancia entre features resulta importante, en un primer análisis se estandarizan los valores.
- Para la división en conjuntos de Train y Test y el testeo correspondiente, se utiliza Cross Validation de 10 conjuntos.
- Se realiza el método para diferentes valores de K, en busca del mejor.

Método KNN

Resultados

Características:

- Word Count
- Title Sentiment
- Sentiment Value

Mejores resultados:

KNN

K = 4

Accuracy = 0.884

Weighed KNN

K = 4

Accuracy = 0.875

Método KNN

Best K: Matrices de confusión

	Predicción						
		1 🏠	2 🏠	3 🌟	4 🌟	5 🌟	
Keal	1 🏠	0.89	0.027	0.08	0	0	
	2 🏠	0.12	0.79	0.083	0	0	
	3 🌟	0.064	0.013	0.86	0.013	0.051	
	4 🌟	0	0.067	0.067	0.73	0.13	
	5 🌟	0	0	0.045	0.035	0.92	

	Predicción						
		1 🏠	2 🌟	3 🌟	4 🌟	5 🌟	
	1 🏠	0.89	0.027	0.081	0	0	
le.	2 🌟	0.12	0.75	0.12	0	0	
Real	3 🌟	0.051	0.013	0.86	0.013	0.064	
	4 🌟	0	0.033	0.067	0.60	0.30	
	5 🌟	0	0	0.057	0.034	0.91	

KNN (Best K)

Precision: 0.8616Recall: 0.8599F1 Score: 0.8598

Weighted KNN (Best K)

Precisión: 0.8575Recall: 0.8560F1 Score: 0.8561

Variantes al método

Diferentes tratamientos de datos faltantes

Utilizar la moda o reemplazar por Text Sentiment producen resultados parecidos en el mejor de los casos.

Variantes al método

Estandarización vs Normalización

Tomando reemplazo Text Sentiment, al comparar resulta mejor utilizar estandarización en los datos.

Variables explicativas

Hasta ahora utilizamos las características de la consigna (Word Count, Title Sentiment, Sentiment Value).

Pero lo correcto es realizar un **análisis más detallado** de qué **variables** utilizar (aún más en un dataset con más cantidad de características).

Una variante interesante a la hora de realizar el categorizador es cambiar las variables explicativas del método en busca de las mejores variables:

- Variables con más correlación (Coeficiente de Pearson) con Star rating.
- Reducción a 2 variables mediante análisis PCA.
- Variables con que aportan más información sobre Star Rating, mediante la Entropía de Shannon.

Variable explicativa: Correlación con Star rating

El objetivo de las variables explicativas es tener alguna incidencia en la variable objetivo, en este sentido analizar si existe alguna correlación resulta importante

Variable explicativa: Correlación con Star rating

Características:

- Text Sentiment
- Sentiment Value

Mejores resultados:

KNN

K = 13

Accuracy = 0.758

Weighed KNN

K = 34

Accuracy = 0.726

Variable explicativa: PCA

PCA consiste en un método de reducción dimensional, donde como entrada recibe un conjunto de features y devuelve un conjunto de componentes principales. En este caso se redujo de las 4 variables categóricas a 2 características.

Variable explicativa: PCA

Características:

- PC1
- PC2

Mejores resultados:

KNN

K = 4

Accuracy = 0.858

Weighed KNN

K = 6

Accuracy = 0.864

Número de vecinos (K)

Método KNN

PCA: Decision Boundaries

Variable explicativa: Shannon Entropy

La Entropía de Shannon es un método para determinar qué variable aporta más información al dataset. En este sentido, utilizamos como variables explicativas las 3 de mayor entropía.

Variable explicativa: Shannon Entropy

Características:

- Sentiment Value
- Word Count
- Text Sentiment

Mejores resultados:

KNN

K = 4

Accuracy = 0.889

Weighed KNN

K = 4

Accuracy = 0.885

Comparativa de variables explicativas (KNN)

Mejores resultados:

Entropía de Shannon K = 4

Accuracy = 0.889

45

Comparativa de variables explicativas (Weighted KNN)

Mejores resultados:

Entropía de Shannon K = 4 Accuracy = 0.885

Conclusiones

Conclusiones (I)

Ejercicio 1 – ID3 & Random Forest

- Conclusión 1: Bootstrapping es un buen método para mejorar el sobreajuste que presenta el modelo ID3.
- Conclusión 2: La precisión para el conjunto de prueba no tiene cambios significativos según el número de nodos. A veces mejora a veces no (necesitarían poda).
- Conclusión 3: Agregar árboles a un bosque Random Forest mejora las métricas de precisión y ayuda al sobreajuste.
- Conclusión 4: Variar la cantidad de atributos seleccionables para los árboles no tiene un efecto significativo en la performance del modelo.

Conclusiones (II)

Ejercicio 2 – KNN

- **Conclusión 1:** La mejor manera de definir las variables explicativas es mediante el método de la Entropía de Shannon.
- **Conclusión 2:** Resulta mejor estandarizar los datos antes que normalizarlos para este problema.
- Conclusión 3: Se aprecian diferencias ligeras entre eliminar datos en blanco y reemplazarlos con el valor de Text Sentiment.
- **Conclusión 4:** Resulta posible construir un clasificador mediante el método KNN y Weighted KNN que pueda predecir Star Rating con una precisión mayor al 88%.
- Conclusión 5: Se obtienen mejores resultados con K chicos.

¡Gracias!