Minimum Spanning Tree

DPHPC

Th. Cambier R. Dang-Nhu Th. Dardinier C. Trassoudaine

ETH Zürich

October 2018

- Problem definition reminder
 - The MST Problem
 - Use cases
- Algorithms and parallel implementations
 - Base serial algorithms
 - Parallel improvements
- Results overview
 - Setup
 - Results

Problem definition - reminder

The MST problem

A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted (un)directed graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight.

Input sets: G(n, p)

G(100, 0.02)

Input sets: PA(n)

PA(100)

Input sets: 9th DIMACS challenge dataset

USA Roads

Name	Description	# nodes	# arcs	L
USA	Full USA	23,947,347	58,333,344	
CTR	Central USA	14,081,816	34,292,496	[
w	Western USA	6,262,104	15,248,146	[
E	Eastern USA	3,598,623	8,778,114	[
LKS	Great Lakes	2,758,119	6,885,658	[
CAL	California and Nevada	1,890,815	4,657,742	[
NE	Northeast USA	1,524,453	3,897,636	[
NW	Northwest USA	1,207,945	2,840,208	[
FLA	Florida	1,070,376	2,712,798	[
COL	Colorado	435,666	1,057,066	[
BAY	San Francisco Bay Area	321,270	800,172	[
NY	New York City	264,346	733,846	[

Algorithms and parallel implementations

Sollin

- 1: F = set(one-vertex trees)
- 2: while |F| > 1 do
- 3: TODO
- 4: end while

Kruskal

```
1: A = \emptyset
 2: for all v \in G.V do
      MAKE-SET(v)
 4: end for
5: Sort (asc.) (weight(u, v))_{(u,v) \in G.E}
6: for all (u, v) in G.E ordered by weight do
      if FIND-SET(u) \neq FIND-SET(v) then
        A = A \cup (u, v)
8:
        UNION(u, v)
      end if
10.
11: end for
12: return A
```


Boost implementations

Boost-Kruskal used as a reference

Parallel sorting on Kruskal

Filter Kruskal

Filter Sollin

Results overview

EULER Cluster

Scalability

Speedups

