CS 542 Stats RL: Homework 3

October 16, 2024

Submission deadline: Nov. 1 (Friday) before class.

1. Bisimulation and Bellman-completeness (5 pts)

Let $M=(\mathcal{S},\mathcal{A},P,R,\gamma)$ be an MDP and $\phi:\mathcal{S}\to\mathcal{S}_\phi$ be a state abstraction. Let \mathcal{F}^ϕ be the set of all possible functions over $\mathcal{S}\times\mathcal{A}$ with value range $[0,V_{\max}]$ ($V_{\max}=R_{\max}/(1-\gamma)>0$) that are piece-wise constant under ϕ . That is, for any $f\in\mathcal{F}^\phi$, $\forall s^{(1)},s^{(2)}$ such that $\phi(s^{(1)})=\phi(s^{(2)})$, we always have $f(s^{(1)},a)=f(s^{(2)},a), \forall a\in\mathcal{A}$.

Prove that the following two conditions are equivalent:

- 1. ϕ is a bisimulation for M.
- 2. \mathcal{F}^{ϕ} is closed under \mathcal{T} , the Bellman optimality operator of M. That is, $\mathcal{T}f \in \mathcal{F}^{\phi}$, $\forall f \in \mathcal{F}^{\phi}$.

Hint: For (2) \Rightarrow (1), try to prove that \neg (1) \Rightarrow \neg (2). That is, if ϕ is not a bisimulation, you should be able to construct $f \in \mathcal{F}^{\phi}$ such that $\mathcal{T}f \notin \mathcal{F}^{\phi}$.

- **2.** (5 pts) In the FQE analysis, we assumed that $\|d_t^{\pi}/\mu\|_{\infty}$ is bounded for all t, where $\mu \in \Delta(\mathcal{S} \times \mathcal{A})$ is the data distribution. What if we instead assume that $\|d^{\pi}/\mu\|_{\infty}$ is bounded, that is, we only cover the discounted occupancy d^{π} as a whole?
- (1) (2 pts) To put things more formally, define $C_t^{\pi} := \|d_t^{\pi}/\mu\|_{\infty}$, and $C^{\pi} := \|d^{\pi}/\mu\|_{\infty}$. Upper bound C_t^{π} as a function of C_t^{π} , and also upper bound C_t^{π} as a function of $\{C_t^{\pi}\}_{t>0}$.
- (2) (3 pts) Perform the FQE analysis using C^{π} (in class what we used is essentially $\max_t C_t^{\pi}$). To make your life easier, let's assume that FQE produces f_0, f_1, \dots, f_K that satisfies

$$||f_k - \mathcal{T}^{\pi} f_{k-1}||_{2,\mu} \le \epsilon, \quad \forall k.$$

Your task is to **give a bound** on $|\mathbb{E}_{s \sim d_0}[f_K(s, \pi)] - J(\pi)|$ as a function of ϵ , γ , K, $V_{\max} = R_{\max}/(1 - \gamma)$, and C^{π} , in a form similar to the bound given in the class. Hint: the easiest way is to start with Eq.(5) in HW2.

3. Refined coverage coefficient (5 pts) In the FQE/FQI analysis, whenever we use the concentrability condition, it is to perform a change of measure in the form of (for FQI \mathcal{T}^{π} should be replaced by \mathcal{T} , but the story is similar)

$$||f - \mathcal{T}^{\pi} f'||_{2, d_{t}^{\pi}} \leq \sqrt{C_{t}^{\pi}} ||f - \mathcal{T}^{\pi} f'||_{2, \mu}$$

for some choices of f and f' (e.g., $f = f_k$ and $f' = f_{k-1}$). So naturally, we can replace the definition of C_t^{π} with the following one, which can be potentially tighter by leveraging the structure of the \mathcal{F} class:¹

$$C_t^{\pi}(\mathcal{F}) := \max_{f, f' \in \mathcal{F}} \frac{\|f - \mathcal{T}^{\pi} f'\|_{2, d_t^{\pi}}^2}{\|f - \mathcal{T}^{\pi} f'\|_{2, \mu}^2}.$$
 (1)

Now consider $C_t^{\pi}(\mathcal{F})$ in the "linear-completeness" setting, that is,

- 1. \mathcal{F} is the linear class induced from feature $\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$, i.e., $\mathcal{F} = \{(s, a) \to \phi(s, a)^\top \theta: \theta \in \mathbb{R}^d\}$.
- 2. \mathcal{F} that satisfies Bellman-completeness w.r.t. π , i.e., $\mathcal{T}^{\pi}f \in \mathcal{F} \ \forall f \in \mathcal{F}$.

Let σ_{\min} be the smallest eigenvalue of $\Sigma_{\mu} := \mathbb{E}_{(s,a) \sim \mu}[\phi(s,a)\phi(s,a)^{\top}] \in \mathbb{R}^{d \times d}$ and assume that

- $\sigma_{\min} > 0$.
- $\|\phi(s,a)\| \le 1$ (here the norm is the standard L_2 norm for vectors).

Your tasks:

- (1) (4 pts) Derive an upper bound on $C_t^{\pi}(\mathcal{F})$ as a function of $1/\sigma_{\min}$. Hint: (1) The properties of π and d_t^{π} do not matter at all: the bound holds even if we replace d_t^{π} with an arbitrary distribution over $\mathcal{S} \times \mathcal{A}$. (2) For matrix A, its smallest eigenvalue can be written as $\min_{\|x\|=1} x^{\top} Ax$.
- (2) (1 pts) The tabular setting is a special case when $d = |\mathcal{S} \times \mathcal{A}|$ and $\phi(s, a) = \mathbf{e}_{(s, a)}$, i.e., a vector with the coordinate indexed by (s, a) being 1 and all other coordinates being 0. Give an explicit expression of σ_{\min} as a function of μ .

Hint: what kind of special structure does Σ_{μ} possess in this case?

Remark For any definition of C^{π} , the corresponding definition for FQI is typically $C = \max_{\pi} C^{\pi}$. When we use the raw density ratio to define C^{π} , in general C will have to scale with $|\mathcal{A}|$, which cannot handle large action spaces. The result here shows that tightening C^{π} by leveraging the structure of \mathcal{F} can potentially avoid dependence on $|\mathcal{A}|$, as data distribution μ now only needs to cover the directions occupied by d_{π}^{π} in the feature space \mathbb{R}^{d} .

 $^{^1}C_\pi$ measures how well μ covers policy π , and if we want the analog of concentrability (i.e., covering all policies), we can take $\max_{\pi} C_{\pi}$.

²Here ϕ is some general state-action feature map, and should not be confused with the ϕ in Q1 which is a state abstraction.

³Thus sometimes this bound can be quite loose.

4. (Optional; 3 pts) In the same setting as Q3 (linear complete \mathcal{F}), first show that $C_t^{\pi}(\mathcal{F})$ in Eq. 1 has a more refined upper bound, given in matrix form:

$$C_t^{\pi}(\mathcal{F}) \le \sigma_{\max}(\Sigma_{\mu}^{-1/2} \Sigma_{d_t^{\pi}} \Sigma_{\mu}^{-1/2}),\tag{2}$$

where $\Sigma_{(\cdot)} = \mathbb{E}_{(\cdot)}[\phi\phi^{\top}]$ is the feature covariance matrix under the distribution specified in the subscript, and $\sigma_{\max}(\cdot)$ is the largest eigenvalue of a matrix. For simplicity we assume that Σ_{μ} is invertible.

Now, it turns out that a more refined analysis in FQE can further replace $C_t^{\pi}(\mathcal{F})$ with a tighter quantity, $\bar{C}_t^{\pi}(\mathcal{F})$ (you can take this statement as given, but it should be clear if you prove Q2 using Eq.(5) from HW2):

$$\bar{C}_t^{\pi}(\mathcal{F}) := \max_{f, f' \in \mathcal{F}} \frac{(\mathbb{E}_{d_t^{\pi}}[f - \mathcal{T}^{\pi}f'])^2}{\|f - \mathcal{T}^{\pi}f'\|_{2, \mu}^2}.$$

Your second task is to give an upper bound of $\bar{C}_t^{\pi}(\mathcal{F})$ in matrix form that is analogous to the RHS of Eq.(2), and the bound can depend on $\Sigma_{(\cdot)}$ and $\mathbb{E}_{(\cdot)}[\phi]$ for $(\cdot) = \mu, d_t^{\pi}$, i.e., the first and second order moments of μ and d_t^{π} .

After deriving your bound, make a brief comment about how it compares to Eq.(2) qualitatively. Are there situations where one is bounded but the other can be arbitrarily large?