Curso: Engenharia de Computação

Sistemas de Comunicações Móveis

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Códigos Corretores de Erros

Transmissor

Transmissor

Codificadores de erros

- A transmissão confiável de dados a altas taxas tem representado um desafio cada vez maior aos engenheiros
- Os códigos corretores têm contribuído de modo significativo para o avanço na área
- Frequentemente, no contexto de comunicações digitais, ocorrem erros de detecção acarretados por problemas de transmissão, implicando a necessidade de correção de erros
- A solução está na teoria da codificação

Teorema da codificação

Para qualquer canal cuja entrada é um **alfabeto discreto**, existem códigos com **taxa de informação** *R*, com **palavras** de comprimento de *n* **dígitos**, para os quais a **probabilidade de erro** (*Pe*), com decodificação por máxima verossimilhança é limitada a

$$Pe < e^{1-nE(R)}$$

, em que *E(R)>0, 0⊴R<C*, é uma função do comportamento estatístico do canal e *C* é a capacidade do canal.

Teoria da codificação

- Existem códigos que podem tornar a probabilidade de erro na decodificação muito pequena
- A probabilidade decresce exponencialmente quando n é aumentado, no entanto o aumento da complexidade do sistema também ocorre
- Objetivos da teoria da codificação:
 - 1. Encontrar códigos longos e eficientes
 - 2. Encontrar métodos práticos de codificação/decodificação eficientes

Teoria da codificação

- <u>Tipos de erros</u>:
 - 1. Erros aleatórios, provocados pelo ruído, como discutimos
 - 2. Erros em surto, em caso contrário

Teoria da codificação

- Tipos de códigos:
 - Códigos lineares e não lineares, em que os dígitos redundantes são calculados como combinações lineares ou não lineares dos dígitos da informação.
 - 2. Códigos de **bloco** e **convolucionais**. A **redundância** é colocada em um **bloco de dígitos** que verifica a ocorrência ou não de erros. Quando são usados mais blocos configuram-se os códigos convolucionais.

- Processo de codificação
 - 1. Segmenta-se a mensagem em blocos de k dígitos
 - 2. Acrescenta-se a cada bloco (n k) dígitos redundantes
 - 3. Os dígitos redundantes são definidos a partir dos *k* dígitos da mensagens e destinam-se à **detecção simples** ou **detecção e correção** de erros
 - 4. A eficiência do código é definida pela razão entre o número de bits de informação e o número total de bits, n/k

• Distância de *Hamming* é o número de posições em que duas palavras de um código diferem.

Por exemplo, a distância entre as palavras **0**101 010**1** e **1**101 0100 é igual a 2.

- A distância mínima (d) de um código é a menor distância de Hamming encontrada entre suas palavras
- Para obter a distância de *Hamming* de um código basta aplicar a operação lógica **ou exclusivo** entre todas as palavras do código.

- Um código (n, k, d) é definido como sendo um conjunto de 2^k n-uplas chamadas de **palavras código**, que
 - > diferem entre si pelo menos d posições,
 - > possuem *n-k* bits de redundância e
 - > possuem K bits de informação

Exemplo código (7,3,4) de Hamming

k1	k2	k3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

$$c_1 = k1 \otimes k2$$

 $c_2 = k2 \otimes k3$
 $c_3 = k1 \otimes k3$
 $c_4 = k1 \otimes k2 \otimes k3$

Obs. Posteriormente alteraremos a indicação da posição dos bits, na generalização dos códigos de *Hamming*

• **Detecção de erros:** em um código com distância mínima *d*, o menor número de mudanças necessárias para converter uma palavra do código em outra é pelo menos *d*, logo

é possível detectar d-1 erros

 Correção de erros: após detectar que há erro, é necessário decidir qual é a palavra do código mais provável. Supondo palavras com mesma probabilidade, decide-se pela palavra mais próxima da n-upla recebida. Se houver até t erros,

decide-se acertadamente se $2t + 1 \le d$

Códigos simples Códigos de repetição

• Em códigos de repetição, os parâmetros são:

$$k=1, c\ge 1 e n=k+c=1+c$$

- Como *k*=1, o código tem apenas duas palavras, uma delas é uma sequência de *n* Os; a outra uma sequência de *n* 1s.
- Os dígitos de paridade são todos uma repetição do dígito de informação c vezes.

Códigos simples Códigos de repetição

- Uma regra simples de decodificação é decidir pelo bit que aparece mais vezes na recepção.
- A distância de Hamming do código é d=n e a eficiência é 1/n.

Códigos simples Códigos com 1 bit de paridade

• Em códigos com 1 bit de paridade, os parâmetros são:

$$k \ge 1$$
, c=1 e n= $k+c=k+1$

 Como c=1, o código tem apenas um bit redundante, que é definido na transmissão para tornar o número de bits 1 par (ou impar).

Códigos simples Códigos com 1 bit de paridade

- A regra de decodificação é contar o número de bits recebidos. Se a paridade não estiver correta significa que houve um erro na transmissão.
- A distância de Hamming do código é d=2 e a eficiência é k/(k+1).
- O código permite a detecção de 1 erro, mas não corrige. Pode ser eficaz quando se dispõe de canal de retorno para retransmissão da palavra.

• Em códigos de Hamming, os parâmetros são:

$$n \le 2^{c} - 1$$

- No algoritmo de Hamming,
 - 1. Os bits de redundância e os bits de informação são organizados em uma sequência a partir de 1...

$$b_1 b_2 b_3 b_4 ... b_n$$

2. ..., de modo que os bits de redundância ocuparão as posições que são potência de 2, logo

$$C_1 C_2 K_3 C_4 \dots$$

- No algoritmo de Hamming,
 - 3. Cada bit de redundância (bit de paridade) ajusta a paridade par (ou impar) dos bits específicos de informação...
 - 4. Em geral, cada bit de informação k_j , ou seja, o bit de informação que ocupa a posição j, é verificado pelos bits de redundância cuja soma das suas posições seja j.

Por exemplo, o bit k_3 é verificado pelos bits c_1 e c_2 . O bit k_5 é verificado pelos bits c_1 e c_4 . O bit k_6 é verificado pelos bits c_2 e c_4 .

- No algoritmo de Hamming,
 - 5. Assim, cada bit de paridade será definido pelo codificador como 0 ou 1 de modo que o número de bits verificados seja par (ou impar)
 - 6. No receptor, a determinação do bit incorreto pode ser obtida pela soma das posições de todos os bits de paridade incorretos

Por exemplo, se na recepção os bits c_1 e c_2 estão incorretos, significa que o erro identificado foi no bit k_3 .

• Nos códigos de *Hamming*, o número de bits de paridade pode ser dado pela quantidade de divisões inteiras sucessivas de *n* por 2 até quociente igual a 0.

Por exemplo, se n=7 bits, 7 div 2 = 3, 3 div 2 = 1, 1 div 2 = 0, logo n-k=3

Outros códigos

 Códigos cíclicos: quando uma permutação de uma das palavras do código permite obter outra palavra do mesmo código...

Por exemplo, P(0001) = 1000

 Possuem propriedades matemáticas que simplificam a implementação de codificadores e decodificadores.

Outros códigos

- Códigos convolucionais: oferecem um enfoque para o controle de erros muito diferente dos códigos de blocos.
- Converte uma sequência inteira (não importa o comprimento) em uma sequência de dados.
- Admite uma **memória** de *k* bits, logo, para a memória, 2^k combinações possíveis. Cada uma das combinações de memória pode ser representada por um **estado.**
- Cada novo bit a ser transmitido produz um deslocamento à direita da palavra da memória, que corresponde a uma transição de estado

Códigos convolucionais

 Por exemplo, seja um codificador com memória k=3, em um determinado instante (estado) os bits podem ser XYZ, dados por

Estado	XYZ
S_0	000
S_1	001
S_2	010
S ₃	011
S ₄	100
S_5	101
S ₆	110
S ₇	111

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

