

CAZONZ
-75E2211

PROJECT MANAGEMENT

Memorandum of
ONTARIO HYDRO
to the
Royal Commission
On Electric Power Planning
with respect to the
Public Information Hearings

May 1976

Digitized by the Internet Archive
in 2023 with funding from
University of Toronto

<https://archive.org/details/39120816090147>

TABLE OF CONTENTS

	Page No.
<u>7. PROJECT MANAGEMENT</u>	1
<u>7.1 INTRODUCTION</u>	1
<u>7.2 ORGANIZATION AND RESOURCES</u>	1
<u>7.2.1 Design and Construction Branch Responsibility</u>	1
<u>7.2.2 Organization of Design and Construction Branch</u>	2
<u>7.2.3 Project Administration</u>	3
<u>7.2.4 Use of Consultants and Contractors (Make or Buy)</u>	6
<u>7.2.5 Construction Manpower</u>	8
<u>7.3 PLANNING AND CONTROL PROCESSES</u>	9
<u>7.3.1 Approval and Release</u>	9
<u>7.3.2 Resource Planning</u>	11
<u>7.3.3 Components of the Project Management Systems</u>	12
<u>7.3.3.1 Project Life Cycle</u>	13
<u>7.3.3.2 Work Breakdown Structure</u>	14
<u>7.3.3.3 System Classification Index</u>	14
<u>7.3.4 Scheduling</u>	15
<u>7.3.5 Estimating, Reporting and Cost Control</u>	16
<u>7.3.6 Progress Reporting and Control</u>	17
<u>7.4 PROCUREMENT MANAGEMENT</u>	18
<u>7.4.1 Pre-Tender Processes</u>	18
<u>7.4.1.1 Technical Requirements and Schedule</u>	18
<u>7.4.1.2 Bidders List</u>	18
<u>7.4.1.3 Contract Standards</u>	18
<u>7.4.1.4 Invitations to Tender</u>	18
<u>7.4.2 Post-Tender Processes</u>	19
<u>7.4.2.1 Evaluation of Tenders</u>	19
<u>7.4.2.2 Contract Administration</u>	19
<u>7.4.2.3 Quality Assurance</u>	19

7.5	<u>COMMISSIONING AND PLACING IN-SERVICE</u>	20
7.5.1	<u>Commissioning</u>	20
7.5.2	<u>In-Service Criteria</u>	20
7.5.3	<u>Commercial In-Service Values</u>	21
 <u>RELATED MATERIAL</u>		22

Line
Number

1 7.
2
3 7.1
4

PROJECT MANAGEMENT

INTRODUCTION

This memorandum describes the Project Management practices of the Design and Construction Branch through which the engineering and construction of Hydro's capital facilities are controlled beyond the stage where the type of plant has been decided upon and its location is known. In terms of organizational involvement the phase of the work described in this memorandum is the concern of the Generation Projects Division and Stations, Transmission and Distribution Division. It generally follows with some overlaps the work of the Route and Site Selection Division and Design and Development Division.

These Project Management practices are outlined through descriptions of the organization and resources involved, the planning and control processes, procurement management, and commissioning. The main emphasis is on those features concerned with major generation projects since these account for the greatest portion of the work in terms of expenditures. Project Management practices governing Stations, Transmission and Distribution work are essentially the same in concept varying only in detail as dictated by the character of the work involved.

ORGANIZATION AND RESOURCES

DESIGN AND CONSTRUCTION BRANCH RESPONSIBILITY

The responsibility of the Design and Construction Branch is to design and build integrated generation, transformation, transmission and distribution facilities for the supply of electrical energy.

In carrying out this responsibility, the following specific criteria apply:

- 43 Safety - Maximum practicably achievable
- 44 Reliability - Equivalent to the best provided similar communities on the North American Continent
- 45 Environment - Minimum feasible impact on the environment
- 46 Cost - Minimum delivered cost per kilowatt hour

1 7.2.2

Organization of Design and Construction Branch

The Design and Construction Branch is a major organizational unit within Ontario Hydro comprising some 9,000 employees, plus about 5,500 contractor and consultant staff. It is headed by the General Manager - Design and Construction, who is accountable for the direction and performance of four Divisions plus an Administrative Systems group.

In recognition of longer lead times in site and project approvals, to provide improved plant and system reliability as these become more complex, and to minimize effects of severe overall escalation of costs, a re-organization was carried out on January 1, 1976.

The following are brief outlines of the character and role of each major component of the Design and Construction Branch: (Figure 7-1)

Generation Projects Division:

All design and construction forces, both internal and external, engaged on major generation and heavy water production projects are directed through this division.

A Project Management approach is applied on all major projects with Project Managers being held accountable for the successful completion of each job within prescribed performance, time and cost commitments.

Stations, Transmission and Distribution Division:

Forces required to produce Stations and Transmission plant are contained in this Division, working through three major functions: Program Management, Design, Construction.

Defined programs of work comprising either a single class of plant or all components in a section of the power delivery system, whichever is appropriate, are controlled by Program Managers. These managers co-ordinate the required inputs of design and construction and are accountable to the Director for completion of the work within commitments to time and cost.

Figure 7 - 1

ORGANIZATION - DESIGN & CONSTRUCTION BRANCH

Line
Number

1 Design and Development Division:

2
3 This Division consists of functionally oriented
4 engineering departments to provide central
5 technical expertise for the conceptual and
6 preliminary engineering of all new generating
7 stations and associated facilities.

8
9 It provides technical standards and trained
10 staff to the project engineering units for the
11 design of capital facilities. It also initiates
12 and co-ordinates long range design and
13 development of advanced concepts for the
14 generation and delivery of electricity, energy
15 storage, heavy water production and radio-active
16 waste management, etc.

17 Route and Site Selection Division:

18
19 This Division selects routes and sites for
20 Generation, Stations and Transmission facilities
21 based on studies of technical, economic, social
22 and environmental factors. Its staff co-
23 ordinates activities related to Public
24 Participation in planning and selecting routes
25 and sites.

26
27 It obtains necessary approvals and agreements
28 from public bodies and private interests and
29 also act as the focal point for the internal and
30 external exchange of pertinent information
31 related to the needs for routes and sites and
32 action concerning their acquisition.

33 Administrative Systems Department:

34
35 The department provides a central service in the
36 area of financial management and analysis to
37 fulfill the needs of senior managers in the
38 Branch while adhering to the financial and
39 budgetary policies of the Corporation.

40
41 It also provides the Branch with method study
42 services, and advice and assistance in the
43 design, implementation and modification of
44 management systems.

45
46 Project Administration

47 7.2.3 The Project Management function, for all major
48
49 50 projects, is carried out by Ontario Hydro.

1 Each major project is assigned to a Project Manager
2 who is accountable for the successful achievement of
3 project objectives. Included in his organization are
4 managerial support services which include scheduling,
5 cost estimating and control, procurement and
6 accounting. These services are supervised by a
7 Manager of Services or Project Services Engineer.

8 Reporting to the Project Manager are a Manager of
9 Engineering and a Manager of Construction who are
10 responsible for the ongoing activities of designing
11 and building the assigned project. Construction or
12 engineering may be contracted out to consultants or
13 contractors.

14 Major generation projects proceed through a "Project
15 Life Cycle" which defines phases of the work from
16 Concept to Operation. (Figure 7-2).

17 Concept Phase

18 A continuing function of the Generation Planning and
19 Development Department of the Design and Development
20 Division is to initiate and co-ordinate activities
21 related to developing concepts for new generating
22 stations. The purpose is to provide management with
23 a range of feasible options in the generation
24 expansion and planning process.

25 The work is highly iterative, and the Department co-
26 ordinates its activities with at least seven
27 divisions within the Corporation. Several government
28 ministries and outside companies are also involved.
29 In addition to the base of technological knowledge
30 required, this phase assesses the capacity of
31 industry to supply projected hardware requirements,
32 manpower and financial resources, constructability
33 and operability of each proposed alternative.

34 During this phase, and as specific requirements for
35 new generation are made known, activities are
36 focussed on the selection of suitable sites. This
37 brings into play the entire cycle of submissions for
38 government approvals and public participation.

39 Definition Process

40 Working from a requirement initiated by System
41 Planning Division, the project is defined and
42 specified as to broad parameters (siting,
43 performance, reliability, cost, etc) by the Design
44 and Development Division. In order to ensure

PROJECT LIFE CYCLE
Figure 7 - 2

Line
Number

1 continuity of the engineering process the preliminary
2 engineering studies are coordinated by the individual
3 who will become the Manager of Engineering for the
4 project. The output from this phase comprises
5 requirements and preliminary design descriptions
6 (specifications) for each of the plant systems.

7
8 At the same time, the Generation Projects Division
9 develops the specific management information systems
10 and supporting procedures which will be needed.
11 These must be compatible with overall Divisional
12 standards so that comparisons of vital data and
13 experience may be made. Plans are formulated at this
14 time for construction processes, and for ensuring
15 that all logistical requirements are met both in Head
16 Office and the Field.

17
18 Finally all available information is consolidated
19 into work packages which define the scope and terms
20 under which work is committed to supervisors, and by
21 which results are monitored and assessed. Work
22 packages are developed for each system or sub-system
23 and include such specifics as:

24 Reliability and maintainability requirements
25 Flow diagrams
26 Design descriptions
27 Schedule
28 Estimated costs (dollars and man-hours)

30 With this information, project personnel are able to
31 proceed with production design.

32
33 Acquisition Process

34
35 By this stage the Project Manager and his staff will
36 be fully established in the Generation Projects
37 Division or a consultant selected. Staff committed
38 full-time to the project activities will be brought
39 together to work within an integrated organization
40 whose sole objective is the realization of the
41 project.

42
43 Project design is carried out either in Head Office,
44 or at the Consultant's offices, together with the
45 initiation of procurement documents. These efforts
46 result in documents, such as:

47
48 Engineering drawings and specifications
49 Materials and equipment lists
50 Equipment specifications
51 Purchase requisitions

1 The administration of supply contracts is carried out
2 with the assistance of Supply Procurement Division.
3 In parallel with these design activities the Manager
4 of Construction begins to put his field organization
5 into place. As a result of his earlier planning,
6 construction equipment and facilities will be
7 ordered. With the securing of necessary approvals
8 site preparation can proceed and first concrete can
9 be poured. The main construction activities will
10 build up upon receiving the required flow of
11 information from the engineering office.

12 Construction proceeds until final testing of
13 equipment and systems. Finally commissioning tests
14 will lead to equipment acceptance and takeover by the
15 operating staff of the station.

16 Throughout the Acquisition phase, the whole pre-
17 planned sequence of management information reports
18 and review meetings will be operative. These form
19 the basis for assessing project status, progress, and
20 the need for executive action. (These processes are
21 described in Section 7.3)

22 7.2.4 Use of Consultants and Contractors (Make or Buy)

23 It has been the policy of Ontario Hydro since 1958 to
24 undertake its capital construction program with a
25 combination of its own staff and outside resources.

26 Procedures were developed over a number of years
27 based on experience in undertaking engineering and
28 construction of the power system using a variety of
29 different arrangements.

30 This policy was reviewed and reported by Task Force
31 Hydro in its report number five entitled "Hydro in
32 Ontario, A Policy for Make or Buy" presented to the
33 Committee on Government Productivity on June 29,
34 1973.

35 Ontario Hydro undertakes, with its own Design and
36 Construction organization, work of a repetitive
37 nature or of a type which requires a high degree of
38 liaison between its design and construction
39 organization and its planning and operating
40 organization. Efforts are made to maintain a level
41 of staff sufficient to provide continuity and retain
42 technical expertise. In general, work is carried out
43 by outside resources when the following conditions
44 exist:

1. When the work load exceeds the capacity of Ontario Hydro's design and construction organization, for example, when there is a need to meet compressed schedules and short-term or unforeseen work, is encountered.
2. When to undertake the work would mean, overall, an unsatisfactory allocation of staff resources. (eg hydraulic projects)
3. When work is of a specialized nature requiring knowledge, equipment and techniques not possessed by Ontario Hydro, or when it is not of a continuing nature. (eg Micro-wave communication systems, oil storage farms, fuel handling systems, specialized studies)
4. When work is of a conventional nature not directly associated with power production (eg construction of office and service buildings).
5. Where it has been determined that work can be performed more economically by contracting. (eg design or supply of transmission towers and aerial photographic surveying)
6. Installation work in connection with heavy equipment (turbines and generators) and underground H.V. lines is handled by contract because the on-site assembly is an integral part of the suppliers warranty.

In general, it has been found that the use of internal resources provides a more positive control of schedule commitments and of the overall cost of the projects. It has also provided for a shorter overall project schedule in that construction may proceed as the design work is developed. This results in a reduction in interest costs and also makes possible a later project commitment date providing a potential for further savings.

Feedback of construction methods to be used and previous operating experience into the design stage is easier if internal resources are used for the design and construction of the main features.

To a significant extent the skills required in design and construction of large generating stations are unique to Hydro in this Province. Adequate outside resources in terms of both volume and expertise are limited.

1 Over time, Hydro has continued to monitor its
2 performance in comparison to outside agencies by
3 reviewing the results of contracted work. The
4 results of this analysis have been mixed (eg design
5 of transformer stations is more costly by contract;
6 construction of wood pole transmission lines can be
7 cheaper by contract). The information made available
8 is used to assist in making better choices as to who
9 will undertake future work.

10 In order to transfer expertise and experience to the
11 private sector, as recommended by Task Force Hydro,
12 the Design and Construction divisions have moved to
13 establish an environment for increased "Buy". This
14 requires refinement of control systems so that better
15 comparisons of performance can be developed, at the
16 same time permitting a dynamic response to changing
17 conditions.
18

19 While the Corporation employs its own forces for much
20 of the design and construction effort, the majority
21 of its capital plant is bought. Such purchases
22 include a significant engineering component. Figures
23 7-3 and 7-4 illustrate the magnitude and trends of
24 the percentage of actual "make" in the Design and
25 Construction Divisions. Trends in engineering and
26 construction services are also illustrated.
27

28 7.2.5 Construction Manpower
29

30 Based on the committed generation program Ontario
31 Hydro forecasts its needs for construction tradesmen.
32 This forecast covers all manpower whether employed
33 directly or by contract.
34

35 It is estimated that the greatest needs will be in
36 the pipefitting, pipe welding and electrician trade
37 categories. The greatest demand by location will be
38 in the Toronto and Bruce Peninsula area.
39

40 At the present time the demand for construction
41 trades is satisfied by both recruitment and on-the-
42 job training. Many of the work operations in the
43 construction of a nuclear generating station demand a
44 degree of skill beyond that needed for conventional
45 heavy construction. Ontario Hydro's experience is
46 that it must conduct extensive training courses at
47 the site in order to meet these requirements. The
48
49
50
51
52
53
54
55

MAKE AND BUY STATUS

AS A PERCENTAGE OF TOTAL EXPENDITURE

Figure 7 - 3

GENERATION PROJECTS

STATIONS PROJECTS

T & D PROJECTS

DESIGN & CONSTRUCTION BRANCH

ENGINEERING COST: HYDRO/ENGINEERING SERVICE CONTRACT

- Figure 7 - 4

CONSTRUCTION COST:
HYDRO/CONTRACTOR

DESIGN & CONSTRUCTION

Line
Number

1 most pressing need is for welders qualified to work
2 to nuclear code requirements. During the
3 construction stage of a typical project the skill
4 level of many welders will be upgraded in order to
5 meet the project need.
6

7 The construction trades are a relatively mobile work
8 force and tend to migrate to large projects when no
9 work is available near their homes. Virtually all of
10 Ontario Hydro's work is done by union tradesmen so
11 that unions are heavily relied upon to supply the men
12 required. If they are unable to do so Ontario Hydro
13 does its own recruiting. Ontario Hydro projects are
14 in competition with all other construction work for
15 skilled tradesmen; however, it is important not to
16 offer incentives above those required in collective
17 agreements, as to do so would add to the cost of all
18 construction work.
19

20 The Ontario Labour Relations Act provides for
21 accredited associations in the various sectors of the
22 construction industry. Electrical power systems
23 construction has been defined as a seperate sector.
24 The Electrical Power Systems Construction Association
25 (or E.P.S.C.A.) is an association of employers
26 including the Corporation who are engaged in
27 construction work for the Generation Projects
28 Division and the Lines and Stations Construction
29 Department of the Stations, Transmission and
30 Distribution Division.
31

32 E.P.S.C.A and members of the Allied Construction
33 Trades Council have signed a collective agreement
34 covering such items as uniform working conditions,
35 special employment conditions, effective utilization
36 of manpower, resolution of jurisdictional disputes
37 and apprenticeship training.
38

7.3 PLANNING AND CONTROL PROCESSES

7.3.1 Approval and Release

42 Most of the work which is carried out by the Design
43 and Construction Branch results from projects which
44 have been planned and committed by the System
45 Planning Division following an evaluation of various
46 alternatives. As a result, the Branch's work load
47 and associated level of costs are largely dependent
48 on the number of projects assigned to it by the
49 System Planning Division.
50

1 Work is planned and committed by the Branch itself
2 including distribution lines and stations, and some
3 work associated with modifications to existing
4 generating stations. Work on developing engineering
5 standards, conducting environmental studies,
6 conceptual design of new generating stations, and
7 other similar engineering activities are also planned
8 and committed by the Branch.

9
10 The amount of work and expected cost of each project
11 is defined by a project Work Order. This Work Order
12 is also broken down into annual periods as part of
13 the budget process. The procedures governing the
14 initial approval and subsequent modifications to
15 these work orders are outlined in the Capital
16 Construction Program and Procedures Manual.

17 For the projects underway, planning is carried out on
18 an on-going basis both at Head Office and Field
19 locations with the three major concerns being the
20 adequacy of the detailed design, achievement of in-
21 service dates and control of costs. The main factors
22 determining the effectiveness of the planning effort
23 are the predictability of approval, the availability
24 of engineering and construction resources and the
25 ability of the manufacturers to meet the required
26 material delivery schedules.

27
28 Almost all of the work undertaken by the Design and
29 Construction Branch is subject to two approval
30 systems, namely, the Capital Construction Program,
31 and the annual Program Budget.

32
33 (i) Capital Construction Program (CCP)

34
35 The CCP deals with the release and approval of
36 individual projects over the total life cycle.
37 It is reviewed annually by the Board of
38 Directors via the Capital Construction Program
39 submission. This submission is prepared and co-
40 ordinated by System Planning Division. In
41 addition, the CCP procedures describe the
42 process for the on-going review of projects.

43
44 (ii) Program Budget

45
46 The Program Budget deals with expected annual
47 levels of cost and work for all projects, with
48 particular emphasis being placed on the budget
49 year. Initially, budgets are prepared at a
50 project or program level. These budgets are
51 then gradually condensed and summarized as they

1 are reviewed and, if necessary, modified at
2 Department, Division and Branch levels before
3 receiving Corporate approval.
4

5 7.3.2 Resource Planning
6

7 It is essential to ensure, in advance, the
8 availability of the property, equipment, materials
9 and manpower required to carry out a project.
10 Although resource planning is primarily done by
11 project, manpower planning must also be done on a
12 program or Branch basis. The effectiveness of
13 resource planning is reflected in both total project
14 and annual costs. Generally resource planning
15 activities can be divided into the following areas:
16

17 (a) Property Acquisition
18

19 The acquisition of the property for new sites
20 and rights-of-way is a prerequisite for most
21 Design and Construction activities.

22 (b) Equipment and Materials
23

24 Proper planning of equipment and materials is
25 vital to the success of each program. Extensive
26 long and short-term planning is conducted by
27 Branch personnel in conjunction with the Supply
28 Procurement Division.
29

30 Planning is especially important for major
31 equipment such as turbine generators, fossil-
32 fired boilers, reactor core structures,
33 transformers, and steam generators where capable
34 sources of supply are very limited.
35

36 Because of their long lead times, the
37 manufacture and delivery schedules for major
38 equipment form the basis for the overall project
39 schedule. Serious delays will have adverse
40 effects on the project cost, in-service dates,
41 and anticipated annual expenditures.
42

43 The requirements for other materials such as
44 concrete, cable and piping are determined as the
45 detailed design proceeds. Much of this material
46 is purchased in bulk quantities to reduce cost.
47 Delivery dates are arranged to meet project
48 requirements and accommodate manufacturing
49 capabilities.
50

1 (c) Engineering

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Engineering planning should ensure an adequate supply of engineering, technical, drafting and clerical skills to carry out the project. These skills can be obtained inside Hydro or from outside companies.

10 (d) Construction

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Construction planning covers the physical project construction and the administration of the construction forces.

Planning the administration resources ensures an adequate supply of skills to carry out duties such as field engineering, materials control, contract administration, construction planning, accounting and construction trades supervision. In addition it provides for adequate office, warehouse and on-site fabrication facilities to meet anticipated construction requirements.

The physical construction of the project requires a detailed plan for the installation and testing of the plant. Related to this is an extensive on-going planning effort to determine an adequate level of construction trades resources. Trades such as electricians, equipment operators, steamfitters, boilermakers, welders, carpenters, masons and general labourers are included. In addition to manpower, the planning effort determines requirements for work equipment, scaffolding, formwork and other construction materials. The construction work is carried out by a combination of Hydro and outside resources.

7.3.3 Components of the Project Management Systems

Virtually all work activities within the Design and Construction Branch are charged to, and therefore controlled by, a work order system. Approximately 90 per cent of Head Office costs and 100 per cent of field costs are charged to Capital Construction work orders which have received Board of Directors' specific approval at the commitment stage of major projects or general approval in the case of small projects. The balance of the work, which is not chargeable to specific capital projects, is paid for by funds released and controlled according to

1 responsibilities outlined in the Signing Authority
2 Register and Annual Budget.

3
4 After a plan is committed, a work order is issued for
5 each project under the plan. Work orders define the
6 scope of work and state its estimated cost. They
7 provide a vehicle for collecting costs and
8 distributing expenditures. Computerized ledgers
9 summarize costs for review and for final
10 capitalization.

11
12 The project is assigned to a project manager who is
13 responsible for carrying out the work in accordance
14 with the authorization and for the proper allocation
15 of charges. The first task of the manager is to see
16 that overall project objectives are set and then
17 refined into specific assignments (work packages)
18 which are, in turn, delegated to the various
19 departments and sections who will do the actual work.

20
21 The work order is reviewed and controlled throughout
22 all phases of the project. Signing authorities
23 govern the limits of action which individuals at
24 various levels may take.

25
26 The varying size and diversity of individual
27 projects, and the magnitude of the total capital
28 construction program, require effective management
29 control systems. The systems actually employed vary
30 in their sophistication depending upon the project.
31 For smaller jobs, a relatively simple standardized
32 approach is used. For the larger jobs, more
33 comprehensive management systems have been developed
34 incorporating the concepts of project life cycle,
35 work breakdown structure and system classification
36 index.

37 7.3.3.1 Project Life-Cycle

38
39 For large projects the project life cycle is broken
40 down into separate but overlapping phases covering
41 Concept, Definition, Acquisition, and Operation as
42 described previously in section 7.2.3. Key event
43 dates are determined, from executive approval to the
44 in-service date of the final unit (see Figure 7-5).
45 When overall project parameters are established, a
46 work breakdown structure is developed on which
47 schedules are based and responsibilities assigned.

TYPICAL NUCLEAR MASTER SCHEDULE

Figure 7 - 5

Line
Number

1 | 7.3.3.2 Work Breakdown Structure

2 |

3 | A work breakdown structure (see figure 7-6) formally

4 | subdivides major projects into a hierarchy of "work

5 | packages" which form the basis for:

6 |

7 | (1) Assigning responsibilities for work to be done

8 | (both in design and construction);

9 |

10 | (2) Defining all schedule documents;

11 |

12 | (3) Defining packages for estimating and controlling

13 | costs;

14 |

15 | (4) Material control.

16 |

17 | Each work package document includes:

18 |

19 | - an identification of the system;

20 |

21 | - a clear description of the work package itself

22 | including a description of the limits of the

23 | package;

24 |

25 | - a breakdown of the contents;

26 |

27 | - a description of the relationship between work

28 | packages.

29 | 7.3.3.3 System Classification Index

30 |

31 | A hierarchical numbering index is used to identify

32 | all hardware and documentation throughout the project

33 | life cycle, through uniform application on a system

34 | and component basis. This Classification System is

35 | applied to the following:

36 |

37 | - work breakdown structure;

38 |

39 | - plans and schedules;

40 |

41 | - cost accounts;

42 |

43 | - procurement documents;

44 |

45 | - drawings, engineering data, and manuals;

46 |

47 | - correspondence and other records;

48 |

49 | - plant and equipment labels;

50 |

51 |

52 |

53 |

WORK BREAKDOWN STRUCTURE - TYPICAL GENERATION PROJECT

Figure 7 - 6

1 7.3.4

Scheduling

2
3 The scheduling system has been designed to meet
4 certain key objectives:

5

6 - enable management to establish a feasible
7 plan and to relate status and progress to
8 what has been planned.

9

10 - provide scheduling information that will
11 show the user what he has to do, how he
12 will do it (sequence), what resources he
13 will use to do it and when it will be
14 done.

15 - provide management at all levels with
16 timely summarized scheduling information.

17
18 Using the work package approach, responsibility is
19 allocated to specific line supervisors or managers
20 for the planning and scheduling of the work. Where
21 that responsibility lies outside the immediate
22 organization, suppliers and contractors are obliged
23 to provide schedules and progress reports.

24
25 Three levels of management are provided with schedule
26 information of different scope and scale.

27
28 At the Project Manager's level, schedule commitments
29 are related to strategic milestones with specified
30 completion dates. Project schedule performance is
31 regulated by adjusting resources and setting
32 priorities while maintaining control over major
33 expenditures.

34
35 The next level of schedule is used to plan, direct,
36 co-ordinate and control the composite production
37 efforts of all contributing resource groups,
38 including external organizations such as consultants
39 and equipment suppliers.

40
41 The third and most detailed level of schedule is used
42 by those supervisors who directly control the work.

43
44 The master schedule for one generating unit might
45 cover about 100 major activities and their
46 interdependencies. The co-ordinating and control
47 schedules would include over 12,000 activities to
48 ensure all significant inter-relationships are
49 covered. Production level schedules in total would
50 cover about 60,000 activities. These figures are
51 typical for one unit of a conventional generating

1 station and could be 25 per cent higher for a nuclear
2 unit.

3

4 7.3.5 Estimating, Reporting and Cost Control (ERCC)

5

6 The ERCC system is used for estimating, reporting,
7 and forecasting the cost of work packages and total
8 project cost taking into account design,
9 construction, and procurement commitments.

10 Each work package is broken down into cost elements
11 relating to construction, permanent material and
12 contracts, and engineering. These three elements are
13 summarized by computerized reporting systems and when
14 combined give the total project cost (see Figure 7-7).
15

16

17 The objectives of this approach are:

18

19

20 (i) Improved estimates through accurate collection
21 of cost data and realistic comparative
22 information between projects, features and
23 systems.

24

25 (ii) Effective reporting of cost trends and variances
26 to management for review and corrective action.

27

28 Typically, the total project cost is produced in
29 three categories as follows:

30 (i) Construction Work Order

31

32 The Construction Work Order includes all
33 construction direct costs and indirect charges,
34 property acquisition, site preparation, supply
35 and erection of all permanent equipment and
36 facilities.

37

38 (ii) Engineering Work Order

39

40 The Engineering Work Order includes all charges
41 for engineering work done by Hydro and
42 consultants, and all supporting services such as
43 computer, supply inspection, research, legal,
44 administration overheads, interest during
45 construction, and contingency allowance.

46

47 (iii) Commissioning Work Order

48

49 The Commissioning Work Order includes all costs
50 and revenues associated with commissioning.

PROJECT COST FLOW DIAGRAM
(ERCC SYSTEM)

Figure 7 - 7

Line
Number

1 7.3.6

Progress Reporting and Control

The Project Manager is responsible for the progress of the project, total project expenditures, and explanations of variance. Directly reporting to him:

- The manager of construction is responsible for the commitment of all field resources, and for control of expenditures against control estimates.
- The manager of engineering is responsible for all engineering and service costs, permanent materials and contracts, and financing charges.

Each area assigned the responsibility for work packages reports upwards as shown on the Project Cost Information Flow diagram illustrated in Figure 7-8. Costs are reported in three main streams being Construction, Permanent Materials and Contracts and Engineering.

Control is effected through summaries which give the manager up to date and predictive information about the progress of important tasks so that he can take appropriate action.

The total work order is reviewed each month comparing planned expenditures and progress against actual expenditures and progress. Action is taken by the appropriate management level where the variance or rate of change warrants.

Review Meetings

Weekly meetings are held to review status reports produced by the monitoring systems, and to identify areas requiring management action to resolve problems. Although design/construction dialogue is continuous, combined meetings are held when significant changes in plan or re-allocation of resources are required.

Bi-monthly senior management review meetings are held for each major project, chaired by the General Manager - Design and Construction and attended by Directors from the Design and Construction, Operations and Services Branches. The purpose of these meetings is to identify problem areas which

PROJECT COST INFORMATION FLOW

Figure 7 - 8

Line
Number

1 require the attention of senior management, and to
2 establish a positive program for resolution.
3

4 7.4 Procurement Management
5

6 The procurement process is the series of activities
7 which ensure that goods are made available and
8 ownership is transferred to Ontario Hydro.
9

10 Procurement activities fall into two major time
11 frames; the pre-tender and the post-tender periods.
12

13 In the pre-tender stage, emphasis is placed upon
14 technical requirements and schedules, bidders lists,
15 contract standards and invitations to tender.
16

17 The major portion of the post-tendering work
18 comprises evaluation and selection, contract
19 administration and quality assurance.
20

21 7.4.1 Pre-Tender Processes
22

23 7.4.1.1 Technical Requirements and Schedule
24

25 The technical specification defines the technical,
26 functional and quality requirements of the work.
27 Delivery requirements are also determined and
28 specified.
29

30 7.4.1.2 Bidder's List
31

32 The designer and the purchasing group may assemble a
33 bidder's list for the procurement of the required
34 products. A supplier must be able to meet design
35 requirements. Other factors which are considered
36 include past performance and the ability of the
37 supplier to do the present work, including not only
38 their manufacturing capability but also their
39 financial resources and present work load.
40

41 7.4.1.3 Contract Standards
42

43 In addition to the technical requirements, the
44 tendering documents include a number of other items
45 such as commercial conditions, and labour relations
46 requirements.
47

48 7.4.1.4 Invitations to Tender
49

50 Invitations to tender are made by public
51 advertisement or by invitation to those companies on
52 the bidders list. Normally public advertising is
53
54

Line
Number

1 used for service contracts and general works
2 contracts such as road building and excavation.
3 Specialized manufacturing contracts are most often
4 handled by invitations to selected bidders.
5

6 7.4.2 Post-Tender Processes
7

8 7.4.2.1 Evaluation of Tenders
9

10 Following receipt of the tenders, whether requested
11 by public advertisement or from a selected bidders
12 list, an evaluation is undertaken. Tenders not
13 meeting technical or delivery requirements are
14 rejected.
15

16 An economic evaluation is then carried out and
17 combined with an evaluation of the other facets of
18 the suppliers qualifications, forms the basis of the
19 final recommendation. Final approval is given by the
20 Board or an appropriate level of management.

21 7.4.2.2 Contract Administration
22

23 Post-tender activities include final clarification of
24 the technical details of the tender and the general
25 contract administration. The responsibilities for
26 these activities are divided between three functions
27 within the Corporation. The engineering department
28 is responsible for preparation of the contract, and
29 the approval of the engineering done by the supplier
30 including drawings, design changes including those
31 requested by the supplier. The Supply Procurement
32 Division has the responsibility for monitoring the
33 manufacturing schedule, approving the quality program
34 of the manufacturer, approving manufacturing schedule
35 changes, and monitoring supplier performance. The
36 construction department approves the original
37 installation schedule and any changes of delivery
38 which may eventually affect that schedule. The final
39 acceptance of the equipment and the final payment
40 approval is the responsibility of the project
41 manager.
42

43 7.4.2.3 Quality Assurance
44

45 The approval of the suppliers quality assurance plan
46 is the responsibility of the procurement department
47 which purchases the product. An Inspection Plan is
48 required by Hydro's quality assurance program. A
49 letter of approval of the inspection plan is returned
50 to the manufacturer following general acceptance.
51 According to the value of the contract and the time
52
53
54

Line
Number

1 estimated for manufacturing, different levels of
2 activity are required. In a long-term contract of
3 considerable value and complexity, progress reports
4 on production activities are supplied to Hydro on a
5 regular basis. These are reviewed by the procurement
6 department and forwarded to the Manager of
7 Engineering and Manager of Construction for
8 appropriate action.
9

10 COMMISSIONING AND PLACING IN-SERVICE

11 Commissioning

12 Commissioning starts when the first equipment is
13 turned over to Operations Branch and continues until
14 all generating units are declared In-Service. This
15 includes inspections, filling of service and process
16 systems with operating fluids, energizing station
17 apparatus required for power production, performing
18 operation testing, placing systems in operation and
19 functional testing of apparatus. All commissioning
20 activities are identified and planned by the Thermal
21 Generation Division or Nuclear Generation Division.
22 Activities are programmed to meet the earliest
23 possible in-service date.
24

25 Following turnover, the Design and Construction
26 Branch retains the prime responsibility for design
27 decisions as well as an obligation to assist
28 Operations in the correction of deficiencies, whether
29 they are known at the time of turnover or are
30 identified by commissioning and operation.
31

32 Commissioning experience and problems are reviewed
33 and documented by Engineering and Operations to
34 benefit the design, operation, maintenance and
35 reliability of future generating stations.
36

37 In-Service Criteria

38 The In-Service Date is the date on which a generating
39 unit is officially declared In-Service. The date is
40 agreed to between Director, Thermal or Nuclear
41 Generation Divisions and the Director, Generation
42 Projects Division.
43

44 Normally, a generating unit will be declared In-
45 Service when the following conditions exist:
46

47 (1) The essential commissioning of the unit is
48 complete.
49

Line
Number

1 (2) The unit has achieved full power.
2
3 (3) Problems encountered during commissioning have
4 been overcome to such a degree that the unit is
5 predicted to operate with the reliability
6 expected for the first year of operation.

7
8 A unit may be arbitrarily declared In-Service when
9 some of the above conditions do not exist. Such
10 arbitrary declaration would be made in unusual cases
11 such as a unit not being able to reach its design
12 capacity or reliability for an extensive period. In
13 this case, the commissioning would be terminated and
14 the unit made available to the power system with
15 lowered capacity or poor reliability.

16 7.5.3 Commercial In-Service Values

17
18 All the costs of making a generating unit available
19 for commercial operation are treated as capital
20 expenditures.

21
22 The value of energy supplied to the power system by a
23 generating unit being commissioned is credited to the
24 capital cost.

RELATED MATERIAL

1. Capital Construction Program - Forecasting and Reporting System (CAPFOR)
2. Capital Construction Program and Procedures Manual
3. Construction Expenditure System (CES)
4. Purchasing Policy and Procedures Manual
5. Scheduling System Procedures Manual (GPS)
6. Estimating, Reporting and Cost Control (ERCC) System Manual (GPC)
7. Project Material Control System Manual (GPM)
8. Project Inventory Pricing System Manual (GPI)
9. Procurement Procedures Manual (GPP)
10. System Classification Index (SCI)