Versuch Nr. 903

Dopplersonographie

Antonia Joëlle Bock antoniajoelle.bock@tu-dortmund.de

Rene-Marcel Lehner rene.lehner@tu-dortmund.de

Durchführung: 14.07.2020 Abgabe: 21.07.2020

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

Ar	nhang: Messdaten	9
5	Diskussion	8
•	 4.1 Vorbereitung und technische Daten	3
4	Auswertung	3
3	Durchführung	3
2	Theorie	3
1	Zielsetzung	3

1 Zielsetzung

2 Theorie

3 Durchführung

4 Auswertung

4.1 Vorbereitung und technische Daten

Tabelle 1: Technische Daten.

Medium	Größe	Variable	Wert
Flüssigkeit	Dichte	ρ	$1,15{\rm g/cm^3}$
	Schallgeschwindigkeit	$c_{ m L}$	$1800\mathrm{m/s}$
	Viskosität	η	$12\mathrm{mPas}$
Prisma	Schallgeschwindigkeit	$c_{ m P}$	$2700\mathrm{m/s}$
	Vorlaufstrecke	l	$30.7\mathrm{mm}$
Strömungsrohr	Innendurchmesser	$d_{ m i}$	$10\mathrm{mm}$
	Außendurchmesser	d_{a}	$15\mathrm{mm}$

Das verwendete Prisma hat drei verschiedene (Prisma-) Winkel
 θ , unter denen die Strömung in den Rohren untersucht wird. Der daraus resultierende Doppler-Winkel
 α wird über

$$\alpha = 90^{\circ} - \arcsin(\sin\theta \cdot \frac{c_{\rm L}}{c_{\rm P}})$$

berechnet. Die Kenndaten $c_{\rm L}$ und $c_{\rm P}$ sind in Tabelle 1 zu finden. Die Werte für die Winkel sind in Tabelle 2 aufgeführt.

Tabelle 2: Prisma- und Doppler-Winkel.

Prisma-Winkel θ	Doppler-Winkel α
15°	80,064°
30°	$70{,}529^{\circ}$
45°	$61,\!874^{\circ}$

4.2 Die Strömungsgeschwindigkeit in Abhängigkeit des Doppler-Winkels

Die aufgenommenen Messwerte sind in Tabelle 3 zu finden. Der Rechner für die Datenaufnahme zeigt jeweils zwei Werte an für die Frequenzverschiebung: Zum einen die maximale, zum anderen die gemittelte Frequenzdifferenz. Beide Werte sind für die Auswertung aufgenommen worden.

Tabelle 3: Messwerte.

	Prisma-Winkel θ					
	15°		15° 30°		45°	
RPM	$\Delta \nu_{ m max} / { m Hz}$	$\varDelta\nu_{\rm mean}/{\rm Hz}$	$\Delta \nu_{ m max} / { m Hz}$	$\varDelta\nu_{\rm mean}/{\rm Hz}$	$\Delta \nu_{\rm max} / {\rm Hz}$	$\varDelta\nu_{\rm mean}/{\rm Hz}$
2000	90	49	120	73	-105	-61
2800	94	61	235	134	-145	-85
3600	135	85	375	208	-220	-122
4400	200	110	555	293	-330	-165
5200	290	146	820	415	-470	-232

Die Zentrifugalpumpe gibt hierbei ihre Umdrehungen pro Zeiteinheit in rpm; es wird erwartet, dass die Umdrehungszahl proportional zur Strömungsgeschwindigkeit der Flüssigkeit ist. In den Abbildungen 1a, 2a und 3a sind die Frequenzverschiebungen gegen die Umdrehungszahl aufgetragen. In den nebenstehenden Abbildungen 1b, 2b und 3b ist die Frequenzverschiebung gegen die Strömungsgeschwindigkeit v aufgetragen, die über die Formel

$$\Delta \nu = 2\nu_0 \frac{v}{c} \cos \alpha$$

berechnet wird. Verwendet wird eine 2 MHz-Sonde, deshalb ist $\nu_0=2\,\mathrm{MHz}$. Aufgrund des als proportional angenommenen Zusammenhangs zwischen der Drehzahl der Pumpe und der Strömungsgeschwindigkeit wird angenommen, dass die Messpunkte in den Graphiken 1, 2 und 3 einen ähnlichen Verlauf haben.

(a) Mit der Geschwindigkeit, die durch die Zentri-(b) Theoretisch berechnete Strömungsgeschwindigfugalpumpe gegeben wird.

Abbildung 1: Graphiken zum Prisma-Winkel $\theta = 15^{\circ}$.

(a) Mit der Geschwindigkeit, die durch die Zentri-(b) Theoretisch berechnete Strömungsgeschwindigfugalpumpe gegeben wird.

Abbildung 2: Graphiken zum Prisma-Winkel $\theta = 30^{\circ}$.

(a) Mit der Geschwindigkeit, die durch die Zentri-(b) Theoretisch berechnete Strömungsgeschwindigfugalpumpe gegeben wird.

Abbildung 3: Graphiken zum Prisma-Winkel $\theta = 45^{\circ}$.

4.3 Strömungsprofil der Doppler-Flüssigkeit

Hier schreibe ich noch ein paar Worte zu der Messtiefe, warum wir so gemessen haben, wie wir gemessen haben. (Also Messtiefe in Sekunden entspricht einer bestimmten Dicke im Festkörper etc – wenn du das nicht schon in der Theorie machst) Und dann verweise ich noch auf die Abbildungen nach Schema F.

Tabelle 4: Messwerte bei einer Pumpleistung von $70\,\%$.

Messtiefe in µs	Strömungsgeschwindigkeit in cm/s	Streuintensität in $10^3 \mathrm{V}^2/\mathrm{s}$
12.0	44.6	19
12.5	44.6	60
13.0	54.1	115
13.5	63.6	170
14.0	73.2	230
14.5	85.9	270
15.0	89.1	300
15.5	92.3	330
16.0	85.9	400
16.5	70.0	450
17.0	57.3	450
17.5	47.7	310
18.0	44.6	200
18.5	50.9	110
19.0	60.5	90
19.5	60.5	100

Tabelle 5: Messwerte bei einer Pumpleistung von $45\,\%$.

Messtiefe in µs	Strömungsgeschwindigkeit in cm/s	Streuintensität in $10^3 \mathrm{V}^2/\mathrm{s}$
12.0	47.7	7
12.5	27.0	30
13.0	27.0	80
13.5	31.8	100
14.0	35.0	170
14.5	38.2	230
15.0	41.4	250
15.5	41.4	280
16.0	38.2	300
16.5	31.8	330
17.0	28.6	300
17.5	25.5	200
18.0	25.5	100
18.5	28.6	50
19.0	30.0	50
19.5	30.0	60

(a) Mit der Geschwindigkeit, die durch die Zentri-(b) Theoretisch berechnete Strömungsgeschwindigfugalpumpe gegeben wird.

Abbildung 4: Die bei $45\,\%$ Pumpleistung aufgenommenen Messpunkte.

(a) Mit der Geschwindigkeit, die durch die Zentri-(b) Theoretisch berechnete Strömungsgeschwindigfugalpumpe gegeben wird.

Abbildung 5: Die bei 70 % Pumpleistung aufgenommenen Messpunkte.

5 Diskussion

Anhang: Messdaten