RANDOM VARIABLES GENERATION

- Goal: Generate random variables
 - Discrete random variables
 - Continuous random variables (univariate)

Discrete Variables

- Finite set of values
- Example: population
- 0, 1, 2, 3, ...

Continuous Variables

- Continuous distribution function
- Example: temperature
- Univariate
 - One predicting variable (x)
- Multivariate
 - Multiple predicting variables (x₁, x₂...)

1. INVERSE TRANSFORM METHOD

Prerequisites

- The uniform (0,1) random variable U
- The continuous, cumulative distribution function F of the targeted random variable X
- Inverse Transform Method
 - Definition:
 - X = F⁻¹(U)
 - Note: The superscript "-1" is not an exponent! It indicates the inverse!
 - Transformation:
 - F(F⁻¹(U)) = U = F(X)
 - F⁻¹(U) is defined to be that value of X such that F(X) = U

Inverse Transform Method:

- 1. Find a formula for the function F^{-1}
- 2. Generate a uniform random number U
- 3. Return the random number $X = F^{-1}(U)$

Example

 Generate a random variable X with cumulative distribution function

$$F(x) = x^n$$
; $0 < x < 1$

▶ 1. Find a formula for the function F^{-1}

$$F(x) = x^{n} = u$$

$$\Leftrightarrow x = \sqrt[n]{u} = F^{-1}(u)$$

- 2. Formulate the algorithm for generating the random variable X
 - Generate a random number U and
 - Return $X = \sqrt[n]{U}$
- Limitation of the Inverse Transform Method
 - Cumulative distribution function needs to be invertible
 - Thus the inverse transform method is not suited for the normal distribution!

2. ACCEPTANCE-REJECTION METHOD

Example

- Give the rejection algorithm that generates X having $f(x) = 20x(1-x)^3$, 0 < x < 1
- Use g(x) = 1; 0 < x < 1
- 1. Generate a rejection procedure

Determine the smallest c such that $\frac{f(x)}{g(x)} \le c$

■ 1.1 Determine maximum of $\frac{f(x)}{g(x)} = 20x(1-x)^3$

1.1.1 Differentiation yields
$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = 20[(1-x)^3 - 3x*(1-x)^2]$$

1.1.2 Setting this equal to 0 shows that maximum for $x = \frac{1}{4}$

1.2 Determine smallest c

1.2.1
$$\frac{f(x)}{g(x)} \le 20 * \frac{1}{4} * \left(1 - \frac{1}{4}\right)^3 = \frac{135}{64} = smallest c$$

1.2.2
$$\frac{f(x)}{c \cdot g(x)} = \frac{20x(1-x)^3}{\frac{135}{5.6.7} \cdot 1} = \frac{256}{27}x(1-x)^3$$

- > 2. Formulate the rejection algorithm
 - \blacksquare 1. Generate random numbers U_1 and U_2
 - * 2. If $U_2 \leq \frac{256}{27}U_1(1-U_1)^3$ stop and set $X=U_1$; otherwise go to step 1
- Average number of iterations = $c = \frac{135}{64} = 2.11$

3. GENERATING IMPORTANT DISTRIBUTIONS

3.1. EXPONENTIAL DISTRIBUTION

- Generate an exponential random variable
 - Exponential distribution: $f(x) = \lambda e^{-\lambda x}$; $F(x) = 1 e^{-\lambda x}$
- Inverse Transform Method
- ▶ 1. Find a formula for the function F^{-1}

$$F(x) = 1 - e^{-\lambda x} = u$$

$$\leftrightarrow 1 - u = e^{-\lambda x}$$

$$\leftrightarrow \ln(1 - u) = -\lambda x$$

$$\leftrightarrow -\frac{1}{\lambda} * \ln(1 - u) = x = F^{-1}(u)$$

$$\leftrightarrow -\frac{1}{\lambda} * \ln(u) = x = F^{-1}(1 - u)$$
since u is uniform(0,1), (1- u) is also uniform(0,1) and has the same distribution

- ▶ 2. Formulate the algorithm for generating the random variable *X*
 - 1. Generate a random number U
 - 2. Return $X = -\frac{1}{\lambda} \ln(U)$

3.2. NORMAL DISTRIBUTION

- Give the rejection algorithm that generates a sequence of normal random variables X_i with mean μ and variance σ
 - Approach: Generate a sequence of half-normal distributed random variables and determine each variable's sign randomly

- Half-Normal distribution: $f(x) = \frac{2}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$; $0 < x < \infty$
- Optimize the algorithm and assess its efficiency
- Acceptance-Rejection Method
- Set g(x) = e^{-x}; 0 < x < ∞</p>
- 1. Generate a rejection procedure
 - = 1. Determine the smallest c such that $c \ge \frac{f(x)}{g(x)}$
 - 1.1 Determine maximum of $\frac{f(x)}{g(x)}$

1.1.1
$$\frac{f(x)}{g(x)} = \frac{\frac{2}{\sqrt{2\pi}}e^{\frac{x^2}{2}}}{e^{-x}} = \sqrt{\frac{2}{\pi}} * e^{x^{-\frac{x^2}{2}}} \Rightarrow$$
 has its maximum if $x - \frac{x^2}{2}$ has its maximum

- 1.1.1 Differentiation yields $\frac{d}{dx}\left(x \frac{x^2}{2}\right) = 1 x$
- 1.1.2 Setting this equal to 0 shows that maximum for x = 1
- 1.2 Determine smallest c

1.2.1
$$\max\left(\frac{f(x)}{g(x)}\right) = \sqrt{\frac{2}{\pi}} * e^{1 - \frac{1^2}{2}} = \sqrt{\frac{2}{\pi}} * e^{\frac{1}{2}} = \sqrt{\frac{2e}{\pi}} = smallest c$$

$$1.2.2 \frac{f(x)}{c \cdot g(x)} = \sqrt{\frac{2}{\pi}} \cdot e^{x - \frac{x^2}{2}} \cdot \sqrt{\frac{\pi}{2e}} = e^{x - \frac{x^2}{2} - \frac{1}{2}} = e^{-\frac{x^2 - 2x + 1}{2}} = e^{-\frac{(x - 1)^2}{2}}$$

- 2. Formulate the rejection algorithm
 - 0. i = 1
 - 1. Generate an exponential random variable with rate 1 called Y₁
 - 2. Generate a random number U₁
 - $U_1 \le e^{-\frac{(Y_1-1)^2}{2}}$ stop and set $Y_2 = Y_1$
 - Otherwise go to step 1
 - 4. Generate a random number U2 and set

$$X_t = \mu + \sigma * \begin{cases} Y_2; U_2 \le 0.5 \\ -Y_2; U_2 > 0.5 \end{cases}$$

- = 5. Set i = i + 1 and go to step 1
- 3. Optimization
 - Transformations

$$U \le e^{-\frac{(Y_1-1)^2}{2}} \leftrightarrow -\ln(U) \ge \frac{(Y_1-1)^2}{2} \leftrightarrow *Y_2 \ge \frac{(Y_1-1)^2}{2} \leftrightarrow Y_2 - \frac{(Y_1-1)^2}{2} \ge 0$$

- * because $\ln(U)$ is exponential with rate 1 (see exponential distribution)
- Since Y_1 and Y_2 are exponentials with rate 1, $Y_3 = Y_2 \frac{(Y_1 1)^2}{2}$ is also an exponential with rate 1
- Optimized Algorithm
 - 0. i = 1
 - 1. Generate an exponential random variables with rate 1 called Y₁
 - 2. Generate an exponential random variables with rate 1 called Y₂
 - 3. If $Y_2 \frac{(Y_1 1)^2}{2} \ge 0$ stop and set $Y_3 = Y_2 \frac{(Y_1 1)^2}{2}$
 - Otherwise go to step 1
 - 4. Generate a random number U and set

$$X_i = \mu + \sigma * \begin{cases} Y_1; U \le 0.5 \\ -Y_1; U > 0.5 \end{cases}$$

5. Set i = i + 1 and set Y₁ = Y₃ and go to step 2

- 4. Efficiency assessment
 - Average number of required exponential random variables = 1.64
 - Average number of iterations (step 1 and 2) = 2c = 2.64
 - Usage of exponential Y: Average number of iterations = 2.64 1 = 1.64
 - Average number of required squares (step 3): c = 1.32

3.2. POISSON PROCESS

(Homogeneous) Poisson Process

- Events are as likely to occur in all intervals of equal size
- The rate λ, which represents the expected number of events, is constant

Nonhomogeneous Poisson Process

- Events occur randomly in time
- Expected arrival rates vary with time
- The rate λ, which represents the expected number of events, is not constant
- The intensity function λ(t) represents the expected number of events around the time t

3.2.1. Homogenous Poisson Processes

- Generate the first T time units of a Poisson process having rate λ
 - Approach: Use the exponential distribution to generate event times (so-called interarrival times) and stop when their sum exceeds T
- Inverse Transform Method
- ▶ 1. Find a formula for the function F⁻¹
 - We already did that (see exponential distribution)
 - $x = F^{-1}(u) = -\frac{1}{\lambda}\ln(u)$
- 2. Formulate the algorithm for generating the Poisson process
 - 0. t = 0: I = 0
 - 1. Generate U
 - = 2. $t = t + (-\frac{1}{\lambda}\ln(U)) = t \frac{1}{\lambda}\ln(U)$
 - If t > T, stop!
 - = 3. I = I + 1; S(I) = t
 - 4. Go to step 1
- The solution is the sequence of the event times S(1) to S(I)
- Legend
- T = first T time units
- t = time
- I = number of events that has occurred by time t
 (→ the final I values represent the number of events that occurred by time T)
- S(1), ..., S(I) = event times in increasing order $(\rightarrow S(I)$ represents the most recent event time)

3.2.1.Nonhomogenous Poisson Processes

- Generate the first T time units of a nonhomogeneous Poisson process with intensity function $\lambda(t)$
 - Option 1: Thinning (also called random sampling)
 - Not all simulated evens are counted
 - Events are only counted randomly, which "thins" the (homogeneous) Poisson process
 - Option 2: Successive event times
 - Inverse Transform Method
 - Option 1: Thinning
 - 1. Simulate a Poisson process
 - 2. Randomly count its events → Remaining events will be nonhomogeneous

Formulate the algorithm for generating the Poisson process

```
0. t = 0, I = 0
                                                                              Legend:
    1. Generate a random number U_1
                                                                              T = first T time units
                                                          simulation of a
    2. Set t = t - \frac{1}{\lambda} \ln(U_1) and stop if t > T
                                                        Poisson process
                                                                                  t = time
                                                                                  I = number of events that has
    3. Generate another random number U_2
                                                         randomly
                                                                                   occurred by time t
  4. If U_2 \leq \frac{\lambda(t)}{\lambda}, set I = I + 1, S(I) = t
                                                          counting events
                                                                                   S(I) = most recent event time
                                                                                   \lambda(t) = intensity function = expected
    5. Go to step 1
                                                                                   number of events around t; \lambda(t) \leq \lambda
```

Efficiency

- Rule: The more events are counted, the more efficient the thinning approach
- Thinning is most efficient, if $\lambda(t) \approx \lambda$, because then almost all events are counted
- Improvement :
 - 1. Break up the interval into subintervals
 - > 2. Perform the thinning approach over each subinterval

4. APPLICATIONS

4.1. APPLICATION TO GENERATION OF EXPONENTIAL VARIABLES

A casualty insurance company has 1,000 policyholders, each of whom will independently present a claim in the next month with probability .05. The amount of the claims made are independent exponential random variables with mean \$800. Use simulation to estimate the probability that the sum of these claims exceeds \$50,000.

- Why do we have to use simulation?
 - The expected sum of claims will be normally distributed with mean \$40,000 (= 1,000 * 0.05 * \$800)
 - However, we do not know the mean and standard deviation
- Algorithm for generating an exponential random variable X
 - 1. Generate a random number U
 - 2. Return $X = -\frac{1}{\lambda} \ln(U)$

```
claimsPerSimulationVector<-c( claimsPerSimulationVector, claim )</pre>
     simulationsVector<-c(simulationsVector, sum(claimsPerSimulationVector))
return(simulationsVector)
};
### Probability that all values are above the variable limit
getProbability<-function( simulationsVector, limit )</pre>
 eventcount<-0
 for(I in 1:length( simulations Vector) )
  if( simulationsVector[[i]] >= limit )
    eventcount<-eventcount+ 1
  probability<-eventcount/ length( simulationsVector)</pre>
return(probability)
};
##################
###1. Set constant variables:
numberOfSimulations<-100000;
numberOfCustomers<-1000mean<-800;
limit<-50000;
probability<-0.05;
### 2. Execute and output variables:
simulationsVector<-getSimulationsVector( numberOfSimulations, numberOfCustomers, mean,
probability);
simulationsVector; #R maximum outputs 10000 values
### 3. Execute and output variables:
hist(simulations Vector, 250, xlab="Sum of all claims", ylab="Simulations", main="Exercise:
Transform Method and Exp. Distribution");
### 4. Calculate and output probability:
probability<-getProbability( simulationsVector, limit );</pre>
probability;
The output:
          Executed simulations: 100,000
```

- Estimated probability that the sum of claims exceeds \$50,000: p = 0.10917

4.1. APPLICATION TO REJECTION-ACCEPTANCE METHOD FOR NORMAL VARIABLES

Write a program that efficiently generates normal random variables using the acceptance-rejection method with (real) mean 10 and (real) standard deviation 3. What is your estimated mean and what is your estimated standard deviation?

- (Optimized) Algorithm for generating a normal distribution
 - 0. i = 1
 - 1. Generate an exponential random variables with rate 1 called Y₁
 - 2. Generate an exponential random variables with rate 1 called Y₂

3. If
$$Y_2 - \frac{(Y_1 - 1)^2}{2} \ge 0$$
 stop and set $Y_3 = Y_2 - \frac{(Y_1 - 1)^2}{2}$

- Otherwise go to step 1
- 4. Generate a random number U and set

$$X_i = \mu + \sigma * \begin{cases} Y_1; U \le 0.5 \\ -Y_1; U > 0.5 \end{cases}$$

• 5. Set i = i + 1 and set $Y_1 = Y_3$ and go to step 2

0. Function:

Performs simulations and returns a vector of all simulated values

```
getSimulationsVector<-function(numberOfSimulations,mean,stdDev)

# Define variables
simulations.vector<-rep(0,numberOfSimulations)

# Generate the exponential variable y1
y1<-runif(1)
y1<--log(y1)
for(i in 1:numberOfSimulations)

{
# Generate the independent exp. variable y2
y2<-runif(1)
y2<--log(y2)
```

```
# Acceptance-Rejection procedure
while(y2 < (y1-1)^2/2)
# if rejected, generate two new independent exp. variables y1 and y2 and repeat procedure
y1 < -runif(1)
y1 < --log(y1)
y2<-runif(1)
y2 < --\log(y2)
y3 < -y2 - (y1 - 1)^2/2
# Generate a random number U and store the simulated variable y1 in simulations.vector
u<-runif(1)
if( u \le 0.5)
simulations.vector[i]<-mean + (y1*stdDev)
else
simulations.vector[i]<-mean + (-y1*stdDev)
y1 < -y3
return(simulations.vector)
### Function End
simulations.vector<-getSimulationsVector(100000, 10, 3)
summary(simulations.vector)
sd(simulations.vector)
hist(simulations.vector, 250, xlab="",ylab="Simulations",main="Exercise: Acceptance-Rejection
Method and Normal Distribution")
Output
```

Executed simulations: 100,000

Estimated mean: 10.010

Estimated standard deviation: 2.993299

Reference:

Martin Kretzer - Generating Continuous Random Variables, University of Mannheim, **Business School**