

Exploring Wildfires: Can Only We Prevent **Forest Fires?**

Gopalika Sharma and Surya Menon

Background

- Climate change has resulted in lengthening forest fire seasons
- In 2020 California has had:
 - 8,685 fire instances
 - Over 4 million acres burned
 - 9,247 damaged structures
 - At least 31 fatalities

2020 California Fires Map

Problem Statement

Research to help develop strategies to manage the impact of future fires:

- Spatial analysis of California wildfires
- Prediction of fire features
 - Fire Size
 - Fire Cause

Main Datasets:

- ☐ Historic US wildfires (1992-2015)
- Portugal forest fire incidents

1.

Spatial Analysis

Spatial Analysis - Methods

- ArcGIS to observe patterns and distribution of fires
 - Supplemental spatial datasets
- Proximity Analysis
- Emerging Hot Spot Analysis
- California Wildfires Dashboard
 - kepler.gl
 - plotly Dash

California fires have increased in size and severity over time

Time Lapse of California Wildfires (1992-2015)

Persistent fires in Sacramento Valley area

Hot Spot Designation

- New Hot Spot
- Consecutive Hot Spot
- Intensifying Hot Spot
- Persistent Hot Spot
- Diminishing Hot Spot
- Sporadic Hot Spot
- Oscillating Hot Spot
- Historical Hot Spot
- New Cold Spot
- Consecutive Cold Spot
- Intensifying Cold Spot
- Persistent Cold Spot
- Diminishing Cold Spot
- Sporadic Cold Spot
- Management Of the Cold Spot
- Historical Cold Spot
 - No Pattern Detected

Increasing occurrences of climate-related wildfires

1992 CA Lightning Fires by Size (Acres)

2015 CA Lightning Fires by Size (Acres)

≤ 7251.99534

Fire Size (Acres)

≤ 2626.747252

- ≤ 11877.243428
- ≤ 151623.0

Hospitals could be better distributed in high count zones

CA Fire Stations

CA Fire Stations

CA Healthcare Facilities

CA Healthcare Facilities

Fire Incident Count

≤41

≤114

≤185

≤320

≤614

2015 Fire Incidents by County and Fire Station Locations

2015 Fire Incidents by County and Healthcare Facility Locations

California Wildfires Dashboard

Code available on GitHub to run locally:

- https://github.com/gsharma14/DS-5500-California-Wildfires
- kepler.gl map <u>URL</u>
- Demo

2.

Modeling

Modeling - Methods

- Portugal
 - Fire Size (Regression)
- California
 - Data Enhancement
 - Climate data (NOAA)
 - Proximity Analysis
 - Fire Size (Regression)
 - Fire Cause (Classification)

Portugal Dataset

Feature	Description	Туре
Latitude/Longitude	Fire Location - Degrees	Continuous
Month	12 values	Nominal
Day of Week	7 values	Nominal
FFMC (Fine Fuel Moisture Code)	Fuel flammability/ease of ignition	Continuous
DMC (Duff Moisture Code)	Organic matter moisture content	Continuous
DC (Drought Code)	Indicator of seasonal drought	Continuous
ISI (Initial Spread Index)	Fire spread immediatley after ignition	Continuous
Temperature	Degrees – Celsius	Continuous
Relative Humidity (RH)	Percentage	Continuous
Wind Speed	km/h	Continuous
Rainfall	mm/m²	Continuous
Area	Forest area burned (hectare)	Continuous

Fire Size Prediction – Portugal

Regression Model	Cross-validation MAE	
Linear Regression	18.16	
Random Forest	16.61	
SVM (linear)	11.07	
XGBoost	21.55	
Dense Neural Network	24.36	

California Dataset

Feature	Description	Туре
Latitude/Longitude	Fire Location - Degrees	Continuous
Fire Year	2000-2015	Continuous
County	59 counties in California	Nominal
Fire Cause (STAT_CAUSE_DESCR)	13 values	Nominal
Fire Size	Acres	Continuous
Average Wind Speed (AWND)	Yearly county average, mph	Continuous
Average Temperature (TAVG)	Yearly county average, Fahrenheit	Continuous
Average Precipitation (PRCP)	Yearly county average, cm	Continuous
Nearest Fire Station	Meters to nearest fire station	Continuous
Above 90° F (DX90)	Days with > 90° F in county	Continuous
Burn Time	Difference between discovery date and containment date	Continuous

Fire Size Prediction - California

Regression Model	Test MAE	
Linear Regression	230.9	
Random Forest	161.4	
XGBoost	183.9	
SVM (linear)	120.4	

Feature Importance Plot

Fire Cause Prediction – California (Multi-Class)

- Without Label
 - Random Forest Classification
- With Label
 - Decision Tree Classifier with Adaboost
 - Gaussian and Multinomial Naive Bayes
 - KNeighbours Classifier
 - Gradient Boosting Classifier
 - Random Forest Classification (best model score)

Fire Cause – Multi-class, with labels

CATEGORIES	LABEL	
Natural: {Lightning}	Natural	
Accidental: {Structure, Firework, Powerline, Railroad, Smoking, Children, Campfire, Equipment Use, Debris Burning}	Accidental	
Malicious: {Arson}	Malicious	
Miscellaneous/Missing	Other	

Confusion Matrix for labeled Fire Cause (Random Forest)

Fire Cause – Binary/Lightning

Classification Model	Test Accuracy	Test Precision	Test Recall
Logistic Regression	0.80	0.797	0.793
Random Forest	0.87	0.86	0.878
XGBoost	0.882	0.87	0.892

Normalized Confusion Matrix - Predicting Lightning Fires

Fire Cause – Binary/Lightning

3.

Discussion

General Takeaways

- Project outcomes
 - Interactive dashboard
 - Spatial mapping
 - Fire cause/size trends
 - Modeling
 - Identified relevant features
- How can California better prepare for fires?
 - Improve access to resources and aid
 - Monitor weather conditions

TASKS

WEEK 1

WEEK 2

WEEK 3

WEEK 4

DATA COLLECTION,
PRE-PROCESSING AND ANALYSIS

SPATIAL ANALYSIS

MAKING THE DASHBOARD

FEATURE ENGINEERING

PORTUGAL MODELLING

CALIFORNIA MODELLING

Future Work

- More recent data
- Granular climate data
- Multiple states
- Satellite imagery

Thanks!

Any questions?

Datasets

- US Forest Service. (2020, April 29). National Interagency Fire Occurrence 1992-2015 (Feature Layer). https://enterprisecontentnew-usfs.hub.arcgis.com/datasets/e4d020cb51304d5194860d4464da7ba7_0/data?geometry=61.662%2C-2.200%2C54.279%2C76.163
- 2. UCI. (n.d.). UCI Machine Learning Repository: Forest Fires Data Set. UCI Machine Learning Repository. Retrieved 2020, from https://archive.ics.uci.edu/ml/datasets/Forest+Fires
- National Oceanic and Atmospheric Administration (NOAA). (n.d.). Search | Climate Data Online (CDO) | National Climatic Data Center (NCDC). Climate Data Online (CDO). Retrieved October 2020, from https://www.ncdc.noaa.gov/cdo-web/search

Additional Spatial Datasets

- 1. CA.gov. (2019, October 23). CA Geographic Boundaries California Open Data. California Open Data Portal. https://data.ca.gov/dataset/ca-geographic-boundaries
- 2. ESRI. (n.d.). Living Atlas of the World | ArcGIS. ArcGIS. Retrieved October 2020, from https://livingatlas.arcgis.com/en/home/
- 3. CA Open Data Department of Public Health. (2020, October 18). CDPH Licensing and Certification Healthcare Facilities. California State Geoportal. https://gis.data.ca.gov/datasets/CDPHDATA::cdph-licensing-and-certification-healthcare-facilities
- 4. Homeland Infrastructure Foundation-Level Data (HIFLD). (2020, September 11). Fire Stations. HIFLD Open Data. https://hifld-geoplatform.opendata.arcgis.com/datasets/fire-stations?geometry=-130.326%2C33.769%2C-104.442%2C39.917
- US Census Bureau. (2019, August 15). TIGER/Line Shapefile, 2018, state, California, Primary and Secondary Roads State-based Shapefile Data.gov. Data.Gov. https://catalog.data.gov/dataset/tiger-line-shapefile-2018-state-california-primary-and-secondary-roads-state-based-shapefile
- 6. CA.gov. (2020, August 11). California Electric Substation. California State Geoportal. https://gis.data.ca.gov/datasets/CAEnergy::california-electric-substation

References

- 1. Center for Disaster Philanthropy (CPP). (2020, October 23). 2020 North American Wildfire Season. Center for Disaster Philanthropy. https://disasterphilanthropy.org/disaster/2020-california-wildfires/
- Wikimedia. (n.d.). 2020 California Wildfires [Map].
 Wikimedia. https://upload.wikimedia.org/wikipedia/commons/8/85/2020_California_wildfires.png
- 3. Law, M., & Collins, A. (2019). Getting to Know ArcGIS Pro (Second ed.). Esri Press.
- 4. Bambrick, G. (2016, January 22). What is Hotspot Analysis? Geospatiality. https://glenbambrick.com/2016/01/21/what-is-hotspot-analysis/
- 5. kepler.gl. (2020). kepler.gl for Jupyter User Guide. https://docs.kepler.gl/docs/keplergl-jupyter
- plotly. (n.d.). Part 2. Layout | Dash for Python Documentation | Plotly. Plotly | Dash. Retrieved 2020, from https://dash.plotly.com/layout
- Stanford-Moore, A., & Moore, B. (2019). Wildfire Burn Area Prediction. Stanford University CS229. http://cs229.stanford.edu/proj2019aut/data/assignment_308832_raw/26582553.pdf
- 8. ArcGIS. (n.d.). Historical Wildfire Analysis | ArcGIS for Developers. ArcGIS API for Python. Retrieved 2020, from https://developers.arcgis.com/python/sample-notebooks/historical-wildfire-analysis/
- O'Neill, P. (2017, December 13). Predict the causes of wildfires using Python. Kaggle. https://www.kaggle.com/edhirif/predict-the-causes-of-wildfires-using-python

Appendix

Portugal Fires - Correlation Matrix

California Fires - Correlation Matrix

California Fire Count by Year

Fire Cause – Multi-class, without labels

Confusion Matrix for Fire Cause (Random Forest)

