# Gaussian Mixture Model with EM algorithm

**GMM-EM** 

#### **Kim Ying WONG**

McMaster University School of Computational Science and Engineering

## **Overview**



- 1. Goal Statement
- 2. User Characteristics
- 3. Input and Output
- 4. Theorems and Figures
- 5. References

McMaster University 2/11



## **Goal Statement**

## Goal



Library on Gaussian Mixture Model. Given that dataset  $\in \mathbb{R}^{M \times N}$ , we generate a predicted label for every data points corresponding to the cluster it belongs ( $z \in \mathbb{R}^{M}$  for  $z_i \in \{0, 1, 2, ..., K\}$ )



McMaster University 3/11



## **User Characteristics**

## **Characteristics**



- 1. Work in the fields related to Machine Learning or Data Science (employees, researchers, students etc.)
- 2. Basic knowledge in programming language and machine learning are needed
- 3. Basic skills in data pre-processing is needed

McMaster University 4/1



# **Input and Output**

McMaster University

# **Input and Output**



We illustrate our expected input and output here.

#### Input

Dataset  $\in \mathbb{R}^{M \times N}$  where M = number of data-points,

N = number of predictor variables and each data point  $x \in R$ ,

Number of clusters in our dataset (k) (optional)

#### Output

 $z \in \mathbb{R}^{M}$ , for

 $z_i \in 0, 1, 2, ..., K$ , where

K is number of clusters needed





| Notations              | Meaning                                                                               |
|------------------------|---------------------------------------------------------------------------------------|
| M                      | number of data-points                                                                 |
| N                      | number of predictor variables                                                         |
| K                      | number of clusters needed                                                             |
| X                      | a single data point                                                                   |
| Z                      | predicted label (latent variable in GMM)                                              |
| p(x)                   | Gaussian mixture distribution                                                         |
| $\pi$                  | mixing coefficient                                                                    |
| $N(x \mu_k, \Sigma_k)$ | Gaussian distribution with mean $\mu_{\mathbf{k}}$ and variance $\Sigma_{\mathbf{k}}$ |

Table: Table 1

McMaster University 6/11



# **Theorems and Figures**

# **Theory**



We assume the data-points come from a mixture of Gaussian distributions. The training process maximizes the log-likelihood function, the parameters in the models  $(\pi_k, \mu_k, \Sigma_k)$  will converge and give us the best model. This will be achieved by Expectation Maximization Algorithm (EM algorithm)

#### **Definition (Gaussian Mixture)**

$$p(x) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$$

#### Definition (log-Likelihood function)

$$\ln p(X|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_k N(x|\mu_k,\Sigma_k)$$

McMaster University 7/11

## **EM algorith demostration**





Figure: EM algorithm [Do,Batzoglou, 2008]

McMaster University 8/11

# **Constraint and Assumption**



- Model assume that the data point follows Gaussian distribution.
- The problem assume and restrict the dataset to be well-processed (without missing value and infinity value).
- Convergence to optimal is not guaranteed based on the model nature.

McMaster University 9/1



# References

### References



#### What is the expectation maximization algorithm?



Chuong B Do , Serafim Batzoglou (2008)

What is the expectation maximization algorithm? *Nature biotechnology* volume 26 number 8



Bishop, Christopher M.

Pattern Recognition and Machine Learning.

New York ,Springer, 2006.

McMaster University 10/11

# Thank you for your attention

#### **Kim Ying WONG**

McMaster University School of Computational Science and Engineering

January 30, 2024