Linear Regression

*** More slides here

https://github.com/gSchool/DSI Lectures/tree/master/linear-regression

Overview

Machine Learning

- Regression vs Classification
- Supervised vs Unsupervised

Other models that use linear regression

- Logistic Regression
- Multilayer Perceptrons (Deep Learning)

Getting Started

Interactive Linear Regression Demonstrations

- http://setosa.io/ev/ordinary-least-squares-regression/
- https://phet.colorado.edu/sims/html/least-squares-regression/latest/least-squares-regression_en.html
- http://miabellaai.net/demo.html

Exact Fit

Inexact Fit

The Model

Simple Linear Regression

- The World
 - what you're presuming the world looks like:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- β_0 and β_1 are unknown constants that represent the intercept and slope
- ϵ , the error term, is i.i.d $N(0, \sigma^2)$

- The Model
 - what you've created from data to estimate the world:

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x$$

- $\hat{\beta_0}$ and $\hat{\beta_1}$ are model coefficient estimates
- \hat{y} indicates the prediction of Y based on X = x

Matrix Form

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}$$

Target:

$$\mathbf{X} = \left[egin{array}{cccccc} 1 & X_{1,1} & X_{1,2} & \cdots & X_{1,p-1} \ 1 & X_{2,1} & X_{2,2} & \cdots & X_{2,p-1} \ dots & dots & dots & \ddots & dots \ 1 & X_{n,1} & X_{n,2} & \cdots & X_{n,p-1} \end{array}
ight] \qquad \mathbf{y} = \left[egin{array}{c} y_1 \ y_2 \ dots \ y_n \end{array}
ight]$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Coefficient Matrix β

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix}$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

Linear Regression Libraries

- StatsModels
 - http://www.statsmodels.org/dev/generated/statsmodels.regression.linear_model.OLS.html
- Scikit Learn
 - http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

DEMO #1

Model Evaluation

Statsmodels Summary

		S Regression			2	
Dep. Variable	:	mp	9	R-squ	ared:	0.708
Model	:	OL	S Adj	. R-squ	ared:	0.704
Method	: Le	Least Squares		F-statistic:		186.9
Date	: Mon, C	5 Mar 201	3 Prob	(F-stati	stic):	9.82e-101
Time	:	12:20:0	S Log	g-Likeli	hood:	-1120.1
No. Observations	:	39:	2		AIC:	2252.
Df Residuals	:	380	3		BIC:	2276.
Df Model	:		5			
Covariance Type	:	nonrobus	t			
	coef	7.77.27.		P> t	[0.025	i i i i i i i i i i i i i i i i i i i
const	46.2643	2.669	17.331	0.000	41.016	51.513
cylinders	-0.3979	0.411	-0.969	0.333	-1.205	0.409
displacement -8	3.313e-05	0.009	-0.009	0.993	-0.018	0.018
weight	-0.0052	0.001	-6.351	0.000	-0.007	-0.004
acceleration	-0.0291	0.126	-0.231	0.817	-0.276	0.218
hp	-0.0453	0.017	-2.716	0.007	-0.078	-0.012
Omnibus:	38.561	Durbin-	Watson:	0	865	
	0.000					
Skew:	0.706					
Kurtosis:	4.111	Cond. No.		3.87e	+04	

RMSE

RSE (aka RMSE)

$$RSE = RMSE = \sqrt{\frac{RSS}{n-p-1}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-p-1}}$$

R squared

Coefficient of Deternination
$$\rightarrow$$
 $R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$

Sum of Squares Total \rightarrow $SST = \sum (y - \bar{y})^2$

Sum of Squares Regression \rightarrow $SSR = \sum (y' - \bar{y'})^2$

Sum of Squares Error \rightarrow $SSE = \sum (y - y')^2$

t-statistic

Suppose we wish to test

$$H_0$$
: $\beta_1 = \beta_{1,0}$

$$H_0: \beta_1 = \beta_{1,0}$$

 $H_1: \beta_1 \neq \beta_{1,0}$

$$\frac{\hat{\beta}_1 - \beta_{1,0}}{se(\hat{\beta}_1)}$$

P-value

From the df and the t-statistic, find the p-value:

https://faculty.washington.edu/heagerty/Books/Biostatistics/TABLES/t-Tables/

Confidence interval

From the df and percent, find the t-statistic:

https://faculty.washington.edu/heagerty/Books/Biostatistics/TABLES/t-Tables/

Beta +/- t(df) * SE

DEMO #2

Assumptions of Linear Regression

- Assumptions of Linear Regression
 - Linearity
 - We assume it's possible
 - Constant Variance (Homoscedasticity)
 - Our variance shouldn't change as y or X gets bigger
 - Independence of Errors
 - We should gain no information from knowing the error of a different data point
 - Normality of Errors
 - Errors should be normally distributed
 - Lack of Multicollinearity
 - We shouldn't be measuring the same thing in multiple ways

We can't always meet these assumptions, and often have to find ways to combat that reality.

Residuals

Types of Outliers

Residuals

Studentized Residuals

Studentized Residuals

Studentized Residuals have a t-distribution...

$$r_i = rac{\hat{\epsilon}_i}{\hat{\sigma}\sqrt{1-h_{ii}}}$$

Even better still, we can "**Studentize**" the errors by dividing, not by the "global" standard error for our model, but by the standard error of our model at the particular value of y where the residual occurred. Our confidence intervals change depending on how much data we have seen in a particular region. If we've seen a lot of data, our intervals are tight; otherwise, they are wide. So, it takes "more" for a data point to be considered an outlier if it is in a region in which we have little data.

Studentized Residuals

Leverage

The hat matrix H "puts the hat on" Y projecting Y onto the (least squares) closest vector to \mathbf{Y} in the column space of \mathbf{x} , $\hat{\mathbf{Y}} \in \mathcal{R}(\mathbf{x})$ $H = \mathbf{x}(\mathbf{x}^T\mathbf{x})^{-1}\mathbf{x}^T$ $\hat{\mathbf{Y}} = \mathbf{x}(\mathbf{x}^T\mathbf{x})^{-1}\mathbf{x}^T\mathbf{Y}$ = HY

QQ Plots

If a set of observations is approximately normally distributed, a normal quantile-quantile (QQ) plot of the observations will result in an approximately straight line.

DEMO #3