Off-Campus Centre of Nitte (Deemed to be University)

II Sem B.Tech (CBCS) Mid Semester Examinations - II, April 2025

CY1003-1 - MATERIALS CHEMISTRY FOR COMPUTER SYSTEMS

(For AD, AM, CC, CS, IS, CB, RI)

Max. Marks: 20

	Dura	11011; 1 Hour	rke)			
		Part – A: Multiple Choice Questions (1*4 = 4 ma ote: Answer all Four questions in the Answer Book. Each question	n carries	s equal	marks	5.
1.		a modifier a transducer a role of the electrode in an electrochemical sensor is that it acts lik B) an amplifier D) a detector	e			
2.	The	e anode used in the Electrochemical DO sensor is				
	A) C)	Au B) Ag D) Zn	•			
3.	A)	complexing agent that is used in the electroless plating of copper CuSO ₄ B) NaOH	IS			
	C)	Formaldehyde D) EDTA	t he cha	nged?		
4.	In v A)	which type of memory, once the program or data is written, it canno PROM B) EPROM	t De Cila	ngou.		
	C)	EEPROM D) Flash				
		Part – B: Descriptive Answer Questions (2*8 = 16 ma Note: Answer any One full question from each Unit	arks)			
		Unit – I	Marks	BT*	CO*	PO*
1.	a)	Describe the construction and working of electrochemical sensor and	04	L2	3	1
	b)	give any two applications. Explain the electroless plating of Cu on PCB with reactions.	04	L2	3	1
2.	a)	Describe the detection of NOx using electrochemical gas sensor.	04	L2	3	1
۷.	b)	Give the synthesis of carbon nanotubes by CVD method with suitable diagram.	04	L1	3	1
3.	a)	Write the classification of memory based on their volatility with	04	L1	4	1
	b)	suitable example. Describe the electro-optic effect in liquid crystals.	04	L2	4	1
,		Write a note on organic-inorganic hybrids used as memory materials.	04	L2	4	1
4.	a) b)	Describe the working of LECs with diagram and mention any two advantages.	04	L2	4	1
-	T* P	loom's Taxonomy 1* Level: CO* Course Outcome: PO* Program	n Outcor	ne		

Off-Campus Centre of Nitte (Deemed to be University)

II Sem B. Tech (CBCS) Mid Semester Examinations - II, April 2025

MA1007-1 - DISCRETE MATHEMATICS AND TRANSFORM TECHINQUES

(For AD, AM, CB, CC, CS, IS, RI)

Max. Marks: 20 Duration: 1 Hour Part - A: Multiple Choice Questions Note: Answer all Four questions in the Answer Book. Each question carries equal marks. The method which approximates curve as tangent to find root of an algebraic equation is: B) Regula-Falsi method A) Newton-Raphson method D) Modified Euler's method C) Runge-Kutta method 2. The Modified Euler's iteration formula to find better approximation of y_1 of the first order ordinary differential equation is: B) $y_1^{(n+1)} = y_0 + h[f(x_0, y_0) + f(x_1, y_1^{(n)})]$ A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ 3. If f(x) is defined in $(-\pi, \pi)$, then the Fourier coefficient a_0 is B) $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx$ A) $\int_0^{2\pi} f(x) \ dx$ D) $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx$ C) $\frac{1}{2} \int_{-\infty}^{\pi} f(x) \cos nx \, dx$ 4. The Fourier series expansion of an odd periodic function contains B) Only constant term A) Only cosine terms D) Both constant and cosine terms C) Only sine terms Part - B: Descriptive Answer Questions Note: Answer any One full question from each Unit. PO* CO* BT* Marks Unit - I 1. a) Find a real root of the equation $x^3 - 2x - 5 = 0$ in the interval (2,3), 2 using regula-falsi method. Carry out three iterations. Using Fourth order Runge -Kutta method, find y(0.1) for the equation b) $\frac{dy}{dx} = \frac{y-x}{y+x} \text{ with } y(0) = 1 \text{, take } h = 0.1.$ L3 3 1 Find a real root of the equation $\cos x = xe^x$, using Newton-Raphson 2. 3 2 12 4 method near $x_0 = 1$. Carry out three iterations. Use Taylor's series method to find the value of y at x=0.1, given b) that $\frac{dy}{dx} = x^2y - 1$, y(0) = 1, take h = 0.1. Expand upto 3rd degree 2 L3 3 terms. 3. a) Solve the equation $u_{xx}+u_{yy}=0$ under the conditions u(0,y) = u(x,0) = 0; u(3,y) = 3 + y; u(x,3) = 2x for $0 \le x < 3$ 4 L3 $0 \le y \le 3$, take h = 1. Express $f(x) = 3x^2$ with $f(x + 2\pi) = f(x)$ as a Fourier series in the L3 Solve the boundary value problem $u_t = u_{xx}$ under the conditions 4. a) u(0,t) = u(1,t) = 0 and $u(x,0) = \sin \pi x$, $0 \le x \le 1$ using Bendre-Schmidt relation. Carryout computations for two levels, taking h = 0.2, k = 0.02 and $\alpha = \frac{1}{2}$. L3 3 2 4 Find the Fourier series expansion of the function $f(x) = \begin{cases} 0 & -1 < x < 0 \\ x & 0 < x < 1 \end{cases}$ and f(x+2) = f(x).

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome;

PO* Program Outcome

L3

4

W W M Z

Max. Marks: 20

NMAM INSTITUTE OF TECHNOLOGY, NITTE

Off-Campus Centre of Nitte (Deemed to be University)

II Sem B. Tech (CBCS) Mid Semester Examinations - II, April 2025

CS1005-2 - INTRODUCTION TO PYTHON PROGRAMMING

(For AD, AM, CB, CC, CS, IS, RI)

Duration: 1 Hour

2.

3.

BT* Bloom's Taxonomy,

L* Level;

Part - A: Multiple Choice Questions (1*4 = 4 marks) Note: Answer all Four questions in the Answer Book. Each question carries equal marks. What will be the output of the following Python code? print("xyyzxyzxzxyy".count('yy')) B) A) 0 D) Error C) 2 What will happen if you try to access a dictionary key that does not exist? B) Raises a KeyError A) Returns None D) Returns an empty dictionary Creates a new key with None as value Which of the following is an immutable data type in Python? B) Tuple A) List D) Dictionary Which of the following is the correct way to define a class in Python? MyClass(): A) class MyClass {} MyClass class() C) class MyClass: Part - B: Descriptive Answer Questions (2*8 = 16 marks) Note: Answer any One full question from each Unit. PO' BT* Marks Unit - I Explain the following with example a) i. fromkeys() ii. setdefault() iii. add() L2 3 04 iv. items() Write a Python program to create a list of 5 integers, print their sum, and reverse 04 L3 the list without using the reverse() method. How do you create a text file in Python? Explain with an example and describe any a) 1 04 L1 4 four modes available for opening a file. Write a Python program that takes a sentence as input from the user, calculates b) and prints the total number of characters in the sentence, and creates a dictionary L3 3 2 containing the frequency of letters and digits in the sentence. 04 Unit - II Define a class and an object in Python with an example, and explain the role and a) significance of the init method. 04 L2 4 2 Write a Python program to read a list of n integers. Create 2 new lists, one with all b) even numbers and the other with all odd numbers from the given list. Print all 3 lists. 04 L3 3 What are the key differences between a list, tuple, and dictionary in Python? L2 3 Write a Python program that takes a string input from the user and performs the b) following operations: a. Count the number of characters in the string and display the result. b. Check if the string contains the word "python" (case-insensitive) and display the result as True or False. c. Split the string into a list of words and display the result. d. Join the list of words using a hyphen "-" as a separator and display the result. 04 L3

CO* Course Outcome;

PO* Program Outcome

Off-Campus Centre of Nitte (Deemed to be University)

11 Sem B. Tech (CBCS) Mid Semester Examinations - 11, April 2025

EC1002-2 - APPLIED DIGITAL LOGIC DESIGN

(For AD, AM, CB, CC, CS, IS, RI)

Part – A: Multiple Choice Questions (1*4 = 4 marks)

Duration: 1 Hour

4.

Max. Marks: 20

Note: Answer all Four questions in the Answer Book. Each question carries equal marks. 1. The characteristic equation for S-R flip flop is B) $\bar{S} + \bar{R}Q$ A) $S + \bar{R}Q$ D) S + RQC) $S + \bar{R}\bar{Q}$ 2. How many combinations of inputs are possible for an 8-bit input encoder? B) 2 D) 8 C) 24 3. In a J-K flip-flop, if J=K the resulting flip-flop is referred to as B) T Flip-flop A) D Flip-flop D) SR Flip-flop C) JK Flip-flop 4. If A, B, and C are the inputs of a full adder then the carry is given by B) A OR B OR (A AND B) C A) (A AND B) OR (A AND B) C D) A XOR B XOR (A XOR B) AND C C) A AND B OR (A OR B) AND C Part - B: Descriptive Answer Questions (2*8 = 16 marks) Note: Answer any One full question from each Unit. CO* PO* BT* Marks Unit - I 3 L2 5 Design a half subtractor and full subtractor using basic gates. 1. a) Write a truth table for a combinational logic circuit to generate an output b) of logic 1 whenever the result of the multiplication of two numbers of 2 3 L3 3 bits each is non-zero. Implement it using an 8:1 multiplexer. Implement the following expressions using 4:1 multiplexer 2. a) (i) $f(a,b) = \Sigma m (1,2)$ (ii) f(a, b) = a + b(iii) f (a, b, c) =a+b+c (iv) f (x, y, z) = $\Sigma m(0,2,3,4)$ 3 5 L3 (v) $f(x, y, z) = \prod M(0,3,4)$ Write a truth table for a three-input, one-output combinational circuit that has a logic-1 output when the majority of its inputs are logic-0 and a logic-0 output when the majority of its inputs are logic-1. Implement it L2 .3 3 using a 3 to 8-line decoder. Unit - II With a neat block diagram, symbol and function table, explain the 3. a) L2 operation of the Master-Slave JK flip-flop. 1 5 4 With the help of a block diagram, write the difference between b) 3 L2 combinational and sequential circuits. Give two examples for each. 4 1 Explain the working of the SR latch using a function table, symbol and a) logic diagram. Also, show how the SR latch can be modified to a D latch. 5 L2 4 Derive the characteristic equation for JK and D flip-flop. 3 L2 4 b)

PO* Program Outcome

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome;

Off-Campus Centre of Nitte (Deemed to be University) II Sem B. Tech (CBCS) Mid Semester Examinations - II, April 2025

EE1001-2- BASIC ELECTRICAL ENGINEERING

(For CS, IS, AD, CC, AM, CB, RI)

Max. Marks: 20 Duration: 1 Hour

PART-A: Multiple Choice Questions (1X4 = 4 Marks)

Note: Answer all Four questions in the answer book. Each question carries one mark.

1	1.	The current in a nearby coll changes									
			A magnet moves near a coil	D)	A coil moves	in a magne	etic field	u			
2	2.		C series motor has	D)	Constant spec	ed					
			High starting torque	D)	Low speed re	gulation					
i	3.	C) The	Low starting torque principle of operation of a transformer is bas	ed o	n:						
2		A)		B)	LUIZ S Law						
		C)	C) Mutual induction A rotating magnetic field is produced in a three-phase induction motor by B) Single-phase AC supply								
4	4.	A rotating magnetic field is produced in a three-phase induction B) Single-phase AC supply A) Three-phase AC supply B) Name of the above									
			C) DC supply D) None of the apo			oove					
	DART D. Descriptive Answer Questions (2X8=16 Marks)										
			Note: Answer any One full que	estic	on from eacn			0.04	PO*		
			Unit – I			Marks	BT*	CO*	PU		
	1	a)	A four-pole lap wound 400 V series motor has to	the f	ollowing data:						
	1 -	u	the state of the s		0.10						
			motor resistance = 0.6-ohm, iron and friction current taken by the motor is 70A, find: (i) Tota	1000	00		1 +0	3	1, 2		
			t the shaft			5	L*3	3	1, 4:		
		b)	With a neat diagram explain the principle of o	pera	ition of a DC	3	L2	3	1, 2		
									4.0		
1	2.	t - there phase induction motor				5	L2	3	1,2		
		b)									
		conductors and flux per pole 0.04 VVb. Find the speed of the					L3	3	1, 2		
			generator to generate 400 V. Unit – II								
3	3.	a)	A FOLIVA FOLIZ 2000/200V transformer has iron	and	d copper loss						
3	٥.	a)	1 250 W and 400 W respectively. Determine (d) li	le lidilipei oi						
			turns in each winding for a maximum core flux	or.	0.05 VVD, (D)	5	L3	4	1,2		
		ы	efficiency at half-rated kVA, and unity power factor Explain various losses that occur in a single-phase	oc uc	ansformer.	3	L2	4	1,2		
2	4.	b) a)	Explain the construction and working of	а	single-phase	-	1.2	4	1,2		
		-1	transformer			5	L2	4	1,4		
		b)	A single phase 50 Hz transformer has 80 turn winding and 400 turns on the secondary winding	ia. T	he net cross						
			sectional area of the core is 200 cm ² . If the p	rima	ry winding is						
			connected to 230 V supply, determine:								
			(i) The e.m.f. induced in the secondary winding (ii) Maximum value of the flux density in the core			3	L3	4	1,2		
BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome.											
U		2,00	*********	***							