Računalniške komunikacije 2024/25

uvod v predmet fizična plast

Računalniške komunikacije

Računalniške komunikacije:

- 3 ure predavanj, 2 uri laboratorijskih vaj tedensko
- vse informacije -> <u>UČILNICA</u>

Izvajalci:

- prof. dr. Zoran Bosnić (2. nadstropje, kabinet R2.17)
- as. dr. Matjaž Pančur (3. nadstropje R3.72, LRK)
- doc. dr. Aleš Jaklič (2. nadstropje, R2.33, LRV)
- as. dr. Jure Tuta (zunanji, e-mail)
- as. dr. Areeb Ahmed (2. nadstropje, R2.25, SUJT) -> vaje za tuje študente / labs for foreign students

Pričetki izvajanj:

- laboratorijske vaje: 3. 3. 2025
- tutorske vaje: 10. 3. 2025

Vsebina predmeta

- računalniška omrežja (elementi, vrste, topologije)
- arhitektura komunikacijskega sistema (komunikacijski model)
- Internet, sodobna omrežja (Ethernet, TCP, IP, ...)
- aplikacijski protokoli (HTTP, DHCP, POP3, FTP, DNS, ...)
- kriptografija
- omrežna varnost

Zakaj se učiti računalniških komunikacij?

- poznavanje vsakodnevnih orodij, tehnologij in protokolov:
 TCP/IP, DNS, HTTP, NAT, VPN, ...
- poznavanje principov sodobnih tehnologij
- radovednost?

Literatura

osnovna literatura:

• Z. Bosnić, M. Ciglarič: Računalniške komunikacije, učbenik (delovna verzija), 2023, PDF na učilnici.

dodatna literatura:

- Z. Bosnić, M. Ciglarič, J. F. Kurose, K. W. Ross: Računalniška omrežja. Pearson, 2015.
- J. F. Kurose, K. W. Ross: Computer Networking, 5th edition, Addison-Wesley, 2010.
- A. S. Tanenbaum, D. J. Wetherall: Computer Networks. Pearson, 2011.
- T. Vidmar: Informacijsko-komunikacijski sistem. Založba Pasadena, 2002.

Obveznosti predmeta

Podrobnosti na učilnici: Podatki o predmetu, obveznosti in literature

Na kratko:

- 1. sprotno delo: opravljene laboratorijske vaje (potrebno opraviti vsaj 9 od 11 nalog) LDNx
- končni izpit (pisni/ustni) IZP
- dodatni neobvezni kvizi: 5-6 kvizov za sprotno utrjevanje znanja Kx
 (niso pogoj za opravljanje predmeta, se ne vrednotijo za končno oceno)
- 4. **bonus:** 11 rešenih laboratorijskih vaj -> +10% na izpitu

Končna ocena predmeta: ocena IZP, če (#(LDN)>=9)

Splošno o omrežjih in terminologija

Omrežje

- Kaj je omrežje?
 - fizična defininicija: resurs, ki je zmožen povezovanja velikega števila naprav,
 - storitvena definicija: infrastruktura, ki nudi storitve (porazdeljenim) aplikacijam
 - www, VoIP, email, igre, P2P, elektronsko poslovanje

Omrežne naprave: klasične in eksotične

strežnik

prenosnik (brezžični)

mobilne naprave

IP okvir za sliko

toaster z vremensko napovedjo

internetna telefonija

najmanjši spletni strežnik na svetu

Komponente omrežja

1. končni sistemi (odjemalci in strežniki, ki uporabljajo omrežne aplikacije), cca. 900 mio naprav (leto 2016)

Mobilno omrežje Večji ponudnik int. Domače omrežje Lokalni ponudnik int. Omrežje podjetja

Komponente omrežja

2. jedro omrežja (usmerjevalniki paketov)

3. komunikacijske povezave (optika, baker, brezžične, ...)

ožičene povezave

Končni sistemi

- udeleženci v omrežju: namizni računalniki, strežniki, mobilni računalniki
- vloge v omrežju glede na storitve: vloga odjemalca, strežnika ali mešana (P2P)
- končni sistemi morajo dostopati do omrežja:
 - klicni dostop (56 kbps)
 - DSL
 - kabelski dostop
 - optični dostop (FTTH Fiber To The Home)
 - Ethernet
 - brezžični dostop (Wide-Area Wireless)

Dostop do omrežja (1/4)

modemski/klicni dostop

- počasen, 56 kbps, preko telefonskega omrežja,
- zasedenost telefona med uporabo

DSL (Digital Subscriber Line) dostop

- tudi uporablja telefonsko infrastrukturo (0-4 kHz telefon, 4-50 kHz upstream, 50 kHz 1 MHz downstream), individualen dostop!
- nekaj 100 Mbps navzven/navznoter (upstream/downstream)

Dostop do omrežja (2/4)

kabelski dostop

- uporablja TV infrastrukturo, ne telefonske
- več odjemalcev si deli dostop do skupnega vozlišča
- npr. 120 Mbps navznoter, 10 Mbps navzven

Dostop do omrežja (3/4)

FTTH (optičen) dostop

- optična povezava od ponudnika do doma ("skoraj" direktno, zagotovljena hitrost prenosa)
- visoke hitrosti prenosov: nekaj 10/100 Mbps (npr. 100/100 Mbps)

Ethernet

- običajno na javnih zavodih, univerzah, ...
- priklop preko ethernet stikala
- 10 Mbs, 100 Mbps, 1 Gbps, 10 Gbps,
 100 Gbps Ethernet, ...

Dostop do omrežja (4/4)

WiFi

- (deljen in neusmerjen medij!)
- 802.11b/g (WiFi): 11 ali 54 Mbps
- 802.11n/ac/ax (WiFi, v razvoju): 600 Mbps, 1300 Mbps, 10 Gbps

• 3G/4G/LTE/5G

- uporaba central mobilnih operaterjev
- ~2 Mbps (3G)*, 100 Mbps 1 Gbps(4G)*
- 5G (1 10Gbps)

Jedro omrežja

- mreža povezanih usmerjevalnikov
- kako poteka komunikacija?
 - **povezan način** (circuit switching): namenska povezava za vsak prenos (npr. telefonski klic). Faze: vzpostavitev zveze, prenos podatkov, rušenje zveze.
 - nepovezan način (packet switching): prenos podatkov "po kosih":
 - analogija: prevoz robe iz tovarne s tovornjaki, od katerih vsak potuje po svoji poti
 - omogoča uporabo omrežja več uporabnikom hkrati
 - enostavnejše, potrebni pa dodatni protokoli (iskanje poti, potrjevanje, ...)

Protokol

- dogovor o obliki in načinu poteka komunikacije in izmenjave sporočil med dvema ali večimi udeleženci v komunikaciji
- primerjava z analogijo iz realnega sveta:

- težava v komunikaciji: obe strani ne govorita enakega jezika
- drugi primeri protokolov iz realnega sveta?

Protokol

- "višjenivojski": TCP, IP, HTTP, FTP, SMTP, POP3, BitTorrent, ...
- "nižjenivojski": zaporedje bitov, kontrola zasičenja, kontrola toka, način potovanja paketa po omrežju itd.

- splošno uporabnost protokolov zagotovimo s standardizacijo:
 - IETF (Internet Engineering Task Force)
 - standardi v obliki dokumentov RFC (Request For Comments), trenutno jih je več kot 5000
 - drugi subjekti za standardizacijo (IEEE 802 itd.)

Standards organization

Institute of Electrical and Electronics Engineers

Omrežne storitve in plasti

Analogija: potovanje z letalom

• vsaka plast ima svoje "protokole", ki so specifični za storitve, ki jih plast zagotavlja

Torej...

- protokol = jezik, s katerim se pogovarja istoležni par procesov
- zakaj plasti?
 - sistematična zasnova zgradbe sistema
 - sprememba implementacije dela sistema je neodvisna od ostalega sistema

ISO/OSI model

- 7 plasti, ki definirajo sklope sorodnih funkcij komunikacijskega sistema
- plast N nudi storitve (streže) plasti N+1
- plast N zahteva storitve (odjema) od plasti N-1,
- protokol: pravila komuniciranja med istoležnima procesoma,
- entitetni par: par procesov, ki komunicira na isti plasti

Plasti ISO/OSI modela

- 1. **fizična**: prenos bitov po komunikacijskem kanalu (kodiranje, multipleksiranje)
- povezavna: okvirjanje bitov, kontrola pretoka, popravljanje napak, asinhrona/sinhrona komunikacija
- **3. omrežna**: usmerjanje, posredovanje, izogibanje zamašitvam
- 4. transportna: zanesljivost prenosa, učinkovitost
- 5. **sejna**: logično povezovanje procesov znotraj aplikacij (aplikacijsko multipleksiranje, pogosto implementirano v aplikaciji)
- **6. predstavitvena**: kodiranje podatkov, kompresija, sintaksa
- 7. aplikacijska: podatki aplikacije, storitve HTTP, SMTP itd.

OSI model in model TCP/IP (Internet)

primerjava modelov:

- ISO OSI: de iure, teoretičen, sistematičen, pomanjkanje imlementacij (izdelkov),
- TCP/IP: de facto, prilagodljiv, nesistematičen, fleksibilen, veliko izdelkov

Fizična plast

Fizična plast

Naloge:

- 1. kodiranje bitov z neko fizikalno veličino (signalom) za prenos po mediju (baker, optika, radijski, IR, ...)
- 2. prenos posameznih bitov v analogni ali digitalni obliki
- 3. prenos celotnega signala (zaporedja bitov po mediju)
- 4. pretvorba signala v obliko, ki je primerna za prenos po mediju

Prenosni sistem in kanal

- prenosni medij: naprava, ki omogoča razširjanje valovanja (elektromagnetno, radijsko, svetloba, IR)
- prenosni sistem uporablja prenosni kanal: napravo, ki lahko prenese bite (okvir) po mediju
- možne lastnosti prenosnega kanala:
 - smer: dvosmeren (sočasno ali izmenično), enosmeren
 - zaporednost: serijski (bit za bitom), paralelni (več bitov hkrati)
 - število točk: dvotočkovni, skupinski

Prenosni mediji (1/3)

zvita parica (unshielded twisted pair, UTP)

- dve vzporedni izolirani bakreni žici, par žic predstavlja povezavo
- zvita: manj interferenc, presluha ipd.
- 10 Gbps na krajše razdalje (lokalna omrežja)

- bakrena žica, izolacija, drugi vodnik, še ena izolacija
- odpornost proti motnjam, ni sevanja
- hitrost do 2 Gbps

Prenosni mediji (2/3)

optično vlakno

- mehanska občutljivost, zahtevno spajanje (težavno prisluškovanje!)
- do 100 km brez ponavljalnikov, hitrost do Tbps
- WDM (Wavelength Division Multiplexing): za prenos več signalov po enem vlaknu uporabimo več valovnih dolžin (barv) svetlobe
- v začetku le omrežne hrbtenice, danes tudi domače povezave (FTTH)

Prenosni mediji (3/3)

brezžične povezave

- radijske (WLAN, Bluetooth, GSM, ...)
- mikrovalovne (usmerjene)
- IR (majhne razdalje)
- satelitske (velike razdalje): Iridium, Thuraya, GPS, Galileo ...

Prenosni medij

- frekvenčna karakteristika: kakšne frekvence lahko medij prenese
 - Govor: 300 do 7000 Hz
 - Telefonski kanal: 500 do 3600 Hz
 - Hi-fi oprema: 100 do 20.000 Hz
- sprememba signala na mediju: posledica fizikalnih vplivov in omejitev

Modulacija

- modulacija: način analognega kodiranja digitalnega signala
- vrste
 - amplitudna modulacija (npr. za zvok: glasen pisk=1, tih pisk=0)
 - frekvenčna modulacija (npr. za zvok: visok pisk=1, nizek pisk=0)
 - fazna: sprememba faze za določen fazni kot pomeni spremembo signala.

180:

90:

Kvadratna modulacija

- kombinacija amplitudne in fazne
- več nivojev amplitude
- 4 fazni koti (0, 90, 180, 270 stopinj)
- posamezna sprememba signala (amplitude in faze) lahko v praksi označuje skupino 3 do 6 bitov

amplitudna modulacija

fazna modulacija

kvadratna modulacija

Kvadratna modulacija

konstelacijski diagram

Sprememba faznega kota	Amplituda	Kodirana vrednost	Diagram
0	nizka	000	90° 101
90	nizka	001	φ
180	nizka	010	
270	nizka	011	
0	visoka	100	180° 110 010 000 100 0°
90	visoka	101	011
180	visoka	110	
270	visoka	111	111 270°

Naslednja poglavja...

- povezavna plast
 - zaznavanje in odpravljanje napak
 - protokoli za dostop do skupinskega medija
 - naslavljanje
 - Ethernet

