

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Быстрое преобразование Фурье»

Студент 315 группы В. А. Сливинский

Руководители практикума к.ф.-м.н., доцент И.В. Рублёв к.ф.-м.н., доцент П.А. Точилин

Содержание

1	Пос	становка задачи	3
	1.1	Общая формулировка задачи	3
	1.2	Формальная постановка задачи	3
2	Вы	числение аналитических преобразований Фурье	4
	2.1	Некоторые необходимые обозначения и соотношения	4
	2.2	Вычисление аналитического преобразования Фурье	
		функции $f_1(t)=e^{-2 t }\cos(t)$	6
	2.3	Вычисление аналитического преобразования Фурье	
		функции $f_2(t)=rac{e^{- t }-1}{t}$	6

1 Постановка задачи

1.1 Общая формулировка задачи

Дана система функций (всюду далее, если не сказано противное, предполагается, что $f(t): \mathbb{R} \to \mathbb{R}$ и функция суммируема и обладает достаточной гладкостью)

$$\begin{cases}
f_1(t) = e^{-2|t|} \cos(t) \\
f_2(t) = \frac{e^{-|t|} - 1}{t} \\
f_3(t) = \frac{\operatorname{arctg} t^2}{1 + t^4} \\
f_4(t) = t^3 e^{-t^4}
\end{cases} \tag{1.1}$$

Для каждой функции из системы (1.1) требуется:

- 1. Получить аппроксимацию преобразования Фурье $F(\lambda)$ для каждой функции f(t) из заданного набора при помощи быстрого преобразования Фурье ($\mathbf{Б}\mathbf{\Pi}\mathbf{\Phi} / \mathbf{FFT}$), выбирая различные шаги дискретизации исходной функции и различные окна, ограничивающие область определения f(t)
- 2. Построить графики $F(\lambda)$
- 3. Для функций $f_1(t)$ и $f_2(t)$ из заданного набора вычислить аналитически преобразование Фурье

$$\mathfrak{F}(\lambda) = \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} dt$$
(1.2)

и сравнить графики $\mathfrak{F}(\lambda)$ с графиками $F(\lambda)$, полученного из аппроксимации через $\mathbf{Б} \mathbf{\Pi} \mathbf{\Phi}$

1.2 Формальная постановка задачи

- 1. Реализовать на языке MATLAB функцию plotFT(hFigure, fHandle, fFTHandle, step, inpLimVec, outLimVec) со следующими параметрами:
 - ullet hFigure указатель на фигуру, в которой требуется отобразить графики
 - fHandle указатель на функцию (Function Handle), которую требуется преобразовывать (f(t))
 - fFTHandle указатель на функцию (Function Handle), моделирующую аналитическое преобразование Фурье (1.2) функции f(t) (может быть пустым вектором, в таком случае график аналитического преобразования строить не требуется)
 - step положительное число, задающее шаг дискретизации Δt

- inpLimVector вектор-строка, задающая окно [a,b] для функции f(t), первый элемент вектора содержит a, второй b, причём a < b, но не обязательно a = -b
- outLimVector вектор-строка, задающая окно [c,d] для вывода графика преобразования Фурье (пределы осей абсцисс). В случае, если передаётся пустой вектор, следует брать установленные в фигуре пределы или определять свои разумным образом

Данная функция строит графики вещественной и мнимой частей численной аппроксимации преобразования Фурье (1.2) функции f(t), заданной в fHandle (и, при необходимости, соответствующие графики аналитического преобразования Фурье $\mathfrak{F}(\lambda)$)

Кроме того, данная функция, должна возвращать структуру, содержащую следующие параметры:

• **nPoints** — число вычисляемых узлов сеточной функции, рассчитываемое по формуле:

$$nPoints = \left\lfloor \frac{(b-a)}{step} \right\rfloor$$

• step — поправленное значение шага дискретизации Δt , рассчитываемое по формуле:

$$step = \frac{(b-a)}{nPoints}$$

- ullet inpLimVec окно [a,b] для функции f(t)
- \bullet out LimVec — окно для вывода графика преобразования Фурье $F(\lambda)$
- 2. Построить, используя написанную функцию plotFT, для каждой из функций системы (1.1) графики $F(\lambda)$ для разных значений входных параметров (окон **inpLimVec**, **outLimVec** и частоты дискретизации **step**).

В частности, для некоторых функций подобрать параметры так, чтобы проиллюстрировать эффекты наложения спектра, появления ряби и их устранения (в случае ряби — в точках непрерывности $F(\lambda)$)

3. Для функций $f_1(t)$ и $f_2(t)$ из системы (1.1) вычислить аналитически их преобразования Фурье $\mathfrak{F}(\lambda)$ и построить их графики вместе с графиками численной аппроксимации $F(\lambda)$

2 Вычисление аналитических преобразований Фурье

2.1 Некоторые необходимые обозначения и соотношения

Напомним, что преобразование Фурье $\mathfrak{F}(\lambda)$ функции f(t) задаётся формулой (1.2):

$$\mathfrak{F}(\lambda) = \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} dt$$

Впредь, будем для краткости писать:

$$f(t) \to \mathfrak{F}(\lambda)$$

Напомним также следующие свойства преобразования Фурье:

Свойство 2.1. Пусть

$$f(t) = \alpha \cdot f_1(t) + \beta \cdot f_2(t) , u \begin{cases} f_1(t) \to \mathfrak{F}_1(\lambda) \\ f_2(t) \to \mathfrak{F}_2(\lambda) \end{cases}$$

Тогда:

$$f(t) \to \alpha \cdot \mathfrak{F}_1(\lambda) + \beta \cdot \mathfrak{F}_2(\lambda)$$

Свойство 2.2. Пусть

$$f(t) = f_1(t) \cdot f_2(t)$$
, $u \begin{cases} f_1(t) \to \mathfrak{F}_1(\lambda) \\ f_2(t) \to \mathfrak{F}_2(\lambda) \end{cases}$

Тогда:

$$2\pi f_1(t) \cdot f_2(t) \to (\mathfrak{F}_1 * \mathfrak{F}_2)(\lambda) \ , \ \text{ede} \ (\mathfrak{F}_1 * \mathfrak{F}_2)(\lambda) = \int\limits_{-\infty}^{+\infty} \left[\mathfrak{F}_1(\lambda - s) \cdot \mathfrak{F}_2(s) \right] ds$$

Отметим некоторые тривиальные преобразования Фурье:

$$\delta(\lambda) \to 1$$
 (2.1)

$$1 \to 2\pi\delta(\lambda) \tag{2.2}$$

$$e^{iat} \to 2\pi\delta(\lambda - a)$$
 (2.3)

$$\cos(t) = \frac{e^{it} + e^{-it}}{2} \to \pi(\delta(\lambda - 1) + \delta(\lambda + 1))$$
(2.4)

$$\frac{1}{t} \to -i\pi \operatorname{sgn}(t) \tag{2.5}$$

Где $\delta(t) = \begin{cases} +\infty, & t=0 \\ 0, & t\neq 0 \end{cases}$ — дельта-функция Дирака, а соотношение (2.4) вытекает из свойства 2.1, с учётом (2.3).

Установим также важное отношения для свёртки дельта-функции с произвольной функцией $\varphi(t)$:

$$\left| (\delta * \varphi)(s) = \int_{-\infty}^{+\infty} \delta(s - \tau) \cdot \varphi(\tau) d\tau = \varphi(s) \right|$$
 (2.6)

Докажем следующее соотношение:

Лемма 2.1.

$$e^{-A|t|} \to \frac{2A}{A^2 + \lambda^2} \tag{2.7}$$

Доказательство:

$$\int_{-\infty}^{+\infty} e^{-A|t|} \cdot e^{-i\lambda t} dt = \int_{-\infty}^{0} e^{(A-i\lambda)t} dt + \int_{0}^{+\infty} e^{-(A+i\lambda)t} dt =$$

$$= \left[e^{(A-i\lambda)t} \cdot \frac{1}{A-i\lambda} \right]_{t=-\infty}^{0} - \left[e^{-(A+i\lambda)t} \cdot \frac{1}{A+i\lambda} \right]_{t=0}^{+\infty} =$$

$$= \frac{1}{A-i\lambda} + \frac{1}{A+i\lambda} = \frac{2A}{A^2 + \lambda^2}$$

2.2 Вычисление аналитического преобразования Фурье функции $f_1(t) = e^{-2|t|}\cos(t)$

Преобразование Фурье $\mathfrak{F}_1(\lambda)$ функции $f_1(t)=e^{-2|t|}\cos(t)$ задаётся формулой:

$$\mathfrak{F}_{1}(\lambda) = \int_{-\infty}^{+\infty} e^{-2|t|} \cos(t) e^{-i\lambda t} dt$$

Утверждение.

$$\mathfrak{F}_1(\lambda) = \frac{4(\lambda^2 + 5)}{\lambda^4 + 6\lambda^2 + 25} \tag{2.8}$$

Доказательство: Заметим, что $f_1(t)$ представима в виде:

$$f_1(t) = g_1(t) \cdot g_2(t)$$
, где $g_1(t) = e^{-2|t|}$, $g_2(t) = \cos(t)$ (2.9)

Пользуясь этим соотношением, выражениями для преобразований Фурье $g_1(t)$ (2.7) и $g_2(t)$ (2.4), установленным свойством 2.2 и соотношением (2.6) для свёртки с дельтафункцией, получим:

$$\mathfrak{F}_{1}(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{4}{4+\tau^{2}} \cdot \pi(\delta(\lambda-\tau-1)+\delta(\lambda+1-\tau)) d\tau =$$

$$= \frac{2}{4+(\lambda-1)^{2}} + \frac{2}{4+(\lambda+1)^{2}} = \frac{4(\lambda^{2}+5)}{\lambda^{4}+6\lambda^{2}+25}$$

2.3 Вычисление аналитического преобразования Фурье функции $f_2(t) = \frac{e^{-|t|}-1}{t}$

Преобразование Фурье $\mathfrak{F}_{2}(\lambda)$ функции $f_{2}(t)=rac{e^{-|t|}-1}{t}$ задаётся формулой:

$$\mathfrak{F}_{2}(\lambda) = \int_{-\infty}^{+\infty} \frac{e^{-|t|} - 1}{t} e^{-i\lambda t} dt$$

Утверждение.

$$\mathfrak{F}_{2}(\lambda) = i \left(\pi \operatorname{sgn}(\lambda) - 2 \operatorname{arctg}(\lambda) \right)$$
(2.10)

Доказательство: Аналогично (2.9) представим $f_2(t)$ в виде:

$$f_2(t) = g_1(t) \cdot g_2(t)$$
 где $g_1(t) = \left(e^{-|t|} - 1\right), g_2(t) = \frac{1}{t}$ (2.11)

Пользуясь установленными свойствами 2.1, 2.2, выражениями для преобразований Фурье $g_1(t)$ (2.7), (2.2) и $g_2(t)$ (2.5) и соотношением (2.6) для свёртки с дельта-функцией, получим:

$$f_2(t) \to \mathfrak{F}_2(\lambda) = \int_{-\infty}^{+\infty} \frac{e^{-|t|} - 1}{t} e^{-i\lambda t} dt = \frac{1}{\pi} \left[\left(\frac{1}{1 + (\cdot)^2} - \pi \delta(\cdot) \right) * (-i\pi \operatorname{sgn}(\cdot)) \right] (\lambda) =$$

$$= -i \int_{\lambda}^{+\infty} \frac{1}{1 + \tau^2} d\tau + i \int_{-\infty}^{\lambda} \frac{1}{1 + \tau^2} d\tau + \pi i \operatorname{sgn}(\lambda) =$$

$$= i \left(\pi \operatorname{sgn}(\lambda) + 2 \operatorname{arctg}(\lambda) \right)$$