Обозначим за $Code_t^n$ множество кодов длины n, исправляющих t ошибок. Покажем что коды $Code_t^n$ сильнее кодов $Code_{2t}^{2n}$. Действительно, рассмотрим $\mathbf{Q} = \{c_1 \cdot c_2 | c_1, c_2 \in Code_t^n\}$ ($[\cdot]$ - конкатенация слов).

Интуитивно понятно, что $Q \in Code_{2t}^{2n}$, покажем это формально.

Для c_1 выполняется $\forall x_1 \in A^n \ \forall y_1 \in Code_t^n: ||c_1 - x_1|| \leqslant t \Rightarrow ||c_1 - x_1|| < ||y_1 - x_1||$, и аналогично для c_2 .

Заметим, что $||c_1\cdot c_2-x_1\cdot x_2||=||c_1-x_1||+||c_2-x_2||$, поскольку $|c_1|=|x_1|,\ |c_2|=|x_2|$ и $||\cdot||$ - метрика Хемминга. С учётом этого, из предыдущего утверждения вытекает

 $\forall x_1 \cdot x_2 \in A^{2n} \ \forall y_1 \cdot y_2 \in Q: \ ||c_1 \cdot c_2 - x_1 \cdot x_2|| \leqslant 2t \ \Rightarrow \ ||c_1 \cdot c_2 - x_1 \cdot x_2|| < ||y_1 \cdot y_2 - x_1 \cdot x_2||$

Такое Q подходит под определение $Code_{2t}^{2n}$, а это означает, что код из $Code_t^n$ автоматически задаёт код из $Code_{2t}^n$

С другой стороны, рассмотрим код C_1 :

- \bullet 0 \rightarrow 000
- \bullet 1 \rightarrow 111

И код C_2 :

- \bullet 00 \rightarrow 000000
- \bullet 01 \rightarrow 000111
- \bullet 10 \rightarrow 111000
- 11 → 111111

Второй код исправляет 2 ошибки, первый же исправляет не больше двух. При кодировании 00 оба кода выдадут 000000. Допустим, при передаче

первые два бита изменились: 110000.

Тогда декодирование по первому коду выдаст 10, а по второму - 00. Видим, что при высокой концентрации ошибок в пределах одной области, код меньшей длины не способен их исправить.