

LOG2810

STRUCTURES DISCRÈTES

TD 10: GRAPHES

A2022

Directives pour la remise :

- Répondez directement sur ce document papier.
- La remise est individuelle, mais le travail en équipe est encouragé.
- La remise se fait à la fin de la séance de TD.
- Aucun retard ne sera accepté.
- Le non-respect des consignes entraînera automatiquement la note 0 pour ce TD.

Identification

Veuillez inscrire votre section, nom, prénom et matricule ainsi que les non	าร
des collègues avec lesquels vous avez collaboré pour le TD	

des conegues avec residueis vous avez conabore pour le 10
Section:
Nom:
Prénom :
Matricule:
Collègues :

Exercice 1:

Pour les graphes si dessous :

Graphe 1:

Graphe 2:

a. donner la liste d'adjacence des graphes 1 et 2.

Réponse :

graphe 1:

Sommet	Α	В	С	D	Е	F	G
Sommets	B,C	A,C,E	A,B,D,E,F	C,E,G	B,C,D,F	C,E,G	D,F
adjacents							

graphe 2:

Sommet	Α	В	С	D	E	F	G
Sommets	В	Е	A,B,D,F	G	C,D,F	G	
adjacents							

b. Donner les matrice d'adjacence des graphe 1 et 2.

Réponse :

Les lignes et les colonnes de chaque matrice sont respectivement étiquetées A,B,C,D,E,F,G.

$$\text{Graphe 1:} \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$\mbox{Graphe 2}: \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

c. Le graphe 1 est-il connexe?

Réponse :

oui

Exercice 2:

On considère le graphe suivant :

a. À partir du Sommet A, donnez un parcours en largeur du graphe.

Réponse : Plusieurs solutions possibles. Une solution est :

Sommet visité	Α	В	С	D	E	F	N
File des sommets	[B,C]	[C,D]	[D,E,F]	[E,F,N]	[F,N,I,J,G]	[N,I,J,G]	[I,J,G]
à visiter							

Sommet visité (suite)	-	J	G	M	K
File des sommets à	[I,J,G,M]	[G,M,K]	[M,K]	[K]	[]
visiter (suite)					

Un parcours en largeur possible est : A-B-C-D-E-F-N-I-J-G-M-K

b. À partir du sommet A, donnez un parcours en profondeur du graphe.

Réponse : Plusieurs solutions possibles. Une solution est :

On utilise la méthode de la pile.

Sommet visité	Α	В	D	N	1	M	K
Pile des sommets	[B,C]	[D,C]	[N,E,C]	[I,E,C]	[M,J,E,C]	[K,J,E,C]	[G,J,E,C]
à visiter							

Sommet visité (suite)	G	F	J	E	C
File des sommets à	[F,J,E,C]	[J,E,C]	[E,C]	[C]	[]
visiter (suite)					

Un parcours en profondeur possible est: A-B-D-N-I-M-K-G-F-C-E-J

Exercice 3:

On considère les graphes ci-dessous. Pour chacun, répondez à 2 questions :

- Le graphe admet-il un cycle hamiltonien? Si oui, donnez un exemple.
- Le graphe admet-il un cycle eulérien ? Justifiez votre réponse.

a. Graphe 1

Réponse :

- Graphe hamiltonien. Existence de cycle hamiltonien : 1-2-3-4-5-1
- Graphe eulérien. Tous les sommets sont de degrés pairs.

b. Graphe 2

Réponse:

- Graphe hamiltonien. Existence de cycle hamiltonien : 1-2-3-4-5-1
- Graphe non eulérien. Existence de sommets de degrés impairs. Exemples : 2, 5, 3, 4.

c. Graphe 3

Réponse :

- Graphe non hamiltonien. Existence d'un sommet isolé : 1.
- Graphe eulérien. Tous les sommets sont de degrés pairs.

d. Graphe 4

Réponse :

- Graphe non hamiltonien. Existence d'un sommet de degré 1.
 Exemples: 2, 5, 3, 4
- Graphe non eulérien. Existence de sommets de degrés impairs. Exemples : 2, 5, 3, 4.

Exercice 4:

a. Le graphe ci-dessous admet-il une chaîne eulérienne ? Justifiez votre réponse et si oui, déterminez-en une.

Réponse :

- Oui. Le graphe admet une chaîne eulérienne. En effet, il contient exactement 2 sommets de degrés impairs, soit deg(13) = 3 et deg(1) = 1
- Exemple de chaîne eulérienne : 1-5-6-9-10-11-6-7-5-2-8-12-11-7-4-13-2-3-13

b. Le graphe ci-dessous admet-il une chaîne hamiltonienne ? Si oui, déterminezen une.

Réponse :

Oui, exemple: a-b-g-c-f-d-e

Exercice 5:

Parmi les graphes ci-dessous, lesquels sont isomorphes ? Justifiez vos réponses.

Réponse:

On a:

- Graphe 1: deg(a) = 3, deg(b) = 4, deg(c) = 3, deg(d) = 4, deg(e) = 2
- Graphe 2: deg(a) = 3, deg(b) = 2, deg(c) = 4, deg(d) = 3, deg(e) = 4
- Graphe 3: deg(a) = 4, deg(b) = 3, deg(c) = 4, deg(d) = 2, deg(e) = 3
- Graphe 4: deg(a) = 4, deg(b) = 3, deg(c) = 3, deg(d) = 3, deg(e) = 3

Les graphes 1 et 2 sont isomorphes. Le graphe 1 peut être transformé en graphe 2 à travers la fonction f suivante : f(a) = d, f(b) = e, f(c) = a, f(d) = c, f(e) = b.

Les graphes 1 et 3 sont isomorphes. Le graphe 1 peut être transformé en graphe 3 à travers la fonction g suivante : g(a) = b, g(b) = a, g(c) = e, g(d) = c, g(e) = d.

Les graphes 2 et 3 sont isomorphes. Le graphe 2 peut être transformé en graphe 3 à travers la fonction h suivante : h(a) = e, h(b) = d, h(c) = c, h(d) = b, h(e) = a.

En vérifiant les propriétés de préservation des degrés, on a que le graphe 4 n'a aucun sommet de degré 2. De plus il a 4 sommets de degrés 3, ce qu'aucun autre graphe n'a. Il n'est donc isomorphe à aucun des graphes 1, 2 et 3.

Exercice 6:

Utilisez l'algorithme de Dijkstra pour calculer les parcours les plus courts du sommet de départ unique A vers tous les autres sommets. Spécifiez chacun des parcours et la distance pour atteindre chacun des sommets.

Réponse :Les étapes et les calculs sont consignés dans le tableau ci-dessous

Itération	S	Α	В	С	D	Е	F	G
0	Ø	0	∞	∞	8	8	∞	∞
1	{A}	-	1 (AB)	∞	8	3 (AE)	∞	8
2	{A, B}	-	-	3 (ABC)	8	2 (ABE)	∞	3 (ABG)
3	{A, B, E}	-	-	3 (ABC)	8	-	3 (ABEF)	3 (ABG)
4	{A, B, E, C}	-	-	-	6 (ABCD)	-	3 (ABEF)	3 (ABG)
5	{A, B, E, C, G}	-	-	-	6 (ABCD)	-	3 (ABEF)	-
6	{A, B, E, C, G, F}	-	-	-	6 (ABCD)	-	-	-
7	{A, B, E, C, G,F,D}	-	-	-	-	-	-	-
CONCLU	SION	-	1 (AB)	3 (ABC)	6 (ABCD)	2 (ABE)	3 (ABEF)	3 (ABG)

Exercice 7:

Skynet est un réseau de 15 routeurs. Chaque routeur est directement connecté à au moins 7 autres routeurs. Est-ce qu'une information peut transiter d'un routeur à n'importe quel autre à travers le réseau ? Justifier votre réponse en modélisant le problème sous forme de graphe.

Réponse :

On modélise le réseau Skynet sous forme d'un graphe G:

- chaque routeur est représenté par un sommet,
- 2 routeurs sont reliés par une arête s'ils sont directement connectés.

Une information peut transiter d'un routeur à n'importe quel autre à travers le réseau si et seulement si G est connexe.

Montrons que G est connexe :

Soit A un sommet quelconque. A est lié à au moins 7 sommets (routeurs) différents. Nous avons donc un sous-graphe connexe de 8 sommets.

Soit un sommet B ne faisant pas partie de ce sous-graphe. Il est également connecté à au moins sept autres sommets ; il y a donc un nouveau sous-graphe connexe de 8 sommets.

Il doit y avoir un sommet partagé entre les 2 sous-graphes, car sinon le réseau aurait au moins 16 sommets. Les 2 sous-graphes connexes sont donc connectés, d'où G est connexe.

Conclusion : oui, une information peut transiter d'un routeur à n'importe quel autre à travers Skynet .