Branden Fitelson Philosophy 12A Notes

Announcements & Such

- Grand Funk Railroad
- Administrative Stuff
 - My take-home mid-term solutions have been posted.
 - * These are worth studying. Some interesting things there.
 - We will be discussing the grade curve for the course as soon as all of the mid-term grades are in (I will do this on Thursday).
 - HW #4 is due Thursday (first submission).
- Today: Chapter 4 Natural Deduction Proofs for LSL
 - Today: *more proofs* using the basic natural-deduction rules.
 - Plus, a couple more topics from chapter 4 (↔ rules, and SI/TI).
 - Then, it's on to Chapter 5 (Monadic) Predicate Logic!
 - **MacLogic** a useful computer program for natural deduction.
 - * See http://fitelson.org/maclogic.htm.
 - **™** Make sure you do lots of proofs practice is the key here.

UCB Philosophy Chapter 4. Cont'd 03/30/10

Branden Fitelson Philosophy 12A Notes

2

[not in text]

10 More Examples Involving VI and VE

1. $(A \& B) \lor (A \& C) \vdash A$ [p. 111, ex. 2]

2. $(A \to A) \lor (B \to A), B \vdash A$ [p. 116, §4.5, ex. 11]

3. $(A \lor B) \lor C \vdash A \lor (B \lor C)$ [p. 116, ex. 19]

4. $A \lor B \vdash (A \to B) \to B$ [p. 116, ex. 10]

5. $A \& B \vdash \sim (\sim A \lor \sim B)$ [p. 116, ex. 14 (\vdash)]

6. $A \lor B \vdash \sim (\sim A \& \sim B)$ [p. 116, ex. 13]

7. $\sim (A \& B) \vdash \sim A \lor \sim B$ [p. 116, ex. 16 (¬)]

8. $\sim C \lor (A \to B) \vdash (C \& A) \to B$ [not in text]

 $9. \vdash (A \rightarrow B) \lor (B \rightarrow A)$

10. $\sim (A \vee B) \vdash \sim A \& \sim B$ [not in text]

UCB Philosophy Chapter 4, Cont'd 03/30/10

Dwoof of Evromple #7

Proof of Example #7

Philosophy 12A Notes

3

Problem is: \sim (A&B) $\vdash \sim A \smile \sim B$

Branden Fitelson

 $(1) \sim (A\&B)$ Premise 2 (2) $\sim (\sim A_{\sim} \sim B)$ Assumption (~I) 3 (3) ~A Assumption (~I) 3 (4) ~A~~B 3 vI 2,3 2,4 ~E (5) A 2 (6)~~A 3,5 ~1 2 (7)Α 6 DN 8 ~B

(8) Assumption (~I) 8 (9) ~A_{\(\sigma\)}~B 8 ~1 (10)Λ 2,9 ~E 2 (11)~~B 8.10 ~I 2 (12)В 11 DN 2

2 (13) A&B 7,12 &I 1,2 (14) \(\Lambda \) 1,13 \(\tag{15} \) \(\

(15) ~~(~A~~B) 2,14 ~I (16) ~A~~B 15 DN

UCB Philosophy Chapter 4, Cont'd 03/30/10

Branden Fitelson Philosophy 12A Notes 4

Proof of Example #8

Problem is: ${\sim}C_{\sim}(A \rightarrow B) \vdash (C\&A) \rightarrow B$

(1) ~C√(A→B) Premise 2 (2) C&A Assumption (→I) 3 (3) ~B Assumption (~I) 4 (4) ~C Assumption (\vee E) (5) C 2 &E 2,4 Λ 4,5 ~E (6) 7 (7) A→B Assumption (VE) (8) Α 2 &E

2,7 (9) B 7,8 \rightarrow E 2,3,7 (10) Λ 3,9 \sim E 1,2,3 (11) Λ 1,4,6,7,10 \sim E

(14) (C&A)→B

1,2 (12) ~~B 3,11 ~I 1,2 (13) B 12 DN

UCB Philosophy CHAPTER 4, CONT'D 03/30/10

2,13 →

Branden Fitelson Philosophy 12A Notes

Proof of Example #9

CHAPTER 4, CONT'D 03/30/10 UCB Philosophy

(13) $\sim \sim ((A \rightarrow B) \lor (B \rightarrow A))$

 $(11) (A \rightarrow B) \lor (B \rightarrow A)$

 $(14) (A \rightarrow B) \lor (B \rightarrow A)$

(12) Λ

Branden Fitelson	Philosophy 12A Note	25
	Proof of Example #10	
Problem is: ~	(A∨B) ⊦ ~A&~B	
1	(1) ~(A∨B)	Premise
2	(2) A	Ass (~I)
2	(3) A∨B	2 V
1,2	(4) A	1,3 ~E
1	(5) ~A	2,4 ~1
6	(6) B	Ass (~I)
6	(7) A∨B	6 √l
1,6	(8) Λ	1,7 ~E
1	(9) ~B	6,8 ~1
1	(10) ~A&~B	5,9 &I
JCB Philosophy	Chapter 4, Cont'd	03/30/

Branden Fitelson

Philosophy 12A Notes

10 vI

1,11 ~E

1,12 ~I

13 DN

The Rule of Definition for the Biconditional

Rule of Definition for \leftrightarrow (Df): If $(p \rightarrow q) \& (q \rightarrow p)$ occurs as the entire formula at line j, then at line k we may write $p \leftrightarrow q$, labeling the line 'j Df' and writing on its left the same numbers as are on the left of j. Conversely, if $p \leftrightarrow q$ occurs as the entire formula at a line j, then at line k we may write $(p \rightarrow q) \& (q \rightarrow p)$, labeling the line 'j Df' and writing on its left the same numbers as are on the left of j.

$$a_1, \dots, a_n$$
 (j) $(p \rightarrow q) \& (q \rightarrow p)$
 \vdots
 a_1, \dots, a_n (k) $p \leftrightarrow q$ j Df
 OR
 a_1, \dots, a_n (j) $p \leftrightarrow q$
 \vdots
 a_1, \dots, a_n (k) $(p \rightarrow q) \& (q \rightarrow p)$ j Df

Branden Fitelson

5

Philosophy 12A Notes

Using ↔ in MacLogic

- Using the Definition strategy of MacLogic (accessed *via* the button), we can implement our Df. rule for \leftrightarrow . Do not use \leftrightarrow I or \leftrightarrow E!
- Using MacLogic's Definition strategy is much simpler than using its Tautology strategy (I did that last time, which was cumbersome).

To get to Definition, first:

then

- Here is a non-trivial example: $A \leftrightarrow \sim B \vdash \sim (A \leftrightarrow B)$. Let's try to tackle this one, using MacLogic's Definition strategy for our Df.
- The shortest proof I've been able to find is 18 steps (next slide). Forbes gives a 20-stepper in his discussion of this example (p. 118).

CHAPTER 4, CONT'D 03/30/10

UCB Philosophy CHAPTER 4. CONT'D

03/30/10

UCB Philosophy

Branden Fitelson	itelson Philosophy 12A Notes				
Problem is :	A⇔~B ⊦ ~(A	A⇔B)			
1	(1)	A⇔~B	Ass		
2	(2)	A⇔B	Ass		
1	(3)	(A→~B)&(~B→A)	1 Defn.		
1	(4)	A→~B	3 &E		
1	(5)	~B→A	3 &E		
6	(6)	В	Ass		
2	(7)	(A→B)&(B→A)	2 Defn.		
2	(8)	B→A	7 &E		
2,6	(9)	A	8,6 →E		
1,2,6	(10)	~B	4,9 →E		
1,2,6	(11)	Λ	10,6 ~E		
1,2	(12)	~B	6,11 ~I		
1,2	(13)	A	5,12 →E		
1,2	(14)	~B	4,13 →E		
2	(15)	A→B	7 &E		
1,2	(16)	В	15,13 →E		
1,2	(17)	Λ	14,16 ~E		
1	(18)	~(A⇔B)	2,17 ~l		
UCB Philosophy		Chapter 4, Cont'd	03/30/10		

Branden Fitelson Philosophy 12A Notes 10

Sequent and Theorem Introduction: I

- You may have noticed that certain important sequents or theorems tend to get proven over and over again in different problems.
- For instance, the sequent $X \vee Y$, $\sim X \vdash Y$ is a very useful thing to know, as are the sequents $X \to Y$, $\sim Y \vdash \sim X$, $\lambda \vdash X$, and many others.
- It would be nice if we had a rule that allowed us to say "OK, I've proven this sequent already, so I don't have to prove it again here".
- We have two such rules. They are called *Sequent Introduction* (SI) for sequents, and *Theorem Introduction* (TI) for theorems.
- SI and TI allow us to avoid having to re-solve certain sub-problems that we already know how to solve. This makes proofs shorter.
- We will have a fixed list of sequents and theorems that we'll be allowed to use in conjunction with SI and TI.

UCB Philosophy CHAPTER 4, CONT'D 03/30/10

Branden Fitelson Philosophy 12A Notes 11

Sequent and Theorem Introduction: II

- Forbes lists a bunch of sequents and Theorems on page 123 that we may use with SI or TI. There's a MacLogic file containing all of them.
- Here are a few of the sequents and theorems that tend to be useful:

 $\vdash p \lor \sim p$

$$p \lor q, \sim p \vdash q; \text{ or; } p \lor q, \sim q \vdash p$$
 (DS)
 $p \to q, \sim q \vdash \sim p$ (MT)
 $p \vdash q \to p; \text{ or; } \sim p \vdash p \to q$ (PMI)

$$p \vdash q \rightarrow p$$
; or; $\sim p \vdash p \rightarrow q$ (PMI)
 $\vdash p \lor \sim p$ (LEM)

$$\sim (p \& q) \dashv \vdash \sim p \lor \sim q$$
 (DEM)

$$\sim (p \vee q) \dashv \vdash \sim p \& \sim q \tag{DEM}$$

$$\sim (p \lor q) \dashv \vdash \sim p \& \sim q$$
 (DEM)
$$\sim (\sim p \lor \sim q) \dashv \vdash p \& q$$
 (DEM)

$$\sim (\sim p \lor \sim q) \dashv \vdash p \& q$$
 (DEM)
$$\sim (\sim p \& \sim q) \dashv \vdash p \lor q$$
 (DEM)

$$A \vdash \mathcal{P}$$
 (EFQ)

$$p \& (q \lor r) \dashv \vdash (p \& q) \lor (p \& r)$$
 (DIST)

UCB Philosophy CHAPTER 4. CONT'D 03/30/10 Branden Fitelson Philosophy 12A Notes 12

Sequent and Theorem Introduction: III

• Remember the proof for #9 above: $\vdash (A \rightarrow B) \lor (B \rightarrow A)$.

```
Assumption (~I)
                          (1) \sim ((A \rightarrow B) \vee (B \rightarrow A))
                          (2)
                                                                Assumption (→I)
3
                          (3) ~A
                                                                Assumption (~I)
                           (4) A
                                                                Assumption (→I)
2
                                                                4,2 →
                           (5) A→B
2
                          (6) (A \rightarrow B) \lor (B \rightarrow A)
                                                                 5 vI
                                Λ
                                                                1.6 ~E
                          (8)
                          (9) A
                                                                8 DN
                         (10) B→A
                                                                2.9 →
                         (11) (A \rightarrow B) \lor (B \rightarrow A)
                                                                 10 vI
                         (12) A
                                                                 1.11 ~E
                         (13) \sim \sim ((A \rightarrow B) \lor (B \rightarrow A))
                                                                1,12 ~I
                         (14) (A \rightarrow B) \lor (B \rightarrow A)
                                                                13 DN
```

03/30/10

UCB Philosophy CHAPTER 4. CONT'D Branden Fitelson Philosophy 12A Notes

13

Sequent and Theorem Introduction: IV

• Using TI and SI, we can obtain the following much simpler proof:

	(1) A~~A	TI (LEM)
2	(2) A	Assumption (VE)
2	(3) B→A	2 SI (PMI)
2	$(4) (A \rightarrow B) \lor (B \rightarrow A)$	3 vI
5	(5) ~A	Assumption (VE)
5	(6) A→B	5 SI (PMI)
5	$(7) (A \rightarrow B) \lor (B \rightarrow A)$	6 VI
	$(8) (A \rightarrow B) \lor (B \rightarrow A)$	1,2,4,5,7 ∨E

- Here, LEM is the theorem $\vdash A \lor \sim A$ (which we have already proven), and PMI stands for either of the sequents $\sim A \vdash A \to B$ (used at line 6), or $A \vdash B \to A$ (used at line 3), both of which we've proven.
- SI allows you to use (*any* substitution instance of) *any* sequent that you've already proven to make an inference at any stage of a proof.
- TI allows you to write down (*any* substitution instance of) *any* theorem that you have already proven at *any* stage of a proof.

UCB Philosophy Chapter 4, Cont'd 03/30/10

Branden Fitelson Philosophy 12A Notes 14

The Formal Definitions of SI and TI

- **Sequent Introduction** (SI). Suppose $r_1, ..., r_n \vdash s$ is a *substitution-instance* of the sequent $p_1, ..., p_n \vdash q$ which we have already proved, and that the formulae $r_1, ..., r_n$ occur at lines $j_1, ..., j_n$ in a proof. Then we may infer s at line k, labeling the line ' $j_1, ..., j_n$ SI (Identifier)' and writing on the left all numbers which appear on the left of lines $j_1, ..., j_n$.
- Theorem Introduction (TI). If $\vdash s$ is a *substitution-instance* of some theorem $\vdash q$ which we have already proved, we may introduce a new line k into a proof with the formula s at it and no numbers on its left, labeling the line 'TI (Identifier)'.
- 'Identifier' stands for the name of a sequent or theorem that has already been proven (*e.g.*, MT, DS, PMI, LEM, *etc*). See Forbes's list.
- Note: TI is just a *special case* of SI (with n = 0).

UCB Philosophy Chapter 4, Cont'd 03/30/10

Branden Fitelson Philosophy 12A Notes 15

SI and TI: A Relatively Easy Example

• Use SI/TI to find a "short" proof of: $\sim (A \rightarrow (B \lor C)) \vdash (B \lor C) \rightarrow A$.

Problem is : $\sim (A \rightarrow (B \lor C)) \vdash (B \lor C) \rightarrow A$

1 (1) $\sim (A \rightarrow (B \lor C))$ Premise 1 (2) $A \& \sim (B \lor C)$ 1 SI Neg-Imp1 1 (3) A 2 &E 1 (4) $(B \lor C) \rightarrow A$ 3 SI PMI1

UCB Philosophy Chapter 4, Cont'd 03/30/10

Branden Fitelson Philosophy 12A Notes 16

SI and TI: A More Challenging Example

• Use SI/TI to find a "short" proof of: $A \rightarrow (B \lor C) \vdash (A \rightarrow B) \lor (A \rightarrow C)$. Problem is: $A \rightarrow (B \lor C) \vdash (A \rightarrow B) \lor (A \rightarrow C)$

1 1 3 3 3 6 7 7 7 10 10	(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)	$A \rightarrow (B \lor C)$ $\sim A \lor (B \lor C)$ $\sim A$ $A \rightarrow B$ $(A \rightarrow B) \lor (A \rightarrow C)$ $B \lor C$ B $A \rightarrow B$ $(A \rightarrow B) \lor (A \rightarrow C)$ C $A \rightarrow C$ $(A \rightarrow B) \lor (A \rightarrow C)$	Premise 1 SI IMP1 Assumption (\scalenge) 3 SI PMI2 4 \scalenge - - - - - - - - - - - - -
10	(11)	A→C	
10 6 1	(12) (13) (14)	$(A\rightarrow B)_{\checkmark}(A\rightarrow C)$ $(A\rightarrow B)_{\checkmark}(A\rightarrow C)$ $(A\rightarrow B)_{\checkmark}(A\rightarrow C)$	11

UCB Philosophy Chapter 4, Cont'd 03/30/10

Branden Fitelson Philosophy 12A Notes 18

Chapter 5: Predication and Quantification

• Consider the following two arguments:

① Socrates is wise. ② Everyone is happy. ② ∴ Someone is wise. ∴ Plato is happy.

• Intuitively, both ① and ② are *valid* (*why*?). But, if we try to translate these into LSL, we get the *in*valid LSL forms:

- In LSL, we are not able to capture the *logical structure* shared between premises and conclusions of these kinds of arguments.
- If it's not *atomic sentences* that the premises and conclusions of such arguments have in common (structurally), then what *is* it?
- This is what Chapter 5 is about...

UCB Philosophy Chapter 4, Cont'd 03/30/10

Branden Fitelson Philosophy 12A Notes 19

Predication and Quantification: II

- We need a *richer language* than LSL one which accurately captures the deeper *logical structure* of arguments like ① and ②. New Jargon:
- A **predicate** is something which *applies to* an object or *is true of* an object or which an object *satisfies. E.g.*, Socrates satisfies the predicate (**is**) **Wise**.
- A **proper name** is a word or a phrase which *stands for*, or *refers to*, or *denotes* a specific person, place, or thing. *E.g.*, 'Socrates' is a proper name.
- **Quantifier phrases** specify *quantities. E.g.*, 'someone' means *at least one* person and 'everyone' means *all* people. 'Some' and 'all' are **quantifiers**.
- The collection of objects to which the quantifiers in a statement are relativized is called the domain of discourse of the statement (e.g., 'someone' quantifies only over people, 'sometime' quantifies over times).
- Chapter 5 introduces the logical language LMPL (the Language of Monadic Predicate Logic) that contains these elements (and a few more tricks).

Branden Fitelson Philosophy 12A Notes 20

Symbolization in LMPL I: New Atomic Sentences

- Among the atomic sentences of LMPL (in addition to LSL sentence letters) are (new) strings of the form ${}^{r}Xn^{3}$, where 'X' is a (monadic) predicate, and 'n' is an individual constant (i.e., a proper name).
- We will use the lower-case letters 'a'-'s' as individual constants ('t'-'z' are used as variables — much more on variables later).
- Some examples of these new kinds of atomic sentences:
 - 'Branden is tall.' \mapsto 'Tb'.
 - 'Honda is an automobile manufacturer.' \mapsto 'Ah'.
 - 'New York is a city.' \mapsto 'Cn'.
- As in LSL, we can *combine* different LMPL atomic sentences using the sentential connectives to yield complex sentences. For instance:
 - 'Branden is tall, but Ruth is not tall.' \rightarrow 'Tb & \sim Tr'.

03/30/10 UCB Philosophy CHAPTER 4, CONT'D 03/30/10

UCB Philosophy Chapter 4, Cont'd 03/30/10