Learning Combinatorial Optimization Algorithms over Graphs

Hanjun Dai, Elias Khalil, Yuyu Zhang, Bistra Dilkina, Le Song

NeurlPS'17

Approach

Input: Graph G = (V, E), weights w(u, v) for $(u, v) \in E$

Algorithm design pattern: Greedy

Feasible solution constructed by successively adding nodes to solution

State representation: Graph embedding

Algorithm training: Fitted Q-learning

Outline

1. Greedy algorithms

- 2. Graph representation
- 3. RL formulation
- 4. Q-learning
- 5. Experiments

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:

Greedily add vertices of edge with maximum degree sum

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:

Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm

Maximum cut

Find partition $(S, V \setminus S)$ of nodes that maximizes

$$\sum_{(u,v)\in C} w(u,v)$$
 where $C = \{(u,v)\in E: u\in S, v\not\in S\}$

If w(u, v) = 1 for all $(u, v) \in E$:

$$\sum_{(u,v)\in\mathcal{C}} w(u,v) = 5$$

Maximum cut

Find partition $(S, V \setminus S)$ of nodes that maximizes

$$\sum_{(u,v)\in C} w(u,v)$$
 where $C = \{(u,v)\in E: u\in S, v\not\in S\}$

Greedy: move node from one side of cut to the other Move node that results in the largest improvement in cut weight

Maximum cut

Find partition $(S, V \setminus S)$ of nodes that maximizes

$$\sum_{(u,v)\in\mathcal{C}} w(u,v)$$
 where $\mathcal{C}=\{(u,v)\in\mathcal{E}:u\in\mathcal{S},v\notin\mathcal{S}\}$

Greedy: move node from one side of cut to the other Move node that results in the largest improvement in cut weight

Scoring function that guides greedy algorithm

General greedy algorithm formulation

- 1. Partial solution is an ordered list $S = (v_1, v_2, ..., v_{|S|}), v_i \in V$
- 2. Helper function h(S) maps S to combinatorial structure, eg:
 - **Maxcut:** h(S) returns cut $C = \{(u, v) \in E : u \in S, v \notin S\}$
 - **TSP:** h(S) maintains a partial tour according to order of nodes in S
 - Min vertex cover: h(S) does nothing
- 3. Quality of S evaluated by function c(h(S), G), e.g.:
 - Maxcut: $c(h(S), G) = \sum_{(u,v) \in C = h(S)} w(u,v)$
 - **TSP:** $c(h(S), G) = -\sum_{i=1}^{|S|-1} w(S[i], S[i+1]) w(S[|S|], S(1))$
 - Min vertex cover: c(h(S), G) = -|S|

General greedy algorithm formulation

4. Add node that maximizes an evaluation function Q(h(S), v):

$$S \leftarrow (S, v^*)$$
 where $v^* = \underset{v \notin S}{\operatorname{argmax}} Q(h(S), v)$

5. Terminate based on termination criterion t(h(S))

This paper: Use RL to learn evaluation function $\hat{Q}(h(S), v; \Theta)$

Model parameters

Outline

- 1. Greedy algorithms
- 2. Graph representation
- 3. RL formulation
- 4. Q-learning
- 5. Experiments

Representation: graph embedding

•
$$x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{else} \end{cases}$$

• Compute embedding over T iterations ($\mu_v^{(0)} = \mathbf{0}$):

$$\boldsymbol{\mu}_{v}^{(t+1)} \leftarrow \text{relu}\left(\boldsymbol{\theta}_{1}\boldsymbol{x}_{v} + \boldsymbol{\theta}_{2} \sum_{u \in N(v)} \boldsymbol{\mu}_{u}^{(t)} + \boldsymbol{\theta}_{3} \sum_{u \in N(v)} \text{relu}(\boldsymbol{\theta}_{4}\boldsymbol{w}(v,u))\right)$$
Trainable parameters

Representation: graph embedding

•
$$x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{else} \end{cases}$$

• Compute embedding over T iterations ($\mu_v^{(0)} = \mathbf{0}$):

$$\boldsymbol{\mu}_{v}^{(t+1)} \leftarrow \text{relu}\left(\boldsymbol{\theta}_{1}x_{v} + \boldsymbol{\theta}_{2}\sum_{u \in N(v)}\boldsymbol{\mu}_{u}^{(t)} + \boldsymbol{\theta}_{3}\sum_{u \in N(v)}\text{relu}(\boldsymbol{\theta}_{4}w(v,u))\right)$$

(Usually T = 4)

•
$$\hat{Q}(h(S), v; \Theta) = \boldsymbol{\theta}_5^{\mathsf{T}} \text{relu} \left(\left[\boldsymbol{\theta}_6 \sum_{u \in V} \boldsymbol{\mu}_u^{(T)}, \boldsymbol{\theta}_7 \boldsymbol{\mu}_u^{(T)} \right] \right)$$

Concatenation

Representation: graph embedding

•
$$x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{else} \end{cases}$$

• Compute embedding over T iterations ($\mu_v^{(0)} = \mathbf{0}$):

$$\boldsymbol{\mu}_{v}^{(t+1)} \leftarrow \text{relu}\left(\boldsymbol{\theta}_{1}\boldsymbol{x}_{v} + \boldsymbol{\theta}_{2} \sum_{u \in N(v)} \boldsymbol{\mu}_{u}^{(t)} + \boldsymbol{\theta}_{3} \sum_{u \in N(v)} \text{relu}(\boldsymbol{\theta}_{4}\boldsymbol{w}(v, u))\right)$$

(Usually T = 4)

•
$$\hat{Q}(h(S), v; \Theta) = \boldsymbol{\theta}_{5}^{\mathsf{T}} \text{relu} \left(\left[\boldsymbol{\theta}_{6} \sum_{u \in V} \boldsymbol{\mu}_{u}^{(T)}, \boldsymbol{\theta}_{7} \boldsymbol{\mu}_{u}^{(T)} \right] \right)$$

Surrogate for h(S)

for v

Outline

- 1. Greedy algorithms
- 2. Graph representation
- 3. RL formulation
- 4. Q-learning
- 5. Experiments

Reinforcement learning formulation

State: $\sum_{u \in V} \mu_u^{(T)}$

Action: Choose vertex $v \in V \setminus S$ to add to solution

Transition (deterministic): For chosen $v \in V \setminus S$, set $x_v = 1$

Reinforcement learning formulation

Reward: r(S, v) is objective change when move to S' = (S, v) r(S, v) = c(h(S'), G) - c(h(S), G) $c(h(\emptyset), G) = 0$, so cumulative reward of **terminal state** \hat{S} is $\sum_{i=1}^{|\hat{S}|} r(S_i, v_i) = c(h(\hat{S}), G)$

Policy (deterministic):
$$\pi(v|S) = \begin{cases} 1 & \text{if } v = \arg\max_{v' \notin S} \hat{Q}(h(S), v'; \Theta) \\ 0 & \text{else} \end{cases}$$

Outline

- 1. Greedy algorithms
- 2. Graph representation
- 3. RL formulation
- 4. Q-learning
- 5. Experiments

Q-learning

Recall standard (1-step) Q-learning:

$$\min_{\Theta} \left(y - \hat{Q}(h(S_t), v_t; \Theta)\right)^2$$
 where $y = r(S_t, v_t) + \gamma \max_{v'} \hat{Q}(h(S_{t+1}), v'; \Theta)$

Challenge:

- Final objective value only revealed after many steps
- 1-step update may be too myopic

Instead, use n-step Q-learning [Watkins, '89]

n-step Q-learning

$$\min_{\Theta}\left(y-\hat{Q}(h(S_t),v_t;\Theta)\right)^2$$
 where $y=\sum_{i=0}^{n-1}\gamma^ir(S_{t+1},v_{t+i})+\gamma^n\max_{v'}\hat{Q}(h(S_{t+n}),v';\Theta)$

Q-learning for the greedy algorithm

```
initialize set M = \emptyset
for episode e = 1, ..., L:
sample graph G from underlying distribution D
initialize state to empty S_1 = ()
```

Q-learning for the greedy algorithm

```
for episode e = 1, ..., L:
      for step t = 1, ..., T:
           v_t = \begin{cases} \text{random node } v \notin S_t & \text{with probability } \epsilon \\ \underset{v \notin S_t}{\text{argmax }} \widehat{Q}(h(S_t), v; \Theta) & \text{otherwise} \end{cases}
            add v_t to partial solution S_{t+1} = (S_t, v_t)
           if t \geq n:
add tuple (S_{t-n}, v_{t-n}, \sum_{i=1}^n R(S_{t-i}, v_{t-i}), S_t) to M replay sample batch B \sim M
                 update \Theta using SGD over B
```

Outline

- 1. Greedy algorithms
- 2. Graph representation
- 3. RL formulation
- 4. Q-learning
- 5. Experiments

Approximation ratio

Results measured in terms of approximation ratio

Algorithm's solution OPT

Min vertex cover

Barabasi-Albert random graphs

Paper's approach

Another DL approach [Bello et al., arXiv'16]

2-approximation algorithm

Greedy algorithm from first few slides

Max cut

Barabasi-Albert random graphs

Paper's approach

Another DL approach [Bello et al., arXiv'16]

Goemans-Williamson algorithm

Greedy algorithm from first few slides

TSP

Uniform random points on 2-D grid

Paper's approach

- Initial subtour: 2 cities that are farthest apart
- Repeat the following:
 - Choose city that's farthest from any city in the subtour
 - Insert in position where it causes the smallest distance increase

[Rosenkrantz et al., SIAM JoC'77]

Runtime comparisons

CPLEX-1st: 1st feasible solution found by CPLEX

Min vertex cover visualization

Nodes seem to be selected to balance between:

- Degree
- Connectivity of the remaining graph

Overview

Learn greedy heuristics for hard combinatorial problem

Approach based on graph representation + RL

Suggest approach could be used for algorithm discovery "New and interesting" greedy strategies "which intuitively make sense but have not been analyzed before," thus could be a "good assistive tool for discovering new algorithms."