M1 Systèmes dynamiques

Raphaël KRIKORIAN

Chapitre 6
EDO à coefficients périodiques, Résonance paramétrique

M1 Systèmes dynamiques

E.D.O. linéaires périodiques

On suppose à présent que $A(\cdot) \in C^0(I, M(n, \mathbb{K}))$ est T-périodique, c.-à-d.

$$A(\cdot + T) = A(\cdot)$$

et on se propose de voir dans quelle mesure cette information supplémentaire nous renseigne sur la résolvante de $\dot{X}(t) = A(t)X(t)$.

Sommaire Plan du cours 3

- 1 E.D.O. linéaires périodiques
 - Conséquences de la périodicité
 - Le théorème de Floquet
- 2 La résonance paramétrique

M1 Systèmes dynamique

E.D.O. linéaires périodique

E.D.O. linéaires périodiques : propriétés de la résolvante

Théorème

Si $A(\cdot)$ est T-périodique alors,

i) pour tous $t_1, t_2 \in \mathbb{R}$ on a,

$$R_A(t_2+T,t_1+T)=R_A(t_2,t_1);$$

ii) pour tout $t \in \mathbb{R}$,

$$R_A(t+T,t) = R_A(t,0)R(T,0)R_A(t,0)^{-1}.$$

M1 Systèmes dynamiques E.D.O. linéaires périodiques / 30 M1 Systèmes dynamiques E.D.O. linéaires périodiques / 30

E.D.O. linéaires périodiques : propriétés de la résolvante

Démonstration

Montrons i) : Soient $v \in \mathbb{K}^n$, $X(\cdot)$ la solution de X'(t) = A(t)X(t) telle que $X(t_1) = v$ et $Y(\cdot) := X(\cdot - T)$:

$$Y'(t) = X'(t-T) = A(t-T)X(t-T)$$

= $A(t)Y(t)$ (A est T-périodique.)

Donc $X(\cdot), Y(\cdot) \in \mathcal{E}_A$.

$$X(t_2) = R_A(t_2, t_1)X(t_1) = R_A(t_2, t_1).v$$

 $Y(t_2 + T) = R_A(t_2 + T, t_1 + T).Y(t_1 + T) = R_A(t_2 + T, t_1 + T).v$

$$X(t_2) = Y(t_2 + T) \Longrightarrow R_A(t_2, t_1).v = R_A(t_2 + T, t_1 + T).v$$

C'est vrai pour tout v donc $R_A(t_2, t_1) = R_A(t_2 + T, t_1 + T)$

M1 Systèmes dynamiques

E.D.O. linéaires périodiques

/ 30

E.D.O. linéaires périodiques : le théorème de Floquet

Théorème (de Floquet)

Soit $A \in C^k(\mathbb{R}, M_n(\mathbb{K}))$ T-périodique. Il existe alors une matrice $A_0 \in M_n(\mathbb{K})$ et une fonction $P \in C^k(\mathbb{R}, Gl(n, \mathbb{K}))$ T-périodique si $\mathbb{K} = \mathbb{C}$ (resp. 2T-périodique si $\mathbb{K} = \mathbb{R}$) telles que pour tous $t, t_0 \in \mathbb{R}$,

$$R_A(t,0) = P(t)e^{tA_0}.$$

On a

$$e^{TA_0} = R_A(T, 0),$$
 (resp. $e^{2TA_0} = R_A(2T, 0)$).

E.D.O. linéaires périodiques : propriétés de la résolvante

Montrons ii) : on a

$$R_A(t+T,t) = R_A(t+T,T).R(T,0).R(0,t),$$

d'après i)

$$R_A(t+T,T)=R_A(t,0),$$

ďoù

$$R_A(t+T,t) = R_A(t,0).R(T,0).R(0,t)$$

= $R_A(t,0).R(T,0).R_A(t,0)^{-1}$.

M1 Systèmes dynamique

E.D.O. linéaires périodique

E.D.O. linéaires périodiques : le théorème de Floquet

Démonstration

En utilisant la décomposition S+N on peut démontrer que pour toute matrice $R \in GL(n,\mathbb{C})$ (resp. $R \in GL(n,\mathbb{R})$) (inversible) il existe $A \in M(n,\mathbb{C})$ telle que $e^A = R$ (resp. $e^{2A} = R^2$).

Supposons $\mathbb{K} = \mathbb{C}$ (le cas $\mathbb{K} = \mathbb{R}$ est similaire). Il existe A_0 tel que $e^{A_0} = R(T, 0)$.

Posons $P(t) = R(t, 0)e^{-tA_0}$.

 $P(\cdot)$ est T-périodique :

M1 Systèmes dynamiques E.D.O. linéaires périodiques / 30 M1 Systèmes dynamiques E.D.O. linéaires périodiques / 30

E.D.O. linéaires périodiques : le théorème de Floquet

En effet,

$$P(t+T) = R(t+T,0)e^{-(t+T)A_0}$$

$$= R(t+T,T)R(T,0)e^{-TA_0}e^{-tA_0}$$

$$= R(t,0)R(T,0)e^{-TA_0}e^{-tA_0}$$

$$= R(t,0)e^{-tA_0}$$

$$= P(t)$$

M1 Systèmes dynamiques

E.D.O. linéaires périodiques

/ 30

E.D.O. linéaires périodiques : le théorème de Floquet

Proposition

Les coefficients de toute solution d'une équation $\dot{X}(t) = A(t)X(t)$ où $A(\cdot)$ est T-périodique sont des sommes finies de fonctions de la forme $\mathbf{a}_{p,q}(t)t^p\mathbf{e}^{t\lambda_q}$ où $a(\cdot)$ est T-périodique (à valeurs complexes) , $0 \leqslant p \leqslant n$ et λ_q sont les valeurs propres de A_0 (les exposants de Floquet).

E.D.O. linéaires périodiques : le théorème de Floquet

Remarques:

- L'expression $R_A(t,0) = P(t)e^{tA_0}$ signifie que $X(\cdot)$ est solution de X'(t) = A(t)X(t) ssi $Y(\cdot) = P(\cdot)^{-1}X(\cdot)$ est solution de l'équation linéaire à coefficients *constants* $Y'(t) = A_0Y(t)$.
- Si $A(\cdot)$ est à valeurs dans $sl(2,\mathbb{R})$ tout ce qui précède reste vrai en remplaçant $M_n(\mathbb{R})$ par $sl(2,\mathbb{R})$ et $Gl(n,\mathbb{R})$ par $SL(2,\mathbb{R})$.
- Une conséquence de Floquet et de ce que l'on a vu sur les E.D.O à coeff. constants est que l'on peut décrire la forme des solutions d'une EDO à coefficients périodiques :

M1 Systèmes dynamique

E.D.O. linéaires périodique

Sommaire Plan du cours 3

- 1 E.D.O. linéaires périodiques
- 2 La résonance paramétrique
 - Stabilité/instabilité
 - Cas de la dimension 2
 - Résonance paramétrique

M1 Systèmes dynamiques E.D.O. linéaires périodiques / 30 M1 Systèmes dynamiques La résonance paramétrique / 3

Stabilité des E.D.O. périodiques linéaires

Problème : On considère $A(\cdot) \in C^0(I, M(n, \mathbb{K}))$, T-périodique $(A(\cdot + T) = A(\cdot))$ et on se propose d'étudier la stabilité du système

$$\dot{X}(t) = A(t)X(t).$$

L'origine est-elle

- asymptotiquement stable (en $t \to +\infty$)? : pour tout X(0) dans un voisinage de $0 \lim_{t \to \infty} X(t) = 0$?
- stable? c'est-à-dire $\forall \epsilon > 0$, $\exists \delta$, $|X(0)| < \delta \implies \forall t \ge 0$, $|X(t)| < \epsilon$?
- instable? Pour certaines conditions initiales arbitrairement proches de 0, les solutions sortent de tout voisinage de 0 prescrit à l'avance.

M1 Systèmes dynamique

La résonance paramétrique

/ 20

La résonance paramétrique

Stabilité des E.D.O. périodiques linéaires

Comme $P(\cdot)$ est périodique et inversible on a

$$\sup_{t\in\mathbb{R}}\max(\|P(t)\|,\|P(t)^{-1}\|)<\infty$$

et donc

$$\lim_{t\to\infty}X(t)=0\iff X(0)\in\Gamma^s(A_0)$$

$$\lim_{t\to -\infty}X(t)=0\iff X(0)\in \Gamma^u(A_0)$$

$$\exists M, C, \forall t, ||X(t)|| \leq C(1+|t|)^{M}||X(0)|| \iff X(0) \in \Gamma^{c}(A_{0})$$

où $\mathbb{K}^n = \Gamma^s(A_0) \oplus \Gamma^u(A_0) \oplus \Gamma^c(A_0)$, $\Gamma^{s,u,c}(A_0)$ étant les espaces stable, instable, central de A_0 .

La résonance paramétrique

Stabilité des E.D.O. périodiques linéaires

D'après le théorème de Floquet on sait qu'il existe

- $A_0 \in M(n, \mathbb{K})$ telle que $e^{TA_0} = R_A(T, 0)$ si $\mathbb{K} = \mathbb{C}$ (resp. $e^{2TA_0} = R_A(2T, 0)$)
- $P \in C^1(\mathbb{R}, GL(n, \mathbb{K}))$, T-périodique si $\mathbb{K} = \mathbb{C}$ (resp. 2T-périodique si $\mathbb{K} = \mathbb{R}$)

telles que

$$R_A(t,0) = P(t)e^{tA_0}.$$

Ainsi

$$X(t) = P(t)e^{tA_0}X(0)$$

M1 Systèmes dynamiqu

La résonance paramétriqu

La résonance paramétrique

Stabilité des E.D.O. périodiques linéaires

La stabilité du système $\dot{X}(t) = A(t)X(t)$ se lit donc sur A_0 ou de façon équivalente sur $R_A(T,0)$ (ou plus précisément sur leurs valeurs propres) :

- 0 est asymptotiquement stable (en $t \to +\infty$) \iff $\Gamma_u(A_0) = \Gamma_c(A_0) = \emptyset \iff$ toutes les valeurs propres de A_0 sont de parties réelles strictement négatives.
- 0 est stable (en t→+∞) ← Γ_u(A₀) = ∅ et M = 0 ← toutes les valeurs propres de A₀ sont de partie réelle négative et A₀ est diagonalisable en celles de partie réelle nulle.
- 0 est instable

 A₀ a au moins valeur propre de partie réelle strictement positive ou une valeur propre de partie réelle nulle où elle n'est pas diagonalisable.

M1 Systèmes dynamiques La résonance paramétrique / 30 M1 Systèmes dynamiques La résonance paramétrique / 30

Stabilité des E.D.O. périodiques linéaires

Comme $e^{TA_0} = R_A(T,0)$ (ou $e^{2TA_0} = R(T,0)^2$), les valeurs propres ρ_i de $R_A(T,0)$ son reliées à celles λ_i de A_0 par la relation

$$e^{T\lambda_i} = \rho_i$$
.

Proposition

- 0 est asymptotiquement stable (en $t \to +\infty$) \iff toutes les valeurs propres de $R_A(T,0)$ sont de module < 1.
- 0 est stable (en $t \to +\infty$) \iff toutes les valeurs propres de $R_A(T,0)$ sont de module $\leqslant 1$ et $R_A(T,0)$ est diagonalisable en celles de module 1.
- 0 est instable \iff au moins une des valeurs propres de $R_A(T,0)$ est de module > 1 ou est de module 1 mais $R_A(T,0)$ n'y est pas diagonalisable.

M1 Systèmes dynamique

.a résonance paramétrique

/ 30

La résonance paramétrique

Stabilité des E.D.O. périodiques linéaires

Qu'en est-il de la stabilité? : En général, on ne peut rien dire. Mais, dans les problèmes qui proviennent de la Physique, les E.D.O. que l'on obtient ont souvent une structure supplémentaire ("hamiltonienne") liée à la conservation de l'énergie et les matrices qui apparaissent sont "symplectiques".

L'exemple le plus simple de matrices symplectiques se trouve en dimension 2 : ces matrices s'identifient à l'ensemble des matrices 2×2 à coefficients réels et de trace nulle $sl(2,\mathbb{R})$ (resp. de déterminant $1:SL(2,\mathbb{R})$).

La résonance paramétrique

Stabilité des E.D.O. périodiques linéaires

Si l'on suppose à présent que A_{ϵ} dépend continûment (ou C^k) d'un paramètre $\epsilon \in (-\epsilon_0, \epsilon_0)$, par exemple

$$A_{\epsilon}(\cdot) = A + \epsilon F(\cdot), \quad A = cste, \quad F(\cdot + T) = F(\cdot).$$

On sait alors, d'après le théorème de dépendance par rapport au paramètre, que $R_{A_{\epsilon}}(T,0)$ dépend continûment (ou C^k) de ϵ . Or, les valeurs propres d'une matrice dépendent continûment de la matrice. Donc, les propriétés " $R_{A_{\epsilon}}$ a toutes ses valeurs propres de module <1" ou " $R_{A_{\epsilon}}$ a au moins une valeur propre de module >1" sont ouvertes (ont lieu pour un ensemble ouvert de paramètres). Conclusion :

Proposition

La propriété "être asymptotiquement stable en $t \to \infty$ (resp. $t \to -\infty$)" est robuste c'est-à-dire ouverte dans l'espace des paramètres.

M1 Systèmes dynamique

La résonance paramétrique

/ 20

La résonance paramétrique

"Rappels" sur $SL(2,\mathbb{R})$

Les v.p. de $R \in SL(2,\mathbb{R})$ sont racines de $\rho^2 - \operatorname{tr}(R)\rho + 1 = 0$. Discriminant $\Delta = \operatorname{tr}(R)^2 - 4$. On définit

• $E_s(R) := \{ v \in \mathbb{R}^2 : \lim_{n \to \infty} ||R^n \cdot v|| = 0 \}$

• $E_u(R) := \{ v \in \mathbb{R}^2 : \lim_{n \to -\infty} ||R^n \cdot v|| = 0 \}$

• $E_c(R) := \{ v \in \mathbb{R}^2 : \exists C \ \forall n \in \mathbb{R}, \ \|R^n \cdot v\| \leqslant C(1 + |n|) \|v\| \}.$

M1 Systèmes dynamiques La résonance paramétrique / 30 M1 Systèmes dynamiques La résonance paramétrique / 30

Equations linéaires à coefficients constants

Exemples en dimension 2

Si |tr(R)| < 2:

- deux v.p. sur le cercle unité $e^{\pm i\omega}$
- $\mathbb{R}^2 = \Gamma_c(R)$;
- toutes les orbites se situent sur des ellipses : R est elliptique.
- L'origine est stable.
- Il existe $P \in GL(2,\mathbb{R})$ tel que $R = P\begin{pmatrix} \cos \omega & -\sin \omega \\ \sin \omega & \cos \omega \end{pmatrix} P^{-1}$
- Il existe $A \in sl(2,\mathbb{R})$, det A > 0 telle que $R = e^A$

M1 Systèmes dynamique

.a résonance paramétrique

Equations linéaires à coefficients constants

Exemples en dimension 2

Si |tr(R)| = 2:

- deux v.p. égales à 1 ou égales à -1;
- $\mathbb{R}^2 = \Gamma_c(A)$ mais R est unipotente d'ordre 2 ou égale à $\pm Id$
- R est dite parabolique
- L'origine est instable si $a \neq 0$ (stable sinon).
- Il existe $P \in GL(2,\mathbb{R})$ et $a \in \mathbb{R}$ tels que $R = P\begin{pmatrix} \pm 1 & a \\ 0 & \pm 1 \end{pmatrix} P^{-1}$
- Il existe $A \in sl(2,\mathbb{R})$, det A = 0 telle que $R^2 = e^{2A}$

Equations linéaires à coefficients constants

Exemples en dimension 2

Si |tr(R)| > 2:

- deux v.p. réelles inverses l'une de l'autre $e^{\pm \omega}$;
- $\mathbb{R}^2 = \Gamma_s(A) \oplus \Gamma_u(A)$ où $\Gamma_s = \mathbb{R} v_s$, $\Gamma_u = \mathbb{R} v_u$.
- Les orbites se situent sur des hyperboles : R est hyperbolique
- L'origine est instable.
- Il existe $P \in \mathit{GL}(2,\mathbb{R})$ tel que $R = P \begin{pmatrix} e^{\omega} & 0 \\ 0 & e^{-\omega} \end{pmatrix} P^{-1}$
- Il existe $A \in sl(2,\mathbb{R})$, det A < 0 telle que $R^2 = e^{2A}$

M1 Systèmes dynamique

La résonance paramétrique

/ 20

La résonance paramétrique

Stabilité des E.D.O. périodiques linéaires

Comme $R_A(T,0) = e^{TA}$ ou $R_A(T,0)^2 = e^{2TA}$ on a donc

Théorème

Le système X'(t) = A(t)X(t) avec $A(\cdot + T) = A(\cdot)$, $A(\cdot)$ à valeurs dans $sl(2,\mathbb{R})$, est stable si et seulement si il est elliptique $|tr(R_A(T,0))| < 2$ ou $si\ R_A(T,0) = \pm I$.

Stabilité des E.D.O. périodiques linéaires

La nouveauté dans le cas où $A(\cdot)$ est à valeurs dans $sl(2,\mathbb{R})$: est

Théorème

L'ensemble des matrices elliptiques de $SL(2,\mathbb{R})$ est ouvert dans $SL(2,\mathbb{R})$.

On a donc par le théorème de dépendance continue par rapport aux paramètres :

Corollaire

L'ensemble des $A \in C^0_{T-per}(\mathbb{R}, sl(2, \mathbb{R}))$ pour lesquels X'(t) = A(t)X(t) est elliptique est ouvert (dans $C^0_{T-per}(\mathbb{R}, sl(2, \mathbb{R}))$).

M1 Systèmes dynamique

_a résonance paramétrique

/ 20

La résonance paramétrique

Exemples

Considérons

$$\ddot{x}(t) + (a + \epsilon \cos(\frac{2\pi t}{T}))x(t) = 0,$$

qui se récrit

$$\dot{X}(t) = (A + \epsilon F(t))X(t)$$

avec

$$A = \begin{pmatrix} 0 & 1 \\ -a & 0 \end{pmatrix}, \qquad F(t) = \epsilon \cos(\frac{2\pi t}{T}) \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}.$$

Si a > 0 on écrit $a = \omega^2$ et on a

$$\mathrm{e}^{tA} = egin{pmatrix} \cos(t\omega) & \dfrac{\sin(t\omega)}{\omega} \ -\omega\sin(t\omega) & \cos(t\omega) \end{pmatrix}$$

La résonance paramétrique

Stabilité des E.D.O. périodiques linéaires

Conséquences pour

$$A_{\epsilon}(\cdot) = A + \epsilon F(\cdot), \quad A = cste, \quad F(\cdot + T) = F(\cdot) \qquad (PP)_{\epsilon}:$$

- Si $e^{TA} \in SL(2,\mathbb{R})$ est hyperbolique ($|\operatorname{tr}(e^{TA})| > 2$), l'origine reste un point d'équilibre instable du système $(PP)_{\epsilon}$ pour ϵ assez petit.
- Si $e^{TA} \in SL(2,\mathbb{R})$ est elliptique ($|\operatorname{tr}(e^{TA})| < 2$), l'origine reste un point d'équilibre stable du système (PP) $_{\epsilon}$ pour ϵ assez petit.
- Si $e^{TA} \in SL(2,\mathbb{R})$ est parabolique ($|\operatorname{tr}(e^{TA})| = 2$) : tout peut arriver!

M1 Systèmes dynamique

La résonance paramétrique

La résonance paramétrique Exemples

Donc

Proposition (Résonance paramétrique)

$$e^{TA}$$
 elliptique $\iff |tr(e^{TA})| < 2 \iff \omega \notin \frac{\pi}{T}\mathbb{Z}$

et dans ce cas il existe $\epsilon_{\omega} > 0$ tel que pour tout $\epsilon \in (-\epsilon_{\omega}, \epsilon_{\omega})$ le système associé à $A + \epsilon F(\cdot)$ est stable.

En revanche, si $\omega = \omega_k := k \frac{\pi}{T}$ (on dit que le système est résonant), la méthode des perturbations, permet de calculer le développement limité de $R_{A_\epsilon}(T,0)$ et donc de sa trace et de montrer qu'il existe dans le plan (ω,ϵ) une zone d'instabilité d'intérieur non vide dont l'adhérence contient $(\omega_k,0)$.

Exemples

Pour
$$\ddot{x} + (a + \epsilon \cos(2t))x = 0$$
 ($T = \pi$, $a = \omega^2 \sin a > 0$).

Rouge : instable (hyperbolique) Bleu : parabolique Orange : stable (elliptique)

FIGURE: Zones de stabilité-instabilité

M1 Systèmes dynamiques

La résonance paramétrique

La résonance paramétrique

Exemples de la Physique

- Pendule de Kapitsa : pendule inversé dont le point d'attache oscille périodiquement (oscillations de faible amplitude mais rapides); après changement de variables on peut se trouver dans une zone de stabilité a < 0 et ϵ petits.
- Piégeage des ions (Nobel 1989, Dehmelt, Paul): Dans un champ électrique (quadrupôle) oscillant: même principe que le pendule de Kapitsa.
- Propriétés métal-isolant (physique du solide) : Equation stationnaire de Schrödinger 1D, potentiel périodique. $-\psi''(x) + V(x)\psi(x) = E\psi(x). \text{ Les solutions physiquement acceptables sont celles pour lesquelles } \psi \text{ est bornée. Le spectre de l'opérateur associé a une structure de bandes.}$

M1 Systèmes dynamique

a résonance paramétriqu
