

Série 1: Formules de Taylor et développement limité

Exercice 1. Al'aide du théorème des accroissements finis, prouver les inégalités suivantes:

- 1. $\forall x \in \mathbb{R}, e^x \ge 1 + x$;
- 2. $\forall x \in [0, +\infty[, \sin x \le x;$
- 3. $\forall x \in [0, +\infty[, \frac{x}{1+x^2} \le \arctan x \le x;$
- 4. $\forall x \in]0, 1[$, $\arcsin x < \frac{x}{\sqrt{1-x^2}}$.

Exercice 2. Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. En appliquant la formule de Taylor avec reste intégrale sur [0,x] ou sur [x,0], montrer

$$|e^x - \sum_{k=0}^n \frac{x^k}{k!}| \le \frac{|x|^{n+1}e^{|x|}}{(n+1)!}.$$

Exercice 3. Soit f une fonction bornée et deux fois dérivable sur un intervalle I.

- 1. Si $x \in I$ ct h > 0 sont tels que $x + h \in I$ et $x h \in I$, montrer qu'il existe deux nombres θ et θ' appartenant à]0,1[vérifiant $f'(x) = \frac{1}{2h} [f(x+h) - f(x-h)] - \frac{h}{4} [f''(x+\theta h - f''(x-\theta' h))].$
- 2. En déduire que si f" est bornée sur I, il en est de même de f' et, qu'en notant $m_i = \sup_{x \in I} |f^{(i)}(x)|$ pour $i \in \{0,1,2\}$, on a l'inégalité $m_1 \leq \sqrt{2m_0m_2}$.

Exercise 4. Soit $\alpha \in]0,1[$, montrer que: $\forall n \in \mathbb{N}^*$, $\frac{\alpha}{(n+1)^{1-\alpha}} < (n+1)^{\alpha} - n^{\alpha} < \frac{\alpha}{n^{1-\alpha}}$.

En déduire que $\sum_{p=1}^{n} \frac{\alpha}{p^{1-\alpha}} \sim \frac{n^{\alpha}}{\alpha}$.

Exercice 5. Soit f et g deux fonctions réelles telles que: $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = +\infty$.

- 1. On suppose que f(x) = o(g(x)). Prouver que $e^{f(x)} = o(e^{g(x)})$. A-t-on $\ln(f(x)) = o(\ln(g(x)))$?
- 2. On suppose que $f(x) \underset{+\infty}{\sim} g(x)$. A-t-on $e^{f(x)} \underset{+\infty}{\sim} e^{g(x)}$? $\ln(f(x)) \underset{+\infty}{\sim} \ln(g(x))$?
- 3. On suppose que f(x) = O(g(x)). A-t-on $e^{f(x)} = O(e^{g(x)})$? $\ln(f(x)) = O(\ln(g(x)))$?

Exercice 6. La suite de nombres rationnels (u_n) est définie par: $\begin{cases} u_0 = 18, w_1 = \frac{106}{9}, \\ u_n u_{n+1} = 24u_n - 173 + \frac{330}{u_{n-1}}, & n \in \mathbb{N}^*. \end{cases}$

- 1. Calculer u2.
- 2. Déterminer les deux nombres a et b tels que: $\forall n \in \mathbb{N}$, $u_n = \frac{a^{n+1} + b^{n+1} 3^{n+1}}{a^n + b^n 3^n}$. En déduire $l = \lim u_n$.
- 3. Préciser $q \in]0,1[$ tel que $|u_n l| \sim q^n$.

Exercise 7. Determiner le
$$DL_n(0)$$
 des fonctions suivantes: $f(x) = \frac{e^x}{(1+x)^3}, n = 2; \ g(x) = \frac{\sin x}{1 + \ln(1+x)}, n = 3; \ h(x) = e^{\frac{\sinh x}{x}}, n = 1; \ i(x) = \sin(x^2), n = 6;$

$$j(x) = \ln(1+x)\sin x, n = 6; \ k(x) = \frac{e^x}{\cos x}, n = 4; \ l(x) = \frac{\ln(1+x)}{e^x \sin x}, n = 3,$$

Exercice 8. Determiner le $DL_n(x_0)$ de la fonction f pour chacun des cas suivants:

- 1. $f(x) = x^2 \ln x$, $x_0 = 1$ et n = 5;
- 2. $f(x) = \sin x$, $x_0 = \frac{\pi}{4}$ et n = 3;
- 3. $f(x) = x^3 + 4x^2 + x 1$, $x_0 = 1$ et n = 5:
- 4. $f(x) = \ln(\sin x)$, $x_0 = \frac{\pi}{2}$ et n = 3.

Exercise 9. Soient $f, g:]-1, 1[\to \mathbb{R}$ les applications définies par: $f(x) = \sin(\ln(1+x))$ et $g(x) = \ln(1+\sin x)$.

- 1. Déterminer le $DL_4(0)$ des fonctions f et g.
- 2. Déduire un equivalent de la fonction f g en 0.

Exercice 10. Donner un équivalent simple de la fonction f en 0 pour chacun des cas suivants:

$$f(x) = \frac{\ln(1+x)}{x}; \ f(x) = \frac{\sin x}{x}; \ f(x) = \frac{\sin(x) - x}{x^2}; \ f(x) = \frac{1 - \cos x}{x}; \ f(x) = \frac{1 - \cos x}{x^2}.$$

Exercice 11.

- 1. Écrire le $DL_3(0)$ de la fonction $x \longmapsto \frac{1}{1+x}$.
- 2. En déduire le $DL_3(0)$ de la fonction $x \longmapsto \frac{1}{1+e^x}$.
- 3. Soit $f(x) = \frac{x}{1+e^{\frac{1}{x}}}$. Determiner l'asymptote au graphe de f pour $x \longrightarrow +\infty$.

Exercice 12. Soit f la fonction définie par: $f(x) = x^3 \sin(\frac{1}{x})$ pour $x \neq 0$ et f(0) = 0.

- 1. Montrer que f admet un $DL_2(0)$.
- 2. La fonction f est-elle deux fois dérivable en 0?

Exercice 13. Soit a un réel fixé. On pose $f_a(x) = \arctan(\frac{x+a}{1-ax})$.

- 1. Soit $n \in \mathbb{N}$. Determiner le $DL_{2n-1}(0)$ de la fonction f'_a .
- 2. En déduire le $DL_{2n}(0)$ de la fonction f_a .
- 3. Soit $k \in \mathbb{N}$. Déduire de la question précédente la valeur de $f_a^{(k)}(0)$.

Exercice 14. Soit f la fonction définie sur \mathbb{R}^* par: $f(x) = \frac{\ln(\cosh x)}{\sinh x}$

- 1. Écrire le $DL_3(0)$ de la fonction f.
- 2. Montrer que f est prolongeable par continuité en 0 et que ce prolongement est dérivable en 0.

Exercice 15. Soit f la fonction définie sur \mathbb{R} par: $f(x) = \ln(e^x + \sqrt{1 + e^{2x}})$.

- 1. Déterminer le $DL_1(0)$ de la fonction $g(x) = \ln(x + \sqrt{1+x})$.
- 2. Montrer que la courbe représentative de f admet une asymptote oblique en $+\infty$, on déterminera la position du graphe de f par rapport à cette asymptote.

Exercice 16. Determiner les limites suivantes:

$$\lim_{x\to 0}\frac{\sin x-\arg \sinh x}{\sinh x-\arcsin x},\ \lim_{x\to +\infty}(x\tan \frac{1}{x})^{x^{\alpha}}\ avec\ \alpha\in\mathbb{R};\ \lim_{x\to \frac{\pi}{4}}(\sqrt{2}\sin x)^{\frac{4\pi}{4x-\pi}}.$$