# QBUS6810: Statistical Learning and Data Mining

Lectures 7-8: Classification I

Semester 1, 2019

Discipline of Business Analytics, The University of Sydney Business School

## **Lectures 7-8: Classification I**

- 1. Classification
- 2. Introduction to decision theory for classification
- 3. K-nearest neighbours classifier
- 4. Review of the Bayes' rule
- 5. Naïve Bayes classifier
- 6. Decision theory for binary classification

Consider the following business decision making scenarios.

- 1. Should we invest resources in acquiring and retaining a customer?
- 2. Should we offer a mortgage to a credit applicant?
- 3. Should we investigate a transaction for possible fraud?

All these scenarios involve a classification task.

- 1. Do we predict that the customer will be profitable?
- 2. Do we predict that the applicant will repay the mortgage in full?
- 3. Do we flag the transaction?

In classification, the response variable Y is **qualitative** or **categorical** that takes values in a finite unordered set.

In general, we can think of Y as a variable taking values in the set  $\mathcal{Y}=\{1,\ldots,C\}$ , where C is the number of the corresponding classes. Our task is to predict which class a subject belongs to based on the input variables.

A classifier  $\widehat{y}$  is a mapping from the values of the inputs (predictors) to  $\{1,\ldots,C\}$ . A classifier is a prediction rule that assigns the subject to one of the classes, given the observed values of the predictors.

Given the value of the input vector (i.e. X = x), we will write  $\widehat{y}(x)$  (or simply  $\widehat{y}$ ) for the value of the classifier.

In the fraud detection example, the response values are:  $\{\text{fraudulent}, \text{legitimate}\}$ . The most common coding for such binary variables is using the values 0 and 1:

$$Y = \begin{cases} 1 & \text{if fraudulent,} \\ 0 & \text{if legitimate.} \end{cases}$$

#### **Notation**

- Integers, such as 1,2,3 or 0,1, are used to denote the class labels.
- P, as in P(A) or P(Y=y), denotes a probability.
- p, as in p(y) or p(y|x), denotes a probability mass function (pmf) or probability density function (pdf).

Introduction to decision theory for

classification

# Loss functions (reminder)

A loss function  $L(y, \widehat{y})$  measures the loss (or cost) of making a prediction  $\widehat{y}$  when the truth is y. The most common loss function for regression is the squared error loss:

$$L(y,\widehat{y}) = \left(y - \widehat{y}\right)^2$$

For classification, the most popular loss function is the **0-1 loss**:

$$L(y,\widehat{y}) = I(y \neq \widehat{y}) = \begin{cases} 1 & \text{if } y \neq \widehat{y} \\ 0 & \text{if } y = \widehat{y}. \end{cases}$$

Here  $I(\cdot)$  is the indicator function. The zero-one loss is zero for a correct classification and one for a misclassification.

# **Expected Loss**

Given a classifier  $\widehat{y}$ , our objective is (as before) to minimise the corresponding expected loss:

$$E\left[L\left(Y,\widehat{y}(X)\right)\right]$$

the expectation is over Y and X, while the classifier  $\widehat{y}$  is treated as nonrandom

We can think of the above quantity as the average loss across all subjects in the population (each subject has a Y and an X value).

# **Expected Loss**

Conditioning on the values of the predictors (i.e. on X=x), we can write the expected loss as:

$$\sum_{y=1}^{C} L(y, \hat{y}(\boldsymbol{x})) P(Y = y | X = \boldsymbol{x})$$

Here  $\boldsymbol{x}$  and  $\widehat{y}(\boldsymbol{x})$  are fixed.

In the case of the zero-one loss, the above expression becomes

$$\sum_{y=1}^{C} I(y \neq \widehat{y}(\boldsymbol{x})) P(Y = y | X = \boldsymbol{x})$$

In other words, we are summing the probabilities  $P(Y=y|X=\boldsymbol{x})$  over all values y that are different from  $\widehat{y}(\boldsymbol{x})$ .

# **Bayes classifier**

Thus, the conditional expected zero-one loss is given by:

$$\sum_{y \neq \widehat{y}(x)} P(Y = y | X = x) = P(Y \neq \widehat{y}(x) | X = x)$$
$$= 1 - P(Y = \widehat{y}(x) | X = x)$$

Minimising this quantity is equivalent to choosing  $\widehat{y}(x)$  that maximises the probability  $P\big(Y=\widehat{y}(x)|X=x\big)$ 

The corresponding solution is called the **Bayes classifier**, which classifies each subject to the most probable (most likely) class.

# Bayes error rate

Formally, the **Bayes classifier** is defined as:

$$\widehat{y}(\boldsymbol{x}) = \operatorname*{argmax}_{y} P(Y = y | X = \boldsymbol{x})$$

The **Bayes error rate** is the expected zero-one loss (i.e. the probability of misclassifying a test observation) for the Bayes classifier.

By definition, Bayes classifier has the lowest possible probability of misclassification. However, it requires knowing the distribution of Y given X.

## **Bayes decision boundary**

Bayes decision boundary between two classes, say 0 and 1, is the set:

The blue class and the orange class are equally likely for x on the Bayes decision boundary. The probability of the blue class is greater than 0.5 for x in the blue region and lower than 0.5 in the orange region. 13/52

#### **Model Evaluation**

Consider a classifier  $\hat{y}$  and a training dataset  $\{(y_i, x_i)\}_{i=1}^n$ . The **training error rate** of this classifier is defined as:

$$\frac{1}{n}\sum_{i=1}^{n}I(y_{i}\neq\widehat{y}(\boldsymbol{x}_{i})).$$

This gives the proportion of misclassifications on the training set.

When the above quantity is computed using a test set instead, it is called the **test error rate**. The Bayes classifier achieves the lowest expected test error rate (informally: the lowest test error rate over an infinitely large test set).

To approximate the Bayes classifier, we will use classification models and estimate conditional probabilities  $\widehat{P}(Y=y|X=\boldsymbol{x})$  for  $y=1,\ldots,C$ . We will then classify a subject to the class with the highest estimated probability.

In particular, in binary classification with the 0 - 1 coding for Y , we make a prediction  $\widehat{y}(\boldsymbol{x})=1$  if  $\widehat{P}(Y=1|X=\boldsymbol{x})>0.5.$ 

Otherwise, we make a prediction  $\hat{y}(x) = 0$ .

K-nearest neighbours classifier

# K-nearest neighbours classifier

Given training data  $\{(y_i, x_i)\}_{i=1}^n$  and an input point x,

**K-nearest neighbours classifier** estimates the conditional probability for class y as:

$$\widehat{P}(Y=y|X=oldsymbol{x}) = \mathsf{Average}\Big[\,I(y_i=y)\,\Big|\,oldsymbol{x}_i \;\mathsf{is}\;\mathsf{in}\;\mathcal{N}_k(x)\,\Big]$$

Here we average  $I(y_i = y)$  for the observations whose  $x_i$  lie in the neighborhood  $\mathcal{N}_k(x)$  containing the closest k data points to x.

Thus, KNN finds the K training input points that are closest to  $\boldsymbol{x}$  and then estimates  $P(Y=y|X=\boldsymbol{x})$  as the proportion (i.e. fraction) of these K points that belongs to the class y.

# Illustration: KNN with K=3





figure from ISL

# K-nearest neighbours classifier

- KNN classifier is a direct nonparametric approximation to the Bayes classifier.
- The lower the K, the more flexible the decision boundary.
- As always, choosing the optimal level of flexibility is crucial.
   We use cross validation to select K.

# Example: KNN vs Bayes decision boundaries



figure from ISL 19/52

# **Example: KNN vs Bayes decision boundaries**



# **Example: KNN error rates**



Black dashed line gives the Bayes error rate.

Our next topic is the Naïve Bayes classifier.

Before we discuss this method, we will review a useful probability rule, called the Bayes' rule.

Review of the Bayes' rule

#### **Notation**

Suppose that Y takes values in the set  $\{1,2,\ldots,C\}$ .

Define  $\pi_y = P(Y = y)$ .

If X is continuous, write  $p(\boldsymbol{x}|Y=y)$  for the density of X conditional on Y=y.

If X is discrete, let  $p(\boldsymbol{x}|Y=y)$  denote the conditional probability P(X=x|Y=y).

# Bayes' rule

Let X be discrete and recall that we defined  $\pi_y = P(Y = y)$ .

The Bayes' rule or Bayes' theorem gives:

$$P(Y = y | X = x)$$

$$= \frac{P(X = x | Y = y)\pi_y}{P(X = x | Y = 1)\pi_1 + P(X = x | Y = 2)\pi_2 + \dots + P(X = x | Y = C)\pi_C}$$

Using our notation, we can write the last expression as:

$$\frac{p(\boldsymbol{x}|Y=y)\pi_y}{p(\boldsymbol{x}|Y=1)\pi_1 + p(\boldsymbol{x}|Y=2)\pi_2 + \ldots + p(\boldsymbol{x}|Y=C)\pi_C}$$

# Bayes' rule

Now let X be continuous and recall that we write p(x|Y=y) for the density of X conditional on Y=y.

Similarly to the discrete case, the Bayes' rule gives:

$$P(Y = y|X = \mathbf{x})$$

$$= \frac{p(\mathbf{x}|Y = y)\pi_y}{p(\mathbf{x}|Y = 1)\pi_1 + p(\mathbf{x}|Y = 2)\pi_2 + \ldots + p(\mathbf{x}|Y = C)\pi_C}$$

Note that the last expression is identical to the one in the discrete case (previous slide)

# **Example: medical test**

Consider a medical test for cancer. Suppose that the test has a sensitivity of 80%, which means that if a person has cancer, the test will return positive with probability 0.8:

$$P(X = 1|Y = 1) = 0.8.$$

Here X is the outcome of the test and Y is the indicator of the presence of cancer.

In case of a positive test result, what is the probability that a person has cancer, i.e. what is P(Y=1|X=1)?

# **Example: medical test**

Using Bayes' theorem:

$$P(Y = 1|X = 1)$$

$$= \frac{P(X = 1|Y = 1)\pi_1}{P(X = 1|Y = 1)\pi_1 + P(X = 1|Y = 0)\pi_0}$$

This equation tells us that in order to calculate the desired probability, we also need to know the probability of cancer  $(\pi_1)$  and the so-called false positive rate: P(X=1|Y=0).

# **Example: medical test**

Suppose that  $\pi_1 = 0.004$  and P(X = 1|Y = 0) = 0.1.

Also, recall that we assumed P(X = 1|Y = 1) = 0.8. Then:

$$P(Y = 1|X = 1)$$

$$= \frac{P(X = 1|Y = 1)\pi_1}{P(X = 1|Y = 1)\pi_1 + P(X = 1|Y = 0)\pi_1}$$

$$= \frac{0.8 \times 0.004}{0.8 \times 0.004 + 0.1 \times 0.996} = 0.031$$

In the classification setting, we refer to p(x|Y=y) as the class conditional densities (or probability mass functions if X is discrete), and we refer to  $\pi_y=P(Y=y)$  as class probabilities.

The Naïve Bayes classifier method uses the general approach of modeling the conditional distribution of X given Y, and then using the Bayes' rule to obtain the conditional distribution of Y given X:

$$P(Y = y|X = \mathbf{x})$$

$$= \frac{p(\mathbf{x}|Y = y)\pi_y}{p(\mathbf{x}|Y = 1)\pi_1 + p(\mathbf{x}|Y = 2)\pi_2 + \ldots + p(\mathbf{x}|Y = C)\pi_C}$$

The Naïve Bayes classifier (NBC) is based on the assumption that the predictors are conditionally independent given the class label.

Thus, the class conditional density (or probability mass function if X is discrete) factorises into a product of the individual predictor densities:

$$p(x|Y = y) = \prod_{j=1}^{p} p(x_j|Y = y).$$

- The method is "naive" because we do not think that the features are in fact conditionally independent.
- The simplicity of the NBC method makes it relatively immune to overfitting, which is useful for applications where the number of features is large.
- The assumption of conditional independence makes it easy to mix and match different predictor types.

## Naïve Bayes classifier

- Despite being based on an assumption that is not necessarily true, the Naïve Bayes classifier often performs very well in practice compared to more complex alternatives.
- The reason is again the bias-variance trade-off: while the
  assumption of class-conditional independence may lead to
  biased probabilities, the simplifications brought by it may lead
  to substantial reduction in variance.

## **Continuous predictors**

For real-valued predictors, a common assumption is that:

$$X_j|Y=y \sim N(\mu_{jy}, \sigma_{jy}^2)$$

where  $\mu_{jy}$  and  $\sigma_{jy}^2$  are the mean and the variance of predictor j conditional on the class y.

Parameters  $\mu_{jy}$  and  $\sigma^2_{jy}$  need to be estimated from the data.

## **Continuous predictors**

- Typically, we first transform the predictors in order to make the variables approximately normal or symmetric.
- We could also use other distributional assumptions or follow a nonparametric approach to estimate the class conditional densities.

## **Binary predictors**

When the predictors are binary, i.e.  $X_j$  only takes values 0 and 1, we use the Bernoulli distribution:

$$X_j|Y=y$$
 ~ Bernoulli $(\theta_{jy})$ 

where 
$$\theta_{jy}$$
 is the probability that  $X_j=1$  given  $Y=y$  (and, thus,  $1-\theta_{jy}$  is the probability that  $X_j=0$  given  $Y=y$ )

Parameters  $\theta_{jy}$  need to be estimated from the data.

## **Application: document classification**

Document classification is the problem of classifying text documents into different categories.

A simple approach is to represent each document as a vector of binary variables, where each variable records whether a particular word is present in the document or not. For example,  $x_{ij}=1$  if the word j appears in document i, and  $x_{ij}=0$  otherwise.

This is called a **bag of words** model.

# Estimating Naïve Bayes parameters using maximum likelihood

We estimate the parameters in the Naïve Bayes model by maximum likelihood. In particular, we:

- 1. Estimate the prior class probabilities  $\pi_y$  by computing the sample proportions of each class in the training data.
- Fit univariate models and estimate the parameters separately for each predictor within each class (the fact that we can do this is a direct consequence of the assumption of conditional independence).

the next two slides give some mathematical details, but you will **not** need to reproduce them on the exam

# Estimating Naïve Bayes parameters using maximum likelihood

Let  $\theta$  contain all the parameters for the class conditional densities of the predictors, and let  $\pi$  contain the class probabilities for Y.

The density (or probability) for observation i is

$$p(\boldsymbol{x}_i, y_i; \boldsymbol{\theta}, \boldsymbol{\pi}) = p(\boldsymbol{x}_i | y_i; \boldsymbol{\theta}) p(y_i; \boldsymbol{\pi})$$
$$= \prod_{j=1}^{p} p(x_{ij} | y_i; \boldsymbol{\theta}_j) p(y_i; \boldsymbol{\pi})$$

Thus, the likelihood is:

$$\ell(\boldsymbol{\theta}, \boldsymbol{\pi}) = \prod_{i=1}^{n} \prod_{j=1}^{p} p(x_{ij}|y_i; \boldsymbol{\theta}_j) p(y_i; \boldsymbol{\pi}).$$

## Estimating Naïve Bayes parameters: class probabilities

The likelihood is:

$$\ell(\boldsymbol{\theta}, \boldsymbol{\pi}) = \prod_{i=1}^n \prod_{j=1}^p p(x_{ij}|y_i; \boldsymbol{\theta}_j) p(y_i; \boldsymbol{\pi}).$$

Hence, the log-likelihood is:

$$L(\boldsymbol{\theta}, \boldsymbol{\pi}) = \sum_{j=1}^{p} \sum_{i=1}^{n} \log \left( p(x_{ij}|y_i; \boldsymbol{\theta}_j) \right) + \sum_{i=1}^{n} \log \left( p(y_i; \boldsymbol{\pi}) \right)$$

Note that the log-likelihood decomposes into a sum of terms, each involving a different parameter:  $\theta_1,...,\theta_p$ , and  $\pi$ . We can therefore maximize all these terms separately.

# Estimating Naïve Bayes parameters using maximum likelihood

As a consequence:

$$\widehat{\pi}_y = \frac{n_y}{n}$$

where n is the sample size, as always, and  $n_y = \sum_{i=1}^n I(y_i = y)$  is the number of observations that fall in class y.

# Estimating Naïve Bayes parameters: binary predictors

Suppose that the predictors are binary, such that

$$X_j|Y=y \sim \operatorname{Bernoulli}(\theta_{jy})$$

The MLE of each parameter  $\theta_{jy} = P(X_j = 1|Y = y)$  is:

$$\widehat{\theta}_{jy} = \frac{n_{jy}}{n_y}$$

where  $n_{jy} = \sum_{i=1}^{n} I(x_{ij} = 1)I(y_i = y)$  is the number of observations that fall in class y for which predictor j equals 1.

## Estimating Naïve Bayes parameters: Gaussian case

Suppose that the class conditional distribution is Gaussian:

$$X_j|Y=y \sim N(\mu_{jy}, \sigma_{jy}^2)$$

The MLEs are:

$$\widehat{\mu}_{jy} = \frac{1}{n_y} \sum_{i: y_i = y} x_{ij}$$

i.e. the sample mean of predictor  $\boldsymbol{X}_j$  using just the subjects from class  $\boldsymbol{y}$ 

$$\widehat{\sigma}_{jy}^2 = \frac{1}{n_y} \sum_{i: y_i = y} (x_{ij} - \widehat{\mu}_{jy})^2$$

i.e. the "sample variance" of  $X_j$  using just the subjects from class y

# **Decision theory for binary**

classification

#### **Classification outcomes**

In most business problems, there are distinct losses associated with each classification outcome. Consider, for example, the case of transaction fraud detection.

|        |                     | Classification        |                                          |
|--------|---------------------|-----------------------|------------------------------------------|
|        |                     | Legitimate            | Fraud                                    |
| Actual | Legitimate<br>Fraud | No loss<br>Fraud loss | Investigation cost<br>Fraud loss avoided |

The cost of investigating a suspicious transaction is likely to be much lower than the loss in case of fraud.

#### **Classification outcomes**

We will use the following terminology.

|     |       | Classification               |                |
|-----|-------|------------------------------|----------------|
|     |       | $\hat{y} = 0$                | $\hat{y} = 1$  |
| nal | Y = 0 | True negative                | False positive |
| Act | Y = 1 | True negative False negative | True positive  |

#### **Loss matrix**

The context of the business problem will often specify a **loss** matrix or cost-benefit matrix for classification as follows.

|        |       | Classification |               |
|--------|-------|----------------|---------------|
|        |       | $\hat{y} = 0$  | $\hat{y} = 1$ |
| nal    | Y = 0 | $L_{TN}$       | $L_{FP}$      |
| Actual | Y = 1 | $L_{FN}$       | $L_{TP}$      |

## **Example: credit scoring**

In credit scoring, we want to classify a loan applicant as creditworthy (Y=1) or not (Y=0) based on the probability that the customer will not default.

|       |       | Classification          |               |  |
|-------|-------|-------------------------|---------------|--|
|       |       | $\widehat{y} = 0$       | $\hat{y} = 1$ |  |
| nal   | Y = 0 | Default loss avoided    | Default loss  |  |
| Actua | Y = 1 | Profit opportunity lost | Profit        |  |

A false positive is a more costly error than a false negative in this business scenario. Our decision making should therefore take this into account.

#### **Decision rule**

The decision to classify a subject as positive or negative is based on the following decision rule:

$$\widehat{y}(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \widehat{P}(Y=1|X=\boldsymbol{x}) > \tau. \\ 0 & \text{if } \widehat{P}(Y=1|X=\boldsymbol{x}) \leq \tau. \end{cases}$$

Here  $\widehat{P}$  corresponds to the estimated conditional probability, and  $\tau$  is a decision threshold parameter. Recall that in the case of binary classification with the zero-one loss we use  $\tau=0.5$ .

## **Optimal decision**

It has been shown (but we will not go into the proof) that the optimal value of the threshold (the one minimising expected loss) is:

$$\tau^* = \frac{L_{\text{FP}} - L_{\text{TN}}}{L_{\text{FP}} + L_{\text{FN}} - L_{\text{TP}} - L_{\text{TN}}}$$

## **Example: zero-one loss**

With the zero-one loss, we have that  $L_{\rm FP}=L_{\rm FN}=1$  and  $L_{\rm TP}=L_{\rm TN}=0$ , i.e. the loss matrix is:

|        |       | Classification |               |
|--------|-------|----------------|---------------|
|        |       | $\hat{y} = 0$  | $\hat{y} = 1$ |
| ual    | Y = 0 | 0              | 1             |
| Actual | Y = 1 | 1              | 0             |

Therefore,

$$au^* = rac{L_{ extsf{FP}} - L_{ extsf{TN}}}{L_{ extsf{FP}} + L_{ extsf{FN}} - L_{ extsf{TP}} - L_{ extsf{TN}}} = rac{1}{2}$$
 as before

## **Example: credit scoring**

In the credit scoring example, we can set the loss matrix as:

|        |               | Classif $\hat{y} = 0$ | ication $\hat{y} = 1$ |
|--------|---------------|-----------------------|-----------------------|
| Actual | Y = 0 $Y = 1$ | $0 \ L_{\sf FN}$      | $L_{FP}$              |

where  $L_{\sf FN}$  equals missed profit and  $L_{\sf FP}$  equals default loss.

Therefore,

$$\tau^* = \frac{L_{\mathsf{FP}} - L_{\mathsf{TN}}}{L_{\mathsf{FP}} + L_{\mathsf{FN}} - L_{\mathsf{TP}} - L_{\mathsf{TN}}} = \frac{L_{\mathsf{FP}}}{L_{\mathsf{FP}} + L_{\mathsf{FN}}}.$$

## **Example: credit scoring**

We've shown that the optimal threshold for the loan decision is:

$$\tau^* = \frac{L_{\mathsf{FP}}}{L_{\mathsf{FN}} + L_{\mathsf{FP}}}.$$

We expect the loss from default to be much higher than the profit from a loan to a creditworthy customer ( $L_{\text{FP}}$  much larger than  $L_{\text{FN}}$ ). Note that this leads to a high value of the threshold  $\tau^*$ .

In other words, it is only worth it to lend to customers that have a high probability of repayment.

## **Review questions**

- What is a zero-one loss?
- What is the Bayes classifier?
- What is the test error rate?
- Explain the KNN classifier.
- What is the key assumption of the Naive Bayes classifier?
- What is a loss matrix, and what are its entries in the case of the zero-one loss?