CLRS Exercise

Tongda Xu

October 23, 2018

1 7

1.1 7.3

1.1.1 a

This is certain concerning the Randomized procedure, the probability of any index i is chosen from [0, n-1] is:

$$\begin{aligned} & Pr(pivot=i) = \frac{1}{n} \\ & E(X_i) = 1 * Pr(pivot=i) + 0 * Pr(pivot \neq i) = \frac{1}{n} \end{aligned}$$

1.1.2 b

It is certain that if *ith* element is chosen as pivot, Random-Parition cost $\Theta(n)$ time, and it will call QuickSort[1, q-1], QuickSort[q+1, n] recursively. Concerning only the first Parition, this would be the result: $E(T(n)) = \sum_{i=1}^{n} Pr(pivot=i)(T(i-1) + T(n-i) + \Theta(n))$

$$\begin{split} E(T(n)) &= \Sigma_{i=1}^n Pr(pivot=i)(T(i-1) + T(n-i) + \Theta(n)) \\ &= \Sigma_{i=1}^n X_i(T(i-1) + T(n-i) + \Theta(n)) \end{split}$$

1.1.3 c

Concerning
$$X_i = \frac{1}{n}$$

 $E(T(n)) = \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i) + \Theta(n))$
 $= \sum_{i=1}^{n} \frac{1}{n} T(i-1) + \sum_{i=1}^{n} \frac{1}{n} T(n-i) + \sum_{i=1}^{n} \frac{1}{n} \Theta(n)$
 $= \frac{2}{n} \sum_{i=1}^{n-1} T(i) + \Theta(n)$

1.1.4 d

$$\begin{split} & \Sigma_{k=2}^{n-1} k l g k \\ & \leq l g \frac{n}{2} \Sigma_{k=2}^{\frac{n}{2}} k + l g n \Sigma_{k=\frac{n}{2}}^{n-1} k \\ & = l g n \Sigma_{k=2}^{n-1} k - l g 2 \Sigma_{k=2}^{\frac{n}{2}} k \\ & = l g n \frac{(n+1)(n-2)}{2} - \frac{(\frac{n}{2}+2)(\frac{n}{2}-1)}{2} \\ & \leq l g n \frac{n^2}{2} - \frac{n^2}{8} \\ & \text{by Calculus, we have:} \\ & (\frac{1}{2} x^2 l g x - \frac{1}{4} x^2)|_1^{n-1} \leq E(T(n)) \leq (\frac{1}{2} x^2 l g x - \frac{1}{4} x^2)|_2^n \end{split}$$

1.1.5 e

Proof of E(T(n)) = O(nlgn): Assume that $\forall k \in [1, n-1], \exists c, E(T(k)) \leq cklgk - \Theta(k)$ For $k = n, E(T(n)) \leq \frac{n}{2}c(lgn\frac{n^2}{2} - \frac{n^2}{4} - \Theta(n^2)) + \Theta(n) \leq cnlgn - \Theta(n)$ Proof of $E(T(n)) = \Omega(nlgn)$: Assume that $\forall k \in [1, n-1], \exists c, E(T(k)) \geq cklgk + \Theta(k)$ For $k = n, E(T(n)) \geq \frac{n}{2}c(lgn\frac{(n-1)^2}{2} - \frac{(n-1)^2}{4} + \Theta(n^2)) + \Theta(n) \geq cnlgn + \Theta(n)$ $\rightarrow E(T(n)) = \Theta(nlgn)$

1.2 7.5

1.2.1

From counting Theorem, it could be noticed that: $p_i=\frac{(i-1)(n-i)}{C_n^3}=\frac{6(i-1)(n-i)}{n(n-1)(n-2)}$

1.2.2 b

$$\begin{split} & Pr(i = medium)(normal) = \frac{1}{n} \\ & Pr(i = medium)(3part) = \frac{6(\frac{1}{2}n-1)(n-\frac{1}{2}n)}{n(n-1)(n-2)} = \frac{3}{2}\frac{1}{n} \\ & Pr(3part) - Pr(normal) = \frac{1}{2}\frac{1}{n} \end{split}$$

1.2.3 c

Consider
$$f_{diff} = \int_{\frac{\pi}{3}}^{\frac{2}{3}n} \left(\frac{6(i-1)(n-i)}{n(n-1)(n-2)} - \frac{1}{n} \right) di$$

$$= \frac{(-2i^3 + 3(n+1)i^2 - 6ni - (n-1)(n-2)i)|_{i=\frac{1}{3}n}^{i=\frac{2}{3}n}}{n(n-1)(n-2)}$$

$$\lim_{n \to \infty} f_{diff} = \frac{4}{27}$$

1.2.4 d

Consider we are so lucky that each partition we choose the median: In the Iteration tree, we have:

$$T(n) = \begin{cases} c & n = 1\\ 2T(\frac{1}{2}n) + n & n > 1 \end{cases}$$

The $\Omega(nlgn)$ is kept even in best case.

$\mathbf{2}$ 8

2.1 8.1-1

n-1 times, since we need n elements to formulate

2.2 8.1-2

$$\sum_{1}^{n} lgk < \int_{1}^{n+1} lgkdk = (klgk - k)_{1}^{n} = (nlgn - n) - (0-1) = nlgn - n + 1$$

2.3 8.1-3

 \leftrightarrow proof at least half of branch is longer than h

Consider a decision tree with n!/2 elements

 \leftrightarrow proof at least half of branch is longer than h

Consider a decision tree with n!/n elements

 \leftrightarrow proof at least half of branch is longer than h

Consider a decision tree with $n!/2^n$ elements, this is not significant enough and could leave only $\Omega(lg\frac{n!}{2^n}) = \Omega(nlgn-n) = \Omega(nlgn)$ elements

2.4 8.2-4

Consider a trim version of counting sort, build the C map up and query directly:

```
Counting-sort-trim(A, k)
```

```
\begin{array}{lll} 1 & C[] \\ 2 & \textbf{for } i = 0 \textbf{ to } k \\ 3 & C[i] = 0 \\ 4 & \textbf{for } j = 1 \textbf{ to } A.length \\ 5 & C[A[j]] + + \\ 6 & \textbf{for } m = 1 \textbf{ to } k \\ 7 & C[m] + = C[m-1] \\ 8 & \textbf{return } C[m] \end{array}
```

DIRECT-QUERT(A, k, a, b)

- 1 C = Counting-sort-trim(A, k)
- 2 **if** a < 1
- 3 return C[b]
- 4 else return C[b] C[a-1]

2.5 8.3-2

Heapsort is not stable

The scheme would be very similar to counting sort and takes $\Theta(n)$ time

2.6 8.3-4

First, with O(n) time: convert n numbers k_{10} into k_n which has 3 digits. Second, with O(d(n+n)) time (Lemma 8.3): Radix sort n 3-digit numbers with each digits take up to n possible values.

```
\begin{array}{ll} \operatorname{DIGITSCONVERT}(X) \\ 1 & \operatorname{result}[] \\ 2 & \mathbf{for} \ i = 2 \ \mathbf{downto} \ 0 \\ 3 & \operatorname{result}[i] = X/n^i \\ 4 & X = X \ \operatorname{mod} n^i \\ 5 & \mathbf{return} \ \operatorname{result} \\ \\ \operatorname{SORT}(A, x) \\ 1 & \operatorname{result}[] \\ 2 & \mathbf{for} \ \operatorname{each} \ S \ \operatorname{in} \ A \\ 3 & S = \operatorname{DIGITSCONVERT}(S) \\ 4 & \operatorname{RADIX-SORT}(A, x) \end{array}
```

3 9

3.1 9.2-1

once p == r, the function return and recursion end.

3.2 9.2-2

It is because $\forall k, X_k = \frac{1}{n}$, giving information on which k would not effect observation

3.3 9.2-3

```
RANDOMIZED-SELECT-ITER(A, p, r, i)
   while 1
1
2
        if i == k
3
             return A[i]
4
        else
             q = \text{RANDOM-PARTITION}(A, p, r)
5
6
             if i < k
7
                 r = q - 1
             else p = q + 1, i = i - k
8
```

3.4 9.2-4

The worst case is reverse side: pivot = 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

3.5 9.1

3.5.1 a

Sorting: MERGE-SORT(A) in worst case O(nlgn)Query: CALL-BY-RANK(A, k) i times in worst case O(i), here we assume manip-

```
ulating O(n) space cost O(n) time.
```

```
3.5.2 b
```

```
Building: BUILD-MAP-HEAP(A) in worst case O(n)
Query: calling EXTRA-MAX(A,k) i times in worst case O(ilgn)
```

3.5.3 c

Selecting: SELECT(A, i) in worst case O(n)Sorting: MERGE-SORT(A') in worst case O(ilgi)

3.6 9.2

3.6.1 a

$$\begin{array}{l} \Sigma_1^{k-1} w_i = \Sigma_1^{k-1} \frac{1}{n} = \frac{k-1}{n} < \frac{1}{2} \\ \Sigma_{k+1}^n = \frac{n-k}{n} \leq \frac{1}{2} \end{array}$$

3.6.2 b

```
\begin{array}{ll} \text{WEIGHT-MEDIAN}(A) \\ 1 & \text{w}[] = \text{SORT}(A).\text{weight} \\ 2 & \text{n} = \text{w.length} \\ 3 & \textbf{for} \ i = 1 \ \textbf{to} \ n \\ 4 & w[i] = w[i] + w[i-1] \\ 5 & \textbf{return} \ \text{FIND}(w[], \frac{1}{2}) \end{array}
```

3.6.3 c

```
\begin{array}{lll} \text{SUM}(w_1, w_i, lasti, lastsum) \\ 1 & \text{if } i > lasti \\ 2 & \text{return } lastsum + \text{ NORMAL-SUM}( \ w_{lasti,i} \ ) \\ 3 & \text{else return } lastsum - \text{ NORMAL-SUM}( \ w_{i,lasti}) \end{array}
```

WEIGHT-MEDIAN-LINEAR (A)

```
\begin{array}{lll} & \textbf{while 1} \\ 2 & \textbf{if } sum[w_1,w_i,lasti,lastsum] < \frac{1}{2},sum[w_1,w_{i+1},lasti,lastsum] > \frac{1}{2} \\ 3 & \textbf{return } i \\ 4 & \textbf{else} \\ 5 & lastsum = sum[w_1,w_i,lasti,lastsum],lasti = i \\ 6 & \textbf{if } sum[w_1,w_i] < \frac{1}{2} \\ 7 & i = \texttt{MEDIAN}(A,i,r) \\ 8 & \textbf{else } i = \texttt{MEDIAN}(A,p,i) \end{array}
```

We will experience logn literation, but the load is decreasing logarithmically, so the result is linear. Notice the sum is special here, calculating the difference only.

3.7 9.4

3.7.1 a

$$\begin{array}{l} k \leq i \text{ or } k \geq j:0 \\ i < k < j: \frac{2}{j-i+i} \end{array}$$

- 3.7.2 b
- 3.7.3
- 3.7.4 d

4 11

4.1 11.1-1

Consider vector < bool > A, a.size() = m, just store the bool value of key = m exist or not.

SEARCH(A, key)

- 1 **if** A(key)
- 2 return key
- 3 else return NIL

INSERT(A, key)

$$1 \quad A(key) = 1$$

DELETE(A, key)

$$1 \quad A(key) = 0$$

4.2 11.2

4.2.1 a

Consider for a ball i fall into a specific bucket $Pr(i) = \frac{1}{n}$. Then consider Binomial Distribution, $Pr(k) = C_n^k Pr(i)^k (1 - Pr(i))^{n-k}$.

4.2.2 b

Consider random picking a slot, the probability of that slot is maximum is $Pr_{max} = \frac{1}{n}$, and it contains k elements Q_k . for conditional probability, we have:

$$P_k = Pr_{i=k|max} = \frac{Pr(i=k \cap max)}{Pr_{max}} \le \frac{Pr(i=k)}{Pr_{max}} = nQ_k$$

4.2.3 c

Proof:

Proof:
$$Q_{k} = \left(\frac{1}{n}\right)^{k} \left(\frac{n-1}{n}\right)^{n-k} C_{n}^{k}$$

$$= \frac{(n-1)^{n-k}}{n^{n}} \frac{\prod_{0}^{k-1} n - k}{k!}$$

$$\leq \frac{n^{n}}{n^{n}} \frac{1}{k!}$$

$$= \frac{e^{k}}{k^{k}} \frac{1}{k^{\frac{1}{2}} (1 + \Theta(\frac{1}{n}))}$$

$$\leq \frac{e^{k}}{k^{k}}$$

4.2.4 d

Proof for Q_{k_0} :

$$\begin{aligned} Q_{k_0} &= \frac{e^{(\frac{clgn}{lglgn})}}{(\frac{clgn}{lglgn})^{\frac{clgn}{lglgn}}} \\ &= \frac{n^{\frac{clg\frac{c}{c}}{lglgn}}}{\frac{clglgn}{clglgn}} = n^{\frac{clg\frac{c}{c} + clglglgn}{lglgn} - c} \\ &= \frac{n^{\frac{clglgn}{c}}}{\frac{clglglgn}{lglgn}} \end{aligned}$$

It would not take effort to notice that since $\lim_{n\to\infty}\frac{clg\frac{e}{c}+clglglgn}{lglgn}=0$

$$\begin{array}{l} \forall c>3+\epsilon, Q_{k_0}=O(\frac{1}{n^3})\\ \text{And } P_k\leq nQ_k\to P_k=O(\frac{1}{n^2}) \end{array}$$

4.2.5 e

$$\begin{split} E(M) &= \Sigma_{M=1}^n M Pr(M) < n Pr(M > \frac{clgn}{lglgn}) + \frac{clgn}{lglgn} Pr(M \leq \frac{clgn}{lglgn}) \\ \text{A stronger conclusion to note:} \\ E(M) &= \Sigma_{M=1}^n M Pr(M) < M Pr(M > \frac{clgn}{lglgn}) + \frac{clgn}{lglgn} Pr(M \leq \frac{clgn}{lglgn}) \\ &\leq \int_{\frac{clgn}{lglgn}}^{\infty} \frac{1}{n} dn + 1 * \frac{clgn}{lglgn} \\ &= lg(\frac{clgn}{lglgn}) + \frac{clgn}{lglgn} \\ &= O(\frac{clgn}{lglgn}) \end{split}$$

$$= lg(\frac{clgn}{lglgn}) + \frac{clgn}{lglgn}$$

$$= O(\frac{clgn}{lglgn})$$

5 15

5.115.1 - 1

$$2^n - 1 = \sum_{j=0}^{n-1} 2^j$$

5.215.1-2

Do not know how!

5.3 15.1 - 3

See Code

Ex 15.2.4

Figure 1: 15.2-4

5.4 15.1-4

See Code

5.5 15.1-5

See Code

5.6 15.2-1

See Code

5.7 15.2-2

See Code

5.8 15.2-3

Assume that $\forall k \leq n-1, T(k) \geq c2^k$ Then $T(n) = \sum_{k=1}^{n-1} T(k) T(n-k) = (n-1)c^22^n > c2^n$ So $T(n) = \Omega(n), \omega(n)$

5.9 15.2-4

See Figure 1

5.10 15.2-5

For each level
$$h(i) = i(n-i)$$

For tree $T(n) = 2\sum_{i=1}^{n-1} i(n-i)$
 $= \frac{3n^3 + 3n^2}{3} - \frac{2n^3 + 3n^2 + n}{3}$
 $= \frac{n^3 - n}{3}$

5.11 15.2-6

Assume that $\forall k \leq n-1, N(k) = k-1$ Then N(n) = N(n-1) + 1So N(n) = n-1

5.12 15.3-1

running through: $T(n)=n*P_n^n=n*n!>4^n$ running recursion: $T(n)=2\sum_{i=1}^{n-1}4^i+n=\frac834^{n-1}+n\le 4^n$ running through takes longer

5.13 15.3-2

no overlapping subproblem call

5.14 15.3-3

Yes

5.15 15.3-4

Do not know how!

5.16 15.4-1

See code

5.17 15.4-2

See code

5.18 15.4-3

See code

5.19 15.1

$$\begin{split} & \operatorname{LSP}(s,t,G) \\ & 1 \quad r = G, size() \\ & 2 \quad DPs[r] = 0 \\ & 3 \quad DPr[r] = path(s,t) \\ & 4 \quad max = -\infty \\ & 5 \quad \text{for } i = 1 \text{ to } r \\ & 6 \quad max(DPs[j] + DPr[r-j] + what) \\ & 7 \quad \text{return } max \end{split}$$

5.20 15.1