Bevezetés az általános farmakológiába

A farmakokinetika alapjai

Megyeri Attila 2018.09.11.

Előadás diák:

http://pharmacology.med.unideb.hu/ Oktatás – Általános orvos pdf - 12358

Farmakológia

KÖLCSÖNHATÁS

Farmakológia ≠ Farmácia

Gyógyszertan ≠ Gyógyszerészet

- Farmakológia = Gyógyszertan
 - Orvosi gyógyszertan
 - Experimentális farmakológia (nem emberen)
 - Klinikai farmakológia (emberen)
 - Farmakoterápia (betegség → gyógyszer)
- Farmácia = Gyógyszerészet
 - fizikokémia, inkompatibiltások, identifikálás ...

Általános vs. részletes farmakológia

- Általános farmakológia
 - általánosan alkalmazható alapelvek

- Részletes farmakológia
 - egyes gyógyszerekkel / gyógyszer csoportokkal kapcsolatos specifikus információk

Gyógyszer (farmakon) 1.

- farmakon (= "drug")
 - az élő szervezetek működését befolyásoló anyag
 - az alkalmazás célja
 - terápia
 - prevenció
 - diagnosztika
- drog ≠ drug (pl. "multidrug resistance")
 - pl. Chamomillae anthodium, Tiliae flos
 - opium (Papaver somniferum) ?
 - marijuana (Cannabis sativa)?

betegséget **okozó** kémiai anyagok → toxikológia

Gyógyszer (farmakon) 2.

- jogi szempontok
 - törzskönyvezett gyógyszer (ld. OGYÉI, EMA, FDA)
 - vényköteles (hatáserősség jelzése)
 - recept nélkül is kiadható
 - gyógyszernek nem minősülő
 - élelmiszer kiegészítők
 - növényi kivonatok
 - vitaminok
 - homeopátiás szerek

Gyógyszer (farmakon) 3.

- mesterséges elhatárolás
- minden anyag
 - károsíthat (toxikus lehet) adag …
 - vizsgálati módszerek =
 - statisztika ...
 - a hatékonyság / biztonságosság bizonyítása =
 - ideálisan pl. RCT
 - természetes eredet ≠ biztonság
 - kivonatok, keverékek
 - kémiai anyagok = , tisztaság ≠

nem csak gyógyszeres terápia létezik

Természetes eredet = biztonság?

- Amanita phalloides (= gyilkos galóca): az αamanitin ciklikus oktapeptid; medián letális adagja (LD50) egéren 0,3 mg/ttkg
- a Clostridium botulinum toxinja, a botulotoxin letális adagja kísérleti állatokon <1 μg/ttkg. Az ember is érzékeny: a botulotoxin oralis halálos adagját emberen 10 μg-ra teszik, s ezt a mennyiséget a fertőzött étel 0,1 ml-e tartalmazhatja.

A gyógyszerek (farmakonok) eredete

- természetes
 - növényi (pl. atropin, morfin, kodein)
 - állati (pl. adrenalin, inzulin DE nem kismolekula !!!)
 - ásványi (pl. aluminium-hidroxid)
- félszintetikus (pl. metil-homatropin, heroin)
- szintetikus
 - kémiai szintézis (pl. tiotropium, metoprolol)
 - "biológiai szintézis" "biológiai" gyógyszerek
 - biotechnológiai előállítás
 - jelenleg zömében fehérjék, móltömegük 10 kDa felett
 - pl. hormonok, növekedési faktorok, antitestek
 - eredet: természetes vagy nem természetes (ld. inzulin)
 - biohasonlóság ("biosimilarity") ↔ generikus

"kismolekulák"

Biological therapy ≠ targeted therapy

- anticancer molecularly targeted therapy
 - non-biologicals
 - tyrosine kinase inhibitors
 - e.g. imatinib, dasatinib, nilotinib (BCR-ABL kinase, CML)
 - epidermal growth factor receptor inhibitors
 - e.g. lapatinib (HER2+ breast cancer)
 - e.g. erlotinib (metastatic non–small cell lung cancer)
 - biologicals
 - epidermal growth factor receptor inhibitors
 - e.g. trastuzumab (HER2+ breast cancer)
 - e.g. cetuximab (EGFR+ metastatic colorectal cancer)
- DMARDs
 - non-biologicals
 - e.g. methotrexate, hydroxychloroquine, leflunomide
 - biologicals
 - e.g. infliximab, adalimumab, etanercept

Hatóanyag nevek

kémiai név	generikus név*	gyári név
sodium N-(2,3-dimethyl-5-oxo-1-phenyl-3-pyrazolin-4-yl)-N-methylaminomethanesulphonate monohydrate	metamizol (dipyrone, novamidazophen, noraminophenazonum natrium	Algopyrin Algozone
1-[(2S)-3-mercapto-2- methylpropionyl]-L-proline	mesylicum) captopril	Tensiomin Aceomel
(6R)-6-[α-D-(4- hydroxyphenyl)glycylamino]peni cillanic acid	amoxicillin	Clonamox Ospamox

*INN (International Nonproprietary Name; Gyires-Fürst 1134. oldal)

Farmakológia

KÖLCSÖNHATÁS

Farmakodinámia

- Hatásmechanizmus / hatás helye
- Gyógyszer-receptor interakciók (receptor fogalma, inert kötő helyek)
- Dózis-hatás összefüggések

Farmakokinetika

- Felszívódás (Abszorpció) alkalmazási hely → vér
- Megoszlás (Disztribúció)
- Biotranszformáció (Metabolizmus)
- Kiválasztás (Exkréció)

Elimináció

hatás (kedvező vagy toxikus) ~ koncentráció

farmakogenetika: PK/PD variáció

A farmakokinetika jelentősége

- gyógyszerfejlesztésben
 - megfelelő adag / adagolási séma kiválasztása
- gyógyszerek hatósági engedélyezésében
 - bioekvivalencia (közel = C_{max} , t_{max} , AUC)
- klinikai gyakorlatban
 - optimális gyógyszerhasználat alapelvek
 - gyógyszerkölcsönhatások
 - terápiás gyógyszerszint monitorozás

Terápiás gyógyszerszint monitorozás a klinikumban

gyógyszer	kategória
ciclosporin, tacrolimus	immunszuppresszív
digoxin	cardiovascularis
theophylline	légúti
lithium, antiepileptikumok	központi idegrendszeri szerek
aminoglikozidok, vancomycin	antibakteriáls
methotrexate, carboplatin	daganat ellenes

A farmakokinetika korlátai

- plazma cc ≠ cc a hatás helyén
 - intracelluláris target
 - vér-agy gát (egyéb "menedékhelyek")
- hatás ≠ cc a hatás helye körül
 - irreverzibilis kötődés
 - időbeli eltolódás
 - tolerancia / fiziológiás adaptáció

Gyógyszerek mozgása a kompartmentek között

- felszívódás, megoszlás, kiválasztás
 - membránokon, egyéb határoló rétegeken át kell hatolni
- az áthaladás függ
 - méret
 - a legtöbb gyógyszer mol. tömege 100-1000 → lipid diffúzió
 - de vannak kisebbek / nagyobbak
 - a speckrum két vége
 - Li+ ion (MW=7)
 - alteplase (MW=59050), antitestek (biológiai terápiák)
 - permeabilitás jelentősen különbözik
 - elektromos töltés
 - ionitálható gyógyszerek (gyenge savak vagy bázisok) esetén
 - pH különbségek → megváltozott ionizáció → megváltozott diffúzió / exkréció
 - alak

Gyógyszerek membránokon keresztüli permeációja

- passzív (koncentráció különbség)
 - diffúzió
 - vizes
 - testfelszín: "tight junctions" (MW < 150, Li+, methanol)
 - legtöbb kapilláris (MW < 20000-30000, "védett helyek": e.g. agy, herék)
 - lipid
 - lipid:víz megoszlási hányados (gyenge savak/bázisok)
 - facilitált
 - speciális carrier-ek, pl. aminosavak, peptidek
 - telíthető, gátolható
- aktív (energia igény)
 - aktív transzport
 - pinocytosis
 - MW >1000, B12 vitamin+intrinsic factor, Fe+transzferrin

Lipid diffúzió

- Fick törvény
 - $J=P^*A^*(C_1-C_2)/T$
- gyenge savak és bázisok ionizációja
 - Henderson-Hasselbalch equation
 - log ([protonált forma]/[nem protonált forma])=pK_a-pH

aspirin (gyenge sav)
$$C_8H_7O_2COOH \leftrightarrow C_8H_7O_2COO^- + H^+$$

pyrimethamine (gyenge **bázis**)
$$C_{12}H_{11}CIN_3NH_3^+ \leftrightarrow C_{12}H_{11}CIN_3NH_2 + H^+$$

savak	protonált	nem ionizált	apoláros	lipid oldékony
bázisok	protonált	ionizált	poláros	vízoldékony

Gyenge sav pH függő reabszorpciója

(phenobarbital gyenge sav - $pK_a=7.4$)

	pH=6.4	pH=7.4	pH=8.0
pK _a -pH=7.4-pH	1	0	-0.6
antilog(pK _a -pH)=10 ^(pKa-pH)	10	1	0.25
protonált/nem protonált forma aránya	10/1	1/1	1/4
(visszaszívódó/nem visszaszívódó) reabszorpció a vesetubulusokban	gyors		lassú
kiválasztás a vizeletben	lassú		gyors

Az "ion csapda"

4

8.4

Hd

log [p]/[up] = pK_a - p [p]/[up]=10⁶= 10000 [p]=1000000 x [up] pK_a – pH = 1000000 8.4 2.4 Ш တ

Fontosabb farmakokinetikai paraméterek

 a vér, illetve plazma koncentrációk klinikailag is releváns kvantitatív jellemzésére

- biohasznosíthatóság (bioavailability) → felszívódás
- látszólagos megoszlási térfogat → megoszlás
- clearance → elimináció

Biohasznosíthatóság - Bioavailability (F)

- A bevitt gyógyszernek az a hányada (vagy százaléka) ami kémiai átalakulás nélkül bejut a szisztémás keringésbe (mérték)
 - $-0 \le F \le 1$ (lásd iv. adás ill. "prodrug")
- függ
 - alkalmazás helyétől ld. beadási módok
 - a felszívódás mértékétől
 - pl. formula / lipid oldékonyság / transzporterek (MDR1/P-gp) / metabolizáció a bélfalban
 - első passzázs effektus (first pass elimination)
 - metabolizáció: máj, portális keringés / epe exkréció

Measuring bioavailability

if doses are equal

$$F = \frac{AUC_{po}}{AUC_{iv}}$$

if doses are not equal

$$F = \frac{AUC_{po} * D_{iv}}{AUC_{iv} * D_{po}}$$

unit of AUC: mg/l h

Oral bioavailability of some drugs

drug	oral bioavailabilty (%)
lidocaine	35
atropine	50
captopril	65
digoxin	70

Lidocaine is NOT available for oral admininstration!

$$C = \frac{F * D}{V}$$

Megoszlás

időfüggő és meghatározzák

- Átjutás a membránokon
 - méret, alak, ionizáció
 - az elhatároló réteg tulajdonságai (pl. HEB, placenta)
- Szöveti affinitás
 - lipophil molekulák (KIR, zsírszövet)
 - specifikus kötődés (I pajzsmirigy, As epidermis, köröm, haj)
- Vérátáramlás
 - thiopental (Id. iv általános anesztetikumok)
- Plazma fehérje kötődés
 - csak a szabad gyógyszer
 - tud interkacióba lépni a receptorokkal hatás
 - tud átjutni a membránokon megoszlás / elimináció

A gyógyszer valamely szövetben történő felhalmozódása nem feltétlenül jelzi a hatás helyét!

Látszólagos megoszlási térfogat (Vd)

conc. = dose / volume

$$C = \frac{D}{V_d}$$

$$V_d = \frac{D}{C}$$

Where C is measured? in blood or plasma?

apparent volume of distribution

distribution is not restricted to blood / plasma not homogenous

Látszólagos megoszlási térfogat (Vd)

Blood ~ 0.08 l/kg

Plasma ~ 0.04 l/kg

Total body water ~ 0.6 l/kg

Extracellular water ~ 0.2 l/kg

Drug	Volume of distribution (L/70 kg)
Chlorpropamide	6.8
Furosemide	7.7
Valproic acid	9.1
Warfarin	9.8
Morphine	230
Digoxin	500
Nortriptyline	1300
Imipramine	1600
Fluoxetine	2500
Chloroquine	13000

Az a virtuális térfogat amiben ha **ugyanannyi** gyógyszert **homogénen** eloszlatnánk akkor a koncentrációja azonos lenne a vérben, illetve a plazmában mért koncentrációval.

A V_d klinikai haszna

- Ha ismert
 - a célkoncentráció (C₀)
 - a látszólagos megoszlási térfogat (V_d)
- akkor

$$D = C_0 * Vd$$

telítő adag – a terápiás koncentráció "azonnali" elérésére

Elimináció

- bármely folyamat ami a gyógyszer mennyiségét (koncentrációját) csökkenti
 - biotranszformáció (= metabolizáció)
 - exkréció (= kiválasztás)
 - helyei: vese (filtráció szekréció reabszorpció) / máj /
 GI traktus / tüdő / verejtékmirigyek / anyatej, tejmirigyek
- lehet
 - telíthető (pl. enzimek általi biotranszformáció / aktív szekréció)
 - nem telíthető (pl. glomeruláris filtráció)

Enzimreakció kinetika

Telíthető elimináció

Első rendű eliminációs kinetika

$$C_t = C_0 e^{-kt}$$

C_t – vér/plazma koncentráció t időpontbant C₀ - vér/plazma koncentráció 0 időpontban e – természetes logariitmus alapszáma k – eliminációs sebességi állandó t – idő

Lineáris grafikon (C vs. t)

felezési idő állandó

Semilogaritmikus grafikon (In C vs. t)

© Elsevier. Rang et al: Pharmacology 6e - www.studentconsult.com

Eliminációs kinetikák

legtöbb gyógyszer nem telített felezési idő állandó

Nullad rendű

pl. ethanol / phenytoin / nagy adag Aspirin telített felezési idő NEM állandó

Clearance

- Vese clearance: CL = (U * V) / P
 - U : vizelet koncentráció (mg/ml)
 - V : percenkénti vizelet térfogat (ml/min)
 - P: plazma koncentráció (C_p) (mg/ml)
 - U * V = elimináció sebesség (mg/min)
- CL = elimináció sebesség / C_p (ml/min)
- Ha az elimináció nem telített akkor
 - elimináció sebesség = k_{el} * C * V_d
 - $-CL = (k_{el} * C * V_{d}) / C = k_{el} * V_{d} = (In2 / t_{1/2}) * V_{d}$

Measurement of clearance

•
$$clearance = \frac{rate\ of\ elimination}{concentration}$$

•
$$CL = \frac{k_{el} V_d C}{C} = k_{el} V_d = \frac{\ln 2}{t_{1/2}} V_d \approx \frac{0.693}{t_{1/2}} V_d$$

•
$$CL = \frac{dosing \, rate}{steady \, state \, concentration} = \frac{DR}{C_{SS}}$$
 at SS

•
$$CL = \frac{D}{AUC}$$

A clearance klinikai haszna

A clearance klinikai haszna ismételt gyógyszeradagolás

- Állandó adagolási sebessség esetén a C mikor éri el az egyensúlyt (C_{ss})? – csak a felezési időtől (t_{1/2}) függ
 - $-1x t_{1/2} C_{ss} 50\%$ -a
 - $-2x t_{1/2} C_{ss} 75\%$ -a
 - $-3x t_{1/2} C_{ss} 87.5\%$ -a
 - $-4x t_{1/2} C_{ss} 93.75\%$ -a
 - 5x $t_{1/2}$ C_{ss} 96.88%-a
- Mekkora lesz a C_{ss} egy adott állandó adagolási sebesség (DR) mellett?
 - $C_{ss} = DR / CL$
- Milyen adagolási sebesség (DR) tart fenn egy adott C_{ss}-t (cél koncentráció)?
 - DR = C_{ss} * CL

$$CL = \frac{elimin\acute{a}ci\acute{o}\ sebess\acute{e}g}{C}$$

ha egyensúly → elimináció sebesség = adagolási sebesség (DR)

$$CL = \frac{DR}{C_{SS}} \longrightarrow DR = CL * C_{SS}$$

$$\rightarrow C_{SS} = \frac{DR}{CL}$$

Összefoglalás 1.

Bevezetés

- Farmakológia?
- Gyógyszer?
- Biológiai terápia
- Farmakodinámia / Farmakokinetika

Összefoglalás 2.

Farmakokinetika

- Gyógyszerek membránokok keresztüli permeációja
 - Az ion csapda mechanizmusa és jelentősége.
- Alapvető farmakokinetikai paraméterek és klinikai hasznuk
 - biológiai hozzáférhatőség (bioavailability)
 - látszólagos megoszlási térfogat
 - clearance
- Eliminációs kinetikák
 - nem telített (elsőrendű / lineáris PK)
 - telített (nulladrendű / nem-lineáris PK)
- Conc. idő görbék folyamatos iv. infúzió után
 - C_{ss} elérésének ideje (4 * t_{1/2})
 - $-C_{ss}$ kiszámítása (C_{ss} = DR / CL)