1.5 Векторное произведение векторов

Операция векторного произведения – это четвертая операция с векторами, которую будем также обозначать римской цифрой (IV). <u>Подчеркнем,</u> что эта операция вводится только для векторов в пространстве V^3 (стереометрия). Предварительно введем определение:

Определение 1.23. Тройка векторов $\bar{a}, \bar{b}, \bar{c}$ называется УПОРЯДОЧЕННОЙ, если существенен порядок в записи векторов: \bar{a} – первый; \bar{b} – второй; \bar{c} – третий.

Если мы изменим порядок записи, например, возьмем тройку $\bar{b}, \bar{c}, \bar{a}$ (тех же самых) векторов, то это будет уже другая упорядоченная тройка. Легко увидеть, что можно образовать шесть разных упорядоченных троек:

$$\begin{array}{llll} \bar{a}, \bar{b}, \bar{c}; & \bar{c}, \bar{a}, \bar{b}; & \bar{b}, \bar{c}, \bar{a} & (*) \\ \bar{b}, \bar{a}, \bar{c}; & \bar{c}, \bar{b}, \bar{a}; & \bar{a}, \bar{c}, \bar{b} & (**) \end{array}$$

Рассмотрим упорядоченную тройку $\bar{a}, \bar{b}, \bar{c}$ НЕ компланарных векторов. Пусть они имеют общее начало и первые два вектора \bar{a}, \bar{b} находятся в плоскости π . На рис. 13 изображена тройка $\bar{a}, \bar{b}, \bar{c}$, где конец вектора \bar{c} изображен НАД плоскостью π .

Определение 1.24 (Ориентация тройки векторов). Тройка $\bar{a}, \bar{b}, \bar{c}$ называется правоориентированной или ПРАВОЙ, если с конца ПОСЛЕДНЕГО вектора \bar{c} наблюдаем вращение первого вектора \bar{a} ко второму вектору \bar{b} кратчайшим путем ПРОТИВ часовой стрелки. Тройка $\bar{a}, \bar{b}, \bar{c}$ называется левоориентированной или ЛЕВОЙ, если с конца последнего вектора \bar{c} наблюдаем вращение первого вектора \bar{a} ко второму вектору \bar{b} кратчайшим путем ПО часовой стрелке.

puc. 13

Замечание 1.14. Понятие ориентации тройки векторов имеет смысл только для НЕ КОМ-ПЛАНАРНЫХ векторов.

Из определения ориентации тройки векторов следует, что тройка $\bar{a}, \bar{b}, \bar{c}$ на рис. 13 есть правая тройка. Если рассмотреть другую тройку $\bar{b}, \bar{a}, \bar{c}$, то сейчас с конца последнего вектора \bar{c} мы наблюдаем вращение первого вектора \bar{b} ко второму – \bar{a} уже <u>по</u> часовой стрелке и, следовательно, тройка $\bar{b}, \bar{a}, \bar{c}$ – левая.

Ориентация троек векторов тесно связана с циклическими перестановками.

Циклическая перестановка векторов

Рассмотрим некоторую тройку векторов, например $\bar{a}, \bar{b}, \bar{c}$. Сейчас последний вектор \bar{c} поставим на первое место: $\bar{a}, \bar{b}, \bar{c} \to \bar{c}, \bar{a}, \bar{b}$. В полученной тройке последний вектор \bar{b} поставим на первое место: $\bar{c}, \bar{a}, \bar{b} \to \bar{b}, \bar{c}, \bar{a}$ и, наконец, в последней тройке последний вектор \bar{a} поставим на первое место: $\bar{b}, \bar{c}, \bar{a} \to \bar{a}, \bar{b}, \bar{c}$. В итоге мы вернулись к исходной тройке $\bar{a}, \bar{b}, \bar{c}$. Этот процесс называют циклической перестановкой векторов и его можно изобразить на схеме:

$$ar{a},ar{b},ar{c}$$
 $\begin{picture}(1,0) \hline \bar{b},ar{c},ar{a} \end{picture}$ (диаграмма-цикл длины три)

Эти три тройки были выписаны в виде последовательности (*) выше.

Вновь рассмотрим исходную тройку векторов и рассмотрим НЕ циклическую перестановку: $\bar{a}, \bar{b}, \bar{c} \to \bar{b}, \bar{a}, \bar{c}$. Для последней тройки делаем циклическую перестановку векторов:

Три выписанные тройки образуют последовательность (**), что написана выше.

Если тройка $\bar{a}, \bar{b}, \bar{c}$ – правая (левая), то последовательность троек (*) есть последовательность правых (левых) троек. Этот факт следует из определения ориентации тройки векторов и из рис. 13 (проверьте!). Тем самым доказано следующее утверждение.

Утверждение 1.4. В результате циклической перестановки векторов ориентация тройки НЕ ИЗМЕНЯЕТСЯ. Из шести возможных троек: три – правые и три – левые.

После введенных в данном параграфе определений, можно дать определение (IV) операции – операции векторного произведения векторов. Предварительно отметим, чтобы задать ненулевой вектор $(\neq \bar{0})$, необходимо задать два его атрибута:

- 1° Длину (модуль, норму) вектора;
- 2° Направление вектора.

Определение 1.25. (1) Если $\bar{a}, \bar{b} \in V^3$ – два неколлинеарных вектора, то под их *векторным* произведением понимают ВЕКТОР, обозначаемый как $[\bar{a}, \bar{b}]$ и удовлетворяющий условиям:

$$1^{\circ} |[\bar{a}, \bar{b}]| = |\bar{a}||\bar{b}|\sin(\widehat{a}, \bar{b});$$

$$2^{\circ} \begin{cases} [\bar{a}, \bar{b}] \perp \bar{a}, \bar{b} \text{ (ортогонален к своим сомножителям)}, & (2^{\circ}a) \\ \text{тройка } [\bar{a}, \bar{b}], \bar{a}, \bar{b} - \text{правая}. \end{cases}$$
(2°b)

(2) Если \bar{a} и/или \bar{b} равен $\bar{0}$, то $[\bar{a},\bar{b}]=0$.

Замечание 1.15. Иногда векторное произведение $[\bar{a}, \bar{b}]$ обозначают как $\bar{a} \times \bar{b}$. Мы же будем придерживаться введенной выше записи $[\bar{a}, \bar{b}]$, где \bar{a} называем левым множителем, а \bar{b} – правым множителем.

Определение векторного произведения требует некоторых объяснений, которые ниже мы рассматриваем как случаи 1, 2, 3.

Случай 1.

Если вектор \bar{a} и/или вектор \bar{b} есть нулевой вектор, то угол $(\widehat{a}, \overline{b})$ НЕ определен (см. стр. 14) и, следовательно, не определен $\sin(\widehat{a}, \overline{b})$. Тогда из условия 1° в определении векторного произведения нельзя получить значение $|[\bar{a}, \bar{b}]|$, так как в произведении $|\bar{a}||\bar{b}|\sin(\widehat{a}, \overline{b})$ не определен третий множитель. Именно поэтому случай \bar{a} и/или \bar{b} равен $\bar{0}$ оговаривается отдельно условием (2) в определении векторного произведения.

Случай 2.

Если $\bar{a}\parallel\bar{b}$ и $\bar{a},\bar{b}\neq\bar{0}$, то $\sin(\widehat{\bar{a}},\bar{\bar{b}})=\sin 0=0$. То есть в этом случае $|[\bar{a},\bar{b}]|=0$ и $[\bar{a},\bar{b}]=\bar{0}$.

Случай 3.

Если $\bar{a} \not \parallel \bar{b}$, то $\sin(\widehat{\bar{a}},\widehat{\bar{b}}) \neq 0$ и по соглашению 2 (см. стр. 3) получаем, что так как $\bar{a},\bar{b} \neq \bar{0}$, то

 $|\bar{a}| \neq 0$ и $|\bar{b}| \neq 0$. Поэтому $|[\bar{a},\bar{b}]| = |\bar{a}||\bar{b}|\sin(\bar{a},\bar{b}) \neq 0$, т.е. $[\bar{a},\bar{b}] \neq \bar{0}$. Векторы свободные и можем считать, что \bar{a} и \bar{b} имеют общее начало и, следовательно, находятся в одной плоскости π (см. рис. 14). Из условия $[\bar{a},\bar{b}] \perp \bar{a},\bar{b}$ (условие $(2^{\circ}a)$) следует, что $[\bar{a},\bar{b}] \perp \pi$. По отношению к плоскости π вектор $[\bar{a},\bar{b}]$ может быть направлен либо "вверх", либо "вниз" (см. рис. 14). Именно ради того, чтобы устранить двузначность в таком определении направления, вводят условие $(2^{\circ}b)$, которое обязывает вектора $[\bar{a},\bar{b}],\bar{a},\bar{b}$ быть правой тройкой.

Случаи 1, 2, 3 подробно (может быть даже слишком подробно) объясняют условия, возникающие в определении векторного произведения. Кроме того, здесь может быть сформулирован еще один критерий коллинеарности векторов (предыдущие критерии на стр. 7 и 10).

Теорема 1.14 (Критерий коллинеарности векторов). Вектора \bar{a} и \bar{b} коллинеарны $(\bar{a} \parallel \bar{b})$ тогда и только тогда, когда $[\bar{a},\bar{b}]=0$.

Доказательство. Следует из рассмотренных выше случаев 1, 2, 3.

Рассмотрим сейчас свойства операции (IV) векторного произведения. Далее неориентированный угол между векторами \bar{a}, \bar{b} для краткости будем обозначать $\varphi = (\widehat{\bar{a}, \bar{b}})$.

(IV.1) Модуль векторного произведения неколлинеарных векторов \bar{a} и \bar{b} численно равен площади параллелограмма, построенного на векторах \bar{a}, \bar{b} .

Доказательство.

Из условия неколлинеарности векторов \bar{a} и \bar{b} следует, что угол φ между ними не равен нулю. Пусть h – высота параллелограмма, опущенная из конца вектора \bar{b} на основание \bar{a} (см. рис. 15). Тогда $h = |\bar{b}| \sin \varphi$ и из формулы площади параллелограмма получаем $S = |\bar{a}| \cdot h = |\bar{a}| |\bar{b}| \sin \varphi = |[\bar{a}, \bar{b}]|$. То есть $S = |[\bar{a}, \bar{b}]|$.

(IV.2) Антикоммутативность: в результате перестановки сомножителей векторное произведение меняет знак, т.е. $[\bar{a}, \bar{b}] = -[\bar{b}, \bar{a}].$

 \mathcal{A} оказательство. Если $\bar{a} \parallel \bar{b}$, то $[\bar{a}, \bar{b}] = \bar{0}$ и $[\bar{b}, \bar{a}] = \bar{0}$, следовательно, $[\bar{a}, \bar{b}] = -[\bar{b}, \bar{a}]$.

Пусть $\bar{a} \not | \bar{b}$. Из условия 1° в определении векторного произведения следует, что модуль $|[\bar{a},\bar{b}]|=|\bar{a}||\bar{b}|\sin\varphi=|[\bar{b},\bar{a}]|$. Таким образом, $|[\bar{a},\bar{b}]|=|[\bar{b},\bar{a}]|$.

 $|[\bar{a},b]| = |\bar{a}||b|\sin\varphi = |[b,\bar{a}]|$. Таким образом, $|[\bar{a},b]| = |[b,\bar{a}]|$. Пусть теперь $\bar{a} \not | \bar{b}$ и \bar{a},\bar{b} лежат в плоскости π (рис. 16) Из условия $(2^{\circ}a)$ в определении векторного произведения следует, что $[\bar{a},\bar{b}] \perp \pi$ и $[\bar{b},\bar{a}] \perp \pi$. Из условия $(2^{\circ}b)$ в определении векторного произведения следует, что $[\bar{a},\bar{b}],\bar{a},\bar{b}$ – правая тройка и $[\bar{b},\bar{a}],\bar{b},\bar{a}$ – правая тройка. Тогда из определения правой тройки векторов следует, что $[\bar{a},\bar{b}] \uparrow \downarrow [\bar{b},\bar{a}]$ и так как $|[\bar{a},\bar{b}]| = |[\bar{b},\bar{a}]|$, то $[\bar{a},\bar{b}] = -[\bar{b},\bar{a}]$.

(IV.3) Свойство дистрибутивности векторного произведения по левому и правому множителям: для любых $\bar{a}, \bar{a}_1, \bar{a}_2, \bar{b}, \bar{b}_1, \bar{b}_2 \in V^3$ и $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{R}$ справедливо $[\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2, \bar{b}] = \lambda_1 [\bar{a}_1, \bar{b}] + \lambda_2 [\bar{a}_2, \bar{b}]$ – дистрибутивность (линейность) по левому множителю; $[\bar{a}, \mu_1 \bar{b}_1 + \mu_2 \bar{b}_2] = \mu_1 [\bar{a}, \bar{b}_1] + \mu_2 [\bar{a}, \bar{b}_2]$ – дистрибутивность (линейность) по правому множителю.

Доказательство. Будет дано позже (см. следующий параграф).