FLÖDESINTEGRAL

Flödet Φ av ett C^1 -vektorfältet $\vec{F}=(P,Q,R)$ genom ytan Y i riktning av normalvektorn \vec{N} beräknas med hjälp av flödesintegralen

 $\Phi = \iint_Y \vec{F} \cdot \hat{n} \, dS = \iint_Y \vec{F} \cdot \frac{\vec{N}}{|\vec{N}|} \, dS \, , \quad \text{där } \hat{n} = \frac{\vec{N}}{|\vec{N}|} \text{ betecknar ytans enhetsnormal.}$

Anmärkning 1.

I några böcker används beteckning $\mathrm{d}\vec{S}$ för $\hat{n}dS$ och flödesintegralen betecknas $\mod \Phi = \iint_Y \vec{F} \cdot \mathrm{d}\vec{S}$

Flödesintegral kan användas i samband med transportfenomen (t ex fluidflöde, värmeöverföring, masstransport och strömningsteknik). I sådana tillämpningar visar flödesvektorn \vec{F} riktning medan $|\vec{F}| = \frac{kvantitet}{area \cdot tiden}$, dvs $|\vec{F}|$ visar den mängd som strömmar genom en tvärsnitt area per tidsenhet.

T ex vid massflöde kan vi ha $\vec{F}=\left(1,1,\frac{1}{1+z^2}\right) \ och \left|\vec{F}\right|=\sqrt{2+\frac{1}{(1+z^2)^2}} \ \ \mathrm{i} \ \frac{kg}{m^2\cdot s}.$

Ett exempel med fluidflöde. Beräkning av mängden(volymen) av en fluid (vätska eller gas)som under en tidsenhet (en sekund) passerar ytstycket Y. Hastighetsvektor är känd i varje punkt på ytan Y. Vi antar vidare att $\vec{F} = (P, Q, R)$ är ett stationärt fält, dvs, (P, Q, R) beror ej av tiden t utan endast av positionen (x, y, z).

Låt $\vec{F}=(P,Q,R)$ vara hastighetsvektorn som beskriver stationärt flöde av en fluid genom en C^1 yta Y som definieras av x=x(s,t), y=y(s,t), z=z(s,t), $(s,t)\in D(s,t)$. Komponenter P,Q,R, givna i m/s antas vara kontinuerliga i ett öppet område som innehåller Y.

i) Om vi först antar att \vec{F} är **konstant** på ytstycket Y och att Y är ett **plant ytstycke** (tillexempel en parallellogram) orienterad med enhetsnormalvektorn \hat{n} .

Under en tidsenhet, t ex sekund, fyller fluid parallellepiped med volymen V= h·area(Y)= $|\vec{F} \cdot \hat{n}| area(Y)$. Flöde som passerar Y under en tidsenhet (t ex en sekund) blir då $\Phi = (\vec{F} \cdot \hat{n}) area(Y)$.

 Φ är positivt om $\vec{F}\cdot\hat{n}>0$, dvs om \vec{F} pekar åt samma sida som \hat{n} . Om vinkeln mellan \vec{F} och \hat{n} är större än $\pi/2$ blir $\Phi=(\vec{F}\cdot\hat{n})area(Y)$ negativt.

ii) Nu betraktar vi allmänt fall där hastighetsvektorn

 $\overrightarrow{F}=(P(x,y,z),Q(x,y,z),R(x,y,z))$ varierar över en buktig yta Y som definieras av $\overrightarrow{r}=\overrightarrow{r}(s,t)$, där $(s,t)\in D(s,t)$. Vi delar ytan Y i små ytor Y_k, genom att välja s=s_k och t=t_k,, och därefter approximerar flödet Φ_k genom ytstycket Y_k med

$$\Phi_k = (\vec{F}_k \cdot \hat{n}_k) area(Y_k),$$

där \vec{F}_k och \hat{n}_k beräknas i en punkt T_k som ligger i Y_k .

Därför blir approximationen av flödet genom hela ytan Y

$$\Phi \approx \sum_{k} \Phi_{k} = \sum_{k} (\vec{F}_{k} \cdot \hat{n}_{k}) area(Y_{k})$$
 (*)

Utrycket går mot ytintegralen $\iint_Y \vec{F} \cdot \hat{n} \, dS$ om diam (Y_k) går mot 0.

Alltså $\Phi = \iint_V \vec{F} \cdot \hat{n}$ är ett uttryck för volymflödet av fluiden genom ytstycket Y (under en tidsenhet).

Enligt ovan kan vara både positivt och negativt.

Vi kan även vidare utveckla (*):

Om vi substituerar $area(Y_k) \approx |\boldsymbol{r}_s' \times \boldsymbol{r}_t'| \Delta s_k \Delta t_k$ och $\hat{n}_k = \frac{r_s' \times r_t'}{|r_s' \times r_t'|} i$ (*) får vi

$$\sum_{k} (\vec{F}_{k} \cdot \hat{n}_{k}) area(Y_{k}) \approx \sum_{k} \left(\vec{F}_{k} \cdot \frac{r'_{s} \times r'_{t}}{|r'_{s} \times r'_{t}|} \right) |r'_{s} \times r'_{t}| \Delta s_{k} \Delta t_{k} = \sum_{k=0}^{n} \vec{F}_{k} \cdot (r'_{s} \times r'_{t}) \Delta s_{k} \Delta t_{k}$$

som är en Riemannsumma för integralen $\iint_{D(s,t)} \vec{F} \cdot \vec{N} ds dt$.

Vi har därmed visat att flödet Φ genom ytan Y kan beräknas med

$$\Phi = \iint_{V} \vec{F} \cdot \hat{n} \, dS = \iint_{D} \vec{F} \cdot \vec{N} \, ds dt \, \, d\ddot{a}r \, \vec{N} = \vec{r}_{s} \times \vec{r}_{t}'.$$

där andra integralen beräknas som vanligt dubbelintegral över definitionsområdet D=D(s,t) i st-planet.

Alternativt kan vi formellt förenkla ytintegralen $\iint_V \vec{F} \cdot \hat{n} \, dS$, enligt följande

$$\Phi = \iint_Y \vec{F} \cdot \hat{n} \, dS = \iint_Y \vec{F} \cdot \frac{\vec{N}}{|\vec{N}|} dS = \iint_D \vec{F} \cdot \frac{\vec{N}}{|\vec{N}|} |\vec{N}| ds dt = \iint_D \vec{F} \cdot \vec{N} ds dt$$

Anmärkning 2. I visa delar av ytan Y kan flödet vara negativt. Formeln

 $\Phi = \iint_{V} \vec{F} \cdot \hat{n} \, dS$ ger **nettoflödet** av \vec{F} genom Y.

BERÄKNING AV FLÖDESINTEGRAL $=\iint_V \vec{F} \cdot \hat{n} \, dS$

A) Om ytan ges på explicit form z = f(x, y) där $(x, y) \in D$ då är flödet uppåt

$$\Phi = \iint\limits_{D} \vec{F} \cdot \vec{N} \, dx dy$$

där $\vec{N}=(-z_x',-z_y',1)$ (eller $\vec{N}=(z_x',z_y',-1)$ om vi räknar **flödet neråt**).

 $\vec{F} \cdot \vec{N}$ är skalärprodukten mellan \vec{F} och \vec{N} .

B) För ytor givna på parameterform

$$x = x(s,t)$$
, $y = y(s,t)$, $z = z(s,t)$, eller kortare $r = r(s,t)$, där $(s,t) \in D(s,t)$

har vi följande formler: En normalvektor till ytan är $\vec{N} = \vec{r}_s' \times \vec{r}_t'$

där
$$\vec{r}_{s}' = (x_{s}', y_{s}', z_{s}')$$
 och $\vec{r}_{t}' = (x_{t}', y_{t}', z_{t}')$.

Flödet (i riktningen \vec{N}) beräknas med hjälp av integralen

$$\Phi = \iint\limits_{D} \vec{F} \cdot \vec{N} \, ds dt$$

C) I några speciella fall kan vi beräkna flödet direkt med ytintegralen $\iint_V \vec{F} \cdot \hat{n} \, dS$:

T ex om
$$\vec{F} \cdot \hat{n} = (= konstant)$$
 har vi $\Phi = \iint_{Y} \vec{F} \cdot \hat{n} \, dS = \iint_{Y} k \, dS = k \cdot area(Y)$

ÖVNINGAR:

Uppgift 1. Beräkna flödet uppåt av vektorfältet $\vec{F} = (x, y, x + y)$ genom den yta som definieras av z = 1 + 3x + 2y, $0 \le x \le 1$, $0 \le y \le 2$.

Lösning: z = 1 + 3x + 2y,

$$\vec{N} = (-z'_x, -z'_y, 1) = (-3, -2, 1)$$
, $\vec{F} = (x, y, x + y)$

$$\vec{F} \cdot \vec{N} = -3x - 2y + x + y = -2x - y$$

$$\Phi = \iint_D \vec{F} \cdot \vec{N} \, dx dy = \int_0^1 dx \int_0^2 (-2x - y) dy = \int_0^1 (-4x - 2) dx = -4.$$

Svar: $\Phi = -4$

Uppgift 2. Beräkna flödet uppåt av vektorfältet $\vec{F}=(x+y)\vec{i}+z\vec{k}$ genom den yta som definieras av $z=1+x+y^2$, $-1\leq x\leq 1$, $-2\leq y\leq 2$

Lösning: $z = 1 + x + y^2$

$$\vec{N} = (-z'_x, -z'_y, 1) = (-1, -2y, 1), \quad \vec{F} = (x + y, 0, z)$$

$$\vec{F} \cdot \vec{N} = -x - y + z$$
 (Vi måste eliminera z!)

Vi substituerar $z = 1 + x + y^2$ och får $\vec{F} \cdot \vec{N} = y^2 - y + 1$

$$\Phi = \iint_{D} \vec{F} \cdot \vec{N} dx dy = \int_{-1}^{1} dx \int_{-2}^{2} (y^{2} - y + 1) dy = \frac{56}{3}.$$

Svar: $\Phi = \frac{56}{3}$

Uppgift 3. Beräkna flödet uppåt av vektorfältet $\vec{F} = x\vec{i} + 3y\vec{j} + (x+3y)\vec{k}$ genom den yta som definieras av z = 1 - x + y, $0 \le x^2 + y^2 \le 4$, x > 0, y > 0.

Lösning:
$$z = 1 - x + y$$
, $\vec{N} = (-z'_x, -z'_y, 1) = (1, -1, 1)$, $\vec{F} = x\vec{i} + 3y\vec{j} + (x + 3y)\vec{k}$

$$\vec{F} \circ \vec{N} = x - 3y + x + 3y = 2x$$

$$\Phi = \iint_D \vec{F} \cdot \vec{N} \, dx dy = \iint_D 2x dx dy = \{\text{polära koordinater}\}$$

$$\int_{0}^{\pi/2} d\varphi \int_{0}^{2} 2r \cos\varphi \cdot r dr = 2 \int_{0}^{\pi/2} \cos\varphi \, d\varphi \int_{0}^{2} r^{2} dr = \frac{16}{3}.$$

Uppgift 4. Beräkna flödet uppåt av vektorfältet $\vec{F} = x\vec{i} + 2y\vec{j} + z\vec{k}$ genom den yta som definieras

av
$$z = 1 + x^2 + 2y$$
, $0 \le x \le 1$, $0 \le y \le 2$.

Lösning:
$$z = 1 + x^2 + 2y$$
, $\vec{N} = (-z'_x, -z'_y, 1) = (-2x, -2, 1)$, $\vec{F} = (x, 2y, z)$

$$\vec{F} \circ \vec{N} = -2x^2 - 4y + z = -2x^2 - 4y + 1 + x^2 + 2y = -x^2 - 2y + 1$$

$$\Phi = \iint_{D} \vec{F} \cdot \vec{N} dx dy = \int_{0}^{1} dx \int_{0}^{2} (-x^{2} - 2y + 1) dy =$$

$$\int_{0}^{1} dx \left[-x^{2}y - y^{3} + y \right]_{0}^{2} = \int_{0}^{1} (-2x^{2} - 2) dx = \frac{-8}{3}.$$

Svar: $\Phi = -8/3$

Uppgift 5. Beräkna flödet uppåt av vektorfältet $\vec{F} = (x, 2y, 0)$ genom den yta som definieras av $\vec{r}(s,t) = (2s, 2t, 3s + t), \quad 0 \le s \le 1, \quad 0 \le t \le 1.$

Lösning: $\vec{r}_s' = (2, 0, 3)$ och $\vec{r}_t' = (0, 2, 1)$.

$$\vec{N} = \vec{r}_s \times \vec{r}_t = (-6, -2, 4), \quad \vec{F} \cdot \vec{N} = -6x - 4y = -12s - 8t$$

$$\Phi = \iint_{D(s,t)} \vec{F} \cdot \vec{N} \, ds dt = \iint_{D(s,t)} (-12s - 8t) \, ds dt = \int_0^1 ds \int_0^1 (-12s - 8t) dt = -10t$$

Uppgift 6. Beräkna flödet av vektorfältet $\vec{F} = (2x, y, 0)$ genom den yta som definieras av $\vec{r}(s,t) = (3s^2, -3t^2, 2s+t), \quad 0 \le s \le 1, \quad 0 \le t \le 1.$

Lösning: $\vec{r}_s' = (6s, 0, 2)$, $\vec{r}_t' = (0, -6t, 1)$, $\vec{N} = \vec{r}_s' \times \vec{r}_t' = (12t, -6s, -36st)$

$$\vec{F} \cdot \vec{N} = 24tx - 6sy = 72s^2t + 18st^2$$

$$\Phi = \iint\limits_{D(s,t)} \vec{F} \cdot \vec{N} \, ds dt = \iint\limits_{D(s,t)} 72s^2t + 18st^2 \, ds dt = \int\limits_{0}^{1} ds \int\limits_{0}^{1} 72s^2t + 18st^2 dt = 15.$$

[Vi har faktiskt den här gången beräknat flödet neråt eftersom den tredje koordinaten för vektorn \vec{N} är $-36st \le 0$ i området $0 \le s \le 1$, $0 \le t \le 1$.]

Uppgift 7. Låt
$$\vec{F} = (\frac{mx}{(x^2 + y^2 + z^2)^{3/2}}, \frac{my}{(x^2 + y^2 + z^2)^{3/2}}, \frac{mz}{(x^2 + y^2 + z^2)^{3/2}})$$

(kortare beskrivning, $\vec{F}=m\frac{\vec{r}}{\mid\vec{r}\mid^3}$, där $\vec{r}=(x,y,z)$). Låt Y vara övre halvan av sfären

$$x^2 + y^2 + z^2 = a^2 .$$

Visa att $\vec{F} \cdot \hat{n}$ är konstant och beräkna integralen $\iint_Y \vec{F} \cdot \hat{n} \, dS$ direkt.

Lösning. På halvsfären gäller $x^2 + y^2 + z^2 = a^2$. Därför, på halvsfären,

$$\hat{n} = \frac{1}{\sqrt{x^2 + y^2 + z^2}}(x, y, z) = \frac{\vec{r}}{a} \cdot \text{Vidare} \quad \vec{F} = m \frac{\vec{r}}{a^3} \text{ och } \vec{F} \cdot \hat{n} = m \frac{\vec{r} \cdot \vec{r}}{a^4} = m \frac{a^2}{a^4} = \frac{m}{a^2}$$

Slutligen
$$\iint\limits_{Y} \vec{F} \cdot \hat{n} \ dS = \iint\limits_{Y} \frac{m}{a^2} \ dS = \frac{m}{a^2} area(S) = \frac{m}{a^2} \cdot 2a^2\pi = 2m\pi \ .$$

Svar: $2m\pi$