

Winning Space Race with Data Science

Iryna Kushnirova 12.2024

Content

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

Introduction

Background

- SpaceX promotes Falcon 9 rocket launches at a cost of \$62 million, significantly lower than the \$165 million or more charged by other providers. This cost reduction is largely due to the reusability of the rocket's first stage.
- By predicting whether the first stage will successfully land, we can estimate the potential cost of a launch.
- To achieve this, I leverage publicly available data and apply machine learning models.

Explore

- Analyze how payload mass, launch sites, orbit types, and flight numbers influence outcomes.
- Examine the rate of successful landings over time to identify trends.
- Identify the best predictive model for successful landings using binary classification.

Methodology

Section 1

Methodology

Data Collection

API Utilization WEB Scraping

EDA using SQL

Execute SQL queries to understand the Spacex DataSet

Interactive visual analytics

Folium
Plotly Dash

Dealing with Missing Values

Perform some EDA

Creates a landing outcome label from Outcome column

Determine the success rate

D

Data Wrangling

Find relationships between data and outcame

Feature Engineering

EDA using Visualization

Build

Tune

Evaluate

Predictive analysis using classification models

Data Collection – SpaceX API (GitHub URL)

- Request and parse the SpaceX launch data using the GET request
- Decode the response content as a Json using .json() and turn it into a Pandas dataframe using .json_normalize()
- Request information about the launches from SpaceX API using custom functions
- Create dictionary from the data
- Create dataframe from the dictionary
- Filter the dataframe to only include Falcon
 9 launches

Data Collection – Web Scraping (GitHub URL)

Data Wrangling (GitHub URL)

Dealing with Missing Values

 Replace the np.nan values with its mean value using the .mean() and .replace() functions for PayloadMass

Perform some Exploratory Data Analysis:

- # of launches on each site;
- # of each orbit;
- # of mission outcome of the orbits

Creates a landing outcome label from Outcome column

• A list where the element is zero if the corresponding row in Outcome is in the set bad_outcome; otherwise, it's one. Then assign it to the variable landing_class:

Determine the success rate

code to determine the success rate: df["Class"].mean()
 df["Class"].value_counts()

EDA using Data Visualization (GitHub URL)

EDA and Feature Engineering using Pandas and Matplotlib

- Explore the relationships between:
 - Flight Number and Launch Site
 - Payload Mass and Launch Site
 - Success rate of each orbit type
 - Flight Number and Orbit type
 - Payload Mass and Orbit type
 - The launch success yearly trend
- Create dummy variables to categorical columns
- Cast all numeric columns to float64

Build an Interactive Map with Folium (URL)

Mark all launch sites on a map

All launch sites are in proximity to the Equator line All launch sites in very close proximity to the coast

Mark the success/failed launches for each site on the map

From the color-labeled markers in marker clusters, it is easily identify which launch sites have relatively high success rates

Coast

Mean	25.57245228	1.883154559	4.259669479 ⁰
MIN	16.26841382	0.959590734	0.5850337
МАХ	39.69652866	3.987148927	14.96106243

Highway

Calculate the distances between a launch site to its proximities

Launch sites are close to railways Launch sites are close to highways Launch sites Railway r coastline

1.292136884

Launch sites keep a 16.27km distance away from 1.131817113 0.70512059

Build a Dashboard with Plotly Dash (GitHub URL)

- Interactive Dashboard Features
- The dashboard application enables user interaction through:
- Input Components:
 - A dropdown list for selecting categories or filters.
 - A range slider for adjusting numerical values, such as payload range.
- Visualization Tools:
 - A **pie chart** to display proportional data (e.g., success rates per launch site).
 - A scatter point chart for exploring correlations (e.g., payload vs. success rate).
- Insights Derived from the Dashboard
- Through visual analysis, the following questions can be answered:
- Which site has the largest number of successful launches?
- · Which site has the highest launch success rate?
- Which payload range(s) have the highest launch success rate?
- Which payload range(s) have the lowest launch success rate?
- Which Falcon 9 booster version (e.g., v1.0, v1.1, FT, B4, B5) has the highest launch success rate?

Predictive Analysis (Classification -GitHub URL)

- To build the predictive classification model, the following steps were taken:
- Data Preparation:
 - Created a new column to define the classification target (e.g., success/failure).
 - Standardized the data to normalize feature values.
 - Split the dataset into training and testing subsets.
- Model Optimization using GridSeach:
 - Tuned hyperparameters for the following models:
 - Logistic Regression
 - Support Vector Machine (SVM)
 - Classification Tree
 - K-Nearest Neighbors
- Model Evaluation:
 - Assessed performance using the test data to identify the best-performing model.
 - Evaluation Metrics:
 - The following metrics were used to comprehensively evaluate model performance:
 - ROC AUC: Measures classification performance across different thresholds.
 - Precision, Recall, F1 Score: Provides insights into the trade-offs between precision and completeness.
 - Log Loss: Evaluates model predictions based on probabilities.
 - Accuracy: Assesses overall classification correctness.

Insights drawn ADE

Section 3

Flight Number vs. Launch Site

- Success increase with flight number
- Launch Site KSC LC 39A has highest success rate

Payload vs. Launch Site

- Success rate shows a **positive correlation** with payload mass across launch sites.
- The **highest success rates** are observed for payloads >6000 kg.
- VAFB SLC-4E has not been used for payloads >9000 kg.

Success Rate vs. Orbit Type

Payload vs. Orbit Type

1 class – success 0 class - failure

Flight Number vs. Orbit Type

- ✓ For SSO Orbit: 100% success rate
- ✓ For VLEO, LEO, ISS, MEO Orbits: 60-90% success rate
- The SSO Orbitt excellent with payload mass <= 4000kg
- For LEO, ISS, PO Orbits: Success correlates with higher flight numbers and greater payloads (>4000kg).
- o For **ES-L1**, **GEO**, **HEO** Orbits: 100% success rate but with limited flight data.
- o For **SO** Orbit unsuccess for the first flight
- For GTO Orbit success remains unpredictable.

Launch Success Yearly Trend

- Improved: 2013–2017 and 2018–2019.
- **Decreased**: 2017–2018 and 2019–2020.
- Overall: Success rate has increased since 2013.

Launch Site Information

Launch Site Names Begin with 'CCA'

SQL queriy to display 5 records where launch sites begin with the string 'CCA'

- The WHERE clause is used to filter records.
- The operator LIKE to search for a pattern
- The percent sign % represents zero, one, or multiple characters

SQL query to display the names of the unique launch sites in the space mission

• The SELECT DISTINCT statement is used to return only distinct (different) values

Launch Site Names

- CCAFS LC-40
- CCAFS SLC-40
- KSC LC-39A
- VAFB SLC-4E

%%sql SELECT * FROM SPACEXTABLE WHERE Launch_Site LIKE "CCA%" LIMIT 5										
* sqlite:///my_data1.db Done.										
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcom	
2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachu	
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachi	
2012-05-22	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No atter	
2012-10-08	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No atter	
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No atte	

Payload Mass

SQL query to display Total Payload Mass

- The SUM() function returns the total sum of a numeric column.
- The WHERE clause is used to filter records.
- The operator = to search for a pattern that equal "NASA (CRS)"

- The total payload carried by boosters from NASA 45596 kg
- The average payload mass carried by booster version F9 v1.1 - 2928.4 kg

SQL query to display the Average Payload Mass by F9 v1.1

- The AVG() function returns the average value of a numeric column.
- The WHERE clause is used to filter records.
- The operator = to search for a pattern that equal "NASA (CRS)"

First Successful Ground Landing Date

SQL query to display the First Successful Ground Landing Date

- The MIN() function returns the smallest value of the selected column.
- The WHERE clause is used to filter records.
- The operator = to search for a pattern that equal "Success (around pad)"

```
%%sql SELECT MIN(Date)
AS First_successful_landing FROM SPACEXTABLE
WHERE Landing_Outcome = "Success (ground pad)"

* sqlite://my_data1.db
Done.
First_successful_landing

2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

```
%%sql SELECT Booster_Version, Payload, Landing Outcome, PAYLOAD MASS KG
FROM SPACEXTABLE
WHERE Landing_Outcome = 'Success (drone ship)'
AND PAYLOAD_MASS__KG_ BETWEEN 4000 AND 6000
ORDER BY PAYLOAD MASS KG DESC
 * sqlite:///my_datal.db
Done.
Booster_Version
                           Payload Landing Outcome PAYLOAD MASS KG
   F9 FT B1021.2
                            SES-10 Success (drone ship)
                                                                      5300
  F9 FT B1031.2 SES-11 / EchoStar 105 Success (drone ship)
                                                                      5200
    F9 FT B1022
                          JCSAT-14 Success (drone ship)
                                                                      4696
                          JCSAT-16 Success (drone ship)
    F9 FT B1026
                                                                      4600
```

SQL query to display the The boosters names which have success in drone ship and have payload mass greater than 4000 but less than 6000

- The WHERE clause is used to filter records.
- The operator BETWEEN to search for a pattern that between a certain range
- The ORDER BY keyword is used to sort the result-set in descending order.

Total Number of Successful and Failure Mission Outcomes

```
%%sql SELECT
COUNT(Mission_Outcome) AS "# OF Success"
FROM SPACEXTABLE
WHERE Mission_Outcome LIKE "Success%"

* sqlite://my_data1.db
Done.
# OF Success
100
```

```
%%sql SELECT
COUNT(Mission_Outcome) AS "# OF Failure"
FROM SPACEXTABLE
WHERE Mission_Outcome LIKE "Failure%"

* sqlite://my_data1.db
Done.
# OF Failure

1
```

•100 Success (one of them have payload status unclear

• 1 Failure in flight

SQL query to display Total Number of Successful and Failure Mission Outcomes

- The COUNT() function returns the number of rows that matches a specified criterion.
- The WHERE clause is used to filter records.
- The operator LIKE to search for a pattern
- The percent sign % represents zero, one, or multiple characters
- The GROUP BY statement groups rows that have the same values into summary rows

The names of the booster_versions which have carried the maximum payload mass

SQL query to display the names of the booster_versions which have carried the maximum payload mass using subquery

- The WHERE clause is used to filter records
- The MAX() function returns the largest value of the selected column.

List the names of the booster_versions

- F9 B5 B1048.4
- F9 B5 B1049.4
- F9 B5 B1051.3
- F9 B5 B1056.4
- F9 B5 B1048.5
- F9 B5 B1051.4
- F9 B5 B1049.5
- F9 B5 B1060.2
- F9 B5 B1058.3
- F9 B5 B1051.6
- F9 B5 B1060.3
- F9 B5 B1049.7

The month, failure landing_outcomes in drone ship, booster versions, launch_site in year 2015

SQL query to display the names of the month, failure landing_outcomes in drone ship, booster versions, launch_site in year 2015

- The WHERE clause is used to filter records
- The operator = to search for a pattern

```
%%sql SELECT substr(Date, 6,2) AS month,
Booster_Version, Launch_Site, Landing_Outcome
FROM SPACEXTABLE
WHERE substr(Date,0,5)='2015'
AND Landing_Outcome = 'Failure (drone ship)'

* sqlite:///my_data1.db
Done.
month Booster_Version Launch_Site Landing_Outcome

01 F9 v1.1 B1012 CCAFS LC-40 Failure (drone ship)

04 F9 v1.1 B1015 CCAFS LC-40 Failure (drone ship)
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

SQL query to displayRank Landing Outcomes Between 2010-06-04 and 2017-03-20

- The COUNT() function returns the number of rows that matches a specified criterion.
- The WHERE clause is used to filter records.
- The operator BETWEEN to search for a pattern that between a certain range
- The GROUP BY statement groups rows that have the same values into summary rows
- The ORDER BY keyword is used to sort the result-set in descending order

Launche Sites Proximities Analisis

Section 3

Map with marked launch sites

- All launch sites are situated near the Equator line, which helps optimize orbital launches.
- Sites are located near the coast to ensure safe launch and landing trajectories, minimizing risks to populated areas.

Proximity Benefits:

• Coastal positioning ensures safety and accessibility for transporting materials and personnel.

CCAFS SLC-40 KSC LC-39A CCAESIC - 40 VAFB SLC-4E

Map with the colorlabeled markers in marker clusters

Green markers indicate successful launches, while **red markers** indicate failures.

Insights:

- KSC LC-39A shows the highest success rate among all launch sites.
- Other sites, such as CCAFS SLC-40 and VAFB SLC-4E, also contribute, but with fewer successful outcomes compared to KSC LC-39A.
- This visualization effectively highlights the geographical distribution and success patterns of SpaceX launches

Folium Map with distances between a launch site to its proximities

City Proximity:

- The closest city to a launch site is KSC LC-39A at 16.26 km.
- VAFB SLC-4E is furthest from its nearest city at 39.70 km.

Coast Proximity:

• All launch sites are in close proximity to the coast, ensuring safe launch paths over water.

Highway Proximity:

• VAFB SLC-4E has a significantly higher distance to highways compared to other sites (14.96 km).

Railway Proximity:

 All sites are located near railways, ensuring efficient transportation of materials and equipment.

Build a Dashboard with Plotly Dash

Section 4

Total Succes Launches by site

• KSC LC-39A has the most successful launches amongst launch sites (41.7%)

Total Succes Launches for KSC LC-39A

Success Rate: KSC LC-39A holds the highest success rate among launch sites at 76.9%.

Launch Outcome:

Successful Launches: 10

Failed Launches: 3

This indicates the reliability and efficiency of KSC LC-39A for launches.

Success

Failure

Correlation Between Payload and Success for all Sites

- Payloads between 2,000 kg and 5,000 kg have the highest success rate
- FT Booster: Highest success rate overall.

Predictive Analysis (Classification)

Section 5

Confusion Matrix

• **Precision**: 91.67%

• **Recall**: 91.67%

• **F1 Score**: 91.67%

 The decision tree classifier demonstrates strong performance in both precision and recall, achieving a balanced and reliable F1 score.

Classification Accuracy

- Model Comparison
- **Decision Tree Classifier** has the highest overall evaluation metrics:

• Accuracy: 88.89%

• **F1 Score**: 91.67%

- Log Loss: 0.298668 (lowest among all models).
- Other models also performed well but were slightly less effective compared to the decision tree:
- **SVM** achieved the highest ROC AUC of 95.83%.
- LogReg and KNN showed consistent accuracy at 83.33% but slightly lower precision and F1 scores.

Also to find the method performs best i used the following code

```
models = {
    'KNeighbors': knn_cv.best_score_,
    'DecisionTree': tree_cv.best_score_,
    'LogisticRegression': logreg_cv.best_score_,
    'SupportVector': svm_cv.best_score_
}

bestalgorithm = max(models, key=models.get)
print('Best model is', bestalgorithm, 'with a score of', models[bestalgorithm])

best_params = {
    'DecisionTree': tree_cv.best_params_,
    'KNeighbors': knn_cv.best_params_,
    'LogisticRegression': logreg_cv.best_params_,
    'SupportVector': svm_cv.best_params_
}

print('Best params is:', best_params[bestalgorithm])

Best model is DecisionTree with a score of 0.8875000000000002
Best_params_is: ('criterion': 'entropy', 'max_depth': 14. 'max_features': 'sort', 'min_samples_leaf': 2. 'min_samples_soli
```

Best model is **DecisionTree** with a score of 0.8875000000000000

Best params is:

- Criterion = entropy
- $max_depth = 14$
- max_features = sqrt
- min_samples_leaf= 2
- min_samples_split = 10
- Splitter = random

Conclusions

• Orbit:

- SSO Orbit demonstrates a perfect 100% success rate, highlighting its reliability.
- For **VLEO**, **LEO**, **ISS**, and **MEO** orbits, success rates vary between **60-90%**, indicating a need for further refinement in these categories.
- **LEO, ISS, and PO orbits** show a positive correlation between success rates and **higher flight numbers** as well as **greater payloads**.

Launch Sites

 Among all sites, KSC LC-39A has the highest success rate, making it the most reliable.

Booster Performance

- The **FT Booster** version has the **highest overall success rate** across all sites.
- The B4 Booster performs exceptionally well when launched from KSC LC-39A site.

Geography

- All launch sites are positioned **close to the Equator** and **coastal areas**, leveraging physics for efficient launches.
- Sites are located **far from urban centers, highways, and railways**, reducing potential risks from failed launches while remaining logistically viable.

Predictive Modeling

 The Decision Tree Classifier emerged as the most effective model for predicting launch outcomes, supported by superior evaluation metrics.

Overall Key Takeaways

- The steady improvement in success rates indicates strong growth in space launch capabilities.
- Strategic placement of sites and advancements in booster technology significantly contribute to mission success.
- Data-driven predictive models offer promising accuracy for future mission planning.

Thank you!