SoC Design: Lecture 2 Review of Logic Circuit

Spring 2024

School of IT Convergence Prof. Jong-Myon Kim

Objectives

Topics introduced in this chapter:

- Difference between Analog and Digital System
- Difference between Combinational and Sequential Circuits
- Binary number and digital systems
- Number systems and Conversion
- Add, Subtract, Multiply, Divide Positive Binary Numbers
- 1's Complement, 2's Complement for Negative binary number
- ➤ BCD code, 6-3-1-1 code, excess-3 code

Digital Systems and Switching

Digital Systems

- ⇒ computation, data processing, control, communication, measurement
- ⇒ reliable, integration

Differences

Analog – Continuous

- ⇒ Natural Phenomena (Pressure, Temperature, Speed…)
- ⇒ Difficulty in realizing, processing using electronics

Digital - Discrete

- ⇒ Binary Digit → Signal processing as bit unit
- ⇒ Easy in realizing, processing using electronics
- ⇒ High performance due to integrated circuit technology

Analog versus Digital

Binary Digit?

Binary

- \Rightarrow Two values (0,1)
- ⇒ Each digit is called as a "bit"
- ⇒ Thus, good things in binary number
- ⇒ Number representation with only two values (0,1)
- ⇒ Can be implemented with simple electronics devices
 - ⇒ Ex. Voltage high (1), low (0)
 - \Rightarrow Ex. Switch on (1), off (0) etc.

Switching Circuit

Combinational Circuit

- > Outputs depend on only present inputs, not on past inputs
- ➤ Have no "memory" function

Sequential Circuit

- > Outputs depend on both present inputs and past inputs
- ➤ Have "memory" function

What is Logic Design?

- Given the function, implement logic hardware for that function
 - Representation of the function
 - Sentence, speak, pseudo code, program
 - Truth table
 - Karnaugh maps
 - Minterm and Maxterm expansions
 - FSM
 - ...
 - How to implement
 - You can Implement logic circuits by connecting logic gates
 - There are many logic circuits for only one function, but it is important to implement optimal one

Design Steps

[Jan Rabaey's Digital Circuit Design]

Decimal: $953.78_{10} = 9 \times 10^2 + 5 \times 10^1 + 3 \times 10^0 + 7 \times 10^{-1} + 8 \times 10^{-2}$

Binary:
$$1011.11_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$

= $8 + 0 + 2 + 1 + \frac{1}{2} + \frac{1}{4} = 11\frac{3}{4} = 11.75_{10}$

Radix(Base) :

$$N = (a_4 a_3 a_2 a_1 a_0 . a_{-1} a_{-2} a_{-3})_R$$

= $a_4 \times R^4 + a_3 \times R^3 + a_2 \times R^2 + a_1 \times R^1 + a_0 \times R^0 + a_{-1} \times R^{-1} + a_{-2} \times R^{-2} + a_{-3} \times R^{-3}$

Example :

$$147.3_8 = 1 \times 8^2 + 4 \times 8^1 + 7 \times 8^0 + 3 \times 8^{-1} = 64 + 32 + 7 + \frac{3}{8}$$
$$= 103.375_{10}$$

Hexa-Decimal :

$$A2F_{16} = 10 \times 16^2 + 2 \times 16^1 + 15 \times 16^0 = 2560 + 32 + 15 = 2607_{10}$$

Example : Decimal to Binary Conversion

2 /26 rem. =
$$1 = a_0$$

2
$$13$$
 rem. = $0 = a_1$

2
$$6$$
 rem. = 1 = a_2

$$\frac{1}{2}$$
 rem. = 0 = a_3

2
$$nem. = 1 = a_4$$

 $nem. = 1 = a_5$

$$53_{10} = 110101_2$$

Example : Convert 0.7 to Binary

Example : Convert 231.3₄ to Base-7

- 1. Convert to Decimal $231.3_4 = 2 \times 16 + 3 \times 4 + 1 + \frac{3}{4} = 45.75_{10}$
- 2-1. Convert of a decimal integer to base 7
- 2-2. Convert of a decimal fraction to base 7

Conversion of Binary to Octal, Hexa-Decinal

$$(10111011)_2$$

Addition

$$0 + 0 = 0$$

$$0+1=1$$

$$1 + 0 = 1$$

$$1+1=0$$
 and carry 1 to the next column

Example

1111
$$\leftarrow$$
 carries
$$13_{10} = 1101$$

$$11_{10} = \underline{1011}$$

$$11000 = 24_{10}$$

Subtraction

$$0-0=0$$

 $0-1=1$ and borrow 1 from the next column
 $1-0=1$
 $1-1=0$

Example

1 ← (indicates 1111 ← borrows 111 ← borrows 11101
$$\frac{\text{a borrow}}{\text{From the}}$$
 10000 111001 $\frac{-10011}{1010}$ 3rd column) $\frac{-11}{1101}$ 101110

Subtraction Example with Decimal

Multiplication

Multiply: 13 x 11 (10)

				, ,	
0×0=	= 0		1101		
0×1=	= ()		1011		
1×0=			1101		
	-		1101		
1×1=	=]		0000		
			_1101		
	1111	multiplicand	10001111 = 1	43,0	
	1101	multiplier		10	
	1111	first partial product			
0000		second partial produ	ct		
(01111) sum of first two partial product			ial products		
	1111	third partial product			
	(1001011)	sum after adding third partial product			
	1111	fourth partial product			
11000011		final product (sum a	fter adding fourth pa	artial product)	

The quotient is 1101 with a remainder of 10.

(a) Unsigned number

2's Complement Representation for Negative Numbers

$$N^* = 2^n - N$$

			Negative integers		
+N	Positive integers (all systems)	-N	Sign and magnitude	2's complement N*	1's complement N
+0	0000	-0	1000	-	1111
+1	0001	-1	1001	1111	1110
+2	0010	-2	1010	1110	1101
+3	0011	-3	1011	1101	1100
+4	0100	-4	1100	1100	1011
+5	0101	-5	1101	1011	1010
+6	0110	-6	1110	1010	1001
+7	0111	-7	1111	1001	1000
		-8	-	1000	-

1's Complement Representation for Negative Numbers

$$\overline{N} = (2^n - 1) - N$$

Example :

$$2^{n} - 1 = 1111111$$

$$N = 010101$$

$$\overline{N} = 101010$$

$$N^* = 2^n - N = (2^n - 1 - N) + 1 = N + 1$$

→ 2's complement: 1's complement + '1'

Addition of 2's Complement Numbers

Case 1	+3	0011	Addition of two positive numbers, sum<2 ⁿ⁻¹	
	<u>+4</u>	<u>0100</u>	radition of two positive flambors, same	
	+7	0111	(correct answer)	
Case 2	+5	0101	Addition of two positive numbers, sum≥2 ⁿ⁻¹	
	<u>+6</u>	<u>0110</u>		
		1011 ←	— wrong answer because of overflow (+11 requires	
Case 3	+5	0101	5 bits including sign)	
	<u>-6</u>	<u>1010</u>	Addition of positive and negative numbers	
	_	1111	(correct answer)	
Case 4	-5	1011	Same as case 3 except positive number has	
	<u>+6</u>	<u>0110</u>	greater magnitude	
		(1)0001 ←	correct answer when the carry from the sign bit is ignored (this is <i>not</i> an overflow)	

Addition of 2's Complement Numbers

Addition of 1's Complement Numbers

Case 3	+5	0101	
	<u>-6</u>	<u>1001</u>	
	-1	1110	(correct answer)
Case 4	-5	1010	
	<u>+6</u>	<u>0110</u>	
	(1)	0000	
			(end-around carry)
	_	0001	(correct answer, no overflow)
Case 5	-3	1100	
	<u>-4</u>	<u>1011</u>	
	(1)	0111	
	L	<u>1</u>	(end-around carry)
		1000	(correct answer, no overflow)

Addition of 1's Complement Numbers

Case 6

1010

-5

1001

-6

(1) 0011

1 (end-around carry)

0100 (wrong answer because of overflow)

Case 4:
$$-A + B$$
 (where $B > A$)

 $\overline{A} + B = (2^n - 1 - A) + B = 2^n + (B - A) - 1$

Case 5: $-A - B$ $(A + B < 2^{n-1})$
 $\overline{A} + \overline{B} = (2^n - 1 - A) + (2^n - 1 - B) = 2^n + [2^n - 1 - (A + B)] - 1$

Addition of 1's Complement Numbers using 8-bit storage

Addition of 2's Complement Numbers using 8-bit storage

11111000 (-8)

$$00010011$$
 ± 19
(1)00001011 = +11
(discard last carry)

Binary Codes

Decimal Digit	8-4-2-1 Code (BCD)	6-3-1-1 Code	Excees-3 Code
0	0000	0000	0011
1	0001	0001	0100
2	0010	0011	0101
3	0011	0100	0110
4	0100	0101	0111
5	0101	0111	1000
6	0110	1000	1001
7	0111	1001	1010
8	1000	1011	1011
9	1001	1100	1100

Binary Codes

6-3-1-1 Code

$$N = w_3 a_3 + w_2 a_2 + w_1 a_1 + w_0 a_0$$

$$N = 6 \cdot 1 + 3 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 = 8$$

ASCII Code : 7-bit code

1010011 1110100 1100001 1110010 1110100 S t a r t

Objectives

Topics introduced in this chapter

- ⇒ Understand the basic operations and laws of Boolean algebra
- ⇒ Relate these operations and laws to AND, OR, NOT gates and switches
- ⇒ Prove these laws using a truth table
- Manipulation of algebraic expression using
 - ⇒ Multiplying out
 - ⇒ Factoring
 - ⇒ Simplifying
 - ⇒ Finding the complement of an expression

Introduction

- ⇒ Basic mathematics for logic design: Boolean algebra
- ⇒ Restrict to switching circuits (Two state values 0, 1) Switching algebra
- ⇒ Boolean Variable : X, Y, ... can only have two state values (0, 1)
 - ⇒ representing True(1) False (0)

Not (Inverter)

$$0'=1$$
 and $1'=0$
 $X'=1$ if $X=0$ and $X'=0$ if $X=1$

Gate Symbol

AND

$$0 \cdot 0 = 0$$
, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, $1 \cdot 1 = 1$

Truth Table

A B	$C = A \cdot B$
0 0	0
0 1	0
1 0	0
1 1	1

Gate Symbol

OR

$$0+0=0$$
, $0+1=1$, $1+0=1$, $1+1=1$

Truth Table

$C = A \cdot B$
0
1
1
1

Gate Symbol

$$A \longrightarrow C = A + B$$

Apply to Switch

$$X = 0 \rightarrow$$
 switch open $X = 1 \rightarrow$ switch closed

T = 0 open circuit between terminals 1 and 2 T = 1 open circuit between terminals 1 and 2

Boolean Expressions and Truth Tables

Logic Expression :

$$(AB'+C)$$

Circuit of Logic

$$B \longrightarrow B' \longrightarrow C \longrightarrow AB' + C)$$

Boolean Expressions and Truth Tables

Logic Expression :

$$[A(C+D)]'+BE$$

Circuit of Logic

$$\begin{array}{c}
C \\
D
\end{array}$$

$$A(C+D) \\
A \\
BE$$

$$BE$$

$$BE$$

$$BE$$

Logic Evaluation : A=B=C=1, D=E=0

$$[A(C+D)]'+BE = [1(1+0)]'+1\cdot 0 = [1(1)]'+0 = 0+0 = 0$$

Boolean Expressions and Truth Tables

2-Input Circuit and Truth Table

АВ	A'	F = A' + B
0 0	1	1
0 1	1	1
1 0	0	0
1 1	0	1

Boolean Expressions and Truth Tables

Proof using Truth Table

$$AB'+C = (A+C)(B'+C)$$

n variable needs

$$2x2x2x\cdots = 2^n \text{ rows}$$

АВС	В'	AB'	AB'+C	A + C	B'+C	(A+C)(B'+C)
0 0 0	1	0	0	0	1	0
0 0 1	1	0	1	1	1	1
0 1 0	0	0	0	0	0	0
0 1 1	0	0	1	1	1	1
1 0 0	1	1	1	1	1	1
1 0 1	1	1	1	1	1	1
1 1 0	0	0	0	1	0	0
1 1 1	0	0	1	1	1	1

Basic Theorems

Operations with 0, 1

$$X + 0 = X$$

$$X \cdot 1 = X$$

$$X + 1 = 1$$

$$X \cdot 0 = 0$$

Idempotent Laws

$$X + X = X$$
 $X \cdot X = X$

$$X \cdot X = X$$

Involution Laws

$$(X')'=X$$

Complementary Laws

$$X + X' = 1$$

$$X \cdot X' = 0$$

Proof
$$X = 0$$
, $0 + 0' = 0 + 1$, and if $X = 1$, $1 + 1' = 1 + 0 = 1$

$$0+0'=0+1$$
,

and if
$$X = 1$$
,

$$1+1'=1+0=1$$

Examples

$$(AB'+D)E+1=1$$

$$(AB'+D)(AB'+D)'=0$$

Basic Theorems with Switch Circuits

Basic Theorems with Switch Circuits

=

Commutative, Associative, Distributive

Commutative Laws: XY = YX, X+Y=Y+X

■ Associative Laws : (XY)Z = X(YZ) = XYZ

$$(X + Y) + Z = X + (Y + Z) = X + Y + Z$$

Proof of Associative Law for AND

XYZ	XY YZ	(XY)Z X(YZ)
0 0 0	0 0	0 0
0 0 1	0 0	0 0
0 1 0	0 0	0 0
0 1 1	0 1	0 0
1 0 0	0 0	0 0
1 0 1	0 0	0 0
1 1 0	1 0	0 0
1 1 1	1 1	1 1

Associative Laws for AND and OR

Commutative, Associative, Distributive

- **AND**: XYZ = 1 iff X = Y = Z = 1
- **OR:** X + Y + Z = 0 iff X = Y = Z = 0
- Distribute Laws: X(Y+Z) = XY + XZ

Valid only Boolean X + YZ = (X + Y)(X + Z)

algebra not for ordinary algebra

Proof

$$(X + Y)(X + Z) = X(X + Z) + Y(X + Z) = XX + XZ + YX + YZ$$

= $X + XZ + XY + YZ = X \cdot 1 + XZ + XY + YZ$
= $X(1 + Z + Y) + YZ = X \cdot 1 + YZ = X + YZ$

Simplification Theorems

Useful Theorems for Simplification

$$XY + XY' = X$$
 $(X + Y)(X + Y') = X$
 $X + XY = X$ $X(X + Y) = X$
 $(X + Y')Y = XY$ $XY' + Y = X + Y$

Proof

$$X + XY = X \cdot 1 + XY = X(1+Y) = X \cdot 1 = X$$

 $X(X+Y) = XX + XY = X + XY = X$
 $Y + XY' = (Y+X)(Y+Y') = (Y+X)1 = Y + X$

Proof with Switch

Simplification Theorems

Equivalent Gate Circuits

$$F = A(A'+B) = AB$$

=

Multiplying Out and Factoring

To obtain a sum-of-product form → Multiplying out using distributive laws

- **Sum of product form :** AB'+CD'E+AC'E
- Not in sum of product form : (A+B)CD+EF
- Multiplying out and eliminating redundant terms :

$$(A+BC)(A+D+E) = A + AD + AE + ABC + BCD + BCE$$
$$= A(1+D+E+BC) + BCD + BCE$$
$$= A + BCD + BCE$$

Multiplying Out and Factoring

To obtain a product of sum form → all sums are the sum of single variable

Product of sum form : (A+B')(C+D'+E)(A+C'+E')

Circuits of SOP and POS Forms

Sum of product form

Product of sum form

DeMorgan's Laws

DeMorgan's Laws

$$(X+Y)'=X'Y'$$
$$(XY)'=X'+Y'$$

Proof

ΧY	X'Y'	X + Y	(X+Y)'	Χ'Υ'	XY	(XY)'	X'+Y'
0 0	1 1	0	1	1	0	1	1
0 1	1 0	1	0	0	0	1	1
1 0	0 1	1	0	0	0	1	1
1 1	0 0	1	0	0	1	0	0

DeMorgan's Laws for n variables

$$(X_1 + X_2 + X_3 + ... + X_n)' = X_1' X_2' X_3' ... X_n'$$

 $(X_1 X_2 X_3 ... X_n)' = X_1' + X_2' + X_3' + ... + X_n'$

Example

$$(X_1 + X_2 + X_3)' = (X_1 + X_2)'X_3' = X_1'X_2'X_3'$$

DeMorgan's Laws

Inverse of A'B + AB'

$$F' = (A'B + AB')' = (A'B)'(AB')' = (A + B')(A' + B)$$
$$= AA' + AB + B'A' + BB' = A'B' + AB$$

АВ	A' B	AB'	F = A'B + AB'	A'B'	AB	F' = A'B' + AB
0 0	0	0	0	1	0	1
0 1	1	0	1	0	0	0
1 0	0	1	1	0	0	0
1 1	0	0	0	0	1	1

■ Dual: 'dual' is formed by replacing AND with OR, OR with AND, 0 with 1, 1 with 0

$$(XYZ...)^D = X + Y + Z + ...$$
 $(X + Y + Z + ...)^D = XYZ...$

$$(AB'+C)'=(AB')'C'=(A'B)C',$$
 so $(AB'+C)^D=(A+B')C$

Objectives

Topics introduced in this chapter

- ⇒ Apply Boolean laws and theorems to manipulation of expression
- ⇒ Simplifying
- ⇒ Finding the complement
- Multiplying out and factoring
- ⇒ Exclusive-OR and Equivalence operation (Exclusive-NOR)
- ⇒ Consensus theorem

Multiplying Out and Factoring Expressions

To obtain a sum-of-product form → Multiplying out using distributive laws

$$X(Y+Z) = XY + XZ$$
$$(X+Y)(X+Z) = X + YZ$$

Theorems for multiplying out

$$(X + Y)(X' + Z) = XZ + X'Y$$
(3-3)

If X = 0, (3-3) reduces to Y(1+Z) = 0+1*Y or Y = Y.

If X = 1, (3-3) reduces to (1+Y)Z = Z+0*Y or Z = Z.

because the equation is valid for both X = 0 and X = 1, it is always valid.

The following example illustrates the use of Theorem (3-3) for factoring:

Theorems for factoring

$$\underbrace{AB + A'C} = (A + C)(A' + B)$$

Multiplying Out and Factoring Expressions

Theorems for multiplying out

$$(Q + \widehat{AB'})(C'D + Q') = QC'D + Q'AB'$$

Multiplying out using distributed laws

$$(Q + AB')(C'D + Q') = QC'D + QQ' + AB'C'D + AB'Q'$$

Redundant terms

Multiplying out: (1) distributed laws, (2) theorem (3-3)

$$(A + B + C')(A + B + D)(A + B + E)(A + D' + E)(A' + C')$$

$$= (A + B + C'D)(A + B + E)[AC + A'(D' + E)]$$

$$= (A + B + C'DE)(AC + A'D' + A'E)$$

$$= AC + ABC + A'BD' + A'BE + A'C'DE$$

What theorem was applied to eliminate ABC?

Multiplying Out and Factoring Expressions

To obtain a product-of-sum form → Factoring using distributive laws

Theorems using factoring

$$\underbrace{AB + A'C} = (A + C)(A' + B)$$

Example of factoring

$$AC + A'BD' + A'BE + A'C'DE$$

$$= AC + A'(BD' + BE + C'DE)$$

$$XZ X' Y$$

$$= (A + BD' + BE + C'DE)(A' + C')$$

$$= [A + C'DE + B(D' + E)](A' + C')$$

$$= (A + B + C'DE)(A + C'DE + D' + E)(A' + C')$$

$$= (A + B + C'DE)(A + C'DE + D' + E)(A' + C')$$

$$= (A + B + C')(A + B + D)(A + B + E)(A + D' + E)(A' + C')$$

Exclusive-OR

$$0 \oplus 0 = 0$$
 $0 \oplus 1 = 1$

$$1 \oplus 0 = 1$$
 $1 \oplus 1 = 0$

Truth Table

XY	$X \oplus Y$
0 0	0
0 1	1
1 0	1
1 1	0

Symbol

$$X \longrightarrow X \oplus Y$$

Theorems for Exclusive-OR:

$$X \oplus Y = X'Y + XY'$$

Because $X \oplus Y = 1$ iff X is 0 and Y is 1 or X is 1 and Y is 0

$$X \oplus 0 = X$$

$$X \oplus 1 = X'$$

$$X \oplus X = 0$$

$$X \oplus X' = 1$$

$$X \oplus Y = Y \oplus X$$
 (commutative law)

$$(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z) = X \oplus Y \oplus Z$$
 (associative law)

$$X(Y \oplus Z) = XY \oplus XZ$$
 (distributive law)

$$(X \oplus Y)' = X \oplus Y' = X' \oplus Y = XY + X'Y'$$

Equivalence operation (Exclusive-NOR)

$$(0 \equiv 0) = 1$$
 $(0 \equiv 1) = 0$
 $(1 \equiv 0) = 0$ $(1 \equiv 1) = 1$

Truth Table

$$\begin{array}{c|ccccc} XY & X \equiv Y \\ \hline 0 & 0 & 1 & \\ 0 & 1 & 0 & \\ 1 & 0 & 0 & \\ 1 & 1 & 1 & \\ \end{array}$$

Symbol

$$X \longrightarrow X \equiv Y$$

Exclusive-NOR

$$X \longrightarrow (X \oplus Y)' = (X \equiv Y)$$

Example of EXOR and Equivalence

$$F = (A'B \equiv C) + (B \oplus AC')$$

$$F = [(A'B)C + (A'B)'C'] + [B'(AC') + B(AC')']$$

$$= A'BC + (A+B')C' + AB'C' + B(A'+C)$$

$$= B(A'C + A'+C) + C'(A+B'+AB') = B(A'+C) + C'(A+B')$$

Useful theorem

$$(XY'+X'Y)' = XY + X'Y'$$
 (3-19)
 $A' \oplus B \oplus C = [A'B'+(A')'B] \oplus C$
 $= (A'B'+AB)C'+(A'B'+AB)'C$ (by (3-6))
 $= (A'B'+AB)C'+(A'B+AB')C$ (by (3-19))
 $= A'B'C'+ABC'+A'BC+AB'C$

The Consensus Theorem

Onsensus Theorem : XY + X'Z + YZ = XY + X'Z

Proof:
$$XY + X'Z + YZ = XY + X'Z + (X + X')YZ$$

= $(XY + XYZ) + (X'Z + X'YZ)$
= $XY(1+Z) + X'Z(1+Y) = XY + X'Z$

- Example: a'b'+ac+bc'+b'c+ab=a'b'+ac+bc'consensus

 consensus
- Dual form of consensus theorem :

$$(X+Y)(X'+Z)(Y+Z) = (X+Y)(X'+Z)$$

Example:
$$(a+b+c')(a+b+d')(b+c+d') = (a+b+c')(b+c+d')$$

The Consensus Theorem (Cont'd)

Example: eliminate BCD

$$A'C'D + A'BD + BCD + ABC + ACD'$$

Example: eliminate A'BD, ABC

$$A'C'D+A'BD+BCD+ABC+ACD'$$

Example: Reducing an expression by adding a term

$$F = ABCD + B'CDE + A'B' + BCE'$$

$$F = ABCD + B'CDE + A'B' + BCE' + ACDE$$

Final expression:

$$F = A'B' + BCE' + ACDE$$

Consensus term added

Algebraic Simplification of Switching Expressions

Ombining terms: XY + XY' = X

Example:
$$abc'd'+abcd'=abd'$$
 $[X=abd',Y=c]$

Adding terms using X + X = X

$$ab'c + abc + a'bc = ab'c + abc + abc + a'bc = ac + bc$$

Example:
$$(a+bc)(d+e') + a'(b'+c')(d+e') = d+e'$$

 $[X = d+e', Y = a+bc, Y' = a'(b'+c')]$

Eliminating terms: X + XY = X

Example:

Algebraic Simplification of Switching Expressions

Eliminating literals: X + X'Y = X + Y

Example:

$$A'B + A'B'C'D' + ABCD' = A'(B + B'C'D') + ABCD'$$

= $A'(B + C'D') + ABCD'$
= $B(A' + ACD') + A'C'D'$
= $B(A' + CD') + A'C'D'$
= $A'B + BCD' + A'C'D'$

Adding redundant terms:

Example:

=WX+XY+X'Z'

$$WX + XY + X'Z' + WY'Z'$$
 (add WZ' by consensus theorem)
 $= WX + XY + X'Z' + WY'Z' + WZ'$ (eliminate $WY'Z'$)
 $= WX + XY + X'Z' + WZ'$ (eliminate WZ')

Proving an equation valid

- ⇒ Construct a truth table and evaluate both sides
 - ⇒Tedious, not elegant method
- ⇒ Manipulate one side by applying theorems until it is the same as the other side
- ⇒ Reduce both sides of the equation independently
- ⇒ Apply same operation in both sides if the operation is reversible
 - ⇒Complement both sides etc
 - ⇒ not permissible: add terms, multiply terms

Strategy to prove equation valid

- 1. First reduce both sides to SOP (or POS)
- 2. Compare the two sides of the equation to see how they differ
- 3. Then try to add terms to one side of the equation that are present on the other side
- 4. Finally, try to eliminate terms form one side that are not present on the other

Prove:

$$A'BD'+BCD+ABC'+AB'D=BC'D'+AD+A'BC$$

$$=A'BD'+BCD+ABC'+AB'D+BC'D'+A'BC+ABD$$
(add consensus of $A'BD'$ and ABC')
(add consensus of $A'BD'$ and BCD)
(add consensus of BCD and ABC')

$$= AD + A'BD' + BCD + ABC' + BC'D' + A'BC = BC'D' + AD + A'BC$$
(eliminate consensus of $BC'D'$ and AD)
(eliminate consensus of $BC'D'$ and $A'BC$)
(eliminate consensus of $BC'D'$ and $A'BC$)

Some of Boolean Algebra are not true for ordinary algebra

Example:

If
$$x + y = x + z$$
, then $y = z$ True in ordinary algebra

$$1 + 0 = 1 + 1$$
 but $0 \ne 1$

Not True in Boolean algebra

Example: If
$$xy = xz$$
, then $y = z$

True in ordinary algebra

Not True in Boolean algebra

Example:

If
$$y = z$$
, then $x + y = x + z$

If
$$y = z$$
, then $xy = xz$

True in ordinary algebra True in Boolean algebra