

Wireless Beyond the Third Generation— Facing The Energy Challenge

Jan M. Rabaey

BWRC

University of California @ Berkeley

<http://www.eecs.berkeley.edu/~jan>

ISLPED 2001, Huntington Beach

It's all about Laws ...

The Fibonacci Law on Wireless Growth

“The number of worldwide wireless subscribers (in tens of millions) grows as a Fibonacci series”

Source: Goldman-Sachs

Berkeley Wireless
Research Center

The Shift to Wireless Data— The New Internet

The 1990s:
Conquering the world
The network revolution

The 2000s:
Extending toward the Small
Enabled by integration
(Moore's Law at Work!)
and wireless connectivity

Pre-1990:
Client-Server Systems

Courtesy: R. Katz, UCB

(Projected) Growth in 802.11 WLAN

Source: Cahners In-Stat 2001

The Evolving Wireless Scene

How to Get More bits/sec in a Band-Limited Environment?

The Shannon Bound:

In an AWGN channel, the best bandwidth-efficiency (in bits/sec/Hz) that can be achieved with arbitrarily low bit-error rate is given by

The Cost of Approaching Shannon's Bound

The Bliss and Challenge of Error Coding

Courtesy Engling Yeo, UCB

Dealing with Non-ideal Channels (e.g., fading)

- Multi-antenna approach exploits multi-path fading by sending data along good channels
- Results in large theoretical improvements in bandwidth efficiency for fading channels
- But...computationally hungry

The Cost of Dealing with Non-ideal Channels

* Assume 25 MHz bandwidth and 28 users

Source: Ning Zhang, UCB

Compelling Wireless Implementation Issues

- **A Ferocious Quest for Performance**
 - Driven by the hunger for bits/sec
 - Outstripping the technology evolution
- **With a Premium on Reduction in Energy Consumption**
 - The compelling argument behind wireless is its untethered nature
 - Power consumption key impediment to penetration of new services
 - Energy sources on slow evolutionary path (5%/year)

What Technology Offers Us Gene (Frantz)'s Law

Source: Gene Frantz (TI)

Shannon beats Moore beats Chemists

Courtesy: Ravi Subramanian (Morphics)

WEINER PRESS
Research Center

The Need for Flexibility

- **Cost-of-design issues point towards component reuse**
 - Design complexity impacts time-to-market
 - Physical effects increase verification costs and design risk
 - NRE of new designs is increasing significantly (mask making, fab cost)
- **Multi-standard has become a must in the diverse wireless landscape**
 - Adaptive solutions lead to better spectral utilization
 - A wide variety of unpredictable services

Towards Fewer, but more Flexible and Reusable Silicon Platforms

An Attractive Option: Multi-Processor System-on-a-Chip

Copyright Tensilica, Inc. 2001

Courtesy: Chris Rowen, Tensilica

Flexibility Comes at a Huge Cost

3 orders of magnitude!

The Opportunity of Configurable Architectures

* Based on the implementations of a multi-user detector

Source: N. Zhang, UCB

The Opportunity of Reconfigurable When Does it Work?

Energy and Area Efficiency of Various FFT Implementations

Source: N. Zhang, UCB

* All results are scaled to 0.18 μ m

The Ideal "Radio-on-a-Chip" Platform

Combines performance, flexibility and energy-efficiency

- Heterogeneous
- Matches the computational model
- Provides flexibility only where needed and desirable and at the right granularity
- Supports massive concurrency
- Operates at minimum supply voltage and clock frequency

An Orthogonal Approach to Bit/sec— Ultra-Wide Band Radio

Traditional Sinusoidal, Narrowband

Impulse, Ultra-Wideband

Splurge on Bandwidth ($> 5 \text{ GHz}$) and Punt on Bit/sec/Hz

Possible advantages: easy co-existence, low-power, simple

Digital Pulse-Based Radio

Simple Digital Architecture:

- Transmit Only Narrow Pulses (No Carrier Frequency)
- Spread Energy Over Existing Noise Floor

The Architectural Challenge:

Providing accurate timing resolution without high-frequency clocks!

Predicted performance:

100 kbits/sec @ $< 10^{-4}$ bit/sec/Hz and ~ 10 nJ/bit

More Bits/(nJ·\$·mm³):

Wireless Sensor Networks

Pushing the Bounds in Ultra [Small, Cheap, Low-Power]

Berkeley PicoRadio's

Meso-scale low-cost radio's for ubiquitous wireless data acquisition in sensor/actuator networks that are fully integrated and consume less than 100 μ W enabling energy scavenging

The Smart Building Integrated Sensor/Actuator/ Control System

- Improves quality-of-living
- Saves energy
- Provides security
- Helps localizing items
- Extends building-human interface

Berkeley Wireless
Research Center

The Energy-Scavenging Opportunity

Battery size: 0.5 cm³
Vibration: 1 cm² piezo-electric
Solar: 1 cm² single-crystal
Courtesy: S. Roundy (UCB)

Opportunity: Metcalfe's Law

"The true value of a network increases as the square of the number of users on the network"

A Variant: Jan's Law

"The power efficiency of a wireless sensor node increases as the square of the number of nodes in the network (or is proportional to the node density)."

Addressing the Communication Cost

(assuming d^4 path loss of and 10 kB/sec data rate)

Adding a Single Relay Point in a Wireless LAN

Bit-rate: 6 Mb/sec
Packet Error Rate: 1%
Fixed Receiver Power: 100 mW
Path Loss Exp.: 3.8
 $d_1/d_2 = 1$

Source: M. Kubisch and H. Karl, TU Berlin

Trading-Off Latency for Energy: Self-configuring Multi-hop Networks

- 1 hop over 50 m
1.25 nJ/bit
- 5 hops of 10 m each
 $5 \times 2 \text{ pJ/bit} = 10 \text{ pJ/bit}$
- Multi-hop reduces transmission energy by 125!

But ... how to ensure fairness?

Energy-Conscious Networking

Simulated Energy Dissipation in Sensor Networks (BWRCC)

Source: R. Shah (UCB)

The Sensor-Node RF Challenge

- Increasing carrier frequency increases power dissipation
 - Mostly due to higher speed active components (synthesizers, mixers, A/Ds)
- But enables higher integration
 - Smaller sizes of passives and antennas

Rx power consumption versus carrier frequency
for a number of low-data rate, small-distance RF implementations
(all operate in Shannon's "energy-efficient zone")

Eliminating most High-Speed Components Sub-sampling receiver with passive frontend

Enabled by High-Q Integrated Filters

Thin-Film Bulk Acoustic Resonators
 $Q > 1000 @ 2 \text{ GHz}$
(FBAR - Agilent)

RF-MEMS: Poly Si-Ge Resonator
Berkeley Wireless Research Center

The Importance of Power Management

- Activity in sensor (data) networks is low and random (< 1%)
- Receiving a bit is computationally more expensive than transmitting one
- Most Media Access protocols assume that the receiver is always on and listening!

Why not power transceiver up for real events only
(incoming data, sensor event, network maintenance)?

Reactive Media-Access Control

Truly Reactive Messaging at the Physical and Media-Access Level

- ❖ Power Down the Whole Data Radio
- ❖ Reduces Monitoring Energy Consumption by 10^3 Times
- ❖ Wakeup Radio Power's Up Data Radio for Reception

The Wake-up (Reactive) Radio

- **Always running**
 - Super low power:
 $10^{-4} \sim 10^{-3}$ active mode power
- **Data radio shut down when idle, and powered up by wake-up radio**
- **Receiver response time: < 10ms**

What it Ultimately Boils Down To— Power-Profile of PicoRadio (Projected)

Summary/Perspective

- Both the bits/sec/Hz and the bits/nJ quests create formidable energy challenges
- Keep your eyes open for innovative, orthogonal approaches that re-stack the cards
 - There is a whole lot of unexplored land available > 10 GHz
- In the end, it are the laws of physics that provide the ultimate bounds

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.