Conférences Axe RSMEMéthodes de Machine Learning pour les données de multi-omiques

Loïc Mangnier, PhD

Arnaud Droit Lab

✓ loic.mangnier@gmail.com

https://statsxomics.blog/

github.com/lmangnier

0000000

Inférence ou Prédiction ? 3 Questions existentielles

0000000

SI L'ON CHERCHE À DÉTERMINER L'IMPACT D'UNE MALADIE SUR L'EXPRESSION D'UN GÈNE. INFÉRENCE? Prédiction?

0000000

Si l'on cherche à prédire l'impact d'un médicament sur le profil métabolique d'un patient. Inférence ? Prédiction ?

0000000

Si l'on ne cherche qu'à identifier les biomarqueurs les plus prédictifs pour l'apparition d'une maladie. Inférence? Prédiction?

En conclusion

- Inférence: Cherche l'association entre plusieurs variables → Significativité statistique (valeurs-p et intervalles de confiance)
- **Prédiction**: Cherche à prédire de nouvelles valeurs sur la base d'un **modèle** et de **valeurs passées**

Cependant dans bien des cas les chercheurs vont combiner des approches du type **Machine Learning** et de l'**Inférence** pour répondre à des questions complexes

Exemple: Réduction de dimension + prédiction

000000

- Étape 2 Analyse exploratoire des données
- **Étape 3** Sélection de 2-3 modèles **maximum** et choix des métriques de performance dépendants des données et de la question de recherche.
- **Étape 4** Application des modèles, fine-tuning et comparaison
- **Étape 5** Selection du meilleur modèle et validation

Types de Machine Learning

- **Apprentissage supervisé**: la réponse est connue (régression, classification)
- Apprentissage non-supervisé: la réponse est inconnue (clustering)
- **Apprentissage semi-supervisé**: présence de données avec réponse et sans réponse

Exemple: Réduction de dimension sur données multi-omics (PCA)

Figure: PCA sur données de Microbiome et de Métabolome

Exemple: Clustering sur données multi-omics (Clustering Hiérarchique)

Figure: Clustering Hiérarchique sur données de Microbiome et de Métabolome

Exemple: Regression (Régression linéaire)

Balance Biais-Variance

INTRODUCTION

Sous-apprentissage et Sur-apprentissage

• **Sous-apprentissage**: Les structures apprises par le modèle sont trop grossières : la variance est **faible**, le biais est **fort**

ML POUR LE MULTI-OMICS

- **Sur-apprentissage**: Le modèle capture tout le bruit des données au lieu d'apprendre les structures générales: la variance est **forte**, le biais est **faible**
- Un modèle idéal généralisable est alors un bon compromis entre biais et variance

Sous-apprentissage et Sur-apprentissage

Machine Learning pour les données de multi-omics: Stratégies intégratives

- Fusion précoce: Les omics sont combinés dans un seul jeu de données avant la modélisation → dépendance
- Fusion tardive: Les modèles sont ajustés afin d'identifier les features centrales, un modèle final est utilisé → indépendance
- Approches multi-vues: Un modèle est ajusté en tenant compte d'un certain niveau d'entente entre les omics

Exemple d'application pour données de Métagénomique et de Métabolomique pour les maladies chroniques intestinales

Les données de Métagénomique et de Métabolomique en bref

- Métagénomique: données de comptage, compositionnelles et surdispersées
- Métabolomique: données de concentration surdispersées
- 220 individus: 56 sains + 164 malades (CD + IBD)
- 55,882 espèces
- 8,848 métabolites

- **Stratégies d'intégration**: Fusion précoce, approche multi-vues
- Modèles avec Fusion précoce: Régression Elastic-Net, Random Forest
- Modèles avec Multi-vues: Régression Elastic-Net, sPLS-DA par blocs
- Métriques de performance: AUC
- 70% entrainement 30% test
- Validation: Courbe de Calibration

Comparaison des modèles: Fusion Précoce

Comparaison des modèles: Multi-vues

QUELQUES MOTS SUR LA CALIBRATION!

Calibration

- Calibration: Permet d'interpréter la probabilité renvoyée par le modèle comme un risque de développer la maladie
- Si mauvaise calibration: il existe des corrections post-hoc

Calibration

Calibration

Conclusion

- Principe de compréhension: Comprendre les données avec un modèle simple surpassera toujours une utilisation aveugle d'un modèle complexe
- Principe de parcimonie: Nombre de modèles limité, Balance Biais-Variance, Nombre restreint de variables
- Principe de validité externe: Calibration
- Cependant le plus important de tous: Principe de reproductibilité

Pour aller plus loin

- Extension à des tâches de régression
- Emploi de 3 ensembles Entrainement-Validation-Test lorsque présence d'hyperparamètres
- Certains modèles nécessitent une normalisation des variables
- D'autres approches de séparation des données sont disponibles pour favoriser la généralisation (Validation croisée)

PAS D'APPROCHE SYSTÉMATIQUE. COMPRENEZ VOS **DONNÉES AVANT TOUT!**

Merci pour votre attention! Questions? Commentaires?

Suivez moi sur mes réseaux sociaux

- Ressources d'apprentissage: https://www.coursera.org/specializations/machinelearning-introduction; https://www.statlearning.com/; https://www.fun-mooc.fr/en/courses/machine-learningpython-scikit-learn/
- *Métriques de classification*: Area Under the Curve (AUC), Score-F1, Matthews Correlation Coefficient (MCC)
- Métriques de régression: Mean Squared error (MSE), R2
- *Métriques de calibration*: Courbe de calibration (modèle proche de la droite diagonale), Brier Score (o = modèle parfaitement calibré; 1 = modèle pas calibré)