Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота №2 з дисципліни «Теорія електричних та магнітних кіл» на тему: «Дослідження нерозгалуженого електричного кола синусоїдного струму» Варіант №

> Виконав: студент ННІКІТ СП-225 Клокун Владислав Перевірив: Молчанов О. В.

Київ 2017

1 Мета роботи

- 1. Використовуючи вимірювальні прилади, набути навички визначення параметрів ланцюга змінного струму, а саме: активного опору резистора, активного і реактивного опорів реальної котушки індуктивності і реального конденсатора.
- 2. Дослідити різні комбінації послідовного включення в ланцюг активного резистора, котушки індуктивності і конденсатора.
- 3. Дослідити резонанс у послідовному контурі.

2 Короткі теоретичні відомості

Для того, щоб визначити значення опорів різних елементів електричних ланцюгів, необхідно виміряти за допомогою приладів значення напруги, прикладеної до елемента, значення струму, який по ньому протікає, а також активну потужність, що виділяється, та кут зсуву фази. Ці величини вимірюються за допомогою вольтметра, амперметра, ватметра, фазометра.

Значення активного опору резистора визначається за законом Ома:

$$R = \frac{U}{I}$$
.

Потужність, споживана елементом, виділяється у вигляді тепла тільки на активних резисторах і вимірюється ватметром. Тому опір активного резистора можна визначити ще й за формулою:

$$R = \frac{P}{I^2}.$$

Щоб визначити значення активного опору реальних котушки індуктивності і конденсатора за допомогою вольтметра, амперметра і ватметра, використовуємо формули, що отримуємо з трикутника опорів:

$$Z = \sqrt{R^2 + X^2},$$

де $Z=\frac{U}{I}$ — модуль повного опору кола (Ом), R — повний активний опір кола (Ом), X — повний реактивний опір кола (Ом), U — діюче значення синусоїдної напруги (В), I — діюче значення синусоїдного струму (А).

$$X = X_K - X_C = \omega L - \frac{1}{LC},$$

де X_K — реактивний індуктивний опір кола (Ом), X_C — реактивний ємністний опір кола (Ом), L — індуктивність котушок кола (Гн), C — ємність конденсаторів кола Φ , ω — кутова частота (рад c^{-1}).

$$\omega = 2\pi f$$
,

f — циклічна частота (Гц).

3 Порядок виконання роботи

Зібрати вимірювальну частину схеми (рис. 1), використовуючи амперметр, фазометр, мультиметр і, підключаючи по черзі (лабораторний блок №8) резистор, котушку індуктивності і конденсатор, зробити необхідні вимірювання і занести їх в табл 1.

Рис. 1: Вимірювальна частина схеми

Коло	Виміряти							Обчислити опір, Ом				
	U, B	I, A	$I,^{\circ}$	U_R , B	U_K , B	U_C , B	R	R_K	R_C	X_K	X_C	

Табл. 1: Вимірювання 1

Використовуючи виміряні величини, обчислити значення активного опору резистора, активного і реактивного опорів котушки індуктивності і конденсатора. Отримані значення занести в табл. 1.

Підключаючи послідовно до вимірювальної частини схеми комбінації елементів *RL*, *RC*, *RLC*, зробити необхідні вимірювання та занести їх в табл. 2.

Коло	U, B	I, A	φ , °	U_R , B	U_K , B	U_C , B	$U_R + U_K$, B	$U_R + U_C$, B
RL						_	_	_
RC					_		_	_
RLC								

Табл. 2: Вимірювання 2

Підключити до вимірювальної частини схеми тільки котушку індуктивності (лабораторний блок №8) і конденсатор (магазин ємності). Знаючи величину реактивного опору котушки, визначити значення резонансної ємності,

встановити на вході схеми напругу 5 В–7 В і, змінюючи ємність конденсатора у діапазоні $0 \text{ мк}\Phi$ –99,5 мк Φ , виміряти величини, вказані в табл. 3.

№	U, B	I, A	φ , $^{\circ}$	U_K , B	U_C , B	C , мк Φ
1						0
2						
3						
4						
5						$C = C_0$
6						
7						
8						
9						
10						99,5

Табл. 3: Вимірювання 3

Кількість змін значення ємності дорівнює десяти, причому п'яте значення ємності змінного конденсатора має дорівнювати значенню резонансної ємності.

Побудувати в масштабі векторні діаграми напруг для кожної комбінації включення елементів. Побудувати в масштабі трикутники напруг і опорів для кожного випадку.

Побудувати в масштабі характеристики $I = f(C), U_K = f(C), U_C = f(C), \varphi = f(C)$ в одній координатній сітці.

4 Висновки

Під час виконання даної лабораторної роботи ми набули навички визначення параметрів ланцюга змінного струму за допомогою вимірювальних приладів, а саме: активного опору резистора, активного і реактивного опорів реальної котушки індуктивності і реального конденсатора; дослідили різні комбінації послідовного включення в ланцюг активного резистора, котушки індуктивності і конденсатора; дослідили резонанс у послідовному контурі.