

Machine Learning

Aula 11 – Support Vector Machines

2021 - Engenharia Fábio Ayres <fabioja@insper.edu.br>

Objetivos da aula

- Motivação para SVMs
- Hard e soft-margin

- Extensões para problemas não-lineares: kernels
- Prática

Um problema de classificação

www.insper.edu.br

Um problema de classificação

Qual a melhor reta de separação?

Qual a melhor reta de separação?

www.insper.edu.br

Ideia: aumentar a "avenida"

Vetores de suporte

Problemas no paraíso...

Antes...

Mais problemas...

Vamos aos detalhes

 Como formular o problema de "maximizar a avenida"?

Como lidar com o problema dos outliers?

www.insper.edu.br — Insper

Objetivo

Descobrir qual f(x) implementa a melhor "avenida"

Seja
$$f(x)$$
 a melhor função de decisão.
Então $g(x) = Kf(x)$ também é igualmente boa!
Afinal, $f(x) = 0 \iff g(x) = 0$
 $f(x) = g(x)$ definem a mesma superficie de separação

AMBIGUIDADE!

Removendo uma ambiguidade...

Tamanho da margem

Tamanho da margem

$$\frac{\vec{\chi} = \chi_{B} - \chi_{A}}{d = \vec{\chi} \cdot \frac{\vec{\psi}}{\|\vec{\psi}\|}} = d = \frac{\vec{\psi} \cdot (\chi_{B} - \chi_{A})}{\|\vec{\psi}\|} = \frac{\vec{\psi} \cdot (\chi_{B} - \chi_{A})}{\|\vec{\psi}\|}$$

$$\frac{\vec{\chi} = \chi_{B} - \chi_{A}}{\|\vec{\psi}\|} = \frac{\vec{\psi} \cdot (\chi_{B} - \chi_{A})}{\|\vec{\psi}\|} = \frac{\vec{\psi} \cdot (\chi_{B} - \chi_{A})}{\|\vec{\psi}\|}$$

$$\chi_{B} \text{ na "calcada"}: \int (\chi_{B}) = 1$$

$$\Rightarrow \psi^{T} \chi_{B} + b = 1 \Rightarrow \psi^{T} \chi_{B} = 1 - b$$

$$= \psi^{T} + \cdots + \psi^{T} = 1 - b$$

$$\chi_A$$
 no meio da avenida: $f(\chi_A) = 0$
=> $w^T \chi_A + b = 0 => (w^T \chi_A = -b)$

$$\Rightarrow d = \frac{w^{T}(x_{B} - x_{A})}{\sqrt{w^{T}w^{T}}} = \frac{w^{T}x_{B} - w^{T}x_{A}}{\sqrt{w^{T}w^{T}}} = \frac{1 - b - (-b)}{\sqrt{w^{T}w^{T}}} = \frac{1}{\sqrt{w^{T}w^{T}}}$$

$$e^{d} = \frac{1}{\sqrt{w^{T}w^{T}}}$$

$$e^{d} = \frac{1}{\sqrt{w^{T}w^{T}}}$$

$$e^{d} = \frac{1}{\sqrt{w^{T}w^{T}}}$$

$$e^{d} = \frac{1}{\sqrt{w^{T}w^{T}}}$$

www.insper.edu.br

Tamanho da margem

$$\operatorname{Em} A: f(x_A) = 0 \Rightarrow w^T x_A + b = 0 \Rightarrow w^T x_A = -b$$

$$\operatorname{Em} \operatorname{B}: f(x_B) = 1 \Rightarrow w^T x_B + b = 1 \Rightarrow w^T x_B = 1 - b$$

Tamanho da semi-margem: projeção na direção \vec{w}

$$d = \frac{(\overrightarrow{x_B} - \overrightarrow{x_A}) \cdot \overrightarrow{w}}{\|\overrightarrow{w}\|} = \frac{w^T (x_B - x_A)}{\sqrt{w^T w}}$$

Portanto:

$$d = \frac{w^{T} x_{B} - w^{T} x_{A}}{\sqrt{w^{T} w}} = \frac{1 - b - (-b)}{\sqrt{w^{T} w}} = \frac{1}{\sqrt{w^{T} w}}$$

Ou seja: maximizar d equivale a minimizar w^Tw

Problema de otimização da SVM

Critério: pontos fora da "avenida"

Critério: pontos fora da "avenida"

Truque: defina
$$t_i = \begin{cases} 1 \text{ se } x_i \text{ cai do lado } f(x) > 0 \\ -1 \text{ se } x_i \text{ cai do lado } f(x) < 0 \end{cases}$$

Vamos pensar um pouco: o que acontece com os valores $t_i f(x_i)$ se o critério de "pontos fora da avenida" é respeitado?

$$t_{i}f(x_{i}): i) f(x_{i}) \geqslant 1 \Rightarrow t_{i}=1 \Rightarrow t_{i}f(x_{i}) \geqslant 1$$

$$ii) f(x_{i}) \leqslant -1 \Rightarrow t_{i}=-1 \Rightarrow t_{i}f(x_{i}) \geqslant 1$$

Support Vector Machines

minimizar
$$\frac{1}{2}w^Tw$$

sujeito a $t_i(w^Tx_i + b) \ge 1$, para $i = 1, 2, \dots, m$

Formulação do problema de otimização Maximizar a margem de classificação

Respeitar o critério de "pontos fora da margem"

Problema de ohimização guadratica

TEM AGORITMO EFICIENTES

E como fica esse caso?

Vamos pensar um pouco

 Se um ponto viola a condição de "pontos fora da margem", o que acontece de errado na formulação matemática da SVM?

Pedágio da SVM...

Pedágio da SVM...

• Ok, vamos aceitar violações ζ_i mas a um custo $C\zeta_i$

• Pontos que não violam o critério da SVM terão violação $\zeta_i=0$, e portanto não pagam a penalidade.

SVM, soft-margin

minimizar
$$\frac{1}{2}w^Tw + C\sum_{i=1}^{m} \zeta_i$$

Hiperparâmetro!

Maximizar a margem de classificação com penalidade

sujeito a
$$t_i(w^Tx_i - b) \ge (1 - \zeta_i) e \zeta_i \ge 0$$

para $i = 1, 2, \dots, m$

Respeitar o critério de "pontos fora da margem" com permissão de outliers

Um problema de classificação

Um problema de classificação

Pensando um pouco mais sobre otimização

Problema original:

minimizar
$$\frac{1}{2}w^Tw$$
 sujeito a $t_i(w^Tx_i - b) \ge 1$, para $i = 1, 2, \dots, m$

Multiplicadores de Lagrange funciona aqui? (afinal tem desigualdade...)

Multiplicadores de Lagrange com desigualdade

Problema original:

minimizar
$$\frac{1}{2}w^Tw$$

minimizar
$$\frac{1}{2}w^Tw$$
 sujeito a $t_i(w^Tx_i - b) \ge 1$, para $i = 1, 2, \dots, m$

minimizar
$$L = \frac{1}{2}w^Tw - \sum_{i=1}^m \alpha_i(t_i(w^Tx_i - b) - 1)$$

sujeito a $\alpha_i \ge 0$ para $i = 1, 2, \dots, m$

Condições Karush-Kuhn-Tucker

Um minimo do Lagrangiano que respeita as condições:

- $t_i(w^Tx_i b) \ge 1$
- $\alpha_i \geq 0$
- $\alpha_i = 0$ se $t_i(w^Tx_i b) > 1$, caso contrario $t_i(w^Tx_i b) = 1$

é um ponto ótimo do problema original

Eliminando w e b: forma dual

Tirando a derivada de L em relação a w e a b e igualando a zero temos duas equações:

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i t_i \mathbf{x}_i$$

e

$$\sum_{i=1}^{m} \alpha_i t_i = 0$$

Eliminando $w \in b$: forma dual

Substituindo as expressões anteriores em L temos o problema de otimização dual:

minimizar
$$\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j t_i t_j \mathbf{x}_i^T \mathbf{x}_j - \sum_{i=1}^{m} \alpha_i$$

sujeito a
$$\alpha_i \ge 0$$
 para $i = 1, 2, \dots, m$

Uma vez encontrados os α_i , substituir nas equações anteriores para achar \boldsymbol{w} e b

O famoso "kernel trick"

$$\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j t_i t_j \mathbf{x}_i^T \mathbf{x}_j - \sum_{i=1}^{m} \alpha_i$$

$$\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j t_i t_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) - \sum_{i=1}^{m} \alpha_i$$

O famoso "kernel trick"

$$\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j t_i t_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) - \sum_{i=1}^{m} \alpha_i$$

$$\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j t_i t_j K(\mathbf{x}_i, \mathbf{x}_j) - \sum_{i=1}^{m} \alpha_i$$

Teorema de Mercer

$$K(a,b)$$
 é continua e simétrica entres existe $\phi(\cdot)$ tel que $K(a,b) = \phi(a)^T\phi(b)$

SVM linear en un espaço aumentado que eu nom sei qual é!

Equation 5-10. Common kernels

Linear:
$$K(\mathbf{a}, \mathbf{b}) = \mathbf{a}^{\mathsf{T}} \mathbf{b}$$

Polynomial:
$$K(\mathbf{a}, \mathbf{b}) = (\gamma \mathbf{a}^{\mathsf{T}} \mathbf{b} + r)^d$$

Gaussian RBF:
$$K(\mathbf{a}, \mathbf{b}) = \exp(-\gamma ||\mathbf{a} - \mathbf{b}||^2)$$

Sigmoid:
$$K(\mathbf{a}, \mathbf{b}) = \tanh (\gamma \mathbf{a}^{\mathsf{T}} \mathbf{b} + r)$$

Class	Time complexity	Out-of-core su	pportScaling requii	red Kernel trick
LinearSVC	$O(m \times n)$	No	Yes	No
SGDClassifier	$O(m \times n)$	Yes	Yes	No
SVC	$O(m^2 \times n)$ to $O(m^3 \times n)$) No	Yes	Yes

USE Standard Scaler

