4.4 Simplex Algorithm to Solve **Minimization Problems**

min
$$z = 2x_1 - 3x_2$$

s.t. $x_1 + x_2 \le 4$
 $x_1 - x_2 \le 6$
 $x_1, x_2 \ge 0$
equivalent

Method 1

$$\max -z = -2x_1 + 3x_2$$
s.t. $x_1 + x_2 \le 4$

$$x_1 - x_2 \le 6$$

$$x_1, x_2 \ge 0$$

Initial Tableau

$$-z x_1 x_2 s_1 s_2$$
 rhs BV

$$1 \quad 2 \quad -3 \quad 0 \quad 0 \quad 0 \quad -z = 0$$

$$0 \ 1 \ 1 \ 1 \ 0 \ 4 \ s_1 = 4$$

$$0 \ 1 \ -1 \ 0 \ 1 \ 6 \ s_2 = 6$$

Nonnegative

Optimal Tableau / (Max problem)

$$-z x_1 x_2 s_1 s_2$$
 rhs BV

1
$$(5 \ 0 \ 3 \ 0) \ 12 \ -z = 12$$

$$0 \ 1 \ 1 \ 1 \ 0 \ 4 \ x_2 = 4$$

$$0 \quad 1 \quad -1 \quad 0 \quad 1 \quad 6 \quad s_2 = 6$$
 $0 \quad 2 \quad 0 \quad 1 \quad 1 \quad 10 \quad s_2 = 10$

$$z = -12$$

Method 2

min
$$z = 2x_1 - 3x_2$$

s.t.
$$x_1 + x_2 \le 4$$

$$x_1 - x_2 \le 6$$

$$x_1, x_2 \ge 0$$

Initial Tableau

$$z x_1 x_2 s_1 s_2$$
 rhs BV

s.t.
$$x_1 + x_2 \le 4$$
 1 - 2 3 0 0 z = 0

$$x_1 - x_2 \le 6$$
 0 1 1 1 0 4 $s_1 = 4$

$$0 \ 1 \ -1 \ 0 \ 1 \ 6 \ s_2 = 6$$

Optimal Tableau

Nonpositive

$z x_1 x_2 s_1 s_2$ rhs BV

$$1 < 5 \quad 0 \quad -3 \quad 0 \quad -12 \quad z = -12$$

$$0 \ 1 \ 1 \ 1 \ 0 \ 4 \ x_2 = 4$$

$$0 \ 2 \ 0 \ 1 \ 1 \ 10 \ s_2 = 10$$

Optimal (Min Problem)

Nonpositive coefficient of NBV in Row 0

$$z - 5x_1 - 3s_1 = -12$$

$$z = -12 + 5x_1 + 3s_1$$

4.5 Alternative Optimal Solution

$$\max \ z = 60x_1 + 35x_2 + 20x_3$$

Optimal
$$z$$
 x_1 x_2 x_3 s_1 s_2 s_3 s_4 rhs BV

Tableau 1 0 0 0 10 10 0 280 $z = 280$

0 0 -2 0 1 2 -8 0 24 $s_1 = 24$

0 0 -2 1 0 2 -4 0 8 $s_3 = 8$

0 1 1.25 0 0 -0.5 1.5 0 2 $s_1 = 2*$

0 0 1 0 0 0 0 1 5 $s_4 = 5$

Another z z_1 z_2 z_3 s_1 s_2 s_3 s_4 rhs BV

Optimal 1 0 0 0 0 10 10 0 280 $z = 280$

Tableau 0 1.6 0 0 1 1.2 -5.6 0 27.2 $s_1 = 27.2$

0 1.6 0 1 0 1.2 -1.6 0 11.2 $s_3 = 11.2$

0 0.8 1 0 0 -0.4 1.2 0 1.6 $s_2 = 1.6$

0 -0.8 0 0 0 0 -1.2 1 3.4 $s_4 = 3.4$

4.6 Unbounded LPs

$$\max z = 36x_1 + 30x_2 - 3x_3 - 4x_4$$
s.t. $x_1 + x_2 - x_3 \le 5$

$$6x_1 + 5x_2 - x_4 \le 10$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Initial Tableau

$$z$$
 x_1 x_2 x_3 x_4 s_1 s_2 rhs BV
 $1 - 36 - 30$ 3 4 0 0 0 $z = 0$
 0 1 1 -1 0 1 0 5 $s_1 = 5$
 0 6 5 0 -1 0 1 10 $s_2 = 10$

First Tableau

Second Tableau

$$\begin{bmatrix} z & x_1 & x_2 & x_3 & x_4 & s_1 & s_2 & \text{rns} & \text{BV} \\ 1 & 0 & 2 & -9 & 0 & 12 & 4 & 100 & z = 100 \\ 0 & 0 & 1 & -6 & 1 & 6 & -1 & 20 & x_4 = 20 \\ 0 & 1 & 1 & -1 & 0 & 1 & 0 & 5 & x_1 = 5 \end{bmatrix}$$

Impossible to do ratio test

4.10 How to make Standard Form (Big M Method)

min
$$z = 2x_1 + 3x_2$$

s.t. $1/2 x_1 + 1/4 x_2 \le 4$
 $x_1 + 3x_2 \ge 20$
 $x_1 + x_2 = 10$
 $x_1, x_2 \ge 0$

min
$$z = 2x_1 + 3x_2$$
 $z - 2x_1 - 3x_2 = 0$
s.t. $1/2 x_1 + 1/4 x_2 \le 4$ $1/2 x_1 + 1/4 x_2 + s_1 = 4$ $x_1 + 3x_2 \ge 20$ $x_1 + x_2 = 10$ $x_1 + x_2 = 10$ Equality $x_1, x_2 \ge 0$ How solve?

Artificial a_2, a_3 variables

But, artificial variables should be zero in the optimal solution.

4.11 Two-Phase Simplex Method

$$z-2x_1-3x_2 = 0$$

$$1/2 x_1 + 1/4 x_2 + s_1 = 4$$

$$x_1 + 3x_2 - e_2 + a_2 = 20$$

$$x_1 + x_2 + a_3 = 10$$

$$x_1, x_2, s_1, e_2 \ge 0$$

Phase I LP

min
$$w' = a_2 + a_3$$

s.t. $1/2 x_1 + 1/4 x_2 + s_1 = 4$
 $x_1 + 3x_2 - e_2 + a_2 = 20$
 $x_1 + x_2 + a_3 = 10$

New Row 0 $w'+2x_1+4x_2-e_2=30$ *eliminate artificial variables from Row 0

Phase II LP

Eliminate <u>column of artificial</u>
<u>variables</u> from optimal tableau of
phase I and continue simplex method

Initial Tableau of Phase I

Next Tableau of Phase I

Optimal Tableau of Phase I

$z \ w' \ x_1 \ x_2 \ s_1 \ e_2 \ a_2 \ a_3$ rhs Row z 1 0 0 0 0 -1/2 1/2 3/2 z = 25Row w' 0 1 0 0 0 0 -1 -1 w' = 0

0 0 0 0 1 -1/8
$$1/8$$
 -5/8 $s_1 = 1/4$

0 0 0 1 0 -1/2 1/2 -1/2
$$x_2 = 5$$

0 0 1 0 0 1/2 -1/2 3/2
$$x_1 = 5$$

Initial Tableau of Phase II

$$z \ w' \ x_1 \ x_2 \ s_1 \ e_2 \ \text{rhs}$$

$$\text{Row z} \quad 1 \ 0 \ 0 \ 0 \ 0 \ -1/2 \ z = 25$$

$$0 \ 0 \ 0 \ 0 \ 1 \ -1/8 \ s_1 = 1/4$$

$$0 \ 0 \ 0 \ 1 \ 0 \ -1/2 \ x_2 = 5$$

$$0 \ 0 \ 1 \ 0 \ 0 \ 1/2 \ x_1 = 5$$