Последовательности Основные определения

Последовательность $\{x_n\}$ называется:			
- неубывающей , если $\forall n \ x_n \le x_{n+1}$;	— невозрастающей , если $\forall n \ x_n \ge x_{n+1}$;		
– возрастающей , если $\forall n \ x_n < x_{n+1}$;	<i>– убывающей</i> , если $\forall n \ x_n > x_{n+1}$;		
- монотонной, если она является неубывающей, невозрастающей, убывающей или возрастающей.			
<i>— ограниченной сверху</i> , если $\exists c \ \forall n \ x_n \le c$;	- неограниченной сверху , если $\forall c \exists x_n > c$;		
<i>— ограниченной снизу</i> , если $\exists c \forall n \ x_n \ge c$;	$-$ неограниченной снизу, если $\forall c \exists n \ x_n < c$;		
- <i>ограниченной</i> , если $\exists c \ \forall n \ x_n \le c$;	– неограниченной, если $\forall c \exists n \mid x_n \mid > c$;		
- <i>бесконечно большой</i> (ББП), если	 не является бесконечно большой, если 		
$\forall E > 0 \ \exists n_0 \ \forall n \ge n_0 \ x_n > E ;$	$\exists E > 0 \ \forall n_0 \ \exists n \ge n_0 \ x_n \le E;$		
- бесконечно малой (БМП) , если	 не является бесконечно малой, если 		
$\forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 \ x_n < \varepsilon;$	$\exists \varepsilon > 0 \ \forall n_0 \ \exists n \geq n_0 \ x_n \geq \varepsilon.$		
— сходящейся (или сходящейся κ a), если $\lim_{n\to\infty} x_n = a$;			
$-$ сходящейся $\kappa \infty$, если $\lim_{n\to\infty} x_n = \infty$;			
$ cxoдящейся \kappa + \infty, если \lim_{n \to \infty} x_n = +\infty;$			
$ cxod$ ящейся $\kappa - \infty$, если $\lim_{n \to \infty} x_n = -\infty$.			
- фундаментальной (или последовательностью Коши), если			
$orall arepsilon > 0 \ \exists n_0 \ orall n_0 \ orall m \geq n_0 \ \left x_n - x_m ight < arepsilon \ $ или $orall arepsilon > 0 \ \exists n_0 \ orall n \geq n_0 \ orall k \in \mathbb{N} \ \left x_{n+k} - x_n ight < arepsilon \ .$			
Примечание: В таблице n, n_0, m, k — натуральные, а остальные величины вещественные.			

$\left \lim_{n \to \infty} x_n = a \Leftrightarrow \forall \varepsilon > 0 \exists n_0 \ \forall n \ge n_0 \ \left x_n - a \right < \varepsilon \ . \right $	$\lim_{n\to\infty} x_n \neq a \qquad \Leftrightarrow \exists \varepsilon > 0 \forall n_0 \ \exists n \geq n_0 \ x_n - a \geq \varepsilon .$	
$\left \lim_{n \to \infty} x_n = \infty \Leftrightarrow \forall \varepsilon > 0 \exists n_0 \ \forall n \ n \ge n_0 \ x_n > \varepsilon ; \right $	$\lim_{n\to\infty} x_n \neq \infty \Leftrightarrow \exists \varepsilon > 0 \forall n_0 \ \exists n \ n \ge n_0 \ x_n \le \varepsilon ;$	
$\lim_{n\to\infty} x_n = +\infty \Leftrightarrow \forall \varepsilon > 0 \exists n_0 \forall n n \ge n_0 x_n > \varepsilon \; ;$	$\lim_{n\to\infty} x_n \neq +\infty \iff \exists \varepsilon > 0 \ \forall n_0 \ \exists n \ n \geq n_0 \ x_n \leq \varepsilon ;$	
$\lim_{n\to\infty} x_n = -\infty \Leftrightarrow \forall \varepsilon > 0 \exists n_0 \forall n n \ge n_0 x_n < -\varepsilon \ .$	$\lim_{n\to\infty} x_n \neq -\infty \iff \exists \varepsilon > 0 \ \forall n_0 \ \exists n \ n \geq n_0 \ x_n \geq -\varepsilon .$	
$\inf x_n = i \iff$	$\sup x_n = s \Leftrightarrow $	
$\begin{cases} \forall n \ x_n \geq i, \\ \forall \varepsilon > 0 \ \exists n \ x_n < i + \varepsilon. \end{cases}$ или $\begin{cases} \forall n \ x_n \geq i, \\ \forall i' > i \ \exists n \ x_n < i'. \end{cases}$	$\begin{cases} \forall n \ x_n \leq s, \\ \forall \varepsilon > 0 \ \exists n \ x_n > s - \varepsilon. \end{cases} \text{ или } \begin{cases} \forall n \ x_n \leq s, \\ \forall s' < s \ \exists n \ x_n > s'. \end{cases}$	
$\underline{\lim}_{k \to \infty} x_k \stackrel{df}{=} \lim_{n \to \infty} \inf_{k \ge n} x_k$	$\overline{\lim_{k \to \infty}} x_k \stackrel{df}{=} \limsup_{n \to \infty} \sup_{k \ge n} x_k$	

Примечание: В таблице m, n, n_0 — натуральные, а остальные величины вещественные.

Свойства сходящихся последовательностей

- **1.** Основное свойство последовательностей. Конечное число элементов (их добавление или удаление) не влияет на сходимость последовательности, причем значение предела сходящейся последовательности остается неизменным.
 - 2. Сходящаяся последовательность имеет только один предел.
- **3. Необходимое условие сходимости.** Сходящаяся последовательность ограничена, или, другими словами, всякая неограниченная последовательность расходится.
 - **4.** Если $\lim_{n\to\infty} x_n = l$ и $l \neq 0, x_n \neq 0$, то последовательность $\left\{1/x_n\right\}$ ограничена.
 - **5.** Пусть $\lim_{n \to \infty} x_n = a \in \mathbb{R}$, $\lim_{n \to \infty} y_n = b \in \mathbb{R}$. Тогда
 - a) $\lim_{n \to \infty} (x_n + y_n) = a + b$; 6) $\lim_{n \to \infty} (x_n y_n) = a b$;
 - в) $\lim_{n\to\infty} (x_n \cdot y_n) = a \cdot b$; г) если $b \neq 0$, то $\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = \frac{a}{b}$
 - **6.** Пусть $\lim_{n\to\infty} x_n = a$. Тогда если
 - $\forall n \ x_n > c \ ($ или $x_n \ge c)$, то $a \ge c$.
 - $\forall n \ x_n < c$ (или $x_n \le c$), то $a \le c$.

Замечание. Элементы сходящейся последовательности $\{x_n\}$ могут удовлетворять строгому неравенству $x_n > c$ ($x_n < c$), однако при этом предел a может оказаться равным c.

- 7. Если все элементы сходящейся последовательности $\{x_n\}$ находятся на сегменте [a,b], то и ее предел также находится на этом сегменте.
- **8.** Пусть $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = b$. Если, начиная с некоторого номера, элементы последовательностей $\{x_n\}$ и $\{y_n\}$, удовлетворяют неравенству $x_n < y_n$ (или $x_n \le y_n$), то $a \le b$.
- **9.** Пусть $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = a$, $a \in \mathbb{R}$. Если, начиная с некоторого номера, элементы последовательности $\{z_n\}$ удовлетворяют неравенству $x_n \le z_n \le y_n$, то $\lim_{n \to \infty} z_n = a$.
- 10. Теорема Вейерштрасса о пределе монотонной последовательности. Если последовательность монотонна и ограничена, то она имеет конечный предел.
- **11.** Лемма Больцано-Вейерштрасса. Каждая *ограниченная* последовательность действительных чисел содержит сходящуюся подпоследовательность. Всякая *неограниченная* последовательность имеет *частичный* предел, равный либо $+\infty$, либо $-\infty$.
- **12. Критерий Коши сходимости последовательности).** Числовая последовательность сходится тогда и только тогда, когда она фундаментальна.
- 13. Критерий Коши расходимости последовательности). Для расходимости последовательности $\{x_n\}$ необходимо и достаточно, чтобы она не была фундаментальной, т.е.

$$\exists \varepsilon > 0 \ \ \forall n_0 \ \ \exists n \geq n_0 \ \ \exists m \geq n_0 \ \ |x_n - x_m| \geq \varepsilon \ \$$
или $\exists \varepsilon > 0 \ \ \forall n_0 \ \ \exists n \geq n_0 \ \ \exists k \ \ |x_{n+k} - x_n| \geq \varepsilon$.

Супремум и инфимум

Для множества X:

$$s = \sup X = \sup_{x \in X} x \iff 1) \, \forall x \in X \quad x \le s \; ; \; 2) \, \forall \varepsilon > 0 \; \exists x' \in X \; x' > s - \varepsilon \;$$
или $\forall s' < s \; \exists x' \in X \; s' < x' \; .$

$$i = \inf X = \inf_{x \in Y} x \iff 1) \, \forall x \in X \quad i \leq x \, ; \quad 2) \, \forall \, \varepsilon > 0 \quad \exists x' \in X \quad x' < i + \varepsilon \quad \text{или} \quad \forall i' > i \quad \exists x' \in X \quad x' < i' \, .$$

Для последовательности $\{x_n\}$

$$s = \sup x_n = \sup x_n \iff 1) \, \forall n \ x_n \leq s \; ; \; 2) \, \forall \, \varepsilon > 0 \ \exists n \ x_n > s - \varepsilon \ \text{или} \; \forall s' < s \ \exists n \ s' < x_n \; .$$

$$i = \inf x_n = \inf_n x_n \iff 1) \, \forall n \ i \leq x_n \, ; \ 2) \, \forall \varepsilon > 0 \ \exists n \ x_n < i + \varepsilon \$$
или $\forall i' > i \ \exists n \ x_n < i' \, .$

Для функции f(x) на множестве X

$$s = \sup_{x \in X} f(x) \iff 1) \, \forall x \in X \quad f(x) \le s \; ; \; 2) \, \forall \varepsilon > 0 \; \exists x' \in X \; f(x') > s - \varepsilon \;$$
или $\forall s' < s \; \exists x' \in X \; s' < f(x') \; .$

$$i = \inf_{\mathbf{x} \in X} f(\mathbf{x}) \iff 1) \, \forall \mathbf{x} \in X \quad i \leq f(\mathbf{x}); \ 2) \, \forall \varepsilon > 0 \ \exists \mathbf{x}' \in X \ f(\mathbf{x}') < i + \varepsilon \$$
или $\forall i' > i \ \exists \mathbf{x}' \in X \ f(\mathbf{x}') < i'$.

Свойства:

1.
$$\sup\{-x \mid x \in X\} = -\inf X$$
, $\inf\{-x \mid x \in X\} = -\sup X$.

2.
$$\sup\{x+y | x \in X, y \in Y\} = \sup X + \sup Y$$
, $\inf\{x+y | x \in X, y \in Y\} = \inf X + \inf Y$.

3.
$$\sup \{x - y | x \in X, y \in Y\} = \sup X - \inf Y$$
.

4. Если
$$\lambda \geq 0$$
 , то $\sup \left\{ \lambda x \middle| x \in X \right\} = \lambda \sup X$, $\inf \left\{ \lambda x \middle| x \in X \right\} = \lambda \inf X$.

5. Пусть
$$X \subset \{x | x \ge 0\}$$
, $Y \subset \{y | y \ge 0\}$. Тогда

$$\sup \{xy | x \in X, y \in Y\} = \sup X \sup Y, \quad \inf \{xy | x \in X, y \in Y\} = \inf X \inf Y.$$

Наиболее важные пределы

Последовательности

$$\lim_{n \to \infty} \frac{a^n}{n^n} = 0, \ a > 1,$$

$$\lim_{n \to \infty} \frac{a^n}{n!} = 0,$$

$$\lim_{n \to \infty} \frac{a^n}{n!} = 0,$$

$$\lim_{n \to \infty} \sqrt[n]{a} = 1, \ a$$

$$\lim_{n \to \infty} \sqrt[n]{a} = 1, \ a$$

$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$

$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$

$$\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0.$$
 $\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0.$

$$\lim_{n\to\infty}\frac{a^n}{n^n}=0,\ a>1,\qquad \lim_{n\to\infty}\sqrt[n]{n}=1,\qquad \lim_{n\to\infty}na^n=0,\ |a|<1,$$

$$\lim_{n\to\infty}\frac{a^n}{n!}=0,\qquad \lim_{n\to\infty}\sqrt[n]{a}=1,\ a>0,\qquad \lim_{n\to\infty}\frac{\log_a n}{n}=0,\ a>1,$$

$$\lim_{n\to\infty}\frac{1}{\sqrt[n]{n!}}=0.$$
 Если $x_n\geq -1,\ \lim_{n\to\infty}x_n=0,\ k\in\mathbb{N}$, to $\lim_{n\to\infty}\sqrt[k]{1+x_n}=1$.

Функции

Первый замечательный предел $\lim_{x\to 0} \frac{\sin x}{x} = 1$	Второй замечательный пред	$\mathbf{e}_{\pi} \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$
	$\lim_{x \to \infty} (1+x)^{1/x} = e$	$e^x - 1$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}, \qquad \lim_{x \to 0} \frac{\arctan x}{x} = 1,$$

$$\lim_{x \to 0} \frac{\operatorname{tg}x}{x} = 1, \qquad \lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1,$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to 0} (1+x) = e,$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1,$$

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$$

$$\lim_{x \to 0} \frac{e^{-1}}{x} = 1$$

$$\lim_{x \to 0} \frac{a^{x} - 1}{x} = \ln a$$

$$\lim_{x \to 0} \frac{(1 + x)^{a} - 1}{x} = a$$

Свойства нижних и верхних пределов

1. Для любых последовательностей $\{x_k\}$ и $\{y_k\}$:

$$\varliminf_{k\to\infty} x_k + \varliminf_{k\to\infty} y_k \leq \varliminf_{k\to\infty} \left(x_k + y_k\right) \leq \varlimsup_{k\to\infty} \left(x_k + y_k\right) \leq \varlimsup_{k\to\infty} x_k + \varlimsup_{k\to\infty} y_k \; .$$

2. Для любых последовательностей $\{x_k\}$ и $\{y_k\}$ с неотрицательными членами:

$$\underline{\lim_{k\to\infty}} x_k \cdot \underline{\lim_{k\to\infty}} y_k \le \underline{\lim_{k\to\infty}} (x_k \cdot y_k) \le \overline{\lim_{k\to\infty}} (x_k \cdot y_k) \le \overline{\lim_{k\to\infty}} x_k \cdot \overline{\lim_{k\to\infty}} y_k.$$

- **3.** Если $\forall n \; x_n > 0$, то $\lim_{k \to \infty} \frac{x_{k+1}}{x_k} \leq \lim_{k \to \infty} \sqrt[k]{x_k} \leq \overline{\lim}_{k \to \infty} \sqrt[k]{x_k} \leq \overline{\lim}_{k \to \infty} \frac{x_{k+1}}{x_k}$...
- **4.** Для произвольной последовательности $\{x_k\}$

$$\inf x_k \le \underline{\lim}_{k \to \infty} x_k \le \overline{\lim}_{k \to \infty} x_k \le \sup x_k.$$

5. Для произвольной последовательности $\{x_k\}$

$$\underline{\lim}_{k\to\infty} x_k = \inf L, \qquad \overline{\lim}_{k\to\infty} x_k = \sup L,$$

где $L \subset \mathbb{R} \cup \{+\infty, -\infty\}$ — множество всех частичных пределов последовательности.

Свойства левых и правых пределов

Пусть $A \in \mathbb{R} \cup \{+\infty, -\infty\}$, $B \in \{+\infty, -\infty\}$, $C = \{+\infty, -\infty, \infty\}$, тогда

- **1.** $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A$ тогда и только тогда, когда $\lim_{x \to x_0} f(x) = A$.
- 2. $\lim_{x\to +\infty} f(x) = \lim_{x\to -\infty} f(x) = A$ тогда и только тогда, когда $\lim_{x\to \infty} f(x) = A$.
- **3.** Если $\lim_{x \to x_0+} f(x) = -\lim_{x \to x_0-} f(x) = B$, то $\lim_{x \to x_0} f(x) = \infty$.
- **4.** Если $\lim_{x\to +\infty} f(x) = -\lim_{x\to -\infty} f(x) = B$, то $\lim_{x\to \infty} f(x) = \infty$.
- **5.** Если $\lim_{x \to x_0} f(x) = \infty$, то $\lim_{x \to x_0^+} f(x) \in C$ и $\lim_{x \to x_0^-} f(x) \in C$.
- **4.** Если $\lim_{x\to\infty} f(x) = \infty$, то $\lim_{x\to+\infty} f(x) \in C$ и $\lim_{x\to-\infty} f(x) \in C$.
- ▶ Все эти свойства сразу следуют из определений соответствующих пределов. ◀

Теорема о пределе композиции функций. Если $\lim_{x \to x_0} f(x) = a \in \mathbb{R}$ и $\lim_{y \to a} g(y) = b \in \mathbb{R}$, причем $f(x) \neq a$ при $x \neq x_0$, то $\lim_{x \to x_0} g(f(x)) = b = \lim_{y \to a} g(y)$. Таким образом, если функция g(y) определена в точке y = a, то $\lim_{x \to x_0} g(f(x)) = \lim_{y \to a} g(y) = g\left(\lim_{x \to x_0} f(x)\right)$.

Теорема Коши о существовании предела функции в точке. Пусть $x_0 \in \mathbb{R}$ — предельная точка множества A и $f:A \to \mathbb{R}$. Предел функции f в точке x_0 существует тогда и только тогда, когда $\forall \varepsilon > 0 \;\; \exists \delta > 0 \;\; \forall x_1, x_2 \in \stackrel{0}{B}(x_0, \delta) \cap A \;\; \left| f\left(x_2\right) - f\left(x_1\right) \right| < \varepsilon$.

Связь между односторонними пределами и точными гранями для монотонных функций. Пусть функция $f: X \to \mathbb{R}$ возрастает (убывает) на ограниченном множестве X таком, что $\alpha = \inf X$, $\beta = \sup X$, причем $\alpha \notin X$, $\beta \notin X$, тогда

$$\lim_{x \to \alpha^{+}} f(x) = \inf_{x \in X} f(x) \text{ u } \lim_{x \to \beta^{-}} f(x) = \sup_{x \in X} f(x) \text{ (} \lim_{x \to \alpha^{+}} f(x) = \sup_{x \in X} f(x) \text{ u } \lim_{x \to \beta^{-}} f(x) = \inf_{x \in X} f(x) \text{)}.$$

Предел показательно-степенной функции

$$\lim_{x \to S} \left[u(x) \right]^{v(x)} = \exp \left\{ \lim_{x \to S} \left[v(x) \cdot \ln u(x) \right] \right\}.$$

	2 75	(2.75)
$\lim_{x\to S}u(x)$	$\lim_{x\to S}v(x)$	$\lim_{x\to S} \left[u(x)\right]^{v(x)}$
b > 0	С	b^c
0	$c > 0$ (или $+\infty$)	0
	$c < 0$ (или $-\infty$)	+∞
	0	неопределенность 0^{0}
0 < b < 1	+∞	0
	$-\infty$	+∞
1	С	1
	+∞, −∞, ∞	неопределенность 1^{∞}
b > 1	$+\infty$	+∞
	$-\infty$	0
+∞	$c > 0$ (или $+\infty$)	+∞
	$c < 0$ (или $-\infty$)	0
	0	неопределенность ∞^0

Примечание: b, $c \in \mathbb{R}$, для всех рассматриваемых значений u(x) > 0.

Неопределенные выражения
$$\frac{0}{0}, \quad \frac{\infty}{\infty}, \quad 0 \cdot \infty, \quad \infty - \infty, \quad 1^{\infty}, \quad 0^{0}, \quad \infty^{0}$$

Основные асимптотические разложения

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{(-1)^{n} x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{n}}{n} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdots (\alpha-(n-1))}{n!} x^{n} =$$

$$= 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^{2} + \dots + \frac{\alpha(\alpha-1) \cdots (\alpha-(n-1))}{n!} x^{n} + o(x^{n})$$