Computational Methods in Astrophysics- HW6

Anjali Yelikar

1. Given E(B-V), R_V , m_V , period, Z(metallicity) and distance to the star, we can calculate $A_V = R_V * E(B-v)$, and hence $M_V = m_V - 5 * log(d) + 5 - A_V$.

$$M_V = \alpha + \beta * log(P) + \gamma * Z$$

Performing a linear least squares fitting to the above equation I get the values for the parameters with their uncertainties as

 $\alpha = 12.84018113 \pm 0.143052598123$,

 $\beta = -2.12690846 \pm 0.1676473246898537,$

 $\gamma = -0.09353132 \pm 0.25234995714561903.$

2. Following is a plot of the data and the fit performed on it with period(log-scale) on the x-axis and V-band absolute magnitude on the y-axis. As we can see, it seems like a good fit.

3. Taking into consideration the $errors(\sigma_m=0.1)$ on evaluation of the apparent magnitudes as well, following are the parameter fits with their uncertainties

 $\alpha = 12.94018113 \pm 0.143052598123$

 $\beta = -2.12690846 \pm 0.1676473246898537$

 $\gamma = -0.09353132 \pm 0.25234995714561903$

4. Bonus: To be attempted