

Lab		
HW		
Until		

การบ้านปฏิบัติการ 4 Conditionals (20 คะแนน)

<u>ข้อกำหนด</u>

- การเรียกใช้ฟังก์ชันเพื่อการทดสอบ ต้องอยู่ภายใต้เงื่อนไข if __name__ == '__main__' : เพื่อให้สามารถ
 import ไปเรียกใช้งานจาก Script อื่น ๆ ได้อย่างมีมาตรฐาน
- ii. ไม่อนุญาตให้ใช้การทำซ้ำเช่น **for, while** (Iterations), Recursions, หรือ Data Type อื่น ๆ ที่ยังไม่สอนใน บทเรียน เช่น **range**, **list** หรือ **map** ในการแก้ปัญหา
- iii. นักศึกษาสามารถสร้างฟังก์ชันย่อยต่าง ๆ เพิ่มเติมได้ตามความเหมาะสม
- iv. ในข้อที่ระบุว่ามี **[Attachments]** ให้ Download ไฟล์ Template จาก Grader ลงมา implement

<u>Hint</u>: ควรสร้างฟังก์ชันทดสอบเพื่อทดสอบกับกรณีทดสอบหลายๆ ชุดโดยอัตโนมัติ โดยใช้ Statement **assert**

1) 4 คะแนน (Lab04_1_6XXXXXXXX.py) [Attachments] ให้เขียนฟังก์ชัน circle_intersect($x_1, y_1, r_1, x_2, y_2, r_2, epsilon=10**-6$) เพื่อคำนวณว่าวงกลมสองวง ที่มีจุดศูนย์กลางที่ Coordinate (x_1,y_1) และ (x_2,y_2) และมีรัศมี r_1 และ r_2 ตามลำดับ สัมผัสกัน (Touching) ตัดกัน (Intersecting) หรือ ไม่ตัดกัน (Nonintersecting) โดยหากส่วนที่ใกล้ที่สุดของเส้นรอบวงของวงกลมทั้งสอง ห่างกันไม่เกินค่า epsilon ให้ถือว่าวงกลม ทั้งสองสัมผัสกัน ทั้งนี้ระยะห่างระหว่างสองจุดใด ๆ (Distance) สามารถหาได้จากสูตร

distance =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

โดยฟังก์ชันจะมีการคืนค่าดังนี้

- 1 กรณีวงกลมสองวงตัดกัน (intersecting)
- 0 กรณีวงกลมสองวงสัมผัสกัน (touching)
- -1 กรณีวงกลมสองวงไม่ตัดและไม่สัมผัสกัน (non-intersecting)

Hint: พิจารณาศึกษาฟังก์ชัน almost_equal() หรือ math.isclose() จาก slide เรื่อง Conditionals Part I

<u>Input</u>	<u>Output</u>
--------------	---------------

2 3 5 5 7 1	1
0 0 2.5 3 4 2.5	0

• การวิเคราะห์ปัญหา

• Input:		จำนวนข้อมูล	_ชนิดข้อมูล
Output:	(คืนค่า)	จำนวนข้อมูล	_ _ชนิดข้อมูล
Output:	(แสดงค่า)	- จำนวนข้อมูล	_ _ชนิดข้อมูล

2) **4 คะแนน** ให้เขียนฟังก์ชัน my_min_mid_max(a, b, c) เพื่อ<u>แสดงผล</u>ค่าน้อยที่สุด (min) ค่าที่อยู่ตรงกลาง (mid) และค่ามากที่สุด (max) จากจำนวนเต็ม a, b และ c โดยการแสดงผลจะอยู่ในรูปแบบดังแสดงด้านล่าง ทั้งนี้ไม่ อนุญาตให้ใช้ฟังก์ชัน built-in max(), min() ในการแก้ปัญหา

Hint: สามารถใช้ 3 if statement ในการแก้ปัญหา และควรอ่าน slide min max and more (w04) ก่อนทำการบ้าน

- a. ให้เขียน Flowchart แสดง Algorithm ในการแก้ปัญหา (Flowgorithm, Lucidchart, etc) และส่งไฟล์ออนไลน์ ผ่านระบบ Mango ของรายวิชา
- b. (Lab04_2_6xxxxxxxx.py) เขียนฟังก์ชันในภาษา python ตาม Algorithm ที่ออกแบบไว้

<u>Input</u>	Output
1	min = 1
2	mid = 2
3	max = 3

• การวิเคราะห์ปัญหา

• Input:		จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(คืนค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(แสดงค่า)	จำนวนข้อมูล	ชนิดข้อมูล	

3) 4 คะแนน (HW04_1_6XXXXXXXX.py) ในเกม Pokémon Go ผู้เล่นจะได้ค่าประสบการณ์ (exp) จากการพัฒนาร่าง (Evolve) จากร่าง 1 เป็นร่าง 2 ในแต่ละครั้งเท่ากับ 500 exp และต้องเสียลูกอม (Candy) จำนวนหนึ่ง เช่น Pidgey (ร่าง 1) จะใช้ ลูกอมจำนวน 12 ลูก เพื่อพัฒนาเป็น Pidgeotto (ร่าง 2) และรางวัลจากการพัฒนาร่าง เป็นพลังเพิ่ม 500 exp และลูกอม 1 ลูก ดังรูป

ให้เขียนฟังก์ชัน calculate_p2p_evolve_exp(p, c) เพื่อ<u>คำนวณและคืนค่า exp</u> ที่มากที่สุดที่เป็นไปได้<u>เฉพาะ</u> <u>จากการพัฒนา Pidgey เป็น Pidgeotto</u> เมื่อมี Pidgey จำนวน p ตัว และ ลูกอมจำนวน c ลูก โดยกำหนดให้นกทุก

ตัว (Pidgey และ Pidgeotto) สามารถแลกเปลี่ยนเป็นลูกอมได้ 1 ลูก และจำนวนลูกอมที่ใช้ในการพัฒนาร่างเท่ากับ 12 (ค่าคงที่)

<u>Input</u>	<u>Output</u>	<u>คำอธิบาย</u>
1 12	500	# มี candy เพียงพอในการ evolve 1 ครั้ง
2 12	500	# มี candy เพียงพอในการ evolve 1 ครั้ง
2 22	1000	# evolve รอบแรกและนำ Pidgeotto ไปแลกเป็นแคนดี้ เพื่อให้เพียงพอในการ evolve ตัวที่สอง

• การวิเคราะห์ปัญหา

• Input: จำนวนข้อมูล____ชนิดข้อมูล____

4) **4 คะแนน (HW04_2_6XXXXXXX.py)** ยุ่นเป็นผื่นที่เกิดจากการโหมงานหนัก หมออิมจึงแนะนำยุ่นว่าควรหยุด พักผ่อนในช่วงสงกรานต์ที่จะถึง ให้เขียนฟังก์ชัน count_down_to_songkran(d, m, y) เพื่อช่วยยุ่นคำนวณและ <u>คืนค่า</u>ว่าวันที่กำหนดห่างจากวันสงกรานต์ (13 เมษายน) ครั้งถัดไปกี่วัน โดย y เป็นปีคริสต์ศักราช และฟังก์ชันนี้ ต้องใช้ได้ในปีอธิกสุรทินด้วย ทั้งนี้<u>ไม่อนุญาต</u>ให้ใช้ module **datetime** ในการแก้ปัญหา

Hint: เทียบคำตอบได้จากเว็บไซต์ http://www.timeanddate.com/date/duration.html

<u>Input</u>	Output
1 2 2016	72
13 4 2016	0

• การวิเคราะห์ปัญหา

5) **4 คะแนน** (HW04_3_6XXXXXXXX.py) ให้เขียนฟังก์ชัน Boolean (ฟังก์ชันที่คืนค่า **True** หรือ **False** เท่านั้น) is_overlapped(*l*1, *t*1, *w*1, *h*1, *l*2, *t*2, *w*2, *h*2) เพื่อตรวจสอบว่าสี่เหลี่ยมมุมฉากสองรูปมีส่วนทับ (Overlap) กันหรือไม่ โดยที่เราสามารถนิยามสี่เหลี่ยมมุมฉากดังนี้

โดย t คือ top, l คือ left, w คือ width และ h คือ height ของรูปสี่เหลี่ยม ดังนั้น is_overlapped(10, 10, 100, 150, 50, 100, 150, 200) จะคืนค่าเป็น True ดังรูป

Hint: พิจารณาเงื่อนไขกรณีสี่เหลี่ยมที่<u>ไม่</u>ทับกันจะแก้ปัญหาได้ง่ายกว่า

• การวิเคราะห์ปัญหา

Input: จำนวนข้อมูล ชนิดข้อมูล
 Output: (คืนค่า) จำนวนข้อมูล ชนิดข้อมูล
 Output: (แสดงค่า) จำนวนข้อมูล ชนิดข้อมูล