Problema K-minimum spanning tree

Roberto Juan Cayro Cuadros, Gabriel Alexander Valdivia Medina, Giulia Alexa Naval Fernández, Rodrigo Alonso Torres Sotomayor

Universidad Católica San Pablo

Resumen

El presente trabajo presenta una breve investigación del problema *k-minimun* spanning tree, explicando su funcionamiento, demostrando que pertenece al conjunto de los problemas NP-completos, y dando opciones de algoritmos para su resolución.

1. Introducción al problema

El k-MST o k-minnimum spanning tree problem, árbol de expansión de péso mínimo k en español es un problema computacional que pide un árbol de mínimo costo con exactamente k vértices que forme un subgrafo del grafo original. [2]

Figura 1: 6-MST del grafo G. Fuente: Wikipedia Commons

2. Demostración NP-completo

No es posible suponer la naturaleza del problema, y establecer que es NP-hard o NP-completo, sin la evidencia correspondiente, para probrarlo este debe pertenecer a NP, ademas que un problema NP-completo pueda reducirse al mismo.

2.1. Demostrar que k- $MST \in NP$

Para demostrar que un problema pertenece a la clase NP, se debe crear un algoritmo no deterministico que resuelva el problema en tiempo polinomial:

k-MST (G,k)

```
x ← arbol.
for t ← 0, to k
do u ←ESCOGER(G)
if u is not in x
do x . add(u)
```

2.2. Transformación NP-completo α k-MST

El segundo paso para demostrar que un problema pertenece a los NP-completos, es transformar un problema NP-completo conocido para que pueda ser resuelto por el algoritmo del k-MST. Una transformación sencilla es la que se puede hacer dese el problema de Steiner.

2.2.1. Steiner problem

El Steiner problem es un problema NP-completo de los 21 problemas de Karp, usado en problemas de optimización y mayormente enfocado en estructuras de grafos aunque tambien visto en aplicaciones de modelación de redes con más de 2 terminales. El problema consiste en que, dado un grafo nodirigido de aristas con peso, generar un arbol dado un Sub-set de vertices los cuales formarán este arbol. Además, pueden añadirse nuevos vertices del grafo al sub-set para lograr las conexiones entre estos, llamados Steiner-vertices.[1]

La decisión asociada al problema será averiguar si existe un árbol que una todos los vértices de un $sub\text{-}set\ R$, usando máximo M aristas. Los vertices deberán ser exactamente los dados en el Sub-set. Esta decisión es conocida por ser del grupo de los NP-completos. La principal diferencia con el k-MST es que aquí recibimos un conjunto específico de vectores para conformar nuestro árbol, pudiendo usar vértices fuera de la relación para conectarlos. El k-MST no recibe esta relación, sólo el número de vértices exactos que necesita.

2.3. Entradas y salidas

Steiner-problem

Entrada:

- Grafo no-dirigido G con aristas de peso.
- Sub-set de vertices R.
- Número M.

Salida:

 Arbol de menor peso con los vertices de S y los Steiner-vertices si fueran necesarios.

\underline{k} - $\underline{MS}T$

Entrada:

- Grafo no-dirigido G con aristas de peso.
- Número k de vértices.

Salida:

Arbol de menor peso con k-vertices y k-1 aristas.

2.3.1. Transformación

Dada la entrada G para Steiner, se puede tomar el mismo grafo para k-MST, puesto que tiene las aristas pesadas y un número determinado de vertices. De esta forma aseguramos la transformación y no afectara la salida porque siempre busaremos el arbol de menor peso , se usará el tamaño del sub-set de vertices siendo este igual a k.

Por consiguiente logramos reducir el problema de Steiner tree a k-MST, al tranformar su entrada en los parámetros de k-MST. Pero resta confirmar que la solución de k-MST también podría solucionar a Steiner-tree. La salida de k-mst será un arbol con el menor peso posible, sin embargo, debemos tener en cuenta que el número k denota la cantidad de vertices necesarios más no que vertices, por lo tanto el numero total de permutaciones de los vertices de G serán combinaciones de el número total de vertices(n) en k vertices:

Total de permutaciones (Tn) =
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
.

Esto es importante porque sabiendo que k es el size of sub-set (S) , y hablamos de todas las permutaciones de ese tamaño, podemos concluir que el S debe estar incluido en Tn. Por ello:

$$S \subseteq Tn$$

Sin embargo, calcular todas las permutaciones de una cantidad n de elementos es un proceso con una complejidad O(!n), que no entra dentro de complejidad polinomial. Es necesario otro tratamiento para que el k-MST opere con los vértices que el algoritmo Steiner pide. Otra idea es añadir un árbol con aristas de peso 0 en cada vértice que pertenezca a R, y transformar k como k = |R|(X+1), siendo X la cantidad de vértices que tendrán cada uno de estos árboles, denotado como X = |V(G)| - |R| De esta forma, el k-MST utilizará los vértices de R sí o sí como parte de su solución.[3]

Figura 2: Transformación de la entrada de Steiner a entrda de k-MST. Fuente: www.contrib.andrew.cmu.edu

En este nuevo grafo G', las aristas que unen los nuevos vértices de X tendrán un peso de 0, las aristas correspondientes a las aristas originales de G tendrán un peso de 1, y el resto de pares del grafo tendrán un peso de ∞ . De este modo, el algoritmo del k-MST encontrará el árbol de menor peso con el parámetro k en G', y verificará si es de igual o menor peso que M, satisfaciendo el requisito de las M aristas debido a que estas tendrán peso 1.

3. Algoritmo de fuerza bruta

4. Algoritmo aproximado

Bibliography

Referencias

- [1] Gupta, S. (Junio de 2022). geeksforgeeks. Obtenido de https://www.geeksforgeeks.org/steiner-tree/
- [2] Matt Elder, S. C. (2007). CS880: Approximation Algorithms. Obtenido de https://pages.cs.wisc.edu/shuchi/courses/880-S07/scribenotes/lecture26-2.pdf
- [3] R. Ravi, R. S. (12 de Julio de 2006). Spanning Trees—Short or Small. Obtenido de SIAM (Society for Industrial and Applied Mathematics: https://epubs.siam.org/doi/pdf/10.1137/S0895480194266331