FY BTech BEEE Lab Expt No. 8

Based on Unit 6: AC circuits

R L C Series Resonant Circuit

Inductive reactance Vs frequency Capacitive reactance Vs frequency

Alternating current in an RLC circuit

Fig. 10.25 Circuit with R, L and C in series

Fig. 10.26 Phasor diagram for Fig. 10.25

$$\tan \phi = \frac{AE}{OA} = \frac{OD}{OA} = \frac{OB - OC}{OA} = \frac{2\pi f LI - I/(2\pi f C)}{RI}$$
$$= \frac{\text{inductive reactance} - \text{capacitive reactance}}{\text{resistance}}$$

$$\tan \phi = \frac{X_L - X_C}{R}$$

$$OE^2 = OA^2 + OD^2 = OA^2 + (OB - OC)^2$$

$$V^2 = (RI)^2 + \left(2\pi f LI - \frac{I}{2\pi f C}\right)^2$$

so that

$$I = \frac{V}{\sqrt{\left\{R^2 + \left(2\pi f L - \frac{1}{2\pi f C}\right)^2\right\}}} = \frac{V}{Z}$$

where Z = impedance of circuit in ohms

$$Z = \frac{V}{I} = \sqrt{\left\{R^2 + \left(2\pi f L - \frac{1}{2\pi f C}\right)^2\right\}}$$

From this expression it is seen that

Resultant reactance =
$$2\pi fL - \frac{1}{2\pi fC}$$

= inductive reactance - capacitive reactance

17-05-2021 MITWPU

Series Resonance

Variation of reactance with frequency

 $\omega_{\scriptscriptstyle{\theta}}$ is the resonance frequency.

Calculation of resonant frequency

Resonance Curves

Q Factor

Q Factor

Resonance Curve

Observation Table

Sr. No	Frequency (Hz)	AC Voltage across R (V)
1	800	1
2	900	
3	1000	1.2
4	1100	1.8
5	1300	3.0
6	1400	3.8
7	1500	4.75
8	1600	5
9	1700	4.5
10	2000	2.8
11	2200	2
12	2500	1.5
13	2800	1.2

17-May-21 11