Quoddam pium votum, maximatione examinis oralis ex analysi auncupatum – ad corda fovenda populo studiosorum, pro salute servanda ab infausto spectro mortis

(non transitus disciplinae)

Marcel Tartanus

18 lutego 2025

GEOMETRIA RÓŻNICZKOWA

Odpowiedzi na pierwsze sześć pytań, których nie zdążyłem jeszcze przepisać do latexa, można znaleźć na dysku https://drive.google.com/drive/folders/1cEebV2E7BEeXJyBxo_TQnKqzHyMKAuzH?usp=sharing. W odpowiedziach do pytań, rozmaitość M domyślnie jest wymiaru n, chyba że występuje w parze z rozmaitością N, wówczas $\dim M = m$ a $\dim N = n$.

Pytanie 1. przestrzeń topologiczna, mapa, atlas klasy \mathbb{C}^k , rozmaitość różniczkowa

Pytanie 2. twierdzenie o powierzchniach zanurzonych

Pytanie 3. przestrzeń styczna do rozmaitości, wektor styczny do danej krzywej

Pytanie 4. baza przestrzeni stycznej związana z danym układem współrzędnych, wpływ zmiany układu współrzędnych na współczynniki wektora

Pytanie 5. definicja odwzorowania stycznego, transport wektorów rozmaitościami, wzór na odwzorowanie styczne w danych układach współrzędnych

Pytanie 6. wiązka styczna, pole wektorowe

Pytanie 7. przestrzeń kostyczna do rozmaitości, kowektory

Definicja 1. Przestrzeń kostyczna

Przestrzeń dualną do przestrzeni stycznej T_pM , czyli $T_p^*M = L(T_pM, \mathbb{R})$ określamy mianem kostycznej w punkcie p do rozmaitości M. Jej elementami są kowektory $\omega_p \in T_p^*M$.

Definicja 2. Różniczka funkcji $f:M\to\mathbb{R}$

Różniczką funkcji $f: M \to \mathbb{R}$ w punkcie p nazywamy odwzorowanie

$$(\mathrm{d}f)_p: T_pM\ni v_p\mapsto v_p(f)\in\mathbb{R}.$$

Jest ono liniowe ze względu na v_p , więc $(df)_p$ jest elementem przestrzeni kostycznej T_p^*M .

Pytanie 8. baza przestrzeni kostycznej związana z danym układem współrzędnych, wpływ zmiany układu współrzędnych na współczynniki kowektora

Mając zdefiniowaną różniczkę funkcji rzeczywistej na rozmaitości (def. 2) możemy się teraz zastanowić nad bazą przestrzeni kostycznej. Weźmy sobie mapę $\phi: M \to \mathbb{R}^n$, taką że dla $q \in M$

$$\phi(q) = \begin{bmatrix} x_1(q) \\ \vdots \\ x_n(q) \end{bmatrix}, \text{ gdzie } x_i(q) \text{ to } i\text{-ta wsp\'olrz\'edna punktu } q.$$

Sprawdźmy czy różniczki funkcji $x_i: M \to \mathbb{R}$ stanowią bazę dualną do $\left\{ \frac{\partial}{\partial x_i} \right|_{n} \right\}$:

$$(\mathrm{d}x_i)_p \left. \frac{\partial}{\partial x_j} \right|_p = \left. \frac{\partial x_i}{\partial x_j} \right|_p = \left. \frac{\mathrm{d}}{\mathrm{d}t} (x_i \circ \gamma_j(t)) \right|_{t=0} = \left. \frac{\mathrm{d}(t \, \delta_{ij})}{\mathrm{d}t} \right|_{t=0} = \delta_{ij}.$$

Przedostatnia równość wynika z tego, że $\phi \circ \gamma_j = (0, \dots, t, \dots, 0)$. Zatem tak, zbiór różniczek $\{ (\mathrm{d}x_i)_p \}$ stanowi bazę dualną do $\{ \left. \frac{\partial}{\partial x_i} \right|_p \}$, więc jest bazą przestrzeni kostycznej T_p^*M .

Jak wygląda **rozkład różniczki** $(df)_p$, czyli kowektora, w bazie $\{(dx_i)_p\}$? Korzystając z dualności baz:

$$(\mathrm{d}f)_p \left. \frac{\partial}{\partial x_i} \right|_p = \sum_{j=1}^n \alpha_j (\mathrm{d}x_j)_p \left. \frac{\partial}{\partial x_i} \right|_p = \sum_{j=1}^n \alpha_j \delta_{ji} = \alpha_i.$$

Z drugiej strony posiłkując się definicją 2:

$$(\mathrm{d}f)_p \left. \frac{\partial}{\partial x_i} \right|_p = \left. \frac{\partial}{\partial x_i} \right|_p (f) = \left. \frac{\partial \left(f \circ \phi^{-1}(\vec{x}) \right)}{\partial x_i} \right|_{\vec{x} = \phi(p)}.$$

Porównując ze sobą wzory otrzymujemy rozkład postaci:

$$(\mathrm{d}f)_p = \sum_{i=1}^n \frac{\partial \left(f \circ \phi^{-1}(\vec{x}) \right)}{\partial x_i} \bigg|_{\vec{x} = \phi(p)} (\mathrm{d}x_i)_p = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \bigg|_p (\mathrm{d}x_i)_p, \tag{1}$$

gdzie wyraz po drugiej równości oznacza uproszczoną notację. Funkcji na rozmaitości nie można różniczkować jak te na przestrzeniach euklidesowych, o ile nie obłoży się ich jakąś mapą.

Rozważmy kolejną mapę $\widetilde{\phi}$ na tej samej rozmaitości. Jaki będzie **rozkład różniczki w innej bazie** $\{(d\widetilde{x}_i)_n\}$ związanej z nowym układem współrzędnych $\widetilde{\phi}$?

$$(\mathrm{d}f)_p = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \bigg|_p \mathrm{id}^*(dx_i)_p = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \bigg|_p \sum_{j=1}^n \frac{\partial x_i}{\partial \widetilde{x}_j} \bigg|_p (\mathrm{d}\widetilde{x}_j)_p = \sum_{j=1}^n \underbrace{\left(\sum_{i=1}^n \frac{\partial f}{\partial x_i} \bigg|_p \frac{\partial x_i}{\partial \widetilde{x}_j} \bigg|_p\right)}_{\text{were we requisible signs}} (\mathrm{d}\widetilde{x}_j)_p,$$

gdzie id* to odwzorowanie kostyczne do identyczności id = $\phi \circ \widetilde{\phi}^{-1}$. Więcej na temat odwzorowań kostycznych można znaleźć w odpowiedzi do następnego pytania. Powyższy wynik jest iloczynem kowektora (macierz $1 \times n$) w starej bazie i macierzy Jacobiego przejścia między układami współrzędnych $\frac{\partial (x_1, \dots x_n)}{\partial (\widehat{x_1}, \dots \widehat{x_n})}$:

$$\left[\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial x_{i}}{\partial \widetilde{x}_{1}} \cdots \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial x_{i}}{\partial \widetilde{x}_{n}}\right]_{p} = \left[\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}}\right]_{p} \begin{bmatrix} \frac{\partial x_{1}}{\partial \widetilde{x}_{1}} & \frac{\partial x_{1}}{\partial \widetilde{x}_{2}} & \cdots & \frac{\partial x_{1}}{\partial \widetilde{x}_{n}} \\ \frac{\partial x_{2}}{\partial \widetilde{x}_{1}} & \frac{\partial x_{2}}{\partial \widetilde{x}_{2}} & \cdots & \frac{\partial x_{2}}{\partial \widetilde{x}_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_{n}}{\partial \widetilde{x}_{1}} & \frac{\partial x_{n}}{\partial \widetilde{x}_{2}} & \cdots & \frac{\partial x_{n}}{\partial \widetilde{x}_{n}} \end{bmatrix}_{p}$$

Pytanie 9. definicja odwzorowania kostycznego, transport kowektorów między rozmaitościami, wzór na odwzorowanie kostyczne w danych układach współrzędnych

Definicja 3. Odwzorowanie kostyczne

Niech M i N będą rozmaitościami różniczkowymi klasy C^k , a $F:M\to N$ funkcją klasy C^k . Odwzorowanie $F^*:T^*_{F(p)}N\to T^*_pM$, zadane warunkiem

$$\forall_{\omega_{F(p)} \in T_{F(p)}^* N} \, \forall_{v_p \in T_p M} \, \left(F^* \omega_{F(p)} \right) (v_p) = \omega_{F(p)} \left(F_* v_p \right),$$

nazywamy odwzorowaniem kostycznym do F, lub inaczej cofnięciem kowektorów.

W odpowiedzi na pytanie 5. pokazano, że pchnięcie wektorów możemy wyrazić za pomocą wzoru:

$$F_* \left(\sum_{i=1}^m v_i \left. \frac{\partial}{\partial x_i} \right|_p \right) = \sum_{i,j} [F'_{\psi\phi}]_{ji} v_i \left. \frac{\partial}{\partial y_j} \right|_{F(p)}.$$

Posługując się nim oraz definicją odwzorowania kostycznego, można rozpisać:

$$\left(F^* \left(\sum_{j=1}^n \omega_j(F(p)) (\mathrm{d}y_j)_{F(p)}\right)\right) \left(\sum_{i=1}^m v_i \frac{\partial}{\partial x_i}\Big|_p\right) = \left(\sum_{j=1}^n \omega_j(F(p)) (\mathrm{d}y_j)_{F(p)}\right) \left(F_* \left(\sum_{i=1}^m v_i \frac{\partial}{\partial x_i}\Big|_p\right)\right) \\
= \left(\sum_{j=1}^n \omega_j(F(p)) (\mathrm{d}y_j)_{F(p)}\right) \left(\sum_{i,j} [F'_{\psi\phi}]_{ji} v_i \frac{\partial}{\partial y_j}\Big|_{F(p)}\right) = \sum_{j=1}^n \omega_j(F(p)) \sum_{i=1}^m [F'_{\psi\phi}]_{ji} v_i \\
= \sum_{j=1}^n \sum_{i=1}^m \omega_j(F(p)) [F'_{\psi\phi}]_{ji} v_i = \sum_{j=1}^n \sum_{i=1}^m \omega_j(F(p)) [F'_{\psi\phi}]_{ji} (\mathrm{d}x_i)_p (v_p) = \sum_{j=1}^n \sum_{i=1}^m ([F'_{\psi\phi}]^T)_{ij} \omega_j(F(p)) (\mathrm{d}x_i)_p (v_p)$$

Uzyskujemy zatem wzór na odwzorowanie kostyczne w układach współrzędnych (mapach) ψ i ϕ na rozmaitościach odpowiednio N i M:

$$F^* \omega_{F(p)} = \sum_{i=1}^n \sum_{i=1}^m ([F'_{\psi\phi}]^T)_{ij} \,\omega_j(F(p)) (\mathrm{d}x_i)_p.$$

Widzimy więc, że cofnięcie kowektorów jest operacją liniową o macierzy $[F'_{\psi\phi}]^T.$

Pytanie 10. wiązka kostyczna, 1-forma, k-forma

Definicja 4. Wiązka kostyczna

Wiązka kostyczna to suma rozłączna przestrzeni kostycznych w każdym punkcie rozmaitości

$$T^{*}M = \bigcup_{p \in M} \left\{ \, p \, \right\} \times T_{p}^{*}M = \left\{ \, (p,\omega) \mid p \in M, \, \omega \in T_{p}^{*}M \, \right\}.$$

Definicja 5. Pole kowektorowe (1-forma różniczkowa)

Pole kowektorowe jest funkcją $\omega: M \to T^*M$, taką że

$$M \ni p \mapsto \omega_p = \sum_{i=1}^n (\omega_p)_i (\mathrm{d}x_i)_p \in T_p^* M.$$

Traktując $(\omega_p)_i$ jako odwzorowanie na M oraz wprowadzając $\omega_i: M \ni p \mapsto (\omega_p)_i \in \mathbb{R}$, pole ω można zapisać jako:

$$\omega(p) = \sum_{i=1}^{n} \omega_i(p) (\mathrm{d}x_i)_p.$$

Jednoformami można działać na pola wektorowe $V \in \mathfrak{X}(M)$, przez co rozumiemy: $\omega(V)|_p = \omega_p(v_p)$. Wynikiem takiej operacji jest funkcja $\omega(V): M \to \mathbb{R}$.

Jak wygląda 1-forma funkcji rzeczywistej na rozmaitości? Jest to odwzorowanie d $f: p \mapsto (\mathrm{d}f)_p$, gdzie $(\mathrm{d}f)_p$ to różniczka funkcji f w punkcie p o rozkładzie w bazie $\{(\mathrm{d}x_i)_p\}$ (1). Należy tutaj poczynić pewną uwagę. Dla każdej funkcji f istnieje 1-forma ω , taka że $\omega=\mathrm{d}f$, ale nie dla każdej 1-formy istnieje funkcja z różniczką odpowiadającą 1-formie.

Definicja 6. k-forma różniczkowa

Niech $\Lambda^k T_p M = \Lambda_p^k M$ oznacza przestrzeń liniową całkowicie antysymetrycznych k-liniowych funkcjonałów na $(T_p M)^k = T_p M \times \cdots \times T_p M$. Formą różniczkową nazwiemy funkcję $\omega: M \to \bigcup_{p \in M} \Lambda_p^k M$, taką że $\omega(p) \in \Lambda_p^k M$. Zbiór wszystkich k-form różniczkowych na M oznaczamy jako $\Lambda^k M$. Lokalnie, tj. w otoczeniu ustalonego punktu p rozmaitości, w dziedzinie pewnego układu współrzędnych ϕ , dowolną k-formę ω można przedstawić jednoznacznie w postaci:

$$\omega = \sum_{1 \le i_1 < \dots < i_k \le n} \omega_{i_1, \dots, i_k}(\vec{x}) \, \mathrm{d}x_{i_1} \wedge \dots \wedge \mathrm{d}x_{i_k} = \frac{1}{k!} \, \omega_{i_1, \dots, i_k}(\vec{x}) \, \mathrm{d}x^{i_1} \wedge \dots \wedge \mathrm{d}x^{i_k} \,,$$

gdzie $\omega_{i_1,...,i_k}$ jest antysymetrycznym współczynnikiem a $\vec{x} = \phi(p)$. W drugiej równości zastosowano konwencję sumacyjną Einsteina.

W tym miejscu dodefiniujemu, że $\Lambda^0_p M = \mathbb{R}$ oraz $\Lambda^0 M = C^\infty(M)$. Bazą przestrzeni $\Lambda^k_p M$ jest zbiór iloczynów zewnętrznych kowektorów $\left\{ \, \mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k} \, \right\}_{1 \leq i_1 < \cdots < i_k \leq n}$, więc jej wymiar wynosi $\binom{n}{k}$. Warto zauważyć, iż $\dim \Lambda^k_p M = \dim \Lambda^{n-k}_p M$.

W powyższej definicji pisałem o antysymetrycznych k-liniowych funkcjonałach. Pod tym hasłem kryją się antysymetryczne k-formy rozumiane w szerszym sensie, tak jak na Algebrze I. Nie użyłem tego sformułowania, by uniknąć ich poplątania z formami różniczkowymi przez czytelnika. Od tej chwili notacja sumacyjna Einsteina będzie się coraz częściej pojawiała. Została ona dobrze wytłumaczona w skrypcie Alatosa (https://www.fuw.edu.pl/~alatos/analiza-wyklady.pdf str. 16 – 22), więc nie poświęcimy jej tu więcej miejsca.

Pytanie 11. iloczyn zewnętrzny, iloczyn wewnętrzny, różniczka zewnętrzna

Definicja 7. Iloczyn zewnętrzny

Niech V będzie przestrzenią wektorową. Przez iloczyn zewnętrzny wektorów $v_1,\ldots,v_k\in V$ rozumiemy

$$v_1 \wedge \cdots \wedge v_k = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}.$$

Przestrzenią liniową jest również T_p^*M , więc rozważać można iloczyn zewnętrzny kowektorów. W takim przypadku dla $\omega_1, \ldots, \omega_k \in T_p^*M$ oraz $v_1, \ldots, v_k \in T_pM$:

$$\left(\omega_1 \wedge \cdots \wedge \omega_k\right)(v_1 \wedge \cdots \wedge v_k) = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \,\omega_{\sigma(1)}(v_1) \cdots \omega_{\sigma(k)}(v_k) \in \Lambda_p^k M.$$

Wśród własności iloczynu zewnętrznego można wymienić:

- antysymetryczność $\omega_1 \wedge \cdots \wedge \omega_i \wedge \cdots \wedge \omega_i \wedge \cdots \wedge \omega_k = -\omega_1 \wedge \cdots \wedge \omega_i \wedge \cdots \wedge \omega_i \wedge \cdots \wedge \omega_k$
- wieloliniowość $\omega_1 \wedge \cdots \wedge (\alpha \omega_i + \beta \widetilde{\omega}_i) \wedge \cdots \wedge \omega_k = \alpha(\omega_1 \wedge \cdots \wedge \omega_i \wedge \cdots \wedge \omega_k) + \beta(\omega_1 \wedge \cdots \wedge \widetilde{\omega}_i \wedge \cdots \wedge \omega_k),$
- łączność $(\omega_1 \wedge \cdots \wedge \omega_k) \wedge (\widetilde{\omega}_1 \wedge \cdots \wedge \widetilde{\omega}_n) = \omega_1 \wedge \cdots \wedge \omega_k \wedge \widetilde{\omega}_1 \wedge \cdots \wedge \widetilde{\omega}_n$.

Więcej informacji o tensorach i iloczynie tensorowym, który pojawił się w powyższej definicji, można przeczytać w moich notatkach z ćwiczeń ze Zglinickim https://drive.google.com/file/d/16qXaC4W0_puQSz4xwP2QBLQm9_V_2kir/view?usp=sharing.

Definicja 8. Iloczyn wewnętrzny (skalarny)

Niech V będzie przestrzenią wektorową nad ciałem \mathbb{K} (\mathbb{R} lub \mathbb{C}). Odwzorowanie $V \times V \ni (v, w) \rightarrow \langle v|w\rangle \in \mathbb{K}$ określamy iloczynem wewnętrznym (skalarnym), jeśli dla $v, w, w_1, w_2 \in V$ oraz $\lambda_1, \lambda_2 \in \mathbb{K}$ mamy:

- 1. $\langle v|\lambda_1w_1+\lambda_2w_2\rangle=\lambda_1\langle v|w_1\rangle+\lambda_2\langle v|w_2\rangle$ (liniowość w drugim argumencie),
- 2. dla $\mathbb{K} = \mathbb{R}$: $\langle v|w \rangle = \langle w|v \rangle$ (symetria), dla $\mathbb{K} = \mathbb{C}$: $\langle v|w \rangle = \overline{\langle w|v \rangle}$ (hermitowskość),
- 3. $\langle v|v\rangle > 0$ dla $v \neq \vec{0}$ (dodatniość).

Dla $\mathbb{K} = \mathbb{R}$ iloczyn skalarny sprowadza się do dodatnio-określonej, symetrycznej formy dwuliniowej

Definicja 9. Różniczka zewnętrzna

Różniczką zewnętrzną nazywamy przekształcenie d : $\Lambda^k M \to \Lambda^{k+1} M$, spełniające następujące własności:

- 1. $C^{\infty}(M) = \Lambda^0 M \ni f \mapsto \mathrm{d} f \in \Lambda^1 M$, tzn. $\forall_{A \in \mathfrak{X}(M)} \ \mathrm{d} f(A) = A(f)$, czyli funkcji gładkiej przyporządkuje jej 1-formę,
- 2. $\forall_{\omega,\eta\in\Lambda^k M}\,\forall_{a,b\in\mathbb{R}}\,\mathrm{d}(a\omega+b\eta)=a\,\mathrm{d}\omega+b\,\mathrm{d}\eta\,\,(liniowo\acute{s}\acute{c})$
- 3. $\forall_{\omega \in \Lambda^k M} \forall_{\eta \in \Lambda^l M} d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta (gradowana \ regula \ Leibniza)$
- 4. $\forall_{\omega \in \Lambda^k M} d(d\omega) = 0 (nilpotentność)$

Jeśli wyrazimy k-formę ω we współrzędnych lokalnych (x^1,\ldots,x^n) :

$$\omega = \sum_{1 \le i_1 < \dots < i_k \le n} \omega_{i_1,\dots,i_k} \, \mathrm{d} x^{i_1} \wedge \dots \wedge \mathrm{d} x^{i_k} \implies \mathrm{d} \omega = \sum_{1 \le i_1 < \dots < i_k \le n} \mathrm{d} \omega_{i_1,\dots,i_k} \wedge \mathrm{d} x^{i_1} \wedge \dots \wedge \mathrm{d} x^{i_k},$$

gdzie $d\omega_{i_1,...,i_k} = \sum_{j=1}^n \frac{\partial \omega_{i_1,...,i_k}}{\partial x^j} dx^j$.

Pytanie 12. tensor metryczny, forma objętości

Definicja 10. Tensor metryczny

Tensorem metrycznym na rozmaitości różniczkowej M zwiemy odwzorowanie $g: M \to T^*M \otimes T^*M$, takie że $M \ni p \mapsto g_p \in T^*M \otimes T^*M$, gdzie g_p jest

- symetryczną $\forall_{v,w \in T_p M} \ g_p(v,w) = g_p(w,v),$
- dodatnio-określoną $\forall_{v \in T_n M \setminus \{\vec{0}\}} g_p(v, v) > 0$,
- niezdegenerowaną $\forall_{w \in T_p M}: (\forall_{v \in T_p M} g_p(v, w) = 0) \implies w = \vec{0},$

dwuliniową formą na $T_pM \times T_pM$. Innymi słowy g jest cięciem wiązki tensorowej $T^*M \otimes T^*M$, które zadaje lokalnie, w punkcie p, iloczyn skalarny g_p . We współrzędnych lokalnych (x^1, \ldots, x^n) tensor metryczny można zapisać jako:

$$g = \sum_{i,j=1}^{n} g_{ij}(\vec{x}) dx^{i} \otimes dx^{j}.$$

Ze względu na dodatniość dwuformy g_p warunek niezdegenerowania jest zbędny. Podaje się go jednak często, bo w niektórych dziedzinach rozważa się niekoniecznie dodatnio-określone iloczyny skalarne (np. w OTW). Współczynniki tensora metrycznego zapisujemy z dolnymi indeksami. Wyrazy postaci g^{ij} rozumiemy jako współczynniki macierzy odwrotnej do $[g_{ij}]$, więc $g^{ik}g_{kj}=\delta^i_j$. Niech $[g_{ij}]$ będzie macierzą tensora metrycznego g w bazie związanej z układem współrzędnych (x^i) , a $[\widetilde{g}_{ab}]$ macierzą tego tensora w bazie związanej z układem współrzędnych (y^a) . Przejście między nimi odbywa się za pomocą macierzy Jacobiego $J=\frac{\partial(x^1,\dots,x^n)}{\partial(y^1,\dots,y^n)}$:

$$[\widetilde{g}_{ab}] = J^T[g_{ij}]J.$$

Definicja 11. Forma objętości

Formą objętości na rozmaitości różniczkowej M nazywamy n-formę różniczkową postaci:

$$vol = \pm \sqrt{\det g} \, dx^1 \wedge \cdots \wedge dx^n.$$

Znak formy zależy od orientacji układu współrzednych, w którym została wyrażona.

Pytanie 13. Co to znaczy, że odwzorowanie zachowuje orientację rozmaitości?

Pytanie 14. wzory na tensor metryczny i formę objętości indukowane na podrozmaitości

Twierdzenie 1. Tensor metryczny indukowany na podrozmaitości

Niech $M\subseteq N$ będzie podrozmaitością N, taką że dim M=m i dim N=m+1, a $\iota:M\to N$ zanurzeniem M w N. Jeśli g_N jest tensorem metrycznym na N, to na jego podstawie indukuje się tensor metryczny g_M na M jako:

$$g_M = \iota^* g_N.$$

Twierdzenie 2. Forma objętości indukowana na podrozmaitości

Niech $M\subseteq N$ będzie podrozmaitością N, taką że dim M=m i dim N=m+1, a $\iota:M\to N$ zanurzeniem $M\le N$. Jeśli vol_N jest formą objętości na N, to na jej podstawie indukuje się formę objętości vol_M na M jako:

$$vol_M = \iota^*(\vec{n} \sqcup vol_N),$$

gdzie \vec{n} jest wersorem normalnym do M.

Korzystając z tw. 1 można również zapisać formę objętości vol_M we współrzędnych (x^1, \ldots, x^m) z dokładnością do znaku jako $vol_M = \pm \sqrt{\det(\iota^* g_N)} \, \mathrm{d} x^1 \wedge \cdots \wedge \mathrm{d} x^m$.

Pytanie 15. gradient, dywergencja, rotacja

Definicja 12. Gradient

Jeśli f jest funkcją gładką na rozmaitości riemannowskiej M (na rozmaitości gładkiej wyposażonej w tensor metryczny g), to gradientem funkcji f nazywamy pole wektorowe ∇f , takie że

$$\forall_{A \in \mathfrak{X}(M)} \nabla f \, dg = \mathrm{d}f(A) = A(f), \text{ czyli } \nabla f = g^{-1} \, \mathrm{d}f = g^{ij} \frac{\partial f}{\partial x^j} \frac{\partial}{\partial x^i}.$$

Według innych notacji, zwężenie $\nabla f \perp g$ można też było zapisać jako $\iota_{\nabla f} g$, $\flat(\nabla f)$ lub $g(\nabla f, \cdot)$.

Definicja 13. Dywergencja

Dywergencją $\nabla \cdot A$ pola wektorowego A na rozmaitości różniczkowalnej M, wyposażonej w formę objętości, nazywamy odwzorowanie $\mathfrak{X}(M) \ni A \mapsto \nabla \cdot A \in C^{\infty}(M)$, takie że

$$d(A \, \lrcorner \, vol) = (\nabla \cdot A) \, vol.$$

We współrzednych lokalnych (x^1, \ldots, x^n) wzór na dywergencje przyjmuje postać:

$$\nabla \cdot A = \sum_{i=1}^{n} \frac{1}{\sqrt{\det g}} \frac{\partial (\sqrt{\det g} A^{i})}{\partial x^{i}}.$$

Definicja 14. Rotacja

Na trójwymiarowej rozmaitości riemannowskiej M definiuje się rotację $\nabla \times A$ pola wektorowego A jako przekształcenie $\mathfrak{X}(M) \ni A \mapsto \nabla \times A \in \mathfrak{X}(M)$, takie że

$$(\nabla \times A) \, \lrcorner \, vol = \mathrm{d}(A \, \lrcorner \, g) \, .$$

We współrzędnych lokalnych (x^1,\dots,x^n) w
zór na rotację przyjmuje postać:

$$\nabla \times A = \frac{\epsilon^{jka}}{\sqrt{\det g}} \frac{\partial (g_{ki}A^i)}{\partial x^j} \frac{\partial}{\partial x^a}.$$