Name:		
School:		
Complime	nts of my	sister

Pre-Calculus Team 2019

Benjamin Franklin Tournament

1.	Over	what	domain	could	the grap	oh o	ty:	$=\csc x$	be res	tricted	l to	guarantee	that	its	inverse	ıs a	funct	ion?
----	------	------	--------	-------	----------	------	-----	-----------	--------	---------	------	-----------	------	-----	---------	------	-------	------

- 2. Find the exact value of $\sin^{-1}(\cos(\frac{2\pi}{3}))$
- 3. Find the value of the x^8 coefficient of the expression $(2x+1)^9$.
- 4. For what values of x is it true that $\arcsin x = \arccos x$?
- 5. Larsen was making his famous strawberry-banana smoothie when Annie wondered, how does he get that perfect texture? Larsen said that there are $\sin(\tan^{-1}\frac{12}{5})$ parts strawberry to banana. Annie is dumb and doesn't know what this means. Help Annie figure out the ratio of strawberries to bananas.
- 6. Evaluate $(\sin^2(\frac{13\pi}{4}) + \cos^2(\frac{13\pi}{4}))(2\tan(\frac{5\pi}{4}))$
- 7. If $f(x) = \sin x$ and f(a) = 1/3, find the exact value of $f(a) + f(a + 2\pi) + f(a + 4\pi)$
- 8. Consider the function $f(x) = 3\cos(\frac{1}{2}x) + 4$, how many distinct points of intersection exist between the line y = f(x) and y = 5 on $[-2\pi, 2\pi]$
- 9. How many ways can you get from the origin to the point (5,7) on a standard Cartesian plane if you can only go one unit up or right at a time and you must pass through the point (2,3)?
- 10. Annie, Anisha, and Grace are playing a game of Mafia with 12 other people. Each player in the game is assigned a unique role, and each role belongs to a specific team. There are 8 roles in the town team, 4 roles in the mafia team, and 3 roles in the neutral team. If all roles are randomly assigned with equal probability, what is the probability that Annie, Anisha, and Grace are all on the same team?

- 11. Convert 105° to radians.
- 12. Let $x = 2(\ln(6)) + 4(\ln(2)) + 4(\ln(3)) 2(\ln(18))$. Compute e^x .
- 13. Solve the equation $\cos^2(x) + \sin(x) = 2$, $0 \le x < 2\pi$ (write no solution if there is no real solution).
- 14. Solve the inequality $2x^2 < x + 10$
- 15. Find the sum of the squares of the roots of $f(x) = x^3 + x^2 26x + 24$
- 16. Compute: $3\cos(x) + 3 = 2\sin^2(x), 0 \le x < 2\pi$.
- 17. Given: $y = \cos(x + \frac{\pi}{3}) + \sin(x + \frac{\pi}{6})$, what is the product of the amplitude and the period of y?
- 18. A class has four boys and three girls. If the students are called randomly to the office once at a time, what is the probability that they go in alternating boy/girl order?
- 19. Evaluate: $4\log_3 \frac{1}{3} + 2\log_9 27 + 6\log_{27} 3$
- 20. How many different integers satisfy both $|3x-4| \le 10$ and |3x+2| > 4?

Answers

- 1. $\left[-\frac{\pi}{2},0\right)\cup\left(0,\frac{\pi}{2}\right)\right]$ (or any interval of the form $\left[-\frac{\pi}{2}+\pi k,\pi k\right)\cup\left(\pi k,\frac{\pi}{2}+\pi k\right)\right]$, where k is an integer)
- 2. $-\frac{\pi}{6}$
- 3. 2304
- 4. $\frac{\sqrt{2}}{2}$
- 5. 12/13
- 6. 2
- 7. 1
- 8. 2
- 9. 350
- 10. 61/455
- 11. $\frac{7}{12}\pi$
- 12. 144
- 13. no solution
- 14. $(-2, \frac{5}{2})$
- 15. 53
- 16. $\pi, \frac{2\pi}{3}, \frac{4\pi}{3}$
- 17. amplitude: 1 period: 2π
- $18. \ 1/35$
- 19. 1
- 20. 4 (The integers are 1, 2, 3,and 4)