Learning Tractable Graphical Models: Latent Trees

Furong Huang

U.C. Irvine

Joint work with Anima Anandkumar and U.N. Niranjan.

High-Dimensional Graphical Modeling

Modeling Conditional Independencies through Graphs

- $\bullet X_u \perp X_v | X_S.$
- Learning and inference are NP-hard.

Tractable Models: Tree Models

• Efficient inference using belief propagation

Walk-up: Learning Tree Models

Data processing inequality for Markov chains

$$I(X_1; X_3) \le I(X_1; X_2), I(X_2; X_3).$$

Tree Structure Estimation (Chow and Liu '68)

• MLE: Max-weight tree with estimated mutual information weights

Walk-up: Learning Tree Models

Data processing inequality for Markov chains

$$I(X_1; X_3) \le I(X_1; X_2), I(X_2; X_3).$$

Tree Structure Estimation (Chow and Liu '68)

- MLE: Max-weight tree with estimated mutual information weights
- Pairwise statistics suffice

Walk-up: Learning Tree Models

Data processing inequality for Markov chains

$$I(X_1; X_3) \le I(X_1; X_2), I(X_2; X_3).$$

Tree Structure Estimation (Chow and Liu '68)

- MLE: Max-weight tree with estimated mutual information weights
- Pairwise statistics suffice
- n samples and p nodes

Sample complexity:
$$\frac{\log p}{n} = O(1)$$
.

Learning Tractable Graphical Models

Tractable Models: Tree Models

- Efficient inference using belief propagation
- MLE is easy to compute.
- Tree models are highly restrictive.

Learning Tractable Graphical Models

Tractable Models: Tree Models

- Efficient inference using belief propagation
- MLE is easy to compute.
- Tree models are highly restrictive.

Latent tree graphical models

- Tree models with hidden variables.
- Number and location of hidden variables unknown.

Application: Hierarchical Topic Modeling

Data: Word co-occurrences.

Graph: Topic-word structure.

Application of Latent Trees: Object Recognition

• Challenge: Succinct representation of large-scale data

▶ Input: ~ 100 object categories, ~ 4000 training images

▶ Goal: learn $\sim 2^{100}$ co-occurrence probabilities

Solution: Latent tree graphical models

"Context Models and Out-of-context Objects," M. J. Choi, A. Torralba, and A. S. Willsky, Pattern Recognition Letters, 2012.

Application of Latent Trees: Object Recognition

• Challenge: Succinct representation of large-scale data

▶ Input: ~ 100 object categories, ~ 4000 training images

▶ Goal: learn $\sim 2^{100}$ co-occurrence probabilities

Solution: Latent tree graphical models

In this talk: learning latent tree models and tree mixtures.

"Context Models and Out-of-context Objects," M. J. Choi, A. Torralba, and A. S. Willsky, Pattern Recognition Letters, 2012.

Summary of Results

Latent Tree Models

- Number of hidden variables and location unknown
- Integrated structure and parameter estimation.
- Local learning with global consistency guarantees.

Outline

- Introduction
- Tests for Structure Learning
- 3 Parameter Learning through Tensor Methods
- 4 Integrating Structure and Parameter Learning
- Conclusion

Learning Latent Tree Graphical Models

Linear Multivariate Models

- Conditional independence w.r.t tree
- Categorical *k*-state hidden variables.
- Multivariate d-dimensional observed variables. $k \leq d$.
- When y is nbr. of h, $\mathbb{E}[y|h] = Ah$.
- Includes discrete, Poisson and Gaussian models, Gaussian mixtures etc.

Information Distances $[d_{i,j}]$ for Tree Models

Information Distances $[d_{i,j}]$ for Tree Models

Gaussian scalar: $d_{ij} := -\log |\rho_{ij}|$.

Information Distances $[d_{i,j}]$ for Tree Models

Gaussian scalar: $d_{ij} := -\log |\rho_{ij}|$.

 $\text{Linear multivariate models: } d_{ij} := -\log \frac{\prod_{\sigma_i \neq 0} \sigma(\mathbb{E}[y_i y_j^\top])}{\sqrt{\det \mathbb{E}[y_i y_i^\top] \det \mathbb{E}[y_j y_j^\top]}}.$

Information Distances $[d_{i,j}]$ for Tree Models

Gaussian scalar: $d_{ij} := -\log |\rho_{ij}|$.

 $\text{Linear multivariate models: } d_{ij} := -\log \frac{\prod_{\sigma_i \neq 0} \sigma(\mathbb{E}[y_i y_j^\top])}{\sqrt{\det \mathbb{E}[y_i y_i^\top] \det \mathbb{E}[y_j y_i^\top]}}.$

$$[d_{i,j}]$$
 is an additive tree metric: $d_{k,l} = \sum_{(i,j) \in \operatorname{Path}(k,l;E)} d_{i,j}.$

Information Distances $[d_{i,j}]$ for Tree Models

Gaussian scalar: $d_{ij} := -\log |\rho_{ij}|$.

 $\text{Linear multivariate models: } d_{ij} := -\log \frac{\prod_{\sigma_i \neq 0} \sigma(\mathbb{E}[y_i y_j^\top])}{\sqrt{\det \mathbb{E}[y_i y_i^\top] \det \mathbb{E}[y_j y_i^\top]}}.$

$$[d_{i,j}]$$
 is an additive tree metric: $d_{k,l} = \sum_{(i,j) \in \operatorname{Path}(k,l;E)} d_{i,j}.$

Information Distances $[d_{i,j}]$ for Tree Models

Gaussian scalar: $d_{ij} := -\log |\rho_{ij}|$.

 $\text{Linear multivariate models: } d_{ij} := -\log \frac{\prod_{\sigma_i \neq 0} \sigma(\mathbb{E}[y_i y_j^\top])}{\sqrt{\det \mathbb{E}[y_i y_i^\top] \det \mathbb{E}[y_j y_i^\top]}}.$

$$[d_{i,j}]$$
 is an additive tree metric: $d_{k,l} = \sum_{(i,j) \in \mathrm{Path}(k,l;E)} d_{i,j}.$

Information Distances $[d_{i,j}]$ for Tree Models

Gaussian scalar: $d_{ij} := -\log |\rho_{ij}|$.

 $\text{Linear multivariate models: } d_{ij} := -\log \frac{\prod_{\sigma_i \neq 0} \sigma(\mathbb{E}[y_i y_j^\top])}{\sqrt{\det \mathbb{E}[y_i y_i^\top] \det \mathbb{E}[y_j y_i^\top]}}.$

$$[d_{i,j}]$$
 is an additive tree metric: $d_{k,l} = \sum_{(i,j) \in \mathrm{Path}(k,l;E)} d_{i,j}.$

Learning latent tree using $[d_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j \ \text{leaves with common parent}$
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$ leaves with common parent
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$ leaves with common parent
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$ leaves with common parent
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

•
$$-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j \ \text{leaves with common parent}$$

• $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$ leaves with common parent
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

- Sibling test and remove leaves
- Build tree from bottom up

- Consistent structure estimation.
- Serial method, high computational complexity.

- Sibling test and remove leaves
- Build tree from bottom up

- Consistent structure estimation.
- Serial method, high computational complexity.

- Sibling test and remove leaves
- Build tree from bottom up

- Consistent structure estimation.
- Serial method, high computational complexity.

- Sibling test and remove leaves
- Build tree from bottom up

- Consistent structure estimation.
- Serial method, high computational complexity.

- Sibling test and remove leaves
- Build tree from bottom up

- Consistent structure estimation.
- Serial method, high computational complexity.

- Sibling test and remove leaves
- Build tree from bottom up

- Consistent structure estimation.
- Serial method, high computational complexity.

Outline

- Introduction
- Tests for Structure Learning
- 3 Parameter Learning through Tensor Methods
- 4 Integrating Structure and Parameter Learning
- Conclusion

Overview of Proposed Parameter Learning Method

Toy Model: 3-star

- Linear multivariate model.
- $A_{x_i|h}^r := \mathbb{E}(x_i|h=e_r)$. and $\lambda_r := \mathbb{P}[h=e_r]$.

$$\mathbb{E}(x_1 \otimes x_2 \otimes x_3) = \sum_{r=1}^k \lambda_r A_{x_1|h}^r \otimes A_{x_2|h}^r \otimes A_{x_3|h}^r.$$

Guaranteed Recovery through Tensor Decomposition

- Transition matrices $A_{x_i|h}$ have full column rank.
- Linear algebraic operations: SVD and tensor power iterations.

[&]quot;Tensor Decompositions for Learning Latent Variable Models" by A. Anandkumar, R. Ge, D. Hsu, S.M. Kakade and M. Telgarsky. Preprint, October 2012.

Overview of Tensor Decomposition Technique

- Let $a_r = \mathbb{E}(x_i|h=e_r)$ for all i and $\lambda_r := \mathbb{P}[h=e_r]$.
- $M_3 = \mathbb{E}[x_1 \otimes x_2 \otimes x_3] = \sum_{i=1}^k \lambda_i a_i^{\otimes 3}$.

Intuition: if a_i are orthogonal

- $M_3(I, a_1, a_1) := \sum_i \lambda_i \langle a_i, a_1 \rangle^2 a_i = \lambda_1 a_1$.
- a_i are eigenvectors of the tensor M_3 .

Convert to an orthogonal tensor using pairwise moments

- $M_2 := \mathbb{E}[x_1 \otimes x_2] = \sum_i \lambda_i a_i^{\otimes 2}$.
- Whitening matrix: $W^{\top}M_2W = I$.
- Consider tensor $M_3(W,W,W) := \sum_i \lambda_i(W^\top a_i)^{\otimes 3}$. It is an orthogonal tensor.

Parameter Learning in Latent Trees

Learning through Hierarchical Tensor Decomposition

- Assume known tree structure.
- Decompose different triplets: hidden variable is join point on tree.

Alignment issue

- Tensor decomposition is an unsupervised method.
- Hidden labels permuted across different triplets.
- Solution: Align using common node in triplets.

Parameter Learning in Latent Trees

Learning through Hierarchical Tensor Decomposition

- Assume known tree structure.
- Decompose different triplets: hidden variable is join point on tree.

Alignment issue

- Tensor decomposition is an unsupervised method.
- Hidden labels permuted across different triplets.
- Solution: Align using common node in triplets.

Parameter Learning in Latent Trees

Learning through Hierarchical Tensor Decomposition

- Assume known tree structure.
- Decompose different triplets: hidden variable is join point on tree.

Alignment issue

- Tensor decomposition is an unsupervised method.
- Hidden labels permuted across different triplets.
- Solution: Align using common node in triplets.

Parameter Learning in Latent Trees

Learning through Hierarchical Tensor Decomposition

- Assume known tree structure.
- Decompose different triplets: hidden variable is join point on tree.

Alignment issue

- Tensor decomposition is an unsupervised method.
- Hidden labels permuted across different triplets.
- Solution: Align using common node in triplets.

Outline

- Introduction
- Tests for Structure Learning
- 3 Parameter Learning through Tensor Methods
- 4 Integrating Structure and Parameter Learning
- Conclusion

Integrated Learning

So far...

- Consistent structure learning through sibling tests on distances.
- Parameter learning through tensor decomposition on triplets.

Challenges

- How to integrate structure and parameter learning?
- Can we save on computations through integration?
- Can we learn parameters as we learn the structure?
- Can we parallelize learning for scalability?

Integrated Learning

So far...

- Consistent structure learning through sibling tests on distances.
- Parameter learning through tensor decomposition on triplets.

Challenges

- How to integrate structure and parameter learning?
- Can we save on computations through integration?
- Can we learn parameters as we learn the structure?
- Can we parallelize learning for scalability?

Key Ideas

- Divide and conquer: find (overlapping) groups of observed variables.
- Learn local subtrees (and parameters) over the groups independently.
- Merge subtrees and tweak parameters to obtain global latent tree model.

Parallel Chow-Liu Based Grouping Algorithm

Minimum spanning tree using information distance $[\hat{d}_{i,j}]$.

Alignment of Parameters

Alignment Correction

- In-group
- Across-group
- Across-neighborhood

Consistency Guarantees

Theorem

The proposed method consistently recovers the structure with $O(\log p)$ samples and parameters with $\operatorname{poly}(p)$ samples.

Extent of parallelism

- Size of groups $\Gamma \leq \Delta^{1+\frac{u}{l}\delta}$.
- Effective depth $\delta := \max_i \{ \min_j \{ \mathsf{path}(v_i, v_j; \mathcal{T}) \}.$
- Maximum degree in latent tree: Δ.
- Upper and lower bound on distances between neighbors in the latent tree: u and l.

Implications

- For homogeneous HMM, constant sized groups.
- Worst case: star graphs.

Computational Complexity

- N samples, d dimensional observed variables, k state hidden variables.
- p number of observed variables. z non-zero entries per sample.
- Γ sized groups.

Algorithm Steps	Time/worker	Degree of parallelism
Information Distance Estimation	$O(Nz + d + k^3)$	$O(p^2)$
Structure: Minimum Spanning Tree	$O(\log p)$	$O(p^2)$
Structure: Local Recursive Grouping	$O(\Gamma^3)$	$O(p/\Gamma)$
Parameter: Tensor Decomposition	$O(\Gamma k^3 + \Gamma dk^2)$	$O(p/\Gamma)$
Merging and Alignment Correction	$O(dk^2)$	$O(p/\Gamma)$

[&]quot;Integrated Structure and Parameter Learning in Latent Tree Graphical Models" by F. Huang, U. N. Niranjan, A. Anandkumar. Preprint, June 2014.

Proof Ideas

Relating Chow-Liu Tree with Latent Tree

• Surrogate Sg(i) for node i: observed node with strongest correlation

$$\operatorname{Sg}(i) := \operatorname*{argmin}_{j \in V} d_{i,j}$$

Neighborhood preservation

$$(i,j) \in T \Rightarrow (\operatorname{Sg}(i),\operatorname{Sg}(j)) \in T_{\operatorname{ML}}.$$

Chow-Liu grouping reverses edge contractions

Proof by induction

Experiments

• d = k = 2 dimensions, p = 9 number of variables.

d	p	N	Struct Error	Param Error	Running Time(s)
10	9	50K	0	0.0104	3.8
100	9	50K	0	0.0967	4.4
1000	9	50K	0	0.1014	5.1
10,000	9	50K	0	0.0917	29.9
100,000	9	50k	0	0.0812	56.5
100	9	50K	0	0.0967	10.9
100	81	50K	0.06	0.1814	323.7
100	729	50K	0.16	0.1913	4220.1

Outline

- Introduction
- 2 Tests for Structure Learning
- Parameter Learning through Tensor Methods
- 4 Integrating Structure and Parameter Learning
- Conclusion

Summary and Outlook

Learning Latent Tree Models

- Integrated Structure and Parameter Learning
- High level of parallelism without losing consistency.

Learning Graphical Model Mixtures

- Tree mixture approximations
- Combinatorial search + spectral decomposition
- Computational and sample guarantees

