02. Formation des images

Photons

- Dualité onde-corpuscule : la lumière se comporte à la fois comme une onde (phénomènes de diffraction, interférences) et comme un flux de particules, les photons (effet photoélectrique).
- Photon : particule sans masse, se déplaçant à la vitesse de la lumière c, et transportant une énergie quantifiée (un quantum d'énergie).

$$E_{\text{photon}} = h\nu = h \cdot \frac{c}{\lambda}.$$

avec $h \approx 6,63 \times 10^{-34} \, \text{J.s}$ (constante de Planck).

- Électronvolt (eV) : unité d'énergie adaptée à l'échelle atomique.

$$1 \,\text{eV} = 1,6 \times 10^{-19} \,\text{J}.$$

- Puissance lumineuse : énergie transportée par unité de temps. Elle est liée au flux de photons Φ (nombre de photons par seconde).

$$P = \frac{\Delta E}{\Delta t} = \Phi \cdot E_{\text{photon}}.$$

Sources et spectres

- Source primaire : corps qui produit et émet sa propre lumière.
- Source secondaire : objet qui diffuse la lumière qu'il reçoit.
- Spectre continu : contient toutes les longueurs d'onde sur une large plage.
- Spectre de raies (ou discret, ou discontinu) : ne contient que quelques longueurs d'onde discrètes et bien définies.
- Lumière monochromatique : ne contient qu'une seule longueur d'onde.

Propagation de la lumière

- MHTI : milieu homogène (mêmes propriétés en tout point), transparent (laisse passer la lumière) et isotrope (mêmes propriétés dans toutes les directions) assurant la propagation rectiligne de la lumière.
- Indice de réfraction : grandeur sans dimension qui caractérise un milieu.

$$n = \frac{c_0}{c} \ge 1,$$

Matière	Vide	Air	Eau	Verre
Indice optique	1	1,003	1,33	$\sim 1,5$

— La fréquence ν d'une onde lumineuse ne change jamais lors d'un changement de milieu. La longueur d'onde, elle, est modifiée :

$$\lambda = \frac{\lambda_0}{n}.$$

Lois de Snell-Descartes

- Réflexion:

$$i_1 = i'_1$$
.

- Réfraction:

$$n_1 \sin i_1 = n_2 \sin i_2.$$

– Réflexion totale : possible uniquement lors du passage d'un milieu d'indice plus élevé à un milieu d'indice plus faible, si l'angle d'incidence est supérieur à l'angle limite i_{lim} .

$$i_1 > i_{\text{lim}} = \arcsin\left(\frac{n_2}{n_1}\right).$$

Ex. vignetage vu par un plongeur sous l'eau. Démo. loi de réfraction avec $i_2=90^\circ.$

 Dioptre : surface séparant deux milieux d'indices de réfraction différents.

détecteur (ex. photosite d'un capteur CMOS).

Systèmes optiques et lentilles

- Les rayons lumineux qui proviennent d'un point situé à l'infini sont parallèles entre eux.
- Stigmatisme : un système est rigoureusement stigmatique s'il donne de tout point objet A un unique point image A'.
 Le stigmatisme est approché si la taille de la tache image est plus petite que le grain du
- Lentille mince convergente (bords minces, symb. ↑) et divergente (bords épais, symb. opposé).
- Conditions de Gauss (base de toute l'optique géométrique simplifiée) : rayons lumineux peu inclinés sur l'axe optique et peu éloignés de celui-ci.
- Propriétés (rayons et lentilles) :

Source	Lentille convergente	Lentille divergente	
Rayon passant par le centre optique O.	Rayon non dévié.	Rayon non dévié.	
Rayon incident parallèle à l'axe optique.	Émerge en passant par le point focal image F'.	Émerge en semblant provenir du point focal image F'.	
Rayon dont le support passe par le point focal objet F.	Émerge parallèlement à l'axe optique.	Émerge parallèlement à l'axe optique.	
Faisceau de rayons paral- lèles entre eux.	Converge en un point du plan focal image.	Diverge en semblant provenir d'un point du plan focal image.	
Objet placé dans le plan focal objet.	Image à l'infini, rayons émergents parallèles.	Image à l'infini, rayons émergents parallèles.	

2

- Un objet est réel s'il est la source physique des rayons; il est virtuel s'il est situé là où des rayons allaient converger.
 - Une image est réelle si on peut la former sur un écran (ex. capteur photo après objo, foyer d'un miroir de télescope); elle est virtuelle si elle n'est visible qu'à travers le système optique, par prolongement des rayons (ex. loupe, miroir).
- L'image d'un objet perpendiculaire à l'axe optique est elle-même perpendiculaire à cet axe.
- Distance focale f', vergence V:

$$f' = \overline{OF'} = -\overline{OF}, \qquad V = \frac{1}{f'}.$$

f'>0 pour une lentille convergente, f'<0 pour une divergente. V s'exprime en dioptries (δ) .

- Relation de conjugaison :

$$\frac{1}{\overline{OA'}} = \frac{1}{\overline{OA}} + \frac{1}{\overline{OF'}}; \qquad \overline{OA'} = \frac{\overline{OA} \times \overline{OF'}}{\overline{OA} + \overline{OF'}}.$$

 \overline{OA} est très souvent négatif (objet réel placé avant la lentille).

- Grandissement transversal (différent du grossissement) :

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}.$$

Si $\gamma > 0$, l'image est droite. Si $\gamma < 0$, l'image est renversée. Si $|\gamma| > 1$, l'image est agrandie. Si $|\gamma| < 1$, l'image est rétrécie.

 Focométrie : méthodes expérimentales pour déterminer la distance focale d'une lentille (voir cours).

3