Physics-based Noise Modeling for Extreme Low-light Photography

Kaixuan Wei, Ying Fu, Member, IEEE, Yinqiang Zheng, Member, IEEE and Jiaolong Yang, Member, IEEE

TPAMI 2021 CVPR 2020 (Oral)

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

Outline

- Introduction
- Method
- Experiment
- Conclusion

Introduction

$$N = KN_p + N_{read} + N_r + N_q,$$

Noise type	Formulation	Parameters
Photon shot noise N_p	Poisson distribution $(I+N_p) \sim \mathcal{P}\left(I\right)$	System gain K
Read noise N_{read}	Tukey lambda distribution $N_{read} \sim TL\left(\lambda; \mu_c, \sigma_{TL} ight)$	Shape λ Color bias μ_c Scale σ_{TL}
Row noise N_r	Gaussian distribution $N_r \sim \mathcal{N}\left(0, \sigma_r ight)$	Scale σ_r
Quantization noise N_q	Uniform distribution $N_q \sim U\left(-1/2q,1/2q\right)$	None

Outline

- Introduction
- Method
- Experiment
- Conclusion

K for photon shot noise

$$D = K(I + N_p) + N_o$$

$$Var(D) = K^{2}I + Var(N_{o})$$
$$= K(KI) + Var(N_{o})$$

Noise type	Formulation	Parameters
Photon shot noise N_p	Poisson distribution $(I+N_p) \sim \mathcal{P}\left(I\right)$	System gain K
Read noise N_{read}	Tukey lambda distribution $N_{read} \sim TL\left(\lambda; \mu_c, \sigma_{TL} ight)$	Shape λ Color bias μ_c Scale σ_{TL}
Row noise N_r	Gaussian distribution $N_r \sim \mathcal{N}\left(0, \sigma_r ight)$	Scale σ_r
Quantization noise N_q	Uniform distribution $N_q \sim U\left(-1/2q,1/2q\right)$	None

• true signal value KI can be approximated by the flat-field frame median

(a) SonyA7S2

(b) NikonD850

(c) CanonEOS70D

Estimating Noise Parameters

- Flat-field frames
 - uniformly illuminated
- Bias frames
 - lightless environment

μc for color bias

 averaging all pixel values within each color channel of the bias frame

Noise type	Formulation	Parameters
Photon shot noise N_p	Poisson distribution $(I+N_p) \sim \mathcal{P}\left(I\right)$	System gain K
Read noise N_{read}	Tukey lambda distribution $N_{read} \sim TL\left(\lambda; \mu_c, \sigma_{TL} ight)$	Shape λ Color bias μ_c Scale σ_{TL}
Row noise N_r	Gaussian distribution $N_r \sim \mathcal{N}\left(0, \sigma_r ight)$	Scale σ_r
Quantization noise N_q	Uniform distribution $N_q \sim U\left(-1/2q,1/2q\right)$	None

σr for row noise

Noise type	Formulation	Parameters
Photon shot noise N_p	Poisson distribution $\left(I+N_{p} ight)\sim\mathcal{P}\left(I ight)$	System gain K
Read noise N_{read}	Tukey lambda distribution $N_{read} \sim TL\left(\lambda; \mu_c, \sigma_{TL} ight)$	Shape λ Color bias μ_c Scale σ_{TL}
Row noise N_r	Gaussian distribution $N_r \sim \mathcal{N}\left(0, \sigma_r ight)$	Scale σ_r
Quantization noise N_q	Uniform distribution $N_q \sim U\left(-1/2q, 1/2q\right)$	None

λ and σTL for read noise

Modeling Joint Parameter Distributions

Noisy Image Synthesis

Outline

- Introduction
- Method
- Experiment

Experiment

Experiment

