1.Intro

1.1 What is machine learning?

- Field of study that gives computers the ability to learn without being explicitly programmed.
- A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

1.2. Supervised Learning

1.3 Unsupervised Learning

little or no idea what our results should book like.
ex) clustering

2. Linear regression

2.1 Cost function

choose 8.0, so that ho(2) is close to y for our maining examples (2.4)

minimize =
$$\lim_{\lambda \to \infty} \frac{1}{\lambda} \frac{1}{\lambda}$$

Minimize J (Ao, O1): Cost function

L squared error fin)

2.2 Cost function institution

Hypothesis: how = do + dix

Parameters: 00,0,

Cost Function: J(O, D) = In Elho(Ci) - y(1))

Goal: minimize J(00,0)

2. Linear regression

2.3 Gradient descent

Report until convergence

$$\theta_{ij} := \theta_{ij} - \alpha \frac{\partial}{\partial \theta_{ij}} J(\theta_{0}, \theta_{i})$$
 (for jew and $i=1$)

larning rule

Temp
$$0 := \partial_0 - d\frac{1}{d\theta_0} J(\theta_0, \theta_1)$$
 Simultaneously update temp $1 := \partial_1 - d\frac{1}{d\theta_0} J(\theta_0, \theta_1)$ by $0 = 0$, $0 = 0$, $0 = 0$, $0 = 0$.

2.4 Gradient descent intuition

2. Linear regression

2.5 Gradient descent for linear regression

$$\dot{y} = 0 : f_0 J(\theta_0, \theta_1) = \frac{1}{m} f_0(h_0(x^{(i)} - x^{(i)})$$
 $\dot{y} = 1 : f_0 J(\theta_0, \theta_1) = \frac{1}{m} f_0(h_0(x^{(i)} - x^{(i)}) \cdot x^{(i)}$

$$\theta_{0} = \theta_{0} - \chi + \frac{2}{m} \left(h_{0}(x^{(i)}) - \chi^{(i)} \right)$$

$$\theta_{i} = \theta_{i} - \chi + \frac{2}{m} \left(h_{0}(x^{(i)}) - \chi^{(i)} \right) - \chi^{(i)}$$

Batch Gulient Descent

That: such step of gradient descent uses all the training examples.

3. Linear Algebra review

3.1 Matrices and vectors

Matrix Elements

Vector:
$$n \times 1$$
 matrix

$$A = \begin{bmatrix} 1 & 4 & 7 & 0 \\ 2 & 5 & 6 \end{bmatrix}$$

$$A_{32} = 6$$

$$3 \times 2 \quad \mathbb{R}^{32}$$

Vector: $n \times 1$ matrix

$$y = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad \begin{cases} 1 \\ 2 = 2 \end{cases}$$

$$73 = 3$$

$$3 - 1$$
 mansboral vector

3.2 Addition and multiplication

$$\begin{array}{c} (x) \\ (x) \\$$

3. Linear Algebra review

- 고한법킨 (commutative) 정강 X => AXB # BXA - 경합법킨 (Associative) 정강 O => AXBXC -> AX (BXY) same!

· Identity Matrix = I(Inxn) => A-I=J·A=A

3.3 Inverse transpose

- A (A-1) = AD.A = I A is an Inverse, if it has an inverse.

If A don't have an inverse => singular or degenerate

 $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 5 & 9 \end{bmatrix} 273$ $A^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 0 & 9 \end{bmatrix} 3x2$