USSN

FIG.1

6387295

 $\mathsf{KNN}:\mathsf{K}_{0.5}\mathsf{Na}_{0.5}\mathsf{NbO}_3$

 $\mathsf{KNN} - \mathsf{CuO} \colon \mathsf{K}_{0.5} \mathsf{Na}_{0.5} \mathsf{NbO}_3$

09/511 31

FIG.2

 $\mathsf{KNN}\ : \mathsf{K}_{0.5}\mathsf{Na}_{0.5}\mathsf{NbO}_3$

 $\mathsf{KNN}\text{-}\mathsf{CuO}\ : \mathsf{K}_{0.5}\mathsf{Na}_{0.5}\mathsf{NbO}_3 + 1\ \mathsf{mol}\%\ \mathsf{CuO}$

FIG.3

 $\mathsf{KNN}\ : \mathsf{K}_{0.5}\mathsf{Na}_{0.5}\mathsf{NbO}_3$

 $\mathsf{KNN-CuO} \ : \mathsf{K}_{0.5}\mathsf{Na}_{0.5}\mathsf{NbO}_3 + 1 \ \mathsf{mol\%} \ \mathsf{CuO}$

FIG.4

 $\mathsf{KNN}: (\mathsf{K_{0.5}Na_{0.5}})\mathsf{NbO_3}$

 $\mathsf{KNN\text{-}CuO}: (\mathsf{K}_{0.5}\mathsf{Na}_{0.5})\mathsf{NbO}_3\text{+}1\,\mathsf{mol}\%\;\mathsf{CuO}$

FIG.5

 $\mathsf{KNN}:\mathsf{K}_{0.5}\mathsf{Na}_{0.5}\mathsf{NbO}_3$

 $\mathsf{KNN} \ \mathsf{-LT} \colon \{ (\mathsf{K}_{0.5} \mathsf{Na}_{0.5})_{0.9} \mathsf{Li}_{0.1} \} (\mathsf{Nb}_{0.8} \mathsf{Ta}_{0.2}) \mathsf{O}_3$

FIG.6

 $KNN : K_{0.5}Na_{0.5}NbO_3$

 $\textbf{KNN-LT} \ : \{(\textbf{K}_{Q.5}\textbf{N}\textbf{a}_{Q.5})_{Q.9}\textbf{L}\,\textbf{i}_{Q.1}\}(\textbf{N}\textbf{b}_{Q.8}\textbf{T}\textbf{a}_{Q.2})\textbf{O}_{3}$

FIG.7

 $\mathbf{KNN} \ : \mathbf{K_{0.5}Na_{0.5}NbO_3}$

 $\text{KNN-LT} \ : \{(\text{K}_{0.5}\text{Na}_{0.5})_{0.9}\,\text{Li}_{0.1}\}(\text{Nb}_{0.8}\text{Ta}_{0.2})\text{O}_3$

FIG.8

 $\mathsf{KNN}: (\mathsf{K_{0.5}Na_{0.5}})\mathsf{NbO_3}$

 $\mathsf{KNN}\text{-}\mathsf{LT}:\{(\mathsf{K}_{0.5}\mathsf{Na}_{0.5})_{0.9}\mathsf{Li}_{0.1}\}(\mathsf{Nb}_{0.8}\mathsf{Ta}_{0.2})\mathsf{O}_3$

FIG.9(a)

Electromechanical coupling factors (kp)

	20	0.092	0.170	0.187	0.150	0.160
	4 =	0.007	0.000	0.000	0.000	0.004
	15	0.087	0.203	0.230	0.209	0.204
<u>%</u>						
(mol%)	10	0.151	0.292	0.307	0.292	0.283
	8	0.196	0.340	0.335	0.313	0.287
:	6	0.332	0.415	0.383	0.406	0.336
	4	0.371	0.456	0.501	0.431	0.382
	2	0.469	0.395	0.341	0.380	0.330
	0	0.334	0.453	0.465	0.332	0.294
		0	10	20	30	40
				Ta (mol%))	

FIG.9(b)

Piezoelectric constant (d31 pm/V)

					-	-
	20	9.7	20.2	21.5	16.4	17.3
	15	10.1	23.2	25.1	23.7	22.0
_						
<u>~</u>						
(mol%)	10	20.4	39.6	36.3	32.5	33.2
	8	27.5	50.8	46.1	41.2	35.6
<u> </u>	6	57.7	71.0	60.1	58.3	46.3
	4	39.8	69.5	95.0	73.1	63.5
	2	46.9	51.4	54.3	79.3	70.1
	0	37.6	49.5	60.5	62.9	66.0
		0	10	20	30	40
				Ta (mol%))	

FIG.9(c)

Piezoelectric constant (g31 10 Vm/N)

	20	2.8	4.2	4.5	3.7	3.6
	15	2.2	4.8	5.4	4.6	4.6
ા						
(wou))	10	3.5	6.7	6.6	6.6	6.3
<u> </u>	8	4.7	6.8	6.8	6.1	6.4
:=	6	7.5	7.9	7.1	7.7	6.0
	4	11.0	10.3	9.0	7.5	6.2
	2	14.5	9.3	6.8	6.1	4.7
	0	9.9	12.1	10.5	6.0	4.1
		0	10	20	30	40
				Ta (mol%)	

FIG.10(a)

Curie point (°C)

	20	505	459	390	347	295
	15	502	450	385	337	280
			•			
(mol%)						
Ĕ	10	499	450	380	330	262
$\overline{}$	8	485	420	363	310	250
:	6	474	405	345	295	235
	4	460	393	337	279	220
	2	435	375	308	250	192
	0	415	350	285	233	168
		0	10	20	30	40
				Ta (mol%)	

FIG.10(b)

Dielectric constant (E33t)

	20	399	540	539	504	542
		500		501	500	<u> </u>
	15	530	544	521	580	546
(‰lom)						
٤	10	657	672	624	556	599
٥	8	657	847	762	761	625
\Box	6	864	1014	959	855	868
	4	409	763	1204	1106	1165
	2	364	621	903	1466	1686
	0	429	462	652	1187	1837
	•	0	10	20	30	40
				Ta (mol%))	

FIG.10(C) Dielectric loss (tanδ)

Ta (mol%)

	20	0.091	0.015	0.011	0.014	0.008
	15	0.045	0.022	0.007	0.007	0.008
_						
<u>ક્</u>						
(mol%)	10	0.088	0.039	0.007	0.007	0.008
	8	0.037	0.010	0.010	0.008	0.011
:	6	0.050	0.008	0.006	0.009	0.011
	4	0.014	0.014	0.008	0.006	0.014
	2	0.003	0.023	0.018	0.016	0.018
	0	0.036	0.005	0.010	0.012	0.009
		0	10	20	30	40