T5 Modelos basados en ejemplos

Problemas

- 1. 3-NN 2d L2
- 2. 5-NN 2d L1

Cuestiones

- 1. Paramétricos vs no paramétricos
- 2. DML
- 3. KDE
- 4. KDE h

3-NN 2d L2: Sea un problema de clasificación de datos 2d en tres clases, $c \in \{0,1,2\}$. Se tienen los siguientes datos de aprendizaje:

n	1	2	3	4	5	6
x_{n1}	2	3	4	5	6	7
x_{n2}	3	0	4	1	5	3
c_n	1	1	2	0	0	0

Clasifica la muestra $oldsymbol{x}=(4,3)^t$ por los 3-vecinos más próximos en distancia Euclídea.

3-NN 2d L2: Sea un problema de clasificación de datos 2d en tres clases, $c \in \{0,1,2\}$. Se tienen los siguientes datos de aprendizaje:

Clasifica la muestra $oldsymbol{x}=(4,3)^t$ por los 3-vecinos más próximos en distancia Euclídea.

Solución:

Hallamos las distancias (Euclídeas) entre $oldsymbol{x}$ y cada dato:

El conjunto de 3 vecinos más próximos de x es $N_3(x)=\{3,1,4\}$. Cada vecino vota a una clase distinta de las tres que tenemos. Como hay empate a tres, decidimos por el vecino más cercano entre los tres, que es el 3, de la clase 2. Por tanto, 3-NN clasifica x en la clase 2.

3-NN 2d L2: Sea un problema de clasificación de datos 2d en tres clases, $c \in \{0,1,2\}$. Se tienen los siguientes datos de aprendizaje:

Clasifica la muestra $\boldsymbol{x}=(4,3)^t$ por los 3-vecinos más próximos en distancia Euclídea.

Solución a máquina:

El NN entre las clases empatadas al máximo de votos es de la clase 2.

5-NN 2d L1: Sea un problema de clasificación de datos 2d en tres clases, $c \in \{0,1,2\}$. Se tienen los siguientes datos de aprendizaje:

n	1	2	3	4	5	6	7	8
x_{n1}	5	6	7	2	2	2	2	4
x_{n2}	1	1	3	0	3	4	5	4
c_n	0	0	0	1	1	1	1	2

Clasifica la muestra $oldsymbol{x}=(4,3)^t$ por los 5-vecinos más próximos en distancia L1 (Manhattan).

5-NN 2d L1: Sea un problema de clasificación de datos 2d en tres clases, $c \in \{0, 1, 2\}$. Se tienen los siguientes datos de aprendizaje:

Clasifica la muestra $oldsymbol{x}=(4,3)^t$ por los 5-vecinos más próximos en distancia L1 (Manhattan).

Solución:

Hallamos las distancias L1 entre \boldsymbol{x} y cada dato:

El conjunto de 5 vecinos más próximos de \boldsymbol{x} es $N_5(\boldsymbol{x})=\{8,5,1,3,6\}$. Los 5 vecinos votan: 1 a la clase 2, 2 a la 1, y 2 a la 0. Observamos que no existe una única clase más votada; tenemos dos clases empatadas a dos votos, la 0 y la 1, por lo que debemos desempatar con el NN entre las clases empatadas. Entre los vecinos de las clases 0 y 1, el más cercano es el 5, que pertenece a la clase 1. Por tanto, 5-NN clasifica \boldsymbol{x} en la clase 1.

5-NN 2d L1: Sea un problema de clasificación de datos 2d en tres clases, $c \in \{0,1,2\}$. Se tienen los siguientes datos de aprendizaje:

Clasifica la muestra $\boldsymbol{x}=(4,3)^t$ por los 5-vecinos más próximos en distancia L1 (Manhattan).

Solución a máquina:

```
In [4]: import numpy as np; from sklearn.neighbors import NearestNeighbors
    Xy = np.array([[5,1,0],[6,1,0],[7,3,0],[2,0,1],[2,3,1],[2,4,1],[2,5,1],[4,4,2]],dtype=float)
    X = Xy[:, :2]; y = Xy[:, 2]; x = np.array([4, 3], dtype=float); K = 5
    KNN = NearestNeighbors(n_neighbors=K, p=1).fit(X)
    dist, ind = KNN.kneighbors([x]); print('n =', ind + 1, ' d =', dist, ' c =', y[ind])
    classes, votes = np.unique(y[ind], return_counts=True); print('votes for', classes, ': ', votes)

n = [[8 5 3 6 1]]    d = [[1. 2. 3. 3. 3.]]    c = [[2. 1. 0. 1. 0.]]
    votes for [0. 1. 2.] : [2 2 1]
```

El NN entre las clases empatadas al máximo de votos es de la clase 1.

file:///tmp/tmpa2e8hzgv.html

Paramétricos vs no paramétricos: Una dicotomía clásica entre modelos de aprendizaje automático distingue entre modelos paramétricos y no paramétricos. En relación con esta dicotomía, indica la respuesta incorrecta (o escoge la última opción si las tres primeras son correctas).

- 1. Los paramétricos estiman un vector de parámetros de dimensión fija a partir de datos (de aprendizaje) y luego, en inferencia, prescinden de los datos.
- 2. Los no parámetricos mantienen los datos (tras el aprendizaje, en inferencia), por lo que puede decirse que el número efectivo de parámetros crece con el número de datos.
- 3. El clasificador por los K vecinos más próximos es un ejemplo clásico de modelo paramétrico pues se define en términos de una medida de (di)similitud o función distancia cuyos parámetros debemos aprender.
- 4. Todas son correctas.

Paramétricos vs no paramétricos: Una dicotomía clásica entre modelos de aprendizaje automático distingue entre modelos paramétricos y no paramétricos. En relación con esta dicotomía, indica la respuesta incorrecta (o escoge la última opción si las tres primeras son correctas).

- 1. Los paramétricos estiman un vector de parámetros de dimensión fija a partir de datos (de aprendizaje) y luego, en inferencia, prescinden de los datos.
- 2. Los no parámetricos mantienen los datos (tras el aprendizaje, en inferencia), por lo que puede decirse que el número efectivo de parámetros crece con el número de datos.
- 3. El clasificador por los K vecinos más próximos es un ejemplo clásico de modelo paramétrico pues se define en términos de una medida de (di)similitud o función distancia cuyos parámetros debemos aprender.
- 4. Todas son correctas.

Solución:

La 3 es incorrecta. KNN es un ejemplo clásico de modelo no paramétrico.

DML: Sea $\mathcal{D}=\{(\boldsymbol{x}_i,y_i):i=1:N\}$ un conjunto de datos etiquetados y sea $\mathcal{S}=\{(i,j):y_i=y_j\}$ un conjunto de pares similares derivado. De acuerdo con el propósito de **deep metric learning,** si $(i,j)\in\mathcal{S}$ pero $(i,k)\notin\mathcal{S}$, entonces \boldsymbol{x}_i y \boldsymbol{x}_j deben estar:

- 1. Lejos en el espacio de embedding, con independencia de la cercanía entre $m{x}_i$ y $m{x}_k$.
- 2. Lejos en el espacio de embedding, pero \boldsymbol{x}_i y \boldsymbol{x}_k deben estar cerca.
- 3. Cerca en el espacio de embedding, con independencia de la cercanía entre $m{x}_i$ y $m{x}_k$.
- 4. Cerca en el espacio de embedding, pero x_i y x_k deben estar lejos.

DML: Sea $\mathcal{D}=\{(\boldsymbol{x}_i,y_i):i=1:N\}$ un conjunto de datos etiquetados y sea $\mathcal{S}=\{(i,j):y_i=y_j\}$ un conjunto de pares similares derivado. De acuerdo con el propósito de **deep metric learning,** si $(i,j)\in\mathcal{S}$ pero $(i,k)\notin\mathcal{S}$, entonces \boldsymbol{x}_i y \boldsymbol{x}_j deben estar:

- 1. Lejos en el espacio de embedding, con independencia de la cercanía entre $m{x}_i$ y $m{x}_k$.
- 2. Lejos en el espacio de embedding, pero \boldsymbol{x}_i y \boldsymbol{x}_k deben estar cerca.
- 3. Cerca en el espacio de embedding, con independencia de la cercanía entre \boldsymbol{x}_i y \boldsymbol{x}_k .
- 4. Cerca en el espacio de embedding, pero x_i y x_k deben estar lejos.

Solución:

La 4.

KDE: La **Parzen window** o **kernel density estimator (KDE)** puede verse como una generalización de la mixtura de N Gaussianas "empírica" (con una Gaussiana hiperesférica centrada en cada dato) a N kernels de amplitud dada por un ancho de banda h. En relación con este estimador, indica la respuesta incorrecta (o escoge la última opción si las tres primeras son correctas).

- 1. No requiere ajuste, salvo la elección de h, y no es necesario escoger el número de centros de clúster.
- 2. Requiere mucha memoria y tiempo de evaluación.
- 3. Cuanto menor sea h, más suave será KDE.
- 4. Todas son correctas.

file:///tmp/tmpa2e8hzgv.html

KDE: La **Parzen window** o **kernel density estimator (KDE)** puede verse como una generalización de la mixtura de N Gaussianas "empírica" (con una Gaussiana hiperesférica centrada en cada dato) a N kernels de amplitud dada por un ancho de banda h. En relación con este estimador, indica la respuesta incorrecta (o escoge la última opción si las tres primeras son correctas).

- 1. No requiere ajuste, salvo la elección de h, y no es necesario escoger el número de centros de clúster.
- 2. Requiere mucha memoria y tiempo de evaluación.
- 3. Cuanto menor sea h, más suave será KDE.
- 4. Todas son correctas.

Solución:

La 3 es incorrecta; cuanto mayor sea h, más suave será KDE.

KDE h: Un kernel densidad es una función $\mathcal{K}:\mathbb{R}\to\mathbb{R}^{\geq 0}$ que integra a uno y simétrica. Su amplitud puede controlarse mediante un parámetro ancho de banda (**bandwidth**), h>0, como sigue:

- 1. $\mathcal{K}_h(x) = h\mathcal{K}(x)$
- 2. $\mathcal{K}_h(x) = h\mathcal{K}\left(rac{x}{h}
 ight)$
- 3. $\mathcal{K}_h(x) = rac{1}{h}\mathcal{K}\left(x
 ight)$
- 4. $\mathcal{K}_h(x) = rac{1}{h} \mathcal{K}\left(rac{x}{h}
 ight)$

KDE h: Un kernel densidad es una función $\mathcal{K}:\mathbb{R}\to\mathbb{R}^{\geq 0}$ que integra a uno y simétrica. Su amplitud puede controlarse mediante un parámetro ancho de banda (**bandwidth**), h>0, como sigue:

- 1. $\mathcal{K}_h(x) = h\mathcal{K}(x)$
- 2. $\mathcal{K}_h(x) = h\mathcal{K}\left(rac{x}{h}
 ight)$
- 3. $\mathcal{K}_h(x) = rac{1}{h}\mathcal{K}\left(x
 ight)$
- 4. $\mathcal{K}_h(x) = rac{1}{h} \mathcal{K}\left(rac{x}{h}
 ight)$

Solución:

La 4.