Linear Algebra & Numerical Analysis Concise Notes

MATH50003

Term 1 Content

Arnav Singh

Colour Code - Definitions are green in these notes, Consequences are red and Causes are blue

Content from MATH40003 assumed to be known.

Mathematics Imperial College London United Kingdom January 12, 2022

Contents

1	Prelim	2
3	Algebraic and Geometric multiplicities of eigenvalues	3
4	Direct Sums	3
5	Quotient Spaces	4
6	Triangularisation	4
7	The Cayley-Hamilton Theorem	4
8	Polynomials	4
9	The minimal polynomial of a linear map	5
10	Primary Decomposition	6
11	Jordan Canonical Form	6
12	Cyclic Decomposition & Rational Canonical Form	8
13	The Dual Space	9
14	Inner Product Spaces	10
15	Linear maps on inner product spaces	12
16	Bilinear & Quadratic Forms	13

1 Prelim

Definition - Similair Matrices

 $A, B \in M_n(F)$ similair $(A \sim B)$ if \exists invertible $P \in M_n(F)$ s.t $P^{-1}AP = B$ \sim is an equivalence relation.

Properties of Similair Matrices

- Same Determinant
- Same Char. Poly.
- Same eigenvalues
- Same rank Same Trace

Definition - Companion Matrix

Let p(x) a monic polynomial of degree r; $p(x) = x^r + a_{r-1}x^{r-1} + \cdots + a_0$. Companion matrix of p(x);

$$C(p(x)) = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & 0 & \dots & 0 & -a_2 \\ & & & \dots & & \\ 0 & 0 & 0 & \dots & 1 & -a_{r-1} \end{pmatrix}$$

Geometry

Definition - Dot Product

 $u = (u_1, ..., u_n) \text{ and } v = (v_1, ..., v_n)$

$$u \cdot v = \sum_{i=1}^{n} u_i v_i$$

Length of $u, ||u|| = \sqrt{u \cdot u}$

Distance between u and v = ||u - v||

- P orthogonal if $P^TP = I, (Pu \cdot Pv) = u \cdot v)$
- A symmetric if $A^T = A$, $(Au \cdot v = u \cdot Av)$

Properties of dot product

- linear in u, v
- symmetric; $u \cdot v = v \cdot u$
- $u \cdot v > 0, \forall u, v$

3 Algebraic and Geometric multiplicities of eigenvalues

Definition - Multiplicity of eigenvalues

For $T: V \to V$ a linear map with char. poly. p(x) with roots λ , Then $\exists a(\lambda) \in \mathbb{N}$ the algebraic multiplicity of λ s.t

$$p(x) = (x - \lambda)^{a(\lambda)} q(x)$$

where λ not a root of q(x)

Geometric multiplicity $g(\lambda) = dim E_{\lambda}$, for E_{λ} the eigenspace of T

Theorem 3.2

dimV = n, Let $T: V \to V$ a linear map with finite distinct eigenvalues $\{\lambda_i\}_{i=1}^r$ Characteristic polynomial of T is

$$p(x) = \prod_{i=1}^{r} (x - \lambda_i)^{a(\lambda_i)}$$

so $\sum_{i=1}^{r} a(\lambda_i) = n$. Following are equivalent

- T diagonalisable
- $\sum_{i=1}^{r} g(\lambda_i) = n$
- $g(\lambda_i) = a(\lambda_i) \forall i$ (This can be used to test for diagonalisability.)

4 Direct Sums

Define

For $\{U_i\}_{i=1,\dots,k}$ subspaces of vector space V. Sum of these subspaces is:

$$U_1 + \dots + U_k = \{u_1 + \dots + u_k : u_i \in U_i, \forall i\}$$

Definition - Direct Sums

V a vector space, $\{V_i\}_{i=1,\dots,k}$ subspaces of vector space V. V a direct sum of $\{V_i\}$ if:

$$V = V_1 \oplus \cdots \oplus V_k$$

If $\forall v \in V$ can be expressed as $v = v_1 + \cdots + v_k$ for unique vectors $v_i \in V_i$ Corollary

$$V = V_1 \oplus \cdots \oplus V_k \iff dimV = \sum_{i=1}^k dimV_i \text{ and if } B_i \text{ a basis for } V_i, B = \bigcup_i B_i \text{ is a basis for } V_i$$

Definition - Invariant subspaces

 $T: V \to V$ a linear map, W a subspace of V.

W is T-invariant if
$$T(W) \subseteq W, T(W) = \{T(w) : w \in W\}$$

Write $T_W:W\to W$ for the restriction of T to W

Notation - Direct sums of matrices

$$A_1 \oplus \cdots \oplus A_k = \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_k \end{pmatrix}$$

5 Quotient Spaces

Definition - Cosets V a vector space over F, with $W \leq V$ a subspace.

Cosets
$$W + v$$
 for $v \in V$ $W + v := \{w + v : w \in W\}$

Quotient Space

Define V/W as a vector space of vectors W + v over F

- Addition; $(W + v_1) + (W + v_2) = W + v_1 + v_2$
- Scalar Multiplication; $\lambda(W+v) = W + \lambda v$

Can verify this using vector space axioms.

Dimension of V/W

$$dimV/W = dimV - dimW$$

Definition - Quotient Map

 $T:V\to V$ a linear map, W a T-invariant subspace of V. Quotient map: $\bar{T}:V/W:\to V/W$ such that

$$\bar{T}(W+v) = W + T(v), \quad \forall v \in V$$

6 Triangularisation

Lemma - Diagonal Matrices

$$A = \begin{pmatrix} \lambda_1 & & & & \\ 0 & \lambda_2 & & * & \\ & & \cdot & & \\ 0 & & & \cdot & \\ 0 & 0 & & & \lambda_n \end{pmatrix}, B = \begin{pmatrix} \mu_1 & & & & \\ 0 & \mu_2 & & * & \\ & & \cdot & & \\ 0 & & & \cdot & \\ 0 & 0 & & & \mu_n \end{pmatrix}$$

- Characteristic polynomial of $A = \prod_{i=1}^{n} (x \lambda_i)$, eigenvalues = $\{\lambda_i\}$
- $det A = \prod_{i=1}^{n} \lambda_i$
- AB also upper triangular, with $diag(AB) = \lambda_1 \mu_1, \dots, \lambda_n \mu_n$

Theorem 6.2 - Triangularisation Theorem

V an n dimensional vector space over $F, T: V \to V$ a linear map,

Where $\chi(T) = \prod_{i=1}^{n} (x - \lambda_i)$, where $\lambda_i \in F \ \forall i \implies \exists \text{ basis } B \text{ of } V \text{ s.t. } [T]_B \text{ upper triangular}$

7 The Cayley-Hamilton Theorem

Theorem. 7.1 - (Cayley-Hamilton Theorem)

V a finite dimensional vector space over F. $T: V \to V$ a linear map with char. poly. p(x)

$$p(T) = 0$$

8 Polynomials

 ${\bf Definition - Polynomials \ over \ a \ field}$

F a field, p(x) over F, for $p(x) = \sum_i a_i x^i$, $F[x] = \{p(x) : a_i \in F\}$

Degree of polynomial

deg(p(x)) =the highest power of x in p(x)

Euclidean Algorithm

 $f, g \in F[x]$ with $deg(g) \ge 1$, Then $\exists q, r \in F[x]s.t$

$$f = gq + r$$

for either r = 0 or deg(r) < deg(g)

$\begin{tabular}{ll} \textbf{Definition - Greatest Common Divisor (GCD) of polynomials} \\ \end{tabular}$

 $f,g \in F[x] \setminus \{0\}$, Say $d \in F[x]$ the gcd of f,g if:

- (i) d|f and d|g
- (ii) if $e(x) \in F[x]$ and e|f and e|g Then e|d

Say f, g are co-prime if gcd(f, g) = 1

Corollary

$$d = gcd(f, g) \implies \exists r, s \in F[x] \text{ s.t } d = rf + sg$$

Definiton - Irreducible polynomials

 $p(x) \in F[x]$ irreducible over F if $deg(p) \ge 1$ and p not factorisable over F as a product of $\{f_i\} \in F$ s.t $deg(f_i \le deg(p))$

Corollary $p(x) \in F[x]$ irreducible, $\{g_i\} \in F[x]$, if $p|g_1 \dots g_r \implies p|g_i$ for some i

Theorem 8.7 - (Unique Factorization Theorem)

$$f(x) \in F[x]$$
 s.t $deg(f) \ge 1$

$$f = p_1 \dots p_r$$

where each $p_i \in F[x]$ irreducible. Factorisation of f is unique up to scalar multiplication

9 The minimal polynomial of a linear map

Definition - Minimal polynomial

Say $m(x) \in F[x]$ a minimal polynomial for $T: V \to V$ if

- (i) m(T) = 0
- (ii) m(x) monic
- (iii) deg(m) is as small as possible s.t (i) and (ii)

Properties of the minimal polynomial

- For T a linear map, its minimal polynomial $m_T(x)$ is unique
- $p(x) \in F[x], p(T) = 0 \iff m_T(x)|p(x)$
- $m_T(x)|c_T(x)$ the char. poly. of T
- $\lambda \in F$ a root of $c_T(x) \implies \lambda$ a root of $m_T(x)$
- $A, B \in M_n(F)$ s.t $A \sim B \implies m_A(x) = m_B(x)$

Theorem 9.3

$$p(x) \in F[x]$$
 an irreducible factor of $c_T(x) \implies p(x)|m_T(x)$

Corollaries

- $\bullet \ c_T(x) = c_{T_W}(x)c_{\bar{T}}(x)$
- $m_{T_W}(x)$ and $m_{\bar{T}}(x)$ both divide $m_T(x)$

10 Primary Decomposition

Theorem 10.1 - (Primary Decomposition Theorem)

V a finite dimensional vector space over $F, T: V \to V$ a linear map with $m_T(x)$ Let factorisation of $m_T(x)$ into irreducible polynomials be:

$$m_T(x) = \prod_{i=1}^k f_i(x)^{n_i}$$

Where $\{f_i(x)\}$ all distinct irreducible polynomials in F[x] For $1 \le i \le k$, define:

$$V_i = ker(f_i(T)^{n_i})$$

Then

- 1. $V = V_1 \oplus \cdots \oplus V_k$ (Call this the **primary decomposition** of V w.r.t T)
- 2. each V_i is T-invariant
- 3. each restriction T_{V_i} has minimal polynomial $f_i(x)^{n_i}$

In the case where each $f_i(x) = (x - \lambda_i)$

$$\implies m_T(x) = \prod_{i=1}^k (x - \lambda_i)^{n_i}$$

With λ_i distinct eigenvalues of T and $V_i = ker(T - \lambda_i I)^{n_i}$ We call V_i the **generalised** λ_i -eigenspace of T

Corollary

A linear map $T: V \to V$ diagonalisable $\iff m_T(x) = \prod_{i=1}^k (x - \lambda_i)$ a product of distinct linear factors

Corollary

For $T: V \to V$ a linear map, with $g_1(x), g_2(x) \in F[x]$ coprime polynomials s.t $g_1(T)g_2(T) = 0$

- 1. Then $V = V_1 \oplus V_2$, where $V_i = kerg_i(T), i = 1, 2$ with each V_i being T-invariant
- 2. Suppose $m_T(x) = g_1(x)g_2(x) \implies m_{T_{V_i}}(x) = g_i(x), i = 1, 2$

11 Jordan Canonical Form

Definition - Jordan Block

F a field and let $\lambda \in F$. Define $n \times n$ matrix:

$$J_n(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \dots & 0 & 0 \\ & & & \dots & & \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$$

Properties of the Jordan Blocks

- 1. characteristic and minimal polynomials of $J_{i} = (x \lambda)^{n}$
- 2. λ the only eigenvalue of J, with $a(\lambda) = n, g(\lambda) = 1$
- 3. $J \lambda I = J_n(0)$, multiplication by $J \lambda I$ sends basis vectors as such:

$$e_n \to e_{n-1} \to \cdots \to e_2 \to e_1 \to 0$$

4. $(J - \lambda I)^n = 0$, and for i < n, $rank((J - \lambda I)^i) = n - i$. And under multiplication:

$$e_n \to e_{n-i}, e_{n-1} \to e_{n-i-1} \dots$$

6

Lemma

Let $A = A_1 \oplus \cdots \oplus A_k$ for each i let A_i have char. poly $c_i(x)$ and min. poly. $m_i(x)$.

- $c_A(x) = \prod_{i=1}^k c_i(x)$
- $m_A(x) = lcm(m_1(x), ..., m_k(x))$
- $\forall \lambda$ eigenvalues of A, $dim E_{\lambda}(A) = \sum_{i=1}^{k} dim E_{\lambda}(A_i)$
- $\forall q(x) \in F[x], q(A) = q(A_1) \oplus \cdots \oplus q(A_k)$

Theorem 11.3 - (Jordan Canonical Form)

 $A \in M_n(F)$, suppose $c_A(x)$ a product of linear factors over F. Then

1. A similair to matrix of form

$$J = J_{n_1}(\lambda_1) \oplus \cdots \oplus J_{n_k}(\lambda_k)$$

This is the Jordan Canonical Form (JCF) of A

2. Matrix J from above, is uniquely determined by A up to order of Jordan blocks

Computing the JCF

JCF theorem says $A \sim J$, a JCF matrix.

 $A \sim J \implies$ same characteristic polynomial, eigenvalues, geometric multiplicities, minimal polynomial and $q(A) \sim q(J)$ for any polynomial q.

For each eigenvalue λ , collect all Jordan blocks as such;

$$J = \underbrace{\left(J_{n_1}(\lambda) \oplus \cdots \oplus J_{n_a}(\lambda)\right)}_{\lambda - \text{blocks of J}} \oplus \underbrace{\left(J_{m_1}(\mu) \oplus \cdots \oplus J_{m_b}(\mu)\right)}_{\mu - \text{blocks of J}} \oplus \dots$$

Properties of JCF

J as above, λ an eigenvalue;

- 1. $n_1 + \cdots + n_a = a(\lambda)$
- 2. $a = \text{number of } \lambda \text{-blocks} = g(\lambda)$
- 3. $\max(n_1,\ldots,n_a)=r$, where $(x-\lambda)^r$ the highest power of $(x-\lambda)$ dividing $m_A(x)$

Theorem 11.6.

 $T: V \to V$ a linear map s.t $c_T(x)$ a product of linear factors $\implies \exists$ basis B of V s.t $[T]_B$ a JCF matrix

Definition.- Nilpotent Matrix

 $A^k = 0$ for some $k \in \mathbb{N}$

Theorem 11.7.

 $S: V \to V$ a nilpotent linear map $\implies \exists$ basis B of V s.t

$$[S]_B = J_{n_1}(0) \oplus \cdots \oplus J_{n_k}(0)$$

Computing a Jordan Basis

Finding the Jordan Basis B as above.

We have $V = V_1 \oplus \cdots \oplus V_k$ by Primary Decomposition Theorem.

Take each restriction T_{V_i} each with 1 eigenvalue.

Let $S_i = T_{V_i} - \lambda_i I$ so each S_i nilpotent.

Step 1 - Compute subspaces

$$V \supset S(V) \supset S^2(V) \supset \cdots \supset S^r(V) \supset 0$$

$$S^{r+1}(V) = 0$$

Step 2 - Find basis of $S^r(V)$, Using the following rules extend to basis of $S^{r-1}(V)$:

Given basis $u_1, S(u_1), \dots, S^{m_1-1}(u_1), \dots, u_r, S(u_r), \dots, S^{m_r-1}(u_r)$

- (1) for each i add vector $v_i \in V$ s.t $u_i = S(v_i)$
- (2) note ker(S) contains linearly independent vectors

$$S^{m_1-1}(u_1),\ldots,S^{m_r-1}(u_r)$$

extend to basis of ker(S) by adding vectors w_1, \ldots, w_s with dim ker(S) = r + s Yielding

$$v_1, S(v_1), \ldots, S^{m_1}(v_1), \ldots, v_r, S(v_r), \ldots, S^{m_r}(v_r), w_1, \ldots, w_s$$

Step 3 - Repeat successively finding Jordan bases of $S^{r-2}, \ldots, S(V), V$

12 Cyclic Decomposition & Rational Canonical Form

Definition - Cyclic Subspaces

V a finite dimensional vector space over F, and $T:V\to V$ a linear map. Let $0\neq v\in V$ and define

$$Z(v,T) = \{ f(T)(v) : f(x) \in F[x] \}$$

= Sp(v,T(v),T²(v),...)

Say Z(v,T) the T-cyclic subspace of V generated by v.

Z(v,T) is T-invariant. Write T_v

Definition - T-annihilator of v and Z(v,T)

Considering, $v, T(v), T^2(V), \ldots$ with $T^k(v)$ first vector in span of previous ones

$$\implies T^k(v) = -a_0v - a_1T(v) - \dots - a_{k-1}T(v)$$

T-annihilator of v and Z(v,T) is

$$m_v(x) = x^k + a_{k-1}x^k + \dots + a_0 \in F[x]$$

This is monic polynomial of smallest degree s.t $m_v(T)(v) = 0$ also with $m_v(T)(w) = 0 \ \forall w \in Z(v,T)$

Theorem 12.2. (Cyclic Decomposition Theorem)

V a finite dimensional vector space over F

 $T: V \to V$ a linear map. Suppose $m_T(x) = f(x)^k$ for irreducible $f(x) \in F[x]$ $\Longrightarrow \exists v_1, \dots, v_r \in V \text{ s.t}$

$$V + Z(v_1, T) \oplus \cdots \oplus Z(v_r, T)$$

where

- (1) each $Z(v_i, T)$ has T-annihilator $f(x)^{k_i}$ for $1 \le i \le r$, $k = k_1 \ge k_2 \ge \cdots \ge k_r$
- (2) r and k_1, \ldots, k_r uniquely determined by T

Corollary 12.3

T a finite dimensional vector space over F $\implies \exists$ basis B of V s.t

$$[T]_B = C(f(x)^{k_1}) \oplus \cdots \oplus C(f(x)^{k_r})$$

Corollary 12.3

 $A \in M_n(F)$, with $m_A(x) = x^k$

$$\implies A \sim C(x^{k_1} \oplus \cdots \oplus C(x^{k_r}))$$

Theorem 12.5. (Rational Canonical Form Theorem)

V be finite dimensional over field F with $T:V\to V$ a linear map with

$$m_T(x) = \prod_{i=1}^t f_i(x)^{k_i}$$

with $\{f_i(x)\}_{i=1}^t \in F[x]$ set of distinct irreducible polynomials $\implies \exists$ basis B of V s.t

$$[T]_B = C(f_1(x)^{k_{11}}) \oplus \cdots \oplus C(f_1(x)^{k_{1r_1}}) \oplus \cdots \oplus C(f_t(x)^{k_{tr_t}}) \oplus \cdots \oplus C(f_t(x)^{k_{tr_t}})$$

where for each i

$$k_i = k_{i1} \ge \cdots \ge k_{ir_i}$$

with r_i and k_{i1}, \ldots, k_{ir_i} uniquely determined by T

Corollary 12.6

 $A \in M_n(F)$ s.t $m_A(x) = \prod_{i=1}^t f_i(x)^{k_i}$ distinct irreducible polynomials. $\implies A \sim C(f_1(x)^{k_{11}}) \oplus \cdots \oplus C(f_1(x)^{k_{1r_1}}) \oplus \cdots \oplus C(f_t(x)^{k_{t1}}) \oplus \cdots \oplus C(f_t(x)^{k_{tr_t}})$

Computing the RCF

 $T:V\to V$ we have

$$c_T(x) = \prod_{i=1}^t f_i(x)^{n_i}, \quad m_T(x) = \prod_{i=1}^t f_i(x)^{k_i}$$

 $\{f_i(x)\}\$ all distinct irreducible polynomials in F[x] enough to find; $rank(f_i(T)^r)\ \forall i\in\{1,\ldots,t\}, 1\leq r\leq k_i$

13 The Dual Space

Definition - Linear functional

V a vector space over F

A linear functional on V a linear map $\phi:V\to F$ s.t

$$\phi(\alpha v_1 + \beta v_2) = \alpha \phi(v_1) + \beta \phi(v_2) \qquad \forall v_i \in V, \forall \alpha, \beta \in F$$

Operations of linear functionals

(i)
$$(\phi_1 + \phi_2)(v) = \phi_1(v) + \phi_2(v), \quad \forall v \in V$$

(ii)
$$(\lambda \phi)(v) = \lambda \phi(v), \quad \forall \lambda \in F, \forall v \in V$$

Definition - The dual space

$$V^* = \{\phi | \phi : V \text{ to } F \text{ a linear functional } \}$$

 V^* a vector space over F w.r.t above multiplication and addition.

Dimension

 $\{v_i\}_i$ a basis of V with eigenvalues $\{\lambda\}_i$

 $\exists ! \phi \in V^* \text{ sending } v_i \to \lambda_i$

$$\phi(\sum \alpha_i v_i) = \sum \alpha_i \lambda_i$$

Proposition 13.1

Let n = dimV with $\{v_1, \dots, v_n\}$ a basis of V $\forall i$ define $\phi_i \in V^*$ by

$$\phi_i(v_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

 $\implies \phi_i(\sum \alpha_j v_j) = \alpha_i \implies \{\phi_1, \dots, \phi_n\}$ a basis of V^* the **dual basis** of B $dimV^* = n = dimV$

Definition - Annihilators

V a finite dimensional vector space over F and V^* the dual space. $X \subset V$. Say annihilator $X^0 \circ f X$:

$$X^{0} = \{ \phi \in V^* : \phi(x) = 0 \forall x \in X \}$$

 X^0 a subspace of V^*

Proposition 13.2.

W subspace of $V \implies dimW^0 = dimV - dimW$

14 Inner Product Spaces

Definition - Inner Product

 $F = \mathbb{R}$ or \mathbb{C} . V a vector space over F

Inner product on V a map $(u, v): V \times V \to F$ satisfying

(i)
$$(\lambda_1 v_1 + \lambda_2 v_2, w) = \lambda_1(v_1, w) + \lambda_2(v_2, w)$$

(ii)
$$(w, v) = (w, v)$$

(iii)
$$(v,v) > 0$$
 if $v \neq 0$

 $\forall v_i, v, w \in V \text{ and } \lambda_i \in F.$ Call such a vector space V with inner product (,) an inner product space.

Properties of Inner Product Space

- right-linear for $F = \mathbb{R}$; $(v, \lambda_1 w_1 + \lambda_2 w_2) = \bar{\lambda_1}(v, w_1) + \bar{\lambda_2}(v, w_2)$
- $(v,v) \in \mathbb{R}$
- $(0, v) = 0 \forall v \in V$
- symmetry; $F = \mathbb{R} \implies (w, v) = (v, w)$
- $(v, w) = (v, x) \forall v \in V \implies w = x$

Matrix of an inner product V a finite dimensional inner product space. $B = \{v_1, \ldots, v_n\}$ a basis. Defining $a_{ij} = (v_i, v_j)$. So we have $a_{ji} = \bar{a_{ij}}$

 $F \mathbb{R} \implies A \text{ symmetric}$

 $F \mathbb{C} \implies A \text{ hermitian}$

 $v,w \in V \implies (v,w) = [v]_B^T A[\bar{w}]_B$

Definition - Positive definite

Hermitian matrix A positive-definite if $x^T A \bar{x} > 0 \ \forall$ non-zero $x \in F^n$

Proposition 14.1

For $u, v, w \in V$ we have

- (i) $|(u,v)| \le ||u|| ||v||$ (Cauchy-Schwarz Inequality)
- (ii) $||u+v|| \le ||u|| + ||v||$
- (iii) $||u-v|| \le ||u-w|| + ||w-v||$ (Triangle inequalities)

Dual Space

Let V an inner product space over $F = \mathbb{R}$ or \mathbb{C} $v \in V$ define

$$f_v: V \to F$$

 $f_v(w) = (w, v)$

 $\implies f_v \text{ linear functional } \in V *$

Definition - \bar{V}

 \bar{V} has same vectors as V

- Addition in \bar{V} same as V
- Scalar multiplication; $\lambda * v = \bar{\lambda}v$

Proposition 14.2.

V finite-dimensional. Define $\pi: \bar{V} \to V*$ as

$$\pi(v) = f_v \quad \forall v \in V$$

 $\implies \pi$ a vector space isomorphism

Definition - Orthogonality

 $\{v_1, \ldots, v_k\}$ orthogonal if $(v_i, v_j) = 0 \ \forall i, j \ i \neq j$ Orthonormal if also $||v_i|| = 1 \ \forall i$

Definition - W^{\perp}

 $W \subseteq V$ define

$$W^{\perp} = \{ u \in V : (u, w) = 0 \ \forall w \in W \}$$

Proposition

V a finite dimensional inner product space. $W \leq V$

$$\implies V = W \oplus W^{\perp}$$

Theorem 14.5

V a finite dimensional inner product space

- (i) V has orthonormal basis
- (ii) Any orthonormal set of vectors $\{w_1,\ldots,w_r\}$ can be extended to orthonormal basis of V

Gram-Schmidt Process

Step 1 - Start with basis $\{v_1, \ldots, v_n\}$ of V

Step 2 - let
$$u_1 = \frac{v_1}{||v_1||}$$
 define $w_2 = v_2 - (v_2, u_1)u_1$
 $\implies (w_2, u_1) = 0$, let $u_2 = \frac{w_2}{||w_2||}$
 $\implies \{u_1, u_2\}$ orthonormal

Step 3 - Let

$$w_3 = v_3 - (v_3, u_1)u_1 - (v_3, u_2)u_2$$

With
$$u_3 = \frac{w_3}{||w_3||} \implies \{u_1, u_2, u_3\}$$

Step~4 - Continue, for $i^{
m th}$ step

$$u_i = \frac{w_i}{||w_i||}$$
 $w_i = v_i - (v_i, u_1)u_1 - \dots - (v_i, u_{i-1})u_{i-1}$

Yielding after n steps an orthonormal basis $\{u_1, \ldots, u_n\}$ with

$$\operatorname{Sp}(u_1,\ldots,u_i) = \operatorname{Sp}(v_1,\ldots,v_i) \quad \forall i \in \{1,\ldots,n\}$$

Projections

V an inner product space. $v, w \in V \setminus 0$

Projection of v along w defined to be λw for $\lambda \frac{(v,w)}{(w,w)}$.

For $W \leq V, v \in V$

define projection of V along W as follows:

$$V=W\oplus W^\perp$$

for unique $w \in W, w' \in W^{\perp}$ v = w + w'

Define orthogonal projection map along W.

$$\pi_W:V\to W$$

$$\pi_W(v) = w$$

Proposition 14.7.

V an inner product space. $W \leq V$ with π_W orthogonal projection map along W.

- (i) $v \in V \implies \pi_W$ vector in W closest to V i.e for $w \in W$, ||w - v|| minimum for $w = \pi_W(v)$
- (ii) dist(v, w) denotes shortest distance from v to any vector in W $\implies \operatorname{dist}(v, w) = ||v - \pi_W(v)||$
- (iii) $\{v_1, \dots, v_r\}$ orthonormal basis of W $\implies \pi_W(v) = \sum_{j=1}^r (v, v_j) v_j$

Change of orthonormal basis

Proposition 14.8

V an inner product space. $E = \{e_1, \dots, e_n\}, F = \{f_1, \dots, f_n\}$ orthonormal basis of V $P = (p_{ij})$ change of basis matrix.

$$f_i = \sum_{j=1}^n p_{ji} e_j \implies P^T \bar{P} = I$$

Definition

- $P \in M_n(\mathbb{R}): P^T P = I \implies$ orthogonal matrix
- $P \in M_n(\mathbb{C}) : P^T \bar{P} = I \implies \text{unitary matrix}$

Properties of the above matrices

- (i) length-preserving maps of \mathbb{R}^n , \mathbb{C}^n (isometries) i.e $||Pv|| = ||v|| \quad \forall v$
- (ii) Set of all isometries form a group classical group orthogonal group; $O(n,\mathbb{R}) = \{P \in M_n(\mathbb{R}) : P^T P = I\}$ Unitary Group; $U(n,\mathbb{C}) = \{P \in M_n(\mathbb{C}) : P^T \bar{P} = I\}$

15Linear maps on inner product spaces

Proposition 15.1.

V a finite dimensional inner product space. $T: V \to V$ a linear map $\implies \exists ! \text{ linear map } T^* : V \to V \text{ s.t } \forall u, v \in V$

$$(T(u), v) = (u, T^*(v))$$

Say T^* - adjoint of TT self-adjoint if $T = T^*$

Proposition 15.2.

V an inner product space with orthonormal basis $E = \{v_1, \ldots, v_n\}$

$$T: V \to V$$
 a linear map, $A = [T]_E$

 $T:V \to V$ a linear map, $A=[T]_E$ $\Longrightarrow [T^*]_E = \bar{A}^T$ if field $\mathbb{R} \implies A$ symmetric, if field $\mathbb{C} \implies A$ hermitian

Theorem 15.3. Spectral Theorem

V an inner product space. $T: V \to V$ a self-adjoint linear map $\implies V$ has orthonormal basis of T-eigenvectors.

Corollary 15.4.

- $A \in M_n(\mathbb{R}) \implies \exists$ orthogonal P s.t $P^{-1}AP$ diagonal
- $A \in M_n(\mathbb{C}) \implies \exists$ unitary P s.t $P^{-1}AP$ diagonal

Lemma 15.5.

 $T: V \to V$ self-adjoint

- (i) eigenvalues of T real
- (ii) eigenvectors for distinct eigenvalues, orthogonal to each other
- (iii) If $W \subseteq V$, T-invariant $\implies W^{\perp}$ is also T-invariant

16 Bilinear & Quadratic Forms

Definition. - Bi-linear form

V a vector space over F

Bi-linear form on V a map; $(,):V\times V\to F$ which is both right and left-linear. i.e $\forall \alpha,\beta\in F$

- $(\alpha v_1 + \beta v_2, w) = \alpha(v_1, w) + \beta(v_2, w)$
- $(v, \alpha w_1 + \beta w_2) = \alpha(v, w_1) + \beta(v, w_2)$

General example

F a field, $V = F^n$ with $A \in M_n(F)$

 $\implies (u, v) = u^T A v \quad \forall u, v \in V \text{ a bilinear form on } V$

Matrices

(,) a bilinear form on finited dimensional vector space V. With $B = \{v_1, \ldots, v_n\}$ A matrix of (,) w.r.t B, So $(a_{ij}) = (v_i, v_j) \implies \forall u, v \in V \ (u, v) = [u]_B^T A[v]_B$

Definition - Symmetric & Skew-symmetric

Bilinear form (,) on V is

- Symmetric if $(u, v) = (v, u) \ \forall u, v \in V$
- Skew symmetric if $(v, u) = -(u, v) \ \forall u, v \in V$

Definition - Characteristic of Field F

char of field F is the smallest $n \in \mathbb{N}_+$ s.t n = 0. if no such n exists say char(F) = 0

Lemma 16.1.

V a vector space over F with $char(F) \neq 2$

(,) skew-symmetric bilinear form on $V \implies (v,v) = 0 \ \forall v \in V$

$$(v,v) = -(v,v) \implies 2(v,v) = 0 \iff 2 = 0 \text{ or } (v,v) = 0$$

Orthogonality

Theorem 16.2

bilinear form (,) has property that

$$(v, w) = 0 \iff (w, v) = 0$$

(,) skew-symmetric or symmetric

Definition - Non-degenerate

(,) on V non-degenerate if $V^{\perp} = \{0\}$. Where V^{\perp} defined analogously w.r.t bilinear forms.

$$\forall u \in V, \ (u, v) = 0 \forall v \in V \implies u = 0$$

 $V^{\perp} = \{0\} \iff \text{matrix of (,) w.r.t a basis is invertible.}$

Dual Space

Proposition 16.3.

Suppose (,) non-degenerate bilinear form on a finite dimensional vector space V.

(i)
$$v \in V$$
 define $f_v \in V^*$
 $f_v(u) = (v, u) \quad \forall u \in V$
 $\implies \phi : V \to V^*$ mapping $v \mapsto f_v \ (v \in V)$ an isomorphism

(ii)
$$\forall W \leq V$$
 we have $dim(W^{\perp}) = dim(V) - dim(W)$

Bases

Definition

 $A, B \in M_n(F)$ congruent if \exists invertible $P \in M_n(F)$ s.t

$$B = P^T A P$$

A, B congruent \implies bilinear forms $(u, v)_1 = u^T A v$ and $(u, v)_2 = u^T B v$ are equivalent

Skew-symmetric bilinear forms

Theorem 16.4.

V a finite dimensional vector space over F where $\operatorname{char}(F) \neq 2$

- (,) non-degenerate skew-symmetric bilinear form on V. Then
 - (i) dim(V) even
 - (ii) \exists basis $B = \{e_1, f_1, \dots, e_m, f_m\}$ of V s.t matrix of (,) w.r.t B is a block-diagonal matrix

$$J_m = \underbrace{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{m \text{ blocks}}$$

So that
$$(e_i, f_i) = -(f_i, e_i) = 1$$

 $(e_i, e_j) = (f_i, f_j) = (e_i, f_j) = (f_j, e_i) = 0 \quad \forall i \neq j$

Corollary 16.5.

If A invertible skew-symmetric $n \times n$ matrix over F where $char(F) \neq 2 \implies n$ even and A congruent to J_m

Symmetric bilinear forms

Theorem 16.6.

V a finite dimensional vector space over F where $char(F) \neq 2$

- (,) a non-degenerate symmetric bilinear form on V
- $\implies V$ has orthogonal basis $B = \{v_1, \dots, v_n\}$

$$(v_i, v_j) = 0$$
 for $i \neq j$
 $(v_i, v_i) = \alpha_i \neq 0 \quad \forall i$

Matrix of (,) w.r.t $B = diag(\alpha_1, ..., \alpha_n)$

Corollary 16.7.

A invertible symmetric matrix over F, $char(F) \neq 2$

 \implies A congruent to diagonal matrix

Computing orthogonal basis for 16.6

- 1. find v_1 s.t $(v_1, v_1) \neq 0$
- 2. Compute v_1^{\perp} and find $v_2 \in v_1^{\perp}$ s.t $(v_2, v_2) \neq 0$
- 3. Compute $Sp(v_1, v_2)^{\perp}$ and find $v_3 \in Sp(v_1, v_2)^{\perp}$ s.t $(v_3, v_3) \neq 0$
- 4. Continue until you get orthogonal basis

Quadratic Form

Assume from now F s.t $char(F) \neq 2$, V a finite dimensional vector space over F

Definition - Quadratic form

Quadratic form on V a map $Q: V \to F$ of form

$$Q(v) = (v, v) \quad \forall v \in V$$

(,) a symmetric bilinear form on VQ non-degenerate if (,) non-degenerate.

Remarks

- (i) given Q we find $(u, v) = \frac{1}{2}[Q(u+v) Q(u) Q(v)]$
- (ii) $V = F^n$ every symmetric bilinear forms s.t

$$(x,y) = x^T A y$$
 for $A = A^T, (x, y \in V)$

For $\mathbf{x} = (x_1, \dots, x_n)^T$

$$Q(x) = x^{T} A x$$

$$= \sum_{i,j} a_{ij} x_i x_j$$

$$= \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{i=1}^{n} i < j a_{ij} x_i x_j$$

A general homogeneous quadratic polynomial in x_1, \ldots, x_n (all terms of degree 2)

Change of variables

Definition - Equivalent Quadratic Forms

$$V = F^n, \ Q: V \to F$$

$$Q(x) = x^T A x \ \forall x \in V, A \text{ symmetric}$$

Take
$$y = (y_1, \dots, y_n)^T$$
 s.t $x = Py$ for P invertible $\Rightarrow Q(x) = y^T P^T A P y = Q'(y)$

$$\implies Q(x) = u^T P^T A P u = Q'(u)$$

If such a P exists we say Q, Q' equivalent

note:

Congruent matrices A, P^TAP

 $A \sim P^T A P \iff P \text{ orthogonal}$

Theorem 16.8.

 $V = F^n, Q: V \to F$ non-degenerate quadratic form

(i) if $F = \mathbb{C} \implies Q$ equivalent to form

$$Q_0(x) = x_1^2 + \dots + x_n^2 \quad (x \in \mathbb{C}^n)$$

Has matrix I_n

(ii) if $F = \mathbb{R} \implies Q$ equivalent to unique $Q_{p,q}; p + q = n$

$$Q_{p,q}(x) = x_1^2 + \dots + x_p^2 - (x_{p+1}^2 + \dots + x_{p+q}^2) \quad (x \in \mathbb{C}^n)$$

15

Has matrix $I_{p,q} = \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix}$

(iii) if $F = \mathbb{Q} \implies \exists$ infinitely many inequivalent non-degenerate quadratic forms on \mathbb{Q}^n

Definition - isometry

f = (,) a non-degenerate symmetric/skew-symmetric bilinear form on finite dimensional vector space V **Isometry** of f a linear map $T: V \to V$ s.t

$$(T(u), T(v)) = (u, v) \quad \forall u, v \in V$$

T invertible since f non-degenerate.

Definition - Isometry Group

$$I(V, f) = \{T : T \text{ an isometry } \}$$

forms a subgroup of general linear group GL(V)

Equivalently;

fix basis B of V, A matrix of f w.r.t B if $[T]_B = X \implies T \in I(V, f) \iff X^T A X = A$

$$\implies I(v, f) \cong \{X \in GL(n, F) : X^T A X = A\}$$

- f skew-symmetric \implies there is only one form (up to equivalence) so we get one isometry group; Classical symplectic group Sp(V, f)
- f symmetric \implies there are many forms, forming the isometry groups; the classical orthogonal groups O(V, f)