### (19) BUNDESREPUBLIK **DEUTSCHLAND**

# Offenlegungsschrift





**DEUTSCHES PATENTAMT**  (21) Aktenzeichen:

P 39 39 200.7

Anmeldetag:

27. 11. 89 29. 5.91

(3) Offenlegungstag:

C 12 N 1/00 C 12 N 1/21 C 07 K 13/00 C 12 N 15/09 C 12 P 21/02 C 12 P 21/08 G 01 N 33/569 // (C12N 1/20,

C12R 1:19)

(51) Int. Cl.5:

Max-Planck-Gesellschaft zur Förderung der Wissenschaften eV, 3400 Göttingen, DE

(74) Vertreter:

(71) Anmelder:

Weickmann, H., Dipl.-Ing.; Fincke, K., Dipl.-Phys. Dr.; Weickmann, F., Dipl.-Ing.; Huber, B., Dipl.-Chem.; Liska, H., Dipl.-Ing. Dr.-Ing.; Prechtel, J., Dipl.-Phys. Dr.rer.nat., Pat.-Anwälte, 8000 München

(72) Erfinder:

Kandolf, Reinhard, Dr., 8000 München, DE

(A) Enterovirale Polypeptide und gruppenspezifischer Nachweis von Enterovirusinfektionen

Es wird ein Polypeptid beschrieben, das für die Gruppe der Enteroviren spezifisch ist und zum Nachweis von Infektionen mit diesen Viren eingesetzt werden kann.

#### Beschreibung

Die Erfindung betrifft Polypeptide, DNA-Sequenzen, welche für diese Polypeptide kodieren, die Verwendung dieser Polypeptide und einen gruppenspezifischen Test zum Nachweis von Enteroviren sowie enteroviralen Antikörpern.

In der klinischen Praxis spielt die Serodiagnose viraler Infektionen eine zentrale Rolle, die jedoch im Falle von Infektionen mit Enteroviren, welche die häufigste Ursache der viralen Myocarditis des Menschen darstellen, aufgrund der Vielzahl cardiotroper Enteroviren mit über 70 verschiedenen Serotypen ein bislang ungelöstes Problem darstellt. Die Enteroviren sind eine Gruppe von Viren, die zunächst den Respirations- oder Gastrointestinaltrakt infizieren, sich dort vermehren und sodann im Falle einer Virämie verschiedene Zielorgane infizieren, wie z. B. das Herz, das Pankreas, das zentrale Nervensystem oder das Rückenmark. Beispiele für diese Viren sind das Poliovirus, das Echovirus und das Coxsackie-Virus. Typische Erkrankungen nach Infektion mit solchen Viren sind Myocarditis, Pankreatitis und Meningitis. Die Enteroviren gehören zu der Gruppe der RNA-Viren.

Im Hinblick auf die Häufigkeit gerade von viralen Herzerkrankungen kommt der Gruppe der Enteroviren eine sehr große klinische Bedeutung zu. Der Nachweis von Enterovirus-Infektionen als Ursache viraler Herzkrankheiten oder die prophylaktische Untersuchung bei Verdacht auf eine Enterovirus-Infektion machte bisher außerordentliche Schwierigkeiten. Eine spezifische Diagnose und damit eine Bestätigung eines klinischen Verdachts auf eine virale Herz-, oder andere Erkrankung nach Methoden des bisherigen Standes der Technik ist außerordentlich schwierig. Hierzu wurden bisher nämlich Hyperimmunseren eingesetzt, die gegen gereinigte Viruspartikel einzelner Serotypen hergestellt wurden. Es war damit nur möglich, jeweils genau diejenigen Viren nachzuweisen, gegen die die Hyperimmunseren erzeugt worden waren. Da jedoch, wie bereits oben ausgeführt, über 70 verschiedene Serotypen kardiotroper Enteroviren existieren, war hierdurch ein umfassender Erregernachweis nicht möglich. Obwohl eine Reihe von antigenen Kreuzreaktionen zwischen verschiedenen Enteroviren beschrieben wurde, war bislang eine Enterovirus-gruppenspezifische Serodiagnostik aufgrund der antigenen Heterogenität zwischen und innerhalb distinkter Serotypen überaus unbefriedigend bzw. nicht möglich. Zudem bestand bislang keine Möglichkeit zum Nachweis von Antikörpern gegen enterovirale RNA-Polymerasen.

Der Erfindung lag daher die Aufgabe zugrunde, die Voraussetzungen für einen gruppenspezifischen Nachweis, der für die gesamte Familie der Enteroviren spezifisch ist, zu schaffen, anhand dessen die An- oder Abwesenheit dieser Viren sowie deren Antikörper im Blut oder Serum von Patienten bestimmbar ist.

Gelöst wird diese Aufgabe durch die erfindungsgemäßen Polypeptide, nämlich mit der Sequenz

30

35

40

45

50

55

60

65

MGAQVSTQ KTGAHETRLN ASGNSIIHYT NINYYKDAAS NSANRQDFTQ
DPGKFTEPVK DIMIKSLPAL NSPTVEECGY SDRARSITLG NSTITTQECA
NVVVGYGVWP DYLKDSEATA EDQPTQPDVA TCRFYTLDSV QWQKTSPGWW
WKLPDALSNL GLFGQNMQYH YLGRTGYTVH VQCNASKFHQ GCLLVVCVPE
AEMGCATLDN TPSSAELLGG DTAKEFADKP VASGSNKLVQ RVVYNAGMGV
GVGNLTIFPH QWINLRTNNS ATIVMPYTNS VPMDNMFRHN NVTLMVIPFV
PLDYCPGSTT YVPITVTIAP MCAEYNGLRL AGHQGLPTMN TPGSCQFLTS
DDFQSPSAMP QYDVTPEMRI PGEVKNLMEI AEVDSVVPVQ NVGEKVNSME
AYQIPVRSNE GSGTQVFGFP LQPGYSSVFS RTLLGEILNY YTHWSGSIKL

| TFMFCGSAMA TGKFLLAYSP PGAGAPTKR  | DAMLGTHVIW DVGLQSSCVL      |
|----------------------------------|----------------------------|
| CIPWISQTHY RFVASDEYTA GGFITCWYQ  | NIVVPADAQS SCYIMCFVSA      |
| CNDFSVRLLK DTPFISQQNF FQGPVEDAI  | T AAIGRVADTV GTGPTNSEAI 5  |
| PALTAAETGH TSQVVPGDTM QTRHVKNYHS | RSESTIENFL CRSACVYFTE      |
| YKNSGAKRYA EWVLTPRQAA QLRRKLEFF  | YVRFDLELTF VITSTQQPST      |
| TQNQDAQILT HQIMYVPPGG PVPDKVDSY  | WQTSTNPSVF WTEGNAPPRM 10   |
| SIPFLSIGNA YSNFYDGWSE FSRNGVYGIN | TLNNMGTLYA RHVNAGSTGP      |
| IKSTIRIYFK PKHVKAWIPR PPRLCQYEKA | •                          |
| TNTGAFGQQS GAVYVGNYRV VNRHLATSAI | ) WQNCVWESYN RDLLVSTTTA    |
| HGCDIIARCQ CTTGVYFCAS KNKHYPISF  | GPGLVEVQES EYYPRRYQSH      |
| VLLAAGFSEP GDCGGILRCE HGVIGIVTMC | G GEGVVGFADI RDLLWLEDDA    |
| MEQGVKDYVE QLGNAFGSGF TNQICEQVNI |                            |
| KIISALVIVV RNHDDLITVT ATLALIGCTS | S SPWRWLKQKV SQYYGIPMAE    |
| RQNNSWLKKF TEMTNACKGM EWIAVKIQKE | F IEWLKVKILP EVREKHEFLN 25 |
| RLKQLPLLES QIATIEQSAP SQSDQEQLFS | NVQYFAHYCR KYAPLYAAEA      |
| KRVFSLEKKM SNYIQFKSKC RIEPVCLLLE | GSPGAGKSVA TNLIGRSLAE      |
| KLNSSVYSLP PDPDHFDGYK QQAVVIMDDI | CQNPDGKDVS LFCQMVSSVD 30   |
| FVPPMAALEE KGILFTSPFV LASTNAGSIN | APTVSDSRAL ARRFHFDMNI      |
| EVISMYSQNG KINMPMSVKT CDDECCPVNE | KKCCPLVCGK AIQFIDRRTQ      |
| VRYSLDMLVT EMFREYNHRH SVGTTLEALE |                            |
| PAIADLLKSV DSEAVREYCK EKGWLVPEIN | STLQIEKHVS RAFICLQALT      |
| TFVSVAGIIY IIYKLFAGFQ GAYTGVPNQK | PRVPTLRQAK VQGPAFEFAV 40   |
| AMMKRNSSTV KTEYGEFTML GIYDRWAVLE | RHAKPGPTIL MNDQEVGVLD      |
| AKELVDKDGT NLELTLLKLN RNEKFRDIRG | FLAKEEVEVN EAVLAINTSK      |
| FPNMYIPVGQ VTEYGFLNLG GTPTKRMLMY | NFPTRAGQCG GVLMSTGKVL 45   |
| GIHVGGNGHQ GFSAALLKHY FNDEQGEIEF | IESSKDAGFP VINTPSKTKL      |
| EPSVFHQVFE GNKEPAVLRS GDPRLKANFE |                            |
| EAVDHYAGQL ATLDISTEPM KLEDAVYGTE | GLEALDLTTS AGYPYVALGI      |
| KKRDILSKKT KDLTKLKECM DKYGLNLPMV | TYVKDELRSI EKVAKGKSRL      |
| IEASSLNDSV AMRQTFGNLY KTFHLNPGVV | TGSAVGCDPD LFWSKIPVML      |
| DGHLIAFDYS GYDASLSPVW FACLKMLLEK |                            |
| YRDKHYFVRG GMPSGCSGTS IFNSMINNII | IRTLMLKVYK GIDLDQFRMI      |
| AYGDDVIASY PWPIDASLLA EAGKGYGLIM | TPADKGECFN EVTWTNATFL 60   |
| KRYFRADEQY PFLVHPVMPM KDIHESIRWT | KDPKNTQDHV RSLCLLAWHN      |
| GEHEYEEFIR KIRSVPVGRC LTLPAFSTLE | RKWLDSF                    |

bzw. den bevorzugten Polypeptiden, deren Teilsequenzen von Aminosäure 3 bis 448 (VP4/2/3, Aminosäure 516 bis 952 (VP1) oder Aminosäure 1769 bis 2129 (Polymerase) in den Ansprüchen 2 bis 4 angegeben sind. Die erfindungsgemäß bevorzugten Polypeptide stellen distinkte, bakteriell synthetisierte virale Strukturproteine,

#### 39 39 200 DE **A**1

(VP4/2/3 bzw. VP1); sowie die RNA-abhängige RNA-Polymerase von Coxsackie-Virus B3 dar.

Überraschenderweise wurde nämlich festgestellt, daß vor allem die viralen Strukturproteine VP4/2/3 und VP1, aber auch die Polymerase zur Bildung von Antikörpern führen, welche für die gesamte Gruppe der Enteroviren spezifisch sind. Es ist nämlich erfindungsgemäß erstmals gelungen, Polypeptide mit antigenen Eigenschaften ausfindig zu machen, die offensichtlich allen der über 70 Serotypen von Enteroviren gemeinsam sind.

Eine weitere bevorzugte Ausführungsform der Erfindung sind Polypeptide, die wenigstens eine der auf den erfindungsgemäßen Polypeptiden vorhandene antigene Determinante aufweisen.

Ein weiterer Gegenstand der Erfindung ist eine rekombinante DNA, welche einligiert in einen geeigneten Expressionsvektor, eine DNA-Sequenz enthält, die für ein erfindungsgemäßes Polypeptid nach einem der Ansprüche 1 bis 5 kodiert. Als Expressionsvektor sind hierbei alle für die Expression in Wirtszellen geeigneten Moleküle verwendbar, wie Plasmide, Cosmide, Phagengenome in ihrer doppelsträngigen (RF)-Form und andere. Die Auswahl des richtigen Vektormoleküls ist hierbei von der Auswahl zur Expression zu verwendender Wirtszellen abhängig und dem Fachmann geläufig.

In einer bevorzugten Ausführungsform enthält die rekombinante DNA die folgende Sequenz:

15

20

55

| 1    | UUAAAACAGC | cueueeeuue | AUCCCACCCA | CAGGCCCAUU | GGGCGCUAGC |    |
|------|------------|------------|------------|------------|------------|----|
| 51   | ACUCUGGUAU | CACGGUACCU | uugugcgccu | GUUUUAUACC | CCCUCCCCA  |    |
| 101  | ACUGUAACUU | AGAAGUAACA | CACACCGAUC | AACAGUCAGC | GUGGCACACC | 5  |
| 151  | AGCCACGUUU | UGAUCAAGCA | CUUCUGUUAC | CCCGGACUGA | GUAUCAAUAG |    |
| 201  | ACUGCUCACG | CGGUUGAAGG | AGAAAGCGUU | CGUUAUCCGG | CCAACUACUU |    |
| 251  | CGAAAAACCU | AGUAACACCG | UGGAAGUUGC | AGAGUGUUUC | GCUCAGCACU | 10 |
| 301  | ACCCCAGUGU | AGAUCAGGUC | GAUGAGUCAC | CGCAUUCCCC | ACGGGCGACC |    |
| 351  | GUGGCGGUGG | cugcguuggc | GGCCUGCCCA | UGGGGAAACC | CAUGGGACGC |    |
| 401  | UCUAAUACAG | ACAUGGUGCG | AAGAGUCUAU | UGAGCUAGUU | GGUAGUCCUC | 15 |
| 451  | CGGCCCCUGA | AUGCGGCUAA | UCCUAACUGC | GGAGCACACA | CCCUCAAGCC |    |
| 501  | AGAGGGCAGU | GUGUCGUAAC | GGGCAACUCU | GCAGCGGAAC | CGACUACUUU | 20 |
| 551  | GGGUGUCCGU | GUUUCAUUUU | AUUCCUAUAC | UGGCUGCUUA | UGGUGACAAU |    |
| 601  | UGAGAGAUCG | UUACCAUAUA | GCUAUUGGAU | UGGCCAUCCG | GUGACUAAUA |    |
| 651  | GAGCUAUUAU | AUAUCCCUUU | GUUGGGUUUA | UACCACUUAG | CUUGAAAGAG | 25 |
| 701  | GUUAAAACAU | UACAAUUCAU | UGUUAAGUUG | AAUACAGCAA | AAUGGGAGCU |    |
| 751  | CAAGUAUCAA | CGCAAAAGAC | UGGGGCACAU | GAGACCAGGC | UGAAUGCUAG |    |
| 801  | CGGCAAUUCC | AUCAUUCACU | ACACAAAUAU | UAAUUAUUAC | AAGGAUGCCG | 30 |
| 851  | CAUCCAACUC | AGCCAAUCGG | CAGGAUUUCA | CUCAAGACCC | GGGCAAGUUC |    |
| 901  | ACAGAACCAG | UGAAAGAUAU | CAUGAUUAAA | UCACUACCAG | CUCUCAACUC | 35 |
| 951  | CCCCACAGUA | GAGGAGUGCG | GAUACAGUGA | CAGGGCGAGA | UCAAUCACAU | 33 |
| 1001 | UAGGUAACUC | CACCAUAACG | ACUCAGGAAU | GCGCCAACGU | GGUGGUGGGC |    |
| 1051 | UAUGGAGUAU | GGCCAGAUUA | UCUAAAGGAU | AGUGAGGCAA | CAGCAGAGGA | 40 |
| 1101 | CCAACCGACC | CAACCAGACG | UUGCCACAUG | UAGGUUCUAU | ACCCUUGACU |    |
| 1151 | CYGUGCAAUG | GCAGAAAACC | UCACCAGGAU | GGUGGUGGAA | GCUGCCCGAU |    |
| 1201 | GCUUUGUCGA | ACUUAGGACU | GUUUGGGCAG | AACAUGCAGU | ACCACUACUU | 45 |
| 1251 | AGGCCGAACU | GGGUAUACCG | UACAUGUGCA | GUGCAAUGCA | UCUAAGUUCC |    |
| 1301 | ACCAAGGAUG | CUUGCUAGUA | GUGUGUGUAC | CGGAAGCUGA | GAUGGGUUGC |    |
| 1351 | GCAACGCUAG | ACAACACCCC | AUCCAGUGCA | GAAUUGCUGG | GGGCGAUAC  | 50 |
| 1401 | GGCAAAGGAG | UUUGCGGACA | AACCGGUCGC | AUCCGGGUCC | AACAAGUUGG |    |
| 1451 | UACAGAGGGU | GGUGUAUAAU | GCAGGCAUGG | eeeueeeueu | UGGAAACCUC | 55 |
| 1501 | ACCAUUUUCC | CCCACCAAUG | GAUCAACCUA | CGCACCAAUA | AUAGUGCUAC | 33 |
| 1551 | AAUUGUGAUG | CCAUACACCA | ACAGUGUACC | UAUGGAUAAC | AUGUUUAGGC |    |
| 1601 | AUAACAACGU | CACCCUAAUG | GUUAUCCCAU | UUGUACCGCU | AGAUUACUGC | 60 |
|      |            |            |            |            |            |    |

|    | 1651 | CCUGGGUCCA  | CCACGUACGU | CCCAAUUACG | GUCACGAUAG | CCCCAAUGUG |
|----|------|-------------|------------|------------|------------|------------|
|    | 1701 | UGCCGAGUAC  | AAUGGGUUAC | GUUUAGCAGG | GCACCAGGGC | UUACCAACCA |
| 5  | 1751 | UGAAUACUCC  | GGGGAGCUGU | CAAUUUCUGA | CAUCAGACGA | CUUCCAAUCA |
|    | 1801 | CCAUCCGCCA  | UGCCGCAAUA | UGACGUCACA | CCAGAGAUGA | GGAUACCUGG |
|    | 1851 | UGAGGUGAAA  | AACUUGAUGG | AAAUAGCUGA | GGUUGACUCA | GUUGUCCCAG |
| 10 | 1901 | UCCAAAAUGU  | UGGAGAGAAG | GUCAACUCUA | UGGAAGCAUA | CCAGAUACCU |
|    | 1951 | GUGAGAUCCA  | ACGAAGGAUC | UGGAACGCAA | GUAUUCGGCU | UUCCACUGCA |
| 15 | 2001 | ACCAGGGUAC  | UCGAGUGUUU | UUAGUCGGAC | GCUCCUAGGA | GAGAUCUUGA |
| 15 | 2051 | ACUAUUAUAC  | ACAUUGGUCA | GGCAGCAUAA | AGCUUACGUU | UAUGUUCUGU |
|    | 2101 | GGUUCGGCCA  | UGGCUACUGG | AAAAUUCCUU | UUGGCAUACU | CACCACCAGG |
| 20 | 2151 | UGCUGGAGCU  | CCUACAAAAA | GGGUUGAUGC | UAUGCUUGGU | ACUCAUGUAA |
|    | 2201 | UUUGGGACGU  | GGGGCUACAA | UCAAGUUGCG | UGCUGUGUAU | ACCCUGGAUA |
|    | 2251 | AGCCAAACAC  | ACUACCGGUU | UGUUGCUUCA | GAUGAGUAUA | CCGCAGGGGG |
| 25 | 2301 | UUUUAUUACG  | UGCUGGUAUC | AAACAAACAU | AGUGGUCCCA | GCGGAUGCCC |
|    | 2351 | AAAGCUCCUG  | UUACAUCAUG | nennncenen | CAGCAUGCAA | UGACUUCUCU |
|    | 2401 | GUCAGGCUAU  | UGAAGGACAC | UCCUUUCAUU | UCGCAGCAAA | ACUUUUUCCA |
| 30 | 2451 | GGGCCCAGUG  | GAAGACGCGA | UAACAGCCGC | UAUAGGGAGA | GUUGCGGAUA |
|    | 2501 | CCGUGGGUAC  | AGGGCCAACC | AACUCAGAAG | CUAUACCAGC | ACUCACUGCU |
| 35 | 2551 | GCUGAGACGG  | GUCACACGUC | ACAAGUAGUG | CCGGGUGACA | CUAUGCAGAC |
|    | 2601 | ACGCCACGUU  | AAGAACUACC | AUUCAAGGUC | CGAGUCAACC | AUAGAGAACU |
|    | 2651 | UCCUAUGUAG  | GUCAGCAUGC | GUGUACUUUA | CGGAGUAUAA | AAACUCAGGU |
| 40 | 2701 | GCCAAGCGGU  | AUGCUGAAUG | GGUAUUAACA | CCACGACAAG | CAGCACAACU |
|    | 2751 | UAGGAGAAAG  | CUAGAAUUCU | UUACCUACGU | CCGGUUCGAC | CUGGAGCUGA |
|    | 2801 | CGUUUGUCAU  | AACAAGUACU | CAACAGCCCU | CAACCACACA | GAACCAAGAU |
| 45 | 2851 | GCACAGAUCC  | UAACACACCA | AAUUAUGUAU | GUACCACCAG | GUGGACCUGU |
|    | 2901 | ACCAGAUAAA  | GUUGAUUCAU | ACGUGUGGCA | AACAUCUACG | AAUCCCAGUG |
| 50 | 2951 | UGUUUUUGGAC | CGAGGGAAAC | ccccccccc  | GCAUGUCCAU | ACCGUUUUUG |
| 30 | 3001 | AGCAUUGGCA  | ACGCCUAUUC | AAAUUUCUAU | GACGGAUGGU | CUGAAUUUUC |
|    | 3051 | CAGGAACGGA  | GUUUACGGCA | UCAACACGCU | AAACAACAUG | GGCACGCUAU |
| 55 | 3101 | AUGCAAGACA  | UGUCAACGCU | GGAAGCACGG | GUCCAAUAAA | AAGCACCAUU |
|    | 3151 | AGAAUCUACU  | UCAAACCGAA | GCAUGUCAAA | GCGUGGAUAC | CUAGACCACC |
|    | 3201 | UAGACUCUGC  | CAAUACGAGA | AGGCAAAGAA | CGUGAACUUC | CAACCCAGCG |
| 60 | 3251 | GAGUUACCAC  | UACUAGGCAA | AGCAUCACUA | CAAUGACAAA | UACGGGCGCA |
|    | 3301 | UUUGGACAAC  | AAUCAGGGGC | AGUGUAUGUG | GGGAACUACA | GGGUGGUAAA |

| 3351 | UAGACAUCUA GCUACCAGUO | CUGACUGGCA A  | AACUGUGUG (  | JGGGAAAGUU |            |
|------|-----------------------|---------------|--------------|------------|------------|
| 3401 | ACAACAGAGA CCUCUUAGUO | AGCACGACCA (  | CAGCACAUGG A | AUGUGAUAUU |            |
| 3451 | AUAGCCAGAU GUCAGUGCAG | AACGGGAGUG T  | JACUUUUGUG ( | CGUCCAAAAA |            |
| 3501 | CAAGCACUAC CCAAUUUCGI | UUGAAGGACC A  | AGGUCUAGUA ( | GAGGUCCAAG |            |
| 3551 | AGAGUGAAUA CUACCCCAG  | AGAUACCAAU (  | CCAUGUGCU (  | JUUAGCAGCU |            |
| 3601 | GGAUUUUCCG AACCAGGUG  | cugugggggu A  | AUCCUAAGGU ( | GUGAGCAUGG | 10         |
| 3651 | UGUCAUUGGC AUUGUGACC  | UGGGGGGUGA    | AGGCGUGGUC ( | GGCUUUGCAG |            |
| 3701 | ACAUCCGUGA UCUCCUGUG  | CUGGAAGAUG    | AUGCAAUGGA   | ACAGGGAGUG | 15         |
| 3751 | AAGGACUAUG UGGAACAGC  | UGGAAAUGCA    | unceecncce ( | GCUUUACUAA | •          |
| 3801 | CCAAAUAUGU GAGCAAGUC  | A ACCUCCUGAA  | AGAAUCACUA ( | GUGGGUCAAG |            |
| 3851 | ACUCCAUCUU AGAGAAAUC  | J CUAAAAGCCU  | UAGUUAAGAU . | AAUAUCAGCC | 20         |
| 3901 | UUAGUAAUUG UGGUGAGGA  | A CCACGAUGAC  | CUGAUCACUG   | UGACUGCCAC |            |
| 3951 | ACUAGCCCUU AUCGGUUGI  | A CCUCGUCCCC  | guggcggugg   | CUCAAACAGA |            |
| 4001 | AGGUGUCACA AUAUUACGO  | A AUCCCUAUGG  | CUGAACGCCA   | AAACAAUAGC | 25         |
| 4051 | UGGCUUAAGA AAUUUACU   | A AAUGACAAAU  | GCUUGCAAGG   | GUAUGGAAUG |            |
| 4101 | GAUAGCUGUC AAAAUUCA   | A AAUUCAUUGA  | AUGĢCUCAAA   | GUAAAAUUU  | 30         |
| 4151 | UGCCAGAGGU CAGAGAAA   | A CACGAGUUCC  | UGAACAGACU   | UAAACAACUC |            |
| 4201 | CCCUUAUUAG AAAGUCAG   | U CGCCACAAUC  | GAGCAGAGCG   | CGCCAUCCCA |            |
| 4251 | AAGUGACCAG GAACAAUU   | U UUUCCAAUGU  | CCAAUACUUU   | GCCCACUAUU | 35         |
| 4301 | GCAGAAAGUA CGCUCCCC   | C UACGCAGCUG  | AAGCAAAGAG   | GGUGUUCUCC |            |
| 4351 | CUUGAGAAGA AGAUGAGC   | A UUACAUACAG  | UUCAAGUCCA   | AAUGCCGUAU |            |
| 4401 | UGAACCUGUA UGUUUGCU   | C UGCACGGGAG  | CCCUGGUGCC   | GGCAAGUCGG | 40         |
| 4451 | UGGCAACAAA CUUAAUUG   | A AGGUCGCUUG  | CUGAGAAACU   | CAACAGCUCA |            |
| 4501 |                       |               |              |            | 45         |
| 4551 | GGCCGUGGUG AUUAUGGA   | G AUCUAUGCCA  | GAAUCCUGAU   | GGGAAAGACG | 7.5        |
| 4601 | UCUCCUUGUU CUGCCAAA   | IG GUUUCCAGUG | UAGAUUUUGU   | ACCACCCAUG |            |
| 4651 | GCUGCCCUAG AAGAGAAA   | G CAUUCUGUUC  | ACCUCACCGU   | UUGUCUUGGC | 50         |
| 4701 | AUCGACCAAU GCAGGAUC   | JA UUAAUGCUCC | AACCGUGUCA   | GAUAGCAGAG |            |
| 4751 | CCUUGGCAAG GAGAUUUC   | AC UUUGACAUGA | ACAUCGAGGU   | UAUUUCCAUG |            |
| 4801 | UACAGUCAGA AUGGCAAG   | AU AAACAUGCCC | AUGUCAGUCA   | AGACUUGUGA | 55         |
| 4851 |                       |               |              |            |            |
| 4901 | GGAAGGCUAU ACAAUUCA   | UU GAUAGAAGAA | CACAGGUCAG   | AUACUCUCUA | <b>د</b> ۸ |
| 4951 | GACAUGCUAG UCACCGAG   | AU GUUUAGGGAG | UACAAUCAUA   | GACAUAGCGU | 60         |
| 5001 |                       |               |              |            |            |
| 5051 | UCAAAAUUAG CGUUGCA    | CA GAGACACCAC | CACCGCCCGC   | CAUUGCGGAC | 65         |

|    | 5101 | CHGCUCAAAU | CGGUAGACAG | UGAGGCUGUG | AGGGAGUACU | GCAAAGAAAA  |  |
|----|------|------------|------------|------------|------------|-------------|--|
|    | 5151 | AGGAUGGUUG | GUUCCUGAGA | UCAACUCCAC | CCUCCAAAUU | GAGAAACAUG  |  |
| 5  | 5201 | UCAGUCGGGC | UUUCAUUUGC | UUACAGGCAU | UGACCACAUU | UGUGUCAGUG  |  |
|    | 5251 | GCUGGAAUCA | UALAUAUAU  | AUAUAAGCUC | UUUGCGGGUU | UUÇAAGGUGC  |  |
|    | 5301 | UUAUACAGGA | GUGCCCAACC | AGAAGCCCAG | AGUGCCUACC | CUGAGGCAAG  |  |
| 10 | 5351 | CAAAAGUGCA | AGGCCCUGCC | UUUGAGUUCG | CCGUCGCAAU | GAUGAAAAGG  |  |
|    | 5401 | AACUCAAGCA | CGGUGAAAAC | UGAAUAUGGC | GAGUUUACCA | UGCUGGGCAU  |  |
|    | 5451 | CUAUGACAGG | ugggccguuu | UGCCACGCCA | CGCCAAACCU | GGGCCAACCA  |  |
| 15 | 5501 | UCUUGAUGAA | UGAUCAAGAG | GUUGGUGUGC | UAGAUGCCAA | GGAGCUAGUA  |  |
|    | 5551 | GACAAGGACG | GCACCAACUU | AGAACUGACA | CUACUCAAAU | UGAACCGGAA  |  |
| 20 | 5601 | UGAGAAGUUC | AGAGACAUCA | GAGGCUUCUU | AGCCAAGGAG | GAAGUGGAGG  |  |
|    | 5651 | UUAAUGAGGC | AGUGCUAGCA | AUUAACACCA | GCAAGUUUCC | CAACAUGUAC  |  |
|    | 5701 | AUUCCAGUAG | GACAGGUCAC | AGAAUACGGC | UUCCUAAACC | UAGGUGGCAC  |  |
| 25 | 5751 | ACCCACCAAG | AGAAUGCUUA | UGUACAACUU | CCCCACAAGA | GCAGGCCAGU  |  |
|    | 5801 | GUGGUGGAGU | GCUCAUGUCC | ACCGGCAAGG | UACUGGGUAU | CCAUGUUGGU  |  |
|    | 5851 | GGAAAUGGCC | AUCAGGGCUU | CUCAGCAGCA | CUCCUCAAAC | ACUACUUCAA  |  |
| 30 | 5901 | UGAUGAGCAA | GGUGAAAUAG | AAUUUAUUGA | GAGCUCAAAG | GACGCCGGGU  |  |
|    | 5951 | UUCCAGUCAU | CAACACACCA | AGUAAAACAA | AGUUGGAGCC | UAGUGUUUUC  |  |
| 35 | 6001 | CACCAGGUCU | UUGAGGGGAA | CAAAGAACCA | GCAGUACUCA | .GGAGUGGGGA |  |
|    | 6051 | UCCACGUCUC | AAGGCCAAUU | UUGAAGAGGC | UAUAUUUUCC | AAGUAUAUAG  |  |
|    | 6101 | GAAAUGUCAA | CACACACGUG | GAUGAGUACA | UGCUGGAAGC | AGUGGACCAC  |  |
| 40 | 6151 | UACGCAGGCC | AACUAGCCAC | CCUAGAUAUC | AGCACUGAAC | CAAUGAAACU  |  |
|    | 6201 | GGAGGACGCA | GUGUACGGUA | CCGAGGGUCU | UGAGGCGCUU | GAUCUAACAA  |  |
|    | 6251 | CGAGUGCCGG | UUACCCAUAU | GUUGCACUGG | GUAUCAAGAA | GAGGGACAUC  |  |
| 45 | 6301 | CUCUCUAAGA | AGACUAAGGA | CCUAACAAAG | UUAAAGGAAU | GUAUGGACAA  |  |
|    | 6351 | GUAUGGCCUG | AACCUACCAA | UGGUGACUUA | UGUAAAAGAU | GAGCUCAGGU  |  |
| 50 | 6401 | CCAUAGAGAA | GGUAGCGAAA | GGAAAGUCUA | GGCUGAUUGA | GGCGUCCAGU  |  |
|    | 6451 | UUGAAUGAUU | CAGUGGCGAU | GAGACAGACA | UUUGGUAAUC | UGUACAAAAC  |  |
|    | 6501 | UUUCCACCUA | AACCCAGGGG | UUGUGACUGG | UAGUGCUGUU | GGGUGUGACC  |  |
| 55 | 6551 | CAGACCUCUU | UUGGAGCAAG | AUACCAGUGA | UGUUAGAUGG | ACAUCUCAUA  |  |
|    | 6601 | GCAUUUGAUU | ACUCUGGGUA | CGAUGCUAGC | UUAAGCCCUG | ucugguuugc  |  |
|    | 6651 | UUGCCUAAAA | AUGUUACUUG | AGAAGCUUGG | AUACACGCAC | AAAGAGACAA  |  |
| 60 | 6701 | ACUACAUUGA | CUACUUGUGC | AACUCCCAUC | ACCUGUACAG | GGAUAAACAU  |  |
|    | 6751 | UACUUUGUGA | GGGGUGGCAU | GCCCUCGGGA | UGUUCUGGUA | CCAGUAUUUU  |  |
| 65 | 6801 | CAACUCAAUG | AUUAACAAUA | UCAUAAUUAG | GACACUAAUG | CUAAAAGUGU  |  |
|    | 6851 | ACAAAGGGAU | UGACUUGGAC | CAAUUCAGGA | UGAUCGCAUA | UGGUGAUGAU  |  |
|    |      |            |            |            |            |             |  |

| • | 5901 | GUGAUCGCAU | CGUACCCAUG | GCCUAUAGAU | GCAUCUUUAC | UCGCUGAAGC |    |
|---|------|------------|------------|------------|------------|------------|----|
| ( | 6951 | UGGUAAGGGU | UACGGGCUGA | UCAUGACACC | AGCAGAUAAG | GGAGAGUGCU |    |
|   | 7001 | UUAACGAAGU | UACCUGGACC | AACGCCACUU | UCCUAAAGAG | GUAUUUUAGA | 5  |
|   | 7051 | GCAGAUGAAC | AGUACCCCUU | CCUGGUGCAU | CCUGUUAUGC | CCAUGAAAGA | J  |
|   | 7101 | CAUACACGAA | UCAAUUAGAU | GGACCAAGGA | UCCAAAGAAC | ACCCAAGAUC |    |
|   | 7151 | ACGUGCGCUC | ACUGUGUCUA | UUAGCUUGGC | AUAACGGGGA | GCACGAAUAU | 10 |
|   | 7201 | GAGGAGUUCA | UCCGUAAAAU | UAGAAGCGUC | CCAGUCGGAC | GUUGUUUGAC |    |
|   | 7251 | CCUCCCCGCG | UUUUCAACUC | UACGCAGGAA | GUGGUUGGAC | UCCUUUUAGA |    |
|   | 7301 | UUAGAGACAA | UUUGAAAUAA | UUUAGAUUGG | CUUAACCCUA | CUGUGCUAAC | 15 |
|   | 7351 | CGAACCAGAU | AACGGUACAG | UAGGGGUAAA | UUCUCCGCAU | UCGGUGCGG  |    |
|   |      |            |            |            |            |            |    |

20

25

55

60

Besonders bevorzugte rekombinante DNAs enthalten erfindungsgemäß die Teilsequenz von Nukleotid 532 bis 2041, Nukleotid 2289 bis 3600, oder Nukleotid 6059 bis 7130 oder obengenannten Sequenz.

Ein weiterer Gegenstand der Erfindung sind Mikroorganismen, welche eine erfindungsgemäße rekombinante DNA enthalten. Besonders bevorzugt sind hierbei die transformierten E. coli-Stämme VP4/2/3 (DSM 5558), VP1 und 3D<sup>Pol</sup>.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines erfindungsgemäßen Polypeptids, bei dem man das Polypeptid entweder aus einem der transformierten Mikroorganismen nach Aufschluß gewinnt oder eine erfindungsgemäße rekombinante DNA in geeignete Wirtszellen einbringt und das Polypeptid aus dem Kulturmedium, gegebenenfalls nach Aufschluß der Zellen, gewinnt. Vor allem bei Expression des Polypeptids in Eukaryonten erübrigt sich meist ein Zellaufschluß, da die Expressionsprodukte von den Zellen in das Kulturmedium abgegeben werden und hierdurch die Isolierung erleichtert wird.

Ein weiterer Gegenstand der Erfindung ist die Verwendung eines oder mehrerer der erfindungsgemäßen Polypeptide, vorzugsweise einem der Polypeptide VP4/2/3, VP1 oder der Polymerase zur Erzeugung von gruppenspezifischen polyklonalen oder monoklonalen Antikörpern gegen Enteroviren. Hierzu müssen jedoch nicht unbedingt die vollständigen Polypeptide verwendet werden, solange mindestens eine der entsprechenden antigenen Determinanten auf einem unvollständigen Polypeptid vorhanden ist.

Die Möglichkeit, Infektionen durch einen Virus der gesamten Familie der Enteroviren spezifisch nachzuweisen, wird durch einen weiteren Gegenstand der Erfindung, nämlich den gruppenspezifischen immunologischen Nachweis von Enteroviren bzw. Antikörpern im Blut oder Serum von zu untersuchenden Patienten ermöglicht, bei dem man in einem an sich bekannten immunologischen Test, vorzugsweise einem ELISA, mindestens eines der erfindungsgemäßen Polypeptide als Antigen oder gegen diese Polypeptide erzeugte Antikörper einsetzt. Bei der erfindungsgemäßen gruppenspezifischen Nachweismethode sind alle dem Fachmann geläufigen immunologischen Testmethoden anwendbar, bei denen im Blut oder Serum von Patienten Antigene oder Antikörper nachgewiesen werden sollen. Beim Nachweis von Antigenen im Blut oder Serum werden Antikörper gegen die erfindungsgemäßen Polypeptide eingesetzt, die dann das im Blut oder Serum vorhandene Antigen binden. Zum Nachweis von Antikörpern im Blut oder Serum von Patienten können die Polypeptide selbst sowie die mit den Polypeptiden generierten Antikörper eingesetzt werden. Der Nachweis über markierte Antigene oder Antikörper und die praktische Durchführung des Tests, z. B. mit wandgebundenen Antikörpern, Antigenen etc., wird nach an sich bekannten Methoden durchgeführt.

Erfindungsgemäß wird es durch die Auffindung der erfindungsgemäßen Polypeptide, welche für alle über 70 Serotypen von Enteroviren spezifische antigene Determinanten enthalten, erstmals ermöglicht, einen gruppenspezifischen Nachweis gegen die gesamte Familie der Enteroviren zu führen. Dies ermöglicht die rasche und sichere Serodiagnostik von Patienten mit klinischem Verdacht auf Enterovirus-Infektionen, z. B. Verdacht auf Myokarditis, Myositis, Meningitis, Encephalitis, Pancreatitis oder auch postvirales Fatigue-Syndrom.

Fig. 1 zeigt hierbei den Aufbau eines direkten ELISA,

Fig. 2 zeigt den eines Sandwich-ELISA.

Die folgenden Beispiele erläutern in Verbindung mit den Abbildungen die Erfindung weiter.

#### Beispiel 1

#### Herstellung der Polypeptide

Zur Expression von Coxsackie-Virus B3 (CVB3) wurden die transformierten E. coli-Stämme VP4/2/3, VP1, 3D<sup>Pol</sup> verwendet. Jeweils 100 ml einer frischen Übernachtkultur wurden in 350 ml selektives LB-Medium (LB-Medium supplementiert mit 100 μg/ml Ampicillin) überimpft und bis zu einer optischen Dichte bei 620 nm von 1,2 bis 2,0 wachsen gelassen. Danach wurde die Temperatur auf 42°C erhöht, indem 450 ml 56°C warmes Medium langsam und unter ständigem Schwenken zugegeben wurden. Die Expressionstemperatur wurde für eine Stunde beibehalten. Anschließend wurden die Bakterien bei 3500 g (40 Minuten, 4°C) pelletiert. Die Pellets

wurden zur Lyse der Bakterien in PBS<sup>-</sup> (0,137 mmol/l NaCl, 3 mmol/l KCl, 6 mmol/l Na<sub>2</sub>PO<sub>4</sub>, 1 mmol/l KH<sub>2</sub>PO<sub>4</sub>), pH 7,2/l% SDS (Natriumdodecylsulfat) resuspendiert und 10 Minuten im siedenden Wasserbad erhitzt. Die so erhaltene klare, proteinhaltige Lösung konnte direkt auf Polyacrylamidgele aufgetragen werden. Für den Einsatz im ELISA war die SDS-Konzentration jedoch zu hoch, so daß SDS mit einem zweifachen molaren Überschuß an KCl ausgefällt wurde.

#### Beispiel 2

#### A) Isolation rekombinanter Proteine durch gelelektrophoretische Methoden

10

20

35

45

50

Das Bakterienzellysat wurde zur Auftrennung der Proteine auf ein vertikales Polyacrylamidgel (5%iges Sammelgel/13%iges Trenngel) aufgetragen und im elektrischen Feld aufgetrennt (Laemmli., 1970, Nature 227, S. 680–685). Nach der Elektrophorese wurden die Proteinbanden durch eine Färbung mit Coomassie Blue sichtbar gemacht und anschließend distinkte virale Proteine präparativ rückisoliert. Dazu wurden die entsprechenden Banden aus dem Gel ausgeschnitten und die Proteine aus dem Acrylamid im elektrischen Feld eluiert (Hunkapiller et al., 1983, Meth. Enzymol. 91, S. 227–236). Die Reinheit der gewonnenen Proteinproben wurde, nach Proteinbestimmung (W. Schaffner und C. Weissmann, (1973), A rapid, sensitive and spezific method for the determination of protein in dilute solution. Anal. Biochem. 56, 502–514) in einer analytischen, vertikalen Polyacrylamid-Gelelektrophorese überprüft.

#### B) Isolation und Reinigung viraler Antigene durch Affinitäts-Chromatographie

Zur Minimierung unspezifischer Reaktionen im ELISA wurden die viralen Antigene vor Gebrauch über eine Affinitätssäule gereinigt. Dazu wurden die polyklonalen Antiseren, (entweder aVP1 oder aVP4/2/3 oder a3D<sup>Pol</sup>) an Bromcyan aktivierte Sepharose gekoppelt. Die viralen Antigene enthalten in einem Lysat CVB3 (Coxsackie-Virus B3) infizierter Verozellen, wurden in Bindungspuffer (20 mM Phosphatpuffer, pH 8,0) aufgenommen und mit einer Flußgeschwindigkeit von 0,05 ml/min über die entsprechenden Säulen aufgetrennt. Die adsorbierten Antigene (VP1 oder PV4/2/3 oder 3D<sup>Pol</sup>) wurden anschließend mit derselben Flußgeschwindigkeit und einem Eluierungspuffer (100 mM Glycin, pH 2,7) von den gebundenen Antikörpern getrennt und in einem Eppendorfgefäß mit 0,5 M Carbonatpuffer aufgefangen. Zur Stabilisierung der Proben wurden diese anschließend über PD-10-Säulen (Pharmacia) in PBS- umgepuffert.

#### Beispiel 3

#### Reinigung der rekombinanten Proteine über eine Hydroxylapatit-Säule

Proteinproben, die zur Immunisierung verwendet werden, sollten keine zu hohe Konzentration an Detergentien, wie z. B. SDS oder NP40, enthalten, da dies für das Versuchstier tödlich sein kann. Deshalb wurden die Proben mit Hilfe einer Hydroxylapatit-Säule (G. Bernadi, Meth. Enzymol. 22 (1971) 325—339) von diesen Detergentien weitgehend befreit. Die Bindung der Proteine an die Matrix erfolgte in einem 0,01-mol/l-Natriumphosphat-Puffer (pH 6,8). Im zweiten Schritt wurde das Detergens herausgewaschen, in dem 4 bis 5 Säulenvolumen desselben Puffers über die Säule gegeben wurden. Im letzten Schritt wurde dann das Protein mit einem 0,5-mol/l-Na-Phosphat-Puffer (pH 6,8) eluiert.

#### Beispiel 4

#### Generierung monoklonaler Antikörper und polyklonaler Antiseren

#### - Balb/c-Mäuse -

Zur Generierung monoklonaler Antikörper wurden ca. 6 Wochen alte weibliche Balb/c-Mäuse nach folgendem Immunisierungsschema mit CVB3 infiziertem Verozell-Lysat immunisiert.

| 55 | Tag            | Proteindosis (μg) | gelöst in:        | CFA | IFA | PBS |
|----|----------------|-------------------|-------------------|-----|-----|-----|
|    | 1              | Priming           | 150 µg            |     |     |     |
|    | 21             | Auffrischung      | 50 µg             |     | •   |     |
|    | 35             | Auffrischung      | 50 µg             |     | •   |     |
| 60 | 50             | Auffrischung      | 50 µg             |     |     |     |
|    | 51             | Boost             | 20 µg             |     |     |     |
|    | 52             | Boost             | 20 μg             |     |     |     |
|    | 53             | Boost             | 20 µg             |     |     |     |
| 65 | 53<br>CFA = ko |                   | 20 µg<br>Adjuvans |     |     |     |

PBS - phosphatgepufferte Salzlösung

Für die einzelnen Immunisierungsschritte wurde die entsprechende Proteinmenge in den jeweiligen Zusätzen

emulgiert, 2 Stunden bei Raumtemperatur inkubiert und danach den Mäusen i. p. injiziert. Zur Überprüfung der Immunantwort wurde nach der ersten und zweiten Auffrischung den Mäusen Blut aus der Schwanzvene entnommen und der Antikörpertiter des Serums gegen die rekombinanten CVB3-Proteine (VP1 oder VP4/2/3 oder 3D<sup>Pol</sup>) im ELISA (siehe Beispiel 5A) bestimmt. Die Fusion der Immunglobulin-produzierenden Milzzellen der nach obigem Schema immunisierten Mäuse und der Maus-Myelom Permanentzellinie X63/Ag8.653 wurde nach der von G. Köhler und C. Milstein 1975 beschriebenen Methode durchgeführt (Nature 256, 495–497). Es schloß sich eine 14tätige Selektion durch HAT-Medium an, die sicherstellt, daß nur durch die Fusion entstandene Zellklone überleben. Die so erhaltenen Zellklone wurden nach der "Limiting Dilution" zweimal subkloniert. Die Zellklone, die spezifische Antikörper gegen CVB3-Proteine produzieren, wurden weiter kultiviert und einmal wöchentlich das Medium zu 2/3 abgenommen und durch frisches Medium ersetzt. Der abgenommene Zellüberstand wurde 5 Minuten bei 700 g zentrifugiert und der klare Überstand bei –20°C eingefroren. In diesem Überstand sind ca. 5 bis 20 μg/ml monoklonale Antikörper enthalten, so daß sie 1:10 verdünnt im ELISA eingesetzt werden können.

— Kaninchen —

10

15

35

40

50

55

65

Zur Generierung der polyklonalen Antiseren wurden drei verschiedene, je sechs Monate alte weibliche Neuseeland-Kaninchen mit in E. coli exprimierten, aufgereinigten CVB3-Proteinen (entweder VP1 oder VP4/2/3 oder 3D<sup>Pol</sup>) nach folgendem Schema immunisiert:

|     |                   |        |     |     | <u> </u> | 20 |
|-----|-------------------|--------|-----|-----|----------|----|
| Tag | Proteindosis (µg) | in:    | CFA | IFA | PBS      |    |
| 1   | Priming           | 150 µg | •   |     |          |    |
| 13  | Auffrischung      | 75 μg  |     | *   |          | 25 |
| 36  | Auffrischung      | 75 µg  |     | *   |          |    |
| 64  | Auffrischung      | 75 μg  |     |     | •        |    |

alle 3 Monate eine weitere Auffrischung mit 75 µg Protein in PBS.

Vor jeder Auffrischung wurde dem Kaninchen 5 ml Blut aus der Ohrvene entnommen und der jeweilige anti-CVB3-Protein-Antikörpertiter im ELISA bestimmt. 64 Tage nach der Erstimmunisierung war der Antkörpertiter so weit gestiegen, daß dem Kaninchen in vierwöchigen Abständen 20 ml Blut aus der Ohrvene abgenommen werden konnte. Nach erfolgter Blutgerinnung bei Raumtemperatur wurde das Serum durch eine 10minütige Zentrifugation bei 300 g gewonnen, anschließend aliquotiert und bei  $-20^{\circ}$ C aufbewahrt.

#### Beispiel 5

#### ELISA (Enzyme Linked Immuno Sorbent Assay)

Im ELISA lassen sich Antigen-Antikörper-Wechselwirkungen messen. Das Prinzip beruht darauf, daß entweder das Antigen an die Festphase gebunden, angeboten wird und dann der Antikörper bzw. die Existenz von Antikörpern in einem Serum gemessen wird, oder die Antikörper an die Festphase gebunden, angeboten werden und somit die Konzentration von Antigenen in einem Serum gemessen werden können.

Allgemein differenziert man zwischen zwei ELISA-Formen, dem direkten ELISA (siehe Fig. 1), hierbei wird das Substrat (entweder Antigen oder Antikörper) direkt an die Festphase gebunden und dem Sandwich ELISA (siehe Fig. 2). Bei diesem Prinzip wird das Antigen von einem Antikörper gebunden frei im Raum und in nativer Form präsentiert. Dies führt zu einer erheblichen Sensitivitätssteigerung des Testsystems (Moudalal et al., 1984, J. Immunol. Meth. 68, S. 35-43).

#### Lösungen:

Beschichtungspuffer: 100 mM Carbonatpuffer, pH 9,6

Absättigungslösung: 0,5% BSA (Rinderserumalbumin) in PBS-

Waschlösung: 1,5 M NaCl, 20% Tween 20

Substratlösung:

- a) 10% Diethanolpuffer: 97 ml 1 M Diethanolamin, 100 mg MgCl $_2 \times 6$  H $_2$ O mit 1 M NaCl pH 9,8 einstellen ad 1000 ml H $_2$ O-bidest.
- b) PNNP(p-Nitro-phenyl-phosphat) in Diethanolpuffer lösen mit einer Konzentration von 1 mg/ml Stopp-Lösung: 3 M NaOH.

#### A) Direkter ELISA

#### Nachweis von enteroviralen Antikörpern in human Seren (Fig. 1)

Eines der viralen Antigene (VP1 oder VP4/2/3 oder 3D<sup>Pol</sup>), gewonnen und gereinigt aus infizierten Vero-Zellysaten (siehe Beispiel 2B) wurde in einer Konzentration von 300 ng/100 μl/Well (Vertiefung einer Plastik-Mikroti-

terplatte in Beschichtungspuffer verdünnt und bei 4°C inkubiert. Es folgt ein einmaliges Waschen mit der Waschlösung, Zur Absättigung freier Bindungsstellen der Plastikoberfläche wurden 200 ul Absättigungslösung/ Well für eine Stunde bei Raumtemperatur inkubiert. Nach zweimaligem Waschen mit Waschlösung wurde das zu untersuchende Patientenserum in einer 1:10-Verdünnung (in PBS in einem Volumen von 100 µl für 2 Stunden bei 37°C inkubiert. Es folgt ein dreimaliges Waschen mit der Waschlösung. Zum Nachweis der an CVB-Antigen gebundenen humanen Antikörper wird ein anti-human Immunglobulin-Konjugat mit der alkalischen Phosphatase (AP-Konjugat) in einem Volumen von 100 µl für eine Stunde bei 37°C inkubiert. Nach dreimaligem Waschen mit Waschlösung wurden 100 ul PNPP-Substratlösung für 30 bis 60 Minuten bei 37°C im Dunklen inkubiert, anschließend wurde die Enzymreaktion durch Zugabe von 100 µl Stopp-Lösung gestoppt und die Extinktion bei einer optischen Dichte von 405 nm (OD<sub>405 nm</sub>) gemessen.

#### Nachweis von enteroviralem Antigen in human Seren (Fig. 1)

Alle Waschschritte erfolgten analog dem oben beschriebenen Schemata. Die Patientenseren wurden 1:10 in Beschichtungspuffer verdünnt und für 18 Stunden bei 4°C inkubiert. Zur Absättigung freier Bindungsstellen der Plastikoberfläche wurden 200 ul Absättigungslösung/Well für 2 Stunden bei Raumtemperatur inkubiert. Es folgt eine Inkubation mit Enterovirus-spezifischen polyklonalen Antiseren (aVP1 oder aVP4/2/3 oder a3DPol) 1:500 verdünnt in PBS- für 2 Stunden bei 37°C. Der Antigen-Antikörper-Komplex wurde durch eine einstündige Inkubation bei 37°C mit einem AP-Konjugat anti-Kaninchen-Immunglobulin in einem Volumen von 100 μl nachgewiesen. Zuletzt wurden 100 µl PNPP-Substratlösung für 30 bis 60 Minuten bei 37°C im Dunklen inkubiert, die Enzymreaktion durch Zugabe von 100 ul Stopp-Lösung gestoppt und die Extinktion bei einer OD405 nm gemessen.

#### B) Sandwich ELISA (Fig. 2)

Als erste Komponente wurde eines der Affinitäts-gereinigten polyklonalen und Enterovirus-spezifischen Antiseren (aVP1 oder aVP4/2/3 oder a3DPol) in einer Konzentration von 300 ng/100 µl/Well an die Plastikoberfläche gebunden (18 Stunden bei 4°C). Nach zweimaligem Waschen mit Waschlösung wurde das entsprechende aufgereinigte Antigen aus infizierten Verozell-Lysaten (siehe Beispiel 2B) (VP1 oder VP4/2/3 oder 3DPol) in einer Konzentration von 300 ng/100 μl/Well für 3 Stunden bei 37°C vorgelegt. Es schließen sich zwei Waschschritte an, bevor das 1:10 in PBS verdünnte Patientenserum für eine Stunde bei 37°C inkubiert wurde. Nachdem dreimal gewaschen wurde, wurde das "Immun-Sandwich" bestehend aus polyklonalem Antikörper (Festphasenkomponente), Antigen und humanem Antikörper mit einem AP-Konjugat anti-human Immunglobulin nachgewiesen, durch eine einstündige Inkubation der entsprechenden Konjugatlösung. Vor der Substratreaktion wurde wiederum dreimal gewaschen, 100 µl Substratlösung zugegeben und nach 30 bis 60 Minuten Inkubation bei 37°C im Dunklen die Enzymreaktion mit 100 µl Stopp-Lösung abgebrochen. Zuletzt wurde wiederum die Extinktion bei einer OD405 nm gemessen.

#### Beispiel 6

#### Immunoblot (Western-Blot)

Die durch SDS-Polyacrylamid-Gelelektrophorese (PAGE) aufgetrennten, affinitätschromatographisch gereinigten viralen Antigene (VP1 oder VP4/2/3 oder 3D<sup>Pol</sup>) wurden mittels Elektro-Blotting (Semi-dry) auf Nitrocellulose transferiert. Der Nachweis dieser Antigene erfolgt durch eine spezifische Antikörperreaktion und nachfolgender enzymatischer Farbreaktion (Towbin et al., 1979, Proc. Natl. Acad. Sci. 76, S. 4350 - 4354), wodurch die humanen Antikörper (aus Patientenserum) spezifisch charakterisiert werden.

Lösung I: 25 mM Tris/HCl, pH 8,0 76 mM NaCl 0,5% Gelatine 2.5% BSA 0,003% NP40

Lösung II: 50 mM Tris/HCl, pH 8,0 15 mM NaCl 0.25% Gelatine 0,1% BSA 0,025% NP40

Antikörperlösung: 50 mM Tris/HCl, pH 8,0 15 mM NaCl 0,25% Gelatine

Lösungen:

25

3,0% BSA 0,025% NP40

Substratlösung: 100 mM Tris/HCl, pH 9,5 100 mm NaCl 5 mM MgCl<sub>2</sub> 400 µm NBT in 70% Dimethylformamid 400 µm BCIP in 100% Dimethylformamid

5

NBT = Nitro-Blue-tetrazolium BCIP = 5-Bromo-4-chloro-3-indolyl-phosphat 10

Nach erfolgter SDS-PAGE der viralen Antigene VP01, VP4/2/3, 3D<sup>Pol</sup> wurde auf der Kathode der Semi-Dry Apparatur das Polyacrylamidgel mit dem Nitrocellulosefilter (NC-Filter) als Sandwich zwischen jeweils drei Schichten Whatman 3-MM-Filterpapier aufgebaut. Die obere Graphitplatte (= Anode) wurde aufgesetzt und der Transfer mit einer konstanten Stromstärke von 150 mA über eine Zeitspanne von 90 Minuten durchgeführt.

15

Als Vorbereitung der Immunreaktion wurden die noch freien Proteinbindungsstellen der NC durch zweimal 10 Minuten Schwenken in Lösung I abgesättigt. Das Patientenserum wurde 1:20 in Antikörperlösung verdünnt und eine Stunde mit dem Filter inkubiert. Zum Entfernen der nicht oder unspezifisch gebundenen Antikörper wurde die NC dreimal 15 Minuten in Lösung II geschwenkt. Der zweite Antikörper, ein AP-anti-human-Immunglobulin-Konjugat 1:500 verdünnt in Antikörperlösung, wurde ebenfalls für eine Stunde mit dem NC-Filter inkubiert. Es folgte ein dreimaliges Waschen mit Lösung II für jeweils 15 Minuten. Vor der Farbreaktion wurde der Filter zwischen 3-MM-Whatmanpapier getrocknet. Es schloß sich eine Inkubation der NC in der Substratlösung für 5 bis 15 Minuten an, danach wurde die Enzymreaktion durch sechsmal Waschen des Filters mit destilliertem Wasser gestoppt. Alle Inkubationsschritte wurden bei Raumtemperatur ausgeführt. Durch die Charakterisierung der humanen Antiseren im Western-Blot konnte gezeigt werden, daß tatsächlich ein entsprechendes Protein mit dem richtigen Molekulargewicht vom Antiserum erkannt wird.

25

#### Patentansprüche

30

1. Polypeptid, gekennzeichnet durch die folgende Aminosäuresequenz

35

40

45

50

55

60

5

10

15

20

25

30

35

40

45

50

55

60

65

MGAQVSTQ KTGAHETRLN ASGNSIIHYT NINYYKDAAS NSANRODFTO DPGKFTEPVK DIMIKSLPAL NSPTVEECGY SDRARSITLG NSTITTQECA NVVVGYGVWP DYLKDSEATA EDQPTQPDVA TCRFYTLDSV QWQKTSPGWW WKLPDALSNL GLFGQNMQYH YLGRTGYTVH VQCNASKFHQ GCLLVVCVPE AEMGCATLDN TPSSAELLGG DTAKEFADKP VASGSNKLVQ RVVYNAGMGV GVGNLTIFPH QWINLRTNNS ATIVMPYTNS VPMDNMFRHN NVTLMVIPFV PLDYCPGSTT YVPITVTIAP MCAEYNGLRL AGHQGLPTMN TPGSCQFLTS DDFQSPSAMP QYDVTPEMRI PGEVKNLMEI AEVDSVVPVQ NVGEKVNSME AYOIPVRSNE GSGTOVFGFP LOPGYSSVFS RTLLGEILNY YTHWSGSIKL TFMFCGSAMA TGKFLLAYSP PGAGAPTKRV DAMLGTHVIW DVGLQSSCVL CIPWISQTHY RFVASDEYTA GGFITCWYQT NIVVPADAQS SCYIMCFVSA CNDFSVRLLK DTPFISQQNF FQGPVEDAIT AAIGRVADTV GTGPTNSEAI PALTAAETGH TSQVVPGDTM QTRHVKNYHS RSESTIENFL CRSACVYFTE YKNSGAKRYA EWVLTPRQAA QLRRKLEFFT YVRFDLELTF VITSTQQPST TQNQDAQILT HQIMYVPPGG PVPDKVDSYV WQTSTNPSVF WTEGNAPPRM SIPFLSIGNA YSNFYDGWSE FSRNGVYGIN TLNNMGTLYA RHVNAGSTGP IKSTIRIYFK PKHVKAWIPR PPRLCQYEKA KNVNFQPSGV TTTRQSITTM TNTGAFGQQS GAVYVGNYRV VNRHLATSAD WQNCVWESYN RDLLVSTTTA HGCDIIARCQ CTTGVYFCAS KNKHYPISFE GPGLVEVQES EYYPRRYQSH VLLAAGFSEP GDCGGILRCE HGVIGIVTMG GEGVVGFADI RDLLWLEDDA MEQGVKDYVE QLGNAFGSGF TNQICEQVNL LKESLVGQDS ILEKSLKALV KIISALVIVV RNHDDLITVT ATLALIGCTS SPWRWLKQKV SQYYGIPMAE RQNNSWLKKF TEMTNACKGM EWIAVKIQKF IEWLKVKILP EVREKHEFLN RLKOLPLLES OIATIEOSAP SOSDOEOLFS NVOYFAHYCR KYAPLYAAEA KRVFSLEKKM SNYIQFKSKC RIEPVCLLLH GSPGAGKSVA TNLIGRSLAE KLNSSVYSLP PDPDHFDGYK QQAVVIMDDL CQNPDGKDVS LFCQMVSSVD FVPPMAALEE KGILFTSPFV LASTNAGSIN APTVSDSRAL ARRFHFDMNI EVISMYSQNG KINMPMSVKT CDDECCPVNF KKCCPLVCGK AIQFIDRRTQ VRYSLDMLVT EMFREYNHRH SVGTTLEALF QGPPVYREIK ISVAPETPPP

| 1                                  | PAIADLLKSV                    | DSEAVREYCK       | EKGWLVPEIN       | STLQIEKHVS        | RAFICLQALT                  |    |
|------------------------------------|-------------------------------|------------------|------------------|-------------------|-----------------------------|----|
| •                                  | TFVSVAGIIY                    | IIYKLFAGFQ       | GAYTGVPNQK       | PRVPTLRQAK        | VQGPAFEFAV                  |    |
|                                    | AMMKRNSSTV                    | KTEYGEFTML       | GIYDRWAVLP       | RHAKPGPTIL        | MNDQEVGVLD                  |    |
|                                    | AKELVDKDGT                    | NLELTLLKLN       | RNEKFRDIRG       | FLAKEEVEVN        | EAVLAINTSK                  |    |
| :                                  | FPNMYI PVGQ                   | VTEYGFLNLG       | GTPTKRMLMY       | NFPTRAGQCG        | GVLMSTGKVL                  |    |
|                                    | GIHVGGNGHQ                    | GFSAALLKHY       | FNDEQGEIEF       | IESSKDAGFP        | VINTPSKTKL                  | 10 |
|                                    | EPSVFHQVFE                    | GNKEPAVLRS       | GDPRLKANFE       | EAIFSKYIGN        | VNTHVDEYML                  |    |
|                                    | EAVDHYAGQL                    | ATLDISTEPM       | KLEDAVYGTE       | GLEALDLTTS        | AGYPYVALGI                  |    |
|                                    | KKRDILSKKT                    | KDLTKLKECM       | DKYGLNLPMV       | TYVKDELRSI        | EKVAKGKSRL                  | 15 |
|                                    | IEASSLNDSV                    | AMRQTFGNLY       | KTFHLNPGVV       | TGSAVGCDPD        | LFWSKIFVML                  |    |
|                                    | DGHLIAFDYS                    | GYDASLSPVW       | FACLKMLLEK       | LGYTHKETNY        | IDYLCNSHHL                  | 20 |
|                                    | YRDKHY <b>FV</b> RG           | GMPSGCSGTS       | IFNSMINNII       | IRTLMLKVYK        | GIDLDQFRMI                  |    |
|                                    | AYGDDVIASY                    | PWPIDASLLA       | EAGKGYGLIM       | TPADKGECFN        | EVTWTNATFL                  |    |
| :                                  | KRYFRADEQY                    | PFLVHPVMPM       | KDIHESIRWT       | KDPKNTQDHV        | RSLCLLAWHN                  | 25 |
| ı                                  | GEHEYEEFIR                    | KIRSVPVGRC       | LTLPAFSTLR       | RKWLDSF           |                             |    |
| Anspruch 1 ent                     |                               | izeicimei, dab e | s die im loigend | en angegebene     | Teilsequenz der Sequenz von |    |
|                                    | AQVSTQ                        | KTGAHETRLN       | ASGNSIIHYT       | NINYYKDAAS        | NSANRQDFTQ                  | 35 |
| 1                                  | DPGKFTEPVK                    | DIMIKSLPAL       | NSPTVEECGY       | SDRARSITLG        | NSTITTQECA                  |    |
| 1                                  | NVVVGYGVWP                    | DYLKDSEATA       | EDQPTQPDVA       | TCRFYTLDSV        | QWQKTSPGWW                  |    |
| 1                                  | WKLPDALSNL                    | GLFGQNMQYH       | YLGRTGYTVH       | VQCNASKFHQ        | GCLLVVCVPE                  | 40 |
|                                    |                               | TPSSAELLGG       |                  | •                 |                             |    |
| (                                  | GVGNLTIFPH                    | QWINLRTNNS       | ATIVMPYTNS       | <b>VPMDNMFRHN</b> | NVTLMVIPFV                  | 45 |
| :                                  | PLDYCPGSTT                    | YVPITVTIAP       | MCAEYNGLRL       | AGHQGLPTMN        | TPGSCQFLTS                  | 70 |
| 1                                  | DDFQSPSAMP                    | QYDVTPEMRI       | PGEVKNLMEI       | AEVDSVVPVQ        | NVGEKVNSME                  |    |
| •                                  | AYQIPVRSNE                    | GSGTQVFGFP       | LQPGYSSVFS       | RTLLGEILNY        | YTHWSGSI                    | 50 |
| 3. Polypeptid, c<br>Anspruch 1 ent | dadurch gekenr<br>hält (VPI). | nzeichnet, daß e | s die im folgend | en angegebene     | Teilsequenz der Sequenz von | 55 |
|                                    |                               |                  |                  |                   |                             | 60 |

SDEYTA GGFITCWYQT NIVVPADAQS SCYIMCFVSA
CNDFSVRLLK DTPFISQQNF FQGPVEDAIT AAIGRVADTV GTGPTNSEAI
PALTAAETGH TSQVVPGDTM QTRHVKNYHS RSESTIENFL CRSACVYFTE
YKNSGAKRYA EWVLTPRQAA QLRRKLEFFT YVRFDLELTF VITSTQQPST
TQNQDAQILT HQIMYVPPGG PVPDKVDSYV WQTSTNPSVF WTEGNAPPRM
SJPFLSIGNA YSNFYDGWSE FSRNGVYGIN TLNNMGTLYA RHVNAGSTGP
IKSTIRIYFK PKHVKAWIPR PPRLCQYEKA KNVNFQPSGV TTTRQSITTM
TNTGAFGQQS GAVYVGNYRV VNRHLATSAD WQNCVWESYN RDLLVSTTTA
HGCDIIARCQ CTTGVYFCAS KNKHYPISFE GPGLVEVQES EYYPRRYQSH
VL

4. Polypeptid, dadurch gekennzeichnet, daß es die im folgenden angegebene Teilsequenz der Sequenz von Anspruch 1 enthält ( $3D^{Pol}$ ).

RS GDPRLKANFE EAIFSKYIGN VNTHVDEYML

EAVDHYAGQL ATLDISTEPM KLEDAVYGTE GLEALDLTTS AGYPYVALGI
KKRDILSKKT KDLTKLKECM DKYGLNLPMV TYVKDELRSI EKVAKGKSRL
IEASSLNDSV AMRQTFGNLY KTFHLNPGVV TGSAVGCDPD LFWSKIPVML
DGHLIAFDYS GYDASLSPVW FACLKMLLEK LGYTHKETNY IDYLCNSHHL
YRDKHYFVRG GMPSGCSGTS IFNSMINNII IRTLMLKVYK GIDLDQFRMI

KRYFRADEQY PFLVHPVMPM KDIHESIRW

40

45

5

10

15

20

25

30

35

AYGDDVIASY PWPIDASLLA EAGKGYGLIM TPADKGECFN EVTWTNATFL

7. Rekombinante DNA nach Anspruch 6, dadurch gekennzeichnet, daß sie die folgende Sequenz enthält:

50

55

60

<sup>5.</sup> Polypeptid dadurch gekennzeichnet, daß es mindestens eine der auf den Polypeptiden nach einem der Ansprüche 1 bis 4 enthaltenen antigenen Determinanten enthält.

<sup>6.</sup> Rekombinante DNA, dadurch gekennzeichnet, daß sie eine DNA-Sequenz, die für ein Polypeptid nach einem der Ansprüche 1 bis 5 kodiert, einligiert in einen Espressionsvektor enthält.

| 1   | UUAAAACAGC | cuguggguug | AUCCCACCCA | CAGGCCCAUU | GGGCGCUAGC |    |
|-----|------------|------------|------------|------------|------------|----|
| 51  | ACUCUGGUAU | CACGGUACCU | ungugcgccu | GUUUUAUACC | CCCUCCCCCA |    |
| .01 | ACUGUAACUU | AGAAGUAACA | CACACCGAUC | AACAGUCAGC | GUGGCACACC | :  |
| .51 | AGCCACGUUU | UGAUCAAGCA | CUUCUGUUAC | CCCGGACUGA | GUAUCAAUAG |    |
| 201 | ACUGCUCACG | CGGUUGAAGG | AGAAAGCGUU | CGUUAUCCGG | CCAACUACUU |    |
| 251 | CGAAAAACCU | AGUAACACCG | UGGAAGUUGC | AGAGUGUUUC | GCUCAGCACU | 10 |
| 301 | ACCCCAGUGU | AGAUCAGGUC | GAUGAGUCAC | CGCAUUCCCC | ACGGCCGACC |    |
| 351 | GUGGCGGUGG | CUGCGUUGGC | GGCCUGCCCA | UGGGGAAACC | CAUGGGACGC |    |
| 01  | UCUAAUACAG | ACAUGGUGCG | AAGAGUCUAU | UGAGCUAGUU | GGUAGUCCUC | 15 |
| 51  | CGGCCCCUGA | AUGCGGCUAA | UCCUAACUGC | GGAGCACACA | CCCUCAAGCC |    |
| 501 | AGAGGGCAGU | GUGUCGUAAC | GGGCAACUCU | GCAGCGGAAC | CGACUACUUU | 20 |
| 551 | GGGUGUCCGU | GUUUCAUUUU | AUUCCUAUAC | UGGCUGCUUA | UGGUGACAAU | 20 |
| 501 | UGAGAGAUCG | UUACCAUAUA | GCUAUUGGAU | UGGCCAUCCG | GUGACUAAUA |    |
| 551 | GAGCUAUUAU | AUAUCCCUUU | GUUGGGUUUA | UACCACUUAG | CUUGAAAGAG | 25 |
| 701 | GUUAAAACAU | UACAAUUCAU | UGUUAAGUUG | AAUACAGCAA | AAUGGGAGCU |    |
| 751 | CAAGUAUCAA | CGCAAAAGAC | UGGGGCACAU | GAGACCAGGC | UGAAUGCUAG |    |
| 301 | CGGCAAUUCC | AUCAUUCACU | ACACAAAUAU | UAAUUAUUAC | AAGGAUGCCG | 30 |
| 351 | CAUCCAACUC | AGCCAAUCGG | CAGGAUUUCA | CUCAAGACCC | GGGCAAGUUC |    |
| 901 | ACAGAACCAG | UGAAAGAUAU | CAUGAUUAAA | UCACUACCAG | CUCUCAACUC | •  |
| 951 | CCCCACAGUA | GAGGAGUGCG | GAUACAGUGA | CAGGGCGAGA | UCAAUCACAU | 35 |
|     |            |            |            |            |            |    |
|     |            |            |            |            |            | 40 |
|     |            |            |            |            |            | 10 |

|    |            | 1001 | UAGGUAACUC   | CACCAUAACG  | ACUCAGGAAU   | GCGCCAACGU   | GGUGGUGGGC   |
|----|------------|------|--------------|-------------|--------------|--------------|--------------|
|    |            | 1051 | UAUGGAGUAU   | GGCCAGAUUA  | UCUAAAGGAU   | AGUGAGGCAA   | CAGCAGAGGA   |
|    | 5          | 1101 | CCAACCGACC   | CAACCAGACG  | UUGCCACAUG   | UAGGUUCUAU   | ACCCUUGACU   |
|    |            | 1151 | CYGUGCAAUG   | GCAGAAAACC  | UCACCAGGAU   | GGUGGUGGAA   | GCUGCCCGAU   |
|    |            | 1201 | GCUUUGUCGA   | ACUUAGGACU  | GUUUGGGCAG   | AACAUGCAGU   | ACCACUACUU   |
|    | 10         | 1251 | AGGCCGAACU   | GGGUAUACCG  | UACAUGUGCA   | GUGCAAUGCA   | UCUAAGUUCC   |
|    |            | 1301 | ACCAAGGAUG   | CUUGCUAGUA  | GUGUGUGUAC   | CGGAAGCUGA   | GAUGGGUUGC   |
|    |            | 1351 | GCAACGCUAG   | ACAACACCCC  | AUCCAGUGCA   | GAAUUGCUGG   | GGGGCGAUAC   |
|    | 15         | 1401 | GGCAAAGGAG   | UUUGCGGACA  | AACCGGUCGC   | AUCCGGGUCC   | AACAAGUUGG   |
|    |            | 1451 | UACAGAGGGU   | GGUGUAUAAU  | GCAGGCAUGG   | GGGUGGGUGU   | UGGAAACCUC   |
|    | 20         | 1501 | ACCAUUUUCC   | CCCACCAAUG  | GAUCAACCUA   | CGCACCAAUA   | AUAGUGÇUAC   |
|    |            | 1551 | AAUUGUGAUG   | CCAUACACCA  | ACAGUGUACC   | UAUGGAUAAC   | AUGUUUAGGC   |
|    |            | 1601 | AUAACAACGU   | CACCCUAAUG  | GUUAUCCCAU   | UUGUACCGCU   | AGAUUACUGC   |
|    | 25         | 1651 | CCUGGGUCCA   | CCACGUACGU  | CCCAAUUACG   | GUCACGAUAG   | CCCCAAUGUG   |
|    |            | 1701 | UGCCGAGUAC   | AAUGGGUUAC  | GUUUAGCAGG   | GCACCAGGGC   | UUACCAACCA   |
|    |            | 1751 | UGAAUACUCC   | GGGGAGCUGU  | CAAUUUCUGA   | CAUCAGACGA   | CUUCCAAUCA   |
|    | 30         | 1801 | CCAUCCGCCA   | UGCCGCAAUA  | UGACGUCACA   | CCAGAGAUGA   | GGAUACCUGG   |
|    |            | 1851 | UGAGGUGAAA   | AACUUGAUGG  | AAAUAGCUGA   | GGUUGACUCA   | GUUGUCCCAG   |
|    | 35         | 1901 | TICCAAAAUGU  | UGGAGAGAAG  | GUCAACUCUA   | UGGAAGCAUA   | CCAGAUACCU   |
|    | 30         | 1951 |              |             | UGGAACGCAA   |              |              |
|    |            | 2001 |              |             | UUAGUCGGAC   |              |              |
|    | 40         | 2051 |              |             | GGCAGCAUAA   |              |              |
|    |            | 2101 |              |             | AAAAUUCCUU   |              |              |
|    |            | 2151 |              |             | GGGUUGAUGC   |              |              |
|    | <b>4</b> 5 | 2201 |              |             | L UCAAGUUGCG |              |              |
|    |            | 2251 |              |             |              |              | CCGCAGGGGG   |
|    | 50         | 2301 | UJUJUAJUJACO | UGCUGGUAU   | C AAACAAACAU | J AGUGGUCCCA | GCGGAUGCCC   |
|    | 30         | 2351 | AAAGCUCCU    | G UUACAUCAU | s uguuucgugt | J CAGCAUGCAA | UGACUUCUCU   |
|    |            | 2401 | GUCAGGCUA    | U UGAAGGACA | C UCCUUUCAU  | J UCGCAGCAAA | ACUUUUUCCA   |
|    | 55         | 2451 | GGGCCCAGU    | G GAAGACGCG | A UAACAGCCG  | UAUAGGGAGA   | A GUUGCGGAUA |
|    |            | 2501 | CCGUGGGUA    | C AGGGCCAAC | C AACUCAGAA  | G CUAUACCAGO | ACUCACUGCU   |
|    |            | 2551 | GCUGAGACG    | G GUCACACGU | C ACAAGUAGU  | G CCGGGUGACA | A CUAUGCAGAC |
| 60 | 60         | 2601 | ACGCCACGU    | U AAGAACUAC | C AUUCAAGGU  | C CGAGUCAAC  | C AUAGAGAACU |
|    |            | 2651 | UCCUAUGUA    | G GUCAGCAUG | C GUGUACUUU  | A CGGAGUAUA  | A AAACUCAGGU |
|    |            |      |              |             |              |              |              |

,,,

| 2701 | GCCAAGCGGU | AUGCUGAAUG | GGUAUUAACA | CCACGACAAG | CAGCACAACU |     |
|------|------------|------------|------------|------------|------------|-----|
| 2751 | UAGGAGAAAG | CUAGAAUUCU | UUACCUACGU | CCGGUUCGAC | CUGGAGCUGA |     |
| 2801 | CGUUUGUCAU | AACAAGUACU | CAACAGCCCU | CAACCACACA | GAACCAAGAU | 5   |
| 2851 | GCACAGAUCC | UAACACACCA | AAUUAUGUAU | GUACCACCAG | GUGGACCUGU |     |
| 2901 | ACCAGAUAAA | GUUGAUUCAU | ACGUGUGGCA | AACAUCUACG | AAUCCCAGUG |     |
| 2951 | UGUUUUGGAC | CGAGGGAAAC | GCCCGCCGC  | GCAUGUCCAU | ACCGUUUUUG | 10  |
| 3001 | AGCAUUGGCA | ACGCCUAUUC | AAAUUUCUAU | GACGGAUGGU | CUGAAUUUUC |     |
| 3051 | CAGGAACGGA | GUUUACGGCA | UCAACACGCU | AAACAACAUG | GGCACGCUAU | 1.5 |
| 3101 | AUGCAAGACA | UGUCAACGCU | GGAAGCACGG | GUCCAAUAAA | AAGCACCAUU | 15  |
| 3151 | AÇAAUCUACU | UCAAACCGAA | GCAUGUCAAA | GCGUGGAUAC | CUAGACCACC |     |
| 3201 | UAGACUCUGC | CAAUACGAGA | AGGCAAAGAA | CGUGAACUUC | CAACCCAGCG | 20  |
| 3251 | GAGUUACCAC | UACUAGGCAA | AGCAUCACUA | CAAUGACAAA | UACGGGCGCA |     |
| 3301 | UUUGGACAAC | AAUCAGGGGC | AGUGUAUGUG | GGGAACUACA | GGGUGGUAAA |     |
| 3351 | UAGACAUCUA | GCUACCAGUG | CUGACUGGCA | AAACUGUGUG | UGGGAAAGUU | 25  |
| 3401 | ACAACAGAGA | CCUCUUAGUG | AGCACGACCA | CAGCACAUGG | AUGUGAUAUU |     |
| 3451 | AUAGCCAGAU | GUCAGUGCAC | AACGGGAGUG | UACUUUUGUG | CGUCCAAAAA |     |
| 3501 | CAAGCACUAC | CCAAUUUCGU | UUGAAGGACC | AGGUCUAGUA | GAGGUCCAAG | 30  |
| 3551 | AGAGUGAAUA | CUACCCCAGG | AGAUACCAAU | CCCAUGUGCU | UUUAGCAGCU |     |
| 3601 | GGAUUUUCCG | AACCAGGUGA | cuguggcggu | AUCCUAAGGU | GUGAGCAUGG | 35  |
| 3651 | UGUCAUUGGC | AUUGUGACCA | UGGGGGGUGA | AGGCGUGGUC | GGCUUUGCAG | 33  |
| 3701 | ACAUCCGUGA | UCUCCUGUGG | CUGGAAGAUG | AUGCAAUGGA | ACAGGGAGUG |     |
| 3751 | AAGGACUAUG | UGGAACAGCU | UGGAAAUGCA | UUCGGCUCCG | GCUUUACUAA | 40  |
| 3801 | CCAAAUAUGU | GAGCAAGUCA | ACCUCCUGAA | AGAAUCACUA | GUGGGUCAAG |     |
| 3851 | ACUCCAUCUU | AGAGAAAUCU | CUAAAAGCCU | UAGUUAAGAU | AAUAUCAGCC |     |
| 3901 | UUAGUAAUUG | UGGUGAGGAA | CCACGAUGAC | CUGAUCACUG | UGACUGCCAC | 45  |
| 3951 | ACUAGCCCUU | AUCGGUUGUA | ccuccucccc | GUGGCGCUGG | CUCAAACAGA |     |
| 4001 | AGGUGUCACA | AUAUUACGGA | AUCCCUAUGG | CUGAACGCCA | AAACAAUAGC |     |
| 4051 | UGGCUUAAGA | AAUUUACUGA | AAUGACAAAU | GCUUGCAAGG | GUAUGGAAUG | 50  |
| 4101 | GAUAGCUGUC | AAAAUUCAGA | AAUUCAUUGA | AUGGCUCAAA | GUAAAAUUU  |     |
| 4151 | UGCCAGAGGU | CAGAGAAAAA | CACGAGUUCC | UGAACAGACU | UAAACAACUC | 55  |
| 4201 | CCCUUAUUAG | AAAGUCAGAU | CGCCACAAUC | GAGCAGAGCG | CGCCAUCCCA |     |
| 4251 | AAGUGACCAG | GAACAAUUAU | UUUCCAAUGU | CCAAUACUUU | GCCCACUAUU |     |
| 4301 | GCAGAAAGUA | cecuccccuc | UACGCAGCUG | AAGCAAAGAG | GGUGUUCUCC | 60  |
| 4351 | CUUGAGAAGA | AGAUGAGCAA | UUACAUACAG | UUCAAGUCCA | AAUGCCGUAU |     |
|      |            |            |            |            |            |     |

|            | 4401 | UGAACCUGUA | uguuugcucc | UGCACGGGAG | cccueeuecc | GGCAAGUCGG   |
|------------|------|------------|------------|------------|------------|--------------|
|            | 4451 | UGGCAACAAA | CUUAAUUGGA | AGGUCGCUUG | CUGAGAAACU | CAACAGCUCA   |
| 5          | 4501 | GUGUACUCAC | UACCGCCAGA | CCCAGAUCAC | UUCGACGGAU | ACAAACAGCA   |
|            | 4551 | GCCCGUGGUG | AUUAUGGACG | AUCUAUGCCA | GAAUCCUGAU | GGGAAAGACG   |
|            | 4601 | ncnccnncan | CUGCCAAAUG | GUUUCCAGUG | UAGAUUUUGU | ACCACCCAUG   |
| 10         | 4651 | GCUGCCCUAG | AAGAGAAAGG | CAUUCUGUUC | ACCUCACCGU | unducundec   |
|            | 4701 | AUCGACCAAU | GCAGGAUCUA | UUAAUGCUCC | AACCGUGUCA | GAUAGCAGAG   |
| 15         | 4751 | CCUUGGCAAG | GAGAUUUCAC | UUUGACAUGA | ACAUCGAGGU | UAUUUCCAUG   |
|            | 4801 | UACAGUCAGA | AUGGCAAGAU | AAACAUGCCC | AUGUCAGUCA | AGACUUGUGA   |
|            | 4851 | CGAUGAGUGU | UGCCCGGUCA | AAAAAUUUUA | GUGCUGCCCU | cuugugugug   |
| 20         | 4901 | GGAAGGCUAU | ACAAUUCAUU | GAUAGAAGAA | CACAGGUCAG | AUACUCUCUA   |
|            | 4951 | GACAUGCUAG | UCACCGAGAU | GUUUAGGGAG | UACAAUCAUA | GACAUAGCGU   |
|            | 5001 | GGGGACCACG | CUUGAGGCAC | UGUUCCAGGG | ACCACCAGUA | UACAGAGAGA   |
| 25         | 5051 | UCAAAAUUAG | CGUUGCACCA | GAGACACCAC | CACCGCCCCC | CAUUGCGGAC   |
|            | 5101 | CUGCUCAAAU | CGGUAGACAG | UGAGGCUGUG | AGGGAGUACU | GCAAAGAAAA   |
|            | 5151 | AGGAUGGUUG | GUUCCUGAGA | UCAACUCCAC | CCUCCAAAUU | GAGAAACAUG   |
| 30         | 5201 | UCAGUCGGGC | UUUCAUUUGC | UUACAGGCAU | UGACCACAUU | UGUGUCAGUG   |
|            | 5251 | GCUGGAAUCA | UAUAUAUAU  | AUAUAAGCUC | uuugcggguu | UUCAAGGUGC   |
| 35         | 5301 | UUAUACAGGA | GUGCCCAACC | AGAAGCCCAG | AGUGCCUACC | CUGAGGCAAG   |
|            | 5351 | CAAAAGUGCA | AGGCCCUGCC | UUUGAGUUCG | CCGUCGCAAU | GAUGAAAAGG   |
|            | 5401 | AACUCAAGCA | CGGUGAAAAC | UGAAUAUGGC | GAGUUUACCA | UGCUGGGCAU   |
| 40         | 5451 | CUAUGACAGG | ugggccguuu | UGCCACGCCA | CGCCAAACCU | GGGCCAACCA   |
|            | 5501 | UCUUGAUGAA | UGAUCAAGAG | GUUGGUGUGC | UAGAUGCCAA | GGAGCUAGUA   |
|            | 5551 | GACAAGGACG | GCACCAACUU | AGAACUGACA | CUACUCAAAU | UGAACCGGAA . |
| <b>4</b> 5 | 5601 | UGAGAAGUUC | AGAGACAUCA | GAGGCUUCUU | AGCCAAGGAG | GAAGUGGAGG   |
|            | 5651 | UUAAUGAGGC | AGUGCUAGCA | AUUAACACCA | GCAAGUUUCC | CAACAUGUAC   |
| 50         | 5701 | AUUCCAGUAG | GACAGGUCAC | AGAAUACGGC | UUCCUAAACC | UAGGUGGCAC   |
|            | 5751 | ACCCACCAAG | AGAAUGCUUA | UGUACAACUU | CCCCACAAGA | GCAGGCCAGU   |
|            | 5801 | GUGGUGGAGU | GCUCAUGUCC | ACCGGCAAGG | UACUGGGUAU | CCAUGUUGGU   |
| 55         | 5851 | GGAAAUGGCC | AUCAGGGCUU | CUCAGCAGCA | CUCCUCAAAC | ACUACUUCAA   |
|            | 5901 | UGAUGAGCAA | GGUGAAAUAG | AAUUUAUUGA | GAGCUCAAAG | GACGCCGGGU   |
|            | 5951 | UUCCAGUCAU | CAACACACCA | AGUAAAACAA | AGUUGGAGCC | UAGUGUUUUC   |
| 60         | 6001 | CACCAGGÜCU | UUGAGGGGAA | CAAAGAACCA | GCAGUACUCA | GGAGUGGGGA   |
|            | 6051 | UCCACGUCUC | AAGGCCAAUU | UUGAAGAGGC | UAUAUUUUCC | AAGUAUAUAG   |
| 65         | 6101 | GAAAUGUCAA | CACACACGUG | GAUGAGUACA | UGCUGGAAGC | AGUGGACCAC   |
| 65         |      |            |            |            | •          |              |

| б | 151   | UACGCAGGCC                        | AACUAGCCAC      | CCUAGAUAUC    | AGCACUGAAC        | CAAUGAAACU                 |    |
|---|-------|-----------------------------------|-----------------|---------------|-------------------|----------------------------|----|
| 6 | 201   | GGAGGACGCA                        | GUGUACGGUA      | CCGAGGGUCU    | UGAGGCGCUU        | GAUCUAACAA                 |    |
| 6 | 251   | CGAGUGCCGG                        | UUACCCAUAU      | GUUGCACUGG    | GUAUCAAGAA        | GAGGGACAUC                 | 5  |
| 6 | 301   | CUCUCUAAGA                        | AGACUAAGGA      | CCUAACAAAG    | UUAAAGGAAU        | GUAUGGACAA                 |    |
| 6 | 351   | GUAUGGCCUG                        | AACCUACCAA      | UGGUGACUUA    | UGUAAAAGAU        | GAGCUCAGGU                 |    |
| 6 | 401   | CCAUAGAGAA                        | GGUAGCGAAA      | GGAAAGUCUA    | GGCUGAUUGA        | GGCGUCCAGU                 | 10 |
| 6 | 451   | UUGAAUGAUU                        | CAGUGGCGAU      | GAGACAGACA    | UUUGGUAAUC        | UGUACAAAAC                 |    |
| 6 | 501   | UUUCCACCUA                        | AACCCAGGGG      | UUGUGACUGG    | UAGUGCUGUU        | GGGUGUGACC                 | 15 |
| 6 | 551   | CAGACCUCUU                        | UUGGAGCAAG      | AUACCAGUGA    | UGUUAGAUGG        | ACAUCUCAUA                 | 15 |
| 6 | 601   | GCAUUUGAUU                        | ACUCUGGGUA      | CGAUGCUAGC    | UUAAGCCCUG        | ucugguuugc                 |    |
| 6 | 651   | UUGCCUAAAA                        | AUGUUACUUG      | AGAAGCUUGG    | AUACACGCAC        | AAAGAGACAA                 | 20 |
| 6 | 701   | ACUACAUUGA                        | CUACUUGUGC      | AACUCCCAUC    | ACCUGUACAG        | GGAUAAACAU                 |    |
| 6 | 751   | UACUUUGUGA                        | GGGGUGGCAU      | GCCCUCGGGA    | UGUUCUGGUA        | CCAGUAUUUU                 |    |
| 6 | 801   | CAACUCAAUG                        | AUUAACAAUA      | UCAUAAUUAG    | GACACUAAUG        | CUAAAAGUGU                 | 25 |
| б | 851   | ACAAAGGGAU                        | UGACUUGGAC      | CAAUUCAGGA    | UGAUCGCAUA        | UGGUGAUGAU                 |    |
| 6 | 901   | GUGAUCGCAU                        | CGUACCCAUG      | GCCUAUAGAU    | GCAUCUUUAC        | UCGCUGAAGC                 |    |
| б | 951   | UGGUAAGGGU                        | UACGGGCUGA      | UCAUGACACC    | AGCAGAUAAG        | GGAGAGUGCU                 | 30 |
| 7 | 001   | UUAACGAAGU                        | UACCUGGACC      | AACGCCACUU    | UCCUAAAGAG        | GUAUUUUAGA                 |    |
| 7 | 051   | GCAGAUGAAC                        | AGUACCCCUU      | CCUGGUGCAU    | CCUGUUAUGC        | CCAUGAAAGA                 | 35 |
| 7 | 101   | CÂUACACGAA                        | UCAAUUAGAU      | GGACCAAGGA    | UCCAAAGAAC        | ACCCAAGAUC                 | 33 |
| 7 | 151   | ACGUGCGCUC                        | ACUGUGUCUA      | UUAGCUUGGC    | AUAACGGGGA        | GCACGAAUAU                 |    |
| 7 | 201   | GAGGAGUUCA                        | UCCGUAAAAU      | UAGAAGCGUC    | CCAGUCGGAC        | GUUGUUUGAC                 | 40 |
| 7 | 251   | CCUCCCGCG                         | UUUUCAACUC      | UACGCAGGAA    | GUGGUUGGAC        | UCCUUUUAGA                 |    |
| 7 | 301   | UUAGAGACAA                        | UUUGAAAUAA      | UUUAGAUUGG    | CUUAACCCUA        | CUGUGCUAAC                 |    |
| 7 | 351   | CGAACCAGAU                        | AACGGUACAG      | UAGGGGUAAA    | UUCUCCGCAU        | UCGGUGCGG                  | 45 |
|   |       | PNA nach Anspr<br>ruch 7 enthält. | ruch 6, dadurch | gekennzeichne | t, daß sie die Nu | ıkleotide 532 bis 2041 der | 50 |
| 5 | 32    |                                   |                 |               |                   | CGACUACUUU                 |    |
| 5 |       |                                   | GUUUCAUUUU      |               |                   |                            | 55 |
| 6 | 501 1 | UGAGAGAUCG                        | UUACCAUAUA      | GCUAUUGGAU    | UGGCCAUCCG        | GUGACUAAVA                 |    |
|   |       |                                   |                 |               |                   |                            |    |

|    | 651  | GAGCUAUUAU | AUAUCCCUUU | GUUGGGUUUA | UACCACUUAG | CUUGAAAGAG |
|----|------|------------|------------|------------|------------|------------|
|    | 701  | GUUAAAACAU | UACAAUUCAU | UGUUAAGUUG | AAUACAGCAA | AAUGGGAGCU |
| 5  | 751  | CAAGUAUCAA | CGCAAAAGAC | UGGGGCACAU | GAGACCAGGC | UGAAUGCUAG |
|    | 801  | CGGCAAUUCC | AUCAUUCACU | ACACAAAUAU | UAAUUAUUAC | AAGGAUGCCG |
|    | 851  | CAUCCAACUC | AGCCAAUCGG | CAGGAUUUCA | CUCAAGACCC | GGGCAAGUUC |
| 10 | 901  | ACAGAACCAG | UGAAAGAUAU | CAUGAUUAAA | UCACUACCAG | CUCUCAACUC |
|    | 951  | CCCCACAGUA | GAGGAGUGCG | GAUACAGUGA | CAGGGCGAGA | UCAAUCACAU |
| 15 | 1001 | UAGGUAACUC | CACCAUAACG | ACUCAGGAAU | GCGCCAACGU | GGUGGUGGGC |
| 13 | 1051 | UAUGGAGUAU | GGCCAGAUUA | UCUAAAGGAU | AGUGAGGCAA | CAGCAGAGGA |
|    | 1101 | CCAACCGACC | CAACCAGACG | UUGCCACAUG | UAGGUUCUAU | ACCCUUGACU |
| 20 | 1151 | CUGUGCAAUG | GCAGAAAACC | UCACCAGGAU | GGUGGUGGAA | GCUGCCCGAU |
|    | 1201 | GÇUUUGUCGA | ACUUAGGACU | GUUUGGGCAG | AACAUGCAGU | ACCACUACUU |
|    | 1251 | AGGCCGAACU | GGGUAUACCG | UACAUGUGCA | GUGCAAUGCA | UCUAAGUUCC |
| 25 | 1301 | ACCAAGGAUG | CUUGCUAGUA | GUGUGUGUAC | CGGAAGCUGA | GAUGGGUUGC |
|    | 1351 | GCAACGCUAG | ACAACACCCC | AUCCAGUGCA | GAAUUGCUGG | GGGGCGAUAC |
| 20 | 1401 | GGCAAAGGAG | UUUGCGGACA | AACCGGUCGC | AUCCGGGUCC | AACAAGUUGG |
| 30 | 1451 | UACAGAGGGU | GGUGUAUAAU | GCAGGCAUGG | GGGUGGGUGU | UGGAAACCUC |
|    | 1501 | ACCAUUUUCC | CCCACCAAUG | GAUCAACCUA | CGCACCAAUA | AUAGUGCUAC |
| 35 | 1551 | AAUUGUGAUG | CCAUACACCA | ACAGUGUACC | UAUGGAUAAC | AUGUUUAGGC |
|    | 1601 | AUAACAACGU | CACCCUAAUG | GUUAUCCCAU | UUGUACCGCU | AGAUUACUGC |
|    | 1651 | CCUGGGUCCA | CCACGUACGU | CCCAAUUACG | GUCACGAUAG | CCCCAAUGUG |
| 40 | 1701 | UGCCGAGUAC | AAUGGGUUAC | GUUUAGCAGG | GCACCAGGGC | UUACCAACCA |
|    | 1751 | UGAAUACUCC | GGGGAGCUGU | CAAUUUCUGA | CAUCAGACGA | CUUCCAAUCA |
| 45 | 1801 | CCAUCCGCCA | UGCCGCAAUA | UGACGUCACA | CCAGAGAUGA | GGAUACCUGG |
| 45 | 1851 | UGAGGUGAAA | AACUUGAUGG | AAAUAGCUGA | GGUUGACUCA | GUUGUCCCAG |
|    | 1901 | UCCAAAAUGU | UGGAGAGAAG | GUCAACUCUA | UGGAAGCAUA | CCAGAUACCU |
| 50 | 1951 | GUGAGAUCCA | ACGAAGGAUC | UGGAACGCAA | GUAUUCGGCU | UUCCACUGCA |
|    | 2001 | ACCAGGGUAC | UCGAGUGUUU | UUAGUCGGAC | GCUCCUAGGA | G          |

<sup>9.</sup> Rekombinante DNA nach Anspruch 6, dadurch gekennzeichnet, daß sie die Nukleotide 2289 bis 3600 der Sequenz von Anspruch 7 enthält.

60

|                     | 2289                  |                                     |                  |                 | UA                | CCGCAGGGGG                 |    |
|---------------------|-----------------------|-------------------------------------|------------------|-----------------|-------------------|----------------------------|----|
|                     | 2301                  | UUUUAUUACG                          | UGCUGGUAUC       | AAACAAACAU      | AGUGGUCCCA        | GCGGAUGCCC                 |    |
|                     | 2351                  | AAAGCUCCUG                          | UUACAUCAUG       | nennncenen      | CAGCAUGCAA        | UGACUUCUCU                 | 5  |
|                     | 2401                  | GUCAGGCUAU                          | UGAAGGACAC       | UCCUUUCAUU      | UCGCAGCAAA        | <b>ACUUUUUCCA</b>          |    |
|                     | 2451                  | GGGCCCAGUG                          | GAAGACGCGA       | UAACAGCCGC      | UAUAGGGAGA        | GUUGCGGAUA                 |    |
|                     | 2501                  | CCGUGGGUAC                          | AGGGCCAACC       | AACUCAGAAG      | CUAUACCAGC        | ACUCACUGCU                 | 10 |
|                     | 2551                  | GCUGAGACGG                          | GUCACACGUC       | ACAAGUAGUG      | CCGGGUGACA        | CUAUGCAGAC                 |    |
|                     | 2601                  | ACGCCACGUU                          | AAGAACUACC       | AUUCAAGGUC      | CGAGUCAACC        | AUAGAGAACU                 |    |
|                     | 2651                  | UCCUAUGUAG                          | GUCAGCAUGC       | GUGUACUUUA      | CGGAGUAUAA        | AAACUCAGGU                 | 15 |
|                     | 2701                  | GCCAAGCGGU                          | AUGCUGAAUG       | GGUAUUAACA      | CCACGACAAG        | CAGCACAACU                 |    |
|                     | 2751                  | UAGGAGAAAG                          | CUAGAAUUCU       | UUACCUACGU      | CCGGUUCGAC        | CUGGAGCUGA                 | 20 |
|                     | 2801                  | CGUUUGUCAU                          | AACAAGUACU       | CAACAGCCCU      | CAACCACACA        | GAACCAAGAU                 |    |
|                     | 2851                  | GCACAGAUCC                          | UAACACACCA       | AAUUAUGUAU      | GUACCACCAG        | GUGGACCUGU                 |    |
|                     | 2901                  | ACCAGAUAAA                          | GUUGAUUCAU       | ACGUGUGGCA      | AACAUCUACG        | AAUCCCAGUG                 | 25 |
|                     | 2951                  | UGUUUUGGAC                          | CGAGGGAAAC       | GCCCGCCGC       | GCAUGUCCAU        | ACCGUUUUUG                 |    |
|                     | 3001                  | AÚCAUUGGCA                          | ACGCCUAUUC       | AAAUUUCUAU      | GACGGAUGGU        | CUGAAUUUUC                 |    |
|                     | 3051                  | CAGGAACGGA                          | GUUUACGGCA       | UCAACACGCU      | AAACAACAUG        | GGCACGCUAU                 | 30 |
|                     | 3101                  | AUGCAAGACA                          | UGUCAACGCU       | GGAAGCACGG      | GUCCAAUAAA        | AAGCACCAUU                 |    |
|                     | 3151                  | AGAAUCUACU                          | UCAAACCGAA       | GCAUGUCAAA      | GCGUGGAUAC        | CUAGACCACC                 | 35 |
|                     | 3201                  | UAGACUCUGC                          | CAAUACGAGA       | AGGCAAAGAA      | CGUGAACUUC        | CAACCCAGCG                 | 33 |
|                     | 3251                  | GAGUUACCAC                          | UACUAGGCAA       | AGCAUCACUA      | CAAUGACAAA        | UACGGGCGCA                 |    |
|                     | 3301                  | UUUGGACAAC                          | AAUCAGGGGC       | AGUGUAUGUG      | GGGAACUACA        | GGGUGGUAAA                 | 40 |
|                     | 3351                  | UAGACAUCUA                          | GCUACCAGUG       | CUGACUGGCA      | AAACUGUGUG        | UGGGAAAGUU                 |    |
|                     | 3401                  | ACAACAGAGA                          | CCUCUUAGUG       | AGCACGACCA      | CAGCACAUGG        | AUGUGAUAUU                 |    |
|                     | 3451                  | AUAGCCAGAU                          | GUCAGUGCAC       | AACGGGAGUG      | UACUUUUGUG        | CGUCCAAAAA                 | 45 |
|                     | 3501                  | CAAGCACUAC                          | CCAAUUUCGU       | UUGAAGGACC      | AGGUCUAGUA        | GAGGUCCAAG                 |    |
|                     | 3551                  | AGAGUGAAUA                          | CUACCCCAGG       | AGAUACCAAU      | CCCAUGUGCU        | UUUAGCAGCU                 |    |
|                     |                       |                                     |                  |                 |                   |                            | 50 |
| 10. Reko<br>Sequen: | ombinant<br>z von Ans | e DNA nach Ansp<br>pruch 7 enthält. | oruch 6, dadurch | n gekennzeichne | t, daß sie die Nu | kleotide 6059 bis 7130 der |    |
|                     | 6059                  | · tic                               | AAGGCCAAUU       | UUGAAGAGGC      | UAUAUUUUCC        | AAGUAUAUAG                 | 55 |
|                     | 6101                  |                                     |                  |                 |                   | AGUGGACCAC                 |    |
|                     | 6151                  |                                     |                  |                 |                   | CAAUGAAACU                 | 60 |
|                     | 9T2T                  | JACCOAGGGG                          |                  |                 |                   |                            |    |

...........

|    | 6201 | GGAGGACGCA | GUGUACGGUA | CCGAGGGUCU | UGAGGCGCUU | GAUCUAACAA |
|----|------|------------|------------|------------|------------|------------|
|    | 6251 | CGAGUGCCGG | UUACCCAUAU | GUUGCACUGG | GUAUCAAGAA | GAGGGACAUC |
| 5  | 6301 | CUCUCUAAGA | AGACUAAGGA | CCUAACAAAG | UUAAAGGAAU | GUAUGGACAA |
|    | 6351 | GUAUGGCCUG | AACCUACCAA | UGGUGACUUA | UGUAAAAGAU | GAGCUCAGGU |
|    | 6401 | CCAUAGAGAA | GGUAGCGAAA | GGAAAGUCUA | GGCUGAUUGA | GGCGUCCAGU |
| 10 | 6451 | UUGAAUGAUU | CAGUGGCGAU | GAGACAGACA | UUUGGUAAUC | UGUACAAAAC |
|    | 6501 | UUUCCACCUA | AACCCAGGGG | UUGUGACUGG | UAGUGCUGUU | GGGUGUGACC |
|    | 6551 | CAGACCUCUU | UUGGAGCAAG | AUACCAGUGA | UGUUAGAUGG | ACAUCUCAUA |
| 15 | 6601 | GCAUUUGAUU | ACUCUGGGUA | CGAUGCUAGC | UUAAGCCCUG | ucugguuugc |
|    | 6651 | UUGCCUAAAA | AUGUUACUUG | AGAAGCUUGG | AUACACGCAC | AAAGAGACAA |
| 20 | 6701 | ACUACAUUGA | CUACUUGUGC | AACUCCCAUC | ACCUGUACAG | GGAUAAACAU |
| 20 | 6751 | UACUUUGUGA | GGGGUGGCAU | GCCCUCGGGA | UGUUCUGGUA | CCAGUAUUUU |
|    | 6801 | CAACUCAAUG | AUUAACAAUA | UCAUAAUUAG | GACACUAAUG | CUAAAAGUGU |
| 25 | 6851 | ACAAAGGGAU | UGACUUGGAC | CAAUUCAGGA | UGAUCGCAUA | UGGUGAUGAU |
|    | 6901 | GUGAUCGCAU | CGUACCCAUG | GCCUAUAGAU | GCAUCUUUAC | UCGCUGAAGC |
|    | 6951 | UGGUAAGGGU | UACGGGCUGA | UCAUGACACC | AGCAGAUAAG | GGAGAGUGCU |
| 30 | 7001 | UUAACGAAGU | UACCUGGACC | AACGCCACUU | UCCUAAAGAG | GUAUUUUAGA |
|    | 7051 | GCAGAUGAAC | AGUACCCCUU | CCUGGUGCAU | CCUGUUAUGC | CCAUGAAAGA |
|    | 7101 | CAUACACGAA | UCAAUUAGAU | GGACCAAGGA |            |            |

11. Mikroorganismus, dadurch gekennzeichnet, daß er eine rekombinante DNA nach einem der Ansprüche 6 bis 10 enthält.

12. E. coli VP4/2/3, DSM 5558.

- 13. E. coli, VP1.
- 14. E. coli 3DPol.

15. Verfahren zur Herstellung eines Polypeptids nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man es aus einem Mikroorganismus nach einem der Ansprüche 11 bis 14 nach Aufschluß der Zellen gewinnt oder eine rekombinante DNA nach einem der Ansprüche 6 bis 10 in geeignete Wirtszellen einbringt und das Polypeptid aus dem Kulturmedium, gegebenenfalls nach Aufschluß der Zellen, gewinnt.
16. Verwendung eines Polypeptids nach einem der Ansprüche 1 bis 5, vorzugsweise einem der Ansprüche 2 bis 4 zur Erzeugung von gruppenspezifisch polyklonalen oder monoklonalen Antikörpern gegen Enteroviren.

17. Gruppenspezifischer immunologischer Nachweis von Enterovirus-Infektionen durch Untersuchung von Blut oder Serum von Patienten, dadurch gekennzeichnet, daß man in einem an sich bekannten immunologischen Test mindestens eines der Polypeptide nach einem der Ansprüche 1 bis 5 als Antigen zum Nachweis von Antikörpern gegen Enteroviren oder nach Ansprüch 16 erzeugte Antikörper zum Nachweis von Virus-spezifischen Antigenen einsetzt.

Hierzu 2 Seite(n) Zeichnungen

60

35

40

45

50

55

Nummer: Int. Cl.5:

DE 39 39 200 A1 C 12 N 1/00

Offenlegungstag: 29. Mai 1991

Fig. 1

### Aufbau des direkten ELISA für den Enterovirus-spezifischen Antigennachweis bzw. für den Antikörpernachweis

| Antigen Nachweis                                                          | Antikörper-Nachweis                                                       | :       |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------|
| Enzymkonjugat zum<br>Nachweis von hu-<br>manem-Immunglobulin              | Enzymkonjugat zum<br>Nachweis von hu-<br>manem-lmmunglobulin              | E       |
| polyklonales Anti-<br>serum ( aVP4/2/3,<br>aVP1 oder a3D <sup>Pol</sup> ) | polyklonales Anti-<br>serum ( aVP4/2/3,<br>aVP1 oder a3D <sup>P°1</sup> ) |         |
| gebundenes Antigen<br>aus Patientenscrum                                  | gebundenes Antigen<br>aus Patientenserum                                  | Antigen |
| Festphase                                                                 | Festphase                                                                 |         |

Nummer:

DE 39 39 200 A1

Int. Cl.<sup>5</sup>: Offenlegungstag:

C 12 N 1/00 29. Mai 1991

Fig. 2

# Aufbau eines 'Sandwich' ELISA für den Enterovirus-spezifischen Antikörpernachweis

| Antikörper-Nachweis                                                                      |         |
|------------------------------------------------------------------------------------------|---------|
| Enzymkonjugat zum Nach-<br>weis von humanem-Immun-<br>globulin                           | EL CO   |
| Antikörper aus Patienten-<br>serum                                                       |         |
| aufgereinigtes Antigen<br>aus infizierten Vero-<br>zellen                                | Antigen |
| gebundenes, polyklonales<br>Antiserum ( aVP4/2/3 oder<br>aVP1 oder a3D <sup>e ol</sup> ) |         |
| Festphase                                                                                |         |