LINEAIRE REGRESSIE: AANNAMES EN CONTROLES

21 mei 2024

Training O + S

Elmar Jansen (elmar@elmarjansen.nl)

VANDAAG

1. Regressieassumpties

• • •

DE KOMENDE WEKEN

Bijeenkomst	Onderwerp
Dinsdag 14 mei	Lineaire regressie: de basis
Dinsdag 21 mei	Lineaire regressie vervolg: assumpties en controleren
Donderdag 30 mei	Interacties en dummy-variabelen
Dinsdag 4 juni	Logistische Regressie
Dinsdag 11 juni	Multilevel-analyse

TERUGBLIK VORIGE WEEK

LINEAIRE REGRESSIE

Maakt een (lineair) model

om

de waarden te voorspellen van een *afhankelijke variable* y

met de waarden van één of meer onafhankelijke variabelen x

LINEAIRE REGRESSIE IN GRAFIEK

Lijn waarvoor geldt:
(gekwadrateerde) som van
de verticale afstanden
tussen de punten en de lijn
is minimaal

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

LINEAIRE REGRESSIE IN VERGELIJKING

LINEAIRE REGRESSIE IN VERGELIJKING

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Schatting voor coëfficienten β_0 en β_1 zo dat som van (kwadraat van) de residuen (ϵ_i) zo klein mogelijk is

MEERVOUDIGE REGRESSIE

Meervoudige Regressie

Regressie met meerdere onafhankelijke variabelen

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \varepsilon_i$$

Interpretatie van (coefficient) β_0

Als x_1 en x_2 gelijk zijn aan 0, is y gelijk aan β_0

Interpretatie van (coefficient) β_1

Als x_1 omhoog gaat met 1 en x_2 gelijk blijft, stijgt y met β_1 Interpretatie van (coefficient) β_2

Als x_2 omhoog gaat met 1 en x_1 gelijk blijft, stijgt y met β_2

Effect is nu *constant houdend voor* andere variabele Dat gaan we volgende week gebruiken om te *controleren*

DE R² (EN ADJUSTED R²)

De R² geeft de **verklaarde variantie**: een indicatie van hoe goed de gemaakte vergelijking (het "model") de afhankelijke variabele voorspelt.

STANDAARDFOUT

```
Call:
lm(formula = autos per hh ~ hh grootte, data = buurten)
Residuals:
               10 Median
    Min
-0.35595 -0.12057 -0.06430 0.07108 1.81900
Coefficients:
                    Std. Error
            Estimate
                                 value Pr(>|t|)
                       0.05040
(Intercept) -0.34603
                                -6.866 2.49e-11 ***
hh_grootte 0.47912
                       0.02729
                                17.554 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2057 on 405 degrees of freedom
  (72 observations deleted due to missingness)
Multiple R-squared: 0.4321, Adjusted R-squared: 0.4307
F-statistic: 308.2 on 1 and 405 DF, p-value: < 2.2e-16
```

Formeel: de geschatte standaardafwijking van de *steekproevenverdeling* van de geschatte parameter

Intuïtief: een indicatie van hoe ver we denken dat de schatting (gemiddeld) van de echte waarde af zit.

We verwachten dus dat het effect van hh_grootte 0.48 is, maar met deze steekproef zitten we daar gemiddeld 0.03 naast.

	Coefficients ^a							
		Unstandardized	l Coefficients	Standardized Coefficients			95.0% Confiden	ice Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	-,346	,050		-6,866	<.001	-,445	-,247
	Bevolking/Particuliere huishoudens/Gemiddelde huishoudensgrootte (aantal)	,479	,027	,657	17,554	<.001	,425	,533
a. De	a. Dependent Variable: Motorvoertuigen/Personenauto's/Personenauto's per huishouden (per huishouden)							

T-TOETS (SIGNIFICANTIE VAN COËFFICIËNTEN)

```
Call:
lm(formula = autos per hh ~ hh grootte, data = buurten)
Residuals:
    Min
               10 Median
-0.35595 -0.12057 -0.06430 0.07108 1.81900
Coefficients:
            Estimate Std. Erro t value Pr(>|t|)
(Intercept) -0.34603
                                -6.866 2.49e-11 ***
                       0.0504
hh_grootte 0.47912
                       0.0272
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2057 on 405 degrees of freedom
  (72 observations deleted due to missingness)
Multiple R-squared: 0.4321, Adjusted R-squared: 0.4307
F-statistic: 308.2 on 1 and 405 DF, p-value: < 2.2e-16
```

Toets of de gevonden steekproef waarschijnlijk is als de coëfficiënt in de populatie eigenlijk 0 is.

Met andere woorden:

zou je dit effect toevallig kunnen vinden in een steekproef, als er eigenlijk geen effect is.

p < 0.01 voor het effect van hh grootte:

Het effect is significant: het is niet waarschijnlijk om deze steekproef te vinden als er in de populatie geen effect is.

	Coefficients ^a								
		Unstandardized Coefficients		Standardized Coefficients			95.0% Confidence Interval for B		
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	
1	(Constant)	-,346	,050		-6,866	<.001	-,445	-,247	
	Bevolking/Particuliere huishoudens/Gemiddelde huishoudensgrootte (aantal)	,479	,027	,657	17,554	<.001	,425	,533	
a De	a. Dependent Variable: Motoryoertuigen/Personenauto's/Personenauto's per huishouden (per huishouden)								

Let op: de significantie van de constante is inhoudelijk niet interessant

F-TOETS (SIGNIFICANTIE VAN MODEL)

```
Call:
lm(formula = autos per hh ~ hh grootte, data = buurten)
 Residuals:
     Min
               10 Median
 -0.35595 -0.12057 -0.06430 0.07108 1.81900
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
 (Intercept) -0.34603
                       0.05040 -6.866 2.49e-11 ***
hh grootte 0.47912
                       0.02729 17.554 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2057 on 405 degrees of freedom
  (72 observations deleted due to missingness)
Multiple R-squared: 0.4321, Adjusted R-squared: 0.4307
F-statistic: 308.2 on 1 and 405 DF, p-value: < 2.2e-16
```

Toets of de gevonden verklaringskracht van het model (de R2) waarschijnlijk is als het model in werkelijkheid geen enkele voorspellende kracht heeft.

Met andere woorden:

zou je dit gehele model kunnen vinden in een steekproef, als eigenlijk geen onafhankelijke variabele effect heeft.

p < 0.01:

Het model voorspelt significant beter dan geen model

ANOVA ^a								
Model		Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	13,033	1	13,033	308,156	<.001 b		
	Residual	17,128	405	,042				
	Total	30,161	406					

- a. Dependent Variable: Motorvoertuigen/Personenauto's/Personenauto's per huishouden (per huishouden)
- b. Predictors: (Constant), Bevolking/Particuliere huishoudens/Gemiddelde huishoudensgrootte (aantal)

Let op: dit is eigenlijk alleen relevant bij meerdere onafhankelijke variabelen.

VANDAAG: REGRESSIEASSUMPTIES

8 GEVAREN VAN REGRESSIE

GEVAAR 1

SCHIJNVERBAND / OMITTED VARIABLE / CONFOUNDING VARIABELE

VOORBEELD

Vertrouwen in politici

Deelname in
Demonstraties /
Petities /
Boycotts

RESULTAAT

```
> summary(lm(action ~ trstplt, data = ess10))
call:
lm(formula = action ~ trstplt, data = ess10)
Residuals:
    Min
         1Q Median 3Q
                                  Max
-0.5009 -0.4203 -0.3720 0.5475 2.6602
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.339765 0.006773 50.16 <2e-16 ***
trstplt 0.016109 0.001514 10.64 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7221 on 36323 degrees of freedom
  (1286 observations deleted due to missingness)
Multiple R-squared: 0.003108, Adjusted R-squared: 0.00308
F-statistic: 113.2 on 1 and 36323 DF, p-value: < 2.2e-16
```

WAT WAS DAT?

Vertrouwen in politici

Deelname in Demonstraties / Petities / Boycotts

Een derde variabele z (confounding variable / omitted variable)

heeft een effect op zowel de afhankelijke variabele als de onafhankelijke variabele

hierdoor ontstaat er een correlatie tussen x en y en kan het ten onrechte lijken alsof er een effect is van x op y

CONTROLEREN VOOR SCHIJNVERBANDEN

(using multiple regression)

SCHIJNVERBAND: CONTROLEREN

Door de schijnverband-variabele "Z" toe te voegen aan het model kunnen we het probleem verhelpen:

we krijgen het effect constant houdend voor Z

GEVAAR 1: SCHIJNVERBAND

Gevaar

Vertekende schatting van coëfficiënten (en dus verkeerde inschatting van de omvang van het effect)

Opsporing

Nadenken. Er is geen (statistische) test die je kan beschermen tegen schijnverband

Indien mogelijk...

Oplossing

Voeg de *confounding variables* toe als controlevariabe Effect van X op Y is nu het 'pure' effect.

Als je geen confounding variables vergeten bent...

8 GEVAREN VAN REGRESSIE

GEVAAR 2

SIMULTANEÏTEIT (WEDERKERIGHEID)

GEVAAR 2: SIMULTANEÏTEIT

Tweerichtingseffect of wederkerig effect

GEVAAR 2: SIMULTANEÏTEIT

Wederkerige effecten of tweerichtings-invlo (mutual influence)

Gevaar

Vertekende schatting van coëfficiënten (en dus verkeerde inschatting van de omvang van het effect)

Opsporing

Goed nadenken. Er is geen (statistische) test die je kan beschermen tegen simultaneïteit

Oplossing Tijdseries-analyse Instrumentele variabelen Niet in dit vak

8 GEVAREN VAN REGRESSIE

https://elmarjansen.nl/os

OEFENING 1

Het effect van gemiddelde grootte van huishoudens in een buurt op gemiddeld aantal auto's per huishouden in die buurt

8 GEVAREN VAN REGRESSIE

GEVAAR 3

NON-LINEAIRITEIT

GEVAAR 3 NON-LINEAIRITEIT

Het uitgangspunt van lineaire regressie is:

- dat relaties (bij benadering) lineair zijn
- dat de variabelen (bij benadering) continu en interval zijn

GEVAAR 3 NON-LINEAIRITEIT

Je denkt dat er (bijna) geen verband is, terwijl het er wel is – alleen niet lineair.

Figure 12.3 Two models fitted to the same data

ALLEMAAL DEZELFDE REGRESSIELIJN...

TRANSFORMEREN

Transformatie kan een oplossing zijn:

- We vervangen de variabele door dezelfde variabele waarop een wiskundige bewerking (transformatie) is uitgevoerd
- Veel voorkomende transformaties:
 - Logaritme (vooral bij ratio-variabelen als inkomen of aantal inwoners)
 - Kwadraat (vooral bij parabolisch effect: dan kwadraat onafhankelijke variabele en ongetransformeerde variabele in model)
 - Wortel
 - Relatieve waarde (waarde gedeeld door een totaal)

GEVAAR 3 NON-LINEAIRITEIT

Aanname van (lineair!) regressie-model is dat alle effecten lineair zijn

Gevaar

geen of alleen kleine effecten vinden, terwijl er wel een relatie is (alleen niet lineair)

Opsporing

Spreidingsdiagram (scatterplot)

Bij meervoudige regressie: spreidingsdiagram tussen residuen en onafhankelijke variabelen

Oplossing

Transformeer variabelen (kwadraat, logaritme etc.) Ander type regression voor specifieke verdeling afhankelijke variabele (bijv. Poisson of negative binomial; niet in dit vak besproken)

8 GEVAREN VAN REGRESSIE

https://elmarjansen.nl/os

OEFENING 2

Het effect van gemiddelde grootte van huishoudens in een buurt op gemiddeld aantal auto's per huishouden in die buurt

8 GEVAREN VAN REGRESSIE

GEVAAR 4

EXTREME WAARDEN

EXTREME WAARDEN

- Regressie kan zeer gevoelig zijn voor extreme waarden
- Een enkele observatie met zeer uitzonderlijke waarden kan heel veel invloed hebben op het gevonden effect

Dit gevaar is het grootst wanneer de observatie veel "leverage" (hefboom-werking) heeft

Outlier x Leverage = Influence

Observatie met groot residu – dus ver van de regressielijn

Outlier

X

Leverage

=

Influence

Observatie met extreme waarde op x

Influence

Dutlier x Leverage

Heeft beide eigenschappen en dus veel invloed op resultaat

Gevaar

resultaten worden bepaald door maar één of enkele extreme waarnemingen

Opsporing

bestuderen spreidingsdiagram en z-scores

Oplossing

- Eerst: denk na!
 - Kloppen je metingen?
 - Is er een theoretische reden voor je extreme waarden?
 - Moet je misschien transformeren?
- Gooi nooit zomaar waarneming weg omdat het een outlier is
- Met beleid waarnemingen weggooien:
 - winsoring of trimming
- Nerdy oplossingen: robust regression (rlm in MASS library) of bootstrapping

8 GEVAREN VAN REGRESSIE

https://elmarjansen.nl/os

OEFENING 3

Het effect van gemiddelde grootte van huishoudens in een buurt op gemiddeld aantal auto's per huishouden in die buurt

GEVAAR 5

MULTICOLLINEARITEIT

MULTICOLLINEARITEIT

MULTICOLLINEARITEIT: VOORBEELD

$$schoenmaat_{i} = \beta_{0} + \beta_{1}rvoet_{i} + \varepsilon_{i}$$

$$schoenmaat_{i} = \beta_{0} + \gamma_{1}rvoet_{i} + \gamma_{2}lvoet_{i} + \varepsilon_{i}$$

Het is nu onmogelijk om nog te bepalen wat de afzonderlijke waarden van β_1 en β_2 zijn – omdat die effecten niet van elkaar te scheiden zijn

GEVAAR 5 MULTICOLLINEARITEIT

H 12.2.7

Meerdere onafhankelijke variabelen verklaren (bijna) hetzelfde deel van de variatie in de afhankelijke variabele

Gevaar

- → Rare (en moeilijk te interpreteren) coëfficieten
- → Grote ("opgeblazen" of "inflated") standaardfout (= enorme uncertainty)

Opsporing

bereke<mark>n *vif* ()</mark>moet onder 10 zijn)

Variance Inflation Factor

Oplossing

Variabelen uit het model halen Meerdere variabelen samenvoegen tot één schaal

VIF BEREKENEN IN R EN SPSS

```
mod <- lm(life_span ~ dreaming + non_dreaming, data=sleep)
library(car)
vif(mod)</pre>
```

```
Loading required package: carData dreaming non_dreaming 1.376535 1.376535
```


Coefficients ^a			
		Collinearity Statistics	
Model		Tolerance	VIF
1	hours	.856	1.169
	prep_exams	.713	1.403
	current_grade	.657	1.522

8 GEVAREN VAN REGRESSIE

GEVAAR 7

NIET-ONAFHANKELIJKE RESIDUEN

GEVAAR 6 NIET-ONAFHANKELIJKE RESIDUEN

De gegevens moeten uit een echte aselecte steekproef komen

Alle observaties moeten dus onafhankelijk van elkaar zijn

Gevaar

Onjuiste (te lage) standaard-fouten: onderschatting van onzekerheid

Opsporen van problemen

Nadenken! Geen statistische manier om achter te komen

Voorbeelden

- Tijdserie
- Leerlingen van verschillende scholen

Oplossingen? Niet met normale (OLS) -regressie

Andere methoden:

- Tijd-series
- Multilevel-analyse
- Paired samples T-test
- Dummies voor groepen ("Fixed effects model")

8 GEVAREN VAN REGRESSIE

GEVAAR 7

HETEROSKEDASTICITEIT

Exogeen

Heteroskedastisch

Endogeen

Homoskedastisch

GEVAAR 7 HETEROSKEDASTICITEIT

GEVAAR 7 HETEROSKEDASTICITEIT

GEVAAR 7 HETEROSKEDASTICITEIT

Variantie van residu ϵ_i moet onafhankelijk zijn van de waarde van de onafhankelijke variabelen

Gevaar

onjuiste standaardfout (en dus onjuist betrouwbaarheidsinterval en p-waarde)

Opsporing

spreidingsdiagram met voorspelde waarden (\hat{y}_i) en residuen (ϵ_i)

Oplossing

Transformeer afhankelijke variabele (log, kwadraat etc.)
Controlevariabelen toevoegen

IN R

plot(residuals(model2), predict(model2))

IN SPSS

8 GEVAREN VAN REGRESSIE

GEVAAR 8

NIET-NORMALITEIT VAN RESIDUEN

GEVAAR 8 NIET-NORMALITEIT

GEVAAR 8 NIET-NORMALITEIT

Residuen moeten normaal verdeeld zijn

Gevaar

Onjuiste standaardfouten en significantie, vooral bij kleine steekproef (n < 20)

Opsporing

Bekijk de verdeling van residuen.

Ziet het er (min of meer) normaal uit?

Oplossing

- Transformeer afhankelijke variabele (log, kwadraat, etc.)
- Voeg controle-variabelen toe
- Gebruik "niet parametrische"-tests

HISTOGRAM VAN RESIDUEN IN R

hist(residuals(model2))

HISTOGRAM VAN RESIDUEN IN SPSS

PSST...

(eigenlijk is dit niet vaak
echt een probleem
door de Centrale Limietstelling
sowieso alleen bij kleine N en dan nog blijkt het probleem
allemaal wel mee te vallen)

8 GEVAREN VAN REGRESSIE

8 DANGERS OF REGRESSION

ALMOST THERE...

8 DANGERS OF REGRESSION

BLUE

Als dit allemaal goed gaat, geeft OLS een model dat BLUE is:

Best

Linear

Unbiased

Estimates

Om precies te zijn, geeft OLS volgens de Gauss-Markov stelling BLUE schattingen van de coëfficienten als aan deze voorwaarden is voldaan:

- -> Lineairiteit
- -> Sphericiteit van residuen
- -> Exogeniteit van onafhankelijke variabelen

https://elmarjansen.nl/os

OEFENING 4

Het effect van gemiddelde grootte van huishoudens in een buurt op gemiddeld aantal auto's per huishouden in die buurt

VOLGENDE WEEK

- Interacties
- Dummy-variabelen
- Rapporteren

TOT SLOT

De slides zijn online beschikbaar (https://elmarjansen.nl/os)

Een handout / reader met de samenvatting is in de maak

Deel je opmerkingen / wensen / vragen! elmar@elmarjansen.nl

BONUS: CONTROLLEREN VOOR MEDIATIE

MEDIATIE: VOORBEELD

Tussenstappen
in de
causale keten

Zeggen dat een relatie
"gemedieerd is", is op
zichzelf niet zo
interessant: ieder
verband is altijd op te
delen in tussenstapjes

MEDIATIE

M

MEDIATIE

IN REGRESSIE

REGRESSIE EN CAUSALITEIT

EERSTE MODEL (GEEN CONTROLES)

```
Call:
lm(formula = happy \sim uempla, data = ess10)
                                               Totaal effect van
Residuals:
                                             werkloosheid op geluk
           1Q Median 3Q
   Min
                                   Max
-7.2667 -1.2667 0.7333 1.3447 3.3447
Coefficients:
           Estimate Std_Error t value Pr(>|t|)
(Intercept) 7.26674 0.01017 714.44 <2e-16 ***
          (-0.61145)
                       0.05048 -12.11 <2e-16 ***
uempla
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 1.93 on 37519 degrees of freedom
  (90 observations deleted due to missingness)
Multiple R-squared: 0.003895, Adjusted R-squared: 0.003868
F-statistic: 146.7 on 1 and 37519 DF, p-value: < 2.2e-16
```

TWEEDE MODEL (CONTROLES)

```
call:
lm(formula = happy \sim uempla + hinctnta, data = ess10)
Residuals:
                                       Effect werkloosheid op geluk
                                     voor zover niet door inkomensverlies
    Min
             1Q Median
                             3Q
-8.1133 -0.9389 0.2355 1.2355
Coefficients:
             Estimate Std Error t value Pr(>|t|)
             6.369504  0.025002  254.755  < 2e-16 ***
(Intercept)
uempla (-0.354982) 0.056721 -6.258 3.94e-10 ***
             0.\overline{174378} 0.004116 42.368 < 2e-16 ***
hinctnta
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.879 on 29332 degrees of freedom
  (8276 observations deleted due to missingness)
Multiple R-squared: 0.06159, Adjusted R-squared: 0.06152
F-statistic: 962.5 on 2 and 29332 DF, p-value: < 2.2e-16
```

Als je werkloos wordt en je inkomen blijft gelijk, gaat geluk omlaag met 0.35 (op 10-punts-schaal)

MEDIATIE

Gebruikt om het causale pad te onderzoeken

Methode:

Step 1: Denk na. Bedenk wat potentieel interessante medierende variabelen zijn

Step 2: Draai de regressie met controlevariebelen als extra onafhankelijke variabelen

Het gevonden effect van de oorspronkelijke onafhankelijke variabele is nu het deel van het effect dat *niet* via de controlevariabelen loopt. Oftewel: "het effect van je onafhankelijke variabele bij constante [control variable]".

CONTROLEREN

Let op: statistisch geen verschil tussen controleren voor *mediatie* of schijnverband.

Dit is een keuze die jij moet maken op basis van theorie.

Let op: statistisch geen verschil tussen je controlevariable(n) en je primaire onafhankelijke variabele

Dit is alleen een conceptueel verschil.

CONTROLEREN

Voor schijnverband

Oplossing voor probleem

Kies controle op theoretische gronds: wat kan de *confounder zijn*?

Voor mediatie

Approach to find out more

Kies controle op theoretische gronds: wat kan de *tussenliggende variabele zijn*?

totaal effect = direct effect + indirect effect

$$c = c' + a*b$$