4ª Lista de Exercícios de Circuitos Eletrônicos – 1º Semestre de 2017

1- Projetar um filtro passa-baixas de 1 polo, tipo Butterworth, cuja frequência de corte é de 800 Hz. O ganho máximo do filtro deve ser igual a 1. Montar a tabela de valores do ganho de tensão para 4 frequências (80 Hz, 200 Hz, 400 Hz e 800 Hz) compreendidas entre 80 Hz e 800 Hz, ou seja, numa década de variação.

Fazer $C = 0.022 \mu F$.

2- Projetar um filtro passa-baixas de 2 polos, tipo Butterworth, com frequência de corte de 800 Hz. Fazer $C = 0.022 \,\mu\text{F}$.

No projeto do filtro usar a tabela de Butterworth reproduzida a seguir.

Tabela de Butterworth

Polos	Inclinação	1ª seção	2ª seção	3ª seção
	-	(1 ou 2 polos)	(2 polos)	(2 polos)
1	20 dB	Opcional		
2	40 dB	1,586		
3	60 dB	Opcional	2	
4	80 dB	1,152	2,235	
5	100 dB	Opcional	1,382	2,382
6	120 dB	1,068	1,586	2,482

3- a) Calcular a frequência de corte do circuito mostrado na figura abaixo. b) Representar graficamente a relação Ganho de tensão (em dB) versus Frequência para o filtro.

4- a) Calcular a frequência de corte inferior e a frequência de corte superior do circuito mostrado na figura abaixo. b) Representar graficamente a relação Ganho de tensão (em dB) versus Frequência para o filtro.

- 5- Faça o que se pede:
- a) Identificar a finalidade do circuito cuja relação entre o ganho de tensão e frequência é dada abaixo.
- b) Encontrar as relações entre os elementos que compõem o circuito.

- 6 Faça o que se pede:
- a) Identificar a finalidade do circuito cuja relação entre o ganho de tensão e frequência é dada abaixo.
- b) Encontrar as relações entre os elementos que compõem o circuito.

- 7- No circuito da figura abaixo, temos $R = 50k\Omega$ e $C = 10\mu F$. Na entrada do mesmo se aplica um pulso de amplitude igual a 2V, durante 5 segundos. Supondo C inicialmente descarregado, pede-se:
- a) Calcular a tensão de saída após 2 segundos.
- b) Após quanto tempo o amplificador operacional irá saturar com uma tensão de aproximadamente 13,5 V?
- c) Esboçar a forma de onda do sinal de saída variando no intervalo de 0 a 5 segundos.
- d) Calcular o coeficiente angular da rampa gerada antes do amplificador operacional atingir a saturação.

- 8- Dar a forma de onda do sinal de saída de um integrador quando em sua entrada aplicarmos os seguintes tipos de sinais:
- a) Onda Quadrada (v = k)
- b) Rampa (v = k t)
- c) Onda senoidal [v entrada = k sen (w t)]
- 9- No gráfico apresentado na figura abaixo temos um período de um sinal de entrada aplicado no circuito diferenciador ideal. Determinar a tensão de saída no intervalo de 0 a 250 μs e no intervalo de 250 μs a 500 μs . Fazer R =1k Ω e C = 0,01 μF

10- Esboçar a forma de onda de saída para o circuito diferenciador ideal mostrado na figura abaixo. Escrever os valores máximos e mínimos no seu esboço. Fazer $R=60 \text{k}\Omega$ e $C=0.5~\mu\text{F}$

- 11- Projetar um circuito que diferenciará um sinal de entrada de 3kHz, com ganho de alta frequência do circuito limitado a 10. A capacitância, na entrada, possui um valor de 0,1µF. Em sua opinião, o circuito funciona realmente como diferenciador?
- 12- Apresentar um circuito que sintetize a função dada a seguir:

V saída = 2 Ventrada +
$$(1/RC)\int V$$
 entrada dt

Supor a existência de uma fonte de tensão Ventrada.

13- Demonstrar que o circuito mostrado abaixo corresponde a um controlador PI (proporcional + integral).

