Actividad 4.1 (Evaluación)

Oscar Ortiz Torres A01769292

Implementación de robótica inteligente

Grupo 501

Tecnológico de Monterrey Campus Puebla

Jueves 10 de abril de 2025

Objetivo

Simular el movimiento de un robot móvil diferencial a lo largo de tres trayectorias diferentes, calculando las velocidades lineales y angulares necesarias en cada caso, y visualizando tanto la trayectoria recorrida como el comportamiento cinemático del robot.

Metodología

Metodología general

La metodología empleada sigue los siguientes pasos comunes para todas las trayectorias:

- Definición de la trayectoria deseada (x ref, y ref)
- Cálculo de derivadas para estimar la orientación y velocidades.
- Obtención de velocidades de referencia:
 - o u: velocidad lineal
 - o w: velocidad angular
- Simulación cinemática del movimiento mediante integración numérica (Euler).
- Visualización 2D/3D del movimiento del robot.
- Gráficas de resultados: evolución temporal de u, w, y las coordenadas del robot.

Definición de trayectoria 1

Se define una trayectoria con forma ondulada, donde:

$$y = 2\sin(x^2), x \in [0,5]$$

Definición de trayectoria 2

Trayectoria circular de radio 4 unidades centrada en el origen:

$$x = 4\cos(\theta)$$
, $y = 4\sin(\theta)$, $\theta \in [0, 2\pi]$

```
12 elseif op_tray == 2

13 ts = 0.01;

14 theta = 0:ts:(2*pi);

15 x_ref = 4 * cos(theta);

16 y_ref = 4 * sin(theta);
```

Definición de trayectoria 3

Esta trayectoria está definida por partes, con diferentes pendientes en cada tramo:

$$f(x) = \begin{cases} x, & x \le 0 \\ 3x, & 0 < x \le 1 \\ 3, & 1 < x < 4 \\ 2x - 5, & x \ge 4 \end{cases}$$

```
elseif op_tray == 3
              ts = 0.1;
x_ref = -6:ts:6;
y_ref = zeros(size(x_ref));
19
20
21
22
               for i = 1:length(x_ref)
23
                   x = x_ref(i);
24
                   if x <= 0
                   y_ref(i) = x;
elseif x <= 1</pre>
25
26
                    y_ref(i) = 3*x;
elseif x < 4</pre>
27
28
                      y_ref(i) = 3;
29
30
                  y_ref(i) = 2*x - 5;
end
31
32
33
```

En este caso, el robot inicia en las coordenadas iniciales de la trayectoria calculada, a diferencia de las otras 2:

Resultados

Trayectoria 1

Trayectoria 2

Trayectoria 3

