

CA2ON
EAB
-0 53

ENVIRONMENTAL ASSESSMENT BOARD

ONTARIO HYDRO DEMAND/SUPPLY PLAN HEARINGS

VOLUME: 130

DATE: Wednesday, April 8, 1992

BEFORE:

HON. MR. JUSTICE E. SAUNDERS Chairman

DR. G. CONNELL Member

MS. G. PATTERSON Member

FARR
ASSOCIATES &
REPORTING INC.

(416) 482-3277

2300 Yonge St. Suite 709 Toronto, Canada M4P 1E4

A P P E A R A N C E S

B. CAMPBELL)	ONTARIO HYDRO
L. FORMUSA)	
B. HARVIE)	
J.F. HOWARD, Q.C.)	
J. LANE)	
G. A. KARISH)	
 J.C. SHEPHERD)	IPPSO
I. MONDROW)	
J. PASSMORE)	
 R. WATSON)	MUNICIPAL ELECTRIC
A. MARK)	ASSOCIATION
 S. COUBAN)	PROVINCIAL GOVERNMENT
P. MORAN)	AGENCIES
J. MacDONALD)	
 C. MARLATT)	NORTH SHORE TRIBAL COUNCIL,
D. ESTRIN)	UNITED CHIEFS AND COUNCILS
H. DAHME)	OF MANITOULIN, UNION OF
		ONTARIO INDIANS
 D. POCH)	COALITION OF ENVIRONMENTAL
D. STARKMAN)	GROUPS
D. ARGUE)	
 T. ROCKINGHAM		MINISTRY OF ENERGY
 B. KELSEY)	NORTHWATCH
L. GREENSPOON)	
P. McKAY)	
 J.M. RODGER		AMPCO
 M. MATTSON)	ENERGY PROBE
T. McCLENAGHAN)	
 A. WAFFLE		ENVIRONMENT CANADA
 M. CAMPBELL)	ONTARIO PUBLIC HEALTH
M. IZZARD)	ASSOCIATION, INTERNATIONAL
		INSTITUTE OF CONCERN FOR
		PUBLIC HEALTH
 G. GRENVILLE-WOOD		SESCI

A P P E A R A N C E S

(Cont'd)

D. ROGERS	ONGA
H. POCH) CITY OF TORONTO
J. PARKINSON)
R. POWER	CITY OF TORONTO, SOUTH BRUCE ECONOMIC CORP.
S. THOMPSON	ONTARIO FEDERATION OF AGRICULTURE
B. BODNER	CONSUMERS GAS
J. MONGER) CAC (ONTARIO)
K. ROSENBERG)
C. GATES)
W. TRIVETT	RON HUNTER
M. KLIPPENSTEIN	POLLUTION PROBE
N. KLEER) NAN/TREATY #3/TEME-AUGAMA
J. OLTHUIS) ANISHNABAI AND MOOSE RIVER/
J. CASTRILLI) JAMES BAY COALITION
T. HILL	TOWN OF NEWCASTLE
M. OMATSU) OMAA
B. ALLISON)
C. REID)
E. LOCKERBY	AECL
C. SPOEL) CANADIAN VOICE OF WOMEN
U. FRANKLIN) FOR PEACE
B. CARR)
F. MACKESY	ON HER OWN BEHALF
D. HUNTER) DOFASCO
M. BADER)
B. TAYLOR) MOOSONEE DEVELOPMENT AREA
D. HORNER) BOARD AND CHAMBER OF
H. WATSON) COMMERCE

Digitized by the Internet Archive
in 2022 with funding from
University of Toronto

<https://archive.org/details/31761114685555>

(iii)

A P P E A R A N C E S
(Cont'd)

T. HEINTZMAN)	ATOMIC ENERGY OF CANADA
D. HAMER)	
C. FINDLAY)	
P.A. NYKANEN)	CANADIAN MANUFACTURERS ASSOCIATION - ONTARIO
G. MITCHELL		SOCIETY OF AECL PROFESSIONAL EMPLOYEES
S. GOUDGE		CUPE
D. COLBORNE		NIPIGON ABORIGINAL PEOPLES' ALLIANCE
R. CUYLER		ON HIS OWN BEHALF
L. BULLOCK)	CANADIAN NUCLEAR ASSOCIATION
L. CHAN)	

INDEX OF PROCEEDINGS

L I S T o f E X H I B I T S

No.	Description	Page No.
452C	Updated Figures from Chapters 14 and 15 of the Demand/Supply Plan Report, Exhibit 3.	22770
535	Public and Government Review and Input into Ontario Hydro's Demand/Supply Planning Process.	22770
536	Energy Price Trends Report, Annual Review, November, 1991.	22770
452D	An Assessment of Over/Under Planning Costs.	22770
579	Document entitled Ontario Hydro CANDU Operating Experience, Ontario Hydro NGD-9, 1985.	22782
580	A Review of Current Knowledge and Effects of Hydrogen on the Pressure Tubes of Ontario Hydro Operating Reactors.	22787
581	Hydro document, dated July, 1984, entitled Pressure Tube Failure Pickering NGS Unit 2.	22793
582	Ontario Hydro publication in Exhibit 578, page 151, entitled Nuclear Integrity Review Committee, Annual Report for 1986, dated August, 1987.	22806
583	Document from Atomic Energy Control Board, Memorandum to Board Members from their Directorate of Analysis and Assessment regarding CANDU pressure tubes.	22808
584	Document entitled: Reliability of CANDU Nuclear Generation.	22822
585	Document entitled: Major Nuclear Generation Station Outages.	22822

L I S T o f E X H I B I T S
(Cont'd)

No.	Description	Page No.
586	48A of Exhibit 577, being an excerpt from the Ontario Energy Board's HR 15 hearing, 1986.	22834
587	Excerpt from Telegraph Journal, Thursday, March 2, 1991.	22858
520.78	Attachment to Exhibit 9.2.97.	22860
588	Time Lost: Report of the Subcommittee on Acid Rain of the Standing Committee on Fisheries and Foresteries of the Federal Parliament, 1983/84.	22880
520.79	Interrogatory No. 9.2.30.	22911
589	Pages 60-68 inclusive of Exhibit 577.	22914
520.80	Interrogatory No. 9.7.448.	22914
520.81	Interrogatory No. 9.7.453.	22915
520.82	Interrogatory No. 8.2.14.	
520.83	Interrogatory No. 9.7.487.	22930
520.84	Interrogatory No. 9.7.103.	22930
590	Excerpts from Select Committee on Energy Report on Darlington, dated December, 1985.	22935

L I S T o f U N D E R T A K I N G S

No.	Description	Page No.
532.5	Ontario Hydro undertakes to provide numbers for Darlington consistent with the numbers provided in Pickering and Bruce in Interrogatory 8.2.14.	22929

TIME NOTATIONSPage No.

	10:04 a.m.	-----	22769
	10:15 a.m.	-----	22777
	10:25 a.m.	-----	22784
	10:40 a.m.	-----	22794
	10:55 a.m.	-----	22804
	11:15 a.m.	-----	22818
Recess	11:35 a.m.	-----	22831
Resume	11:55 a.m.	-----	22831
	12:15 p.m.	-----	22846
	12:35 p.m.	-----	22859
	12:55 p.m.	-----	22871
Luncheon recess	1:03 p.m.	-----	22875
Resume	2:30 p.m.	-----	22875
	2:45 p.m.	-----	22883
	3:05 p.m.	-----	22895
	3:20 p.m.	-----	22906
Recess	3:34 p.m.	-----	22912
Resume	3:53 p.m.	-----	22912
	4:05 p.m.	-----	22920
	4:25 p.m.	-----	22932
	4:45 p.m.	-----	22941
Adjourned	5:03 p.m.	-----	22952

1 ---Upon commencing at 10:04 a.m.

2 THE REGISTRAR: Please be come to order.

3 This hearing is again in session. Please be seated.

4 THE CHAIRMAN: Ms. Harvie?

5 MS. HARVIE: Mr. Chairman, both Mr.

6 Campbell and I will be sitting in today. Mr. Campbell
7 will be joining us at about 12:15.

8 There are some exhibits that Hydro has
9 distributed to full- and part-time parties, and I just
10 wanted to read the exhibit numbers onto the record as I
11 understand is now the practice.

12 The first one is Exhibit 452C, and this
13 is entitled Updated Figures from Chapters 14 and 15 of
14 the Demand/Supply Plan Report, Exhibit 3.

15 The second is Exhibit 535, which is a
16 Public and Government Review and Input into Ontario
17 Hydro's Demand/Supply Planning Process.

18 The third is Exhibit 536, which is Energy
19 Price Trends Report, Annual Review, November, 1991.

20 And the fourth is Exhibit 452D, entitled
21 An Assessment of Over/Under Planning Costs.

22 As well, in the letter that was
23 distributed to all the parties signed by Mr. James Lane
24 of our firm there were several pages attached as errata
25 to Exhibits 452A and 452B, and the understanding is

that those pages can simply be inserted into the exhibits that parties already have.

---EXHIBIT NO. 452C: Updated Figures from Chapters 14
and 15 of the Demand/Supply Plan Report,
Exhibit 3.

---EXHIBIT NO. 535: Public and Government Review and
Input into Ontario Hydro's Demand/Supply
Planning Process.

---EXHIBIT NO. 536: Energy Price Trends Report, Annual Review, November, 1991.

**----EXHIBIT NO. 452D: An Assessment of Over/Under
Planning Costs.**

I also understand that Mr. Daly has a couple of corrections to make to the record, so I will let him do that. Thank you.

DAVID WHILLANS,
KURT JOHANSEN,
FRANK CALVIN KING,
WILLIAM JOHN PENN,
IAN NICHOL DALY; Resumed.

MR. DALY: I would like to make couple of corrections to yesterday's transcript. The first one is at page 22730. We were discussing at that point the difference between capability factor and capacity factor, and I was providing as an example of the difference the experience of EDF in France.

On line 19 of page 22730 I said:

Capability factors are, as you know, relatively low.

That should have read:

1 Capacity factors are, as you know,
2 relatively low.

3 So line 19, if you change "capability" to "capacity"
4 that corrects that one.

5 The second point is on page 22766, and at
6 the foot of that page Mr. Poch asked me a question
7 relative to page 27 of Exhibit 519, which was a table
8 of world lifetime average capacity factors by reactor
9 type, and the following page has a discussion on that.

10 I indicated at the top of that page that
11 only Darlington 2 was included in that table. I have
12 since checked it again, and, in fact, Darlington 1 and
13 Darlington 2 are both included in that table. The
14 table is not marked as such, but it is a table of since
15 first electricity.

16 THE CHAIRMAN: I'm sorry, of what?

17 MR. DALY: It is a table of numbers since
18 first electricity as opposed to a table since
19 in-service. So the table on page 27 of Exhibit 519 is
20 a table of statistics since first electricity and as
21 such includes both Darlington 1 and Darlington 2.

22 I hope that clarifies that.

23 THE CHAIRMAN: All right.

24 CROSS-EXAMINATION BY MR. D. POCH (Cont'd):

25 Q. Mr. Daly, just on that last point

1 then, I am correct in understanding that the figure of
2 73.3 would not include any of the Darlington reactors
3 before first electricity, and so for Unit 1 the various
4 delays, for example, before first electricity, which
5 was relatively recent, would not be included in there?

6 MR. DALY: A. That's correct. It's just
7 since first electricity.

8 Q. All right.

9 THE CHAIRMAN: It is a new term to me. I
10 don't know if it is to others. What is the difference
11 between in-service and first electricity?

12 MR. DALY: First electricity is the point
13 at which we first synchronize to the bulk electricity
14 system. Following that there is a period of
15 commissioning where we take the unit through the
16 various levels of power, and this typically last some
17 three to six months. After that period of
18 commissioning when you are satisfied that the unit is
19 operating reliably you then place the unit in-service.

20 So there is typically about six months
21 between first electricity and in-service.

22 THE CHAIRMAN: Thank you.

23 MR. D. POCH: Q. Now, Mr. Daly, we were
24 discussing the various factors affecting your
25 performance indices and your estimates, and I just

1 wanted to touch on the problems at Darlington and see
2 how your forecasts, which you indicated were based
3 on...I think the phrase was "reasoned engineering
4 judgment", had or hadn't anticipated these.

5 You indicated at transcript page 21160 at
6 line 22: We have only --

7 THE CHAIRMAN: Hold it just a minute.
8 What volume is that, please?

9 MR. D. POCH: I'm sorry, I don't have the
10 volume. That would have been your evidence in chief, I
11 believe. I can get that, Mr. Chairman.

12 I am told it is 121, Mr. Chairman.

13 THE CHAIRMAN: Thank you.

14 MR. D. POCH: Q. And the quote I have
15 from line 22 is:

16 We have only had a short period of
17 time with current rotor modifications on
18 Unit 1. However, no problems were
19 evident.

20 So can you tell us how long you ran with
21 the new rotor, the modified rotor on Unit 1, and
22 indicate why testing was stopped?

23 MR. DALY: A. That was a period of about
24 four to six weeks. Testing was stopped because we
25 identified some damaged fuel on Unit 1, and the unit

1 was taken off line to further investigate the fuel
2 problem.

3 Q. And the damaged fuel is related to
4 the other problem with resonance in the pipes?

5 A. That's correct, yes.

6 Q. You went on to say that:

7 Further in-service delays due to the
8 generator rotor problems are not
9 anticipated at this time.

10 Are you comfortable that four to six
11 weeks is a sufficient period of time to test out the
12 rotor modifications?

13 A. Well, there have been additional
14 tests done at the manufacturer's. I guess there is an
15 implication in these remarks that we have a number of
16 delays caused by the fuel problem, and we feel that,
17 you know, the fuel problem is the dominant one
18 influencing the critical path, and we now have
19 sufficient time to make the modifications on the
20 generator.

21 Q. Well, Mr. Daly, I understood you had
22 already made the modifications for Unit 1; is that
23 not --

24 A. For Unit 1, yes.

25 Q. All right. And the question then is:

1 Are the modifications sufficient, or do you have to do
2 something more dramatic? And you have indicated you
3 had a four to six week test period.

4 Can we compare that. How long did Unit 2
5 run for before the rotor problems became apparent
6 there?

7 A. My recollection is about three
8 months.

9 Q. All right. So there is still some
10 potential for, or still some uncertainty about, the
11 adequacy of the fix, if you will?

12 A. I would say there is some
13 uncertainty. What I was trying to say there was we
14 felt the uncertainty would not influence the critical
15 path, that the fuel problem was more on the critical
16 path.

17 Q. But you won't know about whether or
18 not this rotor is any good in the long run until after
19 you fix the fuel problem and restart; is that not true?

20 A. We will have to keep monitoring and
21 inspecting the generator on a routine basis.

22 Q. So that the critical path, as you
23 say, of the fuel is really not -- it is not providing
24 you with any window you can use to test this rotor.
25 You can't test the rotor without running the unit; is

1 that fair? You can do some tests, but you are not
2 going to have the operating time until after the fuel
3 problem is cleared up?

4 A. Well, there are some possibilities of
5 running at lower power where one of the potential modes
6 of operation for Darlington 1 would be to run at
7 approximately 50 per cent power, which would give us
8 some additional experience on the generator.

9 Q. Though at lower stress levels?

10 A. Correct, yes.

11 Q. Now, I guess it is obvious that -- it
12 is ASEA Brown Boveri who built the rotor?

13 A. Yes.

14 Q. And ABB and Hydro hadn't caught this
15 initially. So your engineering judgment, if you will,
16 or ABB's engineering judgment which you relied on,
17 wasn't sufficient to find the problem in the first
18 place.

19 What is your engineering judgment telling
20 you to allow for the possibility of this problem
21 continuing because this fix may not be adequate in your
22 performance indices?

23 A. I guess we have adjusted our
24 performance indices down in the short term over the
25 next one to two years.

1 Essentially, we see this as a short-term
2 problem; you know, certainly a significant one, but it
3 is not that unusual for a large plant to experience
4 significant teething problems in its early years, and
5 we have had these in some of our other plants.

6 [10:15 a.m.]

7 So we do see it as a short-term problem.
8 Generators have been in use world-wide in many
9 utilities, so there is a lot of world experience in
10 modifying and improving generators.

11 Q. There was a lot of world experience
12 before they built this generator, too, of course, but
13 that didn't stop the problem.

14 So I am asking you specifically, in your
15 performance forecast for the coming few years, what
16 specific allowance have you made, for example, with
17 respect to Unit 1 at Darlington for the possibility of
18 continuing rotor problems, is there any specific
19 allowance for that?

20 A. The allowances we have made are quite
21 high, they are typically for 1993 in our most recent
22 projections, the DAFOR is at 30 per cent for all
23 Darlington units, and that reflects a combination of
24 uncertainty associated primarily with the fuel, but
25 also to some extent influenced by the generator and

1 other type of commissioning, any operation problems we
2 might anticipate.

3 Q. So you don't have a specific number
4 you can offer me for the potential risk associated with
5 the rotors?

6 A. Not for the rotors. No, we feel we
7 have done a number of modifications and new rotors are
8 in order. We feel this is, in general terms, a less
9 significant problem than the fuel, so the fuel tends to
10 dominate our statistics.

11 Q. You said that. But isn't it true
12 that your performance indices you are, in effect,
13 treating the rotor problem as solved?

14 A. As I mentioned earlier, we provide a
15 range of performance statistics to power system
16 operations and system planning, and certainly when we
17 talk to both of those groups we indicate, look, there
18 are some continuing uncertainties at Darlington, they
19 will continue to be there in short-term, a major one is
20 the fuel, and I agree, the rotor has been run for a
21 relatively short period of time, it will remain an
22 uncertainty for some time.

23 Q. So you feel that your general DAFOR
24 allowance is likely sufficient to capture this, but you
25 haven't analyzed it, you haven't put a specific number

1 on it. I think we can agree with that.

2 A. We haven't put a specific number on
3 the generator, right.

4 Q. And you say that the availability of
5 Darlington in the next few years is likely to be
6 dominated by the --

7 THE CHAIRMAN: Where did he say?

8 MR. D. POCH: Q. I thought you had just
9 said to me just a few moments ago, Mr. Daly, that you
10 felt that the fuel problem is likely to dominate, I
11 think you used critical path.

12 MR. DALY: A. That's the major
13 uncertainty facing us at this time.

14 Q. And in the transcript you said, and
15 this is discussed at three pages further on, at page
16 21163, starting at line 6, you say:

17 "We have done a tremendous amount of
18 work to determine the cause of the damage
19 and come up with possible repair
20 strategies. Several possible repair
21 strategies have been proposed."

22 If we go to the next page you say:

23 "The use of these new impellers as a
24 fix to the fuel damage problem was based
25 on a computer simulation of the

1 hydraulics of the heat transport system,
2 and there is some uncertainty as to
3 whether or not this repair will be
4 totally adequate..."

5 And later below you say:

6 "If the piping modifications are
7 required, then further in-service delays
8 of about six months per unit will be
9 required."

10 What have you allowed in your DAFOR for
11 that potential six months outage of the -- I guess it
12 would be of the entire Darlington station?

13 A. What we have done in this particular
14 place is to reflect the two different potential
15 in-service dates in our business plan.

16 So with the current in-service dates, the
17 current in-service dates assume basically that seven
18 vane impeller turns out to be the solution, and if it
19 doesn't we have quoted in our business plan the delayed
20 in-service of approximately six months per unit. So
21 that is the way we have treated that one.

22 Q. So your forecast capability or
23 capacity factor numbers do not include this potential
24 problem, because if it turns out to be a problem you
25 will deal with it by delaying in-service and reactors

1 not in-service don't go into capability and capacity
2 forecasts?

3 A. That's correct, yes.

4 Q. I guess I can't ask you about your
5 engineering judgment in the forecast on that because
6 that's just expressed as a possible six month delay and
7 you are not putting any odds on it; is that fair, or
8 are you putting any odds on it?

9 A. Well, judgment has been that there is
10 about a 70 per cent chance of the impeller fix being
11 successful.

12 Q. Now, Mr. Daly, I understand that the
13 problems that arose at other reactors, Pickering and
14 Bruce, I am thinking of problems like the fuel channel
15 assemblies obviously, but the creep problems you had,
16 the end joint problems, the bearing limitations, I
17 forget all the acronyms, many of these problems weren't
18 apparent until several years of operating had gone by;
19 is that fair?

20 A. Some of them that's true. I referred
21 earlier to 1983 failure of the Pickering pressure tube,
22 and although we had anticipated changing pressure
23 tubes, yes, it was a surprise to us that it happened in
24 1993.

25 Q. All right. In fact, since you

1 mentioned that, I was able to obtain a document which I
2 would like to place before you. It will be no
3 surprise, it will be nothing shocking to you. I
4 apologize for not getting it to you sooner. It's
5 entitled Ontario Hydro CANDU Operating Experience, and
6 is Ontario Hydro NGD-9, 1985.

7 Mr. Chairman, perhaps this could be given
8 a number.

9 THE REGISTRAR: 579, Mr. Chairman.

10 ---EXHIBIT NO. 579: Document entitled Ontario Hydro
11 CANDU Operating Experience, Ontario Hydro
NGD-9, 1985.

12 MR. D. POCH: Q. Mr. Penn, I think it
13 was you who said there was no way we could have
14 envisaged the fuel channel problem, but I take it from
15 the opening paragraph of this document, that is as
16 early as 1958, and I quote:

17 The lifetime of pressure tubes was
18 expected to be at least 10 years and
19 unlikely to achieve 30 years.

20 Is that your understanding?

21 MR. PENN: A. I think I said in evidence
22 that the design basis of the -- in fact, my direct
23 evidence was that there was an expectation of 15 years
24 life of pressure tubes for Pickering "A".

25 Q. I will get into this in a moment, but

1 just looking further down, dimensional changes, again
2 it was recognized in 1958 that there may be this
3 lengthening growth of the tubes, I take it, as they
4 absorb neutrons?

5 A. You are reading from the second last
6 paragraph.

7 Q. Yes. And therefore some allowance
8 was made to accommodate lengthening of pressure tubes?

9 A. Well, there was work done at Chalk
10 River Nuclear Laboratories certainly in the late 50s,
11 and it went on for probably another 10 or 15 years
12 after that with regard to the behaviour of zircaloy or
13 zirconium alloys under the influence of irradiation,
14 and in particular the understanding of longitudinal
15 growth.

16 Q. All right. So here we have, on one
17 page, two examples of concerns or limitations that you
18 were aware of from very early on, yet in your designs,
19 in your expression of engineering, in your engineering
20 response you weren't able, were you, to engineer your
21 way out of these two problems? The pressure tube
22 ruptured unexpectedly and you were faced with
23 re-engineering at least at Bruce, I take it at
24 Pickering 2, perhaps, Mr. Penn, you can help us, with
25 respect to the pressure tube growth problem, the Bruce

1 West shift and so on?

2 A. I disagree with your position,
3 because clearly we did make engineering adjustments for
4 longitudinal growth. And it has been a statement of
5 fact for many years that the life is limited, for
6 example, on Bruce Unit 3 to 25 years for that reason.

7 [10:25 a.m.]

8 But we changed the bearings, the bearing
9 travel at the end of the channel, and, as you have just
10 mentioned, we engineered a shift of those bearings at
11 Bruce--

12 Q. And that required --

13 A. --known as the Bruce West shift.

14 Q. And that required time and delay
15 or -- and downtime and money after you built the
16 reactor?

17 A. Well, certainly it caused delay. I
18 mean, it cost money, but --

19 Q. Let me just understand, that was for
20 a problem which you foresaw before designing the
21 reactor or before completing the design of the reactor?

22 A. We foresaw the process of zirconium
23 elongating under irradiation, but in those early days
24 there was insufficient knowledge. And experiments of
25 course take a long time. You cannot simulate something

1 like that; you actually have to do the tests on the
2 samples to determine what its growth rate is.

3 Q. Exactly. There are certain concerns
4 which you are just going to have to wait and see about,
5 and that one took -- well, how many years was it at
6 Pickering? How old was Pickering Unit 2 when it
7 suffered its accident in '83?

8 A. It was about 13 years.

9 Q. All right. And the oldest reactor
10 you have on line now is...?

11 A. 21 years.

12 Q. 21 years. Now, just with respect to
13 the incident at Pickering 2, I think it was Ms. Harvie
14 at page 21292 who described this as the most serious
15 event that has taken place in Ontario Hydro's reactor
16 program, in asking you to comment on it in chief.

17 THE CHAIRMAN: What was that page number?

18 MR. D. POCH: I have the page reference
19 as 21292. It would be the same volume

20 THE CHAIRMAN: That's probably volume...
21 Let me see.

22 MR. D. POCH: I'm sorry. It's Volume
23 122, and that was at line 13.

24 Q. Mr. King, prior to this break, which
25 I understand was a six-foot long break; is that right?

1 MR. KING: A. That sounds about right.

2 Q. All right. And they call it the G16.

3 I take it that is because you have got on the matrix of
4 tubes in the calandria it is tube G16?

5 A. That is right.

6 Q. Hydro had maintained that pressure
7 tubes would always leak before they broke. Leak before
8 break is the theory. And thus, any potential accident
9 would be detectable in advance; is that fair?

10 A. There is a process where cracks get
11 to a certain length and the through-wall cracks would
12 leak before they get to what is called a critical crack
13 length, which then they could -- the crack could grow
14 rapidly in length, and the ability to detect a
15 through-wall crack before it got to its critical crack
16 length is referred to as the "leak before break"
17 phenomena.

18 Q. Indeed, if you take out our second
19 volume of materials, which has been given Exhibit 578,
20 and I am going to ask you to look at page 134 there
21 under Fracture Mechanics -- and this is a document
22 which commences on page 129. It is dated March 2nd,
23 '82. So this was just before the incident or the year
24 before the incident?

25 THE CHAIRMAN: Just a moment. That is a

1 Hydro document?

2 MR. D. POCH: Yes, it is.

3 THE CHAIRMAN: And perhaps it should be
4 given an exhibit number? Starting on page 129.

5 THE REGISTRAR: 129? That is 580, Mr.
6 Chairman.

7 THE CHAIRMAN: Thank you.

8 ---EXHIBIT NO. 580: A Review of Current Knowledge and
9 Effects of Hydrogen on the Pressure Tubes
of Ontario Hydro Operating Reactors.

10 MR. D. POCH: Q. And it is entitled A
11 Review of Current Knowledge and Effects of Hydrogen on
12 the Pressure Tubes of Ontario Hydro Operating Reactors.

13 And at page 134 of our material, section
14 3.12, Fracture Mechanics it reads, Concern:

15 A pressure tube which develops a
16 sufficiently severe flaw could fail at
17 reactor operating pressure. The safety
18 of the pressure tubes in CANDU
19 pressurized heavy water reactors is based
20 upon the "leak before break" criterion;
21 that is, a small flaw would extend until
22 it penetrated the wall and coolant
23 leakage would be detected before the flaw
24 reached the critical crack length and
25 propagated unstably.

1 Did that in fact occur or did we have a
2 propagation of a crack before it was detected?

3 MR. KING: A. Well, there are two
4 considerations here: (1) Did it leak before it got
5 for the point where the crack propagated unstably, and,
6 if it did leak, whether it was detected. Leak before
7 break, of course, is only valid phenomena with respect
8 to detecting things as if you can detect it.

9 Q. You didn't detect it, though?

10 A. With respect to --

11 Q. Just let me interrupt, Mr. King. You
12 didn't detect it?

13 THE CHAIRMAN: Mr. Poch, let him finish
14 his answer.

15 MR. KING: With respect to the G16
16 incident I must admit I am not aware whether the
17 detection in fact did occur. I have tried to get some
18 reference to that in the last few days, but I have not
19 been successful as of yet.

20 MR. D. POCH: Q. All right. So you say,
21 it leaked before break, but your information is it
22 wasn't detected so how do you know it leaked before
23 break.

24 THE CHAIRMAN: No, no. He said he didn't
25 know whether it was detected.

1 MR. KING: I have made some inquiries
2 over the last couple of days to see whether the record
3 shows whether there was any detection because the
4 annulus gas system currently is such that the distance
5 between the pressure tube and the calandria tube which
6 is filled now with carbon dioxide gas, that is supplied
7 and circulated and there are moisture detectors in the
8 piping network that supplies this gas and there are
9 alarms that ring if there is excessive moisture in this
10 gas which would detect a pressure tube leak.

11 What I haven't been able to determine is
12 whether there was any such indication on the G16 event.

13 MR. D. POCH: Q. Mr. King, if there had
14 been such an indication wouldn't it have been expected
15 that they have would have shut down the reactor?

16 MR. KING: A. That would be the normal
17 course of action, yes.

18 Q. All right. So either there was no
19 detection of a leak before break, so we don't know if
20 there was a leak before break, or there was, you are
21 telling me, in which case they didn't follow operating
22 practices?

23 MR. PENN: A. I think maybe I can add
24 something here, Mr. Poch.

25 I think you will recall that the

1 regulating system shut the reactor down promptly.

2 There were no safety systems involved whatsoever.

3 While I can't confirm that the moisture
4 indicators caused the operators to do that, I do know
5 that it was done very promptly without any cause for
6 concern and without involving any safety systems.

7 Q. Perhaps I am just working from memory
8 here, Mr. Penn, I thought you had said, or Mr. King had
9 said in his evidence in chief, the reactor was shut
10 down manually.

11 MR. KING: A. It was shut down manually
12 through the manual initiation of the reactor regulating
13 system.

14 Q. Right. Someone shut it off.

15 A. After the failure, yes.

16 Q. After the failure and the crack had
17 already gotten to six feet long.

18 A. Well, I'm sorry, the crack in the
19 pressure tube, I believe which is 20 millimetres in
20 extent -- six metres, I will accept that as an
21 approximate distance for the length, but it was a very
22 narrow crack.

23 The calandria tube held. There was no
24 failure of the calandria tube, and as I mentioned in my
25 evidence in chief, there is a small distance in the

1 bearings Mr. Penn was just referring to which allows
2 for this elongation. There is a small tolerance there,
3 and on the outside of those bearings is the bellows,
4 the mechanical bellows that I referred to which failed.
5 In fact, what limits the flow in that instance is the
6 small tolerance at these bearings, fuel channel
7 bearings, which limited the discharge into containment
8 to a very small level.

9 Q. In fact, Mr. King, your words at page
10 21293 of Volume 122, line 13, was:

11 "So there was a small leakage out of
12 each end through the bellows onto the
13 floor."

14 And you are confirming that now?

15 A. That's correct. But a flow rate is
16 restricted by something, and it wasn't the leak in the
17 pressure tube. It wasn't the hole in the bellows. It
18 was the tolerance in the bearing which restricted the
19 flow to a very small level.

20 Q. Right. And you refer to it as a
21 small leak. Mr. King, how many tonnes of heavy water
22 are there in the Pickering 2 heat transport, the
23 primary cooling system?

24 A. Well, actually, the value I have
25 right here is a value of heavy water per megawatt

1 electrical, so it is .268 megagrams -- sorry, metres
2 cubed per megawatt electrical, so that would be a
3 quarter of 540 --

4 Q. The information I had from just a
5 conversation with Mr. Brian Thompson is 143 metric
6 tonnes. Does that sound about right?

7 A. That is around 540 divide by four.

8 THE CHAIRMAN: Just a moment. What was
9 the 140 - metric tonnes?

10 MR. D. POCH: 143 metric tonnes. All
11 right.

12 Q. Perhaps you could just take that
13 subject to check and it may be --

14 MR. KING: A. That sounds close.

15 Q. It's in the ballpark. And initially
16 the leak would have been in the form of steam?

17 A. It would be a mixture of steam and
18 water.

19 Q. I understand that initially you had
20 to transfer heavy water from other reactors into Unit
21 2?

22 A. The way that the operator first
23 detected the incident after the rupture was a lowering
24 of the level of the D₂O storage tank.

25 Normally, there is water being moved into

1 the heat transport system and coming out the heat
2 transport system without any accident just as part of
3 the normal process.

4 That water is being input through a set
5 of pumps called the D2O feed pumps, and those pumps
6 take source of water from the D2O storage tank. On
7 lowering of the D2O storage tank level is what alerted
8 the operator that he had a leak somewhere.

9 Q. Right.

10 A. The first course of action for an
11 operator in that instance is after shutting down the
12 reactor, of course, is try to maintain the level from
13 the D2O storage tank, and there is a means of doing
14 that by getting heavy water from other reactors or bulk
15 storage in the plant.

16 Q. Now, Mr. King, at page 136 of Exhibit
17 578 is another Hydro document. It is a July, '84
18 document, Pressure Tube Failure Pickering NGS Unit 2,
19 which provides a summary. Do you have that?

20 A. Yes, I do.

21 MR. D. POCH: Perhaps that could be given
22 an exhibit, Mr. Chairman?

23 THE REGISTRAR: 581.

24 ---EXHIBIT NO. 581: Hydro document, dated July, 1984,
25 entitled Pressure Tube Failure
Pickering NGS Unit 2.

1 MR. D. POCH: Q. All right. And from my
2 reading of this document -- and I take this third page
3 of the document under Event Description at the bottom,
4 the leak rate was subsequently estimated to be
5 approximately 17 kilograms a second?

6 [10:40 a.m.]

7 Can you confirm that?

8 MR. KING: A. Yes, I believe that was
9 then equally distributed out of each end of the fuel
10 channel, so the 17 would be a total for the initial
11 leak rate.

12 Q. Right. The document indicates that
13 over, I think, in the second paragraph on page 2 of
14 that document, that is numbered page 2, it says
15 one-and-a-half hours after the initial alarms, the
16 situation was stabilized and at that point leaking was
17 contained to a rate of 5 kilograms a second.

18 A. Yes, I see that.

19 Q. All right. And the leak wasn't
20 stopped, I see at the bottom of page 2, until August
21 14th, two weeks later?

22 A. That's what it says in this document.

23 Q. All right. Just in that first 90
24 minutes when there was the higher leak rate, my
25 calculation of 17 kilograms a second for 90 minutes is

1 about 92,000 kilograms of heavy water.

2 A. What have you multiplied?

3 Q. Ninety minutes times 60 seconds.

4 A. I can't see the reference to the 90
5 minutes.

6 Q. I thought we said an hour-and-a-half
7 after the initial alarm, at that point the system was
8 stabilized and the leak rate was -- water was being
9 pumped back and the leak --

10 A. Sorry, I thought you did a
11 calculation, 17 kilograms a second.

12 Q. Yes. And 17 kilograms was the
13 initial leak rate in the period before stabilization.

14 A. But the leak of 17 kilograms a second
15 did not exist for one-and-a-half hours.

16 Q. All right. So the leak rate was
17 presumably between 17 kilograms a second and 5
18 kilograms a second?

19 A. That's correct. The leak rate
20 depends on the driving force behind the hole which is
21 of course the heat transport system pressure.

22 Q. My calculation was based on 17
23 kilograms a second and that got us up to the 92,000
24 kilograms, which was in excess of half the coolant
25 water. So if it was only 5, or close to 5 it might be

1 a third of that; fair?

2 A. The importance in the loss of coolant
3 accident analysis is not the total amount --

4 THE CHAIRMAN: Hold it. Before you go to
5 that, which you certainly can, do you agree with what
6 Mr. Poch just said, that the 5 kilograms per second
7 would be roughly a third of his calculation, that that
8 would be a reasonable - I can imagine these words - a
9 reasonable estimate of what the weight of the water
10 was?

11 MR. KING: So at 5 kilograms a second,
12 that's 27 kilograms in 90 minutes.

13 MR. D. POCH: Q. That's 27,000?

14 MR. KING: A. 27,000.

15 Q. Kilograms.

16 A. That's the low, that's the smallest
17 it could be. And you had a value of what? You had --

18 Q. 143,000 tonnes.

19 A. So are you talking metric tonnes?

20 Q. I am sorry, 143 tonnes, not 143,000
21 tonnes.

22 A. You are talking metric tonnes?

23 A. Yes.

24 Q. Yes. So 143,000 kilograms, just so
25 we are in comparable units. 27,000 versus 143,000; is

1 that...

2 A. So you had the total volume in the
3 Pickering "A" heat transport system, I recall, as 144
4 metres cubed; is that correct?

5 Q. Well, I had it in tonnes. 143 metric
6 tonnes. I thought we were dealing in weights here, we
7 can keep it simple.

8 A. I guess it's approximate, a metric
9 tonne I believe is a metre cubed.

10 Q. Isn't a tonne 1,000 kilograms? A
11 metric tonne is 1,000 kilograms?

12 A. Yes, but we were dealing with metres
13 cubed before.

14 Q. I thought we were dealing with 5
15 kilograms a second or 17 kilograms a second.

16 A. You had a value of 144--

17 Q. 143 tonnes.

18 A. --Metres.

19 Q. No, it was tonnes. All in weight.

20 Let's stay in weight and not complicate the matter.

21 A. The value I gave you for the amount
22 of water was metric cubed, but that's approximately
23 equal to a metric tonne.

24 Q. Yes. So we have 146 metric tonnes in
25 the heat transport system, is that it? And then you

1 have calculated a range of between, what, 27,000, and
2 if it was at the high rate the whole period of time,
3 which would not be the case, it would be 3 and a bit
4 times that.

5 Q. All right.

6 A. 80 or something. 80,000. So
7 somewhere between 27,000 and 80,000 kilograms a second.

8 Q. Kilograms over period?

9 A. Kilograms total.

10 Q. So in other words, in comparable
11 units you have 146 metric tonnes of coolant and you
12 lost somewhere between 27 and 80 or 90 of those metric
13 tonnes in that first 90-minute period?

14 A. That sounds about right.

15 I was about to explain why, the
16 significance of that.

17 It's really the rate that you lose
18 coolant which is important in loss of coolant
19 calculations in the analysis.

20 The fact of the matter is that during
21 this whole incident the heat transport system itself
22 was never deficient in heavy water, because while this
23 water was being lost it was being picked up off the
24 floor by a system called the D₂O recovery system, put
25 back to the suction of your D₂O feed pumps and pumped

1 right back into the heat transport system.

2 So there was never any point in time
3 where there was anywhere between this calculation of 27
4 to 90 metric tonnes, there was never any time when that
5 amount of water was on the floor. It may have gone out
6 and then it was put right back in again.

7 Q. Mr. King, you agree that in a serious
8 accident perhaps externally initiated where a number of
9 problems occur at once, loss of coolant, loss of
10 cooling capability, the amount of water you lose would
11 be very important, the rate of flow out, if you didn't
12 have a capability to keep replenishing, that would be
13 very important; would it not?

14 A. We are into other event right now.

15 Q. Pardon me?

16 A. We are into a another event, we are
17 not talking about G16 anymore.

18 Q. I am just listening. You have
19 described the G16 event as involving a small leak, and
20 I want to see if this small leak occurred in another
21 sequence where you didn't have your cooling capability,
22 would that be a small leak or would that be a leak of
23 some significant consequence?

24 A. If we did not have a capability to
25 bring in water -- to take this water off the floor, as

1 I described it?

2 Q. To bring in any cooling water. If
3 you didn't have any way to replenish the cooling
4 system.

5 A. If you want to keep on failing
6 systems, what happens if this system failed and the
7 next backup system failed and the next backup system
8 failed, yes, there is some point in time when you are
9 going to come to the point where you don't have anymore
10 ways of getting water into the core.

11 Q. And indeed, if you are successful at
12 shutting down a reactor, it's not cold to the touch at
13 that point, is it? Fuel is still producing some
14 percentage of its heat output for some period of time?

15 A. There is decay heat. I am not sure
16 what part of the system you are touching.

17 Q. If you shut down a reactor, if you
18 successfully shutdown a reactor and you had no way of
19 cooling the fuel, would it melt?

20 Can you answer my question? You can give
21 your explanation after. Can you answer my question?

22 A. There is a very long explanation. I
23 am just hesitating about how long I should get into it,
24 because I have a feeling you don't want the long
25 explanation.

1 Q. I don't. I have heard your concern
2 that there are a great many systems and you don't worry
3 about that ever coming to pass. But if it came to
4 pass, the fact that you have shut down the chain
5 reaction doesn't mean there is no concern about
6 melting; right?

7 A. In the various accident analyses that
8 we do, melting of fuel following the loss of coolant
9 accidents that we are talking right now would not
10 occur.

11 There are a couple of very specific flow
12 channel blockage event -- a flow channel blockage
13 event, which is analyzed in the Darlington safety
14 report where there is a small degree of fuel melting in
15 one channel.

16 Q. But in your analysis you are
17 concluding that there is some cooling mechanism, and I
18 am saying if you don't have a cool mechanism --

19 A. So you are talking about non-design
20 basis accidents beyond what we analyze?

21 Q. My concerns aren't limited by what
22 you have analyzed. I am concerned with the physics of
23 the situation.

24 Simple question. Chain reaction is
25 stopped, you don't have any cooling mechanism, you tell

1 me it's a non-design basis so that is fine, in that
2 scenario you could have melting, you would have melting
3 you; true?

4 A. If you have a source of heat and if
5 you say that heat does not get removed, then the laws
6 of nature would say that that would melt. But it is
7 just improper to view things in that simplified a
8 manner.

9 Q. Well, in your view it's improper.
10 In fact, we will get to this later, but
11 you have assumed that your various systems or
12 mechanisms will come into play and that's why you don't
13 analyze that?

14 A. Well, we analyze all sorts of systems
15 failures, but as I mentioned there is a point in time
16 where if you want to get far, far out on the
17 probability spectrum, you can get to a worse accident
18 than that which is within our analyses that we do
19 normally.

20 Q. We will come back to that, it's
21 really a separate topic. It's was just an aside to in
22 what context this a small leak and in what context it
23 could matter.

24 Now, I understand that certain technical
25 changes were made to counter the problems thought to be

1 responsible for the Pickering tube rupture, and you
2 said, Mr. King, there was also a big inspection
3 program, is my recollection correct, as a result?

4 A. As a result of the G16 event, in my
5 evidence in chief I indicated that that initiated
6 several programs, one of them being an enhanced
7 inspection program.

8 Q. But three years later through a
9 different sequence in a reactor that was shut down, you
10 suffered a pressure tube rupture at Bruce Unit 2, March
11 '86; is that right?

12 A. That's correct.

13 Q. And, Mr. King, I understand that the
14 dynamics of that accident were very different, there
15 was different temperature gradients, different pressure
16 gradients, and so on. But the problem was a sudden
17 rupture and it involved hydriding, did it not, the same
18 metallurgical hydriding that was present in Pickering?

19 A. I believe that incident initiated
20 around the rolled joint area and there was a
21 manufacturing defect, I think, involved in that, but I
22 think hydriding was a mechanism, yes.

23 Q. But your inspections didn't pick up
24 that particular problem, it was different enough in
25 kind that you hadn't caught it at that point in time?

1 A. I would guess that's correct.

2 Perhaps somebody else on the panel may want to offer
3 some other insight into it.

4 MR. PENN: A. I would like to confirm
5 that it was a manufacturing defect.

6 It was so minor in size that during
7 shutdown we decided to try and find this by
8 pressurizing the system and that's what caused the
9 failure. It was a process of trying to discover where
10 it was, because it was so small. It had nothing
11 whatsoever to do with the G16 event in Pickering Unit
12 2.

13 Q. But, Mr. Penn, when it went, because
14 you pressurized this reactor that was otherwise
15 unpressurized, when it went it went so suddenly that it
16 didn't just crack the pressure tube, the calandria tube
17 was ruptured as well; is that right?

18 MR. KING: A. If I could answer that.
19 Yes, it did. But as you noted, the reactor was shut
20 down at that time. If I could just back up a bit.
21 [10:55 a.m.]

22 As Mr. Penn mentioned, there was an
23 indication of a leak through a leak before break
24 mechanism on that channel. The operators had shut down
25 the reactor and were looking at it from acoustical

1 emission techniques. They were trying to listen to the
2 channels to see, through some electronic techniques, to
3 see which channel in fact had the leak.

4 What they were unaware of, though, is
5 that there were some policies, which perhaps hadn't
6 been adequately passed on to the operators, is that
7 they shouldn't have been in a high pressure. They were
8 pressurized up to about 8 megapascals at a cold
9 condition. They were down around 40 degrees C, I
10 believe, approximate number.

11 Q. Human errors category?

12 A. And what happens is that when the
13 pressure tube fails it hits the calandria tube not with
14 a steam, a low-momentum type of impact, but it hits it
15 with water, which is much denser, and it was really
16 that type of impact which failed the calandria tube.
17 That calandria tube had not have failed if the reactor
18 would have been at power with a hot heat transport
19 system.

20 Q. This matter is referred to in a
21 document from Hydro which appears in again our second
22 Volume, Exhibit 578, towards the very end, page 151.
23 It is entitled Nuclear Integrity Review Committee,
24 Annual Report for 1986, and it is dated August, '87.
25 This is an Ontario Hydro publication, Mr. King;

1 correct?

2 A. That's correct.

3 MR. D. POCH: Mr. Lucas, perhaps we could
4 get a number for that?

5 THE REGISTRAR: 582.

6 ---EXHIBIT NO. 582: Ontario Hydro publication in
7 Exhibit 578, page 151, entitled Nuclear
8 Integrity Review Committee, Annual Report
9 for 1986, dated August, 1987.

10 MR. D. POCH: Q. And if you turn over to
11 page 153, if you can see at the top where partway
12 through Description, it is referring to channel NO6.
13 That is this same event?

14 MR. KING: A. . That's correct.

15 Q. It said that:

16 Resultant water hammer loads generated
17 in the annulus caused the failure of the
18 associated calandria tube. Six fuel
19 bundles were also severely damaged.

20 I take it that the people conducting the
21 test hadn't anticipated anything quite that violent?

22 A. No. As I mentioned, they were not
23 aware of the fact that this test should not be
24 conducted with the heat transfer system in a cold
25 condition.

26 Q. Now, you have said this is a

1 manufacturing problem. This is the newer alloy of
2 tubes; this wasn't the same alloy. This is the new
3 generation of zirconium tubes, the kind that we have at
4 Darlington and are envisaged for future plants?

5 MR. PENN: A. Yes, it was, but that has
6 nothing to do with the overlap defect.

7 Q. And, Mr. King or Mr. Penn, do you
8 believe that Hydro has now solved all the problems that
9 have been encountered with fuel channel assemblies?

10 A. We believe that we have extensive
11 knowledge of the mechanism that failed G16. We have
12 conducted tests on ring samples of every pressure tube
13 taken out of Pickering Unit 3 and a large number taken
14 out of Pickering Unit 2 and 1, and we will also be
15 taking more samples out when we retube Pickering 4. We
16 have just done it.

17 I think I can clearly state that while we
18 can never be certain that we have solved every problem
19 that we have a great deal of knowledge of that subject.

20 Q. Mr. Penn, I am wondering if you can
21 turn with me to - Mr. King, this may be for you - again
22 in our second volume of materials 578, page 1. This is
23 a document from the Atomic Energy Control Board. It is
24 a Memorandum to the Board Members from their
25 Directorate of Analysis and Assessment regarding CANDU

1 pressure tubes.

2 Perhaps this should also receive a
3 number.

4 THE REGISTRAR: 583.

5 ---EXHIBIT NO. 583: Document from Atomic Energy
6 Control Board, Memorandum to Board
7 Members from their Directorate of
 Analysis and Assessment regarding CANDU
 pressure tubes.

8 MR. D. POCH: Q. And this document dates
9 from October of 1990. Have you seen this document
10 before, Mr. King?

11 MR. KING: A. Well, I have seen it since
12 it is in your exhibit.

13 Q. I would like to read you a few of
14 their comments and you can perhaps tell us whether you
15 agree.

16 Page 2, third paragraph:

17 Most CANDU reactors are operating now
18 with some of their pressure tubes in
19 contact with their calandria tubes.

20 Where contact occurs and blisters
21 subsequently form, the risk of a failure
22 originating from sites of contact with
23 blisters increases. This form of
24 degradation is likely to precede problems
25 associated with loss of ductility or

1 fracture toughness arising from
2 irradiation damage and hydrogen ingress.
3 And at the bottom of that page talking
4 about -- the last sentence there:

5 This type of behaviour appears to have
6 been a precursor of the unstable failure
7 of a pressure tube that occurred in
8 Pickering Unit 2 in August, 1983. None
9 of the reactors in service now employs
10 zircaloy-2 as a pressure tube material.
11 The material in use is zirconium-2-1/2
12 per cent by weight niobium. Thus far,
13 there has been no evidence of contact
14 blister formation in-service in tubes of
15 the latter material.

16 Industry specialists do acknowledge,
17 however, that blisters could form in fuel
18 channels where there is pressure tube to
19 calandria tube contact and where hydrogen
20 concentrations in the pressure tube are
21 high.

22 And down in the second last paragraph on that page I
23 read:

24 Based on measurements of hydrogen
25 contact in pressure tube material

1 obtained from samples over the past few
2 years, industry specialists have
3 predicted that some pressure tubes
4 in-service may have already developed
5 contact blisters. Proven non-destructive
6 examination techniques are not able to
7 detect the presence of blisters in
8 pressure tubes.

9 And it goes on to give us some good news and some bad
10 news at the bottom paragraph:

11 Recent data also appears to suggest
12 that in general the degradation rate is
13 slow. Previous concerns about
14 acceleration in degradation rate arose
15 because of high hydrogen level
16 indications obtained in repeat sampling
17 work. These high readings are now
18 believed to have resulted because of
19 errors in the analysis of some samples.

20 It should be noted, however, that
21 there remains some confirmed evidence of
22 high hydrogen levels in a few pressure
23 tubes. These results are at variance
24 with recent data and cannot be easily
25 reconciled with a perception that

1 degradation rates remain consistently
2 low.

3 Mr. King, is that still the understanding
4 at this time?

5 A. I believe this document, as you have
6 noted, is an AECB document of approximately a year and
7 a half ago.

8 My understanding, while I am not directly
9 involved, is that the fitness for service guidelines
10 which they are referring to in here have been
11 developed, there has been lot of work on them in the
12 last year-and-a-half in conjunction with the AECB, and
13 they are satisfied with these fitness for service
14 guidelines that we have.

15 Now, perhaps Mr. Penn can add something,
16 but that is my understanding of the situation.

17 MR. PENN: A. Well, I would like to add
18 sufficient to put this document into perspective.

19 First of all, it was advice by AECB staff
20 to their board with regard to a decision on allowing
21 Pickering 4 to restart and operate for about nine
22 months before it was shut down to retube it. That is a
23 very prudent thing for a regulator to do to be sure
24 that there would not be any problem with that reactor.

25 The second thing I would like to comment

1 is that while we don't have means of detecting blisters
2 if you had read other paragraphs you would have noted
3 that we do have excellent ability to even detect the
4 smallest crack in a blister.

5 In fact, that type of work has been very
6 important in leading to the criteria that Mr. King
7 mentioned.

8 And the last thing I would like to say,
9 unless you want to get into more detail, is that the
10 Mr. Waddington who wrote this document to his board, he
11 ends up at the very end of this document by saying,
12 "The new evidence is encouraging." And what he is
13 referring to is the understanding of the takeup of
14 hydrogen and deuterium and zircaloy alloys, the rate at
15 which it occurs, and the knowledge of formation of
16 blisters, et cetera.

17 THE CHAIRMAN: Sorry to interrupt, but
18 where does it say "The new evidence is encouraging"?

19 MR. PENN: The last sentence, Mr.
20 Chairman, on page 4.

21 THE CHAIRMAN: Oh, I see it now. Thank
22 you. Thank you. I'm sorry to interrupt.

23 MR. DALY: I think it is also important
24 to add that the AECB were satisfied that Pickering Unit
25 4 could be returned to service, it was returned to

1 service and ran with no pressure tube problems until
2 the shutdown in August.

3 MR. D. POCH: Q. This was seven years
4 after the Pickering accident, and I take it this was
5 about reactors with the new kind of zirconium?

6 MR. DALY: A. Correct.

7 Q. And just so we can reach agreement on
8 this, I take it that discussion then is how long or
9 how -- well, in fact, if we read the views of AECB
10 staff, item 2:

11 Pressure tubes must be removed from
12 service well short of conditions which
13 could lead to such an event.

14 That is what this is the focus on, and
15 the question was whether or not we had reached that
16 point with Pickering...4, was it?

17 A. Pickering 4, yes. And that is the
18 whole purpose of our inspection and maintenance and
19 sampling program, to make sure we do remove them from
20 service well before that type of condition.

21 Q. And what you are saying is, Mr. Penn,
22 if I understood you correctly, you are confident now
23 that you will be able to detect a leak before a break,
24 and that is one reason why you are not worried about
25 this?

1 MR. PENN: A. I don't think I actually
2 said that, but I can certainly comment on it.

3 What I said was we are now confident that
4 we understand the mechanism and the rate at which
5 hydrogen and deuterium is absorbed within zirconium
6 alloys. In fact, it has been very clearly shown that
7 this rate of uptake is very slow and that it is
8 continuous but it is very slow, and there is no
9 acceleration in that rate over the period of time.

10 Now, as far as confidence of detecting a
11 leak before break, we have spent a great deal of time
12 improving annular gas systems to do just that, and I
13 can't say with 100 per cent certainty that we would
14 pick up every one, but I do know that we have extremely
15 good systems to detect that sort of problem.

16 Furthermore, we have criteria, given that
17 we know the channels that do have contact with the
18 calandria tubes in our reactors -- and by the way, I
19 would disagree that not all reactors have contact.
20 Since we do know which channels they are we regularly
21 inspect them, and we have a program, an agreed program
22 with the Atomic Energy Control Board to do just that.

23 Q. Let's be clear, Mr. Penn. You are
24 not disagreeing with me; you are disagreeing with the
25 observation of the AECB staff there?

1 A. I was commenting on the first part
2 that you read out from this document on page 2, and it
3 does start with the sentence, "Most CANDU reactors..."
4 And I am just confirming that the "B" reactors, for
5 example, we know there is no contact.

6 MR. KING: A. I would just like to add
7 something on the ability to detect cracks before they
8 rupture in pressure tubes.

9 We all recognize and all have said that
10 G16 incident was a surprise.

11 Subsequent or during all the retubing of
12 the Pickering reactors a lot more importance at the
13 same time was placed on the annulus gas system, and
14 during all the retubing exercises the annulus gas
15 system was verified, all the flow paths were verified
16 as open, extra instrumentation was put in on all of the
17 plants, and those systems right now, we have a fairly
18 high degree of confidence that in fact they are
19 functioning as detection mechanisms for leakers.

20 Q. All right. Mr. King, I am interested
21 in your comments as they pertain to the particular
22 problem here which you think you have a handle on.

23 But isn't this a case where from the
24 outset you knew there was a potential problem? Hydro
25 documents we have spoken of this morning say: Safety

1 of pressure tubes rely on a leak before break. You
2 were relying on that, and yet your evidence this
3 morning was the first indication that they had a leak
4 was a lowering of the storage water. They didn't catch
5 the leak before break in time.

6 Maybe if that same accident happens again
7 you are telling me we would now catch it?

8 A. I think my evidence earlier on this
9 morning was that I cannot confirm that there was a
10 demonstration of leak before break at G16.

11 Q. Well, whether there was or there
12 wasn't, if there was they didn't catch it in time to
13 shut the reactor off before it propagated into a larger
14 crack?

15 A. It was the indication of lowering
16 storage tank level which initiated the shutdown of the
17 reactor, that is correct.

18 Q. So your engineering vision and your
19 safety analysis while it didn't lead to a big meltdown
20 your engineering vision was wrong about something where
21 you knew there was a potential problem?

22 A. The safety -- I forgot what
23 paragraph. It was in the document dealing --

24 Q. The 1982 document from Ontario Hydro?

25 A. Correct, Exhibit 580, that paragraph

1 where they were referring to the safety of the pressure
2 tubes. That is what there are talking about there.
3 There are talking about the safety of the pressure
4 tube; there are not talking about the safety of the
5 plant. So I think that is an important distinction.

6 Q. Mr. King, can you answer my question?

7 Your engineering vision failed you at that time?

8 A. The engineering vision which I assume
9 you are referring to is the reference in this document,
10 Exhibit 580, which is published in '82.

11 Q. Yes. And your vision at the time
12 that you constructed these reactors in light of the
13 knowledge that you had then. You banked on a scenario
14 and it didn't go as you predicted?

15 A. Again, you have got to distinguish
16 between your safety of pressure tubes and the safety of
17 the plant.

18 We have not set ourselves up from a world
19 safety design point of view to be -- there is no need
20 to be perfect. It is this setting up the strawman of
21 perfection and then saying, well, you haven't met it;
22 therefore, the plant is unsafe.

23 In my evidence in chief referring to the
24 defence and depth approaches to safety design, yes,
25 there can be occurrences where you have failures,

1 whether they are failures in equipment or failures in
2 oversight of some mechanism --

3 [11:15 a.m.]

4 Q. Or failures in your understanding of
5 the phenomenon or engineering?

6 A. Or failures in some understanding of
7 some phenomena.

8 Q. And this was one of those?

9 A. Well, I think we have all agreed that
10 the G16 event was a surprise.

11 MR. PENN: A. I think I would like to
12 say something about this engineering wisdom that you
13 have spoken to, Mr. Poch, and I refer to Exhibit 581,

14 Q. I'm sorry, I have lost the page for
15 that.

16 A. That's on your page 138.

17 Q. Yes.

18 A. And under Event Description, 3.0, it
19 starts:

20 Prior to the event, Unit 2 had
21 operated continuously for 342 days. At
22 1983 August 1st the unit was operating
23 normally producing 515 megawatts net. At
24 1110 hours alarms in the control room
25 indicated a sudden leak of heavy water

1 from the heat transport system.

2 And then further down in the last
3 paragraph:

4 Manual reactor power reduction, cool
5 down and depressurization were initiated
6 by operator action with the normal
7 process control systems.

8 The vision we had of course was to
9 recognize that you could have a failure in a pressure
10 tube and to have systems that would alarm the operator
11 to know it had happened. And I think that indicates
12 the importance of the nature of vision in safety
13 related matters.

14 Q. I don't want to go into too much
15 detail of how you analyze that safety, but I promise
16 you, Mr. King, we will come back to that question in a
17 little while.

18 Could we turn up page 21 of the first
19 volume, 577. This is a document entitled Reliability
20 of CANDU Nuclear Generation, Ontario Hydro's
21 Demand/Supply Plan, prepared by Peter Fraser, Adviser,
22 Nuclear Power Electricity Section, March 8, 1991.

23 Mr. Daly, I am assuming you have seen
24 this document before I gave it to you last week.

25 MR. DALY: A. I had, just shortly before

1 that, but yes, I had.

2 THE CHAIRMAN: I am sorry, is this an
3 Ontario Hydro document?

4 MR. D. POCH: I was going to elicit that
5 from the witness.

6 Q. Mr. Daly, could you tell us who Peter
7 Fraser is and whose document...

8 MR. DALY: A. I don't know he works for
9 currently, but I believe at this time he was an adviser
10 in one of the ministries, I believe the Ministry of
11 Energy.

12 THE CHAIRMAN: Of Ontario?

13 MR. DALY: Of Ontario, yes.

14 MR. D. POCH: Q. So this is a document
15 he produced in that role?

16 MR. DALY: A. Yes. There is no
17 indication from this who he provided it to or in what
18 sense it was used, but he was an adviser in the nuclear
19 power electricity section of the Ministry of Energy.

20 Q. And just before we identify that, at
21 page 36 is a briefing note version of this, titled
22 Ministry of Energy Briefing Note, Division Policy
23 Development Coordination, title, Major Nuclear
24 Generating Station Outages. On the page 44 of our
25 exhibit it indicates it is prepared by Peter Fraser,

1 February 26th, '91, Backup Brian Findlay.

2 Is Mr. Findlay also familiar to you?

3 A. Yes, I have met Mr. Findlay on a
4 couple of occasions.

5 Q. And he as well works in the ministry,
6 the Ministry of Energy?

7 A. Sorry.

8 Q. He works in the Ministry of Energy as
9 well?

10 A. I believe so, yes.

11 Q. And he is a nuclear adviser and has
12 been for some years there?

13 A. My only contact with him was through
14 ONCI and he participated as an observer for some of the
15 ONCI hearings, that's really my only knowledge of Mr.
16 Findlay

17 Q. And Mr. Penn or Mr. King, Mr. Fraser
18 in fact had assisted Dr. Hare in the ONSR effort; is
19 that correct?

20 MR. PENN: A. Yes.

21 MR. D. POCH: So perhaps then these
22 documents could be given an exhibit number before we
23 get into them.

24 THE CHAIRMAN: Are there two documents,
25 Mr. Poch?

1 MR. D. POCH: There are technically two
2 documents and perhaps for ease of reference they should
3 get separate numbers, the first one commences on page
4 21. The first commences on page 21, it's entitled:
5 Reliability of CANDU Nuclear Generation.

6 THE REGISTRAR: 584.

7 MR. D. POCH: The second document
8 commencing at page 366 of our exhibit is entitled Major
9 Nuclear Generation Station Outages.

10 THE REGISTRAR: 585.

11 ---EXHIBIT NO. 584: Document entitled: Reliability
12 of CANDU Nuclear Generation.

13 ---EXHIBIT NO. 585: Document entitled: Major Nuclear
14 Generation Station Outages.

15 MR. D. POCH: Q. I would like to refer
16 to the first one.

17 At page 4 of that document, we have a
18 little bit of history, Mr. Daly, I am wondering if we
19 can agree on some of that. It refers there to Energy
20 Probe Komanoff study. Komanoff is the gentleman who
21 has authored Exhibit 563, which is the Coalition's
22 evidence on this question? You are familiar with Mr.
23 Komanoff's work?

24 MR. DALY: A. Yes, I am.

25 Q. And there Mr. Fraser notes that
Energy Probe has noticed the decline in nuclear

1 performance and last year brought it to the attention
2 of the Ontario Energy Board, and hired Mr. Komanoff to
3 see if there was a correlation of the capability factor
4 with plant age.

5 The Hydro response to that is highlighted
6 in the second last paragraph on that page:

7 Hydro staff suggested that a detailed
8 engineering analysis would be a more
9 insightful means of identifying the
10 contributing factors to aging and whether
11 they are expected to recur.

12 And Mr. Fraser comments:

13 Although this argument is attractive,
14 it is important to remember that a
15 decline in performance comes about in
16 part because you don't know exactly what
17 will go wrong.

18 Leaving aside Mr. Fraser's last
19 observation, that was the debate at the time; fair?

20 A. That was part of the debate.

21 I think as I mentioned yesterday, Mr.
22 Komanoff focuses on trends associated with aging, and
23 from our point of view we want to understand what is
24 behind the aging so we want to get at those systems
25 which are contributing to incapability, and in fact

1 spend a lot of time tracking the history of the
2 different systems. So we try to get behind the general
3 term aging and understand the causes for it. So in
4 that sense it was a bit of a difference, yes.

5 Q. In fact, the Energy Board at that
6 time did not make a projection itself or adopt a
7 projection based on Mr. Komanoff's piece. In fact,
8 this is recited at the second paragraph on page 26.
9 Perhaps I will read it in so we are altogether here.

10 Using their study Energy Probe argued
11 before the OEB that nuclear energy
12 production would be 2.2 terawatthours
13 lower than Hydro estimated because of
14 aging related incapability. In 1989 the
15 Board did not accept the Komanoff study
16 as an adequate basis for a rate
17 adjustment because it was based on
18 numerous extrapolations and assumptions
19 which had not been tested during the
20 hearing.

21 Mr. Fraser goes on to note:

22 In fact, energy production from
23 nuclear generation fell by 2.2
24 terawatthours in 1989, consistent with
25 Energy Probe's prediction. Hydro

1 forecast in ONCI that its 1989 average
2 capability factor would equal 76 per
3 cent. The actual '89 average capability
4 factor was 74.5 per cent.

5 Is that your understanding, Mr. Daly?

6 THE CHAIRMAN: What was his
7 understanding?

8 MR. D. POCH: Q. The forecasts, what the
9 competing forecasts were and what the reality turned
10 out to be?

11 MR. DALY: A. That is correct, yes.

12 Q. And it goes on:

13 Energy Probe updated Komanoff's
14 analysis at the OEB hearings held in 1990
15 by including the 1989 data. They
16 estimate the rate of decline attributable
17 to age at .97 per cent per year... And
18 there is statistical significance data
19 given. ...in 1990 the capability factor
20 declined 11 per cent, a much larger
21 decline than would have been predicted.

22 I take it, Mr. Daly, first of all those
23 facts are correct, can you confirm that?

24 A. Yes, I can confirm those facts, yes.

25 Q. And in fact, Hydro was predicting

1 higher performance than Mr. Komanoff and I think it was
2 as Mr. Adams who updated Mr. Komanoff's study for
3 Energy Probe at that time?

4 A. My recollection was that in 1990 we
5 were slightly -- both Mr. Komanoff's predictions and
6 our own predictions for 1990 were significantly off.
7 As I described earlier, 1990 was a particularly bad
8 year, we did have a number of planned and unplanned
9 outages, and most of the forecasts done for that year
10 were significantly off.

11 Q. They go on to note, Mr. Fraser goes
12 on to note:

13 Unlike the previous year, the Ontario
14 Energy Board concluded that Ontario
15 Hydro's forecasts of nuclear performance
16 were overly optimistic. They recommended
17 that the type of analysis used by
18 Komanoff be developed by Ontario Hydro
19 for baseline forecasts of nuclear
20 production.

21 Do you recall that, Mr. Daly?

22 A. Yes. I would like to make two
23 comments on that.

24 We had also concluded at the same time
25 that our forecasts of performance were overly

1 optimistic, and during the last two or three years we
2 have been cutting back the forecasts of production
3 primarily from the "A" plants, and I did indicate that
4 in my direct evidence.

5 As you, I think, pointed out yesterday,
6 they are some significant differences between the
7 original DSP and the Update, reflecting that we have
8 cut back in our forecast production substantially from
9 the "A" plants.

10 So basically we agreed with the OEB's
11 conclusions and have taken corrective action.

12 On the second point they recommended the
13 type of analyses used by Komanoff be developed by
14 Ontario Hydro. We reviewed that ourselves, we felt
15 that the regression analyses used by Mr. Komanoff was a
16 useful short-term check but useful only as a short-term
17 check.

18 We have, since that time, started to
19 develop the probabilistic model we talked about
20 yesterday, and we intend to fully develop that and use
21 that as one of our checks for future forecasting.

22 Q. Mr. Daly, you are suggesting then
23 that a regression analysis which takes account of
24 general trends as opposed to looking at specific
25 factors, although Mr. Komanoff does of course account

1 for some of the specific engineering forecasts you are
2 making and segregate those out, we will let Mr.
3 Komanoff explain his analysis some other time, but are
4 you suggesting that the regression analysis of trends
5 is actually better for short-term analysis than for
6 long-term?

7 A. That was our view of it. If you
8 extrapolate -- I guess the analysis Mr. Komanoff
9 originally presented were basically just a straight
10 line through your best fit to your history and a
11 straight line extrapolation, and we felt that while
12 that's a useful check, if you sort of do a best fit of
13 your last five to ten years, that's a reasonable check
14 what might happen in the next one or two years, but if
15 you start extrapolating that out for the next 10 or 20
16 years, its credibility is very questionable. So we
17 felt there was really no value to the long-term linear
18 projections that Mr. Komanoff was tabling at that time.

19 Q. He doesn't in fact have a -- you have
20 seen his current study, I take it?

21 A. I noticed one curve in his current
22 study which is in fact not a straight line, it's a
23 parabola. But he does in his study, he gives two
24 ranges, for the long-term he has a range where he
25 assumes a parabola and then he has another factor

1 calculated where he adjusts the age-related
2 degradation.

3 Q. That's where he says if you are able
4 to somehow limit it to 1 per cent, he just simply does
5 the math for you and says what you would get.

6 A. That's right. And it makes a huge
7 difference.

8 Q. Yes, of course.

9 And in fact, his current study which
10 again we will get to, but just so it will be in context
11 when we get there, it's not a linear model; it's a
12 complex curve with a number of variables?

13 A. That's right. And at this point in
14 time we just have the curve. We don't have much of the
15 detailed information behind it.

16 Q. I am sure we will have an opportunity
17 to provide that to you in time for your counsel to
18 question Mr. Komanoff.

19 I take it, though, that Mr. Komanoff's
20 earlier projections have been better predictors of
21 Ontario Hydro's performance since he made those
22 projections throughout the period than your own have
23 been?

24 A. Well, we have already talked about
25 the figures for 1989 and 1990. My understanding is our

1 '91 prediction was slightly better than the one tabled
2 by Energy Probe at last year's hearings, that is my
3 understanding from --

4 Q. That would have been Mr. Adams?

5 A. Yes, that's my understanding from Mr.
6 Adams.

7 I think the predictions were not actually
8 far apart.

9 Q. All right. Do I take it from your
10 comments a few moments ago that you are then not
11 intending to conform to the requests to the OEB to do a
12 regression analysis of the type that Mr. Komanoff does
13 to develop a baseline forecast?

14 A. Not exactly, we don't plan to do
15 exactly the type of work that Mr. Komanoff has done for
16 the reasons I have described.

17 We carry out some checks which I think
18 are essentially similar by looking at history and
19 extrapolating from history.

20 So in our view we make some checks on our
21 forecasting that are similar on a short-term basis to
22 those done by Mr. Komanoff, but as I indicated earlier,
23 we prefer not to use the general aging term; we prefer
24 to get the systems that are causing the incapability.

25 So we have adopted basically I think a

1 similar approach in terms of short-term checks and we
2 are developing this, in response to the OEB we are
3 developing this probabilistic model which we intend to
4 use to assist us in long-term forecasting.

5 MR. D. POCH: Mr. Chairman, that's a
6 convenient place to break for me.

7 THE CHAIRMAN: All right, we can break
8 for 15 minutes.

9 THE REGISTRAR: Please come to order.

10 This hearing will recess for 15 minutes.

11 ---Recess at 11:35 a.m.

12 ---On resuming at 11:55 a.m.

13 THE REGISTRAR: Please come to order.

14 This hearing is again in session. Be seated, please.

15 THE CHAIRMAN: Mr. Poch?

16 MR. D. POCH: Thank you, Mr. Chairman.

17 Q. Mr. Daly, when we left off you were
18 just drawing this distinction between Mr. Komanoff's
19 approach, which takes account of certain specific
20 systems and then looks for a general aging phenomenon,
21 and your approach where you do it all on the specific
22 system basis; correct?

23 MR. DALY: A. That is the basis of the
24 probabilistic model we are developing, and on our
25 existing forecasting process we also look at the trends

1 on all systems.

2 Q. All right. Now, Mr. Heintzman spent
3 some time with you discussing the relationship between
4 OM&A or preventive maintenance, which presumably would
5 be part of OM&A, and performance.

6 Can we turn to page 24 of 577, which is
7 the third page of Exhibit 584? Mr. Fraser reports
8 there:

9 As noted above, the retubing outages
10 were excluded from the curves--
11 and he is talking about Mr. Komanoff's curves, I take
12 it.

13 --so that planned-for outages would
14 not distort the trends. It is worth
15 noting that go Ontario Hydro has used its
16 retubing outages to install new safety
17 equipment and to repair broken components
18 that are difficult to access during
19 ordinary outages.

20 In other words, the retubing outage is
21 an overhaul of the nuclear reactor.

22 And then goes on to say:

23 Ontario Hydro expects reactors once
24 retubed to attain excellent performance
25 levels. Hydro stated in 1989 before the

1 OEB that it expects Pickering 1 and 2,
2 the retubed reactors, to average 15 per
3 cent incapability factor between now
4 until the end of life.

5 Which would be, I take it, 85 per cent capability
6 factor, Mr. Daly?

7 A. That's correct, yes.

8 Q. All right. Can you confirm that in
9 fact you do take advantage of the downtime of retubing
10 to do some difficult jobs and some preventive
11 maintenance and to try to catch up on that kind of
12 work?

13 A. We do, and we did some of that to
14 some extent during the Pickering retubing outages. We
15 have a more substantial program planned for the Bruce
16 "A" retubing outages.

17 I am not sure my exact quote was that we
18 expected the reactors to average 15 per cent
19 incapability. Certainly, that is our target, as I
20 indicated before.

21 Q. All right. And just so we can be a
22 little more precise about that, I will go over your
23 head with your permission to Mr. Niitenberg's comments.

24 If you turn up page 48A of this volume?
25 Now, this is a transcript from the Energy

1 Board's HR 15 hearing, that would have been 1986. I
2 assume it is electricity rates proposed for 1987.

3 Can you first of all identify for us who
4 Mr. Niitenberg is?

5 A. He is the Senior Executive
6 Vice-President of Operations. His title has changed
7 had a few times, but he is basically our No. 2 man.

8 Q. Right. And I just wanted to read
9 with you a couple of his comments from that era to see
10 how good his vision was.

11 Well, first of all, perhaps, Mr.
12 Chairman, we should make this transcript excerpt an
13 exhibit in these proceedings.

14 THE CHAIRMAN: Right. Next number?

15 THE REGISTRAR: What page is that,
16 please?

17 MR. D. POCH: At page 48A.

18 THE REGISTRAR: 48A?

19 MR. D. POCH: "A".

20 THE REGISTRAR: That will be 586, Mr.
21 Chairman.

22 ---EXHIBIT NO. 586: 48A of Exhibit 577, being an
23 excerpt from the Ontario Energy Board's
HR 15 hearing, 1986.

24 MR. D. POCH: Q. And if you turn to page
25 48E. First of all, Mr. Daly, you can confirm that this

1 was in the context of a discussion about OM&A dollars.
2 You can see that on the preceding page around line 17
3 and following.

4 At the top of page 48E there is a
5 comment:

6 When we get the units back I would
7 expect those units to perform in the
8 first few years after they come back
9 better than average.

10 And he elaborates further at page 48G, two pages on:

11 Could I just make one last attempt to
12 try to clarify this. Even if Pickering 1
13 and 2 is left out of the calculation the
14 DAFOR deteriorated up until 1985. By
15 putting additional OM&A effort in,
16 excluding Pickering 1 and 2, we expect to
17 make an improvement and we can do a
18 number of things.

19 So I take it there, Mr. Daly, I am
20 interpreting Mr. Niitenberg's comments the same way you
21 would, that he is saying: We are going to do more
22 OM&A, that will help with performance. And, in
23 particular, he said earlier on: We are going to do
24 OM&A on these Pickering retubing reactors, and we would
25 expect better than average performance when we bring

1 them back on line because of that?

2 Is that a fair interpretation, or do you
3 take the same meaning from his comments?

4 MR. DALY: A. That is a fair
5 interpretation. We did expect them to perform better
6 than average, and, in fact, currently they are
7 operating slightly better than our current average.

8 Q. Right. And you spoke of a two- to
9 three-year lag, is my recollection, in your discussion
10 with Mr. Heintzman about how fast you would expect to
11 see a performance change as a result of an OM&A change.

12 A. Yes. The indications we have from
13 the modelling we have done is that we would expect a
14 time lag of that sort of order.

15 Q. So we would expect, then, that it
16 would certainly be soon enough to see the effect of
17 this increased OM&A that was done during the retubing
18 and is talked about here in 1986, now in 1990 or 1992
19 if we look at, for example, 1990 or so?

20 A. Well, the first unit was returned
21 from retubing in 1987, and the second in 1988, and the
22 third just last August, so we are just beginning to get
23 to the point in time where we should be able to see
24 that improvement.

25 We certainly did not see as much

1 improvement as we had hoped for from Pickering 1 and 2
2 in the early years. We have made a few changes to the
3 work we did on Unit 3 during its rehabilitation and
4 have had slightly better performance from Pickering 3.
5 So we are continuing to learn from our experience on
6 the work we do during a retubing.

7 So we have got those units up to 75 per
8 cent at the moment, and we plan to get them higher.

9 Q. Perhaps you could turn with me, then,
10 to Mr. Komanoff's study which has been given Exhibit --
11 I believe it's 563, Performance Reliability of Ontario
12 Hydro CANDU Plants?

13 THE REGISTRAR: That is correct.

14 MR. D. POCH: Thank you, Mr. Lucas.

15 Q. Now, I turn to this study simply
16 because Mr. Komanoff presents in one place a whole lot
17 of data in the appendix that he used, the raw data and
18 the various factors he considered, which is Appendix 2
19 of that piece.

20 By the way, Mr. Daly, this may be of some
21 assistance to you. This is the data you were hoping
22 you could get to see what is behind his analysis, so it
23 is provided in the appendix, and, as I say, if you need
24 any other information we will be happy to provide it.

25 Let's see if we can interpret this data

1 correctly. First of all, the sources are provided, but
2 I take it -- I don't know if you have had an
3 opportunity to check all the numbers. I wouldn't
4 expect you would have.

5 Can we take the numbers, subject to
6 check?

7 MR. DALY: A. There are some slight
8 differences. I haven't checked all the numbers. There
9 are some slight differences. He appears to drift
10 between capability factor and capacity factor in a few
11 places. The differences in most cases are small.

12 Q. All right. And if you could just
13 follow me, then, the seventh column from the left,
14 first there is the number, then the unit, then the --
15 I'm sorry, I may have counted wrong. In any event, the
16 column headed Year that would just be the calendar
17 year? And if we go five columns farther over we see
18 CBFAC.

19 Now, do you recognize those numbers as
20 being the representative of the capability factors at
21 the various units in the various years listed?

22 A. Yes, they are representative of. As
23 I say, we notice a few minor differences, but they are
24 certainly representative of, yes.

25 Q. Perhaps we will have you provide any

1 amendments to that in advance of Mr. Komanoff's
2 attendance so we can attune this to your numbers.

3 If you go down to line 13, which is a
4 Pickering 1 line for the year --

5 THE CHAIRMAN: Which Pickering 1 line?

6 MR. D. POCH: Mr. Chairman, the lines are
7 numbered in the first column.

8 THE CHAIRMAN: But what number, though?

9 MR. D. POCH: I am looking at 13 lines
10 down.

11 THE CHAIRMAN: You are looking at 13,
12 Pickering 1?

13 MR. D. POCH: Pickering 1. Yes.

14 THE CHAIRMAN: All right.

15 MR. D. POCH: Q. Mr. Daly, so we are
16 sure we all understand this, this would then be, if we
17 went over to the CBFAC number, this would be the
18 capability factor you experienced for Pickering 1 in
19 the year 1984? Do you see that?

20 MR. DALY: A. Yes.

21 THE CHAIRMAN: That is zero; is that
22 right?

23 MR. DALY: Yes, that was during --

24 THE CHAIRMAN: Is that right?

25 MR. D. POCH: Yes.

1 MR. DALY: During retubing.

2 MR. D. POCH: Q. Of course. And we see
3 three years in a row with zero, '84, '85 and '86, and
4 those were the retubing years, the years when you were
5 out completely for the whole year for retubing?

6 MR. DALY: A. Correct.

7 Q. Correct? And then the following
8 year, '87, below, we see 19.11. So that would be a
9 year where you got back in-service towards the end of
10 the year?

11 A. Correct.

12 Q. From that is my interpretation
13 correct that the subsequent years starting in '88 would
14 be full years unaffected by retubing outage for that
15 particular unit?

16 A. That's correct.

17 Q. All right.

18 A. I'm not sure whether you have the
19 full 1991 figures available or not.

20 Q. All right. Yes, that's correct. I
21 think you jogged my memory. These are the
22 three-quarter year results you had available at the
23 time you did this study?

24 A. Yes, I think so.

25 Q. And they were, of course, prorated to

1 be expectations of full year based on three-quarters of
2 a year.

3 If we just drop down to line 33 we see in
4 Pickering 2 a similar sequence, Pickering 2 being the
5 first one that was retubed, there were four years with
6 zeros from line 33 down to line 36 for the years '84 to
7 '87. That corresponds with your understanding?

8 A. Of retubing, yes.

9 Q. Yes. And then, again, most of the
10 next year in '88, hence the 14 --

11 A. Yes. I would just like to make one
12 comment on that 14.3 there. That reflects the
13 capability factor for the whole year.

14 Where we talk about capability factor
15 following retubing, we start with the date that the
16 unit was returned to service on the system. So in
17 fact, the 14 per cent for the whole year, the actual
18 figure post-retubing would typically be around the
19 75/80 per cent level for the two months that it
20 operated in that year.

21 Q. That is helpful. And indeed, to
22 avoid that problem, though, if we just look at the next
23 three years, or indeed, if we include that estimate of
24 what the full year would be given the 14 for the
25 partial year, we see the numbers in the subsequent

1 years, and I just took the next three which were full
2 years to avoid that very problem you highlight, 75, 76
3 and 78; that averaged about 73 per cent. Sound about
4 right?

5 A. Yes. We have actually calculated the
6 exact figure from the point in time when the unit was
7 returned to the system to the end of January this year,
8 and it was 73.8.

9 Q. Now, in fact, that accords with Mr.
10 Fraser's understanding at page 22 of our exhibit, and I
11 am reading from the second last paragraph in the
12 middle:

13 These units were expected to perform
14 at an average of 83 per cent between now
15 and their retirement. In 1989 these
16 units performed at 73 per cent.

17 Now, he is combining different units and looking at one
18 year there, but we are in the same ballpark?

19 A. In 1989, yes.

20 Q. Yes. All right. And let me just ask
21 you, you may not be able to tell me this and we will
22 leave it for Panel 10 if that is the case.

23 If you have a 10 per cent variation in
24 annual capacity factor it is not linear with avoided
25 cost, is it?

1 THE CHAIRMAN: We are talking about
2 capability factor now, not capacity factor?

3 MR. D. POCH: Yes, we are talking about
4 capability factor of -- let's keep to capability
5 factor. That's fine.

6 Q. We have a 10 per cent variation from
7 the expected lifetime capability factor. It is a
8 complex relationship with avoided cost, I take it?

9 MR. DALY: A. I would refer you to the
10 ONCI sensitivity of the LUEC, the LUEC to the capacity
11 factor. I think we discussed that yesterday, and I
12 indicated a couple of interrogatories to you, 9.30.2
13 and .30.3.

14 Q. Just so we are on the same wave
15 length here. I in fact had looked at 9.30.2. I think
16 that was given an exhibit number already, and it shows
17 the LUEC for 20 per cent incapability and 30 per cent
18 incapability and those numbers are in 89 cents per
19 kilowatthour: 3.08 and 3.47. So I saw a greater than
20 10 per cent difference in LUEC. LUEC went up by more
21 than 10 per cent for a 10 per cent change in capability
22 or incapability.

23 And that accords with your understanding,
24 too?

25 A. Yes. My understanding is that it is

1 not quite a linear relationship and that if you check
2 that curve in ONCI it will show the relationship.

3 Q. And if we look at the Pickering 1
4 numbers in Mr. Komanoff's Appendix 2, I see for the
5 four full years following retubing starting in '88
6 through '91 we have 89.1, 72.6, 68.6 and 60.86.

7 Do you have a final number by the way or
8 a better number for 1991 for the full year? Is it
9 approximately that?

10 A. I don't have a figure off hand. I
11 have an average figure for Pickering 1 from the point
12 in time that it was returned to service after retubing
13 until the end of January, '92, and that figure for
14 Pickering 1 is 75 per cent.

15 Q. Right.

16 A. So that is comparable to the 73.8 per
17 cent I gave you for Pickering 2, which was the first
18 unit to be returned to service.

19 Q. I was actually more interested in
20 this trend. You would agree with me, I take it, that
21 there has been a steady decline in Pickering 1
22 performance since the time of retubing. In that fourth
23 full year it is down to 60. I was interested in that
24 trend. Do you see a trend there, first of all? Do you
25 agree with me?

1 A. Well, there are a couple of factors I
2 would like to point out about 1990 in particular.

3 One, on Pickering there was a planned
4 inspection of the vacuum building so all eight
5 Pickering units were down for about a month, and that
6 is an inspection we only carry out once every 10 years.
7 So in that sense it was a little unusual.

8 The second factor was we had some
9 problems with fuel handling systems, deratings due to
10 fueling machines, which is related to OM&A, I think it
11 is a good example of that. So we did have some
12 deratings in '91 attributable to fuel handling
13 incapability, and that was significantly corrected in
14 '91.

15 Q. Well, Mr. Daly, what I am really
16 looking at here is that there is a pattern of declining
17 performance, and I am sure there are a number of
18 explanations, particular events that caused that, and
19 it seems to be extending certainly three, if not four
20 years past that time when you took advantage of
21 retubing to do all this preventive maintenance. It is
22 into your lag, post-lag period, and we don't seem to
23 see a dramatic upswing in performance. Would you agree
24 with that?

25 A. Certainly there hasn't been a

1 dramatic upswing in performance. The overall average
2 for each of the three units since they returned to
3 service has been 75 per cent, and as we learn from our
4 experience on Pickering 1 and 2 we applied that
5 experience to Pickering 3. Pickering 3 since its
6 return to retube has averaged 83 per cent.

7 So you will see from the three figures I
8 have given you that --

9 THE CHAIRMAN: I'm sorry, what is that
10 for Pickering 3.

11 MR. DALY: 83 per cent since August of
12 last year.

13 [12:15 p.m.]

14 So you can see from the figures that I
15 have given you, the performance gets slightly better as
16 we gain more experience.

17 MR. D. POCH: Q. I'm sorry, Mr. Daly,
18 how long has Pickering 3 been back on line now?

19 MR. DALY: A. Since August of last year.

Q. So the number you have gave us was --

21 A. About seven months.

22 Q. Seven months. And indeed that was
23 what we saw with Pickering 2, it came in strong and
24 went down from there?

A. There were some declines yes

1 Q. So can we say from this, Mr. Daly,
2 that more OM&A cannot guarantee high performance?

3 A. It certainly can't guarantee it. We
4 feel there is a fairly strong correlation between the
5 two, certainly a correlation between the two. First
6 you need the funds and then you have to apply them to
7 the right things. There are many other factors that
8 contribute to good performance, but OM&A is certainly
9 one.

10 Q. Could you turn with me to page 49 of
11 our first book of materials, Exhibit 577. This is a
12 single page from Exhibit 585 -- 583. I correct myself
13 once more, 483. This was a document that Mr. Argue of
14 my group produced taking the numbers from the Update to
15 see how the Update compared to Plan 15.

16 I am really just interested in the
17 capacity factor numbers, the latter, the right-hand box
18 and graph below which of course are derived from the
19 combination of capacity and energy. And if you look at
20 the bottom, the upper line is Plan 15 and we noted that
21 there had been in Plan 15 a somewhat declining trend in
22 capacity factor.

23 Whether or not you are prepared to agree
24 it's a statistically decline -- you will agree with me
25 that there is just visually there is a general decline

1 there?

2 A. I think one factor you would have to
3 look at would be the timing of retubings. Retubings
4 can affect the profile quite significantly. So you can
5 appear to be seeing a decline in particular years but
6 in fact it is just the period of retubing. So you
7 would really have to identify the time periods of all
8 the retubings on both curves.

9 Q. And would you agree the lower curve
10 represents the current forecast for your system
11 capacity factor, nuclear capacity factor in the Update?

12 A. I haven't checked all the numbers
13 exactly, Mr. Poch.

14 The general trend, the general
15 corrections we have made, certainly that provides an
16 appropriate picture.

17 THE CHAIRMAN: What you mean is planned
18 retubing, is that you are what you are saying?

19 MR. DALY: Planned retubings, yes.

20 MR. D. POCH: Q. So, can I take it then
21 that your explanation for this change in pattern is
22 that you have shifted retubing dates, you have brought
23 them in earlier, lowering the front end?

24 MR. DALY: A. No, I didn't mean to leave
25 that impression.

1 When I was talking about the retubing
2 dates you seemed to be indicating you felt that the top
3 of curve, the original DSP, was showing a generally
4 downward trend, and I think you may have been
5 influenced there by the years, sort of 2004 to 2009,
6 and I know there are some retubings planned for that
7 period.

8 So getting back to your original
9 question?

10 Q. I guess I was just looking for an
11 understanding of the very general shift in the pattern
12 from a slightly declining one to what appears to be a
13 slightly increasing.

14 A. I think the reason for the general
15 shifts in the pattern are that we have recognized that
16 over the last few years we have overestimated the
17 production from the "A" plants in particular, and we
18 have made those corrections to reflect what we feel are
19 more appropriate values for the "A" plants.

20 But the "A" plants are going through a
21 period of -- or Pickering has almost completed its
22 period of retubing and rehabilitation; Bruce "A" will
23 be going through its equivalent period starting in '94.
24 The "B" plants are already operating well. So the
25 curve reflects a combination of all those factors.

1 It's getting beyond the retubing rehabilitation period.
2 It's recognizing that we have a nuclear hiring program
3 in place, we have got more staff, more dollars, we have
4 learned from previous experience, we have got a quality
5 improvement process recently established.

6 So there are always a number of factors
7 driving the forecast in the downward direction, but
8 equally there is a number of factors driving the
9 forecast in the upward direction, and that's our
10 current best judgment of the combination of those
11 factors.

12 Q. Just to get a sense, you have
13 explained how you have lowered the projections for the
14 "A" units, but in indeed, if we look on this same page
15 in the middle box under energy, there Mr. Argue had
16 simply deducted the numbers in your Update from the
17 numbers in your Plan 15, and as you can see in almost
18 every year there is more energy expected from your
19 nuclear system, I think in every year, in the Update
20 than the plan.

21 Indeed at the bottom it's summed and it
22 is 217 odd terawatthours. To my eye that's about the
23 equivalent of twice the amount of power you will get
24 from your entire nuclear system in any given year in
25 the 90s, over that period of time. So your actually

1 showing, in your Update you are actually showing an
2 overall improvement in your expectation of nuclear
3 energy generation than in the Plan 15?

4 A. Sorry, I don't follow you there.

5 THE CHAIRMAN: I don't understand that.

6 Are you looking at the energy chart?

7 MR. D. POCH: Yes.

8 THE CHAIRMAN: The figures in Plan 15 are
9 invariably higher than the Update figures.

10 MR. D. POCH: I have read the double
11 negative wrong. You are absolutely right, Mr.
12 Chairman. Thank you.

13 Q. So then the conclusion is just the
14 opposite, overall you are expecting to see a drop in
15 nuclear energy performance for the combined existing
16 system over that period of 217, that accords with your
17 understanding?

18 MR. DALY: A. Yes, that's consistent
19 with the fact of capacity factor charts, and of course
20 the original DSP would have had additional nuclear
21 units starting at 2003.

22 Q. Now, Mr. Daly, have I understood your
23 argument correctly, woven through all your comments is
24 a --

25 THE CHAIRMAN: He wasn't giving argument;

1 he is giving evidence.

2 MR. D. POCH: Q. Then take my second
3 wording, woven through your comments, you are expecting
4 better performance out of future plants than the
5 combined experience of your present system and, indeed,
6 that parallels your expectation for the host "A"
7 stations as compared to the "A" stations, and have I
8 understood correctly, that's because you believe you
9 have designed out problems?

10 MR. DALY: A. Well, our combined
11 experience to date is about 74, 75 per cent. And as
12 you rightly say, within that the "B" stations have a
13 performance in the sort of the 85 per cent range. So
14 our predictions of future plants are based on our
15 experience to date, our knowledge of what is happening
16 with the "B" plants and some allowance for not just
17 design improvements, we would expect to make design
18 improvements in future plants but we would also expect
19 to be able to ever construct them better, to commission
20 them better and to operate them better based on our
21 learning over the last -- well, it will be almost 30 to
22 40 years from the start of our program until any new
23 plant could be built.

24 Q. Mr. Daly, in fact, the "B" reactors,
25 most are under nine years old?

1 A. That's correct, yes. They would
2 average around eight years probably.

3 Q. And if you look at Mr. Komanoff's
4 analysis, as I am sure you have, you see this as page 5
5 of his analysis, section D, this is Exhibit 563, he
6 likens reactors to athletes.

7 A. Sorry, could I have the page number
8 again?

9 Q. Page 5.

10 A. Right.

11 Q. And it is paragraph D, he talks about
12 the different offsetting effects and likens in that
13 paragraph:

14 CANDUs are no different from
15 professional athletes or industrial
16 workers and U.S. nuclear power plants,
17 all of which on average improve over time
18 until reaching a peak and decline
19 thereafter.

20 And he goes on to indicate that his
21 analysis says:

22 To date Hydro's CANDUs have been
23 reaching their peak in the 9th or 10th
24 year, though the exact point has varied
25 for individual units, and has also been

1 subject to the influence of the first
2 three factors noted above.

3 Interestingly, U.S. reactors also peak
4 around age 9 or 10 on average as
5 indicated in comprehensive statistical
6 analysis of U.S. nuclear plant
7 performance by KEP.

8 And that's Komanoff Energy Associates.

12 A. We would be able to make a projection
13 on the "B" plants and we would have to make a judgment
14 on that projection.

15 Q. And if you go to --

16 A. I'm sorry, perhaps I could add to
17 that. In making that judgment about the "B" stations
18 and future stations capability, I think there are some
19 factors that you can make a pretty good judgment on.
20 For example, some of the design changes that have been
21 made to pressure tubes, for example, putting the four
22 garter springs in as opposed to the two garter spring
23 design which lead to problems; improving the
24 construction techniques for putting the pressure tubes
25 in place in the first instance.

1 You don't totally rely on design, you can
2 look at specific design changes, operating changes,
3 commissioning changes made in coming to that
4 assessment.

5 Q. All right. By the way, Point Lepreau
6 has yet to be retubed?

7 A. Correct.

8 Q. If you just look in the second
9 volume, 578, at page 90.

10 A. Sorry, I didn't catch the page
11 number.

12 Q. Page 90. This is a report in the
13 Telegraph Journal, Thursday March 21, 1991, about
14 Lepreau. I don't know how much of this you can confirm
15 for us, but it indicates that Lepreau could be, in the
16 first column, it could be shut down for up to two
17 years?

18 A. Well, a typical retubing outage would
19 take approximately two years. As you have seen,
20 Pickering 3 was retubed in 26 months and we expect to
21 be Pickering 4 in 19 months and Point Lepreau would be
22 approximately the same size as Pickering.

23 Q. Right. And it goes on to indicate
24 what some costs are there. In the top of the second
25 column it sums the costs as a half a billion dollars

1 associated with retubing and replacement power. Does
2 that conform to your estimate of what one unit --

3 A. I can't confirm any of the Point
4 Lepreau.

5 Q. I was thinking from your own
6 experience.

7 A. Well, we have provided the Pickering
8 and Bruce retubing costs and these values are, I guess,
9 of the same sort of...

10 I guess one perhaps difference between
11 ourselves and Point Lepreau, we would share our costs,
12 so we are able to share our costs over four or eight
13 units. Point Lepreau, would be able to share some
14 costs probably with us on some equipment but I would
15 think it would be fairly small.

16 Q. And, Mr. Penn, I notice in the fourth
17 column there the columnist is speculating on the impact
18 this is going to have for the consideration of a second
19 unit at Point Lepreau, and he says:

20 While the proposed plant would be a
21 different type from Lepreau 1...

22 He goes on.

23 I just caught that clause and was
24 wondering, are you familiar enough to comment on the
25 Lepreau 2 proposal in general?

1 MR. PENN: A. Only in as far as New
2 Brunswick has been considering new generation and has
3 looked at several options, including fossil fuel.

4 Q. All right. And Lepreau 2 would be a
5 CANDU 6?

6 A. Well, I believe that New Brunswick
7 Power Commission from my general knowledge has
8 considered a CANDU 3 and a CANDU 6 at one time or
9 another.

10 Q. Fine. So you can't tell me if that
11 comment was referring to changes to the CANDU 6 from
12 the vintage that Lepreau 1 was or some other design?

13 A. I would think that comment is
14 speculation of the columnist. I don't know what basis
15 it might be on.

16 Q. That's all I am really asking, if you
17 have any better information.

18 A. No.

19 MR. D. POCH: Mr. Chairman, I don't know
20 if that should be made an exhibit, although Mr. Daly
21 was able to agree with some of the facts there, perhaps
22 it could be identified.

23 THE CHAIRMAN: I think it is practical
24 valueless, so we can mark it as an exhibit if you like
25 just for the purposes of the records.

1 MR. D. POCH: Yes, I am just using it to
2 ask Mr. Daly for his understanding.

3 THE CHAIRMAN: Okay. Give it a number.

4 THE REGISTRAR: 587.

5 ---EXHIBIT NO. 587: Excerpt from Telegraph Journal,
6 Thursday, March 2, 1991.

7 THE CHAIRMAN: It would be easier to ask
8 Mr. Daly about what he knows, if anything, about what
9 has been going on, without necessarily putting in all
10 the editorial comment that's in this newspaper article.

11 MR. D. POCH: Thank you, Mr. Chairman.

12 Q. Mr. Daly, so the obviously then the
13 capability and capacity factor, I think they are
14 capacity factors that Mr. Heintzman put to you for
15 Lepreau, were in a pre-retubing -- a time before
16 retubing?

17 MR. DALY: A. Yes, we were talking of
18 historical experience, yes.

19 Q. Now, Mr. Daly, I think you agreed a
20 fuel moments ago in your list of reasons why you would
21 expect to do better in subsequent reactors, that one of
22 the list then was designing out problems that you were
23 aware of?

24 A. Correct, yes.

25 Q. I take it that the same logic could

1 be applied to maintenance, you can maintain better, you
2 could target your maintenance at problems that you have
3 already experienced.

4 [12:35 p.m.]

5 A. That is right. You learn from your
6 experience basically in all phases.

7 Q. Now, would you agree with me as a
8 matter of logic that the effectiveness of that strategy
9 will depend on how big the universe of potential
10 problems is, how many of the potential problems have
11 surfaced?

12 A. Yes, with some qualifications. We
13 expect there are going to be some surprises. I mean,
14 although we have engineering judgment in all these
15 things we don't preclude surprises. We expect
16 surprises. So we design, commission, operate,
17 anticipating there will be some surprises. So we are
18 not precluding some surprises.

19 Q. Mr. Penn, I think you can confirm
20 that even a minor change of the same basic design, but
21 the change for example we saw in the piping and sizing
22 at Darlington, can create some unexpected surprises?

23 MR. PENN: A. Well, I think that example
24 points to a surprise.

25 Q. All right. You don't have to have a

1 complete redesign to get into surprises; even small
2 changes can have unexpected effects?

3 A. Well, yes. But, of course, probably
4 for the few surprises we get we get thousands of
5 circumstances that are successful.

6 Q. Sure. And you are not able to freeze
7 the design for no other reason than the regulator is
8 going to continue to ask for changes, small or large;
9 is that fair?

10 A. Well, certainly, the regulator will
11 always be looking for new knowledge, and if it involves
12 safety systems then we may have to change. It depends
13 on what the nature of the subject is and whether you
14 could modify an existing design or change its operation
15 slightly. Again, it is a question that I can't really
16 answer.

17 Q. Just so we get an idea of the form
18 this takes without getting into details of the
19 specifics. Could you turn with me to page 11 of 578,
20 our second set of materials?

21 This is a study which was attached to
22 Exhibit 9.2.97. I don't believe it is an exhibit yet.

23 THE REGISTRAR: Just a minute. That will
24 become .78, 520.78.

25 ---EXHIBIT NO. 520.78: Attachment to Exhibit 9.2.97.

1 MR. D. POCH: Q. Excuse me for one
2 moment. I will find the reference in it.

3 Yes, the reference I was looking for
4 appears at page 60 of our materials, page 45 of that
5 document.

6 MR. PENN: A. Yes?

7 Q. I just want to see if this is an
8 example. It reads: An approach -- this is in the
9 bottom section, 4.2.18, Assessment of Containment
10 Concepts:

11 An approach has been developed to
12 address AECB concerns regarding the steam
13 generators penetrating the containment
14 boundary of the square containment
15 design.

16 Now, a long discussion then ensues, and
17 we can maybe talk about the particular concern or lack
18 of concern in it, but, Mr. Penn, if it turns out to be
19 or turned out to be a valid concern that is the kind of
20 problem that where the regulator says, after the fact,
21 gee, maybe this isn't the optimum design. And that in
22 that particular example if they asked you to move the
23 steam generator into containment completely as opposed
24 to - I take it it is half in and half out - that would
25 be a significant change; would it not?

1 A. Well, before I answer that, I would
2 like the Panel to understand that this is a progress
3 report of our schedule and cost reduction study, and
4 this study is, if you like, the conceptual engineering
5 of a potential new 4 by 881 nuclear station. And
6 during that phase we address the issues that will allow
7 us to reduce the schedule of cost.

8 One of the issues during the conceptual
9 phase, of course, is to satisfy the regulator that the
10 basic design is acceptable to them. So what we are
11 referring here to is that the Atomic Energy Control
12 Board asked that before the final approval of a new
13 nuclear station that they would want to have us submit
14 a document comparing different forms of containment,
15 which we did.

16 Q. All right. So there was --

17 A. So if I --

18 Q. Sorry, Mr. Penn. Go ahead.

19 A. If I may, Mr. Poch? Again, your
20 comment is quite a speculative one because we haven't
21 determined whether it is necessary or unnecessary.

22 Q. Mr. Penn --

23 A. You can postulate anything you like
24 and say it will add cost or uncertainty, and I would
25 agree with that.

1 Q. I didn't postulate this, Mr. Penn.

2 The AECB asked you to consider this issue. They didn't
3 do that just to create work for you, did they?

4 A. The AECB asked us to review the
5 different forms of containment, and if the regulator is
6 doing its job that is a very appropriate thing to ask
7 us.

8 Q. Mr. Penn, they didn't ask you that
9 before you built Darlington; they asked you to
10 reconsider this question, the Darlington containment
11 versus other designs, and this is post the Darlington
12 construction, the bulk of Darlington construction. It
13 is with respect to future plant.

14 They don't create work for you for no
15 reason. There obviously is a concern. It refers there
16 to AECB concerns, does it not?

17 A. That is what it says. I repeat
18 again, the AECB asked Hydro to review different
19 containment systems, and it so happens that the square
20 containment system, part of the steam generator shell,
21 is also part of the containment boundary.

22 Q. So, Mr. Penn, you said to me this is
23 a hypothetical concern. Are you saying that the AECB's
24 concern is just unfounded?

25 A. I don't think I mentioned the word

1 hypothetical at all.

2 Q. Or speculative, I don't recall the
3 exact words you used. You commented something to that
4 effect.

5 But let me ask you squarely: Do you
6 think the AECB's concern was totally unwarranted and a
7 make work project, or do you think they had some basis
8 for that.

9 A. Well, of course not. I was trying to
10 answer your question where you said, I believe,
11 something about the outcome of this study and what its
12 impact would be on costs.

13 Now, I would have to go back to the
14 transaction to understand what your question was.

15 Q. Indeed, I was trying to use this as
16 an example. If it turned out, and I put it in the
17 hypothetical --

18 A. Well, that is what I was referring
19 to.

20 Q. All right. And if it turns out that
21 the AECB's concern was well founded, that would lead to
22 a design change, putting steam generation inside
23 containment, that would have significant impacts; fair?

24 A. Yes. And then we would have to deal
25 with the issue whatever the circumstances were.

1 Q. Just to bring this back to the
2 discussion about performance, when changes such as that
3 occur in your design that introduces new variables, new
4 uncertainties; fair?

5 A. When and if it happens, yes.

6 Q. Yes. That was the only point I am
7 trying to make here. Now -- excuse me.

8 All right. Perhaps you could turn with
9 me to Mr. Fraser's study, page 28 of our exhibit. I
10 just wanted to run quickly through this list. This is
11 a list of factors that Mr. Fraser indicates have come
12 to light that since the DSP was written it will
13 adversely affect capability factors.

14 THE CHAIRMAN: I'm sorry, 28, Volume 1,
15 is it?

16 MR. D. POCH: Yes.

17 THE CHAIRMAN: I'm sorry, I thought we
18 were in the same document.

19 MR. D. POCH: I'm sorry, Mr. Chairman.
20 It is Volume 1, the volume is 577, the particular
21 document is 584. Page 28 of ours; page 7 of his.

22 THE CHAIRMAN: And this is Mr. Fraser of
23 the Energy Department; is that right?

24 MR. D. POCH: Of the Ministry of Energy,
25 yes.

1 THE CHAIRMAN: All right.

2 MR. D. POCH: Q. I just wanted to get
3 your comments on some of these quickly.

4 You mentioned sagging calandria tubes
5 affecting shutdown system 2, and it affects Bruce "A",
6 Bruce "B" and Darlington. He says:

7 It is not clear whether these outages,
8 which he indicates would be three months,
9 for each unit have been included in the
10 DSP as they are not explicitly mentioned.

11 I didn't hear that in your review of the
12 problems at Darlington. Is that still a concern?

13 MR. PENN: A. Well, the issue arose with
14 regard to Bruce "A" that due to the weight of fuel in
15 the fuel channels that there is a tendency of sagging
16 of the calandria tubes towards nozzles of the liquid
17 injection system.

18 In my knowledge, our Nuclear Engineering
19 Department have reviewed various ways of coping with
20 that during retubing, and, as I understand it, that it
21 is possible to support the calandria tubes while the
22 pressure tube is removed.

23 So at this point in time it is not clear
24 that we have to remove both pressure tube and calandria
25 tube to correct this problem.

1 Q. Perhaps --

2 A. It is an unresolved issue, I would
3 have to say.

4 Q. From your comments I take it you are
5 referring to a problem that arises during retubing
6 because --

7 A. No, it just happens over the course
8 of time--

9 Q. All right.

10 A. --and due to irradiation and due to
11 weight.

12 Q. So this is a problem where if you
13 delay retubing, say you wait until year 30 for
14 Darlington, it is more likely to become a problem with
15 time? Have I understood correctly?

16 A. Well, it slowly occurs with time.

17 MR. DALY: A. I might add that one of
18 the things we are doing this year is carrying out some
19 measurements on one of those units to determine just
20 what the amount of sag is and how much clearance there
21 is. So that will help us with our future plans.

22 Q. Right. And if you learn that it is
23 happening at a rate such that it is unacceptable before
24 year 30 then you would presumably either address this
25 problem before year 30 or accelerate the retubing

1 schedule?

2 A. It would depend on the fix. There
3 are a number of potential fixes to this problem, as I
4 understand it, some of which could be done during
5 routine planned outages.

6 Q. The second one is steam generator
7 problems, and I think you have covered that already in
8 your evidence.

9 The third one is environmental
10 qualification, and there he indicates that the AECB had
11 asked Hydro for assurance that the equipment at the
12 Pickering and Bruce stations is environmentally
13 qualified; that is, it will operate when needed in
14 accident conditions, and new reactor equipment is
15 designed to be environmentally qualified. The
16 equipment in the "A" stations has not been tested for
17 this.

18 First of all, can that be right; you
19 actually had safety systems and they hadn't been tested
20 to see if they would work in accident conditions?

21 MR. KING: A. I don't think that
22 statement is fully accurate, no.

23 Q. So can you just help me then, Mr.
24 King, what is the environmental qualification about?

25 A. Just that one sentence you are

1 talking about, the equipment in the "A" stations has
2 not been tested, that sentence right there.

3 Environmental qualification is a process
4 where you gain assurance that the equipment will
5 operate in a certain environment. That assurance can
6 be obtained by testing that equipment in the
7 environment, separating it from the environment,
8 putting an enclosure around it such that it doesn't see
9 the environment, by taking a component and putting it
10 in a test chamber and putting it through its
11 environment, or just through some analysis of stresses
12 and conditions that component would see to qualify.

13 So there is a whole range of options.
14 Testing is only one of the range of options.

15 Q. Can you just --
16 A. But as this paragraph refers to,
17 there is a program currently going on, currently
18 initiated, in Ontario Hydro to come up with a more
19 comprehensive environmental qualification program which
20 will provide added insurance, come up with a huge data
21 base for all the components in the plant to assist
22 future maintenance and replacement of components to
23 make sure that they are replaced with the same degree
24 of qualification that they have right now, and that we
25 have been discussing with the Control Board that

1 progress on that program. That is as it is stated in
2 this paragraph.

3 Q. I guess I confess to being a bit
4 confused, then. Had you or had you not actually tested
5 these components, these safety systems, to see if they
6 would operate in accident conditions?

7 A. As I said, I believe what Mr. Fraser
8 was referring to is...we use the word "testing
9 environmental qualification" is where you take a
10 component, a valve, you put it in a test chamber, you
11 put a steam water environment and you cycle it a few
12 times in the environment and you see that it can work.

13 Q. Had you done that?

14 A. I think he is talking about testing.

15 Q. Had you done that?

16 A. Okay. Now, what I indicated was that
17 testing is only one way of providing environmental
18 qualification.

19 Q. Right. Had you done that?

20 A. We have done some other things other
21 than testing.

22 Q. So you haven't done that kind of
23 testing?

24 A. No, because I am saying that there is
25 other ways. You can put the pump inside a room inside

1 the containment building such that it does not see the
2 environment. That is another way of qualifying it.
3 [12:55 p.m.]

4 Q. All right. And have you done that?

5 A. Well, the thing is, there is a
6 mixture of components and --

7 Q. I am trying to understand. Mr. King,
8 it's very simple here. They are saying they want you
9 to do something which apparently they feel you haven't
10 done, and it is going to cost you hundreds of millions
11 of dollars. I am trying to understand what it is you
12 hadn't done that they want you to do.

13 A. The whole subject of environmental
14 qualification over the last 20 years, the
15 state-of-the-art, the expectation of the regulatory
16 body with respect to how you qualify it, what codes you
17 qualify it to, has an increased over that period of
18 time. The current expectation level is reflective of
19 what we have done in Darlington. We are now saying,
20 okay, well, we have got the current state-of-the-art of
21 environmental qualification at Darlington, let's go
22 back and have a look at our existing stations.

23 Q. I think I understand now. What this
24 is about then is not seeing if the safety systems would
25 perform in accident conditions conceived of and spec'ed

1 at the time of Pickering "A" was built, but rather to
2 see if they can perform to the new safety
3 specifications, the current ones, which presumably
4 Darlington, as you have indicated, Darlington has been
5 built to be; is that right?

6 A. No, I don't think that's accurate.

7 It's the Pickering safety report, that
8 goes through various accidents, analyzes those
9 accidents, takes credit for various systems to mitigate
10 the consequences of those accidents, and it's a matter
11 of providing an increased level of assurance which is
12 consistent with today's expectation in the
13 environmental qualification area.

14 I took it that you were referring to new
15 regulations as being in a broad sense. I prefer to
16 call it a new level of expectation, because there is no
17 new, there is no knew environmental qualification
18 regulation which has just been issued by the Control
19 Board with is behind this issue.

20 Q. So what has changed then is not the
21 safety criteria for Pickering, but rather the criteria
22 for evaluating your confidence in meeting those
23 safety --

24 A. That's closer to the case.

25 Q. And just to do that, there is a

1 figure there of 324 million. Is that the current
2 figure?

3 A. Right now there is an approved
4 program, preliminary engineering phase, it was approved
5 last December, I believe, for \$93 million, one of the
6 purposes of that program is to come up with a
7 definitive cost estimate for the final program.

8 Other things it will do is it will look
9 at approximately 50 per cent of all the components in
10 the "A" and "B" stations, excluding Darlington, and in
11 order to get the knowledge base to come up with that
12 definitive cost estimate.

13 So, the cost estimate here of 300 in Mr.
14 Fraser's article of 324, I am not sure where that came
15 from.

16 Q. In fact, one final item perhaps
17 before we break, turn to page 117 of Exhibit 577. This
18 may help you. This is report from Nucleonics Week, I
19 take it that is a trade publication, Mr. King?

20 A. That's a weekly periodical issued by
21 McGraw Hill on the nuclear industry.

22 Q. December 12th. And there is report
23 there Outages, AECB Upgrade Demands to Drive up Hydro
24 Costs in '92, that quotes the vice-president Elgin
25 Horton, Hydro vice-president Elgin Horton as saying it

1 could cost up to 790 million -- could add up to 790
2 million to nuclear cost in the 90s. And then he goes
3 on in the next paragraph, Horton was commenting on a
4 Ministry of Energy report made public, and it goes on,
5 which refers to the \$325 million, and his quote is:

6 "I don't know where they got that
7 figure," Horton said. "We estimate that
8 environmental qualification program we
9 will be asking our board to approve will
10 cost \$770-\$790-million in as-spent
11 dollars over the next 10 years.

12 "However, there is a very large
13 potential for change in the figure over
14 that time period. We don't know how much
15 safety-related equipment in older plants
16 will have to be replaced or how much may
17 pass inspection five or six years from
18 now."

19 Is that a range that you are comfortable
20 with?

21 A. As I indicated, what we asked our
22 board of directors for in December of 1991 was for \$93
23 million. I have seen the figure of, the round figure
24 of \$700 million mentioned, but I believe that is a
25 established as some upper bound figure. My discussions

1 with people familiar with the program indicated that
2 it's that sort of figure, an upper bound figure.

3 Q. Perhaps in the next while could you
4 just check with someone to see if that's the current
5 understanding, the figures that are attributed to Mr.
6 Horton there are correct or if it's an upper bound.
7 Would that be simple for you to verify?

8 A. As I indicated, I think I just said
9 that that figure has been mentioned. It's not what we
10 asked the Board to approve, as it suggests in this
11 sentence here, and I think it is an upper bound.

12 Q. All right. That is fine, you will
13 let me know if you hear otherwise, will you?

14 A. I will.

15 MR. D. POCH: Mr. Chairman, that's a
16 convenient place to break.

17 THE CHAIRMAN: All right. We will
18 adjourn now until 2:30.

19 THE REGISTRAR: The hearing will adjourn
20 until 2:30.

21 ---Luncheon recess at 1:03 p.m.

22 ---On resuming at 2:30 p.m.

23 THE REGISTRAR: Please come to order.
24 This hearing is again in session. Be seated, please.

25 THE CHAIRMAN: Mr. Poch?

1 MR. D. POCH: Thank you, Mr. Chairman.

2 Q. We have been talking about
3 performance and the differences between your
4 projections and those, for example, of Mr. Komanoff.

5 Could we turn up Mr. Fraser's comments.

6 I want to talk a moment with you about the implications
7 of performance. Mr. Fraser's comments, which appear in
8 Exhibit 585, the second of his two reports, this is at
9 page 36 of our first Volume 577.

10 Mr. Daly, at the bottom of that first
11 page highlighted you will see his conclusion that the
12 main implications - and this was particularly for 1990
13 where you have given evidence it was a particularly low
14 year for nuclear performance - one of the implications
15 was that secondary sales - by that I take it he means
16 exports - would virtually eliminated, and Hydro made up
17 the difference with additional purchases, and I take it
18 that could be, we could call that word "imports", in
19 order to supply the anticipated demand and meet acid
20 gas emission limits. Hydro purchased 13.8
21 terawatthours of power in 1990.

22 Again, can I ask you to confirm his view
23 is consistent with yours?

24 MR. DALY: A. Certainly the sales were
25 virtually eliminated in 1990 and we did make up the

1 difference with additional purchases. We were faced
2 with tight acid gas emission limits and continue to be.
3 The purchases, we purchased 13 terawatthours outside
4 Ontario and purchased, my recollection is .6 inside
5 Ontario. So I think the final figure was 13.6, but
6 it's substantially the same.

7 Q. Mr. Johansen, when you tally up
8 emissions attributable to different technologies, I
9 take it you don't attribute to nuclear the emissions
10 associated with coal you burn in a backup mode when
11 nuclear doesn't perform to expectations.

12 MR. JOHANSEN: A. Well, that sort of
13 calculation would be done by the system planners. But
14 to my knowledge that would not be part of the forecast.

15 Q. Further, Mr. Johansen, with respect
16 to this question of whether meeting regulations is the
17 object, and the question of impacts, residual impacts,
18 if I can call it that, assuming you meet regulations,
19 this reliance on imports, the emissions associated with
20 the power you import, that's not counted in your
21 assessment of whether or not you meet regulations; is
22 it?

23 A. Well, I guess I would have to say
24 that that is a subject that Dr. Effer during Panel 8
25 probably addressed. I can't say for sure, but --

1 Q. Do you know the answer?

2 A. No, I am not certain about that.

3 Q. Well, indeed, if this is correct, the
4 description we just read, it's precisely because of the
5 emission cap that you turn to imports.

6 And, Mr. Daly, those imports are
7 predominantly coal-fired.

8 MR. DALY: A. They are certainly a large
9 amount of coal-fired.

10 Q. So, Mr. Johansen, can we take it from
11 that that the cap, the regulatory limit, doesn't
12 capture these kind of emissions that come to be because
13 of nuclear performance below expectations.

14 MR. JOHANSEN: A. Emissions arising
15 from--

16 Q. Purchases.

17 A. --utilities other than Ontario Hydro?

18 Q. Yes.

19 A. That's my general understanding, yes.

20 Q. Now, Mr. Penn, Ontario Hydro is a
21 member of the Canadian Nuclear Association?

22 MR. PENN: A. Yes.

23 Q. And you pay dues and participate in
24 that organization?

25 A. I believe so,

1 Q. I take it AECL would be another major
2 participant in CNA?

3 A. I am sure they would, yes.

4 Q. And could you turn to page 50 of our
5 material, the first volume. There is a recent ad there
6 from the Canadian Nuclear Association, which you have
7 indicated you are member of, which talks about acid
8 rain and greenhouse effect and makes the statement that
9 nuclear reactors do not produce these two emissions,
10 and I think that statement is--

11 A. I think it is factually correct.

12 Q. --factually correct.

13 Is it your position, though, that - and
14 is it the CNA's position, I am not sure if you are
15 sufficiently familiar with the organization to which
16 you belong but perhaps you can hazard that comment
17 too - is it your position at least that nuclear is a
18 reliable way to avoid CO(2) and acid gas emissions?

19 A. Well, the very fact that they don't
20 produce them I suppose means it's reliable in not
21 producing them.

22 Q. I am thinking of approaching this in
23 the context of the discussion I just had with Mr.
24 Johansen and Mr. Daly, that the shortfall in nuclear
25 performance recently led to purchases of coal-fired

1 power.

2 A. Certainly it led to some of it. I
3 don't know whether we had other units that weren't
4 producing. Well, I do know that Lakeview is being
5 rehabilitated.

6 Q. Could you look at page 51?

7 Mr. Chairman, this is a report entitled
8 Time Lost: Report of the Subcommittee on Acid Rain of
9 the Standing Committee on Fisheries and Foreストries of
10 the Federal Parliament. It is from the 1983/84
11 sittings.

12 First of all, perhaps we could get an
13 exhibit number for this report.

14 THE REGISTRAR: 588.

15 THE CHAIRMAN: Thank you.

16 ---EXHIBIT NO. 588: Time Lost: Report of the
17 Subcommittee on Acid Rain of the Standing
Committee on Fisheries and Foreストries of
18 the Federal Parliament, 1983/84.

19 MR. D. POCH: Q. Now, I am not sure, Mr.
20 Penn, Mr. Daly or Mr. Johansen, which of you were on
21 the scene in '84 when this occurred, but do you recall
22 that at the time there was a debate within -- or there
23 were plans, I should say, being formulated in the
24 corporation for dealing with acid gas abatement, these
25 limits we have just spoken of, and that this body

1 looked at Hydro's plans specifically?

2 MR. PENN: A. I'm sorry, I don't know
3 whether they did or not.

4 The article, which I haven't seen before,
5 or the committee report, certainly has a chapter with
6 regard to Ontario Hydro. I don't know whether they
7 consulted with Ontario Hydro, if that's what you are
8 asking.

9 Q. Let me just read a few highlights
10 here and get your comments if you can accept the logic
11 of their position. It starts:

12 In June of '83 officials from Ontario
13 Hydro testified before the subcommittee
14 in the Ottawa.

15 Then we have highlighted some sections.

16 The subcommittee's concern about
17 future emissions lies squarely with
18 Ontario Hydro's strategy for combating
19 acid gas emissions.

20 The bulk of acid gas control is to
21 come about through the substitution of
22 nuclear generating capacity for
23 coal-fired generating capacity.

24 And then, a number of events starting
25 in the summer of '83 - which is at the

1 bottom - have led the subcommittee to
2 question the feasibility of the strategy.
3 The recent shutdown of nuclear generating
4 capacity at Pickering has led to a
5 greater reliance on coal generation.

6 If CANDU performance over the past
7 year is indicative of future reliability,
8 Ontario Hydro's ability to meet its
9 limits for '86 in 1990 must be seriously
10 in question.

11 And of course we just heard evidence
12 about what happened in 1990.

13 The only obvious alternative for
14 Ontario Hydro is to increase the use of
15 coal generation in the event of serious
16 and unanticipated shutdowns of nuclear
17 generating capacity.

18 In fact, the subcommittee has very
19 little confidence in the stated
20 projections and acid rain strategies of
21 Ontario Hydro.

22 Over the past four years, Ontario
23 Hydro has routinely modified its
24 projections for both acid gas emissions
25 and electricity demand. It has also

1 significantly advised its acid rain
2 abatement strategy over this period.
3 What is missing from this continuously
4 shifting equation is a concrete program
5 of SO(2) and NOx control is immune from
6 the vagaries of consumer demand and
7 unscheduled failures of CANDU nuclear
8 units. The subcommittee feels that
9 Ontario Hydro's stated acid rain control
10 strategies is imprecise and undependable.

11 Mr. Penn, would you agree that reliance
12 on nuclear power as a future option compared to an
13 option which is more reliable in terms of unexpected
14 outages carries with it this risk that you will then
15 fall back on coal and emit acid gas and indeed carbon
16 dioxide?

17 A. Well, I think that's a speculative
18 question.

19 The fact is that Ontario Hydro has always
20 consistently met the regulations and targets set by the
21 government, and in fact has met it with a margin in
22 most years.

23 So that's the record.

24 [2:45 p.m.]

25 Q. But, Mr. Penn, the record includes

1 the fact that Ontario Hydro has turned to imports
2 specifically to honour the letter of the law, but, Mr.
3 Penn, do you view that as honouring the spirit of the
4 law?

5 A. Well, I don't think I have any
6 personal views on that matter. I was just stating the
7 fact, Mr. Poch, that Hydro has always met the limits,
8 and they have already dropped on two occasions, and we
9 continue to meet the limit.

10 I understand that there is a provision in
11 that Act and I am no expert in this matter, but I
12 understand there is a provision that in the event that
13 Hydro had serious difficulties it would discuss the
14 matter with the government.

15 Q. Mr. Penn, maybe we should talk about
16 this without the context of that regulation because, of
17 course, acid gas and carbon are acid gas and carbon
18 whether they are below the cap or above the cap -- let
19 me rephrase my question, then.

20 Would you agree that by relying on
21 nuclear to the extent you have unexpected outages it is
22 going to imply a reliance, a fallback on coal and
23 emissions?

24 A. Well, only to the extent that the
25 regulations set by the government would allow us to.

1 Q. Or to the extent that you buy coal
2 from out of province, coal-fired power from out of
3 province?

4 A. We certainly have bought power from
5 the United States, yes.

6 Q. All right.

7 A. We also bought a lot of power from
8 Hydro Quebec, of course, which is hydroelectric power.
9 And Manitoba.

10 Q. Okay. Could we turn up -- excuse me.
11 I will just check the page. Yes, page 48 of my
12 materials.

13 This is the last page of Mr. Fraser's
14 second report. It is in Volume 1 of our materials. It
15 is Exhibit 585, page 13 of that exhibit, page 48 of our
16 volume.

17 Now, there Mr. Fraser has conveniently
18 for us, assembled your CES forecast. Mr. Daly, you
19 spoke of CES yesterday. That stands for what?

20 MR. DALY: A. Consistent Energy Set.

21 Q. And that is the current basis of your
22 performance forecasting?

23 A. Yes, that is the main process that we
24 use in making forecasts typically over the next five to
25 six years.

1 Q. All right. He was just comparing
2 there your forecasts and your actuals within the first
3 few years of the forecast, and I, just judging the last
4 column, see that there has typically been about a 15
5 per cent variance even in those first few years.

6 Would you agree that that has been the
7 pattern?

8 A. I think the table is somewhat
9 misleading, Mr. Poch. We appear to have about eight or
10 nine different forecasts.

11 In fact, what we are looking at here is
12 just simply two forecasts. We are looking at CES 83-1,
13 which was done in about November of 1982. So it was
14 done about six to seven months prior to the Pickering
15 retubing. So the Pickering retubing, as we have said,
16 was a surprise, and obviously that made all future
17 years in error. After CES 83-1, recognizing the
18 Pickering pressure tube failure, our subsequent
19 forecasts for '85, '86, '87 and '88 were changed.

20 So I think when you are looking at that
21 table you have to take that point into consideration,
22 that our forecast, the CES process continually updates
23 the forecast, and obviously we had to change the
24 forecast after the pressure tube failure.

25 Similarly, CES 87-2 was a forecast

1 prepared around the time that Darlington was
2 anticipated to first come into service, and, as you
3 know, we have experienced delays in Darlington. So the
4 delays in Darlington contributed to a large amount of
5 the difference in the latter years.

6 So I think it is important to recognize
7 that we are looking at two forecasts here: one done
8 just before the Pickering retubing, and another done
9 just before Darlington was coming into service.

10 Q. Indeed, we are looking at, if you
11 will, one forecast in this hearing which covers a great
12 many years. Each of these forecasts has five years'
13 different sub-forecasts, if you will, included for five
14 separate years, and what we are looking at now in terms
15 of a planning decision is a single forecast which has
16 up to 25 years included?

17 A. That's correct. And as I mentioned
18 earlier, as a result of differences between our
19 forecasts and our actual we have made adjustments to
20 those forecasts, and we discussed some of them this
21 morning.

22 Q. Mr. Daly, I can't resist asking.
23 Under CES 83-1 for '84 it was forecasting 49.6 per
24 cent.

25 A. 49.6 terawatthours.

1 Q. Oh, terawatthours. Yes, all right.

2 And the increasing pattern there is simply because you
3 are bringing more units into service?

4 A. Correct. We were bringing the "B"
5 units into service during that period.

6 Q. Now, Mr. Fraser in his report, if you
7 turn back to page 44 of our exhibit, the last paragraph
8 reads:

9 Hydro's poor forecasting record and
10 continued operating problems at its
11 nuclear stations suggest that its
12 forecasts of nuclear performance are
13 optimistic. As existing nuclear supply,
14 including Darlington, is expected to
15 count for over half the energy generated
16 during the DSP period, a significant
17 error in the nuclear supply forecast can
18 have a significant effect on the entire
19 plan.

20 The Ontario Energy Board has
21 criticized Hydro's consistently
22 optimistic nuclear supply forecasts.
23 Hydro's forecast of nuclear production is
24 expected to be a source of criticism by
25 Intervenors at the public hearing into

Hydro's Demand/Supply Plan.

Well, I can certainly confirm the last statement for you, Mr. Daly.

Is it your understanding, do you

understand and agree that the forecast of performance does in fact have a critical or a significant effect on the entire plan?

A. Yes.

Q. Now, at page 54 of our materials is included an excerpt --

A. Sorry. I might add to that perhaps less so with the updated plan in which nuclear does not have such a large role.

Q. Yes.

A. But with that qualification.

Q. Certainly. At page 54 for convenience I just excerpted part of the transcript of these proceedings. This would have been, I am guessing, Panel 3.

And there we had a discussion where I was asking for sensitivity analyses for avoided cost for lower nuclear performance, but I wanted the sensitivity analysis --

Mr. Chairman, my recollection - I'm sure there is no dispute about this - the sensitivity

1 analysis that was offered included, you may recall,
2 substituting more nuclear in the avoided cost
3 assumption for declining nuclear performance, and I was
4 asking at the time for a sensitivity analysis which
5 didn't make that assumption.

6 No undertaking was given at that time
7 because we agreed that counsel would speak about the
8 matter. Counsel did speak about the matter, and you
9 can see at page 57 a letter from Mr. Campbell, and this
10 particular matter is dealt with at the bottom of page
11 58. Basically, the last sentence on that page is:

12 Hydro has not examined avoided cost
13 sensitivity to lower nuclear availability
14 without new nuclear in the future
15 generation mix.

16 First of all, can I confirm with you, Mr.
17 Daly, that in 9.30.2, which we referred to earlier,
18 where you gave us differing incapability assumptions -
19 and you recall I cited the one for 20 per cent and one
20 for 30 per cent - and we showed the LUEC wasn't -- you
21 recall it wasn't linear related?

22 LUEC is not synonymous with avoided cost,
23 I take it?

24 A. I really don't have any knowledge in
25 the area of avoided costs.

1 Q. All right. Let's leave that aside,
2 then.

3 Perhaps I can renew my request, then, for
4 a sensitivity of avoided cost unless you gentlemen
5 today can provide me with one or point me to one where
6 you don't -- that is, a sensitivity of avoided cost to
7 nuclear performance where we do not make the assumption
8 that nuclear is a substitute for nuclear.

9 I think you will appreciate our concern
10 that if indeed nuclear performance did decline
11 significantly it would likely lead to a planning
12 decision to place less reliance on nuclear in the new
13 generation. I am wondering if that could be provided.

14 MS. HARVIE: Well, Mr. Chairman, if I may
15 address that point, this is not a matter that I have
16 instructions on at this point. I have no idea what
17 kind of work is involved in preparing that type of a
18 sensitivity analysis.

19 As you can see from the correspondence,
20 there has been quite a bit of discussion back and forth
21 between Mr. Poch and Ontario Hydro, and all I can
22 suggest at this time is that we take it under
23 advisement and we get back to him with some clearer
24 direction, if that is necessary.

25 MR. D. POCH: Mr. Chairman, I raise it

1 now and I am happy to talk to my friend off the record
2 at the end of today.

3 THE CHAIRMAN: Have you replied to this
4 letter of February 28th?

5 MR. D. POCH: No, I don't believe I have,
6 Mr. Chairman, not on that point. I thought Mr.
7 Campbell was pretty clear that they are not interested
8 in providing it there. Since it never really received
9 the status of an undertaking in the earlier panel I
10 felt it was appropriate to raise it again.

11 THE CHAIRMAN: We will leave it the way
12 you suggest.

13 MR. D. POCH: So perhaps I will speak to
14 Mr. Campbell or Ms. Harvie this evening, and, if
15 necessary, we will bring the matter before you
16 tomorrow, sir. My interest, of course, is in having
17 this in time for Panel 10.

18 Q. Let's turn to OM&A for a moment.

19 In Exhibit 519 you provided an analysis
20 of OM&A, and you pointed us to how it is rising of
21 late. Mr. Heintzman spent some time with you on this,
22 and I think I have already pointed out in our second
23 volume at page 77 how we asked for your originally
24 anticipated OM&A, and you declined to provide that.

25 Nevertheless, would it be fair for us to

1 assume that your original proposals for Darlington
2 certainly didn't include the doubling of OM&A we have
3 seen?

4 MR. PENN: A. I'm afraid I don't have
5 the detail on what was originally anticipated in
6 Darlington operations cost.

7 Do you have that, Mr. Daly?

8 MR. DALY: A. I don't have it. The
9 original Darlington estimates must have been made in
10 the mid-70s. I have not personally seen them.

11 Q. You told us that despite the
12 doubling --

13 THE CHAIRMAN: First of all, does
14 everyone agree it has been doubled? Is that
15 understood?

16 MR. D. POCH: Just to help you here, if
17 you turn up page 69 of Exhibit 519.

18 THE CHAIRMAN: That is helpful.

19 MR. D. POCH: Q. I guess, strictly
20 speaking, gentlemen, the doubling is from the level in
21 the '86 period to the level shown in that graph for the
22 current period, but it did vary before then, including
23 to the higher levels.

24 MR. PENN: A. Yes, I can confirm that.

25 THE CHAIRMAN: From what period to what

1 period?

2 MR. D. POCH: I was just noting, Mr.
3 Chairman, in the period sort of '85 to '87 it hovered
4 just before \$40 per kilowatt, and these are in constant
5 dollars, and is now up over \$80 at the right-hand side
6 of the graph there.

7 Q. Mr. Daly, I want to make sure I
8 understand your evidence with respect to the comparison
9 that was made to the U.S. situation.

10 You are saying that despite this rise, a
11 doubling in recent years, you are still about half of
12 typical U.S. OM&A levels? And you gave a number of
13 reasons, I think.

14 MR. DALY: A. Yes. I think Mr. Penn
15 originally gave that evidence and I confirmed it later
16 with Mr. Heintzman.

17 Q. You also, I believe, suggested
18 that -- or I'm sorry, it was I think placed as a
19 proposition before you that increasing OM&A even more
20 would improve performance. You have certainly given
21 evidence that you are expecting better performance from
22 the increase you have allocated?

23 A. Correct.

24 Q. I wanted to look at the next
25 proposition which flows, which is a question which

1 arises, it seems to me, which is: Would you increase
2 performance further with a further allocation?

3 A. Do you wish me to comment on that?

4 Q. I was going to take you to the
5 exhibit so you could comment within the context, if
6 that is acceptable.

7 First of all, at page 62 of Exhibit 519
8 can we agree that OM&A accounts for roughly 20 per cent
9 of your nuclear cost?

10 MR. PENN: A. That is right, for new
11 station.

12 Q. So if we went to U.S. levels of
13 OM&A - that is, doubled this OM&A budget - you could be
14 increasing LUEC by as much as 20 per cent, apart from
15 any offsetting benefits that you derive?

16 A. I think I would have to think about
17 it, because OM&A costs are over the full 40 years,
18 whereas the initial capital cost is upfront. I'm not
19 quite sure in the leveling process whether it is as
20 simple as that, Mr. Poch. I'm sorry, but that is the
21 best I can do.

22 [3:05 p.m.]

23 Q. That is fine.

24 I can appreciate if it just went up a
25 certain amount this would present difficulty, but I had

1 taken it that since OM&A, whatever percentage it may be
2 on a year to year basis, once you levelize it is 20 per
3 cent.

4 The numbers on page 62 are the leveled
5 cost?

6 A. Yes, they are.

7 Q. So then if we double OM&A, and it may
8 amount to 10 per cent in one year and 30 per cent in
9 another year, but in its leveled basis if we
10 consistently double it throughout the period, would I
11 not be correct then in my understanding that the LUEC
12 would increase by the same amount?

13 A. Well, theoretically I think if you
14 consistently increased it from year 1 through to year
15 40, that you are likely right.

16 Q. Okay. Now, Mr. Daly, in fact, you
17 couldn't increase nuclear performance consistently 20
18 per cent above your forecast, could you, because you
19 have certain outages which are unavoidable?

20 MR. DALY: A. We have certain planned
21 outages, yes. There are some units - for example,
22 Bruce "A" currently operating around 50 per cent -
23 there are some units where we could increase by more
24 than 20 per cent. But on average, as I said our
25 average performance has been about 75 per cent, and the

1 best we have typically achieved on a multi-year basis
2 is of the order of 85 to 90 per cent.

3 Q. All right. And indeed you have
4 already spoken that once you include retubing outages
5 obviously that reduces the potential, also things like
6 vacuum building inspections you spoke of earlier,
7 that's unavoidable, it's a regulatory requirement.

8 A. Once every 10 years.

9 Q. So is it fair to say then that we
10 couldn't expect if we went to that extreme of doubling
11 OM&A to get equivalent benefits in terms of
12 performance?

13 A. I think there is a law of diminishing
14 returns, that the first few million or so you put into
15 increased OM&A, in effect the amount that we put in to
16 date we do expect to get a significant benefit from
17 that, as you put in more again there is a law of
18 diminishing returns.

19 We have described a model that indicates
20 the type of correlation between OM&A spending and
21 capability factor that we sort of qualitatively see, so
22 we use that model to assist us in judging what is the
23 appropriate level of OM&A. And clearly we don't want
24 too little and clearly we don't want too much either,
25 because, as you say, it would drive up the total cost.

1 So there is a balance and we are working to get to that
2 balance.

3 Q. There is an optimal level.

4 A. There is an optimal level, yes.

5 A. Yes.

6 Q. If performance were to continue to
7 decline over time, you might respond with more OM&A
8 expenditure, but that at a point that would become
9 counter-productive in terms of cost?

10 A. Yes, it would depend, some
11 performance declines are related to OM&A, we believe,
12 other declines are more due to a particular technical
13 factor that isn't sort of OM&A related.

14 So we look at the factors contributing to
15 performance and in some cases we believe OM&A is the
16 appropriate fix, in other cases it isn't.

17 Q. You have provided us with the current
18 figure which you spoke of a moment ago if \$82 a
19 kilowatt at page 69 of Exhibit 519. Could you help me,
20 what would be the number that was assumed by Ontario
21 Nuclear Cost inquiry and by you in your submissions to
22 them?

23 MR. PENN: A. Well, the subject of OM&A
24 in the ONCI Inquiry is covered in chapters 26 through
25 to 29.

1 Q. Are you looking in the ONCI report or
2 your submissions?

3 A. Yes, Exhibit 43.

4 Q. That's Hydro's presentation to the
5 Nuclear Cost Inquiry?

6 A. Yes, it is.

7 Q. And I can see figures quoted in
8 millions of dollars per year, but I can't see, without
9 reading this in detail, dollars per kilowatt to be able
10 to compare it with the \$82 a kilowatt that you
11 mentioned existed in 1991.

12 Q. Perhaps I can leave that with you and
13 when you have a little more time you can see if...
14 It's not obvious to me.

15 A. We have it in terms of leveled unit
16 energy cost, of course. We have it in terms of LUEC
17 for existing site of .66 cents per kilowatthour, or
18 22.3 per cent of the total LUEC, so it's a similar
19 number to the 20 per cent. And for a new site it's -
20 this is on system expansion basis - 23.7 per cent of
21 leveled units energy cost. And in those days, the
22 leveled unit energy cost for a new site was 3.2 cents
23 a kilowatthour and 2.9 cents a kilowatthour for an
24 existing site, all being in 1988 dollars of the year.

25 So the I think the answer is it's very

1 similar.

2 Q. It's similar. Okay. That's the
3 answer.

4 I was wondering, in other words, if ONCI
5 and you were aware of this expected substantial
6 increase?

7 A. Yes, there was a discussion of the
8 needed increase in costs in OM&A in the ONCI Exhibit
9 43.

10 Q. So it was assumed there.

11 A. Yes, it was.

12 Q. Okay. Thank you.

13 Could you turn up Exhibit 540, this is a
14 document filed by AECL, and it was Nuclear Station
15 Operating Costs, Ontario Hydro and the U.S. Nuclear
16 Industry.

17 A. Yes, we have that.

18 Q. Chart 8, which is on page 7, Mr.
19 Heintzman, I think, referred you to this, and this is
20 nuclear LOE per gigawatt. This is a measure of
21 operating expenditures, I guess it would be levelized
22 operating expenditures?

23 MR. DALY: A. I believe that's level of
24 effort.

25 MR. PENN: A. There is a definition of

1 that term somewhere in this paper.

2 On page 2, defined as...

3 MR. DALY: A. Yes, footnote 1 on that
4 page, level of effort. Footnote 1 on page 2.

5 Q. Could you just tell me what -- well,
6 all right.

7 MR. PENN: A. The level of effort per
8 unit is the total number of man years divided by the
9 number of units in the station.

10 Q. And in fact, just on the prior page
11 there is nuclear OM&A as you would orderly measure
12 these.

13 But in either of these graphs I take it
14 that the OM&A or level of unit over the four or five
15 years, the five-year period charted there in the States
16 has in fact been growing faster than 1 per cent per
17 year.

18 A. Are you looking at chart 5 when you
19 say that?

20 Q. Well, chart 5 is a slightly different
21 pattern. I was looking at level of effort but...

22 A. You are on chart 7?

23 Q. You can look at chart 5 or 7, I
24 think.

25 A. Well, chart 5 I think shows that the

1 EUCG data, which is mainly United States, that it
2 reduced in 1989 relative to--

3 Q. In that one year?

4 A. --'88.

5 I'm eyeballing it, but '88 looks a
6 smidgen smaller than '87 to me.

7 Q. Well, I was taking the entire period,
8 averaging for the period. Obviously these things can
9 fluctuate from year to year, and I just saw an increase
10 of \$21 compared to the base of 77 over that five-year
11 period. So I thought it was taking it on that basis.

12 It's certainly more than 1 per cent
13 average.

14 A. Well, I would agree on average, but
15 in the last three years I think that it has been less
16 than the average.

17 Q. In fact, from '87 to '88 it was more
18 than 1 per cent; it was about 4 per cent. I am just
19 looking at chart 5, nuclear OM&A, the upper figures.

20 A. We are talking about the EUCG data,
21 are we?

22 Q. Yes. I am sorry, that's not the
23 United States. That's more than United States; isn't
24 it?

25 A. Well, in these days it would be

1 almost entirely the United States apart from Ontario
2 Hydro, because EDF and Korea haven't joined until
3 recently. But I would have to check.

4 It seems to me that I take 28.2 away from
5 94.9, and I compare it with 98.7 minus 33.9.

6 Q. I may be reading this chart
7 differently than you. I did not assume you would
8 subtract one from the other. I assumed the upper
9 figure was the...

10 A. Well, the way I interpret this figure
11 is that the EUCG data is the upper part of the graph
12 and the Ontario Hydro data is the bottom part.

13 Q. You assumed then that EUCG is not,
14 for example, in '87 94.9 but rather is only the upper
15 part and you have to actually subtract to make sense of
16 this graph?

17 I had just assumed that one is sort of
18 overlaid on top of the other. Perhaps...

19 A. Well, short of reading the text I
20 can't tell, but that's how I would normally interpret
21 this sort of bar chart.

22 MR. DALY: A. I think perhaps, Mr. Poch,
23 we would have to check that one and perhaps we can
24 check that at the break and advise you on that.

25 Q. Yes, I think I can help you. If you

1 just turn back to page 3, there they separate the bars
2 and put them next to each other. You can see that we
3 still get up into the \$90 range for EUCG.

4 Does that help?

5 MR. PENN: A. I would have to agree with
6 you on chart 1. It would appear that in separate 1988
7 and then 1989 dollars, that EUCG data is about 2.8
8 times Ontario Hydro.

9 Q. So from that we can then assume in
10 chart 5, for example, the upper number offered is in
11 fact the number for EUCG.

12 A. Well, I think we can. They are in
13 different dollars.

14 Q. That is fine.

15 A. They are in constant dollars on that
16 other graph.

17 Q. I take it you would agree for that
18 period averaged, they are certainly increasing in the
19 EUCG more than 1 per cent per year?

20 A. On that basis, I would have to agree
21 with you, yes.

22 Q. I think you have already given
23 evidence, your forecast assumes OM&A increasing at 1
24 per cent per year after this rise we have just
25 experienced for Ontario Hydro in your plans?

1 A. Yes, and I qualify my previous
2 comment that over the five-year period you are quite
3 right, but over the period 1988, 1989, and I think from
4 our direct evidence, 1990, that the increase in the
5 United States has not been the average.

6 Q. Yes. And you did indicate that
7 performance seems to be improving in the States. I
8 think that was your evidence, Mr. Daly.

9 MR. DALY: A. Yes, performance in the
10 States has improved approximately 10 per cent over the
11 last 10 years.

12 Q. Could you look at look at Mr.
13 Komanoff's evidence, Exhibit 563, at page 13.

14 A. Page 13?

15 Q. Yes.

16 In the highlighted box, in the lower part
17 of that box he offers the average capacity factor for
18 the eldest, I think it indicates in the text, 47 U.S.
19 plants.

20 A. Yes, I see that table.

21 Q. Does that also accord with your
22 understanding that there is this pattern?

23 A. That accords with our understanding
24 that the small number of early units have that sort of
25 average capacity factor.

1 What I would point to in this particular
2 chart is that the U.S. seems to be learning from
3 experience as their plants get older, because if we
4 look at the plants that are aged 18 and 19, given any
5 sort of reasonable performance, when these plants come
6 through to their years 22, 23, they are likely to have
7 a much greater average capacity factor than the 44 and
8 31 shown there. So I think that should also -- that's
9 one other understanding I take from that type of
10 distribution.

11 [3:20 p.m.]

12 Q. All right. And finally in this area,
13 Mr. Daly, there were at least two discussions I recall
14 about this you had with Mr. Bullock about this
15 relationship between OM&A and performance, and I recall
16 you came back and the record was corrected.

17 Can we just sum it up? Do I now
18 understand correctly, of the decline in performance
19 experienced in this '82 to '87 period you attribute
20 perhaps a quarter of that to insufficient OM&A?

21 A. I was trying to give Mr. Bullock a
22 sort of order of magnitude.

23 Q. Yes.

24 A. When we have done this type of
25 calculation using that model we have typically felt

1 that had we had the appropriate amount of OM&A we might
2 have been 2 per cent, 3 per cent, 4 per cent better.
3 It was of that sort of order of magnitude.

4 There were more significant factors such
5 as the retubing at that particular time, but, generally
6 speaking, we came one 2 to 4 per cent capability factor
7 in that period '83 to about '88, and, as I indicated to
8 him, it would not be appropriate to apply to that 1990
9 because that was a highly unusual year, and many of the
10 things that faced us in 1990 were not--

11 Q. Yes.

12 A. --really OM&A related.

13 Q. I recall that. Okay. Thank you. I
14 am going to turn to a new topic.

15 DR. CONNELL: Mr. Poch, I would like to
16 just ask a question about Mr. Komanoff's paper, if I
17 may. I understand we will have a chance to speak to
18 him later, but I think in the meantime it might be
19 helpful if we could have a little more insight into his
20 figure 2.

21 Just on a cursory reading of the text, I
22 am not clear exactly how he derived his regression
23 curve except a reference to statistical regression
24 packages, but I think it would be helpful to have some
25 data points on this curve, and if it wouldn't be too

1 much trouble, Mr. Daly, I wonder if a member of your
2 staff could simply blow up this curve and put some
3 points on it.

4 I assume that he must have done his
5 regression unit by unit. Is that your impression?

6 MR. DALY: I believe he did, and I
7 referred to Mr. Poch earlier and he indicated where
8 some of this information is, he referred us to the
9 historical tables--

10 MR. D. POCH: Yes.

11 MR. DALY: --in the Appendix 2. However,
12 we don't have the future data or the future assumptions
13 or curve-fitting process that Mr. Komanoff used.

14 This particular chart is somewhat
15 different from the chart he has provided in the past at
16 the OEB. The OEB information, we have the majority of
17 that, but we don't have the information, the future
18 information that Mr. Komanoff used here. So I would
19 have to --

20 DR. CONNELL: Actually, I am not
21 interested in the future at the moment, just the
22 record. In fact, if the regression was based on the
23 data in Appendix 2 I think simply to plot the relevant
24 points on --

25 MR. D. POCH: Yes, Dr. Connell. I think

1 I may be able to help a little, and perhaps I should
2 ask you.

3 Appendix 1 provides some summary
4 statistics. Appendix 2 provides the data base actually
5 employed and the value of each variable in the formula
6 for any given unit for any given historical year.
7 Appendix 3 provides the year-by-year figure for the
8 collective, if you will, going outwards.

9 I suppose the only thing that isn't here
10 is the actual formula and that certainly can be
11 provided, if that is of assistance.

12 DR. CONNELL: Yes, that might be useful
13 later, but at the moment I would simply like to gain
14 some visual impression of the basis for the
15 extrapolation, and my instinct tells me that it would
16 be probably most useful to look at it on a unit-by-unit
17 basis rather than the collected averages, although both
18 might be of interest.

19 MR. D. POCH: Yes. I am just guessing
20 now, but I am assuming that the difficulty with
21 unit-by-unit is the insufficient data set for
22 statistical reliability. We are back to epidemiology
23 here, we need a large enough sample to be able to have
24 statistical confidence.

25 But I will convey those observations to

1 Mr. Komanoff, and so he will perhaps be able to offer
2 some assistance to you when the time comes.

3 DR. CONNELL: So you think we can lean on
4 him rather than our distinguished panel?

5 MR. D. POCH: I am happy to have you lean
6 on Hydro's Panel 2, sir. In fact, I would be very
7 interested in seeing their analysis.

8 MR. DALY: I think, Dr. Connell, our
9 analysis differs from Mr. Komanoff's who is using
10 slightly different techniques. I think if you want
11 insight into this particular chart Mr. Komanoff is the
12 appropriate person to provide it.

13 We have provided our own forecasts in my
14 direct evidence, and we tried to indicate the basis of
15 those. Mr. Komanoff uses a different approach. So I
16 think he has to provide the information related to this
17 chart, since it is his chart, it is not ours.

18 DR. CONNELL: Well, before I buy anyone's
19 approach I think I would just like to be able to
20 eyeball the data and form my own impressions, my own
21 biases, so to speak.

22 MR. D. POCH: Dr. Connell, would you
23 looking for something in the nature of like a scatter
24 diagram--

25 DR. CONNELL: Yes.

1 MR. D. POCH: --which has the points
2 surrounding the line?

3 DR. CONNELL: Yes.

4 MR. D. POCH: So we can see how the line
5 weighted?

6 DR. CONNELL: Yes. Even without the line
7 perhaps initially.

8 MR. D. POCH: Sure. Well, I will see if
9 that is available, Dr. Connell.

10 DR. CONNELL: Thank you.

11 MR. DALY: I think, Dr. Connell, we also
12 have some had some analysis of Mr. Komanoff's data in,
13 I believe it was, Interrogatory 9.2.30.

14 THE REGISTRAR: 9.2.30?

15 MR. DALY: 9.2.30, which was some
16 analyses Ontario Hydro did of Mr. Komanoff's work.

17 MR. D. POCH: Mr. Daly, I take it that
18 would have been of an earlier model, the model
19 presented to the OEB back in the late 80s?

20 MR. DALY: That would have been the
21 linear regression model, yes.

22 THE REGISTRAR: That will take the number
23 .79.

24 THE CHAIRMAN: Thank you.

25 ---EXHIBIT NO. 520.79: Interrogatory No. 9.2.30.

1 MR. D. POCH: Mr. Chairman, I was about
2 to turn to another topic now.

3 THE CHAIRMAN: Shall we take a break for
4 15 minutes?

5 THE REGISTRAR: Please come to order.
6 This hearing will recess for 15 minutes.

7 ---Recess at 3:34 p.m.

8 ---On resuming at 3:53 p.m.

9 THE REGISTRAR: Please come to order.
10 This hearing is again in session. Be seated, please.

11 THE CHAIRMAN: Mr. Poch?

12 MR. D. POCH: Thank you, Mr. Chairman.

13 Q. Gentlemen, in looking at your
14 options - there is a range of them - some of them are a
15 different type, and some of them are - and I am
16 cognizant of all the evidence on how extensive the
17 difference is - but some of them are evolutionary. So
18 I wanted to look with you at the changes we have seen
19 between generations of reactors.

20 Could you turn up page 60 of our first
21 volume of materials?

22 Now, here we have compiled some
23 information from various Ontario Hydro supplied
24 interrogatory answers and the note 1 gives the source.

25 THE CHAIRMAN: Whose document is this?

1 MR. D. POCH: This is a document compiled
2 by the CEG, Mr. Chairman.

3 THE CHAIRMAN: Right.

4 MR. D. POCH: And it pulls together data
5 provided in the interrogatories noted in note 1, and we
6 have in the following pages provided, I believe, all of
7 the Hydro sources for those numbers so they will be at
8 hand for this discussion.

9 THE CHAIRMAN: That runs through to what
10 page, Mr. Poch? Do you know?

11 MR. D. POCH: I will have to check, Mr.
12 Chairman.

13 The following pages up to and including
14 page 68.

15 THE CHAIRMAN: All right.

16 MR. D. POCH: And there in fact are some
17 other related Hydro answers.

18 THE CHAIRMAN: And on page 68 the Ontario
19 Hydro deflators, that is also your source, too, is it?

20 MR. D. POCH: Page 68 as opposed to the
21 intervening pages, which are Hydro exhibits, is
22 something again we have produced which just puts on one
23 page Hydro's nuclear cost escalator and the GDP
24 deflator.

25 THE CHAIRMAN: Would it be appropriate to

1 put pages 60 to 68 in as -- would that be an
2 appropriate thing to do?

3 MR. D. POCH: I am content, Mr. Chairman.
4 Of course, it does include some Hydro interrogatories,
5 but as long as --

6 THE CHAIRMAN: Well, I just want to make
7 sure it is convenient for someone following the
8 transcript, what they have to look at.

9 MR. D. POCH: All right. That is
10 certainly satisfactory to me, Mr. Chairman.

11 THE CHAIRMAN: Can we do that then, Mr.
12 Lucas, give a new exhibit number to pages 60 to 68,
13 inclusive?

14 THE REGISTRAR: From 60 to 68, inclusive?

15 THE CHAIRMAN: Yes.

16 THE REGISTRAR: That will be number 589.

17 ---EXHIBIT NO. 589: Pages 60 to 68, inclusive, from
18 Exhibit 577.

19 THE CHAIRMAN: Then, I guess just to show
20 a cross-reference just -- there are two interrogatories
21 one on page 62 and one on page 64, and they should be
22 given 520 numbers.

23 THE REGISTRAR: The one on page 62,
24 9.7.448, is .80.

25 ---EXHIBIT NO. 520.80: Interrogatory No. 9.7.448.

1 THE REGISTRAR: The one on page 64 is
2 9.7.453, is .81.

3 THE CHAIRMAN: Thank you. Sorry, Mr.
4 Poch.

5 ---EXHIBIT NO. 520.81: Interrogatory No. 9.7.453.

6 MR. D. POCH: The next two pages are from
7 Hydro's '91 Business Plan, and page 67 is an attachment
8 from Interrogatory 9.7.62.

9 THE CHAIRMAN: Shall we record -- perhaps
10 we should record 9.7.62 if it hasn't already been
11 recorded.

12 THE REGISTRAR: I am just checking.
13 9.7.62 has been filed as .74.

14 THE CHAIRMAN: All right.

15 MR. D. POCH: Q. Okay. Now, this
16 exhibit shows the cost per kilowatt to construct each
17 of Hydro's five groups of reactors, five stations, and
18 we have put them in chronological order, Pickering "A"
19 through Darlington.

20 Do you see that, Mr. Penn?

21 MR. PENN: A. Yes, I do.

22 Q. We have four different columns of
23 cost data, and all of them are in dollars per kilowatt,
24 and the dollars are end of 1990 dollars, I am told.

25 Do you see those columns?

1 A. Yes, I can.

2 Q. And the first one being Total Station
3 Cost, the second Total Cost Without Interest, the third
4 is Total Cost With Interest But Without Fuel and Heavy
5 Water, and the final column excludes interest and
6 excludes fuel and heavy water.

7 Can you see that?

8 A. Yes, I can.

9 Q. Now, to deal with the notion of
10 generations we have chosen to compress this data into
11 three groups, "A" stations by averaging the "A" data on
12 a per kilowatt basis - so that would be Pickering "A"
13 and Bruce "A" would fall into the "A" station line in
14 the middle section of this page - similarly for the "B"
15 stations, and we have left Darlington as a third
16 generation.

17 Still with me?

18 A. Yes, I am.

19 Q. I will let you know that Darlington
20 cost is based on Interrogatory 9.7.448, which is one of
21 the ones attached, which is dated November 15th, '91,
22 which was the most recent data we had at the time they
23 prepared this.

24 Just to be clear, that says 13.5 billion.
25 In fact, we now have your evidence and Mr. McCredie's

1 which raises that slightly to 13.8.

2 I want to talk to you about cost
3 increases from the "A"s.

4 THE CHAIRMAN: I'm sorry, where do we see
5 13.5?

6 MR. D. POCH: That is at page 62, Mr.
7 Chairman, in Part A of the response.

8 THE CHAIRMAN: Okay. All right. Thank
9 you.

10 MR. D. POCH: Q. I thought to simplify
11 matters we would just take the last column, Mr. Penn,
12 which excludes interest and excludes fuel and heavy
13 water, so that would be direct costs construction,
14 commissioning and training, and so on?

15 MR. PENN: A. Yes.

16 Q. Now, according to the information you
17 provided us here, and we have compiled the average
18 construction cost, that last column, per kilowatt of
19 the "B" stations, was 27.9 per cent more than in the
20 "A" stations. Do you see that cost escalation between
21 stations, the third grouping?

22 A. Yes, I can see your numbers, yes.

23 Q. All right. And that accords, I take
24 it, with your understanding?

25 A. Pardon?

1 Q. That accords with your understanding
2 of the numbers? I am not asking you to agree to the
3 significant digits, but...

4 A. I think it is an inappropriate
5 comparison, but if you average the cost of the "A"
6 stations and average the cost of the "B" stations
7 without any concern for the differences of one station
8 from another I would agree you get that number.

9 Q. Yes. Mr. Penn, I am not seeking to
10 imply with this, and I am not seeking for you to adopt,
11 the notion that there have not been significant changes
12 from station to station. Indeed, there have been
13 changes in design, and changes of scope, changes of
14 regulatory demand. I think we have heard the evidence
15 on that.

16 A. And many more, many other reasons as
17 well.

18 Q. Yes. Sure. I was going to ask you
19 about that. It is those kinds of things which you
20 would assign that roughly 28 per cent to?

21 THE CHAIRMAN: What 28 per cent? Oh,
22 the --

23 MR. D. POCH: 27.9. I am rounding it to
24 28, Mr. Chairman.

25 THE CHAIRMAN: All right.

1 MR. PENN: I'm sorry, did you ask me a
2 question?

3 MR. D. POCH: Q. Yes. My next question
4 was going to be: What caused the 28 per cent? And I
5 think you and I can agree then it is many factors, and
6 I have just mentioned three you agreed to, and you
7 indicated there were many others.

8 MR. PENN: A. Well, I would just like to
9 note that this is an annotated version of Interrogatory
10 8.2.14, which provides considerable detail and
11 explanation of the various costs.

12 Q. Yes. And, in fact, the excerpt from
13 8.2.14 is the overleaf here.

14 A. Well, the excerpt on page 61, what
15 that is, is the initial capital cost, including heavy
16 water but without any capital modifications during the
17 history of these stations, and, of course, there is
18 extensive data in 8.2.14 that provides a commentary and
19 also provides a listing of capital modifications, and,
20 of course, uses a constant interest rate or discount
21 rate of 4 per cent.

22 Q. All right. And indeed, just to be --

23 A. Which brings me to the question--

24 Q. Yes?

25 A. --on how you have calculated the

1 Darlington cost.

2 [4:05 p.m.]

3 The only reason that I make this point is
4 that on table 1 which is attached to Exhibit 520.80,
5 what is provided there is in dollars of the year, the
6 actual interest on the design and construction, the
7 \$4.85 billion. But as we have given in evidence, the
8 actual interest on Darlington is as high as \$5.8
9 billion, and what the reason for that difference is
10 that of course the interest on the heavy water and on
11 the OM&A and the commissioning and training is not
12 noted in this table, it's part of those numbers given.

13 So I think it would be very difficult for
14 you to calculate Darlington because of that information
15 lack that you would have.

16 Q. I'm sorry, I was looking at the
17 Without Interest.

18 A. Well, to get the last column without
19 interest, you have to know what the interest is. And
20 the column that's marked With Interest, without fuel or
21 D2O, I am saying is taken from Interrogatory 8.2.14,
22 and actually includes a real interest rate of 4 per
23 cent, whereas the figures you have got for Darlington,
24 you wouldn't know that.

25 THE REGISTRAR: 8.2.14, becomes .82.

1 THE CHAIRMAN: Right.

2 ---EXHIBIT NO. 520.82: Interrogatory No. 8.2.14.

3 MR. D. POCH: Q. I am having a little
4 difficulty following you, Mr. Penn. I was looking at
5 page 63 of our exhibit.

6 MR. PENN: A. Yes.

7 Q. And we took the numbers from here, I
8 believe, for Darlington, and this is from your 1991
9 business plan, do you recognize it?

10 A. I think it says in the response to
11 9.7.448 that the Darlington estimate of 13.5 billion
12 detailed by the cost items shown on page 5 of the
13 attachment to the response to Interrogatory 9.7.74.

14 The point that I was trying to make to
15 you, Mr. Poch, is that if we look at the top of your
16 page 60, for each of Pickering "A", Bruce "A",
17 Pickering "B" and Bruce "B", all those numbers come
18 from Exhibit 520.82. And the column marked Without
19 Interest, the column marked With Interest that you have
20 used to obtain the final column on the right-hand side,
21 the column With Interest includes a 4 per cent constant
22 interest. That's the agreement of the Electric Utility
23 Cost Group. That's how we can compare United States
24 plants with Canadian and with French and Korea and all
25 the rest of it, we have agreed internationally to do

1 that.

2 Whereas the costs for Darlington you have
3 calculated from dollars of the year based upon the
4 table on page 63, and I have noted to you that in that
5 table only about 4/5ths of the interest is specifically
6 detailed.

7 So, in order for you to calculate
8 Darlington you would have to do two things: You would
9 have to know how much interest was associated with
10 commissioning, training, half the initial fuel, heavy
11 water; in other words, the total nuclear operations
12 branch total, and you would also have to know what the
13 CPI was in order to calculate the real interest over
14 the cash flow when this money was spent.

15 So I am just trying to point out there is
16 an inconsistently here in your data.

17 THE CHAIRMAN: And that relates to
18 Darlington only.

19 MR. PENN: Yes, sir.

20 MR. D. POCH: Excuse me, panel, I will
21 see if my colleague is understanding what you are
22 saying.

23 Mr. Penn, I will have to take your
24 comments and pass them along to the person who
25 constructed this for me.

1 THE CHAIRMAN: Just so I understand it,
2 if I don't confuse it by saying, first of all, you have
3 got to know what the actual interest figure is and then
4 you have convert that actual figure into the 4 per cent
5 real interest for comparative purposes.

6 MR. PENN: That's basically correct, sir,
7 yes.

8 The other point I was trying to make, Mr.
9 Chairman, and maybe I haven't made it clearly enough,
10 is that on page 63, as we have heard in prior evidence
11 that I have given, the interest to date on Darlington
12 is \$5.8 billion, whereas this table only shows 4.85
13 billion.

14 THE CHAIRMAN: You have got to find out
15 what the actual interest is and then make the
16 conversion.

17 MR. PENN: Yes, sir.

18 MR. D. POCH: Q. Just so I understand,
19 the difference between the 4.8 billion in interest that
20 you have provided us in this table in the '91 business
21 plan and the 5.8, could you tell me again where that
22 difference arises from?

23 MR. PENN: A. Well, in the exhibit we
24 discussed, I think it was yesterday, that the project
25 manager of Darlington provided, I have forgotten it's

1 number now.

2 Q. It's 539.

3 A. 539. Maybe we should look at that
4 and so we are quite clear on what I am talking about.

5 Right on page 1 of Exhibit 539, the first
6 bullet says:

7 Darlington is presently estimated to
8 cost 13.8 billion when complete in 1993.

9 This includes about 5.8 billion or 42 per
10 cent in interest charges.

11 And then it provides a table on Appendix
12 3, a series of bar charts, where for the year '92 it
13 breaks the estimate down into interest at the top of
14 the bar, of production branch costs in the middle--

15 Q. I am sorry which page is this on?

16 A. --and design and construction at the
17 bottom.

18 Q. Yes, I have that.

19 A. And the top of the bar, interest
20 amounts to 5.8 billion, and I think probably with a
21 straight line you could scale that.

22 Now, turning now to table 1 that
23 accompanied Interrogatory 9.7.448 or Exhibit 520.80,
24 what this table shows you when the estimated cost to
25 completion was 13-1/2 billion, that the interest,

1 that's in the middle of the table just below overhead,
2 is \$4.85 billion.

3 What I am advising you in this table is
4 that's the interest on design and construction only.
5 You note two lines below it sums design and
6 construction.

7 And then below design and construction
8 branch total, it gives nuclear operations branch total,
9 and of that total of 2.85 billion, approximately .8
10 billion is interest.

11 The remaining part, of course, is the
12 interest that amounts to the difference between the
13 13.8 billion, the current estimate, and this estimate
14 which is 13.5, and most of that 300 million, or .3
15 billion is also interest; in fact, it amounts to about
16 .22 billion.

17 So that is how you can constitute the
18 total interest to the final estimate of 5.8 billion.
19 And I am saying you would have had to have known that
20 to calculate your numbers, and then having known that
21 you would have had to have got the CPI tables out in
22 order to find out the real interest and then you would
23 have had to have realigned that with the other numbers
24 that are 4 per cent real interest.

25 THE CHAIRMAN: Mr. Penn, just to make

1 sure, I am looking at page 63. Are we all looking at
2 page 63; is that right?

3 MR. PENN: Yes, sir.

4 THE CHAIRMAN: I am looking at interest
5 of four billion eight hundred and fifty million
6 six-sixty-two.

7 MR. PENN: Yes.

8 THE CHAIRMAN: And you say that figure
9 should be something different; is that right?

10 MR. PENN: That is the interest on the
11 design and construction.

12 THE CHAIRMAN: But that figure is
13 correct, though.

14 MR. PENN: That figure is correct. But
15 the interest on --

16 THE CHAIRMAN: Bear with me, bear with
17 me.

18 So that the items that have to be
19 adjusted are, first of all, the nuclear operations
20 branch total; is that right, of 2-million eight hundred
21 and fifty-four; is that right?

22 MR. PENN: That's the total cost.

23 MR. D. POCH: Two billion, Mr. Chairman.

24 THE CHAIRMAN: Two billion, I'm sorry.

25 MR. PENN: And .8 billion of that is

1 interest, actually.

2 THE CHAIRMAN: Eight billion.

3 MR. PENN: .8 billion.

4 THE CHAIRMAN: .8 billion or 800 million.

5 MR. PENN: Yes, sir.

6 THE CHAIRMAN: And there is another
7 interest adjustment that you mentioned.

8 MR. PENN: There is another interest
9 adjustment because the difference between the current
10 estimate to completion of 13.8 billion, and what was
11 given in this table as Mr. Poch noted, this was
12 information correct as of November the 15th, 1991, the
13 difference between those two numbers is nearly 300
14 million.

15 THE CHAIRMAN: That's all interest.

16 MR. PENN: And .22 or \$220 million is
17 interest of that amount.

18 THE CHAIRMAN: Okay.

19 MR. PENN: So that's how you come to
20 5.8 billion interest.

21 THE CHAIRMAN: All right. Thank you.

22 MR. D. POCH: Q. Mr. Penn, if you wanted
23 to reconstruct the chart at page 60, are you telling me
24 that I would need to deduct .8 billion from the
25 Darlington cost there, which is the interest we didn't

1 realize was buried in the other figures?

2 MR. PENN: A. What you would be better
3 off doing, I would suggest, is you can take the
4 Darlington costs as of today, you can subtract the
5 interest, the 5.8 billion, you can divide it by the
6 number of kilowatts that Darlington is rated at and you
7 will get the dollars per kilowatt, and then you should
8 add back in 4 per cent real interest, and then you
9 would get a number that is consistent with the four
10 numbers above that.

11 Q. All right. Well, we will take a look
12 at that, Mr. Penn.

13 THE CHAIRMAN: Just again, I'm sorry, Mr.
14 Penn. But there is no problem in the presentation with
15 that set of numbers at the top except for the
16 Darlington numbers; is that right?

17 MR. PENN: That's quite correct, sir.
18 And those numbers with come directly out of this
19 Interrogatory 8.2.14.

20 MR. D. POCH: Q. So I take it you have
21 no problem with the 27.9 per cent from "A" to "B", but
22 the comparisons to Darlington could obviously be
23 affected?

24 MR. PENN: A. I have no problem with it,
25 no, except that the proper way to look at this is to

1 plot it on a graph and you can see how Pickering "A"
2 costs were and Bruce "A" costs and Pickering "B" costs
3 and Bruce "B" costs, and then you can see, that rather
4 averaging the lot you can see the trend and you can
5 read this document to find out the reasons.

6 Q. Can you just then provide us with a
7 number that we could use for the Darlington line and
8 the top set there, it would be four numbers I guess,
9 that in your view would be consistent with the numbers
10 you provided us for the other stations? I don't need
11 to do that right now.

12 A. It could be provided, yes.

13 MR. D. POCH: Could we get an undertaking
14 to that effect.

15 THE REGISTRAR: 532.5.

16 ---UNDERTAKING NO. 532.5: Ontario Hydro undertakes to
17 provide numbers for Darlington consistent
18 with the numbers provided in Pickering
and Bruce in Interrogatory 8.2.14.

19 MR. D. POCH: Q. That would simply be to
20 provide numbers consistent with those provided for
21 Pickering and Bruce stations for the Darlington station
22 as set out on page --

23 MS. HARVIE: I am advised, Mr. Chairman
24 and Mr. Poch, that request can be done but it may take
25 some time, so whether or not we are able to give you

1 this information by the time this cross-examination is
2 finished, I can't say, but we will try.

3 MR. D. POCH: Thank you.

4 THE CHAIRMAN: So what you are doing, is
5 your just giving the same information for Darlington as
6 you previously gave in Interrogatory 8.2.18, would that
7 be right?

8 MR. PENN: That's correct, sir.

9 MR. D. POCH: Q. Now, at page 69 of this
10 material, Interrogatory 9.7.487.

11 THE REGISTRAR: That is .83.

12 ---EXHIBIT NO. 520.83: Interrogatory No. 9.7.487.

13 MR. D. POCH: Q. We asked you for an
14 analysis of the differences between Bruce and
15 Darlington for different factors, and you indicated
16 that cost differentials attributed to the requested
17 conditions were not available because they didn't
18 conform to your accounting norms. But you did refer us
19 to two interrogatories, 9.7.102 and 103 where you did
20 provide some information.

21 I would refer you to 9.7.103 which is at
22 page 74.

23 THE REGISTRAR: 9.7.103 is .84.

24 ---EXHIBIT NO. 520.84: Interrogatory No. 9.7.103.

25 MR. D. POCH: Q. And you provided us

1 with quite a list of changes and new requirements
2 between the stations.

3 Can I assume that this is to be expected
4 and as you go to a new generation of reactors one can
5 expect that there would be such changes?

6 MR. PENN: A. Well, these are the
7 changes that have occurred over time.

8 Q. Yes. And these are just between the
9 Bruce and the Darlington, both square containment?

10 A. Well, the changes given in this
11 answer are from Pickering "A" to Pickering "B", and
12 from Bruce "A" to Bruce "B", and from Bruce "B" to
13 Darlington "A". And it also comments on project delays
14 at Pickering "B".

15 And while I notice that, one of the
16 reasons why I objected to you comparing averages of the
17 "A" stations with the "B" stations is that somewhat
18 like Darlington, Pickering "B" was delayed
19 approximately three years, one year for load forecast
20 reductions, and two years because of a manufacturing
21 fault in the steam generators.

22 Q. So delays are not unique to
23 Darlington.

24 A. Well, we have suffered two types of
25 delays, one at Darlington and one at Pickering "B".

1 [4:25 p.m.]

2 Q. Is it fair to say that we can see
3 here that over time there are changes and these changes
4 continue to occur from station to station as time
5 progresses? This is to be expected?

6 A. Well, if you are trying to infer that
7 it will continue in the future, I'm not sure that that
8 follows.

9 This follows the history of the
10 development of nuclear power in Canada right from the
11 early beginnings, and the development of codes, and the
12 development of seismic qualification, and the
13 development of regulatory processes to improve in many
14 cases, most cases, the safety systems at our plants, et
15 cetera. And you will note if you read through this
16 where Pickering "A", for example, has been retrofitted
17 with a later system, and so on, and also Bruce "A".

18 Q. And just so we are clear, the numbers
19 you provided to ONCI took into account changes you knew
20 at the time were coming down the pike from the AECB but
21 made no allowance for any future such changes,
22 consistent with your position now you don't assume that
23 there necessarily will be any?

24 A. We assumed, as I testified yesterday,
25 that the extent in terms of man hours and dollars that

1 we would spend on regulatory, safety-related matters on
2 the next nuclear station was equal in dollar value to
3 Darlington. So I think that presumes that we will
4 continue to expect to see regulatory change, on the
5 basis of course that we expect a lot of the equipment
6 in the plant not to change from one station to the
7 next.

8 Q. All right. Let's turn to some
9 questions arising from Exhibit 539 which was referred
10 to a moment ago, which is Mr. McCredie's letter.

11 In his fourth bullet point he says:

12 The appropriate starting point for an
13 analysis of Darlington's cost is Hydro's
14 1981 estimate of \$7.4 billion.

15 See that?

16 A. Yes.

17 Q. Could you turn up in the second
18 volume of our materials page 79. This is 9.7.75, which
19 I don't believe has an exhibit number yet.

20 THE REGISTRAR: Yes, we do, 520.75.

21 THE CHAIRMAN: 75?

22 THE REGISTRAR: .75.

23 MR. D. POCH: Q. And we asked you to
24 provide the originally anticipated total construction
25 costs, and you referred us to 9.7.62 which is the

1 overleaf at Exhibit .74, page 80.

2 THE REGISTRAR: That is .74.

3 MR. D. POCH: Q. And you gave us, when
4 asked what the original estimate was, a 1978 release
5 estimate of \$3.95 billion.

6 MR. PENN: A. Yes. I had asked our
7 staff to give me some confirmation by morning expecting
8 that I might make a change to my testimony in the
9 transaction yesterday.

10 I am informed that that 3.95 billion was
11 for design and construction costs only, and the total
12 cost including operations cost brought it to
13 approximately \$5 billion, but I don't have the exact
14 number. So I don't know if that is anticipating your
15 question, but --

16 Q. Well, I think it is probably
17 anticipating a request for supplementary funding to
18 redo a whole bunch of analysis, I fear. But we will
19 wait and see.

20 The release estimate, be it the 3.9 there
21 or the close to 5 you have just told us about, it would
22 be of a greater level of detail than the cost estimates
23 you provided for some of the future options, I take it?

24 A. Well, it probably would be at less
25 detail than what we have given this hearing for the 4

1 by 881, which has extensive background to it, but as
2 far as some of the options such as the advanced light
3 water reactors I would agree that this probably has
4 more information behind it.

5 Q. In '78 you were already busy, well
6 into engineering Darlington?

7 A. Well, I wouldn't say we were well
8 into it. The plant was committed in 1977, so we were
9 one year into it.

10 MR. D. POCH: And I would like to file
11 another exhibit.

12 THE REGISTRAR: No. 590.

13 ---EXHIBIT NO. 590: Excerpts from Select Committee on
14 Energy Report on Darlington, dated
December, 1985.

15 MR. D. POCH: Q. Mr. Penn, you recognize
16 this as excerpts from the Select Committee on Energy
17 Report on Darlington? This is dated December, 1985.

18 Mr. Chairman, I'm not sure indeed if
19 Ontario Hydro made this an exhibit. I don't believe
20 they did, so perhaps these excerpts could be marked?

21 THE CHAIRMAN: That has been marked 590.

22 MR. D. POCH: Oh, I'm sorry. 590?

23 THE REGISTRAR: 590, yes.

24 MR. D. POCH: Q. Thank you. Do you see
25 there in the Executive Summary, Mr. Penn, that the

1 total estimated cost at that time that you told the
2 committee was 10.895 billion?

3 MR. PENN: A. Well, I see the number. I
4 haven't seen this document before so I may have to read
5 some of it to answer your questions but let me ask you,
6 the 10.895 billion, is that the number as of the date
7 that this was written, 1985?

8 Q. Yes, I am assuming.

9 A. Well...

10 Q. And I assume that is in dollars of
11 the year and all of it had not been spent.

12 A. Yes, it has to be in dollars of the
13 year. I am just referring back to Exhibit 539 where we
14 provide the various estimates by year since the
15 Darlington project was subject to review on an annual
16 basis right from 1981 to 1992, which is on Appendix 3.

17 And the figure on our graph in escalated
18 dollars is 10.6 billion, so I...

19 Q. I will let you check that at some
20 point, but I just wanted to point out here that at that
21 time the Committee met Hydro informed them that 3.66
22 billion had already been spent and a further 3.385
23 billion had been irrevocably committed, it is about 7
24 billion of the close to 11 billion in that estimate.

25 A. That is what it says, yes.

1 Q. So that was well along. And can you
2 just look at the back. I think in my copy there is
3 actually two -- yes, the last page appears twice.

4 There is something called Comparison of
5 Ontario Hydro's Cost Control on Nuclear Projects With
6 Selected U.S. Projects, and the source of that is
7 Ontario Hydro.

8 A. Yes. Well, it is the same source as
9 Interrogatory 8.2.14. It is EUCG data.

10 Q. And there we see Ontario Hydro
11 Darlington that the Select Committee was being told, or
12 Ontario Energy Board in prior years was being told,
13 that you were looking at a 128 per cent increase from
14 the release basis?

15 A. I'm sorry, Mr. Poch. I was still
16 looking at the graph. So where are you on the last
17 page?

18 Q. I am in the graph, the horizontal
19 line chart on the last page. In the body of that chart
20 there is a line for Darlington, one for cost and one
21 for duration, and the upper one for cost indicates 128
22 per cent above the release basis?

23 A. Yes, I can see that number.

24 Q. So we could just work backwards,
25 couldn't we, from 10.895 or perhaps 10.5 as you have

1 offered, and we would get down to a number something
2 under 5 billion?

3 A. Well, we would, yes.

4 Q. All right. And that was the number
5 that Hydro offered as an appropriate base to the Select
6 Committee, to the Energy Board and to this
7 international study, the release estimate as an
8 appropriate basis for looking at what cost overruns
9 have been or cost control has been?

10 A. Well, I wasn't at this Select
11 Committee hearing on Darlington so I don't know whether
12 that was the purpose, but I do know that Exhibit 539
13 points out that on the first page that the original
14 1973 conceptual estimate of 2.5 billion assumed the
15 whole station would be in service fully by 1984. And
16 there were delays, planned delays.

17 In 1975 it was 3.2 billion; again,
18 planned in service fully by 1986. The definitive
19 estimate of 7.4 billion assumed total project
20 completion in 1988. So that what you are leading me
21 through with this bar chart on the last page of Exhibit
22 590 I think has to take those delays into account.

23 Q. Mr. Penn, I guess what I am getting
24 at here is, and indeed Mr. McCredie is suggesting, that
25 the 7.4 billion figure is appropriate in his fourth

1 bullet. He says:

2 Earlier estimates were developed for
3 planning purposes.

4 Do you see that in the second line of his fourth
5 bullet? He is distinguishing the 7.4 billion from
6 earlier estimates which were for planning purposes?

7 A. Yes.

8 Q. Indeed, isn't the definition of a
9 release estimate, that word 'release' implies that is
10 because the Ontario Hydro Board has released the
11 project, said "Go for it"?

12 A. Well, it has released the project on
13 the basis that it is approving early work.

14 Sometimes, and quite often, the
15 corporation makes partial releases so that it can gain
16 more information to firm up the cost, and it is the
17 definitive estimate to which projects are always
18 controlled, they are measured by. It is the result of
19 doing sufficient engineering to be able to actually
20 determine what the construction costs are because you
21 need to know what it is you are trying to build in
22 order to estimate its cost.

23 Q. Mr. Penn, of course, we are in a
24 planning hearing now, and that is why I am interested
25 in that line.

1 Darlington received an exemption under
2 the Environmental Assessment Act based on submissions
3 Hydro made at the time in 1977, I believe; is that
4 correct?

5 A. Well, Mr. Johansen might be able to
6 help me or confirm this, but we prepared an
7 environmental assessment document for Darlington, and
8 it was reviewed by the Ministry of the Environment, and
9 the Minister determined that a public hearing should
10 not be held.

11 Q. And wasn't one of the reasons that
12 they determined that was that the reactors came into
13 force in '87 and Darlington was already well along in
14 the planning process?

15 A. Not to my recollection. I think that
16 it was done because load growth was very high,
17 typically up to seven per cent per year compounded, and
18 the Minister and the government in their judgment
19 decided that the project should proceed.

20 MR. JOHANSEN: A. I might just add, Mr.
21 Poch, that the original submission was in 1975, and
22 there was a final submission in 1976.

23 Q. So the estimates you were using at
24 the time of making your judgment under the
25 Environmental Assessment Act and you were asking the

1 Minister to use were these estimates, something below 5
2 billion. You offered them variously -- 2.5 billion was
3 the '73 conceptual estimate, I believe, and it moves up
4 from there. The '75 conceptual estimate was, I think,
5 3.2 billion; is that right?

6 MR. PENN: A. 3.2 billion on the basis
7 that the whole station, all four units, would be fully
8 in service by 1986.

9 Q. All right. Mr. McCredie offers us a
10 variance analysis in his Exhibit 539 based on this 7.4
11 billion cost estimate which comes from 1981.

12 I have in the transcript by the way at
13 page 22,736, line 20, that you have the 1978 release
14 estimate as 3.95 million and I assume that you meant
15 billion. Perhaps we could just note that change.

16 And it is that number that you are going
17 to look at getting a further update on?

18 [4:45 p.m.]

19 A. That's what I referred to earlier,
20 yes. I was informed at lunch time that that was for
21 design and construction only.

22 Q. And that was for a 1989 in-service?

23 A. That would be for '88 or '89.

24 Q. All right. So if we were looking for
25 an estimate that you made of Darlington, 20 years prior

1 to the average in-service date that has or may come to
2 be, we would be looking at something of a vintage 1972?

3 A. I'm sorry, I didn't follow your
4 question.

5 Q. If I wanted to find out what kind of
6 estimates you made of Darlington's costs 20 years prior
7 to the average in-service date, if we take today as the
8 average, optimistically we take today as the average
9 in-service date, we would be looking at estimates you
10 made in '72, and those are the lowest ones you have
11 offered us in range of between 2 and 3 billion dollars;
12 correct?

13 A. I'm sorry, I am not following the
14 connection to 20 years. Maybe I am getting tired, but
15 I am missing something.

16 Q. Darlington is coming into service,
17 one unit is in and the next are scheduled to come in
18 over the next year or two.

19 A. Yes.

20 Q. So 1992 was the actual in-service.

21 A. Yes.

22 Q. On average, roughly.

23 A. Yes.

24 Q. And if I was just looking for a
25 parallel, for what kind of estimates you made 20 years

1 in advance of that, it's in the range of 2 to 3
2 billion, mixed dollars obviously.

3 A. I am afraid I am not following you at
4 all. Are you talking about in 1972 dollars?

5 Q. No. What kind of estimate you were
6 providing for decision-making purposes in 1972, and the
7 estimate there was in forward dollars as they would be
8 spent about around 2-1/2 billion; right?

9 A. Yes. We state in Exhibit 539 that
10 the original 1973 conceptual estimate was 2.5 billion
11 dollars for in-service by 1984, some eight years
12 previous to this point in time.

13 Q. All right. So there obviously were a
14 lot of changes between that estimate and the final
15 price tag, and you have given us a break out of some of
16 the factors. Mr. McCredie's piece analyzes some of the
17 categories of increases since 1981.

18 A. Yes.

19 Q. And in fact, I think we spoke of this
20 yesterday, it adds up, if we just take the two
21 categories, scope and estimate changes for example, in
22 that period it's been close to \$1.9 billion?

23 A. Correct.

24 Q. And compared to your release estimate
25 in 1978, if we use that as a base, that's what, 40 per

1 cent of the release estimate?

2 A. Well, we are talking, you are
3 comparing dollars of the year in totally different
4 years. I don't see the basis for the comparison.
5 You would have to put it into constant dollars to do
6 that.

7 Q. What I am really asking here is, can
8 you offer us some analysis of the increases from the
9 release estimate to Mr. McCredie's starting point in
10 '81?

11 A. Well, I can certainly refer you, if
12 someone can help me with the interrogatory number, to a
13 document that discusses that matter and was in response
14 to the questions set by the Commissioners of ONCI.
15 That's on the record.

16 I'm sorry, I don't have any way to
17 determine that number.

18 Q. There isn't a comparable document to
19 Mr. McCredie's that starts with the base of your
20 release estimate?

21 A. Well, the one I am talking about
22 does. It also does it for Bruce "B".

23 Q. Would it be possible for you to give
24 us, combine them, if you will, and I have given how
25 many categories there seem to be in mixed dollars, I

1 would prefer you to do this, would it be possible for
2 you to produce for us something analogous to appendix
3 5, sub 1, historical cost increases for Darlington GS
4 that captures the changes from the release estimate?

5 I am fearful that if I look at the piece
6 you did for ONCI, it's going to be all percentages on a
7 different base, and if I combine them you will
8 criticize me for not doing it right.

9 A. I don't think we should speculate on
10 what we provided to ONCI. I think we should look at
11 what we provided to ONCI.

12 But I note that in answer to one of the
13 interrogatories that the Coalition asked, which is
14 9.7.62, for Bruce "B", we provided design and
15 construction costs less interest and with interest from
16 1976 to 1987.

17 Q. Let me just stop you there. 9.7.62
18 is exactly the document that I referred you to before
19 and you told me the number is probably wrong. That's
20 the one that has 3.9 -- rather, I'm sorry, 3.950
21 billion dollars in it.

22 A. Well, that's the number for
23 Darlington.

24 What I am talking about is Bruce "B".
25 That's what you asked me.

1 Q. No, I am asking you about Darlington.

2 Let's just stick to Darlington, and what I am
3 interested in getting is a historical cost increase
4 analysis --

5 A. There is attached here significant
6 data here, Mr. Poch, and the third page from the end
7 there is a table entitled Darlington Estimate Review,
8 which starts with a release estimate in 1978, gives an
9 estimate in 1981, change between '78 and '81, the
10 estimate review in '83, the change from '83 to '81,
11 right up to the present date, and it breaks it down in
12 terms of dry capital cost, interest, and it tells you
13 the reasons why these estimates changed.

14 I am afraid I'm not understanding what
15 more you want.

16 Q. First of all, that's got this number
17 you have told me that's based on a number you have told
18 me is wrong. Second of all --

19 THE CHAIRMAN: Which number has he told
20 is wrong?

21 What is that interrogatory you are
22 reading? Let's go back. What interrogatory are you
23 reading?

24 MR. PENN: I am reading, Mr. Chairman,
25 from Interrogatory 9.7.62.

1 THE CHAIRMAN: Which has already been
2 entered.

3 THE REGISTRAR: That's already entered,
4 that's .74.

5 MR. D. POCH: Unfortunately, Mr.
6 Chairman, neither nor I have the full interrogatory in
7 front of us right now.

8 MR. PENN: Well, because CEG only chose
9 to put in their exhibit one sheet.

10 MR. D. POCH: Q. We have provided your
11 revision sheet, Mr. Penn, which I am now told you are
12 going to have to revise again.

13 THE CHAIRMAN: Let's take it one point at
14 a time.

15 Now, Mr. Poch says that you said some
16 number was wrong. What number was that that you said
17 was wrong?

18 MR. PENN: I was informed at lunch
19 time -- do you have it front of you, Mr. Chairman, page
20 1? It's on....

21 MS. HARVIE: It's page 81 of Exhibit 578,
22 Mr. Chairman.

23 MR. PENN: Thank you.

24 THE CHAIRMAN: Yes, I have got it now.
25 That's the \$4 billion estimate that was made in '78

1 that should be five something.

2 MR. PENN: Yes. We will find the exact
3 number. I was just told at lunch time that I had
4 quoted that number and it was for design and
5 construction costs only.

6 THE CHAIRMAN: And that's what Mr.
7 McCredie says in 539, is that not right, when he says
8 that the earlier estimates were developed for planning
9 purposes and this estimate made in 1981 was the first
10 to incorporate basic engineering design.

11 MR. PENN: He certainly said that, sir.
12 But this was an earlier one to the definitive--

13 THE CHAIRMAN: Okay.

14 MR. PENN: --and I am informed that if
15 you add in the operations estimate, that it
16 approximates to \$5 billion.

17 THE CHAIRMAN: Okay. All right.

18 MR. D. POCH: Q. And what I am asking
19 for, Mr. Penn, is if you could take Mr. McCredie's
20 table, appendix 5, sub I --

21 MR. PENN: A. But if I may, Mr. Poch,
22 because I pointed out that this table that is attached
23 to this interrogatory, it clearly describes dry capital
24 costs. There is nothing wrong with that table.

25 Q. Well, let me just be clear here. Mr.

1 McCredie's appendix is not just dry capital costs, I
2 take it, is it?

3 THE CHAIRMAN: Which table are we now
4 looking at?

5 MR. D. POCH: Appendix 5, sub I of 539.

6 THE CHAIRMAN: That's right.

7 MR. D. POCH: Q. He is dealing with the
8 full 13.8 billion, and the change of 6.4 between '81
9 and '92.

10 MR. PENN: A. It also includes
11 production branch costs.

12 Q. And I guess what I am asking then is
13 simply, if you could take the information contained in
14 9.7.62 with the corrections that you tell us are going
15 to be provided to you, and once you have the
16 corrections, would you combine that with the
17 information that Mr. McCredie has offered us, so we can
18 just have one chart which goes from '78 release
19 estimate, captures all these historical cost increases
20 from that release estimate, and breaks it apart as Mr.
21 McCredie has done, so that we don't have this problem
22 of speaking in different --

23 A. What is your reference point in this
24 comparison?

25 Q. Release estimate in 1978.

1 A. But the release estimate in 1978
2 assumed in-service very much earlier.

3 Q. That is fine. That's just as Mr.
4 McCredie's did, and he shows, breaks apart interest and
5 so on, schedule change factors. Mr. McCredie's did
6 that too, I take it; right?

7 A. The reason that Mr. McCredie did it
8 relative to the 1981 definitive estimate is because the
9 definitive estimate is the official measure of
10 measuring the progress of the project.

11 The release estimate is exactly what it
12 says, it's a start of release of funds to start
13 developing the engineering and doing the early
14 negotiation for contracts, and it is to start us off to
15 firm up the cost of the project.

16 So that the release estimate isn't a
17 measure to measure the total project cost by.
18 Obviously, it can be done, Mr. Poch. We then have to
19 wrestle with the question of how we interpret it.

20 Q. Mr. Penn, I thought you already
21 agreed that a number of the cost estimates you have
22 given us for the competing options are more analogous
23 to conceptual estimates, not even release estimates?

24 A. I don't think I said that.

25 What I said was that the 4 by 881 cost

1 has a very large base since it started with Darlington
2 and it has five years of study behind it.

3 The other costs that we have got from
4 other vendors is based upon very significant work that
5 the vendors have done with Hydro's costs on them.

6 So I wouldn't class those costs that I
7 have, those estimates that I have given at this hearing
8 as conceptual estimates. They are based in the case of
9 the CANDU 3, for example, AECL has completed more than
10 85 per cent of the design. In the case of the advanced
11 boiling water reactor by General Electric, 90 per cent
12 of the design is complete.

13 Q. How much of the Darlington design was
14 complete when your board released that project?

15 A. I would say it would be less than 10
16 per cent.

17 MR. D. POCH: Mr. Chairman, I am not
18 going to press that, thank you.

19 THE CHAIRMAN: Can we stop for the day
20 then?

21 MR. D. POCH: Yes, Mr. Chairman.

22 THE CHAIRMAN: Thank you. We will
23 continue tomorrow morning at ten o'clock.

24 THE REGISTRAR: This hearing will adjourn
25 until ten o'clock tomorrow morning.

1 ---Whereupon the hearing was adjourned at 5:03 p.m., to
2 be reconvened on Thursday, April 9, 1992, at
3 10:00 a.m.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 JAS/RR [c. copyright 1985]

E R R A T A
and
C H A N G E S

To: Volume 128

Date: Monday, April 6th, 1992.

<u>Page No.</u>	<u>Line No.</u>	<u>Discrepancy</u>
(v)		insert Exhibit 520.47: Interrogatory No. 9.44.3. Page 22466

