

Predicting Housing Prices

Audience

- Realtors
- Potential Buyer and Seller

Problem Statement

- Unsure of prices in the housing market.
- Able to predict prices accurately to attract buyer
- Buyers have a good idea what type of house they get with the specific range.

Data

 Boston Housing Data Housing set was taken from Kaggle.

Exploratory Data Analysis

- There are 80 different Columns (variables)
- 2930 different data points.
- There are categorical and numerical variables in the data set.
- Categorical data can range from 2 options to about 6 options all describing the quality or features of the house.
- The average sales price is \$180,796.00 The most expensive sales price in this data set is \$755,000

Exploratory Data Analysis

Looking at Correlations between SalePrice and the other variables.

Preprocessing

- Cleaning Data
- Normalizing data

Data Cleaning – Data that was removed

- Variables with over 90% null values
- Variables that have over 95% correlation with Sale Price
- Variables that are under 1% correlated with Sale Price

Filling in Null Values

- Variables with categorical values null values were substituted with 0 or their categorical counterpart of 0
- Variables with null values that contain a numerical values would be filled with the mean.

Normalizing the data set

• Looking Sale Price the data was skewed towards the right.

Sale Price

Changing data types

• Changed all object items in to categorical data so that it can be converted into dummie variables.

Models and Model Processing

- Models used to predict Sales Price:
 - 1. Ordinary Least-Squares Regression
 - 2. Linear Regression
 - 3. Lasso
 - 4. Ridge
 - 5. Elastic Net
 - 6. Gradient Boosting Regressor
 - 7. Random Forest Regressor

Model Metrics

	Explained Variance (r^2 score)	mean^2 error	root mean^2 error	mean absolute error
Linear Regression	-1.14E+21	8.36E+24	2.8921E+12	1.1149E+11
Ridge	0.917	605.997	24.617	16.968
Gradient Boosting Regressor	0.909	664.556	25.779	17.445
Random Forest Regressor	0.901	727.977	26.981	18.304
Lasso(alpha=95)	0.919	595.885	24.411	16.791
ElasticNet(ratio=.95)	0.917	605.997	24.617	16.968

Future Recommendations and Next Best steps

- Minimize the variance of Sale
 Price by creating a new variable
 with a range of prices.
- Find the top 10 variables that contribute the Sale Price
- Collect more data

