Exercices Séquence 1, partie 3 : représentation virgule flottante et propagation d'erreurs

- 1. Écrivez les nombres suivants en mode virgule flottante en base 10 avec r=3 et s=2. Tronquez la mantisse au 3^e chiffre.
 - a. 4238
 - b. 3,6
 - c. 1,2332
 - d. 0,0003569
 - e. 100,02
 - f. 62,48
- 2. Écrivez les nombres suivants en mode virgule flottante en base 10 avec r=3 et s=2. Arrondissez la mantisse au 3^e chiffre.
 - a. 22,35
 - b. 4,6973
 - c. 3,01092
 - d. 8496,2
 - e. 0,0022748
 - f. 3,99999
- 3. Calculez l'erreur absolue E_a et l'erreur relative E_r , occasionnées par la troncature des nombres du numéro 1.
- 4. Calculez l'erreur absolue E_a et l'erreur relative E_r , occasionnées par l'arrondi des nombres du numéro 2.
- 5. La représentation décimale en mode virgule flottante, avec r=3 et s=2 du nombre 79300 est exacte. Quel est le premier nombre réel plus grand que 79300 qui est représenté de manière exacte dans ce format? *Indice* : utilisez le concept de distance entre les nombres.
- 6. La représentation binaire en mode virgule flottante, avec r=6 et s=4 du nombre 252 est exacte. Quel est le premier nombre réel plus grand que 252 qui est représenté de manière exacte dans ce format? *Indice* : utilisez le concept de distance entre les nombres.
- 7. Dans la représentation des réels en mode virgule flottante en décimal, quel est le plus grand nombre positif et le plus petit nombre positif non-nul que l'on peut représenter si :
 - a. r = 6 et s = 2
 - b. r = 8 et s = 3

- 8. Calculez l'erreur absolue E_a et l'erreur relative E_r survenant lors de la codification en mode virgule flottante en base 10 avec r=6 chiffres et s=2 chiffres pour les nombres ci-dessous. Supposez tour à tour que la mantisse est tronquée ou qu'elle est arrondie.
 - a. π
 - b. $\sqrt{2}$
 - c. $\frac{3}{7}$
 - d. $\frac{7}{13}$
- 9. a) Le nombre x est représenté en mode virgule flottante (base 10) par +4687+05 après troncature de la mantisse. Donnez le plus petit intervalle contenant la valeur exacte de x. b) Même question qu'en a), mais supposez que la mantisse a été arrondie.
- 10. Comparez l'erreur relative survenant lors de la codification en mode virgule flottante (base 10, r=4 avec arrondissement, s=2) du nombre $x=\sqrt{7}$ et l'erreur relative sur le résultat y du calcul $y=x^2+3x$.
- 11. Même question que le numéro 10, mais avec x = 5/11 et $y = \frac{1}{x^2}$
- 12. Même question que le numéro 10, mais avec x=5/11 et $y=x^5$

Corrigé

$$c) +301+01$$

3. a)
$$E_A = 8$$

$$E_r = 0.19\%$$

b)
$$E_{A} = 0$$

$$E_r = 0\%$$

c)
$$E_A = 0.0032$$
 $E_r = 0.26\%$

$$E_r = 0.26\%$$

d)
$$E_A = 9 \times 10^{-7}$$
 $E_r = 0.25\%$
e) $E_A = 0.02$ $E_r = 0.02\%$

$$E_r = 0.25\%$$

f)
$$E_A = 0.08$$

$$E_r = 0.13\%$$

4. a)
$$E_A = 0.05$$

$$E_r = 0.22\%$$

b)
$$E_A = 0.0027$$
 $E_r = 0.057\%$

$$E_{\rm rr} = 0.057\%$$

c)
$$E_A = 0.00092$$

$$E_r = 0.03\%$$

d)
$$E_A = 3.8$$

$$E_r = 0.045\%$$

e)
$$E_A = 4.8 \times 10^{-6}$$
 $E_r = 0.21\%$

$$E_{\rm m} = 0.21\%$$

f)
$$E_A = 0.00001$$
 $E_r = 0.00025\%$

$$E_r = 0.00025\%$$

- 5. Prochain entier exact: +794+05 = 79 400
- 6. 256

7. a)
$$9,99999 \times 10^{98}$$
 et 1×10^{-100}

b)
$$9,9999999 \times 10^{998}$$
 et 1×10^{-1000}

8. **a)**
$$E_A = 2.7 \times 10^{-6}$$

$$E_r = 0.85 \times 10^{-4}\%$$
 si troncature

$$E_A = 2.7 \times 10^{-6}$$

b) $E_A = 3.6 \times 10^{-6}$

$$E_r = 0.85 \times 10^{-4}\% \text{ si arrondi}$$

$$E_A = 3.6 \times 10^{-6}$$

$$E_r = 2.5 \times 10^{-4}\%$$
 si troncature

c)
$$E_A = 4.3 \times 10^{-7}$$

$$E_r = 2.5 \times 10^{-4}\%$$
 si arrondi
 $E_r = 1 \times 10^{-4}\%$ si troncature

$$E_A = 4.3 \times 10^{-7}$$

$$E_r = 1 \times 10^{-4}\%$$
 si arrondi

d)
$$E_A = 5.4 \times 10^{-7}$$

$$E_r = 10^{-6}\%$$
 si troncature

$$E_A = 4.6 \times 10^{-7}$$

$$E_r = 8.6 \times 10^{-7}\%$$
 si arrondi

9. a)
$$46870 \le x \le 46879$$

b)
$$46865 \le x \le 46874$$

10. Sur x $E_r=0$,0094 %, sur y $E_r=0$,018%

11. Sur x $E_r=0$,01 %, sur y $E_r=0$ %

12. Sur x $E_r=0.01$ %, sur y $E_r=0.071$ %