2013학년도 중등교사신규임용후보자선정경쟁시험

전기·전자·통신

시험 시간 120분 1차 시험 2 교시 (전공) 40문항 80점

- 문제지 전체 면수가 맞는지 확인하시오.
- 문항의 배점이 1.5점과 2.5점인 문항에는 배점이 표시되어 있습니다. 나머지 문항은 2점입니다.
- 각 문항의 정답을 컴퓨터용 흑색 사인펜을 사용하여 답안지에 표시 하시오.
- 1. 2009 개정 교육과정(교육과학기술부 고시 제2009-41호)에 따라 ○○공업고등학교는 학교 교육과정을 편성하였다. 올바르게 적용한 것을 <보기>에서 고른 것은? [1.5점]

-----<보 기>---

- ㄱ. 전문 교과를 80단위 이상 편성하였다.
- ㄴ. 필수 과목으로 공업 일반, 기초 제도를 편성하였다.
- ㄷ. 고등학교 선택 중심 교육과정을 교과와 특별 활동으로 편성하였다.
- 리. 내용이 유사하거나 관련되는 보통 교과의 과목과 전문 교과의 과목을 교체하여 편성하였다.
- ① 7, ∟
- ② ¬, ⊏
- ③ 7, 2

- ④ ∟, ⊏
- ⑤ ⊏, 글
- 2. 그림은 '이무근의 통합형 교육과정'을 일반교육과 직업교육의 통합의 관점에서 나타낸 것이다. 이에 대한 설명으로 옳은 것을 <보기>에서 고른 것은? [2.5점]

-<보 기>-

- ㄱ. (가)를 교과의 통합으로 볼 때, 그 예로 공업 영어가 있다.
- ㄴ. (가)는 세계적인 동향이며, 미국에서는 퍼킨스법에 의해 강조되었다.
- □ □은 산업 현장에서 주로 이루어지며, □은 학교에서 주로 이루어진다.
- 리. 나은 직업군에 의한 직업 교육과정 접근에 해당한다.
- ① ¬, ∟
- ② 7, ⊏
- ③ 7, 2

- ④ ㄴ, ㄹ
- ⑤ ㄷ, ㄹ

3. 그림은 공업 교육과정의 평가를 위한 CIPP 모형 구조이다. (가)에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>--

- ㄱ. 수업과 가장 밀접한 관계가 있다.
- 나. 요구조사, 직무분석 등이 사용된다.
- ㄷ. 교육과정의 목표 달성을 위한 자료와 전략 선정의 적절성에 대하여 평가한다.
- 리. 학생의 학업수행 정도 및 수업 만족도, 수업의 질, 교육과정 운영비용 등을 다룬다.
- ① 7, ⊏
- ② 7, 2 ③ ㄴ, ㄷ

- ④ 7, ∟, ㄹ
- ⑤ ㄴ, ㄷ, ㄹ
- 4. 김 교사는 다음과 같이 수업을 진행하였다. 김 교사가 적용한 교수·학습 방법으로 옳은 것은? [2.5점]

단 원 명	산업사회와 공업의 개요
주 제	첨단공업의 종류
하스모ㅠ	·첨단공업의 종류를 구분할 수 있다.
학습목표	·첨단공업의 종류별 특징을 설명할 수 있다.
절 차	교수·학습 활동
수업소개	·첨단공업의 종류에 대하여 강의식으로 설명한다.
모둠활동	· 학습능력, 성별 등을 고려하여 4~6명으로 모둠을 구성한다. · 첨단공업의 종류에 대한 학습자료를 나누어 준다. · 서로 협력하며 평가에 대비한 모둠활동을 한다.
개별평가	·평가지를 통해 개별평가를 한다.
개별모둠 향상점수 부여	· 학생 개인의 과거점수와 비교하여 나온 향상점수가 모둠점수로 환산된다.
모둠점수 보상과 게시	· 향상점수와 모둠점수를 학습 게시판에 게시하고 최고 성적팀 에게 집단보상을 한다.

- ① 직소 I(Jigsaw I)
- ② TGT(Teams Games Tournaments)
- ③ TAI(Team Assisted Individualization)
- 4 STAD(Student Teams Achievement Division)
- ⑤ CIRC(Cooperative Integrated Reading and Composition)

5. 다음은 서로 다른 학습 목표 진술 방식이다. (가), (나), (다)에 해당하는 것으로 옳은 것은?

	<u>(7})</u>	(나)	<u>(다)</u>
1	그론룬드	메이거	타일러
	(N. Gronlund)	(R. Mager)	(R. Tyler)
2	메이거	그론룬드	타일러
	(R. Mager)	(N. Gronlund)	(R. Tyler)
3	메이거	타일러	그론룬드
	(R. Mager)	(R. Tyler)	(N. Gronlund)
4	타일러	그론룬드	메이거
	(R. Tyler)	(N. Gronlund)	(R. Mager)
(5)	타일러	메이거	그론룬드
	(R. Tyler)	(R. Mager)	(N. Gronlund)

6. 전자기초 실습 담당 교사는 그림과 같이 프로젝트 교수·학습 방법을 적용하여 수업하였다. 각 단계에서 이루어진 활동으로 옳은 것만을 있는 대로 고른 것은?

	단계	교수·학습 활동
	ㄱ. 목적 설정 단계	교사는 모둠별 능력에 알맞은 주제를 선정할 수 있도록 지도하였다.
·		+
	ㄴ. 계획 단계	간단한 주제를 선택한 모둠은 능률적인 진행을 위해 과제를 수행하면서 세부 계획을 수립하기로 결정하였다.
·		+
	ㄷ. 실행 단계	교사는 모둠에서 어려워하는 과제의 일부를 대신 하여 학생들이 끝까지 완성할 수 있도록 하였다.
•		+
	ㄹ. 평가 단계	학생들은 결과물을 제출하고 상호 평가와 함께 자신을 평가하는 시간을 가졌다.
1) フ, ∟	② 7, 已 ③ ㄴ, ㄷ
4) ㄱ, ㄷ, ㄹ	⑤ ∟, ⊏, ㄹ

7. 그림과 같이 단위(unit) 모듈의 구성 체제를 이용하여 통신 시스템 실습을 위한 한 차시 분량의 교재를 개발하려고 한다. 이에 대한 설명으로 가장 적절한 것은?

- ① (가)에는 학습 목표를 달성하는 데 필요한 구체적인 학습 자료를 제시한다.
- ② (나)에는 학습 행동과 수행 조건, 수행 정도를 판단할 수 있는 기준을 제시한다.
- ③ (다)에는 학습 경험을 완수하기 위한 수행 방법을 상세히 기술한다.
- ④ (라)에는 학습자들이 출발점에서 가지고 있어야 하는 선수 학습을 주로 제시한다.
- ⑤ (마)에는 학생들의 학습 활동을 기술하고, 평가와 피드백 단계를 포함한다.

8. 그림은 학과 개편으로 교육과정 운영에 필요한 실습장을 신설하기 위한 교사 협의회 장면이다. 각 교사가 요구하는 실습장 유형으로 옳은 것은? [1.5점]

		01 75/4	<u> </u>
1	전문 실습장	종합 실습장	통합 실습장
2	전문 실습장	통합 실습장	종합 실습장
3	종합 실습장	전문 실습장	통합 실습장
4	종합 실습장	통합 실습장	전문 실습장
(5)	토한 식습장	정무 식습장	조한 식습장

9. 다음은 교수 · 학습 지도안의 일부분이다. 수업활동이 이루어지는 단계에 따라 평가를 분류할 때, (가), (나)단계에서 이루어지는 평가에 대하여 옳은 것만을 <보기>에서 있는 대로 고른 것은? [2.5점]

디지털 논리 회로 교수·학습 지도안						
대단원			Ⅲ. 불 대수			
	중단	·원	4. 논리식의 간소화			
단원	단원		1) 논리식의 간소화 방법 유형	전시학습		
	소단	·원	2) 불 대수에 의한 논리식의 간소화	본시학습		
			3) 카르노 도에 의한 논리식의 간소화	차시학습		
학습	학습 목표		· 변수가 3개인 논리식 3개를 제시했을 때 불 대수를 이용하여 2개 이상 간소화할 수 있다.			
단계			주 요 활 동			
(가)	(2F)		아습 환경 분위기 조성 · 선수 학습 획 아습 목표 제시 · 동기 유발	인		
전개 . 호		. 5	학습 내용 제시 · 학습 자료 활용 · 호	학생 활동		
(14)			요약 정리 ·강화 ·일반화 사제 제시 및 차시 예고			

―<보 기>-

- ㄱ. (가) 논리식의 간소화 방법 유형을 알고 있는지 확인한다.
- ㄴ. (가) 평가 결과를 디지털 논리 회로 과목의 성적으로 산출하다.
- ㄷ. (나) 불 대수 및 카르노 도에 의한 논리식을 간소화할 수 있는지 평가한다.
- ㄹ. (나) 변수가 3개인 논리식 3개를 제시했을 때 불 대수를 이용하여 2개 이상 간소화할 수 있는지 평가한다.
- ① 7, ∟
- ② ㄱ, ㄹ
- ③ ∟, ⊏
- ④ ¬, □, □
 ⑤ □, □, □
- 10. 2009 개정 교육과정(교육과학기술부 고시 제2012-14호)에 제시된 현장 실습에 관한 운영사항으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

---<보 기>-

- □. 교육과정 내용과 관련이 있는 현장 실습을 운영하여야 한다.
- ㄴ. 시·도 교육청은 현장 실습이 내실 있게 운영될 수 있도록 행・재정적 지원을 한다.
- 다. 현장 실습을 다양한 형태로 운영할 수 있으며, 이와 관련된 구체적인 사항은 시·도 교육청이 정한 지침에 따른다.
- 1 7
- ② L
- ③ ¬, ⊏

- ④ ∟, ⊏
- (5) 7, L, C

11. '도난경보기 만들기' 수업에서 그림에 제시된 교사용 점검표 (checklist)를 평가 도구로 사용하려고 한다. 이러한 평가 방법에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

	도난경보기 만들기 교사용 점검표													
_ <u></u>	○학년 ○반 평가자 : 김△△ 교사													
				평가요소										
번호	이름	조		흥미		; !	협동심	_	저	작과	정	인	전의	식
			우수	보통	미흡	우수	보통	미흡	우수	보통	미흡	우수	보통	미흡
1	김〇〇	1조												
2	0∞	2조												
3	박♡	1조												

---<보 기>--

- ㄱ. 수업 중 학생의 행동 파악이 가능하다.
- ㄴ. 수업 중 조원 사이의 상호 교류 확인이 가능하다.
- ㄷ. 교사와 학생이 평가에 참여할 수 있으며, 만들기 과정과 결과 모두를 중시한다.
- ① ¬
- ② ⊏
- ③ ७, ∟

- ④ ∟, ⊏
 ⑤ ¬, ∟, ⊏

12. ○○공업고등학교에서 취업을 위한 진로교육을 그림과 같이 다섯 가지 영역으로 나누어 실시하고자 한다. 각 영역별 활동으로 옳은 것을 <보기>에서 고른 것은? [1.5점]

---<보 기>-

- ㄱ. (가) 직업적성검사를 실시한다.
- ㄴ. (나) 반도체 공장 견학을 실시한다.
- □. (다) △△회사에 취업을 시킨다.
- ㄹ. (라) 취업자 동향 조사를 실시한다.
- ㅁ. (마) 산업계 인사를 초청하여 강연을 실시한다.
- ① ¬, ∟
- ② ㄱ, ㄹ
- ③ ∟, ⊏

- ④ □, □
- ⑤ ㄹ, ㅁ

13. 그림 (가)와 (나) 회로의 점선 부분이 전기적으로 등가가 되도록 하는 저항 $R[\Omega]$ 의 값과 이 때, 전압 $V_o[V]$ 의 값으로 옳은 것은?

- 212.0320.8
- 4.0
- ⑤ 2 8.0
- 14. 그림은 직류 전압원과 전류원이 포함된 회로이다. $5[k\Omega]$ 저항 양단에 걸리는 전압 $V_o[V]$ 의 값으로 옳은 것은?

15. 그림은 교류 전압원과 직류 전류원이 포함된 회로이다. 커패시터 양단 전압 $v_c(t)[{
m V}]$ 의 정상상태 값으로 옳은 것은? [2.5점]

- 1 4
- $2 \frac{5\sqrt{2}}{6}\cos(8t-45^\circ)$
- $3 2\sqrt{2}\cos(8t-45^{\circ})$
- $4 2\sqrt{2}\cos(8t 135^{\circ})$
- $5 4+2\sqrt{2}\cos(8t-135^{\circ})$

16. 그림은 RLC 회로이다. 정상상태 전류 i(t)[A]의 값으로 옳은 것은? [2.5점]

- ① $\frac{1}{5}\cos(1000t + 45^\circ)$
- 2 $\frac{5}{\sqrt{2}}\cos(1000t + 45^\circ)$
- $3 \cos(1000t 45^{\circ})$
- $4 5\sqrt{2}\cos(1000t+30^{\circ})$
- $5 \sqrt{2} \cos(1000t 45^{\circ})$

17. 그림 (가)와 (나)의 각 회로에서 부하에 최대전력을 공급하기 위해 필요한 부하 저항과 인덕턴스를 구하려고 한다. 이 때, 각부하에 공급되는 최대전력을 각각 P_{max1} [W], P_{max2} [W]라고 할 때, $\eta_1 = \frac{P_{max2}}{P_{max1}}$ 과 $\eta_2 = \frac{R_2}{R_1} + \frac{L_2}{L_1}$ 의 값으로 옳은 것은? [2.5점]

 $\underline{\eta_1}$ $\underline{\eta_2}$ 1 1 2 2 1 4 3 2 4 4 4 4 (5) 16

18. 6극, $50\,[\text{Hz}]$, 정격속도 $900\,[\text{rpm}]$ 인 권선형 3상 유도 전동기가 있다. 각 상의 2차 권선 저항을 $r\,[\Omega]$ 이라 할 때, (\mathcal{T}) 와 (\mathcal{T}) 의 운전 조건을 각각 만족시키기 위하여 2차 회로에 삽입해야 할 직렬저항 $R_A[\Omega]$ 와 $R_B[\Omega]$ 의 값으로 옳은 것은?

운전 조건	2차 회로 삽입 저항
(가) 정격속도에서의 동일한 토크를 회전수 750 [rpm] 에서 발생시키려 한다.	R _A
(나) 최대토크와 동일한 기동토크를 발생시키려고 한다. 단, 최대토크는 정격속도 슬립의 2배의 슬립에서 발생한다.	R_{B}

	$\underline{R_A}$	$\underline{R_B}$
1	1.5r	4r
2	1.5r	6r
3	2.0r	2r
4	2.0r	4r
(5)	2.5r	6r

19. 그림 (가)는 1상당 출력이 $100 \, [kW]$ 인 동기 발전기에 대한 등가회로이며, 그림 (나)는 그림 (가)의 전기자 권선 저항 R를 $0 \, [\Omega]$ 으로 간주한 경우에 대한 벡터도이다. 1상당 동기 리액턴스 X_s 가 $6 \, [\Omega]$ 이고 1상당 단자 전압 V가 $1 \, [kV]$ 일 때, 동기 발전기의 전압 변동률 [%]로 옳은 것은? (단, 부하각 $\delta=30^\circ$ 이다.) [1.5점]

E: 1상당 유도 기전력

I : 1상당 동기 발전기의 전기자 전류

θ: 1상당 역률

① 6 ② 12 ③ 20 ④ 24 ⑤ 30

20. 3상 송전 선로 중성점 접지 방식에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>--

- ㄱ. 중성점 비접지 방식은 고전압 장거리 송전선로에는 부적합
- ㄴ. 직접 접지방식은 1선 지락고장 발생 시 지락되지 않은 상의 대지전압이 거의 상승하지 않는다.
- ㄷ. 고저항 접지방식의 경우 접지저항 값을 줄여서 송전선로 고장 발생 시 통신선에 유도 장해를 줄인다.
- ㄹ. 소호 리액터 접지방식은 1선 지락고장 발생 시 리액터와 선로 대지 정전용량과의 병렬 공진을 이용하여 지락 전류를 소멸시킨다.
- ① ¬, ∟
- ② ¬, ⊏
- ③ □, 글

- ④ 기, ㄴ, ㄹ ⑤ ㄴ, ㄷ, ㄹ

21. 전위분포가 $V(x, y, z) = 120x^2 + 45y^2$ [V]로 주어지고, 도체와 자유 공간과의 경계면상에 한 점 P(1,-2,10)[m]가 있을 때 점 P에서의 전계와 관련된 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, $\boldsymbol{a}_{\!x}$ 와 $\boldsymbol{a}_{\!y}$ 는 각각 x축과 y축의 단위 벡터이다.) [2.5점]

―<보 기>-

- ㄱ. 도체 표면의 방정식은 $120x^2 + 45y^2 = 10$ 이다.
- ㄴ. 점 P에서의 전계 $\mathbf{E}_{\mathrm{p}} = -240\,\mathbf{a}_x + 180\,\mathbf{a}_y\,[\mathrm{V/m}]$ 이다.
- C. 점 P에서의 전속밀도의 크기는 표면전하밀도의 크기와
- ㄹ. 점 P를 통과하는 전력선(line of electric force)방정식은 $y = -2x^{-\frac{3}{8}}$ 이다.
- ① 7, ⊏
- ② ㄱ, ㄹ
- ③ ∟, ⊏

- ④ 기, ㄴ, ㄹ ⑤ ㄴ, ㄷ, ㄹ

22. 그림은 자유 공간상의 한 점 P(4,6,0)[m]를 지나고 z축과 평행한 무한 선전하를 나타낸다. 점 A(6, 8, 0)[m], B(6, 8, 5)[m], C(8,10,8)[m]에서 전계의 세기를 각각 E_1 [V/m], E_2 [V/m], E_3 [V/m] 라고 할 때, $\frac{E_1}{E_2}$ 과 $\frac{E_3}{E_2}$ 의 값으로 옳은 것은? (단, 선전하 밀도 $ho_{\scriptscriptstyle L}$ [C/m]은 상수이다.)

	$\frac{\mathrm{E}_1}{\mathrm{E}_2}$	$\underbrace{\frac{\mathrm{E}_3}{\mathrm{E}_2}}_{}$
1	1	0.5
2	1	2.0
3	2	0.5
4	2	1.0
(5)	4	2.0

23. 그림은 9[A]의 전류가 반경 3[m]인 원통 단면의 z축 방향으로 균일하게 흐르고 있는 무한길이 원통형 도체이다. 원통 좌표계로 표현된 도체 내부의 한 점 $P(2, \frac{\pi}{4}, 0)$ 에서의 자계의 세기[A/m]로 옳은 것은? [2.5점]

- ① $\frac{1}{2\pi}$ ② $\frac{2}{3\pi}$ ③ $\frac{1}{\pi}$ ④ $\frac{2}{\pi}$ ⑤ $\frac{3}{\pi}$

24. Maxwell 방정식에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

-----<보 기>-----

- ¬. Maxwell 방정식에서 변위전류밀도는 체적전하의 이동으로 발생되는 전류밀도이다.
- ㄴ. $\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$ 에서 $\frac{\partial \mathbf{D}}{\partial t}$ 는 전류 연속방정식을 만족 시키기 위해 도입된 개념이다.
- ㄷ. 폐루프를 쇄교하는 자속이 시불변이라 하더라도 폐루프의 단면적이 시간에 따라 변한다면 유도 기전력이 발생할 수 있다.
- ㄹ. 시변 전계와 자계에 대한 편미분 방정식인 Maxwell 방정식의 해를 구함으로써 도체내의 전자파 진행 특성인 표피 깊이 (skin depth)를 예측할 수 있다.
- ① 7, ② 7, ③ □, 三

- ④ 기, ㄴ, ㄹ ⑤ ㄴ, ㄷ, ㄹ
- 25. 그림에서 제어시스템의 출력 Y(s)는 입력 R(s)와 N(s)로 다음과 같이 표현된다.

$$Y(s) = M(s)R(s) + T(s)N(s)$$

이 때, 각 입력에 대한 전달함수 M(s)와 T(s)의 값으로 옳은 것은? (단, 전달함수 표기 시 s는 생략하여 표기한다.)

M(s)

T(s)

 $\frac{G_{1}G_{2} + G_{1}G_{3}}{1 + G_{1}H_{1}}$

 $\frac{G_{1}G_{2}H_{2} + G_{1}G_{3}H_{2}}{1 + G_{1}H_{1}}$

 $\frac{G_1G_2H_2 + G_1G_3H_2}{1 + G_1H_1} \qquad \qquad \frac{G_2 + G_3 + G_1G_2H_1 + G_1G_3H_1}{1 + G_1H_1 + G_1G_2H_2 + G_1G_3H_2}$

 $\textcircled{4} \ \frac{\mathsf{G}_1\mathsf{G}_2 + \mathsf{G}_1\mathsf{G}_3}{1 + \mathsf{G}_1\mathsf{H}_1 + \mathsf{G}_1\mathsf{G}_2\mathsf{H}_2 + \mathsf{G}_1\mathsf{G}_3\mathsf{H}_2} \ \frac{\mathsf{G}_2 + \mathsf{G}_3 + \mathsf{G}_1\mathsf{G}_2\mathsf{H}_1 + \mathsf{G}_1\mathsf{G}_3\mathsf{H}_1}{1 + \mathsf{G}_1\mathsf{H}_1 + \mathsf{G}_1\mathsf{G}_2\mathsf{H}_2 + \mathsf{G}_1\mathsf{G}_3\mathsf{H}_2}$

 $\frac{G_2 + G_3 + G_1G_2H_1 + G_1G_3H_1}{1 + G_1H_1 + G_1G_2H_2 + G_1G_3H_2} \quad \frac{G_1G_2H_2 + G_1G_3H_2}{1 + G_1H_1 + G_1G_2H_2 + G_1G_3H_2}$

26. SCR(Silicon Controlled Rectifier)과 관련된 설명으로 옳은 것을 <보기>에서 고른 것은? [1.5점]

-----<보 기>----

- ¬. SCR은 턴온(turn on) 동작을 하는 동안 부궤환(negative feedback) 효과가 발생한다.
- L. SCR은 3개의 pn 접합면으로 이루어져 있으며 애노드 캐소드 게이트의 3개 단자로 구성된다.
- □. SCR의 순방향 애노드 전류가 유지 전류(holding current) 미만으로 감소되면 SCR은 차단 상태로 된다.
- 리. TRIAC은 2개의 SCR을 역병렬 형태로 연결한 것으로, 양방향 도통이 가능하고 주로 교류 위상 제어에 사용된다.
- ロ. 차단상태에 있는 SCR은 애노드와 캐소드 간의 순방향 전압이 순방향 항복전압보다 작으면, 게이트 전류가 없어도 턴온될 수 있다.

- ① 7, 4, 5 ② 7, 5, 5 ③ 7, 2, 5
- ④ L, E, 코 ⑤ L, 크, ロ
- 27. 컴퓨터 데이터 표현과 산술 연산에 대한 설명으로 옳은 것을 <보기>에서 고른 것은? [2.5점]

-----<보 기>-----

- □. 2진수 데이터 11111001012를 16진수로 변환하면 F9416이다.
- ㄴ. 4비트 시스템에서 −2를 1의 보수로 표현한 값은 −3을 2의 보수로 표현한 값과 같다.
- 다. 초과(overflow)가 발생하는 경우 1의 보수를 이용한 덧셈은 2의 보수를 이용한 덧셈보다 연산속도가 빠르다.
- 리. n 비트 부호화된 2의 보수 표현 방식에서 표시 가능한 최소, 최대 정수의 범위는 $-2^{n-1} \sim (2^{n-1}-1)$ 이다.
- □. 8비트 시스템에서 (-19)+(-5)를 2의 보수 방법으로 계산하면 초과(overflow)가 발생되며, 계산 결과는 111010002이다.
- ① 7, L, C ② 7, C, D
 ④ L, C, Z ⑤ L, Z, D
- ③ 7, 2, 0

28. 4개의 입력(A, B, C, D)을 가진 조합논리회로에서 출력의 불 함수(Boolean function) Y(A, B, C, D)가 최소항들의 합으로 다음과 같이 표현되었다.

$$\begin{split} \mathbf{Y}\left(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}\right) = m_{0} + m_{2} + m_{4} + m_{5} + m_{6} \\ + m_{8} + m_{10} + m_{12} + m_{13} + m_{14} \end{split}$$

Y(A,B,C,D)와 등가인 불 대수(Boolean algebra)식으로 옳은 것은? (단, $0 \le i \le 15$ 에 대하여 m_i 는 최소항을 나타내며, 모든 소자는 이상적으로 동작한다고 가정한다.)

- ① $\overline{A}B + \overline{D}$
- $2 AC + \overline{B}$
- $3 \overline{C} + \overline{B}\overline{D}$
- $4 B\overline{C} + \overline{D}$
- $\overline{ B}C + D$

29. 디코더와 인코더에 대한 설명으로 옳은 것을 <보기>에서 고른 것은?

- □. 인코더는 2ⁿ개의 입력선과 n개의 출력선을 갖는 순서논리 회로이다.
- L. 인에이블(enable) 입력을 가지는 디코더는 멀티플렉서로 사용될 수 있다.
- 다. 디코더는 n비트의 2진 코드가 입력되면 최대 2ⁿ 개의 출력을 가지는 조합논리회로이다.
- 리. 인코더는 각각의 입력에 해당되는 2진 코드를 발생시키며,컴퓨터 키보드에 응용될 수 있다.
- 다코더는 컴퓨터 기억장치 시스템에서 널리 사용되는데 특정 기억장소를 활성화하기 위해 중앙처리장치에 의해 생성된 주소코드에 응답한다.
- ① 7, ∟, ⊏
- ② ¬, ∟, □
- ③ 7, 2, 口

- ④ ㄴ, ㄷ, ㄹ
- ⑤ ㄷ, ㄹ, ㅁ

30. 그림 (가)는 JK 플립플롭과 2상 클럭발생기를 연결하여 활용한 순서논리회로이다. 이 회로에 인가되는 클럭(CLK)과 입력 신호 J_1 , K_1 이 그림 (나)와 같을 때 출력 Y_1 의 파형으로 옳은 것은? (단, 모든 소자는 이상적으로 동작하며, 각 JK 플립플롭의 초기값은 0 이다.)

31. 그림은 비반전 가산기의 응용 회로이다. 출력 전압 V_{o} 가 $3V_{1}+2V_{2}$ 를 만족하는 $R_{1}[k\Omega]$ 과 $R_{2}[k\Omega]$ 의 값으로 옳은 것은?

 $\underline{R_1}$ R_2 3 1 8 2 3 10 3 10 4 5 12 (5) 6 14

32. n 채널 MOSFET의 구조 및 특성에 관한 설명으로 옳은 것을 <보기>에서 고른 것은? [1.5점]

--<보 기>--

- □. 공핍형 MOSFET은 드레인과 소스를 기판에 확산시켜 만든 후 드레인과 소스를 좁은 채널로 연결한다.
- ∟. 증가형 MOSFET은 공정을 통해 만든 물리적인 채널이 존재하지 않으므로 기판과 SiO₂ 층이 직접 접촉되어 있다.
- 다. 증가형 MOSFET의 게이트에 음(-)의 전압이 인가되면,채널의 전도전자를 밀어내므로 채널의 전기 전도도가 감소 된다.
- 리. 공핍형 MOSFET의 게이트에 양(+)의 전압이 인가되면,채널로 더 많은 전도전자를 끌어들여 채널의 전기 전도도가 증가된다.
- \Box . 증가형 MOSFET의 게이트에 문턱 전압보다 작은 양(+)의 전압이 인가되면, SiO_2 층과 접촉된 기판영역에 전자의 반전층이 형성된다.
- ① 7, ㄴ, ㄷ
- ② ㄱ, ㄴ, ㄹ
- ③ 7, ⊏, □

- ④ ㄴ, ㄹ, ㅁ
- ⑤ ㄷ, ㄹ, ㅁ

33. 그림은 다이오드를 이용하여 구현된 회로이다. 이 회로의 입력과 출력 전압의 전달특성곡선으로 옳은 것은? (단, $V_{\rm B}>0$ 이며, 모든 소자는 이상적으로 동작한다.) [1.5점]

34. 그림은 쌍극성 접합 트랜지스터의 전압분배기 바이어스 회로이다. $V_{CE} = 6.4 [V] \text{가 되도록 바이어스 회로를 설계하려고 할 때, 컬렉터}$ 저항 $R_{C} [k\Omega]$ 로 옳은 것은? (단, 계산 과정에서 베이스단의 부하효과는 무시하고 $V_{BE} = 0.7 [V], \ I_{E} = I_{C}$ 로 한다.)

① 1 ② 3 ③ 5 ④ 7 ⑤ 9

35. 다음은 C언어로 작성된 프로그램이다. 이 프로그램의 실행 시 (가)~(다)의 결과로 옳은 것은?

```
#include <stdio.h>
int func1(int x, int y);
int func2(int n);
void main()
  int *b, c, d;
  int a[5] = \{1, 3, 5, 7, 9\};
      b = a;
      printf("%d", *b+3);
                                         ·····> (가)
      printf("%d", *(b+3));
                                          ----> (나)
      c = func1(5, 3);
      printf("%d", c);
      d = func2(3);
      printf("%d", d);
                                          ----> (다)
int func1(int x, int y)
  int result;
      result = x\%y;
  return result;
int func2(int n)
  int i;
  int result = 1;
  for(i=1; i < =n; i++)
      result *= i;
  return result;
```

	<u>(/})</u>	<u>(나)</u>	<u>(나)</u>
1	3	5	6
2	3	7	8
3	4	5	7
4	4	7	6
(5)	4	7	8

36. 선형 시불변 시스템의 임펄스 응답 h(t)가 그림 (가)와 같을 때, 그림 (나)의 입력 신호 x(t)에 대해 출력 신호 y(t)를 구간 $1 \le t \le 2$ 에서 구하고자 한다. 이 때, 출력 신호 y(t)로 옳은 것은?

- ① $t^2 4t + 4$ ② $t^2 2t + 2$
- $3 t^2 + 2t 4$
- $(4) t^2 + 4t 2$ $(5) t^2 + 2t + 2$

37. 아날로그 및 디지털 통신 시스템의 설명으로 옳은 것을 <보기>에서 고른 것은? [1.5점]

―<보 기>-

- ㄱ. 수신단에서 등화기(equalizer)는 송신단과 채널에서 발생된 간섭을 보상하기 위해 사용한다.
- ㄴ. 잡음이 포함된 신호를 표본화하는 최적 시간은 눈 패턴 (eye pattern)에서 눈이 가장 크게 열리는 순간이다.
- ㄷ. 나이퀴스트(Nyquist) 주파수가 대역제한(bandlimited) 신호의 대역폭보다 2배 이상 큰 경우 엘리어싱(aliasing)이 발생 한다.
- 리. 샤논(Shannon)의 채널용량 이론에 의하면 신호 대 잡음비가 일정할 때, 주파수 대역폭이 2배로 증가하면 채널용량이 $\frac{1}{2}$ 로 감소한다.
- ㅁ. 종속 접속된 선형 다단 증폭기의 전체 잡음지수는 첫 번째 단 증폭기의 잡음지수가 큰 영향을 미치기 때문에, 수신단의 첫 번째 단에 저잡음 증폭기를 사용한다.
- ① 7, ∟, ⊏
- ② ¬, ∟, □
- ③ 7, ㄷ, ㄹ

- ④ L, 己, 口 ⑤ C, 己, 口

38. IP(Internet Protocol) 주소에 대한 설명으로 옳은 것을 <보기>에서 고른 것은?

----<보 기>---

- □. IP 주소는 인터넷을 위한 전송층에서 사용하는 식별자이다.
- L. IPv4와 IPv6는 각각 4바이트와 16바이트의 주소길이를 가진다.
- C. IPv4를 IPv6로 변환하는 방법에는 이중스택, 터널링, 헤더 변환, 동적매핑 등이 있다.
- 리. IPv6는 여러 개의 독립된 헤더를 사용하여 그 기능에 맞게 전송함으로써 IPv4보다 패킷 처리시간을 단축할 수 있다.
- ㅁ. IPv4의 데이터그램 헤더에서 생존시간(time-to-live)은 IPv6의 헤더에서 8비트 홉 제한(hop limit) 필드와 같은 용도로 사용된다.
- ① 7, L, C
- ② ७, ८, छ
- ③ 7, 5, 2
- ④ ∟, ⊇, □
 - ⑤ ㄷ, ㄹ, ㅁ

39. 직각 좌표계에서 서로 다른 매질로 이루어진 영역 1(유전율 $=\varepsilon_1,$ 투자율 = μ_1 , 도전율 = σ_1)과 영역 2(유전율 = ε_2 , 투자율 = μ_2 , 도전율 $=\sigma_{2}$)가 z=0에서 경계면을 이루고 있다. 이 때, 이 면과 수직으로 입사하는 평면파의 반사 또는 투과되는 특성에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, η_1 , η_2 는 각각 영역 1과 영역 2의 고유 임피던스이다.) [1.5점]

- ㄱ. 영역 1의 매질이 완전 유전체일 때, $\eta_1 = \sqrt{\frac{\mu_1}{\varepsilon_1}}$ 이다.
- ㄴ. 전계에 대한 반사계수 $\Gamma=\frac{\eta_2-\eta_1}{\eta_2+\eta_1}$ 이고 투과계수 $T=\frac{\eta_2}{\eta_1+\eta_2}$ 이다.
- ㄷ. 영역 2의 매질이 완전 도체일 때, 전계에 대한 반사계수 $\Gamma=-1$ 이다.
- ㄹ. 각 영역의 매질 종류에 관계없이 전계에 대한 반사계수 Γ 와 투과계수 T는 항상 실수이다.
- ① 7, └ ② 7, ㄷ ③ ㄴ, ㄹ

- ④ ¬, □, □
 ⑤ □, □, □

40. 이동통신시스템에서 다중접속 방식에 관한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- ㄱ. 시간 분할 다중접속 방식은 동기화가 필요하다.
- ㄴ. 주파수 분할 다중접속 방식에서는 보호대역으로 인해 인접한 주파수 대역 간의 간섭이 발생된다.
- □. 시간 분할 다중접속 방식에서 슬롯 간의 상호 간섭을 방지 하기 위한 버퍼영역을 보호시간이라 한다.
- ㄹ. 코드 분할 다중접속 방식에서는 이동 중 통화 채널을 형성하기 위해 하드 핸드오버(hard handover) 방식을 사용하므로, 통화 단절 (call drop)이 발생하지 않는다.

① ¬, ∟

② ㄱ, ㄷ ③ ㄴ, ㄹ

(4) 7, C, E (5) L, C, E

- 수 고 하 셨 습 니 다 -