Forcing in Type Theory

Bruno da Rocha Paiva

Overview

- Kripke semantics for intuitionistic first order logic
- Beth semantics as a generalisation of Kripke semantics
- The internal logic of a (pre)sheaf topos
- Forcing constructive principles

Kripke Models

A Kripke Model for some relational language ${\mathscr L}$ consists of the following data

- A set W of possible worlds with a partial ordering ≤
- For each world $w \in \mathbb{W}$, a domain of discourse M_w
- For each world $w \in \mathbb{W}$, and relation $R \in \mathcal{L}$, some interpretation R_w in M_w

Satisfying the following properties for any worlds such that $w \leq v$

- Their domains of discourse are related by $M_{\scriptscriptstyle W} \subseteq M_{\scriptscriptstyle V}$
- For any relation R and elements $a_1, \ldots, a_n \in M_w$, if $R_w\left(a_1, \ldots, a_n\right)$ then $R_v\left(a_1, \ldots, a_n\right)$

Kripke Models Visualised

Kripke Semantics

```
\begin{array}{lll} w \Vdash_{\sigma} P \left( t_{1} \, , \, \ldots \, , \, t_{n} \right) := P_{w} \left( [t_{1}]_{\sigma} \, , \, \ldots \, , \, [t_{n}]_{\sigma} \right) \\ w \Vdash_{\sigma} A \wedge B & := w \Vdash_{\sigma} A \text{ and } w \Vdash_{\sigma} B \\ w \Vdash_{\sigma} A \vee B & := w \Vdash_{\sigma} A \text{ or } w \Vdash_{\sigma} B \\ w \Vdash_{\sigma} \top & := \text{true} \\ w \Vdash_{\sigma} \bot & := \text{false} \\ w \Vdash_{\sigma} A \rightarrow B & := \text{for all } v \geq w, \left( v \Vdash_{\sigma} A \right) \text{ implies } \left( v \Vdash_{\sigma} B \right) \\ w \Vdash_{\sigma} \forall x \, . A & := \text{for all } v \geq w \text{ and for all } a \in M_{v}, v \Vdash_{\sigma, x \mapsto a} A \\ w \Vdash_{\sigma} \exists x \, . A & := \text{there exists } a \in M_{v}, w \Vdash_{\sigma, x \mapsto a} A \end{array}
```

Consequences of Kripke Semantics

Kripke models are sound and complete with respect to intuitionistic first-order logic

Monotonicity:

For any formula ϕ and worlds $w \leq v$ in a Kripke model, if $w \Vdash_{\sigma} \phi$ then $v \Vdash_{\sigma} \phi$

Local Character:

For any formula ϕ and world w in a Kripke model, if $v \Vdash_{\sigma} \phi$ for all extensions $v \ge w$ then $w \Vdash_{\sigma} \phi$

Relaxing Kripke Semantics

Instead of asking for something to hold in all extensions, ask for it to eventually always hold

- Consider bars (ie. subsets) $U \subseteq \mathbb{W}$
 - Monotone bars (ie. upward closed subsets)
 - Decidable bars (ie. decidable subsets)
- Give meaning to "eventually always hold" through a covering relation $\, \vartriangleleft \subseteq \mathbb{W} imes \mathbf{Bars} \,$

By changing the notion of bars and the barring relation used, we can get different completeness results

Beth Models

Classically these would look like Kripke models where the underlying poset is a tree. In such a case, the notion of barring would be:

 $w \triangleleft U :=$ for all paths α starting at w, there exists some $n \in \mathbb{N}$ such that $\alpha(n) \in U$

To avoid putting such requirements on the models we can work with a different notion of barring

 $w \triangleleft U :=$ for all $v \geq w$, there exists $u \geq v$, such that $u \in U$

Beth Semantics

```
 w \Vdash_{\sigma} P \left( t_{1} \, , \, \ldots \, , \, t_{n} \right) \coloneqq \text{there exists a bar } U \text{ such that } w \vartriangleleft U \text{ and for all } v \in U, P_{v} \left( [t_{1}]_{\sigma} \, , \, \ldots \, , \, [t_{n}]_{\sigma} \right)   w \Vdash_{\sigma} A \land B \qquad \coloneqq w \Vdash_{\sigma} A \text{ and } w \Vdash_{\sigma} B   w \Vdash_{\sigma} A \lor B \qquad \coloneqq \text{there exists a bar } U \text{ such that } w \vartriangleleft U \text{ and for all } v \in U, v \Vdash_{\sigma} A \text{ or } v \Vdash_{\sigma} B   w \Vdash_{\sigma} \bot \qquad \coloneqq \text{true}   \coloneqq \text{there exists a bar } U \text{ such that } w \vartriangleleft U \text{ and for all } v \in U, \text{ false}   \vDash \text{there exists a bar } U \text{ such that } w \vartriangleleft U \text{ and for all } v \in U, \text{ false}   \vDash \text{for all } v \succeq w, \left( v \Vdash_{\sigma} A \right) \text{ implies } \left( v \Vdash_{\sigma} B \right)   \vDash \text{for all } v \succeq w \text{ and for all } a \in M_{v}, v \Vdash_{\sigma, x \mapsto a} A   \vDash \text{there exists a bar } U \text{ such that } w \vartriangleleft U \text{ and for all } v \in U \text{ there exists } a \in M_{v}, w \Vdash_{\sigma, x \mapsto a} A   \vDash \text{there exists a bar } U \text{ such that } w \vartriangleleft U \text{ and for all } v \in U \text{ there exists } a \in M_{v}, w \Vdash_{\sigma, x \mapsto a} A
```

Beth Semantics

```
 w \Vdash_{\sigma} P \left( t_{1} \, , \, \ldots \, , \, t_{n} \right) \coloneqq \text{ there exists a bar } U \text{ such that } w \triangleleft U \text{ and for all } v \in U, P_{v} \left( [t_{1}]_{\sigma} \, , \, \ldots \, , \, [t_{n}]_{\sigma} \right)   w \Vdash_{\sigma} A \wedge B \qquad := w \Vdash_{\sigma} A \text{ and } w \Vdash_{\sigma} B   w \Vdash_{\sigma} A \vee B \qquad := \text{ there exists a bar } U \text{ such that } w \triangleleft U \text{ and for all } v \in U, v \Vdash_{\sigma} A \text{ or } v \Vdash_{\sigma} B   w \Vdash_{\sigma} \bot \qquad := \text{ there exists a bar } U \text{ such that } w \triangleleft U \text{ and for all } v \in U, \text{ false }   w \Vdash_{\sigma} \bot \qquad := \text{ there exists a bar } U \text{ such that } w \triangleleft U \text{ and for all } v \in U, \text{ false }   w \Vdash_{\sigma} A \rightarrow B \qquad := \text{ for all } v \geq w, \left( v \Vdash_{\sigma} A \right) \text{ implies } \left( v \Vdash_{\sigma} B \right)   w \Vdash_{\sigma} \forall x . A \qquad := \text{ for all } v \geq w \text{ and for all } a \in M_{v}, v \Vdash_{\sigma, x \mapsto a} A   w \Vdash_{\sigma} \exists x . A \qquad := \text{ there exists a bar } U \text{ such that } w \triangleleft U \text{ and for all } v \in U \text{ there exists } a \in M_{v}, w \Vdash_{\sigma, x \mapsto a} A
```

Consequences of Beth Semantics

Monotonicity:

For any formula ϕ and worlds $w \le v$ in a Beth model, if $w \Vdash_{\sigma} \phi$ then $v \Vdash_{\sigma} \phi$

Local Character:

For any formula ϕ and world w in a Beth model and bar $U \triangleright w$, if $v \Vdash_{\sigma} \phi$ for all $v \in U$ then $w \Vdash_{\sigma} \phi$

Topoi of (Pre)sheaves

Topoi have lots of interesting structure, including an internal higher order logic which can be externalised through Kripke-Joyal semantics. Some results we should thank then:

- Given a category \mathscr{C} , its category of presheaves $\mathsf{Set}^{\mathscr{C}\mathsf{op}}$ is a topos
- Given an appropriate notion of covering \triangleleft in $\mathscr C$, its category of sheaves Sh $(\mathscr C, \triangleleft)$ is a topos

Passing to Presheaves

A presheaf X over \mathbb{W}^{op} consists of the following data

- For each world $w \in \mathbb{W}$, a set X_w
- For any worlds $w \le v$, a transition function $X_{w \le v} : X_w \to X_v$

Such that the following holds

- For any world w, $X_{w \le w} = \operatorname{id}_{X_w}$
- For any worlds $w \le v \le u$, $X_{v \le u} \circ X_{w \le v} = X_{w \le u}$

The domains of discourse M_w with the inclusions $M_w \hookrightarrow M_v$ for $w \le v$ give such a presheaf.

Internal Logic of Presheaves

Passing to Sheaves

A presheaf X is a sheaf if it satisfies a gluing condition

• Informally, if $w \triangleleft U$, then given a family of elements $\{x_v \in X_v\}_{v \in U}$ which agree in some technical sense, then they can be glued uniquely to an element $x \in X_w$

Gluing Condition of Sheaves

Internal Logic of Presheaves

Forcing Constructive Principles

- In "A computational interpretation of forcing in Type Theory", Coquand and Jaber give an intensional type theory validating uniform continuity
 - A "generic" function of type $\mathbb{N} \to \mathbb{N}_2$ is forced whose computation depends on the current world

- In "Realizing Continuity Using Stateful Computations", Cohen and Rahli give a family of extensional type theories validating restricted forms of continuity and Markov's principle
 - Functions for reading and updating state are forced

Forcing Constructive Principles Internally

• The type theory from "A computational interpretation of forcing in Type Theory" can be seen as internal to the category of sheaves on the Cantor space

• The type theories from "Realizing Continuity Using Stateful Computations" can be seen as internal to the category of sheaves on ???

Bibliography

- Coquand T, Jaber G. A Computational Interpretation of Forcing in Type Theory. In: Dybjer P, Lindström S, Palmgren E, Sundholm G, editors. Epistemology versus Ontology [Internet]. Dordrecht: Springer Netherlands; 2012 [cited 2022 Oct 10]. p. 203–13. Available from: http://link.springer.com/
 10.1007/978-94-007-4435-6
- 2. Pierre-Marie P. Debunking Sheaves [Internet]. 2021. Available from: https://www.pédrot.fr/drafts/sheaftt.pdf
- 3. Sterling J, Harper R. Guarded Computational Type Theory. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science [Internet]. Oxford United Kingdom: ACM; 2018 [cited 2023 Feb 13]. p. 879–88. Available from: https://dl.acm.org/doi/10.1145/3209108.3209153
- 4. Cohen L, Rahli V. Realizing continuity using stateful computations. In: Klin B, Pimentel E, editors. 31st EACSL annual conference on computer science logic (CSL 2023) [Internet]. Dagstuhl, Germany: Schloss Dagstuhl Leibniz-Zentrum für Informatik; 2023. p. 15:1-15:18. (Leibniz international proceedings in informatics (LIPIcs); vol. 252). Available from: https://drops.dagstuhl.de/opus/volltexte/2023/17476
- 5. Mac Lane S, Moerdijk I. Sheaves in geometry and logic: a first introduction to topos theory. New York: Springer-Verlag; 1992. 627 p. (Universitext).