

407MonteCarlo Assignments 1

Haohan Yao u2119251

question 1

(a)

1. use the property of p.d.f:

$$\int_0^4 c*(x^3+8x)\,dx=1$$

solve the equation and we can get

$$c = 1/128$$

2. as

$$F(x) = \int_{-\infty}^x f(t) \, dx$$

so it's easy to get:

$$F(x) = egin{cases} 0 & x \leq 0 \ rac{x^4}{512} + rac{x^2}{32} & 0 \leq x \leq 4 \ 1 & x \geq 1 \end{cases}$$

3.assume $u=F^{-1}(x)\,$ then we got:

$$\frac{1}{512}(U^4+16U^2+64)=X+\frac{1}{8}$$

so solve the equation

$$U=\sqrt{\sqrt{512y+64}-8}$$

(b)

1.

```
F_1 <- function(u){
u <- sqrt(8*sqrt(8*u+1)-8)
return(u)
}</pre>
```

2.

```
f <- function(x){
    x <- (x/3+8*x)/128
    return(x)
}
m <- f(4) #max of f(x)
xs <- c()
count <- 0
######### generate 1000 samples #########
for (i in 1:1000) {
    u <- 2
    x <- 0
    while (u > f(x)/m) {
        u <- runif(1)
        x <- runif(1,min=0,max = 4)
        count <- count + 1
    }
    xs[i] <- x
}
print(xs)</pre>
```

3.

```
x1 <- 1:400/100
hist(xs, breaks = 20,prob=TRUE, main='Empirical Histogram and Density for f(x)',xlab='x',ylab='f(x)', xlim=c(0,4),ylim=c(0,0.8)) lines(x1, f(x1), lwd=2, col='red')
```

Empirical Histogram and Density for f(x)

4.

```
ex <- mean(xs)
varx <- var(xs)

#ex[1] 2.942713

#varx[1] 0.7104359
```

question 2

(a)

1.

```
g <- function(y,c=1){
  y <- c(sin(pi*y))^2*((y^3)+8*y)
  return(y)
}

x <- 1:400/100
plot(x,g(x,c=1))</pre>
```

2.

(b)

- 1. choose uniform distribution as the rejection sampler
- 2. run this code we got 1600 samples accepted among 10000 $\,$

```
xs <- c()
u <- 1
x <- 0
for(i in 1:10000){
    u <- runif(1,0,1)
    x <- runif(1,0,4)
    if(u <= g(x)/100){
        xs <- append(xs,x)
    }
}</pre>
```

```
3. ex <- mean(xs)
varx <- var(xs)
#mean(xs)[1] 2.891552
#var(xs)[1] 0.6961375
```

4. the proportion is 1600/10000 (0.16).

calculate c solving equation: (c = 0.0158)

$$C*\int_0^4g(y)dy=1$$

```
-propotion <- length(xs)/10000
c <- 1/(propotion*4*100)
#c = 0.01576293
```

Empirical Histogram and Density for g(x)

question 3

(a)

(a)
$$Var(w) = E_g(w^2) - E_gw$$

$$E_gw = \int \frac{d}{g} \cdot g dx = \int f dx = 1$$

$$E_gw = \int \frac{d}{g} dx = E_gw$$

$$= \int \frac{\delta}{\sqrt{2}\sigma} e^{-\frac{1}{2} \cdot \frac{\pi^2}{2\sigma^2}} dx$$
When $\delta^{\frac{1}{2}\frac{1}{2}} = \frac{\delta^2}{\sqrt{2}\sigma^2} \int \frac{1}{\sqrt{2}\sigma} e^{-\frac{1}{2} \cdot \frac{\pi^2}{2\sigma^2}} dx$

$$= \frac{\delta^2}{\sqrt{2}\sigma^2} \int \frac{1}{\sqrt{2}\sigma} e^{-\frac{1}{2} \cdot \frac{\pi^2}{2\sigma^2}} dx$$

$$= \frac{\delta^2}{\sqrt{2}\sigma^2} \int \frac{1}{\sqrt{2}\sigma} e^{-\frac{1}{2} \cdot \frac{\pi^2}{2\sigma^2}} dx$$

$$= \frac{\delta^2}{\sqrt{2}\sigma^2} \int \frac{1}{\sqrt{2}\sigma^2} e^{-\frac{1}{2} \cdot \frac{\pi^2}{2\sigma^2}} dx$$

$$= \frac{\delta^2}{\sqrt{2}\sigma^2} \int \frac{1}{\sqrt{2}\sigma^2} e^{-\frac{1}{2} \cdot \frac{\pi^2}{2\sigma^2}} dx$$
when $\delta^{\frac{2}{2}} = \frac{1}{\sqrt{2}\sigma^2} \int \frac{1}{\sqrt{2}\sigma^2} e^{-\frac{1}{2} \cdot \frac{\pi^2}{2\sigma^2}} dx$
and when $\delta^{\frac{2}{2}} = 1$, $Vav = \frac{\delta^2}{\sqrt{2}\sigma^2} - 1 = 0$
(min)

b.

 $E_f(x)=E_g(w*x)$,so we generate x from g and calculate mean of w*x (miu in the figure) I choose 230 σ from $\frac{\sqrt{2}}{2}$ to 3

```
g = function(x,v=1){
  p = dnorm(x,0,v)
  return(p)
}
f = function(x){
  p = dnorm(x,0,1)
  return(p)
}
w_x = function(x,v=1){
  return(f(x)/g(x,v))
```

```
}
#choosing sigma for g
\#in part a we know that sigma need to be larger than sqrt(2)
\#and the var get its \min when sigma equal to 1
#so let sigma in (0.707,1.414)
sigmas <- 70.7:300/100
xs <- c()
varmiu <- c()
varw_x <- c()
x <- matrix(0,1000,length(sigmas))
 w <- matrix(0,1000,length(sigmas))
#generate x from g
#then generate w, miu = mean(w*x)
miu <- c()
adtmiu <- c()
for ( i in 1:length(sigmas)) \{
   xs <- rnorm(1000,0,sigmas[i])
   x[,i] <- xs
   w[,i] \leftarrow w_x(xs,sigmas[i])
   ex <- mean(x)
   miu[i] \leftarrow mean(x[,i]*w[,i])
   \texttt{adtmiu[i]} \; <- \; \mathsf{sum}(\mathsf{x[,i]*w[,i]}) / \mathsf{sum}(\mathsf{w[,i]}) \; \# \mathsf{adjusted} \; \; \mathsf{miu}
   varmiu[i] \leftarrow var(x[,i]*w[,i])/1000
   varw_x[i] \leftarrow var(w[,i])/1000
#show the relation between sigma and mean/var
par(mfrow = c(2,2))
plot(x=sigmas, y=miu)
plot(x=sigmas, y=adtmiu)
plot(x=sigmas,y=varmiu)
plot(x=sigmas, y=varw_x)
```

plot them in a figure:

top two plots show the μ and self-normalised μ (adtmiu)

bottom two plots show how the var of μ and var of w(x) changes with sigmas

C.

the variance of mean shows in the left bottom of the figure above.

d.

from the plot above we can easily find that the σ has influence on the variance of the integral that we calculated and the w(x) of course. So from this example we can find that when $\sigma=1$, variance of w reach its min and f(x)=g(x), so the Optimal proposal distribution g(x) should be similar to the