Izbrani algoritmi Deljenje skrivnosti

Damjan Strnad

Deljenje skrivnosti

- **skrivnost** (secret) *S* je nek pomemben podatek (št. bančnega računa, PIN koda, koda za bančni trezor ali jedrsko orožje), ki ga želimo hkrati zavarovati pred zlonamerno uporabo in izgubo
 - v nadaljni obravnavi bomo predpostavili, da je skrivnost S številska vrednost (v nasprotnem primeru jo vanjo pretvorimo)
- deljenje skrivnosti (secret sharing) se nanaša na razdelitev deležev skrivnosti med množico N pooblaščenih oseb, tako da je za rekonstrukcijo skrivnosti potrebnih vsaj K katerihkoli deležev*
 - takšno shemo imenujemo (K,N)-pragovna shema ((K,N)-threshold scheme)

Deljenje skrivnosti

• **skrivnost** (secret) *S* je nek pomemben podatek (št. bančnega računa. PIN koda, koda za bančni trezor

skrivnosti potrebnih vsaj K katerihkoli deležev*

 takšno shemo imenujemo (K,N)-pragovna shema ((K,N)-threshold scheme)

- razdelitev skrivnosti na deleže in njihovo delitev med N zaupnikov izvede zaupen delivec (dealer)
 - zaupnikom lahko priredimo različne teže, tako da jim dodelimo različna števila deležev
- zahteva 1: katerakoli podmnožica K zaupnikov lahko rekonstruira skrivnost
- zahteva 2: nobena podmnožica K-1 zaupnikov ne more pridobiti nobene informacije o skrivnosti

- primer uporabe (2,3)-pragovne sheme:
 - kodo za bančni trezor razdelimo na tri deleže, ki jih dobijo trije uslužbenci banke
 - ker se želimo zavarovati za primer pokvarjenega uslužbenca, morata za rekonstrukcijo kode sodelovati vsaj dva uslužbenca
 - ker ne želimo, da bi postal bančni trezor nedostopen zaradi nepričakovane smrti katerega od uslužbencev, sta za rekonstrukcijo kode dva uslužbenca tudi dovolj

- zgled za K=N: (2,2)-pragovna shema
 - skrivnost S je binarno število, npr. 100101
 - poskus 1: vsakemu zaupniku damo polovico gesla (npr. 100 in 101) ⇒ zahteva 2 ni izpolnjena
 - poskus 2:
 - delež S_1 prvega zaupnika je naključno binarno število enake dolžine kot S, npr. 110100
 - delež S₂ drugega zaupnika je S XOR S₁, t.j.
 010001
 - zahteva 2 je izpolnjena, saj s poznavanjem S_1 nismo pridobili nobene informacije o S
 - enostavno razširljivo na (N,N) za N>2

- shemo (N,N) lahko uporabimo za implementacijo poljubne sheme (K,N), kjer je 1 < K < N
 - izvedemo $\binom{N}{K}$ delitev na K deležev, ki jih razdelimo med vse možne podmnožice K upravičencev
 - postopek postane nepraktičen za večje vrednosti K
 in N

- razvil Adi Shamir leta 1979
- temelji na polinomski interpolaciji oz. lastnosti, da potrebujemo vsaj K točk za rekonstrukcijo polinoma stopnje K-1:

$$y=f(x)=a_{k-1}x^{k-1}+a_{k-2}x^{k-2}+...+a_0$$

- primer: (2,N)-pragovna shema
 - "polinom" stopnje K-1=1 je premica
 - deleži in skrivnost so točke na premici; za rekonstrukcijo premice in izračun skrivnosti potrebujemo vsaj dva deleža*

 deleži in skrivnost so točke na premici; za rekonstrukcijo premice in izračun skrivnosti potrebujemo vsaj dva deleža*

- osnovni postopek:
 - 1) izberemo praštevilo P>S,N
 - 2) tvorimo naključne celoštevilske vrednosti koeficientov $a_1,...,a_{k-1} < P$
 - 3) vrednost prostega koeficienta postavimo na vrednost skrivnosti: a_0 =S
 - 4) za vsakega zaupnika i ($1 \le i \le N$) izračunamo delež skrivnosti kot par < i; f(i) >, kjer je f(i) vrednost polinoma $f(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + ... + a_0$
- primer: S=145, K=3, N=4
 - izberemo praštevilo npr. P=947
 - tvorimo koeficiente npr. a_0 =145, a_1 =224, a_2 =567
 - izračunamo deleže <1;936>, <2;2861>, <3;5920> in <4;10113>

- osnovni postopek:
 - 1) izberemo praštevilo P>S,N
 - 2) tvorimo naključne celoštevilske vrednosti koeficientov $a_1,...,a_{k-1} < P$
 - 3) vrednost prostega koeficienta postavimo na vrednost skrivnosti: a_0 =S
 - 4) za vsakega zaupnika i ($1 \le i \le N$) izračunamo delež skrivnosti kot par < i; f(i) >, kjer je f(i) vrednost polinoma $f(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + ... + a_0$
- primer: S=145, K=3, N=4
 - izberemo praštevilo npr. P=947
 - tvorimo koeficiente npr. a_0 =145, a_1 =224, a_2 =567
 - izračunamo deleže <1;936>, <2;2861>, <3;5920> in <4;10113> = 567·1² + 224·1¹ + 145

- osnovni postopek:
 - 1) izberemo praštevilo P>S,N
 - 2) tvorimo naključne celoštevilske vrednosti koeficientov $a_1,...,a_{k-1} < P$
 - 3) vrednost prostega koeficienta postavimo na vrednost skrivnosti: a_0 =S
 - 4) za vsakega zaupnika i ($1 \le i \le N$) izračunamo delež skrivnosti kot par < i; f(i) >, kjer je f(i) vrednost polinoma $f(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + ... + a_0$
- primer: S=145, K=3, N=4
 - izberemo praštevilo npr. P=947
 - tvorimo koeficiente npr. a_0 =145, a_1 =224, a_2 =567
 - izračunamo deleže <1;936>, <2;<u>2861</u>>, <3;5920> in <4;10113> = 567·2² + 224·2¹ + 145

- osnovni postopek:
 - 1) izberemo praštevilo P>S,N
 - 2) tvorimo naključne celoštevilske vrednosti koeficientov $a_1,...,a_{k-1} < P$
 - 3) vrednost prostega koeficienta postavimo na vrednost skrivnosti: a_0 =S
 - 4) za vsakega zaupnika i ($1 \le i \le N$) izračunamo delež skrivnosti kot par < i; f(i) >, kjer je f(i) vrednost polinoma $f(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + ... + a_0$
- primer: S=145, K=3, N=4
 - izberemo praštevilo npr. P=947
 - tvorimo koeficiente npr. a_0 =145, a_1 =224, a_2 =567
 - izračunamo deleže <1;936>, <2;2861>, <3;<u>5920</u>> in <4;10113> = 567·3² + 224·3¹ + 145

- osnovni postopek:
 - 1) izberemo praštevilo P>S,N
 - 2) tvorimo naključne celoštevilske vrednosti koeficientov $a_1,...,a_{k-1} < P$
 - 3) vrednost prostega koeficienta postavimo na vrednost skrivnosti: a_0 =S
 - 4) za vsakega zaupnika i ($1 \le i \le N$) izračunamo delež skrivnosti kot par < i; f(i) >, kjer je f(i) vrednost polinoma $f(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + ... + a_0$
- primer: S=145, K=3, N=4
 - izberemo praštevilo npr. P=947
 - tvorimo koeficiente npr. a_0 =145, a_1 =224, a_2 =567
 - izračunamo deleže <1;936>, <2;2861>, <3;5920> in <4;10113> = 567·4² + 224·4¹ + 145

- rekonstrukcija skrivnosti:
 - 1) s pomočjo znanih K deležev skrivnosti $\langle x_j; f(x_j) \rangle$ ($1 \leq j \leq K$) lahko vrednost skrivnosti $S = a_0 = f(0)$ izračunamo po enačbi:

$$S = \sum_{j=1}^{K} f(x_{j}) \prod_{\substack{m=1 \ m \neq j}}^{K} \frac{X_{m}}{X_{m} - X_{j}}$$

- rekonstrukcija skrivnosti iz prejšnjega zgleda:
 - predpostavimo, da poznamo deleže <1;936>, <3;5920> in <4:10113>

$$\begin{split} S = & f\left(x_1\right) \cdot \frac{x_2 \cdot x_3}{\left(x_2 - x_1\right) \cdot \left(x_3 - x_1\right)} + f\left(x_2\right) \cdot \frac{x_1 \cdot x_3}{\left(x_1 - x_2\right) \cdot \left(x_3 - x_2\right)} + f\left(x_3\right) \cdot \frac{x_1 \cdot x_2}{\left(x_1 - x_3\right) \cdot \left(x_2 - x_3\right)} = \\ = & 936 \cdot \frac{3 \cdot 4}{\left(3 - 1\right) \cdot \left(4 - 1\right)} + 5920 \cdot \frac{1 \cdot 4}{\left(1 - 3\right) \cdot \left(4 - 3\right)} + 10113 \cdot \frac{1 \cdot 3}{\left(1 - 4\right) \cdot \left(3 - 4\right)} = \\ = & 936 \cdot 2 + 5920 \cdot \left(-2\right) + 10113 \cdot 1 = 145 \end{split}$$

- rekonstrukcija skrivnosti:
 - 1) s pomočjo znanih K deležev skrivnosti $\langle x_j; f(x_j) \rangle$ ($1 \leq j \leq K$) lahko vrednost skrivnosti $S = a_0 = f(0)$ izračunamo po enačbi:

$$S = \sum_{j=1}^{K} f(x_j) \prod_{\substack{m=1 \\ m \neq j}}^{K} \frac{x_m}{x_m - x_j}$$
 Lagrangeovi polinomi $L_j(0)$

- rekonstrukcija skrivnosti iz prejšnjega zgleda:
 - predpostavimo, da poznamo deleže <1;936>, <3;5920> in <4;10113>

$$S = f(x_1) \cdot \frac{x_2 \cdot x_3}{(x_2 - x_1) \cdot (x_3 - x_1)} + f(x_2) \cdot \frac{x_1 \cdot x_3}{(x_1 - x_2) \cdot (x_3 - x_2)} + f(x_3) \cdot \frac{x_1 \cdot x_2}{(x_1 - x_3) \cdot (x_2 - x_3)} =$$

$$= 936 \cdot \frac{3 \cdot 4}{(3 - 1) \cdot (4 - 1)} + 5920 \cdot \frac{1 \cdot 4}{(1 - 3) \cdot (4 - 3)} + 10113 \cdot \frac{1 \cdot 3}{(1 - 4) \cdot (3 - 4)} =$$

$$= 936 \cdot 2 + 5920 \cdot (-2) + 10113 \cdot 1 = 145$$

- slabost osnovnega postopka je, da zahteva 2 za (K,N)pragovne sheme ni izpolnjena
 - s poznavanjem K-1 deležev lahko omejimo število možnih vrednosti skrivnosti
- rešitev: deleže izračunamo kot $\langle i; f(i) \mod P \rangle$, P se objavi
- isti primer: S=145, K=3, N=4, P=947, $a_0=145$, $a_1=224$, $a_2=567$
 - izračunani deleži so <1;936>, <2;20>, <3;238> in <4;643>

- slabost osnovnega postopka je, da zahteva 2 za (K,N)pragovne sheme ni izpolnjena
 - s poznavanjem K-1 deležev lahko omejimo število možnih vrednosti skrivnosti
- rešitev: deleže izračunamo kot $\langle i; f(i) \mod P \rangle$, P se objavi
- isti primer: S=145, K=3, N=4, P=947, $a_0=145$, $a_1=224$, $a_2=567$
 - izračunani deleži so <1;936>, <2;<u>20</u>>, <3;238> in <4;643>

= 2861 mod 947

- slabost osnovnega postopka je, da zahteva 2 za (K,N)pragovne sheme ni izpolnjena
 - s poznavanjem K-1 deležev lahko omejimo število možnih vrednosti skrivnosti
- rešitev: deleže izračunamo kot $\langle i; f(i) \mod P \rangle$, P se objavi
- isti primer: S=145, K=3, N=4, P=947, $a_0=145$, $a_1=224$, $a_2=567$
 - izračunani deleži so <1;936>, <2;20>, <3;238> in <4;643>
 - rekonstrukcija z deleži <1;936>, <3;238> in <4;643>:

$$S = \left(f(x_1) \cdot \frac{x_2 \cdot x_3}{(x_2 - x_1) \cdot (x_3 - x_1)} + f(x_2) \cdot \frac{x_1 \cdot x_3}{(x_1 - x_2) \cdot (x_3 - x_2)} + f(x_3) \cdot \frac{x_1 \cdot x_2}{(x_1 - x_3) \cdot (x_2 - x_3)} \right) \mod P =$$

$$= \left(936 \cdot \frac{3 \cdot 4}{(3 - 1) \cdot (4 - 1)} + 238 \cdot \frac{1 \cdot 4}{(1 - 3) \cdot (4 - 3)} + 643 \cdot \frac{1 \cdot 3}{(1 - 4) \cdot (3 - 4)} \right) \mod 947 =$$

$$= (936 \cdot 2 + 238 \cdot (-2) + 643 \cdot 1) \mod 947 = 145$$

- slabost osnovnega postopka je, da zahteva 2 za (K,N)pragovne sheme ni izpolnjena
 - s poznavanjem K-1 deležev lahko omejimo število možnih vrednosti skrivnosti
- rešitev: deleže izračunamo kot $\langle i; f(i) \mod P \rangle$, P se objavi
- isti primer: S=145, K=3, N=4, P=947, $a_0=145$, $a_1=224$, $a_2=567$
 - izračunani deleži so <1;936>, <2;20>, <3;238> in <4;643>
 - rekonstrukcija z deleži <1;936>, <3;238> in <4;643>:

$$S = \left(f(x_1) \cdot \frac{x_2 \cdot x_3}{(x_2 - x_1) \cdot (x_3 - x_1)} + f(x_2) \cdot \frac{x_1 \cdot x_3}{(x_1 - x_2) \cdot (x_3 - x_2)} + f(x_3) \cdot \frac{x_1 \cdot x_2}{(x_1 - x_3) \cdot (x_2 - x_3)} \right) \mod P =$$

$$= \left[936 \cdot \frac{3 \cdot 4}{(3 - 1) \cdot (4 - 1)} + 238 \cdot \frac{1 \cdot 4}{(1 - 3) \cdot (4 - 3)} + 643 \cdot \frac{1 \cdot 3}{(1 - 4) \cdot (3 - 4)} \right] \mod 947 =$$

OK, če se deljenja lepo izidejo

• kadar se deljenje ne izide, upoštevamo naslednjo lastnost:

$$\frac{x}{y} \pmod{n} \equiv x \cdot y^{-1} \pmod{n}$$

kadar se deljenje ne izide, upoštevamo naslednjo lastnost:

$$\frac{x}{y} \pmod{n} \equiv x \cdot y^{-1} \pmod{n}$$
multiplikativni inverz od y (mod n)

• kadar se deljenje ne izide, upoštevamo naslednjo lastnost:

$$\frac{x}{y} \pmod{n} \equiv x \cdot y^{-1} \pmod{n}$$

- zgled: K=3, N=4, S=137, P=241, $a_0=137$, $a_1=225$, $a_2=180$
 - izračunamo deleže <1;60>, <2;102>, <3;22> in <4;61>
 - rekonstrukcija iz deležev <1;60>, <2;102> in <4;61>

$$S = \left(f(x_1) \cdot \frac{x_2 \cdot x_3}{(x_2 - x_1) \cdot (x_3 - x_1)} + f(x_2) \cdot \frac{x_1 \cdot x_3}{(x_1 - x_2) \cdot (x_3 - x_2)} + f(x_3) \cdot \frac{x_1 \cdot x_2}{(x_1 - x_3) \cdot (x_2 - x_3)} \right) \mod P =$$

$$= \left(60 \cdot \frac{2 \cdot 4}{(2 - 1) \cdot (4 - 1)} + 102 \cdot \frac{1 \cdot 4}{(1 - 2) \cdot (4 - 2)} + 61 \cdot \frac{1 \cdot 2}{(1 - 4) \cdot (2 - 4)} \right) \mod 241 =$$

 $= (60 \cdot 8 \cdot 3^{-1} + 102 \cdot (-2) + 61 \cdot 1 \cdot 3^{-1}) \mod 241 = (60 \cdot 8 \cdot 161 + 102 \cdot (-2) + 61 \cdot 1 \cdot 161) \mod 241 = 137$

- med rekonstrukcijo skrivnosti lahko pride do numeričnih nestabilnosti v dveh primerih:
 - zaradi zaokrožitvene napake pri izračunu ulomkov
 - zaradi prekoračitev pri računanju produktov velikih števil
- · rešitev:
 - pri izračunu ulomkov števec pred deljenjem množimo s produktom vrednosti v vseh imenovalcih, tako da so rezultati vedno celoštevilski; na koncu izvedemo delitev s to vrednostjo
 - vse člene vsote sproti računamo po modulu P, saj velja:

 $a \mod P = c \Leftrightarrow a \equiv c \pmod{P}$, $b \mod P = d \Leftrightarrow b \equiv d \pmod{P}$

$$(a+b)\equiv (c+d) \pmod{P} \Leftrightarrow$$

 $(a+b) \mod P = (c+d) \mod P = (a \mod P + b \mod P) \mod P$

- naj bodo $1 < m_1 < m_2 < ... < m_k$ paroma tuja cela števila za k > 1
- naj bo $M=m_1 \cdot m_2 \cdot ... \cdot m_k$
- naj bodo s_i (i=1..k) poljubna pozitivna cela števila
- kitajski izrek o ostankih (Sun-Tzu, 3. st.):

Pri zgornjih pogojih ima sistem enačb:

```
x\equiv s_1 \pmod{m_1}

x\equiv s_2 \pmod{m_2}

\vdots

x\equiv s_k \pmod{m_k}
```

enolično rešitev x (mod M), t.j. za vsak par rešitev x_1 in x_2 velja $x_1 \equiv x_2$ (mod M)

- postopek izračuna rešitve sistema modulskih enačb:
 - 1) izračunamo $z_i = M/m_i$ za i=1..k
 - 2) izračunamo multiplikativni inverz y_i od z_i (mod m_i) za i=1..k
 - 3) izračunamo $w_i = y_i \cdot z_i \mod M$ za i=1..k
 - 4) enolična rešitev sistema je $x = (s_1w_1+s_2w_2+...+s_kw_k) \mod M$

- postopek izračuna rešitve sistema modulskih enačb:
 - 1) izračunamo $z_i = M/m_i$ za i=1..k
 - 2) izračunamo multiplikativni inverz y_i od z_i (mod m_i) za i=1..k
 - 3) izračunamo $w_i = y_i \cdot z_i \mod M$ za i=1..k
 - 4) enolična rešitev sistema je $x = (s_1w_1+s_2w_2+...+s_kw_k) \mod M$
- zgled: poiščimo rešitev sistema:

 $x\equiv 9 \pmod{17}$ $x\equiv 14 \pmod{25}$ $x\equiv 10 \pmod{48}$

- postopek izračuna rešitve sistema modulskih enačb:
 - 1) izračunamo $z_i = M/m_i$ za i=1..k
 - 2) izračunamo multiplikativni inverz y_i od z_i (mod m_i) za i=1..k
 - 3) izračunamo $w_i = y_i \cdot z_i \mod M$ za i=1..k
 - 4) enolična rešitev sistema je $x = (s_1w_1 + s_2w_2 + ... + s_kw_k) \mod M$
- zgled: poiščimo rešitev sistema:

```
m_1=17^{4}
x\equiv 9 \pmod{17}
m_2=5^{2}
x\equiv 14 \pmod{25}
m_3=2^{4}\cdot 3^{1}
x\equiv 10 \pmod{48}
```

- postopek izračuna rešitve sistema modulskih enačb:
 - 1) izračunamo $z_i = M/m_i$ za i=1..k
 - 2) izračunamo multiplikativni inverz y_i od z_i (mod m_i) za i=1..k
 - 3) izračunamo $w_i = y_i \cdot z_i \mod M$ za i=1..k
 - 4) enolična rešitev sistema je $x = (s_1w_1 + s_2w_2 + ... + s_kw_k) \mod M$
- zgled: poiščimo rešitev sistema:

```
m_1=17^1
x\equiv 9 \pmod{17}
m_2=5^2
m_i so paroma tuja števila \sqrt{x}
m_i = 17^1
```

- postopek izračuna rešitve sistema modulskih enačb:
 - 1) izračunamo $z_i = M/m_i$ za i=1..k
 - 2) izračunamo multiplikativni inverz y_i od z_i (mod m_i) za i=1..k
 - 3) izračunamo $w_i = y_i \cdot z_i \mod M$ za i=1..k
 - 4) enolična rešitev sistema je $x = (s_1w_1+s_2w_2+...+s_kw_k) \mod M$
- zgled: poiščimo rešitev sistema:

$$m_1=17^1$$
 $x\equiv 9 \pmod{17}$
 $m_2=5^2$
 m_i so paroma tuja števila \sqrt{x}
 $m_i = 17^1$
 $m_i = 17^1$

 $m_1=17$, $m_2=25$, $m_3=48$, M=20400, $s_1=9$, $s_2=14$, $s_3=10$

- postopek izračuna rešitve sistema modulskih enačb:
 - 1) izračunamo $z_i = M/m_i$ za i=1..k
 - 2) izračunamo multiplikativni inverz y_i od z_i (mod m_i) za i=1..k
 - 3) izračunamo $w_i = y_i \cdot z_i \mod M$ za i=1..k
 - 4) enolična rešitev sistema je $x = (s_1w_1+s_2w_2+...+s_kw_k) \mod M$
- zgled: poiščimo rešitev sistema:

$$m_1$$
=17, m_2 =25, m_3 =48, M =20400, s_1 =9, s_2 =14, s_3 =10

1) z_1 =1200, z_2 =816, z_3 =425

- postopek izračuna rešitve sistema modulskih enačb:
 - 1) izračunamo $z_i = M/m_i$ za i=1..k
 - 2) izračunamo multiplikativni inverz y_i od z_i (mod m_i) za i=1..k
 - 3) izračunamo $w_i = y_i \cdot z_i \mod M$ za i=1..k
 - 4) enolična rešitev sistema je $x = (s_1w_1+s_2w_2+...+s_kw_k) \mod M$
- zgled: poiščimo rešitev sistema:

$$m_1$$
=17, m_2 =25, m_3 =48, M =20400, s_1 =9, s_2 =14, s_3 =10

- 1) z_1 =1200, z_2 =816, z_3 =425
- 2) rešujemo enačbe oblike $y_i \equiv z_i^{-1} \pmod{m_i}$:

```
y_1 \equiv 1200^{-1} \pmod{17} \equiv 10^{-1} \pmod{17} \equiv -5 \pmod{17} \equiv 12 \pmod{17}^*
y_2 \equiv 816^{-1} \pmod{25} \equiv 16^{-1} \pmod{25} \equiv 11 \pmod{25}
y_3 \equiv 425^{-1} \pmod{48} \equiv 41^{-1} \pmod{48} \equiv 41 \pmod{48}
```

korak	kvocient	ostanek	substitucija	kombiniran izraz
1		10		10=10-1+17-0
2		17		17=10.0+17.1
3	0	10=10-17.0	10=(10·1+17·0)-(10·0+17·1)·0	10=10-1+17-0
4	1	7=17-10-1	7=(10·0+17·1)-(10·1+17·0)·1	7=10·(-1)+17·1
5	1	3=10-7·1	3=(10·1+17·0)-(10·(-1)+17·1)·1	3=10·2+17·(-1)
6	2	1=7-3-2	1=(10·(-1)+17·1)-(10·2+17·(-1))·2	1=10·(-5)+17·3
7	3	0		

- 1) z_1 =1200, z_2 =816, z_3 =425
- 2) rešujemo enačbe oblike $y_i \equiv z_i^{-1} \pmod{m_i}$:

```
y_1 \equiv 1200^{-1} \pmod{17} \equiv 10^{-1} \pmod{17} \equiv -5 \pmod{17} \equiv 12 \pmod{17}^*
y_2 \equiv 816^{-1} \pmod{25} \equiv 16^{-1} \pmod{25} \equiv 11 \pmod{25}
y_3 \equiv 425^{-1} \pmod{48} \equiv 41^{-1} \pmod{48} \equiv 41 \pmod{48}
```

- postopek izračuna rešitve sistema modulskih enačb:
 - 1) izračunamo $z_i = M/m_i$ za i=1..k
 - 2) izračunamo multiplikativni inverz y_i od z_i (mod m_i) za i=1..k
 - 3) izračunamo $w_i = y_i \cdot z_i \mod M$ za i=1..k
 - 4) enolična rešitev sistema je $x = (s_1w_1+s_2w_2+...+s_kw_k) \mod M$
- zgled: poiščimo rešitev sistema:

$$m_1$$
=17, m_2 =25, m_3 =48, M =20400, s_1 =9, s_2 =14, s_3 =10

- 1) z_1 =1200, z_2 =816, z_3 =425
- 2) $y_1=12$, $y_2=11$, $y_3=41$
- 3) $W_1=14400$, $W_2=8976$, $W_3=17425$

- postopek izračuna rešitve sistema modulskih enačb:
 - 1) izračunamo $z_i = M/m_i$ za i=1..k
 - 2) izračunamo multiplikativni inverz y_i od z_i (mod m_i) za i=1..k
 - 3) izračunamo $w_i = y_i \cdot z_i \mod M$ za i=1..k
 - 4) enolična rešitev sistema je $x = (s_1w_1+s_2w_2+...+s_kw_k) \mod M$
- zgled: poiščimo rešitev sistema:

$$m_1$$
=17, m_2 =25, m_3 =48, M =20400, s_1 =9, s_2 =14, s_3 =10

- 1) z_1 =1200, z_2 =816, z_3 =425
- 2) $y_1=12$, $y_2=11$, $y_3=41$
- 3) $W_1=14400$, $W_2=8976$, $W_3=17425$
- 4) $x = 429514 \mod 20400 = 1114$

- kitajski izrek lahko uporabimo za implementacijo (K,N)-pragovne sheme za delitev skrivnosti S:
 - izbrati je potrebno naraščajoče zaporedje N paroma tujih si števil m_i, tako da je S manjša od produkta katerihkoli K izmed njih in večja od produkta katerihkoli K-1 izmed njih
 - obstajata dve shemi izbire m_i Mignotte in Asmuth-Bloom
 - deleži skrivnosti so pari $\langle s_i; m_i \rangle$, kjer se s_i izračuna po shemi
 - skrivnost lahko rekonstruiramo s poznavanjem vsaj K deležev (z indeksi $i_1, i_2, ..., i_K$) tako, da rešimo sistem enačb:

```
x\equiv s_{i1} \pmod{m_{i1}}

x\equiv s_{i2} \pmod{m_{i2}}

\vdots

x\equiv s_{iK} \pmod{m_{iK}}
```

in postavimo $S = x \mod M$

Mignottejeva shema

- zaporedje $1 < m_1 < m_2 < ... < m_N$ so paroma tuja si števila (običajno praštevila), izbrana tako, da:
 - 1) je produkt najmanjših K števil večji od produkta največjih K-1:

$$\alpha = \prod_{i=N-K+2}^{N} m_i \qquad \beta = \prod_{i=1}^{K} m_i \qquad \alpha < \beta$$

- 2) je skrivnost S vrednost z intervala (α , β)
- deleži se izračunajo kot $s_i = S \mod m_i$
- primer: [5,7,11,13,17] je Mignottejevo zaporedje za:
 - (2,5)-pragovno shemo, ker 17<5·7=35; skrivnost je lahko število z intervala (17,35)
 - (3,5)-pragovno shemo, ker 13·17=221<5·7·11=385; skrivnost je lahko število z intervala (221,385)
 - (4,5)-pragovno shemo, ker 11·13·17=2431<5·7·11·13=5005; skrivnost je lahko število z intervala (2431,5005)

Mignottejeva shema

- zaporedje $1 < m_1 < m_2 < ... < m_N$ so paroma tuja si števila (običajno praštevila), izbrana tako, da:
 - 1) je produkt najmanjših K števil večji od produkta največjih K-1:

$$\alpha = \prod_{i=N-K+2}^{N} m_i \qquad \beta = \prod_{i=1}^{K} m_i \qquad \alpha < \beta$$

- 2) je skrivnost S vrednost z intervala (α , β)
- deleži se izračunajo kot $s_i = S \mod m_i$
- primer: skrivnost S=1234567 želimo deliti s (5,7)-pragovno shemo
 - potrebujemo Mignottejevo zaporedje dolžine N=7, tako da bo produkt β najmanjših K=5 števil večji od produkta α največjih K-1=4, pri čemer mora veljati $\alpha < S < \beta$
 - tem pogojem ustreza npr. zaporedje [7,17,19,23,31,37,41], ker α =23·31·37·41=1081621 < 1234567 < β =7·17·19·23·31=1612093

Mignottejeva shema - zgled

- $[m_i]$ =[5,7,11,13,17], K=3, N=5, S=299
- tvorba deležev: s_1 =299 mod 5=4, s_2 =5, s_3 =2, s_4 =0, s_5 =10
- rekonstrukcija iz deležev $\langle s_1; m_1 \rangle$, $\langle s_3; m_3 \rangle$ in $\langle s_5; m_5 \rangle$:

```
x\equiv 4 \pmod{5}

x\equiv 2 \pmod{11}

x\equiv 10 \pmod{17}
```

 m_1 =5, m_3 =11, m_5 =17, M=935, s_1 =4, s_3 =2, s_5 =10

- 1) z_1 =187, z_3 =85, z_5 =55
- 2) $y_1=3$, $y_3=7$, $y_5=13$
- 3) $W_1=561$, $W_3=595$, $W_5=715$
- 4) $S = (4.561+2.595+10.715) \mod 935 = 10584 \mod 935 = 299$

Asmuth-Bloomova shema

- problem Mignottejeve sheme: z manj kot K deleži lahko omejimo nabor možnih S; to težavo odpravlja Asmuth-Bloomova shema
- zaporedje $m_0 < m_1 < m_2 < ... < m_N$ so paroma tuja si števila (običajno praštevila), izbrana tako, da velja:

$$\alpha = m_0 \cdot \prod_{i=N-K+2}^{N} m_i \qquad \beta = \prod_{i=1}^{K} m_i \qquad \alpha < \beta$$

- skrivnost S je vrednost z intervala $[0,m_0-1]$; m_0 je lahko javen
- deleži se izračunajo kot $s_i = (S + \eta \cdot m_0) \mod m_i$, kjer je η naključno naravno število, tako da $S + \eta \cdot m_0 < m_1 \cdot m_2 \cdot ... \cdot m_K$
- primer: [11,17,29,31,41] je A.-B. zaporedje za:
 - (2,4)-pragovno shemo, ker 11-41=451<17-29=493
 - (3,4)-pragovno shemo, ker 11-31-41=13981<17-29-31=15283

Asmuth-Bloomova shema

- problem Mignottejeve sheme: z manj kot K deleži lahko omejimo nabor možnih S; to težavo odpravlja Asmuth-Bloomova shema
- zaporedje $m_0 < m_1 < m_2 < ... < m_N$ so paroma tuja si števila (običajno praštevila), izbrana tako, da velja:

$$\alpha = m_0 \cdot \prod_{i=N-K+2}^{N} m_i \qquad \beta = \prod_{i=1}^{K} m_i \qquad \alpha < \beta$$

- skrivnost S je vrednost z intervala $[0,m_0-1]$; m_0 je lahko javen
- deleži se izračunajo kot $s_i = (S + \eta \cdot m_0) \mod m_i$, kjer je η naključno naravno število, tako da $S + \eta \cdot m_0 < m_1 \cdot m_2 \cdot ... \cdot m_K$
- primer: skrivnost S=12345 želimo deliti s (3,5)-pragovno shemo
 - izberemo $m_0>S$, npr. prvo večje praštevilo $m_0=12347$
 - pogojem Asmuth-Bloomovega zaporedja za (3,5)-pragovno shemo ustreza npr. [12347,20011,20021,20023,20029,20047], ker 12347·20029·20047<20011·20021·20023

Asmuth-Bloomova shema - zgled

- $[m_i]$ =[11,17,29,31,41], K=2, N=4, S=9
- $m_1 \cdot m_2$ =493, zato izberemo naključen η , tako da 9+ $\eta \cdot$ 11<493, npr. η =32
- tvorba deležev: s_1 =361 mod 17=4, s_2 =13, s_3 =20, s_4 =33
- rekonstrukcija iz deležev $\langle s_1; m_1 \rangle$ in $\langle s_3; m_3 \rangle$:

```
x\equiv 4 \pmod{17}

x\equiv 20 \pmod{31}

m=17, m=21, M=527, s=4, s=20
```

$$m_1$$
=17, m_3 =31, M =527, s_1 =4, s_3 =20

- 1) z_1 =31, z_3 =17
- 2) $y_1=11$, $y_3=11$
- 3) W_1 =341, W_3 =187
- 4) $S+\eta \cdot m_0 = (4\cdot 341+20\cdot 187) \mod 527 = 5104 \mod 527 = 361$
- 5) $S = 361 \mod m_0 = 361 \mod 11 = 9$