Computer Organization Lab3

Name: 劉秉驊

ID: 110550130

Architecture diagrams:

Hardware module analysis:

The first picture is from https://www.researchgate.net/figure/main-control-truth-table_tbl2_317490993

Instruction	Opcode	Sh_B	S_zext	Regwrite	Regdst	Alusrc	Branch	Brchne	Blez	Bltz	Bgtz	Memwrite	Memtoreg	Jump	Jal	ALUop	hlt
R_type	000000	XX	X	1	01	00	0	0	0	0	0	0	00	0	0	110	0
1w	100011	XX	X	1	00	01	0	0	0	0	0	0	01	0	0	000	0
sw	101011	11	X	0	XX	01	0	0	0	0	0	1	XX	0	0	000	0
beq	000100	XX	X	0	XX	00	1	0	0	0	0	0	XX	0	0	001	0
bne	000101	XX	X	0	XX	00	0	1	0	0	0	0	XX	0	0	001	0
blez	000111	XX	X	0	XX	00	0	0	1	0	0	0	XX	0	0	001	0
bltz	000001	XX	X	0	XX	00	0	0	0	1	0	0	XX	0	0	001	0
bgtz	000110	XX	X	0	XX	00	0	0	0	0	1	0	XX	0	0	001	0
addi	001000	XX	X	1	00	01	0	0	0	0	0	0	00	0	0	000	0
addiu	001001	XX	X	1	00	01	0	0	0	0	0	0	00	0	0	000	0
j	000010	XX	X	0	XX	XX	X	X	X	X	X	0	XX	1	0	XXX	0
jal	000011	XX	X	1	10	XX	X	X	X	X	X	0	XX	1	1	XXX	0
andi	001100	XX	X	1	00	10	0	0	0	0	0	0	00	0	0	010	0
ori	001101	XX	X	1	00	10	0	0	0	0	0	0	00	0	0	011	0
xori	001110	XX	X	1	00	10	0	0	0	0	0	0	00	0	0	100	0
slti	001010	XX	X	1	00	01	0	0	0	0	0	0	00	0	0	101	0
sltiu	001011	XX	X	1	00	01	0	0	0	0	0	0	00	0	0	101	0
lui	001111	XX	X	1	00	11	0	0	0	0	0	0	00	0	0	000	0
lb	100000	XX	0	1	00	01	0	0	0	0	0	0	11	0	0	000	0
lbu	100100	XX	1	1	00	01	0	0	0	0	0	0	11	0	0	000	0
lh	100001	XX	0	1	00	01	0	0	0	0	0	0	10	0	0	000	0
lhu	100101	XX	1	1	00	01	0	0	0	0	0	0	10	0	0	000	0
sb	101000	00	X	0	XX	01	0	0	0	0	0	1	XX	0	0	000	0
sh	101001	01	X	0	XX	01	0	0	0	0	0	1	XX	0	0	000	0
hlt	111100	XX	X	0	XX	XX	Х	X	X	X	X	0	XX	X	X	XXX	1

The second picture is from https://www.fpga4student.com/2017/01/verilog-code-for-single-cycle-MIPS-processor.html

Control signals												
Instruction	Reg ALU Dst Src		Memto Reg Reg Write		MemRead	Mem Write	Branch	ALUOp	Jump			
R-type	1	0	0	1	0	0	0	00	0			
LW	0	1	1	1	1	0	0	11	0			
SW	0	1	0	0	0	1	0	11	0			
addi	0	1	0	1	0	0	0	11	0			
beq	0	0	0	0	0	0	1	01	0			
j	0	0	0	0	0	0	0	00	1			
jal	2	0	2	1	0	0	0	00	1			
slti	0	1	0	1	0	0	0	10	0			

Basically, it's mostly the same as Lab 2. But there are some differences in Decoder, besides more outputs in Lab 3.

- 1. jal neels the second digit, so RegDst becomes 2 digits.
- 2. Since the hardware Architecture, we need MemtoReg to distinguish jal. Thus, MemtoReg of jal is 2'b10 instead of 2'bxx in the first picture same in Lab 2.
- 3. I search for MemRead code in the second picture.

Finally, I constructed Decoder with code in 2 pictures above.

Finished part:

The left one below is data 1, and the right one below is data 2. All reaches the requirements.

Problems you met and solutions:

The first thing is that because of some required functions, we need to know 2 digits code such as RegDst. Thus, there'll be 3 cases to output the result in that condition. Without MUX 3 to 1 function which is not provided, I made 1-level 3 cases into 2-level 2 cases that required more and more wires to connect. The second is that I was confused with j and jal and jr then. What's the difference of the ways of connection among them? At the end, I found out j and jr were similar, and jal was much different that needed more information from PC and address. And I used a MUX 2 to 1 to represent jr when its opcode and function code emerged.

Summary:

To me, this is totally a new thing I've never touched. I spent lots of time handling the basic knowledge and searching the net. I'm quite happy to construct the simple cpu that makes me more understand how computer works. I think I will be willing to delve into the world of hardware.