

EE2211 Pre-Tutorial 10

Dr Feng LIN feng_lin@nus.edu.sg

Agenda

- Recap
- Self-learning
- Tutorial 10

Today's Attendance

Recap

- Dataset Partition:
 - Training/Validation/Testing
- Cross Validation
- Evaluation Metrics
 - Evaluating the quality of a trained machine learning system
 - Mean Square Error
 - Mean Absolute Error
 - Confusion Matrix
 - Cost Matrix

Training, Validation, Test

Example of hyper-parameters, which are set before the training process begins:

- Order of polynomial
- Regularization parameters (λ)
- Tree depth (decision trees, random forests)
- Number of trees (random forests)

In practice, we do the k-fold cross validation
 4-fold cross validation

Test

Step 1: take out *test set* from the dataset

In practice, we do the k-fold cross validation
 4-fold cross validation

Test

Step 2: We partition the *remaining part of the dataset* (after taking out the test set), into *k* equal parts (equal in terms of number of samples).

In practice, we do the k-fold cross validation

Test

4-fold cross validation

Fold 1	Train	Train	Train	Validation
Fold 2	Train	Train	Validation	Train
Fold 3	Train	Validation	Train	Train
Fold 4	Validation	Train	Train	Train

Order of the samples are kept the same across all folds.

Step 3: We run *k folds* (i.e., k times) of experiments. Within each fold, we use *one part* as *validation set*, and the *k-1 remaining parts* as *training set*. We use different validation sets for different folds.

 In practice, we do the k-fold cross validation Classifiers 4-fold cross validation Trained Test $C_1^1 \ C_2^1$ Fold 1 Train Train Train Fold 2 C_1^2 C_2^2 Train Validation Train Train Fold 3 $C_1^3 C_2^3$ Train **Validation** Train Train $C_1^4 C_2^4$ Fold 4 Validation Train Train Train

1) C_1 : Random Forest with 100 trees

2) C_2 : Random Forest with 200 trees

Step 3.1: Within each fold, if we have n parameter/model candidates, we will train n models, and we check their validation performance.

• In practice, we do the k-fold cross validation

Test

Classifiers

Example: which one to select for test?

	Fold 1 Accuracy on Validation Set 1	Fold 2 Accuracy on Validation Set 2	Fold 3 Accuracy on Validation Set 3	Fold 4 Accuracy on Validation Set 4	Average Accuracy on All Validation Sets
Classifier with Param1 (e.g. 100 trees)	88% C ₁	89% C_1^2	93% C_1^3	92% C_1^4	90.5%
Classifier with Param2 (e.g. 200 trees)	90% C_2^1	88% C ₂ ²	91% C_2^3	91% C_2^4	90%

Step 4: We select the parameter/model with best average validation performance over k folds.

Regression

Mean Square Error

$$(MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n})$$

Mean Absolute Error

$$(\mathsf{MAE} = \frac{\Sigma_{i=1}^{n} |y_i - \hat{y}_i|}{n})$$

where y_i denotes the target output and \hat{y}_i denotes the predicted output for sample i.

Classification

```
(True Positive Rate) TPR = TP/(TP+FN) Recall (False Negative Rate) FNR = FN/(TP+FN)
```

```
(True Negative Rate) TNR = TN/(FP+TN)
(False Positive Rate) FPR = FP/(FP+TN)
```

Confusion Matrix for Binary Classification

а	ita)	(predicted)	(predicted)	
	P (actual)	TP	FN	Recall TP/(TP+FN)
	N (actual)	FP	TN	
		Precision		Accuracy

TP/(TP+FP)

(TP+TN)/(TP+TN+FP+FN)

Classification

Cost Matrix for Binary Classification

	$\widehat{\mathbf{P}}$ (predicted)	$\widehat{\mathbf{N}}$ (predicted)	
P (actual)	$C_{p,p}$ * TP	$C_{p,n}$ * FN	
N (actual)	$C_{n,p}$ * FP	$C_{n,n}$ * TN	

Total cost:

$$C_{p,p}$$
 * TP +
 $C_{p,n}$ * FN +
 $C_{n,p}$ * FP +
 $C_{n,n}$ * TN

Main Idea: To assign different *penalties* for different entries. Higher penalties for more severe results. Smaller costs are preferred.

Usually, $C_{p,p}$ and $C_{n,n}$ are set to 0; $C_{n,p}$ and $C_{p,n}$ may and may not equal

- Example of cost matrix
 - Assume we would like to develop a self-driving car system
 - We have an ML system that detects the pedestrians using camera, by conducing a binary classification
 - When it detects a person (positive class), the car should stop
 - · When no person is detected (negative class), the car keeps going

<u>True Positive</u> (cost $C_{p,p}$)

There is person, ML detects person and car stops

True Negative (cost $C_{n,n}$)

There is no person, car keeps going

False Positive (cost $C_{n,p}$)

There is no person, ML detects person and car stops

False Negative (cost $C_{p,n}$)

There is person, ML fails to detect person and car keeps going

 $C_{n,p}$? $C_{p,n}$ (>, <, or =)

Credit: automotiveworld.com

- For unbalanced data...
 - Assume we have 1000 samples, of which 10 are <u>positive</u> and 990 are <u>negative</u>
 - Accuracy = 990/1000=0.99!Very high number!
 - Yet, half of the Class-1 areClassified to Class-2!

	Class-1 (predicted)	Class-2 (predicted)
Class-1 (actual)	5 (TP)	5 (FN)
Class-2 (actual)	5 (FP)	985 (TN)

The goal is to highlight the problems of the results!

In this case, we shall

- 1) Use cost matrix, assign different costs for each entry
- 2) Use Precision and Recall! Precision = 0.5 and Recall = 0.5

Classification

Confusion Matrix for Multicategory Classification

	$P_{\widehat{1}}$ (predicted)	$P_{\widehat{2}}$ (predicted)		$P_{\widehat{C}}$ (predicted)
P_1 (actual)	$P_{1,\widehat{1}}$	$P_{1,\widehat{2}}$		$P_{1,\widehat{C}}$
P_2 (actual)	$P_{2,\widehat{1}}$	$P_{2,\widehat{2}}$		$P_{2,\widehat{C}}$
			*****	i
$P_{ m C}$ (actual)	$P_{C,\widehat{1}}$	$P_{C,\widehat{2}}$		$P_{C,\widehat{C}}$

THANK YOU