Homework - 2

ARITHMETIC FUNCTIONS

- 1. Let $n \in N$. Define an arithmetic function ρ by $\rho(1) = 1$ and $\rho(n) = 2^r$ where r = number of distinct prime numbers in the prime factorization of n.
 - (a) Prove that ρ is multiplicative but not completely multiplicative.

(b) Let
$$f(n) = \sum_{d \mid n} \rho(d)$$
.

If $n = p_1^{a_1} \dots p_r^{a_r}$, then find a formula for f(n) in terms of this prime factorization.

2. In class we proved the Mobius inversion formula using the following result:

Let (m,n) = 1, then each divisor d>0 of mn can be uniquely written as d_1d_2 , where $d_1, d_2 > 0$, $d_1|m$, $d_2|n$ and $(d_1, d_2) = 1$ and for each such product d_1d_2 corresponds to a divisor d of mn.

Prove the above result.

3. Prove the identity:

$$\mu^{2}(n) = \sum_{d \mid n} 2^{w(d)} \mu(\frac{n}{d}) \quad for \ n \in \mathbb{N},$$

where w(n) denotes the number of distinct prime numbers dividing n.

PRIMITIVE ROOTS

- 4. Determine whether 2 is a primitive root modulo 19.
- 5. Let p, q be primes with p = 2q+1. Let a be an integer. Explain why a is primitive root modulo p if and only if $a^2 \not\equiv 1 \pmod{p}$ and $a^q \not\equiv 1 \pmod{p}$.
- 6. Let p be a prime, let g be a primitive root modulo p, and let k be an integer. Prove that g^k is a primitive root modulo p if and only if gcd(k, p-1) = 1.

PRIMALITY TESTING, CARMICHAEL NUMBERS

- 7. Find all Carmichael numbers of the form 3pq where 3 are primes.
- 8. Let p be a prime and assume $p^2|m$. Show that there exists a s.t. (a, m) = 1 and $a^p \equiv 1 \mod(m)$, and conclude that there exists c s.t. (c, m) = 1 and $c^{m-1} \not\equiv 1 \mod(m)$.

QUADRATIC RECIPROCITY

9. Compute the Legendre Symbol. Show all steps and all results used.

$$\left(\frac{402}{991}\right)$$

Hint: 991 is prime.

10. Determine those odds primes p for which 3 is a quadratic residue and those for which it is not.

Hint: Use reciprocity to write

$$\left(\frac{3}{p}\right) = \left(-1\right)^{\frac{p-1}{2}} \left(\frac{p}{3}\right)$$

To determine the last Legendre symbol, we need to know the value of p modulo 3, and to determine $(-1)^{\frac{p-1}{2}}$ we need to know the value of $\frac{p-1}{2}$ modulo 2, or the value of p modulo 4. Hence consider working with p modulo 12. There are only 4 cases to consider $p \equiv 1, 5, 7, 11 \mod 12$. Consider each case separately.