In [2]: #Load and Build the Dataset from sklearn.datasets import load_breast_cancer loaded = load_breast_cancer() labels = np.reshape(loaded.target, (len(loaded.target),1)) inputs = pd.DataFrame(loaded.data) names = np.append(loaded.feature_names, 'label') dataset = pd.DataFrame(np.concatenate([inputs,labels],axis=1)) dataset.columns = names dataset

Out[2]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mea symmetr
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.241
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.181
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.206
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.259
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.180
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.172
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.175
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.159
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.239
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.158

569 rows × 31 columns

```
In [3]: #Sort and clean the Dataset
    from sklearn.preprocessing import MinMaxScaler, StandardScaler

    x = dataset.iloc[:,0:-1].values
    y = dataset.iloc[:,-1].values

    scaler = MinMaxScaler()
    x = scaler.fit_transform(x)
```

```
In [4]: #Explore Default SVC with A range of PCA Component Counts
        from sklearn.decomposition import PCA
        from sklearn.model_selection import train_test_split
        from sklearn.svm import SVC
        from sklearn.metrics import accuracy_score, precision_score, recall_score, cla
        frameLog = []
        modelLog = []
        accuracyLog = []
        precisionLog = []
        recallLog = []
        cols = []
        maxPC = len(x[0])+1
        for k in range(1,maxPC):
            pca = PCA(n\_components = k)
            pcs = pca.fit_transform(x)
            cols.append('PC'+str(k))
            pcFrame = pd.DataFrame(data=pcs,columns=cols)
            frameLog.append(pcFrame)
            xt, xv, yt, yv = train_test_split(pcFrame, y,
                                               train_size = 0.8, test_size = 0.2,
                                               random_state=1337)
            model = SVC(random_state=1337)
            model.fit(xt,yt)
            modelLog.append(model)
            yp = model.predict(xv)
            accuracyLog.append(accuracy_score(yv,yp))
            precisionLog.append(precision_score(yv,yp))
            recallLog.append(recall_score(yv,yp))
        plt.rcParams["figure.figsize"] = (10,5)
        plt.grid()
        plt.xlabel('Principle Components')
        plt.title('Model Performance Vs. Principle Component Count')
        plt.plot(range(1,maxPC),accuracyLog,color='blue',label='accuracy')
        plt.plot(range(1,maxPC),precisionLog,color='red',label='precision')
        plt.plot(range(1,maxPC),recallLog,color='green',label='recall')
        plt.legend();
```



```
In [5]: #Print Best Results
        K = accuracyLog.index(max(accuracyLog))
        print("According to the plot above, the highest accuracy occurs at a lowest di
        xt, xv, yt, yv = train_test_split(frameLog[K], y,train_size = 0.8, test_size =
        yp = modelLog[K].predict(xv)
        print("Classification Report for K={}".format(K+1))
        print("-----
        print(classification_report(yv,yp))
        #Analyze using the Confusion Matrix
        import seaborn as sns
        classes = ['Benign', 'Malignant']
        figure, axis = plt.subplots()
        ticks = np.arange(len(classes))
        plt.xticks(ticks, classes)
        plt.yticks(ticks, classes)
        sns.heatmap(pd.DataFrame(confusion_matrix(yv,yp)),
                    annot=True, cmap="Greens", fmt='g')
        axis.xaxis.set_label_position("top")
        plt.tight_layout()
        plt.title('Confusion Matrix', y=1.1)
        plt.ylabel('Actual Class')
        plt.xlabel('Predicted Class')
        plt.show()
```

According to the plot above, the highest accuracy occurs at a lowest dimensionality of K=11

Classification Report for K=11

	precision	precision recall		support
0.0	0.97	0.95	0.96	41
1.0	0.97	0.99	0.98	73
accuracy			0.97	114
macro avg	0.97	0.97	0.97	114
weighted avg	0.97	0.97	0.97	114

Confusion Matrix


```
In [7]: #Now to explore different Kernelizations and parameters
       from sklearn.pipeline import make_pipeline
       from sklearn.model_selection import GridSearchCV
       kernels = ['rbf','linear','sigmoid','poly']
       parameters = {
           'pca__n_components' : range(1,len(x[0])+1),
           'svc__C' : [1,2,3,4,5,6,7,8,9,10],
'svc__gamma' : [0.000001,0.00001,0.0001,'auto','scale']
       pca = PCA(random_state=1337)
       modelLog = dict()
       accuracyLog = dict()
       precisionLog = dict()
       recallLog = dict()
       for colonel in kernels:
           svc = SVC(kernel=colonel, random_state=1337)
           pipeline = make_pipeline(pca,svc)
           grid = GridSearchCV(pipeline,parameters)
           print("Searching a variety of Parameters to find the best model with {}-ty
           %time grid.fit(xt,yt)
           print("\nBest model among all parameter options for {}-type kernelization:
           print(grid.best_params_)
           yp = grid.predict(xv)
           print("\nReport for Best Model Found for {}-type kernelization:".format(co
           print("-----")
           print(classification report(yv,yp))
           print("Confusion Matrix:")
           print(confusion_matrix(yv,yp))
           modelLog[colonel] = grid
           accuracyLog[colonel] = accuracy_score(yv,yp)
           precisionLog[colonel] = precision_score(yv,yp)
           recallLog[colonel] = recall_score(yv,yp)
```

```
Searching a variety of Parameters to find the best model with rbf-type kernel ization...

Wall time: 1min 36s

Best model among all parameter options for rbf-type kernelization:
{'pca__n_components': 7, 'svc__C': 7, 'svc__gamma': 'scale'}

Report for Best Model Found for rbf-type kernelization:
```

		precision	recall	f1-score	support
	0.0	0.90	0.90	0.90	41
	1.0	0.95	0.95	0.95	73
accur	acy			0.93	114
macro	avg	0.92	0.92	0.92	114
weighted	avg	0.93	0.93	0.93	114

Confusion Matrix:

[[37 4] [4 69]]

Searching a variety of Parameters to find the best model with linear-type ker nelization...

Wall time: 42.8 s

Best model among all parameter options for linear-type kernelization:

{'pca_n_components': 8, 'svc_C': 3, 'svc_gamma': 1e-06}

Report for Best Model Found for linear-type kernelization:

	precision	recall	f1-score	support
0.0	0.98	0.98	0.98	41
1.0	0.99	0.99	0.99	73
266118261			0.98	114
accuracy			0.90	114
macro avg	0.98	0.98	0.98	114
weighted avg	0.98	0.98	0.98	114

Confusion Matrix:

[[40 1] [1 72]]

Searching a variety of Parameters to find the best model with sigmoid-type ke rnelization...

Wall time: 1min 16s

Best model among all parameter options for sigmoid-type kernelization:
{'pca__n_components': 10, 'svc__C': 7, 'svc__gamma': 'auto'}

Report for Best Model Found for sigmoid-type kernelization:

precision recall f1-score support

0.0 0.97 0.88 0.92 41
1.0 0.94 0.99 0.96 73

accuracy 0.95 114

macro	avg	0.95	0.93	0.94	114
weighted	avg	0.95	0.95	0.95	114

Confusion Matrix:

[[36 5] [1 72]]

Searching a variety of Parameters to find the best model with poly-type kerne lization...

Wall time: 1min 8s

Best model among all parameter options for poly-type kernelization:
{'pca_n_components': 8, 'svc_C': 10, 'svc_gamma': 'scale'}

Report for Best Model Found for poly-type kernelization:

precision recall f1-score support

0.0 0.97 0.88 0.92 41
1.0 0.94 0.99 0.96 73

accuracy 0.95 114 macro avg 0.95 0.93 0.94 114 weighted avg 0.95 0.95 0.95 114

Confusion Matrix:

[[36 5] [1 72]]

```
In [8]: #Plot the results
        W = 0.15
        fig = plt.subplots(figsize = (12,8))
        rbf = [accuracyLog['rbf'],precisionLog['rbf'],recallLog['rbf']]
        linear = [accuracyLog['linear'],precisionLog['linear'],recallLog['linear']]
        sigmoid = [accuracyLog['sigmoid'],precisionLog['sigmoid'],recallLog['sigmoid']
        poly = [accuracyLog['poly'],precisionLog['poly'],recallLog['poly']]
        br1 = np.arange(len(rbf))
        br2 = [wx + w for wx in br1]
        br3 = [wx + w for wx in br2]
        br4 = [wx + w for wx in br3]
        plt.bar(br1, rbf, color='r', width=w, edgecolor='grey', label='rbf')
        plt.bar(br2, linear, color='b', width=w, edgecolor='grey', label='linear')
        plt.bar(br3, sigmoid, color='g', width=w, edgecolor='grey', label='sigmoid')
        plt.bar(br4, poly, color='m', width=w, edgecolor='grey', label='poly')
        plt.xticks([wx + w for wx in range(len(rbf))], ['Accuracy', 'Precision', 'Reca
        yscale = 100
        ylims = [int(yscale*min(accuracyLog.values())),yscale]
        ytick = range(ylims[0],ylims[1])
        plt.yticks([i/yscale for i in ytick])
        plt.legend()
        plt.title("Evaluation Statistics for the Best Models with Each Kernelization")
        plt.ylim((ylims[0]/yscale,ylims[1]/yscale))
        plt.grid(axis='y')
        plt.show()
```



```
In [10]: #Best model Analysis
        model = modelLog['linear']
        print("Classification Report")
        print("-----")
        print(classification_report(yv,model.predict(xv)))
        #Analyze using the Confusion Matrix
        classes = ['Benign', 'Malignant']
        figure, axis = plt.subplots()
        ticks = np.arange(len(classes))
        plt.xticks(ticks, classes)
        plt.yticks(ticks, classes)
        sns.heatmap(pd.DataFrame(confusion_matrix(yv,model.predict(xv))),
                    annot=True, cmap="Greens", fmt='g')
        axis.xaxis.set_label_position("top")
        plt.tight_layout()
        plt.title('Confusion Matrix', y=1.1)
        plt.ylabel('Actual Class')
        plt.xlabel('Predicted Class');
```

Classification Report

	precision	recall	f1-score	support
0.0	0.98	0.98	0.98	41
1.0	0.99	0.99	0.99	73
accuracy			0.98	114
macro avg	0.98	0.98	0.98	114
weighted avg	0.98	0.98	0.98	114

Confusion Matrix

HW4_Part1 - Jupyter Notebook

In []:

\sim		$r \sim r$	
n			
v	u		

	price	area	bedrooms	bathrooms	stories	parking	mainroad	guestroom	basement
0	13300000	7420	4	2	3	2	1	0	0
1	12250000	8960	4	4	4	3	1	0	0
2	12250000	9960	3	2	2	2	1	0	1
3	12215000	7500	4	2	2	3	1	0	1
4	11410000	7420	4	1	2	2	1	1	1
540	1820000	3000	2	1	1	2	1	0	1
541	1767150	2400	3	1	1	0	0	0	0
542	1750000	3620	2	1	1	0	1	0	0
543	1750000	2910	3	1	1	0	0	0	0
544	1750000	3850	3	1	2	0	1	0	0

545 rows × 12 columns

```
In [13]: #Sort and clean the Dataset
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.model_selection import train_test_split

x = dataset.iloc[:,1:-1].values
y = dataset.iloc[:,0].values

scaler = MinMaxScaler()
x = scaler.fit_transform(x)
y = scaler.fit_transform(y.reshape(len(y),1))
```

```
In [14]: #Explore Default SVC with A range of PCA Component Counts
         from sklearn.decomposition import PCA
         from sklearn.model_selection import train_test_split
         from sklearn.svm import SVR
         from sklearn.metrics import mean_squared_error
         frameLog = []
         modelLog = []
         ypLog = []
         cols = []
         mseLog = []
         maxPC = len(x[0])+1
         for k in range(1,maxPC):
             pca = PCA(n\_components = k)
             pcs = pca.fit_transform(x)
             cols.append('PC'+str(k))
             pcFrame = pd.DataFrame(data=pcs,columns=cols)
             frameLog.append(pcFrame)
             xt, xv, yt, yv = train_test_split(pcFrame, y,
                                                train_size = 0.8, test_size = 0.2,
                                                random_state=1337)
             model = SVR()
             model.fit(xt,yt.reshape(len(yt)));
             modelLog.append(model)
             yp = model.predict(xv)
             ypLog.append(yp)
             mse = mean_squared_error(yv,yp)
             mseLog.append(mse)
             print("Mean Square Error for k={} : {}".format(k,mse))
         plt.rcParams["figure.figsize"] = (10,5)
         plt.grid()
         plt.xlabel('Principle Components')
         plt.title('Model Performance Vs. Principle Component Count')
         plt.plot(range(1,maxPC),mseLog,color='red',label='MSE')
         plt.legend()
         plt.show()
         Mean Square Error for k=1 : 0.019142182400062203
         Mean Square Error for k=2:0.012508623252327536
         Mean Square Error for k=3:0.012057577267394445
         Mean Square Error for k=4 : 0.012215030504956328
         Mean Square Error for k=5 : 0.012336924027756229
         Mean Square Error for k=6:0.010958769375877015
         Mean Square Error for k=7 : 0.010254626182776064
         Mean Square Error for k=8 : 0.009088906999969016
```

3 of 7

Model Performance Vs. Principle Component Count

- MSE

Mean Square Error for k=9: 0.007941979300943007 Mean Square Error for k=10: 0.008175404555258076


```
In [26]: #Now to explore different Kernelizations and parameters
        from sklearn.pipeline import make_pipeline
        from sklearn.model_selection import GridSearchCV, learning_curve
        from sklearn.metrics import r2_score
        kernels = ['rbf','linear','sigmoid','poly']
        parameters = {
            'pca__n_components' : range(1,len(x[0])+1),
            'svr C'
                         : [1,2,3,4,5,6,7,8,9,10],
            'svr__gamma'
                            : [0.000001,0.00001,0.0001,0.001,'auto','scale']
        }
        pca = PCA(random_state=1337)
        modelLog = dict()
        mseLog = dict()
        for colonel in kernels:
            svr = SVR(kernel=colonel)
            pipeline = make_pipeline(pca,svr)
            grid = GridSearchCV(pipeline,parameters)
            print("Searching a variety of Parameters to find the best model with {}-ty
            %time grid.fit(xt,yt.reshape(len(yt)))
            print("\nBest model among all parameter options for {}-type kernelization:
            print(grid.best_params_)
            yp = grid.predict(xv)
            mse = mean_squared_error(yv,yp)
            mseLog[colonel] = mse
            print("MSE Value for {}-type kernelization is {}".format(colonel,mse))
            modelLog[colonel] = grid
```

```
Best model among all parameter options for linear-type kernelization:
{'pca__n_components': 10, 'svr__C': 1, 'svr__gamma': 1e-06}
MSE Value for linear-type kernelization is 0.007316419318936263
```

Searching a variety of Parameters to find the best model with sigmoid-type ke rnelization...

Wall time: 24.6 s

Best model among all parameter options for sigmoid-type kernelization:
{'pca__n_components': 10, 'svr__C': 3, 'svr__gamma': 'auto'}
MSE Value for sigmoid-type kernelization is 0.007431607456766796

Searching a variety of Parameters to find the best model with poly-type kerne lization...

Wall time: 25.3 s

Best model among all parameter options for poly-type kernelization: {'pca__n_components': 8, 'svr__C': 10, 'svr__gamma': 'auto'}
MSE Value for poly-type kernelization is 0.009865793251773653

```
In [35]: #Plot the results
         W = 0.1
         fig = plt.subplots(figsize = (12,8))
         plt.bar(0, mseLog['rbf'], color='r', width=w, edgecolor='grey', label='rbf')
         plt.bar(0.1, mseLog['linear'], color='b', width=w, edgecolor='grey', label='li
         plt.bar(0.2, mseLog['sigmoid'], color='g', width=w, edgecolor='grey', label='s
         plt.bar(0.3, mseLog['poly'], color='m', width=w, edgecolor='grey', label='poly
         plt.tick_params(
             axis='x',
                                # changes apply to the x-axis
             which='both',
                              # both major and minor ticks are affected
                               # ticks along the bottom edge are off
             bottom=False,
             top=False,
                                # ticks along the top edge are off
             labelbottom=False) # Labels along the bottom edge are off
         plt.ylabel("Mean Square Error")
         plt.legend()
         plt.title("Evaluation Statistics for the Best Models with Each Kernelization")
         plt.grid(axis='y')
```


In []: