Análisis de datos de ChIP-seq: Identificación de Sitios de Unión de Factores de Transcripción y Marcas Epigenéticas

Francisco J. Romero Campero http://www.cs.us.es/~fran/

Dpt. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Los Factores de Transcripción se unen a regiones cis para regular la transcripción

- Los Factores de Transcripción (FTs) son proteínas que controlan la transcripción de genes mediante la unión física directa con ciertos patrones de DNA llamados motivos.
- Comúnmente, estos motivos están localizados aguas arriba de los genes regulados en regiones cis.

El cistroma o conjunto de regiones cis asociadas a un FT puede ser enormemente plástico

- El conjunto global de sitios de unión de un factor de transcripción se denomina **cistroma**.
- El cistroma de un FT puede ser **enormemente plástico** ya que condiciones externas e internas pueden cambiar sustancialmente su estado o el del correspondiente complejo proteico produciendo la únion a diferentes regiones cis.

Las modificaciones de histonas afectan a la accesabilidad de la cromatina manteniendo la represión/activación de la expresión génica

ChIP-Seq determina el cistroma de un FT

 Una técnica ómica que permite determinar los sitios de interacción entre proteínas y DNA en unas condiciones específicas se denomina ChIP-Seq (Chromatin Immunoprecipitation coupled with Sequencing).

- Esta técnica combina dos metodologías ya establecidas:
 - ChIP: Chromatin Immuno-Precipitation
 - Seq: High throughput sequencing of DNA

Célula 1

Análisis de datos de ChIP-seq

El análisis de datos de ChIP-seq para el determinar los sitios del genoma donde se une un factor de transcripción en concreto o donde se encuentra localizada un modificación de histonas se divide en los siguientes pasos:

- Paso 1: Preparación del espacio de trabajo.
- Paso 2: Análisis de calidad de la lecturas.
- Paso 3: Mapeado de lecturas cortas al genoma de referencia.
- Paso 4: Determinación de picos.
- Paso 5: Asociación de picos a genes diana.

Análisis de datos de ChIP-seq

El análisis de datos de ChIP-seq para el determinar los sitios del genoma donde se une un factor de transcripción en concreto o donde se encuentra localizada un modificación de histonas se divide en los siguientes pasos:

- Paso 1: Preparación del espacio de trabajo.
- Paso 2: Análisis de calidad de la lecturas.
- Paso 3: Mapeado de lecturas cortas al genoma de referencia.
- Paso 4: Determinación de picos.
- Paso 5: Asociación de picos a genes diana.

Paso 1: Preparación del espacio de trabajo.

 Es crítico mantener un espacio de trabajo ordenado. Se recomienda la siguiente distribución:

Análisis de datos de ChIP-seq

El análisis de datos de ChIP-seq para el determinar los sitios del genoma donde se une un factor de transcripción en concreto o donde se encuentra localizada un modificación de histonas se divide en los siguientes pasos:

- Paso 1: Preparación del espacio de trabajo.
- Paso 2: Análisis de calidad de la lecturas.
- Paso 3: Mapeado de lecturas cortas al genoma de referencia.
- Paso 4: Determinación de picos.
- Paso 5: Asociación de picos a genes diana.

Análisis de datos de ChIP-seq

El análisis de datos de ChIP-seq para el determinar los sitios del genoma donde se une un factor de transcripción en concreto o donde se encuentra localizada un modificación de histonas se divide en los siguientes pasos:

- Paso 1: Preparación del espacio de trabajo.
- Paso 2: Análisis de calidad de la lecturas.
- Paso 3: Mapeado de lecturas cortas al genoma de referencia.
- Paso 4: Determinación de picos.
- Paso 5: Asociación de picos a genes diana.

Fastq ChIP

Mapeo de lecturas cortas al genoma de referencia

Fastq ChIP

Típicamente se considera uno de los dos siguientes tipos de control:

- <u>Input:</u> Extracción de genómico para obtener la distribución esperada del fondo.
- <u>Mock:</u> Se sigue exactamente el mismo protocolo que con el ChIP pero no se añade anticuerpo. Se obtendrá la principitación inespecífica del fondo.

Fastq ChIP

Mapeo de lecturas cortas al genoma de referencia

cd Desktop/prr5/genome bowtie2-build chromosome1.fa index

cd ../samples/chip bowtie2 -x ../../genome/index -U chip_prr5_chr1.fastq -S chip.sam

Mapeo de lecturas cortas al genoma de referencia

cd Desktop/prr5/genome bowtie2-build chromosome1.fa index

cd ../samples/chip bowtie2 -x ../../genome/index -U chip_prr5_chr1.fastq -S chip.sam

Mapeo de lecturas cortas al genoma de referencia

samtools sort -o chip.bam chip.sam samtools index chip.bam

Análisis de datos de ChIP-seq

El análisis de datos de ChIP-seq para el determinar los sitios del genoma donde se une un factor de transcripción en concreto o donde se encuentra localizada un modificación de histonas se divide en los siguientes pasos:

- Paso 1: Preparación del espacio de trabajo.
- Paso 2: Análisis de calidad de la lecturas.
- Paso 3: Mapeado de lecturas cortas al genoma de referencia.
- Paso 4: Determinación de picos.
- Paso 5: Asociación de picos a genes diana.

Determinación de Picos or Peak Calling

Acceder a la carpeta results Determinar picos usando macs2

macs2 callpeak

- -t ../samples/chip/chip.bam
- -c ../samples/input/input.bam
- -f BAM
- --outdir.
- -n prr5

Visualización de los Picos en IGV

Es necesario abrir IGV, crear un genoma a partir de los ficheros fasta y gtf además de cargar los ficheros chip.bam, input.bam y narrowPeaks

- Genomes → Create .genome File (rellenar los campos como se indica arriba)
- Los ficheros input.bam y control.bam: File → Load From File
- Los ficheros de salida de MACS2 narrowPeaks y .bed: File → Load From File

Análisis de datos de ChIP-seq

El análisis de datos de ChIP-seq para el determinar los sitios del genoma donde se une un factor de transcripción en concreto o donde se encuentra localizada un modificación de histonas se divide en los siguientes pasos:

- Paso 1: Preparación del espacio de trabajo.
- Paso 2: Análisis de calidad de la lecturas.
- Paso 3: Mapeado de lecturas cortas al genoma de referencia.
- Paso 4: Determinación de picos.
- Paso 5: Asociación de picos a genes diana.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El método más extendido para anotar picos o asignar el gen diana asociado a un pico es el del gen más cercano aguas abajo o **nearest downstream gene (NDG)**.

Genes expresados

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El método más extendido para anotar picos o asignar el gen diana asociado a un pico es el del gen más cercano aguas abajo o **nearest downstream**

gene (NDG).

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El método más extendido para anotar picos o asignar el gen diana asociado a un pico es el del gen más cercano aguas abajo o **nearest downstream**

gene (NDG).

El conjunto global de genes regulados por un FT en unas condiciones específicas se denomina **reguloma**. La determinación del reguloma a partir del cistroma NO es directa.

El método más extendido para anotar picos o asignar el gen diana asociado a un pico es el del gen más cercano aguas abajo o **nearest downstream**

gene (NDG).

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

