MATH210: Homework 5 (due Apr. 4)

손량(20220323)

Last compiled on: Monday 3rd April, 2023, 03:16

1 Section 43 #2

If $-\pi/2 < \theta < \pi/2$, $\cos \theta > 0$, so we can write

$$e^{i\theta} = \cos\theta + i\sin\theta = \cos\theta (1 + i\tan\theta)$$
$$= \frac{1 + i\tan\theta}{\sec\theta} = \frac{1 + i\tan\theta}{\sqrt{\sec^2\theta}} = \frac{1 + i\tan\theta}{\sqrt{1 + \tan^2\theta}}$$

Then $z[\phi(y)]$ can be written as follows since $-\pi/2 < \phi(y) < \pi/2$.

$$z[\phi(y)] = 2 \cdot \frac{1 + i \tan \phi(y)}{\sqrt{1 + \tan^2 \phi(y)}} = 2 \cdot \frac{1 + i \frac{y}{\sqrt{4 - y^2}}}{\sqrt{1 + \left(\frac{y}{\sqrt{4 - y^2}}\right)^2}}$$
$$= 2 \cdot \frac{1 + i \frac{y}{\sqrt{4 - y^2}}}{\sqrt{\frac{4}{4 - y^2}}} = 2 \cdot \frac{\sqrt{4 - y^2} + iy}{2} = \sqrt{4 - y^2} + iy$$

Thus, we can conclude that $Z(y) = z[\phi(y)]$ for -2 < y < 2. From equality 7 in section 40 and chain rule, the derivative of $\phi(y)$ can be calculated as follows:

$$\frac{d}{dy}\phi(y) = \frac{d}{dy}\left(\frac{y}{\sqrt{4-y^2}}\right) \frac{1}{1+\left(\frac{y}{\sqrt{4-y^2}}\right)^2} = \frac{\frac{\sqrt{4-y^2}-y\frac{-2y}{2\sqrt{4-y^2}}}{4-y^2}}{\frac{4}{4-y^2}}$$
$$= \frac{\sqrt{4-y^2}-y\frac{-y}{\sqrt{4-y^2}}}{4} = \frac{1}{\sqrt{4-y^2}}$$

from this, we know that $\phi(y)$ has a positive derivative.

2 Section 43 #6

2.1 Solution for (a)

By definition, y(x) = 0 if x = 0. From equation 13 in section 38, $\sin z = \sin x \cosh y + i \cos x \sinh y$ for z = x + iy, and since $\cosh y = (e^y + e^{-y})/2 > 0$ for all y, if $\sin z = 0$, then $x = n\pi$ where $n = 0, \pm 1, \pm 2, \ldots$ Thus, the arc intersects the real axis only at points z = 1/n and z = 0.

2.2 Solution for (b)

For z'(x) = 1 + iy'(x), y'(x) is continuous in $0 < x \le 1$ since $y \ x^3, 1/x$ are continuously differentiable in $0 < x \le 1$, and $\sin x$ is continuously differentiable in $x \ge \pi$. We can write

$$y'(0) = \lim_{h \to 0} \frac{y(h) - y(0)}{h} = \lim_{h \to 0} \frac{h^3 \sin(\pi/h)}{h} = \lim_{h \to 0} h^2 \sin(\pi/h)$$

Also, from $|h^2 \sin(\pi/h)| \le h^2$ we can conclude that y'(0) = 0 using sandwich theorem. For $0 < x \le 1$, we can write

$$y'(x) = 3x^2 \sin\left(\frac{\pi}{x}\right) - \frac{\pi}{x^2} \cdot x^3 \cos\left(\frac{\pi}{x}\right) = 3x^2 \sin\left(\frac{\pi}{x}\right) - \pi x \cos\left(\frac{\pi}{x}\right)$$

Using triangular inequality,

$$|y'(x)| = \left| 3x^2 \sin\left(\frac{\pi}{x}\right) - \pi x \cos\left(\frac{\pi}{x}\right) \right|$$

$$\leq \left| 2x^2 \sin\left(\frac{\pi}{x}\right) \right| + \left| -\pi x \cos\left(\frac{\pi}{x}\right) \right| \leq 2x^2 + \pi |x|$$

Then we can conclude that $\lim_{x\to 0+} y'(x) = 0$ using sandwich theorem, and y'(x) is continuous in [0,1]. We write the tangent vector **T** as follows:

$$\mathbf{T} = \frac{z'(x)}{|z'(x)|} = \frac{1 + iy'(x)}{\sqrt{1 + (y'(x))^2}} = \frac{1}{\sqrt{1 + (y'(x))^2}} + i\frac{y'(x)}{\sqrt{1 + (y'(x))^2}}$$

Since y'(x) is continuous in [0,1] and $\sqrt{1+(y'(x))^2}>0$, **T** is continuous in [0,1] and the arc is smooth.

3 Section 46 #9

3.1 Solution for (a)

Let C_1 be the top half of C, and represent it as follows:

$$z = e^{i\theta} \quad (0 \le \theta \le \pi)$$

We can write

$$f(z(\theta)) = \exp\left(-\frac{3}{4}\log z(\theta)\right) = \exp\left(-\frac{3}{4}(\ln 1 + i\theta)\right) = \exp\left(-\frac{3i\theta}{4}\right)$$

so

$$f(z(\theta))z'(\theta) = \exp\left(-\frac{3i\theta}{4}\right)ie^{i\theta} = ie^{i\theta/4} = -\sin\frac{\theta}{4} + i\cos\frac{\theta}{4} \tag{1}$$

where $0 \le \theta < \pi$. Then, the left hand limits of real and imaginary components at $\theta = \pi$ exist

$$\lim_{\theta \to \pi^-} \left(-\sin \frac{\theta}{4} \right) = -\frac{1}{\sqrt{2}}, \quad \lim_{\theta \to \pi^-} \cos \frac{\theta}{4} = \frac{1}{\sqrt{2}}$$

and $f(z(\theta))z'(\theta)$ is continuous on the closed interval $[0,\pi]$ when we define $f(\pi)$ as $(-1+i)/\sqrt{2}$.

Let C_2 be the bottom half of C, and write it as follows:

$$z = e^{i\theta} \quad (-\pi \le \theta \le 0)$$

We can write (1) in the same way as we did on C_1 , where $-\pi < \theta \le 0$. The right hand limits of real and imaginary components at $\theta = -\pi$ exist

$$\lim_{\theta \to -\pi +} \left(-\sin\frac{\theta}{4} \right) = \frac{1}{\sqrt{2}}, \quad \lim_{\theta \to -\pi +} \cos\frac{\theta}{4} = \frac{1}{\sqrt{2}}$$

and $f(z(\theta))z'(\theta)$ is continuous on the closed interval $[-\pi, 0]$ when we define $f(-\pi)$ as $(1+i)/\sqrt{2}$. Then contour integral of f over C can be written as

$$\int_{C} f(z)dz = \int_{C_{1}} f(z)dz + \int_{C_{2}} f(z)dz = i \int_{0}^{\pi} e^{i\theta/4}d\theta + i \int_{-\pi}^{0} e^{i\theta/4}d\theta$$
$$= i \int_{-\pi}^{\pi} e^{i\theta/4}d\theta = i \left[\frac{4}{i} e^{i\theta/4} \right]_{-\pi}^{\pi} = 4(e^{i\pi/4} - e^{-i\pi/4}) = 4\sqrt{2}$$

3.2 Solution for (b)

Let C_1 be the top half of C, and represent it as follows:

$$z = e^{i\theta} \quad (0 \le \theta \le \pi)$$

We can write

$$f(z(\theta)) = \exp\left(-\frac{3}{4}\log z(\theta)\right) = \exp\left(-\frac{3}{4}(\ln 1 + i\theta)\right) = \exp\left(-\frac{3i\theta}{4}\right)$$

so

$$f(z(\theta))z'(\theta) = \exp\left(-\frac{3i\theta}{4}\right)ie^{i\theta} = ie^{i\theta/4} = -\sin\frac{\theta}{4} + i\cos\frac{\theta}{4}$$
 (2)

where $0 < \theta \le \pi$. Then, the right hand limits of real and imaginary components at $\theta = 0$ exist

$$\lim_{\theta \to 0+} \left(-\sin\frac{\theta}{4} \right) = 0, \quad \lim_{\theta \to 0+} \cos\frac{\theta}{4} = 1$$

and $f(z(\theta))z'(\theta)$ is continuous on the closed interval $[0,\pi]$ when we define f(0) as i. Let C_2 be the bottom half of C, and write it as follows:

$$z = e^{i\theta} \quad (\pi \le \theta \le 2\pi)$$

We can write (2) in the same way as we did on C_1 , where $\pi \leq \theta < 2\pi$. The left hand limits of real and imaginary components at $\theta = 2\pi$ exist

$$\lim_{\theta \to 2\pi -} \left(-\sin\frac{\theta}{4} \right) = -1, \quad \lim_{\theta \to 2\pi -} \cos\frac{\theta}{4} = 0$$

and $f(z(\theta))z'(\theta)$ is continuous on the closed interval $[\pi, 2\pi]$ when we define $f(2\pi)$ as -1. Then contour integral of f over C can be written as

$$\int_C f(z)dz = \int_{C_1} f(z)dz + \int_{C_2} f(z)dz = i \int_0^{\pi} e^{i\theta/4} d\theta + i \int_{\pi}^{2\pi} e^{i\theta/4} d\theta$$
$$= i \int_0^{2\pi} e^{i\theta/4} d\theta = i \left[\frac{4}{i} e^{i\theta/4} \right]_0^{2\pi} = 4(e^{i\pi/2} - e^0) = -4 + 4i$$

4 Section 46 #13

If n = 0,

$$\int_{C_0} \frac{1}{z - z_0} dz = \int_{-\pi}^{\pi} \frac{1}{Re^{i\theta}} Rie^{i\theta} d\theta = 2\pi i$$

If $n = \pm 1, \pm 2, ...,$

$$\int_{C_0} (Re^{i\theta})^{n-1} dz = \int_{-\pi}^{\pi} (Re^{i\theta})^{n-1} Rie^{i\theta} d\theta = iR^n \int_{-\pi}^{\pi} e^{in\theta} d\theta$$
$$= \frac{R^n}{n} (e^{in\pi} - e^{-in\pi}) = \frac{2iR^n}{n} \sin n\pi = 0$$

5 Section 47 #5

Let $f(z) = \text{Log } z/z^2$. From the theorem in section 47, we can write

$$\left| \int_{C_R} \frac{\log z}{z^2} dz \right| \le ML$$

where M is a nonnegative constant such that $|f(z)| \leq M$ for all points z in C_R at which f(z) is defined, and L is the length of C_R . Since z is a point in C_R , |z| = R and we can represent C_R as $z = Re^{i\theta}$ for $-\pi \leq \theta \leq \pi$. Then, $\text{Log } z = \ln R + i\theta$ for $-\pi < \theta < \pi$. Using triangular inequality,

$$|f(z)| = \left| \frac{\log z}{z^2} \right| = \frac{|\log z|}{|z^2|} = \frac{|\ln R + i\theta|}{|z|^2} \le \frac{|\ln R| + |i\theta|}{|z|^2} < \frac{|\ln R| + \pi}{R^2}$$
(3)

The length of contour C_R is $2\pi R$, so we can write

$$\left| \int_{C_R} \frac{\log z}{z^2} dz \right| \le 2\pi \left(\frac{\pi + \ln R}{R} \right)$$

Since |f(z)| is strictly less than $(|\ln R| + \pi)/R^2$, the equality cannot hold and we get the desired result.

$$\left| \int_{C_R} \frac{\log z}{z^2} dz \right| < 2\pi \left(\frac{\pi + \ln R}{R} \right)$$

Using l'Hospital's rule,

$$\lim_{R \to \infty} 2\pi \left(\frac{\pi + \ln R}{R} \right) = \lim_{R \to \infty} \frac{2\pi}{R} = 0$$

From sandwich theorem, we can conclude that the value of the contour integral tends to zero as $R \to \infty$.

6 Section 47 #6

We can write

$$z^{-1/2} = \exp\left(-\frac{1}{2}\log z\right) = \exp\left(-\frac{1}{2}(\ln|z| + i\theta)\right) = \exp\left(-\frac{1}{2}(\ln\rho + i\theta)\right)$$

where $\alpha < \theta < \alpha + 2\pi$ for some real number α . Then

$$|z^{-1/2}| = \left| \exp\left(-\frac{1}{2} (\ln \rho + i\theta) \right) \right| = \left| \exp\left(-\frac{1}{2} \ln \rho \right) \right| \left| e^{-i\theta/2} \right| = \left| \exp\left(-\frac{1}{2} \ln \rho \right) \right| \le \frac{1}{\sqrt{\rho}}$$

Since f(z) is analytic in the disk $|z| \le 1$, it is bounded in the disk and there exists a nonnegative constant M_0 such that $|f(z)| \le M_0$ for all z in the disk $|z| \le 1$. From this, we know that $|z^{-1/2}f(z)| \le M_0/\sqrt{\rho}$. Using the theorem in section 47, we can write

$$\left| \int_{C_{\rho}} z^{-1/2} f(z) dz \right| \le 2\pi \rho \cdot \frac{M_0}{\sqrt{\rho}} = 2\pi M_0 \sqrt{\rho}$$

We can take $M = M_0$ and get the desired result. $2\pi M \sqrt{\rho}$ tends to 0 as $\rho \to 0$, so the value of the contour integral also tends to 0 by the sandwich theorem.

7 Section 49 #5

Let f(z) be z^i where the branch $-\pi/2 < \arg z < 3\pi/2$ is taken, and g(z) be z^i where the principal branch is taken, and

$$F(z) = \frac{\exp((i+1)\log z)}{i+1} = \frac{\exp((i+1)(\ln|z| + i\arg z))}{i+1}$$

where $-\pi/2 < \arg z < 3\pi/2$. Then

$$F'(z) = \exp((i+1)\log z) \cdot 1/z = \exp((i+1)\log z) \cdot \exp(-\log z) = \exp(i\log z) = z^i$$

So F(z) is an antiderivative of f(z). From

$$f(z) = z^{i} = \exp(i\log z) = \exp(i(\ln|z| + i\arg z)) \qquad \left(|z| > 0, -\frac{\pi}{2} < \arg z < \frac{3\pi}{2}\right)$$
$$g(z) = z^{i} = \exp(i\log z) = \exp(i(\ln|z| + i\operatorname{Arg} z)) \qquad (|z| > 0, -\pi < \operatorname{Arg} z < \pi)$$

In any contour from z = -1 to z = 1, f(z) = g(z), so we can write

$$\int_{-1}^{1} g(z)dz = \int_{-1}^{1} f(z)dz = [F(z)]_{-1}^{1} = F(1) - F(-1)$$
$$= \frac{1 - e^{(i+1)i\pi}}{i+1} = \frac{1 + e^{-\pi}}{i+1} = \frac{1 + e^{-\pi}}{2}(1 - i)$$

8 Section 53 #1

8.1 Solution for (b)

 $f(z)=ze^{-z}$ is a product of two entire functions, z and e^{-z} , so it is an laytic in the contour and its interior. Applying the Cauchy-Goursat theorem, we know that the integral is zero regardless of direction.

8.2 Solution for (f)

f(z) = Log(z+2) is analytic in the contour and its interior since the points in the unit disk with its center on z=2 does not intersect with branch cut. Applying the Cauchy-Goursat theorem, we know that the integral is zero regardless of direction.

9 Section 53 #2

9.1 Solution for (b)

Since $\sin(z/2) = 0$ holds if and only if $z = 0, \pm 2\pi, \pm 4\pi, \ldots, \sin(z/2) \neq 0$ in the closed region defined by C_1 and C_2 , so f(z) is analytic in the region. By the corollary in section 53, we get the desired result.

9.2 Solution for (c)

Since $1 - e^z = 0$ holds if and only if $z = 2in\pi, (n = 0, 1, 2, ...), 1 - e^z \neq 0$ in the closed region defined by C_1 and C_2 , so f(z) is analytic in the region. By the corollary in section 53, we get the desired result.

10 Section 53 #7

Let $f(z) = f(x+iy) = u(x,y) + iv(x,y) = \overline{z}$ and z(t) = x(t) + iy(t) $(a \le t \le b)$. We can write

$$\int_C f(z)dz = \int_a^b (ux' - vy')dt + i \int_a^b (vx' + uy')dt$$

$$= \int_C udx - vdy + i \int_C vdx + udy$$

$$= \iint_R (-v_x - u_y)dA + i \iint_R (u_x - v_y)dA$$

$$= \iint_R 0dA + i \iint_R [1 - (-1)]dA = 2i \iint_R dA$$

where R is the region enclosed by C. Let S be the area of the region, then

$$S = \iint_{R} dA = \frac{1}{2i} \int_{C} \overline{z} dz$$

and we get the desired result.