メモ (整数論)

hos

2019年6月10日

: は整数除算 (剰余の符号を被除数に合わせる).

1 mod 逆元 (2 冪)

奇数 a に対し、 $a \times (3a \operatorname{xor} 2) \equiv 1 \pmod{2^5}$ (黒魔術). $ab \equiv 1 \pmod{2^k}$ のとき、 $a \times b(2-ab) \equiv 1 \pmod{2^{2k}}$ $(1-ab(2-ab)=(1-ab)^2$ より). $ab \equiv -1 \pmod{2^k}$ のとき、 $a \times b(2+ab) \equiv -1 \pmod{2^{2k}}$ $(1+ab(2+ab)=(1+ab)^2$ より).

2 mod 逆元 (一般)

 $(r_0,s_0,t_0)=(a,1,0), (r_1,s_1,t_1)=(b,0,1), (r_i,s_i,t_i)=(r_{i-2},s_{i-2},t_{i-2})-(r_{i-2}\div r_{i-1})(r_{i-1},s_{i-1},t_{i-1})$ とすると, $r_i=as_i+bt_i,\gcd(s_i,t_i)=1$ が不変. $r_k=0$ になったとき, $|r_{k-1}|=\gcd(a,b)$ なので,特に $as_{i-1}\equiv \pm 1\pmod{b}$.

$$k \geq 3 \text{ is 5, } |s_2| < |s_3| < \dots < |s_{k-1}| < |s_k| = \frac{|b|}{\gcd(a,b)}, |t_2| < |t_3| < \dots < |t_{k-1}| < |t_k| = \frac{|a|}{\gcd(a,b)}.$$

3 mod 平方根 (素数)

p を奇素数とする。平方剰余 $a \in \mathbb{F}_p^{\times}$ に対し, b^2-a が平方非剰余となる $b \in \mathbb{F}_p$ は $\frac{p-1}{2}$ 個ある $(b^2-a=c^2$ の解は (b+c)(b-c)=a より $(b,c)=\left(\frac{t+at^{-1}}{2},\frac{t-at^{-1}}{2}\right)$ と書ける p-1 個で,c を -c に しても同じ b が対応して,c=0 は解でないので).よってそのような b は期待値約 2 回の乱択で見つかる. 2 次体 $\mathbb{F}_p(\sqrt{b^2-a})$ を考えて, $x=\left(b+\sqrt{b^2-a}\right)^{\frac{p+1}{2}}$ とすると,Frobenius 準同型の性質より $x^2=\left(b+\sqrt{b^2-a}\right)\left(b+\sqrt{b^2-a}\right)^p=\left(b+\sqrt{b^2-a}\right)\left(b-\sqrt{b^2-a}\right)=a$. $x^2=a$ の解は $\mathbb{F}_p(\sqrt{b^2-a})$ においても 2 個しかないので, $x\in\mathbb{F}_p$ である.

4 連立合同式

 $t\equiv B\pmod{M} \text{ かつ } at\equiv b\pmod{m} \text{ なる } t\text{ を求める}. \ t=B+Mz\text{ として}, \ aMz\equiv b-aB\pmod{m}$ が条件。 $g=\gcd(aM,m)\text{ とおいて}, \ g\nmid b-aB\text{ なら解なし}. \text{ そうでないとき}, \ x\equiv \left(\frac{aM}{g}\right)^{-1}\pmod{\frac{m}{g}}\text{ として } (\text{互除法で } aMx+my=g\text{ なる } (x,y)\text{ も求まっている}), \ z\equiv x\frac{b-aB}{g}\pmod{\frac{m}{g}}. \ t\text{ は mod } \frac{Mm}{g}\text{ で } (\text{mod } \frac{m}{g})$

5 Montgomery reduction

正の奇数 M に対し, $M < 2^k$ として, $M' \equiv -M^{-1} \pmod{2^k}$ をとっておく.

整数 a に対し, $2^{-k}a\equiv \frac{a+(aM'\bmod 2^k)M}{2^k}$ である (分子が $\equiv 0\pmod 2^k$) かつ $\equiv a\pmod M$ なので)。 $0\leq a<2^kM$ なら右辺は 0 以上 2M 未満.

 $\mod M$ で加減乗をたくさん行うとき, $f(a)=2^k a \mod M$ で変換してから行う. $f(ab)\equiv 2^{-k}f(a)f(b)$ (mod M).2 冪以外での除算は f の適用時のみになる.

6 多項式除算

除算 e(t) = f(t)q(t) + r(t) (deg e = m, deg f = n, $m \ge n$, deg q = m - n, deg r < n) の両辺を t^m で 割って $T = t^{-1}$ とすると, $E(T) = F(T)Q(T) + T^{m-n+1}R(T)$. ここで E, F, Q, R はそれぞれ e, f, q, r を係数逆順にした多項式 (r は n 項まで 0 埋め).

f が monic なら $F(0) \neq 0$ なので $F(T)F'(T) \equiv 1 \pmod{T^{m-n+1}}$ なる F' がとれて, $Q(T) = E(T)F'(T) \mod T^{m-n+1}$ として Q が求まる.

 $\mod f(t)$ を常にとりながら加減乗を行うとき、被除数は次数 2n-2 以下なので、F' は $\mod T^{n-1}$ で 1 回求めておけばよい。F' は F'(T)=1 から $F'\mapsto F'(2-FF')$ を $\lceil\log_2(n-1)\rceil$ 回繰り返せば求まる。 $O(n(\log n)^2)$ 時間だが、FFT の配列の長さをちゃんとやると $O(n\log n)$ 時間にできる。