

Anwendungs-Szenario 1:

Computing Isochrones in Multi-Modal, Schedule-Based Public Transport Networks

Bachelorarbeit Herbstsemester 2011

Themengebiet Software (Informationssysteme)

Eine Webseite zeigt auf einer Landkarte, wo es aktuell überall Nebel hat. Die

Betreuer: Prof. Stefan Keller

Experte: Claude Eisenhut

Anwendungs-Szenario 2:

Auf einem Job-Portal werden alle Angebote angezeigt, welche mit den öffentlichen Verkehrsmitteln innert einer Stunde ab dem Wohnort erreicht werden können.

Besucher können nach der Erfassung ihres Standorts den schnellsten Weg aus dem Nebel mit den ÖV ermitteln. vww.isochrone.ch Fahrplandaten Reisezeit in Minuten ⇔ SBB CFF FFS Nach: Von: Wie weit komme ich Hinwil, Berg Zollikerb., Langägerten/Spital innerhalb von zwei Kloten, Stadthaus Dübendorf, Giessen Stunden mit den ÖV Richterswil, Speerstrasse Dorf bei Andelfingen ab Rappi? Webseiten-Besuchen **GET-Request Einmaliger Datenimport** Daten in JSON, KML oder GML Vorberechnung Datenbank

- ... wählt einen beliebigen Startpunkt in der Schweiz und bestimmt die maximale Reisezeit
- ... sendet Anfrage als GET-Request oder WPS an Webserver
- ... benutzt Webbrowser oder Software für GIS für die Abfrage

- ... berechnet Isochronen (Linien mit der gleichen Zeit)
- ... beantwortet Anfragen in durchschnittlich 60ms (60 Min. Reisezeit, 3 Isochronen)
- ... benutzt vorberechnete Daten aus fast 10 Milliarden Tabelleneinträgen und ca. 3 TB Speicherplatz
- ... bietet standardisierte Programmschnittstellen an, u.a. REST und Web Processing Service (WPS)
- Berechnen der schnellsten ÖV-Reiserouten mit Hilfe eines verbesserten Dijkstra-Algorithmus (Semesterarbeit Lynn & Birchler, 2011)
- Die Berechnung würde auf einem PC ein halbes Jahr dauern. Dies konnte durch ein verteiltes System und paralleles Rechnen auf zwei Wochen reduziert werden.