Dimension of Stationary Measures

Françios Ledrappier and Pablo Lessa Notes: Yuxiang Jiao

Contents

1	Generalities about dimension and statement of results (Françios, May 1)	1
2	Stationary measures and entropies (Françios, May 2)	3
3	(Françios, May 3)	4
4	Applications of exact dimension to Anosov representations (Pablo, May 4)	5
5	Examples and idea of the proof (Pablo, May 4)	7
6	(Pablo, May 5)	9

§1 Generalities about dimension and statement of results (Françios, May 1)

We will follow the paper [LL23].

Let (X, d) be a separable metric space and μ be a Radon measure on X. The local dimension for $x \in X$ is defined as

$$\overline{\dim}_{\boldsymbol{x}}(\mu) \coloneqq \limsup_{r \to 0} \frac{\log \mu(\boldsymbol{B}(\boldsymbol{x},r))}{\log r}, \quad \underline{\dim}_{\boldsymbol{x}}(\mu) \coloneqq \liminf_{r \to 0} \frac{\log \mu(\boldsymbol{B}(\boldsymbol{x},r))}{\log r}$$

Definition 1.1. We say μ is **exact dimensional** if there is a constant δ such that for μ almost every x,

$$\overline{\dim}_{\chi}(\mu) = \underline{\dim}_{\chi}(\mu) = \delta.$$

This is also related to the Hausdorff dimension. For a subset $A \subset X$ and $\alpha > 0$, the Hausdorff outer measure

$$H_{\alpha}(A) := \lim_{\varepsilon \to 0} \inf \left\{ \sum_{i} \varepsilon_{i}^{\alpha} : A \subset \bigcup_{i} B(x_{i}, \varepsilon_{i}), \varepsilon_{i} < \varepsilon \text{ for every } i \right\}.$$

The Hausdorff dimension of A is defined as

$$\dim_{\mathbf{H}} A := \inf\{\alpha \geqslant 0 : H_{\alpha}(A) = 0\}.$$

Fact 1.2. If μ is exact dimensional with dimension δ , then

$$\delta = \inf\{\dim_{\mathsf{H}}(A) : \mu(A) > 0\} = \inf\{\dim_{\mathsf{H}} : \mu(X \setminus A) = 0\}.$$

Example 1.3

Graph of the Weierstrass function

$$\phi(x) = \sum_{n=0}^{\infty} \lambda^n \cos(2\pi b^n x)$$

- where $b \in \mathbb{N}$ and $\lambda \in (\frac{1}{b}, 1)$. Besicovitch-Ursell (1937): $\dim_{\mathbb{H}} \{(x, \phi(x))\} \leq 2 + \log \lambda / \log b$.
 - W. Shen (2018): $\dim_{\mathbf{H}} \{(x, \phi(x))\} = 2 + \log \lambda / \log b$.

Let $(X_1, d_1, \mu_1), (X_2, d_2, \mu_2)$ be two spaces with dim $\mu_i = d_i$. Then $\mu_1 \otimes \mu_2$ is exact dimensional on $(X_1 \times X_2, \max\{d_1, d_2\})$ and $\dim(\mu_1 \otimes \mu_2) = \delta_1 + \delta_2$.

Let (X, d_X, μ) be a space and $\pi(X, d_X) \to (Y, d_Y)$ be a Lipschitz map. Then

$$\overline{\dim}_{\pi(x)}(\mu_*\mu) \leqslant \overline{\dim}_x(\mu), \quad \underline{\dim}_{\pi(x)}(\mu_*\mu) \leqslant \underline{\dim}_x(\mu).$$

Moreover, there exists a family of $y \mapsto \mu_{v}$ of disintegration, that is

$$\int f(x)\mathrm{d}\mu(x) = \int_{Y} \int_{\pi^{-1}(y)} f(x)\mathrm{d}\mu_{y}(x)\mathrm{d}\mu(y).$$

Assume that for μ almost every y, μ_v is exact dimensional with dimension δ . If (X, δ) is Lipschitz equivalent to an Euclidean space, then

$$\underline{\dim}_{x}(\mu) \geqslant \underline{\dim}_{\pi(x)}(\mu_{*}\mu) + \delta.$$

Example 1.4

- 1. The Cantor measure is exact dimensional and with dimension $\log 2/\log 3$.
- 2. Let μ_p be the Bernoulli measure with law (p, 1-p) on $\{0,1\}^{\mathbb{N}} \approx [0,1]$, then dim $\mu_p =$ $-p\log p - (1-p)\log(1-p).$
- 3. Consider μ_p on $\{0,1\}^{\mathbb{N}}$ isomorphic to the Cantor set embedded into [0,1], then dim $\mu_p=$ $[-p \log p - (1-p) \log(1-p)]/\log 3.$
- 4. In general, push μ_p on $\{0,1\}^{\mathbb{N}}$ to the (λ,ρ) -Cantor set (the limit set given by $(x\mapsto \lambda x)$ and $(x \mapsto \rho x + (1-\rho))$ on [0,1]), also denoted by μ_p . Then the dimension is

$$\dim \mu_p = \frac{-p\log p - (1-p)\log(1-p)}{-p\log \lambda - (1-p)\log \rho}.$$

Random walk on matrices. Let μ be a countably supported probability measure on $SL(d, \mathbb{R})$. Let $(\Omega, m) := (\mathrm{SL}(d, \mathbb{Z}), \mu)^{\mathbb{Z}}$ and σ be the left shift map on it. Let $g_n : \Omega \to \mathrm{SL}(d, \mathbb{R})$ be the projection onto its *n*-th coordinate. Let

$$X_n(\omega) = \begin{cases} g_{n-1}(\omega) \cdots g_0(\omega), & n \geqslant 0; \\ g_n^{-1}(\omega) \cdots g_{-1}^{-1}(\omega), & n < 0. \end{cases}$$

Then $X_{m+n}(\omega) = X_m(\sigma^n \omega) X_n(\omega)$.

Assume that $\lceil \log \|g\| d\mu(g) < \infty$. By the Oseledets' theorem, there exists a splitting

$$\mathbb{R}^d = E_1(\omega) \oplus E_2(\omega) \oplus \cdots \oplus E_N(\omega)$$

such that

$$\lim_{n\to\pm\infty}\frac{1}{n}\log\|X_n(\omega)v\|=\chi_i,\quad\forall v\neq 0\in E_i(\omega),$$

where $\chi_1 > \chi_2 > \cdots > \chi_N$ are all the different Lyapunov exponents. Let $d_i = \dim E_i$, then

$$\sum_{i=1}^{N} d_i = d, \quad \sum_{i=1}^{N} d_i \chi_i = 0.$$

Let

$$\mathcal{X}(\omega) = (E_1(\omega), \cdots E_n(\omega)) \in \prod_{i=1}^N \mathcal{G}_{d_i}(\mathbb{R}^d) =: \mathcal{X},$$

where $\mathscr{G}_{d_i}(\mathbb{R}^d)$ is the Grassmannian.

Theorem 1.5 (Main Theorem) The distribution of $\mathcal{X}(\omega)$ is exact dimensional.

§2 Stationary measures and entropies (Françios, May 2)

More precisely, let M be the distribution of $\mathcal{X}(\omega)$, that is

$$M(A) = m(\{\omega : \mathcal{X}(\omega) \in A\}), \quad \forall A \in \mathcal{B}(\mathcal{X}).$$

Then

$$\dim M = \Delta = \sum_{i \neq i} \gamma_{i,j}$$

where $0 \le \gamma_{i,j} \le d_i d_j$ will be explained later.

We also consider the flag variety on \mathbb{R}^d as

$$\mathcal{F} = \left\{ \{\, 0\,\} \subset U_1 \subset U_2 \subset \cdots \subset U_N = \mathbb{R}^d \,:\, U_i \text{ are subspaces of } \mathbb{R}^d, \ \dim U_j = \sum_{i \leqslant j} d_i \,\right\}.$$

For every $\omega \in \Omega$, let

$$f(\omega) = \left\{ \left\{ U_j(\omega) \right\} : U_j(\omega) = \bigoplus_{i \leq j} E_i(\omega) \right\} \in \mathscr{F}.$$

Then

$$v \in U_j(\omega) \iff \limsup_{n \to -\infty} \frac{1}{|n|} \log ||X_n(\omega)v|| \leqslant -\chi_j.$$

Note that $f(\omega)$ only depends on the negative coordinates of ω , or equivalently, $f(\omega)$ is $\sigma(g_n(\omega): n < 0)$ -measurable.

We also consider another flag variety

$$\mathscr{F}' = \left\{ \{\, 0\,\} \subset U_1' \subset U_2' \subset \cdots \subset U_N' = \mathbb{R}^d \,:\, U_i' \text{ are subspaces of } \mathbb{R}^d, \ \dim U_k' = \sum_{i > N-k} d_i \right\}.$$

Let

$$f'(\omega) = \left\{ \left\{ U_k'(\omega) \right\} : U_k'(\omega) = \bigoplus_{i > N-k} E_i(\omega) \right\} \in \mathcal{F}'.$$

3 (Françios, May 3) Ajorda's Notes

Then

$$v \in U_k(\omega)' \iff \limsup_{n \to +\infty} \frac{1}{n} \log ||X_n(\omega)v|| \leqslant \chi_{N-k+1}.$$

Similarly, $f'(\omega)$ is $\sigma(g_n(\omega) : n \ge 0)$ -measurable.

Let ν be the distribution of $f(\omega)$ and ν' be the distribution of $f'(\omega)$ on the flag varieties respectively.

Theorem 2.1 (Ledrappier-Lessa) (\mathcal{F}, v) is exact dimensional with dim $v = \sum_{i < j} \gamma_{i,j}$.

We can show the cocycle invariance of $f(\omega)$ as $f(\sigma\omega) = g_0(\omega)f(\omega)$. It follows that ν is a μ -stationary measure on \mathcal{F} .

Remark 2.2 We have no further assumptions on μ (such as the usual Zariski dense condition). So the μ -stationary measure on \mathcal{F} might not be unique. But we only consider this specific stationary measure.

Example 2.3

For the case of d=3 and $d_i=1$, we have two projection $(f(\omega) \mapsto U_1(\omega))$ and $(f(\omega) \mapsto U_2(\omega))$. These projections give two stationary measures $(\mathcal{L}, v_{\mathcal{L}})$ and $(\mathcal{P}, v_{\mathcal{P}})$. Rapaport (2021) has show that these projection measures are exact dimensional.

Definition 2.4. Let (Y, v) be a (G, μ) -space with $\mu * v = v$, the **Furstenberg entropy** is

$$\kappa(\mu, \nu) := \int_{G \times Y} \log \frac{\mathrm{d}g_{\star} \nu}{\mathrm{d}\nu} (gy) \mathrm{d}\mu(g) \mathrm{d}\nu(y).$$

Observation 2.5. $\kappa(\mu, \nu) = I(g_{-1}, f)$.

Here

$$I(\mathcal{A}, \mathcal{B}) = \sup_{A \in \mathcal{A}, B \in \mathcal{B}} H(A) + H(B) - H(A \vee B)$$

for two sub-algebras \mathcal{A}, \mathcal{B} .

Example 2.6

Back to Example 2.3, we have $\kappa(\mu, \nu_{\mathscr{F}}) - \kappa(\mu, \nu_{\mathscr{F}}) = I(g_{-1}, f|E_1)$. Note that the projections are indeed fiber bundles with disintegrations $v_{\mathscr{F}}^{\mathscr{G}}$ over $v_{\mathscr{F}}^{\mathscr{G}}$ and disintegrations $v_{\mathscr{F}}^{\mathscr{P}}$ over $v_{\mathscr{F}}$. **Theorem (Lessa).** Both $v_{\mathscr{F}}^{\mathscr{F}}$ and $v_{\mathscr{F}}^{\mathscr{P}}$ are exact dimensional and

$$\dim v_{\mathscr{F}}^{\mathscr{L}} = \frac{\kappa(\mu, \nu_{\mathscr{F}}) - \kappa(\mu, \nu_{\mathscr{L}})}{\chi_2 - \chi_3}.$$

§3 (Françios, May 3)

Now we consider the case in d=3. Let μ be a countably supported probability measure on $\mathrm{SL}(d,\mathbb{R})$ with $\int \|g\| \,\mathrm{d}\mu(g) < \infty$. Assume that there are three distinct Lyapunov exponents $\chi_1 > \chi_2 > \chi_3$. We have the Oseledts' splitting $\mathbb{R}^3 = E_1(\omega) \oplus E_2(\omega) \oplus E_3(\omega)$. Then we have

• the unstable flag $(E_1(\omega), E_1(\omega) \oplus E_2(\omega))$, and

• the stable flag $(E_3(\omega), E_3(\omega) \oplus E_2(\omega))$.

Other than the natural projections $(E_1, E_1 \oplus E_2) \mapsto E_1$ and $(E_1, E_1 \oplus E_2) \mapsto E_1 \oplus E_2$, we have another projection

$$(E_1, E_1 \oplus E_2) \mapsto (E_1 \oplus E_3, E_2).$$

This is a codimension one projection satisfying

- · equivariance,
- contraction $e^{n(\chi_3 \chi_1)}$ along the fiber,
- entropy $K_{1,3} = I(g_1, f|E_1 \oplus E_3, E_2)$.

We have the following two claims. The proofs will be left for later lectures.

Claim 3.1. Conditional measures are exact dimensional and the dimension is $\frac{K_{1,3}}{\gamma_1-\gamma_3}$.

Claim 3.2. In the setting, if the contraction is stronger in the fiber than in the quotient, then dimensions add up.

To understand the distribution of $(E_1 \oplus E_3, E_2)$, we consider the projections

- $(E_1 \oplus E_3, E_2) \mapsto E_2$, with the contraction rate $\chi_1 \chi_2$ along fibers, and
- $(E_1 \oplus E_3, E_2) \mapsto E_1 \oplus E_3$ with the contraction rate $\chi_2 \chi_3$ along fibers.

Now we apply the claim. If $\chi_2 \le 0$, then $\chi_1 - \chi_2 \ge \chi_2 - \chi_3$ and we use the first projection. Otherwise, $\chi_2 - \chi_3 \ge \chi_1 - \chi_2$, we use the second way of projection. This choice allows us to add the dimension.

Combing above two claims, we can show that $v_{\mathscr{F}}$ is exact dimension and

$$\dim \nu_{\mathcal{F}} = \begin{cases} \gamma_{1,3} + \gamma_{2,3} + \gamma'_{1,2} = \frac{K_{1,3}}{\chi_1 - \chi_3} + \frac{K_{2,3}}{\chi_2 - \chi_3} + \frac{K'_{1,2}}{\chi_1 - \chi_2}, & \chi_2 \geqslant 0; \\ \gamma_{1,3} + \gamma_{1,2} + \gamma'_{2,3} = \frac{K_{1,3}}{\chi_1 - \chi_3} + \frac{K_{1,2}}{\chi_1 - \chi_2} + \frac{K'_{2,3}}{\chi_2 - \chi_3}, & \chi_2 \leqslant 0. \end{cases}$$

It also shows a Ledrappier-Young formula as

$$\kappa(\mu, \nu_{\mathcal{F}}) = (\chi_1 - \chi_2)\gamma_{1,3} + (\chi_1 - \chi_2)\overline{\gamma}_{1,2} + (\chi_2 - \chi_3)\overline{\gamma}_{2,3},$$

each $\gamma \in [0, 1]$.

Corollary 3.3 $\dim v_{\mathscr{F}} \leq \dim_{\mathrm{LY}} v_{\mathscr{F}}$.

For general $d \ge 3$. For the random walks on $SL(d, \mathbb{R})$, let $E_1(\omega) \oplus \cdots \oplus E_N(\omega)$ be the splitting. Let T be a topology on $\{1, 2, \cdots, N\}$ which is finer than $T_0 = \{\{1, \cdots, N\}, \{2, \cdots, N\}, \cdots, \{N\}\}\}$. In another word, let T(i) denote the atom of i, then $T(i) \subset \{i, i+1, \cdots, N\}$. All such topologies correspond to all the ways to projection. See Intermediate bundles.

§4 Applications of exact dimension to Anosov representations (Pablo, May 4)

Example 4.1 (Schottky groups in $SL(2, \mathbb{R})$)

Let R_i , A_i be disjoint closed intervals in $X = \mathcal{P}(\mathbb{R}^2)$ and $\gamma_i \in SL(2, \mathbb{R})$ such that

$$\gamma_i(X \setminus R_i) \subset A_i$$
 and $\gamma_i^{-1}(X \setminus A_i) \subset R_i$.

The generated group Γ is free. Let Λ_{Γ} be the limit set, i.e., the smallest closed Γ-invariant

set.

Theorem (Bowen, Patterson, Sullivan, 1970s)

 $\dim_{H} \Lambda_{\Gamma} = \delta$, the critical exponent of $\sum_{\gamma \in \Gamma} ||\gamma||^{-2s}$.

Example 4.2 (Anosov representations in $SL(3, \mathbb{R})$)

Letting γ_i be as before, perturb $\begin{bmatrix} \gamma_i & 0 \\ 0 & 1 \end{bmatrix} \in SL(3, \mathbb{R})$ slightly, the generated group $\Gamma < SL(3, \mathbb{R})$ is Anosov.

Definition 4.3. Let Γ be a finitely generated group, a representation $\rho : \Gamma \to SL(3,\mathbb{R})$ is **Anosov** if there exists c > 0 such that

$$\frac{\sigma_1(\rho(\gamma))}{\sigma_2(\rho(\gamma))} > c \exp(c|\gamma|),$$

where σ_i are singular values and $|\gamma|$ denotes the word norm.

Remark 4.4 It took long to get this definition: Hitchin 1990s, Labourie 2000s, Kapovich-Leeb-Porti, Gvenritard-Guchard-Kassel-Weinhard, Bochi-Potrie-Sambarino 2010s.

If $\sigma_1(\rho(\gamma)) > \sigma_2(\rho(\gamma)) > \sigma_3(\gamma)$, there are well defined

- $\xi^1(\gamma)$ the most contracted line.
- $\xi^2(\gamma)$ the most contracted plane.
- $\xi(\gamma)$ the most contracted flag.

Then we can define the limit set

$$\Lambda_{\Gamma} := \left\{ \text{all limits of } \lim_{|\gamma_n| \to \infty} \xi(\gamma_n) \right\}.$$

Question 4.5. What is $\dim_{H}(\Lambda_{\Gamma})$?

Random walks on groups. Let Γ be a word hyperbolic group and ξ can be extended to the Gromov boundary $\partial\Gamma$ which is Hölder continuous. Furthermore, if $x \neq y \in \partial\Gamma$, then $\xi(x)$ and $\xi(y)$ are in general positions.

Let μ be a probability measure on Γ satisfying $\sum \mu(\gamma)|\gamma| < \infty$. Assume that Γ_{μ} , the semigroup generated by supp μ , is non-elementary.

Theorem 4.6 (Furstenberg, Maher-Tiozzo)

There exists a unique μ -stationary measure v_{μ} on the boundary $\partial \Gamma$.

Then we have $\xi_*\nu_\mu$ on Γ_Λ and $\xi_*^1\nu_\mu$, $\xi_*^1\nu_\mu$ on its projections to $\mathscr{P}(\mathbb{R}^3)$ and $\mathscr{G}_2(\mathbb{R}^3)$.

Fact 4.7.
$$\kappa = \kappa(\mu, \mu_{\nu}) = \kappa(\mu, \xi_{*}\nu_{\mu}) = \kappa(\mu, \xi_{*}^{1}\nu_{\mu}) = \kappa(\mu, \xi_{*}^{1}\nu_{\mu}).$$

Estimate the dimension. We have

$$\dim(\xi_* \nu_{\mu}) = \frac{\kappa_{1,3}^{\mathscr{F}}}{\chi_1 - \chi_3} + \frac{\kappa_{1,2}^{\mathscr{F}}}{\chi_1 - \chi_2} + \frac{\kappa_{2,3}^{\mathscr{F}}}{\chi_2 - \chi_3},$$

$$\dim(\xi_*^1 \nu_{\mu}) = \frac{\kappa_{1,3}^{\mathscr{P}}}{\chi_1 - \chi_3} + \frac{\kappa_{1,2}^{\mathscr{P}}}{\chi_1 - \chi_2},$$

$$\dim(\xi_*^2 \nu_{\mu}) = \frac{\kappa_{1,3}^{\mathscr{F}}}{\chi_1 - \chi_3} + \frac{\kappa_{2,3}^{\mathscr{F}}}{\chi_2 - \chi_3}.$$

Although is is hard to understand each $\kappa_{i,j}^*$, but we have

$$0 \leqslant \kappa_{i,j}^* \leqslant \chi_i - \chi_j$$
.

We also no that they sum up to the same κ . Hence

$$\kappa \leq \chi_1 - \chi_3 + \min\{\chi_1 - \chi_2, \chi_2 - \chi_3\},\$$

it follows that

$$\dim(\xi_* \nu_{\mu}) \leq 2.5.$$

Question 4.8. Is $\sup_{\mu} \dim(\xi_* \nu_{\mu}) = \dim_{H}(\Lambda_{\Gamma})$?

Theorem 4.9 (Li-Pan-Xu, in preparation) $\dim_{H}(\Lambda_{\Gamma}) \leq \sup_{\mu} \dim_{LY}(\xi_{*}\nu_{\mu}).$

Corollary 4.10 (Ledrappier-Lessa)

If $\rho : \Gamma \to SL(3,\mathbb{R})$ is Anosov, then $\dim_{\mathbb{H}}(\Lambda_{\Gamma}) \leq 2.5$.

§5 Examples and idea of the proof (Pablo, May 4)

Example 5.1

Let $X = \{(x_1, x_2) : x_i \text{ are 1-dimensional subspaces of } \mathbb{R}^2, \text{ and } x_1 \oplus x_2 = \mathbb{R}^2 \}$. We consider the projection $\pi : X \to X' = \mathcal{P}(\mathbb{R}^2), (x_1, x_2) \mapsto x_2$.

Aim 5.2. Turn it into a vector bundle with a nice $SL(2, \mathbb{R})$ -action.

Coordinates. For a pair $V=(V_1,V_2)$ where $V_1\oplus V_2=\mathbb{R}^2$ and $V_2=x'\in X'$. Let

$$\operatorname{Nil}(V) := \left\{ f : \mathbb{R}^2 \to \mathbb{R}^2 : V_1 \xrightarrow{f} V_2 \xrightarrow{f} 0 \right\}.$$

We define

$$\varphi_V : \text{Nil}(V) \to \pi^{-1}(x'), \quad \varphi_V(f) = ((\text{id} + f)V_1, (\text{id} + f)V_2).$$

This gives the coordinates of the vector bundle. For every $x' \in X'$, let $V = ((x')^{\perp}, x')$ and set $\psi_{x'} = \varphi_V$. We obtain the vector bundle structure.

The action of SL(2, \mathbb{R}). Note that $\varphi_{gV}^{-1}g\varphi_V(f)=gfg^{-1}$. Then we have

$$\psi_{gx'}^{-1}g\psi_{x'}(f) = \pi_{(gx')^{\perp}} - \pi_{g(x')^{\perp}} + gfg^{-1},$$

which is an affine map.

Example 5.3

Let $X = \{(x_1, x_2, x_3) : x_i \text{ are 1-dimensional subspaces of } \mathbb{R}^3, \text{ and } x_1 \oplus x_2 \oplus x_3 = \mathbb{R}^3 \}$. We consider the map

$$\pi: X \to X' := \{x_3' \subset x_{23}' : \dim x_3' = 1 \text{ and } \dim x_{23}' = 2\}, \quad (x_1, x_2, x_3) \mapsto (x_3, x_2 \oplus x_3).$$

Coordinates. $V = (V_1, V_2, V_3)$ where $V_1 \oplus V_2 \oplus V_3 = \mathbb{R}^3, V_2 \oplus V_3 = x'_{23}$ and $V_3 = x'_3$. Let

$$\operatorname{Nil}(V) := \left\{ f \,:\, \mathbb{R}^3 \to \mathbb{R}^3 \,:\, V_1 \stackrel{f}{\longrightarrow} V_2 \oplus V_3, \quad V_2 \stackrel{f}{\longrightarrow} V_3 \stackrel{f}{\longrightarrow} 0 \right\}.$$

Let $\varphi_V(f) = ((\mathrm{id} + f)V_1, (\mathrm{id} + f)V_2, (\mathrm{id} + f)V_3)$. Let $V = \{(x'_{23})^{\perp}, x'_{23} \cap (x'_3)^{\perp}, x'_3\}$ and set $\psi_{x'} = \varphi_V$, which gives the bundle structure. We can also verify that the action of $\mathrm{SL}(3,\mathbb{R})$ is fiberwise affine.

Intermediate bundles. The following is a diagram of all intermediate bundles in the case of d=3. The arrows denote a fiber bundle with one-dimensional fibers. Here x_i denotes a one-dimensional subspace and x_{ij} denotes a two-dimensional subspace.

How do we use this. Let μ be a probability measure on $SL(3,\mathbb{R})$ with $\chi_1 > \chi_2 > \chi_3$ and Oseledets' splitting $E_1(\omega) \oplus E_2(\omega) \oplus E_3(\omega)$. Consider its distribution on $X_1 \subset (\mathcal{P}(\mathbb{R}^3))^3$, denoted by v_1 . Then we project it onto X_0 , the flag space. The projection measure is denoted by v_0 . Then we can show v_0 is exact dimensional by two steps:

- For each one-dimensional fibers, show the disintegration is exact dimensional.
- For a fiber bundle over a fiber bundle $X \to X' \to X''$, if $X \to X'$ contracts stronger than $X' \to X''$, then the dimensions add up.

6 (Pablo, May 5) Ajorda's Notes

§6 (Pablo, May 5)