Chapter 5 Elementary Stochastic Analysis

Prof. Ali Movaghar

Goals in this chapter

- Characterization of random processes
- Analysis of discrete and continuous time
 Markov chains
- Long term behavior of random processes
- Birth and death processes
- The methods of stages

Random Process

- A random process can be thought of as a random variable that is a function of time.
 - X(t) is a random process.
 - □ At time, τ, X(τ) denotes an ordinary random variable with distribution $F_{x(τ)}(x)$.
 - X(t) describes the state of a stochastic system as a function of time.

Classification of Random Processes

- State space: the domain of values taken by X(t) can be discrete or continuous.
- Time parameter: which could be discrete or continuous.

Classification of Random ... (Con.)

- Variability: refers to the time-related behavior of the random process.
 - A stationary process is a random process does not change its property with time. For a nonstationary
 - X(t_i) and X(t_{i+1}) may have different distribution.
 - For i and j, j>i, the dependance between X(t_i) and X(t_j) varies with the time origin t_i

Classification of Random ... (Con.)

- Correlation aspect : let t₁<t₂<...<t_n. The random variable X(t_n)
 - may be independent of X(t₁), ... X(t_{n-1}):
 Independent process
 - Only depends on X(t_{n-1}): Markov Process

Markov Processes

- Let t₁<t₂<...<t_n. Then P(X(t_n)=j) denotes the probability of finding the system in state j at time t_n.
- The Markovian property states that :

$$P[X(t_n)=j \mid X(t_{n-1})=i_{n-1}, \ X(t_{n-2})=i_{n-2}, \dots] = P[X(t_n)=j \mid X(t_{n-1})=i_{n-1}]$$

Note that t_n,t_{n-1},t_{n-2}... above are arbitrary time instants and j, i_{n-1}, i_{n-2}, ... are arbitrary state values.

Markov Processes (Con.)

- The process is memoryless to
 - the states visited in the past
 - the time already spent in the current state

Markov Processes (Con.)

- State residence time of a Markov process can not be arbitrary
 - for a homogeneous Markov process is
 - Geometric for the discrete state space domain.

Exponential for the continuous state space domain.

Independent Processes

- Let X_i denote the time between the occurrence of (i-1)th and ith events.
- If the X_i 's are independent, identically distributed random variables, X_i is a renewal process.
- Renewal process is a special case of the independent processes.
 - Example : the arrival process to a queuing system, successive failures of system components.

Independent Processes (Con.)

- Let $F_x(t)$ and $f_X(t)$ denote the distribution and density function of the X_i 's.
- Let $S_n = X_1 + ... + X_n$ denoting the time until the occurrence of nth event.
 - □ The distribution of S_n is n-fold convolution of $F_X(t)$ with itself \rightarrow $F_{(n)}(t)$
- The process S_n is also known as the random walk process.

Independent Processes (Con.)

- Let N(t) denote the number of renewals in time (0,t].
- This process is called renewal counting process; it is stationary, discrete state random process. It is easy to see that
 - □ $P[N(t) \ge n] = P(S_n \le t) = F_{(n)}(t)$

Poisson Process

- Let renewal process with X_i's are exponentially distributed
- Thus N(t) has the Poisson distribution. The resulting renewal counting process is also called a Poisson process.

Poisson Process (Con.)

- A Poisson process has the following properties:
 - Relation to exponentional distribution : Interevent time is exponentially distributed
 - Uniformity: Probability of more than one arrival in a small interval is negligible
 - Memorylessness: Past behavior is totally irrelevent
 - Mixture: Sum of k independent Poisson streams with rates $λ_1,...,λ_k$ is also Poisson with rate λ= $λ_1+...+λ_k$.

Poisson Process (Con.)

- Probability split: A k-way probabilistic probabilistic split of a Poisson stream with probabilities q₁,...,q_k creates k independent Poisson substream with rates q₁ λ,...,q_k λ.
- Limiting probability: The average random process of k independent renewal counting processes, A₁(t),...,A_k(t) each having arbitrary interevent-time distribution with finite mean (m_i) is

$$X(t)=[A_1(t)+...+A_k(t)]/k$$

which has Poisson distribution with rate $k/\Sigma(1/m_i)$ as $k\to\infty$

Analysis of Markov Chains

- State probability π_j(t)=P(X(t)=j) denotes the probability that there are j customers in the system at time t.
- Transition probability P_{ij}(u,t) = P[X(t) = j | X(u) = i] denotes the probability that the system is in state j at time t, given it was in state i at time u.

Analysis of Markov Chains

- $-\pi_{j}(t) = \sum_{i} \pi_{i}(u) P_{ij}(u,t), (*)$
- We can rewrite (*) formula in a matrix form.
 - \square $\Pi(t) = [\pi_0(t), \pi_1(t), ...]$ as a row vector
 - H(u,t) as the square matrix of P_{ij}(u,t)'s
 - Π(t) = Π(u) H(u,t), (**) gives the state probability vector for both discrete and continuous parameter case.

Analysis of Markov Chains

In following we show how to find state probability vector for both transient and steady-state behavior of discrete and continuous parameter cases.

Discrete Parameter Case

- Solving $\Pi(t) = \Pi(u) H(u,t)$ when time is discrete:
 - Define Q(n) as H(n,n+1) and let u=n and t=n+1: $\Pi(n+1) = \Pi(n) Q(n)$
 - □ A representative element of Q(n) is $P_{ij}(n,n+1)$ denoted as $q_{ij}(n)$ and called one-step transition
 - $\neg q_{ij}(n) \in [0,1]$ and, for each row, $\sum_{j=1}^{n} q_{ij}(n) = 1$
 - □ Homogenous chains are stationary and so $q_{ij}(n)$'s are independent of the time parameter n: $\Pi(n+1) = \Pi(n)Q$ (***)
 - \square $\Pi(0)$ is known and so $\Pi(n)$ can be computed
 - A general expression for Π(n) (transient probability), ztransform is used

- Let the z-transform of $\Pi(n)$ denoted as $\Phi(z)$.
 - \Box Like $\Pi(n)$, $\Phi(z)$ is a vector $[\phi_0(z), \phi_1(z),...]$ where $\phi_i(z)$ is the z-transform of the probability of being in state i

$$\phi_i(z) = \sum_{k=0}^{\infty} \pi_i(k) z^k$$

 $\varphi_i(z) = \sum_{k=0}^\infty \pi_i(k) z^k$
• Multiplying both side of equation (***) by zⁿ⁺¹, summing over all n, we get $\Phi(z)$ - $\Pi(0) = \Phi(z)Qz$, which simplifies to give

$$\Phi(z) = \Pi(0)[I - Qz]^{-1}$$

 \square $\Pi(n)$ can be retrieved by inverting $\Phi(z)$. $\Pi(n)$ is the probability state vector for transient behavior of discrete Markov chain.

- to find Φ(z), det(I-Qz) should be equal to 0 (remember that the equation xQ=λx has a nontrivial solution x if and only if (Q-λI) is singular or det(Q-λI)=0)
- The equation det(I-Qz)=0 is characteristic equation of the Markov chain and its root are characteristic roots.
- to invert φ_i(z), find its partial-fraction expansion and use appendix E to find its inverse. (Study example B.2)

- □ Generally the partial-fraction expansion of $\phi_i(z)$ for any state i, will have denominator of the form $(z-r)^k$, where r is characteristic root.
- □ The inversion of $\phi_i(z)$ to get $\pi_i(n)$ is a sum of terms, each of which contains terms like r^{-n} .
- □ If system is stable, such terms when n→∞ cannot blow up. So non-unity roots must be larger than 1.
- □ Since at least one of the $\pi_i(n)$ must be nonzero when $n\to\infty$, at least one of the roots should be unity.

- The limiting (or steady-state) behavior of the system denoted as Π is defined by $\lim_{n\to\infty}\Pi(n)$
- If limiting distribution (Π) is independent of the initial conditions, we can obtain it more easily
 - Let e denote a column of all 1's.
 - □ П= ПQ and П.e=1
- A Markov chain can be represented by a directed graph, known as transition diagram. The nodes represent the states and the arcs represent the transition. The arcs are labeled by transition probabilities.

 Example: consider a discrete parameter Markov chain with the following single-step transition probability matrix

$$\begin{bmatrix} 2/3 & 1/3 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 1 \end{bmatrix}$$

■ Draw the state transition diagram for this chain. Assuming that the system is in state 1 initially, compute the state probability vector Π(n) for n=1,2,...,∞. Also compute the characteristic roots of Q and characterize the limiting behavior.

Solution: the first few values of Π(n) can be obtained by simple matrix multiplication. For general case:

$$I - Qz = \begin{bmatrix} 1 - 2z/3 & -z/3 & 0 \\ -z/2 & 1 & -z/2 \\ 0 & 0 & 1-z \end{bmatrix}$$

$$(1-z)(1-2z/3-z^2/6) = 0, \ z_0 = 1, \ z_1 = -2 + \sqrt{10}, \ z_2 = -2 - \sqrt{10}$$

 As expected one root is unity and the others have magnitude larger than 1. So the Markov is stable.

• we can see that $n\to\infty$, the system settle in state 3 with probability 1. therefore the unity root appear only in $\phi_3(z)$.

The other two roots appear in all ϕ_i 's and will lead to a damped oscillatory effect which eventually die down to zero.

Since $\Pi(0) = [1 \ 0 \ 0]$, the first row of $[I-Qz]^{-1}$ is itself $[\phi_1(z), \phi_2(z), \phi_3(z)]$

- $\phi_1(z) = -6/(z^2 + 4z 6)$ then $\pi_1(n) = 0.9487[z_1^{-n-1} z_2^{-n-1}]$
- $\pi_2(n)$ and $\pi_3(n)$ can be computed similarly. To find out more about z-transform study B.3.1

Continuous Parameter Case

- We start again from $\Pi(t) = \Pi(u) H(u,t)$.
 - Let u =t-∆t.
 - □ Then $\Pi(t)$ $\Pi(t-\Delta t) = \Pi(t-\Delta t)$ [H(t- Δt ,t)-I].
 - □ Divide by Δt and taking limit as Δt→0, we get the following basic equation called (forward) chapman-kolmogorov equation:

$$\frac{\partial \Pi(t)}{\partial t} = \Pi(t)Q(t) \quad \text{where } Q(t) = \lim_{\Delta t \to 0} \frac{H(t - \Delta t, t) - I}{\Delta t}(*)$$

- Let q_{ij}(t) denote the (i,j) element of Q(t).
- \Box Let δ_{ij} denote the Kronecker delta function; δ_{ii} =1 otherwise 0

$$q_{ij}(t) = \lim_{\Delta t \to 0} \frac{P_{ij}(t - \Delta t, t) - \delta_{ij}}{\Delta t}$$

Continuous Parameter Case (Con.)

□ As $\Delta t \rightarrow 0$, then

$$1 - P_{ii}(t - \Delta t, t) = -q_{ii}(t)\Delta t$$
$$P_{ij}(t - \Delta t, t) = q_{ij}(t)\Delta t \text{ for } i \neq j$$

- Thus q_{ij}(t) for i≠j can be interpreted as the rate at which the system goes from state i to j, and -q_{ii}(t) as the rate at which the system departs from state i at time t.
- □ Because of this interpretation, Q(t) is called transition rate matrix such that :

matrix such that : $\sum_{j \neq i} P_{ij}(t - \Delta t, t) + P_{ii}(t - \Delta t, t) = 1$ Applying the limit as $\Delta t \rightarrow 0$ to above results $\sum_{i=0}^{\infty} q_{ij}(t) = 0$

- All elements in a row of Q(t) must sum to 0 j=0
- The off-diagonal elements of Q(t) must be nonnegative while those along diagonal must be negative.

Continuous Parameter Case (Con.)

Solving differential equation (*) gives

$$\frac{\partial \Pi(t)}{\partial t} = \Pi(t)Q(t) \quad \Rightarrow \Pi(t) = \Pi(0) \exp\left[\int_0^t Q(u) du\right]$$
 Again we focus on homogenous chains; the

Again we focus on homogenous chains; the transition rates are independent of time:

$$\frac{\partial \Pi(t)}{\partial t} = \Pi(t)Q \implies \Pi(t) = \Pi(0) \exp(Qt)$$

- To solve above equation, we use Laplace transforms
- Let ψ(s) denote the Laplace transform of Π(t)
- using the differential property of Laplace transform, above equation yields : $\Psi(s) = \Pi(0)[sI Q]^{-1}$

Continuous Parameter Case (Con.)

- The limiting (or steady-state) behavior of the system denoted as Π is defined by $\lim_{t\to\infty}\Pi(t)$
- If limiting distribution (Π) exists and is independent of the initial conditions, the derivation $\frac{\partial \Pi(t)}{\partial t}$ must be zero, and we get
 - □ ΠQ=0 and Π.e=1
 - It is somehow similar to the equations of discrete parameter case

Converting continuous to discrete parameter

- We can go from a discrete parameter system to a continuous one and vice versa
 - Let Q is a transition rate matrix; its diagonal elements must be negative and largest in magnitude in each row.
 - Let δ be a some positive number larger than all diagonal elements of Q
 - \square Q'= δ^{-1} Q+I
 - Obviously Q' is a transition probability matrix.

Example

Obtain steady–state queue length distribution for an open M/M/1 system

- $P_{k,k+1}(t,t+\Delta t) = Pr(T_a \leq \Delta t) = 1 e^{-\lambda \Delta t} = \lambda \Delta t + o(\Delta t)$
- $q_{k,k+1} = \lambda$ for any k and similarly $q_{k,k-1} = \mu$
- \Box Thus λ and μ are the forwards and backwards transition rates.

Example (Con.)

- This infinite system has a very simple solution.
 - \neg $-\lambda \pi_0 + \mu \pi_1 = 0 \rightarrow \pi_1 = \rho \pi_0$ where $\rho = \lambda/\mu$
 - $-\lambda \pi_0 (\lambda + \mu)\pi_1 + \mu \pi_2 = 0 \rightarrow \pi_2 = \rho^2 \pi_0$

 - $\Box \pi_n = \rho^n \pi_0$
 - $\pi_0 + \dots + \pi_n = 1 \rightarrow \pi_0 = (1 \rho)$

Long-Term Behavior of Markov Chains

- Consider a discrete Markov chain Z.
 - □ Let its limiting distribution be $\Pi = \lim_{t\to\infty} \Pi(t)$
 - □ Let Π^* be the solution of system equation Π = Π Q and Π .e=1 . Π^* is called stationary distribution.
 - Run Z with different (and arbitrary) initial distribution. Three possibilities exits:
 - It always settles with a same Π*; we have a unique limiting distribution which is equal to stationary distribution.
 - It never settles down. No limiting distribution exists.
 - It always settles, but long-term distribution depends on the initial state. The limiting distribution exists, but is non-unique.

State Classification and Ergodicity

- We introduce a number of concepts that identify the conditions under which a Markov chain will have unique limiting distribution.
 - Let f_{ii}(n) denote the probability that the system, after making a transition while in state i, goes back to state i for the first time in exactly n transitions.

- If state i has a self-loop, $f_{ii}^{(1)} > 0$, otherwise $f_{ii}^{(1)} = 0$
- f_{ii}⁽⁰⁾ is always zero.

State Classification ... (Con.)

 Let f_{ii} denote the probability that the system ever returns to state i;

$$f_{ii} = \sum_{n=1}^{\infty} f_{ii}^{(n)}$$

- If f_{ii}=1, every time the system leaves state i, it must return to this state with probability 1.
 - During infinitely long period of time, the system must return to state i infinitely often.
 - State i is called recurrent state.
- If f_{ii}<1, each time the system leaves state i, there is a finite probability that it does not come back to state i.</p>
 - Over an infinitely long observation period, the system can visit state i only finitely often.
 - State i is called transient state.

- Recurrent states are further classified depending on whether the eventual return occur in a finite amount of time.
- \Box Let θ_{ii} denote the expected time until it reenters state i.

$$\theta_{ii} = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$$

- If $\theta_{ii} = \infty$, we refer state i as null recurrent.
- Otherwise state i is called positive recurrent.

- If f_{ii}⁽ⁿ⁾>0 only when n equals some integer multiple of a number k>1, we call state i periodic.
- □ Otherwise (i.e. if $f_{ii}^{(n)}>0$ and $f_{ii}^{(n+1)}>0$ for some n), state i is called aperiodic.
- A Markov chain is called irreducible, if every state is reachable from every other state (strongly connected graph).

- Lemma 1. All states of an irreducible Markov chain are of the same type (i.e. transient, null recurrent, periodic, or positive recurrent and aperiodic).
 - Furthermore, in the periodic case, all states have a same period.
 - We can name an irreducible chain according to its state type.

- A Markov chain is called ergodic if it is irreducible, positive recurrent and aperiodic.
 - Aperiodicity is relevant only for discrete time chains.

- Lemma 2. An ergodic Markov chain has a unique limiting distribution, independent of the initial state.
 - It is given by Π= ΠQ and Π.e=1 for discrete-time case and by 0= ΠQ and Π.e=1 for continuoustime case.

Example 1.

 Classify all states of the discrete-time Markov chain whose state diagram is shown below.

Example 1. (Con.)

$$f_{11}^{(1)}=1/3$$
, $f_{11}^{(2)}=(1/3)(1/2)=1/6$, $f_{11}^{(3)}=(1/3)(1/2)(1/2)=1/12$

$$f_{11}^{(n)} = \frac{1}{3} \cdot \left(\frac{1}{2} \cdot \frac{1}{4}\right)^{\frac{n-3}{2}} \cdot \frac{1}{2} \cdot \frac{1}{2}$$
 for $n > 3$ and odd

$$f_{11}^{(n)} = \frac{1}{3} \cdot \left(\frac{1}{4} \cdot \frac{1}{2}\right)^{\frac{n-2}{2}} \cdot \frac{1}{2}$$
 for $n > 2$ and even

$$f_{11} = \sum_{n=1}^{\infty} f_{11}^{(n)} = \frac{1}{3} + \frac{1}{6} \sum_{m=0}^{\infty} \left(\frac{1}{8}\right)^m + \frac{1}{12} \sum_{m=0}^{\infty} \left(\frac{1}{8}\right)^m = \frac{13}{21}$$

State (1) is transient

Example 1. (Con.)

- □ State (4) is obviously recurrent since $f_{44} = f_{44}^{(1)} = 1$
- □ Without computing f_{22} and f_{33} , we can claim that states (2) and (3) are transient

Since the sub-graph consisting node 1, 2, and 3 is strongly connected.

Example 2.

Consider a discrete-time Markov chain with Q matrix shown below. Classify its states and the long-term behavior. Next consider (Q-I) as the transition rate matrix for a continuous parameter.

$$Q = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Example 2. (Con.)

For discrete case :

- Chain is irreducible
- Because of the finite number of states, it is positive recurrent
- Since the chain cycles through its three states sequentially, it is periodic with period 3, $f_{ii}=f_{ii}^{(3)}=1$
- Suppose that the chain is state 1 initially, $\Pi(0)=[1\ 0\ 0]$. It is easy to verify using the relation $\Pi(n)=\Pi(0)Q^{(n)}$ that

$$\Pi(n) = \begin{cases} [1 \ 0 \ 0] \text{ for } n=0, \ 3, \ 6, \ \dots \\ [0 \ 1 \ 0] \text{ for } n=1, \ 4, \ 7, \ \dots \\ [0 \ 0 \ 1] \text{ for } n=2, \ 5, \ 8, \ \dots \end{cases}$$

Therefore no limiting or steady-state distribution exists.

- □ If $\Pi(0)=[1/3 \ 1/3 \ 1/3]$, we get $\Pi(n)=\Pi(0)$.
- System is nonergodic chain and the limiting distribution depends on initial state.

Example 2. (Con.)

- For Continuous case:
 - The chain is no longer periodic .
 - □ The limiting distribution can be easily obtained as [1/3 1/3 1/3]

Example 3.

Characterize the Markov chain for the simple M/M/1 queuing system.

- The chain irreducible.
 - If λ>μ, we find that f_{ii}<1 and hence chain is transient.</p>
 - If λ≤μ, we find that f_{ii}=1 and hence chain is recurrent.
 - \Box If λ<μ, chain is positive recurrent.
 - \Box If $\lambda = \mu$, chain is null recurrent.

Analysis of Reducible Chains

- The limiting behavior of reducible chain necessarily depends on the initial distribution.
 - Because not every state is reachable from every initial state.
- We can decompose a reducible chain into maximal strongly connected components (SCC)
 - All states in a SCC are of the same type.
 - In long run, system could only be in one of the recurrent SCC.

Analysis of Reducible Chains (Con.)

- A recurrent SCC cannot have any transition to any state outside that SCC
 - Proof by contradiction
 - There is transition from α to some β
 - As SCC is maximal, there is no path from β to α

Analysis of Reducible Chains (Con.)

 A recurrent SCC cannot have any transition to any state outside that SCC

Ţ

- There is no path between various recurrent SCC's.
- The limiting distribution of chain can be obtained from those of SCC's:
 - If all recurrent SCC have a unique limiting distribution, then so does chain (depending on initial state)

Analysis of Reducible Chains (Con.)

- Define all SCC's in the chain
- Replace each SCC by a single state
 - There is only a transition from a transient state i to a recurrent SCC j.
 - The transition rates can be easily determined

$$q_{ij}^* = \sum_{\forall k \in SCC(j)} q_{ik}$$

- Solve new chain by Z (or Φ) transform method
 - □ P₁, ..., P_k denote limiting state probability for SCC₁...SCC_k
 - \square Π_i =[π_{i1} , π_{i2} ,...] denote the stationary distribution for ith SCC.
 - □ The limiting probability for state k of SCC i is $P_i \pi_{ik}$.

Example

 Characterize the limiting distribution for discrete-time Markov chain shown below.
 Assume that system is initially in state 1.

Example (Con.)

Solution.

 SCC1 is unconditionally ergodic whereas SCC2 is ergodic if the time is not discrete.

Example (Con.)

- □ The limiting distribution of SCC1 is [1/2 ½] and of SCC2 is [1/3 1/3 1/3]
- Since Π(0)=[1 0 0], we only need to compute the first row of the matrix [I-Qz]⁻¹:

$$\[\frac{1}{1 - 0.2z} \quad \frac{0.3z}{(1 - z)(1 - 0.2z)} \quad \frac{0.5z}{(1 - z)(1 - 0.2z)} \]$$

 \square Π = [0 0.375 0.625] as indicated in Figure P_a =0.3/0.8=0.375