Recall that a matrix A of order  $m \times n$  can be thought as a map from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  in following way:

$$u \rightarrow Au$$

Recall that a matrix A of order  $m \times n$  can be thought as a map from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  in following way:

$$u \rightarrow Au$$

We can observe that

$$A(u+v) = Au + Av$$
 for all  $u, v \in \mathbb{R}^n$ 

Recall that a matrix A of order  $m \times n$  can be thought as a map from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  in following way:

$$u \rightarrow Au$$

We can observe that

$$A(u+v) = Au + Av$$
 for all  $u, v \in \mathbb{R}^n$ 

A(cu) = c.Au for any real number c.

This motivates to define

### Definition (Linear Transformation)

A function  $T: \mathbb{R}^n \to \mathbb{R}^m$  is said to be Linear Transformation if T(u+v) = T(u) + T(v) for all  $u, v \in \mathbb{R}^n$ 



Recall that a matrix A of order  $m \times n$  can be thought as a map from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  in following way:

$$T(u)$$
  $u \rightarrow Au$ 

We can observe that

$$A(u+v) = Au + Av$$
 for all  $u, v \in \mathbb{R}^n$ 

A(cu) = c.Au for any real number c.

This motivates to define

### Definition (Linear Transformation)

A function  $T: \mathbb{R}^n \to \mathbb{R}^m$  is said to be Linear Transformation if

$$T(u+v) = T(u) + T(v)$$
 for all  $u, v \in \mathbb{R}^n$ 

T(cu) = c.T(u) for any real number c.

Define  $T: \mathbb{R}^2 \to \mathbb{R}^2$  as  $T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x \\ 0 \end{bmatrix}$ Projection onto X axis. Define  $T: \mathbb{R}^2 \to \mathbb{R}^2$  as  $T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$  scaling by 2.

Define  $T: \mathbb{R}^2 \to \mathbb{R}^2$  as  $T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x+y \\ x-y \end{bmatrix}$  rotation by 45 degree.

**TABLE 2** Contractions and Expansions



| Transformation   | Image of the Unit Square                                             |                                                                                                      | Standard Matrix                        |     |
|------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------|-----|
| Horizontal shear | $ \begin{array}{c} x_2 \\ 1 \\ 1 \\ 0 \end{array} $ $ k < 0 $        | $ \begin{array}{c} x_2 \\ k \\ 1 \\ 1 \end{array} $ $ \begin{array}{c} k \\ 0 \\ k > 0 \end{array} $ | $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | k 1 |
| Vertical shear   | $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \xrightarrow{x_2} x_1$ $k < 0$ | $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $k$                       |                                        | 0 1 |



Is T([x])=[|x|] a linear transformation from  $\mathbb{R} \to \mathbb{R}$ ?

Is 
$$T([x])=[|x|]$$
 a linear transformation from  $\mathbb{R}\to\mathbb{R}$ ?  
Is  $T(\begin{bmatrix}x_1\\x_2\end{bmatrix})=\begin{bmatrix}sin(x_1)\\2x_2\end{bmatrix}$ ) a linear transformation from  $\mathbb{R}^2\to\mathbb{R}^2$ ?

Is 
$$T([x])=[|x|]$$
 a linear transformation from  $\mathbb{R} \to \mathbb{R}$ ?  
Is  $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} sin(x_1) \\ 2x_2 \end{bmatrix}$ ) a linear transformation from  $\mathbb{R}^2 \to \mathbb{R}^2$ ?  
How does  $T$  look like?

If  $T: \mathbb{R}^n \to \mathbb{R}^m$  is a linear transformation then  $T(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}) = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix}_{m \times 1}$  for some real numbers  $a_{ij}, 1 \le i \le m, 1 \le j \le n$ .

If 
$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 is a linear transformation then 
$$T(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}) = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix}_{m \times 1}$$
 for some real numbers  $a_{ij}, 1 \le i \le m, 1 \le j \le n$ . 
$$T \text{ is represented by a matrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}_{m \times n}$$

If 
$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 is a linear transformation then 
$$T(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}) = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix}_{m \times 1}$$
 for some real numbers  $a_{ij}, 1 \le i \le m, 1 \le j \le n$ .

This represented by a matrix 
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}_{m \times n}$$
This matrix is called standard matrix representation of  $T$ .

$$T$$
 is represented by a matrix 
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

This matrix is called standard matrix representation of T.

Answer: First column of [T] is  $T(e_1)$ . where  $e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ 

Answer: First column of 
$$[T]$$
 is  $T(e_1)$ . where  $e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ 

Second column of 
$$[T]$$
 is  $T(e_2)$ . where  $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ 

Answer: First column of 
$$[T]$$
 is  $T(e_1)$ . where  $e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ 

Second column of 
$$[T]$$
 is  $T(e_2)$ . where  $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ 

So on and last column of 
$$[T]$$
 is  $T(e_n)$ . where  $e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$ 

#### Definition

A linear transformation  $T: \mathbb{R}^n \to \mathbb{R}^m$  is said to be onto if for each  $b \in \mathbb{R}^m$  there exists  $u \in \mathbb{R}^n$  such that T(u) = b

#### Definition

A linear transformation  $T: \mathbb{R}^n \to \mathbb{R}^m$  is said to be onto if for each  $b \in \mathbb{R}^m$  there exists  $u \in \mathbb{R}^n$  such that T(u) = b

#### Definition

#### Definition

$$T \longrightarrow A \longrightarrow Ax = 0$$

#### Definition

#### Definition

#### Definition

A linear transformation  $T: \mathbb{R}^n \to \mathbb{R}^m$  is said to be onto/surjective if for each  $v \in \mathbb{R}^m$  there exists  $u \in \mathbb{R}^n$  such that T(u) = v.

T -> A (ol(A) = IRM

No-of pivol entries

in REF(A) = M

### Definition

A linear transformation  $T: \mathbb{R}^n \to \mathbb{R}^m$  is said to be onto/surjective if for each  $v \in \mathbb{R}^m$  there exists  $u \in \mathbb{R}^n$  such that T(u) = v.



### Definition

A linear transformation  $T : \mathbb{R}^n \to \mathbb{R}^m$  is said to be bijective/invertible if T is one to one and onto.

I jomerphism.

Col(A): Let T be the linear transformation whose standard matrix is  $\begin{bmatrix} -4 & 8 & 1 \\ 2 & -1 & 3 \\ 0 & 0 & 5 \end{bmatrix}$  Does T map  $\mathbb{R}^4$  onto  $\mathbb{R}^3$ ? Is T a one-to-one mapping? no. of pivot entries = 3

Let T be the linear transformation whose standard matrix is

$$\begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix} \text{ Does } T \text{ map } \mathbb{R}^4 \text{ onto } \mathbb{R}^3\text{? Is } T \text{ a one-to-one }$$
 mapping?

#### Theorem

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation, and let A be the standard matrix for T. Then: T maps  $\mathbb{R}^n$  onto  $\mathbb{R}^m$  if and only if the columns of A span  $\mathbb{R}^m$ .

Let T be the linear transformation whose standard matrix is

Let 
$$T$$
 be the linear transformation whose standard matrix is 
$$\begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$
 Does  $T$  map  $\mathbb{R}^4$  onto  $\mathbb{R}^3$ ? Is  $T$  a one-to-one mapping?

#### Theorem

Let  $T:\mathbb{R}^n\to\mathbb{R}^m$  be a linear transformation, and let A be the standard matrix for T. Then: T maps  $\mathbb{R}^n$  onto  $\mathbb{R}^m$  if and only if the columns of A span  $\mathbb{R}^m$ .

T is one-to-one if and only if the columns of A are linearly independent.

Let T be the linear transformation whose standard matrix is

Let 
$$T$$
 be the linear transformation whose standard matrix is
$$\begin{bmatrix}
1 & -4 & 8 & 1 \\
0 & 2 & -1 & 3 \\
0 & 0 & 0 & 5
\end{bmatrix}$$
Does  $T$  map  $\mathbb{R}^4$  onto  $\mathbb{R}^3$ ? Is  $T$  a one-to-one onto an apping?

Theorem

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation, and let  $A$  be the

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation, and let A be the standard matrix for T. Then: T maps  $\mathbb{R}^n$  onto  $\mathbb{R}^m$  if and only if the columns of A span  $\mathbb{R}^m$ .

T is one-to-one if and only if the columns of A are linearly independent.

#### Theorem

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation, and let A be the standard matrix for T. T is bijective iff n = m and A is an invertible matrix.

## Composite Transformation



If  $T_1$ ,  $T_2$  are two linear transformations then so is composite of  $T_1$ ,  $T_2$ .

### Composite Transformation

If  $T_1$ ,  $T_2$  are two linear transformations then so is composite of  $T_1$ ,  $T_2$ .