Контрольная работа № 1 по курсу ЭМИ. «Равномерное распределение». 2024.

Термин «математическое ожидание» однозначен термину «среднее значение».

Задача _1__. Все значения равномерно распределенной случайной величины X лежат на отрезке [3;13]. Найти интервал [5; 5+ Δ] такой, что вероятность попадания случайной величины X в данный интервал равна 0,3. Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Задача __2_. Все значения равномерно распределенной случайной величины X лежат на отрезке [-4;6]. Найти интервал [1- Δ ; 1+ Δ] такой, что вероятность попадания случайной величины X в данный интервал равна 0,4. Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Задача __**3_.** Найти вероятность того, что случайная величина x с центром распределения \bar{x} = 10 и σ = 3 находится в пределах 2 < x < 12.

Считать распределение x - равномерным.

Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Задача _4__. Найти вероятность того, что случайная величина x с центром распределения \bar{x} = 4,0 и σ =1 не находится в пределах 3<x<6. Ответ выразите в процентах.

Считать распределение x - равномерным.

Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Задача _**5**_. Найти вероятность того, что случайная величина x, распределенная равномерно, окажется в интервале [$\bar{x} \pm 1,2\sigma$].

Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Задача _6__. Погрешность результата измерения тока Δ распределена равномерно с параметрами $\bar{\Delta}$ (математическое ожидание) и $\sigma(\Delta)$ (среднее квадратическое отклонение). Построить распределение случайной величины

 Δ , указать интервал $\{\bar{\Delta} \pm \Delta_P\}$, вероятность попадания в который P=0.90. $\bar{\Delta}$ = 0 мA, $\sigma(\Delta)$ =0.5 мA.

Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Задача _7__. Найти вероятность того, что случайная величина x, распределенная равномерно, не окажется в интервале $[\bar{x} - 0.5\sigma; \bar{x}]$.

Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Задача _8__. Измеряемая величина распределена равномерно с параметрами \bar{X} (математическое ожидание) и d — параметр равномерного распределения. Определить границы интервала $[\bar{X} \pm \Delta]$, вероятность попадания в который равна P=0.5. $\bar{X}=100$ B, d=4 B.

Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Задача _9__. Измеряемая величина распределена равномерно с параметрами \bar{X} (математическое ожидание) и σ_x - среднее квадратическое отклонение. Определить границы интервала $\{\bar{X} \pm \Delta\}$, вероятность попадания в который равна P=0.8.

$$\bar{X} = 80 \text{ B}, \, \sigma_{x} = 2 \text{ B}.$$

Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Задача __10_. Все значения равномерно распределенной случайной величины X лежат на отрезке [3;15]. Найти вероятность попадания случайной величины X в промежуток от 4 до 6.

Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Задача _**11**__. Все значения равномерно распределенной случайной величины X лежат на отрезке [-6;4]. Найти интервал [$\overline{X} \pm \Delta$] такой, что вероятность попадания случайной величины X в данный интервал равна 0,4.

Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Задача _12__. Найти вероятность того, что случайная величина x, распределенная равномерно, окажется в интервале $[\bar{x}; \bar{x} + 0.5\sigma]$.

Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Задача _13__. Найти вероятность того, что случайная величина x, распределенная равномерно, окажется в интервале $[\bar{x} - \sigma; \bar{x} + \sigma]$.

Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Задача __14_. Все значения равномерно распределенной случайной величины X лежат на отрезке [4;12]. Найти интервал [Δ ;12] такой, что вероятность попадания случайной величины X в данный интервал равна 0,3. Пояснить решение задачи графически, построив функцию плотности вероятности заданного распределения.

Пример задач на построение гистограммы распределения случайной величины.

Задача _____. Даны результаты измерения случайной величины X. Построить гистограмму плотности вероятности f(X). Принять число интервалов гистограммы k=5. Выбрать шаг гистограммы ΔX , исходя из условия $\Delta X = (X \max - X \min)/k$. N — номер экспериментальной точки.

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
X,	160	170	173	155	179	183	163	164	153	172	168	176	173	158	163
CM															