

Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders

Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck et al. 2017

Student - Matteo MARENGO ¹ Teacher - Emmanuel BACRY ²

27/03/2024

¹ ENS Paris-Saclay, Msc MVA (Mathématiques Vision Appentissage)

² CEREMADE, Université Paris-Dauphine, PSL

Audio Synthesis: Recent progresses

Générique Pokémon - Johnny Hallyday (Al Cover)

1,1 M de vues • il y a 8 mois

Audio Synthesis: Related Work

- Vocoders for TTS systems
- Synthesizers for Music
- Frequency Modulation (FM)
- WaveNet 2016

Contributions of the paper

- Limitations: Need of a temporal dependency
- No Dataset for audio

- Two main contributions of the paper:
- 1/ Novel WaveNet autoencoder architecture
- 2/ NSYNTH dataset

Spectral Autoencoder

- Baseline autoencoder composed of convolutional structures
- Inspired by models in Computer Vision

WaveNet architecture

ntroduction Methodology Results Experiments Outlooks Conclusion

AutoEncoder WaveNet architecture

- Temporal encoder that captures hidden embeddings distributed in time.
- 30-layer residual network of dilated convolutions → generates a sequence of hidden codes that represent the audio temporally.

CQT spectrogram

- Constant-q transform.
- CQT spectrogram uses filters spaced logarithmically in frequency
- Greater frequency resolution at lower frequencies and better temporal resolution at higher frequencies.

Nsynth dataset

Reconstruction

- WaveNet autoencoder: captures key characteristics (fundamental frequency, noise on the attack)
- Baseline Model: adds percussive sounds, suffers from noisy phase estimation

Interpolation in Timbre and Dynamics

- WaveNet autoencoder: it exhibits more realistic and perceptually interesting blends
- Baseline Model: adds phase distortion

Entanglement of Pitch and Timbre

- Decrease in pitch classification accuracy with conditioning.
- The effect is more pronounced in models with smaller embedding sizes.

Study a simple note – A4

Comparison of the spectrograms

Comparison of A4 spectrogram with A3A4 spectrogram

troduction Methodology Results Experiments Outlooks Conclusion

WaveNet architecture

ntroduction Methodology Results Experiments Outlooks Conclusion

Strengths & Weaknesses of the paper

- Methodology is thorough and well structured.
- It enables reproducibility and further research (e.g they give the hyperparameters)
- Qualitative and quantitative measures.
- They conducted diverse and comprehensive experiments.
- They only compare the WaveNet autoencoder with a baseline autoencoder.
- The Nsynth dataset is not balanced within classes → Is it an issue?
- No study on generalization or overfitting.
- No training on other datasets.
- No discussion on the computational part.

- Explore more memory-efficient neural network architectures (LSTM, Transformer)
- Improve the model's ability to separate pitch and timbre (e.g alternative conditioning strategies)
- More extensive validation on external datasets, add regularization techniques.

Outlooks

- JukeBox & MuseNet models by OpenAI demonstrates the capability of AI to compose music in various styles and genres.
- Google TacoTron or Facebook MelGAN

Conclusion

- The paper creates a large and diverse audio dataset.
- The field has used it for benchmarking and training (e.g GanSynth)
- The WaveNet autoencoder can do audio synthesis without external conditioning.
- But we have to be careful!
- One drawback can be the surge of deep fakes
- Cautious progress to avoid the ethical pitfalls.

THANK YOU!