МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

РОЗГОРТАННЯ ПРЕ-ТРЕНОВАНОЇ МОДЕЛІ КЛАССУ GPT В ЛОКАЛЬНОМУ СЕРЕДОВИЩІ

МЕТОДИЧНІ ВКАЗІВКИ

до виконання лабораторної роботи № 2 з дисципліни «Штучний інтелект в ігрових застосунках» для студентів бакалаврського рівня вищої освіти спеціальності 121 "Інженерія програмного забезпечення" Розгортання пре-тренованої моделі GPT в локальному середовищі: методичні вказівки до виконання лабораторної роботи №2 з дисципліни "Штучний інтелект в ігрових застосунках" для студентів першого (бакалаврського) рівня вищої освіти спеціальності 121 "Інженерія програмного забезпечення" . Укл.: О.Є. Бауск. -- Львів: Видавництво Національного університету "Львівська політехніка", 2025. -- 10 с.

Укладач: Бауск О.€., к.т.н., асистент кафедри ПЗ

Відповідальний за випуск: Федасюк Д.В., доктор техн. наук, професор

Рецензенти: Федасюк Д.В., доктор техн. наук, професор

Задорожний І.М., асистент кафедри ПЗ

Тема роботи: Розгортання попередньо тренуваної моделі GPT в локальному середовищі.

Мета роботи: Ознайомитись з основами функціонування системи-обгортки для моделей глибокого навчання OLLAMA, навчитися розгортати навчені моделі.

Теоретичні відомості

Висновок

Сучасні інструменти для розробки систем штучного інтелекту дозволяють розгортати навчені моделі в локальному середовищі. В даній работі демонструється, як швидко і ефективно це зробити використовуючи тільки базові інструменти у відкритому доступі.

Хід роботи

1. Налаштування інструменту розгортання моделей машинного навчання Ollama.

1.1. Залежно від системи, на якій проводиться розгортання, встановити інструмент залежно від інструкцій на офіційному сайті: https://ollama.ai/.

Ha Windows:

https://ollama.com/download/windows

Ha Linux:

curl -fsSL https://ollama.com/install.sh | sh

1.2. Перевірити інсталяцію:

ollama --version

Має вивести встановлену версію системи розгортання моделей без помилок.

2. Встановлення модели LLM

Для задач даної лабораторної роботи ми хочемо використовувати локально модель натуральної генерації мови, яка виконує приблизно ті базові задачі, що, наприклад, широко відомий ChatGPT-o4-mini.

Зазвичай виконання подібної LLM моделі локально на власній машині практично неможливе, как як вона має міліарди параметрів і потребує вкрай потужного апаратного забезпечення.

Для вирішення цієї проблеми використаємо так звану дистільовану модель DeepSeek-R1 з 1 міліардом параметрів.

УВАГА! Виконуйте даний етап тільки при наявності стабільного якісного інтернет з'єднання. Перевірте наявність кількох десятків ГБ вільного місця на диску.

Скачаємо архів з цією моделлю і розгорнемо його локально. В командній строці/терміналі:

```
ollama pull deepseek-r1
```

Перевіримо, що модель скачалась і зберігається локально:

```
ollama list
```

Ви маєте побачити інформацію про встановлену модель:

```
| Tool@localhost:-# ollamp pull deepseek-r1
| pulling 96c415556d3r. 100% | 1.1 KB |
```

3. Використання моделі Deepseek.

Запустіть модель локально.

```
ollama run deepseek-r1
```

Ви маєте отримати командну строку, в якій можна задавати моделі промпти, спостерігати генерацію процесу формування вектора відповідей, і генерацію тексту моделлю.

Буде доповнено

УМОВА ЗАВДАННЯ ДО ЛАБОРАТОРНОЇ РОБОТИ

- 1. Встановити систему розгортання моделей глибокого навчання Ollama.
- 2. Розгорнути локально LLM модель DeepSeek-R1 (Варіант з 1В параметрів).
- 3. Протестувати локальне розгортання моделі.
- 4. Дослідити налаштування моделей при локальному розгортанні, зрозуміти різницю між використанням онлайн- сервісів з LLM моделями та власного деплоймента.

Буде доповнено

ІНДІВІДУАЛЬНІ ВАРІАНТИ ЗАВДАННЯ

Створіти чат з локальною інсталяцією DeepSeek і використати наступні теми для розмови, залежно від номера в списку. Дослідити генерацію тексту моделью. Добитися від моделі

Буде доповнено

ЗМІСТ ЗВІТУ

- 1. Тема та мета роботи
- 2. Теоретичні відомості
- 3. Постановка завдання
- 4. Хід виконання роботи:
 - Скріншоти процесу створення локальної інсталяції
 - Код та пояснення для створення моделі
 - Скріншоти інтерфейсу
- 5. Результати роботи
- 6. Висновки

Буде доповнено

КОНТРОЛЬНІ ПИТАННЯ

Буде доповнено

СПИСОК ЛІТЕРАТУРИ

Буде доповнено