Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0}^{\#1} - 2 i k \sigma_{0}^{\#1} = 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}t^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}t^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	С
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	К
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	е
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{etalpha}+2\partial_{\delta}\partial_{\chi}\partial^{eta}\sigma^{lpha\chi\delta}$	
$\tau_{2}^{\#1}\alpha\beta - 2ik \sigma_{2}^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 - i(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi}$	2
	$3 \partial_{\delta} \partial_{\chi} \partial_{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial_{\delta} \partial_{\chi} \partial_{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\ ^{ec{l}}\ k^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\delta\epsilon}{}_{\delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -	
	$2 n^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\chi}$	
	$4 i \eta^{\alpha\beta} k^X \partial_\phi \partial^\phi \partial_\epsilon \partial_\chi \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	16

	$\sigma_{1}^{\#1}{}_{lphaeta}$	$\sigma_1^{\#2}{}_+ \alpha eta$	$\tau_1^{\#1}_+ \alpha \beta$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1^{}}^{\#1}\alpha$	${\mathfrak l}_{1^-}^{\#2}{}_{\alpha}$
$r_{1}^{#1} + \alpha \beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$r_1^{#2} + \alpha \beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
${r_1^{\#1}} + \alpha \beta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1} +^{lpha}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$
$\sigma_{1}^{\#2} +^{lpha}$	0	0	0	$-\frac{\sqrt{2} (t_1 - 2 t_3)}{3 (1 + 2 k^2) t_1 t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$\frac{i\sqrt{2} k(t_1+4t_3)}{3(1+2k^2)^2 t_1 t_3}$
$\tau_1^{\#1} + ^{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{#2} + ^{\alpha}$	0	0	0	$\frac{2ik(t_1-2t_3)}{3t_1t_3+6k^2t_1t_3}$	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
	$\omega_{1}^{\#1}{}_{\alpha\beta}$	$_{lphaeta}$ $\omega_{1}^{\#2}$ $_{lphaeta}$ $f_{1}^{\#1}$ $_{lphaeta}$	$_{lphaeta} = \omega_{1^{-}lpha}^{\#1}$		$\omega_{1^-}^{\#2}{}_{lpha}$ $f_{1^-}^{\#1}{}_{lpha}$		$f_{1^-}^{\#2}$

								1			
$f_{1^{-}}^{\#2}\alpha$	0	0	0	$\frac{1}{3}$ i k (t ₁ - 2 t ₃)	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$				
$f_{1^{\bar{-}}}^{\#1}\alpha$	0	0	0	0	0	0	0				
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1 + t_3}{3}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$		#1	-#1	
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$	$\omega_{0^{+}}^{\#1} \dagger$ $f_{0^{+}}^{\#1} \dagger$ $f_{0^{+}}^{\#2} \dagger$	$\omega_{0}^{#1}$ t_{3} $i \sqrt{2} kt_{3}$ 0	$f_{0+}^{#1}$ $-i \sqrt{2} kt_3$ $2 k^2 t_3$ 0	_
$f_1^{\#1}$	$-\frac{\bar{i}kt_1}{\sqrt{2}}$	0	0	0	0	0	0	$\omega_{0}^{#1}$ †	0	0	
$\omega_{1+}^{\#2}_{\alpha\beta}\;f_{1+}^{\#1}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0		$\sigma_{0^{+}}^{#1}$	$\tau_{0+}^{\#1}$	
$\omega_{1}^{\#1}{}_{lphaeta}$ ω_{1}	$\omega_{1+}^{\#1} + \alpha \beta \left \frac{k^2 r_1 - \frac{t_1}{2}}{2} \right - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	$\sigma_{0}^{#1}$ † $\tau_{0}^{#1}$ †	$\frac{1}{(1+2k^2)^2 t_3}$ $\frac{i\sqrt{2}k}{(1+2k^2)^2 t_3}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t}$ $\frac{2k^2}{(1+2k^2)^2t}$	
•	$+^{\alpha\beta}$	$\omega_1^{\#_2^2} +^{lphaeta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{#1} + \alpha$	$f_{1}^{\#2} +^{\alpha}$	$\tau_{0^{+}}^{\#2}$ †	0	0	
	$\omega_1^{\#1}$	$\omega_1^{\#2}$	$f_1^{\#1}$	$\mathcal{E}_{1}^{\#}$	\mathcal{E}_1^*	f_1^*	$f_1^{\#}$	$\sigma_{0}^{\sharp 1}$ †	0	0	

Massive and massless spectra

	Massive partic	le	
- ?	Pole residue:	$-\frac{1}{r_1} > 0$	
	Polarisations:	5	
	Square mass:	$-\frac{t_1}{2r_1} > 0$	
	Spin:	2	
	Parity:	Odd	

Unitarity conditions