Data Structures Programming Project #3

- A quantum network:
- Nodes has a limited units of quantum memory
- Nodes are interconnected with a limited number of quantum channels (e.g., optical fiber)

- Entangling (building an entangled link):
 Create an entangled pair between two nodes
- Precondition:
 Two nodes each with a quantum memory are interconnected with a quantum channel

- The two nodes may be distant from each other
- Classical networks:
 Repeaters use store and forward to transmit packets from a source to a destination

- However, the data qubit may visit untrusted repeaters
- It could be destroyed, peeked at, or faked

- Can we send the data qubits without letting repeaters know?
- Yes, via Entanglement Swapping

Entanglement Swapping

- Alice has a data qubit for Bob
- Entangling: build the links between Alice and the repeater and between Bob and the repeater
- Swapping: build a long-distance entanglement

- ullet To construct an entanglement between v_1 and v_5
- One possible scheduling is linear:
- Conduct swapping one hop by one hop from the source to the destination

- ullet To construct an entanglement between v_1 and v_5
- One possible scheduling is linear:
- Conduct swapping one hop by one hop from the source to the destination

- To construct an entanglement between v_1 and v_5
- One possible scheduling is linear:
- Conduct swapping one hop by one hop from the source to the destination

- To construct an entanglement between v_1 and v_5
- One possible scheduling is linear:
- Conduct swapping one hop by one hop from the source to the destination

- ullet To construct an entanglement between v_1 and v_5
- One possible scheduling is linear:
- Conduct swapping one hop by one hop from the source to the destination

Scheduling vs Strategy Tree (Binary Tree)

Any scheduling can be represented by a binary tree

Scheduling vs Strategy Tree (Binary Tree)

Different schedulings lead to different binary trees

Strategy Tree vs Numerology

• Different trees lead to different numerologies

Strategy Tree vs Numerology

Different trees lead to different numerologies

Strategy Tree vs Numerology

Different trees lead to different numerologies

Quantum Resource Allocation Problem

• Multiple numerologies can overlap within *T* if the number of memory units is sufficient at that time

System Model & Problem Formulation

- Given:
- A quantum network with nodes and edges
- Each node has limited memory units
- (Assume fiber channels are always sufficient)
- Multiple source-destination (SD) requests
- Number of time slots $(T: t_1 \sim t_n)$
- Goal: maximize # accepted requests
- Constraints:
- Find a path for each accepted SD request
- Find a numerology for each accepted SD request
- Each node's memory size cannot be violated

Programming Project #3: Entanglement Routing & Numerology Selection

• Input:

- A node-weighted network G = (V, E)
- Multiple SD requests
- A number of time slots *T*

• Procedure:

- Accept or reject each SD request
- Find a path with a numerology for accepted one

Output:

- The accepted SD requests
- Their paths and numerologies
- The grade is proportional to # accepted SD requests

The Competition

- The grade is proportional to # accepted SD requests
- Basic: 60 (deadline)
 - A baseline solution (see the following pages)
 - (Meet the coding style requirements)
- Performance ranking (decided after the deadline)
 - [0%, 30%) (bottom): +0
 - [30%, 50%): + 5
 - [50%, 75%): + 10
 - [75%, 85%): + 15
 - [85%, 90%): + 20
 - [90%, 95%): + 25
 - [95%, 100%] (top): + 30
- Homework assistant (superb deadline)
 - +10

The Competition

The Competition

+10

相信你們在做完作業以後

The Baseline Algorithm

- Sequentially find the minimum-hop path for each input SD request via BFS (on the original graph)
- If there is a tie, select the one that visits the node with a smaller ID first
 - 10 -> 4 -> 11 -> 15 -> 12 vs 10 -> 4 -> 9 -> 17 -> 12
 - Select 10 -> 4 -> 9 -> 17 -> 12
- Only use complete binary tree (recall that in Chap. 5) where the bottom leaf(s) is at time t_1 and side length = 1
- Examine whether the above path and numerology can be accommodated in the network
 - If yes, then accept the SD request
 - Otherwise, reject the SD request
- Repeat the above actions until all SD requests are examined

Input Sample: use scanf

Format:

#Nodes #Links #TimeSlots #Req NodeID #QuantumMemories LinkID LinkEnd1 LinkEnd2 ReqID ReqSrc ReqDst

Output Sample: use printf

Format:

```
#AccReq
ReqID ReqSrc Rep1 Rep2... ReqDst
Tree Structure (detailed in the next slide)
...
```

Output Sample: use printf

Format:

Tree Structure: use a postorder traversal

$$t_{5}$$
 (v_{1}, v_{4})
 t_{4} 2 (v_{3}, v_{4})
 t_{3} (v_{1}, v_{3}) (v_{3}, v_{4})
 t_{1} t_{2} (v_{1}, v_{2}) (v_{2}, v_{3})
 t_{1} t_{1} t_{2} (v_{1}, v_{2}) (v_{2}, v_{3})

Output Sample: use printf

Format:

Tree Structure: use a postorder traversal

$$t_{5} = 7$$
 (v_{1}, v_{4})
 $t_{4} = 6$ 2 (v_{3}, v_{4})
 $t_{3} = 5$ (v_{1}, v_{3}) (v_{3}, v_{4})
 $t_{1} = 4$ (v_{1}, v_{2}) (v_{2}, v_{3})
 $t_{1} = 4$ (v_{1}, v_{2}) (v_{2}, v_{3})
 $v_{1} = 10$
 $v_{2} = 10$
 $v_{2} = 10$
 $v_{3} = 15$
 $v_{4} = 10$
 $v_{1} = 20$

Note

- Superb deadline: 12/14 Thu
- Deadline: 12/21 Thu
- Pass the test of our online judge platform
- Submit your code to E-course2
- Demonstrate your code remotely or in person with TA
- C Source code (i.e., only .c)
- Show a good programming style

It is worth noting that...

- The processes of entangling and swapping on the path may fail (although we don't consider it)
- In addition, strategy tree height also affects quality of entangled pair (although we don't consider it)
- For example:
- The success probability of entangling is $p = e^{-\alpha \cdot L}$, where α is a constant of the fiber material and L is the distance between the two nodes
- The success probability of swapping is *q*, which is related to the technique