

Predicting Divorce Ratesin Kazakhstan

Understanding the problem

Data collection

data.egov.kz

Ажырасулар (қала/ауыл халқы)

Бұл жинақта 2000-2023 жылдардағы ажырасулар саны (қала/ауыл халқы) туралы деректер бар

🛗 03.09.2024 🔍 0 🁁 123 🛚 і Жарияланған

Некелер (қала/ауыл халқы)

Бұл жинақта 2000-2023 жылдардағы некелер саны (қала/ауыл халқы) туралы деректер бар

Data reformatting convertes v.com

```
[
{
    "terms": [741880, 741917, 741935, 3699122],
    "termNames": [
        "PΕCΠУБЛИКА КАЗАХСТАН",
        "Bcero",
        "Bcero",
        "Bce rpynnы"
],
    "periods": [
        {
            "name": "2017 год",
            "value": "17918214"
        },
        {
            "name": "2004 год",
            "date": "31.12.2004",
            "value": "14951200"
        },
        {
            "name": "2003 год",
            "date": "31.12.2003".
```

Data Preprocessing and Transformation

[167]:		terms/0	terms/1	termNames/0	termNames/1	periods/0/name	periods/0/date
	0	741880	533590	РЕСПУБЛИКА КАЗАХСТАН	сельская местность	2019 год	31.12.2019
	1	741880	741917	РЕСПУБЛИКА КАЗАХСТАН	Всего	2019 год	31.12.2019
	2	258742	741917	КОСТАНАЙСКАЯ ОБЛАСТЬ	Всего	2019 год	31.12.2019
	3	256619	741917	КАРАГАНДИНСКАЯ ОБЛАСТЬ	Всего	2019 год	31.12.2019
	4	247783	741917	АКМОЛИНСКАЯ ОБЛАСТЬ	Всего	2019 год	31.12.2019
		70	,				

Marriage Distribution by Area

Insights from data

Highest Divorce Rate

Karaganda region has the highest divorce rate among the regions.

Highest Marriage Rate

Almaty region has the highest marriage rate among the regions.

Model Selection and Implementation

```
[49]:
      X_train, X_test, y_train, y_test = train_test_split(features, targets, test_size=0.2, random_state=42)
      # Reshape for LSTM [samples, timesteps, features]
      X_train = X_train.reshape((X_train.shape[0], 1, X_train.shape[1])).astype(np.float32)
      X_test = X_test.reshape((X_test.shape[0], 1, X_test.shape[1])).astype(np.float32)
      from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import LSTM, Dense, Dropout
      model = Sequential()
      model.add(LSTM(50, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2])))
      model.add(Dropout(0.2)) # Prevent overfitting
      model.add(Dense(1))
      model.compile(optimizer='adam', loss='mse')
      # Train the model
      model.fit(X_train, y_train, epochs=50, batch_size=32, validation_data=(X_test, y_test), verbose=1)
      Epoch 1/50
      /opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass
      o a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in t
        super().__init__(**kwargs)
      207/207 —
                                  - 1s 907us/step - loss: 25428.8438 - val_loss: 3248.5938
      Epoch 2/50
      207/207 -
                                  0s 605us/step - loss: 2840.5996 - val_loss: 42.3111
      Epoch 3/50
      207/207 -
                                   0s 598us/step - loss: 1910.7352 - val_loss: 95.9519
      Epoch 4/50
      207/207 -
                                   0s 608us/step - loss: 762.5632 - val_loss: 0.1895
      Epoch 5/50
      207/207
                                   0s 593us/sten - loss: 361.2565 - val loss: 0.2787
```

Advanced Techniques and Analysis

```
[49]:
      X train, X test, y train, y test = train test split(features, targets, test size=0.2, random state=42)
       # Reshape for LSTM [samples, timesteps, features]
      X_train = X_train.reshape((X_train.shape[0], 1, X_train.shape[1])).astype(np.float32)
       X_test = X_test.reshape((X_test.shape[0], 1, X_test.shape[1])).astype(np.float32)
• [51]: from tensorflow.keras.models import Sequential
       from tensorflow.keras.layers import LSTM, Dense, Dropout
       model = Sequential()
       model.add(LSTM(50, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2])))
       model.add(Dropout(0.2)) # Prevent overfitting
       model.add(Dense(1))
       model.compile(optimizer='adam', loss='mse')
       # Train the model
       model.fit(X train, y train, epochs=50, batch size=32, validation data=(X test, y test), verbose=1)
       Epoch 1/50
       /opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass
       o a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in t
        super().__init__(**kwargs)
       207/207 -
                                   - 1s 907us/step - loss: 25428.8438 - val_loss: 3248.5938
       Epoch 2/50
       207/207 -
                                   0s 605us/step - loss: 2840.5996 - val loss: 42.3111
       Epoch 3/50
       207/207 -
                                   • 0s 598us/step - loss: 1910.7352 - val_loss: 95.9519
       Epoch 4/50
       207/207
                                   0s 608us/step - loss: 762.5632 - val_loss: 0.1895
       Epoch 5/50
       207/207
                                   0s 593us/sten - loss: 361.2565 - val loss: 0.2787
```

MinMaxScaler()

Adaptive Moment Estimation (Adam)

Usage of the model

```
[*]: import numpy as np
     while True:
         user_region = input("Enter region: ")
         user_area = input("Enter type of area: ")
         user marriages = float(input("Enter number of marriages for the previous year: "))
         if user_region.lower() == 'exit':
             break
         # Get the predicted divorce
         predicted_divorce = predict_divorce(user_region, user_area, user_marriages)
         # Check if the predicted value is NaN
         if np.isnan(predicted_divorce):
             print("Prediction could not be made. Please check your input values.")
         else:
             predicted_divorce_int = int(predicted_divorce) # Convert to integer
             print(f"Predicted divorces for this year in {user_region} ({user_area}): {predicted_divorce_in
     Enter region: РЕСПУБЛИКА КАЗАХСТАН
     Enter type of area: Bcero
     Enter number of marriages for the previous year: 10000
     Predicted divorces for this year in РЕСПУБЛИКА КАЗАХСТАН (Всего): 2788
    Enter region: ↑↓ for history. Search history with c-↑/c-↓
```