1) $V = \mathbb{R}^n$, and $(a_1, a_2, ..., a_n)$ be a fixed vector in V. Prove that the collection of all vectors $(x_1, ..., x_n)$ such that

 $a_1 x_1 + --- + a_n x_n = 0$

is a subspace of V and also find its dimension

2) Prove that the space of neal valued functions on [a,b] is an infinite dimensional vector space over 17.

Prove that the space of neal valued continuous functions on [a,b] is an infinite dimensional vector space over 17.

- Let $\varphi: V \longrightarrow W$ be linear map and V and W are finite dimensional vector space such that $\dim V = \dim W$ φ injective $\Rightarrow \varphi$ isomorphism φ surjective $\Rightarrow \varphi$ isomorphism
- 4) φ: V → V be a linear map and V is finite dimensional vector space. Prove that ∃ m∈ IN such that

Im (pm) n ken (pm) = {0}

5) Let $\varphi: V \to V$ be F-linear map. A nonzero $v \in V$ is defined to be an eigenvector of φ with eigenvalue λ'' if $\varphi(v) = \lambda v$

Prove that for given $\lambda \in F$, the set of eigenvectors with eigenvalue λ is a vector sub-space.

Let $\rho: V \to V$ be a linear map and let $\{u_i\}_{i=1}^k$ be de eigenvectors of ρ with commesponding eigenvalue $\{\lambda_i\}_{i=1}^k$. Also assume that $\lambda_i \neq \lambda_j$ for $1 \leq i \neq j \leq k$. Prove that $\{u_i\}_{i=1}^k$ is linearly independent.

Thus any $\rho:V \to V$, $\dim V = n$ has atmost n distinct eigenvalues.