Kundu is true tree lover. Tree is a connected graph having N vertices and N-1 edges. Today when he got a tree, he colored each edge with one of either $\operatorname{red}(r)$ or $\operatorname{black}(b)$ color. He is interested in knowing how many triplets(a,b,c) of vertices are there , such that, there is at least one edge having red color on all the three paths i.e. from vertex a to b, vertex b to c and vertex c to a. Note that (a,b,c), (b,a,c) and all such permutations will be considered as the same triplet.

If the answer is greater than $10^9 + 7$, print the answer modulo (%) $10^9 + 7$.

Input Format

The first line contains an integer N, i.e., the number of vertices in tree.

The next N-1 lines represent edges: 2 space separated integers denoting an edge followed by a color of the edge. A color of an edge is denoted by a small letter of English alphabet, and it can be either red(r) or black(b).

Output Format

Print a single number i.e. the number of triplets.

Constraints

 $1 < N < 10^5$

A node is numbered between 1 to N.

Sample Input

5

1 2 b

2 3 r

3 4 r

4 5 b

Sample Output

4

Explanation

Given tree is something like this.

(2,3,4) is one such triplet because on all paths i.e 2 to 3, 3 to 4 and 2 to 4 there is at least one edge having red color.

(2,3,5), (1,3,4) and (1,3,5) are other such triplets.

Note that (1,2,3) is NOT a triplet, because the path from 1 to 2 does not have an edge with red color.