1ª Lista de Exercícios de Circuitos Eletrônicos – 2º Semestre de 2018

1- O amplificador diferencial é o circuito de entrada do amplificador operacional por isso que o estudo dele é importante para poder compreender o funcionamento do amplificador operacional que é um circuito integrado e não temos acesso a sua estrutura interna.

Faça o que se pede:

- a- Calcular o valor do resistor R_C a fim de que o circuito funcione adequadamente.
- b- Calcular a tensão de saída diferencial e a tensão de saída de modo comum.
- c- Calcular a razão de rejeição do modo comum para o circuito. Expressar em dB. Dados:

$$\begin{split} &V_{BE}=0.7~V;~V_{CE}(Q_2)=7.5~V;~v_1=50~mV;~v_2=20~mV;~v_{(modo~comum)}=70~mV.\\ &Supor~transistores~iguais,~I_C>>I_B~e~I_C\approx I_E~;~r_d=25~mV/I_E \end{split}$$

2- No circuito mostrado na figura abaixo o transistor Q1 tem um β $_{CC}$ de 120 e o transistor Q2 um β $_{CC}$ de 180.

De princípio, considerar que $I_{E1} \approx I_{E2}$ e $I_C \approx I_E$ nos transistores.

- a- Se as entradas v₁ e v₂ forem aterradas, calcular o valor das correntes cc da base em cada transistor.
- b- Calcular a corrente de compensação da entrada e a corrente de polarização na entrada.

- 3- No circuito da figura da questão 2, calcular as seguintes quantidades:
- a- ganho de tensão diferencial.
- b- ganho de tensão do modo comum.
- c- Razão de Rejeição do Modo Comum.

Obs: Para os cálculos pedidos considerar que os transistores são iguais, ou seja, $I_C \approx I_E$ e $I_C >> I_B$.

4- Sabe-se que os amplificadores operacionais foram desenvolvidos a partir de um circuito a transistores conhecido como amplificador diferencial. Ele amplifica a diferença entre duas tensões colocadas nas entradas do circuito. Para tanto os transistores que fazem parte do circuito precisam ser polarizados na região ativa.

Faça o que se pede:

- a- Calcular o valor aproximado de R_C e de R_E.
- b- Calcular a potência dissipada no transistor Q₁.
- c- Calcular a tensão diferencial de saída.

Dados:

 $V_{BE} = 0.7 \text{ V}; I_C >> I_B; I_C \approx I_E.$ Supor transistores iguais.

$$v_1 = 50 \text{ mV(pico)}; v_2 = 25 \text{ mV(pico)}$$

- 5- Se um amplificador diferencial tem uma razão de rejeição para o modo comum de 80 dB e um ganho de tensão diferencial de 500, calcular o valor da tensão de saída de modo comum que se obtém com uma tensão de entrada para o modo comum de 100 mV.
- 6- No circuito mostrado na figura abaixo faça o que se pede:
- a- Calcular a corrente de cada emissor no circuito da figura abaixo.
- b- Calcular a tensão contínua (V_C) que aparece na saída do circuito.
- c- Calcular o ganho de tensão diferencial do circuito.

Supor transistores iguais, $I_C >> I_B$, $I_C \approx I_E$ e $V_{BE} = 0.7$ V.

- 7- No circuito mostrado na figura abaixo faça o que se pede:
- a- Identificar o ponto de operação do transistor Q_2 (V_{CE} e I_C).
- b- Calcular o resistor R_E para o circuito da figura abaixo para obter um ganho de tensão diferencial de aproximadamente 150.

Supor transistores iguais, $I_C >> I_B$, $I_C \approx I_E$ e $V_{BE} = 0.7 \text{ V}$

8- Os amplificadores operacionais quando usados em circuito de malha aberta estão sujeitos a sofrerem variações por causa das alterações em seus parâmetros que dependem de temperatura, corrente, frequência etc. Suponha que se dispõe de um amplificador operacional e deseja amplificar a diferença entre as tensões v_1 e v_2 dadas abaixo. Tais sinais são senoidais e o parâmetro "taxa de inclinação" do operacional pode alterar um sinal senoidal e transformá-lo num sinal triangular.

Faça o que se pede:

Calcular a máxima frequência que pode ser colocada nas tensões v_1 e v_2 a fim de se garantir que na saída do circuito (R_L) o sinal senoidal não sofrerá distorção por taxa de inclinação.

Dados

Ganho de tensão de malha aberta do amplificador operacional igual a 100000.

Impedância de entrada do amplificador operacional igual a 2 M Ω .

Impedância de saída do amplificador operacional igual a 75 Ω .

Taxa de inclinação do amplificador operacional é igual a 0,5 $V/\mu s$

 $v_1 = 0.2 \text{ sen (wt) } mV_{(pico)}$ $v_2 = 0.1 \text{ sen (wt) } mV_{(pico)}$

9- O amplificador operacional da figura abaixo tem impedância de entrada de $2M\Omega$, impedância de saída de 75Ω e um ganho de tensão diferencial de 100000. Calcular a tensão aproximada na saída do circuito.

- 10- O amplificador operacional 741 tem uma taxa de inclinação de 0,5 V/μs. A tensão de saída senoidal num circuito onde o 741 está sendo usado tem um pico de 5 V. Calcular a máxima frequência obtida na saída do circuito sem que o sinal de saída saia distorcido por causa da taxa de inclinação.
- 11- Observar a figura abaixo para responder as seguintes indagações:
- a- Usar o gráfico para dizer qual o ganho de tensão de malha aberta do amplificador operacional na frequência de 1kHz.
- b- Usar o gráfico para dizer qual a frequência de corte superior de malha aberta para o amplificador operacional
- c- Usar o gráfico para dizer em que frequência o amplificador operacional tem um ganho de malha aberta igual a 100.
- d- Usar o gráfico para comprovar a relação que diz: ganho de tensão x frequência = frequência unitária

