Spazio euclideo

Andrea Canale

December 14, 2024

Contents

1	Isometrie	1
2	Isometrie su \mathbb{R}^2 2.1 Rotazioni	2
	2.2 Riflessioni	2
3	Matrici ortogonali	2
4	Isometrie su \mathbb{R}^3 4.1 Antirotazione	3
5	Prodotto vettoriale 5.1 Proprietà del prodotto vettoriale	3
6	Basi positive	3
7	Sottospazio affine	4
	 7.1 Forma parametrica e cartesiana di spazi affini	4

1 Isometrie

Un isometria è un isomorfismo $T:V\to W({\rm con}\ g\ {\rm e}\ g^{'}$ prodotti scalari) che soddisfa la seguente proprietà:

$$g(v_1, v_2) = g'(T(v_1), T(v_2))$$

Un isometria mantiene la lunghezza dei vettori invariata.

Ci sono altri 3 modi per verificarla:

- Esiste una base B tale che vale la proprietà dell'isometria $(\forall v_i, v_j \in B)$
- $\forall v \in V, ||v|| = ||T(v)||$
- $\forall v, w \in W, d(v, w) = d(T(v), T(w))$

Inoltre, T è isometria se vale:

$$[g]_{B} = [T]_{B}^{B} \cdot {}^{t} [g']_{B} \cdot [T]_{B}^{B}$$

Questo ci torna utile per l'endomorfismo $L_a:\mathbb{R}^n \to \mathbb{R}^n$ che è isometria se:

$$^t A \cdot A = I_n$$

2 Isometrie su \mathbb{R}^2

2.1 Rotazioni

Una rotazione di angolo θ è una mappa $L_a: \mathbb{R}^2 \to \mathbb{R}^2$ definita dalla matrice di rotazione $A = \begin{pmatrix} \cos{(\theta)} & -\sin{(\theta)} \\ \sin{(\theta)} & \cos{(\theta)} \end{pmatrix}$

2.2 Riflessioni

Una riflessione di angolo θ rispetto ad una retta r è una mappa $L_a: \mathbb{R}^2 \to \mathbb{R}^2$ definita dalla matrice di rotazione $A = \begin{pmatrix} \cos{(\theta)} & \sin{(\theta)} \\ \sin{(\theta)} & -\cos{(\theta)} \end{pmatrix}$

Queste sono le uniche isometrie in \mathbb{R}^2

3 Matrici ortogonali

Una matrice $M(n, \mathbb{K})$ è ortogonale se

$$^t A \cdot A = I_n$$

Ed equivalentemente: ${}^{t}A = A^{-1}$

Inoltre, se una matrice è ortogonale sappiamo che il determinante sarà +1 se la matrice descrive una rotazione o -1 se descrive una riflessione.

Tuttavia non tutte le matrici con determinante ± 1 sono ortogonali.

4 Isometrie su \mathbb{R}^3

4.1 Antirotazione

Un antirotazione è la composizione di una rotazione rispetto ad un asse r e una riflessione rispetto al piano r^{\perp}

In \mathbb{R}^3 ogni isometria è una rotazione o un'antirotazione

5 Prodotto vettoriale

In \mathbb{R}^3 possiamo definire un operazione che funziona solo su questo spazio:

$$v \ x \ w = \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix}$$

Questa operazione può essere ricordata con questa formula: v x w = det $\begin{pmatrix} e_1 & e_2 & e_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix}$ svilup-

pando sulla prima riga e prendiamo i coefficienti dei rappresentanti canonici come componenti del vettore.

5.1 Proprietà del prodotto vettoriale

- ullet è ortogonale sia a v che a w
- $\bullet\,$ Se v x w è nullo, allora v e w sono dipendenti
- \bullet Se v e w sono indipendenti, v, w, v x w è una base positiva di \mathbb{R}^3
- $||v \ x \ w|| = ||v|| \cdot ||w|| \langle v, w \rangle$
- $||v \ x \ w|| = ||v|| \cdot ||w|| sen(\theta)$

Le ultime due proprietà valgono anche per la norma al quadrato(mettendo al quadrato tutti i membri dell'uguaglianza)

6 Basi positive

Una base $\{v_1, v_2, v_3\}$ in \mathbb{R}^3 è positiva se:

$$det(v_1|v_2|v_3) > 0$$

La positività di una base dipende dai vettori e dalla loro posizione.

7 Sottospazio affine

Un sottospazio affine di uno spazio vettoriale V, dato un vettore v_0 è un sottospazio del tipo:

$$\{w \in W \mid v_0 + w\}$$

Due spazi x+W e y+V coincidono se e solo se W=V e $x-y\in W$

Lo spazio W di uno spazio affine S scritto come x+W è detto giacitura di S ed è indicato come giac(S)

7.1 Forma parametrica e cartesiana di spazi affini

La forma cartesiana descrive uno spazio attraverso i punti che soddisfano un'equazione lineare omogenea:

è utile per determinare i punti di una funzione.

$$x = \{v \in \mathbb{R}^3 | F(v) = 0\}$$

La forma parametrica descrive uno spazio attraverso i vettori che lo generano:

$$x = F(y)$$
 Per qualche $F: y \to \mathbb{R}^3$

Oppure:

$$\left\{ \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, t \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

è utile per determinare se un punto appartiene allo spazio.

Ad esempio con la bisettrice abbiamo:

- In forma cartesiana: $\{(x,y) \in \mathbb{R}^2 | x-y=0 \}$
- In forma parametrica $\{(t,t) \in \mathbb{R}^2 | t \in \mathbb{R}\}$

Entrambi descrivono i punti con le stesse coordinate

7.2 Intersezione tra spazi affini

Per calcolare l'intersezione di due spazi affini $S \cap S^{'}$ dobbiamo sempre calcolare un sistema di equazioni indipendentemente dalla forma.

Siano r una retta e π un piano che si intersecano in un punto P. Usiamo le giaciture così da assumere P=0. $v'=P\pi(v)$ Attraverso una proiezione ortogonale. **DA VEDERE**

Angolo tra piani

Siano π_1 e π_2 due piani che si intersecano in una retta interser. L'angolo fra i due piani è definito da due rette $s_1 \subset \pi_1$ e $s_2 \subset \pi_2$ incidenti ed ortogonali a r, l'angolo fra i due piani è l'angolo fra s_1 e s_2

Siano v_1 e v_2 vettori non nulli ortogonali a due piani π_1 e π_2 , l'angolo α fra π_1 e π_2 è uguale a quello tra v_1 e v_2

Distanze fra sottospazi disgiunti

Distanza fra punti

$$d(P,Q) = | | \overline{PQ} | | = | |Q - P| |$$

Distanza fra punto e retta

La distanza fra un punto e una retta è definita come la retta perpendicolare s a r nel punto P.

$$d(P,r) = d(P,Q)$$

Dove Q e l'intersezione tra r e s

Inoltre, se la retta è espressa in forma parametrica del tipo $r = \{P_0 + tv_0\}$, la distanza si calcola usando il prodotto vettoriale:

$$d(P,r) = \frac{| |v_0xv_1||}{| |v_0||}$$

Dove $v_1 = P - P_0$

Distanza fra rette

La distanza fra due rette r e r' nel piano è definita così: tracciamo una retta s perpendicolare ad entrambe e calcoliamo la distanza nei due punti di intersezione:

$$d(r,r') = d(P,P')$$

Dove $P = r \cap s$ e $P' = r' \cap s$

Inoltre, se la retta è espressa in forma parametrica del tipo $r = \{P_0 + tv_0\}$ e $r' = \{P'_0 + uv_1\}$, la distanza si calcola come:

$$d(r,r') = d(P_0,r')$$

Inoltre, se le due rette sono sghembe vale la formula:

$$d\left(r, r'\right) = \frac{\left|\det\left(v\left|v'\right|v''\right)\right|}{\left\|v \times v'\right\|}$$

Dove
$$v'' = P'_0 - P_0$$

Distanza fra punto e piano

La distanza fra un punto P_0 e un piano π è definita così: Si traccia una retta s perpendicolare a π e passante per P_0 e si definisce:

$$d(P_0,\pi) = d(P_0,Q)$$

Dove $Q = s \cap \pi$

Distanze fra retta e piano

Se π è un piano e r una retta, allora:

$$d(r,\pi) = d(P,\pi)$$
 Dove P è un punto qualsiasi del piano

Distanza fra due piani

Se π , π' sono due piani disgiunti, allora:

$$d\left(\pi,\pi'\right)=d\left(P,\pi'\right)$$
 Dove P è un punto qualsiasi del piano