UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA CARRERA DE ELECTROMECÁNICA

TRANSFORMADAS E INTEGRALES Apuntes de clase

Docente:

Ing. Marco Antonio Vallejo Camacho.

Índice general

1.	Seri	es de <i>Fourier</i>	4
	1.1.	Funciones periódicas	4
	1.2.	Propiedades de la funciones periódicas	4
		1.2.1. Funciones seno y coseno	8
		1.2.2. Propiedades ortogonales del seno y el coseno	Ś
	1.3.	Series de Fourier	11
		1.3.1. Condiciones de <i>Dirichlet</i>	12
	1.4.	Evaluación de los coeficientes de <i>Fourier</i>	13
	1.5.	Formulas para las series de <i>Fourier</i>	14
2.	Aná	lisis de formas de onda periódica	16
	2.1.	Funciones pares e impares	16
		2.1.1. Propiedades de las funciones pares e impares	17
		2.1.2. Evaluación de coeficientes de <i>Fourier</i>	20
	2.2.	Simetría de media onda (S.M.O.)	21
		2.2.1. Evaluación de coeficientes de <i>Fourier</i>	22
	2.3.	Simetría de cuarto de onda (S.C.O.)	24
		2.3.1. Simetría de cuarto de onda par	24
		2.3.2. Simetría de cuarto de onda impar	25
		2.3.3. Evaluación de coeficientes de <i>Fourier</i>	25
	2.4.	Expansión periódica de funciones definidas en intervalos finitos	27
3.	Seri	e compleja de <i>Fourier</i> y espectros discretos de frecuencia	29
	3.1.	Numeros complejos	29
		3.1.1. Formas complejas del seno y coseno	30
		3.1.2. Conjugado	30

Transformadas e Integrales

3.2.	Serie compleja de <i>Fourier</i>	31
	3.2.1. Evaluación del coeficiente complejo de <i>Fourier</i>	32
	3.2.2. Relación entre el coeficiente complejo y los coeficientes trigonometricos .	32
3.3.	Ondas senoidales rectificadas	32
	3.3.1. Rectificación de media onda	32
	3.3.2. Rectificación de onda completa	33
3.4.	Función escalon unitario	33
3.5.	La función impulso	35
	3.5.1. Propiedades de la función impulso	37
3.6.	Derivada de la función impulso	40
3.7.	Derivada de la función escalon unitario	41

Bibliografía recomendada

- [1] Hwei Hsu. Análisis de Fourier.
- [2] Serie Schaum. Transformada de Laplace.
- [3] Eduardo Espinoza. Transformada de Laplace.
- [4] Álvaro Hernando Carrasco Calvo. Transformadas e integrales.

Capítulo 1

Series de Fourier

1.1. Funciones periódicas

Figura 1.1: Función periódica

Una función periódica es aquella cuya gráfica se repite infinitas veces, cada cierto intervalo (**Figura 1.1**).

El menor intervalo de repetición se llama periodo(T).

Matemáticamente una función periódica es aquella que verifica:

$$f(t) = f(t + nT); n \in \mathbb{Z}$$
(1.1)

Donde T es el periodo (la menor constante que verifica la igualdad).

1.2. Propiedades de la funciones periódicas

Si:
$$f(t) = f(t + nT)$$

Propiedad 1

$$\int_{a}^{b} f(t) dt = \int_{a+nT}^{b+nT} f(t) dt \quad n \in \mathbb{Z}$$
 (1.2)

Prueba:

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f(t + nT) dt$$

Cambiando la variable:

$$\tau = t + nT$$

$$d\tau = dt$$

$$\int_{a}^{b} f(t) dt = \int_{a+nT}^{b+nT} f(\tau) d\tau$$

$$= \int_{a+nT}^{b+nT} f(t) dt$$

Puede verse gráficamente en la Figura 1.2.

Figura 1.2: Demostración gráfica

Propiedad 2

$$\int_{a-T/2}^{a+T/2} f(t) dt = \int_{-T/2}^{T/2} f(t) dt$$
 (1.3)

$$\int_{a-T/2}^{a+T/2} f(t) dt = \int_{a-T/2}^{T/2} f(t) dt + \int_{T/2}^{a+T/2} f(t) dt$$

$$= \int_{a-T/2}^{T/2} f(t) dt + \int_{T/2-T}^{a+T/2-T} f(t) dt$$

$$= \int_{a-T/2}^{T/2} f(t) dt + \int_{-T/2}^{a-T/2} f(t) dt$$

$$= \int_{-T/2}^{T/2} f(t) dt$$

Puede verse gráficamente en la Figura 1.3.

Figura 1.3: Demostración gráfica

Propiedad 3

$$\int_0^T f(t) dt = \int_{-T/2}^{T/2} f(t) dt$$
 (1.4)

Prueba:

Si en la ecuación (1.3) a = T/2:

$$\int_{-T/2}^{T/2} f(t) dt = \int_{a-T/2}^{a+T/2} f(t) dt$$
$$= \int_{T/2-T/2}^{T/2+T/2} f(t) dt$$
$$= \int_{0}^{T} f(t) dt$$

Puede verse gráficamente en la Figura 1.4.

Figura 1.4: Demostración gráfica

Propiedad 4

Si
$$b - a = T$$
:
$$\int_0^T f(t) dt = \int_a^b f(t) dt$$
 (1.5)

Prueba:

$$\int_{a}^{b} f(t) dt = \int_{a}^{a+T} f(t) dt$$

$$= \int_{a}^{T} f(t) dt + \int_{T}^{a+T} f(t) dt$$

$$= \int_{a}^{T} f(t) dt + \int_{T-T}^{a+T-T} f(t) dt$$

$$= \int_{a}^{T} f(t) dt + \int_{0}^{a} f(t) dt$$

$$= \int_{0}^{T} f(t) dt$$

Puede verse gráficamente en la Figura 1.5.

Figura 1.5: Demostración gráfica

1.2.1. Funciones seno y coseno

$$f(t) = A \operatorname{sen}(\omega_0 t)$$
$$f(t) = A \cos(\omega_0 t)$$

Donde:

A: Amplitud.

 ω_0 : Frecuencia angular.

 $T=2\pi/\omega_0$: Periodo.

Ejemplo: Hallar el periodo de la siguiente función:

$$f(t) = sen(4t) + sen(3t/2) + sen(10t)$$

El periodo buscado debe contener un numero entero de veces a los 3 periodos hallados:

$$T = \begin{cases} a T_1; & a \in \mathbb{N} \\ b T_2; & b \in \mathbb{N} \\ c T_3; & c \in \mathbb{N} \end{cases}$$

$$a T_1 = b T_2 = c T_3$$

$$a \frac{2\pi}{4} = b \frac{2\pi}{3/2} = c \frac{2\pi}{10}$$

$$a \frac{\pi}{2} = b \frac{4\pi}{3} = c \frac{\pi}{5}; x30$$

$$15a = 40b = 6c$$

$$M.C.M.(15, 40, 6) = 120$$

$$120 = 15a \to a = 8$$

$$120 = 40b \to b = 3$$

$$120 = 6c \to c = 20$$

$$= 15a + a = 8$$

$$= 120 = 40b \to b = 3$$

$$= 120 = 40b \to b = 3$$

Puede verse gráficamente en la Figura 1.6.

Figura 1.6: Periodo de la función

1.2.2. Propiedades ortogonales del seno y el coseno

Propiedad 1

$$\int_0^T \operatorname{sen}(n\omega_0 t) \, dt = 0 \quad n \in \mathbb{Z}$$
 (1.6)

Prueba:

$$\int_0^T \sin(n\omega_0 t) dt = -\frac{\cos(n\omega_0 t)}{n\omega_0} \Big|_0^T$$

$$= -\frac{\cos(n\omega_0 T)}{n\omega_0} + \frac{\cos(0)}{n\omega_0}$$

$$= -\frac{\cos(n2\pi)}{n\omega_0} + \frac{\cos(0)}{n\omega_0}$$

$$= -\frac{1}{n\omega_0} + \frac{1}{n\omega_0}$$

$$= 0$$

$$\int_0^T \cos(n\omega_0 t) dt = 0 \quad n \in \mathbb{Z}$$
(1.7)

Prueba:

$$\int_0^T \cos(n\omega_0 t) dt = \frac{\sin(n\omega_0 t)}{n\omega_0} \Big|_0^T$$

$$= \frac{\sin(n\omega_0 T)}{n\omega_0} - \frac{\sin(0)}{n\omega_0}$$

$$= \frac{\sin(n2\pi)}{n\omega_0} - \frac{\sin(0)}{n\omega_0}$$

$$= \frac{0}{n\omega_0} - \frac{0}{n\omega_0}$$

$$= 0$$

Propiedad 2

$$\int_{0}^{T} \operatorname{sen}(m\omega_{0}t) \operatorname{sen}(n\omega_{0}t) dt = 0 \quad m, n \in \mathbb{Z} \quad m \neq n$$
(1.8)

Prueba:

$$\int_0^T \operatorname{sen}(m\omega_0 t) \operatorname{sen}(n\omega_0 t) dt = \int_0^T \frac{1}{2} (\cos((m-n)\omega_0 t) - \cos((m+n)\omega_0 t)) dt$$

$$= \frac{1}{2} \left(\int_0^T \cos((m-n)\omega_0 t) dt - \int_0^T \cos((m+n)\omega_0 t) dt \right)$$

$$= \frac{1}{2} (0-0)$$

$$= 0$$

$$\int_0^T \cos(m\omega_0 t) \cos(n\omega_0 t) dt = 0 \quad m, n \in \mathbb{Z} \quad m \neq n$$
 (1.9)

$$\int_{0}^{T} \cos(m\omega_{0}t) \cos(n\omega_{0}t) dt = \int_{0}^{T} \frac{1}{2} (\cos((m-n)\omega_{0}t) + \cos((m+n)\omega_{0}t)) dt$$

$$= \frac{1}{2} \left(\int_{0}^{T} \cos((m-n)\omega_{0}t) dt + \int_{0}^{T} \cos((m+n)\omega_{0}t) dt \right)$$

$$= \frac{1}{2} (0+0)$$

$$= 0$$

$$\int_0^T \operatorname{sen}(m\omega_0 t) \cos(n\omega_0 t) dt = 0 \quad m, n \in \mathbb{Z}$$
(1.10)

Prueba:

$$\int_0^T \operatorname{sen}(m\omega_0 t) \cos(n\omega_0 t) dt = \int_0^T \frac{1}{2} (\operatorname{sen}((m-n)\omega_0 t) + \operatorname{sen}((m+n)\omega_0 t)) dt$$

$$= \frac{1}{2} \left(\int_0^T \operatorname{sen}((m-n)\omega_0 t) dt + \int_0^T \cos((m+n)\omega_0 t) dt \right)$$

$$= \frac{1}{2} (0+0)$$

$$= 0$$

Propiedad 3

$$\int_0^T \sin^2(n\omega_0 t) dt = \frac{T}{2} \quad n \in \mathbb{Z}$$
(1.11)

Prueba:

$$\int_{0}^{T} \operatorname{sen}^{2}(n\omega_{0}t) dt = \int_{0}^{T} \operatorname{sen}(n\omega_{0}t) \operatorname{sen}(n\omega_{0}t) dt
= \frac{1}{2} \left(\int_{0}^{T} \cos((n-n)\omega_{0}t) dt - \int_{0}^{T} \cos((n+n)\omega_{0}t) dt \right)
= \frac{1}{2} \left(\int_{0}^{T} \cos(0) dt - \int_{0}^{T} \cos((2n)\omega_{0}t) dt \right)
= \frac{1}{2} \left(\int_{0}^{T} dt - \int_{0}^{T} \cos(2n\omega_{0}t) dt \right)
= \frac{1}{2} (t \Big|_{0}^{T} - 0)
= \frac{T}{2}
\int_{0}^{T} \cos^{2}(n\omega_{0}t) dt = \frac{T}{2} \quad n \in \mathbb{Z}$$
(1.12)

$$\int_0^T \cos^2(n\omega_0 t) dt = \int_0^T \cos(n\omega_0 t) \cos(n\omega_0 t) dt$$

$$= \frac{1}{2} \left(\int_0^T \cos((n-n)\omega_0 t) dt + \int_0^T \cos((n+n)\omega_0 t) dt \right)$$

$$= \frac{1}{2} \left(\int_0^T \cos(0) dt + \int_0^T \cos((2n)\omega_0 t) dt \right)$$

$$= \frac{1}{2} \left(\int_0^T dt + \int_0^T \cos(2n\omega_0 t) dt \right)$$

$$= \frac{1}{2} (t \Big|_0^T + 0)$$

$$= \frac{T}{2}$$

1.3. Series de Fourier

Una función periódica que cumple ciertas condiciones puede desarrollarse mediante la serie:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)]$$
(1.13)

Donde:

```
\omega_0 = 2\pi/T: Frecuencia angular de f(t).
```

T: Periodo de f(t).

 $a_0; a_n; b_n$: Coeficientes de *Fourier*.

 $a_0/2$: Termino constante.

 $a_n\cos(n\omega_0t)$; $b_n\sin(n\omega_0t)$: Armónicos, términos seno y coseno con frecuencias angulares múltiples de ω_0

```
a_1\cos(\omega_0 t) + b_1\sin(\omega_0 t): Primer armónico. a_2\cos(2\omega_0 t) + b_2\sin(2\omega_0 t): Segundo armónico. a_3\cos(3\omega_0 t) + b_3\sin(2\omega_0 t): Tercer armónico.
```

1.3.1. Condiciones de Dirichlet

Para que una función periódica $f(t)=f(t+nT); n\in\mathbb{Z}$, se desarrolle como una serie de Fourier debe cumplir:

• f(t) debe ser continua por tramos en 1 periodo.

- Debe existir un numero finito de discontinuidades (en 1 periodo).
- Debe existir un numero finito de extremos relativos (en 1 periodo).
- La integral $\int_0^T |f(t)| \, dt < \infty$ debe ser finita.

Ejemplo:

$$f(t) = \tan(t); \quad 0 < t < \pi; \quad T = \pi$$

$$\int_0^{\pi} |\tan t| \, dt \to \infty$$
$$t = \frac{\pi}{2} : |\tan(t)| \to \infty$$

:. Esta función no tiene serie de Fourier.

1.4. Evaluación de los coeficientes de Fourier

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)]$$

Integrando ambas partes:

$$\int_0^T f(t) dt = \int_0^T \frac{a_0}{2} dt + \sum_{n=1}^\infty \left[\int_0^T a_n \cos(n\omega_0 t) dt + \int_0^T b_n \sin(n\omega_0 t) dt \right]$$
$$= \frac{a_0}{2} t \Big|_0^T$$
$$= \frac{a_0}{2} T$$

$$a_0 = \frac{2}{T} \int_0^T f(t) dt$$
 (1.14)

Para calcular " a_n " multiplicamos por $\cos(m\omega_0 t)$; $m\in\mathbb{N}$ e integramos en 1 periodo.

$$\int_0^T f(t)\cos(m\omega_0 t) dt = \int_0^T \frac{a_0}{2}\cos(m\omega_0 t) dt$$

$$+ \sum_{n=1}^\infty \left[\int_0^T a_n \cos(n\omega_0 t) \cos(m\omega_0 t) dt + \int_0^T b_n \sin(n\omega_0 t) \cos(m\omega_0 t) dt \right]$$

$$= 0 + \sum_{n=1}^\infty \left[\int_0^T a_n \cos(n\omega_0 t) \cos(m\omega_0 t) dt + 0 \right]$$

Para $n \neq m$ todos los elementos de la sumatoria serán igual a 0. Por tanto:

$$\int_0^T f(t)\cos(n\omega_0 t) dt = \int_0^T a_n \cos^2(n\omega_0 t) dt$$

$$= a_n \frac{T}{2}$$

$$a_n = \frac{2}{T} \int_0^T f(t)\cos(n\omega_0 t) dt$$
(1.15)

Para calcular " b_n " multiplicamos por $sen(m\omega_0 t)$; $m \in \mathbb{N}$ e integramos en 1 periodo.

$$\int_0^T f(t) \operatorname{sen}(m\omega_0 t) dt = \int_0^T \frac{a_0}{2} \operatorname{sen}(m\omega_0 t) dt$$

$$+ \sum_{n=1}^\infty \left[\int_0^T a_n \cos(n\omega_0 t) \operatorname{sen}(m\omega_0 t) dt + \int_0^T b_n \operatorname{sen}(n\omega_0 t) \operatorname{sen}(m\omega_0 t) dt \right]$$

$$= 0 + \sum_{n=1}^\infty \left[0 + \int_0^T b_n \operatorname{sen}(n\omega_0 t) \operatorname{sen}(m\omega_0 t) dt \right]$$

Para $n \neq m$ todos los elementos de la sumatoria serán igual a 0. Por tanto:

$$\int_0^T f(t) \sin(n\omega_0 t) dt = \int_0^T b_n \sin^2(n\omega_0 t) dt$$

$$= b_n \frac{T}{2}$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega_0 t) dt$$
(1.16)

1.5. Formulas para las series de Fourier

$$sen(\pi n) = 0; \quad n \in \mathbb{N}$$

$$\cos(\pi n) = (-1)^n; \quad n \in \mathbb{N}$$

$$\sin(2\pi n) = 0; \quad n \in \mathbb{N}$$

$$\cos(2\pi n) = 1; \quad n \in \mathbb{N}$$

$$\int \sin(at) \, dt = -\frac{\cos(at)}{a}$$

$$\int \cos(at) \, dt = \frac{\sin(at)}{a}$$

$$\int t \sin(at) \, dt = -\frac{t}{a} \cos(at) + \frac{1}{a^2} \sin(at)$$

$$\int t \cos(at) \, dt = \frac{t}{a} \sin(at) + \frac{1}{a^2} \cos(at)$$

$$\int e^{at} \, dt = \frac{1}{a} e^{at}$$

$$\int t e^{at} \, dt = \frac{t}{a} e^{at} - \frac{1}{a^2} e^{at}$$

Capítulo 2

Análisis de formas de onda periódica

2.1. Funciones pares e impares

Una función es par si:

Figura 2.1: La gráfica se refleja respecto al eje central.

Ejemplo 1:

$$f(t) = t^2$$

 $f(-t) = (-t)^2 = t^2 = f(t)$

Ejemplo 2:

$$f(t) = \cos(t)$$

$$f(t) = \cos(-t) = \cos(t) = f(t)$$

Una función es impar si:

Figura 2.2: La gráfica se refleja 1ro respecto al eje central 2do respecto al eje horizontal.

Ejemplo 3:

$$f(t) = t^3$$

 $f(-t) = (-t)^3 = -t^3 = -f(t)$

Ejemplo 4:

$$f(t) = \operatorname{sen}(t)$$

$$f(t) = \operatorname{sen}(-t) = -\operatorname{sen}(t) = -f(t)$$

Ejemplo 5:

$$f(t) = \begin{cases} e^t & t < 0 \\ e^{-t} & t > 0 \end{cases}$$

$$f(-t) = \begin{cases} e^{-t} & -t < 0 \to t > 0 \\ e^t & -t > 0 \to t < 0 \end{cases} = f(t)$$

$$f(t)$$

2.1.1. Propiedades de las funciones pares e impares

Propiedad 1

Si f(t) es par y g(t) es par, entonces h(t) = f(t)g(t) es par.

$$\begin{cases} f(-t) = f(t) \\ g(-t) = g(t) \end{cases}$$

$$h(-t) = f(-t)g(-t)$$
$$= f(t)g(t)$$
$$= h(t)$$

Propiedad 2

Si f(t) es impar y g(t) es impar, entonces h(t) = f(t)g(t) es par.

Prueba:

$$\begin{cases} f(-t) = -f(t) \\ g(-t) = -g(t) \end{cases}$$

$$h(-t) = f(-t)g(-t)$$

$$= (-f(t))(-g(t))$$

$$= f(t)g(t)$$

$$= h(t)$$

Propiedad 3

Si f(t) es par y g(t) es impar, entonces h(t) = f(t)g(t) es impar.

Prueba:

$$\begin{cases} f(-t) = f(t) \\ g(-t) = -g(t) \end{cases}$$

$$h(-t) = f(-t)g(-t)$$

$$= f(t)(-g(t))$$

$$= -f(t)g(t)$$

$$= -h(t)$$

Propiedad 4

Si f(t) es **par**, entonces:

$$\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt$$
 (2.3)

$$\int_{-a}^{a} f(t) dt = \int_{-a}^{0} f(t) dt + \int_{0}^{a} f(t) dt$$

$$= \int_{-a}^{0} f(-t) dt + \int_{0}^{a} f(t) dt$$

$$\tau = -t$$

$$d\tau = -dt$$

$$\int_{-a}^{a} f(t) dt = \int_{a}^{0} f(\tau) (-d\tau) + \int_{0}^{a} f(t) dt$$

$$= \int_{0}^{a} f(\tau) d\tau + \int_{0}^{a} f(t) dt$$

$$= 2 \int_{0}^{a} f(t) dt$$

Propiedad 5

Si f(t) es **impar**, entonces:

$$\int_{-a}^{a} f(t) dt = \int_{-a}^{0} f(t) dt + \int_{0}^{a} f(t) dt$$

$$= \int_{-a}^{0} -f(-t) dt + \int_{0}^{a} f(t) dt$$

$$\tau = -t$$

$$d\tau = -dt$$

$$\int_{-a}^{a} f(t) dt = -\int_{a}^{0} f(\tau) (-d\tau) + \int_{0}^{a} f(t) dt$$

$$= -\int_{0}^{a} f(\tau) d\tau + \int_{0}^{a} f(t) dt$$

2.1.2. Evaluación de coeficientes de Fourier

Simetría par

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(t) dt$$

$$= \frac{2}{T} \int_{-T/2}^{T/2} f(t) dt$$

$$= \frac{2}{T} \left(2 \int_{0}^{T/2} f(t) dt \right)$$

$$= \frac{4}{T} \int_{0}^{T/2} f(t) dt$$

$$a_{0} = \frac{4}{T} \int_{0}^{T/2} f(t) dt$$
(2.5)

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega_0 t) dt$$

$$= \frac{2}{T} \left(2 \int_0^{T/2} f(t) \cos(n\omega_0 t) dt \right)$$

$$= \frac{4}{T} \int_0^{T/2} f(t) \cos(n\omega_0 t) dt$$

$$a_n = \frac{4}{T} \int_0^{T/2} f(t) \cos(n\omega_0 t) dt$$
(2.6)

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \operatorname{sen}(n\omega_0 t) dt$$

$$= 0$$

$$b_n = 0 \tag{2.7}$$

Simetría impar

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(t) dt$$

$$= \frac{2}{T} \int_{-T/2}^{T/2} f(t) dt$$

$$= 0$$

$$a_{0} = 0$$
(2.8)

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega_0 t) dt$$

$$= 0$$

$$a_n = 0$$
(2.9)

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \operatorname{sen}(n\omega_0 t) dt$$

$$= \frac{2}{T} \left(2 \int_0^{T/2} f(t) \operatorname{sen}(n\omega_0 t) dt \right)$$

$$= \frac{4}{T} \int_0^{T/2} f(t) \operatorname{sen}(n\omega_0 t) dt$$

$$b_n = \frac{4}{T} \int_0^{T/2} f(t) \operatorname{sen}(n\omega_0 t) dt$$
(2.10)

2.2. Simetría de media onda (S.M.O.)

f(t) tiene simetría de media onda si:

$$f(t) = -f(t \pm \frac{T}{2})$$

Figura 2.3: La gráfica se desplaza 1/2 periodo y se refleja respecto a t.

2.2.1. Evaluación de coeficientes de Fourier

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(t) dt$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) dt + \int_{T/2}^{T} f(t) dt \right]$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) dt - \int_{t=T/2}^{t=T} f(t - \frac{T}{2}) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$a_{0} = \frac{2}{T} \left[\int_{0}^{T/2} f(t) dt - \int_{\tau=T/2-T/2}^{\tau=T-T/2} f(\tau) d\tau \right]$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) dt - \int_{0}^{T/2} f(\tau) d\tau \right]$$

$$a_{0} = 0$$
(2.11)

$$a_{n} = \frac{2}{T} \int_{0}^{T} f(t) \cos(n\omega_{0}t) dt$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) \cos(n\omega_{0}t) dt + \int_{T/2}^{T} f(t) \cos(n\omega_{0}t) dt \right]$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) \cos(n\omega_{0}t) dt - \int_{T/2}^{T} f(t - \frac{T}{2}) \cos(n\omega_{0}t) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$a_n = \frac{2}{T} \left[\int_0^{T/2} f(t) \cos(n\omega_0 t) dt - \int_{\tau = T/2 - T/2}^{\tau = T-T/2} f(\tau) \cos(n\omega_0 (\tau + \frac{T}{2})) d\tau \right]$$

$$= \frac{2}{T} \left[\int_0^{T/2} f(t) \cos(n\omega_0 t) dt - \int_0^{T/2} f(\tau) \cos(n\omega_0 (\tau + \frac{T}{2})) d\tau \right]$$

$$n\omega_0 (\tau + T/2) = n\omega_0 \tau + n\omega_0 \frac{T}{2}$$

$$= n\omega_0 \tau + n\pi$$

$$\cos(n\omega_0 \tau + n\pi) = \cos(n\omega_0 \tau) \cos(n\pi) - \sin(n\pi) \sin(n\omega_0 \tau)$$

$$= \cos(n\omega_0 \tau) \cos(n\pi)$$

$$a_n = \frac{2}{T} \left[\int_0^{T/2} f(t) \cos(n\omega_0 t) dt - \int_0^{T/2} f(\tau) \cos(n\omega_0 \tau) \cos(n\pi) d\tau \right]$$

$$= \frac{2}{T} \left[\int_0^{T/2} f(t) \cos(n\omega_0 t) dt - \cos(n\pi) \int_0^{T/2} f(\tau) \cos(n\omega_0 \tau) d\tau \right]$$

$$= \frac{2}{T} (1 - \cos(\pi n)) \left(\int_0^{T/2} f(t) \cos(n\omega_0 t) dt \right)$$

$$\cos(\pi n) = \begin{cases} 1 & n : \text{par} \\ -1 & n : \text{impar} \end{cases}$$

$$\begin{cases} n : \text{par} \quad a_n = 0 \\ n : \text{impar} \quad a_n = \frac{4}{T} \int_0^{T/2} f(t) \cos(n\omega_0 t) dt \end{cases}$$

$$b_n = \frac{2}{T} \int_0^{T/2} f(t) \sin(n\omega_0 t) dt + \int_{T/2}^{T} f(t) \sin(n\omega_0 t) dt \right]$$

$$= \frac{2}{T} \left[\int_0^{T/2} f(t) \sin(n\omega_0 t) dt - \int_{T/2}^{T/2} f(t - \frac{T}{2}) \sin(n\omega_0 t) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$b_n = \frac{2}{T} \int_0^{T/2} f(t) \sin(n\omega_0 t) dt - \int_{\tau = T/2 - T/2}^{T} f(\tau) \sin(n\omega_0 \tau + \frac{T}{2}) d\tau \right]$$

$$= \frac{2}{T} \left[\int_0^{T/2} f(t) \sin(n\omega_0 t) dt - \int_{\tau = T/2 - T/2}^{T} f(\tau) \sin(n\omega_0 \tau + \frac{T}{2}) d\tau \right]$$

$$n\omega_{0}(\tau + T/2) = n\omega_{0}\tau + n\omega_{0}\frac{T}{2}$$

$$= n\omega_{0}\tau + n\frac{2\pi}{T}\frac{T}{2}$$

$$= n\omega_{0}\tau + n\pi$$

$$\operatorname{sen}(n\omega_{0}\tau + n\pi) = \operatorname{sen}(n\omega_{0}\tau) \operatorname{cos}(n\pi) + \operatorname{sen}(n\pi) \operatorname{cos}(n\omega_{0}\tau)$$

$$= \operatorname{sen}(n\omega_{0}\tau) \operatorname{cos}(n\pi)$$

$$b_{n} = \frac{2}{T} \left[\int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt - \int_{0}^{T/2} f(\tau) \operatorname{sen}(n\omega_{0}\tau) \operatorname{cos}(n\pi) d\tau \right]$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt - \operatorname{cos}(n\pi) \int_{0}^{T/2} f(\tau) \operatorname{sen}(n\omega_{0}\tau) d\tau \right]$$

$$= \frac{2}{T} (1 - \operatorname{cos}(\pi n)) \left(\int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt \right)$$

$$\operatorname{cos}(\pi n) = \begin{cases} 1 & n : \operatorname{par} \\ -1 & n : \operatorname{impar} \end{cases}$$

$$\begin{cases} n : \operatorname{par} & b_{n} = 0 \\ n : \operatorname{impar} & b_{n} = \frac{4}{T} \int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt \end{cases}$$

$$(2.13)$$

2.3. Simetría de cuarto de onda (S.C.O.)

2.3.1. Simetría de cuarto de onda par

Una función f(t) tiene simetría de cuarto de onda **par** cuando:

- f(t) es par.
- f(t) tiene simetría de media onda.

2.3.2. Simetría de cuarto de onda impar

Una función f(t) tiene simetría de cuarto de onda **impar** cuando:

- f(t) es impar.
- f(t) tiene simetría de media onda.

2.3.3. Evaluación de coeficientes de Fourier

Simetría de cuarto de onda par

Como la función f(t) tiene simetría de media onda:

$$a_0 = 0$$
 (2.14)

Como la función f(t) es una función par:

$$b_n = 0 ag{2.15}$$

Como la función f(t) tiene simetría de media onda: $a_n = 0$ cuando n es par.

Para n impar:

$$a_n = \frac{4}{T} \int_0^{T/2} f(t) \cos(n\omega_0 t) dt$$

$$= \frac{4}{T} \left[\int_0^{T/4} f(t) \cos(n\omega_0 t) dt + \int_{T/4}^{T/2} f(t) \cos(n\omega_0 t) dt \right]$$

$$= \frac{4}{T} \left[\int_0^{T/4} f(t) \cos(n\omega_0 t) dt - \int_{T/4}^{T/2} f(t - \frac{T}{2}) \cos(n\omega_0 t) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$a_n = \frac{4}{T} \left[\int_0^{T/4} f(t) \cos(n\omega_0 t) dt - \int_{\tau = T/4 - T/2}^{\tau = T/2 - T/2} f(\tau) \cos(n\omega_0 (\tau + \frac{T}{2})) d\tau \right]$$

$$= \frac{4}{T} \left[\int_0^{T/4} f(t) \cos(n\omega_0 t) dt - \int_{-T/4}^0 f(\tau) \cos(n\omega_0 (\tau + \frac{T}{2})) d\tau \right]$$

$$n\omega_0 (\tau + T/2) = n\omega_0 \tau + n\omega_0 \frac{T}{2}$$

$$= n\omega_0 \tau + n\frac{2\pi}{T} \frac{T}{2}$$

$$= n\omega_0 \tau + n\pi$$

$$\cos(n\omega_0 \tau + n\pi) = \cos(n\omega_0 \tau) \cos(n\pi) - \sin(n\pi) \sin(n\omega_0 \tau)$$

$$= \cos(n\omega_0 \tau) \cos(n\pi)$$

$$= -\cos(n\omega_0 \tau)$$

$$a_n = \frac{4}{T} \left[\int_0^{T/4} f(t) \cos(n\omega_0 t) dt + \int_{-T/4}^0 f(\tau) \cos(n\omega_0 \tau) d\tau \right]$$

$$= \frac{4}{T} \left[\int_{-T/4}^{T/4} f(t) \cos(n\omega_0 t) dt \right]$$

$$= \frac{4}{T} \left[2 \int_0^{T/4} f(t) \cos(n\omega_0 t) dt \right]$$

$$= \frac{8}{T} \int_0^{T/4} f(t) \cos(n\omega_0 t) dt$$

$$\begin{cases} n : \text{par} & a_n = 0 \\ n : \text{impar} & a_n = \frac{8}{T} \int_0^{T/4} f(t) \cos(n\omega_0 t) dt \end{cases}$$
(2.16)

Simetría de cuarto de onda impar

Como la función f(t) tiene simetría de media onda:

$$a_0 = 0$$
 (2.17)

Como la función f(t) es una función impar:

$$a_n = 0 ag{2.18}$$

Como la función f(t) tiene simetría de media onda: $b_n=0$ cuando n es par. Para n impar:

$$b_{n} = \frac{4}{T} \int_{0}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt + \int_{T/4}^{T/2} f(t) \operatorname{sen}(n\omega_{0}t) dt \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt - \int_{T/4}^{T/2} f(t - \frac{T}{2}) \operatorname{sen}(n\omega_{0}t) dt \right]$$

$$\tau = t - \frac{T}{2}$$

$$d\tau = dt$$

$$b_{n} = \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt - \int_{\tau=T/4-T/2}^{\tau=T/2-T/2} f(\tau) \operatorname{sen}(n\omega_{0}(\tau + \frac{T}{2})) d\tau \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt - \int_{-T/4}^{0} f(\tau) \operatorname{sen}(n\omega_{0}(\tau + \frac{T}{2})) d\tau \right]$$

$$n\omega_{0}(\tau + T/2) = n\omega_{0}\tau + n\omega_{0}\frac{T}{2}$$

$$= n\omega_{0}\tau + n\frac{2\pi}{T}\frac{T}{2}$$

$$= n\omega_{0}\tau + n\pi$$

$$\operatorname{sen}(n\omega_{0}\tau + n\pi) = \operatorname{sen}(n\omega_{0}\tau) \operatorname{cos}(n\pi) + \operatorname{sen}(n\pi) \operatorname{cos}(n\omega_{0}\tau)$$

$$= \operatorname{sen}(n\omega_{0}\tau)$$

$$b_{n} = \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt + \int_{-T/4}^{0} f(\tau) \operatorname{sen}(n\omega_{0}\tau) d\tau \right]$$

$$= \frac{4}{T} \left[\int_{-T/4}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt \right]$$

$$= \frac{4}{T} \left[\int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt \right]$$

$$= \frac{8}{T} \int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt$$

$$\begin{cases} n : \operatorname{par} & b_{n} = 0 \\ n : \operatorname{impar} & b_{n} = \frac{8}{T} \int_{0}^{T/4} f(t) \operatorname{sen}(n\omega_{0}t) dt \end{cases}$$
(2.19)

2.4. Expansión periódica de funciones definidas en intervalos finitos

Sea f(t) una función no periódica:

f(t) se convierte en periódica al repetirla un intervalo $T \geq M$.

f(t) puede expandirse periódicamente asignando alguna simetría conocida.

Capítulo 3

Serie compleja de *Fourier* y espectros discretos de frecuencia

3.1. Números complejos

Unidad imaginaria: $i=j=\sqrt{-1}$ Forma rectangular: z=a+jbMódulo: $|z|=\sqrt{a^2+b^2}$ Argumento: $\theta=\arctan(\frac{b}{a})$

Forma polar:

$$z = |z|\cos(\theta) + j|z|\sin(\theta) = |z|(\cos(\theta) + j\sin(\theta))$$

Formula de Euler:

$$e^{j\theta} = \cos(\theta) + j\sin(\theta) \tag{3.1}$$

Por tanto:

$$z=|z|e^{j\theta}$$

Forma exponencial o fasorial:

$$z = |z| \angle \theta$$

3.1.1. Formas complejas del seno y coseno

$$e^{j\theta} = \cos(\theta) + j\sin(\theta) \tag{3.2}$$

$$e^{-j\theta} = \cos(\theta) - j\sin(\theta)$$
 (3.3)

Sumando las ecuaciones 3.2 y 3.3:

$$e^{j\theta} + e^{-j\theta} = 2\cos(\theta)$$

$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
(3.4)

Restando las ecuaciones 3.2 y 3.3:

$$e^{j\theta} - e^{-j\theta} = 2j \operatorname{sen}(\theta)$$

$$\operatorname{sen}(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$
(3.5)

3.1.2. Conjugado

$$z = a + jb = |z| \angle \theta$$
$$z* = a - jb = |z| \angle - \theta$$
$$(z)(z*) = |z|^{2}$$

3.2. Serie compleja de Fourier

Partiendo de la serie trigonométrica de Fourier:

$$\begin{split} f(t) &= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right] \\ f(t) &= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2} \right) + b_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2j} \right) \right] \\ &= \frac{1}{j} = -j \\ f(t) &= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2} \right) - jb_n \left(\frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2} \right) \right] \\ f(t) &= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} + \left(\frac{a_n + jb_n}{2} \right) e^{-jn\omega_0 t} \right] \\ f(t) &= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} \right] + \sum_{n=1}^{\infty} \left[\left(\frac{a_n + jb_n}{2} \right) e^{jn\omega_0 t} \right] \\ f(t) &= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} \right] + \sum_{n=-1}^{\infty} \left[\left(\frac{a_n + jb_n}{2} \right) e^{jn\omega_0 t} \right] \\ f(t) &= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - jb_n}{2} \right) e^{jn\omega_0 t} \right] + \sum_{n=-1}^{\infty} \left[\left(\frac{a_n + jb_n}{2} \right) e^{jn\omega_0 t} \right] \end{split}$$

Sean los coeficientes complejos de Fourier:

$$c_n = \frac{a_n - jb_n}{2}$$
$$c_0 = \frac{a_0}{2}$$

Entonces:

$$f(t) = c_0 + \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} c_n e^{jn\omega_0 t}$$

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{jn\omega_0 t}$$
(3.6)

3.2.1. Evaluación del coeficiente complejo de Fourier

$$c_{n} = \frac{a_{n} - jb_{n}}{2}$$

$$= \frac{1}{2} \left[\frac{2}{T} \int_{0}^{T} f(t) \cos(n\omega_{0}t) dt - j\frac{2}{T} \int_{0}^{T} f(t) \sin(n\omega_{0}t) dt \right]$$

$$= \frac{1}{T} \int_{0}^{T} f(t) \left[\cos(n\omega_{0}t) - j \sin(n\omega_{0}t) \right] dt$$

$$= \frac{1}{T} \int_{0}^{T} f(t) e^{-jn\omega_{0}t} dt$$

$$c_{n} = \frac{1}{T} \int_{0}^{T} f(t) e^{-jn\omega_{0}t} dt$$
(3.7)

En particular:

$$c_0 = \frac{1}{T} \int_0^T f(t) \, dt \tag{3.8}$$

3.2.2. Relación entre el coeficiente complejo y los coeficientes trigonométricos

$$c_n = \frac{a_n - jbn}{2} = \frac{a_n}{2} + j\frac{-b_n}{2}$$

$$\frac{a_n}{2} = \mathbb{R}e\{c_n\}$$

$$a_n = 2\mathbb{R}e\{c_n\}$$

$$-\frac{b_n}{2} = \mathbb{I}m\{c_n\}$$

$$b_n = -2\mathbb{I}m\{c_n\}$$
(3.10)

3.3. Ondas senoidales rectificadas

3.3.1. Rectificación de media onda

$$f(t) = \begin{cases} A \operatorname{sen}(\omega_0 t) & 0 < t < T/2 \\ 0 & T/2 < t < T \end{cases}$$
$$T = \frac{2\pi}{\omega_0}$$

El periodo de la onda rectificada es el mismo que de la onda original.

3.3.2. Rectificación de onda completa

El periodo de la onda rectificada es la mitad del periodo de la onda original.

3.4. Función escalón unitario

Una variante es:

$$u(-t) = \begin{cases} 1 & t < 0 \\ 0 & t > 0 \end{cases}$$

De manera general:

Si: $\phi(t)$ es una función de prueba:

$$\phi(t)u(t-t_0) = \begin{cases} 0 & t < t_0 \\ \phi(t) & t > t_0 \end{cases}$$

$$\phi(t)(u(t-t_1)-u(t-t_2)) = \begin{cases} 0 & t \notin [t_1, t_2] \\ \phi(t) & t \in [t_1, t_2] \end{cases}$$

3.5. La función impulso

Pulso rectangular de área igual a 1.

Si $\xi \to 0$, entonces $\frac{1}{2\xi} \to \infty$.

$$\delta(t) = \begin{cases} 0 & t \neq 0 \\ \infty & t = 0 \end{cases}$$

Tal que:

$$\int_{-\xi}^{\xi} \delta(t) \, dt = 1$$

Por tanto:

$$k\delta(t) = \begin{cases} 0 & t \neq 0 \\ \pm \infty & t = 0 \end{cases}$$

Si: $\phi(t)$ es una función de prueba:

$$\phi(t)\delta(t-t_0) = \phi(t_0)\delta(t-t_0)$$

Para $t \neq 0$

$$\phi(t)\delta(t - t_0) = 0$$

Para t=0

$$\phi(t)\delta(t-t_0) = \phi(t_0)\delta(t-t_0)$$

3.5.1. Propiedades de la función impulso

Propiedad 1

$$\int_{a}^{b} \delta(t - t_0) dt = \begin{cases} 1 & t_0 \in [a, b] \\ 0 & t_0 \notin [a, b] \end{cases}$$

En general:

$$\int_{-\infty}^{\infty} \delta(t - t_0) \, dt = 1$$

Propiedad 2

$$\int_{a}^{b} \phi(t) \, \delta(t - t_0) \, dt = \begin{cases} \phi(t_0) & t_0 \in [a, b] \\ 0 & t_0 \notin [a, b] \end{cases}$$

En general:

$$\int_{-\infty}^{\infty} \phi(t_0) \, \delta(t - t_0) \, dt = \phi(t_0)$$

$$\int_{-\infty}^{\infty} \phi(t)\delta(t - t_0) dt = \int_{-\infty}^{\infty} \phi(t_0)\delta(t - t_0) dt$$
$$= \phi(t_0) \int_{-\infty}^{\infty} \delta(t - t_0) dt$$
$$= \phi(t_0)$$

Propiedad 3

$$\int_{-\infty}^{\infty} \phi(t) \, \delta(at) \, dt = \frac{1}{|a|} \int_{-\infty}^{\infty} \phi\left(\frac{t}{a}\right) \delta(t) \, dt = \frac{\phi(0)}{|a|}; a \neq 0$$

Prueba:

Realizando un cambio de variable:

$$\tau = at$$
$$d\tau = a dt$$

Para a > 0:

$$\int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) \, \frac{d\tau}{a} = \frac{1}{a} \int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) d\tau$$

Para a < 0:

$$\int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) \, \frac{d\tau}{a} = -\frac{1}{a} \int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) d\tau$$

Como:

$$|a| = \begin{cases} -a & a < 0 \\ a & a > 0 \end{cases}$$

$$\begin{split} \int_{-\infty}^{\infty} \phi(t) \, \delta(at) \, dt &= \frac{1}{|a|} \int_{-\infty}^{\infty} \phi\left(\frac{\tau}{a}\right) \delta(\tau) \, d\tau \\ &= \frac{1}{|a|} \phi\left(\frac{0}{a}\right) \\ &= \frac{\phi(0)}{|a|} \end{split}$$

Propiedad 4

$$\delta(at) = \frac{1}{|a|}\delta(t)$$

En particular:

$$\delta(-t) = \delta(t)$$

Por tanto $\delta(t)$ es una función **par**.

Prueba:

$$\int_{-\infty}^{\infty} \phi(t) \, \delta(at) \, dt = \frac{1}{|a|} \phi(0)$$

$$= \frac{1}{|a|} \int_{-\infty}^{\infty} \phi(t) \, \delta(t) \, dt$$

$$\phi(t) \, \delta(at) = \frac{1}{|a|} \phi(t) \, \delta(t)$$

$$\delta(at) = \frac{1}{|a|} \, \delta(t)$$

Para a = -1:

$$\delta(-t) = \frac{1}{|-1|} \, \delta(t) = \delta(t)$$

Propiedad 5

$$t \, \delta(t) = 0$$
$$t^n \, \delta(t) = 0; n \in \mathbb{N}$$

Prueba:

$$\int_{-\infty}^{\infty} t^n \, \delta(t) \, dt = 0^n = 0$$

Derivando ambos miembros:

$$t^n \, \delta(t) \, dt = 0$$

3.6. Derivada de la función impulso

$$\delta'(t) = \frac{d}{dt}(\delta(t))$$

$$\int_{-\infty}^{\infty} \phi(t)\delta'(t) dt = -\int_{-\infty}^{\infty} \phi'(t)\delta(t) dt = -\phi'(0)$$

Prueba:

Realizando la integración por partes:

$$u = \phi(t)$$
$$du = \phi'(t) dt$$
$$dv = \delta'(t - t_0) dt$$
$$v = \delta(t - t_0)$$

$$\int_{-\infty}^{\infty} \phi(t)\delta'(t-t_0) dt = (\phi(t)\delta(t-t_0)\Big|_{-\infty}^{\infty}) - \int_{-\infty}^{\infty} \delta(t-t_0)\phi'(t) dt$$
$$= 0 - \int_{-\infty}^{\infty} \delta(t-t_0)\phi'(t) dt$$
$$= -\phi'(t_0)$$

Derivadas de orden superior

$$\int_{-\infty}^{\infty} \phi(t)\delta''(t) dt = \int_{-\infty}^{\infty} \phi(t)(\delta'(t))' dt$$
$$= -\int_{-\infty}^{\infty} \phi'(t)\delta'(t) dt$$
$$= \int_{-\infty}^{\infty} \phi''(t)\delta(t) dt$$
$$= \phi''(0)$$

De igual manera:

$$\int_{-\infty}^{\infty} \phi(t)\delta'''(t-t_0) dt = -\phi'''(t_0)$$

En general:

$$\int_{-\infty}^{\infty} \phi(t)\delta^{(n)}(t-t_0) dt = (-1)^n \phi^{(n)}(t_0)$$

3.7. Derivada de la función escalón unitario

