

Data Driven Engineering I: Machine Learning for Dynamical Systems

Analysis of Dynamical Datasets I: Time Series

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

Dynamical Datasets I: Time Series

- * Time Series : Overview
- * Statistical Models for time series
- 🙎 State space models ⇒ DDE I
- Machine Learning Part I
- * Machine Learning Part II

Analysis Forecasting

- 1 identify patterns
- 4
- □ Modelling_

Relatively new field:

- ☐ Forecasting ~old as humankind
- ☐ Autoregressive model ~ 1920s
- ☐ Box Jerkins Model ~ 1970

"All models are wrong, but some are useful." G. Box

* Components of time series

- i) Long term trends
- ii) ST Seasonal variations
- in Cyclic variations
- iv) Randon fluctuations

- * horizon of your model (short term vs. long term)
- * level of granularity you need (Dt;)

* Univariante or multivariante models
$$\begin{pmatrix} P_1, P_2, P_3 \\ T_1 \end{pmatrix}, \begin{pmatrix} P_2 \\ T_2 \end{pmatrix}, \begin{pmatrix} P_3 \\ T_4 \end{pmatrix}$$
...

Before we begin:

* SIPPRAG Window

time	Load	7 ,,(+
0	321	5 Am
1	316	1
2	314	J
3		
9	318	
••	•	

Before we begin:

$$y = \begin{pmatrix} 101 \\ 14 \\ 46 \\ 84 \\ 72 \end{pmatrix} \xrightarrow{\text{NaN}} \begin{pmatrix} 101 \\ 14 \\ 84 \\ 72 \end{pmatrix} \xrightarrow{\text{NaN}} \begin{pmatrix} 101 \\ 14 \\ 84 \\ 72 \end{pmatrix} \xrightarrow{\text{NaN}} \begin{pmatrix} 101 \\ 14 \\ 84 \\ 72 \end{pmatrix} \xrightarrow{\text{NaN}} \begin{pmatrix} 101 \\ 14 \\ 84 \\ 72 \end{pmatrix} \xrightarrow{\text{NaN}} \begin{pmatrix} 101 \\ 14 \\ 84 \\ 72 \end{pmatrix} \xrightarrow{\text{NaN}} \begin{pmatrix} 101 \\ 14 \\ 84 \\ 72 \end{pmatrix}$$

Before we begin:

* Single multistep forecasting

- 1) Direct multi-step: $\frac{m-1}{2} \frac{M-2}{M-3} \frac{M-4}{M-4} \frac{M-N}{M-N} N models <math>y=f(x)$
- 1-2, 2-3, 3-4, N-1-N
- 3 Multiple output: [mistory] [future]

Work flow template:

- Understand the problem/business
- 2) Data exploration
- 3) Deta preprocessing // feature eng.
- 4) Short list the models / algorithms
- 5) Train your model 6) Evaluation phase

- * 8 years data of Temp & Load (Dt=hr)
- ? Power Demand foreeasting

Short Term Long Term

Case: Energy Demand Forecasting

e near past is used * Short term load forecasting : ~ 1 hr to 24 hr ~demand/supply Feature is an important feature

Long term LF: ~ I week to months } Planning & ~ years } investment

Seasonal patterns Climate Models

Typial	STLF	LTLF
Horizon	1hr-2 days	> 1 months
Granularity	~hr	~hr—day
History Range	~2 years	~ >, 5 years
Accuracy	€5% ernor	< 25% esnor
Forecasting freq.	-hr to day	> month

Data Exploration: What we already know

Basic statistics (mean, median, STD...)

Plots => 1D: Temporal data

>> 20: Scatter plots

Histograms

Box plots, violin plots

Correlation matrix

time: 314 ms (started: 2020-12-29 18:29:17 +00:00)

Data Exploration: Temporal Nature of data

1) How to handle "time stamps,

	Date	Hour	load	T
0	01/01/2004	1	NaN	37.33
1	01/01/2004	2	NaN	37.67
2	01/01/2004	3	NaN	37.00
3	01/01/2004	4	NaN	36.33
4	01/01/2004	5	NaN	36.00

	load	T
2012-01-05 00:00:00	3167.0	19.00
2012-01-05 01:00:00	3014.0	22.33
2012-01-05 02:00:00	2921.0	22.33
2012-01-05 03:00:00	2874.0	22.00
2012-01-05 04:00:00	2876.0	21.67

colab

Data Exploration: Temporal Nature of data

2 Temporal data decomposition > Trend > Seasonality Stationarity | Noise Noise Now stable your system 10 Intuition 10 Tests

the past reflects itself on future &

how much we should expect

colab

Data Exploration: Temporal Nature of data

3 Feature Eng. for Time Series

Date/time information

Karlsruhe Institute of Technology

Data Exploration: Temporal Nature of data

- 3 Feature Eng. for Time Series
 - □ Date/time information
 - Window functions

colab

Data Exploration: Temporal Nature of data

- (9) Self/Auto Correlations in temporal data
 - □ Autocorrelation function (acf)
 - □ Partial ACF (pacf)

How data points are linearly related as a function of time difference.

Karlsruhe Institute of Technology

Data Exploration: Temporal Nature of data

- * ACF > it preserves the periodicity
- * ACF = 1 @ lag = \emptyset [self correlated]
- * ACF (white noise) -> Ø
- * ACF is symmetric

Karlsruhe Institute of Technology

Data Exploration: Temporal Nature of data

- * PACF -> which time lag is informative,

 ~ filters periodic behavior
- * pACF -> de termine the "order, of a model

Spurious Correlations

21.12.2021

colab

Overview of Statistical Models

AR Model: Auto Regressive

$$y_t = a_{s+} a_1 y_{t-1} + Err$$
 history:= 1 lag

Order
$$(p) := history in (p); p=2$$

$$y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + Err$$

Overview of Statistical Models

AR-I-MA: AR - Integrated-MA

* add differencing => Remove trends

"baseline correction,

*
$$y_t = a_0 + E_t + a_1 E_{t-1} + a_2 E_{t-2} + \dots + a_q E_{t-q}$$

Errors dissipate in the $q \leftarrow order$

ARIMA =
$$f(\rho, d, q)$$
 $\begin{cases} (0,0,0) \rightarrow \text{ white noise} \\ (0,1,0) \rightarrow \text{ random walk} \\ (0,1,1) \rightarrow \exp \text{ smoothing} \end{cases}$

* SARIMA:= Seusonal ARIMA

D Adjacent points in time can have influence on one another

Code Implementation

$$S \Rightarrow daily seasonality I \Rightarrow diff \Rightarrow 1$$
 $AR \Rightarrow pacf \Rightarrow 3$
 $MA \Rightarrow acf \Rightarrow 6$
 $X \Rightarrow Temperature data$

(i) Forecast only (ii) Tran + forecast

Model Training

colab

how can we use ML algorithms?

how can we use ML algorithms?

Model Selection: SVM for Regression

- * Fit as many instance as possible
- * "Street " width is controlled by margin E.
- * Convex optimization problem;
 - \square C

 - 1 Kernel

colab

Additional Notes

