

ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI CÔNG NGHỆ THÔNG TIN KHOA KHOA HỌC MÁY TÍNH

LỚP CS115.P11.KHTN MÔN PHÂN TÍCH VÀ THIẾT KẾ THUẬT TOÁN Bài tập về nhà nhóm 4

CỬ NHÂN NGÀNH KHOA HỌC MÁY TÍNH

Nhóm 12 Nguyễn Trọng Tất Thành Mã số sinh viên: 23521455 Hoàng Minh Thái

Mã số sinh viên: 23521414

Giảng viên hướng dẫn: Thầy Nguyễn Thanh Sơn

TP. HỒ CHÍ MINH, NĂM 2024

Mục lục

1	Bài	tập 1	:
	1.1	Phân tích chung	
	1.2	Giới hạn 1: $p \leq 10$ - Sử dụng Backtracking	3
	1.3	Giới hạn 2: $p \leq 10^6$ - Sử dụng Quy hoạch động	3
	1.4	Giới hạn 3: $p>10^6$ - Phân tích Lý thuyết Trò chơi	4
	1.5	Kết luận	
2	Bài	tập 2	6
	2.1	Phương pháp giải	6
		Phương pháp giải	6
		Phương pháp giải	6
		Phương pháp giải	6

1 Bài tập 1

1.1 Phân tích chung

- Bài toán thuộc loại biểu diễn dưới dạng cây.
- Nếu p là số lẻ, người chơi có lợi thế hơn vì có thể lựa chọn hai nước đi (tăng hoặc giảm 1 đơn vị).
- Nếu p là số chẵn, người chơi chỉ có một nước đi duy nhất là giảm p xuống còn p/2, điều này hạn chế khả năng chiến thắng.
- Mục tiêu của người chơi là đưa đối thủ vào trạng thái thua bằng cách đưa đối thủ về trạng thái bất lơi.

1.2 Giới hạn 1: $p \le 10$ - Sử dụng Backtracking

$\acute{\mathbf{Y}}$ tưởng:

- Duyệt tất cả các trạng thái có thể của p.
- Nếu tồn tại một nước đi khiến đối thủ rơi vào trạng thái thua, thì trạng thái đó là trạng thái thắng.

Mã giả:

```
Algorithm 1 Backtracking cho p \le 10
```

```
0: function CANWIN(p)
    if p == 0 then
0:
      return False
0:
    end if
0:
    if p\%2 == 1 then
0:
      return not CANWIN(p-1) or CANWIN(p+1)
0:
0:
      return not CANWIN(p/2)
0:
    end if
0: end function=0
```

Độ phức tạp:

- Thời gian: $O(2^p)$, do thử tất cả các trạng thái.
- Không gian: O(p), do sử dụng đệ quy.

1.3 Giới hạn 2: $p \le 10^6$ - Sử dụng Quy hoạch động

$\hat{\mathbf{Y}}$ tưởng:

- Lưu trữ kết quả thắng/thua cho mỗi giá trị p trong một mảng dp.
- Trạng thái thắng/thua của p được tính dựa trên trạng thái của p-1, p+1, và p/2.

Mã giả:

Algorithm 2 Quy hoạch động cho $p \le 10^6$

```
0: dp \leftarrow [-1] \times (10^6 + 1)
0: function CANWIN(p)
     if p == 0 then
0:
        return False
     end if
0:
     if dp[p] \neq -1 then
0:
        return dp[p]
0:
0:
     end if
     if p\%2 == 1 then
0:
        dp[p] \leftarrow not CANWIN(p-1) or CANWIN(p+1)
0:
0:
        dp[p] \leftarrow \mathbf{not} \ \mathrm{CANWin}(p/2)
0:
0:
     end if
0:
     return dp[p]
0: end function=0
```

Độ phức tạp:

- Thời gian: O(p), do mỗi trạng thái chỉ được tính một lần.
- Không gian: O(p), do sử dụng mảng dp.

1.4 Giới hạn 3: $p > 10^6$ - Phân tích Lý thuyết Trò chơi

Ý tưởng:

- Nếu p là số lẻ, người chơi A luôn có lợi thế vì có thể đưa đối thủ vào trạng thái bất lợi.
- Nếu p là số chẵn, người chơi phải giảm p xuống p/2, do đó trạng thái của p/2 quyết định kết quả.

Mã giả:

Algorithm 3 Lý thuyết trò chơi cho $p > 10^6$

```
0: function CANWINTHEORY(p)
     while p > 0 do
0:
       if p\%2 == 1 then
0:
         return True {A thắng nếu p lẻ}
0:
0:
       else
0:
         p \leftarrow p/2
       end if
0:
     end while
0:
     return False {Nếu về 0, A thua}
0: end function=0
```

Độ phức tạp:

- Thời gian: $O(\log p)$, vì mỗi lần giảm p xuống một nửa.
- Không gian: O(1), vì chỉ cần sử dụng một vài biến để theo dõi trạng thái.

$1.5~{ m K\'et}$ luận

- Với $p \leq 10,$ phương pháp Backtracking giúp thử tất cả các khả năng.
- Với $p \leq 10^6,$ Quy hoạch động là phương pháp hiệu quả.
- Với $p>10^6$, phân tích lý thuyết trò chơi giúp giải bài toán với độ phức tạp thấp nhất.

2 Bài tập 2

2.1 Phương pháp giải

- $n \le 1000$:
 - Sử dụng QHD để kiểm tra trạng thái thắng/thua cho mỗi giá trị n.
- $n \le 10^{18}$:
 - Sử dụng chiến thuật với công thức:

$$n \mod (k+1) \neq 0 \implies A \text{ thắng.}$$

2.2 Mã giả

2.2.1 Quy hoạch động $(n \le 1000)$:

Mã giả cho QHD

2.2.2 Chiến thuật lý thuyết trò chơi $(n \le 10^{18})$:

Mã giả cho chiến thuật lý thuyết trò chơi

2.3 Phân tích độ phức tạp

- Quy hoạch động: Độ phức tạp $O(n \cdot k)$.
- Lý thuyết trò chơi: Độ phức tạp $O(\sqrt{n})$.

