INE5607 – Organização e Arquitetura de Computadores

Unidade Central de Processamento

Aula 4: Avaliação de desempenho de processadores

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

Sumário

- Definindo desempenho
- Perfilamento
- Métricas
- O que afeta o desempenho?
- Power wall
- Considerações finais

DEFININDO DESEMPENHO

- O processador A é melhor do que o B
 - –O que isso quer dizer?
 - -O quão melhor ele é?
 - -Em quais casos?
 - E para esse caso específico?

Analogia: aviões

Avião

Boeing 777

Boeing 747

BAC/Sud

Concorde

Douglas DC-8-50

Figura 1.13 do livro Computer Organization and Design 4th ed.

Avião	Capacidade passageiros
Boeing 777	375
Boeing 747	470
BAC/Sud Concorde	132
Douglas DC- 8-50	146

Figura 1.13 do livro Computer Organization and Design 4th ed.

Avião	Capacidade passageiros	Autonomia <i>milhas</i>
Boeing 777	375	4630
Boeing 747	470	4150
BAC/Sud Concorde	132	4000
Douglas DC- 8-50	146	8720

Figura 1.13 do livro Computer Organization and Design 4th ed.

Avião	Capacidade passageiros	Autonomia <i>milhas</i>	Velocidades de cruzeiro mph
Boeing 777	375	4630	610
Boeing 747	470	4150	610
BAC/Sud Concorde	132	4000	1350
Douglas DC- 8-50	146	8720	544

Figura 1.13 do livro Computer Organization and Design 4th ed.

Avião	Capacidade passageiros	Autonomia <i>milhas</i>	Velocidades de cruzeiro mph	Vazão de passageiros pass x mph
Boeing 777	375	4630	610	228.750
Boeing 747	470	4150	610	286.700
BAC/Sud Concorde	132	4000	1350	178.200
Douglas DC- 8-50	146	8720	544	79.424

Figura 1.13 do livro Computer Organization and Design 4th ed.

- Comparação entre desktops
 - Qual deles termina a tarefa primeiro?
 - Tempo para realizar uma tarefa
 - Tempo de execução ou tempo de resposta
- Comparação entre servidores
 - Qual deles completou mais tarefas?
 - Número de tarefas na unidade de tempo
 - Vazão (throughput)

- O que muda nos casos abaixo? A vazão aumenta, o tempo de execução diminui, ou ambos?
 - Trocar o processador do computador por um mais rápido
 - -Adicionar máquinas alugadas na nuvem

PERFILAMENTO

- Uso de cargas de trabalho para a avaliação/comparação de computadores
 - Workloads
 - Padronização de comparações
- Perfis (ou benchmarks)
 - Usados para comparar computadores,
 CPUs, memórias, interconexões, etc.

- Exemplos para CPU/sistema
 - -SPEC CPU
 - Linpack (TOP500.org)
 - -SPLASH
 - PARSEC
 - Whetstone
 - Dhrystone
 - -NAS Parallel Benchmarks

Exemplo: avaliação de smartphones

http://arstechnica.com/gadgets/2014/07/review-amazons-fire-phone-offers-new-gimmicks-old-platform-growing-pains/3/

Exemplo: avaliação de smartphones

BATTERY LIFE: WI-FI BROWSING TEST, 200 NITS

Minutes (higher is better)

http://arstechnica.com/gadgets/2014/07/review-amazons-fire-phone-offers-new-gimmicks-old-platform-growing-pains/3/

Exemplo: notebook e video

Gaming Performance

In terms of gaming performance we refer again to the already tested Lenovo Y50-70 with FHD display, which should have a roughly identical gaming performance to the version we are testing in this review.

	low	med.	high	ultra	
Dirt 3 (2011)			111	56	fps
Sleeping Dogs (2012)			69	20	fps
Guild Wars 2 (2012)			38	<u>31</u>	fps
Tomb Raider (2013)			97	44	fps
StarCraft II: Heart of the Swarm (2013)			78	49	fps
BioShock Infinite (2013)			103	<u>65</u>	fps
Metro: Last Light (2013)			53	28	fps
GRID 2 (2013)			69	45	fps
Company of Heroes 2 (2013)			35	<u>14</u>	fps
Thief (2014)			42	24	fps
GRID: Autosport (2014)			88	<u>61</u>	fps

http://www.notebookcheck.net/Lenovo-IdeaPad-Y50-70-59424712-Notebook-Review-Update.124754.0.html

• Exemplo: Índice de experiência do Windows

Classifique e melhore o desempenho do computador

O Índice de Experiência do Windows avalia os principais componentes do sistema em uma escala de 1,0 a 7,9.

Componente	O que é classificado	Subtotal	Pontuação básica
Processador:	Cálculos por segundo	7,5	2 2
Memória (RAM):	Operações de memória por segundo	5,9	
Elementos gráficos:	Desempenho da área de trabalho para Windows Aero	5,1	5,1
Gráficos de jogos:	Desempenho de gráficos comerciais 3D e de jogos	6,3	Determinado pela pontuação
Disco rígido primário:	Taxa de transferência de dados de disco	5,9	mais baixa

- Discussão: qual a melhor forma de comparar plataformas?
 - -Um benchmark?
 - Qual?
 - Vários benchmarks?
 - Como combinar os valores?
 - Média aritmética, média geométrica, maior valor, menor valor?

MÉTRICAS

Desempenho

Desempenho_x =
$$\frac{1}{\text{Tempo de execução}_x}$$

• Desempenho relativo (ou speedup)

Desempenho_x > Desempenho_y

$$\frac{1}{\text{Tempo de execução}_{x}} > \frac{1}{\text{Tempo de execução}_{y}}$$

Tempo de execução_v > Tempo de execução_x

- Desempenho relativo (ou speedup)
 - X é n vezes mais rápido do que Y

$$n = \frac{\text{Tempo de execução}_{y}}{\text{Tempo de execução}_{x}} = \frac{\text{Desempenho}_{x}}{\text{Desempenho}_{y}}$$

 Se o computador A roda um programa em 10 segundos e um computador B roda o mesmo programa em 15 segundos, o quão mais rápido é A do que B?

- Tempo de execução de um programa
 - Medido em segundos
- Tempo de resposta
 - Tempo total para completar uma tarefa
 - CPU + memória + HD + E/S
 - Compartilhamento: programas simultâneos
- Tempo de execução de CPU
 tempo_{CPU} = tempo_{usuário} + tempo_{sistema}

Perspectiva de usuário

- Quão rápido um programa executa?
- Métrica: tempo

Perspectiva de projetista

- Quão rápido o HW executa funções básicas?
- Métrica: ciclos de relógio

- Computador é um sistema digital síncrono
- Relógio
 - Determina quando ocorrem eventos no HW
 - Período (T) ou frequência (f)
 - Exemplo: T = 0.25 ns = 250 ps ou f = 4 GHz

tempo CPU =
$$n \times T = \frac{n}{f}$$

- Visão simples de tempo
 - Tempo de execução de um programa na CPU =
 Ciclos de relógio para a execução do programa
 * Período de ciclo de relógio

tempo cpu = ciclos cpu
$$\times T = \frac{\text{ciclos}}{f}$$

- Exemplo
 - -10s (comp. A, 2 GHz)
 - 6s (comp. B, ?), mas ciclos_B = $1.2 \times \text{ciclos}_A$
- Solução

tempo cpu = ciclos cpu
$$\times T = \frac{\text{ciclos cpu}}{f}$$

Exemplo

- -10s (comp. A, 2 GHz)
- 6s (comp. B, ?), mas ciclos_B = $1.2 \times \text{ciclos}_A$

Solução

ciclos cpu(A) = tempo cpu(A)
$$\times$$
 f(A) = $10 \times 2 \times 10^9$

tempo_{CPU}(B) =
$$\frac{1.2 \times ciclos_{CPU}(A)}{f(B)} = \frac{1.2 \times 10 \times 2 \times 10^9}{f(B)} = 6$$

$$f(B) = \frac{1.2 \times 10 \times 2 \times 10^9}{6} = 4 \times 10^9 = 4 \text{ GHz}$$

- Desempenho considerando instruções
 - Número de ciclos depende de
 - Número de instruções executadas
 - Número médio de ciclos por instrução
 - Ciclos de CPU = Instruções do programa *
 Número de ciclos médio por instrução

$$ciclos_{CPU} = I \times CPI$$

tempo cpu =
$$I \times CPI \times T = \frac{I \times CPI}{f}$$

- Exemplo
 - Programa compilado para uma certa ISA
 - Computador A
 - Tempo de ciclo de 250 ps
 - CPI de 2
 - Computador B
 - Tempo de ciclo de 500 ps
 - CPI de 1.2
 - Qual é o mais rápido? Por quanto?

– Computador A:

- Tempo de ciclo de 250 ps e CPI de 2
- Ciclos_{Δ} = 1 * 2.0
- Tempo_A = Ciclos_A * TempoDeCiclo_A
- Tempo_A = I * 2.0 * 250 ps = I * 500 ps

-Computador B:

- Tempo de ciclo de 500 ps e CPI de 1.2
- Ciclos_B = I * 1.2
- Tempo_B = Ciclos_B * TempoDeCiclo_B
- Tempo_B = I * 1.2 * 500 ps = I * 600 ps

- Qual é o mais rápido?
 - $-\text{Tempo}_{\Delta} = 1 * 500 \text{ ps}$
 - $-\text{Tempo}_B = I * 600 \text{ ps}$
- Quão mais rápido?
 - $-\text{Tempo}_{B}/\text{Tempo}_{A} = (I*600)/(I*500) = 1.2$

Como determinar cada fator?

SW: "profiler", simulador

HW: contador

Simulação da implementação

manual do processador

$$ciclos_{CPU} = \sum_{i=1}^{n} (I_i \times CPI_i)$$

$$\begin{split} &\sum_{i=1}^{n} I_i \times CPI_i \\ &CPI = \frac{1}{I} \end{split} \qquad \text{(média ponderada dos CPIs)} \\ &CPI = \sum_{i=1}^{n} (\frac{I_i}{I} \times CPI_i) = \sum_{i=1}^{n} (F_i \times CPI_i) \end{split}$$

Classe	СРІ	Qde.	Fração
Α	5	20M	0,33
В	2	30M	0,50
С	4	6M	0,10
D	4	4M	0,07

$$CPI = \frac{5 \times 20 + 2 \times 30 + 4 \times 6 + 4 \times 4}{60} = \frac{10}{3}$$

$$CPI = 5 \times 0.33 + 2 \times 0.50 + 4 \times 0.10 + 4 \times 0.07 = 3.33$$

Exemplo

- Um desenvolvedor de compilador deve escolher entre dois códigos a serem gerados.
 - Qual executa mais instruções?
 - Qual é o mais rápido?

	Instruções	Instruções	Instruções
	tipo A	tipo B	tipo C
CPI	1	2	3

Sequências de código	Instruções tipo A	Instruções tipo B	Instruções tipo C
1	2	1	2
2	4	1	1

Métricas

Número de instruções

$$-1:2+1+2=5$$

$$-2:4+1+1=6$$

	Instruções	Instruções	Instruções
	tipo A	tipo B	tipo C
CPI	1	2	3

Sequências de código	Instruções tipo A	Instruções tipo B	Instruções tipo C
1	2	1	2
2	4	1	1

Métricas

Mais rápido

$$-1: (2*1)+(1*2)+(2*3) = 10 \text{ ciclos}$$

$$-2: (4*1)+(1*2)+(1*3) = 9 \text{ ciclos}$$

	Instruções	Instruções	Instruções
	tipo A	tipo B	tipo C
CPI	1	2	3

Sequências de código	Instruções tipo A	Instruções tipo B	Instruções tipo C
1	2	1	2
2	4	1	1

O QUE AFETA O DESEMPENHO?

Algoritmo

- Afeta o número de instruções executadas
 - Determina o número de instruções do programa
 - Exemplo: mais passos, mais instruções
- Pode afetar o CPI
 - Pode favorecer instruções mais lentas ou rápidas
 - Exemplo: uso de instruções de ponto flutuante ao invés de instruções inteiras

- Linguagem
 - Afeta o número de instruções
 - Determina as instruções-fonte a serem traduzidas em instruções do processador-alvo
 - Afeta o CPI
 - Forte suporte a abstrações de dados requer chamadas indiretas, que deterioram o CPI

Compilador

- Afeta o número de instruções executadas
 - Determina a tradução de comandos-fonte em instruções do processador-alvo
 - Exemplo: eliminação de redundâncias, eliminação de instruções de desvio
- Pode afetar o CPI
 - Determina a proporção de instruções de cada tipo
 - Determina a ordem das instruções (pipeline)
 - Influencia a localidade de acesso à memória
 - Exemplo: escalonamento de código, loop unrolling

- ISA: Arquitetura do conjunto de instruções
 - Afeta o número de instruções executadas
 - Afeta a seleção de instruções pelo compilador
 - Exemplos: push/pop; a = a + A[i]
 - Afeta o CPI
 - Determina o custo em ciclos de cada instrução
 - Exemplo: modos de endereçamento complexos
 - Afeta a frequência
 - A simplicidade das instruções permite organizar o sistema digital com menores período de relógio

POWER WALL

Figura 1.16 do livro Computer Organization and Design 4th ed.

Figura 1.15 do livro Computer Organization and Design 4th ed.

- Mudança de paradigma para crescimento do desempenho
 - Originalmente uniprocessador
 - Posteriormente multiprocessador em um único chip
 - Microprocessador multicore

Indicadores de tendências

CONSIDERAÇÕES FINAIS

Considerações finais

- O que é desempenho
 - Métricas e equações
- Como comparar desempenho
- A razão do desempenho não crescer mais tão facilmente

Considerações finais

- Medida confiável de desempenho
 - Tempo

tempo =
$$\frac{\text{segundos}}{\text{programa}} = \frac{\text{instruções}}{\text{programa}} \times \frac{\text{ciclos}}{\text{instrução}} \times \frac{\text{segundos}}{\text{ciclo}}$$

- Medida adicional de interesse
 - Energia e potência

Considerações finais

- Próxima aula
 - Introdução a instruções

INE5607 – Organização e Arquitetura de Computadores

Unidade Central de Processamento

Aula 4: Avaliação de desempenho de processadores

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

