Détection et correction d'erreurs

1. Introduction

Exercices

- 1. Quelle est la distance de Hamming entre deux mots valides dans le code ASCII ? Quels sont les types d'erreurs que permet de déceler un tel codage ?
- 2. On choisit un code à trois bits, les mots de code valides sont ceux dont les trois bits sont identiques. Quelle est la distance de Hamming ?

Si une erreur se produit sur un seul bit, quels sont les mots que l'on peut obtenir, et par quel mot valide chacun peut-il être remplacé sans ambiguïté ?

1. La distance est de 1 ! Il suffit de changer 1 bit pour retomber sur un mot valide Pour une distance d de Hamming donnée,

On peut détecter avec certitude n bits avec $n+1 \le d$

On peut corriger avec certitude m bits avec $2m+1 \le d$

Le bit d'un code détecteur (et correcteur) d'erreur est d'augmenter la distance. Dans notre cas, aucune détection (et donc correction n'est possible \rightarrow n=0

- 2. Les mots du code valides sont dont 000 et 111 : la distance est donc de 3 Les mots erronés avec 1 seul bit faux sont : 001, 010, 100, 110, 101, 011 Puisque la distance de Hamming est 3,
 - on doit pouvoir détecter au maximum 3-1=2 bits
 - et corriger (3-1)/2 = 1 bit.

La correction consiste à revenir au mot valide le plus proche du mot erroné reçu. Ainsi, les 3 premiers mots seront remplacés par 000 (car ils ont une distance de 1 avec 000 et une distance de 2 avec 111, il est bien sur nécessaire de faire la supposition qu'il n'y a pas eu plus d'une erreur) et les trois derniers par 111 (pour des raisons similaires).

2. Codes par bloc

Exercices

Dans l'alphabet ASCII le mot « OSI » se code par les 3 caractères de 7 bits suivants : O' = 10011111, S' = 1010011 et O' = 1000011

1. La LRC (Longitudinal Redundancy Check) consiste à rajouter un bit de parité à la fin d'un bloc de données (octet, caractère, suite de bits, ...). La VRC (Vertical Redundancy Check) consiste à calculer les bits de parité entre plusieurs blocs de données en vertical :1 bit de parité pour les bits qui sont à la même position dans les différents blocs considérés.

Donnez la VRC du mot « OSI » en utilisant une parité paire pour calculer le LRC de chaque caractère

2. Combien d'erreurs ce code peut-il détecter ? Combien peut-il en corriger ?

```
1.

1001111 1
1010011 0
1000011 1
1011111 0 ← VRC
↑ LRC
```

2.

Il peut détecter jusqu'à 3 erreurs, s'il y en a quatre, on n'est pas certain de détecter car on retombe sur un code valide.

Il peut corriger 1 erreur (la position du bit est donnée par l'intersection de la ligne du bit incorrect dans le VRC avec la colonne du bit incorrect dans le LRC. Lorsqu'il y a plus de 2 erreurs l'ambiguïté empêche la correction de l'erreur. Il faut raisonner par l'exemple : modifier un bit, puis 2, puis 3 puis 4.

Il est également possible de déterminer la distance de Hamming, c'est un moyen simple et efficace. On constate que sur un bit quelconque de données il y a trois bits de contrôle qui interviennent. Il faut donc changer 4 bits pour retomber sur quelque chose de valide. La distance est égale à 4. D'après les formules données en cours on peut détecter n erreurs tel que $n+1 \le d$ ist et corriger m erreur tel que $2m+1 \le d$ ist. Pour nous, on trouve n=3 et m=1 (arrondis à l'entier inférieur)

3. Code de Hamming

Exercices

- 1. On souhaite utiliser le codage de Hamming pour émettre la suite de bits (1011). Quelle est la séquence à transmettre ?
- 2. Y a-t-il une erreur dans le mot suivant : 1101101?
- 3. Soit le mot de Hamming suivant : 101101111011011
 - a. Quels sont les bits de contrôle de parité ?
 - b. Quelles positions contrôle chacun de ces bits ?
 - c. Quel est le message reçu?
 - d. Y a-t-il une erreur dans le message?

1.

m ₄	m ₃	m ₂	k ₃	m ₁	k ₂	\mathbf{k}_1
1	0	1	0	1	0	1

- k_1 contrôle m_1 , m_2 et $m_4 \rightarrow 1+1+1$, $k_1 = 1$ (parité paire)
- k_2 contrôle m_1 , m_3 et $m_4 \rightarrow 1+0+1$, $k_2 = 0$ (parité paire)
- k_3 contrôle m_2 , m_3 et $m_4 \rightarrow 1+0+1$, $k_3 = 0$ (parité paire)

Le message envoyé sera donc 1010101

2.

m 4	m 3	m ₂	k ₃	m 1	k ₂	k ₁
1	1	0	1	1	0	1

- k_1 contrôle m_1 , m_2 et $m_4 \rightarrow 1+0+1$, or $k_1 = 1$ (parité paire) PBLE
- k_2 contrôle m_1 , m_3 et $m_4 \rightarrow 1+0+1$, or $k_2 = 0$ (parité paire) **OK**
- k_3 contrôle m_2 , m_3 et $m_4 \rightarrow 0+1+1$, or $k_3 = 0$ (parité paire) PBLE

Le bit en erreur est donc en position $(k_3k_2k_1)$ soit en position $(101)_2$ soit en position $(m_2) \rightarrow le 0$ doit être un 1.

3.

m 11	m 10	m 9	m ₈	m 7	m ₆	m 5	k 4	m 4	m 3	m 2	k 3	m ₁	k ₂	k ₁
1	0	1	1	0	1	1	1	1	0	1	1	0	1	1

a. les bits de contrôle de parité sont k₁ (position 0001), k₂ (position 0010), k₃ (position 0100) et k₄ (position 1000)

b.

- k_1 contrôle m_1 , m_2 , m_4 , m_5 , m_7 , m_9 , $m_{11} \rightarrow 1$
- k₂ contrôle m₁, m₃, m₄, m₆, m७, m₁₀ et m₁₁ → 1
- k₃ contrôle m₂, m₃, m₄, m₈, m₉, m₁₀ et m₁₁ → 1
- k₄ contrôle m₅, m₆, m₇, m₈, m₉, m₁₀ et m₁₁ → 1

c.

Le message reçu est donc : 10110111010

d.

Tout est donc ok (pas d'erreurs dans les bits de contrôle).

4. Codes CRC (Cyclic Redundancy Check)

Exercices

- 1. Calculez le CRC du mot « OSI » en utilisant le polynôme générateur $x^8 + 1$ et en supposant que le $8^{\text{ème}}$ bit de chaque caractère est un bit de parité paire et que le mot d'information est composé des bits des 3 caractères à la suite.
- 2. Calculez avec la méthode de la division polynomiale le bloc de contrôle (CRC) correspondant à la suite de bits 110010101010111 en utilisant le polynôme générateur $G(x) = x^4 + x^3 + x + 1$
- 3. On utilisera le polynôme générateur x^4+x^2+x
 - On souhaite transmettre le message suivant 1111011101, quel sera le CRC à ajouter ?
 - On reçoit les messages: 1111000101010 et 1100010101010, sont-ils corrects?
- 4. La détection d'erreurs utilise le CRC $x^6 + x^4 + x + 1$.

Le récepteur reçoit la séquence binaire suivante 101011000110

Le message est-il correct (tester avec la méthode de division polynomiale binaire)?

1.

I = 1001111111010011010000111 les bits en gras représentent la VRC

$$G = 100000001$$
 et degré = 8

En utilisant la division polynomiale on obtient R = 10111110 (ce qui correspond à la LRC). Donc, la LRC peut être obtenue par un code cyclique

2.

I = 1100101010101011,

 $degré = 4 \Rightarrow C0 = 11001010101010110000$

$$\Rightarrow$$
 CO(x) = x^{19} + x^{18} + x^{15} + x^{13} + x^{11} + x^{9} + x^{7} + x^{5} + x^{4}

$$G = 11011 \Rightarrow G(x) = x^4 + x^3 + x + 1$$

On effectue la division de CO(x) par G(x) (la division polynomiale symbolique est immédiate).

$$R(x) = x^3$$
 donc $R = 1000$, on transmet alors $C = IR = 1100101010101111000$

3.

I = 1111011101

 $degré = 4 \Rightarrow C0 = 11110111010000$ à diviser par 10110

- On procède à la division binaire 1111000101010 par 10110 → Reste à 0 **OK**
- On procède à la division binaire 1100010101010 par 10110 → Reste à 1110 PBLE

4.

On procède à la division binaire 101011000110 par 1010011 → Reste à 0 **OK**