More Supervised Learning

Week 9

Decision trees Random forest

Revisiting the use of Training and Test Samples

- What is the reason behind dividing data into train and test set?
- What is generalisation?
- When to use training samples?
- When to use test samples?
- What is data leakage?

Regression/classification trees
Decision tree algorithms
Model complexity & pruning

If we leave at 6 PM and there are no cars stalled on the road, what will our commute time be?

- A decision tree is a map of the possible outcomes of a series of related options.
- It weighs possible actions against one another
 - Costs, probabilities, and benefits
- Typically starts with a single node
 - Branches into possible outcomes.

- Simple and easy to interpret!
- May not be competitive with the best supervised learning algorithms in terms of prediction accuracy.
- We will also discuss random forests. A random forest uses multiple decision trees (ensemble) and combines them to yield a single prediction.
- Combining a large number of trees can often result in dramatic improvements in prediction accuracy, although at the expense of some loss in interpretation.

Partition of Feature Space

[Figure taken from Hastie's ESL book]

- After partitioning the feature space, we can fit a simple model in each sub-region $(R_1, R_2, ...)$.
- We can fit a regression model. Such decision trees are called regression trees.
- We can also fit a classification model. Such decision trees are called classification trees.
- Usually, extremely simple models such as majority (classification) or mean (regression) are used.

Process of building a DT

- Let's start with the procedure:
 - We divide the feature space, i.e., the set of possible values for $x_1, ..., x_d$ into J distinct and non-overlapping regions, $R_1, ..., RJ$
 - For every instance that falls into region R_j , we make the same prediction, which is simply the mean (or mode) of response values for the training observations in R_j .

Formulation of Regression Trees

• The overall goal of regression trees is to find regions $R_1, R_2, ..., RJ$ that minimize the training error:

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

where \hat{y}_{R_j} is the mean of the target values of the training instances in the j^{th} region.

But how do we exactly perform these actions?

Solution

- It is computationally infeasible to consider every possible partition of the feature space into *J* regions.
- For this reason, a top-down, greedy approach is used
 - Known as recursive binary splitting.
- Rather using a brute-force solution, we would like to work in a heuristic way.

Solution

- How the heuristic method works?
 - Select a feature x_i and a threshold s such that
 - Split the feature space
 - Regions $\{x | x_j \le s\}$ and $\{x | x_j \ge s\}$
 - leads to the best possible reduction in training error
 - Not going into the joint space of all features
 - Use independent feature form such as x_i with a threshold s.
 - Repeat the process
 - Looking for the best feature and the best threshold
 - Minimize the error in each of the resulting regions.
 - instead of splitting the entire feature space, we only split one of the two previously identified regions.
 - The splitting process continues until a stopping criterion is reached.

Prediction using DT

- We predict the response for a given test instance
 - using the mean (or mode) of the training instances in the region where the test observation falls.

Classification trees...

- In the classification setting
 - we replace the sum of square error by the classification error rate as a criterion for making the binary splits.
 - The classification error rate (*E*) is defined as the fraction of the training instances in that region that do not belong to the most common class.

$$E = 1 - \max_{k} \hat{p}_{jk}$$

 $where \ \hat{p}_{jk}$ represents the proportion (fraction) of training instances in the j^{th} region that are from k^{th} class

$$CoD = \max_{k} \hat{p}_{jk}$$

- CoD (certainty of distribution) and close to 1
 - almost all of the training points inside a region are voting for a certain class label.

Classification trees...

- Classification error is being less sensitive for tree-growing
- Alternative solution:
 - Gini index (G) is defined as

$$G = \sum_{k=1}^{K} \hat{p}_{jk} (1 - \hat{p}_{jk})$$

- It is a measure of node purity. G becomes small as \hat{p}_{jk} closes to either 0 or 1.
- Entropy defined as:

$$D = -\sum_{k=1}^{K} \hat{p}_{jk} \log \hat{p}_{jk}$$

Classification trees...

 Pattern of Error, Gini Index and Entropy for different probabilities of class distributions:

Decision tree algorithms

- Three of the more popular ones are listed:
 - ID3 (Iterative Dichotomiser 3)
 - uses Entropy
 - C4.5 (Successor of ID3)
 - slightly more advanced version of ID3 and also uses
 Entropy
 - CART (Classification and Regression Tree)
 - uses Gini impurity

Decision tree algorithms: ID3 Algorithm...

- Calculate the entropy of every feature using the data set S.
- Split the set S into subsets using the feature for which entropy is minimum.
 - So lesser values of entropy means it should be a good choice for selection of the attribute
- Make a decision tree node containing that feature.
- Recurse on subsets using remaining features.

Decision tree algorithms: ID3 Algorithm...

- If the tree is very deep
 - It partitions the feature space into small regions.
 - Small number of training points in sub-regions.
 - Increases variance and estimation becomes poor
- If the tree is shallow
 - Large regions
 - Small variance but large bias
- Need to find the sweet point
 - Depth of the decision tree
 - Cross-validation as discussed earlier (previous lecture)

Model complexity and pruning

- Pruning is a technique that reduces the size of decision trees
 - Removes sections of the tree
 - Little power to classify instances.
- The tree-building process
 - Overfit (creating deep trees)
 - Underfit (creating small number of regions)
- Generally there are several ways of pruning trees:
 - Pre-pruning (forward pruning)
 - Post-pruning (backward pruning)

Model complexity and pruning: Pre-pruning

- In pre-pruning
 - Decision is made during the building process
 - Stop adding nodes (e.g. by looking at entropy).
- In case of Entropy
 - Check the amount of entropy reduction by selecting different features.
 - Stop splitting when the entropy reduction is not significant.
- Pre-pruning can be problematic
 - Sometimes attributes individually do not contribute much to a decision, but combined, they may have a significant impact.

Model complexity and pruning: Post-pruning

- Post-pruning waits until the full decision tree has been built
 - Then prunes the attributes by subtree replacement.
- Replace an entire subtree with a single region or node
 - It reproduces the smallest error.
- Select a subtree
 - Check replacing it with a single node or feature incurs a small amount of change in Entropy.
 - If yes, trim the tree. If not, keep that subtree

Decision trees: Advantages/Disadvantages

- Advantages:
 - Decision trees are very easy to understand
 - Decision trees are capable of modelling nonlinear functions.
 - Decision tree can handle categorical variable

- Disadvantages:
 - Sensitive to small changes in the data.
 - Adding few data points or change some small values will change the DT
 - May overfit easily
 - Deep decision trees increases risk of overfitting and high variance model.
 - Only axis-aligned splits.
 - Considers each feature independently
 - No joint probabilities of features
 - Performance is not competitive
 - SVM, KNN or Neural network

Random Forest

Ensemble Learning
Bootstrap Estimation
Bagging
RF algorithm

Wisdom of Crowds

The collective knowledge of a **diverse and independent** body of people typically exceeds the knowledge of any single individual, and can be harnessed by voting.

- James Surowiecki (2004)

Ensemble learning

- Probable outcomes of developing machine learning models
 - Sometimes weak and inaccurate
 - Some performs better on specific occasions.
- Ensemble learning
 - Generating and combining multiple models (classifiers or experts) to solve a particular computational intelligence problem.

Ensemble learning...

- Consider this scenario:
 - We know that a single decision tree might not perform well
 - But, it is super fast
 - What if we create multiple trees?
 - We just have to make sure that they do not all learn the same thing.

Ensemble learning...

- Problem with single decision tree
 - Risk of overfitting or increased variance
- To reduce the variance of unstable learning methods (such as DT) use ensemble method
 - Train multiple decision trees, each with slightly different subsets of data
 - take their combined decision
 - Classification
 - Voting
 - Regression
 - Averaging
- Random Forest
 - Ensemble of DT

Bootstrap estimation

- A bootstrap sample is a smaller sample that is generated (bootstrapped) from a larger sample.
- It uses a resampling method found in statistics.
- Bootstrap in many cases can result in less variance and more accurate results.

Bagging

- Bootstrap aggregation or bagging
 - General-purpose procedure for reducing the variance of a statistical learning method.
 - Given a set of n independent estimates Z_1, Z_2, \ldots, Z_n each with variance σ^2 , the variance of their mean is n-times lower (σ^2/n).
 - When the estimates are not independent, reduction in variance is lower.
 - Uses multiple classifiers trained on different under-sampled subsets and then allow these classifiers to vote on a final decision.

Random forest algorithm

- Random forest classifier
 - Creates a set of decision trees from randomly selected subset of training set.
 - Each tree is built from a bootstrap sample of data
 - Form the tree based on the best feature from the subset
 - Repeat these steps *T* times, where *T* is the number of the trees
 - Impact on bias
 - Increases. Why?
 - Uses subsets of features in different independent trees
 - Aggregates the votes from different decision trees to decide the final class of the test object.

Random forest algorithm...

- In random forest:
 - all trees are fully grown and no pruning
 - we are dealing with two parameters:
 - number of trees (T);
 - Increasing the number can result in overfitting problem.
 - number of features (m_{try})

$$m_{try} = \sqrt{Number\ of\ features}$$

Random forest algorithm... Training

- For each of *T* iterations (*T* is the number of trees you may like to build):
 - Select a new bootstrap sample from the training set
 - Build an un-pruned tree on this bootstrap sample
 - At each internal node of the tree, randomly select m_{try} features and determine the best split using only these features.
 - Increasing number of features (m_{try}) for each split:
 - Increases correlation
 - Increases strength of single trees

Random forest algorithm... Testing

- Output overall prediction as a mean (or majority vote) from all individually trained trees.
- In random forest, the error rate depends on:
 - Correlation between trees (lower is better)
 - Strength of single trees (higher is better)

Out of bag error

- Estimate the goodness of fit of a bagged model
 - Out of Bag has been introduced which is equivalent to validation or test data.
- Each tree in a random forest is trained on a bootstrapped sample.
 - On average, each bagged tree makes use of 2/3 of the training instances.
- The remaining 1/3 of the instances are referred to as the out-ofbag (OOB) instances.

Out of bag error

- We can predict the response for the i^{th} observation using each of the trees in which that observation was OOB.
 - Average them to find the out of bag error

Feature importance

- Each node in the tree (single feature based split)
 - How much each feature decreases the weighted impurity (Gini or Entropy) of the tree
 - This provides rank of all features used in a tree
- In Random Forest
 - Multiple trees
 - Multiple rank values of single feature
 - Average impurity decreasing scores across all trees for getting overall score and rank of the feature

Advantages/Disadvantages of Random Forest

- Fast to build and even faster to predict!
 - Fully parallelizable since you can parallelly run the trees to go even faster!
 - Decision Tree complexity is $O(d \times n \times logn)$.
 - A random forest with T trees would have $O(T \times d \times n \times logn)$, where d is the number of features and n is the number of data points
- Ability to handle data without pre-processing
 - Not always required to normalize your dataset before running this method
 - data does not need to be rescaled, transformed, or modified! (Resistant to outliers)
 - automatic handling of missing values (a property of decision trees)
- Less interpretable results than a single decision tree.

Thank You.