Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

deeplearning.ai

Vector Space Models

Outline

- Vector space models
- Advantages
- Applications

Why learn vector space models?

What is your age?

How old are you?

Same Meaning

Vector space models applications

- You eat <u>cereal</u> from a <u>bowl</u>
- You <u>buy</u> something and someone else <u>sells</u> it

Information Extraction

Machine Translation

Chatbots

Fundamental concept

"You shall know a word by the company it keeps"

Firth, 1957

(Firth, J. R. 1957:11)

Summary

- Represent words and documents as vectors
- Representation that captures relative meaning

deeplearning.ai

Word by Word and Word by Doc.

Outline

- Co-occurrence Vector representation
- Relationships between words/documents

Word by Word Design

Number of times they occur together within a certain distance k

I like <u>simple data</u>
I prefer <u>simple</u> raw <u>data</u>

n

Word by Document Design

Number of times a word occurs within a certain category

	Corpus						
	Entertainment	Economy	Machine Learning				
data	500	6620	9320				
film	7000	4000	1000				

Vector Space

Ente	ıy	ML			
data	500	6620		9320	
film	7000	4000		1000	

Measures of "similarity:"
Angle
Distance

Summary

• W/W and W/D, counts of occurrence

Vector Spaces — Similarity between words/documents

deeplearning.ai

Euclidean Distance

Outline

- Euclidean distance
- N-dimension vector representations comparison

Euclidean distance

Euclidean distance

Corpus A: (500,7000)

Corpus B: (9320,1000)

$$d(B, A) = \sqrt{(B_1 - A_1)^2 + (B_2 - A_2)^2}$$
$$c^2 = a^2 + b^2$$

$$d(B,A) = \sqrt{(-8820)^2 + (6000)^2}$$

Euclidean distance for n-dimensional vectors

		$ec{w}$	$ec{v}$	
	data	boba	ice-cream	
Al	6	0	1	$= \sqrt{(1-0)^2 + (6-4)^2 + (8-6)^2}$
drinks	0	4	6	$=\sqrt{1+4+4}=\sqrt{9}=3$
food	0	6	8	$= \sqrt{1 + 4 + 4} = \sqrt{9} = 3$
	•			/

$$d\left(\vec{v}, \vec{w}\right) = \sqrt{\sum_{i=1}^{n} \left(v_i - w_i\right)^2} \longrightarrow \text{Norm of } \vec{w} \vec{w}$$

Euclidean distance in Python

```
# Create numpy vectors v and w
v = np.array([1, 6, 8])
w = np.array([0, 4, 6])

# Calculate the Euclidean distance d
d = np.linalg.norm(v-w)
# Print the result
print("The Euclidean distance between v and w is: ", d)
```

The Euclidean distance between v and w is: 3

Summary

- Straight line between points
- Norm of the difference between vectors

deeplearning.ai

Cosine Similarity: Intuition

Outline

- Problems with Euclidean Distance
- Cosine similarity

Euclidean distance vs Cosine similarity

Euclidean distance: $d_2 < d_1$

Angles comparison: $\beta > \alpha$

The cosine of the angle between the vectors

Summary

Cosine similarity when corpora are different sizes

deeplearning.ai

Cosine Similarity

Outline

- How to get the cosine of the angle between two vectors
- Relation of this metric to similarity

Previous definitions

Vector norm

$$\|\vec{v}\| = \sqrt{\sum_{i=1}^n v_i^2}$$

Dot product

$$\vec{v}.\vec{w} = \sum_{i=1}^{n} v_i.w_i$$

Cosine Similarity

Cosine Similarity

Summary

• Cosine Similarity

Cosine Similarity gives values between 0 and 1

deeplearning.ai

Manipulating Words in Vector Spaces

Outline

How to use vector representations

Manipulating word vectors

Manipulating word vectors

[Mikolov et al, 2013, Distributed Representations of Words and Phrases and their Compositionality]

Summary

• Use known relationships to make predictions

deeplearning.ai

Visualization and PCA

Outline

- Some motivation for visualization
- Principal Component Analysis

Visualization of word vectors

		d > 2	
oil	0.20	•••	0.10
gas	2.10	•••	3.40
city	9.30	•••	52.1
town	6.20	•••	34.3

How can you visualize if your representation captures these relationships?

oil & gas

town & city

Visualization of word vectors

	d > 2					d = 2		
• 1	0.00		0.40	_	•1	2.00	04.0	
oil	0.20	•••	0.10		oil	2.30	21.2	
gas	2.10	•••	3.40	PCA	gas	1.56	19.3	
city	9.30	•••	52.1		city	13.4	34.1	
town	6.20	•••	34.3		town	15.6	29.8	

Visualization of word vectors

Principal Component Analysis

Summary

- Original Space Uncorrelated features Dimension reduction
- Visualization to see words relationships in the vector space

deeplearning.ai

PCA Algorithm

Outline

- How to get uncorrelated features
- How to reduce dimensions while retaining as much information as possible

Principal Component Analysis

PCA algorithm

Eigenvector: Uncorrelated features for your data

Eigenvalue: the amount of information retained by each feature

PCA algorithm

PCA algorithm

Summary

- Eigenvectors give the direction of uncorrelated features
- Eigenvalues are the variance of the new features
- Dot product gives the projection on uncorrelated features