Reg. No.:

Name

Mid-Term Examinations -October 2021					
Programme	:	B.Tech. [BCE, BCG,BCY,MEI,MIM]	Semester	: Fall 2021-22	
Course	:	Applied Linear Algebra	Code	: MAT3002	
Faculty	:	Dr.A.Manickam	Slot/ Class No.	: F11+F12/ 0549	
Time	:	1 ½ hours	Max. Marks	: 50	

Answer all the Questions

Sub. **Question Description** Q.No. Marks Sec.

The upward velocity of a rocket is given at three different times on the following table. Velocity vs. time data for a rocket

Time, t	Velocity, v
(s)	(m/s)
5	106.8
8	177.2
12	279.2

10

The velocity data is approximated by a polynomial as

$$v(t) = at^2 + bt + c$$
, $5 \le t \le 12$.

Set up the equations in matrix form and find the coefficients a,b,c of the velocity profile by LDU Factorization method.

1

Find the rank of the matrix
$$\begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6 \end{bmatrix}$$
, by converting it

5

into Echelon form

Determine the currents I_1 , I_2 , I_3 in the following network:

5

Node A:

Find a basis for row space, column space, and null space for the following matrix:

$$M = \begin{bmatrix} 1 & 2 & 0 & 2 & 5 \\ -2 & -5 & 1 & -1 & 8 \\ 0 & -3 & 3 & 4 & 1 \\ 3 & 6 & 0 & -7 & 2 \end{bmatrix}$$
 10

4 Let $v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$, $v_3 = \begin{bmatrix} -3 \\ 4 \\ 7 \end{bmatrix}$ and let $W = span\{v_1, v_2, v_3\}$

Show that v_3 is linear combination of v_1 and v_2 .

Show that $span\{v_1, v_2\} = W$

Show that v_1 and v_2 are linearly independent.

a)Prove that the function $T(v_1, v_2) = (v_1 - v_2, v_1 + 2v_2)$ is a linear transformation from R^2 into R^2 .

(b) For any vector
$$\mathbf{v} = (v_1, v_2)$$
 in R^2 , and let $T: R^2 \to R^2$ be defined by $T(v_1, v_2) = (4v_1 - v_2, 8v_1 + 2v_2)$ Find the image of $\mathbf{v} = (-4, 2)$ also Find the preimage of $\mathbf{w} = (-2, 10)$

 \triangle

10