Bisection (Dichotomy) Method Numerical Analysis

Isaac Amornortey Yowetu

NIMS-Ghana

August 29, 2020

Outline

- Background of Bisection Method
- Steps In Solving of Bisection Method
 - Graphical Example
- Bisection Algorithm to find Solution (approximate)
- Derivation of the number of Iteration
- Application of Bisection Method

Background of Bisection Method

Introduction

- This method is also know as the Interval halving method.
- It is method based on division of halves.
- It is one of the bracketing method in finding roots on a nonlinear equations.
- It is noted to be based on Bolzano's theorem for continuous functions.

Theorem (Bolzano)

If a function f(x) is continuous on an interval [a, b] and $f(a) \cdot f(b) < 0$, then a value $c \in (a, b)$ exists for which f(c) = 0.

Graphical Example

Figure: A Graphic Example of Bisection Method

Bisection Algorithm

```
if f(a) ⋅ f(b) < 0:
    root exists
else:
    root doesn't exist</pre>
```

Iteration Processes when root exists

- ① Let $c = \frac{a+b}{2}$
- ② If f(c) = 0, stop! c is the root.
- if $f(a) \cdot f(c) < 0$: set $b \leftarrow c$
- else if: $a \leftarrow c$
- Go to the beginning and repeat till convergence.

Stopping Criteria

Number of Iteration Formula

$$n \ge \frac{\log(b-a)-\log\epsilon}{\log(2)}$$

suppose that $|c_n - c| \le \epsilon$ where:

- \circ c_n is the approximate root
- c is the actual root
- \bullet is certain tolerance or error.

Graphical Example

Figure: A Graphic Example of Bisection number of iteration

Derivation of the number of iteration for convergence.

$$|c - c_{1}| \leq \frac{b_{1} - a_{1}}{2} = \frac{1}{2}(b_{1} - a_{1})$$

$$|c - c_{2}| \leq \frac{b_{2} - a_{2}}{2} = \frac{1}{2}(b_{2} - a_{2})$$

$$= \frac{1}{2}(\frac{b_{1} + a_{1}}{2} - a_{1})$$

$$= \frac{1}{2^{2}}(b_{1} - a_{1})$$

$$|c - c_{3}| \leq \frac{b_{3} - a_{3}}{2} = \frac{1}{2}(b_{3} - a_{3})$$

$$(5)$$

 $=\frac{1}{2}\left(\frac{b_2+a_2}{2}-a_2\right)$

(6)

Derivation Continues...

$$= \frac{1}{2^2}(b_2 - a_2)$$

$$= \frac{1}{2^2}(\frac{b_1 + a_1}{2} - a_1)$$
(8)

$$=\frac{1}{2^2}(\frac{b_1+a_1}{2}-a_1) \tag{8}$$

$$=\frac{1}{2^3}(b_1-a_1) \tag{9}$$

$$|c-c_n| \leq \frac{1}{2^n}(b_1-a_1)$$
 (11)

Finding n the number of iteration

$$\epsilon \geq rac{b_1-a_1}{2^n} \geq |c_n-c|$$
 $2^n \cdot \epsilon \geq (b_1-a_1)$
 $\log(2^n \cdot \epsilon) \geq \log(b_1-a_1)$
 $\log(2^n) + \log(\epsilon) \geq \log(b_1-a_1)$
 $n \cdot \log(2) \geq \log(b_1-a_1) - \log(\epsilon)$
 $n \geq rac{\log(b_1-a_1) - \log(\epsilon)}{\log(2)}$

Application of Bisection Method

Example 1

Find a root of $xe^x = 1$ on I = [0, 1] using Bisection method.

Considering our $f(x) = xe^x - 1 = 0$

Solution

$$f(0) = 0 \cdot e^0 - 1 = -1$$

$$f(1) = 1 \cdot e^1 - 1 = 1.7183$$

$$f(0) \cdot f(1) < 0$$
, hence $c \in [0, 1]$.

$$c_1 = \frac{1+0}{2} = 0.5 \tag{12}$$

$$f(c_1) = -0.1756 \tag{13}$$

choose
$$[a_2, b_2] = [0.5, 1]$$

nga

Solution Continue...

$$c_2 = \frac{0.5 + 1}{2} = 0.75 \tag{14}$$

$$f(c_2) = 0.5878 \tag{15}$$

choose $[a_3, b_3] = [0.5, 0.75]$

$$c_3 = \frac{0.5 + 0.75}{2} = 0.625 \tag{16}$$

$$f(c_3) = 0.1677 \tag{17}$$

choose $[a_4, b_4] = [0.5, 0.625]$

Solution summary

iteration	a	b	С	f(c)
1	0	1	0.5	-0.1756
2	0.5	1	0.75	0.5878
3	0.5	0.75	0.625	0.1677
4	0.5	0.625	0.5625	-0.0128
5	0.5625	0.625	0.5938	0.0751
6	0.5625	0.5938	0.5781	0.0306
7	0.5625	0.5781	0.5703	0.0088
8	0.5625	0.5703	0.5664	-0.0020
9	0.5664	0.5703	0.5684	0.0034
10	0.5664	0.5684	0.5684	0.0007

Conclusion: The approximate solution $c_n = 0.56714$

Question: Determining the number of iterations

Problem

One root of the equation $e^x - 3x^2 = 0$ lies in the interval (3,4). Find the least number of iterations of the bisection method so that $|\epsilon| < 10^{-3}$.

Solution

$$n \ge \frac{\log(4-3) - \log(10^{-3})}{\log(2)} = 9.9658$$

$$\therefore n \approx 10$$

Question: Determining the number of iterations

Problem

One root of the equation $xe^x - 1 = 0$ lies in the interval (0,1). Find the least number of iterations of the bisection method so that $|\epsilon| < 10^{-5}$.

Solution

$$n \ge \frac{\log(1-0) - \log(10^{-5})}{\log(2)} = 16.6096$$

End

THANK YOU

Regula Falsi (False Position) Method Numerical Analysis

Isaac Amornortey Yowetu

NIMS-Ghana

September 12, 2020

Application of Regula Falsi Method

Question

Find a root of $xe^x = 1$ on I = [0, 1] using Regula Falsi method.

Outline

Background of Regula Falsi Method

Derivation of the Regula Falsi Method Graphical Example

Regula Falsi Algorithm to find approximate Solution

Application of Regula Falsi Method

Background of Regula Falsi Method

Introduction

- It is one of the bracketing iterative methods in finding roots of a nonlinear equations.
- The approximated root is found by the use of straight lines or slopes.
- It is also noted to be based on Bolzano's theorem for continuous functions.

Theorem (Bolzano)

If a function f(x) is continuous on an interval [a, b] and $f(a) \cdot f(b) < 0$, then a value $c \in (a, b)$ exists for which f(c) = 0.

Graphical Example

Figure: A Graphic Example of Regula Falsi Method

Derivation of the Regula Falsi Method

$$\frac{\Delta y}{\Delta x} = \frac{f(a) - 0}{a - c} = \frac{f(b) - 0}{b - c} \tag{1}$$

OR

$$\frac{\Delta y}{\Delta x} = \frac{f(a) - f(b)}{a - b} = \frac{f(a) - 0}{a - c} \tag{2}$$

OR

$$\frac{\Delta y}{\Delta x} = \frac{f(a) - f(b)}{a - b} = \frac{f(b) - 0}{b - c}$$
 (3)

Derivation Continues...

Using any of the 3 approaches, can help us derived Regula Falsi Method. Using eqn(1):

$$\frac{f(a) - 0}{a - c} = \frac{f(b) - 0}{b - c} \tag{4}$$

$$\frac{f(a)}{a-c} = \frac{f(b)}{b-c} \tag{5}$$

$$f(a)(b-c) = f(b)(a-c)$$
 (6)

$$b \cdot f(a) - c \cdot f(a) = a \cdot f(b) - c \cdot f(b) \tag{7}$$

$$c \cdot f(b) - c \cdot f(a) = a \cdot f(b) - b \cdot f(a) \tag{8}$$

$$c = \frac{a \cdot f(b) - b \cdot f(a)}{f(b) - f(a)} \tag{9}$$

Regula Falsi Algorithm

if
$$f(a) \cdot f(b) < 0$$
:
root exists

else:

root doesn't exist

Iteration Processes when root exists

- 1. Let $c = \frac{a \cdot f(b) b \cdot f(a)}{f(b) f(a)}$
- 2. If f(c) = 0, stop! c is the root.
- 3. if $f(a) \cdot f(c) < 0$: set $b \leftarrow c$
- 4. else if: $a \leftarrow c$
- 5. Go to the beginning and repeat till convergence.

Application of Regula Falsi Method

Example 1

Find a root of $xe^x = 1$ on I = [0, 1] using Regula Falsi method.

Solution

Considering our
$$f(x) = xe^x - 1 = 0$$
 and $a_1 = 0, b_1 = 1$

$$f(0) = 0 \cdot e^0 - 1 = -1$$

$$f(1) = 1 \cdot e^1 - 1 = 1.7183$$

$$f(0) \cdot f(1) < 0$$
, hence $c \in [0, 1]$.

$$c_1 = \frac{a \cdot f(b) - b \cdot f(a)}{f(b) - f(a)} = 0.3679 \tag{10}$$

$$f(c_1) = -0.4685 \tag{11}$$

choose $[a_2, b_2] = [0.3679, 1]$

Solution Continue...

$$c_2 = \frac{a_2 \cdot f(b_2) - b_2 \cdot f(a_2)}{f(b_2) - f(a_2)} = 0.5033 \tag{12}$$

$$f(c_2) = -0.1674 \tag{13}$$

choose $[a_3, b_3] = [0.5033, 1]$

$$c_3 = \frac{a_3 \cdot f(b_3) - b_3 \cdot f(a_3)}{f(b_3) - f(a_3)} = 0.5474 \tag{14}$$

$$f(c_3) = -0.0536 \tag{15}$$

choose $[a_4, b_4] = [0.5474, 1]$

Solution summary

iteration	a	b	С	f(c)
1	0	1	0.3679	-0.4685
2	0.3679	1	0.5033	-0.1674
3	0.5033	1	0.5474	-0.0536
4	0.5474	1	0.5611	-0.0166
5	0.5611	1	0.5666	-0.0051
6	0.5666	1	0.5670	-0.0015
7	0.5670	1	0.5671	-0.0005
8	0.5671	1	0.5671	-0.0001
9	0.5671	1	0.5671	-0.00004
10	0.5671	1	0.5671	-0.00001

Conclusion: The approximate solution $c_n = 0.5671$

End

THANKYOU