Opgaver E21 Mat 2 del A

Der anvendes en scoringsalgoritme, som er baseret på "One best answer"

Dette betyder følgende:

Der er altid netop ét svar som er mere rigtigt end de andre Studerende kan kun vælge ét svar per spørgsmål Hvert rigtigt svar giver 1 point Hvert forkert svar giver 0 point (der benyttes IKKE negative point)

The following approach to scoring responses is implemented and is based on "One best answer"

There is always only one correct answer – a response that is more correct than the rest Students are only able to select one answer per question

Every correct answer corresponds to 1 point

Every incorrect answer corresponds to 0 points (incorrect answers do not result in subtraction of points)

Betragt potensrækken

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left(\frac{1}{2}\right)^n x^n.$$

Hvad er det størst mulige interval, for hvilket rækken er konvergent:

- $\bigcirc \mathbb{R}$
- $\bigcap]-\frac{1}{2},\frac{1}{2}[$
- $O[-\frac{1}{2},\frac{1}{2}[$
- $\bigcirc \ [-\frac{1}{2},\frac{1}{2}]$
- $\bigcirc \]-2,2[$
- $\bigcirc \ [-2,2[$
- $\bigcirc \ [-2,2]$
- $\bigcirc \ x=0$

Funktionen f er 2π periodisk og på intervallet $-\pi < x \leq \pi$ givet ved $f(x) = x \sin(x).$

Hvilket udsagn er sandt:

-			
Choose	e one	ang	:wer

 $\mathsf{mod}\ f.$

Choos	se one answer
0	f er lige og dens Fourierrække konvergerer uniformt mod f .
0	f er lige og dens Fourierrække konvergerer ikke uniformt mod f .
0	f er ulige og dens Fourierrække konvergerer uniformt mod f .
0	f er ulige og dens Fourierrække konvergerer ikke uniformt mod f .
0	f er hverken lige eller ulige og dens Fourierrække konvergerer uniformt mod f .
\bigcirc	f er hverken lige eller ulige og dens Fourierrække konvergerer ikke uniformt

Betragt differentialligningssystemet

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}, \text{ hvor } \mathbf{A} \in \mathbb{R}^{3 \times 3}$$

som afhænger af en reel parameter a.

Det oplyses at det karakteristiske polynomium for systemet er givet ved

$$p(\lambda) = \lambda^3 + 2\lambda^2 + 3\lambda + a$$
, hvor $a \in \mathbb{R}$.

Hvilket af nedenstående intervaller sikrer at systemet er asymptotisk stabilt:

- \bigcirc $a \in [0,6]$
- $0 \ a \in]-1,7]$
- $\bigcirc a \in]0,6[$
- $\bigcirc \ a \in [-1,7]$
- $\bigcirc \ \ a \in [-6,0]$
- $0 \ a \in]-6,0[$
- O Det rigtige svar er ikke vist her.

Vi betragter en inhomogen andenordens lineær differentialligning med konstante koefficienter, med tilhørende overføringsfunktion H(s).

Overføringsfunktionen H(s) er givet ved

$$H(s) = rac{3}{s^2 + s - 2} \;,\; s
eq \{-2,1\}.$$

Hvilken af nedenstående funktioner y kan være en løsning til differentialligningen?

Choose one answer

$$\bigcirc y(t) = 3e^t$$

$$\bigcirc \ \ y(t) = \frac{1}{6}e^{4t}$$

$$\bigcirc y(t) = \frac{1}{10}e^{3t}$$

$$\bigcirc \ \ y(t) = 3e^{4t}$$

$$\bigcirc \quad y(t) = \frac{-3}{10}e^{3t}$$

$$\bigcirc \ \ y(t) = 3e^{-t}$$

O Ingen af de mulige svar kan være en løsning til differentialligningen.

Betragt de to uendelige rækker

$$R = \sum_{n=0}^{\infty} rac{-n^2 + 3n}{(n+1)^4} \; ext{ og } \; S = \sum_{n=1}^{\infty} (-1)^n rac{5}{\sqrt{n} + 1}.$$

Angiv det korrekte udsagn vedrørende de to rækker:

Cho	ose	one	ans	wer

- \bigcirc R er absolut konvergent og S er divergent.
- \bigcirc R er divergent og S er betinget konvergent.
- $\bigcirc \ R$ er absolut konvergent og S er betinget konvergent.
- \bigcirc R er betinget konvergent og S er absolut konvergent.
- $\bigcirc \ \ \, R \text{ er divergent og } S \text{ er divergent.}$
- $\bigcirc \ R$ er absolut konvergent og S er absolut konvergent.
- O Ingen af de nævnte udsagn er korrekte.

Fourierrækken for en funktion f er på reel form givet ved

$$f \sim rac{\pi^2}{3} + \sum_{n=1}^{\infty} \Bigl((-1)^n rac{1}{n^2} \mathrm{cos} \, (nx) + (-1)^{n+1} rac{2}{n} \mathrm{sin} \, (nx) \Bigr).$$

Vi betragter nu Fourierrækken for f givet på kompleks form

$$f \sim \sum_{n=-\infty}^{\infty} c_n e^{inx}$$
 .

Hvilket sæt af Fourierkoefficienter er korrekt:

Choose one answer

$$\bigcirc \ \ c_0 = rac{\pi^2}{3} \ , \ c_{-1} = -rac{1}{2} + i \ , \ c_2 = rac{1}{8} + rac{1}{2}i$$

$$\bigcirc \ \ c_0 = rac{\pi^2}{6} \ , \ c_{-1} = -rac{1}{2} + i \ , \ c_2 = rac{1}{8} + rac{1}{2}i$$

$$\bigcirc \ \ c_0 = rac{\pi^2}{6} \ , \ c_{-1} = -2 - 2i \ , \ c_2 = rac{1}{4} + i$$

$$\bigcirc \ \ c_0 = rac{\pi^2}{3} \ , \ c_{-1} = rac{1}{2} + i \ , \ c_2 = -rac{1}{8} - rac{1}{2}i$$

$$\bigcirc \ \ c_0 = rac{\pi^2}{6} \ , \ c_{-1} = rac{1}{2} + i \ , \ c_2 = -rac{1}{8} - rac{1}{2}i$$

$$\bigcirc \ \ c_0 = rac{\pi^2}{6} \ , \ c_{-1} = rac{1}{2} + i \ , \ c_2 = rac{1}{8} + rac{1}{2}i$$

O Ingen af de viste sæt er korrekte.

Betragt en 3-ordens lineær homogen differentialligning med konstante koefficienter

$$rac{d^3x}{dt^3} + a_1rac{d^2x}{dt^2} + a_2rac{dx}{dt} + a_3x = 0.$$

Det oplyses at nedenstående funktion er løsning til differentialligningen

$$x(t) = e^{2t} + e^{-t} + 1.$$

Hvilket af nedenstående sæt af værdier for koefficienterne $a_1,\ a_2$ og a_3 er det rigtige?

$$\bigcirc \ a_1 = -1, \ a_2 = 1, \ a_3 = -1$$

$$\bigcirc$$
 $a_1 = -1, a_2 = -1, a_3 = -1$

$$\bigcirc a_1 = -1, a_2 = 2, a_3 = 1$$

$$\bigcirc a_1 = -1, a_2 = -2, a_3 = 0$$

$$\bigcirc \ a_1=1, \ a_2=2, \ a_3=0$$

$$\bigcirc \ a_1 = 1, \ a_2 = -2, \ a_3 = 0$$

$$\bigcirc \ \ a_1=1, \ a_2=1, \ a_3=0$$

$$\bigcirc \ \ a_1=1,\ a_2=-1,\ a_3=0$$

Vi betragter en 2π periodisk funktion f , som i intervallet $[-\pi,\pi[$ er givet ved forskriften

$$f(t) = \left\{ egin{array}{ll} \pi & -\pi \leq t < 0 \\ t & 0 \leq t < \pi \end{array}
ight.$$

Fourierrækken hørende til funktionen f er givet ved:

$$f(x) \sim rac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos{(nx)} + b_n \sin{(nx)}$$

Hvilke af nedenstående værdier er de korrekte Fourierkoefficienter for f:

$$\bigcirc \ \ a_2=0,\ b_1=-1,\ b_3=-rac{1}{3}$$

$$\bigcirc$$
 $a_2=0,\ b_1=1,\ b_3=\frac{1}{3}$

$$\bigcirc \ a_2 = -\frac{2}{\pi}, \ b_1 = -1, \ b_3 = -\frac{1}{3}$$

$$\bigcirc \ \ a_2=0,\ b_1=-\pi,\ b_3=-rac{\pi}{3}$$

$$\bigcirc \ \ a_2 = -rac{2}{\pi}, \ b_1 = -\pi, \ b_3 = -rac{\pi}{3}$$

$$\bigcirc \ \ a_2 = -\frac{2}{\pi}, \ b_1 = \pi, \ b_3 = \frac{\pi}{3}$$

DANMARKS TEKNISKE UNIVERSITET

Skriftlig 3-timers prøve, 5. december 2021

Kursus: Matematik 2 01035

Tilladte hjælpemidler: Alle af DTU tilladte.

Vægtning af opgaverne: Multiple-choice(stilles elektronisk): 60%, Opgave 1: 15%, Opgave 2: 15%, og Opgave 3: 10%

Vægtningen er kun vejledende. Sættet bedømmes som en helhed. For at opnå fuldt point i del B skal alle svar begrundes, eventuelt med en henvisning til lærebogen, og mellemregninger skal medtages i rimeligt omfang.

NB. Eksamen består af 2 dele: En elektronisk multiple-choice opgave (**Del A**) og denne (**Del B**).

- Del A stilles og besvares elektronisk.
- Del B stilles nedenfor, og kan afleveres enten elektronisk eller på papir.

Del B

Opgave 1

Betragt differentialligningen

$$x''(t) + 4x'(t) + 3x(t) = u'(t). (1)$$

- 1. Find rødderne i det karakteristiske polynomium hørende til (1), og opskriv ved hjælp af disse rødder den fuldstændige reelle løsning til den homogene del af (1).
- 2. Bestem overføringsfunktionen for differentialligningen (1).
- 3. Bestem det stationære svar hørende til påvirkningen $u(t)=e^{4t}$.
- 4. Bestem en partikulær løsning til (1) når $u(t)=e^{-3t}$, ved at gætte på en løsning af formen $x(t)=Ate^{-3t}$ hvor A er en reel konstant.

Opgave 2

Betragt differentialligningsystemet

$$\mathbf{x}'(t) = \begin{pmatrix} -2 & 1\\ -2 & -2 \end{pmatrix} \mathbf{x}(t) + \begin{pmatrix} 3e^t\\ 2e^t \end{pmatrix}. \tag{2}$$

- 1. Find den fuldstændige reelle løsning til det homogene system.
- 2. Vis at $\mathbf{x}(t) = \begin{pmatrix} e^t \\ 0 \end{pmatrix}$ er en løsning til (2) og angiv den fuldstændige reelle løsning til (2).
- 3. Afgør om differentialligningsystemet (2) er asymptotisk stabilt.

Opgave 3

Betragt den homogene differentialligning

$$t\frac{\mathrm{d}^3 y}{\mathrm{d}t^3} + y = 0. \tag{3}$$

Antag at differentialligningen (3) har en løsning, der kan skrives som en potensrække, $y(t) = \sum_{n=0}^{\infty} a_n t^n$, med konvergensradius $\rho > 0$.

1. Indsæt potensrækken for y i differentialligningen (3) og vis at konstanterne a_n skal opfylde $a_0=0$ samt rekursionsformlen

$$a_{n+2}(n+2)(n+1)n + a_n = 0$$
, for $n \ge 1$.

2. Bestem a_1 , a_2 og a_3 for en potensrækkeløsning $y(t) = \sum_{n=0}^{\infty} a_n t^n \mod y'(0) = 3$ og y''(0) = 4.

Del B slut. Husk at svare på del A (Multiple Choice).