Home ► My courses ► EEE117-2019S-Sec1 ► Homework ► Homework 1 - Chapter 9

Started on Wednesday, 23 January 2019, 10:08 AM

State Finished

Completed on Saturday, 26 January 2019, 8:17 AM

Time taken 2 days 22 hours

Grade 98.57 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

T9.04

Given $v(t) = 100 \sin(500 t - 23^{\circ})$ Volts

Translate the voltage into the cosine form.

$$v(t) = \begin{bmatrix} 100 & \checkmark & \cos(500 & \checkmark & t + \begin{bmatrix} -113 & \checkmark & \circ \end{bmatrix}) \text{ Volts}$$

b) Find the rms value of the voltage.

$$V_{rms} = \boxed{70.7}$$
 Vrms

c) Find the voltage v(t) at t = 5 ms (milli sec).

$$v(t = 5 \text{ ms}) = 86.3 \qquad \checkmark \quad V$$

Correct

Correct

Mark 10.00 out of 10.00

A sinusoidal current has maximum amplitude of $I_{peak} = 90 A$.

The current passes through one complete cycle in T = 11.50 ms (milli sec).

a) What is the rms value of the current?

$$I_{rms} = 63.6$$
 \checkmark A_{rms}

b) What is the frequency in hertz?

c) What is the frequency in radians per second?

Correct

Correct

Mark 10.00 out of 10.00

P9.02 9ed

At t = -2 ms (milli sec), a sinusoidal voltage is known to be zero and going positive.

[Hint: The easiest representation of the waveform at t = -2 ms is the sine and not the cosine form.]

The voltage is next zero at t = 8 ms (millisec).

It is also known that the voltage is 80.9V at t = 0.

a) What is the frequency of v(t) in hertz?

$$f = 50$$
 \checkmark Hz

b) What are the following parameters of the voltage v(t)in the <u>cosine</u> form expression?

The frequency of the voltage source?

$$\omega$$
 (omega) = 314 \checkmark radians/sec

The phase angle f_v (phi_v)?

$$\varphi_{v}$$
 (phi_v) = $\boxed{-54}$ ° (Degrees)

The maximum voltage V_m ?

$$V_{\rm m} = \boxed{138}$$
 V

Correct

Correct

Mark 10.00 out of 10.00

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

P9.09 10ed

The voltage applied to this circuit at t=0 (when the switch closes) is $v_s(t)=75\cos{(4,000\ t-60^\circ)}$ Volts

Also given that $R = 400 \Omega$ (0hm) and L = 75 mH (milli Henry)

The initial inductor current is zero for t < 0.

The text gives you the response equation as:

$$i(t) = i_{transient}(t) + i_{steady_state}(t) = \frac{-V_m}{\sqrt{R^2 + (\omega L)^2}} \cos(\phi - \theta) e^{-(\frac{R}{L})t} + \frac{V_m}{\sqrt{R^2 + (\omega L)^2}} \cos(\omega t + \phi - \theta)$$

Where
$$\theta = \tan^{-1} \left(\frac{\omega L}{R} \right)$$
 and $v(t) = V_m \cos(\omega t + \varphi)$

For $t = 750 \mu sec$ (micro sec) after the switch closed, find the following values.

a) Find the numerical value of the transient response of i.

$$i_{transient} = \begin{bmatrix} .33 \end{bmatrix}$$
 mA (milli Amp)

b) Find the numerical value of the steady state response of i.

c) Find the total response i.

Correct

Correct

Mark 10.00 out of 10.00

P9.12 9ed

The expressions for the steady-state voltage and current at the terminals of the circuit are

$$v_g = 300 \cos(5,000 \pi t + 78^\circ) V$$

 $i_g = 6 \sin(5,000 \pi t + 123^\circ) A$

a) What is the impedance seen by the source? Write in rectangular form.

$$Z = \boxed{35}$$
 \checkmark + j $\boxed{35}$ \checkmark Ω (Ohm)

b) By how much time t in microseconds is the current out of phase with the voltage?

$$i_g lags v_g by \int 50$$
 ψ (micro sec)

Correct

Marks for this submission: 10.00/10.00.

Question 6

Correct

Mark 10.00 out of 10.00

P9.06 6ed

Use the concept of the phasor to combine the following sinusoidal functions into a single trigonometric express.

The time domain form is assumed to be similar to $x(t) = \cos(\omega t + \theta^{\circ})$

a) $x(t) = 100 \cos(300 t + 45^{\circ}) + 500 \cos(300 t - 60^{\circ})$

$$x(t) = \boxed{483} \qquad \checkmark \cos (300t + \boxed{-49} \qquad \checkmark \circ)$$

b) $y(t) = 250 \cos(377 t + 30^{\circ}) - 150 \sin(377 t + 140^{\circ})$

$$y(t) = 121$$
 $< cos (377 t + 4.8) < °)$

c) $v(t) = 60 \cos(100 t + 60^{\circ}) - 120 \sin(100 t - 125^{\circ}) + 100 \cos(100 t + 90^{\circ})$

$$v(t) = \boxed{153} \qquad \checkmark \cos(100 t + \boxed{33} \qquad \checkmark \circ)$$

d) $w(t) = 100 \cos(\omega t + 40^{\circ}) + 100 \cos(\omega t + 160^{\circ}) + 100 \cos(\omega t - 80^{\circ})$

$$w(t) = \boxed{0} \qquad \checkmark \quad \cos (w \ t + \boxed{0} \qquad \checkmark ^{\circ})$$

Correct

Correct

Mark 10.00 out of 10.00

AP9.01 9ed

Find the phasor (based on cosine) transform of each trigonometric function:

a) $v = 170 \cos (377 t - 40^{\circ}) \text{ Volts}$

$$V_{phasor}$$
 Magnitude = $\begin{bmatrix} 170 \\ \checkmark \end{bmatrix}$ \checkmark \lor Angle = $\begin{bmatrix} -40 \\ \checkmark \end{bmatrix}$ \circ (Degree)

b) $i = 10 \sin (1,000 t + 20^{\circ}) \text{ Amps}$

$$I_{phasor}$$
 Magnitude = $\begin{bmatrix} 10 & \checkmark & A \end{bmatrix}$
Angle = $\begin{bmatrix} -70 & \checkmark & \circ & (Degree) \end{bmatrix}$

c) $i = 5 \cos (\omega t + 36.87^{\circ}) + 10 \cos (\omega t - 53.13^{\circ})$ Amps

$$I_{phasor}$$
 Magnitude = 11.18 \checkmark A

Angle = -27 \checkmark ° (Degree)

d) $v = 300 \cos (20,000 \pi t + 45^{\circ}) - 100 \sin (20,000 \pi t + 30^{\circ}) \text{ mV}$

$$V_{phasor}$$
 Magnitude = 340 \checkmark mV

Angle = 62 \checkmark ° (Degree)

Correct

Correct

Mark 8.57 out of 10.00

AP9.04_9ed

The voltage across the terminals of the 5 μF capacitor is 30 cos (4,000 t + 25°) V.

a) Calculate the capacitive reactance.

$$X_{C} = \boxed{-50} \qquad \checkmark \quad \Omega \text{ (Ohm)}$$

b) Calculate the impedance of the capacitor.

$$Z_{C} = j \left[-50 \right]$$
 Ω (Ohm)

c) Calculate the phasor current I.

d) Write the steady-state expression for i(t).

$$i(t) = \boxed{.6}$$
 \checkmark $cos(\boxed{4000}$ \checkmark $t + \boxed{115}$ \checkmark °) Amps

Correct

Marks for this submission: 10.00/10.00. Accounting for previous tries, this gives **8.57/10.00**.

Question 9

Correct

Mark 10.00 out of 10.00

P9.40 7ed

Given the phasor current $\mathbf{I_a} = 2 \angle 0^{\circ} \, \mathbf{A}$ (magnitude 2 with angle 0 degrees Amps).

Find the following phasor values:

Correct

Correct

Mark 10.00 out of 10.00

P9.33_6ed

Given the phasor current $I_b = 5 \angle 45^\circ$ A (magnitude 5 with angle 45 degrees Amps).

Find the following phasor values:

Correct

Marks for this submission: 10.00/10.00.

■ Section 16.7 - rms value of a Fourier Series

Jump to... ▼