STAT6038 Week 10 Lecture Notes

Rui Qiu

2017-05-10

1 Wednesday's Lecture

1.1 Orthogonal Contrasts

Predictor set 1 from the Multicolinearity example

	10							
x_2	10	10	15	15	10	10	15	15

n=2 for each combinations of (x_1,x_2) .

All the cross- classified category (treatment) sample sizes are equal \implies this is a balanced experimental design.

 \implies orthogonal contrasts

 $(x_1, x_2 \text{ variables uncorrelated and order in the ANOVA table in a multiple regression will be unimportant)$

for more info, see either STAT7030 GLMs or STAT7029 Design of Experiments & Surveys.

1.2 Variance Inflation Factor (for variable X_i)

In the set X_1, X_2, \ldots, X_k .

$$VIF_j = \frac{1}{1 - R_j^2}$$

where R_j^2 is the R^2 for the regression of X_j on $X_1, X_2, \ldots, X_{j-1}, X_{j+1}, \ldots, X_k$.

2 Thursday's Lecture

Nothing serious, seriously. Nothing.s

3 Friday's Lecture

Indicator Variables

$$\mathrm{svi}_i = \begin{cases} 1 & \text{if "seminal vesicle invasion"} \\ 0 & \text{otherwise} \end{cases}$$

Model

lcavol_i =
$$\beta_0 + \beta_1 \text{svi}_i + \epsilon_i, i = 1, \dots, n, \epsilon \stackrel{\text{i.i.d}}{\sim} N(0, \sigma^2)$$

plot.

$$\hat{\beta}_1 = \text{difference in the means} = \text{mean}_{(\text{lcavol} - \text{svi} = 1)} - \text{mean}_{(\text{lcavol} - \text{svi} = 0)}$$

Indicator variables (continued) New Model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon; \epsilon \stackrel{\text{i.i.d}}{\sim} N(0, \sigma^2)$$

where Y = lcavol

$$X_1 = \text{svi}_i = \begin{cases} 1 & \text{if svi=Yes for observation i} \\ 0 & \text{otherwise} \end{cases}$$

We call X_1 factor or treatment variable.

 $X_2 = lpsa$ (a continuous covariate)

 \rightarrow "analysis of covariance" model

when svi = $0, X_1 = 0$

fitted model

$$\hat{Y} = \hat{\beta}_0 + 0 + \hat{\beta}_2 X_2 = \hat{\beta}_0 + \hat{\beta}_1 X_1$$

when svi = $1, X_1 = 1$

$$\hat{Y} =$$