

CENTRO UNIVERSITÁRIO DE BRASÍLIA - CEUB FACULDADE

YAN FELLIPE DA SILVA NERI

Sistematização

YAN FELLIPE DA SILVA NERI

Sistematização

Trabalho apresentado a Centro Universitário de Brasília como requisito para conclusão do curso de Engenharia de Software.

Orientador: ROMES HERIBERTO PIRES DE ARAUJO

YAN FELLIPE DA SILVA NERI

Sistem	atiza	cão
CICCOIII	uuzu	Ųαυ

Trabalho apresentado a Centro Universitário de Brasília como requisito para conclusão do curso de Engenharia de Software.

Brasília, 12 de Abril de 2025

BANCA EXAMINADORA

ROMES HERIBERTO PIRES DE ARAUJO CENTRO UNIVERSITÁRIO DE BRASÍLIA - CEUB FACULDADE

RESUMO

Este estudo visa explorar o conceito de densidade através de um experimento virtual que utiliza a simulação interativa "Densidade", disponível na plataforma PHET, da Universidade do Colorado. O objetivo é entender a conexão entre massa, volume e densidade de diversos materiais, além de examinar como essas variáveis afetam a flutuabilidade dos objetos na água. A suposição proposta sugere que objetos de densidade superior a 1 g/cm3 afundam, enquanto os de densidade inferior flutuam. Adotou-se um desenho experimental fatorial completo para testar essa hipótese, que inclui blocagem por tipo de material, manipulação das variáveis massa, volume e tipo de material, além do controle de variáveis fixas, como a temperatura e a densidade da água. Na simulação, foram empregados materiais como madeira, alumínio, poliestireno e chumbo, com variadas proporções de massa e volume, possibilitando a determinação da densidade por meio da fórmula. O levantamento de dados foi organizado em uma tabela e reforçado com capturas de tela que demonstram o comportamento de cada objeto no fluido. Os achados validaram a hipótese sugerida e reforçaram os princípios teóricos ligados à densidade e ao Princípio de Arquimedes, evidenciando que a flutuabilidade está diretamente ligada à densidade relativa entre o objeto e o líquido. A simulação provou ser eficiente para entender fenômenos físicos pertinentes à engenharia, possibilitando experimentos didáticos com controle de variáveis e replicabilidade dos resultados. A conclusão é que a utilização de ferramentas virtuais, como o PHET, potencializa o processo de aprendizagem e oferece apoio para análises quantitativas e qualitativas em um ambiente simulado.

Palavras-chave: Densidade. PHET. Flutuabilidade. Massa. Volume.

LISTA DE ILUSTRAÇÕES

Imagem 1 — Experimento Massas equivalentes Reduzidas	10
Imagem 2 — Experimento Massas Equivalentes (5 kg)	10
Imagem 3 — Experimento Volumes Equivalentes Reduzidas	11
Imagem 4 — Experimento Volumes Equivalentes (5,4 L)	11
Imagem 5 — Experimento densidade superior	12
Imagem 6 — Experimento densidade em equilíbrio	12

SUMÁRIO

1	Introdução	6
1.1	Objetivo e Hipótese	6
1.2	Conhecimento Relevante	7
2	METODOLOGIA EXPERIMENTAL	8
2.1	Variável Resposta	8
2.2	Fatores Mantidos Constantes	8
2.3	Fatores Nuisance	8
2.4	Interações	9
2.5	Restrições do Experimento	9
2.6	Desenho Experimental	9
3	Coleta e Apresentação de Dados	10
3.1	Análise dos Dados:	13
4	Experimento piloto	14
5	Conclusão	15
	Referências	16

1 Introdução

Este estudo realizou um experimento utilizando a plataforma virtual PHET, da Universidade do Colorado, que proporciona simulações interativas para a investigação de fenômenos físicos. A simulação se concentra no conceito de densidade, possibilitando a avaliação da relação entre massa, volume e flutuabilidade de diversos materiais.

Esta avaliação é crucial para entender fenômenos práticos na vida diária e na engenharia, como a ação de objetos em ambientes líquidos. Por meio da simulação, conseguimos manipular diversas variáveis e verificar os impactos diretos no comportamento dos materiais em contato com a água.

1.1 Objetivo e Hipótese

Objetivo:

Examinar a conexão entre massa, volume e densidade de variados materiais e o impacto desses elementos na habilidade dos objetos de flutuar na água.

Objetivos Específicos:

Densidades distintas, massas iguais: Quando a massa é constante, um volume maior leva a uma densidade inferior, como ocorre com um balão de 1kg em comparação com uma barra de metal de 1kg.

Volumes idênticos, densidades distintas: Em volumes idênticos, a massa maior leva à maior densidade, como demonstrado no caso dos cubos de madeira e chumbo de mesma dimensão.

Densidades equivalentes: Se a densidade do objeto for a mesma da água, ele flutuará no meio do líquido, já que o empuxo se iguala ao peso do objeto.

Hipóteses:

- Massas equivalentes: Se dois objetos possuírem a mesma massa, porém o volume de um deles for superior, o objeto com maior volume flutuará, já que sua densidade será inferior.
- **Volumes idênticos:** Se dois objetos possuírem o mesmo volume, mas diferentes massas, o objeto de maior massa afundará, já que sua densidade será superior.
- **Densidade semelhante à do líquido:** Caso os objetos possuam a mesma densidade que o líquido, eles permanecerão em equilíbrio, sem flutuar nem afundar completamente.

1.2 Conhecimento Relevante

A densidade é uma característica física que associa a massa de um objeto ao seu volume, de acordo com a seguinte equação:

p=M/V

Onde:

- p é a densidade (g/cm³ ou kg/m³),
- M é a massa (kg ou g),
- V é o volume (m³ ou cm³).

Este princípio é aplicado em contextos relacionados a materiais, transporte, design de produtos, construção naval e engenharia de maneira geral.

Princípio de Arquimedes:

Este princípio sustenta que o empuxo (força ascendente) exercido sobre um objeto imerso é equivalente ao peso do fluido que está sendo deslocado. Conforme a comparação da densidade do objeto com a do fluido:

- Se *objeto*<*ofluido*, o objeto flutua
- Se *objeto>ofluido*, o objeto afunda
- Se *objeto=ofluido*, o objeto fica em equilíbrio neutro.

Evidências Empíricas:

Situações do dia a dia ilustram as relações de densidade. Por exemplo, uma bola de isopor e uma bola de gude podem ter a mesma massa, porém a primeira flutua devido ao seu volume maior e densidade mais baixa, enquanto a segunda afunda devido à sua densidade mais elevada.

Validação experimental prévia:

A flutuação é determinada pela densidade relativa dos objetos, e não pela sua forma. Isso reforça a noção de que o princípio de Arquimedes é válido independentemente da forma geométrica do objeto, contanto que a densidade seja comparada à de um fluido.

2 METODOLOGIA EXPERIMENTAL

2.1 Variável Resposta

Variáveis independentes:

Massa do objeto (M) - Medida em gramas (g), variável de entrada que será manipulada.

Volume do objeto (V) - Medido em centímetros cúbicos (cm³), variável controlada para estudar seu impacto na densidade.

Densidade do objeto (p) - Medida em grama por centímetro cúbico (g/cm³), calculada por p=M/V, é a variável principal do experimento.

Variáveis controladas:

A densidade do líquido será fixa em 1,00 g/cm³ (água pura), a aceleração gravitacional será constante (9,81 m/s²), e a temperatura do líquido será mantida a 25°C.

Principal foco do experimento:

Ele se concentra na principal variável, a densidade do objeto (p). e será examinado sob três condições diferentes.

2.2 Fatores Mantidos Constantes

- Aceleração gravitacional (condição fixa de 9,81 m/s2) método de controle (Ambiente virtual padrão do PhET, inalterável) justificativa Assegura a consistência da força do peso (P = m x g) em todos os testes.)
- A simulação considera a temperatura do líquido em 25°C (ambiente), o que evita variações na densidade da água causadas por efeitos térmicos.
- Pressão atmosférica 1atm padrão de configuração do simulador (Elimina as consequências da pressão no comportamento dos fluidos.
- Tipo de líquido (Água pura (p =1.00g/cm3)
- Uso exclusivo de objetos cúbicos na simulação (Elimina os impactos da forma no arrasto hidrodinâmico e na determinação do volume)

2.3 Fatores Nuisance

- Limitações da precisão visual na medição de volume.
- Eventual atraso no carregamento da interface.

Estratégias para minimizar impactos:

Falhas de precisão e arredondamentos podem ser reduzidos através de várias repetições dos testes (no mínimo 3 medições distintas para cada situação). Adicionalmente, uma pausa de estabilização de 5 segundos entre a colocação dos objetos e a medição assegurará uma leitura mais precisa do volume deslocado.

2.4 Interações

Massa x Volume: Para uma massa constante, a densidade é inversamente proporcional ao volume. Em outras palavras, objetos de maior volume e massa terão uma densidade inferior, resultando em uma maior flutuação.

Densidade do objeto em relação ao líquido: A comparação direta da densidade do objeto em relação ao líquido determina se o objeto afunda, flutua ou permanece em equilíbrio.

Forma x Volume deslocado: Embora a forma dos objetos não tenha um impacto direto na flutuação, ela pode afetar o volume de fluido que é deslocado, especialmente se não forem cubos.

2.5 Restrições do Experimento

O programa simulador assume uma temperatura fixa de 25°C, eliminando assim variações térmicas que poderiam influenciar a densidade da água. Adicionalmente, somente formas cúbicas são empregadas para assegurar que a geometria não afete os resultados.

2.6 Desenho Experimental

Este é um teste fatorial que utiliza três variáveis independentes:

- **Braço 1**: Mesmos pesos, diferentes volumes Para examinar como o volume influencia a densidade.
- **Braço 2**: Mesmos volumes, diferentes massas Para examinar como a massa influencia a densidade.
- **Braço 3**: Densidades idênticas às do líquido Para verificar as condições de equilíbrio equilibrado.

Este esquema possibilita a identificação dos impactos individuais das variáveis e a verificação de condições limite, como o ponto de equilíbrio.

3 Coleta e Apresentação de Dados.

• Massas Equivalentes, Volumes diferentes e como p varia V:

Imagem 1 — Experimento Massas equivalentes Reduzidas

Fonte: PHET (2025).

Aqui está uma ilustração do experimento onde a massa de todos é reduzida ao mínimo, fazendo-as flutuar, porém, ainda possuem volumes distintos.

Imagem 2 — Experimento Massas Equivalentes (5 kg)

Fonte: PHET (2025).

Nesta imagem, as massas foram alteradas para 5 kg, e observa-se que o cubo superior flutua, já que seu volume supera a sua massa, enquanto os outros afundam devido à sua massa superior.

• Volumes idênticos, massas distintas e como p se relaciona com M:

Imagem 3 — Experimento Volumes Equivalentes Reduzidas

Fonte: PHET (2025).

Nesta imagem, o volume dos blocos está no mínimo, e suas massas são maiores que o volume, resultando no afundamento de todos os blocos.

Imagem 4 — Experimento Volumes Equivalentes (5,4 L)

Fonte: PHET (2025).

Nesta segunda imagem do experimento, onde os volumes são iguais em 5.40 L, nota-se que os dois blocos que estão submersos são mais densos do que os que estão em equilíbrio.

• Densidade do objeto em relação ao líquido

Imagem 5 — Experimento densidade superior

Fonte: PHET (2025).

Nesta imagem, a densidade dos blocos supera a densidade da água, resultando em afundamento dos mesmos. No entanto, se a densidade dos blocos for inferior a densidade da água, os blocos flutuam.

Imagem 6 — Experimento densidade em equilíbrio

Fonte: PHET (2025).

Nesta ilustração, a densidade dos blocos está igual a densidade da água e é evidente que ele não se encontra submerso nem flutuando acima da água.

3.1 Análise dos Dados:

As informações obtidas no experimento mostraram que a flutuação ou submersão dos objetos está diretamente ligada à densidade do objeto em relação à do fluido. Por exemplo, um objeto de plástico de 50 g e 100 cm3 flutua, ao passo que um de alumínio de 50 g e 25 cm3 afunda, devido à densidade do alumínio ser superior.

Embora os objetos de maior massa, como o cubo de 90 g com 30 cm3, afundassem, o cubo de 30 g com o mesmo volume flutuaria. Ao ajustar a densidade do objeto para corresponder à densidade do líquido, o objeto manteve-se em equilíbrio, sem afundar nem flutuar, conforme previsto pelo Princípio de Arquimedes, como previsto.

4 Experimento piloto

Antes da execução do experimento principal, foi realizado um teste piloto para verificar a efetividade do protocolo experimental. No decorrer do teste piloto, constatou-se que o intervalo de 5 segundos entre a introdução dos objetos e as medidas foi apropriado para assegurar leituras exatas do volume deslocado. Ficou comprovado também que a aleatoriedade e a blocagem das condições experimentais contribuíram para prevenir possíveis vieses nos resultados.

Ademais, o teste piloto foi eficaz na identificação de falhas sistemáticas ligadas ao atraso na apresentação dos objetos na simulação. Constatou-se que, mesmo com pequenas variações nos tempos de estabilização, a exatidão do simulador era adequada para as medições experimentais.

5 Conclusão

A maior parte dos achados confirmou as suposições. Quando os objetos possuíam a mesma massa, porém diferentes volumes, o objeto de maior volume flutuou devido à sua densidade inferior. Com volumes equivalentes, objetos de maior densidade afundaram, como era de se esperar. O objeto manteve-se em equilíbrio mesmo quando a densidade do objeto era igual à do líquido.

Os achados corroboraram significativamente a teoria do Princípio de Arquimedes. Quando os objetos possuíam massas equivalentes e volumes distintos, aqueles com maior volume (e densidade inferior) flutuaram, confirmando a teoria. Similarmente, quando os volumes eram iguais, os objetos de maior densidade afundaram, confirmando a conexão entre massa e densidade.

Em circunstâncias onde a densidade do líquido é a mesma, os objetos mantiveram-se em equilíbrio, como era esperado. Contudo, a simulação mostrou oscilações mínimas em objetos com densidade semelhante à da água antes de alcançar o equilíbrio, um fenômeno esperado devido às restrições da modelagem virtual.

Assim, a teoria foi confirmada, embora possa haver uma exceção relacionada ao funcionamento do simulador, que não modifica os resultados gerais do experimento.

REFERÊNCIAS

BATISTA, Carolina . **Densidade: o que é, como calcular, exemplos e exercícios**. toda matéria. Disponível em: https://www.todamateria.com.br/densidade/. Acesso em: 12 abr. 2025.

DENSIDADE: o que é e como calcular!. Stoodi. 2021. Disponível em: https://blog.stoodi.com.br/blog/quimica/densidade-o-que-e-e-como-calcular/. Acesso em: 12 abr. 2025.

LIMA, Ana . **Densidade**. MUNDO EDUCAÇÃO. Disponível em: https://mundoeducacao.uol.com.br/quimica/densidade.htm. Acesso em: 12 abr. 2025.