TRIGONOMETRY Chapter 4

Verano 2021
SAN MARCOS

Identidades trigonométricas fundamentales y auxiliares

HELICOMOTIVACIÓN

El motor eléctrico transforma la energía eléctrica en trabajo mecánico.

En especial nos interesa el consumo de corriente eléctrica del motor ya que esto se traduce en tarifas (pagos) que hacen los usuarios.

Así definimos :

W: Potencia activa, es la potencia utilizada por el motor, es la potencia a pagar. Se mide en kilowatts.

Q: Potencia reactiva, es la potencia consumida por el bobinado del motor.

S: Potencia aparente, es la suma vectorial de W y Q).

 ϕ : Es el desfasaje (ángulo).

Del triángulo de potencias mostrado :

$$Q = S.sen \phi \Rightarrow Q^2 = S^2.sen^2 \phi$$
 +

$$W = S.\cos\phi \Rightarrow W^2 = S^2.\cos^2\phi$$

$$Q^2 + W^2 = S^2 \left(\underbrace{\text{sen}^2 \phi + \cos^2 \phi}_{1} \right)$$

Así:
$$Q^2 + W^2 = S^2$$

$$\therefore W = \sqrt{S^2 - Q^2}$$

¿ Cuál es la conclusión de este resultado?

IDENTIDADES TRIGONOMÉTRICAS

En la CT, ubicamos el arco $\alpha \in IIC$

Recordar que las coordenadas del punto P, son ($\cos \alpha$; sen α).

En el sector circular AOP , trazamos el ángulo central α rad.

Usando definiciones para el ángulo $\alpha\,rad$, en posición normal :

•
$$tan(\alpha rad) = \frac{y}{x} \implies tan \alpha = \frac{sen \alpha}{cos \alpha}$$

•
$$\sec(\alpha \operatorname{rad}) = \frac{r}{x} \implies \sec \alpha = \frac{1}{\cos \alpha}$$

 $\Rightarrow \cos \alpha \cdot \sec \alpha = 1$

El punto $P \in CT$, entonces cumple : $x^2 + y^2 = 1$

$$(\cos \alpha)^2 + (\sin \alpha)^2 = 1 \implies \sin^2 \alpha + \cos^2 \alpha = 1$$

Concepto:

Una ecuación que contiene operadores trigonométricos tales como sen, cos, etc,. Y que es valida para todos los valores admisibles de la variable o variables ,recibe el nombre de identidad trigonométrica.

IDENTIDADES TRIGONOMÉTRICAS FUNDAMENTALES

1. Identidades por Cociente:

$$\tan x = \frac{\text{sen} x}{\cos x}$$

$$\cot x = \frac{\cos x}{\sin x}$$

2. Identidades Recíprocas:

$$\begin{cases}
\csc x = \frac{1}{\sec x} \\
\sec x = \frac{1}{\csc x}
\end{cases}$$

$$\begin{cases}
\sec x = \frac{1}{\cos x} \\
\cos x = \frac{1}{\sec x}
\end{cases}$$

$$\begin{cases}
\cot x = \frac{1}{\tan x} \\
\tan x = \frac{1}{\cot x}
\end{cases}$$

3. Identidades Pitagóricas

$$\begin{cases} sen^{2}x + cos^{2}x = 1 \\ cos^{2}x = 1 - sen^{2}x \end{cases}$$

$$\begin{cases} \sec^2 x = \tan^2 x + 1 \\ \tan^2 x = \sec^2 x - 1 \end{cases}$$

$$\begin{cases} \csc^2 x = \cot^2 x + 1 \\ \csc^2 x - \cot^2 x = 1 \end{cases}$$

$$\begin{cases} \csc^2 x = \cot^2 x + 1 \\ \cot^2 x = \csc^2 x - 1 \end{cases}$$

Ejemplo:

Reducir la expresión E = tan x.sen x + cos x

Resolución

Usando las identidades:

$$E = tan x .sen x + cos x$$

$$\Rightarrow E = \frac{\text{sen}x}{\text{cos}x}.\text{sen}x + \text{cos}x$$

$$\Rightarrow E = \frac{\text{sen}^2 x}{\text{cos} x} + \frac{\text{cos} x}{1}$$

m.c.m
$$\Rightarrow E = \frac{\sin^2 x + \cos^2 x}{\cos x}$$

$$\Rightarrow E = \frac{1}{\cos x} \qquad \therefore E = \sec x$$

Observación:

De las identidades pitagóricas :

Si:
$$\sec x + \tan x = n \implies \sec x - \tan x = \frac{1}{n}$$

Si:
$$\csc x + \cot x = m \Rightarrow \csc x - \cot x = \frac{1}{m}$$

Ejemplo:

Siendo : cscx + cotx = 2

Calcule :senx

Resolución

DATO: cscx + cotx = 2 ... (I)

De la Observación

anterior:
$$\csc x - \cot x = \frac{1}{2}$$
 ... (II)

$$(I) + (II)$$
:

$$2\csc x = 2 + \frac{1}{2}$$

$$\Rightarrow 2\csc x = \frac{5}{2}$$

$$\Rightarrow \csc x = \frac{5}{4} \qquad \therefore \ \operatorname{sen} x = \frac{4}{5}$$

IDENTIDADES TRIGONOMÉTRICAS AUXILIARES

1.
$$tanx + cotx = secx.cscx$$

$$2. \quad \sec^2 x + \csc^2 x = \sec^2 x . \csc^2 x$$

3.
$$sen^4x + cos^4x = 1 - 2sen^2x.cos^2x$$

4.
$$sen^6x + cos^6x = 1 - 3sen^2x.cos^2x$$

5.
$$(1 + \text{senx} + \cos x)^2 = 2(1 + \text{senx})(1 + \cos x)$$

$$(1 + \text{senx} - \cos x)^2 = 2(1 + \text{senx})(1 - \cos x)$$

$$(1-\sin x + \cos x)^2 = 2(1-\sin x)(1+\cos x)$$

$$(1-\sin x - \cos x)^2 = 2(1-\sin x)(1-\cos x)$$

1. Reduzca

$$L = (2senx + cosx)^2 + (senx - 2cosx)^2$$

D)4

Recordar la identidad:

$$\sin^2 x + \cos^2 x = 1$$

$$L = (2senx + cosx)^2 + (senx - 2cosx)^2$$
 $L = (2senx + cosx)^2 + (senx - 2cosx)^2$

$$L = 4senx^2 + cosx^2 + 4senxcosx + senx^2 + 4cosx^2 - 4senxcosx$$

$$L = 4senx^2 + 4cosx^2 + senx^2 + cosx^2$$

$$L = 4(senx^2 + cosx^2) + 1$$

$$L = 4(1) + 1$$

$$L=5$$

2. Reduzca

$$E = (1 + tan^{2}x)^{2} - (sec^{2}x - 1)^{2} - tan^{2}x$$

$$A)-2$$

$$B)-1$$

$$B)-1$$
 $C)sec^2x$

$$D)tan^2x$$

Recordar las identidades:

$$1 + \tan^2 x = \sec^2 x$$

$$\sec^2 x - 1 = \tan^2 x$$

$$\sec^2 x - 1 = \tan^2 x$$

$$E = (1 + tan^2x)^2 - (sec^2x - 1)^2 - tan^2x$$

$$E = (sec^2x)^2 - (tan^2x)^2 - tan^2x$$

$$E = (sec^4x - tan^4x) - tan^2x$$

$$E = (sec^2x - tan^2x)(sec^2x + tan^2x) - tan^2x$$

$$E = 1 (sec^2x + tan^2x) - tan^2x$$

$$E = sec^2x + tan^2x - tan^2x$$

$$E = sec^2x$$

3. Reduzca:

$$T = (senx - cosx)^2 + 2\sqrt{(1 - sen^2x)(1 - cos^2x)}$$
 $T = (senx - cosx)^2 + 2\sqrt{(1 - sen^2x)(1 - cos^2x)}$ siendo x la medida de un ángulo agudo

$$(C)$$
 – 1

$$D) - 4 senx.cosx$$

Recordar las identidades:

$$\sin^2 x + \cos^2 x = 1$$

$$1 - \cos^2 x = \sin^2 x$$

$$1-\cos^2 x = \sin^2 x \quad 1-\sin^2 x = \cos^2 x$$

$$T = (senx - cosx)^2 + 2\sqrt{(1 - sen^2x)(1 - cos^2x)}$$

$$T = sen^2x + cos^2x - 2 senxcosx + 2\sqrt{(cos^2x)(sen^2x)}$$

A)
$$4 senx. cosx$$
 B) 1 C) -1 $T = 1 - 2 senx \cdot cosx - 2 |cosx \cdot senx|$

Como
$$0^{\circ} < x < 90^{\circ}$$

$$|cosx \cdot senx| = cosx \cdot senx$$

$$T = 1 - 2 \frac{senx \cdot cosx}{senx} + 2 \frac{senx}{senx}$$

$$T=1$$

01

Escriba verdadero(V) o falso (F) según corresponda, luego indique la alternativa correcta.

$$> sen^4x - cos^4x = sen^2x - cos^2x$$
 (V)

$$> sen^2x - cos^2y = sen^2y - cos^2x (V)$$

$$\succ tanx + cotx = senx \cdot cosx$$
 ()

- A) VVF
- B) VVV

C) FVV

D) VFV

E) FVF

$$sen^{4}x - cos^{4}x = (sen^{2}x + cos^{2}x)(sen^{2}x - cos^{2}x)$$
$$sen^{4}x - cos^{4}x = 1 (sen^{2}x - cos^{2}x)$$

$$> sen^2x - cos^2y = sen^2y - cos^2x \dots (V)$$

$$sen^2x - cos^2y = (1 - cos^2y) - (1 - sen^2x)$$

$$sen^2x - cos^2y = sen^2y - cos^2x$$

Escriba verdadero(V) o falso (F) según corresponda, luego indique la alternativa correcta.

$$> sen^4x - cos^4x = sen^2x - cos^2x$$
 (V)

$$> sen^2x - cos^2y = sen^2y - cos^2x (V)$$

$$\triangleright tanx + cotx = senx \cdot cosx$$
 (F)

$$\triangleright tanx + cotx = senx \cdot cosx \qquad \cdots (F)$$

$$tanx + cotx = \frac{senx}{cosx} + \frac{cosx}{senx}$$

$$tanx + cotx = \frac{sen^2x + cos^2x}{cosx \cdot senx}$$

$$tanx + cotx = \frac{1}{cosx \cdot senx}$$

$$tanx + cotx = secx \cdot cscx$$

Resolución:

5. Si
$$sen\theta + sen^3 \theta = a$$
;
 $cos\theta + cos^3 \theta = b$,

calcule:

$$\mathbf{E} = \frac{a}{sen\theta} + \frac{b}{cos\theta}$$

Recordar la identidad:

$$\sin^2 x + \cos^2 x = 1$$

$sen\theta + sen^3\theta = a$ $cos\theta + cos^3\theta = b$

$$sen\theta (1 + sen^2\theta) = a$$
 $cos\theta (1 + cos^2\theta) = b$

Reemplazando en E

$$E = \frac{sen\theta(1 + sen^2\theta)}{sen\theta} + \frac{cos\theta (1 + cos^2\theta)}{cos\theta}$$

$$E = 1 + sen^2\theta + 1 + cos^2\theta$$

$$E = 2 + sen^2\theta + cos^2\theta$$

$$E=2$$
 + 1

6. $Si\ cot^2x + cotx = 1\ calcule$

$$P = cotx - tanx$$

$$(C)$$
 – 1

$$(D) - 2$$

$$E$$
) 2

Recordar la identidad:

$$tanx.cotx = 1$$

$$cot^2x + cotx = 1$$
 $\cdots \times (tan x)$

$$tanx \cdot cot^2x + tanx \cdot cotx = tanx \cdot 1$$

$$cotx + 1 = tanx$$

$$cotx - tanx = 1$$

$$P = 1$$

$$\therefore P = 1$$

©1

7. $Si\ senx(1 + senx) = 1$

calcule el valor de

$$E = sen^2x + sec^2x$$

Recordar las identidades:

$$sen^2x + cos^2x = 1$$
 $tanx = \frac{se}{a}$

$$tanx = \frac{senx}{cosx}$$

Resolución:

$$senx(1 + senx) = 1$$

$$sen x + sen^2 x = sen^2 x + cos^2 x$$

$$senx = cos^2x$$

$$senx = cosx \cdot cosx$$

$$tanx = cosx$$

$$(E^{2}) \dots \quad tan^{2}x = cos^{2}x$$

$$tan^{2}x = 1 - sen^{2}x$$

$$sen^{2}x = 1 - tan^{2}x$$

Reemplazando en E

$$E = 1 - tan^2x + sec^2x$$

$$E = 1 + 1$$

E=2

8. Determine el equivalente de

$$U = cosx \left(\frac{1 + senx}{1 - senx} - \frac{1 - senx}{1 + senx} \right)$$

$$A)$$
2 $senx$

Identidad de Legendre:

$$(a+b)^2 - (a-b)^2 = 4ab$$

Recordar la identidad:

$$1 - \sin^2 x = \cos^2 x$$

Resolución:

$$U = cosx \left[\frac{1 + senx}{1 - senx} - \frac{1 - senx}{1 + senx} \right]$$

$$U = cosx \left(\frac{1 + senx}{1 - senx} - \frac{1 - senx}{1 + senx} \right)$$

$$U = cosx \left[\frac{1 - senx}{1 - senx} - \frac{1 + senx}{1 + senx} \right]$$

$$U = cosx \left[\frac{(1 + senx)^2 - (1 - senx)^2}{(1 - senx)(1 + senx)} \right]$$

A) 2 senx B) 2 secx C) 4 tanx
$$U = cosx \left[\frac{4(1)(senx)}{(1 - sen^2x)} \right]$$
D) 4 cotx E) 1

$$U = \frac{\cos x \cdot 4 \cdot \sin x}{(\cos^2 x)}$$

$$U=4.\frac{senx}{cosx}$$

$$U = 4 \cdot tanx$$

U = 4tanx

9. Calcule $tan^2\theta$, si

$$a sen^2\theta + b cos^2\theta = c$$

$$A \left(\frac{c-b}{a-c} \right) = B \left(\frac{c-b}{a+c} \right) = C \left(\frac{c+b}{a-c} \right)$$

$$(B)\frac{c-b}{a+c}$$

$$C)\frac{c+b}{a-c}$$

$$D)\frac{a+c}{c-b} \qquad E)\frac{a-c}{c-b}$$

$$(E)\frac{a-c}{c-b}$$

Recordar la identidad:

$$\sec^2 x = 1 + \tan^2 x$$

$$\frac{\sec^2 x = 1 + \tan^2 x}{\cos^2 x} = \sec^2 x$$

$$a sen^2 \theta + b cos^2 \theta = c$$

$$\cdots \div cos^2\theta$$

$$\frac{a \operatorname{sen}^{2} \theta}{\cos^{2} \theta} + \frac{b \cos^{2} \theta}{\cos^{2} \theta} = \frac{c}{\cos^{2} \theta}$$

$$a tan^2\theta + b = c sec^2\theta$$

$$a \tan^2 \theta + b = c (1 + \tan^2 \theta)$$

$$a tan^2\theta + b = c + c tan^2\theta$$

$$a tan^2 \theta - c tan^2 \theta = c - b$$

$$tan^2\theta(a-c) = c-b$$

9. Dada la siguente condición para el arco θ , calcule $tan^2\theta$.

$$a sen^2\theta + b cos^2\theta = c$$

$$A \left(\frac{c-b}{a-c} \right) = B \left(\frac{c-b}{a+c} \right) = C \left(\frac{c+b}{a-c} \right)$$

$$(B)\frac{c-b}{a+c}$$

$$C)\frac{c+b}{a-c}$$

$$(D)\frac{a+c}{c-b}$$
 $(E)\frac{a-c}{c-b}$

$$a sen^2\theta + b cos^2\theta = c$$

$$\dots \div cos^2\theta$$

$$\frac{a \operatorname{sen}^{2} \theta}{\cos^{2} \theta} + \frac{b \cos^{2} \theta}{\cos^{2} \theta} = \frac{c}{\cos^{2} \theta}$$

$$a tan^2\theta + b = c sec^2\theta$$

$$a tan^2\theta + b = c (1 + tan^2\theta)$$

$$a tan^2\theta + b = c + c tan^2\theta$$

$$a \tan^2 \theta - c \tan^2 \theta = c - b$$

$$tan^2\theta(a-c) = c-b$$

10. Elimine x si

$$\frac{senx}{a} = \frac{cosx}{b} = \frac{cotx}{c}$$

$$A)a^{2}(a^{2}+b^{2})=b^{2}$$
 $B)a^{2}(c^{2}-b^{2})=b^{4}$

$$C(a^2(c^2-b^2)) = b$$
 $D(a^2(c^2-b^2)) = b$ I Igualando 2 y 3

$$E(a^2 - b^2) = c^2$$

Resolución:

$$\frac{senx}{a} = \frac{cosx}{b} = \frac{cotx}{c}$$
1 2 3

Igualando 1 y 2

$$\frac{senx}{a} = \frac{cosx}{b}$$

$$\frac{senx}{cosx} = \frac{a}{b}$$

$$tanx = \frac{a}{h} \qquad \cdots (I)$$

$$\frac{\cos x}{b} = \frac{\cot x}{c}$$

$$\frac{\cos x}{b} = \frac{\cos x}{\sin x \cdot c}$$

$$b = c \cdot senx$$

$$senx = \frac{b}{c} \cdots (II)$$

0

De(I)

$$tanx = \frac{a}{b} \implies cotx = \frac{b}{a} \cdots (III)$$

De (*II*)

$$senx = \frac{b}{c} \implies cscx = \frac{c}{b} \cdots (IV)$$

De (III) y (IV) Sabemos

$$csc^2x - cot^2x = 1$$

$$\frac{c^2}{b^2} - \frac{b^2}{a^2} = 1$$

$$c^2 \cdot a^2 - b^4 = a^2 \cdot b^2$$

$$c^2$$
, $a^2 - a^2$, $b^2 = b^4$

11. Calcule:

$$E = 3(sen^4 x + cos^4 x) - 2(sen^6 x + cos^6 x)$$

B)2

C)3

$$D)\frac{2}{3}$$

$$(E)\frac{3}{2}$$

Resolución:

$$E = 3(sen^4 x + cos^4 x) - 2(sen^6 x + cos^6 x)$$

$$E = 3(1 - 2 sen^{2} x \cdot cos^{2} x) - 2(1 - 3 sen^{2} x \cdot cos^{2} x)$$

$$E = 3 - 6 \operatorname{sen}^2 x \cdot \cos^2 x \qquad -2 + 6 \operatorname{sen}^2 x \cdot \cos^2 x$$

$$E = 3 - 2$$

Recordar las identidades:

$$\sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cdot \cos^2 x$$

$$\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cdot \cos^2 x$$

$$E=1$$

12. Calcule: E = tan x + cot x

Si:
$$sec x = 1 + csc x$$

$$A)2\sqrt{2}$$

$$B/1 + \sqrt{2}$$

$$(C)1 - \sqrt{2}$$

$$(D)1 + \sqrt{3}$$

Recordar las identidades:

$$\sec^2 x + \csc^2 x = \sec^2 x . \csc^2 x$$

$$tan x + cot x = sec x.csc x$$

Resolución:

Del dato:

$$sec x = 1 + csc x$$

$$sec x - csc x = 1$$

$$(\sec x - \csc x)^2 = 1^2$$

$$\sec^2 x + \csc^2 x - 2\sec x \cdot \csc x = 1$$

$$sec^2 x \cdot csc^2 x - 2 sec x \cdot csc x = 1 \cdots (I)$$

Piden:

$$E = tan x + cot x$$

$$E = sec x \cdot csc x \qquad \cdots (II)$$

(II) en (I)
$$E^2 - 2E = 1$$

$$E^2 - 2E + 1 = 1 + 1$$

$$(E-1)^2=2$$

$$E-1=\pm\sqrt{2}$$

$$E_1 = 1 - \sqrt{2}$$

$$E_2 = 1 + \sqrt{2}$$

13. Si tan x + cot x = 4, calcule!

$$E = sen^4 x + cos^4 x$$

$$B)\frac{3}{8}$$

$$(C)\frac{7}{16}$$

$$D)\frac{3}{16}$$

$$E)\frac{3}{7}$$

Recordar las identidades:

$$sen^{4}x + cos^{4}x = 1 - 2sen^{2}x.cos^{2}x$$

$$tan x + cot x = sec x.csc x$$

Resolución:

Piden:

$$E = sen^4 x + cos^4 x$$

$$E = 1 - 2 \operatorname{sen}^2 x \cdot \cos^2 x$$

$$E = 1 - 2(sen x \cdot cos x)^2 \cdots (I)$$

Del dato:

$$tan x + cot x = 4$$

$$sec x \cdot csc x = 4$$

$$\cos x \cdot \sin x = \frac{1}{4} \quad \cdots (II)$$

(II) en (I)

$$E=1-2\times\left(\frac{1}{4}\right)^2$$

$$E=1-2\times\frac{1}{16}$$

$$E=\frac{7}{8}$$

01

14. Si se cumple:

$$\frac{\cos^4 x - \sin^4 x}{\cos^8 x - \sin^8 x}$$

Calcule:

$$M = 1 + sen^6 x + cos^6 x$$

$$A)\frac{2m-1}{m}$$

$$B)\frac{2m+1}{m}$$

$$C)\frac{m-3}{2m}$$

$$D)\frac{m-3}{m}$$

$$(E)\frac{m+3}{2m}$$

Resolución:

$$\frac{\cos^4 x - \sin^4 x}{\cos^8 x - \sin^8 x} = m$$

$$\frac{\cos^4 x - \sin^4 x}{(\cos^4 x + \sin^4 x)(\cos^4 x - \sin^4 x)} = m$$

$$\frac{1}{\cos^4 x + \sin^4 x} = m$$

$$\frac{1}{1 - 2 \operatorname{sen}^2 x \cdot \cos^2 x} = m$$

$$\frac{1}{m} = 1 - 2 \operatorname{sen}^2 x \cdot \cos^2 x$$

$$sen^2 x \cdot cos^2 x = \frac{1 - \frac{1}{m}}{2}$$

$$sen^2 x \cdot cos^2 x = \frac{m-1}{2m}$$

Piden:

$$M = 1 + sen^6 x + cos^6 x$$

$$M = 1 + 1 - 3 \operatorname{sen}^2 x \cdot \cos^2 x$$

$$M=2-3\left(\frac{m-1}{2m}\right)$$

$$M=\frac{4m-3m+3}{2m}$$

$$M=\frac{m+3}{2m}$$

15. Determine el valor de A para que la siguiente igualdad sea una identidad

$$(1 + sen x - cos x)^2 = A(1 + sen x)(1 - cos x)$$

Calcule: A

A)1

B)2

(C) - 1

D)-2

E)4

Recordar la identidad:

$$(1 + \text{senx} - \cos x)^2 = 2(1 + \text{senx})(1 - \cos x)$$

$$(1 + sen x - cos x)^2 = A(1 + sen x)(1 - cos x)$$

$$2(1+sen x)(1-cos x) = A(1+sen x)(1-cos x)$$

$$2 = A$$

$$A = 2$$

Halle a para tener una **16.** identidad

$$\sqrt{\frac{1+\cos x}{\sin x}} = \left[\frac{1-\cos x}{\sin x}\right]^a$$

- A)1 B)2 $C)-\frac{1}{2}$

$$p()-\frac{1}{2}$$

E)3

Recordar la identidad:

$$1 - \cos^2 x = \sin^2 x$$

$$\left(\frac{sen x}{1-cos x}\right) = \left[\frac{1-cos x}{sen x}\right]$$

$$\sqrt{\frac{1+\cos x}{\sin x}} = \left[\frac{1-\cos x}{\sin x}\right]^a$$

$$\sqrt{\frac{(1+\cos x)(1-\cos x)}{\operatorname{sen} x(1-\cos x)}} = \left[\frac{1-\cos x}{\operatorname{sen} x}\right]^a$$

$$\sqrt{\frac{1-\cos^2 x}{\sin x (1-\cos x)}} = \left[\frac{1-\cos x}{\sin x}\right]^a$$

$$\sqrt{\frac{sen^2 x}{sen x (1 - cos x)}} = \left[\frac{1 - cos x}{sen x}\right]^a$$

$$\left(\frac{\operatorname{sen} x}{1-\cos x}\right)^{1/2} = \left[\frac{1-\cos x}{\operatorname{sen} x}\right]^a$$

$$\sqrt{\frac{1+\cos x}{sen x}} = \left[\frac{1-\cos x}{sen x}\right]^a \qquad \left(\frac{1-\cos x}{sen x}\right)^{-1/2} = \left[\frac{1-\cos x}{sen x}\right]^a$$

$$a=-\frac{1}{2}$$

17. Elimine θ si

$$tan \theta + cot \theta = m$$

 $sec \theta + csc \theta = n$

$$A) n^2 = m^2 + 2$$

A)
$$n^2 = m^2 + 2$$
 B) $n^2 = m^2 - 2m$

$$(n^2 = 2m + m^2)$$
 $(n^2 = 2n - m)$

$$D) n^2 = 2n - m$$

$$E) n^2 = 2m - m^2$$

Recordar las identidades:

$$tanx + cotx = secx.cscx$$

$$\sec^2 x + \csc^2 x = \sec^2 x \cdot \csc^2 x$$

Resolución:

Del dato:

$$tan \theta + cot \theta = m$$

$$sec \theta \cdot csc \theta = m \quad \cdots (I)$$

$$sec \theta + csc \theta = n$$

$$(\sec\theta + \csc\theta)^2 = n^2$$

$$sec^2 \theta + csc^2 \theta + 2 sec \theta \cdot csc \theta = n^2$$

$$(\sec\theta\cdot\csc\theta)^2 + 2\sec\theta\cdot\csc\theta = n^2 \quad \cdots (II)$$

(I)
$$en(II)$$

$$m^2 + 2m = n^2$$

$$n^2=m^2+2m$$

18. Si:
$$tan x + tan^2 x + tan^3 x = 1$$

Calcule: $F = \cot x + \tan^3 x$

A)3

B)2

C)1

(D) - 1

E)-2

Recordar la identidad:

tanx.cotx = 1

Resolución:

Del dato:

$$tan x + tan^2 x + tan^3 x = 1$$

$$\cot x \left(\tan x + \tan^2 x + \tan^3 x \right) = \cot x (1)$$

$$1 + tan x + tan^2 x = cot x$$

Piden:

$$F = \cot x + \tan^3 x$$

$$F = 1 + \tan x + \tan^2 x + \tan^3 x$$

$$F = 1 + 1$$

F=2

19. Si $cos^2 x = sen x - cos x$ entonces el valor de:

$$E = 2 \cot x - \cos^2 x$$

$$A) - \cos x$$

$$B) 1 + \cos x$$

C)
$$sen x \cdot cos x$$

$$E)-2$$

Resolución:

Del dato:

$$\cos^2 x = \sin x - \cos x$$

$$(\cos^2 x)^2 = (\sin x - \cos x)^2$$

$$\cos^2 x \cdot \cos^2 x = \sin^2 x + \cos^2 x - 2 \sin x \cdot \cos x$$

$$\cos^2 x \left(1 - \sin^2 x\right) = 1 - 2 \sin x \cdot \cos x$$

$$\cos^2 x - \cos^2 x \cdot \sin^2 x = 1 - 2 \sin x \cdot \cos x + (\sin^2 x)$$

$$\cot^2 x - \cos^2 x = \csc^2 x - 2\cot x$$

$$2\cot x - \cos^2 x = \csc^2 x - \cot^2 x$$

$$E=1$$

20. Calcule

$$E = \frac{sec^{4} x (1 - csc^{4} x) + csc^{4} x}{2 sec^{2} x}$$

$$E = \frac{sec^{4} x (-cot^{2} x) (1 + csc^{2} x) + csc^{4} x}{2 sec^{2} x}$$

A) $2sec^2 x$

- $B) 2 csc^2 x$
- C) $2sec^2x. csc^2x$ D) $-csc^2x$
 - E) $sen^2x.cos^2x$

$$E = \frac{sec^4 x (1 - csc^4 x) + csc^4 x}{2 sec^2 x}$$

$$E = \frac{sec^4 x \left(-cot^2 x\right) \left(1 + csc^2 x\right) + csc^4 x}{2 sec^2 x}$$

$$2E = -\sec^2 x \cdot \cot^2 x \left(1 + \csc^2 x\right) + \csc^4 x \cdot \cos^2 x$$

$$2E = -csc^2 x (1 + csc^2 x) + csc^4 x \cdot cos^2 x$$

$$2E = -csc^2 x - csc^4 x + csc^4 x \cdot cos^2 x$$

$$2E = -\csc^2 x + \csc^4 x \left(\cos^2 x - 1\right)$$
$$-\sec^2 x$$

$$2E = -\csc^2 x - \csc^2 x$$
$$2E = -2\csc^2 x$$

$$E = -\csc^2 x$$