Cover Letter — PRL

Physical Review Letters Editorial Office

Subject: Presubmission — testable brane-world unification

Dear Editors,

I submit "A testable brane-world unification with early-time ρ^2 and dark radiation" (Ricardo Maldonado). From a higher-D action we derive the SMS equations and a modified Friedmann relation featuring a ρ^2 term and dark-radiation. A single parameter λ sets a GW spectral break f_br $\propto \lambda^{1/4}$ and correlates with ΔN_eff . We present posteriors using the official NANOGrav 15-year KDE spectrum with a Planck-2018 prior, plus a PTA \rightarrow LISA context figure. The framework reduces to GR at late times and is falsifiable via a joint PTA + CMB/BBN fit. We request consideration as a Letter/Article.

Sincerely,

Ricardo Maldonado

sales@rank.vegas

Cover Letter — PRD

Physical Review D Editorial Office

Subject: Presubmission — testable brane-world unification

Dear Editors,

I submit "A testable brane-world unification with early-time ρ^2 and dark radiation" (Ricardo Maldonado). From a higher-D action we derive the SMS equations and a modified Friedmann relation featuring a ρ^2 term and dark-radiation. A single parameter λ sets a GW spectral break f_br $\propto \lambda^{1/4}$ and correlates with ΔN_eff . We present posteriors using the official NANOGrav 15-year KDE spectrum with a Planck-2018 prior, plus a PTA \rightarrow LISA context figure. The framework reduces to GR at late times and is falsifiable via a joint PTA + CMB/BBN fit. We request consideration as a Letter/Article.

Sincerely,

Ricardo Maldonado

sales@rank.vegas

Cover Letter — JCAP

JCAP Editorial Office (SISSA/IOP)

Subject: Presubmission — testable brane-world unification

Dear Editors,

I submit "A testable brane-world unification with early-time ρ^2 and dark radiation" (Ricardo Maldonado). From a higher-D action we derive the SMS equations and a modified Friedmann relation featuring a ρ^2 term and dark-radiation. A single parameter λ sets a GW spectral break f_br $\propto \lambda^{1/4}$ and correlates with ΔN_eff . We present posteriors using the official NANOGrav 15-year KDE spectrum with a Planck-2018 prior, plus a PTA \rightarrow LISA context figure. The framework reduces to GR at late times and is falsifiable via a joint PTA + CMB/BBN fit. We request consideration as a Letter/Article.

Sincerely,

Ricardo Maldonado

sales@rank.vegas