每周練習(4/17~4/21)

1.
$$\frac{1}{2^{-2000}+1} + \frac{1}{2^{-1999}+1} + \cdots + \frac{1}{2^{-1}+1} + \frac{1}{2^{0}+1} + \frac{1}{2^{1}+1} + \cdots + \frac{1}{2^{1999}+1} + \frac{1}{2^{2000}+1}$$
 之值為? (難度:3)

- 2. 若 a,b,c 為多項式 $x^3 2x^2 x + 1 = 0$ 的三個根,則 $\frac{1-a}{1+a} + \frac{1-b}{1+b} + \frac{1-c}{1+c}$ 之值為? (難度:3)
- 3. 設 $\triangle ABC$ 中 $\overline{CA} = \overline{CB}$, $\triangle ABC$ 的內切圓 O 與 \overline{AB} 相切於點 D,過點 A 作一直線交圓 O 於兩相異點 E,F。設 K 為 \overline{AD} 的中點。 試證:E,K,B,F 四點共圓?(難度:4)

題組(4~5)

設 $A=a_1a_2\dots a_m$ 是一個 \mathbb{m} 位數 ,其中 $a_i\in\{1,2,\dots,9\}$, $i=1,2,\dots,m$; 我們稱 \mathbb{m} 位數 $a_ja_{j+1}\dots a_ma_1a_2\dots a_{j-1}$, $2\leq j\leq m$ 是 A 的一個輪換數。例如:五位數 93821 的輪換數有四個:38219,82193,21938 及 19382。

試回答下列問題,並說明理由。

- 4. 找出所有滿足下列條件的正整數 m: 若 $A=a_1a_2...a_m$ 是 3^3 的倍數,則 A 的每一個輪換數也都是 3^3 的倍數。 (難度: 3)
- 5. 給定一正整數 k,找出所有滿足下列條件的正整數 m: 若 $A=a_1a_2...a_m$ 是 3^k 的倍數,則 A 的每一個輪換數也都是 3^k 的倍數。(難度:4)