What is claimed is

- A MOSFET gate structure comprising:

 a gate dielectric overlying a substrate;
 a predominantly niobium monoxide gate overlying the gate dielectric.
- 2. The gate structure of claim 1, wherein the predominantly niobium monoxide gate has a work function between approximately 4.1 eV and 4.4 eV.
- 3. The gate structure of claim 1, wherein the gate dielectric is silicon dioxide.
- 4. The gate structure of claim 1, wherein the gate dielectric comprises a high-k gate dielectric material.
- 5. The gate structure of claim 4, wherein the high-k gate dielectric material comprises HfO₂, ZrO₂, Al₂O₃, Ta₂O₅, HfAlO or HfSiO₄
- 6. The gate structure of claim 1, further comprising a capping layer overlying the niobium monoxide gate.
- 7. The gate structure of claim 6, wherein the capping layer is silicon nitride.

- 8. The gate structure of claim 6, wherein the capping layer is a conductive barrier metal.
- 9. The method of claim 8, wherein the conductive barrier metal is TiN.
 - 10. A MOSFET gate structure comprising:

 a high-k gate dielectric overlying a substrate;
 a conductive metal-monoxide layer having a work
 function of between approximately 4.1 eV and 4.4 eV
 overlying the gate dielectric.
- 11. The MOSFET gate structure of claim 10, wherein the conductive metal-monoxide comprises niobium oxide.