Capitolul 3. Modelul de regresie liniară multiplă Teorie și Aplicații

Se consideră rata mortalității infantile (număr de decese în vârsta sub 1 an la 1000 de născuți-vii din același an), PIB/locuitor (lei) și Populația urbană (persoane) înregistrate pentru toate județele României, în anul 2022.

1. Prezentarea modelului de regresie liniară multiplă

- ecuația generală a modelului scrisă pentru variabile:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

- Y este variabila dependentă
- X_1 și X_2 sunt variabile independente
- ε este variabila reziduală (eroarea) care însumează influența factorilor neobservabili/ neinclusi în model
- parametrii modelului (β_0 , β_1 și β_2) sunt valori fixe, dar necunoscute de la nivelul populației
- parametrul β_0 este constanta (termenul liber) al modelului de regresie
- parametrii β_1 și β_2 sunt numiți și coeficienți de regresie parțiali
- ecuația generală a modelului scrisă pentru valori ale variabilelor:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i = y_{x_i} + \varepsilon_i = M(Y | (X_1 = x_{i1} i X_2 = x_{i2})) + \varepsilon_i$$

- y_i este valoarea observață (reală) a variabilei dependente (Y) pentru observația "i"
- x_{i1} este valoarea variabilei independente (X_1) pentru observația "i"
- x_{i2} este valoarea variabilei independente (X_2) pentru observația "i"
- ε_i este valoarea variabilei reziduale (ε) pentru observația "i"
- y_{x_i} valoarea așteptată a variabilei dependente (Y) pentru observația "i"
- interpretarea parametrilor modelului de regresie (coeficienților de regresie):

$$\beta_0$$
: $M(Y|X_1 = 0 \text{ si } X_2 = 0)$

- constanta modelului sau ordonata la origine indică *media* variabilei dependente (*Y*) atunci când variabilele independente iau valoarea 0.

$$\beta_1$$
: $d(Y)|(d(X_1) = 1, X_2 \text{ se menține constant: } d(X_2) = 0) = \frac{\Delta(Y)}{\Delta(X_1)}$

- coeficientul de regresie <u>parțial</u> indică *variația medie absolută parțială* a variabilei dependente (Y) la o variație absolută a variabilei independente (X_1) cu o unitate, $\underline{\hat{n}}$ condițiile în care influența celorlalte variabile independente se menține constantă

- la o creștere a variabilei independente X_1 cu 1 unitate ($d(X_1) = 1$), variabila dependentă *variază*, *în medie*, *cu* β_1 , în condițiile în care influența celorlalte variabile independente se mentine constantă

- semnul lui β_1 indică sensul legăturii dintre cele două variabile:
 - semnul negativ indică o *legătură liniară inversă* între Y și X_1 și arată că la o creștere a lui X_1 cu 1 unitatea, Y scade, în medie, cu β_1 (în condițiile în care influența celorlalte variabile independente se menține constantă)
 - semnul pozitiv indică o *legătură liniară directă* între Y și X_1 și arată că la o creștere a lui X_1 cu 1 unitate, Y *crește*, *în medie*, *cu* β_1 (în condițiile în care influența celorlalte variabile independente se menține constantă)

β_2 : $d(Y)|(d(X_2) = 1, X_1 \text{ se menţine constant: } d(X_1) = 0) = \frac{\Delta(Y)}{\Delta(X_2)}$

- coeficientul de regresie <u>parțial</u> indică *variația medie absolută parțială* a variabilei dependente (Y) la o variație absolută a variabilei independente (X_2) cu o unitate, $\underline{\hat{n}}$ condițiile în care influența celorlalte variabile independente se menține constantă
- la o creștere a variabilei independente X_2 cu 1 unitate ($d(X_2) = 1$), variabila dependentă *variază*, *în medie*, *cu* β_2 , în condițiile în care influența celorlalte variabile independente se menține constantă
- semnul lui β_2 indică sensul legăturii dintre cele două variabile:
 - semnul negativ indică o *legătură liniară inversă* între Y și X_2 și arată că la o creștere a lui X_2 cu 1 unitatea, Y scade, în medie, cu β_2 (în condițiile în care influența celorlalte variabile independente se menține constantă)
 - semnul pozitiv indică o *legătură liniară directă* între Y și X_2 și arată că la o creștere a lui X_2 cu 1 unitate, Y *crește*, *în medie*, *cu* β_2 (în condițiile în care influența celorlalte variabile independente se menține constantă)

2. Estimarea și testarea parametrilor modelului de regresie

Coefficientsa

			dardized icients	Standardized Coefficients			Co	orrelations	
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part
1	(Constant)	14,314	1,182		12,113	,000			
	Produs Intern Brut	-,00012	,00005	-,439	-2,312	,026	-,548	-,347	-,307
	Populatia urbana	-,027	,033	-,153	-,804	,426	-,466	-,128	-,107

a. Dependent Variable: Rata mortalitatii infantile

Pe baza rezultatelor privind estimarea punctuală și prin interval de încredere a parametrilor modelului de regresie construit, se cere:

1) Să se scrie ecuația estimată a modelului de regresie.

$$y_{x_i} = b_0 + b_1 x_{i1} + b_2 x_{i2} = 14,314 - 0,00012 x_{i1} - 0,027 x_{i2}$$

 $Y_X = b_0 + b_1 X_1 + b_2 X_2 = 14,314 - 0,00012 X_1 - 0,027 X_2$

2) Să se interpreteze estimațiile punctuale ale parametrilor modelului de regresie.

 $b_0 = 14,314$ decese: *nivelul mediu estimat* al ratei mortalității infantile (Y) atunci când PIB/locuitor (X_1) și populația urbană (X_2) iau valoarea zero.

 $b_1 = -0,00012$ decese: la o creștere a PIB/ locuitor (X_1) cu 1 lei, rata mortalității infantile (Y) scade, în medie, cu 0,00012 decese, în condițiile în care influența populației urbane (X_2) se mentine constantă.

 $b_2 = -0.027$ decese: la o creștere a populației urbane (X_2) cu 1 persoană, rata mortalității infantile (Y) scade, în medie, cu 0.027 decese, în condițiile influența PIB/locuitor (X_1) se menține constantă.

- 3) Să se estimeze prin interval de încredere parametrii modelului de regresie, considerând o probabilitate de 95%.
- intervalul de încredere pentru β_0 :

$$IC(\beta_0): \left[b_0 \pm t_{\alpha/2;n-k} \cdot s_{\widehat{\beta}_0}\right] (1-\alpha)$$

- b_0 este estimația punctuală a parametrului β_0
- $t_{\alpha/2;n-k} = t_{\alpha/2;n-3} = t_{0,025;39} = 1,96$ este valoarea teoretică a statisticii test Student
- k = p + 1 indică numărul de parametri din model, unde p reprezintă numărul de variabile independente
- $s_{\widehat{\beta}_0}$ este estimația abaterii standard a estimatorului parametrului β_0

 $IC(\beta_0)$: [14,314 ± 1,96 · 1,182] (95%) $IC(\beta_0)$: [11,997; 16,631] (95%)

Interpretarea: Cu o probabilitate de 95%, se poate garanta că parametrul β_0 este acoperit_de intervalul rezultat în urma calculelor.

- intervalul de încredere pentru β_1 :

```
\overline{IC}(\beta_1): \left[b_1 \pm t_{\alpha/2; n-k} \cdot s_{\widehat{\beta}_1}\right] (1-\alpha)
```

- b_1 este estimația punctuală a coeficientului de regresie parțial β_1
- $t_{\alpha/2;n-k}=t_{\alpha/2;n-3}=t_{0,025;39}=1,96$ este valoarea teoretică a statisticii test Student
- k = p + 1 indică numărul de parametri din model, unde p reprezintă numărul de variabile independente
- $s_{\widehat{\beta}_1}$ este estimația abaterii standard a estimatorului parametrului β_1

```
IC(\beta_1): [-0,00012 ± 1,96 · 0,00005] (95%) IC(\beta_1): [-0,00022; -0,000022] (95%)
```

Interpretarea: Cu o probabilitate de 95%, se poate garanta că parametrul β_1 este acoperit de intervalul rezultat în urma calculelor.

- intervalul de încredere pentru β_2 :

```
IC(\beta_2): \left[b_2 \pm t_{\alpha/2;n-k} \cdot s_{\widehat{\beta}_2}\right] (1-\alpha)
```

- b_2 este estimația punctuală a coeficientului de regresie parțial β_2
- $t_{\alpha/2;n-k} = t_{\alpha/2;n-3} = t_{0,025;39} = 1,96$ este valoarea teoretică a statisticii test Student
- k = p + 1 indică numărul de parametri din model, unde p reprezintă numărul de variabile independente
- $s_{\widehat{\beta}_2}$ este estimația abaterii standard a estimatorului parametrului β_2

```
IC(\beta_2): [-0,027 ± 1,96 · 0,033] (95%) IC(\beta_2): [-0,092; -0,037] (95%)
```

Interpretarea: Cu o probabilitate de 95%, se poate garanta că parametrul β_2 este acoperit de intervalul rezultat în urma calculelor.

2.2. Testarea parametrilor modelului de regresie

Etapele testării	Testarea parametrului $oldsymbol{eta}_0$	Testarea parametrului $oldsymbol{eta}_1$	Testarea parametrului $oldsymbol{eta}_2$
1. Formularea ipotezelor	H_0 : $β_0 = 0$ (parametrul $β_0$ nu diferă semnificativ de 0 SAU constanta modelului nu este semnificativă statistic) H_1 : $β_0 \neq 0$ (parametrul $β_0$ diferă semnificativ de 0 SAU constanta modelului este semnificativă statistic)	$H_0: β_1 = 0$ (coeficientul de regresie parțial $β_1$ nu diferă semnificativ de 0, ceea ce înseamnă că variabila independentă X_1 nu are o influență parțială semnificativă asupra variabilei dependente Y SAU X_1 nu explică semnificativ variația lui Y , în condițiile în care X_2 se menține constant) $H_1: β_1 \neq 0$ (coeficientul de regresie parțial $β_1$ diferă semnificativ de 0, ceea ce înseamnă că variabila independentă X_1 are o influență parțială semnificativă asupra variabilei dependente Y SAU X_1 explică semnificativ variația lui Y , în condițiile în care X_2 se menține constant)	$H_0: β_2 = 0$ (coeficientul de regresie parțial $β_2$ nu diferă semnificativ de 0, ceea ce înseamnă că variabila independentă X_2 nu are o influență parțială semnificativă asupra variabilei dependente Y SAU X_2 nu explică semnificativ variația lui Y , în condițiile în care X_1 se menține constant) $H_1: β_2 \neq 0$ (coeficientul de regresie parțial $β_2$ diferă semnificativ de 0, ceea ce înseamnă că variabila independentă X_2 are o influență parțială semnificativă asupra variabilei dependente Y SAU X_2 explică semnificativ variația lui Y , în condițiile în care X_1 se menține constant)
2. Alegerea pragului de semnificație	$\alpha = 0.05$	$\alpha = 0.05$	$\alpha = 0.10$
3. Alegerea statisticii test	$t = \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}_{\hat{\beta}_0}} \sim t(n - k)$	$t = \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_{\hat{\beta}_1}} \sim t(n - k)$	$t = \frac{\hat{\beta}_2 - \beta_2}{\hat{\sigma}_{\hat{\beta}_2}} \sim t(n - k)$
4. Determinarea valorii teoretice a statisticii test	$t_{teoretic} = t_{\alpha/2; n-k}$ $= t_{0,05/2; 42-3} =$ $= t_{0,025; 39} = 1,96$	$t_{teoretic} = t_{\alpha/2; n-k}$ $= t_{0,05/2; 42-3} =$ $= t_{0,025; 39} = 1,96$	$t_{teoretic} = t_{\alpha/2; n-k}$ $= t_{0,10/2; 42-3} =$ $= t_{0,05; 39} = 1,645$
5. Determinarea valorii calculate a statisticii test (în condițiile acceptării ipotezei nule H_0)	$t_{calc} = \frac{b_0}{s_{\widehat{\beta}_0}} = \frac{14,314}{1,182}$ $t_{calc} = 12,113$	$t_{calc} = \frac{b_1}{s_{\hat{\beta}_1}} = \frac{-0,00012}{0,00005}$ $t_{calc} = -2,312$	$t_{calc} = \frac{b_2}{s_{\hat{\beta}_2}} = \frac{-0,027}{0,033}$ $t_{calc} = -0,804$

6. Regula de decizie	Dacă se ține cont de valoarea calculată a testului, regula de decizie este următoarea: - dacă $ t_{calc} \le t_{\alpha/2;n-k}$, nu se respinge ipoteza nulă (H_0) ; - dacă $ t_{calc} > t_{\alpha/2;n-k}$, se respinge ipoteza nulă (H_0) , în condițiile unui risc α . Dacă se ține cont de semnificația testului, regula de decizie este următoarea: - dacă $Sigt \ge \alpha$, nu se respinge ipoteza nulă (H_0) ; - dacă $Sigt < \alpha$, se respinge H_0 , în condițiile unui risc α .				
7. Luarea deciziei	$ t_{calc} = 12,113 >$ $> t_{\alpha/2; n-k} = 1,96$ \Rightarrow se respinge ipoteza H_0 SAU Sigt = 0,000 < α = 0,05 \Rightarrow se respinge ipoteza H_0 (5%)	$ t_{calc} = 2,312 >$ $> t_{\alpha/2; n-k} = 1,96$ \Rightarrow se respinge ipoteza H_0 SAU $Sigt = 0,026 < \alpha = 0,05$ \Rightarrow se respinge ipoteza H_0 (5%)	$ t_{calc} = 0.804 <$ $< t_{\alpha/2; n-k} = 1.645$ \Rightarrow se respinge ipoteza H_0 SAU $Sigt = 0.426 > \alpha = 0.10$ \Rightarrow se respinge ipoteza H_0 (5%)		
8. Interpretarea deciziei luate	În condițiile unui risc de 5%, se consideră că parametrul sau constanta modelului diferă semnificativ de 0.	În condițiile unui risc de 5%, se consideră că parametrul β_1 diferă semnificativ de 0, ceea ce înseamnă că PIB/locuitor (X_1) are o influență liniară parțială semnificativă asupra ratei mortalității infantile (Y) sau PIB/locuitor (X_1) explică semnificativ variația ratei mortalității infantile (Y) , în condițiile în care populația urbană (X_2) se menține constant.	În condițiile unui risc de 10% , se consideră că parametrul β_1 diferă semnificativ de 0 , ceea ce înseamnă că populația urbană (X_2) are o influență liniară parțială semnificativă asupra ratei mortalității infantile (Y) sau populația urbană (X_2) explică semnificativ variația ratei mortalității infantile (Y) , în condițiile în care PIB/locuitor (X_1) se menține constant.		

6

3. Estimarea și testarea coeficienților de corelație parțială și bivariată

3.1. Estimarea coeficienților de corelație

Indicatori	Coeficientul de corelație	Coeficientul de corelație	
de corelație	bivariată	parțială	
Definiție	măsoară intensitatea și	măsoară intensitatea și indică	
	indică sensul legăturii	sensul legăturii dintre două	
	dintre două variabile.	variabile, în condițiile în care	
		celelalte variabile se mentin	
		constante.	
Parametru	$ ho_{y1}$	$ ho_{y1.2}$	
	$ ho_{y2}$	$ ho_{y2.1}$	
Condiție	$-1 \le \rho_{y1} \le 1$	$-1 \le \rho_{y_{1,2}} \le 1$	
	$-1 \le \rho_{y2} \le 1$	$-1 \le \rho_{y2.1} \le 1$	
Estimator	$\widehat{ ho}_{y1}$	$\widehat{ ho}_{\mathcal{Y}1.2}$	
	$\widehat{ ho}_{\mathcal{Y}2}$	$\widehat{ ho}_{\mathcal{Y}2.1}$	
Estimaţie	r_{y1}	$r_{y1.2}$	
	r_{y2}	$r_{y2.1}$	
Condiție	$-1 \le r_{y1} \le 1$	$-1 \le r_{y1.2} \le 1$	
	$-1 \le r_{y2} \le 1$	$-1 \le r_{y2.1} \le 1$	

r =0	$0 \leftarrow r $	$ r o 0,5 \leftarrow r $	$ m{r} o m{1}$	r = 1
nu există o leg. liniară între Y și X	leg. liniară de intensitate slabă între Y	leg. liniară de intensitate <i>moderată</i> între Y si X	leg. liniară de intensitate <i>puternică</i> între Y si X	leg. liniară perfectă între <i>Y</i> și <i>X</i>

Estimațiile coeficienților de corelație bivariați

Correlations

		Rata mortalitatii infantile	PIB
Rata mortalitatii infantile	Pearson Correlation	1	-,548**
	Sig. (2-tailed)		,000
	N	42	42
PIB	Pearson Correlation	-,548**	1
	Sig. (2-tailed)	,000	
	N	42	42

^{**.} Correlation is significant at the 0.01 level (2-tailed).

- coeficientul de corelație bivariată dintre *Y* și *X*₁ (care poate fi luat din tabelul Correlations de mai sus sau din tabelul Coefficients, din coloana Correlations – Zero-order):

$$r_{v1} = -0.548$$

Interpretarea: Între rata mortalității infantile și PIB/locuitor există o legătură liniară inversă și de intensitate moderată.

- coeficientul de corelație bivariată dintre *Y* și *X*₂ (care poate fi luat dintr-un tabel Correlations similar cu cel de mai sus, dar pe care nu îl aveți în acest document, așa că îl veți lua direct din tabelul Coefficients, din coloana Correlations – Zero-order):

$$r_{v2} = -0.466$$

Interpretarea: Între rata mortalității infantile și populația urbană există o legătură liniară inversă și de intensitate moderată.

Estimațiile coeficienților de corelație parțiali

Correlations

Control Variables			Rata mortalitatii infantile	Produs Intern Brut
Populatia urbana	Rata mortalitatii infantile	Correlation	1,000	-,347
		Significance (2-tailed)		,026
		df	0	39
	Produs Intern Brut	Correlation	-,347	1,000
		Significance (2-tailed)	,026	
		df	39	0

- coeficientul de corelație parțială dintre Y și X₁ (care poate fi luat din tabelul Correlations de mai sus sau din tabelul Coefficients, din coloana Correlations – Partial):

$$r_{y1.2} = -0.347$$

Interpretarea: Între rata mortalității infantile și PIB/locuitor există o legătură liniară inversă și de intensitate moderată, în condițiile în care populația urbană se menține constantă.

Correlations

Control Variables			Rata mortalitatii infantile	Populatia urbana
Produs Intern Brut	Rata mortalitatii infantile	Correlation	1,000	-,128
		Significance (2-tailed)		,426
		df	0	39
	Populatia urbana	Correlation	-,128	1,000
		Significance (2-tailed)	,426	-
		df	39	0

- coeficientul de corelație parțială dintre *Y* și *X*₂ (care poate fi luat din tabelul Correlations de mai sus sau din tabelul Coefficients, din coloana Correlations – Partial):

$$r_{y2.1} = -0.128$$

Interpretarea: Între rata mortalității infantile și populația urbană există o legătură liniară inversă și de intensitate slabă, în condițiile în care PIB/locuitor se menține constant.

3.2. Testarea coeficienților de corelație

Testarea coeficienților de corelație bivariată și parțială dintre Y și X_1

Etapele testării	Testarea coeficientului de corelație bivariată $ ho_{y1}$	Testarea coeficientului de corelație parțială $ ho_{y1.2}$
1. Formularea ipotezelor	$H_0: \rho_{y1} = 0$ (coeficientul de corelație bivariată ρ_{y1} nu diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile (Y și X_1) nu există o legătură liniară semnificativă SAU cele două variabile (Y și X_1) nu sunt corelate semnificativ) $H_1: \rho_{y1} \neq 0$ (coeficientul de corelație bivariată ρ_{y1} diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile (Y și X_1) există o legătură liniară semnificativă SAU cele două variabile (Y și X_1) sunt corelate semnificativ)	H_0 : $ρ_{y1.2} = 0$ (coeficientul de corelație parțială $ρ_{y1.2}$ nu diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile (Y și X_1) nu există o legătură liniară semnificativă, în condițiile în care X_2 se menține constant SAU cele două variabile (Y și X_1) nu sunt corelate semnificativ, în condițiile în care X_2 se menține constant) $H_1: ρ_{y1.2} \neq 0$ (coeficientul de corelație parțială $ρ_{y1.2}$ diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile (Y și X_1) există o legătură liniară semnificativă, în condițiile în care X_2 se menține constant SAU cele două variabile (Y și X_1) sunt corelate semnificativ, în condițiile în care X_2 se menține constant)
2. Alegerea pragului de semnificație	$\alpha = 0.05$	$\alpha = 0.05$
3. Alegerea statisticii test	$t = \frac{\hat{\rho}_{y1}}{\sqrt{\frac{1 - \hat{\rho}_{y1}^2}{n - 2}}} \sim t(n - 2)$	$t = \frac{\hat{\rho}_{y1.2}}{\sqrt{\frac{1 - \hat{\rho}_{y1.2}^2}{n - k}}} \sim t(n - k)$
4. Determinarea valorii teoretice a statisticii test	$t_{teoretic} = t_{\alpha/2; n-2}$ $t_{0,05/2; 42-2} = t_{0,025; 40} = 1,96$	$t_{teoretic} = t_{\alpha/2; n-k} = t_{\alpha/2; n-3}$ $t_{0,05/2; 42-3} = t_{0,025; 39} = 1,96$

9

5. Determinarea valorii calculate a statisticii test	$t_{calc} = \frac{r_{y1}}{\sqrt{\frac{1 - r_{y1}^2}{n - 2}}} = \frac{-0.548}{\sqrt{\frac{1 - (-0.548)^2}{42 - 2}}}$ -0.548	$t_{calc} = \frac{r_{y1.2}}{\sqrt{\frac{1 - r_{y1.2}^2}{n - 3}}} = \frac{-0.347}{\sqrt{\frac{1 - (-0.347)^2}{42 - 3}}}$ -0.347			
	$t_{calc} = \frac{-0,548}{\sqrt{\frac{1 - 0,300}{40}}} = -4,145$	$t_{calc} = \frac{-0,347}{\sqrt{\frac{1 - 0,120}{39}}} = -2,31$			
6. Regula de decizie	- dacă $ t_{calc} \le t_{\alpha/2; n-k}$, nu se resping	testului, regula de decizie este următoarea: ge ipoteza nulă (H_0) ; ipoteza nulă (H_0) , în condițiile unui risc α .			
	Dacă se ține cont de semnificația testului, regula de decizie este următoarea: - dacă $Sigt \ge \alpha$, nu se respinge ipoteza nulă (H_0) ; - dacă $Sigt < \alpha$, se respinge H_0 , în condițiile unui risc α .				
7. Luarea deciziei	$ t_{calc} = 4,145 > t_{\alpha/2; n-2} = 1,96 \Rightarrow$ se respinge ipoteza H_0 (5%) \mathbf{SAU} $Sigt = 0,000 < \alpha = 0,05 \Rightarrow$ se respinge ipoteza H_0 (5%)	$ t_{calc} = 2.31 > t_{\alpha/2; n-k} = 1.96 \Rightarrow$ se respinge ipoteza H_0 (5%) \mathbf{SAU} $Sigt = 0.026 < \alpha = 0.05 \Rightarrow$ se respinge ipoteza H_0 (5%)			
8. Interpretarea deciziei luate	În condițiile unui risc de 5%, se consideră că între rata mortalității infantile și PIB/locuitor există o legătură liniară semnificativă SAU rata mortalității infantile și PIB/locuitor sunt corelate semnificativ.	În condițiile unui risc de 5%, se consideră că între rata mortalității infantile și PIB/locuitor există o legătură liniară semnificativă, în condițiile în care populația urbană se menține constantă SAU rata mortalității infantile și PIB/locuitor sunt corelate semnificativ, în condițiile în care populația urbană se menține constantă SAU între rata mortalității infantile și PIB/locuitor există o corelație parțială semnificativă.			

Testarea coeficienților de corelație bivariată și parțială dintre Y și X_2

Etapele testării	Testarea coeficientului de corelație bivariată $ ho_{y2}$	Testarea coeficientului de corelație parțială $ ho_{y2.1}$	
1. Formularea ipotezelor	H_0 : $ρ_{y2} = 0$ (coeficientul de corelație bivariată $ρ_{y2}$ nu diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile (Y și X_2) nu există o legătură liniară semnificativă SAU cele două variabile (Y și X_2) nu sunt corelate semnificativ) H_1 : $ρ_{y2} \neq 0$ (coeficientul de corelație bivariată $ρ_{y2}$ diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile (Y și X_2) există o legătură liniară semnificativă SAU cele două variabile (Y și X_2) sunt corelate semnificativ)	H_0 : $ρ_{y2.1} = 0$ (coeficientul de corelație parțială $ρ_{y2.1}$ nu diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile (Y și X_2) nu există o legătură liniară semnificativă, în condițiile în care X_1 se menține constant SAU cele două variabile (Y și X_2) nu sunt corelate semnificativ, în condițiile în care X_1 se menține constant) H_1 : $ρ_{y2.1} \neq 0$ (coeficientul de corelație parțială $ρ_{y2.1}$ diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile (Y și X_2) există o legătură liniară semnificativă, în condițiile în care X_1 se menține constant SAU cele două variabile (Y și X_2) sunt corelate semnificativ, în condițiile în care X_1 se menține constant)	
2. Alegerea pragului de semnificație	$\alpha = 0.05$	$\alpha = 0.05$	
3. Alegerea statisticii test	$t = \frac{\hat{\rho}_{y2}}{\sqrt{\frac{1 - \hat{\rho}_{y2}^2}{n - 2}}} \sim t(n - 2)$	$t = \frac{\hat{\rho}_{y2.1}}{\sqrt{\frac{1 - \hat{\rho}_{y2.1}^2}{n - k}}} \sim t(n - k)$	
4. Determinarea valorii teoretice a statisticii test	$t_{teoretic} = t_{\alpha/2; n-2}$ $t_{0,05/2; 42-2} = t_{0,025; 40} = 1,96$	$t_{teoretic} = t_{\alpha/2; n-k} = t_{\alpha/2; n-3}$ $t_{0,05/2; 42-3} = t_{0,025; 39} = 1,96$	
5. Determinarea valorii calculate a statisticii test	$t_{calc} = \frac{r_{y2}}{\sqrt{\frac{1 - r_{y2}^2}{n - 2}}} = \frac{-0,466}{\sqrt{\frac{1 - (-0,466)^2}{42 - 2}}}$ $t_{calc} = \frac{-0,466}{\sqrt{\frac{1 - 0,217}{40}}} = -3,331$	$t_{calc} = \frac{r_{y2.1}}{\sqrt{\frac{1 - r_{y2.1}^2}{n - 3}}} = \frac{-0,128}{\sqrt{\frac{1 - (-0,128)^2}{42 - 3}}}$ $t_{calc} = \frac{-0,128}{\sqrt{\frac{1 - 0,016}{39}}} = -0,806$	
6. Regula de decizie	Dacă se ține cont de valoarea calculată a testului, regula de decizie este următoa - dacă $ t_{calc} \le t_{\alpha/2; n-k}$, nu se respinge ipoteza nulă (H_0) ;		

	- dacă $ t_{calc} > t_{\alpha/2; n-k}$, se respinge ipoteza nulă (H_0) , în condițiile unui risc α .				
	Dacă se ține cont de semnificația testului, regula de decizie este următoarea:				
	- dacă $Sigt \ge \alpha$, nu se respinge ipoteza	a nulă (H_0) ;			
	- dacă $Sigt < \alpha$, se respinge H_0 , în con	ndițiile unui risc α .			
7. Luarea deciziei	$ t_{calc} =3,331>t_{\alpha/2;n-2}=1,96\Rightarrow$ că $ t_{calc} =0,806< t_{\alpha/2;n-k}=$ se respinge ipoteza H_0 (5%) nu se respinge ipoteza H				
	SAU	SAU			
	(având în vedere că nu avem și separat tabelul de corelații pentru acest coeficient, de unde am putea lua <i>Sigt</i> , decizia o vom lua doar prin compararea valorii calculate a testului cu valoarea sa teoretică)	$Sigt = 0.426 > \alpha = 0.05 \Rightarrow$ că nu se respinge ipoteza H_0 (5%)			
8. Interpretarea deciziei luate	În condițiile unui risc de 5%, se consideră că între rata mortalității infantile și populația urbană există o legătură liniară semnificativă SAU rata mortalității infantile și populația urbană sunt corelate semnificativ.	În condițiile unui risc de 5%, se consideră că între rata mortalității infantile și populația urbană nu există o legătură liniară semnificativă, <u>în condițiile în care PIB/locuitor se menține constant SAU rata mortalității infantile și populația urbană nu sunt corelate semnificativ, <u>în condițiile în care PIB/locuitor se menține constant SAU</u> între rata mortalității infantile și populația urbană nu există o corelație <u>parțială</u> semnificativă.</u>			

4. Estimarea și testarea raportului de determinație multiplă, raportului de determinație multiplă ajustat și a raportului de corelație multiplă

Indicatori de corelație	Raportul (coeficientul) de determinație	Raportul de determinație ajustat	Raportul de corelație
Definiție	măsoară cât din variația totală a variabilei dependente este explicată de modelul de regresie SAU de variația simultană a variabilelor independente.	măsoară, într-un mod mai precis, cât din variația totală a variabilei dependente este explicat de modelul de regresie SAU de variația simultană a variabilelor independente.	măsoară intensitatea legăturii liniare dintre variabile.
Parametru	$\eta^2 = \frac{V_E}{V_T} = 1 - \frac{V_R}{V_T}$ $V_T = V_E + V_R$	$ar{\eta}^2 = 1 - rac{rac{V_R}{n-k}}{rac{V_T}{n-1}}$ $ar{\eta}^2 = 1 - (1-\eta^2) rac{n-1}{n-k}$	$\eta = \sqrt{\eta^2}$
Condiție	$0 \le \eta^2 \le 1$	$0 \le \bar{\eta}^2 \le 1$	$0 \le \eta \le 1$
Estimator	$\hat{\eta}^2 = \frac{\hat{V}_E}{\hat{V}_T} = 1 - \frac{\hat{V}_R}{\hat{V}_T}$ $\hat{V}_T \sim \chi^2(n-1),$ $\hat{V}_E \sim \chi^2(k-1),$ $\hat{V}_R \sim \chi^2(n-k),$		$\hat{\eta} = \sqrt{rac{\widehat{V}_E}{\widehat{V}_T}} = \sqrt{1 - rac{\widehat{V}_R}{\widehat{V}_T}}$
Estimaţie	$R^{2} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$ $TSS = ESS + RSS$	$\bar{R}^2 = 1 - \frac{\frac{RSS}{n-k}}{\frac{TSS}{n-1}}$ $\bar{R}^2 = 1 - (1 - R^2) \cdot \frac{n-1}{n-k}$	$R = \sqrt{R^2}$
Condiție	$0 \le R^2 \le 1$	$0 \le \bar{R}^2 \le 1$	$0 \le R \le 1$
OBS.	$ar{R}^2$.	< R ²	

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,558 ^a	,311	,276	2,0497

- a. Predictors: (Constant), Populatia urbana, Produs Intern Brut
- raportul de determinație multiplă (care poate fi direct luat din tabelul Model Summary sau calculat pe baza datelor din tabelul Anova):

$$R^2 = 0.311 (R^2\% = 31.1\%)$$

$$R^2 = \frac{ESS}{RSS} = \frac{74,098}{237,951} = 1 - \frac{RSS}{TSS} = 1 - \frac{163,852}{237,951} = 0,311$$

Interpretarea: Variția ratei mortalității infantile este explicată în proporție de 31,1% de <u>variația simultană</u> a PIB/locuitor și a populației urbane. Restul de 68,9% reprezintă influența altor factori nespecificați în model (factorii aleatori).

 raportul de determinație multiplă ajustat (care poate fi luat direct din tabelul Model Summary sau calculat în funcție de estimația raportului de determinație multiplă sau calculat pe baza datelor din tabelul Anova):

$$\bar{R}^2 = 0.276 \, (\bar{R}^2\% = 27.6\%)$$

$$\bar{R}^2 = 1 - (1 - R^2) \cdot \frac{n-1}{n-k} = 1 - (1 - 0.311) \cdot \frac{41}{39} = 0.276$$

$$\bar{R}^2 = 1 - \frac{\frac{RSS}{n-k}}{\frac{TSS}{n-1}} = 1 - \frac{\frac{163,852}{39}}{\frac{237,951}{41}} = 0,276$$

Interpretarea: Se interpretează la fel, dar oferă un rezultat mai precis având în vedere că ține cont de numărul de variabile independente incluse în model. Așadar, variția ratei mortalității infantile este explicată în proporție de 27,6% de <u>variația simultană</u> a PIB/locuitor și a populației urbane. Restul de 62,4% reprezintă influența altor factori nespecificați în model (factorii aleatori).

- raportul de corelație multiplă (care poate fi luat direct din tabelul Model Summary sau calculat în funcție de estimația raportului de determinație multiplă):

$$R = 0.558$$

$$R = \sqrt{R^2} = \sqrt{0.311} = 0.558$$

Interpretarea: Între rata mortalității infantile și variabilele independente, PIB/locuitor și populația urbană, există o legătură liniară de intensitate moderată.

5. Testarea modelului de regresie

 $ANOVA^b$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	74,098	2	37,049	8,818	,001 ^a
	Residual	163,852	39	4,201		
	Total	237,951	41			

- a. Predictors: (Constant), Populatia urbana, Produs Intern Brut
- b. Dependent Variable: Rata mortalitatii infantile

Etapele testării	Testarea modelului de regresie	Testarea raportului de determinație η^2 (sau raportului de corelație η)
1. Formularea ipotezelor	H_0 : $β_0 = 0$ şi $β_1 = 0$ şi $β_2 = 0$ (toți coeficienții de regresie sunt simultan 0, ceea ce înseamnă că modelul de regresie nu explică semnificativ dependența liniară dintre variabile SAU modelul de regresie construit nu este corect specificat) H_1 : $β_0 \neq 0$ sau $β_1 \neq 0$ sau $β_2 \neq 0$ (există cel puțin un coeficient de regresie semnificativ statistic, ceea ce înseamnă că există cel puțin un model de regresie semnificativ statistic SAU modelul de regresie explică semnificativ dependența liniară dintre variabile)	H_0 : $η = 0$ (raportul de determinație $η^2$ sau raportul de corelația $η$ nu diferă semnificativ de 0, ceea ce înseamnă că între variabile nu există o legătură liniară semnificativă) $H_1: η > 0 \text{ (raportul de determinație } η^2 \text{ sau raportul de corelația } η este semnificativ mai mare decât 0, ceea ce înseamnă că între variabile există o legătură liniară semnificativă)$
2. Alegerea pragului de semnificație	$\alpha = 0.05$	$\alpha = 0.05$
3. Alegerea statisticii test	$F = \frac{\frac{\hat{V}_E}{k-1}}{\frac{\hat{V}_R}{n-k}} \sim F(k-1; n-k)$	$F = \frac{\hat{\eta}^2}{(1 - \hat{\eta}^2)} \cdot \frac{n - k}{k - 1} \sim F(k - 1; n - k)$
4. Determinarea valorii teoretice a statisticii test	$F_{teoretic} = F_{\alpha; k-1; n-k}$ = $F_{0,05; 2; 39} = 3,232$	$F_{teoretic} = F_{\alpha; k-1; n-k}$ = $F_{0,05; 2; 39} = 3,232$

5. Determinarea valorii calculate a statisticii test	$F_{calc} = \frac{\frac{ESS}{k-1}}{\frac{RSS}{n-k}} = \frac{ESS}{RSS} \cdot \frac{n-k}{k-1}$ $F_{calc} = \frac{\frac{ESS}{k-1}}{\frac{RSS}{n-k}} = \frac{37,049}{4,201}$ $F_{calc} = \frac{ESS}{RSS} \cdot \frac{n-k}{k-1} = \frac{74,098}{163,852} \cdot \frac{39}{2}$ $F_{calc} = 8,818$	$F_{calc} = \frac{R^2}{1 - R^2} \cdot \frac{n - k}{k - 1}$ $F_{calc} = \frac{0,311}{1 - 0,311} \cdot \frac{39}{2} = 8,818$				
6. Regula de decizie	următoarea: - dacă $F_{calc} \leq F_{\alpha; k-1; n-k}$, nu s dacă $F_{calc} > F_{\alpha; k-1; n-k}$, se re unui risc α .	espinge ipoteza nulă (H_0) , în condițiile ului, regula de decizie este următoarea: e ipoteza nulă (H_0) ;				
7. Luarea deciziei		AU				
8. Interpretarea deciziei luate	$SigF = 0.001 < \alpha = 0.05 \Rightarrow$ că se respinge ipoteza H_0 (5%) În condițiile unui risc de 5%, se consideră că nu toți parametrii sunt nesemnificativi statistic, ceea ce înseamnă că există cel puțin un model de regresie semnificativ statistic SAU modelul de regresie explică semnificativ dependența liniară a ratei mortalității infantile în raport cu PIB/locuitor și populația urbană.					

6. Testarea influenței marginale a unei variabile independente

6.1. Testarea influenței marginale a unei variabile independente introduse în model

Model Summary

			Adjusted	Std. Error of		Chan	ge Statis	stics	
l.,		D.0	R	the	R Square	2	164	110	
Model	R	R Square	Square	Estimate	Change	F Change	df1	df2	Sig. F Change
1	,466ª	,217	,197	2,1581	,217	11,090	1	40	,002
2	,558b	,311	,276	2,0497	,094	8,818	2	39	,001

a Predictors: (Constant), Populatia urbana b Predictors: (Constant), Populatia urbana, PIB

Etapele testării	Testarea influenței marginale a unei variabile independente <i>introduse</i> în model
1. Formularea ipotezelor	H ₀ : variabila introdusă în model nu are o influență marginală semnificativă asupra variației variabilei dependente SAU includerea variabilei nu produce o modificare semnificativă asupra raportului de determinație SAU includerea variabilei nu are un efect semnificativ asupra capacității explicative a modelului SAU modelul nou (în care este inclusă noua variabilă) nu este mai bun decât modelul vechi (modelul inițial), ceea ce înseamnă că se ia decizia de a nu include această variabilă independentă în model
	H ₁ : variabila introdusă în model are o influență marginală semnificativă asupra variației variabilei dependente SAU includerea variabilei produce o modificare semnificativă asupra raportului de determinație SAU includerea variabilei are un efect semnificativ asupra capacității explicative a modelului SAU modelul nou (în care este inclusă noua variabilă) este mai bun decât modelul vechi (modelul inițial), ceea ce înseamnă că se ia decizia de a include această variabilă independentă în model
2. Alegerea pragului de semnificație	$\alpha = 0.05$
6. Regula de decizie	Dacă se ține cont de semnificația testului, regula de decizie este următoarea: - dacă $SigFChange \ge \alpha$, nu se respinge ipoteza nulă (H_0) ; - dacă $SigFChange < \alpha$, se respinge H_0 , în condițiile unui risc α .
7. Luarea deciziei	$SigFChange = 0.001 < \alpha = 0.05 \Rightarrow$ că se respinge ipoteza H_0 (5%)
8. Interpretarea deciziei luate	În condițiile unui risc de 5%, se consideră că includerea PIB/locuitor are o influență marginală semnificativă asupra variației ratei mortalității infantile, ceea ce înseamnă că modelul nou este mai bun față de cel inițial (luăm decizia de a include PIB/locuitor în modelul inițial).

6.2. Testarea influenței marginale a unei variabile independente excluse din model

Model Summary

					Change Statistics				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
Model	П	n Square	n Square	the Estimate	Change	r Change	uri	uiz	Sig. F Change
1	,558 ^a	,311	,276	2,0497	,311	8,818	2	39	,001
2	,548 ^b	,300	,282	2,0406	-,011	,646	1	39	,426

a. Predictors: (Constant), Produs Intern Brut, Populatia urbana

b. Predictors: (Constant), Produs Intern Brut

Etapele testării	Testarea influenței marginale a unei variabile independente <mark>excluse</mark> din model
1. Formularea ipotezelor	H ₀ : variabila exclusă din model nu are o influență marginală semnificativă asupra variației variabilei dependente SAU excluderea variabilei nu produce o modificare semnificativă asupra raportului de determinație SAU excluderea variabilei nu are un efect semnificativ asupra capacității explicative a modelului SAU modelul nou (din care este exclusă variabila) este mai bun decât modelul vechi (modelul inițial), ceea ce înseamnă că se ia decizia de a exclude această variabilă independentă din model inițial H ₁ : variabila exclusă din model are o influență marginală semnificativă asupra variației variabilei dependente SAU excluderea variabilei produce o modificare semnificativă asupra raportului de determinație SAU excluderea variabilei are un efect semnificativ asupra capacității explicative a modelului SAU modelul nou (din care este exclusă variabila) nu este mai bun decât modelul vechi (modelul inițial), ceea ce înseamnă că se ia decizia de a nu exclude această variabilă independentă din modelul inițial
2. Alegerea pragului de semnificație	$\alpha = 0.05$
6. Regula de decizie	Dacă se ține cont de semnificația testului, regula de decizie este următoarea: - dacă $SigFChange \ge \alpha$, nu se respinge ipoteza nulă (H_0) ; - dacă $SigFChange < \alpha$, se respinge H_0 , în condițiile unui risc α .
7. Luarea deciziei	$SigFChange = 0.426 > \alpha = 0.05 \Rightarrow$ că nu se respinge ipoteza H_0 (5%)
8. Interpretarea deciziei luate	În condițiile unui risc de 5%, se consideră că excluderea populației urbane nu are o influență marginală semnificativă asupra variației ratei mortalității infantile, ceea ce înseamnă că modelul nou este mai bun decât modelul vechi (luăm decizia de a exclude populația urbană din modelul inițial).

7. Ierarhizarea importanței factorilor de influență (variabilelor independente)

Coefficientsa

			dardized icients	Standardized Coefficients			Co	orrelations	
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part
1	(Constant)	14,314	1,182		12,113	,000			
	Produs Intern Brut	-,00012	,00005	-,439	-2,312	,026	-,548	-,347	-,307
	Populatia urbana	-,027	,033	-,153	-,804	,426	-,466	-,128	-,107

a. Dependent Variable: Rata mortalitatii infantile

Interpretarea coeficienților standardizați

 $\tilde{b}_1 = -0.439$ <u>abateri standard</u>: la o creștere a PIB/locuitor (X_1) cu 1 <u>abatere standard</u>, rata mortalității infantile (Y) *scade*, *în medie*, *cu 0,439* <u>abateri standard</u>, în condițiile în care influența populației urbane (X_2) se menține constantă.

 $\tilde{b}_2 = -0.153$ <u>abateri standard</u>: la o creștere a populației urbane (X_2) cu 1 <u>abatere standard</u>, rata mortalității infantile (Y) *scade*, *în medie*, *cu* 0,153 <u>abateri standard</u>, în condițiile influența PIB/locuitor (X_1) se menține constantă.

Ierarhizarea variabilelor independente după importanța lor

 $|\tilde{b}_1| = 0.439 > |\tilde{b}_2| = 0.153$: valorile obținute ne permit o ierarhizare a factorilor de influență astfel: cel mai important factor este PIB/locuitor, cu un coeficient de regresie standardizat egal cu -0,439, iar cel mai mic impact asupra ratei mortalității infantile îl are populația urbană, cu un coeficient de regresie standardizat egal cu -0,153.