Übungsblatt 5

Alexander Mattick Kennung: qi69dube

Kapitel 2

21. April 2020

1 Syntax und operationale Semantik

1.0.1 Binäre Relation

Teilmenge des Kreuzprodukts zweier (ungleicher) Mengen $R \subseteq X \times Y$ oder infix xRy, wie $\leq \subseteq \mathbb{N} \times \mathbb{N} = \{(n, m) \in \mathbb{N} \times \mathbb{N} | \forall k \in \mathbb{N} (m = n + k) \}.$

- reflexiv $\forall x(xRx)$
- symmetrisch $\forall x, y(xRy \implies yRx)$
- transitiv $\forall x, y, z(xRy \land yRz \implies xRz)$
- Präordnung, wenn R reflexiv und transitiv (eine ordnung braucht auch antisymmetrie)
- Äquivalenzrelation, wenn R eine Präordnung und symmetrisch ist.

Gleichheit ist die einzige Äquivalenz und totale Ordnung

Gleichheit mod k ist eine Äq (reflexiv, man kann immer als vielfaches 0 wählen, symmetrisch und transitiv)

$$\mathbb{Z}/_{\equiv k} = \{[n]_{\equiv k} | n \in mathbbZ\} = \mathbb{Z}_k \text{ mit } |\mathbb{Z}_k| = k \text{ und } [n]_{\equiv k} = \{m | n \equiv_k m\}$$

Beliebte Relationen

= (weil das aber merkwürdig ist für z.B. equivalenz von Relationen) gibt es auch $id = \Delta = \{(x, x) | x \in X\}$ kleinste Äquivalenztrelation auf X. (jede Äq muss reflexiv sein, also Δ beinhalten)

Zu $R \subseteq Y \times Z$ und $S \subseteq X \times Y$ kann die komposition:

 $R \circ S = \{(x,z) | \exists y(xSy \land yRz)\}$ Achtung applikativer Syntax, also rechts zuerst (S dann R).

Die funktionskomposition kann darauf reduziert werden: $f: X \to Y = Grf = \{(x, f(x)) | x \in X\}$ (nur halt apllikativ: also graph links als input).

Die n-fache Verkettung wird als R^n bezeichnet, wobei $R^0 = id$.

Umkehrrelation oder Inverse einer Relation ist wohldefiniert:

$$R^{-} = \{(y, x) | xRy\} \subseteq Y \times X.$$

$$\leq^-=\geq, \leq \circ \leq =\leq,$$

 $<\subseteq \mathbb{N} \times \mathbb{N} < \circ <= \{(n,m) \in \mathbb{N} \times \mathbb{N} | n+2 \leq m\}$ das plus zwei entsteht dadurch,dass bei jedem < mindestens 1 unterschied sein muss.

Bei $<\in \mathbb{Q} \times \mathbb{Q}$ ist jedoch $<\circ<=<$, da zwischen jede Rationale zahl immer eine weiter passt $\forall x,y (x\leq y)$

$$\exists z (x < z < y)).$$

Def. Sei $P \subseteq \{refl, symm, trans\}$.

Der **P-abschluss** von $R \subseteq X \times X$ ist die kleineste Relation von S mit $R \subseteq S$ und S hat die Eigenschaft P. Eindeutigkeit, weil geordnete Menge von Relationen. Existenz z.B. $P = \{trans\} : S = \bigcap \{Q \subseteq X \times X | R \subseteq Q, Qtransitiv\}$. Also: man wählt alle Relationen die R beinhalten und die Eigenschaft haben und nimmt dann den Durchschnitt. Der Durchschnitt hat auch immer die Eigenschaft, weil sie nur über \forall definiert sind (und keine disjunktionen auf der rechten seite der implikation verwenden, und FOL sind).

Daraus folgt:

- R ist reflexiv $\iff id \subseteq R$
- R ist symm \iff $R^- \subseteq R \iff$ $R^- = R$
- R ist tranisitiv $\iff R \circ R \cup R$

daraus folgt: Explizit berechenbare Eigenschaften:

Reflexiver abschluss von R: man muss alle selbstrelationen hinzufügen, also $R \cup \Delta$.

Symmetrischer Abschluss: $R \cup R^-$ weil $(R \cup R^-)^- = R^- \cup R^-^- = R^- \cup R$.

Transitiver Abschluss: man braucht nicht nur $R \circ R$ sondern auch die weiteren $R \circ R \circ R$, also $\bigcup_{n=1}^{\infty} R^n = \{(x,y) | \exists n \geq 1 ((x,y) \in R^n) \}$, das heißt, $xR^+y \iff \exists n,x_0,\ldots,x_{n+1} (x=x_0Rx_yR\ldots Rx_nRx_{n+1}=y)$.

Dies nennt man R^+ ähnlich wie bei regulären ausdrücken: es muss mindestens einmal die Relation angewandt werden! (genau genommen sind Reg. Ausdrücke und Relationen isomorph). Transitiv-Reflexiver Abschluss (erzeugte Präordnung). $R^+ \cup \Delta = R^* = \bigcup_{n=0}^{\infty} R^n$