COSC76/276 Artificial Intelligence Fall 2022 Plan ahead with search problems and uninformed search

Soroush Vosoughi
Computer Science
Dartmouth College
Soroush@Dartmouth.edu

Reminders

- Thanks for the use of Ed Discussion!
 - Please continue using Ed Discussion (not emails) for your communication in the class
- SA-0 due 11:59pm ET on Friday
 - Office hours available on Canvas
- The tentative calendar for assignments and lectures for the next few weeks is on Canvas
 - SA-1 will be posted soon
 - PA-1 will be posted soon

Reminders

- Please enable email notification for Canvas messages.
- Late days!

SA0 Short first quiz/assignment

- SA0 Short quiz/assignment:
 - To get you up and running with the development environment
 - To ensure we are on the same page for your learning and expectations
 - Share initial thoughts on Al
- You will find it on Canvas

Discussion: what is the "correct" AI?

The science of making machines that:

Think like people Think rationally

Act like people Act rationally

What does "rationally" mean?

- Rational: maximally achieving predefined goals
- Utility of outcomes are a measure for the goals
- Rationality: only concerns what decisions are made
- Being rational means maximizing expected utility

Rational agent

- An agent is an entity that perceives and acts.
- A rational agent selects actions that maximize its (expected) utility.

Reflex agents

- Choose action based only on current perception (and memory if available)
- Does not look ahead

Planning agent

- Actions based on looking at (hypothesized) consequences of actions
- A model is needed to see how the world and agent evolve given actions
- The goal needs to be explicit

Which one is a better agent?

Recap: reflex vs planning agent

Reflex

Planning

Type of problems we'll look at

Where Did AI Originate From?

AI Coined at Dartmouth

IN THIS BUILDING DURING THE SUMMER OF 1956

JOHN McCARTHY (DARTMOUTH COLLEGE), MARVIN L. MINSKY (MIT)
NATHANIEL ROCHESTER (IBM), AND CLAUDE SHANNON (BELL LABORATORIES)
CONDUCTED

THE DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLIGENCE

FIRST USE OF THE TERM "ARTIFICIAL INTELLIGENCE"

FOUNDING OF ARTIFICIAL INTELLIGENCE AS A RESEARCH DISCIPLINE

"To proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it."

IN COMMEMORATION OF THE PROJECT'S 50th ANNIVERSARY JULY 13, 2006

Additional readings

- AIMA book Chapter 1 and 2
- (Will be reported on Canvas too in the calendar)

Today's learning objectives

How do we make rational agents plan ahead?

- Model problems as a search problem
- Define tree-search algorithm
- Identify properties of search algorithms
- Implement uninformed search methods
- Determine properties of those search methods

Outline

- Search problems
- Uninformed search algorithms (tree-search, without memory)

Outline

- Search problems
- Uninformed search algorithms (tree-search, without memory)

How can we plan?

- We need a model:
 - How should the agent's state be represented? state space
 - What are the actions for the system? action space
 - How does the state change in response to the action?

Discussion: example

 We want a self-driving car to travel between cities connected via

highways

- What are the agent' states?
- What are the agent's actions?
- How does the state change in response to the input?

Example: Traveling in Romania

- State space: cities
- Successor function: go to adjacent city
- Cost: distance between cities
- Start state: Arad
- Goal test: is state == Bucharest?

State space graph

- State space graph: A mathematical representation of a search problem
 - States are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal states
- In a state space graph, each state occurs only once!
- The full graph is typically too big to store in memory

Reminder (from CS10): Graph

representations

{{0,1},	
{0,4},	{1,2},
{1,3},	{1,4},
{2,3},	{3,4}}

Method	Edge List	Adjacency List	Adjacency Matrix	Adjacency Map
in/outDegree(v)	O(m)	O(1)	O(n)	O(1)
in/outNeighbors(v)	O(m)	O(d _v)	O(n)	$O(d_v)$
hasEdge(u,v)	O(m)	$O(min(d_u,d_v))$	O(1)	O(1)
insertVertex(v)	O(1)	O(1)	$O(n^2)$	O(1)
removeVertex(v)	O(m)	O(d _v)	$O(n^2)$	$O(d_v)$
insertEdge(u,v,e)	O(1)	O(1)	O(1)	O(1)
removeEdge(u,v)	O(m)	O(1)	O(1)	O(1)

Best performance is shown in red

n = number of nodes (5), m = number of edges (7), d_v = degree of node v