VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB

REPORTON

MACHINE LEARNING

Submitted by

Gautam Deo(1BM21CS067)

in partial fulfillment for the award of the degree of
BACHELOR OF ENGINEERING in
COMPUTER SCIENCE AND ENGINEERING

B. M. S. College of Engineering, Bull Temple Road, Bangalore 560019(March 2024 to June 2024)

B. M. S. College of Engineering, Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "MACHINE LEARNING" is carried out by Gautam Deo(1BM21CS067) who is bonafide student of B.M.S. College of Engineering. It is in partial fulfillment for the award of Bachelor of Engineering in Computer Science and Engineering of the Visveswaraya Technological University, Belgaumduring the year 2023-2024. The lab report has been approved as it satisfies the academic requirements in respect of Machine Learning Lab - (22CS3PCMAL) work prescribed for thesaid degree.

Dr. K. Panimozhi Assistant Professor BMSCE, Bengaluru **Dr. Jyothi S Nayak**Prof.& Head, Dept. of CSE
BMSCE, Bengaluru

Index Sheet

Sl. No.	Experiment Title	Page No.
1	Write a python program to import and export data using Pandas library functions	4
2	Demonstrate various data pre-processing techniques for a given dataset	7
3	Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample.	10
4	Build KNN Classification model for a given dataset.	14
5	Implement Linear and Multi-Linear Regression algorithm using appropriate dataset	21
6	Build Logistic Regression Model for a given dataset	28
7	Build Support vector machine model for a given dataset.	38
8	Build k-Means algorithm to cluster a set of data stored in a .CSV file.	44
9	Implement Dimensionality reduction using Principle Component Analysis (PCA) method.	48
10	Build Artificial Neural Network model with back propagation on a given dataset	52
11	a) Implement Random forest ensemble method on a given dataset.b) Implement Boosting ensemble method on a given dataset.	56

Course outcomes:

CO1	Apply machine learning techniques in computing systems
CO2	Evaluate the model using metrics
CO3	Design a model using machine learning to solve a problem
CO4	Conduct experiments to solve real-world problems using appropriate machine learning techniques

Lab1

Date: 05/04/2024

Write a python program to import and export data using Pandas library functions

5/04	Date Page
7	
10	Write a python program to &mport & export
	Write a python program to & mport & export data using pandas library function.
-53	(11) now have a delever to the Communities
	Imparting
	460 mar sampled diametros ser cast
dias	import pandas as Pd-
	import pandas as Pd- df = Pd-read_CSV (" /content/aushnHousing
- Lagra	para csv")
Elen	VI wer know acompaide dumming warm
Nis	Expaning
lan	vrl="archive.ics.vci.edu/mc/machine./earning
5	-database "
	col-name=("spsepal lenght", sepal-width", "petal- lenght", "petal-width", class")
	evers data = pd . read_CV (UTL, names = colored-
	ma lata: head U
	ms-data to-csv ("expanted.csv")

CODE:

iris_data.to_csv("cleaned_iris_data.csv")

OUTPUT:

1. Dataset -

S.	zpid	city	streetAddress	zipcode	description	latitude	longitude	propertyTaxRate	garageSpaces	hasAssociation	 numOfMiddleSchools
0	111373431	pflugerville	14424 Lake Victor Dr	78660	14424 Lake Victor Dr, Pflugerville, TX 78660 i	30.430632	-97.663078	1.98		True	
1	120900430	pflugerville	1104 Strickling Dr	78660	Absolutely GORGEOUS 4 Bedroom home with 2 full	30.432673	-97.661697	1.98		True	
2	2084491383	pflugerville	1408 Fort Dessau Rd	78660	Under construction - estimated completion in A	30.409748	-97.639771	1.98		True	
3	120901374	pflugerville	1025 Strickling Dr	78660	Absolutely darling one story home in charming	30.432112	-97.661659	1.98		True	
4	60134862	pflugerville	15005 Donna Jane Loop	78660	Brimming with appeal & warm livability! Sleek	30.437368	-97.656860	1.98		True	1

2. After reading dataset from URL –

	sepal_length_in_cm	sepal_width_in_cm	petal_length_in_cm	petal_width_in_cm	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

3. CSV file after exporting –

Date: 12-04-2024

1.Use an appíopíiate data set foi building the decision tiee (ID3) and applythis knowledge to classify a new sample.

Algorithm :

3.	Decerren Tree Algorithm.
1	1 Hillies Tonka Know and a sulfill
1)	create a Root note for the tree
2)	If all examples cere passible
	return the single node free, with able = +
3)	return the single hode tree, with laber-
	venurn the single hode tree, with label-
4)	if attributes is dempty
	yeturn the Single mode Three root,
	if attributes is dempty veturn the single mode Itercercot, with lable = most common value of torgeramme
-	
N)	otherwise begin
	A - The admibite from attributes that best
	'classfree Exampic
	The decrision apribute of root & A
	for each passible value, Vi of A,
	Had a new free branch below root,
	Corresponding to the test A=V;
	1 et Example, be the subset of example that have value V: for A
	- 1700 19va Value V. y ar
	if Example, is empty
	Then believe this new branch add 9
	leaf node with lable = Mostronmon
	value of Target attribute in Eg.
	TIO
	below this new branch add the
	below this new branch add the Subtree ID3 (Example is, Target.
	atibuc Attributes - EAS.
6)	Ind
7)	Rejurn Kout
L	

```
Output:

Enmopy af entire dataset: 0.94

Mighest renformation = autook = 0276

a " = enemy = 0-971

Best attribute 12 windy
```

CODE:

```
import pandas as pd
from sklearn.tree import DecisionTreeClassifier, plot_tree
import matplotlib.pyplot as plt
import math
df = pd.read_csv('/content/diabetes.csv')df
def calculate_entropy(data, target_column):
        total\_rows = len(data)
        target_values = data[target_column].unique()
        entropy = 0
        for value in target_values:
                # Calculate the proportion of instances with the current value
                value_count = len(data[data[target_column] == value]) proportion
                = value_count / total_rows
                entropy -= proportion * math.log2(proportion)
        return entropy
entropy_outcome = calculate_entropy(df, 'Outcome')
print(f"Entropy of the dataset: {entropy_outcome}")
def calculate_entropy(data, target_column): # for each categorical variable
        total\_rows = len(data)
        target_values = data[target_column].unique()
```

```
entropy = 0
        for value in target_values:
                # Calculate the proportion of instances with the current value
                value_count = len(data[data[target_column] == value]) proportion
                = value_count / total_rows
                entropy -= proportion * math.log2(proportion) if proportion != 0 else 0
        return entropy
def calculate_information_gain(data, feature, target_column):
        # Calculate weighted average entropy for the feature
        unique values = data[feature].unique() weighted entropy
        = 0
        for value in unique_values:
                subset = data[data[feature] == value]
                proportion = len(subset) / len(data)
                weighted_entropy += proportion * calculate_entropy(subset, target_column)
        # Calculate information gain
        information_gain = entropy_outcome - weighted_entropy
        return information_gain
for column in df.columns[:-1]:
        entropy = calculate entropy(df, column)
        information_gain = calculate_information_gain(df, column, 'Outcome') print(f"{column} -
        Entropy: {entropy:.3f}, Information Gain: {information_gain:.3f}")
# Feature selection for the first step in making decision tree
selected_feature = 'DiabetesPedigreeFunction'
# Create a decision tree
clf = DecisionTreeClassifier(criterion='entropy', max_depth=1)X =
df[[selected_feature]]
y = df['Outcome']
clf.fit(X, y)
plt.figure(figsize=(8, 6))
plot_tree(clf, feature_names=[selected_feature], class_names=['0', '1'], filled=True,
rounded=True)
plt.show()
def id3(data, target_column, features):
        if len(data[target_column].unique()) == 1:
                return data[target_column].iloc[0]
```

```
if len(features) == 0:
                return data[target_column].mode().iloc[0]
        best_feature = max(features, key=lambda x: calculate_information_gain(data, x,
target_column))
        tree = {best_feature: {}}
        features = [f for f in features if f != best_feature]for
        value in data[best_feature].unique():
                subset = data[data[best_feature] == value] tree[best_feature][value] =
                id3(subset, target_column, features)
        return tree
id3(df, 'Outcome', ['Pregnancies',
                                         'Glucose',
                                                          'BloodPressure',
                                                                                   'SkinThickness',
        'Insulin',
                         'BMI', 'DiabetesPedigreeFunction', 'Age'])
```

OUTPUT:

1. Entropy of Dataset:

Entropy of the dataset: 0.9331343166407831

2. Entropy and Information Gain of each feature

```
Pregnancies - Entropy: 3.482, Information Gain: 0.062
Glucose - Entropy: 6.751, Information Gain: 0.304
BloodPressure - Entropy: 4.792, Information Gain: 0.059
SkinThickness - Entropy: 4.586, Information Gain: 0.082
Insulin - Entropy: 4.682, Information Gain: 0.277
BMI - Entropy: 7.594, Information Gain: 0.344
DiabetesPedigreeFunction - Entropy: 8.829, Information Gain: 0.651
Age - Entropy: 5.029, Information Gain: 0.141
```

3. Decision Tree:

Lab 3

1.Linear Regression

Observation Screenshot:

K	=0
	3/05/24
	Algorithm
41)	Enput: Throwing Late with one products
(ii)	computer means
(iii)	Estimate coefficient
-300	$\beta_1 = \operatorname{cov}(h_1 y)$
	wr(n)
, 240	bo = y - B. To
19/2/2	count he cereius one of tool
Angele	prodiction phase
	prediction phere
(ii	input: new x fest
- lu	input: new x fest (empute pred retion; use if pred = po + predest pred po + predest pred
TIS	output Model product - ([[2]]) =) array ([[07. B272710])
(musy	=) array ([107.18272710])

Code and Output :

Date: 03/05/2024

```
import pandas as pd
     import numpy as np
import matplotlib.pyplot as plt
     import matplotlib.pyplot as pit
import seaborn as sns
from sklearn.model_selection import train_test_split
from pandas.core.common import random_state
from sklearn.linear_model import LinearRegression
[ ] # Get dataset
    df_sal = pd.read_csv('/content/Salary_Data.csv')
    df_sal.head()
3
          YearsExperience Salary
                          1.1 39343.0
                         1.3 46205.0
                         2.0 43525.0
                         2.2 39891.0
      df_sal.describe()
                                            Salary
               YearsExperience
      count
                       30.000000
                                         30.000000
                        5.313333 76003.000000
      mean
        std
                         2.837888
                                      27414.429785
                        1.100000 37731.000000
       min
       25%
                        3.200000
                                     56720.750000
       50%
                        4.700000
                                     65237.000000
                        7.700000 100544.750000
       75%
                       10.500000 122391.000000
       max
plt.show()
```



```
# Prediction on test set
plt.scatter(X_test, y_test, color = 'lightcoral')
plt.plot(X_train, y_pred_train, color = 'firebrick')
plt.title('Salary vs Experience (Test Set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.legend(['X_train/Pred(y_test)', 'X_train/y_train'], title = 'Sal/Exp', loc='best', facecolor='white')
plt.box(False)
plt.show()
          plt.show()
₹
                                                                    Salary vs Experience (Test Set)
                                                        Sal/Exp
                  120000 -
                                                 X_train/Pred(y_test)

    X_train/y_train

                  100000 -
                    80000 -
                     60000 -
                     40000 -
                                                    2
                                                                                                                                                            10
                                                                                     Years of Experience
[ ] # Regressor coefficients and intercept
    print(f'Coefficient: {regressor.coef_}')
    print(f'Intercept: {regressor.intercept_}')
        Coefficient: [[9312.57512673]]
Intercept: [26780.09915063]
```

2. Multiple Linear Regression

Observation Screenshot

```
Multiple Linear
                Kigate Regression
                   split dataset
                                           into training & lesting set
                                    see multiple independent variables
                                regression model
                      create
                                         = Linear Regression ()
                          regression
                            brain set
                 4. fit
                  S. Test model using test set
                                      actual value of predicted value
In [34]:
             #Importing the libraries
             import pandas as pd
             import numpy as np
import matplotlib.pyplot as plt
             import seaborn as sns
             # import warnings
             import warnings
             warnings.filterwarnings("ignore")
             # We will use some methods from the sklearn module
             from sklearn import linear_model
from sklearn.linear_model import LinearRegression
from sklearn import metrics
             from sklearn.metrics import mean_squared_error, mean_absolute_error
             from sklearn.model_selection import train_test_split, cross_val_score
In [25]:
            # Reading the Dataset
             df = pd.read_csv("data.csv")
In [26]:
            df.head()
Out[26]:
                      Car
                               Model Volume Weight CO2
                                            1000
                   Toyoty
                                 Aygo
               Mitsubishi Space Star
                                            1200
                                                      1160
                                                               95
            2
                   Skoda
                                Citigo
                                            1000
                                                       929
                                                               95
                    Fiat
                                500
                                            900
            3
                                                      865
                                                               90
                    Mini
                              Cooper
                                            1500
                                                      1140 105
In [27]: df.shape
Out[27]:
              (36, 5)
In [28]:
             df.corr(numeric_only=True)
Out[28]:
                            Volume
                                       Weight
                                                           CO2
                           1.000000 0.753537
                                                     0.592082
               Weight 0.753537 1.000000 0.552150
                   CO2 0.592082 0.552150
In [29]: print(df.describe())
                         Volume
36.000000
                                             Weight
36.000000
                                                               36.000000
            count
                                         36.000000
1292.277778
242.123889
790.000000
1117.250000
1329.000000
                      36.000000
1611.111111
388.975047
900.000000
1475.000000
1600.000000
2000.0000000
2500.0000000
                                                             36.000000
102.027778
7.454571
90.00000
97.750000
99.000000
            50%
            75%
                                         1418.250000
1746.000000
                                                             105.000000
            max
               #Setting the value for X and
X = df[['Weight', 'Volume']]
y = df['CO2']
             fig, axs = plt.subplots(2, figsize = (5,5))
plt1 = sns.boxplot(df['Weight'], ax = axs[@])
plt2 = sns.boxplot(df['Volume'], ax = axs[1])
plt.tight_layout()
```


CO2

0.00

In [36]: x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 100)

```
In [36]:
            X\_train, X\_test, \ y\_train, \ y\_test = train\_test\_split(X, \ y, \ test\_size = \ 0.3, \ random\_state = \ 100) 
In [37]:
           y_train.shape
Out[37]: (25,)
In [38]:
           y_test.shape
Out[38]: (11,)
In [39]:
           reg_model = linear_model.LinearRegression()
In [40]:
           #Fitting the Multiple Linear Regression model
           reg_model = LinearRegression().fit(X_train, y_train)
In [41]:
           #Printing the model coefficients
           print('Intercept: ',reg_model.intercept_)
           # pair the feature names with the coefficients
           list(zip(X, reg_model.coef_))
         Intercept: 74.33882836589245
Out[41]: [('Weight', 0.0171800645996374), ('Volume', 0.0025046399866402976)]
In [42]: #Predicting the Test and Train set result
           y_pred= reg_model.predict(X_test)
           x_pred= reg_model.predict(X_train)
 In [43]: print("Prediction for test set: {}".format(y_pred))
         Prediction for test set: [ 90.41571939 102.16323413 99.56363213 104.56661845 101.54657652
           95.94770019 108.64011848 102.22654214 92.80374837 97.27327129
           97.570744631
 In [44]: #Actual value and the predicted value
           reg_model_diff = pd.DataFrame({'Actual value': y_test, 'Predicted value': y_pred})
           reg_model_diff
 Out[44]:
              Actual value Predicted value
            0
                      99
                              90.415719
           19
                     105
                              102.163234
                              99.563632
           32
                     104
           35
                     120
                              104.566618
           7
                      92
                             101.546577
           12
                      99
                              95.947700
           29
                     114
                              108.640118
           33
                     108
                              102,226542
                              92.803748
           5
                     105
           1
                      95
                              97.273271
           18
                     104
                              97.570745
 In [45]: mae = metrics.mean_absolute_error(y_test, y_pred)
           mse = metrics.mean_squared_error(y_test, y_pred)
           r2 = np.sqrt(metrics.mean_squared_error(y_test, y_pred))
           print('Mean Absolute Error:', mae)
           print('Mean Square Error:', mse)
           print('Root Mean Square Error:', r2)
         Mean Absolute Error: 6.901980901636316
         Mean Square Error: 63.39765310998794
```

Root Mean Square Error: 7,96226432053018

3.KNN Algorithm:

Observation Screenshot

1 2 2
ich
5
\forall
<i>y</i>
in
w.
W.
17
))
114

```
In [1]:

from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn import datasets
iris = datasets.load_iris()

x = iris.data
y = iris.target

print('sepal-length', 'sepal-width', 'petal-length', 'petal-width')
print(x)
print(x)
print('class: 0 - Iris-Setosa, 1 - Iris-Versicolour, 2 - Iris-Virginica')
print(y)

sepal-length sepal-width petal-length petal-width
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
```

```
In [5]:
    x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)

#To Training the model and Nearest nighbors K=5
    classifier = KNeighborsClassifier(n_neighbors=5)
    classifier.fit(x_train, y_train)

#to make predictions on our test data
    y_pred=classifier.predict(x_test)

print('Prediction -')

for i,test in enumerate(x_test) :
    print(f'{test} - {y_pred[i]}')

# print('Confusion Matrix')
# print(confusion_matrix(y_test,y_pred))
# print('Accuracy Metrics')
# print(classification_report(y_test,y_pred))

Prediction -
    [5.2 4.1 1.5 0.1] - 0
[5.5 2.3 4. 1.3] - 1
[6.7 3.1 4.7 1.5] - 1
```

Lab 4

Date: 17/05/2024

Logistic Regression Algorithm

Logistic	Regression Algorithm
	1 agistic Rossia
	Logistic Regression
	Alganishm
	Theming phase:
1	a mala a
	Gurtrolège parameter: Stæn with random or zero values for evergno (A)& pros (b)
	er zero values for evergno (A)& pros (b)
1	
(ii)	compute prediction: calculate!
	Predictions using the equation
	g = a (on n + b), wender a ig the
	Syanes function
	(IV) simple the human - various
(ili)	computer læs: Me agure. The error
	blu pred retion & actual to lable
	elsing binary error enhopy lass.
1711	undade la la passage i endient l'unique l
(10)	updeite parametes: adjeist weight &
	bros lesing gradront decent to
	minimize the Kossit X
1	(a) On A) in hora latery = moder borg
(V)	Vepeat: iterate step 2-4 until convergence
	ara now no of iteration
11/13	invodiction phase
	1 - 30 Pol 8 HN - 0 -
(i)	computer the predection if the probability is were o. 5 classify as
TUI	in the still is were 0.5 classify as
	1 2 Manage Manage O.
	Observation Control of the Control o
0	UDSEIVALIOI

Screenshot:

```
In [ ]:
          import pandas as pd
           import numpy as np
          import matplotlib.pyplot as plt
          from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
          import plotly as py
          import plotly.graph_objs as go
import time
           init_notebook_mode(connected=True)
In [ ]: def sigmoid(X, weight):
              z = np.dot(X, weight)
return 1 / (1 + np.exp(-z))
In [ ]: | def loss(h, y):
              return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
In [ ]:    def gradient_descent(X, h, y):
        return np.dot(X.T, (h - y)) / y.shape[0]
           def update_weight_loss(weight, learning_rate, gradient):
               return weight - learning_rate * gradient
In [ ]: def log_likelihood(x, y, weights):
              z = np.dot(x, weights)
11 = np.sum( y*z - np.log(1 + np.exp(z)) )
              return 11
```

```
In [ ]: def gradient_ascent(X, h, y):
             return np.dot(X.T, y - h)
         def update_weight_mle(weight, learning_rate, gradient):
             return weight + learning_rate * gradient
In [ ]: | data = pd.read_csv("/content/WA_Fn-UseC_-Telco-Customer-Churn.csv")
         print("Dataset size")
         print("Rows {} Columns {}".format(data.shape[0], data.shape[1]))
         print("Columns and data types")
         pd.DataFrame(data.dtypes).rename(columns = {0:'dtype'})
       Dataset size
       Rows 7043 Columns 21
       Columns and data types
Out[ ]:
                          dtype
              customerID object
                  gender object
            SeniorCitizen int64
In [ ]:
         df = data.copy()
In [ ]: churns = ["Yes", "No"]
         fig = {
    'data': [
                      'x': df.loc[(df['Churn']==churn), 'MonthlyCharges'],
                      'y': df.loc[(df['Churn']==churn),'tenure'],
                      'name': churn, 'mode': 'markers',
                  } for churn in churns
              'layout': {
                  'title': 'Tenure vs Monthly Charges',
                  'xaxis': {'title': 'Monthly Charges'},
                  'yaxis': {'title': "Tenure"}
              }
         py.offline.iplot(fig)
In [ ]: | figs = []
         for churn in churns:
             figs.append(
                  go.Box(
                      y = df.loc[(df['Churn']==churn),'tenure'],
                      name = churn
             )
         layout = go.Layout(
             title = "Tenure",
              xaxis = {"title" : "Churn?"},
             yaxis = {"title" : "Tenure"},
             width=800,
             height=500
         fig = go.Figure(data=figs, layout=layout)
         py.offline.iplot(fig)
```

```
In [ ]: | figs = []
            for churn in churns:
                 figs.append(
                     go.Box(
                          y = df.loc[(df['Churn']==churn), 'MonthlyCharges'],
                           name = churn
                )
            layout = go.Layout(
  title = "MonthlyCharges",
  xaxis = {"title" : "Churn?"},
  yaxis = {"title" : "MonthlyCharges"},
                 width=800,
                height=500
            fig = go.Figure(data=figs, layout=layout)
            py.offline.iplot(fig)
In [ ]:
           _ = df.groupby('Churn').size().reset_index()
# .sort_values(by='tenure', ascending=True)
           data = [go.Bar(
                x = _['Churn'].tolist(),
y = _[0].tolist(),
                 marker=dict(
                     color=['rgba(255,190,134,1)', 'rgba(142,186,217,1)'])
            layout = go.Layout(
                title = "Churn distribution",
xaxis = {"title" : "Churn?"},
                width=800,
                height=500
            fig = go.Figure(data=data, layout=layout)
            py.offline.iplot(fig)
In [ ]: df['class'] = df['Churn'].apply(lambda x : 1 if x == "Yes" else 0)
            # features will be saved as X and our target will be saved as y
           X = df[['tenure','MonthlyCharges']].copy()
X2 = df[['tenure','MonthlyCharges']].copy()
           y = df['class'].copy()
```

```
In [ ]: | start_time = time.time()
          num_iter = 100000
          intercept = np.ones((X.shape[0], 1))
X = np.concatenate((intercept, X), axis=1)
          theta = np.zeros(X.shape[1])
          for i in range(num_iter):
              h = sigmoid(X, theta)
              gradient = gradient_descent(X, h, y)
              theta = update_weight_loss(theta, 0.1, gradient)
          print("Training time (Log Reg using Gradient descent):" + str(time.time() - start_time) + " seconds")
          print("Learning rate: {}\nIteration: {}".format(0.1, num_iter))
        Training time (Log Reg using Gradient descent):70.8485119342804 seconds
        Learning rate: 0.1
        Iteration: 100000
 In [ ]: | result = sigmoid(X, theta)
 In [ ]: | f = pd.DataFrame(np.around(result, decimals=6)).join(y)
          f['pred'] = f[0].apply(lambda x : 0 if x < 0.5 else 1)
          print("Accuracy (Loss minimization):")
          f.loc[f['pred']==f['class']].shape[0] / f.shape[0] * 100
        Accuracy (Loss minimization):
 Out[ ]: 53.301150078091716
          start_time = time.time()
          num_iter = 100000
          intercept2 = np.ones((X2.shape[0], 1))
          X2 = np.concatenate((intercept2, X2), axis=1)
          theta2 = np.zeros(X2.shape[1])
          for i in range(num_iter):
              h2 = sigmoid(X2, theta2)
              gradient2 = gradient_ascent(X2, h2, y) #np.dot(X.T, (h - y)) / y.size
              theta2 = update_weight_mle(theta2, 0.1, gradient2)
          print("Training time (Log Reg using MLE):" + str(time.time() - start_time) + "seconds")
          print("Learning rate: {}\nIteration: {}".format(0.1, num_iter))
In [ ]: from sklearn.linear_model import LogisticRegression
         clf = LogisticRegression(fit_intercept=True, max_iter=100000)
         clf.fit(df[['tenure','MonthlyCharges']], y)
         print("Training time (sklearn's LogisticRegression module):" + str(time.time() - start_time) + " seconds")
         print("Learning rate: {}\nIteration: {}".format(0.1, num_iter))
       Training time (sklearn's LogisticRegression module):83.02515387535095 seconds
       Learning rate: 0.1
       Iteration: 100000
In [ ]: result3 = clf.predict(df[['tenure','MonthlyCharges']])
In [ ]:
         print("Accuracy (sklearn's Logistic Regression):")
          f3 = pd.DataFrame(result3).join(y)
          f3.loc[f3[0]==f3['class']].shape[0] / f3.shape[0] * 100
       Accuracy (sklearn's Logistic Regression):
Out[ ]: 78.44668465142695
```

Lab 5

Date: 24.05.2024

1. K Means Clustering Algorithm

Observation Screenshot:


```
In [ ]: # import some data to play with
   iris = datasets.load_iris()
            X = pd.DataFrame(iris.data)
            X.columns = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']
            y = pd.DataFrame(iris.target)
           y.columns = ['Targets']
In [ ]: # Build the K Means Model
            model = KMeans(n_clusters=3)
            model.fit(X) # model.labels _: Gives cluster no for which samples belongs
         /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
           warnings.warn(
Out[ ]: KMeans(n_clusters=3)
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [ ]: # # Visualise the clustering results
           plt.figure(figsize=(14,14))
colormap = np.array(['red', 'lime', 'black'])
         <Figure size 1400x1400 with 0 Axes>
In [ ]: # Plot the Original Classifications using Petal features
          plt.subplot(2, 2, 1)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y.Targets], s=40)
plt.title('Real Clusters')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
```

Out[]: Text(0, 0.5, 'Petal Width')


```
In [ ]: # Plot the Models Classifications
    plt.subplot(2, 2, 2)
    plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[model.labels_], s=40)
    plt.title('K-Means Clustering')
    plt.xlabel('Petal Length')
    plt.ylabel('Petal Width')
```

Out[]: Text(0, 0.5, 'Petal Width')

Support Vector Machine

Myorithm 1) Define the kernal function Eg k(n, n) = n, n; (ii) Solve the quadratic programming (ap) problem to find the d (iii) compute the weight 2 bras	2004
1) Define the kernal function Eg k(n, n) = n, n (ii) Solve the quadratic programming (ap) problem to find the L (iii) compute the unight 2 bras	1
(ii) solve the quadratic programming (QP) problem to find the &	
(W) compute the weight & bras	1
(W) compute the weight & bras	11
	1
(iv) identify the support vector's	
(V) Make prediction	
Output -	
Model = 81em. () Model . fr+ (x-train, y train) pred relion = Model-predict (x-train)	
occuracy = 4 y-fex+, prediction	
3 Model predect (6-6-47069438, -0-1604084	1
- 0.44810956 0.160484 - 0.44810956 0.2441212, - 0.1995344 0.18320441, 0.19695394	5
Coray (b)	/

Observation Screenshot:

```
# Load the Iris dataset
iris = load_iris()
              # Convert the dataset into a pandas DataFrame
iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
iris_df['target'] = iris.target
In [4]:
              # Display the first few rows of the DataFrame
print(iris_df.head())
                                           sepal width (cm)
3.5
3.0
3.2
                                                                                                                     (cm)
0.2
0.2
0.2
                sepal length (cm)
                                                                       petal length (cm)
                                                                                                   petal width
                                    5.1
4.9
4.7
                                                                                           1.4
1.4
1.3
In [5]:
              plt.show()
                                    Iris Dataset - Sepal Length vs Sepal Width
                                                                                                                            2.00
          4.5
                                                                                                                            1.75
          4.0
                                                                                                                            1.50
                                                                                                                            1.25
      Sepal Width (cm)
          3.5
                                                                                                                           - 1.00 Secies
          3.0
                                                                                                                            0.75
                                                                                                                            0.50
          2.5
                                                                                                                            0.25
          2.0
                                                                                                                            0.00
                       4.5
                                   5.0
                                               5.5
                                                            6.0
                                                                        6.5
                                                                                    7.0
                                                                                                 7.5
                                                                                                             8.0
                                                      Sepal Length (cm)
n [6]:
         # Splitting the dataset into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
         # Creating and training the SVM classifier
svm_classifier = SVC(kernel='linear')
svm_classifier.fit(X_train, y_train)
         # Predicting the Labels for the test set
y_pred = svm_classifier.predict(X_test)
         # Calculating the accuracy of the model
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy of SVM Classifier:", accuracy)
      Accuracy of SVM Classifier: 1.0
n [8]: y_pred
```

2. Principal Component Analysis

	DED MILITER DAY OF SHIP THE SHIP A STATE OF SHIP AS	
i)	Calculate Mean	
(ü)	Calculation of covernme matrix	
(ai)	Eigen value of tovaxionee Mutry	
(iv)	computation af ergen-vector-commergn	
(V)	compared to all becate projections	
(N:)	geometrical Meouring of frest minipul	
	componant above a lobor of	
	The state of the s	
	Output +9100	#
		-
	pca. explorned. recrone ratro array (C6. 98377428, 6.0,628498)	
	anay (C6. 9837 7428, 6.0,628498)	
	0000 9	

Observation Screenshot:

```
In [1]:
         import matplotlib.pyplot as plt
         from sklearn import datasets
         from sklearn.decomposition import PCA
         from sklearn.preprocessing import StandardScaler
         import pandas as pd
         import numpy as np
         # Load the iris dataset
         iris = datasets.load_iris()
         X = pd.DataFrame(iris.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
         y = pd.DataFrame(iris.target, columns=['Targets'])
         # Standardize the data
         scaler = StandardScaler()
         X_scaled = scaler.fit_transform(X)
         # Apply PCA
         pca = PCA(n_components=2)
         X pca = pca.fit transform(X scaled)
         # Convert PCA result to a DataFrame
         X_pca_df = pd.DataFrame(X_pca, columns=['PCA1', 'PCA2'])
         # Add the target column for visualization
         X_pca_df['Targets'] = y.Targets
         # Visualize the PCA result
         plt.figure(figsize=(14, 7))
         colormap = np.array(['red', 'lime', 'black'])
         # PLot the PCA transformed data
         plt.scatter(X_pca_df.PCA1, X_pca_df.PCA2, c=colormap[X_pca_df.Targets], s=40)
         plt.title('PCA of Iris Dataset')
         plt.xlabel('Principal Component 1')
         plt.ylabel('Principal Component 2')
         plt.show()
```


Lab - 6

Date: 31/05/2024

1. Build Artificial Neural Network model with back propagation on a given dataset.

Observation Screenshot:

05/	C rage
	ANN algorithm
1,	Initialize parameter
	normalize ile feature matrix 'n'
	normalize of y
	Initialize parameter normalize ile feature matrix 'n' normalize ole y' set hyper parameter i no af opour, most neuwe
	Deline active himself
2	Define active funce.
	- Sigmoid function adjuctments
0	training nerwork
	forward propagation - computer is to fell hiden layer - Add bas
	- computer il to fit hiden layer
1/8	- Add bas
	- apply aenvoion func
	The state of the s
4+	Backward propagation
	a a see le . a portant :
LUE	- compute gradient
	- compute della
	1 2 2 Diases
5-	updak weight & biases
1000	= 121 L TP 1 FAGO + 13
	[0.333.0.556]
77	[0.1, 0.667))
	Actual 6/P & (CO-92) (686) [0.89]] predicted of [[680056875]. [0.79393831]
	predicted of [[6-800 56873]
	producted of [0.79393831]
130	[0.8011234]

```
import numpy as np
x = np.array(([2,9],[1,5],[3,6]),dtype = float)
y = np.array(([92],[86],[89]),dtype = float)
x = x/np.amax(x,axis=0)
y = y/100
epoch = 5000
inputlayer_neurons = 2
hiddenlayer_neurons = 3
output neurons = 1
wh = np.random.uniform(size=(inputlayer_neurons, hiddenlayer_neurons))
bh = np.random.uniform(size=(1,hiddenlayer_neurons))
wout = np.random.uniform(size=(hiddenlayer_neurons,output_neurons))
bout = np.random.uniform(size=(1,output_neurons))
                                                                                        hiddengrad = der_sigmoid(hlayer_act)
#sigmoid function
                                                                                        d hiddenlayer = EH*hiddengrad
def sigmoid(x):
 return 1/(1+np.exp(-x))
                                                                                        wout += hlayer_act.T.dot(d_output)*lr
def der_sigmoid(x):
                                                                                        wh += x.T.dot(d hiddenlayer)*lr
return x*(1-x)
                                                                                        print("Input: \n" + str(x))
                                                                                        print("Actual output: \n" + str(y))
print("Predicted Output: \n",output)
for i in range(epoch):
                                                                                    Input:
                                                                                    [[0.66666667 1.
 # forward propagation
hinpl = np.dot(x,wh)
                                                                                     [0.33333333 0.55555556]
                                                                                                     0.66666667]]
  hinp = hinp1 + bh
  hlayer act = sigmoid(hinp)
                                                                                    Actual output:
  outinp1 = np.dot(hlayer_act,wout)
                                                                                    [[0.92]
  outinp = outinp1 + bout
output = sigmoid(outinp)
                                                                                     [0.86]
                                                                                     [0.89]]
                                                                                    Predicted Output:
  # Backpropagation
                                                                                     [[0.80056875]
  E0 = y - output
  outgrad = der_sigmoid(output)
d_output = E0*outgrad
                                                                                     [0.79393831]
                                                                                      [0.80112347]]
  EH = d_output.dot(wout.T)
```

2. Implement Random forest ensemble method on a given dataset.

Observation Screenshot:

Observation Screensnot:	
	Random forest ensemble Method
	Algo.
3.	preprous data to tagin & test
100	1 1 2 200 10/100
	use on to allocate you afdated to test & use for far training
4.	Intitutie Random færest Clusifer & train it using for memod
5-	Make prediction test sample living Method predict
7-	Evaluar He Model.
TO THE REAL PROPERTY.	Output - s Accuracy = 0.98 [(23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

```
import pandma as ad
from sklearn.ensemble import train test split
from sklearn.ensemble import andom-ForestClassifier
from sklearn.metrics import adatasets

# Load the data
iris_data = datasets.load_iris()

X = pd.DataFrame(iris_data.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
y = pd.DataFrame(iris_data.data, columns=['Targets'])

# Check the info of the modified data
# print(iris_data.info())

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)

# Initialize the Random Forest classifier
fr_classifier = RandomForestclassifier(n_estimators=100, random_state=42)

# Fit the classifier to the training data
fr_classifier(infit(X_train, y_train))

# Predict on the test data
y_prod = ff_classifier, predict(X_test)

# Evaluate the classifier
accuracy = accuracy score(y_test, y_pred)
print(frAccuracy: (accuracy:.2f)")

# Print classification Report:
print(classification Report(y_test, y_pred))

# Print classification Report(y_test, y_pred))

# Print classification Report(y_test, y_pred))

# Print confusion matrix
print(confusion matrix
print(confusion matrix)
print(confusion Matrix:)
print(confus
```

3. Implement Boosting ensemble method on a given dataset

Observation Screenshot:

Barrier and	Page
*	Boosting ensemble memod
	. 0 30 10
le	Import liabrares
2	love of the damilet
3.	Data proprocessing in voles a separation of teatures & dataset
	teatures & dataset
9,	Split dataset to train & test samples
5.	initialize adaboost classifier with
	Split data set to train & test samples initialize adaboost classifier with Specified no. of estimator & parconnect
	Train model Using training dataset
1	make predicion for test sample lising training moder
7.	training moder
The same of	
0.	Evaluare Model.
	output - 5 Matrix accuracy Score: 0.9833

```
\frac{\checkmark}{0s} [10] from sklearn.linear_model import LogisticRegression
       from sklearn.ensemble import AdaBoostClassifier
       from sklearn import metrics
       from sklearn import datasets
_{\text{Os}} [11] import pandas as pd
       import matplotlib.pyplot as plt
       from sklearn.model_selection import train_test_split
_{\text{Ds}} [12] # Load the iris dataset
       iris = datasets.load iris()
       X = pd.DataFrame(iris.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
       y = pd.DataFrame(iris.target, columns=['Targets'])
[13] X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.4,random_state=42)
[14] mylogregmodel = LogisticRegression()
[15] adabc = AdaBoostClassifier(n_estimators = 150, estimator = mylogregmodel, learning_rate = 1)
model = adabc.fit(X_train, y_train)
   🛨 /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1143: DataConversionWarning: A
        y = column_or_ld(y, warn=True)

v  [17] y_pred = model.predict(X_test)

[18] metrics.accuracy_score(y_test, y_pred)
```