¿Impagos a la vista?

Propuesta de modelos de Machine Learning para identificar posibles impagos

Autor: Rebeca Herrejón Fecha: 23 de julio de 2024

Tabla de contenidos

Propósito

Introducción

Metodología

Explicación de los datos

Análisis exploratorio de los datos

División del conjunto de datos para entrenamiento y prueba

PCA

Árbol de Decisión

Conclusiones

Ligas a Documentación

Propósito

Este proyecto es la presentación final de **Rebeca Herrejón** para el curso **De Cero** a **Ciencia de Datos**.

Presenta el proceso que se siguió para elegir entre dos modelos de *machine learning* que permitieran identificar si los clientes de una empresa financiera incumplirán en sus pagos, con base en las siguientes características:

- Historial de pagos
- Montos de facturación
- Límite de crédito
- Características demográficas

Las características están incluidas en un dataset llamado data.csv.

Introducción

Este proyecto es la presentación final de **Rebeca Herrejón** para el curso **De Cero** a **Ciencia de Datos**.

Presenta el proceso que se siguió para elegir entre dos modelos de *machine learning* que permitieran identificar si los clientes de una empresa financiera incumplirán en sus pagos, con base en las siguientes características:

- Historial de pagos
- Montos de facturación
- Límite de crédito
- Características demográficas

Las características están incluidas en un dataset llamado data.csv.

Metodología

Esta sección presenta la metodología que se siguió para elegir el modelo de machine learning con mejor precisión en predicción.

Explicación de los datos

El dataset data.csv contiene información de 30 mil clientes de una empresa de servicios financieros, agrupados en 25 columnas que se describen a continuación:

- ID: Identificación del cliente.
- LIMIT_BAL: Monto del límite de crédito (asumí que son pesos).
- SEX: Género del cliente.
- EDUCATION: Nivel educativo del cliente.
- MARRIAGE: Estado civil del cliente.
- AGE: Edad del cliente.
- PAY_0 a PAY_6: Historial de pagos de los últimos seis meses.
- BILL_AMT1 a BILL_AMT6: Monto de facturación de los últimos seis meses.
- PAY_AMT1 a PAY_AMT6: Monto de pago de los últimos seis meses.
- **default.payment.next.month**: Indicador de si el cliente incumplió el pago el próximo mes (columna objetivo).

Análisis exploratorio de los datos

De acuerdo con las estadísticas descriptivas obtenidas con Jupyter Notebook y el siguiente código:

- El promedio del límite de crédito es de \$167,484 pesos, con un mínimo de \$10,000 y un máximo de un millón de pesos.
- El 60% de los clientes son mujeres.
- La edad promedio es de 35.5 años.
- El 22% de los clientes incurrieron en incumplimiento de pago en el último mes.
- Los clientes con historial de retrasos en los pagos tienen mayor probabilidad de incumplimiento.

- Los clientes que incumplen con el pago probablemente tienen las facturas más altas.
- Los clientes que incumplen con el pago tienden a realizar pagos más bajos en comparación con aquellos que no incumplen.

División del conjunto de datos para entrenamiento y prueba

Para este proyecto, elegí regresión logística (PCA) y árbol de decisión como los algoritmos para evaluar si un cliente podría incumplir en el pago o no.

Para ambos casos usé el 20 por ciento de los datos para prueba y el resto para entrenamiento.

PCA

Eliminé los datos nulos o vacíos.

Eliminé del dataset las variables o columnas que no nos sirven, como el ID del cliente y la columna que predice si hay o no incumplimiento del pago.

Usé la técnica de Análisis de Componentes Principales (PCA), reduciendo la dimensionalidad a dos componentes (lo intenté con 10-por el número de columnas que se analizan- y obtuve una exactitud similar).

La matriz de confusión predijo los siguientes datos:

- True Negatives (TN): 4580. El modelo predijo 'No' y la realidad es 'No'.
- False Positives (FP): 107. El modelo predijo 'Sí' pero la realidad es 'No'.
- False Negatives (FN): 1108. El modelo predijo 'No' pero la realidad es 'Sí'.
- True Positives (TP): 205. El modelo predijo 'Sí' y la realidad es 'Sí'.

El modelo tiene una exactitud o *accuracy* de 80%, lo que significa que clasifica correctamente el 80% de las instancias del conjunto de datos. Sin embargo, puede mejorarse con otras técnicas que aún estoy analizando.

Árbol de Decisión

Eliminé los datos nulos o vacíos.

Eliminé del dataset las variables o columnas que no nos sirven, como el ID del cliente y la columna que predice si hay o no incumplimiento del pago.

La matriz de confusión para este modelo arrojó los siguientes resultados:

True Negatives (TN): 3824
False Positives (FP): 863
False Negatives (FN): 781
True Positives (TP): 532

Este modelo tiene una exactitud de 72.6%.

Conclusiones

Elijo el modelo de PCA por tener la mayor exactitud 80% para predecir si los clientes de la empresa financiera incumplirán en su próximo pago, con base en las siguientes características:

- Historial de pagos
- Montos de facturación
- Límite de crédito
- Características demográficas

El modelo aún puede mejorarse, incrementando el conjunto de datos de entrenamiento y prueba.

Las recomendaciones incluyen seguir evaluando modelos. *Random Forest*, que es un conjunto de árboles de decisión, podría funcionar para este caso de uso.

Ligas a Documentación

Las siguientes ligas dirigen a los documentos de trabajo que viven en el siguiente repositorio: rebecaheva/DeCeroACien

- Regresión Logística (PCA)
- Arbol de Decisión