# COMP9332 Network Routing & Switching

IPv6, Routing Basics

http://www.cse.unsw.edu.au/~cs9332/

CSE, UNSW

#### This lecture

- IP version 6 (IPv6)
- Introduction to routing
  - Basic mechanics of IP packet delivery

### IP version 6 (IPv6)

CSE, UNSW

#### Motivations for IPv6

- IPv4 addresses are running out
  - Inherent problem of network-host hierarchy
    - » 100% address assignment efficiency is not possible
    - » E.g. Even with CIDR, a network with 600 hosts requires a network with 1024 addresses
  - Proliferation in the number of networks
  - Growth in the number of and type of devices having Internet connectivity

CSE, UNSW

#### New features of IPv6

- Expanded address space: 128-bit address (c.f. 32-bit for IPv4)
- Address autoconfiguration
- Support for
  - Real-time service
  - IP multicast
  - Mobile IP
  - Security
  - Anycast
  - Note: Most of these services are added onto IPv4 but IPv6 must support them

CSE, UNSW

# Topics for IPv6

- IPv6 addressing
- Autoconfiguration
- Transition from IPv4 to IPv6

## IPv6 addressing

- 128 bits means you can have 2^128 addresses, which is 340,282,366,920,938,463,463,374,607,431,768,211,456
  - This is approximately 3.4 x 10^38
  - Compare with  $4 \times 10^9$  IPv4 addresses, IPv6 has  $10^29$  times more addresses
- Earth's surface area (land + water) is  $500 \times 10^{14}$  sq. metres  $\Rightarrow 7 \times 10^{21}$  addresses per sq. metre
- One reason why the address space is so large
  - Address assignment can never achieve 100% efficiency
  - but there are other reasons (to be discussed later)







#### Exercises

■ What is the complete IPv6 address for - ABBA:CAB:1234::FEED:3:BEEF

CSE, UNSW

11

#### Solution and more exercise

- Solution: The complete address for ABBA:CAB:1234::FEED:3:BEEF is ABBA:0CAB:1234:0000:0000:FEED:0003:BEEF
- Exercise: What is the complete address for
  - ABBA::7::FEED?

CSE, UNSW

#### Solution

■ Solution: The address is invalid. Only one group of zeros can be suppressed.

CSE, UNSW

13

#### IPv6 address architecture

- All addresses are classless
- Some defined address prefixes (rfc3513)

| Prefix       | Туре                         |
|--------------|------------------------------|
| 001          | Global unicast address       |
| 1111 1110 10 | Link-Local Unicast Addresses |
| 1111 1111    | Multicast Addresses          |

CSE, UNSW

#### Host configuration

- A host needs to know its
  - IP address
  - Prefix length
- IPv4 uses BOOTP and DHCP
  - DHCP server maintains a pool of available IP address and gives them out on request
  - DHCP server keeps track which address has been used (stateful configuration)

CSE, UNSW

# IPv6 autoconfiguration (1)

- Autoconfiguration is done as follows
  - Step 1: (A bit later)
  - Step 2: Host sends out a router solicitation message
  - Step 3: Router responses with router advertisement which includes
    - » Network prefix
    - » Prefix length

## IPv6 autoconfiguration (2)

- Step 3: The host IP address is

Network prefix Padding (0's) 64-bit interface ID

-The number of zeros in padding is chosen to make it a 128 bit address

CSE, UNSW

# IPv6 autoconfiguration (3)

- The 64-bit interface ID is formed from the physical address of the interface
  - The new Ethernet address is 64 bits long and is inserted into the interface ID
  - The old Ethernet address is 48 bits long which consists of company code (24 bits) plus Ethernet extension identifier (24 bits). The interface ID is

| Company code |         | FFFE16  | Ethernet extension identifier |  |
|--------------|---------|---------|-------------------------------|--|
| CSE, UNSW    | 24 bits | 16 bits | 24 bits                       |  |

### IPv6 autoconfiguration (4)

- Since Ethernet MAC addresses are unique, autoconfiguration ensures that host IP addresses are also unique
- However, just to make sure, there is step 1
- Step 1:
  - Host form a link local address using prefix 1111 1110 10 + [zeros] + interface ID
  - Host sends out a Neighbour Discovery (part of ICMPv6) using the link local address as the target address
  - If another host on the network has the same link local address, it will reply ⇒ autoconfiguration fails
  - Otherwise, continue onto step 2

CSE. UNSW

# IPv6 autoconfiguration (5)

- IPv6 autoconfiguration
  - Does not require a special server
  - Is stateless as routers do not need to keep track of which address is used
- If IPv6 autoconfiguration is used, what will the size of the smallest possible network be?

### Why 128 bits?

- Allows autoconfiguration
  - Simply "dump" the hardware address in the last part
  - The smallest subnets have 2^64 addresses
- There are still 64 bits for different networks
  - Plenty of flexibility!
- Plenty of addresses
  - This is a reason but not the only one!

CSE, UNSW

# IPv4-friendly IPv6

- Two special IPv6 address formats to help transition from IPv4 to IPv6
  - IPv4 compatible address
  - IPv4 mapped address
- In both formats, IPv4 address is contained within IPv6 address

CSE, UNSW









## Tunneling

- Tunnelling allows an IPv6 packet to transit through one or more IPv4 domains
- In automatic tunnelling (next slide), tunnel endpoints are determined automatically without any explicit configuration
  - Automatic tunneling is triggered when IPv6 addresses are IPv4 compatible



# Tunnelling (2)

- In configured tunneling, tunnel endpoints are configured explicitly
  - by human or by automatic service, eg Tunnel Broker
- Configured tunneling is usually more deterministic
  - easier to debug
  - Recommended for more complex networking environment
- Configured tunnelling (next slide) uses IPv4 mapped addresses

CSE, UNSW



# Delivery and routing of IP packets

Key idea: Routing table tells a router how packets are to be delivered



#### Internet and IP addressing

- The Internet is organised into networks
- IP addressing are hierarchical
  - Network id, subnet id, host id
  - Network prefix, host id (CIDR)
- All hosts/router interfaces within a network have the same network prefix
- An IP network is identified by a network number and a network mask

CSE, UNSW

## Internet and routing

- Basic function of the Internet
  - To allow any two hosts to talk to each other using IP packets
- Routing enables data packets to find the way through the Internet
- Depending on the locations of the two hosts, the delivery can be
  - Direct. or
  - Indirect

### This lecture

- IP version 6 (IPv6)
- Introduction to routing
  - Basic mechanics of IP packet delivery





# IP delivery strategies

- IP delivery is primarily network-based
- Host X is to send a packet to host Y
  - Case 1: Hosts  $\boldsymbol{X}$  and  $\boldsymbol{Y}$  are in the same network
    - » Direct delivery
  - Case 2: They are in different networks
    - » Indirect delivery
    - The last hop is direct delivery from a router in the destination network to the destination

# How do hosts make routing decisions?

- When a host X receives a packet to be delivered to Y
  - Host X checks whether Y is within the same subnet
  - If yes, directly deliver the packet to host Y
  - If no, deliver the packet to the appropriate router
- Two questions
  - How can host X tell whether Y is in the same network?
  - Which is the appropriate router?

CSE, UNSW

#### Exercise

- Host X with IP address 130.130.10.10 and network masks 255.255.255.128 receives the following two packets:
  - Packet A destined for 130.130.10.56
  - Packet B destined for 130.130.10.156
- Q: Is 255,255,255,128 the subnet mask of 130,130,10,56?
- Determine whether they will be delivered directly or indirectly.

#### Solution - Method 1

- Host IP address is 130.130.10.10
- Subnet mask is 255,255,255,128
- Network address is 130.130.10.0
- Address range 130.130.10.0 to 130.130.10.127
- Packet A will be delivered directly
- Packet B will be delivered indirectly

CSE, UNSW

# Solution - Method 2 (1)

- General setting
  - Given
    - $\boldsymbol{\mathsf{w}}$  Host X with IP address IPX and subnet mask MX
      - $\Rightarrow$  network id of X = IPX & MX
    - » Destination host Y with address IPY
  - If network id of Y = network id of X, then X and Y are in the same network; otherwise no
  - Problem: Can't find network id of Y because we don't know the subnet mask for Y
    - $\boldsymbol{\mathsf{w}}$  Note: subnet mask for Y can be different from that of X

#### Solution - Method 2 (2)

#### ■ Method of contradiction

 A statement is either true for false. If assuming that the statement is true leads to contradiction, then the statement must be false.

CSE, UNSW

# Solution - Method 2 (3)

#### Method

- Assume "Host X and Y are in the same network" is true
- Since all hosts in a subnet has the same subnet mask, the assumption implies MX is also the subnet mask of Y
  - ⇒ network id of Y = IPY & MX
- Since all hosts in a subnet has the same network number, the assumption also implies
  - » IPY & MX = network id of X (Eqn
  - » If (Eqn) is false  $\Rightarrow$  contradiction  $\Rightarrow$  assumption false
  - » Otherwise assumption true

#### Solution - Method 2 (4)

- Host X is in network 130.130.10.0 with mask 255.255.255.128
- Packet A
  - 130.130.10.56 AND 255.255.255.128 = 130.130.10.0 ⇒ direct delivery
- Packet B
  - 130.130.10.156 AND 255.255.255.128 = 130.130.10.128  $\Rightarrow$  indirect delivery



#### Routing table

- In case of indirect delivery, a host looks up a routing table to determine which router to use
  - Most networks have only one router (known as the default router) - it is not necessary to maintain a routing table in this case
- A router also uses a routing table to determine how a packet is to be delivered

CSE, UNSW

#### How is routing table organized?

- Main issue: size of the routing table must be manageable
  - Cost: A larger routing table needs more memory
  - Performance: It takes longer to search a large routing table
- Different techniques
  - Next-hop based versus route-based
  - Network-based versus host-based
  - Host-specific routing
  - Default routing
- Why different techniques?









### Routing table entries

- Routing tables are usually based on nexthop routing
- A routing table may contain these type of entries:
  - Network-specific (the majority)
  - Host-specific
  - Default

CSE, UNSW

#### Routing module and routing table ΙP Routing table Next-hop address То Routing module fragmentation IP processing module IP packet module IP packet 54 CSE, UNSW

# Routing table

| Mask      | Destination address | Next-hop<br>address | Flags  | Reference<br>count | Use    | Interface |
|-----------|---------------------|---------------------|--------|--------------------|--------|-----------|
| 255.0.0.0 | 124.0.0.0           | 145.6.7.23          | UG<br> | 4<br>              | 20<br> | m2<br>    |

#### **Flags**

U The router is up and running.

G The destination is in another network.

H Host-specific address.

CSE, UNSW

# Static routing table

- Routing table can be
  - Static
  - Dynamic
- Static routing table are entered manually by the administrator

CSE, UNSW



#### Routing table for R1 <u>Mask</u> Next Hop Interface **Destination** 255.0.0.0 111.0.0.0 m0 255,255,255,224 193.14.5.160 m2 255.255.255.224 193.14.5.192 m1 255.255.255.255 194.17.21.16 111.20.18.14 m0 255.255.255.0 192.16.7.0 111.15.17.32 m0 255.255.255.0 194.17.21.0 111.20.18.14 m0 0.0.0.0 0.0.0.0 111.30.31.18 m0 Note: The order of the entries is: direct delivery, hostspecific, network-specific, and lastly default. 58 CSE, UNSW

#### Exercise

- Router R1 receives a packet for the host 192.16.7.14. How will the packet be delivered?
- Given the routing table, the routing module applies the masks row by row until a match is found.
  - A packet for host X
  - A row = (network mask M, network id N)
  - A match means "X & M = N"

CSE, UNSW

#### Solution

Start matching from the direct delivery part of the routing table (repeated below):

| Destination  | Next Hop                  | Intertace                   |
|--------------|---------------------------|-----------------------------|
| 111.0.0.0    |                           | m0                          |
| 193.14.5.160 | -                         | m2                          |
| 193.14.5.192 | -                         | m1                          |
|              | 111.0.0.0<br>193.14.5.160 | 111.0.0.0<br>193.14.5.160 - |

#### The matching process:

192.16.7.14 & 255.0.0.0 = 192.0.0.0 no match to 111.0.0.0 192.16.7.14 & 255.255.255.224 = 192.16.7.0 no match to 193.14.5.160 192.16.7.14 & 255.255.255.224 = 192.16.7.0 no match to 193.14.5.192

CSE, UNSW 60

### Solution (2)

Since no match has been found, the matching process continues.

The rest of the routing table is repeated below.

| <u>Mask</u>                    | Destination               | Next Hop                     | Interface |
|--------------------------------|---------------------------|------------------------------|-----------|
| 255.255.255.255                | 194.17.21.16              | 111.20.18.14                 | m0        |
| 255.255.255.0<br>255.255.255.0 | 192.16.7.0<br>194.17.21.0 | 111.15.17.32<br>111.20.18.14 | m0<br>m0  |
| 0.0.0.0                        | 0.0.0.0                   | 111.30.31.18                 | m0        |

#### The matching process

- Host-specific
  - 192.16.7.14 & 255.255.255.255 = 192.16.7.14 no match to 194.17.21.16
- Network-specific 192.16.7.14 & 255.255.255.0 = 192.16.7.0 match to 192.16.7.0

CSE, UNSW

01

# Methods to reduce the size of routing table (1)

- A router needs to know how to route a packet to any host in the Internet
- To reduce the size of routing table, IP addressing is organized so that all hosts within a network have the same network prefix
  - External routers only need to know the network prefix, not individual host addresses in the network

# Methods to reduce the size of routing table (2)

- Routers external to a subnet do not need to know the subnet address
  - Example: R2, R3, R4, R5 in "our Internet" only need to have a routing table entry for 193.14.5.0
  - They don't need to know about 193.14.5.160 etc [Next page]
- Use a default entry to summarise all other routes [Next page]











#### Exercise

■ A packet destined for 200.200.6.32 arrives at router R2 which has the following routing table

| Network        | Next Hop   |
|----------------|------------|
| 200.200.4.0/22 | R1         |
| 200.200.6.0/24 | interface1 |

Q1: Does the address match 200.200.4.0/22?

Q2: Does the address match 200.200.6.0/24?

CSE, UNSW

#### Solution

- Q1: 200.200.6.32 ?matches? 200.200.4.0/22
  - First 22 bits of 200.200.6.32 ?=? First 22 bits of 200.200.4.0
  - First 22 bits = First 2 bytes + Next 6 bits
  - First 2 bytes certainly match
  - 3rd byte of 200.200.6.32 = 0000 0110
  - 3rd byte of 200.200.4.0 = 0000 0100
  - Yes. A match.

#### Solution (cont'd)

- Q1: 200.200.6.32 ?matches? 200.200.6.0/24
  - First 24 bits of 200.200.6.32 ?=? First 24 bits of 200.200.6.0
  - Yes.
- Question
  - The IP address matches 2 entries, how should the packet be delivered?

CSE, UNSW

# Longest prefix match

- If CIDR address aggregation is used, an IP address may match more than 1 entry in the routing table
- In this case, the match that has the longest prefix length should be chosen
  - "Longest prefix match"
  - E.g. In the example earlier, 200.200.6.0/24 should be chosen instead of 200.200.4.0/22 because the former has a longer prefix length (24) than the latter (22)

# References

- Private addresses and NAT
  - IBM Redbook Section 21.4
- IPv6
  - IBM Redbook, Sections 17.3.2, 17.7
- Routing and delivery of IP packet
  - Forouzan Chapter 6