Problema 1)

	Tipo	Descripción
Entradas	Int x, y	Punto de salida
	Int r, s	Punto de llegada
	Int Matrix [0m]x[0n]	Mapa en horas
Salidas	Int t	Tiempo total

Tamaño del problema: (m,n)

El código es un Dijkstra para camino más corto modificado para el problema, de manera que este se mueve en las direcciones "arriba" "abajo" "izquierda" y "derecha", desde el punto inicial dado por parámetro hasta que encuentra el punto final.

Los nodos son cada uno de sus casillas, es decir |v| = m*n

Los arcos son las conexiones entre un nodo y sus adyacentes, como es un grafo completo, entonces $|e|=|v|^2$

Complejidad temporal: En el peor caso, el algoritmo recorre todos los nodos y todos los arcos en busca del camino más corto, es decir $O(|v|\log|v|+|e|)$, la cantidad de nodos es aproximada a la de arcos, entonces $O(|v|\log|v|+|v|^2)=O(|v|^2)=O((m*n)^2)$

Complejidad espacial: En el peor caso, el algoritmo marcará todos los nodos y adicionalmente, pondrá todos los nodos en la cola de prioridad, es decir O(|v|+|v|) = O(2|v|) = O(|v|) = O(m*n)