《高等微积分 2》第一周作业

1 考虑幂级数

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

- (1) 确定上述幂级数的收敛域.
- (2) 证明: 对任何 |x| < 1, 有

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = \ln(1+x).$$

- (3) 证明: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \ln 2.$
- 2(1) 将函数 $f(x) = \arctan x$ 在 x = 0 附近表示成幂级数.
 - (2) 确定上述级数的收敛半径.
 - (3) 证明:

$$\frac{\pi}{4} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

- 3 考虑函数项级数 $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$.
 - (1) 求上述函数项级数的收敛域 X.
 - (2) $\zeta(x)$ 在 X 上是否连续? 请详细说明理由.
 - (3) $\zeta(x)$ 在 X 上是否可导, 求出其导函数 $\zeta'(x)$.

- 4 (1) 确定幂级数 $\sum_{n=0}^{\infty} {2n \choose n} x^n$ 的收敛半径, 其中 ${2n \choose n} = \frac{(2n)!}{n!n!}$.
 - (2) 将函数 $f(x) = \frac{1}{\sqrt{1-x}}$ 在 x = 0 附近表示成幂级数, 只需叙述结果.
 - (3) 将函数 $g(x) = \arcsin x$ 在 x = 0 附近表示成幂级数, 需要说明理由.
- 5 对每个正整数 n, 设 M_n 是非负实数, 函数 f_n 在 [a,b] 上连续且在 (a,b) 上处处可导, 满足如下条件:
 - (i) 级数 $\sum_{n=1}^{\infty} M_n$ 收敛.
 - (ii) 对任何正整数 n, 对任何 $x \in (a,b)$, 有 $|f'_n(x)| \leq M_n$.
 - (iii) 级数 $\sum_{n=1}^{\infty} f_n(a)$ 收敛.
 - (1) 证明: 函数级数 $\sum_{n=1}^{\infty} f_n(x)$ 在区间 [a,b] 上点点收敛到某个和函数 S(x).
 - (2) 假设对每个正整数 n, f'_n 在 (a, b) 上连续. 证明: S(x) 在区间 (a, b) 上处处可导.
- 6(一致收敛的 Dirichlet 判别法)设函数序列 $\{a_n(x)\}_{n=1}^{\infty}$ 在区间 I 上一致收敛到零函数,且对每个 $x \in I$, $\{a_n(x)\}_{n=1}^{\infty}$ 关于 n 是单调的;设 $\{b_n(x)\}_{n=1}^{\infty}$ 的部分和序列在区间 I 上一致有界,即存在正数 M,使得

$$|b_1(x) + \dots + b_n(x)| \le M, \quad \forall n \in \mathbf{Z}_+, \forall x \in I.$$

证明: 函数级数 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ 在区间 I 上一致收敛.

7 (一致收敛的 Abel 判别法) 设对每个 $x \in I$, $\{a_n(x)\}_{n=1}^{\infty}$ 关于 n 是单调的, 且函数序列 $\{a_n(x)\}_{n=1}^{\infty}$ 在区间 I 上一致有界, 即存在正数 K, 使得

$$|a_n(x)| \le K, \quad \forall n \in \mathbf{Z}_+, \forall x \in I;$$

设函数级数 $\sum_{n=1}^{\infty}b_n(x)$ 在区间 I 上一致收敛. 证明: 函数级数 $\sum_{n=1}^{\infty}a_n(x)b_n(x)$ 在区间 I 上一致收敛.

8 (幂级数的 Abel 第二定理) 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在点 $x_0 > 0$ 处收敛. 证明: 该幂级数在 $[0, x_0]$ 上一致收敛.