

ALAN REYES-FIGUEROA
ELEMENTS OF MACHINE LEARNING

(AULA 20) 18.ABRIL.2023

Pensamiento ha cambiado con el paso del tiempo

- en la antigüedad: Dioses y seres causantes del mundo
- Galileo: modelo descriptivo (separar causalidad de comportamiento)
- Hoy en día: regresión

- Datos tienen dos componentes: (\mathbf{x}_i, y_i) , \mathbf{x}_i son las variables "explicativas", y_i variable de respuesta.
- Distinguimos dos casos: $y_i \in \mathbb{R} \Rightarrow$ regresión, y_i discreto \Rightarrow clasificación.
- Conectar presente con futuro: datos (\mathbf{x}_i, y_i) deben ser representativos.

- Pragmático. Enfoque geométrico vs. enfoque probabilístico.
- Diferentes tipos de **error**: error empírico (error de entrenamiento), error de generalización (error de validación), error de prueba.
- Cada modelo tiene asociada una complejidad.

• ¿Es cierto que $\frac{1}{n}\sum_{i}\mathbf{1}(y_{i}\neq\widehat{y}_{i})$ converge a $\mathbb{P}(Y(X)\neq\widehat{Y}(X))$? La ley (débil) de grandes números dice que

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i}Z_{i}=\mathbb{E}(Z_{i})=\mathbb{P}(Z_{i}=1).$$

- Veremos que en general, no.
- Otro problema con esta función de costo empírica es que no es continua, menos diferencible.
- Si usas tu método de derivación favorito, no funciona. Pregunta: ¿cómo optimizar?

- Aprendizaje automático: imitar el aprendizaje humano.
- Historicamente: aprender o estimar con pocos datos.
- Varios tipos de aprendizaje: supervised, unsupervised, semi-supervised, self-learning, reinforced learning, ...

Tratamos de responder la pregunta

$$\frac{1}{n}\sum_{i}\underbrace{\mathbf{1}(y_{i}\neq\widehat{y}(\mathbf{x}_{i}))}_{Z_{i}}\xrightarrow[n\to\infty]{}\mathbb{P}(Y(X)\neq\widehat{Y}(X))?$$

Mencionamos que en el caso de v.a.s Bernoulli $Z_i \sim Ber(p)$, la ley de grandes números establece

$$\frac{1}{n}\sum_{i}Z_{i}\xrightarrow[n\to\infty]{}\mathbb{E}(Z)=\mathbb{P}(Z=1).$$

¿Vale en este caso?

No. La ley de grandes número requiere independencia de las Z_i.

En este caso, tenemos

$$\frac{1}{n}\sum_{i}\mathbf{1}(y_{i}\neq\widehat{y}(\mathbf{x}_{i}))\xrightarrow[n\to\infty]{}\mathbb{P}(Y(X)\neq\widehat{Y}(X)),$$

donde la función \hat{y} depende de todos los datos (\mathbf{x}_i, y_i) (de modo que no hay independencia de las Z_i). No aplica la ley de grandes números.

Solución ad hoc:

Separamos el conjunto (\mathbf{x}_i, y_i) en dos:

- Conjunto de entrenamiento: lo usamos para construir la función \hat{y} .
- Conjunto de validación: calculamos el error empírico $\frac{1}{n} \sum_i \mathbf{1}(y_i = \widehat{y}(\mathbf{x}_i))$. Ahora sí hay independencia, y este error empírico de validación converge al error de generalización $\mathbb{P}(Y = \widehat{Y})$.

Discutimos el concepto de **complejidad** de un modelo. Este se refiere al número de parámetros involucrados en el modelo.

- en regresión: está claro, relacionado al número de variables
- en clasificación: no es tan evidente.

El concepto es importante por varias razones:

- Esto es lo que directamente va a afectar a los errores (empírico y de generalización).
- Nos va a permitir comparar diferentes modelos (en términos de simplicidad, no de exactitud).
 - Veremos que existen diferentes métricas que miden la complejidad, y nos va a permitir una segunda opinión a la hora de elegir entre diferentes modelos con similar desempeño.

Consideramos el conjunto de datos $\{(\mathbf{x}_i, y_i)\}$, con $\mathbf{x}_i \in \mathbb{R}^d$ (en ocasiones denotamos $\mathbb{X} = (\mathbf{x}_i) \in \mathbb{R}^{n \times d}$, $\mathbf{Y} = (y_i) \in \mathbb{R}^n$).

Dado $\mathbf{x} \in \mathbb{R}^d$, para decidir el valor de $\widehat{y}(\mathbf{x})$, construimos $N_k(\mathbf{x})$ el conjunto de las k observaciones más cercanas a \mathbf{x} .

- Para clasificación: decidimos por votación, esto es, asignamos a \mathbf{x} la categoría más frequente en $\{y_i : i \in N_k(\mathbf{x})\}$.
- Para regresión: decisión por promedio, *i.e.* asignamos a \mathbf{x} el promedio de $\{y_i : i \in N_k(\mathbf{x})\}$.

Obs! comentarios sobre cómo romper empates / métodos robustos. El caso k = 1 se llama el clasificador de **vecino más cercano**.

Ejemplo de k-nn en el caso de clasificación.

Ejemplo de k-nn en el caso de clasificación. Para k=1, la forntera de clasificación coincide con un diagrama de Voronoi.

Ejemplo de k-nn en el caso de clasificación. Para k=1, la forntera de clasificación coincide con un diagrama de Voronoi.

Ejemplo de k-nn en el caso de clasificación. En el caso general k > 1, la frontera sigue siendo formada por piezas poligonales (o poliedrales).

Ejemplo de k-nn en el caso de regresión.

Ejemplo de k-nn en el caso de regresión en el caso k=1. Las discontinuidades ocurren en los puntos medios entre dos observaciones consecutivas.

Comportamiento al variar el valor de k:

Ejemplo de k-nn en el caso de regresión.

Comportamiento al variar el valor de k:

Al aumentar k las fronteras de clasificación se suavizan.

¿Cómo elegir k?

Error de entrenamiento en k-nn.

¿Cómo elegir k?

Error de validación en k-nn.

Pregunta: ¿Cómo medir la complejidad en k-nn?

