Wahrscheinlichkeit und Statistik Prüfungsnotizen

Fabian Bösiger

Inhalt

Wahrscheinlichkeiten
Grundbegriffe
Diskrete Wahrscheinlichkeitsräume
Bedingte Wahrscheinlichkeiten
Unabhängigkeit
Diskrete Zufallsvariablen und Verteilungen
Grundbegriffe
Erwartungswerte
Gemeinsame Verteilungen und unabhängige Zufallsvari-
ablen
Funktionen von mehreren Zufallsvariablen 6
Bedingte Verteilungen
Wichtige diskrete Verteilungen
Allgemeine Zufallsvariablen
Grundbegriffe
Wichtige stetige Verteilungen
Gemeinsame Verteilungen und unabhängige Zufallsvari-
ablen
Funktionen und Transformationen von Zufallsvariablen . 10
Ungleichungen und Grenzwertsätze
Ungleichungen
Das Gesetz der grossen Zahlen
Der Zentrale Grenzwertsatz
Grosse Abweichungen und Chernoff-Schranken 11
Schätzer
Grundbegriffe

Die Maximum-Likelihood-Methode							12
Verteilungsaussagen							12
Tests							12

Wahrscheinlichkeiten

Grundbegriffe

Ereignisraum Ω : Menge aller möglichen elementaren Ereignissen.

Beispiel: Bei einem Würfelwurf sind die Elementarereignisse $\Omega =$ $\{1, 2, 3, 4, 5, 6\}.$

Potenzmenge $\mathcal{P}(\Omega)$ oder 2^{Ω} : Menge aller Teilmengen von Ω .

Klasse aller beobachtbaren Ereignisse $\mathcal{F}: \mathcal{F} \subseteq \mathcal{P}(\Omega)$ und \mathcal{F} ist eine σ -Algebra. Bei diskreten, d.h. endlichen bzw. abzählbaren Wahrscheinlichkeitsräumen wird $\mathcal{F} = \mathcal{P}(\Omega)$ gewählt.

 σ -Algebra: $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ ist eine σ -Algebra, wenn gilt:

- 1. $\Omega \in \mathcal{F}$
- $2. \ A \in \mathcal{F} \implies A^c \in \mathcal{F}$
- 3. $(A_n)_{n\in\mathbb{N}}, A_n\in\mathcal{F} \implies \bigcup_{n=1}^{\infty} A_n\in\mathcal{F}$

Beispiel: Jemand wirft einen Würfel und teilt uns mit, ob die gewürfelte Zahl gerade oder ungerade ist.

Wir könnten den Grundraum $\Omega_1 = \{G, U\}$ wählen mit G für gerade und U für ungerade. In diesem Fall wäre $\mathcal{F} = \{\emptyset, \Omega_1, \{G\}, \{U\}\}.$

Jedoch könnten wir auch den Grundraum $\Omega_2 = \{1, 2, 3, 4, 5, 6\}$ wählen. Dann wäre $\mathcal{F} = \{\emptyset, \Omega_2, \{2, 4, 6\}, \{1, 3, 5\}\} \neq \mathcal{P}(\Omega_2), da$ beispielsweise das prinzipielle Ereignis {1} nie beobachtbar ist.

Wahrscheinlichkeitsmass $P: \mathcal{F} \to [0,1]: P[A] \in \mathcal{F}] \in [0,1]$ ist die Wahrscheinlichkeit, dass A eintritt. Dabei muss gelten:

- 1. $\forall A \in \mathcal{F} : P[A] \ge 0$
- 2. $P[\Omega] = 1$
- 3. $P[\bigcup_{i=1}^{\infty} A_i] = \sum_{i=1}^{\infty} P[A_i]$, sofern die $A_i \in \mathcal{F}$ paarweise disjunkt sind.

Folgende Rechenregeln lassen sich herleiten:

- 1. $P[A^c] = 1 P[A]$ 2. $P[\emptyset] = 0$
- 3. Für $A \subseteq B$ gilt $P[A] \le P[B]$

4. Additions regel: $P[A \cup B] = P[A] + P[B] - P[A \cap B]$

Diskrete Wahrscheinlichkeitsräume

Bei diskreten, d.h. endlichen bzw. abzählbaren Wahrscheinlichkeitsräumen gilt $\mathcal{F} = \mathcal{P}(\Omega)$ und $P[A] = \sum_{w_i \in A} P[\{w_i\}].$

Laplace-Raum Ω ist endlich und ich alle Elementarereignisse $\Omega = \{w_1, \dots, w_N\}$ sind gleich wahrscheinlich mit $p_1 = \dots = p_N = \frac{1}{N}$.

Diskrete Gleichverteilung In einem Laplace-Raum gilt für beliebige $A \subseteq \Omega$: $P[A] = \frac{|A|}{|\Omega|}$.

Beispiel: Beim zweimaligen Münzwurf ist $\Omega = \{KK, KZ, ZK, ZZ\}$, also $|\Omega| = 4$ und damit $p_i = \frac{1}{4}$. Dann ist $P[\text{Mindestens einmal Kopf}] = P[\{KK, KZ, ZK\}] = \frac{3}{4}$.

Bedingte Wahrscheinlichkeiten

Bedingte Wahrscheinlichkeit Wahrscheinlichkeit, dass B eintritt, unter der Bedingung, dass A eintritt: $P[B \mid A] := \frac{P[B \cap A]}{P[A]}$.

Satz von der totalen Wahrscheinlichkeit (Satz 1.1) Sei A_1, \ldots, A_n eine Zerlegung von Ω in paarweise disjunkte Ereignisse, dann gilt für beliebiege Ereignisse $B: P[B] = \sum_{i=1}^{n} P[B \mid A_i] P[A_i]$.

Formel von Bayes (Satz 1.2) Ist A_1, \ldots, A_n eine Zerlegung von Ω mit $P[A_i] > 0$ und B ein Ereignis mit P[B] > 0, so gilt für jedes k: $P[A_k \mid B] = \frac{P[B|A_k]P[A_k]}{\sum\limits_{i=1}^{n} P[B|A_i]P[A_i]}.$

Unabhängigkeit

Stochastische Unabhängigkeit Zwei Ereignisse A, B heissen stochastisch unabhängig, falls $P[A \cap B] = P[A]P[B]$.

Allgemeiner: Zwei Ereignisse A, B heissen stochastisch unabhängig, wenn für jede endliche Teilfamile $\{k_1, \ldots, k_m\} \subseteq \{1, \ldots, n\}$ gilt, dass

$$P\left[\bigcap_{i=1}^{m} A_{k_i}\right] = \prod_{i=1}^{m} P[A_{k_i}].$$

Ist P[A] = 0 oder P[B] = 0, so sind A und B immer unabhängig.

Für $P[A] \neq 0$ gilt: A, B unabhängig $\iff P[B \mid A] = P[B]$.

Diskrete Zufallsvariablen und Verteilungen

Grundbegriffe

Diskrete Zufallsvariable Funktion $X : \Omega \to \mathbb{R}$, W(X): Wertebereich von X.

Indikatorfunktion Für jede Teilmente $A\subset\Omega$ gilt: $I_A(w):=\begin{cases} 1 & w\in A\\ 0 & w\in A^c \end{cases}$

Verteilungsfunktion $F_x : \mathbb{R} \to [0,1], F_X(t) := P[X \le t] = P[\{w \mid X(w) \le t\}].$

Gewichtsfunktion $p_x: W(X) \rightarrow [0,1], p_X(x_k) := P[X = x_k] = P[\{w \mid X(w) = x_k\}].$

Es gilt
$$F_X(t) = P[X \le t] = \sum_{x_k \le t} p_X(x_k)$$

Erwartungswerte

Erwartungswert $E[X] := \sum_{x_k \in W(X)} x_k p_X(x_k)$. Es gilt:

- 1. Monotonie: Ist $X \leq Y$ (d.h. $\forall w: X(w) \leq Y(w)$), so gilt auch $E[X] \leq E[Y]$
- 2. Linearität: E[aX + b] = aE[X] + b
- 3. Falls $X \ge 0$, so gilt $E[X] = \sum_{j=1}^{\infty} P[X \ge j]$

Varianz $Var[X] := E[(X - E[X])^2]$. Es gilt:

- 1. $Var[X] = E[X^2] (E[X])^2$
- 2. $\operatorname{Var}[aX + b] = a^2 \operatorname{Var}[X]$

Standardabweichung $\sigma(X) = \sqrt{\operatorname{Var}[X]}$.

Gemeinsame Verteilungen und unabhängige Zufallsvariablen

Gemeinsame Verteilungsfunktion
$$F: \mathbb{R}^n \to [0,1],$$
 $F(x_1,\ldots,x_n):=P[X_1\leq x_1,\ldots,X_n\leq x_n]$

Gemeinsame Gewichtsfunktion $p: \mathbb{R}^n \to [0,1], p(x_1,\ldots,x_n) := P[X_1 = x_1,\ldots,X_n = x_n]$

$$F(x_1, ..., x_n) = P[X_1 \le x_1, ..., X_n \le x_n] = \sum_{y_1 \le x_1, ..., y_n \le x_n} P[X_1 = y_1, ..., X_n = y_n] = \sum_{y_1 \le x_1, ..., y_n \le x_n} p(y_1, ..., y_n)$$

Randverteilung Verteilungsfunktion der Randverteilung von X: $F_X(x) := P[X \le x] = P[X \le x, Y < \infty] = \lim_{y \to \infty} F(x, y)$

Gewichtsfunktion der Randverteilung von X: $p_X(x) := P[X = x] = \sum_{y_j \in W(Y)} P[X = x, Y = y_j] = \sum_{y_j \in W(Y)} p(x, y_j)$

Unabhängigkeit X_1, \ldots, X_n heissen unabhängig, falls $F(x_1, \ldots, x_n) = F_{X_1}(x_1) \cdots F_{X_n}(x_n)$ beziehungsweise $p(x_1, \ldots, x_n) = p_{X_1}(x_1) \cdots p_{X_n}(x_n)$.

Funktionen von mehreren Zufallsvariablen

Linearität (Satz 2.4) Seien X_1, \ldots, X_n diskrete Zufallsvariablen mit endlichen Erwartungswerten. Sei $Y = a + \sum_{l=1}^{n} b_l X_l$ mit Konstanten

$$a, b_1, \dots, b_n$$
. Dann gilt $E[Y] = a + \sum_{l=1}^{n} b_l E[X_l]$.

Kovarianz $Cov(X_1, X_2) := E[X_1X_2] - E[X_1]E[X_2]$ Cov(X, X) = Var[X]

Unkorreliertheit X_1 und X_2 sind unkorreliert, wenn gilt $Cov(X_1, X_2) = 0$.

Produkte von Zufallsvariablen (Satz 2.5) Seien X_1, \ldots, X_n diskrete Zufallsvariablen mit endlichen Erwartungswerten. Falls X_1, \ldots, X_n unabhängig sind, so gilt: $E\left[\prod_{i=1}^n X_i\right] = \prod_{i=1}^n E[X_i]$. Ausserdem sind dann X_1, \ldots, X_n unkorreliert und es gilt: $\operatorname{Var}\left[\prod_{i=1}^n X_i\right] = \prod_{i=1}^n \operatorname{Var}[X_i]$.

Bedingte Verteilungen

Bedingte Gewichtsfunktion Seien X and Y diskrete Zufallsvariablen mit gemeinsamer Gewichtsfunktion p(x,y). Die bedingte Gewichtsfunktion von X, gegeben dass Y=y, is te definiert durch $p_{X|Y}(x\mid y):=P[X=x\mid Y=y]=\frac{P[X=x,Y=y]}{P[Y=y]}=\frac{p(x,y)}{p_Y(y)}$ für $p_Y(y)>0$ und 0 sonst.

Wichtige diskrete Verteilungen

		Gewichtsfunktion						
		$p_X(k) =$	Erwartungswer Varianz					
Verteilung	Kurz	P[X = k]	E[X]	$\operatorname{Var}[X]$				
Diskrete		$\frac{1}{N}$						
Gleichverteilu	ng	1 V						
Bernoulli-	$X \sim \mathrm{Be}(p)$	$p^k(1-p)^{1-k}$	p	p(1 - p)				
Verteilung								
Binomialverte	il¥mg∼	$\binom{n}{k} p^k (1 - p)^{n-k}$	np	np(1-p)				
	Bin(n, p)	$p)^{n-k}$						
Geometrische	$X \sim$	$p(1-p)^{k-1}$	$\frac{1}{n}$	$\frac{1-p}{p^2}$				
Verteilung	Geom(p)		P	P				
Negativbinom	ia X e∼	$\binom{k-1}{r-1} p^r (1-1)$	$\frac{r}{m}$	$\frac{r(1-p)}{p^2}$				
Verteilung	NB(r, p)	$(p)^{k-r}$	P	P				
Hypergeometr	rische	$\frac{\binom{r}{k}\binom{n-r}{m-k}}{\binom{n}{k}}$						
Verteilung	ische	$\binom{n}{m}$						
0	$V \rightarrow \mathcal{D}(1)$	$e^{-\lambda \frac{\lambda^k}{k!}}$	1	1				
Poisson-	$X \sim \mathcal{P}(\lambda)$	$e^{-\frac{1}{k!}}$	λ	λ				
Verteilung								

Allgemeine Zufallsvariablen

${\bf Grundbegriffe}$

	Diskrete	Allgemeine
	Zufallsvariablen	Zufallsvariablen
Zufallsvariable		
Verteilungsfunktion	$F_X : \mathbb{R} \to [0, 1]$ $F_X(t) := P[X \le t] := P[\{w \mid X(w) \le t\}] = \sum_{x_k \le t} p_X(x_k)$	$F_X : \mathbb{R} \to [0, 1]$ $F_X(t) := P[X \le t] := P[\{w \mid X(w) \le t\}] = \int_t^t f_X(s) ds$
Comoingama		
Gemeinsame Verteilungsfunktion	$F: \mathbb{R}^n \to [0,1]$ $F(x_1,\ldots,x_n) =$	$F: \mathbb{R}^n o [0,1]$ $F(x_1, \dots, x_n) = P[X_1 <]$
vertenungstunktion	$P(x_1, \dots, x_n) = P[X_1 <$	$P[X_1 < P]$
	$x_1, \dots, x_n < x_n = $	$P[X_1 \le x_1, \dots, X_n \le x_n] = x_1, \dots, x_n \le x_n = x_n$ $y_n = x_n f(t_1, \dots, t_n) dt_n \cdots dt_n$
	$\sum_{i=1}^{n} p(y_1, \dots$	$y_{nd}^{x_1}$ $y_{nd}^{x_n}$ $y_{nd}^{x_n}$
	$y_1 \leq x_1, \dots, y_n \leq x_n$	$f(t_1,\ldots,t_n)dt_n\cdots dt_n$
Monoton wachsend	$\forall s \le t : F_X(s) \le F_X(t)$	Analog
Rechtsstetig	$\forall u > t, u \to t$:	Analog
-	$F_X(u) \to F_X(t)$	-
	$\lim_{t \to \infty} F_X(t) = 1,$	Analog
	$\lim_{t \to -\infty} F_X(t) = 0$	
Verteilung	$\mu_X(B) := P[X \in$	$\mu_X(B) := P[X \in$
vertending		
	$B] = \sum_{x_k \in B} p_X(x_k)$	
Gewichtsfunktion,	$p_X(x_k) := P[X =$	$f_X(t) = \frac{d}{dt} F_X(t)$
Dichtefunktion	$[x_k] = P[\{w \mid y\}]$	
	$X(w) = x_k\}]$	f > 0 f 0
		$f_X \ge 0, f_X = 0$ ausserhalb von
		W(X)
		$f(x_1,\ldots,x_n)\geq 0,$
		$f(x_1, \dots, x_n) = 0$
		ausserhalb von
		$W(X_1, \dots, X_n)$ $\int_{-\infty}^{\infty} f_X(s) ds = 1$
		$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(s)us = 1$

	Diskrete	Allgemeine
	Zufallsvariablen	Zufallsvariablen
		$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_n) dx_n \cdots dx_1$
Erwartungswert	$E[X] = \sum_{-\infty}^{\infty} x f(x) dx$	$E[X] = \int_{-\infty}^{\infty} x f(x) dx$
Varianz	$Var(X) = E[X^2] - E[X]^2$	Analog

Wichtige stetige Verteilungen

Verteilung Kurz	Wertebere $W(X)$		$F_X(t)$	E[X]	$ \frac{\operatorname{ngs} \mathbf{Wert} \operatorname{anz}}{\operatorname{Var}[X]} $
Gleichvertei K ing $\mathcal{U}(a,b)$	[a,b]	$\begin{cases} \frac{1}{b-a} \\ 0 \end{cases}$	$a \le t \le b$ $sonst 1$	$t < a$ $a \le \frac{a + b}{2} \le b$ $t > b$ $-\lambda t t \ge 0$ $t < 0$	
Exponential X erteilung $Exp(\lambda)$	$[0,\infty)$	$\begin{cases} \lambda e^{-\lambda t} \\ 0 \end{cases}$	$t \ge 10 - e^{t}$ $t < 00$	$t \ge 0$ $t < 0$	
Normalvertexlusag $\mathcal{N}(\lambda,\sigma^2)$	\mathbb{R}	$\frac{1}{\sigma\sqrt{2\pi}}$ ex	$\exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right)$	μ	σ^2

Standard-Normalverteilung Für die Standard-Normalverteilung $\mathcal{N}(0,1)$ gilt $F_X(t) = \Phi(t)$.

Ist
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, so ist $\frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$.
$$\underline{\underline{t \quad \Phi(t)}}$$

TODO: Tabelle

Abhängige Zufallsvariablen (Satz 4.1) Sei X eine Zufallsvariable und Y=g(X) eine weitere Zufallsvarable. Ist X stetig mit

Dichte
$$f_X(x)$$
, so ist $E[Y] = E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$.

Gemeinsame Verteilungen und unabhängige Zufallsvariablen Funktionen und Transformationen von Zufallsvariablen

Ungleichungen und Grenzwertsätze

Ungleichungen

Markov-Ungleichung Sei X eine Zufallsvariable und $g:W(X)->[0,\infty)$ eine wachsende Funktion. Dann gilt für jedes $c\in\mathbb{R}$ mit g(c)>0: $F[X\geq c]\leq \frac{E[g(X)]}{g(c)}$.

Chebyshev-Ungleichung Sei Y eine Zufallsvariable mit endlicher Varianz. Für jedes b > 0 gilt dann:

$$P[|Y - E[Y]| \ge b] \le \frac{Var[Y]}{b^2}$$

Das Gesetz der grossen Zahlen

Schwaches Gesetz der grossen Zahlen Sei X_1, X_2, \ldots eine Folge von unabhängigen Zufallsvariablen mit dem gleichen Erwartungswert $E[X_i] = \mu$ und der gleichen Varianz $\operatorname{Var}[X_i] = \sigma^2$. Sei $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Dann konvergiert \overline{X}_n für $n \to \infty$ stochastisch gegen $\mu = E[X_i]$, d.h.:

$$\forall \epsilon > 0 : P[|\bar{X}_n - \mu| > \varepsilon] \xrightarrow{n \to \infty} 0$$

Beweis mit Chebyshev-Ungleichung.

Starkes Gesetz der grossen Zahlen Sei X_1, X_2, \ldots eine Folge von unabhängigen Zufallsvariablen mit dem gleichen endlichen Erwartungswert $E[X_i] = \mu$ und der gleichen Verteilung. Sei $\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$. Dann konvergiert \overline{X}_n für $n \to \infty$ fastsicher gegen $\mu = E[X_i]$, d.h.:

$$P[\{\omega \in \Omega \mid \bar{X}_n(\omega) \xrightarrow{n \to \infty} \mu\}] = 1$$

Der Zentrale Grenzwertsatz

Sei X_1, X_2, \ldots eine Folge von Zufallsvariablen mit $E[X_i] = \mu$ und $\operatorname{Var}[X_i] = \sigma^2$. Für die Summe $S_n = \sum_{i=1}^n X_i$ gilt dann $\lim_{n \to \infty} P[\frac{S_n - n\mu}{\sigma \sqrt{n}} \le x] = \Phi(x)$ für alle $x \in \mathbb{R}$.

 S_n hat den Erwartungswert $E[S_n]=n\mu$ und Varianz Var $[S_n]=n\sigma^2.$ Also ist $S_n^*=\frac{S_n-n\mu}{\sigma\sqrt{n}}=\frac{S_n-E[S_n]}{\sqrt{\mathrm{Var}[S_n]}}$ die Standartisierung von S_n mit $E[S_n^*]=0$ und Var $[S_n]=1.$

Deshalb gilt $P[S_n^* \leq x] \approx \Phi(x), S_n^* \sim \mathcal{N}(0,1)$ für grosse n.

Grosse Abweichungen und Chernoff-Schranken

TODO: Ist dieses Kapitel Prüfunsrelevant?

Momenterzeugende Funktion Die momenterzeugende Funktion einer Zufallsvariable X ist $M_X(t) := E[e^{tX}]$ für $t \in \mathbb{R}$.

(Satz 5.6)

Schätzer

Grundbegriffe

Stichprobe Gesamtheit der Beobachungen x_1, \ldots, x_n oder Zufallsvariablen X_1, \ldots, X_n . Die Anzahl n heisst Stichprobenanzahl.

Stochastischer Mechanismus P_{ϑ} ist ein konkreter stochastischer Mechanismus, der besagt, wie sich X_1, \ldots, X_n verhalten. Dabei wird der Parameter ϑ zu bestimmen versucht.

Schätzer Die Schätzer T_1, \ldots, T_m schätzen die Parameter $\vartheta_1, \ldots, \vartheta_m$. Sie sind Zufallsvariablen mit der Form $T_j = t_j(X_1, \ldots, X_n)$.

Schätzwert $T_j(\omega) = t_j(X_1(\omega), \dots, X_n(\omega))$ eines konkreten Experiments ω .

Erwartungstreuheit Ein Schätzer T heisst erwartungstreu für $\vartheta \in \Theta$, falls gilt $E_{\vartheta}[T] = \vartheta$

Bias $E_{\vartheta}[T] - \vartheta$

Mittlerer quardratischer Schätzfehler
$$MSE_{\vartheta}[T] := E_{\vartheta}[(T - \vartheta)^2]$$

= $Var_{\vartheta}[T] + (E_{\vartheta}[T] - \vartheta)^2$

Konsistenz Eine Folge von Schätzern $T^{(n)}$ heisst konsistent für ϑ , falls für jedes $\vartheta \in \Theta$ und jedes $\varepsilon > 0$ gilt: $\lim_{n \to \infty} P_{\vartheta}[|T^{(n)} - \vartheta| > \varepsilon] = 0$. Beweisen mit Chebychev-Ungleichung.

Die Maximum-Likelihood-Methode

Likelihood-Funktion
$$L(x_1, \ldots, x_n; \vartheta) := \begin{cases} p(x_1, \ldots, x_n; \vartheta) & \text{Im diskreten Fall} \\ f(x_1, \ldots, x_n; \vartheta) & \text{Im stetigen Fall} \end{cases}$$

ML-Schätzer Der ML-Schätzer T für ϑ wird definiert als Maximierung von $L(X_1, \ldots, X_n; \vartheta)$ als Funktion von ϑ .

Momentenschätzer ML-Schätzer für
$$\vartheta = (\mu, \sigma^2)$$
 ist $T = (T_1, T_2)$ mit $T_1 = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X}_n$ und $T_2 = \frac{1}{n} \sum_{i=1}^n n(X_i - \overline{X}_n)^2 = \sum_{i=1}^n nX_i^2 - \overline{X}_n^2$

Verteilungsaussagen

Mehrere Normalverteilte Variablen (Satz 7.1) Seien $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$. Dann gilt:

- 1. \overline{X}_n ist normalverteilt gemäss $\sim \mathcal{N}(\mu, \frac{1}{n}\sigma^2)$, und $\frac{\overline{X}_n \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$.
- 2. $\frac{n-1}{\sigma^2}S^2 = \frac{1}{\sigma^2}\sum_{i=1}^n (X_i \overline{X}_n)^2$ ist \mathcal{X}^2 -verteilt mit n-1 Freiheitsgraden.
- 3. \overline{X}_n und S^2 sind unabhänging.
- 4.

Tests