MLP-Mixer: An all-MLP Architecture for Vision¹

Докладчик - Коля Карташев, 181 Рецензент - Артём Щербинин, 181 Практик-исследователь - Алексей Цеховой, 181

¹ https://arxiv.org/abs/2105.01601

MLP-Mixer: идея

Цель: Достичь близких к SoTA результатов, используя только MLP в архитектуре модели.

План: Предобучать на огромных наборах данных, использовать современные методы регуляризации/

MLP-Mixer: архитектура

"Mixer" слой

MLP слой: линейный + GeLU + линейный

Цели Сверточной Нейронной Сети

- Скомпозировать разные признаки в одной локации
- 2. Скомпозировать информацию из разных локаций

CNN выполняет обе задачи одновременно
Mixer Layer выполняет каждую задачу поочередно

Конфигурации модели

Конфигурации	S32	S16	B32	B16	L32	L16	H14
№ Слоев	8	8	12	12	24	24	32
Размер патча	32×32	16×16	32×32	16×16	32×32	16×16	14×14
№ Каналов	512	512	768	768	1024	1024	1280
№ Патчей	49	196	49	196	49	196	256
Hid _s	256	256	384	384	512	512	640
Hid _c	2048	2048	3072	3072	4096	4096	5120
Параметры (M)	19	18	60	59	206	207	431

Результаты экспериментов

	ImNet top-1	ReaL top-1	Avg 5 top-1	VTAB-1k 19 tasks	Throughput img/sec/core	TPUv3 core-days			
Pre-trained on ImageNet-21k (public)									
• HaloNet [51]	85.8		_	·—	120	0.10k			
Mixer-L/16	84.15	87.86	93.91	74.95	105	0.41k			
• ViT-L/16 [14]	85.30	88.62	94.39	72.72	32	0.18k			
BiT-R152x4 [22]	85.39		94.04	70.64	26	0.94k			
Pre-trained on JFT-300M (proprietary)									
NFNet-F4+ [7]	89.2		4-	·	46	1.86k			
Mixer-H/14	87.94	90.18	95.71	75.33	40	1.01k			
BiT-R152x4 [22]	87.54	90.54	95.33	76.29	26	9.90k			
• ViT-H/14 [14]	88.55	90.72	95.97	77.63	15	2.30k			
Pre-trained on unlabelled or weakly labelled data (proprietary)									
• MPL [34]	90.0	91.12	_	7 <u>1</u>	<u> </u>	20.48k			
• ALIGN [21]	88.64	-	-	79.99	15	14.82k			

Влияние размера датасета на качество

Влияние конфигурации модели на качество

Mixer - чем меньше, тем хуже по сравнению с аналогичными в размере моделями

	Image size	Pre-Train Epochs	ImNet top-1	ReaL top-1		Throughput (img/sec/core)	TPUv3 core-days
\$ 	Pre-tr	ained on Ima	geNet (wi	ith extra 1	egulariz	ation)	
• Mixer-B/16	224	300	76.44	82.36	88.33	1384	0.01k ^(‡)
• ViT-B/16 (全)	224	300	79.67	84.97	90.79	861	0.02k(‡)
Mixer-L/16	224	300	71.76	77.08	87.25	419	$0.04k^{(\ddagger)}$
• ViT-L/16 (金)	224	300	76.11	80.93	89.66	280	$0.05k^{(\ddagger)}$
	Pre-train	ned on Image	Net-21k (with extr	a regular	rization)	
• Mixer-B/16	224	300	80.64	85.80	92.50	1384	0.15k ^(‡)
• ViT-B/16 (全)	224	300	84.59	88.93	94.16	861	$0.18k^{(\ddagger)}$
Mixer-L/16	224	300	82.89	87.54	93.63	419	0.41k(‡)
• ViT-L/16 (含)	224	300	84.46	88.35	94.49	280	0.55k(‡)
• Mixer-L/16	448	300	83.91	87.75	93.86	105	0.41k ^(‡)
		Pre-tr	ained on .	JFT-300N	1		
• Mixer-S/32	224	5	68.70	75.83	87.13	11489	0.01k
Mixer-B/32	224	7	75.53	81.94	90.99	4208	0.05k
Mixer-S/16	224	5	73.83	80.60	89.50	3994	0.03k
BiT-R50x1	224	7	73.69	81.92	_	2159	0.08k
Mixer-B/16	224	7	80.00	85.56	92.60	1384	0.08k
Mixer-L/32	224	7	80.67	85.62	93.24	1314	0.12k
BiT-R152x1	224	7	79.12	86.12	_	932	0.14k
BiT-R50x2	224	7	78.92	86.06	_	890	0.14k
BiT-R152x2	224	14	83.34	88.90	_	356	0.58k
Mixer-L/16	224	7	84.05	88.14	94.51	419	0.23k
Mixer-L/16	224	14	84.82	88.48	94.77	419	0.45k
 ViT-L/16 	224	14	85.63	89.16	95.21	280	0.65k
Mixer-H/14	224	14	86.32	89.14	95.49	194	1.01k
BiT-R200x3	224	14	84.73	89.58	_	141	1.78k
Mixer-L/16	448	14	86.78	89.72	95.13	105	0.45k
• ViT-H/14	224	14	86.65	89.56	95.57	87	2.30k
 ViT-L/16 [14] 	512	14	87.76	90.54	95.63	32	0.65k

Инвариантность к пиксельным перестановкам

Figure 4: **Top:** Input examples from ImageNet before permuting the contents (left); after shuffling the 16×16 patches and pixels within the patches (center); after shuffling pixels globally (right). **Bottom:** Mixer-B/16 (left) and ResNet50x1 (right) trained with three corresponding input pipelines.

Выводы

- 1) Авторы придумали архитектуру, не подходящую ни под один из двух существующих архетипов
- 2) Достигнутые результаты совсем немного, но ощутимо отстают от текущего state-of-the-art

Направления развития исследования

- 1) Теоретический анализ обучаемых представлений в MLP-Mixer.
- 2) Большее количество статей посвященным нестандартным архитектурам.

Рецензия

- 1) 4 различных набора данных
- 2) SOTA модели convolution-based и attention-based
- 3) Дополнительные исследования помимо качества
- 4) Рассмотрены различные метрики и параметры для разных моделей
- 5) Визуализированы сравнения и некоторые веса
- 6) Спецификация описана
- 7) Помимо github в конце статьи есть полноценный код на Jax

Сравнения с первой версией на arxiv

- 1) Рассмотрен ещё один набор данных JFT-3B
- Проведено исследование на инвариантность моделей при перемешивании пикселей.

Контекст работы

- 1) Google Brain, основной вклад от I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer
- 2) N. Houlsby, A. Kolesnikov, L. Beyer в числе авторов архитектуры ViT² (#2 на ImageNet, отказ от сверток)

² A. Dosovitskiy, et al. - "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", 2021.

Контекст работы

- 3) Архитектурные решения под влиянием сверточных сетей³ и трансформеров⁴
- 4) Частный случай вариации Synthesizer⁵; Схожести с самими свертками при некоторых параметрах

³ A. Krizhevsky, et al. - "ImageNet Classification with Deep Convolutional Neural Networks", 2012.

⁴ A. Vaswani, et al. - "Attention Is All You Need", 2017.

⁵ Y. Tay, et al. - "Synthesizer: Rethinking Self-Attention in Transformer Models", 2021.

Контекст работы

- 5) Другие задачи зрения или меньшие задачи распознавания не рассмотрены
- б) Хороший компромисс качествапроизводительности, массовый продукт