CMPT 210: Probability and Computing

Lecture 14

Sharan Vaswani

October 29, 2024

Recap

• Random variable: A random "variable" R on a probability space is a total function whose domain is the sample space S. The codomain is denoted by V (usually a subset of the real numbers), meaning that $R: S \to V$. A r.v partitions the sample space into several blocks.

Example: Suppose we toss three independent, unbiased coins. In this case, $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$. C is a random variable equal to the number of heads that appear such that $C: S \to \{0, 1, 2, 3\}$. C(HHT) = 2.

• For r.v. R, for all $i \in \text{Range}(R)$, the event $[R = i] = \{\omega \in \mathcal{S} | R(\omega) = i\}$. For any r.v. R, $\sum_{i \in \text{Range}(R)} \Pr[R = i] = 1$.

Example:
$$[C = 2] = \{HHT, HTH, THH\}$$
 and $Pr[C = 2] = \frac{3}{8}$.
 $\sum_{i \in Range(C)} Pr[C = i] = Pr[C = 0] + Pr[C = 1] + Pr[C = 2] + Pr[C = 3] = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1$.

1

Recap

• Indicator Random Variable: An indicator random variable corresponding to an event E is denoted as \mathcal{I}_E and is defined such that for $\omega \in E$, $\mathcal{I}_E[\omega] = 1$ and for $\omega \notin E$, $\mathcal{I}_E[\omega] = 0$.

Example: When throwing two dice, if E is the event that both throws of the dice result in a prime number, then $\mathcal{I}_E((2,4)) = 0$ and $\mathcal{I}_E((2,3)) = 1$.

- Probability density function (PDF): Let R be a r.v. with codomain V. The probability density function of R is the function $PDF_R: V \to [0,1]$, such that $PDF_R[x] = Pr[R = x]$ if $x \in Range(R)$ and equal to zero if $x \notin Range(R)$.
- Cumulative distribution function (CDF): The cumulative distribution function of R is the function $CDF_R : \mathbb{R} \to [0,1]$, such that $CDF_R[x] = Pr[R \le x]$.

Importantly, neither PDF_R nor CDF_R involves the sample space of an experiment.

Example: If we flip three coins, and C counts the number of heads, then $PDF_C[0] = Pr[C=0] = \frac{1}{8}$, and $CDF_C[2.3] = Pr[C \le 2.3] = Pr[C=0] + Pr[C=1] + Pr[C=2] = \frac{7}{8}$.

Distributions

Many random variables turn out to have the same PDF and CDF. In other words, even though R and T might be different random variables on different probability spaces, it is often the case that PDF $_R = \text{PDF}_T$. Hence, by studying the properties of such PDFs, we can study different random variables and experiments.

- **Distribution** over a random variable can be fully specified using the cumulative distribution function (CDF) (usually denoted by F). The corresponding probability density function (PDF) is denoted by f.
- Common Discrete Distributions in Computer Science:
 - Bernoulli Distribution
 - Uniform Distribution
 - Binomial Distribution
 - Geometric Distribution

Bernoulli Distribution

Canonical Example: We toss a biased coin such that the probability of getting a heads is p. Let R be the random variable such that R=1 when the coin comes up heads and R=0 if the coin comes up tails. R follows the Bernoulli distribution.

PDF_R for Bernoulli distribution: $f: \{0,1\} \to [0,1]$ meaning that Bernoulli random variables take values in $\{0,1\}$. It can be fully specified by the "probability of success" (of an experiment) p (probability of getting a heads in the example). Formally, PDF_R is given by:

$$f(1) = p$$
 ; $f(0) = q := 1 - p$.

In the example, Pr[R = 1] = f(1) = p = Pr[event that we get a heads].

 CDF_R for Bernoulli distribution: $F: \mathbb{R} \to [0,1]$:

$$F(x) = 0$$
 (for $x < 0$)
= 1 - p (for $0 \le x < 1$)
= 1 (for $x \ge 1$)

Uniform Distribution

Canonical Example: We roll a standard die. Let R be the random variable equal to the number that shows up on the die. R follows the uniform distribution.

A random variable R that takes on each possible value in its codomain V with the same probability is said to be uniform.

PDF_R for Uniform distribution: $f: V \to [0,1]$ such that for all $v \in V$, f(v) = 1/|v|. In the example, $f(1) = f(2) = \ldots = f(6) = \frac{1}{6}$.

 CDF_R for Uniform distribution: For n elements in V arranged in increasing order – (v_1, v_2, \ldots, v_n) , the CDF is:

$$F(x) = 0$$
 (for $x < v_1$)
 $= k/n$ (for $v_k \le x < v_{k+1}$)
 $= 1$ (for $x \ge v_n$)

Q: If X has a Bernoulli distribution, when is X also uniform? Ans: When p = 1/2

Binomial Distribution

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.

PDF_R for Binomial distribution:
$$f: \{0, 1, 2, ..., n\} \rightarrow [0, 1]$$
. For $k \in \{0, 1, ..., n\}$, $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Proof: Let E_k be the event we get k heads. Let A_i be the event we get a heads in toss i.

$$\begin{split} E_k &= (A_1 \cap A_2 \dots A_k \cap A_{k+1}^c \cap A_{k+2}^c \cap \dots \cap A_n^c) \cup (A_1^c \cap A_2 \dots A_k \cap A_{k+1} \cap A_{k+2}^c \cap \dots \cap A_n^c) \cup \dots \\ \Pr[E_k] &= \Pr[(A_1 \cap A_2 \dots A_k \cap A_{k+1}^c \cap A_{k+2}^c \cap \dots \cap A_n^c)] + \Pr[A_1^c \cap A_2 \dots A_k \cap A_{k+1} \cap \dots \cap] + \dots \\ &= \Pr[A_1] \Pr[A_2] \Pr[A_k] \Pr[A_{k+1}^c] \Pr[A_{k+2}^c] \dots \Pr[A_n^c] + \dots & \text{(Independence of tosses)} \\ &= p^k (1-p)^{n-k} + p^k (1-p)^{n-k} + \dots \\ &\Longrightarrow \Pr[E_k] &= \binom{n}{k} p^k (1-p)^{n-k} \end{split}$$

(Number of terms = number of ways to choose the k tosses that result in heads = $\binom{n}{k}$)

6

Binomial Distribution

For the Binomial distribution, $PDF_R(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Q: Prove that $\sum_{k \in \text{Range}(R)} \text{PDF}_R[k] = 1$.

By the Binomial Theorem, $\sum_{k \in \text{Range}(R)} \text{PDF}_R[k] = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} = (p+1-p)^n = 1.$

 CDF_R for Binomial distribution: $F: \mathbb{R} \to [0,1]$:

$$F(x) = 0$$

$$= \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}$$

$$= 1.$$
(for $k \le x < k+1$)
(for $x \ge n$)

Geometric Distribution

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p. Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.

PDF_R for Geometric distribution:
$$f: \{1, 2, ...\} \rightarrow [0, 1]$$
. For $k \in \{1, 2, ..., \infty\}$, $f(k) = (1 - p)^{k-1} p$.

Proof: Let E_k be the event that we need k tosses to get the first heads. Let A_i be the event that we get a heads in toss i.

$$\begin{split} E_k &= A_1^c \cap A_2^c \cap \ldots \cap A_k \\ \Pr[E_k] &= \Pr[A_1^c \cap A_2^c \cap \ldots \cap A_k] = \Pr[A_1^c] \Pr[A_2^c] \ldots \Pr[A_k] \quad \text{(Independence of tosses)} \\ &\Longrightarrow \Pr[E_k] = (1-p)^{k-1} p \end{split}$$

Q: Prove that $\sum_{k \in \mathsf{Range}(\mathsf{R})} \mathsf{PDF}_R[k] = 1$. By the sum of geometric series, $\sum_{k \in \mathsf{Range}(R)} \mathsf{PDF}_R[k] = \sum_{k=1}^\infty (1-p)^{k-1} p = \frac{p}{1-(1-p)} = 1$.

Geometric Distribution

For the Geometric distribution, $PDF_R(k) = (1 - p)^{k-1}p$.

 CDF_R for Geometric distribution: $F: \mathbb{R} \to [0,1]$:

$$F(x) = 0$$

$$= \sum_{i=1}^{k} (1 - p)^{i-1} p$$

(for
$$x < 1$$
)

(for
$$k \le x < k + 1$$
)

Distributions - Examples

Q: It is known that disks produced by a certain company will be defective with probability 0.01 independently of each other. The company sells the disks in packages of 10 and offers a money-back guarantee that at most 1 of the 10 disks is defective (the package can be returned if there is more than 1 defective disk). What proportion of packages is returned?

Let X be the random variable corresponding to the number of defective disks in a package. Let E be the event that the package is returned. We wish to compute $\Pr[E] = \Pr[X > 1]$. X follows the Binomial distribution Bin(10,0.01). Hence,

$$Pr[E] = Pr[X > 1] = 1 - Pr[X \le 1] = 1 - Pr[X = 0] - Pr[X = 1]$$
$$= 1 - {10 \choose 0} (0.99)^{10} - {10 \choose 1} (0.99)^{9} (0.01)^{1} \approx 0.05$$