Markov chain Monte Carlo simple example

Jonathan Williams

Mayo Clinic

University of North Carolina at Chapel Hill

williams.jonathan1@mayo.edu jpwill@live.unc.edu

March 19, 2018

MCMC Example (Metropolis-Hastings)

Suppose $x_1, \ldots, x_n \stackrel{\text{iid}}{\sim} \mathsf{Exp}(\lambda)$. Then the likelihood function of the data is

$$I(x_1,\ldots,x_n|\lambda)=\prod_{i=1}^n\lambda e^{-\lambda x_i}.$$

Assume the prior density $\pi(\lambda) := \text{Gamma}(\lambda|a,b)$.

The posterior density is then given by

$$\pi(\lambda|x_1,\ldots,x_n) = \frac{I(x_1,\ldots,x_n|\lambda) \cdot \pi(\lambda)}{\int I(x_1,\ldots,x_n|\lambda) \cdot \pi(\lambda) \ d\lambda} \propto \underbrace{I(x_1,\ldots,x_n|\lambda) \cdot \pi(\lambda)}_{=: f(\lambda)}.$$

Outline of a random walk Metropolis-Hastings algorithm:

Step 1. Given current $\lambda^{(t)}$, propose a new $\lambda^* \sim N(\cdot | \lambda^{(t)}, \sigma^2)$

Step 2. Set

$$\lambda^{(t+1)} = \begin{cases} \lambda^* & \text{w.p. } \rho(\lambda^*, \lambda^{(t)}) \\ \lambda^{(t)} & \text{w.p. } 1 - \rho(\lambda^*, \lambda^{(t)}) \end{cases}$$

where

$$\rho(\lambda^{\star}, \lambda^{(t)}) = \min \left\{ \frac{\pi(\lambda^{\star}|x_1, \dots, x_n) \cdot \mathsf{N}(\lambda^{(t)}|\lambda^{\star}, \sigma^2)}{\pi(\lambda^{(t)}|x_1, \dots, x_n) \cdot \mathsf{N}(\lambda^{\star}|\lambda^{(t)}, \sigma^2)}, 1 \right\}$$
$$= \min \left\{ \frac{f(\lambda^{\star})}{f(\lambda^{(t)})}, 1 \right\}.$$

This is called the Metropolis-Hastings acceptance ratio.

Current
$$\lambda=1$$

Proposed λ ($\sim 1+N(0,0.5^2)$) = 0.7613
MH Ratio = $1e-78$
Coin-flip ($\sim U(0,1)$) = 0.2788 \Longrightarrow Reject

Current
$$\lambda=1$$

Proposed $\lambda~(\sim 1+{\sf N}(0,0.5^2))=2.0667$
MH Ratio $=4e+134$
Coin-flip $(\sim {\sf U}(0,1))=0.5027 \implies {\sf Accept}$

Current
$$\lambda = 2.0667$$

Proposed $\lambda \ (\sim 2.0667 + \text{N}(0, 0.5^2)) = 2.2337$
MH Ratio = $3e + 05$
Coin-flip $(\sim \text{U}(0, 1)) = 0.3707 \implies \text{Accept}$

Current
$$\lambda = 2.2337$$

Proposed $\lambda \ (\sim 2.2337 + \text{N}(0, 0.5^2)) = 2.7115$
MH Ratio = 1964
Coin-flip $(\sim \text{U}(0, 1)) = 0.2875 \implies \text{Accept}$

Current
$$\lambda = 2.7115$$

Proposed $\lambda \ (\sim 2.7115 + \text{N}(0, 0.5^2)) = 2.9276$
MH Ratio = 0.0005
Coin-flip $(\sim \text{U}(0, 1)) = 0.1298 \implies \text{Reject}$

Current
$$\lambda = 2.7115$$

Proposed $\lambda \ (\sim 2.7115 + \text{N}(0, 0.5^2)) = 2.3685$
MH Ratio = 0.2142
Coin-flip $(\sim \text{U}(0, 1)) = 0.1653 \implies \text{Accept}$

Current
$$\lambda=2.3685$$

Proposed $\lambda~(\sim 2.3685+N(0,0.5^2))=2.5939$
MH Ratio $=21$
Coin-flip $(\sim U(0,1))=0.0457 \implies Accept$

Current
$$\lambda = 2.5939$$

Proposed $\lambda \ (\sim 2.5939 + N(0, 0.5^2)) = 2.0695$
MH Ratio = $5e - 10$
Coin-flip $(\sim U(0, 1)) = 0.8348 \implies \text{Reject}$

Current
$$\lambda = 2.5939$$

Proposed $\lambda \ (\sim 2.5939 + \text{N}(0, 0.5^2)) = 2.0542$
MH Ratio = $1e - 10$
Coin-flip $(\sim \text{U}(0, 1)) = 0.3117 \implies \text{Reject}$

The End