

CRITÉRIOS DE CLASSIFICAÇÃO Ficha de preparação para o exame de 12º ano - Matemática A

1	S
(B)	
2	os
Este item pode ser resolvido por, pelo menos, dois processos. 1º Processo	
Identificar $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{4}$ e $P(A \mid B) = \frac{1}{2}$ (sendo A – aluno da escola	
que se desloca de autocarro e B – aluno da escola $$ que	
habita a menos de dez quilómetros da escola) 3 pontos	
Reconhecer que o valor pedido é $P(\overline{A} \cap \overline{B})$	
Reconhecer que $P(\overline{A} \cap \overline{B}) = 1 - P(A) - P(B) + P(A B) \times P(B)$	
Obter $Pig(\overline{A} \cap \overline{B}ig)$ 4 pontos	
Apresentar o valor pedido (37,5%) 1 ponto	
2º Processo	
Contruir uma tabela de dupla entrada cujas entradas sejam A , \overline{A} , B e \overline{B}	
(sendo A - aluno da escola que se desloca de autocarro e B - aluno	
da escola que habita a menos de dez quilómetros da escola) 1 ponto	
Preencher a célula da tabela relativa a $Pig(Aig)$	
Preencher a célula da tabela relativa a $P(B)$	
Preencher a célula da tabela relativa a $P(A \cap B)$ 4 pontos	
Reconhecer que o valor pedido é $P(\overline{A} \cap \overline{B})$	
Preencher a célula da tabela relativa a $P(\overline{A} \cap \overline{B})$	
Apresentar o valor pedido (37,5%)1 ponto	

3. 	9 pontos
((C)
	9 pontos
((C)
5.1	12 pontos
	Este item pode ser resolvido por, pelo menos, três processos. 1º Processo
	Obter as coordenadas do ponto médio de $\begin{bmatrix} AG \end{bmatrix}$ $((0,3,6))$ 2 pontos
	Obter as coordenadas do vetor \overrightarrow{AG} ((-6,6,12))
	Reconhecer que \overrightarrow{MP} tem coordenadas do tipo $(x, y-3, z-6)$,
	sendo M o ponto médio de $[AG]$ e $P(x,y,z)$ um ponto genérico
	do plano mediador 3 pontos
	Apresentar uma condição vetorial do plano mediador
	$(\overrightarrow{AG} \cdot \overrightarrow{MP} = 0$, ou equivalente)
	Obter a equação cartesiana pedida $(x-y-2z+15=0)$ 3 pontos
	2º Processo
	Obter as coordenadas do ponto médio de $[AG]$ $((0,3,6))$
	Obter as coordenadas do vetor \overline{AG} ((-6,6,12))
	Escrever a equação $-6x+6y+12z+d=0$ (ou equivalente)
	Obter a equação cartesiana pedida $(x-y-2z+15=0)$
	Obter a equação cartesiana pedida $(x-y-2z+13-0)$
	3º Processo
	Reconhecer que \overline{AP} é dada por $\sqrt{(x-3)^2 + y^2 + z^2}$ (ou equivalente)
	sendo $P(x,y,z)$ um ponto genérico do plano mediador 3 pontos
	Reconhecer que \overline{GP} é dada por $\sqrt{(x+3)^2 + (y-6)^2 + (z-12)^2}$
	(ou equivalente) 3 pontos

	Apresentar uma condição do plano mediador		
	$(\overline{AP} = \overline{GP})$, ou equivalente)	2 pontos	
	Obter a equação cartesiana pedida $(x-y-2z+15=0)$	4 pontos	
5.2		12 ponto	S
	Reconhecer que o ponto P tem ordenada 6	3 pontos	
	Obter as coordenadas do ponto $P((5,6,8))$	3 pontos	
	Obter o raio da superfície esférica $(\sqrt{68})$	3 pontos	
	Obter o valor pedido (2348,8)		
5.3		13 ponto	S
	Identificar o número de casos possíveis (8C_2)	4 pontos	
	Identificar o número de casos favoráveis (12)	4 pontos	
	Aplicar a Lei de Laplace		
	Obter o valor pedido (0,429)	2 pontos	
	A)	9 ponto	S
	D)	9 pontos	5
(J) 		
7.2		12 ponto	S
	Obter $h'(x) = e^x - 3e^{3x}$	3 pontos	
	Escrever $h'(x) = 0$		
	Obter $x = \ln\left(\frac{\sqrt{3}}{3}\right)$ (ou equivalente, da forma $x = \ln(k)$)	3 pontos	
	Concluir que h é crescente em $\left]-\infty, \ln\left(\frac{\sqrt{3}}{3}\right)\right]$		

	Concluir que h é decrescente em $\left[\ln\left(\frac{\sqrt{3}}{3}\right), +\infty\right]$
	Obter o valor máximo de h $\left(\frac{2\sqrt{3}}{9}\right)$
7.3	13 pontos
	Obter expressões para os comprimentos das bases dos trapézios
	$(e^{t}-e^{3t} e^{t} e^{t})$
	Obter uma expressão para a altura do trapézio $\left(-\frac{2t}{3}\right)$ 1 ponto
	Obter a área de $[ABCD]$ em função de t $\left(-\frac{t}{3}\left(e^{\frac{t}{3}}-e^{3t}\right)\right)$
	Equacionar o problema $\left(-\frac{t}{3}\left(e^{\frac{t}{3}}-e^{3t}\right)\right)=0,2$ ou equivalente
	Reproduzir o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que permite(m) resolver a equação (ver nota)
	Obter o valor pedido –0,89 3 pontos
	Nota: Se não for apresentado o referencial, a pontuação a atribuir nesta etapa é desvalorizada em 1 ponto; se não for respeitado o domínio,]–1,0[, a pontuação a atribuir nesta etapa é desvalorizada em 1 ponto.
8	9 pontos
	(A)
0	
7.	Este item pode ser resolvido por, pelo menos, dois processos.
	1º Processo
	Identificar um argumento de $z \left(-\frac{\pi}{2}\right)$
	Identificar um argumento de $w \left(\frac{\pi}{5}t\right)$

Obter um argumento de $z \times w \left(-\frac{\pi}{2} + \frac{\pi}{5}t\right)$
Apresentar a condição $2k\pi < -\frac{\pi}{2} + \frac{\pi}{5}t < \frac{\pi}{2} + 2k\pi \ (k \in \square)$
(ou equivalente)
Obter $\frac{5}{2} + 10k < t < 5 + 10k$ $(k \in \Box)$
Concluir que $\frac{25}{2} < t < 15$
2º Processo
Identificar um argumento de $z \left(-\frac{\pi}{2}\right)$
Reconhecer que o afixo de $z \times w$ é a imagem do afixo de w pela
rotação de centro na origem e amplitude $-\frac{\pi}{2}$, composta com a
homotetia de centro na origem e razão $ \lambda $
Reconhecer que para que o afixo de $z \times w$ pertença ao 1° quadrante, o afixo de w tem de pertencer ao 2° quadrante
Apresentar a expressão $\frac{\pi}{2} + 2k\pi < \frac{\pi}{5}t < \pi + 2k\pi \ \left(k \in \Box\right)$
(ou equivalente) 2 pontos
Obter $\frac{5}{2} + 10k < t < 5 + 10k$ $(k \in \Box)$
Concluir que $\frac{25}{2} < t < 15$
10.1
Referir que a função é contínua em $x = 0$ se
$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$
Calcular $\lim_{x\to 0^-} f(x)$ (0) (ver nota)
Calcular $\lim_{x \to 0^+} f(x)$ (-2)
Concluir que a função não é contínua em $x=0$
Nota: Se apenas for calculado $\lim_{x\to 0^+} f(x)$ e for apresentada a conclusão correta,
a pontuação desta etapa deve ser atribuída.

LO.	2 12 pontos
	Calcular $\lim_{x \to +\infty} \frac{f(x)}{x}$ (0) (ver nota)
	Calcular $\lim_{x \to +\infty} f(x)$ (0)
	Concluir que a função tem uma assíntota horizontal ao gráfico quando $x \to +\infty$
	Apresentar a equação da assíntota ($y = 0$)
	Justificar que a função não tem outra assíntota não vertical ao gráfico
	Nota: Se apenas for calculado $\lim_{x \to +\infty} f(x)$ e for apresentada a conclusão correta,
	a pontuação desta etapa deve ser atribuída.
10	3 9 pontos
	(C)
11.	
	Justificar que $f'(k) = 0$ (ver nota)
	Justificar que $h''(k) = 0$ (ver nota)
	Obter $h'(x) = f'(x) \times (1-2x) - 2f(x)$
	Obter $h''(x) = f''(x) \times (1-2x) - 4f'(x)$
	Escrever $f''(k) \times (1-2k) = 0$ (ou equivalente)
	Obter $k = \frac{1}{2}$
	Obter $k=\frac{1}{2}$

12	pontos
Obter $\lim_{x \to c} \frac{f(x) - f(c)}{f'(x) - f'(c)} = \frac{f'(c)}{f''(c)}$	•
Obter $f'(x) = 2\cos(2x)$	
Obter $f''(x) = -4\sin(2x)$	
Escrever $\frac{2\cos(2c)}{-4\sin(2c)} = \frac{\sqrt{3}}{2}$ (ou equivalente)	
Obter $\tan(2c) = -\frac{\sqrt{3}}{3}$	
Obter $c = \frac{11\pi}{12}$	

Item	1.	2.	3.	4.	5.1	5.2	5.3	6.	7.1	7.2	7.3	8.	Total
Cotação	9	12	9	9	12	12	13	9	9	12	13	9	
Item	9.	10.1	10.2	10.3	11.	12.							200
Cotação	12	13	12	9	13	13							

FIM