

# Predicting Student Success with Neural Networks

Using Python, TensorFlow, and machine learning.

# Project Overview

Objective

Predict student success with machine learning.

Dataset

Student information like study hours, attendance, and grades.

Model Used

Deep Neural Network (DNN) for binary classification.



# Data Preprocessing

#### Missing Data

Drop missing values.

#### Data Mapping

Transform categorical features into numerical values.

#### Scaling

Normalize features to a common scale.



# Feature Selection and Scaling

Selected Features

Scaling

Most relevant factors for predicting success.

Prepares data for model training.

## Model Architecture





# **Model Compilation**

Optimizer

Adam algorithm.

Loss Function

Measures model error.

Metrics

3

Evaluates model performance.



# Training the Model

Training Data Split

80% for training, 20% for testing.

**Custom Callback** 

LivePlot visualizes accuracy and loss during training.



## Visualizing Training Process



Display accuracy and loss.



### **Model Evaluation**

85%

**Training Accuracy** 

Evaluates model on training data.

78%

Test Accuracy

Evaluates model on unseen data.

90%

**Confusion Matrix** 

Visualizes performance on different classes.

## Conclusion and Next Steps

**Model Performance** Accuracy achieved on training and test data. Possible Improvements More data, fine-tuning, and experimenting with different models. **Applications** Use in various educational settings to predict student

success.