MID POINT CIRCLE DRAWING ALGORITHM

Nancy Victor
Assistant Professor
SITE, VIT University,
Vellore

A Simple Circle Drawing Algorithm

The equation for a circle is:

$$x^2 + y^2 = r^2$$

where *r* is the radius of the circle.

 So, we can write a simple circle drawing algorithm by solving the equation for y at unit x intervals using:

$$y = \pm \sqrt{r^2 - x^2}$$

A Simple Circle Drawing Algorithm (cont...)

$$y_0 = \sqrt{20^2 - 0^2} \approx 20$$

$$y_1 = \sqrt{20^2 - 1^2} \approx 20$$

$$y_2 = \sqrt{20^2 - 2^2} \approx 20$$

$$y_{19} = \sqrt{20^2 - 19^2} \approx 6$$

$$y_{20} = \sqrt{20^2 - 20^2} \approx 0$$

A Simple Circle Drawing Algorithm (cont...)

- Not a brilliant solution!
- Firstly, the resulting circle has large gaps where the slope approaches the vertical
- Secondly, the calculations are not very efficient
 - The square (multiply) operations
 - The square root operation
- We need a more efficient, more accurate solution.

Eight-Way Symmetry

• The first thing we can notice to make our circle drawing algorithm more efficient is that circles centred at (0, 0) have eight-way symmetry

- Similarly to the case with lines, there is an incremental algorithm for drawing circles – the mid-point circle algorithm
- In the mid-point circle algorithm we use eight-way symmetry.
- Calculate the points for the top right eighth of a circle, and then use symmetry to get the rest of the points

- To determine the closest pixel position to the specified circle path at each step.
- For given radius r and screen center position (x_c, y_c) , calculate pixel positions around a circle path centered at the co-odinate origin (0,0).
- Then, move each calculated position (x, y) to its proper screen position by adding x_c to x and y_c to y.

- Assume that we have just plotted point (x_k, y_k)
- The next point is a choice between (x_k+1, y_k) and (x_k+1, y_k-1)
- We would like to choose the point that is nearest to the actual circle.

The equation of the circle is re-designed as:

$$f_{circ}(x, y) = x^2 + y^2 - r^2$$

The equation evaluates as follows:

$$f_{circ}(x, y) \begin{cases} <0, \text{ if } (x, y) \text{ is inside the circle boundary} \\ =0, \text{ if } (x, y) \text{ is on the circle boundary} \\ >0, \text{ if } (x, y) \text{ is outside the circle boundary} \end{cases}$$

- Assuming we have just plotted the pixel at (x_k, y_k) so we need to choose between (x_k+1, y_k) and (x_k+1, y_k-1)
- Our decision variable can be defined as:

$$p_k = f_{circ}(x_k + 1, y_k - \frac{1}{2})$$

$$= (x_k + 1)^2 + (y_k - \frac{1}{2})^2 - r^2$$

- If $p_k < 0$ the midpoint is inside the circle and and the pixel at y_k is closer to the circle
- Otherwise the midpoint is outside and y_k -1 is closer

- To ensure things are as efficient as possible we can do all of our calculations incrementally
- First consider:

$$p_{k+1} = f_{circ} \left(x_{k+1} + 1, y_{k+1} - \frac{1}{2} \right)$$
$$= \left[(x_k + 1) + 1 \right]^2 + \left(y_{k+1} - \frac{1}{2} \right)^2 - r^2$$

• or:

$$p_{k+1} = p_k + 2(x_k + 1) + (y_{k+1}^2 - y_k^2) - (y_{k+1} - y_k) + 1$$

• where y_{k+1} is either y_k or y_k -1 depending on the sign of p_k

The first decision variable is given as:

$$p_{0} = f_{circ}(1, r - \frac{1}{2})$$

$$= 1 + (r - \frac{1}{2})^{2} - r^{2}$$

$$= \frac{5}{4} - r$$

• Then if $p_k < 0$ then the next decision variable is given as:

$$p_{k+1} = p_k + 2x_{k+1} + 1$$

• If $p_k > 0$ then the decision variable is:

$$p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_k + 1$$

Algorithm

Midpoint Circle Algorithm

 Input radius r and circle center (x_c, y_c), and obtain the first point on the circumference of a circle centered on the origin as

$$(x_0, y_0) = (0, r)$$

2. Calculate the initial value of the decision parameter as

$$p_0 = \frac{5}{4} - r$$

3. At each x_k position, starting at k = 0, perform the following test: If $p_k < 0$, the next point along the circle centered on (0, 0) is (x_{k+1}, y_k) and

$$p_{k+1} = p_k + 2x_{k+1} + 1$$

Otherwise, the next point along the circle is $(x_k + 1, y_k - 1)$ and

$$p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_{k+1}$$

where $2x_{k+1} = 2x_k + 2$ and $2y_{k+1} = 2y_k - 2$.

- Determine symmetry points in the other seven octants.
- 5. Move each calculated pixel position (x, y) onto the circular path centered on (x_c, y_c) and plot the coordinate values:

$$x = x + x_c$$
, $y = y + y_c$

6. Repeat steps 3 through 5 until $x \ge y$.

Mid-Point Circle Algorithm Example

• To see the mid-point circle algorithm in action lets use it to draw a circle centred at (0,0) with radius 10

Midpoint Circle Drawing Algorithm

For the initial point, $(x_0, y_0) = (0, r)$

≈ 1 – r

$$f_0 = f_{circle} (1, \mathbf{r} - \frac{1}{2})$$

$$= 1 + (\mathbf{r} - \frac{1}{2})^2 - \mathbf{r}^2$$

$$= \frac{5}{4} - \mathbf{r}$$

Midpoint Circle Drawing Algorithm

Example:

Given a circle radius = 10, determine the circle octant in the first quadrant from x=0 to x=y.

Solution:

$$f_0 = \frac{5}{4} - r$$

$$= \frac{5}{4} - 10$$

$$= -8.75$$

Midpoint Circle Drawing Algorithm

Initial $(x_0, y_0) = (1,10)$ Decision parameters are: $2x_0 = 2$, $2y_0 = 20$

k	F _k	X	y	2x _{k+1}	2y _{k+1}
0	-9	1	10	2	20
1	-9+2+1=-6	2	10	4	20
2	-6+4+1=-1	3	10	6	20
3	-1+6+1=6	4	9	8	18
4	6+8+1-18=-3	5	9	10	18
5	-3+10+1=8	6	8	12	16
6	8+12+1-16=5	7	7	14	14

Mid-Point Circle Algorithm Example (cont...)

k	p _k	(x_{k+1}, y_{k+1})	2x _{k+1}	2y _{k+1}
0				
1				
2				
3				
4				
5				
6				

Mid-Point Circle Algorithm Summary

- The key insights in the mid-point circle algorithm are:
 - Eight-way symmetry can hugely reduce the work in drawing a circle
 - Moving in unit steps along the x axis at each point along the circle's edge we need to choose between two possible y coordinates

Thank You...