- 1. V o F, justifique.
 - (a) Si **L** es un reticulado distributivo, entonces $x \prec x$ s y o $y \prec x$ s y, cualesquiera sean $x, y \in L$
 - (b) Si $\psi_1, \psi_2, \psi_3, \varphi_1, \varphi_2 \in F^{\tau}$, entonces $\psi_1 \psi_2 \psi_3 \neq \varphi_1 \varphi_2$
 - (c) Sea $\tau = (\{\text{ce, un, do, tr, cu, ci, se}\}, \{F^1\}, \emptyset, a)$ y sea **A** una estructura de tipo τ . Entonces $D_{FA} = \{\text{ce, un, do, tr, cu, ci, se}\}$
 - (d) Sea $\tau = (\{un, dos\}, \emptyset, \emptyset, \emptyset)$. Entonces $(\{un, dos\}, \{(un, un), (dos, dos)\})$ es una estructura de tipo τ
 - (e) Si $(\Sigma, \tau) \vdash \varphi$, entonces hay un modelo de la teoria (Σ, τ) en el cual φ es verdadera.
 - (f) Sea $\varphi =_d \varphi(x_1) \in F^{\tau}$. Entonces $\forall x_1 \forall x_2 \ (\varphi(x_1) \land (x_1 \equiv x_2)) \rightarrow \varphi(x_2))$ es universalmente válida.
 - (g) Sea T una teoria. Entonces en \mathcal{A}_T se tiene que $[\varphi] < [\psi]$ si y solo si $T \vdash (\varphi \to \psi)$ y $T \vdash \neg(\psi \to \varphi)$
- 2. Sea $\tau = (\{uno\}, \{F^1\}, \{Mix^3\}, a)$. Encontrar una formula en forma normal prenexa la cual sea equivalente a la formula

$$(\forall x_4 \operatorname{Mix}(x_4, x_2, \operatorname{uno}) \to (\exists x_3 (F(x_3) \equiv x_4) \land \neg \exists x_4 \operatorname{Mix}(x_3, x_6, x_4)))$$

Enuncie los lemas que utilice para justificar que la formula obtenida es equivalente a la dada.

- 3. Sea $t \in T^{\tau}$ y sea t' el resultado de reemplazar toda ocurrencia de x_i en t por x_l , la cual no ocurre en t. Entonces para cualquier estructura \mathbf{A} , cualquier asignacion $\vec{a} \in A^{\mathbf{N}}$ y cualquier $a \in A$, se tiene $t'^{\mathbf{A}}[\downarrow_i^a(\vec{a})] = t^{\mathbf{A}}[\downarrow_i^a(\vec{a})]$
- 4. De pruebas formales que atestiguen que

$$Ret \vdash \forall x \forall u \forall v \ (u \le v \to x \ \mathsf{i} \ u \le x \ \mathsf{i} \ v)$$

$$Ret \vdash \forall x \forall y \forall z \ (y \le z \to x \ \mathsf{i} \ (y \ \mathsf{s} \ z) \equiv (x \ \mathsf{i} \ y) \ \mathsf{s} \ (x \ \mathsf{i} \ z))$$