

1863 Lake Lila Ln, Ann Arbor ↑
734-223-5341 ↓
txramsey@umich.edu ☑
Pursuing Master of Science in ECE
University of Michigan, Ann Arbor

OBJECTIVE

Participate the research lab. Contribute my academic knowledge to design, test and deploy the algorithms

EDUCATION

Bachelor of Science | Shanghai Jiao Tong University

09/2017 - 08/2021

GPA: 3.73

Awards: 1. Silver award: 2021 Capstone Design Expo in Joint Institute in Summer 2. Silver award: 2018 World University Student Physics Competition 3. Scholarship: 2017 UM-SJTU Joint Institute Wu Jiong&Sun Jie Scholarship

Related Coursework: Control Systems Analysis and Design, Probabilistic Methods in Engineering, Programming & Elementary Data Structures, Discrete Mathematics

Bachelor of Science | University of Michigan, Ann Arbor 09/2019 – 04/2021

GPA: 3.74

Honors: Magna Cum Laude in Bachelor of Science in Engineering

Related Coursework: Intro to Embedded System Design, Computer Vision, Digital Integrated Circuits, Computer Architecture, Logic Circuit Synthesis and Optimization

Master of Science | University of Michigan, Ann Arbor 09/2021 –

GPA: 4.00

Related Coursework: Linear System Theory, Deep Learning method for Computer Vision, Robotics Kinematics, Mobile Robotics, Computational Methods in Data Science & Machine Learning

EXPERIENCE

Internship | *Jiyan Information Technology*, Shanghai 10/2018 – 07/2019

Helped to establish and manage the cafeteria takeaway group in the dormitory; supervise on the distribution; communicate with the clients;

Investigator | Honor Council, UM -SJTU Joint Institute 10/2018 – 07/2019

Investigate and evaluate the potential violations of Honor Codes; communicate with the related people

Grader | EECS 478 for Fall 2021, EECS - Computer Science Engineering 09/2021 – 12/2021

Grade the assignments and exams; communicate with students, GSI and professors about issues in solutions and the students' performances;

Research Assistant | UM Ford Center for Autonomous Vehicles, University of Michigan, Ann Arbor

05/2021 -

Participate in the project to build a dataset where SLAM algorithms can be tested and benchmarked. Help in collecting data, testing the proposed calibration methods, establishing the dataset and carrying out experiments with the existing SLAM algorithms;

SKILLS

- Programming Languages: C++, Python, Java, Julia, Verilog/SystemVerilog
- Embedded System: Arduino, STM32
- Engineering Software: Matlab,
 Mathematica, Cadence, Docker
- Developing Platform: Linux, Git, ROS, Pytorch
- Language: English (TOEFL: 105+, GRE: quantitative: 169, qualitative: 155, Writing: 4.5

ACTIVITIES

I have always kept the enthusiasm in robotics and autonomous system. In my high school, I obtained the chance to attend the Information Technology Summer Camp held by Peking University. Also, to solidate my fundamentals in mathematics and physics, I attended National Mathematical Olympics Competition and won first prizes twice.

In my undergraduate years, apart from the diligent work in my course, I also engaged in different extracurricular activities or contests to explore more in the related fields. I joined in the college's science and technology association organization to communicate with other top students and improve myself. I also participated Freshman Robots Competition and 2018 World University Student Physics Competition to learn to apply theoretical knowledge in practice and carry out groupworks. Besides, I seized the precious chance to attend the Industrial Exhibition held in Shanghai to learn about the latest progress and challenges in Industry

After being admitted as a master student in Rackham Graduate school, University of Michigan, I continued studying in related fields. I have joined Prof. Chinedum Okwudire research lab in studying Feedforward Tracking Control of Nonminimum Phase (NMP) Systems in 3D printing. In which I gained experience in doing research and applying the knowledge from class in practice. Currently, I am working as a research assistant in UM Ford Center for Autonomous Vehicles in helping the project Dataset for SLAM algorithms in Adverse Conditions.

PROJECTS

Dataset for SLAM algorithms in Adverse Conditions (EECS 464, Hands-on Robotics)
Description: design a robot that can move to the specified locations automatically, while maintaining a laser along a constant direction
Role: help in designing the particle filter and sensing algorithms

Dataset for SLAM algorithms in Adverse Conditions (EECS 464, Hands-on Robotics)

Description: build up a robot to complete a figure-eight track, without using any fully rotating part

Role: mechanics design; controlling programs design;

Dataset for SLAM algorithms in Adverse Conditions

Description: establish a sample dataset with images in various weather conditions, including rainy, foggy and etc; publish the dataset so that people could test their SLAM algorithms on it; also obtain some reference results using our own developed methods;

Role: help in collecting the data; test the calibration methods and write documentations; test several existing SLAM algorithms and evaluate the performance;

Improvement on ORB-SLAM2 Pipeline using Deep Learning Method (EECS 568/ROB 530, Mobile Robotics)

Description: try to improve the old, useful SLAM algorithm called ORB-SLAM2 with several Deep Learning techniques

Role: improvement on image processing in Loop Closing component; develop a new Loop Closing method to equip with our own front-end;

■ Feedforward Tracking Control of Nonminimum Phase Systems using Filtered Basis Function (Prof. Chinedum Okwudire's lab)

Description: reduce the errors in 3D printing under a high speed by designing a feedforward controller using the developed Filter Basis Function method; extend the method to nonlinear system

Role: design and evaluate the techniques to apply the method to nonlinear systems

BuilderX Excavator Prototype with Autonomous Obstacle Avoidance (VE 450, Capstone Design Project)

Description: develop ideas based on an excavator prototype provided by BuilderX corp. about how to avoid the obstacle in the path automatically, using cameras Role: robotics arm control; sensor deployments and noise filtering; motion planning algorithm development;

■ P6 Style Out-of-Order Instruction Processor (EECS 470, Computer Architecture, Capstone Design Project)

Description: develop a P6-sytle Out-of-Order instruction processor that can work correctly and efficiently on the provided programs

Role: benchmarking; design and test caches and other memory I/O parts;

Improved AlexNet on Human Facial Expression Classification Task (EECS 442, Intro to Computer Vision)

Description: develop a program using Alexnet to detect the human facial expression intelligently

Role: design and build the networks

Mobile Car with autonomous Obstacle Avoidance and Phototaxi using STM32 (EECS 373, Intro to Embedded System)

Description: develop a model car that can trace the light source and go there without colliding with the obstacle on the path

Role: develop the control programs on the board and test

Multi-functional Baby Stroller (VG 100, Intro to Engineering)

Description: develop a baby stroller with several extra useful features, such as automatic balancing on the slope, automatically closing the cloak and etc.

Role: develop methods and algorithms in automatic balancing