Introduction to Bayesian Statistics

William Ruth

June 2022

► Target of inference

- ► Target of inference
- ► To a Frequentist:

- ► Target of inference
- ► To a Frequentist:
 - A fixed, unknown number that exists in the world

- ► Target of inference
- ► To a Frequentist:
 - A fixed, unknown number that exists in the world
 - Study by repeated sampling

- ► Target of inference
- ► To a Frequentist:
 - A fixed, unknown number that exists in the world
 - Study by repeated sampling
 - Usually hypothetical repeated sampling

- ► Target of inference
- ► To a Frequentist:
 - A fixed, unknown number that exists in the world
 - Study by repeated sampling
 - Usually hypothetical repeated sampling
- ► To a Bayesian:

- ► Target of inference
- ► To a Frequentist:
 - A fixed, unknown number that exists in the world
 - Study by repeated sampling
 - Usually hypothetical repeated sampling
- ► To a Bayesian:
 - An unknown number

- ► Target of inference
- ► To a Frequentist:
 - A fixed, unknown number that exists in the world
 - Study by repeated sampling
 - Usually hypothetical repeated sampling
- ► To a Bayesian:
 - An unknown number
 - Quantify my beliefs about it

- ► Target of inference
- ► To a Frequentist:
 - A fixed, unknown number that exists in the world
 - Study by repeated sampling
 - Usually hypothetical repeated sampling
- ► To a Bayesian:
 - An unknown number
 - Quantify my beliefs about it
 - Systematically update my beliefs using data

▶ Represent beliefs with probability distributions

- Represent beliefs with probability distributions
 - ▶ E.g. I think it's twice as likely to rain tomorrow than not

- Represent beliefs with probability distributions
 - E.g. I think it's twice as likely to rain tomorrow than not
 - E.g. I think that average rainfall in June in Vancouver is around 50mm and differing by more than 20mm is unlikely

- Represent beliefs with probability distributions
 - ▶ E.g. I think it's twice as likely to rain tomorrow than not
 - E.g. I think that average rainfall in June in Vancouver is around 50mm and differing by more than 20mm is unlikely
 - Normal with mean of 50 and SD of 10

- Represent beliefs with probability distributions
 - E.g. I think it's twice as likely to rain tomorrow than not
 - ► E.g. I think that average rainfall in June in Vancouver is around 50mm and differing by more than 20mm is unlikely
 - Normal with mean of 50 and SD of 10
- Much harder to do as a Frequentist

- Represent beliefs with probability distributions
 - E.g. I think it's twice as likely to rain tomorrow than not
 - E.g. I think that average rainfall in June in Vancouver is around 50mm and differing by more than 20mm is unlikely
 - Normal with mean of 50 and SD of 10
- Much harder to do as a Frequentist
 - Need infinitely many days exactly like tomorrow

- Represent beliefs with probability distributions
 - E.g. I think it's twice as likely to rain tomorrow than not
 - ► E.g. I think that average rainfall in June in Vancouver is around 50mm and differing by more than 20mm is unlikely
 - Normal with mean of 50 and SD of 10
- Much harder to do as a Frequentist
 - Need infinitely many days exactly like tomorrow
 - Or infinitely many Junes

- Represent beliefs with probability distributions
 - ► E.g. I think it's twice as likely to rain tomorrow than not
 - ► E.g. I think that average rainfall in June in Vancouver is around 50mm and differing by more than 20mm is unlikely
 - Normal with mean of 50 and SD of 10
- Much harder to do as a Frequentist
 - Need infinitely many days exactly like tomorrow
 - Or infinitely many Junes
- Update probability distribution using data and Bayes Theorem

► Consider rolling a dice

- Consider rolling a dice
- ► What is probability of rolling a 2 given that you know the roll is even?

- Consider rolling a dice
- ► What is probability of rolling a 2 given that you know the roll is even?
 - ► Easy, 1/3

- ► Consider rolling a dice
- ► What is probability of rolling a 2 given that you know the roll is even?
 - ► Easy, 1/3
- Can we say something systematic here?

► Consider two possible outcomes, A and B

- Consider two possible outcomes, A and B
 - ► E.g. A is "roll a 2" and B is "roll even"

- Consider two possible outcomes, A and B
 - ► E.g. A is "roll a 2" and B is "roll even"
- Want probability of A given that we know B occurred

- Consider two possible outcomes, A and B
 - ► E.g. A is "roll a 2" and B is "roll even"
- ▶ Want probability of A given that we know B occurred
 - $\blacktriangleright \text{ Write } P(A|B)$

- Consider two possible outcomes, A and B
 - ► E.g. A is "roll a 2" and B is "roll even"
- ▶ Want probability of A given that we know B occurred
 - ightharpoonup Write P(A|B)
- Define

$$P(A|B) = \frac{P(Both \ A \text{ and } B)}{P(B)}$$

► Back to our example

▶ Back to our example

$$P(2|\text{even}) = \frac{P(2 \text{ and even})}{P(\text{even})}$$

Back to our example

$$P(2|\text{even}) = \frac{P(2 \text{ and even})}{P(\text{even})}$$

$$= \frac{P(2)}{P(\text{even})}$$

► Back to our example

$$P(2|\text{even}) = \frac{P(2 \text{ and even})}{P(\text{even})}$$

$$= \frac{P(2)}{P(\text{even})}$$

$$= \frac{1/6}{3/6}$$

► Back to our example

$$P(2|\text{even}) = \frac{P(2 \text{ and even})}{P(\text{even})}$$
$$= \frac{P(2)}{P(\text{even})}$$
$$= \frac{1/6}{3/6}$$
$$= \frac{1}{3}$$

Bayesian Terminology

▶ We start with a distribution for the unknown parameter

- ▶ We start with a distribution for the unknown parameter
 - ► Called the **prior distribution**

- ▶ We start with a distribution for the unknown parameter
 - Called the prior distribution
 - ▶ Denoted by $\pi(\theta)$

- ▶ We start with a distribution for the unknown parameter
 - Called the prior distribution
 - ▶ Denoted by $\pi(\theta)$
- ▶ We have some data, X

- We start with a distribution for the unknown parameter
 - Called the prior distribution
 - ▶ Denoted by $\pi(\theta)$
- ▶ We have some data, X
- ightharpoonup Its distribution depends on the parameter, heta

- We start with a distribution for the unknown parameter
 - Called the prior distribution
 - ▶ Denoted by $\pi(\theta)$
- ▶ We have some data, X
- ightharpoonup Its distribution depends on the parameter, heta
 - Distribution of the data, given the unknown parameter, is called the likelihood

- We start with a distribution for the unknown parameter
 - Called the prior distribution
 - ▶ Denoted by $\pi(\theta)$
- ▶ We have some data, X
- lacktriangle Its distribution depends on the parameter, heta
 - Distribution of the data, given the unknown parameter, is called the likelihood
 - ▶ Denoted by $L(X|\theta)$

lackbox We would like to update the distribution of heta using observed data

- lackbox We would like to update the distribution of heta using observed data
 - ▶ I.e. Get the distribution of θ given X

- lackbox We would like to update the distribution of heta using observed data
 - ▶ I.e. Get the distribution of θ given X
- ► This is called the **posterior distribution**

- lackbox We would like to update the distribution of heta using observed data
 - ▶ I.e. Get the distribution of θ given X
- This is called the posterior distribution
 - ▶ Denoted by $\pi(\theta|X)$

► It can be shown that the posterior is proportional to the likelihood times the prior

- ► It can be shown that the posterior is proportional to the likelihood times the prior
 - ▶ I.e. $\pi(\theta|X) \propto L(X|\theta) \cdot \pi(\theta)$

- ► It can be shown that the posterior is proportional to the likelihood times the prior
 - ▶ I.e. $\pi(\theta|X) \propto L(X|\theta) \cdot \pi(\theta)$
- ightharpoonup The proportionality constant depends on X but not on θ

- ► It can be shown that the posterior is proportional to the likelihood times the prior
 - ▶ I.e. $\pi(\theta|X) \propto L(X|\theta) \cdot \pi(\theta)$
- ightharpoonup The proportionality constant depends on X but not on θ
- In principle, we can get the proportionality constant by integrating the posterior over the range of θ

- ► It can be shown that the posterior is proportional to the likelihood times the prior
 - ▶ I.e. $\pi(\theta|X) \propto L(X|\theta) \cdot \pi(\theta)$
- ightharpoonup The proportionality constant depends on X but not on θ
- In principle, we can get the proportionality constant by integrating the posterior over the range of θ
 - Total probability must equal 1

- ► It can be shown that the posterior is proportional to the likelihood times the prior
 - ▶ I.e. $\pi(\theta|X) \propto L(X|\theta) \cdot \pi(\theta)$
- ightharpoonup The proportionality constant depends on X but not on θ
- In principle, we can get the proportionality constant by integrating the posterior over the range of θ
 - Total probability must equal 1
- Usually, we can just ignore the constant

► In a sense, we're done

- ► In a sense, we're done
- Anything you want to say about θ can be described in terms of the posterior

- ► In a sense, we're done
- Anything you want to say about θ can be described in terms of the posterior
- ► Let's illustrate with an example

➤ Consider an experiment done at Berkley in 2009 in which a coin was tossed 40,000 times

- ➤ Consider an experiment done at Berkley in 2009 in which a coin was tossed 40,000 times
 - ➤ So that we can actually do the calculations, we will just look at the first 100 flips

- Consider an experiment done at Berkley in 2009 in which a coin was tossed 40,000 times
 - So that we can actually do the calculations, we will just look at the first 100 flips
 - ▶ Of the first 100 flips, 41 came up heads

- Consider an experiment done at Berkley in 2009 in which a coin was tossed 40,000 times
 - ➤ So that we can actually do the calculations, we will just look at the first 100 flips
 - ▶ Of the first 100 flips, 41 came up heads
- ightharpoonup Our parameter, θ , is the probability of getting heads

► For the sake of illustration, let's use a uniform prior

- For the sake of illustration, let's use a uniform prior
 - $\blacktriangleright \ \pi(\theta) = 1 \text{ for } \theta \in [0,1]$

- For the sake of illustration, let's use a uniform prior
 - \blacktriangleright $\pi(\theta) = 1$ for $\theta \in [0, 1]$
- \triangleright Given θ , the number of heads follows a binomial distribution

- For the sake of illustration, let's use a uniform prior
 - \blacktriangleright $\pi(\theta) = 1$ for $\theta \in [0, 1]$
- \triangleright Given θ , the number of heads follows a binomial distribution

$$L(X|\theta) = \binom{100}{X} \cdot \theta^X \cdot (1-\theta)^{100-X}$$

- ► For the sake of illustration, let's use a uniform prior
 - $\mathbf{\pi}(\theta) = 1 \text{ for } \theta \in [0, 1]$
- \triangleright Given θ , the number of heads follows a binomial distribution
 - $L(X|\theta) = \binom{100}{X} \cdot \theta^X \cdot (1-\theta)^{100-X}$
 - $L(X|\theta) \propto \theta^X \cdot (1-\theta)^{100-X}$

- For the sake of illustration, let's use a uniform prior
 - \blacktriangleright $\pi(\theta) = 1$ for $\theta \in [0, 1]$
- \triangleright Given θ , the number of heads follows a binomial distribution
 - $L(X|\theta) = \binom{100}{Y} \cdot \theta^X \cdot (1-\theta)^{100-X}$
 - $\blacktriangleright L(X|\theta) \propto \theta^X \cdot (1-\theta)^{100-X}$
- Posterior is proportional to likelihood times prior

- ▶ For the sake of illustration, let's use a uniform prior
 - \blacktriangleright $\pi(\theta) = 1$ for $\theta \in [0, 1]$
- \triangleright Given θ , the number of heads follows a binomial distribution
 - $L(X|\theta) = \binom{100}{Y} \cdot \theta^X \cdot (1-\theta)^{100-X}$
 - $L(X|\theta) \propto \theta^X \cdot (1-\theta)^{100-X}$
- Posterior is proportional to likelihood times prior
 - $\pi(\theta|X) \propto \theta^X \cdot (1-\theta)^{100-X} \cdot 1$

- ► For the sake of illustration, let's use a uniform prior
 - $ightharpoonup \pi(\theta) = 1 \text{ for } \theta \in [0,1]$
- \triangleright Given θ , the number of heads follows a binomial distribution
 - $L(X|\theta) = \binom{100}{X} \cdot \theta^X \cdot (1-\theta)^{100-X}$
 - $\blacktriangleright L(X|\theta) \propto \theta^X \cdot (1-\theta)^{100-X}$
- Posterior is proportional to likelihood times prior
 - $\rightarrow \pi(\theta|X) \propto \theta^X \cdot (1-\theta)^{100-X} \cdot 1$
 - $\pi(\theta|X) = \theta^X \cdot (1-\theta)^{100-X}$

▶ Up to proportionality constants, this posterior matches a beta distribution with parameters X and 100 - X

- ▶ Up to proportionality constants, this posterior matches a beta distribution with parameters X and 100 X
- lacktriangle Given data, heta follows a beta distribution with these parameter values

- ▶ Up to proportionality constants, this posterior matches a beta distribution with parameters X and 100 X
- lacktriangle Given data, heta follows a beta distribution with these parameter values
 - We write $\theta | X \sim \text{Beta}(X, 100 X)$

- ▶ Up to proportionality constants, this posterior matches a beta distribution with parameters X and 100 X
- lacktriangle Given data, heta follows a beta distribution with these parameter values
 - We write $\theta | X \sim \text{Beta}(X, 100 X)$
- Let's plug in our numbers

- ▶ Up to proportionality constants, this posterior matches a beta distribution with parameters X and 100 X
- lacktriangle Given data, heta follows a beta distribution with these parameter values
 - We write $\theta | X \sim \text{Beta}(X, 100 X)$
- Let's plug in our numbers
- ightharpoonup X is 41, so $heta|X\sim ext{Beta}(41,59)$

► The beta distribution is very well studied

- ▶ The beta distribution is very well studied
- ▶ For a Beta (α, β) distribution,

- ▶ The beta distribution is very well studied
- ▶ For a Beta(α, β) distribution,
 - ► The mean is $\frac{\alpha}{\beta + \alpha}$

- ► The beta distribution is very well studied
- For a Beta (α, β) distribution,
 - ► The mean is $\frac{\alpha}{\beta + \alpha}$
 - ► The most likely value (mode) is $\frac{\alpha-1}{\alpha+\beta-2}$

- ▶ The beta distribution is very well studied
- ▶ For a Beta (α, β) distribution,
 - ► The mean is $\frac{\alpha}{\beta + \alpha}$
 - ▶ The most likely value (mode) is $\frac{\alpha-1}{\alpha+\beta-2}$
- ▶ For our problem, mean is 0.41 and mode is 0.408

- ▶ The beta distribution is very well studied
- For a Beta (α, β) distribution,
 - ► The mean is $\frac{\alpha}{\beta + \alpha}$
 - ► The most likely value (mode) is $\frac{\alpha-1}{\alpha+\beta-2}$
- ▶ For our problem, mean is 0.41 and mode is 0.408
- Unfortunately, we don't always get nice posteriors

▶ What if we started with a less trivial distribution for θ ?

- ▶ What if we started with a less trivial distribution for θ ?
- ▶ Real world priors and likelihoods can get very complicated

- ▶ What if we started with a less trivial distribution for θ ?
- ▶ Real world priors and likelihoods can get very complicated
- ► The mean and mode on the previous slide are obtained analytically

- ▶ What if we started with a less trivial distribution for θ ?
- ▶ Real world priors and likelihoods can get very complicated
- ► The mean and mode on the previous slide are obtained analytically
- In general, we can't do the necessary integration or optimization

- ▶ What if we started with a less trivial distribution for θ ?
- Real world priors and likelihoods can get very complicated
- ► The mean and mode on the previous slide are obtained analytically
- In general, we can't do the necessary integration or optimization
- Instead, the posterior mean and posterior mode must be obtained numerically

- ▶ What if we started with a less trivial distribution for θ ?
- Real world priors and likelihoods can get very complicated
- ► The mean and mode on the previous slide are obtained analytically
- In general, we can't do the necessary integration or optimization
- Instead, the posterior mean and posterior mode must be obtained numerically
 - Let's focus on the mean

► In general, we can approximate the mean of a distribution by averaging

- ► In general, we can approximate the mean of a distribution by averaging
 - Given a sample, the average is a good approximation to the mean of the underlying distribution

- ► In general, we can approximate the mean of a distribution by averaging
 - ► Given a sample, the average is a good approximation to the mean of the underlying distribution
- ► If we can generate a sample from the posterior, we can estimate the posterior mean

- ▶ In general, we can approximate the mean of a distribution by averaging
 - Given a sample, the average is a good approximation to the mean of the underlying distribution
- ► If we can generate a sample from the posterior, we can estimate the posterior mean
- Bayesian computation is about efficiently generating a sample from the posterior distribution

- ► In general, we can approximate the mean of a distribution by averaging
 - Given a sample, the average is a good approximation to the mean of the underlying distribution
- ► If we can generate a sample from the posterior, we can estimate the posterior mean
- Bayesian computation is about efficiently generating a sample from the posterior distribution
 - Often very computationally intensive

- ▶ In general, we can approximate the mean of a distribution by averaging
 - Given a sample, the average is a good approximation to the mean of the underlying distribution
- ► If we can generate a sample from the posterior, we can estimate the posterior mean
- Bayesian computation is about efficiently generating a sample from the posterior distribution
 - Often very computationally intensive
 - Many tricks to improve performance

- ► In general, we can approximate the mean of a distribution by averaging
 - Given a sample, the average is a good approximation to the mean of the underlying distribution
- ► If we can generate a sample from the posterior, we can estimate the posterior mean
- Bayesian computation is about efficiently generating a sample from the posterior distribution
 - Often very computationally intensive
 - Many tricks to improve performance
 - Often depends on the structure of the problem

► Algorithms include:

- ► Algorithms include:
 - Gibbs sampling

- ► Algorithms include:
 - Gibbs sampling
 - Metropolis-Hastings

- ► Algorithms include:
 - Gibbs sampling
 - Metropolis-Hastings
 - Approximate Bayesian Computation (ABC)

- ► Algorithms include:
 - Gibbs sampling
 - Metropolis-Hastings
 - Approximate Bayesian Computation (ABC)
- ► There are also some analytic tools:

- Algorithms include:
 - Gibbs sampling
 - Metropolis-Hastings
 - Approximate Bayesian Computation (ABC)
- There are also some analytic tools:
 - Laplace approximation

- Algorithms include:
 - Gibbs sampling
 - Metropolis-Hastings
 - Approximate Bayesian Computation (ABC)
- There are also some analytic tools:
 - Laplace approximation
 - Variational Bayes

- Algorithms include:
 - Gibbs sampling
 - Metropolis-Hastings
 - Approximate Bayesian Computation (ABC)
- There are also some analytic tools:
 - Laplace approximation
 - Variational Bayes
- ► Many, many more of both