Course of Frontiers in bioengineering enabling nanotechnologies, Track B

Supervisor:Chiara Vitale Brovarone

Research proposal

PATCH:
mesoPorous nanopArticlescontaining Thermosensitive
hydrogel for Cartilage
Healing

Candidate: Claudia D'Agostino, s337584

Outline

- Project overview
- Clinical background
- PATCH hydrogel presentation
- Thermal gelation mechanism
- Lubrification and adhesion characteristics
- Controlled drug release: mesoporous glass nanoparticles and liposomeloaded HAMA microspheres
- Expected outcomes
- Future prospects
- Project organisation prospect

Project overview

PATCH

Clinical background: large cartilage defects and unmet needs

- Large cartilage defects: limited self-repair capacity
- Occurrence in young patients:
 - great effect on quality of life
 - high socioeconomic burden
- Available treatments:
 - Joint replacement (invasive, long recovery)
 - Mosaicoplasty (limited donor tissue)
 - Symptom management (ineffective long-term)
 - MSCs treatment (expensive, lack of adequate mechanical support)
- Need for a minimally invasive, regenerative solution

The PATCH hydrogel

Key properties:

- Injectable & microinvasive (application with a 22G/23G needle)
- Thermosensitive, with sol-gel transition at body temperature within 1 min
- Temporary mechanical support & controlled degradation profile (<12 months)
- Biocompatible & bioactive:
 - Enhanced adhesion & integration with native tissue
 - Biomimetic lubricant film preservation
- Controlled drug release for optimal MSCs recruitment and antinflammatory action

Components:

- Block copolymer: PAF-PEG-PAF/HA
- Functional additions & carriers: liposome containing HAMA microspheres, MBG NPs
- Released molecules: GFs, gallic acid

Hydrogel formulation and thermal gelation mechanism

PAF-PEG-PAF/HA composite

- PA-PEG-PA base triblock copolymer: biocompatibility, biodegradability and minimal immune response
- phenylalanine (->PAF-PEG-PAF): enhances mechanical strength, reduces gelation temperature, increases pore size and connectivity (desired pore size > 50 um)
- HA: increases mechanical stability, bioactivity and water retention

Phase transition at 37°C:

- Liquid state (room temp) → Gel state (body temp)
- No external initiators

Biomimetic lubrification and adhesion

- Lubrication: Key for joint function & longevity, target friction coefficient << 0.04
 - High swelling capacity, pore volume and HA content -> high interaction with native synovial fluid
 - HAMA microspheres:
 - pseudoplasticity and self-repair properties -> stable lubricant layer
 - Cationic liposomes: further improvement of the self-renewing hydration layers

Adhesion Strategies:

 Use of aldehyde-modified HA (sodium periodate oxidation) to ensure a fast primary adhesion through Schiff-base bonding

Mesoporous glass nanoparticles

Advantages of MBG NPs for drug delivery

- High surface area & tunable porosity
- Biodegradable
- Controlled drug release capabilities

Composition & Functionalization

- Silica-based mesoporous structure
- Possibility of surface modifications for targeted delivery
- Doping with ions of choice leads to enhanced bioactivity

Size & Porosity:

- Particle size: ~100-300 nm
- Pore size: 5-10 nm

Controlled drug release

Growth factors (GF) delivery:

- PDGF: promotes MSCs recruitment and differentiation
- KGN: supports ECM deposition
- Release kinetics: complete release within 2 months, sustained GFs concentration in SF < 100 nM
- Loaded in the MBG NPs

Anti-inflammatory agents:

- · Gallic acid: Reduces oxidative stress & inflammation
- Release kinetics: complete release within 3-4 months, sustained concentration in SF < 0.1 mol/l
- Incapsulated in the cationic liposomes inside the HAMA microspheres

Expected outcomes and potential impact

Scientific Impact:

- · Novel adhesive & regenerative scaffold
- Improved drug delivery efficiency

Clinical Impact:

- Reduced recovery time vs. surgery
- Enhanced integration & long-term function

Economic Impact:

Lower healthcare costs (fewer surgeries/revisions)

Future perspectives

Preclinical & Clinical Validation:

- Biomechanical testing
- In vivo cartilage regeneration studies

Optimization Strategies:

- Alternative polymer compositions
- Tuning of nanoparticle functionalization and loading parameters to fit different clinical needs

Potential Applications Beyond Cartilage:

Osteochondral defect repair

Project organization prospect

- Work Package (WP) 1: Development of the Base Hydrogel
 - Task 1.1: Optimization of the PA-PEG-PA Polymer Composition
 - Task 1.2: Gradual Incorporation of Phenylalanine and Optimization of Hydrogel Properties
 - Task 1.3: Incorporation and Optimization of Aldehyde– Modified HA
- Work Package (WP) 2: Optimization of Hydrogel Lubrication
 - Task 2.1: Synthesis and Integration of HAMA Microspheres
 - Task 2.2: Incorporation of Cationic Liposomes within HAMA Microspheres
- Work Package (WP) 3: Implementation of Drug Delivery Systems
 - Task 3.1: Encapsulation of Gallic Acid within Cationic Liposomes
 - Task 3.2: Growth Factor Delivery via Mesoporous Glass Nanoparticles

Conclusion

Mesoporous glass Cartilage nanoparticles regeneration Lubricant surface Controlled Adhesive drug thermosensitive delivery hydrogel

Thank you for your attention

