Adaptive Decision Tree Methods

Matias D. Cattaneo Princeton University

April 2023

Talk based on:

- Cattaneo, Klusowski & Tian (2022, CKT): "On the Pointwise Behavior of Recursive Partitioning and Its Implications for Heterogeneous Causal Effect Estimation", arXiv:2211.10805.
- Cattaneo, Chandak & Klusowski (2022, CCK): "Convergence Rates of Oblique Regression Trees for Flexible Function Libraries", arXiv:2210.14429.

Outline

1. Introduction and Overview

2. Pointwise Inconsistency of Axis-Aligned Decision Trees

3. Mean-Square Optimality of Oblique Decision Trees

4. Takeaways

Introduction

Adaptive Decision Trees are widely used in academia and industry.

- ► CART: Breiman, Friedman, Olshen & Stone (1984).
- ▶ Adaptivity: incorporate data features in their construction.
- ▶ Popularity: prime example of "modern" machine learning toolkit.
- ▶ Preferred for interpretability or pointwise learning:

$$y_i = \mu(\mathbf{x}_i) + \varepsilon_i, \qquad \mathbb{E}[\varepsilon_i \mid \mathbf{x}_i] = 0, \qquad \mathbb{E}[\varepsilon_i^2 \mid \mathbf{x}_i] = \sigma^2(\mathbf{x}_i),$$
 $\mathbf{e}[\mathbf{x}_i] = (x_i, x_i), \qquad x_i \in \mathcal{X}$ covariates supported on \mathcal{X}

- where $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{ip})'$ covariates supported on \mathcal{X} .
- ▶ Today: two foundational results for Adaptive Decision Trees.
 - ightharpoonup Axis-aligned: pointwise inconsistent \implies uniformly inconsistent.
 - \blacktriangleright Oblique: mean square consistent \iff Single-hidden layer NN performance.

$$(t_0)$$
----- $K = 0, 2^K = 1$

x

for each
$$K: \min_{j=1,2,\cdots,p} \min_{\beta_1,\beta_2,\tau} \sum_{\mathbf{x},\beta,\mathbf{t}} (y_i - \beta_1 \mathbb{1}(x_{ij} \leq \tau) - \beta_2 \mathbb{1}(x_{ij} > \tau))^2$$

for each
$$K$$
:
$$\min_{j=1,2,\cdots,p} \min_{\beta_1,\beta_2,\tau} \sum_{\mathbf{x}_i \in \mathbf{t}} \left(y_i - \beta_1 \mathbb{1}(x_{ij} \leq \tau) - \beta_2 \mathbb{1}(x_{ij} > \tau) \right)^2$$

for each
$$K$$
:
$$\min_{j=1,2,\cdots,p} \min_{\beta_1,\beta_2,\tau} \sum_{\mathbf{x}_i \in \mathbf{t}} \left(y_i - \beta_1 \mathbb{1}(x_{ij} \leq \tau) - \beta_2 \mathbb{1}(x_{ij} > \tau) \right)^2$$

for each
$$K$$
:
$$\min_{j=1,2,\cdots,p} \min_{\beta_1,\beta_2,\tau} \sum_{\mathbf{x}_i \in \mathbf{t}} \left(y_i - \beta_1 \mathbb{1}(x_{ij} \leq \tau) - \beta_2 \mathbb{1}(x_{ij} > \tau) \right)^2$$

$$\widehat{\mu}(T_K)(\mathbf{x}) = \overline{y}_{\mathbf{t}} = \frac{1}{n(\mathbf{t})} \sum_{\mathbf{x} \in \mathbf{t}} y_i, \qquad n(\mathbf{t}) = \sum_{\mathbf{x} \in \mathbf{t}} \mathbb{1}(\mathbf{x}_i \in \mathbf{t}).$$

CKT (2022): for "honest" trees and $\mu(\mathbf{x}) = \mu$,

$$\mathbb{P}\Big(\sup_{\mathbf{x}\in\mathcal{X}}|\widehat{\mu}(T_K)(\mathbf{x})-\mu|>C\Big)>C^2\qquad\text{if}\quad K\gtrsim\log\log(n),$$

$$\mathbb{E}\left[\|\widehat{\mu}(T_K) - \mu\|^2\right] = \mathbb{E}\left[\int_{\mathbb{R}} (\widehat{\mu}(T_K)(\mathbf{x}) - \mu)^2 \mathbb{P}_{\mathbf{x}}(d\mathbf{x})\right] \le \frac{2^{K+1}\sigma^2}{n+1}.$$

Adaptive Oblique Decision Tree (OCART)

$$\mathbf{a}_{1}^{\mathrm{T}}\mathbf{x} \leq b_{1}$$

$$\mathbf{a}_{1}^{\mathrm{T}}\mathbf{x} > b_{1}$$

$$\mathbf{a}_{2}^{\mathrm{T}}\mathbf{x} > b_{1}$$

$$\mathbf{a}_{2}^{\mathrm{T}}\mathbf{x} > b_{2}$$

$$\mathbf{a}_{3}^{\mathrm{T}}\mathbf{x} \leq b_{3}$$

$$\mathbf{a}_{3}^{\mathrm{T}}\mathbf{x} > b_{3}$$

$$\mathbf{a}_{3}^{\mathrm{T}}\mathbf{x} > b_{3}$$

$$\widehat{\mu}(T_K)(\mathbf{x}) = \overline{y}_{\mathbf{t}} = \frac{1}{n(\mathbf{t})} \sum_{\mathbf{x}_i \in \mathbf{t}} y_i, \qquad n(\mathbf{t}) = \sum_{\mathbf{x}_i \in \mathbf{t}} \mathbb{1}(\mathbf{x}_i \in \mathbf{t}).$$

CCK (2022): for "full-sample" trees and $\mu \in \text{Barron class}$,

$$\mathbb{E}\left[\|\widehat{\mu}(T_K) - \mu\|^2\right] \lesssim \frac{\|f\|_{\mathcal{L}_1}^2 \mathbb{E}\left[\max_{\mathbf{t} \in [T_K]} P_{\mathcal{A}_{\mathbf{t}}}^{-1}(\kappa)\right]}{\kappa K} + \frac{2^K d \log(np/d) \log^{4/\gamma}(n)}{n},$$

$$\mathbb{E}\left[\|\widehat{\mu}(T_{\text{opt}}) - \mu\|^2\right] \lesssim \left(\frac{p \log^{4/\gamma+1}(n)}{n}\right)^{2/(2+q)} \approx \text{Optimal rate 1-HL NN}.$$

Single-Hidden Layer Neural Network with K Hidden Nodes

OCART
$$\iff \phi(\cdot) = \text{ReLU}$$

▶ More generally, from the optimization community, feed-forward neural networks with Heaviside activations can be transformed into oblique decision trees with the same training error. See Bertsimas et al. (2018, 2021).

Outline

1. Introduction and Overview

- 2. Pointwise Inconsistency of Axis-Aligned Decision Trees
- 3. Mean-Square Optimality of Oblique Decision Trees

4. Takeaways

Motivation: Heterogeneous TE, Policy Decisions, Design RCTs, etc.

- $\blacktriangleright \{(y_i, \mathbf{x}'_i, d_i) : i = 1, 2, ..., n\} \text{ i.i.d., and } y_i = y_i(1) \cdot d_i + y_i(0) \cdot (1 d_i).$
- ▶ RCT: $(y_i(0), y_i(1), \mathbf{x}_i^T) \perp d_i \text{ and } \xi = \mathbb{P}(d_i = 1) \in (0, 1), \text{ so}$

$$\theta(\mathbf{x}_i) = \mathbb{E}[y_i \mid \mathbf{x}_i, \ d_i = 1] - \mathbb{E}[y_i \mid \mathbf{x}_i, \ d_i = 0] = \mathbb{E}\Big[y_i \frac{d_i - \xi}{\xi(1 - \xi)} \mid \mathbf{x}_i\Big].$$

** "Honest" Causal Decision Trees (Athey and Imbens, 2019): adaptive tree T_K with sample splitting,

$$\hat{\theta}_{\text{reg}}(T_K)(\mathbf{x}) = \frac{1}{\#\{\mathbf{x}_i \in \mathbf{t} : d_i = 1\}} \sum_{\mathbf{x}_i \in \mathbf{t} : d_i = 1\}} y_i - \frac{1}{\#\{\mathbf{x}_i \in \mathbf{t} : d_i = 0\}} \sum_{\mathbf{x}_i \in \mathbf{t} : d_i = 0\}} y_i$$

or

$$\hat{ heta}_{ ext{ipw}}(T_K)(\mathbf{x}) = rac{1}{\#\{\mathbf{x}_i \in \mathbf{t}\}} \sum_{\mathbf{x}_i \in \mathbf{t}} y_i rac{d_i - \xi}{\xi(1 - \xi)},$$

where recall t denotes the unique (terminal) node containing $\mathbf{x} \in \mathcal{X}$.

Setup: Constant (Treatment Effect/Regression) Model

$$y_i = \mu(\mathbf{x}_i) + \varepsilon_i, \quad \mathbb{E}[\varepsilon_i \mid \mathbf{x}_i] = 0, \quad \mathbb{E}[\varepsilon_i^2 \mid \mathbf{x}_i] = \sigma^2(\mathbf{x}_i)$$

The following conditions hold.

- 1. (y_i, \mathbf{x}'_i) , $i = 1, 2, \dots, n$, is a random sample.
- 2. $\mu(\mathbf{x}) \equiv \mu$ is constant for all $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^p$.
- 3. \mathbf{x}_i has a continuous distribution.
- 4. $\mathbf{x}_i \perp \varepsilon_i$ for all $i = 1, 2, \dots, n$.
- 5. $\mathbb{E}[|\varepsilon_i|^{2+\nu}] < \infty$ for some $\nu > 0$.

CKT (2022): axis-aligned adaptive (CART) decision trees.

- 1. Decision stumps (K = 1) split with high probability "near" the boundaries.
- 2. $\widehat{\mu}(T_1)(\mathbf{x})$ has at best polylog(n) convergence rate near boundaries.
- 3. "Honest" $\widehat{\mu}(T_K)(\mathbf{x})$ are uniformly inconsistent as soon as $K \gtrsim \log \log(n)$.
 - ▶ n = 1 billion implies depth $\log \log(n) \approx 3$.
 - Inconsistency occurs at countable many points on support, not just at boundaries.
- 4. Pruning does not solve the inconsistency.

Decision Stumps: polylog(n) Convergence Rate Near Boundaries

Recall: for each level K, adaptive (CART) decision trees solve

$$\min_{j=1,2,\dots,p} \min_{\beta_1,\beta_2,\tau} \sum_{\mathbf{x}_i \in \mathbf{t}} \left(y_i - \beta_1 \mathbb{1}(x_{ij} \le \tau) - \beta_2 \mathbb{1}(x_{ij} > \tau) \right)^2,$$

which is equivalent to maximizing the so-called impurity gain

$$\sum_{\mathbf{x}_{l} \in \mathbf{t}} (y_{l} - \mu)^{2} - \sum_{\mathbf{x}_{l} \in \mathbf{t}} (y_{l} - \overline{y}_{\mathbf{t}_{L}} \mathbb{1}(x_{lj} \leq \tau) - \overline{y}_{\mathbf{t}_{R}} \mathbb{1}(x_{lj} > \tau))^{2}$$

$$= \left(\frac{1}{\sqrt{i}} \sum_{l=1}^{i} (y_{[l]} - \mu)\right)^{2} + \left(\frac{1}{\sqrt{n(\mathbf{t}) - i}} \sum_{l=i+1}^{n(\mathbf{t})} (y_{[l]} - \mu)\right)^{2}$$

with respect to index i and variable j, after reordering the data \implies $(\hat{\imath}, \hat{\jmath})$.

▶ Darling-Erdös (1956) limit law (Berkes & Weber, 2006): for any non-decreasing function $1 \le h(m) \le m$ for which $\lim_{m\to\infty} h(m) = \infty$ and any $w \in \mathbb{R}$,

$$\mathbb{P}\left(\max_{m/h(m) \le i \le m} \left| \frac{1}{\sqrt{i}} \sum_{l=1}^{i} (y_l - \mu) \right| < \lambda(h(m), w) \right) \to e^{e^{-w}}, \tag{1}$$

as $m \to \infty$, where $\lambda(\cdot, \cdot)$ is known.

Decision Stumps: polylog(n) Convergence Rate Near Boundaries

Careful study of maximum over different ranges of the split index give:

Theorem

For each $\gamma \in (0, 1/2]$ and $\delta \in (0, 1)$, there exists a constant $C = C(\gamma, \delta)$ and positive integer $N = N(\gamma, \delta)$ such that, for all $n \geq N$,

$$\mathbb{P}\Big(\sup_{\mathbf{x}\in\mathcal{X}}|\hat{\mu}(T_1)(\mathbf{x})-\mu|\geq C\sigma n^{-\gamma}\sqrt{\log\log(n)}\Big)\geq 1-\delta.$$

- ▶ Decision stumps <u>cannot</u> converge at a polynomial rate, i.e., its rate is slower than any polynomial-in-n.
- ▶ With arbitrary high probability, split index $\hat{\imath}$ will concentrate near its extremes, from the beginning of any tree construction.
- ▶ The first split generates cell containing, at most, $\log^a(n)$ observations, with probability at least $(\log(n))^{-b}$, up to constant factors.
- Too few observations will be available on one of the cells after the first split for CART to deliver a polynomial-in-n consistent estimator of μ .

"Honest" (Decision/Causal) Trees: Uniform Inconsistency

Iterating nearly inconsistent decision stumps can only make things worse... Thus, employing "honesty" (i.e., sample splitting), we have:

Theorem

Consider a maximal depth $K \gtrsim \log\log(n)$ tree T_K constructed with CART+ methodology. Then, there exists a positive constant Q and a positive integer N such that, for all $n \geq N$,

$$\mathbb{P}\Big(\sup_{x\in\mathcal{X}}|\widehat{\mu}(T_K)(x)-\mu|>Q\Big)>Q^2.$$

- ▶ Shallow "Honest" decision/causal trees are uniformly inconsistent.
- ▶ Inconsistency due to variance issue, not to boundary/misspecification bias.
- ▶ Inconsistency can occur at *countable* many points on the *entire* support \mathcal{X} .
- ▶ Pruning does not mitigate the inconsistency.
- Non-constant μ have similar problems: e.g., piecewise heterogeneity.

Simulations: Decision Stumps (K = 1) for Constant (Treatment) Model

(a) Pointwise RMSE of decision stump.

(b) Pointwise RMSE of causal decision stump.

Simulations: Decision Stumps (K = 1) with Pruning

(a) Pointwise RMSE for pruned tree at $\mathbf{x} = (0, x_2)^T$.

(b) Pointwise RMSE for pruned causal tree at $\mathbf{x} = (0, x_2)^T$.

Outline

1. Introduction and Overview

- 2. Pointwise Inconsistency of Axis-Aligned Decision Trees
- 3. Mean-Square Optimality of Oblique Decision Trees

4. Takeaways

Motivation

- ▶ Popular belief: decision trees compromise accuracy for being easy to use and understand, whereas neural networks are more accurate but less transparent.
- ▶ However, growing body of empirical work in optimization literature shows that certain trees are competitive with neural networks.

			Number	Decision Tree		2-Layer NN	
classification dataset	n	p	Classes	DT depth	L2 Error	Width	L2 Error
Bank Marketing	45,211	17	2	3	89.6%	8	89.6%
Framingham Heart Study	3,658	15	2	2	83.3%	4	82.1%
Image Segmentation	210	18	7	4	88.4%	16	88.4%
Letter Recognition	20,000	16	26	8	68.2%	64	66.8%
Magic Gamma Telescope	19,020	10	2	4	86.7%	16	86.5%
Škin Segmentation	245,057	3	2	4	99.9%	16	99.9%
Thyroid Disease ANN	3,772	21	3	3	99.9%	8	97.7%

Table: Bertsimas et al., (2018)

- ▶ Question: Is there a theoretical basis for this?
- ▶ Key advantages of binary (adaptive) decision trees:
 - ► Interpretability.
 - ▶ Connection to rule-based decision-making.
 - Mimics way doctor or business manager thinks.

Adaptive Axis-Aligned vs. Oblique Decision Tree (CART vs. OCART)

- ightharpoonup Maximal decision trees with depth K=2.
- ▶ OCART: splits occur along hyperplanes ⇒ partitions are convex polytopes.

$$\widehat{\mu}(T_K)(\mathbf{x}) = \overline{y}_{\mathbf{t}} = \frac{1}{n(\mathbf{t})} \sum_{\mathbf{x}_i \in \mathbf{t}} y_i, \qquad n(\mathbf{t}) = \sum_{\mathbf{x}_i \in \mathbf{t}} \mathbb{1}(\mathbf{x}_i \in \mathbf{t}).$$

Oblique Tree Construction

▶ CART methodology: parent node \mathbf{t} (region in \mathbb{R}^p) is divided into two child nodes, \mathbf{t}_L and \mathbf{t}_R , by finding least squares decision stump

$$\psi(\mathbf{x}) = \beta_1 \mathbb{1}(\mathbf{a}'\mathbf{x} \le b) + \beta_2 \mathbb{1}(\mathbf{a}'\mathbf{x} > b).$$

► Maximize decrease in sum-of-squares error

$$\widehat{\Delta}(b, \mathbf{a}, \mathbf{t}) = \sum_{\mathbf{x}_i \in \mathbf{t}} (y_i - \overline{y}_{\mathbf{t}})^2 - \sum_{\mathbf{x}_i \in \mathbf{t}} (y_i - \psi(\mathbf{x}_i))^2$$

with respect to (b, \mathbf{a}) .

▶ Greedy Refinement of Partition: Optimizers $(\hat{b}, \hat{\mathbf{a}})$ produce refinement of parent node \mathbf{t} via child nodes

$$\mathbf{t}_L = \{ \mathbf{x} \in \mathbf{t} : \hat{\mathbf{a}}' \mathbf{x} \le \hat{b} \}, \quad \mathbf{t}_R = \{ \mathbf{x} \in \mathbf{t} : \hat{\mathbf{a}}' \mathbf{x} > \hat{b} \}.$$

▶ Child nodes become new parent nodes at next level and can be further refined in same manner until desired depth *D* is reached.

Computational Challenges and Framework

- ightharpoonup Challenging to find direction $\hat{\mathbf{a}}$ that minimizes squared error.
- ▶ Restrict search space to more tractable subset of candidate directions $\mathbf{a} \in \mathcal{A}_{\mathbf{t}}$ and allow slackness factor κ :

$$P_{\mathcal{A}_{\mathbf{t}}}(\kappa) = \mathbb{P}_{\mathcal{A}_{\mathbf{t}}}\left(\max_{(b,\mathbf{a}) \in \mathbb{R} \times \mathcal{A}_{\mathbf{t}}} \widehat{\Delta}(b,\mathbf{a},\mathbf{t}) \ge \kappa \max_{(b,\mathbf{a}) \in \mathbb{R}^{1+p}} \widehat{\Delta}(b,\mathbf{a},\mathbf{t})\right)$$

- ▶ Choose meaningful method for generating A_t so that $P_{A_t}(\kappa) \ge \rho > 0$, a.s.
 - ▶ **Deterministic.** Direct optimization, i.e., $A_t = \mathbb{R}^p$; solve least squares problem using mixed-integer linear optimization.
 - ▶ Purely random. Generate candidate directions A_t uniformly at random (à la random forests).
 - ▶ Data-driven. Use dimension-reduction techniques on separate sample, e.g., $\mathcal{A}_{\mathbf{t}}$ defined in terms of top principle components produced by PCA or LDA, or, similarly, in terms of relevant variables selected by Lasso.

Function Class Approximations: 2-Layer NN vs. Tree Expansions

▶ 2-Layer Neural Networks: distributed hierarchical representations

$$\left\{ g(\mathbf{x}) = \sum_{k} c_k \phi(\mathbf{a}_k' \mathbf{x}), \ c_k \in \mathbb{R}, \ \mathbf{a}_k \in \mathbb{R}^p \right\}$$

Fixed activation function ϕ (e.g., ReLU).

▶ Decision Trees:

$$\left\{g(\mathbf{x}) = \sum_{k} c_k \mathbb{1}(\mathbf{x} \in \mathbf{t}_k) : c_k \in \mathbb{R}, \ \mathbf{t}_k \text{ disjoint convex polytope}\right\}$$

Regions \mathbf{t}_k are determined by sequence of linear constraints, $\mathbf{a}'\mathbf{x} \leq b$ or $\mathbf{a}'\mathbf{x} > b$.

▶ Very different functional forms.

Three Key Assumptions

1. Regularity: Define norm of $\mu(\mathbf{x}) = \sum_k c_k \phi(\mathbf{a}_k'\mathbf{x})$ on region t by

$$\|\mu\|_{\mathcal{L}_1(\mathbf{t})} = \sum_k |c_k| V_k(\mathbf{t}),$$

where $V_k(\mathbf{t})$ is total variation of ϕ on interval $[\min_{\mathbf{x} \in \mathbf{t}} \mathbf{a}_k' \mathbf{x}, \max_{\mathbf{x} \in \mathbf{t}} \mathbf{a}_k' \mathbf{x}]$.

- ▶ Measures how much μ varies on region \mathbf{t} .
- Example: If $\mu(\mathbf{x}) = \boldsymbol{\beta}' \mathbf{x}$, then $\|\mu\|_{\mathcal{L}_1([0,1]^p)} = \|\boldsymbol{\beta}\|_{\ell_1}$.
- 2. **Sparsity**: There exist V > 0 and q > 2 such that

$$\mathbb{E}\left[\sum_{\mathbf{t}\in T_K} \|\mu\|_{\mathcal{L}_1(\mathbf{t})}^q\right] \le V^q$$

- \triangleright ℓ_q constraint on total variations of μ across all terminal nodes of tree.
- Ensures compatibility between tree and ridge expansion.
- 3. Node Size: There exist A = polylog(n) and $\nu \ge 1 + 2/(q-2)$ such that

$$\left(\mathbb{E}\left[\left(\max_{\mathbf{t}\in T_K} n(\mathbf{t})\right)^{\nu}\right]\right)^{1/\nu} \leq \frac{An}{2^K}$$

- ▶ No region contains disproportionately more observations than average $(n/2^K)$.
- ▶ Allows for some regions to contain very few observations.

Expected Training / Prediction Error

- ► Training error of tree: $||y \widehat{\mu}(T_K)||_n^2 = \frac{1}{n} \sum_i (y_i \widehat{\mu}(T_K)(\mathbf{x}_i))^2$
- ► Prediction error of tree: $\|\mu \widehat{\mu}(T_K)\|^2 = \int (\mu(\mathbf{x}) \widehat{\mu}(T_K)(\mathbf{x}))^2 d\mathbb{P}_{\mathbf{x}}$

Theorem

For any depth $K \ge 1$, $\mathbb{E}[\|y - \widehat{\mu}(T_K)\|_n^2 - \|y - \mu\|_n^2] \le 4^{-(K-1)/q} \frac{AV^2}{\rho \kappa}$.

Furthermore, if $K \approx \frac{q}{2+q} \log_2(n/p)$, then

$$\mathbb{E}\left[\|\widehat{\mu}(T_K) - \mu\|^2\right] \le C\left(\frac{p}{n}\right)^{2/(2+q)}$$

Statistical Accuracy Comparisons:

▶ When $q \approx 2$, convergence rate

$$\left(\frac{p}{n}\right)^{2/(2+q)} \approx \left(\frac{p}{n}\right)^{1/2}$$

same as for least squares neural network estimators (Barron, 1994).

- ightharpoonup q plays role of effective dimension, not ambient dimension p.
- ▶ If μ is smooth, we expect $q \le p$, and so convergence rate always at least as fast as minimax optimal rate: $(1/n)^{2/(2+p)}$.

Discussion

▶ Pruned Tree: same guarantees hold for pruned subtree that minimizes penalized risk

$$T_{\text{opt}} \in \underset{T \leq T_{\text{max}}}{\arg\min} \left\{ \|y - \widehat{\mu}(T)\|_n^2 + \lambda |T| \right\},$$

where $\lambda \gtrsim p/n$. Optimal subtree $T_{\rm opt}$ can be found efficiently.

Key Technical Idea: tree output $\widehat{\mu}(T_D)$ is orthogonal projection of y onto span of orthonormal functions $\psi_{\mathbf{t}} = \psi_{\mathbf{t}}(b, \mathbf{a})$. That is,

$$\widehat{\mu}(T_D)(\mathbf{x}) = \sum_{\mathbf{t} \in T_D} \langle y, \psi_{\mathbf{t}} \rangle \, \psi_{\mathbf{t}}(\mathbf{x}),$$

where $\langle y, \psi_{\mathbf{t}} \rangle = \frac{1}{n} \sum_{i} (y_i - \overline{y}_{\mathbf{t}}) \psi_{\mathbf{t}}(\mathbf{x}_i)$ is empirical inner product, maximized at least squares solution $(\hat{b}, \hat{\mathbf{a}})$.

▶ Connections to Linear Regression: similar to forward-stepwise regression. At each current decision node \mathbf{t} , tree is grown by selecting "feature", $\psi_{\mathbf{t}}$, most correlated with residuals, $y_i - \overline{y}_{\mathbf{t}}$, and adding chosen feature along with coefficient, $\langle y, \psi_{\mathbf{t}} \rangle$, to tree output:

$$\widehat{\mu}(T_{D+1})(\mathbf{x}) = \widehat{\mu}(T_D)(\mathbf{x}) + \langle y, \psi_{\mathbf{t}} \rangle \psi_{\mathbf{t}}(\mathbf{x}).$$

Outline

1. Introduction and Overview

- 2. Pointwise Inconsistency of Axis-Aligned Decision Trees
- 3. Mean-Square Optimality of Oblique Decision Trees

4. Takeaways

Takeaways

Adaptive Decision Trees are a leading component of the machine learning toolkit.

- ▶ Today: two foundational results for Adaptive Decision Trees.
 - ► Axis-aligned: pointwise inconsistent ⇒ uniformly inconsistent.
 - lacktriangle Oblique: mean square consistent \iff Single-hidden layer NN performance.
- ▶ Adaptive ML methods have advantages and disadvantages.
- ▶ Statistical and algorithmic implementations must be studied together.
- ▶ Mechanical implementations of machine learning can be detrimental.
- ▶ Open question: do other machine learning methods have similar problems?

References

Today:

- C, Klusowski & Tian (2022): "On the Pointwise Behavior of Recursive Partitioning and Its Implications for Heterogeneous Causal Effect Estimation", arXiv:2211.10805.
- C, Chandak & Klusowski (2022): "Convergence Rates of Oblique Regression Trees for Flexible Function Libraries", arXiv:2210.14429.

Further Reading:

- C & Farrell (2013): "Optimal Convergence Rates, Bahadur Representation, and Asymptotic Normality of Partitioning Estimators", Journal of Econometrics 174(2): 127-143.
- C, Farrell & Feng (2020): "Large Sample Properties of Partitioning-Based Series Estimators", Annals of Statistics 48(3): 1718-1741.
- 3. C, Crump, Farrell & Feng (2023): "On Binscatter", arXiv:1902.09608.
- 4. C, Crump, Farrell & Feng (2023): "Generalized Binscatter Methods", coming soon.
- C, Klusowski & Underwoord (2023): "Estimation and Inference using Mondrian Random Forests", coming soon.
- C, Feng & Shigida (2023): "Uniform Inference for Partitioning-Based Quantile and Other Non-Linear Regression Estimators", coming soon.