Simplex e Pontos Interiores

Pedro Loes e Felipe Sadock

09/07/2021

O método de otimização Simplex possui a característica de encontrar a solução exata em um problema de programação linear, porém, em problemas de grande dimensão, o algoritmo apresenta alto custo computacional para atingir a convergência. O método de optimização Pontos Interiores apresenta baixo custo computacional em problemas de grande dimensão, mas apresenta resultados que apenas aproximam a solução ótima. O objetivo deste projeto foi ilustrar o funcionamento desses dois algoritmos e compará-los por meio de simulações para identificar suas vantagens e desvantagens.

0. Introdução

- O projeto foi dividido em 4 etapas que objetivam explicar e explorar os métodos de Otimização Simplex e Pontos Interiores comparando suas performances.
 - 1. Método Simplex
 - Desenvolvimento de uma explicação geral, descrição do funcionamento matemático do método, exemplo simples resolvido passo a passo e mecânica da convergência ilustrada graficamente.
 - 2. Método Pontos Interiores
 - Desenvolvimento de uma explicação geral, descrição do funcionamento matemático do método, exemplo simples resolvido passo a passo e mecânica da convergência ilustrada graficamente.
 - 3. Simulação Simplex e Pontos Interiores
 - Desenvolvimento de simulação de todas as combinações de 100 variáveis com 100 restrições aleatórias e exibição dos resultados ilustrados em gráficos de número de iterações e diferença entre máximos.
 - 4. Referências Bibliográficas
 - Indicação de todo o material consultado para o desenvolvimento do projeto.
- A biblioteca Scipy da linguagem Python foi utilizada para implementar os algoritmos Simplex e Pontos Interiores. Os gráficos foram produzidos com as bibliotecas Plotly e Seaborn da linguagem Python. O relatório no formato pdf foi produzido no IDE RStudio com a linguagem RMarkdown.

1. Método Simplex

 A ideia básica do simplex é caminhar pelos vértices do politopo de restrições passando de uma base para outra com a utilização de variáveis de folga para encontrar o máximo da função objetivo.

Descrição

- Cada base corresponde a um valor para a função. Um deles é o valor máximo da função \mathbf{F} . A próxima base será escolhida de forma que o valor da função \mathbf{F} não seja menor do que o anterior.
- Uma variável é chamada de variável básica de uma equação se entrar nesta equação com um coeficiente de um e não entrar em outro sistema de equações. Se cada equação tem uma variável básica, pode-se dizer que o sistema tem uma base.

Funcionamento

- Para alternar as bases são usadas tabelas. Cada linha da tabela é equivalente a uma equação do sistema. O método consiste em escolher a coluna com um coeficiente positivo de forma iterativa para obter um valor da função objetivo que não seja inferior aos seus antecessores.
- Para os coeficientes positivos da coluna selecionada, observa-se o coeficiente θ e a linha com valor mínimo é selecionada. Quando não existirem mais coeficientes positivos na linha da função o valor máximo pode ser calculado.

Exemplo

- Para ilustrar o funcionamento do algoritmo foi escolhido um problema de $2^{\mathbf{o}}$ dimensão representado pelas variáveis x_1 e x_2 e restringido por $\mathbf{3}$ desigualdades do tipo \leq representadas pela matriz \mathbf{A} e vetor \mathbf{b} de valores das restrições.
- Função Objetivo:

$$- f(x_1, x_2) = 3x_1 + 5x_2$$

• Matriz de Restrições:

$$-A = \begin{bmatrix} 3x_1 + 2x_2 \\ x_1 \\ x_2 \end{bmatrix}$$

• Vetor Resposta:

$$-b = \begin{bmatrix} 18\\4\\6 \end{bmatrix}$$

• Domínio:

$$\begin{array}{rcl}
-x_1 & \geq & 0 \\
-x_2 & \geq & 0
\end{array}$$

• Os passos da evolução do algoritmo em direção a convergência do máximo foram representados no formato de tabelas para ilustrar a caminhada pelas bases geradas com a adição de $\bf 3$ variáveis de folga (slack) S_1 , S_2 e S_3 .

2

• Iteração 1

- Verifica-se que a variável x_2 apresenta menor θ e calcula $f(x_1 = 0, x_2 = 0) = 0$.
- A base inicial será $S_1 = 18$, $S_2 = 4$ e $S_3 = 6$.
- Transformando S_3 para $S_3=0$ as bases passam a ser $x_2=6,\,S_1=6$ e $S_2=4$.
- $f(x_1 = 0, x_2 = 6) = 30.$

x ₁	x_2	S_1	S_2	S_3	Base	Θ
3	2	1	0	0	18	18 : 2 = 9
1	0	0	1	0	4	
0	1	0	0	1	6	6 : 1 = <u>6</u>
3	<u>5</u>	0	0	0	F - 0	
3	0	1	0	-2	6	
1	0	0	1	0	4	
0	1	0	0	1	6	
3	0	0	0	-5	F - 30	

• Iteração 2

- Verifica-se que a variável x_1 apresenta menor θ
- Transformando a variável S_1 para $S_1=0$ as bases passam a ser $x_1=2,\,x_2=6$ e $S_2=2.$
- $f(x_1 = 2, x_2 = 6) = 36.$

x ₁	x ₂	S ₁	S_2	S_3	Base	Θ
3	0	1	0	-2	6	6 : 3 = <u>2</u>
1	0	0	1	0	4	4 : 1 = 4
0	1	0	0	1	6	
3	0	0	0	-5	F - 30	
1	0	1/3	0	-2/3	2	
1	0	0	1	0	4	
0	1	0	0	1	6	
3	0	0	0	-5	F - 30	
1	0	1/3	0	-2/3	2	
0	0	-1/3	1	2/3	2	
0	1	0	0	1	6	
0	0	-1	0	-3	F - 36	

• Resultado

 A primeira e segunda colunas apresentaram valores pivôs na primeira e terceira linhas indicando a posição no vértice (2,6) como solução de máximo da função objetivo.

Convergência

- Para ilustrar o caminho do algoritmo Simplex no espaço de busca foi utilizado o pacote Plotly que permitiu a construção de uma figura com 3 dimensões.
- A variável x_1 do problema foi representada pelo eixo \mathbf{x} do gráfico, a variável x_2 do problema foi representada pelo eixo \mathbf{y} do gráfico e a imagem da função objetivo foi representada pelo eixo \mathbf{z} do gráfico.
- O politopo de segunda dimensão formado pelas restrições do problema foi representado por semiplanos na cor vermelha que se expandem sobre o eixo z onde a função objetivo assume valores correspondentes à posição dos vértices do politopo.
- O caminho do algoritmo pelos vértices do politopo para convergência do valor máximo da função objetivo foi representado pelos círculos na cor verde verde.

Convergência do Máximo Algoritmo Simplex

- O algoritmo inicia no infinito considerando a função objetivo sem restrições.
- 1º Atinge o vértice x = 0 e y = 6 com f(x, y) = 30.
- 2° Atinge o vértice $\mathbf{x} = \mathbf{2}$ e $\mathbf{y} = \mathbf{6}$ convergindo para $\max \mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{36}$.
- O funcionamento do algoritmo animado pode ser visualizado no link:
 - https://colab.research.google.com

2. Método Pontos Interiores

• A ideia principal do algoritmo de Pontos Interiores é caminhar internamente no politopo nas melhores direções sem violar a fronteira de restrições com intuito de convergir rapidamente para um valor próximo do máximo da função objetivo.

Descrição

- Para inicializar o algoritmo é escolhido um vetor X_0 arbitrariamente definido diferente do vetor nulo é uma variável $\gamma \in [0,1]$ que controla a distância percorrida em cada passo.
- Quando o algoritmo é iniciado é calculada a distância do ponto em relação a cada restrição. A parte mais importante do algoritmo é o uso da álgebra linear para calcular a direção que gera maior crescimento monótono da função objetivo utilizando a técnica de derivada direcional.

Funcionamento

- Passo 1:
 - Escolher x^0 diferente do vetor nulo para ser o ponto inicial dentro do politopo e escolher uma variável γ de forma que:
 - $-Ax^0 < b \quad e \quad 0 < \gamma < 1$
- Passo 2:
 - Calcular a folga, ou seja, a distância do ponto em relação à cada restrição indicando ${\bf k}={\bf k}+{\bf 1}.$ $-v^k = b - Ax^k = [v_1^k, v_1^k, ..., v_m^k]^T$
- Passo 3:

 - $\begin{array}{lll} \text{ Calcular a matriz diagonal.} \\ D_k &= diag \ \left[\frac{1}{v_1^k}, \frac{1}{v_2^k}, ..., \frac{1}{v_m^k}\right] \end{array}$
- Passo 4:
 - Calcular a projeção na fronteira da esfera.
 - $(A^T D_K D_k A) d_x^k = c$
- Passo 5:
 - Escalar a direção projetada d_x^k $d_v^k = -A d_x^k [(dv)_1, (dv)_2, ..., (dv)_m]^T$
- Passo 6:

 - Calcular o tamanho da caminhada na direção escolhida. $\alpha~=~\gamma~MAX~(~\frac{v_i^k}{(d_v)_i}~<~0~)$
- Passo 7:
 - Calcular novo ponto interior $x^{k+1} = x^k \alpha d_x^k$
- - Verificar a parada das interações do algoritmo quando encontrar uma diferença entre a última solução e a anterior inferior à tolerância arbitrariamente definida.
 - $-\frac{\begin{vmatrix} b^T Y^k c^T x^k \end{vmatrix}}{MAX(1 \mid c^T x^k)} < \epsilon$

Exemplo

• Foi utilizado o mesmo problema do algoritmo Simplex para comparação das mecânicas e resultados.

It	dv	alpha	(x, y)	F(x, y)
0	-	-	(1, 1)	7
1	(2.4, 4.6)	-0.78	(2.9, 4.6)	31.65
2	(-2, 3.1)	-0.45	(1.97, 5.98)	35.84
3	(2.4, 4.3)	-0.03	(2, 5.99)	35.97

Convergência

• O mesmo gráfico em terceira dimensão foi utilizado para ilustrar a mecânica do algoritmo Pontos Interiores.

Convergência do Máximo Algoritmo Pontos Interiores

- O algoritmo inicia no ponto $x_0 = (1, 1)$ com f(x, y) = 8.
- 1º Caminha para o ponto x = 2.89 e y = 4.59 com f(x, y) = 31.65.
- 2° Caminha para o ponto x = 1.97 e y = 5.98 com <math>f(x, y) = 35.84.
- 3º Caminha para o ponto x = 2 e y = 5.99 convergindo para $\max f(x, y) = 35.97$.
- O funcionamento do algoritmo animado pode ser visualizado no link:
 - https://colab.research.google.com

3. Simulação Simplex e Pontos Interiores

- A função optimizar foi construída para amostrar problemas com V variáveis, $V \in [2,100]$ e R restrições, $R \in [1,100]$, definir limites das variáveis e executar os 2 métodos de optimização. Quatro matrizes de dimensão $M_{100,100}$ foram geradas para armazenar os resultados das 5000 simulações. Dois laços foram utilizados para combinar variáveis e restrições. Para padronizar o experimento foi adotado o critério de número de restrições menor ou igual ao número de variáveis. Por exemplo, simulações com 2 variáveis e 100 restrições não foram consideradas devido à redundância de cortes aleatórios no politopo.
- Passos da Simulação:
 - 1. Sorteia amostra.
 - 2. Executa otimizações.
 - 3. Recupera resultados em matrizes $M_{(V,V)}$

```
# Define função optimizar
def optimizar(V, R):
  # Declara amostra aleatoria de problema LP
  A = np.random.randint(1000, size=(R * V)).reshape((R, V))
  b = np.random.randint(1000, 10000, size=(R))
  c = np.random.randint(1, 1000, size=(V)) * -1
  limites x = [(0, superior) for superior in np.random.randint(1, 100, size = (V))]
  # Executa otimizações
  s = linprog(c, A_ub=A, b_ub=b, bounds=(limites_x), method='simplex')
  pi = linprog(c, A_ub=A, b_ub=b, bounds=(limites_x), method='interior-point')
  # Retorna resutados
  return(s.nit, -1 * s.fun, pi.nit, -1 * pi.fun)
# Declara matrizes de resultados
pi_i = np.zeros(shape = (V, V))
pi_f = np.zeros(shape = (V, V))
s_i = np.zeros(shape = (V, V))
s_f = np.zeros(shape = (V, V))
# Declara número de variáveis para simulação
V = 100
# Laço para simulação de variáveis e restrições
for v in np.arange(2, V):
  # Declara contator de restrições
  # Laço para restrições menores que variáveis
  while(r <= v):
    # Popula matrizes de resultados
   s_i[v, r], s_f[v, r], pi_i[v, r], pi_f[v, r] = optimizar(v, r)
   # Incrementa contador de restrições
   r += 1
```

Mapa de Calor Iterações Simplex

• O eixo **x** foi utilizado para representar o número de variáveis do problema. No eixo **y** foi representado o número de restrições do problema. O **gradiente** das cores vermelho até azul foi utilizado para representar o número de iterações gastas para convergência.

- Dimensões de até 30 variáveis e 30 restrições apresentaram custo inferior a 100 iterações.
- Dimensões de 30 até 60 apresentaram custo entre 100 e 300 iterações.
- Dimensões superiores a 60 apresentaram custo computacional de 300 até 600 iterações.

Mapa de Calor Iterações Pontos Iteriores

• O gráfico do tipo mapa de calor foi produzido para ilustrar os resultados do número de iterações da simulação Pontos Interiores. No eixo **x** foi representado o número de variáveis do problema. No eixo **y** foi representado o número de restrições do problema. O **gradiente** das cores vermelho até azul foi utilizado para representar o número de iterações gastas para convergência.

- Dimensões de até 30 variáveis e 30 restrições apresentaram custo inferior a 10 iterações.
- Dimensões de 30 até 60 apresentaram custo entre 10 e 15 iterações.
- Dimensões superiores a 60 apresentaram custo computacional de 15 até 20 iterações.

Comparação de Custo Computacional

- Dimensões de até 30 variáveis e restrições, o Simplex apresentou custo de 5 até 8 vezes maior.
- Dimensões de 30 até 60 variáveis e restrições, o Simplex apresentou custo de 8 até 13 vezes maior.
- Dimensões de 60 até 100 variáveis e restrições, o Simplex apresentou custo de 20 até 25 vezes maior.
- Pontos Interiores apresentou maior mistura de custos, com destaque para correlação positiva da iteração com aumento do número de variáveis. Simplex apresentou regiões mais bem definidas, com poucas observações discrepantes e correlação semelhante com as duas variáveis.

Mapa de Calor Diferença de Máximos

- No eixo **x** foi representado o número de variáveis do problema. No eixo **y** foi representado o número de restrições do problema. O **gradiente** das cores vermelho até azul foi utilizado para representar a diferença entre os máximos de cada método.
- \bullet O resultados das diferenças foram transformados para escala log_{10} devido à distribuição assimétrica.

- Dimensões com 1 até 10 restrições apresentaram mais diferenças na ordem de $[10^{-6}, 10^{-4}]$.
- Dimensões superiores a 10 restrições apresentaram dispersão aleatória de diferenças.
- A amplitude de diferenças apresentou variação $[10^{-11}, 10^{-4}]$.
- A magnitude entre a maior e a menor diferença foi da ordem de 10^{-7} .

Comparação de Máximos

- O algoritmo Simplex apresentou máximos superiores na ordem de até 10⁻⁴ em relação a performance do algoritmo de Pontos Iteriores.
- A maioria, ou 90% das diferenças encontradas, foram iguais ou inferiores a 10⁻⁶. Tal fato indica que apenas em problemas que demandam extrema precisão científica o máximo encontrado pelo algoritmo de Pontos Interiores poderia ser considerado um erro na precisão da solução.

6. Referências

- Dantzig, George Bernard, "The Simplex Method" Santa Monica, CA: RAND Corporation, 1956.
- A. Vannelli, "Teaching large-scale optimization by an interior point approach" in IEEE Transactions on Education, vol. 36, no. 1, pp. 204-209, Feb. 1993, doi: 10.1109/13.204847.
- plotly.graph.objects.Figure
- optimize.linprog-simplex

- $\bullet \ \ optimize. lin prog-interior-point$
- seaborn.heatmap
- $\bullet \hspace{0.2cm} simplex.method.lpp$