

Wideband SPDT Diversity Switch with High Switching Speed

Features

- · High switching speed
- High linearity up to 26 dBm input power
- Low insertion loss and high port to port isolation up to 6 GHz
- Low current consumption
- On-chip control logic
- Ultra low profile lead-less plastic package
- RoHS and WEEE compliant package

Potential Applications

The BGS12WN6 RF switch is specifically designed for WLAN and Bluetooth applications. Any of the 2 ports can be used as termination of the diversity antenna handling up to 26 dBm.

Product Validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Block diagram

Wideband SPDT Diversity Switch with High Switching Speed

Table of Contents

Table of Contents

1	Features	2
2	Maximum Ratings	3
3	Operation Ranges	4
4	RF Characteristics	5
5	Application Information	9
6	Package Information	10

1

Wideband SPDT Diversity Switch with High Switching Speed

Features

1 Features

- RF CMOS SPDT antenna diversity switch with power handling capability of up to 26 dBm
- High switching speed
- Suitable for WLAN and Bluetooth applications
- Low insertion loss and harmonics generation
- 0.05 to 6 GHz coverage
- High port to port isolation
- No blocking capacitors required if no DC applied on RF lines
- On-chip control logic
- Leadless and halogen free packages PG-TSNP-6-10/-8/-2 with lateral size of 0.7 \times 1.1 mm² and maximum height of 0.375 mm
- No power supply decoupling capacitor required
- High EMI robustness
- RoHS and WEEE compliant package

Description

The BGS12WN6 RF CMOS switch is specifically designed for WLAN and Bluetooth applications. Any of the 2 ports can be used as termination of the diversity antenna handling up to 26 dBm. The chip integrates on-chip CMOS logic driven by a simple, single-pin CMOS or TTL compatible control input signal. Unlike GaAs technology, external DC blocking capacitors at the RF ports are only required if DC voltage is applied externally. The BGS12WN6 RF switch is manufactured in Infineon's patented MOS technology, offering the performance of GaAs with the economy and integration of conventional CMOS including the inherent higher ESD robustness. The device has a very small size of only $0.7 \times 1.1 \, \mathrm{mm}^2$ and a maximum height of $0.375 \, \mathrm{mm}$.

Туре	Marking	Package	Ordering Information
		PG-TSNP-6-10	BGS 12WN6 E6327
BGS12WN6	K	PG-TSNP-6-8	BGS 12WN6 E6329
		PG-TSNP-6-2	BGS 12WN6 E6329

Wideband SPDT Diversity Switch with High Switching Speed

Maximum Ratings

2 Maximum Ratings

Table 1: Maximum Ratings at T_A = 25 °C, unless otherwise specified

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min. Typ.		Max.			
Frequency Range ¹⁾	f	0.05	-	6	GHz	-	
Supply voltage	V_{DD}	0	-	4.2	V	-	
Storage temperature range	T _{STG}	-55	-	150	°C	-	
RF input power at all RF ports	P _{RF,max}	-	-	28	dBm	CW / VSWR 1:1 / 50 Ω	
ESD capability, CDM ²⁾	V _{ESD,CDM}	-1	_	+1	kV	-	
ESD capability, HBM ³⁾	V _{ESD,HBM}	-1	-	+1	kV	-	
ESD capability RF ports ⁴⁾	W	-8	_	+8	kV	Each single RF-in/out port versus GND, with 27 nH shunt inductor	
L3D capability IN ports	V _{ESD,RF}	-6	_	+6	kV	Each single RF-in/out port versus GND, with 56 nH shunt inductor	
Junction temperature	T _j	-	-	125	°C	-	
Thermal resistance junction - soldering point	R _{thJS}	-	-	70	K/W	-	
Maximum DC-voltage on RF ports and RF-Ground	V _{RFDC}	0	-	0	V	No DC voltages allowed on RF- Ports	

 $^{^{1)}}$ There is also a DC connection between switched paths. The DC voltage at RF ports V_{RFDC} has to be 0 V.

Attention:

Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

²⁾ Field-Induced Charged-Device Model ANSI/ESDA/JEDEC JS-002. Simulates charging/discharging events that occur in production equipment and processes. Potential for CDM ESD events occurs whenever there is metal-to-metal contact in manufacturing.

 $^{^{3)}}$ Human Body Model ANSI/ESDA/JEDEC JS-001 ($R=1.5~{\rm k}\Omega$, $C=100~{\rm pF}$).

 $^{^{4)}}$ IEC 61000-4-2 (R = $330~\Omega,$ C = $150~\mathrm{pF})$, contact discharge.

Wideband SPDT Diversity Switch with High Switching Speed

Operation Ranges

3 Operation Ranges

Table 2: Operation Ranges, at $T_{\rm A}$ = $-40\,^{\circ}{\rm C}...85\,^{\circ}{\rm C}$, $V_{\rm DD}$ = $1.65\,{\rm V}...3.6\,{\rm V}$

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Ambient temperature	T _A	-40	25	85	°C	-
Supply voltage	V_{DD}	1.65	1.8	3.6	V	-
Control voltage Low	$V_{Ctrl,L}$	-0.3	_	0.45	V	-
Control voltage High	$V_{\rm Ctrl,H}$	1.35	-	V_{DD}	V	-
Supply current	I _{DD}	-	63	120	μΑ	Operating State
Control current	I _{Ctrl}	-	2	10	nA	-

Table 3: RF Input Power

Parameter	Symbol	Values		Unit	Note / Test Condition	
		Min.	Тур.	Мах.		
RF input power at all RF ports	P_{RF}	-	_	26	dBm	CW / VSWR 1:1 / 50 Ω

Wideband SPDT Diversity Switch with High Switching Speed

RF Characteristics

4 RF Characteristics

Table 4: RF Characteristics at $T_{\rm A}$ = $25\,^{\circ}{\rm C}$, $P_{\rm RF}$ = $0\,{\rm dBm}$, $V_{\rm DD}$ = $1.8\,{\rm V}$

Insertion Loss ¹⁾						
		_	0.15	0.20	dB	50-698 MHz
		_	0.16	0.21	dB	699–960 MHz
		_	0.19	0.26	dB	1200-2170 MHz
All RF Ports	IL	_	0.22	0.29	dB	2170-2690 MHz
		_	0.30	0.42	dB	3300-4200 MHz
		_	0.38	0.52	dB	4400-5000 MHz
		_	0.46	0.68	dB	5150-5925 MHz

¹⁾ Measured on prober station to exclude board effects, without any matching components.

Table 5: RF Characteristics at $T_A = -40 \,^{\circ}\text{C}...85 \,^{\circ}\text{C}$, $P_{\text{RF}} = 0 \,^{\circ}\text{dBm}$, $V_{\text{DD}} = 1.65 \,^{\circ}\text{V}...3.6 \,^{\circ}\text{V}$, unless otherwise specified

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Insertion Loss ¹⁾					•	
		-	0.15	0.25	dB	50-698 MHz
		-	0.16	0.25	dB	699-960 MHz
		-	0.19	0.31	dB	1200-2170 MHz
All RF Ports	l IL	-	0.22	0.34	dB	2170-2690 MHz
		-	0.30	0.48	dB	3300-4200 MHz
		-	0.38	0.58	dB	4400-5000 MHz
		-	0.46	0.75	dB	5150-5925 MHz
Return Loss ¹⁾	·				·	
		28	33	_	dB	50-698 MHz
		26	29	_	dB	699-960 MHz
		20	23	-	dB	1200-2170 MHz
All RF Ports	RL	18	20	-	dB	2170-2690 MHz
		14	16	_	dB	3300-4200 MHz
		13	14	_	dB	4400-5000 MHz
		11	13	_	dB	5150-5925 MHz

¹⁾Measured on prober station to exclude board effects, without any matching components.

Wideband SPDT Diversity Switch with High Switching Speed

RF Characteristics

Table 6: RF Characteristics at T_A = $-40\,^{\circ}$ C... $85\,^{\circ}$ C, P_{RF} = $0\,$ dBm, V_{DD} = $1.65\,$ V... $3.6\,$ V, unless otherwise specified

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Isolation ¹⁾	1	1			'	
		43	53	_	dB	50-698 MHz
		40	46	_	dB	699-960 MHz
		33	39	_	dB	1200-2170 MHz
RFIN to RF1 Port	ISO _{RFIN—RF1}	31	37	_	dB	2170-2690 MHz
		26	33	_	dB	3300-4200 MHz
		24	30	_	dB	4400-5000 MHz
		21	28	_	dB	5150-5925 MHz
		43	52	_	dB	50-698 MHz
		40	45	_	dB	699-960 MHz
		33	39	_	dB	1200-2170 MHz
RFIN to RF2 Port	ISO _{RFIN—RF2}	31	36	-	dB	2170-2690 MHz
		26	31	_	dB	3300-4200 MHz
		24	29	_	dB	4400-5000 MHz
		21	26	_	dB	5150-5925 MHz
		53	63	_	dB	50-698 MHz
	ISO _{Port} Port	50	56	_	dB	699-960 MHz
		41	49	_	dB	1200-2170 MHz
RF1 to RF2 Port / RF2 to RF1 Port		39	45	_	dB	2170-2690 MHz
		34	40	_	dB	3300-4200 MHz
		30	36	_	dB	4400-5000 MHz
		25	33	_	dB	5150-5925 MHz
Harmonic Generation on all RF	Ports ¹⁾ at $P_{RF} =$	26 dBm, C	W-mode, 5	50 Ω		
		-	-74	-65	dBm	600-915 MHz
2 nd Harmonic	P _{H2}	-	-76	-67	dBm	1447-1980 MHz
		-	-83	-60	dBm	2300-2690 MHz
		_	-68	-60	dBm	600-915 MHz
3 nd Harmonic	P _{H3}	_	-68	-60	dBm	1447-1980 MHz
		-	-64	-60	dBm	2300-2690 MHz
Intermodulation Distortion ¹⁾						
IMD2	IMD2	_	-112	-103	dBm	Testcases see Table 7
IMD3	IMD3	-	-116	-109	dBm	Testcases see Table 8
Intercept Point ¹⁾	•	•	•	•	•	
IIP2	IIP2	108	117	-	dBm	Testcases see Table 7
IIP3	IIP3	67	70	-	dBm	Testcases see Table 8
	1	-	- 1	1		·

 $^{^{1)}\}mbox{Measured}$ on Application board, without any matching components.

Wideband SPDT Diversity Switch with High Switching Speed

RF Characteristics

Table 7: IMD2 Testcases

Band	Symbol	In-Band	Blocker	Blocker	Blocker	Blocker
		Frequency	Frequency 1	Power 1	Frequency 2	Power 2
		(MHz)	(MHz)	(dBm)	(MHz)	(dBm)
Band 1	B1 _{IMD2,high}	2140	1950	20	4090	-15
Dallu I	B1 _{IMD2,low}	2140	1950	20	190	-15
Band 4	B4 _{IMD2,high}	2132	1732	20	3864	-15
Dallu 4	B4 _{IMD2,low}	2132	1732	20	400	-15
Band 5	B5 _{IMD2,high}	881.5	836.5	20	1718	-15
Dallu 3	B5 _{IMD2,low}	881.5	836.5	20	45	-15
Band 7	B7 _{IMD2,high}	2655	2535	20	5190	-15
Dallu I	B7 _{IMD2,low}	2655	2535	20	120	-15

Table 8: IMD3 Testcases

Band	Symbol	In-Band	Blocker	Blocker	Blocker	Blocker
		Frequency	Frequency 1	Power 1	Frequency 2	Power 2
		(MHz)	(MHz)	(dBm)	(MHz)	(dBm)
Band 1	B1 _{IMD3,high}	2140	1950	20	6040	-15
Dallu I	B1 _{IMD3,mid}	2140	1950	20	1760	-15
Band 4	B4 _{IMD3,high}	2132	1732	20	5596	-15
Dallu 4	B4 _{IMD3,mid}	2132	1732	20	1332	-15
Band 5	B5 _{IMD3,high}	881.5	836.5	20	2554.5	-15
Dallu 3	B5 _{IMD3,mid}	881.5	836.5	20	791.5	-15
Band 7	B7 _{IMD3,high}	2655	2535	20	7725	-15
Dallu I	B7 _{IMD3,mid}	2655	2535	20	2415	-15

Wideband SPDT Diversity Switch with High Switching Speed

RF Characteristics

Table 9: Switching Time at $T_{\rm A}$ = $-40\,^{\circ}$ C... $85\,^{\circ}$ C, $P_{\rm RF}$ = $0\,{\rm dBm}$, $V_{\rm DD}$ = $1.65\,{\rm V...}3.6\,{\rm V}$, unless otherwise specified

Parameter	Symbol	Symbol Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Switching Time ¹⁾	'		<u>'</u>	'		
Switching Time	t _{ST}	-	160	220	ns	Time between RF states in ac-
						tive mode V _{Ctrl,H} Min. or V _{Ctrl,L}
						Max. level to 90% RF-signal
RF Rise Time	t_{RT}	-	35	80	ns	Time between 10% to 90% RF
						Signal
Power Up Settling Time	t _{PUP}	_	5.8	7	μs	Time from V _{DD} Min. power level
						to 90% RF-signal

¹⁾ Measured on Application board, without any matching components.

Figure 1: CTRL to RF Time

Wideband SPDT Diversity Switch with High Switching Speed

Application Information

5 Application Information

Pin Configuration and Function

Figure 2: BGS12WN6 Pin Configuration (Top View)

Table 10: Pin Definition and Function

Pin No.	Name	Function			
1	RF2	RF port 2			
2	GND	Ground			
3	RF1	RF port 1			
4	VDD	Supply voltage			
5	RFIN	RF port In			
6	CTRL	Control pin			

Table 11: Truth Table Switch Control

Switched Paths	CTRL
RFIN - RF1	0
RFIN - RF2	1

Package Information

Table 12: Mechanical Data

Parameter	Symbol	Value	Unit	
X-Dimension	X	0.7 ±0.05	mm	
Y-Dimension	Υ	1.1 ±0.05	mm	
Size	Size	0.77	mm ²	
Height PG-TSNP-6-10	Н	0.37 +0.03/ - 0.02	mm	
Height PG-TSNP-6-8	Н	0.375 ±0.025	mm	
Height PG-TSNP-6-2	Н	0.375 +0.025/ - 0.015	mm	

Figure 3: PG-TSNP-6-10 Package Outline (Top, Side and Bottom Views)

Figure 4: PG-TSNP-6-8 Package Outline (Top, Side and Bottom Views)

Figure 5: PG-TSNP-6-2 Package Outline (Top, Side and Bottom Views)

Wideband SPDT Diversity Switch with High Switching Speed

Figure 6: Footprint Recommendation

Figure 7: Marking Specification (Top View). Monthly date code specified in Table 13.

Table 13: Monthly Date Code Marking

Table for Monthly Pate Code Marking									
Month	2018	2019	2020	2021	2022	2023	2024	2025	2026
1	Р	а	р	Α	Р	а	р	Α	Р
2	Q	b	q	В	Q	b	q	В	Q
3	R	С	r	С	R	С	r	С	R
4	S	d	s	D	S	d	s	D	S
5	Т	е	t	E	Т	е	t	E	Т
6	U	f	u	F	U	f	u	F	U
7	V	g	V	G	V	g	V	G	V
8	X	h	x	Н	X	h	x	Н	Х
9	Y	j	у	J	Y	j	у	J	Υ
10	Z	k	z	K	Z	k	z	K	Z
11	4	l	2	L	4	l	2	L	4
12	5	n	3	N	5	n	3	N	5

Figure 8: PG-TSNP-6-10 Carrier Tape Drawing (Top, Side and Bottom Views)

Figure 9: PG-TSNP-6-8 Carrier Tape Drawing (Top and Side Views)

Figure 10: PG-TSNP-6-2 Carrier Tape Drawing (Top and Side Views)

Revision History						
Revision 2.1, 2020	0-01-24					
Page or Item	Subjects (major changes since previous revision)					
Revision 2.2, 202	0-02-19					
4	Control Voltage High in Table 3 corrected					
9	Pin-1 Marking in Figure 2 removed					

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2020-02-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2020 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?
Email: erratum@infineon.com

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

BGS12WN6E6327XTSA1