Amatérské radio

Vydavatel: AMARO spol. s r.o.

Adresa vydavatele: Radlická 2, 150 00

Praha 5, tel.: 57 31 73 14

Adresa redakce: Na Beránce 2, 160 00

Praha 6. tel.: 22 81 23 19 E-mail: kraus@jmtronic.cz

Ročně vychází 12 čísel, cena výtisku 30 Kč, roční předplatné 312 Kč. Objednávky předplatného přijímá Michaela Jiráčková, Radlická 2, 150 00 Praha 5, tel.: 57 31 73 12 Rozšiřuje PNS a.s., Transpress spol. s r.o., Mediaprint & Kapa a soukromí distributoři.

Objednávky inzerce na adrese vydavatele

Distribúciu, predplatné a inzerciu pre Slovenskú republiku zabezpečuje:

Magnet-Press Slovakia s.r.o., P.O.BOX 169, 830 00 BRATISLAVA

tel./fax: 07/444 545 59 -predplatné tel./fax: 07/444 546 28 -administratíva tel./fax: 07/444 506 93 -inzercia Sídlo firmy: Teslova 12, 821 02 Bratislava

Podávání novinových zásilek povolené Českou poštou - ředitelstvím OZ Praha (č.j. nov 6285/97 ze dne 3.9.1997)

Za původnost příspěvku odpovídá autor. Otisk povolen jen s uvedením původu. Za obsah inzerátu odpovídá inzerent. Redakce si vyhrazuje právo neuveřejnit inzerát, jehož obsah by mohl poškodit pověst časopisu.

Nevyžádané rukopisy autorům nevracíme. Bez **předchozího písemného souhlasu** vydavatele nesmí být žádná část kopírována, rozmnožována, nebo šířena jakýmkoliv způsobem.

Právní nárok na **odškodnění** v případě změn, chyb nebo vynechání je vyloučen. **Veškerá práva vyhrazena**.

ISSN 0322-9572, č.j. 46 043

© AMARO spol. s r. o.

Obsah

Předzesilovač pro kytarové kombo
Kmitočtový diskriminátor
Regulátor otáček DC motorů s ochranou proti přetížení 7
Spínač místo LED9
Stmívač pro žárovky na 12 V11
Generátor signálu pro nácvik Morseovy abecedy14
Digitální indikátor pořadí fází15
Generátor třífázového testovacího signálu 18
Korekční zesilovač pro komunikační přijímač 20
Jednoduchý autoalarm22
Výkonový triakový stmívač s fázovým řízením
Napěťové reference
Metody nastavení přesné hodnoty odporů
Z radioamatérského světa
Seznam inzerentů

Předzesilovač pro kytarové kombo

Kytarové kombo patří neodmyslitelně k základnímu vybavení rockového kytaristy. I přes poměrně rozsáhlou nabídku profesionálních zařízení nejrůznějších cenových skupin je stále dost zájemců (především ze strany začínajících hudebníků) o stavbu malého a levného kytarového komba. Protože konstrukce takovéhoto zařízení má svá specifika, přinášíme vám stavební návod na jednoduché a levné kytarové kombo. V článku je popsána konstrukce vstupních obvodů, korektoru a zkreslovače. Celý předzesilovač je navržen na jediné desce s plošnými spoji. K předzesilovači se nechá připojit libovolný koncový zesilovač, kterých byla na stránkách odborných časopisů popsána již celá řada. Tím si může případný zájemce zvolit optimální výkonovou variantu vzhledem ke svým požadavkům a zejména s ohledem na typ použitého reproduktoru.

Popis zapojení

Schéma celého předzesilovače je na obr. 1. Jak bývá u podobných zařízení zvykem, vstupní konektory K1 a K2 (JACK 6,3 mm) jsou umístěny na předním panelu. Oba konektory mají shodnou vstupní citlivost. Nezapojený konektor zkratuje vstup na zem. Odpory R1 a R2 zajišťují vstupní impedanci minimálně 100 kohm, což je dostačující pro většinu běžných zdrojů signálu. Za vazebním kondenzátorem C1 následuje RC kombinace C2/R3, která potlačuje nežádoucí rušení na vyšších kmitočtech. Jako vstupní zesilovač je

použit IC1A typu NE5532, což zaručuje dobré šumové vlastnosti zařízení. Zisk vstupního zesilovače je řízen potenciometrem P1, zapojeným ve zpětné vazbě IC1A. Na výstupu IC1A je zapojen špičkový indikátor s Tranzistory T1 a T2. LED LD1, zapojená v kolektoru tranzistoru T2, se rozsvítí, pokud špičková hodnota signálu překročí úroveň asi 2 V. Na výstup IC1A je dále zapojen budící zesilovač pro pružinovou dozvukovou jednotku se zesilovačem IC1B. Ta se připojuje k výstupům A a B.

Signál je z výstupu IC1 přiveden na třípásmový pasivní korektor. Potenciometr P3 zdůrazňuje/potlačuje výšky, P2 basy a P4 slouží ke zdůraznění středů (presenc filtr). Z korektoru je signál přes odpor R13 přiveden na vstup IC2A. Do stejného místa je též připojen výstup z pružinového halu. Zesílení tohoto stupně je dáno zpětnou vazbou, tvořenou odporem R20 a dynamickým odporem JFET tranzistoru T3 BF245. Ten je řízen výstupním napětím z usměrňovače s IC2B. Odpor kanálu tranzistoru T3 se pohybuje od asi 200 ohm pro nulové napětí na řídicí elektrodě po asi 40 kohm při napětí -5 V. Tomu odpovídá změna zesílení v rozsahu od 1 do 29 (v dB to je 0 až 29 dB - 20 log (u_2/u_1)). Řídicí napětí pro FET je současně přes odpor R29 přivedeno na bázi tranzistoru T4. LED LD2, zapojená v jeho kolektoru, signalizuje nasazení kompresoru. Potenciometrem P5 vytváříme kladné předpětí, které působí proti zápornému napětí z usměrňovače. Můžeme tak nastavit práh komprese (treshold). Germaniové diody GA202, použité

v usměrňovači, můžeme nahradit i Schottkyho diodami řady BAT4x, které mají také malý úbytek napětí v propustném směru (asi 0,3 V).

Výstupní napětí předzesilovače by mělo být dostačující pro vybuzení všech běžných koncových zesilovačů (se vstupní citlivostí do 1,5 V). Předzesilovač je napájen symetrickým napětím ±15 V. To můžeme odvodit od napájecího napětí koncového zesilovače, nebo použít samostatný napájecí zdroj. Odběr celého předzesilovače je pouze několik desítek mA.

Stavba

Předzesilovač je zhotoven na dvoustranné desce s plošnými spoji o rozměrech 150 x 37 mm. Rozložení součástek na desce s plošnými spoji je na obr. 2, obrazec desky spojů ze strany součástek (TOP) je na obr. 3, ze strany spojů (BOTTOM) na obr. 4.

Všechny součástky jsou umístěny na desce s plošnými spoji. Osadíme a zapájíme součástky a desku dobře prohlédneme. Odstraníme případné závady. Připojíme napájecí napětí a změříme odběr. Ten by se měl pohybovat okolo 20 až 30 mA. Na vstup připojíme signál (nejlépe z tónového generátoru, kmitočet asi 1 kHz). Vyzkoušíme nastavení citlivosti potenciometrem P1. Zkontrolujeme funkci špičkového indikátoru s LED LD1. Pokud máme možnost, zkontrolujeme změnou kmitočtu a osciloskopem nebo nf milivoltmetrem funkci korekcí (případně alespoň poslechem po připojení reálného hudebního signálu). Dále zkontro-

Obr. 2. Rozložení součástek na desce s plošnými spoji předzesilovače

Obr. 3. Obrazec desky plošných spojů - strana součástek (TOP) M 1:1

Obr. 3. Deska spojů (BOTTOM)

Závěr

lujeme funkci nastavení počátku komprese (treshold) potenciometrem P5 a funkci indikační LED LD2.

Pokud je vše v pořádku, je předzesilovač hotov.

Popsané zapojení může být doplněno o další efekty. Některé byly popsány v seriálu "Kytarové efekty" od Pavla Mecy. Jako dozvuková jednotka mohou být použity klasické "pružiny" nebo případně modernější dozvukové

moduly jak analogové (populární posuvné registry), tak i čistě digitální. Jednoduchá stavba, kterou zvládne i začátečník a nízké pořizovací náklady jsou hlavní výhodu popsaného předzesilovače.

Seznam součástek	R23 82 kΩ	C16100 nF
odpory 0204	R24 1 MΩ	C17100 nF
R1 100 kΩ	R25	
R2 100 kΩ	R26 10 kΩ	D1 BAT42
R3 470 kΩ	R27 100 kΩ	D2 BAT42
R4 10 kΩ	R28 100 kΩ	D3 BAT42
R5 2,2 kΩ	R29 100 kΩ	D4
R6 100 kΩ	R30 560 Ω	D5 BAT42
R7 27 kΩ		IC1 NE5534
R8 100 kΩ	C1	IC2 NE5534
R9 1 kΩ	C2 47 pF	LD1LED
R10 220 Ω	C310 μF/25 V	LD2LED
R11 10 kΩ	C4	T1
R12 10 kΩ	C5	T2 BC547
R13 22 kΩ	C6 4,7 nF	T3 BF245
R14 100 kΩ	C7	T4 BC557
R15	C8 47 μF/10 V	
R16 680 Ω	C9	K1 JACK 6,3 PCB
R17 47 k Ω	C10 47 μF/25 V	K2 JACK 6,3 PCB
R18	C11 10 µF/25 V	P1TP160 M25/N
R19	C12	P2 TP160 M1/N
R20 5,6 kΩ	C13100 nF	P3 TP160 M1/N
R21	C14 470 μF/25 V	P4 TP160 5k/G
R22	C15 470 μF/25 V	P5 TP160 50k/N

Kmitočtový diskriminátor

V praxi se často setkáme s případem, kdy musíme vyhodnocovat signál v určitém kmitočtovém pásmu. Například mnohé snímače jsou zapojeny na převodník měřená veličina/kmitočet (měření teploty, tlaku, otáček apod.). Pokud potřebujeme signalizovat vybočení z předem nastavených hodnot ($f_{\rm in} < f_{\rm min}$ nebo $f_{\rm in} > f_{\rm max}$), můžeme použít následující obvod.

Popis zapojení

Schéma zapojení kmitočtového diskriminátoru je na obr. 1. Vstupní signál je přiveden na vstup časovače 4538 (IC2A). Pokud vstupní signál nemá správnou velikost nebo tvar (nedostatečně ostré hrany apod.), předřadíme tvarovací obvod například s hradlem 4093. Výstup IC2A generuje kladné impulsy o délce R1 x C1. Pokud přijde na vstup IC2A další impuls a výstup časovače se ještě nepřeklopil zpět do nízké úrovně, dojde dalšímu spuštění a výstup IC2A setrvává na vysoké úrovni. Pokud je tedy vstupní kmitočet vyšší než nastavená horní mez (daná vztahem $f_{max} = 1/R1 C1$), je výstup trvale ve stavu "1". Pokud je vstupní kmitočet nižší než fmax, je na výstupu IC2A kmitočet odpovídající vstupnímu kmitočtu. Ten se dostává na vstup druhého časovače IC2B. Časová konstanta R2 a C2 je nastavena tak, aby odpovídala dolnímu meznímu kmitočtu ($f_{min} = 1/R2 C2$). Pokud je tedy kmitočet na vstupu IC2B vyšší než f_{min}, dojde k opětnému startu časovače v době, kdy je jeho výstup ještě ve vysoké úrovni a na výstupu IC2B je tedy stálá úroveň "1". Pokud vstupní kmitočet klesne pod fmin, začnou se na výstupu IC2B objevovat kladné pulsy s délkou R2 C2 a kmitočtem vstupního signálu. Na výstupu druhého časovače je tedy "0" pro f_{in} f_{max} , "l" pro $f_{min} < f_{in} < f_{max}$ a kladné impulsy s délkou $t_1 = t_1$ 1/R2 C2 s kmitočtem fin.

Výstupní signál z časovače IC2B nabíjí přes odpor R3 kondenzátor C3. Časová konstanta R3 C3 musí být alespoň 3x delší než R2 C2. Tím je zajištěno, aby výstupní impuls z IC2B o délce R2 C2 nebyl schopen překlopit

Obr. 1. Schéma zapojení

Obr. 3. Strana součástek (TOP)

Obr. 4. Strana spojů. M 1:1,5

hradlo IC1A (obvod 4093). Dioda D1 s odporem R4 zajišťují, aby nabíjecí čas kondenzátoru C3 přes odpor R3 byl výrazně delší než jeho vybití přes diodu D1 a odpor R4. Odpor R4 musí být tedy menší než R3, přičemž jeho hodnota by se měla pohybovat okolo 470 ohm pro napájecí napětí +5 V a 1,5 kohm pro napájení blížící se +15 V. Tento obvod tedy zajišťuje aby na výstupu IC1A byla úroveň "1" pro $f_{\rm in} < f_{\rm min}$ a $f_{\rm min} > f_{\rm max}$ (tj. pro kmitočty, ležící mimo povolenou toleranci) a výstupní úroveň "0" pro kmitočty $f_{\rm min} < f_{\rm in} < f_{\rm max}$ (tj. pro kmitočty ležící v povolených hranicích).

Obvod IC1D je zapojen jako generátor impulsů s kmitočtem 10 Hz. V případě logické "1" na výstupu IC1A jsou tyto impulsy hradlem IC1B propuštěny a obvodem IC1C invertovány. Na výstupu je tedy varovný signál s kmitočtem 10 Hz. Tento stav je současně indikován LED LD1, která je zapojena na zdroj proudu s tranzistorem T2, spínaný tranzistorem T1. Toto poněkud netypické zapojení indikační LED činí obvod (a tím i proud LED) nezávislý na připojeném napájecím napětí.

Stavba

Kmitočtový diskriminátor je zhotoven na dvoustranné desce s plošnými

spoji o rozměrech 55 x 25 mm. Rozložení součástek na desce s plošnými spoji je na obr. 2, obrazec desky spojů ze strany součástek (TOP) je na obr. 3, ze strany spojů (BOTTOM) na obr. 4. Všechny součástky jsou umístěny na desce s plošnými spoji. Stavbu začneme osázením a zapájením všech součástek. Poté desku pečlivé prohlédneme a odstraníme případné závady. Připojíme napájecí napětí. Na výstupu by se měl objevit varovný signál 10 Hz (nepřítomnost vstupního signálu by měl obvod vyhodnotit jako chybový stav - $f_{in} < f_{min}$). Nyní připojíme generátor s výstupním signálem obdélníkového průběhu a amplitudou podle použitého napájecího napětí diskriminátoru. Změnou kmitočtu generátoru zjistíme dolní a horní mezní kmitočty - zmizí varovný signál z výstupu a zhasne kontrolní LED. Tím je kontrola zapojení hotova.

Závěr

Popsaný kmitočtový diskriminátor je schopen zpracovat vstupní kmitočty do cca 100 kHz, i když pro nejvyšší kmitočty (a též nejnižší) se začíná již projevovat mírná nepřesnost. Odpory R1 a R2 musí být větší jak 5 kohm, pro C1 a C2 neplatí žádná obecná omezení. Pro snadnější nastavení kmitočtových mezí je možné odpory R1 a R2 nahradit sériovou kombinací odporu

5,6 kohm a trimru. Pokud by byl na místě C1 nebo C2 použit kondenzátor s větší kapacitou (řádu μ F a větší), doporučuji paralelně k odporu R1 (R2) zapojit diodu 1N4148 anodou na napájení. Obvod 4538 má totiž tu vlastnost, že při rychlém poklesu napájecího napětí je nabitý časovací kondenzátor schopen se vybít přes strukturu obvodu a zničit ji (ověřeno z vlastní zkušenosti).

Seznam součástek
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
C1 až C3 viz text C4 1 μF/50 V C5 100 μF/35 V C6 100 nF
D1 1N4148 D2 1N4148 D3 1N4148 IC1 MOS4093 IC2 MOS4538 LD1 LED T1 BC547 T2 BC557

Regulátor otáček DC motorů s ochranou proti přetížení

Nejvýhodnější způsob regulace otáček DC motorků je pulsně-šířkovou modulací (PWM). Proti jednoduššímu řízení změnou napájecího napětí je možné motorky řídit prakticky od nulových otáček a zejména při nízkých otáčkách disponují PWM řízené motory výrazně vyšším kroutícím momentem. Velmi jednoduchý a všestranně použitelný obvod pro řízení malých DC motorků naleznete v následujícím stavebním návodu.

Popis zapojení

Schéma regulátoru je na obr. 1. Základ je tvořen klasickým časovačem NE555. Potenciometrem P1 s diodami D1, D2 a odporem R1 je možné nastavit střídu výstupního napětí v poměru 1:99. Při kmitočtu asi 60 Hz je výstupní signál nastavitelný

v rozsahu 0 až 99%. Zbývající 1%, při kterém je v každé periodě výstup vypnut, má zvláštní význam, který bude vysvětlen dále.

Při návrhu obvodů pro řízení DC motorků je třeba zajistit ochranu proti zkratu na výstupu (případně přetížení motoru). To se nejčastěji řeší zapojením snímacího odporu do série s motorem. Při zvýšení proudu nad přípustnou mez se současně zvýší i úbytek napětí na snímacím odporu a příslušná elektronika pak omezí proud spínacím prvkem. V tomto zapojení je použit jiný způsob detekce překročení maximálního povoleného proudu. Vycházíme z toho, že na přechodu K-E spínacího tranzistoru vzniká úbytek napětí, který se zvyšuje se vzrůstajícím proudem. Měříme-li tedy napětí UCE, můžeme z něj určit i velikost protékajícího proudu. Proti měření úbytku napětí na snímacím odporu je toto měření méně přesné, protože závislost napětí UCE na protékajícím proudu je více závislá na teplotě přechodu, ale pro potřebu nastavení proudové limitace bohatě vyhovuje.

Výstup časovače NE555 (vývod 3) je přes odpor R2 a diody D3 a D4 přiveden na bázi spínacího tranzistoru T2. Odpor R4 zajišťuje bezpečné a rychlé uzavření tranzistoru. Dioda D5 chrání tranzistor před indukovanými napěťovými špičkami na motoru a kondenzátor C4 filtruje případné rušení. Jak již bylo řečeno, obvod proudové ochrany snímá napětí na přechodu K-E tranzistoru T2. Ke kolektoru tranzistoru T2 je připojen trimr P2, z jehož běžce se přivádí napětí na tranzistor T1. Dvojice tranzistorů T1 a T3 představuje

Obr. 1. Schéma zapojení regulátoru pro DC motorky s elektronickou ochranou

Obr. 2. Rozložení součástek

Obr. 3. Strana TOP desky spojů

Obr. 4. Strana BOTTOM desky spojů

v podstatě vnitřní zapojení tyristoru. Pokud jednou dojde k sepnutí tranzistoru T1 a tím současně i T3, obvod zůstává v sepnutém stavu i po odpojení spínacího napětí, dokud nepoklesne napájecí napětí pod určitou mez, při které se oba tranzistory opět neuzavřou. Pokud tedy během jedné periody dojde k překročení maximálního nastaveného proudu zátěží, sepne tranzistor Tl a následně i T3 a odpojí se tím buzení spínacího tranzistoru. Do konce periody tak zůstane spínací tranzistor již uzavřen. Protože i v sepnutém stavu je na tranzistorech T1 a T3 určité zbytkové napětí (asi 1 V), jsou do báze T2 zapojeny diody D3 a D4 tak, aby napětí na bázi T2 tranzistor bezpečně uzavřelo. Z tohoto důvodu musí zůstat výstupní tranzistor v každé periodě alespoň po dobu 1% uzavřen, aby mohlo dojít k opětovnému uzavření dvojice T1 a T3.

Zapojení má ještě jeden háček. V rozepnutém stavu je na kolektoru T2 tak vysoké napětí, že by se okamžitě po příchodu kladného napětí na bázi T2 ihned otevřela dvojice T1, T3 a T2 by se neměl čas otevřít. Proto je využit vývod 7 obvodu NE555. Ten je ve shodné fázi jako vývod 3 (výstup NE555), ale je osazen tranzistorem s otevřeným kolektorem. Protože UCEsat tranzistoru na výstupu 7 IC1 je menší než UBE T1 potřebné pro sepnutí tranzistoru T1, zůstává po dobu potřebnou k sepnutí tranzistoru T2 a tím i k poklesu napětí na jeho kolektoru báze T1 blokována. Regulátor je napájen střídavým napětím 12 V, připojeným ke svorkovnici K2. Střídavé napětí je usměrněno diodovým můstkem D6 a filtrováno kondenzátorem C3.

Stavba

Regulátor otáček pro DC motorky je zhotoven na dvoustranné desce s plošnými spoji o rozměrech 60 x 35 mm. Rozložení součástek na desce s plošnými spoji je na obr. 2, obrazec desky spojů ze strany součástek (TOP) je na obr. 3, ze strany spojů (BOT-TOM) na obr. 4. Všechny součástky jsou umístěny na desce s plošnými spoji. Stavbu začneme osázením a zapájením všech součástek. Poté desku pečlivé prohlédneme a odstraníme případné závady. Připojíme napájecí napětí. Osciloskopem zkontrolujeme výstup časovače NE555 při současné změně nastavení potenciometru P1. Pokud je vše v pořádku, připojíme na

svorkovnici K1 náhradní odpor takové hodnoty, aby jím v sepnutém stavu protékal maximální proud, který chceme připustit do zátěže. Například pro napájecí napětí 12 V a maximální proud do motoru 2 A zvolíme odpor 6 Ω. Trimr P2 pak nastavíme právě na hranici, při které dochází k aktivaci proudové ochrany. Pro krátkodobá měření můžeme složit potřebnou hodnotu z několika odporů dimenzovaných na nižší zatížení a po dobu měření je chladit například ve sklenici s vodou.

Závěr

Popsaný regulátor je vhodný pro řízení otáček malých stejnosměrných motorků, používaných zejména pro pohon menších nástrojů v domácí dílně, jako jsou elektrické vrtačky, brusky, malé kotoučové pilky a další nářadí. Popsaný regulátor může je vhodným doplňkem napájecích zdrojů s pevným výstupním napětím 13,8 V, používaných jako náhrada vozidlových akumulátorů pro amatérské a CB vysílače při stacionárním provozu. Tyto profesionálně zhotovené zdroje vycházejí díky své hromadné výrobě a prodeji cenově velmi výhodně. Vzhledem k malým rozměrům můžeme popsaný regulátor do mnohých z nich přímo zabudovat.

Seznam součástek
$\begin{array}{ccccc} \text{odpory 0204} & & & & \\ \text{R1} & & & 1 \text{ k}\Omega \\ \text{R2} & & 220 \ \Omega \\ \text{R3} & & 10 \text{ k}\Omega \\ \text{R4} & & 470 \ \Omega \\ \text{C1} & & 100 \text{ nF} \\ \text{C2} & & 470 \text{ nF} \\ \text{C3} & & 4,7 \text{ mF/25 V} \\ \text{C4} & & 220 \text{ nF} \\ \end{array}$
D1 1N4148 D2 1N4148 D3 1N4007 D4 1N4007 D5 1N5402 D6 B80C5000 IC1 NE555 T1 BC547 T2 BD439 T3 BC557
K1 ARK2-INC K2 ARK2-INC P1 TP160 100 kΩ/N P2 PT10L 5 kΩ

Spínač místo LED

LED diody jako indikační prvek se již dávno staly nedílnou součástí většiny elektronických zařízení. Jednoduchost zapojení, energetická nenáročnost, vysoká životnost a příznivá cena jsou jejich hlavní přednosti. Někdy se ale stane, že mimo optické indikace potřebujeme daným signálem též něco ovládat. Velmi jednoduchým zapojením lze LED nahradit triakovým spínačem, kterým můžeme přímo spínat menší spotřebiče, případně ovládat výkonové spínače (relé, stykače) pro zařízení s většími výkony.

Popis zapojení

Schéma zapojení je na obr. 1. Do obvodu indikační LED je zapojen optočlen IC1. Podle napájecího napětí můžeme optočlen připojit do série s LED, případně paralelně. To záleží na konkrétním obvodovém řešení indikačního obvodu. Odpor R1 volíme tak, aby v sepnutém stavu protékal optočlenem jmenovitý proud (typicky 10 mA). Použitím optočlenu je zaručeno galvanické oddělení spínače (a tím i síťového napětí) od připojeného zařízení. Signál z výstupu optočlenu IC1 je přes odpor R2 přiveden na bázi tranzistoru T1. Ten je zapojen jako emitorový sledovač a zajišťuje dostatečný proud pro spínání triaku TY1. Maximální proud

Obr. 1. Schéma zapojení spínače k IED indikaci

Obr. 2. Rozložení součástek na desce s plošnými spoji

Obr. 3. Deska s plošnými spoji. Tvětšeno na 200% originálu

tranzistorem T1 je omezen odporem v jeho kolektoru asi na 10 mA (při napájecím napětí 15 V). Proti vzniku a šíření vf rušení, vznikajícího při spínaní triaku, je do obvodu zapojen filtrační člen, tvořený indukčností L1, kondenzátory C2 a C1 s odporem R4.

Pro co nejjednodušší zapojení je obvod napájen přímo síťovým napětím přes kondenzátor C4 a odpor R6 1 kΩ. Napětí za R6 je omezeno Zenerovou diodou D2 maximálně na 15 V. Diodou D1 je napětí na D2 jednocestně usměrněno a filtrováno kondenzátorem C3. Síťové napájecí napětí i spínaný spotřebič se připojují svorkovnicí.

Pozor!

Protože celé zapojení je galvanicky spojeno se sítí, musíme být při stavbě a oživování opatrní a dodržovat bezpečnostní předpisy. Po dokončení musí být zařízení zabudováno do vhodné izolované krabice, aby nemohlo dojít k náhodnému dotyku s živými částmi. Vývody pro připojení do obvodu indikační LED jsou galvanicky oddělené a tudíž bezpečné.

Stavba

Obvod spínače je zhotoven na jednostranné desce s plošnými spoji

Seznam součástek
$\begin{array}{ccccc} \text{odpory 0204} & & & \\ \text{R1} & & \text{viz text} \\ \text{R2} & & 10 \text{ k}\Omega \\ \text{R3} & & 22 \text{ k}\Omega \\ \text{R4} & & 100 \Omega \\ \text{R5} & & 1,5 \text{ k}\Omega \\ \text{R6} & & 1 \text{ k}\Omega \\ \end{array}$
C1
D1 1N4007 D2 ZD 15V IC1 PC817 T1 BC547 TY1 TIC206
K1 ARK710/2 K2 ARK710/2 L1

o rozměrech 48 x 50 mm. Rozložení součástek na desce s plošnými spoji je na obr. 2, obrazec desky spojů (BOTTOM) je na obr. 3. S výjimkou poznámky o bezpečnosti práce je stavba spínače velmi jednoduchou záležitostí, kterou zvládne i začátečník. Spínač nemá žádné nastavovací prvky a při pečlivé práci musí fungovat na první zapojení.

Závěr

Popsaný spínač nalezne uplatnění všude tam, kde se vyskytne nutnost doplnit optickou indikaci s LED o možnost připojení externího zařízení. Vzhledem k malým rozměrům můžeme spínač zabudovat například do běžné elektrikářské krabice pro vnější rozvody síťového napětí. Galvanicky oddělený vstup umožňuje snadné připojení k většině běžných zařízení.

Desky s plošnými spoji na Internetu

Opět připomínáme zájemcům, kteří si chtějí zhotovit desky s plošnými spoji ke konstrukcím, připraveným redakcí Amatérského radia, že si mohou z naší internetovské stránky www.jmtronic.cz stáhnout výrobní podklady (předlohy) pro výrobu desek

fotocestou. Ty jsou připraveny ve formátu *.PDF. Stažené soubory si můžete vytisknout na papír nebo fólii a překopírovat na desky, opatřené světlocitlivou emulsí, nebo můžete použít speciální fólie, dodávané např. firmou CADware Liberec. Obrazec

desky spojů se po vytištění v laserové tiskárně nažehlí na desku spojů. Ta se pak odleptá běžným postupem.

PDF soubor se též nechá uložit jako výstup pro osvitové zařízení (např. Linotronic 330) a ve většině DTP studií vám zhotoví filmové předlohy.

Stmívač pro žárovky na 12 V

Obr. 1. Schéma zapojení stmívače pro žárovky na 12 V. Obvod je určen pro vozy s mínus pólem připojeným na kostru

Při pobytu a práci v místech bez přípojky elektrického vedení se musíme spoléhat nejčastěji na napájení z akumulátoru 12 V. Pokud musíme v takových podmínkách zajistit plynulou regulaci osvětlení, je pro nás důležitá také účinnost regulátoru. Z tohoto pohledu se jako optimální jeví pulsně šířková regulace (PWM), která dovoluje řídit výkon spotřebiče od 0 do 100 % s relativně vysokou účinností. Takový regulátor by ale současně měl být co nejjednodušší a levný. Tato kritéria splňují oba typy regulátorů, popsané v tomto stavebním návodu. Protože se mohou vyskytnout případy, kdy je výhodnější použít buď kladný nebo záporný pól napájení jako společný, je regulátor navržen pro obě možná uspořádání.

Popis zapojení

Schéma zapojení pro uzemněný záporný pól napájení je na obr. 1, pro společný kladný pól napájení na obr. 2. Protože rozdíly v obou zapojeních jsou minimální, popíšeme si pouze obvod s uzemněným minus pólem na kostře.

Hradla IC1A a IC1B jsou zapojena jako astabilní multivibrátor. Protože diody D1 a D2 jsou zapojeny obráceně, je doba trvání jedné půlperiody dána kombinací D1, R1 + levá část P1a C1, zatím co druhá půlperioda je určena D2, R2 + pravá část potenciometru P1 a C1. Podle nastavení běžce potenciometru P1 se mění střída generovaného signálu od 1:20 do 20:1. V praxi to znamená, že můžeme

regulovat příkon žárovky v rozsahu asi od 5 % do 95 %.

Výstup generátoru je přes odpor R3 přiveden na bázi tranzistoru T1, v jehož emitoru je zapojen výkonový spínací tranzistor T2. Napájecí napětí i zátěž se připojují svorkovnicemi K2 a K1. Protože obvod nemá z důvodů zachování maximální jednoduchosti proudovou ochranu, musíme při zapojování chránit výstup pro spotřebič (žárovku) před zkratem, protože by to s největší pravděpodobností vedlo ke zničení spínacího tranzistoru. Na tomto místě by nepomohla ani tavná pojistka, protože čas potřebný k bezpečnému zničení tranzistoru je většinou daleko kratší než vypínací časy běžných tavných pojistek.

Jediný rozdíl v provedení pro kladný nebo záporný pól na kostře je v zapojení výkonového tranzistoru T2 (viz obr. 1 a obr. 2).

Stavba

Oba regulátory jsou zhotoveny na jednostranné desce s plošnými spoji o rozměrech 49 x 33 mm. Rozložení součástek na desce s plošnými spoji pro zapojení z obr. 1 (záporný pól na kostře) je na obr. 3, pro zapojení podle obr. 2 (kladný pól na kostře) je na obr. 4. Obrazec desky spojů pro záporný pól na kostře je na obr. 5, pro kladný pól na kostře je na obr. 6.

Obě zapojení jsou tak jednoduchá, že jejich stavbu musí při pečlivé práci zvládnout i začátečník. Po osazení a zapájení součástek desku pečlivě prohlédneme a odstraníme případné závady. Připojíme napájecí napětí a nejlépe osciloskopem zkontrolujeme průběh signálu na výstupu generátoru (vývod 4 IC1B). Pokud se mění střída s otáčením potenciometru v předpokládaných mezích (od 5 do 95%), je

Obr. 2. Schéma zapojení stmívače pro uzemněný kladný pól napájení

Obr. 3. Rozložení součástek pro zapojení na obr. 1 (záporný pól na kostře)

Obr. 5. Obrazec desky plošných spojů pro záporný pól spojený s kostrou

Obr. 4 a 6. Rozložení součástek a obrazec desky spojů pro zapojení z obr. 2

generátor v pořádku. Připojíme žárovku ke konektoru K1 a přezkoušíme funkci stmívače. Tím je stavba hotova.

Závěr

Popsané stmívače lze díky oběma provedením (s uzemněným záporným i kladným pólem) snadno použít například v obytných automobilech, karavanech apod. Vzhledem k minimální pořizovací ceně a jednoduché stavbě je toto zapojení vhodné i pro začínajícího elektronika jako vzorová aplikace obvodu využívajícího pulsněšířkovou modulaci (PWM).

Seznam součástek
Mínus pól na kostře
$\begin{array}{ccccc} \text{odpory 0204} & & & & \\ \text{R1} & & & 4,7 \text{ k}\Omega \\ \text{R2} & & 4,7 \text{ k}\Omega \\ \text{R3} & & 10 \text{ k}\Omega \\ \text{R4} & & 220 \Omega \\ \text{R5} & & 1 \text{ k}\Omega \\ \text{R7} & & 120 \Omega \\ \end{array}$
C1100 nF C210 μF/25 V
D1 1N4148 D2 1N4148 IC1 MOS4001 T1 BC640 T2 MJE2955
K1 ARK2 K2 ARK2 P1 TP160 M1/N
Plus pól na kostře
odpory 0204 R1
D1 1N4148 D2 1N4148 IC1 MOS4001 T1 BC640 T2 MJE3055
K1ARK2 K2ARK2

Generátor signálu pro nácvik Morseovy abecedy

Obr. 1. Schéma zapojení generátoru pro nácvik Morseovi abecedy

I v dnešní "digitální" éře existují oblasti, kde používání Morseovy abecedy stále přežívá. Pro nácvik potřebujeme jednoduchý generátor, Morseův klíč a sluchátka nebo malý reproduktor.

Popis zapojení

Schéma generátoru pro nácvik Morseovy abecedy je na obr. 1. Základem je astabilní multivibrátor, tvořený obvody IC1A a IC1B. Výška tónu se nechá nastavit trimrem P1. V souvislosti s použitým napájecím napětím se změna napájecího napětí promítá i do výšky tónu. Generátor je spouštěn sepnutím svorek označených "klíč". K nim se připojuje klasický Morseův klíč. Na výstupu multivibrátoru (vývod 4 IC1B) je použito další hradlo IC1C, zapojené jako zesilovač signálu. Výstupní hlasitost můžeme řídit potenciometrem P2. Protože výstupní signál je proti zemi nesymetrický (pouze kladné napájecí napětí), musí být od výstupu oddělen

vazebním kondenzátorem C2. Na výstup můžeme připojit sluchátka s vyšší impedancí (200 ohm a výše), případně zapojit do vstupu nf zesilovače, rádia apod. Nevyužité hradlo IC2D má oba vstupy zapojeny na zem.

Stavba

Generátor je zhotoven na jednostranné desce s plošnými spoji o rozměrech 40 x 25 mm. Rozložení součástek na desce s plošnými spoji je na obr. 2. Obrazec desky spojů (BOTTOM) je na obr. 3. Protože generátor obsahuje pouze několik součástek, je jeho stavba velice

Obr. 2. Rozložení součástek na desce s plošnými spoji generátoru

Digitální indikátor pořadí fází

Korektní zapojení třífázového vedení je běžnou záležitostí každého elektrikáře. Popsaný obvod umožňuje jednoznačné určení pořadí připojených fází. Přes na první pohled vyšší složitost jsou použity běžně dostupné a levné součástky, jejichž celková cena nepřesáhne částku 150 Kč.

Popis zapojení

Schéma zapojení digitálního indikátoru fáze je na obr. 1. Obvod se skládá ze tří identických částí, proto si popíše funkci pouze první. Vstupní napětí (fáze) se přivede na přes odpor R1 na kondenzátor C1. Ten tvoří kapacitní dělič, z jehož středu je odebíráno napětí, usměrněné diodou D1 a filtrované kondenzátorem C3. Toto napájecí napětí je pak společně pro všechny tři fáze stabilizováno Zenerovou diodou D25 na +10 V. Současně je z výstupu kapacitního děliče před diodu D2 získáváno záporné napájecí napětí pro obvod indikační diody LD1. To je pro každou fázi samostatně stabilizováno Zenerovou diodou D7 a filtrováno kondenzátorem C4.

Jako poslední je na výstup kapacitního děliče přes odpor R3

Obr. 2. Rozložení součástek na desce s plošnými spoji testeru pořadí fází

jednoduchá a je vhodná i pro začátečníka. Při pečlivé práci musí generátor fungovat na první zapojení.

Závěr

Popsaný generátor patří k nejjednodušším konstrukcím, vhodným

Seznam součástek
$\begin{array}{cccc} \text{odpory 0204} & & & \\ \text{R1} & & & 100 \text{ k}\Omega \\ \text{R2} & & & 100 \text{ k}\Omega \\ \text{R3} & & & & 100 \text{ k}\Omega \end{array}$
C1 4,7 nF C2 47 μF/16 V
IC1 MOS4001
P1 PT10L 1 MΩ P2

mimo jiné i jako první pokusy s elektronickými obvody pro nejmladší zájemce. Mimo již popsané využití pro nácvik Morseovy abecedy může být použit jako jednoduchý generátor testovacího signálu při opravách nebo oživování nf zařízení. Vzhledem k minimálnímu odběru CMOS obvodů je nejjednodušší napájení z běžné destičkové baterie 9 V.

Obr. 3. Obrazec desky s plošnými spoji. Zvětšeno na 200 % originálu

Obr. 1. Schéma zapojení testeru pořadí fází třífázového napětí

připojen tranzistor T1. Ten zajišťuje správnou velikost a tvar vstupních impulsů pro čítač IC1A typu MOS4017.

Funkce obvodu je následující. Na hodinové vstupy čítačů 4017 jsou přiváděny impulsy odpovídající kmitočtu sítě. První z nich, který dosáhne hodnoty 5, svým výstupem Q5 (vývod 1), zapojeným přes diody, resetuje (vynuluje) zbývající dva obvody. Současně se na jeho negovaném výstupu /Q5-9 objeví logická nula, která přes odporový dělič

R6/R7 sepne tranzistor T2. Tím se rozsvítí indikační LED, zapojená v jeho kolektoru. Obvod dále počítá impulsy až do dosažení čísla devět. V tom okamžiku se na výstupu Q9 objeví úroveň HI, která opět přes diody vynuluje oba zbývající čítače. Ty začínají čítat od nuly, kdežto "první" obvod ještě čítá následující desátý impuls a následně se sám vynuluje.

Obr. 3. Obrazec desky spojů - strana součástek (TOP)

Obr. 4. Obrazec desky spojů - strana spojů (BOTTOM)

Druhé dva čítače však mají o jedničku náskok. Který z nich však dosáhne první pěti impulsů záleží právě na pořadí fází. Čítač na následující fázi po "prvním" dosáhne pěti impulsů jako první a vynuluje ostatní dva. LED na jeho výstupu se rozsvítí. Po dokončení čítání do devíti se opět vynulují ostatní dva čítače (první a třetí) a druhý ještě pokračuje v čítání desátého

impulsu. To samé se pak opakuje i pro poslední (třetí) čítač. Výsledkem je, že podle pořadí fází se postupně rozsvěcují jednotlivé LED. Protože každý cyklus čítání trvá devět period sítě (x 3), rotují jednotlivé LED dokola s frekvencí asi 1,7 Hz, což je dobře viditelné. Směr rotace LED určuje pořadí fází.

Stavba

Digitální indikátor pořadí fází je zhotoven na dvoustranné desce s plošnými spoji o rozměrech 79 x 63 mm. Rozložení součástek na desce s plošnými spoji je na obr. 2, obrazec desky spojů ze strany součástek (TOP) je na obr. 3, ze strany spojů (BOTTOM) na obr. 4.

R10 100 kΩ C9 220 nF/630 V D21 1N4148 R11 10 kΩ C10 470 nF D22 1N4148 R12 100 kΩ C11 10 μF/25 V D23 ZD 10V R13 10 kΩ C12 100 μF/16 V D24 ZD 7V5 R14 15 kΩ C13 220 μF/16 V D25 ZD 10V R17 100 kΩ D1 1N4007 IC1 MOS4017 R19 100 kΩ D2 1N4007 IC2 MOS4017 R20 10 kΩ D3 1N4148 IC3 MOS4017 R21 15 kΩ D4 1N4148 LD1 LED odpory 0207 D6 1N4148 LD2 LED R1 1 kΩ D7 ZD 10V T1 BC548 R2 1 MΩ D8 ZD 7V5 T2 BC558 R8 1 kΩ D9 1N4007 T4 BC558	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1 220 nF/630 V C2 .470 nF C3 .10 μF/25 V C4 .100 μF/16 V C5 .220 nF/630 V C6 .470 nF C7 .10 μF/25 V C8 .100 μF/16 V	D13 1N4148 D14 1N4148 D15 ZD 10V D16 ZD 7V5 D17 1N4007 D18 1N4007 D19 1N4148 D20 1N4148
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C11 10 μF/25 V C12 100 μF/16 V C13 220 μF/16 V D1 1N4007	D22 1N4148 D23 ZD 10V D24 ZD 7V5 D25 ZD 10V IC1 MOS4017
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D3 1N4148 D4 1N4148 D5 1N4148 D6 1N4148 D7 ZD 10V D8 ZD 7V5 D9 1N4007	IC3 MOS4017 LD1 LED LD2 LED LD3 LED T1 BC548 T2 BC558 T3 BC548

Generátor třífázového testovacího signálu

Pro testování digitálního indikátoru pořadí fází byl navržen popisovaný generátor. Jeho použití je však širší. Výstup generuje tři nezávislé signály vzájemně posunuté o 120°, což odpovídá běžnému třífázovému síťovému vedení.

Popis zapojení

Schéma generátoru je na obr. 1. Základní kmitočet je tvořen v generátoru s obvodem IC1A. Hradlo IC1B tvaruje výstupní signál. Zbývající dvě hradla z pouzdra (IC1C a IC1D) jsou použita jako budič pro indikační LED LD1. Výstup generátoru je přiveden na hodinový vstup dekadického čítače IC2A. Výstup Q6 (vývod 5) je zapojen na resetovací vstup obvodu. To znamená, že čítač se po každém šestém impulsu vynuluje. K výstupům čítače 4017 jsou připojeny 3 třívstupá součtová hradla 4075. Ta jsou zapojena tak, že jejich výstupy jsou vždy po tři vstupní impulsy v úrovni "1" a po tři zbývající v úrovni "0". Vzájemně jsou vždy o dva impulsy

posunuty, což na jejich výstupech vytváří tři průběhy se střídou 1:1, ale vzájemně fázové posunuté o 120°. Výstupy součtových hradel IC3A, IC3B a IC3C jsou přes odpory R5 až R7 přivedeny na báze tranzistorů T1 až T3. Z jejich kolektorů se přes kondenzátory C2 až C4 přivádí simulované třífázové napětí na výstupy R, S a T. Obvod je napájen z externího zdroje 24 V, napájení pro generátor je stabilizováno Zenerovou diodou D1 na 10 V. Protože výstupní napětí by mělo mít kmitočet 50 Hz,

Obr. 1. Schéma zapojení generátoru třífázového testovacího signálu

Všechny součástky jsou umístěny na desce s plošnými spoji. Vlastní stavba je poměrně jednoduchá při pečlivé práci ji zvládne i méně zkušený elektronik. Obvod nemá žádné nastavovací prvky a indikátor by měl pracovat na první zapojení.

Jediné, na co je třeba si dát pozor, je vlastní mechanické provedení indikátoru. Vzhledem k tomu, že na desku je přivedeno životu nebezpečné třífázové napětí, musí být deska indikátoru vestavěna do dobře izolované skříňky. Do horního panelu vyvrtáme pouze tři otvory pro indikační LED. Tři fázové vodiče a zemnící vodič vyvedeme ven kabely, zakončenými nejlépe barevně odlišenými izolovanými krokosvorkami. I tak ale práce s indikátorem vyžaduje dodržování všech zásad bezpečnosti práce.

Konstrukce tedy není z bezpečnostních důvodů vhodná pro mládež a začátečníky, pracující bez dozoru.

Závěr

Popsaný indikátor řeší celkem zajímavým způsobem problém určení pořadí fází. Přístroj je užitečným pomocníkem pro všechny, kteří se častěji dostávají do styku s třífázovým proudem a jeho rozvody.

musí být základní kmitočet generátoru s IC1A nastaven na šestinásobek, tj. 300 Hz (kmitočet generátoru je v čítači IC2A dělen šesti).

Stavba

Generátor třífázového testovacího signálu je zhotoven na dvoustranné desce s plošnými spoji o rozměrech 67 x 30 mm. Rozložení součástek na desce s plošnými spoji je na obr. 2, obrazec desky spojů ze strany součástek (TOP) je na obr. 3, ze strany spojů (BOT-TOM) na obr. 4. Všechny součástky jsou umístěny na desce s plošnými spoji. Nejprve osadíme a zapájíme všechny součástky. Desku pečlivé prohlédneme a odstraníme případné závady. Připojíme napájecí napětí a trimrem P1 nastavíme kmitočet generátoru na 300 Hz. Zkontrolujeme výstupní napětí na jednotlivých výstupech (R, S a T). Pokud je vše v pořádku, je testovací generátor hotov.

Závěr

Generátor třífázového testovacího signálu byl navržen pro kontrolu

Seznam součástek	
odpory 0204 R1 820 R2 820 R3 820 R4 4,7 R5 6,8 R6 6,8 R7 6,8 R8 1 R9 1	
C1 470 C2 220 μF/25 C3 220 μF/25 C4 220 μF/25 C5 100 μF/16 C6 100	5 V 5 V 5 V 6 V
D1 ZD 1 IC1 MOS40 IC2 MOS40 IC3 MOS40 LD1 LE T1 BC6 T2 BC6 T3 BC6	093 017 075 D3 639
P1	kΩ

Obr. 2. Rozložení součástek na desce s plošnými spoji generátoru

indikátoru pořadí fází. Pro tento účel se výstupy generátoru připojí za vstupní kondenzátory 220 nF/630 V, protože pro připojení přímo na vstup je výstupní napětí generátoru nedostatečné.

Kromě popsaného použití jsou však možnosti generátoru daleko širší. Najde uplatnění zejména při testování třífázových obvodů. Pouze musíme brát v úvahu, že výstupní napětí generátoru jsou sice stejně jako u třífázového síťového napětí fázově posunuta o 120°, jeho průběh je však obdélníkový na rozdíl od sinusového průběhu síťového napětí. Pokud ale potřebujeme mít k dispozici právě fázově posunuté napětí a nezáleží přitom na tvaru (průběhu), je tento generátor naprosto vyhovující.

Obr. 3. Obrazec desky spojů ze strany součástek (TOP). Zvětšeno na 150 %

Obr. 4. Obrazec desky spojů - strana spojů (BOTTOM). Zvětšeno na 150 %

Korekční zesilovač pro komunikační přijímač

V hifi technice se pro korekce zvuku používají nejčastěji dvoupásmové korekce, obvykle klasické Baxandallovo zapojení, které umožňuje plynulé zvýšení nebo snížení zisku ±10 až ±15 dB na 100 Hz a 10 kHz při minimální změně signálu okolo 1 kHz. Pro komunikační zařízení se však tento typ korekcí příliš nehodí. Korekční předzesilovač s plynule přeladitelným filtrem hloubek (horní propustí) a korekcí výšek na kmitočtu asi 6 kHz, který je výhodný zejména pro mluvené slovo, je popsán v následující konstrukci.

Popis zapojení

Schéma zapojení korektoru pro komunikační zařízení je na obr. 1. Na vstupu je plynule přeladitelná horní propust se strmostí 12 dB/okt. Dělící kmitočet lze nastavit dvojitým lineárním potenciometrem P1 v rozmezí 80 Hz až 500 Hz. Tyto meze lze posunout změnou kapacity kondenzátorů C1 a C2. Vyšší kapacita posouvá dělící frekvenci dolů, menší nahoru. Vstupní zesilovač je realizován obvodem IC1A. V druhém stupni, tvořeném zesilovačem IC1B, je zapojen zpětnovazební korektor výšek. Ten umožňuje maximální zisk/potlačení asi ±13 dB na kmitočtu 6 kHz. I zde je možnost kmitočtové maximum korekcí podle potřeby snížit nebo zvýšit změnou kondenzátorů C6 a C7. Je ovšem nutno dodržet vzájemný poměr jejich kapacit 1:10. Protože obvod korektoru je napájen nesymetrickým napětím +12 až +24 V, je odporovým děličem R6/R5 vytvořen umělý střed napájení, filtrovaný kondenzátorem C5.

Výstupní signál je stejnosměrně oddělen kondenzátorem C8 a odporem R11. Odpor R12 uzemňuje výstup korekčního zesilovače.

Stavba

Korekční zesilovač pro komunikační přijímač je zhotoven na dvoustranné desce s plošnými spoji o rozměrech 45 x 38 mm. Rozložení součástek na desce s plošnými spoji je

Obr. 1. Schéma zapojení korekčního zesilovače pro komunikační přijímač

na obr. 2, obrazec desky spojů ze strany součástek (TOP) je na obr. 3, ze strany spojů (BOTTOM) na obr. 4. Všechny součástky jsou umístěny na desce s plošnými spoji. Nejprve osadíme a zapájíme všechny součástky. Desku pečlivé prohlédneme a odstraníme případné závady. Připojíme napájecí napětí a vstup tónového generátoru na vstup korektoru. Zvyšujeme úroveň vstupního signálu a současně osciloskopem kontrolujeme čistotu signálu (souměrnou limitaci). Přeladěním kmitočtu generátoru přezkoušíme funkci korekcí. Pokud nemáme vhodné přístrojové vybavení, otestujeme korektor na běžném hudebním signálu nebo mluveném slovu z připojeného mikrofonu (musí mít vlastní předzesilovač, protože zisk korekcí ve středním pásmu je jednotkový (0 dB).

Obr. 2. Rozložení součástek

Obr. 3 Obrazec desky spojů ze strany součástek (TOP) Zvětšeno na 150 %

Obr. 4. Obrazec desky spojů ze strany spojů (BOTTOM) Zvětšeno na 150 %

Závěr

Popsaný korekční zesilovač je vhodný pro všechny typy zařízení, kde je hlavní prioritou srozumitelnost lidské řeči. Díky svým malým rozměrům je snadno zabudovatelný do většiny běžných zařízení, kde může být současně napájen z vnitřního zdroje zařízení. Odběr předzesilovače se přitom pohybuje okolo 25 mA.

Seznam součástek
$\begin{array}{cccccc} \text{odpory 0204} \\ \text{R1} & 10 \text{ k}\Omega \\ \text{R2} & 10 \text{ k}\Omega \\ \text{R3} & 10 \text{ k}\Omega \\ \text{R4} & 9,1 \text{ k}\Omega \\ \text{R5} & 1 \text{ k}\Omega \\ \text{R6} & 1 \text{ k}\Omega \\ \text{R7} & 1 \text{ M}\Omega \\ \text{R8} & 1 \text{ M}\Omega \\ \text{R9} & 10 \text{ k}\Omega \\ \text{R10} & 10 \text{ k}\Omega \\ \text{R11} & 47 \Omega \\ \text{R12} & 10 \text{ k}\Omega \\ \end{array}$
C1 330 nF C2 330 nF C3 100 pF C4 22 μF/25 V C5 220 μF/16 V C6 100 pF C7 1 nF C8 22 μF/25 V C9 470 μF/25 V C10 12 pF
IC1 NE5532
P1

Jednoduchý autoalarm

Zapojení jednoduchého a levného autoalarmu, který obsahuje pouze dvě pouzdra se čtveřicí CMOS hradel 4093 a několik dalších součástek v souhrnné ceně okolo 150 Kč je na obr. 1. Zapojení se připojuje k původní kabeláži automobilu svorkovnicemi K1 a K2.

Vstup označený "+12 V" se připojuje k autobaterii. Vývod "A" je připojen ke spínači zapalovaní. Vývod "B" se připojuje ke spínačům dveřního osvětlení. Při všech uzavřených dveřích jsou spínače osvětlení rozepnuty a v bodě "B" je napětí baterie (osvětlení je připojeno na + pól baterie) a sepnutím některého z dveřních spínačů se žárovka osvětlení připojí přes dveřní spínač na zem. Vývod "D" je pomocný, slouží například pro připojení dalších spínačů - víka motoru a zavazadlového prostoru, pátých dveří apod.

Po zapnutí se alarm aktivuje za 25 s. Pokud ale zůstanou otevřené některé dveře, zůstane alarm neaktivní až do jejich zavření.

To dává posádce dostatek času k vystoupení a zamčení vozu.

Při nástupu je opět aktivace alarmu zpožděna o 7 s. Tento čas je dostatečný k vypnutí alarmu (skrytým vypínačem). Pokud je zloděj po sedmi vteřinách ještě v autě a alarm není vypnut, začne v sekundových intervalech spínat houkačka (RE1). I v případě, že se zloděj proti případnému alarmu pojistí například přestřižením kabelu od houkačky, je 5 sekund po nastartování přerušeno zapalování (pomocí kontaktů relé RE2).

Stavba

Autoalarm je zhotoven na dvoustranné desce s plošnými spoji o rozměrech 90 x 38 mm. Rozložení součástek na desce s plošnými spoji je na obr. 2, obrazec desky spojů ze strany součástek (TOP) je na obr. 3, ze

Pokračování na str. 23

Obr. 1. Schéma zapojení

Obr. 2. Rozložení součástek na desce s plošnými spoji jednoduchého autoalarmu

strany spojů (BOTTOM) na obr. 4. Zapojení neobsahuje žádné nastavovací prvky a při pečlivé práci by mělo fungovat na první zapojení.

Závěr

Popsaný autoalarm patří do kategorie jednodušších zařízení. V tomto případě je poplach aktivován sepnutím kontaktu ve dveřích nebo v motorovém či zavazadlovém prostoru. Nereaguje tedy například na rozbití skla. Na druhou stranu jakákoliv ochrana je lepší než žádná a v některých případech dají podobná domácí "udělátka" profesionálnímu zloději více práce než drahé originální zabezpečovací zařízení, které má obvykle profesionál takříkajíc "v malíčku".

Obr. 3. Obrazec desky spojů ze strany součástek (TOP)

Obr. 4. Obrazec desky spojů ze strany spojů (BOTTOM)

Seznam součástek
odpory 0204 R1 $22 \text{ k}\Omega$ R3 $22 \text{ k}\Omega$ R4 $1 \text{ M}\Omega$ R5 $1 \text{ M}\Omega$ R6 $390 \text{ k}\Omega$ R8 $22 \text{ k}\Omega$ R9 $220 \text{ k}\Omega$ R10 $10 \text{ k}\Omega$ R11 $1 \text{ M}\Omega$ R13 $1 \text{ M}\Omega$ R14 $10 \text{ k}\Omega$
odpor 0207 R7 3,9 M Ω
C1 100 μF/16 V C2 4,7 μF/50 V C3 4,7 μF/50 V C4 4,7 μF/50 V C5 1 mF/16 V C6 4,7 μF/50 V
D1 až D3 1N4001 D4 až D10 1N4148 D11 až D14 1N4001 IC1 MOS4093 IC2 MOS4093
K1 ARK3-INC K2 ARK2-INC K3 ARK2-INC K4 ARK2-INC
RE1RAS12V RE2RAS12V
T1 BC549 T2

Výkonový triakový stmívač s fázovým řízením

Obr. 1. Schéma zapojení triakového výkonového stmívače s fázovým řízením

Obr. 2. Rozložení součástek na desce plošného spoje triakového stmívače

Výkonové stmívače s triakem mohou být řešeny mnoha způsoby. Ve spínacím obvodu může být použit speciální monolitický obvod, nebo může být elektronika navržena

z diskrétních součástek. Je pouze otázkou úvahy, zda použít dražší specializovaný obvod, nebo několik halířových součástek. V následujícím zapojení je realizován obvod fázového

řízení triaků diskrétní technologií. Řídicí obvody jsou galvanicky odděleny od sítě.

Popis zapojení

Schéma zapojení regulátoru je na obr. 1. Obvod se skládá z výkonové části, dvou samostatných zdrojů s transformátorem TR1, obvodem nastavení a předžhavení s T2, indikátorem průchodu nulou s IC4A, generátorem napětí pilovitého průběhu s tranzistorem T3 a komparátorem IC4D.

Výkonová část

Síťové napětí i zátěž se připojuje na svorkovnice K1 a K2. Indukčnost L1 s kondenzátory C1, C2 a odporem R1 tvoří filtr proti vyzařování rušení do okolí. Obvod je chráněn skleněnou pojistkou PO1.

Zdroj

Ve zdroji je použit transformátor s dvojitým sekundárem. I když jsou obě sekundární vinutí vzájemně galvanicky oddělena, běžné transformátorky do plošných spojů jsou navrženy a testovány na odolnost proti průrazu pouze mezi primárem a sekundárem. Protože jedna polovina sekundárního napětí je přes tranzistor T1 a odpor R3 spojena s výkonovou částí (a tím i se síťovým napětím), musí být použit speciální transformátor, u kterého je zaručena dostatečná izolace na průrazné napětí i mezi sekundáry navzájem.

Diodový můstek D2 usměrňuje napájecí napětí pro síťovou část zdroje. To je stabilizováno na -5 V regulátorem IC2. Vývod A2 triaku TY1 je spojen s kladným potenciálem zdroje s IC2. V případě sepnutí optočlenu IC3 se zvýší úbytek napětí na odporu R2, tranzistor T1 se otevře a gate triaku TY1 dostane přes odpor R3 záporný zapalovací impuls. Triak sepne.

Druhý sekundár transformátoru TR1 napájí přes diodu usměrňovací můstek D1 a diodu D3 stabilizátor IC1. Výstupní napětí +12 V napájí regulační část obvodu.

Indikátor průchodu nulou

Za můstkem D1 je dvoucestně usměrněné tepavé napětí. Z toho jsou v komparátoru IC4A odvozeny krátké záporné impulsy, vznikající při průchodu střídavého napětí nulou.

Výstup komparátoru je trvale v úrovni HI (to znamená okolo +10 V). To je dáno poměrně malým napětím z děliče R9/R10 na invertujícím vstupu IC4A (0,4 V) a přibližně 1/4 usměrněného napětí na můstku D1, přivedeného na neinvertující vstup IC4A. Pouze po krátkou dobu, kdy je střídavé usměrněné napětí za můstek D1 menší než 1,6 V, je výstup komparátoru překlopen do nízké úrovně (asi +1 V).

Generátor napětí pilového průběhu

Tranzistor T3 je zapojen jako zdroj konstantního proudu. Tím se nabíjí kondenzátor C10. Napětí na C10 tedy lineárně stoupá až do okamžiku, kdy se na výstupu komparátoru IC4A objeví záporný impuls (v okamžiku průchodu střídavého napětí nulou). Ten přes odpor R12 a diodu D7 vybije kondenzátor C10 na napětí asi +1,7 V (napětí na výstupu IC4A v úrovni LO a úbytek napětí na diodě D7). Po skončení nulovacího impulsu se kondenzátor IC10 začíná opět nabíjet. IC4B je zapojen jako sledovač s velkým vstupním odporem a odděluje generátor napětí pilového průběhu od dalších obvodů. Protože napětí na IC10 během nabíjení lineárně stoupá, je operačním zesilovačem IC4C vytvořen invertor se zesílením -1, který otočí průběh signálu o 180°. Protože je však použito pouze kladné napájecí napětí, je odpory R14 a R15 vytvořen umělý střed napájecího napětí, kolem kterého se signál invertuje. Na výstupu IC4C (vývod 14) tedy dostáváme napětí s pilovým průběhem s lineárně se zmenšující úrovní.

Řídicí obvod

Triakový regulátor ovládáme stejnosměrným napětím z potenciometru P1. Napětí z běžce P1 je přes diodu D4 přivedeno na bázi tranzistoru T2, zapojeného jako emitorový sledovač. V sérii s jeho emitorovým odporem je LED LD1, která indikuje přítomnost regulačního napětí (i když vzhledem k nelineárnímu průběhu závislosti intenzity záření na protékajícím proudu má funkci pouze orientační). Potenciometr P2 slouží k nastavení předpětí (předžhavení). Výsledné regulační napětí se přivádí na komparátor IC4D. Zde je porovnáváno stejnosměrné napětí z regulačního obvodu s napětím

Obr. 4. Obrazec desky spojů ze strany součástek (TOP). Zvětšeno na 125 %

z generátoru signálu pilového průběhu. Protože napětí z generátoru se v průběhu jedné půlperiody lineárně snižuje z maxima do minima, v okamžiku, kdy je stejnosměrné řídicí napětí vyšší než klesající napětí generátoru, dojde k překlopení výstupu komparátoru IC4D a tím přes optočlen IC3 i k sepnutí triaku. Čím vyšší je stejnosměrné regulační napětí, tím delší je tedy doba sepnutí triaku během jedné půlperiody a tím vyšší i výkon, dodávaný do zátěže. Popsaný obvod tedy umožňuje fázové řízení triakového spínače prakticky v rozsahu od 0° do 180°.

Stavba

Triakový regulátor je zhotoven na dvoustranné desce s plošnými spoji o rozměrech 132 x 66 mm. Rozložení součástek na desce s plošnými spoji je na obr. 2, obrazec desky spojů ze strany součástek (TOP) je na obr. 3, ze strany spojů (BOTTOM) na obr. 4. Deska regulátoru obsahuje všechny součástky včetně síťového transformátoru a triaku s chladičem a odrušovacími obvody. To výrazně usnadňuje stavbu a použití regulátoru.

Nejprve osadíme a zapájíme všechny součástky na desce s plošnými spoji.

Obr. 4. Obrazec desky spojů ze strany spojů (BOTTOM).

Trimr P3 nastavíme do střední polohy. Připojíme napájecí napětí a zkontrolujeme napětí na výstupech regulátorů IC1 (+12 V) a IC2 (-5 V). Dále nastavíme trimrem P3 generátor napětí pilového průběhu (nejlépe na výstupu invertoru IC4C) tak, aby výsledný průběh měl maximální rozkmit, ale nebyl ještě limitován (pila nesmí mít oříznutou některou špičku). Ke správnému nastavení je potřeba osciloskop. Nyní zkontrolujeme průběhy na výstupu IC4D při současné změně regulačního napětí. Měla by se plynule měnit střída výstupního signálu (spínacích impulsů) od trvale v nule (nulový výkon - vypnuto) do trvale na maximu (stejnosměrné řídicí napětí je vyšší než špička pilového napětí) - výstup regulátoru na maximu. Pokud je vše v pořádku, můžeme připojit zátěž (například žárovku) a regulátor vyzkoušet v praxi. Tím je stavba regulátoru hotova

Závěr

Popsaný regulátor je možné využít pro řízení výkonu do převážně odporové zátěže (topení, osvětlení apod.). Protože regulační napětí na vstupu komparátoru IC4D je přibližně 0 až 10 V, můžeme popsanou jednotku použít například pro stmívání světel a připojit externí řídicí napětí na vstup komparátoru IC4D (analogový výstup 0 až 10 V, běžně používaný v profesionálních osvětlovacích zařízeních).

Seznam součástek
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
C1. 220 nF/250 VAC C2. 220 nF/250 VAC C3. 220 μF/25 V C4. 10 μF/25 V C5. 100 nF C6. 220 μF/25 V C7. 100 nF C8. 10 μF/25 V C9. 100 nF C10. 100 nF
D1 B250C1500 D2 B250C1500 D3 1N4007 D4 až D9 1N4148 IC1 78L12 IC2 79L05 IC3 PC817 IC4 LM324 LD1 LED T1 BC557 T2 BC547 T3 BC557 TY1 TIC263M
K1 ARK2 K2 ARK2 L1 30μH/10A P1 TP160A 5kΩ/N P2 TP160A 1kΩ/N P3 PT10L 250 kΩ PO1 10AF TR1 WL312-2

Napěťové reference

Při návrhu nejrůznějších elektronických zařízení se často vyskytuje požadavek na stabilní zdroj referenčního napětí. Podle charakteru a určení přístroje se také různí

požadavky na velikost referenčního napětí, absolutní přesnost, teplotní závislost, dlouhodobou stabilitu, šum a další vlastnosti. Jedním z největších světových výrobců, který se mimo jiné specializuje na tuto oblast, je firma LINEAR TECHNOLOGY. Z její nabídky jsme připravili přehled základních typů napěťových referencí a jejich základních aplikací.

VOLTAGE REFERENCE SELECTION GUIDE*

* COMMERCIAL 0°C to + 70°C
** LTZ1000 requires external control and biasing circuits.

		SELECTION G				external control and biasing circuits
VOLTAGE V _Z (VOLTS)	VOLTAGE TOLERANCE MAXIMUM T _A = 25°C	DEVICE	TEMPERATURE DRIFT, ppm/°C OR mV CHANGE	OPERATING CURRENT RANGE (OR SUPPLY CURRENT)	MAXIMUM DYNAMIC IMPEDANCE (Ω)	MAJOR FEATURE
1.235	± 0.32%	LT1004C-1.2	20ppm (typ)	10µA to 20mA	1.5	Micropower
	± 0.32%	LT1004CS8-1.2	20ppm (typ)	10uA to 20mA	1.5	Micropower
	±1%	LT1034BC-1.2	20ppm (max)	20μA to 20mA	1.5	Low TC Micropower with 7V Aux. Reference
	± 1%	LT1034C-1.2	40ppm (max)	20µA to 20mA	1.5	Low TC Micropower with 7V Aux. Reference
	±2%	LM385-1.2	20ppm (typ)	15μA to 20mA	1.5	Micropower
	±1%	LM385B-1.2	20ppm (typ)	15μA to 20mA	1.5	Micropower
2.5	± 0.5%	LT1004C-2.5	20ppm (typ)	20μA to 20mA	1.5	Micropower
	±0.8%	LT1004CS8-2.5	20ppm (typ)	20μA to 30mA	1.5	Micropower
	±0.2%	LT1009C	6mV (max)	400μA to 10mA	1.4	Precision
	±2.5%	LT1009S8	25ppm (max)	400μA to 20mA	0.6	Precision
	±0.2%	LT1019C-2.5	20ppm (max)	1.2mA	N/A	Precision Bandgap
	±4%	LM336-2.5	6mV (max)	400μA to 10mA	1.4	General Purpose
	±2%	LM336B-2.5	6mV (max)	400μA to 10mA	1.4	General Purpose
	±3%	LM385-2.5	20ppm (typ)	20µA to 20mA	1.5	Micropower
	±1.5%	LM385B-2.5	20ppm (typ)	20μA to 20mA	1.5	Micropower
Í	±3%	LT580J	85 (max)	1.5mA	N/A	3 Terminal Low Orift
	±1%	LT580K	40 (max)	1.5mA	N/A	3 Terminal Low Drift
	± 0.4%	LT580L	25 (max)	1.5mA	N/A	3 Terminal Low Drift
	± 0.4%	LT580M	10 (max)	1.5mA	N/A	3 Terminal Low Drift
4.5	± 0.2%	LT1019C-4.5	20ppm (max)	1.2mA	N/A	Precision Bandgap
5.0	±0.2%	LT1019C-5	20ppm (max)	1.2mA	N/A	Precision Bandgap
j	±1%	LT1021BC-5	5ppm (max)	1.2mA	0.1	Very Low Drift
1	± 0.05%	LT1021CC-5	20ppm (max)	1.2mA	0.1	Very Tight Initial Tolerance
1	±1%	LT1021DC-5	20ppm (max)	1.2mA	0.1	Low Cost, High Performance
j	±1%	LT1021CS8	20ppm (max)	1.2mA	0.1	Low Cost, High Performance
	± 0.02%	LT1027A	2ppm (max)	2.0mA	N/A	Low Drift, Tight Tolerance
ļ	± 0.05%	LT1027B	2ppm (max)	2.0mA	N/A	Low Drift, Tight Tolerance
	± 0.05%	LT1027C	3ppm (max)	2.0mA	N/A	Low Drift, Tight Tolerance
	± 0.05%	LT1027D	5ppm (max)	2.0mA	N/A	Low Drift, Tight Tolerance
	±0.1%	LT1027E	7.5ppm (max)	2.0mA	N/A	Low Drift, Tight Tolerance
	±0.2%	LT1029AC	20ppm (max)	700μA to 10mA	0.6	Precision Bandgap
	±1%	LT1029C	34ppm (max)	700μA to 10mA	0.6	Precision Bandgap
	± 0.3%	REF02E	8.5ppm (max)	1.4mA	N/A	Precision Bandgap
	±0.5%	REF02H	25ppm (max)	1.4mA	N/A	Precision Bandgap
	±1%	REF02C	6.5ppm (max)	1.6mA	N/A	Precision Bandgap
	± 2%	REF02E	250ppm (max)	2.0mA	N/A	Bandgap
5.9	± 3%	LM329A	10ppm (max)	600μA to 15mA	1.0 (typ)	Low Drift
}	±5%	LM329B	20ppm (max)	600µA to 15mA	1.0 (typ)	Low Drift
	±5%	LM329C	50ppm (max)	600μA to 15mA	1.0 (typ)	General Purpose
1	±5%	LM329D	100ppm (max)	600μA to 15mA	1.0 (typ)	General Purpose
	±4%	LTZ1000	0.1ppm/°C	4mA	20.0	Ultra Low Drift,
				<u> </u>		2ppm Long Term Stability**
3.95	±5%	LM399	2ppm (max)	500μA to 10mA	1.5	Ultra Low Drift
	± 5%	LM399A	1ppm (max)	500μA to 10mA	1.5	Ultra Low Drift
7.0	± 0.7%	LT1021BC-7	5ppm (max)	1.0mA	0.2	Low Drift/Noise, Exc. Stability
	±0.7%	LT1021DC-7	20ppm (max)	1.0mA	0.2	Low Cost, High Performance
10.0	±0.2%	LT1019C-10	20ppm (max)	1.2mA	N/A	Precision Bandgap
1	±0.5%	LT1021BC-10	5ppm (max)	1.7mA	0.25	Very Low Drift
1	± 0.05%	LT1021CC-10	20ppm (max)	1.7mA	0.25	Very Tight Initial Tolerance
1	± 0.5%	LT1021DC-10	20ppm (max)	1.7mA	0.25	Low Cost, High Performance
1	± 0.5%	LT1031BC	5ppm (max)	1.7mA	0.25	Very Low Drift
ł	±0.1%	LT1031CC	15ppm (max)	1.7mA	0.25	Very Tight Initial Tolerance
1	±0.2%	LT1031DC	25ppm (max)	1.7mA	0.25	Low Cost, High Performance
j	±0.3%	LT581J	30ppm (max)	1.0mA	N/A	3 Terminal Low Drift
1	±0.1%	LT581K	15ppm (max)	1.0mA	N/A	3 Terminal Low Drift
1	±0.3%	REF01E	8.5ppm (max)	1.4mA	N/A	Precision Bandgap
ſ	± 0.5%	REF01H	25ppm (max)	1.4mA	N/A	Precision Bandgap
1	±1%	REF01C	65ppm (max)	1.6mA	N/A	Precision Bandgap

Tab. 1. Přehled napěťových referenci Linear Technology

V tab. 1. naleznete přehled dodávaných typů včetně jejich nejdůležitějších vlastností, jako je

Obr. 1. Princip zapojení regulátoru se sériovým odporem

Obr. 2. Nahrazení odporu zdrojem proudu

Obr. 3. Napěťová reference 2,5 V s možností nastavení ±5 %

Obr. 4. Napěťová reference +5 V s možností nastavení +5 % až -13 %

maximální tolerance výstupního napětí, teplotní závislost, rozsah pracovních proudů, maximální dynamickou impedanci a hlavní přednosti použitého typu.

Obr. 5. Zapojení pro snížení teplotní závislosti zdroje proudu

Napěťovou referenci (zdroj referenčního napětí) můžeme řešit několika způsoby. Základní je použití součástky s definovaným úbytkem napětí při daném rozmezí pracovního proudu. Nejjednodušším představitelem je Zenerova dioda. Tento prvek se vždy kombinuje se zdrojem proudu (který může být realizován obyčejným odporem nebo diskrétním či monolitickým zdrojem proudu).

Druhou skupinou jsou součástky, které jsou napájeny vyšším napětím a na jejich výstupu je buď pevné

Obr. 6. Napěťová reference +5 V s velmi jemným nastavením

Obr. 7. Napěťová reference +2,5 V s teplotně nezávislým nastavením

Obr. 8. Reference 2,490 V optimalizovaná na minimální teplotní závislost

výstupní napětí, nebo umožňují výstupní napětí v určitém rozmezí měnit. I u první skupiny (dvousvorkových regulátorů) existují typy,

Obr. 9. Napěťová reference s výstupním napětím 5,120 V

Obr. 10. Napěťová reference 2,5 V s obvodem LT1431Z

Obr. 11. Obvod pro přesné dělení vstupního napětí dvěmi

Obr. 12. Obvod pro násobení vstupního napětí dvěmi

Obr. 13. Obvod přo přesnou inverzi vstupního napětí

jejichž referenční napětí je možno externím vstupem do jisté míry korigovat.

LT1021 PERFORMANCE

Základní zapojení napěťové reference s předřadným odporem je na obr. 1. Z obrázku vidíme, že výstupní

LT1031 PERFORMANCE						
DEVICE	Vout	TC IN ppm/°C (TYP/MAX)				
LT1031B	10V ±5mV	3/5				
LT1031C	10V ±10mV	6/15				
LT1031D	10V ±20mV	10/25				

DEVICE	V _{OUT}	TC IN ppm/°C (TYP/MAX)
LT1021C-5	5V ±2.5mV	3/20
LT1021B-5	5V ±50mV	2/5
LT1021B-7	7V ±50mV	2/5
LT1021D-7	7V ±50mV	3/20
LT1021C-10	10V ±5mV	5/20
LT1021B-10	10V ±50mV	2/5
LT1019 PERFO	RMANCE	

DEVICE	V _{OUT}	TC IN ppm/°C (TYP/MAX); C = COM, M = MIL
LT1019A-2.5	2.5V ±1.25mV	3/5 (C), 5/10 (M)
LT1019-2.5	2.5V ±5mV	5/20 (C), 8/25 (M)
LT1019A-5	5V ±2.5mV	3/5 (C), 5/10 (M)
LT1019-5	5V ±10mV	5/20 (C), 8/25 (M)
LT1019A-10	10V ±5mV	3/5 (C), 5/10 (M)
LT1019-10	10V ±20mV	5/20 (C), 8/25 (M)
LT1027 PERFO	<u> </u>	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

DEVICE	V _{OUT}	TC IN ppm/°C (TYP/MAX)		
LT1027A	5V ±1 mV	1/2		
LT1027B	5V-±2.5mV	1/2		
LT1027C	5V ±2.5mV	2/3		
LT1027D	5V ±2.5mV	3/5		
LT1027E	5V ±5mV	5/7.5		

Tab. 2.

Obr. 14. Napěťová reference 10 V s možností nastavení

Obr. 15. Napěťová reference s možností nastavení ±5 %

Obr. 16. Napěťová reference s možností nastavení 0,2 %

proud musí být menší než celkový proud, protékající sériovým odporem. Výhodnější je místo sériového odporu použít integrovaný zdroj proudu, jak je uvedeno na obr. 2. Zde je použit

Obr. 18. Napěťová reference se symetrickým výstupním napětím ±5 V

Obr. 19. Napěťová reference s řízeným výstupem +1,25/-1,25 V

Obr. 17. Přesná napěťová reference s výstupem ± 10 V

obvod LM334. Výsledný proud pro různé velikosti R_{SET} je v tabulce.

Pro snížení teplotní závislosti zdroje proudu můžeme použít například zapojení podle obr. 5. Odpor R1 se obecně volí jako desetinásobek R_{SET}. Jeho případnou změnou můžeme nastavit minimální teplotní závislost proudu I_Z.

Jednoduchý zdroj 2,5 V s možností změny výstupního napětí ±5 % s obvodem LT1009 je na obr. 3. Obdobné

Obr. 20. Napěťová reference 1,2 V z baterie 1,5 V

Obr. 21. Napěťová reference 1,2 V ze zdroje +9 V

Obr. 22. Napěťová reference 1,2 V pro široký rozsah vstupních napětí

zapojení na obr. 4 pro výstupní napětí +5 V s obvodem LT1029 umožňuje nastavit výstup v rozsahu od +5 % do -13 %. Pokud požadujeme pouze malou změnu výstupního napětí, použijeme zapojení na obr. 6. Výstupní napětí lze měnit v rozsahu ±0,4 %

Obr. 23. Napěťová reference 2,5 V pro široký rozsah vstupních napětí

Obr. 24. Napěťová reference 10 V s větší proudovou zatížitelností

Obr. 25. Napěťová reference 10 V s proudovým omezením na 100 mA

nebo ±1,2 %. Nastavení nezávislé na teplotním koeficientu trimru je na obr. 7. Je použit obvod LM336-2,5. Se stejným obvodem je na obr. 8 zapojení pro teplotní kompenzaci. V sérii s trimrem jsou zapojeny dvě běžné křemíkové diody (např. 1N4148). Výstupní napětí musí být nastaveno na 2,49 V a proud LM336-2,5 by měl být 1 mA. Na obr. 9 je zdroj napětí 5,120 V s obvodem LT1029. Dalším

obvodem, sloužícím jako reference 2,5 V je LT1431Z. Zapojení je na obr. 10.

V některých případech potřebujeme existující referenční napětí snížit nebo zvýšit (na polovinu, případně dvojnásobek). K tomu můžeme použít obvod LTC1043. Výstupní napětí ze zapojení na obr. 11 je 1/2 napětí vstupního. Naopak v zapojení podle obr. 12 je výstupní napětí dvojnásob-

Obr. 26. Přesná napěťová reference pro výstupní proud až 1,5 A

Obr. 27. Napěťová reference -5 V/100 mA s ochranou proti přetížení

Obr. 28. Napěťová reference 10 V s nízkým výstupním šumem (<2 μV)

kem napětí vstupního. Pokud potřebujeme zajistit přesné obrácení polarity nějakého napětí, použijeme zapojení podle obr. 13. Maximální chyba invertoru je ±2 ppm (1 ppm = 0,0001%)!

V následujících zapojeních jsou použity třísvorkové regulátory (zdroje referenčního napětí). Jejich vnější zapojení je obdobné jako u běžných monolitických stabilizátorů řady 78xx/79xx případně 317/337. V tab. 2 jsou uvedeny základní vlastnosti (výstupní napětí a teplotní koeficient) pro jednotlivá provedení. Výstupní napětí +10 V s možností nastavení s obvodem LT1031 je na obr. 14. V rozsahu ±5 % je možné výstupní napětí nastavit u obvodu LT1019 v zapojení podle obr. 15. Pro přesnější nastavení v rozsahu ±0,2 % (případně ± 0.05 %) slouží zapojení na obr. 16.

V některých případech požadujeme symetrické referenční napětí. V zapojení na obr. 17 je použit obvod LT1002 spolu s LM129A k vytvoření výstupního napětí +10 V. Symetrické napětí -10 V je docíleno druhou polovinou LT1002, zapojenou jako invertor. Proto musí být odpory, zapojené na vstupu a ve zpětné vazbě invertoru co nejpřesnější (v zapojení jsou použity s tolerancí 0,1 %). Jednodušší obvod pro symetrické referenční napětí ±5 V získáme použitím dvou stabilizátorů typu LT1029 podle obr. 18. V zapojení na obr. 19 můžeme přepínat polaritu výstupního napětí 1,25 V externím napětím ±5 V.

Další skupinou napěťových referencí se sériovým odporem jsou tzv. Micropower Reference. Tyto obvody jsou schopny pracovat s velmi malými napětími a pracovními proudy. Refe-

rence LT1004-1,2 s výstupním napětím 1,235 V při napájecím napětí pouze 1,5 V z baterie je na obr. 20. Při zvýšení napájecího napětí na +9 V se sériový odpor zvýší až na 510 k Ω , jak je uvedeno na obr. 21.

Pokud nejsme schopni zajistit stabilní napájecí napětí pro nízkopříkonové reference, použijeme zapojení podle obr. 22. Obvod LM334 dodává konstantní proud pro referenci LT1004-1,2 pro napájecí napětí v rozsahu od 2,5 V do 30 V. Obdobné zapojení s výstupním napětím 2,5 V a napěťovou referencí typu LT1009 je na obr. 23.

Napěťovou referenci většinou využíváme pouze jako napěťový normál s poměrně malým proudovým odběrem. V některých aplikacích se ale může vyskytnout požadavek většího proudového odběru. Pro tyto případy musíme obvod napěťové reference doplnit proudovým zesilovačem. Na obr. 24 je zapojení napěťové reference +10 V s obvodem LT1031 doplněným o vnější NPN tranzistor s proudovou zatížitelností do 100 mA. Jestliže hrozí nebezpečí překročení této hodnoty, použijeme zapojení z obr. 25. Zde je tranzistor doplněn o emitorový odpor a LED. S uvedenými hodnotami součástek je výstupní proud omezen na 100 mA. S obvodem LT317 a operačním zesilovačem LT1001 je maximální výstupní proud zapojení z obr. 26 až 1,5 A. Operační zesilovač přitom porovnává referenční napětí z obvodu LT1009 a výstupem nastavuje řídicí vstup regulátoru LT317. Minimální odběr by měl být 10 mA.

Obr. 29. Napěťová reference -10 V s nízkým výstupním šumem

Obr. 30. Napěťová reference -10 V s nízkým výstupním šumem a malým TK

Obr. 31. Teplotně stabilizovaná napěťová reference +10 V

Zapojení na obr. 27 je schopno dodávat proud až 100 mA při -5 V. Napájecí napětí ± 15 V by mělo být blokováno kondenzátory 10 μ F a keramikou 100 nF. Pokud by byl k výstupu připojen kondenzátor s nízkým ESR (ekvivalentním sériovým odporem), může docházek k oscilacím na výstupu.

Pro některé aplikace je důležité, aby výsledné referenční napětí obsahovalo minimální šumovou složku. Zdroj kladného napětí +10 V s potlačením šumu je na obr. 28, obdobné zapojení pro -10 V je na obr. 29. Vylepšené zapojení s kompenzací na minimální šum a nízký teplotní koeficient je na obr. 30. Další obvod pro tepelnou

kompenzaci výstupního napětí +10 V je na obr. 31.

Na obr. 32 je již složitější zapojení nízkošumové napěťové reference +7 V s velmi nízkým teplotním koeficientem a dlouhodobou stabilitou.

Jako náhrada standardního článku o napětí 1,018235 V může sloužit

Obr. 32. Nízkošumová, dlohodobě stabilní reference +7 V

Obr. 33. Obvod pro náhradu standardného článku s napětím 1,018235 V

zapojení podle obr. 33. Teplotně stabilizovaná napěťová reference +10 V s obvodem LM399 a zesilovačem LT1001 je na obr. 34.

Zapojení vysoce precisní napěťové reference s širokým rozsahem výstupních napětí ($100\,\mu\text{V}$ až $10\,\text{V}$ nebo $1\,\text{mV}$ až $100\,\text{V}$) je na obr. 41. Jiné zapojení pevné napěťové reference $+10\,\text{V}$ s teplotní kompenzací je na obr. 35.

Také napěťové regulátory pro napájecí obvody s proudovým odběrem řádu jednotek A je při požadavku na vysokou stabilitu výstupního napětí možné kombinovat s popsanými napěťovými referencemi. Zapojení jednoduchého stabilizátoru s LT338 a LT1004-2,5 pro výstupní napětí +5 V při odběru do 5 A je na obr. 36. Obdobné zapojení pro záporné

výstupní napětí -5 V s regulátorem LT1033 je na obr. 37.

Přehled různých typů regulátorů s uvedeným maximálním výstupním proudem a typickým zapojením je na obr. 42.

Stabilní regulátor záporného napětí s nastavitelným výstupem je na obr. 38. Na obr. 39 je schéma zapojení nízkopříkonového regulátoru s výstup-

+ 15V 7.5k 9k 0.1% 2 1 10V 6.95V 10V 20k 0.1% 10V

Obr. 34. Teplotně stabilizovaná reference +10 V

Obr. 35 Teplotně stabilizovaná reference +10 V

Obr. 36. Jednoduchý stabilní napěťový regulátor

Obr. 37. Jednoduchý záporný napěťový regulátor

Obr. 38. Nastavitelný záporný napěťový regulátor

Obr. 39. Regulátor +5 V s malým úbytkem (0,2 V)

ním napětím +5 V a samostatným výstupem referenčního napětí +2,5 V, pracující s minimálním úbytkem

napětí na regulátoru 0,2 V při vlastní spotřebě $40 \,\mu\text{A}$. Obdobné zapojení na obr. $40 \,\text{používá}$ obvod LT1120 a umož-

 $V_{\text{IN}} > 5.2V$ $I_{\text{Q}} = 40\mu\text{A}$ $10\mu\text{F}$ $I_{\text{Q}} = 40\mu\text{A}$ $I_{\text{Q}} = 40\mu\text{A}$

Obr. 40. Regulátor s výstupem +5 V, nap. referencí +2,5 V a funkcí shutdown

ňuje odpojení výstupu (shutdown) externím signálem.

Uvedený přehled zdaleka nevyčerpává všechny možnosti návrhu precisních napěťových referencí a stabilních napájecích obvodů, ale může posloužit k základní orientaci v dané problematice. Výběr použitých obvodů byl zúžen na produkci LINEAR TECHNOLOGY, ale popsané principy platí obecně i pro obvody jiných výrobců.

Použitá literatura:

Aplikační poznámky AN42, Linear Technology

Obr. 41. Vysoce přesná napěťová reference s širokým rozsahem výstupních napětí (0,1 mV až 100 V)

Obr. 42. Základní zapojení napěťových regulátorů a přehled dodávaných typů s maximální proudovou zatížitelností

Metody nastavení přesné hodnoty odporů

Při návrhu elektronických obvodů musíme vypočtené hodnoty součástek nahradit standardně vyráběnými. I když se například některá provedení odporů vyrábí v řadě E192, většinou jsou buď nedostupná, nebo je jejich cena zbytečně vysoká. Proto je mnohdy jednodušší složit požadovanou hodnotu ze dvou i více odporů z běžně dostupných řad E12 nebo E24.

Obr. 1. Základní použití trimru

Obr. 2. Zapojení pro přesnější nastavení odporovým trimrem

Obr. 3. Zapojení pro velmi přesné nastavení odporového trimru

Vzhledem k toleranci použitých součástek se musí některé hodnoty odporů nastavit až při konečném testování přístroje. Pro přesné nastavení požadovaného odporu můžeme použít buď trimr, nebo složit dohromady několik odporů. Ty mohou být umístěny v přístroji a připojují se například jumpery, nebo nahradíme pevný odpor proměnným, nalezneme optimální hodnotu a nakonec nahradíme proměnný odpor příslušnou kombinací pevných odporů. Obě techniky (použití trimru nebo složených odporů) mají své přednosti a zápory. Nastavení trimrem je snadné a rychlé, na druhou stranu při vyšších požadavcích na dlouhodobou stabilitu a nízký teplotní koeficient nedosahují trimry parametrů kvalitních odporů. Metoda skládání odporů je zase časově výrazně náročnější a případná pozdější změna (například při servisu) je dost problematická. Na následujících obrázcích jsou uvedeny základní metody nastavování požadované hodnoty odporů v elektronických obvodech. Poslední dva obrázky představují elementární chyby při zapojení trimru. Přechodná ztráta

Obr. 4. Paralelní řazení s jumpery

Obr. 5. Sériové řazení s jumpery

kontaktu běžce s dráhou (způsobená například nečistotami) vyvolá skokovou změnu zesílení (rozpojení zpětné vazby), což může vézt až k poškození obvodu.

Použitá literatura
Aplikační poznámky AN42, Linear
Technology.

Obr. 6. Nastavení zesílení OZ odporovým trimrem

Obr. 7. Zapojení pro přesnější nastavení zesílení OZ

Obr. 8 a 9. Chybné zapojení odporového trimru ve zpětné vazbě

Odkrývání historie - vojenská tajemství II. světové války

Radarová technika firmy GEMA podle nové knihy o radarech

Rudolf Balek

(Pokračování)

U novějšího provedení byla dodána obrazovka o průměru stínítka 60 cm s magnetickým vychylováním - "Sternschreiber - PPI - Plane Position Indicator" - panoramatické zobrazení. Polární zobrazení zaměřování dovolilo přesně stanovit polohu letadel a jejich umístění v okolním prostoru. Obrazovka také zaznamenala výskyt "mraků" z hromadně shazovaných rušících staniolových pásků k zaslepení radarů FREYA. Licenční výrobek panoramatického radaru dodala firma SIEMENS.

Elektrickou energii pro objekty FLUM dodávaly rozvodny veřejné

elektrické sítě, počítáno bylo s rezervou náhradní trasy venkovního vn vedení v případě havárie nebo výpadku. K rozvodu vn náležely příslušné rozvaděče, jističe apod. infrastruktura. V případě dlouhodobého výpadku byl k dispozici náhradní zdroj místní centrály - elektrárny - s výbušným motorem a třífázovým generátorem. Osamocená nebo předsunutá radarová stanoviště měla také svůj "příruční" generátor, hnaný výbušným motorem, se zásobou pohonných hmot. Jednotlivé přístroje, moduly, bloky, byly v robustních odlévaných skříních ze slitin lehkých kovů (dobře stínily vf obvody), seřazených vedle sebe (tzv. Zug vlak), případně v patře - nad sebou.

Obr. 16. Obrazovka panoramatického radaru, situace na stínítku indikátoru, anténa uprostřed, stav během masového náletu

Z dnešního pohledu vyhlíží tehdejší radarová souprava účelově sestavená, jako řídicí velín menší starší elektrárny. Na lodích a v ponorkách byla k dispozici palubní síť plavidla.

V květnu 1940 bylo dodáno firmou GEMA asi 60 kusů radarů z první série nového vývojového směru. Vf laboratoř zavedla novou filozofii vstupních obvodů radarových přijímačů, chráněných patenty, s miniaturními "žaludovými" elektronkami. Podstatně se zvětšila citlivost přijímačů a snížil se vlastní šum (bílý šum), na obrazovce "tráva". Šuměly hlavně elektronky, směšovací obvody a některé součásti, takže slabý přijatý signál se ztrácel v šumu. Mf zesilovače doznaly značné šíře přenášeného pásma se staršími širokopásmovými strmými elektronkami, pentodami AF100. Mf zesilovačů bylo vyrobeno přes deset tisíc kusů.

V té době se vyvíjely přístroje vyhledávající a rušící radary protivníka. Firma AEG se zabývala novinkou, vyvinutou ve svých technickofyzikálních dílnách, dvoupaprskovou obrazovkou o průměru stínítka 100 mm. Tyto obrazovky umožňovaly indikaci a sledování příjmu nebo činnosti impulzního generátoru a měření vzdálenosti na jednom stínítku. Vznikaly radary s dobrou citlivostí a vyhodnocovací přesností. Srovnání s radarem firmy TELEFUNKEN, typem Würzburg A dopadlo dobře, přístroje byly shledány jako rovnocenné.

Kapitoly popisující průběh války jsou poutavě napsány. Firma GEMA byla plně zapojena do zbrojního pro-

Obr. 15. Otočná konstrukce antény panoramatického radaru GEMA/SIE-MENS v Tremen

Obr. 17. Pracoviště Wassernann (dole)

Obr. 18. "Strojovny" radarů FuMO 2 "Calais" a "Wassermann". V obou případech jsou vysílače umístěny blízko antén. Stínítka obrazovky: větší kolmý impuls je vyslaný, s menší amplitudou je přijatý. Vpravo stupnice vzdáleností

gramu. Kapitola nazvaná "Tvrdá, ale úspěšná léta v bouřlivých časech" podává ucelený obraz o hektickém snažení pracovníků firmy v kritických válečných dobách.

Přístroje byly neustále zdokonalovány, kromě obrazovek byly vyvinuty precizní impulzní generátory obdélníkového a pilovitého průběhu, časovací a vyhodnocovací obvody. Létání za zhoršené viditelnosti podle vodicího radarového paprsku bylo využito (zneužito - *pozn. red.*) při nočním bombardování Londýna aj. Technika přesnosti byla stále předmětem zdokonalování, až v roce 1940 dosáhla po dřívější přesnosti ±5 stupňů - přesnosti ±0,1 stupně.

V roce 1944 vyvíjela nf laboratoř program UNDINE, tj. "UT" bóje, tzn. podmořskou telegrafii, dovolující ponořené ponorce plout do úzkých a nebezpečných podmořských průlivů. Jednalo se o reléový vysílač, umístěný v tělese miny. Činnost byla podobná jako u přístrojů IFF - dotaz přítel/nepřítel. Bóje byla napájena z akumulátoru, který byl schopen na jedno nabití dodávat energii pro dvouměsíční provoz. Přijímač měl elektronku RV2, 4P45 pracující s anodovým napětím 24 V, vysílač měl pentodu, výkonnou LS50. Její anodové napětí dodal rotační měnič ze stanice IFF "Erstling" (Prvorozenec) - FuG25a. Vyslaný impuls trval pět mikrosekund s výkonem 500 W. Tímto posledním vývojovým typem chtěl vývojář ukázat, že ještě na podzim roku 1944 - v posledním těžkém válečném roce má GEMA dostatek sil a možností a také v jaké rychlosti, bez zdržování, dokáže vyvinout a vyrobit funkční vzorek. V roce 1944 pracovala firma GEMA naplno,

Obr. 19. Sériový radar firmy GEMA, typ "f-Lafette FREYA" v pohotovostním stavu na zkušebně v roce 1940

ve dne v noci. Při 6000 zaměstnancích stoupl obrat na 133 milionů marek. Bylo expedováno 302 kusů hydrolokátorů různého provedení a 1026 kusů radarů, na kterých se podílely licenční firmy AEG, LORENZ, TELEFUNKEN aj. Nadto bylo firmě SIEMENS odesláno deset tisíc IFF přístrojů "Erstling", což splňovalo požadavky na 68 %. Mnoho přístrojů ale nebylo na-

sazeno, protože byly při přepravě buď poškozeny, nebo zničeny. Pod tlakem událostí začínalo být zřejmé, že se blíží konec války.

(Dokončení příště)

Diplom ROZHLEDNY České republiky

Zdeněk Fořt, OK1UPU

Radioklub Štětí OK1KST vydává diplom "Rozhledny České republiky". Diplom je vydáván ve dvou třídách pro radioamatéry vysílače a v jedné pro rádiové posluchače. Diplom lze získat na základě žádosti o vydání a po splnění následujících podmínek:

Cil diplomu: Navštěvovat a navazovat radioamatérská spojení z rozhleden, které se nalézají na území České republiky a jsou uvedeny na mapě rozhleden, kterou vydala firma B. A. T. Program s. r. o., Rožnov p. R., 1. máje 1000.

Pořadatel: Radioklub Štětí, OK1KST, Dlouhá 689, 411 08 Štětí.

Sponzor: Ofsetová Tiskárna WEN-DY s. r. o., Kokořínská 1615, 276 01 Mělník.

Manažeři diplomu: OK1VPY, OK1UPU.

Technické podmínky diplomu

- 1. Spojení lze navazovat na všech radioamatérských pásmech všemi povolenými druhy provozu se stanicemi na území ČR.
- 2. Spojení uskutečněná přes aktivní pozemní převáděče a během jakéhokoliv závodu jsou neplatná.
- 3. Spojení obsahuje značku, report, jméno a QTH (výslovně uvést oficiální název rozhledny).
- **4.** Spojení s toutéž stanicí je možné opakovat, avšak z jiné rozhledny.
- 5. Spojení je možné též uskutečňovat z nově postavených rozhleden, které ještě nejsou uvedeny v seznamu. Tyto budou průběžně doplňovány.
- 6. Do diplomu lze započítat navázaná spojení po 1. 6. 1999.

Slečna Rozhledna, maskot soutěže. Autorkou je výtvarnice Květa Kopecká

Bodové ohodnocení

Diplom - třída "SPECIÁL" – vysílání pouze z navštívených rozhleden (/mobil nebo /portable)

- 1. Stanice vysílající z rozhledny nebo její těsné blízkosti si započte 10 bodů za každou novou rozhlednu, kterou navštíví a z které naváže alespoň 1 radioamatérské spojení. Za každé další spojení s ostatními stanicemi si započte 1 bod.
- 2. Za každé navázané spojení z rozhledny na jinou rozhlednu s novou stanicí je zisk 10 bodů.

Diplom - třída "ZÁKLADNÍ" – vysílaní z libovolného QTH

- I. Při vysílání z rozhledny je bodové ohodnocení jako v třídě "SPECI-ÁL".
- **2.** Z libovolného QTH: za navázání prvního spojení se stanicí z nové rozhledny je zisk 10 bodů a za každé další spojení s ostatními stanicemi je zisk 1 bod.

Diplom – třída "SWL" – posluchači

1. Za odposlech první stanice z nové rozhledny je zisk 10 bodů a za odposlech ostatních stanic z téže rozhledny je zisk 1 bod.

K obdržení diplomu je nutno:

- získat 100 bodů v soutěžní třídě;
- zaslat žádost o vydání diplomu s přiloženým výpisem ze staničního deníku.

Žádost o vydání diplomu zasílejte na adresu:

Tiskárna WENDY s. r. o. Zdeněk Fořt, OK1UPU, Kokořínská 1615, 276 01 Mělník

Vydávání diplomu sponzoruje Tiskárna WENDY Mělník. Diplom bude předáván zdarma na různých radioamatérských setkáních. Zájemcům o zaslání poštou bude účtováno pouze poštovné a balné.

Soutěž o stříbrnou a zlatou známku

Pro značný zájem o diplom "Rozhledny ČR" a zkvalitnění soutěže byla tato aktivita rozšířena o soutěž k získání doplňující známky.

Podmínky: Platí podmínky pro získání diplomu "Rozhledny ČR".

Krásenský vrch ve čtverci JO60JC v okrese Sokolov, nadm. výška 750 m

Body: Body za uskutečněná spojení pro diplom "Základní" a "Speciál" se sčítají.

Počet bodů: Pro získání stříbrné známky je třeba 1000 bodů, pro zisk zlaté známky 2000 bodů.

Výpis z deníku: Výpis z deníku s čestným prohlášením zašlete na adresu uvedenou v podmínkách diplomu. Podle počtu bodů ze zaslaného výpisu z deníku bude zaslána doplňující známka poštou.

Rozhlednové dny

Vydavatel diplomu Radioklub OK1KST Štětí vyhlašuje pro rok 2000 novou aktivitu pod názvem "Rozhlednové dny".

V tyto dny vyzýváme ke zvýšené aktivitě pro získání diplomu a doplňujících známek.

Podmínky: Rozhlednové dny jsou součástí diplomu "Rozhledny ČR" a platí pro ně podmínky jako pro získání diplomu.

Účast: Účast na jednotlivých dnech je individuální. Vysílání z rozhleden není organizováno a záleží jenom na dohodě, toleranci a slušnosti účastníků.

Termíny: Každou třetí sobotu v měsíci (20. květen, 17. červen, 15. červenec, 19. srpen, 16. září).

Čas: 00.00 až 24.00 hodin letního času.

Z RADIOAMATÉRSKÉHO SVĚTA

Abecední seznam rozhleden v České republice

01.	Alexandrova rozhledna	JN89IH	496m	GBV	35.	Hladnov v Ostravě	JN99DU	250m	HOS
02.	Andrlův chlum	JN89EX	559m		36.	Hněvín u Mostu	JO60TM	411m	EMO
03.	Babi lom u Brna	JN89GH	563m		37.	Hora Sv. Kateřiny	JO60RO	729m	EMO
	Babylon u Mohelna	JN89BD	491m		38.	Hořický chlum u Hořic	JO70TJ	408m	
) 4 .)5.	Biskupská kupa	JO80RG	889m	-	39.	Hostýn u Bystřice p.H	JN89UJ	735m	GKR
06.	Blatenský vrch	J060JJ	1040m		40.	Hrádek u Varnsdorfu	J070HW	467m	
07.	Bolfánek u Chudenic	JN69NL	583m			Hvězda u Příchovic	J070QR	958m	
08.	Bramberk	JO70OS	797m		42.	Hýlačka u Tábora	JN79HJ	525m	
		JN89HE	220m		43.	Chlum Sv. Máří n. O.	JO 60GD	567m	
09. 10.	Brněnské výstaviště Bučina	JO60MG	582m		44.	Chlum u Hr. Králové	J070UG	336m	
	Cibulka v Praze	JO70EB			44.	Chlum u Plzně	JN69RS	416m	
11.			302m					670m	
12.	Cvilín u Krnova	JO80UB	436m		46.	Choustník u Tábora	JN79KH		
13.	Čartak	JN99EJ	953m		47.	Churáňov u Stachů	JN69TB	1100m	
14.	Čechy pod Kosířem	JN89MN	300m		48.		JN79CH	609m	
15.	Čerchov u Domažlic	JN69JJ	1042m		49.	Javorník	JN69TD	1089m	
16.	Černá hora	JO70UP	1299m		50.		JO70GU	774m	
17.	Černá studnice	JO70OR	869m		51.	Jeřabina u Litvínova	JO60SO	785m	
18.	Čeřovka u Jičína	JO70QK	335m		52.	Jezerní slať u Kvildy	JN69SA	1060m	
19.	Čubův kopec	JN99BE	720m		53.	Kamzík v Mar.Lázních	JN69IX	700m	DCH
20.	Děčínský Sněžník	JO70BT	726m	+	54.		JN78DU	1083m	
21.	Děd u Berouna	JN79AX	478m		55.		JO60LJ	1244m	
22.	Diana v K. Varech	JO60KF	547m		56.		JO70DR	589m	EDE
23.	Dobrošov u Náchoda	JO80CJ	624m		57.		JO60WQ	808m	
24.	Doubravská h Teplice	JO60WP	392m		58.	Kopanina u M. Skály	JO70NP	657m	
25.	Doubská hora - K.Vary	JO60KF	609m		59.	Koráb u Kdyně	JN69MJ	773m	
<u> 26.</u>	Dymník u Rumburka	JO70GW	580m		60.	Kozákov u Semil	JO70PO	774m	
27.	Erbenova vyhlídka	JO70AQ	401m		61.	Kozubová - Beskydy	JN99IN	982m	HFM
28.	Frýdlantská výšina	JO70MW	339m		62.	Kožova hora - Kladno	JO70BC	455m	BKD
29.	Goethova vyhlídka	JO60KE	636m	DKV	63.	Královka	JO70NT	859m	EJA
30.		JO60CF	758m	DCH	64.	Krásenský vrch	JO60JC	750m	DSC
31.	Háj u Šumperka	JO80LX	631m	HSU	65.	Krásný Dvůr	JO60QF	350m	ELO
32.	Hamelika v M. Lázních	JN69IX	716m	DCH	66.	Krkavec u Plzně	JN69QT	505m	DPS
33.	Hasištejn u Kadaně	JO60PK	627m	ECH	67.	Kryry u Podbořan	JO60RE	382m	ELO
34.	Helfenburk u Bavorova	JN79AD	683m	CST	68.	Křemešník- Pelhřimov	JN79PJ	765m	CPE
69	. Landek u Ostravy	JN99CU	280m	HOS	103	. Strážiště u Krnova	JO80UA	395m	HBR
	Lázek u Lanškrouna	JN89HV	714m		104		JO60VJ	275m	
	. Letná v Teplicích	JO60WP	250m		105		JO70FT	731m	
		JO70NS	547m			Suchý vrch	JO80IB	994m	
_72		JN78AX	1096m		107		JN69RF	845m	
73		JO70XF	311m			Svalobol u Susice S. Sv. Kopeček u Ol.	JN89QP	378m	
	Libníkovice - Týniště). Šelmberk	JN79JN	489m	
75		JN79GW	419m				JN69JU	571m	
76		JN69WB	905m		110		J070WN	500m	
77		JN79AX	291m			. Šibeník u Trutnova			
78		JN89GM	619m			2. Špičák u Č. Lípy	JO70GQ	539m	
79		JO60XN	837m			3. Špičák u Tanvaldu	JO70PS	808m	
80		JN88JT	175m			Stramberská trúba	JN99BO	450m	
81		JO70BN	272m			5. Tábor	JO70QM	678m	
82	. Neštětická hora	JN79GS	536m			6. Tanečnice	JO70DX	597m	
83		JO60GI		DSO	117		JO60II	977 <u>m</u>	
	Daniel Market	INICODE	4044	DIVI		Třemšín u Dožmitálu	1 10 10 00 /61	927m	

1214m DKL 118. Třemšín u Rožmitálu JN69VN 827m BPB 84. Pancíř u Žel. Rudy JN69PE 119. Varhošť u Litoměřic 120. Velká Deštná 121. Velký Blaník 122. Velký chlum 639m ELT 1115m FRK 288m EDE 618m EJA J070B0 85. Pastýřská stěna JO70CS JO80EH 86. Petřín - Jablonec n.N JO70OR 638m BBN JN79KP Petřín v Praze JO70EB 324m APA JO70CR 508m | EDE Plešivec JO60KI 1028m DKV 210m EUL 408m FHK 89. Ploučnická vyhlídka JO70DS 220m EDE 123. Větruše v Ústí n. L JO70AP 90. Poledník u Prášil JN69QB 1315m DKL 124. Věž samostatnosti JO70TJ 581m EDE J0800C 1491m 125. Vlčí hora u K. Lípy JO70FW 91. Praděd HBR Vlková u Kamenice JN79HV 521m BPV Prašivá - Beskydy JN99FP 843m HFM 92. 93. Prosečský hřeben 127. Vyhlidka Karla IV. JO60KF 509m DKV JO70NR 592m EJA 128. Zrušena 129. Zámecký vrch 94. Réna u Ivančic 310m GBV JN89EC 230m ELT JO70FT 530m EDE JO70DK 95. Roudnice - rozhledna 129. Zámecký vrch 130. Zámeček 131. Zelená hora 132. Zlatý chlum 133. Zvičina 134. Žaltman u Úpice 135. Žalý u Jilemnice 136. Žižkovská věž JO60ED 450m DCH 470m FUO JO80FC 96. Rozálka JO60DB 637m DCH JN69MJ 680m DDO 97. Rýzmberk u Kdyně JO80OF 908m HJE 98. Salingburg JO60EC 450m DCH JO70UK 671m FTR 99. Semenec JN79EF 439m CBU 250m BME 740m FTR JO80AN Slavín v Tupadlech JO70FK 1019m FTR Slovanka **J0700S** 820m EJA JO70SP 101. 102. Strážiště JO60QL 510m ECH JO70FB 256m APC

Nově zařazené rozhledny pro rok 2000

137.	Borová lada - Vimperk	JN68TX	957m	CPR	144.	Barrandovské terasy	JO70EA	302m	APE
138.	Křížový vrch u Stodu	JN6900	485m	DPJ	145.	Bílá hora - Kopřivnice	JN99BO	557m	HNJ
139.	Lidové sady - Liberec	JO70MS	450m	ELI	146.	Čestice u Volyně	JN69VE	603m	CST
140.	Lovoš u Lovosic	JO70AM	570m	ELT	147.	Klatovská hůrka	JN69PJ	498m	DKL
141.	Tobiášův vrch-Jesenice	JO60RD	507m	BRA	148.	Modrá - U.Hradiště	JN89QC	270m	GUH
142.	Veselý vrch - Mokrsko	JN79ER	489m	BPB	149.	Oslednice u Telče	JN79RE	557m	GJI
143.	Vrátenská hora- Mšeno	JO70HL	508m	вме	150.				

Vývoj povolovacích podmínek v ČSR

Ing. Jiří Peček, OK2QX

Úvod

Když byly v loňském roce otištěny mé vzpomínky na radioamatérské začátky v 50. a 60. létech (AR 2 až 8/99), přišla mi řada ohlasů - vesměs pozitivních, ale v jednom byla vyjádřena pochybnost nad informací, že bylo někdy povinností jako QTH uvádět pouze okresní město. Já si byl ale od počátku vědom toho, že za pár let bude tento materiál sloužit další generaci radioamatérů jako vodítko poválečnou historií a vývojem - byť v jednom regionu, a proto jsem měl zájem na tom, aby všechny uváděné skutečnosti byly pravdivé. Jenže - jak to dokázat, když paměť nemusí být vždy spolehlivá!

Začal jsem tedy pátrat po znění dřívějších koncesních podmínek platných pro radioamatéry. Postupně se mi podařilo získat prakticky všechny (díky OK1DZD, OK1JLX, OK1GS, OK2BBI, OK2LN, OK2WE, OM3DG, OM5AM, knihovně Poštovního muzea, archivu MV, kanceláři Okresního soudu v Přerově a dalším), vyjma období 1951-1954. Tak tedy mohlo vzniknout toto povídání, o kterém si myslím, že bude zajímat i širší radioamatérskou veřejnost. Pro zajímavost - má paměť mě neklamala, neboť v podmínkách platných od 1. 7. 1954 se praví doslovně v článku 6 odst. 4: "Držitel povolení může protistanici sdělit svoje jméno a stanoviště vysílače pouze podle jména okresu, ze kterého vysílá trvale nebo přechodně. Stejná ustanovení platí i pro výměnu QSL lístků" (nebylo tedy vůbec možné uvádět vlastní plnou adresu!). Toto ustanovení se sice nezmiňovalo o posluchačích, ale Ústřední radioklub (ÚRK) v 50. letech ani těm adresu na QSL nepovoloval.

Je velká škoda, že neexistuje prakticky žádný český radioamatérský archiv, který by i pro další generace uchovával tyto a mnohé další zajímavé informace. Postupný přehled u nás vydávaných koncesí lze naštěstí pro dobu před a poválečnou až do konce roku 1948 přesně zjistit v pražském poštovním muzeu, jehož knihovna uchovává všechny Poštovní věstníky i z dob Rakousko-Uherska, podstatně větší problém je s dokumentováním dění po roce 1948. Mimo pravidelné Věstníky byly tehdy k šíření aktuálních informací

vydávány navíc tzv. Oběžníky ředitelství pošt, které se bohužel nedochovaly a jejich znění nebylo následně uváděno ve Věstnících. Od roku 1951 pak byl na čas i dvakrát změněn povolovací orgán a zveřejňovány byly pouze volací značky s rozdělením do tehdejších krajů, bez jmen a adres držitelů koncesí.

Začátky radioamatérského vysílání

Předem zdůrazňuji, že nechci konkurovat v loňském roce zesnulému Dr. Josefu Danešovi, OK1YG, který problematiku a historii radioamatérských pokusů s příjmem rádiových signálů a radioamatérského vysílání u nás do roku 1945 podal vyčerpávajícím způsobem v knize "Za tajemstvím éteru". Škoda, že sám nemohl dokončit další vydání se zapracovanou poválečnou historií, což v prvém vydání této knihy nebylo možné.

Zaměřuji se dále pouze na průběžný vývoj legislativy pro radioamatérské vysílání, která je v knize poněkud opomenuta. Při citaci jsou použita slova a formulace z tehdejších dokumentů, nejedná se tedy o chyby. Nejen technické výrazy, ale i úřední čeština té doby má k té dnešní daleko (ta dnešní mnohdy ke škodě věci, neboť dřívější formulace nepřipouštěly různý výklad).

První úřední zmínka o radioamatérech u nás je datována 16. 4. 1925, kdy bylo vydáno vládní nařízení č. 82 Sb., kterým byly stanoveny podmínky zřizování, udržování a provozu telegrafů. V par. 9 se pod písmenem f praví: "... zcela výminečně lze koncesi vysílací stanice propůjčiti také jiným osobám (tj. jiným, než uvedeným v předchozích literách a - e), jsou-li svéprávné, spolehlivé a zachovalé, prokáží-li, že vysílací stanici hodlají zříditi a provozovati pouze k vědeckým účelům, dále projeví-li s tím souhlas ministerstvo vnitra a národní obrany a podrobí-li se, a to na svůj náklad, před orgány poštovní a telegrafní správy zvláštní zkoušce ze znalosti radiotechniky, manipulace radiotelegrafními a radiotelefonními přístroji a z předpisů o radiotelegrafii a radiotelefonii. Bližší ustanovení o této zkoušce vydá ministerstvo pošt a telegrafů. "Teoreticky tedy bylo možné prvé koncese vydat již v roce 1925, ale naši radioamatéři museli ještě pět let počkat. Úřady totiž čekaly na výsledky mezinárodní konference, o které se vědělo, že bude v říjnu 1927 ve Washingtonu. Ještě před ní však bylo vydáno ve Věstníku min. pošt a telegrafů č. 31 z roku 1927 ustanovení o zkouškách žadatelů na koncesi vysílacích

Radioamatérské vysílání ve světě zahájilo o několik let dříve než v ČSR. Hned na počátku 20. let se radioamatéři proslavili v tzv. transatlantických testech. Na snímku W. E. F. Corsham, 2UV, z Londýna, známý ve své době mezi radioamatéry pod přezdívkou "Two Uncle Vic". V Praze sledoval tyto pokusy jako posluchač Pravoslav Motyčka, pozdější OK1AB (foto: Experimental Wireless 12/1923)

amatérských stanic, jak konečně vyplývalo z již zmíněného vládního nařízení.

Konference ve Washingtonu a Haagu

Washingtonská konference se skutečně zabývala i radioamatérskými stanicemi. Přidělila jim několik pásem, předepsala vysílat častěji vlastní značku, definovala v čl. 14, § 2, písm. d volací značky a stanovila, že se žadatelé o koncese musí podrobit zvláštní zkoušce. V září roku 1929 se v Haagu konala konference celkem 27 telegrafních správ (ze zemí, které dnes patří téměř všechny do 1. oblasti IARU) a ty se dohodly na úmluvě definující technické podmínky radioamatérských stanic. Přitom úmluva umožňovala každé zemi upravit vlastní podmínky samostatně.

Stručně, co bylo konkrétně obsahem této úmluvy:

- 1. Prvořadě povinnost prokázat způsobilost, např. schopnost vysílat a sluchem přijímat Morseovy značky rychlostí 10 slov za minutu, a to i u radiotelefonistů, znalost pojmů elektřiny a radioelektricity hlavně vztahující se k řízení stanice, znalost domácího zákonodárství hlavně ve vztahu ke spojením a dosažení minimálně 16 let věku.
- 2. Doporučeno povolit vysílání v pásmech dle Washingtonské úmlu-

Nákres vysílače stanice 2UV, používaného v transatlantických testech (Experimental Wireless 12/1923)

vy a všem pak pásmo 3500-3600 kc/s.

- **3.** Budou přidělována pásma, nikoliv jednotlivé kmitočty.
- **4.** Jakost vln musí být taková, aby celé rozpětí frekvencí, vysílaných jakoukoliv amatérskou stanicí, bylo úplně obsaženo v některém z pásem jí

přidělených.

- 5. Omezení harmonických.
- **6.** Povinnost užívat vlnoměr s přesností 0.5 %.
- 7. Celková energie k napájení anod posledního stupně (včetně modulačních) nesmí přesáhnout 50 W.
- **8.** Zákaz používání střídavého proudu nebo stejnosměrného nefiltrovaného k napájení anod.
 - 9. Vysílání může být výlučně
 - a) čistými netlumenými vlnami,
- *b)* modulovanými s podmínkou, že modulace nebude na obtíž jinému radioelektrickému přijímání.
- **10.** Vysílat a vyměňovat se mohou jen sdělení týkající se pokusů nebo ladění přístrojů s naprostým vyloučením každého jiného druhu zpráv.
- 11. Správy budou dozírat na časté vysílání volací značky.
- **12.** Budou uložena taková omezení pracovních hodin, aby bylo chráněno přijímání rozhlasu.
- **13.** Povinnost vedení deníku s uvedením doby vysílání, použité délky vln a volacích značek, s nimiž bylo korespondováno.
- **14.** Správy budou účinně spolupracovat při dozoru na amatérské stanice.
- 15. Mezinárodnímu úřadu Telegrafní unie v Bernu každá správa oznámí *a)* své předpisy,
- b) seznam řádně povolených amatérů.
- **16.** Správy oznámí přistoupení k úmluvě a sdělí případné výhrady.

17. Správy, které přistoupí dodatečně, učiní totéž.

19 1 3

Přijetí těchto zásad otevřelo u nás cestu k získání prvých koncesí.

Vraťme se ale ještě ke zmíněnému vládnímu nařízení č. 82. Svéprávnost znamenala u nás tehdy dosažení 21 let věku, nebo bylo nutné získat osvědčení o "vynětí z práva otcovského". Zachovalost znamenala, že žadatel nesměl být trestán trestním soudem, nebo mu trest musel být prominut amnestií, spolehlivost potvrzovaly úřady politické správy vlastním šetřením. Žadatel však měl nějakým způsobem doložit, že stanice bude používána k vědeckým účelům - zprvu se vyžadovalo potvrzení vysokoškolského profesora či vysokoškolského ústavu. Interně si ministerstvo pošt zajišťovalo souhlas ministerstva vnitra a ministerstva národní obrany. U radioklubů byla povinnost vyjmenovat všechny osoby, u kterých se předpokládalo, že budou stanici obsluhovat - ty všechny pak byly předvolány ke zkoušce. Žádost musela být kolkována kolkem 5 Kč a doplněna "zapojovacím vzorcem" stanice ve dvojím vyhotovení.

Časopis Československý Radiosvět z roku 1929, což byl oficiální časopis K. V. A. Č. (Spolek Krátkovlnní amatéři českoslovenští) přinesl hned v prvém čísle zprávu o tom, že v Praze "...dosavadní kurs ve čtení značek již dosti pokročil a ti, kteří nevynikají velikou rychlostí ve čtení, mohou se přihlásit za účelem zvýšení routiny. Učí se jak čtení sluchem, tak i správnému dávání značek. Podobný kurs bude uspořádán v Brně".

Přípravy na zkoušky byly mezi radioamatéry v plném proudu. Byly také vydány otázky ke zkouškám spolu s odpověďmi, které dnes vzbuzují pochopitelně úsměv - např.: Otázka: Co jest to elektrický proud? Odpověď: O podstatě elektrického proudu máme určité teoretické dohady, o jejichž správnosti nás více nebo méně přesvědčují úkazy, kterými se projevuje existence elektrického proudu na venek.

(Pokračování)

Tradiční setkání radioamatérů veVelkém Meziříčí

se koná ve dnech **26. až 28. května 2000** v autokempu "Jestřábec" ve Velkém Meziříčí. V pátek 26. 5. odpoledne prezentace, večer táborák, hudba a tanec; v sobotu přednášky, besedy, burza, tombola, společenský večer; v neděli volný program. **Informace:** OK2USG v síti PR box OK0PHL, a OK2VMJ v síti PR box OK0PBX, nebo na převáděčích OK0A a OK0H.