Universidade de Évora

ANÁLISE MATEMÁTICA I

Exame

4/Janeiro/2016

Justifique cuidadosamente todos os passos que efectuar na resolução das questões. Em cada folha de teste indique os grupos e alíneas que resolveu. Resolva cada um dos grupos em folhas de teste separadas.

Ι

1. Calcule, caso existam, os seguintes limites:

a)
$$\lim_{n \to +\infty} \sqrt[n]{3^{n-1} + 4^n}$$

a)
$$\lim_{n \to +\infty} \sqrt[n]{3^{n-1} + 4^n}$$
 b) $\lim_{n \to +\infty} \left(\frac{n + \sqrt{n}}{n - 1}\right)^{2\sqrt{n}}$.

Sugestão: mostre primeiro que $\frac{n+\sqrt{n}}{n-1} = 1 + \frac{1}{\sqrt{n}-1}$.

- **2.** Considere a função $f(x) = \frac{(x-2)(e^{x-1}-1)}{x^2-3x+2}$.
- a) Determine o domínio, D_f , de f.
- b) Estude a seguinte função quanto à continuidade em \mathbb{R} :

$$g(x) := \begin{cases} f(x) & \text{se } x \notin \{1, 2\} \\ 1 & \text{se } x \in \{1, 2\}. \end{cases}$$

- c) Diga se f é prolongável por continuidade ao ponto x=2.
- 3. Moste que a equação $\log(x) = (2-x)(x+1)$ tem pelo menos uma solução em \mathbb{R} .

H

4. Estude quanto a convergência/divergência, as séries:

$$a) \sum_{n=1}^{+\infty} \frac{n^3}{e^{\frac{n}{3}}}$$

a)
$$\sum_{n=1}^{+\infty} \frac{n^3}{e^{\frac{n}{3}}};$$
 b) $\sum_{n=2}^{+\infty} (\log n)^c, c \in \mathbb{R}.$

- 5. Sejam $a, b \in \mathbb{R}$. Estude quanto a crescimento/decrescimento e extremos, a função $f(x) = x^3 + ax + b, x \in \mathbb{R}$.
- **6**. Uma função $f:[a,b]\to\mathbb{R}$ é α -Lipschitziana em [a,b] se existem $M > 0, \alpha > 0$ tais que $|f(y) - f(x)| \le M |y - x|^{\alpha}$, para $x, y \in [a, b]$. Mostre que, se f é α -Lipschitziana então f é contínua; e, ademais, se $\alpha > 1$, f é constante.

1

7. a) Determine o conjunto de todas as primitivas da função $f(x) = \frac{2e^{-x}}{1 - e^{2x}}$ no intervalo $(0, +\infty)$.

Sugestão: considere a substituição $x = \log t$.

b) Determine o valor dos integrais:

a)
$$\int_{0}^{1} \frac{2x+3}{\sqrt{x^2+3x+5}} dx$$
; b) $\int_{0}^{\pi} x^3 \sin x \ dx$.

b)
$$\int_{0}^{\pi} x^3 \operatorname{sen} x \ dx$$
.

c) Calcule o limite
$$\lim_{x\to 0} x \frac{\int\limits_0^x e^{-t^2} dt}{1-e^{-x^2}}$$
.

- 8. Seja f uma função com derivada contínua em \mathbb{R} , tal que f(e)=f'(e)=0.

Defina-se
$$g: \mathbb{R}^+ \to \mathbb{R}$$
 por $g(x) = \int_{\log x}^{e^x} f(t) dt$.
Calcule g' e g'' e mostre que $g'(1) + g''(1) = -f'(0)$.

9. Calcule a área da região do plano delimitada pelas curvas $y = x^3 - 2x^2 - 2x$ e $y = -x^2$, sombreada na figura.

Nome: N^o :

Curso: