Voronoi Diagrams

Outline:

- I. Problem definition
- II. Voronoi cells
- III. Delaunay triangulations
- IV. Geometric complexity
- V. Beach line in Construction
- VI. Site event

Voronoi diagram

Input: Point Set

$$P = \{p_1, p_2, ..., p_n\}$$

Input: Point Set

$$P = \{p_1, p_2, \dots, p_n\}$$
 Sites

Two Sites

Perpendicular bisector

$$V(p_i) = \bigcap_{\substack{1 \le j \le n \\ j \ne i}} h(p_i, p_j)$$

 $V(p_6)$ is determined by p_2, p_5, p_7, p_8 only.

$$V(p_i) = \bigcap_{\substack{1 \le j \le n \\ j \ne i}} h(p_i, p_j)$$

 $V(p_6)$ is determined by p_2, p_5, p_7, p_8 only.

$$V(p_6) \subset h(p_6, p_j), j = 1, 3, 4.$$

$$V(p_i) = \bigcap_{\substack{1 \le j \le n \\ j \ne i}} h(p_i, p_j)$$

 $V(p_6)$ is determined by p_2, p_5, p_7, p_8 only.

$$V(p_6) \subset h(p_6, p_j), j = 1, 3, 4.$$

 $V(p_4)$ is determined by p_3, p_5, p_7 only.

$$V(p_i) = \bigcap_{\substack{1 \le j \le n \\ j \ne i}} h(p_i, p_j)$$

 $V(p_6)$ is determined by p_2, p_5, p_7, p_8 only.

$$V(p_6) \subset h(p_6, p_j), j = 1, 3, 4.$$

 $V(p_4)$ is determined by p_3, p_5, p_7 only.

$$V(p_i) = \bigcap_{\substack{1 \le j \le n \\ j \ne i}} h(p_i, p_j)$$

- Open convex region
 (open set not necessarily unbounded)
- Possibly unbounded
- ♦ $\leq n 1$ vertices
- ♦ $\leq n-1$ edges

Unbounded Voronoi Cells

Only Case of Disconnected VD

All the sites are collinear.

$V(p_1)$	$V(p_2)$	$V(p_3)$		$V(p_{n-1})$	$V(p_n)$
p_1	p_2	p_3	•••	p_{n-1}	p_n

Only *n* – 1 Sites Collinear

Only One Vertex

All the sites are on the same circle.

Not All Sites Collinear

One More Example

50 points (generated using the Mathematica command VoronoiMesh)

 $\leq 2n - 5$ vertices

 $\leq 3n - 6$ edges

 $\leq 2n - 5$ vertices $\leq 3n - 6$ edges

Proof Let n_v = #vertices and n_e = #edges.

 $\leq 2n - 5$ vertices $\leq 3n - 6$ edges

Proof Let n_v = #vertices and n_e = #edges.

• Add vertex v_{∞} far enough.


```
\leq 2n - 5 vertices \leq 3n - 6 edges
```

Proof Let n_v = #vertices and n_e = #edges.

- Add vertex v_{∞} far enough.
- lacktriangle Extend (and bend) all half-lines in Vor(P) to reach v_{∞} .


```
\leq 2n - 5 vertices \leq 3n - 6 edges
```

Proof Let n_v = #vertices and n_e = #edges.

- Add vertex v_{∞} far enough.
- lacktriangle Extend (and bend) all half-lines in Vor(P) to reach v_{∞} .

a planar graph

$$\leq 2n - 5$$
 vertices $\leq 3n - 6$ edges

Proof Let n_v = #vertices and n_e = #edges.

- Add vertex v_{∞} far enough.
- lacktriangle Extend (and bend) all half-lines in ${\sf Vor}(P)$ to reach v_∞ .

$${\textstyle\bigvee}$$

a planar graph

$$(n_v + 1) - n_e + n = 2$$
 (Euler's formula)

$$\leq 2n - 5$$
 vertices $\leq 3n - 6$ edges

Proof Let n_v = #vertices and n_e = #edges.

- Add vertex v_{∞} far enough.
- Extend (and bend) all half-lines in Vor(P) to reach v_{∞} .

$$\bigcap$$

a planar graph

$$(n_v+1)-n_e+n=2$$
 (Euler's formula)
$$n_e=\overset{\bigcirc}{n_v}+n-1 \\ n_v=n_e-n+1$$

Cont'd

• Every vertex has degree ≥ 3 .

• Every vertex has degree ≥ 3 .

• Every vertex has degree ≥ 3 .

$$n_e \ge \frac{3}{2}(n_v + 1)$$

• Every vertex has degree ≥ 3 .

$$n_e \ge \frac{3}{2}(n_v + 1)$$

$$n_e = n_v + n - 1$$

$$n_v \le 2n - 5$$

• Every vertex has degree ≥ 3 .

$$n_e \ge \frac{3}{2}(n_v + 1) \qquad n_v \le \frac{2}{3}(n_e - 1)$$

$$n_e = n_v + n - 1$$

$$n_v \le 2n - 5$$

• Every vertex has degree ≥ 3 .

$$n_e \ge \frac{3}{2}(n_v + 1) \qquad n_v \le \frac{2}{3}(n_e - 1)$$

$$n_e = n_v + n - 1 \qquad \qquad \prod n_v = n_e - n + 1$$

$$n_v \le 2n - 5 \qquad n_e \le 3n - 6$$

Vertex

 $C_P(q)$: largest circle centered at q and not containing any site from P in its interior.

Vertex

 $C_P(q)$: largest circle centered at q and not containing any site from P in its interior.

Theorem

- (i) q is a vertex of Vor(P) iff $C_P(q)$ passes through ≥ 3 sites.
- (ii) Bisector b of p_i and p_j is an edge of Vor(P) iff for some point r on b, $C_P(r)$ passes through p_i and p_j but no other sites.

(i) q is a vertex of Vor(P) iff $C_P(q)$ passes through ≥ 3 sites. (\Leftarrow)

(i) q is a vertex of Vor(P) iff $C_P(q)$ passes through ≥ 3 sites.

(i) q is a vertex of Vor(P) iff $C_P(q)$ passes through ≥ 3 sites.

(\Leftarrow) Suppose q exists such that $C_P(q)$ passes through ≥ 3 sites p_i, p_j, p_k .

 $C_P(q)$ has no site in its interior.

(i) q is a vertex of Vor(P) iff $C_P(q)$ passes through ≥ 3 sites.

(\Leftarrow) Suppose q exists such that $C_P(q)$ passes through ≥ 3 sites p_i, p_j, p_k .

 $C_P(q)$ has no site in its interior.

q must be on the boundary of $V(p_i)$, $V(p_i)$, and $V(p_k)$.

(i) q is a vertex of Vor(P) iff $C_P(q)$ passes through ≥ 3 sites.

(\Leftarrow) Suppose q exists such that $C_P(q)$ passes through ≥ 3 sites p_i, p_j, p_k .

 $C_P(q)$ has no site in its interior.

q must be on the boundary of $V(p_i)$, $V(p_i)$, and $V(p_k)$.

q is a vertex of Vor(P).

(i) q is a vertex of Vor(P) iff $C_P(q)$ passes through ≥ 3 sites.

(⇐) Suppose q exists such that $C_P(q)$ passes through ≥ 3 sites p_i, p_j, p_k .

 $C_P(q)$ has no site in its interior.

q must be on the boundary of $V(p_i)$, $V(p_i)$, and $V(p_k)$.

q is a vertex of Vor(P).

 (\Rightarrow) Vertex q is adjacent to 3 edge.

(i) q is a vertex of Vor(P) iff $C_P(q)$ passes through ≥ 3 sites.

(⇐) Suppose q exists such that $C_P(q)$ passes through ≥ 3 sites p_i, p_j, p_k .

 $C_P(q)$ has no site in its interior.

q must be on the boundary of $V(p_i)$, $V(p_i)$, and $V(p_k)$.

q is a vertex of Vor(P).

(\Rightarrow) Vertex q is adjacent to 3 edge. \Longrightarrow It is adjacent to three cells: $V(p_i), V(p_j), \text{ and } V(p_k).$

(i) q is a vertex of Vor(P) iff $C_P(q)$ passes through ≥ 3 sites.

(⇐) Suppose q exists such that $C_P(q)$ passes through ≥ 3 sites p_i, p_j, p_k .

 $C_P(q)$ has no site in its interior.

q must be on the boundary of $V(p_i)$, $V(p_i)$, and $V(p_k)$.

q is a vertex of Vor(P).

(\Rightarrow) Vertex q is adjacent to 3 edge. \Longrightarrow It is adjacent to three cells: $V(p_i), V(p_j)$, and $V(p_k)$.

q is equidistant to p_i , p_j , and p_k , and no other sites is closer to q.

(i) q is a vertex of Vor(P) iff $C_P(q)$ passes through ≥ 3 sites.

(⇐) Suppose q exists such that $C_P(q)$ passes through ≥ 3 sites p_i, p_j, p_k .

 $C_P(q)$ has no site in its interior.

q must be on the boundary of $V(p_i)$, $V(p_i)$, and $V(p_k)$.

q is a vertex of Vor(P).

(\Rightarrow) Vertex q is adjacent to 3 edge. \Longrightarrow It is adjacent to three cells: $V(p_i), V(p_j)$, and $V(p_k)$.

q is equidistant to p_i , p_j , and p_k , and no other sites is closer to q.

 $C_P(q)$ has no site in its interior.

(i) q is a vertex of Vor(P) iff $C_P(q)$ passes through ≥ 3 sites.

(⇐) Suppose q exists such that $C_P(q)$ passes through ≥ 3 sites p_i, p_j, p_k .

 $C_P(q)$ has no site in its interior.

q must be on the boundary of $V(p_i)$, $V(p_i)$, and $V(p_k)$.

q is a vertex of Vor(P).

(\Rightarrow) Vertex q is adjacent to 3 edge. \Longrightarrow It is adjacent to three cells: $V(p_i), V(p_j)$, and $V(p_k)$.

q is equidistant to p_i , p_j , and p_k , and no other sites is closer to q.

 $C_P(q)$ has no site in its interior.

V. Computing VD

Naive algorithm:

Compute every Voronoi cell $V(p_i)$.

Half-plane intersection.

• n cells.

V. Computing VD

Naive algorithm:

Compute every Voronoi cell $V(p_i)$.

Half-plane intersection.

 $O(n \log n)$

• n cells.

V. Computing VD

Naive algorithm:

Compute every Voronoi cell $V(p_i)$.

Half-plane intersection.

 $O(n \log n)$

• n cells.

 $O(n^2 \log n)$

Steve Fortune (1987)

Complications:

- * l may encounter the top vertex v of the cell $V(p_i)$ before the site p_i .
- ♣ Part of Vor(P) above l also depends on sites below l.

- ♣ l may encounter the top vertex v of the cell $V(p_i)$ before the site p_i .
- ♣ Part of Vor(P) above l also depends on sites

Steve Fortune (1987)

Complications:

- * l may encounter the top vertex v of the cell $V(p_i)$ before the site p_i .
- ♣ Part of Vor(P) above l also depends on sites below l.
- ♣ We don't have all the information to compute v.

Sweep in a Different Fashion

- ◆ Do not maintain the intersection of Vor(P) with the half-plane above l.
- ◆ Maintain the part of Vor(P) of sites above l that will not change.

 p_i : site above l p_i : site below l

q: point above l

Sweep in a Different Fashion

- Do not maintain the intersection of Vor(P) with the half-plane above l.
- ◆ Maintain the part of Vor(P) of sites above l that will not change.

 p_i : site above l p_i : site below l

q: point above lq is closer to l than to p_i .

Sweep in a Different Fashion

- ◆ Do not maintain the intersection of Vor(P) with the half-plane above l.
- ◆ Maintain the part of Vor(P) of sites above l that will not change.

 p_i : site above l p_i : site below l

q: point above l q is closer to l than to p_j .

If q is closer to p_i than to l, then it must be closer to p_i than to p_j .

Locus of points equidistant to $p_i = (a_i, b_i)$ and $l: y = l_y$.

$$p_i = (a_i, b_i)$$

l -----

Locus of points equidistant to $p_i = (a_i, b_i)$ and $l: y = l_y$.

$$(x - a_i)^2 + (y - b_i)^2 = (y - l_y)^2$$

Locus of points equidistant to $p_i = (a_i, b_i)$ and $l: y = l_y$.

$$(x - a_i)^2 + (y - b_i)^2 = (y - l_y)^2$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Locus of points equidistant to $p_i = (a_i, b_i)$ and $l: y = l_y$.

$$p_i = (a_i, b_i)$$

$$(x - a_i)^2 + (y - b_i)^2 = (y - l_y)^2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Parabola!

Locus of points equidistant to $p_i = (a_i, b_i)$ and $l: y = l_y$.

$$(x - a_i)^2 + (y - b_i)^2 = (y - l_y)^2$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

l -----

Parabola!

All the points above the parabola are closer to p_i than to l (and all the sites below l).

Beach Line

Parabolic arcs bounding the locus of points closer to some site above l than to l.

Beach Line

Parabolic arcs bounding the locus of points closer to some site above l than to l.

Beach line p_l p_l p_l p_l p_m

◆ Lower envelope of all the parabolas due to the sites above l.

- ◆ Lower envelope of all the parabolas due to the sites above l.
- *x*-monotone.

- ◆ Lower envelope of all the parabolas due to the sites above l.
- x-monotone.
- ◆ One parabola can contribute more than once (e.g., by p_i).

- ◆ Lower envelope of all the parabolas due to the sites above l.
- x-monotone.
- ◆ One parabola can contribute more than once (e.g., by p_i).
- ◆ Breakpoints lie on the edges of Vor(P).

- ◆ Lower envelope of all the parabolas due to the sites above l.
- *x*-monotone.
- ◆ One parabola can contribute more than once (e.g., by p_i).
- ◆ Breakpoints lie on the edges of Vor(P).
- ◆ They will trace out exactly Vor(P) as l moves from top to bottom.

Parabolic arcs bounding the locus of points closer to some site above l than to l.

- ◆ Lower envelope of all the parabolas due to the sites above l.
- *x*-monotone.
- ◆ One parabola can contribute more than once (e.g., by p_i).
- Breakpoints lie on the edges of Vor(P).
- ◆ They will trace out exactly Vor(P) as l moves from top to bottom.

Maintain the beach line (not explicitly) during the sweep.

VI. Two Types of Events

As the sweep line moves downward, the beach line's topological structure changes when

VI. Two Types of Events

As the sweep line moves downward, the beach line's topological structure changes when

a) a new parabolic arc appears(a site event), or

VI. Two Types of Events

As the sweep line moves downward, the beach line's topological structure changes when

- a) a new parabolic arc appears(a site event), or
- b) a parabolic arc shrinks to a point and then vanishes (a *circle event*).

The sweep line l reaches a new site.

(a) Before

- Two new break points emerge right after a site event.
- ullet They trace out the same edge (e_2 below) in opposite directions.

- Two new break points emerge right after a site event.
- ullet They trace out the same edge (e_2 below) in opposite directions.

v: Voronoi vertex

 e_1 , e_2 , e_3 : Voronoi edges

- Two new break points emerge right after a site event.
- ullet They trace out the same edge (e_2 below) in opposite directions.

v: Voronoi vertex

 e_1 , e_2 , e_3 : Voronoi edges

• The edge r_1r_2 is not connected to the rest of the (constructed) Voronoi diagram.

- Two new break points emerge right after a site event.
- ullet They trace out the same edge (e_2 below) in opposite directions.

v: Voronoi vertex

 e_1 , e_2 , e_3 : Voronoi edges

• The edge r_1r_2 is not connected to the rest of the (constructed) Voronoi diagram.

It will grow and meet another edge and become connected.

At a site event:

- ◆ A new arc appears on the beach line.
- ◆ A new Voronoi edge starts to be traced out.

At a site event:

- A new arc appears on the beach line.
- ◆ A new Voronoi edge starts to be traced out.

Lemma A new arc can only appear on the beach line via a site event.

At a site event:

- A new arc appears on the beach line.
- A new Voronoi edge starts to be traced out.

Lemma A new arc can only appear on the beach line via a site event.

Corollary The beach line consists of $\leq 2n-1$ parabolic arcs.

At a site event:

- A new arc appears on the beach line.
- A new Voronoi edge starts to be traced out.

Lemma A new arc can only appear on the beach line via a site event.

Corollary The beach line consists of $\leq 2n-1$ parabolic arcs.

Proof The first encountered site generates one arc.

At a site event:

- ◆ A new arc appears on the beach line.
- A new Voronoi edge starts to be traced out.

Lemma A new arc can only appear on the beach line via a site event.

Corollary The beach line consists of $\leq 2n-1$ parabolic arcs.

Proof The first encountered site generates one arc.

Each newly encountered site

yields one new arc, and

At a site event:

- A new arc appears on the beach line.
- A new Voronoi edge starts to be traced out.

Lemma A new arc can only appear on the beach line via a site event.

Corollary The beach line consists of $\leq 2n - 1$ parabolic arcs.

Proof The first encountered site generates one arc.

Each newly encountered site

- yields one new arc, and
- splits at most one existing arc into two (i.e., adding one arc to the total count).

At a site event:

- A new arc appears on the beach line.
- A new Voronoi edge starts to be traced out.

Lemma A new arc can only appear on the beach line via a site event.

Corollary The beach line consists of $\leq 2n-1$ parabolic arcs.

Proof The first encountered site generates one arc.

Each newly encountered site

- yields one new arc, and
- splits at most one existing arc into two (i.e., adding one arc to the total count).

 \rangle # increase in arcs \leq 2.

At a site event:

- A new arc appears on the beach line.
- ◆ A new Voronoi edge starts to be traced out.

Lemma A new arc can only appear on the beach line via a site event.

 \implies # increase in arcs \le 2.

Corollary The beach line consists of $\leq 2n-1$ parabolic arcs.

Proof The first encountered site generates one arc.

Each newly encountered site

- yields one new arc, and
- splits at most one existing arc into two (i.e., adding one arc to the total count).

arcs
$$\leq 1 + 2(n-1) = 2n - 1$$
.