Bayes Quiz 2 Review

Russell and Norvig: Chapter 13

CSE 240: Winter 2023

Lecture 12

Announcements

- Quiz 2 opens on today after class
 - No time limit (should take ~30 minutes)
 - Deadline: 5pm on Friday.
 - Mixed multiple choice + open ended answers.
 - Open book open note.
- Assignment 3 is out.
- Working on regrades

Agenda and Topics

- Quiz/Assignment review
 - Local Beam search (pseudocode QA)
 - CSP Tree-structuring question
 - Topics
- Probability
 - Product rule, chain rule, Bayes rule
 - Inference
 - Independence and conditional independence

Quiz Review

Local Beam Search

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the *k* best successors from the complete list and repeat.

Local Beam Search

Pseudocode

```
local_beam_search(objective, bounds, step_size, k, n_iterations):
 beam = []
 while len(beam) < k:
   point <- random
   add point to beam
 for iter in n_iterations:
   pool <- generate_neighbors for each beam
   check that each pool is in bounds (if not, drop it)
   sort the pool by the best objective
   set the beam to the k best members of the pool
 return the best member of the beam
```

Quiz 2 Overview

- Format
 - 8 questions
 - 3 True/False
 - 2 multiple choice
 - 3 *short* answer

- Questions
 - Minimax/Expectimax utility function
 - Evaluation function versus depth
 - Search problem types
 - Hill climbing pros/cons
 - Simulated Annealing properties
 - Solving a CSP
 - Tree-structured CSP (CE 11)
 - Tree-structured CSP algorithm and runtime

CSP Example

$$X_i < X_{i+1}$$

$$N=M$$

Tree-structured CSPs

- Any tree-structured CSP can be solved in time linear in the number of variables.
 - Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering. (label var from X₁ to X_n)
 - For j from n down to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(X_j), X_j)
 - For j from 1 to n assign X_i consistently with Parent(X_i)

Runtime: $O(nd^2)$ (why?)

Enforcing Arc Consistency in a CSP

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_j) \leftarrow \text{Remove-First}(queue)
      if Remove-Inconsistent-Values (X_i, X_j) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_i) returns true iff succeeds
   removed \leftarrow false
   for each x in Domain[X_i] do
      if no value y in DOMAIN[X<sub>j</sub>] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
         then delete x from Domain[X_i]; removed \leftarrow true
   return removed
```

• Runtime: $O(n^2d^3)$

CSP Example

$$X_i < X_{i+1}$$

$$N=M$$

Probability

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T = hot)

W	Р
sun	0.8
rain	0.2

P(W|T = cold)

W	Р	
sun	0.4	
rain	0.6	

Joint Distribution

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Question: Conditional Probabilities

- P(hot | sun)?
- P(cold | sun)?
- P(rain | hot) ?

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

- A trick to get a whole conditional distribution at once:
 - Select the joint probabilities matching the evidence

rain

Normalize the selection (make it sum to one)

cold

Why does this work? Sum of selection is P(evidence)! (P(r), here)

0.3

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Probabilistic Inference

 Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)

- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence

- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- P(sun)?
- 0.3+0.1+0.1+0.15=0.65
- P(sun | winter)?

$$P(w) = 0.5$$

 $P(s,w) = 0.25$
 $P(s|w) = 0.5$

P(sun | winter, hot)?

0.1/0.15 = 0.667

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- General case:
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ Query* variable: Q• Hidden variables: $H_1 \dots H_r$ All variables

- We want: $P(Q|e_1 \dots e_k)$
- First, select the entries consistent with the evidence
- Second, sum out H to get joint of Query and evidence:

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} \underbrace{P(Q, h_1 \dots h_r, e_1 \dots e_k)}_{X_1, X_2, \dots X_n}$$

- Finally, normalize the remaining entries to conditionalize
- Obvious problems:
 - Worst-case time complexity O(dn)
 - Space complexity O(dn) to store the joint distribution

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \qquad P(x,y) = P(x|y)P(y)$$

Example:

W	Р
sun	0.8
rain	0.2

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

D	W	Р
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14
dry	rain	0.06

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$
$$P(x_1, x_2, \dots x_n) = \prod_{i} P(x_i|x_1 \dots x_{i-1})$$

Bayes Rule

Bayes' Rule

• Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems

In the running for most important AI equation!

That's my rule!

Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{Cause}|\text{Effect}) = \frac{P(\text{Effect}|\text{Cause})P(\text{Cause})}{P(\text{Effect})}$$

- Example:
 - m is meningitis, s is stiff neck

$$P(s|m) = 0.8$$

 $P(m) = 0.0001$ Example givens $P(s) = 0.1$

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small

CE 12: Bayes' Rule

Given

P(W)

R	Р
sun	8.0
rain	0.2

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

What is P(W | dry)?

Independence

Independent Random Variables

- Two variables X and Y are independent if
 - P(X = x | Y = y) = P(X = x) for all values x,y
 - That is, learning the values of Y does not change prediction of X
- If X and Y are independent then
 - P(X,Y) = P(X|Y)P(Y) = P(X)P(Y)
 - notation: I(X,Y) $X \perp \!\!\! \perp Y$
- In general, if $X_1,...,X_n$ are independent, then
 - $P(X_1,...,X_n) = P(X_1)...P(X_n)$
 - Requires O(n) parameters vs?

Conditional Independence

Conditional Independence

- Unfortunately, random variables of interest are rarely independent of each other
- A more suitable notion is that of conditional independence
- Two variables X and Y are conditionally independent given Z if
 - P(x|y,z) = P(x|z) for all values x,y,z
 - That is, learning the values of Y does not change prediction of X once we know the value of Z
 - Equivalently, P(x, y|z) = P(x|z)P(y|z) for all values x,y,z

• notation: I(X;Y|Z), $X \perp \!\!\! \perp Y |Z$

Examples

- What about:
 - Cavity, Toothache, Catch
 - I(Toothache; Catch)?
 - i.e., P(Toothache, Catch) = P(Toothache)P(Catch)?
 - I(Toothache; Catch | Cavity)?
 - i.e., P(Toothache | Cavity, Catch) = P(Toothache | Cavity)?
- What about:
 - Rain, Traffic, Umbrella
 - I(Umbrella; Traffic)?
 - i.e., P(Umbrella, Traffic) = P(Umbrella)P(Traffic)?
 - I(Umbrella;Traffic | Rain)?
 - i.e., P(Umbrella | Rain, Traffic) = P(Umbrella | Rain)?
- What about:
 - Fire, Smoke, Alarm
 - I(Smoke; Alarm)?
 - i.e., P(Smoke,Alarm) = P(Smoke)P(Alarm)?
 - I(Smoke; Alarm | Fire)?
 - P(Smoke | Fire, Alarm) = P(Smoke | Fire)?

Examples where: I(A; B) is not true, But I(A; B | C) is true

More Examples

- What about:
 - Gas, Battery, Starts
 - I(Battery, Gas)
 - P(Battery|Gas) = P(Battery)
 Gas and Battery are independent
 - I(Battery, Gas | Starts)?
 - P(Battery|Gas,Starts) ≠ P(Battery|Starts)
 Gas and Battery are not independent given Starts

• What about GetGoodGrade, AttendClass, DoHomework?

Example where:
I(A; B) is true,
But I(A; B | C) is not

The Chain Rule

$$P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$

Trivial decomposition:

$$P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) = P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain}, \mathsf{Traffic})$$

With assumption of conditional independence:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) =$$

$$P(Rain)P(Traffic|Rain)P(Umbrella|Rain)$$

• Bayes' nets / graphical models help us express conditional independence assumptions

Summary and Next Time

- This week:
 - Finish CSPs
 - Probability and Bayes

- This week
 - Naives Bayes