The Hong Kong Polytechnic University Department of Applied Mathematics AMA1120 Tutorial Set #02

Question 1

(a)
$$f'(x) = 4x^3 - 12x + 8$$

 $f''(x) = 12x^2 - 12 = 0 \iff x = \pm 1$
 $\begin{array}{c|cccc} x & (-\infty, -1) & (-1, 1) & (1, +\infty) \\ \hline f''(x) & + & - & + \end{array}$

The intervals where f is concave upwards are: $(-\infty, -1)$, $(1, +\infty)$

The interval where f is concave downwards is: (-1, 1)

(b)
$$f'(x) = \frac{2}{3}x^{-1/3} (1-x)^{1/3} + x^{2/3} \cdot \frac{1}{3} (1-x)^{-2/3} (-1) = \frac{\frac{2}{3}-x}{x^{1/3} (1-x)^{2/3}}$$

 $f''(x) = (-1)x^{-1/3} (1-x)^{-2/3} + (\frac{2}{3}-x)(-\frac{1}{3}x^{-4/3})(1-x)^{-2/3} + (\frac{2}{3}-x)x^{-1/3} \cdot \frac{2}{3} (1-x)^{-5/3}$
 $= \frac{-\frac{2}{9}}{x^{4/3} (1-x)^{5/3}}$ is not continuous at $x = 0$, 1
$$\frac{x}{|f''(x)|} = \frac{(-\infty, 0)}{|f''(x)|} = \frac{(0, 1)}{|f''(x)|} = \frac{(1, +\infty)}{|f''(x)|}$$

The interval where f is concave upwards is: $(1, +\infty)$

The intervals where f is concave downwards are: $(-\infty, 0)$, (0, 1)

(c)
$$f'(x) = 1 - \frac{4}{(x-1)^2}$$

 $f''(x) = \frac{8}{(x-1)^3}$ is not continuous at $x = 1$

$$\frac{x | (-\infty, 1) | (1, +\infty)}{f''(x) | - | +}$$

The interval where f is concave upwards is: $(1, +\infty)$

The interval where f is concave downwards is: $(-\infty, 1)$

(d)
$$f(x) = \frac{x^3}{x^2 - 3x + 2} = x + 3 + \frac{7x - 6}{(x - 1)(x - 2)} = x + 3 - \frac{1}{x - 1} + \frac{8}{x - 2}$$

 $f'(x) = 1 + \frac{1}{(x - 1)^2} - \frac{8}{(x - 2)^2}$
 $f''(x) = \frac{16}{(x - 2)^3} - \frac{2}{(x - 1)^3} = 0 \implies 8(x - 1)^3 = (x - 2)^3 \implies 2x - 2 = x - 2 \implies x = 0$

and f'' is not continuous at x = 1, 2

The intervals where f is concave upwards are: $(0, 1), (2, +\infty)$

The intervals where f is concave downwards are: $(-\infty, 0)$, (1, 2)

(e)
$$f'(x) = -2x e^{-x^2}$$

 $f''(x) = 2 (2x^2 - 1) e^{-x^2} = 0 \iff x = \pm \frac{1}{\sqrt{2}}$
 $x = \pm \frac{1}{\sqrt{2}}$

The intervals where f is concave upwards are: $(-\infty, -\frac{1}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, +\infty)$

The interval where f is concave downwards is: $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

Question 2

- ←) Trivial.
- \Rightarrow) Suppose $\lim_{x\to\infty} [f(x) (mx + b)] = 0$ for some $m, b \in \mathbb{R}$. Then

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \left(\frac{f(x) - mx}{x} + m \right) = \lim_{x \to \infty} \frac{f(x) - mx}{x} + m = \lim_{x \to \infty} \frac{f(x) - mx}{x} - \lim_{x \to \infty} \frac{b}{x} + m$$
$$= \lim_{x \to \infty} \frac{f(x) - (mx + b)}{x} + m = m$$

and trivially $b = \lim_{x \to \infty} (f(x) - mx)$.

(a)
$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \left(\frac{1}{x} - 1\right)^{1/3} = -1$$

$$\lim_{x \to \pm \infty} [f(x) + x] = \lim_{x \to \pm \infty} [x^{2/3} (1 - x)^{1/3} + x] = \lim_{x \to \pm \infty} x \left[\left(\frac{1}{x} - 1 \right)^{1/3} + 1 \right]$$
$$= \lim_{u \to -1^{\pm}} \frac{u + 1}{u^{3} + 1} = \lim_{u \to -1^{\pm}} \frac{1}{3u^{2}} = \frac{1}{3}$$

 $\therefore y = -x + \frac{1}{3} \text{ is an inclined asymptote of } y = f(x)$

(b) Method 1

$$\lim_{x \to 1^{\pm}} f(x) = \lim_{x \to 1^{\pm}} \frac{(x+1)^2}{x-1} = \pm \infty$$

 \therefore x = 1 is a vertical asymptote of y = f(x).

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{(x+1)^2}{x(x-1)} = \lim_{x \to \pm \infty} \frac{(1+\frac{1}{x})^2}{1-\frac{1}{x}} = 1$$

$$\lim_{x \to \pm \infty} [f(x) - x] = \lim_{x \to \pm \infty} \left[\frac{(x+1)^2}{x-1} - x \right] = \lim_{x \to \pm \infty} \frac{3x+1}{x-1} = 3$$

 \therefore y = x + 3 is an inclined asymptote of y = f(x).

Method 2

$$\frac{(x+1)^2}{x-1} = x+3+\frac{4}{x-1}$$

 \therefore x = 1 is a vertical asymptote of y = f(x).

 \therefore y = x + 3 is an inclined asymptote of y = f(x).

(c)
$$\frac{x^3}{x^2 - 3x + 2} = x + 3 + \frac{7x - 6}{x^2 - 3x + 2} = x + 3 + \frac{7x - 6}{(x - 1)(x - 2)}$$

 \therefore x = 1, x = 2 are vertical asymptotes of y = f(x)

 \therefore y = x + 3 is an inclined asymptote of y = f(x).

(d)
$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{e^{-x^2}}{x} = 0$$
, $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} e^{-x^2} = 0$

 \therefore y = 0 is a horizontal asymptote of y = f(x).

(a) Note that $f(x) = x^4 - 6x^2 + 8x + 10$ is defined on \mathbb{R} .

$$f(0) = 10$$

$$f'(x) = 4x^3 - 12x + 8 = 0 \iff x = 1, -2$$

$$f''(x) = 12x^2 - 12 = 0 \iff x = \pm 1$$

	<i>x</i> <	-2	< x <	-1	< <i>x</i> <	1	< <i>x</i>
f		-14	1	-3		13	1
f'	ı	0	+	+	+	0	+
f''	+	+	+	0	_	0	+

(b) Note that $f(x) = x^{2/3} (1 - x)^{1/3}$ is defined on **R**.

$$f(x) = 0 \iff x = 0, 1.$$

$$f'(x) = -\frac{x - \frac{2}{3}}{x^{1/3} (1 - x)^{2/3}} = 0$$
 for $x \neq 0, 1 \iff x = \frac{2}{3}$

$$f'(0) = \lim_{x \to 0} \frac{x^{2/3} (1-x)^{1/3} - 0}{x - 0} = \lim_{x \to 0} \left(\frac{1-x}{x}\right)^{1/3} \text{ does not exist}$$

$$f'(1) = \lim_{x \to 1} \frac{x^{2/3} (1-x)^{1/3} - 0}{x-1} = -\lim_{x \to 1} \left(\frac{x}{1-x}\right)^{2/3} \text{ does not exist}$$

$$f''(x) = -\frac{2}{9x^{4/3}(1-x)^{5/3}} \neq 0$$
 for $x \neq 0, 1, f''(0)$ and $f''(1)$ do not exist

	<i>x</i> <	0	< <i>x</i> <	$\frac{2}{3}$	< <i>x</i> <	1	< <i>x</i>
f		0		$\frac{\sqrt[3]{4}}{3}$		0	\
f'	1	∄	+	0	_	∄	_
f''	_	∄	_	_	_	∄	+

By 3(a), $y = -x + \frac{1}{3}$ is an inclined asymptote of y = f(x) when $x \to \pm \infty$.

(c) Note that
$$f(x) = \frac{(x+1)^2}{x-1} = x+3+\frac{4}{x-1}$$
 is defined on $\mathbb{R} \setminus \{1\}$.

$$f(x) = 0 \iff x = -1, \text{ and } f(0) = -1$$

$$f(x) = 0 \iff x = -1, \text{ and } f(0) = -1$$

 $f'(x) = 1 - \frac{4}{(x-1)^2} = 0 \text{ for } x \neq 1 \iff x = -1, 3$

$$f''(x) = \frac{8}{(x-1)^3}$$
 for $x \ne 1$

x = 1 is vertical asymptote, y = x + 3 is an inclined asymptote.

	<i>x</i> <	-1	< x <	1	< x <	3	< <i>x</i>
f		0	→	∄		8	1
f'	+	0	_	∄	_	0	+
f''	_	_	_	∄	+	+	+

(d) Note that

$$f(x) = \frac{x^3}{x^2 - 3x + 2} = x + 3 + \frac{7x - 6}{(x - 1)(x - 2)} = x + 3 - \frac{1}{x - 1} + \frac{8}{x - 2}$$

is defined on $\mathbb{R} \setminus \{1, 2\}$.

$$f'(x) = 1 + \frac{1}{(x-1)^2} - \frac{8}{(x-2)^2} = 0 \iff \frac{x^2(x^2 - 6x + 6)}{(x-1)^2(x-2)^2} = 0 \iff x = 0, \ 3 \pm \sqrt{3}$$

$$f''(x) = -\frac{2}{(x-1)^3} + \frac{16}{(x-2)^3} = 0 \implies 8(x-1)^3 = (x-2)^3 \implies 2x-2 = x-2 \implies x = 0$$

x = 1, x = 2 are vertical asymptotes, and y = x + 3 is an inclined asymptote

	<i>x</i> <	0	< x <	1	< <i>x</i> <	$3-\sqrt{3}$	< x <	2	< x <	$3+\sqrt{3}$	< <i>x</i>
f	^ _	0	1	∄		$-6\sqrt{3}$	/	∄	\	$6\sqrt{3}$	1
f'	+	0	+	∄	+	0	-	∄	_	0	+
f''	-	0	+	∄	_	-	_	∄	+	+	+

(e) Note that $f(x) = e^{-x^2} > 0$ is defined on \mathbb{R} .

$$f(0) = 1$$

$$f'(x) = -2x e^{-x^2} = 0 \iff x = 0$$

$$f''(x) = 2(2x^2 - 1)e^{-x^2} = 0 \iff x = \pm \frac{1}{\sqrt{2}}$$

Since $\lim_{x \to \pm \infty} [f(x) - 0] = \lim_{x \to \pm \infty} e^{-x^2} = 0$, y = 0 is a horizontal asymptote

	<i>x</i> <	$-\frac{1}{\sqrt{2}}$	< <i>x</i> <	0	< <i>x</i> <	$\frac{1}{\sqrt{2}}$	< <i>x</i>
f	1	$e^{-1/2}$		1		$e^{-1/2}$	\
f'	+	+	+	0	_	_	_
f"	+	0	_	_	_	0	+

(a) Let
$$g(x) = \frac{2x^2 + x - 1}{x - 1} = 0 \iff x = \frac{1}{2}, -1, \text{ and } g \text{ is undefined at } x = 1.$$

$$\frac{|x| + |x| + |x|}{|g| + |x|} = 0 \iff x = \frac{1}{2}, -1, \text{ and } g \text{ is undefined at } x = 1.$$

$$\frac{|x| + |x|}{|g| + |x|} = 0 \iff x = \frac{1}{2}, -1, \text{ and } g \text{ is undefined at } x = 1.$$

$$\frac{|x| + |x|}{|g| + |x|} = 0 \iff x = \frac{1}{2}, -1, \text{ and } g \text{ is undefined at } x = 1.$$
For $x \in (-1, \frac{1}{2}) \cup (1, +\infty), f(x) = g(x) = 2x + 3 + \frac{2}{x - 1} \implies f'(x) = 2 - \frac{2}{(x - 1)^2}$
For $x \in (-\infty, -1) \cup (\frac{1}{2}, 1), f(x) = -g(x) \implies f'(x) = -2 + \frac{2}{(x - 1)^2}$

(b)
$$f'(-1) = \lim_{x \to -1^{-}} \frac{-\frac{2x^2 + x - 1}{x - 1} - 0}{x - (-1)} = \lim_{x \to -1^{-}} \left(-\frac{2x - 1}{x - 1}\right) = -\frac{3}{2}$$

$$f''(-1) = \lim_{x \to -1^{+}} \frac{\frac{2x^2 + x - 1}{x - (-1)} - 0}{x - (-1)} = \lim_{x \to -1^{+}} \frac{2x - 1}{x - 1} = \frac{3}{2}$$

$$\therefore f'(-1) \neq f'(-1) \implies f'(-1) \text{ does not exist.}$$

$$f'_{-}(\frac{1}{2}) = \lim_{x \to 1/2^{-}} \frac{\frac{2x^{2} + x - 1}{x - 1} - 0}{\frac{x - 1}{x - \frac{1}{2}}} = \lim_{x \to 1/2^{-}} \frac{2x + 2}{x - 1} = -6$$

$$f'_{+}(\frac{1}{2}) = \lim_{x \to 1/2^{+}} \frac{-\frac{2x^{2} + x - 1}{x - \frac{1}{2}} - 0}{\frac{x - 1}{x - \frac{1}{2}}} = \lim_{x \to 1/2^{+}} \left(-\frac{2x + 2}{x - 1}\right) = 6$$

$$\therefore f'_{-}(\frac{1}{2}) \neq f'_{+}(\frac{1}{2}) \implies f'(\frac{1}{2}) \text{ does not exist.}$$

 \therefore f has a local maximum at x = 0 and local minima at $x = -1, \frac{1}{2}, 2$.

(d) For
$$x > 1$$
, $f(x) = 2x + 3 + \frac{2}{x-1}$.

 \therefore y = 2x + 3 is an inclined asymptote, and x = 1 is a vertical asymptote.

For
$$x < -1$$
, $f(x) = -2x - 3 - \frac{2}{x - 1}$

 \therefore y = -2x - 3 is an inclined asymptote

(e) For
$$x \in (-1, \frac{1}{2}) \cup (1, +\infty)$$
, $f''(x) = \frac{4}{(x-1)^3}$

For
$$x \in (-\infty, -1) \cup (\frac{1}{2}, 1)$$
, $f''(x) = -\frac{4}{(x-1)^3}$

	<i>x</i> <	-1	< x <	0	< x <	$\frac{1}{2}$	< x <	1	< <i>x</i> <	2	< <i>x</i>
f	\	0	~	1	/	0	1	∄	\	9	1
f'	_	∄	+	0	_	∄	+	∄	_	0	+
f"	+	∄	_	_	_	∄	+	∄	+	+	+

(a)
$$f(x) = x^2 (2 - x) e^{-x} = (-x^3 + 2x^2) e^{-x}$$
 is defined on \mathbb{R} .
 $f'(x) = (x^3 - 5x^2 + 4x) e^{-x} = x (x - 1) (x - 4) e^{-x}$
 $f''(x) = (-x^3 + 8x^2 - 14x + 4) e^{-x} = -(x - 2) (x^2 - 6x + 2) e^{-x}$

(b)
$$f'(x) = 0 \iff x = 0, 1, 4$$

 $f''(x) = 0 \iff x = 2, 3 \pm \sqrt{7}$

												$3+\sqrt{7}$	
f	\ <u></u>	0	1	0.1449		e^{-1}	\ \rightarrow \	0	\ <u></u>	$-32e^{-4}$	^	-0.4104	
f'	_	0	+	+	+	0	_	ı	_	0	+	+	+
f''	+	+	+	0	_	_	_	0	+	+	+	0	_

... f has local minima at x = 0, 4, and local maximum at x = 1Change of convexity occurs at x = 2, $3 \pm \sqrt{7}$

 \therefore f has points of inflexion at x = 2, $3 \pm \sqrt{7}$.

(c)
$$\lim_{x \to \infty} [f(x) - 0] = \lim_{x \to \infty} \frac{-x^3 + 2x^2}{e^x} = 0$$
 by l'Hôpital's rule

 \therefore y = 0 is a horizontal asymptote.

(d)

Note that $f(x) = \frac{36|x|}{(x-1)^2}$ is defined on $\mathbb{R} \setminus \{1\}$.

Let
$$g(x) = \frac{36x}{(x-1)^2} = \frac{36}{x-1} + \frac{36}{(x-1)^2}$$

$$f'(x) = \begin{cases} -\frac{36}{(x-1)^2} - \frac{72}{(x-1)^3} & \text{if } x > 0\\ \frac{36}{(x-1)^2} + \frac{72}{(x-1)^3} & \text{if } x < 0 \end{cases}$$

$$f'(0) = \lim_{x \to 0^{-}} \frac{-36x}{x(x-1)^{2}} = -36$$
 but $f'(0) = \lim_{x \to 0^{+}} \frac{36x}{x(x-1)^{2}} = 36$

 \therefore f'(0) does not exist.

$$\therefore f'(x) = 0 \iff \frac{36}{(x-1)^2} = -\frac{72}{(x-1)^3} \iff x-1 = -2 \iff x = -1$$

$$f''(x) = \begin{cases} \frac{72}{(x-1)^3} + \frac{216}{(x-1)^4} & \text{if } x > 0\\ -\frac{72}{(x-1)^3} - \frac{216}{(x-1)^4} & \text{if } x < 0 \end{cases}$$

$$f''(x) = 0 \iff \frac{72}{(x-1)^3} = -\frac{216}{(x-1)^4} \iff x-1 = -3 \iff x = -2$$

x = 1 is a vertical asymptote, y = 0 is a horizontal asymptote

	<i>x</i> <	-2	< x <	-1	< <i>x</i> <	0	< x <	1	< x
f	1	8		9	>	0	1	∄	\
f'	+	+	+	0	_	∄	+	∄	_
f''	+	0	_	_	_	∄	+	∄	+

(a)
$$f(x) = xe^{-x^2}$$
 is defined on \mathbb{R} .
 $f'(x) = (1 - 2x^2) e^{-x^2}$, $f''(x) = 2x (2x^2 - 3) e^{-x^2}$

(b)
$$f'(x) = 0 \iff x = \pm \frac{1}{\sqrt{2}}, \ f''(x) = 0 \iff x = 0, \pm \sqrt{\frac{3}{2}}$$

	<i>x</i> <	$-\sqrt{\frac{3}{2}}$	< <i>x</i> <	$-\frac{1}{\sqrt{2}}$	< <i>x</i> <	0	< <i>x</i> <	$\frac{1}{\sqrt{2}}$	< x <	$\sqrt{\frac{3}{2}}$	< <i>x</i>
f	\	$-\sqrt{\frac{3}{2}}e^{-\frac{3}{2}}$	\	$-\frac{1}{\sqrt{2}}e^{-\frac{1}{2}}$		0	~	$\frac{1}{\sqrt{2}}e^{-\frac{1}{2}}$	\rightarrow	$\sqrt{\frac{3}{2}}e^{-\frac{3}{2}}$	\
f'	_	_	_	0	+	+	+	0	1	_	_
f''	_	0	+	+	+	0	_	_	_	0	+

 \therefore f has local minimum at $x = -\frac{1}{\sqrt{2}}$, local maximum at $x = \frac{1}{\sqrt{2}}$.

Change of convexity occurs at $x = 0, \pm \sqrt{\frac{3}{2}}$

 \therefore f has points of inflexion at $x = 0, \pm \sqrt{\frac{3}{2}}$.

(c)
$$\lim_{x \to \pm \infty} [f(x) - 0] = \lim_{x \to \pm \infty} \frac{x}{e^{x^2}} = \lim_{x \to \pm \infty} \frac{1}{2xe^{x^2}} = 0$$
 by l'Hôpital's rule

 \therefore y = 0 is a horizontal asymptote.

(e) Consider the change of variable

$$u = \frac{x - y}{\sqrt{2}} = x \cos \frac{\pi}{4} - y \sin \frac{\pi}{4}$$

$$v = \frac{x+y}{\sqrt{2}} = x \sin\frac{\pi}{4} + y \cos\frac{\pi}{4}$$

Hence

$$x + y = (x - y) e^{-\frac{1}{2}(x - y)^2} \Leftrightarrow v = ue^{-u^2}$$

(a)
$$g(x) = \frac{x^2 - 16}{x - 5} = x + 5 + \frac{9}{x - 5}$$

$$g'(x) = 1 - \frac{9}{(x-5)^2} = 0 \iff x = 2, 8$$

and g' is not defined at x = 5

<u>x</u>	$(-\infty, 2)$	(2, 5)	(5, 8)	$(8,+\infty)$
g'(x)	+	_	_	+

The intervals where g' > 0: $(-\infty, 2), (8, +\infty)$

The intervals where g' < 0: (2, 5), (5, 8)

 \therefore g has local minimum at x = 8 and local maximum at x = 2.

(b) $g''(x) = \frac{18}{(x-5)^3}$ which is discontinuous at x=5

$$\begin{array}{c|cccc} x & (-\infty, 5) & (5, +\infty) \\ \hline g''(x) & - & + \end{array}$$

The interval where g'' > 0: $(5, +\infty)$

The interval where g'' < 0: $(-\infty, 5)$

 \therefore g has no points of inflection.

(c) Vertical asymptote: x = 5

Inclined asymptote: y = x + 5

No horizontal asymptotes

- 14 -

(a)
$$f'(x) = 2x e^{-x} - x^2 e^{-x} = -x (x-2) e^{-x} = 0 \iff x = 0, 2$$

$$\therefore$$
 $x = 0$ and $x = 2$ are stationary points

$$f''(x) = 2 e^{-x} - 4x e^{-x} + x^2 e^{-x} = [(x-2)^2 - 2] e^{-x} = 0 \iff x = 2 \pm \sqrt{2}$$

 \therefore $x = 2 + \sqrt{2}$ and $x = 2 - \sqrt{2}$ are inflection points at which change of convexity occurs (see table in (b)).

(b) Note that

	<i>x</i> <	0	< x <	$2-\sqrt{2}$	< x <	2	< <i>x</i> <	$2 + \sqrt{2}$	< <i>x</i>
f	\ <u></u>	0	<u></u>	0.1910	~	$4e^{-2}$	\rightarrow	0.3835	\
f'	_	0	+	+	+	0	_	_	
f''	+	+	+	0	_	_	_	0	+

 \therefore f has local minimum at x = 0 with value 0

f has local maximum at x = 2 with value $4e^{-2}$.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 e^{-x} = \infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 e^{-x} = \lim_{x \to +\infty} \frac{x^2}{e^x} = \lim_{x \to +\infty} \frac{2x}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0$$

 \therefore f has global minimum at x = 0 with value 0 and has no global maximum.

(c) The interval of increasing is (0, 2)

The intervals of decreasing are $(-\infty, 0)$, $(2, +\infty)$

The intervals of concave-up are $(-\infty, 2 - \sqrt{2})$, $(2 + \sqrt{2}, +\infty)$

The interval of concave-down is $(2 - \sqrt{2}, 2 + \sqrt{2})$

(d) No vertical and inclined asymptotes. Horizontal asymptotes: y = 0.

Question 11* (Pure Global Optimization – Must-do!)

(a) Consider
$$f(x) = x^{1/3} e^{-x/3}$$
 on $[-1, 27]$

$$f'(x) = \frac{1}{3}x^{-2/3}e^{-x/3} - \frac{1}{3}x^{1/3}e^{-x/3} = \frac{1}{3}x^{-2/3}(1-x)e^{-x/3} = 0 \iff x = 1$$

$$\frac{x -1}{f(x) - e^{1/3}} = 0 \implies x = 1$$

Thus f attains its absolute maximum at x = 1 with absolute maximum value $e^{-1/3}$, and f attains its absolute minimum at x = -1 with absolute minimum value $-e^{1/3}$.

(b) Consider
$$f(x) = \frac{x}{x^3 + 2}$$
 on [0, 2]

$$f'(x) = \frac{x^3 + 2 - x(3x^2)}{(x^3 + 2)^2} = 0 \iff 2 = 2x^3 \iff x = 1$$

$$\frac{x}{f(x)} = 0 \qquad \frac{1}{3} \qquad \frac{2}{5}$$

Thus f attains its absolute maximum at x = 1 with absolute maximum value $\frac{1}{3}$, and f attains its absolute minimum at x = 0 with absolute minimum value 0.

If the domain is changed to $(0, \infty)$,

x	0+	1	∞
f(x)	0	$\frac{1}{3}$	0

Thus f attains its absolute maximum at x = 1 with absolute maximum value $\frac{1}{3}$, and f has no absolute minimum on the domain.

(c) Consider
$$f(x) = 2 \sin x + \sin 2x$$
 on $[0, \frac{3\pi}{2}]$

$$f'(x) = 2\cos x + 2\cos 2x = 0 \iff \cos x + 2\cos^2 x - 1 = 0 \iff \cos x = -1, \frac{1}{2}$$
$$\Leftrightarrow x = \pi^{\frac{\pi}{2}}$$

$$\begin{array}{c|ccccc} x & 0 & \frac{\pi}{3} & \pi & \frac{3\pi}{2} \\ \hline f(x) & 0 & \frac{3\sqrt{3}}{2} & 0 & -2 \end{array}$$

Thus f attains its absolute maximum at $x = \frac{\pi}{3}$ with absolute maximum value $\frac{3\sqrt{3}}{2}$, and f attains its absolute minimum at $x = \frac{3\pi}{2}$ with absolute minimum value -2.

Question 12 (Application Questions)

(a) Let x and 30 - x be the two positive numbers. Thus 0 < x < 30.

Let
$$f(x) = x^2 + 2(30 - x)^2$$
, which we want to minimize.

$$f'(x) = 2x - 4(30 - x) = 6x - 120 = 0 \implies x = 20$$

x	0_{+}	20	30-
f(x)	1800	600	900

Alternative Method: (first derivative test) †

_	x	(0, 20)	20	(20, 30)
_	f(x)	`	600	7
	f'(x)	_	0	+

Thus, the two positive numbers are 20 and 10, and the minimum value is 600.

(b) Let r > 0 be the radius and h > 0 be the height (in m) of the container respectively.

The volume =
$$\pi r^2 h = 10\pi \implies h = \frac{10}{r^2}$$

Let $C(r) = 8\pi r^2 + 8 \cdot 2\pi rh + 2\pi r^2 = 10\pi r^2 + \frac{160\pi}{r}$ be the cost that we want to minimize.

$$C'(r) = 20\pi r - \frac{160\pi}{r^2} = 0 \implies r^3 = 8 \implies r = 2$$

$$\begin{array}{c|cccc} r & 0^+ & 2 & +\infty \\ \hline C(r) & +\infty & 120\pi & +\infty \\ \end{array}$$

Alternative Method: (first derivative test) †

r	(0, 2)	2	$(2, +\infty)$
C(r)	`*	120π	7
C'(r)	_	0	+

Thus, the radius and the height of the cylindrical cylinder are 2 m and $\frac{5}{2}$ m respectively, and the minimum cost is $$120\pi \approx 376.99 .

† **Remark** In the first derivative test, one must make sure the table data sufficiently imply the stationary point is the global optimal.

(c) Let $f(x) = x^2 + \left(x + \frac{20}{x}\right)$ be the squared distance from the curve to the origin, which we want to minimize. Here, $x + \frac{20}{x} > 0$, i.e. x > 0.

$$f'(x) = 2x + 1 - \frac{20}{x^2} = 0 \implies 2x^3 + x^2 - 20 = (x - 2)(2x^2 + 5x + 10) = 0 \implies x = 2$$

x	(0, 2)	2	$(2,+\infty)$
f(x)	`*	16	7
f'(x)	_	0	+

By first derivative test, the point that is closest to the origin on the curve is $(2, \sqrt{12})$.

(d) Note that $2A = 3B \implies B = \frac{2}{3}A$, $A + B + C = 20 \implies C = 20 - \frac{5}{3}A$

$$A, B, C > 0 \implies 0 < A < 12$$

Let $f(A) = ABC = \frac{2}{3}A^2\left(20 - \frac{5}{3}A\right)$ be the product we want to maximize.

$$f'(A) = \frac{4}{3}A\left(20 - \frac{5}{3}A\right) - \frac{10}{9}A^2 = \frac{80}{3}A - \frac{10}{3}A^2 = 0 \implies A = 0 \text{ or } 8$$

A	(0, 8)	8	(8, 12)
f(A)	7	<u>2560</u> 9	`
$\overline{f'(A)}$	+	0	_

By first derivative test, the product is maximized when A = 8, $B = \frac{16}{3}$ and $C = \frac{20}{3}$ and the value is $\frac{2560}{9}$.

(e) Let x (in m) be the distance of sidewalk Benny will walk, 0 < x < 30.

The distance across the grass =
$$\sqrt{20^2 + (30 - x)^2} = \sqrt{(x - 30)^2 + 400}$$

Let
$$T(x) = \frac{x}{1.0} + \frac{\sqrt{(x-30)^2 + 400}}{0.8} = x + \frac{5}{4}\sqrt{(x-30)^2 + 400}$$
 be the time we minimize.

$$T'(x) = 1 + \frac{5}{4} \frac{x - 30}{\sqrt{(x - 30)^2 + 400}} = 0 \implies \frac{\sqrt{(x - 30)^2 + 400}}{5} = \frac{30 - x}{4} = \frac{20}{3}$$

$$\Rightarrow x = \frac{10}{3}, \frac{170}{3}$$
 (rejected)

$$\begin{array}{c|ccccc}
x & (0, \frac{10}{3}) & \frac{10}{3} & (\frac{10}{3}, 30) \\
\hline
T(x) & \searrow & 45 & \nearrow \\
T'(x) & - & 0 & +
\end{array}$$

 \therefore Benny must walk $\frac{10}{3}$ m along sidewalk to reach the fountain in the smallest time.

(f) (i) For each fare adjustment \$x,

the ridership =
$$250000 - 23500 x$$
, and the fare = $\$(11.3 + x)$

$$\therefore$$
 $R(x) = (11.3 + x)(250000 - 23500 x)$

(ii)
$$R'(x) = 250000 - 23500 x - 23500 (11.3 + x) = -15550 - 47000 x = 0$$

$$\Rightarrow x = -0.33$$

 $R''(x) = -47000 < 0 \ \forall x$, so R(x) is always concave downwards (concave function).

$$\therefore$$
 R (x) is maximized if and only if R'(x) = 0 \Leftrightarrow x = -0.33

Thus the company should decrease the fare by \$0.33 to maximize the revenue, where the fare is \$10.97.

(g) Let r and h be the base radius and height of the cylinder.

Surface area =
$$2\pi r^2 + 2\pi r h = 2\pi \implies r \neq 0$$
 and $h = \frac{1 - r^2}{r}$

:. Volume =
$$\pi r^2 h = \pi r (1 - r^2) =: V(r)$$

$$V'(r) = \pi (1 - r^2) + \pi r (-2r) = \pi (1 - 3r^2) = 0 \implies r = \frac{1}{\sqrt{3}}$$

$$\begin{array}{c|cccc}
r & (0, \frac{1}{\sqrt{3}}) & \frac{1}{\sqrt{3}} & (\frac{1}{\sqrt{3}}, \infty) \\
\hline
V(r) & \nearrow & \frac{2\pi}{3\sqrt{3}} & \searrow \\
\hline
V'(r) & + & 0 & -
\end{array}$$

Hence the largest possible volume is $\frac{2\pi}{3\sqrt{3}}$ and the radius is $\frac{1}{\sqrt{3}}$.

(h) Since $\triangle ABC$ is isosceles, we can extend AO to D on BC such that $AD \perp BC$.

 $BC = 2r \cos \phi$ and $AD = r + r \sin \phi$.

Area of
$$\triangle ABC = \frac{1}{2} (2r \cos \phi) (r + r \sin \phi) = r^2 (\cos \phi + \frac{1}{2} \sin 2\phi) =: A(r)$$

$$A'(\phi) = r^2 (-\sin \phi + \cos 2\phi) = 0 \iff 1 - \sin \phi - 2\sin^2 \phi = 0$$

$$\Leftrightarrow$$
 $\sin \phi = \frac{1}{2}, -1 \text{ (rejected)} \Leftrightarrow \phi = \frac{\pi}{6}$

ϕ	$(0,\frac{\pi}{6})$	$\frac{\pi}{6}$	$(\frac{\pi}{6},\frac{\pi}{2})$
$A\left(\phi\right)$	7	max	>
$A'(\phi)$	+	0	_

Hence, the area of $\triangle ABC$ is the greatest when $\phi = \frac{\pi}{6}$, i.e. $\triangle ABC$ is equilateral.

(i) (a) As depicted, first suppose $r < \ell$

Add PG so that $PG \perp OF$, $\therefore PG = r \sin \theta$ and $OG = r \cos \theta$

$$\tan \phi = -\tan (\pi - \phi) = -\frac{PG}{GF} = -\frac{r \sin \theta}{\ell - r \cos \theta} = \frac{r \sin \theta}{r \cos \theta - \ell}.$$

(b) Since $\phi \mapsto \tan \phi$ is a strictly increasing function on $(\pi/2, \pi]$, maximizing or minimizing ϕ is equivalent to maximizing or minimizing $\tan \phi$ over θ .

Consider
$$g(\theta) := \frac{r \sin \theta}{r \cos \theta - \ell} = \frac{\sin \theta}{\cos \theta - 2}$$
 on $[0, \pi/2]$ if $\ell = 2r$.

$$g'(\theta) = \frac{(\cos \theta - 2)\cos \theta - (\sin \theta)(-\sin \theta)}{(\cos \theta - 2)^2} = 0 \iff \cos \theta = \frac{1}{2} \iff \theta = \frac{\pi}{3}$$

θ	0	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$g(\theta)$	0	$-\frac{\sqrt{3}}{3}$	$-\frac{1}{2}$

Thus the least value of ϕ is when $\tan \phi = -\frac{\sqrt{3}}{3} \iff \phi = \frac{5\pi}{6}$.

(c) When $r = 2\ell > \ell$, the picture becomes

 $\therefore 0 \le \phi \le \pi - \tan^{-1} \frac{r}{\ell} = \pi - \tan^{-1} 2 \text{ which can be attained when } \theta = \frac{\pi}{2}$

That is to say, the greatest value of ϕ is $\pi - \tan^{-1} 2$.

Remark For part (c), one should not use $\tan \phi$ as a strategy of finding the maximum or minimum ϕ . (Why?)

Question 13*** (Concept Level)

(a) If x = c is a global minimizer, then f'(c) = 0 since f is differentiable at x = c. Now suppose f'(c) = 0. Let $y \in \mathbb{R}$. By Taylor Theorem, $\exists \xi$ in between y and c such that

$$f(y) = f(c) + f'(c) (y - c) + \frac{1}{2} f''(\xi) (y - c)^{2} = f(c) + \frac{1}{2} f''(\xi) (y - c)^{2} \ge f(c).$$

Since y is arbitrary, this shows x = c is a global minimizer.

(b) Since f(x) is concave downwards on all x, g(x) = -f(x) is concave upwards for all x. Then $f'(c) = 0 \iff g'(c) = 0 \iff x = c$ is a global minimizer of $g \iff x = c$ is a global maximizer of f.