Q1 (10 points)

The Cosine Fresnel Function is an integral function commonly used in optics and geometry. It is given by

$$C(x) = \int_0^x \cos(t^2) dt$$

This function has no elementary antiderivative (i.e. no alternative algebraic expression).

Answer the following.

- (a) Consider the function h(x) defined by $h(x)=e^{-x^2}C(x^3)$. Determine the derivative $h^\prime(x)$.
- (b) Estimate the area under the curve y=C(x) on the interval [-1,1] by using 4 subintervals and Simpson's Rule. Round your answer to five decimals.

(a)
$$h'(x)$$
 is $\frac{d}{dx}[v(x)v(x)] = v'(x)v(x) + v(x)v'(x)$
Let $v(x) = e^{-x^2}$ and $v(x) = (x^3)$
 $v'(x) = 2x e^{-x^2}$ and $v'(x) = c$ their state below

$$I(x)$$
 = x since $C(x) \Rightarrow \int_{0}^{x} \cos(x^{2}) dt$ we take $f(g(x)) = C(g(x))$ where $g(x) = x^{3}$

Step2: finding
$$\frac{df}{dy}$$
 so $\cos(g^2)$

Step 3: Chain rule
$$\sqrt{\frac{dv}{du}} = \frac{df}{dq} \cdot \frac{dg}{dx} = \cos(x^4) \cdot 3x^2$$

Therefore:
$$v^{1}(x) = 3x^{2} \cos(6x)$$

Since we have
$$u(x)$$
, $u'(x)$, $v(x)$ and $v'(x)$ we use product stude to find $h'(x)$

$$\therefore h'(x) = -2 \times e^{-x^2} C(x^3) + e^{-x^2} 3x^2 \cos(x^6)$$

b) interval [-1, 1] and subinterval 4

$$\frac{b-a}{b} = \frac{1-(-1)}{b} = \frac{24}{b} = 0.5$$