ECE 215 Spring 2025

Objective 1.8:
Decision Matrices

Objective 1.8

I can use a decision matrix to quantitatively compare various measures of merit.

DECISION MATRICES

- Quantitative approach to decision making
- What we care about: Measures of Merit
- Suppose we have 2 systems (A and B) to compare

	Cost	Efficiency
Sys A	\$600	75.50%
Sys B	\$1,500	99.19%

- How we do it:
 - Normalize each value
 - Weight each measure of merit
 - Add scores for each system

NORMALIZATION

- Normalization, removes units, levels playing field
- Best option gets a score of 1.0, other scores are calculated by:

$$Score_{normalized} = \frac{Lowest\ Raw\ Value}{Raw\ Value} \longrightarrow Minimize\ Parameter$$

$$-OR-$$

$$Score_{normalized} = \frac{Raw\ Value}{Highest\ Raw\ Value} \longrightarrow Maximize\ Parameter$$

- Which formula do we use?
- What if we pick the wrong one?!?!

NORMALIZATION IN ACTION

Back to our example:

	Cost		Efficiency	
	Value	Normalized	Value	Normalized
Sys A	\$600		75.50%	
Sys B	\$1,500		99.19%	

WEIGHTING AND COMBINING

- Weights assign relative importance to Measures of Merit
- Weights must add up to 1
- Total score is:

Total Score

$$(Weight_1 \times Score_{1,normalized}) + (Weight_2 \times Score_{2,normalized}) + \dots$$

	Cost		Efficiency				
	Value	Normalized	Weighted	Value	Normalized	Weighted	Total
Sys A	\$600	1		75.50%	0.761		
Sys B	\$1,500	0.4		99.19%	1		

REAL WORLD EXAMPLE

	Cost	Camera	Display	Battery	RAM
Galaxy S22 Ultra	\$ 1199	108 MP (triple)	500 ppi	5000 mAh	8 GB
Pixel 6pro	\$1049	50 MP (triple)	512 ppi	5003 mAh	12 GB
OnePlus 10	\$700	48 MP (triple)	525 ppi	5000 mAH	12 GB

- What if all the attributes are equally important?
- What if you're flush with cash and don't care about money, but battery life is really important?

CLASS COMPETITION!

Goal: Build the best-performing voltage divider

Rules of the competition:

- Your team must build a series circuit using two resistors, the DC power supply, and a breadboard.
- You may use any two resistors in the bins.
- Your source voltage must be 5V.
- Performance will be based on 50% weightings for both measures of merit:
 - Target voltage accuracy. One resistor will be the load (R_{load}). Your team must try to get as close to 3.1V across R_{load} as possible.
 - *Power loss*. The non-load resistor represents losses (R_{loss}). Your team must try to minimize the power consumed by R_{loss} .

