TABLA DE LA TRANSFORMADA DE FOURIER

	$f(t) = \mathcal{F}^{-1}[F(w)] = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(w)e^{jwt}dw$	$\mathcal{F}[f(t)] = F(w) = \int_{-\infty}^{+\infty} f(t)e^{-jwt}dt$
1	af(t) + bg(t)	aF(w) + bG(w)
2	f(at)	$\frac{1}{ a }F(\frac{w}{a})$
3	f(-t)	F(-w)
4	f(t-a)	$e^{-jwa}F(w)$
5	$e^{jat}f(t)$	F(w-a)
6	$f(t)\cos(at)$	$\frac{F(w-a) + F(w+a)}{2}$
7	$f(t) \operatorname{sen}(at)$	$\frac{F(w-a) - F(w+a)}{2j}$
8	F(t)	$2\pi f(-w)$
9	$f^{(n)}(t)$	$(jw)^n F(w)$
10	$\int_{-\infty}^{t} f(z) dz$	$\frac{1}{jw}F(w) + \pi F(0)\delta(w)$
11	$(-jt)^n f(t)$	$F^{(n)}(w)$
12	$(f * g)(t) = \int_{-\infty}^{\infty} f(u)g(t - u)du$	F(w)G(w)
13	f(t)g(t)	$\frac{1}{2\pi}F(w)*G(w)$
14	$e^{-at}u(t)$	$\frac{1}{jw+a} , a>0$
15	$e^{-a t }$	$\frac{2a}{w^2 + a^2} , a > 0$
16	e^{-at^2}	$\sqrt{\frac{\pi}{a}}e^{-\frac{w^2}{4a}} , a > 0$

	$f(t) = \mathcal{F}^{-1}[F(w)] = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(w)e^{jwt}dw$	$\mathcal{F}[f(t)] = F(w) = \int_{-\infty}^{+\infty} f(t)e^{-jwt}dt$
17	$P_a(t)$	$\frac{a\mathrm{sen}(wa/2)}{wa/2} \ , \ a > 0$
18	$\frac{\mathrm{sen}(at)}{\pi t}$	$P_{2a}(w)$
19	$te^{-at}u(t)$	$\frac{1}{(jw+a)^2} , a > 0$
20	$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$\frac{1}{(jw+a)^n} , \ a > 0$
21	$e^{-at}\operatorname{sen}(bt)u(t)$	$\frac{b}{(jw+a)^2+b^2} , a>0$
22	$e^{-at}\cos(bt)u(t)$	$\frac{jw+a}{(jw+a)^2+b^2} , a>0$
23	$\frac{1}{a^2+t^2}$	$\frac{\pi}{a}e^{-a w }$
24	$\frac{\cos{(bt)}}{a^2+t^2}$	$\pi\left(\frac{e^{-a w-b } + e^{-a w+b }}{2}\right)$
25	$\frac{\mathrm{sen}(bt)}{a^2 + t^2}$	$\pi\left(\frac{e^{-a w-b }-e^{-a w+b }}{2aj}\right)$

TRANSFORMADA DE FOURIER DE FUNCIONES ESPECIALES

26	5(4)	1
26	$\delta(t)$	1
27	$\delta(t-a)$	e ^{-jwa}
28	$\delta'(t)$	jw
29	$\delta^{(n)}(t)$	$(jw)^n$
30	u(t)	$\pi\delta(w) + \frac{1}{jw}$
31	u(t-a)	$\pi\delta(w) + \frac{1}{jw}e^{-jwa}$
32	1	$2\pi\delta(w)$
33	t	$2\pi j\delta'(w)$
34	t^n	$2\pi j^n \delta^n(w)$
35	e ^{jat}	$2\pi\delta(w-a)$
36	cos (at)	$\pi\big(\delta(w-a)+\delta(w+a)\big)$
37	sen(at)	$-j\pi\big(\delta(w-a)-\delta(w+a)\big)$
38	$sen(at) \cdot u(t)$	$\frac{a}{a^2 - w^2} + \frac{\pi}{2j} \left(\delta(w - a) - \delta(w + a) \right)$
39	$\cos(at) \cdot u(t)$	$\frac{jw}{a^2 - w^2} + \frac{\pi}{2} \left(\delta(w - a) + \delta(w + a) \right)$
40	tu(t)	$j\pi\delta'(w)-\frac{1}{w^2}$
41	1/t	$j\pi - 2\pi j \cdot u(w)$
42	$1/t^n$	$\frac{(-jw)^{n-1}}{(n-1)!} \left(j\pi - 2\pi ju(w) \right)$
43	sgn(t)	2/(jw)
44	$\delta_T(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$	$\delta_{w_0(w)} = w_0 \sum_{n=-\infty}^{+\infty} \delta(w - nw_0)$, $w_0 = \frac{2\pi}{T}$
45	Sea f función periódica: $f(t) = \sum_{n=-\infty}^{+\infty} c_n \cdot e^{jnw_0 t}$	$2\pi \sum_{n=-\infty}^{+\infty} c_n \cdot \delta(w - nw_0)$