Predicting lung cancer response to radiotherapy with pre- and early post-treatment [¹⁸F]FDG PET/CT imaging

Nr.

EPS-198

Keywords / Topics

++B14 Lung (including Mesothelioma)

Authors

Cláudia S. Constantino ^{1, 2}, Francisco Oliveira ¹, Ana Canudo ¹, Ricardo Teixeira ¹, Cláudia Matos ¹, Sandra Vieira ¹, Justyna Kociolek ¹, Nuno Pimentel ¹, Susana Vinga ², Durval Costa ¹

¹ Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal, ² INESC-ID, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal

Aim

This study aims to investigate the **potential power of metabolic features** extracted from pre- and early post-treatment [¹⁸F]FDG PET/CT images of primary and secondary lung cancer lesions **to predict local response to radiotherapy one year after treatment**.

Materials and Methods

156 lung lesions from 95 oncology patients (66±10 y.o., 55 female), treated with radiotherapy alone or chemoradiotherapy, were retrospectively included. All patients underwent **pre-treatment** (up to 3 months before radiotherapy) and **one-year post-treatment** [¹⁸F]FDG PET/CT scans. From these, for a subgroup of 142 lesions, an **early post-treatment** [¹⁸F]FDG PET/CT (3 to 6 months post-radiotherapy) was also available.

Demographic (age, sex), **clinical** (primary tumor, staging, treatment combination), and **dosimetry-related features** (clinical tumor volume, total dose, and percentage of dose cover) were collected. [18F]FDG uptake-related features (8 first-order and 4 geometry-based) were extracted from treated lesions. Segmentation was performed semi-automatically with an adaptive Bayesian classifier [1].

Classification into responder/non-responder lesion was based on clinical reports from one-year post-treatment PET/CT.

Figure 1 represents an example of the features collected for each lesion and the one-year classification into responder and non-responder.

The association between features and response was assessed using **univariate and multivariate logistic regression**. Multivariate classification performance was assessed with the area under the receiver operating characteristic curve (AUC) and balanced accuracy (BAcc). Leave-one-out cross-validation (LOOCV) was further performed to assess evaluation metrics' reproducibility.

Fig. 1: Features collected from clinical records (demographic, clinical and dosimetric related features) and extracted from pre and 3 months post-treatment [18F]FDG PET/CT images (8 first-order and 4 geometry-based features). These features were used to predict local response to radiotherapy one year after treatment. At one year posttreatment, and based on [18F]FDG PET/CT clinical report, lesions were classified as responder or non-responder. CTV: clinical tumor volume; MTV: metabolic tumor volume; TLG: total lesion glycolysis: SD: standard deviation: CoV: coefficient of variation.

Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal

Results

100 out of 156 lung lesions responded to treatment (92 out of 142 lesions in the subset with early post-treatment **PET/CT**).

Table 1 shows the p-value results for features studied in the univariate analysis. No demographic, clinical, or dosimetric features were significantly associated with the response. Association with response was significant (p<0.05) for kurtosis, skewness, and coefficient of variation (CoV) from the pre-treatment [18F]FDG uptake; and for SUV_{max} , SUV_{mean} , and SUV_{peak} from early post-treatment [^{18}F]FDG uptake. In Figure 2 are boxplots representing the distribution of the features significantly associated with the response by group (responder and non-responder).

The multivariate models achieved the following significant AUC and BAcc: 0.70 and 0.55 for the model with demographic, clinical and dosimetry-related features; 0.72 and 0.65 for the model based on pre-treatment [18F]FDG uptake; 0.79 and 0.73 for the model based on the early post-treatment [18F]FDG uptake, and 0.86 and 0.75 for the model combining features from both pre-and early post-treatment [18F]FDG uptake. In Figure 3 are the operating characteristic curves for each model.

When applying LOOCV, there was a decrease in BAcc to 0.54, 0.61, 0.66, and 0.66, respectively, for the above-mentioned models.

Tab. 1: Univariate analysis with logistic regression for demographic, clinical, dosimetry-related features and [18F]FDG uptakerelated features (early and post-treatment PET).

Fig. 2: Boxplots of the features associated with the response at one vear (kurtosis, skewness and coefficient of variation (CoV) from the pre-treatment [18F]FDG uptake; and SUVmax, SUVmean, and SUVpeak from early posttreatment [18F]FDG uptake).

Fig. 3: Operating characteristic curves for the model with demographic. clinical and dosimetryrelated features, the model based on pre-treatment [18F]FDG uptake, the model based on post-treatment [18F]FDG uptake and the model combining features from both pre- and early post-treatment [18F]FDG uptake.

Champalimaud Clinical Centre, Champalimaud

Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal Foundation, Lisbon, Portugal Foundation, Lisbon, Portugal

Champalimaud Clinical Centre, Champalimaud

Conclusion

This preliminary study showed that [18F]FDG uptake-based features from lung cancer lesions may have value in predicting local response to radiotherapy/chemoradiotherapy. Further studies, with larger data sampling and stratified tumors, are needed to evaluate the potential added value of these features.

References

[1] Constantino et al, doi:10.1007/s10278-023-00823-y

Ms. Constantino Cláudia S.

Disclosure - 1 I or one of my co-authors hold a position as an employee, consultant, assessor or advisor for a pharmaceutical, device or biotechnology company. If yes, please specify name/position/company:

Nothing to declare

Disclosure - 2 I or one of my co-authors receive support from a pharmaceutical, device or biotechnology company. If yes, please specify name/position/company/which project and whether support is in kind or monetary:

Nothing to declare

Disclosure - 3 I or one of my co-authors hold property rights/patents for (radio)pharmaceuticals, medical devices or medical consulting firms. If yes, please specify name/position/company:

Nothing to declare

Disclosure - 4 I or one of my co-authors have written articles for (radio)pharmaceutical, medical device, biotechnology or consulting companies during the last 5 years. If yes, please specify name/position/company/article/ journal and co-authors:

Nothing to declare