

Univ.-Prof. Dr. Michael Manitz

Tel.: (0203) 379 - 1443

E-Mail: michael.manitz@uni-due.de

Universität Duisburg/Essen
Fakultät für Betriebswirtschaftslehre
(Mercator School of Management)
Lehrstuhl für Betriebswirtschaftslehre, insbesondere
Produktionswirtschaft und Supply Chain Management
Lotharstr. 65

47057 Duisburg

www.scm.msm.uni-due.de

Ziel und Inhalt der Veranstaltungen

Modul Produktionswirtschaft und Supply Chain Management

- ► Einblick in einige wichtige Fragestellungen der Strukturierung und des Betriebs von Produktionssystemen
- Verwendung quantitativer Optimierungsmodelle
- ▶ Darstellung der Bedeutung der Berücksichtigung knapper Kapazitäten
- ▶ Darstellung tatsächlich existierender, praxisrelevanter Problemstellungen
- ▶ Übung an Hand von kleinen Anwendungsbeispielen

Vorlesung Material-Logistik (Bestandsmanagement in Supply Chains)

- Dynamische Losgrößenplanung und Materialbederfsermittlung (Operative Produktionsplanung)
- ► Berücksichtigung von Unsicherheit (**Sicherheitsbestandsplanung**)

Literatur

Günther, H.-O., und H. **Tempelmeier**, Supply Chain Analytics — Operations Management und Logistik ehemals Produktion und Logistik — Supply Chain & Operations Management (13. Aufl.), Norderstedt (Books on Demand), 2020

Helber, S., Operations Management Tutorial — Grundlagen der Modellierung und Analyse der betrieblichen Wertschöpfung (2. Aufl.), Hildesheim (Stefan Helber), 2020

Literatur (Forts.)

Tempelmeier, H., *Material-Logistik* (7. Aufl.), Berlin, Heidelberg (Springer), 2008

Tempelmeier, H., *Production Analytics* — *Modelle und Algorithmen zur Produktionsplanung* ehemals *Produktionsplanung in Supply Chains* (6. Aufl.), Norderstedt (Books on Demand), 2020

Tempelmeier, H., *Analytics im Bestandsmanagement* ehemals *Bestandsmanagement in Supply Chains* (7. Aufl.), Norderstedt (Books on Demand), 2020

Tempelmeier, H., Analytics in Supply Chain Management und Produktion — Übungen und Mini-Fallstudien (7. Aufl.), Norderstedt (Books on Demand), 2020

(vgl. Tempelmeier (2008))

Gegenstand der Veranstaltung:

- ► (dynamische) Bestellmengen- bzw. Losgrößenplanung
- Bestandsmanagement (Lagerhaltungsplanung)
- ⇒ Materialdisposition

(vgl. Tempelmeier (2008))

"Material" (= Verbrauchsfaktoren)

- ▶ Vorprodukte

 - bezogene Teile: Einzelteile, Baugruppen
- ► Handelswaren

(vgl. Drexl/Fleischmann/Günther/Stadtler/Tempelmeier (1993), Tempelmeier (2008))

Vorlesung Material-Logistik

- Klassifikation von Verbrauchsfaktoren ("Material")

 - ... nach ihrem Bedarfsverlauf (Materialbereitstellungprinzipien)
- Materialbedarfsermittlung
 - > ,, Verbrauchsorientierte Materialbedarfsermittlung": Bedarfsprognose
 - > ,, Programmorientierte Materialbedarfsermittlung": Materialbedarfs-rechnung
- Bestandsmanagement
 - unter deterministischen Bedingungen: Dynamische Losgrößenplanung
 - einstufige Modelle
 - mehrstufige Modelle
 - ... unter stochastischen Bedingungen: Sicherheitsbestandsplanung

Klassifikation der Verbrauchsfaktoren ("Material") nach ihrer wertmäßigen Bedeutung (ABC-Analyse)

Klassifikation der zu disponierenden Verbrauchsfaktoren (Materialarten) nach ihrer wertmäßigen Bedeutung

Beispiel ABC-Klassifikation von Erzeugnissen

Erzeugnis	Verbrauchswert
1	10
2	130
3	5
4	780
5	20
6	30
7	450
8	25
# = 8	$\Sigma = 1450$

Klassifikation der zu disponierenden Verbrauchsfaktoren (Materialarten) nach ihrer wertmäßigen Bedeutung

Beispiel ABC-Klassifikation von Erzeugnissen

Erzeugnis	Verbrauchswert
4	780
7	450
2	130
6	30
8	25
5	20
1	10
3	5
# = 8	$\Sigma = 1450$

Klassifikation der zu disponierenden Verbrauchsfaktoren (Materialarten) nach ihrer wertmäßigen Bedeutung

Beispiel ABC-Klassifikation von Erzeugnissen

		kumulierter Anteil an	kumulierter Anteil
Erzeugnis	Verbrauchswert	der Anzahl Erzeugnisse	am Verbrauchswert
		[%]	[%]
4	780	12.5	53.79
7	450	25.0	84.83
2	130	37.5	93.79
6	30	50.0	95.86
8	25	62.5	97.59
5	20	75.0	98.97
1	10	87.5	99.66
3	5	100.0	100.00
# = 8	$\Sigma = 1450$		

Beispiel ABC-Klassifikation von Erzeugnissen

Beispiel ABC-Klassifikation von Erzeugnissen

Beispiel ABC-Klassifikation von Erzeugnissen

Beispiel ABC-Klassifikation von Erzeugnissen

Klassifikation der zu disponierenden Verbrauchsfaktoren (Materialarten) nach ihrer wertmäßigen Bedeutung

Klasseneinteilung:

- ► Gruppe **A**:
 Güter mit hohem Anteil am gesamten Materialverbrauchswert
- ► Gruppe **B**:
 Güter mit mittlerem Anteil am gesamten Materialverbrauchswert
- ► Gruppe **C**:
 Güter mit niedrigem Anteil am gesamten Materialverbrauchswert

Verbrauchsfaktoren ("Material") nach ihrem Bedarfsverlauf (RSU/XYZ-Analyse)

Unregelmäßiger Bedarf

Sporadischer Bedarf

Sporadischer Bedarf (ohne Nullbedarfsperioden)

Regelmäßiger Bedarf

Regelmäßiger Bedarf mit Trend

Regelmäßiger Bedarf mit Trend und Saison

Typen von Bedarfsverläufen

- ▶ nichtstationär
- ▶ stationär
 - □ unregelmäßig
 - stark schwankend
 - sporadisch
 - ▷ regelmäßig
 - um ein konstantes Niveau
 - o ohne Saisoneinfluss
 - mit Saisoneinfluss
 - trendförmig
 - ohne Saisoneinfluss
 - o mit Saisoneinfluss

Regelmäßiger vs. unregelmäßiger Bedarf

Mittelwert der Zeitreihe (y_t) der Bedarfsmengen über T Perioden

$$\mu = \frac{1}{T} \sum_{t=1}^{T} y_t$$

mittlere absolute Abweichung

$$\mathsf{MAD} = \frac{1}{T} \sum_{t=1}^{T} |y_t - \mu|$$

Störpegel

$$\mathsf{SP} = \frac{\mathsf{MAD}}{\mu}$$

Unregelmäßigen (stark schwankenden) Bedarf vermutet man bei SP > 0.5.

Stark schwankender vs. sporadischer Bedarf

Sporadischen Bedarf vermutet man bei einem Anteil Nullbedarfsperioden von größer als 0.3 oder 0.4.

Beispiel Stark schwankender Bedarf

t	1	2	3	4	15	6	7	8	9	10	11	12	13	14
y_t	0	50	390	140	0	20	0	200	750	70	50	1000	355	0

Stark schwankender vs. sporadischer Bedarf

Sporadischen Bedarf vermutet man bei einem Anteil Nullbedarfsperioden von größer als 0.3 oder 0.4.

Beispiel Stark schwankender Bedarf

t	1	2	3	4	15	6	7	8	9	10	11	12	13	14
y_t	0	50	390	140	0	20	0	200	750	70	50	1000	355	0

$$SP = 1.0782$$

Anteil Nullbedarfsperioden =
$$\frac{4}{14} = 0.2857 = 28.57\%$$

Verlaufsmuster bei regelmäßigem Bedarf

Autokorrelationskoeffizient

(bezüglich einer Zeitverschiebung von τ Perioden)

$$\rho(\tau) = \frac{\sum_{t=1}^{T-\tau} y_t \cdot y_{t+\tau} - \frac{1}{T-\tau} \cdot \sum_{t=1}^{T-\tau} y_t \cdot \sum_{t=1+\tau}^{T} y_t}{\sqrt{\left(\sum_{t=1}^{T-\tau} y_t^2 - \frac{1}{T-\tau} \cdot \left(\sum_{t=1}^{T-\tau} y_t\right)^2\right) \cdot \left(\sum_{t=1+\tau}^{T} y_t^2 - \frac{1}{T-\tau} \cdot \left(\sum_{t=1+\tau}^{T} y_t\right)^2\right)}}$$

Verlaufsmuster bei regelmäßigem Bedarf

Autokorrelogramm für eine Zeitreihe mit saisonalem Verlauf

Die Autokorrelationsfunktion $\rho(\tau)$ schwankt um 0, weicht aber in regelmäßigen Abständen systematisch davon ab.

Verlaufsmuster bei regelmäßigem Bedarf

Autokorrelogramm für eine Zeitreihe mit trendförmigem Verlauf

Die Autokorrelationsfunktion $\rho(\tau)$ verläuft im positiven Bereich, wenngleich fallend, d. h. mit abnehmender Korrelation.

(Grob-)Zuordnung von Materialbereitstellungsprinzipien zum Bedarfsverlaufmuster

RSU-/XYZ-Analyse

Klassifikation der zu disponierenden Verbrauchsfaktoren (Materialarten) nach ihrem Bedarfsverlauf

Klasseneinteilung:

- ► Gruppe R: Güter mit gleichbleibendem Bedarf bei nur gelegentlichen Niveauverän-
- ▶ Gruppe S: Güter mit veränderlichem, insb. trendförmigem und/oder saisonalem Bedarf
- ► Gruppe **U**:
 Güter mit sehr **unregelmäßigem**, sporadischem Bedarf

derungen (regelmäßiger Bedarf auf hohem Niveau)

Materialbereitstellungsprinzipien

- einsatzsynchrone Beschaffung
 - ⇒ Just-in-time-Prinzip (R-Produkte)
 - □ geringe Lagerkosten
- ► Vorratshaltung (S-Produkte)

 - optimale Bestellmengen und gleichbleibende Kapazitätsauslastung erreichbar
- ► Einzelbeschaffung im Bedarfsfall (U-Produkte)
 - □ geringe Lagerkosten
 - □ u. U. lange Durchlaufzeiten

ABC/XYZ-Analyse

Differenzierte Zuordnung der Materialbereitstellungsprinzipien:

	А	В	C
R	RA	RB	RC
S	SA	SB	SC
U	UA	UB	C

bzw.

	А	В	C
X	XA	XB	XC
Y	YA	ΥB	YC
Z	ZA	ZB	ZC

bzw.

	А	A B			
X	AX	BX	CX		
Y	AY	BY	CY		
Z	AZ	BZ	CZ		

Materialbedarfsermittlung

Materialbedarfsermittlung

Prinzipien:

- programmorientiert (Material Requirements Planning MRP)
- "verbrauchsorientiert" (vergangenheitsbedarfsorientiert)
 - → Bedarfsprognose

Bedarfsarten:

- Primärbedarf
- Sekundärbedarf
- ▶ Tertiärbedarf

Ziel/Planungsaufgabe: (für alle Verbrauchsfaktoren k und Perioden t)

Bestimmung des Materialbedarfs r_{kt}

- \triangleright in der richtigen Menge: $r_{\cdot,\cdot}$
- \triangleright am richtigen Ort: k

"Verbrauchsorientierte" bzw. vergangenheitsbedarfsorientierte Materialbedarfsermittlung (Bedarfsprognose)

Bedarfsprognose

► s. Produktionswirtschaft II (Operative Produktionsplanung und -steuerung)

Programmorientierte Materialbedarfsermittlung ("Materialbedarfsrechnung")

Informationsquellen (Daten):

(für alle Verbrauchsfaktoren k)

► Hauptproduktionsprogramm bzw. Primärbedarfsmengen

Primärbedarfsmenge d_k

unmittelbar absatzbestimmter Bedarf eines Verbrauchsfaktors k

Direktbedarfskoeffizienten

Direktbedarfskoeffizient a_{kj}

Anzahl Mengeneinheiten eines Verbrauchsfaktors k, die für jede Mengeneinheit eines übergeordneten Erzeugnisses j direkt benötigt wird

Vorlaufzeiten

Vorlaufzeit z_k

technisch bedingte, reine Produktionszeit bzw. unvermeidliche Transport- oder Lieferzeit für einen Verbrauchsfaktor k (ohne Sicherheitsvorlaufzeiten oder geplante Warte- und Liegezeiten)

► fortgeschriebene Lagerbestände

disponibler Lagerbestand y_{kt} in Periode t

physisch vorhandener oder ausstehender, in Periode t aber verfügbarer Bestand eines Verbrauchsfaktors k (ohne Vormerk- oder Sicherheitsbestand)

Gesamtbedarf für ein Erzeugnis k

$$r_k = d_k + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot r_j$$

Gesamtbedarfsvektor

$$\mathbf{r} = \mathbf{d} + \mathbf{A} \cdot \mathbf{r}$$

$$\mathbf{E} \cdot \mathbf{r} - \mathbf{A} \cdot \mathbf{r} = \mathbf{d}$$

$$(\mathbf{E} - \mathbf{A}) \cdot \mathbf{r} = \mathbf{d}$$

(Produktionsfunktion)

 \Longrightarrow Technologiematrix E-A

$$\mathbf{r} = (\mathbf{E} - \mathbf{A})^{-1} \cdot \mathbf{d}$$

 \implies Verflechtungsbedarfsmatrix $(\mathbf{E} - \mathbf{A})^{-1}$

Beispiel Materialbedarfsermittlung

$$r_k = d_k + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot r_j$$

Beispiel Materialbedarfsermittlung

$$r_{\mathsf{E1}} = 0 \cdot r_{\mathsf{E1}} + 0 \cdot r_{\mathsf{E2}} + 0 \cdot r_{\mathsf{E3}} + 6 \cdot r_{\mathsf{B1}} + 0 \cdot r_{\mathsf{B2}} + 0 \cdot r_{\mathsf{P1}} + 0 \cdot r_{\mathsf{P2}} + 0$$

$$r_{\mathsf{E2}} = 0 \cdot r_{\mathsf{E1}} + 0 \cdot r_{\mathsf{E2}} + 0 \cdot r_{\mathsf{E3}} + 3 \cdot r_{\mathsf{B1}} + 5 \cdot r_{\mathsf{B2}} + 0 \cdot r_{\mathsf{P1}} + 0 \cdot r_{\mathsf{P2}} + 0$$

$$r_{\mathsf{E3}} = 0 \cdot r_{\mathsf{E1}} + 0 \cdot r_{\mathsf{E2}} + 0 \cdot r_{\mathsf{E3}} + 0 \cdot r_{\mathsf{B1}} + 1 \cdot r_{\mathsf{B2}} + 0 \cdot r_{\mathsf{P1}} + 4 \cdot r_{\mathsf{P2}} + 0$$

$$r_{\mathsf{B1}} = 0 \cdot r_{\mathsf{E1}} + 0 \cdot r_{\mathsf{E2}} + 0 \cdot r_{\mathsf{E3}} + 0 \cdot r_{\mathsf{B1}} + 0 \cdot r_{\mathsf{B2}} + 2 \cdot r_{\mathsf{P1}} + 3 \cdot r_{\mathsf{P2}} + 20$$

$$r_{\mathsf{B2}} = 0 \cdot r_{\mathsf{E1}} + 0 \cdot r_{\mathsf{E2}} + 0 \cdot r_{\mathsf{E3}} + 2 \cdot r_{\mathsf{B1}} + 0 \cdot r_{\mathsf{B2}} + 0 \cdot r_{\mathsf{P1}} + 1 \cdot r_{\mathsf{P2}} + 40$$

$$r_{\mathsf{P1}} = 0 \cdot r_{\mathsf{E1}} + 0 \cdot r_{\mathsf{E2}} + 0 \cdot r_{\mathsf{E3}} + 0 \cdot r_{\mathsf{B1}} + 0 \cdot r_{\mathsf{B2}} + 0 \cdot r_{\mathsf{P1}} + 0 \cdot r_{\mathsf{P2}} + 100$$

$$r_{\mathsf{P2}} = 0 \cdot r_{\mathsf{E1}} + 0 \cdot r_{\mathsf{E2}} + 0 \cdot r_{\mathsf{E3}} + 0 \cdot r_{\mathsf{B1}} + 0 \cdot r_{\mathsf{B2}} + 0 \cdot r_{\mathsf{P1}} + 0 \cdot r_{\mathsf{P2}} + 80$$

Beispiel Materialbedarfsermittlung

$$r = d + A \cdot r$$

Beispiel Materialbedarfsermittlung

Primärbedarfsvektor =
$$\mathbf{d} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ E2 \\ E3 \\ E3 \\ 20 \\ 40 \\ B2 \\ 100 \\ 80 \end{pmatrix}$$
 B1 B2 P1 P2

Beispiel Materialbedarfsermittlung

Beispiel Materialbedarfsermittlung

$$\mbox{Technologiematrix} = \mathbf{E} - \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & -6 & 0 & 0 & 0 \\ 0 & 1 & 0 & -3 & -5 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & -4 \\ 0 & 0 & 0 & 1 & 0 & -2 & -3 \\ 0 & 0 & 0 & -2 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{array}{c} \mathbf{E1} \\ \mathbf{E2} \\ \mathbf{E3} \\ \mathbf{B1} \\ \mathbf{B2} \\ \mathbf{P1} \\ \mathbf{P2} \\ \end{array}$$

Beispiel Materialbedarfsermittlung

$$\text{Verflechtungsbedarfsmatrix} = (\mathbf{E} - \mathbf{A})^{-1} = \begin{pmatrix} 1 & 0 & 0 & 6 & 0 & 12 & 18 \\ 0 & 1 & 0 & 13 & 5 & 26 & 44 \\ 0 & 0 & 1 & 2 & 1 & 4 & 11 \\ 0 & 0 & 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 0 & 2 & 1 & 4 & 7 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{array}{c} \mathbf{E1} \\ \mathbf{E2} \\ \mathbf{E3} \\ \mathbf{B1} \\ \mathbf{B2} \\ \mathbf{P1} \\ \mathbf{P2} \\ \end{array}$$

Beispiel Materialbedarfsermittlung

(vgl. Tempelmeier (2008))

Beispiel Materialbedarfsermittlung

(vgl. Tempelmeier (2008))

$$v_{\text{E2,P2}} = a_{\text{E2,B1}} \cdot a_{\text{B1,P2}}$$

= $3 \cdot 3$

Beispiel Materialbedarfsermittlung

(vgl. Tempelmeier (2008))

$$v_{\text{E2,P2}} = a_{\text{E2,B1}} \cdot a_{\text{B1,P2}} + a_{\text{E2,B2}} \cdot a_{\text{B2,B1}} \cdot a_{\text{B1,P2}}$$

= $3 \cdot 3 + 5 \cdot 2 \cdot 3$

Beispiel Materialbedarfsermittlung

(vgl. Tempelmeier (2008))

$$v_{\text{E2,P2}} = a_{\text{E2,B1}} \cdot a_{\text{B1,P2}} + a_{\text{E2,B2}} \cdot a_{\text{B2,B1}} \cdot a_{\text{B1,P2}} + a_{\text{E2,B2}} \cdot a_{\text{B2,P2}}$$

= $3 \cdot 3 + 5 \cdot 2 \cdot 3 + 5 \cdot 1$

Beispiel Materialbedarfsermittlung

(vgl. Tempelmeier (2008))

$$v_{\text{E2,P2}} = a_{\text{E2,B1}} \cdot a_{\text{B1,P2}} + a_{\text{E2,B2}} \cdot a_{\text{B2,B1}} \cdot a_{\text{B1,P2}} + a_{\text{E2,B2}} \cdot a_{\text{B2,P2}}$$

= $3 \cdot 3 + 5 \cdot 2 \cdot 3 + 5 \cdot 1 = 44$

Beispiel Materialbedarfsermittlung

(vgl. Tempelmeier (2008))

Menge der Wege/Pfade von einem Erzeugnis i nach j:

$$\mathcal{P}_{ij} = \{\dots, p_{ij}, \dots\} \text{ mit } p_{ij} = \{i = i_1, i_2, \dots, i_s = j\}$$

$$v_{\text{E2,P2}} = a_{\text{E2,B1}} \cdot a_{\text{B1,P2}} + a_{\text{E2,B2}} \cdot a_{\text{B2,B1}} \cdot a_{\text{B1,P2}} + a_{\text{E2,B2}} \cdot a_{\text{B2,P2}}$$

= $3 \cdot 3 + 5 \cdot 2 \cdot 3 + 5 \cdot 1 = 44$

Beispiel Materialbedarfsermittlung

(vgl. Tempelmeier (2008))

Menge der Wege/Pfade von einem Erzeugnis i nach j:

$$\mathcal{P}_{ij} = \{\dots, p_{ij}, \dots\} \text{ mit } p_{ij} = \{i = i_1, i_2, \dots, i_s = j\}$$

Verflechtungsbedarfskoeffizient

$$v_{ij} = \sum_{p_{ij} \in \mathcal{P}_{ij}} \prod_{m=1}^{s-1} a_{i_m, i_{m+1}}$$

Beispiel Materialbedarfsermittlung

Beispiel Materialbedarfsermittlung

(vgl. Tempelmeier (2008))

Gesamtbedarfsvektor

$$\mathbf{r} = (\mathbf{E} - \mathbf{A})^{-1} \cdot \mathbf{d} = \begin{pmatrix} 1 & 0 & 0 & 6 & 0 & 12 & 18 \\ 0 & 1 & 0 & 13 & 5 & 26 & 44 \\ 0 & 0 & 1 & 2 & 1 & 4 & 11 \\ 0 & 0 & 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 0 & 2 & 1 & 4 & 7 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \\ 20 \\ 40 \\ 100 \\ 80 \end{pmatrix} = \begin{pmatrix} 2760 \\ 6580 \\ 1360 \\ 460 \\ 1040 \\ 100 \\ 80 \end{pmatrix}$$
 B1 B2 P1 P2

Gesamtbedarf für ein Erzeugnis k

$$r_k = d_k + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot r_j$$

Bruttobedarf für ein Erzeugnis k zum Zeitpunkt t

$$r_{kt} = d_{kt} + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot r_{jt}$$

Bruttobedarf für ein Erzeugnis k zum Zeitpunkt t

$$r_{kt} = d_{kt} + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot r_{jt}$$

Nettobedarf für ein Erzeugnis k zum Zeitpunkt t

$$q_{kt} = d_{kt} + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot \mathbf{r}_{jt} - y_{k,t-1}$$

Bruttobedarf für ein Erzeugnis k zum Zeitpunkt t

$$r_{kt} = d_{kt} + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot r_{jt}$$

Nettobedarf für ein Erzeugnis k zum Zeitpunkt t

$$q_{kt} = d_{kt} + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot \mathbf{q}_{jt} - y_{k,t-1}$$

Bruttobedarf für ein Erzeugnis k zum Zeitpunkt t

$$r_{kt} = d_{kt} + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot r_{jt}$$

Nettobedarf für ein Erzeugnis k zum Zeitpunkt t

$$q_{kt} = d_{kt} + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot \mathbf{q}_{jt} - y_{k,t-1} + y_{kt}$$

 $\mathbf{r} = f(\mathsf{Erzeugnisstruktur})$

 $\mathbf{q} = f(\mathsf{Erzeugnisstruktur}, \mathsf{Kosten}, \mathsf{Kapazitäten})$

Bruttobedarf für ein Erzeugnis k zum Zeitpunkt t

$$r_{kt} = d_{kt} + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot r_{jt}$$

Nettobedarf für ein Erzeugnis k zum Zeitpunkt t

$$q_{kt} = d_{kt} + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot \mathbf{q}_{jt} - y_{k,t-1} + y_{kt}$$

 $\mathbf{r} = f(\mathsf{Erzeugnisstruktur})$

 $\mathbf{q} = f(\mathsf{Erzeugnisstruktur}, \mathsf{Kosten}, \mathsf{Kapazitäten})$

Als das eigentliche, übergeordnete Entscheidungsproblem erweist sich die optimale Bestimmung von

$$y = f(Kosten, Kapazitäten)$$

Bruttobedarf für ein Erzeugnis k zum Zeitpunkt t

$$r_{kt} = d_{kt} + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot r_{jt}$$

Nettobedarf für ein Erzeugnis k zum Zeitpunkt t

$$q_{kt} = d_{kt} + \sum_{j \in \mathcal{N}_k} a_{kj} \cdot \mathbf{q}_{jt} - y_{k,t-1} + y_{kt}$$

 $\mathbf{r} = f(\mathsf{Erzeugnisstruktur})$

 $\mathbf{q} = f(\mathsf{Erzeugnisstruktur}, \mathsf{Kosten}, \mathsf{Kapazitäten})$

Als das eigentliche, übergeordnete Entscheidungsproblem erweist sich die optimale Bestimmung von

$$y = f(Kosten, Kapazitäten)$$

u.B.d. Lagerbilanzgleichungen

$$y_{kt} = y_{k,t-1} + q_{kt} - d_{kt} - \sum_{j \in \mathcal{N}_k} a_{kj} \cdot q_{jt}$$

Das System der Lagerbilanzgleichungen liefert als Nebenbedingung(en) für o. a. Optimierungsproblem eine eindeutige Lösung für die mit den optimalen Lagerbeständen verbundenen Nettobedarfsmengen, d. h. Beschaffungs- bzw. Produktionsmengen (Losgrößen q_{kt}).