Stat 134: Section 20

Adam Lucas

November 25th, 2019

Conceptual Review

- a. How do we find P(Y = y) from P(Y = y | X = x) and P(X = x)?
- b. What is the method for finding $\mathbb{E}(Y)$ based on another random variable X?
- c. What is Bayes' Rule?
- d. Random variable or constant? For each of the following, indicate whether it is a random variable or a constant. For instance, $\mathbb{E}(X)$ would be a constant.
 - (i) $\mathbb{E}(Y | X)$;
 - (ii) $\mathbb{E}(Y | X = x)$;
 - (iii) $\mathbb{E}(\mathbb{E}(Y|X))$;
 - (iv) $\mathbb{E}(X|X)$;
 - (v) $\mathbb{E}(Y \mid X = Y)$.

Problem 1

Suppose I toss three coins. Some of them land heads and some land tails. Those that land tails I toss again. Let X be the number of heads showing after the first tossing, Y the total number showing after the second tossing, including the X heads appearing on the first tossing. So X and Y are random variables such that $0 \le X \le Y \le 3$ no matter how the coins land. Write out distribution tables and sketch histograms for each of the following distributions:

- a. the distribution of *X*;
- b. the conditional distribution of Y given X = x for x = 0, 1, 2,;
- c. the joint distribution of X and Y;

Ex 6.1.1 in Pitman's Probability

Problem 2

Let $X \sim \text{Geom }(p)$ on $\{1, 2, ..., \}$. Let $Y \sim \text{Uniform }\{0, 1, ..., X\}$ (that is, given X = x, Y is uniformly distributed from 0 to x).

- 1. Find $\mathbb{E}(Y|X=k)$;
- 2. Find $\mathbb{E}(Y)$.

Problem 3

Let $X \sim \text{Exponential } (\lambda)$, and let $Y \sim \text{Poisson } (X)$ (that is, given X = x, Y follows the Pois (x) distribution).

- a. Find $P(X \in dx, Y = y)$;
- b. Use (a) to find the unconditional distribution of Y;
- c. Given Y = y, what is the conditional density of X? (Hint: use Bayes' Rule).