Pràctica

(a) Com canvia el nombre de condició d'aquesta matriu quan l'ordre creix? Presenta un estudi per n=5÷30.

```
for tam=5:30;
    A = zeros(tam,tam);
    A(1,1) = -1;
    i = 1;
    j = 2i
    i2 = 2;
    j2 = 1;
    while i < tam;</pre>
       A(i,j) = 1;
        A(i2,j) = 4;
        A(i2,j2) = 1;
        i = i+1;
        j = j+1;
        i2 = i2+1;
        j2 = j2+1;
    end
    A(tam,tam) = -1;
    for i=1:tam;
        if i == 1;
           b = [0];
        elseif i == tam;
            b = [b;0];
        else
            b = [b; 6];
        end
    end
    if tam == 5;
        R = [tam, cond(A)];
        x = [tam];
        y = [cond(A)];
    else R = [R;tam,cond(A)];
        x = [x;tam];
        y = [y; cond(A)];
    end
Ta=array2table(R,'VariableNames',{'tam','cond'})
```

 $Ta = 26 \times 2 \text{ table}$

	tam	cond
1	5	4.6062
2	6	4.7238
3	7	4.7998
4	8	4.8494
5	9	4.8829
6	10	4.9064

	tam	cond
7	11	4.9235
8	12	4.9363
9	13	4.9462
10	14	4.9539
11	15	4.9601
12	16	4.9651
13	17	4.9693
14	18	4.9727
	:	

Pa=plot(x,y)

A la taula **Ta** podem veure com a mesura que augmenta l'ordre de la matriu, també augmenta el nombre de condició. A la gràfica **Pa** podem veure com l'augment de la condició s'aproxima molt a una <u>funció logarítimica</u> i que a partir d'un cert ordre prou gran de matriu, l'**augment** del nombre de condició tendeix a disminuir.

(b) Resoleu el sistema lineal =Ax=b per eliminació gaussiana sense pivotament.

```
format long
for tam=5:30;
```

```
A = zeros(tam,tam);
    A(1,1) = -1;
    i = 1;
    j = 2;
    i2 = 2;
    j2 = 1;
    while i < tam;</pre>
        A(i,j) = 1;
        A(i2,j) = 4;
        A(i2,j2) = 1;
        i = i+1;
        j = j+1;
        i2 = i2+1;
        j2 = j2+1;
    end
    A(tam,tam) = -1;
    for i=1:tam;
        if i == 1;
           b = [0];
        elseif i == tam;
            b = [b;0];
        else
            b = [b;6];
        end
    end
    tic
    [L,U,P] = lu(A);
    prova = norm(P*A-L*U,1);
    %la solució del sistema és en dos etapes, primer resolem Ly=Pb i després Ux=y
    y = linsolve(L,P*b); xs = linsolve(U,y); % linsolve més eficient
    t = toc;
    if tam == 5;
        R = [tam, t];
        TA = [t];
    else
        R = [R; tam, t];
        TA = [TA;t];
    end
end
Tb=array2table(R,'VariableNames',{'tam','t'})
```

 $Tb = 26 \times 2 \text{ table}$

	tam	t
1	5	0.000433
2	6	0.000204
3	7	0.000348
4	8	0.000133
5	9	0.001108
6	10	0.000053
7	11	0.000027

	tam	t
8	12	0.000025
9	13	0.000027
10	14	0.000028
11	15	0.000031
12	16	0.000031
13	17	0.000053
14	18	0.000045
15	19	0.000046
16	20	0.000047
17	21	0.000051
18	22	0.000053
19	23	0.000081
20	24	0.000058
21	25	0.000067
22	26	0.000061
23	27	0.000062
24	28	0.000072
25	29	0.000080
26	30	0.000074

(c) Resoleu el sistema lineal = fent ús de les funcions de Matlab® <u>decompositon</u> i <u>linsolve</u>.

```
format long
for tam=5:30
    A = zeros(tam,tam);
   A(1,1) = -1;
    i = 1;
    j = 2;
    i2 = 2;
    j2 = 1;
    while i < tam;</pre>
        A(i,j) = 1;
        A(i2,j) = 4;
        A(i2,j2) = 1;
        i = i+1;
        j = j+1;
        i2 = i2+1;
        j2 = j2+1;
    end
```

```
A(tam,tam) = -1;
    for i=1:tam;
        if i == 1;
           b = [0];
        elseif i == tam;
            b = [b;0];
        else
            b = [b;6];
        end
    end
    tic
    da = decomposition(A);
    da\b;
    td = toc;
    tic
    linsolve(A,b);
    tl = toc;
    if tam == 5;
       R = [tam, td, tl];
        TD = [td];
        TL = [t1];
    else
        R = [R; tam, td, tl];
        TD = [TD;td];
        TL = [TL;t1];
    end
end
Tc=array2table(R,'VariableNames',{'tam','td','tl'})
```

 $Tc = 26 \times 3 \text{ table}$

	tam	td	tl
1	5 !	5.030000000 8	3.700000000
2	6 4	4.180000000 (5.900000000
3	7 !	5.020000000 (5.100000000
4	83	3.070000000 (5.400000000
5	9 (5.760000000 3	3.310000000
6	10	1.950000000 ⁻	1.900000000
7	11	1.290000000	1.400000000
8	12	1.170000000	1.400000000
9	13	1.130000000	1.300000000
10	14	1.320000000	1.500000000
11	15	1.170000000	1.400000000
12	16	1.130000000	1.500000000
13	17	1.150000000 2	2.400000000
14	18	1.200000000 2	2.200000000

	tam	td	tl
15	19	1.1600000002	2.1000000000
16	20	1.1600000002	2.200000000
17	21	1.1600000002	2.300000000
18	22	1.1600000002	2.300000000
19	23	1.1700000002	2.400000000
20	24	1.1800000002	2.5000000000
21	25	1.5200000002	2.800000000
22	26	1.3900000002	2.900000000
23	27	1.730000000	3.500000000
24	28	1.640000000	3.300000000
25	29	1.450000000 (5.900000000
26	30 2	2.010000000 3	3.700000000

(d) Resoleu el sistema lineal =Ax=b pel mètode de Gauss-Seidel.

```
format long
for tam=5:30
   A = zeros(tam,tam);
    A(1,1) = -1;
    i = 1;
    j = 2;
    i2 = 2;
    j2 = 1;
    while i < tam;</pre>
        A(i,j) = 1;
        A(i2,j) = 4;
        A(i2,j2) = 1;
       i = i+1;
        j = j+1;
        i2 = i2+1;
        j2 = j2+1;
    end
    A(tam,tam) = -1;
    for i=1:tam;
        if i == 1;
            b = [0];
        elseif i == tam;
            b = [b;0];
        else
            b = [b;6];
        end
    end
    tic
    D = diag(diag(A));
   L = tril(A-D);
```

```
U = triu(A-D);
    DI = inv(D+L);
    Bgs =-DI*U;
    cgs = DI*b;
    rhogs = abs(eigs(Bgs,1));
    if rhogs < 1;</pre>
        k = 0;
        xs = zeros(size(b));
        r =norm(A*xs-b,1);
        while (k < 100 \&\& r > 5.0e-4);
            k=k+1;
            xs = Bgs*xs+cgs;
            r = norm(A*xs-b,1);
        end
        %fprintf('métode de Gauss-Seidel convergent, en k = %d, el residu és %5.4g i el
    %else
        %fprintf('métode de Gauss-Seidel no convergent');
    end
    t = toc;
    if tam == 5;
        R = [tam, t];
        TG = [t];
    else
        R = [R; tam, t];
        TG = [TG;t];
    end
end
Td=array2table(R,'VariableNames',{'x','t'})
```

 $Td = 26 \times 2 \text{ table}$

	Х	t
1	5	0.003109
2	6	0.000733
3	7	0.000911
4	8	0.000565
5	9	0.002456
6	10	0.000436
7	11	0.000331
8	12	0.000316
9	13	0.000420
10	14	0.000381
11	15	0.000347
12	16	0.000390
13	17	0.000370
14	18	0.000376

	Х	t
15	19	0.000378
16	20	0.000401
17	21	0.002944
18	22	0.001792
19	23	0.004636
20	24	0.003942
21	25	0.003696
22	26	0.004379
23	27	0.004482
24	28	0.004692
25	29	0.005109
26	30	0.005375

```
Pd=plot(x,TA,'--',x,TD,':',x,TL,'g',x,TG,'b--o')

xlim([5.0 30.0])
ylim([0.0000 0.010])
```


- (f) Comenteu els avantatges i els inconvenients dels tres mètodes i l'evolució dels resultats quan n es fa gran.
 - 1. Eliminació gaussiana sense pivotament (Factorització LU)

Inconvenients

Si algún menor principal és zero, pot no existir la descomposició LU.

Avantatges

- 1. Per a qualsevol matriu no singular, les files poden ser reordenades de tal manera que existeixi una descomposició LU.
- 2. És més ràpid i convenient per resoldre múltiples vegades les equacions per diferents b sense haver d'aplicar l'eliminació gaussiana cada vegada.

2. Decomposition i linsolve

Decomposition és típicament més ràpid i és molt útil per a resoldre problemes que necessiten solucions repetidament ja que la descomposició de la matriu només s'ha de fer una vegada.

Linsolve utilitza la factorització LU amb pivotament parcial i per els altres casos utilitza factorització QR amb pivotament per columna. La factorització QR és més costosa que la LU.

3. Gauss-Seidel

En general, si convergeix el mètode Jacobi, el mètode de Gauss-Seidel convergirà més ràpidament que el mètode Jacobi, tot i que encara és relativament lent.

De fet, aquest és el mètode més lent (es pot comprovar a la gràfica Pd) i la que dòna més errors d'aproximació en la solució.

4. Evolució dels resultats quan *n* es fa gran

La solució trobada pels diferents mètodes són bastants similars per a tots els ordres de matriu i no hi ha gaire errors menys en el cas del Gauss-Seidel.

Amb aquest métode, hi han més errors d'aproximació quan més petit és l'ordre.