1

樹脂組成物およびそれからなる成形体 技術分野

- [0001] 本発明は、ポリオレフィンを含むブロックコポリマー組成物に関する。 背景技術
- [0002] 容易に圧縮成形又は溶融吹込み成形できる押出可能なエラストマー組成物は通常、スチレンブロックコポリマーと結晶性ポリオレフィンとをブレンドすることにより製造される。このようなブレンドを使用して、自動車用成形品や弾性フィルムを含む様々な製品が製造されている。
- [0003] スチレン/ブタジエン/スチレン、スチレン/イソプレン/スチレン、スチレン/エチレン・プロックコポリマーを例えばポリオレフィンや粘着付与樹脂のような他の材料とブレンドして、より簡単に押出して加工性及び/又は結合性の改善された弾性シートを得ることができる押出可能エラストマー組成物が生成されている。そして最近ではメタロセン触媒で得られたポリオレフィンとスチレンブロックコポリマーとの組成物が知られている。しかし、これらの樹脂組成物が増量剤としてオイルを含む場合、オイルのブリードアウトに問題があった(特許文献1,2)。

特許文献1:特開平8-231817号公報

特許文献2:特許第3191054号公報

発明の開示

発明が解決しようとする課題

- [0004] 本発明は上記のような課題を解決する為になされ、成形性に優れ、表面硬度が充分 高く、オイルのブリードアウトに優れる樹脂組成物を提供することを目的とする。 課題を解決するための手段
- [0005] (a)エチレン/1-ブテンランダム共重合体100重量部、(b)少なくとも1種のスチレン 系ブロックコポリマー10~500重量部、(a) (b)の合計量100重量部に対して(c)オイル10~140重量部、(a) (b)の合計量100重量部に対して(d)ポリプロピレン樹脂

0~500重量部からなる樹脂組成物、さらに本発明は上記樹脂組成物からなる成形体に関する。

発明の効果

[0006] 本発明の樹脂組成物は成形性に優れ、十分な柔軟性を有する上、オイルのブリードアウト問題が少ない。本発明に係る樹脂組成物は、広い温度範囲での柔軟性に優れるとともに耐熱性にも優れている。また本発明に係る樹脂組成物は、射出成形、押出成形性など各種成型法の成形性に優れている。

発明を実施するための最良の形態

[0007] (a)エチレン/1-ブテンランダム共重合体

本発明のエチレン/1-ブテンランダム共重合体の密度(ASTM D-792で測定)は0.857~0.890g/cm3、好ましくは0.857~0.870g/cm3、MFR(ASTM D-1238で測定)は0.1~10g/10分、好ましくは0.1~5g/10分である。また本発明のエチレン/1-ブテンランダム共重合体のGPCで測定した分子量分布(Mw/Mn)は1.5~3.0、好ましくは1.5~2.5である。本発明のエチレン/1-ブテンランダム共重合体中の1-ブテン含量は8~25モル%、好ましくは15~20モル%であり、示差走査熱量分析(DSC)で求められる融点が90℃未満または融点が観測されない非晶性である。本発明のエチレン/1-ブテンランダム共重合体の分子構造は、直鎖状であってもよいし、長鎖の側鎖を有する分岐状であってもよい。本発明のエチレン/1-ブテンランダム共重合体の分子構造は、直鎖状であってもよいし、長鎖の側鎖を有する分岐状であってもよい。本発明のエチレン/1-ブテンランダム共重合体は、X線回折法により測定された結晶化度が好ましくは30%未満

、より好ましくは20%以下であることが望ましい。

[0008] 本発明のエチレン/1-ブテンランダム共重合体は、13C-NMR法により求めた、共 重合モノマー連鎖分布のランダム性を示すパラメータ(B値)が1.0~1.4の範囲にあ ることが好ましい。上記B値は、共重合連鎖中の構造単位の組成分布状態を表わす 指標であり、下式により算出することができる。

B値=POE/(2PO·PE)

(式中、PEおよびPOは、それぞれエチレン・α-オレフィンランダム共重合体中に含有される、エチレン成分のモル分率およびα-オレフィン(1-ブテン)成分のモル分

率であり、POEは、全ダイアド(dyad)連鎖数に対するエチレン・α-オレフィン(1-ブテン)交互連鎖数の割合である。) このようなPE、POおよびPOE値は、具体的には、下記のようにして算出することができる。

- [0009] 10mm φ の試験管中で約200mgのエチレン/1-ブテンランダム共重合体を1mlの ヘキサクロロブタジエンに均一に溶解させて試料を調製し、この試料の13C-NMRスペクトルを下記の条件 下に測定する。
- [0010] [測定条件]

測定温度:120℃測定周波数:20.05MHzスペクトル幅:1500Hzフィルタ幅:150 OHzパルス繰り返し時間:4.2secパルス幅:7μsec積算回数:2000~5000回PE、PO およびPOE値は、上記のようにして測定された13C-NMRスペクトルから、G. J. Ray (Macromolecules, 10, 773 (1977))、J. C. Randall (Macro-molecules, 15, 353 (1982))、K. Kimura (Polymer, 25,4418(1984))らの報告に基づいて求めることができる。

- [0011] なお、上記式より求められるB値は、エチレン/1-ブテンランダム共重合体が両モノマーが交互に分布している場合には2となり、両モノマーが完全に分離して重合している完全ブロック共重合体の場合には0となる。
- [0012] 本発明のエチレン/1-ブテン共重合体はASTM D1238に準拠して190℃、荷重1 Okgの条件で測定したMFR₁₀と荷重2, 16kgで測定したMFR₂ (MFRとも記載)との比(MFR₁₀/MFR₂)および分子量分布(Mw/Mn)がMw/Mn+4. $63 \le MFR_{10}/MFR_{2} \le 14-2$. $9Log(MFR_{2})$ の関係を満たすと成形性が良く好ましい。
- [0013] 上記エチレン/1-ブテン共重合体の製造法については特に制限はないが、チーグラー・ナッタ触媒、あるいはメタロセン触媒を用いて、エチレンと1-ブテンとを共重合することによって製造することができる。より好ましくは、メタロセン触媒を用いてエチレンと1-ブテンとを共重合することによって得られるエチレン/1-ブテンランダム共重合体である。

[0014] (b)スチレン系ブロックコポリマー

本発明で用いるに有用なスチレン系ブロックコポリマー類の構造は決定的でなく、線 状型もしくは放射状型であってもよく、ジブロックまたはトリブロックであってもよく、或 はそれらの如何なる組み合わせであってもよい。主要な構造は、好適には、トリブロッ ク構造、より好適には線状トリブロック構造である。

- [0015] 本明細書で用いるに有用なスチレン系ブロックコポリマー類の製造は本発明の主題 でない。このようなブロックコポリマー類の製造方法は本技術分野で知られている。不 飽和ゴムモノマー単位を有する有用なブロックコポリマー類を製造するに適した触媒 には、リチウムを基とする触媒、特にリチウムアルキル類が含まれる。米国特許第 3.595.942号には、不飽和ゴムモノマー単位を有するブロックコポリマー類の水添を行 って飽和ゴムモノマー単位を有するブロックコポリマー類を製造するに適切な方法が 記述されている。このポリマー類の構造はそれの重合方法で決定される。例えば、リ チウムアルキル類またはジリチオスチルベンなどの如き開始剤を用いて反応容器に 所望のゴムモノマーを逐次的に導入するか、或は二官能のカップリング剤を用いてブ ロックコポリマーを2セグメント連成させると、線状ポリマー類が生じる。他方、不飽和 ゴムモノマー単位を3個以上有するブロックコポリマー類に対して一官能の適切なカ ップリング剤を用いることにより、分枝構造を得ることができる。多官能カップリング剤、 例えばジハロアルカン類またはアルケン類およびジビニルベンゼンなどに加えて特 定の極性化合物、例えばハロゲン化ケイ素、シロキサン類、または一価アルコールと カルボン酸のエステルなどで連成を生じさせることができる。本発明の組成物の一部 を形成するブロックコポリマー類を適切に記述することに関して、そのポリマーに何ら かのカップリング残基が存在していることは無視可能である。
- [0016] 不飽和ゴムモノマー単位を有する適切なブロックコポリマー類には、これらに限定するものでないが、スチレン-ブタジエン(SB)、スチレン-イソプレン(SI)、スチレン-ブタジエン-スチレン(SBS)、スチレン-イソプレン-スチレン(SIS)、α-メチルスチレン-ブタジエン-α-メチルスチレンおよびα-メチルスチレン-イソプレン-α-メチルスチレンなどが含まれる。
- [0017] このブロックコポリマーのスチレン系部分は、好適には、スチレンおよびそれの類似物

および同族体(これらには α - メチルスチレンおよび環置換スチレン類、特に環がメチルで置換されているスチレン類が含まれる)のポリマーまたはインターポリマーである。好適なスチレン系はスチレンおよび α - メチルスチレンであり、スチレンが特に好適である。

- [0018] 不飽和ゴムモノマー単位を有するブロックコポリマー類は、ブタジエンまたはイソプレンのホモポリマー類および上記2種ジエン類の一方または両方と少量のスチレン系モノマーとのコポリマー類を包含し得る。この使用するモノマーがブタジエンである場合、ブタジエンポリマーブロック中の縮合ブタジエン単位の35から55モルパーセントが1,2構造を有するのが好適である。従って、このようなブロックを水添すると、その結果として生じる生成物は、エチレンと1-ブテンで出来ている規則正しいコポリマーブロック(EB)であるか或はそれに類似している。使用する共役ジエンがイソプレンであると、その結果として生じる水添生成物は、エチレンとプロピレンで出来ている規則正しいコポリマーブロック(EP)であるか或はそれに類似している。飽和ゴムモノマー単位を有する好適なブロックコポリマー類はスチレン系単位のセグメントを少なくとも1つおよびエチレン-ブテンもしくはエチレン-プロピレンコポリマーのセグメントを少なくとも1つおよびエチレン-ブテンもしくはエチレン-プロピレンコポリマーのセグメントを少なくとも1つおよびエチレン-ブテンもしくはエチレン-プロピレンコポリマー類が多まれる。
- [0019] 不飽和ゴムモノマー単位を有するブロックコポリマー類の水添を、好適には、アルミニウムアルキル化合物とニッケルもしくはコバルトのカルボン酸塩もしくはアルコキサイド類との反応生成物を含む触媒を用いて、スチレン系芳香族二重結合の水添度合を25パーセント以下にしながら脂肪族二重結合の少なくとも80パーセントが実質的に完全に水添されるような条件下で行う。好適なブロックコポリマー類は、脂肪族二重結合の少なくとも99パーセントが水添されている一方で芳香族二重結合の水添度合が5パーセント未満であるブロックコポリマー類である。
- [0020] このスチレン系ブロックの比率は、該ブロックコポリマーの全重量の一般に8から65重量パーセントである。このブロックコポリマー類は、好適には、このブロックコポリマー

の全重量を基準にしてスチレン系ブロックセグメントを10から35重量パーセントおよびゴムモノマーブロックセグメントを90から65重量パーセント含有する。

- [0021] 個々のブロックの平均分子量は特定の範囲内で多様であり得る。大部分の場合、スチレン系ブロックセグタントの数平均分子量は5,000から125,000の範囲、好適には7,000から60,000の範囲である一方、ゴムモノマーブロックセグメントの平均分子量は10,000から300,000、好適には30,000から150,000の範囲であろう。このブロックコポリマー全体が有する平均分子量(Mn)は典型的に25,000から250,000、好適には35,000から200,000の範囲である。このような分子量はトリチウム計数方法または浸透圧測定方法で最も正確に測定される。
- [0022] 更に、本発明で用いるに適切な種々のブロックコポリマー類は、本技術分野でよく知られている方法のいずれかを用いて官能基、例えば無水マレイン酸などを少量グラフトとして組み込むことで改質を受けさせたものであってもよい。
- [0023] 本発明で用いるに有用なブロックコポリマー類は商業的に入手可能であり、例えば KRATON PolymersがKRATONの商標で供給しており、そしてDexco PolymersがVECTORの商標で供給している。

[0024] (c)オイル

本発明で用いられるオイルは増量剤として用いられ、パラフィンオイル、シリコンオイル等の種々のオイルが用いられるが特にパラフィンオイルが好適に用いられる。オイルは、40℃での動粘度が20~800cst(センチストークス)、好ましくは40~600cstさらに流動度が0~-40℃、好ましくは0~-30℃、及び引火点(COC法)が200~400℃、好ましくは250~350℃のものが好適である。

[0025] 本発明で好ましく使用するオイルの1種であるナフテン系プロセスオイルは、一般にゴム加工において、軟化効果、配合剤分散効果、潤滑効果などを得るために混入される石油系軟化剤であって、ナフテン系炭化水素を30〜45重量%含有するものである。このようなプロセスオイル

を配合すると、樹脂組成物の成形時の溶融流動性や成形品の柔軟性を一層改善することができ、しかも成形品の表面にブリードによるべたつきが現れにくい効果がある。本発明においては、ナフテン系プロセスオイルの中でも芳香族系炭化水素の含有

量が10重量%以下であるものを使用する。理由は明らかでないが、これを用いると成 形品の表面にブリードを生じにくい効果を奏する。

[0026] 本発明においてオイルの配合量は、(a)エチレン/1-ブテンランダム共重合体、(b) 少なくとも1種のスチレン系ブロックコポリマーの(a)(b)の合計量100重量部に対して、10~140重量部、好ましくは15~120重量部である。ナフテン系プロセスオイルの配合量が少なすぎると溶融流動性や成形品の柔軟性が不足するおそれがあり、逆に多すぎると成形品の表面にプロセスオイルが滲み出る可能性があるので好ましくない。

[0027] (d)ポリプロピレン樹脂

本発明のポリプロピレン樹脂として、例えばプロピレン単独重合体、プロピレンとプロピレン以外の他の α -オレフィンとのプロピレン・α -オレフィンランダム共重合体およびプロピレン・α -オレフィンブロック共重合体を挙げることができる。 また、ポリプロピレン

樹脂は、無水マレイン酸などの極性基含有モノマーで変性されていてもよい。結晶性のポリプロピレン樹脂は、アイソタクチック構造、シンジオタクチック構造が知られているが特にアイソタクチック構造が好ましい。

- [0028] 好ましいポリプロピレン樹脂は、プロピレン単独重合体、他のα-オレフィン単位を10 モル%以下、好ましくは8モル%以下含有するプロピレン・α-オレフィンランダム共重 合体、およびn-デカン抽出量が40重量%以下、特には該抽出量が30重量%以下 のプロピレン・α-オレフィンブロック共重合体である。
- [0029] なお、本発明では、「α-オレフィン単位」は、α-オレフィンから誘導され、重合体を 構成する構造単位を意味する。エチレン単位、プロピレン単位、1-ブテン単位などに ついても同様である。また、本発明では、α-オレフィンには、エチレンが包含される。
- [0030] 上記プロピレン・α-オレフィンランダム共重合体またはプロピレンブロック共重合体を 形成する他のα-オレフィンとしては、プロピレン以外の炭素数2-20のα-オレフィ ンが好ましく挙げられ、具体的には、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、 1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサデセン、4-メチル-1-ペン テンなどを挙げることができる。

- [0031] これらのα-オレフィンは、1種単独でまたは2種以上を組み合わせて使用することができる。
- [0032] 本発明で用いられるポリプロピレン樹脂は、それ自体公知の固体状チタン触媒あるいはメタロセン系触媒などを用いて、それ自体公知の方法により製造することができる。
- [0033] ポリプロピレン 樹脂のX線法による結晶化度は、40%以上、特には50%以上であることが好ましく、DSC法による融点(Tm)は100~165℃であることが好ましい。また、(B)エチレン・α-オレフィンランダム共重合体および(C)プロピレン・エチレン・1-ブテンランダム共重合体の融点よりも高い融点のポリプロピレン
 樹脂を用いることが望ましい。
- [0034] また、ポリプロピレン樹脂は、ASTM D1238に準拠して測定されるメルトフローレート(MFR:230℃、2.16Kg荷重下)が、通常0.1~300g/10分であり、好ましくは1~50g/10分である。ポリプロピレン 樹脂は、1種単独でまたは2種以上を組み合わせて使用することができる。

[0035] 樹脂組成物

本発明の樹脂組成物は(a)エチレン/1-ブテンランダム共重合体100重量部、(b) 少なくとも1種のスチレン系ブロックコポリマー10~500重量部、(a) (b) の合計量10 0重量部に対して(c)オイル10~140重量部、(a) (b) の合計量100重量部に対して(d)ポリプロピレン0~500重量部からなる。好ましくは(a)エチレン/1-ブテンランダム共重合体100重量部に対して(b)少なくとも1種のスチレン系ブロックコポリマー10~300重量部、より好ましくは10~200重量部である。また(a) (b) の合計量100重量部に対して(c)オイルを好ましくは15~120重量部、より好ましくは20~100重量部、(a) (b) の合計量100重量部、より好ましくは20~300重量部、より好ましくは20~300重量部。

- [0036] 本発明の樹脂組成物はその表面硬度(ASTM D2240で測定)ショアーA硬度が15 ~95、好ましくは15~85である。
- [0037] 本発明の樹脂組成物は樹脂組成物としての性能を損なわない範囲で、必要に応じて他の合成樹脂やゴム、または酸化防止剤、耐熱安定剤、耐候安定剤、スリップ剤、アンチブロッキング剤、結晶核剤等、顔料、塩酸吸収剤の添加物を含んでいてもよい

。本発明の樹脂組成物の製造方法は、特に限定されるものではなく、通常、ゴム・重合体工業に使用されるバンバリーミキサー、ニーダーなどの密閉型混合機、または一軸押出機、二軸押出機などによって製造することができる。また、混練方法として多段の添加口のある押出機にて前段で重合体成分および各種粉末状添加剤を投入し、後段でオイルなどの液状成分を注入する方法を採用することもできる。上記の各種混合法の中で押出機などの重合体成分の溶融を伴う混合法を採用する場合は、その次に粉砕工程を入れて組成物の粉体流動性を向上させることが好ましい。このような粉砕工程にはターボミル、ローラミル、ボールミル、遠心力粉砕機、パルベライザーなどの粉砕機を用いて粉砕することにより、粉体流動性のある樹脂組成物を調製することができる。

[0038] また、前記各成分および必要に応じて各種添加剤を、例えばヘンシェルミキサー、バンバリーミキサー、タンブラーミキサー、ロールや押出機等の混合機でブレンドした後、カレンダー成形、T-ダイ成形等の公知のシート成形機に供し、シートとすることが可能である。

[0039] 成形体

本発明の樹脂組成物から得られる成形体は成形性に優れたブロー成形体、シート成形体、押出成形体や異形押出成形体および射出成形体がある。本発明では、上記のように樹脂組成物を調製する時には、各成分を優れた分散性で混練することができる。本発明に係る樹脂組成物は、公知の成形方法を特に限定することなく採用して種々の形状の成形品に成形することができる。熱可塑性組成物で用いるに適切で本技術分野でよく知られている方法いずれかを用いて本発明の新規な組成物を製品、例えば繊維、フィルム、コーティングおよび成形物に加工することができる。この新規な組成物は製造品を成形操作で製造するに特に適切である。この新規な組成物から有用な製造品または部品を製造する時に用いるに適切な成形操作には、種々の射出成形方法(例えば1988年10月中旬に発行されたModern

Plastics Encyclopedia/89、第65巻、11号の264-268頁の「Introduction to Injection Molding」および270-271頁の「Injection

Molding Thermoplastics」に記述されている方法)、ブロー成形方法(例えば1988年10

月中旬に発行されたModern Plastics

Encyclopedia/89、第65巻、11号の217-218頁の「Extrusiion-Blow Molding」に記述されている方法)、およびプロファイル押出し加工などが含まれる。製造品のいくつかには、スポーツ用品、例えばウエットスーツおよびゴルフグリップなど、食品または他の家庭用品などの容器。履物のかかと、甲皮および底など、自動車用品、例えばファシア、トリムおよびサイドモールディングなど、医学用品、例えばグローブ、管材、バッグおよび人工リムなど、産業用品、例えばガスケットおよび工具グリップなど、パーソナルケア品、例えばおむつ用弾性フィルムおよび繊維など、織物、例えば不織生地など、電子用品、例えばキーパッドおよびケーブルジャケットなど、および建設用品、例えば屋根葺き材料および伸縮管継ぎ手材料などが含まれる。また、この新規な組成物は配合材料または添加剤としても有用であり、例えば亀裂修復および屋根葺き用アスファルトの改質、ポリマー加工、衝撃および表面改質、シーラントおよび接着剤の配合、オイルゲル粘度の改質およびゴム増量剤/結合剤配合などで用いられる。

[0040] これらのうちでも、射出成形体に成形することが好ましい。

このような本発明に係る樹脂組成物の射出成形品は、広範な用途に利用することができ、たとえばハウジング、洗濯槽などの家電用途(家電用成形体と呼ぶ)、一軸延伸フィルム、二軸延伸フィルム、インフレーションフィルムなどのフィルム用途、カレンダー成形、押出成形などによるシート用途、たとえばインパネ表皮などの自動車内装用途、サイドモール、マッドガードなどの自動車外装用途(自動車内装用途および自動車外装用途を合わせて自動車用成形体と呼ぶ)、電線用途、一般雑貨用途などに好適に利用することができる。

[0041] 上記のうちでも、柔軟性、強度および耐熱性にも優れ、オイルブリード発生が発生し にくい特性を有効に利用しうる用途たとえば自動車内装被覆、コンシューマー用途、 家電用品の柔軟部位として好適に用いることができる。

[実施例]以下実施例を用いて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。尚、エチレン/1-ブテンランダム共重合体は以下の方法で評価した。

[0042] 密度

190℃、2.16kg荷重におけるMFR測定後のストランドを、120℃で1時間熱処理し、 1時間かけて室温まで徐冷したのち、密度勾配管法により測定した。

[0043] MFR

ASTM D-1238に準拠し、190℃、2.16kg荷重におけるMFRを測定した。

[0044] Mw/Mn

GPC (ゲルパーミエーションクロマトグラフィー)を用い、オルトジクロロベンゼン溶媒で、140℃で測定した。

[0045] MFR MFR

ASTM D-1238に準拠し、190℃における10kg荷重でのMFR10と、2.16kg荷重でのMFR を測定し、比を算出した。この比が大きいと、ポリマーの溶融時の流動性が優れていることを示し、すなわち加工性が高い。

[0046] エチレン/1-ブテンランダム共重合体:以下の製造例1及び2で調整したエチレン・1-ブテン共重合体1及びエチレン・1-ブテン共重合体2である。

[0047] [製造例1]

[エチレン・1-ブテン共重合体の調製]

「触媒溶液の調製]

トリフェニルカルベニウム(テトラキスペンタフルオロフェニル)ボレートを18.4mgとり、トルエンを5ml加えて溶解させ、濃度が0.004mM/mlのトルエン溶液を調製した。[ジメチル(tーブチルアミド)(テトラメチルー η 5-シクロペンタジエニル)シラン]チタンジクロライドを1.8mgとり、トルエンを5ml加えて溶解させ、濃度が0.001mM/mlのトルエン溶液を調製した。重合開始時においてはトリフェニルカルベニウム(テトラキスペンタフルオロフェニル)ボレートのトルエン溶液を0.38ml、[ジメチル(tーブチルアミド)(テトラメチルー η 5-シクロペンタジエニル)シラン]チタンジクロライドのトルエン溶液を0.38mlとり、さらに希釈用のトルエンを4.24ml加えて、トリフェニルカルベニウム(テトラキスペンタフルオロフェニル)ボレートがB換算で0.002mM/Lに、[ジメチル(tーブチルアミド)(テトラメチルー η 5-シクロペンタジエニル)シラン]チタンジクロリドがTi換算で0.0005mM/Lとなるトルエン溶液を5ml調製した。

[0048] [エチレン・1-ブテン共重合体1の調製]

充分窒素置換した容量1.5リットルの攪拌翼付SUS製オートクレーブに、23℃でヘプタン750mlを挿入した。このオートクレーブに、攪拌翼を回し、かつ氷冷しながら1-ブテン20g、水素40mlを挿入した。次にオートクレーブを100℃まで加熱し、更に、全圧が6KGとなるようにエチレンで加圧した。オートクレーブの内圧が6KGになった所で、トリイソブチルアルミニウム(TIBA)の1.0mM/mlへキサン溶液1.0mlを窒素で圧入した。続いて、上記の如く調製した触媒溶液5mlを、窒素でオートクレーブに圧入し重合を開始した。その後、5分間、オートクレーブを内温100℃になるように温度調製し、かつ圧力が6kgとなるように直接的にエチレンの供給を行った。重合開始5分後、オートクレーブにポンプでメタノール5mlを挿入し重合を停止し、オートクレーブを大気圧まで脱圧した。反応溶液に3リットルのメタノールを攪拌しながら注いだ。得られた溶媒を含む重合体を130℃、13時間、600torrで乾燥して6gのエチレン・ブテン共重合体1を得た。得られたエチレン・1-ブテン共重合体の性状を表1に示す。

[0049] [製造例2]

「エチレン・1-ブテン共重合体2の調製]

「触媒溶液の調製]

十分に窒素置換したガラス製フラスコに、ビス(1,3-ジメチルシクロペンタジエニル)ジルコニウムジクロリドを0.63mg入れ、更にメチルアミノキサンのトルエン溶液(Al;0.13ミリモル/リットル)1.57ml、およびトルエン2.43mlを添加することにより触媒溶液を得た。

[0050] [エチレン・1-ブテン共重合体2の調製]

充分に窒素置換した内容積2リットルのステンレス製オートクレーブにヘキサン912m lおよび1-ブテン320ml、水素0mlを挿入し、系内の温度を80℃に昇温した。引き続き、トリイソブチルアルミニウム0.9ミリモルおよび上記の如く調製した触媒溶液2.0 ml(Zrとして0.0005ミリモル)をエチレンで圧入することにより重合を開始した。エチレンを連続的に供給することにより全圧を8.0kg/cm2-Gに保ち、80℃で30分間 重合を行った。

[0051] 少量のエタノールを系中に導入して重合を停止させた後、未反応のエチレンをパー

ジした。得られたポリマーを大過剰のメタノール中に投入することによりポリマーを析出させた。このポリマーを濾過により回収し、減圧下で一晩乾燥し、エチレン・1-ブテン共重合体2を得た。得られたエチレン・1-ブテン共重合体2の性状を表1に示す。

[0052] [表1]

9-	製造例1 エチレン・1- ブテン共重合 体1	製造例2 エチレン・1- ブテン共重合 体2
ポリマー性状		
密度(kg/m³)	860	861
メルトフローレート(190℃)	1.1	0.5
Mw/Mn	2.1	1.1
MFR ₁₀ /MFR _{2.16}	8.5	6.0

[0053] [樹脂組成物の評価]

樹脂組成物は以下の方法で評価した。

[0054] 破断点強度

JIS K7113に準拠し、JIS 2号ダンベルを用いて引張試験を行い、破断点強度を測定した。

[0055] <u>ショアーA硬度</u>

ASTM D-2240に準拠し、厚み:3mmのシートを用いてデュロメーター硬度計を用いて測定した。

[0056] オイルブリード

厚み:2mmのプレスシートを用いて、作製後常温で各24時間・48時間・120時間・240時間・2週間放置した後、サンプル表面のオイルブリードを目視にて評価した。

[0057] [エチレン/1-ブテンランダム共重合体以外の材料]
スチレン系ブロックコポリマー:スチレン・エチレン・ブテン・スチレンブロックコポリマーであるKraton Polymer社製 Kraton G1650

ポリプロピレン樹脂:プロピレンブロック共重合体 MFR:23g/10min.(230℃) n-デカン抽出量:12wt%

エチレン/オクテンランダム共重合体(EOR):デュポン・ダウエラストマー社製 エンゲージ EG8150密度:868kg/m³、MFR:0.5g/10min.(190℃)

オイル: 出光興産社製 パラフィンオイルPW-90(40℃での動粘度: 95.5 cst)。

[0058] [実施例1~6、比較例1~3]

実施例1~6はエチレン/1-ブテンランダム共重合体として前記の製造法で作製したエチレン・1-ブテン共重合体1及びエチレン・1-ブテン共重合体2を用いており、比較例1~3はエチレン/オクテンランダム共重合体(EOR)を用いている。さらに、実施例1~6及び比較例1~3ではスチレン系ブロックコポリマーとして前記のスチレン・エチレン・ブテン・スチレンブロックコポリマーG1650、オイルとして前記のパラフィンオイル、ポリプロピレン樹脂として前記のプロピレンブロック共重合体を表1に記載の部数で配合して、2軸押出機(TEX30mm)を用い、樹脂温度190℃で溶融混練、造粒を行ない、熱可塑性樹脂組成物のペレットを得た。この熱可塑性樹脂組成物を用いて、前記の方法により、各物性を評価した。結果を表2に示す。

[0059] [表2]

		実施例-1	実施例-2	比較例-1	実施例-3	実施例-4	比較例-2	実施例-5	実施例-6	比較例-3
組成	(a)	50			50			50		
	(Б)		50		L	50			50	
	EOR			50			50			50
	G1650	50	50	50	50	50	50	50	50	50
	ポリプロピレン	20	20	20	20	20	20	20	20	20
	パラフィンオイル	120	120	120	130	130	130	140	140	140
TS	MPa	8	9	11	6	7	9	5	5	6
ショアーA	-	33	32	45	18	18	30	15	14	27
オイルブリード	24hr	0	0	0	0	0	0	0	. 0	0
	48hr ,	0	0	0	0	0	0	0		
		0	0	0	0	0	0	0	0	
	240hr	0.	0	0	0_	0	0	0	0	
	2weeks		0	×	0		×			×

[0060] (a):エチレン・1-ブテン共重合体1

(b):エチレン・1-ブテン共重合体2

オイルブリード ○:目視されず(良好)

3.

×:目視できる(不良)

産業上の利用可能性

[0061] 本発明の熱可塑性エラストマー組成物は、射出成形や押出成形といった成形の成

形加工性に優れると共に、柔軟性、強度さらに、オイルのブリードの少ない成形品を与えることができる。この熱可塑性エラストマー組成物は、食品用途、日用雑貨用途、玩具用途、運動用具用途、文具用途、事務機器用途、自動車内装用途、自動車外装用途、家電機器用途、電線用途、土木・建築用途、医療用機器用途、衛生用品、化学・鉱工業用資材、農畜・水産資材等の種々の用途に使用可能である。

請求の範囲

- [1] (a)エチレン/1-ブテンランダム共重合体100重量部、(b)少なくとも1種のスチレン系ブロックコポリマー10~500重量部、(a)(b)の合計量100重量部に対して(c)オイル10~140重量部、(a)(b)の合計量100重量部に対して(d)ポリプロピレン樹脂0~500重量部からなる樹脂組成物。
- [2] (a)エチレン/1-ブテンランダム共重合体の密度(ASTM D-792で測定)が0.857 ~0.890g/cm3、MFR(ASTM D-1238で測定)が0.1~10g/10分、GPCで測定した分子量分布(Mw/Mn)が1.5~3.0であり、(b)少なくとも1種のスチレン系ブロックコポリマーがスチレン/ブタジエン/スチレン、スチレン/イソプレン/スチレン、スチレン/エチレンーブテン/スチレンおよびスチレン/エチレンープロピレン/スチレンから成る群から選択される請求項1記載の樹脂組成物。
- [3] 請求項1乃至2に記載の樹脂組成物を含む成形体。
- [4] 請求項1乃至2に記載の樹脂組成物を含む射出成形体。
- [5] 請求項1乃至2に記載の樹脂組成物を含む押出成形体。
- [6] 請求項1乃至2に記載の樹脂組成物を含むシートまたはフィルム
- [7] 請求項1乃至2に記載の樹脂組成物を含む繊維または不織布。
- [8] 請求項1乃至2に記載の樹脂組成物を含む自動車用成形体。
- [9] 請求項1乃至2に記載の樹脂組成物を含む家電用成形体。