An Introduction to Matrix Visualization & corrplot Package

Taiyun Wei

The 2nd Chinese R Conference

2009-12

Content

- About corrplot
 - Graph Gallery in corrplot Package
 - Details and Tips
 - Summary
- Seriation
 - Why need
 - Criterion
 - Method
- Application Examples
- **GAP**
 - screenshots

Outline

- About corrplot
 - Graph Gallery in corrplot Package
 - Details and Tips
 - Summary
- 2 Seriation
 - Why need
 - Criterion
 - Method
- Application Examples
- 4 GAP
 - screenshots

About corrplot

Matrix Visualization

Matrix visualization is to convert a digital matrix to a graph.

- Presentation
 - Glyph
 - Color
 - Other details
- Model
 - Seriation (reordering) model
 - Optimization algorithms
 - Partition algorithms
- Goal
 - Display data vividly
 - Find the hidden pattern in data (clustering?)

Function in corrplot Package

Function:

About corrplot

•000000000000

- corrplot()
- corrplot.circle()
- corrplot.ellipse()
- corrplot.number()
- corrplot.pie()
- corrplot.shade()
- corrplot.square()
- corrplot.shade()
- corrplot.mtest()

Rforge: http://r-forge.r-project.org/projects/corrplot/

Blog: http://taiyun.cos.name/wp-content/uploads/2009/10/corrplot.zip

R Graph Gallery: http://addictedtor.free.fr/graphiques/graphcode.php?graph=152

PCA Order

Figure: circle graph

Figure: ellipse graph

HC Order (complete)

Figure: square graph Figure: shade graph

Original Order

Figure: image graph

Figure: pie graph

Digital Matrix

Figure: colored-digits graph

Figure: black-digits graph

Print in Black and White

Figure: weiqi graph

Figure: black-white graph

Test for Association/Correlation(α =0.05)

Figure: multi-correlation test (blank method)

Figure: multi-correlation test (cross method)

Confidence Interval(95%)

Figure: duo-circle graph

Choose Proper Color

• interpolate a set of given colors to create new color palettes colorRamp(colors, bias = 1, space = c("rgb", "Lab"), ...)

```
colorRamp(colors, bias = 1, space = c("rgb", "Lab"), .....
colorRampPalette(colors, ...)
```

Examples

Upper or Lower

Figure: lower

Outline, colorkey, grid, text label, etc

Figure: outline-0

Figure: outline-1

Who cares *corrplot*?

Figure: Visitor Map

Summary

About corrplot

- What can corrplot do?
 - Basic seriation: HC, PCA, alphabet
 - ② Display methods: circle, ellipse, square, etc
 - Details: color, grid, colorkey, text-label, etc
- Advantages
 - Creates nice and helpful pictures
 - Plexible and good at details
 - Second Easy and convenience: merely one function (about 400 lines)
- Disadvantages
 - Lack seriation method
 - Slow and sucks when handle large matrix
- How to get corrplot:
 - From R-forge
 - Ask me to send

Outline

- About corrplot
 - Graph Gallery in corrplot Package
 - Details and Tips
 - Summary
- 2 Seriation
 - Why need
 - Criterion
 - Method
- 3 Application Examples
- 4 GAP
 - screenshots

Why need?

Get the hidden Structure and Pattern:

Figure: random
Figure: ordered

How to measure?

Robinson Matrix and Anti-Robinson Matrix

Figure: Robinson Matrix

Figure: Anti Robinson Matrix

How to measure?

Robinson Matrix and Pre-Robinson Matrix

Figure: Robinson Matrix

Figure: Pre Robinson Matrix

Anti-Robinson

About corrplot

$$L(\mathbf{D}) = \sum_{j < k < i} I(d_{ij} < d_{ik}) + \sum_{i < j < k} I(d_{ij} > d_{ik})$$
 (2.1)

Hamiltonian path length

$$L(\mathbf{D}) = \sum_{i=1}^{n-1} d_{i,i+1}$$
 (2.2)

Inertia criterion

$$M(\mathbf{D}) = \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij} |i - j|^2$$
 (2.3)

Least squares criterion

$$L(\mathbf{D}) = \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{ij} - |i - j|)^{2}$$
 (2.4)

Measure of effectives.

$$M(\mathbf{X}) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} x_{ij} [x_{i,j+1} + x_{i,j-1} + x_{i+1,j} + x_{i-1,j}]$$
 (2.5)

Stress:

$$L(\mathbf{X}) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{ij}$$
 (2.6)

The Moore neighborhood:

Seriation

00000000

$$\sigma_{ij} = \sum_{k=\max(1,i-1)}^{\min(n,i+1)} \sum_{l=\max(1,j-1)}^{\min(m,j+1)} (x_{ij} - x_{kl})^2$$
 (2.7)

The Neumann neighborhood :

$$\sigma_{ij} = \sum_{k=\max(1,i-1)}^{\min(n,i+1)} (x_{ij} - x_{kj})^2 + \sum_{l=\max(1,j-1)}^{\min(m,j+1)} (x_{ij} - x_{il})^2$$
 (2.8)

Reorder a matrix

• Five families of methods:

- Robinsonian: Ellipse seriation
- ② Dimension reduction: PCA, MDS
- Block modeling: Kmeans, Hierarchical clustering, etc.
- Heuristics: SA, GA, PSO
- Graph methods: TSP
- Useful packages in R
 - seriation
 - blockmodeling
 - TSP
 - Cairo

seriation package

Table: Currently implemented methods in seriation package

Algorithm	method	Optimizes	Input data
Simulated annealing	"ARSA"	Gradient measure	dist
Branch-and-bound	"BBURCG"	Gradient measure	dist
Branch-and-bound	"BBWRCG"	Gradient measure (weighted)	dist
TSP solver	"TSP"	Hamiltonian path length	dist
Optimal leaf ordering	"OLO"	Hamiltonian path length	dist
Bond Energy Algorithm	"BEA"	Measure of effectiveness	matrix
TSP to optimize ME	"BEA_TSP"	Measure of effectiveness	matrix
Hierarchical clustering	"HC"	Other	dist
Gruvaeus and Wainer	"GW"	Other	dist
Rank-two ellipse seriation	"Chen"	Other	dist
MDS – first dimension	"MDS"	Other	dist
First principal component	"PCA"	Other	matrix

seriation package

Table: Implemented loss/merit functions in function criterion.

Name	method	merit/loss	Input data
Anti-Robinson events	"AR_events"	loss	dist
Anti-Robinson deviations	"AR deviations"	loss	dist
Gradient measure	"Gradient raw"	merit	dist
Gradient measure (weighted)	"Gradient_weighted"	merit	dist
Hamiltonian path length	"Path_length"	loss	dist
Inertia criterion	"Inertia"	merit	dist
Least squares criterion	"Least_squares"	loss	dist
Measure of effectiveness	"ME"	merit	matrix
Stress (Moore neighborhood)	"Moore_stress"	loss	matrix
Stress (Neumann neighborhood)	"Neumann_stress"	loss	matrix

Outline

- - Graph Gallery in corrplot Package
 - Details and Tips
 - Summary
- - Why need
 - Criterion
 - Method
- Application Examples
- - screenshots

《统计建模与R软件》Section 3.4

0.1472020 -0.155938495

		3.4 多元数据	的数据特征与相	关分析	177	178		第二章	数据描述性分	₽r	
	FL	APP	AA	LA	SC	DRV	0.6975152	0.280184989	0.81473421	0.33722821	1.000000000
FL	1.00000000	0.2388057	0.044040889	0.306313037	0.092144656	AMB	0.7575421	0.214606359	0.85952656	0.19548192	0.78032317
APP	0.23880573	1.0000000	0.123419296	0.379614151	0.430769427	GSP	0.8828486	0.385821758	0.78212322	0.29926823	0.71407319
AA	0.04404089	0.1234193	1.000000000	0.001589766	0.001106763	POT	0.7773162	0.415657447	0.75360983	0.34833878	0.78840024
A	0.30631304	0.3796142	0.001589766	1.000000000	0.302439887	KJ	0.5268356	0.448245522	0.56328419	0.21495316	0.61280767
BC .	0.09214466	0.4307694	0.001106763	0.302439887	1.000000000	SUIT	0.4161447	0.002755617	0.55803585	0.69263617	0.6225540€
.c	0.22843205	0.3712589	0.076824494	0.482774928	0.807545017		AMB	GSP	POT	KJ	SUIT
EON	-0.10674947	0.3536910	-0.030269601	0.645408595	0.410090809	FL	0.28464484	0.3382020	0.3674529	0.4672062	0.585918216
SMS	0.27069919	0.4895490	0.054727421	0.361643880	0.799630538	APP	0.54963595	0.5062987	0.5073769	0.2840928	0.384208365
EXP	0.54837963	01409249	0.265585352	0.140723415	0.015125832	AA	0.04406598	0.1975046	0.2900322	-0.3233194	0.140017368
DRV	0.34557633	0.3405493	0.093522030	0.393164148	0.704340067	LA	0.34655503	0.5028093	0.6055076	0.6851558	0.326957419
MB	0.28464484	0.5496359	0.044065981	0.346555034	0.842122228	SC	0.84212223	0.7211090	0.6718212	0.4824560	0.250283416
ISP	0.33820196	0.5062987	0.197504552	0.502809305	0.721108973	LC	0.75754208	0.8828486	0.7773162	0.5268356	0.416144671
POT	0.36745292	0.5073769	0.290032151	0.605507554	0.671821239	HON	0.21460636	0.3858218	0.4156574	0.4482455	0.002755617
KJ	0.46720619	0.2840928	-0.323319352	0.685155768	0.482455962	SMS	0.85952656	0.7821232	0.7536098	0.5632842	0.558035847
SUIT	0.58591822	0.3842084	0.140017368	0.326957419	0.250283416	EXP	0.19548192	0.2992682	0.3483388	0.2149532	0.692636173
	LC	HON	SMS	EXP	DRV	DRV	0.78032317	0.7140732	0.7884002	0.6128077	0.622554062
FL.	0.2284320	-0.106749472	0.27069919	0.54837963	0.34557633	AMB	1.00000000	0.7838707	0.7688695	0.5471256	0.434768243
LPP	0.3712589	0.353690969	0.48954902	0.14092491	0.34054927	GSP	0.78387073	1.0000000	0.8758309	0.5494076	0.527816315
AA	0.0768245	-0.030269601	0.05472742	0.26558535	0.09352203	POT	0.76886954	0.8758309	1.0000000	0.5393968	0.573873154
A	0.4827749	0.645408595	0.36164388	0.14072342	0.39316415	KJ	0.54712558	0.5494076	0.5393968	1.0000000	0.395798842
3C	0.8075450	0.410090809	0.79963054	0.01512583	0.70434007	SUIT	0.43476824	0.5278163	0.5738732	0.3957988	1.0000000000
.c	1.0000000	0.355844464	0.81802080	0.14720197	0.69751518	为了便于洗择哪些变量是相关的,将上述相关矩阵中相关系数的绝对值 > 0					
ON	0.3558445	1.0000000000	0.23990754	-0.15593849	0.28018499	的值画上下划线。					
MS	0.8180208	0.239907539	1,00000000	0.25541758	0.81473421	Fm	将变量分组。	分组的原则是	品 同一组中	变量之间的相	关系数尽可

1.00000000 0.33722821

高,而不同组间的相关系数尽可能的低。从相关系数最大的变量开始, LC(洞察

力) 与 GSP(理解能力) 的相关系数是 0.882, GSP 与 POT(潜在能力) 的相关系数

A picture is worth a thousand words!

Figure: Factor Scores

4□ > 4□ > 4□ > 4□ > 4□ > 9

Outlier Detection

Social Networks Analysis

cDNA Microarray Analysis

Image source: Dr. Chen Chun-houh's slide

Outline

- - Graph Gallery in corrplot Package
 - Details and Tips
 - Summary
- - Why need
 - Criterion
 - Method
- Application Examples
- **GAP**
 - screenshots

Main Window of Generalized Association Plots

GAP ●0000

Four Step of GAP

- Two Demo Datasets
- Four Steps of **Generalized Association Plots (GAP)**

Raw Data Matrix and Two Proximity Matrices Presentation Seriation Partition Sufficient 呈現 排序 分割 充分

- Generalization and Flexibility
- Modules/Software/Conclusion

NOTE: Matrix Visualization (MV): reorderable matrix, the heatmap, color histogram, data image and matrix visualization.

Application Examples

Elliptical Seriation

Seriation Algorithms with Converging Correlation Matrices

Reference:

[1] Chun-Houh Chen, GENERALIZED ASSOCIATION PLOTS: INFORMATION VISUALIZATION VIA ITERATIVELY GENERATED CORRELATION MATRICES, Statistica Sinica 12(2002), 7-29

Application Examples

- [2] Han-Ming Wu, Introduction to Generalized Association Plots for Dimension-Free Data Visualization (slide), 2006
- [3] Michael Hahsler and Christian Buchta and Kurt Hornik, seriation: Infrastructure for seriation, R package version 1.0-1, 2009
- [4] Jean Daniel Fekete, Visualizing Social Networks using Hybrid Matrix/NodeRepresentations, Beijing Summer School on Visualization, 2009
- [5] Han-Ming Wu and Chun-houh Chen, GAP Software Tutorial, 2006
- [6] V. Batagelj, A. Ferligoj, P. Doreian: Generalized blockmodeling, 2004
- [7] Michael Friendly, Corrgrams: Exploratory displays for correlation matrices, The American Statistician, 2002
- [8] 陳君厚,全矩陣式資料視覺化與諮詢探索,自然科學簡訊第十五卷第三期,2003
- [9] 薛毅,陈丽萍. **统计建模与R软件**. 清华大学出版社, 2007.04. 📳 🔻 👢 🔻 🕞 🔻 🕞 🔻

• I am grateful to Yihui, linkinbird, wind, paladin1651, zwdbordeaux,

- miniwhale, lovelyday, Ihavenothing, Saul, pengchy, myli, soweimei, sunfeng06, 蓝枫, sbdwgu, luansheng, bjt, dingpeng, etc, for their nice comments and great suggestions in COS Home and Forum.
- I am also grateful to Shuai Huang, Roimain Francois, David Smith, Andrew Gelman, Tian Zheng, Bob, Sandip, Fanggin, Rory, Xiaoru, Michelle Zhou, Shixia, Jean Daniel, Kwanliu, Guohui, Zhanwu, Jian Huang, Hanwei, Alex Pang, etc. for their warm encouragements and relevant criticisms while we talked face-to-face and exchanged ideas via email, blog.
- Special thanks should go to Yixuan, Lanfeng, Anhua, Hao Li, Chen Zuo, Jiebiao, Ying Fang, Jian Fan, Yanping, Peng Ding, Linlin, Sizhe, Yihui, Liyun, Junwei, Tang Li, Yifeng, Chi Zhang, Xing Wang, Bo Zhang, etc, for their sweet consideration and invaluable help when I was in Beijing.

Best Wishes For You!

Thank You

Tel: 135-08489467

Email: weitaiyun@gmail.com

Blog: http://taiyun.cos.name

