EC504 ALGORITHMS AND DATA STRUCTURES FALL 2020 MONDAY & WEDNESDAY 2:30 PM - 4:15 PM

Prof: David Castañón, dac@bu.edu

GTF: Mert Toslali, toslali@bu.edu

Haoyang Wang: haoyangw@bu.edu

Christopher Liao: cliao25@bu.edu

Knuth-Morris-Pratt Algorithm

• Computing $\pi[j]$ from P[0:m-1]:

$$k = 0; j = 1;$$

$$\pi[0]=0;$$

While j < m:

If
$$P[k] = P[j]$$
:

$$k++; \pi[j]=k; j++;$$

else if k == 0: # first character did not match

$$\pi[j] = 0; j++;$$

else: #mismatch after first character

$$k = \pi [k-1]$$

W c a b c	a
-----------	---

	_		_	_
arr	0	0	0	1

Р	Α	Α	В	Α	Α	С	Α	Α	В
Pi	0	1	0	1	2	0	1	2	3
K	0	1	0	1	2	0	1	2	3
J	1	2	3	4	5	6	7	8	9

2

- KMP good for 1 pattern P
- What if we are looking for k patterns $P_1, P_2, ..., P_k$?

- Notation: m is T string length; n is total length of k patterns; L_{max} length of longest pattern
- Naive approach:
 - For each position in T:
 - For each pattern string P_i :
 - Check if P_i appears at that position
 - $\Theta(mn)$
 - Can we do better?

• Can we do better?

- Idea: Search for all strings in parallel
- How? Form the strings into a **trie**: word comes from retrieval
- A trie: a tree structure where the branches at each level correspond to symbol values
 - Example trie: index tables at end of documents
 - Important idea: In a trie, you wait to subdivide a node until there is a collision of two elements...saves storage! Can identify nodes with key words as potential end nodes

• Example trie for words

Representing Tries

- Each trie node has pointers to its possible children
 - Assume you have an array of pointers at each node, many of which could be null

Matching Tries

Matching Tries

Analysis of algorithm

- Complexity: $\Theta(mL_{max})$
 - Good reduction if n is large (several patterns)
- But: How long to build a trie? Need that preprocessing step
- Claim: Given a set of strings $P_1, P_2, ..., P_k$ of total length n, it's possible to build a trie for those strings in time $\Theta(n)$

Building Tries

Analysis of algorithm

- Two algorithms so far
 - Naive algorithm: no preprocessing run time $\Theta(mn)$
 - Trie algorithm: $\Theta(n)$ preprocessing, $\Theta(mL_{max})$ run time
- Can we do better? Can we exploit prefix functions, as in KMP?

Observe: Suffix oar is prefix in oars Want to exploit that!

Red link is a suffix link

Red link is a suffix link

Suffix Links

- A suffix link is a red edge from a trie node corresponding to string a to the trie node corresponding to a string ω such that ω is the longest proper suffix of a that is still in the trie
- Intuition: When we hit a part of the string where we cannot continue to read characters, we fall back by following suffix links to try to preserve as much context as possible
- Every node in the trie, except the root (which corresponds to the empty string ε),
 will have a suffix link associated with it

Suffix Links Are Useful

- Suffix links can substantially improve the performance of our string search
 - At each step, we either advance the black (end) pointer forward in the trie, or advance the red (start) pointer forward
- Each pointer can advance forward at most O(m) times
- This reduces the amount of time spent scanning characters from $O(mL_{max})$ down to $\Theta(m)$
- This is only useful if we can compute suffix links quickly... which we'll see how to do it

Problem?

- We found "sting", but need to find patterns inside of "sting"
 - Need to figure out how to output "i", "in", "tin" while searching
- Solution: Output links (blue links!)
 - Whenever output links are present, output string pointed to output link when visiting a node
- Precomputing where we eventually need to end up, we can read off any extra patterns we find
 - Can be done quickly!

Output Links

Final Algorithm

- Start at the root node in the trie
- For each character c in the string:
 - While there is no edge labeled c:
 - If you are at root, break out of loop; otherwise, follow suffix link
 - If there is an edge labeled c, follow it
 - If the current node corresponds to a pattern, output that pattern
 - Output all words in the chain of output links originating at this node
- How bad can this be? How much backtracking?

Bad Case

Bad Case

Run Time Analysis

- This is known as the Aho-Corasick algorithm
 - May spend a lot of time outputting matches
 - That is a function of the problem, not the algorithm
 - Any algorithm that matches strings would have to spend the time reporting matches
- Let z denote the number of matches reported by our algorithm.
 - Runtime of match phase is $\Theta(m + z)$
- Only issue: How long does it take to build a trie, with suffix links and output links?
 - Building a trie is $\Theta(n)$, so need to add suffix links and output links

Fast Suffix Link Construction

• Key insight: Suppose we know the suffix link for a node labeled w. After following a trie edge labeled a, there are two possibilities.

• Case 1: xa exists

• Case 2: xa does not exist

Fast Suffix Link Construction

- To construct the suffix link for a node wa:
 - Follow w's suffix link to node x
 - If node xa exists, wa has a suffix link to xa
 - Otherwise, follow x's suffix link and repeat
 - If you need to follow backwards from the root, then wa's suffix link points to the root
- Observations
 - Suffix links point from longer strings to shorter strings
 - Precomputing suffix links for nodes in ascending order of string length,
 information needed will be available at the time we need it
 - Breadth first search!

Growing the Trie

Growing the Trie

Fast Suffix Link Algorithm

- Do a breadth-first search of the trie, performing the following operations:
 - If the node is the root, it has no suffix link
 - If the node is one hop away from the root, its suffix link points to the root
 - Otherwise, the node corresponds to some string wa. Let x be the node pointed at by w's suffix link. Then, do the following:
 - If the node xa exists, wa's suffix link points to xa
 - Otherwise, if x is the root node, wa's suffix link points to the root
 - Otherwise, set x to the node pointed at by x's suffix link and repeat
- Can be done in O(n)!
 - Total time required to construct suffix links for a pattern of length h: O(h)

Computing Output Links

- Initially, set every node's output link to be a null pointer
- While doing the BFS to fill in suffix links, set the output link of the current node v as follows:
 - Let u be the node pointed at by v's suffix link
 - If u corresponds to a pattern, set v's output link to u itself
 - Otherwise, set v's output link to u's output link.
- Can be done in O(n)!
 - Exploit Breadth-first search order

Summary: Aho-Corasick Algorithm

- Finds k patterns with total length n in text of length m by building a suffix trie in O(n) and finding z matches in O(m+z)
 - Generalizes KMP algorithm
 - Exploits trie structures and prefix backtracking
- Lots of work continues in this area
 - Driven by computer search of text sources
- Most language searches for regular expressions are slow (use simple methods)
 - But fast methods exist

New Data Structure: Disjoint Sets

- Problem of Interest: keep track of dynamic relations
 - e.g. who is connected to whom
 - Who belongs to same club
 - Which computers are in same network
 - Which web pages link on the Internet
- Abstraction
 - Have a set of objects
 - Have relations between objects:
 - symmetric, a \sim b, transitive a \sim b, b \sim c -> a \sim c
 - Want to keep track of subsets of objects that are related as relations are added

- Operations
 - Find(a): Find the subset that contains element a
 - Union(a,b): Add a relation between two elements a, b which merges the subsets containing a, b
 - Often known as Union-Find problem
- Would like to do Unions and Find in O(1)
 - Seems really hard...
 - We'll come close with a disjoint set data structure

- Application: Find path in graph
 - Do start, end belong to same subset
 - Relation: a,b related if edge exists between them

- Possible solution
 - Represent subsets as linked lists, with a head object as its identifier
 - All list elements point to head, and to next in list
 - Head points to first child and to last child

- Possible solution Complexity
 - Find(a) is O(1) using pointers to head
 - Union(a,b): Slow, needs to update pointers to new head
 - O(n) worst case

- Better Solution
 - Subsets as trees, children point to parent, root is subset label
 - Find: get root label of tree, moving up the tree
 - Union: if new relation a ~ b, Find(a) and Find(b)
 If a, b are in different trees, merge trees
 - How to merge: Keep track of height of trees
 - Merge shorter tree as direct child taller tree
- Complexity
 - Find complexity: height of tree O(log(n))
 - Union complexity: O(Find) + O(merge) = O(find)

Figure 8.1 Eight elements, initially in different sets

Figure 8.2 After union (5, 6)

Figure 8.3 After union (7, 8)

Figure 8.4 After union (5, 7)

0	0	0	0	0	5	5	7	
1	2	3	4	5	6	7	8	

Union (4,5)

Small tree links to large

Figure 8.10 Result of union-by-size

Figure 8.11 Result of an arbitrary union

Figure 8.12 Worst-case tree for n = 16

Worst case of union-by-size depth is O(log(N))

The following figures show a tree and its implicit representation for both union-by-size and union-by-height. The code in Figure 8.13 implements union-by-height.

- Best Solution
 - Subsets as trees, children point to parent, root is subset label
 - Find: get root label of tree, moving up the tree
 - Restructure tree by making all ancestors have root as parent
 - Union: if new relation a ~ b, Find(a) and Find(b). If a, b are in different trees, merge trees

- Theorem. Starting from an empty data structure, any sequence of M union and find operations on N objects takes $O(N + M \log^*(N))$ time
 - log*(*N*): Ackerman function
 - $A(i) = 2^{A(i-1)}$; A(0) = 1
 - A(1) = 2, A(2) = 4, A(3) = 16, A(4) = 216 = 65536, A(5) = 265636,
 - A(6) = VERY VERY VERY BIG!
 - Inverse Ackerman: $i = \log^*(N)$
 - $\log^*(N) = \min$ number times you take $\log_2(\log_2(\cdots))$ to get smaller than or equal to 1
 - For all practical purposes, it is O(1) (Ch. 21, CLRS)

Example: Connected Components

