Announcements

Reminder: Class challenge out! Ends December 10th
Assignment Project Exam Help

• Lab this week – go over pset6 solutions, tips for challenge https://powcoder.com

Add WeChat powcoder

Assignment Project & Language

https://powepolications

Add Wechat powcode Kate Saenko Machine Learning

so far...

General AI: machines that see, talk, act

More Natural Human-Machine Interaction

- Description
- Visual question answering (VQA)
- Referring expression (REF)
- Instruction following / navigation

• ...

Kate Saenko 5

Vision & Language problems

Image captioning

Video captioning

Visual Question Answering

Vision & Language problems

...and many others...

Referring expressions

Text-to-clip retrieval from video

Demos

https://www.captionbot.ai/

I think it's a group of people that are standing in the snow.

https://powcoder.com

Add	Wal	Cha	DO	WC.
		Field		

J	D _K	dic	ted	top-5	answers	with	confidence
1	(1)	yan v	cu	top-o	allowers	VVILII	COMMISSION

off Clean talking looking pointing waiting

What is he doing?

54.885%				
14.634%				
5.470%				
4.196%				
2.563%				

Kate Saenko 8

Today: Vision & Language

- Video captioning—in detail
 Other tasks
 - Visual questions answering (N.Q.A.h.)Video clip search

 - Following in strot maxigateler

Assignment Project Exam Helphing

https://powcoder.com

Add WeChat powcodero

Machine Learning

Applications of video captioning

Image and video retrieval by content.

mountain with trees

Video description service.

ld WeChat powcoder

Human Robot Interaction

Video surveillance

Image Captioning, B.D. (before deep learning)

Language: Increasingly focused on **grounding** meaning in perception.

Vision: Exploit linguistic ontologies to "tell a story" from images.

[Farhadi et. al. ECCV'10]

(animal, stand, ground)

[Kulkarni et. al. CVPR'11]

Many early works on Image Description Assignment Project Example 11 FCCV'10, Kulkarni et. al. EACL'12, Kuznetsova et. al. ACL'12 & ACL'13

POWCODET. COMMIN objects and attributes, and combine with linguistic knowledge to "tell a story". There are one cow and one sky.

Dramatic increase in interest since then. (8 papers in CVPR'15) The golden cow is by the blue sky.

Add Wellat

Video Description, B.D. (before deep learning)

- Extract object and action descriptors.
- Learn object, action, scene classifiers.
- Use language to bias visual interpretation.

[Krishnamurthy, et al. Against Projectimate most likely agents and actions.

Template to generate sentence.

tps://powicedergramalccv'13, Thomason COLING'14

[Yu and Siskind, ACL'13]

- **Small Grammars**
- Template based sentences
- Several features and classifiers

[Rohrbach et. al. ICCV'13]

After Deep Learning, A.D.: End-to-End Neural Models based on Recurrent Nets

decoder

encoder

[Malinowski et. al.

ICCV'151

Answer

Recurrent Neural Networks (RNNs) can map a vector to a sequence.

Key Insight:

Generate feature representation of the video and "decode" it to a sentence

[review] Recurrent Neural Networks

Successful in translation, speech.

RNNs can map an input to an output Assignment Project ExamhHelp

Pr(out yt | in put pout //powcoder.com

Insight: Each time step has a layer with the same weights powcoder

Problems:

- 1. Hard to capture long term dependencies
- 2. Vanishing gradients (shrink through many layers)

Solution: Long Short Term Memory (LSTM) unit

LSTM Sequence decoders

Functions are differentiable.

Full gradient is computed by backpropagating through time Weights updated using stoppagating through time Help

LSTM Sequence decoders

Two LSTM layers - 2nd layer of depth in temporal processing. Softmax over the acceptance to predict the output at each time step.

Translating Videos to Natural Language

Test time: Step 1

[review] Convolutional Neural Networks (CNNs)

Successful in semantic visual recognition tasks.

Layer - linear filters followed by nonlinear function. Stack layers.

oderannierarchy of features of increasing semantic richness.

Image Credit: Maurice Peeman Add Welling powcoder

>>

Krizhevsky, Sutskever, Hinton 2012 ImageNet classification breakthrough

Test time: Step 2 Feature extraction

Forward propagate
Output: "fc7" features

(activations before classification layer)

Test time: Step 3 Mean pooling

Test time: Step 4 Generation

Step1: CNN pre-training

Add WeChat powcoder

- Based on Alexnet [Krizhevsky et al. NIPS'12]
- 1.2M+ images from ImageNet ILSVRC-12 [Russakovsky et al.]
- Initialize weights of our network.

Step2: Image-Caption training

Step3: Fine-tuning

Experiments: Dataset

Microsoft Research Video Description dataset [Chen & Dolan, ACL'11] Link: http://www.des.gegasrenten/usePs/mi/e/atmo/xidepDEseription/ 1970 YouTube video snippets 10-30s each https://powcoder.com typically single activity no dialogues no dialogues Add WeChat powcoder 1200 training, 100 validation, 670 test **Annotations**

Descriptions in multiple languages ~40 English descriptions per video descriptions and videos collected on AMT

Sample video and gold descriptions

- A man appears to be **plowing** a rice field with a plow being pulled by two oxen.
- Domesticated **livestock** are helping a man **plow**.
- A man **leads** a team of oxen down a muddy path.
- Two **oxen walk** through some mud.
- A man is **tilling** his land with an **ox pulled** plow.
- Bulls are pulling an object.
- Two oxen are plowing a field.
- The farmer is **tilling** the soil.
- A man in **ploughing** the field.

- A man is walking on a rope.
- A team of water buffalo pull a plow Arcush a Walking across a rope.

 A man is walking across a rope.

 A man is walking across a rope.
 - A man is **balancing** on a **rope** at the beach.
 - A man walks on a tightrope at the beach.
 - A man is **balancing** on a **volleyball net**.
 - A man is walking on a rope held by poles
 - A man balanced on a wire.
 - The man is **balancing** on the wire.
 - A man is walking on a rope.
 - A man is **standing**Oin the sea shore.

Evaluation

```
Machine Aragslation Metrics am Help
BLEU
METEOR https://powcoder.com
Human evaluation WeChat powcoder
```

Results (Youtube)

Example outputs

FGM: A person is playing a guitar in the house.

YT: A group of performing on stage.

YT C: A man is doing a trick.

YT_CF: A man is jumping on a pote.
GT: Two men working on a high building

YT: A boy is walking.

YT C: A man is doing a women.

YT_CF: A man is talking of walf. GT: A man is doing algebraic equations on a white board.

FGM: A person is riding the horse

YT: A group of running.

YT C: A group of elephants.

YT CF: A group of elephants are walking on a horse.

GT: An elephant leads it's young.

FGM: A person playing the goal of the road.

YT: A player player in a goal.

YT C: A man playing a soccer ball. YT_CF: A soccer player is running. $\mathbb{C}_{\mathbf{L}}$ Two teams are playing soccer.

FGM: A person is running a race on the road.

YT: A group of running.

YT_C: A group of people are running.

YT_CF: A man is running.

GT: Eight men are running a race on a track.

Over fitting misses details and hurts.

kitchen.

FGM: A person is riding a motorbike in the

YT: A man is jumping on the water.

YT_C: A man is riding a bike.

YT CF: A man is riding a motorcycle.

GT: A boy is riding a motorcycle on the seashore.

Movie Corpus - DVS

CC: Queen: "Which estate?"

DVS: Looking troubled, the Queen descends the stairs.

The Queen rushes into the countries. She then puts a head scarf on ...

nearby Land Rover.

Three bodyguards quickly jump into a nearby car and follow her.

Rover

Processed:

Looking troubled, someone descends the stairs.

Someone rushes into the courtyard. She then puts a head scarf on ...

Examples (M-VAD Movie Corpus)

MPII-MD: https://youtu.be/XTq0huTXj1M M-VAD: https://youtu.be/pER0mjzSYaM

Implicit Attention in LSTM

Implicit Attention in LSTM

Assignment Project Examplion & https://gwage.Applications

Add WeChat powcodero

Machine Learning

Visual Question Answering

some questions require reasoning

Visual Question Answering: Spatial Memory Network

Based on Memory
 Networks [Weston2014],
 [Sukhbaatar'15] Assignment

Store visual features from image regions in memory

S. Sukhbaatar, A. Szlam, J. Weston, and WeChatage Gwecoder Fergus. End-to-end memory networks, 2013

J. Weston, S. Chopra, and A. Bordes. Memory networks, 2014.

Huijuan Xu, Kate Saenko, Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering, 2015 https://arxiv.org/abs/1511.05234

VQA Results

What season does this appear to be? GT: fall Our Model: fall

What color is the stitching on the ball?

GT: Add WeChappwooder: red

VQA Results

What is the weather?

GT: rainy Our Model: rainy

https://powcoder.com What color is the fence?

GT: aree Chaopawaodel: green

Referring Expression Grounding

[Hu et al CVPR16] [Hu et al CVPR17] [Hu et al ECCV18]

Text-based object query

query: "lady in black shirt"

prediction

query: "window upper right"

Kate Saenko 54

Grounding expressions in video

Given a query: Person holding the door to the refrigerator open Assignment Project Exam Help

Find it in video

Language based Navigation

Instruction: Walk into the kitchen and go to the left once you pass the counters. Go straight into the small room with the sink. Stop next to the door.

Visual

Agent: 40.5% success

Instruction: go past the couch ...

Route Structure and

Visual Appearance:

Are You Looking? Grounding to Multiple Modalities in Vision-and-Language Navigation, Ronghang Hu, Daniel Fried, Anna Rohrbach, Dan Klein, Trevor Darrell, Kate Saenko, ACL 2019

Summary

- variety of language & vision tasks
- active research area Assignment Project Exam Help

References

- [1] J. Thomason, S. Venugopalan, S. Guadarrama, K. Saenko, and R. Mooney. Integrating language and vision to generate natural language descriptions of videos in the wild. In *Proceedings of the 25th International Conference on Computational Linguistics (COLING)*, August 2014.

 [2] Sergio Guadarrama, Niveda Krishnamoorthy, Girish Malkarnenkar, Subhashini Venugopalan, Raymond Mooney, Trevor
- [2] Sergio Guadarrama, Niveda Krishnamoorthy, Girish Malkarnenkar, Subhashini Venugopalan, Raymond Mooney, Trevor Darrell, and Kate Saenko. 2013. Youtube2text: Recognizing and describing arbitrary activities using semantic hierarchies and zero-shot recognition. *In IEEE International Conference on Computer Vision (ICCV)*.
- [3] Translating Videos to Natural Language Using Deep Recurrent Neural Networks. Subhashini Venugopalan, Huijun Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko. NAACL 2015
- [4] Long-term Recurrent Convolutional Networks for Visual Recognition and Description. Jeff Donahue, Lisa Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell. CVPR 2015.
- [5] Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney, Trevor Darrell, Kate Saenko; ICCV 2015
- [6] Huijuan Xu, Kate Saenko, Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering, 2015 https://arxiv.org/abs/1511.05234

Next Class

Applications II: Machine Learning Ethics:

Ethics in ML; population bias in machine learning, fairness, transparency, accountability; de-biasing image captioning models https://powcoder.com

Add WeChat powcoder