Image Generative Model

Stable Diffusion

Credit to TA.Karin, TA.Nat

What are Diffusion Models?

- It is generative deep learning model using noise reduction method
- It reverses the process of adding noise to an image
- Usually use for text-to-image, but also img-to-img and inpainting
- More stable than GAN (no mode collapse)

Figure 1 The Process of Noise Reduction

Stable diffusion

- Text-to-Image
- Latent diffusion model
- Open access
- Trained on 512 × 512 images from a subset of the LAION-5B database
- Uses a frozen CLIP ViT-L/14 text encoder
- Popular model → stable-diffusion-v1-5
- there is also **stable-diffusion-v2-1** (less popular)

Outline

- How to train & generate image
- Training Techniques
- Code Demo

1) How to Train & Generate Image

A Latent Diffusion Model Comprises

- 1) Tokenizer → tokenize prompt
- 2) Text Encoder → encode tokens
- 3) Variational Auto-Encoder (vae) → map image to latent space
- 4) Noise Scheduler → generate noise
- 5) UNET → predict noise

"Image Generation"

Figure 5 Diffusion Model During Inference

2) Training Techniques

Training Techniques

- Textual Inversion
- DreamBooth

Textual Inversion (2022)

- Use a small set of images (typically 3-5)
- The image depicts our target concept across multiple settings
- e.g. varied background or poses
- "We intervene in the embedding process and replace the vector associated with the tokenized string with a new, learning embedding"
- "In essence "injecting" the concept in to our vocabulary"

Cons of Textual Inversion (for X-ray image generation)

- This method only trains text encoder and not unet (image)
- It's good when you want to give your "concept" a new style
- X-ray images are similar, changing text embedding is not enough

DreamBooth (currently using) (2022)

- trains unet (and text encoder if you want)
- only need 3-5 image per subject

Cons

- May overfit to training data
- Some subjects are easier to learn than others

Training Image

Figure 6 Training Image (COVIDx Dataset)

Textual Inversion Trained with 4 images

Figure 7 Generated Image, Trained by Textual Inversion

DreamBooth

Figure 8 Generated Image, Trained by DreamBooth

Code Demo

Code Demo

- Link to Colab Notebook
- MONAl's code I use to train Diffusion

Van Goh Style, Man Playing Piano

Change Seed

Negative Prompt

Custom Model

Figure 9 Generated Image, Demo

Youtube Videos

How Al Image Generators Work

Stable Diffusion in Code

Guide

Huggingface's guide on dreambooth

The AI community building the future.

Build, train and deploy state of the art models powered by the reference open source in machine learning.

How I use stable diffusion

- There are 2 Jupyter notebooks → 1) Finetune and 2)GenPic
 - Finetune = load pretrained model, dataset → train → save finetuned model
 - GenPic = load finetuned model → Generate image using stable diffusion pipeline

FineTune Example

GenPic example