CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/43 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0607	43

	_	,
8	3	M1 for $\frac{k}{\sqrt{x}}$ A1 for k = 32
0.25 o.e.	2	B1FT for $\sqrt{x} = \frac{their 32}{64}$
$\frac{1024}{y^2} \text{ or } \left(\frac{32}{y}\right)^2$	3FT	FT k or incorrect k only $(k \ne 1)$ for answer but the Ms still available M1 for multiplication by \sqrt{x} o.e. M1 for division by o.e. M1 for squaring
250	3	B2 for $4x = 10^3$ or $\log x = 2.3979$ B1 for $\log \left(\frac{36x}{9}\right)$ o.e. or 1.5563 $-0.9542 + \log x = 3$ o.e.
Attempt to get 2 equations for elimination Correct addition/subtraction of their equations x = -2 y = -4	M1 M1 B1 B1	Allow one numerical error in one of these two lines.
Equation $x = \text{ or } y = \text{ from one equation}$ Correct substitution into other equation $x = -2$ y = -4	[M1 M1 B1 B1]	Allow one numerical error in one of these two lines.
Sketch of both lines $x = -2$ y = -4	or [M2 B1 B1]	Answers without any working must be both correct and score B2 only.
$A \cap B \cap C$ o.e.	1	
$A \cap C \cap B'$ o.e.	1	
$(A \cup B)' \cap C$ o.e. e.g. $A' \cap B' \cap C$	1	
$(B \cap C \cap A') \cup (A \cap (B \cup C)')$ o.e.	2	B1 for either bracket correct
$\frac{4.5}{7} = \frac{x}{(x+8)}$ o.e. 4.5(x+8) = 7x o.e. 2.5x = 36 [x = 14.4] (Answer Given)	M1 E1	Must see a correct middle line
	0.25 o.e. $\frac{1024}{y^2} \text{ or } \left(\frac{32}{y}\right)^2$ 250 Attempt to get 2 equations for elimination Correct addition/subtraction of their equations $x = -2$ $y = -4$ Equation $x = \text{ or } y = \text{ from one equation Correct substitution into other equation } $ $x = -2$ $y = -4$ Sketch of both lines $x = -2$ $y = -4$ $A \cap B \cap C \text{ o.e.}$ $A \cap C \cap B' \text{ o.e.}$ $(A \cup B)' \cap C \text{ o.e. e.g. } A' \cap B' \cap C$ $(B \cap C \cap A') \cup (A \cap (B \cup C)') \text{ o.e.}$ $\frac{4.5}{7} = \frac{x}{(x+8)} \text{ o.e.}$ $4.5(x+8) = 7x \text{ o.e.}$ $2.5x = 36$	0.25 o.e. 2 $\frac{1024}{y^2} \text{ or } \left(\frac{32}{y}\right)^2$ 3FT 250 Attempt to get 2 equations for elimination Correct addition/subtraction of their equations $x = -2$ $y = -4$ Equation $x = \text{ or } y = \text{ from one equation Correct substitution into other equation } M1$ B1 B1 B1 or Sketch of both lines $x = -2$ $y = -4$ Sketch of both lines $x = -2$ $y = -4$ $x = -2$ $y = -4$ In $A \cap B \cap C$ o.e. 1 $A \cap B \cap C \text{ o.e. } 1$ $A \cap B \cap C \text{ o.e. } 1$ $A \cap B \cap C \text{ o.e. } 1$ $A \cap B \cap C \text{ o.e. } 1$ $A \cap C \cap B' \text{ o.e. } 1$ $A \cap C \cap B' \text{ o.e. } 1$ $A \cap C \cap B' \text{ o.e. } 1$ $A \cap C \cap B' \text{ o.e. } 1$ $A \cap C \cap C \cap C' \cap C' \cap C' \cap C' \cap C' \cap C' $

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0607	43

	(b)	211 or 210.6 to 211.1 www 3	3	M1 for $\frac{1}{3}\pi \times 3.5^2 \times 22.4$ (287 or 287.3 to
				287.4)
				M1 for $\frac{1}{3}\pi \times 2.25^2 \times 14.4$ (76.4 or 76.34
				to 76.35)
				(M2 for 67.16 π to 67.17 π or $\frac{403}{6}\pi$ or
				$67\frac{1}{6}\pi$)
5	(a)	$[y] = 10x^2 + x - 5 [= 0]$ o.e.	B1	D2 Constant a C10 2 and 5 and and
		Comment amount alreated an		B2 for sketch of $10x^2$ and $5-x$ together
		Correct graph sketched or $-1 \pm \sqrt{(1)^2 - 4(10)(-5)}$	B1	or $\pm \sqrt{\frac{201}{400} - \frac{1}{20}}$ from completing the
		$\frac{-1 \pm \sqrt{(1)^2 - 4(10)(-5)}}{2(10)}$		square
		-0.76, 0.66	B1,B1	If B0 , SC1 for – 0.759 or – 0.7589 to – 0.7588 and 0.659 or 0.6588 to 0.6589
	(b)	x > 0.66, x < -0.76	2FT	B1FT for each part, if two solutions to
	· /	,		part (b)
6	(a)	(-6, -2)	1	
	(b)	(2, 6)	1	
	(c)	Reflection $y = -x$	1, 1	
7	(a)		4	B1 Correct graph for $x > 2$ B1 Correct graph for $x < -2$ B1 Correct graph for $-2 < x < 2$ B1 Approx correct intercepts pen – 1 if branches joined.
7	(a) (b)	x = -2, x = 2, y = 0	1, 1, 1	B1 Correct graph for $x < -2$ B1 Correct graph for $-2 < x < 2$ B1 Approx correct intercepts
7		x = -2, x = 2, y = 0 $-2.33 (-2.330), 0.202 (0.2016), 2.13$ (2.128)		B1 Correct graph for $x < -2$ B1 Correct graph for $-2 < x < 2$ B1 Approx correct intercepts
	(b)	-2.33 (-2.330), 0.202 (0.2016), 2.13	1, 1, 1	B1 Correct graph for $x < -2$ B1 Correct graph for $-2 < x < 2$ B1 Approx correct intercepts pen – 1 if branches joined. M2 for $[\cos =] \frac{7^2 + 6^2 - 8^2}{2.6.7}$ (0.25)
	(b) (c)	-2.33 (-2.330), 0.202 (0.2016), 2.13 (2.128)	1, 1, 1	B1 Correct graph for $x < -2$ B1 Correct graph for $-2 < x < 2$ B1 Approx correct intercepts pen – 1 if branches joined.
	(b) (c) (a)	-2.33 (-2.330), 0.202 (0.2016), 2.13 (2.128) 75.5 (75.52)	1, 1, 1 1, 1, 1 3	B1 Correct graph for $x < -2$ B1 Correct graph for $-2 < x < 2$ B1 Approx correct intercepts pen – 1 if branches joined. M2 for $[\cos =] \frac{7^2 + 6^2 - 8^2}{2.6.7}$ (0.25) or M1 for $8^2 = 7^2 + 6^2 - 2 \times 6 \times 7 \times \cos x$ M1 for $0.5 \times 6 \times 7 \times \sin(their 75.5)$

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0607	43

9 (a) (i)	$\frac{5}{40}$ o.e.	1	For all parts accept decimals or percentages with the usual rules for 3sf
(ii)	$\frac{27}{40}$ o.e.	1	Do not penalise incorrect cancelling or converting Do not accept ratios or words
(b)	$\frac{3}{21}$ o.e.	2	B1 for $\frac{k}{21}$
(c)	$\begin{vmatrix} \frac{120}{5814} & \text{o.e.} & (0.0206 \text{ or } 0.02063 \text{ to } 0.02064) \\ (\frac{20}{969}) & \end{vmatrix}$	3	M2 for $\frac{6}{19} \times \frac{5}{18} \times \frac{4}{17}$ or B1 for $\frac{5}{18}$ seen
	\\ \\ 969'		of B1 for $\frac{1}{18}$ seen
10 (a) (i)	2.51 (or 2.513 to 2.514) www 2	2	M1 for $\pi \times 1.2^2$ or $\pi \times 0.8^2$ 4.523 to 4.524 or 2.010 to 2.011
(ii)	0.502 or 0.503 (or 0.5026 – 0.5028)	2FT	M1 for (<i>their</i> 2.51) × figs 2
(b) (i)	3020 (or 3020 to 3021)	2	M1 for $\frac{4}{3}\pi \times 16^3$
(ii)	166 cao www 3	3	(17150 to 17160 or 17200) or $\frac{4}{3}\pi \times 15^3$ (14130 to 14140 or 14100) SC1 for 24100 to 24200 M2 for $\frac{their (\mathbf{a})(\mathbf{i}\mathbf{i}) \times 1000000}{their (\mathbf{b})(\mathbf{i}\mathbf{i})}$ or M1 for their $(\mathbf{a})(\mathbf{i}\mathbf{i}\mathbf{i}) \times 1000000$ or 1 000 000 ÷ their $(\mathbf{b})(\mathbf{i}\mathbf{i})$
11 (a)	$\frac{720}{x} - \frac{720}{(x+10)} = 1$	2	B1 for 720/ <i>x</i> B1 for 720/(<i>x</i> +10)
	720(x+10) - 720x = x(x+10)	M1	Correct multiplication for equation in correct form i.e. the three terms in first
	$7200 = x^2 + 10x$		line (can be all over $x(x + 10)$) Must see a correct third line and no
	$x^2 + 210x - 7200 = 0$	E 1	No omissions or errors
(b) (i)	(x+90)(x-80)	2	SC1 for $(x + a)(x + b)$ if $ab = -7200$ or $a + b = 10$
(ii)	80, –90	1 FT	FT their (b)(ii) only if SC1
(iii)	9	1FT	FT from (b)(ii), but must only be one positive root

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0607	43

12 (a) (i)		2	B1 for rectangular hyperbola in correct quadrants B1 for approx. correct asymptotes.
(ii)	$(-\frac{5}{4},0)$ o.e. $(0,\frac{5}{3})$ o.e.	1 1	
(iii)	1.71 or 1.714 o.e.	1	
(b)	$x > -\frac{3}{2}$ $x < -\frac{7}{4}$	2	B1 for sight of $-\frac{3}{2}$ (may be shown on graph)
	$x < -\frac{1}{4}$	2	B1 for sight of $-\frac{7}{4}$ (may be shown on graph)
(c)	$\frac{1}{2} \left(\frac{1}{2-x} - 3 \right)$ o.e. e.g. $\frac{3x-5}{4-2x}$	4	M1 Swap x and y M1 Correct re-arrangement or single fraction with denom. $2x + 3$ or $2y + 3$ M1 Multiply by $(2x + 3)$ or $(2y + 3)$ M1 correct division by 2
(d)	$\frac{9}{5}$ o.e. cao	2	M1 for <i>their</i> (c) = 1 or $x = f(1)$
13 (a)	38 www	3	B2 for 38.475 or 38.48 or 38.47 or 38.5 or 7695 ÷ 200 or M1 for correct use of mid-pts at least 4 of (10, 25, 35, 42.5, 47.5, 65)
(b) (i)	0.6, 3.4, 4, 12, 8.4, 0.4	2	B1 for 4 correct
(ii)	Suitable scale Correct column widths Correct heights	1 1 2 FT	B1 for 4 correct FT

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0607	43

14 (a) (i)	Points correctly plotted	3	B2 for 5 correct points or B1 for 3 or 4 correct points
(ii)	Positive	1	
(b) (i)	22.3	1	
(ii)	436	1	
(c) (i)	19.8x - 4.78	2	B1 for $kx - 4.78$ or B1 for $19.8x + k$ SC1 for $20x - 4.8$
(ii)	410 or 411 or 410.1 to 411.0	1FT	(19.76 to 19.77, –4.778 to –4.777)
(iii)	628 or 629 or 627.5 to 628.8	1FT	
(iv)	(c)(ii) AND this is within the data range o.e.	2	E1 for reasonable statement
15 (a)	$ \begin{array}{ccc} 1458 \\ 2 \times 3^n & \text{o.e.} \end{array} $	1 2	B1 for $k \times 3^n$ or $k \times 2^{n-1}$
(b)	$n^2 - n - 1$ o.e.	1 3	M2 for $an^2 + bn + c$ with $a \ne 0$ and both b and c not 0. or M1 for differences of 2 seen or an^2