A_n is Simple for $n \geq 5$

Sarah Baker, Charlie Heil, Sooraj Soman, Braden Stillmaker November 2024

Contents

1	Introduction	1
2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 2
3	A_n is simple for $n > 6$	3
\mathbf{R}	eferences	4

1 Introduction

We will show that A_n is simple for $n \geq 5$. A group is simple when it is nontrivial and there are no normal subgroups besides the trivial group and the group itself. To say n must be greater than 5, we first must look at A_1 through A_4 . We know A_1 and A_2 are trivial and therefore not simple groups. Next, A_3 is simple because it has order 3, but A_4 has a normal subgroup, $\{(1), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$, and as a result is not a simple group.

We will prove that A_n is simple for $n \geq 5$ by first proving five lemmas, then the theorem.

2 Preliminary Lemmas

Lemma 1. For $n \geq 3$, A_n is generated by 3-cycles.

Proof. The identity $e = (1) = (1 \ 2 \ 3)(1 \ 3 \ 2)$ is a product of 3-cycles. Let σ be a non identity element in A_n , $\sigma = \tau_1 \tau_2 ... \tau_r$ where σ is a product of transpositions.

We know that $sign(\sigma) = 1$ and $sign(\tau_1 \tau_2 ... \tau_r) = (-1)^r$, thus r must be even.

Now, write the right side as successive transpositions, $\tau_i \tau_i + 1$, where i is odd. Now, we will look at each case of transposition products in S_n :

Case 1: τ_i and $\tau_i + 1$ are equal.

We see that $\tau_i \tau_i + 1 = (1) = (123)(132)$. Therefore, $\tau_i \tau_i + 1$ is the product of two 3-cycles.

<u>Case 2</u>: τ_i and $\tau_i + 1$ have exactly one element in common.

Let the common element be a, so let $\tau_i = (ab)$ and $\tau_i + 1 = (ac)$ where $b \neq c$. From this we have $\tau_i \tau_i + 1 = (ab)(ac) = (acb) = (abc)(abc)$. Therefore, $\tau_i \tau_i + 1$ is the product of two 3-cycles.

Case 3: τ_i and $\tau_i + 1$ are disjoint.

Let $\tau_i = (ab)$ and $\tau_i + 1 = (cd)$. Then $\tau_i \tau_i + 1 = (ab)(cd) = (ab)(bc)(bc)(cd) = (bca)(cdb) = (abc)(bcd)$. Therefore, $\tau_i \tau_i + 1$ is the product of two 3-cycles.

Lemma 1.1. Conjugacy is an equivalence relation.

Proof. Let $g_1, g_2, g_3, x_1, x_2 \in G$ be arbitrary.

 $g_1 = eg_1e^{-1}$, so conjugacy is reflexive.

If $g_1 = x_1 g_2 x_1^{-1}$, then $g_2 = x_1^{-1} g_1(x_1^{-1})^{-1}$, so conjugacy is symmetric.

If $g_1 = x_1 g_2 x_1^{-1}$ and $g_2 = x_2 g_3 x_2^{-1}$, then $g_1 = x_1 (x_2 g_3 x_2^{-1}) x_1^{-1} = (x_1 x_2) g_3 (x_1 x_2)^{-1}$, so conjugacy is transitive

Being reflexive, symmetric, and transitive, conjugacy is an equivalence relation. \Box

Lemma 1.2. For $n \geq 5$, all 3-cycles in A_n are conjugate in A_n .

Proof. Given a 3-cycle (abc),

$$(123) = (1a)(2b)(3c)(abc)(3c)(2b)(1a) = ((1a)(2b)(3c))(abc)((1a)(2b)(3c))^{-1}.$$

If (1a)(2b)(3c) is in A_n , (abc) and (123) are conjugate in A_n . Otherwise,

$$(123) = ((45)(1a)(2b)(3c))(abc)((45)(1a)(2b)(3c))^{-1},$$

so (abc) and (123) are conjugate in A_n . In either case, we find all 3-cycles are conjugate in A_n to (123) and thus to each other.

Lemma 1.3. For $n \geq 5$, the conjugate of all 3-cycles in A_n are 3-cycles.

Proof. Consider $\tau, \sigma \in A_n$, where τ is a 3-cycle (abc). Given $x \in \{a, b, c\}$,

$$\sigma \tau \sigma^{-1}(\sigma(x)) = \sigma(\tau(x)).$$

Thus σ contains the cycle $(\sigma(a)\sigma(b)\sigma(c))$. It remains to show that elements of $\{1,2,...,n\} \setminus \{\sigma(a),\sigma(b),\sigma(c)\}$ remain fixed under $\sigma\tau\sigma^{-1}$. Consider such an element n. σ is bijective and $\sigma^{-1}(\{\sigma(a),\sigma(b),\sigma(c)\})=\{a,b,c\}$, so $\sigma^{-1}(n) \notin \{a,b,c\}$. Thus τ fixes $\sigma^{-1}(n)$ and $\sigma\tau\sigma^{-1}(n)=\sigma\sigma^{-1}(n)=n$, completing the proof.

Lemma 2. A_5 and A_6 are simple.

Proof. If N is a normal subgroup of A_n , the conjugacy classes in A_n contained in N partition N since conjugacy is an equivalence relation and given $\sigma \in N$, $\sigma \in \{\pi \sigma \pi^{-1} \mid \pi \in A_n\} \subseteq N$. The conjugacy classes of A_5 and A_6 are given in the following tables:

By Lagrange's theorem, any subgroup of A_5 or A_6 must have an order dividing 60 or 360 respectively. However, if N is a normal subgroup of A_5 or A_6 , its order must be the sum of distinct entries including 1 (since N contains e) in the corresponding tables. However, the only such orders possible are 1 and 60, so N must be either trivial or non-proper. Thus A_5 and A_6 are simple.

Table 2: A_6 Conjugacy Classes

Representative	e	(123)	(123)(456)	(12)(34)	(12345)	(23456)	(1234)(56)			
Order	1	40	40	45	72	72	90			

3 A_n is simple for n > 6

Proof. Suppose $N \subseteq A_n$ be a non-trivial subgroup for n > 6. Let σ be a non-identity element of N, i.e., $\sigma(l) \neq l$ for some $l \in \{1, 2, \dots, n\}$. Let $\tau = (i \ j \ k)$ where $i, j, k \neq l$ and $\sigma(l) \in \{i, j, k\}$. Then,

$$\tau \sigma \tau^{-1}(l) = \tau(\sigma(l)) \neq \sigma(l)$$

$$\therefore \quad \tau \sigma \tau^{-1} \neq \sigma$$
(1)

Let $\phi = \tau \sigma \tau^{-1} \sigma^{-1}$ then $\phi \neq (1)$ since $\tau \sigma \tau^{-1} \neq \sigma$. Also, $\tau \sigma \tau^{-1} \in N$ since $\tau \in A_n$ and $\sigma \in N \leq A_n$.

$$\sigma, \tau \sigma \tau^{-1} \in N \implies \phi = (\tau \sigma \tau^{-1}) \sigma^{-1} \in N$$
 (2)

Now,

$$\phi = \tau \sigma \tau^{-1} \sigma^{-1} = \tau (\sigma \tau^{-1} \sigma^{-1}) \tag{3}$$

Using lemma 1.3

$$\tau^{-1}$$
 is a 3-cycle $\implies \sigma \tau^{-1} \sigma^{-1}$ is also a 3-cycle (4)

That means, $\phi = \tau(\sigma\tau^{-1}\sigma^{-1}) \in N$ is a product of two 3-cycles. Therefore, ϕ permutes at most 6 numbers in $\{1, \dots, n\}$. Let H be the copy of A_6 inside A_n corresponding to the even permutations of these 6 numbers (augmented to 6 numbers arbitrarily if ϕ permutes fewer than 6 numbers), i.e., $H \cong A_6$. Since ϕ is a product of two 3-cycles, it is an even permutation on these 6 numbers. Therefore,

$$\phi \in H \quad \text{and} \quad \phi \in N \quad and \quad \phi \neq (1)$$

$$\therefore \quad \phi \in N \cap H \implies N \cap H \text{ is non-trivial}$$
(5)

Now, given $N \subseteq A_n$ we have $gng^{-1} \in N \quad \forall \quad g \in A_n, n \in N$. For any $h \in H \subseteq A_n$ and $n \in N \cap H$,

$$h \in A_n \quad and \quad n \in N \quad and \quad N \leq A_n$$

$$\therefore \quad hnh^{-1} \in N \tag{6}$$

$$h \in H \implies h^{-1} \in H \quad and \quad n \in N \cap H \implies n \in H$$

$$\therefore \quad hnh^{-1} \in H \tag{7}$$

From equations 6 and 7, $hnh^{-1} \in N \cap H \quad \forall \quad h \in H, \ n \in N \cap H$

$$\therefore \quad N \cap H \le H \tag{8}$$

Therefore, from equations 5 and 8, $N \cap H$ is non-trivial and $N \cap H \subseteq H$. Since $H \cong A_6$, which is simple, that only contains the normal subgroups (1) and H. Therefore, $N \cap H \in \{(1), H\}$, and given $N \cap H$ is non-trivial, $N \cap H = H$, and hence $H \subseteq N$.

 A_6 contains all the even permutations of our 6 numbers and any 3-cycle is an even permutation. Therefore, A_6 contains 3-cycles. Then,

$$H \cong A_6 \implies H \text{ contains 3-cycles}$$
 (9)

$$\therefore \quad H \subseteq N \implies N \text{ contains 3-cycles} \tag{10}$$

i.e., each non-trivial subgroup $N \subseteq A_n$ contains a 3-cycle. Then, by lemma 1.3, N contains all 3-cycles. That means, using lemma 1, N contains all elements that generate A_n . Since $N \subseteq A_n$, N must contain all the possible products of the elements that generate A_n . Therefore, N must contain every element of A_n . That means, $N \subseteq A_n$. Also, since $N \subseteq A_n$ we have $N \subseteq A_n$. Combining both gives $N = A_n$, i.e., any non-trivial normal subgroup of A_n for n > 6 is A_n itself.[1]

References

- [1] That hilarious paper (1824)
- [2] Judson, T. W. (2021). Abstract Algebra: Theory and Applications. Stephen F. Austin State University.