

Progetto: Nome Progetto codebusterswe@gmail.com

Studio Di Fattibilità

Informazioni sul documento

Versione	1.0.0
Approvatori	Sassaro Giacomo
Redattori	Pirolo Alessandro Zenere Marco Rago Alessandro Safdari Houssaine
Verificatori	Baldisseri Michele Scialpi Paolo
Uso	Interno
Distribuzione	Prof. Vardanega Tullio Prof. Cardin Riccardo Gruppo CodeBusters

Descrizione

Questo documento si occupa di descrivere l'analisi dei capitolati d'appalto realizzata dal gruppo al fine di valutarne la fattibilità

Registro delle modifiche

Versione	Data	Nominativo	Ruolo	Verificatore	Descrizione
0.0.1	2019-11-20	CodeBusters	Analisti	-	Creazione bozza documento, introduzione e paragrafi.

Indice

1	Intr	roduzione	4
	1.1	Scopo del Documento	4
	1.2	Glossario	4
	1.3	Riferimenti	4
		1.3.1 Normativi	4
		1.3.2 Informativi	4
2	Cap	oitolato C1	6
	2.1	Titolo del capitolato	6
	2.2	Descrizione del capitolo	6
	2.3	Tecnologie coinvolte	6
	2.4	Vincoli	7
	2.5	Aspetti positivi	7
	2.6	Aspetti critici	7
	2.7	Conclusioni	7
3	Car	pitolato C2	8
	3.1	Titolo del capitolato	8
	3.2	Descrizione del capitolo	8
	3.3	Tecnologie coinvolte	8
	3.4	Vincoli	9
	3.5	Aspetti positivi	9
	3.6	Aspetti critici	9
	3.7	Conclusioni	9
4	Car	pitolato C3	0
	4.1		10
	4.2		10
	4.3		10
	4.4		11
	4.5		11
	4.6		11
	4.7	Conclusioni	11
5	Car	pitolato C4	$oldsymbol{2}$
	5.1		12
	5.2	-	12
	5.3	•	12
	5.4		13
	5.5		13
	5.6		13
	5.7	•	13

C DEBUSTERS

6	Cap	pitolato C5	14
	6.1	Titolo del capitolato	14
	6.2	Descrizione del capitolo	14
	6.3	Tecnologie coinvolte	14
	6.4	Vincoli	15
	6.5	Aspetti positivi	15
	6.6	Aspetti critici	15
	6.7	Conclusioni	15
7	Cap	pitolato C6	16
	7.1^{-}	Titolo del capitolato	16
	7.2	Descrizione del capitolo	16
	7.3	Tecnologie coinvolte	16
	7.4	Vincoli	17
	7.5	Aspetti positivi	17
	7.6	Aspetti critici	17
	7.7	Conclusioni	17
8	Cap	pitolato C7	18
	8.1	Titolo del capitolato	18
	8.2	Descrizione del capitolo	18
	8.3	Tecnologie coinvolte	18
	8.4	Vincoli	19
	8.5	Aspetti positivi	19
	8.6	Aspetti critici	19
	8.7	Conclusioni	19

1 Introduzione

1.1 Scopo del Documento

Questo documento contiene la stesura dello studio di fattibilità riguardante i sei capitolati proposti, dove per ciascuno di essi vengono evidenziati i seguenti aspetti:

- Titolo del capitolato;
- Descrizione generale;
- Prerequisiti e tecnologie coinvolte;
- Vincoli;
- Aspetti positivi;
- Aspetti critici.

Infine, per ogni capitolato vengono esposte le motivazioni e le ragioni per cui il gruppo ha scelto come progetto il capitolato CX *Nome Progetto* a discapito degli altri sei proposti.

1.2 Glossario

Al fine di evitare ambiguità fra i termini, e per avere chiare fra tutti gli stakeholder le terminologie utilizzate per la realizzazione del presente documento, il gruppo CodeBusters ha redatto un documento denominato $Glossario\ 1.0.0$. In tale documento, sono presenti tutti i termini tecnici, ambigui, specifici del progetto e scelti dai membri del gruppo con le loro relative definizioni. Un termine presente nel $Glossario\ 1.0.0$ e utilizzato in questo documento viene indicato con un apice $^{\rm G}$ alla fine della parola.

1.3 Riferimenti

1.3.1 Normativi

• Norme di Progetto 1.0.0.

1.3.2 Informativi

- Capitolato d'appalto C1 BLOCKCOVID: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C1.pdf
- Capitolato d'appalto C2 EmporioLambda: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C2.pdf
- Capitolato d'appalto C3 GDP: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C3.pdf

- Capitolato d'appalto C4 HD Viz: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C4.pdf
- Capitolato d'appalto C5 PORTACS: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C5.pdf
- Capitolato d'appalto C6 RGP: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C6.pdf
- Capitolato d'appalto C7 SSD: https://www.math.unipd.it/~tullio/IS-1/2020/Progetto/C6.pdf

2.1 Titolo del capitolato

Il capitolato in questione si chiama "GDP - $Gathering\ Detection\ Platform$ ", il proponente è l'azienda SyncLab e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

2.2 Descrizione del capitolo

Il capitolato presentato si pone come obiettivo finale la realizzazione di una piattaforma in grado di dare all'utilizzatore finale una rappresentazione grafica delle informazioni sulla probabilità di assembramento nelle zone potenzialmente a richio. Questo viene fatto sulla base di alcuni dati che vengono individuati, raccolti ed elaborati.

La piattaforma deve sfruttare tecniche di machine learning e/o deeplearnig in modo da predirre le zone potenzialmente a rischio.

2.3 Tecnologie coinvolte

Sebbene l'azienda non impone tecnologie specifiche per lo sviluppo del server o della UI, vi sono comununque delle scelte preferenziali da considerare nello svolgimento del progetto:

- utilizzo di Java^G e di Angular^G per lo sviluppo della parte di Back-end e di Front-end della componente Web Application del sistema;
- per la gestione delle mappe (heatmap ecc.) il framework Leaflet^G (https://leafletjs.com);
- utilizzo di protocolli asincroni per le comunicazioni tra le diverse componenti;
- utilizzo del pattern Publisher/Subscriber, e adozione del protocollo MQTT ('MQ Telemetry Transport or Message Queue Telemetry Transport'), caratterizzato per essere open, di facile implementazione e ampia diffusione in applicazioni M2M (MachineToMachine) e IoT (InternetOfThings).

Per la parte di Machine Learning, l'azienda da ampia libertà, sebbene ci siano delle tecnologie consigliate:

- Python^G come linguaggio di programmazione;
- TensorFlow^G, Pytorch^G, Keras^G e Scikit-learn^G come libreria per l'apprendimento automatico;

Infine, per facilitare la comprensione delle librerie consigliate, l'azienda propone delle guide come cartacee come:

- Hands-on Machine Learning with Stick-Learn, Keras & TensorFlow;
- Phyton Machine Learning,

e qualche altra risorsa online come Kaggle, Aurelien Geron's Github e Google scholar.

La proponente suggerisce una architettura in grado di implementare quello che si definisce essere un Sistema Reattivo, in grado cioè di soddisfare le seguenti caratteristiche:

- responsive: la richiesta di un servizio deve sempre avere una risposta, anche quando si verifica un guasto;
- resilient: i servizi devono poter essere ripristini a seguito di guasti;
- elastic: i servizi devono poter essere scalati in base alla effettiva domanda;
- message-driven: i servizi devono rispondere al mondo, non tentare di controllare ciò che fa

Ed è richiesto che tutte le componenti applicative siano correlate da test unitari e d'integrazione. Inoltre, è richiesto che il sistema venga testato nella sua interezza tramite test *end-to-end*.

2.5 Aspetti positivi

- Il capitolato ha come obiettivo la creazione di una piattaforma di grande aiuto a fronte della situazione che stiamo vivendo;
- Nel capitolato si tratta l'argomento del machine learning^G, un argomento molto interessante e che potrebbe risultare molto utile in altri ambiti e in futuro;
- L'azienda sembra essere molto disponibile per seguire il gruppo nel percorso di sviluppo del progetto.

2.6 Aspetti critici

- Il capitolato richiede l'apprendimento di molti servizi, sconosciuti dai membri del gruppo, che si basano su argomenti non conosciuti (come il machine learning^G) e non affrontati nel corso di laurea triennale. Quindi gran parte del tempo andrebbe dedicato allo studio di questi concetti e strumenti, ed infine di applicare queste conoscenze;
- Oltre al tempo impiegato per l'apprendimento di questi strumenti c'è da tenere in considerazione il tempo per addestrare la parte di machine learning^G.

2.7 Conclusioni

Nonostante tale capitolato abbia destato particolare interesse all'interno del gruppo, specialmente per la possibilità di utilizzare tecnologie innovative, il team ha valutato la complessità di tale progetto come molto elevata e ha preferito orientarsi verso un'altra alternativa.

3.1 Titolo del capitolato

Il capitolato in questione si chiama "GDP - $Gathering\ Detection\ Platform$ ", il proponente è l'azienda SyncLab e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

3.2 Descrizione del capitolo

Il capitolato presentato si pone come obiettivo finale la realizzazione di una piattaforma in grado di dare all'utilizzatore finale una rappresentazione grafica delle informazioni sulla probabilità di assembramento nelle zone potenzialmente a richio. Questo viene fatto sulla base di alcuni dati che vengono individuati, raccolti ed elaborati.

La piattaforma deve sfruttare tecniche di machine learning e/o deeplearnig in modo da predirre le zone potenzialmente a rischio.

3.3 Tecnologie coinvolte

Sebbene l'azienda non impone tecnologie specifiche per lo sviluppo del server o della UI, vi sono comununque delle scelte preferenziali da considerare nello svolgimento del progetto:

- utilizzo di Java^G e di Angular^G per lo sviluppo della parte di Back-end e di Front-end della componente Web Application del sistema;
- per la gestione delle mappe (heatmap ecc.) il framework Leaflet^G (https://leafletjs.com);
- utilizzo di protocolli asincroni per le comunicazioni tra le diverse componenti;
- utilizzo del pattern Publisher/Subscriber, e adozione del protocollo MQTT ('MQ Telemetry Transport or Message Queue Telemetry Transport'), caratterizzato per essere open, di facile implementazione e ampia diffusione in applicazioni M2M (MachineToMachine) e IoT (InternetOfThings).

Per la parte di Machine Learning, l'azienda da ampia libertà, sebbene ci siano delle tecnologie consigliate:

- Python^G come linguaggio di programmazione;
- TensorFlow^G, Pytorch^G, Keras^G e Scikit-learn^G come libreria per l'apprendimento automatico;

Infine, per facilitare la comprensione delle librerie consigliate, l'azienda propone delle guide come cartacee come:

- Hands-on Machine Learning with Stick-Learn, Keras & TensorFlow;
- Phyton Machine Learning,

e qualche altra risorsa online come Kaggle, Aurelien Geron's Github e Google scholar.

La proponente suggerisce una architettura in grado di implementare quello che si definisce essere un Sistema Reattivo, in grado cioè di soddisfare le seguenti caratteristiche:

- responsive: la richiesta di un servizio deve sempre avere una risposta, anche quando si verifica un guasto;
- resilient: i servizi devono poter essere ripristini a seguito di guasti;
- elastic: i servizi devono poter essere scalati in base alla effettiva domanda;
- message-driven: i servizi devono rispondere al mondo, non tentare di controllare ciò che fa

Ed è richiesto che tutte le componenti applicative siano correlate da test unitari e d'integrazione. Inoltre, è richiesto che il sistema venga testato nella sua interezza tramite test *end-to-end*.

3.5 Aspetti positivi

- Il capitolato ha come obiettivo la creazione di una piattaforma di grande aiuto a fronte della situazione che stiamo vivendo;
- Nel capitolato si tratta l'argomento del machine learning^G, un argomento molto interessante e che potrebbe risultare molto utile in altri ambiti e in futuro;
- L'azienda sembra essere molto disponibile per seguire il gruppo nel percorso di sviluppo del progetto.

3.6 Aspetti critici

- Il capitolato richiede l'apprendimento di molti servizi, sconosciuti dai membri del gruppo, che si basano su argomenti non conosciuti (come il machine learning^G) e non affrontati nel corso di laurea triennale. Quindi gran parte del tempo andrebbe dedicato allo studio di questi concetti e strumenti, ed infine di applicare queste conoscenze;
- Oltre al tempo impiegato per l'apprendimento di questi strumenti c'è da tenere in considerazione il tempo per addestrare la parte di machine learning^G.

3.7 Conclusioni

Nonostante tale capitolato abbia destato particolare interesse all'interno del gruppo, specialmente per la possibilità di utilizzare tecnologie innovative, il team ha valutato la complessità di tale progetto come molto elevata e ha preferito orientarsi verso un'altra alternativa.

4.1 Titolo del capitolato

Il capitolato in questione si chiama "GDP - $Gathering\ Detection\ Platform$ ", il proponente è l'azienda SyncLab e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

4.2 Descrizione del capitolo

Il capitolato presentato si pone come obiettivo finale la realizzazione di una piattaforma in grado di dare all'utilizzatore finale una rappresentazione grafica delle informazioni sulla probabilità di assembramento nelle zone potenzialmente a richio. Questo viene fatto sulla base di alcuni dati che vengono individuati, raccolti ed elaborati.

La piattaforma deve sfruttare tecniche di machine learning e/o deeplearnig in modo da predirre le zone potenzialmente a rischio.

4.3 Tecnologie coinvolte

Sebbene l'azienda non impone tecnologie specifiche per lo sviluppo del server o della UI, vi sono comununque delle scelte preferenziali da considerare nello svolgimento del progetto:

- utilizzo di Java^G e di Angular^G per lo sviluppo della parte di Back-end e di Front-end della componente Web Application del sistema;
- per la gestione delle mappe (heatmap ecc.) il framework Leaflet^G (https://leafletjs.com);
- utilizzo di protocolli asincroni per le comunicazioni tra le diverse componenti;
- utilizzo del pattern Publisher/Subscriber, e adozione del protocollo MQTT ('MQ Telemetry Transport or Message Queue Telemetry Transport'), caratterizzato per essere open, di facile implementazione e ampia diffusione in applicazioni M2M (MachineToMachine) e IoT (InternetOfThings).

Per la parte di Machine Learning, l'azienda da ampia libertà, sebbene ci siano delle tecnologie consigliate:

- Python^G come linguaggio di programmazione;
- TensorFlow^G, Pytorch^G, Keras^G e Scikit-learn^G come libreria per l'apprendimento automatico;

Infine, per facilitare la comprensione delle librerie consigliate, l'azienda propone delle guide come cartacee come:

- Hands-on Machine Learning with Stick-Learn, Keras & TensorFlow;
- Phyton Machine Learning,

e qualche altra risorsa online come Kaggle, Aurelien Geron's Github e Google scholar.

La proponente suggerisce una architettura in grado di implementare quello che si definisce essere un Sistema Reattivo, in grado cioè di soddisfare le seguenti caratteristiche:

- responsive: la richiesta di un servizio deve sempre avere una risposta, anche quando si verifica un guasto;
- resilient: i servizi devono poter essere ripristini a seguito di guasti;
- elastic: i servizi devono poter essere scalati in base alla effettiva domanda;
- message-driven: i servizi devono rispondere al mondo, non tentare di controllare ciò che fa.

Ed è richiesto che tutte le componenti applicative siano correlate da test unitari e d'integrazione. Inoltre, è richiesto che il sistema venga testato nella sua interezza tramite test end-to-end.

4.5 Aspetti positivi

- Il capitolato ha come obiettivo la creazione di una piattaforma di grande aiuto a fronte della situazione che stiamo vivendo;
- Nel capitolato si tratta l'argomento del machine learning^G, un argomento molto interessante e che potrebbe risultare molto utile in altri ambiti e in futuro;
- L'azienda sembra essere molto disponibile per seguire il gruppo nel percorso di sviluppo del progetto.

4.6 Aspetti critici

- Il capitolato richiede l'apprendimento di molti servizi, sconosciuti dai membri del gruppo, che si basano su argomenti non conosciuti (come il machine learning^G) e non affrontati nel corso di laurea triennale. Quindi gran parte del tempo andrebbe dedicato allo studio di questi concetti e strumenti, ed infine di applicare queste conoscenze;
- Oltre al tempo impiegato per l'apprendimento di questi strumenti c'è da tenere in considerazione il tempo per addestrare la parte di machine learning^G.

4.7 Conclusioni

Nonostante tale capitolato abbia destato particolare interesse all'interno del gruppo, specialmente per la possibilità di utilizzare tecnologie innovative, il team ha valutato la complessità di tale progetto come molto elevata e ha preferito orientarsi verso un'altra alternativa.

5.1 Titolo del capitolato

Il capitolato in questione si chiama "GDP - $Gathering\ Detection\ Platform$ ", il proponente è l'azienda SyncLab e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

5.2 Descrizione del capitolo

Il capitolato presentato si pone come obiettivo finale la realizzazione di una piattaforma in grado di dare all'utilizzatore finale una rappresentazione grafica delle informazioni sulla probabilità di assembramento nelle zone potenzialmente a richio. Questo viene fatto sulla base di alcuni dati che vengono individuati, raccolti ed elaborati.

La piattaforma deve sfruttare tecniche di machine learning e/o deeplearnig in modo da predirre le zone potenzialmente a rischio.

5.3 Tecnologie coinvolte

Sebbene l'azienda non impone tecnologie specifiche per lo sviluppo del server o della UI, vi sono comununque delle scelte preferenziali da considerare nello svolgimento del progetto:

- utilizzo di Java^G e di Angular^G per lo sviluppo della parte di Back-end e di Front-end della componente Web Application del sistema;
- per la gestione delle mappe (heatmap ecc.) il framework Leaflet^G (https://leafletjs.com);
- utilizzo di protocolli asincroni per le comunicazioni tra le diverse componenti;
- utilizzo del pattern Publisher/Subscriber, e adozione del protocollo MQTT ('MQ Telemetry Transport or Message Queue Telemetry Transport'), caratterizzato per essere open, di facile implementazione e ampia diffusione in applicazioni M2M (MachineToMachine) e IoT (InternetOfThings).

Per la parte di Machine Learning, l'azienda da ampia libertà, sebbene ci siano delle tecnologie consigliate:

- Python^G come linguaggio di programmazione;
- TensorFlow^G, Pytorch^G, Keras^G e Scikit-learn^G come libreria per l'apprendimento automatico;

Infine, per facilitare la comprensione delle librerie consigliate, l'azienda propone delle guide come cartacee come:

- Hands-on Machine Learning with Stick-Learn, Keras & TensorFlow;
- Phyton Machine Learning,

e qualche altra risorsa online come Kaggle, Aurelien Geron's Github e Google scholar.

La proponente suggerisce una architettura in grado di implementare quello che si definisce essere un Sistema Reattivo, in grado cioè di soddisfare le seguenti caratteristiche:

- responsive: la richiesta di un servizio deve sempre avere una risposta, anche quando si verifica un guasto;
- resilient: i servizi devono poter essere ripristini a seguito di guasti;
- elastic: i servizi devono poter essere scalati in base alla effettiva domanda;
- message-driven: i servizi devono rispondere al mondo, non tentare di controllare ciò che fa

Ed è richiesto che tutte le componenti applicative siano correlate da test unitari e d'integrazione. Inoltre, è richiesto che il sistema venga testato nella sua interezza tramite test *end-to-end*.

5.5 Aspetti positivi

- Il capitolato ha come obiettivo la creazione di una piattaforma di grande aiuto a fronte della situazione che stiamo vivendo;
- Nel capitolato si tratta l'argomento del machine learning^G, un argomento molto interessante e che potrebbe risultare molto utile in altri ambiti e in futuro;
- L'azienda sembra essere molto disponibile per seguire il gruppo nel percorso di sviluppo del progetto.

5.6 Aspetti critici

- Il capitolato richiede l'apprendimento di molti servizi, sconosciuti dai membri del gruppo, che si basano su argomenti non conosciuti (come il machine learning^G) e non affrontati nel corso di laurea triennale. Quindi gran parte del tempo andrebbe dedicato allo studio di questi concetti e strumenti, ed infine di applicare queste conoscenze;
- Oltre al tempo impiegato per l'apprendimento di questi strumenti c'è da tenere in considerazione il tempo per addestrare la parte di machine learning^G.

5.7 Conclusioni

Nonostante tale capitolato abbia destato particolare interesse all'interno del gruppo, specialmente per la possibilità di utilizzare tecnologie innovative, il team ha valutato la complessità di tale progetto come molto elevata e ha preferito orientarsi verso un'altra alternativa.

6.1 Titolo del capitolato

Il capitolato in questione si chiama "GDP - $Gathering\ Detection\ Platform$ ", il proponente è l'azienda SyncLab e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

6.2 Descrizione del capitolo

Il capitolato presentato si pone come obiettivo finale la realizzazione di una piattaforma in grado di dare all'utilizzatore finale una rappresentazione grafica delle informazioni sulla probabilità di assembramento nelle zone potenzialmente a richio. Questo viene fatto sulla base di alcuni dati che vengono individuati, raccolti ed elaborati.

La piattaforma deve sfruttare tecniche di machine learning e/o deeplearnig in modo da predirre le zone potenzialmente a rischio.

6.3 Tecnologie coinvolte

Sebbene l'azienda non impone tecnologie specifiche per lo sviluppo del server o della UI, vi sono comununque delle scelte preferenziali da considerare nello svolgimento del progetto:

- utilizzo di Java^G e di Angular^G per lo sviluppo della parte di Back-end e di Front-end della componente Web Application del sistema;
- per la gestione delle mappe (heatmap ecc.) il framework Leaflet^G (https://leafletjs.com);
- utilizzo di protocolli asincroni per le comunicazioni tra le diverse componenti;
- utilizzo del pattern Publisher/Subscriber, e adozione del protocollo MQTT ('MQ Telemetry Transport or Message Queue Telemetry Transport'), caratterizzato per essere open, di facile implementazione e ampia diffusione in applicazioni M2M (MachineToMachine) e IoT (InternetOfThings).

Per la parte di Machine Learning, l'azienda da ampia libertà, sebbene ci siano delle tecnologie consigliate:

- Python^G come linguaggio di programmazione;
- TensorFlow^G, Pytorch^G, Keras^G e Scikit-learn^G come libreria per l'apprendimento automatico;

Infine, per facilitare la comprensione delle librerie consigliate, l'azienda propone delle guide come cartacee come:

- Hands-on Machine Learning with Stick-Learn, Keras & TensorFlow;
- Phyton Machine Learning,

e qualche altra risorsa online come Kaggle, Aurelien Geron's Github e Google scholar.

La proponente suggerisce una architettura in grado di implementare quello che si definisce essere un Sistema Reattivo, in grado cioè di soddisfare le seguenti caratteristiche:

- responsive: la richiesta di un servizio deve sempre avere una risposta, anche quando si verifica un guasto;
- resilient: i servizi devono poter essere ripristini a seguito di guasti;
- elastic: i servizi devono poter essere scalati in base alla effettiva domanda;
- message-driven: i servizi devono rispondere al mondo, non tentare di controllare ciò che fa.

Ed è richiesto che tutte le componenti applicative siano correlate da test unitari e d'integrazione. Inoltre, è richiesto che il sistema venga testato nella sua interezza tramite test end-to-end.

6.5 Aspetti positivi

- Il capitolato ha come obiettivo la creazione di una piattaforma di grande aiuto a fronte della situazione che stiamo vivendo;
- Nel capitolato si tratta l'argomento del machine learning^G, un argomento molto interessante e che potrebbe risultare molto utile in altri ambiti e in futuro;
- L'azienda sembra essere molto disponibile per seguire il gruppo nel percorso di sviluppo del progetto.

6.6 Aspetti critici

- Il capitolato richiede l'apprendimento di molti servizi, sconosciuti dai membri del gruppo, che si basano su argomenti non conosciuti (come il machine learning^G) e non affrontati nel corso di laurea triennale. Quindi gran parte del tempo andrebbe dedicato allo studio di questi concetti e strumenti, ed infine di applicare queste conoscenze;
- Oltre al tempo impiegato per l'apprendimento di questi strumenti c'è da tenere in considerazione il tempo per addestrare la parte di machine learning^G.

6.7 Conclusioni

Nonostante tale capitolato abbia destato particolare interesse all'interno del gruppo, specialmente per la possibilità di utilizzare tecnologie innovative, il team ha valutato la complessità di tale progetto come molto elevata e ha preferito orientarsi verso un'altra alternativa.

7.1 Titolo del capitolato

Il capitolato in questione si chiama "GDP - $Gathering\ Detection\ Platform$ ", il proponente è l'azienda SyncLab e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

7.2 Descrizione del capitolo

Il capitolato presentato si pone come obiettivo finale la realizzazione di una piattaforma in grado di dare all'utilizzatore finale una rappresentazione grafica delle informazioni sulla probabilità di assembramento nelle zone potenzialmente a richio. Questo viene fatto sulla base di alcuni dati che vengono individuati, raccolti ed elaborati.

La piattaforma deve sfruttare tecniche di machine learning e/o deeplearnig in modo da predirre le zone potenzialmente a rischio.

7.3 Tecnologie coinvolte

Sebbene l'azienda non impone tecnologie specifiche per lo sviluppo del server o della UI, vi sono comununque delle scelte preferenziali da considerare nello svolgimento del progetto:

- utilizzo di Java^G e di Angular^G per lo sviluppo della parte di Back-end e di Front-end della componente Web Application del sistema;
- per la gestione delle mappe (heatmap ecc.) il framework Leaflet^G (https://leafletjs.com);
- utilizzo di protocolli asincroni per le comunicazioni tra le diverse componenti;
- utilizzo del pattern Publisher/Subscriber, e adozione del protocollo MQTT ('MQ Telemetry Transport or Message Queue Telemetry Transport'), caratterizzato per essere open, di facile implementazione e ampia diffusione in applicazioni M2M (MachineToMachine) e IoT (InternetOfThings).

Per la parte di Machine Learning, l'azienda da ampia libertà, sebbene ci siano delle tecnologie consigliate:

- Python^G come linguaggio di programmazione;
- TensorFlow^G, Pytorch^G, Keras^G e Scikit-learn^G come libreria per l'apprendimento automatico;

Infine, per facilitare la comprensione delle librerie consigliate, l'azienda propone delle guide come cartacee come:

- Hands-on Machine Learning with Stick-Learn, Keras & TensorFlow;
- Phyton Machine Learning,

e qualche altra risorsa online come Kaggle, Aurelien Geron's Github e Google scholar.

La proponente suggerisce una architettura in grado di implementare quello che si definisce essere un Sistema Reattivo, in grado cioè di soddisfare le seguenti caratteristiche:

- responsive: la richiesta di un servizio deve sempre avere una risposta, anche quando si verifica un guasto;
- resilient: i servizi devono poter essere ripristini a seguito di guasti;
- elastic: i servizi devono poter essere scalati in base alla effettiva domanda;
- message-driven: i servizi devono rispondere al mondo, non tentare di controllare ciò che fa

Ed è richiesto che tutte le componenti applicative siano correlate da test unitari e d'integrazione. Inoltre, è richiesto che il sistema venga testato nella sua interezza tramite test *end-to-end*.

7.5 Aspetti positivi

- Il capitolato ha come obiettivo la creazione di una piattaforma di grande aiuto a fronte della situazione che stiamo vivendo;
- Nel capitolato si tratta l'argomento del machine learning^G, un argomento molto interessante e che potrebbe risultare molto utile in altri ambiti e in futuro;
- L'azienda sembra essere molto disponibile per seguire il gruppo nel percorso di sviluppo del progetto.

7.6 Aspetti critici

- Il capitolato richiede l'apprendimento di molti servizi, sconosciuti dai membri del gruppo, che si basano su argomenti non conosciuti (come il machine learning^G) e non affrontati nel corso di laurea triennale. Quindi gran parte del tempo andrebbe dedicato allo studio di questi concetti e strumenti, ed infine di applicare queste conoscenze;
- Oltre al tempo impiegato per l'apprendimento di questi strumenti c'è da tenere in considerazione il tempo per addestrare la parte di machine learning^G.

7.7 Conclusioni

Nonostante tale capitolato abbia destato particolare interesse all'interno del gruppo, specialmente per la possibilità di utilizzare tecnologie innovative, il team ha valutato la complessità di tale progetto come molto elevata e ha preferito orientarsi verso un'altra alternativa.

8.1 Titolo del capitolato

Il capitolato in questione si chiama "GDP - $Gathering\ Detection\ Platform$ ", il proponente è l'azienda SyncLab e i committenti sono Prof. Vardanega Tullio e Prof. Cardin Riccardo.

8.2 Descrizione del capitolo

Il capitolato presentato si pone come obiettivo finale la realizzazione di una piattaforma in grado di dare all'utilizzatore finale una rappresentazione grafica delle informazioni sulla probabilità di assembramento nelle zone potenzialmente a richio. Questo viene fatto sulla base di alcuni dati che vengono individuati, raccolti ed elaborati.

La piattaforma deve sfruttare tecniche di machine learning e/o deeplearnig in modo da predirre le zone potenzialmente a rischio.

8.3 Tecnologie coinvolte

Sebbene l'azienda non impone tecnologie specifiche per lo sviluppo del server o della UI, vi sono comununque delle scelte preferenziali da considerare nello svolgimento del progetto:

- utilizzo di Java^G e di Angular^G per lo sviluppo della parte di Back-end e di Front-end della componente Web Application del sistema;
- per la gestione delle mappe (heatmap ecc.) il framework Leaflet^G (https://leafletjs.com);
- utilizzo di protocolli asincroni per le comunicazioni tra le diverse componenti;
- utilizzo del pattern Publisher/Subscriber, e adozione del protocollo MQTT ('MQ Telemetry Transport or Message Queue Telemetry Transport'), caratterizzato per essere open, di facile implementazione e ampia diffusione in applicazioni M2M (MachineToMachine) e IoT (InternetOfThings).

Per la parte di Machine Learning, l'azienda da ampia libertà, sebbene ci siano delle tecnologie consigliate:

- Python^G come linguaggio di programmazione;
- TensorFlow^G, Pytorch^G, Keras^G e Scikit-learn^G come libreria per l'apprendimento automatico;

Infine, per facilitare la comprensione delle librerie consigliate, l'azienda propone delle guide come cartacee come:

- Hands-on Machine Learning with Stick-Learn, Keras & TensorFlow;
- Phyton Machine Learning,

e qualche altra risorsa online come Kaggle, Aurelien Geron's Github e Google scholar.

La proponente suggerisce una architettura in grado di implementare quello che si definisce essere un Sistema Reattivo, in grado cioè di soddisfare le seguenti caratteristiche:

- responsive: la richiesta di un servizio deve sempre avere una risposta, anche quando si verifica un guasto;
- resilient: i servizi devono poter essere ripristini a seguito di guasti;
- elastic: i servizi devono poter essere scalati in base alla effettiva domanda;
- message-driven: i servizi devono rispondere al mondo, non tentare di controllare ciò che fa

Ed è richiesto che tutte le componenti applicative siano correlate da test unitari e d'integrazione. Inoltre, è richiesto che il sistema venga testato nella sua interezza tramite test end-to-end.

8.5 Aspetti positivi

- Il capitolato ha come obiettivo la creazione di una piattaforma di grande aiuto a fronte della situazione che stiamo vivendo;
- Nel capitolato si tratta l'argomento del machine learning^G, un argomento molto interessante e che potrebbe risultare molto utile in altri ambiti e in futuro;
- L'azienda sembra essere molto disponibile per seguire il gruppo nel percorso di sviluppo del progetto.

8.6 Aspetti critici

- Il capitolato richiede l'apprendimento di molti servizi, sconosciuti dai membri del gruppo, che si basano su argomenti non conosciuti (come il machine learning^G) e non affrontati nel corso di laurea triennale. Quindi gran parte del tempo andrebbe dedicato allo studio di questi concetti e strumenti, ed infine di applicare queste conoscenze;
- Oltre al tempo impiegato per l'apprendimento di questi strumenti c'è da tenere in considerazione il tempo per addestrare la parte di machine learning^G.

8.7 Conclusioni

Nonostante tale capitolato abbia destato particolare interesse all'interno del gruppo, specialmente per la possibilità di utilizzare tecnologie innovative, il team ha valutato la complessità di tale progetto come molto elevata e ha preferito orientarsi verso un'altra alternativa.