Discrete Mathematics Recitation Class

Tianyu Qiu

University of Michigan - Shanghai Jiaotong University

Joint Institute

Summer Term 2019

Contents

Groups

Generated Subgroups

Cyclic Groups

Lagrange's Theorem

Morphisms

Generated Subgroups (P184)

Definition

Let (G, \cdot) be a group and let $A \subseteq G$. We define the subgroup generated by A, denoted $\langle A \rangle_G$, to be the \subseteq -least $H \subseteq G$ such that $A \cup \{e\} \subseteq H$ and for all $x, y \in H, x \cdot y^{-1} \in H$.

- $ightharpoonup \langle A \rangle_G$ is a recursively defined set.
- ▶ The closure conditions (constructors) ensure that $\langle A \rangle_G \leq G$.
- ▶ Moreover, if $H \leq G$ with $A \subseteq H$, then $\langle A \rangle_G \subseteq H$ and so $\langle A \rangle_G \leq H$.
- ▶ If $A \subseteq G$ is finite with $A = \{a_1, \ldots, a_n\}$, then we will often write $\langle a_1, \ldots, a_n \rangle_G$ instead of $\langle A \rangle_G$.
- ▶ We will often write $\langle A \rangle$ or $\langle a_1, \ldots, a_n \rangle$ instead of $\langle A \rangle_G$ and $\langle a_1, \ldots, a_n \rangle_G$.

Examples for Generated Subgroups (P185-P186)

e.g.

- $ightharpoonup \langle (01)(23), (0123) \rangle_{S_4} = D_4 \leq S_4.$
- ▶ Consider $(\mathbb{Z}, +)$,

$$\langle 2 \rangle = 2\mathbb{Z} \leq \mathbb{Z}$$

▶ Consider $(\mathbb{R} \setminus \{0\}, \cdot)$,

$$\langle \mathbb{Z} \backslash \{0\} \rangle = \mathbb{Q} \backslash \{0\} \leq \mathbb{R}$$

▶ Consider S_n . If $A = \{ \sigma \in S_n | \sigma \text{ is a 2 -cycle } \}$, then $\langle A \rangle = S_n$.

The Cyclic Groups

Definitions (P187)

- 1. cyclic group of order $n \ C_n$: $\langle a \rangle$ where $a \in G$ has order n.
- 2. cyclic group of infinite order C_{∞} : $\langle b \rangle$ where $b \in G$ has infinite order.

Lemma

Let (G, \cdot) be a group. If $a \in G$, then

$$\langle a \rangle = \{a^m | m \in \mathbb{Z}\}$$

(Where, for all
$$k \in \mathbb{N}$$
, $a^{-k} = (a^{-1})^k$) (P188)

Proof.

The Cyclic Groups

Lemma

Let $n \in \mathbb{N} \setminus \{0\}$ or $n = \infty$. The group C_n is abelian. (P187)

Proof.

P188

Lemma

Let (G, \cdot) be a group and let $n \in \mathbb{N} \setminus \{0\}$. If $a \in G$ has order n, then $|\langle a \rangle| = n$.

Proof.

Cyclic Groups in the Symmetric Group (P190)

Lemma

Let $n \in \mathbb{N} \setminus \{0\}$ and let $m \le n$. Let $k_1, \ldots, k_m \in [n]$ be distinct. The m-cycle $(k_1 \cdots k_m)$ has order m in S_n .

Proof.

P190

Theorem

Let $n \in \mathbb{N} \setminus \{0\}$. For all $0 < k \le n, C_k \le S_n$.

Theorem (Refinement of Lagrange's Theorem)

If (G, \cdot) is a finite group and $x \in G$, then the order of x divides the order of G.

Proof.

Group of order p (P191)

Theorem

Let p be prime. Let (G, \cdot) be a finite group of order p. Then (G, \cdot) is the the group C_p .

Proof.

P191

Corollary

If (G, \cdot) is a finite group with order p, then the only subgroups of G are the trivial group and G.

An Important Consequence of Lagrange's Theorem (P192)

Theorem

Let (G, \cdot) be a group and let $g \in G$ have order n. If there exists $m, k \in \mathbb{N} \setminus \{0\}$ with n = mk, then the order of g^m is k.

Proof.

P192

Theorem

If (G, \cdot) is a finite group with order n, then for all $g \in G, g^n = e$.

Proof.

Generated Subgroups Cyclic Groups Lagrange's Theorem Morphisms Slide 10 文大家面很学院

Examples for Lagrange's Theorem (P193)

Theorem (Lagrange's Theorem)

Let (G,\cdot) be a finite group. If $H\leq G$, then the order of H divides the order of G.

Converse to Lagrange's Theorem

Let (G, \cdot) be a finite group. If a natural number k divides the order of G, then there exists $g \in G$ with order k.

e.g.

Let A_4 be the group of all even bijections in S_4 . There is no $\sigma \in A_4$ with order 6. (This example indicates there is no converse to Lagrange's Theorem.)

Theorem

If (G, \cdot) is a group of order 6, then there exists $g \in G$ with order 2.

Proof.

Isomorphisms & Homomorphisms (P195)

Definitions

- 1. (group) homomorphism: (G, \cdot) and (K, \star) are groups. $f: G \to K$ is a (group) homomorphism if $\forall a, b \in G, f(a \cdot b) = f(a) \star f(b)$.
- 2. (group) isomorphism: based on f is (group) homomorphism, f is a bijection.
- 3. isomorphic: $G \cong K$ $((G, \cdot) \cong (K, \star))$ if there exists an isomorphism between (G, \cdot) and (K, \star) .

Theorem

Let (G,\cdot) be a group. Let $g,h\in G$ both have order n. Then $\langle g\rangle\cong\langle h\rangle$. (P196)

Examples for Morphisms (P196-P197)

e.g.

- Let (G,\cdot) be any group with $G \neq \{e\}$ and let $H = \{e\}$, i.e. H is the trivial subgroup of (G,\cdot) . The function $f:G \longrightarrow H$ defined by: for all $x \in G$, f(x) = e, is a homomorphism. The function $g:H \longrightarrow G$ defined by: g(e) = e, is also a homomorphism. The homomorphism f is surjective but not injective, and the homomorphism g is injective, but not surjective.
- Let $n \in \mathbb{N}$ with $n \geq 2$. Let (G, \cdot) be a group and let $a \in G$ have order n. Let $H = \langle a \rangle$, i.e. H is (isomorphic to) C_n . Consider the group $(\mathbb{Z}, +)$. Define $f : \mathbb{Z} \longrightarrow H$ by: for all $x \in \mathbb{Z}, f(x) = a^x$. Then f is a homomorphism because for all $x, y \in \mathbb{Z}$,

$$f(x+y)=a^{x+y}=a^x\cdot a^y$$

Examples for Morphisms (P196)

Theorem

Consider the group (Z, +). If $n \in \mathbb{N} \backslash \{0\}$, define

$$n\mathbb{Z} = \{ m \in \mathbb{Z} | (\exists k \in \mathbb{Z}) (m = nk) \}$$

Then $n\mathbb{Z} \leq \mathbb{Z}$ and $n\mathbb{Z} \cong \mathbb{Z}$

Proof.

Define $f: \mathbb{Z} \longrightarrow n\mathbb{Z}$ by: for all $x \in \mathbb{Z}$, f(x) = nx. Now, f is a bijection and for all $x, y \in \mathbb{Z}$,

$$f(x + y) = n(x + y) = nx + ny = f(x) + f(y)$$