

Redes *Bayesianas*: o que são, para que servem, algoritmos e exemplos de aplicações.

Roberto Ligeiro

Resumo

- Introdução.
- Raciocinando sobre incertezas.
- Cálculo de Probabilidades.
- Aplicando a regra de bayes.
- Redes Bayesinas.
- Inferência em redes bayesinas.
- Aplicações.
- Considerações finais.
- Referências.

Introdução

- Sistemas que agem racionalmente
 - Raciocínio Lógico
 - Raciocínio Probabilístico
 - Situações onde não se conhece todo o escopo do problema.
 - Redes Bayesianas (início da década de 90)
 - Teoria de probabilidades
 - Teoria de Grafos

- "A principal vantagem de raciocínio probabilístico sobre raciocínio lógico é fato de que agentes podem tomar decisões racionais mesmo quando não existe informação suficiente para se provar que uma ação funcionará"[Russel]
- Alguns fatores podem condicionar a falta de informação em uma base de conhecimento:
 - Ignorância Teórica
 - Impossibilidade

- Utilizar conectivos que manipulem níveis de certeza e não apenas valores booleanos.
 - "Eu tenho probabilidade 0.8 fazer um bom trabalho de IA".
 - "A probabilidade de um trabalho de IA ser bom é 0.7".
 - "A probabilidade de um bom trabalho de IA tirar A é 0.9".
 - "Quais são as minhas chances tirar A?"
- Grafos podem representar relações causais entre eventos.

- Considere o domínio: "Pela manha meu carro não irá funcionar. Eu posso ouvir a ignição, mas nada acontece. Podem existir várias razões para o problema. O rádio funciona, então a bateria está boa. A causa mais provável é que a gasolina tenha sido roubada durante a noite ou que a mangueira esteja entupida. Também pode ser que seja o carburador sujo, um vazamento na ignição ou algo mais sério. Para descobrir primeiro eu verifico o medidor de gasolina. Ele indica ½ tanque, então eu decido limpar a mangueira da gasolina".
- Estados:
 - Funcionando?{sim,não}
 - Mangueira Limpa?{sim,não}
 - Gasolina?{sim,não}
 - Medidor{vazio, ½, cheio}


```
Função RP-Agente(percepção) retorna ação
{
Estático: conjunto de sentenças probabilísticas a respeito do problema.

Calcula novas probabilidades para o estado atual baseado na evidência disponível incluindo a percepção atual e a ação anterior.

Calcula as probabilidades para as possíveis ações, dado a descrição das ações e as probabilidades atuais.

Seleciona a ação com a maior expectativa.

Retona ação.
}
```

Cálculo de Probabilidades

Probabilidade incondicional

- A probabilidade P(a) de um evento a é um número dentro do intervalo [0,1].
 - P(a) = 1 sss a é certo.
 - Se a e b são mutuamente exclusivos, então: $P(a \lor b) = P(a) + P(b)$.

Probabilidade condicional

- Probabilidade condicional P(a/b) = x, pode ser interpretada como: "Dado o evento b, a probabilidade do evento a é x".
 - P(b|a) = P(a|b)P(b)/P(a) Regra de Bayes.

Tabela de Conjunção de probabilidades

- P(A/B)=P(A,B)/P(B)
- Tabela n x m, representada pela probabilidade de cada configuração (a_i, b_i)
- Representam todo o domínio
- Para valores booleanos teríamos 2ⁿ entradas

Cálculo de Probabilidades

- Tabela de Conjunção de probabilidades
 - $P(X) = (a_1, ..., a_n)$; $a_i \ge 0$; $\sum a_i = 1$, onde a_i é a probabilidade de X estar no estado a_i , $P(X=a_i)$.

	b ₁	b ₂	b ₃
a ₁	0.4	0.3	0.6
a ₂	0.6	0.7	0.4

Tabela1. P(X|Y)

• Se $P(Y) = \langle 0.4, 0.4, 0.2 \rangle$, aplicando P(A/B) = P(A,B)/P(B)

	b ₁	b ₂	b ₃
a ₁	0.16	0.12	0.12
a ₂	0.24	0.28	0.08

Tabela2. P(X,Y)

Com esta tabela pode-se ainda calcular P(X) e P(Y|X)

Aplicando a Regra de Bayes

- Diagnóstico médico:
 - "um médico sabe que a meningite causa torcicolo em 50% dos casos. Porém, o médico também conhece algumas probabilidades incondicionais que dizem que, um caso de meningite atinge 1/50000 pessoas e, a probabilidade de alguém ter torcicolo é de 1/20."
 - Aplicando a rede de Bayes:
 - $P(M/T) = (P(T/M)P(M))/P(T) = (0.5 \times 1/50000)/(1/20) = 0.0002$
 - Por que n\(\tilde{a}\) calcular estatisticamente \(P(M/T)\)?
 - Surto de meningite => P(M) aumenta. P(M/T) ?

- Uma Rede Bayesiana consiste do seguinte:
 - Um conjunto de variáveis e um conjunto de arcos ligando as variáveis.
 - Cada variável possui um conjunto limitado de estados mutuamente exclusivos.
 - As variáveis e arcos formam um grafo dirigido sem ciclos (DAG).
 - Para cada variável A que possui como pais $B_1, ..., B_n$, existe uma tabela $P(A | B_1, ..., B_n)$.

Exemplo

"Você possui um novo alarme contra ladrões em casa. Este alarme é muito confiável na detecção de ladrões, entretanto, ele também pode disparar caso ocorra um terremoto. Você tem dois vizinhos, João e Maria, os quais prometeram telefonar-lhe no trabalho caso o alarme dispare. João sempre liga quando ouve o alarme, entretanto, algumas vezes confunde o alarme com o telefone e também liga nestes casos. Maria, por outro lado, gosta de ouvir música alta e às vezes não escuta o alarme."

Estados:

- Ladrão
- Terremoto
- Alarme
- João
- Maria

- Se conhecemos a probabilidade da ocorrência de um ladrão e de um terremoto, e ainda, a probabilidade de João e Maria telefonarem.
- Podemos Calcular P(Alarme|Ladrão, Terremoto):

Ladrão	Terremoto	P(Alarme Ladrão,Terremoto)	
		Verdadeiro	Falso
Verdadeiro	Verdadeiro	0.95	0.050
Verdadeiro	Falso	0.95	0.050
Falso	Verdadeiro	0.29	0.71
Falso	Falso	0.001	0.999

1

Redes Bayesianas

Podemos construir a seguinte rede:

• Considere que se deseja calcular a probabilidade do alarme ter tocado, mas, nem um ladrão nem um terremoto aconteceram, e ambos, João em Maria ligaram, ou $P(J_{\wedge}M_{\wedge}A_{\wedge} - L_{\wedge} - T)$.

- $P(J_{\wedge}M_{\wedge}A_{\wedge} L_{\wedge} T) = P(J/A)P(M/A)P(A/-L_{\wedge} T)P(-L) P(-T)$
- \bullet = 0.9 x 0.7 x 0.001 x 0.999 x 0.998 = 0.00062

- Método para construção de redes bayesianas:
 - Escolha um conjunto de variáveis X_i que descrevam o domínio.
 - Escolha uma ordem para as variáveis.
 - Enquanto existir variáveis:
 - Escolha uma variável X_i e adicione um nó na rede.
 - Determine os nós Pais(X_i) dentre os nós que já estejam na rede e que tenham influência direta em X_i.
 - Defina a tabela de probabilidades condicionais para X_i

- Método para construção de redes bayesianas:
 - MariaLig: raiz.
 - JoãoLig: Se Maria ligou, então, provavelmente, o alarme tocou. Neste caso, MariaLig influencia JoaoLig. Portanto, MariaLig é pai de JoaoLig.
 - Alarme: Claramente, se ambos ligaram, provavelmente o alarme tocou.
 Portanto, Alarme é influenciado por JoãoLig e MariaLig.
 - Ladrão: Influenciado apenas por Alarme.
 - Terremoto: Se o alarme tocou, provavelmente, um terremoto pode ser acontecido. Entretanto, se existe um Ladrão, então as chances de um terremoto diminuem. Neste caso, Terremoto é influenciado por Ladrão e Alarme.
 MariaLig
 JoãoLig

Ladrão

Alarme

Terremoto

- Método para construção de redes bayesianas:
 - Compactação de nós
 - Se cada nó dependesse de todos os outros, teríamos uma tabela de probabilidade de 2ⁿ entradas – para variáveis booleanas -(assim como tabela de conjunção de probabilidades).
 - Localidade estrutural
 - Padrão de relacionamento entre os nós.
 - Uma variável aleatória é influenciada por no máximo k outras (seu pais na rede).
 - Por isto: P(MariaLig|JoaoLig,Alarme,Terremoto,Ladrão) = P(MariaLig|Alarme)
 - Para uma rede com 20 nós:
 - $2^n = \sim 1$ milãho
 - Considerando *k* = *5* => 640

- Independência condicional
 - Sabemos que um nó é independente de seus predecessores dado seu pai na rede.
 - Porém, para realização de inferências é necessário saber mais a respeito da relação entre os nós.
 - É necessário saber se um conjunto de nós X é independente de outro conjunto Y, dado que um conjunto de evidências E(X é d-separado de Y)
 - Se todo caminho não dirigido entre um nó em X e um nó em Y é d-separado por E, então X e Y são condicionalmente independentes dada a evidência E.

- Independência condicional
 - Três possibilidades:

- A tarefa básica de uma inferência probabilística é computar a distribuição de probabilidades posterior para um conjunto de variáveis de consulta (query variables) => P(Query/Evidence).
- Para o exemplo anterior
 - Ladrão constitui uma boa variável de consulta.
 - JoãoLig, MariaLig seriam boas variáveis de evidência.

Exemplo:

- Dado que a grama está molhada, qual a probabilidade de ter chovido?
- Dado que a grama está molhada, qual a probabilidade de o regador ter sido ligado?

Neste caso, Se R tornam-se dependentes dado que o nó W, a evidência, é filho de ambos, ou seja, não Se R não são d-separados. Assim, para o calculo de P(S/W) deve-se considerar P(R) e vice-versa. A equação seria (1 = T e 0 = V):

$$P(S=1|W=1) = P(S=1,W=1)/P(W=1)$$

$$= \Sigma_{c,r} (P(C=c_{i'} S=1,R=r_{i'} W=1)/P(W=1)) = 0.2781/0.6471$$

$$P(R=1|W=1) = P(R=1,W=1)/P(W=1)$$

$$= \Sigma_{c,s} (P(C=c_{i'} S=s_{i'} R=1, W=1)/P(W=1)) = 0.4581/0.6471$$

$$Onde (W=1):$$

$$P(W=1) = \Sigma_{c,r,s} P(C=c_{i'} S=s_{i'} R=r_{i'} W=1) = 0.6471$$

- Inferências podem ser realizadas sobre redes Bayesianas para:
 - Diagnósticos: Dos efeitos para as causas. Dado *JoaoLig,* P(Ladrão/JoaoLig)
 - Causas: De causas para efeitos. Dado Ladrão, P(JoaoLig/ Ladrão)

- Algoritmo para inferências
 - Pode ser NP-Hard, dependendo de como o problema foi modelado.
 - Para uma classe de redes possui sempre tempo linear: redes simplesmente conexas.

- Estratégia geral:
 - 1. Expressar P(X/E) em relação a E_{x}^{-} , E_{x}^{+} .
 - 2. Computar a contribuição de E_x^+ através de seus efeitos em *Pais(X)*, e então transportar tais efeitos para *X*.
 - 3. Computar a contribuição de E_x através de seus efeitos em Filhos(X), e então transportar tais efeitos para X. Note que computar os efeitos nos filhos de X é uma recursão do problema de computar os efeitos em X.
- Chamadas recursivas a partir de X por todos seus arcos.
 - Termina em nós de evidência, raízes e folhas da árvore.
 - Cada chamada recursiva exclui o nó que a chamou, desta forma, a árvore é coberta apenas uma vez.

- Inferência em Redes Bayesianas Multiconectadas
 - Clustering Transforma probabilisticamente (não topologicamente) a rede em uma rede simplesmente conexa.
 - Conditioning Faz uma transformação na rede instanciando variáveis em valores definidos, e então, e então produz uma rede simplesmente conexa para cada variável instanciada.
 - Stochastic simulation Usa a rede para gerar um grande número de modelos concretos de um domínio. A partir destes modelos o algoritmo calcula uma aproximação de uma inferência.

Aplicações

- Pathfinder, Heckerman 1990. Stanford Sistema para diagnósticos de problemas nas glândulas linfáticas.
- Map Learning, Ken Basye 1990. Brown University Este projeto combina problemas de diagnostico e teoria de decisão. Um robô deve percorrer um "labirinto", procurando aprender os caminhos percorridos e, ao mesmo tempo, explorar caminhos desconhecidos.
- AutoClass, NASA's Ames Research Center, 1998 Sistema de exploração e aquisição de conhecimento espacial. Este projeto está desenvolvendo uma rede bayesiana que permita a interpolação automática de dados espaciais oriundos de diferentes observatórios e planetários espalhados pelo mundo.
- Lumiere, Microsoft Research, 1998 O projeto pretende criar um sistema que possa automaticamente e inteligentemente interagir com outros sistemas, antecipando os objetivos e necessidades dos usuários.

Considerações Finais

- Redes bayesianas constituem uma forma natural para representação de informações condicionalmente independentes.
- Boa solução a problemas onde conclusões não podem ser obtidas apenas do domínio do problema.
- Inferências sobre redes bayesinas.
 - Podem ser executadas em tempo linear.
 - NP-hard para maioria dos casos.
 - Aplicação de técnicas.

Referências

- Charniak, Eugene. "Bayesians Networks without Tears". *IA Magazine*, 1991.
- Darwiche, Adan & Huang, Cecil. "Inference in Belief Networks: A procedural guide". International Journal of Approximate Reasoning, 1994.
- Jensen, V. Finn. "Bayesian Networks and Decision Graphs". Springer-Verlag, 2001.
- Murphyk, P. Kevin. "A Brief Introduction to Graphical Models and Bayesian Networks".
- http://www.cs.berkeley.edu/~murphyk/Bayes/bayes.html
- Niedermayer, Daryle. "An Introduction to Bayesian Networks and their Contemporary Applications". 1998.
- Russel, J. Stuart & Norvig, Peter. "Artifical Intelligence: A modern Approach". Prentice Hall.