

CITADEL AI Summer School 2022

Rodrique Kafando, PhD rodrique.kafando@citadel.bf

19-25.09.22

X : independente/explicative variable Y : dependente variable

Regression→ Processus qui consiste à prédire des classes à valeurs continues

Simple Regression

Linear Regression
Non-linear Regression

Prédire **CO2emission** en se basant uniquement sur **EngineSize**

Multiple Regression

Linear Regression Non-linear Regression

Prédire CO2emission en se basant sur EngineSize et Cylinders

Some Algorithms

- * Ordinal regression
- * Poisson regression
- * Fast forest quantile regression
- * Linear, Polynomial, Lasso, Stepwise, Ridge regression
- * Bayesian linear regression
- * Neural network regression
- * Decision forest regression
- * Boosted decision tree regression
- * K-nearest neighbors

23]:	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	???

Simple Linear Regression

Variable independante (x): EngineSize

Variable dependante (y): CO2emission

Multiple Linear Regression

Variables independantes (x): EngineSize, Cylenders, and more...

Variable dependante (y): CO2emission

$$\hat{y} = \theta_0 + \theta_1 x_1$$

 $\hat{y} = 340$ the predicted emission of x1

Error = y-
$$\hat{y}$$

= 250 - 340
= -90

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Train and Test on the Same Dataset

Train/Test Split

Regression Evaluation Metrics

- Test-set is a portion of the train-set
- High "training accuracy"
- Low "out-of-sample accuracy"

- Mutually exclusive
- More accurate evaluation on out-ofsample accuracy

- Test-set is a portion of the train-set
- High "training accuracy"
- Low "out-of-sample accuracy"
- Mutually exclusive
- More accurate evaluation on out-ofsample accuracy
- Highly dependent on which datasets the data is trained and tested

Intelligence Artificielle pour le Développement

Regression – Evaluation Metrics

Error: measure of how far the data is from the fitted regression line.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

$$RAE = \frac{\sum_{j=1}^{n} |y_j - \hat{y}_j|}{\sum_{j=1}^{n} |y_j - \bar{y}|}$$

$$RSE = \frac{\sum_{j=1}^{n} (y_j - \hat{y}_j)^2}{\sum_{j=1}^{n} (y_j - \bar{y})^2}$$

$$R^2 = 1 - RSE$$

