Push-forward Measures for Parameter Identification under Uncertainty

Mathematical Michael

University of Colorado: Denver

Introduction

Motivation

How do we update initial descriptions of uncertainty using model predictions and data?

Data-Consistent Inversion is a novel framework that uses push-forward and pull-back measures to ensure solutions are consistent with the observed distribution of data.

Question

How do we cast a **Parameter Identification** problem in the context of Data-Consistent Inversion?

Framework

 $\blacksquare \mathbb{P}, \ \pi$ Probability Measure, Density $\Lambda \subset \mathbb{R}^P$ Parameter Space $oldsymbol{\circ}$ $oldsymbol{o}:\Lambda o\mathcal{O}\subset\mathbb{R}^D$ Observables ullet $\Xi\subset\mathbb{R}^D$ Noise Space $\lambda^{\dagger} \in \Lambda$ True Parameter $oldsymbol{\cdot} oldsymbol{d}(\xi) \subset \mathbb{R}^D$ Possible Data, $d_i(\xi) = \boldsymbol{o}_i(\lambda^{\dagger}) + \xi_i$ $\xi^{\dagger} \in \Xi$ Noise in Measurements lacksquare σ^2 Variance of Noise • $oldsymbol{d}^\dagger \in \mathbb{R}^D$ Observed Data, $oldsymbol{d}^\dagger = oldsymbol{d}(\xi^\dagger)$ ullet $\mathbb{P}_{\mathrm{in}},\;\pi_{\mathrm{in}}$ Initial lacksquare $\mathbb{P}_{\mathrm{obs}}, \; \pi_{\mathrm{obs}}$ Observed ullet $\mathbb{P}_{\mathrm{pre}}, \; \pi_{\mathrm{pre}}$ Predicted (push-forward)

Updating with Observations and Predictions

Updated (pull-back)

$$\mathbb{P}_{up} = \mathbb{P}_{in} \frac{\mathbb{P}_{obs}}{\mathbb{P}_{pre}} \qquad \pi_{up}(\lambda) = \pi_{in}(\lambda) \frac{\pi_{obs}(Q(\lambda))}{\pi_{pre}(Q(\lambda))}$$

References & Attribution

Author: Michael Pilosov | Advisor: Dr. Troy Butler

ullet $\mathbb{P}_{\mathrm{up}},\;\pi_{\mathrm{up}}$

Approach

Quantity of Interest Map

A Functional Relating **Predictions** and **Data**

Ideal $Q(\lambda, \xi) = F(\mathbf{o}(\lambda), \mathbf{d}(\xi))$

 $Q(\Lambda,\Xi)=:\mathcal{D}_{\mathcal{T}}\subset\mathbb{R}$ Theoretical

 $Q(\lambda) = F\left(\boldsymbol{o}(\lambda), \boldsymbol{d}^{\dagger}\right)$ Practical $Q(\Lambda) =: \mathcal{D}_{\mathcal{C}} \subset \mathcal{D}_{\mathcal{T}}$ Computable

How do conditionals of Ξ compare to the joint density?

Observed Distribution

Given a functional, what measure do we invert? $Q(\lambda^{\dagger}, \xi) \sim \pi_{\rm obs}$ when we allow ξ to vary over Ξ

$F(oldsymbol{o}(\lambda),oldsymbol{d}^\dagger)$	$\boldsymbol{\xi}$	$\pi_{ m obs}$
$\frac{1}{\sigma\sqrt{D}}\sum\left(oldsymbol{o}_{i}\left(\lambda ight)-oldsymbol{d}_{i}^{\dagger} ight)$	$\xi \sim L^2$	N(0, 1)
$rac{1}{\sigma^2}\sum\left(oldsymbol{o}_i\left(\lambda ight)-oldsymbol{d}_i^\dagger ight)^2$	$\xi \sim N(0, \sigma^2)$	$\chi^2(D)$
$rac{1}{\sigma^2 D}\sum\left(oldsymbol{o}_i\left(\lambda ight)-oldsymbol{d}_i^\dagger ight)^2$	$\xi \sim N(0, \sigma^2)$	$\Gamma(D/2,D/2)$
:	:	:

Choices of F and associated π_{obs} for stochastic inverse problem with $\mathbf{d}^{\dagger} = \mathbf{o}_i(\lambda^{\dagger}) + \xi_i^{\dagger}$

Example

Consider an exponential decay problem with uncertain initial condition:

Convergence

How do solutions change with more data?

 λ^{\dagger} and π_{up} for D=1,10,50,100 for N=1000

Stability

How do solutions on conditionals of Ξ compare?

