1. Considere a v.a. X cuja f.m.p é dada por

x	-3	1	3	5
f(x)	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{2}$	c

Determine:

(a) O valor de c;

(b) $E(X) \in Var(X)$;

(c) A f.m.p da variável $Y = X^2$.

2. Determine o valor de c de modo que cada uma das seguintes funções possa servir como distribuição de probabilidade da v.a. discreta X:

(a) $f(x) = c(x^2 + 4)$, para x = 0, 1, 2, 3;

(b) $f(x) = {2 \choose x} {3 \choose 3-x}$, para x = 0, 1, 2.

3. O espectro de lucro (ou perda) de uma empresa é dado a seguir, com as respectivas probabilidades

Lucro	Probabilidade	
-15	0,05	
0	0,15	
15	0,15	
25	0,30	
40	0,15	
50	0,10	
100	0,05	
150	0,03	
200	0,02	

(a) Qual é o lucro esperado?

(b) Calcule o desvio padrão do lucro, sabendo que o desvio padrão de uma v.a. X é dado por

$$\sigma = \sqrt{Var(X)}.$$

4. Uma urna contém 15 bolas brancas e 25 bolas vermelhas. Sorteando ao caso uma bola, seja X o número de bolas brancas sorteadas. Determine f(x), E(X) e Var(X). Considere os casos com e sem reposição e os compare no final.

5. Suponha que a probabilidade de óbito de um paciente, ao dar entrada no centro de terapia intensiva, seja de 25% (risco de morte). Seja X uma variável indicadora de óbito, se um paciente der entrada no CTI. Determine f(x), E(x) e Var(X).

- 6. Sendo X uma v.a. seguindo uma distribuição Uniforme Discreta, com valores no conjunto $\{1,2,3,4,5,6,7,8,9,10\}$, pergunta-se:
 - (a) $P(X \ge 7)$;
 - (b) $P(3 < X \le 7)$;
 - (c) $P(x \le 7 | X \ge 6)$.
- 7. Na manufatura de certo artigo, é sabido que um entre dez dos artigos é defeituoso. Qual a probabilidade de que uma amostra casual de tamanho 4 contenha:
 - (a) nenhum defeituoso?
 - (b) exatamente um defeituoso?
 - (c) não mais que dois defeituosos?
- 8. Um fabricante de peças de automovéis garante que uma caixa de suas peças conterá, no máximo, duas defeituosas. Se a caixa contém 18 peças, e a experiência tem demonstrado que esse processo de fabricação produz 5% de peças defeituosas, qual a probabilidade que uma caixa satisfaça a garantia?
- 9. Ao testar um certo tipo de pneu de caminhão em um terreno irregular, descobriu-se que 25% dos caminhões falhavam ao tentar completar o percurso do teste sem ter pneus estourados. Dos próximos 15 caminhões testados, determine a probabilidade de
 - (a) de três a seis terem pneus estourados;
 - (b) menos de 4 terem pneus estourados;
 - (c) mais de 5 terem pneus estourados.
- 10. Assumimos que o número de clientes que chegam a cada hora em um certo posto de serviços automobilísticos segue uma distribuição de Poisson com média $\lambda = 7$.
 - (a) Calcule a probabilidade de que mais de dez clientes cheguem em um período de duas horas;
 - (b) Qual o número médio de chegadas durante o período de duas horas?
- 11. Se $X \sim Bin(M, p)$, sabendo-se que E(X) = 12 e Var(X) = 3, determinar:
 - (a) M e p;
 - (b) P(X < 12);
 - (c) E(Z) e Var(Z), em que

$$Z = \frac{X - 12}{\sqrt{3}}.$$

12. Se $X \sim Bin(5, 1/2)$, faça os gráficos da f.m.p e da f.d.a de X.