Mathematics Talent Reward Programme

Question Paper for Class XI 14^{th} January, 2018

Total Marks: 100 Allotted Time: 10:00 a.m. to 12:30 p.m.

Multiple Choice Questions

[You should answer these questions in the first page according to the order given in the question paper. Each question has only one correct option. You will be awarded 4 marks for the correct answer, 1 mark if the question is not attempted and 0 marks for wrong answer.]

1. A coin is tossed 9 times. There are 2⁹ possible outcomes. In how many of these outcomes does no two

3. Let F_n denote the Fibonacci sequence such that $F_1=0, F_2=1, F_n=F_{n-1}+F_{n-2} \quad \forall n\geq 3$. Then

(C) 89,

(C) 0,

(**D**) None of these.

(D) Does not exist.

(B) 34,

(B) 1,

successive heads occur?

(A) 55,

2. $\lim_{x\to 0^+} \frac{[x]}{\tan(x)} =$ (A) -1,

where $n \in \mathbb{N}$.

A.P cannot have the same colour.)

	$\sum_{n=3}^{\infty} \frac{18+999F_n}{F_{n-1}F_{n+1}} =$				
	(A) 2016,	(B) 2017,	(C) 2018,	(D) None of these.	
4.	In $\triangle ABC$, O is an interior point such that $\angle BOC = 90^{\circ}$, $\angle CAO = \angle ABO$, $\angle BAO = \angle BCO$. Then $\frac{AC}{OC} = \frac{1}{2} \frac{ABO}{OC} = \frac{1}{2} \frac{ABO}{OC$				
	(A) $\sqrt{2}$,	(B) 2,	(C) $\sqrt{\frac{3}{2}}$,	(D) None of these.	
5.	Let M and m denote the maximum value and the minimum value of the function $f(x) = \cos(x^{2018})\sin(x^{2018})$				
	(A) $\frac{1}{2}$,	(B) $-\frac{1}{\sqrt{3}}$,	(C) $\frac{1}{2018}$,	(D) None of these.	
6.	6. In a class of 80 students, 40 are male and 40 are female. Also, exactly 50 students wear glasses. Then v of the following is true?				
	(A) Exactly 10 boys wear glasses,(C) At most 25 boys do not wear glasses,		* *	(B) At least 20 girls wear glasses,(D) At most 30 girls do not wear glasses.	
7.	Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. How many functions $f: A \to A$ can be defined such that $f(1) < f(2) < f(3) < $				
	(A) $\binom{8}{3}$,	(B) $\binom{8}{3}5^8$,	(C) $\binom{8}{3}8^5$,	(D) $\frac{8!}{3!}$.	
		Short Ansv	wer Type Questions		
[Each question carries a total of 12 marks. Credits will be given to partially correct answers]					
1.	. If x, y, z are real numbers such that $x < y < z$, prove that				
$(x-y)^3 + (y-z)^3 + (z-x)^3 > 0$					
2.	Let $P(x)$ be a polynomial with real coefficients such that $P(n)$ is an integer for any integer n . Prove that the coefficients of $P(x)$ must be rational.				
3.	Does there exist a continuous function f , such that $f(f(x)) = -x^{2019} \forall x \in \mathbb{R}$?				
4.	Let S be a finite subset of \mathbb{R} . Let f be a function from S to S such that $ f(x_1) - f(x_2) \leq \frac{1}{2} x_1 - x_2 \forall x_1, x_2 \in S$. Prove that $f(x) = x$ for some $x \in S$.				

Use of calculators is not allowed. You may use a ruler and a compass for construction. \sim Best of Luck \sim

5. (a) Prove that the sequence of remainders obtained when the Fibonacci numbers are divided by n is periodic,

6. Let d(n) be the number of divisors of n. Prove that we can colour the natural numbers using 2 colours such that if for an infinite increasing sequence $\{a_1, a_2, a_3, \dots\}$, the sequence $\{d(a_1), d(a_2), \dots\}$ is a non-constant geometric progression, then all the terms $\{a_1, a_2, a_3, \dots\}$ cannot have the same colour. (You may use the fact that we can colour the natural numbers using 2 colours such that all the terms of any infinite increasing

is prime for all $n \in \mathbb{N}$, where F_n denotes the nth term of the Fibonacci sequence.

(b) Prove that there does not exist a non-constant polynomial P(x) with integer coefficients such that $P(F_n)$