Automatic Control Theory

Chapter 2

Fan zichuan School of Computer and Information Science Southwest University

A CH2: Mathematical Models of Systems

Main contents

- Differential Equations of Physical Systems.
- The Transfer function of Linear Systems.
 (The Laplace Transform and Inverse Transform)
- Block Diagram.
- Block Diagram Reduction

CH2: Mathematical Models of Systems

Review

Block Diagram represented by using Transfer function

what is next

Block Diagram Reduction by Transformations!

Block Diagram Transformations

(1) Combining blocks in cascade

(2) Parallel Connection of Blocks

Block Diagram Transformations

(3) Eliminating a feedback loop

(4) Moving a summing point behind a block

Block Diagram Transformations

(5) Moving a summing point ahead a block

(6) Moving a pickoff point ahead a block

(7) Moving a pickoff point behind a block

Example 1

Solution 1

$$\frac{G_1(1-G_2H_2)(1-G_3H_3)+G_1G_2(1-G_3H_3)}{1+(1-G_2H_2)(1-G_3H_3)+G_1G_3(1-G_2H_2)+G_1G_2G_3}$$

Example 2

Tips: Moving a summing point ahead a block!

Solution 2

$$\frac{b_1s^2 + b_2s + b_3}{s^3 + a_1s^2 + a_2s + a_3}$$

Example 3

可以分开讨论的原因:线性 满足叠加

核心

- Differential Equations
- Transfer Function
- Moving a summing point ahead a block
- Moving a pickoff point behind a block

续

Block Diagram Reduction (Mason's gain formula)!

Homework

