Задача по математической логике

Доказать в исчислении высказываний (буквы обозначают произвольные формулы):

$$\neg((X \& Y) \& \neg Z) \vdash (\neg(\neg X \rightarrow \neg Y) \lor (Y \rightarrow Z))$$

Решение.

Преобразуем левую формулу, используя определение конъюнкции $\varphi \& \psi \equiv \neg (\varphi \to \neg \psi)$:

$$\neg((X \& Y) \& \neg Z) = \neg(\neg(X \to \neg Y) \& \neg Z) = \neg\neg(\neg(X \to \neg Y) \to \neg\neg Z).$$

Преобразуем правую формулу, используя определение дизъюнкции $\varphi \lor \psi \equiv \neg \varphi \to \psi$:

$$(\neg(\neg X \to \neg Y) \lor (Y \to Z)) = \neg \neg(\neg X \to \neg Y) \to (Y \to Z)$$

Следовательно, необходимо доказать:

$$\neg\neg(\neg(X \to \neg Y) \to \neg\neg Z) \vdash \neg\neg(\neg X \to \neg Y) \to (Y \to Z)$$
.

Согласно теореме дедукции, если Γ , $A \vdash B$, то $\Gamma \vdash A \rightarrow B$. Поэтому достаточно доказать, что $\neg\neg(\neg(X \rightarrow \neg Y) \rightarrow \neg\neg Z)$, $\neg\neg(\neg X \rightarrow \neg Y)$, $Y \models Z$, а затем дважды применить теорему дедукции.

Следовательно, будем доказывать, что из гипотез $\neg\neg(\neg(X\to\neg Y)\to\neg\neg Z)$, $\neg\neg(\neg X\to\neg Y)$ и Y выводимо Z.

1	$\neg\neg(\neg(X\to\neg Y)\to\neg\neg Z)$	гипотеза 1
2	$\neg\neg(\neg(X \to \neg Y) \to \neg\neg Z) \to (\neg(X \to \neg Y) \to \neg\neg Z)$	секвенция 3
3	$\neg(X \to \neg Y) \to \neg \neg Z$	modus ponens для 1,2
4	$\neg\neg(\neg X \to \neg Y)$	гипотеза 2
5	$\neg\neg(\neg X \to \neg Y) \to (\neg X \to \neg Y)$	секвенция 3
6	$\neg X \rightarrow \neg Y$	modus ponens для 4,5
7	Y	гипотеза 3
8	$(\neg X \to \neg Y) \to (Y \to X)$	секвенция 6
9	$Y \rightarrow X$	modus ponens для 6,8
10	X	modus ponens для 7,9
11	$X \to (\neg \neg Y \to \neg (X \to \neg Y))$	секвенция 8
12	$\neg\neg Y \to \neg (X \to \neg Y)$	modus ponens для 10,11
13	$Y \rightarrow \neg \neg Y$	секвенция 4

14	$Y \to \neg (X \to \neg Y)$	секвенция 1 для 13, 12
15	$\neg(X \to \neg Y)$	modus ponens для 7,14
16	$\neg \neg Z$	modus ponens для 15,3
17	$\neg\neg Z \rightarrow Z$	секвенция 3
18	Z	modus ponens для 16,17