

Inadequate analogy

Bulk RNA-seq scRNA-seq Spatial transcriptomics

A geospatial analogy: bulk RNA-seq

A geospatial analogy: spatial transcriptomics

Number of new publications in spatial transcriptomics over time

Timeline of spatial statistics in Voyager

Geospatial data types

and cell localization,

spatstat

Number of institutions using each current era technology

Visium: the most popular NGS barcoding technology

Museum of Spatial Transcriptomics

Simple Features: sf R package

- Data frame with special column for spatial geometries
- GEOS C++ library for fast geometric operations
- Whether two geometries intersect
- Find the geometry of the intersections
- Find cells in each Visium spot
- Find cells or spots in each pathologist annotated region
- Crop SFE object by polygon
- Visualize cell morphology

Geometries in biology

Visium spots

Cell boundaries and mRNA molecule spots

SpatialFeatureExperiment

- SpatialExperiment (SPE): Existing package extending SCE for spatial omics data
- SFE: data structure extending SPE with sf
- Brings spatial geometries and geometric operations to omics data for the first time
- Voyager: spatial analysis methods (spdep) populating and plotting SFE fields

Exploratory data analysis (EDA)

- It is important to understand what you CAN DO before you learn to measure how WELL you have seem to DONE it (Exploratory Data Analysis, Tukey 1977)
- Exploratory spatial data analysis (ESDA): EDA for spatial aspects of the data, especially spatial autocorrelation

Spatial autocorrelation

Tobler's first law of geography: Everything is related to everything else. But near things are more related than distant things.

Positive

Negative

From geospatial to spatial transcriptomics

- Spatial point process: trendsceek, pciSeq, Bento, squidpy, spicyR
- Geostatistical (Gaussian process): SpatialDE, SPARK, GPcounts, BOOST-GP, spatialGE
- Moran's I: MERINGUE, Seurat, benchmarking SVG methods
- Local Moran's I: MERINGUE
- Lee's L: MERINGUE, Giotto
- Potts model spatial clustering: smfishhmrf (Giotto), BayesSpace
- GeoTIFF: samui browser
- Existing packages tend to focus on "how WELL you have seem to DONE it"
- Voyager: general ESDA ("what you CAN DO"), systematic uniform user interface, more efficient implementations

VOYAGER

Acknowledgement

- Voyager website: Kayla Jackson, Laura Luebbert, Lior Pachter
- Python implementation: Sina Booeshaghi, Pétur Helgi Einarsson, Pall Melsted, Sindri Antonsson
- Maria Carilli, Delaney Sullivan, Nikhila Swarna, Anne Kil, Charlene Kim, Taleen Dilanyan, and everyone in the lab
- Funding: National Institute of Mental Health (NIMH), NIH, Icelandic Research Fund Project

