Ley de Hooke

Integrantes:

Calderón Guerra Salvatore

Profesor:

Holman

Institución Educativa Alfonso López Pumarejo

Valledupar-cesar

25 de septiembre 2024

Objetivo general

Determinar la constante de un resorte mediante la aplicación de la Ley de Hooke.

Objetivos específicos

- Determinar la constante elástica de un resorte mediante la aplicación de la Ley de Hooke.
- Determinar la magnitud de la fuerza restauradora.
- Determinar la elongación de un resorte helicoidal debido a un peso mg.

Marco teórico

Muelle

Si un cuerpo al que ejerce fuerza es un muelle o resorte, y ejercemos la fuerza en la dirección de su eje, éste se deformará en el sentido de la fuerza ejercida. Tomando esa dirección como el eje x, su deformación será $\Delta x = (x - x0)$, siendo x la longitud del muelle y x0 la longitud natural del muelle o longitud del muelle sin fuerza aplicada. Como sabemos por la 3^a Ley de Newton, el muelle responderá ejerciendo una fuerza de igual módulo y dirección pero de sentido contrario al objeto que causó su deformación. Si llamamos \vec{F} e a la fuerza ejercida al muelle y \vec{F} a la fuerza con la que responde el muelle, se tiene que, para deformaciones pequeñas:

$$\vec{FM} = -\vec{Fe} = -k(\vec{x} - \vec{x0})$$

Ley de Hooke

La **ley de Hooke** señala que la deformación experimentada por un objeto elástico es directamente proporcional a la fuerza aplicada sobre él. La constante de proporcionalidad depende de la naturaleza del objeto, su geometría y el material con que esté fabricado.

$$F=k\cdot (x-x0)$$

donde:

- F es el módulo de la fuerza que se aplica sobre el muelle.
- k es la constante elástica del muelle, que relaciona fuerza y alargamiento. Depende del muelle, de tal forma que cada uno tendrá la suya propia.
- x_0 es la longitud del muelle sin aplicar la fuerza.
- x es la longitud del muelle con la fuerza aplicada.

Materiales

- * resorte o muelle
- porta masas
- cinta métrica
- * masas

Procedimiento experimental

Para el estudio de la ley de Hooke se realizaron los siguientes pasos los cuales permitieron la recolección de datos:

- 1. Se situó en la mesa el proyecto de la ley de Hooke para su ejecución.
- 2. Se midió la longitud inicial del resorte.
- 3. Luego, en el extremo del resorte, se ubicó una masa.
- 4. Se midió la longitud del resorte al aplicarle el peso.
- 5. Después, se emplearon diferentes masas ubicadas en el extremo del resorte y se realizó el procedimiento anterior.
- 6. Por último, se repitió el procedimiento anterior con las masas

Resultados experimentales

En cada resorte se realizó la práctica con tres masas diferentes. Se midió la longitud inicial del resorte y luego la longitud del resorte al aplicarse el peso. Después se calcula la diferencia de las longitudes del resorte para luego realizar la tabulación de los resultados obtenidos.

Masa (g)	Deformación (m)	Peso (N)	Fuerza (N)
50	0.065	0.490	0.490
70	0.132	0.689	0.689
96	0.190	0.882	0.882
100	0.203	0.980	0.980
110	0.278	1.176	1.176
150	0.354	1.470	1.470
170	0.426	1.665	1.665
190	0.481	1.852	1.852
200	0.504	1.960	1.960

Se realizo una gráfica de fuerza vs deformación con los datos obtenidos para visualizar la relación entre estas dos magnitudes

Cálculos:

Paso 1: Extraer los valores correspondientes de la tabla

- Fuerza: F1=1.960N, F2=1.470
- Deformación: x1=0.504m, x2=0.354 m

Paso 2: Calcular la pendiente (constante de elasticidad k)

La fórmula para calcular la pendiente es:

$$K = \frac{\Delta F}{\Delta x} = \frac{1.960N - 1.470N}{0.504m - 0.354m} = \frac{0.490N}{0.150m} = 3.26 N/m$$

Paso 3: Calcular el error relativo porcentual

Error relativo =
$$\frac{valor Experimental - valor Exacto}{valo Exacto} x 100\% = \frac{3.26 - 3.32}{3.32} = \frac{0.06}{3.32} = 0.180 = 1.8\%$$

Conclusión

En este experimento se logró demostrar el objetivo principal que es determinar la constante de elasticidad k de un resorte utilizando el método experimental de la ley de Hooke. A través del uso de una porta masa, se fueron agregando distintas masas al resorte y se midió la deformación correspondiente. Los datos recolectados demostraron que la fuerza ejercida por las masas es directamente proporcional a la deformación del resorte, lo que concuerda con la ley de Hooke, la cual establece que la fuerza aplicada a un resorte es proporcional a la deformación que sufre es decir que a mayor masa mayor deformación tendrá el muelle o el resorte.

Bibliografía

Zapata, F. (2020, 25 de mayo). Ley de Hooke: fórmulas, ejemplos, aplicaciones, ejercicios.

Lifeder. Recuperado de https://www.lifeder.com/ley-de-hooke/

Fernández, J. (2021, 22 de marzo). Ley de Hooke. Fisicalab. Recuperado de

https://www.fisicalab.com/apartado/como-medir-fuerzas