<u>Задача 9-4</u>

Химики изучили состав продуктов реакции металла **X** с веществом **Y** в присутствии различных количеств воды при комнатной температуре. Степень окисления металла **X** в продуктах реакции одинакова во всех опытах. Эксперименты проводили с одинаковыми навесками **X** массой 1.000 г и избытком **Y** в герметичном сосуде. После того, как **X** полностью прореагировал, сосуд слегка подогревали для полного выделения газов из жидкой реакционной смеси, а затем из газовой фазы отбирали пробы, которые анализировали. Во всех экспериментах было установлено наличие трех газообразных продуктов реакции **A**, **B**, **C**, состоящих из одних и тех же двух элементов, смесь газов окрашена. Массы этих продуктов в сосуде после окончания каждого эксперимента приведены в таблице.

	$m(\mathbf{A})$, $M\Gamma$	<i>m</i> (B), мг	$m(\mathbf{C}), \mathbf{M}\Gamma$
Эксперимент 1	37.4	176.8	209.1
Эксперимент 2	24.7	89.3	253.3
Эксперимент 3	10.2	382.5	214.2

Вопросы:

- 1. Определите элементы, входящие в состав газообразных продуктов, и формулу вещества **Y**.
- 2. Определите формулы соединений А, В, С. Ответ подтвердите расчетом.
- 3. В каком из экспериментов было взято минимальное количество воды, а в каком максимальное?
- 4. С помощью расчета определите, какой металл **X** был использован в экспериментах. Запишите уравнения трёх реакций, протекающих в ходе описанных экспериментов, приводящих к образованию **A**, **B** и **C**.
- 5. При использовании вместо \mathbf{X} некоторых других металлов среди продуктов реакции можно обнаружить также газы \mathbf{D} и \mathbf{E} . Приведите их формулы.

Решение задачи 9-4 (автор: Седов И.А.)

- 1. Хорошо известно, что металлы вступают в реакцию с кислотами с образованием газов. Образование трех разных газов, состоящих из одной и той же пары элементов, говорит в пользу того, что речь идет об азотной кислоте HNO₃ (Y) и оксидах азота NO₂, NO и N₂O (N₂O₃ в описанных условиях разлагается).
- **2.** Запишем уравнения реакций произвольного металла **M** с азотной кислотой с образованием каждого из трех газов:

$$M + 2n HNO_3 = M(NO_3)_n + nNO_2 + nH_2O$$

$$3 M + 4n HNO_3 = 3 M(NO_3)_n + nNO + 2n H_2O$$

$$8 M + 10n HNO_3 = 8 M(NO_3)_n + nN_2O + 5n H_2O$$

Во всех трех опытах использовалось одинаковое количество металла, а значит, должна принимать одинаковые значения следующая величина (количество эквивалентов металла):

$$nv(M) = v(NO_2) + 3v(NO) + 8v(N_2O) = \frac{1}{46}m(NO_2) + \frac{3}{30}m(NO) + \frac{8}{44}m(N_2O)$$

Теперь можно определить, под какой буквой скрывается каждый из газов. Заметим, что масса газа ${\bf B}$ сильно меняется (по сравнению с другими двумя газами) от второго эксперимента к третьему. Значит, ему соответствует минимальный коэффициент в вышеприведенной сумме, т.е. ${\bf B}-{\rm NO}_2$. Чтобы определить ${\bf A}$ и ${\bf C}$, вычислим значения nv(M) для обоих вариантов отнесения:

1)
$$A - N_2O$$
, $C - NO$:

	$\frac{1}{46}m(NO_2) + \frac{3}{30}m(NO) + \frac{8}{44}m(N_2O)$, ммоль
Эксперимент 1	31.6
Эксперимент 2	31.8
Эксперимент 3	31.6

2) A – NO, C – N_2O :

	$\frac{1}{46}m(NO_2) + \frac{3}{30}m(NO) + \frac{8}{44}m(N_2O)$, ммоль
Эксперимент 1	45.6
Эксперимент 2	50.5
Эксперимент 3	48.3

Очевидно, что результаты сходятся лучше в первом случае. Таким образом, $\mathbf{A} - N_2 O$, $\mathbf{C} - NO$.

- 3. Как известно, концентрированная азотная кислота преимущественно восстанавливается до NO₂, а с понижением ее концентрации выход NO₂ падает. Поэтому эксперимент 3 соответствует минимальному количеству воды, а эксперимент 2 максимальному.
- **4.** Из вышеприведенной таблицы следует, что было взято примерно 31.7 ммоль эквивалентов металла. Это соответствует молярной массе эквивалента1000 / 31.7 = 31.55 г/моль, что ближе всего к эквиваленту меди при n = 2 (31.77 г/моль).

Уравнения реакций:

$$Cu + 4HNO_3 = Cu(NO_3)_2 + 2NO_2 + 2H_2O$$

 $3Cu + 8HNO_3 = 3Cu(NO_3)_2 + 2NO + 4H_2O$
 $4Cu + 10HNO_3 = 4Cu(NO_3)_2 + N_2O + 5H_2O$

5. Эти газы – азот N_2 и водород H_2 .

Система оценивания:

1	За каждый элемент – 1 балл	3 балла
	За формулу Ү – 1 балл	
2	По 2 балла за каждую формулу А, В и С при наличии	6 баллов
	расчёта	
	Без расчёта – 1 балл	
3	Выбор опыта с минимальным и максимальным	1 балл
	содержанием воды	
4	Определение металла – 1 балл	4 балла
	Уравнения реакций $(1-3)$ по 1 баллу	
5	Газы D и E по 0.5 балла	1 балл
	ИТОГО	15 баллов