1

Assignment 1

EE24Btech11036 - Krishna Hanumanth Patil

(Jan 2024)

d) 24

	d) reflexive only				
10)	Let $x = x(t)$ and $y = y(t)$ be the solutions of the diffrential equations $\frac{dx}{dt} + ax = 0$ and $\frac{dy}{dt} + by = 0$ respectively, $a, b \in \mathbb{R}$. Given that $x(0) = 2$, $y(0) = 1$ and $3y(1) = 2x(1)$, the value of t, for which $x(t) = y(t)$ is:				
	x(t) = y(t), is:				(Jan 2024)
	 a) log₃4 b) log_{4/3}2 		c) log ₄ 3 d) log ₂ 2		
11)	1) If $^{n-1}C_r = (k^2 - 8)^n C_{r+1}$, then the range of 'k' is (Jan 2024)				
	a) $k \in (2\sqrt{2}, 3]$ b) $k \in (2\sqrt{2}, 3)$		c) $k \in [2, 3)$ d) $k \in (2\sqrt{2}, 8)$		
12)	If the shortest distance between the lines $\frac{x-4}{1} = \frac{y+1}{2} = \frac{z}{-3}$ and $\frac{x-\lambda}{2} = \frac{y+1}{4} = \frac{z-2}{-5}$, is $\frac{6}{\sqrt{5}}$, then the sum of all possible values of λ is :				
	or an possione variety o				(Jan 2024)
	a) 10	b) 5	c) 8	d) 7	
13)	3) Let $\mathbf{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\mathbf{b} = 3(\hat{i} - \hat{j} + \hat{k})$. Let \mathbf{c} be the vector such that $\mathbf{a} \times \mathbf{c} = \mathbf{b}$ and $\mathbf{a} \cdot \mathbf{c} = 3$. Let is equal to:				
	1				(Jan 2024)
	a) 24	b) 36	c) 32	d) 20	
14)	If A denotes the sum of all the coefficients in the expansion of $(1 - 3x + 10x^2)^n$ and B enotes the sum of all the coefficients in the expansion of $(1 + x^2)^n$, then:				
	sum of all the coefficients in the expansion of ()		$(1 + x^{-})^{n}$, then:		(Jan 2024)
	a) $A = B^3$	b) $A = 3B$	c) $B = A^3$	d) 3A = B	
15)	Consider the line $L: 4x + 5y = 20$. Let two other lines are L_1 and L_2 which trisect the line L and pass through origin, then tangent of angle between lines L_1 and L_2 is				
					(Jan 2024)
	a) $\frac{25}{41}$	b) $\frac{30}{41}$	c) $\frac{2}{5}$	d) $\frac{3}{5}$	

c) 16

9) Let $S = \{1, 2, 3, ..., 10\}$. Suppose M is the set of all subsets of S, the relation $R = \{(A, B) : A \cap B \neq \phi; A, B \in M\}$

a) 36

b) 20

a) symmetric and transitive only

c) symmetric and reflexive only

b) symmetric only