

Image Compression with K-Means Clustering

TOTAL POINTS 7		
1.	K-Means clustering is a supervised learning algorithm.	1 point
	○ True	
	False	
2.	You are tasked with building a model to compress images using k-means clustering. What pre-processing steps should you follow? (Check all that apply.)	1 point
	Normalize the pixels values in the image.	
	Reshape the data to [n_samples * n_features].	
	Convert the images into numerical values.	
3.	For a NumPy array, img , of shape (600, 394, 3), will the code in both blocks below return an array of shape (236400, 3)? Why or why not?	2 points
	1 ing = ing.reshape(640 * 394, 3) 2 ing.shape	
	1 ing = ing.reshape(·1, 3)	
	2 ing.shape	
	 Maybe. The shape dimension of -1 introduces randomness. The shape returned may sometimes be (3, 3), and at other times be (236400, 3). 	
	No. The shape dimension -1 means the rightmost shape dimension is chosen from the original array. The second code block will return an array of shape (3, 3).	
	Yes. Since one shape dimension is -1, the value is inferred from the length of the array and the remaining dimensions.	
4.	Which of the following options allows you to define a function and interact with it in a single shot?	1 point
	<pre>1 @interact 2 * def func(a=True, b=1.0):</pre>	
	3 return (a, b)	
	1 * def func(a=True, b=1.0): 2 return ('interact(a), interact(b))	
5.	In terms of computation time, is scikit-learn's implementation of MiniBatchKMeans faster, slower, or the same compared to KMeans?	1 point
	The same.	
	Faster.	
	Slower.	
	O Slower.	
6.	What is the distance metric used in the standard implementation of k-means to calculate the cluster	1 point
	assignments?	
	Manhattan Distance.	
	Euclidean Distance.	
	Cosine Similarity.	
	I understand that submitting work that isn't my own may result in permanent failure of this course or	6 P P
	deactivation of my Coursera account. Learn more about Coursera's Honor Code	
	Akhil Rao	

Save

Submit