II. AMENDMENTS TO THE CLAIMS

1. (Previously Amended) A compound of formula I:

I

wherein

 R^2 is hydrogen or a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$; R^3 is $-OR^c$, $-NR^cR^c$, $-O-R^a-Y-R^b-(Z)_x$, $-NR^c-R^a-Y-R^b-(Z)_x$, $-NR^cR^c$, or $-O-R^c$;

 R^4 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$;

 R^5 is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-NR^cR^c$ and $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x$;

 R^6 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$, or R^5 and R^6 can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$;

 R^7 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, and $-C(O)R^d$;

R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R° is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; or R⁸ and R¹⁰ are joined to form -Ar¹-O-Ar²-, where Ar¹ and Ar² are independently arylene or heteroarylene;

R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted cycloalkyl, cycloalkyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl,

substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

 R^{12} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{11} and R^{12} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

R¹³ is selected from the group consisting of hydrogen or -OR¹⁴;

R¹⁴ is selected from hydrogen, -C(O)R^d and a saccharide group;

 R^{15} is hydrogen or $-R^a-Y-R^b-(Z)_x$;

R¹⁶ is hydrogen or methyl;

R¹⁷ is hydrogen, alkyl or substituted alkyl;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and -C(O)R^d;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

Re is a saccharide group;

W is selected from the group consisting of -SR°, -S-S-Rd, -NR°R°, -S(O)Rd, -SO₂Rd, -NR°C(O)Rd, -OSO₂Rd, -OC(O)Rd, -NR°SO₂Rd, -C(O)NR°R°, -C(O)OR°, -C(NR°)OR°, -SO₂NR°R°, -SO₂OR°, -P(O)(OR°)₂, -P(O)(OR°)NR°R°, -OP(O)(OR°)₂, -OP(O)(OR°)NR°R°, -OC(O)ORd, -NR°C(O)ORd, -NR°C(O)NR°R°, -OC(O)NR°R°, -NR°SO₂NR°R°; -N*(R°)=CR°R°, -N=P(Rd)₃, -N*(Rd)₃, -P*(Rd)₃, -C(S)ORd, and -C(S)SRd; X¹, X² and X³ are independently selected from hydrogen or chloro; each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-, -NR°-, -S(O)-, -SO₂-, -NR°C(O)-, -OSO₂-, -OC(O)-, -NR°SO₂-, -C(O)NR°-, -C(O)O-, -SO₂NR°-, -SO₂O-, -P(O)(OR°)O-, -P(O)(OR°)NR°-, -OP(O)(OR°)O-, -OP(O)(OR°)NR°-, -OC(O)O-, -NR°C(O)O-, -NR°C(O)NR°-, -OC(O)NR°- and -NR°SO₂NR°-;

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

 $n ext{ is } 0, 1 ext{ or } 2;$

x is 1 or 2;

and pharmaceutically acceptable salts, stereoisomers and prodrugs thereof; provided that at least one of R^{15} , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 or R^{12} has a substituent of the formula $-R^a-Y-R^b-(Z)_x$;

and further provided that:

- (i) when Y is -NR^c-, R^c is alkyl of 1 to 4 carbon atoms, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (ii) when Y is -C(O)NR^c-, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (iii) when Y is sulfur, Z is hydrogen and R^b is alkylene, then R^b contains at least 7 carbon atoms; and

- (iv) when Y is oxygen, Z is hydrogen and R^b is alkylene, then R^b contains at least 11 carbon atoms.
 - 2. (Original) The compound of Claim 1, wherein R² is hydrogen and R¹³ is -OH.
 - 3. (Original) The compound of Claim 2, wherein R⁴, R⁶ and R⁷ are each hydrogen.
 - 4. (Original) The compound of Claim 3, wherein R⁸ is -CH₂C(O)NH₂.
- 5. (Original) The compound of Claim 4, wherein R⁹ is hydrogen; R¹⁰ is isobutyl; R¹¹ is methyl; and R¹² is hydrogen.
- 6. (Original) The compound of Claim 5, wherein R⁵ is hydrogen, -CH₂-NHR^c, -CH₂-NR^cR^c and -CH₂-NH-R^a-Y-R^b-(Z)_x.
 - 7. (Original) The compound of Claim 6, wherein R³ is -OR^c or -NR^cR^c.
 - 8. (Original) The compound of Claim 7, wherein R³ is -OH and R⁵ is hydrogen.
 - 9. (Original) The compound of Claim 8, wherein R^{15} is $-R^a-Y-R^b-(Z)_x$.

10. (Previously Amended) A compound of formula II:

II

wherein

 R^{15} is hydrogen or $-R^a-Y-R^b-(Z)_x$;

R¹⁶ is hydrogen or methyl;

 R^{22} is $-OR^{c}$, $-NR^{c}R^{c}$, $-O-R^{a}-Y-R^{b}-(Z)_{x}$ or $-NR^{c}-R^{a}-Y-R^{b}-(Z)_{x}$;

R²³ is selected from the group consisting of hydrogen, halo, -CH(R^c)-NR^cR^c,

-CH(R^c)- R^c and -CH(R^c)- NR^c - R^a -Y- R^b -(Z)_x;

R²⁴ is selected from the group consisting of hydrogen and lower alkyl;

R²⁵ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl,

substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R²⁶ is selected from the group consisting of hydrogen and lower alkyl; or R²⁵ and R²⁶ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

 R^{27} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{26} and R^{27} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and -C(O)R^d;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R° is an aminosaccharide group;

W is selected from the group consisting of -SR°, -S-S-R^d, -NR°R°, -S(O)R^d, -SO₂R^d, -NR°C(O)R^d, -OSO₂R^d, -OC(O)R^d, -NR°SO₂R^d, -C(O)NR°R°, -C(O)OR°, -C(NR°)OR°, -SO₂NR°R°, -SO₂OR°, -P(O)(OR°)₂, -P(O)(OR°)NR°R°, -OP(O)(OR°)₂, -OP(O)(OR°)NR°R°, -OC(O)OR^d, -NR°C(O)OR^d, -NR°C(O)NR°R°, -OC(O)NR°R°, -NR°SO₂NR°R°;

 $-N^{+}(R^{c}) = CR^{c}R^{c}, -N = P(R^{d})_{3}, -N^{+}(R^{d})_{3}, -P^{+}(R^{d})_{3}, -C(S)OR^{d}, \text{ and } -C(S)SR^{d};$ each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-, $-NR^{c}-$, -S(O)-, $-SO_{2}-$, $-NR^{c}C(O)-$, $-OSO_{2}-$, -OC(O)-, $-NR^{c}SO_{2}-$, $-C(O)NR^{c}-$, -C(O)O-, $-SO_{2}NR^{c}-$, $-SO_{2}O-$, $-P(O)(OR^{c})O-$, $-P(O)(OR^{c})NR^{c}-$, $-OP(O)(OR^{c})NR^{c}-$, -OC(O)O-, $-NR^{c}C(O)O-$, $-NR^{c}C(O)NR^{c}-$, $-OC(O)NR^{c}-$ and $-NR^{c}SO_{2}NR^{c}-$;

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

n is 0, 1 or 2;

x is 1 or 2;

and pharmaceutically acceptable salts, stereoisomers and prodrugs thereof; provided that at least one of R¹⁵, R²², R²³ or R²⁷ has a substituent of the formula -R^a-Y-R^b-(Z),;

and further provided that:

- (i) when Y is $-NR^c-$, R^c is alkyl of 1 to 4 carbon atoms, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (ii) when Y is -C(O)NR^c-, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (iii) when Y is sulfur, Z is hydrogen and R^b is alkylene, then R^b contains at least 7 carbon atoms; and
- (iv) when Y is oxygen, Z is hydrogen and R^b is alkylene, then R^b contains at least 11 carbon atoms.
- 11. (Original) The compound of Claim 10, wherein R^{24} is hydrogen; R^{25} is isobutyl; R^{26} is methyl; and R^{27} is hydrogen.

- 12. (Original) The compound of Claim 11, wherein R²² is -OH.
- 13. (Original) The compound of Claim 12, wherein R²³ is hydrogen.
- 14. (Original) The compound of Claim 13, wherein R¹⁵ is $-R^a Y R^b (Z)_x$.
- 15. (Original) The compound of Claim 9 or 14, wherein W is -NH₂.
- 16. (Original) The compound of Claim 15, wherein the $-R^a-Y-R^b-(Z)_x$ group is selected from the group consisting of:

```
-CH2CH2-NH-(CH2)2CH3;
```

 $-CH_2CH_2CH_2-NH-(CH_2)_8CH_3;$

-CH,CH,CH,CH,2CH,2-NH-(CH,2),CH,3;

-CH₂CH₂-NHSO₂-(CH₂)₉CH₃;

-CH₂CH₂-NHSO₂-(CH₂)₁₁CH₃;

 $-CH_2CH_2-S-(CH_2)_8CH_3;$

-CH2CH2-S-(CH2)9CH3;

-CH₂CH₂-S-(CH₂)₁₀CH₃;

-CH,CH,CH,-S-(CH,),CH,;

-CH₂CH₂CH₃-S-(CH₂)₉CH₃;

-CH₂CH₂CH₂-S-(CH₂)₃-CH=CH-(CH₂)₄CH₃ (trans);

-CH₂CH₂CH₂-S-(CH₂)₂CH₃;

 $-CH_2CH_2-S(O)-(CH_2)_9CH_3;$

-CH₂CH₂-S-(CH₂)₆Ph;

-CH₂CH₂-S-(CH₂)₈Ph;

-CH2CH2CH2-S-(CH2)8Ph;

 $- CH_2CH_2 - NH - CH_2 - 4 - (4 - Cl - Ph) - Ph; \\ - CH_2CH_2 - NH - CH_2 - 4 - [4 - CH_3)_2CHCH_2 -] - Ph; \\ - CH_2CH_2 - NH - CH_2 - 4 - (4 - CF_3 - Ph) - Ph; \\ - CH_2CH_2 - S - CH_2 - 4 - (4 - Cl - Ph) - Ph; \\ - CH_2CH_2 - S(O) - CH_2 - 4 - (4 - Cl - Ph) - Ph; \\ - CH_2CH_2CH_2 - S - CH_2 - 4 - (4 - Cl - Ph) - Ph; \\ - CH_2CH_2CH_2 - S(O) - CH_2 - 4 - (4 - Cl - Ph) - Ph; \\ - CH_2CH_2CH_2 - S - CH_2 - 4 - [3, 4 - di - Cl - Ph CH_2O -) - Ph; \\ - CH_2CH_2CH_2 - NHSO_2 - CH_2 - 4 - [4 - (4 - Ph) - Ph] - Ph; \\ - CH_2CH_2CH_2 - NHSO_2 - CH_2 - 4 - (4 - Cl - Ph) - Ph; \\ - CH_2CH_2CH_2 - NHSO_2 - CH_2 - 4 - (4 - Cl - Ph) - Ph; \\ - CH_2CH_2CH_2 - NHSO_2 - CH_2 - 4 - (Ph - C \cong C -) - Ph; \\ - CH_2CH_2CH_2 - NHSO_2 - 4 - (4 - Cl - Ph) - Ph; and$

-CH₂CH₂-NHSO₂-4-(naphth-2-yl)-Ph.

- BI
- 17. (Currently Amended) A pharmaceutical composition comprising a pharmaceutically-acceptable carrier and a therapeutically effective amount of a compound of Claim 1 or 10.
- 18. (Currently Amended) The A pharmaceutical composition of Claim 17, wherein the composition further comprises comprising a pharmaceutically-acceptable carrier and a cyclodextrin in combination with a compound of Claim 1 or 10.
 - 19. (Canceled).

20. (Currently Amended) A compound as shown in any of Tables I; II, III or IV, of

formula III:

Щ

or a pharmaceutically-acceptable salts salt thereof; wherein:

W is $-NH_2$;

R¹⁷ is hydrogen;

R²² is -OH; and

R¹⁵ is selected from the group consisting of:

 $-CH_2CH_2-NH-(CH_2)_2CH_3$;

-CH,CH,-N[(CH,),CH3];

-CH,CH,-NH-(CH,),CH3;

-CH,CH,-NH-(CH,),CH3;

-CH₂CH₂-NH-CH₂Ph;

-CH₂CH₂-NH-CH₂-4-Ph-Ph;

-CH,CH,-NH-CH,-4-(4-Cl-Ph)-Ph;

 $-CH_2CH_2-NH-(CH_2)_8CH_3$;

-CH,CH,-NH-CH,-cyclohexyl;

 $-CH_2CH_2-NH-(CH_2)_8CH_3$;

-CH,CH,CH,CH,-NH-(CH,),CH;

-CH₂CH₂CH₂CH₂CH₂-NH-(CH₂)₆CH₃:

 $-CH_2CH_3-N(CH_3)-(CH_3)_0CH_3$;

-CH,CH,-NH-(CH₂),CH=CH(CH₂),CH₃ (trans);

 $-CH_2CH_2-NH-CH_2CH=C(CH_3)(CH_2)_2-CH=C(CH_3)_2$ (trans, trans);

-CH₂CH₂-NH-(CH₂)₈CH(OH)CH₃:

 $-CH_2CH_3-NH-(CH_2)_8CH=CH_2$;

-CH₂CH₂-NH-CH₂-cyclopropyl;

-CH₂CH₂-NHC(O)-(CH₂)₆CH(CH₃)CH₃;

 $-CH_2CH_3-NHC(O)-(CH_2)_6CH_3$;

 $-CH_2CH_2-OC(O)-(CH_2)_8CH_3$;

 $-CH_2-C(O)O-(CH_2)_9CH_3$;

 $-CH_2-C(O)NH-(CH_2)_0CH_3$;

 $-CH_2-C(O)O-(CH_2)_2CH_3$

-CH₂CH₂-NHSO₂-(CH₂)₇CH₃:

Park

- -CH2CH2-OSO2-(CH2)2CH3;
- $-CH_2CH_2-S-(CH_2)_9CH_3$;
- $-CH_2CH_2-NHC(O)-(CH_2)_6CH_3$;
- -CH₂CH₂-NHC(O)-(CH₂)₇CH₃:
- $-CH_2CH_2-NHC(O)-(CH_2)_9CH_3$;
- $-CH_2-C(O)NH-(CH_2)_{\epsilon}CH_{3}$
- -CH₂-C(O)NH-(CH₂)₇CH₃:
- $-CH_2-C(O)NH-(CH_2)_{\mathfrak{g}}CH_{\mathfrak{g}}$:
- $-CH_2CH_2-NH-(CH_2)_6Ph;$
- -CH₂CH₂-NH-(CH₂)₈Ph;
- -CH,CH,-NH-CH,Ph;
- -CH₂CH₂-NH-CH₂-4-Cl-Ph;
- -CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₂O-]Ph;
- -CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₄O-]Ph;
- -CH,CH,-NH-CH,-4-[CH,(CH,),O-]Ph;
- $-CH_{2}CH_{2}-NH-CH_{2}-4-[CH_{3}(CH_{2})_{8}O-]Ph;$
- -CH₂CH₂-NH-CH₂-4-[CH₂(CH₂)₂-]Ph;
- -CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₃-]Ph;
- -CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₄-]Ph;
- -CH₂CH₂-NH-CH₂-4-(PhO-)Ph;
- -CH₂CH₂-NH-CH₂-4-(PhS-)Ph;
- -CH,CH,-NH-CH,-3-(PhO-)Ph;
- -CH,CH,-NH-CH,-4-(cyclohexyl-)Ph;
- -CH₂CH₂-NH-CH₂-4-{4-[CH₂(CH₂)₄O-]-Ph}-Ph;
- -CH₂CH₂-NH-CH₂-4-CF₃-Ph;
- -CH₂CH₂-NH-CH₂-4-(PhCH₂O-)Ph;

- -CH,CH,-NH-CH,-4-(4-CH₃-PhCH₂O-)Ph;
- -CH₂CH₂-NH-(CH₂)₂CH(CH₃)₂:
- -(CH₂)₅-NH-(CH₂)₆CH₃;
- $-(CH_2)_3-NH-(CH_2)_9CH_3$:
- -(CH₂)₄-NH-(CH₂)₉CH₃;
- -(CH₂)₅-NH-(CH₂)₉CH₃;
- -CH₂CH₂-NH-(CH₂)₇CH₃;
- -CH2CH2-NH-CH2-cyclohexyl;
- -CH,CH,-S-(CH,),CH3;
- -CH,CH,-OC(O)-(CH₂)₆CH₃;
- -CH₂CH₂-NHSO₂-(CH₂)₂CH₃:
- -CH,CH,-OSO,-(CH,),CH3;
- -CH₂CH₂-NH-CH₂CH=CH-CH=CH(CH₂)₄CH₃ (trans. trans);
- -CH₂CH₂-NH-CH₂CH=CH-CH=CH(CH₂)₃CH₃ (trans. trans);
- -CH2CH3-NH-CH3CH=CH-CH=CHCH3CH3 (trans, trans);
- -CH2CH2-NH-CH2CH=CH-CH3CH2CH=CHCH3CH3 (trans, trans);
- -CH₂CH₂-NH-CH₂-4-Cl-Ph;
- -CH₂CH₂-NH-CH₂-4-(PhCH₂O-)Ph;
- -CH2CH2-NH-CH2-4-(4-CH2-PhCH2O-)Ph;
- -CH₂CH₂-NH-CH₂-4-(4-Cl-PhCH₂O-)Ph;
- -CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₂O-]Ph;
- -CH2CH2-NH-CH2-4-[CH3(CH2)4O-]Ph;
- -CH2CH2-NH-CH2-4-[CH3(CH2)60-]Ph;
- -CH₂CH₂-NH-CH₂-4-[CH₃(CH₂)₈O-]Ph;
- -CH₂CH₂-NH-CH₂-4-[(CH₃)₂CHCH₂-]Ph;
- -CH₂CH₂-NH-CH₂-4-(Ph-S-)Ph;

- -CH₂CH₂-NH-CH₂-4-(4-CF₃-Ph)-Ph:
- -CH₂CH₂-NH-CH₂-4-{4-[CH₂(CH₂)₄O-]-Ph}-Ph;
- -CH₂CH₂-NH-(CH₂)₆Ph;
- -CH,CH,-NH-(CH,),Ph;
- -CH₂CH₂-NH-CH₂CH₂-(cyclopropyl);
- $-CH_2-C(O)O-(CH_2)_7CH_3$;
- -CH2CH3-NH-CH2CH-CH-CH-CHCH3 (trans, trans);
- -CH2CH2-NHSO2-4-Ph-Ph;
- -CH,CH,-N(C(O)CH,NHCH,)-(CH,),CH,;
- -CH,CH,-N(C(O)CH,)-(CH,),CH3;
- -CH,CH,-S(O)-(CH,),CH,;
- -CH₂CH₂-N(CH₂COOH)-(CH₂)₂CH₂:
- -CH₂CH₂-NHSO₂-4-(4-Cl-Ph)-Ph;
- -CH₂CH₂-N(CH₂CO₂CH₃)-(CH₂)₉CH₃;
- $-CH_2-C(O)O-CH_2CH_3$;
- $-CH_2CH_2-S(O)-(CH_2)_7CH_3$;
- -CH,CH,-NHSO,-3-(4-Cl-Ph)-Ph;
- -CH2CH2-NHSO2-(CH2)2CH3;
- -CH₂CH₂CH₂-NHSO₂-4-(4-Cl-Ph)-Ph;
- -CH,CH,-NHSO,-4-(naphth-2-yl)-Ph;
- -CH₂CH₂-NH-(CH₂)₁₁CH₃;
- -CH,CH,-N(C(O)CH(NH,)(CH,),NH,]-(CH,),CH, (R isomer);
- -CH₂CH₂-NH-CH₂-4-(4-CF₃-Ph)-Ph;
- -CH,CH, CH,-NH-CH,-4-(4-CH,O-Ph)-Ph;
- -CH,CH,-NH-CH,-4-[(CH,),CO]-Ph;
- -CH₂CH₂-NH-CH₂-3,4-di-(CH₃CH₂O)-Ph;

- -CH2CH2-NH-CH2-4-[(CH2)2CH]-Ph;
- $-CH_{2}CH_{3}-NH-CH_{3}-4-[CH_{3}(CH_{3})_{3}C = C]-Ph_{3}$
- -CH,CH,-NH-CH,-4-[(CH,),CHO]-Ph;
- $-CH_2CH_2-NH-CH_3-4-(PhC \equiv C)-Ph;$
- $-CH_2CH_3-NH-CH_2-4-[(CH_3)_3C]-Ph_3$
- $-CH_2CH_2-NH-CH_2-5-(PhC=C)-thiophen-2-yl;$
- -CH,CH,-NH-CH,-4-(PhCH=CH-)Ph (trans);
- -CH₂CH₂-NH-CH₂-(CH=CH)₄-CH₃ (trans, trans, trans, trans);
- $-CH_2CH_2-N(C(O)Ph)-(CH_2)_9CH_3;$
- -CH₂CH₂-NH-CH₂-4-[4-(CH₂)₂C-thiazol-2-yl]-Ph;
- $-CH_2CH_3-N[(CH_3)_2CH_3]-C(O)CH_3-S-4-pyridyl;$
- $-CH_2CH_2-N[(CH_2)_0CH_2]-C(O)-2-[PhCH(CH_2)NHC(O)-]Ph$ (R isomer);
- -CH₂CH₂-N[(CH₂)₉CH₃]-C(O)-(1-PhCH₂QC(O)-2-oxoimidazolidin-5-yl) (S isomer);
- -CH₂CH₂-N[(CH₂)₂CH₃]-C(O)-1-HO-cyclopropyl;
- $-CH_2CH_2-N(C(O)CH_2-naphth-2-yl)-(CH_2)_9CH_3$;
- -CH,CH,-N[C(O)(CH,),CH,OH]-(CH,),CH₃;
- -CH₂CH₂-N[C(O)CH₂(OCH₂CH₂),OCH₃]-(CH₂),CH₃;
- -CH₂CH₂-N[C(O)CH₂CH(Ph)₂]-(CH₂)₆CH₃;
- -CH2CH2-N(C(O)CH2-3-HO-Ph)-(CH2)9CH3;
- -CH₂-N(C(O)CH₂-NHC(O)-3-CH₂-Ph)-(CH₂)₉CH₃;
- -CH2CH2-N(C(O)CH2CH2-O-Ph)-(CH2)0CH2;
- -CH,CH,-N(C(O)CH,CH,-3-pyridyl)-(CH,),CH;
- -CH₂CH₂-N(C(O)(CH₂)₃-4-CH₃O-Ph)-(CH₂)₉CH₃;
- $-CH_2CH_2-N(C(O)-indol-2-yl)-(CH_2)_0CH_3;$
- $-CH_2CH_3-N\{C(O)-1-[CH_2COC(O)-]-pyrrolidin-2-yl\}-(CH_2)_0CH_3$:
- CH₂CH₂-N(C(O)CH₂-NHC(O)-CH=CH-furan-2-yl)-(CH₂)₂CH₃ (trans);

- -CH2CH2-N[C(O)-1-CH2CH2-7-CH2-4-oxo-1,4-dihydro[1,8]naphthyridin-3-yl]-(CH2)2CH3:
- $-CH_2CH_3-N(C(O)-1,3-benzodioxol-5-yl)-(CH_3)_0CH_3$:
- -CH₂CH₂-N(C(O)CH₂-4-oxo-2-thiooxothiazolidin-3-yl)-(CH₂)₉CH₃:
- $-CH_2CH_2-N(C(O)-3,4,5-tri-HO-cyclohex-1-en-1-yl)-(CH_2)_0CH_3$ (R.S.R isomer);
- -CH,CH,-N(C(O)CH,CH,C(O)NH,)-(CH,),CH,;
- -CH₂CH₂-N(C(O)CH₂-5-CH₂-2,4-dioxo-3,4-dihydropyrimidin-1-yl)-(CH₂)₂CH₃:
- $-CH_2CH_3 N(C(O)CH = CH_2) (CH_2)_0 (CH_2)_0$
- $-CH_2CH_2-N[C(O)CH(CH_2CH_2C(O)NH_2)-NHC(O)O-CH_2Ph]-(CH_2)_6CH_3$ (S isomer);
- -CH₂CH₂-N[C(O)CH(CH₂OH)NHC(O)O-CH₂Ph]-(CH₂)₆CH₃ (S isomer);
- $-CH_2CH_3-N[C(O)CH[CH(OH)CH_3]NH-C(O)O-CH_2Ph]-(CH_2)_0CH_3 (S isomer);$
- $-CH_2CH_2-N(C(O)CH_2NHSO_2-4-CH_3-Ph)-(CH_2)_9CH_3$;
- -CH2CH2-N(C(O)(CH2)2-NH2)-(CH2)2CH33
- -CH₂CH₂-N(C(O)-pyrrolidin-2-yl)-(CH₂)₂CH₃ (R isomer);
- -CH₂CH₂-N(C(O)-pyrrolidin-2-yl)-(CH₂)₂CH₃ (S isomer);
- $-CH_1CH_2-N(C(O)CH(NH_2)(CH_2)_2-NH_2)-(CH_2)_2CH_2$ (S isomer);
- $-CH_2CH_2-N(C(O)CH(NH_2)CH_2-3-HO-Ph)-(CH_2)_0CH_3$;
- $-CH_2CH_2-N(C(O)CH(NH_2)CH_3)-(CH_2)_0CH_3$ (R isomer);
- -CH,CH,-N[C(O)CH(CH,OH)NHC(O)-CH₁]-(CH₂)₀CH₃ (S isomer);
- $-CH_2CH_3-N[C(O)CH(NHC(O)CH_3)-(CH_2)_3-NHC(NH)NH_3]-(CH_2)_3CH_3$ (S isomer);
- -CH,CH,-N(C(O)CH,NHC(O)CH,)-(CH,),CH,;
- -CH₂CH₂-N(C(O)CH(CH₂)OC(O)CH-(NH₂)-(CH₂)₀CH₃ (R,R isomer);
- -- CH₂CH₂-N(C(O)-5-oxopyrrolidin-2-yl)-(CH₂)₂CH₃ (R isomer);
- -CH₂CH₂-NHC(O)-CH₂CH(CH₂CH₂Ph)-{3-[4-(9H-fluroen-9-ylCH₂OC(O)NH(CH₂)₄-]-1,4-dioxohexahydro-1,2-α-pyrazin-2-yl} (S,S,S isomer);
- -CH2CH2-NHSO2-4-(2-Cl-Ph)-Ph;
- -CH₂CH₂-NHSO₂-4-[4-(CH₂)₂C-Ph]-Ph;

- -CH2CH2-NHSO2-4-[4-(Ph)-Ph-]Ph;
- -CH,CH,-NH-4-(4-CF₃-Ph)-Ph;
- $-CH_2CH_2-S-(CH_2)_{\circ}Ph_{\circ}$
- -CH₂CH₂-S-(CH₂)₃CH=CH(CH₂)₄CH₃ (trans);
- $-CH_2CH_3-S-CH_2CH_3(CF_2)_5CF_3$;
- -CH,CH,-S-CH,-4-[(CH,),CHCH,-]Ph;
- -CH₂CH₂-S-(CH₂)₁₁CH₃;
- $-CH_2CH_2-S-(CH_2)_8CH_3$;
- -CH2CH2-S-CH2-3.4-di-(PhCH2O-)Ph;
- $-CH_2CH_2-S-(CH_2)_8Ph;$
- $-CH_2CH_3-S-(CH_2)_9CH_3$:
- -CH,CH,CH,-S-(CH₂),CH₃;
- -CH₂CH₂CH₂-S-(CH₂)₆Ph;
- -CH₂CH₂CH₂CH₂-S-(CH₂)₇CH₃;
- $-CH_2CH_2-S-(CH_2)_2Ph$;
- $-CH_2CH_2-S-(CH_2)_{10}Ph$;
- -CH₂CH₂-S-CH₂-4-[(CH₃)₂CHCH₂-]Ph;
- $-CH_2CH_2-S-(CH_2)_3CH=CH(CH_2)_4CH_3$ (trans):
- -CH₂CH₂-S-CH₂-4-[3,4-di-Cl-PhCH₂O-]Ph;
- -CH,CH,CH,-S-CH,-4-[3,4-di-Cl-PhCH,O-]Ph;
- -CH₂CH₂-SO-4-(4-Cl-Ph)-Ph;
- -CH₂CH₂-SO-4-(4-Cl-Ph)-Ph;
- $-CH_2CH_2-S-(CH_2)_{10}CH_3$;
- $-CH_2CH_2-S-(CH_2)_{10}CH_3$;
- -CH₂CH₂CH₂-S-CH₂-4-[CH₃(CH₂)₄O-]Ph;
- -CH2CH2CH2-S-CH2CH=CH-CH=CH(CH2),CH3 (trans, trans);

-CH2CH2-S-CH2-4-[4-Cl-PhCH2O-]Ph;

-CH₂CH₂CH₂-S-CH₂-4-[4-Cl-PhCH₂O-]Ph;

-CH,CH,CH,-S-CH,-4-(4-CF3-Ph-)Ph;

-CH2CH2CH2-S-CH2-4-(4-F-PhSO2NH-)Ph;

-CH,CH,CH,-S-(CH₂)₈CH₃;

-CH2CH2CH2-S(O)-(CH2)6Ph;

 $-CH_2CH_2-S(O)-(CH_2)_8Ph;$

-CH₂CH₂-S-(CH₂)₃-4-Cl-Ph;

-CH₂CH₂-S-(CH₂)₆-4-Cl-Ph; and

 $-CH_2CH_2-SO_2-(CH_2)_9CH_3$.

21. (Canceled).