

Outline

- Gas Technology (TEP4185)
- The gas value chain
- Digital tools in teaching and for problem solving
- NeqSim an open source process simulation tool developed at NTNU
- From a live process simulator to a process digital twin
- Future gas value chains

Gas Technology (TEP4185)

- Thermodynamics
- Process simulation
- Gas value chain
- Gas processing
- Power generation
- Hydrogen production
- CO₂ capture
- Cryogenic gas processing

Date	Gas Technol Time	Туре	Topic	Updated 07.11.2022 Lecturer	Place
23.aug	10:15-12:00	Exercise	No exercise		R91
24.aug	13:15-16:00	Lecture	Information/outline/motivation Course outline and practical information	LN/ES/GM	EL1
26.aug	08:15-10:00	Digital exercise	No exercise		Blackbo
30.aug	10:15-12:00	Exercise	Python exercise P1	Vit.ass.	R91
31.aug	13:15-16:00	Lecture	Thermodynamics for gas technology Engineering thermodynamics important for gas technology	ES/LN	EL1
02.sep	08:15-10:00	Digital exercise	Python exercise P1	Vit.ass.	Blackbo
06.sep	10:15-12:00	Exercise	Computer Exercise CE1 - Getting started with HYSYS	Video, stud.ass.	R91
07.sep	13:15-16:00	Lecture	Process simulation primer Process modeling and simulation	LN/ES	EL1
09.sep	08:15-10:00	Digital exercise	Intro to exercise CE2 - Gas processing	ES	Blackbo
13.sep	10:15-12:00	Exercise	CE2 - Gas processing	Stud.ass.	R91
14.sep	13:15-16:00	Lecture	Gas Processing Gas value chain	ES	EL1
16.sep	08:15-10:00	Digital exercise	CE2 - Gas processing	Stud.ass.	Blackbo
20.sep	10:15-12:00	Exercise	CE2 - Gas processing	Stud.ass.	R91
21.sep	13:15-16:00	Lecture	Gas Processing Offshore processes	ES	EL1
23.sep	08:15-10:00	Digital exercise	CE2 - Gas processing	Stud.ass.	Blackb
27.sep	10:15-12:00	Exercise	CE2 - Gas processing	Stud.ass.	R91
28.sep	13:15-16:00	Lecture	Gas Processing Onshore processes	ES	EL1
30.sep	08:15-10:00	Digital exercise	CE2 - Gas processing	Stud.ass.	Blackb
04.okt	10:15-12:00	Exercise	CE2 - Gas processing	Stud.ass.	R91
05.okt	13:15-16:00	Lecture	Hydrogen production Overview and focus on reforming of natural gas	GM	EL1
07.okt	08:15-11:00	Exercise	CE2 - Gas processing	Stud.ass.	C201
11.okt	Group-wise	Presentation	CE2 - Presentation Gas processing	ES/Vit.ass.	C201
12.okt	13:15-16:00	Lecture	CO ₂ capture Overview and focus on separation of CO2 with chemical absorption	GM	EL1
14.okt	08:15-10:00	Digital exercise	Intro to exercise CE3 - Power generation	Stud.ass.	Blackb
18.okt	10:15-12:00	Exercise	Excercises P2, P3, CE3 - Power generation	Stud.ass.	R91
19.okt	13:15-16:00	Lecture	Power generation Turbomachinery fundamentals	LN	EL1
21.okt	08:15-10:00	Digital exercise	Excercises P2, P3, CE3 - Power generation	Stud.ass.	Blackb
25.okt	10:15-12:00	Exercise	Excercises P2, P3, CE3 - Power generation	Stud.ass.	R91
26.okt	13:15-16:00	Lecture	Power generation Gas turbine off-design operation. Gas turbine performance modeling.	LN	EL1
28.okt	08:15-10:00	Digital exercise	Excercises P2, P3, CE3 - Power generation	Stud.ass.	Blackb
01.nov	10:15-12:00	Exercise	Excercises P2, P3, CE3 - Power generation Power generation	Stud.ass.	R91
02.nov	13:15-16:00	Lecture	Combined cycles	LN	EL1
04.nov	08:15-10:00	Digital exercise	Excercises P2, P3, CE3 - Power generation	Stud.ass.	Blackb
08.nov	10:15-12:00	Exercise	Excercises P2, P3, CE3 - Power generation	Stud.ass.	R91
09.nov	08:15-11:00	Exercise	CE3 - Power generation	Stud.ass.	C201
09.nov	13:15-16:00	Lecture	Cryogenic gas processing	PN	EL1
11.nov	08:15-10:00	Digital exercise	Excercises P2, P3, CE3 - Power generation	Stud.ass.	Blackb
15.nov 16.nov	Group-wise 13:15-16:00	Presentation Lecture	CE3 - Presentation Power generation Spare lecture	LN/Vit.ass.	C201
			•		
18.nov	08:15-10:00	Digital exercise	No exercise		Blackb
22.nov 23.nov	10:15-12:00 13:15-16:00	Exercise	No exercise Summary and Q&A for exam	ES/LN	R91 EL1
25.nov	08:15-10:00	Digital exercise	No exercise		Bla

The Gas Value Chain

Market

Use of digital tools in teaching and for problem solving

- Lectures are recorded via Panopto and available via course homepage in Blackboard (23.11.2022)
- Exercise introduction are done online via Blackboard Collaborate
- Students learn to establish and run process simulations in HYSYS
- Python exercises (P1/CE2)

NeqSim

NeqSim is a library for estimation of behaviour and properties of fluids. NeqSim is available for free use and distributed as open source under the Apache-2.0 licence.

News:

15/04/2022: Version 2.3.3 released

Contact project via email

View the Project on GitHub equinor/negsimhome

NeqSim - an open source process simulation software

NeqSim is a library for calculation of fluid behavior, phase equilibrium and process simulation. NeqSim can be used as a stand-alone tool via Excel or a web interface. It is integrated in computer programs via available interfaces in Java, Python, .NET, Matlab or in process simulators via the Cape Open interface. The basis for NeqSim is fundamental mathematical models related to unit operations, phase behaviour and physical properties of fluids. NeqSim is used for fluids such as oil and gas, carbon dioxide, refrigerants, hydrogen, ammonia, water and chemicals.

The original NeqSim web page is hosted at NTNU

NeqSim project in GitHub

The NeqSim library is written in the Java programming language. The source code and libraries are hosted in GitHub

NeqSim Java

NeqSim toolboxes in GitHub

NeqSim toolboxes are avalable via GitHub for alternative programming languages.

- NeqSim Matlab
- NeqSim Python
- NegSim .NET
- NeqSim Excel/Cape-Open

Use of NeqSim as a process simulator in Python

Introduction to gas processing in Python


```
chokeValve = valve(wellFlowLine.getOutStream())
chokeValve.setOutletPressure(inputdata['firstStagePressure'], 'bara')
feedToOffshoreProcess = stream(chokeValve.getOutStream())
feedToOffshoreProcess.setName("feed to offshore")
firstStageSeparator = separator3phase(feedToOffshoreProcess)
firstStageSeparator.setName("1st stage separator")
oilHeaterFromFirstStage = heater(firstStageSeparator.getOilOutStream())
oilHeaterFromFirstStage.setName("oil heater second stage")
oilHeaterFromFirstStage.setOutTemperature(inputdata['temperatureOilHeater'],'C')
oilThrotValve = valve(oilHeaterFromFirstStage.getOutStream())
oilThrotValve.setName("valve oil from first stage")
oilThrotValve.setOutletPressure(inputdata['secondStagePressure'])
secondStageSeparator = separator3phase(oilThrotValve.getOutStream())
secondStageSeparator.setName("2nd stage separator")
oilThrotValve2 = valve(secondStageSeparator.getOilOutStream())
oilThrotValve2.setName("valve oil from second stage")
```

Figure: Example of a NeqSim Process model in Python

Development of a Live Process Simulator

- 1. Validation of process simulation models
- 2. Tune process model to historic field data
- 3. Implement machine learning to improve the digital twin (hybrid models)
- 4. Company integrates model (API based) into its live monitoring tools

Applications of a live process simulator

- Basis for the process digital twin
- Virtual measurements
- Performance monitoring
- Live energy optimization
- Process maintenance planning
- Data validation and sensor reconciliation

Figure: The Krafla field development

The NeqSim Digital Twin for Gas Processing

Process monitoring of a TEG dehydration process

Blue: process simulator

Orange and purple: instrument1/intrument2

Performance monitoring of heat exchangers

Y-axis: relative performance of heat exchanger

Future gas value chains

