

E. Fluck, A. Riazsadri, J. Feith

Übungsblatt 4 mit Lösungen

Abgabetermin: Mittwoch, der 16. November 2022 um 14:30

E. Fluck, A. Riazsadri, J. Feith

Aufgabe 3 (Satz von Rice)

9(3+3+3) Punkte

Zeigen oder widerlegen Sie, dass die folgenden Sprachen entscheidbar sind. Nutzen Sie dazu den Satz von Rice, falls dieser anwendbar ist und begründen sie andernfalls, warum der Satz nicht anwendbar ist.

- a) $L_1 = \{\langle M \rangle \mid M \text{ h\"alt nicht in weniger als } 2^{|\langle M \rangle|} 1 \text{ Schritten auf } \langle M \rangle \}$
- **b)** $L_2 = \{\langle M \rangle \mid f_M(\langle M \rangle) = 1\}$
- c) $L_3 = \{\langle M \rangle \mid f_M(\langle M' \rangle) = 1 \text{ für alle TMen } M', \text{ die 3 Zustände haben}\}$

Hinweis: Wir erinnern uns an die Definition: $f_M(\langle M' \rangle)$ ist das Ergebnis der Berechnung von M auf der Eingabe $\langle M' \rangle$.

Lösung:			

- a) Der Satz von Rice ist hier nicht anwendbar, da die Sprache nichts über die berechnete Funktion der Turingmaschine aussagt, sondern über nur die Laufzeit. Desweiteren ist die Sprache entscheidbar. Um diese Behauptung zu beweisen, konstruieren wir eine TM M_1 die die Sprache L_1 erkennt. Wenn die Eingabe keine gültige Gödelnummer ist verwirft M_1 . Auf der Eingabe $\langle M \rangle$ berechnet M_1 zuerst $2^{|\langle M \rangle|} 1$ und speichert diese Zahl auf dem Band. Dann simuliert M_1 M auf der Eingabe $\langle M \rangle$ für die berechnete Anzahl Schritte. Wenn die Simulation früher als nach $2^{|\langle M \rangle|} 1$ vielen Schritten hält, verwirft M_1 ansonsten akzeptiert M_1 .
- b) Der Satz von Rice ist hier nicht anwendbar. Angenommen es gäbe ein $\mathcal S$ sodass $L(\mathcal{S}) = L_2$ Um das zu sehen, betrachten wir eine Turingmaschine M, die immer 0 ausgibt, außer die Eingabe ist kürzer als eine Zahl k mit $\langle M \rangle \leq k$, dann soll die Ausgabe 1 sein. Da die Länge einer Gödelnummer quadratisch von der Anzahl der Zustände abhängt, zeigen wir nun dass es eine Konstante k gibt, so dass $|\langle M \rangle| < k$ und M hat die gewünschten Eigenschaften. Auf einer Eingabe w schreibt sich die TM M dazu bin(|w|) auf eine seperate Spur. Um diese Binärzahl mit der konstanten Binärzahl k zu vergleichen benötigt man $O(\log(k))$ viele Zustände. Indem man khinreichend groß wählt, zeigt dies somit die Aussage. Klar ist $\langle M \rangle \in L_2$ und somit $f_M \in \mathcal{S}$. Betrachte nun eine Turingmaschine M', die sich genau wie M verhält, aber wenn M in den Endzustand geht, geht M' in einen neuen Zustand q_1' , der keine Funktion hat und von dem aus M' in immer neue Zustände q'_2, q'_3, \ldots geht und dann in den Endzustand geht, ohne zu schreiben oder sich zu bewegen. Die Anzahl der Zustände ist so gewählt, dass $\langle M' \rangle > k$. Offensichtlich gilt $f_M = f_{M'} \in \mathcal{S}$ also $\langle M' \rangle \in L(\mathcal{S})$. Allerdings gibt M' auf der Eingabe $\langle M' \rangle$ 0 aus und somit $\langle M' \rangle \notin L_2$. Dies ist ein Wiederspruch zu der Annahme $L_2 = L(S)$.

Trotzdem ist die Sprache unentscheidbar. Dies beweisen wir durch Verwendung der Unterprogrammtechnik. Angenommen, eine Turingmaschine M_2 entscheidet L_2 . Daraus wird eine neue Turingmaschine M_{ε} konstruiert, die sich wie folgt verhält und damit das Epsilon-Halteproblem entscheidet:

E. Fluck, A. Riazsadri, J. Feith

- Falls die Eingabe keine korrekte Gödelnummer ist, so wird die Eingabe verworfen.
- Also hat die Eingabe die Form $\langle M \rangle$. Daraus wird die Gödelnummer einer Turingmaschine M^* berechnet, die ihre Eingabe löscht und dann M (auf ε) simuliert und 1 ausgibt, falls die Simulation hält.
- M_{ε} simuliert nun M_2 auf der Eingabe $\langle M^* \rangle$ und akzeptiert (verwirft) genau dann, wenn M_2 akzeptiert (verwirft).

Korrektheit:

$$\langle M \rangle \in H_{\varepsilon} \implies M^*$$
 gibt auf jeder Eingabe 1 aus
$$\implies M^* \text{ gibt auf Eingabe } \langle M^* \rangle \text{ 1 aus}$$

$$\implies \langle M^* \rangle \in L_2$$

$$\implies M_2 \text{ akzeptiert } \langle M^* \rangle$$

$$\implies M_{\varepsilon} \text{ akzeptiert } \langle M \rangle$$

$$\langle M \rangle \notin H_{\varepsilon} \implies M^* \text{ hält auf keiner Eingabe}$$

$$\implies M^* \text{ gibt auf Eingabe } \langle M^* \rangle \text{ nicht 1 aus}$$

$$\implies M^* \notin L_2$$

$$\implies M_2 \text{ verwirft } \langle M^* \rangle$$

$$\implies M_{\varepsilon} \text{ verwirft } \langle M \rangle.$$

Weiterhin werden Eingaben, die keine Gödelnummern sind, direkt von M_{ε} verworfen. Also folgt, dass H_{ε} entscheidbar ist, was ein Widerspruch ist.

Alternativ kann man auch analog zur Vorlesung eine Turingmaschine, die das Halteproblem entscheidet, konstruieren.

c) Hier lässt sich der Satz von Rice anwenden. Sei

 $S = \{f_M \mid f_M(w) = 1, \text{ wenn } w \text{ eine G\"{o}delnummer ist von einer TM mit drei Zust\"{a}nden}\}.$

Dann gilt

$$L(S) = \{\langle M \rangle \mid M \text{ berechnet eine Funktion aus } S\}$$

= $\{\langle M \rangle \mid M \text{ gibt 1 aus, auf Eingabe } \langle M' \rangle \text{ wenn } M' \text{ drei Zustände hat}\}$
= $\{\langle M \rangle \mid f_M(\langle M' \rangle) = 1 \text{ wenn } M' \text{ 3 Zustände hat}\}$
= L_3 .

Zudem gilt $S \neq \emptyset$ da die Funktion die immer 1 ausgibt in S liegt und $S \neq R$ da die Funktion die immer 0 ausgibt nicht in S liegt. Nach dem Satz von Rice ist L_3 unentscheidbar.

E. Fluck, A. Riazsadri, J. Feith

Aufgabe 4 (Formale Definitionen und Entscheidbarkeit)

3(1+2) Punkte

Wir betrachten folgende Aussage:

Es existiert eine TM M und ein Wort w so, dass es unentscheidbar ist, ob M auf w hält.

- a) Formulieren Sie die Aussage als eine Aussage über formale Sprachen.
- b) Zeigen oder widerlegen Sie die Aussage.

Lösung:

- a) Es existiert eine TM M und ein Wort w so, dass die Sprache $L(M,w)=\{\langle M\rangle w\mid M$ hält auf $w\}$ unentscheidbar ist.
- b) Es gilt

$$L(M, w) = \begin{cases} \emptyset, & \text{falls } M \text{ nicht auf } w \text{ h\"alt} \\ \{\langle M \rangle w, & \text{falls } M \text{ auf } w \text{ h\"alt}. \end{cases}$$

Also ist L(M, w) für jede Wahl von M und w endlich und damit insbesondere entscheidbar. Die Aussage gilt somit nicht.

Übungsblatt 4

Prof. Dr. M. Grohe

E. Fluck, A. Riazsadri, J. Feith

Aufgabe 5 (Spezielle Halteprobleme)

3 Punkte

Beweisen oder widerlegen Sie, dass die Sprache

 $H_{42} = \{\langle M \rangle \mid \text{Auf jeder Eingabe hält } M \text{ nach höchstens 42 Schritten}\}$

entscheidbar ist.

Lösung:			

Die Sprache L_{42} ist entscheidbar. Um dies zu zeigen, konstruieren wir eine Turingmaschine M_{42} , welche die Sprache entscheidet. Zunächst überprüft M_{42} ob es sich bei der Eingabe um eine gültige Gödelnummer $\langle M \rangle$ einer Turingmaschine M handelt und verwirft, falls dies nicht der Fall ist. Ansonsten simuliert M_{42} die gegebene TM M auf allen Wörtern $w \in \{0,1\}^*$ mit $|w| \le 42$ für je 42 Schritte und akzeptiert genau, dann wenn M auf allen diesen Wörtern während unserer Simulation hält. Andernfalls verwirft M_{42} .

Wir begründen nun, dass M_{42} auch tatsächlich die Spache L_{42} entscheidet.

Dazu bemerken wir zunächst, dass M_{42} stets terminert: Entweder nach der Syntaxprüfung der Eingabe (welche in endlicher Zeit erfolgt) oder nach der Simulation einer übergebenen TM M auf $2^{43} - 1$ Wörtern für je maximal 42 Schritte.

Offensichtlich behandelt M_{42} Eingaben, welche keine Gödelnummern sind, korrekt. Im Folgenden betrachten wir also das Verhalten von M_{42} auf Eingaben der Form $\langle M \rangle$ und zeigen mit einer Fallunterscheidung, dass M_{42} diese korrekt behandelt.

Sei dazu zunächst M eine TM, welche auf jeder Eingabe nach höchstens 42 Schritten hält. Dann hält M auch auf allen Eingaben der Länge maximal 42 nach höchstens 42Schritten, und folglich akzeptiert M_{42} die Eingabe $\langle M \rangle$ korrekterweise.

Sei nun M eine TM, welche nicht auf jeder Eingabe nach höchstens 42 Schritten hält, d.h. es existiert ein $w \in \{0,1\}^*$ mit minimaler Länge so, dass M auf w nach 42 Schritten nicht gehalten hat. Ist $|w| \leq 42$, so verwirft M_{42} die Eingabe $\langle M \rangle$ korrekterweise, da M_{42} feststellt, dass M auf w nach 42 Schritten noch nicht gehalten hat. Andernfalls ist |w| > 42 und M hält auf allen Eingaben der Länge höchstens 42 in maximal 42 Schritten. Folglich können wir w schreiben als $w = w_{42}w'$, wobei $w_{42} \in \{0,1\}^{42}$ und $w' \in \{0,1\}^*$ ist; w_{42} ist also der Präfix von w der Länge 42.

Wir betrachten nun das Verhalten von M auf w_{42} und bemerken, dass M nach Voraussetzung auf w_{42} nach maximal 42 Schritten hält. Insbesondere kann M in maximal 42 Schritten das Blank-Symbol rechts der Eingabe w_{42} nicht lesen, da dazu ein weiterer Schritt notwendig wäre. Es folgt somit, dass M auf allen Wörtern mit Präfix w_{42} nach 42 Schritten hält, und damit insbesondere auf $w = w_{42}w'$, was aber ein Widerspruch ist. Eine TM, welche auf den Eingaben der Länge 42 nach höchstens 42 Schritten hält, hält also auch auf allen längeren Eingaben nach maximal 42 Schritten.

Somit war unsere Fallunterscheidung schon vollständig, und M_{42} behandelt alle Eingaben korrekt. Die Sprache H_{42} wird also durch M_{42} entschieden, und ist somit entscheidbar.