BALKAN OLYMPIAD
IN INFORMATICS

Udine, 29 September 2025

tiling • EL

Tiling Madness (tiling)

Θέλεις να καλύψεις ένα πλέγμα $N \times N$ με N μη επικαλυπτόμενα πανομοιότυπα 2N-minoes.

Τα 2N-minoes δεν είναι απαραίτητο να βρίσκονται εξ ολοκλήρου μέσα στο πλέγμα $N \times N$.

Πιο επίσημα, κάθε λύση σε αυτό το πρόβλημα πρέπει να καθορίζει ένα 2N-mino, και στη συνέχεια να τοποθετεί N αντίγραφά του σε ένα πλέγμα (χωρίς να το περιστρέφει ή να το ανακλά) έτσι ώστε:

- κάθε κελί του πλέγματος να ανήκει σε το πολύ ένα από τα 2N-minoes.
- να υπάρχει ένα υποπλέγμα $N \times N$ που καλύπτεται πλήρως από τα 2N-minoes.

Ενα 2N-mino είναι ένα συνδεδεμένο σύνολο 2N τετραγώνων. Μπορείς να βρεις ένα παράδειγμα έγκυρου και ενός μη έγκυρου 2N-mino στην Σ χήμα 1.

Σχήμα 1: Η εικόνα στα αριστερά είναι ένα έγκυρο 14-mino. Αυτή στα δεξιά δεν είναι, καθώς δεν είναι συνδεδεμένη.

Θέλουμε να μάθουμε με πόσους τρόπους μπορούμε να πλακοστρώσουμε το πλέγμα, καθένας από τους οποίους χρησιμοποιεί ένα **μοναδικό** 2N-mino. Η βαθμολογία σου θα εξαρτηθεί από το πόσα έγκυρα 2N-minoes που πλακοστρώνουν το τετράγωνο $N\times N$ θα παρέχεις.

Σημείωσε ότι τα 2N-minoes που μπορούν να προκύψουν το ένα από το άλλο με περιστροφή ή ανάκλαση θεωρούνται διαφορετικά.

Υλοποίηση

Αυτή είναι μια εργασία μόνο εξόδου. Θα πρέπει να υποβάλεις ακριβώς ένα αρχείο εξόδου.

Μορφή εισόδου

Το μοναδικό αρχείο εισόδου αποτελείται από μία μόνο γραμμή, που περιέχει τον ακέραιο N.

Μορφή εξόδου

Το μοναδικό αρχείο εξόδου πρέπει να είναι στην ακόλουθη μορφή:

- Η πρώτη γραμμή πρέπει να περιέχει έναν μόνο ακέραιο C $(0 \le C \le 16000)$: τον αριθμό των διαφορετικών λύσεων που περιέχονται στην έξοδό σου.
- Στη συνέχεια πρέπει να ακολουθήσουν C μπλοκ λύσεων. Κάθε μπλοκ πρέπει να έχει την ακόλουθη μορφή:
 - Η πρώτη γραμμή πρέπει να περιέχει δύο ακέραιους h και w $(0 \le h, w \le 5N)$: το ύψος και το πλάτος του πλέγματος όπου θα τοποθετήσεις τα 2N-minoes.

tiling Σελίδα 1 από 3

• Οι επόμενες h γραμμές πρέπει να περιέχουν η καθεμία μια συμβολοσειρά μήκους w, αποτελούμενη από τα πρώτα N κεφαλαία γράμματα του λατινικού αλφαβήτου και τον χαρακτήρα τελεία (.). Το i-οστό γράμμα του αλφαβήτου υποδηλώνει ότι το κελί καταλαμβάνεται από το i-οστό αντίγραφο του 2N-mino, ενώ η τελεία υποδηλώνει ότι το κελί μένει κενό.

Για κάθε μπλοκ λύσης, το πλέγμα πρέπει να περιέχει ένα υποπλέγμα $N \times N$ στο οποίο κανένας χαρακτήρας . δεν περιέχεται. Όλα τα N αντίγραφα του 2N-mino πρέπει να είναι πανομοιότυπα.

Βαθμολογία

Αυτή η εργασία έχει ακριβώς 1 περίπτωση δοκιμής, όπου N=7. Η βαθμολογία S για τη λύση σου καθορίζεται σύμφωνα με τον παρακάτω πίνακα. Μεταξύ των τιμών που καθορίζονται στον πίνακα, η βαθμολογία θα εκχωρείται με **γραμμική παρεμβολή**. Μια κακοσχηματισμένη έξοδος βαθμολογείται πάντα με μηδέν.

Λύσεις	Βαθμολογία		
0	0		
4	10		
30	30		
250	50		
2000	70		
16000	100		

Παραδείγματα εισόδου/εξόδου

input	output
3	2
	5 6
	.AAA
	.AAA
	BBBCCC
	BBBCCC
	5 7
	BB
	.BBB
	CCBAA
	. CCCAAA
	CA.

Εξήγηση

Στην ενδεικτική περίπτωση μας ζητείται να χρησιμοποιήσουμε 6-minoes για να καλύψουμε ένα τετράγωνο 3×3 : σημείωσε ότι αυτή δεν είναι μια έγκυρη είσοδος, αφού στη μοναδική είσοδο N=7. Η έξοδος δείχνει δύο από τις πολλές πιθανές λύσεις, όπως φαίνονται στην παρακάτω εικόνα.

tiling Σελίδα 2 από 3

•	A	A	A		
	A	A	A		
В	В	В	С	С	С
В	В	В	С	С	С

В	В					
•	В	В	В	•	•	•
С	С	В	A	A	•	•
	С	С	С	A	A	A
•		С			A	

Και στις δύο περιπτώσεις, μπορούμε να δούμε ότι υπάρχουν 3 πανομοιότυπα μη επικαλυπτόμενα 6-minoes και ότι ένα τετράγωνο 3×3 καλύπτεται.

tiling Σ ελίδα 3 από 3