Contrôle de TIC (Techniques de l'Information et de la Communication)

Corrigé type

Durée: 1h30mn

Barème de QCM: Bonne réponse: +1, Mauvaise réponse: -0.5, pas de réponse: 0

Attention: Réponse sans rature ou correction. Une réponse avec ratures est considérée comme fausse.

QCM: (7 points) (dans la case "Réponse", mettez A, ou B, ou C)

	Q	1	: (uelle es	st la	partie o	de réseau	qui	fournit	des	appl	ications	et	des	données	aux	ordinateurs	hôtes
--	---	---	-----	----------	-------	----------	-----------	-----	---------	-----	------	----------	----	-----	---------	-----	-------------	-------

- A) Serveur.
- B) Concentrateur.
- C) Routeur.

Réponse	:	A
---------	---	----------

Q2: A quoi sert un routeur?

- A) Lier le réseau téléphonique au réseau informatique.
- B) Diriger les informations dans la direction appropriée.
- C) Fournir des services aux processus d'applications.

Réponse :		B	
-----------	--	---	--

Q3: A quoi sert un répéteur?

- A) Connecter un réseau local à un réseau long distance.
- B) Amplifier et resynchroniser les signaux réseau.
- C) Enregistrer des pages Web et les répéter pour d'autres utilisateurs

Réponse : B......

Q4 : Quel énoncé décrit le mieux la topologie en bus ?

- A) Tous les nœuds directement connectés à un point central tel qu'un concentrateur.
- B) Tous les nœuds sont directement connectés à une liaison physique.
- C) Tous les nœuds sont connectés à exactement deux autres nœuds.

B

Q5: 192.168.10.0 est une adresse

- A) Réseau.
- B) Broadcast.
- C) MAC.

A

Q6: A quoi sert un serveur DNS?

- A) Assurer l'échange de fichiers sur un réseau TCP/IP.
- B) Vérifier des noms d'utilisateurs et des mots de passe.
- C) Faire la liaison entre un nom de domaine et son adresse IP.

Réponse	:		C	
---------	---	--	----------	--

Q7: IMAP est un protocole qui fait partie des :

- A) Protocoles sortants du service e-mail.
- B) Protocoles entrants du service e-mail.
- C) Protocoles de transfert de fichiers.

Réponse	:	B	
---------	---	----------	--

Exercice 1: (2 points)

Remplir le tableau suivant :

Adresse IP	Classe	Identificateur de Réseau	Identificateur d'hôte	Masque de sous réseau par défaut
91.3.2.155	Α	91.0.0.0	0.3.2.155	255.0.0.0
220.30.22.65	С	220.30.22.0	0.0.0.65	255.255.255.0
126.257.1.44			Adresse invalide	
156.19.206.40	В	156.19.0.0	0.0.206.40	255.255.0.0

Exercice 2: (4 points)

Une entreprise à agences multiples utilise l'adresse IP 196.179.110.0. Pour une gestion plus fine de ses sous réseaux, le responsable d'informatique désire pouvoir affecter une adresse IP propre à chaque sous réseau des **10** agences.

1. Combien de bits sont nécessaires pour créer le nombre de sous-réseaux demandés ?

Réponse:on a 10 sous-réseaux, donc on a besoin de 4 bits pour créer le nombre de sous-réseaux demandés $(2^3 < 10 < 2^4)$

2. Donnez et expliquez la valeur du masque de sous réseau correspondant à ce besoin.

Réponse: 1'adresse 196.179.110.0 est une adresse de classe $C \Rightarrow le$ masque par défaut = 255.255.255.0. Pour créer 10 sous réseaux, on va utiliser 4 bits de poids forts du dernier octet. La valeur du masque devient alors : 255.255.255. (11110000)₂ = 255.255.255.240.

3. Combien de machines chaque sous réseau pourra-t-il comporter ? justifiez votre réponse ?

Réponse: chaque sous-réseau peut avoir 2⁴ machines - adresse du réseau (0000) et adresse de broadcast (1111). Donc, dans chaque sous-réseau, on peut trouver en maximum 14 machines

Exercice 3: (4 points)

La figure ci-dessous représente un réseau d'ordinateurs. Les adresses IP de chaque nœud du réseau figurent en tableau ci-dessous. Pour tous, le masque par défaut est 255.255.255.0.

3. Déterminer le nombre de machines qu'on peut brancher dans ce réseau. **Réponse : 2⁸ - 2 = 254 machines**

4. Quelle est l'adresse de diffusion (broadcast) de ce réseau ? **Réponse :192.168.10.255**......

Ordinateur	Adresse IP		
PC1	192.168.10.6		
PC2	192.168.10.7		
PC3	192.168.10.8		
PC4	192.168.10.9		
Serveur1	192.168.10.100		
Serveur2	192.168.10.200		

Exercice 4: (3 points)

Donnez le code HTML de la page Web suivante :

Réponse :

```
<html>
  <head>
    <title>
         Avis aux étudiants MI
     </title>
  </head>
<body>
<h1> Planning des consultations des copies </h1>
<hr>
         <h2> <u>1<sup>er</sup> Juin:</u> Info2, SM, Analyse 2 </h2>
         <h2> <u>2 Juin:</u>
                                 IPOO, Electricité, Algèbre 2 </h2>
                                  Stat. HS, TIC </h2>
         <h2> <u>3 Juin:</u>
<hr>
</body>
</html>
```

