Automated Fraud Detection

Using the Enron Email Corpus to Train Fraud Detection Models

The Question

Email Corpus

Remaining emails between 1997-2001 made public by Federal Energy Regulatory Commission during its investigation.

- 150 users, mostly senior managers
- Over 500,000 emails

Enron Scandal

At the time represented the largest bankruptcy in American history

- Bankruptcy declared in 2001
- Lead to de facto fall of Arthur Anderson
- Sarbanes-Oxley Act

The Question

Given the far reaching implications of the Scandal, could we learn from the mistakes of the past?

 Can we use the enron emails to train a model to find those committing fraud?

Technical Details

Scrub and Explore

Initial Wrangling

Exploring the dimensions of the dataset, reviewing formatting for the future model, visualizing complexity of the problem

Unsupervised

K-Means Clustering

Using a 2 Cluster Model

 Trained to find people and important language

Supervised

K-Nearest Neighbors

Over 90 % accuracy in appropriately classifying the emails in the clusters.

Solution

Efficiency in Resource Management

Created a model that could detect individuals who may require additional scrutiny based on their email traffic.

Important Words

Clear implications

Results and Recommendations

K-Means Clustering

2 Cluster Model

Top Words and Top People

Accuracy

People were implicated in the scandal, and the words in their emails were indicative of ongoing fraud.

Insights and Recommendations

- Efficient First Line of Defense
 - Utilizing Modern Machine Learning as the first indicator of red flags
- Reallocation of resources
 - Fraud Analysts and Risk Managers can reorganize their time to focus on the flags produced by the model capturing the same risks with fewer man hours
- Two-step Model
 - Easily calibrated with additional text bodies
 - Ultimately creates a computationally efficient paradigm

Future Model Extensions

Data

Model Update

Additional Tuning

Big Data

Additional resources allocated to run model on the full dataset

 Limitations for my personal machine and Kaggle Remote servers

Clustering Steps

First Cluster on People

 Then Cluster and Classify on Language used by people

GridSearch for Params

Try additional Clusters and additional Neighbors for further model tuning.

Utilizer GridSearch

Questions?

