## Econometrics A: Problemset 3

#### LAURA MAYORAL

Institute for Economic Analysis and Barcelona GSE

Winter 2020

Deadline: January 30th, before 15:00. Please submit your answers in paper or electronically to your TA, sanghyun.park@insead.edu.

**1.** Let y and z be random scalars, and let x be a  $1 \times k$  random vector, such that  $\mathbf{x}_1 = 1$ . Consider the population model:

$$E(y|\mathbf{x},z) = \mathbf{x}\beta + \delta z$$

$$Var(y|\mathbf{x},z) = \sigma^2$$

i) Write a probabilistic model of y as a function of the conditional expectation specified above and a random disturbance u.

$$y = x\beta + \delta z + u$$

ii) Under the assumptions above, compute the conditional mean and conditional variance of u. Is u homoscedastic? justify your answer.

Yes, it is homoscedastic as its conditional variance is constant (i.e.  $Var(u|x,z) = \sigma^2$ ).

iii) The main assumption that we need for identification of  $\beta$  and  $\delta$  is that  $E((\mathbf{x} z)'u) = 0$ . Under the assumptions above, is this condition met? clearly justify your answer.

Yes. By the law of iterated expectations, E(u|x,z) = 0 implies E((xz)'u) = 0

iv) Suppose that  $\mathbf{x}_2$  in equation above is a variable measured in km. Suppose that another researcher specifies a similar model but with variable  $\mathbf{x}_2$  measured in cm,  $\mathbf{x}_2^*$ . Let  $\beta *_2$  denote the coefficient associated to  $\mathbf{x}_2^*$ . How are  $\beta_2$  and  $\beta *_2$  related? Suppose now that you estimate both equations by OLS. What is the relationship between  $\hat{\beta}_2$  and  $\hat{\beta} *_2$ ?

We have  $y = \beta_0 + \beta_1 x_1 + \beta_2^* x_2^* + u$ . If we replace  $x_2^*$  with  $x_2$ , then we will get  $y = \beta_0 + \beta_1 x_1 + \beta_2^* * 1000 * x_2 + u$   $y = \beta_0 + \beta_1 x_1 + (\beta_2/1000) * 1000 * x_2 + u$  From the above equations,  $\beta_2^* = \beta_2/1000$ .

1

**2.** Consider again the model in the previous exercise. Assume now that z is unobservable so that you estimate:

$$y = \mathbf{x}\beta + \epsilon$$

a) Notice that  $\epsilon = \delta z + u$ . Is  $\hat{\beta}$  (the OLS estimator of  $\beta$ ) consistent in this case?

In many cases, no. This is so because  $E(x'\epsilon) \neq 0$  in general.

b) Assume now that  $E(\mathbf{x}'z)=0$  (i.e., these variables are orthogonal). Is  $\hat{\beta}$  consistent in this case. Proof mathematically your answer.

In this case, 
$$E(x'\epsilon) = \delta E(x'z) + E(x'u) = 0$$

c) Under the assumptions above and b), which estimator of  $\beta$  would have largest variance, that obtained in b) or another one that also includes z in the regression?. Clearly justify your answer.

Remember that under the assumptions above, the estimators from both models are unbiased. In addition, the estimator of  $\beta$  obtained in the model containing both x and z is BLUE. Notice that the estimator obtained in the reduced model is a particular case and thus, it has to have a higher variance.

- **3.** Consider once more the model in Problem 1. To simplify the notation, assume that  $\delta$ =0 and that we estimate  $\beta$  in the model  $y = \mathbf{x}\beta + u$ .
- a) How is  $\hat{\beta}$  distributed under the assumptions of that problem? Provide a consistent estimator of the variance of  $\hat{\beta}$ .

By CLT, 
$$\sqrt{n}(\hat{\beta} - \beta) \stackrel{d}{\rightarrow} N(0, \sigma^2 E(x'x)^{-1})$$

b) Now consider the case where  $Var(y|\mathbf{x})$  is a function of  $\mathbf{x}$  (i.e., it is not constant with respect to  $\mathbf{x}$  as it was in Problem 1). How does the distribution of  $\hat{\beta}$  change in this case with respect to case a) above? Provide a consistent estimator for the variance-covariance matrix of  $\hat{\beta}$ .

$$\sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} N(0, E(x'x)^{-1}E(u^2x'x)E(x'x)^{-1})$$

c) Consider again the general case where  $\delta$  is different from zero but z is not included in the equation (and can be correlated with  $\mathbf{x}$ . Does  $\sqrt{n}(\hat{\beta} - \beta)$  converge or diverge as n tends to  $\infty$ ?

In this case,  $\hat{\beta}$  is not consistent since  $E(x'\epsilon) \neq 0$ . In other words,  $\hat{\beta} - \beta$  does not converge to 0. As N increases,  $\sqrt{N}$  diverges to  $\infty$ . If we multiply two, then the product will diverge  $+\infty$  or  $-\infty$  (the sign will depend on the sign of  $\hat{\beta} - \beta$ ).

TABLE 1. OLS Regression Results

|              | (1)      | (2)      | (3)      | (4)      | (5)      | (6)      | (7)       |
|--------------|----------|----------|----------|----------|----------|----------|-----------|
|              | lwage     |
|              | b/se      |
| educ         | 0.060*** | 0.039*** | 0.031*** | 0.034*** | 0.046*** | 0.046*** | 0.049***  |
|              | [0.006]  | [0.007]  | [0.007]  | [0.007]  | [800.0]  | [0.008]  | [800.0]   |
| iq           |          | 0.006*** | 0.004*** | 0.005*** | 0.005*** | 0.005*** | 0.003***  |
|              |          | [0.001]  | [0.001]  | [0.001]  | [0.001]  | [0.001]  | [0.001]   |
| kww          |          |          | 0.010*** | 0.006*** | 0.006*** | 0.007*** | 0.004*    |
|              |          |          | [0.002]  | [0.002]  | [0.002]  | [0.002]  | [0.002]   |
| age          |          |          |          | 0.017*** | 0.008    | 0.008    | 0.008     |
|              |          |          |          | [0.005]  | [0.005]  | [0.005]  | [0.005]   |
| exper        |          |          |          |          | 0.013*** | 0.013*** | 0.012***  |
|              |          |          |          |          | [0.004]  | [0.004]  | [0.004]   |
| hours        |          |          |          |          |          | -0.005** | -0.006*** |
|              |          |          |          |          |          | [0.002]  | [0.002]   |
| married      |          |          |          |          |          |          | 0.200***  |
|              |          |          |          |          |          |          | [0.039]   |
| black        |          |          |          |          |          |          | -0.148*** |
|              |          |          |          |          |          |          | [0.040]   |
| south        |          |          |          |          |          |          | -0.086*** |
|              |          |          |          |          |          |          | [0.028]   |
| urban        |          |          |          |          |          |          | 0.174***  |
|              |          |          |          |          |          |          | [0.027]   |
| _cons        | 5.973*** | 5.658*** | 5.563*** | 5.011*** | 5.012*** | 5.216*** | 5.232***  |
|              | [0.082]  | [0.094]  | [0.093]  | [0.180]  | [0.177]  | [0.190]  | [0.188]   |
| R_squared    | 0.097    | 0.130    | 0.155    | 0.168    | 0.178    | 0.186    | 0.263     |
| Observations | 935      | 935      | 935      | 935      | 935      | 935      | 935       |

### **Computer Practise**

- **4.** You would like to estimate the effect of an additional year of education on wages. Use the dataset NLS80.dta, which gathers data collected from a population of men.
- A) Using the stata command *estout* produce a regression table
- B) Using the results in column 7:
- i) provide an interpretation of the direction of the relationship of educ and wages, as well as of the magnitude of the effect.

Education has a positive effect on lwage under 1% significance level. As education increases 1 year, wage increases about 5%.

ii) Provide an interpretation for the  $\mathbb{R}^2$  statistic and for the F-test of joint statistical significance. Do you reject the null hypothesis of that test?

 $R^2=0.263$  means that our model explains about 26.3% of variation in lwage. Our F statistic is 38.79 with a p-value smaller than 0.01. In other words, we can reject the null under 1% significance level.

iii) Test the hypothesis that black, south, urban are all equal to zero using an F-test.

Our F statistic is 24.21 with a p-value smaller than 0.01. In other words, we can reject the null under 1% significance level.

iv) test the hypothesis that the coefficient of education is 0.5 using a two-tailed t-test,  $\alpha = 0.05$ . Repeat the same exercise using where the alternative hypothesis is  $H_1: \beta > 0.5$ 

Our t statistic is  $\sqrt{3326.77}=57.68$  (or  $\frac{beta-0.5}{se}\approx\frac{0.049-0.5}{0.0078}$ ) with a p-value smaller than 0.01. In other words, we can reject the null under 5% significance level. For the one tailed test, we cannot reject the null under 5% significance level, since p-value is 1-0.5\*p' where p' is the p-value from the previous test.

- v) Use the command predict to obtain the predicted values for lwage. Also obtain the residuals.
- vi) Use the command estat hettest to test for heteroskedasticity in the residuals. What do you conclude from this test?

We have p-value 0.1842, which means that we cannot reject the null hypothesis under 5% significance level. In other words, we cannot say that our model violates homoskedasticity assumption.

C) Introduce conditions in your regression: compute again the regression in column 7 in two different cases: for married men and for unmarried men (to do this, use the command if at the end of your regression, before the ",r" option). What do you observe?

Under 5% significance level, the positive effect of education on lwage for married men is significant, while that for unmarried men is insignificant (Table 2).

- D) Use the binscatter command to produce a plot of lwage versus education, controlling by all the remaining variables.
- i) Plot the scatter plot of lwage versus education. Also compute the binscatter of the same variables. Finally, plot a new binscatter, controlling this time for all the regressors in column 7.
- The scatter plot



### - Binscatter without controls



# - Binscatter with controls



ii) Use the commands pwcorr and graphic matrix to compute the correlation matrix of the regressors in column 7.



TABLE 2. OLS Regression Results

|              | unmarried | married   |
|--------------|-----------|-----------|
|              | lwage     | lwage     |
|              | b/se      | b/se      |
| educ         | 0.032     | 0.052***  |
|              | [0.029]   | [0.008]   |
| iq           | 0.004     | 0.003***  |
|              | [0.003]   | [0.001]   |
| kww          | 0.002     | 0.004*    |
|              | [0.007]   | [0.002]   |
| age          | 0.005     | 0.008     |
|              | [0.016]   | [0.006]   |
| exper        | 0.008     | 0.013***  |
|              | [0.013]   | [0.004]   |
| hours        | -0.009*   | -0.006*** |
|              | [0.005]   | [0.002]   |
| black        | -0.244**  | -0.131*** |
|              | [0.105]   | [0.044]   |
| south        | -0.113    | -0.086*** |
|              | [0.082]   | [0.030]   |
| urban        | 0.255***  | 0.164***  |
|              | [0.094]   | [0.028]   |
| _cons        | 5.683***  | 5.363***  |
|              | [0.505]   | [0.200]   |
| R_squared    | 0.251     | 0.249     |
| Observations | 100       | 835       |