NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

(NASA-CR-168419) INVESTIGATION AND M82-17879 EVALUATION OF A COMPUTER PROGRAM TO MINIMIZE THREE-DIMENSIONAL PLIGHT TIME TRACKS FIRM

THREE-DIMENSIONAL PLIGHT TIME TRACKS Final Report, 15 Sep. 1980 - 12 Aug. 1981 (Case Unclas Western Reserve Univ.) 150 p HC_A07/MF A01 G3/60 08879

COMPUTER ENGINEERING

THE POPULATION OF THE POPULATI

AND

SCIENCE

Case Institute of Technology
Case Western Reserve University
Cleveland, Ohio 44106

Investigation and Evaluation
of a Computer Program
to Minimize
Three-Dimensional Flight Time Tracks

NASA Grant NAG 3-101

FINAL REPORT

FINAL REPORT

Investigation and Evaluation
of a Computer Program
to Minimize
Three-Dimensional Flight Time Tracks

NASA Grant NAG 3-101

15 September 1980 - 12 August 1981

Principal Investigator
Frederic I. Parke

Graduate Research Assistant
J.K. Kim

A Three-Dimensional Flight Planning Model supporting for DC-10 Aircrafts

ENERAL.

The program for the DC8-D3 flight planning has been slightly modified for the three dimensional flight planning for DC10 aircrafts.

Several test runs of the modified program over the North Atlantic and North America have been made for verifying the program in this project.

Reference is made to pages and formulas in 'Optimal Track Selection and 3-Dimensional Flight Planning' written by H. M. De Jong, No. 93.

MODIFICATION.

1. Weather Information.

While Dr. De Jong used geopotential height and temperature in his program as a meteorological data, the modified program uses wind (direction and speed) and temperature—received from National Weather Service.

A scanning program has been written to collect required weather information from the raw data received in a packed decimal format.

Two sets of weather data, the 12-hour forecast and 24-hour forecast based on 0000 GMT, will be used for dynamic processes in our testruns.

In order to save computing time only the weather data of the North Atlantic and North America is previously stored in a PCF file and then scanned one by one.

The element name (for weather data) of the PCF file is 'NWS' in our test runs.

Wind data is supplied in the form of grid point values of the vector wind

Vector wind is decomposed into x and y components to be applied to interpolation schemes.

Then it prepares spot values by interpolation with respect to the values of the wind components in the surrounding vertices of grid. See Fig. 1, Fig. 2 and Fig. 3.

2. Grid points.

While Dr. De Jong used weather data depicted from the grid points in a Cartesian grid superposed on a polar stereographic chart projection with standard parallel at 60 degree N, the modified program uses weather data depicted from the same grid points that National Weather Service uses.

See 'Aviation Digital Forecasts Program' issued by National Weather
Service in Aug. 1978.

A blockette and grid points:

*---- 7.5 degree

*

* *

*---- 0 degree

5 (

Each grid point contains its own weather data.

a. In order to compute a great circle distance on earth between two points the following equation is used:

DIST=60 arccos(sin LS sin LD + cos LS cos LD cos (RD - RS)) where LS=latitude of start.

LD=latitude of destination.

RS=longitude of start,

RD=longitude of destination.

DIST=great cicle distance between start and destination. (See equation 5.20, P. 64).

- b. To compute a true course it uses the following equation: TC=arccos((sin LD - sin LS cos(DIST/60)) / (sin(DIST/60) cos LS) { if sin(RD-RS) > O then (360-TC) } is used where TC= true course in degree.
- c. Computation of a drift angle uses the following equation:

 DA=arcsin(WV sin(WD TC) / TAS)

 where DA=drift angle,

WD=wind direction (true)
WV=wind velocity,
TAS=true air speed.

- d. Heading= TC + DA (in degree).
- 3. Performance data for DC10.
 - a. Specific range table as a function of weight and latitude.

 This is an important economic index which is the air distance covered by a turbo-jet aircraft per unit of fuel consumption.

 This data is almost independent of temperature and depends on the aircraft weight only at a prefixed flight level.

 See table 1, P. 116 and Fig. 4 in this documentation.
 - b. Climb time table as a function of temperature and weight. See Fig. 5.
 - c. Climb distance table as a function of temperature and weight.
 See Fig. 6.
 - d. Climb fuel table as a function of tempreature and weight.
 See Fig 7.
 - e. Max. weight table as a function of flight and temperature.

 The maximally allowable weight depends on flight altitude and temperature deviation from standard.

 See Fig 4.

f. Parameter r1 and r2 (See table 2, P. 116),

Farameter r1 and r2 are derived from the specific range table.

Here r1 and r2 denote the coefficients of a straight line fit in a (weight, 1/entry value) graph at constant pressure altitude. According to the specific range table for DC10 performance data, r1 and r2 are as follow:

flight level	r1	r2	
310	2. 966	0. 0000722	
350	0.85	0. 0000792	
390	-0.83	0 0000890	

g. Extra burns for step-up and step-down.

While extra burn parameters for DC8-D3 were 100 kg/ 4000 ft for step-up and -80 kg/ 4000 ft for step-down, the new program uses 700 kg/4000 ft for step-up and -28-kg/4000 ft for step-down for the DC10 flight planning.

h. The equations (6.31) in p. 121 and (6.33) in p. 123 will be used in our test runs, since precisely matched parameters for DC10 are not available now.

(See lines 874-879 and 1305-1313 of the new program).

4. Initializing Input Parameters.

FLUR= sequence number.

TAXI# taxi fuel(kg).

GRW= zero fuel weight(kg).

RESERVE = reserve fuel(kg).

TOW= If -1, then computation starting in end point of flight.

MAXIOW= max. takeoff weight(kg).

MAXLW= max. landing weight(kg).

DATe= date/month/year.

ID= If -1. then east bound flight.

ORIGINAL PAGE IS OF POOR QUALITY.

TTT= time of departure.

ROUTE= route indicator.

ST= starting graph point number.

ST1= destination number.

Note: These input parameters are read from card images of the PCF file in our testrums (element name = DC10F).

But these may be read directly from cards.

5. Output Values.

* See output listings.

NO. =graph point number.

HEAD= heading in flight (degree).

FL= flight level in 100 ft.

TMP= off standard temperature in centigrade degrees.

TAS= true air speed (n.m).

WIND=wind along the track (+ = tail, - = head).

DIST= distance of flight segment.

ACCD= accomplated distance flown(n.m).

TIME=time along the segment flown.

ACC (= accumulated time (hour, min).

BURN= fuel consumed in segment (kg).

WEIGHT= weight (kg).

TOC= top of climb.

TOD= cop of descent.

6. Reviews on Test Runs.

Since Dr. DE Jong already proved that a solution in 3-space would reward as compared with a 2-space solution, we will not treat the factorized 2-space optimalization case and the prescribed track case. Thus we will concentrate on test runs about pure 3-dimensional flight planning in free space.

While average CPU time for one flight plan with the modified program is approximately 120 seconds on UNIVAC 1108, the original program takes approximately 110 seconds or more for one flight plan on UNIVAC 1108.

However, for more than one flight plan it would require less than two minutes per one flight plan with the modified program, since they can share precalculated results for the weather information.

Note: In our test runs, two different sets of weather data and performance data will be used.

Weather data. (1) geopotential height and temperature,

(2) wind (speed, direction) and temperature.

Performance data:

·1) for DC8-D3:

standard course.

ORIGINAL PAGE IS OF POOR OUNTER

requiarity 3 %

Mach '0.8034

taxi fuel 1500 kg

Zero fuel 75000 kg

reserves 10000 kg

max, takeoff wt. 142900 kg

max. landing wt. 93000 kg

(2) for DC10:

standard cruise.

regularity

ORIGINAL PAGE 18 OF POOR QUALITY

Mach

0. 82

3 %

taxi fuel

842 kg

zero fuel

177356 kg

reserves

3629 kg

max. takeoff wt.

259458 kg

max. landing wt. 190964 kg

- a. Test runs of the original program (for DC8-D3).
 - (1). Test run #1.
 - (a). Input parameters.

start-destination:

New York - Amsterdam (east bound)

weather data:

geopotential height and temperature

performance data:

DC8-D3

flight level

r1

т2

31000

4. 94

0.0000693

35000

0 54

0.0001043

39000

-0.65

0.000117

extra burn:

step up 100 kg/4000 ft

step down -80 kg/4000 ft

(b) Butput

Sire Fig. 8.

criterion	trip fuel	cost	time	distance
min. cost	36398 kg	9914	6h 51m	37.05 n.m
0.0 time	39931 kg	10359	6h 43m	3205 n m

* routes taken: same route

115-113-108-103-97-91-87-77-66-52-37-21-11-6-2-0

(c). Remarks.

The original program written in Burrough ALGUL has been converted for use in UNIVAC 1108.

Test run results which come from the converted program are just identical to those obtained from the original program, assuming use of same input parameters.

(2). Test run #2.

· (a). Input parameters.

start-destination:

New York - Amsterdam (east bound)

weather data:

zero wind and standard temperature

performance data:

DC8-D3

r1 and r2:

same as in test run #1

extra burn:

same as in test run #1

- (b). Output.
 - * See Fig. 9.

criterion trip fuel cost time distance min. fuel 38327 kg 10357 7h 05m 3193 n.m

Poute Laken:

115-113-108-103-97-91-87-76-64-50-36-21-11-6-2-0

(c). Remarks.

To run the program under zero wind and standard temperature is a kind of minimal check.

The optimal track should then consist of the 'optimal operational distance track' in the graph as a good approximation of the great circle track between the end points.

The results of test run #2 snows a slightly different route as compared with that obtained in the test run #1.

The results should be unaffected when the program is run for a flight in opposite direction between the same points (west bound versus east bound). See table 11. P. 128.

- b. Test runs of the modified program.
 - (1). Test run #3.
 - (a). Input parameters.

start-destination: New York - Amsterdam (east bound)

weather data: zero wind and standard temperature

performance data: DCB-D3

#light level r1 r2

31000 4.94 0.0000693

35000 0.54 0.0001043

39000 -0.65 0.000117

extra burn: step up 100 kg/4000 ft

step down -80 kg/4000 ft

- (b). Output.
 - # See Fig. 10.

criterion trip fuel cost time distance min. fuel 38225 kg 10335 7h 05m 318R n.m

route taken:

115-113-108-103-97-91-87-76-64-50-36-21-11-6-2-0

(c). Remarks

Let us compare test run #3 with test run #2.

These test runs with same input parameters should show close results for the optimal operational distance track as shown

in Fig. 37, P. 110.

Both test run #2 and #3 have same route between New York and Amsterdam.

criterion fuel cost time m&TDOT4 distance min. fuel 38327 10357 7h 05m original 3193 n.m modified min. fuel 38225 10335 7h 05m 3188 n.m

Differences in results may be attributed to the use of different formulas for computing segment distance and true course, and round of errors.

Thus we know that the modified program works correctly under this minimal check.

(2). Test run #4.

(a). Input parameters.

start-destination: New York - Amsterdam (east bound)

weather data: wind and temperature

performance data: DCS-D3

r1 and r2: same as in test run #3

extra burn: same as in test run #3

(b). Output.

ことのできるとのできるとのでは、 一般のでは、 一般のできる。

Sec Fig. 11.

criberion trip fuel cost time distance man, time 34273 kg 9015 5h 58m 3192 n, m

route taken:

115-113-108-103-97-91-87-77-65-51-37-21-11-6-2-0

(c). Romanks.

Let us compare test run #4 with test run #1.

These test runs were executed under conditions having standard cruise, Mach=0.8034, New York - Amsterdam (east bound), DCB-D3 performance data, and min. time criterion.

test run	weather	fuel	cost	time	distance
testrun#1	geopotential	39931	10359	6h 43m	3205 n.m
testrun#4	wind	34327	9015	5h 58m	3192 n.m

Differences in results are attributed to the use of different weather data set.

The difference in flight time implies the test run #4 used weather data set with almost east bound wind along the track. It is reasonable to have faster flight in the test run #4 than in the test run #1 since as you see in Fig. 11, an aircraft to fly may experience only tail wind—along the planned track.

(3). Test run #5.

(a). Input parameters.

start-destination:

New York - Amsterdam (east bound)

weather data:

wind and temperature

performance data.

DC10

r1 and r2:

same as in test run #3

extra burn.

same as in test run #3

(b), Output.

See Fig. 12.

criterion trip fuel cost, time distance min. time 48767 kg 11129 5h 52m 3192 n.m

* route taken:

115-113-108-103-97-91-87-77-65-51-37-21-11-6-2-0

(4). <u>Test run</u> #6.

(a). Input parameters.

start-destination:

Amsterdam - New York (west bound)

weather data:

wind and temperature

performance data:

DC10

r1 and r2:

same as in test run #3

extra burn:

same as in test run #3

(b). Output.

* See fig. 13.

A strange symptom occurs: A negative segment flight time and

a negative fuel burn between graph point number 0 and 1.

Thus we temporarily add one statement in line #884 to avoid this negative magnitude.

Let us make another test run with this added statement under same conditions (test run #7).

- (5). <u>Fest run</u> #7.
 - (a). Input parameters: same as in test run #6.
 - (b). Output.

The state of the s

* See Fig 14.

criterion trip fuel cost time distance min. time 68447 kg 15383 7h 52m 3283 n.m

ORIGINAL PAGE IS OF POOR QUALITY * route taken:

0-1-4-8-17-30-44-60-75-87-92-98-104-109-113-115

(c). Remarks.

Let us compare test run #5 with test run #7.

These test runs are made under following conditions:

DC10 performance data, wind and temperature and same start-

destination.

test run	bound	trip fuel	cost	time	distance
#5	east	487 8 9 kg	11129	5h 52m	31 92 n. m
#7	west	68447 kg	15383	7h 52m	3283 n.m

The west bound flight takes 2 hours more in flight time as compared with that obtained in east bound flight.

This is caused by the strong east-bound wind trend in weather data and longer flight distance in west bound route taken.

(7). Test run #8 and #9.

(a). Input parameters.

start-destination: New York - Amsterdam (east bound)

weather data:

wind and temperature

performance data:

DC10

#light level r1 r2
31000 ft 2,366 0.0000722
35000 ft 0.35 0.0000792
39000 ft -0.83 0.000089

extra burn:

step up 700 kg/4000 ft

step down -28 kg/4000 ft

(b). Output.

See Fig. 15 and 16.

 criterion
 trip fuel
 cost
 time
 distance

 min. fuel
 49752 kg
 11320
 5h 53m
 3192 n.m

 min. time
 51129 kg
 11480
 5h 52m
 3192 n.m

routes taken: same route

115-113-108-103-97-91-87-77-65-51-37-21-11-6-2-0

(c). Remarks.

These test runs show that the min. fuel flight plan gains 1177 kg of trip fuel and loses 1 minute of flight time as as compared with the min. time flight plan.

The gains may look inconsiderable.

But this is the result of one test run only.

Here another comment is made for optimal step altitude profiles.

The fuel and cost profiles have both the normal appearance:

Approximation of a continuous creise climb with one or two 4000 ft steps. However, the min. time flight is more irregular.

This is caused by the response of the aircraft's speed to the

vertical temperature gradients: The level of highest temperatures is sought.

As you see temperature values in Fig. 3, some higher altitude levels have unexpectedly lower temperature values, for example, around graph point numbers 87,77,37,21,2 etc.

(8). Test run #10 and #11.

(a). Imput parameters.

start-destination: New York - Amsterdam (east bound)

weather data: wind and temperature

performance data: DC10

flight level r1 r2

31000 ft 2. 966 0. 0000722

35000 ft

0. 85

0.0000792

ORIGINAL PAGE IS OF POOR QUALITY

39000 ft

-0. 83

0.000089

extra burn:

step up

700 kg/4000 ft

step down -28 kg/4000 ft

(b). Output.

* See Fig. 17 and 18.

criter	ion	trip fuel	cost	time	distance
min. fo	u e l	49948 kg	11319	5h 53m	3192 n.a
min. ti	ime	51118 kg	11479	5h 52m	3192 n.m

* route taken:

115-113-108-103-97-91-87-77-45-51-37-21-11-6-2-0

(c). Remarks.

We used slightly different r1, r2-parameter sets to see how they affect flight plannings in this test run.

When we see test runs, #8, #9, #10 and #11 we understand that there is no significant difference in results under slightly different r1, r2 parameter sets.

(9) Test run #12.

(a). Input parameters.

start-destination:

Amsterdam - New York (west bound)

weather data:

wind and temperature

performance data:

DC10

r1 and r2:

same as in test run #10

extra burn:

same as in test run #10

(b). Output.

#See fig. 19.

criterion trip fuel cost time distance min. fuel 69928 kg 15667 7h 58m 3283 n.m

(c). Remarks.

In this test run we understand that there are significant differences in results mainly because of the east bound wind tendency in the weather data set used.

fuel cost time distance criterion bound 49948 11319 5h 53m 3192 min. fuel east 69928 15667 7h 58m 3283 min. fuel west

(10). Test run #13.

- (a). Input parameters: same as in test run #12 except the following:

 60 % of vector wind for mean climb vector,

 4 minutes for take-off and acceleration.
- (b). Output.

See Fig. 20.

criterion trip fuel cost time distance min. fuel 70404 kg 15769 8h 01m 3283 n.m

#route taken:

0-1-4-8-17-30-44-60-75-87-92-98-104-109-113-115

(c). Remarks.

We made some modifications on climb distance computation to avoid the negative magnitude as described in the test run #6.

We took 60 % of vector wind instead of 75 % for the mean climb vector wind (See line #882-883 of the program listing).

The climb time is usually reduced by a few minutes to account for take-off and acceleration. We took four minutes for it in

this test run (two minutes taken in test run #12).

Then let us see how modifications affect the flight plannings.

test run	criterion	fuel	cost	time	distance
#12	min. fuel	69928	15667	7h 58m	3283 n.m
#13	min. fuel	70404	15770	8h 01m	3283 n.m

It shows that the test run #13 requires slightly more cost and time than the test run #12, but not significantly.

Graph point #1 has Dist=10, Time=1, and burn=200 in this test run

EXTRA COMMENTS FOR THE MODIFIED PROGRAM.

instead of zeros.

54-334

Procedure WDATA scans weather data received from National Weather Service and obtains the required weather information for North Atlantic and North America area.

(see the weather data format in Operational Manual issued on 9/19/78 and Aviation Digital Forecasts Program issued in Aug. 1978, by National Weather Service).

The weather data received in packed decimal format is supplied in the form of grid point values of the vector wind and temperature.

72-35

Procedure CHOP cuts a piece of weather information from the whole weather data for a specified grid point.

* 89-116

Frocedure STOR prepares a two dimensional array (120x34) for the weather information and stores the chopped weather data

in the array according to the standard pressure levels, i.e. 300 mbar, 250 mbar, 200 mbar etc.

119-133

Procedure AREA gets the header information of the weather data, i.e. area number, blockette number etc.

* 136-142

Procedure FINDNEXT checks the end of the weather data block.

* 145-213

Procedure GETDATA stores the weather data of each grid point in the prepared array according to GMT time, standard pressure level, area number, and blockette number.

* 216-225

Procedure SCAN activates the scanning procedures.

* 229-253

Procedure WINDCOMP decomposes a vector wind into x and y components.

* 257-262

Procedure INTP contains a formula for linear interpolation.

* 267-276

This routine prints out the weather data which are stored in the array space.

(One may delete this routine if not needed).

281-313

This routine converts the weather data in the standard pressure levels to the weather data in flight levels by using the interpolation formula.

» 315-3:32

This routine prints out the converted weather data above.

(only x compenent of vector wind and temperature).
One may delete this routine if not needed.

* 336-340

Initial values:

CG= conversion factor between degree and radian.

MACH= 0.82 for DC10.

P1.P2.P3= flight levels.

Q1, Q2, Q3= pressure altitudes for standard pressure levels.

* 350-353

The graph points are labelled by numbers running from 0 to 115 (note that the gpraph point numbers shown in Fig. 37, P. 110 runs from 1 to 116).

The graph is such that the point sets consist of subsets of points arranged along 'Meridians' whose indices run from O to 15.

Array A(index) contains the graph point number assigned to the most northerly point on each meridian.

Array A is used for the computation of zone index (See the procedure ZONEI).

* 358-372

Array V has values assigned for geographic coordinates for graph points and check points on continents: 4-digit latitude 4-digit longitude in degrees and hundreths.

(See Fig. 37, P. 110).

* 376-381

This routine fills Boolean array BK and BKG with 'TRUE'.

· 382-395

This routine denotes blocking in continental airways.

(connectivity in the graph).

Boolean array entries of BK and BKG indicate which graph points are connected or blocked (TRUE=blocked, FALSE=connected).

Array BK is used for the zone index < 3 and array BKG is used for the zone index > 8.

BK(a,b,c)=FALSE means point b on meridian a is conneted with point c on meridian a+1.

Here point b denotes the b-th point from the bottom on the meridian. Example: BK(2,2,2)=FALSE means graph point number 3 on meridian 2 is connected with graph point 5 on meridian 3 as you see Fig. 37.

* 405-414

Procedure ZONEI determines the index of the zone associated with a graph point number.

Parameter G=graph point number.

For example, a graph point number 49 gives ZONEI(49)=6.

* 416-424

Procedure DT dissects latitude and longitude from the compressed coordinates. LALAT and LALDNG denote latitude and longitude respectively. Parameter K is an index of array V.

* 426-459

Procedure LIS determines actual latitude and longitude values for a graph point. (See procedure DT above).

The sign of longitude value is changed in the east of Greenwhich.

Parameter U=graph point number.

* 461-480

Procedure CTQ prepares a time instant array DD, zonally specified, to be used for the time interpolation later on.

A=0.4 denotes an estimated flight time of 24 minutes per continental zone.

The instant values run from index O to index 14.

***484-498**

Procedure HH computes grid point values according to SELECT value

If SELECT=1, MH gets x-component value of vector wind

If SELECT=2, HH gets y-component value of vector wind.

If BELECT=3 , HH gets temperature value.

These values are computed under consideration of time factor for dunamic process.

Parameter V and W denote array index numbers for row and column respectively. Parameter F=index for flight levels (31000 ft=1, 35000 ft=2 and 39000 ft=3).

* 503-523

Procedure GEOP computes x and y component values of vector wind and temperature value for an arbitrary point by using procedure HH above. Bi-linear interrpolation scheme is used in this computation. Parameter C=flight level index.

* 528-538

Procedure GEODISE computes a great circle distance between two arbitrary points P1(LAT1,LON1) and P2(LAT2,LON2).

*** 543-5**50

Procedure GEOMGRID converts coordinates of two arbitrary points on sphere to their coordinates on the geometric grid. PP and GG denote two grid point numbers.

*** 555-638**

3

Procedure PART2GEOM computes length of segment by summation of

contribution from subsegments (LENGTH(I)) and a true course angle of a flight segment.

El and E2 denote unit vectors for the true cource.

Normalized coordinates (running from O to 1) are stored in array AB.

These values serve also as weighting factors later on.

Array LENGTH(I) contains lengths of subsegments on the sphere.

*640~65B

These two procedures are summation formulas.

* 662-684

Procedure DRIFT computes a drift angle by using x_iy components of vector wind.

687-741

Procedure METPROC processes meteorological data before optimization process later on.

Parameter S=flight level index.

≠ 695-705

this routine computes average weather parameters for each subsegment.

* 706-7UB

This routine computes average weather parameters for each segment in order to get single drift angle of the segment.

· 711-716

This routine computes flight time in each subsegment.

- 717-740

This routine computes temperature deviation, flight time, air distance, flight heading, x,y components of vector wind,

and x,y components of true air speed in each segment and flight level.

These computed values are all average values along a segment under consideration using previously calculated contributions. TEM-temperature.

TDEV(8)=temperature deviation.

TIME(S)=flight time in flight level index S.

AIRDIST(S)=air distance.

LE=distance of flight segment.

WIX(S)=x component of vector wind.

TAX(S)=true air speed component.

745-785

Procedure TABLE and CLIMBCORT are table lookup procedures for picking up performance data for-DC10.

787-830

Procedure READG reads in performance data and procedure WRITEG writes out those inputed data.

One may delete procedure WRITEG and lines 813-830 if not needed.

* 833-852

This routine reads in input parameters for a flight planning. In case of prescribed track flight (RQUTE >= 1111 case), the routine reads in G.

In another case, it reads in Sf(starting point number) and ST1(end point number) and decides G value.

G= # of graph points on the prescribed route or (# of zones between source and destination) - 1.

861-864

Procedure SQ and JQ are conversion formulas for indices used in subsegment algorithms by using array A(index) and array F(index) respectively.

* 866-889

Procedure DESCLIMB computes performance by using the table lookup procedure in climb(if MQ=O) or descent(if MQ not= O). The calculation is somewhat complicated by the fact that the location of TOC is not fixed. The position where the flight levels off may vary due to the influence of the winds in the climb phase.

For mean climb vector wind we may take 60 or 75 % of the vector wind and the climb time is usually reduced by a few minutes to account for take-off and acceleration and thus we may take 2 minutes for it.

Array DECLTIME contains climb time or descent time.

Array DECLDIST contains climb distance or descent distance.

Array DECLFUEL contains climb fuel or descent fuel.

Array AIRDIST contains climb air distance or descent air distance.

It is noted that in the descent zone, the performance table is not used and thus specific expressions are chosen according to company's planning policy.

(See formula 6.31 in P. 120-121).

× 892-933

Procedure LINE prints out a flight plan.

** 435-1242

Procedure SPACEOPT is a key procedure for optimalization.

A STATE OF THE PARTY OF THE PAR

In this procedure, crucial is that some parameters may not surpass upper bounds, for example, aircraft weight.

This requiresthe inclusion of several protective statements in order to ensure proper functioning of the operational scheme. FBG determines whether the flight plan computation will be performed backward(FBG=FALSE) or forward(FBG=TRUE).

FB determines whether cost(FB=1). fuel(FB=0) or flight time (FB=-1) will be optimized.

BI determines whether the navigation regime is free in the horizontal(BI=FALSE) or bounded by one position(BI=TRUE).

BG determines whether the cruising alitude is free(BG=FALSE) or bounded(BG=TRUE).

RR istake-off weight or landing weight.

* 953-961

Procedure PREP computes distance and flight time, and prints out a line of flight plan.

Al=seyment distance.

B1=segment flight time.

AA=IRUE denotes a climb phase and AA=FALSE a descent phase.

963-1010

Procedure EDITING prints out proper heading lines for a flight plan.

1012-1084

Procedure QQ computes segment contribution, fuel, etc. If D=-1, computation is for in-flight direction and if D=+1, then computation is for opposite flight direction.

- 1018-1038

Procedure CL computes the aircraft weight (GRWG) and total fuel,

flight time or costs at end point of a flown segment.

(the contribution of fuel in steps included).

Farameter M1 denotes segment fuel(kg) and M2 segment time(min).

In the climb phase no step contribution is taken into account as required(BCLIMB=TRUE).

GG denotes flight level index at the graph point when the computation starts. G denotes the flight level index to be investigated.

Step consumption: UP=700 kg/4000ft

DOWN=-28 kg/4000ft.

(surplus of segment fuel)

ITERATION becomes TRUE when (1) back-tracking (2) first zone is reached.

(3) TOW is unknown and Wb is known (see P. 120).

In array ROW the aircraft weight is stored.

GRWQ denotes aircraft weight at the end point of segment.

GUANT denotes cost, fuel or time at the end point of flown segment.

***1045-1052**

computation in climb or descent by procedure CL.

If ED is TRUE then it prints out the results.

***1055-1057**

safeguarding statements.

\$1050-1068

computes segment contribution of changes in aircraft weight.

Note that fuel consumption is expressed as loss of aircraft weight.

The table for specific range (P.116) is used.

Formula 6.27 (P.115) requires an estimate of weight halfway a flight segment. For that purpose coefficients as shown in table 2, P.116 are required (r1, r2).

+1069

ORIGINAL PAGE IS OF POOR QUALITY

jumping back to label JM1 is for safeguarding that the actually derived aircraft weight does not surpass the maximally allowed weight.

*1071-1078

computes the contribution for the last segment.

If ED is TRUE then it prints out the results.

*1081

GRWG and GUANT attain absurd values for safeguarding operational performance.

*1087

ED becomes TRUE when all degrees of freedom in the horizontal and vertical are lost, for example when a call of procedure SPACEOPT takes place in the final mode for flight plan computation along the (optimal) track found in previous calls.

(when navigation regimes is bounded by one point and cruising altitude is bounded).

*1088-1113

Initialization and preparation of all parameters needed for the algorithmic process of optimization.

FBG=TRUE means flight plan computation will be performed forwards, while FBQ=FALSE backwards.

Array F is filled in line 1244-1248 (see procedure FF).

The process can be activated for arbitray begin- and end-points.

In order to reduce storage space a renumbering is made for all subset points. So array F is defined and functions completely analogous to array A for whole graph point set.

Array STOREI and STOREIG contain the assigned numbers of labelled

end-points on meridians in the subgraph.

Zone cycle runs from line 1115 to 1220.

The zone cycle repeats as many times as the number of zones.

A cycle for graph points along meridian runs from line 1122 to 1216.

This cycle repeats as many times as the number of graph points in the current meridian.

A cycle for graph points along next meridian runs from line 1127 to 1214.

This cycle repeats as many times as the number of graph points in the next meridian.

A cycle for flight levels runs from line 1158 to 1212.

This cycle repeats as many times as the number of flight levels used.

* 1126

conversion for indices used in subsequent algorithms.

* 1131-1151

If the navigation is free (BI=FALSE) in the horizontal, it checks whether a segment (II, JJ) is blocked or not.

BK or BKQ = TRUE means airway is blocked.

If blocked, it skips computation for the segment.

* 1152-1156

conversion for indices (point G4).

determines geographic elements for a segment between points G3 and G4. See procedures GEOMGRID and PART2GEOM.

* 1162-1191

In case of backtracking in a flight plan computation an iteration process is put into action in the climb zone

This is done in order to determine the (unknown) take-off weight by iteration in such a way that the climb parameters do match with the

ORIGINAL PAGE IS OF POOR QUALITY

parameters found during backtracking when arriving in the climb zone.

The iteration starts with a take-off weight 20000 kg below the (known) maximum take-off weight.

Array ROW contains the (optimal) value of aircraft weight found during optimalization, using a zone-cycle.

The iteration finishes when either the weight difference at the point of matching is less than 10 kg or the number of iteration steps exceeds 10 (poor convergence).

In each step take-off weight is adjusted, see line 1181-1191.

* 1195-1203

similar computations but not backtracking case or not take-off weight adjustment case.

* 1204-1210

These statements are crucial optimalization criteria.

* 1225-1241

Preparation of elements which are required for a subsequent call for procedure SPACEOPT with lessened number of degrees of freedom including a final call for computation and presentation of flight plan data. In this final stage no degrees of freedom are left.

Procedure SPACEOPT then merely operates along a predefined track (the solution of previous calls).

+ 1244-1248

Procedure FF determines a zone index array F for a subset of graph .
points analogous to array A. (array F is a sub-zone array).

** 1250-1351

The state of the s

A call for procedure PROCES results in the production of a flight plan along whatever route is desired.

DETAILS

*1275-1289

Specification of limits in horizontal of graph points along meridians.

Array STOREI and array STOREIG store lower limits and upper limits respectively for the number of graph points on each meridian.

If route >= 1111, then production of flight plan along a presribed

route.

In this case the procedure SPACEOPT works in a degenerate mode.

* 1291-1296

Specification of limits in the vertical.

Array STOREG and array STOREGG store lower limits and upper limits respectively for the number of flight levels on each meridian.

*1298-1303

Procedure EP indicates that the ℓ indicates the ℓ indicates that the ℓ indicates that the ℓ indicates the ℓ indicates that the ℓ indicates that the ℓ indicates the ℓ indicates that the ℓ indicates that the ℓ indicates the ℓ indicates that the ℓ indicates that the ℓ indicates the ℓ

* 1305-1316

See P. 123-124 for procedures SS, SSS and SSSS.

These procedures compute landing weights.

MN contains landing weight or take-off weight.

1318-1324

Procedure TW is for safeguarding against overloading.

· 1327-1351

activates process as follow:

If FACTORIZATON is TRUE, then the optimalization takes place first in the horizontal and is followed by an optimalization in the vertical.

The following steps occur:

a) optimalization in the horizontal based on time.

- (b) optimalization in the vertical, using the track solution found in (a) and based on fuel, time or costs.
- (c) computation of flight plan along solution found in (b).

 If the optimalization takes place in free space, the sequence of calls results in: (three procedure calls)
- (i) optimalization in space based on time, fuel or costs.
- (i), based on time, fuel or costs.
- (iii) compilation flight plan along track solution found in (ii).

Note: (ii) could be bypassed as the solution is found already

in (i). But (ii) can be generated with a slightly different landing
weight. The compilation of a flight plan along a prescribed route
passes through all three procedure calls.

This means that in fact the computation is repeated threefold, however with properly tuned landing or take-off weights.

In order to protect against subsequent calls of procedure PROCES, FOUTE is assigned by 1000.

* 1353-1364

Read statement in case that a flight plan compilation is desired along a prescribed track.

This track is specified by graph points indicated by their numbers.

·· 1365-1369

Computation of an estimate of flight time to be used for the estimation of other parameters.

The same with distance.

Frocedure CTQ makes time instant array DD for each zone(meridian).

irray E is for storing the number of graph points used on a meridian.

· 1371-1389

performs a process for the production of a flight plan.

Actual parameters when calling procedure;

use landing weight (BB=TRUE).

cost optimalization (FFBB=1).

FFBB=0 means fuel opt, FFBB=-1 means time opt.

regularity percentage (PR=0.03).

fligh levels used between S1=1 for 31000 and S2=3 for 39000.

S3=1; the value is immaterial if FACTORIZATION is FALSE.

For required flight plans;

- 1. when a flight plan for the optimal cost track is needed, call 'proces (1.3.1.0.03.1.TRUE.FALSE)'.
- 2. when a flight plan for the optimal fuel track is needed, call 'proces (1,3,1,0.03,0,TRUE,FALSE)'.
- 3. when a flight plan for the least bime track is needed, call 'proces (1,3,1,0.03,-1,TRUE,FALSE)'.

For the flight plan 1, 2 or 3 above, FACTORIZATION=FALSE.

For other flight planning simulations, FACTORIZATION=TRUE.

* WEATHER DATA IN 3 STANDARD PRESSURE LEVELS * 34x16 DATA OUT OF 34x20 GRIDPOINTS * * TEMPERATURE, DIRECTION, SPEED *

_	442805 4528076 4429075 4529085	4531089 4630092 4632098 4631094	F.		5229024 5330023	5324050 5524037	[_	_	4223114 4423097	Г			- 1		ATTRARS ACTION	-	Γ.	-				_		5230031 5229045	
	4328054	4431081		4833054	5127026	5224071			4123128		3726074				4133126	_		_			4820061	4822038	4928022	5131023	ORI OF
	4227049	4331072	4633102	4833052	5125033	5223083	4923108	4423129	4123123	3725069	3726059	3729058	3731071	3833100	4034130	4836046	5109002	5318031	5319065	5019079	4821064	4723037	4828023	5032021	
4322056 4224038 4225040	4227042	4233060	4534098	4733048	5024043	5223084	4922110	4322124	4022105	3625052	3726047	3729050	3732063	3833093	3934131	4836051	5224003	5319036	5219073	4920085	4721064	4624035	4730025	4933023	
4223055 4224036 4125032	4127024	4134047	4534092	4032044	5024052	5022078	4722105	4222109	3822084	3624042	3726041	3730044	3833059	3834089	1935151		5224008	5420041	5220073	4920082	462106C	4524030	4531028	4833027	
4123052 4026031 4124020	4031003	4136037	4535085	4730045	4924058	4922073	4521099	4021092	3722064	3724037	3726038	3731044	3833059	3834082	3835129	4835056	5323016		5121075	4821076	4521052	4424025	4431030	4733033	
	4008017	4101028				4822053		••	3722046	1		3732042	- 1		3835127	4834054	5324031		Г				L.	4533039	
	4107025	4203018				4523073	1		3722032	1					3835123			_				_		4332044	
372	420	4205008	433	4527071	452	4223072	392	372	3722021	382	372	373	3736039	3735053	3735116	463	502	482	452	432	412	392	403		
	4234015	4324009	1		- 1	3924065	L		3823013						3/35101				L					4132048	
	4230032	4224027		4127084		3625051	1.	٠,	3825007	1.		L	3601021		3735072			_	Г	-				4032053	
	4130041	4025037	1	3727089		3527039	1	3621005		1.					3736050		1		Ι.					4031055	
	7930041 3926033	3825043		3426077	- 1	3530035		3617005	3631009	. [.					3736033		1						1	1 3930058	
	9 3630044 6 3626035			1 3227054		8 3331036 6 3331036	1	3 3522007	6 3430007						2 3729026										
3433027 3433035 3433043	3426046	3423049	3325029	3027028	3029029	3231036	3330030	3426013	3332006	3605005	3711022	3808025	3803009	3728024	3626052	3326072	3326067	3425058	3524038	3726022	3729026	3531033	3632043	3732045	

ORIGINAL PAGE IS

15

) [)

* WEATHER DATA IN 3 STANDARD PRESSURE LEVELS * 34X16 DATA OUT OF 34X20 GRIDPOINTS * * TEMPERATURE. DIRECTION: SPEED *

١

t

(

DRIGINAL OF POOR DUALITY

> -5

* WEATHER DATA IN 3 STANDARD PRESSURE LEVELS * * 34x16 DATA OUT OF 34x20 GRIDPOINTS * TEMPERATURE, DIRECTION, SPEED *

5123046 5324051 6636663	5627059	2629069	5630078	5432081	5332074	5133060	5132042	5030025	5125627	5123042	5123061	5122085	5123105	5223116	5424118	5626121	5627129	5529137	5431133	5332107	5233066	5233024	5321011	5419030	5619044	5820051	6121049	6224042	6127039	6029037
5222052 5423053	5827054	5928066	5929077			5233065	5133042		5124033		5023077	5022101		-	5525107	5626103	5628110	5530124			5234083	5134034	5218003	5318026	5416044	5719055	6021053		6227032	6029028
5321054 5522054 594044			6229073				_	-	-			4922115		-	ı	5527082	5528083					5135044	5104005	5117024			6021057		6227031	6030022
5321058 5622056 5622056			6329068		1			5225026								-		-	<u> </u>	5634136	Г		Γ	_	5219051	5620066	6021060		1	5931021
5421066 5722060			6430059				-	5324035				-				-	5530049	-			Ε"		1	- 1		5620071	6121063		6029036	5832023
5622080	_		6532046		I _	_							5522095				5630043	-		_			Ε.	- 1		5820073	6221065		5930039	5832029
5722093			6136035			-	_										5632041	-	L				_		Ι.	5921073	6221065			5732037
5723102			5804034			-						_						-	L				Γ.			5922073	6122063		5830045	5732044
5623104			580/035					5425070							١		Γ.		•								1		1	5732048
5524098	57	260	5807023	603	9	573	225	545	545	545	545	562	552	262	561	262	553	543	553	57	3	513	512	532	572		582	545	573	5733052
5524085	_		5805001														5501021	-		- 1		. 1	Γ.	-						5733058
5425070	-		5725025					- 1								-				- 1				-			5526067			5733068
3 5626052 3 5628042 4 5631058	_		5824061	_						- 1	4 5331036	3 5629010	2 5631016	. 1													1			5632076
1 5626048 0 5528043 6 5631054			3 5625072			-		- 1				8 5527013							Γ.	- 1		- 1					1			4 5431080
0 5527051 9 5529040			5425065			4 5526071		- 1		- 1		_ 1		- 1				-												8 5231074
5427050	5331049	5228065	5424063	5525059	5525052	5425044	5327040	5328031	5329018	5133039	5031049	5126039	5328033	5632049	5736025	5618014	5408004	5427014	5325039	5226063	5125085	2022088	5126073	5528064	5627054	5325045	5425030	5632033	5533067	5331068

1

LEVELS * WEATHER DATA IN 3 STANDARD PRESSURE I * 34XI6 DATA OUT OF 34X20 GRIDPOINTS * * TEMPERATURE, DIRECTION, SPEED *

* WEATHER DATA IN 3 STANDARD PRESSURE LEVELS * * 34x16 DATA OUT OF 34x20 GRIDPOINTS * * TEMPERATURE, DIRECTION, SPEED *

11		111	111	111	
5122046 5223053 5224056 5125059	5127063 5129070 5031080 5031083 5131063	5132047 5130030 5226030 5324047 5424062 5324070	5025079 5724089 624598 1725104 1825105	1929099 1932066 5133052 5332012	5419041 5619061 5720069 5722062 5824049 5927037
		0-00-0			5519043 5519068 5620074 5621058 5724035 5929021
		5232062 5031031 5124036 5423066 5524084	5524114 5024129 4824124 4725111 4726096	4732105 4732105 4834106 4835073 5135025 5120012	5214044 5419071 5619076 5621054 5725026 5932018
5222060 5222072 5023065 5025054					5320047 5520074 5620077 5521052 5626022 5733021
5122058 5122071 4923059 5026047					5421059 5721082 5521076 5422049 5527022 5534026
8 5122057 7 5021069 6 4923052 0 5025039				4 4532058 3 4634087 8 4835117 3 4936085 3 5036920 4 5321035	0 5621082 3 5822095 0 5522073 0 5323044 7 5328024 4 5434030
0 5122058 7 4922067 9 4822046 0 4926030			332333		6 5722100 3 5723103 1 5523070 3 5224040 5 5333034
5021060 6 4822067 94 4723039					55 5722106 18 5523103 14 5325071 14 5126043 16 5132039
58 5022062 53 4822066 33 4724034 50 4831019					05 5522105 92 5223098 77 5025074 64 4927054 50 4929040 51 5031046
83 5023068 64 4623063 37 4626033 44 4833030	480 510 523 523	502 502 502 462	452 471 462 463 463		05 5322105 89 4923092 77 4825077 67 4828064 56 4829050 53 4931051
95 4925083 165 4524064 142 4528037 159 4633044				129 4632032 156 4533058 194 4634104 176 4732071 188 4825073	103 4923105 187 4724089 173 4626077 161 4628067 161 4730056
074 4725095 055 4526065 049 4429042				010 4629029 045 4632056 076 4533094 073 4530076 088 4726088	094 4623103 077 4624087 063 4026073 062 4529061 068 4631061
047 4526074 040 4428055 049 4431049				022 4633010 029 4734045 052 4633076 073 4529073 091 4626088	083 4424094 064 4524077 050 4526063 057 4530062 071 4531068
4327035 4426047 4330029 4429040 4434042 4432049 4533058 4633069				4602012 4705022 4529028 4635029 4527061 4630052 4226083 4527073 4226083 4425095	4625067 4525083 4526049 4525064 4427038 4427050 4431044 4330057 4532066 4432071 4631058 4631056
4227033 43274331031 4330 4331031 4330 4434039 4434				4627032 4602 4426060 452 4326079 452 4125080 4326 4126072 4226	4626043 4625067 4526033 4526049 4527028 4427038 4632032 4431044 4533056 4532066
433	432	403 403 403 403	453	432	452

2 = 2

1

* WEATHER DATA IN 3 STANDARD PRESSURE LEVELS * * 34XI6 DATA OUT OF 34X20 GRIDPOINTS * * TEMPERATURE, DIRECTION, SPEED *

ı

ı

í

(

1.1	111	1 1 1			111
5023041 5123047 5224053 5225053	5327053 5329058 5330068 5231073 5231070	5137045 5137045 512703 5127031 5324043 5324071	5124081 5024090 4924097 4925100 5125098	5329091 5330087 5232075 5233048 5232016	5319035 5620052 5921061 6222058 6424049
5123041 5323053 5424060 5525060	5527057 5528060 5530069 5431076 5331075	5172049 5172049 5126033 5324050 5423071	5224099 5024108 5024112 5125109 5326102	5329095 5331096 5233086 5234059 5134022	5219037 5519056 5920063 6322055 6524039 6428026
5223045 5522059 5723066 5725062	5828060 5838060 5830071 5731077 5532077	5232052 5130031 5225033 5423056 5523078		5430092 5432100 5334096 5135069 5035028	5119039 5419059 5920065 6421051 6525030
5323048 5722065 5823067 5925059		5332055 5332055 1 5130036 2 5234035 1 5423063 3 5523082		5533096 5533096 5334103 5135078 5036031	1 5120043 5420063 5 5920066 1 6422050 1 6526027 5 6132020
9 5422659 0 542,070 8 552564 6 5926052		5 5529031 5 5229031 9 5323042 9 5522071 3 5523088		8 5432068 2 5534088 7 5335105 4 5036083 0 5036033 8 5121017	9 5220054 1 5621070 9 6021068 0 6422051 4 6427029
18 5522049 59 5822070 50 5825058 55 6026048		4 5935076 51 5532058 59 5329035 54 5423049 14 5522079 15 5622093		0 5535058 76 5535082 11 5336107 13 5036084 21 5036030	14 5421069 12 5722081 10 6022069 17 6323050 19 6228034 17 5932031
50 5422048 71 5722069 44 5823050 26 6026035		59 5632061 63 5632061 47 5428039 60 5423054 84 5622084 89 5822095		44 5433050 70 5435076 17 5336111 81 5136083 17 5135021 62 5322044	96 5622084 99 5823092 75 5924070 50 6125047 44 6128039
54 5422050 74 5722071 40 5724044 26 6028026		59 6152069 62 5731063 56 5423760 61 5722084 78 5922089		41 5434644 67 5334070 18 5435117 77 5136081 30 5130017	03 5722096 04 5823099 185 5925075 161 6026050 151 6028044
3061 5522054 3071 5622074 6037 5725040 3037 5931026		20051 505059 20064 5731062 25072 5527058 25078 5522081 25068 5923078 22039 5722059	F - F	F	23108 5823103 24111 5823104 26093 5825085 26071 5927061 29060 5929051
562 562 563	586	55.55	552 562 572 573 573	522	588 588 588 587
5725101 5725080 5526072 5524069 5430042 5528038 5634070 5633053		5620191 5728085 5627104 5628082 5627107 5526089 5626088 5624079 5527058 5625063		5530034 5632035 5832055 5632055 5130072 5231096 5130083 5236071 5126083 5226071	5423118 5623113 5625113 5724116 5627095 5726096 5629076 5729074 5531072 5730067
5626084 5725101 5527051 5526072 5531051 5430042 5633079 5634070		5525079 5626091 5526103 5627104 5526106 5627113 5527106 5627107 5429042 5527058 5432014 5429020		5630016 5530034 5832046 5832055 5232076 5532092 5229076 5130079 5126090 5126083	5324105 542 5425091 5629 5527085 562 5530081 5629 5431079 553
5626060 562 5528048 552 5532053 553 5633078 563		5525089 552 5525082 552 5426076 552 5327071 552 5331040 542		5704007 563 5732028 583 5530059 553 5327081 522 5126101 512	5425081 532 5325071 542 5327067 552 5330075 553 5331080 543
5526052 562 5529039 552 5533047 553 5532065 563				5528009 570 5428037 573 5326069 553 5225095 532 5126100 512 5426083 532	
5427050 55 5431039 55 5434043 55 5331049 55		5327044 55 5327040 54 5328031 53 5329018 53 5133039 52 5031049 52	1 1	5325039 55 5226063 54, 5125085 53 5025088 52, 5126073 51,	5527054 55 5325045 53 5425030 52 5632033 54 5533067 54
20.00	55	2 2 2 2 2	50.00	55 25 55 55	5000000

(!

2 = 2

1 7

<u>, 1</u>

) ' ' '

Fig. 2-1

INTERPOLATED GRIDPOINT VALUES IN FLIGHT LEVELS

o s	52	55	52	e a	24	35	56	13	16	Œ		0	11	15	17	21	54	30	30	54	15	#	<u>-</u> 5	Œ,	ŕ	-	=	5	24	34	31	39	4.0
27	38	64	55	61	25	47	39	53	19	17	16	19	23	28	34	45	58	68	1	67	26	35	8	1	-	13	24	34	46	ŝ	19	62	99
23	34	20	19	72	P	29	52	37	31	25	19	23	53	33	77	57	90	95	104	104	96	20	24	21	=	16	22	35	-	61	69	72	67
32	42	57	69	92	11	75	49	47	31	5 6	20	54	59	35	41	67	90	102	114	117	==	16	64	5	14	10	15	18	30	45	26	19	9
35	51	57	67	2	18	18	72	57	36	54	50	52	32	38	47	75	85	86	107	108	108	93	68	33	9	-	0	•	2	27	38	£3	24
31	45	51	57	9	72	72	94	63	42	56	23	31	43	26	71	87	89	66	95	88	85	06	99	28	2	7	-111	-	~	13	56	53	27
32	38	39	94	24	63	63	63	25	45	56	26	43	59	70	98	98	98	85	74	20	72	70	63	34	-	۴	-5	0	12	21	56	54	19
56	35	36	4.1	20	54	26	9#	25	32	52	30	64	64	83	96	16	72	99	59	55	55	20	44	19	0	-5	0	::	-	35	30	22	14
36	37	33	38	£,	39	33	42	34	31	54	36	53	62	72	82	68	56	20	94	47	040	47	0.40	50	0	~	9	13	59	32	31	54	12
41	43	32	31	22	-	11	25	31	18	28	11	52	51	69	72	55	41	37	040	38	32	30	23	21	10	9	14	25	28	31	27	23	14
20	4.1	32	18	r	7-	0	10	15	28	39	50	64	84	51	4.7	42	31	32	36	34	30	28	22	25	10	12	25	38	38	27	54	25	18
61	44	30	-	-17	-20	-1	80	16	36	50	29	61	47	47	38	30	25	59	32	27	20	56	22	22	18	27	42	53	94	30	23	56	21
50	43	31	•	.5ª	- 52	11	2	21	41	62	9	59	55	51	37	21	17	19	19	13	18	25	21	22	27	51	65	69	55	36	26	53	28
53																																	
54																																	
54																																	
4 46																						ĺ											
34																						1											
59																																	
52	22	17	56	47	14	4.1	3,	30	28	32	28	23	27	27	15	9	-	-5	-50	-24		56	53	71	72	67	99	35	54	25	54	28	31

.,

2 = 2

ı

LEVELS

FL16HT

Z

GRIDPOINT VALUES
OF WIND DATA+

F.4. 2-3.

INTERPOLATED GRIDPOINT VALUES IN FLIGHT LEVELS
X-COMPONENTS OF WIND DATA

43	4.8	64	55	64	-	37	33	23	19	14	æ	œ	=	16	22	27	39	4	6.0	4	38	27	91	0	9	œ	13	17	52	30	33	ħ
27	35	†	64	26	21	41	3	33	22	11	16	15	18	23	31	9#	19	2	80	78	19	25	ě	20	12	15	61	21	5	39	11	45
23	32	##	53	26	53	24	4	37	31	54	18	50	23	53	39	29	6	96	105	107	95	73	94	52	16	15	-	19	33	4	20	25
28	36	48	57	63	94	28	41	45	35	56	23	23	27	33	94	2	82	110	122	128	118	98	53	31	15	10	=	14	23	37	44	47
35	##	61	58	†	67	62	20	47	30	27	22	52	32	47	55	80	89	102	119	130	129	102	69	33	12	9	5	6	-	52	36	39
33	41	94	54	65	72	65	26	39	33	21	22	56	42	29	49	88	88	101	101	109	108	103	19	28	12	0	0	•	10	27	31	32
27	35	38	47	28	69	67	59	‡	34	21	22	33	54	9	7.4	91	83	98	82	83	87	78	42	33	80	•	7	6	Ļ	30	33	31
53	36	36	45	53	49	9	63	45	54	50	54	43	51	67	19	75	2	72	99	29	58	24	47	19	•	ŧ	•	6	53	30	38	35
33	39	36	41	48	52	52	4.4	31	54	23	30	0	55	71	80	1,	19	26	51	45	04	33	54	21	•	ŧ	2	50	54	32	36	34
51	20	39	35	32	30	36	53	53	54	28	39	25	55	20	76	61	45	0 †	37	37	39	32	54	25	7	-	13	21	52	33	36	34
60	62	640	54	10	6	=	15	28	23	38	4	24	53	25	25	47	31	30	58	52	3	53	23	22	o 1	10	56	35	37	33	4.1	37
80	68	0 4	14	-14	-22	-14	10	54	04	48	58	26	52	61	55	32	21	54	52	21	31	56	23	25	20	27	42	25	47	0	45	0
81	68	† †	9	-24	-33	-20	0	27	##	22	99	68	51	51	04	50	12	50	50	s	16	33	45	51	30	20	61	69	9	39	52	36
87	99	46	16	-17	-22	7	#	27	64	67	75	75	9	64	28	13	80	9	6	•	s	23	39	0 †	51	72	78	73	19	53	58	43
75	99	0	34	9	-	9	31	47	89	78	84	88	49	9	23	=	ŧ	-	-5	†	0	:	35	36	20	85	81	85	82	9	62	53
67	43	39	39	58	56	31	55	79	96	46	44	116	59	34	16	12	+	-13	-14	9	0	0	15	47	20	79	83	68	88	99	61	62
51	41	45	20	47	94	24	11	91	111	110	102	68	52	53	6	12	-	-51	-19	-14	-15	-10	=	41	72	87	98	95	82	69	70	69
# 8	43	45	84	26	58	69	79	16	86	91	19	49	64	53	14	22	19	-13	-23	-23	-23	-13	16	25	84	101	46	16	67	63	69	68
25	39	23	0 %	49	62	20	74	75	11	63	64	34	37	34	53	32	32	9	-18	-21		:	04	7.3	93	86	81	49	51	45	94	51
21	30	15	38	55	19	55	99	20	1,	0 1	31	17	50	39	39	33	32	23	_	-3	15	37	25	80	94	72	53	55	43	58	21	34

Frig. 2-4.

LEVELS

FLIGHT

GRIDPOINT VALUES OF WIND DATA*

45854876411484188068562114 - 24825

CIII

Fig. 2-5

ı

INTERPOLATED GRIDPOINT VALUES IN FLIGHT LEVELS
X-COMPONENTS OF WIND DATA

23	24	37	44	43	4	37	25	21	16	13	4	14	14	15	10	2	56	5	34	42	5	3	31	20	2	14	20	27	36	47	25	57
20	22	56	35	‡	46	04	36	30	24	19	21	21	23	23	58	54	27	35	4	20	25	29	8.	ŧ	20	15	20	54	31	04	24	65
23	26	53	37	45	25	51	47	32	28	56	23	52	24	31	333	32	36	41	48	29	69	22	99	47	92	14	2	16	12	34	46	19
28	33	0 1	47	53	55	26	55	48	39	27	25	27	35	9	111	49	54	61	69	2	18	98	r	24	9	=	2	•	8	30	1	51
30	40	6	54	61	64	67	62	57	91	30	27	30	04	53	19	73	F	82	6	97	100	91	84	53	92	•	-	^	2	56	39	45
31	39	20	28	61	64	69	67	9	44	34	27	31	64	65	76	89	66	104	110	109	102	76	6	48	22	^	2	^	21	54	30	31
35	43	51	26	22	19	67	74	65	51	38	25	31	64	2	81	95	109	105	103	76	98	79	99	35	13	ŧ	3	•	7.1	15	27	25
33	45	20	52	24	29	69	10	63	55	34	54	30	53	65	74	98	101	95	81	2	63	29	20	38	7.	0	2	16	12	25	27	23
36	94	46	47	20	61	67	58	25	43	36	56	a C	20	69	7.	83	1	68	58	64	61	45	31	20	12	0	=	27	0 \$	37	31	54
36	37	41	38	43	51	25	52	64	43	37	31	0 †	55	7	7.1	69	29	47	04	38	38	35	12	16	6	•	18	04	59	46	35	56
36	43	32	31	28	28	53	32	35	7	45	38	†	57	62	57	64	24	35	33	35	31	27	52	16	-	ç	27	62	-	26	37	53
30	44	32	21	6	٥	~	14	28	47	9#	45	48	26	26	47	35	30	52	30	33	56	11	56	21	=	15	45	49	78	68	44	34
39	43	31	16	ŗ	12-	-17	-3	20	41	51	56	9	53	21	36	24	15	19	22	52	21	15	25	25	13	53	55	20	9	72	26	0 †
21	67	33	16	٩	h2-	-18	-	17	42	27	10	69	59	64	54	13	٥	10	60	10	2	13	52	39	27	48	72	20	9	92	65	64
77	26	36	23	S	8-	-5	13	31	53	92	88	83	99	64	19	ŧ	7	ţ	-8		-	21	20	39	48	69	81	85	82	80	67	20
90	99	38	56	21	13	18	30	48	16	4	106	101	19	45	13	7	-13	-15	-18	-17	~	27	36	20	99	98	16	81	82	11	9	64
75	56	38	36	1	35	41	50	67	85	94	46	96	69	30	#	-5	-10	-25	-23	-19	8 -	1	18	41	69	87	87	83	-	67	57	54
61	0 17	32	36	45	4.5	53	63	77	75	92	70	62	61	25	-	9	2	-25	-30	-27	-24	-14	80	94	75	92	90	78	29	24	52	61
38	28	16	32	21	648	24	70	99	58	26	† †	33	32	52	=	1	14	-1	-26	-31	-50	7	28	63	94	91	79	63	64	0 †	36	4.3
2	52	2	35	76	7	00		-	9	7	30	6.	53	2	9	_	8	6	2	9	9	33	6	9		=	6	2	£	8	L	6

2 = 2

1

);)

Fug. 2-6.

																25 23															
																36															
53	31	37	42	94	47	57	53	0 1	34	31	27	53	33	39	47	36	29	69	2	81	PC	81	49	61	56	13	-	12	16	28	
31	36	9	20	25	54	58	55	54	38	53	52	31	37	20	19	5	7.8	8	16	91	93	85	74	47	54	10	2	9	61	32	
31	41	25	26	57	58	29	57	26	42	31	62	35	74	53	74	96	93	96	101	66	95	8	74	43	20	•	3	9	2	22	
34	38	51	58	26	59	9	58	48	77	32	2	31	42	29	1	81	66	86	100	91	85	80	94	33	12	S	2	^	=	23	
37	24	51	55	26	63	79	29	48	94	35	26	30	47	63	2	83	Ad	8	83	72	69	62	48	35	7	•	9	15	22	23	
32	45	61	51	55	69	67	58	61	37	36	52	32	94	67	19	81	16	69	9	25	5	†	30	18	•	0	6	17	35	34	
31	94	#	43	20	29	61	55	64	37	37	33	38	51	29	61	61	29	64	42	39	38	28	E	7	0	0	18	35	21	† †	
31	44	39	34	35	38	35	36	36	37	38	38	4	54	61	58	55	45	35	31	35	30	52	2	7		#	28	53	69	62	
32	91	39	56	17	-	r	12	53	44	4.8	91	46	24	57	64	38	3	22	22	30	56	15	24	20	-	15	040	62	16	20	
35	48	39	50	đ	11-	-15	-3	20	38	47	58	57	52	61	38	30	-	12	15	23	21	14	2	20	13	30	9	80	80	81	
47	54	36	19	-	12-	-16	-5	18	11	9	24	99	9	25	22	17	80	10	9	10	21	12	35	37	38	64	69	8	86	93	
75	9	37	27	S	8-	0	15	37	63	81	93	83	89	9	52	6	6	0	9-	٩	7.	22	35	61	57	70	86	88	102	96	
95	72	36	54	21	1	50	36	29	10	105	1	108	88	59	20	۳	6-	-13	-16	-15	9	53	35	9	68	82	87	91	108	4	
94	29	39	0.10	34	35	51	09	7.8	76	102	105	107	81	0 4	6	~	8-	-24	-23	-18	9-	15	5	52	7	68	89	95	87	87	
9	48	34	39	48	54	62	75	85	85	81	76	72	57	32	=	:	-	-20	-28	-25	-50	-	6	51	82	100	26	76	68	68	
25	38	25	43	62	29	63	74	11	99	28	94	37	42	38	54	27	24	~	-26	-23	-10	10	-	69	96	66	82	63	53	94	,
51	30	15	38	65	19	55	99	20	4.1	0 %	5	17	20	39	39	33	32	23	-	7	15	37	29	80	94	72	63	55	43	28	

2 = 2

Fig. 3-1.

* TEMPERATURES OF GRID POINTS IN FLIGHT LEVELS *

44	£ 3	47	47	44	£ \$	20	25	53	55	55	26	57	57	26	55	54	54	55	26	56	57	57	26	26	55	55	54	54	53	25	51	51	20
47	6.3	48	47	47	ę,	64	5	53	53	54	26	21	57	55	53	51	20	20	20	51	25	53	24	55	22	54	24	53	23	25	25	21	51
47	47	47	47	47	48	64	51	52	25	53	55	26	57	55	25	64	4	47	94	4.4	48	640	51	53	54	54	53	5	25	25	25	25	53
6 4	63	47	47	4.1	64	617	20	51	51	52	54	36	26	54	51	4.7	45	111	##	77	#	4.1	64	51	53	54	36	53	25	25	25	53	53
64	48	47	47	47	47	648	64	51	20	51	53	55	52	52	4	45	43	42	42	45	6	77	47	64	25	53	53	53	25	51	25	25	54
64	48	47	46	94	94	47	48	64	20	20	25	54	53	64	45	43	41	14	04	04	7	43	45	84	20	53	53	53	51	50	51	52	24
47	47	94	45	45	45	94	47	611	49	84	51	53	52	64	45	42	41	39	39	39	6	14	43	94	64	52	53	53	51	20	20	21	53
91	91	45	45	77	t	45	94	48	48	48	51	53	25	64	45	45	0 1	39	39	39	33	04	45	11	48	51	53	53	21	20	61)	20	25
46	45	77	##	71:	ŧ	11	45	47	47	48	20	52	52	50	†	42	39	38	39	39	39	04	41	43	49	52	53	52	21	64	48	64	51
3	†	44	43	43	43	##	45	47	47	48	20	51	51	48	† †	040	39	38	39	39	0	04	41	11	48	52	24	52	21	48	47	47	64
##	43	42	43	42	45	4	45	47	47	48	50	20	20	94	42	39	3	39	39	30	4	04	9	77	t 3	53	24	52	20	44	46	94	e t
45	41	41	42	42	42	43	45	94	47	48	61	611	61	45	41	39	39	04	39	39	0 10	07	0	77	48	53	25	20	64	94	11	45	47
0 1	O t	04	42	43	43	11	45	94	47	47	48	47	47	titi	0 1	39	6	040	39	39	0	39	0,	43	48	52	21	64	47	44	43	43	45
39	39	39	41	11	†	##	45	45	91	47	47	45	#	41	39	39	41	07	39	39	39	39	33	42	47	20	64	47	45	43	41	42	##
38	38	39	41	11	45	45	#	45	94	45	11 11	43	41	39	38	0 %	45	0 17	38	38	39	39	39	43	94	4.7	46	45	43	I ħ	04	7	43
37	38	38	41	11	45	77	43	43	†	43	41	0 7	38	38	38	04	41	0 17	38	37	38	39	39	5	##	43	43	42	41	Q to	39	0 1	42
37	37	37	0 †	43	11	42	4	41	0+	39	39	38	37	37	38	39	41	17	38	38	38	39	39	14	41	04	41	39	39	39	38	39	42
36	36	36	38	41	41	040	39	39	37	36	36	36	37	37	38	38	0 1	41	39	39	39	39	39	39	39	38	38	38	39	38	37	38	41
35	35	36	37	38	38	38	37	37	35	34	ħ	35	35	37	37	36	39	0 17	39	040	9	39	39	38	37	36	37	38	39	39	37	38	0
34	35	36	36	35	36	36	35	36	34	32	33	34	34	35	36	35	37	39	39	0 \$	0	39	38	37	35	35	37	38	39	39	38	38	39

Frig. 3-2.

46 47 48 50 47 48 49 50 53 53 51 51 54 54 54 54 55 55 55 55 57 55 55 69 69 69 69 47 48 48 48 47 48 48 48 48 48 48 48 49 48 48 48 47 47 47 47 48 48 48 48 49 48 48 48 47 47 47 47 48 48 48 48 49 48 49 49 49 49 49 49 49 49 49 49 49 48 48 48 48 40 49 49 49 40 49 49 50 51 52 55 52 55 53 55 53 55 54 68 48 69 69 69 69 69 69 69 60 60 69 69 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 6	48 49 49 49 49 49 49 49 49 49 49 49 49 49
2000 2000 2000 2000 2000 2000 2000 200	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
100 200 200 200 200 200 200 200 200 200	444 444 444 444 444 444 444 444
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100

Fry. 3-3.

. TEMPERATURES OF GRID POINTS IN FLIGHT LEVELS .

20	20	50	20	20	64	640	20	50	51	51	25	52	53	53	53	53	54	24	55	55	55	56	26	95	26	26	55	55	55	54	54	53	ŝ
20	51	51	51	20	20	64	20	20	51	51	21	52	25	53	23	52	53	53	53	24	24	53	53	54	24	22	25	55	22	26	22	24	ř
20	5	52	25	25	21	20	20	20	51	51	51	25	25	25	25	25	25	53	53	54	53	25	25	25	53	54	25	26	57	58	28	21	36
21	25	53	ż	54	53	53	25	51	51	51	51	51	25	52	21	51	52	54	22	55	24	53	25	25	53	24	55	26	28	9	61	9	ď
51	53	55	26	26	26	26	24	53	51	51	20	51	51	51	5	51	25	54	57	57	26	54	53	25	25	53	54	26	58	19	62	19	3
25	24	57	28	29	29	59	57	54	25	51	20	51	21	20	20	20	25	95	57	57	26	26	34	52	21	25	23	54	57	9	62	29	9
53	55	58	19	62	63	63	29	26	53	51	21	52	52	20	64	20	25	55	26	26	55	56	26	52	51	51	51	53	26	9	62	62	6
53	26	9	2	63	9	65	63	57	24	52	25	53	25	20	20	52	24	55	55	55	55	56	57	53	20	50	20	52	26	9	63	19	ů
54	57	62	63	19	65	99	9	59	22	53	53	53	53	52	25	55	52	55	52	26	55	26	57	54	51	20	20	52	26	19	9	99	8
26	29	62	63	63	† 9	99	65	9	22	53	53	53	53	53	54	26	55	55	26	57	22	55	57	54	51	20	20	53	28	63	9	59	S.A.
58	29	19	62	61	62	63	9	9	26	24	53	54	53	53	57	26	55	55	26	57	52	55	57	54	51	51	51	54	59	63	63	9	57
58	58	9	9	59	29	19	62	61	26	24	24	54	53	54	57	26	26	99	57	57	52	55	58	24	51	51	51	55	29	29	19	59	5.7
23	57	59	59	58	29	9	62	61	57	24	24	24	53	55	57	26	57	57	57	57	55	55	58	53	21	51	25	26	9	19	58	29	57
26	57	58	28	57	29	19	61	19	57	55	54	54	54	55	57	26	57	57	57	26	55	26	28	53	21	51	53	57	61	59	55	58	ď
26	26	58	57	26	58	19	62	19	57	55	24	54	24	55	57	26	58	58	57	26	52	57	28	53	21	52	54	99	29	58	24	58	8
55	26	57	28	56	57	19	61	9	58	56	24	54	52	54	57	57	28	58	57	99	22	58	29	54	53	53	54	57	57	26	53	58	ď
57	57	57	58	58	58	59	28	58	57	55	53	53	53	54	57	57	58	58	58	57	57	58	58	57	52	53	24	56	26	55	53	57	5.7
57	26	57	57	57	57	57	26	56	26	55	54	54	53	53	26	57	58	59	28	58	58	57	26	99	55	52	54	99	55	53	24	56	2
26	26	56	26	99	55	55	26	56	56	54	54	54	53	52	54	26	58	59	58	57	57	55	24	54	25	51	54	57	24	54	55	55	
55	55	55	24	53	24	55	26	98	55	54	24	54	25	51	25	54	27	58	57	55	55	54	53	52	21	52	26	57	24	55	57	56	

Fu 3-4

* TEMPERATURES OF GRID POINTS IN FLIGHT LEVELS *

		-		-			c	2			2	2		-		-	26	5	2	4		2		7	Š	9	2	5	S			2	2
-	3	-	ž	4	•	-	*	2	25	3.4	S	36	S	3	S	25	2	Š	S	55	ន	5	Š	3	š	5	'n	5	'n	5	ń	Š	ï
48	64	48	48	48	47	46	47	61)	25	53	55	28	57	57	26	54	25	20	4	20	ğ	4.8	8	64	25	54	55	54	53	S	25	25	3
61	64	48	47	47	47	-	47	48	20	25	5	55	26	26	55	51	6,8	4	9	44	4	94	4	84	20	53	3	54	25	25	21	51	5
617	6	47	47	46	46	48	47	48	20	51	25	53	54	54	53	20	46	44	5	45	#	44	=	94	4	53	24	53	25	2	20	20	ī
81	47	47	94	94	46	-	47	48	20	20	51	25	25	53	25	20	46	44	£	43	43	43	£4	44	48	25	53	25	51	20	64	64	5
r th	47	94	45	45	45	46	47	64	20	20	20	51	52	52	52	20	46	43	42	4	#	41	45	43	47	51	53	25	51	20	64	64	ī
T T	94	45	45	44	##	45	94	48	64	20	64	20	51	51	20	48	#	24	9	40	9	0.0	7	43	47	51	53	53	51	20	64	64	ï
94	45	44	1 3	11	t	11	45	47	61	64	48	20	20	20	61	47	43	41	39	39	39	39	41	43	47	51	54	54	52	20	48	84	5
94	*	42	45	43	43	11	45	94	84	84	48	61	61	64	47	44	41	04	39	39	39	39	9	43	47	51	24	54	52	64	47	94	019
54	43	4.1	7	42	45	43	##	94	6 3	48	47	48	64	47	45	24	0 1	04	ç	040	9	30	04	4.2	94	20	53	52	50	H H	94	45	4
51	42	0.4	41	42	42	43	†	45	47	47	46	47	47	45	63	04	040	4.1	0	040	9	01	9	42	94	20	52	20	49	919	#	44	44
111	42	0.0	1	42	£ #	43	f 3	45	94	94	45	94	94	44	41	39	0	41	9	040	39	010	Š	42	9#	48	20	80	94	t t	43	43	77
43	60	39	0	42	##	t t	#	ħħ	45	45	45	45	##	42	0+	39	41	0 %	39	39	39	4.0	39	41	45	47	64	94	43	4	41	17	4
42	39	38	0	42	45	45	*	43	43	43	t	77	42	41	39	39	41	39	38	39	9	04	39	39	45	77	47	43	7	39	39	040	42
010	38	37	39	42	45	44	43	42	4	14	7	4.1	0 1	39	38	39	1	39	38	39	04	0 17	38	38	0	24	#	41	39	38	38	39	17
37	37	37	39	42	#	43	;	04	39	38	38	38	39	38	37	39	41	0 1	38	38	39	39	39	39	9	7	9	39	38	38	38	39	-
36	36	36	38	41	45	40	39	38	36	36	36	37	38	38	37	38	0 4	0+0	39	39	39	39	39	39	39	39	38	38	39	38	37	39	
35	35	36	37	38	39	38	37	37	35	34	34	35	36	37	37	36	38	04	39	04	ş	40	39	38	37	36	37	38	39	39	37	38	
34	35	36	36	35	36	20	35	36	34	15	33	34	34	35	36	35	37	39	39	0 %	9	39	38	31	35	35	37	38	39	39	38	38	

. 1 , 1

, 1 , 1

111

Ç 1 Ç 1

1; 1

F.y. 3-5

. TEMPERATURES OF GRID POINTS IN FLIGHT LEVELS .

51 52 52 51 51 51 51 51 51 52 52 51 51 51 52 52 52 52 51 50 52 52 52 51 50 52 52 52 51 50 50 52 51 50 50 52 51 50 50 52 52 51 50<	51 52 52 52 53 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 52 53<																						64 49											
52 52 52 53 54 53 54 54 54 54 54 54 54 54 54 54<	52 52 52 53 51<																																	
52 52 51 51 51 52 52 52 52 52 52 52 53 53 53 52 52 53 53 53 52 52 53 53 53 52 52 54 54 53 52 51 55 56 54 53 53 52 55 54 53 53 53 51 55 54 53 53 53 53 56 50 50 51 51 51 44 54 54 54 53 53 55 55 55 54 53 53 50 50 50 50 44 44 44 48 49 49 49 49 49 49 49 49 49 50 50 49 49 49 49 49 50 50 49 49 49 49 49 50 50 50 50 51 51 53 54 57 57	52 52 51 51 51 51 51 52 52 51 52 51 51 51 51 51 51 51 51 51 51 51 51 51 51 52 51 51 51 51 51 51 51 52 51 50 49 49 49 49 49 49 49 49 49 49 49 49 49 52 51 51 51 52 52 52 53 54<	52	51	50	51	52	25	53	55	55	26	54	ī	52	54	54	53	20	48	u ti	4.9	e s	648	-	47	g t	C #	50	54	57	57	56	54	54
53 55 55 55 55 55 55 55 55 55 55 55 55 5	53 52 52 51 51 50 55 52 51 51 50 55 52 52 51 51 50 50 50 50 50 50 50 50 50 50 50 50 50				_																													
52 52 52 52 52 52 52 52 52 52 52 52 52 5	52 52 51 51 50 52 52 52 52 53 54 52 52 53 53 54 60 60 50 50 50 50 60 50 50 50 50 50 50 50 50 50 50 50 50 50	25	53	52	52	53	53	54	55	26	54	52	20	52	54	55	52	53	20	61)	64	64	649	84	61	61	61	50	21	53	55	57	57	58
	52 51 51 51 51 52 51 51 52 51 51 52 51 51 52 51 51 51 52 51 51 52 51 51 51 51 51 51 51 51 51 51 51 51 51				_		-		-																									
20 20 20 20 20 20 20 20 20 20 20 20 20 2	3																																	
		5	51	51	51	50	50	64	61	50	51	52	25	53	54	54	53	51	64	84	69	64	20	21	51	20	25	54	26	26	57	58	29	9

Fig. 3-6.

. TEMPERATURES OF GRID POINTS IN FLIGHT LEVELS .

C.	20	20	5	20	Ç	-	ç	50	20	51	51	52	25	2	24	54	52	55	26	26	25	55	55	54	26	55	26	57	Š	5.4	20	5.4	57
6	20	20	20	20	20	20	20	20	20	51	51	51	25	53	53	53	36	54	100	54	š	54	Š	53	53	54	26	57	28	59	9	9	59
9	20	20	51	20	20	20	20	51	51	5	5	51	25	52	25	25	25	51	25	25	53	25	23	53	53	54	52	25	28	59	19	19	19
640	20	51	51	51	51	5	21	51	51	51	20	51	25	52	25	21	20	61	20	51	25	53	53	25	25	53	ş	55	23	29	19	63	63
20	51	25	25	53	53	53	25	52	25	51	20	51	25	53	53	51	20	61)	6	51	25	53	53	25	25	25	23	53	26	59	62	99	9
21	53	54	22	55	22	55	3	53	53	51	20	51	53	54	3	25	20	20	5	53	53	53	53	25	25	-	21	25	22	29	9	99	94
25	25	57	28	29	29	58	57	55	26	55	51	52	Š	55	52	53	25	53	55	26	26	55	52	53	51	20	20	51	24	59	65	99	63
53	57	59	9	19	19	19	29	58	55	53	21	52	36	55	55	22	24	26	26	57	26	55	26	53	51	50	20	51	36	29	65	99	61
24	29	59	9	62	63	63	63	09	57	54	25	53	55	55	26	26	57	57	26	57	26	55	26	53	20	20	51	25	26	9	65	65	9
55	59	29	61	63	63	63	9	63	29	55	53	54	22	26	57	28	57	57	26	57	26	26	26	53	20	20	25	24	57	9	† 9	63	59
54	5.8	59	19	62	62	63	9	65	9	26	54	54	26	58	29	57	57	57	57	57	26	55	52	53	51	51	53	56	58	59	62	29	58
54	28	88	61	61	9	19	3	65	62	23	3	54	57	99	59	57	26	2	57	58	57	55	24	55	51	51	24	57	28	59	61	19	29
55	27	58	9	59	29	9	62	63	19	57	55	55	27	9	28	26	26	21	58	58	28	55	24	55	51	51	26	58	58	59	9	9	59
26	57	27	59	28	29	9	19	19	58	26	55	24	28	59	57	26	57	58	28	58	58	57	55	55	25	25	24	57	29	65	29	59	58
58	26	26	57	26	57	9	19	9	28	57	52	55	57	57	26	26	57	58	28	58	57	57	57	55	25	25	54	57	58	58	58	58	57
58	26	55	57	26	26	99	9	59	57	57	57	57	57	26	55	26	57	57	57	26	55	26	29	26	51	5	53	55	57	5	57	26	26
57	56	56	57	57	57	59	58	58	57	26	26	56	55	55	55	57	57	58	57	57	57	57	29	56	53	51	24	54	55	56	26	55	54
57	26	56	57	57	58	57	57	57	26	56	55	54	54	54	55	57	58	58	58	5.8	58	58	58	56	54	52	24	55	54	54	54	54	52
26	26	99	56	56	99	55	26	56	26	55	54	54	53	53	53	56	58	59	58	57	57	56	55	54	53	52	55	56	24	53	55	55	52
55	55	55	54	53	54	55	26	56	55	54	54	54	52	51	25	54	57	58	57	55	55	54	53	52	51	52	26	57	54	55	57	56	54

. PERFORMANCE DATA FOR DC10 .

. SPECIFIC RANGE .

. MAX. WEIGHT .

269437270344271251272158*00000*00000*00000

Fig. 5-1.

*	CLI	MB 1	IM	E *	

	160	162	163	165	167	167	168	182	198	
	178	180	182	183	185	187	188	202	222	
	205	207	208	210	212	213	215	228	250	
	165	167	168	170	172	172	173	187	205	
1	185	187	188	190	192	193	195	208	230	~
	212	213	215	217	220	222	223	238	260	
	170	172	173	175	177	178	180	193	212	
	190	192	193	195	197	198	202	215	238	
-:	220	222	223	225	228	230	232	247	270	
	175	177	178	180	182	183	185	200	220	
;	197	198	200	202	203	205	208	223	247	
•	228	230	232	233	237	238	240	257	282	
	180	182	183	185	187	188	190	207	227	
	203	205	207	208	210	212	215	230	255	
	237	238	240	243	245	247	250	267	293	
	187	188	190	192	192	193	197	212	235	
-	210	212	213	215	217	218	222	238	265	
	245	247	250	252	255	257	260	277	305	
	192	193	195	197	198	200	202	218	242	
	217	218	220	222	225	227	228	247	273	
	255	257	260	262	263	267	270	288	318	
2	197	198	200	202	203	205	208	227	250	
0	223	225	228	230	232	233	237	255	283	
8	265	267	270	272	275	277	280	298	332	
7										
6										

Fig. 5-2.

	203	205	207	208	210	212	215	233	258	
	230	233	235	237	240	242	243	263	295	
	275	278	280	283	285	288	292	312	347	
	208	210	213	215	217	218	220	240	268	_
	238	240	243	245	247	250	252	273	305	
	287	290	292	295	298	300	303	325	362	
	215	217	218	222	223	225	227	248	277	
	247	248	252	253	255	258	260	283	317	
	300	302	305	308	312	313	317	340	378	
	222	223	225	228	230	232	235	257	287	
	255	257	260	262	263	267	270	293	330	
	313	317	320	322	325	328	332	355	397	
	228	230	232	235	237	238	242	265	297	
	263	265	268	270	273	275	278	303	342	_
	328	332	335	338	342	345	348	373	418	
	235	237	240	242	243	247	248	273	307	
	272	275	277	280	283	285	288	313	355	
	347	350	353	357	360	363	367	393	443	
	242	245	247	248	252	253	257	282	318	
	282	285	287	290	293	295	298	325	370	
	-1	-1	-1	-1	-1	-1	-1	-1	472	_
	250	252	255	257	258	262	265	292	330	_
	292	295	298	300	303	307	310	338	385	
	-1	-1	-1	-1	-1	-1	-1	-1	-1	
2	257	260	262	265	267	270	273	302	342	_
	303	305	308	312	315	317	322	352	402	
	-1	-1	-1	-1	-1	-1	-1	-1	-1	-

Fig. 5-3.

	265	268	270	273	275	278	282	312	355	
	315	317	320	323	327	330	333	365	420	
	-1	-1	-1	-1	-1	-1	-1	-1	-1	
	273	277	278	282	285	287	290	322	368	
	327	330	333	337	340	343	347	380	440	
	-1	-1	-1	-1	-1	-1	-1	-1	-1	
	282	285	288	290	293	297	300	333	383	
	340	343	347	350	353	357	362	397	462	
	-1	-1	-1	-1	-1	-1	-1	- 1	-1	
	292	295	297	300	303	305	310	345	398	
	355	358	362	365	368	372	377	415	487	
	-1	-1	-1	-1	-1	-1	-1	-1	-1	
_	300	303	307	310	312	315	320	358	415	
_	372	375	378	382	385	390	393	435	513	-
-	-1	-1	-1	-1	-1	-1	-1	-1	-1	
	310	313	317	320	322	325	330	370	432	
	390	393	397	402	405	408	413	457	545	
	-1	-1	-1	-1	-1	-1	-1	-1	-1	
_	320	323	327	330	333	337	340	385	450	
_	-1	-1	-1	-1	-1	-1	-1	-1	-1	
	-1	-1	-1	-1	-1	-1	-1	-1	-1	
	332	335	338	342	345	348	352	400	472	
_	-1	-1	-1	-1	-1	-1	-1	-1	-1	
	-1	-1	-1	-1	-1	-1	-1	-1	-1	
	343	347	350	353	357	360	365	415	493	
	-1	-1	-1	-1	-1	-1	-1	-1	-1	
	-1	-1	-1	-1	-1	-1	-1	-1	-1	

Frg. 5-4.

355	358	362	367	370	373	378	433	520	•
-1	-1	-1	-1	-1	-1	-1	-1	-1	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 368	373	377	380	383	387	392	453	548	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 383	387	392	395	398	403	408	473	582	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
 400	403	408	412	415	420	425	498	620	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 418	422	427	430	435	438	445	525	667	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
 438	443	447	452	455	460	467	557	725	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 462	467	472	477	480	485	492	595	-1	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	

52	53	54	55	56	57	58	64	72	
60	61	62	64	65	66	67	74	83	
72	73	74	76	77	79	80	87	97	
54	55	56	57	58	59	60	66	74	
62	64	65	66	67	69	70	77	86	
75	76	78	79	81	82	84	91	102	
56	57	58	59	60	61	62	69	77	
65	66	67	69	70	71	73	80	90	
78	79	81	83	84	86	88	95	106	
58	59	60	61	62	63	64	71	80	
67	69	70	71	73	74	76	83	94	
81	83	84	86	88	90	91	99	111	
60	61	62	63	64	65	67	74	84	
70	71	73	74	75	77	78	86	98	
85	86	88	90	92	93	95	103	116	
62	63	64	65	66	68	69	77	87	
72	74	75	77	78	80	81	89	102	
88	90	92	94	96	98	100	108	122	
64	65	66	68	69	70	72	80	90	
75	77	78	80	81	83	85	93	106	
92	94	96	98	100	102	104	113	127	
66	67	69	70	71	72	74	82	94	
78	80	81	83	84	86	88	97	110	
96	98	100	102	104	106	109	118	133	

Fig. 6-2.

E										
	68	70	71	72	74	75	77	85	97	
	81	82	84	86	87	89	91	100	115	
	118	121	124	126	129	131	134	144	162	
	71	72	73	75	76	78	79	88	101	
	84	86	87	89	91	93	95	104	120	
	106	108	110	112	115	117	119	130	147	
	73	74	76	77	79	80	82	92	105	
	87	89	91	92	94	96	98	108	125	
	111	113	116	118	120	123	125	136	155	
	75	77	78	80	82	83	85	95	109	
II.	90	92	94	96	98	100	102	113	130	
	117	119	122	124	127	129	132	143	164	
	78	80	81	83	84	86	88	98	113	
::	94	96	98	100	102	104	106	117	136	
	123	126	129	131	134	136	139	151	173	
	81	82	84	86	87	89	91	102	118	
1	98	100	102	104	106	108	110	122	142	
	131	134	137	139	142	145	148	161	185	
	83	85	87	89	90	92	94	106	123	
	101	104	106	108	110	112	115	127	148	
	-1	-1	-1	-1	-1	-1	-1	-1	199	
	86	88	90	92	93	95	97	110	128	
	106	108	110	112	114	117	119	133	155	
	-1	-1	-1	-1	-1	-1	-1	-1	-1	
12	89	91	93	95	97	99	101	114	133	
0 0	110	112	115	117	119	122	124	139	163	_
8 7 7	-1	-1	-1	-1	-1	-1	-1	-1	-1	
A 6										

Fig. 6-3.

V									
93	94	96	98	100	102	104	118	138	
115	117	120	122	124	127	130	145	171	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
96	98	100	102	104	106	108	123	144	
120	122	125	128	130	133	136	152	180	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
99	101	103	105	108	110	112	128	151	
126	128	131	134	136	139	142	159	190	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
103	105	107	109	112	114	116	133	157	
132	135	137	140	143	146	149	167	201	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
107	109	111	113	116	118	121	138	165	
139	142	145	148	151	153	157	176	214	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
111	113	115	118	120	122	125	144	173	
147	150	153	156	159	162	166	187	229	
-1	-1	-1	-1	- 1	-1	-1	-1	-1	
115	117	120	122	125	127	130	151	181	
-1	-1	-1	-1	-1	-1	-1	-1	248	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
120	122	125	127	130	132	135	157	191	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
125	127	130	132	135	138	141	165	201	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	

Frig. 6-4.

130	133	135	138	141	144	147	173	213	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
136	139	141	144	147	150	154	182	227	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
 142	145	148	151	154	157	161	192	242	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
149	152	155	159	162	165	169	203	260	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
157	160	164	167	170	173	178	215	283	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 166	169	173	176	100					
				180	183	188	230	310	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
176	180	184	187	191	195	199	248	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	

<u>L</u>	V										-
111-	* CLIMB FUEL	*									1000
Cei	2893	2938	2983	3028	3073	3118	3167	3279	3424		1
111 -	3080	3139			3290			3515			1
. E -											-
	3317	3373			3543		3660		3961		1
i E	2970	3017		3110	3157	3205	3255	3375	3528		
1.	3177	3229	3281	3333	3386	3439	3495	3622	3795		1
(1)	3419	3478	3537	3596	3656	3715	3778	3912	4098		1
(la -	3049	3097	3146	3195	3244	3293	3346	3472	3634	 	
	3266	3320	3375	3430	3484	3540	3598	3733	3916		
(3524	3586	3647	3709	3772	3834	3900	4041	4240	 	
}1.	3129	3179	3230	3281	3332	3383	3438	3572	3743		
1 (3357	3414	3471	3528	3586	3643	3704	3847	4042	 	
(1:	3633	3698	3763	3827	3892	3957	4026	4176	4387	 	
11.	3211	3263	3316	3369	3422	3475	3533	3674	3856		
	3452	3511	3570	3630	3690	3750	3813	3964	4171	 	
	3747	3814	3882	3949	4017	4086	4157	4315	4541	 	
	3295	3349	3404	3460	3515	3570	3630	3779	3972	 	
1	3549	3611	3672	3734	3797	3859	3926	4085	4305	 	
	3866	3935	4006	4077	4148	4219	4294	4462	4702		
	3381	3438	3495	3552	3610	3668	3729	3887	4092		_
1	3649	3713	3778	3842	3907	3972	4042	4210	4445	 	
-	3989	4062	4136	4210	4284	4359	4437	4E14	4872	 	
12	3470	3529	3588	3648	3708	3768	3832	3999	4216	 	
11.0	3753	3819	3886	3954	4021	4089	4161	4339	4590	 	
9	4119	4196	4273	4350	4428	4506	4588	4775	5051	 -	
1 4											

Fig. 7-2.

	3561	3622	3684	3746	3808	3871	3938	4114	4345	
	3860	3929	3999	4069	4139	4210	4284	4473	4740	
	4257	4337	4418	4498	4579	4660	4746	4944	5241	
	3655	3719	3783	3847	3912	3977	4046	4233	4479	
	3971	4043	4116	4188	4262	4335	4413	4613	4898	
	4403	4487	4571	4655	4740	4825	4915	5125	5444	
	3752	3818	3885	3952	4019	4086	4159	4356	4618	
	4086	4161	4237	4313	4389	4465	4546	4758	5063	_
	4560	4647	4736	4824	4921	5001	5095	5317	5662	
	3852	3921	3990	4059	4129	4199	4274	4483	4762	
	4206	4285	4363	4442	4521	4600	4685	4909	5236	
	4729	4821	4913	5006	5099	5192	5290	5526	5899	
	3956	4027	4099	4171	4243	4315	4393	4616	4912	
;	4331	4413	4494	4576	4658	4741	4829	5068	5418	
-	4915	5012	5108	5205	5303	5400	5504	5754	6160	
	4063	4137	4211	4286	4361	4436	4517	4753	5070	
	4462	4547	4632	4717	4803	4888	4980	5233	5610	
	5124	5226	5328	5430	5532	5635	5743	6008	6455	
	4174	4205	4327	4405	4482	4560	4645	4895	5234	
	4599	4687	4775	4864	4953	5043	5138	5407	5813	
	-1	-1	-1	-1	-1	-1	-1	-1	6799	
	4288	4368	4448	4528	4609	4690	4778	5043	5406	
	4743	4835	4927	5019	5112	5205	5304	5591	6030	
	-1	-1	-1	-1	-1	-1	-1	-1	-1	
12	4408	4490	4573	4657	4740	4824	4915	5198	5586	
0	4896	4891	5087	5183	5279	5376	5480	5785	6260	
8	-1	-1	-1	-1	-1	-1	-1	-1	-1	
6										

Fig. 7-3

J. ,					0066	ENED	5360	5777	
	4618								
	5157								
 	-1								
	4750								
 5230	5334	5438	5542	5647	5752	5865	6213	6778	
 ~1	-1	-1	-1	-1	-1	-1	-1	-1	
 4797	4890	4982	5076	5169	5263	5365	5709	6192	
 5417	5525	5634	5742	5852	5962	6079	6452	7073	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 4938	5034	5130	5226	5323	5421	5527	5895	6417	
 5617	5731	5844	5958	6072	6187	6310	6710	7398	\
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 5076	5175	5275	5376	5476	5577	5687	6084	6650	
 5830							6984	7754	
 -1		-1							
5222	5325	5429	5532	5636	5741	5856	6283	6899	
 6070								8166	
 -1								-1-	
 5376		5590							
 -1			-1						
 -1						-1	-1	-1	
5539								7463	
			-1			-1			
 	_		1			-	-	-1	
 571						5 6428	E 169	7785	
 5/1.			-1				-		
	•	-1					-	-1	

Fi	١.	7.	-4.

5899	6019	6130	6260	6381	6502	6638	7230	8143	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
 6100	6225	6350	6475	6602	6728	6870	7526	8545	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
6318	6448	6578	6710	6841	6972	7121	7846	9002	 -
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 6557	6693	6829	6965	7102	7239	7396	8202	9530	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
 6821	6963	7105	7247	7390	7534	7698	8603	10159	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 7116	7264	7414	7563	7712	7862	8036	9062	10932	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	
 7453	7609	7765	7792	8078	8235	8419	9602	-1	
-1	-1	-1	-1	-1	-1	-1	-1	-1	
 -1	-1	-1	-1	-1	-1	-1	-1	-1	

*** INPUT PARAMETERS ***

	2	862 177356	3629	-1 259458 190964 190581	1	0
12	0	115		•		
[1]						

ORIGINAL PAGE IS OF POOR QUALITY

ers in the second for a beg

Management by broks

10

10

10

							:-		111/05	U	
				1		,			1342	(UK I	,,,,
											144054
Ivi.	.,,	350					.3.	4	-4	+353	110.99
44.1	••	300		+:	,	Jr.	155	*	65	عدد	11.5.4
10"				לה+	24	633	- 200	63	51	c/4.	113000
105	.,	,50		+(14	+4	150	,+0	19	114	10//	1155-5
"	UU	a5	٠	+01	.54	142	335	17	131	1989	111/40
		ىد.		46.9	ad	27	131	14	143	1100	1100#/
-1	• :		,	+/2	23	1311	;51	22	Sup	1444	100000
11	-7	.,,,,,,	,	.7.	22		1.00	dis	234	2271	105511
	د	350			30	454	1 1-1	53	نعز	-30/	1-11/2-
٠,	,,	ייעה	-7	400	1.7		1:/5	43	410	3/53	41250
.,		2001	-16	-50		.,_1	2.,00	43	-214	3434	44044
	.,	.,,,,	-10	++>	11	اند	2.51	45	551	2104	AT-+10
41	20	37.1	-10	+4.2	20	120	٠.٤٤	24	900	1/22	77023
•	1	3711	-10	45.4		25	6.17	14	575	J3+	50004
	117	.320	,	*2.*	• •	/	- 154	1.5	دده	142/	5/25/
101	1 . 1		-5	**.1	• •	61	ی عد	٤	552	-12	5/-25
					.in		3200	17	(01	1671	h0104

1112 FUEL NUMBER

*** E 42 .F AUI ***

10

H

10

10

10

10

1

ATT. TRACK IT: SPACE FOEL

ORIGINAL PAGE IS OF POOR QUALITY

- 15								CH 1	161768	0.00	
1.0.	HEAL	+L	THE	11/2	1140	DIST	ACCU	TIFE	ACCT	UURI.	FIGURE
											124524
100	51	350			.0		151	27	27	4752	119776
115	51	350	Ü	404	Ü	15	103	5,,	· 23	157	119619
100	Lo	350	· a	464	U	253-1	396	30	58	2945	116673
105	50	350	U	46.4	U	150	540	19	113	1550	114523
41	01	350	u	464	U	142-	683	18	135	1723	113100
91	بون	550	U	+64	0	99	767	13	149	1191	111979
31	51	250	U	404	о	160	967	23	212	2126	109781
15	69	253	U	464	U	180	1156	25"	237	2193	107543
94	04	350	J	404	o	415*	1571	54	331	4665	102890
50	71	296	U	403	U	573	1944	46	414	4150	95748
30	ວນ	599	13	403	U	345	2289	45	-94	3570	95174
21	90	240	. 9	465	0	336	2625	43	547	3340	91838
11	79	340	3	465	tı.	185	2510	24	6.1.1	1796	900112
	196	390	u	405	0	95	2903	12	£23	894	69148
۲	124	390	u	463	0	147	3050	19	642	1392	87756
105	124	391	U	463	U	30	311c0	4	045	244	67472
U					U		3193	7 19	705"	1271	86201 -

TRIP FUEL 35327 COST10357-21

*** EIN OF KUIT ***

ORIGINAL PAGE IS OF POOR QUALITY

** .. TAILED FLISHT FLAT ...

Main Treath In Silver Fore

0

								Cii 1	160768	L •	
1.0.	HEND	۲۲	117	TAE .	safeti.	DIST	FCCD	TIME	cct	CUPT	VEIGHT
											124477
100	50	250			0		150	26	26	4720	119717
110	5 (:	35 0	U	464	L	12	102	2	25	157	119559
100	no	551	U	462	6	232	394	30	58	2932	116627
165	61	abu		465	. 6	150	- 544	19	117	1643	114784
47	1.5	357	ü	403	0	142	586	13	135	1719	113065
41	be-	ತಿಶಿಟ	u	400	U	90	785	13	149	1126	111879
5/	- 99	ob a	,	Lud	0	136	905	2.5	212	2120	109759
•10	0.3	56%	U	963	3	1.5	1154	24	236	3184	107570
۴.	131	J:5.2	,	903	0	414	1558	54	350	+671	102000
50	67	رون	υ	400	J	372	1940	.40	a15	4143	93751
ند	10	240		66.5	1	.545	2205	45	503	3565	98183
41	50	J(1)		452	U	J.5%	2526	44	1:47	3338	912-45
1.	91			,,,,	n	1.,5	2,003	24	611	1795	96050
	147	3.1.	٠	100	U	93	2993	12	523	292	1014.1
	122	59.1	u	+600	()	147	3"+5	19	642	1301	27757
Top	1::3	297.	U	41,3	G	36	30/5	4	545	264	474.42
v					1)		3158	15	705	1271	56212

Tital Fuel 20000 Court 10005.75

Fig. 11.

)

)

PER SUPERSON NO SUPERSON NAME OF SUPERSONS SUP

and the second of the second

Pales of Author and America.

									1.3.12.	1 1 1	
1.5.	1.0.		1 12	int.	1	5157	icc	11 %	BUCT	بان.	M. I. O.T.
											1.00116
100	٠,	Air			29		100	14	19	36%	116034
110		311	,-1	47,	'74	54	102	. :	25	31-3	1154 5
100			-:	165	5,1 .	2.52	294	27	52	2627	113276
11:0	b.J	32.	,	+44	. 25	15(°	544	17	100	1300	111e-34
71	7	0.0	,	401	71	142	ė 10	:0	125	-152:	110176
٧.	. 61.	3:4	,	451	1.	Ac.	705	i 1	135	1.01-1	100.45
a t		Pan.	.:	4.95	. 1 11	1111	1405	1~	155	1775	107257
. //		()	.,	4.1	ito	210	1101	.55	2:7	19.7	1000,00
:::	. 1	2 11		7.7	116	9.07	1500	4.	P:>	3000	101-46
2.	·		•	1 /	1ee	JUL	16.5%	37	3,35	3511	97935
٠,٠	14			1.78		2.0	22m	35	411	35.59	S-17
2.		(-)	•		· 1.	356	ativis.	J.	4.40	23.04	0.0013
1.				· i -	٠٠.	.£ts	Min.C	?:	5.7	::	3
	11.				٠, ٤,	93		1 '	127	t, are	
	-41	3		51	- • 1	107	30905	17	1.35	147.	F77.5
10.	;		-1.	. 77	.1.	5.1	716.		5 - 2	7, 20	17: 96
Ų					:1		.177	1.,	(50)	1:-	Ac. 133

bd., while a size

Fig. 12.

*** DETAILED FLIGHT PLAN ***

MIN TRACK IN SPACE FLTIME

								CH 1	190581	0.00	
NO.	HEAD	FL	TMP	TAS	WIND	DIST	ACCD	TIME	ACCT	BURN	WEIGHT
											231393
TOC	46	310			29		120	20	20	5756	225637
113	46	310	-2	479	39	(42)	162	5	25	708	224929
108	66	310	-3	478	54	232	394	26	51	3741	221188
103	63	310	-4	477	65	150	544	17	107	2335	218853
97	62	310	- 5	477	71	142	686	15	123	2167	216686
91	61	310	- 5	476	81	99	785	11	134	1472	215214
87	51	350	2	475	100	180	965	19	152	2689	212525
77	54	310	-1	480	112	216	1181	22	214	2914	209611
65	62	310	3	484	116	407	1588	41	255	5525	204086
51	66	310	4	486	106	364	1952	37	332	4898	199188
37	72	350	5	478	104	336	2288	35	406	4445	194743
21	90	350.	4	478	93	336	2624	35	441	4297	190446
11	89	Y310	0	482	55	185	2809	21	502	2521	187925
6	101	310	-1	480	44	93	2902	11	513	1330	186595
2	118	350	4	477	41	147	3049	17	530	2105	184490
TOD	121(310	-4	477	15	51	3100	6	536	683	183807
0	,				12		3192	16	552	1203	182604

TRIP FUEL 48789 COST11129.51

^{***} END OF RUN ***

10

*** DETAILED FLIGHT PLAN ***

MIN	TRACK	IN	SPACE
FLT	IME		

									CH 1	190581	0.00		
	NO.	HEAD	FL	TMP	TAS	WIND	DIST-	ACCD	TIME	ACCT	BURN	WEIGHT	
												251697	
,	TOC	262	310			3		136	23	23	6611	245086	
	1	262	310	-4	477	3	0	136	-100	23	(-2)	245088	
	4	282	310	-1	480	-22	242	.378	32	55	5065	240023	
	8	279	310	2	484	-36	115	493	16	111	2475	237548	
	17	292	310	3	485	- 73	57	550	8	120	1313	236235	
	30	268	310	6	487	-39	397	947	54	214	8260	227975	
	44	268	310	7	489	-55	394	1341	55	308	8026	219949	
	60	270	310	7	488	-64	394	1735	56	404	7912	212037	
	75	265	310	2	484	- 75	394	2129	59	503	7972	204065	
٠	87	261	310	-2	480	- 78	179	2308	27	530	3588	200477	
	92	257	310	-4	477	-74	161	2469	24	554	3119	197358	
	98	238	310	- 5	476	-80	66	2535	10	604	1283	196075	
	104	239	310	-4	477	-68	217	2752	32	636	4054	192021	
	109	246	310	-3	478	-50	189	2941	27	702	3330	188691	
	113	219	310	-2	479	-26	180	3121	24	726	2974	185717	
	TOD	237	310	-1	480	-22	77	3198	10	736	1262	184455	
•	115				à	-17		3283	16	752	1203	183252	
	TOTE	5 EUC	4644	=									

TRIP FUEL 68445 COST15383.19 Fig. 14-1.

*** DETAILED FLIGHT PLAN ***

MIN TRACK IN SPACE FLTIME

The source of the second of th

FLTIM	E										
								СН	1190581	0.00	
NO. H	EAD	FL	TMP	TAS	MIND	DIST	ACCD	TIME	ACCT	BURN	WEIGHT
~2.3	280++	01_	0.000	n++00		•					251699
			0.000		_						05000
	262 280,+		0.000	0++00	3		136	23	23	6611	245088
			-4 1.920		3	0	136	0	23	0	245088
	282 280,+		-1 9.489	480 4•+03	- 22	242	378	32	55	5065	240023
		_	2 5.068		- 36	115	493	16	111	2475	237548
			3 3,251		- 73	57	550	8	120	1313	236235
			6 3.273		- 39	397	947	54	214	8260	227975
	268 280,+		7 3.347	489 9•+04	- 55	394	1341	55	308	8026	219949
_			7 3.516		-64	394	1735	56	404	7912	212037
		310 01	2 1.632	484 2•+04	- 75	394	2129	59	503	7972	204065
		310 01	-2 1.445	480 0•+04	- 78	179	2308	27	7 530	3588	200477
			-4 6,001			161	2469	21	554	3119	197358
			-5 1.916		- 80	66	2535	10	604	1283	196075
			-4 1.590			217	2752	3	2 636	4054	192021

Fig. 14-2.

109 246 310 -3 478 2.3280,+01 1.4323,+04	-50	189	2941	27	702	3330	188691
113 219 310 -2 479 1.5810,+01 6.1052,+03	- 26	180	3121	24	726	2974	185717
TOD 237 310 -1 480 1.5810,+01 6.1052,+03	-22	77	3198	10	737	1262	184455
115	-17		3283	16	752	1203	183252
TOTO EUCL 68447							

TRIP FUEL 68447 COST15383.64

*** END OF RUN ***

CORE FACTOR: 1.000

PROGRAM COMPLETED IN 130.1426 CRU.

ACCOUNT: 510055.1 CARDS: 4 IN D OUT END OF RUN: 137 CRU SEQ. NO. 122425 CPU TIME: 130.79 SEC. BASE CRU: 137.035 DATE: 22 MAY 81 TIME: 19:59:28

TOTAL: 5852 CRU LIMIT:

7500

Fig. 15.

*** DETAILED FLIGHT PLAN ***

MIN TRACK IN SPACE FUEL

								сн з	190581	0.00	
NO.	HEAD	FL	TMP	TAS	W.I.ND	DIST	ACCD	TIME	ACCT	BURN	WEIGHT
											232421
TOC	46	310			29	,	121	20	20	5796	226625
113	46	310	-2	479	39	41	162	5	25	694	225931
108	66	350	2	475	55	232	394	26	51	4622	221309
103	63	350	1	474	66	150	544	17	108	2407	218902
97	62	350	1	474	, 74	142	686	16	123	2210	216692
91	62	350	1	474	85	99	785	11	134	1496	215196
87	51	350	2	475	102	180	965	19	153	2598	212598
77	55	350	4	477	114	216	1181	22	215	3002	209596
65	62	350	6	479	116	407	1588	41	256	5493	204103
51	66	350	6	479	110	364	1952	37	333	4814	199289
37	72	350	5	478	106	336	2288	35	407	4368	194921
21	90	350	4	478	99	336	2624	35	443	4317	190604
11	89	350	5	478	65	185	2809	21	503	2491	188113
6	101	390	3	476	47	93	2902	11	514	1989	186124
2	118	390	4	476	41	147	3049	17	531	2023	184101
TOD	121	390	4	477	22	26	3075	3	534	361	183740
0					17		3192	19	553	1271	182469

TRIP FUEL 49952 COST11320.37 Fig. 16.

*** DETAILED FLIGHT PLAN ***

MIN TRACK IN SPACE FLTIME

								CH 1	190581	0.00	
No•	HEAD	FL	TMP	TAS	WIND	DIST	ACCD	TIME	ACCT	BURN	WEIGHT
											233624
TOC	46	310			29		122	20	20	5843	227781
113	46	310	-2	479	39	4.0	162	5	25	678	227103
108	66	310	-4	478	56	232	394	26	51	3787	223316
103	63	310	-4	477	66	150	544	17	108	2360	220956
97	62	310	- 5	476	73	142	686	15	123	2185	218771
91	61	310	- 5	477	84	99	785	11	134	1488	217283
87	51	350	2	475	102	180	965	19	152	3331	213952
7 7	54	310	-1	480	112	216	1181	22	214	2986	210966
65	62	310	2	483	116	407	1588	41	255	5554	205412
51	66	310	4	486	109	364	1952	37	332	4930	200482
37	72	350	5	478	106	336	2288	35	406	5096	195386
21	90	350	4	478	9 9	336	2624	35	442	4331	191055
11	89	310	1	482	62	185	2809	21	502	2580	188475
6	101	310	-1	481	49	93	2902	11	513	1333	187142
2	118	350	4	477	42	147	3049	17	530	2717	184425
TOD	121	310	-4	477	19	51	3100	6	536	727	183698
0					14		3192	16	552	1203	182495

TRIP FUEL 51129 COST11480.87

*** END OF RUN ***

*** DETAILED FLIGHT PLAN ***

MIN	TRACK	IN	SPACE
FUFI		_	

								.			
								CH 1	190581	0.00	
NO.	HEAD	FL	TMP	TAS	WIND	DIST	ACCD	TIME	ACCT	BURN	WEIGHT
					4						232450
тос	46	310			29		121	20	20	5797	226653
113	46	310	-2	479	39	41	162	5	25	694	225959
108	66	350	2	475	55	232	394	26	51	4622	221337
103	63	350	1	474	66	150	544	17	108	2407	218930
97	62	350	1	474	74	142	∻686	16	123	2210	216720
91	62	350	1	474	85	99	785	11	134	1496	215224
87	51	350	2	475	102	180	965	19	153	2598	212626
77	55	350	4	477	114	216	1181	22	215	3002	209624
65	62	350	6	479	116	407	1588	41	256	5493	204131
51	66	350	6	479	110	364	1952	37	333	4814	199317
37	72	350	5	478	106	336	2288	35	407	4361	194956
21	90	350	4	478	99	336	2624	35	443	4317	190639
11	89	350	5	478	65	185	2809	21	503	2491	188148
6	101	390	3	476	47	93	2902	11	514	1991	186157
2	118	390	4	476	41	147	3049	17	531	2023	184134
TOD	121	390	4	477	22	26	3075	3	534	361	183773
0					17		3192	19	553	1271	182502
TRIP	FUEL	49948	3								

TRIP FUEL 49948

***	DETAI	LED	FL	IGHT	PLAN	***
-----	-------	-----	----	------	------	-----

MIN	TRACK	IN	SPACE
FLT		_	

*** END OF RUN ***

_									CH 1	190581	0.00	
_	NO.	HEAD	FL	TMP	TAS	WIND	DIST	ACCD	TIME	ACCT	BURN	WEIGHT
_												233643
_	тос	46	310			29		122	20	20	5844	227799
_	113	46	310	-2	479	39	40	162	5	25	678	227121
_	108	66	310	-4	478	56	232	394	26	51	3787	223334
_	103	63	310	-4	477	66	150	544	17	108	2360	220974
_	97	62	310	-5	476	73	142 -	686	15	123	2185	218789
	91	61	310	- 5	477	84	99	785	11	134	1488	217301
	87	51	350	2	475	102	180	965	19	152	3331	213970
_	77	54	310	-1	480	112	216	1181	22	214	2986	210984
_	65	62	310	2	483	116	407	1588	41	255	5545	205439
_	51	66	310	4	486	109	364	1952	37	332	4930	200509
_	37	72	350	5	478	106	336	2288	35	406	5096	195413
_	21	90	350	4	478	99	336	2624	35	442	4331	191082
_	11	89	310	1	482	62	185	2809	21	502	2580	188502
_	6	101	310	-1	481	49	93	2902	11	513	1333	187169
_	2	118	350	4	477	42	147	3049	17	530	2714	184455
	TOD	121	310	-4	477	19	51 ,	3100	6	536	727	183728
_	0					14		3192	16	552	1203	182525
12 11	TRIP	FUEL	51118	3								
10		11479										

Fix	19
rag.	1 1.

*** DETAILED FLIGHT PLAN ***

MIN	TRACK	IN	SPACE
FUEL			

									CH 2	190581	0.00		
,	NO.	HEAD	FL	Тмр	TAS	WIND	DIST	ACCD	TIME	ACCT	BURN	WEIGHT	
, .												252998	
	тос	262	310			3		136	24	24	6678	246320	
•	1	262	310	-4	477	3	0	136	0	24	0	246320	
	4	282	310	-1	480	-22	242	378	32	56	5105	241215	
	8	279	310	2	484	-36	115	493	16	111	2490	238725	
	17	292	310	3	485	-73	57	550	8	120	1320	237405	
	30	268	310	6	487	-39	397	947	54	214	8306	229099	
14113	44	268	350	7	480	-57	394	1341	56	310	9187	219912	
•	60	270	350	7	480	-66	394	1735	57	407	8142	211770	
	75	264	350	5	478	-74	394	2129	60	507	7979	203791	
	87	260	350	2	475	- 78	179	2308	28	534	3549	200242	
,	92	257	350	1	474	-74	161	2469	24	559	3063	197179	
. '	98	238	350	1	474	- 78	66	2535	10	609	1250	195929	
	104	239	350	1	474	- 66	217	2752	32	641	3926	192003	
•	109	246	350	2	475	-48	189	2941	27	707	3197	188806	
	113	219	390	2	474	-28	180	3121	24	731	3590	185216	
	TOD	236	390	0	473	-27	55	3176	7	739	875	184341	
•	115					-20		3283	19	758	1271	183070	
12													_

TRIP FUEL 69928
COST15666.98

026704

Fig. 20.

*** DETAILED FLIGHT PLAN ***

MIN TRACK IN SPACE

 								сн 2	190581	0 • 00		
110 •	HEAD	FL	TMP	TAS	WIND	DIST	ACCD	TIME	ACCT	BURN	WEIGHT	
											253489	
TOC	262	31 n			3		126	24	24	6704	246785	
1	262					10	136	1	25	200	246585	
 					-22	242	378	32			241480	
					-36	115	493	16			238990	
 	292					57	550	8			237667	
 30		310			-39	397	947	54	215		229345	
44		35n	7		-57	394	1341	56			220142	
 60			7		-66	394	1735	57			212000	
 75			5		-74	394	2129	60	508		204007	
 87		3 5n	2		-78	179	2308	28	536	3555	200452	
 92		350	1		-74	161	2469	24	560		197384	
 ?- 98		35n	1		-78	66	2535	10	610		196134	
 104		35n	<u>-</u> _1		-66	217		32	642		192208	
 			2		-48	189		27	709		189006	
 109							3121		733	3594		
 113		390	2		-28	180		24			195412	
 TOD		390	0	473	-27	67	3188		742	1056	194356	
 115					-20		3283	19	801	1271	183085	
TRI	P FUEL	7040	4									

TRIP FUEL 70404 COST15769.97

Program Listing (DC 10).

I		
	L EL T. DOLO. 1. 010530 . 045600	AK*>WKEDALAGA A
	△ ELT DC10:1:810528:065609 COMMENT KNMI/KLM 020169 SPG NAV 20 JNG:	****1
	COMMENT KIMITALM UZUTBY SPG MAY ZU ONOT	****2
П	NAVIGATION-FLIGHTPLANNING-MODULE FOR THE PRODUCTION OF	****
1	FLIGHTPLANS OVER THE NORTH ATLANTIC.	****4
	THE MAIN FEATURES	
1	ARE:	****5
1	1. INCLUSION OF 6 METEOROLOGICAL PARAMETER FIELDS.	****6
(TEMPERATURE AND WIND DATA FOR SOUTESO AND ECOND	****7
	VALID FOR TWO STANDARD TIMES 12 HOURS APART.	****8
1	2. WEATHER INFO. COMES FROM NATIONAL WEATHER SERVICE.	****9
	3. INCLUSION OF A DYNAMIC PROCESS BASED ON INTERPOLATION OF	****10
•	TWO PARAMETER FIELDS.	****11
		****12
	WELL AS IN THE HORIZONTAL AS IN THE VERTICAL.	****13
1	5. IN - AND OUTBOUND TRAFFIC (IO= 1 OUTBOUND IO= -1 INBOUND)	. ****14
	6. FLIGHTPLAN PRODUCTION FOR OPTIMUM TRACKS, SPECIFIC ROUTES	****15
1	ETC. E.G. ALTERNATIVE ATC MINIMUM ROUTES.	****16
	7. BLOCKING E.G. SECTOR BLOCKING OVER THE NORTH ATLANTIC	****17
,	1. DEOCKING E.O. SECION DECONATION OF THE MINE WAS A SECION DECONATION OF THE PROPERTY OF THE	****18
,	BLOCKING IN AIRWAYS AND ATC RESTRICTED AREAS.	****19
1	8. STANDARD CRUISE AND USE OF PERFORMANCE TABLESS	****20
ı		****21
	CONSTANT KQ= 14 . W= 35	****22
ì	INTEGER P1.P2.P3,Q1.Q2.Q3.5.TTT.	_
	G1, G2, G3, G4, B1, B2, B3, MQ, G1Q, G2Q, Q,	****23
•	RES1, RES2, RES3, I, J, N1, N2, N3, M, G,	****24
	MO.M1.M2.M3.M4.M5.M6.K.IO.	****25
1	A1, A2, A3, A4, A5, T1, T2, T3, KOUNT,	****26
l	K1.K2.L1.L2.K1Q.K2Q.L1Q.L2Q.KK1.KK2.LL4.LL2.	****27
	FLUR, TAXI, TOW, GRW, RESERVE, MAXTOW, MAXLW,	****28
- [DATE, ST, ST1, ROUTE, DISTANCE, FLTIME, BURN,	****29
1	GRWQ.TOWQ.LW.COST.LE.TELS	****30
,	REAL CO.CG.P.C1.X1.X2.Y1.Y2.X.Y.E1.E2.E3.	****31
	GG1.GG2.D.ANGLE.LALAT.LALONG.TT.LA1.LO1.LA2.LO2.	****32
1	XX1,XX2,YY1,YY2,AID1,AID2,AID3,AID4,XSTER,YSTER,	****33
1	MINTIME . TC . TASM . WX . WY . TAS . ENDU . TEMS	****34
	INTEGER ARRAY A(-1K0+1), V(041),	****35
. 1	TEMPTIME, TEMPDIST, TEMPFUEL (199, 19), MW (13, 17),	****36
	RANGE (13; 133)\$	****37
1	ARRAY DD(0KQ)\$	****38
	ARRAY WCX.WCY.TPC(1120, 134)\$	****39
. 1		****40
1	BOOLEAN EDS BOOLEAN ARRAY BK(02,16,16), BKQ(9KQ,16,16)\$	****41
	BOOLEAN ARRAT BK (0 271 671 671 671.	****42
	FORMAT FO1(E2, S10, D7.0, A5),	****43
	PEJT (E2, ' ', A1),	****44
	FOT(X5, *I6, A2),	****45
	FOD(*I6, A1),	****46
	F02(X5, *I7, A2)\$	
	LOCAL LABEL ERRIEOPS	****47
		****48
1		****49
	COMMENT PROCEDURE "WOATA" SCANS WEATHER DATA AND OBTAIN	s ****50
1	THE REQUIRED WEATHER INFO. FOR NORTH AMERICA AND	****51
	NORTH ATLANTIC AREA \$	****52
	•	****53

```
PROCEDURE WDATAS
                                                                     ****54
BEGIN INTEGER I.X.Y1,Y2,Y3,R.T.U.VS
                                                                     ****55
STRING ARRAY WD(7..1..120.1..34)$
                                                                     ****56
                                                                     ****57
STRING 5(81)$
                                                                     ****58
STRING TW(AG(2), SP(3), TP(2))$
  STRING BA(BD(1),BL(3),AR(2),TM(1),B(3)),
                                                                     ****59
         GW(UG(2),W1(7),WWW(W2(7),W3(7),W4(7)),HH(2),G(4)),
                                                                     ****60
         SW (WT(2),DR(2),WS(3))$
                                                                     ****61
                                                                     ****62
LOCAL LABEL FINIS
                                                                     ****63
FORMAT F(A,SBO)$
                                                                     ****64
FORMAT F1(*S8, A1),
                                                                     ****65
       F2('BLOCKETTE #=',S3,' AREA = NORTH AMERICA' , A1),
                                                                     ****66
       F4('BLOCKETTE #=',S3,' AREA = NORTH ATLANTIC', A1),
                                                                     ****67
       F5(3(X3,S7), A1),
                                                                     ****68
       FW(*16,A1),
                                                                     ****69
       PJ(E2,' ',A1)$
                                                                     ****70
                                                                     ****71
                                                                     ****72
PROCEDURE CHOPS
                                                                     ****73
BEGIN INTEGER K, LS
                                                                     ****74
IF I LEG 45 THEN
                                                                     ****75
   BEGIN GW(1,36)=S(1,36)$ I=I+36$
                                                                     ****76
         IF I GTR 80 THEN
              BEGIN READ (PCF ('NWS') . F.S. FINI) $ I=1$ END$
                                                                     ****77
                                                                     ****78
   END
ELSE BEGIN K=81-IS GW(1,K)=S(I,K)S READ(PCF('NWS'),F,S,FINI)S
                                                                     ****79
           L=36-K$ GW(K+1, L)=S(1,L)$ I=L+1$
                                                                     ****80
                                                                     ****81
     END$
IF S(I) EQL 'N' THEN
                                                                     ****82
   BEGIN READ (PCF('NWS'), F.S. FINI) 1=1$
                                                                     ****83
                                                                     ****84
   END$
                                                                     ****85
ENDS COMMENT CHOPS
                                                                     ****86
                                                                     ****87
                                                                     ****88
                                                                     ****89
F'ROCEDURE STORS
                                                                     ****90
BEGIN INTEGER JS
                                                                     ****91
LOCAL LABEL L35
                                                                     ****92
STRING ARRAY SA(36..1..8)$
                                                                     ****93
FOR J=1 STEP 1 UNTIL 8 DO
   BEGIN CHOPS SA(1,36..J)=GWS ENDS
                                                                     ****94
                                                                     ****95
FOR J=1 STEP 1 UNTIL 4 DO
   BEGIN GW=SA(1:36..J)$
                                                                     ****96
          IF ALPHABETIC (WWW) THEN
                                                                     ****97
             BEGIN WRITE('W-ERROR') WRITE(WWW) S GOTO L35
                                                                     ****98
                                                                     ****00
             END$
                                                                     ****100
          WD(1.7..Y1.X)=W25
                                                                     ****101
          WD(1,7..Y2,X)=W35
                                                                     ****102
          WD(1,7..Y3,x)=W45
                                                                      ****103
          Y1=Y1-15 Y2=Y2-15 Y3=Y3-15
                                                                      ****104
    END5
                                                                      ****105
 X=X-15 Y1=Y1+45 Y2=Y2+45 Y3=Y3+45
FOR J=5 STEP 1 UNTIL 8 DO
                                                                      ****106
                                                                      ****107
    BEGIN GW=SA(1.36..J)$
```

```
****108
              IF ALPHABETIC (WWW) THEN
                  BEGIN WRITE( "W-ERROR ") $ WRITE ( WWW ) $ GOTO L3$
                                                                           ****109
                                                                           ****110
                  END$
                                                                           ****111
              WD(1,7..Y1,X)=W2$
                                                                           ****112
              WD(1,7..Y2,X)=W3$
                                                                            ****113
              WD(1,7..Y3,X)=W4$
                                                                            ****114
              Y1=Y1-1$ Y2=Y2-1$ Y3=Y3-1$
                                                                            ****115
        END$
                                                                            ****116
L3.. ENDS COMMENT STORS
                                                                            ****117
                                                                            ****118
                                                                            ****119
     PROCEDURE AREAS
     BEGIN INTEGER K.LS
                                                                            ****120
                                                                            ****121
     IF I LEQ 71 THEN
        BEGIN BA(1,10)=S(1,10)$ I=I+10$
                                                                            ****122
                                                                            ****123
               IF I GTR 80 THEN
                                                                            ****124
                BEGIN READ (PCF('NWS'), F.S. FINI) $ I=1$ END$
                                                                            ****125
        END
                                                                            ****126
     ELSE BEGIN K=81-I$ BA(1,K)=S(I,K)$
                                                                            ****127
                READ (PCF('NWS') , F, S, FINI) $ L=10-K$
                                                                            ****128
                BA(K+1,L)=5(1,L)$ I=L+1$
                                                                            ****129
           END$
     IF S(I) EQL '\' THEN
                                                                            ****130
                                                                            ****131
        BEGIN READ (PCF('NWS'), F, S, FINI) 1=15
                                                                            ****132
         END$
                                                                            ****133
     ENDS COMMENT AREAS
                                                                            ****134
                                                                            ****135
                                                                            ****136
     PROCEDURE FINDNEXTS
                                                                            ****137
     BEGIN
                                                                            ****138
      IF S(I) EQL ' THEN
                                                                            ****139
         FOR I=I WHILE S(I) NEQ '*' DO
            BEGIN READ (PCF ('NWS') . F.S. FINI) 1=1$
                                                                            ****140
                                                                            ****141
            END$
                                                                            ****142
      END$
                                                                            ****143
                                                                            ****144
                                                                            ****145
      PROCEDURE GETDATAS
                                                                            ****146
      BEGIN INTEGER GMT.A.B.C.D.E.F.J.S.TS
                                                                            ****147
      LOCAL LABEL L5, NAM, NATS
                                                                            ****148
      A=20$ B=40$ C=60$ D=80$ E=100$ F=120$
                                                                             ****149
      AREAS
                                                                             ****150
      IF AR EQL '21' THEN
                                                                             ****151
         BEGIN IF TM EQL '1' THEN
           BEGIN GMT=0$ x=14$ Y1=A$ Y2=B$ Y3=C$
                                                                             ****152
                  WRITE ( 'GMT = 0000 ')$
                                                                             ****153
                                                                             ****154
           END
                                                                             ****155
          ELSE IF TM EQL '3' THEN
            BEGIN GMT=125 X=145 Y1= D$ Y2=E$ Y3=F$
                                                                             ****156
                  WRITE ( 'GMT = 1200')$
                                                                             ****157
                                                                             ****158
            ELSE BEGIN WRITE('W-ERROR')$ GOTO L5$
                                                                             ****159
                                                       END$
                                                                             ****160
         GOTO NAMS
                                                                             ****161
         END
```

```
****162
    ELSE IF AR EQL '22' THEN
                                                                          ****163
        BEGIN IF TM EQL '1' THEN
                                                                          ****164
          BEGIN GMT=0$ X=34$ Y1=A$ Y2=B$ Y3=C$
                WRITE('GMT = 0000')$
                                                                          ****165
                                                                          ****166
          END
                                                                          ****167
           ELSE IF TH EQL '3' THEN
                                                                          ****168
           BEGIN GMT=12$ x=34$ Y1=D$ Y2=E$ Y3=F$
                                                                          ****169
                WRITE('GMT = 1200')$
                                                                          ****170
           END
                                                                          ****171
           ELSE BEGIN WRITE ('W-ERROR') GOTO L5$ END$
                                                                          ****172
          GOTO NATS
                                                                          ****173
        END$
                                                                          ****174
     WRITE( "W-ERROR ") $
                                                                          ****175
     GOTO L5$
                                                                          ****176
NAM .. FOR S=1 STEP 1 UNTIL 7 DO
                                                                           ****177
        BEGIN FOR T=1 STEP 1 UNTIL 5 DO
                                                                           ****178
              BEGIN
                                                                           ****179
              WRITE(F2,BL)$
                                                                           ****180
                STORS X=X+15 AREAS
                IF NUMERIC (BL) THEN
                                                                           ****181
                                                                           ****182
                  IF INTEGER (BL) GEQ 259 THEN
                                                                           ****183
                    FOR J=1 STEP 1 UNTIL 3 DO CHOP
                                                                           ****184
                   ELSE J=1
                 ELSE BEGIN WRITE ( "W-ERROR ! ) $ GOTO L5$
                                                                           ****185
                                                                           ****186
                                                                           ****187
               END$
                                                                           ****188
               x=x-2$
                                                                           ****189
               IF GMT EQL 0 THEN
                BEGIN Y1=A$ Y2=B$ Y3=C$ END
                                                                           ****190
                                                                           ****191
               ELSE BEGIN Y1=D$ Y2=E$ Y3=F$ END$
                                                                           ****192
               IF S LSS ? THEN AREAS
                                                                           ****193
        END$
                                                                           ****194
      GOTO L5$
                                                                           ****195
NAT .. FOR S=1 STEP 1 UNTIL 10 DO
                                                                           ****196
         BEGIN FOR T=1 STEP 1 UNTIL 5 DO
                                                                           ****197
               BEGIN
                                                                           ****198
               WRITE (F4.BL)$
                                                                           ****199
                STORS X=X+15 AREAS
                                                                           ****200
                IF NUMERIC (BL) THEN
                                                                           ****201
                  IF INTEGER (BL) GEQ 253 THEN
                    FOR J=1 STEP 1 UNTIL 3 DO CHOP
                                                                           ****202
                                                                           ****203
                   ELSE J=1
                 ELSE BEGIN WRITE ('W-ERROR')$ GOTO L5$
                                                                           ****204
                                                                           ****205
                      END$
                                                                           ****206
               END$
                                                                           ****207
               X=X-25
                                                                           ****208
               IF GMT EQL 0 THEN
                                                                           ****209
                BEGIN Y1=AS Y2=BS Y3=CS END
                                                                           ****210
               ELSE BEGIN Y1=D$ Y2=E$ Y3=F$ END$
                                                                           ****211
               IF S LSS 10 THEN AREAS
                                                                           ****212
         END$
                                                                           ****213
L5.. ENDS COMMENT GETDATAS
                                                                            ****214
                                                                            ****215
```

```
****216
    PROCEDURE SCANS
                                                                           ****217
    BEGIN
                                                                           ****218
     LOCAL LABEL BEGN.LOS
                                                                           ****219
BEGN. . READ(PCF('NWS'),F,S,FINI)$
                                                                           ****220
                                                                           ****221
LO.. IF S(I.2) EQL '**' THEN
                                                                           ****222
        BEGIN I=I+38$ GETDATA$ FINDNEXT$ GOTO LO$
                                                                           ****223
        END
                                                                           ****224
      ELSE GOTO BEGNS
                                                                           ****225
     ENDS COMMENT SCANS
                                                                           ****226
     COMMENT COMPUTATION OF X/Y COMPONENTS OF WIND VECTORS
                                                                           ****227
                                                                           ****228
                                                                           ****229
     PROCEDURE WINDCOMP(X,Y)$
                                                                           ****230
     VALUE XIYS
                                                                           ****231
     INTEGER XIYS
                                                                           ****232
     BEGIN REAL AS
                                                                           ****233
            IF X GTR 36 THEN WRITE('WIND ANGLE ERROR')$
                                                                           ****234
         IF X LEQ 9 THEN
                                                                           ****235
            BEGIN A=(90-X*10)*CG$
                                                                           ****236
                  WX=-Y*COS(A)$
                                                                           ****237
                  WY=-Y*SIN(A)$
                                                                           ****238
            END
                                                                           ****239
            ELSE IF X LEG 18 THEN
                                                                           ****240
            BEGIN A=(X*10-90)*CG$
                                                                           ****241
                  WX=-Y*COS(A)$
                                                                           ****242
                  WY=Y*SIN(A)$
                                                                           ****243
            END
                                                                           ****244
            ELSE IF X LEQ 27 THEN
                                                                           ****245
            BEGIN A=(270-X*10)*CG$
                                                                           ****246
                  WX=Y*COS(A)$
                                                                           ****247
                  WY=Y*SIN(A)$
                                                                            ****248
            END
                                                                            ****249
            ELSE BEGIN A=(x*10-270)*CG$
                                                                            ****250
                        WX=Y*COS(A)$
                                                                            ****251
                        WY=-Y*SIN(A)$
                                                                            ****252
                 END$
                                                                            ****253
      ENDS COMMENT WINDCOMPS
                                                                            ****254
                                                                            ****255
                                                                            ****256
                                                                            ****257
      COMMENT LINEAR INTERPOLATIONS
                                                                            ****258
                                                                            ****259
      INTEGER PROCEDURE INTP(F,F1,F2,F10,F20)$
                                                                            ****260
      INTEGER F.F1.F2.F10.F205
      INTP=((F-F1)*F20 + (F2-F)*F10) /(F2-F1)$
                                                                            ****261
                                                                            ****262
      COMMENT INTPS
                                                                            ****263
                                                                            ****264
                                                                            ****265
      SCAN'S
                                                                            ****266
 FINI . .
                                                                            ****267
      FOR R=0 STEP 1 UNTIL 5 DO
                                                                            ****268
          BEGIN T=R+205 WRITE(PJ)5
                WRITE( ** WEATHER DATA IN 3 STANDARD PRESSURE LEVELS **) $ ****269
```

```
WRITE( ** 34x16 DATA OUT OF 34x20 GRIDPOINTS **)$
                                                                    ****270
         WRITE( ** TEMPERATURE, DIRECTION, SPEED **)$
                                                                    ****271
                                                                    ****272
         WRITE( ' ') $ WRITE( ' ') $
         FOR U=1 STEP 1 UNTIL 34 DO
                                                                    ****273
             WRITE( F1, 20, FOR V=T+20 STEP -1
                                                                    ****274
                                                                    ****275
                    UNTIL T+5 DO WD(1,7...V,U))$
                                                                    ****276
  END$
                                                                    ****277
COMMENT CONVERSION OF WEATHER INFO. IN STANDARD PRESSURE LEVELS
                                                                    ****278
        BY INTERPOLATION SCHEME TO WEATHER INFO. IN FLIGHT LEVELS5****279
                                                                    ****280
FOR I=1 STEP 1 UNTIL 20, 61 STEP 1 UNTIL 80 DO
                                                                    ****281
                                                                    ****282
   FOR J=1 STEP 1 UNTIL 34 DO
                                                                    ****283
BEGIN
                                                                    ****284
   SW=WD(1,7..I,J)$
                                                                    ****285
   M1=INTEGER (DR)$
                                                                    ****286
   M2=INTEGER (WS)$
                                                                    ****287
   T1=INTEGER(WT)$
   IF M1 GEQ 50 THEN BEGIN M1=M1-50$ T1=-T1$ END$
                                                                    ****288
                                                                    ****289
   WINDCOMP (M1 , M2)$
                                                                    ****290
   M1=WX$ M2=WY$
                                                                    ****291
   SW=WD(1,7..I+20,J)$
                                                                    ****292
   M3=INTEGER (DR)$
                                                                    ****293
   M4=INTEGER (WS) $
                                                                    ****294
   T2=INTFGER(WT)$
                                                                    ****295
   IF M3 GEQ 50 THEN BEGIN M3=M3-50$ T2=-T2$ END$
                                                                    ****296
   WINDCOMP(M3,M4)$
                                                                     ****297
   M3=WX$ M4=WY$
                                                                     ****298
   SW=WD(1,7..I+40,J)$
                                                                     ****299
   M5=INTEGER(DR)$ M6=INTEGER(WS)$
                                                                     ****300
   T3=INTEGER(WT)$
   IF M5 GEQ 50 THEN BEGIN M5=M5-50$ T3=-T3$ END$
                                                                     ****301
                                                                     ****302
   WINDCOMP (M5 + M6)$
                                                                     ****303
   M5=WX$ M6=WY$
                                                                     ****304
   WCX(I,J)=INTP(P1,G1,Q2,M1,M3)$
                                                                     ****305
   WCY(I,J)=INTP(P1,Q1,Q2,M2,M4)$
                                                                     ****306
   TPC(I,J)=INTP(P1,Q1,Q2,T1,T2)$
                                                                     ****307
   WCX(I+20,J)=INTP(P2,02,03,M3,M5)$
                                                                     ****308
   WCY(I+20,J)=INTP(P2,Q2,Q3,M4,M6)$
                                                                     ****309
   TPC(I+20,J)=INTP(P2,Q2,Q3,T2,T3)$
                                                                     ****310
   WCX(I+40,J)=INTP(P3,Q2,Q3,M3,M5)$
                                                                     ****311
   WCY(I+40,J)=INTP(P3,Q2,Q3,M4,M6)$
                                                                     ****312
   TPC(I+40,J)=INTP(P3,Q2,Q3,T2,T3)$
                                                                     ****313
END$
                                                                     ****314
                                                                     ****315
FOR A1=0 STEP 1 UNTIL 5 DO
   BEGIN A2= A1 * 20$ WRITE (PEJT)$
                                                                     ****316
   WRITE( ** INTERPOLATED GRIDPOINT VALUES IN FLIGHT LEVELS**)$
                                                                     ****317
           WRITE( ** X-COMPONENTS OF WIND DATA**) $
                                                                     ****318
           WRITE( * 1) & WRITE( * 1) $
                                                                     ****319
           FOR A4=1 STEP 1 UNTIL 34 DO
                                                                     ****320
            WRITE(FW, 20, FOR A5=A2 + 20 STEP -1
                                                                     ****321
                                                                     ****322
              UNTIL A2+1 DO WCX(A5, A4))$
                                                                     ****323
   END$
```

```
****324
ENDS COMMENT END OF WEATHER DATA COLLECTIONS
                                                                    ****325
                                                                    ****326
P1=31000$ P2=35000$ P3=39000$
                                                                    ****327
Q1=30065$ Q2=33999$ Q3=38662$
                                                                    ****328
                                                                    ****329
TEL=05
CG=0.0174532925$
                                                                    ****330
                                                                    ****331
TASM=0.82*38.9826$
                                                                    ****332
WRITE( * SCANNING WEATHER DATA IN NORTH AMERICA AND-*)$
                                                                    ****333
                       NORTH ATLANTIC AREA **)$
WRITE(
                                                                    ****334
                                                                    ****335
                                                                    ****336
                                                                    ****337
WDATAS
                                                                    ****338
                                                                    ****339
                                                                    ****340
COMMENT RELATIONSHIP BETWEEN GRAPH POINT NUMBERS AND ZONE INDICESS****341
A(-1) = -15 A(0) = 05 A(1) = 25 A(2) = 65 A(3) = 115 A(4) = 265
                                                                    ****342
A(5) = 41$ A(6) = 56$ A(7) = 71$ A(8) = 86$ A(9) = 90$ A(10) = 96$
                                                                    ****343
                                                                    ****344
A(11) = 1025 A(12) = 1075 A(13) = 1115 A(14) = 1145 A(15) = 1155
                                                                    ****345
                                                                    ****346
                                                                    ****347
COMMENT COORDINATES OF CHECK POINTS$
                                                                    ****348
                                                                    ****349
V(0) = 52290477$
V(1) = 51850115$ V(2) = 53640150$
                                                                    ****350
V(3) = 51000200$ V(4) = 51990539$ V(5) = 53580300$
                                                                    ****351
V(6) = 55000200$ V(7) = 49980632$ V(8) = 51840849$
                                                                    ****352
V(9) = 527008925 V(10) = 535006305 V(11) = 554904595
                                                                   ****353
V(12) = 54271005$ V(13) = 48905454$ V(14) = 51375560$
                                                                   ****354
V(15)= 53735697$ V(16)= 58476263$ V(17)= 47005800$
                                                                   ****355
                                                                   ****356
V(18)= 48545856$ V(19)= 55506000$ V(20)= 57006000$
V(21)= 53286035$ V(22)= 54836683$ V(23)= 46156006$
                                                                   ****357
V(24)= 48006000$ V(25)= 49846439$ V(26)= 50506500$
                                                                   ****358
V(27) = 51006750 $\ V(28) = 52006900 $\ V(29) = 45006300 $
                                                                   ****359
                                                                    ****360
V(30) = 461764595 V(31) = 475066005 V(32) = 485768265
V(33)= 50007050$ V(34)= 43836608$ V(35)= 44846867$
                                                                   ****361
V(36)= 45327179$ V(37)= 45467385$ V(38)= 41287003$
                                                                   ****362
V(39) = 423670995 V(40) = 430072505 V(41) = 406473785
                                                                    ****363
                                                                    ****364
COMMENT DETERMINATION OF CONNECTIVITY AMONG GRAPH POINTS.
                                                                    ****365
                                                                    ****366
        FALSE=CONNECTED, TRUE=BLOCKED $
                                                                    ****367
FOR I= 1 STEP 1 UNTIL 6 DO
                                                                    ****368
FOR J= 1 STEP 1 UNTIL 6 DO
                                                                    ****369
BEGIN
                                                                    ****370
   FOR MQ= 0:1:2 DO BK(MQ:I:J) = TRUES
   FOR MQ= 9 STEP 1 UNTIL KQ DO BKQ(MQ,I,J) = TRUE
                                                                    ****371
                                                                    ****372
END$
BK(1,1,1)= BK(2,1,1)= BK(1,2,2)= BK(2,2,2)=
                                                                    ****373
BKG(9,1,1)= BKG(10,1,1)= BKQ(11,1,1)= BKQ(12,1,1)=
                                                                    ****374
BKQ(13,1,1) = BKQ(14,1,1) = BKQ(9,2,2) = BKQ(10,2,2) =
                                                                    ****375
BKQ(11,2,2)= BKQ(12,2,2)= BKQ(13,2,2)= BKQ(10,3,3)=
                                                                    ****376
BKQ(11,3,3)= BKQ(13,3,3)= BKQ(11,4,4)= BK(2,3,4)= BK(2,4,5)=
                                                                    ****377
```

```
BKQ(12,4,4) = BKQ(10,6,6) = BK(1,1,2) =
                                                                           ****378
     BK(1,2,3) = BK(1,2,4) = BK(2,2,3) =
                                                                           ****379
     BKQ(9,1,2)= BKQ(9,2,3)= FALSE$
                                                                           ****380
     BKQ(9,2,5)= BKQ(9,3,4)= BKQ(9,3,5)= BKQ(9,4,6)= BKQ(10,2,1)=
                                                                           ****381
     BKQ(10,4,3) = BKQ(10,5,3) = BKQ(10,5,4) = BKQ(10,6,5) =
                                                                           ****382
     BKQ(11,1,2)= BKQ(11,3,4)= BKQ(11,5,4)= FALSE$
                                                                           ****383
     BKQ(11,6,5)= BKQ(12,2,1)= BKQ(12,3,2)= BKQ(12,4,3)=
                                                                           ****384
     BKQ(12,5,4)= BKQ(13,1,2)= BKQ(14,2,1)= BKQ(14,3,1)= BK(0,1,1)=
                                                                           ****385
                                                                           ****386
     BK(0,1,2) =FALSE$
                                                                           ****387
                                                                           ****388
                                                                           ****389
     BEGIN
                                                                           ****390
         REAL ARRAY AB(0..10), LENGTH(1..10),
                                                                           ****391
         HEADING(1..W),
         TIME, AIRDIST, TDEV, WIX, WIY, TAX, TAY(1...W)$
                                                                           ****392
                                                                           ****393
         REAL COSA, COSDS
                                                                           ****394
         LOCAL LABEL DONES
                                                                           ****395
         INTEGER PROCEDURE ZONEI(Q)$ INTEGER Q$
                                                                           ****396
         COMMENT THIS SUBROUTINE DETERMINES THE INDEX OF THE
                                                                           ****397
         ZONE ASSOCIATED WITH A STATIONSNUMBERS
                                                                           ****398
                                                                           ****399
         BEGIN
            LOCAL LABEL AGAINS INTEGER IS
                                                                           ****400
                                                                           ****401
            I = -15
                                                                           ****402
AGAIN..
            I= I+15 IF A(I)-Q LSS 0 THEN GOTO AGAINS
                                                                           ****403
                                                                           ****404
            ZONEI= I
                                                                           ****405
         ENDS COMMENT ZONEIS
                                                                           ****406
                                                                           ****407
         PROCEDURE DT(K)$ INTEGER K$
         COMMENT THIS SUBROUTINE DISSECTS LATITUDE AND
                                                                           ****408
         LONGITUDE FROM THE COMPRESSED COORDINATESS
                                                                           ****409
                                                                           ****410
         BEGIN
                                                                           ****411
            INTEGER KOS
            KO= ENTIER(V(K)/10000)$
                                                                           ****412
                                                                           ****413
            LALAT= K0/100$
            LALONG= (V(K)-10000*K0)/100
                                                                           ****414
                                                                           ****415
         ENDS COMMENT DISSECTS
                                                                           ****416
                                                                           ****417
         PROCEDURE LIS(U) $ INTEGER U$
         COMMENT DETERMINATION OF LATITUDE AND LONGITUDE FOR
                                                                           ****418
                                                                           ****419
                  GRAPH POINTS$
         COMMENT THE SIGN OF LONGITUDE IS CHANGED FOR
                                                                           ****420
                                                                           ****421
                  EAST OF GREENWHICHS
                                                                           ****422
         BEGIN
                                                                           ****423
            IF U EQL 19 THEN DT(12)
                                                                           ****424
            ELSE IF U LEQ 11 THEN
                                                                            ****425
            BEGIN
                DT(U)$ IF U EQL 0 OR U EQL 1 OR
                                                                           ****426
                                                                            ****427
                U EQL 2 THEN LALONG = -LALONG
            END
                                                                            ****428
                                                                            ****429
            ELSE IF U LEO 26 THEN
                                                                            ****430
            BEGIN
                                                                            ****431
                LALAT= 35+US LALONG= 10
```

```
****432
     END
                                                                    ****433
     ELSE IF U LEG 41 THEN
                                                                    ****434
     BEGIN
                                                                    ****435
        LALAT= 20+US LALONG= 20
                                                                    ****436
     END
                                                                    ****437
     ELSE IF U LEG 56 THEN
                                                                    ****438
     BEGIN
                                                                    ****439
        LALAT= 5+US LALONG= 30
                                                                    ****440
     END
                                                                     ****441
     ELSE IF U LEG 71 THEN
                                                                     ****442
     BEGIN
                                                                     ****443
        LALATE U-115 LALONG= 40
                                                                     ****444
     END
                                                                     ****445
     ELSE IF U LEQ 86 THEN
                                                                     ****446
     BEGIN
                                                                     ****447
        LALAT= U-265 LALONG= 50
                                                                     ****448
     END
                                                                     ****449
     ELSE DT(U-74)
                                                                     ****450
  ENDS COMMENT LISS
                                                                     ****451
                                                                     ****452
  PROCEDURE CTQS
                                                                     ****453
  COMMENT THIS SUBROUTINE PREPARES THE TIME INSTANTS AT WHICH
  IN EACH ZONE THE METEOROLOGICAL PARAMATER WILL BE
                                                                     ****454
                                                                     ****455
  DERIVED FROM BOTH PARAMETER FIELDS, COMPOSITE CHARTS
                                                                     ****456
  IN TIME ARE SIMULATEDS
                                                                     ****457
  BEGIN
                                                                     ****458
      INTEGER JO, MOS
                                                                     ****459
      REAL A.SUM.RESS
                                                                     ****460
      A= 0.45
                                                                     ****461
      JO = IF IO EQL 1 THEN KO ELSE OF SUM= OF
                                                                     ****462
      FOR I= KQ-JO STEP IO UNTIL JO DO
                                                                     ****463
      BEGIN
         SUM= SUM+(IF I GTR 3 AND I LSS 8 THEN 2*A ELSE A)$
                                                                     ****464
                                                                     ****465
         DD(I)= SUM
                                                                     ****466
      END$
      MO = ZONEI(ST) & RES= IF IO EQL 1 THEN DD(MO) ELSE
                                                                     ****467
                                                                     ****468
      DD (MO-1)$
                                                                     ****469
      FOR I = 0 STEP 1 UNTIL KQ DO DD(I) = IF TT GTR 12
                                                                     ****470
      THEN TT-12 ELSE TT+A/2+DD(I)-RES$
                                                                     ****471
   ENDS COMMENT CTOS
                                                                     ****472
COMMENT COMPUTATION OF GRID POINT VALUES FOR DYNAMIC PROCESSS
                                                                     ****473
                                                                     ****474
                                                                     ****475
   REAL PROCEDURE HH (V+W+F+SELECT)$
                                                                     ****476
   VALUE FIVOR SELECTS
                                                                      ****477
   INTEGER F.V.W. SELECTS
                                                                      ****478
   BEGIN
                                                                      ****479
      M5= (F-1) *20$
                                                                      ****480
      M6= (F+2) *205
                                                                      ****481
      IF SELECT EQL 1 THEN
                                                                      ****482
        BEGIN M1=WCX(V+M5,W)$ M2=WCX(V+M6,W)$
               HH=((12-DD(M))*M1 + DD(M)*M2) /125 END
                                                                      ****483
                                                                      ****484
      ELSE IF SELECT EQL 2 THEN
                                                                      ****485
        BEGIN M3=WCY (V+M5+W)$ M4=WCY (V+M6+W)$
```

```
HH=((12-DD(M))*M3 + DD(M)*M4) /12$ END
                                                                      ****486
                                                                       ****487
               BEGIN T1=TPC(V+M5, W)$ T2=TPC(V+M6,W)$
                     HH=((12-DD(M))*T1 + DD(M)*T2) /12$ END$
                                                                       ****488
                                                                       ****489
      ENDS COMMENT HHS
                                                                       ****490
   COMMENT COMPUTATION OF GRID POINT VALUE BY BI-LINEAR INTERPOLATION****491
           FOR AN ARBITRARY POINT (TEMP. DIRECTION AND SPEED)$
                                                                      ****492
                                                                       ****493
      REAL PROCEDURE GEOP (V.W.C. SELECT)$
                                                                       ****494
                                                                       ****495
      VALUE C.SELECT.V.WS
        INTEGER C.SELECTS REAL V.WS
                                                                       ****496
                                                                       ****497
      BEGIN
                                                                       ****498
         INTEGER VI, W15 REAL A, B, B1, B2, B3, B45
                                                                       ****499
         V1= ENTIER(V)$ W1= ENTIER(W)$
         B1=IF SELECT EQL 1 THEN HH(V1,W1,C,1)
                                                                       ****500
            ELSE IF SELECT EQL 2 THEN HH (V1.W1.C.2)
                                                                       ****501
                                                                       ****502
                 ELSE HH (V1, W1, C, 3)$
         B2=IF SELECT EQL 1 THEN HH(V1+1,W1,C,1)
                                                                       ****503
            ELSE IF SELECT EQL 2 THEN HH(V1+1,W1,C,2)
                                                                       ****504
                                                                       ****505
                 ELSE HH (V1+1,W1,C,3)$
         B3=IF SELECT EQL 1 THEN HH(V1+1,W1+1,C,1)
                                                                       ****506
             ELSE IF SELECT EQL 2 THEN HH (V1+1,W1+1,C,2)
                                                                       ****507
                                                                       ****508
                 ELSE HH (V1+1,W1+1,C,3)$
         B4=IF SELECT EQL 1 THEN HH(V1, W1+1, C, 1)
                                                                       ****509
             ELSE IF SELECT EQL 2 THEN HH(V1,W1+1,C,2)
                                                                       ****510
                                                                       ****511
                 ELSE HH (V1, W1+1, C, 3)$
                                                                       ****512
          A= V1+1-V$ B= W1+1-W$
          GEOP= A*B*B1+(1-A)*B*B2+(1-A)*(1-B)*B3+A*(1-B)*B4$
                                                                       ****513
                                                                       ****514
      ENDS COMMENT GEOPS
                                                                       ****515
   COMMENT COMPUTATION OF GREAT CIRCLE DISTANCE BETWEEN TWO
                                                                       ****516
            POINTS BY USING THE GONIOMETRIC RELATIONS
                                                                       ****517
                                                                       ****518
       REAL PROCEDURE GEODIST (LATI, LON1, LAT2, LON2)$
                                                                       ****519
                                                                       ****520
       VALUE LAT1, LAT2, LONI, LON2$
                                                                       ****521
       REAL LAT1, LAT2, LON1, LON25
                                                                       ****522
       BEGIN
                                                                       ****523
       LOCAL LABEL SKP$
       IF LAT1 EQL LAT2 AND LON1 EQL LON2 THEN
                                                                       ****524
          BEGIN GEODIST=0$ GOTO SKP$ END$
                                                                       ****525
       GEODIST=60*ARCCOS(SIN(LAT1*CG)*SIN(LAT2*CG)
                                                                       ****526
                                                                       ****527
             +COS(LAT1*CG)*COS(LAT2*CG)*COS((LON2-LON1)*CG))/CG$
                                                                       ****528
SKP..
                                                                        ****529
       ENDS COMMENT GEODISTS
                                                                        ****530
    COMMENT COMPUTATION OF COORDINATES OF TWO GEOGRAPHICAL POINTS
                                                                        ****531
                                                                        ****532
            ON THE GRID PLANES
                                                                        ****533
       PROCEDURE GEOMGRID (PP.GG)$ INTEGER PP.GG$
                                                                        ****534
       COMMENT X1, X2=ROW INDICES AND Y1, Y2=COL. INDICES $
                                                                        ****535
                                                                        ****536
       BEGIN
                                                                        ****537
          LIS(PP) & LA1= LALAT$ LO1= LALONG$
          LIS(GG) & LA2= LALAT$ LO2= LALONG$
                                                                        ****538
          X1=(70-LA1)/2.5$ Y1=(130-L01)/5$
                                                                        ****539
```

```
****540
      X2=(70-LA2)/2.55 Y2=(130-L02)/5$
                                                                      ****541
  ENDS COMMENT GEOMGRIDS
                                                                      ****542
                                                                      ****543
COMMENT COMPUTATION OF GREAT CIRCLE DISTANCE AND TRUE COURSE
                                                                      ****544
                                                                      ****545
        OF A SEGMENT FLOWNS
                                                                      ****546
   PROCEDURE PART2GEOMS
                                                                      ****547
   BEGIN
                                                                      ****548
   REAL AS
                                                                      ****549
   INTEGER NS
      REAL TOTL, LA11, LA22, LO11, LO22, XX1, XX2, YY1, YY25
                                                                      ****550
                                                                      ****551
      K1= ENTIER(X1)$ K2= K1+1$ L1= ENTIER(Y1)$
                                                                      ****552
      L2= L1+1$ K1G= ENTIER(X2)$ K2G= K1Q+1$
                                                                      ****553
      L10= ENTIER(Y2)$ L20= L10+1$
                                                                      ****554
      N1= ABS(K1G-K1)$
                                                                      ****555
      N2= ABS(L1Q-L1)$
                                                                      ****556
      N3 = IF K10 EQL K1 AND L10 EQL L1 THEN 0
                                                                       ****557
      ELSE IF N1 LEG N2 THEN N2 ELSE N1$
                                                                       ****558
      BEGIN
                                                                       ****559
          INTEGER I,JS
                                                                       ****560
          LOCAL LABEL LAB15
                                                                       ****561
          AB(0)= 0$ AB(N3+1)= 1$
          IF N3 EQL O THEN GOTO LAB15 IF N3 EQL N1 THEN
                                                                       ****562
                                                                       ****563
          BEGIN
                                                                       ****564
             IF K1 GTR K1Q THEN
                                                                       ****565
             REGIN
                                                                       ****566
                RES1= K1$
                                                                       ****567
                RES2= K2Q$ RES3= -1
                                                                       ****568
             END
                                                                       ****569
             ELSE
                                                                       ****570
             BEGIN
                                                                       ****571
                RES1= K2$ RES2= K1Q$
                                                                       ****572
                RES3= 1
                                                                       ****573
             END$
                                                                       ****574
             FOR I= RES1 STEP RES3 UNTIL RES2 DO
                                                                       ****575
             BEGIN
                                                                       ****576
                 J= RES3*(I-RES1)+15 AB(J)= (I-X1)/
                                                                       ****577
                 (X2-X1)
                                                                       ****578
             E.ND
                                                                       ****579
          END
                                                                       ****580
          ELSE
                                                                       ****581
          BEGIN
                                                                       ****582
              IF L1 GTR L10 THEN
                                                                       ****583
              BEGIN
                                                                       ****584
                 RES1= L15
                                                                       ****585
                 RES2= L2Q$ RES3= -1
                                                                        ****586
              END
                                                                        ****587
              ELSE
                                                                        ****588
              BEGIN
                                                                        ****589
                 RES1= L2$ RES2= L10$
                                                                        ****590
                 RES3= 1
                                                                        ****591
              END$
                                                                        ****592
              FOR I= RES1 STEP RES3 UNTIL RES2 DO
                                                                        ****593
```

BEGIN

```
J = RES3*(I-RES1)+1* AB(J)=(I-Y1)/
                                                                ****594
                                                                ****595
           (Y2-Y1)
                                                                ****596
        END
                                                                ****597
     END$
                                                                ****598
     TOTL=05
                                                                ****599
     LA11=LA15 LO11=LO1$
                                                                ****600
     N=N3+15
                                                                ****601
     FOR I=1 STEP 1 UNTIL N DO
                                                                 ****602
                                                                 ****603
     BEGIN
        XX2=AB(I)*X2 + (1-AB(I))*X1$
                                                                 ****604
                                                                ****605
        YY2=AB(I)*Y2 + (1-AB(I))*Y1$
        LA22=70-(XX2*2.5)$
                                                                 ****606
                                                                ****607
        L022=130-(YY2*5.0)$
        LENGTH(I)=GEODIST(LA11,LO11,LA22,LO22)$
                                                                 ****608
        LA11=LA225 L011=L0225
                                                                 ****609
                                                                 ****610
        TOTL=LENGTH(I)+TOTLS
                                                                 ****611
     END$
                                                                 ****612
     D=TOTLS
     TC=ARCCOS((SIN(LA2*CG) - SIN(LA1*CG)*COS(D/60*CG)) /
                                                                 ****613
         (SIN(D/60*CG)*COS(LA1*CG)))$
                                                                 ****614
                                                                 ****615
     TC=TC/CG$
                                                                 ****616
     IF SIN((LO2-LO1)*CG) GTR 0 THEN TC=360 - TC$
                                                                 ****617
      IF TC LEG 90 THEN
                                                                 ****618
        BEGIN A=(90-TC)*CG$
          E1=COS(A)$ E2=SIN(A)$ END
                                                                 ****619
                                                                 ****620
      ELSE IF TC LEG 180 THEN
        BEGIN A=(TC-90)*CG$
                                                                 ****621
          E1=COS(A)$ E2=-SIN(A)$ END
                                                                 ****622
      ELSE IF TC LEQ 270 THEN
                                                                 ****623
                                                                 ****624
        BEGIN A=(270-TC)*CG$
          E1=-COS(A)$ E2=-SIN(A)$ END
                                                                 ****625
                                                                 ****626
      ELSE BEGIN A=(TC-270)*CG$
          E1=-COS(A)$ E2=SIN(A)$ END$
                                                                 ****627
                                                                 ****628
   END
ENDS COMMENT PART2GEOMS
                                                                 ****629
                                                                 ****630
REAL PROCEDURE SUM1 (A. B. ARR)$
                                                                 ****631
                                                                 ****632
VALUE A. BS
INTEGER A. BS ARRAY ARRS
                                                                 ****633
                                                                 ****634
BEGIN INTEGER IS REAL SS
                                                                 ****635
   S= 0$
                                                                 ****636
   FOR I= A STEP 1 UNTIL B DO
      S=S+ARR(I)$
                                                                 ****637
                                                                 ****638
   SUM1 = 5$
                                                                 ****639
ENDS COMMENT SUM15
                                                                 ****640
REAL PROCEDURE SUM2(A, B, ARR1, ARR2) 5
                                                                 ****641
                                                                 ****642
VALUE A. BS
INTEGER A. BS ARRAY ARRI. ARR2$
                                                                 ****643
                                                                 ****644
BEGIN INTEGER IS REAL SS
                                                                 ****645
   S= 0$
                                                                 ****646
   FOR I= A STEP 1 UNTIL B DO
                                                                 ****647
      5 = 5 + ARR1(I)*ARR2(I)$
```

LAB1 ..

		****648
	SUM2 = 5\$	****649
	ENDS COMMENT SUM25	****650
	MMENT COMPUTATION OF A DRIFT ANGLE FOR THE SEGMENTS	****651
CO	AMENI COMPUTATION OF A DRIFT ANGLE FOR THE SECRET	****652
	REAL PROCEDURE DRIFT(X:Y)\$	****653
	VALUE X.YS	****654
	REAL XIYS	****655
	BEGIN	****656
	REAL SPD ANG DEG . WS	****657
	LOCAL LABEL BRS	****658
	IF X EQL O AND Y EQL O THEN	****659
	BEGIN SPD=DEG=0\$ GOTO BR\$ END\$	****660
	SPD=SQRT(X**2 + Y**2)\$	****661
	W=ABS(X)\$	****662
	IF SPD EQL O THEN GOTO BRS	****663
	ANG=ARCCOS(W/SPD) /CG\$	****664
	IF X GEQ 0 AND Y LEQ 0 THEN ANG=270+ANG	****665
	ELSE IF X GEQ 0 AND Y GEQ 0 THEN	****666 ****667
	ANG=270-ANG	****668
	ELSE IF X LEQ 0 AND Y GEQ 0 THEN ANG-90+ANG	****669
	ELSE IF X LEQ 0 AND Y LEQ 0 THEN ANG=90-ANG ELSE WRITE('WIND DIRECTION ERROR')\$	****670
	DEG=ANG-TC\$	****671
B0	DEG-ANG-1C3	****672
BR • •	DRIFT=ANG=SPD*SIN(DEG*CG) /TAS\$	****673
	COSA=COS(ARCSIN(ANG))\$	****674
	ENDS COMMENT DRIFTS	****675
	ENDS COMMENT DIVITIES	****676
		****677
	PROCEDURE METPROC(S) \$ VALUE S\$ INTEGER S\$	****678
	COMMENT PROCESSING METEOROLOGICAL PARAMETERSS	****679
	BEGIN	****680
	INTEGER I,NS	****681
	REAL HD.GS.TASSS	****682
	ARRAY TEMP, WNDX, WNDY, ENDUR (1 N3+1)\$	****683
	XX1=X15 YY1=Y15	****684 ****685
	N=N3+1\$	****686
	FOR I=1 STEP 1 UNTIL N DO	****687
	$\begin{array}{ll} \text{BEGIN} \\ \text{XX2= AB(I)*X2+(1-AB(I))*X15} \end{array}$	****688
	YY2= AB(1)*Y2+(1-AB(1))*Y15	****689
	XSTER= (XX1+XX2)/25	****690
	YSTER= (YY1+YY2)/2\$	****691
	TEMP(I) = -GEOP(XSTER+YSTER+S+3)\$	****692
	WNDX(I)=GEOF(XSTER,YSTER,S,1)\$	****693
	WNDY(I)=GEOP(XSTER,YSTER,S,2)\$	****694
	XX1=XX2\$ YY1=YY2\$	****695
	END\$	****696
	WX=SUM1(1.N.WNDX) /NS	****697
	WY=SUM1(1.N.WNDY) /NS	****698
	TEM=SUM1(1.N.TEMP) /NS	****699
	TAS=TASM*SQRT (273.16+TEM)\$	****700
	ANGLE=DRIFT(WX,WY)5	****701

```
****702
          FOR I=1 STEP 1 UNTIL N DO
                                                                        ****703
             BEGIN
                                                                        ****704
             TASS=TASM+SGRT(273.16 + TEMP(I))$
             GS=TASS*COSA + (WNDX(I)*E1 + WNDY(I)*E2)
                                                                        ****705
                                                                        ****706
             ENDUR(I)=36000*LENGTH(I) / GS$
                                                                        ****707
             END$
                                                                        ****708
          ENDU=SUM1 (1.N.ENDUR)$
                                                                        ****709
          RES1= 31+(S-1)*45
                                                                        ****710
          WIX(S)=SUM2(1,N,ENDUR,WNDX)/ENDUS
                                                                        ****711
          WIY(S)=SUM2(1,N,ENDUR,WNDY)/ENDUS
                                                                        ****712
          TEM=SUM2(1,N,ENDUR,TEMP)/ENDUS
                                                                        ****713
          TAS=TASM*SQRT(273.16+TEM)$
          TDEV(S)= IF RES1 LEQ 35.332 THEN TEM +1.98*RES1-15 ELSE
                                                                         ****714
                                                                         ****715
           55+TEMS
                                                                         ****716
           TIME(S)= ENDUS
                                                                        ****717
           AIRDIST(S)= ENDU *TAS/36000$ LE= D$
           HEADING(S)=TC+ARCSIN(ANGLE)/CG$
                                                                         ****718
                                                                         ****719
           HD=HEADING(5)$
                                                                         ****720
           IF HD LEG 90 THEN
                                                                         ****721
             BEGIN HD=(90-HD) +CG$
                TAX(S)=TAS*COS(HD)$ TAY(S)=TAS*SIN(HD)$ END
                                                                         ****722
                                                                         ****723
           ELSE IF HD LEG 180 THEN
                                                                         ****724
             BEGIN HD=(HD-90)*CG$
                TAX(S)=TAS*COS(HD)$ TAY(S)=-TAS*SIN(HD)$
                                                                         ****725
                                                            END
                                                                         ***~726
           ELSE IF HD LEG 270 THEN
                                                                         ****727
             BEGIN HD=(270-HD)*CG$
                                                                         ****728
                TAX(S)=-TAS*COS(HD)$ TAY(S)=-TAS*SIN(HD)$ END
                                                                         ****729
           ELSE BEGIN HD=(HD-270)*CG$
                                                                         ****730
                TAX(S)=-TAS*COS(HD)$
                                                                         ****731
                TAY(S)=TAS*SIN(HD)$ END$
                                                                         ****732
        ENDS COMMENT METPROCS
                                                                         ****733
        COMMENT 'TABLE' AND 'CLIMBCORT' ARE TABLE LOOK-UP PROCEDURES$
                                                                         ****734
                                                                         ****735
                                                                         ****736
        INTEGER PROCEDURE TABLE (P.R.MA)$
        VALUE PIRS INTEGER PIRS INTEGER ARRAY MAS
                                                                         ****737
                                                                         ****738
        BEGIN
                                                                         ****739
        INTEGER G.B.DS REAL ROICS
                                                                         ****740
        LOCAL LABEL LAB205
                                                                         ****741
        B=IF P EQL 0 THEN 4536 ELSE 5$
        C=IF P EQL O THEN GRWQ ELSE TDEV(R)$
                                                                         ****742
                                                                         ****743
        D=IF P EQL 0 THEN 127006 ELSE -15$
                                                                         ****744
        R0=(C - D)/B$
                                                                         ****745
        G=ENTIER(RO)S
                                                                         ****746
        RU=RO - G$
                                                                         ****747
        IF MA(R,G+1) EQL -1 THEN
                                                                         ****748
           BEGIN TABLE=-15 GOTO LAB205
                                                                         ****749
           END$
                                                                         ****750
        TABLE=R0*MA(R+G+1) + (1-R0)*MA(R+G)$
                                                                         ****751
-AB20..
                                                                          ****752
        ENDS COMMENT TABLES
                                                                          ****753
                                                                          ****754
         INTEGER PROCEDURE CLIMBCORT(L, MA)$
                                                                          ****755
         VALUE LS INTEGER LS INTEGER ARRAY MAS
```

BEGIN	****756
INTEGER R.C.E1.E2.E3.E45	****757
REAL G.RO.RIS	****758
LOCAL LABEL LAB215	****759
G=(GRWQ - 127006)/4536\$	****760
R=ENTIER(G)\$	****761
RO=G-R\$	****762
R=R*3 + L\$	****763
G=(TDEV(L) + 25)/5\$	****764
C=ENTIER(G)\$	****765
R1=G-C5	****766
E1=MA(R,C)S	****767
E2=MA(R+3,C)\$	****768
E3=MA(R,C+1)\$	****769
E4=MA(R+3,C+1)\$	****770
IF E1 EQL -1 OR E2 EQL -1 OR E3 EQL -1 OR E4 EQL -1 THEN	****771
BEGIN CLIMBCORT=-1\$ GOTO LAB21\$ END\$	****772
CLIMBCORT=R0*R1*E4 + (1-R0)*(1-R1)*E1	****773
+ (1-R0)*R1*E3 + R0*(1-R1)*E2\$	****774
	****775
ENDS COMMENT CLIMBCORTS	****776
	****777
PROCEDURE READQ(Y0.Y1.Y2.Y3.ARR)\$	****778
VALUE YO.Y1.Y2.Y35 INTEGER YO.Y1.Y2.Y35	****779
INTEGER ARRAY ARRS	****780
BEGIN	****781
FOR I=Y0 STEP 1 UNTIL Y1 DO	****782
READ(PCF('DC10F'), FOR J=Y2 STEP 1 UNTIL Y3	****783
DO ARR(I,J), ERR, ERR)\$	****784
ENDS COMMENT READS	****785
	****786
PROCEDURE WRITEG(Y0,Y1,Y2,Y3,ARR)\$	****787
VALUE Y0, Y1, Y2, Y35	****788
INTEGER YO, Y1, Y2, Y35	****789
INTEGER ARRAY ARRS	****790
BEGIN	****791
FOR I=Y0 STEP 1 UNTIL Y1 DO	****792
WRITE (FOT, Y3, FOR J=Y2 STEP 1 UNTIL Y3 DO	****793
ARR(I,J), ERR)\$	****794
ENDS COMMENT WRITEOS	****795
	****796
READQ(1,3,1,16,RANGE)\$	****797
READQ(1,3,17,33,RANGE)\$	****798 ****799
READQ(1,99,1,9,TEMPTIME)\$	****800
READQ(1,99,1,9,TEMPDIST)\$	****801
READQ(1,99,1,9,TEMPFUEL)\$	****802
READQ(1,3,1,7,MW)5	****803
WALTE (OF 17) 6	****804
WRITE(PEJT)\$ WRITE('* PERFORMANCE DATA FOR DC10 *')\$ WRITE(' ')\$	****805
	****806
WRITE(' ')\$ WRITE(' ')\$ WRITE('* SPECIFIC RANGE *')\$ WRITE(' ')\$	****807
WINE . D. DO . D. D	****808
WRITEQ(1:3:1:16:RANGE)\$ WRITEQ(1:3:17:33:RANGE)\$	****809
MKI IEG/I/2/I//22/KWWC/2	

_AB21..

```
****810
write( ' ') s write( ' ') s write( ' ') s write( ' ') s
                                                                  ****811
WRITE( * MAX. WEIGHT * *) S WRITE( * 1) S
                                                                  ****812
WRITEQ(1,3,1,7,MW)$
                                                                  ****813
WRITE (PEJT)$
WRITE( * CLIMB TIME * ') S WRITE( ' ') S
                                                                  ****814
                                                                  ****815
WRITEG(1,99,1,9,TEMPTIME)$
                                                                  ****816
WRITE (PEJT) $
WRITE( * CLIMB DISTANCE * 1)$ WRITE( 1 1)$
                                                                  ****817
WRITEQ(1,99,1,9,TEMPDIST)$
                                                                  ****818
                                                                  ****819
WRITE (PEJT)$
WRITE( * CLIMB FUEL * ') WRITE( ' ') $
                                                                   ****820
                                                                   ****821
WRITEQ(1,99,1,9,TEMPFUEL)$
                                                                   ****822
                                                                   ****823
                                                                   ****824
READ(PCF(DC10F'), FLUR, TAXI, GRW, RESERVE, TOW,
                                                                   ****825
MAXTOW, MAXLW, DATE, IO, TTT, ROUTE, DONE, ERR) $
                                                                   ****826
                                                                   ****827
WRITE( ' ') $ WRITE( ' ') $ WRITE( ' ') $
                                                                   ****828
             *** INPUT PARAMETERS ****)$
WRITE(
                                                                   ****829
WRITE(FO2, 11, FLUR, TAXI, GRW, RESERVE, TOW,
                                                                   ****830
       MAXTOW, MAXLW, DATE, IO, TTT, ROUTE) $
                                                                   ****A31
IF ROUTE GEQ 1111 THEN
                                                                   ****832
BEGIN
                                                                   ****833
  READ(PCF('DC10F'), Q, DONE, ERR)$
                                                                   ****834
   WRITE(F02, 1, 0)$
                                                                   ****835
      0=0-15
                                                                   ****836
END
                                                                   ****837
ELSE
                                                                   ****838
BEGIN
                                                                   ****839
   READ (PCF('DC10F'), ST,ST1, DONE, ERR)$
                                                                   ****840
   WRITE(FO2, 2, ST, ST1)$
   G1Q= ZONEI(ST) & G2Q= ZONEI(ST1) & Q= ABS(G2Q-G1Q)
                                                                   ****841
                                                                   ****842
END$
                                                                   ****843
TT = TTTS
                                                                   ****844
                                                                   ****845
 BEGIN
    INTEGER ARRAY STOREI, STOREIQ, STOREG, STOREGQ, E(0..0);
                                                                   ****B46
                                                                   ****847
    F(-1..0)$
                                                                   ****848
    FORMAT F04(X63, I6, A2),
                                                                   ****849
           FOS('TRIP FUEL', I6, A1),
                                                                   ****850
           F06('COST', D8.2, A1)$
    REAL ARRAY DECLTIME DECLTUEL DECLDIST(1..W)$
                                                                   ****851
    INTEGER PROCEDURE SQ(H1.H2)$ INTEGER H1.H2$
                                                                   ****852
                                                                   ****853
    50= A(G1Q+I0+H1-1)+H2$
                                                                   ****854
    INTEGER PROCEDURE JQ(H1.H2)$ INTEGER H1.H2$
                                                                    ****855
    JQ= F(H1-1)+H2-STOREI(H1)+15
                                                                    ****856
    PROCEDURE DESCLIMB(S) VALUE S$ INTEGER S$
                                                                    ****857
    COMMENT COMPUTATION OF PERFORMANCE IN CLIMB OR DESCENTS
                                                                    ****858
                                                                    ****859
    BEGIN
                                                                    ****860
       INTEGER ALTS
                                                                    ****861
       LOCAL LABEL JUMS
                                                                    ****862
       REAL TASORTS
                                                                    ****863
```

TASORT=SORT(TAX(S)**2 + TAY(S)**2)\$

RUN. .

```
****864
               ALT= 31+(S-1)*45
               DECLTIME(S)=IF MQ EQL 0 THEN 60*CLIMBCORT(S.TEMPTIME)
                                                                           ****865
                                                                           ****866
               /1000 ELSE 3.1+0.41*ALT$
               DECLDIST(S)=IF MQ EQL 0 THEN CLIMBCORT(S, TEMPDIST)
                                                                           ****867
                                                                           ****868
               ELSE 9+3*ALTS
               DECLFUEL(S)=IF MQ EQL 0 THEN CLIMBCORT(S, TEMPFUEL)
                                                                           ****869
               ELSE 940+8.5*ALT$ IF DECLTIME(S) LSS 0 THEN GOTO JUM$
                                                                           ****870
                                                                           ****871
               AID4=DECLDIST(S)*60/(DECLTIME(S)*TASQRT)$
                                                                           ****872
               DECLDIST(S) = SQRT((0.75*WIX(S)+TAX(S)*AID4)**2+
                                                                           ****873
                                                                           ****874
               (0.75*WIY(S)+TAY(S)*AID4)**2)*(DECLTIME(S)-2)/60$
                                                                           ****875
               IF DECLDIST(S) GTR LE THEN DECLDIST(S)=LES
               AIRDIST(S)= (1-DECLDIST(S)/LE)*AIRDIST(S)$
                                                                           ****876
               TIME(S)=AIRDIST(S)/TASQRT*36000$
                                                                           ****877
                                                                           ****878
               LE=LE-DECLDIST(S)$
                                                                           ****879
JUM . .
                                                                           ****880
            ENDS COMMENT DECLIMBS
                                                                           ****881
                                                                           ****882
                                                                           ****883
            PROCEDURE LINE(N1,N2)$ BOOLEAN N1,N2$
                                                                           ****884
            COMMENT PRINT-OUT PROCEDURES
                                                                           ****885
            BEGIN
                                                                           ****886
               INTEGER I, J, K, L, M, N, P, Q, R, S, T
               FORMAT P1('TOC', 215, X12, 14, X10, 14, 316, 18, A2),
                                                                           ****887
                                                                           ****888
                       P2(I3, X22, I4, X10, I4, 316, I8, A2),
                                                                           ****889
                       P3('TOD', 415, 16, 18, 16, 316, 18, A2),
                       P4(13, 415, 16, 18, 416, 18, A2)$
                                                                           ****890
               LOCAL LABEL LAB30, LAB31, LAB325
                                                                           ****891
                                                                           ****892
               IF N1 THEN GOTO LAB30$
                                                                           ****893
               IF N2 THEN GOTO LAB31$
                                                                           ****894
               I=G3$ S=M0$ T=B3$
                                                                           ****895
               GEOMGRID(G4, G3)$
 LAB30 . .
                                                                           ****896
               J=HEADING(G)$
                                                                           ****897
               K = 310 + (G-1)*40$
                                                                           ****898
               IF NOT N1 AND NOT N2 THEN BEGIN
                                                                           ****899
               L= TDEV(G)$
                M= SQRT(TAX(G)**2 + TAY(G)**2)$
                                                                           ****900
                                                                           ****901
            END$
                                                                           ****902
 LAB31 . .
                                                                            ****903
                N= (IF N1 OR N2 THEN .75 ELSE 1)*
                                                                            ****904
                       (WIX(G)*E1 + WIY(G)*E2)$
                                                                            ****905
                M3= IF N1 OR N2 THEN
                       DECLTIME (G) *600 ELSE TIME (G)$
                                                                            ****906
                P= 100*ENTIER(M3/36000) + MOD(M3, 36000)/600$
                                                                            ****907
                @= 100*ENTIER(FLTIME/36000) + MOD(FLTIME, 36000)/600$
                                                                            ****908
                                                                            ****909
                R= BURN - GRWQ$
                                                                            ****910
             IF N1 THEN
                                                                            ****911
                BEGIN
                   WRITE(P1,J,K,N,DISTANCE,P,Q,R,GRWQ)$
                                                                            ****912
                                                                            ****913
                   GOTO LAB32
                                                                            ****914
                END$
                                                                            ****915
             IF N2 THEN
                                                                            ****916
                BEGIN
                   WRITE(P2,ST1,N,DISTANCE,P,Q,R,GRWQ)$
                                                                            ****917
```

```
****918
                  GOTO LAB32
                                                                            ****919
              END$
                                                                            ****920
               IF S EQL T THEN
                  WRITE (P3, J, K, L, M, N, LE, DISTANCE, P, Q, R, GRWQ)
                                                                            ****921
                         TE (P4, I, J, K, L, M, N, LE, DISTANCE, P,Q, R, GRWQ)$
                                                                            ****922
                                                                            ****923
LAB32 ...
                                                                            ****924
            ENDS COMMENT LINES
                                                                            ****925
            PROCEDURE SPACEOPT (FBQ, FB, BI, BG, RR) INTEGER FB, RR$
                                                                            ****926
                                                                            ****927
            BOOLEAN FBQ.BI.BG$
            COMMENT FBQ DETERMINES WETHER THE FLIGHTPLAN
                                                                            ****928
            COMPUTATION WILL BE PERFORMED BACKWARDS (FALSE) OR FOR
                                                                            ****929
                                                                            ****930
            WARDS (TRUE) .
            FB DETERMINES WETHER COSTS (+1) OR FUEL(0) OR FLIGHT
                                                                            ****931
            TIME (-1) WILL BE OPTIMIZED. RR IS TAKE OFF WEIGHT OR
                                                                            ****932
                                                                            ****933
            LANDINGWEIGHT.
            BI DEFINES WETHER THE NAVIGATION REGIME IS FREE IN THE
                                                                            ****934
            HORIZONTAL (FALSE) OR BOUNDED BY ONE POINT (TRUE).
                                                                            ****935
            BG DEFINES WETHER THE CRUISING ALTITUDE IS FREE (FALSE)
                                                                            ****936
                                                                            ****937
            OR BOUNDED (TRUE)$
                                                                            ****938
            BEGIN
               LOCAL LABEL ITER, ENDG, CI, REPEAT, EINDS
                                                                            ****939
                                                                            ****940
               INTEGER AA QUANT II JJ GG GRWP DDG DTG TMG$
               BOOLEAN ITERATION, BCLIMB, BNQ, BNS
                                                                            ****941
               INTEGER ARRAY ROW, ROWQ, QUANTQ(0., F(Q))$
                                                                            ****942
                                                                            ****943
                                                                            ****944
               PROCEDURE PREP(A1,B1,AA,BB)$ INTEGER A1,B1$
               COMMENT COMPUTATION OF DISTANCE AND FLIGHT TIME, AND
                                                                            ****945
                                                                            ****946
                        PRINT-OUT OF THE FLIGHT PLANS
                                                                            ****947
               BOOLEAN AA BB$
               COMMENT AA REFERS TO CLIMB, BB TO DESCENTS
                                                                            ****948
                                                                            ****949
               BEGIN
                   DISTANCE= DISTANCE+A1$ FLTIME= FLTIME+B1$
                                                                            ****950
                                                                            ****951
                   LINE (AA, BB) $ BURN= GRWQ
                                                                            ****952
               ENDS COMMENT PREPS
                                                                            ****953
                                                                            ****954
                PROCEDURE EDITINGS
                                                                            ****955
                BEGIN LOCAL LABEL ENDEDS
                   FORMAT F03(X44, 'CH', I4, I6, D6.2, A2)$
                                                                            ****956
                                                                            ****957
                                                                             ****958
                   PROCEDURE QP$
                                                                             ****959
                   BEGIN
                   IF FB EGL 1 THEN
                                                                             ****960
                                                                             ****961
                      WRITE ('COST')
                   ELSE IF FB EQL 0 THEN
                                                                             ****962
                                                                             ****963
                      WRITE ('FUEL')
                                                                             ****964
                   ELSE IF FB EQL -1 THEN
                                                                             ****965
                      WRITE ( 'FLTIME ') $
                                                                             ****966
                   GOTO ENDEDS
                                                                             ****967
                         COMMENT QPS
                   END$
                                                                             ****968
                                                                             ****969
                                                                             ****970
                   WRITE (PEUT) $
                             *** DETAILED FLIGHT PLAN ****)$
                                                                             ****971
 WRITE(
```

```
****972
                 WRITE(' ')S WRITE(' ')S
                                                                           ****973
                 IF ROUTE EQL 1111 THEN
                                                                           ****974
                 BEGIN
                                                                           ****975
                    WRITE ('NON SPECIAL MIN TRACK')$
                                                                           ****976
                    QP.
                                                                           ****977
                 END$
                                                                           ****978
                 IF ROUTE EQL 4444 THEN
                                                                           ****979
                 REGIN
                                                                           ****980
                    WRITE ('ATC I')$
                                       QP$
                                                                           ****981
                 END$
                                                                           ****982
                 IF ROUTE EQL 5555 THEN
                                                                           ****983
                 REGIN
                                                                           ****984
                                         QPS
                     wRITE('ATC II')$
                                                                           ****985
                                                                           ****986
                 IF ROUTE EQL 7777 THEN
                                                                           ****987
                 BEGIN
                                                                           ****988
                     WRITE ('GRC')$
                                      QP$
                                                                           ***4989
                 END$
                                                                           ****990
                 IF ROUTE EQL 9999 THEN
                                                                           ****991
                 BEGIN
                                                                           ****992
                                                QP$
                     WRITE('SPECIAL TRACK')$
                                                                           ****993
                 END$
                                                                           ****994
                 WRITE('MIN TRACK IN SPACE')$
                                                  QP$
                                                                           ****995
ENDED ..
                                                                           ****996
                  WRITE(FO3, FLUR, DATE, TT)S
                                                                           ****997
                 WRITE( 1 1)$
                                                                           ****998
WRITE (
                                DIST ACCO TIME
                                                       ACCT BURN
                                                                   WEIGHT ****999
                      TAS WIND
INO. HEAD
            FL
               TMP
                                                                           ****1000
     15
                                                                           ****1001
                     COMMENT EDITINGS
              END$
                                                                           ****1002
                                                                           ****1003
               PROCEDURE QQ(0)$ INTEGER O$
               COMMENT COMPUTATION OF SEGMENT CONTRIBUTION. COST.
                                                                           ****1004
                                                                           ****1005
                       TIME . FUEL . WEIGHT ETC . $
                                                                           ****1006
               BEGIN
                                                                           ****1007
                  LOCAL LABEL JM1 . JM2 . JM3 . JM . ENDQ$
                                                                           ****1008
                                                                           ****1009
                  PROCEDURE CL(M1.M2)$ REAL M1.M2$
                  COMMENT M1 DENOTES SEGMENT FUEL. M2 SEGMENT TIMES
                                                                           ****1010
                                                                            ****1011
                  BEGIN
                                                                            ****1012
                     LOCAL LABEL JUS REAL MMS
                                                                            ****1013
                     IF BCLIMB THEN
                                                                            ****1014
                     BEGIN
                                                                            ****1015
                        MM= 0$ GOTO JU
                                                                            ****1016
                     END$
                                                                            ****1017
                     IF ITERATION THEN
                                                                            ****1018
                     BEGIN
                                                                            ****1019
                         MM= IF G GEQ GG THEN -28
                                                                            ****1020
                         ELSE -700$ GOTO JU
                                                                            ****1021
                     END$
                     MM= IF (O EQL -1 AND G GEQ GG) OR (O EQL 1 AND
                                                                            ****1022
                              G LSS GG) THEN 700 ELSE 28$
                                                                            ****1023
                                                                            ****1024
10.0
                           M1+ O*(GG-G)* (IF MQ NEQ B1 THEN MM ELSE 0)$
                                                                            ****1025
```

MM=

```
****1026
                    GRWQ= GRWQ + O+MM$
                    GUANT= QUANT+(IF FB EQL 1 THEN 1083.3+M2+15*MM
                                                                       ****1027
                   ELSE IF FB EQL O THEN MM ELSE 600*M2)$
                                                                       ****1028
                                                                       ****1029
                 ENDS COMMENT CLS
                                                                       ****1030
                 QUANT = QUANTQ(I)$
                                                                       ****1031
                 ITERATION= IF NOT FBQ AND MQ EQL 0 AND 0 EQL -1
                                                                       ****1032
                                                                       ****1033
                    THEN TRUE
                 ELSE FALSES IF ROW(I) EQL O THEN GOTO JMS
                                                                       ****1034
                 GRWQ= IF ITERATION THEN ROW(0) ELSE ROW(1)$
                                                                       ****1035
                                                                        ****1036
                 IF MQ EQL B1 OR ITERATION THEN
                                                                       ****1037
                 BEGIN
                    IF DECLFUEL(G) LSS O THEN GOTO JMS
                                                                        ****1038
                                                                        ****1039
                    BCLIMB= TRUES CL(DECLFUEL(G), DECLTIME(G))$
                                                                        ****1040
                    BCLIMB= FALSES
                    DDG= DECLDIST(G)$ DTG= DECLTIME(G)*600 $
                                                                        ****1041
                    IF ED THEN PREP(DDG, DTG, TRUE, FALSE)$
                                                                        ****1042
                                                                        ****1043
                 END$
                                                                        ****1044
                 IF NOT FBQ THEN GOTO JM2$
                                                                        ****1045
JM1..
                                                                        ****1046
                 AID4= IF TDEV(G) LSS -10 THEN 64.08+6
                                                                       ****1047
                 ELSE TABLE (1.6.MW)$
                 IF GRWQ GEQ AID4 THEN GOTO JMS
                                                                        ****1048
                                                                        ****1049
                 IF NOT FBQ THEN GOTO JM3$
                                                                        ****1050
JM2..
                 GRWP= GRWQ$ GRWQ= 9GRWQ + O* AIRDIST(G)/ 2*
                                                                        ****1051
                  (IF G EQL 1 THEN 2.366+0:0000722* GRWQ ELSE
                                                                        ****1052)
                                                                      ****1053
                 IF G EQL 2 THEN 0.35 + 0:0000792* GRWQ
                                                                       ****1054
                 ELSE -0.83+ 0.000089* GRWQ)$
                                                                        ****1055
                 AA= TABLE(0.6.RANGE)$ GRWQ= GRWP$
                                                                        ****1056
                  IF AA LSS O THEN GOTO JMS
                                                                       ****1057
                  CL(AIRDIST(G)*10**4/AA*TIME(G)/600)$
                                                                       ****1058
                  TMG= TIME(G)$
                  IF ED THEN PREP(LE, TMG .FALSE.FALSE)$
                                                                        ****1059
                                                                        ****1060
                  IF NOT FBQ THEN GOTO JM1$
                                                                       ****1061
JM3..
                                                                        ****1062
                  IF MQ EQL B3 AND NOT ITERATION THEN
                                                                        ****1063
                  BEGIN
                                                                        ****1064
                     BCL IMB=
                     TRUES CL(DECLFUEL(G) DECLTIME (G))$
                                                                        ****1065
                                                                        ****1066
                     BCLIMB= FALSES
                     DDG= DECLDIST(G) S DTG= DECLTIME(G) *600 S
                                                                        ****1067
                     IF ED THEN PREP(DDG, DTG, FALSE, TRUE)$
                                                                       . ****1068
                                                                        ****1069
                  END$
                                                                        ****1070
                  GOTO ENDOS
                                                                        ****1071
                                                                        ****1072
                  GRWQ= 0$ QUANT= 64.0&+6$
                                                                        ****1073
ENDQ ..
                                                                        ****1074
               E'ND$
                                                                        ****1075
           COMMENT QQ$
                                                                        ****1076
                                                                        ****1077
               ED= IF BI AND BG THEN TRUE ELSE FALSE$
                                                                        ****1078
                                                                         ****1079
               FOR AA= 0 STEP 1 UNTIL F(Q) DO
```

```
****1080
REGIN
   ROW(AA) = ROWQ(AA) = 0 QUANTQ(AA) = 64.04+6
                                                           ****1061
                                                           ****1082
                                                           ****1083
QUANT= 05 BCLIMB= FALSES
                                                           ****1084
IF FBQ THEN
                                                           ****1085
BEGIN
                                                           ****1086
   ROW(0)= RRS QUANTQ(0)= 0
                                                           ****1087
                                                           ****1088
ELSE
                                                           ****1089
BEGIN
                                                           ****1090
   ROW(F(Q)) = RRS QUANTQ(F(Q)) = 0
                                                           ****1091
END$
                                                           ****1092
IF ED THEN
                                                           ****1093
BEGIN
   DISTANCE= FLTIME= 0$ BURN= ROW(0)$
                                                           ****1094
                                                           ****1095
              WRITE(FO4, RR)$
   EDITINGS
                                                           ****1096
END$
                                                           ****1097
IF FBQ THEN
                                                           ****1098
BEGIN
                                                            ****1099
   B1= 0$ B2= 1$ B3= Q-1
                                                            ****1100
END
                                                            ****1101
ELSE
                                                            ****1102
BEGIN
                                                            ****1103
   B1= Q-15 B2= -15 B3= 0
                                                            ****1104
END$
                                                            ****1105
                                                            ****1106
COMMENT ZONE CYCLE BEGINSS
                                                            ****1107
FOR MQ= B1 STEP B2 UNTIL B3 DG
                                                            ****1108
BEGIN
                                                            ****1109
        IF FBQ THEN MQ+1 ELSE MQ$
                                                            ****1110
    G2= IF FBQ THEN MQ ELSE MQ+1$
    M= IO*MQ+G1Q+(IF IO EQL -1 THEN -1 ELSE 0)5
                                                            ****1111
                                                            ****1112
    COMMENT A CYCLE FOR GRAPH POINTS ALONG MERIDIAN
                                                            ****1113
                                                            ****1114
            BEGINS$
    FOR JJ= STOREI(G1) STEP 1 UNTIL STOREIQ(G1) DO
                                                            ****1115
                                                            ****1116
    BEGIN
       G3= SQ(G1:JJ)$ J= J0(G1:JJ)$
                                                            ****1117
       COMMENT A CYCLE FOR GRAPH POINTS
                                                            ****1118
                                                            ****1119
               ALONG NEXT MERIDIAN BEGINSS
                                                            ****1120
       FOR II= STOREI(G2) STEP 1 UNTIL STOREIG(G2) DO
                                                            ****1121
                                                            ****1122
          IF NOT BI THEN
                                                            ****1123
          BEGIN
             IF (M GEQ 3 AND M LEQ 8) AND ABS
                                                            ****1124
              (II-JJ) GEQ 10 THEN GOTO CIS
                                                            ****1125
             BNQ= (FBQ AND IO EQL -1) OR (NOT FBQ AND
                                                            ****1126
                                                            ****1127
             IO EQL 1)5
             BN= (FBQ AND IO EQL 1) OR (NOT FBQ AND
                                                            ****1128
                                                            ****1129
             IO EQL -1)$
                                                             ****1130
             IF M LSS 3 THEN
                                                             ****1131
             BEGIN
                                                             ****1132
                 IF (BNG AND BK
                                                             ****1133
                 (M.JJ.II)) OR (BN AND BK(M!II)
```

JJ)) THEN GOTO CI	****1134
END\$	****1135
IF M GTR 8 THEN	****1136
BEGIN	****1137
IF (BNG AND	****1138
BKQ(M:JJ:II)) OR (BN AND BKQ	****1139
(M+II+JJ)) THEN GOTO CI	****1140
END	****1141
END\$	****1142
G4= SQ(G2+II)\$ I= JQ(G2+II)\$	****1143
IF FBQ THEN GEOMGRID (G4 . G3) ELSE	****1144
GEOMGRID (G3+G4)\$	****1145
PART2GEOMS	****1146
IF MQ NEQ B1 THEN GG=STOREG(MQ - B2)\$	****1147
	****1148
COMMENT A CYCLE FOR FLIGHT LEVELS BEGINS\$	****1149
FOR G= STOREG (MQ) STEP 1 UNTIL	****1150
STOREGQ(MQ) DO	****1151
BEGIN	****1152
IF NOT FBQ AND MQ EQL O THEN	****1153
BEGIN	****1154
TEL = 0% IF G NEQ GG THEN	****1155
GOTO ENDG\$	****1156
N1 = ROW(0) \$ ROW(0) = GRWQ=	****1157
MAXTOW-20000\$	****1158
	****1159
TEL = TEL +1\$ IF G LSS 1	****1160
THEN	****1161
BEGIN	****1162
G= GG\$ GRWQ= O\$	****1163
GOTO ENDG	****1164
END\$	****1165
METPROC(G)\$ DESCLIMB(G)\$	****1166
IF DECLFUEL(G) LSS O THEN	****1167
BEGIN	****1168
TEL= 05 G= G-15 GOTO REPEAT	****1169
END\$	****1170
QQ (-1)\$ IF GRWQ EQL O THEN GOTO ENDGS	****1171
N2= ROW(I) - GRWQ\$ IF N2 GTR 10	****1172
AND ROW(0) EQL MAXTOW THEN GOTO	****1173
ENDG\$	****1174
ROW(0) = ROW(0) + (IF TEL GTR 10)	****1175
THEN N2/2 ELSE N2)\$	****1176
GRWQ= ROW(0)\$ IF ABS(N2) LSS 10	****1177
OR TEL GTR 10 THEN	****1178
BEGIN COTO ITER	****1179
ROW(0)= N1\$ GOTO ITER	****1180
END	****1181
ELSE GOTO REPEATS	****1182 ****1183
END	****1183
END	****1185
ELSE BEGIN	****1186
METDDOC(C)&	****1100

ITER..

I REPEAT..

```
IF MG EQL O OR MG EQL G-1 THEN
                                                            ****1188
                                                            ****1189
                 BEGIN
                     GRWQ= RRS DESCLIMB(G)
                                                            ****1190
                                                            ****1191
                 END$
                  IF FBQ THEN QQ(-1) ELSE QQ(1)$
                                                            ****1192
                  IF GRWQ EQL O THEN GOTO ENDG
                                                            ****1193
              END$
                                                            ****1194
              IF QUANT LEQ QUANTQ(J) THEN
                                                            ****1195
                                                            ****1196
              BEGIN
                 ROW(J) = GRWQS QUANTQ(J) = QUANTS
                                                            ****1197
                  ROWQ(J)= IS IF BI AND NOT BG
                                                            ****1198
                  THEN STOREG(MQ)= G$
                                                            ****1199
                  IF ITERATION THEN G=
                                                            ****1200
                                                            ****1201
              END$
                                                            ****1202
                                                             ****1203
           ENDS COMMENT FLIGHT-LEVEL CYCLES
                                                            ****1204
        ENDS COMMENT ALONG-NEXT-MERIDIAN CYCLES
                                                             ****1205
                                                             ****1206
     ENDS COMMENT ALONG-CURRENT-MERIDIAN CYCLES
                                                             ****1207
                                                             ****1208
      IF BI AND NOT BG THEN
                                                             ****1209
         STOREGO(MQ) = STOREG(MQ)
                                                             ****1210
                                                             ****1211
  ENDS COMMENT ZONE CYCLES
                                                             ****1212
                                                             ****1213
      IF ROW(0) EQL O THEN GOTO EINDS
                                                             ****1214
      IF BI THEN GOTO EINDS J=IF FBQ THEN F(Q) ELSE F(0)$ ****1215
                                                             ****1216
  FOR MQ= B3 STEP -B2 UNTIL B1 D0
                                                             ****1217
  BEGIN
     K= IF FBQ THEN MQ ELSE MQ+15 I= ROWQ(J)$
                                                             ****1218
      STOREIG(MG +(IF B3 EQL O THEN 1 ELSE 0))= I-F(K-1)+
                                                             ****1219
      STOREI(K)-15 J= IS
                                                             ****1220
                                                             ****1221
  FOR MQ= 0 STEP 1 UNTIL Q DO STOREI(MQ)= STOREIQ(MQ)$
                                                             ****1222
                                                             ****1223
  TOWG= ROW(0)$ M1= IF FBQ THEN QUANTQ(F(Q)) ELSE
                                                             ****1224
                                                             ****1225
   QUANTQ(0)$
                                                             ****1226
  LW= ROW(F(Q))$ IF ED THEN
                                                             ****1227
  BEGIN
         WRITE( 1 1)$
                                                             ****1228
         WRITE(FO5, TOWQ-LW)$
                                                             ****1225
         WRITE(FOG. IF FB EQL 1 THEN M1/100 ELSE
                                                             ****1230
      ((TOWQ-Lw)*15+1083.3*FLTIME/600)/100)$
                                                            ****1231
                                                             ****1232
   END$
                                                             ****1233
ENDS COMMENT SPACEOPTS
                                                             ****1234
PROCEDURE FF(UU+VV)$ INTEGER ARRAY UU+VV$
                                                             ****1235
                                                             ****1236
BEGIN
   F(-1)= -15 FOR K= 0 STEP 1 UNTIL Q DO
                                                             ****1237
   F(K) = F(K-1) + VV(K) - UU(K) + 1
                                                             ****1238
                                                             ****1239
ENDS COMMENT FFS
                                                             ****1240
PROCEDURE PROCES(51:52:53:PR:FFBB:BB:FACTORISATION)$
                                                             ****1241
```

ENDG ..

EIND..

```
****1242
INTEGER S1.52.53.FFBB$ REAL PR$
BOOLEAN BB + FACTORISATIONS
                                                              ****1243
COMMENT SI AND SE DETERMINE THE LIMITS OF FLIGHT
                                                              ****1244
                                                              ****1245
LEVELS.
S3 IS A DUMMY . EXCEPT WHEN
                                                              ****1246
                                                              ****1247
FACTORISATION IS TRUE .
THEN S3 IS A DATUM FOR THE FLIGHT
                                                              ****1248
                                                              ****1249
LEVEL
IN WHICH THE M.F.P. IS COMPUTED.
                                                              ****1250
PR IS PERCENTAGE TRIP FUEL
                                                              ****1251
FFBB DETERMINES WETHER COSTS(+1),
                                                              ****1252
                                                              ****1253
FUEL(0) OR TIME(-1) IS OPTIMIZED,
BB..USE LANDING WEIGHT (TRUE) . USE
                                                              ****1254
                                                              ****1255
TAKE OFF WEIGHT (FALSE)
FACTORISATION(TRUE) INITIALISES
                                                              ****1256
PROCES IN THE HORIZONTAL ON THE
                                                              ****1257
BASIS OF FLIGHT TIME.
                                                              ****1258
FOLLOWED BY COMPILATION OF FLIGHT
                                                              ****1259
PLAN IN THE VERTICAL ON THE BASIS
                                                              ****1260
                                                              ****1261
OF COSTS. FUEL OR TIMES
BEGIN
                                                              ****1262
                                                              ****1263
   INTEGER NNS
   LOCAL LABEL ENDPR . ING$
                                                              ****1264
                                                              ****1265
                                                              ****1266
   PROCEDURE AAS
   COMMENT SPECIFICATION OF LIMITS IN HORIZONTAL OF
                                                              ****1267
                                                              ****1268
           GRAPH POINTS ALONG MERIDIANS
                                                              ****1269
   BEGIN
   LOCAL LABEL UTRECHTS
                                                              ****1270
      STOREI(0)=STOREIQ(0)=ST - A(G1Q-1)$
                                                              ****1271
      STOREI(Q) = STOREIQ(Q) = ST1-A(G2Q-1)$
                                                              ****1272
                                                              ****1273
      IF ROUTE GEQ 1111 THEN GOTO UTRECHT$
      FOR K= 1 STEP 1 UNTIL Q-1 DO
                                                              ****1274
                                                              ****1275
      BEGIN
         STOREI(K)= 1$ STOREIQ(K)= E(K)
                                                              ****1276
                                                               ****1277
                                                               ****1278
                                                               ****1279
      FF(STOREI + STOREIQ)
                                                               ****1280
   ENDS COMMENT AAS
                                                               ****1281
                        AAA(F1,F2)$ INTEGER F1,F2$
   PROCEDURE
                                                               ****1282
   COMMENT SPECIFICATION OF LIMITS IN THE VERTICALS
                                                               ****1283
                                                               ****1284
   FOR K= 0 STEP 1 UNTIL Q-1 DO
                                                               ****1285
   BEGIN
       STOREG(K) = F15 STOREGQ(K) = F25
                                                               ****1286
                                                               ****1287
   ENDS COMMENT AAAS
                                                               ****1288
                                                               ****1289
   PROCEDURE EPS
   IF TOWN GEW MAXTOW OR TOWN EQL O THEN
                                                               ****1290
                                                               ****1291
          WRITE('SUPER CRITICAL')$
                                                               ****1292
          GOTO ENDPRS
                                                               ****1293
                                                               ****1294
          COMMENT EPS
   END$
                                                               ****1295
```

JTRECHT.

```
****1296
  INTEGER PROCEDURE SS$
  SS= GRW+RESERVE+PR*((GRW+RESERVE)*
                                                             ****1297
  (MINTIME+0.08-0.15)-500+MINTIME+7300+TAXI)$
                                                             ****1298
                                                             ****1299
                                                             ****1300
  INTEGER PROCEDURE SSS$
                                                             ****1301
  SSS= GRW+RESERVE+PR*(TOWQ-LW+TAXI)$
                                                             ****1302
  INTEGER PROCEDURE SSSS$
                                                             ****1303
  SSSS= TOWQ*(GRW+RESERVE+PR*TAXI)/((1+PR)*NN-PR*TOWQ)$
                                                             ****1304
                                                             ****1305
  PROCEDURE NNQ(A)S VALUE AS INTEGER AS
                                                             ****1306
                                                             ****1307
  NN= IF NOT BB THEN TOW ELSE AS
                                                             ****1308
                                                             ****1309
  PROCEDURE TWS
  COMMENT SAFEGUARDING AGAINST OVERLOADINGS
                                                             ****1310
                                                             ****1311
  IF TOWN GED MAXTOW OR TOWN EGL O THEN
                                                             ****1312
  BEGIN
     WRITE(PEJT)S WRITE('DECR LANDING W')S
                                                             ****1313
                                                             ****1314
     GOTO ENDPR
                                                             ****1315
  END$
                                                              ****1316
                                                              ****1317
  COMMENT IF FACTORIZATION IS TRUE, THEN THE OPTIMIZATION
                                                              ****1318
          TAKES PLACE FIRST IN THE HORIZONTAL AND THEN
                                                              ****1319
                                                              ****1320
           IS FOLLOWED BY IN THE VERTICALS
                                                              ****1321
  IF FACTORISATION THEN
                                                              ****1322
  BEGIN
     AAS AAA(53,53)$ NNQ(SS)$ ROUTE= 1111$
                                                              ****1323
     SPACEOPT (IF BB THEN FALSE ELSE TRUE -1 FALSE .
                                                              ****1324
                                                              ****1325
     TRUE (NN) 5 TWS
                                                              ****1326
     AAA(S1,S2)$ GOTO ING
                                                              ****1327
  END
                                                              ****1328
  ELSE
                                                              ****1329
  BEGIN
     AA$ AAA(S1.52)$ NNQ(SS)$
                                                              ****1330
                                                              ****1331
     SPACEOPT (IF BB THEN FALSE ELSE TRUE FFBB FALSE
                                                              ****1332
     FALSE INN) $ TWS
                                                              ****1333
                                                              ****1334
     EP$ NNQ(S3S)$
     SPACEOPT (IF BB THEN FALSE ELSE TRUE FFBB, TRUE .
                                                              ****1335
                                                              ****1336
     FALSE , NN) $ TW$
                                                              ****1337
     EP$ NNQ(SSSS)$
      SPACEOPT (TRUE + FFBB + TRUE + TRUE + NN) $ EP$
                                                              ****1338
      IF FACTORISATION THEN ROUTE 1000
                                                              ****1339
                                                              ****1340
  END$
                                                              ****1341
                                                              ****1342
ENDS COMMENT PROCESS
                                                              ****1343
                                                              ****1344
IF ROUTE GEQ 1111 THEN
                                                              ****1345
BEGIN
   READ(PCF('DC10F') + ST, ST1, DONE, ERR)$
                                                              ****1346
                                                              ****1347
   G1Q= ZONEI(ST)$
                                                              ****1348
   FOR K= 1 STEP 1 UNTIL Q-1 DO
   BEGIN READ (PCF('DC10F') . STOREI(K) . DONE . ERR)$
                                                              ****1349
```

ING..

ENDPR..

```
WRITE(FO2, 1, STOREI(K))$
                                                                           ****1350
              STOREI(K) = STOREIQ(K) = STOREI(K) -A(G1Q+IO*K-1)$
                                                                           ****1351
                                                                           ****1352
               END$
                                                                           ****1353
               G2Q = ZONEI(ST1)$
                                                                           ****1354
               WRITE(FO2, 2, ST,ST1)$
                                                                           ****1355
           END$
                                                                           ****1356
            GEOMGRID(ST.ST1)$
                                                                           ****1357
             MINTIME=GEODIST(LA1,LO1,LA2,LO2)/465$
                                                                           ****1358
                                                                           ****1359
           E(0)= E(Q)= 15 FOR K= 1 STEP 1 UNTIL Q-1 DO
                                                                           ****1360
            E(K)=A(G1Q+I0*K)-A(G1Q+I0*K-1)$
                                                                           ****1361
                                                                           ****1362
            COMMENT
            1. WHEN A FLIGHT PLAN FOR THE CPTIMAL COST TRACK IS NEEDED
                                                                           ****1363
                                                                           ****1364
            CALL 'PROCES(1, 3, 1, 0.03, 1, TRUE, FALSE)'
            2. WHEN A FLIGHT PLAN FOR THE OPTIMAL FUEL TRACK NEEDED
                                                                           ****1365
                                                                           ****1366
            CALL 'PROCES(1, 3, 1, 0.03, 0, TRUE, FALSE)'
            3. WHEN A FLIGHT PLAN FOR THE LEAST TIME TRACK NEEDED
                                                                           ****1367
            CALL 'PROCES(1, 3, 1, 0.03,-1, TRUE, FALSE)'5
                                                                           ****1368
                                                                           ****1369
                                                                           ****1370
            PROCES(1, 3, 1, 0.03, 0, TRUE, FALSE)$
                                                                           ****1371
            PROCES(1, 3, 1, 0.03, -1, TRUE, FALSE)$
                                                                           ****1372
                                                                            ****1373
            GOTO RUN
                                                                            ****1374
        END$
                                                                            ****1375
DONE .. ENDS
                                                                            ****1376
        WRITE( ' ') S WRITE( ' ') 5
                    *** END OF RUN ****)$ . ...
        WRITE(
                                                                            ****1377
                                                                            ****1378
        GO TO EOPS
                                                                            ****1379
 ERR . .
                     *** INPUT DATA ERROR ****)$
                                                                            ****1380
        WRITE(
                                            Liting (DC8). AC+>WKHAACAJA AX
 EOP ..
  ELT DC8 1 810528 065734 Program COMMENT KNMI/KLM 020169 SPG NAV 20 JNG.
Δ ELT DC8,1,810528,065734
   NAVIGATION-FLIGHTPLANNING-MODULE FOR THE PRODUCTION OF
                                                                            ****2
   FLIGHTPLANS OVER THE NORTH ATLANTIC.
                                                                            ****3
                                                                            ****4
   THE MAIN FEATURES
 ARE:
   1. INCLUSION OF 6 METEOROLOGICAL PARAMETER FIELDS.
   TEMPERATURE AND GEOPOTENTIAL FIELDS FOR 300 250 AND 200 MB
                                                                            ****7
   VALID FOR TWO STANDARD TIMES 12 HOURS APART.
                                                                            ****8
   2. NAVIGATIONAL GRID BASED ON REPORTING POINTS OF THE KLM.
                                                                            ****9
   3. INCLUSION OF A DYNAMIC PROCESS BASED ON INTERPOLATION OF
                                                                            ****10
                                                                            ****11
   TWO PARAMETER FIELDS.
                                                                            ****12
   4. OPTIMALISATION OF FUEL, COSTS OR FLIGHT TIME IN SPACE AS
   WELL AS IN THE HORIZONTAL AS IN THE VERTICAL.

5. IN - AND OUTBOUND TRAFFIC (10= 1 OUTBOUND 10= -1 INBOUND).
                                                                            ****13
                                                                            ****14
                                                                            ****15
   6. FLIGHTPLAN PRODUCTION FOR OPTIMUM TRACKS, SPECIFIC ROUTES
   ETC. E.G. ALTERNATIVE ATC MINIMUM ROUTES.
                                                                            ****16
                                                                           ****17
   7. BLOCKING E.G. SECTOR BLOCKING OVER THE NORTH ATLANTIC
                                                                           ****18
   BLOCKING IN AIRWAYS AND ATC RESTRICTED AREAS.
                                                                           ****19
   8. STANDARD CRUISE AND USE OF PERFORMANCE TABLES$
                                                                            ****20
                                                                            ****21
      CONSTANT KQ= 14 / W= 3$
```

```
****22
            P1,P2,P3,Q1,Q2,Q3,S,TTT,
INTEGER
                                                                     ****23
G1.G2.G3.G4.B1.B2.B3.MQ.G1Q.G2Q.Q.
                                                                     ****24
RES1, RES2, RES3, I, J, N1, N2, N3, M, G,
                                                                     ****25
MO.M1.M2.M3.M4.M5.M6.K.IO.
                                                                     ****26
K1,K2,L1,L2,K10,K20,L10,L20,KK1,KK2,LL1,LL2,
ENDU , TEM , TAS , FLUR , TAXI , TOW , GRW , RESERVE , MAXTOW , MAXLW ,
                                                                     ****27
                                                                     ****28
DATE , ST , ST1 , ROUTE , DISTANCE , FLTIME , BURN ,
                                                                     ****29
GRWG.TOWG.LW.COST.LE.TELS
        CO.CG.P.C1.X1.X2.Y1.Y2.X.Y.E1.E2.E3.
                                                                     ****30
GG1.GG2.D.ANGLE.LALAT.LALONG.TT.LA1.LO1.LA2.LO2.
                                                                     ****31
                                                                     ****32
XX1,XX2,YY1,YY2,AID1,AID2,AID3,AID4,XSTER,YSTER,
                                                                      ****33
MINTIMES
INTEGER ARRAY HT(1..72,4..19), A(-1..Kg+1), V(0..41),
                                                                      ****34
SR(1..3,0..19), MW(1..3,0..6), CD+CT+CF(1..3,0..17), CTC+
                                                                      ****35
                                                                      ****36
CFC(0..7.0..8). CDC(0..6.0..8)$
                                                                      ****37
ARRAY DD(0..KQ)$
                                                                      ****38
BOOLEAN EDS
BOOLEAN ARRAY BK(0..2.1..6.1..6), BKQ(9..KQ,1..6.1..6)$
                                                                      ****39
                                                                      ****40
FORMAT FO1(E2, S10, D7.0, A5),
                                                                      ****41
        PEJT (E2, ' ', A1),
                                                                      ****42
        FOT(X5, +16, A2),
                                                                      ****43
        F02(X5, +17, A2)$
                                                                      ****444
STRING STR(10)$
                                                                      ****45
INTEGER PROCEDURE INTERPOL(F.F1.F2.F10.F20)$
                                                                      ****46
                                                                      ****47
 INTEGER F.F1.F2.F10.F205
                                                                      ****48
COMMENT LINEAR INTERPOLATIONS
INTERPOL = ((F- F1) * F20 + (F2 - F) * F10) / (F2 - F1)$
                                                                      ****49
                                                                      ****50
                                                                      ****51
 REAL PROCEDURE SUM1 (A B ARR) $
                                                                      ****52
 VALUE A. BS
                                                                      ****53
 INTEGER A, B$ ARRAY ARRS
                                                                      ****54
 BEGIN INTEGER IS REAL SS
                                                                      ****55
    S= 0$
                                                                      ****56
    FOR I= A STEP 1 UNTIL B DO
                                                                      ****57
       S= S + ARR(I)$
                                                                      ****58
    SUM1 = S$
                                                                      ****59
 ENDS COMMENT SUM15
                                                                      ****60
                                                                      ****61
 REAL PROCEDURE SUM2(A, B, ARR1, ARR2)$
                                                                      ****62
 VALUE A+ BS
                                                                       ****63
 INTEGER A, BS ARRAY ARRI, ARR25
                                                                       ****64
 BEGIN INTEGER IS REAL SS
                                                                      ****65
    S= 0$
                                                                       ****66
    FOR I= A STEP 1 UNTIL B DO
                                                                       ****67
       S = S + ARR1(I)*ARR2(I)$
                                                                       ****68
    SUM2 = S$
                                                                       ****69
 ENDS COMMENT SUM25
                                                                       ****70
                                                                       ****71
                                                                       ****72
                           REAL AAS STRING BBS
 PROCEDURE WW(AA, BB) $
                                                                       ****73
 WRITE(FO1, BB, AA)$
                                                                       ****74
                                                                       ****75
```

A STATE

```
****76
P1 = 31000$ P2 = 35000$ P3 = 39000$ Q1 =
                                                 30065$
                                                                    ****77
Q2 = 33999$ Q3 = 38662$
                            TEL = OS
                                                                    ****78
FOR S= 0 STEP 1 UNTIL 5 DO
                                                                    ****79
BEGIN
                                                                    ****80
   RES1= S+12$
   FOR J=19 STEP -1 UNTIL 4 DO
                                                                    ****81
                                                                    ****82
   FOR I= RES1 + 1 STEP 1 UNTIL
   RES1 + 12 DO READ(PCF('NASAD'), HT(I,J), ERR, ERR)$
                                                                    ****83
                                                                    ****84
END$
FOR S=0 STEP 1 UNTIL 5 DO
                                                                    ****85
  BEGIN RES1 =5+125 WRITE(PEJT)$
                                                                    ****86
                                                                    ****87
     FOR J=19 STEP -1 UNTIL 4 DO
        WRITE(FO2, 12, FOR I=RES1 + 1
                                                                    ****88
                                                                    ****89
              STEP 1 UNTIL RESI + 12 DO HT(I+J))$
                                                                    ****90
   END$
                                                                    ****91
COMMENT ARRAY 'HT' IS REFILLED WITH INTERPOLATED PARAMETERS
                                                                    ****92
        WHICH APPLY IN GRID POINTS AT FLIGHT LEVELS 31000
                                                                    ****93
        35000, AND 39000 FTS
                                                                    ****94
FOR I= 1 STEP 1 UNTIL 12, 37 STEP 1 UNTIL 48 DO
                                                                    ****95
                                                                    ****96
   FOR J= 4 STEP 1 UNTIL 19 DO
                                                                    ****97
BEGIN
                                                                    ****98
   ACC+I)TH = OM
   M1= ENTIER(M0/100)$ M2= M0-100+M1$
                                                                    ****99
                                                                    ****100
   MO= HT(I+12,J)S
   M3= ENTIER(M0/100)$ M4= M0-100*M3$
                                                                    ****101
                                                                    ****102
   MO= HT(I+24,J)$
   M5= ENTIER(M0/100)$ M6= M0-100+M5$ -
                                                                    ****103
                                                                    ****104
   HT(I,J) = 100 + INTERPOL(P1,Q1,Q2,M1,M3) +
                                                                    ****105
   INTERPOL (P1, Q1, Q2, M2, M4)$
   HT(I+12,J)= 100*INTERPOL(P2,Q2,Q3,M3,M5)+
                                                                     ****106
   INTERPOL (P2, Q2, Q3, M4, M6)$
                                                                    ****107
   HT(I+24,J)= 100+INTERPOL(P3,Q2,Q3,M3,M5)+
                                                                     ****108
                                                                     ****109
    INTERPOL (P3, Q2, Q3, M4, M6)
                                                                     ****110
COMMENT THIS ROUTINE CONCLUDES THE PRODUCTION OF THE
                                                                     ****111
METEOROLOGICAL PARAMETERS GEOPOTENTIAL AND TEMPERATURE IN THE
                                                                     ****112
                                                                     ****113
FLIGHT LEVELSS
                                                                     ****114
COMMENT RELATIONSHIP BETWEEN GRAPH POINT NUMBERS AND ZONE INDICESS****115
A(-1) = -15 A(0) = 05 A(1) = 25 A(2) = 65 A(3) = 115 A(4) = 265
                                                                     ****116
A(5)=418 A(6)=568 A(7)=718 A(8)=868 A(9)=908 A(10)=968
                                                                     ****117
 A(11) = 1025 A(12) = 1075 A(13) = 1115 A(14) = 1145 A(15) = 1155
                                                                     ****118
                                                                     ****119
 V(0) = 52290477
 V(1) = 51850115$ V(2) = 53640150$
                                                                     ****120
 V(3) = 510002008 V(4) = 519905398 V(5) = 535803008
                                                                     ****121
V(6) = 550002005 V(7) = 499806325 V(8) = 518408495
                                                                     ****122
 V(9)= 52700892$ V(10)= 53500630$ V(11)= 55490459$
                                                                     ****123
 V(12)= 54271005$ V(13)= 48905454$ V(14)= 51375560$
                                                                     ****124
 V(15)= 53735697$ V(16)= 58476263$ V(17)= 47005800$
                                                                     ****125
 V(18)= 48545856$ V(19)= 5550c000$ V(20)= 57006000$
                                                                     ****126
 V(21)= 53286035$ V(22)= 54836683$ V(23)= 46156006$
                                                                     ****127
                                                                     ****128
 V(24) = 48006000$ V(25) = 49846439$ V(26) = 50506500$
 V(27) = 510067505 \ V(28) = 520069005 \ V(29) = 450063005
                                                                     ****129
```

ţ

1

1

```
****130
     V(30)= 461764595 V(31)= 475066005 V(32)= 48576826$
     V(33)= 50007050$ V(34)= 43836608$ V(35)= 44846867$
                                                                         ****131
     V(36)= 453271795 V(37)= 45467385$ V(38)= 41287003$
                                                                         ****132
                                                                         ****133
     V(39)= 42367099$ V(40)= 43007250$ V(41)= 40647378$
                                                                         ****134
     COMMENT DETERMINATION OF CONNECTIVITY AMONG GRAPH POINTS.
                                                                         ****135
             FALSE=CONNECTED. TRUE=BLOCKED $
                                                                         ****136
                                                                         ****137
     FOR I= 1 STEP 1 UNTIL 6 DO
                                                                         ****138
     FOR J= 1 STEP 1 UNTIL 6 DO
                                                                         ****139
     BEGIN
        FOR MQ= 0.1.2 DO BK(MQ.I.J) = TRUES
                                                                         ****140
        FOR MQ= 9 STEP 1 UNTIL KQ DO BKQ(MQ+I+J) = TRUE
                                                                         ****141
                                                                         ****142
     END$
     BK(1,1,1)= BK(2,1,1)= BK(1,2,2)= BK(2,2,2)=
                                                                         ****143
     BKQ(9,1,1) = BKQ(10,1,1) = BKQ(11,1,1) = BKQ(12,1,1) =
                                                                         ****144
     BKQ(13,1,1)= BKQ(14,1,1)= BKQ(9,2,2)= BKQ(10,2,2)=
                                                                         ****145
     BKQ(11,2,2)= BKQ(12,2,2)= BKQ(13,2,2)= BKQ(10,3,3)=
                                                                         ****146
     BKQ(11.3.3)= BKQ(13.3.3)= BKQ(11.4.4)= BK(2.3.4)= BK(2.4.5)=
                                                                         ****147
     BKQ(12,4,4) = BKQ(10,6,6) = BK(1,1,2) =
                                                                         ****148
                                                                         ****149
     BK(1,2,3) = BK(1,2,4) = BK(2,2,3) =
     BKQ(9,1,2)= BKQ(9,2,3)= FALSES
                                                                         ****150
     BKQ(9,2,5)= BKQ(9,3,4)= BKQ(9,3,5)= BKQ(9,4,6)= BKQ(10,2,1)=
                                                                         ****151
     BKQ(10,4,3)= BKQ(10,5,3)= BKQ(10,5,4)= BKQ(10,6,5)=
                                                                         ****152
     BKQ(11,1,2)= BKG(11,3,4)= BKQ(11,5,4)= FALSE$
                                                                         ****153
     BKQ(11,6,5)= BKQ(12,2,1)= BKQ(12,3,2)= BKQ(12,4,3)=
                                                                         ****154
     BKQ(12.5.4) = BKQ(13.1.2) = BKQ(14.2.1) = BKQ(14.3.1) = BK(0.1.1) =
                                                                         ****155
                                                                         ****156
     BK(0.1.2) =FALSES
                                                                         ****157
                                                                         ****158
                                                                         ****159
     BEGIN
        REAL ARRAY AB(0..10), LENGTH(1..10),
                                                                         ****160
                                                                         ****161
         TIME, AIRDIST, TDEV, WIX, WIY, TAX, TAY (1.. W) $
                                                                         ****162
        INTEGER PROCEDURE ZONEI(Q)$ INTEGER Q$
                                                                         ****163
        COMMENT THIS SUBROUTINE DETERMINES THE INDEX OF THE
                                                                         ****164
        ZONE ASSOCIATED WITH A STATIONSNUMBERS
                                                                         ****165
                                                                         ****166
        BEGIN
            LOCAL LABEL AGAINS INTEGER IS
                                                                         ****167
                                                                         ****168
            I= -15
                                                                          ****169
AGAIN..
                                                                          ****170
            I= I+15 IF A(I)-0 LSS O THEN GOTO AGAINS
                                                                          ****171
            ZONE I = I
                                                                          ****172
        ENDS COMMENT ZONEIS
                                                                          ****173
                                                                          ****174
         PROCEDURE DT(K)S INTEGER KS
                                                                          ****175
        COMMENT THIS SUBROUTINE DISSECTS LATITUDE AND
         LONGITUDE FROM THE COMPRESSED COORDINATES.
                                                                          ****176
                                                                          ****177
       EAST OF GREENWHICH THE SIGN OF LONGITUDE CHANGESS
                                                                          ****178
        BEGIN
                                                                          ****179
            INTEGER KOS
            KO= ENTIER(V(K)/10000)$
                                                                          ****180
                                                                          ****181
            LALAT= K0/1005
       LALONG= (V(K)-100004
END$ COMMENT DISSECT$
                                                                          ****182
            LALONG= (V(K)-10000+K0)/100
                                                                          ****183
```

```
****184
                                                                  ****185
PROCEDURE LIS(U)$ INTEGER U$
COMMENT DETERMINATION OF LATITUDE AND LONGITUDE FOR
                                                                  ****186
                                                                  ****187
        GRAPH POINTSS
                                                                  ****188
BEGIN
                                                                  ****189
   IF U EQL 19 THEN DT(12)
                                                                  ****190
   ELSE IF U LEQ 11 THEN
                                                                  ****191
   BEGIN
                                                                  ****192
      DT(U)S IF U EQL 0 OR U EQL 1 OR
                                                                  ****193
      U EQL 2 THEN LALONG= -LALONG
                                                                  ****194
   EN!
                                                                  ****195
   ELSE IF U LEG 26 THEN
                                                                  ****196
   BEGIN
                                                                  ****197
      LALAT= 35+US LALONG= 10
                                                                  ****198
   END
                                                                  ****199
   ELSE IF U LEG 41 THEN
                                                                  ****200
   BEGIN
                                                                  ****201
      LALAT= 20+US LALONG= 20
                                                                  ****202
   END
                                                                  ****203
   ELSE IF U LEQ 56 THEN
                                                                  ****204
   BEGIN
                                                                   ****205
       LALAT= 5+US LALONG= 30
                                                                   ****206
   END
                                                                   ****207
   ELSE IF U LEG 71 THEN
                                                                   ****208
   BEGIN
                                                                   ****209
       LALAT= U-115 LALONG= 40
                                                                   ****210
                                                                   ****211
   ELSE IF U LEQ 86 THEN
                                                                   ****212
       LALAT= U-26$ LALONG= 50
                                                                   ****213
                                                                   ****214
   END
                                                                   ****215
   ELSE DT(U-74)
                                                                   ****216
ENDS COMMENT LISS
                                                                   ****217
                                                                   ****218
PROCEDURE CTQS
COMMENT THIS SUBROUTINE PREPARES THE TIME INSTANTS AT WHICH
                                                                   ****219
                                                                   ****220
 IN EACH ZONE THE METEOROLOGICAL PARAMATER WILL BE
                                                                   ****221
 DERIVED FROM BOTH PARAMETER FIELDS. COMPOSITE CHARTS
                                                                   ****222
 IN TIME ARE SIMULATEDS
                                                                   ****223
 BEGIN
                                                                   ****224
    INTEGER JO MOS
                                                                   ****225
    REAL A.SUM.RES$
                                                                   ****226
    A= 0.45
                                                                   ****227
    JO = IF IO EQL 1 THEN KQ ELSE 05
                                        SUM= 0$
                                                                   ****228
    FOR I = KQ-JO STEP IO UNTIL JO DO
                                                                   ****229
       SUM= SUM+(IF I GTR 3 AND I LSS 8 THEN 2*A ELSE A)$
                                                                   ****230
                                                                   ****231
       DD(I)= SUM
                                                                   ****232
    END$
    MO = ZONEI(ST) & RES= IF IO EQL 1 THEN DD(MO) ELSE
                                                                   ****233
                                                                   ****234
    DD (MD-1)$
    FOR I= 0 STEP 1 UNTIL KQ DO DD(I)= IF TT GTR 12
                                                                   ****235
                                                                   ****236
    THEN TT-12 ELSE TT+A/2+DD(I)-RESS
                                                                   ****237
       COMMENT CTOS
 END$
```

```
****238
REAL PROCEDURE HH (V.W.F.CHOICE) INTEGER F.V.WS
                                                                 ****239
                                                                  ****240
BOOLEAN CHOICES
COMMENT COMPUTATION OF GRID POINT VALUES FOR GEOPOTENTIAL
                                                                  ****241
        OR TEMPERATURE (CHOICE = TRUE OR FALSE) $
                                                                  ****242
                                                                  ****243
BEGIN
                                                                  ****244
   M5= (F-1)+12$
                                                                  ****245
   M6=(F+2)*125
                                                                  ****246
   M3= HT(V+M5+W)$
                                                                  ****247
   M4= HT(V+M6+W)5
                                                                  ****248
   MI= ENTIER(M3/100)S
                                                                  ****249
   M2= ENTIER(M4/100)$
                                                                  ****250
   IF NOT CHOICE THEN
                                                                  ****251
   BEGIN
                                                                  ****252
      M1= M3-100+M1$
                                                                  ****253
      M2= M4-100*M2
                                                                  ****254
   END$
                                                                  ****255
   HH = ((12-DD(M))*M1+DD(M)*M2)/12
                                                                  ****256
ENDS COMMENT HHS
                                                                  ****257
REAL PROCEDURE GEOP(V.W.C.CHOICE)S INTEGER CS
                                                                  ****258
                                                                  ****259
REAL V.WS BOOLEAN CHOICES
COMMENT COMPUTATION OF GEOPOTENTIAL OR TEMPERATURE IN
                                                                  ****260
                                                                  ****261
         ARBITRARY POINTS
                                                                  ****262
BEGIN
                                                                  ****263
    INTEGER VI, WIS REAL A, B, B1, B2, B3, B4$
                                                                  ****264
    V1= ENTIER(V)$ W1= ENTIER(W)$
                                                                  ****265
    B1= IF CHOICE THEN HH(V1.W1.C.TRUE)
                                                                  ****266
    ELSE HH(V1.W1.C.FALSE)$
                                                                  ****267
    B2= IF CHOICE THEN HH(V1+1.W1.C.TRUE)
                                                                   ****268
    ELSE HH(V1+1,W1,C,FALSE)$
                                                                   ****269
    B3= IF CHOICE THEN HH(V1+1,W1+1,C,TRUE)
                                                                   ****270
    ELSE HH(V1+1,W1+1,C+FALSE)$
                                                                   ****271
    B4= IF CHOICE THEN HH(V1,W1+1,C,TRUE)
                                                                   ****272
    ELSE HH(V1,W1+1,C,FALSE)$
                                                                   ****273
    A= V1+1-VS B= W1+1-WS
    GEOP= A+B+B1+(1-A)+B+B2+(1-A)+(1-B)+B3+A+(1-B)+B4
                                                                   ****274
                                                                   ****275
 ENDS COMMENT GEOPS
                                                                   ****276
 PROCEDURE XYTRANSF (LAT.LON) & REAL LAT.LONS
                                                                   ****277
                                                                   ****278
 BEGIN
                                                                   ****277
    REAL RISS
                                                                   ****280
    R= (45-LAT/2) +CG$
                                                                   ****281
    S = (80 - LON) * CG$
                                                                   ****282
    X = 0.7909 * C0 * SIN(R) * SIN(S)/COS(R)$
                                                                   ****283
    Y = (P-C0*SIN(R)*COS(S)/COS(R))*0.7909
                                                                   ****284
 ENDS COMMENT XYTRANSFS
                                                                   ****285
 REAL PROCEDURE GEODIST(DDD+LAT) REAL DDD+LATS
                                                                   ****286
 COMMENT COMPUTATION OF DISTANCE ON THE SPHERE FROM
                                                                   ****287
                                                                   ****288
          EUCLIDEAN DISTANCES
 GEODIST= 219.721+DDD*COS((45-LAT/2)*CG)**25
                                                                   ****289
                                                                   ****290
 PROCEDURE GEOMGRID (PP.GG) S INTEGER PP.GGS
                                                                   ****291
```

```
COMMENT COMPUTATION OF EUCLIDEAN DISTANCE AND UNIT VECTORS
                                                                  ****292
                                                                  ****293
HEGIN
                                                                  ****294
   LIS(PP)S LA1= LALATS LO1= LALONGS
                                                                  ****295
   LIS(GG)S LA2= LALATS LO2= LALONGS
                                                                  ****296
   XYTRANSF(LA1,LO1)S X1= XS Y1= YS
   XYTRANSF (LAZ.LOZ) $ X2= X5 Y2= Y5
                                                                  ****297
                                                                  ****298
   E3= SQRT((X2-X1)**2+(Y2-Y1)**2)$
                                                                  ****299
   E1= (X2-X1)/E3$
                                                                   ****300
   E2= (Y2-Y1)/E3
                                                                   ****301
     COMMENT GEOMGRIDS
END$
                                                                   ****302
                                                                   ****303
PROCEDURE PART2GEOMS
COMMENT DETERMINATION OF LENGTH OF SEGMENT BY SUMMATION OF
                                                                   ****304
                                                                   ****305
        CONTRIBUTIONS FROM SUBSEGMENTS$
                                                                   ****306
BEGIN
                                                                   ****307
   K1= ENTIER(X1)s K2= K1+15 L1= ENTIER(Y1)S
                                                                   ****308
   L2= L1+1$ K1Q= ENTIER(X2)$ K2Q= K1Q+1$
                                                                   ****309
   L1Q= ENTIER(Y2)$ L2Q= L1Q+1$
                                                                   ****310
   D= GEODIST(E3,(LA1+LA2)/2)$
                                                                   ****311
   N1= ABS(K1Q-K1)$
                                                                   ****312
   N2= ABS(L1Q-L1)$
                                                                   ****313
    N3 = IF K1Q EQL K1 AND L1Q EQL L1 THEN 0
                                                                   ****314
    ELSE IF N1 LEG N2 THEN N2 ELSE N1$
                                                                   ****315
    BEGIN
                                                                   ****316
       INTEGER I . JS
                                                                   ****317
       LOCAL LABEL LABIS
                                                                   ****318
       AB(0)= 0$ AB(N3+1)= 1$
       IF N3 EQL O THEN GOTO LABIS IF N3 EQL N1 THEN
                                                                   ****319
                                                                   ****320
       BEGIN
                                                                   ****321
          IF K1 GTR K1Q THEN
                                                                   ****322
          BEGIN
                                                                   ****323
             RES1= K15
                                                                   ****324
             RES2= K2Q$ RES3= -1
                                                                   ****325
          END
                                                                   ****326
          ELSE
                                                                   ****327
          BEGIN
                                                                   ****328
             RES1= K2$ RES2= K1Q$
                                                                   ****329
              RES3= 1
                                                                   ****330
          END$
                                                                    ****331
          FOR I= RES1 STEP RES3 UNTIL RES2 DO
                                                                    ****332
          BEGIN
                                                                    ****333
              J = RES3*(I-RES1)+1*AB(J)=(I-X1)/
                                                                    ****334
              (X2-X1)
                                                                    ****335
           END
                                                                    ****336
       END
                                                                    ****337
       ELSE
                                                                    ****338
       BEGIN
                                                                    ****339
           IF L1 GTR L10 THEN
                                                                    ****340
           BEGIN
                                                                    ****341
              RES1= L1$
                                                                    ****342
              RES2= L2Q$ RES3= -1
                                                                    ****343
           END
                                                                    ****344
           ELSE
                                                                    ****345
           BEGIN
```

Ţ

```
****346
           RES1= L2$ RES2= L1Q$
                                                                 ****347
           RES3= 1
                                                                 ****348
        END$
                                                                 ****349
        FOR I = RES1 STEP RES3 UNTIL RES2 DO
                                                                 ****350
            J= RES3*(I-RES1)+1$ AB(J)= (I-Y1)/
                                                                 ****351
                                                                 ****352
            (Y2-Y1)
                                                                 ****353
        END
                                                                 ****354
     END$
                                                                 ****355
                                                                 ****356
     FOR I= 1 STEP 1 UNTIL N3+1 DO
                                                                 ****357
      BEGIN
         AID2= ((AB(I)+AB(I-1))*LA2+(2-(AB(I)
                                                                 ****358
                                                                 ****359
         +AB(I-1)))*LA1)/2$
         LENGTH(I) = GEODIST(E3*(AB(I)-AB(I-1)) . AID2)
                                                                 ****360
                                                                 ****361
      END
                                                                 ****362
   END
                                                                 ****363
ENDS COMMENT PARTZGEOMS
                                                                 ****364
                                                                 ****365
PROCEDURE METPROC(S)$ INTEGER S$
                                                                 ****366
COMMENT PROCESSING METEOROLOGICAL PARAMETERSS
                                                                 ****367
BEGIN
                                                                 ****368
   INTEGER IS
                                                                 ****369
   ARRAY TEMP , WNDX , WNDY , ENDUR (1 . . N3+1)$
                                                                 ****370
   GG1= GEOP(X1,Y1,S,TRUE)$
                                                                 ****371
   GG2= GEOP(X2.Y2.S.TRUE)$
   ANGLE= C1*(GG2-GG1)/(470*D*SIN((LA1+LA2)*CG/2))$
                                                                 ****372
                                                                 ****373
   XX1= X15 YY1= Y15
   FOR I= 1 STEP 1 UNTIL N3+1 DO
                                                                 ****374
                                                                 ****375
   BEGIN
                                                                  ****376
      XX2 = AB(I)*X2+(1-AB(I))*X1$
      YY2= AB(I)*Y2+(1-AB(I))*Y1$
                                                                  ****377
      AID2= ((AB(I)+AB(I-1))*LA2+(2-(AB(I)+AB(I-1)))*
                                                                  ****378
                                                                  ****379
      LA1)/2$
                                                                  ****380
      XSTER= (XX1+XX2)/2$
                                                                  ****381
      YSTER= (YY1+YY2)/2$
      KK1= ENTIER(XSTER)$ KK2= KK1+1$ LL1= ENTIER(YSTER)$
                                                                  ****382
                                                                  ****383
      LL2= LL1+15
      TEMP(I) = -GEOP(XSTER, YSTER, S, FALSE)$
                                                                  ****384
                                                                  ****385
      AID1= C1+E3/(D+SIN(AID2+CG))$ AID2= XSTER-KK1$
                                                                  ****386
      AID3= YSTER-LL15
      WNDX(I) = -AID1+(AID2+(HH(KK2+LL2+S+TRUE)-HH
                                                                  ****387
      (KK2,LL1,S,TRUE))+(1-AID2)*(HH(KK1,LL2,S,TRUE)
                                                                  ****388
                                                                  ****389
      -HH(KK1+LL1+S+TRUE)))$
      WNDY(I) = AID1+(AID3+(HH(KK2+LL2+S+TRUE)-HH
                                                                  ****390
      (KK1,LL2,S,TRUE))+(1-AID3)*(HH(KK2,LL1,S,TRUE)
                                                                  ****391
                                                                  ****392
       -HH(KK1,LL1,S,TRUE)))$
      TAS= 0.8034*38.9826*SQRT(273.16+TEMP(I))$
                                                                  ****393
       ENDUR(I)= 36000*LENGTH(I)/(TAS*SQRT(1-ANGLE**2)+
                                                                  ****394
                                                                  ****395
       (WNDX(I) *E1+WNDY(I) *E2))$
                                                                  ****396
       XX1= XX25 YY1= YY2
                                                                  ****397
   END$
   ENDUE SUM1(1, N3+1, ENDUR)$
                                                                  ****398
    TEM= SUM2(1, N3+1, ENDUR, TEMP)/ENDUS
                                                                  ****399
```

```
****400
  TAS= 0.8034*38.9826*SQRT(273.16+TEM)$
                                                                 ****401
  RES1= 31+(S-1)*4$
  TDEV(S)= IF RES1 LEQ 35.332 THEN TEM +1.98*RES1-15 ELSE
                                                                 ****402
                                                                 ****403
  55+TEM$
                                                                 ****404
   TIME(S)= ENDUS
                                                                 ****405
   AIRDIST(S)= ENDU *TAS/36000$ LE= D$
   WIX(S)= SUM2(1, N3+1, ENDUR, WNDX)/ENDU$
                                                                 ****406
                                                                 ****407
   WIY(S) = SUM2(1, N3+1, ENDUR, WNDY)/ENDU$
   TAX(S)= TAS*(E1*SQRT(1-ANGLE**2)+E2*ANGLE)$
                                                                 ****408
                                                                 ****409
   TAYIS)= TAS*(E2*SQRT(1-ANGLE**2)-E1*ANGLE)$
                                                                 ****410
ENDS COMMENT METPROCS
                                                                 ****411
COMMENT PROCEDURES 'TABLE' AND 'TABLEG' ARE FOR TABLE LOOK-UP$****412
INTEGER PROCEDURE TABLE (P.R. MA) S INTEGER P.RS INTEGER ARRAY
                                                                 ****413
                                                                 ****414
          MAS.
                                                                 ****415
BEGIN
   INTEGER GO.D.BS REAL RO.CS LOCAL LABEL LABOUS
                                                                 ****416
   D=IF P EQL 0 THEN 68000 ELSE IF P EQL 1 THEN -10 ELSE 80000$****417
                                                                 ****418
   B=IF P EQL 1 THEN 5 ELSE 4000$
                                                                 ****419
   C= IF P EQL 1 THEN TDEV(R) ELSE GRWQ$
                                                                 ****420
   RO= (C-D)/B$
                                                                 ****421
   GO= ENTIER(RO)S
                                                                 ****422
   RO= RO-GO$
                                                                 ****423
   IF MA(R.GO+1) EQL -1 THEN
                                                                 ****424
   BEGIN
                                                                 ****425
      TABLE -15 GOTO LAB20
                                                                 ****426
   END$
   TABLE= RO*MA(R,GO+1)+(1-RO)*MA(R+GO)$
                                                                 ****427
                                                                  ****428
                                                                  ****429
ENDS COMMENT TABLES
                                                                  ****430
INTEGER PROCEDURE TABLEQ(Q.L.MAO.MA1)$ INTEGER Q.LS
                                                                  ****431
                                                                  ****432
INTEGER ARRAY MAO, MA1$
                                                                  ****433
BEGIN
                                                                  ****434
    INTEGER H.SO.Z.R.SOOS
                                                                  ****435
   LOCAL LABEL LAB215
                                                                  ****436
   REAL TO, TOOS
                                                                  ****437
   H= TABLE(Q.L.MAO)$
                                                                  ****438
   IF H EQL -1 THEN
                                                                  ****439
   BEGIN
                                                                  ****440
       TABLEQ= -15 GOTO LAB21
                                                                  ****441
   END$
   Z= IF Q EQL 2 THEN 0 ELSE IF Q EQL 3 THEN 50 ELSE 500$
                                                                  ****442
   R= IF Q EQL 2 THEN 50 ELSE IF Q EQL 3 THEN 100 ELSE 1000$
                                                                  ****443
                                                                  ****444
   TO = (H - Z)/RS
                                                                  ****445
    TOO= (TDEV(L)+20)/5$
                                                                  ****446
    SO= ENTIER(TO)$
                                                                  ****447
    SOO= ENTIER(TOO)$
                                                                  ****448
    TO= TO-SOS
                                                                  ****449
    T00= T00-500$
                                                                  ****450
    IF MA1(50+1.500+1) EQL -1 THEN
                                                                  ****451
    BEGIN
                                                                  ****452
       TABLEG= -15
                                                                  ****453
       GOTO LAB21
```

LAB20..

```
****454
            ENDS
            TABLEG=T0+T00+MA1(S0+1+S00+1)+(1-T0)+(1-T00)+
                                                                            ****455
            MA1(50,500)+(1-T0)*T00*MA1(50,500+1)+T0*(1-T00)*MA1
                                                                            ****456
                                                                            ****457
             (50+1+500)$
                                                                            ****458
LAB21..
                                                                            ****459
               COMMENT TABLEQS
         END$
                                                                            ****460
         PROCEDURE READQ(Y0,Y1,Y2,ARR)$ INTEGER Y0,Y1,Y2$
                                                                            ****461
                                                                            ****462
         INTEGER ARRAY ARRS
                                                                            ****463
         BEGIN
                                                                            ****464
             FOR I= YO STEP 1 UNTIL Y1 DO
                                                                            ****465
               FOR J=0 STEP 1 UNTIL Y2 DO
                                                                            ****466
                   READ(PCF('NASAD') + ARR(I+ J) + ERR+ ERR)
                                                                            ****467
                COMMENT READS
         ENDS
                                                                            ****468
                                                                            ****469
         PROCEDURE WRITEG(YO, Y1, Y2, ARR)S
                                                                            ****470
          INTEGER YO.Y1.Y25
                                                                            ****471
          INTEGER ARRAY ARRS
                                                                            ****472
          BEGIN
                                                                            ****473
             FOR I= YO STEP 1 UNTIL Y1 DO
                WRITE( FOT, Y2 + 1, FOR J= 0 STEP 1
                                                                            ***4474
                                                                            ****475
                       UNTIL Y2 DO ARR(I, J))$
                                                                            ****476
                COMMENT WRITEGS
          END$
                                                                            ****477
          READQ(1,3,19,SR)$ READQ(1,3,6,MW)$ READQ(1,3,17,CD)$
                                                                             ****478
          READQ(1,3,17,CT)$ READQ(1,3,17,CF)$ READQ(0,7,8,CTC)$
                                                                             ****479
                                                                             ****480
          READQ(0.7.8.CFC)$ READQ(0.6.8.CDC)$
                                                                             ****481
                                                                             ****482
          WRITE (PEJT)$
                                                                             ****483
          WRITEQ(1:3:19:SR)$
                                                                             ****484
          WRITE(+ +)$ WRITE(+ +)$
                                                                             ****485
          WRITEQ(1.3.6.MW)$
                                                                             ****486
          WRITE(+ +)$ WRITE(+ +)$
                                                                             ****487
          WRITEQ(1,3,17,CD)$
                                                                             ****488
          WRITE(' ') S WRITE(' ')S
                                                                             ****489
          WRITEQ(1,3,17,CT)$
                                                                             ***490
          WRITE (PEUT) $
                                                                             ****491
          WRITEQ(1.3.17.CF)$
                                                                             ***492
          WRITE( ' ') S WRITE( ' ') S
                                                                             ****493
          WRITEQ(0,7,8,CTC)$
                                                                             ****494
          WRITE (PEUT)$
                                                                             ****495
          WRITEQ(0,7,8,CFC)S
                                                                             ****496
          WRITE( ' ') S WRITE( ' ') S
                                                                             ****497
          WRITEQ(0.6.8.CDC)$
                                                                             ****498
          CG= 0.0174532925% CO= 39.6296148% C1= 21.47*32.808399%
                                                                             ****499
                                                                             ****500
          P= C0*SIN(31.2*CG)/COS(31.2*CG)$
                                                                             ****501
 RUN.
          READ (PCF ('NASAD'), FLUR, TAXI, GRW, RESERVE, TOW,
                                                                             ****502
           MAXTOW . MAXLW . DATE , IO . TTT . ROUTE . DONE , ERR) $
                                                                              ****503
                                                                              ****504
           WRITE(' ')S WRITE(' ')S WRITE(' ')S
                       *** INPUT PARAMETERS ****)$
                                                                              ****505
           WRITE(
                                                                             ****506
           WRITE(FO2, 11, FLUR, TAXE, GRW, RESERVE, TOW,
                                                                              ****507
                 MAXTOW MAXLW DATE & 10 TTT ROUTE) $
```

```
****508
IF ROUTE GEQ 1111 THEN
                                                                 ****509
BEGIN
                                                                 ****510
                      Q, DONE, ERR)$
  READ (PCF ('NASAD')
                                                                 ****511
  WRITE(F02, 1, Q)$
                                                                 ****512
     Q=Q-15
                                                                 ****513
END
                                                                 ****514
ELSE
                                                                 ****515
BEGIN
                                                                 ****516
  READ(PCF('NASAD'), ST,ST1, DONE, ERR)$
                                                                 ****517
  WRITE(FO2, 2, ST, ST1)$
                                                                 ****518
   G1Q= ZONEI(ST)$ G2Q= ZONEI(ST1)$ Q= ABS(G2Q-G1Q)
                                                                 ****519
END$
                                                                 ****520
TT = TTTS
                                                                 ****521
                                                                 ****522
BEGIN
   INTEGER ARRAY STOREI, STOREIQ, STOREGQ, E(0..Q),
                                                                 ****523
                                                                 ****524
   F(-1..Q)$
                                                                 ****525
   FORMAT F04(X63, 16, A2),
                                                                 ****526
          FOS('TRIP FUEL', 16, A1),
                                                                 ****527
           F06('COST', D8.2, A1)$
                                                                 ****528
   REAL ARRAY DECLTIME, DECLFUEL, DECLDIST(1..W)$
   INTEGER PROCEDURE SQ(H1+H2)$ INTEGER H1+H2$
                                                                  ****529
                                                                 ****530
   SQ= A(G1Q+I0+H1-1)+H2$
   INTEGER PROCEDURE JQ(H1.H2)$ INTEGER H1.H2$
                                                                  ****531
                                                                  ****532
   JQ= F(H1-1)+H2-STOREI(H1)+1$
                                                                  ****533
                                                                  ****534
   PROCEDURE DESCLIMB(S)$ VALUE S$ INTEGER S$
   COMMENT COMPUTATION OF PERFORMANCE IN CLIMB OR DESCENTS
                                                                  ****535
                                                                  ****536
   BEGIN
                                                                  ****537
       INTEGER ALTS
                                                                  ****538
       LOCAL LABEL JUMS
                                                                  ****539
       ALT= 31+(S-1)*45
       DECLTIME(S)= IF MQ EQL 0 THEN 60*TABLEQ(3.S.CT.CTC)
                                                                  ****540
                                                                  ****541
       /1000 ELSE 3.1+0.41*ALT$
       DECLDIST(S)= IF MQ EQL 0 THEN TABLEQ(2.5.CD.CDC)
                                                                  ****542
                                                                  ****543
       FLSE 9+3*ALT$
       DECLFUEL(S) = IF MQ EQL 0 THEN TABLEQ(4.S.CF.CFC)
                                                                  ****544
       ELSE 940+8.5*ALTS IF DECLTIME(S) LSS 0 THEN GOTO JUMS
                                                                  ****545
                                                                  ****546
                                                                  ****547
       AID4= DECLDIST(S) +60/(DECLTIME(S) +
                                                                  ****548
       SQRT(TAX(S) **2+TAY(S) **2))$
       DECLDIST(S) = SQRT((0.75*WIX(S)+TAX(S)*AID4)**2+
                                                                  ****549
       (0.75*WIY(S)+TAY(S)+AID4)**2)*(DECLTIME(S)-2)/60$
                                                                  ****550
       AIRDIST(S)= (1-DECLDIST(S)/LE)*AIRDIST(S)$
                                                                  ****551
       TIME(S)= AIRDIST(S)/SQRT(TAX(S)**2+TAY(S)**2)*
                                                                  ****552
                                                                  ****553
       36000$ LE= LE-DECLDIST(S)$
                                                                  ****554
                                                                  ****555
          COMMENT DECLIMBS
    END$
                                                                   ****556
                                                                  ****557
    REAL PROCEDURE ARCTANG(Q1,Q2)$ REAL Q1, Q2$
    ARCTANG= ARCTAN(Q2/Q1)/CG+(IF Q1 LSS 0 THEN 180
                                                                   ****558
                                                                   ****559
```

ELSE IF Q2 LSS 0 THEN 360 ELSE 0)\$

PROCEDURE LO(Z1, Z2)\$ REAL Z1, Z2 \$

****560 ****561

```
COMMENT COMPUTATION OF LONGITUDE FROM EUCLIDEAN COORDINATES ****562
                                                              ****563
        IN RECTANGULAR GRIDS
                                                              ****564
LO1= 80-ARCTAN(Z1/(19-Z2))/CG$
                                                              ****565
INTEGER PROCEDURE HEADING(L1,L2)$ REAL L1,L25
                                                              ****566
COMMENT COMPUTATION OF HEADING IN FLIGHTS
                                                              ****567
                                                              ****568
BEGIN
                                                              ****569
   REAL MI.M2.ZX.ZYS
                                                              ****570
   XSTER= (X1+X2)/2$ YSTER= (Y1+Y2)/2$
   LO(XSTER, YSTER) $ M1= SIN((80-L01)*CG)$
                                                              ****571
                                                              ****572
   M2 = COS((80-LO1)*CG)$
   HEADING= ARCTANG(-L1*M1+L2*M2,L1*M2 + L2*M1)
                                                              ****573
                                                              ****574
      COMMENT HEADINGS
END$
                                                              ****575
PROCEDURE LINE(N1.N2)$ BOOLEAN N1.N2$
                                                              ****576
                                                              ****577
COMMENT PRINT-OUT PROCEDURES
                                                               ****578
BEGIN
                                                               ****579
   INTEGER I.J.K.L.M.N.P.Q.R.S.T
   FORMAT P1('TOC', 215, X12, 14, X10, 14, 316, 18, A2),
                                                               ****580
           P2(13, X22, 14, X10, 14, 316, 18, A2),
                                                               ****581
          P3('TOD', 415, 16, 18, 16, 316, 18, A2),
                                                               ****582
                                                               ****583
           P4(13, 415, 16, 18, 416, 18, A2)$
                                                               ****584
   LOCAL LABEL LAB30 . LAB31 . LAB325
                                                               ****585
   IF N1 THEN GOTO LAB30$
                                                               ****586
   IF N2 THEN GOTO LAB31$
                                                               ****587
   I=G3$ S=MQ$ T=B3$
                                                               ****588
   GEOMGRID(G4, G3)$
   J= HEADING (TAX(G), TAY(G))$ -
                                                               ****589
                                                               ****590
   K = 310 + (G-1) + 40$
                                                               ****591
IF NOT N1 AND NOT N2 THEN BEGIN
                                                               ****592
    L= TDEV(G)$
    M= SQRT(TAX(G) **2 + TAY(G) **2)$
                                                               ****593
                                                               ****594
ENDS
                                                               ****595
                                                               ****596
    N= (IF N1 OR N2 THEN .75 ELSE 1)*
           (WIX(G)*E1 + WIY(G)*E2)$
                                                               ****598
    M3= IF N1 OR N2 THEN
           DECLTIME(G) *600 ELSE TIME(G)$
                                                               ****599
   P= 100*ENTIER(M3/36000) + MOD(M3, 36000)/600$
                                                               ****600
    Q= 100*ENTIER(FLTIME/36000) + MOD(FLTIME: 36000)/600$
                                                               ****601
                                                               ****602
    R= BURN - GRWQ$
                                                               ****603
 IF N1 THEN
                                                               ****604
    BEGIN
                                                               ****605
       WRITE(P1,J,K,N,DISTANCE,P,G,R,GRWG)$
                                                               ****606
       GOTO LAB32
                                                               ****607
    END$
                                                               ****608
 IF N2 THEN
                                                               ****609
    BEGIN
                                                               ****610
       WRITE(P2,ST1,N,DISTANCE,P,Q,R,GRWQ)$
                                                               ****611
       GOTO LAB32
                                                               ****612
    END$
                                                                ****613
    IF S EQL T THEN
       WRITE(P3,J,K,L,M,N,LE,DISTANCE,P,Q,R,GRWQ)
                                                               ****614
      ELSE WRITE (P4.1.J.K.L.M.N.LE.DISTANCE.P.Q.R.GRWQ) $
                                                                ****615
```

ĺ

LAB30 . i

LAB31 ..

WRITE(

```
ENDS COMMENT LINES
PROCEDURE SPACEOPT (FBG.FB.BI.BG.RR) INTEGER FB.RRS
BOOLEAN FBQ.BI.BGS
COMMENT FBQ DETERMINES WETHER THE FLIGHTPLAN
COMPUTATION WILL BE PERFORMED BACKWARDS (FALSE) OR FOR
WARDS (TRUE) .
FB DETERMINES WETHER COSTS (+1) OR FUEL (0) OR FLIGHT
TIME(-1) WILL BE OPTIMIZED. RR IS TAKE OFF WEIGHT OR
LANDINGWEIGHT.
BI DEFINES WETHER THE NAVIGATION REGIME IS FREE IN THE
HORIZONTAL (FALSE) OR BOUNDED BY ONE POINT (TRUE).
BG DEFINES WETHER THE CRUISING ALTITUDE IS FREE (FALSE)
OR BOUNDED (TRUE)$
BEGIN
   LOCAL LABEL ITER, ENDG, CI, REPEAT, EINDS
   INTEGER AA QUANT . II . JJ . GG . GRWP . DDG . DTG . TMG$
   BOOLEAN ITERATION, BCLIMB, BNQ, BNS
   INTEGER ARRAY ROW. ROW 3. QUANTO (0. F(Q))$
   PROCEDURE PREP(A1,B1,AA,BB)S INTEGER A1,B1S
   COMMENT COMPUTATION OF DISTANCE AND FLIGHT TIME, AND
            PRINT-OUT OF THE FLIGHT PLANS
    BOOLEAN AA BBS
    COMMENT AA REFERS TO CLIMB, BB TO DESCENTS
       DISTANCE = DISTANCE+A15 FLTIME = FLTIME+B1$
       LINE (AA . BB) $ BURN= GRWQ
    ENDS COMMENT PREPS
    PROCEDURE EDITINGS
    BEGIN LOCAL LABEL ENDEDS
       FORMAT F03(X44, 'CH', I4, I6, D6,2, A2)$
       PROCEDURE QPS
       BEGIN
       IF FB EQL 1 THEN
          WRITE ('COST')
       ELSE IF FB EQL 0 THEN
          WRITE('FUEL')
       ELSE IF FB EQL -1 THEN
          WRITE ('FLTIME')$
       GOTO ENDEDS
       ENDS COMMENT QPS
       WRITE (PEJT)$
                 *** DETAILED FLIGHT PLAN ****)$
       WRITE( * 1) S WRITE( * 1) S
       IF ROUTE EQL 1111 THEN
       BEGIN
           WRITE('NON SPECIAL MIN TRACK')$
           QP
```

****616

****617

****618

****619 ****620

****621

****622

****623

****624

****625 ****626

****627

****628

****629 ****630

****631

****632

****633 ****634

****635

****636 ****637

****638

****639 ****640

****641

****642 ****643

****644

****645

****646 ****647

****648

****649

****650 ****651

****652

****653

****654

****655

****656

****657

****658

****659

****660

****661 ****662 ****663

****664

****665 ****666

****667

****668

****669

```
****674
                 ENDS
                 IF ROUTE EQL 5555 THEN
                 BEGIN
                                                                          ****677
                    WRITE('ATC II')$
                                                                          ****678
                 END$
                                                                           ***679
                 IF ROUTE EQL 7777 THEN
                                                                          ****680
                 BEGIN
                                                                          ****681
                    WRITE('GRC')$
                                     QP$
                                                                           ****682
                 END$
                                                                          ****683
                 IF ROUTE EQL 9999 THEN
                                                                           ****684
                 BEGIN
                                                                          ****685
                     WRITE('SPECIAL TRACK')$
                                                QPS
                                                                           ****686
                 END$
                                                                           ****687
                 WRITE ('MIN TRACK IN SPACE')$
                                                  QP$
                                                                          ****688
ENDED . .
                                                                          ****689
                 WRITE(FO3, FLUR, DATE, TT)S
                                                                          ****690
                 WRITE(' ')$
                                                                          ****691
WRITE
                                         ACCD TIME ACCT
                                                            BURN
                                                                   WEIGHT **** 692
                                   DIST
                TMP
                    TAS WIND
            FL
'NO. HEAD
                                                                          ****693
     15
                                                                          ****694
              ENDS COMMENT EDITINGS
                                                                          ****695
                                                                          ****696
              PROCEDURE QQ(0)$ INTEGER OS
              COMMENT COMPUTATION OF SEGMENT CONTRIBUTION. COST.
                                                                          ****697
                                                                          ****698
                       TIME, FUEL, WEIGHT ETC.5
                                                                          ****699
              BEGIN
                                                                          ****700
                  LOCAL LABEL JM1, JM2, JM3, JM, ENDG$
                                                                          ****701
                                                                          ****702
                  PROCEDURE CL(M1+M2) & REAL M1+M2$
                  COMMENT M1 DENOTES SEGMENT FUEL. M2 SEGMENT TIMES
                                                                          ****703
                                                                          ****704
                  BEGIN
                                                                           ****705
                     LOCAL LABEL JUS REAL MMS
                                                                           ****706
                     IF BCLIMB THEN
                                                                           ****707
                     BEGIN
                                                                           ****708
                        MM= 0$ GOTO JU
                                                                           ****709
                     END$
                                                                           ****710
                     IF ITERATION THEN
                                                                           ****711
                     REGIN
                                                                           ****712
                        MM= IF G GEG GG THEN -80
                                                                           ****713
                        ELSE -100$ GOTO JU
                                                                           ****714
                     END$
                     MM= IF (O EQL -1 AND G GEQ GG) OR (O EQL 1 AND
                                                                           ****715
                                                                           ****716
                              G LSS GG) THEN 100 ELSE 80$
                                                                           ****717
                     MM= M1+ 0+(GG-G)+ (IF MQ NEQ B1 THEN MM ELSE 0)$
                                                                           ****718
                                                                           ****719
                     GRWQ= GRWQ + O*MM5
                      QUANT= QUANT+(IF FB EQL 1 THEN 1083+3*M2+15*MM
                                                                           ****720
                    ELSE IF FB EQL O THEN MM ELSE 600*M2)$
                                                                           ****721
                                                                           ****722
                  ENDS COMMENT CLS
                                                                           ****723
```

END\$

BEGIN

IF ROUTE EQL 4444 THEN

WRITE('ATC I')\$

****670

****672

****672

```
****724
    QUANT = QUANTQ(I)S
    ITERATION= IF NOT FBG AND MG EGL 0 AND 0 EGL -1
                                                           ****725
                                                           ****726
       THEN TRUE
    ELSE FALSES IF ROW(I) EQL 0 THEN GOTO JMS
                                                           ****727
                                                           ****728
    GRWQ= IF ITERATION THEN ROW(0) ELSE ROW(1)$
                                                           ****729
    IF MQ EQL B1 OR ITERATION THEN
                                                           ****730
    BEGIN
       IF DECLEUEL(G) LSS O THEN GOTO JMS
                                                           ****731
       BCLIMB= TRUES CL(DECLFUEL(G), DECLTIME(G))$
                                                           ****732
                                                           ****733
       BCLIMB= FALSES
        DDG= DECLDIST(G)$ DTG= DECLTIME(G)*600 $
                                                           ****734
        IF ED THEN PREP(DDG, DTG, TRUE, FALSE)$
                                                           ****735
                                                            ****736
     END$
                                                            ****737
     IF NOT FEG THEN GOTO JM25
                                                            ****738
                                                           ****739
     AID4= IF TDEV(G) LSS -10 THEN 64.08+6
                                                          ****740
     ELSE TABLE (1.6, MW) 5
                                                            ****741
     IF GRWQ GEQ AID4 THEN GOTO JMS
                                                            ****742
     IF NOT FBQ THEN GOTO JM3$
                                                            ****743
                                                            ****744
     GRWP= GRWQ$ GRWQ= GRWQ + O* AIRDIST(G)/ 2*
     (IF G EQL 1 THEN 4.94 +0:0000693* GRWQ ELSE
                                                            ****745
     IF G EQL 2 THEN 0.54 + 010001043* GRWQ
                                                            ****746
                                                            ****747
     ELSE -0.65+ 0.000117* GRWQ)$
     AA= TABLE(0.G.SR)$ GRWQ= GRWP$
                                                            ****748
                                                            ****749
     IF AA LSS O THEN GOTO JMS
     CL(AIRDIST(G)*10**4/AA+TIME(G)/600)$
                                                            ****750
                                                            ****751
     TMG= TIME(G)$
                                                            ****752
     IF ED THEN PREP(LE)
                           TMG ,FALSE,FALSE)$
                                                            ****753
     IF NOT FBQ THEN GOTO JM15
                                                            ****754
     IF MG EQL B3 AND NOT ITERATION THEN
                                                            ****755
                                                            ****756
     BEGIN
                                                            ****757
        BCLIMB=
        TRUES CL (DECLFUEL (G) DECLTIME (G))$
                                                            ****758
                                                            ****759
        BCLIMB= FALSE$
        DDG= DECLDIST(G)$ DTG= DECLTIME(G)*600 $
                                                            ****760
                                                            ****761
        IF ED THEN PREP(DDG, DTG, FALSE, TRUE)$
                                                            ****762
     END$
                                                            ****763
     GOTO ENDOS
                                                            ****764
                                                            ****765
      GRWQ= 0$ QUANT= 64.04+6$
                                                             ****766
                                                             ****767
  END$
                                                             ****768
COMMENT QQ5
                                                             ****769
                                                             ****770
                                                             ****771
  ED= IF BI AND BG THEN TRUE ELSE FALSES
                                                             ****772
  FOR AA= 0 STEP 1 UNTIL F(Q) DO
                                                             ****773
   BEGIN
                                                             ****774
      ROW(AA)= ROWQ(AA)= 0$
                              QUANTQ(AA)= 64.08+6
                                                             ****775
  END$
                                                             ****776
   QUANT= 05 BCLIMB= FALSES
                                                             ****777
  IF FBQ THEN
```

JM2..

JM3..

ENDQ . .

```
++++778
BEGIN
                                                            ****779
   ROW(0)= RR$ QUANTQ(0)= 0
                                                            ****780
END
                                                            ****781
ELSE
                                                            ****782
BEGIN
                                                            ****783
   ROW(F(Q)) = RRS QUANTQ(F(Q)) = 0
                                                            ****784
END$
                                                            ****785
IF ED THEN
                                                            ****786
BEGIN
   DISTANCE= FLTIME= 05 BURN= ROW(0)$
                                                            ****787
                                                            ****788
              WRITE(FO4, RR)$
   EDITINGS
                                                            ****789
END$
                                                            ****790
IF FBQ THEN
                                                            ****791
BEGIN
                                                            ****792
   B1= 0$ B2= 1$ B3= Q-1
                                                            ****793
END
                                                            ****794
ELSE
                                                            ****795
   B1= Q-1$ B2= -1$ B3= 0
                                                            ****796
                                                            ****797
ENDS
                                                            ****798
                                                             ****799
COMMENT ZONE CYCLE BEGINSS
                                                             ****B00
FOR MQ= B1 STEP B2 UNTIL B3 DO
                                                             ****801
BEGIN
                                                             ****802
         IF FUQ THEN MQ+1 ELSE MQ$
    G1=
                                                             ****803
    G2= IF FBQ THEN MQ ELSE MQ+15
   M= IO+MQ+G1Q+(IF IO EQL -1 THEN -1 ELSE 0)$
                                                             ****804
                                                             ****805
                                                             ****806
    COMMENT A CYCLE FOR GRAPH POINTS ALONG MERIDIAN
                                                             ****807
            BEGINS$
                                                             ****808
    FOR JJ= STOREI(G1) STEP 1 UNTIL STOREIG(G1) DO
                                                             ****809
    BEGIN
                                                             ****810
       G3= SQ(G1,JJ)$ J= JQ(G1,JJ)$
                                                             ****811
       COMMENT A CYCLE FOR GRAPH POINTS
                                                             ****812
               ALONG NEXT MERIDIAN BEGINSS
       FOR II= STOREI(G2) STEP 1 UNTIL STOREIG(62) DO
                                                             ****813
                                                             ****814
       BEGIN
                                                             ****815
          IF NOT BI THEN
                                                             ****816
          BEGIN
                                                             ****R17
              IF(M GEQ 3 AND M LEG 8) AND ABS
              (II-JJ) GEQ 10 THEN GOTO CIS
                                                             ****818
             BNG= (FBG AND IO EGL -1) OR (NOT FBG AND
                                                             ****819
                                                             ****820
              IO EQL 1)5
              BN= (FBQ AND IO EQL 1) OR (NOT FBQ AND
                                                             ****821
                                                             ****822
              IO EQL -1)5
                                                             ****823
              IF M LSS 3 THEN
                                                             ****824
              BEGIN
                                                             ****825
                 IF (BNQ AND BK
                                                             ****B26
                 (M.JJ.II)) OR (BN AND BK(M.II.
                                                             ****827
                 JJ)) THEN GOTO CI
                                                             ****828
              END5
                                                             ****829
              IF M GTR 8 THEN
                                                             ****830
              BEGIN
                                                              ****831
                 IF (BNG AND
```

BKQ(M·JJ·II)) OR (BN AND BKQ	****832
(M.II.JJ)) THEN GOTO CI	****833
END	****834
END\$	****835
G4= SQ(G2, II) \$ I= JQ(G2, II) \$	****836
IF FBQ THEN GEOMGRID (G4+G3) ELSE	*** *837
GEOMGRID (G3.G4)\$	****838
PARTZGEOMS	****839
IF MQ NEQ B1 THEN GG=STOREG(MQ - B2)\$	****840
	****841
COMMENT A CYCLE FOR FLIGHT LEVELS BEGINSS	****842
FOR G= STOREG(MQ) STEP 1 UNTIL	****843
STOREGQ (MQ) DO	****844
BEGIN	****845
IF NOT FBG AND MG EGL O THEN	****846
BEGIN	****847
TEL = 05 IF G NEQ GG THEN	****848
GOTO ENDGS	****849
N1= ROW(0)\$ ROW(0)= GRWQ=	****850
MAXTOW-20000S	****851
	****852
TEL = TEL +15 IF G LSS 1	****853
THEN	****854
BEGIN	****855
G= GG\$ GRWQ= O\$	****856
GOTO ENDG	****857
END\$	****858
METPROC(G) \$ DESCLIMB(G) \$	****859
IF DECLFUEL(G) LSS 0 THEN	****860
BEGIN	****861
TEL= 0\$ G= G-1\$ GOTO REPEAT	****862
END\$	****863
QQ(-1)S IF GRWQ EQL O THEN GOTO ENDGS	****864
N2= ROW(I) - GRWQS IF N2 GTR 10	****865
AND ROW(0) EQL MAXTOW THEN GOTO	****866
ENDG\$	****867
ROW(0) = ROW(0) + (IF TEL GTR 10	****868
THEN N2/2 ELSE N2)\$	****869
GRWQ= ROW(0)\$ IF ABS(N2) LSS 10	****870
OR TEL GTR 10 THEN	****871
BEGIN	****872 ****873
ROW(0)= N1S GOTO ITER	****874
END	****875
ELSE GOTO REPEATS	****876
	****877
ENO	****878
ELSE	****879
BEGIN METROCACAS	****A80
METPROC(G)\$	****881
IF MG EGL O OR MG EGL G-1 THEN	****882
BEGIN	****883
GRWG= RRS DESCLIMB(G)	****884
ENDS IF FBQ THEN QQ(-1) ELSE QQ ⁽ 1)\$	****885
Th bod luck day_It eror ag.11.	

ITER..

REPEAT..

```
IF GRWQ EQL O THEN GOTO ENDG
                                                            ****886
                                                            ****887
              END$
              IF QUANT LEQ QUANTQ(J) THEN
                                                            ****888
                                                            ****869
              BEGIN
                 ROW(J)= GRWQS QUANTQ(J)= QUANTS
                                                            ****890
                 ROWQ(J)= 15 IF BI AND NOT BG
                                                            ****491
                                                            ****892
                 THEN STOREG(MQ)= G$
                                                            ****893
                 IF ITERATION THEN G= GG
                                                            ****A94
              END$
                                                            ****895
           ENDS COMMENT FLIGHT-LEVEL CYCLES
                                                            ****896
                                                            ****897
        ENDS COMMENT ALONG-NEXT-MERIDIAN CYCLES
                                                            ****898
                                                             ****899
          COMMENT ALONG-CURRENT-MERIDIAN CYCLES
                                                             ****900
                                                             ****901
                                                             ****902
     IF BI AND NOT BG THEN
                                                             ****903
        STOREGG(MQ) = STOREG(MQ)
                                                             ****904
        COMMENT ZONE CYCLES
  END$
                                                             ****905
                                                             ****906
                                                             ****907
     IF ROW(0) EQL 0 THEN GOTO EINDS
     IF BI THEN GOTO EINDS J=IF FBQ THEN F(Q) ELSE F(0)S
                                                             ****908
                                                             ****909
  FOR MQ= B3 STEP -B2 UNTIL B1 50
                                                             ****910
  BEGIN
          IF FBQ THEN MQ ELSE MQ+15 I= ROWQ(J)5
                                                             ****911
     K=
     STOREIG(MG +(IF B3 EQL O THEN 1 ELSE 0))= I-F(K-1)+
                                                             ****912
                                                             ****913
     STOREI(K)-15 J= IS
                                                             ****914
  END$
  FOR MQ= 0 STEP 1 UNTIL Q DO STOREI(MQ)= STOREIG(MG)S
                                                             ****915
                                                             ****916
  TOWG= ROW(0)$ M1= IF FBQ THEN QUANTQ(F(Q)) ELSE
                                                             ****917
                                                             ****918
  QUANTQ(0)5
                                                             ****919
  LW= ROW(F(Q))S IF ED THEN
                                                             ****920
  BEGIN
                                                             ****921
         WRITE(' ')$
                                                             ****922
         WRITE (FOS, TOWG-LW)$
                                                             ****923
         WRITE (FOG, IF FB EQL 1 THEN M1/100 ELSE
                                                             ****924
      ((TOWG-LW)#15+1083+3*FLTIME/600)/100)$
                                                              ****925
   END$
                                                              ****926
ENDS COMMENT SPACEOPTS
                                                              ****927
PROCEDURE FF (UU.VV)$ INTEGER ARRAY UU.VV$
                                                              ****928
                                                              ****929
                                                              ****930
   F(-1)= -15 FOR K= 0 STEP 1 UNTIL 0 DO
                                                              ****931
   F(K) = F(K-1) + VV(K) - UU(K) + 1
                                                              ****932
ENDS COMMENT FFS
                                                              ****933
PROCEDURE PROCES(S1.52.53.PR.FFBB.BB.FACTORISATION)$
                                                              ****934
                                                              ****935
INTEGER S1.52.53.FFBB$ REAL PR$
                                                              ****936
BOOLEAN BB FACTORISATIONS
COMMENT S1 AND S2 DETERMINE THE LIMITS OF FLIGHT
                                                              ****937
                                                              ****938
LEVELS.
                                                              ****939
S3 IS A DUMMY . EXCEPT WHEN
```

INDG . .

٠ IND.

CI..

FACTORISATION IS TRUE!	****940
THEN S3 IS A DATUM FOR THE FLIGHT	****941
LEVEL	****942
IN WHICH THE M.F.P. IS COMPUTED.	****943
PR IS PERCENTAGE TRIP FUEL	****944
FFBB DETERMINES WETHER COSTS (+1) .	****945
FUEL(0) OR TIME(-1) IS OPTIMIZED.	****946
BB. USE LANDING WEIGHT (TRUE) USE	****947
TAKE OFF WEIGHT (FALSE)	****948
FACTORISATION(TRUE) INITIALISES	****949
PROCES IN THE HORIZONTAL ON THE	****950
BASIS OF FLIGHT TIME,	****951
FOLLOWED BY COMPILATION OF FLIGHT	****952
PLAN IN THE VERTICAL ON THE BASIS	****953
OF COSTS+FUEL OR TIMES	****954
BEGIN	****955
INTEGER NNS	****956
LOCAL LABEL ENDPR.INGS	****957
	****958
PROCEDURE AAS	****959
COMMENT SPECIFICATION OF LIMITS IN HORIZONTAL OF	****960
GRAPH POINTS ALONG MERIDIANS	****961 ****962
BEGIN	****963
LOCAL LABEL UTRECHTS	****964
STOREI(0)=STOREIQ(0)=ST - A(G1Q-1)\$	****965
STOREI(Q) = STOREIQ(Q) = ST1-A(G2Q-1)\$	****966
IF ROUTE GEQ 1111 THEN GOTO UTRECHTS	****967
FOR K= 1 STEP 1 UNTIL Q-1 BO	****968
BEGIN STOREI(K)= 1\$ STOREIG(K)= E(K)	****969
	****970
END\$	****971
FF(STOREI,STOREIQ)	****972
ENDS COMMENT AAS	****973
ENOR CAMPELL MAR	****974
PROCEDURE AAA(F1.F2)\$ INTEGER F1.F2\$	****975
COMMENT SPECIFICATION OF LIMITS IN THE VERTICALS	****976
FOR K= 0 STEP 1 UNTIL Q-1 DO	****977
BEGIN	****978
STOREG(K) = F1\$ STOREGQ(K) = F2\$	****979
ENDS COMMENT AAAS	****980
	****981
PROCEDURE EP\$	****982
IF TOWO GEO MAXTOW OR TOWO EQL O THEN	****983
BEGIN	****984
WRITE('SUPER CRITICAL')\$	****985
GOTO ENDPRS	****986
ENDS COMMENT EPS	****987
	****988
INTEGER PROCEDURE SS\$	****989
SS= GRW+RESERVE+PR*((GRW+RESERVE)*	****990 ****991
(MINTIME *0.08-0.15)-500*MINTIME+7300+TAXI)\$	****992
THITCEN PROCEDURE SESS	****993
VALTERED DOOREINIUS EEES	T T T T T T T T T T T T T T T T T T T

UTRECHT..

```
****994
  SSS= GRW+RESERVE+PR+(TOWQ-LW+TAXI)S
                                                             ****995
                                                             ****996
  INTEGER PROCEDURE SSSS$
  SSSS= TOWQ+(GRW+RESERVE+PR+TAXI)/((1+PR)+NN-PR+TOWQ)5
                                                             ****997
                                                             ****99B
                                                             ****999
  PROCEDURE NNG(A)S VALUE AS INTEGER AS
                                                             ****1000
  NN= IF NOT BB THEN TOW ELSE AS
                                                             ****1001
                                                             ****1002
  PROCEDURE TWS
  COMMENT SAFEGUARDING AGAINST OVERLOADINGS
                                                             ****1003
                                                             ****1004
  IF TOWN GER MAXTOW OR TOWN EQL O THEN
                                                             ****1005
  BEGIN
     WRITE (PEUT) $ WRITE ('DECR LANDING W')$
                                                             ****1006
                                                             ****1007
     GOTO ENDPR
                                                             ****1008
  END$
                                                             ****1009
                                                             ****1010
  COMMENT IF FACTORIZATION IS TRUE, THEN THE OPTIMIZATION
                                                             ****1011
           TAKES PLACE FIRST IN THE HORIZONTAL AND THEN
                                                             ****1012
           IS FOLLOWED BY IN THE VERTICALS
                                                             ****1013
                                                             ****1014
  IF FACTORISATION THEN
                                                             ****1015
  BEGIN
     AAS AAA(S3.53)$ NNQ(SS)$ ROUTE= 1111$
                                                             ***1016
     SPACEOPT (IF BB THEN FALSE ELSE TRUE - 1 FALSE +
                                                             ****1017
                                                             ****1018
      TRUE (NN)S TWS
                                                              ****1019
      AAA(S1.S2)$ GOTO ING
                                                              ***1020
  END
                                                             ****1021
  ELSE
                                                             ****1022
  BEGIN
      AAS AAA(S1.S2)$ NNQ(SS)$
                                                              ****1023
      SPACEOPT (IF BB THEN FALSE ELSE TRUE FFBB FALSE)
                                                              ****1024
                                                              ****1025
      FALSE NN) $ TW$
                                                              ****1026
                                                              ****1027
      EPS NNQ(SSS)$
      SPACEOPT (IF BB THEN FALSE ELSE TRUE + FFBB + TRUE +
                                                              ****1028
                                                              ****1029
      FALSE (NN) 5 TW5
                                                             ****1030
      EP$ NNQ(SSSS)$
      SPACEOPT (TRUE + FFBB + TRUE + TRUE + NN) $ EP$
                                                             ****1031
                                                             ****1032
      IF FACTORISATION THEN ROUTE 1000
                                                              ****1033
   END$
                                                              ****1034
                                                              ****1035
END$
      COMMENT PROCESS
                                                              ****1036
                                                              ****1037
IF ROUTE GEQ 1111 THEN
                                                              ****1038
BEGIN
   READ(PCF('NASAD'), ST, ST1, DONE, ERR)$
                                                             ****1039
                                                              ****1040
   GIQ= ZONEI(ST)$
   FOR K= 1 STEP 1 UNTIL Q-1 DO
                                                              ****1041
   BEGIN READ (PCF ('NASAD') , STOREI (K) , DONE , ERR) $
                                                              ****1042
                                                              ****1043
         WRITE(FO2, 1, STOREI(K))$
  STOREI(K)= STOREIQ(K)= STOREI(K)-A(G1Q+IO*K-1)$
                                                              ****1044
                                                              ****1045
   END$
                                                              ****1046
   G2Q = ZONEI(ST1)5
                                                              ****1047
   WRITE(FO2, 2, ST/ST1)$
```

ING . .

INDPR . .

```
END$
                                                                       ****1048
            GEOMGRID(ST.ST1)$ MINTIME=
                                                                       ****1049
            GEODIST(E3+(LA1+LA2)/2)/465$ CTQS
                                                                       ****1050
            E(0)= E(Q)= 1$ FOR K= 1 STEP 1 UNTIL Q-1 DO
                                                                       ****1051
            E(K)=A(G1Q+I0*K)-A(G1Q+I0*K-1)S
                                                                       ****1052
                                                                       ****1053
            COMMENT
                                                                        ****1054
            1. WHEN A FLIGHT PLAN FOR THE OPTIMAL COST TRACK IS NEEDED
                                                                       ****1055
            CALL 'PROCES(1, 3, 1, 0.03, 1, TRUE, FALSE)
                                                                        ****1056
                                                                       ****1057
            2. WHEN A FLIGHT PLAN FOR THE OPTIMAL FUEL TRACK NEEDED
            CALL 'PROCES(1, 3, 1, 0.03, 0, TRUE, FALSE)'
                                                                        ****1058
            3. WHEN A FLIGHT PLAN FOR THE LEAST TIME TRACK NEEDED
                                                                        ****1059
            CALL 'PROCES(1, 3, 1, 0.03,-1, TRUE, FALSE)'$
                                                                        ****1060
                                                                       ****1061
            PROCES(1, 3, 1, 0.03,-1, TRUE, FALSE)$
                                                                        ****1062
            PROCES(1, 3, 1, 0.03, 0, TRUE, FALSE)$
                                                                        ****1063
                                                                        ****1064
                                                                        ****1065
             GOTO RUN
          END$
                                                                        ****1066
                                                                        ****1067
  DONE .. ENDS
                     WRITE(' ')$
                                                                        ****1068
         WRITE(' ')$
         WRITE(
                    *** END OF RUN ***1)$
                                                                        ****1069
         GO TO EOPS
                                                                        ****1070
                                                                        ****1071
  ERR..
         WRITE( *
                    *** INPUT DATA ERROR ****)$
                                                                        ****1072
                                                                        ****1073
  EOP ..
                                                                AE ++VD< :AEAHA AX
 1 ELT NWS+1+810227+039147
         ++<FGNA%23 +KWBC %160000<<0%#\.0792130#\03193103032310364032037513303948
 .38¤\1319310273431038423204652310544608¤\2320290253630042443005453300654\38¤\3321
 | 27035372705245280675428081406@¤\431731024323002842300235329018498@¤\531830027333
*\03342290345328038478@¤\632028034352805143280615327071461@¤\73222705336270784527
 0935527106426@#\.115213@#\032325050382506547260785626088378@#\132524053402406848
 [240765624079362@¤\232723056422307050230775723078352@¤\33292206144220765122082572
¤\6331250644425073502507454250703260¤\7332240654524070512407055240663150¤\.15121
 <del>|</del>}@¤\033222068452208253220885722084342@¤\133422072472208554220905622084348@¤\2336
 |<u>|</u>|21073482208454220875522079339@¤\333721072492207954220795522071338@¤\433423063462
 3<sub>0</sub>6651230645423060310p¤\533522058472306151230595423054307p¤\63372205448230555123
#0535423049308@#\733921050492204952230465323042292@#\·187213@#\033922071502207654
 230725423063331@¤\134122067512307254230665423056311@¤\23442305852230645324059532
40503036x\3347230455424051532404752240432878x\4340220465022044522303952240352988
 #\534222042512304151240365225033281@#\634523035522403652250335126032271@#\734723
 ||)28532503052260305127031270@#\.223213@#\035024033562403854250375225035286@#\\
 4,35224028582503155250305225029286₩¤\235325025582502555250245225023286₩¤\33532401
 7572401655240165224016275@#\435024023552602553270275127029279@#\5351250225627024
 #54270255128026280@#\635225020572702154280215128021280@#\735326014572801454280145
 \\ \_05315007289@#\235213018591302057130155413010292@#\.080213@#\03163001730290294129
 .0325328031504@#\131828C?4322703942270445326047487@#\2320270413426060432606954260
 764626¤\332227060362608445260965526106438@¤\431627016302703140270365327040504@¤\
 ๖31826033322605141260575426059488₽¤\632026046342606643260765526082451₽¤\73222705
 63626078452609355261034346m\.116213@m\032527070392709347271045627113379@m\132927
 `)68422708149270875527093336@¤\233127063442706850270705527072311@¤\33322705444280
 56502805755270582980¤\4324280603927079472709556271043750¤\5327290584129068492807
```

ORIGINAL PAGE IS OF POOR QUALITY

90150	90350	91950	91650	91550	91551	91551	92148	93246	93243	93445	92945	54456	91548	91650	91650
88650	89750	91150	91750	91750	91750	91950	92348	94626	93044	92845	95246	91748	91550	91550	91650
87250	88650	90550	91650	92150	92250	92348	92647	92746	92545	91945	91247	64806	91150	91550	91750
85350	87850	90251	91851	92451	92650	92847	95945	92645	91944	91045	90248	89950	09906	91450	91750
85250	87750	90050	91950	92750	92949	93046	92944	92343	91144	90045	89348	89350	90350	91350	91750
86050	87550	69549	81916	9526	19566	44626	92543	91442	44006	94068	86749	89250	90250	91250	91750
94753	36351	88647	91046	92245	56926	92544	91643	90143	88745	87947	88150	89150	90350	91550	92450
83357	85454	81618	90046	91245	91645	91245	44668	44489	87346	87048	87650	15068	90351	91450	92550
82927	95058	87052	64099	89548	9006	84068	87946	80746	86247	86649	87652	89054	90252	91250	92250
33261	95449	65555	30652	67750	99250	02619	00440	94969	65946	26999	67954	88522	69855	09606	05616
83162	95559	04250	85033	16199	00000	86350	94009	65459	86031	95699	67655	46739	89032	845.06	91050
83201	65223	99750	26148	00169	65549	85050	1 5050	95253	55052	95699	67350	08753	25089	91546	64716

11

1 3

1 1

1...1

849	7	7
670	7	7
169	7	7
111	419	7
730	710	7
749	144	7
767	111	7
784	608	7
800	839	7
815	898	830
830	968	881
845	126	930
858	946	116
672	970	1021
884	366	1063
969	1013	1102
908	1033	1139
616	1152	1174
1931	1070	1507
7	7000	1237

18	•	ī	20	•	
167	7	7	994	7	•
154	7	7	435	7	٠
144	226	7		969	
135	198	7	384	524	1
127	177	7	362	473	1
119	160	7	345	435	ī
113	147	7	324	904	7
107	136	250	307	382	454
101	128	503	262	305	535
96	150	179	277	343	466
16	113	158	263	325	414
99	107	143	546	306	383
81	100	131	235	286	355
20	3	121	238	500	3.50
7	91	113	510	245	307
19	13	104	196	227	284
3	7.5	ş	100	211	203

ORIGINAL PAGE IS OF POOR QUALITY

0691	2000	02**	9320	9520	0512	7		0	75	157	568	094	7	7	
					1 0066	7		0	89	141	222	322	011	7	
1600	2740	3920	5150	0299	8500	11050		•	65	123	190	560	334	417	
1550	2620	3700	4650	0009	7200	8700		0	ş	110	168	2.30	296	372	
1500	2500	3500	4500	5500	0200	7500		0	20	100	150	200	250	300	
1480	0242	3350	4280	9120	0969	6720		0	*	56	136	179	218	504	
1460	2340	3160	4050	9430	5030	0550		0	3	*9	123	160	161	219	
1440	2220	3050	3656	0696	2560	2900		0	9.5	7.9	113	7,7	105	187	
1450	5550	2950	3000	4370	5050	2630		9	35	2	105	151	150	101	
1	1	1 :	1	1		1	:	1	. 1	:	1		1	. 1	
	1450 1445 1460 1480 1500 1550 1600 1645	1430 1445 1460 1480 1500 1550 1600 1645 2220 2280 2340 2420 2500 2620 2740 2870	1430 1445 1460 1480 1500 1550 1600 1645 2220 2280 2340 2420 2500 2620 2740 2870 2950 3050 3180 3350 3500 3700 3920 4200	1450 1445 1460 1480 1500 1550 1600 1645 2220 2250 2340 2420 2500 2620 2740 2870 2950 3050 3160 3350 3500 3700 3920 4200 3600 3650 4050 4280 4500 4850 5150 5670	1430 1445 1460 1480 1500 1550 1600 1645 2220 2280 2340 2420 2500 2620 2740 2870 2950 3050 3160 3350 3500 3700 3920 4200 3660 3650 4050 4280 4500 4650 5150 5670 4370 4550 4380 5150 3500 6000 6670 7530	1430 1445 1460 1480 1500 1550 1600 1645 2220 2280 2340 2420 2500 2620 2740 2870 2950 3050 3180 3350 3500 3700 3920 4200 3660 3650 4050 4280 4500 4850 5150 5670 4370 4590 4480 5150 5500 6670 7530 5050 5260 5630 5600 7200 8500 9900 1	1430 1440 1480 1500 1550 1600 1645 1 2220 2280 2340 2420 2500 2620 2740 2870 3 2930 3050 3160 3350 3500 3700 3920 4200 4 3660 3650 4050 4280 4500 4650 5150 5670 6 4370 4590 4660 5500 6670 7530 8 5030 5260 5630 5600 7200 8500 9900 12 5630 5900 6720 7500 8700 11650 -1	1430 1445 1460 1480 1500 1550 1600 1645 1 2220 2220 2340 2420 2500 2620 2740 2870 3 2930 3050 3160 3350 3500 3700 3920 4200 4 3660 3850 4050 4280 4500 4850 5150 5670 6 4370 4590 4680 5150 5670 6 6 6 7 7530 8 5050 5260 5630 5690 7200 7200 8500 9900 12 5630 5900 6720 7500 8700 11050 -1	1430 1440 1460 1500 1550 1600 1645 1 2220 2280 2340 2420 2500 2620 2740 2870 3 2930 3050 3160 3350 3500 3700 3920 4200 4 3660 3650 4050 4280 4500 4650 5150 5670 6 4370 4590 4680 5150 5670 6 6 4200 4530 8 5050 5260 5630 5500 6670 7530 8 6 6 6 7 7 5050 5260 5650 6720 7500 8700 11050 -1 -1 0 0 0 0 0 0 0 0 0 0	1430 1440 1480 1500 1550 1600 1645 1 2220 2280 2340 2420 2500 2620 2740 2870 3 2930 3050 3160 3350 3500 3700 3920 4200 4 <	1430 1445 1460 1480 1500 1550 1600 1645 1 2220 2280 2340 2420 2500 2620 2740 2870 3 2950 3050 3160 3350 3500 3700 3920 4200 4 3660 3650 4050 4280 4500 4650 5150 5670 6 4370 4590 4380 5150 5500 6670 7530 8 5030 5260 5630 7500 8700 11650 -1 5630 5900 6720 7500 8700 11650 -1 6 0 0 0 0 0 0 73 40 43 47 50 54 59 68 73 73 64 53 100 110 123 141	1430 1445 1460 1480 1500 1550 1600 1645 1 2220 2280 2340 2420 2500 2620 2740 2870 3 2950 3050 3160 3350 3500 3700 3920 4200 4	1430 1440 1480 1500 1550 1600 1645 1 2220 2280 2340 2420 2500 2620 2740 2870 3 2930 3050 3150 3550 3500 4500 4500 4200 4500	1430 1445 1460 1480 1500 1550 1600 1645 1 2220 2220 2340 2420 2500 2620 2740 2870 3 2930 3050 3160 3350 3500 3700 3620 4200 4 3660 3650 4050 4280 4500 4650 5150 5670 6 3660 3650 4660 5500 7200 6670 7530 8 5630 5260 5630 7200 6670 7530 8 5630 5260 5630 7200 8700 11050 -1 5630 5900 6720 7500 8700 11050 -1 6 6 6 6 6 6 6 6 73 73 64 93 100 110 111 123 141 150 166 176 256 25	1430 1440 1460 1480 1500 1550 1600 1645 1645 2220 2220 2220 2420 2500 2620 2740 2870 3 2950 3050 3160 3350 3500 3700 3620 4200 4 3660 3650 4050 4280 4500 4650 5150 5670 6 4370 4590 4280 4500 6000 6670 7530 8 5650 5260 4380 5150 5500 6000 6670 7530 8 5650 5260 5500 5500 5500 5500 7500 8700 11650 -1 5650 5500 5600 5700 7500 8700 11650 -1 6 40 0 0 0 0 0 0 0 7 74 64 93 100 116 116

1.2

*** LIPUT PAKANETERS ***

1

=

0

51281

West bound

115

E2 -5.0340-01 -6.2019:-01 MINITAL 6.5015:*00 E2 -7.3407:-01 -3.5052:-01 MINITAL 1.745:*02 1.745:*02 ENUT

5

13305

GENERAL.

This program which was written for experiments of three dimensional flight planning for DC8-D3 sircrafts over the North Atlantic has been converted for use in UNIVAC 1108 in ALGOL 60 and will be enhanced to be appropriate for flight planning for DC10 and B747 aircrafts.

Reference is made to pages and formulas in 'Optimal Track Selection and 3-Dimensional Flight Planning' written by H.M. DE JONG, KNMI No. 93.

INPUT/QUIPUT DATA DESCRIPTION

INPUT

METEGROLOGICAL DATA

There are six data tables for compressed meteorological data (geopotential height(in gpdam)and temperature(centigrade degree)).

See p. 126, Fig. 39.

Geopotential values and temperature are depicted from the grid points in a Cartesian grid superposed on a polar stereographic chart projection with standard parallel at 60 degree N.

This grid is part of the well-known octagonal grid prepared by the National Meteorological Center.

The y-axis runs parallel with the 80 degree W meridian.

The area covered is rectangle comprising 12 x 16 grid points.

See output listing.

Those six tables show meteorological data (each table 12 x 16) for 200, 250, and 300 mbar for two validity times 12 hours apart.

PERFORMANCE DATA

ORIGINAL PAGE IS OF POOR QUALITY

See output listing.

TABLE 1 shows specific range for flight levels 310, 350, and 390 (see p. 116, table 1). This is an important economic index which is the air distance covered by a turbo-jet aircraft per unit of fuel consumption.

This datum is almost independent of temperature and depends on the aircraft weight only at a prefixed flight level.

TABLE 2 shows maximum weight(kg) per flight levels 310, 350 and 390 (see p. 122, table 9). The maximally allowable weight depends on flight altitude and temperature deviation from standard.

TABLE 3 shows climb distance (nautical mile) as a function of weight (kg) and flight levels 310, 350, and 390.

See P. 118, table 5.

TABLE 4 shows climb time (1/1000 hrs) as a function of weight (kg) and flight levels. See p. 117, table 3

TABLE 5 shows climb fuel (kg) as a function of weight and flight levels.

See p. 119, table 7.

TABLE 6 shows climb time temperature correction as temperature deviation and climb time (1/1000 hrs) at standard temperature.

See p. 117, table 4.

TABLE 7 shows climb fuel temperature correction (kg). See p. 119, table 8.

TABLE 8 shows climb distance temperature correction (n.m).

See p. 118, table 6

INITIALIZING INPUT PARAMETERS:

FLUR = sequense number.

TAXI = taxi fuel (kg).

GRW = zero fuel weight (kg).

3

RESERVE = reserve fuel (kg).

TOW = -1 computation starting in end-point of flight.

MAXTOW = maximum take-off weight.

MAXLW = maximum landing weight.

DATE = date/month/year.

IO = -1; east bound flight, 1; west bound flight.

TTT = time of departure.

ROUTE = ratte indicator.

Si = starting graph point number.

ST1 = destination graph point number.

Note here that all input data are read from card images of PCF file.

PCF file name is NASAD.

CUTPUT

10

In the flight plan (see output listing),

NO. = graph point number.

HEAD = heading in flight.

FL = flight level in 100 ft.

TMP = off standard temperature in centigrade degrees.

TAS = true air speed.

WIND = tail (head) wind along the track.

DIST = distance of flight segment.

ACCD = accumulated distance flown(n.m).

TIME = time along segment flown.

ACCT = accumulated time flown (hr, min).

BURN = fuel consumed in segment (kg).

WEIGHT = weight (kg).

TOC = top of climb.

TOD = top of descent.

EXTRA COMMENTS FOR THE PROGRAM.

ORIGINAL PAGE IS OF POOR QUALITY

46 - 49

Procedure INTERPOL computes a linear interpolation.

51 - 59

Procedure SUM1 and SUM2 compute summations.

These procedures are used for computing average values in procedure METPROC.

72 - 73

Procedure WW is a write-procedure.

76 - 77

p1, p2, and p3 are flight levels.

q1, q2, and q3 are pressure altitude for standard pressure levels 300, 250, and 200 mbar.

78 - 84

reads in compressed values for geopotential height and temperature in 200, 250, and 300 mbar, valid for two standard times, 12 hours apart and files array HT with those data.

85 - 90

writes out the inputed data for checking purposes.

92 - 113

produces the meteorological parameters (compressed geopotential and temperature data, which apply in grid points at flight levels 310, 350 and 390. Therefore the inputed data for the standard pressure altitude are destroyed

115 - 118

The graph points are labelled by numbers running from 0 to 115.

(note that the graph point number shown in Fig. 37, F. 110 runs from 1 to 116).

The graph is such that the point sets consist of subsets of points arranged along 'meridians' (index running from 0 to 15).

array A(index) contains the graph point number assigned to the most northerly point on each meridian.

Array A is used for the computation of zone index (procedure ZONEI).

119 - 133

10

11

1

Array V has values assigned for geographic coordinates for graph points and check points on continents: latitude (4 digits) and longitude (4 digits) in degrees and hundredths. See Fig. 37, P. 110.

135 - 142

fills Boolean array BK and BKQ with 'TRUE'; (initialization). 143 - 156

denotes blocking in continental airways (connectivity in the graph).

Boolean array entries of BK and BKQ indicate which graph points are connected or blocked (TRUE=blocked and FALSE=connected).

Array BK is used for the zone index < 3 and array BKQ is used for the zone index > 8.

BK(a,b,c)=FALSE means point'b' on meridian 'a' is connected with point 'c' on meridian 'a+1'.

Here point 'b' denotes the 'b' th point from the bottom on the meridian. Example: see Fig. 37. BK(2,2,2) = FALSE means graph point number 3 on meridian 2 is connected with graph point number 5 on meridian 3

153 - 172

Procedure ZONEI determines the index of the zone associated with a graph point number. Parameter Q = graph point number.

For example, a graph point number 49 gives ZONEI(49)=6.

ORIGINAL PAGE IS OF POOR QUALITY

Procedure DT dissects latitude and longitude from the compressed

LALAT means latitude and LALONG means longitude.

Parameter K is an index of array V.

185 - 216

Procedure LIS determines actual latitude and longitude value for a graph point. (see procedure DT).

The sign of longitude is changed in east of Greenwhich.

Parameter U=graph point number.

218 - 237

Procedure CTQ prepares a time instant array DD, zonally specified, to be used for the time interpolation later on.

A=0.4 denotes an estimated flight time of 24 min. per continental zone.

There are 15 instant values (index 0 - #ndex 14).

239 - 256

Procedure HH computes grid point values for geopotential or temperature (CHOICE=TRUE computes geopotential value, while CHOICE=FALSE computes temperature value) in flight level index F (index 1 denotes 31000 ft and indices 2 and 3 denote 35000 and 39000 ft respectively).

Farameters V and W denote index numbers of array HT (meteorological). Interpolation takes place according to zone-assigned time instants DD(). 258-275

Procedure GEOP computes geopotential (when CHOICE=TRUE) or temperature (when CHOICE=FALSE) value in arbitrary point, using adjacent grid point values from array HT (see procedure HH) and bi-linear interpolation.

Parameters V and W will be modified to denote index numbers of array HT. Parameter C = flight level index.

ORIGINAL PAGE IS OF POOR QUALITY

277 - 284

Procedure XYTRANSF converts the geographical coordinates (LAT, LON) of a point on earth into the Cartisan coordinates (Y, X).

See P. 62-63.

286 - 289

1

Procedure GEODIST computes distance on the sphere from Euclidian distance DDD given in units of the rectangular grid on the map.

LAT denotes latitude.

291 - 301

Procedure GEOMGRID computes Euclidian distance and unit vector pointing along an arc in the graph between two arbitrary graph points with respect to rectangular grid system.

FP and GG denote graph point numbers of end points.

E3 denotes Eucledean distance.

E1 and E2 denote unit vectors for x, y components respectively.

303 - 363

Procedure PART2GEDM determines length of segment by summation of contributions from subsegments (LENGTH(I)).

These subsegments are identified by intersection of an arc with coordinate lines in Euclidean grid.

Normalized coordinates (running from O to 1) are stored in array AB.

These values serve also as weighting factors later on.

D denotes distance computed for averaged degree of latitude on the sphere. Array LENGTH(I) contains lengths of subsegments on the sphere. AID2 denotes interpolated degree of latitude.

See P 84-85.

365 - 410

Procedure METPROC processes meteorological parameters.

OF POOR QUALITY Parameter S=flight level index (1,2 or 3). DETAILS 370 - 371 computes geopotential value at end-points of a flight segment. 372 computes drift angle by using Bellamy's formula (see P. 78). 376 - 381 estimates coordinates in mid point P of segment. P=(Xster, Yster). 384 estimates temperature in mid point P at flight level S. Temperature has minus sign. 387 - 392 wind components, geostrophic wind. Formulas shown in P. 69-70 is not used (reason: not to smooth too drastically from geopotential fields, and to economize in speed of computation by computer). See formulas 5, 22 and 5, 23 in p. 66. Array WNDx and WNDY contain x-component and y-component of wind resp. 393 computes true air speed (TAS) for the specific type of aircraft. For values of constants see Smithsonian tables. Meteorological text books or ICAO Standard Atmosphere. 394 - 395 computes flight time components using vector sum of wind and TAS, and segment length (LENGTH (I)) 398 - 409 determines average values for meteorological and other parameters along segment under consideration using previously calculated contributions. TEM=temperature. TDEV(S)=temperature deviation.

TIME(S)=flight time in flight level index S.

AIRDIST(S)=air distance.

ORIGINAL PAGE IS OF POOR QUALITY

LE=distance of flight segment.

WIX(S) and WIY(S) = wind components.

TAX(S) and TAY(S) = true air speed components.

413 - 429

Procedure TABLE and TABLEQ are for table look-up procedure for performance data. See P. 116-119 and output listings.

461 - 497

Procedure READG reads in performance data and procedure WRITEG directly writes out those inputed data for checking purpose.

499 - 500

coefficients used in algorithms.

502 - 507

reads in and writes out initializing input parameters for flight plan.

508 - 520

In case of prescribed track flight, the routine reads in Q (number of graph points on the prescribed route).

In another case, it reads in ST(starting point number) and ST1(ending point number) and decides Q value.

In the latter, Q=(number of zones between source and destination) - 1. 529 - 532

Procedure SQ and JQ are conversion formulas for indices used in subsegment algorithms (by using entries of array A(index) or array F(index)).

534 - 555

Procedure DESCLIMB computes performance by using the table look-up procedure in climb(if MG=O) or descend(if MG not= O).

Array DECLTIME gets climb time or descent time.

Array DECLDIST yets climb distance or descent distance.

Array DECLFUEL gets climb fuel or descent fuel.

Array AIRDIST gets climb air distance or descent air distance.

Array TIME gets climb time or descent time.

Note that in the descent zone, performance data table is not used.

So specific expressions by company's planning policy are chosen.

See formula 6.31 in P. 120-121.

557 - 559

Procedure ARCTANQ is for computation of heading degree by using arc tangent formula.

561 - 564

Procedure LO is for computation of longitude from Euclidean coordinates in rectangular grid. See P. 62, formula 5.17 and 5.18.

Z1 and Z2 denote Euclidean coordinates.

566 - 574

Procedure HEADING computes heading in degree as required for flight planning purposes.

L1 and L2 denote x-component and y-component of true air speed.

576 - 617

procedure LINE writes out optimized flight plan.

See the output listing of the flight plan.

619 - 926

Procedure SPACEOPT is a key procedure for optimalization.

In this procedure crucial is that some parameters may not surpass upper bounds, for example aircraft weight.

This requires the inclusion of several protective statements in order to ensure proper functioning of the operational scheme in-flight.

FBQ determines whether the flight plan computation will be performed backward(false) or forward(true).

FB determines whether cost(+1) or fuel(0) or flight time(-1) will be optimized.

BI determines whether the navigation regime is free in the horizontal (false) or bounded by one point(true).

EG determines whether the cruising altitude is free(false) or bounded (true).

RR is take-off weight or landing weight.

DETAILS:

637 - 645

Procedure PREP computes distance and flight time, and prints out one line of flight plan.

A1=segment distance. B1=segment flight time.

AA=true denotes 'climb' and BB=true means 'descent'.

See the output listing of the flight plan.

647 - 694

Procedure EDITING prints out proper heading lines.

696 - 768

Procedure QQ computes segment contribution, fuel, etc.

When o=-1 computation is for in-flight direction.

When o=+1 computation is for opposite flight direction.

702 - 722

Procedure CL computes the aircraft weight(GRWG) and total fuel, flight time or costs at end-point of a flown segment. (the contribution of fuel in steps included).

Farameter M1 denotes segment fuel(kg) and M2 segment time(min).

In the climb phase no step contribution is taken into account as

ORIGINAL PAGE IS OF POOR QUALITY

required (BCLIMB=TRUE)

GG denotes flight level index at the graph point when the computation starts. G denotes the flight level index to be investigated.

Step consumption: UP=100 kg/4000ft

DOWN=-80 kg/4000ft.

(surplus of segment fuel)

ITERATION becomes TRUE when (1) back-tracking (2) first zone is reached (3) TOW is unknown and Wb is known (see P. 120).

In array ROW the aircraft weight is stored.

GRWQ denotes aircraft weight at the end point of segment.

GUANT denotes cost, fuel or time at the end point of flown segment.

729 - 736

computation in climb or descent by procedure CL.

If ED is TRUE then it prints out the results.

739 - 741

safequarding statements.

744 - 752

computes segment contribution of changes in aircraft weight.

Note that fuel consumption is expressed as loss of aircraft weight.

The table for specific range (P. 116) is used.

Formula 6.27 (P.115) requires an estimate of weight halfway a flight segment. For that purpose coefficients as shown in table 2, P.116 are required (r1, r2).

753

jumping back to label JM1 is for safequarding that the actually derived aircraft weight does not surpass the maximally allowed weight.

755 - 752

computes the contribution for the last segment.

If ED is TRUE then it prints out the results.

ORIGINAL PAGE IS OF POOR QUALITY

755

1

GRWQ and QUANT attain absurd values for safeguarding operational performance

771

ED becomes TRUE when all degrees of freedom in the horizontal and the vertical are lost, for example when a call of procedure SPACEOPT takes place in the final mode for flight plan computation along the (optimal) track found in previous calls.

(when navigation regimes is bounded by one point and cruising altitude

(when navigation regimes is bounded by one point and cruising altitude is bounded).

772 - 797

Initialization and preparation of all parameters needed for the algorithmic process of optimization.

FBQ=TRUE means flight plan computation will be performed forwards, while FBQ=FALSE backwards.

Array F is filled in line 928-932 (see procedure FF).

The process can be activated for arbitray begin- and end-points.

In order to reduce storage space a renumbering is made for all subset points. So array F is defined and functions completely analogous to array A for whole graph point set

Array STOREI and STOREIG contain the assigned numbers of labelled and-points on meridians in the subgraph.

Zone cycle runs from line 799 to 904.

The zone cycle repeats as many times as the number of zones.

A cycle for graph points along meridian runs from line 806 to 900.

This cycle repeats as many times as the number of graph points in the current meridian.

14

A cycle for graph points along next meridian runs from line 811 to 848. This cycle repeats as many times as the number of graph points in the next meridian. A cycle for flight levels runs from line 842 to 896.

This cycle repeats as many times as the number of flight levels used. 810

conversion for indices used in subsequent algorithms.

815 - 835

If the navigation is free (BI=FALSE) in the horizontal, it checks whether a segment (II, JJ) is blocked or not.

BK or BKG = TRUE means airway is blocked.

If blocked, it skips computation for the segment.

836 - 840

conversion for indices (point G4). . .. determines geographic elements for a segment between points G3 and G4. See procedures GEOMGRID and PART2GEOM.

846 - 875

In case of backtracking in a flight plan computation an iteration process is put into action in the climb zone.

This is done in order to determine the (unknown) take-off weight by iteration in such a way that the climb parameters do match with the parameters found during backtracking when arriving in the climb zone. The iteration starts with a take-off weight 20000 kg below the (known) maximum take-off weight.

Array ROW contains the (optimal) value of aircraft weight found during optimalization, using a zone-cycle.

The iteration finishes when either the weight difference at the point of matching is less than 10 kg or the number of iteration steps

exceeds 10 (poor convergence).

In each step take-off weight is adjusted, see line 865-875.

879 - 887

1

similar computations but not backtracking case or not take-off weight adjustment case.

888 - 894

These statements are crucial optimalization criteria.

909 - 925

Preparation of elements which are required for a subsequent call for procedure SPACEOPT with lessened number of degrees of freedom including a final call for computation and presentation of flight plan data. In this final stage no degrees of freedom are left.

Procedure SPACEOPT then merely operates along a predefined track (the solution of previous calls).

928 - 932

Procedure FF determines a zone index array F for a subset of graph points analogous to array A. (array F is a sub-zone array).

934 - 1035

A call for procedure PROCES results in the production of a flight plan along whatever route is desired.

DETAILS

962 - 973

Specification of limits in horizontal of graph points along meridians.

Array STOREI and array STOREIG store lower limits and upper limits respectively for the number of graph points on each meridian.

If route >= 1111, then production of flight plan along a prescribed route

In this case the procedure SPACEOPT works in a degenerate mode.

975 - 980

Specification of limits in the vertical.

Array STOREG and array STOREGO store lower limits and upper limits respectively for the number of flight levels on each meridian.

982 - 987

989 - 1000

Procedure EP indicates that the flight planning computation blows up

See P. 123-124 for procedures SS, SSS and SSSS.

These procedures compute landing weights.

NN contains landing weight or take-off weight.

1002 - 1008

Procedure TW is for safeguarding against overloading.

1011 - 1035

activates process as follow:

If FACTORIZATON is TRUE, then the optimalization takes place first in the horizontal and is followed by an optimalization in the vertical.

The following steps occur:

- (a) optimalization in the horizontal based on time.
- (b) optimalization in the vertical, using the track solution found in (a) and based on fuel, time or costs.
- (c) computation of flight plan along solution found in (b).

 If the optimalization takes place in free space, the sequence of calls

results in:

- optimalization in space based on time, fuel or costs.
- (ii) optimalization in the vertical through horizonal track found in(i), based on time, fuel or costs.
- (iii) compilation flight plan along track solution found in (1i).

Note that (ii) could be bypassed as the solution is found already

in (i). But (ii) can be generated with a slightly different landing weight. The compilation of a flight plan along a prescribed route passes through all three procedure calls.

This means that in fact the computation is repeated threefold, however with properly tuned landing or take-off weights.

In order to protect against subsequent calls of procedure PROCES, ROUTE is assigned by 1000.

1037 - 1048

Read statement in case that a flight plan compilation is desired along a prescribed track.

This track is specified by graph points indicated by their numbers.

1049 - 1052

Computation of an estimate of flight time to be used for the estimation of other parameters.

The same with distance.

Procedure CTQ makes time instant array DD for each zona(meridian).

Array E is for storing the number of graph points used on a meridian.

1062 - 1065

performs a process for the production of a flight plan.

Actual parameters when calling procedure ;

use landing weight (BB=TRUE).

cost optimalization (FFBB=1).

FFBB=0 means fuel opt, FFBB=-1 means time opt.

regularity percentage (PR=0.03).

fligh levels used between S1=1 for 31000 and S2=3 for 39000.

53=1; the value is immaterial if FACTORIZATION is FALSE.

For required flight plans ;

1. when a flight plan for the optimal cost track is needed,

call 'proces (1, 3, 1, 0, 03, 1, TRUE, FALSE)'.

10

- when a flight plan for the optimal fuel track is needed,
 call 'proces (1,3,1,0.03,0,TRUE,FALSE)'.
- 3. when a flight plan for the least time track is needed, call 'proces (1,3,1,0.03,-1,TRUE,FALSE)'.

For the flight plan 1, 2 or 3 above, FACTORIZATION=FALSE.

For other flight planning simulations, FACTORIZATION=TRUE.

ORIGINAL PAGE IS OF POOR QUALITY