튜토리얼

End-to-End Sentence Classification

이찬희 chanhee0222@gmail.com

Background

Brief Introduction to Sentence Classification and Neural Networks

Sentence Classification

- Classifying a sentence into one of predefined categories
 - Binary sentiment (e.g. positive / negative)
 - Fine-grained sentiment (e.g. very positive, positive, neutral, negative, very negative)
 - Type (e.g. person, location, numeric information, etc.)
 - ...

Examples - Binary Sentiment

- no movement , no yuks , not much of anything (NEG)
- this is one of polanski 's best films (POS)
- the film would work much better as a video installation in a museum , where viewers would be free to leave (NEG)
- much of the way , though , this is a refreshingly novel ride (POS)
- ridiculous (NEG)
- a masterpiece four years in the making (POS)

Examples - Binary Sentiment

- A computational approach to politeness
- To construct a deep learning model for automatically classifying requests according to politeness
- Binary classification polite/impolite
- Based on Danescu-Niculescu-Mizil et al.'s (2015)
 A computational approach to politeness with application to social factors

Examples - Binary Sentiment

 Data: a new corpus of requests annotated for politeness (From two large online communities in which members frequently make requests of other members: Wikipedia and StackExchange)

Figure 1: Distribution of politeness scores. Positive scores indicate requests perceived as polite.

Accuracy

	In-domain		Cross-domain	
Train	Wiki	SE	Wiki	SE
Test	Wiki	SE	SE	Wiki
BOW	79.84%	74.47%	64.23%	72.17%
Ling.	83.79%	78.19%	67.53%	75.43%
Human	86.72%	80.89%	80.89%	86.72%

Interesting Results

Role	Politeness	Top quart.	
Question-asker	0.65***	32%***	
Answer-givers	0.52***	$20\%^{***}$	

Interesting Results

Reputation level	Politeness	Top quart.	
Low reputation	0.68***	27%***	
Middle reputation	0.66^{***}	25%	
High reputation	0.64***	23%***	

Interesting Results

PL name	Politeness	Top quartile
Python	0.47***	23%
Perl	0.49	24%
PHP	0.51	24%
Javascript	0.53**	26%**
Ruby	0.59***	$28\%^*$

Neural Network and Language

Human
-> Characters

Neural Network
-> Numbers

Converting Characters to Numbers

CNN for Sentence Classification

- Concatenate the vectors of the words constituting the sentence, and apply CNN
- Unlike RNN, only the number of words in the same size as the filter size can be reflected

