Unit 2.3: Elementary Signals

Contents

- Introduction
- The Unit Step Function
- Simple Signal Operations
- Synthesis of Signals from the Unit Step
- The Ramp Function
- The Dirac Delta Function
- Important properties of the delta function
- Summary
- Examples
- Homework
- References
- Next Time

The preparatory reading for this section is Chapter 1 of <a href="[Karris, 2012] which

- begins with a discussion of the elementary signals that may be applied to electrical circuits
- introduces the unit step, unit ramp and dirac delta functions
- presents the sampling and sifting properties of the delta function and
- concludes with examples of how other useful signals can be synthesised from these elementary signals.

Additional information has been adapted from Section 1.4 of [Hsu, 2020].

Follow along at cpjobling.github.io/eg-150-textbook/signals and systems/elementary signals

Consider the network shown in below where the switch is closed at time t=T and all components are ideal.

Express the output voltage $V_{
m out}$ as a function of the unit step function, and sketch the appropriate waveform.

Solution

Before the switch is closed at t < T: \begin{equation} $V_{\text{mathrm}} = 0$. \end{equation}

After the switch is closed for t > T: \begin{equation} V_{\mathrm{out}} = V_s. \end{equation}

We imagine that the voltage jumps instantaneously from 0 to ${\cal V}_s$ volts at t=T seconds as shown below.

We call this type of signal a step function.

The Unit Step Function

$$u_0(t) = egin{cases} 0 & t < 0 \ 1 & t > 0 \end{cases}$$

In Matlab

In Matlab, we use the heaviside function (named after Oliver Heaviside).

```
%file plot_heaviside.m
syms t
fplot(heaviside(t),[-1,1]),grid,ylim([0 1.25])
heaviside(0)
```

Created file '/Users/eechris/code/src/github.com/cpjobling/eg-150-textbook/signals_and_systems/elementary_signals/plot_heaviside.m'.

plot_heaviside

ans = 0.5000

Note that, so that it can be plotted, Matlab defines the *Heaviside function* slightly differently from the mathematically ideal unit step:

$$ext{heaviside}(t) = egin{cases} 0 & t < 0 \ 1/2 & t = 0 \ 1 & t > 0 \end{cases}$$

Simple Signal Operations

Amplitude Scaling

Sketch $Au_0(t)$ and $-Au_0(t)$

```
syms t;
u0(t) = heaviside(t); % rename heaviside function for ease of use
A = 2; % so signal can be plotted
ezplot(A*u0(t),[-1,1]),grid,title('Amplitude scaling
$$Au_0(t)$$','interpreter','latex')
```


Note that the signal is scaled in the y direction.

ezplot(-A*u0(t),[-1,1]),grid,title('Amplitude scaling and mirroring \$\$-Au_0(t)\$\$','interpreter','latex')

Note that, because of the sign, the signal is mirrored about the x axis as well as being scaled by 2.

Time Reversal

Sketch $u_0(-t)$

```
ezplot(A*u0(-t),[-1,1]),grid,title('Time reversal $$Au_0(-
t)$$','interpreter','latex')
```


The sign on the function argument -t causes the whole signal to be reversed in time. Note that another way of looking at this is that the signal is mirrored about the y axis.

Time Delay and Advance

Sketch $u_0(t-T)$ and $u_0(t+T)$

```
T = 1; % again to make the signal plottable.
ezplot(u0(t - T),[-1,2]),grid,title('Time delay $$u_0(t -
T)$$','interpreter','latex')
```


This is a time delay ... note for $u_0(t-T)$ the step change occurs T seconds later than it does for $u_o(t)$.

```
ezplot(u0(t + T),[-2,1]),grid,title('Time advance $$u_0(t +
T)$$','interpreter','latex')
```


This is a time advance ... note for $u_0(t+T)$ the step change occurs T seconds **earlier** than it does for $u_o(t)$.

Examples

We will work through some examples in class. See Examples 3.

Synthesis of Signals from the Unit Step

Unit step functions can be used to represent other time-varying functions such as rectangular pulses, square waves and triangular pulses. See Worksheet 3 for the examples that we will look at in class.

The Ramp Function

In the circuit shown above i_s is a constant current source and the switch is closed at time t=0.

When the current through the capacitor $i_c(t)=i_s$ is a constant and the voltage across the capacitor is

$$v_c(t) = rac{1}{C} \int_{-\infty}^t i_c(au) \; d au$$

where au is a dummy variable.

Since the switch closes at t=0, we can express the current $i_c(t)$ as

$$i_c(t) = i_s u_0(t)$$

and if $v_c(t)=0$ for t<0 we have

$$v_c(t) = rac{i_s}{C} \int_{-\infty}^t u_0(au) \; d au = \underbrace{rac{i_s}{C} \int_{-\infty}^0 0 \; d au}_0 + rac{i_s}{C} \int_0^t 1 \; d au$$

So, the voltage across the capacitor can be represented as

$$v_C(t)=rac{i_s}{C}tu_0(t)$$

Note that in this as in other examples throughout these notes, and in published tables of transforms, the inclusion of $u_0(t)$ in $v_c(t)$ acts as a "gating function" that limits the definition of the signal to the causal range $0 \le t < \infty$.

To sketch the wave form, let's arbitrarily let C and i_s be one and then plot with MATLAB.

```
C = 1; is = 1;
vc(t)=(is/C)*t*u0(t);
ezplot(vc(t),[-1,4]),grid,title('A ramp function')
```


This type of signal is called a **ramp function**. Note that it is the *integral* of the step function (the resistor-capacitor circuit implements a simple integrator circuit).

The unit ramp function is defined as

$$u_1(t) = \int_{-\infty}^t u_0(au) d au$$

SO

$$u_1(t) = egin{cases} 0 & t < 0 \ t & t \geq 0 \end{cases}$$

and

$$u_0(t)=rac{d}{dt}u_1(t)$$

Note

Higher order functions of t can be generated by the repeated integration of the unit step function.

For future reference, you should determine $u_2(t)$, $u_3(t)$ and $u_n(t)$ for yourself and make a note of the general rule:

$$u_{n-1}=rac{1}{n}rac{d}{dt}u_n(t)$$

Details are given in equations 1.26—1.29 in Karris.

The Dirac Delta Function

In the circuit shown above, the switch is closed at time t=0 and $i_L(t)=0$ for t<0. Express the inductor current $i_L(t)$ in terms of the unit step function and hence derive an expression for $v_L(t)$.

Solution

$$v_L(t) = Lrac{di_L}{dt}$$

Because the switch closes instantaneously at $t=0\,$

$$i_L(t) = i_s u_0(t)$$

Thus

$$v_L(t)=i_sLrac{d}{dt}u_0(t).$$

The unit Impulse Function

The unit impulse function $\delta(t)$, is the derivative of the unit step.

$$\delta(t) = \frac{d}{dt}u_0(t)$$

which is tricky to compute because $u_0(t)$ is discontinuous at t=0 but it must have the properties

$$\int_{-\infty}^t \delta(au) d au = u_0(t)$$

To solve this problem we need to invent a function that represents the derivative of the unit step function. This function is called the *unit impulse function* $\delta(t)$, also known as the *Dirac delta* function (named after <u>Paul Dirac</u>).

Traditionally, $\delta(t)$ is often defined as the limit of a suitably chosen conventional function having unity area over an infinitesimal time interval as shown in Fig. Fig. 21.

Fig. 21 Visualisation of the Dirac delta function as the limit of a conventional function with unit area.

The Dirac delta posseses the following properties

$$\delta\left(t
ight) = egin{cases} 0 & t
eq 0 \ \infty & t = 0 \end{cases}$$

$$\int_{\epsilon}^{-\epsilon} \delta(t) \, dt = 1$$

The unit impulse function plays a fundamental role in systems analysis.

Sketch of the delta function

Continuing the example, and replacing the derivative of the unit step $u_0(t)$ with the unit impulse $\delta(t)$

$$V_{
m out}(t) = V_L(t) = i_s L \delta(t)$$

Note when we draw the unit impulse we show the height of $\delta(t)$ as one so the height of the impulse in the figure is i_sL .

MATLAB Confirmation

```
syms is L;
vL(t) = is * L * diff(u0(t))
```

$$vL(t) =$$

```
L*is*dirac(t)
```

Note that we can't plot dirac(t) in MATLAB with fplot.

Important properties of the delta function

Sampling Property

The sampling property of the delta function states that

$$f(t)\delta(t-a) = f(a)\delta(t-a)$$

or, when a=0,

$$f(t)\delta(t) = f(0)\delta(t)$$

Multiplication of any function f(t) by the delta function $\delta(t)$ results in sampling the function at the time instants for which the delta function is not zero.

The study of descrete-time (sampled) systems is based on this property.

You should work through the proof for youself.

Sifting Property

The sifting property of the delta function states that

$$\int_{-\infty}^{\infty}f(t)\delta(t-lpha)dt=f(lpha)$$

That is, if multiply any function f(t) by $\delta(t-\alpha)$, and integrate from $-\infty$ to $+\infty$, we will get the value of f(t) evaluated at $t=\alpha$.

You should also work through the proof for yourself.

Higher Order Delta Fuctions

the nth-order delta function is defined as the nth derivative of $u_0(t)$, that is

$$\delta^n(t)=rac{d^n}{dt^n}[u_0(t)]$$

The function $\delta'(t)$ is called the *doublet*, $\delta''(t)$ is called the *triplet* and so on.

By a procedure similar to the derivation of the sampling property we can show that

$$f(t)\delta'(t-a) = f(a)\delta'(t-a) - f'(t)\delta(t-a)$$

Also, derivation of the sifting property can be extended to show that

$$\int_{-\infty}^{\infty} f(t)\delta^n(t-lpha)dt = (-1)^n rac{d^n}{dt^n} [f(t)]igg|_{t=lpha}$$

Summary

In this chapter we have looked at some elementary signals and the theoretical circuits that can be used to generate them.

Takeaways

- You should note that the unit step is the *heaviside function* $u_0(t)$.
- Many useful signals can be synthesized by use of the unit step as a "gating function" in combination with other signals
- That unit ramp function $u_1(t)$ is the integral of the step function.
- The Dirac delta function $\delta(t)$ is the derivative of the unit step function. We sometimes refer to it as the unit impulse function.
- The delta function has sampling and sifting properties that will be useful in the development of *time convolution* and *sampling theory*.

Examples

We will do some of these in class. See Examples 3.

Homework

These are for you to do later for further practice. See Homework 1.

References

See **Bibliography**

Next Time

Systems and Classification of Systems

- System Representation
- Deterministic and Stochastic Systems
- Continuous-Time and Discrete-Time Systems
- · Systems with Memory and without Memory
- Causal and Non-Causal Systems
- <u>Linear Systems and Nonlinear Systems</u>
- Linear Time-Invariant Systems
- Stable Systems
- Feedback Systems

By Dr Chris P. Jobling

© Copyright Swansea University (2023).

This page was created by <u>Dr Chris P. Jobling for Swansea University</u>.