Green's Function and Magnitization for Fermions

Ben Rosemeyer

September 23, 2013

Free Particle

The finite tepurature Greens function of imaginary time in momentum space for uniform space and time is (eq 3.2.1 Mahan):

$$G_{\alpha\beta}(\vec{p},\tau) = -\langle T\psi_{\alpha}(\vec{p},\tau)\psi_{\beta}^{\dagger}(\vec{p},0)\rangle, \quad \tau \in (-\beta,\beta)$$
(1)

Where $\langle ... \rangle = Tr(e^{-H\beta}...)$. For a free particle the hamiltonian operator is:

$$H = \sum_{\alpha\beta} \int \frac{d^3p}{(2\pi)^3} \psi_{\alpha}^{\dagger}(\vec{p}) (H_0 - \mu N) \psi_{\beta}(\vec{p})$$
 (2)

Where H_0 is the free particle hamiltonian μ is the chemical potential and N is the number operator. Using the time evolution equation for $\psi_{\alpha}(\vec{p},\tau)$ and equation 3.2.8 of Mahan:

$$\begin{split} G_{\alpha\beta}(\vec{p},\tau) &= - < T e^{\tau H} \psi_{\alpha}(\vec{p}) e^{-\tau H} \psi_{\beta}^{\dagger}(\vec{p}) > \\ &= -\Theta(\tau) < e^{-\tau \xi(\vec{p})} \psi_{\alpha}(\vec{p}) \psi_{\beta}^{\dagger}(\vec{p}) > + \Theta(-\tau) < e^{-\tau \xi(\vec{p})} \psi_{\beta}^{\dagger}(\vec{p}) \psi_{\alpha}(\vec{p}) > \\ &= -\Theta(\tau) e^{-\tau \xi(\vec{p})} < \psi_{\alpha}(\vec{p}) \psi_{\beta}^{\dagger}(\vec{p}) > + \Theta(-\tau) e^{-\tau \xi(\vec{p})} < \psi_{\beta}^{\dagger}(\vec{p}) \psi_{\alpha}(\vec{p}) > \end{split}$$

We can now use the relations $<\psi_{\alpha}(\vec{p})\psi_{\beta}^{\dagger}(\vec{p})>=(1-n(\vec{p}))\delta_{\alpha\beta}$ and $<\psi_{\beta}^{\dagger}(\vec{p})\psi_{\alpha}(\vec{p})>=n(\vec{p})\delta_{\alpha\beta}$. Where $n(\vec{p})=(e^{\beta\xi(\vec{p})}+1)^{-1}$. Dropping the spin indicies.

$$G(\vec{p},\tau) = -\Theta(\tau)e^{-\tau\xi(\vec{p})}(1 - n(\vec{p})) + \Theta(-\tau)e^{-\tau\xi(\vec{p})}n(\vec{p})$$
(3)

The transformation to Matsubara energies is defined as:

$$G(\vec{p}, \omega_m) = \frac{1}{2} \int_{-\beta}^{\beta} d\tau e^{i\tau\epsilon_m} G(\vec{p}, \tau) = \frac{1}{i\omega_m - \xi(\vec{p})}$$
(4)

Spin Particle in Magnetic Field

We start by taking the τ derivitive of the Green's function.

$$-\frac{\partial}{\partial \tau}G_{\alpha\beta}(\vec{x}, \vec{x}', \tau) = \delta(\vec{x} - \vec{x}')\delta(\tau)\delta_{\alpha\beta} - \langle T[\psi_{\alpha}(\vec{x}, \tau), H]\psi_{\beta}^{\dagger}(\vec{x}', 0) \rangle$$
 (5)

In this case the equation for H is

$$H = \sum_{\gamma\delta} \int d^3x \psi_{\gamma}^{\dagger}(\vec{x}) (H_0 - \mu N - \mu_B \vec{\sigma} \cdot \vec{B}) \psi_{\delta}(\vec{x}) = \sum_{\gamma\delta} \int d^3x ((\epsilon(\vec{p}) - \mu) \delta_{\gamma\delta} - \mu_B \vec{\sigma}_{\gamma\delta} \cdot \vec{B}) \psi_{\gamma}^{\dagger}(\vec{x}) \psi_{\delta}(\vec{x})$$
(6)

Inserting this into the second term on the right hand side of equation 5 and using the time evolved operator equation yields:

$$< Te^{\tau H} \sum_{\gamma \delta} \int d^3 x'' ((\epsilon(\vec{p''}) - \mu) \delta_{\gamma \delta} - \mu_B \vec{\sigma}_{\gamma \delta} \cdot \vec{B}) [\psi_{\alpha}(\vec{x}), \psi_{\gamma}^{\dagger}(\vec{x''}) \psi_{\delta}(\vec{x''})] e^{-\tau H} \psi_{\beta}^{\dagger}(\vec{x'}) >$$
 (7)

The commutator can be resolved by using the identity $[A, BC] = \{A, B\}C - B\{A, C\}$ and the relations $\{\psi_{\alpha}(\vec{x}), \psi_{\gamma}^{\dagger}(\vec{x'})\} = \delta(\vec{x} - \vec{x'})\delta_{\alpha\gamma}$ and $\{\psi_{\alpha}(\vec{x}), \psi_{\delta}(\vec{x'})\} = 0$. Thus, equation 7 becomes:

$$\langle T[\psi_{\alpha}(\vec{x},\tau),H]\psi_{\beta}^{\dagger}(\vec{x}',0)\rangle = \langle Te^{\tau H}\sum_{\delta}((\epsilon(\vec{p})-\mu)\delta_{\alpha\delta}-\mu_{B}\vec{\sigma}_{\alpha\delta}\cdot\vec{B})\psi_{\delta}(\vec{x})e^{-\tau H}\psi_{\beta}^{\dagger}(\vec{x}')\rangle$$
(8)

Equation 5 now becomes:

$$-\frac{\partial}{\partial \tau}G_{\alpha\beta}(\vec{x}, \vec{x}', \tau) = \delta(\vec{x} - \vec{x}')\delta(\tau)\delta_{\alpha\beta} - \sum_{\delta}((\epsilon(\vec{p}) - \mu)\delta_{\alpha\delta} - \mu_B \vec{\sigma}_{\alpha\delta} \cdot \vec{B}) < T\psi_{\delta}(\vec{x}, \tau)\psi_{\beta}^{\dagger}(\vec{x}') >$$
(9)

The Transformation to momentum space is defined as $G_{\delta\beta}(\vec{p},\vec{p}',\tau) = \int d^3x \int d^3x' G_{\delta\beta}(\vec{x},\vec{x}',\tau) e^{-i\vec{p}\cdot\vec{x}} e^{i\vec{p}'\cdot\vec{x}'}$.

$$-\frac{\partial}{\partial \tau}G_{\alpha\beta}(\vec{p},\vec{p}',\tau) = (2\pi)^3\delta(\vec{p}-\vec{p}')\delta(\tau)\delta_{\alpha\beta} + \sum_{\delta}((\epsilon(\vec{p})-\mu)\delta_{\alpha\delta} - \mu_B\vec{\sigma}_{\alpha\delta} \cdot \vec{B})G_{\delta\beta}(\vec{p},\vec{p}',\tau)$$
(10)

defining $\xi(\vec{p}) = \epsilon(\vec{p}) - \mu$ and rearranging:

$$\sum_{\delta} \left(-\frac{\partial}{\partial \tau} - \xi(\vec{p}) \right) \delta_{\alpha\delta} + \mu_B \vec{\sigma}_{\alpha\delta} \cdot \vec{B} G_{\delta\beta}(\vec{p}, \vec{p}', \tau) = (2\pi)^3 \delta(\vec{p} - \vec{p}') \delta(\tau) \delta_{\alpha\beta}$$
(11)

Transforming this to Matsubara energies:

$$\sum_{\delta} ((i\omega_m - \xi(\vec{p}))\delta_{\alpha\delta} + \mu_B \vec{\sigma}_{\alpha\delta} \cdot \vec{B}) G_{\delta\beta}(\vec{p}, \vec{p}', \omega_m) = \frac{(2\pi)^3}{2} \delta(\vec{p} - \vec{p}') \delta_{\alpha\beta}$$
(12)

Equation 11 is a 2x2 matrix equation of the form, $A*G = \frac{(2\pi)^3}{2}\delta(\vec{p}-\vec{p}')I$. We can invert this to get $G = \frac{(2\pi)^3}{2}\delta(\vec{p}-\vec{p}')A^{-1}$. Setting $\vec{B} = B_0\hat{z}$.

$$A = \begin{pmatrix} i\omega_m - \xi + \mu_B B_0 & 0\\ 0 & i\omega_m - \xi(\vec{p}) - \mu_B B_0 \end{pmatrix} = (i\omega_m - \xi(\vec{p}))I + \mu_B \sigma_z \cdot \vec{B}$$
 (13)

$$G(\vec{p}, \vec{p}', \omega_m) = \frac{(2\pi)^3}{2} \delta(\vec{p} - \vec{p}') A^{-1} = \frac{(2\pi)^3}{2} \delta(\vec{p} - \vec{p}') \frac{(i\omega_m - \xi(\vec{p}))I - \mu_B \sigma_z B_0}{(i\omega_m - \xi(\vec{p}))^2 - \mu_B^2 B_0^2}$$
(14)

This leads to defining

$$G^{0}(\vec{p},\tau) = \frac{1}{2} \frac{(i\omega_{m} - \xi(\vec{p}))I - \mu_{B}\sigma_{z}B_{0}}{(i\omega_{m} - \xi(\vec{p}))^{2} - \mu_{B}^{2}B_{0}^{2}}$$
(15)

This is a diagonal matrix with entries

$$G_{11}^{0}(\vec{p},\tau) = \frac{1}{2} \frac{1}{i\omega_{m} - \xi(\vec{p}) + \mu_{B}B_{0}}$$

$$G_{22}^{0}(\vec{p},\tau) = \frac{1}{2} \frac{1}{i\omega_{m} - \xi(\vec{p}) - \mu_{B}B_{0}}$$

Non-Uniform Magnetic Field

Again, we start with the τ derivitive of the Greens function for uniform time to arrive at

$$\sum_{\delta} \left(\left(-\frac{\partial}{\partial \tau} - \xi(\hat{\vec{p}}) \right) \delta_{\alpha\delta} + \mu_B \vec{\sigma_{\alpha\delta}} \cdot \vec{B}(\vec{x}) \right) G_{\delta\beta}(x, x') = \delta(\vec{x} - \vec{x}') \delta(\tau) \delta_{\alpha\beta}$$
(16)

We now wish to transform to momentum space. The first two terms on the left hand side transform simply, but the $\vec{B}(\vec{x})G_{\delta\beta}(x,x')$ term needs to be evaluated. Using $\vec{B}(\vec{x}) = B_0\hat{z} + \delta\vec{B}(\vec{x})$:

$$\int d^3x \int d^3x' \vec{B}(\vec{x}) G_{\delta\beta}(\vec{x}, \vec{x}', \tau) e^{-i\vec{p}\cdot\vec{x}} e^{i\vec{p}'\cdot\vec{x}'}$$

$$= \vec{B_0} G_{\delta\beta}(\vec{p}, \vec{p}', \tau) + \int d^3x \delta \vec{B}(\vec{x}) G_{\delta\beta}(\vec{x}, \vec{p}', \tau) e^{-i\vec{p}\cdot\vec{x}}$$

$$= \vec{B_0} G_{\delta\beta}(\vec{p}, \vec{p}', \tau) + \int d^3x \int \frac{d^3q}{(2\pi)^3} \delta \vec{B}(\vec{q}) G_{\delta\beta}(\vec{x}, \vec{p}', \tau) e^{-i\vec{p}\cdot\vec{x}} e^{i\vec{q}\cdot\vec{x}}$$

$$= \vec{B_0} G_{\delta\beta}(\vec{p}, \vec{p}', \tau) + \int \frac{d^3q}{(2\pi)^3} \delta \vec{B}(\vec{q}) G_{\delta\beta}(\vec{p} - \vec{q}, \vec{p}', \tau)$$

If we also transform to Matsubara energies, equation 16 becomes:

$$\sum_{\delta} \left((i\omega_m - \xi(\vec{p}))\delta_{\alpha\delta} + \mu_B \sigma_{z\alpha\delta} B_0 \right) G_{\delta\beta}(\vec{p}, \vec{p'}, \omega_m) + \mu_B \sigma_{\alpha\delta}^{\dagger} \cdot \int \frac{d^3q}{(2\pi)^3} \delta \vec{B}(\vec{q}) G_{\delta\beta}(\vec{p} - \vec{q}, \vec{p'}, \omega_m)$$

$$= \frac{(2\pi)^3}{2} \delta(\vec{p} - \vec{p'}) \delta_{\alpha\beta}$$

We can then write the Greens function as a perterbation $G_{\delta\beta}(\vec{p},\vec{p}',\omega_m) = (2\pi)^3 G_{\delta\beta}^0(\vec{p},\omega_m)\delta(\vec{p}-\vec{p}') + \delta G_{\delta\beta}(\vec{p},\vec{p}',\omega_m)$. Where G^0 is from the uniform field case (equation 15).

$$\sum_{\delta} \left((i\omega_m - \xi(\vec{p}))\delta_{\alpha\delta} + \mu_B \sigma_{z\alpha\delta} \cdot \vec{B_0} \right) \left((2\pi)^3 G^0_{\delta\beta}(\vec{p}, \vec{p}', \omega_m) + \delta G_{\delta\beta}(\vec{p}, \vec{p}', \omega_m) \right)$$
$$+ \mu_B \sigma^{\vec{}}_{\alpha\delta} \cdot \delta \vec{B}(\vec{p} - \vec{p}') G^0_{\delta\beta}(\vec{p}', \vec{p}', \omega_m) + \mu_B \sigma^{\vec{}}_{\alpha\delta} \cdot \int \frac{d^3q}{(2\pi)^3} \delta \vec{B}(\vec{q}) \delta G_{\delta\beta}(\vec{p} - \vec{q}, \vec{p}', \omega_m) \right) = \frac{(2\pi)^3}{2} \delta(\vec{p} - \vec{p}') \delta_{\alpha\beta}$$

Keeping only terms up to first order in $\delta \vec{B}(\vec{x})$ and using the result from the uniform field we have:

$$\sum_{\delta} \left((i\omega_m - \xi(\vec{p}))\delta_{\alpha\delta} + \mu_B \vec{\sigma_{\alpha\delta}} \cdot \vec{B_0} \right) \delta G_{\delta\beta}(\vec{p}, \vec{p'}, \omega_m) + \mu_B \vec{\sigma_{\alpha\delta}} \cdot \delta \vec{B}(\vec{p} - \vec{p'}) G^0_{\delta\beta}(\vec{p'}, \omega_m) = 0$$
 (17)

This is a matrix equation of the form $A(\vec{p}) * \delta G = -\mu_B \sigma \cdot \delta \vec{B} (\vec{p} - \vec{p}') G^0$ where A is the same matrix as for the uniform field $(G^0 = \frac{1}{2}A^{-1})$. The result is:

$$\delta G(\vec{p}, \vec{p}', \omega_m) = -\frac{\mu_B}{2} G^0(\vec{p}, \omega_m) \vec{\sigma} \cdot \delta \vec{B}(\vec{p} - \vec{p}') G^0(\vec{p}', \omega_m)$$
(18)

Magnetization

The magnetization is defined as $\vec{M}(\vec{x}) = \mu_B \sum_{\alpha\beta} \langle \vec{\sigma}_{\beta\alpha} \psi_{\beta}^{\dagger}(\vec{x}) \psi_{\alpha}(\vec{x}) \rangle = \mu_B \sum_{\alpha\beta} \vec{\sigma}_{\beta\alpha} G_{\alpha\beta}(\vec{x}, \vec{x}, \tau = -0i)$. We wish to transform this to momentum space:

$$\vec{M}(\vec{x}) = \frac{\mu_B}{(2\pi)^6} \sum_{\alpha\beta} \sigma_{\beta\alpha}^{\vec{r}} \int d^3p \int d^3p' G_{\alpha\beta}(\vec{p}, \vec{p'}, \tau = -0i) e^{i(\vec{p} - \vec{p'}) \cdot \vec{x}}$$
(19)

$$\vec{M}(\vec{q}) = \frac{\mu_B}{(2\pi)^6} \sum_{\alpha\beta} \vec{\sigma}_{\beta\alpha} \int d^3p \int d^3p' G_{\alpha\beta}(\vec{p}, \vec{p}', \tau = -0i) \int d^3x e^{i(\vec{p} - \vec{p}' - \vec{q}) \cdot \vec{x}}$$
(20)

$$= \frac{\mu_B}{(2\pi)^6} \sum_{\alpha\beta} \sigma_{\beta\alpha}^{\dagger} \int d^3p \int d^3p' G_{\alpha\beta}(\vec{p}, \vec{p}', \tau = -0i)(2\pi)^3 \delta(\vec{p} - \vec{p}' - \vec{q})$$
 (21)

$$= \frac{\mu_B}{(2\pi)^3} \sum_{\alpha\beta} \sigma_{\beta\alpha} \int d^3p G_{\alpha\beta}(\vec{p}, \vec{p} - \vec{q}, \tau = -0i)$$
(22)

$$= \mu_B \sum_{\alpha\beta} \vec{\sigma}_{\beta\alpha} \int d^3 p (G_{\alpha\beta}^0(\vec{p}, \vec{p} - \vec{q}, \tau = -0i) + \delta G_{\alpha\beta}(\vec{p}, \vec{p} - \vec{q}, \tau = -0i) / (2\pi)^3)$$
 (23)

We can now change to a sum over Matsubara energies $(\omega_m = 2\pi(m+1/2)T)$ so $\delta G(\vec{p},\tau=-0i) = T\sum_{\omega_m}\delta G(\vec{p},\omega_m)$. If we Consider the ith component of the magentization:

$$\vec{M}_{i}(\vec{q}) = \mu_{B}T \sum_{\alpha\beta} \sum_{\omega_{m}} \int d^{3}p \left[\vec{\sigma}_{i\beta\alpha} G^{0}_{\alpha\beta}(\vec{p}, \omega_{m}) - \frac{\mu_{B}}{2(2\pi)^{3}} \vec{\sigma}_{i\beta\alpha} \sum_{\delta\gamma} \sum_{j} G^{0}_{\alpha\delta}(\vec{p}, \omega_{m}) \vec{\sigma}_{j\delta\gamma} G^{0}_{\gamma\beta}(\vec{p} - \vec{q}, \omega_{m}) \delta \vec{B}(\vec{q})_{j} \right]$$

$$= \vec{M}_{0}(\vec{p})_{i} + \sum_{j} \mathcal{X}(\vec{p})_{ij} \delta \vec{B}(\vec{q})_{j}$$

The susceptibility is:

$$\mathcal{X}(\vec{q})_{ij} = -\frac{\mu_B^2 T}{2(2\pi)^3} \sum_{\alpha\beta\delta\gamma} \sum_{\omega_m} \int d^3p \vec{\sigma}_{i\beta\alpha} G^0_{\alpha\delta}(\vec{p}, \omega_m) \vec{\sigma}_{j\delta\gamma} G^0_{\gamma\beta}(\vec{p} - \vec{q}, \omega_m)$$
(24)

Since G^0 is a diagnol matrix equation 24 can be simplified

$$\mathcal{X}(\vec{q})_{ij} = -\frac{\mu_B^2 T}{2(2\pi)^3} \sum_{\alpha\beta} \sum_{\omega_m} \int d^3p \vec{\sigma}_{i\beta\alpha} G^0_{\alpha\alpha}(\vec{p}, \omega_m) \vec{\sigma}_{j\alpha\beta} G^0_{\beta\beta}(\vec{p} - \vec{q}, \omega_m)$$
(25)

We can also do the sum over matsubara energies using complex integration with $z=i\omega_m,\ T\sum_{ij}B(z)=i\omega_m$

 $\frac{1}{2i\pi}\int dz B(z)f(z)$ where f(z) is the fermi function $f(\xi)=(e^{\xi/T}+1)^{-1}$. Upon investigation, one finds that the susceptibility tensor is diagonal and that $\mathcal{X}_{xx}=\mathcal{X}_{yy}$. We also can symmetrize the momentum integral. If we define $\xi_{\pm}=\xi(\vec{p}\pm\vec{q}/2)$ the susceptibility is.

$$\mathcal{X}(\vec{q})_{zz} = -\frac{\mu_B^2}{2(2\pi)^3} \int d^3p \left[\frac{f(\xi_+ - \mu_B B_0) - f(\xi_- - \mu_B B_0) + f(\xi_+ + \mu_B B_0) - f(\xi_- + \mu_B B_0)}{\xi_+ - \xi_-} \right]$$

$$\mathcal{X}(\vec{q})_{xx} = -\frac{\mu_B^2}{2(2\pi)^3} \int d^3p \left[\frac{f(\xi_+ - \mu_B B_0) - f(\xi_- + \mu_B B_0)}{\xi_+ - \xi_- - 2\mu_B B_0} + \frac{f(\xi_+ + \mu_B B_0) - f(\xi_- - \mu_B B_0)}{\xi_+ - \xi_- + 2\mu_B B_0} \right]$$

Superconducting Phase

We now assume that our sample is in the uniform superconducting phase (S wave superconductor) with Hamiltonian:

$$H = \sum_{\gamma\delta} \int d^3x \psi_{\gamma}^{\dagger}(\vec{x}) (H_0 - \mu N - \mu_B \sigma_z B_0) \psi_{\delta}(\vec{x}) + \frac{1}{2} \int d^3x' V_{\gamma\delta}(\vec{x} - \vec{x}') \psi_{\alpha}^{\dagger}(\vec{x}') \psi_{\gamma}^{\dagger}(\vec{x}) \psi_{\delta}(\vec{x}) \psi_{\beta}(\vec{x}')$$

Where $V_{\gamma\delta}(\vec{x}-\vec{x}')$ is the spin dependent attractive superconducting potential. We also must define a new set of Greens functions for the superconducting state:

$$G_{\alpha\beta}(\vec{x}, \vec{x}', \tau) = - \langle T\psi_{\alpha}(\vec{x}, \tau)\psi_{\beta}^{\dagger}(\vec{x}') \rangle$$

$$\bar{G}_{\alpha\beta}(\vec{x}, \vec{x}', \tau) = - \langle T\psi_{\alpha}^{\dagger}(\vec{x}, \tau)\psi_{\beta}(\vec{x}') \rangle$$

$$F_{\alpha\beta}(\vec{x}, \vec{x}', \tau) = - \langle T\psi_{\alpha}(\vec{x}, \tau)\psi_{\beta}(\vec{x}') \rangle$$

$$\bar{F}_{\alpha\beta}(\vec{x}, \vec{x}', \tau) = - \langle T\psi_{\alpha}^{\dagger}(\vec{x}, \tau)\psi_{\beta}^{\dagger}(\vec{x}') \rangle$$

In order to proceed we must take the mean field approximation and define the superconducting order parameter $\Delta_{\alpha\beta}(\vec{x}, \vec{x}') = V_{\alpha\beta}(\vec{x} - \vec{x}') < \psi_{\beta}(\vec{x}')\psi_{\alpha}(\vec{x}) >$. The mean field Hamiltonian is:

$$H_{mf} = \sum_{\gamma\delta} \int d^3x \psi_{\gamma}^{\dagger}(\vec{x}) (H_0 - \mu N - \mu_B \sigma_z B_0) \psi_{\delta}(\vec{x}) + \frac{1}{2} \int d^3x' \left[\psi_{\gamma}^{\dagger}(\vec{x}) \psi_{\delta}^{\dagger}(\vec{x}') \Delta_{\gamma\delta}(\vec{x}, \vec{x}') + \psi_{\delta}(\vec{x}') \psi_{\gamma}(\vec{x}) \Delta_{\delta\gamma}^*(\vec{x}, \vec{x}') \right]$$
(26)

To find the Green's function we proceed as before and try to find the commutator $[\psi_{\alpha}(\vec{x},\tau), H_{mf}]$. We have found the first part of this previously, but need to find $[\psi_{\alpha}(\vec{x},\tau), V_{sc}]$ and $[\psi_{\alpha}^{\dagger}(\vec{x},\tau), V_{sc}]$. Pulling out the time dependence and keeping in mind that Δ is a fermionic operator:

$$[\psi_{\alpha}(\vec{x}), V_{sc}] = \frac{1}{2} \sum_{\gamma \delta} \int d^3 x' \int d^3 x'' \Delta_{\gamma \delta}(\vec{x}', \vec{x}'') [\psi_{\alpha}(\vec{x}), \psi_{\gamma}^{\dagger}(\vec{x}') \psi_{\delta}^{\dagger}(\vec{x}'')] + \Delta_{\delta \gamma}^* (\vec{x}', \vec{x}'') [\psi_{\alpha}(\vec{x}), \psi_{\delta}(\vec{x}'') \psi_{\gamma}(\vec{x}')]$$

$$= \frac{1}{2} \sum_{\gamma \delta} \int d^3 x' \delta_{\alpha \gamma} \Delta_{\gamma \delta}(\vec{x}, \vec{x}') \psi_{\delta}^{\dagger}(\vec{x}') - \delta_{\alpha \delta} \Delta_{\gamma \delta}(\vec{x}', \vec{x}) \psi_{\gamma}^{\dagger}(\vec{x}')$$

$$= \sum_{\delta} \int d^3 x' \Delta_{\alpha \delta}(\vec{x}, \vec{x}') \psi_{\delta}^{\dagger}(\vec{x}')$$

$$[\psi_{\alpha}^{\dagger}(\vec{x}), V_{sc}] = \sum_{\delta} \int d^3 x' \Delta_{\alpha \delta}^* (\vec{x}, \vec{x}') \psi_{\delta}(\vec{x}')$$

Plugging this into the equation of motion for the Greens function:

$$-\frac{\partial}{\partial \tau}G_{\alpha\beta}(\vec{x}, \vec{x}', \tau) = \delta(\vec{x} - \vec{x}')\delta(\tau)\delta_{\alpha\beta}\mathcal{I}_{ph} + \sum_{\delta}((\epsilon(\vec{p}) - \mu)\delta_{\alpha\delta} - \mu_B\sigma_{z\alpha\delta}\vec{B})G_{\delta\beta}(\vec{x}, \vec{x}', \tau)$$
$$+ \sum_{\delta}\int d^3y \Delta_{\alpha\delta}(\vec{x}, \vec{y})\bar{F}_{\delta\beta}(\vec{y}, \vec{x}', \tau)$$

Where \mathcal{I}_{ph} is the identity matrix in particle/hole space. Transforming to momentum and energy space:

$$\sum_{\delta} \int \frac{d^3k}{(2\pi)^3} \left[(i\omega_m - \xi(\vec{p}))\delta_{\alpha\delta} + \mu_B \sigma_{z\alpha\delta} B_0)(2\pi)^3 \delta(\vec{k} - \vec{p}) G_{\delta\beta}(\vec{k}, \vec{p}', \omega_m) - \Delta_{\alpha\delta}(\vec{p}, \vec{k}) \bar{F}_{\delta\beta}(\vec{k}, \vec{p}', \omega_m) \right] \\
= \frac{(2\pi)^3}{2} \delta(\vec{p} - \vec{p}') \delta_{\alpha\beta} \mathcal{I}_{ph}$$

If we assume that Δ is uniform in space (ie. $\Delta(\vec{x}, \vec{x}') = \Delta(|\vec{x} - \vec{x}'|)$), and recall that since Δ is a fermionic operator $\Delta(-\vec{p}) = \Delta(\vec{p})$, then the momentum/energy equation is:

$$\sum_{\delta} \left[(i\omega_m - \xi(\vec{p}))\delta_{\alpha\delta} + \mu_B \sigma_{z\alpha\delta} B_0) G_{\delta\beta}(\vec{p}, \vec{p}', \omega_m) - \Delta_{\alpha\delta}(\vec{p}) \bar{F}_{\delta\beta}(\vec{p}, \vec{p}', \omega_m) \right] = \frac{(2\pi)^3}{2} \delta(\vec{p} - \vec{p}') \delta_{\alpha\beta}$$

Working through the rest of the Greens function equations of motion yields a matrix equation (sum over δ is implied).

$$\begin{pmatrix}
(i\omega_{m} - \xi(\vec{p}))\delta_{\alpha\delta} + \mu_{B}\vec{\sigma}_{z\alpha\delta}B_{0} & -\Delta_{\alpha\delta}(\vec{p}) \\
-\Delta_{\alpha\delta}^{*}(\vec{p}) & (i\omega_{m} + \xi(\vec{p}))\delta_{\alpha\delta} - \mu_{B}\sigma_{z\alpha\delta}B_{0}
\end{pmatrix}
\begin{pmatrix}
G_{\delta\beta}(\vec{p},\vec{p}',\omega_{m}) & F_{\delta\beta}(\vec{p},\vec{p}',\omega_{m}) \\
\bar{F}_{\delta\beta}(\vec{p},\vec{p}',\omega_{m}) & \bar{G}_{\delta\beta}(\vec{p},\vec{p}',\omega_{m})
\end{pmatrix}$$

$$= \frac{(2\pi)^{3}}{2}\delta(\vec{p} - \vec{p}')\delta_{\alpha\beta}\mathcal{I}_{ph}$$

Now we use the same definition of the matrix A as (13), and define $A' = \begin{pmatrix} i\omega_m + \xi - \mu_B B_0 & 0 \\ 0 & i\omega_m + \xi(\vec{p}) + \mu_B B_0 \end{pmatrix}$.

We also choose the order parameter to be a singlet state which means it has spin structure $\Delta(\vec{p}) = \Delta(\vec{p})i\sigma_y$. Using these definitions we can invert the matrix equation to get the superconducting Greens functions.

$$\begin{split} G(\vec{p},\vec{p}',\omega_{m}) &= \frac{(2\pi)^{3}}{2} \delta(\vec{p} - \vec{p}') \frac{\left(i\omega_{m} - \xi - \frac{|\Delta|^{2}(i\omega_{m} + \xi)}{(i\omega_{m} + \xi)^{2} - \mu_{B}^{2}B_{0}^{2}}\right) \mathcal{I} - b\left(1 + \frac{|\Delta|^{2}}{(i\omega_{m} + \xi)^{2} - \mu_{B}^{2}B_{0}^{2}}\right) \sigma_{z}}{\left(i\omega_{m} - \xi - \frac{|\Delta|^{2}(i\omega_{m} + \xi)}{(i\omega_{m} + \xi)^{2} - \mu_{B}^{2}B_{0}^{2}}\right)^{2} - b^{2}\left(1 + \frac{|\Delta|^{2}}{(i\omega_{m} + \xi)^{2} - \mu_{B}^{2}B_{0}^{2}}\right)^{2}} \\ \bar{G}(\vec{p}, \vec{p}', \omega_{m}) &= \frac{(2\pi)^{3}}{2} \delta(\vec{p} - \vec{p}') \frac{\left(i\omega_{m} + \xi - \frac{|\Delta|^{2}(i\omega_{m} - \xi)}{(i\omega_{m} - \xi)^{2} - \mu_{B}^{2}B_{0}^{2}}\right) \mathcal{I} + b\left(1 + \frac{|\Delta|^{2}}{(i\omega_{m} - \xi)^{2} - \mu_{B}^{2}B_{0}^{2}}\right) \sigma_{z}}{\left(i\omega_{m} + \xi - \frac{|\Delta|^{2}(i\omega_{m} - \xi)}{(i\omega_{m} - \xi)^{2} - \mu_{B}^{2}B_{0}^{2}}\right)^{2} - b^{2}\left(1 + \frac{|\Delta|^{2}}{(i\omega_{m} - \xi)^{2} - \mu_{B}^{2}B_{0}^{2}}\right)^{2}} \\ F(\vec{p}, \vec{p}', \omega_{m}) &= \frac{(2\pi)^{3} \delta(\vec{p} - \vec{p}') \Delta(\vec{p})}{2((i\omega_{m} - \xi)^{2} - b^{2})(')} \left[\left(i\omega_{m} + \xi - \frac{|\Delta|^{2}(i\omega_{m} - \xi)}{(i\omega_{m} - \xi)^{2} - \mu_{B}^{2}B_{0}^{2}}\right)((i\omega_{m} - \xi)i\sigma_{y} - b\sigma_{x}) \right. \\ &- b\left(1 + \frac{|\Delta|^{2}}{(i\omega_{m} - \xi)^{2} - \mu_{B}^{2}B_{0}^{2}}\right)((i\omega_{m} - \xi)\sigma_{x} - bi\sigma_{y})\right] \\ \bar{F}(\vec{p}, \vec{p}', \omega_{m}) &= -\frac{(2\pi)^{3} \delta(\vec{p} - \vec{p}') \Delta^{*}(\vec{p})}{2((i\omega_{m} + \xi)^{2} - b^{2})('')} \left[\left(i\omega_{m} - \xi - \frac{|\Delta|^{2}(i\omega_{m} + \xi)}{(i\omega_{m} + \xi)^{2} - \mu_{B}^{2}B_{0}^{2}}\right)((i\omega_{m} + \xi)i\sigma_{y} + b\sigma_{x}) \right. \\ &+ b\left(1 + \frac{|\Delta|^{2}}{(i\omega_{m} + \xi)^{2} - \mu_{B}^{2}B_{0}^{2}}\right)((i\omega_{m} + \xi)\sigma_{x} + bi\sigma_{y})\right] \end{split}$$

Where (') and (") is the denominator of \bar{G} and G respectfully.