Quantum Methods in Molecular Simulations (2-0-3-4)

Instructors

1. Dr. Sabyashachi Mishra

Department of Chemistry and Centre for Theoretical Studies

2. Dr. P. A. Deshpande

Department of Chemical Engineering and Centre for Theoretical Studies

Syllabus

Analytical solution of hydrogen and hydrogenic systems; Born-Oppenheimer approximation; Formulation of Hartree-Fock method for molecular systems; Post HF methods overview; exchange and correlation concepts; configuration interaction techniques; coupled cluster technique for many-body systems; density functional theory; Exchange correlation functionals, dispersion corrections; Time-dependent DFT; geometry optimization techniques; basis sets in quantum chemistry; general framework of molecular simulations; Quantum chemical simulations of solids and crystalline materials; Simulation of molecular catalysis; vibrational analysis and frequency calculations; Simulation of molecular properties.

Lecture-wise split-up

Lecture 1-2: Analytical solution of hydrogenic systems; Born-Oppenheimer approximation

Lecture 3-4: Formulation of Hartree-Fock method for molecular systems

Lecture 5-6: Post HF methods overview; exchange and correlation concepts

Lecture 7-8: Configuration interaction techniques

Lecture 9-10: Coupled cluster technique for many-body systems

Lecture 11-12: Molecular simulation with density functional theory

Lecture 13-14: Exchange correlation functionals, dispersion corrections; TDDFT

Lecture 15-16: Quantum chemical simulation of solids; overview and solid state physics

Lecture 17-18: Quantum chemical simulations of solids and crystalline materials; Simulation of molecular catalysis

Lecture 19-20: Geometry optimization techniques; basis sets in quantum chemistry; general framework of molecular simulations

Lecture 21-22: vibrational analysis; frequency calculations

Lecture 23-24: Simulation of molecular properties

Lab component

Lab 7: Multi-configuration SCF calculations; concept of active space.

Lab 8: Density functional calculations of large molecules; cost-benefit analysis.

Lab 9: Effects of basis sets and electron correlation - A comparison of methods.

Lab 10: Framework for crystalline solids; building crystal planes and super cells.

Lab 11: DFT calculations of crystalline solids; Simulation of molecular catalysis.

Lab 12: Biomolecular simulation using hybrid QM/MM approach.

Text and References

- 1. Jensen F. Introduction to Computational Chemistry, Wiley Publishers
- 2. Szabo A., Ostlund N. S. Modern Quantum Chemistry, Dover Publishers
- 3. Gaussian 09, Gaussian Inc.

Exam and evaluation:

Mid-semester: 30% End-semester: 50%

TA: 20% (term paper/presentation/simulation report)

Pre-requisites: Consent of the instructors

Maximum number of students allowed to register: 30

Semester in which the course will be offered: Spring