

www.51sensor.com www.lamshine.com hover@lamshine.com sales@lamshine.com

SPI 接口规程

目的

这篇文章说明了在单轴 SCA61T 和双轴 SCA100T 倾角仪中使用的 SPI 接口。

SPI 接口

外围串行接口(SPI)是一种四线同步串行接口。数据通信在从器件选择或片选信号(CSB)为低时有效。数据由串行数据输入(MOSI),串行数据输出(MISO)和串行时钟信号(SCK)组成的三线接口进行传输。每个 SPI 系统由一个主机,一个或多个从机构成。主机是提供 SPI 时钟信号的微控制器,从机是接收 SPI 信号的任何集成电路。

图 1 典型 SPI 接口连接图

该 ASIC 的 SPI 接口是支持绝大多数用软件实现 SPI 总线的微控制器。然而它不支持用硬件实现 SPI 的微型控制器(这种控制器在许多商用控制器中很普遍)。该产品的 SPI 接口用于检测、校准及最后的应用中。在常规应用中,一些检测和校准命令是无效的,因而这里没有相关文档。在主从操作模式中,该 ASIC 总是作为从器件来操作的。主机(如 uP 检测机等)与 ASIC 间使用四线串行系统实现传输。

MOSI 主机出从机入 uP — ASIC
MISO 主机入从机出 ASIC— uP
SCK 串行时钟 uP — ASIC
CSB 片选(低有效) uP— ASIC

每次数据传输开始于 CSB 信号的下降沿,结束于其上升沿。数据传输过程中,命令和数据由 SCK 和 CSB 信号控制,并遵循下列规则:

- 1. 命令和数据传输时,高位在前,低位在后
- 2. 每个输出数据/状态位在 SCK 下降沿移出 (MI SO 线)
- 3. SCK 信号的上升沿数据输出(MOSI线)
- 4. 器件在 CSB 信号为低被选中,同时收到一个八比特命令。该命令指定了、将要进行的操作。
- 5. CSB 信号上升沿时结束所有的数据传输,并复位内部计数器和命令字寄存器。
- 6. 如果接收到无效命令,则不会有数据写入 IC, MISO 将保持高阻直至 CSB 下降沿,并对串行通信重新初始化。
- 7. 除了表 1 中所列的 SPI 命令之外,为了能够执行其它命令,锁存器的内容须正确设置。如果其他命令输入时,锁存器的内容不正确,则数据不会传送到芯片上,并且在 CSB 信号下降沿到来之前,MI SO 线一直处于高阻态。
- 8. 发送完命令后,主机的的数据传送立即进行(在 MOSI 线),数据将写入 ASIC 的内部寄存器中。
- 9. 在 SCK 的上升沿, SPI 命令的最后一位输入后,则在紧接的 SCK 的下降沿到来时,数据开始由 MI SO 线输出。
 - 10. 最高数据传输速率可超过 1MHZ。
- SPI 命令可以是独立的指令也可以是指令与数据的组合。在指令与数据一起发送时,输入数据直接跟在指令之后,输出数据与主机的输入数据平行进行。

图 2 SPI 总线上的命令与数据的传输

上电后, 电路以测量模式启动, 这是在最终应用中使用的操作模式。

数字接口说明

表 1 数字参数

<u> </u>					
参数	条件	最小值	典型值	最大值	单位
数字输出	@500kHz			1	nF
SPI 时钟频率			500		kHz
内部 AD 频率		150			us
数据传输时间	@500kHz	38			us

上海朗尚科贸有限公司 Shanghai Lamshine Co. LTD 上海浦东东昌路东园一村 139 号 1906 室 200120 Tel:+86-21-58796509 58765633 www.51sensor.com www.lamshine.com hover@lamshine.com sales@lamshine.com

注:最小 SPI 频率取决于主控制器时钟频率

SPI 命令

SPI 接口使用 8 比特指令(或命令)寄存器。用户使用的一组命令列于表 6 中。

表 2 SPI 命令

命令名称	命令格式	描述
中マ石が	마국엽자	1.110000000000000000000000000000000000
MEAS	00000000	测量模式(上电后,常规操作模式)
RWTR	00001000	读写温度数据寄存器
STX	00001110	激活 X 通道自检
STY	00001111	激活 Y 通道自检
RDAX	00010000	通过 SPI 总线读 X 通道加速度值
RDAY	00010001	通过 SPI 总线读 Y 通道加速度值

注:斜体命令仅用于双轴 SCA100T 中

测量模式(MEAS):上电后的标准操作模式。在常规操作中,MEAS 命令是退出自检的命令。

读写温度数据寄存器(RWTR):在常规操作中,可以在不影响电路操作的情况下读写温度数据寄存器,温度数据寄存器每隔 150us 加载一次,在 CSB 为低时,不能进行加载。因而为了保证数据正确,在执行 RWTR 命令前, CSB 信号至少要保持 150us 的高电平。数据传输如图 3 所示,MSB 在前。在常规操作中,执行 RWTR 命令时,什么数据写入温度数据寄存器并不重要,因而建议全部输入 0。

对 X 通道自检(STX): STX 命令能激活 X 通道(通道 1)自检功能。内部电荷管道被激活,高电压施加到加速度传感器的电极上,从而产生静电力,使敏感梁偏离平衡位置,产生正向的加速度。输入 MEAS 命令后,自检无效。

对 Y 通道自检(STY): STY 命令能激活 Y 通道(通道 2)自检功能。内部电荷管道被激活,高电压施加到加速度传感器的电极上,从而产生静电力,使敏感梁偏离平衡位置,产生正向的加速度。输入 MEAS 命令后,自检无效。

读 X 通道加速度(RDAX): RDAX 命令能够访问 X 通道(通道 1) A/D 转换器加速度信号,加速度信号存储在 X 通道加速度数据寄存器中。在常规操作中,加速度数据寄存器每隔 150us 加载一次。当 CSB 信号为低时,不能进行加载操作,因而为了保证数据正确,执行 RDAX 命令前, CSB 信号应至少保持 150us 的高电平。数据输出是 11 比特的数字量, MSB 在前, LSB 在后。

读 X 通道加速度(RDAX): RDAX 命令能够访问 Y 通道(通道 2) A/D 转换器加速度信号,加速度信号存储在 Y 通道加速度数据寄存器中。在常规操作中,加速度数据寄存器每隔 150us 加载一次。当 CSB 信号为低时,不能进行加载操作,因而为了保证数据正确,执行 RDAY 命令前, CSB 信号应至少保持 150us 的高电平。数据输出是 11 比特的数字量 MSB 在前 LSB 在后。注意:此命令仅对双轴 SCA100T有效。

图 3 SPI 接口 RDAX 命令与数据的传送过程

Freq

图 4 SPI 总线时序图

SPI 接口的直流特性

Lamshine

5V 供电(特别标明的除外),流入电路的电流为正值。

表 3 SPI 接口的直流特性

参数	条件	符号	最小值	典型值	最大值	单位			
	CSB 输入端								
截止电流	V _{IN} =0V	I _{PU}	13	22	35	uA			
输入高电平		VIH	4		V _{dd} +0.3	٧			
输入低电平		VIL	-0.3		1	٧			
滞后电压		V_{HYST}		0.23^*V_{dd}		٧			
输入电容		CIN		2		pF			
MOSI, SCK 输入端									
灌电流	$V_{IN}=5V$	I _{PD}	9	17	29	uA			
输入高电平		VIH	4		V _{dd} +0.3	٧			

上海朗尚科贸有限公司 Shanghai Lamshine Co. LTD 上海浦东东昌路东园一村 139 号 1906 室 200120 Tel:+86-21-58796509 58765633 www.51sensor.com www.lamshine.com hover@lamshine.com sales@lamshine.com

输入低电平	1	VIL	-0.3		1	V		
滞后电压	,	V_{HYST}		0.23^*V_{dd}		٧		
输入电容		Cin		2		pF		
MI SO 输出端								
输出高电平	1>-1mA	V _{OH}	V _{dd} -0.5			V		
输出低电平	1<1mA	V_{oL}			0.5	V		
三态漏电流	$0 < V_{\text{MISO}} < V_{\text{dd}}$	I LEAK		5	100	рА		

表 4 SPI 接口的交流特性

参数	条件	符号	最小值	典型值	最大值	单位	
CSB, SCK 端							
由 CSB(10%) 信 号 到 SCK(90%) 信 号的时间		T _{LS1}	120			ns	
由 SCK(10%) 信 号 到 CSB(90%) 信 号的时间		T_{LS2}	120			ns	
		S	CK 端				
SCK 信号低电 平时间	MISO 线 的分布 电容小 于2nF	T _{CL}	1			uS	
SCK 信号高电平时间	MISO 线 的分布 电容小 于 2nF	Тсн	1			uS	
		MOSI	, SCK 端				
由 MOSI (10%) 到 SCK(90%)信 时间,数据建 间	号的	Тѕет	30			ns	
由 SCK(90%)信 MOSI(10%,90%) 号的时间,数 续时间	信	T _{HOL}	30			ns	

上海朗尚科贸有限公司 Shanghai Lamshine Co. LTD 上海浦东东昌路东园一村 139 号 1906 室 200120 Tel:+86-21-58796509 58765633 www.51sensor.com www.lamshine.com hover@lamshine.com sales@lamshine.com

	www.51sens	SOLCOIII	www.	lamshine.com	nover@ramsim	ie.com saies	@lamshine.com
MI SO, CSB 端							
由 CSB(10%)信号 到稳定的MISO(10%,90%)的时间	MI SO 线 分 电 小 FSpF	T _{VAL1}		10		100	ns
由 CSB(90%)信 号到高阻态的 MISO的时间	MI SO 线的 分 布 电 小 15pF	T _{LZ}		10		100	ns
			MISC), SCK 端			
由 SCK(10%)信号 到稳定的MISO(10%,90%)的时间	MI SO 线的 分布 电小 T5pF	T _{VAL2}				100	ns
CSB 端							
一个 SPI 周 期,CSB 信号 高电平时间 (90%)		Т _Ш		15			uS