Combinatorics Assignment 1

Nikolaj Dybdahl Rathcke (Student ID: 74763954)

August 1, 2016

Question 2

TODO

Question 3

Part (a)

TODO

Part (b)

TODO

Part (c)

TODO

Question 4

TODO

Question 5

TODO

Question 6

Let the ground set $E = \{1, 2, 3\}$. Let $M_1 = (E, \mathcal{I}(M_1))$ and $M_2 = (E, \mathcal{I}(M_2))$ be the matroids where:

$$\mathcal{I}(M_1) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}\}\$$

$$\mathcal{I}(M_2) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 3\}, \{2, 3\}\}\$$

We can see that M_1 and M_2 are indeed matroids as they satisfy (I1), (I2) and (I3). However, if we look at $M_3 = (E, \mathcal{I}(M_3)) = (E, \mathcal{I}(M_1) \cap \mathcal{I}(M_2))$, it has following collection of subsets:

$$\mathcal{I}(M_3) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 3\}\}$$

This is not a matroid as it does not satisfy (I3). To see this, consider $I_1 = \{2\}$ and $I_2 = \{1,3\}$. There exists no element $e \in I_2 - I_1 = \{1,3\}$ such that $I_1 \cup \{e\} \in \mathcal{I}(M_3)$. That is, the subsets $\{1,2\}$ and $\{2,3\}$ do not exist in $\mathcal{I}(M_3)$.

Combinatorics Assignment 1

Question 7

This is easiest shown with a counter-example. Consider the matrix:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Where E is the set $\{1,2,3\}$ of column labels with the independent sets $\mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$. Now let $\mathcal{I}^- = \mathcal{I} \cup \{1,2,3\}$. This includes the dependent subset $\{1,2,3\}$, but it still satisfies (I1), (I2) and $(I3)^-$.

It obviously satisfy (I1) and (I2) as I^- is the powerset of E, that is, all the possible subsets of E. Likewise, it is easy to see that the set \mathcal{I}^- satisfies $(I3)^-$, since if we have two subsets I_1 and I_2 where $|I_1| < |I_2|$, then you can add any element $e \in E$ (we are guaranteed there is one) to I_1 and that set will be in I^- as it is the powerset of E.