第八节 多元函数的极值

- 8.1 多元函数的极值及最大值、最小值
- 8.2 条件极值 拉格朗日乘数法

一、问题的提出

引例:某商店卖两种牌子的果汁,本地牌子每瓶进价1元,外地牌子每瓶进价1.2元.店主估计,如果本地牌子的每瓶卖x元,外地牌子的每瓶卖y元,则每天可卖出70-5x+4y瓶本地牌子的果汁,80+6x-7y瓶外地牌子的果汁.问:店主每天以什么价格卖两种牌子的果汁可取得最大收益?

每天的收益为

f(x,y) = (x-1)(70-5x+4y)+(y-1.2)(80+6x-7y). 求最大收益,即求二元函数的最大值.

一元函数y=f(x)极值

 $(1) \quad x \in D$

(3) 判别法

(1) 第一充分条件

(2) 第二充分条件

$$f'(x_0) = 0, f''(x_0) < 0$$
 $\Longrightarrow f(x_0)$ 为极大值 $f'(x_0) = 0, f''(x_0) > 0$ $\Longrightarrow f(x_0)$ 为极小值 \to

8.1 多元函数的极值及应用

定义: 若函数 z = f(x, y) 在点 (x_0, y_0) 的某邻域内有 $f(x, y) \le f(x_0, y_0)$ (或 $f(x, y) \ge f(x_0, y_0)$)

则称函数在该点取得极大值(极小值).极大值和极小值统称为极值,使函数取得极值的点称为极值点。

例如:

 $z = 3x^2 + 4y^2$ 在点 (0,0) 有极小值; $z = -\sqrt{x^2 + y^2}$ 在点 (0,0) 有极大值; z = xy 在点 (0,0) 无极值.

定理1(必要条件) 函数 z = f(x, y) 在点 (x_0, y_0) 存在偏导数,且在该点取得极值,则有

$$f_x'(x_0, y_0) = 0, f_y'(x_0, y_0) = 0$$

证:不妨设 z = f(x,y)在 (x_0,y_0) 处取得极大值,故在 (x_0,y_0) 的某去心邻域内有 $f(x,y) < f(x_0,y_0)$. 特别地,固定 $y = y_0$,则有 $f(x,y_0) < f(x_0,y_0)$.

即 $z = f(x, y_0)$ 在 $x = x_0$ 取得极大值. $z = f(x_0, y)$ 在 $y = y_0$ 取得极大值.

据一元函数极值的必要条件可知定理结论成立.

定理1(必要条件)函数Z = f(x, y)在点 (x_0, y_0) 存在偏导数,且在该点取得极值,则有

$$f_x'(x_0, y_0) = 0, f_y'(x_0, y_0) = 0$$

说明:使得所有一阶偏导数都为 0 的点称为驻点。但驻点不一定是极值点。

例如,z = xy有驻点(0,0),但在该点不取极值.

问题: 在什么情况下, 驻点是极值点?

定理2(充分条件) 若函数 z = f(x, y) 在点 (x_0, y_0) 的 的某邻域内具有一阶和二阶连续偏导数,且

$$f_x(x_0, y_0) = 0, f_y(x_0, y_0) = 0$$

$$A = f_{xx}(x_0, y_0), B = f_{xy}(x_0, y_0), C = f_{yy}(x_0, y_0)$$

则: 1) 当 $AC-B^2>0$ 时,点 (x_0,y_0) 是极值点,

$$A<0$$
 时取极大值; $A>0$ 时取极小值.

- 2) 当 $AC-B^2 < 0$ 时, 没有极值.
- 3) 当 $AC-B^2=0$ 时,不能确定,需另行讨论.

求函数 z = f(x, y) 的极值的一般步骤:

- 1. 求定义域,解方程组 $f_x(x,y) = 0$, $f_y(x,y) = 0$ 求出实数解,得驻点;
- 2. 对每一个驻点 (x_0, y_0) , 求二阶偏导数的值 A, B, C;

3. 定出 $AC - B^2$ 的符号,再判定是否有极值.

例1. 求函数
$$f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值.

解: 第一步 定义域.

第二步 求驻点.

解方程组
$$\begin{cases} f_x(x,y) = 3x^2 + 6x - 9 = 0 \Rightarrow x_1 = 1, x_2 = -3 \\ f_y(x,y) = -3y^2 + 6y = 0 \Rightarrow y_1 = 0, y_2 = 2 \end{cases}$$

得驻点: (1,0), (1,2),(-3,0),(-3,2).

第三步 判别. 求二阶偏导数 B

 $f_{xx}(x,y) = 6x + 6$, $f_{xy}(x,y) = 0$, $f_{yy}(x,y) = -6y + 6$

 $\therefore f(1,0) = -5 为极小值;$

在点(1,2) 处
$$A=12, B=0, C=-6$$

$$AC-B^2 = 12 \times (-6) < 0$$
, ∴ $f(1,2)$ 不是极值;

在点(-3,0) 处
$$A = -12$$
, $B = 0$, $C = 6$,

$$AC-B^2 = -12 \times 6 < 0$$
, $f(-3,0)$ 不是极值;

在点(-3,2) 处
$$A = -12$$
, $B = 0$, $C = -6$

$$AC - B^2 = -12 \times (-6) > 0, A < 0,$$

$$\therefore f(-3,2) = 31$$
为极大值.

$$f_{xx}(x,y) = 6x+6$$
, $f_{xy}(x,y) = 0$, $f_{yy}(x,y) = -6y+6$

例2 求由方程 $x^2 + y^2 + z^2 - 2x + 2y - 4z - 10 = 0$ 确定的函数 z=f(x,y)极值.

解将方程两边分别对 x, y 求偏导,

$$\begin{cases} 2x + 2z \cdot z'_{x} - 2 - 4z'_{x} = 0 \\ 2y + 2z \cdot z'_{y} + 2 - 4z'_{y} = 0 \end{cases}$$

$$\cancel{\text{\sharp,ξ}} P(1,-1)$$

将上述方程组两边再分别对x,y 求偏导,

$$|\mathbf{A}| = z_{xx}''|_{P} = \frac{1}{2-z}, \quad B = z_{xy}''|_{P} = 0, \quad C = z_{yy}''|_{P} = \frac{1}{2-z},$$

$$AC - B^{2} = \frac{1}{(2-z)^{2}} > 0 \quad (z \neq 2)$$

因此,函数在 P 处有极值.

例2 求由方程 $x^2 + y^2 + z^2 - 2x + 2y - 4z - 10 = 0$ 确定的函数 z=f(x,y)极值.

将 P(1,-1) 代入原方程, 得到 $z_1 = -2$, $z_2 = 6$

$$A = z_{xx}''|_{P} = \frac{1}{2-z}, \quad B = z_{xy}''|_{P} = 0, \quad C = z_{yy}''|_{P} = \frac{1}{2-z},$$

当
$$z_1 = -2$$
时, $A = \frac{1}{4} > 0$,所以 $z = f(1,-1) = -2$ 为极小值.

当
$$z_1 = 6$$
 时, $A = -\frac{1}{4} < 0$, 所以 $z = f(1, -1) = 6$ 为极大值.

2. 应用——最值问题

依据

函数 f 在有界闭域上连续

函数 f 在闭域上可达到最值

特别, 当区域内部最值存在, 且只有一个极值点P时,

f(P)为极小(大) 值 $\Longrightarrow f(P)$ 为最小(大) 值

例3. 某厂要用铁板做一个体积为2m³的有盖长方体水箱,问当长、宽、高各取怎样的尺寸时,才能使用料最省?

法一:设水箱长,宽分别为x,y m,则高为 $\frac{2}{xy}$ m,则水箱所用材料的面积为

$$A = 2(xy + y \cdot \frac{2}{xy} + x \cdot \frac{2}{xy}) = 2(xy + \frac{2}{x} + \frac{2}{y}) \quad \begin{pmatrix} x > 0 \\ y > 0 \end{pmatrix}$$

$$A_{x} = 2(y - \frac{2}{x^{2}}) = 0$$

$$A_{y} = 2(x - \frac{2}{y^{2}}) = 0$$
得驻点 (3/2, 3/2)

根据实际问题可知最小值在定义域内应存在,因此可断定此唯一驻点就是最小值点. 即当长、宽均为 $\sqrt[3]{2}$ 高为 $\frac{2}{\sqrt[3]{2}\sqrt[3]{2}}$ = $\sqrt[3]{2}$ 时,水箱所用材料最省.

8.2 条件极值

条件极值的求法:

方法1 代入法. 例如,

在条件 $\varphi(x,y)=0$ 下, 求函数z=f(x,y)的极值 特 从条件 $\varphi(x,y)=0$ 中解出 $y=\psi(x)$

求一元函数 $z = f(x, \psi(x))$ 的无条件极值问题

方法2 拉格朗日乘数法。例如,

在条件 $\varphi(x,y)=0$ 下, 求函数z=f(x,y)的极值.

如方法1所述,设 $\varphi(x,y)=0$ 可确定隐函数 $y=\psi(x)$, 则问题等价于一元函数 $z=f(x,\psi(x))$ 的极值问题,故

极值点必满足
$$\frac{\mathrm{d}z}{\mathrm{d}x} = f_x + f_y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

因
$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\varphi_x}{\varphi_y}$$
,故有 $f_x - f_y \frac{\varphi_x}{\varphi_y} = 0$

在条件 $\varphi(x,y)=0$ 下, 求函数z=f(x,y)的极值.

极值点必满足
$$\begin{cases} f_x + \lambda \varphi_x = 0 \\ f_y + \lambda \varphi_y = 0 \\ \varphi(x, y) = 0 \end{cases}$$

目标函数

约束条件

引入辅助函数
$$F = f(x, y) + \lambda \varphi(x, y)$$
 (λ 为 $\phi(x, y)$)

则极值点满足:
$$\begin{cases} F_x = f_x + \lambda \varphi_x = 0 \\ F_y = f_y + \lambda \varphi_y = 0 \\ F_\lambda = \varphi = 0 \end{cases}$$

辅助函数F 称为拉格朗日(Lagrange)函数.利用拉格 朗日函数求极值的方法称为拉格朗日乘数法.

推广 拉格朗日乘数法可推广到多个自变量和多个约束条件的情形。

例如, 求函数 u = f(x, y, z) 在条件 $\phi(x, y, z) = 0$, $\psi(x, y, z) = 0$ 下的极值.

设 $F = f(x, y, z) + \lambda_1 \varphi(x, y, z) + \lambda_2 \psi(x, y, z)$

$$F_{x} = f_{x} + \lambda_{1} \varphi_{x} + \lambda_{2} \psi_{x} = 0$$

$$F_{y} = f_{y} + \lambda_{1} \varphi_{y} + \lambda_{2} \psi_{y} = 0$$
解方程组
$$F_{z} = f_{z} + \lambda_{1} \varphi_{z} + \lambda_{2} \psi_{z} = 0$$

$$F_{\lambda_{1}} = \varphi = 0$$

$$F_{\lambda_{2}} = \psi = 0$$

可得到条件极值的可疑点.

例5 将正数12分成三个正数x, y, z之和,使得 $u=x^3y^2z$ 最大.

解 今
$$F = x^3 y^2 z + \lambda (x + y + z - 12)$$

例3. 某厂要用铁板做一个体积为2 m³的有盖长方体水箱,问当长、宽、高各取怎样的尺寸时,才能使用料最省?

法二: 设水箱长,宽, 高分别为x,y,zm,则则水箱所用材料的面积为 A = 2(xy + yz + zx) $xyz = 2 \implies \varphi(x, y) = xyz - 2 = 0$ $F = f(x, y) + \lambda \varphi(x, y) = 2(xy + yz + zx) + \lambda(xyz - 2)$ $\begin{cases}
F_x = 2(y+z) + \lambda yz = 0 \Rightarrow -\lambda xyz = 2(y+z)x \\
F_y = 2(x+z) + \lambda xz = 0 \Rightarrow -\lambda xyz = 2(x+y)y \Rightarrow x = y = z
\end{cases}$ $F_z = 2(y+x)+\lambda xy = 0 \Rightarrow -\lambda xy = 2(y+x) = 0$ $F_{\lambda} = xyz - 2 = 0$ $\Rightarrow x = y = z = \sqrt[3]{2}$

例3. 某厂要用铁板做一个体积为2 m³的有盖长方体水箱,问当长、宽、高各取怎样的尺寸时,才能使用料最省?

法二: 设水箱长,宽,高分别为x,y,z m,则则水箱所用材料的面积为 A = 2(xy + yz + zx) $xyz = 2 \Rightarrow \varphi(x,y) = xyz - 2 = 0$ $F = f(x,y) + \lambda \varphi(x,y) = 2(xy + yz + zx) + \lambda(xyz - 2)$ $\Rightarrow x = y = z = \sqrt[3]{2}$

根据实际问题可知最小值在定义域内应存在,因此可断定此唯一驻点就是最小值点.即当长、宽、高均为 3/2 时,水箱所用材料最省.

内容小结

1. 函数的极值问题

第一步 利用必要条件在定义域内找驻点.

如对二元函数z=f(x,y),即解方程组

$$\begin{cases}
f_x(x,y) = 0 \\
f_y(x,y) = 0
\end{cases}$$

第二步 利用充分条件判别驻点是否为极值点。

- 2. 函数的条件极值问题
 - (1) 简单问题用代入法
 - (2) 一般问题用拉格朗日乘数法

如求二元函数 z=f(x,y) 在条件 $\varphi(x,y)=0$ 下的极值,设拉格朗日函数 $F=f(x,y)+\lambda\varphi(x,y)$

解方程组
$$\begin{cases} F_x = f_x + \lambda \varphi_x = 0 \\ F_y = f_y + \lambda \varphi_y = 0 \text{ 求驻点.} \\ F_\lambda = \varphi = 0 \end{cases}$$

3. 函数的最值问题

第一步 找目标函数,确定定义域(及约束条件) 第二步 判别

- 比较驻点及边界点上函数值的大小
- 根据问题的实际意义确定最值

