```
In [2]:
 Importing the Libraries
In [1]:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
In [2]:
df = pd.read csv('adult data.csv')
df.columns = ['age', 'workclass', 'fnlwgt', 'education', 'education num', 'marital status
', 'occupation',
               'relationship', 'race', 'sex', 'capital gain', 'capital loss', 'hours per w
eek', 'native country', 'salary']
In [3]:
df.head()
Out[3]:
  age workclass
                fnlwgt education education_num marital_status occupation relationship
                                                                              race
                                                                                      sex capital_gain (
                                                  Never-
                                                             Adm-
                                                                       Not-in-
   39
                 77516 Bachelors
                                                                             White
                                                                                                2174
0
       State-gov
                                          13
                                                                                     Male
                                                                       family
                                                  married
                                                            clerical
       Self-emp-
                                              Married-civ-
                                                             Exec-
   50
                 83311 Bachelors
                                          13
                                                                     Husband White
                                                                                     Male
                                                                                                  0
         not-inc
                                                  spouse
                                                         managerial
                                                          Handlers-
                                                                       Not-in-
2
   38
         Private 215646
                        HS-grad
                                          9
                                                 Divorced
                                                                             White
                                                                                     Male
                                                                                                  0
                                                           cleaners
                                                                       family
                                              Married-civ-
                                                          Handlers-
         Private 234721
                                           7
                                                                                                  0
3
   53
                           11th
                                                                     Husband Black
                                                                                     Male
                                                  spouse
                                                           cleaners
                                              Married-civ-
                                                              Prof-
   28
         Private 338409 Bachelors
                                          13
                                                                         Wife Black Female
                                                  spouse
                                                           specialty
In [4]:
df.shape
Out[4]:
(32561, 15)
In [5]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
                       Non-Null Count Dtype
 #
    Column
    _____
                       _____
___
 0
                       32561 non-null
                                         int64
     age
 1
     workclass
                       32561 non-null
                                         object
 2
    fnlwgt
                       32561 non-null
                                         int64
 3
    education
                       32561 non-null object
 4
    education_num
                       32561 non-null int64
 5
    marital status 32561 non-null object
 6
     occupation
                       32561 non-null
                                         object
```

```
relationship 32501 non-null object 8 race 32561 non-null object 9 sex 32561 non-null object 10 capital_gain 32561 non-null int64 11 capital_loss 32561 non-null int64 12 hours_per_week 32561 non-null int64 13 native_country 32561 non-null object 14 salary 32561 non-null object dtypes: int64(6), object(9) memory usage: 3.7+ MB
```

In [7]:

```
def handle_capital_gain(df):
    df['capital_gain'] = np.where(df['capital_gain'] == 0, np.nan, df['capital_gain'])
    df['capital_gain'] = np.log(df['capital_gain'])
    df['capital_gain'] = df['capital_gain'].replace(np.nan, 0)
```

In [8]:

```
handle_capital_gain(df)
```

In [9]:

df.head()

Out[9]:

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	(
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	Male	7.684324	
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0.000000	
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Male	0.000000	
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0.000000	
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0.000000	
4								1			,	.

In [10]:

```
df.describe()
```

Out[10]:

	age	fnlwgt	education_num	capital_gain	capital_loss	hours_per_week
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000000
mean	38.581647	1.897784e+05	10.080679	0.734601	87.303830	40.437456
std	13.640433	1.055500e+05	2.572720	2.454680	402.960219	12.347429
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.484705e+06	16.000000	11.512915	4356.000000	99.000000

In [11]:

```
for i in df.columns:
   if df.dtypes[i] == ('int64' or 'float64'):
        sns.distplot(x = df[i])
```

```
0.10 - 0.05 - 0.00 - 0 20 40 60 80 100
```

In [12]:

marital_status 0
occupation 0
relationship 0
race 0
sex 0
capital_gain 0

capital_loss 0
hours_per_week 0
native_country 0
salary 0

salary
dtype: int64

In [13]:

```
df['salary'].unique()
```

Out[13]:

```
array([' <=50K', ' >50K'], dtype=object)
```

In [15]:

```
sns.displot(df['hours_per_week'])
plt.show()
```


In [16]:

```
sns.boxplot(df['hours_per_week'])
plt.show()
```


In [17]:

```
def remove_outlier_hours_per_week(df):
    IQR = df['hours_per_week'].quantile(0.75) - df['hours_per_week'].quantile(0.25)

lower_range = df['hours_per_week'].quantile(0.25) - (1.5 * IQR)
    upper_range = df['hours_per_week'].quantile(0.75) + (1.5 * IQR)

df.loc[df['hours_per_week'] <= lower_range, 'hours_per_week'] = lower_range
    df.loc[df['hours_per_week'] >= upper_range, 'hours_per_week'] = upper_range
```

In [18]:

```
remove_outlier_hours_per_week(df)
```

In [19]:

```
sns.boxplot(df['hours_per_week'])
```

Out[19]:

<AxesSubplot:xlabel='hours_per_week'>

In [22]:

```
sns.distplot(df['education_num'])
plt.show()
```



```
0.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 education_num
```

In [24]:

```
sns.boxplot(df['education_num'])
plt.show()
```


In [25]:

```
def remove_outlier_education_num(df):
    IQR = df['education_num'].quantile(0.75) - df['education_num'].quantile(0.25)

lower_range = df['education_num'].quantile(0.25) - (1.5 * IQR)
    upper_range = df['education_num'].quantile(0.75) + (1.5 * IQR)

df.loc[df['education_num'] <= lower_range, 'education_num'] = lower_range
    df.loc[df['education_num'] >= upper_range, 'education_num'] = upper_range
```

In [26]:

```
remove_outlier_education_num(df)
```

In [27]:

```
sns.boxplot(df['education_num'])
plt.show()
```


In [28]:

```
sns.distplot(df['capital_loss'])
plt.show()
```

```
0.010 -
```

In [29]:

```
def capital_loss_log(df):
    df['capital_loss'] = np.where(df['capital_loss'] == 0, np.nan, df['capital_loss'])
    df['capital_loss'] = np.log(df['capital_loss'])
    df['capital_loss'] = df['capital_loss'].replace(np.nan, 0)
```

In [30]:

```
capital_loss_log(df)
```

In [31]:

```
sns.distplot(df['capital_loss'])
plt.show()
```


In [32]:

```
sns.boxplot(df['capital_loss'])
plt.show()
```


In [33]:

```
def remove_outlier_capital_loss(df):
```

```
IQR = df['capital_loss'].quantile(0.75) - df['capital_loss'].quantile(0.25)
lower_range = df['capital_loss'].quantile(0.25) - (1.5 * IQR)
upper_range = df['capital_loss'].quantile(0.75) + (1.5 * IQR)

df.loc[df['capital_loss'] <= lower_range, 'capital_loss'] = lower_range
df.loc[df['capital_loss'] >= upper_range, 'capital_loss'] = upper_range
```

In [34]:

```
remove_outlier_capital_loss(df)
```

In [36]:

```
sns.boxplot(df['capital_loss'])
plt.show()
```


In [37]:

df.describe()

Out[37]:

		age	fnlwgt	education_num	capital_gain	capital_loss	hours_per_week
C	ount	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.0	32561.000000
n	nean	38.581647	1.897784e+05	10.124321	0.734601	0.0	41.202451
	std	13.640433	1.055500e+05	2.459770	2.454680	0.0	6.187005
	min	17.000000	1.228500e+04	4.500000	0.000000	0.0	32.500000
	25%	28.000000	1.178270e+05	9.000000	0.000000	0.0	40.000000
	50%	37.000000	1.783560e+05	10.000000	0.000000	0.0	40.000000
	75%	48.000000	2.370510e+05	12.000000	0.000000	0.0	45.000000
	max	90.000000	1.484705e+06	16.000000	11.512915	0.0	52.500000

In [38]:

```
df['sex'] = np.where(df['sex'] == " Male", 1, 0)
```

In [40]:

df.head()

Out[40]:

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capi
0	39	State-gov	77516	Bachelors	13.0	Never- married	Adm- clerical	Not-in- family	White	1	7.684324	
1	50	Self-emp-	83311	Bachelors	13.0	Married-civ-	Exec- managerial	Husband	White	1	0.000000	

```
fnlwgt education education_num marital_status occupation relationship
   age workclass
                                                                                race sex capital_gain capi
                                                            Handlers
                                          9.0
         Private 215646
                        HS-grad
                                                  Divorced
                                                                               White
                                                                                            0.000000
                                                             cleaners
                                                                         family
                                                Married-civ-
                                                            Handlers-
3
   53
         Private 234721
                            11th
                                          7.0
                                                                       Husband Black
                                                                                       1
                                                                                            0.000000
                                                            cleaners
                                                   spouse
                                                               Prof-
                                                Married-civ-
         Private 338409 Bachelors
                                                                                            0.000000
   28
                                         13.0
                                                                          Wife Black
                                                            specialty
                                                   spouse
In [51]:
categorical columns = ['race', 'relationship', 'occupation', 'marital status', 'education','
workclass','native_country']
for column in categorical columns:
    tempdf = pd.get dummies(df[column], prefix=column)
    df = pd.merge(
         left=df,
         right=tempdf,
         left index=True,
         right index=True,
    df = df.drop(columns=column)
print(df)
        age
             fnlwgt education num sex capital gain capital loss
0
         39
              77516
                                 13.0
                                        1
                                                  7.684324
                                                                        0.0
1
         50
              83311
                                 13.0
                                          1
                                                  0.000000
                                                                        0.0
2
         38
             215646
                                  9.0
                                          1
                                                  0.000000
                                                                        0.0
3
                                  7.0
         53
             234721
                                          1
                                                  0.000000
                                                                        0.0
             338409
4
                                 13.0
                                          0
                                                  0.000000
         28
                                                                        0.0
                                  . . .
                                                  0.000000
32556
        27
             257302
                                 12.0
                                        0
                                                                        0.0
32557
         40
            154374
                                  9.0
                                          1
                                                  0.000000
                                                                        0.0
32558
         58
            151910
                                  9.0
                                          0
                                                  0.000000
                                                                        0.0
32559
         22
                                  9.0
                                          1
                                                  0.000000
                                                                        0.0
             201490
32560
         52
             287927
                                  9.0
                                                  9.617404
                                              ... native_country_ Portugal
       hours per week
                        salary
                                    0
                                         1
0
                   40.0
                           <=50K 0.0
                                        0.0
                                              . . .
1
                   32.5
                           <=50K
                                  0.0
                                         0.0
                                                                               0
                                               . . .
2
                                  0.0
                                                                               0
                   40.0
                           <=50K
                                         0.0
                                               . . .
3
                   40.0
                           <=50K
                                  0.0
                                         0.0
                                                                               0
                                               . . .
4
                   40.0
                           <=50K
                                  0.0
                                         0.0
                                                                               0
                                               . . .
                                         . . .
                                   . . .
. . .
                    . . .
                             . . .
                                               . . .
                                                                             . . .
32556
                   38.0
                           <=50K
                                   0.0
                                         0.0
                                                                               0
32557
                   40.0
                            >50K
                                   0.0
                                         0.0
                                                                               0
32558
                   40.0
                           <=50K
                                   0.0
                                         0.0
                                                                               0
32559
                           <=50K 0.0
                                                                               0
                   32.5
                                        0.0
                            >50K 0.0
32560
                   40.0
                                        0.0
       native country Puerto-Rico
                                        native country Scotland
0
1
                                      0
                                                                    0
2
                                      0
                                                                    0
3
                                      0
                                                                    0
4
                                      0
                                                                    0
32556
                                      0
                                                                   0
32557
                                      0
                                                                   0
32558
                                      0
                                                                   0
32559
                                      0
                                                                   0
32560
       native_country_ South
                                 native_country_ Taiwan
0
                               0
                                                          0
1
                               0
                                                          0
2
                               0
                                                          0
3
                               0
                                                          0
4
                               0
                                                          0
```

0

32556

0

```
32557
                          0
                                                  0
32558
                          0
                                                  0
32559
                          0
                                                  0
32560
                          0
                                                  0
      native_country_ Thailand native_country_ Trinadad&Tobago
0
1
                             0
                                                              0
2
                             0
                                                              0
3
                             0
                                                              0
4
                             0
                                                              0
32556
                             0
                                                             0
                             0
                                                              0
32557
                             0
                                                              0
32558
                             0
32559
                                                              0
                             0
32560
      0
1
                                  1
                                                           0
2
                                  1
                                                           0
3
                                  1
                                                           0
4
                                  0
                                                           0
. . .
32556
                                  1
                                                           0
32557
                                  1
                                                           0
32558
                                  1
                                                           0
32559
                                  1
                                                          0
32560
                                  1
                                                           0
      native_country_ Yugoslavia
0
1
                               0
2
                               0
3
                               0
4
                               0
32556
                               0
32557
                               0
32558
                               0
                               0
32559
32560
                               0
```

[32561 rows x 113 columns]

In [52]:

df

Out[52]:

	age	fnlwgt	education_num	sex	capital_gain	capital_loss	hours_per_week	salary	0	1	 native_country_ Portugal	nat
0	39	77516	13.0	1	7.684324	0.0	40.0	<=50K	0.0	0.0	 0	
1	50	83311	13.0	1	0.000000	0.0	32.5	<=50K	0.0	0.0	 0	
2	38	215646	9.0	1	0.000000	0.0	40.0	<=50K	0.0	0.0	 0	
3	53	234721	7.0	1	0.000000	0.0	40.0	<=50K	0.0	0.0	 0	
4	28	338409	13.0	0	0.000000	0.0	40.0	<=50K	0.0	0.0	 0	
•••				•••							 	
32556	27	257302	12.0	0	0.000000	0.0	38.0	<=50K	0.0	0.0	 0	
32557	40	154374	9.0	1	0.000000	0.0	40.0	>50K	0.0	0.0	 0	
32558	58	151910	9.0	0	0.000000	0.0	40.0	<=50K	0.0	0.0	 0	
32559	22	201490	9.0	1	0.000000	0.0	32.5	<=50K	0.0	0.0	 0	
32560	50	227027	۵۸	Λ	Q 617 <i>4</i> 0 <i>4</i>	0.0	40 N	∖ 50 K	n n	n n	٨	

```
J.U I / TUT
                                                                                     native_country_ nat
                                                                                 1 ...
      age fnlwgt education_num sex capital_gain capital_loss hours_per_week
                                                                     salary
                                                                             0
                                                                                           Portugal
32561 rows × 113 columns
In [53]:
df = df.drop('fnlwgt', axis=1)
In [54]:
df['salary'] = np.where(df['salary'] == " <= 50K", 1, 0)
In [55]:
df['salary']
Out[55]:
0
          1
1
          1
2
3
32556
          1
32557
          0
32558
          1
32559
          1
32560
         0
Name: salary, Length: 32561, dtype: int32
In [56]:
df['salary'].value counts()
Out[56]:
     24720
0
      7841
Name: salary, dtype: int64
In [64]:
sns.countplot(df['salary'])
plt.show()
  25000
  20000
  15000
  10000
   5000
                  Ó
                                        1
                           salary
In [57]:
X = df.drop(['salary'], axis =1)
Y= df['salary']
In [59]:
# import library
```

```
from imblearn.over_sampling import SMOTE
smote = SMOTE()
# fit predictor and target variable
x smote, y smote = smote.fit resample(X, Y)
print('Original dataset shape', len(Y))
print('Resample dataset shape', len(y_smote))
Original dataset shape 32561
Resample dataset shape 49440
In [62]:
y_smote.value_counts()
Out[62]:
     24720
1
     24720
Name: salary, dtype: int64
In [63]:
sns.countplot(y_smote)
plt.show()
  25000
  20000
  15000
  10000
   5000
     0
                 0
                                     1
                         salarv
In [65]:
from sklearn.model selection import train test split
In [68]:
X_train, X_test, y_train, y_test = train_test_split(x_smote, y_smote, test_size= 0.2, ra
ndom state = 101)
In [70]:
X train.shape
Out[70]:
(39552, 111)
In [71]:
from sklearn.preprocessing import StandardScaler
In [72]:
sc = StandardScaler()
In [74]:
```

```
In [75]:
X test = sc.transform(X test)
In [76]:
print("Train data shape: {}".format(X train.shape))
print("Test data shape: {}".format(X_test.shape))
Train data shape: (39552, 111)
Test data shape: (9888, 111)
In [77]:
from sklearn.linear_model import LogisticRegression
In [78]:
lg model = LogisticRegression()
In [79]:
lg model.fit(X train, y train)
Out[79]:
LogisticRegression()
In [80]:
y_pred = lg_model.predict(X_test)
In [81]:
result = {
    'Actual': y_test,
    'Predicted': y_pred
In [82]:
pd.DataFrame(result)
Out[82]:
      Actual Predicted
 3757
20247
          1
                  1
47001
          0
                  0
23785
          1
                  1
34601
          0
                  0
          0
 2603
                  1
26232
          1
30254
          0
                  0
39120
          0
                  0
37436
          0
                  0
```

X_train = sc.iit_transform(X_train)

In [83]:

9888 rows × 2 columns

from sklearn.metrics import confusion_matrix, accuracy_score, classification_report

In [84]:

```
print("Accuracy Score: {}".format(accuracy_score(y_test, y_pred)))
print("Confusion Matrix:\n {}".format(confusion_matrix(y_test, y_pred)))
print("Classification Report:\n {}".format(classification_report(y_test, y_pred)))
```

```
Accuracy Score: 0.870044498381877
Confusion Matrix:
[[4219 688]
[ 597 4384]]
Classification Report:
```

	precision	recall	f1-score	support
0 1	0.88 0.86	0.86	0.87 0.87	4907 4981
accuracy macro avg weighted avg	0.87 0.87	0.87 0.87	0.87 0.87 0.87	9888 9888 9888

In [88]:

```
import sklearn.metrics as metrics
# calculate the fpr and tpr for all thresholds of the classification
probs = lg model.predict proba(X test)
preds = probs[:,1]
fpr, tpr, threshold = metrics.roc_curve(y_test, preds)
roc auc = metrics.auc(fpr, tpr)
# method I: plt
import matplotlib.pyplot as plt
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


In []: