Simulazione in continua

- Determinazione del punto di lavoro circuiti con dispositivi a semiconduttore, non lineari
- Analisi a regime con eccitazioni costanti
 Si opera su un circuito senza memoria (resistivo), in genere, non lineare.
- E' usata anche nella simulazione della risposta temporale di circuiti dinamici metodi di discretizzazione

• MNA (o Tableau) —> sistema algebrico non lineare

Caso Scalare:

$$f(x) = 0$$

iterazione:

$$x^{k+1} = x^k + \Delta x^k = x^k - f(x^k)/f'(x^k)$$

$$i_D = e^{40\nu_D} -$$

equazioni ai nodi:

$$3v_1 - 2v_2 = 1$$
$$-2v_1 + 2v_2 + (e^{40v_2} - 1) = 0$$

$$v_1 = \frac{1}{3} + \frac{2}{3} v_2$$

$$f(v_2) = \frac{2}{3} v_2 + e^{40v_2} - \frac{5}{3} = 0$$

$$f'(v_2) = \frac{2}{3} + 40e^{40v_2}$$

$$v_2^0 = 0.1 \text{ V}$$

iterazioni:

k	v_2^k	Δv_2^{k-1}	
1	0.75740D - 01	-0.24260D - 01	
2	0.52712D - 01	-0.23029D - 01	
3	0.32705D - 01	-0.20007D - 01	
4	0.18883D - 01	-0.13822D - 01	
5	0.13356D - 01	-0.55267D - 02	
6	0.12654D - 01	-0.70199D - 03	
7	0.12644D - 01	-0.99424D - 05	
8	0.12644D - 01	-0.19579D - 08	

$$f(x) = 0$$

$$f_1(x_1, x_2, ..., x_n) = 0$$

 $f_2(x_1, x_2, ..., x_n) = 0$
 \vdots
 $f_n(x_1, x_2, ..., x_n) = 0$

espansione in serie di Taylor (1° ordine, linearizzazione):

$$\begin{cases} f_{1}(x_{1}, x_{2}, \dots, x_{n}) = 0 \\ f_{2}(x_{1}, x_{2}, \dots, x_{n}) = 0 \\ \vdots \\ f_{n}(x_{1}, x_{2}, \dots, x_{n}) = 0. \end{cases}$$

$$\begin{cases} f_{1}(\mathbf{x}^{*}) = f_{1}(\mathbf{x}) + \frac{\partial f_{1}}{\partial x_{1}}(x_{1}^{*} - x_{1}) + \frac{\partial f_{1}}{\partial x_{2}}(x_{2}^{*} - x_{2}) + \cdots \\ + \frac{\partial f_{1}}{\partial x_{n}}(x_{n}^{*} - x_{n}) + \cdots \\ \vdots \\ \vdots \\ f_{n}(\mathbf{x}^{*}) = f_{n}(\mathbf{x}) + \frac{\partial f_{n}}{\partial x_{1}}(x_{1}^{*} - x_{1}) + \frac{\partial f_{n}}{\partial x_{2}}(x_{2}^{*} - x_{2}) + \cdots \\ + \frac{\partial f_{n}}{\partial x_{n}}(x_{n}^{*} - x_{n}) + \cdots \end{cases}$$

$$\mathbf{f}(\mathbf{x}^*) \approx \mathbf{f}(\mathbf{x}) + \mathbf{M}(\mathbf{x}^* - \mathbf{x})$$

Jacobiana

$$\mathbf{f}(\mathbf{x}^*) \approx \mathbf{f}(\mathbf{x}) + \mathbf{M}(\mathbf{x}^* - \mathbf{x}) \qquad \qquad \mathbf{f}(\mathbf{x}^k) + \mathbf{M}(\mathbf{x}^{k+1} - \mathbf{x}^k) = \mathbf{f}(\mathbf{x}^k) + \mathbf{M}(\mathbf{x}^k) + \mathbf{M}(\mathbf{x}^$$

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \mathbf{M}^{-1}\mathbf{f}(\mathbf{x}^k)$$

$$\Delta \mathbf{x}^k = \mathbf{x}^{k+1} - \mathbf{x}^k$$

$$\mathbf{M}\Delta \mathbf{x}^k = -\mathbf{f}(\mathbf{x}^k)$$

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \Delta \mathbf{x}^k$$

per ottenere, ad ogni iterazione:

$$\|\mathbf{f}(\mathbf{x}^{k+1})\| \leqslant \|\mathbf{f}(\mathbf{x}^k)\|$$

si usa:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + t^k \Delta \mathbf{x}^k$$

$$0 < t^k \leqslant 1$$

equazioni ai nodi:

$$i_{D1} + G(v_1 - v_2) = j$$

$$G(-v_1 + v_2) + i_{D2} = 0$$

$$f_1(v_1, v_2) = e^{40v_1} + v_1 - v_2 - 2 = 0$$

$$f_2(v_1, v_2) = -v_1 + v_2 + e^{40v_2} - 1 = 0$$

Jacobiano:
$$\mathbf{M} = \begin{bmatrix} 40e^{40v_1} + 1 & -1 \\ -1 & 40e^{40v_2} + 1 \end{bmatrix}$$

prima iterazione:

$$f_1 = 52.59815$$

 $f_2 = 53.59815$

$$\mathbf{M} = \begin{bmatrix} 2184.926 & -1 \\ -1 & 2184.926 \end{bmatrix}$$

$\Delta v_1^0 =$	-0.0240844
$\Delta v_2^0 =$	-0.0245419

$$v_1^1 = 0.0759156$$

$$v_2^1 = 0.07545810$$

k	Δv_1^k	Δv_2^k	v_1^{k+1}	v_2^{k+1}
0	-0.02408	-0.02454	0.07592	0.07546
1	-0.02260	-0.02378	0.05331	0.05168
2	-0.01909	-0.02182	0.03423	0.02986
3	-0.01234	-0.01736	0.02188	0.01250
4	-0.00432	-0.00962	0.01757	0.00289
5	-0.00044	-0.00236	0.01712	0.00053
6	-0.00001	-0.00012	0.01712	0.00041
7	-0.00000	-0.00000	0.01712	0.00041

Formulazione Nodale

supponiamo:

solo gen. indipendenti di corrente nonlinearità costitutite da resistori controllati in tensione:

$$i_b = g(v_b)$$

KVL:
$$\mathbf{v}_b = \mathbf{A}^t \mathbf{v}_n$$

KCL: $\mathbf{A}\mathbf{i}_b = -\mathbf{A}_J \mathbf{j}_b = \mathbf{j}_n$

$$\mathbf{A}\mathbf{g}(\mathbf{v}_b) = \mathbf{j}_n$$

$$\mathbf{A}\mathbf{g}(\mathbf{A}^t \mathbf{v}_n) = \mathbf{j}_n$$

Formulazione Nodale

Newton-Raphson:

$$\mathbf{f}(\mathbf{v}_n) \equiv \mathbf{A}\mathbf{g}(\mathbf{A}^t\mathbf{v}_n) - \mathbf{j}_n = \mathbf{0}.$$

$$\mathbf{M} = \frac{\partial \mathbf{f}}{\partial \mathbf{v}_n} = \mathbf{A} \frac{\partial \mathbf{g}}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \mathbf{v}_n}.$$

$$\frac{\partial \mathbf{g}}{\partial \mathbf{v}_b} = \mathbf{G}_b \qquad \frac{\partial \mathbf{v}_b}{\partial \mathbf{v}_n} = \mathbf{A}^t$$

$$\mathbf{M} = \mathbf{A}\mathbf{G}_b \mathbf{A}^t$$

Tableau (MNA)

conduttanza nonlineare tra i nodi k ed l:

$$i_b = g(v_b).$$

equazioni ai nodi:

$$k: \quad \cdot \cdot \cdot + g(v_k - v_l) \cdot \cdot \cdot = 0$$

k:
$$\cdot \cdot \cdot + g(v_k - v_l) \cdot \cdot \cdot = 0$$
l:
$$\cdot \cdot \cdot - g(v_k - v_l) \cdot \cdot \cdot = 0.$$

Jacobiano:

variable
$$\longrightarrow v_k \qquad v_l$$

row $k \begin{bmatrix} \cdot \cdot \cdot \cdot & \partial g/\partial v_b \cdot \cdot \cdot -\partial g/\partial v_b \cdot \cdot \cdot \\ \cdot \cdot \cdot & -\partial g/\partial v_b \cdot \cdot \cdot & \partial g/\partial v_b \cdot \cdot \cdot \end{bmatrix}$

Lo Jacobiano ha esattamente la stessa forma della matrice nodale delle conduttanze.

Le conduttanze lineari restano invariate, al posto delle conduttanze nonlineari c'è la derivata della r.c., calcolata alla tensione dell'iterazione.

Tableau (MNA)

Tableau

Equazioni del Tableau:

$$\mathbf{v}_b - \mathbf{A}^t \mathbf{v}_n = \mathbf{0}$$
$$\mathbf{p}(\mathbf{v}_b, \mathbf{i}_b) = \mathbf{w}$$
$$\mathbf{A}\mathbf{i}_b = \mathbf{0}.$$

Formulazione per Newton-Raphson:

$$\mathbf{f}(\mathbf{x}) \equiv \begin{bmatrix} \mathbf{v}_b - \mathbf{A}^t \mathbf{v}_n \\ \mathbf{p}(\mathbf{v}_b, \mathbf{i}_b) - \mathbf{w} \\ \mathbf{A}\mathbf{i}_b \end{bmatrix} = \mathbf{0}$$

Jacobiano alla k-esima iterazione:

$$\mathbf{M} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & -\mathbf{A}^t \\ \mathbf{G}^k & \mathbf{R}^k & \mathbf{0} \\ \mathbf{0} & \mathbf{A} & \mathbf{0} \end{bmatrix}$$

ove:
$$\mathbf{G}^k = \frac{\partial \mathbf{p}}{\partial \mathbf{r}}$$

$$\Delta \mathbf{x}^k = \begin{bmatrix} \Delta \mathbf{v}_b \\ \Delta \mathbf{i}_b \\ \Delta \mathbf{v} \end{bmatrix}.$$

 $\mathbf{M}^k \Delta \mathbf{x}^k = -\mathbf{f}(\mathbf{x}^k)$

dove:

$$\mathbf{G}^{k} = \frac{\partial \mathbf{p}}{\partial \mathbf{v}_{h}} \bigg|_{\mathbf{v}_{k}}; \qquad \mathbf{R}^{k} = \frac{\partial \mathbf{p}}{\partial \mathbf{i}_{h}} \bigg|_{\mathbf{v}_{k}}$$

Tecniche PWL

$$v = v_l^0 + R_l i$$

$$i = i_l^0 + G_l v$$

$$\mathbf{G}_l \mathbf{v}_b + \mathbf{R}_l \mathbf{i}_b = \mathbf{w}_l.$$

tableau

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} & -\mathbf{A}^t \\ \mathbf{G}_l & \mathbf{R}_l & \mathbf{0} \\ \mathbf{0} & \mathbf{A} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v}_b \\ \mathbf{i}_b \\ \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{w}_l \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{w} \\ \mathbf{0} \end{bmatrix}$$

$$\mathbf{T}_l \mathbf{x}_l = \mathbf{w}_l + \mathbf{w}.$$

Algoritmo di Katzenelson

$$\mathbf{T}_l \mathbf{x}_l = \mathbf{w}_l + \mathbf{w}.$$

alla k-esima iterazione:

Jacobiano:

$$\mathbf{f}^k = \mathbf{T}_l^k \mathbf{x}^k - \mathbf{w}_l^k - \mathbf{w}$$

 $\mathbf{M}^k = \mathbf{T}^k$

Newton-Raphson:

$$\mathbf{T}_l^k \Delta \mathbf{x}^k = -\mathbf{f}^k$$

$$\hat{\mathbf{x}}^{k+1} = \mathbf{x}^k + \Delta \mathbf{x}^k$$

Se nessun elemento cambia regione, $\hat{\mathbf{X}}^{k+1}$ è la soluzione.

Altrimenti:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + t^k \Delta \mathbf{x}^k$$

Algoritmo di Katzenelson

$$\mathbf{x}^{k+1} = \mathbf{x}^k + t^k \Delta \mathbf{x}^k$$

Katzenelson: si sceglie t^k in modo che il punto di lavoro di un solo elemento vada a finire sul confine della regione attuale.

$$t_i^k = \frac{x_{li} - x_i^k}{\Delta x_i},$$
 se $\Delta x_i > 0$ $t_i^k = \frac{x_i^k - x_{(l-1)i}}{\Delta x_i},$ se $\Delta x_i < 0$

$$t^k = \min_i (t_i^k)$$

Algoritmo di Katzenelson

sul confine, due equazioni, per due regioni contigue, sono valide:

$$\mathbf{f}^{k+1} = \mathbf{T}_{l}^{k+1} \mathbf{x}^{k+1} - \mathbf{w}_{l}^{k+1} - \mathbf{w}$$

$$= \mathbf{T}_{l}^{k} \mathbf{x}^{k+1} - \mathbf{w}_{l}^{k} - \mathbf{w}.$$
cioè:
$$\mathbf{f}^{k+1} = (\mathbf{T}_{l}^{k} \mathbf{x}^{k} - \mathbf{w}_{l}^{k} - \mathbf{w}) + t^{k} \mathbf{T}_{l}^{k} \Delta \mathbf{x}^{k}$$

$$= \mathbf{f}^{k} - t^{k} \mathbf{f}^{k}$$

$$= (1 - t^{k}) \mathbf{f}^{k}$$

tensioni di nodo iniziali:

$$v_{n1} = -3$$
 $v_{n2} = -3$

tensioni di ramo:

$$v_1 = v_3 = -3$$
 $v_2 = 0$

stato iniziale

$$\mathbf{f}^0 = \mathbf{T}_l^0 \mathbf{x}^0 - \mathbf{w}_l^0 - \mathbf{w}.$$

$$\mathbf{f}^0 = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} -3 \\ -3 \end{bmatrix} - \begin{bmatrix} -1 \\ -5 \end{bmatrix} - \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} -11 \\ -5 \end{bmatrix}$$

$$\mathbf{T}_{I}^{k}\Delta\mathbf{x}^{k}=-\mathbf{f}^{k}.$$

$$\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} \Delta v_{n1}^0 \\ \Delta v_{n2}^0 \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \end{bmatrix} \longrightarrow \begin{bmatrix} \Delta v_{n1}^0 \\ \Delta v_{n2}^0 \end{bmatrix} = \begin{bmatrix} \frac{19}{4} \\ \frac{13}{4} \end{bmatrix}$$

$$\begin{bmatrix} \hat{v}_{n1}^1 \\ \hat{v}_{n2}^1 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \end{bmatrix} + \begin{bmatrix} \frac{19}{4} \\ \frac{13}{4} \end{bmatrix} = \begin{bmatrix} \frac{7}{4} \\ \frac{1}{4} \end{bmatrix}$$

$$\begin{bmatrix} \hat{v}_1^1 \\ \hat{v}_2^1 \\ \hat{v}_2^1 \end{bmatrix} = \begin{bmatrix} \frac{7}{4} \\ \frac{6}{4} \\ \frac{1}{4} \end{bmatrix}$$
 tutti gli elementi cambiano regione

$$t_1^0 = \frac{-1 - (-3)}{\frac{19}{4}} = \frac{8}{19}$$

$$t_2^0 = \frac{1 - 0}{\frac{6}{4}} = \frac{4}{6} \qquad \qquad b^0 = \min_i (t_i^0) = \frac{4}{13}$$

$$t_3^0 = \frac{-2 - (-3)}{\frac{13}{2}} = \frac{4}{13}$$

tensioni di nodo:

$$\begin{bmatrix} v_{n1}^{1} \\ v_{n2}^{1} \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \end{bmatrix} + \frac{4}{13} \begin{bmatrix} \frac{19}{4} \\ \frac{13}{4} \end{bmatrix} = \begin{bmatrix} -\frac{20}{13} \\ -\frac{26}{13} \end{bmatrix} \qquad \begin{bmatrix} v_{1}^{1} \\ v_{2}^{1} \\ v_{3}^{1} \end{bmatrix} = \begin{bmatrix} -\frac{20}{13} \\ \frac{6}{13} \\ -\frac{26}{13} \end{bmatrix}$$

$$\mathbf{f}^{1} = (1 - \frac{4}{13}) \begin{bmatrix} -11 \\ -5 \end{bmatrix} = \begin{bmatrix} -\frac{99}{13} \\ -\frac{45}{13} \end{bmatrix}$$

tensioni sui componenti:

fine della 1° iterazione

siamo in una nuova regione, con: $G_1 = 2$ $G_2 = 1$ $G_3 = 1$

Nuova iterazione.