1 Introdución Teórica

En este trabajo se procedió a medir las caracteristicas de un transformador, en particular, la inductancia L_1, L_2 de las bobinas que lo componian, el coeficiente de acomplamiento, k, y el coeficiente de inductancia mutua, M. Se estudió, además la variacion de dichos parametros probando distintos materias como nucleo del transformador.

2 Metodo experimental

2.1 Primera conexión

Figure 1: circuito con fuente de continua

Se procedió, en primer lugar a identificar el punto del trassformador. Para ello se alimentó al transformador a una corriente continua, y mediante la medición en un breve lapso del sentido de la tensión del bobinado secundario se pudo deducir el sentido de la bobina. Además, se observo la diferencia de la magnitud de la tensión del bobinado secundario con el transformador con y sin nucleo.

2.2 Obtención de la inductancia

Figure 2: Circuito en vacio

Se procedió a medir, en vacio la tensión y la corrientes del circuito de la figura 2 con las dos bobinas, y luego invirtiendo sus roles. Midiendo además RL2 y RL2 se pudó despejar el valor de las inductancias.

$$U_1^2 = V_{L1}^2 + V_{RL1}^2 \Longrightarrow V_{L1} = \sqrt{U_1^2 - V_{LR1}^2}$$

$$V_{L1} = I_1 w L \Longrightarrow L = \frac{\sqrt{U_1^2 - (I_1 R_1^2)}}{w I_1}$$
 (1)

Además, con las mediciones de la tension en el bobinado secundario se pudo determinar ${\bf M}$

$$V_{L2} = wMI_1 \Longrightarrow M = \frac{V_{L2}}{wI_1}$$
 (2)

2.3 Mediciones con carga

Figure 3: Circuito con carga

Se conectó una resistencia de carga al bobinado secundario, $R_d=200\Omega$ y, con distintos nucleos mediante las mediciones de las tensiones y las corrientes se pudo calcular el My el k del transformador

$$\pm jwMI_{1} = \underbrace{+I_{2}(R_{L2} + R_{d})}_{\angle 0} + \underbrace{jwL_{2}I_{2}}_{\angle 90} \Longrightarrow wMI_{1} = \sqrt{(I_{2}R_{L2} + I_{2}R_{d})^{2} + (wL_{2}I_{2})^{2}}$$

$$M = \frac{I_{2}\sqrt{(R_{L2} + R_{d})^{2} + (wL_{2})^{2}}}{wI_{1}} \qquad (3)$$

$$k = \frac{M}{\sqrt{L1L2}} \qquad (4)$$

3 Análisis de resultados

3.1 Mediciones directas

Se obtuvieron los siguientes resultados. Salvo en el primer caso, siempre el bobinado primario fue L1, el secundario L2

Medición	$V_1(V)$	$I_1(mA)$	$V_2(V)$	$I_2(mA)$
Hierro solido, vacio, trafo invertido	100 ± 1	145 ± 5	Ø	Ø
Hierro solido, vacio	100 ± 1	150 ± 5	18.4 ± 0.1	Ø
Nucleo laminado, vacio	100 ± 1	135 ± 5	20.5 ± 0.1	Ø
Sin nucleo, vacio	100 ± 1	285 ± 5	5.2 ± 0.1	Ø
Hierro solido, carga conectada	100 ± 1	145 ± 5	11.1 ± 0.1	55 ± 1
Nucleo laminado, carga conectada	100 ± 1	150 ± 5	13.4 ± 0.1	67 ± 1

Ademas, midiendo la resistencia interna de las bobinas se obtuvo.

R_{L1}	R_{L2}	
22 ± 0.1	64.9 ± 0.1	

3.2 Cálculo de L1, L2

Utilizando la expresion (1), con los resultados de las primeras dos mediciones y los valores de R_{L1} , R_{L2} , se pudo calcular L1 y L2

$L_1(H)$	$L_2(H)$
2.120 ± 0.007	2.185 ± 0.007

3.3 Cálculo de M y de k

Utilizando las expresiones (3) y (4), con los resultados de todas las mediciones, excepto la primera, se pudo determinar M y k del transformador

Medición	M(H)	k
Hierro solido, vacio	0.39±	0.18±
Nucleo laminado, vacio	0.48±	0.22±
Sin nucleo, vacio	$0.058 \pm$	$0.026 \pm$
Hierro solido, carga conectada	0.88±	$0.409 \pm$
Nucleo laminado, carga conectada	1.04±	$0.485 \pm$

4 Anexo: Formulas para la propagaci de errores utilizadas

Para conseguir el error de L

$$\Delta L^2 = \Delta U^2 \frac{U^2}{w^2 I_1^2 (U^2 + I_1^2 R_1^2)} + \Delta I_1^2 \frac{U^4}{w^2 I_1^4 (U^2 + I_1^2 R_1^2)} + \Delta R_1^2 \frac{I_1^2 R_1^2}{w^2}$$