1 Let X and Y be topological spaces.

(a) Show that for any topological space T, a function $f: T \to X \times Y$ is continuous if and only if the compositions $p_X f: T \to X$, $p_Y f: T \to Y$ are continuous. Here p_X and p_Y are the obvious projection maps.

Proof. Suppose f is continuous. Let $U \subseteq X$ be open, then $p_X^{-1}(U) = U \times Y \subseteq X \times Y$ is open, as it is in the basis for the product topology. And since f is continuous,

$$(p_X f)^{-1}(U) = f^{-1}(U \times Y) \subseteq T$$

is open. This shows $p_X f$ is continuous, and it is the same to show that $p_Y f$ continuous.

Suppose both $p_X f$ and $p_Y f$ are continuous. It suffices to prove that the preimages under f of basis elements are open. Let $U \subseteq X$ and $V \subseteq Y$ be open, so $U \times V \subseteq X \times Y$ is an arbitrary basis element of the product topology. We can rewrite $U \times V$ as

$$U\times V=(U\times Y)\cap (X\times V)=p_X^{-1}(U)\cap p_Y^{-1}(V),$$

then

$$f^{-1}(U \times V) = (p_X f)^{-1}(U) \cap (p_Y f)^{-1}(V).$$

Since $p_X f$, $p_Y f$ are continuous and U, V are open, $f^{-1}(U \times V) \subseteq T$ is is also open, proving that f is continuous.

(b) Let Z be a topological space with maps $g_X: Z \to X$ and $g_Y: Z \to Y$. Suppose that for every space T and pair of continuous functions $f_X: T \to X$ and $f_Y: T \to Y$, there is a unique continuous function $f: T \to Z$ such that $f_X = g_X f$ and $f_Y = g_Y f$.

Show that Z must be homeomorphic to $X \times Y$ with the product topology and g_X and g_Y are (taken by the homeomorphism to) p_X and p_Y .

Proof. Consider $X \times Y$ with the natural projections p_X and p_Y . By the stated universal property, there is a unique continuous function $p: X \times Y \to Z$ such that $p_X = g_X p$ and $p_Y = g_Y p$. We construct a function $g = (g_X, g_Y): Z \to X \times Y$, where $z \mapsto (g_X(z), g_Y(z))$. We have $p_X g = g_X$ and $p_Y g = g_Y$, so 1(a) implies g is continuous. We claim that p and g are inverses and, in which case, describe a homeomorphism between $X \times Y$ and Z.

First, it can be seen that

$$gp = (g_X p, g_Y p) = (p_X, p_Y) = \mathrm{id}_{X \times Y}.$$

To prove the opposite composition is the identity on Z, we construct the continuous functions

$$f_X: Z \xrightarrow{g} X \times Y \xrightarrow{p} Z \xrightarrow{g_X} X$$
 and $f_Y: Z \xrightarrow{g} X \times Y \xrightarrow{p} Z \xrightarrow{g_Y} Y$.

By the universal property, there is a unique continuous function $f: Z \to Z$ such that $f_X = g_X f$ and $f_Y = g_Y f$. On one hand, the constructions of f_X and f_Y imply that f = pg. On the other hand, we have

$$f_X = g_X pg = p_X g = g_X$$
 and $f_Y = g_Y pg = p_Y g = g_Y$,

which would imply that $f = id_Z$. Therefore, $pg = f = id_Z$.

2 Similarly to the previous problem, suppose that Z is a space equipped with maps $q_X: X \to Z$ and $q_Y: Y \to Z$, and that

for every space T and pair of continuous functions $f_X: X \to T$ and $f_Y: Y \to T$, there is a unique continuous function $f: Z \to T$ such that $f_X = fq_X$ and $f_Y = fq_Y$.

Show that Z is homeomorphic to $X \sqcup Y$ and q_X and q_Y are (taken by the homeomorphism to) the obvious inclusions.

This shows that $X \sqcup Y$ is the coproduct of X and Y in the category of topological spaces.

Proof. Consider $X \sqcup Y$ with the inclusions $i_X : X \hookrightarrow X \sqcup Y$ and $i_Y : Y \hookrightarrow X \sqcup Y$. By the universal property, there is a unique continuous function $i : Z \to X \sqcup Y$ such that $i_X = iq_X$ and $i_Y = iq_Y$. We construct a function $q = q_X \sqcup q_Y : X \sqcup Y \to Z$, where $x \mapsto q_X(x)$ for all $x \in X$ and $y \mapsto q_Y(y)$ for all $y \in Y$. We claim that i and q are inverses and, in which case, describe a homeomorphism between $X \sqcup Y$ and Z.

First, it can be seen that

$$iq = iq_X \sqcup iq_Y = i_X \sqcup i_Y = id_{X \sqcup Y}$$
.

To prove the opposite composition gives the identity on Z, we construct the continuous functions

$$f_X: X \xrightarrow{q_X} Z \xrightarrow{i} X \sqcup Y \xrightarrow{q} Z$$
 and $f_Y: Y \xrightarrow{q_Y} Z \xrightarrow{i} X \sqcup Y \xrightarrow{q} Z$.

By the universal property, there is a unique continuous function $f: Z \to Z$ such that $f_X = fq_X$ and $f_Y = fq_Y$. On one hand, the constructions of f_X and f_Y imply that f = qi. On the other hand, we have

$$f_X = qiq_X = qi_X = q_X$$
 and $f_Y = qiq_Y = qi_Y = q_Y$,

which would imply that $f = id_Z$. Therefore, $qi = f = id_Z$.

Lemma 1. The map $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x+y$ is continuous.

Proof. It suffices to prove that the preimages under f of basis elements (open intervals) in \mathbb{R} are open. Suppose $(a,b) \subseteq \mathbb{R}$, where $a \in [-\infty,\infty)$ and $b \in (-\infty,\infty]$. For $(x,y) \in f^{-1}((a,b))$, there is some $\varepsilon > 0$ such that $B_{\varepsilon}(x+y) \subseteq (a,b)$. Then, for any $(x',y') \in B_{\varepsilon/2}(x) \times B_{\varepsilon/2}(y)$,

$$a < (x - \varepsilon/2) + (y - \varepsilon/2) < x' + y' < (x + \varepsilon/2) + (y + \varepsilon/2) < b,$$

so $(x', y') \in f^{-1}((a, b))$. That is, we have found an open neighborhood of (x, y) contained in $f^{-1}((a, b))$, namely the basis element $B_{\varepsilon/2}(x) \times B_{\varepsilon/2}(y)$ in the product topology. Hence, $f^{-1}((a, b)) \subseteq \mathbb{R}^2$ is open, so f is continuous.

Lemma 2. The map $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto -x$ is continuous.

Proof. Suppose $(a,b) \subseteq \mathbb{R}$ is a possibly unbounded open interval. Then $f^{-1}((a,b))$ is the set of points $x \in \mathbb{R}$ such that a < -x < b or, equivalently, such that -b < x < -a. That is, $f^{-1}((a,b)) = (-b,-a)$, which is an open interval in \mathbb{R} , so f is continuous.

Lemma 3. The map $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto |x|$ is continuous.

Proof. Suppose $(a,b) \subseteq \mathbb{R}$ is a possibly unbounded open interval, then $f^{-1}((a,b)) = (a,b) \cup (-b,-a)$. As the union of open intervals, $f^{-1}((a,b))$ is open, so f is continuous.

3 Let X be a topological space and let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be continuous. Show that $\min(f,g)$ is a continuous function.

Proof. By lemmas 1, 2, and 3, and the fact that the composition of continuous functions is continuous, we have that $\min(f,g) = \frac{1}{2}(f+g-|f-g|)$ is continuous.

4 Let X and Y be metric spaces. Show that the metrics

$$d_{\infty}((x,y),(x',y')) = \max(d(x,x'),d(y,y'))$$

$$d_{1}((x,y),(x',y')) = d(x,x') + d(y,y')$$

both induce the product topology on $X \times Y$.

(A good exercise is to visualize the balls in $\mathbb{R} \times \mathbb{R}$ in both of these topologies.)

Proof. To prove a pair of topologies are the same, we show that every neighborhood, in one topology, around a point contains a neighborhood, in the other topology, of the same point. (If this is the case, then every open set U, in one topology, is the union $\bigcup_{x\in U} U_x$, where U_x is an open set, in the other topology, chosen such that $x\in U_x\subseteq U$.)

We first prove that d_{∞} induces the product topology on $X \times Y$. Let $W \subseteq X \times Y$ be open in the product topology and let $(x, y) \in W$. There is an element in the basis for the product topology $U \times V \subseteq X \times Y$, with $U \subseteq X$ open, $V \subseteq Y$ open, and $(x, y) \in U \times V$. Then there is some radius $r_X > 0$ such that $B_{r_X}(x) \subseteq U$, and some radius $r_Y > 0$ such that $B_{r_Y}(y) \subseteq V$. Let $r = \min\{r_X, r_Y\}$, then for any $(x', y') \in B_r((x, y); d_{\infty})$, we have

$$d(x, x') \le d_{\infty}((x, y), (x', y')) < r \le r_X$$

and

$$d(y, y') \le d_{\infty}((x, y), (x', y')) < r \le r_Y,$$

SO

$$(x', y') \in B_{r_X}(x) \times B_{r_Y}(y) \subseteq U \times V \subseteq W.$$

Thus, $(x, y) \in B_r((x, y); d_\infty) \subseteq W$, which proves that the topology induced by d_∞ is at least as fine as the product topology.

Let $W \subseteq X \times Y$ be open in the topology induced by d_{∞} and let $(x,y) \in W$. There is some radius r > 0 such that $(x,y) \in B_r((x,y); d_{\infty}) \subseteq W$. Then for any $(x',y') \in B_r(x) \times B_r(y)$, we have d(x,x') < r and d(y,y') < r, so $d_{\infty}((x,y),(x',y')) < r$, implying that $(x',y') \in B_r((x,y); d_{\infty}) \subseteq W$. Hence, we have found a neighborhood of (x,y) in the product topology, namely $B_r(x) \times B_r(Y)$, contained in W. This proves that the product topology is at least as fine as the topology induced by d_{∞} , so we conclude that they are the same topology.

Next, we will prove that d_{∞} and d_1 induce the same topology. To do so, we will show that each open ball under one metric contains an open ball in the other metric. Let $B_r((x,y);d_{\infty})$ be an open d_{∞} -ball. Then, for all $(x',y') \in B_{r/2}((x,y);d_1)$, we have

$$\max(d(x, x'), d(y, y')) \le d(x, x') + d(y, y') < r/2 + r/2 = r.$$

That is, $B_{r/2}((x,y);d_1) \subseteq B_r((x,y);d_\infty)$, so d_1 generates a topology at least as fine as d_∞ . Now, consider an open d_1 -ball $B_r((x,y);d_1)$, with r>0. For all $(x',y') \in B_{r/2}((x,y);d_\infty)$,

$$d(x, x') + d(y, y') \le 2 \max(d(x, x'), d(y, y')) < 2 \cdot r/2 = r.$$

That is, $B_{r/2}((x,y);d_{\infty}) \subseteq B_r((x,y);d_1)$, so d_{∞} generates a topology at least as fine as d_1 .

5 Give an example of a subset $A \subset \mathbb{R}$ such that the following sets are all different:

$$A$$
, \overline{A} , int A , int (\overline{A}) , $\overline{\text{int }A}$, $\overline{\text{int }(\overline{A})}$, int $(\overline{\text{int }A})$.

Consider the set

$$A = [0,1) \cup (1,2] \cup \big([2,3] \cap \mathbb{Q}\big) \cup \{4\}.$$

We have