Física del Interior Terrestre

Trabajo Práctico 3 2020

1. Algunos isótopos radiactivos (padres) se convierten a través de un decaimiento simple en isótopos estables (hijos), de acuerdo con una determinada constante de decaimiento λ . Esto ocurre, por ejemplo, en los decaimientos de ⁸⁷Rb a ⁸⁷Sr, y de ¹⁴⁷Sm a ¹⁴³Nd. La tasa a la cual decae un isótopo radiactivo (N_p) está relacionada con la cantidad de isótopos presentes y está dada por

$$\frac{dN_p}{dt} = -\lambda N_p \tag{1}$$

- a) Encontrar una expresión para el tiempo de vida medio $(t_{1/2})$ y la vida promedio (τ) de un isótopo radiactivo.
- b) A partir de la Ec. (1) demostrar que, si para el tiempo t = 0 no hay isótopos hijos en la muestra, la relación entre el número actual de isótopos hijos (N_h) y de isótopos padres (N_p) permite estimar el tiempo transcurrido mediante la relación

$$t = \frac{1}{\lambda} \ln \left(1 + \frac{N_h}{N_p} \right). \tag{2}$$

- c) ¿Con qué evento se corresponde el tiempo t = 0 que nos permitiría determinar la Ec. (1) en el caso de la datación de una roca?
- d) ¿Qué inconvenientes prácticos posee el procedimiento de datación propuesto en este ejercicio?
- 2. El decaimiento de de $^{87}{\rm Rb}$ a $^{87}{\rm Sr}$ se produce de acuerdo con una constante de decaimiento $\lambda=1,\!42\times10^{-11}/{\rm a\tilde{n}o}.$
 - a) Considerando que los átomos de ⁸⁶Sr son estables y no-radiogénicos, demostrar que la relación actual entre los isótopos de ⁸⁷Sr y de ⁸⁶Sr satisface la siguiente relación

$$\frac{[^{87}Sr]_{actual}}{[^{86}Sr]_{actual}} = \frac{[^{87}Sr]_0}{[^{86}Sr]_0} + \frac{[^{87}Rb]_{actual}}{[^{86}Sr]_{actual}} \left(e^{\lambda t} - 1\right), \tag{3}$$

donde $[^{87}Sr]_0$ y $[^{86}Sr]_0$ son las cantidades originales de isótopos presentes en la muestra.

b) La Ec (2) permite determinar la edad t de una muestra a partir de las relaciones actuales de $[^{87}Sr]_{actual}/[^{86}Sr]_{actual}$ y de $[^{87}Rb]_{actual}/[^{86}Sr]_{actual}$. ¿Se podría utilizar este procedimiento para datar adecuadamente rocas jóvenes?

3. En la Tabla 1 se listan las composiciones isotópicas de estroncio-rubidio de distintas muestras tomadas de una roca metamórfica y de una roca sedimentaria. Estimar la edad de la roca y su relación inicial de ⁸⁷Sr/⁸⁶Sr para cada roca.

Gneis		Shale	
87 Rb/ 86 Sr	$^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$	87 Rb/ 86 Sr	$^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$
0.221	0.712	18.0	0.784
0.751	0.741	14.0	0.769
1.005	0.751	9.4	0.750
1.857	0.806	5.7	0.733
2.519	0.828	2.0	0.716
3.183	0.868		

Tabla 1: Composiciones isotópicas de estroncio-rubidio de diferentes muestras tomadas de un gneiss y de un shale

- 4. Se estima que actualmente la masa de 238 U presente en el interior terrestre es de aproximadamente 13.15×10^{16} kg, mientras que la masa de 232 Th es de aproximadamente 47.2×10^{16} kg. El 70 % de estos elementos radiactivos se encuentran en el manto. Las constantes de decaimiento para el 238 U y el 232 Th tienen valores de $1.55\times10-10$ 1/año y $4.94\times10-11$ 1/año respectivamente. Por cada decaimiento es liberada una energía E=47,7 MeV en el caso del 238 U y una energía E=40,5 MeV en el caso del 232 Th.
 - a) ¿Cuanta energía es entregada al manto por estos elementos radiactivos en un período de tres meses?
 - b) ¿Cuál era la masa de 238 U que había en la Tierra hace 2000 millones de años atrás?