

### Mathematics Specialist Units 3 & 4 Test 5 2016

Section 1 Calculator Free

Integration Partial Fractions Area Volume Numerical

| ,                                            | O                         | /                                                                   | a, votame, Nume<br>netric, Logarithmi |                  |
|----------------------------------------------|---------------------------|---------------------------------------------------------------------|---------------------------------------|------------------|
| STUDENT'S                                    | 5 NAME:                   | SOLUTION                                                            | 15)                                   | _                |
| <b>DATE</b> : Friday 29 <sup>th</sup> July   |                           | TIME: 25 minutes                                                    |                                       | MARKS: 27        |
| INSTRUCT                                     | IONS:                     |                                                                     |                                       |                  |
| Standard Items: Pens, pencils, Formula Sheet |                           | pencil sharper, eraser, correction fluid/tape, ruler, highlighters, |                                       |                  |
| Questions or p                               | arts of questions worth m | nore than 2 marks require v                                         | working to be shown to reco           | eive full marks. |
| 1. (7 ma                                     | rks)                      |                                                                     | Recall:                               | f(x) dr          |
| Evalu                                        | ate the following:        | . 7 ~                                                               |                                       | - 1, 1 (Ca) 1 +  |

Evaluate the following:

(a) 
$$\int_{1}^{3} \frac{2e^{x}}{e^{x}-1} dx = 2 \int_{1}^{3} \frac{e^{x}}{e^{x}-1} = \ln|f(x)| + C$$

$$= 2 \left[\ln|e^{x}-1|\right]_{1}^{3}$$

$$= 2 \left[\ln|e^{x}-1|\right]_{1}^{3}$$

$$= 2 \left[\ln|e^{x}-1|\right]_{1}^{3}$$

$$= 2 \ln(e^{3}-1) - \ln(e-1)$$

$$= -(a \pm b)(a^{3} \pm ab + b^{3})$$

$$= -(\ln|\cos x| \int_{0}^{\pi} \frac{\sin(x)}{\cos(x)} dx = -(\ln|\cos x| \int_{0}^{\pi} \frac{\sin(x)}{\cos(x)} dx =$$

Page 1 of 4

#### 2. (7 marks)

Determine 
$$\int \frac{x-4}{x^2-5x+6} dx$$

Consider: 
$$\frac{x-4}{(x-3)(x-2)} = \frac{A}{x-3} + \frac{B}{x-2}$$

$$\Rightarrow x-4 = A(x-2) + B(x-3)$$

$$\Rightarrow x-4 = Ax-2A + Bx-3B$$

$$\Rightarrow x-4 = (A+B)x - (2A+3B)$$

$$\Rightarrow A+B=1 \text{ and } 2A+3B=4$$

$$\Rightarrow A=1-B \Rightarrow 2(1-B)+3B=4$$

$$\Rightarrow 2-2B+3B=4$$

#### 3. (6 marks)

Calculate the area trapped between the curves: y = x,  $y = \frac{1}{x}$  and the lines  $x = \frac{1}{2}$  and x = 2.



4. (7 marks)

Given the function  $y = x \sin x$ , differentiate by:

$$\frac{dy}{dx} = 1.\sin x + x\cos x$$

$$= \sin x + x\cos x$$

#### (b) First taking the *Natural Logarithm* of both sides

$$y = x \sin x$$

$$\Rightarrow \ln y = \ln(x \sin x)$$

$$\Rightarrow \ln y = \ln x + \ln \sin x$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{1}{x} + \frac{1}{\sin x} \cdot \cos x$$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{x} + y \frac{\cos x}{\sin x}$$

$$= x \sin x + x \sin x \cdot \cos x$$

$$= x \sin x + x \cos x$$

$$= \cos x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \cos x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \cos x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \cos x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \cos x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \cos x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \cos x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \cos x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \cos x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \cos x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \cos x + x \cos x$$

$$= \sin x + x \cos x$$

$$= \sin$$

[2]

[5]



## Mathematics Specialist Units 3 & 4 Test 5 2016

Section 2 Calculator Assumed

# Integration: Partial Fractions, Area, Volume, Numerical Differentiation: Implicit, Parametric, Logarithmic

| STUDENT'S NAME: | & OKUTIONS } | 1 |
|-----------------|--------------|---|
| STUDENT SNAME.  |              |   |

**DATE**: Friday 29<sup>th</sup> July **TIME**: 25 minutes **MARKS**: 28

#### **INSTRUCTIONS:**

Standard Items: Pens, pencils, pencil sharper, eraser, correction fluid/tape, ruler, highlighters,

Formula Sheet retained from Section 1.

Special Items: Drawing instruments, templates, three calculators, notes on one side of a single A4 page

(these notes to be handed in with this assessment).

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

#### 5. (8 marks)

The diagram on the right shows the curve defined parametrically as:

$$x = 4\sin(t), y = 2\sin(2t), \text{ for } 0 \le t \le 2\pi$$



#### Determine:

(a) an expression for 
$$\frac{dy}{dx}$$
 in terms of  $t$ .

$$\frac{dx}{dt} = 4\cos t$$

$$\frac{dy}{dx} = 4\cos 2t$$

$$\frac{dy}{dt} = 4\cos 2t$$

(b) the coordinates and the gradient at the point when 
$$t = \frac{\pi}{6}$$
. [2]  $z = 4 \sin \frac{\pi}{6}$ ,  $y = 2 \sin \frac{\pi}{3}$   $\frac{dy}{dx} = \frac{\cos \frac{\pi}{3}}{\cos \frac{\pi}{6}}$ 

(c) the exact values of 
$$t$$
 for which  $\frac{dy}{dx} = 0$ .

$$\Rightarrow \cos 2t = 0$$

$$\Rightarrow 2t = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, 0 \le 2t \le 4\pi$$

$$\therefore t = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, 0 \le t \le 2\pi$$
Page 1 of 4

#### 6. (11 marks)

The curve  $x^3 + y^3 - 9xy = 0$ , known as a *folium*, dates back to Descartes in the 1630s.

(a) Use the *implicit differentiation* utility, **impDiff**, on ClassPad





Replicate your result in part (a) by showing all the steps of implicit differentiation. (b) [3]

$$x^{3} + y^{3} - 9xy = 0$$

$$\Rightarrow 3x^{2} + 3y^{2} \frac{dy}{dx} - (9y + 9x \frac{dy}{dx}) = 0$$

$$\Rightarrow 3x^{2} + 3y^{2} \frac{dy}{dx} - 9y - 9x \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx}(3y^{2} - 9x) = 9y - 3x^{2}$$

$$\Rightarrow \frac{dy}{dx} = -\frac{(3x^{2} - 9y)}{3y^{2} - 9x}$$

$$= -\frac{(x^{2} - 3y)}{y^{2} - 3x} \sqrt{3y} \frac{dy}{dx} = 0$$

(c) Determine the equation of the tangent to the curve at the point (2, 4). [2]

$$\frac{dy}{dx}\Big|_{(2,4)} = \frac{-(4-12)}{16-6}$$

$$= \frac{8}{10}$$

$$= \frac{4}{5}$$

Describe the behaviour of the curve by considering  $\frac{dy}{dx}$  as x and y tend to  $\pm \infty$ . [2]

Assuming symmetry about y = x, if appears the Curve is a symptotic to

a line y = -x - c for some c > c(see diagram above).

Page 2 of 4 (d)

$$\frac{dy}{dx} \quad tends \quad to -1$$

$$(as \quad x+y \rightarrow \pm \infty)$$

WORTHY OF FURTHER INVESTISATION

Page 2 of 4

#### (6 marks)

The Numerical Integration <u>midpoint rule</u> is that:

General Statement  $\int_a^b f(x) \, dx \approx w \sum_{i=1}^n f\left(\frac{a_{i-1} + a_i}{2}\right), \text{ where the interval [a, b] is divided into } n \text{ equal width rectangles}$ of width w and the values  $a_0, a_1, a_2, \dots, a_n$  are the endpoints of the rectangles, so  $a_0 = a$  and  $a_n = b$ .

Use the midpoint rule to calculate an approximation for  $\int_{-2}^{2} e^{x} dx$  using 8 rectangles.









Compare your result to this screen capture from ClassPad.  $\int_{-2}^{2} e^{x} dx$ (b) 7.1787 2 7.2537 (40.7.) [1] A good comparison; would improve by increasing the number of rectangles.

#### 8. (5 marks)

Calculate the volume of solid generated when the region trapped between the curve: y = |x(x-1)|, the x-axis, x = -1 and x = 1 is rotated about the x-axis.



