PART 2

Equations

function $getenthalpy(S\$, T)$	(1)
$\mathbf{call}\ NASA(S\$,\ T:cp,\ geTenthalpy,\ s)$	(2)
${\sf end}$ $getenthalpy$	(3)
procedure $enthalpygibbs(S\$, T:h, g)$	(4)
call $NASA(S\$, T: cp, h, s)$	(5)
$g := h - T \cdot s$	(6)
end h_g	(7)
$T_{air} = 460 \text{ [K]}$	(8)
$T_{fuel} = 430 \text{ [K]}$	(9)
$T_{final,1} = 1700 \text{ [K]}$	(10)
$T_{final,2} = 1600 \text{ [K]}$	(11)
$T_{final,3} = 1300 \text{ [K]}$	(12)
P = 1000 [kPa]	(13)
$P_{ref} = 100 \text{ [kPa]}$	(14)
R = R#	(15)
$h_{N2,inlet} = getenthalpy(`N2'\;,\; T_{air})$	(16)
$h_{O2,inlet} = getenthalpy(`O2'\ ,\ T_{air})$	(17)
$h_{CH4,inlet} = getenthalpy(\text{`CH4'}, T_{fuel})$	(18)
$h_{C2H6,inlet} = getenthalpy(\text{`C2H6'}, T_{fuel})$	(19)
$h_{fuel,inlet} = 0.9 \cdot h_{CH4,inlet} + 0.1 \cdot h_{C2H6,inlet}$	(20)
$duplicate \ \ i=1,\ 3$	(21)
$1.1 = b_i + n_i$	(22)
$4.2 = 2 \cdot c_i + j_i + k_i + 2 \cdot m_i$	(23)
$2 \cdot a_i = 2 \cdot b_i + c_i + 2 \cdot e_i + f_i + k_i + n_i$	(24)
$3.76 \cdot 2 \cdot a_i = 2 \cdot d_i + g_i$	(25)
$n_{tot,i} = (b_i + c_i + d_i + e_i + f_i + g_i + j_i + k_i + m_i + n_i)$	(26)

$$duplicate z = 1, 3$$
(85)

I used the compressibility factor (assumed all of our products were N2) to improve the accuracy of our equation of state. Dont worry, the max value Z ever takes in this problem is 1.003

$$Z_{factor,z} = Z(Nitrogen, T = T_{final,z}, P = P)$$
 (86)

Calculating the residence time from the mass flowrates and the lengths of each PFR

The 0.0040124501 is included because n_{tot} is our total mole count per 1 mole of fuel. but we have 0.0040124501 moles of fuel per second in reality, so our number must be corrected

$$\rho_z \cdot ((n_{tot,z} \cdot 0.0040124501) \cdot Z_{factor,z} \cdot R \cdot T_{final,z}) = (P \cdot \dot{m}_{cumulative,z})$$
(87)

$$v_z \cdot (\rho_z \cdot A_L) = \dot{m}_{cumulative,z} \tag{88}$$

$$t_{r,z} \cdot v_z = L_z \tag{89}$$

Finding the concentrations of relevant species at each stage using their corresponding mole fractions found in part 1 and the equation of state Pv=ZRT

$$C_{N2,z} = y_{N2,z} \cdot \frac{P}{(Z_{factor,z} \cdot R \cdot T_{final,z})}$$

$$(90)$$

$$C_{O2,z} = y_{O2,z} \cdot \frac{P}{(Z_{factor,z} \cdot R \cdot T_{final,z})}$$

$$(91)$$

$$C_{O,z} = y_{O,z} \cdot \frac{P}{(Z_{factor,z} \cdot R \cdot T_{final,z})}$$

$$(92)$$

$$C_{N,z} = y_{N,z} \cdot \frac{P}{(Z_{factor,z} \cdot R \cdot T_{final,z})}$$
(93)

$$C_{H,z} = y_{H,z} \cdot \frac{P}{(Z_{factor,z} \cdot R \cdot T_{final,z})} \tag{94}$$

$$C_{OH,z} = y_{OH,z} \cdot \frac{P}{(Z_{factor,z} \cdot R \cdot T_{final,z})}$$
(95)

Zeldovich mechanism rate coefficients given to us as an input

$$k_{N1,f,z} = 1.8 \, \left[\text{m}^3/\text{kmol} \cdot \text{s} \right] \cdot (1011) \cdot \exp\left(-38370 \, \left[\text{K} \right] \frac{1}{T_{final,z}} \right)$$
 (96)

$$k_{N1,r,z} = 3.8 \left[\text{m}^3/\text{kmol} \cdot \text{s} \right] \cdot (1010) \cdot \exp\left(-425 \frac{[\text{K}]}{T_{final,z}} \right)$$

$$(97)$$

$$k_{N2,f,z} = 1.8 \left[\text{m}^3/\text{kmol} \cdot \text{s} \cdot \text{K} \right] \cdot T_{final,z} \cdot (107) \cdot \exp\left(-4680 \frac{\left[\text{K} \right]}{T_{final,z}} \right)$$
(98)

$$k_{N2,r,z} = 3.8 \left[\text{m}^3/\text{kmol} \cdot \text{s} \cdot \text{K} \right] \cdot T_{final,z} \cdot (106) \cdot \exp\left(-20820 \, \frac{\left[\text{K} \right]}{T_{final,z}} \right) \tag{99}$$

$$k_{N3,f,z} = 7.1 \left[\text{m}^3/\text{kmol} \cdot \text{s} \right] \cdot (1010) \cdot \exp\left(-450 \frac{[\text{K}]}{T_{final,z}} \right)$$

$$(100)$$

$$k_{N3,r,z} = 1.7 \, \left[\text{m}^3/\text{kmol} \cdot \text{s} \right] \cdot (1011) \cdot \exp\left(-24560 \, \frac{[\text{K}]}{T_{final,z}} \right)$$
 (101)

Rate of Reactions for the Zeldovich mechanism

$$RR_{1,z} = (k_{N1,f,z} \cdot C_{O,z} \cdot C_{N2,z}) - (k_{N1,r,z} \cdot C_{NO,z} \cdot C_{N,z})$$
(102)

$$RR_{2,z} = (k_{N2,f,z} \cdot C_{N,z} \cdot C_{O2,z}) - (k_{N2,r,z} \cdot C_{NO,z} \cdot C_{O,z})$$
(103)

$$RR_{3,z} = (k_{N3,f,z} \cdot C_{N,z} \cdot C_{OH,z}) - (k_{N3,r,z} \cdot C_{NO,z} \cdot C_{H,z})$$
(104)

Rate of change of the concentation for NO

$$dC_{NOdt,z} = RR_{1,z} + RR_{2,z} + RR_{3,z} (105)$$

Integrating the rate of change of the NO concentration to get the NO concentration at each stage of the combustion

$$C_{NO,1} = 0$$
 (107)

$$C_{NO,2} = C_{NO,1} + \int_0^{t_{r,1}} dC_{NOdt,1} \, dTime_1 \tag{108}$$

$$C_{NO,3} = C_{NO,2} + \int_0^{t_{r,2}} dC_{NOdt,2} \, dTime_2 \tag{109}$$

$$C_{NO,4} = C_{NO,3} + \int_0^{t_{r,3}} dC_{NOdt,3} \, dTime_3 \tag{110}$$

Total NO emission of the combustor in ppm

$$PPM \cdot P = C_{NO,4} \cdot Z_{factor,3} \cdot R \cdot T_{final,3} \cdot (10^6)$$
(111)

Final note: in my research, I have found that a 0.13 PPM value for NO in a gas turbine is very unlikely but plausible. So I stopped looking for problems in my own code and put the blame on unrealistic data

but it could be due to a difference in defining PPM based on molar fractions or volumetric fractions (or even mass fractions)