Álgebra Linear e Geometria Analítica

Agrupamento IV

9/11/2022 1º Teste Duração: 1h45min

Justifique detalhadamente todas as respostas. Apresente todos os cálculos.

(6.0) 1. Sejam α e β parâmetros reais, $A = \begin{bmatrix} 1 & 1 & 2 \\ 2\beta & \alpha - 1 & 0 \\ \beta & 0 & \alpha - \alpha^2 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 0 \\ 1 - \alpha \end{bmatrix}$ e $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ um vetor de incógnitas. .

- (a) Considere $\beta=0.$ Determine para que valores de α se verifica que:
 - i. car(A) = 2;
 - ii. nul(A) = 2;
 - iii. o sistema homogéneo AX = 0 tem apenas a solução trivial, X = 0;
 - iv. o sistema AX = B é impossível.
- (b) Considere $\alpha=2$ e $\beta=1$. Resolva o sistema AX=B com o método de eliminação de Gauss e indique o respetivo conjunto de soluções.
- (6.0) 2. Seja $M=\begin{bmatrix}1&1&k\\1&1&1\\k&0&k\end{bmatrix}$, onde k é um parâmetro real.
 - (a) Calcule o determinante da matriz M.
 - (b) Determine todos os valores de k para os quais a matriz M é invertível. Justifique.
 - (c) Considere k=3. Calcule a entrada (2,3) da inversa de M, sem calcular a inversa.
 - (d) Considere, novamente, k = 3. Sabendo que N é uma matriz de ordem 3 e que $\det(2M^{-1}N^{\top}) = 8$, calcule $\det(N)$.
- (4.0) 3. Considere os vetores u = (1, 1, -1) e v = (1, 2, 0).
 - (a) Determine todos os vetores perpendiculares a u e v de comprimento $2\sqrt{6}$.
 - (b) Determine o seno do ângulo $\theta \in [0, \pi]$ formado pelos vetores $u \in v$.
- (4.0) 4. Considere o plano \mathcal{P} : 2x 2y + z = 4 e as retas \mathcal{R} : $\begin{cases} x + y = 3 \\ 4y z = 4 \end{cases}$ e \mathcal{S} : $\begin{cases} 2x + z = 1 \\ 2y 3z = 3 \end{cases}$.
 - (a) Determine a posição relativa das retas \mathcal{R} e \mathcal{S} .
 - (b) Sabendo que \mathcal{R} e \mathcal{P} não têm pontos em comum, determine a distância entre a reta \mathcal{R} e o plano \mathcal{P} .