Home Work 1

Question (1) Math Review (25 points)

Question (1_1): $f(x,y,z) = 3x^2 + sin(y)z$, I need to find partial derivatives for each x,y, and z:

Solution:

With respect to x: $\frac{\partial f(x,y,z)}{\partial x} = 6x$, everything else is constant as they don't have x in their representation.

With respect to y: $\frac{\partial f(x,y,z)}{\partial y} = z\cos(y)$, the first term derivative is zero in this case.

With respect to z: $\frac{\partial f(x,y,z)}{\partial z} = \sin(y)$, the first term derivative is also zero in this case.

Question (1_2): In this question, I will need to find the $\nabla f(x,y,z)$:

Using the results from the previous question, $\nabla f(x, y, z) = [6x, z \cos(y), \sin(y)]$

Question (1_3): Here we are replicating 1 and 2 but $f(x) = 3x_1^2 + \sin(x_2)x3$:

$$\nabla f(x_1,x_2,x_3) = [6x_1,\, x_3\cos(x_2),\, \sin(x_2)]$$

Question (1_4_A):In this part, I will need to get the derivative for $||x||_2^2$:

$$||x||_2^2 = \sum_{i=1}^n x_i^2 = x_1^2 + x_2^2 + \dots + x_n^2$$

In this case: $\frac{\partial ||x||_2^2}{\partial x} = \frac{\partial x_1^2 + x_2^2 + \ldots + x_n^2}{\partial x_1} + \frac{\partial x_1^2 + x_2^2 + \ldots + x_n^2}{\partial x_2} + \ldots + \frac{\partial x_1^2 + x_2^2 + \ldots + x_n^2}{\partial x_n} =$ = $[2x_1, 2x_2, ..., 2x_n]$, This represents the partial derivative for each x.

Question (1_4_B):In this part, I will need to get the derivative for $||x||_2$:

$$||x||_2 = \sqrt(\sum_{i=1}^n x_i^2) = \sqrt(x_1^2) + \sqrt(x_2^2) + \ldots + \sqrt(x_n^2)$$

To get this derivative, $\frac{\partial ||x||_2}{\partial x}$, I will be using the chain rule assuming that a new function h(z) = \sqrt{z} , where $z(x) = \sum_{i=1}^{n} x_i^2$.

$$\frac{\partial h(z)}{\partial x} = \frac{\partial h(z)}{\partial z} * \frac{\partial z(x)}{\partial x}$$

$$\frac{\partial h(z)}{\partial x} = \frac{1}{2\sqrt(\sum_{i=1}^n x_i^2)} * \sum_{i=1}^n 2x_i \ \frac{\partial h(z)}{\partial x} = \frac{x}{||x||_2}$$

Question (1_4_C):In this part, I will need to get the derivative for $||x||_1$:

$$||x||_1 = \sum_{i=1}^n |x_i| = |x_1| + |x_2| + \dots + |x_n|$$

 $\frac{\partial \|x\|_1}{\partial x}$: depends on the value of X_i . If positive, it would be 1, if negative, it would be -1, and undefined when x equals zero. To represent the derivative of this function, the sign function can be used in this case:

$$\frac{\partial \|x\|_1}{\partial x} = [sign(x_1), sign(x_2), ..., sign(x_n)]^T$$

Question (1_4_D):In this part, I will need to get the derivative for $||x||\infty$:

 $||x|| \infty = max|X_i|$, This entails many cases under the hood and can be represented using the sign function:

 $\frac{\partial \|x\|\infty}{\partial x_i} = sign(x_i)$ Accordingly, $\frac{\partial \|x\|\infty}{\partial x_i} = [0,...,sign(x_i),...,0]^T.$ Those components that are not achieving the maximum, the derivative is 0.

Question (1_5): In this part, I will need to get the derivative of f(x) = $e^{\frac{-1}{2}\|x_i\|_2^2}$.

For this function, the chain rule will be used assuming a new function $h(z) = e^z$, where $z = \frac{-1}{2} ||x_i||_2^2$. In this case, we would be looking for:

$$\frac{\partial h(z)}{\partial x} = \frac{\partial h(z)}{\partial z} * \frac{\partial z(x)}{x}$$

$$\frac{\partial h(z)}{\partial x} = e^z \, * \, -x_i$$

$$\tfrac{\partial h(z)}{\partial x} = -x_i \ *e^{\frac{-1}{2}\|x_i\|_2^2} = [-x_1 e^{\frac{-1}{2}\|x_1\|_2^2}, \ -x_2 e^{\frac{-1}{2}\|x_2\|_2^2}, \dots, \ -x_n e^{\frac{-1}{2}\|x_n\|_2^2} \]$$

Question (1_6) : In this part, I will need to get the two components of f(A,x):

In this case A is a 2x3 matrix= $A_{2x3} = \begin{bmatrix} A1, 1 & A1, 2 & A1, 3 \\ A2, 1 & A2, 2 & A2, 3 \end{bmatrix}$

And $x_{1x3} = \begin{bmatrix} x1 & x2 & x3 \end{bmatrix}$

$$f(A,x) = Ax = \begin{bmatrix} A1, 1 & A1, 2 & A1, 3 \\ A2, 1 & A2, 2 & A2, 3 \end{bmatrix} * \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix}$$

$$f(A,x) = Ax = \begin{bmatrix} A1, 1 * x1 + A1, 2 * x2 + A1, 3 * x3 \\ A2, 1 * x1 + A2, 2 * x2 + A2, 3 * x3 \end{bmatrix}$$

Question (1_7): In this part,I would need to get $\frac{\partial f(A,x)_1}{\partial x}$ and $\frac{\partial f(A,x)_2}{\partial x}$.

$$\frac{\partial f(A,x)_1}{\partial x} = \begin{bmatrix} A1,1\\A1,2\\A1,3 \end{bmatrix}$$

$$\frac{\partial f(A,x)_2}{\partial x} = \begin{bmatrix} A2,1\\A2,2\\A2,3 \end{bmatrix}$$

Question (1_8): In this part,I would need to get

 $\frac{\partial f(A,x)}{\partial x} \colon$ Using results from the previous question, The result will be:

$$\frac{\partial f(A,x)}{\partial x} = \begin{bmatrix} A1, 1 & A2, 1\\ A1, 2 & A2, 2\\ A1, 3 & A2, 3 \end{bmatrix}$$

Question (1_9) : In this part,I would need to get the derivative of

 $\mathbb{E}[f(x)].$

Given that: $\mathbb{E}[f(x)] = \sum \Pr(X = x) f(x)$, then:

 $\frac{\partial \mathbb{E}[f(x)]}{\partial x} = \frac{\partial}{\partial x} \sum \Pr(X = x) f(x),$ note that $\Pr(X = x)$ is constant with respect to x.

$$\frac{\partial \mathbb{E}[f(x)]}{\partial x} = \sum \Pr(X = x) \frac{\partial}{\partial x} f(x).$$

Question (2): Linear Algebra

Figure 1: Performance comparison