Physics Laboratory Report PHY 151

M5 Newton's Second Law

This lab is worth 65 points			
This section is completed by the student Student Name: Mayank Jha			
Date:10/12/2020			
TA name: Alexander Bivolcic Section: 1			
This section is completed by the TA:			
VI-1 (38):			
VI-2 (17):			
Do at home (10)			
Report Grade:			
TA Signature:			

M1 Report Do at-home exercise

Recorded 8 values of Force applied and acceleration observed

а	F
0	0
1	50
1.1	55
1.2	60
1.3	65
2	100
3	150
4	200

F vs a

This is the chart observed by the data recorded. The line is linear hence supporting the proportion between F and a for the equation F = ma

From the graph we see the slope equation as $F = 50*a + \approx 0 = 50a$ Here 50 represents the slope which is equal to the mass of our crate Hence the mass of the crate is 50kg

V1 report

Tabulated data

Here the data is accounted for where the glider ($\rm M1$) has a mass of 299.4g and the hanger(M2) has a mass of 5.1

We were provided with the data for m1 and to calculate m2, the following equation has been used

m2 = 25 - m1

m1(g)	m2(g)	a (cm/s2)
324.	5.1	89.7
324.4	5.1	88.2
324.	5.1	87.7
324.4	5.1	84
324.4	5.1	82.6
319.4	10.1	74.7
319.	10.1	73.7
319.	10.1	73.4
319.	10.1	73.2
319.	10.1	72.7
314.	15.1	61
314.	15.1	60.2
314.	1 15.1	56.2
314.	15.1	55.8
314.	15.1	55.8
309.	20.1	46.1
309.	20.1	45.3
309.	20.1	43.2
309.	20.1	42.2
309.	20.1	41.7
304.4	25.1	28.5
304.	25.1	28.3
304.	25.1	28.2
304.	25.1	28.1
304.	25.1	28

299.4	30.1	14.7
299.4	30.1	14.5
299.4	30.1	14.4
299.4	30.1	14.4
299.4	30.1	13.7

Plotting a vs M2 we get the graph

Using linest we get

LINEST VALUES	
0.341112	-4.78526
0.004482	0.253226

We see the slope is matched from linest and graph

Uncertainty is 0.00448. If mass uncertainty is negligible Then, g => $9.8 \pm 0.00448 \text{ m/s}^2$

V2 of Report

From given values of a1, the average value is $60.5 \text{ cm/s}^2 = 0.605 \text{ m/s}^2$ From given values of a2, the average value is $50.7 \text{ cm/s}^2 = 0.507 \text{ m/s}^2$ Mass of M1 on glider = 10 + 299.4 = 309.4g = 0.3094 kgMass of M2 on hanger = 15 + 5.1 = 20.1g = 0.0201 kg

Using these values and the equation f = ((M1 + M2)(a1 - a2) / 2) We get f = (3094 + 0.0201)*(0.605 - 0.507)/2 = 0.0161455N