Applied Machine Learning!!!

W207 Section 9
Rasika Bhalerao
rasikabh@berkeley.edu

Schedule

Supervised learning methods

	Sync	Topic		
2	Aug 30	Linear Regression / Gradient Descent		
3	Sep 6	Feature Engineering Bonus: Naive Bayes		
4	Sep 13	Logistic Regression		
5	Sep 20	Multiclass classification / Eval Metrics Bonus: Reinforcement learning		
6	Sep 27	Neural Networks		
7	Oct 4	KNN, Decision Trees, Ensembles		

Unsupervised learning methods

	Sync	Topic
8	Oct 11	KMeans and PCA Bonus: LDA
9	Oct 18	Text Embeddings Bonus: Language models
10	Oct 25	CNNs Bonus: GANs
11	Nov 1	EDA, Real data, Baselines
12	Nov 15	Fairness / Ethics
13	Nov 29	Fancy Neural Networks
14	Dec 6	Final Presentations

Assignment Schedule

Due Date	Assignment
Aug 28	HW1
Sep 4	HW2
Sep 11	HW3
Sep 18	HW4
Sep 25	HW5
Oct 2	HW6
Oct 16	Group project baseline
Oct 23	HW8
Nov 6	HW9
Nov 20	HW10
Dec 4	Final project notebook + presentation

Behavior expectations

- Healthy disagreement is expected
- Be mindful of one another's schedules
- Be a good listener
- Have fun in a professional manner
- Share related real-world experience
- Ask questions when something is confusing
- Keep it 100 but be respectful
- Be open-minded to new ideas in the real world and when coding
- On time for group meetings

How are final projects going?

Guidelines:

https://docs.google.com/document/d/1R7mIHOtYXKU8vEQzw10uofb_iK3sgimw8iZLWSTzdgg/edit?usp=sharing

Cross validation - 5-fold

datascience@berkeley Uri Schonfeld

K Nearest Neighbors

Quick pseudocode recap of KNN

Use fit:

X = [a, b, c]

Y = [0, 1, 0]

model = KNN(k=5)

model.fit(X, Y)

Implement fit:

self.X = X

self.Y = Y

Use predict:

 $X_{test} = [d, e, f]$

Y_predicted = model.predict(X_test)

Implement predict:

For x i in X test:

For x_train in self.X:

dist(x_i, x_train)

Find the x_trains that yield the k smallest such distances

Get those x_train's labels, and the majority is the label for x_i. Call it y_i

Return the list of y_i

How would KNN perform if you reused the

training data as the test data?

Even or odd k (assuming binary

classification)?

Async Practice Quiz Questions (vote!)

It's possible that a model that perfectly fits all the training data will still generalize well to the test data.	True	False
With length-normalized vectors A and B, Euclidean distance $e(A,B)$ is related to dot product distance $d(A,B)$ by: $e(A,B)^2 / 2 = 1-d(A,B)$.	True	False

What other distance metrics are there?

- L1, L2, ...
- Euclidean distance
- Manhattan distance
- Hamming distance
- Levenshtein distance
- Jaccard index
- Cosine similarity
- Wordnet
- Create your own!

Decision Trees

Review: How do we use a trained decision tree to predict?

Input x

Start with the first node

While the node is not a leaf

Follow the path on the node

Return the prediction associated with that leaf

Review: How do we train a decision tree?

Function (x,y pairs):

If the dataset is empty:

Assign Y = majority of the parent node's Y

If all y are the same:

leaf node

Split on feature that gives highest information gain

For each child node created:

Call this function with the subset of the data in that child node

Choosing an attribute

Example: deciding whether or not we will wait for a table at a restaurant

Green: we have waited for it before

Red: we have not waited for it before

Which feature gives more information?

Choosing an attribute: entropy

Entropy: measure of "uncertainty" in data

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Attribute selection measure: Information gain

- Choose the attribute with **highest information gain** (reduces the most entropy)
- Let p_i be the probability that an arbitrary element of D belongs to class C_i,
 estimated by |C_i ∩ D|/|D|
- estimated by $|C_i \cap D|/|D|$ Information (entropy) in D: $Info(D) = -\sum_{i=1}^m p_i \log_2(p_i)$
- Information by splitting D on attribute A into v partitions:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained after using A to split D: $Gain(A) = Info(D) - Info_A(D)$

Attribute selection: information gain

no

Class P: buys_computer = "yes" Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

$$= \frac{5}{14}I(3,2) = 0.694$$

excellent

>40

medium

no

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence $Gain(age) = Info(D) - Info_{age}(D) = 0.246$

Similarly, Gain(income) = 0.029 Gain(student) = 0.151Gain(credit rating) = 0.048

Should we keep a feature that we already

used for a split to use in its subtree?

Overfitting decision trees

- What is wrong here?
- How can we fix it?

Async Practice Quiz Questions (vote!)

A decision tree cannot learn interactions between features.	True	False
The decision tree algorithm finds the optimal tree (the smallest tree that explains the training data).	True	False
A decision tree will always be a balanced binary tree.	True	False
Bagging and boosting can be used with any classifier.	True	False

What is Boosting?

• (How is it different from Bagging?)

Notebook!

To access later:

https://github.com/MIDS-W207/rasikabh/blob/main/live_sessions/Week7.ipynb

Also, if you want last semester's assignments: https://github.com/MIDS-W207/coursework