选题编号:

清华大学出版社

勘误表

书名:控制之美(卷2)——最优化控制 MPC 与卡尔曼滤波器

译著者: 王天威 黄军魁

责任编辑: 复审者: 终审者: 2023年11月8日

第1次印刷

页	行	问题	修改
2	公式 (1.1.3)	$+\begin{bmatrix}0\\1\end{bmatrix}u_{(t)}$	$+\begin{bmatrix}0\\\frac{1}{m}\end{bmatrix}u_{(t)}$
41	式 (3.3.15) 下面一段		增加以下文字: 需要注意的是,式(3.3.14b)中的状态矩阵不可逆, 因此无法使用式(2.2.5)进行离散化。式(3.3.15) 是使用了 Matlab/Octave 的 c2d 指令得到的近似结果。
78	式 (4.5.8a)	$=\frac{1}{2}\left(\boldsymbol{C}_{a}\boldsymbol{x}_{a[k]}\right)^{\mathrm{T}}\boldsymbol{S}\left(\boldsymbol{C}_{a}\boldsymbol{x}_{a[k]}\right)$	$=\frac{1}{2}\left(\boldsymbol{C}_{a}\boldsymbol{x}_{a[N]}\right)^{\mathrm{T}}\boldsymbol{S}\left(\boldsymbol{C}_{a}\boldsymbol{x}_{a[N]}\right)$
79	式 (4.5.8a)	$=\frac{1}{2}\boldsymbol{x_{a}}_{[k]}^{\mathrm{T}}\boldsymbol{C}_{a}^{\mathrm{T}}\boldsymbol{S}\boldsymbol{C_{a}}\boldsymbol{x_{a}}_{[k]}$	$= \frac{1}{2} \boldsymbol{x}_{\boldsymbol{a}[N]}^{\mathrm{T}} \boldsymbol{C}_{\boldsymbol{a}}^{\mathrm{T}} \boldsymbol{S} \boldsymbol{C}_{\boldsymbol{a}} \boldsymbol{x}_{\boldsymbol{a}[N]}$
79	式 (4.5.8b)	$=\frac{1}{2}\boldsymbol{x}_{a[N]}^{\mathrm{T}}\boldsymbol{S}_{a}\boldsymbol{x}_{a[k]}$	$=\frac{1}{2}\boldsymbol{x}_{\boldsymbol{a}[\boldsymbol{N}]}^{\mathrm{T}}\boldsymbol{S}_{\boldsymbol{a}}\boldsymbol{x}_{\boldsymbol{a}[\boldsymbol{N}]}$
81	式 (4.5.17)	$=\frac{1}{2}\boldsymbol{x}_{\boldsymbol{a}[N]}^{\mathrm{T}}\boldsymbol{S}_{\boldsymbol{a}}\boldsymbol{x}_{\boldsymbol{a}[k]}$	$=\frac{1}{2}\boldsymbol{x}_{\boldsymbol{a}_{[N]}}^{\mathrm{T}}\boldsymbol{S}_{\boldsymbol{a}}\boldsymbol{x}_{\boldsymbol{a}_{[N]}}$
84	式 (4.5.26)	$=\frac{1}{2}\boldsymbol{x}_{a[N]}^{\mathrm{T}}\boldsymbol{S}_{a}\boldsymbol{x}_{a[k]}$	$= \frac{1}{2} \boldsymbol{x}_{\boldsymbol{a}[N]}^{\mathrm{T}} \boldsymbol{S}_{\boldsymbol{a}} \boldsymbol{x}_{\boldsymbol{a}[N]}$
138	式 (6.2.12b) 下一行	根据方差运算性质式(6.2.6d), 式(6.2.12a)可以写成	根据方差运算性质式(6.2.6d), 式(6.2.12b) 可以写成
140	式 (6.2.17a)	$\frac{1}{n-1} \sum_{i=1}^{n} (x_{1_i} - \bar{x}_1)$	$\frac{1}{n-1} \sum_{i=1}^{n} (x_{1_i} - \bar{x}_1)^2$
140	式 (6.2.17b)	$\frac{1}{n-1} \sum_{i=1}^{n} (x_{2i} - \bar{x}_2)$	$\frac{1}{n-1} \sum_{i=1}^{n} (x_{2i} - \bar{x}_2)^2$
140	式 (6.2.17c)	$\frac{1}{n-1} \sum_{i=1}^{n} (x_{3_i} - \bar{x}_3)$	$\frac{1}{n-1} \sum_{i=1}^{n} (x_{3_i} - \bar{x}_3)^2$
149	式 (6.3.19b) 下一行	代表了第k — 1时刻的 <mark>先</mark> 验估计协方差矩阵	代表了第k — 1时刻的后验估计协方差矩阵
163	式 (6.5.9)	$\alpha_{[k-1]} = \frac{g}{L} \sin \theta_{[k-1]}$	$\alpha_{[k-1]} = -\frac{g}{L} \sin \theta_{[k-1]}$