COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2020

Announcements/Reminders

HW2 due September 29

Submit through Gradescope

PR1 Due October 6

Previously on COS 433...

Functions that "look like" random functions

Syntax:

- Key space K_{λ}
- Domain X_{λ}
- Co-domain/range Y_{λ}
- Function $F:K_{\lambda} \times X_{\lambda} \rightarrow Y_{\lambda}$

Correctness: **F** is a function (deterministic)

Using PRFs to Build Encryption

Counter Mode

Today

Block ciphers, more modes of operation

Begin constructing block ciphers/PRFs

Pseudorandom Permutations (also known as block ciphers)

Functions that "look like" random permutations

Syntax:

- Key space K_{λ}
- Domain=Range= X_{λ}
- Function $\mathbf{F}: \mathbf{K}_{\lambda} \times \mathbf{X}_{\lambda} \rightarrow \mathbf{X}_{\lambda}$
- Function $F^{-1}:K_{\lambda} \times X_{\lambda} \rightarrow X_{\lambda}$

Correctness: $\forall k,x, F^{-1}(k, F(k, x)) = x$

Pseudorandom Permutations

Pseudorandom Permutations

Pseudorandom Permutations

PRP Security Definition

Definition: \mathbf{F} is a secure PRP if, for all \mathbf{K} running in polynomial time, \exists negligible $\mathbf{\varepsilon}$ such that:

Pr[1←PRF-Exp₀(
$$\mathring{\chi}$$
, λ)]

- Pr[1←PRF-Exp₁($\mathring{\chi}$, λ)] ≤ ε(λ)

Theorem: Assuming $|X_{\lambda}|$ is super-polynomial, a PRP (F,F^{-1}) is secure iff F is secure as a PRF

Secure as PRP \Rightarrow Secure as PRF

• Assume 🤾 , hybrids

Secure as PRP \Rightarrow Secure as PRF

• Assume 🦹 , hybrids

Secure as PRP \Rightarrow Secure as PRF

• Assume 🤾 , hybrids

Secure as PRP \Rightarrow Secure as PRF

• Assume 🐧 , hybrids

Hybrids 0 and 1 are indistinguishable by PRP security

Hybrids 1 and 2?

- In Hybrid 1, 🐧 sees random **distinct** answers
- In Hybrid 2, 🥻 sees random answers
- Except with probability $\approx q^2/2|X_{\lambda}|$, random answers will be distinct anyway

Secure as PRF \Rightarrow Secure as PRP

• Assume \hbar , hybrids

Proof essentially identical to other direction

How to use block ciphers for encryption

Counter Mode (CTR)

Electronic Code Book (ECB)

ECB Decryption

Security of ECB?

Is ECB mode CPA secure?

Is ECB mode *one-time* secure?

Security of ECB

Plaintex

Ciphertext

Ideal

Cipher Block Chaining (CBC) Mode

(For now, assume all messages are multiples of the block length)

CBC Mode Decryption

Theorem: If (F,F^{-1}) is a secure pseudorandom permutation and $|X_{\lambda}|$ is super-polynomial, then CBC mode encryption is CPA secure.

Assume toward contradiction an adversary ** for CBC mode

Hybrids...

Hybrid 0,1 differ by replacing calls to **F** with calls to random permutation **H**

Indistinguishable by PRP security

Same for Hybrids 2,3

All that is left is to show indistinguishability of 1,2

Idea:

- As long as, say, the sequence of left messages queried by does not result in two calls to H on the same input, all outputs will be random (distinct) outputs
- For each message, first query to H will be uniformly random
- Second query gets XORed with output of first query to H ⇒ ≈ uniformly random

Idea:

- Since queries to H are (essentially) uniformly random, probability of querying same input twice is exponentially small
- Ciphertexts will be essentially random
- True regardless of encrypting m_0 or m_1

Output Feedback Mode (OFB)

Turn block cipher into stream cipher

OFB Decryption

Cipher Feedback (CFB)

Turn block cipher into self-synchronizing stream cipher

CFB Decryption

Security of OFB, CFB modes

Security very similar to CBC

Define 4 hybrids

- 0: encrypt left messages
- 1: replace PRP with random permutation
- 2: encrypt right messages
- 3: replace random permutation with PRP
- 0,1 and 2,3 are indistinguishable by PRP security
- 1,2 are indistinguishable since ciphertexts are essentially random

Which Mode to Use?

Never use ECB

Otherwise, largely depends on application

Some advantages/disadvantages to each

CTR mode:

Enc, Dec easily parallelized

CBC mode encryption:

Enc not parallelizable X

CBC mode decryption:

OFB mode:

Enc,Dec not parallelizable 🗶

CFB mode encryption:

Enc not parallelizable X

CFB mode decryption:

Lose Block During Transmission?

CTR mode decryption:

Message corrupted after deleted block

Same for any mode that builds stream cipher (e.g. OFB)

Lose Block During Transmission?

CBC mode decryption:

Lose one block, one more corrupted, rest fine Same for CFB

PRPs vs PRFs

In practice, PRPs are the central building block of most crypto

- Also PRFs
- Can build PRGs
- Very versatile

Constructing block ciphers

Difficulties

2ⁿ! Permutations on **n**-bit blocks $\Rightarrow \approx n2^n$ bits to write down random perm.

Reasonable for very small **n** (e.g. **n<20**), but totally infeasible for large **n** (e.g. **n=128**)

Challenge:

 Design permutations with small description that "behave like" random permutations

Difficulties

For a random permutation H, H(x) and H(x') are (essentially) independent random strings

Even if x and x' differ by just a single bit

Therefore, for a random key \mathbf{k} , changing a single bit of \mathbf{x} should "affect" all output bits of $\mathbf{F}(\mathbf{k},\mathbf{x})$

Definition: For a function $H:\{0,1\}^n \rightarrow \{0,1\}^n$, we say that bit **i** of the input affects bit **j** of the output if

For a random $x_1,...,x_{i-1},x_{i+1},...,x_n$, if we let $y=H(x_1...x_{i-1}0x_{i+1}...x_n)$ and $z=H(x_1...x_{i-1}1x_{i+1}...x_n)$ Then $y_i \neq z_i$ with probability $\approx 1/2$ Theorem: If (F,F^{-1}) is a secure PRP, then with (with "high" probability over the key k), for the function $F(k,\bullet)$, every bit of input affects every bit of output

Proof sketch:

- For random permutations this is true
- If bit **i** did not affect bit **j**, we can construct an adversary that distinguishes **F** from random

Goal: build permutation for large blocks from permutations for small blocks

- Small block perms can be made truly random
- Hopefully result is pseudorandom

First attempt: break blocks into smaller blocks, apply smaller permutation blockwise

Key: description of $\mathbf{f_1}$, $\mathbf{f_2}$,...

Is this a secure PRP?

- Key size: $\approx (8 \times 2^8) \times (\lambda/8) = O(\lambda)$
- Running time: a few table lookups, so efficient
- Security?

Second attempt: shuffle output bits

Is this a secure PRP?

- Key size: $\approx 2^8 \lambda + \lambda \times \log \lambda$
- Running time: a few table lookups
- Security?

Third Attempt: Repeat multiple times!

While single round is insecure, we've made progress

Each bit affects 8 output bits

With repetition, hopefully we will make more and more progress

With 2 rounds,

Each bit affects 64 output bits

With 3 rounds, all 128 bits are affected

Repeat a few more times for good measure

Announcements/Reminders

HW2 due September 29

Submit through Gradescope

PR1 Due October 6