Learning with a single neuron

- Sigmoid function $g(z) = \frac{1}{1+e^{-z}}$ For set of examples $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$

total loss $\sum_{n=1}^{N} (g(\boldsymbol{w} \cdot \boldsymbol{x}_n) - y_n)^2/2$ can have exponentially # of minima in weight space

Want loss that is convex in **w** Convex plus convex is convex!

Bregman Divergences lead to good loss functions

Use $\Delta_G(\mathbf{w} \cdot \mathbf{x}, g^{-1}(y))$ as loss of \mathbf{w} on (\mathbf{x}, y) Called matching loss for g

[AHW,HKW]

transfer func.	G(z)	match. loss
g(z)		$d_G(\mathbf{w} \cdot \mathbf{x}, g^{-1}(y))$
7	$\frac{1}{2}Z^2$	$\frac{1}{2}(\mathbf{w}\cdot\mathbf{x}-y)^2$
	22	square loss
<u>_</u>		$y \ln y + (1-y) \ln(1-y)$
$\frac{e^z}{1+e^z}$	$\ln(1+e^z)$	$+\ln(1+e^{\boldsymbol{W}\cdot\boldsymbol{X}})-y\;\boldsymbol{w}\cdot\boldsymbol{x}$
		logistic loss

In all cases,
$$\frac{\partial \text{match.loss}}{\partial \mathbf{w}} = (\widehat{y} - y)\mathbf{x}$$
, where $\widehat{y} = g(\mathbf{w} \cdot \mathbf{x})$

Matching loss always convex in \boldsymbol{w}

But convex losses NON-ROBUST TO OUTLIERS

Convex losses can't handle outliers

Any convex loss grows at least linearly

- We need the "wings to bend down", i.e. forget / give up on examples
- Non-convexity is needed to achieve robustness !!!

Fundamental example problem

[LS,F]

Fundamental example problem

[LS,F]

Fundamental example problem

[LS,F]

