Fiche de cours.

- **1.** M(x;y) dans le repère $(O;\vec{i},\vec{j}) \Leftrightarrow \overrightarrow{OM} = x\vec{i} + y\vec{j}$.
- 2. $\vec{u}(x;y)$ et $\vec{u'}(x';y')$ sont colinéaires si et seulement si xy'-x'y=0.
- 3. Si \vec{u} dirige d et $\vec{u'}$ dirige d': $d//d' \Leftrightarrow \vec{u}$ et $\vec{u'}$ sont colinéaires.
- **4.** $d: ax + by + c = 0 \Leftrightarrow \vec{u}(-b; a)$ dirige d.
- **5.** $d: y = mx + p \Leftrightarrow \vec{u}(1; m)$ dirige d.
- **6.** $d: x = k \Leftrightarrow \vec{u}(0;1)$ dirige d.

CONTENUS	CAPACITÉS ATTENDUES
Géométrie plane	
Condition de colinéarité de deux vecteurs : $xy' - yx' = 0$.	
Vecteur directeur d'une droite. Équation cartésienne d'une droite.	 Utiliser la condition de colinéarité pour obtenir une équation cartésienne de droite. Déterminer une équation cartésienne de droite connaissant un vecteur directeur et un point.
Expression d'un vecteur du plan en fonction de deux vecteurs non colinéaires.	 Déterminer un vecteur directeur d'une droite définie par une équation cartésienne. Choisir une décomposition pertinente dans le cadre de la résolution de problèmes.