VE320 – Summer 2024

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 7 The pn Junction

Outline

- 7.0 Introduction to semiconductor devices
- 7.1 Basic structure of the pn junction
- 7.2 Zero applied bias
- 7.3 Reverse applied bias

7.0 Introduction to semiconductor devices

Light emitting diodes

Cold light source

Photodetector: CMOS image sensor

7.0 Introduction to semiconductor devices

Semiconductor lasers

Solar cells

Outline

7.0 Introduction to semiconductor devices

7.1 Basic structure of the pn junction

7.2 Zero applied bias

7.3 Reverse applied bias

7.1 Basic structure of pn junction

SiO₂
Al
n+
p-

7.1 Basic structure of pn junction

7.1 Basic structure of pn junction

Outline

7.1 Basic structure of the pn junction

7.2 Zero applied bias

7.3 Reverse applied bias

Built-in potential barrier

Built-in potential barrier

$$N-side: N_{no} = N_{i} \exp\left(\frac{\mathcal{E}_{f} - \mathcal{E}_{i}}{kT}\right) = N_{i} \exp\left(\frac{\mathcal{E}_{0}}{kT}\right)$$

$$p-side: P_{po} = N_{i} \exp\left(\frac{\mathcal{E}_{i} - \mathcal{E}_{i}}{kT}\right) = N_{i} \exp\left(\frac{\mathcal{E}_{0}}{kT}\right)$$

$$V_{bi} = \Delta_{i} + \Delta_{2} = \frac{kT}{8} \ln \frac{N_{ao}}{N_{i}} + \frac{kT}{8} \ln \frac{P_{po}}{N_{i}} = \frac{kT}{8} \ln \frac{N_{ao}P_{po}}{N_{i}^{2}}$$

$$Example: N_{a} = 10^{1/2} \text{ cm}^{3} \quad N_{d} = 10^{1/2} \text{ cm}^{3} = 0.84V$$

$$V_{bi} = 0.0259 \times \ln \frac{10^{1/2} \times 10^{1/2}}{(1.5 \times 10^{1/2})^{2}} = 0.84V$$

 $E_i(x)$

Charge carrier distribution

$$N(x) = N_1 \exp\left(\frac{E_F - E_1(x)}{E_T}\right) = N_1 \exp\left(\frac{2A_1(x)}{E_T}\right) = N_2 \exp\left(-\frac{o_1 I}{o_1 o_2 I_3}\right) \sim \frac{N_2}{58}$$

$$P(x) = N_1 \exp\left(\frac{E_2(x) - E_2}{kT}\right) = \frac{N_0 \exp(-\frac{o.10V}{o.000000})}{50} = \frac{N_0}{50}$$

Potential profile

Energy band diagram

Check your understanding

Problem Example #1

Two pieces of p-type silicon are in contact. The doping concentrations are 10^{16} cm⁻³ and 10^{18} cm⁻³. Calculate the built-in potential between these two pieces of silicon and plot the energy band bending diagram.

$$E_{c} = E_{c}$$

$$E_{f} = E_{f} = E_{f}$$

$$E_{f} = E_{f$$

Poisson's equation

$$\frac{d^2V(x)}{dx^2} = -\frac{e}{\varepsilon} \left[N_{a}(x) + p(x) - N_{a}(x) - n(x) \right]$$

$$= -\frac{2}{\varepsilon} \left[N_{A}(x) + N_{C}(x) + N_{C}($$

$$= -\frac{8}{8} \left[N_a(x) - N_a + n_i \exp \left(\frac{1}{kT} \right) - n_i \exp \left(\frac{1}{kT} \right) \right]$$

Potential profile

No analytical

$$E = -\frac{dV(x)}{dx}$$

Poisson's equation

$$\frac{d^{2}V(x)}{dx^{2}} = -\frac{\rho(x)}{\varepsilon} = -\frac{2}{\varepsilon} \left[M(x) - Na(x) \right] = \begin{cases} \frac{2}{\varepsilon} Na & 0 \le x \le x_{p} \\ -\frac{2}{\varepsilon} Na & -\frac{x}{h} \le x < 0 \end{cases}$$

$$\int \frac{d^{2}V(x)}{dx^{p}} dx = \frac{dV(x)}{dx} = \int \frac{8}{\varepsilon} Na \times + C_{1} \quad 0 \le x \le x_{p}$$

$$\int \frac{2}{\varepsilon} Na \times + C_{1} \quad 0 \le x \le x_{p}$$

$$\int \frac{2}{\varepsilon} Na \times + C_{2} \quad -x_{1} \le x < 0$$

$$\int \frac{d^2 V(x)}{dx^2} dx = \frac{dV(x)}{dx} = \int \frac{g}{\xi} |V_a x + C_1| \quad 0 \le x \le \pi_1$$

$$-\frac{g}{\xi} |V_a x + C_2| -\chi \le x < 0$$

Poisson's equation

$$\frac{d^2V(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon}$$

Zero applied bias

$$\frac{d^{2}V(x)}{dx^{2}} = -\frac{\rho(x)}{\varepsilon}$$

Third time approximation

$$\frac{d^{2}V(x)}{dx^{2}} = -\frac{\rho(x)}{\varepsilon}$$

$$E = -\frac{dv\alpha}{dx} = \begin{cases} -\frac{\varepsilon}{\varepsilon} N_{0}x + A_{1} & 0 \le x \le \pi \\ \frac{\varepsilon}{\varepsilon} N_{0}x + A_{1} & 0 \le x \le \pi \end{cases}$$

Boundary condition
$$E(X=X_p)=0$$
 $E(X=-X_h)=0$

Poisson's equation

$$\frac{d^{2}V(x)}{dx^{2}} = -\frac{\rho(x)}{\varepsilon}$$

$$E = -\frac{dV(x)}{dx} = \begin{cases} -\frac{2}{\varepsilon}N_{a}x + \frac{2}{\varepsilon}N_{a} \cdot x_{p} & 0 \leq x \leq x_{p} \\ \frac{2}{\varepsilon}N_{a}x + \frac{2}{\varepsilon}N_{a} \cdot x_{p} & -x_{n} \leq x < 0 \end{cases}$$

$$E = -\frac{dV(x)}{dx} = \begin{cases} -\frac{2}{\varepsilon}N_{a}x + \frac{2}{\varepsilon}N_{a} \cdot x_{p} & -x_{n} \leq x < 0 \\ \frac{2}{\varepsilon}N_{a}(\frac{1}{2}x^{2} + x_{p} \cdot x) + C_{1})^{x = 0} \Rightarrow \frac{2}{\varepsilon}N_{a}x_{p} \\ \frac{2}{\varepsilon}N_{a}(\frac{1}{2}x^{2} + x_{p} \cdot x) + C_{2}) & = \frac{2}{\varepsilon}N_{a}x_{p} \\ \frac{2}{\varepsilon}N_{a}(\frac{1}{2}x^{2} + x_{p} \cdot x) + C_{2}) & = \frac{2}{\varepsilon}N_{a}x_{p} \\ \frac{2}{\varepsilon}N_{a}(\frac{1}{2}x^{2} + x_{p} \cdot x) + C_{2}) & = \frac{2}{\varepsilon}N_{a}x_{p} \\ \frac{2}{\varepsilon}N_{a}(\frac{1}{2}x^{2} + x_{p} \cdot x) + C_{2}) & = \frac{2}{\varepsilon}N_{a}x_{p} \\ \frac{2}{\varepsilon}N_{a}(\frac{1}{2}x^{2} + x_{p} \cdot x) + C_{2}) & = \frac{2}{\varepsilon}N_{a}x_{p} \\ \frac{2}{\varepsilon}N_{a}(\frac{1}{2}x^{2} + x_{p} \cdot x) + C_{2}) & = \frac{2}{\varepsilon}N_{a}x_{p} \\ \frac{2}{\varepsilon}N_{a}(\frac{1}{2}x^{2} + x_{p} \cdot x) + C_{2}) & = \frac{2}{\varepsilon}N_{a}x_{p} \\ \frac{2}{\varepsilon}N_{a}(\frac{1}{2}x^{2} + x_{p} \cdot x) + C_{2}) & = \frac{2}{\varepsilon}N_{a}x_{p} \\ \frac{2}{\varepsilon}N_{a}(\frac{1}{2}x^{2} + x_{p} \cdot x) + C_{2}) & = \frac{2}{\varepsilon}N_{a}x_{p} \\ \frac{2}{\varepsilon}N_{a}(\frac{1}{2}x^{2} + x_{p} \cdot x) + C_{2}(\frac{1}{2}x^{2} + x_{p} \cdot x) + C_{2}$$

$$V(x) = \begin{cases} \frac{8}{E} N_{a} \left(\frac{1}{2} x^{2} - x_{p} \cdot x + C_{i}\right) & 0 \leq x \leq x_{p} \\ -\frac{8}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right) & -x_{h} \leq x < 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \frac{8}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right) = \int_{-\infty}^{\infty} \frac{8}{A} \left(\frac{1}{2} x^{2} - x_{p}^{2} + C_{i}\right) = 0$$

$$\int_{-\infty}^{\infty} \frac{8}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right) = \int_{-\infty}^{\infty} \frac{8}{A} \left(\frac{1}{2} x^{2} - x_{p}^{2} + C_{i}\right) = 0$$

$$\int_{-\infty}^{\infty} \frac{8}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right) = \int_{-\infty}^{\infty} \frac{1}{A} \left(\frac{1}{2} x^{2} - x_{p}^{2} + C_{i}\right) = 0$$

$$\int_{-\infty}^{\infty} \frac{8}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right) = \int_{-\infty}^{\infty} \frac{1}{A} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{8}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right) = \int_{-\infty}^{\infty} \frac{1}{A} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{8}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right) = \int_{-\infty}^{\infty} \frac{1}{A} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{8}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right) = \int_{-\infty}^{\infty} \frac{1}{A} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{8}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right) = \int_{-\infty}^{\infty} \frac{1}{A} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{8}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right) = \int_{-\infty}^{\infty} \frac{1}{A} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{8}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right) = \int_{-\infty}^{\infty} \frac{1}{A} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{1}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{1}{A} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{1}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{1}{E} N_{d} \left(\frac{1}{2} x^{2} + x_{h} \cdot x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{1}{E} N_{d} \left(\frac{1}{2} x^{2} + x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{1}{E} N_{d} \left(\frac{1}{2} x^{2} + x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{1}{E} N_{d} \left(\frac{1}{2} x^{2} + x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{1}{E} N_{d} \left(\frac{1}{2} x^{2} + x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{1}{E} N_{d} \left(\frac{1}{2} x^{2} + x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{1}{E} N_{d} \left(\frac{1}{2} x^{2} + x + C_{i}\right)$$

$$\int_{-\infty}^{\infty} \frac{1}{E} N_{d} \left(\frac{1}{2} x^{2} +$$

$$V(x_2-\lambda_n)=V_{bi}=\frac{kT}{g}\ln\frac{N_e\cdot N_{bi}}{n_i^2}$$

$$-\frac{2}{8}Nd\left(\frac{1}{2}x_{n}^{2}-x_{n}^{2}+c_{2}\right)=V_{0};$$

$$V(x) = \begin{cases} \frac{\partial}{\partial x} N_{a} \left(\frac{1}{2}x^{2} - x_{p} \cdot x + \frac{x_{p}^{2}}{2}\right) & 0 = x = x_{p} \\ -\frac{\partial}{\partial x} N_{d} \left(\frac{1}{2}x^{2} + x_{n} \cdot x - \frac{N_{a}}{N_{d}} \cdot \frac{x_{p}^{2}}{2}\right) - x_{n} = x_{0} \\ -\frac{\partial}{\partial x} N_{d} \left(\frac{1}{2}x^{2} - x_{n}^{2} - \frac{N_{a}}{N_{d}} \frac{x_{p}^{2}}{2}\right) = V_{b}, \qquad (-x_{n}) = x_{n}^{2} \times x_{p}^{2} + \frac{N_{d}}{N_{d}}x_{p}^{2} + \frac{N_{d}}{N_{d}}x_{p}^{2} + \frac{N_{d}}{N_{d}}x_{p}^{2} - \frac{N_{d}}{N_{d}}x$$

VE320 Yaping Dan

Space charge width

$$X_{i} = \int \frac{2EV_{i}}{g} \frac{Nd}{Na} \frac{1}{Na+Nd}$$

$$N_{a} \cdot \chi_{n} = N_{a} \cdot \chi_{p}$$

$$\chi_{n} = \sqrt{\frac{2\Sigma V_{b}}{8}} \cdot \frac{N_{q}}{N_{d}} \frac{1}{N_{a} + N_{d}}$$

When =
$$x_n + x_p = \sqrt{\frac{28V_b}{8}} \cdot \frac{1}{N_c + N_d}$$

$$= \sqrt{\frac{28V_b}{8}} \cdot \frac{N_c + N_d}{N_c \cdot N_d}$$

$$\frac{\sqrt{Nd}}{\sqrt{Na}} + \frac{Na}{\sqrt{Nd}} = \frac{Nd + Nd}{\sqrt{Na}Nd}$$

Space charge width

$$V(x) = \begin{cases} \frac{3}{5} N_{A} \left(\frac{1}{2}x^{2} - x_{p}x + \frac{x_{p}^{2}}{3}\right) & 0 \leq x \leq x_{p} \\ -\frac{3}{5} N_{A} \left(\frac{1}{2}x^{2} + x_{h} \cdot x - \frac{N_{A}}{N_{A}} \frac{x_{p}^{2}}{3}\right) & -x_{h} \leq x \leq 0 \end{cases}$$

$$\chi_{h} = \sqrt{\frac{2\xi V_{b}}{\xi}} \frac{N_{A}}{N_{A}} \frac{1}{N_{A} + N_{A}}$$

$$\chi_{p} = \sqrt{\frac{2\xi V_{b}}{\xi}} \frac{N_{A}}{N_{A}} \frac{1}{N_{A} + N_{A}}$$

Space charge width

Check your understanding

Emax = 21/bi = 2x0.7181/ Wdan = 452.1nm

Problem Example #2

A silicon pn junction at T=300K with zero applied bias has doping concentration of $N_d = 5 \times 10^{16}$ cm⁻³ and $N_a = 5 \times 10^{15}$ cm⁻³. Determine x_n , x_p , W and $|E_{max}|$.

$$N_{d} = 5 \times 10^{10} \text{ cm}^{-3} \text{ and } N_{a} = 5 \times 10^{13} \text{ cm}^{-3}. \text{ Determine } x_{n}, x_{p}, \text{ W and } |E_{\text{max}}|.$$

$$V_{b_{1}} = \frac{k_{1}}{2} |n \frac{N_{e} \cdot N_{d}}{n_{1}^{2}} = 0.0259 \times |n \frac{5 \times 16^{4} \times 5 \times 10^{7}}{(1.5 \times 16^{9})^{2}} = 0.0259 \times 27.3$$

$$= 0.718 \text{ V}$$

$$X_{n} = \sqrt{\frac{2 \times V_{b_{1}}}{2} \frac{N_{d}}{N_{d}}} \frac{N_{d}}{N_{d}} \frac{1}{N_{d} + N_{d}} = \sqrt{\frac{2 \times 11.7 \times 9.85 \times 10^{-14} \times 0.718}{1.6 \times 16^{9}}} \times \frac{5 \times 10^{5}}{N_{0} \cdot 16^{5}}$$

$$X_{n} \cdot N_{d} = X_{p} \cdot N_{d}$$

$$X_{p} = \frac{N_{d}}{N_{d}} X_{n} = 10 \times 41.1 \text{ nm} = 4.11 \times 10^{-6} \text{ least } c_{m} \times \frac{1}{5 \times 10^{15}}$$

$$\frac{\partial}{\partial x_n} = \frac{\partial}{\partial x_n} =$$

VE320 Yaping Dan

Outline

- 7.1 Basic structure of the pn junction
- 7.2 Zero applied bias
- 7.3 Reverse applied bias

Space charge width and electric field

$$V_{ ext{total}} = |oldsymbol{\phi}_{Fn}| + |oldsymbol{\phi}_{Fp}| + V_R$$

Junction capacitance

$$C' = \frac{dQ'}{dV_Q} \cdot \frac{dQ}{dV_Q} = \frac{2N_d \cdot dX_N}{2N_d \cdot dX_N} = \frac{2N_d \cdot dX_p}{2N_d \cdot dX_p}$$

$$V_{Aup} = \sqrt{\frac{2E(V_b; + V_R)}{2}} \cdot \frac{N_d + N_d}{N_d \cdot N_d}$$

$$= \sqrt{V_b; + V_R} \cdot \sqrt{\frac{2E}{E}} \cdot \frac{N_d}{N_d \cdot N_d} \cdot \frac{1}{N_d \cdot N_d}$$

$$= \sqrt{V_b; + V_R} \cdot \sqrt{\frac{2E}{E}} \cdot \frac{N_d}{N_d \cdot N_d} \cdot \frac{1}{N_d \cdot N_d}$$

$$C' = \frac{dQ'}{dV_R} = \frac{2N_d \cdot dX_n}{dV_R} = \frac{1}{2\sqrt{V_b; + V_R}} \cdot \sqrt{\frac{2E}{E}} \cdot \frac{N_d}{N_d \cdot N_d} \cdot \frac{1}{N_d \cdot N_d}$$

$$= \frac{2N_d \cdot dX_n}{dV_R} = \frac{2N_d \cdot dX_n}{dV_R \cdot V_R \cdot V_d} \cdot \frac{1}{N_d \cdot N_d} \cdot \frac{1}$$

MICHIGAN (D)

VE320 Yaping Dan

Check your understanding

Problem Example #3

Consider a GaAs pn junction at T = 300 K doped to $N_a = 5 \times 10^{15} \text{ cm}^{-3}$ and $N_d = 2 \times 10^{16} \text{ cm}^{-3}$. (a) Calculate V_{bi} . (b) Determine the junction capacitance C' for $V_R = 4 \text{V}$.

$$V_{bi} = \frac{k_{i}}{g} \ln \frac{N_{e} \cdot N_{d}}{n_{i}^{2}} = 0.6259 \times \ln \frac{5 \times 10^{15} \times 2 \times 16^{16}}{35 (12.1 \times 16^{6})^{2}}$$

$$= 0.0259 \times 44.57 = 1.1541$$

One-sided junction

$$W_{\text{dep}} = \sqrt{\frac{2 \varepsilon (V_{bi} + V_{R})}{\varepsilon}} \frac{N_{Q} + N_{Q}}{N_{Q} + N_{Q}}$$

$$V_{\text{dep}} = \sqrt{\frac{2 \varepsilon (V_{bi} + V_{R})}{\varepsilon}} \frac{1}{N_{Q}} \frac{N_{Q} + N_{Q}}{N_{Q}}$$

$$W_{\text{dep}} = \sqrt{\frac{2 \varepsilon (V_{bi} + V_{R})}{\varepsilon}} \frac{1}{N_{Q}} \frac{N_{Q}}{N_{Q}}$$

$$C' = \frac{\varepsilon}{W_{\text{dep}}} = \sqrt{\frac{\varepsilon}{2} \varepsilon N_{Q}} \frac{\varepsilon}{2} \frac{\varepsilon}{N_{Q}} \frac{N_{Q}}{N_{Q}}$$

Check your understanding

Problem Example #4

Control sample: Au is in contact with a uniform doped n-type Si substrate forming a device similar to a pn junction. SAMM-doped sample: Au is in contact with Si that is doped with SAMM Take Au as p++ doping in this case.

ARTICLE

DOI: 10.1038/s41467-017-02564-3

OPEN

Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers

Xuejiao Gao 1, Bin Guan 1, Abdelmadjid Mesli², Kaixiang Chen & Yaping Dan 1

