

Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey

Mihai Suciu

Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică

Mai, 16, 2018

Mihai Suciu (UBB) Algoritmic

1 / 28

Continut

- Cuplaje in grafuri
 - Etichetarea grafului
 - Metoda maghiara

Numere Ramtsey

Cuplaje în grafuri - recapitulare C10

 Un cuplaj în G este o mulțime de muchii M în care nici o pereche de muchii nu are un vârf comun. vârfurile adiacente la muchiile din M se numesc vârfuri saturate de M (sau M-saturate). Celelalte vârfuri se numesc M-nesaturate.

Tipuri de cuplaje:

- un cuplaj perfect al lui G este un cuplaj care saturează toate vârfurile lui G,
- un cuplaj maxim al lui G este un cuplaj care are cel mai mare număr posibil de muchii,
- un cuplaj maximal al lui G este un cuplaj care nu poate fi lărgit prin adăugarea unei muchii.

Cuplaje în grafuri

Un graf bipartit:

Cuplaje în grafuri

Un cuplaj aleator în ${\it G}$

Cuplaje în grafuri - lanț M-alternant

Un lanț M-alternant (cale M-alternantă) este un lanț în G în care toate muchiile alternează între muchii din M și muchii ce nu aparțin cuplajului M.

Cuplaje în grafuri - M-lanț de creștere

Un *M-lanț de creștere* (*M-cale de creștere*) este un lanț M-alternant care are ambele capete M-nesaturate.

Teorema lui Berge

Un cuplaj M al unui graf G = (V, E) este maxim **dacă și numai dacă** G nu conține M-lanțuri de creștere.

Demonstrație

Vezi cursul 10.

Cuplaje în grafuri

Este cuplajul M de mai jos maxim?

• $M = \{(A1, B2), (A2, B3), (A3, B5)\}$

Cuplaje în grafuri

Nu, deoarece conține un M-lanț de creștere.

• M-lanț de creștere (B1, A1, B2, A2, B3, A3, B5, A5)

Etichetarea grafurilor

Fie un graf bipartit ponderat unde:

- muchia $(x,y) \in E$ are asociată ponderea w(x,y)
- ponderea cuplajului *M* este suma ponderilor muchiilor din cuplajul *M*

$$w(M) = \sum_{(x,y)\in M} w(x,y)$$

Problema: pentru graful bipartit G găsiți un cuplaj de pondere maximă.

Etichetarea grafurilor

- o etichetare a vârfurilor este o funcție $I: V \to \mathbb{R}$,
- o etichetare fezabilă respectă:

$$l(x) + l(y) \ge w(x, y), \forall x \in X, y \in Y,$$

• un graf egal (ținând cont de I) este un graf $G = (V, E_I)$ unde:

$$E_I = \{(x, y) | I(x) + I(y) = w(x, y)\}.$$

(a) etichetare fezabila /

(b) Graf egal G_l

Etichetarea grafurilor (II)

Teorema Kuhn-Munkres

Dacă I este fezabilă și M este un cuplaj perfect în E_I atunci M este un cuplaj de pondere maximă.

- Teorema KM transformă problema găsirii unui cuplaj de pondere maximă (problemă de optimizare) într-o problemă combinatorială ce presupune găsirea unui cuplaj perfect.
- pentru un cuplaj *M* și o etichetare fezabilă *l* avem:

$$w(m) \leq \sum_{v \in V} l(v)$$

(seamană cu teorema fluxului maxim și a tăieturii minime)

Un posibil algoritm

13 / 28

cuplaj(G)

- 1: start cu o etichetare fezabilă I și un cuplaj M în E_I
- 2: **while** cuplajul M nu e perfect **do**
- caută un M-lanț de creștere pentru M în E_l (crește dimensiunea lui 3: M)
- if nu există un M-lanț de creștere then 4:
- îmbunătățește / la /' astfel încât $E_I \subset E_{I'}$ 5:
 - în fiecare pas se crește dimensiunea lui M sau E_l
 - conform teoremei Kuhn-Munkres, M va fi un cuplaj de pondere maximă

Găsirea unei etichetări fezabile inițiale

• pentru a găsi inițial o etichetare fezabilă se poate folosi:

$$\forall y \in Y, I(y) = 0, \ \forall x \in X, I(x) = \max_{y \in Y} \{w(x, y)\}$$

astfel este evident

$$\forall x \in X, y \in Y, w(x, y) \leq l(x) + l(y)$$

Îmbunătățirea etichetării

- fie / o etichetare fezabilă
- se definește un vecin al lui $u \in V$ un set $S \subseteq V$ astfel:

$$N_I(u) = \{v | (u, v) \in E_I\}, \quad N_I(S) = \cup_{u \in S} N_I(u)$$

Lema

Fie $S \subseteq X$ și $T = N_I(S) \neq Y$. Fie

$$\alpha_{l} = \min_{x \in S, y \notin T} \{ l(x) + l(y) - w(x, y) \}$$
 (1)

$$I'(v) = \begin{cases} I(v) - \alpha_I & \text{dacă } v \in S, \\ I(v) + \alpha_I & \text{dacă } v \in T, \\ I(v) & \text{altfel.} \end{cases}$$
 (2)

Atunci / este o etchetare fezabilă și

- **1** dacă $(x, y) \in E_I$ pentru $x \in S, y \in T$ atunci $(x, y) \in E_{I'}$
- 2 dacă $(x, y) \in E_l$ pentru $x \notin S, y \notin T$ atunci $(x, y) \in E_{l'}$
- 3 există o muchie $(x, y) \in E_{l'}$ pentru $x \in S, y \notin T$

Metoda maghiară - exemplu matriceal

16 / 28

Vreau să organizez o petrecere, vreau să angajez un mizician, bucătar și serviciu de curățenie. Am la dispoziție 3 companii, fiecare poate furniza un singur serviciu. Ce companie trebuie să furnizeze fiecare serviciu astfel încât costul total să fie minim?

Companie	Cost muzician	Cost bucatar	Cost curățenie
Α	108	125	150
В	150	135	175
C	122	148	250

Metoda maghiară - exemplu matriceal (II)

Companie	Cost muzician	Cost bucatar	Cost curățenie
Α	108	125	150
В	150	135	175
C	122	148	250

Fie matricea asociată tabelului:

108	125	150
150	135	175
122	148	250

Metoda maghiară - exemplu matriceal (III)

Fie matricea asociată tabelului:

108	125	150
150	135	175
122	148	250

Pas 1. Se scade valoarea minimă de pe fiecare rând din fiecare element de pe rând:

0	17	42
15	0	40
0	26	128

Metoda maghiară - exemplu matriceal (IV)

Pas 1. Se scade valoarea minimă de pe fiecare rând din fiecare element de pe rând:

0	17	42
15	0	40
0	26	128

Pas 2. Se scade valoarea minimă de pe fiecare coloană din fiecare element de pe coloană:

0	17	2
15	0	0
0	26	88

Metoda maghiară - exemplu matriceal (V)

Pas 3. Se desenează linii pe rândurile și coloanele din matrice ce conțin valoarea 0 astfel încât să se traseze cât mai puține linii:

0	17	2
15	0	0
0	26	88

Au fost trasate doar două linii (2 < n = 3), algoritmul continuă.

Metoda maghiară - exemplu matriceal (VI)

Se caută cea mai mică valoare care nu este acoperită de nicio linie. Se scade această valoare de pe fiecare rând pe care nu s-au trasat linii și apoi se adaugă la fiecare coloană pe care am trasat linii. Apoi, se revine la Pasul 3.

-2	15	0
15	0	0
-2	24	86

(a`	Scade	val.	min	im	ă
١	a	Juane	vai.		1111	а

0	15	0
17	0	0
0	24	86

(b) Adaugă pe col.

Metoda maghiară - exemplu matriceal (VII)

Se revine la Pasul 3:

0	15	0
17	0	0
0	24	86

Am trasat 3 linii, n = 3, algoritmul a terminat. Se alege o alocare prin alegerea unui set de valori 0 astfel încât fieacere rând sau coloană sa aibă o singură valoare selectată.

0	15	0
17	0	0
0	24	86

Ex. compania C trebuie sa furnizeze muzicianul, compania A trebuie să furnizeze serviciul de curățenie \rightarrow compania B ne dă bucătarul.

Metoda maghiară - exemplu matriceal (VIII)

Soluția finală:

108	125	150
150	135	175
122	148	250

Putem verifica soluția și exhaustiv:

$$\bullet$$
 108 + 135 + 250 = 493

$$\bullet$$
 108 + 148 + 175 = 431

$$\bullet$$
 150 + 125 + 250 = 525

$$\bullet$$
 150 + 148 + 150 = 448

$$\bullet$$
 122 + 125 + 175 = 422

$$\bullet$$
 122 + 135 + 150 = 407

Metoda maghiară

24 / 28

$metoda_maghiară(G)$

```
1: generează o etichetare iniținală I și un cuplaj M în E_I
 2: if M nu este un cuplaj perfect then
        alege un vårf liber x \in X
 3:
 4: S = \{u\}, T = \emptyset
 5:
       if N_l(S) = T then
 6:
            actualizează etichetele conform (1) și (2) (forțând N_L(S) \neq T)
 7:
        if N_l(S) \neq T then
 8:
           alege y \in N_l(S) - T
 9:
           if y e liber then
                u - y este un lant-M de crestere.
10:
11:
               îmbunătățește M și sari la linia 2
12:
            else
13:
                T = T \cup \{y\} si sari la linia 5
```

Complexitatea algoritmului $O(V^4)$, ulterior redusă la $O(V^3)$.

Metoda maghiară - exemplu

 Y_3 0

X₃ 4

- graful inițial, etichetarea vârfurilor și graful egal asociat
- cuplajul inițial $M = \{(x_3, y_1), (x_2, y_2)\}, S = \{x_1\}, T = \emptyset$
- deoarece $N_I(S) \neq T$ mergi la linia 7: alege $y_2 \in N_I(S) T$
- y_2 este în cuplaj, crește lanțul alternant prin adăugarea lui (y_2, x_2) , $S = \{x_1, x_2\}, T = \{y_2\}$
- $N_I(S) = T$, sari la linia 5

Metoda maghiară - exemplu (II)

- (a) graful inițial (b) vechiul graf E_l și M (c) noul graf E_l și M

- $S = \{x_1, x_2\}, T = \{y_2\} \text{ si } N_I(S) = T$
- se determină α_I

$$\alpha_{I} = \min_{x \in S, y \notin T} \begin{cases} 6 + 0 - 1 & (x_{1}, y_{1}) \\ 6 + 0 - 0 & (x_{1}, y_{3}) \\ 8 + 0 - 0 & (x_{2}, y_{1}) \\ 8 + 0 - 6 & (x_{2}, y_{3}) \end{cases} = 2$$

Metoda maghiară - exemplu (III)

- redu etichetele lui S cu 2, mărește etichetele lui T cu 2
- acum $N_I(S) = \{y_2, y_3\} \neq \{y_2\} = T, S = \{x_1, x_2\}$

(b) noul graf E_l și M

(c) cuplaj nou

- alege $y_3 \in N_I(S) T$ și adaugă în T
- y_3 nu e în cuplaj, am găsit un lanț de creștere (x_1, y_2, x_2, y_3)
- cuplajul $\{(x_1, y_2), (x_2, y_3), (x_3, y_1)\}$ are costul 6+6+4=16 care este egal cu suma etichetelor grafului final

Numere Ramsey

