Temat: Jeżdżąca piekarnia wiejska

1. Zadanie projektowe.

Celem naszego projektu jest opracowanie system użytecznego dla piekarni, które decydują się na dystrybucję pieczywa bezpośrednio do klienta bądź dla podobnych zadań dystrybucji bezpośredniej.

Model pozwala w łatwy sposób obliczyć optymalną liczbę dostawców i ich trasy przejazdów oraz optymalne ilości początkowe poszczególnych towarów do przygotowania dla poszczególnych dostawców. Model pozwala uwzględnić wiele parametrów: pojemności poszczególnych pojazdów dostawczych, zmiany popytu spowodowane zmianami cen w poszczególnych punktach dystrybucji, zmiany popytu spowodowane poprzednimi dostawami (np. w przypadku niedostarczania produktów w odpowiedniej ilości odpowiednio wcześnie popyt maleje), koszt wynajęcia poszczególnych pojazdów dostawczych (często nie jest on stały), koszty utylizacji produktów, i koszty przejazdów dostawców pomiędzy kolejnymi punktami dystrybucji.

2. Model.

Zbiory:

```
I-zbiór punktów sprzedaży T-zbiór typów produktów U-zbiór dostępnych pojazdów K-zbiór wybranych pojazdów (K\subseteq U)=\{u:K_u=1\} T_k-trasa\ pojazdu\ k\subseteq K
```

Zmienne:

```
\begin{split} i - punkt & sprzedaży \ (el.\ zbioru\ I) \\ t - typ & produktu \ (el.\ zbioru\ T) \\ k - wypożyczony & pojazd \ (el.\ zbioru\ K) \\ u - dostępny & pojazd \ (el.\ zbioru\ U) \\ H_i - współczynnik & zadowolenia w punkcie & sprzedaży i \\ d_i - odległość do punktu i od początku trasy pojazdu (czas dotarcia) \\ S_{ti} - ilość & sprzedanych produktów typu t w punkcie i \\ T_k = \{i_{st},\ i:\ \exists_j\ x_{kji} = 1\} - zbiór punktów sprzedaży odwiedzanych przez pojazd k \end{split}
```

Parametry:

 PK_u – koszt wynajęcia pojazdu k (funkcja w zależności od ilości pojazdów)

P_t – cena (wartość) produktu typu t

W₁ – waga produktu typu t

 C_u – całkowita pojemność pojazdu u

ω, – koszt utylizacji produktu

 $H_{ipoprz} - współczynnik\ zadowolenia\ w\ poprzedniej\ iteracji\ problemu\ (wartość\ pocz.)$

 r_{ii} – odległość między punktami sprzedaży i, j

 $g_k(d)$ – cena za przejazd danej odległości

 $D_t(d)$ – funkcja popytu na produkt t w zależności od przebytej drogi w modelu uproszczonym f. liniowa malejąca

Zmienne decyzyjne:

 K_u – wynajęcie pojazdu u

 x_{kij} – przejazd pojazdu k z punktu i do punktu j $(x_{kij} \neq x_{kji})$

 Q_{tk} – ilość produktów typu t w pojeździe k

Ograniczenia:

1. Ograniczenie ładowności pojazdu

$$\forall_k \; \Sigma_t(Q_{tk} * W_t) < C_k$$

2. Każdy punkt sprzedaży odwiedzamy dokładnie raz

$$\forall_i \ \Sigma_k \Sigma_t \ \Sigma_{j \neq i} x_{kji} = 1$$

 Ilość sprzedanego produktu zależy od jego świeżości i zadowolenia klientów, nie może być większa niż ilość produktu w pojeździe w punkcie i

$$\forall_{ti} S_{ti} = max(min(D_t(d_i) - H_i, Q_{tk} - \sum_{j \in T_k d_i < d_i} S_{tj}), 0), gdzie k : i \in T_k$$

4. Zadowolenie klientów

$$\forall_i \ H_i = H_{ipoprz} + \Sigma_t (D_t(d_i) - S_{ti})$$

5. Odległość do punktu i od pocz. trasy

$$\forall_i \ d_i = d_j + r_{ij}, \ gdzie j \ spełnia \ \Sigma_k \ x_{kij} = 1, \ jeśli \ nie \ ma \ takiego \ j - d_j = 0$$

Funkcja celu:

$$f_{max} = \sum_{i} \sum_{t} P_{t} * S_{it} - \sum_{k} (PK_{k} + g(max(\forall_{i \in T_{k}} d_{i}))) - \sum_{t} \omega_{t} * (\sum_{k} Q_{tk} - \sum_{i \in T_{k}} S_{ti})$$