We have known that we can control the power provided to a motor by a pulse Signal by changing the duty-cycle. This is called Pulse Width Modulation (PWM). However, the signal by the NE555 IC is not digitally controlled. Today, we will solve this problem.

I. Analog Vs. digital.

Almost all modern electronic devices process digital signals. What is a digital signal?

A digital signal is different from an analog signal in the sense that it is discrete
in both time and magnitude domain. For example,

- 2. Then, which "number" system fits digital signal?

 We use decimal system in daily life. But, why? fo, 1, 2, -- 9;

 However, binary number system fo, 1; fits digital system, because

 1. it is easy to be represented by two levels of voltage
 - 2. It is computation is easier to be implemented (Discuss later)

Decimal 0 1 2 3 ----
Decimal 0 0 1 2 3 ----
Binary 0000 0001 0010 0010 ----

The digital value is similarly to that in decimal number.

Decimal number: $a_1 a_2 a_3 a_4 = a_1 \times 10^3 + a_2 \times 10^2 + a_3 \times 10 + a_4 \times 10^9$ Binary .: $b_1 b_2 b_3 b_4 = b_1 \times 2^3 + b_2 \times 2^2 + b_3 \times 2 + b_4 \times 2^9$

3. How do we represent bihay number by signals?

For this purpose, a synchronization signal is needed. We call it "clock"

A clock is a series of pulses transmitted at a constant frequency for synchronization purpose.

 \Rightarrow clock speed will determine the fastest data rate. Intel Gre i7 3.4 G \Rightarrow 3.4 × 10 pulses/see.

4. Prigitally controlled PWM. signal.

Now, let's see how we can digitally control the duty-cycle of a clock.

- 1) We already know that NE555 can generate a fulse signal (not digitally controlled)
- 2) Now, we introduce the more ICs.

a. Counter (74HC161)

Function: Count the # of mising edges of the input clock.

Input: clock

output: # of ning edges in binary form lo acaba

visity edge

Remarks D Let fook, fa, fb, fc, fo denote the frequency of the clock, QA QB, QcQp.

Then,
$$f_A = \frac{1}{2} f_{cbck}$$
 \longrightarrow counting resing edge. $f_B = \frac{1}{2} f_A$ $f_C = \frac{1}{2} f_B$ $f_D = \frac{1}{2} f_C$

2 Oo Oc OB OA has a period of 24 = 16.

$$\begin{array}{c}
0 \\
0 \\
0
\end{array}$$

$$\begin{array}{c}
1 \\
0 \\
0
\end{array}$$

b. Comparator (74LS85)

Function: Compares two binary numbers

Input: $A = Q_0^A Q_0^A Q_0^A Q_0^A$ $B = Q_0^B Q_0^B Q_0^B Q_0^B$

$$A \Rightarrow A < B \qquad iMput: A > B \qquad A < B$$

$$A > B \Rightarrow A > B \qquad output$$

$$A > B \Rightarrow A > B \qquad A < B \qquad o \qquad 1$$

$$A > B \Rightarrow A > B \qquad A > B \qquad A > B \qquad 0 \qquad 1$$

$$A > B \qquad Output \qquad A > B \qquad 0 \qquad 0$$

$$A > B \qquad Output \qquad A > B \qquad 0 \qquad 0$$

3) Putting things together.

What will be the output, for different B?

Consider three cases B=0, B=4, B=15.

A<B

A< B 4 11

$$\beta = 15$$

1 A<B

So, by setting different numbers to B, we can obtain findse signal with different duty-cycles.

Put things together

Next question:

