Einleitung Disambiguierungsstrategien Versuchsbeschreibung Versuch 1 Versuch 2 Ergebnis

Bachelorarbeit

Disambiguierungsstrategien in Dialogsystemen

Lena Enzweiler

Universität des Saarlandes

20. Januar 2015

Dialogsystem in automobilen Anwendungen

Effiziente Dialogsysteme im Auto müssen folgende Punkte erfüllen

- Ablenkung während der Fahrt vermeiden
- alle Informationen kurz und verständlich übermitteln
- einfache und intuitive Bedienung garantieren
- → Sprachäußerungen müssen durchdacht formuliert werden

- "Rufe Peter an!"
- System muss über Peter Meier und Peter Müller disambiguieren

- "Rufe Peter an!"
- System muss über Peter Meier und Peter Müller disambiguieren

- "Rufe Peter an!"
- System muss über Peter Meier und Peter Müller disambiguieren

Fokus

→ 3 Disambiguierungstrategien untersuch

- "Rufe Peter an!"
- System muss über Peter Meier und Peter Müller disambiguieren
- unterschiedliche
 Disambiguierunsstrategien anwendbar

Fokus

ightarrow 3 Disambiguierungstrategien untersucht

- 1. Disambiguierungsstrategie
- Disambiguierungsstrategie
 Disambiguierungsstrategie

Disambiguierungsstrategie: Aggregierte Auswahl ohne Pause

- alle möglichen Interpretationen in einer Sprachausgabe
- keine Pause zwischen Interpretationen
- Warten auf Auswahl des Benutzers

Akteur	Sprachausgabe
	Rufe Peter an!
	Meinst du Peter Müller oder Peter Meier?
Benutzer	Peter Müller.
System	Ok, ich werde Peter Müller jetzt anrufen.

- 1. Disambiguierungsstrategie
- Disambiguierungsstrategie
 Disambiguierungsstrategie

2. Disambiguierungsstrategie: Aggregierte Auswahl mit Pause

- alle möglichen Interpretationen in einer Sprachausgabe
- Pause und Nummerierung zwischen Interpretationen
- Warten auf Auswahl des Benutzers

Akteur	Sprachausgabe
Benutzer	Rufe Peter an!
System	Meinst du [Pause] 1. Peter Müller
	[Pause] oder 2. Peter Meier?
Benutzer	Erstens
System	Ok, ich werde Peter Müller jetzt anrufen.

- Disambiguierungsstrategie
 Disambiguierungsstrategie
- 3. Disambiguierungsstrategie

3. Disambiguierungsstrategie: Sequentielle Auswahl

- alle möglichen Interpretationen in einer separaten Sprachausgabe
- Warten auf Zustimmung/Ablehnung des Benutzer

Akteur	Sprachausgabe
Benutzer	Rufe Peter an!
System	Meinst du Peter Müller?
Benutzer	Nein.
System	Meinst du Peter Meier?
Benutzer	Ja.
System	Ok, ich werde Peter Meier jetzt anrufen.

Wizard-of-Oz

Die Existenz eines funktionierenden Systems wird vorgetäuscht

- Versuchsperson wird der Eindruck verliehen, sie würde mit einem echten Dialogsystem interagieren
- echtes Dialogsystem durch Versuchsleiter simuliert
- Control Panel entwickelt, mit welchem Sprachausgaben ausgeben werden können

Control Panel

Abbildung: Control Panel

Testszenario

- Versuchspersonen sollen vorgegebenen Kontakt anrufen.
- Personenprofil zeigt Informationen über Kontakt
- unspezifische Spracheingabe:
 → Disambiguierung
- pro Anruf unterschiedliche Disambiguierungstrategie

Versuchsaufbau

- ullet Versuchspersonen fahren ein Rennspiel. o Fahrsimulation
- Rennspiel: Need for Speed: Shift
- Rennspiel wird mit Lenkrad inklusive Gas- und Bremspedal gespielt → realitätsgetreues Gefühl
- Es wird im Einzelrennen mit jeweils 5 Gegnern gespielt
- Versuchspersonen sollen möglichst hohe Platzierung erreichen
 - \rightarrow Anstrengung und Konzentration soll hohe kognitive Belastung verursachen

Versuchsaufbau - Rennspiel

Abbildung: Need for Speed - Shift

Versuchsaufbau - Überblick

Vorrunde	1. Runde	2. Runde	3. Runde	4. Runde
Rennspiel	Rennspiel	Rennspiel	Rennspiel	
	Anruf Anke	Anruf Peter	Anruf Fritz	Anruf Kim

- Vorrunde zum Einspielen
- Runde 1-3: Rennspiel mit paralleler Systeminteraktion
 - ightarrow hohe kognitive Belastung
- Runde 4: nur Systeminteraktion
 - ightarrow geringe kognitive Belastung

Versuchsdesign

Aufteilung	Strecke 1	Strecke 2	Strecke 3
1. Gruppe	Strategie A	Strategie B	Strategie C
Gruppe	Strategie B	Strategie C	Strategie A
3. Gruppe	Strategie C	Strategie A	Strategie B
4. Gruppe	keine Strecke	keine Strecke	keine Strecke

- 3 verschiedene Strecken, um Lerneffekt auszuschließen
- Die Strecken werden in gleicher Reihenfolge gefahren
- jede Strecke mit unterschiedlicher Disambiguierungsstrategie
- um Zeiten besser zu vergleichen:
 - ightarrow Disambiguierungsstrategien werden auf Strecken verteilt
 - ightarrow Versuchspersonen werden in Gruppen (1-3) aufgeteilt
- Gruppe 4 führt das Testszenario mit zufälliger Strategie aus.

Testszenario

- Testperson soll 4 Anrufe aufbauen
- Pro Anruf: Disambiguierung über zwei Merkmale
- Disambiguierung erfolgt mit 2
 Alternativen
- Personenprofil zeigt zu füllende Disambiguierungsmerkmale

Beispiel: Disambiguierung über Namen

Benutzer: Rufe Anke an

System: Meinst du Anke Meier oder Anke Schuhmacher?

Benutzer: Schuhmacher

Versuchspersonen

- 12 deutsche Muttersprachler
- 58% 18-29 Jahre, 17% 30-41 Jahre, 25% 42-53 Jahre
- 75% keine bzw. wenig Erfahrung mit Dialogsystemen
- 83% spielen selten Rennspiele
- 58% fiel Einführungsrunde schwer

Auswertung

Folgende Punkte werden ausgewertet

- Zeiten werden gemessen
 - Rennzeiten
 - Dialogzeiten
- Fragebögen ausgewertet
 - Nasa-TLX
 - Strategien
- Task Completion
- Dialogverhalten

Gemessene Zeiten - Rennzeiten

Rennzeiten

Beeinflusst eine Disambiguierungsstrategie das Rennverhalten?

Rennzeiten	Strategie 1	Strategie 2	Strategie 3
Durchschnitt	71,58 sek	75,71 sek	75,92 sek

Zeiten statistisch nicht relevant und daher nicht aussagekräftig.

Gemessene Zeiten - Dialogzeiten

Dialogzeiten

Welche Strategie ermöglicht den kürzesten Dialog?

Nur die Zeiten von korrekt durchgeführten Dialogen bewertet.

Dialogzeiten	Strategie 1	Strategie 2	Strategie 3
mit Rennspiel	15,2 sek	20,5 sek	20,8 sek
ohne Rennspiel	14,9 sek	18,8 sek	17,6 sek

⇒ Strategie 1 ermöglicht den kürzesten Dialog.

Gemessene Zeiten - Dialogzeiten

Dialogzeiten

Gibt es Unterschiede in den Dialogzeiten zwischen kognitiv hoch belasteten und kognitiv wenig belasteten Versuchspersonen?

Dialogzeiten	Strategie 1	Strategie 2	Strategie 3
mit Rennspiel		20,5 sek	20,8 sek
ohne Rennspiel	14,9 sek	18,8 sek	17,6 sek

- kürzere Dialogzeiten ohne Rennspiel erreicht
- ⇒ bessere Reaktionszeit unter geringer Belastung

Fragebogen - Nasa-TLX

Nasa-TLX

- Bei welcher Strategie wurde h\u00f6here Belastung empfunden?
- ② Gibt es Unterschiede in der Belastung zwischen den Runden mit und ohne Rennspiel?
 - geistige Anforderung
 - Strategie 1: geringe geistige Anforderung
 - Strategie 3: höchste geistige Anforderung
 - Runde ohne Rennspiel weniger anfordernd
 - Anstrengung
 - Strategie 1: geringe Anstrengung
 - Strategie 3: höchste Anstrengung
 - Runde ohne Rennspiel weniger anstrengend
- ⇒ Strategie 1 am wenigsten belastend gewertet

Fragebogen - Strategien

Strategien

Wie werden die Strategien von den Versuchspersonen bewertet?

- Strategie 1 lenkte am wenigsten ab
- Dialog aus Strategie 1 gefiel am besten, Strategie 3 am schlechtesten
- Strategie 1 wurde von 75% als beste Strategie gewählt (17% Strategie 2, 8% Strategie 1)
- → Strategie 1 insgesamt am besten bewertet
 - der Dialog fiel im Durchschnitt ohne Rennspiel einfacher

Task Completion

Task Completion (TC)

Welche Strategie ist am erfolgversprechendsten?

- Die Task Completion wird für jeden Dialog wie folgt berechnet:
 - 0 Punkte, wenn kein Slot richtig gefüllt wird
 - 1 Punkt, wenn ein Slot richtig gefüllt wird
 - 2 Punkte, wenn alle Slots richtig gefüllt werden
- für jede Strategie wird die durchschnittliche Task Completion bewertet

Task Completion

Strategien	Runde 1-4	Runde 1-3	Runde 4
1. Strategie	1,75	1,92	1,50
2. Strategie	1,94	1,92	2,00
3. Strategie	1,63	1,50	2,00
alle Strategien		1,78	1,83

- Strategie 2 am erfolgreichsten
- Strategie 3 am unerfolgreichsten
- Runde ohne Rennspiel erfolgreicher als Runden mit Rennspiel
- \rightarrow Unterschied gering: 0.05

Dialogverhalten

Dialogverhalten

Gibt es Unterschiede im Dialogverhalten bei unterschiedlicher Belastung

- Antwort aus Runde 1-3 mit Antwort aus Runde 4 verglichen
- 11 von 12 Personen wiesen gleiches Verhalten auf
- ⇒ kein unterschiedliches Dialogverhalten

Auswertung - Zusammenfassung

- kürzeste Dialogzeit: Strategie 1
- Ergebnis Nasa-TLX Fragebogen:
 - Strategie 1 am unbelastetsten
 - Runde ohne Rennspiel weniger belastend als Runde mit
- Ergebnis Strategien Fragebogen:
 - Strategie 1 am positivsten bewertet
 - Dialog fiel im Durchschnitt ohne Rennspiel einfacher
- Task Completion
 - Strategie 2 > Strategie 1 > Strategie 3 (geringer Unterschied)
 - Dialog ohne Rennspiel erfolgreicher als Dialog mit Rennspiel
- Dialogverhalten: kein unterschiedliches Dialogverhalten bei unterschiedlicher Belastung
- ⇒ Strategie 1 am Effizientesten und Beliebtesten

Versuch 2

Versuch 1 zeigte eindeutiges Ergebnis bei Disambiguierung über 2 Alternativen

Fragestellung

Gleiches Ergebnis bei Disambiguierung über mehr Alternativen?

- → Zweiter Versuch eingeleitet:
 - gleiche Versuchsdurchführung
 - Unterschied zu Versuch 1: längere Disambiguierung

Testszenario

- Testperson soll 4 Anrufe aufbauen
- Pro Anruf: Disambiguierung über zwei Merkmalen
- Disambiguierung erfolgt mit 6 Alternativen
- Personenprofil zeigt zu füllende Disambiguierungsmerkmale

Beispiel: Disambiguierung über Namen

Benutzer: Rufe Anke an

System: Meinst du Anke Bies, Anke Elb, [...] oder Anke Weiler?

Benutzer: Schuhmacher

Versuchspersonen

- 12 deutsche Muttersprachler
- 42% 18-29 Jahre, 25% 30-41 Jahre, 33% 42-53 Jahre
- 75% keine bzw. wenig Erfahrung mit Dialogsystemen
- 83% spielen selten Rennspiele
- 58% fiel Einführungsrunde schwer
- → Zufällig gleiche Erfahrungswerte wie in Versuch 1:
- → Unterschiedliche Resultate der Versuche nicht durch unterschiedliche Erfahrung zu erklären

Auswertung

Folgende Punkte werden ausgewertet

- Zeiten werden gemessen
 - Rennzeiten
 - Dialogzeiten
- Fragebögen ausgewertet
 - Nasa-TLX
 - Strategien
- Task Completion
- Dialogverhalten

Gemessene Zeiten - Rennzeiten

Rennzeiten

Beeinflusst eine Disambiguierungsstrategie das Rennverhalten?

Rennzeiten	Strategie 1	Strategie 2	Strategie 3
Durchschnitt	76,83 sek	77,47 sek	76,73 sek

Zeiten statistisch nicht relevant und daher nicht aussagekräftig.

Gemessene Zeiten - Dialogzeiten

Dialogzeiten

Welche Strategie ermöglicht den kürzesten Dialog?

Nur die Zeiten von korrekt durchgeführten Dialogen bewertet.

Dialogzeiten	Strategie 1	Strategie 2	Strategie 3
mit Rennspiel		38,5 sek	34,3 sek
ohne Rennspiel	24,1 sek	34,4 sek	30,4 sek

→ Strategie 1 ermöglicht den kürzesten Dialog.

Gemessene Zeiten - Dialogzeiten

Dialogzeiten

Gibt es Unterschiede in den Dialogzeiten zwischen kognitiv hoch belasteten und kognitiv wenig belasteten Versuchspersonen?

Dialogzeiten	Strategie 1	Strategie 2	Strategie 3
mit Rennspiel	29,6 sek	38,5 sek	34,3 sek
ohne Rennspiel	24,1 sek	34,4 sek	30,4 sek

- kürzere Dialogzeiten ohne Rennspiel erreicht
- → bessere Reaktionszeit bei Dialoginteraktion ohne Rennspiel

Fragebogen - Nasa-TLX

Nasa-TLX

- Bei welcher Stratgie wurde eine h\u00f6here Belastung empfunden?
- ② Gibt es Unterschiede in der Belastung zwischen den Runden mit und ohne Rennspiel?
 - geistige Anforderung
 - Strategie 3: höchste geistige Anforderung
 - Runde ohne Rennspiel weniger anfordernd
 - Anstrengung
 - Strategie 3: geringe Anstrengung
 - Strategie 2: höchste Anstrengung
 - Runde ohne Rennspiel weniger anstrengend
- → Unterschiedliche empfundene Belastung mit und ohne Rennspiel
- \rightarrow keine Aussage über belastendste Strategie treffbar.

Fragebogen - Strategien

Strategien

Wie werden die Strategien von den Versuchspersonen bewertet?

- Strategie 2 lenkte am wenigsten ab, Strategie 1 am meisten
- Dialog aus Strategie 3 gefiel am besten
- Strategie 3 wurde von 50% als beste Strategie gewählt (17% Strategie 1, 33% Strategie 2)
- → Strategie 3 am beliebtesten bewertet
- → keine Strategie eindeutig am besten bewertet
 - der Dialog fiel im Durchschnitt ohne Rennspiel einfacher

Task Completion

Task Completion (TC)

Welche Strategie ist am erfolgversprechendsten?

- Die Task Completion wird für jeden Dialog wie folgt berechnet:
 - 0 Punkte, wenn kein Slot richtig gefüllt wird
 - 1 Punkt, wenn ein Slot richtig gefüllt wird
 - 2 Punkte, wenn alle Slots richtig gefüllt werden
- für jede Strategie wird die durchschnittliche Task Completion bewertet

Task Completion

Strategien	Runde 1-4	Runde 1-3	Runde 4
1. Strategie	1,88	1,83	2,00
2. Strategie	1,81	1,75	2,00
3. Strategie	1,56	1,42	2,00
alle Strategien		1,67	2,00

- Strategie 1 am erfolgreichsten
- Strategie 3 am unerfolgreichsten
- Runde ohne Rennspiel erfolgreicher als Runden mit Rennspiel

Dialogverhalten

Dialogverhalten

Gibt es Unterschiede im Dialogverhalten bei unterschiedlicher Belastung

- Antwort aus Runde 1-3 mit Antwort aus Runde 4 verglichen
- 11 von 12 Personen wiesen gleiches Verhalten auf
- ⇒ kein unterschiedliches Dialogverhalten

Auswertung - Zusammenfassung

- kürzeste Dialogzeit: Strategie 1
- Ergebnis **Nasa-TLX** Fragebogen:
 - kein eindeutiges Ergebnis über belastendste Strategie
 - Runde ohne Rennspiel weniger belastend als Runde mit
- Ergebnis **Strategien** Fragebogen:
 - keine Strategie eindeutig am besten bewertet
 - Strategie 3 am beliebtesten
 - Dialog fiel im Durchschnitt ohne Rennspiel einfacher
- Task Completion
 - Strategie 1 > Strategie 2 > Strategie 3 (geringer Unterschied)
 - Dialog ohne Rennspiel erfolgreicher als Dialog ohne Rennspiel
- **Dialogverhalten**: kein unterschiedliches Dialogverhalten bei unterschiedlicher Belastung
- ⇒ Strategie 1 am Effizientesten
- ⇒ Strategie 3 am Beliebtesten

Rennzeiten Dialogzeiten Nasa-TLX Strategien Task Completion Dialogverhalten

Gemessene Zeiten - Rennzeiten

Rennzeiten

Beeinflusst eine Disambiguierungsstrategie das Rennverhalten?

- Versuch 1: Zeiten nicht aussagekräftig
- Versuch 2: Zeiten nicht aussagekräftig

Rennzeiten
Dialogzeiten
Nasa-TLX
Strategien
Task Completion
Dialogverhalten

Gemessene Zeiten - Dialogzeiten

Dialogzeiten

Welche Strategie ermöglicht den kürzesten Dialog?

- Versuch 1: Strategie 1
- Versuch 2: Strategie 1
- ⇒ Strategie 1 ermöglicht in beiden Versuchen den kürzesten Dialog.

Rennzeiten
Dialogzeiten
Nasa-TLX
Strategien
Task Completion
Dialogverhalten

Gemessene Zeiten - Dialogzeiten

Dialogzeiten

Gibt es Unterschiede in den Dialogzeiten zwischen kognitiv hoch belasteten und kognitiv wenig belasteten Versuchspersonen?

- Versuch 1: kürzerer Dialog ohne Rennspiel
- Versuch 2: kürzerer Dialog ohne Rennspiel
- ⇒ kürzerer Dialog bei geringerer Belastung in beiden Versuchen

Fragebogen - Nasa-TLX

Nasa-TLX

- Bei welcher Stratgie wurde eine h\u00f6here Belastung empfunden?
- Q Gibt es Unterschiede in der Belastung zwischen den Runden mit und ohne Rennspiel?
 - Versuch 1:
 - Strategie 1 am wenigsten belastend gewertet
 - Runde ohne Rennspiel weniger belastend
 - Versuch 2:
 - keine Aussage über belastendste Strategie treffbar
 - Runde ohne Rennspiel weniger belastend
- → Unterschiedlich empfundene Belastung mit und ohne Rennspiel
- → Strategien in beiden Versuchen unterschiedlich bewertet

Rennzeiten
Dialogzeiten
Nasa-TLX
Strategien
Task Completion
Dialogverhalten

Fragebogen - Strategien

Strategien

Wie werden die Strategien von den Versuchspersonen bewertet?

- Versuch 1:
 - Strategie 1 eindeutig am besten gewertet
- Versuch 2:
 - keine Strategie eindeutig am besten gewertet
 - Strategie 3 jedoch am beliebtesten
- → Strategien in beiden Versuchen unterschiedlich beliebt

Rennzeiten
Dialogzeiten
Nasa-TLX
Strategien
Task Completion
Dialogverhalten

Task Completion

Task Completion (TC)

Welche Strategie ist am erfolgversprechendsten?

- Versuch 1:
 - Strategie 2 am erfolgreichsten
 - Runde 4 erfolgreicher als Runden 1-3
- Versuch 2:
 - Strategie 1 am erfolgreichsten
 - Runde 4 erfolgreicher als Runden 1-3
- → Task Completion unterschiedlich in beiden Versuchen
- \rightarrow Runde mit geringer Belastung am erfolgreichsten

Rennzeiten Dialogzeiten Nasa-TLX Strategien Task Completion Dialogverhalten

Dialogverhalten

Dialogverhalten

Gibt es Unterschiede im Dialogverhalten bei unterschiedlicher Belastung

- Versuch 1: kein unterschiedliches Dialogverhalten
- Versuch 2: kein unterschiedliches Dialogverhalten

Rennzeiten Dialogzeiten Nasa-TLX Strategien Task Completion Dialogverhalten

Auswertung - Zusammenfassung

Erkenntnis

Länge der Disambiguierung beeinflusst Strategienbeliebtheit

- Disambiguierung mit wenigen Alternativen:
 - ⇒ Strategie 1 beliebt und effizient
- Disambiguierung mit vielen Alternativen:
 - ⇒ Strategie 1 effizient
 - ⇒ Strategie 3 beliebt

Vielen Dank

Vielen Dank für Ihre Aufmerksamkeit

Quellen

- Hervé Abdi und Lynne J. Williams: *Newmann-Keuls Test and Tukey Test* (2006).
- Daniel Jurafsky und James Martin: Speech and Language Processing Prentice Hall 2. Auflage (2008).
- Jessica Villing: Dialogue behaviour under high cognitive load Proceedings of SIGDIAL 2009: the 10th Annual Meeting of the Special Interest Group in Discourse and Dialogue, pages 322–325,(2009)
- P. Tsiakoulis, M. Henderson, B. Thomson, K. Yu, E. Tzirkel, S. Young: *The Effect of Cognitive Load on a Statistical Dialogue System* Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), pages 74–78, Seoul, South Korea, (July 2012).

48 / 49

Statistische Signifikanz

- einfache Varianzanalyse (one-way ANOVA):
 Überprüfung ob es Unterschiede in den Ergebnissen für die einzelnen Strategien gibt
- Tukey Test:
 Überprüfung, zwischen welchen Strategien es signifikante
 Unterschiede gibt

$$\frac{M_1 - M_2}{\sqrt{MS_{error}(\frac{1}{n})}}$$

 M_1 und M_2 enthalten die Mittelwerte der Strategien. MS_{error} beinhaltet den quadratischen Mittelwert. n ist die Anzahl der Durchführungen.