```
. or _mod = modifier_ob.
mirror object to mirror
mirror_mod.mirror_object
peration == "MIRROR_X":
irror_mod.use_x = True
drror_mod.use_y = False
lrror_mod.use_z = False
 _operation == "MIRROR_Y"
lrror_mod.use_x = False
mirror_mod.use_y = True
mlrror_mod.use_z = False
 _operation == "MIRROR_Z"
 lrror_mod.use_y = False
  lrror_mod.use_z = True
  election at the end -add
  ob.select= 1
  er ob.select=1
```

作业通关大攻略

General Guidance

Hung-yi Lee 李宏毅

```
x mirror to the select
ject.mirror_mirror_x"
ror x"

ntext):
xt.active_object is not
```

Framework of ML

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots, (x^N, \hat{y}^N)\}$$
 \Rightarrow $\#$:

ŷ: 真实值 y: 预测值

Testing data: $\{x^{N+1}, x^{N+2}, \dots, x^{N+M}\}$

Speech Recognition 作业2

 \hat{y} : phoneme

Speaker Recognition 作业4

 \hat{y} : John (speaker)

Image Recognition 作业3

 \hat{y} : soup

Machine Translation 作业5

x: 痛みを知れ

 \hat{y} : 了解痛苦吧

Framework of ML

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$$

Training:

Testing data:
$$\{x^{N+1}, x^{N+2}, \dots, x^{N+M}\}$$

Use $y = f_{\theta^*}(x)$ to label the testing data

$$\{y^{N+1}, y^{N+2}, \dots, y^{N+M}\}$$
 Upload to Kaggle

• The model is too simple.

find a needle in a haystack ...

... but there is no needle

Solution: redesign your model to make it more flexible

More features
$$y = b + wx_1$$
Deep Learning (more neurons, layers)
$$y = b + \sum_{i=1}^{56} w_i x_j$$

$$y = b + \sum_{i=1}^{56} w_i x_j$$

Optimization Issue

 Large loss not always imply model bias. There is another possibility ...

大海捞针,针确实在海里,但是就是找不到

Model Bias

find a needle in a haystack ...

... but there is no needle

Which one???

Optimization Issue

A needle is in a haystack ...

... Just cannot find it.

Model Bias v.s. Optimization Issue

Gaining the insights from comparison

Optimization Issue

先跑比较浅的network,或者用不是deep learning的简单的模型。

- Gaining the insights from comparison
- Start from shallower networks (or other models), which are easier to optimize.
- If deeper networks do not obtain smaller loss on training data, then there is optimization issue.

	1 layer	2 layer	3 layer	4 layer	5 layer
2017 – 2020	0.28k	0.18k	0.14k	0.10k	0.34k

 Solution: More powerful optimization technology (next lecture)

 Small loss on training data, large loss on testing data. Why?

An extreme example

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots, (x^N, \hat{y}^N)\}$$

$$f(x) = \begin{cases} \hat{y}^i & \exists x^i = x \\ random & otherwise \end{cases}$$
 Less than useless ...

This function obtains zero training loss, but large testing loss.

- Training data
- Testing data

如果坚持想用flexible model的话, 只能在数据上做文章了。

1. 更多数据 2. 数据增强

数据增强

Data augmentation (you can do that in HWs)

data augmentation要合适合理

- Real data distribution (not observable)
 - Training data
 - Testing data

- Real data distribution (not observable)
 - Training data
 - Testing data

限制模型的一些方法:

共享参数

- Less parameters, sharing parameters
- Less features eg. 降维
- Early stopping
- Regularization
- Dropout

CNN:针对图像的特性,来限制模型的弹性

- Real data distribution (not observable)
 - Training data
 - Testing data

Bias-Complexity Trade-off

Model becomes complex (e.g. more features, more parameters)

The extreme example again

It is possible that $f_{56789}(x)$ happens to get good performance on public testing set.

So you select $f_{56789}(x)$ Random on private testing set

Homework Training Set

public

private

Testing Set

Testing Set

Why?

Model 1 \longrightarrow mse = 0.9

Model 2 \longrightarrow mse = 0.7

Model 3 \longrightarrow mse = 0.5

Pick this one!

mse > 0.5

May be poor ...

What will happen?

http://www.chioka.in/howto-select-your-final-modelsin-a-kaggle-competitio/ nine usually beats corpora.

This explains why machine usually beats human on benchmark corpora.

因为这可以算作是public set

RANKED 3XX IN PRIVATE LEADERBOARD

Cross Validation (CV,交叉验证)

N-fold Cross Validation 晰文叉验证

Let's predict no. of views of 2/26!

Mismatch

 Your training and testing data have different distributions. Be aware of how data is generated.

Most HWs do not have this problem, except HW11

Training Data

Simply increasing the training data will not help.

Testing Data

