ECE523 Engineering Applications of Machine Learning and Data Analytics

Homework 3

1 Support Vector Machines

Tianyang Chen

$$\mathbb{E}(\boldsymbol{W}, b, \xi, \alpha) = \frac{1}{2} \|\boldsymbol{W}\|^2 + \frac{C}{2} \sum_{i=1}^{n} \xi_i^2 - \sum_{i=1}^{n} a_i [y_i(\boldsymbol{W}^T \boldsymbol{X}_i + b) + \xi_i - 1]$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = 0 \quad \Rightarrow \quad \mathbf{W} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{X}_i \tag{1}$$

$$\frac{\partial \mathcal{L}}{\partial b} = 0 \quad \Rightarrow \quad \sum_{i=1}^{n} \alpha_i y_i = 0 \tag{2}$$

$$\frac{\partial \mathcal{L}}{\partial \xi_i} = 0 \quad \Rightarrow \quad \xi_i = \frac{\alpha_i}{C} \tag{3}$$

Introduce (1), (2), (3) into Ł, We will get:

$$\underset{\alpha}{\operatorname{argmin}} \quad \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{t} \alpha_{j} y_{i} y_{j} \boldsymbol{X}_{i}^{T} \boldsymbol{X}_{j} - \frac{1}{2C} \sum_{i=1}^{n} \alpha_{i}^{2}$$

s.t.
$$\alpha_i \ge 0 \quad \forall i \in [n] \quad and \quad \sum_{i=1}^n \alpha_i y_i = 0$$

2 Multi-Layer Perceptron

	Classification Error		
	trainging	testing	
50HLN+no regularization	0.0247	0.0495	
50HLN+L2 regularization	0.0670	0.0649	
250HLN+no regularization	0.0031	0.0419	
250HLN+L2 regularization	0.0631	0.0612	

Parameters:

Learing Rounds: 20000

Regularization Coefficient: 0.01

Learning Rate: 0.001

3 Support Vector Machines

Fig.1 Traing data

Fig.2 Test data with linear kernel

Fig.3 Test data with gaussian kernel
Table 1 Classification error with different kernels

	Classification Error	
	trainging	testing
Linear Kernel	0.0150	0.0131
Guassian Kernel	0.0035	0.0287

4 Deep Learning (Bonus)

Table 2 Classification error - Deep network VS Shallow network

		Classification Error	
		trainging	testing
laver	250HLN+no regularization	0.0031	0.0419
	250HLN+L2 regularization	0.0631	0.0612
3 hidden layer	250HLN+no regularization	0.0024	0.0423
	250HLN+L2 regularization	0.0105	0.0442

From the table, I find that the deep network can improve the accuracy, and regularization is a good way to prevent overfitting.