

CSC4007 Advanced Machine Learning

Lesson 08: Deep Learning

by Vien Ngo EEECS / ECIT / DSSC

Outline

- Neural network basics and representation
- Perceptron learning, multi-layer perceptron
- Neural network training: Backpropagation
- Modern neural network architecture (a.k.a Deep learning):
 - Convolutional neural network (CNN)
 - Recurrent neural network (RNN), long-short term memory network (LSTM)

Deep learning

- Google Trends: attracts lots of attention.
 - Deep learning obtains many exciting results.

Deep Neural Network

Example: a fully connected deep NN

Deep means many hidden layers

Deep Neural Network

Deep Neural Network: Forward propagation

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Cost

Given a set of network parameters θ , each example has a cost value.

Cost can be Euclidean distance or cross entropy of the network output and target

Total Cost

For all training data ...

Total Cost:

$$C(\theta) = \sum_{r=1}^{R} L^{r}(\theta)$$

How bad the network parameters θ is on this task

Find the network parameters θ^* that minimize this value

Gradient Descent

Assume there are only two parameters w_1 and w_2 in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

Times the learning rate η

$$-\eta \nabla C(\theta^0)$$

Training DNN via Backpropagation

Gradient descent never guarantee global minima

Different initial point $heta^0$

Reach different minima, so different results

Who is Afraid of Non-Convex Loss Functions? http://videolectures.net/eml07

lecun wia/

Besides local minima

Training with Mini-batch

Mini-batch

- \triangleright Randomly initialize θ^0
- Pick the 1st batch $C = L^{1} + L^{31} + \cdots$ $\theta^{1} \leftarrow \theta^{0} \eta \nabla C(\theta^{0})$
 - Pick the 2^{nd} batch $C = L^2 + L^{16} + \cdots$ $\theta^2 \leftarrow \theta^1 \eta \nabla C(\theta^1)$:

C is different each time when we update parameters!

Training with Mini-batch

Original Gradient Descent

1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

With Mini-batch

The colors represent the total C on all training data.

Training with Mini-batch

Faster

Better!

 \succ Randomly initialize θ^0

- Pick the 1st batch $C = C^{1} + C^{31} + \cdots$ $\theta^{1} \leftarrow \theta^{0} \eta \nabla C(\theta^{0})$
- Pick the 2nd batch $C = C^2 + C^{16} + \cdots$ $\theta^2 \leftarrow \theta^1 \eta \nabla C(\theta^1)$:
- Until all mini-batches have been picked

one epoch

Repeat the above process

Mini-batch

Mini-batch

Backpropagation

- A network can have millions of parameters.
 - Backpropagation is the way to compute the gradients efficiently (not today)
 - Ref: http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/DNN%20backprop.ecm.mp4/index.html
- Many toolkits can compute the gradients automatically

Deeper is Better?

Layer X Size	Word Error Rate (%)	
1 X 2k	24.2	
2 X 2k	20.4	
3 X 2k	18.4	
4 X 2k	17.8	
5 X 2k	17.2	
7 X 2k	17.1	

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason:
http://neuralnetworksandde
eplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

Fat + Short v.s. Thin + Tall

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	1 X 4634	22.6
		1 X 16k	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Why Deep?

Deep → Modularization

Why Deep?

Why Deep?

Deep → Modularization → Less training data?

The most basic classifiers

Use 1st layer as module to build classifiers

Use 2nd layer as module

Deep Learning

Source of image: http://www.gipsa-lab.grenoble-inp.fr/transfert/seminaire/455_Kadri2013Gipsa-lab.pdf

Hard to get the power of Deep

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

Training DNN

- New Activation Function
- Adaptive Learning Rate
- Network Regularization

ReLU

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

Vanishing Gradient Problem

Vanishing Gradient Problem

Intuitive way to compute the gradient ...

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

a = zReLU a = 0 χ_1 y_1 \mathcal{Y}_2

ReLU

A Thinner linear network

Learning Rate

Set the learning rate η carefully

Learning Rate

Can we give different parameters different learning rates?

Not the whole story

- Adagrad [John Duchi, JMLR'11]
- RMSprop
 - https://www.youtube.com/watch?v=O3sxAc4hxZU
- Adadelta [Matthew D. Zeiler, arXiv'12]
- Adam [Diederik P. Kingma, ICLR'15]
- AdaSecant [Caglar Gulcehre, arXiv'14]
- "No more pesky learning rates" [Tom Schaul, arXiv'12]

Regularization: via Dropout

Pick a mini-batch

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Training:

- **Each time before computing the gradients**
 - Each neuron has p% to dropout

Pick a mini-batch

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Training:

- **Each time before computing the gradients**
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout

Testing:

No dropout

- If the dropout rate at training is p%,
 all the weights times (1-p)%
- Assume that the dropout rate is 50%. If a weight w = 1 by training, set w = 0.5 for testing.

Dropout - Intuitive Reason

- When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.

Dropout is a kind of ensemble.

Train a bunch of networks with different structures

Dropout is a kind of ensemble

Ensemble

Dropout is a kind of ensemble

- ► Using one mini-batch to train one network
- Some parameters in the network are shared

Dropout is a kind of ensemble

Summary

- Introduction to deep learning
 - Fully connected neural networks
- Some training issues and solutions
 - Adaptive learning rate
 - New activation functions
 - Dropout
- Next lectures:
 - Convolution neural networks
 - Recurrent neural networks