はやわかり LATEX で数式組版

Michael Downes, updated by Barbara Beeton

アメリカ数学会

このドキュメントのバージョン 2.0 (2017/12/22) です. 配布元は https://www.ams.org/tex/amslatex です. 日本語訳は 2018-09-04 です.

Contents

1	イン	トロダクション	3
2	文章 2.1	中の数式(インライン数式)と数式だけの行(ディスプレイ数式) 基本	3
	2.2	自動番号付けと相互参照	5
3	数学	記号と数式フォント	6
	3.1	数学記号の分類	6
	3.2	意図的にここで省略された記号・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
	3.3	アルファベットと数	7
		3.3.1 ラテン文字とアラビア数字	7
		3.3.2 ギリシア文字	7
		3.3.3 その他の"基本"アルファベット記号	7
		3.3.4 数式フォントの変更	8
		3.3.5 黒板太字 (msbm; ただし小文字はありません)	8
		3.3.6 飾り文字 (cmsy; 小文字はありません)	8
		3.3.7 CM フォントではない飾り文字と手書き文字	9
		3.3.8 フラクトゥール文字 (eufm)	9
	3.4	いくつかの単純な記号	9
	3.5		10
	3.6		10
	3.7	PARTIES A SALE	11
	3.8	関係記号:その他	11
	3.9		12
	3.10	***************************************	12
	3.11		12
	3.12		12
	3.13	210 0 120 0 0 H = 120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12
	3.14	数式で使われるアクセント	13
	3.15	名前付き作用素	13
4	記法		13
	4.1	上側と下側を飾る	13
	4.2	長さが伸びる矢印・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
	4.3		14
	4.4		14
	4.5		14
	4.6	ドット	15
	4.7		15
	4.8		15
	4.9	数式の枠囲み	15

はゝ	やわかり ₽T _E X で数式組版, version 2.0 (2017/12/22)	2
5	分数とそれに関連する話題 5.1 \frac, \dfrac, および\tfrac コマンド 5.2 \binom, \dbinom, および\tbinom コマンド 5.3 \genfrac コマンド 5.4 連分数	16 16 16 16 17
	デリミタ6.1 デリミタの大きさ6.2 縦棒の記法	17 17 18
7	\text コマンド 7.1 \mod と, その仲間	18 18
8	積分と和8.1 範囲指定の配置	18 18 19 19
9	数式の構成部分の大きさを変える	19
10	このほかのパッケージ	20
11	その他の役に立つドキュメント	21

謝辞と将来の計画

提案,援助,励ましなど貢献してくださったすべての人に感謝します.難しいマクロを修復した David Carlisle と AMS スタイルにしたがように編集してくれた Jennifer Wright Sharp に特別に感謝します.

将来の版の計画には、索引の追加が含まれます.

エラーに関する報告と改善のための提案は、 tech-support@ams.org に送ってください.

1. イントロダクション

これは I4 T_E X と数式のあるドキュメントを作成するためのいくつかの拡張パッケージの,お勧めの機能についての簡潔な要約です. 詳細な説明に関心がある読者は,参考文献(Reference)の,特に [Lam],[AMUG],そして [LFG] をみてください. 普通の I4 T_E X については,ある程度の経験があることを想定しています. I4 T_E X が使う,コマンド,オプションの引数,環境,パッケージなどを思い出す必要があれば,[Lam] を参照してください.

ここで説明している機能のほんとんどは、IPTEX をアメリカ数学会が作成した2つの拡張パッケージ amssymb と amsmath を読み込んで使用すれば、利用できます. したがって、このドキュメントのソースファイルは

\documentclass{article}

\usepackage{amssymb,amsmath}

で始まります。数式や記号の使用量が比較的少ないドキュメントの場合,amssymb パッケージは使わなくても良いでしょう。3節では,amssymb を必要とする記号に a または b (それぞれ msam フォントまたは msbm フォント) とマークされます。3.3節には,いくつかの追加フォントが含まれています。必要なパッケージがそこで示されています。

ここに示されている記号以外が必要な読者は、 $The\ Comprehensive\ PT_{EX}\ Symbol\ List\ [CLSL]$ を参考にするとよいでしょう。お使いの $PT_{EX}\ N$ $T_{EX}\ Live\ に基づいており、ドキュメントも含まれていれば、システムプロンプトで texdoc comprehensive と入力することで、記号一覧を読むことができます。$

2. 文章中の数式(インライン数式)と数式だけの行(ディスプレイ数式)

2.1. 基本. \LaTeX で数式作成モードに入ったり出たりするのは、通常以下のコマンドと環境で行われます。

インライン数式	ディスプレイ数式		
\$ \$	\[]	数式番号がつかない	
\(\)	\begin{equation*}	数式番号がつかない	
	<pre> \end{equation*}</pre>		
	\begin{equation}	自動的に数式番号が つけられる	
	\end{equation}	21) JAV.	

注意 1. 本文とディスプレイ数式の間に空白行を入れないでください。そうしてしまうと、その場所での改ページが可能になります。これは悪いスタイルです。また、文章とディスプレイ数式の間隔が不正確になり、通常は望ましい値よりも大きくなります。ドキュメント作成時の見やすさのために改行が必要な場合は、先頭に%だけの行を挿入します。新しい段落が意図されている場合にのみ、ディスプレイ数式の後と次のテキストとの間に空白行を置きます。

注意 2. 入力(\[...\], equation など)に複数のディスプレイ数式をグループ化しないでください。その代わりに、(split, aligned など) などの複数行構造のためのコマンドを適切に使用してください。

注意 3. 実際には、 $begin{math} & begin{displaymath} の両方が必要になることはめったにありません.ディスプレイ数式の作成に plain <math>T_{EX}$ 表記\$\$... \$\$ を使用することは避けてください. IAT_{EX} では明示的に禁止されていませんが, IAT_{EX} コマンドの一部として IAT_{EX} の本のどこにも説明されておらず, IAT_{EX} コマンドの一部としてドキュメント化されていません.これはたとえば fleqn オプションを使用するときに特別な問題をおこします.

注意 4. [Lam] に記述されている eqnarray 環境と eqnarray*環境の使用も避けてください. これを使うと等号の間隔が不均一になり, 式番号と方程式本体が重なるのを防げません.

方程式のグループ化と複数行を扱うための環境は、Table 1 に示されています.

Table 1: 複数の行が必要な数式と数式のグループ (縦棒は,通常のマージンを示しています).

\begin{equation}\label{xx} \begin{split} a& =b+c-d $\$ a = b + c - d& \quad +e-f\\ +e-f(1.1) $\& =g+h\setminus$ & =i\end{split} \end{equation} \begin{multline} a+b+c+d+e+fa+b+c+d+e+f+i+j+k+l+m+n\\ +i+j+k+l+m+n+o+p+q+r+s + o + p + q + r + s (1.2) \end{multline} \begin{gather} $a_1 = b_1 + c_1$ (1.3) $a_1=b_1+c_1$ a_2=b_2+c_2-d_2+e_2 $a_2 = b_2 + c_2 - d_2 + e_2$ (1.4)\end{gather} \begin{align} $a_1 = b_1 + c_1$ (1.5) $a_1\& =b_1+c_1\setminus$ $a_2\& =b_2+c_2-d_2+e_2$ $a_2 = b_2 + c_2 - d_2 + e_2$ (1.6)\end{align} \begin{align} a_{11} = b_{11} $a_{11} = b_{11}$ $a_{12} = b_{12}$ (1.7) $a_{12}\& =b_{12}\$ a_{21} = b_{21} $a_{21} = b_{21} \qquad a_{22} = b_{22} + c_{22}$ (1.8) a_{22} = $b_{22}+c_{22}$ \end{align} \begin{alignat}{2} $a_1 = b_1 + c_1 + e_1 - f_1$ (1.9)&+e_1-f_1\\ a_1& =b_1+c_1& $a_2\& =b_2+c_2\&{}-d_2\&+e_2$ $a_2 = b_2 + c_2 - d_2 + e_2$ (1.10)\end{alignat} \begin{flalign} a_{11} = b_{11} $a_{11} = b_{11}$ $a_{12} = b_{12}$ (1.11) a_{12} = b_{12} a_{21} = b_{21} $a_{21} = b_{21}$ $a_{22} = b_{22} + c_{22}$ (1.12) a_{22} = b_{22} + c_{22} \end{flalign}

注意 1.*を任意のプライマリ環境に適用すると,数式番号の割り当てが抑止されます.ただし,\tag はラベルを表示するために,\eqref は手動でタグ付けされた行を参照するために使用できます.従属環境で*または\tag を使用するとエラーになります.

注意 2. split 環境は特殊なケースです。これは従属環境で、複数の式をもつ構造の equation 環境の内容や aligned や gather のような複数式の中の 1 ディスプレイ数式つの "line" の内容として使用できます。

注意 3. 主要な環境 gather, align と align には,その下位構造に "-ed" 対応 (gather, aligned, aligned) が あります. より複雑なディスプレイ数式の構成要素として,またはインライン数式の中で使用することができます. これらの "-ed" 環境は,オプションの [t], [c] または [b] を使用して垂直に配置できます.

注意 4. flalign という名前は、"全幅(full length)" を意味します. よく "左寄せ(flush left)" だと誤解されます. しかし、ディスプレイ数式はしばしば左端から始まり幅全体にわたるので、この混乱は納得できます. 両方のマージンから flalign に適用されるインデントは、\multlinegap で設定されます.

2.2. 自動番号付けと相互参照. 自動的に数式番号が付く式を作るには, equation 環境を使用します. 相互参照のラベルを割り当てるには, \label コマンドを使用します.

\begin{equation}\label{reio}

. . .

\end{equation}

自動的に番号付けた数式を相互参照するには、次のようにします. \eqref コマンド:

... using equations $\eqref{ax1}$ and $\eqref{bz2}$, we can derive ...

上に示した例では,

using equations (3.2) and (3.5), we can derive

のように表示されます. 言い換えれば、\eqref{ax1}は (\ref{ax1}) と同じですが、\eqref で生成されたカッコは常に立体です.

式番号をm.n (節の番号.数式番号) という形にしたいときは、ドキュメントのプレアンブルで\numberwithin コマンドを使います:

\numberwithin{equation}{section}

番号付けの方針の詳細については、[Lam, §6.3,§C.8.4] を参照してください.

subequations 環境は、グループ内の方程式の番号付の方針ための便利な方法を提供します。たとえば、現在の方程式の番号が 2.0 であるなら、

\begin{equation}\label{first}

a=b+c

\end{equation}

この間に文章があるとして,

\begin{subequations}\label{grp}

\begin{align}

 $a\&=b+c\label\{second\}\$

d&=e+f+g\label{third}\\

h&=i+j\label{fourth}

\end{align}

\end{subequations}

とすれば

$$a = b + c \tag{2.1}$$

この間に文章があるとして,

$$a = b + c \tag{2.2a}$$

$$d = e + f + g \tag{2.2b}$$

$$h = i + j \tag{2.2c}$$

となります。\begin{subequations}の直後に\label コマンドを置くことで、親の番号への参照を得ることができます。上記の例の\eqref{grp}は (2.2) を生成し、\eqref{second}は (2.2a) を生成します。

上で述べた数式番号の付け方のいくつかの変種が https://tex.stackexchange.com/questions/220001/ に紹介されています。そこには (2.1), (2.2a) ... ではなく (2.1), (2.1a) ... とする例などがあります。これは、\tag を使って、子番号をもつ式の親の式に対して相互参照を行うことで実現されます。

3. 数学記号と数式フォント

3.1. 数学記号の分類. 数式で使う記号は、いくつかの種類(クラス)に分けられます. 数式が単語で表されるなら、読み方に多少なりとも対応します. 式の可読性を高めるために、異なる記号クラスごとに伝統的に間隔および配置が使用されています.

クラス		意味	
番号	ニーモニック	(読みのヒント)	例
0	Ord	普通/通常(名詞)	$A~0~\Phi~\infty$
1	Op	前に置かれる作用素	$\sum \prod \int$
2	Bin	二項作用素 (結合)	$+ \cup \wedge$
3	Rel	関係/比較 (動詞)	$=$ < \subset
4	Open	左/開きのデリミタ	([{ (
5	Close	右/閉じのデリミタ)] } 〉
6	Punct	後置記号/文の終わり	. , ; !

注意 1. T_{EX} のクラス 0 とクラス 7 の区別は,フォント選択の問題にのみ影響します.ここでは重要ではありません。

注意 2. クラス 2 (Bin) の記号, 特にマイナス記号 — は、 IAT_{EX} によってクラス 0 (空白なし) として, 自動的に プリントされます. つまり適切な左オペランド—がないとき, つまり数式の始まりまたは開始デリミタの受け側で あるとしています.

いくつかの記号の間隔は、日常ドキュメントではなく数式の伝統に従います:/は(意味的に)クラス2のものですが、k/2ではなくスラッシュのまわりに空白を入れずにk/2と書きます。そして、p|q|q(空白なし)と $p\mid qp|q$ (クラス3の空白)とを比べてみましょう。

新しい数学記号を定義する適切な方法は、 $PTEX 2\varepsilon$ フォントの選択で説明されています [LFG]. フォントの仕様の影響を最初に理解する必要があるため、ここでは有用な概要を与えることは実際には不可能です。しかし、vncyr10 という名前のキリル文字フォントが利用できることを知っているとて、そのフォントの 1 文字を数学記号としてプリントするための PTEX コマンドでの定義方法について最小の例を示します:

- % Declare that the combination of font attributes OT2/wncyr/m/n
- % should select the wncyr font.

- % Declare that the symbolic math font name "cyr" should resolve to
- % OT2/wncyr/m/n.

\DeclareSymbolFont{cyr}{OT2}{wncyr}{m}{n}

- % Declare that the command \Sh should print symbol 88 from the math font
- % "cyr", and that the symbol class is 0 (= alphabetic = Ord).

3.2. 意図的にここで省略された記号.次に示す数学記号は \LaTeX book [Lam] に記載されていますが、amssymb パッケージがロードされたときに同等の記号に置き換えらるため、意図的に省略しています。amssymb パッケージを使用している場合は、代替名を使用することはたんにドキュメントで使用されるフォントの数を不必要に増やしだけです。

```
\Box,右のコマンドを使う \square □ \Diamond,右のコマンドを使う \lozenge ◇ \leadsto,右のコマンドを使う \rightsquigarrow ~ \Join,右のコマンドを使う \bowtie ⋈ \lhd,右のコマンドを使う \vartriangleleft ▷ \unlhd,右のコマンドを使う \trianglelefteq ▷ \rhd,右のコマンドを使う \vartriangleright ▷ \unrhd,右のコマンドを使う \trianglerighteq ▷
```

さらに、IATEX には、ここに含まれているものよりも強力なものがたくさんあります.このリストは包括的なものではありません.音標アルファベットや記号のような数学では必要ない記

3.3. アルファベットと数.

3.3.1. ラテン文字とアラビア数字

ラテン文字は、クラス 0 の単純な記号です.数式内のラテン文字のデフォルトのフォントはイタリックです.

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

数式でiやjにアクセントを加えるときには、ドットのないiやjは\imath や\jmath を使います:

i\imath j\jmath \hat{j} \hat{\jmath} アラビア数字 0-9 もクラス 0 です. デフォルトのフォントは立体/ローマン体です.

0123456789

3.3.2. ギリシア文字

ラテン文字のように、ギリシャ文字は簡単な記号、クラス0です。あいまいな歴史的な理由から、数式の小文字のギリシャ文字のデフォルトフォントはイタリックで、大文字のギリシャ文字のデフォルトフォントは立体/ローマン体です。しかし、物理学や化学などの他の分野と、伝統的な数学の文字の使い方は多少異なります。このリストにはないギリシャ語の文字は、アルファの場合はA、ベータの場合はB、等々、小文字のリストには、外観がラテン文字のoと同じであるため、オミクロンはありません。実際には、混乱を避けるために、ラテン語と似ているギリシャ文字は、数式にほとんど使われていません。

Γ \Gamma	α \alpha	$ u$ \nu	\digamma \backslash digamma
Δ \Delta	eta \beta	ξ \xi	arepsilon
Λ \Lambda	γ \gamma	$\pi \setminus \mathtt{pi}$	
Φ \Phi	δ \delta	$ ho$ \rho	$arphi$ \varphi
∏ \Pi	ϵ \epsilon	$\sigma \setminus \mathtt{sigma}$	$arpi$ \varpi
Ψ \Psi	ζ \zeta	$ au$ \tau	$arrho$ \varrho
$\Sigma \setminus \mathtt{Sigma}$	η \eta	v \upsilon	$\varsigma \setminus varsigma$
Θ \Theta	$ heta$ \theta	ϕ \phi	ϑ \vartheta
Υ \Upsilon	ι \iota	χ \chi	
Ξ\Xi	κ \kappa	ψ \psi	
Ω \Omega	λ \lambda	ω \omega	
_	μ \mu	· ·	

3.3.3. その他の"基本"アルファベット記号

これらもクラス0です.

ℵ\aleph ^a	ℓ \ell	∂ \partial $^{ m a}$	∂\Game
☐ \beth	ð\eth	⟨	√ Im
¬\daleth	\hbar \hbar	⊗ \circledS	ℜ ∖Re
]\gimel	\hbar \hslash	k ∖Bbbk	
C\complement	∪ \mho	∃ \Finv	

注意 1. ラベル $^{\mathrm{a,b}}$ がつけられてるフォントは amssymb が読み込まれたときの,msam あるいは msbm のことです.

3.3.4. 数式フォントの変更

包括的な数学フォントの変更をサポートするために必要なフォントのすべてが、通常の LATEX 設定で一般的に利用できるわけではありません。ここには、Computer Modern フォントの標準セットが使用されているときに、幅広い数学記号にさまざまなフォント変換を適用した結果があります。すべてのフォント変更に正しく応答する唯一の記号は大文字のラテン文字であることがわかります。実際、ラテン文字とは別にほぼすべての数学記号はフォントの変更に影響されません。小文字のラテン文字、大文字のギリシャ文字、数字は一部のフォント変更に正しく対応しますが、他のフォント変更では奇妙な結果が生じます。(Lucida New Mathなどの数学フォントセットを使用すると、状況が多少改善される可能性があります)。

default	\mbox{mathbf}	\mathrm	$\mbox{\mbox{\tt mathsf}}$	\mbox{mathit}	\mathcal	\mathbb{L}	\mathfrak
\overline{X}	X	X	Х	X	\mathcal{X}	X	X
x	x	X	X	x	§	$ \leftarrow $	ŗ
0	0	0	0	0	1	$\not\vdash$	0
[]	[]	[]	[]	[]	[]	[]	[]
+	+	+	+	+	+	+	+
_	_	_	_	_	_	_	_
=	=	=	=	=	=	=	=
Ξ	Ξ	Ξ	Ξ	Ξ	÷	*	g
ξ	ξ	ξ	ξ	ξ	ξ	ξ	ξ
∞	∞	∞	∞	∞	∞	∞	∞
×	×	×	×	×	×	×	×
\sum	\sum	\sum	\sum	\sum	\sum	\sum	\sum
П	П	П	П	П	П	П	П
\Re	\Re	\Re	\Re	\Re	\Re	\Re	\Re

一般的な望みは、特定の数学記号の太字のバージョンを得ることです。\mathbf が適用されない記号については、\boldsymbol または\pmb コマンドを使用できます。

$$A_{\infty} + \pi A_0 \sim \mathbf{A_{\infty}} + \pi \mathbf{A_0} \sim \mathbf{A_{\infty}} + \pi \mathbf{A_0}$$
 (3.1)

 $A_{\inf} + \pi A_0$

\sim \mathbf{A}_{\boldsymbol{\infty}} \boldsymbol{+}

\boldsymbol{\pi} \mathbf{A}_{\boldsymbol{0}}

\boldsymbol コマンドは、amsmath パッケージよりも新しい、強力なバージョンである bm パッケージを読み込んで使うのが望ましいです.一度に複数の記号に\boldsymbol を適用することは通常はお勧めできません.もしそのような必要性が生じているようであれば、別のより良い方法があることを意味します.

3.3.5. 黒板太字 (msbm; ただし小文字はありません)

使い方は\mathbb{R}です. amsfonts が必要です.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

一つだけ小文字が用意されています: k \Bbbk

3.3.6. 飾り文字 (cmsy; 小文字はありません)

使い方:\mathcal{M}.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

3.3.7. CM フォントではない飾り文字と手書き文字

(rsfs; 小文字はありません) 使い方: \usepackage{mathrsfs} \mathscr{B}.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

(eusm; 小文字はありません) 使い方: \usepackage{euscript} \mathscr{E}.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

3.3.8. フラクトゥール文字 (eufm)

使い方 \mathfrak{S}. amsfonts が必要です.

ABEDEFESJJELMNDPQRETUVWXY3

abcdefghijklmnopgrstuvmrnz

3.4. いくつかの単純な記号. これらの文字もクラス0(通常)です. つまり組み込みの空白がありません.

# \#	/ \diagup	¬ \neg
% \ &		∄ \nexists ^a
\angle \angle $^{ m b}$	\emptyset \emptyset	/\prime
\\backprime	∃\exists	\sharp \sharp $^{ m b}$
★ \bigstar ^a	$lat$ \flat $^{ m b}$	♠ \spadesuit
♦ \blacklozenge	\forall \forall	$ riangle$ \sphericalangle $^{ m b}$
■ \blacksquare	♡ \heartsuit	□ \square
▲ \blacktriangle ^a	∞ \infty	√\surd
▼ \blacktriangledown ^a		⊤ \top
⊥ \bot	\measuredangle \measuredangle $^{ m b}$	△ \triangle
♣ \clubsuit	$ abla$ \nabla	$ riangle ext{\tau} ext{triangledown}^{ ext{a}} \ ext{\text{\text{\text{varnothing}}}}$
\\diagdown	$ atural^{\mathrm{b}} $	≈ (varmothing

注意 1. ラベルa,bがつけられてるフォントは amssymb が読み込まれたときの, msam あるいは msbm のことです.

注意 2. 記号 \Box と # を使用する際のよくある間違いは、適切に定義された数学記号コマンドを使用せずに、2 項演算子または関係記号として用いることです.単に既存のコマンド\square または\#を使用すると、これらのコマンド\がクラス 0 記号を生成するため、記号間の間隔が正しくありません.

注意 3. 同義語 ¬ \lnot

3.5. 二項演算の記号

** ++ II \amalg *\ast \(\times\) \barwedge^a \(\times\) \bigcirc \(\times\) \bigcircledst^a \(\times\) \boxminus^a \(\times\) \boxminus^a \(\times\) \boxtimes^a \(\times\) \boxtimes^a \(\times\) \cap	<pre></pre>	<pre>⊕ \oplus ⊘ \oslash ⊗ \otimes ± \pm</pre>
---	-------------	---

注意 1. ラベル a,b がつけられてるフォントは amssymb が読み込まれたときの,msam あるいは msbm のことです.

同義語: $\land \$ \land, $\lor \$ \lor, $\lor \$ \doublecup, $\cap \$ \doublecap

3.6. 関係記号: <=> > ~ および, それらの変種

< <	$\geqslant ackslash ext{geqslant}^{ ext{a}}$	\lessapprox \lnapprox $^{ m b}$	$\preccurlyeq ackslash exttt{preccurlyeq}^{ ext{a}}$
= =	≫ \gg	$\lneq ackslash exttt{lneq}^ ext{b}$	$\preceq \setminus \mathtt{preceq}$
>>	$\gg \setminus ggg^\mathrm{a}$	\lessgtr \lneqq $^{ m b}$	\lessapprox \precnapprox $^{ m b}$
$pprox$ \approx	\gtrapprox \gnapprox $^{ m b}$	$\lesssim extsf{\lambda}$ lnsim $^{ m b}$	\ncong \precneqq $^{ m b}$
$pprox = extsf{q}^{ ext{b}}$	\geqslant \gneq $^{ m b}$	$\stackrel{\sim}{\leqq} ext{ \leftle{lvertneqq}^b}$	\precsim \precnsim $^{ m b}$
symp	$ ot \geq extstyle extstyl$	$\stackrel{ op}{ ot} \setminus \mathtt{ncong}^{\mathrm{b}}$	$\stackrel{{}^{\!$
$\backsim \setminus \mathtt{backsim}^{\mathrm{a}}$	$\gtrsim extsf{\gnsim}^{ ext{b}}$	$\neq $ \neq	$ec{=}$ \risingdotseq $^{ m a}$
\simeq $acksimeq^{ m a}$	$\gtrapprox \setminus { t gtrapprox}^{ t a}$		$\sim \$ sim
$ riangleq$ \bumpeq $^{ m a}$	$\stackrel{\sim}{ extcolored}$ \gtreqless $^{ ext{a}}$	≱ \ngeq ^b	$\simeq extsf{\simeq}$
\Rightarrow \Bumpeq $^{ m a}$	$\stackrel{>}{\geqslant} \setminus { t gtreqqless}^a$	≱ \ngeqq ^b	≻ \succ
$ =$ \circeq $^{ m a}$	~	$ \geqslant$ \ngeqslant ^b	\gtrapprox \succapprox $^{ m b}$
$\cong \setminus \mathtt{cong}$	<pre></pre>	$ ightarrow$ \ngtr $^{ m b}$	$\succcurlyeq ackslash ext{succcurlyeq}^{ ext{a}}$
$\curlyeqprec \setminus \mathtt{curlyeqprec}^{\mathrm{a}}$	$\gtrsim \setminus \mathtt{gtrsim}^{\mathrm{a}}$	$ ot \leq ext{ \nleq}^{ m b}$	$\succeq \setminus \mathtt{succeq}$
$\succcurlyeq ackslash ext{curlyeqsucc}^{ ext{a}}$	<pre></pre>	$ ot \leq$ \nleqq $^{ m b}$	$\c\c\c$ \succnapprox $^{ m b}$
\doteq \setminus doteq	<pre>≤ \leq < \lambda arra</pre>	$ otin \bigwedge^{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!/} \setminus \mathtt{nleqslant}^{\mathrm{b}}$	$\c \succeq extstyle extstyle$
\doteqdot \setminus doteqdot $^{ m a}$	≦ \leqq ^a	$ ot< { t nless}^{ t b}$	\succsim \succnsim $^{ m b}$
= \eqcirc ^a	<pre></pre>	√ \nprec ^b	$\stackrel{\prime}{\sim} \setminus exttt{succsim}^{ ext{a}}$
$ extstyle \sim extstyle e$	\lesssim \lessapprox ^a	<pre>/ \npreceq^b</pre>	$pprox$ \thickapprox $^{ m b}$
\geqslant \eqslantgtr $^{ m a}$	<pre>\$\lesseqgtr^a</pre>	≠ \npreseq ~ \nsim ^b	$\sim ackslash$ thicksim $^{ m b}$
\leqslant \eqslantless $^{ m a}$	$ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$	$ \neq$ \nsucc ^b	$ riangleq^{ m a}$
$\equiv \texttt{ar{equiv}}$	\lessgtr $ackslash$ lessgtr $^{ m a}$		
$\buildrel \in extstyle \setminus extstyle \cap ext$	$\lesssim extsf{\lesssim}^{ m a}$	$ ot \succeq ackslash \mathtt{nsucceq^b}$	
$\geq \setminus geq$	≪ \11	≺ \prec	
$\geqq ackslash { t geqq}^{ ext{a}}$	< \111 ^a	\lessapprox \precapprox $^{ m b}$	

注意 1. ラベル a,b がつけられてるフォントは amssymb が読み込まれたときの,msam あるいは msbm のことです.

同義語: \neq \ne, \leq \le, \geq \ge, \doteqdot \Doteq, \ll \llless, \gg \gggtr

3.7. 関係記号: 矢印. 次も参照 4 節.

```
⟨ \Lleftarrow<sup>a</sup>

                                                                        ☼ \circlearrowright<sup>a</sup>
                                   ← \longleftarrow
                                                                        \rightarrow \ \rightarrow
\wedge \curvearrowleft<sup>b</sup>
                                   ← \Longleftarrow
                                                                       \Rightarrow \land \texttt{Rightarrow}
                                                                       \rightarrow \rightarrowtail<sup>a</sup>
                                   \longleftrightarrow \setminus longleftrightarrow
\rightarrow \rightharpoondown

→ \rightharpoonup

                                   \longrightarrow \label{longmapsto}

ightleftarrows^{\mathrm{a}}
                                   \longrightarrow \setminus longrightarrow
  | \downharpoonrighta
                                                                        \rightleftharpoons \rightleftharpoons<sup>a</sup>
                                   ⇒ \Longrightarrow
← \hookleftarrow
                                                                       \rightrightarrows \rightrightarrows
                                     \leftarrow \looparrowleft<sup>a</sup>
\hookrightarrow \hookrightarrow

√ \rightsquigarrow<sup>a</sup>

                                     \hookrightarrow \looparrowright<sup>a</sup>
⇒ \Rrightarrow<sup>a</sup>
                                      ↑\Lsh<sup>a</sup>
 ← \Leftarrow
                                                                        ↑\Rsh<sup>a</sup>
                                     \mapsto \mbox{\tt mapsto}
\leftarrow \leftarrowtail<sup>a</sup>
                                                                        √ \searrow
                                    \multimap \mbox{\mbox{\tt multimap}}^{\rm a}

√ \swarrow

                                     \# \nLeftarrow^b
← \leftharpoonup
                                                                        \twoheadleftarrow \ \texttt{\twoheadleftarrow}^a

⟨⇒ \nLeftrightarrow<sup>b</sup>

\sqsubseteq \texttt{\local{leftleftarrows}}^a
                                                                        	wo \twoheadrightarrow<sup>a</sup>
                                     ⇒ \nRightarrow<sup>b</sup>
 1 \upharpoonlefta
                                     \upharpoonrighta
                                     ← \nleftarrow<sup>b</sup>
\leftrightarrows \texttt{\leftrightarrows}^a
                                                                        ↑ \upuparrows<sup>a</sup>
                                     \leftrightarrow \texttt{\label{eq:local_problem} hleftrightarrow}^b
\leftrightharpoons \texttt{\leftrightharpoons}^a
 \leftrightsquigarrow<sup>a</sup>
                                    → \nrightarrow<sup>b</sup>
```

注意 1. ラベル a,b がつけられてるフォントは amssymb が読み込まれたときの,msam あるいは msbm のことです. 同義語: \leftarrow \gets, \rightarrow \to, \ \restriction

3.8. 関係記号: その他

注意 1. ラベル a,b がつけられてるフォントは amssymb が読み込まれたときの, msam あるいは msbm のことです.

同義語: ∋ \owns

3.9. 大きさの変わる作用素

\int \int	\odot \bigodot	<pre>(+) \biguplus</pre>	∏ \prod
\oint \oint	→ \bigoplus	√ \bigvee	\int \smallint
	\bigotimes \bigotimes	∧ \bigwedge	$\sum \setminus sum$
	∐ \bigsqcup	∐ \coprod	
3.10. 句読点			
	::		\dotsm
/ /	!!		\dotso
1	? ?	٠.	\ddots
, ,	··· \dotsb	·	daous
; ;	\dotsc		\vdots
· \colon	···\dotsi		

注意 1. :はそれ自身でクラス 3 (関係) の空白をもつコロンを生成します。 \コロンコマンドは,f\colon A\to B では $f\colon A\to B$ のように特別な空白を作成します.

注意 2. コマンド\cdots と\ldots は頻繁に使用されますが,意味に応じたコマンド\dotsb \dotsc \dotsm \dotso の使用をお勧めします.(4.6 節をみてください).

3.11. ペアになる (大きさの変わる) 記号). 詳しくは6節を参照のこと.

()()	$\left\langle \; \right angle$ \langle \rangle
[][]	\lceil \rceil
$\left\{\; ight\}$ \lbrace \rbrace	\lfloor \rfloor
\lvert \rvert	() \lgroup \rgroup
\lVert \rVert	\int \lambda \moustache \rmoustache

3.12. ペアでは使われないが大きさの変わる記号

\vert /	′ /	\arrowvert	\bracevert
\Vert \	\\backslash	\Arrowvert	

注意 1. \vert, |, \vert, \|をペアのデリミタ(語の前後を区切る,あるいは行列や絶対値など要素を囲む記号)として使うのは勧めません。 $(6.2\ \hat{\mathbf{m}}$ をみてください)代わりに, $3.11\ \hat{\mathbf{m}}$ にある一覧表にあるデリミタを使用します.

同義語: || \|

3.13. 大きさの変わる垂直の矢印

3.14. 数式で使われるアクセント

3.15. 名前付き作用素. これらの作用素は複数の文字による省略形で表されています.

arccos \arccos	gcd \gcd	Pr \Pr
arcsin \arcsin	hom \hom	projlim \projlim
arctan \arctan	inf \inf	sec \sec
arg \arg	inj lim \injlim	sin \sin
$\cos \setminus \cos$	ker \ker	$\sinh \$
$\cosh \c$	lg \lg	sup \sup
cot \cot	lim \lim	tan \tan
$\coth \ \ $	lim inf \liminf	tanh \tanh
csc \csc	$\limsup \$	$arprojlim$ \varinjlim
$\deg \setminus \deg$	ln \ln	\overline{arphi} \varprojlim
$\det \setminus \mathtt{det}$	log \log	$\lim_{\longrightarrow} \text{ \varliminf}$
$\dim \operatorname{\backslash dim}$	max \max	lim \varlimsup
exp \exp	min \min	IIII (Variimsup

上記のリストにない追加の名前付き作用素を定義するには、\DeclareMathOperator コマンドを使用します。たとえば、

\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\esssup}{ess\,sup}

このようにできます.

\DeclareMathOperator*にある星印は、ディスプレイ数式、supや max などにある範囲を示す式を使う作用素を作成します.

このようなすでに定義されている名前付き作用素で問題がある場合(たとえば、論文の表題や要約に1つ使用する場合など)、直接使用できる別の形式があります.

$$\operatorname{\operatorname{\mathsf{Noperatorname}}}(x) \to \operatorname{\operatorname{\mathsf{rank}}}(x)$$

4. 記法

4.1. 上側と下側を飾る. これらは視覚的にはアクセントと似ていますが、1つの基になる記号だけに適用されるのではなく、複数の記号にまたがります. 参照を便利にするために、ここでは \widetilde と \widehat を重複して、数式アクセントの表に含めています.

\widetilde{xxx} \widetilde{xxx}	\overleftarrow{xxx} \overleftarrow{xxx}
\widehat{xxx} \widehat{xxx}	\cancel{xxx} \underleftarrow{xxx}
$\overline{x}\overline{x}\overline{x}$ \overline{xxx}	\overrightarrow{xxx} \overrightarrow{xxx}
\underline{xxx} \underline{xxx}	\xrightarrow{xxx} \underrightarrow{xxx}
\widehat{xxx} \overbrace{xxx}	xxx \overleftrightarrow{xxx}
<pre>xxx \underbrace{xxx}</pre>	xxx \underleftrightarrow{xxx}

4.2. 長さが伸びる矢印. $\$ \xleftarrow $\$ $\$ \xrightarrow は、普通より広い下付き文字や上付き文字に対応するために自動的に拡張される矢印を生成します。これらのコマンドは、1つのオプションの引数(添え字)と1つの必須の引数(上付き文字、空の場合もある)を取ります:

$$A \stackrel{n+\mu-1}{\longleftarrow} B \xrightarrow{n\pm i-1}^{n\pm i-1} C \tag{4.1}$$

 $\x = 1 - 1$

4.3. 記号に別の記号を重ねる. 標準のアクセント (3.14節) に加えて、\overset と\underset コマンドで、基礎におく記号の上または下に他の記号を配置することができます。 たとえば、\overset{*}{X}とすれば、X の上に上付き小文字の * を置くので、X になります。 8.4節 の\sideset の説明も参照してください。

4.4. 行列. pmatrix, bmatrix, Bmatrix, vmatrix, Vmatrix の環境はそれぞれ適切なデリミタ(), [], $\{\}$, ||, || が組み込まれています。また、デリミタをもたない matrix 環境と、左揃えまたは列指定の他のバリエーションを取得するために使用できる array 環境があります。

本文中での使用に適した小さな行列を生成するには、smallmatrix 環境(たとえば、 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$)とします.そうすると通常の行列よりも小さくなるので、文章の行の大きさにあいます.この例は.

\bigl(\begin{smallmatrix}
 a&b\\ c&d
\end{smallmatrix} \bigr)

としたものです。デフォルトでは、行列内のすべての要素は水平方向に中央揃えされます。 mathtools パッケージは、これ以外の位置揃えを容易にするすべての行列環境の星印バージョンを提供します。このパッケージはまた、星印バージョンと星印なしバージョンの両方で並列名をもつ smallmatrix の囲まれた版を提供します。

行列の中に指定された数の列にまたがるドットの行を生成するには\hdotsfor を使います. たとえば、4 列の行列の 2 番目の列の\hdotsfor{3}は、最後の 3 つの列にドットだけの行が プリントされます

区分関数の定義には、cases 環境があります:

 $P_{r-j}=\left(cases \right)$

0& \text{if \$r-j\$ is odd},\\ $r!\,(-1)^{(r-j)/2}$ & \text{if \$r-j\$ is even}.\end{cases}

\text と埋め込み数式の使用に注意してください.

注意 plain TeX 形式の\matrix{...\cr...\cr}と関連コマンド\pmatrix, \cases は LaTeX では避けるべきです (これらは amsmath パッケージがロードされると無効になります).

4.5. 数学用の空白コマンド. amsmath パッケージが使われていると,これらの数学用の空白コマンドはすべて,数学モードの内側でも外側でも使用できます.

省略形	コマンド	例	省略形	コマンド	例
	no space	34		no space	34
١,	\thinspace	34	\!	\negthinspace	34
\:	\medspace	34		\negmedspace	34
\;	\thickspace	34		\negthickspace	34
		3 4			
	\qquad	3 4			

数式での間隔をより細かく制御するには、\mspaceと'数学単位(math units)'を使用します.1つの数学単位,すなわち mu は mu に等しい.したがって,負の半分\quad を得るには,\mspace{-9.0mu}と書きます.

これ以外に \LaTeX では、与えらた断片の高さまたは幅に等しい空白を入れる 3 つのコマンドもあります:

例	結果
	3つの X に等しい空白.高さは.
\hphantom{XXX}	3つの X のに等しい空白高さは 0
\vphantom{X}	0に等しい幅,高さ $= X$ の高さ

4.6. ドット. 種々の状況において優先される省略記号(斜めまたは水平オンライン)については一般的な合意がありません。そのため好み問題と考えられるかもしれません。ほとんどの場合,一般的な\dots を使用することができ,amsmath は AMS の規則に従った斜めドット(\ldots)の間の中心ドット(\cdots)を指定することができます。ドットの後に続くものがあいまいである場合,コマンドにより特定の形式が使用できます。しかし,\ldots や\cdots の代わりに、次に示すような意味に応じたコマンドを使うべきです。

- \dotsc は "コンマに続くドット"
- \dotsb は "に黄砂要素あるいは二項関係の後のドット"
- \dotsm は "たくさんのドット"
- \dotsi は "積分の後のドット"
- \dotso は "それ以外" (上の例に該当しない場合)

著者は、その場に応じた規約に適合させるべきである. たとえば、出版社の規則に応じた規則に従って提出する必要がありますここではアメリカの数学会の慣習に従います:

We have the series A_1,A_2,\dotsc , the regional sum $A_1+A_2+\dotsb$, the orthogonal product $A_1A_2\cdot dotsm$, and the infinite integral $[\int A_1+A_2\cdot dotsm]$.

We have the series A_1, A_2, \ldots , the regional sum $A_1 + A_2 + \cdots$, the orthogonal product $A_1 A_2 \cdots$, and the infinite integral

$$\int_{A_1} \int_{A_2} \cdots.$$

4.7. 分割させないダッシュ. \nobreakdash コマンドはハイフンまたはダッシュの後の改行を抑制します. たとえば、'pages 1–9' とするためには pages 1\nobreakdash--9 と書くことで、ハイフンと 9 のあいだで改行は起こりません. \nobreakdash を使用すれば、\$p\$-adic のような組み合わせのときの望ましくないハイフネーションを防ぐこともできます. 頻繁に使用する場合は、略語を使用することを勧めます. たとえば

\newcommand{\p}{\$p\$\nobreakdash}% for "\p adic" ("p-adic")
\newcommand{\Ndash}{\nobreakdash\textendash}% for "pages 1\Ndash 9"
% For "\n dimensional" ("n-dimensional"):
\newcommand{\n}{\$n\$\nobreakdash-\hspace{0pt}}

最後の例は、ハイフンの後で改行を禁止する方法を示していますが、次の語には通常のハイフネーションを許可しています。ハイフンの後ろにゼロ幅の空白を追加します。

4.8. 根号. \sqrt コマンドは平方根を生成します. 基数を指定するには,オプション引数を1つ与えます.

4.9. 数式の枠囲み. \boxed コマンドは、引数の周りを枠で囲みます. \fbox は引数が数式にのみ適用できます:

$$\boxed{\eta \le C(\delta(\eta) + \Lambda_M(0, \delta))}$$
(4.2)

\boxed{\eta \leq C(\delta(\eta) +\Lambda_M(0,\delta))}

数式番号を含む方程式を囲む必要がある場合は、状況に応じて難しい場合があります. AMS の著者のための FAQ にいくつかの提案があります. ページの赤で概説されている項目を参照してください https://www.ams.org/faq?faq_id=290.

5. 分数とそれに関連する話題

5.1. \frac, \dfrac, および\tfrac コマンド、\frac コマンドは, 2つの引数—分子と分母—を取り、それらを通常の分数の形式にタイプセットします。 \dfrac や\tfrac を使えば IFTeX が想定する大きさの代わりに(t=テキストスタイル,d=ディスプレイスタイル)適切な大きさになります.

$$\frac{1}{k}\log_2 c(f), \quad \frac{1}{k}\log_2 c(f), \quad \frac{1}{k}\log_2 c(f)$$
 (5.1)

\begin{equation}

 $\frac{1}{k}\log_2 c(f),\quad d^{1}{k}\log_2 c(f),$

 $\displaystyle \frac{1}{k}\log_2 c(f)$

\end{equation}

$$\Re z = \frac{n\pi \frac{\theta + \psi}{2}}{\left(\frac{\theta + \psi}{2}\right)^2 + \left(\frac{1}{2}\log\left|\frac{B}{A}\right|\right)^2}.$$
 (5.2)

\begin{equation}

 $\Re\{z\} = \frac{n\pi {n\pi {n \over n}} {dfrac{\theta + \gamma {i}}{2}}{{dfrac}}$

 $\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2$

\log \left\lvert\dfrac{B}{A}\right\rvert\right)^2}.

\end{equation}

5.2. \binom, \dbinom, および\tbinom コマンド. $\binom{n}{k}$ のような 2 項式の場合には, \binom, \dbinom, \tbinom というコマンドを使います:

$$2^{k} - \binom{k}{1} 2^{k-1} + \binom{k}{2} 2^{k-2} \tag{5.3}$$

 $2^k-\min\{k}{1}2^{k-1}+\min\{k}{2}2^{k-2}$

5.3. \genfrac コマンド、\frac, \binom の機能とその変種は次のとおりです。一般化された分数コマンド\genfrac は 6 つの引数をとります。最後の 2 つは,'\frac'の分子と分母に対応します。最初の 2 つはオプションのデリミタです(\binom 参照)。3 番目は分母分子の間の線の太さを決めます(\binom はこれを使って分母分子の間の線の太さを 0pt に設定,つまり表示しません)。4 番目の引数は数式のスタイルを決めます:整数値 0—3 は,それぞれ\displaystyle,\textstyle,\scriptstyle,\scriptscriptstyle を選択します。3 番目の引数が空の場合,線の太さはデフォルトで "normal" になります.

これを説明するために、ここで\frac、\tfrac、そして\binomが、どのように定義されているかをみます.

注意 技術的な理由から、LATEX ドキュメントでプリミティブ分数コマンド\over, \atop, \above を使用することは推奨されません(例: https://www.ams.org/faq?faq_id=288, 赤で囲まれたエントリ).

5.4. 連分数. 連分数

$$\frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}\tag{5.4}$$

は,次のようにします.

\cfrac{1}{\sqrt{2}+
 \cfrac{1}{\sqrt{2}+
 \cfrac{1}{\sqrt{2}+\dotsb
}}}

こうすれば、\frac をそのまま使うよりは綺麗に作成されます. 任意の分子の左または右の配置は、\cfrac の代わりに\cfrac[1] または\cfrac[r] を使用して行います.

6. デリミタ

6.1. デリミタの大きさ. 指定しない限り,数式のデリミタは,含まれる数式の標準の高さのままです. より大きなサイズを得るには,接頭辞\big ... (下記参照)を使用して特定のサイズを選択するか,または自動サイズ設定のために接頭辞\left と\right を使用できます.

\left と\right で行われるデリミタの自動的な大きさ調整には2つの制限があります:第1に,最大の数式を包むのに十分な大きさのでリミタを機械的に適用し,その次がかなり大きいデリミタへと一足飛びに拡大したものになります.これは,指定されたデリミタのサイズが極端に大きすぎる式は,全体のサイズが大きくなることを意味します.通常のサイズのテキストでは,6pt (3pt の上端と下端)へ飛びます.デリミタのサイズを調整すべき状況が2つまたは3つあります.これらの調整は,次のコマンドを使用して行われます:

	サイズを 指定しない				\biggl \biggr	\Biggl \Biggr
Result	$(b)(\frac{c}{d})$	$(b)\left(\frac{c}{d}\right)$	$(b)(\frac{c}{d})$	$(b)(\frac{c}{d})$	$\left(b\right)\left(\frac{c}{d}\right)$	b $\left(\frac{c}{d}\right)$

第1の種類の調整は、総和記号などの値の範囲を示す累積作用素に対して行われます。 \left と\right を使うとデリミタは通常は必要なものより大きくなるので、 Big または bigg を使用する方が良い結果が得られます:

$$\left[\sum_{i} a_{i} \left| \sum_{j} x_{ij} \right|^{p} \right]^{1/p} \quad 見比べましょう \quad \left[\sum_{i} a_{i} \left| \sum_{j} x_{ij} \right|^{p} \right]^{1/p}$$

\biggl[\sum_i a_i\Bigl\lvert\sum_j x_{ij}\Bigr\rvert^p\biggr]^{1/p}

2番目の種類の状況はペアと成っているデリミタをいくつか入れ子にして使う場合です.ここでは、\left と\right はすべて同じサイズになります(包含されたマテリアルをカバーするのに十分です).デリミタを少し大きくして入れ子の要素を見やすくします.

$$((a_1b_1)-(a_2b_2))((a_2b_1)+(a_1b_2))$$
 見比べましょう $((a_1b_1)-(a_2b_2))((a_2b_1)+(a_1b_2))$

 $\left((a_1 b_1) - (a_2 b_2)\right)$

 $\left((a_2 b_1) + (a_1 b_2)\right)$

%\quad\text{versus}\quad

\quad\text{見比べましょう}\quad

 $\bigl((a_1 b_1) - (a_2 b_2) \bigr)$

 $\left((a_2 b_1) + (a_1 b_2)\right)$

3番目の状況は, $\left|\frac{b'}{d'}\right|$ のように,\left と\right は広すぎる行間を引き起こします.その場合,\big1 と\bigr を使用してデリミタを生成できます.基本となるサイズよりも大きいが,通常の行間にくらべて違和感が少ないようにできます: $\left|\frac{b'}{d'}\right|$.

mathtools パッケージにはサイジングを簡素化できる\DeclarePairedDelimiter 機能があります. 詳細については、パッケージのドキュメントを参照してください.

6.2. 縦棒の記法. |を用いて(絶対値のような)ペアになったデリミタを生成することは推奨されません. 記号の向きについてあいまいさがあり,まれに間違った間隔が生じます.たとえば, $|\mathbf{k}| = |-\mathbf{k}|$ を生成し, $|\mathbf{k}| = |-\mathbf{k}|$ を生成し, $|\mathbf{k}| = |\mathbf{k}|$ を生成し, $|\mathbf{k}| = |\mathbf{k}|$ を生成し, $|\mathbf{k}| = |\mathbf{k}|$ を生成し, $|\mathbf{k}| = |\mathbf{k}|$ を生成します。 \luert を "left vert bar"に\ruert を "right vert bar"に使うと,この問題が回避されます. \luert $|\mathbf{k}|$ と比べてみましょう. 二重バーの場合は,\luert,\ruert という似た方法があります. 推奨されるプラクティスは,ドキュメントのプリアンブルに,縦棒の記号のペアを使うさいの適切なコマンドを定義しておくことです:

\providecommand{\abs}[1]{\lvert#1\rvert}
\providecommand{\norm}[1]{\lVert#1\rVert}

こうすれば\abs{z}は |z| を生成し、\norm{v}は ||v|| を生成します.

7. \text コマンド

\text コマンドの主な用途は、ディスプレイ内に単語または短い文を入れることです。これは\mbox と似ていますが、\mbox と異なり、添え字を使用しても自動的に添字の大きさでテキストが生成されます。

$$f_{[x_{i-1},x_i]}$$
 is monotonic, $i = 1, \dots, c+1$ (7.1)

 $f_{\{x_{i-1},x_i\}} \text{ is monotonic,}$ \quad i = 1,\\dots,c+1

7.1. \mod と、その仲間. コマンド\mod, \bmod, \pmod, \pod は、"mod"表記についての特別な空白規則を扱います. \mod と\pod は、\mod の変わった仲間ですが、これらのほうを好む人がいるので用意されています. \mod はカッコを省略し、mod"を省略してカッコを保持します.

$$\gcd(n, m \bmod n); \quad x \equiv y \pmod b; \quad x \equiv y \mod c; \quad x \equiv y \pmod (7.2)$$

\gcd(n,m\bmod n) ;\quad x\equiv y\pmod b
;\quad x\equiv y\mod c ;\quad x\equiv y\pod d

8. 積分と和

$$\int_{|x-x_z(t)| < X_0} z^6(t)\phi(x) \qquad \qquad \sum_{|x-x_z(t)| < X_0} z^6(t)\phi(x)$$

\limits コマンドは、適用される基礎記号の直後に続く必要があります.その意味は次のとおりです:この記号の通常の規則にかかわらず、範囲を示す文字の場合、通常の上付き文字(右上)下付き(右下)の位置ではなくて、それらを記号の真上か真下に配置します.\nolimitsは、その代わりに側面にずらすことを意味し、新しい種類の基礎記号の定義に使用できます.\displaylimitsは、\sum コマンドのように標準的な配置を使用することを意味します.詳しくは [AMUG] にある、intlimitsと nosumlimits をみてください.

8.2. 多重積分. \iint, \iiint, \iiiint は, テキストスタイルとディスプレイスタイルの 両方で、それらの間隔をきちんと調整した複数の積分記号を与えます。 \idotsint は、同じ考 えの拡張したもので、2つの積分記号の間にドット入れます。意味を明確にするためにdxや それの類似の記号の前後には小さい空白(\,)を入れるべきであることに注意してください.

$$\iint\limits_A f(x,y) \, dx \, dy \qquad \iiint\limits_A f(x,y,z) \, dx \, dy \, dz \tag{8.1}$$

$$\iint_{A} f(x,y) dx dy \qquad \iiint_{A} f(x,y,z) dx dy dz$$

$$\iiint_{A} f(w,x,y,z) dw dx dy dz \qquad \int \cdots \int_{A} f(x_{1},...,x_{k})$$
(8.2)

 $\left\langle iint \right\rangle A f(x,y)\,dx\,dy\quad\iiint \left\langle iint \right\rangle A$

 $f(x,y,z)\,dx\,dy\,dz\$

\iiiint\limits_A

 $f(w,x,y,z)\dw,dx\dy\dx\dv.dx$

8.3. 複数行の下付き文字または上付き文字. \substack コマンドは,複数行の下付き文字ま たは上付き文字を生成するために使用できます:たとえば

8.4. \sideset コマンド,特別な目的のために, \sideset というコマンドもあります,これ は \sum や \prod のような記号の上付き文字の位置に記号を配置するためです。注意:\sideset \sqsupset マンドは、大きな演算子記号でのみ使用するように設計されています、普通の記号では結果 は信頼できません.\sideset を使用すると,

とできます.

余分な空のカッコのペアは、\sideset が大きな演算子の各隅に余分な記号を置くことがで きるという事実によって説明されます.総乗記号の各隅に星印を置くには,次のように入力 します.

$$\label{eq:sideset} $$ \left(*^* \right)_{-*}^* \right]^*$$

9. 数式の構成部分の大きさを変える

数式内のフォントサイズを変更するための LAT_FX のメカニズムは,数式の外で使用されてい るものとはまったく異なります. \large や\huge のようなテキストコマンドのいずれかを 使って数式内の何かを大きくしようとすると:

次のようなメッセージが返されます.

Command \large invalid in math mode

そのような試みは、IATeX の数学記号どのように扱うかということについて誤解しているこ とを示しています。日常の文章で総和を表すのに#記号を使うことがありますが、このように 表示させるための最良の方法は,標準の LPTFX \DeclareMathSymbol コマンドで"mathop" 型の記号として定義することです [LFG] を参照してください). (しかしこれは, 適切な文字 サイズのスラッシュの表示サイズのペアで数学フォントを取得することを必要としますが、こ れはあまり簡単ではありません).

次の表示を考えてみましょう:

$$\frac{\sum_{n>0} z^n}{\prod_{1\leq k\leq n} (1-q^k)} \qquad \begin{array}{l} \text{ $\lceil \sum_{n>0} z^n \rceil$} \\ \text{ $\lceil prod_{1} \leq k \leq n \rceil (1-q^k) \rceil$} \end{array}$$

\frac の代わりに\dfrac を使用しても、この場合は何も変更されません.総和と総乗の記号をフルサイズで表示するには、\displaystyle コマンドが必要です:

$$\frac{\displaystyle\sum_{n>0} z^n}{\displaystyle\prod_{1\leq k\leq n} (1-q^k)} \qquad \begin{array}{l} \displaystyle\prod_{1\leq k\leq n} (1-q^k) \\ \end{array} \qquad \begin{array}{l} \displaystyle\prod_{1\leq k\leq n} (1-q^k) \\ \end{array}$$

フルサイズの記号を使用したいが範囲指定を横に置きたい場合は、\nolimits コマンドを使用します:

$$\frac{\sum_{n>0} z^n}{\prod_{1\leq k\leq n} (1-q^k)} \qquad \begin{array}{l} \text{ $$ \frac{\sum_{n>0} z^n}{z^n} $} \\ \text{ $$ \{\text{displaystyle}\pmod \infty_{1\leq k\leq n} (1-q^k)\}$} \end{array}$$

同じような機能コマンド\textstyle,\scriptstyle,および\scriptscriptstyleがあります。これらはIAT_EXに記号のサイズと空白について、現在の文脈上は他のサイズを生成する場合でも、(それぞれ)インライン数式、一次添字、または二次添字のサイズを適用します。

注意: これらのコマンドは,I⁴TEX で"宣言 (declaration)"と呼ばれる特別なクラスのコマンドに属します.特に,コマンドの有効範囲を指定する中カッコの位置に注意してください:

10. このほかのパッケージ

数式のためドキュメントの組版に便利な他の多くの \LaTeX パッケージが CTAN(Comprehensive TeX アーカイブネットワーク) から利用できます. いくつかのお勧めを紹介します:

mathtools amsmathに、さらに機能を追加したもの:amsmathを読み込みます.

amsthm 定理と証明を作成するためのもの.

amsfonts \mathbb と\mathfrak を定義し、多くの記号を使うことができるようにします (amssymb に含まれています).

accents アクセントと任意の記号を使ったアクセントの作成.

bm 太字のための数学パッケージで、\boldsymbol より一般的でより堅牢な実装を提供します.

mathrsfs Ralph Smith の筆記体です.

cases 2つ以上の方程式のそれぞれに式番号を降らずに、大きなブレースカッコでまとめます。

delarray 配列の複数の行にまたがるデリミタです.

xypic 可換図式とそれ以外の図のため.

TikZ ダイアグラムをはじめ、多くのグラフ作成のため、

TeX カタログの

http://mirror.ctan.org/help/Catalogue/alpha.html,は,パッケージ名を知っている場合には適しています.

TFX に関係する質問や答えを調べる場合は、次のフォーラムがあります:

https://tex.stackexchange.com/questions

すでに、誰かによって答えが示されている場合があるので、まずアーカイブを調べます.整理された話題をもとに、そこから探すと答えを素早く得られます:

https://tex.meta.stackexchange.com/a/2425#2425

探しても見つからない場合には、あなたが初めての質問者となります.

11. その他の役に立つドキュメント

References

- [AMUG] American Mathematical Society and the IATEX3 Project: User's Guide for the amsmath package, Version 2.+, http://mirror.ctan.org/macros/latex/required/amsmath/amsldoc.tex and http://mirror.ctan.org/macros/latex/required/amsmath/amsldoc.pdf, 2017.
- [AFUG] American Mathematical Society: *User's Guide, AMSFonts*, http://mirror.ctan.org/fonts/amsfonts/amsfndoc.pdf, 2002.
- [CLSL] Scott Pakin: The Comprehensive LATEX Symbol List,

 http://mirror.ctan.org/tex-archive/info/symbols/comprehensive/,

 January 2017. Raw font tables, without symbol names, are shown alphabetically
 by font name in the rawtables*.pdf files in the same area of CTAN and from

 TEX Live with texdoc rawtables.
- [Lam] Leslie Lamport: EATEX: A document preparation system, 2nd edition, Addison-Wesley, 1994.
- [LC] Frank Mittelbach and Michel Goossens, with Johannes Braams, David Carlisle, and Chris Rowley: *The LATEX Companion*, 2nd edition, Addison-Wesley, 2004.
- [LGC] Michel Goossens, Frank Mittelbach, Sebastian Rahtz, Denis Roegel, and Herbert Voß: *The LATEX Graphics Companion*, 2nd edition, Addison-Wesley, 2008.
- [LGG] D. P. Carlisle, LATEX3 Project: Packages in the 'graphics' bundle, http://mirror.ctan.org/macros/latex/required/graphics/grfguide.pdf, 2017.
- [LUG] LATEX3 Project Team: LATEX 2_E for authors, http://mirror.ctan.org/macros/latex/doc/usrguide.pdf, 2015.
- [MML] George Grätzer: More Math into LATEX, 5th edition, Springer, New York, 2016.
- [UCM] Will Robertson: Every symbol (most symbols) defined by unicode-math, http://mirror.ctan.org/macros/latex/contrib/unicode-math/unimath-symbols.pdf, 2017; and Will Robertson, Philipp Stephani, Joseph Wright, and Khaled Hosny: Experimental Unicode mathematical typesetting: The unicode-math package, http://mirror.ctan.org/macros/latex/contrib/unicode-math/unicode-math.pdf, 2017.