SHEET (1)

1-What are you expecting to see in the command window after running the following scripts? Also, Comment on your answer.

a-clc; Clear;	b-Clc; Clear;	c-clc; Clear;
x=3;	X=3	x=3;
Y=x^2+3*x+7	Y=x^2+3*x+7	Y=x^2+3*x+7;
d-Clc; x=3;	e-Clc; X=3; Clear;	f-Clc; Clear;
Clear x	x=3;	x=3
Y=x^2+3*x+7;	Y=x^2+3*x+7	Y=x^2+3*x+7;
Z=2*Y	Z=2Y^2	Z=2*Y

2- Based on the priority of conducting the mathematical operations in the MATLAB program, Calculate the expected answers of the following mathematical operations.

3- Using the values x = 10, y = 3. Use MATLAB to compute the following, and check the results with a calculator.

a.
$$u = x + y$$
 b. $v = xy$ c. $w = x / y$
d. $z = \sin x$ e. $r = 8 \sin y$ f. $s = 5 \sin (2y)$

4- Correct the following codes

i-Clc clear	ii- clc,clear	iii- clc,clear
a=1;b=2;c=1.8;	x=5*pi/6;	x=5+8*i; y=-6+7*I z=exp(x)
x = log 10c/log(a+b+c)+2*sinha-	$b=(tan(x)+sin(2x))/cos(x)+ln(x^5-$	$r=sqrt(y)$,, $s=(xy^2)$
3tanb	$\dots x^2$ +cosh(x)-2*tanh(x)	

5- Find the value for the following expressions

a. $area=\pi/4(do^2-di^2)$, do=100 mm, di=40 mm

b.
$$stress = \frac{(\sigma_x + \sigma_y)}{2} + \sqrt{(\frac{\sigma_x - \sigma_y}{2})^2 + \tau_{xy}^2}$$
, $\sigma_x = 100$, $\sigma_y = 80$, $\tau_{xy} = 52$ MPa

6- Two trigonometric identities are given by:

a. $\tan 3x = 3\tan x - \tan^3 x/1 - 3\tan^2 x$ b. $\cos 4x = 8(\cos^4 x - \cos^2 x) + 1$

For each part, verify that the identity is correct by calculating the values of the left and right sides of the equation, substituting $x = 45^{\circ}$

7- Find the maximum lateral deflection and the maximum bending stress for the supported cantilever subjected to a force at the free end(take modulus of elasticity E = 200 GPa, F=14 kN, l=1 m, diameter of shaft d is 20 mm)

Lateral Deflection= $F L^3/3$, $I=\pi/64*d^4$

SHEET (1)

- 8- Find the volume of a sphere having a radius of 15 cm. assume a cylinder having a volume equal to that of the sphere. Calculate the radius of the cylinder if its height is 45 cm.
- 9-Using the fprintf, write the values of the volume and radius of the cylinder of the previous problem resultants in a document file of the name "Results of Calculations".
- 10- When a belt is wrapped around a cylinder, the relation between the belt forces on each side of the cylinder is

$$F1=F2e^{\mu\beta}$$

Where β is the angle of wrap of the belt in radian and μ is the friction coefficient. Write a script file that first prompts a user to specify β , μ , and F2 and then computes the force F1. Test your program using input, fopen and fprintf functions with the values $\beta = 130^{\circ}$,

 $\mu = 0.3$, and F2 = 100 N. (Hint: Be careful with β !)