Lingwistyka Matematyczna

Laboratorium

Rok akademicki 2023/2024

Zadanie 1B Maszyna Turinga

Mikołaj Rajczyk

Opracuj model działania oraz napisz program symulujący Maszynę Turinga (MT) zwiększająca co najmniej trzycyfrową liczbę dziesiętną o 3(10).

Założenia początkowe:

- Analizę symboli zaczynamy od pierwszego symbolu z prawej strony sekwencji symboli
- Symbole analizujemy od strony prawej do lewej
- Analiza stanu końcowego rozpoczyna się po wczytaniu ostatniego symbolu

Dane wejściowe:

$$\begin{split} Q &= \{q_{00}, q_{10}, q_{11}, q_{20}, q_{21}, q_{30}, q_{31}, q_e\} \\ \sum &= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \\ \Gamma &= \sum \cup \{\Theta\} \\ A &= \{q_{30}, q_{31}\} \\ q_0 &= \{q_0\} \\ \delta &= Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \end{split}$$

γ	0	1	2	3	4	5	6	7	8	9	Θ
q 00	3, q ₁₀ , L	4, q ₁₀ , L	5, q ₁₀ , L	6, q ₁₀ , L	7, q ₁₀ , L	8, q ₁₀ , L	9, q ₁₀ , L	0, q ₁₁ , L	1, q ₁₁ , L	2, q ₁₁ , L	-, q _e , -
q 10	0, q ₂₀ , L	1, q ₂₀ , L	2, q ₂₀ , L	3, q ₂₀ , L	4, q ₂₀ , L	5, q ₂₀ , L	6, q ₂₀ , L	7, q ₂₀ , L	8, q ₂₀ , L	9, q ₂₀ , L	-, q _e , -
q 11	1, q ₂₀ , L	2, q ₂₀ , L	3, q ₂₀ , L	4, q ₂₀ , L	5, q ₂₀ , L	6, q ₂₀ , L	7, q ₂₀ , L	8, q ₂₀ , L	9, q ₂₀ , L	0, q ₂₁ , L	-, q _e , -
q ₂₀	0, q ₃₀ , L	1, q ₃₀ , L	2, q ₃₀ , L	3, q ₃₀ , L	4, q ₃₀ , L	5, q ₃₀ , L	6, q ₃₀ , L	7, q ₃₀ , L	8, q ₃₀ , L	9, q ₃₀ , L	-, q _e , -
q ₂₁	1, q ₃₀ , L	2, q ₃₀ , L	3, q ₃₀ , L	4, q ₃₀ , L	5, q ₃₀ , L	6, q ₃₀ , L	7, q ₃₀ , L	8, q ₃₀ , L	9, q ₃₀ , L	0, q ₃₁ , L	-, q _e , -
q 30	0, q ₃₀ , L	1, q ₃₀ , L	2, q ₃₀ , L	3, q ₃₀ , L	4, q ₃₀ , L	5, q ₃₀ , L	6, q ₃₀ , L	7, q ₃₀ , L	8, q ₃₀ , L	9, q ₃₀ , L	-, q ₃₀ , -
q 31	1, q ₃₀ , L	2, q ₃₀ , L	3, q ₃₀ , L	4, q ₃₀ , L	5, q ₃₀ , L	6, q ₃₀ , L	7, q ₃₁ , L	8, q ₃₀ , L	9, q ₃₀ , L	0, q ₃₁ , L	1, q ₃₁ , -
q _e	-, -, L	-, -, -									

Stany:

```
q0x - wczytano 0 cyfr
```

qe – za mało cyfr w liczbie, stan błędu

(x - czy jest przeniesienie, 0 lub 1)

Sprawdzenie:

 $\begin{array}{l} \circ & \Theta 1 \\ & MT = \{1,\,q_{00},\,4,\,q_{10},\,L\} \\ & MT = \{\Theta,\,q_{10},\,\text{-,}\,q_{e},\,\text{-}\} \end{array}$

```
Enter symbols string: #1

Turing machine result: <1, q00, 4, q10, L>

Turing machine result: <#, q10, , qe, >

Output: 4, end state: qe, consecutive states: ['q10', 'qe']
```

 \circ $\Theta 9$ $MT = \{9, q_{00}, 2, q_{11}, L\}$

```
MT = \{\Theta,\,q_{11},\text{-},\,q_e,\text{-}\} Enter symbols string: #9  
Turing machine result: <9, q00, 2, q11, L>  
Turing machine result: <#, q11, , qe, >  
Output: 2, end state: qe, consecutive states: ['q11', 'qe']
```

```
Θ12345
   MT = \{5, q_{00}, 8, q_{10}, L\}
   MT = \{4, q_{10}, 4, q_{20}, L\}
   MT = \{3, q_{20}, 3, q_{30}, L\}
   MT = \{2, q_{30}, 2, q_{30}, L\}
   MT = \{1, q_{30}, 1, q_{30}, L\}
   MT = \{ \Theta, q_{30}, -, q_{30}, - \}
    Enter symbols string: #12345
    Turing machine result: <5, q00, 8, q10, L>
    Turing machine result: <4, q10, 4, q20, L>
    Turing machine result: <3, q20, 3, q30, L>
    Turing machine result: <2, q30, 2, q30, L>
    Turing machine result: <1, q30, 1, q30, L>
    Turing machine result: <#, q30, , q30, >
    Output: 12348, end state: q30, consecutive states: ['q10', 'q20', 'q30', 'q30', 'q30', 'q30']
Θ997
   MT = \{7, q_{00}, 0, q_{11}, L\}
   MT = \{9, q_{11}, 0, q_{21}, L\}
   MT = \{9, q_{21}, 0, q_{31}, L\}
   MT = \{\Theta, q_{31}, 1, q_{30}, -\}
   Enter symbols string: #997
    Turing machine result: <7, q00, 0, q11, L>
    Turing machine result: <9, q11, 0, q21, L>
    Turing machine result: <9, q21, 0, q31, L>
    Turing machine result: <#, q31, 1, q30, >
    Output: 1000, end state: q30, consecutive states: ['q11', 'q21', 'q31', 'q30']
```