The Representer Theorem

David S. Rosenberg

New York University

February 13, 2018

Contents

1 Inner Product Spaces and Projections (Hilbert Spaces)

Representer Theorem

Inner Product Spaces and Projections (Hilbert Spaces)

Inner Product Space (or "Pre-Hilbert" Spaces)

An inner product space (over reals) is a vector space V and an inner product, which is a mapping

$$\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbf{R}$$

that has the following properties $\forall x, y, z \in \mathcal{V}$ and $a, b \in \mathbf{R}$:

- Symmetry: $\langle x, y \rangle = \langle y, x \rangle$
- Linearity: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
- Positive-definiteness: $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \iff x = 0$.

Norm from Inner Product

For an inner product space, we define a norm as

$$||x|| = \sqrt{\langle x, x \rangle}.$$

Example

 R^d with standard Euclidean inner product is an inner product space:

$$\langle x, y \rangle := x^T y \qquad \forall x, y \in \mathbf{R}^d.$$

Norm is

$$||x|| = \sqrt{x^T x}$$
.

What norms can we get from an inner product?

Theorem (Parallelogram Law)

A norm $\|\cdot\|$ can be written in terms of an inner product on \mathcal{V} iff $\forall x, x' \in \mathcal{V}$

$$2||x||^2 + 2||x'||^2 = ||x + x'||^2 + ||x - x'||^2,$$

and if it can, the inner product is given by the polarization identity

$$\langle x, x' \rangle = \frac{\|x\|^2 + \|x'\|^2 - \|x - x'\|^2}{2}.$$

Example

 ℓ_1 norm on R^d is NOT generated by an inner product. [Exercise]

Is ℓ_2 norm on \mathbb{R}^d generated by an inner product?

Orthogonality (Definitions)

Definition

Two vectors are **orthogonal** if $\langle x, x' \rangle = 0$. We denote this by $x \perp x'$.

Definition

x is orthogonal to a set S, i.e. $x \perp S$, if $x \perp s$ for all $x \in S$.

Pythagorean Theorem

Theorem (Pythagorean Theorem)

If
$$x \perp x'$$
, then $||x + x'||^2 = ||x||^2 + ||x'||^2$.

Proof.

We have

$$||x+x'||^2 = \langle x+x', x+x' \rangle$$

$$= \langle x, x \rangle + \langle x, x' \rangle + \langle x', x \rangle + \langle x', x' \rangle$$

$$= ||x||^2 + ||x'||^2.$$

Projection onto a Plane (Rough Definition)

- Choose some $x \in \mathcal{V}$.
- Let M be a subspace of inner product space \mathcal{V} .
- Then m_0 is the projection of x onto M,
 - if $m_0 \in M$ and is the closest point to x in M.
- In math: For all $m \in M$,

$$||x-m_0|| \leqslant ||x-m||.$$

Hilbert Space

- Projections exist for all finite-dimensional inner product spaces.
- We want to allow infinite-dimensional spaces.
- Need an extra condition called completeness.
- A space is **complete** if all Cauchy sequences in the space converge.

Definition

A **Hilbert space** is a complete inner product space.

Example

Any finite dimensional inner product space is a Hilbert space.

The Projection Theorem

Theorem (Classical Projection Theorem)

- H a Hilbert space
- ullet M a closed subspace of ${\mathfrak H}$ (picture a hyperplane through the origin)
- For any $x \in \mathcal{H}$, there exists a unique $m_0 \in M$ for which

$$||x-m_0|| \leq ||x-m|| \ \forall m \in M.$$

- This m_0 is called the **[orthogonal]** projection of \times onto M.
- Furthermore, $m_0 \in M$ is the projection of x onto M iff

$$x-m_0\perp M$$
.

Projection Reduces Norm

Theorem

Let M be a closed subspace of \mathcal{H} . For any $x \in \mathcal{H}$, let $m_0 = Proj_M x$ be the projection of x onto M. Then

$$||m_0|| \leqslant ||x||,$$

with equality only when $m_0 = x$.

Proof.

$$||x||^2 = ||m_0 + (x - m_0)||^2$$
 (note: $x - m_0 \perp m_0$ by Projection theorem)
 $= ||m_0||^2 + ||x - m_0||^2$ by Pythagorean theorem
 $||m_0||^2 = ||x||^2 - ||x - m_0||^2$

Then $||x - m_0||^2 \ge 0$ implies $||m_0||^2 \le ||x||^2$. If $||x - m_0||^2 = 0$, then $x = m_0$, by definition of norm.

Representer Theorem

Generalize from SVM Objective

• SVM objective:

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max(0, 1 - y_i [\langle w, x_i \rangle]).$$

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

where

- $R:[0,\infty)\to \mathbf{R}$ is nondecreasing (**Regularization term**)
- and $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary. (Loss term)

General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

where

- $w, x_1, ..., x_n \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathbf{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R:[0,\infty)\to \mathbf{R}$ is nondecreasing (**Regularization term**), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (Loss term).

General Objective Function for Linear Hypothesis Space (Details)

• Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

- What's "linear"?
- The prediction/score function $x \mapsto \langle w, x_i \rangle$ is linear in what?
 - in parameter vector w, and
 - in the feature vector x_i .
- Why? [Real-valued] inner products are linear in each argument.
- The important part is the linearity in the parameter w.

General Objective Function for Linear Hypothesis Space (Details)

• Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

- Ridge regression and SVM are of this form.
- What if we penalize with $\lambda ||w||_2$ instead of $\lambda ||w||_2^2$? Yes!.
- What if we use lasso regression? No! ℓ_1 norm does not correspond to an inner product.

The Representer Theorem

Theorem (Representer Theorem)

Let

$$J(w) = R(||w||) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

where

- $w, x_1, ..., x_n \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathbb{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathfrak{R} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R:[0,\infty)\to R$ is nondecreasing (Regularization term), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (Loss term).

Then

- If $M = span(x_1, ..., x_n)$, then $J(Proj_M w) \leq J(w)$ for any $w \in \mathcal{H}$.
- If J(w) has a minimizer, then it has a minimizer of the form $w^* = \sum_{i=1}^n \alpha_i x_i$.
- If R is strictly increasing, then all minimizers have this form. (Proof in homework.)]

The Representer Theorem (Proof)

- Fix any $w \in \mathcal{H}$.
- 2 Let $w_M = \operatorname{Proj}_M w$.
- **3** Then $w_M^{\perp} := w w_M$ is orthogonal to M.
- So $\langle w, x_i \rangle = \langle w_M + w_M^{\perp}, x_i \rangle = \langle w_M, x_i \rangle \ \forall i$, and
- **o** Projections decrease norms: $||w_M|| \leq ||w||$.
- **②** Since *R* is nondecreasing, $R(||w_M||) ≤ R(||w||)$.
- **3** $J(w_M) \leq J(w)$. [Proves first result.]
- If w^* minimizes J(w), then $w_M^* = \text{Proj}_M w^*$ is also a minimizer, since $J(w_M^*) \leq J(w^*)$.
- **◎** So $\exists \alpha$ s.t. $w_M^* = \sum_{i=1}^n \alpha_i x_i$ is a minimizer of J(w).

Q.E.D.

The Representer Theorem (Strong Converse)

Theorem

Let

$$J(w) = R(||w||) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

under the same conditions as in the Representer theorem. Let $M = span(x_1, ..., x_n)$. If w_M^* minimizes J(w) over the set M, then w_M^* minimizes J(w) over all \mathcal{H} .

- One consequence of the Representer theorem only applies if J(w) has a minimizer over \mathcal{H} . This theorem tells us that it's sufficient to check for a constrained minimizer of J(w) over M. If one exists, then it's also an unconstrained minimizer of J(w) over \mathcal{H} . If there is no constrained minimizer over M, then, J(w) has no minimizer over \mathcal{H} .
- Bottom Line: We can jump straight to minimizing over *M*, the "span of the data".

The Representer Theorem (Strong Converse - Proof)

- Let $w_M^* \in \arg\min_{w \in M} J(w)$. [constrained minimizer
- ② Consider any $w \in \mathcal{H}$.
- **4** By the Representer theorem, $J(w_M) \leq J(w)$.
- 5 $J(w_M^*) \leqslant J(w_M)$ by definition of w_M^* .
- **1** Thus for any $w \in \mathcal{H}$, $J(w_M^*) \leqslant J(w)$.
- **O** Therefore w_M^* minimizes J(w) over \mathcal{H}

QED